
SQL SQL 20002000

Copyright© 2016 Microsoft Corporation

The content in this document is retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

 Microsoft SQL Server 2000

Microsoft® SQL Server™ is a relational database management
and analysis system for e-commerce, line-of-business, and data
warehousing solutions. SQL Server 2000, the latest version,
includes support for XML and HTTP, performance and availability
features to partition load and ensure uptime, and advanced
management and tuning functionality to automate routine tasks
and lower total cost of ownership.

Check out the SQL Server Developer Center

The SQL Server Developer Center provides the content and resources you need to successfully implement SQL Server solutions.

In This Library Section Essentials
Documentation
Technical Articles
The .NET Show: SQL Server
Downloads
Code Samples

SQL Server on Microsoft.com
Securing SQL Server 2000
Data Access and Storage Developer
Center
SQL Server Support Center
Newsgroups
Communities

http://msdn.microsoft.com/sql/
https://msdn.microsoft.com/en-us/library/aa257103(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/cc341749(v=msdn.10).aspx
http://msdn.microsoft.com/theshow/Episode004/default.asp
http://msdn.microsoft.com/sql/downloads/
http://msdn.microsoft.com/sql/downloads/samples/
http://www.microsoft.com/sql/default.asp
http://www.microsoft.com/sql/techinfo/administration/2000/security/securingsqlserver.asp
http://msdn.microsoft.com/data/
http://support.microsoft.com/default.aspx?scid=fh;EN-US;sql
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.sqlserver.programming&lang=en&cr=US
http://msdn.microsoft.com/community/sql.asp

Getting Started (SQL Server 2000)

SQL Server Home Page

SQL Server Books Online

What's New in SQL Server Books Online

Technical Support

Microsoft Product Support Services (PSS)
Microsoft SQL Server Support
Knowledge Base (KB) Search
Microsoft TechNet
Microsoft Windows Hardware Compatibility List
Troubleshooting

Microsoft Accessibility Web Site

SQL Server Printed Documentation

White Papers

Feedback

Samples

Web Links

Microsoft SQL Server Product Web Site
Microsoft SQL Server Developer Center
Professional Association for SQL Server
SQL Server Magazine
Microsoft Newsgroups
MSDN Online
Microsoft SQL Server Web Site, English Query Page
Microsoft SQL Server Web Site, Analysis Services Page
XML Developer Center

http://www.microsoft.com/isapi/redir.dll?prd=productsupport
http://www.microsoft.com/isapi/redir.dll?Prd=support&Ar=sqlbook&Olcid=0x0409&Clcid=0x0409
http://www.microsoft.com/isapi/redir.dll?Prd=Support&Ar=SearchKB
http://www.microsoft.com/isapi/redir.dll?Prd=technet&Ar=sql
http://www.microsoft.com/isapi/redir.dll?prd=hardware compatibility list
http://www.microsoft.com/isapi/redir.dll?Prd=accessibility&Ar=enable
http://go.microsoft.com/fwlink/?LinkId=26260
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=sqlserver
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=sqlserver
http://www.sqlpass.org/
http://www.sqlmag.com/
news://msnews.microsoft.com
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=eq
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&Sbp=Analysis Services&Ar=OLAP
http://www.microsoft.com/isapi/redir.dll?prd=xml

Getting Started (SQL Server 2000)

Getting Started with SQL Server Books Online
Use this table for quick access to the documentation for Microsoft® SQL Server™ 2000.

To learn about See
SQL Server architecture Relational Database Components

Database Architecture

Administration Architecture

Replication Architecture

Application Development Architecture

Analysis Services Architecture

Meta Data Services Architecture

New features in SQL Server 2000 What's New in Microsoft SQL Server 2000
Installing, upgrading, and running SQL
Server 2000

Overview of Installing SQL Server 2000

Upgrading to SQL Server 2000: Overview

Installing Analysis Services

Installing English Query

Upgrading From Earlier Versions

Planning and designing a new database Creating and Maintaining Databases
Overview

Performing administrative tasks Importing and Exporting Data

Backing Up and Restoring Databases

Automating Administrative Tasks

Managing Security

Security and Authentication

Monitoring Server Performance and
Activity

Getting Started with Command Prompt
Utilities

Administering Analysis Services

PivotTable Service

MDX

Data warehousing and online analytical
processing (OLAP)

DTS Overview

Data Warehousing and OLAP

Data Warehousing

Developing applications Transact-SQL Syntax Elements

Programming ADO SQL Server
Applications

Programming OLE DB SQL Server
Applications

Developing SQL-DMO Applications

Getting Started with Replication
Programming

Programming DTS Applications

Programming Extended Stored
Procedures

Programming Embedded SQL for C

Getting Started with DB-Library for C

Decision Support Objects

Add-Ins

PivotTable Service

Programming Meta Data Services
Applications

Planning and designing data cubes Cubes
Performance Monitoring Server Performance and

Activity

Optimizing Database Performance
Overview

Analyzing and Optimizing Performance

Optimizing Repository Performance

Troubleshooting Transact-SQL Tips

Troubleshooting Overview

Analysis Services Troubleshooting

This documentation is provided for informational purposes only. Microsoft makes no warranties, either express or implied, in this
document. See the link at the bottom of this page for the full copyright notice.

Getting Started (SQL Server 2000)

Documentation Conventions
The following conventions are used in SQL Server Books Online to distinguish elements of text.

Convention Used for
UPPERCASE Transact-SQL keywords and SQL elements.
Initial Capitals Paths and file names.
Bold Database names, table names, column names, stored

procedures, command-prompt utilities, menus, commands,
dialog box options, programming elements, and text that must
be typed exactly as shown.

Italic User-supplied variables, relationships, and phrasings.
Monospace Code samples, examples, display text, and error messages.
English text only References to the data contained in the pubs, Northwind, and

Foodmart databases, or other data used in examples.

See Also

DB-Library for C Syntax Conventions

Replication Syntax Conventions

SQL-DMO Syntax Conventions

Transact-SQL Syntax Conventions

Getting Started (SQL Server 2000)

Displaying Information in SQL Server Books Online
To display information in SQL Server Books Online, use these documentation features:

Expand text

The expand text feature, designated by the plus sign (+), is used to provide additional information within a topic. To view the
information, click the plus sign, and a new text window appears. To close the window, click the minus sign (-). When you print a
topic, the expanded text also prints.

Glossary terms

Glossary terms appear as colored, underlined text. Click a glossary term to see the definition. To remove the definition window,
click anywhere on the screen. When you print a topic, the definition does not print. The glossary terms in SQL Server Books
Online do not include glossary terms found in the Microsoft Computer Dictionary, Fourth Edition.

Keyboard shortcuts icon

The Keyboard shortcuts icon is located on the toolbar that appears at the top of each topic. Click the icon to see the shortcut
keys that are available.

See Also icon

The See Also icon appears at the top of those topics that contain related topics. Click the icon to see the list of related topics.

Subsets

SQL Server Books Online allows you to define subsets of the entire SQL Server Books Online against which to perform a search.
You can define your own subsets; however, a set of default subsets is also provided. The subsets are targeted at specific
audiences, and each subset covers multiple topics. Subsets make it easier to search for information related to your activities by
minimizing the number of search hits.

Thumbnail illustrations

Some illustrations appear in a minimized (thumbnail) view. To enlarge the illustration, click Enlarge diagram. The illustration
appears in the right pane, enlarged to its full size. To return to the topic, click Back on the toolbar. To print the illustration, click the
Print icon at the top of the window containing the illustration. When you print a topic, the illustration prints full size.

Links to Procedures for Performing Tasks

In Microsoft® SQL Server™ 2000, administrative tasks can be performed using one or more tools or procedures; however, all
tools and procedures cannot be used for all tasks. The tools and procedures are designated by a plus sign (+) followed by a label.

For example, to start the default instance of SQL Server, click the plus-sign text that corresponds to the tool or procedure you
want to use.

To start the default instance of SQL Server

Enterprise Manager

Service Manager

Command Prompt

SQL-DMO

These are the tools and procedures that are available.

Client Utility Profiler
Command Prompt Query Analyzer
Enterprise Manager Service Manager
Failover SQL Setup
Network Utility SQL-DMO
ODBC Transact-SQL
OLE DB Windows
Perf Monitor Wizard

Getting Started (SQL Server 2000)

Using SQL Server Books Online
SQL Server Books Online is the online documentation provided with Microsoft® SQL Server™ 2000. You can find information in
SQL Server Books Online by:

Navigating through the contents pane.

Typing a keyword in the index.

Typing a word or phrase and performing a search.

SQL Server Books Online appears in a window that contains these panes:

Navigation pane

This pane is located on the left and contains the Contents, Index, Search, and Favorites tabs. The topics on the Contents tab are
organized hierarchically by task or subject.

Topic pane

This pane is located on the right and displays the selected topic or the default topic.

Toolbar pane

This pane is located below the SQL Server Books Online title bar and contains the navigation and command buttons.

Using the Toolbar Buttons

You can find topics in SQL Server Books Online by using these navigational buttons on the toolbar:

Previous

Displays the previous topic listed in the table of contents.

Next

Displays the next topic listed in the table of contents.

Back

Displays the last topic you viewed.

Forward

Displays the next topic in a previously displayed sequence of topics.

Home

Displays the SQL Server Books Online Home Page.

Note The toolbar in your Help Viewer may not contain all of these navigational buttons.

Other buttons on the toolbar are:

Hide

Hides the Navigation pane. When the Navigation pane is hidden, click Show to show the Navigation pane. If you close SQL Server
Books Online with the Navigation pane hidden, the pane is hidden the next time you open SQL Server Books Online.

Locate

Displays the location of a topic in the Navigation pane.

Font

Changes the font size in the Topics pane.

Print

Prints the selected topic, with the option to print all subtopics.

Navigating SQL Server Books Online

Here are some tips for navigating SQL Server Books Online:

To return to the SQL Server Home page, click Home on the toolbar.

Colored, underlined text indicates links to other topics. To link to another topic, including Web pages, click the colored,
underlined text.

Many topics contain lists of related topics, called See Also. To jump to a related topic, click the title of the topic you want to
view.

If you use a particular topic often, you can add it to your Favorites list. For more information, see Finding a Topic.

For shortcut menu commands, right-click the Contents tab or Topic pane. For more information, see Using Accessibility
Features in SQL Server Books Online.

Copying and Printing a Topic

To copy or print a topic, use these procedures.

To copy a topic

1. In the Topic pane, right-click the topic you want to copy, and then click Select All.

2. Right-click again, and then click Copy. This copies the topic to the Clipboard.

3. Open the document to which you want to copy the topic.

4. Position your cursor where you want the information to appear.

5. On the Edit menu, click Paste.

Note If you want to copy only part of a topic, select the text you want to copy, right-click, and then click Copy.

To print a topic

There are several ways to print a topic:

Right-click the Topic pane, and then click Print.

Click the Print icon on the toolbar.

On the File menu, click Print.

On the Contents tab in the Navigation pane, right-click the topic name, and then click Print.

SQL Server Books Online displays two dialog boxes for printing:

If you are using the Contents tab in the Navigation pane, and the Navigation pane is the active pane, SQL Server Books
Online displays the Print Topics dialog box. If you are using Microsoft Internet Explorer version 5.5, do not click Print the
Selected headings and all subtopics, as the subtopics may not print.

In all other cases, SQL Server Books Online displays the Print dialog box. If you are using Internet Explorer version 5.5 or
Internet Explorer 5 and you click Print all linked topics in the Options tab, linked topics may not always print.

Using the Shortcut Menu Commands

This table shows the shortcut menu commands you can use to display and customize information.

Command Description
Right-click in the table of contents,
and then click Close All.

Closes all books or folders. This command
only works if the Contents tab is displayed.

Right-click, and then click Print. Prints the topic.

These commands can be accessed using the keyboard. Press SHIFT+F10 to display the shortcut menu, and then click the
appropriate shortcut keys. Or, enable MouseKeys. Use a MouseKey combination to display the shortcut menu, and then click the
appropriate shortcut keys.

Getting Started (SQL Server 2000)

Changing the Way Topics Appear
The size and position of the SQL Server Books Online window and the Navigation and Topic panes can be easily changed:

To resize the Navigation or Topic pane, point to the divider between the two panes. When the pointer changes to a double-
headed arrow, drag the divider right or left.

To shrink or enlarge SQL Server Books Online, point to any corner of the SQL Server Books Online window. When the
pointer changes to a double-headed arrow, drag the corner.

To change the height or width of SQL Server Books Online, point to the top, bottom, left, or right edge of the SQL Server
Books Online window. When the pointer changes to a double-headed arrow, drag the edge.

To reposition SQL Server Books Online on your screen, click the title bar and drag the SQL Server Books Online window to a
new position.

Note When you open SQL Server Books Online, it appears with the size and position settings that were last specified.

Getting Started (SQL Server 2000)

Finding a Topic
To find a topic in SQL Server Books Online, use the tabs in the Navigation pane:

Click the Contents tab to browse the table of contents, which is an expandable, hierarchical list of topics.

Click the Index tab to see a list of index entries, and then type a term that you want to search for or scroll through the list of
terms. Topics are often indexed under more than one entry.

Click the Search tab and then type the word to locate every occurrence of a word or phrase that may be contained in SQL
Server Books Online. For more information, see Using the Search Tab.

Note The results of a search are displayed in three columns: Title, Location, and Rank. The ranking of topics under the
Rank column is not determined by any standard (for example, alphabetical order or most number of hits). Do not use the
ranking to determine which topics to view.

Click the navigation buttons on the toolbar. For more information, see Using SQL Server Books Online.

Creating and Using the Favorites List

The Favorites list provides a convenient way to access topics that you frequently refer to.

To create a list of favorite topics, locate the topic you want to make a favorite topic, click the Favorites tab, and then click
Add.

To return to a favorite topic, click the Favorites tab, select the topic, and then click Display.

If you want to rename a topic, on the Favorites tab, select the topic, and then type a new name in the Current topic box.

To remove a favorite topic, on the Favorites tab, select the topic, and then click Remove.

Accessing a Topic Using a URL

You can use a URL to direct someone to a topic in SQL Server Books Online.

To direct someone to a topic in SQL Server Books Online

1. On the page to which you want to direct someone, in the Navigation pane, right-click the topic, and then click Jump to URL.

2. Copy the URL that appears in the Current URL box, and then paste it into an e-mail or other document.

3. Instruct the person receiving the URL on how to paste the URL into the Jump to this URL dialog box.

The URL can also be pasted in the Address box in Microsoft Internet Explorer. However, this will not bring up SQL Server
Books Online; only the topic that you selected will be displayed.

Getting Started (SQL Server 2000)

Using Subsets to Find a Topic
The SQL Server Books Online documentation is divided into a set of default subsets. The subsets are targeted at specific
audiences, and each subset covers multiple topics. Subsets make it easier to search for information related to your activities by
minimizing the number of search hits. For example, an ADO programmer can use the ADO programmer subset to find
information relevant to writing ADO applications, without getting topics with similar information in DB-Library and Embedded
SQL. You can define your own subsets against which to perform a search.

To define your own subsets

1. On the View menu, click Define Subset.

2. In the Select subset to display box, select New.

3. In the Available Items list, click the items you want in the subset, and then click Add.

4. In the Save new subset as box, type a name for the subset, and then click Save.

To use a default subset

Select the subset you want using the Active Subset drop-down list box in the Navigation pane of SQL Server Books Online.

To delete a subset

Note If you delete a subset, there is no way to restore it automatically; you must redefine the subset.

1. On the View menu, click Define Subset.

2. In the Select subset to display box, select the subset you want to delete, and then click Delete.

Getting Started (SQL Server 2000)

Using the Search Tab
SQL Server Books Online includes a Search tab that allows you to search through every word in SQL Server Books Online to find
a match. For example, if you perform a full-text search on the word "index", every topic that contains the word "index" is listed.
You can precisely define a search by using wildcard expressions, nested expressions, and Boolean operators. You can request
similar word matches, search only the topic titles, or search the results of an earlier search.

All instances of search terms that are found in the topic files can appear highlighted. To specify highlighting, click the Options
button, and then click Search Highlight On. If you are viewing a long topic, only the first 500 instances of a search word or
phrase are highlighted. This feature works only with Microsoft® Internet Explorer 4.0 or later.

Searching for Topics

A search consists of the word or phrase you want to find. You can use wildcard expressions, nested expressions, Boolean
operators, similar word matches, a previous results list, or topic titles to further define your search.

The basic rules for formulating queries are:

Searches are not case-sensitive, so you can type your search in uppercase or lowercase characters.

You can search for any combination of letters (a-z) and numbers (0-9).

Punctuation marks such as the period, colon, semicolon, comma, and hyphen are ignored during a search.

Group the elements of your search using double quotation marks or parentheses to set apart each element. You cannot
search for quotation marks.

If you are searching for a file name with an extension, you should group the entire string in double quotation marks
("filename.ext"). Otherwise, the period breaks the file name into two separate terms. The default operation between terms is AND,
which is the logical equivalent to "filename AND ext".

To find information with full-text search

1. Click the Search tab, and then type the word or phrase you want to find.

2. Click the arrow button to add Boolean operators to your search.

3. Click List Topics, select the topic you want, and then click Display.

4. To sort the topic list, click the Title, Location, or Rank column heading.

Note The ranking of topics under the Rank column is not determined by any standard (for example, alphabetical order or most
hits). Do not use the ranking to determine which topics to view.

Searching for Words or Phrases

You can search for words or phrases and use wildcard expressions. Wildcard expressions allow you to search for one or more
characters using a question mark or asterisk. The table describes the results of these different kinds of searches.

Search for Example Results
A single word select Topics that contain the word "select".

(You will also find its grammatical
variations, such as "selector" and
"selection".)

A phrase "new operator"
or
new operator

Topics that contain the literal phrase
"new operator" and all its grammatical
variations.

Without the quotation marks, the query
is equivalent to specifying "new AND
operator", which will find topics
containing both of the individual words,
instead of the phrase.

Wildcard expressions esc*
or
80?86

Topics that contain the terms "ESC",
"escape", "escalation", and so on. The
asterisk cannot be the only character in
the term.

Topics that contain the terms "80186",
"80286", "80386", and so on. The
question mark cannot be the only
character in the term.

Select the Match similar words check box at the bottom of the Search tab to include minor grammatical variations for the
phrase you search.

Defining Search Terms

The AND, OR, NOT, and NEAR operators enable you to precisely define your search by creating a relationship between search
terms. The following table shows how you can use each of these operators. If an operator is not specified, AND is used. For
example, the query "spacing border printing" is equivalent to "spacing AND border AND printing".

Search for Example Results
Both terms in the same
topic.

dib AND palette Topics containing both the words "dib"
and "palette".

Either term in a topic. raster OR vector Topics containing either the word
"raster" or the word "vector" or both.

The first term without
the second term.

ole NOT dde Topics containing the word "OLE", but
not the word "DDE".

Both terms in the same
topic, close together.

user NEAR kernel Topics containing the word "user" within
eight words of the word "kernel".

The characters |, &, and ! do not work as Boolean operators (you must use OR, AND, and NOT).

Note You must define a search phrase that begins with AND, OR, NOT, or NEAR with double quotation marks; otherwise, these
words are interpreted as operators, and the search cannot be performed. For example, a search for the phrase NOT FOR
REPLICATION returns an error message, and a search for the phrase "NOT FOR REPLICATION" succeeds.

Using N ested Expressions When Searching

Nested expressions allow you to create complex searches for information. For example, "control AND ((active OR dde) NEAR
window)" finds topics containing the word "control" along with the words "active" and "window" close together, or containing
"control" along with the words "dde" and "window" close together.

The basic rules for searching Help topics using nested expressions are:

You can use parentheses to nest expressions within a query. The expressions in parentheses are evaluated before the rest of
the query.

If a query does not contain a nested expression, it is evaluated from left to right. For example: "Control NOT active OR dde"
finds topics containing the word "control" without the word "active", or topics containing the word "dde". On the other hand,
"control NOT (active OR dde)" finds topics containing the word "control" without either of the words "active" or "dde".

You cannot nest expressions more than five levels deep.

To search only the last group of topics from a previous search

This feature enables you to narrow a search that results in too many topics found. You can search through your results list from a
previous search by using this option.

1. On the Search tab, select the Search previous results check box.

2. Click List Topics, select the topic you want, and then click Display.

If you want to search through all of the files in SQL Server Books Online, this check box must be cleared. If you have previously
used this feature, when you click the Search tab, this check box will be selected.

To find words similar to your search term

This feature enables you to include minor grammatical variations for the phrase you search. For example, a search on the word
"add" finds "add", "adds", and "added".

1. Click the Search tab, type the word or phrase you want to find, and then select the Match similar words check box.

2. Click List Topics, select the topic you want, and then click Display.

This feature locates only variations of the word with common suffixes. For example, a search on the word "add" finds "added", but
it does not find "additive".

To search for words in the titles of SQL Server Books Online topics

1. Click the Search tab, type the word or phrase you want to find, and then select the Search titles only check box.

2. Click List Topics, select the topic you want, and then click Display.

Getting Started (SQL Server 2000)

Using Accessibility Features in SQL Server Books Online
The following topics describe the accessibility features that can be used for navigating SQL Server Books Online.

For more information about accessibility features and services, see the Accessibility page at Microsoft Web site.

Changing the Appearance of the Text

The formatting, font, and color of the text in SQL Server Books Online can be changed.

To change formatting or styles for accessibility

1. On the Options menu, click Internet Options, and then click Accessibility.

2. In the Accessibility dialog box, select the options you want, and then click OK.

These changes do not apply to the Navigation pane or toolbar of SQL Server Books Online. This procedure also changes your
accessibility settings for Microsoft® Internet Explorer.

To change the font size of a topic

On the Options menu, click Internet Options, and then click Fonts.

These changes do not apply to the Navigation pane or toolbar of SQL Server Books Online. This procedure also changes your font
settings for Internet Explorer.

To change colors in the Topic pane of SQL Server Books Online

1. In Microsoft Internet Explorer 5.0, on the Tools menu, click Internet Options.

2. On the General tab, click Colors.

3. In the Colors dialog box, select the options you want, and then click OK.

4. To apply the new color settings, in the Internet Options dialog box, click OK.

These changes do not apply to the Navigation pane or toolbar of SQL Server Books Online. This procedure also changes your
color settings for Internet Explorer.

Using Keyboard Shortcuts

The following tables show the keyboard shortcuts that can be used for navigating SQL Server Books Online.

SQL Server Books Online

To Press
Close SQL Server Books Online. ALT+F4
Switch between SQL Server Books Online and
other open windows.

ALT+TAB

Display the Options menu. ALT+O
Change Microsoft® Internet Explorer settings.
The Internet Options dialog box contains
accessibility settings. To change these settings,
click the General tab, and then click
Accessibility.

ALT+O, and then press I

Hide or show the Navigation pane. ALT+O, and then press T
Print a topic. ALT+O, and then press P
Move back to the previous topic. ALT+LEFT ARROW, or ALT+O, and

then press B
Move forward to the next topic (provided you
have just previously viewed it).

ALT+RIGHT ARROW, or ALT+O,
and then press F

Turn on or off search highlighting. ALT+O, and then press O

http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable

Switch between the Navigation pane and the
Topic pane.

F6

Scroll through the table of contents, displaying
each topic as you scroll.

ALT+UP ARROW, or ALT+DOWN
ARROW

Scroll through a topic. UP ARROW and DOWN ARROW,
or PAGE UP and PAGE DOWN

Scroll through all the links in a topic or through
all the options on a Navigation pane tab.

TAB

Display the Documentation Feedback form. SHIFT+CTRL+F
Display the topic containing keyboard shortcuts. SHIFT+CTRL+K
Display the See Also topics for a particular topic. SHIFT+CTRL+S

Contents Tab

To Press
Display the Contents tab. ALT+C
Open and close a book or folder. PLUS SIGN and MINUS SIGN, or

LEFT ARROW and RIGHT ARROW
Select a topic. DOWN ARROW and UP ARROW
Display the selected topic. ENTER

Index Tab

To Press
Display the Index tab. ALT+N
Type a keyword to search for. ALT+W, and then type the word
Select a keyword in the list. UP ARROW and DOWN ARROW
Display the associated topic. ALT+D

Search Tab

To Press
Display the Search tab. ALT+S
Type a keyword to search for. ALT+W, and then type the word
Start a search. ALT+L
Select a topic in the results list. ALT+T, and then UP ARROW and

DOWN ARROW
Display the selected topic. ALT+D
Search for a word or phrase in a topic. CTRL+F
Search for a keyword in the result list of a prior
search.

ALT+U

Search for words similar to the keyword. For
example, to find words such as "running" and
"runs" for the keyword "run."

ALT+M

Search only through topic titles. ALT+R

Favorites Tab

To Press
Display the Favorites tab. ALT+I
Add the currently displayed topic to the
Favorites list.

ALT+A

Select a topic in the Favorites list. ALT+P, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D
Remove the selected topic from the list. ALT+R

Getting Started (SQL Server 2000)

Accessibility for People with Disabilities
Microsoft is committed to making its products and services easier for everyone to use. This topic provides information about the
following features, products, and services that make Microsoft® Windows®, Microsoft Windows NT®, and Microsoft SQL
Server™ 2000 more accessible for people with disabilities:

Accessibility of Microsoft SQL Server 2000

Features and hints for customizing Windows or Windows NT

Microsoft services for people who are deaf or hard-of-hearing

Microsoft software documentation online, or on audiocassette, floppy disk, or CD

Third-party utilities that enhance accessibility

Other products and services for people with disabilities

Note The information in this section applies only to users who license Microsoft products in the United States. If you obtained
this product outside the United States, your package contains a subsidiary information card listing Microsoft support services
telephone numbers and addresses. You can contact your subsidiary to find out whether the types of products and services
described in this section are available in your area.

SQL Server 2000 Accessibility Features

In addition to Windows and Windows NT accessibility products and services, the following features make Microsoft SQL Server
2000 more accessible for people with disabilities.

The Help Viewer

The Help Viewer for Microsoft HTML Help is the tool through which you read the product documentation. It is equipped with
accessibility features, including shortcut keys for navigation and commands. The Help Viewer also uses some of the accessibility
features of Microsoft Internet Explorer. For example, it allows you to change the colors of the display on your computer screen.
For more information, see Using SQL Server Books Online.

Customizing Windows or Windows NT

There are many ways you can customize Windows operating systems and Windows NT 4.0 to make your computer more
accessible.

Accessibility features have been built into Windows and Windows NT since the introduction of Windows 95. These features are
useful for individuals who have difficulty typing or using a mouse, have moderately impaired vision, or who are deaf or hard-of-
hearing. The features can be installed during setup, or you can add them later from your Windows installation disks.

For information about installing and using these features, look up "accessibility" in the Windows Help Index.

Some of the accessibility features built into Windows and Windows NT can be added to earlier versions of those products, and to
Microsoft MS-DOS®, through Access Pack files. You can download these files, or you can order them on disks from Microsoft.
(See details in "Accessibility Notes and Utilities to Download" later in this section.)

You also can use Control Panel and other built-in features to adjust the appearance and behavior of Windows or Windows NT to
suit varying vision and motor abilities. These include adjusting colors and sizes, sound volume, and the behavior of the mouse
and keyboard.

In Windows 98, the majority of accessibility settings can be set through the Accessibility Wizard or Control Panel. The Accessibility
Wizard presents features sorted by disability, making it easy to customize Windows to an individual's needs. The Accessibility
Wizard also enables you to save your settings to a file that can be used on another computer.

Dvorak keyboard layouts make the most frequently typed characters on a keyboard more accessible if you have difficulty using
the standard QWERTY layout. There are three Dvorak layouts: one if you are a two-handed user, one if you type with your left
hand only, and one if you type with your right hand only. You do not need to purchase any special equipment to use these
features.

The specific features available, and whether they are built-in or must be obtained separately, depend on which operating system
you are using.

For full documentation on the accessibility features available in the operating system you are using, obtain the documents listed
below. Accessibility features are also documented in the Microsoft Windows 95 Resource Kit, the Microsoft Windows 98 Resource
Kit, and the Microsoft Windows NT Resource Kit.

Accessibility Notes and Utilities to Download

The table lists the documents that explain how to customize Microsoft Windows and Windows NT for users with disabilities.
Specific instructions for downloading the files immediately follow this list.

For You need
Customizing Windows for Individuals with Disabilities
(describes all of the other documents in this list and includes
links to download them; this article will be updated when new
versions of Microsoft operating systems are released)

Microsoft Knowledge
Base article Q165486

Customizing Microsoft Windows 95 for individuals with
disabilities

Cst_W95.exe

Customizing Microsoft Windows NT 4.0 for individuals with
disabilities

Cst_NT4.exe

Customizing Microsoft Windows NT 3.1 and 3.5 for
individuals with disabilities (includes Access Pack for
Microsoft Windows NT, which provides features for people
who have difficulty using a keyboard or mouse, or who are
deaf or hard-of-hearing)

Cst_NT3x.exe

Customizing Microsoft Windows 3.1 for individuals with
disabilities

Cst_W3x.exe

Customizing Microsoft Windows for Workgroups 3.1 for
individuals with disabilities

Cst_WG3x.exe

Customizing Microsoft Windows 3.0 for individuals with
disabilities

Cst_W30.exe

Access Pack for Microsoft Windows 3.0 and 3.1, which
provides features for people who have difficulty using a
keyboard or mouse, or who are deaf or hard-of-hearing

Accp.exe

Dvorak keyboard layouts for people who type with one hand
(already included in Windows NT version 3.5 and later)

Ga0650.exe

Downloading the Files

If you have a modem or another type of network connection, you can download the accessibility files from the following network
services:

Microsoft Accessibility Page, at Microsoft Web Site.

Support online from Microsoft Technical Support at Microsoft Web Site. Choose the appropriate application from the list
labeled "My search is about" (or choose "All Products") and enter "Q165486" in the text box labeled "My question is." The
search results will display a link to the Knowledge Base article, "Customizing Windows for Individuals with Disabilities,"
which includes links to all of the documents listed above.

For other accessibility articles, choose the appropriate application from the list labeled "My search is about" and enter
"kbenable" in the text box labeled "My question is."

Microsoft Download Service (MSDL), which you can reach by calling (425) 936-6735 any time except between 1:00 A.M. and
2:30 A.M. Pacific time.

MSDL supports 1200, 2400, 9600, or 14400 baud rates (V.22bis, V.32, V.32bis and V.42), with 8 data bits, no parity, and 1
stop bit. MSDL does not support 28800, 56K or ISDN connections.

http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable
http://www.microsoft.com/isapi/redir.dll?prd=productsupport

Microsoft Services for People Who Are Deaf or Hard-of-Hearing

If you are deaf or hard-of-hearing, complete access to Microsoft product and customer services is available through a text
telephone (TTY/TDD) service.

Customer Service

You can contact the Microsoft Sales Information Center on a text telephone by dialing (800) 892-5234 between 6:30 A.M. and
5:30 P.M. Pacific time.

Technical Assistance

For technical assistance in the United States, you can contact Microsoft Technical Support on a text telephone at (425) 635-4948
between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday, excluding holidays. In Canada, dial (905) 568-9641
between 8:00 A.M. and 8:00 P.M. eastern time, Monday through Friday, excluding holidays. Microsoft support services are subject
to the prices, terms, and conditions in place at the time the service is used.

Microsoft Documentation in Alternative Formats

In addition to the standard forms of documentation, many Microsoft products are available in other formats to make them more
accessible.

If you have difficulty reading or handling printed documentation, you can obtain many Microsoft publications from Recording for
the Blind & Dyslexic, Inc. RFB&D distributes these documents to registered, eligible members of their distribution service, either
on audio cassettes or on floppy disks. The RFB&D collection contains more than 80,000 titles, including Microsoft product
documentation and books from Microsoft Press®. You can download many of these books from the Microsoft Accessibility page
at Microsoft Web Site.

For more information, contact Recording for the Blind & Dyslexic at the following address or phone numbers:

Recording for the Blind & Dyslexic, Inc.
20 Roszel Road
Princeton, NJ 08540

Phone:
Fax:
Web:

(609) 452-0606
(609) 987-8116
http://www.rfbd.org/

Utilities to Enhance Accessibility

A wide variety of hardware and software products are available to make personal computers easier to use for people with
disabilities. Among the different types of products available for the MS-DOS, Windows, and Windows NT operating systems are:

Programs that enlarge or alter the color of information on the screen for people with visual impairments

Programs that describe information on the screen in Braille or synthesized speech for people who are blind or have
difficulty reading

Hardware and software utilities that modify the behavior of the mouse and keyboard

Programs that enable people to "type" by using a mouse or their voice

Word or phrase prediction software that allow users to type more quickly and with fewer keystrokes

Alternative input devices, such as single switch or puff-and-sip devices, for people who cannot use a mouse or a keyboard

Getting More Accessibility Information

In addition to the features and resources already described in this section, other products, services, and resources for people with
disabilities are available from Microsoft and other organizations.

Microsoft

Microsoft provides a catalog of accessibility aids that can be used with the Windows and Windows NT operating systems. You can
obtain this catalog from our Web site or by phone:

http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable
http://www.rfbd.org/

Microsoft Sales Information
Center
One Microsoft Way
Redmond, WA 98052-6393

Web:
Voice telephone:
Text telephone:

Microsoft Web Site(800) 426-
9400
(800) 892-5234

Macintosh Disability Solutions

For more information about products and services for the Apple® Macintosh® for people with disabilities, contact:

Disability Solutions Web: http://www.apple.com/disability/

Trace R&D Center

The Trace R&D Center at the University of Wisconsin-Madison publishes a database of more than 18,000 products and other
information for people with disabilities. The database is available on their site on the World Wide Web. The Trace R&D Center also
publishes a book, titled Trace ResourceBook, which provides descriptions and photographs of about 2,000 products.

To obtain these materials, contact:

Trace R&D Center University of
Wisconsin-Madison
5901 Research Park Boulevard
Madison, WI 53719-1252

Web:
Fax:

http://trace.wisc.edu/(608) 262-
8848

http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable
http://www.apple.com/disability/
http://trace.wisc.edu/

Getting Started (SQL Server 2000)

Additional SQL Server Resources
 New Information - SQL Server 2000 SP3.

This table provides Internet resources for information about Microsoft® SQL Server™ and related products and technologies.

Resource Address
Microsoft Product Support Services
Web

http://support.microsoft.com/directory

Microsoft Security and Privacy Web
site

http://www.microsoft.com/security

Microsoft Usenet news://msnews.microsoft.com/
Microsoft Windows® Hardware
Compatibility List

http://www.microsoft.com/hcl

MSDN® http://msdn.microsoft.com
Meta Data Services (formerly known
as Microsoft Repository)

http://msdn.microsoft.com

Professional Association for SQL
Server

http://www.sqlpass.org/

Microsoft SQL Server Developer
Center

http://msdn.microsoft.com

SQL Server Magazine http://www.sqlmag.com/
Microsoft SQL Server Support http://support.microsoft.com/support/sql
TechNet Site www.Microsoft.com/technet
Microsoft Accessibility Web site http://www.microsoft.com/enable
Microsoft SQL Server Web site http://www.microsoft.com/sql
Microsoft SQL Server Web site,
Security page

http://www.microsoft.com/sql

Microsoft SQL Server Web site,
English Query page

http://www.microsoft.com/sql

Microsoft SQL Server Web site,
Analysis Services page

http://www.microsoft.com/sql

XML Developer Center http://www.msdn.microsoft.com/xml/default.asp

http://www.microsoft.com/isapi/redir.dll?prd=productsupport
http://go.microsoft.com/fwlink/?LinkID=9600
news://msnews.microsoft.com/
http://www.microsoft.com/isapi/redir.dll?prd=hardware compatibility list&ar=hwtest/hcl
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.sqlpass.org/
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.sqlmag.com/
http://www.microsoft.com/isapi/redir.dll?prd=support&ar=sql/support/p51745.htm
http://www.microsoft.com/isapi/redir.dll?prd=technet
http://www.microsoft.com/isapi/redir.dll?prd=accessibility&ar=enable
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home
http://go.microsoft.com/fwlink/?LinkID=9601
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=eq
http://go.microsoft.com/fwlink/?LinkID=15372
http://www.microsoft.com/isapi/redir.dll?prd=xml

Getting Started (SQL Server 2000)

Microsoft SQL Server 2000 Copyright and Disclaimer
This document, including sample applications herein, is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including samples, URL and other Internet
Web site references, is subject to change without notice. The entire risk of the use or the results of the use of this document
remains with the user.

The primary purpose of a sample is to illustrate a concept, or a reasonable use of a particular statement or clause. Most samples
do not include all of the code that would normally be found in a full production system, as a lot of the usual data validation and
error handling is removed to focus the sample on a particular concept or statement. Technical support is not available for these
samples or for the provided source code.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein are fictitious and no
association with any real company, organization, product, person, or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document
may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©1988-2003 Microsoft Corporation. All rights reserved.

Active Directory, ActiveX, BackOffice, CodeView, Developer Studio, FoxPro, JScript, Microsoft, Microsoft Press, Microsoft SQL
Server, MSDN, MS-DOS, Outlook, PivotChart, PivotTable, PowerPoint, Visual Basic, Visual C++, Visual Studio, Win32, Windows
2000, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Version: 8.00.002

What's New (SQL Server 2000)

What's New in SQL Server Books Online
 Topic last updated -- June 2007

The following table describes what's new in Microsoft® SQL Server™ 2000 Books Online as of June 2007. The topics listed in the
table contain significant technical corrections.

Topic Description
CREATE FUNCTION Corrected the description of the protection

provided by using the WITH ENCRYPTION
option when creating a function.

ALTER FUNCTION Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when altering a function.

CREATE PROCEDURE Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a stored procedure.

ALTER PROCEDURE Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when altering a stored procedure.

Programming Stored Procedures Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a stored procedure.

CREATE TRIGGER Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a trigger.

ALTER TRIGGER Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when altering a trigger.

Programming Triggers Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a trigger.

CREATE VIEW Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a view.

ALTER VIEW Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when altering a view.

Creating a View Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a view.

syscomments Clarified that the encryption column in
the syscomments system table contains
obfuscated, not encrypted stored
procedure definitions.

Using Encryption and Obfuscation Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating stored procedures,
views, triggers, and functions. Also
clarified that login and application role
passwords are obfuscated rather than
encrypted.

Encrypting Views Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a view.

If you save the view encrypted, you will no
longer be able to alter the view definition.

Corrected the description of the protection
provided by using the WITH ENCRYPTION
option when creating a view.

https://msdn.microsoft.com/en-us/library/bb633746(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa226105(v=sql.80).aspx

The following table describes what's new in Microsoft® SQL Server™ 2000 Books Online as of January 2004. The topics listed in
the table are new or contain significant technical changes. Topics that contain minor changes are not listed.

Topic Description
Hardware and Software Requirements for
Installing SQL Server 2000

Updated to document operating systems
released since the original release of SQL
Server 2000.

Running the osql Utility Added new topic describing how to use
the osql utility.

Running Transact-SQL Statements
Interactively Using osql

Added new topic describing how to use
the osql utility to run Transact-SQL
statements that you enter interactively in a
command prompt window.

Running Transact-SQL Script Files Using
osql

Added new topic describing how to build
text scripts of Transact-SQL statements
and then run them using the osql utility.

Administering SQL Server Using osql Added new topic describing how to use
osql to execute Transact-SQL statements
that configure instances of SQL Server
and manage SQL Server databases.

osql Utility Updated topic to clarify how to specify file
locations using the /i and /o switches.

SQL Server 2000 on Windows 98 Updated topic to note that Windows 98
does not support fibers and read-ahead
I/O.

SQL Server 2000 Databases on the
Desktop

Expanded several paragraphs into new
topics that document the SQL Server 2000
Desktop Engine (MSDE 2000). Added links
to the new topics.

The SQL Server 2000 Workload Governor Added new topic describing the workload
governor in SQL Server 2000 Personal
Edition and MSDE 2000.

When to Upgrade from the Governor Added new topic describing how the
workload governor can become the
performance-limiting factor, justifying
upgrading to SQL Server 2000 Standard
Edition.

Data Access and the Workload Governor Added new topic describing how the
workload governor slows down reads and
writes of database data.

Understanding When the Workload
Governor Is Activated

Added new topic describing what causes
the workload governor to start slowing
down data reads and writes.

Maximum Capacity Specifications Updated topic to clarify that the 2-GB limit
on the size of MSDE 2000 databases
applies only to the data files, and not to
the log files.

Understanding SQL Server 2000 Desktop
Engine (MSDE 2000)

Added new topic containing overview of
MSDE 2000.

SQL Server 2000 Desktop Engine (MSDE
2000) Documentation

Added new topic describing the parts of
SQL Server 2000 Books Online that apply
to MSDE 2000, with links to the main Web
page containing MSDE 2000 information
and software.

Programming SQL Server 2000 Desktop
Engine (MSDE 2000) Applications

Added new topic contrasting the MSDE
2000 programming model with the
database engine from the other editions
of SQL Server 2000 and noting that MSDE
2000 does not support SQLXML.

Administering SQL Server 2000 Desktop
Engine (MSDE 2000)

Added new topic describing MSDE 2000,
and how to administer MSDE 2000
without the SQL Server 2000 graphical
administration utilities.

DBCC CONCURRENCYVIOLATION Updated references to the workload
governor to match the new workload
governor description added to the "SQL
Server Architecture" section.

Distributing SQL Server Applications
Overview

Updated topic to reflect the current
recommendations for installing instances
of MSDE 2000.

Distributing the SQL Server 2000 Desktop
Engine

Updated topic to reflect the current
recommendations for installing instances
of MSDE 2000.

Installing Desktop Engine Updated topic to reflect the current
recommendations for installing instances
of MSDE 2000 and to clarify the impacts
of different ways of installing it.

Using SQL Server Desktop Engine Merge
Modules

Updated topic to include recommendation
against using merge modules to install
MSDE 2000.

Customizing Desktop Engine Setup.exe Updated topic to better guide new users
to the examples of typical setup scenarios
and to correct the descriptions of the
TARGETDIR and DATADIR parameters.

Managing Desktop Engine Installation
Package Files

Updated topic to reflect the current
recommendations for installing instances
of MSDE 2000.

Windows Installer Return Codes for
Desktop Engine

Updated topic with new cause-and-
resolution information for some of the
return codes.

Desktop Engine Installation Samples Updated topic to reflect the current
recommendations for installing instances
of MSDE 2000.

ALTER DATABASE Updated topic with examples showing
how to set multiple database options in a
single transaction, and how to move
tempdb to a new location on disk.

DATABASEPROPERTYEX Updated topic to document the
IsPublished property.

sp_spaceused Updated topic to clarify the Result Set
descriptions for several columns.

Error Message Descriptions Added new topics documenting the most
frequently encountered error messages.

What's New (SQL Server 2000)

What's New in Microsoft SQL Server 2000
Microsoft® SQL Server™ 2000 extends the performance, reliability, quality, and ease of use of SQL Server version 7.0. SQL Server
2000 includes several new features that make it an excellent database platform for large-scale online transactional processing
(OLTP), data warehousing, and e-commerce applications.

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP
Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. For
more information, see What's New in Analysis Services.

The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services.
References to the component now use the term Meta Data Services. The term repository is used only in reference to the
repository engine within Meta Data Services. For more information, see What's New in Meta Data Services.

The What's New topics contain brief overviews of the new features and links to relevant conceptual topics that provide more
detailed information. These conceptual topics provide links to topics that describe the commands or statements you use to work
with these features.

What's New (SQL Server 2000)

Relational Database Enhancements
Microsoft® SQL Server™ 2000 introduces several server improvements and new features:

XML Support

The relational database engine can return data as Extensible Markup Language (XML) documents. Additionally, XML can also be
used to insert, update, and delete values in the database. For more information, see SQL Server and XML Support and XML and
Internet Support Overview.

Federated Database Servers

SQL Server 2000 supports enhancements to distributed partitioned views that allow you to partition tables horizontally across
multiple servers. This allows you to scale out one database server to a group of database servers that cooperate to provide the
same performance levels as a cluster of database servers. This group, or federation, of database servers can support the data
storage requirements of the largest Web sites and enterprise data processing systems. For more information, see Federated SQL
Server 2000 Servers.

SQL Server 2000 introduces Net-Library support for Virtual Interface Architecture (VIA) system-area networks that provide high-
speed connectivity between servers, such as between application servers and database servers. For more information, see
Communication Components.

User-Defined Functions

The programmability of Transact-SQL can be extended by creating your own Transact-SQL functions. A user-defined function can
return either a scalar value or a table. For more information, see SQL User-Defined Functions.

Indexed Views

Indexed views can significantly improve the performance of an application where queries frequently perform certain joins or
aggregations. An indexed view allows indexes to be created on views, where the result set of the view is stored and indexed in the
database. Existing applications do not need to be modified to take advantage of the performance improvements with indexed
views. For more information, see SQL Views.

New Data Types

SQL Server 2000 introduces three new data types. bigint is an 8-byte integer type. sql_variant is a type that allows the storage
of data values of different data types. table is a type that allows applications to store results temporarily for later use. It is
supported for variables, and as the return type for user-defined functions. For more information, see Data Types and Table
Structures.

INSTEAD OF and AFTER Triggers

INSTEAD OF triggers are executed instead of the triggering action (for example, INSERT, UPDATE, DELETE). They can also be
defined on views, in which case they greatly extend the types of updates a view can support. AFTER triggers fire after the
triggering action. SQL Server 2000 introduces the ability to specify which AFTER triggers fire first and last. For more information,
see Triggers.

Cascading Referential Integrity Constraints

You can control the actions SQL Server 2000 takes when you attempt to update or delete a key to which existing foreign keys
point. This is controlled by the new ON DELETE and ON UPDATE clauses in the REFERENCES clause of the CREATE TABLE and
ALTER TABLE statements. For more information, see Constraints.

Collation Enhancements

SQL Server 2000 replaces code pages and sort orders with collations. SQL Server 2000 includes support for most collations
supported in earlier versions of SQL Server, and introduces a new set of collations based on Windows collations. You can now
specify collations at the database level or at the column level. Previously, code pages and sort orders could be specified only at the
server level and applied to all databases on a server. For more information, see Collations.

Collations support code page translations. Operations with char and varchar operands having different code pages are now
supported. Code page translations are not supported for text operands. You can use ALTER DATABASE to change the default
collation of a database. For more information, see SQL Server Collation Fundamentals and ALTER DATABASE.

Full-Text Search Enhancements

Full-text search now includes change tracking and image filtering. Change tracking maintains a log of all changes to the full-text
indexed data. You can update the full-text index with these changes by flushing the log manually, on a schedule, or as they occur,

using the background update index option. Image filtering allows you to index and query documents stored in image columns.
The user provides the document type in a column that contains the file name extension that the document would have had if it
were stored as a file in the file system. Using this information, full-text search is able to load the appropriate document filter to
extract textual information for indexing. For more information, see Microsoft Search Service.

Multiple Instances of SQL Server

SQL Server 2000 supports running multiple instances of the relational database engine on the same computer. Each computer
can run one instance of the relational database engine from SQL Server version 6.5 or 7.0, along with one or more instances of
the database engine from SQL Server 2000. Each instance has its own set of system and user databases. Applications can connect
to each instance on a computer similar to the way they connect to instances of SQL Servers running on different computers. The
SQL Server 2000 utilities and administration tools have been enhanced to work with multiple instances. For more information,
see Multiple Instances of SQL Server.

Index Enhancements

You can now create indexes on computed columns. You can specify whether indexes are built in ascending or descending order,
and if the database engine should use parallel scanning and sorting during index creation. For more information, see Table
Indexes and Parallel Operations Creating Indexes.

The CREATE INDEX statement can now use the tempdb database as a work area for the sorts required to build an index. This
results in improved disk read and write patterns for the index creation step, and makes it more likely that index pages will be
allocated in contiguous strips. In addition, the complete process of creating an index is eligible for parallel operations, not only the
initial table scan. For more information, see tempdb and Index Creation, Parallel Operations Creating Indexes, and CREATE INDEX.

Failover Clustering Enhancements

The administration of failover clusters has been greatly improved to make it very easy to install, configure, and maintain a
Microsoft SQL Server 2000 failover cluster. Additional enhancements include the ability to failover and failback to or from any
node in a SQL Server 2000 cluster, the ability to add or remove a node from the cluster through SQL Server 2000 Setup, and the
ability to reinstall or rebuild a cluster instance on any node in the cluster without affecting the other cluster node instances. The
SQL Server 2000 utilities and administration tools have been enhanced to work with failover clusters. For more information, see
Failover Clustering Architecture.

Net-Library Enhancements

The SQL Server 2000 Net-Libraries have been rewritten to virtually eliminate the need to administer Net-Library configurations
on client computers when connecting SQL Server 2000 clients to instances of SQL Server 2000. The new Net-Libraries also
support connections to multiple instances of SQL Server on the same computer, and support Secure Sockets Layer encryption
over all Net-Libraries. SQL Server 2000 introduces Net-Library support for Virtual Interface Architecture (VIA) system-area
networks that provide high-speed connectivity between servers, such as between application servers and database servers. For
more information, see Communication Components.

64-GB Memory Support

Microsoft SQL Server 2000 Enterprise Edition can use the Microsoft Windows 2000 Advanced Windows Extension (AWE) API to
support up to 64 GB of physical memory (RAM) on a computer. For more information, see Using AWE Memory on Windows
2000.

Distributed Query Enhancements

SQL Server 2000 introduces a new OPENDATASOURCE function, which you can use to specify ad hoc connection information in a
distributed query. SQL Server 2000 also specifies methods that OLE DB providers can use to report the level of SQL syntax
supported by the provider and statistics on the distribution of key values in the data source. The distributed query optimizer can
then use this information to reduce the amount of data that has to be sent from the OLE DB data source. SQL Server 2000
delegates more SQL operations to OLE DB data sources than earlier versions of SQL Server. Distributed queries also support the
other functions introduced in SQL Server 2000, such as multiple instances, mixing columns with different collations in result sets,
and the new bigint and sql_variant data types. For more information, see Distributed Query Architecture.

SQL Server 2000 distributed queries add support for the OLE DB Provider for Exchange and the Microsoft OLE DB Provider for
Microsoft Directory Services. For more information, see OLE DB Provider for Microsoft Directory Services and OLE DB Provider
for Exchange.

Updatable Distributed Partitioned Views

SQL Server 2000 introduces enhancements to distributed partitioned views. You can partition tables horizontally across several
servers, and define a distributed partitioned view on each member server that makes it appear as if a full copy of the original table
is stored on each server. Groups of servers running SQL Server that cooperate in this type of partitioning are called federations of
servers. A database federation built using SQL Server 2000 databases is capable of supporting the processing requirements of the

largest Web sites or enterprise-level databases. For more information, see Creating a Partitioned View.

Kerberos and Security Delegation

SQL Server 2000 uses Kerberos to support mutual authentication between the client and the server, as well as the ability to pass
the security credentials of a client between computers, so that work on a remote server can proceed using the credentials of the
impersonated client. With Microsoft Windows® 2000, SQL Server 2000 uses Kerberos and delegation to support both integrated
authentication as well as SQL Server logins. For more information, see Security Account Delegation.

Backup and Restore Enhancements

SQL Server 2000 introduces a new, more easily understood model for specifying backup and restore options. The new model
makes it clearer that you are balancing increased or decreased exposure to losing work against the performance and log space
requirements of different plans. SQL Server 2000 introduces support for recovery to specific points of work using named log
marks in the transaction log, and the ability to do partial database restores. For more information, see Backup/Restore
Architecture.

Users can define passwords for backup sets and media sets that prevent unauthorized users from accessing SQL Server backups.
For more information, see BACKUP.

Scalability Enhancements for Utility Operations

SQL Server 2000 enhancements for utility operations include faster differential backups, parallel Database Console Command
(DBCC) checking, and parallel scanning. Differential backups can now be completed in a time that is proportional to the amount of
data changed since the last full backup. DBCC can be run without taking shared table locks while scanning tables, thereby
enabling them to be run concurrently with update activity on tables. Additionally, DBCC now takes advantage of multiple
processors, thus enabling near-linear gain in performance in relation to the number of CPUs (provided that I/O is not a
bottleneck). For more information, see Data Integrity Validation and Differential Backup and Restore.

Text in Row Data

SQL Server 2000 supports a new text in row table option that specifies that small text, ntext, and image values be placed
directly in the data row instead of in a separate page. This reduces the amount of space used to store small text, ntext, and
image data values, and reduces the amount of disk I/O needed to process these values. For more information, see text, ntext,
and image Data.

What's New (SQL Server 2000)

XML Integration of Relational Data
The Microsoft® SQL Server™ 2000 relational database engine natively supports Extensible Markup Language (XML).

You can now access SQL Server 2000 over HTTP using a Universal Resource Locator (URL). You can define a virtual root on a
Microsoft Internet Information Services (IIS) server, which gives you HTTP access to the data and XML functionality of SQL Server
2000.

You can use HTTP, ADO, or OLE DB to work with the XML functionality of SQL Server 2000:

You can define XML views of SQL Server 2000 databases by annotating XML-Data Reduced (XDR) schemas to map the
tables, views, and columns that are associated with the elements and attributes of the schema. The XML views can then be
referenced in XPath queries, which retrieve results from the database and return them as XML documents.

The results of SELECT statements can be returned as XML documents. The SQL Server 2000 Transact-SQL SELECT statement
supports a FOR XML clause that specifies that the statement results be returned in the form of an XML document instead of
a relational result set. Complex queries, or queries that you want to make secure, can be stored as templates in an IIS virtual
root, and executed by referencing the template name.

You can expose the data from an XML document as a relational rowset using the new OPENXML rowset function. OPENXML
can be used everywhere a rowset function can be used in a Transact-SQL statement, such as in place of a table or view
reference in a FROM clause. This allows you to use the data in XML documents to insert, update, or delete data in the tables
of the database, including modifying multiple rows in multiple tables in a single operation.

See Also

SQL Server and XML Support

XML and Internet Support Overview

What's New (SQL Server 2000)

Graphical Administration Enhancements
Microsoft® SQL Server™ 2000 introduces these graphical administration improvements and new features:

Log Shipping

Log shipping allows the transaction logs from a source database to be continually backed up and loaded into a target database on
another server. This is useful for maintaining a warm standby server, or for offloading query processing from the source server to
a read-only destination server. For more information, see Log Shipping.

SQL Profiler Enhancements

SQL Profiler now supports size-based and time-based traces, and includes new events for Data File Auto Grow, Data File Auto
Shrink, Log File Auto Grow, Log File Auto Shrink, Show Plan All, Show Plan Statistics, and Show Plan Text.

SQL Profiler has been enhanced to provide auditing of SQL Server activities, up to the auditing levels required by the C2 level of
security defined by the United States government. For more information, see Auditing SQL Server Activity and Monitoring with
SQL Profiler.

SQL Query Analyzer Enhancements

SQL Query Analyzer now includes Object Browser, which allows you to navigate through and get information (such as
parameters and dependencies) about database objects, including user and system tables, views, stored procedures, extended
stored procedures, and functions. The Object Browser also supports generating scripts to either execute or create objects. Other
enhancements include server tracing and client statistics that show information about the server-side and client-side impact of a
given query.

SQL Query Analyzer includes a stored procedure debugger. SQL Query Analyzer also includes templates that can be used as the
starting points for creating objects such as databases, tables, views, and stored procedures. For more information, see SQL Query
Analyzer and Overview of SQL Query Analyzer.

Copy Database Wizard

Users can run the Copy Database Wizard to upgrade SQL Server version 7.0 databases to SQL Server 2000 databases. It can also
be used to copy complete databases between instances of SQL Server 2000. For more information, see Copying Databases to
Other Servers and Upgrading Databases from SQL Server 7.0 (Copy Database Wizard).

What's New (SQL Server 2000)

Replication Enhancements
Microsoft® SQL Server™ 2000 introduces the following replication improvements and new features:

Implementing Replication

SQL Server 2000 enhances snapshot replication, transactional replication, and merge replication by adding:

Alternate snapshot locations, which provide easier and more flexible methods for applying the initial snapshot to
Subscribers. You can save (and compress) the snapshot files to a network location or removable media, which can then be
transferred to Subscribers without using the network.

Attachable subscription databases, which allow you to transfer a database with replicated data and one or more
subscriptions from one Subscriber to another SQL Server. After the database is attached to the new Subscriber, the
subscription database at the new Subscriber will automatically receive its own pull subscriptions to the publications at the
specified Publishers.

Schema changes on publication databases, which allow you to add or drop columns on the publishing table and propagate
those changes to Subscribers.

On demand script execution, which allows you to post a general SQL script that will be executed at all Subscribers.

Pre- and post-snapshot scripts, which allow you to run scripts before or after a snapshot is applied at the Subscriber.

Remote agent activation, which allows you to reduce the amount of processing on the Distributor or Subscriber by running
the Distribution Agent or Merge Agent on one computer while activating that agent from another computer. You can use
remote agent activation with push or pull subscriptions.

Support of new SQL Server features, which includes user-defined functions, indexed views, new data types, and multiple
instances of SQL Server.

The ActiveX Snapshot Control, which makes programmatic generation of snapshots easier.

More snapshot scripting options, which support transfer of indexes, extended properties, and constraints to Subscribers.

Merge Replication

Merge replication is the process of distributing data from Publisher to Subscribers, allowing the Publisher and Subscribers to
make updates while connected or disconnected, and then merging the changes between sites when they are connected.
Enhancements to merge replication include:

Greater parallelism of the Merge Agent for improved server-to-server performance.

Optimizations for determining data changes relevant to a partition at a Subscriber.

Dynamic snapshots, which provide more efficient application of the initial snapshot when using dynamic filters.

Vertical filters for merge publications.

More powerful dynamic filtering with user-defined functions.

The ability to use alternate synchronization partners when synchronizing data. Using alternate synchronization partners, a
Subscriber to a merge publication can synchronize with any specified server that has the same data as the original
Publisher.

Automated management of identity ranges. In merge replication topologies where a publication contains an identity
column, and where new rows can be inserted at Subscribers, automated management of identity ranges at the Subscriber
ensures the same identity values are not assigned to rows inserted at different subscription databases, and that primary key
constraint violations do not occur. This feature is also available when queued updating is used with snapshot replication or

transactional replication.

Support for timestamp columns in published tables.

Improved management of the growth of merge tracking data.

Several new merge replication conflict resolvers including interactive resolvers that provide a user interface for immediate,
manual conflict resolution, priority based on a column value, minimum/maximum value wins, first/last change wins,
additive/average value, and merge by appending different text values.

New options to validate permissions for a Subscriber to upload changes to a Publisher (check_permissions) and security
enhancements including code signing of conflict resolvers included with Microsoft SQL Server 2000.

New COM interfaces that support heterogeneous data sources as Publishers within a SQL Server replication topology.

Validation of replicated data per subscription or on a publication-wide basis. Validation is also available through SQL Server
Enterprise Manager.

Reinitialization to allow uploading of changes from the Subscriber before the application of a new snapshot.

For more information, see Merge Replication and Replication Options.

Transactional Replication

With transactional replication, an initial snapshot of data is applied at Subscribers, and then when data modifications are made at
the Publisher, the individual transactions are captured and propagated to Subscribers. Enhancements to transactional replication
include:

Concurrent snapshot processing so that data modifications can continue on publishing tables while the initial snapshot is
generated.

Improved error handling and the ability to skip specified errors and continue replication.

Validation of replicated data at the Subscriber, including validation on vertical partitions. Validation is also available through
SQL Server Enterprise Manager.

Publishing indexed views as tables.

The option to store data modifications made at the Subscriber in a queue (queued updating).

The option to transform data as it is published to Subscribers (transforming published data).

The ability to restore transactional replication databases without reinitializing subscriptions or disabling and reconfiguring
publishing and distribution. You can also set up transactional replication to work with log shipping, enabling you to fail over
to a warm standby server without reconfiguring replication. For more information, see Strategies for Backing Up and
Restoring Transactional Replication.

For more information, see Transactional Replication.

Queued Updating

Queued updating allows snapshot replication and transactional replication Subscribers to modify published data without
requiring an active network connection to the Publisher.

When you create a publication with the queued updating option enabled and a Subscriber performs INSERT, UPDATE, or DELETE
statements on published data, the changes are stored in a queue. The queued transactions are applied asynchronously at the
Publisher when network connectivity is restored.

Because the updates are propagated asynchronously to the Publisher, the same data may have been updated by the Publisher or
by another Subscriber and conflicts can occur when applying the updates. Conflicts are detected automatically and several
options for resolving conflicts are offered.

For more information, see Queued Updating.

Transforming Published Data

Transformable subscriptions (available with snapshot replication or transactional replication) leverages the data movement,
transformation mapping, and filtering capabilities of Data Transformation Services (DTS).

Using transformable subscriptions in your replication topology allows you to customize and send published data based on the
requirements of individual Subscribers, including performing data type mappings, column manipulations, string manipulations,
and use of functions as data is published.

For more information, see Transforming Published Data.

Replication Usability

There have been several improvements in SQL Server Enterprise Manager that provide for easier implementation, monitoring,
and administration of replication. Enhancements to replication usability include:

A centralized Replication folder in the SQL Server Enterprise Manager tree, which organizes all subscriptions and
publications on the server being administered.

The ability to browse for and subscribe to publications (when permission is allowed) using Windows Active Directory.

The ability to see multiple Distributors in a single monitoring node in SQL Server Enterprise Manager.

Standard and advanced replication options separated in the Create Publication, Create Push Subscription, and Create Pull
Subscription Wizards. You can choose to show advanced options in these wizards on the Welcome page of each wizard.

New wizards for creating jobs that create dynamic snapshots for merge publications that use dynamic filters (Create
Dynamic Snapshot Job Wizard), and for transforming published data in snapshot replication or transactional replication
(Transform Published Data Wizard).

What's New (SQL Server 2000)

Data Transformation Services Enhancements
Microsoft® SQL Server™ 2000 introduces these Data Transformation Services (DTS) enhancements and new features:

New Custom Tasks

New DTS custom tasks, available through DTS Designer or the DTS object model, allow you to create DTS packages that perform
tasks or set variables based on the properties of the run-time environment. Use these tasks to:

Import data from, and send data and completed packages to, Internet and File Transfer Protocol (FTP) sites.

Run packages asynchronously.

Build packages that send messages to each other.

Build packages that execute other packages.

Join multiple package executions as part of a transaction.

For more information, see Building a DTS Custom Task.

Enhanced Logging Facilities

DTS package logs save information for each package execution, allowing you to maintain a complete execution history. You can
also view execution information for individual processes within a task.

You can generate exception files for transformation tasks. When you log to exception files, you can save source and destination
error rows to a file through the DTS OLE DB text file provider and re-process the error rows.

Saving DTS Packages to Visual Basic Files

DTS packages now can be saved to a Microsoft® Visual Basic® file. This allows a package created by the DTS Import/Export
Wizard or DTS Designer to be incorporated into Visual Basic programs or to be used as prototypes by Visual Basic developers
who need to reference the components of the DTS object model. For more information, see Saving a DTS Package.

Using the Multiphase Data Pump

A new multiphase data pump allows advanced users to customize the operation of the data pump at various stages of its
operation. You can now use global variables as input and output parameters for queries. For more information, see Multiphase
Data Pump Functionality.

Using Parameterized Queries

You can now use parameterized source queries in a DTS transformation task and an Execute SQL task. In addition, DTS includes
an option for saving the results of a parameterized query to a global variable, allowing you to perform functions such as saving
disconnected Microsoft ActiveX® Data Objects (ADO) recordsets in DTS. For more information, see Using Parameterized Queries
in DTS.

Using Global Variables to Pass Information Between DTS Packages

You now can use the Execute Package task to dynamically assign the values of global variables from a parent package to a child
package. Use global variables to pass information from one package to another when each package performs different work
items. For example, use one package to download data on a nightly basis, summarize the data, assign summary data values to
global variables, and pass the values to another package that further processes the data.

What's New (SQL Server 2000)

Analysis Services Enhancements
Microsoft® SQL Server™ 2000 Analysis Services includes the former OLAP Services. It also includes a new data mining
component. For more information about data mining and the other new features of Analysis Services, see What's New in Analysis
Services.

What's New (SQL Server 2000)

Meta Data Services Enhancements
Microsoft® SQL Server™ 2000 Meta Data Services includes the former Microsoft Repository. For more information about the
new features of Meta Data Services, see What's New in Meta Data Services.

What's New (SQL Server 2000)

English Query Enhancements
English Query introduces new features such as:

Greater integration with Microsoft® Visual Studio®, Analysis Services, and Full-Text Search.

A graphical user interface for English Query authoring.

The SQL Project Wizard.

An XML-based language for persisting English Query model information.

For more information, see What's New in English Query.

What's New (SQL Server 2000)

Documentation Enhancements
These enhancements and new features have been made to the documentation for Microsoft® SQL Server™ 2000:

F1 Help Integrated With SQL Server Books Online

The F1 Help for SQL Server 2000 has been integrated with SQL Server Books Online. When you select F1 Help, a related topic in
SQL Server Books Online is displayed.

SQL Server Books Online Supports Subsets

SQL Server Books Online allows you to define subsets of the entire SQL Server Books Online against which to perform a search.
You can define your own subsets; however, a set of default subsets is also provided. The subsets are targeted at specific
audiences, and each subset covers multiple topics. Subsets make it easier to search for information related to your activities by
minimizing the number of search hits.

Thumbnail Art

Some diagrams in SQL Server Books Online now appear as thumbnail diagrams. The full diagram can be viewed by clicking
Enlarge diagram. The full diagram appears when the topic is printed.

Glossary Improvements

Glossary terms appear as colored, underlined text. When clicked, a pop-up window appears with the term definition.

Easier to Access Related Topics

Many topics have a list of related topics, called See Also, at the end. SQL Server Books Online adds a See Also icon that displays
the list of related topics when you click it.

Installing SQL Server (SQL Server 2000)

Overview of Installing SQL Server 2000
Microsoft® SQL Server™ 2000 Setup creates a new installation of SQL Server 2000 or upgrades an earlier version. Before
installing or upgrading to SQL Server 2000 it is recommended that you review the following topics.

Topic Description
Preparing to Install SQL Server 2000 Lists steps to take before running SQL Server

2000 Setup
SQL Server 2000: Editions and
Components

Presents an overview of the editions of SQL
Server 2000, installation options, and
components

Upgrading an Existing Installation of
SQL Server

Outlines options for upgrading to SQL Server
2000 from an earlier version

For more information, see related topics in the table below.

To install See
SQL Server 2000 (typical installation
of the relational database engine,
client tools, and client connectivity
components)

How to install SQL Server 2000 (Setup)

SQL Server 2000 client tools only
(includes management tools and client
connectivity components, no server
required)

How to install client tools only (Setup)

SQL Server 2000 connectivity only
(installs only the client connectivity
components, no other options)

How to install connectivity only (Setup)

A named instance or multiple
instances of SQL Server 2000

How to install a named instance of SQL
Server 2000 (Setup)

A SQL Server 2000 virtual server for
failover clustering

Before Installing Failover Clustering

Analysis Services Installing Analysis Services
English Query Installing English Query

Installing SQL Server (SQL Server 2000)

Preparing to Install SQL Server 2000
Before installing Microsoft® SQL Server™ 2000, consider the following:

Be sure the computer meets the system requirements for Microsoft SQL Server 2000. For more information, see Hardware
and Software Requirements for Installing SQL Server 2000.

Back up your current installation of Microsoft SQL Server if installing SQL Server 2000 on the same computer.

If installing a failover cluster, disable NetBIOS on all private network cards before running SQL Server Setup. For more
information, see Before Installing Failover Clustering.

Review all SQL Server installation options and be prepared to make the appropriate selections when running Setup. For
more information about editions and components, see SQL Server 2000: Editions and Components.

If you plan to install SQL Server to a location other than the default file locations, see File Paths for SQL Server 2000.

If using an operating system with Regional settings other than English (United States), or if customizing character set or sort
order settings, review topics on collation settings. For more information, see Collation Options for International Support.

Before Running SQL Server 2000 Setup

Before running Setup:

Create one or more domain user accounts if installing SQL Server 2000 on a computer running Microsoft Windows NT® or
Microsoft Windows® 2000, and you want SQL Server 2000 to communicate with other clients and servers. For more
information, see Creating Security Accounts.

Log on to the operating system under a user account that has local administrative permissions, or assign the appropriate
permissions to the domain user account.

Shut down all services dependent on SQL Server. This includes any service using ODBC, such as Microsoft Internet
Information Services (IIS).

Shut down Microsoft Windows NT Event Viewer and registry viewers (Regedit.exe or Regedt32.exe).

Installing SQL Server (SQL Server 2000)

Hardware and Software Requirements for Installing SQL Server
2000

 Topic last updated -- January 2004

The minimum hardware and software requirements for running Microsoft® SQL Server™ 2000 are listed in the following tables.

Hardware Requirements

This table shows hardware requirements for installing Microsoft SQL Server 2000 or SQL Server client management tools and
libraries.

Hardware Minimum requirements
Computer Intel® or compatible

Pentium 166 MHz or higher.

Memory (RAM)1 Enterprise Edition and Enterprise Evaluation Edition: 64 MB
minimum, 128 MB or more recommended

Standard Edition and Developer Edition: 64 MB minimum

Personal Edition and Desktop Engine (MSDE 2000):

128 MB minimum on Windows XP

64 MB minimum on Windows 2000

32 MB minimum on all other operating systems

Hard disk space2 Enterprise, Enterprise Evaluation, Standard, Developer, and
Personal Editions require:

95 to 270 MB of available hard disk space for the
database engine; 250 MB for a typical installation.

50 MB of available hard disk space for a minimum
installation of Analysis Services; 130 MB for a typical
installation.

80 MB of available hard disk space for English
Query.

Desktop Engine (MSDE 2000): 44 MB minimum

Monitor VGA or higher resolution

800x600 or higher resolution required for the SQL Server
graphical tools

Pointing device Microsoft Mouse or compatible pointing device
CD-ROM drive Required

1 Additional memory may be required, depending on operating system requirements.
2 Actual requirements will vary based on your system configuration and the applications and features you choose to install.

Note Microsoft SQL Server 2000 does not have a hardware compatibility list (HCL). If your computer meets the minimum
requirements listed in the preceding table, SQL Server 2000 software works on the hardware certified for use with the Microsoft
Windows® operating system. For more information about hardware certified for use with the Windows operating system, see the
Microsoft Windows Hardware Compatibility List at Microsoft Web site.

Operating System Requirements

http://www.microsoft.com/isapi/redir.dll?prd=Hardware Compatibility List&Pver=1.0&Olcid=0x0816&Ar=/hwtest/hcl

This table shows the operating systems that must be installed to use the various editions or components of Microsoft SQL Server
2000.

SQL Server 2000 edition
or component Operating system requirement

Enterprise Edition and
Standard Edition

Windows Server 2003, Standard Edition1

Windows Server 2003, Enterprise Edition1

Windows Server 2003, Datacenter Edition1

Windows 2000 Server
Windows 2000 Advanced Server
Windows 2000 Datacenter Server
Microsoft Windows NT Server version 4.0 with Service
Pack 5 (SP5) or later
Windows NT Server version 4.0, Enterprise Edition, with
SP5 or later

Enterprise Evaluation
Edition and Developer
Edition

Operating systems listed above for Enterprise and
Standard Editions
Windows XP Professional
Windows XP Home Edition
Windows 2000 Professional
Windows NT Workstation 4.0 with SP5 or later

SQL Server 2000 Personal
Edition2 and SQL Server
2000 Desktop Engine
(MSDE 2000)

Operating systems listed above for Enterprise, Standard,
Enterprise Evaluation, and Developer Editions
Windows Server 2003, Web Edition1 (MSDE only)
Windows 98
Windows Me

Client Tools Support Windows 953

Windows 98
Windows Me
Windows NT Workstation 4.0
Windows 2000 Professional
Windows XP Professional
Windows XP Home Edition
Windows Server 2003, Standard Edition1

Windows Server 2003, Enterprise Edition1

Windows Server 2003, Datacenter Edition1

UNIX, Apple Macintosh, and OS/2 clients require Open
Database Connectivity (ODBC) client software from a
third-party vendor.

Connectivity Only Windows 95
Windows 98
Windows Me
Windows NT Workstation 4.0
Windows 2000 (all editions)
Windows XP Professional
Windows XP Home Edition
Windows Server 2003, Standard Edition1

Windows Server 2003, Enterprise Edition1

Windows Server 2003, Datacenter Edition1

1 Windows Server 2003 requires SQL Server 2000 Service Pack 3 or later to be applied.
2 SQL Server 2000 Personal Edition is offered for desktop and mobile use. Personal Edition does not contain the full functionality
of Standard Edition. Analysis Services, including online analytical processing (OLAP), data mining, and other data warehousing
features, are included in Personal Edition but cannot be installed on Windows 98 or Windows Me.
3 Supported for client connectivity only; does not include graphical tools support.

Note Microsoft Windows NT® Server 4.0, Service Pack 5 (SP5) or later must be installed as a minimum requirement for all SQL
Server 2000 editions.

SQL Server 2000 is not supported on Windows NT 4.0 Terminal Server.

For installations of SQL Server 2000 Personal Edition or Desktop Engine (MSDE 2000) on Windows 98 computers without a
network card, Windows 98 Second Edition is required.

Internet Requirements

This table shows Internet requirements related to using Microsoft SQL Server 2000.

Component Requirement
Internet software Microsoft Internet Explorer 5.0 is required for all

installations of Microsoft SQL Server 2000, as it is required
for Microsoft Management Console (MMC) and HTML
Help. A minimal install is sufficient, and Internet Explorer is
not required to be the default browser.

Exception to the Internet Explorer 5.0 requirement: If using
the Connectivity Only option and not connecting to a
server that requires encryption, Microsoft Internet Explorer
4.01 with Service Pack 2 is sufficient.

Internet Information
Services

If writing XML applications, see System Requirements for
the IIS Virtual Directory Management for SQL Server
Utility.

Network Software Requirements

Microsoft Windows XP, Windows 2000, Windows 98, Windows 95, Windows Me, and Windows NT have built-in network
software. Additional network software is required only if you are using Banyan VINES or AppleTalk ADSP. Novel NetWare IPX/SPX
client support is provided by the NWLink protocol of Windows-based networking.

Note TCP/IP must be enabled at the operating system level before installing SQL Server 2000. For more information, see
Network Libraries.

Considerations for Other Microsoft Products

The following Microsoft products require Service Release or Service Packs to operate correctly with SQL Server 2000.

Access 2000

Microsoft Access 2000 requires the installation of either Microsoft Office 2000 Service Release 1 (SR1) or Access 2000 SR1 to
operate correctly with SQL Server 2000. If running an earlier version of Access 2000, you cannot test automatic data processing
(ADP) applications against SQL Server 2000. You cannot access database diagrams, stored procedures, table designs, or view
designs.

Other issues to be addressed in a future Access Service Release:

When you run Access 2000 with SR1, you can test ADP applications. You can also alter database diagrams, stored
procedures, table designs, or view designs, but you cannot save any changes. A future Access Service Release will allow
limited ability to save changes.

The Access 2000 Create Database Wizard cannot successfully create a SQL Server 2000 database. You can work around this
by first creating the database using SQL Server Enterprise Manager, and then creating an ADP for the database using the
Project (Existing Database) option on the New dialog box in Access 2000.

The Access 2000 Upsizing Wizard does not support upsizing to SQL Server 2000. You can work around this by using Data
Transformation Services in the Enterprise Manager to import your MDB database file into SQL Server. You can then rename
your MDB tables and create linked tables to the resulting SQL Server database with the same names as your original MDB
table names.

Visual Studio 6.0

When you run Microsoft Visual Studio® 6.0, you cannot access database diagrams, stored procedures, table designs, or view
designs in SQL Server 2000. Visual Studio 6.0 Service Pack 4 allows you to alter database diagrams, stored procedures, table

designs, or view designs, but you cannot save them. A future Visual Studio Service Pack will allow a limited ability to save
changes.

The SQL Server 2000 tools cannot access database diagrams saved using the design tools in Visual Studio 6.0 until you have
modified the dtproperties table in the database. For more information, see Backward Compatibility.

See Also

Editions of SQL Server 2000

SQL Server 2000: Editions and Components

Operating Systems Supported by the Editions of SQL Server 2000

Installing SQL Server (SQL Server 2000)

SQL Server 2000: Editions and Components
 Topic last updated -- January 2004

SQL Server 2000 editions include the Enterprise Edition, the Standard Edition, the Personal Edition, the Developer Edition, and the
Evaluation Edition.

Note The Microsoft SQL Server 2000 Personal Edition replaces the Microsoft SQL Server version 7.0 Desktop Edition. To install
client tools only, you can use the Personal Edition, which is also available when you purchase the Standard and Enterprise Editions
of SQL Server 2000.

When you select SQL Server 2000 Components on the opening screen, three options appear on the Install Components
screen:

Install Database Server

Starts SQL Server Setup, with screens for selecting installation options.

Install Analysis Services

Installs Analysis Services on computers processing OLAP cubes. For more information, see Installing Analysis Services.

Install English Query

Installs English Query on computers running English Query applications. For more information, see Installing English Query.

Choosing Components and Options to Install

You may have a database server, an Internet server, or require a database on a client computer. If running database client/server
applications you may or may not require a database on your computer. You may need tools to administer a database server, or
you may want to run applications that access an instance of SQL Server. Installation choices for these and other SQL Server
configurations are described in the following paragraphs.

Installing SQL Server on a Database Server

If installing a database server, install either SQL Server 2000 Enterprise Edition or SQL Server 2000 Standard Edition. If installing a
personal database on your workstation, install SQL Server 2000 Personal Edition. These installations typically include the
database engine, the client database management tools, and the client connectivity components.

On a database server, you can install a default instance of SQL Server 2000 relational database engine. You can also install one or
more named instances of the SQL Server 2000 database engine. Other than specifying an instance name, the setup choices are
similar to those for installing a default instance.

When installing an instance of SQL Server 2000, you must specify whether you want the instance to use failover clustering. For
more information, see Before Installing Failover Clustering.

Using SQL Server w ith Client/Server Applications

For a computer running database client/server applications, such as Microsoft Visual Basic® applications that connect directly to
an instance of SQL Server, you have several options:

If you require a personal database on your client computer, install the Personal Edition of SQL Server. This setup typically
installs the client tools and client connectivity components along with the database engine.

If you do not require a database on your computer, but need to administer an instance of SQL Server on a database server,
or plan to develop SQL Server applications, install the option for Client Tools Only. This option includes the client
connectivity components. For more information, see How to install client tools only (Setup).

If you want to only run applications that access instances of SQL Server on database servers, install the connectivity only
components. For more information, see How to install connectivity only (Setup).

Using SQL Server w ith an Internet Server

On an Internet server, such as a server running Microsoft Internet Information Services (IIS), you typically install the SQL Server
2000 client tools. Client tools include the client connectivity components used by an application connecting to an instance of SQL

Server. In addition, the client tools include the utility for configuring the virtual roots needed for applications to access SQL Server
through URLs.

After installing the SQL Server client tools, you configure the virtual roots that support accessing an instance of SQL Server
through a URL. For more information about configuring the virtual roots, see Using IIS Virtual Directory Management for SQL
Server Utility.

Note Although you can install an instance of SQL Server on a computer running IIS, this is typically done only for small Web
sites that have a single server computer. Most Web sites have their middle-tier IIS system on one server or cluster of servers, and
their databases on a separate server or federation of servers. For more information about federations, see Federated SQL Server
2000 Servers.

If some of the Web pages on an Internet server use English Query, you would also install that component.

Other SQL Server Components

For distributing SQL Server 2000 with applications, use the SQL Server 2000 Desktop Engine (MSDE 2000), a stand-alone
database engine that independent software vendors can package with their applications. For more information, see
Distributing SQL Server Applications Overview.

Note The Desktop Engine (MSDE 2000) has no graphical user interface and is not related to the SQL Server 7.0 Desktop
Edition.

In addition to the major components and editions shown on the Install SQL Server 2000 Components screen, other editions of
SQL Server 2000 are available: SQL Server 2000 Developer Edition, SQL Server 2000 Windows CE Edition, and the SQL Server
2000 Enterprise Evaluation Edition. For more information, see Features Supported by the Editions of SQL Server 2000.

See Also

Editions of SQL Server 2000

Operating Systems Supported by the Editions of SQL Server 2000

Installing SQL Server (SQL Server 2000)

Installing English Query
English Query is a development tool that works with Microsoft® SQL Server™ 2000. Using English Query, you can create
applications that allow users to query a SQL Server database or an Analysis Services database in English. For example, users can
ask, "How many widgets were sold in Washington last year?" instead of using the SQL statements:

SELECT sum(Orders.Quantity) FROM Orders, Parts
WHERE Orders.State='WA'
 AND Datepart(Orders.Purchase_Date,'Year')='1999'
 AND Parts.PartName='widget'
 AND Orders.Part_ID=Parts.Part_ID

When you install English Query, English Query is added to the Microsoft SQL Server program group on the Start menu.
English Query contains these shortcuts:

English Query Books Online

English Query Tutorials

Microsoft English Query

If English Query is not installed with Microsoft SQL Server 2000, the Help system will access English Query Books Online,
Eqdoc.chm, instead of SQL Server Books Online, SQL80.col. However, both documentation files contain essentially the same
material about English Query and both provide context-sensitive (F1) Help for English Query. Regardless of the installation
scenario, English Query Books Online is available from the English Query program group.

Installation Requirements for English Query are:

Microsoft Windows® 95, Microsoft Windows 98, or Microsoft Windows NT® version 4.0 or later

40 MB of free disk space

Microsoft Internet Explorer 5.0 or later

To install English Query

SQL Setup

SQL Setup

See Also

English Query Overview

Installing SQL Server (SQL Server 2000)

Installing Analysis Services
Microsoft® SQL Server™ 2000 Analysis Services includes a powerful server for the construction and analysis of multidimensional
data.

To install Analysis Services

SQL Setup

SQL Setup

See Also

Analysis Services Overview

Installing SQL Server (SQL Server 2000)

Setting up Windows Services Accounts
 Topic last updated -- July 2003

On the Microsoft® Windows NT® and Microsoft Windows® 2000 operating systems, Microsoft SQL Server™ and SQL Server
Agent are started and run as Windows services. These services appear in the list of installed services in the Services dialog box,
available using Windows Control Panel. The table shows each service name and the term used to refer to the default and named
instances of SQL Server, as displayed in the Services dialog box.

Service Name
Term for default
instance

Term for named
instance

Microsoft SQL
Server

SQL Server MSSQLSERVER MSSQL$InstanceName

Microsoft SQL
Server Agent

SQL Server
Agent

SQLSERVERAGENT SQLAgent$InstanceName

For Microsoft SQL Server™ and SQL Server Agent to run as services in Windows, they must be assigned a Windows user account.
Typically, both SQL Server and SQL Server Agent are assigned the same user account, either the local system or domain user
account. However, you can customize the settings for each service during the installation process. For more information about
how to customize account information for each service, see Services Accounts.

The Microsoft Search service (full-text search) must always run under the local system account.

Note Microsoft Windows 98 does not support Windows services; instead, SQL Server simulates the SQL Server and SQL Server
Agent services. It is not required that you create user accounts for these simulated services.

Using the Local System Account

The local system account does not require a password, does not have network access rights in Windows NT 4.0 and Windows
2000, and restricts your SQL Server installation from interacting with other servers.

Using a Domain User Account

A domain user account uses Windows Authentication, that is, the same user name and password used to connect to the operating
system is also used to connect to SQL Server. A domain user account is typically used because many server-to-server activities
can be performed only with a domain user account, for example:

Remote procedure calls.

Replication.

Backing up to network drives.

Heterogeneous joins that involve remote data sources.

SQL Server Agent mail features and SQL Mail. This restriction applies if using Microsoft Exchange. Most other mail systems
also require clients (the SQL Server and SQL Server Agent services) to be run on accounts with network access.

Note Several servers running SQL Server can share the same user account. When setting up replication, it is recommended that
a Publisher and all its Subscribers share the same service account for the SQL Server service.

Requirements for Domain User Account

All domain user accounts must have permission to:

Access and change the SQL Server directory (\Program Files\Microsoft SQL Server\Mssql).

Access and change the .mdf, .ndf, and .ldf database files.

Log on as a service.

Read and write registry keys at and under:
HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer.
-or- for any named instance: HKEY_LOCAL_MACHINE\Software\Microsoft\Microsoft SQL Server.

HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQLServer.
-or- for any named instance: HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQL$Instancename.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Perflib.

In addition, a domain user account must be able to read and write corresponding registry keys for these services:
SQLAgent$InstanceName, MSSearch, and MSDTC.

This table shows additional permissions required for certain functionality.

Service Permission Functionality
SQL Server Network write privileges Write to a mail slot using

xp_sendmail.
SQL Server Act as part of operating system

and replace a process level
token

Run xp_cmdshell for a user
other than a SQL Server
administrator.

SQL Server Agent Member of the Administrators
local group

Create CmdExec and ActiveScript
jobs belonging to someone other
than a SQL Server administrator.

Use the autorestart feature.

Use run-when-idle jobs.

Connect to SQL Server using SQL
Server Authentication.

SQL Server Member of local Power Users
or local Administrators group

Add and delete SQL Server
objects in the Windows 2000
Active Directory.

Note If the startup account assigned to the MSSQLServer Service is not a member of the Local Administrators group, or if the
BUILTIN\Administrators SQL Server login has been removed, you must add the startup account for the MSSQLServer service or
the SQLServerAgent service, or both, to the SQL Server system administrators (sysadmin) role. Grant the [Domain\NTaccount]
user a logon to SQL Server.

Changing User Accounts

To change the password or other properties of any SQL Server–related service after installing SQL Server, use SQL Server
Enterprise Manager. If your Windows password expires and you change it, be sure to also revise the SQL Server services settings
in Windows. For more information, see Changing Passwords and User Accounts.

See Also

Creating Security Accounts

Planning Security

Services Accounts

Installing SQL Server (SQL Server 2000)

File Paths for SQL Server 2000
In Microsoft® SQL Server™ 2000, the default location for the installed SQL Server files has changed. For the default instance of
SQL Server, the default directory for both program and data files is \Program Files\Microsoft SQL Server\Mssql. You can specify a
file path other than the default for both program and data files.

Shared Tools are installed by default at \Program Files\Microsoft SQL Server\80\Tools. This folder contains files shared by all
instances of SQL Server 2000, both default and named. Tools include SQL Server Books Online, Dev Tools, and other components.

Setup also installs files in the Microsoft Windows® system directory. The system file location cannot be changed.

SQL Server Program File Location

The SQL Server program files are located in \Program Files\Microsoft SQL Server\Mssql\Binn.

The program file location is the root directory where Setup creates the folders that contain program files and files that typically do
not change as you use SQL Server. Although these files are not read-only, the folders do not contain data, log, backup files, or
replication data; therefore, the space requirements for these files should not increase as SQL Server is used.

Note Program files cannot be installed on a removable disk drive.

SQL Server Data File Location

The SQL Server data files are located in \Program Files\Microsoft SQL Server\Mssql\Data.

The data file location is the root directory where Setup creates the folders that contain database and log files, as well as directories
for the system log, backup, and replication data. Setup creates database and log files for the master, model, tempdb, msdb,
pubs, and Northwind databases. The SQL Server data file path should be located on a drive that has space available for these
files to grow.

Note Data files cannot be installed on a file system using compression.

Specifying File Paths

In SQL Server 2000, due to multiple instance options, the instance name is used in addition to the user-specified location for
program and data files. For tools and other shared files, however, instance names are not required.

Default Instance File Path for Program and Data Files

For the default instance of SQL Server, the default SQL Server directory name (Mssql) is used as the default instance name, along
with the directory you specify.

For example, if you specify that the SQL Server default instance be installed at D:\MySqlDir, the file paths are:

D:\MySqlDir\Mssql\Binn (for program files)

D:\MySqlDir\Mssql\Data (for data files)

N amed Instance File Path for Program and Data Files

For any named instances, the given name of the instance is used with the directory specified.

For example, if you specify that the instance named MyInstanceA be installed at D:\MySqlDir, the paths are:

D:\MySqlDir\MSSQL$MyInstanceA\Binn (for program files)

D:\MySqlDir\MSSQL$MyInstanceA\Data (for data files)

See Also

File Locations for Multiple Instances of SQL Server

Locating Directories and Files

Installing SQL Server (SQL Server 2000)

Upgrading an Existing Installation of SQL Server
You can upgrade from earlier versions to Microsoft® SQL Server™ 2000, and also perform upgrade operations once SQL Server
2000 is installed. Upgrades to SQL Server 2000 from SQL Server version 6.5 and from SQL Server version 7.0 are different
operations. SQL Server 6.5 databases (and related information) are converted to SQL Server 2000 formats. An installation of SQL
Server 7.0 is overwritten by SQL Server 2000, unless a named instance configuration is installed, allowing SQL Server 7.0 to
remain intact.

After an initial installation of SQL Server 2000, other upgrade options are available. If using more than one instance of SQL Server
2000, you can upgrade one instance by adding components, and have different component sets for multiple instances.

Upgrading from SQL Server 7.0 to SQL Server 2000

You can overwrite your existing installation of SQL Server 7.0 by installing a default instance of SQL Server 2000. You can also
keep your installation of SQL Server 7.0 intact by installing a named instance of SQL Server 2000. Both operations are performed
using the following procedure.

To upgrade from SQL Server 7.0 to SQL Server 2000

SQL Setup

SQL Setup

Upgrading Databases from SQL Server 7.0

Instead of a full upgrade from SQL Server 7.0 to SQL Server 2000, which overwrites SQL Server 7.0, you can upgrade SQL Server
7.0 databases and associated meta data. For more information, see Upgrading Databases from SQL Server 7.0 (Copy Database
Wizard).

Upgrading from SQL Server 6.5 to SQL Server 2000

After installing Microsoft® SQL Server™ 2000, you can upgrade your SQL Server version 6.5 server configuration and databases
using the SQL Server Upgrade Wizard. In this process, SQL Server 6.5 information and data is transferred to a SQL Server 2000
installation. The SQL Server 6.5 installation remains intact on the computer. It can be removed, or kept on the computer and used
in a version switch configuration with SQL Server 2000.

Note If you plan to keep SQL Server 6.5 installed alongside an instance of SQL Server 2000 (for version switching purposes),
SQL Server Service Pack (SP5) must be applied to SQL Server 6.5 before installing SQL Server 2000.

SQL Server 6.0 to SQL Server 2000 (no direct upgrade)

To upgrade from SQL Server 6.0 to SQL Server 2000, you have two options:

Use the SQL Server Upgrade Wizard provided with SQL Server version 7.0 to upgrade from SQL Server 6.0 to SQL Server
7.0, and then use Setup to upgrade from SQL Server 7.0 to SQL Server 2000.

Convert the SQL Server 6.0 data to SQL Server 6.5, and then convert the SQL Server 6.5 data to SQL Server 2000.

Note Both data conversions are performed using the SQL Server Upgrade Wizard, although different versions of the Upgrade
Wizard are used. The SQL Server 7.0 Upgrade Wizard can upgrade SQL Server 6.0 or SQL Server 6.5 databases to SQL Server 7.0
databases. In SQL Server 2000, the Upgrade Wizard is used only for upgrades from SQL Server 6.5 to SQL Server 2000.

Version and Edition Upgrades

Each of the editions of Microsoft® SQL Server™ 2000 (SQL Server 2000 Enterprise Edition, SQL Server 2000 Standard Edition,
SQL Server 2000 Personal Edition, and SQL Server 2000 Developer Edition) comes with its own compact disc and is installed
separately.

You can add to the feature set of your installation of Microsoft SQL Server by performing a version and edition upgrade at the
same time. For example, if you have purchased Microsoft SQL Server 2000 Standard Edition, you can upgrade from SQL Server
7.0 Desktop Edition to SQL Server 2000 Standard Edition.

Upgrade options between versions and editions of SQL Server are shown in the table.

Installed Version Can upgrade to

SQL Server 7.0 Desktop Edition1 SQL Server 2000 Personal Edition
SQL Server 2000 Standard Edition

SQL Server 7.0 Standard Edition SQL Server 2000 Standard Edition
SQL Server 2000 Enterprise Edition

SQL Server 7.0 Enterprise Edition SQL Server 2000 Enterprise Edition
SQL Server 2000 Developer Edition SQL Server 2000 Enterprise Edition
SQL Server 2000 Standard Edition SQL Server 2000 Enterprise Edition
SQL Server 2000 Personal Edition SQL Server 2000 Standard Edition
SQL Server 2000 Enterprise Evaluation
Edition2

SQL Server 2000 Personal Edition
SQL Server 2000 Standard Edition
SQL Server 2000 Enterprise Edition
SQL Server 2000 Developer Edition

1. SQL Server 7.0 Desktop Edition has been replaced by the SQL Server 2000 Personal Edition; however, you can still perform
this type of version and edition upgrade.

2. When upgrading from SQL Server 2000 Enterprise Evaluation Edition, you cannot upgrade to a SQL Server 2000 failover
cluster.

Upgrade options also depend on the operating system used. For more information, see Operating Systems Supported by the
Editions of SQL Server 2000.

Upgrading Editions and Components w ith in SQL Server 2000

You can add functionality while upgrading from one edition of SQL Server 2000 to another, and have the option to add
components during this upgrade. For example, if you upgrade from the SQL Server 2000 Personal Edition to the SQL Server 2000
Standard Edition, you can install additional components during the upgrade process.

To perform an edition upgrade within SQL Server 2000

SQL Setup

SQL Setup

Adding Components to an instance of SQL Server 2000

You can add components to an existing installation of SQL Server 2000 by selecting the instance of SQL Server to which you want
to add features. This method allows you to have different component sets for the default instance and for any named instances.

To add components to an instance of SQL Server 2000

SQL Setup

SQL Setup

See Also

Upgrading to SQL Server 2000: Overview

Existing Installation Options

Select Components

Upgrading to a SQL Server 2000 Failover Cluster

Upgrading Databases from SQL Server 6.5 (Upgrade Wizard)

Installing SQL Server (SQL Server 2000)

Basic Installation Options
This section describes basic installation options for SQL Server 2000. Upgrading an existing installation, or creating a new
installation on either a local or remote computer is considered a basic installation option.

For more information about cluster maintenance, performing an unattended setup, or rebuilding the registry, see Advanced
Installation Options.

Installing SQL Server (SQL Server 2000)

Entering Information in Basic Setup Screens
Microsoft® SQL Server™ 2000 Setup provides basic and advanced options. There are two options for a local installation:

Create a new or additional installation

Upgrade, remove, or add components to an existing installation

If you choose the upgrade option, you have many other choices available. For more information, see Existing Installation Options.
In addition, you can select advanced options. For more information about your initial setup choices, see Installation Selection.

For a basic, local installation, select the option for creating a new or additional installation. After entering user and product
identification (ID) information in subsequent screens, choose the components to include in this installation of SQL Server 2000.
You can select to install either connectivity only, client tools only (which includes connectivity components), or the complete
server and client tools option. For more information, see Installation Definition.

If you choose to install the SQL Server relational database with both server and client tools, select either a named instance or the
default instance of SQL Server 2000. For more information, see Instance Name.

After selecting the default instance, or choosing to create a named instance, the standard setup type selection screen is presented.
For more information, see Setup Type: Typical, Minimum, or Custom.

Other options may be presented while running Setup, depending on the specifics of your system and installation.

See Also

Upgrading an Existing Installation of SQL Server

Multiple Instances of SQL Server

Installing SQL Server (SQL Server 2000)

Computer Name
The Computer Name dialog box in Setup allows you to install Microsoft SQL Server 2000 on your local computer, on a remote
computer, or on a virtual server.

All options for installing and upgrading are available on the local computer. Advanced options, including registry rebuild,
unattended installation, and upgrading to a cluster are not available on a remote installation. If you are running Setup on a
clustered computer, the Virtual Server option is available.

Options

Local Computer

By default, the name in the edit box is the local machine name, that is, the computer on which Setup is running. For a local
installation, accept the default and click Next.

Note If you are installing tools only, Local Computer will be the only option available on this dialog box.

Remote Computer

Enter a computer name for a remote installation, or click Browse to locate the remote computer.

Virtual Server

Enter the name of a new or existing Virtual SQL Server to manage.

This option is available only when Microsoft Cluster Service (MSCS) is detected on an Windows NT or Windows 2000 Enterprise
operating system.

Browse

Click the Browse button to locate a remote computer.

This button is available only when the Remote Computer option is selected.

See Also

Installing a Remote Configuration

Installing a Virtual Server Configuration

Before Installing Failover Clustering

Creating a Failover Cluster

Installing SQL Server (SQL Server 2000)

Installation Selection
The Installation Selection screen is an initial screen in Microsoft® SQL Server™ Setup, where you select among three options
for running the installation program.

Options

Create a new instance of SQL Server, or install Client Tools

Creates a new installation of SQL Server 2000; either a default or named instance. In addition, this option allows you to install
only client tools using the compact disc for any edition of SQL Server 2000, on any operating system other than Microsoft
Windows® 95.

Upgrade, remove, or add components to an existing instance of SQL Server

Allows you to upgrade, remove, or add components to an existing instance of SQL Server. Existing instances include installations
of earlier versions (SQL Server version 6.5 and SQL Server version 7.0) as well as instances of SQL Server 2000. For more
information, see Existing Installation Options.

Advanced Options

Select advanced options for cluster maintenance, unattended setup, and registry rebuild.

See Also

Multiple Instances of SQL Server

Upgrading an Existing Installation of SQL Server

Advanced Installation Options

Installing SQL Server (SQL Server 2000)

Existing Installation Options
The Existing Installation Options Setup screen includes choices for working with upgrades from previous versions of
Microsoft® SQL Server™, as well as upgrades to SQL Server 2000 components. Options that do not apply to your specific setup
do not appear on the screen.

Options

Add components to your existing installation

Allows you to add components to an existing installation of SQL Server 2000.

Uninstall your existing installation

Removes an installation (default or named instance) of SQL Server 2000 from your computer. The instance to remove is specified
in the Instance Name screen.

Upgrade your existing installation

This option is available for use with existing installations of SQL Server 7.0 and SQL Server 2000. Depending on the version,
edition, and component makeup of your existing installation, selecting this option starts the process for one of the following
upgrades:

Upgrade from SQL Server 7.0 to SQL Server 2000. (If you cannot upgrade client tools, see Upgrade Issues below.)

Add components to an existing installation of SQL Server 2000. For example, you may have purchased a SQL Server version
with more features, or need to install certain components.

Note Upgrades from SQL Server 6.5 to SQL Server 2000 are run using the SQL Server Upgrade Wizard, available on the SQL
Server Start menu.

Upgrade your existing installation to a clustered installation

This option is a step in the process of upgrading from a clustered installation of SQL Server 6.5 or SQL Server 7.0 to a clustered
installation of SQL Server 2000. First, the earlier version of SQL Server is upgraded to SQL Server 2000. Next, the existing SQL
Server 2000 installation can be upgraded to a cluster. For more information, see Upgrading to a SQL Server 2000 Failover
Cluster.

Upgrade Issues

On a computer running SQL Server 7.0 client tools only, you may encounter the following message when you choose to
upgrade your existing installation: "The default instance detected is not able to be upgraded. Please select New Install to
upgrade your tools." This issue can occur if you have installed the SQL Server 7.0 client tools by choosing Custom in the
Setup Type dialog box, and then by selecting tools in the components dialog box. In this situation, the existing client tools
installation of SQL Server 7.0 cannot be upgraded due to registry issues. Instead, you must re-install SQL Server, by
selecting Create a new instance of SQL Server, or install Client Tools.

You can upgrade a beta version of SQL Server 2000 to the final version of the product by using the option to upgrade your
existing installation. If you are performing such an upgrade on a computer or a cluster containing multiple instances, you
must first close all instances of SQL Server before upgrading.

See Also

Upgrading from SQL Server 7.0 to SQL Server 2000

Upgrading an Existing Installation of SQL Server

Select Components

Installing SQL Server (SQL Server 2000)

Installation Definition
Use the Installation Definition screen to select the components to include in this installation of SQL Server 2000. If you select
Client Tools Only or Connectivity Only, Setup proceeds and no additional choices are required, unless you select components
when installing client tools. If you choose to install Server and Client Tools, additional setup screens will appear.

Options

Client Tools Only

Installs only the client relational database management tools. Included in this option are the client tools for administering SQL
Server and the client connectivity components. In addition, this option allows you to select other components to install. For more
information, see How to install client tools only (Setup).

Server and Client Tools

Installs both server and client tools to create a relational database server with administrative capabilities. Selecting Server and
Client Tools presents the full range of additional setup options.

For more information about performing a typical installation of a default instance of the database engine, including all client and
connectivity components, see How to install SQL Server 2000 (Setup).

Note This option is not available if you are installing client tools using a compact disc for an edition of SQL Server that is not
supported by your computer's operating system.

Connectivity Only

Installs only the relational database client connectivity components, including MDAC 2.6 (Microsoft Data Access Components), a
requirement for connecting to SQL Server 2000 named instances. This option provides connectivity tools only, with no choice of
client tools or other components. For more information, see How to install connectivity only (Setup).

See Also

Management Tools

Server Components

Client Connectivity

Installing SQL Server (SQL Server 2000)

User Information
The User Information Setup screen prompts you to supply your name and company name. These fields are required.

When installing on a network, be sure to supply the name of a user responsible for using or administering the server.

See Also

Setting Up Windows Services Accounts

Installing SQL Server (SQL Server 2000)

Instance Name
Use this screen to add and maintain instances of Microsoft® SQL Server™ 2000.

Options

Default

When selected, a default instance of SQL Server 2000 is installed. Click Next to proceed with the install process.

When cleared, you can install or maintain a named instance of SQL Server 2000.

Note If this check box is not enabled, Setup has detected a default instance of SQL Server on this computer. The default instance
could be an installation of SQL Server 6.5, SQL Server version 7.0, or it could be the default instance of SQL Server 2000, already
installed. Only one installation of SQL Server, any version, can be the default instance at any one time. For more information, see
Multiple Instances of SQL Server.

Instance Name

Enter a new instance name, or the name of the instance to maintain. Review and follow the rules for instance names.

Important It is recommended that instance names be kept to less than 10 characters. Instance names can appear in the user
interface of various SQL Server and system tools; shorter names are more readable.

Instance Naming Rules

An instance name is not case-sensitive.

An instance name cannot be the terms Default or MSSQLServer.

Instance names must follow the rules for SQL Server identifiers and cannot be reserved keywords.

Instance names are limited to 16 characters.

The first character in the instance name must be a letter, an ampersand (&), an underscore (_), or a number sign (#).
Acceptable letters are those defined by the Unicode Standard 2.0, which includes Latin characters a-z and A-Z, in addition to
letter characters from other languages.

Subsequent characters can be:
Letters as defined in the Unicode Standard 2.0.

Decimal numbers from either Basic Latin or other national scripts.

The dollar sign ($), a number sign (#), or an underscore (_).
Embedded spaces or special characters are not allowed in instance names. Neither is the backslash (\), a comma (,), a colon
(:), or the at sign (@).

Warning Only characters that are valid in the current Microsoft Windows® code page can be used in instance names in SQL
Server 2000. If a Unicode character not supported under the current code page is used, an error occurs.

See Also

Working with Instances and Versions of SQL Server

Working with Named and Multiple Instances of SQL Server 2000

Naming Conventions for Instances of SQL Server 2000

Reserved Keywords

Installing SQL Server (SQL Server 2000)

Backward Compatibility
 New Information - SQL Server 2000 SP3.

The topics in this section describe changes included in SQL Server 2000 Service Pack 3 (SP3).

Topic Description
Backward Compatibility for Full-Text
Search/Microsoft Search

Provides backward compatibility details
for Full-Text Search/Microsoft Search in
SP3

Backward Compatibility for Multiserver
Administration

Provides backward compatibility details
for master/target server configurations in
SP3

Backward Compatibility for Cross-
Database Ownership Chaining

Provides backward compatibility details
for cross-database ownership chaining in
SP3

Installing SQL Server (SQL Server 2000)

Backward Compatibility for Full-Text Search/Microsoft Search
 New Information - SQL Server 2000 SP3.

The Microsoft Search catalog format is upgraded in Microsoft SQL Server 2000 Service Pack 3 (SP3) to improve consistency in
the rank values returned by queries using the CONTAINSTABLE and FREETEXT full-text predicates.

Upgrading the Microsoft Search catalog format requires that all full-text catalogs be rebuilt. The rebuild is performed
automatically when Microsoft Search service starts, immediately after SP3 setup completes, and may be a time- and resource-
intensive process. During the rebuild, full-text functionality may be only partially available.

Note The rebuild operation only occurs the first time that any instance of SQL Server 2000 on the computer is upgraded to
Service Pack 3. If several instances of SQL Server 2000 exist on the same computer, all catalogs from all instances of SQL Server
are rebuilt to the new format, not just the full-text catalogs associated with the instance of SQL Server that is being upgraded to
SP3.

After SP3 is installed, the system event logs will contain messages stating that the catalogs were corrupt, were of an older version,
and had to be rebuilt. Microsoft Search rebuilds these catalogs and upon completion returns another message about the success
or failure of the rebuild operation.

If the catalog rebuild process does not complete successfully, the system event log will contain a message that the crawl stopped
or failed. Crawl is the process of rebuilding and repopulation of the full-text catalogs. When the message states that a crawl failed,
drop and recreate all full-text catalogs.

Here is an example of a log that illustrates these messages:

Event Type: Information
Event Source: Microsoft Search
Event Category: Search Service
Event ID: 1003
Date: 7/24/2002
Time: 5:26:51 PM
User: N/A
Computer: FTS8
Description:
The Search service has started.

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

Event Type: Information
Event Source: MssCi
Event Category: None
Event ID: 4138
Date: 7/24/2002
Time: 5:26:51 PM
User: N/A
Computer: FTS8
Description:
Content index corruption detected in component CI-RcovStorageObj1 in catalog
e:\ft\SQL0000800005\Build\Indexer\NlFiles. Stack trace is
 0x01045027
 0x0104BE13
 0x010469E0
 0x0104D0CD
 0x01048477
 0x013BCE70
 0x013B9D9F
 0x013BA645
 0x009F4251
 0x009F450D
 0x0138CE4C
 0x0138E1D0
 0x00A32783
 0x00A2247A
 0x00A99965
 0x00AA5BDC
 0x77E8758A

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

Event Type: Error
Event Source: Microsoft Search
Event Category: Indexer
Event ID: 7039
Date: 7/24/2002

Time: 5:26:51 PM
User: N/A
Computer: FTS8
Description:
The Content Index for project <SQLServer SQL0000800005> cannot be loaded. Error: c0041821 - The content index
data on disk is for the wrong version.

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

Event Type: Information
Event Source: Microsoft Search
Event Category: Gatherer
Event ID: 3041
Date: 7/24/2002
Time: 5:26:51 PM
User: N/A
Computer: FTS8
Description:
Project <SQLServer SQL0000800005> is being reset.

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

Event Type: Information
Event Source: Microsoft Search
Event Category: Gatherer
Event ID: 3018
Date: 7/24/2002
Time: 5:26:53 PM
User: N/A
Computer: FTS8
Description:
The end of crawl for project <SQLServer SQL0000800005> has been detected. The Gatherer successfully processed 0
documents totaling 0K. It failed to filter 0 documents. 0 URLs could not be reached or were denied access.

For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp.

For more information, see Knowledge Base article Q327217.

Types of Upgrade

To minimize the impact of a rebuild on database operations, consider the following variations to the upgrade process:

Default upgrade

A default upgrade takes place automatically after SP3 setup finishes. Use the default upgrade if the total size of all full-text
catalogs is less than 100,000 rows and there are ample system resources available after SP3 setup.

Side-by-side upgrade

A side-by-side upgrade helps avoid significant periods in which full-text functionality will not be fully available during the rebuild
process. This upgrade also minimizes resource usage after the upgrade to SP3. Use side-by-side upgrade if the total size of all
full-text catalogs being upgraded is greater than 100,000 rows and the rebuild process may take up to an hour or more,
depending on available hardware and system resources. For a complete side-by-side upgrade, all catalogs from all instances of
SQL Server 2000 on the computer should be included. For more information, see Side-by-Side Upgrade, below.

Manual upgrade

A manual upgrade minimizes resource usage following upgrade to SP3 by allowing full-text catalogs to be added and populated
during off-peak periods. However, the total amount of catalog downtime while manually rebuilding full-text catalogs may be
greater than for a side-by-side upgrade. Perform a manual upgrade when it is more important for the server to be available soon
after the SP3 upgrade, than it is for the full-text catalogs. For more information, see Manual Upgrade, below.

Side-by-Side Upgrade

A side-by-side upgrade requires a production computer and a backup development computer. The production computer is the
computer running the instance of SQL Server to be upgraded; the backup development computer contains a replica of the
production computer.

Before you upgrade, back up all SQL Server databases on the production computer. This backup will be used to create an image
of the production computer on the development computer. For more information on creating and maintaining a development
computer, see "Using Standby Servers" in SQL Server 2000 Books Online.

In addition, if change tracking is enabled on the production computer, disable background index update and any other scheduled
updates. Leave intact any scheduled full or incremental populations.

To perform a side-by-side upgrade

1. Restore the previously created database backup to the development computer. Ensure that the database identifiers are the
same between the production computer and the development computer. For more information on how to move, copy, and
back up full-text catalog folders and files, search the Knowledge Base.

2. Because a database backup does not include full-text catalogs, execute the following system stored procedure for each full-
text catalog so that the catalogs are created and populated on the development computer.

EXEC sp_fulltext_catalog 'fulltext_catalog_name', 'rebuild'
GO
EXEC sp_fulltext_catalog 'fulltext_catalog_name', 'start_full'
GO

3. Apply SP3 to the development computer to upgrade the full-text catalog data.

4. When the rebuild process completes on all full-text catalogs on the development computer, copy these full-text catalogs to a
secure location on the production computer.

Important Do not overwrite existing full-text catalogs that are in the production computer at this time.

For more information on how to move, copy, and back up full-text catalog folders and files, search the Knowledge Base.

5. Apply SP3 to the production computer. After the upgrade to SP3 is complete, stop the Microsoft Search service.

If the automatic rebuilding of the catalogs has started, stop the process for each catalog by executing the following system
stored procedure.

EXEC sp_fulltext_catalog 'fulltext_catalog_name', 'stop'
GO

6. On the production computer, replace existing catalogs with the rebuilt catalogs that were copied from the development
computer.

7. Start the Microsoft Search service.

If change tracking is enabled on the production computer, manually update change tracking on all full-text enabled tables
by executing the following system stored procedure.

EXEC sp_fulltext_table '%tablename%', 'update_index'
GO

You do not need to rebuild any full-text catalog. In addition, if you turned off background index update or scheduled
updates before starting the side-by-side upgrade, turn on these options.

Manual Upgrade

A manual upgrade selectively rebuilds full-text catalogs separately from the upgrade to SP3.

Before you upgrade an instance of SQL Server on the production computer to SP3, execute the following system stored
procedures and record the result set.

EXEC sp_help_fulltext_catalogs
EXEC sp_help_fulltext_columns

You will use the information returned by these stored procedures when you recreate full-text catalogs following the upgrade.

To perform a manual upgrade

1. Drop all full-text indexed tables and full-text catalogs, in that order, using the sp_fulltext_table and sp_fulltext_catalog
system stored procedures, respectively.

2. Perform a full backup of SQL Server data.

3. Apply SP3. During the setup process, ignore the warning message that all full-text catalogs will be rebuilt. (You already

dropped these catalogs.)

4. Recreate all full-text catalogs using the sp_fulltext_catalog system stored procedure.

5. Add all previously indexed tables and columns to their original full-text catalogs, and start a full population on all full-text
catalogs.

6. For more information, see Knowledge Base article Q327217.

Installing SQL Server (SQL Server 2000)

Backward Compatibility for Multiserver Configurations
 New Information - SQL Server 2000 SP3.

Multiserver administration is the process of automating administration tasks across multiple instances of SQL Server. Use
multiserver administration if you manage two or more servers and you want to centralize maintenance tasks.

In SQL Server 2000 SP3, the SQL Server Agent service account does not need to be a Windows administrator, unless you need to
use the SQL Server Agent Proxy Account. The SQL Server Agent service account must be a member of the sysadmin fixed server
role.

With multiserver administration, you must have at least one master server and at least one target server. A master server
distributes jobs to and receives events from target servers. A master server stores the central copy of job definitions for jobs that
run on target servers. Target servers connect periodically to their master server to update their list of jobs to perform. If a new job
exists, the target server downloads the job and disconnects from the master server. After the target server completes the job, it
reconnects to the master server and reports the status of the job.

Before you apply SP3, you must complete several steps to upgrade your SQL Server 2000 master/target server configuration. The
changes that are introduced with SP3 are not compatible with SQL Server 7.0 target servers, or with any servers not running SQL
Server 2000 SP3. This is a change from the original SQL Server 2000 functionality.

To upgrade your master/target server configuration

1. Create a new master server (MSX) account on your master server. This is to prepare the target server or servers (TSX) for
the upgrade. To do this, run the following commands.

--Option A: Windows Authentication
EXEC sp_grantlogin 'DOMAIN\user'
--Option B: SQL Server Authentication – see detailed explanation below
EXEC sp_addlogin 'MSXAccount', 'MSXAccountPassword', 'msdb'
GO
USE msdb
GO
EXEC sp_adduser 'MSXAccount'
GO
EXEC sp_addrolemember 'TargetServersRole', 'MSXAccount'
GO

You have the following options when choosing an MSX account:

Windows Authentication. This is the most secure option, as passwords do not need to be stored, and SQL Server and
SQL Server Agent can be configured without local Windows administrator rights.

SQL Server Authentication. This requires the SQL Server Agent service accounts to have local Window administrator
rights. The reason for this is that SQL Server stores the user name and password as an LSA (local security authority)
secret, and access is restricted to local Windows administrators. You may create an account for all target servers, or
one account per target server.

Do not specify a SQL Server Agent probe account (<machine_name>_msx_probe_login). As part of the upgrade to SP3,
SQL Server removes the old probe accounts because the target servers no longer use them.

2. Upgrade your target servers to SP3 one at a time. (Before you apply the service pack, see Step 3 for more information about
timing your upgrade.)

3. To minimize downtime, run the extended stored procedure xp_sqlagent_msx_account on each target server shortly after
the SP3 update is completed. For more information, see xp_sqlagent_msx_account below.

4. Apply SP3 to your master server. The SP3 setup program removes the old _msx_probe accounts, as the target server(s) will
not use these accounts any more. If an account own SQL Agent jobs, the account will not be removed, and you need to
change the owner of the job(s) to another user and manually remove these accounts. If you want to continue to use the old
_msx_probe account(s) that own SQL Agent jobs, you may need to change the password of the _msx_probe account.

SP3 includes a new extended stored procedure that allows you to configure the account that the SQL Server Agent target server

uses to download instructions from an master server. This account is known as the MSX account or master server account.

xp_sqlagent_msx_account

The xp_sqlagent_msx_account extended stored procedure sets or retrieves the SQL Server Agent MSX account user name and
password to or from the LSA (local security authority) secrets on the target server. Execute permissions of this extended stored
procedure are restricted to the securityadmin fixed server role.

SQL Server Agent must be running to execute this extended stored procedure. In addition, if the account specified is a SQL Server
login, SQL Server Agent must have local Windows administrator rights. The reason for this is that SQL Server Agent stores the
user name and password as an LSA secret, and access is restricted to local Windows administrators.

Syntax

xp_sqlagent_msx_account

 {N'GET' |

 N'SET' | N'DEL', N'MSX_domain_name', N'MSX_username', N'MSX_password'

 }

Arguments

N'GET'

Retrieves the current SQL Server Agent MSX account. N'GET' is an nvarchar with no default. The password is not reported for
security reasons.

N'SET'

Sets the account to be used as the SQL Server Agent MSX account. Use the MSX_username, and MSX_password parameters to
specify the account to use as the SQL Server Agent MSX account. N'SET' is an nvarchar with no default.

N'DEL'

Deletes the SQL Server Agent MSX account.

MSX_domain_name

Reserved for future use.

MSX_username

The name of the Windows account to be used as the SQL Server Agent MSX account. Specify an empty string for this parameter
and MSX_password to select Windows security. In this case, the SQL Server Agent service account credentials are used to log on to
the MSX server. MSX_username is an nvarchar with no default.

MSX_password

The password for the SQL Server account specified in MSX_username. Specify an empty string for this parameter and the
MSX_username to select Windows security. In this case, the SQL Server Agent service account credentials are used to log in to the
MSX server. MSX_password is an nvarchar with no default.

Note Parameters for xp_sqlagent_msx_account must be specified in order. Named parameters cannot be used.

Return Code Values

0 (success) or 1 (failure)

When xp_sqlagent_msx_account fails and returns 1, SQL Server generates an error message with information about the error.

Result Sets

If a SQL Server Agent MSX account has been set, xp_sqlagent_msx_account returns a result set with the following information
when you specify N'GET'.

Column Data type Description
domain sysname N/A. Reserved for future

use.

username sysname Account used as the SQL
Server Agent MSX account.

If a SQL Server Agent MSX account has not been set, or if N'SET' is specified, no result set is returned.

Permissions

Execute permissions for xp_sqlagent_msx_account default to members of the securityadmin fixed server role.

Examples

1. Retrieve the currently assigned SQL Server Agent MSX account

This example retrieves the account currently assigned for use as the SQL Server Agent MSX account.

EXEC master.dbo.xp_sqlagent_msx_account N'GET'

2. Set the SQL Server Agent MSX Account to use Windows Authentication

This example sets the SQL Server Agent MSX account to use Windows Authentication.

EXEC master.dbo.xp_sqlagent_msx_account N'SET',
 N'', -- Reserved for future use
 N'', -- MSX_username
 N'' -- MSX_password

C. Set the SQL Server Agent M SX account to use SQL Server Authentication

This example sets the SQL Server Agent MSX account to Ralph and specifies a password.

EXEC master.dbo.xp_sqlagent_msx_account N'SET',
 N'', -- Reserved for future use
 N'Ralph', -- MSX_username
 N'RalphPwd' -- MSX_password

D. Delete the SQL Server Agent M SX account

This example deletes the SQL Server Agent MSX account. This means that SQL Server Agent defaults to Windows integrated
security authentication.

EXEC master.dbo.xp_sqlagent_msx_account N'DEL'

SQL Server now checks to ensure that the Agent job owner has permission to append or overwrite a file. This happens in three
ways:

If the job owner is a member of the sysadmin fixed server role, the job can be written to the server.

If the job owner is a Windows user, SQL Server tests to see if the user has permission to write to the server.

If the job owner is a SQL Server user, SQL Server tests the SQL Server Agent proxy account for permission to write to the
server. If the proxy account has not been set, no log will be written.

In all cases, jobs are written with SQL Server Agent credentials, but SQL Server now tests to ensure the user has permission to
write to the server. Errors will appear in the job history, but the job steps will not fail if the log file cannot be written.

Installing SQL Server (SQL Server 2000)

Backward Compatibility for Cross-Database Ownership
Chaining

 New Information - SQL Server 2000 SP3.

SQL Server 2000 SP3 provides new options for configuring cross-database ownership chaining. The following information will
help you determine whether to apply the default SP3 cross-database ownership chaining behavior during Setup, or override the
changes and retain pre-SP3 cross-database ownership chaining behavior. In addition, this topic provides information about
configuring support for cross-database ownership chaining after installation.

Ownership Chaining

All database objects have owners. When an object--such as a stored procedure, view, or user-defined function--references other
objects and the calling and the called objects are owned by the same user, an ownership chain is established. SQL Server uses the
ownership chain to determine how to check permissions.

When the same user owns the source object (the view, stored procedure, or user-defined function) and all target objects
(underlying tables, views, or other objects), the ownership chain is said to be unbroken. When the ownership chain is unbroken,
SQL Server checks permissions on the source object but not on the target objects.

Ownership chaining simplifies security management by allowing users to grant permissions on views, stored procedures, and
user-defined functions instead of on individual objects in the database. For example, a user who owns several tables can create a
view that includes data from the tables. The user can then grant permissions on the view instead of on the individual tables.

Cross-Database Ownership Chaining

Cross-database ownership chaining occurs when a source object depends on objects in other databases.

A cross-database ownership chain works in the same way as ownership chaining within a database, except that an unbroken
ownership chain is based on all the object owners being mapped to the same login account.

Therefore, in a cross-database ownership chain, if the source object in the source database and the target objects in the target
databases are owned by the same login account, SQL Server does not check permissions on the target objects.

For example, if two databases are owned by the same login account, the dbo users in these databases are mapped to the same
login account. If cross-database ownership chaining is enabled for these databases, source objects in the dbo schema can access
target objects in the dbo schema of both databases.

Risks Associated with Cross-Database Ownership Chaining

Ownership chaining within a database is a useful application design technique; however, Microsoft does not recommend cross-
database ownership chaining because of security risks. These risks are due to the actions that highly-privileged users can perform:

Database owners and members of the db_ddladmin or db_owners database roles can create objects owned by other
users. These objects can potentially target objects in other databases. This means that if you enable cross-database
ownership chaining, you must fully trust these users with data in all databases.

Users with the CREATE DATABASE permission can create new databases and attach existing databases. If cross-database
ownership chaining is enabled, these users can access objects in other databases from newly created or attached databases.

Even though Microsoft recommends turning off cross-database ownership chaining for maximum security, there are some
environments where you can fully trust your highly-privileged users; for applications in those environments, you can enable
cross-database ownership chaining at the database or instance level.

Setup Dialog Box Options

Use the following information to determine whether to select or clear the Enable cross-database ownership chaining for all
databases check box:

When the box is cleared, SQL Server 2000 SP3 Setup applies a change that, by default, turns off cross-database ownership
chaining for all user databases. After installation, you can turn on cross-database ownership chaining for individual user
databases using the db_option system stored procedure. This cross-database security enhancement enables you to
configure which databases can be accessed from within other databases.

If you select the check box, you are overriding the security enhancement and choosing to allow cross-database ownership
chaining for all databases. Selecting the check box therefore exposes your system to the security risks described above.

Regardless of which option you choose during Setup, you can later modify server and database support for cross-database
ownership chaining.

Configuring Cross-Database Ownership Chaining After Installation

If, after running Setup, you need to change the cross-database ownership chaining configuration, use the new options in the
sp_configure and sp_dboption stored procedures:

Configure cross-database ownership chaining support for the instance of SQL Server with the new Cross DB Ownership
Chaining option of sp_configure. When this option is set to 0, you can control cross-database ownership chaining at the
database level using sp_dboption. When this option is set to 1, you cannot restrict cross-database ownership chaining,
which is the pre-SP3 behavior.

If you change this option, include the RECONFIGURE option to reconfigure the instance without having to restart it. For
example, use the following command to allow cross-database ownership chaining in all databases:

EXEC sp_configure 'Cross DB Ownership Chaining', '1'; RECONFIGURE

Configure cross-database ownership chaining at the database level with the new db chaining option of sp_dboption.
When this option is set to false, the database cannot participate in cross-database ownership chaining as either the source
or target database. When this option is set to true, the database can participate in a cross-database ownership chain. By
default, this option is false for all user databases after you apply SP3.

The following command turns on cross-database ownership chaining for the Northwind database:

EXEC sp_dboption 'Northwind', 'db chaining', 'true'

You cannot turn off cross-database ownership chaining for the master, tempdb, and msdb databases. You cannot turn on
cross-database ownership chaining for the model database, which is used as a template for user databases.

The effects of sp_dboption are manifested only when the sp_configure Cross DB Ownership Chaining option is set to 0.

See Also

Using Ownership Chains

sp_configure

Setting Configuration Options

sp_dboption

Installing SQL Server (SQL Server 2000)

Error Reporting (SQL Server)
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ error reporting is turned off by default. Enable it during installation through SQL Server Setup, or after
installation through the SQL Server Enterprise Manager Server Properties dialog box. Enabling it during SQL Server Setup allows
error reporting for the SQL Server database engine and SQL Server Agent.

If you enable this feature, SQL Server will be configured to automatically send a report to Microsoft if a fatal error occurs in the
SQL Server database engine or SQL Server Agent. Microsoft uses error reports to improve SQL Server functionality, and treats all
information as confidential.

Information about the error will be sent over a secure (https) connection to Microsoft, where it will be stored with limited access.
Alternatively, this information can be sent to your own Corporate Error Reporting server. See this Microsoft Web site for more
information about setting up a Corporate Error Reporting server.

The error report contains the following information:

The condition of SQL Server when the problem occurred.

The operating system version and computer hardware information.

Your Digital Product ID, which could be used to identify your license.

Your computer's IP network address.

Information from memory or file(s) of the process that caused the error.

Microsoft does not intentionally collect your files, name, address, e-mail address, or any other form of personal information. The
error report may, however, contain customer-specific information from the memory or file(s) of the process that caused the error.
Although this information could potentially be used to determine your identity, Microsoft does not use this information for that
purpose.

For the Microsoft error reporting data collection policy, see this Microsoft Web site.

After you have enabled error reporting and a fatal error has occurred, you may see a response from Microsoft in the Windows
Event log that points to a Microsoft Knowledge Base article on a particular error. A response may look similar to this example:

Source = MSSQLServerOlapServicesDW

EventID = 1010

data = http://support.microsoft.com/support/misc/kblookup.asp?id=.

To disable error reporting for the SQL Server database engine and SQL Server Agent, go to SQL Server Properties (General Tab)
in Enterprise Manager and clear the Enable the error reporting feature checkbox.

http://go.microsoft.com/fwlink/?LinkId=9309
http://go.microsoft.com/fwlink/?LinkId=9310

Installing SQL Server (SQL Server 2000)

Error Reporting (Analysis Services)
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ error reporting is turned off by default. Enable it during installation through Analysis Services Setup, or
after installation through the Analysis Manager Server Properties dialog box. Enabling it during Analysis Services Setup allows
error reporting for Analysis Services.

If you enable this feature, SQL Server will be configured to automatically send a report to Microsoft if a fatal error occurs in
Analysis Services. Microsoft uses error reports to improve SQL Server functionality, and treats all information as confidential.

Information about the error will be sent over a secure (https) connection to Microsoft, where it will be stored with limited access.
Alternatively, this information can be sent to your own Corporate Error Reporting server. See this Microsoft Web site for more
information about setting up a Corporate Error Reporting server.

The error report contains the following information:

The condition of SQL Server when the problem occurred.

The operating system version and computer hardware information.

Your Digital Product ID, which could be used to identify your license.

Your computer's IP network address.

Information from memory or file(s) of the process that caused the error.

Microsoft does not intentionally collect your files, name, address, e-mail address, or any other form of personal information. The
error report may, however, contain customer-specific information from the memory or file(s) of the process that caused the error.
Although this information could potentially be used to determine your identity, Microsoft does not use this information for that
purpose.

For the Microsoft error reporting data collection policy, see this Microsoft Web site.

After you have enabled error reporting and a fatal error has occurred, you may see a response from Microsoft in the Windows
Event log that points to a Microsoft Knowledge Base article on a particular error. A response may look similar to this example:

Source = MSSQLServerOlapServicesDW

EventID = 1010

data = http://support.microsoft.com/support/misc/kblookup.asp?id=.

To disable error reporting for Analysis Services, go to Server Properties in Analysis Manager and clear the Enable the error
reporting feature checkbox.

http://go.microsoft.com/fwlink/?LinkId=9309
http://go.microsoft.com/fwlink/?LinkId=9310

Installing SQL Server (SQL Server 2000)

Setup Type: Typical, Minimum, or Custom
When you install the Microsoft® SQL Server™ 2000 Enterprise Edition, SQL Server 2000 Standard Edition, or SQL Server 2000
Personal Edition, SQL Server Setup offers three installation types in the Setup Type dialog box. In addition, you can modify the
installation location for both program and data files in this dialog box.

Options

Typical

Installs all of SQL Server using the default installation options. This installation is recommended for most users.

Minimum

Installs the minimum configuration necessary to run SQL Server. This installation is recommended for users who have computers
with minimum available disk space.

Custom

Installs SQL Server and allows you to change any or all of the default options. Use a custom installation to select components and
subcomponents, or to change settings for collations, services accounts, authentication, or network libraries.

Destination Folders

The default installation location is C:\Program Files\Microsoft SQL Server\, for both program and data files.

Program files

Click Browse to select another installation location for the SQL Server program files.

Data files

Click Browse to select another installation location for the SQL Server data files.

Caution It is recommended that program files not be installed on a cluster disk, so that future upgrades to a cluster are possible.
If you select a folder on a cluster disk as a destination for SQL Server program files, a message appears requesting another
installation path for program files.

When upgrading an installation of SQL Server 7.0 that has previously had program files installed on a cluster disk, a similar
message appears: "Setup will move the program files from the cluster disk. Provide a new location for the program files. The drive
letter you select must exist on all nodes of the cluster as a local drive so that you can later upgrade to a clustered installation."

For more information, see Upgrading to a SQL Server 2000 Failover Cluster.

Components for Each Installation Type

When you install SQL Server on Microsoft Windows NT® or Windows 2000, these options are offered for all installation types:

Windows Services accounts (logon accounts) for SQL Server and SQL Server Agent.

Whether to start SQL Server and SQL Server Agent automatically each time the computer is restarted.

Use of various network libraries, or protocols, including TCP/IP Sockets, Named Pipes, and Multiprotocol.

This table lists the types of installations and components that each installation provides.

Component Typical Minimum Custom
Database Server Yes Yes Optional
Upgrade Tools1 Yes No Optional
Replication Support Yes Yes Optional
Full-Text Search Yes Yes Optional
Client Management Tools All None Optional
Client Connectivity Yes Yes Not an option
Books Online Yes No Optional
Development Tools Debugger only None Choice of tools
Code Samples None None Choice of samples

Collation Settings Yes Yes Choice of settings

1 Upgrade Tools are installed by default only for the default instance of SQL Server 2000, not for any named instances.

See Also

Net-Libraries and Network Protocols

Installing SQL Server (SQL Server 2000)

Select Components
On the Select Components screen, you can choose components and subcomponents to install, or to reinstall if not set up
initially. Options for a typical installation are selected by default. Select the components to install or reinstall and clear all others.

Note You cannot remove components by clearing check boxes on this screen. The only way to remove installed components is to
remove SQL Server entirely.

Options

Components

Lists the main components of SQL Server

Sub-components

Lists the sub-components available for the selected component

SQL Server components and respective subcomponents include:

Server Components
SQL Server

Upgrade Tools

Replication Support

Full-Text Search

Debug Symbols

Performance Counters
Management Tools

Enterprise Manager

Profiler

Query Analyzer

DTC Client Support

Conflict Viewer
Client Connectivity

Books Online
Books Online on Disk

Development Tools
Headers and Libraries

MDAC SDKs

Backup/Restore API

Debugger Interface
Code Samples

Choice of many code samples

See Also

How to add components to an instance of SQL Server 2000 (Setup)

Installing SQL Server (SQL Server 2000)

Server Components
These components can be installed from the Server Components category in the Select Components dialog box, when running
Setup. Server Components are included when the option for Server and Client Tools is selected as an initial installation choice.

SQL Server

Installs the SQL Server relational database engine and other core tools. If any SQL Server program files are installed, the SQL
Server component must be installed.

Note When installing the SQL Server component, the Setup program also installs the bcp, isql, and osql utilities, ODBC, OLE DB,
and DB-Library.

Upgrade Tools

Installs the SQL Server Upgrade Wizard, used to upgrade SQL Server 6.5 databases to the current version.

Replication Support

Installs the scripts and binary files used for replication.

Full-Text Search

Installs the Microsoft full-text search engine (Microsoft Search service), which extends the ability to search on character columns
beyond the basic equality and LIKE operators.

Debug Symbols

Installs the debug symbols for installations.

Performance Counters

Installs performance counters for use with installations.

See Also

Installation Definition

Installing SQL Server (SQL Server 2000)

Management Tools
These components can be installed from the Management Tools category in the Select Components dialog box, when running
Setup. Management tools are included when the option for Client Tools Only is selected as an initial installation choice.

Enterprise Manager

Used to perform server and enterprise administrative tasks.

Profiler

Used to monitor, record, and support auditing of Microsoft SQL Server database activity.

Query Analyzer

Used to enter Transact-SQL statements and procedures interactively. Also provides graphical query analysis in the form of
graphical showplans.

DTC Client Support

Used to extend database transactions across multiple servers.

Microsoft Distributed Transaction Coordinator (MS DTC) coordinates transactions across a network of systems running Microsoft
Windows NT®, Microsoft Windows® 98, and Microsoft Windows 95.

Conflict Viewer

Used to view and, if necessary, change the way synchronization conflicts are resolved.

See Also

Installation Definition

How to install client tools only (Setup)

Installing SQL Server (SQL Server 2000)

Client Connectivity
The client connectivity component is an option in the Select Components dialog box in Setup. The client connectivity component
is used to communicate between clients and servers, and includes the Microsoft Data Access Components (MDAC) and network
libraries for DB-Library, ODBC, and OLE DB.

This component has no subcomponents. Client Connectivity is installed when the option for Connectivity Only is selected as an
initial installation choice.

Note To connect to a named instance of SQL Server 2000, MDAC 2.6 must be installed on the client computer.

See Also

Installation Definition

Distributing SQL Server Applications Overview

Installing SQL Server (SQL Server 2000)

Books Online
This component can be installed from the Books Online category in the Select Components dialog box in Setup. The Books
Online component includes both the full SQL Server Books Online for SQL Server 2000 and online Help, available by clicking the
Help button or pressing the F1 key in dialog boxes and interface elements.

Books Online on Disk

Installs the complete documentation set on your local drive in the default shared tools locations: \Program Files\Microsoft SQL
Server\80\Tools\Books.

Note You may want to view information in SQL Server Books Online for Microsoft® SQL Server™ 7.0. For more information, see
How to access SQL Server Books Online for SQL Server 7.0.

Installing SQL Server (SQL Server 2000)

Development Tools
These components can be installed from the Development Tools category in the Select Components dialog box in Setup. To
install development tools, choose a custom installation in the Setup Type screen. The Debugger Interface is an exception; it is
included when you choose to install a typical installation.

Headers and Libraries

Installs the include (*.h) files and library (*.lib) files needed by a C developer to create programs that use OLE DB, ODBC, DB-
Library, Open Data Services, SQL-DMO, Embedded SQL for C, and MS DTC. These files are installed in the \Program
Files\Microsoft SQL Server\80\Tools\DevTools\Include and the \...\DevTools\Lib directories by default (shared tools location).

MDAC SDKs

Installs MDAC and XML Software Development Kits.

Backup/Restore API

Installs the header files, sample programs, and documentation required by software vendors to develop custom applications to
back up and restore Microsoft SQL Server databases.

Debugger Interface

Installs an interface for stored procedure debugging.

Installing SQL Server (SQL Server 2000)

Code Samples
 Topic last updated -- January 2004

The samples component is available from the Code Samples category in the Select Components dialog box in Setup. This
component installs programming sample files used for reference when you write programs for Microsoft® SQL Server™ 2000.
These files are installed in folders in the \Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples directory by default
(shared tools location). You can install any or all of these samples.

Note Sample code for using a virtual device to backup or restore data is included in the Backup/Restore API, a sub-component of
the Development Tools component. For more information, see Development Tools.

Option Name
ADO Microsoft ActiveX® Data Objects
DBLIB DB-Library
Desktop Desktop Engine (MSDE 2000)
DTS Data Transformation Services
ESQLC Embedded SQL for C
Misc Miscellaneous Samples
MSDTC Microsoft Distributed Transaction Coordinator
ODBC Open Database Connectivity
ODS Open Data Services
OLE Automation OLE Automation
Replication Replication
Silver Sample Database Schemas
SQL-DMO SQL Distributed Management Objects
SQL-NS SQL Namespace
Utils Sample Utilities
XML XML Samples

Installing SQL Server (SQL Server 2000)

Network Libraries
 Topic last updated -- July 2003

On the Network Libraries screen, you can select network libraries to install for Microsoft® SQL Server™ 2000. Network libraries
are used to pass network packets between clients and a server running SQL Server. The network libraries, implemented as
dynamic-link libraries (DLLs), perform the network operations required to communicate using specific interprocess
communication (IPC) mechanisms.

A server can listen on, or monitor, multiple network libraries at one time. During installation, SQL Server Setup installs all of the
Net-Libraries onto the computer and allows you to configure some or all of the Net-Libraries. If a particular Net-Library is not
configured, the server cannot listen on that Net-Library. After installation, you can change these configurations using the Server
Network utility.

For a clustered installation, only Named Pipes and TCP/IP are available. When installing a clustered instance, the unsupported
network libraries are unavailable. When you install named instances, the Multiprotocol, AppleTalk, and Banyan VINES protocols
are unavailable.

When an instance of Microsoft SQL Server is configured to listen on a static IP port (such as a default instance that takes the
default of listening on port 1433), the SQL Server service cannot open the port if another application or component is using the
port when the SQL Server service initializes. The TCP/IP server Net-Library will not initialize, and the instance of SQL Server
cannot accept TCP/IP connections until the service is stopped and restarted. This problem should not occur if the instance of SQL
Server is configured to use a dynamic port address by specifying a port address of 0 using the Server Network Utility. If you
cannot use dynamic port addresses (for example, when SQL Server connections must pass through a firewall server configured to
pass through specific port addresses, or when some connections are made using the client components from SQL Server version
7.0 or earlier), then using a port address less than 1024 is recommended. Choose a port in this range that is not used by the
operating system or another application.

Options

Named Pipes

By default, SQL Server listens for Named Pipes Net-Library connections on the standard pipe. The server-side Named Pipes
connection is not supported on Microsoft Windows 98.

Named Pipes name

Paths for the default and named instances differ:

Default instance: \\.\pipe\sql\query

Named instance: \\.\pipe\MSSQL$instancename\sql\query

After SQL Server is installed, you can change the pipe name.

TCP/IP Sockets

This Net-Library allows SQL Server to communicate by using standard Windows Sockets as the IPC method across the TCP/IP
protocol. By default, all installations of Microsoft SQL Server 2000 on all operating systems use the TCP/IP Sockets Net-Library.

Note the following when using TCP/IP Sockets:

SQL Server uses UDP port 1434 to establish connections from SQL Server 2000 clients. This socket number is also reserved
for SQL Server by Internet Assigned Number Authority (IANA).

Do not use dynamic ports and do not set a proxy server address, because the port you are listening on can change at each
service startup.

Port Number

If you set SQL Server to listen on TCP/IP, type the TCP/IP port number in the Port number box only if you want SQL Server to
listen on a port address different from the default address. This is the port that SQL Server listens on when accepting connections
from TCP/IP Sockets clients. The default number for a default instance is 1433, the official IANA socket number for SQL Server.
The port for a named instance is dynamically assigned when the instance is first started, unless you set an alternate port during
setup.

Remote Winsock proxy address

If you set SQL Server to listen on a proxy server using Microsoft Proxy Server over TCP/IP Sockets, type the proxy server address
in the Remote WinSock proxy address box when you set up the TCP/IP Sockets Net-Library.

Multiprotocol

The Multiprotocol Net-Library uses the Windows NT remote procedure call (RPC) facility. In addition, the Multiprotocol Net-
Library:

Communicates over most IPC mechanisms supported by Windows NT. Only TCP/IP Sockets, NWLink IPX/SPX, and Named
Pipes are considered tested and supported.

Allows the use of Windows Authentication over all protocols that RPC supports.

Supports encryption for user password authentication as well as data.

Offers performance comparable to native IPC Net-Libraries for most applications.

Enable Multiprotocol encryption

Use Multiprotocol encryption only for compatibility with existing systems. The Secure Sockets Layer (SSL) encryption that can be
enabled using the Server Network Utility (after running Setup) is a more comprehensive encryption solution. Multiprotocol
encryption is not supported on Windows 98 servers.

Note The Multiprotocol Net-Library is not supported with named instances.

NWLink IPX/SPX

This Net-Library allows SQL Server to communicate using the NWLink IPX/SPX protocol.

Novell Bindery Service Name

If you set up SQL Server to listen on NWLink IPX/SPX, the Setup program prompts you for the Novell Bindery service name in
which to register SQL Server on the Novell network. The default service name is the computer name of the server computer. The
Net-Library allows Novell SPX clients to connect to SQL Server.

The server NWLink IPX/SPX Net-Library is not available on Windows 98 and Windows 95.

AppleTalk ADSP

The server AppleTalk (ADSP) Net-Library allows Apple Macintosh® clients to connect to SQL Server using native AppleTalk (as
opposed to TCP/IP Sockets).

Note The AppleTalk Net-Library has not been enhanced for SQL Server 2000 and runs at a SQL Server 7.0 level of functionality.
This Net-Library will not be supported in a future release of SQL Server 2000 and is not supported on named instances.

Apple Talk Service Object

If you set up SQL Server to listen on AppleTalk, Setup prompts you for the AppleTalk service object name. The AppleTalk service
object name is assigned by your system administrator. It is not necessary to enter an AppleTalk zone because the local zone is
used when registering the service.

The AppleTalk Net-Library is not supported on Windows 98 and Windows 95.

Banyan VINES

SQL Server supports Banyan VINES Sequenced Packet Protocol (SPP) as the IPC method across the Banyan VINES IP network
protocol. Banyan VINES support for clients and servers running Windows NT is available for SQL Server on the Intel® platform
only; it is not available on Windows 98 and Windows 95.

Note The Banyan VINES Net-Library has not been enhanced and runs at a SQL Server 7.0 level of functionality. This Net-Library
will not be supported in a future release of SQL Server 2000 and is not supported on named instances.

Street Talk Service name

If you set up SQL Server to listen on Banyan VINES, the Setup program prompts you for a StreetTalk service name. This has the
form servicename@group@org, where servicename is the StreetTalk computer-based service name used by SQL Server, group is
the group, and org is the organization. The computer-based service name used by SQL Server must first be created by using the
MSERVICE program included with your Banyan VINES software. Also, to start SQL Server, you must be logged in with
administrative permissions.

Enable protocol encryption for all libraries

Select this check box to enable protocol encryption for all network libraries. To use protocol encryption, you must have a
certificate on the server. For information about obtaining a certificate, see the Microsoft Windows documentation. If you do not
have a certificate, you can enable encryption after installing SQL Server using the Server Network Utility.

Default Net-Library Settings

Note TCP/IP networking must be enabled before running SQL setup.

All Net-Libraries are installed by the Setup program. You can disable all Net-Library protocols, but you cannot disable Shared
Memory. The table shows the default server and client Net-Library settings by operating system.

Operating system
Server Net-Library

settings
Client Net-Library

settings
Windows 98 TCP/IP Sockets, Shared

Memory
TCP/IP Sockets

Windows 95 Not applicable TCP/IP Sockets
Windows NT 4.0 (Server and
Workstation)

TCP/IP Sockets, Shared
Memory, Named Pipes

TCP/IP Sockets, Named
Pipes

Windows 2000 (all versions) TCP/IP Sockets, Shared
Memory, Named Pipes

TCP/IP Sockets, Named
Pipes

See Also

Configuring Client Net-Libraries

Net-Libraries and Network Protocols

Communication Components

Installing SQL Server (SQL Server 2000)

Services Accounts
Use the Services Accounts screen in Setup to assign a logon account to each of the two Microsoft® SQL Server™ services, SQL
Server and SQL Server Agent. Either the local system or the domain user account is used, and you can use the same account for
each service. The default setting is to use the same account for each service, and to automatically start each service. To use the
default setting, enter your domain password and click Next.

You can also customize settings for each service. You can enter one logon account for both services, or specify an account for
each. To later change options set on the Services Accounts screen, run the Services application in Windows Control Panel.

Important To create or maintain a Microsoft SQL Server™ 2000 failover cluster, you must be logged on to the computer with
administrator privileges, that is, be a member of the Administrators local group of the computer or domain. For clustering this
means that you must be an administrator of all nodes of the cluster.

When running SQL Server 2000 on Microsoft Windows NT 4.0, in addition to being logged on as an administrator, you must
configure both SQL Server and SQL Server Agent to run as administrator accounts.

Options

Use the same account for each service. Auto start SQL Server Service.

The default option: One account is used for both SQL Server and SQL Server Agent. These services start automatically when the
operating system starts.

Customize the settings for each service.

Allows you to use different settings for the two services.

Services

Select a service for which you want to customize settings.

SQL Server

Select this option to customize settings for the service, Microsoft SQL Server.

SQL Server Agent

Select this option to customize settings for the service, Microsoft SQL Server Agent.

Service Settings

Select service settings as required.

Use the Local System account

The local system account does not require a password, does not have network access rights in Windows NT 4.0, and may restrict
your SQL Server installation from interacting with other servers.

Note In Windows 2000, the local system account does allow network access.

Use a Domain User account

A domain user account uses Windows Authentication to set up and connect to SQL Server. By default, account information
appears for the domain user account currently logged on to the computer.

Username

Accept or change the domain username.

Password

Enter the domain password.

Domain

Accept or change the domain name.

Auto Start Service

Select this option to automatically start a service when your operating system starts. This option is available only when
customizing the settings for each service.

The SQL Server Agent service is dependent on the SQL Server service in that you can autostart the SQL Server Agent service only
if you autostart the SQL Server service as well.

Note When you click Back in the Services Accounts dialog box, the window you return to reverts to the default options.
Options specified earlier are not retained.

See Also

Setting Up Windows Services Accounts

Changing Passwords and User Accounts

Installing SQL Server (SQL Server 2000)

Authentication Mode
 New Information - SQL Server 2000 SP3.

Use this screen to choose the security (authentication) mode you want to use for this installation of Microsoft® SQL Server™
2000. If you select Mixed Mode, you are prompted to enter and confirm the system administrator password. After successful
connection to SQL Server, the security mechanism is the same for both modes.

Options

Windows Authentication Mode

When a user connects through a Microsoft Windows® user account, SQL Server validates the account name and password using
information in the Windows operating system.

Security Note When possible, use Windows Authentication.

Mixed Mode (Windows Authentication and SQL Server Authentication)

Allows users to connect using Windows Authentication or SQL Server Authentication. Users who connect through a Microsoft
Windows user account can make use of trusted connections (connections validated by Windows) in either Windows
Authentication Mode or Mixed Mode. SQL Server Authentication is provided for backward compatibility.

Add password for the sa login

Enter and confirm the system administrator password.

Blank Password (not recommended)

If a user attempts to connect to an instance of SQL Server providing a blank login name, SQL Server uses Windows
Authentication. Additionally, if a user attempts to connect to an instance of SQL Server configured for Windows Authentication
Mode using a specific login, the login is ignored and Windows Authentication is used.

See Also

Adding a SQL Server Login

Assigning an sa Password

Authentication Modes

Creating Security Accounts

Installing SQL Server (SQL Server 2000)

Choose Licensing Mode
Use this dialog box to set the licensing mode enabling your clients to access this instance of Microsoft® SQL Server™. SQL Server
2000 supports two client access licensing modes, one for each device and another for each processor.

A device in this context can be a workstation, terminal, or any other device running a SQL Server application connected to
an instance of SQL Server.

A processor refers to a central processing unit (CPU) installed on a computer running an instance of SQL Server 2000. One
computer may have multiple processors installed, requiring multiple processor licenses.

Once a licensing mode is set, you cannot change modes. You can add device or processor licenses after installing SQL Server,
using the SQL Server 2000 Licensing Setup utility in Control Panel. (Do not confuse this licensing utility with the Windows
Licensing utility, also found in Control Panel.)

For more information about licensing modes, see the Microsoft license agreement for SQL Server 2000.

Options

Licensing Mode

If accessing this dialog box from Control Panel, the mode chosen during setup is selected by default, along with the number of
devices or processors you have previously selected.

Per Seat for

The Per Seat licensing mode requires a Client Access License for each device that will access SQL Server 2000 Server. Per Seat is
often more economical for networks in which clients connect to more than one server.

In the edit box, select the number of devices to license.

Processor License for

With Processor licensing, a license is needed for each processor installed on the computer running SQL Server. The Processor
License allows any number of devices to access the server, whether through an Intranet or over the Internet.

Using Processor licensing, SQL Server 2000 can take advantage of each installed processor, and support an unlimited number of
client devices. A customer that provides access to SQL Server databases over the Internet, or that has a large number of users, will
generally choose the Processor License.

In the edit box, select the number of processors to license.

Continue

Click the Continue button to complete the installation process, or after modifying the number of devices or processors you want
to license.

Installing SQL Server (SQL Server 2000)

Installing a Remote Configuration
Microsoft® SQL Server™ 2000 can be installed on a remote computer, that is, a computer other than the one on which Setup is
running. Before performing a remote installation:

Ensure that the local and remote computers are running Microsoft Windows NT® or Windows® 2000.

Ensure that the local and remote computers have an Intel®-compatible processor.

Ensure that you are logged on to the local computer with a user account that has administrative privileges on the remote
computer.

A remote setup is much like a normal installation, with two additional dialog boxes:

The Remote Setup Information dialog box, which is also used when Setup is run on a computer that is part of a cluster.
For more information, see Remote Setup Information.

The Select Computer dialog box, which allows you to select a remote computer from the list of computers within the
connected domains. The list may include computers not available for this installation, because permission must be granted
before installing on a remote computer.

A computer network name may be entered instead of choosing from the list.

See Also

Computer Name

Installing SQL Server (SQL Server 2000)

Remote Setup Information
Remote setup information is required to define security in two different setup situations:

When you choose to install Microsoft® SQL Server™ 2000 on a remote computer.

When Setup is run on a computer that is part of a cluster, even if you are not creating or maintaining a failover cluster
installation of SQL Server.

For a remote installation, SQL Server Setup collects the information you enter in Setup dialog boxes, recording the entries into the
Setup.iss file. At the same time, the remote setup process starts a remote service, copies files to the \admin$ share directory, and
runs an unattended installation on the remote computer using the options specified in Setup.iss.

For clustered computers, the Remote Setup Information box is displayed because any installation on a failover cluster system
needs the administrator account to install Microsoft Distributed Transaction Coordinator on both nodes, or to verify the presence
of MS DTC. Administrator information must be entered that is valid for all selected nodes in the failover cluster system.

Options

Username, Password, and Domain

Specify the user account under which SQL Server Setup starts a service on the remote computer. This user account must be an
administrator on the remote computer and have read access to the Setup source files directory.

Do not confuse the user account entered on this screen with:

The user account logged on to the local computer.

The user account assigned in SQL Server Setup to the SQL Server and SQL Server Agent services.

Each of these user accounts is specified separately. However, you can use the same user information in each case. That is, you can
use the same name, password, and Windows domain for each account.

Target computer

The name of the remote computer entered in the Computer Name dialog box is shown in static text.

Target path

The name of the remote computer and, in Universal Naming Convention format, the directory on the remote computer where
SQL Server is to be installed. For example:

\\target_computer\C$\Program Files\Microsoft SQL Server

Setup Source Files

Location of the setup program files used for the remote installation.

To perform a remote installation

SQL Setup

SQL Setup

See Also

Performing an Unattended Installation

Installing SQL Server (SQL Server 2000)

Advanced Installation Options
When you select the Advanced option in the Installation Options Setup screen, the Advanced Options dialog box provides
three choices.

Options

Record Unattended .ISS file

Create a setup initialization file for unattended installations.

Registry Rebuild

Rebuild registry for a corrupted installation.

Maintain a virtual server for failover clustering

Make changes to existing clusters, such as revising the name, or adding and removing cluster nodes.

See Also

Performing an Unattended Installation

Rebuilding the Registry

Installing a Virtual Server Configuration

SQL Server Language Support

Installing SQL Server (SQL Server 2000)

Installing a Virtual Server Configuration
The topics in this section provide information about the Setup screens used in setting up and maintaining failover clustering.

Installing SQL Server (SQL Server 2000)

Failover Clustering: Defining the Virtual Server
Use the Failover Clustering screen to define the virtual server for a new cluster, or to maintain the virtual server definition for an
existing cluster. You can add and remove IP addresses; multiple IP addresses are allowed for each virtual server.

Options

Virtual Server Name

Displays the network name of the virtual server. This is the name users will see when they connect to the virtual server.

When upgrading to a cluster, this name is entered in the Virtual Server Name dialog box.

IP address

Enter the IP address or addresses used to connect to the virtual server.

SubNet

Displays the Subnet, which is supplied by MSCS.

Network

Displays the Network name you assigned each subnet during setup of MSCS.

Add

Adds the specified IP address and SubNet to the named virtual server.

Remove

Removes the specified IP address and SubNet from the named virtual server.

See Also

Before Installing Failover Clustering

Creating a Failover Cluster

Upgrading to a SQL Server 2000 Failover Cluster

Installing SQL Server (SQL Server 2000)

Cluster Management Screen
Use the Cluster Management screen to review the cluster definition provided by Microsoft® SQL Server™ 2000, and make
changes if necessary. After you have specified nodes for the virtual server, Setup installs or uninstalls the SQL Server binary files
on each node.

Caution If you modify the node list of a virtual server using the quorum resource, your cluster may not fail over properly. For
more information, see Modify Node List Warning.

Options

Available Nodes

A list of computers that can be added to the current virtual server definition. If a computer you want is not available at this time,
you can run Setup later to add it to the virtual server definition.

Configured Nodes

List of computers currently configured in the current virtual server definition. The computer at the top of the list is the preferred
node.

Unavailable Nodes

Computers that are currently offline or not available to be added to a cluster definition.

Add

Adds the selected available node to the list of configured nodes.

Remove

Removes the selected configured node from the list of configured nodes.

See Also

Failover Clustering

Maintaining a Failover Cluster

Cluster Disk Selection Screen

Upgrading to a SQL Server 2000 Failover Cluster

Installing SQL Server (SQL Server 2000)

Cluster Disk Selection Screen
Use the Cluster Disk Selection screen to select a cluster group during the installation of a new virtual server or during an
upgrade to a cluster. A cluster group is composed of one or more shared cluster disks within a group, and can contain at most
one Microsoft® SQL Server™ virtual server. The Cluster Disk Selection screen lists only those groups that already have the
shared cluster disk added as a resource. For more information about cluster disks, see Creating a Failover Cluster.

Caution Do not select the quorum disk (the last group in the list) because the quorum disk must be treated as a special resource.
Clustering may fail if selected as a cluster group. A warning message appears if you select the quorum disk. For more information,
see Quorum Disk Selection Warning.

When using a small cluster, the quorum disk may be the only choice available. Use it only for testing purposes or to explore
failover clustering.

Important Never use the quorum group for production purposes.

See Also

Failover Clustering

Maintaining a Failover Cluster

Modify Node List Warning

Installing SQL Server (SQL Server 2000)

Quorum Disk Selection Warning
The following warning message appears if you select the quorum disk (the last group in the list) on the Cluster Disk Selection
screen. This warning applies to both Microsoft® Windows NT® 4.0 and Microsoft Windows® 2000:
It is strongly recommended that you not use the quorum group with SQL Server.

The quorum disk is a special resource in the Windows operating system. If you select the quorum disk, you may later want to
restrict ownership of Microsoft® SQL Server™ to a subset of the cluster nodes. However, the quorum group owner list must
include all of the nodes in the cluster.

For example, you may have a two-node cluster (Node1 and Node2) with SQL Server set to use the quorum disk group. If you then
modify SQL Server to have only Node1 in the virtual server definition, the quorum disk group is prevented from failing over to
Node2. In the event of a failure of Node1, the result is that you not only lose the virtual SQL Server, but the entire MSCS cluster.

This is true for Windows NT 4.0 only. In Windows 2000 the node list is ignored and the quorum disk group can fail over to any
node in the cluster configuration. However, another issue may arise. In the previous example, there are no SQL Server program
files available on Node2, but the cluster group can fail over to Node2. In this situation, SQL Server is unable to run on Node2 but
the cluster group containing the quorum disk may fail over anyway, making your SQL Server unavailable.

For more information about the quorum disk, see the Windows NT documentation.

See Also

Cluster Disk Selection Screen

Modify Node List Warning

Creating a Failover Cluster

Failover Clustering Dependencies

Installing SQL Server (SQL Server 2000)

Modify Node List Warning
In the Cluster Management screen, use caution if you modify the node list of a Microsoft® SQL Server™ 2000 virtual server
using the quorum resource. If such a node list is modified, the following warning appears when Next is clicked:
Modifying the node list of the quorum resource may prevent your cluster from failing over properly. Are you sure
you want to do this?

The quorum resource itself is unable to fail over to any servers that you did not select as part of your virtual server definition. This
may jeopardize the availability of your failover cluster. For more information, see the Microsoft Windows NT® documentation.

Note This problem does not occur when you run SQL Server 2000 on Microsoft Windows® 2000.

See Also

Quorum Disk Selection Warning

Creating a Failover Cluster

Failover Clustering Dependencies

Installing SQL Server (SQL Server 2000)

Performing an Unattended Installation
You can perform an unattended installation of Microsoft® SQL Server™ 2000, in which setup screen entries are made
automatically using stored information. An unattended installation can be convenient if you want to perform several installations
of SQL Server with identical configurations on different computers. An unattended installation requires a setup initialization file,
which can be created in several different ways.

By default, each time you install SQL Server using the Setup screens, the options you select are recorded into the setup
initialization file, Setup.iss. Setup.iss is placed in the system root directory (%windir%), and is available to provide installation
settings at a later time.

Note You cannot perform an unattended installation to set up a failover cluster of Microsoft SQL Server 2000.

Creating a Setup File Using the Record Unattended Option

In Setup, when you select the Record Unattended .ISS file option in the Advanced Options screen, each subsequent choice
you make in the setup screens is recorded in the Setup.iss file stored in the system root directory. SQL Server files are not
installed in this process. The Setup.iss file can then be run as is, or revised in a text editor if necessary.

To record an unattended installation file

SQL Setup

SQL Setup

Sample Setup Files on the SQL Server Compact Disc

Several sample setup initialization files are included on the Microsoft SQL Server 2000 compact disc, along with batch files to run
Setup with the appropriate initialization file.

Sample initialization files are included for client, typical, and custom installations. (A custom setup file includes all features.) The
table shows the files used for an unattended installation. The files are located in the root directories on the compact discs of the
SQL Server 2000 Standard, Personal, and Enterprise editions.

Type of unattended installation
Sample batch

file
Sample setup

initialization file
Typical installation of SQL Server. Sqlins.bat Sqlins.iss
Client tool only: Includes management tools,
client connectivity, and other tools (no server
is included).

Sqlcli.bat Sqlcli.iss

Custom installation of SQL Server:
All components are included.

Sqlcst.bat Sqlcst.iss

Note Batch files are also included on the compact disc for use with Smssql.pdf, a package definition format file for creating a SQL
Server package in SMS. For more information, see Installing SQL Server Using SMS.

Creating Initialization Files Manually

For installation options other than those included in the sample setup files, you must create a customized setup file using a text
editor. For example:

The sample setup files assign the SQL Server services to the local system account. To assign domain user accounts during
an unattended installation, you must modify the setup file.

Typically, only the default instance of SQL Server 2000 is installed using an unattended installation, but a setup file can be
created to install named instances.

To manually create a customized setup initialization file for these and other purposes, see Creating a Setup File Manually.

Running an Unattended Installation

You can run an unattended installation using sample batch files and setup initialization files, or you can run SQL Server Setup
directly from the command prompt, using setup files created by any method, and customized or not.

To run an unattended installation

Command Prompt

Command Prompt

See Also

Setup Type: Typical, Minimum, or Custom

How to record an unattended installation file (Setup)

Creating a Setup File Manually

Installing SQL Server (SQL Server 2000)

Creating a Setup File Manually
You create a customized setup initialization file interactively when you select the Record Unattended option in Microsoft® SQL
Server™ 2000 Setup. You can also edit files manually, to further refine and customize setup initialization files.

Creating or Modifying a Setup File Using a Text Editor

You can use a text editor to modify the Setup.iss file generated using the Record Unattended .ISS file option. You can also
modify one of the sample setup files (*.iss) included on the SQL Server 2000 compact disc or you can create your own setup file.

To modify one of the sample setup initialization files found on the SQL Server compact disc, open the file in a text editor and
modify as required. Keep the file compatible with the Microsoft Windows® initialization file format and save it with the .iss file
name extension.

Format of a Sample Setup Initialization File

A setup initialization file is a text file that uses the standard Windows .ini file format. Sections of the sample setup initialization file
for a typical installation of Microsoft SQL Server 2000 are described in the tables that follow. This sample file (Sqlins.iss) is found
in the root directory of the SQL Server compact disc.

Note In creating a setup file for a named instance of SQL Server 2000, you must indicate the instance name you want to install
and the path required to navigate through the setup screens. The Instance Name dialog box [DlgInstanceName] section must be
modified, as well as other places in the setup file where the instance name appears.

[InstallShield Silent]

This section is required for InstallShield. Do not change the values.

Entry Value Description
Version v5.00.000 Version of the InstallShield Silent

response file.
File Response File Indicates this is the Response

File.

[File Transfer]

Entry Value Description
OverwriteReadOnly NoToAll Do not overwrite read-only

files.

[DlgOrder]

Lists each dialog box in the order it appears in an attended setup. The listing in this section must correspond to the other sections
in the setup initialization file.

Entry Value Description
Dlg0 SdWelcome-0 Initial dialog box
Count 14 Number of dialog boxes listed

in this section
Dlg1 DlgMachine-0 Next dialog box
Dlg2 DlgInstallMode-0 Next dialog box
Dlg3 SdRegisterUser-0 Next dialog box
Dlg4 SdLicense-0 Next dialog box
Dlg5 DlgCDKey-0 Next dialog box
Dlg 6 DlgClientServer-0 Next dialog box
Dlg7 DlgInstanceName-0 Next dialog box
Dlg8 SetupTypeSQL-0 Next dialog box
Dlg9 DlgServices-0 Next dialog box

Dlg10 DLGSqlSecurity-0 Next dialog box
Dlg11 DlgCollation-0 Next dialog box
Dlg12 DlgServerNetwork-0 Next dialog box
Dlg13 SdStartCopy-0 Next dialog box
Dlg14 SdFinish-0 Last dialog box

[SdWelcome-0]

Corresponds to the Welcome dialog box.

Entry Value Description
Result 1 Next

[DlgM achine-0]

Corresponds to the Computer Name dialog box.

Entry Value Description
Type 1 Local computer
Result 1 Next

[DlgInstallM ode-0]

Corresponds to the Installation Selection dialog box.

Entry Value Description
Type 1 Create a new instance
Result 1 Next

[SdRegisterUser-0]

Corresponds to the User Information dialog box.

Entry Value Description
szName <user name> Name of user; company name

is not required.
Result 1 Next.

[SdLicense-0]

Corresponds to the Software License Agreement dialog box.

Entry Value Description
Result 1 Yes

[CDKEYDialog-0]

Corresponds to the CD-Key dialog box.

Entry Value Description
svCDKey <CD key value> Specified for each installation
Result 1 Next

[DlgClientServer-0]

Corresponds to the Installation Definition dialog box.

Entry Value Description
Type 2 Server and client tools
Result 1 Next

[DlgInstanceN ame-0]

Corresponds to the Instance Name dialog box.

Entry Value Description
InstanceName MSSQLSERVER Designation of the default

instance (always the same).
InstanceName <instance name> Designation of a named

instance.
Result 1 Next.

[SetupTypeSQL-0]

Corresponds to the Setup type dialog box.

Entry Value Description
szDir %PROGRAMFILES%\Microsoft

SQL Server
Directory where SQL Server
program files are installed.

Result 301 Typical (301)

(302 = Minimum and 303 =
Custom).

szDataDir %PROGRAMFILES%\Microsoft
SQL Server

Directory where SQL Server
data files are installed (same as
program files).

[DlgServices-0]

Corresponds to the Services Accounts dialog box.

Entry Value Description
Local-Domain 3855

<other numeric value>

Use the same account for each
service.

To customize the settings for
each service, see Setup
Initialization File Details.

AutoStart 15 Autostart Service is enabled.
Result 1 Next.

[DlgSQLSecurity-0]

Corresponds to the Authentication dialog box. Choices shown here include options not in the sample Sqlins.iss file.

Entry Value Description

LoginMode -1 System default security is used.

The Microsoft Windows NT®
default is Windows
Authentication Mode.

The Microsoft Windows 98
default is Mixed Mode, with a
blank sa password. Although
the default sa password is
blank, to conform to best
security practices, it should be
changed to a strong password
at the first opportunity.

LoginMode 1 Windows Authentication Mode.
LoginMode 2 Mixed Mode.
szPwd <choice of password> Used only with Mixed Mode

security.
Result 1 Next.

[DlgCollation-0]

Corresponds to the Collation Settings dialog box.

Entry Value Description
collation_name ' ' When blank, system default

collation is used.
collation_name <collation designator> Selected by user. For more

information, see Collation
Settings in Setup.

[DlgServerNetwork-0]

Corresponds to the Network Libraries dialog box.

Entry Value Description
NetworkLibs 255

245

15

Named pipes and TCP/IP

Value 240 (0xF0) = TCP/IP only

Value 15 = Named pipes only

To customize network library
settings, see Setup Initialization
File Details

TCPPort 1433 Port address, for TCP/IP
TCPPrxy Default Default proxy, or what is

entered
NMPPipeName \\.\pipe\sql\query Pipe name
Result 1 Next

[SdStartCopy-0]

Corresponds to the Start Copying Files dialog box.

Entry Value Description
Result 1 Next

[SdFinish-0]

Corresponds to the Setup Complete dialog box.

Entry Value Description
Result 1 Next
bOpt1 0 Placeholder for stock dialog

box
bOpt2 0 Placeholder for stock dialog

box

See Also

Performing an Unattended Installation

Setup Initialization File Details

Installing SQL Server (SQL Server 2000)

Setup Initialization File Details
When creating a customized setup initialization file, the Service Accounts and Network Libraries dialog boxes have additional
options used for an unattended installation.

Services Accounts Dialog Box

To customize settings for each service, you can calculate values for the Local-Domain and AutoStart entries.

Local-Domain

If you want the SQL Server and SQL Server Agent services to use different logon accounts, you can calculate the value to enter for
Local-Domain. The Local-Domain value is a bitwise logical OR combination of the values shown in the following table. For more
information, see | (Bitwise OR).

Service Account to use Hexadecimal value
SQL Server Local System account x0000000F
SQL Server Agent Local System account 0x00000F00
SQL Server Domain User account 0x000000F0
SQL Server Agent Domain User account 0x0000F000

Additional entries must be added to your setup initialization file if the Domain User account is used for either service.

When SQL Server service is using a domain account, Setup looks for values for:

SQLDomain = <domain name>

SQLDomainAcct = <domain user account>

SQLDomainPwd = <domain password: an encrypted password available only using setup screens>

When SQL Server Agent service is using a domain account, Setup looks for values for:

AgtDomain = <domain name>

AgtDomainAcct = <domain user account>

AgtDomainPwd = <domain password: an encrypted password available only using setup screens>

AutoStart

The value for the AutoStart option is a bitwise logical OR combination using the following hexadecimal values:

Autostart SQL Server = 0x0000000F

Autostart SQL Server Agent = 0x000000F0

A value of zero (0) for either service indicates no AutoStart; manual startup is required.

Network Libraries Dialog Box

To customize network library settings, you can calculate a value for the NetworkLibs entry in the Network Libraries dialog box.
The value for NetworkLibs is a bitwise logical OR combination of the values shown in the following table. When a network library
is set, additional information must be entered in the setup initialization file, as shown in the third column.

Network Library to use
when connecting to the

server

Hexadecimal value
to use in Bitwise OR

operation
Additional information

that Setup looks for
Named Pipes 0xF NMPPipeName = <named

pipe name>

TCP/IP Sockets 0xF0 TCPPort = <port number>

TCPPrxy = <Remote Winsock
proxy address>

NW Link 0xF000 NWLinkObj = <Novell
Bindary service name>

Apple Talk 0xF0000 ApplObj = <Apple Talk
service object>

Banyan VINES 0xF00000 BanyanObj = <StreetTalk
service name>

See Also

Services Accounts

Network Libraries

Performing an Unattended Installation

Installing SQL Server (SQL Server 2000)

Installing SQL Server Using SMS
You can use Microsoft® Systems Management Server (SMS) version 1.2 or later to install Microsoft SQL Server™ 2000
automatically on multiple server computers running Microsoft Windows NT® or Microsoft Windows® 2000 in your enterprise.

The SQL Server compact disc contains a Package Definition Format (PDF) file (Smssql.pdf) that automates creating a SQL Server
package in SMS. The SQL Server package can then be distributed and installed on SMS computers.

Smssql.pdf includes instructions for running the batch file Smssqins.bat with Sqlins.iss (the setup initialization file) for a typical
installation. Both of these files are included on the SQL Server compact disc.

To create a custom command file, edit a copy of Smssql.pdf.

See Also

Performing an Unattended Installation

Creating a Setup File Manually

Installing SQL Server (SQL Server 2000)

Rebuilding the Registry
The Registry Rebuild option on the Advanced Options Setup screen allows you to rebuild the registry for a corrupted
Microsoft® SQL Server™ installation. This process fixes only the registry; it does not fix data errors or the master database.

Important To rebuild the registry, you must enter setup information using the same choices that you entered during the initial
installation. If you do not know or are not sure of this information, do not use this registry rebuild process. To restore the registry,
you must uninstall and reinstall SQL Server.

To rebuild the registry

SQL Setup

SQL Setup

See Also

How to rebuild the master database (Rebuild Master utility)

Installing SQL Server (SQL Server 2000)

Working with Named and Multiple Instances of SQL Server
2000
With Microsoft® SQL Server™ 2000, you have the option of installing multiple copies, or instances of SQL Server on one
computer. When setting up a new installation of SQL Server 2000 or maintaining an existing installation, you can specify it as:

A default instance of SQL Server.

This instance is identified by the network name of the computer on which it is running. Applications using client software from
earlier versions of SQL Server can connect to a default instance. SQL Server version 6.5 or SQL Server version 7.0 servers can
operate as default instances. However, a computer can have only one version functioning as the default instance at a time.

A named instance of SQL Server.

This instance is identified by the network name of the computer plus an instance name, in the format <computername>\
<instancename>. Most applications must use SQL Server 2000 client components to connect to a named instance.
However, the SQL Server version 7.0 Client Network Utility can be used to configure a server alias name that the SQL Server
version 7.0 client components can use to connect to a named instance of SQL Server 2000. For more information about this,
see SQL Server 2000 and SQL Server version 7.0 or Communicating with Multiple Instances. A computer can run any
number of named instances of SQL Server concurrently. A named instance can run at the same time as an existing
installation of SQL Server version 6.5 or SQL Server version 7.0. The instance name cannot exceed 16 characters.

A new instance name must begin with a letter, an ampersand (&), or an underscore (_), and can contain numbers, letters, or
other characters. SQL Server sysnames and reserved names should not be used as instance names. For example, the term
"default" should not be used as an instance name because it is a reserved name used by Setup.

Single and multiple instances of SQL Server 2000 (default or named) are available using the SQL Server 2000 Personal Edition,
the SQL Server 2000 Standard Edition, or the SQL Server 2000 Enterprise Edition.

Default Instances

You cannot install a default instance of SQL Server 2000 on a computer that is also running SQL Server 7.0. You must either
upgrade the SQL Server 7.0 installation to a default instance of SQL Server 2000, or keep the default instance of SQL Server 7.0
and install a named instance of SQL Server 2000.

You can install a default instance of SQL Server 2000 on a computer running SQL Server 6.5, but the SQL Server 6.5 installation
and the default instance of SQL Server 2000 cannot be running at the same time. You must switch between the two using the SQL
Server 2000 vswitch command prompt utility.

Multiple Instances

Multiple instances occur when you have more than one instance of SQL Server 2000 installed on one computer. Each instance
operates independently from any other instance on the same computer, and applications can connect to any of the instances. The
number of instances that can run on a single computer depends on resources available. The maximum number of instances
supported in SQL Server 2000 is 16.

When you install SQL Server 2000 on a computer with no existing installations of SQL Server, Setup specifies the installation of a
default instance. However, you can choose to install SQL Server 2000 as a named instance instead by clearing the Default option
in the Instance Name dialog box.

A named instance of SQL Server 2000 can be installed at any time: before installing the default instance of SQL Server 2000, after
installing the default instance of SQL Server 2000, or instead of installing the default instance of SQL Server 2000.

Each named instance is made up of a distinct set of services and can have completely different settings for collations and other
options. The directory structure, registry structure, and service names all reflect the specific instance name you specify.

See Also

Multiple Instances of SQL Server

Naming Conventions for Instances of SQL Server 2000

Network Protocols for Named Instances

File Locations for Multiple Instances of SQL Server

Working with Instances and Versions of SQL Server

Installing SQL Server (SQL Server 2000)

Naming Conventions for Instances of SQL Server 2000
Because Microsoft® SQL Server™ 2000 can be set up to include one or more named instances, with or instead of a default
instance, new naming conventions are used to distinguish between instances.

In earlier versions, a SQL Server installation is identified by computer name. In SQL Server 2000, only the default instance is
identified solely by computer name. A named instance is identified by a combination of computer name and instance name. This
instance name is also reflected in the names of the associated SQL Server services.

Note There can be only one default instance of SQL Server for each computer. It can be an intact SQL Server version 6.5 or SQL
Server version 7.0 installation, or it can be an installation of SQL Server 2000 set up as the default instance. In either case, the
default instance uses the same service names, registry structure, network listening points, and other defaults used in SQL Server
7.0.

Service Names for Default and Named Instances

When you install a default instance of SQL Server, the service names remain MSSQLServer and SQLServerAgent (the same as in
SQL Server 7.0).

When you install a named instance of SQL Server, the service names are changed to:

MSSQL$InstanceName for the MSSQLServer service.

SQLAgent$InstanceName for the SQLServerAgent service.

The Microsoft Distributed Transaction Coordinator and Microsoft Search services are installed only once, and can be used
simultaneously by every installed instance of SQL Server.

See Also

Multiple Instances of SQL Server

Installing SQL Server (SQL Server 2000)

Network Protocols for Named Instances
When you install a default instance of Microsoft® SQL Server™ 2000, the standard network addresses are enabled. For example,
named pipes uses \\.\pipe\sql\query, and TCP/IP sockets connect to port 1433.

When you select a named instance, only the Named Pipes, TCP/IP, and NWLink IPX/SPX protocols are supported. Named Pipes
defaults to a network address of \\Computername\Pipe\MSSQL$instancename\Sql\Query. The port addresses used by TCP/IP
and NWLink IPX/SPX are chosen dynamically (by default) the first time the instance is started.

See Also

Communicating with Multiple Instances

Multiple Instances of SQL Server

Network Libraries

Installing SQL Server (SQL Server 2000)

File Locations for Multiple Instances of SQL Server
Each named instance of Microsoft® SQL Server™ 2000 has a specific location for its program files and another for its data files
that is different from that of the default instance of SQL Server.

Note A named instance is not necessarily the same as a multiple instance. You can have a single named instance or you can have
multiple named instances. For more information, see Multiple Instances of SQL Server.

For each named instance of SQL Server that you install, the default directories are:

\Program Files\Microsoft SQL Server\MSSQL$InstanceName\Binn for executable files.

\Program Files\Microsoft SQL Server\MSSQL$InstanceName\Data for data files.

Shared tools for all instances, both default and named instances, are located in the \Program Files\Microsoft SQL Server\80\Tools
directory. You can specify file paths other than the default locations for program and data file for multiple instances.

The following illustration shows the simplest case of multiple instances of Microsoft SQL Server 2000: the default instance and
one named instance, Instance1. A named instance has its own full set of data files and executable files. Common files used by
both the default instance and any named instances are installed in the folder \Program Files\Microsoft SQL Server\80.

Note If Microsoft SQL Server version 7.0 is used as the default installation alongside a named instance of SQL Server 2000,
program and data files are located at C:\Mssql7, the default location for SQL Server 7.0 files.

Finding Install Locations

If you are uncertain about instance paths, query the registry to get the installation path of a particular instance. Run the following
at the command prompt, inserting the appropriate instance name:

C:\> REG QUERY HKLM\Software\Microsoft\Microsoft SQL Server\InstanceName\MSSQLServer\Setup\SQLPath

Note The REG QUERY tool is available in the Microsoft Windows® 2000 Resource Kit.

See Also

File Paths for SQL Server 2000

Multiple Instances of SQL Server

Installing SQL Server (SQL Server 2000)

Removing Multiple Instances of SQL Server 2000
When you remove a default or named instance of Microsoft® SQL Server™ 2000, the data files and registry keys for that instance
are deleted. Tools cannot be removed until all instances of SQL Server 2000 have been removed from a computer, because the
tools are shared among all installed instances.

To remove a single instance of SQL Server 2000, or to remove all installed instances, see How to remove SQL Server 2000
(Windows).

Installing SQL Server (SQL Server 2000)

Working with Instances and Versions of SQL Server
Multiple instances in Microsoft® SQL Server™ 2000 offer enhanced ways to work with earlier versions of Microsoft SQL Server
already installed on your computer. You can leave previous installations intact, and also install and run SQL Server 2000. For
example, you can run SQL Server version 7.0 and a named instance of SQL Server 2000 at the same time, or you can run SQL
Server version 6.5 in a version switch configuration with SQL Server 2000. If you need to have three different versions of SQL
Server installed on the same computer, there are several ways to accomplish this.

In addition, users of all editions of SQL Server can have more than one instance of SQL Server 2000 installed and running at once
(multiple instances), as well as one or more earlier versions.

Considerations for using SQL Server 2000 in combination with previous installations include:

Using SQL Server 6.5 with the default instance or named instances of SQL Server 2000.

Running SQL Server 7.0 with a named instance of SQL Server 2000.

Working with three versions of SQL Server: SQL Server 6.5, SQL Server 7.0, and SQL Server 2000.

Note The concept of the default instance is new to SQL Server 2000, due to the introduction of multiple instances. If installed on
the same computer as SQL Server 2000, either SQL Server version 6.5 or SQL Server version 7.0 can function as default instances
of SQL Server. (A default instance is identified by the network name of the computer on which it is running.) For more
information, see Working with Named and Multiple Instances of SQL Server 2000.

Using SQL Server Books Online for SQL Server 7.0

When you keep Microsoft SQL Server version 7.0 on your computer and install a named instance of SQL Server 2000, SQL Server
Books Online for SQL Server 7.0 remains in its original location: C:\Mssql7\Books. In this side-by-side configuration, Books Online
for SQL Server 7.0 remains accessible from the start menu in the SQL Server 7.0 program group.

Note This is an exception to what occurs for the other shared tools (such as code samples, scripts, and templates), when a named
instance of SQL Server 2000 is installed along with SQL Server 7.0. All other shared tools from the 7.0 installation are copied to
storage locations, with pointers to the SQL Server 2000 tools replacing previous versions of the tools. Files for Books Online for
SQL Server 7.0 are not redirected in this way -- they remain ready for use.

When SQL Server 7.0 is upgraded to the default version of SQL Server 2000, the 7.0 Books Online files are also upgraded. That is,
they are replaced with the SQL Server 2000 Books Online.

Whether you have SQL Server 7.0 installed or not, you can access information in the SQL Server 7.0 documentation. For more
information, see How to access SQL Server Books Online for SQL Server 7.0.

See Also

Using SQL Server 6.5 with SQL Server 2000

Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000

Working with Three Versions of SQL Server

Installing SQL Server (SQL Server 2000)

Using SQL Server 6.5 with SQL Server 2000
If you have Microsoft® SQL Server™ version 6.5 installed, you can keep the SQL Server version 6.5 installation and also install a
default or named instance of SQL Server 2000. No version upgrading is involved; however, version switching can be used to
move between SQL Server version 6.5 and SQL Server 2000. In addition, SQL Server 2000 tools are used to control both SQL
Server 2000 and SQL Server version 6.5.

Warning After SQL Server 2000 is installed, the SQL Server version 6.5 Trace utility and other earlier tools are no longer
available.

To install SQL Server 2000 alongside SQL Server 6.5:

Keep your SQL Server 6.5 configuration intact.

Install SQL Server 2000, selecting either a default or named instance in the Instance Name dialog box.

Switch versions from SQL Server 6.5 to the default instance of SQL Server 2000.

Note Switching from SQL Server 2000 back to SQL Server 6.5 is not recommended.

If you install a default instance of SQL Server 2000 on a computer running an instance of SQL Server 6.5, the default instance of
SQL Server 2000 becomes the accessible instance of SQL Server, and the SQL Server 2000 program group appears on the Start
menu. The instance of SQL Server 6.5 is switched out, and the SQL Server 6.5 program group does not appear on the Start menu.

You can run either the default instance of SQL Server 2000 or the instance of SQL Server 6.5, but not both at the same time. To
switch between the two versions of SQL Server, use the Microsoft SQL Server-Verswitch entry on the Start menu. When you
switch from SQL Server 2000 to SQL Server 6.5, the instance of SQL Server 2000 becomes inactive, and the SQL Server 6.5
program group replaces the SQL Server 2000 program group on the Start menu. When you switch from SQL Server 6.5 to SQL
Server 2000, the process is reversed.

If you install one or more named instances of SQL Server 2000 on a computer running SQL Server 6.5 and there is no default
instance of SQL Server 2000, the instance of SQL Server 6.5 remains active as the default instance. Both the SQL Server 2000 and
SQL Server 6.5 program groups appear on the Start menu. You should use the SQL Server 6.5 tools to manage the default
instance of SQL Server 6.5, and the SQL Server 2000 tools to manage the named instances of SQL Server 2000.

If you install both named and default instances of SQL Server 2000 on a computer running SQL Server 6.5, you can run the
named instances of SQL Server 2000 at any time, but must version-switch between the default instance of SQL Server 2000 and
the default instance of SQL Server 6.5. The SQL Server 2000 program group always appears on the Start menu. The SQL Server
6.5 program group appears on the Start menu whenever you have version switched to make SQL Server 6.5 the active default
instance. The SQL Server 6.5 program group does not appear when you have version switched to make SQL Server 2000 the
active default instance.

The illustration shows an installation of SQL Server 6.5 in a version switch configuration with SQL Server 2000.

See Also

Switching Between SQL Server 6.5 and SQL Server 2000

Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000

Working with Three Versions of SQL Server

Installing SQL Server (SQL Server 2000)

Running SQL Server 7.0 Along with a Named Instance of SQL
Server 2000
You can keep an installation of Microsoft® SQL Server™ version 7.0 intact on your computer and also install a named instance of
SQL Server 2000 on the same computer. This configuration enables you to run both the original installation of SQL Server 7.0
and the named instance of SQL Server 2000 at the same time, without using the vswitch command prompt utility.

To run a named instance of SQL Server 2000 with an existing SQL Server 7.0 installation intact:

Keep SQL Server version 7.0 in its original condition with no version upgrade to SQL Server 2000. SQL Server 7.0 functions
as the default instance of SQL Server, identified by the network name of the computer.

Install a named instance of SQL Server 2000, identified by both the network name of the computer plus an instance name.

The illustration shows this configuration.

See Also

How to install a named instance of SQL Server 2000 (Setup)

Working with Three Versions of SQL Server

Installing SQL Server (SQL Server 2000)

Working with Three Versions of SQL Server
This topic describes two scenarios for working with SQL Server version 6.5, SQL Server version 7.0, and SQL Server 2000. One
example shows three versions installed at one time, with no version upgrades, but with a version switch between SQL Server 6.5
and SQL Server 7.0. The other involves upgrading to SQL Server 2000 from SQL Server 7.0, and then version switching between
SQL Server 6.5 and SQL Server 2000.

In any of these situations, multiple named instances of SQL Server 2000 can be installed as well. However, only two different
versions of SQL Server can run at one time, using version switching in one of two ways:

Switch between SQL Server 6.5 and SQL Server 7.0.

Switch between SQL Server 6.5 and SQL Server 2000.

Using Version Switching

To use version switching with SQL Server 6.5 and SQL Server 7.0, while at the same time running multiple instances of SQL
Server 2000:

Keep the SQL Server 6.5 configuration intact.

Keep the SQL Server 7.0 configuration intact, with no version upgrade to SQL Server 2000.

Install one or more named instances of SQL Server 2000.

The illustration shows how named instances of SQL Server 2000 and the existing installation of SQL Server version 7.0 can run at
the same time. SQL Server version 6.5 is available to be switched in as the default instance instead of SQL Server 7.0.

To use version switching with SQL Server 6.5 and SQL Server 2000, after upgrading from SQL Server version 7.0:

Keep the SQL Server 6.5 configuration intact.

Have SQL Server 7.0 installed, but prepare to upgrade SQL Server 7.0 to SQL Server 2000.

Run Setup. When SQL Server 7.0 is detected, upgrade SQL Server 7.0 to the default instance of SQL Server 2000. (Select the
option to Upgrade in the Existing Installation Options dialog box, and leave the Default check box selected in the
Instance Name dialog box.) At this point, the installation of SQL Server 7.0 no longer exists; it is replaced by the default
instance of SQL Server 2000.

The illustration shows this configuration, along with three SQL Server 2000 named instances.

See Also

Upgrading from SQL Server 7.0 to SQL Server 2000

Using SQL Server 6.5 with SQL Server 2000

Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000

Installing SQL Server (SQL Server 2000)

Collation Options for International Support
In Microsoft® SQL Server™ 2000, it is not required to separately specify code page and sort order for character data, and the
collation used for Unicode data. Instead, specify the collation name and sorting rules to use. The term, collation, refers to a set of
rules that determine how data is sorted and compared. Character data is sorted using rules that define the correct character
sequence, with options for specifying case-sensitivity, accent marks, kana character types, and character width. Microsoft SQL
Server 2000 collations include these groupings:

Windows collations

Windows collations define rules for storing character data based on the rules defined for an associated Windows locale. The
base Windows collation rules specify which alphabet or language is used when dictionary sorting is applied, as well as the
code page used to store non-Unicode character data. For more information, see Collations.

SQL collations

SQL collations are provided for compatibility with sort orders in earlier versions of Microsoft SQL Server. For more
information, see Using SQL Collations.

Changing Collations After Setup

When you set up SQL Server 2000, it is important to use the correct collation settings. You can change collation settings after
running Setup, but you must rebuild the databases and reload the data. It is recommended that you develop a standard within
your organization for these options. Many server-to-server activities can fail if the collation settings are not consistent across
servers.

See Also

Collation Settings in Setup

How to rebuild the master database (Rebuild Master utility)

Selecting a SQL Collation

Windows Collation Designators

Installing SQL Server (SQL Server 2000)

Collation Settings in Setup
Use the Collation Settings screen to modify default collation settings. Use the Windows Locale option to match collation
settings in instances of Microsoft® SQL Server™ 2000. Use SQL Collations to match settings that are compatible with the sort
orders in earlier versions of SQL Server.

Windows Locale

Change the default settings for Windows Locale (Windows collation) only if your installation of SQL Server must match the
collation settings used by another instance of SQL Server 2000, or must match the Windows locale of another computer.

Collation Designator

Select the name of a specific Windows collation from the list, for example:

Use Latin1_General for the U.S. English character set (code page 1252).

Use Modern_Spanish for all variations of Spanish, which also use the same character set as U.S. English (code page 1252).

Use Arabic for all variations of Arabic, which use the Arabic character set (code page 1256).

Use Japanese_Unicode for the Unicode version of Japanese (code page 932), which has a different sort order from
Japanese, but the same code page (932).

For more information, see Windows Collation Designators.

Sort Order

Select Sort Order options to use with the Collation Designator selected. Binary is the fastest sorting order, and is case-sensitive. If
Binary is selected, the Case-sensitive, Accent-sensitive, Kana-sensitive, and Width-sensitive options are not available. For
more information, see Windows Collation Sorting Styles.

SQL Collations

The SQL Collations option is used for compatibility with earlier versions of Microsoft SQL Server. Select this option to match
settings compatible with SQL Server version 7.0, SQL Server version 6.5, or earlier. For more information, see SQL Collations.

Installing SQL Server (SQL Server 2000)

Windows Collation Sorting Styles
On the Collation Settings screen you can choose Binary sort order, or you can define the sorting styles to use with the Collation
Designator (Windows collation name) selected.

Note For Windows collations, the nchar, nvarchar, and ntext data types have the same sorting behavior as char, varchar, and
text data types. For more information, see SQL Server Collation Fundamentals.

Sort order Description
Binary Sorts and compares data in Microsoft® SQL Server™ tables

based on the bit patterns defined for each character. Binary sort
order is case-sensitive, that is lowercase precedes uppercase,
and accent-sensitive. This is the fastest sorting order.

If this option is not selected, SQL Server follows sorting and
comparison rules as defined in dictionaries for the associated
language or alphabet.

Case-sensitive Specifies that SQL Server distinguish between uppercase and
lowercase letters.

If not selected, SQL Server considers the uppercase and
lowercase versions of letters to be equal. SQL Server does not
define whether lowercase letters sort lower or higher in relation
to uppercase letters when Case-sensitive is not selected.

Accent-sensitive Specifies that SQL Server distinguish between accented and
unaccented characters. For example, 'a' is not equal to 'á'.

If not selected, SQL Server considers the accented and
unaccented versions of letters to be equal.

Kana-sensitive Specifies that SQL Server distinguish between the two types of
Japanese kana characters: Hiragana and Katakana.

If not selected, SQL Server considers Hiragana and Katakana
characters to be equal.

Width-sensitive Specifies that SQL Server distinguish between a single-byte
character (half-width) and the same character when represented
as a double-byte character (full-width).

If not selected, SQL Server considers the single-byte and double-
byte representation of the same character to be equal.

See Also

Collation Settings in Setup

Windows Collation Designators

Installing SQL Server (SQL Server 2000)

Windows Collation Designators
Use this table to synchronize collation settings with another Windows locale.

In Control Panel, find the Windows locale name in the Regional Settings application (Microsoft® Windows NT® 4.0, Microsoft
Windows® 98, and Microsoft Windows 95) or the Regional Options application (Microsoft Windows 2000), and then use this
table to find the corresponding Collation Designator and code page.

Windows locale
LCID

(locale ID) Collation designator
Code
page

Afrikaans 0xx436 Latin1_General 1252
Albanian 0x41C Albanian 1250
Arabic (Saudi Arabia) 0x401 Arabic 1256
Arabic (Iraq) 0x801 Arabic 1256
Arabic (Egypt) 0xC01 Arabic 1256
Arabic (Libya) 0x1001 Arabic 1256
Arabic (Algeria) 0x1401 Arabic 1256
Arabic (Morocco) 0x1801 Arabic 1256
Arabic (Tunisia) 0x1C01 Arabic 1256
Arabic (Oman) 0x2001 Arabic 1256
Arabic (Yemen) 0x2401 Arabic 1256
Arabic (Syria) 0x2801 Arabic 1256
Arabic (Jordan) 0x2C01 Arabic 1256
Arabic (Lebanon) 0x3001 Arabic 1256
Arabic (Kuwait) 0x3401 Arabic 1256
Arabic (United Arab
Emirates)

0x3801 Arabic 1256

Arabic (Bahrain) 0x3C01 Arabic 1256
Arabic (Qatar) 0x4001 Arabic 1256
Basque 0x42D Latin1_General 1252
Byelorussian 0x423 Cyrillic_General 1251
Bulgarian 0x402 Cyrillic_General 1251
Catalan 0x403 Latin1_General 1252
Chinese (Taiwan) 0x30404 Chinese_Taiwan_Bopomofo 950
Chinese (Taiwan) 0x404 Chinese_Taiwan_Stroke 950
Chinese (People's Republic
of China)

0x804 Chinese_PRC 936

Chinese (People's Republic
of China)

0x20804 Chinese_PRC_Stroke 936

Chinese (Singapore) 0x1004 Chinese_PRC 936
Croatia 0x41a Croatian 1250
Czech 0x405 Czech 1250
Danish 0x406 Danish_Norwegian 1252
Dutch (Standard) 0x413 Latin1_General 1252
Dutch (Belgium) 0x813 Latin1_General 1252
English (United States) 0x409 Latin1_General 1252
English (Britain) 0x809 Latin1_General 1252
English (Canada) 0x1009 Latin1_General 1252
English (New Zealand) 0x1409 Latin1_General 1252
English (Australia) 0xC09 Latin1_General 1252
English (Ireland) 0x1809 Latin1_General 1252
English (South Africa) 0x1C09 Latin1_General 1252
English (Carribean) 0x2409 Latin1_General 1252
English (Jamaican) 0x2009 Latin1_General 1252
Estonian 0x425 Estonian 1257

Faeroese 0x0438 Latin1_General 1252
Farsi 0x429 Arabic 1256
Finnish 0x40B Finnish_Swedish 1252
French (Standard) 0x40C French 1252
French (Belgium) 0x80C French 1252
French (Switzerland) 0x100C French 1252
French (Canada) 0xC0C French 1252
French (Luxembourg) 0x140C French 1252
Georgian (Modern Sort) 0x10437 Georgian_Modern_Sort 1252
German (PhoneBook Sort) 0x10407 German_PhoneBook 1252
German (Standard) 0x407 Latin1_General 1252
German (Switzerland) 0x807 Latin1_General 1252
German (Austria) 0xC07 Latin1_General 1252
German (Luxembourg) 0x1007 Latin1_General 1252
German (Liechtenstein) 0x1407 Latin1_General 1252
Greek 0x408 Greek 1253
Hebrew 0x40D Hebrew 1255
Hindi 0x439 Hindi Unicode

only
Hungarian 0x40E Hungarian 1250
Hungarian 0x104E Hungarian_Technical 1250
Icelandic 0x40F Icelandic 1252
Indonesian 0x421 Latin1_General 1252
Italian 0x410 Latin1_General 1252
Italian (Switzerland) 0x810 Latin1_General 1252
Japanese 0x411 Japanese 932
Japanese (Unicode) 0x10411 Japanese_Unicode 932
Korean (Extended Wansung) 0x412 Korean_Wansung 949
Korean 0x412 Korean_Wansung_Unicode 949
Latvian 0x426 Latvian 1257
Lithuanian 0x427 Lithuanian 1257
Lithuanian 0x827 Lithuanian_Classic 1257
Macedonian (Former
Yugoslav Republic of
Macedonia)

0x41C Cyrillic_General 1251

Norwegian (Bokmål) 0x414 Danish_Norwegian 1252
Norwegian (Nynorsk) 0x814 Danish_Norwegian 1252
Polish 0x415 Polish 1250
Portuguese (Portugal) 0x816 Latin1_General 1252
Portuguese (Brazil) 0x416 Latin1_General 1252
Romanian 0x418 Romanian 1250
Russian 0x419 Cyrillic_General 1251
Serbian (Latin) 0x81A Cyrillic_General 1251
Serbian (Cyrillic) 0xC1A Cyrillic_General 1251
Slovak 0x41B Slovak 1250
Slovenian 0x424 Slovenian 1250
Spanish (Mexico) 0x80A Traditional_Spanish 1252
Spanish (Traditional Sort) 0x40A Traditional_Spanish 1252
Spanish (Modern Sort) 0xC0A Modern_Spanish 1252
Spanish (Guatemala) 0x100A Modern_Spanish 1252
Spanish (Costa Rica) 0x140A Modern_Spanish 1252
Spanish (Panama) 0x180A Modern_Spanish 1252
Spanish (Dominican
Republic)

0x1C0A Modern_Spanish 1252

Spanish (Venezuela) 0x200A Modern_Spanish 1252

Spanish (Colombia) 0x240A Modern_Spanish 1252
Spanish (Peru) 0x280A Modern_Spanish 1252
Spanish (Argentina) 0x2C0A Modern_Spanish 1252
Spanish (Ecuador) 0x300A Modern_Spanish 1252
Spanish (Chile) 0x340A Modern_Spanish 1252
Spanish (Uruguay) 0x380A Modern_Spanish 1252
Spanish (Paraguay) 0x3C0A Modern_Spanish 1252
Spanish (Bolivia) 0x400A Modern_Spanish 1252
Swedish 0x41D Finnish_Swedish 1252
Thai 0x41E Thai 874
Turkish 0x41F Turkish 1254
Ukrainian 0x422 Ukrainian 1251
Urdu 0x420 Arabic 1256
Vietnamese 0x42A Vietnamese 1258

See Also

Collation Settings in Setup

Collations

Windows Collation Sorting Styles

Windows Collation Name

Installing SQL Server (SQL Server 2000)

Using SQL Collations
SQL collation settings correspond to the type of installation. In general, choose a SQL collation that supports the Windows locale
most commonly used at your site. For more information about identifying your site Windows Locale, see Regional Settings in
Windows Control Panel. In many cases, a computer will run the Windows locale that matches the language requirements of the
user, so Setup automatically detects the Windows locale and chooses the appropriate SQL collation.

SQL collations control:

The code page used for storing non-Unicode data in Microsoft® SQL Server™.

The rules governing how SQL Server sorts and compares characters stored in both Unicode and non-Unicode data types.

Choose a SQL collation if:

You use the replication feature with existing instances of SQL Server version 6.5 or SQL Server version 7.0

Your application code depends on the behaviors of the previous SQL Server collations.

An upgrade of SQL Server 7.0 to SQL Server 2000 keeps the previous SQL collation settings; no collation choice is required.

Use this table to determine if you need to make a collation choice, and if so, which collation you should choose.

Installation you want Collation to choose
To install on a new system with no
compatibility requirements for
synchronizing with any type of existing
system

Use the locale identified by Setup, and
then choose the desired binary, case, or
other options.

For this release of SQL Server, when Setup
detects that the computer is running the
U.S. English locale, Setup automatically
selects the SQL collation: Dictionary
order, case-insensitive, for use with
1252 character set.

To select the equivalent Windows
collation, select Collation designator,
choose the Latin1_General collation
designator, do not select case-sensitive,
and select accent-sensitive.

To upgrade an installation of SQL Server
6.5 or SQL Server 7.0 to a default instance
of SQL Server 2000, or to install a default
instance of SQL Server 2000 that will
version switch with an installation of SQL
Server 6.5

Use the SQL collation chosen by Setup.

To synchronize (for example, to replicate)
with an existing instance of SQL Server
2000

Select SERVERPROPERTY(N'Collation')
on the existing instance, and specify that
collation. If the collation name of the
existing instance starts with SQL, select
the same SQL collation in Setup. If the
collation name of the existing instance
does not start with SQL, the collation
name refers to a Windows collation name
and consists of the collation designator
name followed by a description of what
binary, case, accent, kana and width
sensitivity options are specified. Select the
same Windows collation designator and
sorting options in Setup.

To synchronize with an existing
installation of SQL Server 6.5 or SQL
Server 7.0

Execute sp_helpsort on the existing
system, and then use the sort ID to select a
SQL collation to make your instance of
SQL Server 2000 compatible with an
existing installation.

For more information, see Selecting a SQL
Collation.

To synchronize with a Windows locale of
another computer

In Control Panel, find the locale name
from the Regional Settings application
(Microsoft Windows NT® 4.0, Microsoft
Windows® 98, and Microsoft Windows
95), or from the Regional Options
application (Microsoft Windows 2000),
and then use the table provided in the
topic Windows Collation Designators. Set
the sorting options, as explained in the
topic Windows Collation Sorting Styles.

Note When you perform an action that depends on collations, the SQL Server collation used by the referenced object must use a
code page supported by the operating system running on the computer. For more information, see Specifying Collations.

See Also

Examples of SQL Collations

Selecting Collations

sp_helpsort

Setting Client Code Pages

SQL Server Collation Fundamentals

SERVERPROPERTY

Installing SQL Server (SQL Server 2000)

Examples of SQL Collations
These are examples of SQL collations listed on the Collation Settings screen in Microsoft® SQL Server™ 2000 Setup:

Binary order, for use with the 437 (U.S. English) character set.

This collation uses binary sort order (simple sorting based on coded value) with the U.S. English character set (code page 437 -
MS-DOS Latin US).

In Transact-SQL, the string SQL_Latin1_General_Cp437_BIN is used to designate this setting.

Dictionary order, case-insensitive, accent-insensitive, for use with 1252 character set.

This collation uses the dictionary sorting rules for the U.S. English character set (code page 1252 - Windows Latin 1 ANSI, sort
order ID 54). Uppercase or lowercase characters and accent marks are not considered when sorting.

In Transact-SQL, the string SQL_Latin1_General_CP1_CI_AI is used to designate this setting.

Romanian dictionary order, case-sensitive, for use with the 1250 (Central European) character set.

This collation uses the dictionary order sorting rules for the Romanian language, and uses the Central European character set
(code page 1250, sort order ID 89).

In Transact-SQL, the string SQL_Romanian_Cp1250_CS_AS is used to designate this setting.

See Also

Collation Settings in Setup

Selecting a SQL Collation

Using SQL Collations

SQL Collation Name

Installing SQL Server (SQL Server 2000)

Selecting a SQL Collation
 New Information - SQL Server 2000 SP3.

When selecting a SQL collation in the Collations Settings screen, use the following table to make the installation of Microsoft®
SQL Server™ 2000 compatible with an installation of an earlier version of SQL Server.

Note Each SQL Collation name has an equivalent string in T-SQL code. For a list of sort order identifiers and the T-SQL version,
see SQL Collation Name.

In the table, the left column lists the sort order ID of an instance of SQL Server 7.0 or SQL Server 6.5. The right column lists the
SQL Server 2000 collation recommended for compatibility.

Sort order ID
SQL collation name

30 Binary order, for use with the 437 (U.S. English) character set.
31 Dictionary order, case-sensitive, for use with the 437 (U.S. English)

character set.
32 Dictionary order, case-insensitive, for use with the 437 (U.S. English)

character set.
33 Dictionary order, case-insensitive, uppercase preference, for use with

the 437 (U.S. English) character set.
34 Dictionary order, case-insensitive, accent-insensitive, for use with the

437 (U.S. English) character set.
40 Binary order, for use with the 850 (Multilingual) character set.
41 Dictionary order, case-sensitive, for use with the 850 (Multilingual)

character set.
42 Dictionary order, case-insensitive, for use with the 850 (Multilingual)

character set.
43 Dictionary order, case-insensitive, uppercase preference, for use with

the 850 (Multilingual) character set.
44 Dictionary order, case-insensitive, accent-insensitive, for use with the

850 (Multilingual) character set.
49 Strict compatibility with version 1.x case-insensitive databases, for use

with the 850 (Multilingual) character set.
50 Binary order for use with 1252 character set.
51 Dictionary order, case-sensitive, for use with 1252 character set.
52 Dictionary order, case-insensitive, for use with 1252 character set.
53 Dictionary order, case-insensitive, uppercase preference, for use with

1252 character set.
54 Dictionary order, case-insensitive, accent-insensitive, for use with 1252

character set.
55 Alternate dictionary order, case-sensitive, for use with the 850

(Multilingual) character set.
56 Alternate dictionary order, case-insensitive, uppercase preference, for

use with the 850 (Multilingual) character set.
57 Alternate dictionary order, case-insensitive, accent-insensitive, for use

with the 850 (Multilingual) character set.
58 Scandinavian dictionary order, case-insensitive, uppercase preference,

for use with the 850 (Multilingual) character set.
59 Scandinavian dictionary order, case-sensitive, for use with the 850

(Multilingual) character set.
60 Scandinavian dictionary order, case-insensitive, for use with the 850

(Multilingual) character set.
61 Alternate dictionary order, case-insensitive, for use with the 850

(Multilingual) character set.
71 Latin-1 case-sensitive, for use with 1252 character set.
72 Latin-1 case-insensitive, for use with 1252 character set.

73 Danish/Norwegian case-sensitive sort order for code page 1252.
74 Finnish/Swedish case-sensitive sort order for code page 1252.
75 Icelandic case-sensitive sort order for code page 1252.
80 Binary order, for use with the 1250 (Central European) character set.
81 Dictionary order, case-sensitive, for use with the 1250 (Central

European) character set.
82 Dictionary order, case-insensitive, for use with the 1250 (Central

European) character set.
83 Czech dictionary order, case-sensitive, for use with the 1250 (Central

European) character set.
84 Czech dictionary order, case-insensitive, for use with the 1250 (Central

European) character set.
85 Hungarian dictionary order, case-sensitive, for use with the 1250

(Central European) character set.
86 Hungarian dictionary order, case-insensitive, for use with the 1250

(Central European) character set.
87 Polish dictionary order, case-sensitive, for use with the 1250 (Central

European) character set.
88 Polish dictionary order, case-insensitive, for use with the 1250 (Central

European) character set.
89 Romanian dictionary order, case-sensitive, for use with the 1250

(Central European) character set.
90 Romanian dictionary order, case-insensitive, for use with the 1250

(Central European) character set.
91 Croatian dictionary order, case-sensitive, for use with the 1250

(Central European) character set.
92 Croatian dictionary order, case-insensitive, for use with the 1250

(Central European) character set.
93 Slovak dictionary order, case-sensitive, for use with the 1250 (Central

European) character set.
94 Slovak dictionary order, case-insensitive, for use with the 1250

(Central European) character set.
95 Slovenian dictionary order, case-sensitive, for use with the 1250

(Central European) character set.
96 Slovenian dictionary order, case-insensitive, for use with the 1250

(Central European) character set.
97 Windows Polish case-sensitive sort order for code page 1250.
98 Windows Polish case-insensitive sort order for code page 1250.
104 Binary order, for use with the 1251 (Cyrillic) character set.
105 Dictionary order, case-sensitive, for use with the 1251 (Cyrillic)

character set.
106 Dictionary order, case-insensitive, for use with the 1251 (Cyrillic)

character set.
107 Ukrainian dictionary order, case-sensitive, for use with the 1251

(Cyrillic) character set.
108 Ukrainian dictionary order, case-insensitive, for use with the 1251

(Cyrillic) character set.
112 Binary order, for use with the 1253 (Greek) character set.
113 Dictionary order, case-sensitive, for use with the 1253 (Greek)

character set.
114 Dictionary order, case-insensitive, for use with the 1253 (Greek)

character set.
120 Mixed dictionary order, for use with the 1253 (Greek) character set.
121 Dictionary order, case-sensitive, accent-sensitive, for use with the 1253

(Greek) character set.
124 Dictionary order, case-insensitive, accent-insensitive, for use with the

1253 (Greek) character set.

128 Binary order, for use with the 1254 (Turkish) character set.
129 Dictionary order, case-sensitive, for use with the 1254 (Turkish)

character set.
130 Dictionary order, case-insensitive, for use with the 1254 (Turkish)

character set.
136 Binary order, for use with the 1255 (Hebrew) character set.
137 Dictionary order, case-sensitive, for use with the 1255 (Hebrew)

character set.
138 Dictionary order, case-insensitive, for use with the 1255 (Hebrew)

character set.
144 Binary order, for use with the 1256 (Arabic) character set.
145 Dictionary order, case-sensitive, for use with the 1256 (Arabic)

character set.
146 Dictionary order, case-insensitive, for use with the 1256 (Arabic)

character set.
152 Binary order, for use with the 1257 (Baltic) character set.
153 Dictionary order, case-sensitive, for use with the 1257 (Baltic) character

set.
154 Dictionary order, case-insensitive, for use with the 1257 (Baltic)

character set.
155 Estonian dictionary order, case-sensitive, for use with the 1257 (Baltic)

character set.
156 Estonian dictionary order, case-insensitive, for use with the 1257

(Baltic) character set.
157 Latvian dictionary order, case-sensitive, for use with the 1257 (Baltic)

character set.
158 Latvian dictionary order, case-insensitive, for use with the 1257 (Baltic)

character set.
159 Lithuanian dictionary order, case-sensitive, for use with the 1257

(Baltic) character set.
160 Lithuanian dictionary order, case-insensitive, for use with the 1257

(Baltic) character set.
183 Danish/Norwegian dictionary order, case-insensitive, uppercase

preference, for use with 1252 character set.
184 Finnish-Swedish (Phone), case-insensitive, accent-sensitive, kanatype-

insensitive, width-insensitive for Unicode Data, SQL Server Sort Order
184 on Code Page 1252 for non-Unicode Data.

185 Finnish-Swedish (Standard), case-insensitive, accent-sensitive,
kanatype-insensitive, width-insensitive for Unicode Data, SQL Server
Sort Order 185 on Code Page 1252 for non-Unicode Data.

186 Icelandic dictionary order, case-insensitive, uppercase preference, for
use with 1252 character set.

192 Binary order, for use with the 932 (Japanese) character set.
193 Dictionary order, case-insensitive, for use with the 932 (Japanese)

character set
194 Binary order, for use with the 949 (Korean) character set.
195 Dictionary order, case-insensitive, for use with the 949 (Korean)

character set.
196 Binary order, for use with the 950 (Traditional Chinese) character set.
197 Dictionary order, case-insensitive, for use with the 950 (Traditional

Chinese) character set.
198 Binary order, for use with the 936 (Simplified Chinese) character set.
199 Dictionary order, case-insensitive, for use with the 936 (Simplified

Chinese) character set.
200 Dictionary order, case-sensitive, for use with the 932 (Japanese)

character set.

201 Dictionary order, case-sensitive, for use with the 949 (Korean)
character set.

202 Dictionary order, case-sensitive, for use with the 950 (Traditional
Chinese) character set.

203 Dictionary order, case-sensitive, for use with the 936 (Simplified
Chinese) character set.

204 Binary order, for use with the 874 (Thai) character set.
205 Dictionary order, case-insensitive, for use with the 874 (Thai) character

set.
206 Dictionary order, case-sensitive, for use with the 874 (Thai) character

set.

See Also

Examples of SQL Collations

Collation Settings in Setup

Specifying Collations

SQL Collations

Installing SQL Server (SQL Server 2000)

Setting Client Code Pages
The code pages a client uses are determined by your operating system settings.

To set client code pages in the Windows NT, Windows 2000, or Windows 98 operating systems

Windows

Windows NT

Installing SQL Server (SQL Server 2000)

Upgrading Character Set, Sort Order, and Collation
Microsoft® SQL Server™ 2000 supports several different ways to specify collations. You no longer have to separately specify the
code page used for character data, the sort order used for character data, and the collation used for Unicode data. When you
upgrade, SQL collations can be specified for compatibility with existing instances of SQL Server.

Because the default collation for an instance of Microsoft SQL Server is defined during setup, it is important to become familiar
with collation settings in SQL Server 2000 when:

Your application code depends in some way on the behavior of previous SQL Server collations.

You are going to use the replication feature with existing installations of SQL Server 6.5 or SQL Server 7.0.

You must store character data that reflects multiple languages.

See Also

Collation Options for International Support

Collations

Selecting Collations

Specifying the Default Collation for an Instance of SQL Server

Installing SQL Server (SQL Server 2000)

Changing Collation Settings After Installing
Collation settings, which include character set, sort order, and other locale-specific settings, are fundamental to the structure of all
Microsoft® SQL Server™ 2000 databases. To change one or more of these settings, you must rebuild the master and user
databases.

See Also

Collation Settings in Setup

Collations

How to rebuild the master database (Rebuild Master utility)

Installing SQL Server (SQL Server 2000)

Upgrading to SQL Server 2000: Overview
Upgrading from Microsoft® SQL Server™ version 7.0 to Microsoft SQL Server 2000 is one of the basic choices offered by the
SQL Server Setup program on the initial Installation Selection screen. When you select the option to Upgrade, remove, or
add components to an existing installation of SQL Server, Setup detects your current installation and initiates the correct
sequence of setup screens for the upgrade selected. Upgrade variations include:

A complete installation upgrade from SQL Server 7.0 to SQL Server 2000 (installing over SQL Server 7.0).

Adding components to an installation of SQL Server 2000.

An upgrade to the feature set of an existing installation of SQL Server 2000 (edition and component upgrade).

An upgrade to SQL Server 2000 from SQL Server version 6.5 using the SQL Server Upgrade Wizard.

An online database upgrade of SQL Server 7.0 databases to SQL Server 2000 database format using the Copy Database
Wizard.

During the upgrade from SQL Server 7.0, external packages, such as Microsoft Management Console and the Microsoft
Distributed Transaction Coordinator, must be installed for each upgrade, and the registry updated. The master database and
other system databases are upgraded in various ways involving a series of scripts run on the server with specific options. If the
upgrade process fails built-in recovery mechanisms restart and resume the upgrade.

See Also

Upgrading from SQL Server 7.0 to SQL Server 2000

Upgrading an Existing Installation of SQL Server

Upgrading Databases from SQL Server 7.0 (Copy Database Wizard)

Upgrading to a SQL Server 2000 Failover Cluster

Installing SQL Server (SQL Server 2000)

Hardware and Software Requirements for Upgrading
In addition to the hardware and software requirements for an installation of Microsoft® SQL Server™, the computer must meet
these requirements for an upgrade.

Hardware/software Upgrade requirements
Operating system Microsoft Windows NT® Server Enterprise Edition version 4.0

with Service Pack 5 (SP5) or later.

Windows NT Server version 4.0 with SP5 or later.

Windows NT Workstation 4.0 with SP5 or later.

Internet Explorer 5.0 or later.

Windows 2000.

SQL Server 6.5 When upgrading SQL Server version 6.5 to an instance of SQL
Server 2000 on the same computer, you must have applied
SQL Server 6.5 Service Pack 5 (SP5) or later. When upgrading
SQL Server 6.5 to an instance of SQL Server 2000 on a
different computer, you must have applied SQL Server 6.5
Service Pack 3 (SP3) or later.

SQL Server 7.0 SQL Server 7.0 (at any Service Pack level).
Network protocols Named Pipes.

SQL Server 6.5, SQL Server 7.0, and SQL Server 2000 all must
be set to listen to the default pipe, \\.\pipe\sql\query. Named
Pipes is required even for a tape backup upgrade.

Hard-disk space No additional hard-disk space is required when upgrading
from SQL Server 7.0 to SQL Server 2000.

When upgrading from SQL Server 6.5 to SQL Server 2000,
however, you need approximately 1.5 times the size of the
SQL Server 6.5 databases.

See Also

Hardware and Software Requirements for Installing SQL Server 2000

Installing SQL Server (SQL Server 2000)

Upgrading from SQL Server 7.0 to SQL Server 2000
You can overwrite an installation of Microsoft® SQL Server™ version 7.0 with a version upgrade to Microsoft SQL Server 2000. If
SQL Server 7.0 is detected as an existing installation when you run Setup, you can choose the option to upgrade. In this process,
all the SQL Server 7.0 program files are upgraded, and all data stored in SQL Server 7.0 databases is preserved. In addition, SQL
Server Books Online for SQL Server 7.0 remains on your computer.

Note SQL Server 7.0 profiler traces and registered servers are not upgraded when SQL Server 7.0 tools are upgraded to SQL
Server 2000. Similarly, information models that were installed with Microsoft Repository 2.0 are not upgraded automatically. SQL
Server 2000 supports newer versions of information models for both Data Transformation Services (DTS) and the Open
Information Model (OIM). For more information about upgrading the DTS information model, see DTS Information Model. For
more information about upgrading the OIM, see Upgrading an Information Model.

You can also upgrade from one edition of SQL Server to another edition during the version upgrade to SQL Server 2000. For
more information, see SQL Server 2000: Editions and Components.

Caution After you perform this version upgrade, the SQL Server 7.0 installation no longer exists on your computer. The only way
to restore an installation of SQL Server 7.0 is to first uninstall SQL Server 2000, perform a complete reinstall of SQL Server 7.0
files, and then restore your backed-up SQL Server 7.0 databases.

To upgrade an installation of SQL Server 7.0 to SQL Server 2000

SQL Setup

SQL Setup

After Upgrading

After you upgrade from SQL Server 7.0 to SQL Server 2000, it is recommended that you repopulate full-text catalogs and update
statistics. Both operations can be time-consuming, but will enhance the performance of SQL Server 2000.

Repopulate Full-Text Catalogs

The upgrade process marks your databases as full-text disabled, due to a format change from SQL Server 7.0 to SQL Server 2000.
Catalogs must be repopulated after an upgrade, but this operation is not automatically run at setup time because it can be time-
consuming. Administrators should plan to repopulate all full-text catalogs at a convenient time. For more information, see
sp_fulltext_catalog and sp_fulltext_database.

Update Statistics

It is recommended that you update all SQL Server 7.0 statistics after upgrading to SQL Server 2000. Although this update may
take a significant amount of time on large databases, using SQL Server 7.0 statistics with SQL Server 2000 may result in poor
query performance.

Use the sp_updatestats stored procedure, to update statistics in user-defined tables in SQL Server 2000 databases. For more
information, see sp_updatestats.

See Also

Full-text Indexes

How to repopulate all full-text catalogs for a database (Enterprise Manager)

Transact-SQL Overview

How to access SQL Server Books Online for SQL Server 7.0

Installing SQL Server (SQL Server 2000)

Replication and Upgrading
When upgrading to Microsoft® SQL Server™ 2000, you can upgrade servers in your organization one at a time; however, when
servers are used for replication, you must upgrade the Distributor first, the Publisher second, and then Subscribers. Upgrading
servers one at a time following this sequence is recommended when a large number of Publishers and Subscribers exist because
you can continue to replicate data even though servers are running different versions of SQL Server. You can create new
publications and subscriptions with servers running instances of SQL Server 2000, and still maintain subscriptions created in SQL
Server 6.5 or SQL Server 7.0.

When using transactional replication, you can upgrade Subscribers before the Publisher. If you are using immediate updating
with snapshot replication or transactional replication, there are additional upgrade recommendations in this topic under
Upgrading and Immediate Updating.

You can upgrade replication servers running SQL Server 6.5 or SQL Server 7.0 to SQL Server 2000. If the server is running SQL
Server 6.5, you do not need to upgrade it to SQL Server 7.0 before upgrading to SQL Server 2000.

Important When upgrading servers configured for replication to SQL Server 2000, the database compatibility level must be set
to 70 (version 7.0 compatibility) or later. If you have servers running in 65 (version 6.5) or an earlier compatibility level,
temporarily change them to 70 or later during the upgrade process.

When the Publisher or Subscriber is running in 65 or an earlier compatibility level during upgrade to SQL Server 2000, error
15048 will be raised stating that the operation is supported only on SQL Server version 7.0 or SQL Server 2000.

For more information about setting the backward compatibility level, see SQL Server 2000 and SQL Server version 6.5.

If you are upgrading replication on a failover cluster, you must uncluster the previous installation before upgrading. Unclustering
the previous installation means that you must delete all publications, remove replication, and reconfigure it after upgrading to
SQL Server 2000. This will not be a requirement when upgrading SQL Server 2000 to future releases.

Upgrading and Immediate Updating

If you are using immediate updating with snapshot replication or transactional replication, changes to that feature in SQL Server
2000 will affect how you upgrade. Rows in immediate updating articles now use a uniqueidentifier column to identify versions,
whereas in SQL Server 7.0, a timestamp column was used. In addition, the triggers generated for immediate updating have been
changed, and the trigger generation code has been modified to accommodate queued updating. Because of these changes,
additional upgrade steps are necessary.

If using immediate updating:

Upgrade both the Publisher and Subscriber before replicating data.

Drop the publication and all subscriptions to the publication.

Use an ALTER TABLE DROP COLUMN Transact-SQL statement to drop the timestamp column from the tables on the
Publisher and from the tables on the Subscriber that allow Subscriber updates.

Re-create the publication and subscriptions. The system adds a uniqueidentifier column to the published table. That
column is used for row versioning (to detect conflicts when receiving updates from the Subscriber).

Although it is recommended you upgrade both the Publisher and the Subscriber and then drop and re-create the existing
publications, the Publisher and Subscribers can be upgraded in any order. If you need to reinitialize a Subscriber or add a new
Subscriber, you need to drop and re-create the publication.

Upgrading and File Transfer Protocol

If using File Transfer Protocol (FTP), you should follow the recommended upgrade path, which ensures that Subscribers are able
to obtain the necessary FTP information from the Distributor.

SQL Server 2000 stores FTP parameters as Publication Properties; you no longer need to administer them at the Subscriber for
each subscription. When upgrading to SQL Server 2000, the FTP option in the Publication Properties is turned off, and you need
to open the properties for each publication that uses FTP, and then reset the FTP parameters.

SQL Server 7.0 Subscribers will continue to locate FTP files using the FTP parameters stored in the Subscription Properties when
using a Distributor running an instance of SQL Server 2000. However, Subscribers running an instance of SQL Server 2000 will

not be able to obtain FTP information from Distributors running earlier versions of SQL Server.

Existing subscriptions using merge replication or transactional replication will be unaffected by this change unless you need to
reinitialize or connect to the FTP site. The FTP parameters need to be specified before snapshot replication occurs, or replication
agents will not be able to locate the snapshot files.

For more information about changing the FTP parameters, see Using TCP/IP and FTP and How to specify FTP information
(Enterprise Manager).

Troubleshooting and Replication Upgrades

If errors occur while upgrading replication servers, they might be related to the database being offline or unavailable or a script
may have failed. For more information about troubleshooting errors that occur when upgrading replication, see Help with
Replication.

It is recommended that you stop all data modifications at the replication server while it is being upgraded. When upgrading from
SQL Server 6.5, you must run the Log Reader Agent and Distribution Agent before upgrading to make sure there are no
replicated commands pending delivery to Subscribers.

Because you can upgrade servers running instances of Microsoft® SQL Server™ 2000 one at a time, you may have circumstances
where servers in your replication topology are running different versions of SQL Server. You can replicate between different
versions of SQL Server, but you are often limited to the functionality of the earliest version used.

Important When upgrading from SQL Server 6.5 or 7.0 to SQL Server 2000, SQL Server Setup runs several *.sql replication
scripts. Although the upgrade process can take several minutes and does not display progress notifications, you can view error
messages in the *.out and *.err files located in the SQL Server Install directory.

See Also

Publishing Data Over the Internet Using TCP/IP and FTP

Replication Between Different Versions of SQL Server

Replication Data Considerations

Updatable Subscriptions

Installing SQL Server (SQL Server 2000)

Upgrading Databases from SQL Server 7.0 (Copy Database
Wizard)

 Topic last updated -- July 2003

As an enhancement to the regular upgrade procedure, you can perform an online upgrade of databases and associated meta data.
Using the Copy Database Wizard, you can move or copy a database from Microsoft® SQL Server™ 7.0 to an instance of Microsoft
SQL Server 2000, without having to shut down any servers in the process.

Advantages of an online database upgrade include:

No downtime for servers during the upgrade.

Custom selection of databases to upgrade, leaving other databases still available to the original (SQL Server 7.0) server.

Inclusion of related meta data in the upgrade procedure. For example, logon information, jobs, and user-specific objects
associated with user databases can be included.

The process can be run at a convenient time.

The Database Copy Wizard is based on detach and attach functionality that allows user databases to be moved or copied from a
source to a destination server. A Data Transformation Services (DTS) package performs the actual move or copy operation You
can schedule the package to run at a specified time or rerun the package if required.

Options for SQL Server 7.0 Database Upgrades

Database administrators can move or copy one or more databases from an instance of SQL Server 7.0 to the default instance of
SQL Server 2000 on your local computer or to a named instance on a remote computer. This upgrade feature does not support
SQL Server 6.5 databases.

Local computer

SQL Server 7.0 databases can be upgraded to a named instance of SQL Server 2000 on the local computer.

Remote computer

SQL Server 7.0 databases can be upgraded to a default instance of SQL Server 2000 on a remote computer.

SQL Server 7.0 databases can be upgraded to a named instance of SQL Server 2000 on a remote computer.

Note You can have only one active default instance of SQL Server on a computer at one time; either a default instance of SQL
Server 7.0 or a default instance of SQL Server 2000. SQL Server 6.5 can also be a default instance. For more information, see
Working with Instances and Versions of SQL Server.

Exceptions

The Copy Database Wizard cannot be used in these situations:

A database with the identical name on both source and destination servers cannot be moved or copied. On the database
selection screen, it will be noted as "Already exists."

For databases involved in replication, a regular server upgrade is required.

Copy Database Wizard Safeguards

At the start of a database move or copy operation, one administrator must have exclusive use of all files to prevent any changes to
the file set during the process. Two connections are required to copy database files: sysadmin privileges on both installations of
SQL Server and administrator privileges on the server/network.

To prevent any chance of data corruption in SQL Server 7.0 databases, you must make sure that no users, applications or services
are trying to access the databases.

Important Do not place a SQL Server 7.0 database in read-only mode. Read-only mode generates an error during the execution
of the Copy Database Wizard, causing it to fail.

The database cannot be renamed during this operation. Any name conflicts between source and destination servers must be
resolved manually prior to upgrading databases. Nothing on the destination server is overwritten.

If you move or copy multiple databases in one operation, each database is actually moved one at a time; that is, one database at a
time is detached, files are copied and then reattached. To avoid any problems, the DTS package writes a message to the error log
indicating that the database is about to be detached from its source server. At the same time, a script is prepared to attach the
database to its destination. After the database is successfully attached to the destination, another entry is written to the log
indicating successful completion.

When upgrading to a destination that is a clustered server, the Copy Database Wizard will ensure you select only shared drives on
a clustered destination server. The source server may also be clustered.

Note Unrelated to this upgrade process, you can also use the Copy Database Wizard to move or copy user databases from one
instance of SQL Server 2000 to another instance of SQL Server 2000. For more information, see Using the Copy Database Wizard.

To upgrade databases online using the Copy Database Wizard

Wizard

Wizard

See Also

Database Copy Wizard Help

Installing SQL Server (SQL Server 2000)

Upgrading Databases from SQL Server 6.5 (Upgrade Wizard)
You can convert data from Microsoft® SQL Server™ version 6.5 to the formats for SQL Server 2000 using the SQL Server
Upgrade Wizard. The wizard upgrades any or all of your databases, transferring all catalog data, objects, and user data. It also
transfers replication settings, SQL Executive settings, and most of the SQL Server 6.5 configuration options. Be sure to review all
aspects of this upgrade, as noted in Preparing to Upgrade from SQL Server 6.5.

Note To run the SQL Server Upgrade Wizard, you must have a default instance of Microsoft SQL Server 2000 installed on your
computer.

The SQL Server Upgrade Wizard does not support consolidation of databases from multiple SQL Server 6.5 installations. If you
must upgrade SQL Server 6.5 databases from multiple servers, consolidate all of the SQL Server 6.5 databases onto one server,
and then run the wizard to upgrade the consolidated server.

The SQL Server Upgrade Wizard does not remove SQL Server 6.5 from your computer. If you are using a tape backup to perform
the upgrade, you have the option of removing the SQL Server 6.5 devices to save disk space.

When the upgrade process is complete, two separate installations of SQL Server exist, including two separate sets of the same
data. The SQL Server 6.5 and the SQL Server 2000 installations become independent of each other.

If you are performing the upgrade on a single computer, additional disk space is required. For more information, see Estimating
the Disk Space Required for Upgrading. You can also upgrade from one computer to another. For more information, see
Upgrading Using One or Two Computers (Logon Screen).

Note You can leave the installation of SQL Server 6.5 on a computer indefinitely. In addition to installations of SQL Server 6.5
and a default instance of SQL Server 2000 on the same computer, you also can install multiple named instances of the SQL Server
2000 on the same computer. For more information, see Working with Instances and Versions of SQL Server.

To perform a version upgrade using a direct pipeline

SQL Setup

SQL Setup

To perform a version upgrade using a tape drive

SQL Setup

SQL Setup

Installing SQL Server (SQL Server 2000)

Preparing to Upgrade from SQL Server 6.5
Follow this checklist before using the SQL Server Upgrade Wizard to move from Microsoft® SQL Server™ version 6.5 to
Microsoft SQL Server 2000:

Back up the SQL Server 6.5 database files (all .dat files, including master) so you can completely restore them if necessary.

Run the appropriate Database Console Commands (DBCC) on the SQL Server 6.5 databases to ensure they are in a
consistent state.

Estimate the disk space required. In addition to the hard disk space used by Microsoft SQL Server 2000, you need
approximately 1.5 times the size of the SQL Server 6.5 databases.

Set tempdb to at least 10 MB in the SQL Server 6.5 installation, 25 MB is recommended.

Ensure the master database has at least 3 MB of free space.

Ensure that all database users have logon information in the master database.

This is important for restoring a database because system logon information resides in the master database.

Ensure the @@SERVERNAME is defined on SQL Server 2000. If @@SERVERNAME is NULL, you can use the sp_addserver
system stored procedure. For example, if your computer is named production, the command would be sp_addserver
'production1',local. Changes do not take affect until the MSSQLServer service is restarted.

Note Because SQL Server 6.5 does not recognize the hyphen (-) in a computer name, replace a hyphen with an underscore
(_).

Disable any startup stored procedures.

The SQL Server Upgrade Wizard starts and stops the SQL Server 6.5 server during the upgrade process. Stored procedures
processed at startup may cause the upgrade process to stop responding.

Ensure that you upgrade all databases with cross-database dependencies at the same time.

For example, you want to upgrade three databases, database1, database2, and database4, and there is logon information
in SQL Server 6.5 master..sysdatabases for USER1 that defaults to database3 (not one of the databases you are
upgrading). The SQL Server Upgrade Wizard does not create the logon information because the database is not upgraded,
and therefore does not exist in SQL Server 2000. If USER1 is listed as the owner for objects in any of the databases
upgraded, those objects cannot be created because the logon information for USER1 does not exist.

If performing a two-computer upgrade, assign a domain user name and password to the MSSQLServer service for SQL
Server 6.5 and SQL Server 2000 instead of using the local system account or a local user account. The domain user account
should belong to the Administrators group of both the computers involved in the upgrade. (The local system account is
sufficient for a one-computer upgrade.)

Stop replication and ensure that the log is empty.

Quit all applications, including all services dependent on SQL Server.

If you copied the SQL Server 6.5 databases to a new computer to perform the upgrade, you may need to update the new SQL
Server 6.5 master database as follows:

Change references from the earlier server name to the current server name in the SQL Server 6.5 master database.

Update the device file locations in the SQL Server 6.5 master database.

Ensure all users have corresponding logon information.

To change the size of tempdb in SQL Server 6.5

Transact-SQL

Transact-SQL

To change to the current server name in the SQL Server 6.5 master database

Transact-SQL

Transact-SQL

To update the device file locations in the SQL Server 6.5 master database

Transact-SQL

Transact-SQL

See Also

Estimating the Disk Space Required for Upgrading

Upgrading Using One or Two Computers (Logon Screen)

How To Upgrade from SQL Server 6.5

Installing SQL Server (SQL Server 2000)

Estimating the Disk Space Required for Upgrading
Before you perform an upgrade of Microsoft® SQL Server™ version 6.5 to SQL Server 2000, ensure that there is available disk
space. This is important if you intend to perform either a one-computer or a two-computer upgrade.

The SQL Server Upgrade Wizard estimates the disk space necessary to upgrade the SQL Server 6.5 server to SQL Server 2000.
The wizard examines the current SQL Server 6.5 installation and estimates the amount of disk space the SQL Server 6.5 data will
occupy in SQL Server 2000.

You can estimate:

The size of SQL Server 2000 databases.

The size of SQL Server 2000 logs.

The amount of disk space required for tempdb.

Note The SQL Server Upgrade Wizard estimates the disk space required; it cannot give an exact requirement.

To estimate the disk space required for an upgrade

Windows

Windows

Installing SQL Server (SQL Server 2000)

Data and Object Transfer
The Data and Object Transfer screen allows you to choose upgrade options.

Export from 6.5 Server / Import

The objects and data check boxes indicate that the SQL Server Upgrade Wizard exports catalog data, objects, and user data from
selected Microsoft® SQL Server™ version 6.5 databases and imports them into newly created SQL Server 2000 databases.

Data Transfer Method

You can perform an upgrade using either of the following data transfer methods:

Named pipe (simultaneous import/export)

A direct pipeline enables the SQL Server Upgrade Wizard to transfer data in memory from Microsoft SQL Server version
6.5. This data transfer method is the most reliable and provides the best performance. However, when performing a one-
computer upgrade, you cannot reuse the disk space occupied by the SQL Server 6.5 devices until the version upgrade
process is complete, so use this option only if you have disk space available.

Tape (requires a Microsoft Windows NT® tape driver to be installed)

The SQL Server Upgrade Wizard backs up to tape all of the SQL Server 6.5 databases you have selected to upgrade. The
SQL Server Upgrade Wizard then optionally deletes all of the SQL Server 6.5 devices, freeing disk space before new data
files are created.

Important The SQL Server Upgrade Wizard deletes all of the SQL Server 6.5 devices, not only those upgraded. You should
upgrade all databases if you choose to delete the SQL Server 6.5 devices.

The tape backup option should be used only when you want to upgrade on a single computer but there is not enough space
on the hard disk to install SQL Server 2000 alongside SQL Server 6.5 and perform the version upgrade.

Note The SQL Server Upgrade Wizard uses a named pipe, even when performing a tape backup upgrade. SQL Server 6.5
and SQL Server 2000 must be set to listen to the default named pipe, \\.\pipe\sql\query.

Verification

The transfer of objects and data by the SQL Server Upgrade Wizard is a very reliable process. If any objects could not be imported
due to errors in those objects or compatibility problems with Microsoft SQL Server, they are noted in the output logs of the SQL
Server Upgrade Wizard.

The SQL Server Upgrade Wizard also offers the following optional verification measures:

Validate successful object data transfer

The SQL Server Upgrade Wizard examines the SQL Server 6.5 databases before the upgrade process and SQL Server 2000
databases after the upgrade. For each, the wizard prepares a list of all objects, including schema and stored procedures, and
the number of rows in each table. The wizard then compares the two lists and reports any discrepancies.

Exhaustive data integrity verification

The SQL Server Upgrade Wizard performs a checksum for each column of each table before and after the upgrade to verify
that data values have not changed.

Note The SQL Server Upgrade Wizard does not report as errors any intentional differences in objects. If some objects,
typically stored procedures, could not import due to errors in the objects or compatibility problems with SQL Server 2000,
they are reported twice: once in the SQL scripts that show the source code of the objects and the error messages received
from SQL Server 2000 when trying to create them, and then again in the output of the verification processes.

Installing SQL Server (SQL Server 2000)

Order of Upgrade Using a Direct Pipeline or Tape Drive
The SQL Server Upgrade Wizard performs a version upgrade using the options specified. The Microsoft® SQL Server™ version
6.5 server and data used by SQL Server 6.5 databases are left intact throughout the version upgrade process. At this time, the SQL
Server 6.5 catalog data, objects, and databases are converted so that they are compatible with SQL Server 2000. After the version
upgrade is complete, SQL Server 2000 becomes your production system.

The order of upgrade is basically the same for both a direct pipeline and a tape drive upgrade. The one difference is in how data is
exported and imported. When using a tape drive, data is exported to the tape drive after shutting down SQL Server 6.5 and before
starting SQL Server 2000. This data is then imported from the tape drive later to SQL Server 2000. When using a direct pipeline,
the export and import steps are combined in one step, simultaneously.

The following list shows the order in which the SQL Server Upgrade Wizard performs the upgrade from SQL Server 6.5 to SQL
Server 2000. The differences between the direct pipeline and tape drive methods are noted.

Starts SQL Server 6.5

Updates ODBC and SQL-DMO components on SQL Server 6.5

Examines SQL Server 6.5 databases

Exports replication settings

Exports server configuration settings from the master database

Exports logon information

Exports database owners

Exports SQL Executive objects and settings from the msdb database

Exports database objects for all databases chosen

Shuts down SQL Server 6.5
Tape Drive only: Exports data to tape

Tape Drive only: Backs up and then deletes SQL Server 6.5 devices
Starts SQL Server 2000

Creates databases

Modifies SQL Executive objects and settings to SQL Server 2000 formats

Imports logon information

Imports database objects
Tape Drive only: Imports data from tape into SQL Server 2000

Direct Pipeline only: Simultaneously exports data from SQL Server 6.5 and imports it into SQL Server 2000
Imports modified SQL Executive objects and settings into SQL Server 2000

Imports replication settings

Examines SQL Server 2000 databases

Verifies that the upgrade is successful

Sets database options in SQL Server 2000

Marks server and databases as moved

Drops temporary tempdb files

Installing SQL Server (SQL Server 2000)

Upgrading Using One or Two Computers (Logon Screen)
The upgrade process can take place on a single computer or from one computer to another, depending on where Microsoft® SQL
Server™ version 6.5 and SQL Server 2000 are installed. The SQL Server Upgrade Wizard identifies the two servers as the export
server and import server.

For a one-computer upgrade, leave the import and export servers at their default values.

For a two-computer upgrade, select the name of the computer with your SQL Server 6.5 server as the export server. To
upgrade SQL Server from one computer to another, the two computers must be in the same network domain.

Important The one-computer upgrade is the only method supported when upgrading a server used in replication. A two-
computer upgrade is not supported for replication servers.

Export server (6.5)

Export server (6.5) is the name of the SQL Server 6.5 server. This defaults to the name of the computer on which the SQL Server
Upgrade Wizard is run, but may be changed if your SQL Server 6.5 server is on another computer.

Server name

Server name is the name of your SQL Server version 6.5 server. This defaults to the name of the computer on which the
SQL Server Upgrade Wizard is run, but may be changed if your SQL Server 6.5 server is on another computer.

Administrator password ('sa')

Enter the system administrator (sa) password for the SQL Server 6.5 server. Unless you have changed it since installing SQL
Server 2000, the default sa password is blank. To conform to best security practices, it should be changed to a strong
password at the first opportunity.

Optional startup arguments

Enter any trace flags or other startup parameters to be used when the SQL Server Upgrade Wizard starts the SQL Server 6.5
server.

Import server

The import server is the name of the SQL Server 2000 server. This is always the name of the computer on which the SQL Server
Upgrade Wizard is run.

Server name

Server name is the name of your SQL Server 2000 server computer. This is always the name of the computer on which the
SQL Server Upgrade Wizard is run.

Administrator password ('sa')

Enter the system administrator (sa) password for the SQL Server 2000 server. Unless you have changed it since installing
SQL Server 2000, the default sa password is blank. To conform to best security practices, it should be changed to a strong
password at the first opportunity.

Optional startup arguments

Enter any trace flags or other startup parameters to be used when the SQL Server Upgrade Wizard starts the SQL Server
2000 server.

Installing SQL Server (SQL Server 2000)

Selecting a Scripting Code Page
The SQL Server Upgrade Wizard requires the selection of a scripting code page, which is used to create the upgrade scripts. When
the Code Page Selection screen appears in the Upgrade Wizard, most users can accept the default code page, which is the code
page recorded in the master database.

In some cases, the actual code page used for a Microsoft® SQL Server™ 6.5 installation differs from the code page recorded in
the master database. If you know that the actual code page is different from the recorded code page, select the actual code page
in the list on the Code Page Selection screen.

Caution If you choose a scripting code page other than the default, do not upgrade replication settings. If the server is involved
in replication, reconfigure the replication settings after the upgrade is complete.

The enhancements to collation settings in SQL Server 2000 do not apply directly to this selection of a code page for the SQL
Server 6.5 upgrade. For more information about collation enhancements, see Collations.

Installing SQL Server (SQL Server 2000)

Selecting Databases to Upgrade
When running the SQL Server Upgrade Wizard, you can choose to upgrade some or all Microsoft® SQL Server™ version 6.5
databases. The master, msdb, and publication system databases, as well as the pubs and Northwind sample databases, are
not explicitly available for selection. However, the master, msdb, and publication databases can be selected for upgrading (the
default) in the Server Configuration dialog box of the SQL Server Upgrade Wizard.

Note If you run the SQL Server Upgrade Wizard again after databases have been upgraded, previously updated databases will
default to the excluded list. If you want to upgrade a database again, drop the database in SQL Server 2000 and move it to the
included list in the wizard.

Installing SQL Server (SQL Server 2000)

Database Configuration
Before any data is transferred, the SQL Server Upgrade Wizard creates, if necessary, database and log files large enough to
contain the upgraded database data. On the Database Creation screen there are several options for creating the Microsoft®
SQL Server™ 2000 database and log files.

Using the Default Database Configuration

The SQL Server Upgrade Wizard estimates how much disk space is necessary to hold transferred objects and data for each
selected database and creates database files of the estimated sizes. The wizard makes no allowance for free space beyond the
loaded data. By default, the data file for a database is placed in the same location as the first device used by that database in SQL
Server 6.5.

The SQL Server Upgrade Wizard also creates a log file for each database using the SQL Server 6.5 log size. By default, the log file
is placed in the same location as the first device used for log space in SQL Server 6.5.

You can view and edit the default database configuration in the SQL Server Upgrade Wizard. For each database and log file you
can modify:

The name and file path.

The initial size of the file.

The autogrow increment.

If using multiple devices in a SQL Server version 6.5 database, then multiple database files are created in the same location.
However, the first database file is sized to accommodate the bulk of the data, and the other files are minimally sized. If you want
to remove these files, you must do so before they are created. All files are set to grow automatically if extra space is required.

Using a Custom Database Configuration

You can specify a custom configuration in two ways:

Using databases and logs that you created in SQL Server 2000.

The SQL Server Upgrade Wizard does not create any user databases. You must create the necessary databases and logs in
SQL Server 2000 before you start the SQL Server Upgrade Wizard. Use this option only if necessary.

Using an SQL script file that you provide.

The SQL Server Upgrade Wizard uses an SQL script file that you provide to create the necessary user databases and logs.
Use this option only if you are familiar with the new CREATE DATABASE statement in SQL Server 2000.

If you create the user databases or an SQL script file, the SQL Server 2000 databases must have the same names as in SQL Server
6.5. Also, remember that data may take up more disk space in SQL Server 2000 than in SQL Server 6.5. The SQL Server Upgrade
Wizard estimates this growth. You can view the proposed layout of the SQL Server 2000 data files to see the estimated initial size
of the SQL Server 2000 database, and edit the default configuration, if necessary. For more information, see Proposed Database
Layout.

It is recommended that you leave the autogrow feature on for each database. You may also want to set a backward compatibility
level for each database.

To edit the default database configuration

Wizard

Wizard

See Also

CREATE DATABASE

Estimating the Disk Space Required for Upgrading

Installing SQL Server (SQL Server 2000)

Proposed Database Layout
The Proposed Database Layout dialog box lists the databases, file groups, and data files that the Microsoft® SQL Server™
Upgrade Wizard will create. You can create or remove file groups and data files from the File menu. Double-click a data file to edit
the file name, initial size, or file growth details.

Object Details

Click on a file group or data file in the proposed database layout to view details. Click a database in the proposed database layout
to view summary information.

Drive Summary

The drive summary lists all local fixed-disk drives. For each drive, the existing SQL Server version 6.5 data file size, proposed SQL
Server 2000 data file size, and free space are listed. On the Options menu, select Freespace includes 6.5 files to view the free
space that would exist if the SQL Server 6.5 data files were deleted. This option shows the disk space available if the upgrade is
performed using tape and the SQL Server 6.5 devices are deleted.

See Also

Database Configuration

Installing SQL Server (SQL Server 2000)

Tape Upgrade Transfer Options
When you perform a tape backup, you must select a tape drive and choose how the SQL Server Upgrade Wizard handles backing
up and deleting objects in the Microsoft® SQL Server™ version 6.5 databases.

Device for Data Transfer

The SQL Server Upgrade Wizard transfers all of the data you are upgrading to this tape drive before the SQL Server 2000
databases are created.

Backing Up the SQL Server 6.5 Devices

You may also choose to back up the SQL Server 6.5 devices. This is separate from the transfer to tape that the SQL Server
Upgrade Wizard uses to complete the upgrade. There are two options for backing up the devices:

Prompt me to backup my devices manually

Before data is exported, the SQL Server Upgrade Wizard pauses and prompts you to perform a backup. The SQL Server
Upgrade Wizard does not perform a backup for you. You must use a backup utility such as Microsoft Windows NT®
Backup.

Automatically copy device files to the following location

Before data is exported, the SQL Server Upgrade Wizard copies the device files to a shared network directory.

Warning If you back up the devices to tape, remove the tape backup and insert a blank tape before continuing. Before the SQL
Server Upgrade Wizard begins transferring data to the tape drive, it formats the tape in the drive. If you do not remove your tape
backup, the SQL Server Upgrade Wizard overwrites it.

Deleting the SQL Server 6.5 Devices

If you decide to delete your SQL Server 6.5 devices before creating the SQL Server 2000 databases, you can choose whether to be
prompted before the devices are deleted. All of the SQL Server 6.5 device files will be deleted if you choose to delete devices, even
if you are upgrading only one database. This will render the SQL Server 6.5 server unusable until the files are restored.

Note If you choose not to delete the devices, you must have enough disk space for both the SQL Server 6.5 and SQL Server 2000
databases. If sufficient space is available, you should use a Named Pipe upgrade instead of a Tape upgrade.

See Also

How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server Upgrade Wizard)

Installing SQL Server (SQL Server 2000)

System Configuration
On the System Configuration screen, you can set options for system objects to transfer, ANSI Nulls, and quoted identifiers.

System Objects to Transfer

When the SQL Server Upgrade Wizard upgrades the master database, it can upgrade several configuration options:

Server configuration

Logon information and remote logon registrations and server configuration options relevant to Microsoft® SQL Server™
2000 are transferred as part of the version upgrade process. The SQL Server 6.5 configuration options not used in SQL
Server 2000 are not transferred.

Replication settings

All articles, subscriptions, and publications of each selected database, including the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that the SQL Server 2000 can schedule and run the
tasks in SQL Server Agent.

Note Upgrading replication or SQL Executive settings causes existing modifications made to the SQL Server 2000 replication or
SQL Server Agent settings to be overwritten.

ANSI Nulls

The ANSI_NULLS option controls both database default nullability and comparisons against null values. When upgrading
Microsoft SQL Server version 6.5 to the SQL Server 2000, set the ANSI_NULLS option to ON or OFF.

When the SQL Server Upgrade Wizard creates the SQL Server 2000 database tables, the database default nullability determined
by the ANSI_NULLS option is not an issue. All columns are explicitly qualified as NULL or NOT NULL based on their status in SQL
Server 6.5.

The ANSI_NULLS option is important with regard to comparisons against null values, when the SQL Server Upgrade Wizard
creates the SQL Server 2000 database objects. With ANSI_NULLS set to ON, the comparison operators EQUAL (=) and NOT
EQUAL (<>) always return NULL when one of its arguments is NULL. With ANSI_NULLS set to OFF, these operators return TRUE
or FALSE, depending on whether both arguments are NULL.

In SQL Server 6.5, the ANSI_NULLS option in objects, such as stored procedures and triggers, is resolved during query execution
time. In SQL Server 2000, the ANSI_NULLS option is resolved when the object is created. You must choose the ANSI_NULLS
option setting you want for all objects in the databases you are upgrading. The SQL Server Upgrade Wizard then creates all
database objects using this ANSI_NULLS setting.

Quoted Identifiers

Note Quoted identifiers are used by default in SQL Server 2000, that is, they are set to ON. This is different from SQL Server 7.0
where they were set to OFF by default.

The QUOTED_IDENTIFIER setting determines what meaning Microsoft SQL Server gives to double quotation marks ("). When
QUOTED_IDENTIFIER is set to OFF, double quotation marks delimit a character string, just as single quotation marks do. When
QUOTED_IDENTIFIER is set to ON, double quotation marks delimit an identifier, such as a column name. An identifier must be
enclosed in double quotation marks; for example, if its name contains characters that are otherwise not allowed in an identifier,
including spaces and punctuation, or if the name conflicts with a reserved word in Transact-SQL. Regardless of the
QUOTED_IDENTIFIER setting, an identifier can also be delimited by square brackets.

The meaning of the following statement, for example, depends on whether QUOTED_IDENTIFIER is set to ON or OFF:

SELECT "x" FROM T

If QUOTED_IDENTIFIER is set to ON, "x" is interpreted to mean the column named x. If it is set to OFF, "x" is the constant string x
and is equivalent to the letter x.

If the previous SELECT statement example were part of a stored procedure created when QUOTED_IDENTIFIER was set to ON,

then "x" would always mean the column named x. Even if the QUOTED_IDENTIFIER setting was later switched, and set to OFF, the
stored procedure would respond as if it were set to ON and treat "x" as the column named x.

When the SQL Server Upgrade Wizard re-creates database objects in SQL Server 2000, the QUOTED_IDENTIFIER setting
determines how all of these objects behave. If all database objects were created in SQL Server 6.5 with the same
QUOTED_IDENTIFIER setting, click that setting, either On or Off. If objects were created in SQL Server version 6.5 with a mix of the
two settings, or if you are unsure of the settings used, click Mixed.

With the Mixed option, the SQL Server Upgrade Wizard first converts all objects containing double quotation marks with
QUOTED_IDENTIFIER set ON. The SQL Server Upgrade Wizard then converts any objects that failed to be created with
QUOTED_IDENTIFIER set OFF.

See Also

How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a direct pipeline (SQL Server Upgrade Wizard)

How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server Upgrade Wizard)

Installing SQL Server (SQL Server 2000)

Completing the SQL Server Upgrade Wizard
Use this screen to view the summary of choices you have made.

Click View warnings and choices in notepad to open a text version of the upgrade script. If all options are correct, click Finish.

Installing SQL Server (SQL Server 2000)

Upgrade Script Interpreter
After you click Finish, this screen displays the progress of the upgrade.

Progress indicator

Displays information about the current task and its progress toward completion. The information presented varies according to
the type of task.

Task

The SQL Server Upgrade Wizard adds each upgrade task to the list as it is started.

Status

The SQL Server Upgrade Wizard displays the status (Running, Done, or Error) for each task.

Started

The SQL Server Upgrade Wizard displays the time and date on which the task began.

End

The SQL Server Upgrade Wizard displays the time and date on which a completed or terminated task is finished.

Pause Task

Temporarily suspends the version upgrade process until you click Resume.

Cancel Task

Cancels the currently running task and proceeds to the next task. Do not cancel a task unless you are certain the current task does
not need to be completed before subsequent tasks are run.

Retry Task

Retries the current upgrade task. If a task ended in an error and you corrected the problem, the SQL Server Upgrade Wizard
retries the current task.

Pause Between Steps

Allows you to participate interactively in the version upgrade process and track the progress of the SQL Server Upgrade Wizard.
The SQL Server Upgrade Wizard asks for confirmation between each step of the version upgrade process.

Installing SQL Server (SQL Server 2000)

Backward Compatibility
Backward compatibility issues are divided in these sections:

For issues related to upgrades from Microsoft® SQL Server™ version 7.0 to SQL Server 2000, see:

SQL Server 2000 and SQL Server version 7.0

For issues related to upgrades between SQL Server 6.5 and Microsoft SQL Server 2000, see:

SQL Server 2000 and SQL Server version 6.5

If upgrading from SQL Server 6.5 to SQL Server 2000, review both sections.

Installing SQL Server (SQL Server 2000)

SQL Server 2000 and SQL Server version 7.0
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 is compatible with SQL Server 7.0 in most ways. The section describes backward compatibility
issues when upgrading from SQL Server 7.0 to SQL Server 2000:

Client Network Utility and Named Instances

Multiserver Jobs and Named Instances

Upgrading SQL Server 6.5 Client Software

Authentication Modes

ROWCOUNT Setting for Operations Against Remote Tables

Server Configuration Options

Recovery Models and Database Options

Reserved Keywords

SQL Profiler Extended Stored Procedures

Default Connection Option Settings in SQL Query Analyzer

bcp Utility

Database Diagrams from Earlier Versions of Visual Database Design Tools

Data Transformation Services

Specifying Trusted Connections

Extended Objects in SQL-DMO

SQL-SCM

English Query and SQL Server 7.0 OLAP Services

Client Network Utility and Named Instances

When using the SQL Server client connectivity components from SQL Server 7.0 or earlier, you must set up an alias using the
Client Network Utility before you connect to a named instance of SQL Server 2000. For example, on a SQL Server 7.0 client, to
connect to a named instance of SQL Server 2000, you must add an alias that points to
\\computername\pipe\MSSQL$instancename\sql\query. If you use an alias name of computername\instancename, clients can
connect by specifying this name in the same way as SQL Server 2000 clients do. For the TCP/IP Sockets and NWLink IPX/SPX Net-
Libraries, you must use the Client Network Utility to define an alias on the client that specifies the port address on which the
named instance is listening.

Multiserver Jobs and Named Instances

When using Master Servers and Target Servers, SQL Server 7.0 cannot interoperate with named instances of SQL Server 2000. To
use an instance of SQL Server 7.0 with an instance of SQL Server 2000 for MSX/TSX operations, you must use a default instance,
not a named instance, of SQL Server 2000.

Upgrading SQL Server 6.5 Client Software

When running an instance of SQL Server version 6.5 on a server, this issue applies:

If you are upgrading from SQL Server 6.5 client software to SQL Server 2000 client software (and you have an application that
uses the default Net-Library), you must use the Client Network Utility to make either Named Pipes or Multiprotocol the default
Net-Library to make Windows Authentication connections.

Authentication Modes

SQL Server 2000 can operate in one of two security (authentication) modes:

Windows Authentication Mode (Windows Authentication)

Mixed Mode (Windows Authentication and SQL Server Authentication)

Mixed Mode allows users to connect using Windows Authentication or SQL Server Authentication. Users who connect through a
Microsoft Windows NT® 4.0 or Windows 2000 user account can make use of trusted connections (connections validated by
Windows NT 4.0 or Windows 2000) in either Windows Authentication Mode or Mixed Mode.

Security Note When possible, use Windows Authentication.

SQL Server Authentication is provided for backward compatibility. An example of SQL Server Authentication would be if you
create a single Microsoft Windows® 2000 group, add all necessary users to that group, and then grant the Windows 2000 group
login rights to SQL Server and access to any necessary databases.

ROWCOUNT Setting for Operations Against Remote Tables

ROWCOUNT is not supported for INSERT statements against remote tables in SQL Server 2000 when the database compatibility
level is set to 80. For these INSERT operations, the SET ROWCOUNT option is ignored.

The ROWCOUNT setting for INSERT statements against remote tables was supported in SQL Server 7.0.

Server Configuration Options

These server configuration options are not supported in SQL Server 2000.

default sortorder id resource timeout
extended memory size spin counter
language in cache time slice
language neutral full-text unicode comparison style
max async IO unicode locale id

For more information about configuration options, see Setting Configuration Options and sp_configure.

Recovery Models and Database Options

Microsoft® SQL Server™ 2000 provides the following recovery models to simplify recovery planning, simplify backup and
recovery procedures, and to clarify tradeoffs between system operational requirements:

Simple Recovery

Full Recovery

Bulk-Logged Recovery

Each model addresses different needs for performance, disk and tape space, and protection against data loss.

In SQL Server 7.0 and earlier, similar functionality was provided through the combined settings of the trunc. log on chkpt and
select into/bulkcopy database options, which could be set using the sp_dboption stored procedure.

This table maps the settings of trunc. log on chkpt and select into/bulkcopy to the new recovery models.

If trunc. log on chkpt is:
And select

into/bulkcopy is: The recovery model is:
FALSE FALSE FULL

FALSE TRUE BULK-LOGGED
TRUE TRUE SIMPLE
TRUE FALSE SIMPLE

Note If you upgrade a database in which the trunc. log on chkpt and select into/bulkcopy options are set to TRUE, select
into/bulkcopy is set to FALSE, forcing the database into the simple recovery model.

The trunc. log on chkpt and select into/bulkcopy database options are supported in SQL Server 2000 for backward
compatibility purposes, but may not be supported in future releases.

In SQL Server 2000, the ALTER DATABASE Transact-SQL statement provides a SET clause for specifying database options,
including recovery models. For more information about database options, see Setting Database Options and ALTER DATABASE.

Reserved Keywords

These words are no longer reserved keywords in SQL Server 2000: AVG, COMMITTED, CONFIRM, CONTROLROW, COUNT,
ERROREXIT, FLOPPY, ISOLATION, LEVEL, MAX, MIN, MIRROREXIT, ONCE, ONLY, PERM, PERMANENT, PIPE, PREPARE, PRIVILEGES,
REPEATABLE, SERIALIZABLE, SUM, TAPE, TEMP, TEMPORARY, UNCOMMITTED, WORK.

These words are reserved keywords in SQL Server 2000: COLLATE, FUNCTION, OPENXML.

SQL Profiler Extended Stored Procedures

SQL Profiler extended stored procedures, such as xp_trace_addnewqueue and xp_trace_generate_event, are not supported in
SQL Server 2000. They have been replaced by a set of new stored procedures and system user-defined functions. For more
information, see Creating and Managing Traces and Templates.

Default Connection Option Settings in SQL Query Analyzer

In SQL Server version 7.0 and earlier, the default setting for SET QUOTED_IDENTIFIER in SQL Query Analyzer was OFF. In SQL
Server 2000, the default setting in SQL Query Analyzer is ON, which is also the default setting for ODBC and OLE DB. Moreover,
several new features in SQL Server 2000, such as indexed views and indexes on computed columns, require this option to be ON.

Note If you use double quotation marks for strings when QUOTED_IDENTIFIER is ON, you will receive a syntax error.

bcp Utility

To read character files created by earlier versions of DB-Library bcp in SQL Server 2000, use the -V switch. For more information,
see bcp Utility.

Database Diagrams from Earlier Versions of Visual Database Design Tools

For users who have database diagrams created with earlier versions of the visual database design tools:

If the first visual database tool that was used against a SQL Server 2000 database is a version earlier than the tools in SQL
Server 2000, SQL Server Enterprise Manager will not be able to open or create a database diagram in that database. Any
attempt to do so results in the error:

ODBC error: [Microsoft][ODBC SQL Server Driver][SQL Server]Could not find stored procedure
'dbo.dt_getobjwithprop_u'.

There are several visual database tools that can put a database into this state. These include the Query Designer, the View
Designer, the Database Designer, and the Table Designer in SQL Server 7.0 and earlier, as well as many tools that
enumerate the objects in a database. These tools are also in Microsoft Access 2000 and Microsoft Visual Studio® 6.

Running the following script on the database allows SQL Server Enterprise Manager to work with the database diagrams in
that database:

alter table dbo.dtproperties add uvalue nvarchar(255) null
go
if exists(select * from dbo.dtproperties) exec('update dbo.dtproperties set uvalue = convert(nvarchar(255),
value)')
go

After this script has been run, both the SQL Server Enterprise Manager in SQL Server 2000 and the earlier versions of the
visual database tools can jointly access the database diagrams in the database. There are additional issues to consider when
using the earlier versions of the database tools against a SQL Server 2000 database. For more information, see Hardware
and Software Requirements for Installing SQL Server 2000.

Data Transformation Services

These are the backward compatibility issues for Data Transformation Services (DTS).

Extended DTS Objects

Some objects in Data Transformation Services (DTS) are extended in SQL Server 2000. For more information about using new
Data Transformation Services objects, methods, and properties with SQL Server 7.0 and earlier, see Extended DTS Objects.

Copy SQL Server Objects Task

There are restrictions on using the Copy SQL Server Objects task (Transfer SQL Server Objects task in SQL Server version 7.0)
when copying database objects between an instance of SQL Server 2000 and SQL Server 7.0. For more information, see Copy
SQL Server Objects Task.

Running DTS Packages on SQL Server 7.0 or Earlier

DTS packages created on an instance of SQL Server 2000 cannot be loaded or run on an instance of SQL Server version 7.0 or
earlier. If you attempt to do this, you may receive one of the following messages:

"Invalid class string."

"Parameter is incorrect."

Both messages indicate that the current server does not contain all the components necessary to load the package and cannot
support objects defined in the DTS package, such as tasks and transformations.

However, if you receive one of these messages, you can still open and run the package on an instance of SQL Server 2000.

Using DTS with Different Collations, Different Code Pages, and N on-Unicode Data

When using the Copy SQL Server Objects task and Copy Column transformation to copy non-Unicode data between an instance
of SQL Server 2000 and SQL Server 7.0, issues arise when using different code pages and collations. For more information, see
Data Conversion and Transformation Considerations.

Specifying Trusted Connections

In SQL Server 7.0, you did not have to code "trusted_connection=yes" in your connection strings for ADO, OLE DB, or ODBC to
obtain a trusted connection. If you did not specify a UID and PASSWORD, SQL Server would default to trying a trusted connection.
In SQL Server 2000, you must code "trusted_connection=yes" to obtain trusted connection.

Extended Objects in SQL-DMO

Some objects in SQL-DMO are extended in SQL Server 2000. For more information about using extended SQL-DMO objects,
methods, and properties with SQL Server 7.0 or earlier, see Programming Extended SQL-DMO Objects.

SQL-SCM

The SQL-SCM (Service Control Manager) API has been removed and is no longer supported.

English Query and OLAP Services for SQL Server 7.0

For users of OLAP Services for SQL Server 7.0 who want to install or uninstall English Query, these issues apply:

OLAP Services for SQL Server 7.0 must not be running during installation. Shut down the OLAP Services service before
installing English Query. (See the Services application in Control Panel.)

If you have installed OLAP Services for SQL Server 7.0 and you uninstall English Query, you must reinstall OLAP Services.

Conversely, if you have installed English Query and you uninstall OLAP Services, you must reinstall English Query to
maintain OLAP connectivity.

These issues do not occur with SQL Server 2000 Analysis Services (formerly OLAP Services).

Installing SQL Server (SQL Server 2000)

SQL Server 2000 and SQL Server version 6.5
Microsoft® SQL Server™ 2000 is compatible with SQL Server version 6.5 in many respects. Most product functionality of SQL
Server version 6.5 remains in SQL Server 2000. Most applications for SQL Server 6.5 work unchanged after the database server is
upgraded to SQL Server 2000 by the SQL Server Upgrade Wizard.

The SQL Server 2000 upgrade process:

Adds functionality, either new to SQL Server 2000 or changed from earlier versions, which makes tasks easier to
accomplish.

Minimizes the time and effort needed to upgrade.

In some cases, compatibility issues can arise:

Configuration Options

Some server configuration options have changed.

SQL-DMO, Tasks, and Replication

Task, replication, and device objects have changed. SQL Server 2000 uses jobs instead of tasks, and provides new system
tables and system stored procedures.

Replication and Triggers

Replication types that allow data modifications at the Subscriber use triggers to track changes to published tables. If there are
triggers on your application that modify published tables, the sp_configure server option nested triggers should be enabled.
This option affects tables used in merge replication or tables used in snapshot replication or transactional replication with the
immediate updating or queued updating option. Before adding these types of replication to an existing database that uses
triggers, be sure your application works correctly with the nested triggers option enabled. The nested triggers option is
enabled by default; however, if this option was disabled previously, you will need to enable it again.

Segments and Devices

SQL Server 7.0 and SQL Server 2000 use files and filegroups instead of segments and devices for storing indexes or tables.
Unless your application depends upon the physical layout of segments within devices, this does not create compatibility
problems for your application.

System Tables

If your applications depend upon accessing system tables directly, the applications may need to be revised. It is
recommended that you use system stored procedures or information schema views.

Here are the SQL Server 6.x system tables that are not included with SQL Server 2000.

master.dbo.spt_datatype_info sysprocedures
sysbackupdetail sysrestoredetail
sysbackuphistory sysrestorehistory
syshistory syssegments
syskeys systasks
syslocks sysusages

Backup and Restore

SQL Server 2000 uses BACKUP and RESTORE statements in place of DUMP and LOAD. DUMP and LOAD are supported for
backward compatibility, but with some limitations.

System Stored Procedures

Some system stored procedures are no longer supported.

For more information, see the discussion of specific backward compatibility issues.

Setting a Backward Compatibility Level

When running at its default settings, Microsoft SQL Server 2000 implements SQL-92 behaviors for some Transact-SQL
statements whose behaviors differed from the standard in earlier versions of SQL Server. SQL Server 2000 also enforces reserved
keywords that were not keywords in earlier versions of SQL Server. If upgrading existing systems with existing applications, you
can use the database compatibility level settings to retain the earlier behaviors if your existing applications depend on those
behaviors. This gives you time to upgrade applications in an orderly fashion. Most applications, however, are not affected by the
changes in behavior and work at the SQL Server 2000 compatibility level.

The compatibility level is specified for each database using the sp_dbcmptlevel system stored procedure. The database
compatibility level can be set to 60 (version 6.0 compatibility), 65 (version 6.5 compatibility), 70 (version 7.0 compatibility), and
the default 80 (SQL Server 2000 compatibility). The effects of the compatibility level settings are generally limited to the
behaviors of a small number of Transact-SQL statements that also existed in earlier versions of SQL Server. Even when the
database compatibility level is set to 60 or 65, applications gain almost all of the benefits of the new performance enhancements
of SQL Server 2000. Applications still benefit from features such as the improved query processor. For more information, see the
discussion of specific behaviors controlled by the different settings in sp_dbcmptlevel.

For installations of all instances of SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 7.0 to
SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 6.5 and SQL Server 6.0 to SQL Server
2000, the existing default compatibility level is retained.

Important The compatibility level for the master database is 80 and cannot be changed. If you have added any user-defined
objects to master, you must ensure they work correctly at the 80 compatibility level.

The model database is set automatically to the SQL Server 2000 compatibility level during an upgrade. All new user-defined
databases are created with the same compatibility level setting as model. If you do not want to use any SQL Server 2000
behavior in new databases created after an upgrade, use sp_dbcmptlevel to change the compatibility level setting in model.

Certain behaviors are not enabled at lower compatibility levels. For example, the keywords LEFT, OUTER, and JOIN are not
keywords at compatibility level 60. This means the database compatibility level must be set to 65 or higher before the LEFT
OUTER JOIN clause becomes valid. Before any applications can take advantage of features only available at a higher compatibility
level, all applications using the database must be upgraded to work correctly at the higher compatibility level.

Likewise, setting the compatibility level of a database to 65 makes the database version-6.5 compatible, but does not necessarily
provide version 6.5 behaviors. For example, when SET ANSI_PADDING is ON and you attempt to insert the strings 'abc' and 'abc '
into a primary key column, SQL Server 2000 considers the strings to be duplicates and does not violate the primary key
constraint. In SQL Server 6.5, the two strings are considered to be unique and both insertions succeed. Setting the compatibility
level to 65 does not force SQL Server 2000 to treat the strings as unique values.

Note While running at compatibility level 60 or 65 preserves legacy behaviors on SQL Server 2000, support for these behaviors
may be dropped in future versions of SQL Server. It is recommended that you plan to upgrade your applications to work correctly
with the compatibility level set to 80 as soon as is practicable.

See Also

Reserved Keywords

System Stored Procedures

System Tables

Installing SQL Server (SQL Server 2000)

SQL Server Backward Compatibility Details
SQL Server Backward Compatibility Details

Microsoft® SQL Server™ 2000 adds many new features. Most of the changes are internal and will not affect your database scripts
or applications. All Transact-SQL statements are compatible. However, administration tools or scripts should be updated to work
with SQL Server 2000.

The backward compatibility topics in this section contain a detailed list of features and behaviors supported in SQL Server version
6.5 that have changed and could possibly affect your administration tools or scripts. These changes are not controlled by the
backward compatibility level.

To indicate their potential effect on administration tools or scripts, feature changes have been grouped into four levels.

Level Consists of
1 Administrative statements, stored procedures, or SQL Server items that

have been removed from, or are no longer supported in, SQL Server 2000.
Administrative tools or scripts using these items must be fixed prior to
using SQL Server 2000. For more information about these features, see
Level 1: Handling Discontinued Functionality.

2 Important changes that produce different behavior from earlier versions of
SQL Server. For example, items in this category are those that have changed
behavior in data type conversion or usage of selected functions, changed
behavior of clauses in selected Transact-SQL statements and stored
procedures, changed column names in selected system tables, and changed
behavior due to the database compatibility setting. For more information
about these features, see Level 2: Handling Major Changes to Behavior.

3 Items supported for backward compatibility only. Any item included in this
category is fully supported, but may be removed or unsupported in a future
release. SQL Server 2000 provides features that accomplish these tasks
more efficiently and have ongoing support. For more information about
these features, see Level 3: Updating to Improve Earlier Functionality.

4 Minor changes that produce different behavior from earlier versions of SQL
Server. For example, items in this category are either ignored or have one or
more ignored parameters, changed byte lengths, added parameters or
columns, or changed data type columns. For more information about these
features, see Level 4: Handling Minor Changes to Behavior.

Note You might find it helpful to review SQL Server 2000 and SQL Server version 7.0 as well.

Installing SQL Server (SQL Server 2000)

SetHostName property not used in SQL Server 2000
SetHostName property not used in SQL Server 2000

When using SQL Server 6.5 integrated security, SQL Server 6.5 did not report the Windows NT account used by a connection
unless the system administrator activated the SET HOSTNAME TO USERNAME option in SQL Enterprise Manager.

The setting could also be activated through the SQL-DMO SetHostName property. With this setting in effect, these functions and
columns returned the user's Windows NT account name instead of the network name of the client computer:

Transact-SQL HOST_NAME() function

hostname column in the result set returned by sp_who

hostname column in sysprocesses

In SQL Server 2000, the loginame column in the sp_who result set contains the Windows NT account name for connections
made using Windows NT Authentication. Applications needing the Windows NT account associated with a connection using
Windows NT Authentication should reference this column.

SQL Server 2000 Enterprise Manager no longer presents the SET HOSTNAME TO USERNAME option. SQL Server 2000 ignores
the setting of the SQL-DMO SetHostName property.

Installing SQL Server (SQL Server 2000)

Level 1: Handling Discontinued Functionality
Level 1: Handling Discontinued Functionality

Backward Compatibility Level 1 consists of administrative statements, stored procedures, or Microsoft® SQL Server™ items that
were supported in SQL Server 6.5 but have been removed from, or are no longer supported in, SQL Server 2000. Administrative
tools or scripts using these items must be fixed prior to using SQL Server 2000.

This subheading Relates to
Backup and Restore BACKUP

RESTORE
DUMP
LOAD
sysbackuphistory
sysbackupdetail
sysrestorehistory
sysrestoredetail
backupfile
backupmediafamily
backupmediaset
backupset
restorefile
restorefilegroup
restorehistory

Configuration Options sp_configure (backup buffer size, backup
threads, database size, free buffers, hash
buckets, LE threshold maximum, LE threshold
minimum, LE threshold percent, logwrite sleep,
max lazywrite IO, memory, open databases,
procedure cache, RA cache hit limit, RA cache
miss limit, RA delay, RA pre-fetches, RA slots
per thread, RA worker threads, recovery flags,
remote conn timeout, SMP concurrency, sort
pages, min memory per query, index create
memory, tempdb in ram, and user connections
options)
trace flag 204

Custom Sort Orders Character sets, sort orders, and Unicode collations
Databases ALTER DATABASE
Database Options sp_dboption (subscribe and no chkpt. on

recovery options)
sp_addsubscription
RESTORE

Data Access Objects (DAO) odbccmpt utility
DBCC DBCC DBREINDEX

DBCC MEMUSAGE
DBCC SHRINKDB

DB-Library Two-Phase Commit
DB-Library for Visual Basic

DECnet Network Library DECnet Sockets Net-Library
Disk Commands DISK REINIT

DISK REFIT
ALTER DATABASE

Disk Mirroring DISK MIRROR
DISK REMIRROR
DISK UNMIRROR

Indexes CREATE INDEX

https://msdn.microsoft.com/en-us/library/aa197118(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197127(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215537(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215529(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197125(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215567(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215569(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197113(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa176535(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215525(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197120(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197117(v=sql.80).aspx

Open Data Services Windows NT Component Services
SRV_CONFIG
SRV_PROC
SRV_SERVER
srv.h
Opends60.lib

Program Group Tools and
Utilities

Client Network Utility
ISQL_w
MS Query
SQL Client Configuration
SQL Enterprise Manager
SQL Help
SQL Security Manager
SQL Trace
SQL Performance Monitor
SQL Service Manager
SQL Setup
SQL Query Analyzer
SQL Server Enterprise Manager
SQL Server Profiler
SQL Server Service Manager

Replication Restricted publications
DBOption object
ReplicationDatabase object EnablePublishing
property
repl_publisher login

Security DENY
Delimited Identifiers

Segments CREATE INDEX
CREATE TABLE
sp_addsegment
sp_dropsegment
sp_extendsegment
sp_helpsegment
CREATE DATABASE
ALTER DATABASE

Services SQL Executive
SET DISABLE_DEF_CNST_CHK SET DISABLE_DEF_CNST_CHK
SET SHOWPLAN SET SHOWPLAN

SET SHOWPLAN_ALL
SET SHOWPLAN_TEXT

SQL Alerter SQLALRTR.exe
SQL-DMO sqlole.dll
System Stored Procedures
(General Extended Procedures)

xp_snmp_getstate
xp_snmp_raisetrap

System Stored Procedures
(Replication)

sp_replica
sp_replsync
sp_helppublicationsync
sp_subscribe
sp_unsubscribe
@@ERROR
sp_changepublication
sp_addpublisher
sp_adddistpublisher
sp_droppublisher
sp_dropdistpublisher
sp_distcounters
sp_helpreplicationdb
sp_helpreplicationdboption
sp_replstatus

https://msdn.microsoft.com/en-us/library/aa215568(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215562(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215549(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215542(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215541(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215534(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215570(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197114(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215577(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215540(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197122(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197121(v=sql.80).aspx

System Stored Procedures
(System)

ALTER TABLE
CREATE TABLE
sp_help
sp_helpconstraint
sp_commonkey
sp_dropkey
sp_foreignkey
sp_helpjoins
sp_helpkey
sp_primarykey
sp_placeobject
sp_dbinstall
sp_attach_db
sp_makestartup
sp_unmakestartup
sp_procoption
sp_helplogins
sp_helprotect
sp_tableoption
sp_serveroption (fallback option)
sp_setlangalias
sp_droplanguage
sp_fallback_activate_svr_db
sp_fallback_deactivate_svr_db
sp_fallback_enroll_svr_db
sp_fallback_help
sp_fallback_permanent_svr
sp_fallback_upd_dev_drive
sp_fallback_withdraw_svr_db
sp_devoption
sp_diskdefault
sp_helplog
sp_helpstartup
sp_help_revdatabase
sp_sqlexec
sp_addlanguage

https://msdn.microsoft.com/en-us/library/aa215533(v=sql.80).aspx

System Stored Procedures
(Tasks)

sp_addalert
sp_addnotification
sp_addoperator
sp_dropalert
sp_dropnotification
sp_dropoperator
sp_helpalert
sp_helphistory
sp_helpnotification
sp_helpoperator
sp_purgehistory
sp_runtask
sp_stoptask
sp_updatealert
sp_updatenotification
sp_updateoperator
sp_add_alert
sp_add_notification
sp_add_operator
sp_delete_alert
sp_delete_notification
sp_delete_operator
sp_help_alert
sp_help_jobhistory
sp_help_notification
sp_help_operator
sp_purge_jobhistory
sp_start_job
sp_stop_job
sp_update_alert
sp_update_notification
sp_update_operator

System Tables Information Schema Views
System Stored Procedures (Catalog Procedures)
sysdevices (mirrorname and stripeset columns)
syshistory
sysjobhistory
sysindexes (distribution, segment, rowpage,
keys1, and keys2 columns)
syskeys
syslocks
syslockinfo
syslogs
sysprocesses (gid and suid columns)
sysprocedures
syscomments
syssegments
CREATE DATABASE
ALTER DATABASE
CREATE TABLE
ALTER TABLE
CREATE INDEX
systasks
sysjobs
sysjobsteps
sysjobservers
sysusages
master.dbo.spt_datatype_info

Transactions Data type conversions
Utilities probe login

https://msdn.microsoft.com/en-us/library/aa215560(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197123(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197115(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215532(v=sql.80).aspx

Installing SQL Server (SQL Server 2000)

Level 2: Handling Major Changes to Behavior
Level 2: Handling Major Changes to Behavior

Backward Compatibility Level 2 consists of important changes in Microsoft® SQL Server™ 2000 that produce different behavior
from earlier versions of SQL Server. For example, items in this category are those that have changed behavior in data type
conversion or usage of selected functions, changed behavior of clauses in selected Transact-SQL statements and stored
procedures, changed column names in selected system tables, and changed behavior due to the database compatibility setting.
This topic covers backward compatibility details for these items.

This subheading Relates to
Backup and Restore BACKUP

CREATE DATABASE
ALTER DATABASE
RESTORE
sp_dboption

Bulk Copy bcp Utility
Configuration Options Setting Configuration Options

sp_configure (open objects and user
connections options)

Database Pages and Extents Pages and Extents
Data Types CAST and CONVERT

Data Types
DB-Library dbcursorfetchex
Empty Strings sp_dbcmptlevel

CHARINDEX
DATALENGTH
LEFT
LTRIM
PATINDEX
REPLICATE
RIGHT
RTRIM
SPACE
SUBSTRING
UPDATETEXT

Indexes CREATE INDEX
INSERT sp_dbcmptlevel

INSERT
Keyset Cursors Keyset cursors
LTRIM and RTRIM Trimming
Functions

LTRIM
RTRIM

ODBC SQLGetDiagRec
SQLMoreResults

RIGHT Using Identifiers
Reserved Keywords

Security GRANT
REVOKE
DENY
sp_addlinkedsrvlogin

SELECT SELECT
SET SHOWPLAN SET SHOWPLAN_ALL

SET SHOWPLAN_TEXT

https://msdn.microsoft.com/en-us/library/aa215547(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197116(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215564(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215530(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215526(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215538(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa176541(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215546(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215527(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215535(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215543(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215524(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215531(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197124(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215563(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215539(v=sql.80).aspx

System Tables Information Schema Views
System Stored Procedures (Catalog Procedures)
sysdatabases (logptr and dumptrdate columns)
sysmessages (langid column)
syslogins (language column)
computed columns

Table Hints DELETE
FROM
INSERT
SELECT
UPDATE

Transactions SET TRANSACTION ISOLATION LEVEL
SET CURSOR_CLOSE_ON_COMMIT
ROLLBACK
DECLARE CURSOR

Triggers and System Stored
Procedures

sp_dbcmptlevel
sp_create_removable
CREATE TRIGGER
SET QUOTED_IDENTIFIER
SET ANSI_NULLS
SET ANSI_DEFAULTS

UPDATE @@ERROR
UPDATE
INSERT

UPDATETEXT UPDATETEXT
WRITETEXT

Views DELETE
INSERT
UPDATE

https://msdn.microsoft.com/en-us/library/aa215548(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215544(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215545(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215565(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215523(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215528(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa215561(v=sql.80).aspx

Installing SQL Server (SQL Server 2000)

Level 3: Updating to Improve Earlier Functionality
Level 3: Updating to Improve Earlier Functionality

 New Information - SQL Server 2000 SP3.

Backward Compatibility Level 3 consists of items that were supported in SQL Server version 6.5 but are supported in SQL Server
2000 (and SQL Server 7.0) for backward compatibility only. Any item included in this category is fully supported, but may be
removed or unsupported in a future release. It is recommended that, as time allows, the backward compatible item be replaced
with the recommended item. SQL Server 2000 provides features that accomplish these tasks more efficiently and have ongoing
support.

This topic covers backward compatibility details for these items.

This subheading Relates to
Backup and Restore BACKUP

RESTORE
CREATE DATABASE

Database Options sp_dboption (publish option)
sp_replicationdboption

DBCC DBCC NEWALLOC
DBCC CHECKALLOC
DBCC ROWLOCK
Architecture Enhancements
DBCC TEXTALL
DBCC CHECKDB
DBCC TEXTALLOC
DBCC CHECKTABLE
DBCC DBREPAIR
DROP DATABASE

Devices Overview of SQL Server Architecture
DISK INIT
CREATE DATABASE
ALTER DATABASE
DISK REINIT
sp_logdevice
sp_dropdevice

https://msdn.microsoft.com/en-us/library/aa197086(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197088(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197078(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197110(v=sql.80).aspx

Open Data Services srv_config
srv_config_alloc
srv_getconfig
srv_init
srv_run
srv_getuserdata
srv_setuserdata
srv_errhandle
srv_iodead
srv_log
srv_sendstatus
srv_sfield
srv_event
srv_eventdata
srv_getserver
srv_got_attention
srv_handle
srv_pre_handle
srv_post_handle
srv_setevent
srv_terminatethread
srv_attention
srv_connect
srv_disconnect
srv_language
srv_rpc
srv_exit
srv_start
srv_sleep
srv_restart
srv_stop
srv_langcpy
srv_langlen
srv_langptr
srv_paramdata
srv_paramlen
srv_parammaxlen
srv_paramname
srv_paramnnumber
srv_paramset
srv_paramstatus
srv_paramtype
srv_returnval
srv_rpcdb
srv_rpcnumber
srv_rpcoptions
srv_clearstatistics
srv_sendstatistics
srv_alloc
srv_bmove
srv_bzero
srv.h
srv_describe
srv_setcollen
srv_setcoldata
srv_paramsetoutput
srv_paraminfo

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Query Performance SUSER_ID
SUSER_SID
SUSER_NAME
SUSER_SNAME
syslogins
sysdatabases
sysremotelogins
sysusers
sysalternates

Security GRANT
Authentication
SETUSER

SELECT FASTFIRSTROW
SELECT
INDEX = (index hint)

SET SHOWPLAN SET SHOWPLAN_TEXT
SET SHOWPLAN_ALL
SQLGetDiagRec

System Stored Procedures (Extended) xp_grantlogin
xp_revokelogin
sp_grantlogin
sp_revokelogin

System Stored Procedures (System) sp_add_job
sp_add_jobschedule
sp_add_jobstep
sp_addtask
sp_delete_job
sp_delete_jobschedule
sp_delete_jobstep
sp_droptask
sp_help_jobhistory
sp_help_jobschedule
sp_help_jobstep
sp_helptask
sp_purge_jobhistory
sp_reassigntask
sp_start_job
sp_stop_job
sp_update_job
sp_update_jobschedule
sp_update_jobstep
sp_updatetask

https://msdn.microsoft.com/en-us/library/aa197089(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197104(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197090(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197082(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197085(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197098(v=sql.80).aspx

Installing SQL Server (SQL Server 2000)

Level 4: Handling Minor Changes to Behavior
Level 4: Handling Minor Changes to Behavior

Backward Compatibility Level 4 consists of minor changes in Microsoft® SQL Server™ 2000 that produce different behavior from
earlier versions of SQL Server. For example, items in this level are either ignored or have one or more ignored parameters,
changes to byte lengths, added parameters or columns, or changed data type columns.

This topic covers backward compatibility details for these items.

This subheading Relates to these items
Aliases Roles

Managing Permissions
Backup and Restore RESTORE HEADERONLY

LOAD HEADERONLY
Configuration sp_configure (media retention option)

Setting Configuration Options
CREATE PROCEDURE CREATE TABLE

SELECT INTO
Data Types decimal and numeric

Using Mathematical Functions
+ (Add)
- (Subtract)
* (Multiply)
/ (Divide)
ATN2
AVG
CAST and CONVERT
EXP
POWER
RADIANS
ROUND
SUM

DATEPART and SET DATEFIRST SET DATEFIRST
DATEPART

DBCC DBCC
DBCS String Comparisons Unicode space characters
DELETE and SELECT FROM
Devices ALTER DATABASE
Functions @@DBTS
Global Variables Functions
ODBC SQL_COPT_SS_PERF_QUERY_INTERVAL

SQLMoreResults
SQL_NO_DATA

Rebuilding the master
Database

Rebuild Master Utility

Rebuilding the Registry (Level
4)

setup/t RegistryRebuild = On

Replication Replication Between Different Versions of SQL Server
Subscribing to One or More Articles of a Publication

Security SYSTEM_USER
SELECT SELECT

FROM
Triggers and System Stored
Procedures (System)

CREATE TRIGGER
sp_dboption (recursive triggers option)
sp_tableoption
xp_readmail
xp_sendamil

https://msdn.microsoft.com/en-us/library/aa197100(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197106(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197081(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197103(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197094(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197083(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197099(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197105(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197091(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197096(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197102(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197108(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197093(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197084(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197097(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197095(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197087(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197109(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197079(v=sql.80).aspx

UPDATE UPDATE
Utilities SQL Query Analyzer

isql utility

https://msdn.microsoft.com/en-us/library/aa197092(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa197080(v=sql.80).aspx

Installing SQL Server (SQL Server 2000)

After Installing or Upgrading to SQL Server 2000
For a standard installation, components include:

The SQL Server relational database engine.

System databases used to store system level information such as login and configuration settings and for use as database
templates.

The pubs and Northwind sample databases, provided as learning tools.

Stored procedures, a recompiled collection of Transact-SQL statements.

Interactive management tools used for administering SQL Server.

SQL Server Books Online, the complete documentation for SQL Server 2000.

See Also

Books Online

Management Tools

Select Components

SQL Stored Procedures

Using the Start Menu

System and Sample Databases

System Databases and Data

Installing SQL Server (SQL Server 2000)

Using the Start Menu
Microsoft® SQL Server™ 2000 Setup creates the Microsoft SQL Server program group on the Start menu in the Programs
group. From the Microsoft SQL Server program group, you can start:

Books Online.

Client Network Utility.

Configure SQL XML Support in IIS.

Enterprise Manager.

Import and Export Data.

Profiler.

Query Analyzer.

Server Network Utility.

Service Manager.

Microsoft SQL Server-Switch Program Group

If you install an instance of Microsoft SQL Server 2000 (default or named) on the same computer with an installation of Microsoft
SQL Server version 6.5, Setup removes the Microsoft SQL Server 6.5 program group and adds the Microsoft SQL Server-
Switch program group. SQL Server 6.5 and SQL Server 2000 cannot run at the same time, but using the Server-Switch program
group, you can switch between the two versions.

On the Start menu, only the program group of the active version of SQL Server is accessible at any given time. The nonactive
version is shown in the Server-Switch program group so you can quickly switch from one version to another.

The Microsoft SQL Server-Switch program group contains these options:

Microsoft SQL Server 6.5 or Microsoft SQL Server 2000 (the nonactive version)

SQL Server Upgrade Wizard

Uninstall SQL Server 6.5

See Also

Switching Between SQL Server 6.5 and SQL Server 2000

Installing SQL Server (SQL Server 2000)

System and Sample Databases
When Microsoft® SQL Server™ 2000 is installed, Setup creates the database and log files shown in this table.

Database Database file Log file
master Master.mdf Mastlog.ldf
model Model.mdf Modellog.ldf
msdb Msdbdata.mdf Msdblog.ldf
tempdb Tempdb.mdf Templog.ldf
pubs Pubs.mdf Pubs_log.ldf
Northwind Northwnd.mdf Northwnd.ldf

The system databases are master, model, msdb, and tempdb. The sample databases, pubs and Northwind, are provided as
learning tools. (Names of these databases are case-sensitive.) Many of the examples in SQL Server Books Online are based on the
sample databases.

Note The default location of the database and log files is Program Files\Microsoft SQL Server\Mssql\Data. This location may vary
if the default location was changed when SQL Server was installed.

See Also

Northwind Sample Database

pubs Sample Database

System Databases and Data

Installing SQL Server (SQL Server 2000)

Locating Directories and Files
The following tables and illustration show the default locations of directories and files for Microsoft® SQL Server™ 2000
(primarily for the default instance). Depending on the options you install, all of the files listed in the tables may not appear on
your computer, and others not listed may be included.

Paths listed here are default paths, and may vary if locations were changed during installation. Both program and data file
locations can be changed, but the location of shared tools cannot be changed.

Important Do not delete any of the following directories or their contents: Binn, Data, Ftdata, HTML, or 1033. You may delete
other directories, if necessary; however, you may not be able to retrieve any lost functionality or data without uninstalling and
reinstalling SQL Server 2000.

Do not delete or modify any of the .htm files in the HTML directory. They are required for SQL Server Enterprise Manager and
other tools to function properly.

Shared Files for All Instances of SQL Server 2000

This table shows the locations for the shared files for both default and named instances of SQL Server 2000.

Location Description
\Program Files\Microsoft SQL
Server\80\Com

Dynamic-link libraries (DLLs) for Component
Object Model (COM) objects.

\Program Files\Microsoft SQL
Server\80\Com\Binn\Resources\1033

Resource files (RLLs) used by the DLLs in this
COM directory. (Note: 1033 is for U.S. English;
localized versions use different directory
numbers.)

\Program Files\Microsoft SQL
Server\80\Tools\Binn

Microsoft Windows NT® client executable
files.

\Program Files\Microsoft SQL
Server\80\Tools\Binn\Resources\1033

Resource files used by the DLLs in the
Tools\Binn directory.

\Program Files\Microsoft SQL
Server\80\Tools\Books

SQL Server Books Online files, including
online Help files.

Program Files\Microsoft SQL
Server\80\Tools\DevTools\

Header files, library files, and sample
programs for use by developers.

Program Files\Microsoft SQL
Server\80\Tools\Html

Microsoft Management Console (MMC) and
SQL Server HTML files.

Program Files\Microsoft SQL
Server\80\Tools\Templates

Boilerplate files with SQL scripts to help you
create objects in the database.

Program and Data Files for the Default Instance of SQL Server 2000

This table shows the locations of the program and data files for the default instance of SQL Server 2000. These are the default file
locations, which can be changed during installation.

Location Description
\Program Files\Microsoft SQL
Server\Mssql\Backup

Default location for backup files.

\Program Files\Microsoft SQL
Server\Mssql\Binn

Microsoft Windows NT server executable files
and DLL files for extended stored procedures.

\Program Files\Microsoft SQL
Server\Mssql\Binn\Resources\1033

Resource files used by the DLLs in this Binn
directory.

Program Files\Microsoft SQL
Server\Mssql\Data

System and sample database files.

Program Files\Microsoft SQL
Server\Mssql\Ftdata

Full-text catalog files.

Program Files\Microsoft SQL
Server\Mssql\Install

Scripts run during Setup and resulting output
files.

Program Files\Microsoft SQL
Server\Mssql\Jobs

Storage location for temporary job output files.

Program Files\Microsoft SQL
Server\Mssql\Log

Error log files.

Program Files\Microsoft SQL
Server\Mssql\Repldata

Working directory for replication tasks.

Program Files\Microsoft SQL
Server\Mssql\Upgrade

Files used for version upgrade from SQL Server
version 6.5 to SQL Server 2000.

File Locations for the Default Instance of SQL Server 2000

This illustration shows the file locations for the default instance of Microsoft® SQL Server™ 2000.

See Also

File Paths for SQL Server 2000

Installing SQL Server (SQL Server 2000)

Changing Passwords and User Accounts
Microsoft® SQL Server™ 2000 services accounts and passwords are linked to Microsoft Windows® user accounts and
passwords. Changes in one location may require changes in the other.

Changing SQL Server Services Accounts After Install

After you have installed SQL Server 2000, use SQL Server Enterprise Manager to change the assigned password or other
properties of any SQL Server–related service. Each service must be changed individually. In addition, the Microsoft Search service
(full-text search) must always run under the local system account.

The new user account takes effect when the service is restarted. You should not change the passwords for any of the SQL Server
service accounts when a failover cluster node is down or offline. If you have to do this, you will need to reset the password again
using Enterprise Manager when all nodes are back online.

If you are running Microsoft Windows NT®, and you select to change the current service account for SQL Server to a non-
administrator account (and the current service account for SQL Server is not an administrator account), the Valid Administrator
Login dialog box is displayed. SQL Server must have administrator privileges to change security entries, so you must enter the
user name, password, and domain to impersonate the non-administrator service account you have selected.

Once you have specified this information, all objects are granted full control permission. The location of the objects is determined
by the following:

Permissions are set for all files in the binary and data installation locations for the specific instances.

Registry permissions depend on whether the instance is default or named:

For a default instance, permissions are applied only to the entries listed below the HKLM\Software\Microsoft\MSSQLServer
entry:

SQLServerAgent

Replication

Providers

Setup

Tracking

MSSQLServer

For a named instance, permissions are applied to the entire HKLM\Software\Microsoft\MicrosoftSQLServer\80 entry.

The following rights are granted to the accounts:

SeServiceLogonRight, which allows the account to run as a service.

SeLockMemoryPrivilege, which allows the account to use the AWE memory feature of SQL Server.

SeTcbPrivilege, which allows the account to impersonate other accounts.

If you are running SQL Server in a failover cluster configuration, permissions are also set for all files in the binary and data
installation locations for all nodes in the cluster. Permission is also granted for the service account on the Cluster Object.

Note If you are running Microsoft Windows 2000 and want to use the Windows 2000 Encrypted File System to encrypt any SQL
Server files, you must unencrypt the files before you can change the SQL Server service accounts. If you do not unencrypt the files
and then reset the SQL Server service accounts, you cannot unencrypt the files.

Changing the current service account for SQL Server to a non-administrator account causes existing full-text catalogs to become
inaccessible. Either rebuild and perform a full population of all catalogs belonging to this instance of SQL Server, or switch back to
an account with administrator permissions.

You can change the SQLServerAgent service account to a non Microsoft Windows NT® 4.0 administrator account. However, the
Windows NT 4.0 account must be a member of the sysadmin fixed server role to run SQL Server Agent.

To change the MSSQLServer services login (Enterprise Manager)

Enterprise Manager

Enterprise Manager

Windows Passwords Changes

If your Windows password changes after SQL Server 2000 is installed (for example, your password expires), you must also revise
the user account information for SQL Server services in Windows.

To change SQL Server services login account information (Windows NT)

Windows

Windows

To change SQL Server services login account information (Windows 2000)

Windows

Windows

After changing the SQL Server service account information in Control Panel, you must also change the SQL Server service
account in SQL Server Enterprise Manager. This allows the service account information for Microsoft Search service to remain
synchronized as well.

Important Although the Microsoft Search service is always assigned to the local system account, the full-text search engine
tracks the SQL Server service account in Windows. Full-text search and failover clustering are not available if Windows password
changes are not reset using SQL Server Enterprise Manager.

For more information about creating Windows NT user accounts, granting advanced user rights, setting password expiration, and
managing group memberships, see the Windows NT documentation or User Manager for Domains Help. For Microsoft Windows
2000 users, see Computer Management or Group Policy Editor in the Windows 2000 documentation.

See Also

Creating Security Accounts

Security Architecture

Installing SQL Server (SQL Server 2000)

Renaming a Server
When you change the name of the computer that is running Microsoft® SQL Server™ 2000, the new name is recognized during
SQL Server startup. You do not have to run Setup again to reset the computer name.

You can connect to SQL Server using the new computer name after you have restarted the server. However, to correct the
sysservers system table, you should manually run these procedures:

sp_dropserver old_name
GO
sp_addserver new_name, local
GO

When you have more than one instance of SQL Server on the computer, change the sysservers system table information by
running the stored procedures this way:

sp_dropserver old_servername\instancename
GO
sp_addserver new_servername\instancename, local
GO

Issues with Remote Logins and Replication

If the computer has any remote logins, for example, if it is a replication Publisher or Distributor, sp_dropserver may generate an
error similar to this:

Server: Msg 15190, Level 16, State 1, Procedure sp_dropserver, Line 44
There are still remote logins for the server 'SERVER1'.

To resolve the error, you may need to drop remote logins for this server. If replication is installed, disable replication on the server
before running the sp_dropserver stored procedure.

To disable replication using the SQL Server Enterprise Manager

1. Expand a server group, and then expand the Distributor (the server that contains the distribution database).

2. Right-click the Replication folder, and then click Disable Publishing.

3. Complete the steps in the Disable Publishing and Distribution Wizard.

Installing SQL Server (SQL Server 2000)

Deploying SQL Server After Initial Installation
Microsoft® SQL Server™ 2000 includes a new method for distributing a disk image of an installation. When an installation is first
created, it is marked as a new installation. When the server is restarted after installation, SQL Server 2000 verifies that the server
name has not changed. If the server name has changed, an automatic correction is made.

This functionality allows Independent Service Vendors to install SQL Server 2000, stop the server, clone the disk image, and then
distribute it as required. On the first startup of the distributed server, the name correction is made.

This process can be done only one time. If the server is restarted and then stopped, a new SQL Server installation must be created
to be distributed as an image during deployment.

Installing SQL Server (SQL Server 2000)

Installing Full-Text Search and Indexing Tools
The full-text search engine (Microsoft Search service) is installed by default with a typical installation of Microsoft® SQL Server™
2000, Standard and Enterprise editions.

Important If upgrading from SQL Server 7.0 to SQL Server 2000 and full-text search is not installed in SQL Server 7.0, install
full-text search as an additional component after the upgrade is completed.

Microsoft Indexing Service Version 2.0

In addition to using full-text search on character columns in SQL Server data, you can use Microsoft Indexing Service along with
Microsoft Search service to make textual queries against data residing in the file system. This indexing service is included in
Microsoft Windows® 2000. Microsoft Windows NT® users can install the indexing service from the Microsoft Windows NT 4.0
Option Pack.

To install Microsoft Indexing Service 2.0 (Windows NT only)

1. Install Windows NT 4.0 Option Pack.

2. Select Index Server 2.0. An error appears stating that Index Server 2.0 did not install properly.

3. Install Windows NT 4.0 Service Pack 4.

4. Reinstall Windows NT 4.0 Option Pack. You are not required to change any settings.

5. Optional step: Repeat the reinstallation of Windows NT 4.0 Service Pack 4.

Repeating this procedure ensures proper installation.

See Also

Full-text Querying of File Data

How to add components to an instance of SQL Server 2000 (Setup)

Installing SQL Server (SQL Server 2000)

Configuring SQL Server 2000 After Upgrading
After the server is upgraded to Microsoft® SQL Server™ 2000, you may want to perform several configuration tasks, for example:

Set server configuration parameters.

Set security parameters.

Register the server and add it to a server group.

Use SQL Server Enterprise Manager or Transact-SQL to perform these tasks.

See Also

Administering SQL Server Overview

Installing SQL Server (SQL Server 2000)

Switching Between SQL Server 6.5 and SQL Server 2000
Microsoft® SQL Server™ 2000 can be installed on the same computer with Microsoft SQL Server version 6.5, but only one
version can be active at one time.

Note Switching between versions is not the same as running multiple instances. For more information, see Working with
Instances and Versions of SQL Server.

After the SQL Server Upgrade Wizard finishes the conversion from SQL Server version 6.5, SQL Server 2000 is the active version
of SQL Server. If enough disk space exists on your computer, you can keep the SQL Server 6.5 installation intact.

To switch from one version to the other, use the Microsoft SQL Server-Switch application on the Start menu, or run
Vswitch.exe.

Important Be sure the SQL Server Upgrade Wizard is finished with its upgrade tasks, before you attempt to switch between the
active and nonactive versions of SQL Server.

If you install a default instance of SQL Server 2000 on a computer running an instance of SQL Server 6.5, the default instance of
SQL Server 2000 becomes the accessible instance of SQL Server, and the SQL Server 2000 program group appears on the Start
menu. The instance of SQL Server 6.5 is switched out, and the SQL Server 6.5 program group does not appear on the Start menu.

You can run either the default instance of SQL Server 2000 or the instance of SQL Server 6.5, but not both at the same time. To
switch between the two versions of SQL Server, use the Microsoft SQL Server-Verswitch entry on the Start menu. When you
switch from SQL Server 2000 to SQL Server 6.5, the instance of SQL Server 2000 becomes inactive, and the SQL Server 6.5
program group replaces the SQL Server 2000 program group on the Start menu. When you switch from SQL Server 6.5 to SQL
Server 2000, the process is reversed.

If you install one or more named instances of SQL Server 2000 on a computer running SQL Server 6.5 and there is no default
instance of SQL Server 2000, the instance of SQL Server 6.5 remains active as the default instance. Both the SQL Server 2000 and
SQL Server 6.5 program groups appear on the Start menu. You should use the SQL Server 6.5 tools to manage the default
instance of SQL Server 6.5, and the SQL Server 2000 tools to manage the named instances of SQL Server 2000.

If you install both named and default instances of SQL Server 2000 on a computer running SQL Server 6.5, you can run the
named instances of SQL Server 2000 at any time, but must version-switch between the default instance of SQL Server 2000 and
the default instance of SQL Server 6.5. The SQL Server 2000 program group always appears on the Start menu. The SQL Server
6.5 program group appears on the Start menu whenever you have version switched to make SQL Server 6.5 the active default
instance. The SQL Server 6.5 program group does not appear when you have version switched to make SQL Server 2000 the
active default instance.

To switch from SQL Server 6.5 to SQL Server 2000

Command Prompt

Command Prompt

Windows

Windows

See Also

Using SQL Server 6.5 with SQL Server 2000

Removing SQL Server 7.0 or SQL Server 6.5 After Upgrading

Installing SQL Server (SQL Server 2000)

Removing SQL Server 7.0 or SQL Server 6.5 After Upgrading
After you upgrade your Microsoft® SQL Server™ version 7.0 installation to Microsoft SQL Server 2000, or after you upgrade your
databases from SQL Server version 6.5 to SQL Server 2000, you can keep the earlier versions on your computer.

A number of configurations are available for keeping earlier versions of SQL Server alongside SQL Server 2000. For more
information, see Working with Instances and Versions of SQL Server.

When you are ready to remove an earlier version, you can use the Add/Remove Programs option in Control Panel, or you can run
uninstall from the Start menu.

To remove SQL Server 7.0

On the Start menu, in the SQL Server 7.0 group, click Uninstall SQL Server 7.0.

To remove SQL Server 6.5

On the Start menu, in the SQL Server 6.5 group, click Remove SQL Server 6.5.

Installing SQL Server (SQL Server 2000)

Removing SQL Server 2000
You can remove instances of Microsoft® SQL Server™ 2000 by:

Running SQL Server 2000 Setup and selecting the Uninstall option.

Running the Add/Remove Programs application in Control Panel.

Each named instance of SQL Server 2000 must be removed separately. You cannot remove individual components of SQL Server
2000. To remove components, you must remove the entire instance.

Important Before removing SQL Server 2000, quit all applications, including the Windows NT Event Viewer, the Registry editor,
all SQL Server applications, and all applications dependent on SQL Server.

To remove SQL Server using Control Panel

Windows

Windows

To remove instances of SQL Server using Setup

SQL Setup

SQL Setup

See Also

Existing Installation Options

SQL Server Architecture (SQL Server 2000)

SQL Server Architecture Overview
Microsoft® SQL Server™ 2000 is a set of components that work together to meet the data storage and analysis needs of the
largest Web sites and enterprise data processing systems. The topics in SQL Server Architecture describe how the various
components work together to manage data effectively.

Topic Description
Features of SQL Server
2000

Highlights the features of Microsoft SQL Server 2000.

Relational Database
Components

Describes the main relational database components of
SQL Server 2000, including the database engine itself
and the components involved in communications
between applications and the database engine.

Database Architecture Describes the logical components defined in SQL Server
databases and how they are physically implemented in
database files.

Relational Database Engine
Architecture

Describes the features of the server engine that make it
efficient at processing large numbers of concurrent
requests for data from many users.

Administration Architecture Describes how the easy-to-use tools provided with SQL
Server 2000 and the dynamic configuration capabilities
of SQL Server minimize routine administrative tasks.

Replication Architecture Describes the replication components of SQL Server
2000 and how they can be used to distribute data
between databases.

Data Warehousing and
Online Analytical
Processing

Describes Data Transformation Services (DTS) and
Microsoft SQL Server 2000 Analysis Services, and how
they help in building and analyzing a data warehouse or
data mart.

Application Development
Architecture

Describes how SQL Server 2000 supports the various
database programming APIs, which allow users to build
robust database applications.

Implementation Details Provides implementation details, such as the maximum
capacities of Transact-SQL statements, the ranges of SQL
Server configuration options, memory usage of SQL
Server objects, and the differences among the editions of
Microsoft SQL Server.

SQL Server Architecture (SQL Server 2000)

Fundamentals of SQL Server 2000 Architecture
Microsoft® SQL Server™ 2000 is a family of products that meet the data storage requirements of the largest data processing
systems and commercial Web sites, yet at the same time can provide easy-to-use data storage services to an individual or small
business.

The data storage needs of a modern corporation or government organization are very complex. Some examples are:

Online Transaction Processing (OLTP) systems must be capable of handling thousands of orders placed at the same time.

Increasing numbers of corporations are implementing large Web sites as a mechanism for their customers to enter orders,
contact the service department, get information about products, and for many other tasks that previously required contact
with employees. These sites require data storage that is secure, yet tightly integrated with the Web.

Organizations are implementing off-the-shelf software packages for critical services such as human resources planning,
manufacturing resources planning, and inventory control. These systems require databases capable of storing large
amounts of data and supporting large numbers of users.

Organizations have many users who must continue working when they do not have access to the network. Examples are
mobile disconnected users, such as traveling sales representatives or regional inspectors. These users must synchronize the
data on a notebook or laptop with the current data in the corporate system, disconnect from the network, record the results
of their work while in the field, and then finally reconnect with the corporate network and merge the results of their
fieldwork into the corporate data store.

Managers and marketing personnel need increasingly sophisticated analysis of trends recorded in corporate data. They
need robust Online Analytical Processing (OLAP) systems easily built from OLTP data and support sophisticated data
analysis.

Independent Software Vendors (ISVs) must be able to distribute data storage capabilities with applications targeted at
individuals or small workgroups. This means the data storage mechanism must be transparent to the users who purchase
the application. This requires a data storage system that can be configured by the application, and then tune itself
automatically so that the users do not need to dedicate database administrators to constantly monitor and tune the
application.

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 Component Overview
This diagram is an illustration of the relationships between the major components of Microsoft® SQL Server™ 2000.

SQL Server 2000 provides two fundamental services to applications in a Windows® DNA environment:

The SQL Server 2000 relational database engine is a modern, highly scalable, highly reliable engine for storing data. The
database engine stores data in tables. Each table represents some object of interest to the organization, such as vehicles,
employees, or customers. Each table has columns that represent an attribute of the object modeled by the table (such as
weight, name, or cost), and rows that represent a single occurrence of the type of object modeled by the table (such as the
car with license plate number ABC-123, or the employee with ID 123456). Applications can submit Structured Query
Language (SQL) statements to the database engine, which returns the results to the application in the form of a tabular
result set. The specific dialect of SQL supported by SQL Server is called Transact-SQL. Applications can also submit either
SQL statements or XPath queries and request that the database engine return the results in the form of an XML document.

The relational database engine is highly scalable. The SQL Server 2000, Enterprise Edition can support groups of database
servers that cooperate to form terabyte-sized databases accessed by thousands of users at the same time. The engine is
capable of handling the traffic of any Web site in the world. The database engine also tunes itself, dynamically acquiring
resources as more users connect to the database, and then freeing the resources as the users log off. This means that the
smaller editions of SQL Server can be used for individuals or small workgroups that do not have dedicated database
administrators. SQL Server for Windows CE even extends the SQL Server programming model to Windows CE devices used
by mobile, disconnected users. Even large Enterprise Edition database servers running in production are easy to administer
using the graphical user interface (GUI) administration utilities that are a part of the product.

The relational database engine is highly reliable and capable of running for long periods without down time. Administrative
actions that required stopping and starting in earlier versions of the database engine can now be performed while the
engine is running, increasing availability. The integration of the database engine with Windows 2000 and Windows NT®
failover clustering allows you to define virtual servers that keep running even if one of the physical servers in the node fails.
Where appropriate, log shipping can be used to maintain a warm standby server that can replace a production server within
minutes of a failure.

The relational database engine is also highly secure. Login authentication can be integrated with Windows Authentication,
so that no passwords are stored in SQL Server or sent across the network where they could be read by network sniffers.
Sites can set up C2-level auditing of all users accessing a database, and can use Secure Sockets Layer (SSL) encryption to
encrypt all data transferred between applications and the database.

The distributed query feature of the database engine allows you to access data from any source of data that can be accessed

using OLE DB. The tables of the remote OLE DB data source can be referenced in Transact-SQL statements just like tables
that actually reside in a SQL Server database. In addition, the full-text search feature allows you to perform sophisticated
pattern matches against textual data stored in SQL Server databases or Windows files.

The relational database engine is capable of storing detailed records of all the transactions generated by the top online
transaction processing (OLTP) systems. The database engine can also support the demanding processing requirements for
fact tables and dimension tables in the largest online analytical (OLAP) data warehouses.

For more information about the SQL Server 2000 relational database component, see Relational Database Components

Microsoft SQL Server 2000 Analysis Services provides tools for analyzing the data stored in data warehouses and data
marts. Certain analytical processes, such as getting a summary of the monthly sales by product of all the stores in a district,
take a long time if run against all the detail records of an OLTP system. To speed up these types of analytical processes, data
from an OLTP system is periodically summarized and stored in fact and dimension tables in a data warehouse or data mart.
Analysis Services presents the data from these fact and dimension tables as multidimensional cubes that can be analyzed
for trends and other information that is important for planning future work. Processing OLAP queries on multidimensional
Analysis Services cubes is substantially faster than attempting the same queries on the detail data recorded in OLTP
databases. For more information about Analysis Services, see Data Warehousing and Online Analytical Processing.

Application Support

Both the relational database engine and Analysis Services provide native support for the common Windows DNA or Win32 data
access interfaces, such as ActiveX® Data Objects (ADO), OLE DB, and Open Database Connectivity (ODBC). Applications can use
any of these application programming interfaces (APIs) to send SQL or XML statements to the relational database engine using a
native OLE DB provider or ODBC driver. SQL Server 2000 also introduces the ability to use HTTP to send SQL or XML statements
to the relational database engine. Applications can use the multidimensional extensions of either ADO or OLE DB to send
Multidimensional Expressions (MDX) queries to Analysis Services. Because SQL Server uses the standard Windows DNA data
access APIs, the development of SQL Server applications is well supported by the Microsoft application development
environments. In addition, interactive query tools, such as Query Analyzer, provide templates, interactive debuggers, and
interactive test environments that speed the ability of your programmers to deliver SQL Server applications.

In addition to supporting the data storage and OLAP processing needs of applications, SQL Server 2000 provides a full set of easy
to use, graphical administration tools and wizards for creating, configuring, and maintaining databases, data warehouses, and
data marts. SQL Server also documents the administration APIs used by the SQL Server tools, giving you the ability to incorporate
SQL Server administration functionality directly into your own applications. The SQL Server administration APIs include:

SQL Distributed Management Objects (SQL-DMO), a set of COM objects that encapsulates the administration functions for
all of the entities in the relational database engine and databases.

Decision Support Objects (DSO), a set of COM objects that encapsulates the administration functions for all of the entities in
Analysis Services engine and multidimensional cubes.

Windows Management Instrumentation (WMI), SQL Server 2000 provides a SQL Server WMI provider that lets WMI
applications get information on SQL Server databases and instances.

For more information about developing SQL Server applications, see Application Development Architecture, and SQL Server and
XML Support.

Additional Components

SQL Server 2000 provides several components that support important requirements of modern data storage systems. The data
storage needs of today's large enterprises are very complex, and go beyond having a single OLTP system integrated with a single
data warehouse or data mart. Increasing numbers of field personnel need to load sets of data, disconnect from the network,
record their work autonomously during the day, then plug back in to the network and merge their records into the central data
store at the end of the day. OLTP systems have to support the needs of both internal employees operating through an intranet
and hundreds of thousands of customers placing orders through your Web portal. Keeping data close to the workgroups or even
individuals who primarily work on the data, and then replicating the data to a primary data store may minimize the overall
processing load of your system.

SQL Server 2000 replication allows sites to maintain multiple copies of data on different computers in order to improve
overall system performance while at the same time making sure the different copies of data are kept synchronized. For
example, a department could maintain the department sales data on a departmental server, but use replication to update
the sales data in the corporate computer. Several mobile disconnected users can disconnect from the network, work

throughout the day, and at the end of the day use merge replication to merge their work records back into the main
database. These workers can be using SQL Server Personal Edition on notebook or laptop computers, or using SQL Server
for Windows CE on Windows CE devices; all are supported by SQL Server replication. SQL Server replication also supports
replicating data to data warehouses, and can replicate data to or from any data source that supports OLE DB access. For
more information, see Replication Architecture.

SQL Server 2000 Data Transformation Services (DTS) greatly improves the process of building OLAP data warehouses.
Large OLTP databases are finely tuned to support the entry of thousands of business transactions at the same time. OLTP
databases are also structured to record the details of every transaction. Trying to perform sophisticated analysis to discover
trends in sales over a number of months and years would require scanning huge numbers of records, and the heavy
processing load would drag down the performance of the OLTP databases. Data warehouses and data marts are built from
the data in one or more OLTP systems that is extracted and transformed into something more useful for OLAP processing.
OLTP detail rows are periodically pulled into a staging database, where they are summarized and the summary data is
stored in a data warehouse or data mart. Data Transformation Services supports extracting data from one source of data,
performing sometimes complex transformations of the data, and then storing the summarized, transformed data in another
data source. The component greatly simplifies the process of extracting data from multiple OLTP systems and building it
into an OLAP data warehouse or data mart. For more information, see Transforming OLTP Data to OLAP Data Warehouses.

DTS is not limited to being used to build data warehouses. It can be used any time you have to retrieve data from one data
source, perform complex transformations on the data, and then store it in another data source. DTS is also not limited to
working with SQL Server databases or Analysis Services cubes, DTS can work with any data source that can be accessed
using OLE DB.

SQL Server 2000 English Query allows you to build applications that can customize themselves to ad hoc user questions. An
English Query administrator defines for the English Query engine all of the logical relationships between the tables and
columns of a database or the cubes in a data warehouse or data mart. An application can then present the user with a box
where she can enter a character string with a question (written in English) about the data in the database or data warehouse.
The application passes the string to the English Query engine, which analyzes the string against the relationships defined
between the tables or cubes. English Query then returns to the application a SQL statement or MDX (multidimensional
expression) query that will return the answer to the user's question. For more information, see SQL Server and English
Query.

Meta Data Services provides facilities for storing, viewing, and retrieving descriptions of the objects in your applications and
system. Meta Data Services supports the MDC Open Information Model (OIM) specification defining a common format for
storing descriptions of entities such as tables, views, cubes, or transformations, as well as the relationships between these
entities. Application development tools that support OIM can use these descriptions to facilitate rapid development and
interchange with other tools and applications. SQL Server components, such as Data Transformation Services packages and
Analysis Services databases, can also be stored in the Meta Data Services repository. For more information, see SQL Server
2000 Data Warehouse and OLAP Components.

Using SQL Server 2000

An organization may use the SQL Server 2000 components to perform various tasks, for example:

Each department might have a departmental SQL Server database server. Each of these servers periodically replicate their
data into a central database server that serves the entire organization.

The organization may have another central database computer that services the organization's Web site, sometimes
servicing thousands of queries at once. Some of the Web applications use English Query to allow customers to tailor
requests for the data in the Web site database.

Several employees may be running individual copies of a shrink-wrapped software product that installed a copy of SQL
Server 2000 Desktop Engine (MSDE 2000) as its data storage component.

Several other employees in the service department are operating as mobile disconnected users, where they use replication
each morning to load their daily schedules into notebook computers or Microsoft Windows CE devices, work in the field all
day, then use merge replication at the end of the day to enter their work items back into the central computer.

Periodically, detailed OLTP data is extracted from the central databases by Data Transformation Services packages that
scrub the data and build it into summary data that is then loaded into a data warehouse.

The senior managers and marketing personnel use Analysis Services to analyze the data warehouse for business trends that
indicate possible opportunities that could be exploited or risks that must be minimized.

SQL Server Architecture (SQL Server 2000)

Features of SQL Server 2000
Microsoft® SQL Server™ 2000 features include:

Internet Integration.

The SQL Server 2000 database engine includes integrated XML support. It also has the scalability, availability, and security
features required to operate as the data storage component of the largest Web sites. The SQL Server 2000 programming
model is integrated with the Windows DNA architecture for developing Web applications, and SQL Server 2000 supports
features such as English Query and the Microsoft Search Service to incorporate user-friendly queries and powerful search
capabilities in Web applications.

Scalability and Availability.

The same database engine can be used across platforms ranging from laptop computers running Microsoft Windows® 98
through large, multiprocessor servers running Microsoft Windows 2000 Data Center Edition. SQL Server 2000 Enterprise
Edition supports features such as federated servers, indexed views, and large memory support that allow it to scale to the
performance levels required by the largest Web sites.

Enterprise-Level Database Features.

The SQL Server 2000 relational database engine supports the features required to support demanding data processing
environments. The database engine protects data integrity while minimizing the overhead of managing thousands of users
concurrently modifying the database. SQL Server 2000 distributed queries allow you to reference data from multiple
sources as if it were a part of a SQL Server 2000 database, while at the same time, the distributed transaction support
protects the integrity of any updates of the distributed data. Replication allows you to also maintain multiple copies of data,
while ensuring that the separate copies remain synchronized. You can replicate a set of data to multiple, mobile,
disconnected users, have them work autonomously, and then merge their modifications back to the publisher.

Ease of installation, deployment, and use.

SQL Server 2000 includes a set of administrative and development tools that improve upon the process of installing,
deploying, managing, and using SQL Server across several sites. SQL Server 2000 also supports a standards-based
programming model integrated with the Windows DNA, making the use of SQL Server databases and data warehouses a
seamless part of building powerful and scalable systems. These features allow you to rapidly deliver SQL Server
applications that customers can implement with a minimum of installation and administrative overhead.

Data warehousing.

SQL Server 2000 includes tools for extracting and analyzing summary data for online analytical processing. SQL Server also
includes tools for visually designing databases and analyzing data using English-based questions.

SQL Server Architecture (SQL Server 2000)

Integrated with the Internet
The Microsoft® SQL Server™ 2000 relational database engine includes native support for XML:

Transact-SQL results can be returned as XML documents to Web or line of business applications using the OLE DB and ADO
APIs.

You can define annotated XDR schemas that represent a logical view of the tables in your database. Web applications can
then reference these schemas in XPath queries to build XML documents.

The SQL Server 2000 includes an ISAPI DLL that allows you to define virtual roots in Microsoft Internet Information Services
(IIS) associated with an instance of SQL Server 2000. Internet applications can then compose URL strings that reference a
SQL Server 2000 virtual root and contains a Transact-SQL statement. The Transact-SQL statement is sent to the instance of
SQL Server 2000 associated with the virtual root, and the result is returned as an XML document.

XML documents can be added to SQL Server 2000 databases. The OPENXML function can be used to expose the data from
an XML document in a rowset, which can be referenced by Transact-SQL statements, such as SELECT, INSERT, or UPDATE.

SQL Server 2000 works with other products to form a stable and secure data store for Internet and intranet networks:

SQL Server 2000 works with Microsoft Windows® 2000 Server and Microsoft Windows NT® Server security and
encryption facilities to implement secure data storage.

SQL Server 2000 forms a high-performance data storage service for Web applications running under IIS, or accessing the
database through a firewall.

SQL Server 2000 can be used with Site Server to build and maintain large, sophisticated e-commerce Web sites.

The SQL Server 2000 TCP/IP Sockets communications support can be integrated with Microsoft Proxy Server to implement
secure Internet and intranet communications.

Analysis Services includes features that support the functionality required in many Business to Business, or Business to Consumer
Web applications:

An integrated data mining engine supports data mining analysis of both relational databases and OLAP cubes. The data
mining engine is extensible through OLE DB for Data Mining, allowing you to incorporate algorithms from Independent
Software Vendors (ISVs) to support extended data mining features.

Features such as distinct count and OLAP alerts allow you perform actions such as analyzing Web site click-streams to
evaluate the effectiveness of your Web interface.

English Query allows Web applications to support users of any skill level entering English language questions about data in either
a relational database or OLAP cube. English Query will match the question against a model of the database or cube, and return
either a SQL or MDX query to retrieve the proper results.

All of these SQL Server 2000 features are also supported from your line of business applications, allowing you to more easily
integrate your Web and line of business applications.

See Also

Communication Components

Managing Security

SQL Server and XML Support

SQL Server Architecture (SQL Server 2000)

Scalability and Availability
 New Information - SQL Server 2000 SP3.

The same Microsoft® SQL Server™ 2000 database engine operates on Microsoft Windows® 2000 Professional, Microsoft
Windows 2000 Server, Microsoft Windows 2000 Advanced Server, Windows 98, and Windows Millennium Edition. It also runs on
all editions of Microsoft Windows NT® version 4.0. The database engine is a robust server that can manage terabyte-sized
databases accessed by thousands of users. Additionally, when running at its default settings, SQL Server 2000 has features such
as dynamic self-tuning that let it work effectively on laptops and desktops without burdening users with administrative tasks. SQL
Server 2000 Windows CE Edition extends the SQL Server 2000 programming model to mobile Windows CE devices and is easily
integrated into SQL Server 2000 environments.

SQL Server 2000 works with Windows NT and Windows 2000 failover clustering to support immediate failover to a backup
server in continuous operation. SQL Server 2000 also introduces log shipping, which allows you to maintain a warm standby
server in environments with lower availability requirements.

Same Server Across Windows 2000, Windows NT, Windows 98, and Windows Millennium Edition Platforms

The same programming model is shared in all environments, because the SQL Server 2000 database engine runs on Windows NT
Workstation, Windows NT Server, Windows 2000 Professional, Windows 2000 Server, Windows 2000 Advanced Server,
Windows 2000 Datacenter Server, Windows 98, and Windows Millennium Edition.

In general, an application written for an instance of SQL Server 2000 operating in one environment works on any other instance
of SQL Server 2000. The Microsoft Search service is not available on the Windows NT Workstation, Windows 2000 Professional,
Windows Millennium Edition, or Windows 98 operating systems. SQL Server databases on those platforms do not support full-
text catalogs and indexes. Applications running on these operating systems can, however, make use of the full-text capabilities if
they connect to an instance of SQL Server 2000 on a different computer that supports them.

The differences in the behavior of SQL Server 2000 when running on the different operating systems are due mainly to features
not supported by Windows Millennium Edition or Windows 98. Generally, these features, such as asynchronous I/O and
scatter/gather I/O, do not affect the data or responses given to applications. They just prevent instances of SQL Server running on
Windows Millennium or Windows 98 from supporting the same levels of performance as are possible for instances of SQL Server
on Windows NT or Windows 2000. Instances of SQL Server on Windows Millennium Edition or Windows 98, however, do not
support failover clustering and cannot publish transactional replications.

Federated Database Servers

SQL Server 2000 introduces support for updatable, distributed partitioned views. These views can be used to partition subsets of
the rows in a table across a set of instances of SQL Server, while having each instance of SQL Server operate as if it had a full copy
of the original table. These partitioned views can be used to spread the processing of one table across multiple instances of SQL
Server, each on a separate server. By partitioning all, or many, of the tables in a database, this feature can be used to spread the
database processing of a single Web site across multiple servers running SQL Server 2000. The servers do not form a cluster
because each server is administered separately from the others. Collections of such autonomous servers are called federations of
servers. Federations of servers running SQL Server 2000 are capable of supporting the growth needs of the largest Web sites or
enterprise database systems that exist today.

To improve the performance and scalability of federated servers, SQL Server 2000 supports high-speed system area networks
such as QLogic and GigaNet.

Very Large Database Improvements

SQL Server 2000 has high-speed optimizations that support very large database environments. SQL Server version 6.5 and
earlier can support databases from 200 GB through 300 GB. SQL Server 2000 and SQL Server version 7.0 can effectively support
terabyte-sized databases.

The Transact-SQL BACKUP and RESTORE statements are optimized to read through a database serially and write in parallel to
multiple backup devices. Sites can also reduce the amount of data to be backed up by performing differential backups that back
up only the data changed after the last backup, or by backing up individual files or file groups. In SQL Server 2000, the time
required to run a differential backup has been improved, making it proportional to the amount of data modified since the last
backup.

Multiple bulk copy operations can be performed concurrently against a single table to speed data entry. The database console
command utility statements are implemented with reduced locking requirements and support for parallel operations on
computers with multiple processors, greatly improving their speed.

Operations that create multiple indexes on a table can create them concurrently.

SQL Server 2000 databases map directly to Windows files, simplifying the creation and administration of databases. The database
page size is 8-KB, and the size of extents increases to 64 KB, which results in improved I/O.

Improved Query Optimizer

The SQL Server 2000 query optimizer has new access methods to increase the speed of query processing. These improved access
methods are often matched to improvements and simplifications in the on-disk data structures in the database:

The query optimizer uses serial, read-ahead I/O when scanning tables and indexes for improved performance. The optimizer
also uses merge and hash algorithms for performing joins.

The query optimizer natively supports the prepare/execute model of executing SQL statements. When an application
executes an SQL statement, the optimizer has efficient algorithms for determining if the same statement has already been
executed by any application. If the optimizer finds an existing execution plan for the statement, it saves processing resources
by reusing the existing plan instead of compiling a new plan. In systems where many users are running the same
application, this can reduce the resources needed to compile SQL statements into execution plans.

Intra-Query Parallelism

When running on servers with multiple multiprocessors, or CPUs, SQL Server 2000 can build parallel execution plans that split
the processing of a SQL statement into several parts. Each part can be run on a different CPU and the complete result set built
more quickly than if the different parts were executed serially.

Large Memory Support

SQL Server 2000 Enterprise Edition uses the Microsoft Windows 2000 Address Windowing Extensions API to support memory
approaching 64 GB of RAM. This allows SQL Server 2000 Enterprise Edition to cache large number of rows in memory, which
reduces overhead and speeds its ability to process queries.

Indexed Views

The SQL Server 2000 relational database engine supports creating indexes on views. The result set of the index is materialized at
the time the index is created, and is maintained as the underlying base data is modified. Creating an index on a view that performs
complex calculations on large amounts of data can speed subsequent queries by orders of magnitude. The performance benefits
are not limited to queries that specify the indexed view in their FROM clause, the performance benefits apply to any query that
references data covered by the indexed view. This means existing queries can realize performance gains from using the view
without having to be recoded to explicitly reference the indexed view. Indexed views substantially improve the performance of
large, complex reporting applications that access SQL Server databases.

High Availability

SQL Server 2000 can maintain the extremely high levels of availability required by large Web sites and enterprise systems.

SQL Server 2000 carries forward the SQL Server 7.0 architecture, which has proven to be robust in high-volume Web sites and
enterprise systems.

SQL Server 2000 has improved support for Windows NT and Windows 2000 failover clustering. Support for setting up failover
clustering is now implemented as a Setup option that is much easier to use than earlier versions of Microsoft SQL Server. SQL
Server 2000 also supports up to four nodes in a failover cluster.

SQL Server 2000 introduces log shipping for Web sites and enterprise systems that do not require immediate failover support
and can potentially lose some updates. You can create a production database, copy it to a warm standby server, and then use log
shipping to feed transaction logs from the production server to the standby at set intervals, such as every 10 minutes. By
restoring the logs on the standby, you create a server that can replace the production server in case of a problem. The only data
that might be lost would be any modifications made since the last set of logs shipped to the warm standby server. Log shipping
can also be used to copy data from a production server to one or more read-only reporting servers, assuming the reporting
systems do not have to be kept exactly synchronized with the production server.

See Also

Designing Federated Database Servers

Relational Database Engine Architecture Overview

Server Scalability

Log Shipping

Creating a Failover Cluster

Using AWE Memory on Windows 2000

SQL Server Architecture (SQL Server 2000)

Enterprise-Level Database Features
Microsoft® SQL Server™ 2000 includes several features that support the complex data storage needs of large Web sites and
modern, enterprise data processing systems.

Distributed Query

SQL Server 2000 supports referencing heterogeneous OLE DB data sources directly in Transact-SQL statements. Distributed
queries allow you to integrate data from several sources with the data in a SQL Server 2000 database.

OLE DB providers return their results as rowsets in a tabular form. SQL Server 2000 supports functions, such as OPENQUERY and
OPENDATASOURCE, that return rowsets from OLE DB data sources. These functions can be used in place of a table reference in a
Transact-SQL statement. You can also define linked server names that reference an OLE DB data source, and then reference tables
from that data source in the FROM clause of Transact-SQL statements, just as you would reference any SQL Server table.

The distributed query capability of SQL Server 2000 supports referencing the OLE DB rowsets in data modification statements
such as INSERT, UPDATE, and DELETE, if the OLE DB provider supports updates. The OLE DB rowset modifications are protected
by distributed transactions if the OLE DB provider supports the required interfaces.

SQL Server 2000 can also take advantage of OLE DB providers that publish statistics regarding the distribution of data values in
the rowsets exposed by the provider. SQL Server 2000 uses this information to build intelligent queries that minimize the
numbers of rows the OLE DB provider must return to SQL Server. This improves the speed of distributed query processing.

Dynamic Row-Level Locking

SQL Server 2000 dynamically adjusts the granularity of locking to the appropriate level for each table referenced by a query.
When a query references a small number of rows scattered in a large table, the best way to maximize concurrent access to data is
to use fine-grained locks such as row locks. However, if a query references most or all of the rows in a table, the best way to
maximize concurrency may be to lock the whole table to minimize the locking overhead and finish the query as quickly as
possible.

SQL Server 2000 maximizes overall concurrent access to data by choosing the appropriate locking level for each table in each
query. For one query, the database engine may use row-level locking for a large table where few rows are referenced; page-level
locking for another large table where many rows on a few pages are referenced; and table-level locking for a small table in which
all the rows are referenced.

Full Integrity Protection

SQL Server 2000 fully protects the integrity of its databases. All data modifications are performed in transactions, and each
transaction is either wholly committed if it reaches a state of consistency, or completely rolled back if it encounters errors. If a
server fails, all uncompleted transactions are automatically rolled back from all SQL Server 2000 databases when the server is
restarted.

Distributed Transactions

SQL Server 2000 databases can participate in distributed transactions managed by an X/Open XA compliant transaction manager.
This includes distributed transactions spanning multiple SQL Server 2000 databases, and also distributed transactions spanning
heterogeneous resource managers. The OLE DB Provider for SQL Server 2000 and the SQL Server 2000 ODBC Driver both
support enlistment in distributed transactions.

Transact-SQL scripts and applications can have their local transactions escalated dynamically to distributed transactions if they
reference objects on other SQL Server 2000 systems or heterogeneous OLE DB data sources. SQL Server 2000 manages these
distributed transactions transparently using the Microsoft Distributed Transaction Coordinator.

Replication

SQL Server 2000 replication allows you to maintain copies of data in multiple sites, sometimes hundreds of sites, using a publish-
subscribe metaphor. This allows sites to locate data close to the users who most frequently access it, while keeping it
synchronized with copies in other locations.

SQL Server 2000 supports three types of replication. Snapshot replication copies data or database objects as they exist at a
particular time. In transactional replication, Publishers and Subscribers first synchronize their data (typically using a snapshot) and
then, as data is modified on the Publisher, the modifications are transmitted to the Subscribers. Merge replication lets multiple
Subscribers work autonomously with copies of a set of data, and then later merge their updated versions back to the Publisher.

Merge replication supports several methods for resolving conflicts in how different Subscribers modify the same data.

Replication in SQL Server 2000 supports queued updating, which allows transactional and snapshot replication subscribers to
modify published data without requiring an active network connection.

SQL Server 2000 Replication introduces transformable subscriptions, which allow subscriptions to use the flexibility and power of
Data Transformation Services to map, transform, and filter replicated data.

The usability of replication has been further enhanced, making it very easy to administer. Transactional replication can now be
synchronized with backing up and restoring databases, eliminating the need to reconfigure transactional replication. You can
browse the Windows 2000 Active Directory for publications, subject to proper permissions. SQL Server 2000 introduces new,
improved replication wizards, and supports more centralized recording of Publications and Subscriptions.

See Also

Distributed Query Architecture

Relational Database Engine Architecture Overview

Transactions Architecture

Replication Architecture

SQL Server Architecture (SQL Server 2000)

Ease of Installation, Deployment, and Use
Many databases capable of supporting all of the processing needs of an enterprise are complex and difficult to administer.
Microsoft® SQL Server™ 2000 includes many tools and features that simplify the process of installing, deploying, managing, and
using databases. SQL Server 2000 provides database administrators with all the tools required to fine-tune SQL Server 2000
installations running production online systems. SQL Server 2000 is also capable of operating efficiently on a small, single-user
system with minimal administrative overhead.

Dynamic Self-Management

SQL Server 2000 reconfigures itself automatically and dynamically while running. As more users connect to SQL Server 2000, it
can dynamically acquire additional resources, such as memory. As the workload falls, SQL Server 2000 frees the resources back to
the system. If other applications are started on the server, SQL Server 2000 will detect the additional allocations of virtual
memory to those applications, and reduce its use of virtual memory to reduce paging overhead. SQL Server 2000 can also
increase or decrease the size of a database automatically as data is inserted or deleted.

Database administrators can control the amount of dynamic reconfiguration in each instance of SQL Server 2000. A small
database used by someone not familiar with databases can run with the default configuration settings, in which case it will
configure itself dynamically. A large production database monitored by experienced database administrators can be set up to give
the administrators full control of configuration.

Complete Administrative Tool Set

SQL Server 2000 offers database administrators several tools for managing their systems:

SQL Server Enterprise Manager is a snap-in component for Microsoft Management Console (MMC).

MMC supports the management of multiple types of servers from a single console, such as Microsoft Windows® 2000
Services, Microsoft Internet Information Servers, Microsoft SNA Servers, and instances of SQL Server 2000. An
administrator at a single console has the ability to manage all the servers on a worldwide network. SQL Server Enterprise
Manager shares a subset of the MMC user interface for Web administration. It presents all SQL Server objects in a
hierarchical console tree with an easy-to-use graphical user interface.

SQL Server Agent allows the definition and scheduling of tasks that run on a scheduled or recurring basis.

It also alerts administrators when certain warning conditions occur, and can even be programmed to take corrective action.

SQL Profiler offers administrators a sophisticated tool for monitoring and analyzing network traffic to and from a server
running SQL Server 2000.

It also profiles server events such as the acquisition of locks.

SQL Server Performance Monitor integrates SQL Server counters into the Windows Performance Monitor, allowing
administrators to monitor and graph the performance of SQL Server with the same tool used to monitor Microsoft
Windows NT® Servers.

The Index Tuning Wizard analyzes how a SQL statement, or group of statements, uses the existing indexes on a set of tables.

The wizard makes recommendations on index changes that would speed up the SQL statements.

Programmable Administration

Administering SQL Server 2000 can be highly automated, freeing database administrators to design new databases and
applications.

SQL Distributed Management Objects (SQL-DMO) is a set of Automation objects that can be used to code applications with the
logic to administer an instance of SQL Server 2000. This gives application packages the ability to transparently embed SQL Server
2000 into their applications. Experienced database administrators can also use SQL-DMO to build applications for many of the
common administrative tasks unique to their site. SQL Server 2000 also includes support for the Windows Management
Instrumentation (WMI) API. The WMI support maps over the SQL-DMO API.

Routine, recurring tasks can be implemented as automatically scheduled jobs that run without constant supervision by an
operator. For example, after a database administrator has designed a backup procedure for a server, the backups can be
implemented as a set of automatic jobs.

SQL Server 2000 can also be programmed to raise alerts when specific events occur. The actions taken by alerts can take several
forms:

E-mail, paging messages, or Windows 2000 net send messages can be sent to the affected parties.

For example, if the number of Full Scans (a scan of an entire table or index) in a server exceeds a specific number, an e-mail
can be sent to the database administrator for investigation.

A predefined job can be executed to address the problem (if it is relatively routine and can be addressed programmatically).

Installation and Upgrade

The SQL Server 2000 compact disc has an autorun application that enables users to make several choices, such as:

Install a new instance of SQL Server 2000.

Upgrade an existing instance of Microsoft SQL Server version 7.0 or earlier.

Install prerequisite software.

Install only the documentation from the CD so that it can be reviewed before the product is installed.

View an evaluation guide explaining the benefits of SQL Server 2000 features.

The installation or upgrade of SQL Server 2000 is driven by a graphical user interface (GUI) application that guides users through
the information required by SQL Server 2000 Setup. The Setup program itself detects automatically if an earlier version of SQL
Server is present and, after SQL Server 2000 is installed, asks users if they want to launch the SQL Server 2000 Upgrade Wizard
to quickly guide them through the upgrade process. The entire installation or upgrade process is accomplished quickly and with
minimal input from the users.

Sites needing to install SQL Server 2000 on many servers can take advantage of the SQL Server unattended installation feature to
install SQL Server with the appropriate configuration on all the servers.

Building SQL Server 2000 Applications

SQL Server 2000 has several advantages in building applications:

Full integration in the Windows DNA architecture by providing native support for the Windows DNA data access APIs,
including ADO, OLE DB, and the MDX (multi-dimensional) OLAP extensions to these APIs

These APIs include powerful, low-level APIs, such as ODBC and OLE DB, that allow programmers control over the interaction
between the application and database. They also include APIs such as ADO that support Rapid Application Development.

SQL-DMO, SQL-DTS, and replication components

These are Automation objects used to write customized applications to administer a server running SQL Server.

SQL Query Analyzer

This component enables programmers to develop and test Transact-SQL statements interactively. It includes aids such as a
graphical display of the execution plan and performance statistics of a Transact-SQL statement. It color-codes the different
syntax elements to increase the readability of Transact-SQL statements, and includes an integrated Transact-SQL debugger.
It also has an Object Browser that determines the attributes of the tables, views, stored procedures, and other objects in a
database, and supports templates used to speed the building of complex statements.

Analysis Services, Meta Data Services, and English Query programming

Analysis Services and Meta Data Services supply OLE DB Providers that support the online analytical process (OLAP)
extensions to OLE DB and ADO. These allow the easy integration of OLAP and meta data processing in applications using
the Microsoft data-access APIs. English Query also supports an object-model API that allows the easy integration of English
Query functionality into applications accessing SQL Server 2000 databases and Analysis Services cubes through OLE DB or
ADO.

Transact-SQL programmability improvements

SQL Server 2000 introduces several items that improve the power and flexibility of Transact-SQL, as well as increasing

programmer productivity. Cascading referential integrity actions can replace the need to develop triggers to enforce
referential integrity actions when you update or delete rows. INSTEAD OF triggers can be used to greatly extend the types of
update actions that views can support, and you can now specify which AFTER triggers fire first or last. User defined
functions can be used to introduce new functionality to Transact-SQL statements.

Security Integrated with Windows NT and Windows 2000 Security

SQL Server supports using Windows NT and Windows 2000 user and domain accounts as SQL Server 2000 login accounts. This
is called Windows Authentication. Users are validated by Windows 2000 when they connect to the network. When a connection is
formed to SQL Server, the SQL Server client software requests a trusted connection, which can be granted only if validated by
Windows 2000. SQL Server then does not have to validate the user separately. Users do not have to have separate logins and
passwords for each SQL Server system to which they connect.

With Windows Authentication, no passwords are transmitted to the server running SQL Server, eliminating a security concern.
Also, SQL Server 2000 supports the use of Secure Sockets Layer encryption of all network traffic between their client computer
and an instance of SQL Server.

SQL Server 2000 also provides auditing, which allows you to trace and record the activity in an instance of SQL Server. SQL
Server 2000 auditing can support the C2 level of security defined by the United States government. For more information, see the
Trusted Facilities Manual.

See Also

Administration Architecture

Application Development Architecture

Overview of Installing SQL Server 2000

SQL Server Architecture (SQL Server 2000)

Data Warehousing
Microsoft® SQL Server™ 2000 includes several components you can use to build data warehouses that effectively support your
decision support processing needs.

Data Warehousing Framework

The Data Warehousing Framework is a set of components and APIs that implement the data warehousing features of SQL Server
2000. It provides a common interface to be used by various components seeking to build and use a data warehouse or data mart.

Data Transformation Services

Data Transformation Services (DTS) provides a set of services used to build a data warehouse or data mart. Decision support
systems analyze data to find trends of interest to the database users. Online transaction processing databases store large
numbers of records covering the details of each transaction, and online analytical processing (OLAP) systems aggregate and
summarize the information to speed analysis of the trends exhibited in the data.

DTS offers support for extracting data from heterogeneous OLE DB data sources and the summarizing or aggregating of data to
build a data warehouse.

Online Analytical Processing Support

Microsoft SQL Server 2000 Analysis Services allows you to build flexible, powerful business intelligence applications for Web sites
and large enterprise systems.

Microsoft SQL Server 2000 Analysis Services provides OLAP processing capabilities against heterogeneous OLE DB data sources.
It has efficient algorithms for defining and building multidimensional cubes that can be referenced by applications using the OLE
DB 2.0 OLAP extensions or the Microsoft ActiveX® Data Objects Multidimensional extensions. Analysis Services is an excellent
tool for multidimensional analysis of data in SQL Server 2000 databases.

Analysis Services supports multidimensional queries against cubes with hundreds of millions of dimensions. You can control cube
security down to the level of cells and members. You can create custom rollup functions that tailor the types of aggregations and
processing that can be performed in multidimensional cubes.

Data Mining Support

Data mining allows you to define models containing grouping and predictive rules that can be applied to data in either a
relational database or multi-dimensional OLAP cubes. These predictive models are then used to automatically perform
sophisticated analysis of the data to find trends that help you identify new opportunities and chose the ones that have a winning
outcome. SQL Server 2000 Analysis Services includes support for data mining models, including API support of the OLE DB for
Data Mining specification. Through the OLE DB for Data Mining API, Analysis Services supports integration with third-party data
mining providers.

English Query

English Query makes a definition of the entities and relationships defined in a SQL Server 2000 database. Given this definition, an
application can use an Automation API to pass English Query a string containing a natural-language question about the data in
the database. English Query returns a SQL statement that the application can use to extract the necessary data.

Meta Data Services

SQL Server 2000 includes Microsoft Meta Data Services, which consists of a set of Microsoft ActiveX® interfaces and information
models that define database schema and data transformations as defined by the Microsoft Data Warehousing Framework. A goal
of the Microsoft Data Warehousing Framework is to provide meaningful integration of multiple products through shared meta
data. It combines business and technical meta data to provide an industry standard method for storing the schema of production
data sources and destinations.

Meta Data Services is the preferred means of storing DTS packages in a data warehousing scenario because it is the only method
of providing data lineage for packages. DTS also uses Meta Data Services storage to allow transformations, queries, and ActiveX
scripts to be reused by heterogeneous applications.

See Also

Data Warehousing and Online Analytical Processing

SQL Server Architecture (SQL Server 2000)

Relational Database Components
The database component of Microsoft® SQL Server™ 2000 is a Structured Query Language (SQL)–based, scalable, relational
database with integrated Extensible Markup Language (XML) support for Internet applications. Each of the following terms
describes a fundamental part of the architecture of the SQL Server 2000 database component:

Database

A database is similar to a data file in that it is a storage place for data. Like a data file, a database does not present information
directly to a user; the user runs an application that accesses data from the database and presents it to the user in an
understandable format.

Database systems are more powerful than data files in that data is more highly organized. In a well-designed database, there are
no duplicate pieces of data that the user or application must update at the same time. Related pieces of data are grouped together
in a single structure or record, and relationships can be defined between these structures and records.

When working with data files, an application must be coded to work with the specific structure of each data file. In contrast, a
database contains a catalog that applications use to determine how data is organized. Generic database applications can use the
catalog to present users with data from different databases dynamically, without being tied to a specific data format.

A database typically has two main parts: first, the files holding the physical database and second, the database management
system (DBMS) software that applications use to access data. The DBMS is responsible for enforcing the database structure,
including:

Maintaining relationships between data in the database.

Ensuring that data is stored correctly, and that the rules defining data relationships are not violated.

Recovering all data to a point of known consistency in case of system failures.

Relational Database

Although there are different ways to organize data in a database, relational databases are one of the most effective. Relational
database systems are an application of mathematical set theory to the problem of effectively organizing data. In a relational
database, data is collected into tables (called relations in relational theory).

A table represents some class of objects that are important to an organization. For example, a company may have a database with
a table for employees, another table for customers, and another for stores. Each table is built of columns and rows (called
attributes and tuples in relational theory). Each column represents some attribute of the object represented by the table. For
example, an Employee table would typically have columns for attributes such as first name, last name, employee ID, department,
pay grade, and job title. Each row represents an instance of the object represented by the table. For example, one row in the
Employee table represents the employee who has employee ID 12345.

When organizing data into tables, you can usually find many different ways to define tables. Relational database theory defines a
process called normalization, which ensures that the set of tables you define will organize your data effectively.

Scalable

SQL Server 2000 supports having a wide range of users access it at the same time. An instance of SQL Server 2000 includes the
files that make up a set of databases and a copy of the DBMS software. Applications running on separate computers use a SQL
Server 2000 communications component to transmit commands over a network to the SQL Server 2000 instance. When an
application connects to an instance of SQL Server 2000, it can reference any of the databases in that instance that the user is
authorized to access. The communication component also allows communication between an instance of SQL Server 2000 and an
application running on the same computer. You can run multiple instances of SQL Server 2000 on a single computer.

SQL Server 2000 is designed to support the traffic of the largest Web sites or enterprise data processing systems. Instances of
SQL Server 2000 running on large, multiprocessor servers are capable of supporting connections to thousands of users at the
same time. The data in SQL Server tables can be partitioned across multiple servers, so that several multiprocessor computers can
cooperate to support the database processing requirements of extremely large systems. These groups of database servers are
called federations.

Although SQL Server 2000 is designed to work as the data storage engine for thousands of concurrent users who connect over a
network, it is also capable of working as a stand-alone database directly on the same computer as an application. The scalability
and ease-of-use features of SQL Server 2000 allow it to work efficiently on a single computer without consuming too many
resources or requiring administrative work by the stand-alone user. The same features allow SQL Server 2000 to dynamically
acquire the resources required to support thousands of users, while minimizing database administration and tuning. The SQL

Server 2000 relational database engine dynamically tunes itself to acquire or free the appropriate computer resources required to
support a varying load of users accessing an instance of SQL Server 2000 at any specific time. The SQL Server 2000 relational
database engine has features to prevent the logical problems that occur if a user tries to read or modify data currently used by
others.

Structured Query Language

To work with data in a database, you have to use a set of commands and statements (language) defined by the DBMS software.
Several different languages can be used with relational databases; the most common is SQL. The American National Standards
Institute (ANSI) and the International Standards Organization (ISO) define software standards, including standards for the SQL
language. SQL Server 2000 supports the Entry Level of SQL-92, the SQL standard published by ANSI and ISO in 1992. The dialect
of SQL supported by Microsoft SQL Server is called Transact-SQL (T-SQL). T-SQL is the primary language used by Microsoft SQL
Server applications.

Extensible Markup Language

XML is the emerging Internet standard for data. XML is a set of tags that can be used to define the structure of a hypertext
document. XML documents can be easily processed by the Hypertext Markup Language, which is the most important language for
displaying Web pages.

Although most SQL statements return their results in a relational, or tabular, result set, the SQL Server 2000 database component
supports a FOR XML clause that returns results as an XML document. SQL Server 2000 also supports XPath queries from Internet
and intranet applications. XML documents can be added to SQL Server databases, and the OPENXML clause can be used to
expose data from an XML document as a relational result set.

SQL Server Architecture (SQL Server 2000)

Database Applications and Servers
Microsoft® SQL Server™ 2000 is designed to work effectively as:

A central database on a server shared by many users who connect to it over a network. The number of users can range from
a handful in one workgroup, to thousands of employees in a large enterprise, to hundreds of thousands of Web users.

A desktop database that services only applications running on the same desktop.

Server Database Systems

Server-based systems are constructed so that a database on a central computer, known as a server, is shared among multiple
users. Users access the server through an application:

In a multitier system, such as Windows® DNA, the client application logic is run in two or more locations:
A thin client is run on the user's local computer and is focused on displaying results to the user.

The business logic is located in server applications running on a server. Thin clients request functions from the
server application, which is itself a multithreaded application capable of working with many concurrent users. The
server application is the one that opens connections to the database server. The server application can be running
on the same server as the database, or it can connect across the network to a separate server operating as a
database server. In complex systems, the business logic may be implemented in several interconnected server
applications, or in multiple layers of server applications.

This is a typical scenario for an Internet application. For example, a multithreaded server application can run on a
Microsoft® Internet Information Services (IIS) server and service thousands of thin clients running on the Internet or
an intranet. The server application uses a pool of connections to communicate with one or more instances of SQL
Server 2000. The instances of SQL Server 2000 can be on the same computer as IIS, or they can be on separate
servers in the network.

In a two-tier client/server system, users run an application on their local computer, known as a client application, that
connects over a network to an instance of SQL Server 2000 running on a server computer. The client application runs both
business logic and the code to display output to the user, so this is sometimes referred to as a thick client.

Advantages of Server Database System

Having data stored and managed in a central location offers several advantages:

Each data item is stored in a central location where all users can work with it.

Separate copies of the item are not stored on each client, which eliminates problems with users having to ensure they are all
working with the same information. Their system does not need to ensure that all copies of the data are updated with the
current values, because there is only one copy in the central location.

Business and security rules can be defined one time on the server and enforced equally among all users.

Rule enforcement can be done in a database through the use of constraints, stored procedures, and triggers. Rules can also
be enforced in a server application, since these applications are also central resources accessed by many thin clients.

A relational database server optimizes network traffic by returning only the data an application needs.

For example, if an application working with a file server needs to display a list of the names of sales representatives in
Oregon, it must retrieve the entire employee file. If the application is working with a relational database server, it sends this
command:

SELECT first_name, last_name
FROM employees
WHERE emp_title = 'Sales Representative'
 AND emp_state = 'OR'

The relational database sends back only the names of the sales representatives in Oregon, not all of the information about
all employees.

Hardware costs can be minimized.

Because the data is not stored on each client, clients do not have to dedicate disk space to storing data. The clients also do
not need the processing capacity to manage data locally, and the server does not need to dedicate processing power to
displaying data.

The server can be configured to optimize the disk I/O capacities needed to retrieve data, and clients can be configured to
optimize the formatting and display of data retrieved from the server.

The server can be stored in a relatively secure location and equipped with devices such as an Uninterruptable Power Supply
more economically than fully protecting each client.

Maintenance tasks such as backing up and restoring data are simplified because they can focus on the central server.

Advantages of SQL Server 2000 as a Database Server

Microsoft SQL Server 2000 is capable of supplying the database services needed by extremely large systems. Large servers may
have thousands of users connected to an instance of SQL Server 2000 at the same time. SQL Server 2000 has full protection for
these environments, with safeguards that prevent problems, such as having multiple users trying to update the same piece of
data at the same time. SQL Server 2000 also allocates the available resources effectively, such as memory, network bandwidth,
and disk I/O, among the multiple users.

Extremely large Internet sites can partition their data across multiple servers, spreading the processing load across many
computers, and allowing the site to serve thousands of concurrent users.

Multiple instances of SQL Server 2000 can be run on a single computer. For example, an organization that provides database
services to many other organizations can run a separate instance of SQL Server 2000 for each customer organization, all on one
computer. This isolates the data for each customer organization, while allowing the service organization to reduce costs by only
having to administer one server computer.

SQL Server 2000 applications can run on the same computer as SQL Server 2000. The application connects to SQL Server 2000
using Windows Interprocess Communications (IPC) components, such as shared memory, instead of a network. This allows SQL
Server 2000 to be used on small systems where an application must store its data locally.

The illustration shows an instance of SQL Server 2000 operating as the database server for both a large Web site and a legacy
client/server system.

The largest Web sites and enterprise-level data processing systems often generate more database processing than can be
supported on a single computer. In these large systems, the database services are supplied by a group of database servers that

form a database services tier. SQL Server 2000 does not support a load-balancing form of clustering for building a database
services tier, but it does support a mechanism that can be used to partition data across a group of autonomous servers. Although
each server is administered individually, the servers cooperate to spread the database-processing load across the group. A group
of autonomous servers that share a workload is called a federation of servers. For more information, see Designing Federated
Database Servers.

Desktop Database Systems

Although SQL Server 2000 works effectively as a powerful database server, the same database engine can also be used in
applications that need stand-alone databases stored locally on the client. SQL Server 2000 can configure itself dynamically to run
efficiently with the resources available on a client desktop or laptop computer, without the need to dedicate a database
administrator to each client. Application vendors can also embed SQL Server 2000 as the data storage component of their
applications.

When clients use local SQL Server 2000 databases, applications connect to local instances of the database engine in much the
same way they connect across the network to a database engine running on a remote server. The primary difference is that local
connections are made through local IPCs such as shared memory, and remote connections must go through a network.

The illustration shows using SQL Server 2000 in a desktop database system.

SQL Server Architecture (SQL Server 2000)

Logins
 New Information - SQL Server 2000 SP3.

To connect to an instance of Microsoft® SQL Server™ 2000, you typically give an application only two or three pieces of
information:

The network name of the computer on which the SQL Server instance is running.

The name of the instance (optional, required only if you are connecting to a named instance).

Your login identifier (ID).

A login ID is the account identifier that controls access to any SQL Server 2000 system. SQL Server 2000 does not complete a
connection unless it has first verified that the login ID specified is valid. Verification of the login is called authentication.

One of the properties of a login is the default database. When a login connects to SQL Server, this default database becomes the
current database for the connection, unless the connection request specifies that another database be made the current database.

A login ID only enables you to connect to an instance of SQL Server. Permissions within specific databases are controlled by user
accounts. The database administrator maps your login account to a user account in any database you are authorized to access. For
more information, see Logins, Users, Roles, and Groups.

Authenticating Logins

Instances of SQL Server must verify that the login ID supplied on each connection request is authorized to access the instance.
This process is called authentication. SQL Server 2000 uses two types of authentication: Windows Authentication and SQL Server
Authentication. Each has a different class of login ID.

Windows Authentication

A member of the SQL Server 2000 sysadmin fixed server role must first specify to SQL Server 2000 all the Microsoft Windows
NT® or Microsoft Windows® 2000 accounts or groups that can connect to SQL Server 2000. When using Windows
Authentication, you do not have to specify a login ID or password when you connect to SQL Server 2000. Your access to SQL
Server 2000 is controlled by your Windows NT or Windows 2000 account or group, which is authenticated when you log on to
the Windows operating system on the client.

When you connect, the SQL Server 2000 client software requests a Windows trusted connection to SQL Server 2000. Windows
does not open a trusted connection unless the client has logged on successfully using a valid Windows account. The properties of
a trusted connection include the Windows NT and Windows 2000 group and user accounts of the client that opened the
connection. SQL Server 2000 gets the user account information from the trusted connection properties and matches them against
the Windows accounts defined as valid SQL Server 2000 logins. If SQL Server 2000 finds a match, it accepts the connection. When
you connect to SQL Server 2000 using Windows 2000 Authentication, your identification is your Windows NT or Windows 2000
group or user account.

The Microsoft Windows Me and Windows 98 operating systems do not support the server side of the trusted connection API.
When SQL Server is running on Windows Me or Windows 98, it does not support Windows Authentication. Users must supply a
SQL Server login when they connect. When SQL Server is running on Windows NT or Windows 2000, Windows Me, Windows 8,
and Windows 95 clients can connect to it using Windows 2000 Authentication.

SQL Server Authentication

A member of the sysadmin fixed server role first specifies to SQL Server 2000 all the valid SQL Server 2000 login accounts and
passwords. These are not related to your Microsoft Windows account or network account. You must supply both the SQL Server
2000 login and password when you connect to SQL Server 2000. You are identified in SQL Server 2000 by your SQL Server 2000
login.

Security Note When possible, use Windows Authentication.

SQL Server Authentication Modes

When SQL Server 2000 is running on Windows NT or Windows 2000, members of the sysadmin fixed server role can specify
one of two authentication modes:

Windows Authentication Mode

Only Windows Authentication is allowed. Users cannot specify a SQL Server 2000 login ID. This is the default authentication
mode for SQL Server 2000. You cannot specify Windows Authentication Mode for an instance of SQL Server running on
Windows 98, because the operating system does not support Windows Authentication.

Mixed Mode

If users supply a SQL Server 2000 login ID when they log on, they are authenticated using SQL Server Authentication. If they
do not supply a SQL Server 2000 login ID, or request Windows Authentication, they are authenticated using Windows
Authentication.

These modes are specified during setup or with SQL Server Enterprise Manager.

Login Delegation

If you use Windows Authentication to log on to an instance of SQL Server 2000 running on Windows 2000, and the computer has
Kerberos support enabled, SQL Server 2000 can pass your Windows login credentials to other instances of SQL Server.
Delegation of your credentials from one instance to another is sometimes called impersonation, typically when both instances of
SQL Server are running on the same computer.

For example, if Instance A and Instance B are running on separate computers using Windows 2000, you can connect to Instance A
and execute a distributed query that references tables on Instance B. When Instance A connects to Instance B to retrieve the
required data, Instance A can use your Windows account credentials for the connection. Instance B has visibility to your specific
account, and can validate your individual permissions to access the data requested.

Without delegation, administrators have to specify the login that Instance A uses to connect to Instance B (or any other instance).
This login is used regardless of which user executes a distributed query on Instance A, and prevents Instance B from having any
knowledge of the actual user executing the query. The administrators of Instance B cannot define permissions specific to
individual users coming in from Instance A, they must define a global set of permissions for the login account used by Instance A.
The administrators also cannot audit which specific users perform actions in Instance B. Using delegation with Windows
Authentication on Windows 2000 allows administrators greater control over user permissions and gives auditors greater visibility
to the actions of individual users.

Connections that use delegation are authenticated using a Kerberos ticket. Each ticket has a timeout period defined by the
Windows 2000 security administrator. If a connection remains idle for a long period and the Kerberos ticket times out, all
subsequent attempts to execute a distributed query will fail until the user disconnects and reconnects.

See Also

Managing Security

Security Account Delegation

SQL Server Architecture (SQL Server 2000)

Client Components
Clients do not access Microsoft® SQL Server™ 2000 directly; instead, clients use applications written to access the data in SQL
Server. These can include utilities that come with SQL Server 2000, third-party applications that access SQL Server 2000, in-house
applications developed by programmers at the SQL Server 2000 site, or Web pages. SQL Server 2000 can also be accessed
through COM, Microsoft ActiveX®, or Windows® DNA components.

SQL Server 2000 supports two main classes of applications:

Relational database applications that send Transact-SQL statements to the database engine; results are returned as
relational result sets.

Internet applications that send either Transact-SQL statements or XPath queries to the database engine; results are returned
as XML documents.

Relational Database APIs

Relational database applications are written to access SQL Server 2000 through a database application programming interface
(API). A database API contains two parts:

The language statements passed to the database.

The language by relational SQL Server 2000 applications is Transact-SQL. Transact-SQL supports all SQL-92 Entry Level
SQL statements and many additional SQL-92 features. It also supports the ODBC extensions to SQL-92 and other
extensions specific to Transact-SQL.

A set of functions or object-oriented interfaces and methods used to send the language statements to the database and
process the results returned by the database.

N ative API Support

Native API support means the API function calls are mapped directly to the network protocol sent to the server. There is no
intermediate translation to another API needed. SQL Server 2000 provides native support for two main classes of database APIs:

OLE DB

SQL Server 2000 includes a native OLE DB provider. The provider supports applications written using OLE DB, or other APIs
that use OLE DB, such as ActiveX Data Objects (ADO). Through the native provider, SQL Server 2000 also supports objects
or components using OLE DB, such as ActiveX, ADO, or Windows DNA applications.

ODBC

SQL Server 2000 includes a native ODBC driver. The driver supports applications or components written using ODBC, or
other APIs using ODBC, such as DAO, RDO, and the Microsoft Foundation Classes (MFC) database classes.

An example of nonnative support for an API would be a database that does not have an OLE DB provider, but does have an ODBC
driver. An OLE DB application could use the OLE DB provider for ODBC to connect to the database through an ODBC driver. This
provider maps the OLE DB API function calls from the application to ODBC function calls it sends to the ODBC driver.

Additional SQL Server API Support

SQL Server 2000 also supports:

DB-Library

DB-Library is an API specific to SQL Server 2000 and Microsoft SQL Server. SQL Server 2000 supports DB-Library
applications written in C. DB-Library has not been extended beyond the functionality it had in Microsoft SQL Server version
6.5. Existing DB-Library applications developed against earlier versions of Microsoft SQL Server can be run against SQL
Server 2000, but many features introduced in SQL Server 2000 and SQL Server version 7.0 are not available to DB-Library
applications.

Embedded SQL

SQL Server 2000 includes a C precompiler for the Embedded SQL API. Embedded SQL applications use the DB-Library DLL
to access SQL Server 2000.

XML Access

Internet applications retrieve results in the form of XML documents rather than relational result sets. The applications execute
either XPath queries or Transact-SQL statements that use the FOR XML clause to specify that results be returned as XML
documents. If you define a virtual root on a Microsoft Internet Information Server (IIS) that points to an instance of SQL Server
2000, IIS applications can use three mechanisms for executing XPath queries or Transact-SQL statements:

Execute a Uniform Resource Locator (URL) that references the virtual root and contains an XPath query or Transact-SQL
statement with FOR XML.

Use the ADO API to execute an XPath query to Transact-SQL statement with FOR XML.

Use the OLE DB API to execute an XPath query to Transact-SQL statement with FOR XML.

Client Communications

The Microsoft OLE DB Provider for SQL Server 2000, the SQL Server 2000 ODBC driver, and DB-Library are each implemented as
a DLL that communicates to SQL Server 2000 through a component called a client Net-Library.

See Also

Application Development Architecture

Overview of Building SQL Server Applications

SQL Server Architecture (SQL Server 2000)

Communication Components
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 supports several methods of communicating between client applications and the server. When the
application is on the same computer as an instance of SQL Server 2000, Windows Interprocess Communication (IPC)
components, such as local named pipes or shared memory, are used. When the application is on a separate client, a network IPC
is used to communicate with SQL Server.

An IPC has two components:

Application Programming Interface (API)

The API is a definition of the set of functions software uses to send requests to and retrieve results from the IPC.

Protocol

The protocol defines the format of the information sent between any two components communicating through the IPC. In
the case of a network IPC, the protocol defines the format of the packets sent between two computers using the IPC.

Some network APIs can be used over multiple protocols. For example, the Named Pipes API and the Microsoft Win32® RPC API
can both be used with several protocols. Other network APIs, such as the Banyan VINES API, can be used with only one protocol.

The SQL Server 2000 client communication components require little or no administration when they connect to SQL Server
2000. Although the actual implementation of the communication components is more complex than in earlier versions of SQL
Server, SQL Server 2000 users are shielded from this when connecting to instances of SQL Server 2000. The SQL Server 2000
client software dynamically determines the network address needed to communicate with any instance of SQL Server 2000. All
the client software needs is the network name of the computer on which the SQL Server 2000 instance is running, and the name
of the instance if connecting to a named instance. There are very few reasons for SQL Server 2000 users to manage the client
communications components using the Client Network Utility.

System Area Networks

SQL Server 2000 Enterprise Edition introduces support for System Area Network (SAN) protocols built using the Virtual Interface
Architecture (VIA). A SAN is a high-speed, highly reliable network for interconnecting servers or clusters of servers. A multi-tier,
distributed system can generate extremely high levels of network traffic between servers. Gaining high performance in such a
system is possible only if message transmissions are fast enough to minimize the time the servers spend processing messages
and waiting for replies. Compared to local area networks (LANs) or wide area networks (WANs), SANs support high levels of
messaging traffic by lowering CPU loads and message latency. SANs are also more reliable than LANs or WANs, and are
implemented in groups or clusters of servers that are located close together, such as in the same computer room.

Compaq®, Intel®, Microsoft, and other companies have defined Virtual Interface Architecture (VIA) as a generic definition of a
SAN that allows many possible hardware implementations. The Virtual Interface Architecture allows a VIA provider to implement
a flexible, scalable, robust messaging component built at low cost using standard components. VIA SANs can support the intense
messaging requirements of large Web servers.

The Virtual Interface Architecture defines both an API and a protocol. The API is referred to as the VIA API, and protocol is referred
to as the VIA protocol.

SANs are well suited for these uses with SQL Server 2000:

The application servers forming the business services tier can use the SAN for high-speed communications with the data
services tier. This is done when the application servers and database servers are at the same physical location.

SQL Server 2000 servers can use the SAN to improve the performance of distributed queries, distributed transactions, and
data replication between database servers at the same location. A SAN can improve the distributed queries needed to
support the distributed views used to implement federations of computers running SQL Server.

SQL Server 2000 supports the QLogic and Giganet VIA SAN implementations. Because SANs are intended to support the high
communications bandwidth between servers, SQL Server 2000 only supports the VIA Net-Libraries on the Windows NT® Server,
Windows 2000 Data Center, Advanced Server, and Server operating systems.

SQL Server Architecture (SQL Server 2000)

Client and Server Net-Libraries
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 uses components called client Net-Libraries to shield the OLE DB Provider for SQL Server 2000,
the SQL Server 2000 ODBC driver, and the DB-Library DLL, from the details of communicating with different Interprocess
Communication (IPC) components. Server Net-Libraries perform the same function for the database engine.

The following components manage communications between SQL Server 2000 and its clients in this sequence:

1. The client application calls the OLE DB, ODBC, DB-Library, or Embedded SQL API. This causes the OLE DB provider, ODBC
driver, or DB-Library DLL to be used for SQL Server communications.

2. The OLE DB provider, ODBC driver, or DB-Library DLL calls a client Net-Library. The client Net-Library calls an IPC API.

3. The client calls to the IPC API are transmitted to a server Net-Library by the underlying IPC. If it is a local IPC, calls are
transmitted using a Windows operating IPC such as shared memory or local named pipes. If it is a network IPC, the network
protocol stack on the client uses the network to communicate with the network protocol stack on the server.

4. The server Net-Library passes the requests coming from the client to the instance of SQL Server 2000.

Replies from SQL Server 2000 to the client follow the reverse sequence.

This illustration shows the communication path when a SQL Server application runs on the same computer as an instance of SQL
Server.

This is a simplified illustration of the communication path when a SQL Server application connects through a LAN or WAN to an
instance of SQL Server 2000 on a separate computer. Although the illustration shows the OLE DB Provider for SQL Server 2000,
SQL Server 2000 ODBC driver, and DB-Library DLL using specific Net-Libraries, there is nothing that limits these components to
these Net-Libraries. The provider, driver, and DB-Library can each use any of the SQL Server Net-Libraries.

SQL Server 2000 classifies the Net-Libraries as primary or secondary Net-Libraries. The OLE DB Provider for SQL Server 2000,
the SQL Server 2000 ODBC driver, the DB-Library DLL, and the database engine communicate directly with only the two primary
Net-Libraries:

By default, local connections between an application and an instance of SQL Server 2000 on the same computer use the
Shared Memory primary Net-Library. This path is shown in the illustration above.

Intercomputer connections communicate through the Super Socket primary Net-Library. The Super Socket Net-Library has
two communication paths:

If you choose a TCP/IP Sockets connection or an NWLINK IPX/SPX connection, the Super Socket Net-Library directly
calls the Windows Socket 2 API for the communication between the application and the instance of SQL Server
2000.

If a Named Pipes, Virtual Interface Architecture (VIA) SAN, Multiprotocol, AppleTalk, or Banyan VINES connection is
chosen, a subcomponent of the Super Socket Net-Library, called the Net-Library router, loads the secondary Net-
Library for the chosen protocol and routes all Net-Library calls to it.

This illustration shows in more detail the communication paths through the client and server Net-Libraries for network
connections between a computer running the SQL Server 2000 client components and an instance of SQL Server 2000.

The server Super Socket Net-Library is implemented as Ssnetlib.dll, and the client Super Socket Net-Library is implemented as
Dbnetlib.dll.

This table shows how the Net-Libraries relate to the IPC APIs and protocols used to make connections.

Protocol
specified in
network
utilities

Client Net-
Library used

Server Net-Library
used

IPC API
called by
Net-Library

Protocols
supporting the
IPC API

TCP/IP
Sockets

Dbnetlib.dll Ssnetlib.dll Windows
Socket 2

TCP/IP

Named Pipes Dbnetlib.dll
routes to
Dbnmpntw.dll

Ssnetlib.dll routes to
Ssnmpn70.dll
(Microsoft Windows
NT® and Windows®
2000 only)

Windows
Named Pipes

File system (local)
TCP/IP
NetBEUI
NWLink

NWLink
IPX/SPX

Dbnetlib.dll Ssnetlib.dll Windows
Socket 2

NWLink

GigaNet VIA
SAN

Dbnetlib.dll
routes to
Dbmsgnet.dll
(Microsoft
Windows NT
and Windows
2000 only)

Ssnetlib.dll routes to
Ssmsgnet.dll
(Microsoft Windows
NT and Windows
2000 only)

Virtual
Interface
Architecture
(VIA)

Virtual Interface
Architecture (VIA)

QLogic VIA
SAN

Dbnetlib.dll
routes to
DBmsqlgc.dll
(Microsoft
Windows NT
and Windows
2000 only)

Ssnetlib.dll routes to
SSmsqlgc.dll
(Microsoft Windows
NT and Windows
2000 only)

Virtual
Interface
Architecture
(VIA)

Virtual Interface
Architecture (VIA)

Multiprotocol Dbnetlib.dll
routes to
Dbmsrpcn.dll

Ssnetlib.dll routes to
Ssmsrpc.dll (default
instance only)

Windows
RPC

File system (local)
TCP/IP
NetBEUI
NWLink

AppleTalk Dbnetlib.dll
routes to
Dbmsadsn.dll

Ssnetlib.dll routes to
Ssmsad70.dll (default
instance only)

AppleTalk
ADSP

AppleTalk

Banyan Vines Dbnetlib.dll
routes to
Dbmsvinn.dll

Ssnetlib.dll routes to
Ssmsvi70.dll (default
instance only)

Banyan
VINES SPP

Banyan VINES

Instances of SQL Server 2000 running on Microsoft Windows® Me or Windows 98 do not support the server Named Pipes and
Banyan VINES Net-Libraries, because the Windows Me and Windows 98 operating systems do not support the server part of
these APIs. SQL Server 2000 also does not support the server NWLink IPX/SPX Net-Library on Windows Me or Windows 98. SQL
Server 2000 does support the client side of these Net-Libraries on Windows Me and Windows 98; therefore, applications running
on Windows Me or Windows 98 can use the Net-Libraries to connect to instances of SQL Server on Microsoft Windows NT or
Microsoft Windows 2000. Applications running on Windows 95 can also make connections using the client side of these Net-
Libraries.

The AppleTalk Net-Library does not run on computers running Windows Me, Windows 98, or Windows 95.

VIA networks are designed to support the high levels of messaging traffic between servers in the same data center, such as in a
Web site implemented as one or more Internet Information Services application servers connected to one or more database
servers running SQL Server. VIA networks are not used to connect individual workstations. Both the client and server SQL Server
VIA Net-Libraries are supported only on Windows NT Server and Advanced Server, and Windows 2000 Server, Advanced Server,
and Data Center.

Named instances of SQL Server 2000 support only the Named Pipes, TCP/IP Sockets, NWLink IPX/SPX, and Shared Memory Net-
Libraries. Named instances do not support the Multiprotocol, AppleTalk, or Banyan VINES Net-Libraries. To maintain compatibility
with earlier versions of SQL Server, default instances support all server Net-Libraries.

Some of the Net-Libraries support only one type of protocol stack. For example, the AppleTalk Net-Library requires an AppleTalk
protocol stack. Other Net-Libraries, such as the Named Pipes and Multiprotocol Net-Libraries support several protocol stacks.

The Microsoft SQL Server Net-Libraries have been tested intensively with the Microsoft protocol stacks and are supported with
these stacks. Protocol stacks from other vendors should work, provided that the stacks fully support the APIs used by the
Microsoft SQL Server Net-Libraries.

When the Named Pipes or Multiprotocol Net-Libraries are used to connect an application to an instance of SQL Server on the
same computer, and the computer does not have a protocol stack, the IPC APIs are implemented by the file system.

SQL Server Architecture (SQL Server 2000)

Controlling Net-Libraries and Communications Addresses
 New Information - SQL Server 2000 SP3.

After installing Microsoft® SQL Server™ 2000, you define the behaviors of the client Net-Libraries by using the Client Network
Utility and server Net-Libraries by using the Server Network Utility.

Each instance of SQL Server 2000 can be listening on any combination of the server Net-Libraries at one time. There is one set of
server Net-Libraries for each set of database engine executable files. The server Net-Libraries are installed in: C:\Program
Files\Microsoft SQL Server\MSSQL$n, where n is the number associated with this set of database engine executable files.

All of the server Net-Libraries are installed during the server portion of SQL Server Setup, but some of them may not be active.
The person running the Setup program can choose which combination of Net-Libraries is active for the instance being installed.
The table shows the default server Net-Libraries that are activated by SQL Server Setup for the Microsoft Windows NT®,
Microsoft Windows® 2000, Windows Me, and Microsoft Windows 98 operating systems.

Windows NT and Windows 2000 Windows Me and Windows 98
TCP/IP Sockets TCP/IP Sockets
Shared Memory Shared Memory
Named Pipes

Disabling and Enabling Net-Libraries

After setup, you can disable and enable individual server Net-Libraries for each instance of SQL Server on a database computer
using the Server Network Utility. When a server Net-Library is disabled for a specific instance, the database engine for the
instance does not load the server Net-Library and does not accept connections using that Net-Library. The server Net-Library
remains installed and can be enabled for other instances sharing the same set of executable files. For more information, see SQL
Server Network Utility.

There is always one set of the client Net-Library DLLs installed on any computer running SQL Server 2000 client components. The
client Net-Library DLLs are installed in the C:\Windows\System32 or C:\Windows\System directory. All of the client Net-Libraries
are installed when you install the SQL Server 2000 client utilities. You can enable and disable the various client Net-Libraries
using the Client Network Utility. When a client Net-Library is disabled it remains installed but is not considered for any
connections. You can:

Specify the sequence in which client Net-Libraries are considered for all connections except those that use a server alias.

Enable or disable specific client Net-Libraries.

As a compatibility option, define server aliases that define specific Net-Libraries and connection parameters to use when
connecting to instances of SQL Server version 7.0 or earlier.

For more information, see Configuring Client Net-Libraries.

Connecting to SQL Server 2000

For a client to connect to a server running SQL Server 2000, the client must use a client Net-Library that matches one of the
server Net-Libraries the server is currently listening on. Also, both the client and server must be running a protocol stack
supporting the network API called by the Net-Library being used for the connection. For example, if the client tries using the client
Multiprotocol Net-Library, and the server is listening on the server Multiprotocol Net-Library, but the server is running with the
TCP/IP protocol while the client computer is running only with the IPX/SPX protocol stack, the client cannot connect to the server.
Both the client and the server must be using the same Net-Library and running the same protocol stack.

Each instance of SQL Server on a computer must listen on different network addresses so that applications can connect to specific
instances. Default instances of SQL Server 2000 listen on the same default network addresses as earlier versions of SQL Server so
that existing client computers can continue to connect to the default instance. The table shows the default network addresses that
instances of SQL Server 2000 listen on.

Net-
Library

Default instance network
address Named instance network address

TCP/IP
Sockets

TCP Port 1433 A TCP port is chosen dynamically the first time the
MSSQL$instancename service is started.

Named
Pipes

\\computername\pipe\sql\query \\computername\pipe\MSSQL$instancename\sql\query

NWLink
IPX/SPX

Port 33854 First available port after 33854 for each instance.

VIA
SAN

VIA Port 0:1433 VIA Port 0:1433

The VIA server Net-Libraries assign the same default address to both default and named instances. The system administrator
must use the Server Network Utility to assign unique port addresses to each instance on a computer.

You can use the SQL Server 2000 Server Network Utility to find out what specific set of network address each instance of SQL
Server is listening on for client connections.

When the SQL Server 2000 client Net-Libraries connect to an instance of SQL Server 2000, only the network name of the
computer running the instance and the instance name are required. When an application requests a connection to a remote
computer, Dbnetlib.dll opens a connection to UDP port 1434 on the computer network name specified in the connection. All
computers running an instance of SQL Server 2000 listen on this port. When a client Dbnetlib.dll connects to this port, the server
returns a packet listing all the instances running on the server. For each instance, the packet reports the server Net-Libraries and
network addresses the instance is listening on. After the Dbnetlib.dll on the application computer receives this packet, it chooses a
Net-Library that is enabled on both the application computer and on the instance of SQL Server, and makes a connection to the
address listed for that Net-Library in the packet. The connection attempt fails only if:

The requested instance of SQL Server 2000 is not running.

None of the Net-Libraries that the instance of SQL Server 2000 is listening on is active on the application computer.

When Dbnetlib.dll compares the network protocols enabled on the application computer against those enabled on the instance of
SQL Server 2000, the sequence of the comparison is specified using the Client Network Utility on the application computer. For
example, assume an application computer has three client Net-Libraries enabled and specifies that the comparison sequence is
TCP/IP Sockets first, NWLink IPX/SPX second, and named pipes third. If the application computer attempts a connection to an
instance of SQL Server 2000 that has enabled only the NWLink IPX/SPX, named pipes and Multiprotocol server Net-Libraries, the
connection is made using NWLink IPX/SPX. For more information about configuring the comparison sequence, see Configuring
Client Net-Libraries.

Starting with SQL Server 2000 SP3a, instances of the SQL Server 2000 database engine and MSDE 2000 that are not configured
to support network communications do not use UDP port 1434. Instances that are configured to support network
communications do use UDP 1434.

An instance upgraded to SP3a stops using UDP 1434 whenever all of the server Net-Libraries for the instance, except the shared
memory Net-Library, are disabled. The instance starts using port 1434 whenever you enable any of the server Net-Libraries. For
information on disabling or enabling server Net-Libraries, see SQL Server Network Utility.

The use of UDP port 1434 by a computer does not stop until all instances of SQL Server 2000 and MSDE 2000 on the computer
have been upgraded to SP3a and configured to not support network communications.

Whether UDP port 1434 is open or closed does not depend on the state of the shared memory Net-Library. The shared memory
Net-Library is used only for local connections, and does not use a network. The shared memory Net-Library is always active; it
cannot be enabled or disabled.

You can also specify whether the server Net-Libraries are disabled when installing or upgrading an instance of MSDE 2000 using
the MSDE 2000 Setup utility DISABLENETWORKPROTOCOLS parameter. For more information on this option, see Customizing
Desktop Engine Setup.exe.

You cannot assign UDP port 1434 to an application other than SQL Server on computers running instances of SQL Server 2000.
Network administrators managing network filters must allow communications on UDP port 1434 to enable SQL Server 2000
connections to pass through the filter.

When running an application on the same computer as a default instance of SQL Server, you can use these names to reference
the default instance.

Windows NT and Windows 2000 Windows Me and Windows 98
Computer name Computer name
(local)* (local)*
.*

*Where "(local)" is the word local in parentheses and "." is a period, or dot. "." is valid only in SQL Server utilities, such as SQL
Query Analyzer and osql; it cannot be specified in API connection requests.

Do not use either (local) or . to connect to a virtual server implemented using failover clustering.

Using the computer name is recommended. These connections will be made with the Shared Memory Net-Library. DB-Library
does not support using (local).

Connecting to Earlier Instances of SQL Server

When applications using the SQL Server 2000 client components connect to instances of SQL Server version 7.0 or earlier, the
communications between the instance and the application function the same as they did in the earlier versions of SQL Server.
Applications using SQL Server version 7.0 or earlier client components to connect to default instances of SQL Server 2000 also
communicate as they did in earlier versions of SQL Server. In both of these cases you must administer the network addresses the
way they were administered in earlier versions of SQL Server. For more information about configuring a client in earlier versions
of SQL Server, see Managing Clients.

SQL Server version 6.5 and earlier supported Windows Authentication (called Integrated Security in those versions) only on the
Named Pipes and Multiprotocol Net-Libraries. SQL Server 2000 and SQL Server version 7.0 support Windows Authentication on
all Net-Libraries. Existing SQL Server version 6.5 or 7.0 applications that use the default Named Pipes Net-Library can be used to
open Windows Authentication connections to instances of SQL Server version 6.5. However, if you upgrade the SQL Server client
utilities on the application computer to SQL Server 2000, the default Net-Library changes to TCP/IP, and any attempt to open a
Windows Authentication connection to instances of SQL Server version 6.5 fails. To resolve this, you can use the Client Network
Utility to put the Named Pipes Net-Library at the top of the Net-Library list, thereby establishing it as the default Net-Library.

See Also

Managing Clients

Managing Servers

SQL Server Architecture (SQL Server 2000)

Tabular Data Stream Protocol
Microsoft® SQL Server™ 2000 uses an application-level protocol called Tabular Data Stream (TDS) for communication between
client applications and SQL Server. The TDS packets are encapsulated in the packets built for the protocol stack used by the Net-
Libraries. For example, if you are using the TCP/IP Sockets Net-Library, then the TDS packets are encapsulated in the TCP/IP
packets of the underlying protocol.

The contents of the packets that send result sets back to the application depends on whether FOR XML is specified in the Transact-
SQL statement transmitted to the database engine:

If FOR XML is not specified, the database engine sends a relational result set back to the application. The TDS packets
contain the rows of the result set, with each row comprised of one or more columns, as specified in the select list of the
SELECT statement.

If FOR XML is specified, the database engine streams an XML document back to the application. The XML document is
formatting in the TDS packets as if it were a single, long Unicode value, with each packet being approximately 4 KB in size.

You can configure the SQL Server packet size, which is the size of the TDS packets. The size of the TDS packets defaults to 4 KB on
most clients (DB-Library applications default to 512 bytes), which testing has shown to be the optimal TDS packet size in almost
all scenarios. The size of the TDS packets can be larger than the size of the packets in the underlying protocol. If this is the case,
the protocol stack on the sending computer disassembles the TDS packets automatically into units that fit into the protocol
packets, and the protocol stack on the client computer reassembles the TDS packets on the receiving computer.

SQL Server Architecture (SQL Server 2000)

Net-Library Encryption
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 can use the Secure Sockets Layer (SSL) to encrypt all data transmitted between an application
computer and a SQL Server instance on a database computer. The SSL encryption is performed within the Super Socket Net-
Library (Dbnetlib.dll and Ssnetlib.dll) and applies to all inter-computer protocols supported by SQL Server 2000. When SSL
encryption is active, the Super Socket Net-Library performs the SSL encryption before calling:

The Windows Socket 2 API to transmit TCP/IP Sockets or NWLink IPX/SPX packets.

The Net-Library router to send a packet to the Named Pipe, Multiprotocol, AppleTalk, or Banyan VINES Net-Libraries.

SSL encryption works only with instances of SQL Server 2000 running on a computer that has been assigned a certificate from a
public certification authority. The computer on which the application is running must also have a root CA certificate from the
same authority.

The Net-Library encryption is implemented using the Secure Sockets Layer API. The level of encryption, 40-bit or 128-bit, depends
on the version of the Microsoft Windows® operating system that is running on the application and database computers.

Enabling SSL encryption increases the security of data exchanged across networks between instances of SQL Server and
applications. Data sent across the network is encrypted so that the clear text cannot be read by unauthorized people using tools
such as network sniffers. Enabling encryption does, however, slightly slow the performance of the Net-Libraries. Encryption forces
these actions in addition to all of the work for an unencrypted connection:

An extra network round trip is required at connect time.

All packets sent from the application to the instance of SQL Server must be encrypted by the client Net-Library and
decrypted by the server Net-Library.

All packets sent from the SQL Server instance to the application must be encrypted by the server Net-Library and decrypted
by the client Net-Library.

Shared memory Net-Library communications are inherently secure without the need for encryption. The shared memory Net-
Library never participates in inter-computer communications. The area of memory shared between the application process and
the database engine process cannot be accessed from any other Windows process.

For compatibility with earlier versions of SQL Server, the Multiprotocol Net-Library continues to support its own encryption. This
encryption is specified independently of the SSL encryption and is implemented by calling the Windows RPC encryption API. It
does not require the use of certificates. The level of RPC encryption, 40-bit or 128-bit, depends on the version of the Windows
operating system that is running on the application and database computers. The Multiprotocol Net-Library is not supported by
named instances.

SQL Server Architecture (SQL Server 2000)

Server Components
In addition to the server Net-Libraries, Microsoft® SQL Server™ 2000 incorporates these main server components:

SQL Server database engine (MSSQLServer service)

SQL Server Agent (SQLServerAgent service)

Microsoft Search service

Microsoft Distributed Transaction Coordinator (MS DTC service)

The server components are supported on computers running the Microsoft Windows NT®, Windows® 2000, Windows Me, and
Windows 98 operating systems. The server components are not supported on computers running Microsoft Windows 95. When
SQL Server is running on Windows NT or Windows 2000, the SQL Server database engine, SQL Server Agent, and MS DTC are
implemented as Windows NT or Windows 2000 services. On Windows Me and Windows 98, the server components are not
implemented as services because the operating system does not support services. The Microsoft Search service is not available on
Windows 95, Windows Me, or Windows 98.

The server components can be stopped and started several ways:

Windows NT and Windows 2000 can start each service automatically when the operating system is starting.

Use SQL Server Service Manager to start or stop the service.

Use SQL Server Enterprise Manager to start or stop the service.

On Windows NT or Windows 2000, use the net start and net stop command prompt commands to stop or start each
service (except for a virtual server in a failover cluster).

SQL Server 2000 supports multiple instances of SQL Server on computers running Windows NT or Windows 2000. Each instance
has its own copy of the SQL Server service and the SQL Server Agent Service. There are only single copies of the Microsoft Search
service or the MS DTC service, whose services are shared among the multiple instances of SQL Server running on the computer.

SQL Server Architecture (SQL Server 2000)

SQL Server Service
The Microsoft® SQL Server™ 2000 database engine runs as a service on the Microsoft Windows NT® or Microsoft Windows®
2000 operating systems. It does not run as a service on Microsoft Windows Me or Windows 98 because these operating systems
do not support services. SQL Server can also run as an executable file on Windows NT and Windows 2000, although it is usually
run as a service.

When multiple instances of SQL Server are run on the same computer, each instance has its own SQL Server service. The service
name for the default instance is named MSSQLServer, the service name for named instances is MSSQL$InstanceName. For more
information, see Multiple Instances of SQL Server.

The SQL Server service manages all of the files that comprise the databases owned by an instance of SQL Server. It is the
component that processes all Transact-SQL statements sent from SQL Server client applications. SQL Server also supports
distributed queries that retrieve data from multiple sources, not only SQL Server.

The SQL Server service allocates computer resources effectively between multiple concurrent users. It also enforces business rules
defined in stored procedures and triggers, ensures the consistency of the data, and prevents logical problems such as having two
people trying to update the same data at the same time.

SQL Server Architecture (SQL Server 2000)

SQL Server Agent Service
SQL Server Agent supports features allowing the scheduling of periodic activities on Microsoft® SQL Server™ 2000, or the
notification to system administrators of problems that have occurred with the server. The SQL Server Agent components that
implement this capability are:

Jobs

Defined objects consisting of one or more steps to be performed. The steps are Transact-SQL statements that can be
executed. Jobs can be scheduled, for example, to execute at specific times or recurring intervals.

Alerts

Actions to be taken when specific events occur, such as a specific error, errors of certain severities, or a database reaching a
defined limit of free space available. The alert can be defined to take such actions as sending an e-mail, paging an operator,
or running a job to address the problem.

Operators

People identified through their network account or e-mail identifier (ID) who can address problems with the server. They
can be the targets of alerts, either through e-mail, a pager, or a net send network command.

The service name of SQLServerAgent applies only to the Agent service associated with a default instance. SQL Server Agent
services associated with named instances are named SQLAgent$InstanceName.

Managing Scheduled Operations

The illustration shows the primary components that are used in the definition and operation of jobs, alerts, and operators.

Jobs, alerts, and operators are specified using:
SQL Server Enterprise Manager.

Applications that use SQL Distributed Management Objects (SQL-DMO).

Applications that use Transact-SQL and a standard database API.
The definitions are stored by SQL Server in the msdb system database.

When the SQLServerAgent service is started, it queries the system tables in the msdb database to determine what jobs and
alerts to enable.

SQL Server Agent executes jobs at their scheduled time.

SQL Server passes any events that occur to the SQL Server Agent.

SQL Server Agent executes any alerts, or sends SQL Mail requests to SQL Server, or sends net send commands to
Windows.

SQL Server 2000 is more highly automated than SQL Server version 6.5 and earlier, and more efficiently tunes itself to meet
processing demands. These features lower the potential for exception conditions that would trigger alerts. Scheduled jobs remain
a good feature for implementing recurring tasks such as backup procedures.

See Also

Automating Administrative Tasks

SQL Server Architecture (SQL Server 2000)

Microsoft Search Service
The Microsoft Search service is a full-text indexing and search engine.

The SQL-92 standard defines only basic character-search capabilities:

For a character value equal to, less than, or greater than a character constant.

For a character value containing a string pattern.

Using the Microsoft Search service allows Microsoft® SQL Server™ 2000 and SQL Server version 7.0 to support more
sophisticated searches on character string columns.

The Microsoft Search service has two roles:

Indexing support

Implements the full-text catalogs and indexes defined for a database. Accepts definitions of full-text catalogs, and the tables
and columns comprising the indexes in each catalog. Implements requests to populate the full-text indexes.

Querying support

Processes full-text search queries. Determines which entries in the index meet the full-text selection criteria. For each entry
that meets the selection criteria, it returns the identity of the row plus a ranking value to the SQL Server service, where this
information is used to construct the query result set. The types of queries supported include searching for:

Words or phrases.

Words in close proximity to each other.

Inflectional forms of verbs and nouns.

The full-text engine runs as a service named Microsoft Search on Microsoft Windows NT® or Microsoft Windows® 2000. It is
installed when the Full-Text Search feature is selected during custom installation. The Microsoft Search service itself is not
installed on Microsoft Windows Me, Windows 98 or Microsoft Windows 95, although clients using these operating systems can
make use of the service when connected to a SQL Server installation running on Windows NT or Windows 2000.

The Microsoft Search service runs in the context of the local system account. During setup, SQL Server adds itself as an
administrator of the Microsoft Search service. To ensure this relationship is maintained correctly, all changes to the SQL Server
service account information must be made using the Properties tab of the SQL Server Properties dialog box in SQL Server
Enterprise Manager.

The full-text catalogs and indexes are not stored in a SQL Server database. They are stored in separate files managed by the
Microsoft Search service. The full-text catalog files are accessible only to the Microsoft Search service and the Windows NT or
Windows 2000 system administrator.

See Also

Full-Text Catalogs and Indexes

Full-Text Query Architecture

SQL Server Architecture (SQL Server 2000)

MSSQLServerADHelper Service
The MSSQLServerADHelper service performs two functions:

It adds and removes the objects used to register instances of Microsoft® SQL Server™ 2000 relational database engine or
Analysis server in the Microsoft Windows® 2000 Active Directory™.

It ensures that the Windows account under which a SQL Server service is running has permissions to update all of the
Active Directory objects for the instance, as well as any replication publications and databases for that instance.

The service is dynamically started by an instance of SQL Server or the Analysis Manager when needed. The service is stopped as
soon as it has completed its work.

Active Directory objects in a computer container can be created or removed only by programs that have been assigned either
domain administration rights or that are running under the localsystem Windows account. Few sites run their SQL Server
service under either of these types of accounts. A service application that does not perform network administration, such as SQL
Server, is rarely granted full domain administration rights. The localsystem account cannot be given any privileges on remote
computers; therefore, running SQL Server under this account would prevent much of the SQL Server distributed functionality
from working. The MSSQLServerADHelper service is run under the localsystem account so that it can add and remove objects
registering SQL Server entities in the Active Directory.

There is only one MSSQLServerADHelper service on a computer. The single service handles the Active Directory objects for all
instances of the SQL Server relational database engine and all Analysis Manager applications running on the computer.

Registering SQL Server Analysis Servers

Analysis servers are registered from the Analysis Manager, which is a Microsoft Management Console (MMC) application. When
users of Analysis Manager request that an Analysis server be registered in the Active Directory, the application dynamically starts
the MSSQLServerADHelper service and requests that it create an MS-SQL-OLAPServer object in the Active Directory. The
helper service is stopped after the object has been completed, and the Analysis Manager finishes filling in the information for the
object. For more information, see Using Active Directory with Analysis Services.

Registering SQL Server Relational Components

All management of the registrations of instances of SQL Server, and the databases and replication publications in each instance,
are made using system stored procedures on the instance of SQL Server. SQL Server Enterprise Manager calls the system stored
procedures when users specify Active Directory actions in the user interface. The procedures used are:

sp_ActiveDirectory_SCP. Manages the registration of an instance of the relational database engine.

sp_addpublication, sp_addmergepublication, sp_changepublication, or sp_changemergepublication. Manage the
registration of replication publications.

sp_ActiveDirectory_Obj. Manages the registration of a database.

Each of these system stored procedures internally call an internal component that use the Active Directory Services Interface
(ADSI) to manage the objects. When an MS-SQL-SQLServer object must be added or removed from the Active Directory, or
permissions granted, the SQL Server ADSI component calls the MSSQLServerADHelper service to perform the task. The SQL
Server service uses the SQL Server ADSI component to dynamically start the MSSQLServerADHelper service as needed.

The SQL Server service dynamically calls the MSSQLServerADHelper service at these times:

When an MS-SQL-SQLServer object must be created in the Active Directory to register an instance of SQL Server, the SQL
Server service calls MSSQLServerADHelper to create the object. MSSQLServerADHelper creates the object and gives
update permissions to the Windows account under which the SQL Server service is running, and then
MSSQLServerADHelper stops. The SQL Server service now has the permissions needed to maintain the object until it is
removed. These permissions include creating MS-SQL-SQLPublication and MS-SQL-SQLDatabase objects as children of
the MS-SQL-SQLServer object.

If an administrator changes the Windows account under which the SQL Server service runs, the SQL Server service detects
this the next time it attempts to update any information in objects that existed in the Active Directory before the account
change. The SQL Server service automatically starts MSSQLServerADHelper. That service reassigns update permissions on

the all the objects related to the current instance of SQL Server to the new Windows account.

When a request is made to delete an MS-SQL-SQLServer object, the SQL Server ADSI component calls the
MSSQLServerADHelper service to delete the object and any children that are still present.

The SQL Server service must be run under a Windows account that has permissions to start the MSSQLServerADHelper service.
By default, members of the local Power Users and local Administrator's groups have this permission.

SQL Server Architecture (SQL Server 2000)

MS DTC Service
The Microsoft Distributed Transaction Coordinator (MS DTC) is a transaction manager that allows client applications to include
several different sources of data in one transaction. MS DTC coordinates committing the distributed transaction across all the
servers enlisted in the transaction.

An installation of Microsoft® SQL Server™ can participate in a distributed transaction by:

Calling stored procedures on remote servers running SQL Server.

Automatically or explicitly promoting the local transaction to a distributed transaction and enlist remote servers in the
transaction.

Making distributed updates that update data on multiple OLE DB data sources.

If these OLE DB data sources support the OLE DB distributed transaction interface, SQL Server can also enlist them in the
distributed transaction.

The MS DTC service coordinates the proper completion of the distributed transaction to ensure that either all of the updates on all
the servers are made permanent, or, in the case of errors, all erased.

SQL Server applications can also call MS DTC directly to start a distributed transaction explicitly. One or more servers running
SQL Server can then be instructed to enlist in the distributed transaction and coordinate the proper completion of the transaction
with MS DTC.

See Also

Distributed Transactions

SQL Server Architecture (SQL Server 2000)

Multiple Instances of SQL Server
Microsoft® SQL Server™ 2000 supports multiple instances of the SQL Server database engine running concurrently on the same
computer. Each instance of the SQL Server database engine has its own set of system and user databases that are not shared
between instances. Applications can connect to each SQL Server database engine instance on a computer in much the same way
they connect to SQL Server database engines running on different computers.

There are two types of instances of SQL Server:

Default Instances

The default instance of the SQL Server 2000 database engine operates the same way as the database engines in earlier versions
of SQL Server. The default instance is identified solely by the name of the computer on which the instance is running, it does not
have a separate instance name. When applications specify only the computer name in their requests to connect to SQL Server, the
SQL Server client components attempt to connect to the default instance of the database engine on that computer. This preserves
compatibility with existing SQL Server applications.

There can only be one default instance on any computer, the default instance can be any version of SQL Server.

Named Instances

All instances of the database engine other than the default instance are identified by an instance name specified during
installation of the instance. Applications must provide both the computer name and the instance name of any named instance to
which they are attempting to connect. The computer name and instance name are specified in the format
computer_name\instance_name.

There can be multiple named instances running on a computer, but only the SQL Server 2000 database engine can operate as a
named instance. The database engines from earlier versions of SQL Server cannot operate as a named instance.

Instances apply primarily to the database engine and its supporting components, not to the client tools. When you install multiple
instances, each instance gets a unique set of:

System and user databases.

The SQL Server and SQL Server Agent services. For default instances, the names of the services remain MSSQLServer and
SQLServerAgent. For named instances, the names of the services are changed to MSSQL$instancename and
SQLAgent$instancename, allowing them to be started and stopped independently of the other instances on the server. The
database engines for the different instances are started and stopped using the associated SQL Server service. The SQL
Server Agent services manage scheduled events for the associated instances of the database engine.

The registry keys associated with the database engine and the SQL Server and SQL Server Agent services.

Network connection addresses so that applications can connect to specific instances.

Shared Components

The following components are shared between all of the instances running on the same computer:

There is only one SQL Server 2000 program group (Microsoft SQL Server) on the computer, and only one copy of the utility
represented by each icon in the program group. There is only one copy of SQL Server Books Online.

The versions of the utilities in the program group are from the first version of SQL Server 2000 installed on the computer.
For example, if you install the French version of SQL Server 2000 as a default instance and then the U.S. English version of
SQL Server 2000 as a named instance, there is one SQL Server 2000 program group. All of the utility icons and the SQL
Server Books Online icon in the program group start the French versions of the tools.

All of the SQL Server 2000 utilities work with multiple instances. You can start and stop each of the instances from a single
copy of the SQL Server 2000 Service Manager. You can use a single copy of the SQL Server 2000 SQL Server Enterprise
Manager to control objects in all instances on the computer, and use a single copy of the SQL Server 2000 Server Network
Manager to manage the network addresses with which all of the instances on the computer communicate.

There is only one copy of the MSSearchService that manages full-text searches against all of the instances of SQL Server on
the computer.

There is only one copy each of the English Query and Microsoft SQL Server 2000 Analysis Services servers.

The registry keys associated with the client software are not duplicated between instances.

There is only one copy of the SQL Server development libraries (include and .lib files) and sample applications.

Default Instances

Configurations that can operate as a default instance include:

A default instance of SQL Server 2000.

An installation of SQL Server version 7.0 operates as a default instance.

An installation of SQL Server version 6.5 operates as a default instance.

A default instance of SQL Server 2000 that can be version switched with an installation of SQL Server version 6.5 using the
SQL Server 2000 vswitch utility.

An installation of SQL Server version 7.0 that can be version switched with an installation of SQL Server version 6.5 using
the SQL Server version 7.0 vswitch utility.

Note You must apply SQL Server 6.5 Service Pack 5 to any instance of SQL Server 6.5 before installing instances of SQL
Server 2000 on the same computer.

Switching Between Versions of SQL Server

You cannot version switch between an installation of SQL Server version 7.0 and a default instance of SQL Server 2000.

You can have any number of named instances of SQL Server 2000 in addition to the default instance. You are not required to run
a default instance on a computer before you can run named instances. You can run named instances on a computer that has no
default instance. SQL Server version 6.5 and SQL Server 7.0 cannot operate as named instances, only as default instances.

Microsoft does not support more than 16 instances on a single computer or failover cluster.

If you run SQL Server version 6.5 as a default instance and run one or more named instances of SQL Server 2000 on a single
computer, the computer has two SQL Server program groups instead of one SQL Server program group:

A SQL Server 2000 program group executes the SQL Server 2000 tools.

A SQL Server version 6.5 program group runs the SQL Server 6.5 tools.

If you are running SQL Server version 7.0 with SQL Server 2000, the icons in the SQL Server 7.0 program group will execute the
SQL Server 2000 tools.

Note You must apply SQL Server 6.5 Service Pack 5 to any instance of SQL Server 6.5 before installing instances of SQL Server
2000 on the same computer.

Multiple Instances of SQL Server on a Failover Cluster

You can run only one instance of SQL Server on each virtual server of a SQL Server failover cluster, although you can install up to
16 virtual servers on a failover cluster. The instance can be either a default instance or a named instance. The virtual server looks
like a single computer to applications connecting to that instance of SQL Server. When applications connect to the virtual server,
they use the same convention as when connecting to any instance of SQL Server; they specify the virtual server name of the
cluster and the optional instance name (only needed for named instances): virtualservername\instancename. For more
information about clustering, see Failover Clustering Architecture.

SQL Server Architecture (SQL Server 2000)

Communicating with Multiple Instances
Communicating with Multiple Instances

Each instance of Microsoft® SQL Server™ 2000 listens on a unique set of network address so that applications can connect to
different instances. SQL Server 2000 clients do not have to be configured to connect to an instance of SQL Server 2000. The SQL
Server 2000 client components query a computer running instances of SQL Server 2000 to determine the Net-Libraries and
network addresses for each instance. The client components then transparently choose a supported Net-Library and address for
the connection without having to be configured on the client. The only information the application must supply is the computer
name and instance name. For more information, see Controlling Net-Libraries and Communications Addresses.

A default instance of SQL Server 2000 listens on the same network addresses as earlier versions of SQL Server; therefore,
applications using the client connectivity components of SQL Server version 7.0 or earlier can continue to connect to the default
instance with no change. Named instances listen on alternative network addresses, and client computers using the client
connectivity components of SQL Server version 7.0 or earlier must be set up to connect to the alternative addresses.

SQL Server Architecture (SQL Server 2000)

Using Multiple Instances
Using Multiple Instances

Although running multiple instances of Microsoft® SQL Server™ 2000 on a single computer expands the capabilities of SQL
Server, the recommended configuration for most production databases servers is to use a single instance of SQL Server with
multiple databases.

Using a single instance of SQL Server on a production server offers these benefits:

Only one instance needs to be administered.

There is no duplication of components or processing overhead, such as having to run multiple database engines on the
same computer. This means that the overall performance of a server with a single instance may be higher than a server
running multiple instances.

A single instance of SQL Server 2000 is capable of handling the processing growth requirements of the largest Web sites
and enterprise data-processing systems, especially when it is part of a federation of database servers. For more information,
see Federated SQL Server 2000 Database Servers.

Running multiple instances of SQL Server on a single computer is best:

When you must support different systems that have to be securely isolated from each other, such as when a service bureau
has a large server and must create a separate instance of SQL Server for each customer.

When you need to support multiple test and development databases, and the most economical configuration is to run these
as separate instances of SQL Server on a single large server.

When you need to run multiple applications on a desktop, and each application installs a separate instance of SQL Server
2000 Desktop Engine (MSDE 2000).

SQL Server Architecture (SQL Server 2000)

Working with Multiple Instances
Working with Multiple Instances

Although multiple instances of Microsoft® SQL Server™ 2000 can run on a single computer, there is no direct connection
between instances. Each instance operates in many ways as if it is on a separate server. An application connected to one instance
cannot access objects in databases created in another instance, except through distributed queries. Databases and database files
cannot be shared between instances.

Named instances of SQL Server 2000 database engines have almost the same behaviors as default instances. The main difference
is that you must supply both the computer name and instance name to identify a named instance. When you specify only
computername, you work with the default instance. When you specify computername\instancename you work with the named
instance.

Service Manager.

When you specify only computername in Service Manager, you can stop and start the default instance. When you specify
computername\instancename you can stop and start the named instance. When a specific instance is started, any database
created in that instance is available to any application that connects to the instance using an authorization ID that has
permissions to access the database.

SQL Server Enterprise Manager.

Using SQL Server Enterprise Manager you can register each instance for which you have permissions. After an instance is
registered, you can create, edit, and drop objects in the databases associated with that instance, subject to the permissions
granted to you. You can also create, edit, and drop Data Transformation Services, Replication, and SQL Server Agent objects
for that instance.

Applications.

In an application, when you specify computername as the server name parameter in a connection request, you are
connected to the default instance on the computer. You can access any databases in the default instance that you have
permissions to access. If you specify computername\instancename as the server name parameter, you are connected to the
named instance. You can access any databases in that named instance that you have permissions to access. When you are
connected to a specific instance, objects in databases in other instances can be accessed only through distributed queries,
just as objects in databases on other servers can be accessed only through distributed queries. Applications specify the
instance name in different ways:

ADO applications specify "Server=computername\instancename" in the provider string. For more information, see
Connecting to Multiple Instances of SQL Server.

OLE DB applications specify "Server=computername\instancename" in the provider string. They can alternatively
set DBPROP_INIT_DATASOURCE to computername\\instancename (the backslash must be escaped with a second
backslash). For more information, see Establishing a Connection to a Data Source.

ODBC applications specify "Server=computername\instancename" in the connection string specified on
SQLDriverConnect. They can alternatively specify computername\\instancename for the ServerName parameter
on SQLConnect, or connect through a data source that has computername\instancename specified for the server
name. For more information, see Support for SQLDriverConnect and SQLConfigDataSource.

SQL DMO applications can manage instances of SQL Server 2000 using the SQLServer2 object. For more
information, see SQLServer2 Object.

DB-Library and Embedded SQL for C do not support multiple instances.
Distributed queries and linked servers.

Distributed queries and linked server definitions use computername\instancename to identify named instances and
computername to identify default instances. For more information, see Distributed Queries on Multiple Instances of SQL
Server.

Command prompt utilities.

When you use the command prompt utilities, you can use the Server switch to specify an instance by using
computername\instancename, for example:

osql -E -Scomputer1\instance1
sqlservr /Sinstance1

The isql utility does not support named instances.

SQL Server 2000 client components.

Applications using SQL Server 2000 client components can enumerate the instances available for connections:

The OLE DB Provider for SQL Server 2000 returns instance names using ISourcesRowset::GetSourcesRowset. The
names of named instances are returned as the data source name in the format computername\instancename,
where computername can be either the name of a single computer or the virtual server name of a failover cluster.
The names of default instances are returned as the data source name in the format computername, with no instance
name.

The SQL Server 2000 ODBC driver supports extensions to SQLBrowseConnect and SQLSetConnectAttr that allow
applications to enumerate instances on a server. ODBC applications can also determine whether the computername
is the name of a single computer or a virtual server name for a failover cluster. For more information, see
SQLBrowseConnect.

SQL-DMO applications can enumerate instances using the SQLServer2 object. The SQLServer2 object also presents
information such as the names of the SQL Server and SQL Server Agent services for the instance, or whether the
instance is running on a single computer or a failover cluster. For more information, see SQLServer2 Object.

DB-Library and Embedded SQL for C do not support named instances.

Identifying Instances

Performance Monitor counters, Profiler events, and Windows events in the Event Viewer Application Log all identify the instance
of SQL Server with which they are associated.

The string returned by the @@SERVERNAME function identifies the name of the instance in the form servername\instancename
if you are connected to a named instance. If connected to a default instance @@SERVERNAME returns only servername. For more
information, see @@SERVERNAME.

The SERVERPROPERTY function INSTANCENAME property reports the instance name of the instance to which you are connected.
INSTANCENAME returns NULL if connected to a default instance. In addition, the SERVERNAME property returns the same format
string returned by @@SERVERNAME and will have the format servername\instancename when connected to a named instance.
For more information, see SERVERPROPERTY.

Although the strings reported by @@SERVERNAME and SERVERNAME use the same format, the information they report can be
different, for example:

The string returned by @@SERVERNAME is affected by the actions of sp_addserver and sp_dropserver, and the string
reported by SERVERNAME is not.

SERVERNAME automatically reports changes in the network name of the computer, and @@SERVERNAME does not, unless
sp_dropserver and sp_addserver are used to change the name it reports.

SQL Server Architecture (SQL Server 2000)

Federated SQL Server 2000 Servers
Microsoft® SQL Server™ 2000 databases can be spread across a group of autonomous database servers capable of supporting
the processing growth requirements of the largest Web sites and enterprise data-processing systems built with Microsoft
Windows® DNA.

Windows DNA divides the processing units of a data processing system into logical tiers:

User services tier

Presents the interface seen by the users, and typically calls the second tier for business logic processing.

Business services tier

Contains the business logic that controls the operation of the Web site, and uses the persistent data storage provided by the
third tier.

Data services tier

Stores the persistent data required to run the Web site.

Scaling refers to the process of adding resources to a tier so that it can handle increased workloads. Scaling can be done in one of
two ways:

Scale up

Increases the processing power of a server by using a more powerful computer.

Scale out

Increases the processing power of a system designed in a modular fashion, such as becoming a cluster of computers, by
adding one or more additional computers, or nodes, to the system.

The growth requirements of the largest Web sites generate processing loads that exceed the capacity of large individual servers.
In these cases, scaling out may be the best option for increasing the processing capacity of the system.

Microsoft Windows 2000 COM+ components are designed to be used in clusters of Windows 2000 application servers to form a
clustered business services tier. Each server has identical sets of COM+ components, and Windows 2000 balances the cluster
processing load by sending new requests to the server that has the least processing load. This forms an easily administered
cluster that can quickly scale out by simply adding a new server.

SQL Server 2000 does not support this type of clustering. However, SQL Server 2000 does support updatable distributed
partitioned views used to transparently partition data horizontally across a group of servers. Although these servers cooperate in
managing the partitioned data, they operate autonomously. Each server is managed independently, has separate operational
rules, and can support independent processes and data. A group of autonomous servers that cooperate to process a workload is
known as a federation. Although SQL Server 2000 delivers very impressive performance when scaled up on servers with eight or
more processors, it can support huge processing loads when partitioned across a federation. A federation of servers running SQL
Server 2000 is capable of supporting the growth requirements of any Web site, or of the largest enterprise systems.

SQL Server Architecture (SQL Server 2000)

Partitioning Data
Partitioning Data

The first step in building a set of federated database servers is to horizontally partition the data in a set of tables across multiple
servers. Horizontally partitioning a table refers to dividing a table into multiple smaller tables, called member tables. Each
member table has the same format as the original table, but only part of the rows. Each table is placed on a separate resource
(files or servers) to spread the processing load across the resources. For example, a company assigns customer identifiers (IDs)
from 1 through 9999999. The Customers table may be partitioned into three member tables, with each member table having an
equal customer ID range.

If used without views, horizontal partitioning would require applications to have logic to determine which member tables have
the data requested by the user and dynamically build SQL statements referencing the tables. The application would require
complex queries joining the member tables. Changing the member tables would also involve recoding the application. Views
solve the problem by making the member tables look like one table. The SQL UNION operator combines result sets with identical
formats into one. Because all the member tables have the same format, the result of SELECT * statements for each table have the
same format, and can be combined using the UNION clause to form a single result set that operates similarly to the original table.
For example, the Customers table has been partitioned across three servers (Server1, Server2, and Server3). The distributed
partitioned view defined on Server1 is:

CREATE VIEW Customers
AS
SELECT * FROM Customers_33
 UNION ALL
SELECT * FROM Server2.CustomerDB.dbo.Customers_66
 UNION ALL
SELECT * FROM Server3.CustomerDB.dbo.Customers_99

This view makes the actual location of the data transparent to an application. When a SQL statement is executed on Server1 that
references the Customers partitioned view, the application has no visibility to where the data is located. If some of the rows
required to complete the SQL statement reside on Server2 or Server3, the instance of SQL Server on Server1 automatically
generates a distributed query that pulls in the required rows from the other servers. This transparency allows database
administrators to repartition tables without recoding applications. If the Customers view is updatable, the behavior of the view is
the same as a table named Customers.

Local partitioned views reference member tables on one server. Distributed partitioned views reference member tables on
multiple servers. A server containing a member table is called a member server, and a database containing a member table is
called a member database. Each member server contains one member table and a distributed partitioned view. An application
that references the partitioned view on any of the servers gets the same results as if a complete copy of the original table were
present on each server.

Microsoft SQL Server 2000 and Microsoft SQL Server version 7.0 support partitioned views; however, SQL Server 2000
introduces key features that allow the views to scale out and form federations of database servers:

SQL Server 2000 partitioned views are updatable. This is crucial for distributing data so that the location of the data is
transparent to the application. Updatable views support the full behavior of the original table; nonupdatable views are like
read-only copies.

The SQL Server 2000 query optimizer supports new optimizations that minimize the amount of distributed data that has to
be transferred. The distributed execution plans generated by SQL Server 2000 result in good performance for a larger set of
queries than the plans generated by SQL Server version 7.0.

SQL Server 2000 partitioned views are best suited for the types of SQL statements generated by Web sites and online transaction
processing (OLTP) systems.

Partitioning a Database

To build an effective federation of database servers:

Create multiple databases, each on a different member server running an instance of SQL Server 2000.

Partition the individual tables in the original database so that most related data is placed together on a member server. This
may require different methods of distributing the data in the various tables across all the member databases; partitioning
some tables; making complete copies of other tables in each member database; and leaving some tables intact on the

original server.

Devise data routing rules that can be incorporated in the business services tier, so that applications can send each SQL
statement to the member server that stores most of the data required by the statement.

The most important goal is to minimize distributed processing in such a system. You must be able to collocate related data on the
same member server, and then route each SQL statement to a member server that contains most, if not all, of the data required to
process the statement. For example, you may find that all the sales, customer, sales personnel, and inventory tables in a database
can be partitioned by sales region, and that most SQL statements only reference data in a single region. You can then create
member servers where each server has the horizontally partitioned data for one or more regions. If applications can identify the
region currently referenced in the user's input, the application can submit any generated SQL statement to the member server
containing the data for that region. The only SQL statements that will generate distributed queries are those that reference data
from multiple regions.

SQL Server Architecture (SQL Server 2000)

Failover Clustering Architecture
Microsoft® SQL Server™ 2000 failover clustering increases server availability by allowing a system to automatically switch the
processing for an instance of SQL Server from a failed server to a working server. For example, an instance of SQL Server can
quickly restore database services to a Web site or enterprise network even if the server running the instance fails. SQL Server
2000 implements failover clustering based on the failover clustering features of the Microsoft Clustering Service (MSCS) in
Windows NT® 4.0 and Windows® 2000.

The type of MSCS failover cluster used by SQL Server 2000 consists of multiple server computers (two on Windows NT 4.0, up to
four on Windows 2000 Datacenter Server) that share a common set of cluster resources, such as disk drives. Each server in the
cluster is called a node. Each server, or node, is connected to the network, and each node can communicate with each other node.
Each node runs the same version of MSCS.

The shared resources in the failover cluster are collected into cluster groups. For example, if a failover cluster has four clustered
disk drives, two of the drives can be collected in one cluster group and the other two in a second cluster group. Each cluster group
is owned by one of the nodes in the failover cluster, although the ownership can be transferred between nodes.

Applications can be installed on the nodes in the failover cluster. These applications are typically server applications or distributed
COM objects that users access through network connections. The application executables and other resources are typically stored
in one or more of the cluster groups owned by the node. Each node can have multiple applications installed on it.

The failover cluster nodes periodically send each other network messages called heartbeat messages. If the MSCS software
detects the loss of a heartbeat signal from one of the nodes in the cluster, it treats the server as a failed server. MSCS then
automatically transfers the cluster groups and application resources of that node to the other nodes in the network. The cluster
administrator specifies the alternate nodes to which cluster groups are transferred when any given node fails. The other nodes
then continue processing user network requests for the applications transferred from the failed server.

For more information about MSCS, see the Windows NT Server, Windows 2000 Server, Windows 2000 Advanced Server, or
Windows 2000 Datacenter documentation.

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 Failover Clusters
SQL Server 2000 Failover Clusters

You can install up to 16 instances of Microsoft® SQL Server™ 2000 in a Microsoft Clustering Service (MSCS) failover cluster.

You install an instance of SQL Server 2000 by running SQL Server Setup on one of the nodes of the cluster. The Setup program
installs the instance on the nodes of the failover cluster that you specify during setup. The SQL Server 2000 executable files are
installed on the local disk drives of each node in the failover cluster. This means that each node must have a local hard drive that
is assigned the same drive letter as on all the other nodes, and that drive letter must be in the path of the location you specify for
the SQL Server executable files during setup. For example, if you specify C:\Program Files\Microsoft SQL Server as the location in
which to install the SQL Server executables, each node in the cluster must have drive letter C mapped to a local drive. The registry
information for the instance is also stored in the registry of each node in the failover cluster.

An MSCS cluster group is a collection of clustered resources, such as clustered disk drives, which are owned by one of the failover
cluster nodes. The ownership of the group can be transferred from one node to another, but each group can only be owned by
one node at a time. The database files for an instance of SQL Server 2000 are placed in a single MSCS cluster group owned by the
node on which you install the instance. If a node running an instance of SQL Server fails, MSCS switches the cluster group
containing the data files for that instance to another node. Since the new node already has the executable files and registry
information for that instance of SQL Server on its local disk drive, it can start up the instance of SQL Server and start accepting
connection requests for that instance.

Because the executable files and registry information for each instance of SQL Server 2000 is stored in each node, the SQL Server
2000 limit of 16 instances per computer also applies to each failover cluster. Each instance in the failover cluster must either have
a unique instance name or be a default instance. There can only be one default instance per failover cluster.

The MSCS cluster group that holds the database files for an instance is associated with a SQL Server virtual server name during
SQL Server setup. There can only be one instance per virtual server, which also means that there can only be one instance
associated with any cluster group.

When an application attempts to connect to an instance of SQL Server 2000 running on a failover cluster, the application must
specify both the virtual server name and the instance name. The application does not have to specify an instance name only if the
instance associated with the virtual server is a default instance that does not have a name.

For example:

A Windows cluster administrator creates a failover cluster with two nodes: NodeA and NodeB. Each node maps the drive
letter C to a local hard drive.

There is one shared disk in the cluster. The cluster administrator creates ClusterGroupA to hold the drive, and assigns it to
NodeA.

The SQL Server system administrator runs the Setup program to install a default instance of SQL Server on NodeA. During
setup, the administrator specifies a SQL Server virtual server name of VirtualServerX, and specifies that the database files
be placed on the drive in ClusterGroupA. Setup installs the SQL Server executable files on the local drives of both NodeA
and NodeB, and places the database files in ClusterGroupA.

Applications attempting to connect to the default instance only need to specify the virtual server name VirtualServerX. The
default instance normally runs on NodeA. Should NodeA fail, however, the MSCS clustering will transfer ownership of
ClusterGroupA to NodeB and will restart the default instance on NodeB. Applications will still connect to the default
instance by specifying the virtual server name VirtualServerX.

See Also

Failover Clustering

Installing a Virtual Server Configuration

SQL Server Architecture (SQL Server 2000)

Active Directory Integration
The Microsoft® Windows® 2000 Active Directory™ operates as a secure central resource for storing information about the users,
devices, and services available on a Windows 2000 network. Microsoft SQL Server™ 2000 supports registering instances of the
SQL Server relational engine, databases, replication publications, and Analysis servers in the Active Directory. The SQL Server
tools also provide a dialog box that supports browsing for replication publications registered in the Active Directory.

SQL Server Objects in the Active Directory Hierarchy

The Active Directory uses a hierarchy to represent the relationships between network entities such as users, services, and devices
(such as computers, scanners, or printers). The hierarchy starts from a single root node at the top and branches down to leaf
nodes representing individual entities in the network. The intermediate nodes in the hierarchy are containers that hold references
to multiple entities. For example, several Windows users can be collected into a group for administrative purposes. Each node is
implemented as an Active Directory object that represents the specific entity for that node.

When you register an instance of the SQL Server relational database engine in the Active Directory, an MS-SQL-SQLServer object
is added as a Service Connection Point (SCP) object in the container for the computer on which the instance is running. An SCP is
the type of Active Directory object that represents services available on the network. An SCP object records information about the
service, such as connection information. An Analysis server is also registered as an SCP of the computer on which the Analysis
server is running.

After registering an instance of the SQL Server relational database engine in the Active Directory, you can also register the
replication publications that reside in the instance. The publications are registered as children of the instance. After registering
replication publications in the Active Directory, the Create Pull Subscription Wizard supports a dialog box that allows users to
search for registered publications in the Active Directory. For more information, see Active Directory Services.

After registering an instance of the relational database engine in the Active Directory, members of the sysadmin fixed server role
can also register any databases in that instance. In SQL Server Enterprise Manager, right-click the database and select Properties.
The Options tab has a check box at the bottom that controls whether the database is registered in the Active Directory. When you
select the checkbox, the database is registered in the Active Directory when you close the Properties dialog box. After the check
box is selected, the database object in the Active Directory is refreshed each time you close the Properties dialog box, provided
the check box is selected when you open the Properties dialog box and remains checked when you click OK to close the dialog
box. You can also use the sp_ActiveDirectory_Obj stored procedure to register databases from Transact-SQL scripts or
applications.

You can register Analysis servers in the Active Directory. For more information, see Using Active Directory with Analysis Services.
The SQL Server 2000 tools do not provide any facilities for browsing the Active Directory for instances of the relational database
engine, Analysis servers, or relational databases. Applications can be coded to browse the Active Directory for the objects used to
register these SQL Server entities.

The Active Directory class objects supported by SQL Server 2000 are defined in the Windows 2000 Active Directory schema:

Active Directory Object Name SQL Server Entity
MS-SQL-SQLServer An instance of SQL Server
MS-SQL-SQLPublication A replication publication defined in an

instance of SQL Server.
MS-SQL-SQLDatabase A database in an instance of SQL Server.
MS-SQL-OLAPServer An instance of the SQL Server Analysis

server.

SQL Server 2000 makes no extensions to the definitions of these objects; SQL Server uses the objects as defined in the Windows
2000 Active Directory schema. Users can also code Active Directory Service Interfaces (ADSI) applications that browse the Active
Directory for registered instances of SQL Server, Analysis servers, publications, and databases, For more information about ADSI
and the structure of Active Directory schema objects, see the MSDN® Library at Microsoft Web site.

Note SQL Server 2000 does not use the MS-SQL-OLAPCube, MS-SQL-OLAPDatabase, or MS-SQL-SQLRepository class
objects defined in the Windows 2000 Active Directory schema.

See Also

MSSQLServerADHelper Service

sp_ActiveDirectory_SCP

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

SQL Server Architecture (SQL Server 2000)

SQL Server and XML Support
Extensible Markup Language (XML) is a hypertext programming language used to describe the contents of a set of data and how
the data should be output to a device or displayed in a Web page. Markup languages originated as ways for publishers to indicate
to printers how the content of a newspaper, magazine, or book should be organized. Markup languages for electronic data
perform the same function for electronic documents that can be displayed on different types of electronic gear.

Both XML and the Hypertext Markup Language (HTML) are derived from Standard Generalized Markup Language (SGML). SGML
is a very large, complex language that is difficult to fully use for publishing data on the Web. HTML is a more simple, specialized
markup language than SGML, but has a number of limitations when working with data on the Web. XML is smaller than SGML
and more robust than HTML, so is becoming an increasingly important language in the exchange of electronic data through the
Web or intracompany networks.

In a relational database such as Microsoft® SQL Server™ 2000, all operations on the tables in the database produce a result in the
form of a table. The result set of a SELECT statement is in the form of a table. Traditional client/server applications that execute a
SELECT statement process the results by fetching one row or block of rows from the tabular result set at a time and mapping the
column values into program variables. Web application programmers, on the other hand, are more familiar with working with
hierarchical representations of data in XML or HTML documents.

SQL Server 2000 introduces support for XML. These new features include:

The ability to access SQL Server through a URL.

Support for XML-Data schemas and the ability to specify XPath queries against these schemas.

The ability to retrieve and write XML data:
Retrieve XML data using the SELECT statement and the FOR XML clause.

Write XML data using the OpenXML rowset provider.
Enhancements to the Microsoft SQL Server 2000 OLE DB provider (SQLOLEDB) that allow XML documents to be set as
command text and to return result sets as a stream.

See Also

XML and Internet Support Overview

Accessing SQL Server Using a URL

Creating XML Views Using Annotated Schemas

Using XPath Queries

Retrieving and Writing XML Data

SQL Server Architecture (SQL Server 2000)

Database Architecture
Microsoft® SQL Server™ 2000 data is stored in databases. The data in a database is organized into the logical components visible
to users. A database is also physically implemented as two or more files on disk.

When using a database, you work primarily with the logical components such as tables, views, procedures, and users. The physical
implementation of files is largely transparent. Typically, only the database administrator needs to work with the physical
implementation.

Each instance of SQL Server has four system databases (master, model, tempdb, and msdb) and one or more user databases.
Some organizations have only one user database, containing all the data for their organization. Some organizations have different
databases for each group in their organization, and sometimes a database used by a single application. For example, an
organization could have one database for sales, one for payroll, one for a document management application, and so on.
Sometimes an application uses only one database; other applications may access several databases.

It is not necessary to run multiple copies of the SQL Server database engine to allow multiple users to access the databases on a
server. An instance of the SQL Server Standard or Enterprise Edition is capable of handling thousands of users working in
multiple databases at the same time. Each instance of SQL Server makes all databases in the instance available to all users that
connect to the instance, subject to the defined security permissions.

When connecting to an instance of SQL Server, your connection is associated with a particular database on the server. This
database is called the current database. You are usually connected to a database defined as your default database by the system
administrator, although you can use connection options in the database APIs to specify another database. You can switch from
one database to another using either the Transact-SQL USE database_name statement, or an API function that changes your
current database context.

SQL Server 2000 allows you to detach databases from an instance of SQL Server, then reattach them to another instance, or even
attach the database back to the same instance. If you have a SQL Server database file, you can tell SQL Server when you connect
to attach that database file with a specific database name.

See Also

Database Design Considerations

SQL Server Architecture (SQL Server 2000)

Logical Database Components
The data in a Microsoft® SQL Server™ 2000 database is organized into several different objects. These objects are what a user
can see when they connect to the database.

In SQL Server 2000, these components are defined as objects:

Constraints Tables
Defaults Triggers
Indexes User-defined data types
Keys User-defined functions
Stored procedures Views

SQL Server Architecture (SQL Server 2000)

Data Types and Table Structures
 New Information - SQL Server 2000 SP3.

All the data in Microsoft® SQL Server™ 2000 databases is contained in objects called tables. Each table represents some type of
object meaningful to the users. For example, in a school database you would find tables such as a class table, an instructor table,
and a student table.

SQL Server tables have two main components:

Columns

Each column represents some attribute of the object modeled by the table, such as a parts table having columns for ID,
color, and weight.

Rows

Each row represents an individual occurrence of the object modeled by the table. For example, the parts table would have
one row for each part carried by the company.

Data Types

Because each column represents one attribute of an object, the data in each occurrence of the column is similar. One of the
properties of a column is called its data type, which defines the type of data the column can hold. SQL Server has several base
data types that can be specified for columns:

binary Bigint bit Char datetime
decimal Float image Int Money
nchar Ntext nvarchar Numeric Real
smalldatetime smallint smallmoney sql_variant sysname
text timestamp tinyint varbinary varchar
uniqueidentifier

SQL Server 2000 also supports a table base data type, which can be used to store the result set of an SQL statement. The table
data type cannot be used for columns in a table. It can only be used for Transact-SQL variables and the return values of user-
defined functions. For more information, see Using Special Data.

Users can also create their own user-defined data types, for example:

-- Create a birthday data type that allows nulls.
EXEC sp_addtype birthday, datetime, 'NULL'
GO
-- Create a table using the new data type.
CREATE TABLE employee
 (emp_id char(5),
 emp_first_name char(30),
 emp_last_name char(40),
 emp_birthday birthday)

A user-defined data type makes a table structure more meaningful to programmers and helps ensure that columns holding
similar classes of data have the same base data type.

SQL Server provides several data type synonyms to help support SQL-92 data type names not included as base data types, such
as national character and character varying. When a synonym is specified in a CREATE TABLE statement, the column is assigned

the base data type associated with the synonym. For more information, see Data Type Synonyms.

A domain is the set of all allowable values in a column. It includes not only the concept of enforcing data types, but also the values
allowed in the column. For example, a part color domain would include both the data type, such as char(6), and the character
strings allowed in the column, such as Red, Blue, Green, Yellow, Brown, Black, White, Teal, Grey, and Silver. Domain values can be
enforced through mechanisms such as CHECK constraints and triggers.

When a column has been assigned a data type, all values placed into the column must be of that data type. SQL statements can
specify that values of different data types be used as the source value only if SQL Server can implicitly convert the source value
data type to the data type of the column. For example, SQL Server supports the implicit conversion of int values to decimal;
therefore, SQL statements can specify int values as the value to be assigned to a decimal column.

The SQL Server 2000 sql_variant data type is a special data type that allows you to store values of multiple base data types in the
same column. For example, you can store nchar values, int values, and decimal values in the same column. For more
information, see Using sql_variant Data.

Null Values

Columns can either accept or reject null values. NULL is a special value in databases that represents the concept of an unknown
value. NULL is not the same as a blank character or 0. Blank is actually a valid character, and 0 is a valid number. NULL simply
represents the idea that we do not know what this value is. NULL is also different from a zero-length string. If a column definition
contains the NOT NULL clause, you cannot insert rows having the value NULL for that row. If the column definition has only the
NULL keyword, it accepts NULL values.

Allowing NULL values in a column can increase the complexity of any logical comparisons using the column. The SQL-92
standard states that any comparison against a NULL value does not evaluate to TRUE or FALSE, it evaluates to UNKNOWN. This
introduces three-value logic to comparison operators, which can be difficult to manage correctly.

System Tables

SQL Server stores the data defining the configuration of the server and all its tables in a special set of tables known as system
tables. SQL Server does not support direct updates to the system tables by users or applications. Only SQL Server should update
the system tables in response to administration commands issued by users. Additionally, users should not query the system
tables directly unless there is no other way to get the data required by the application. The system tables can change from version
to version; applications referencing system tables directly may have to be rewritten before they can be upgraded to a newer
version of SQL Server with a different version of the system tables. SQL Server exposes most of the information from the system
tables through other means. For more information, see System Tables.

Temporary Tables

SQL Server supports temporary tables. These tables have names that start with a number sign (#). If a temporary table is not
dropped when a user disconnects, SQL Server automatically drops the temporary table. Temporary tables are not stored in the
current database; they are stored in the tempdb system database.

There are two types of temporary tables:

Local temporary tables

The names of these tables begin with one number sign (#). These tables are visible only to the connection that created them.

Global temporary tables

The names of these tables begin with two number signs (##). These tables are visible to all connections. If the tables are not
dropped explicitly before the connection that created them disconnects, they are dropped as soon as all other tasks stop
referencing them. No new tasks can reference a global temporary table after the connection that created it disconnects. The
association between a task and a table is always dropped when the current statement completes executing; therefore, global
temporary tables are usually dropped soon after the connection that created them disconnects.

Many traditional uses of temporary tables can now be replaced with variables that have the table data type.

Working with Tables

Users work with the data in tables using data manipulation language (DML) SQL statements:

-- Get a list of all employees named Smith:
SELECT emp_first_name, emp_last_name
FROM employee

WHERE emp_last_name = 'Smith'

-- Delete an employee who quit:
DELETE employee
WHERE emp_id = 'OP123'

-- Add a new employee:
INSERT INTO employee
VALUES ('OP456', 'Dean', 'Straight', '01/01/1960')

-- Change an employee name:
UPDATE employee
SET emp_last_name = 'Smith'
WHERE emp_id = 'OP456'

See Also

Specifying a Column Data Type

Tables

SQL Server Architecture (SQL Server 2000)

SQL Views
A view can be thought of as either a virtual table or a stored query. The data accessible through a view is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT statement forms
the virtual table returned by the view. A user can use this virtual table by referencing the view name in Transact-SQL statements
the same way a table is referenced. A view is used to do any or all of these functions:

Restrict a user to specific rows in a table.

For example, allow an employee to see only the rows recording his or her work in a labor-tracking table.

Restrict a user to specific columns.

For example, allow employees who do not work in payroll to see the name, office, work phone, and department columns in
an employee table, but do not allow them to see any columns with salary information or personal information.

Join columns from multiple tables so that they look like a single table.

Aggregate information instead of supplying details.

For example, present the sum of a column, or the maximum or minimum value from a column.

Views are created by defining the SELECT statement that retrieves the data to be presented by the view. The data tables
referenced by the SELECT statement are known as the base tables for the view. In this example, titleview in the pubs database is
a view that selects data from three base tables to present a virtual table of commonly needed data:

CREATE VIEW titleview
AS
SELECT title, au_ord, au_lname, price, ytd_sales, pub_id
FROM authors AS a
 JOIN titleauthor AS ta ON (a.au_id = ta.au_id)
 JOIN titles AS t ON (t.title_id = ta.title_id)

You can then reference titleview in statements in the same way you would reference a table:

SELECT *
FROM titleview

A view can reference another view. For example, titleview presents information that is useful for managers, but a company
typically discloses year-to-date figures only in quarterly or annual financial statements. A view can be built that selects all the
titleview columns except au_ord and ytd_sales. This new view can be used by customers to get lists of available books without
seeing the financial information:

CREATE VIEW Cust_titleview
AS
SELECT title, au_lname, price, pub_id
FROM titleview

Views can be used to partition data across multiple databases or instances of Microsoft® SQL Server™ 2000. Partitioned views
can be used to distribute database processing across a group of servers. The group of servers has the same performance benefits
as a cluster of servers, and can be used to support the processing needs of the largest Web sites or corporate data centers. An
original table is subdivided into several member tables, each of which has a subset of the rows from the original table. Each
member table can be placed in databases on separate servers. Each server also gets a partitioned view. The partitioned view uses
the Transact-SQL UNION operator to combine the results of selects against all the member tables into a single result set that
behaves exactly like a copy of the full original table. For example, a table is partitioned across three servers. On the first server you
define a partitioned view similar to this:

CREATE VIEW PartitionedView AS
SELECT *
 FROM MyDatabase.dbo.PartitionTable1
UNION ALL
SELECT *
 FROM Server2.MyDatabase.dbo.PartitionTable2
UNION ALL
SELECT *
 FROM Server3.MyDatabase.dbo.PartitionTable3

You define similar partitioned views on each of the other servers. With these three views, any Transact-SQL statements on any of
the three servers that reference PartitionedView will see the same behavior as from the original table. It is as if a copy of the
original table exists on each server, when in fact there is only one member table and a partitioned view on each table. For more

information, see Scenarios for Using Views.

Views in all versions of SQL Server are updatable (can be the target of UPDATE, DELETE, or INSERT statements), as long as the
modification affects only one of the base tables referenced by the view, for example:

-- Increase the prices for publisher '0736' by 10%.
UPDATE titleview
SET price = price * 1.10
WHERE pub_id = '0736'
GO

SQL Server 2000 supports more complex types of INSERT, UPDATE, and DELETE statements that reference views. INSTEAD OF
triggers can be defined on a view to specify the individual updates that must be performed against the base tables to support the
INSERT, UPDATE, or DELETE statement. Also, partitioned views support INSERT, UPDATE, and DELETE statements that modify
multiple member tables referenced by the view.

Indexed views are a SQL Server 2000 feature that greatly improves the performance of complex views of the type usually found
in data warehouses or other decision support systems.

Views are called virtual tables because the result set of a view is us not usually saved in the database The result set for a view is
dynamically incorporated into the logic of the statement and the result set is built dynamically at run time. For more information,
see View Resolution.

Complex queries, such as those in decision support systems, can reference large numbers of rows in base tables, and aggregate
large amounts of information into relatively concise aggregates such as sums or averages. SQL Server 2000 supports creating a
clustered index on a view that implements such a complex query. When the CREATE INDEX statement is executed the result set of
the view SELECT is stored permanently in the database. Future SQL statements that reference the view will have substantially
better response times. Modifications to the base data are automatically reflected in the view.

The SQL Server 2000 CREATE VIEW statement supports a SCHEMABINDING option that prevents the tables referenced by the
view being changed without adjusting the view. You must specify SCHEMABINDING for any view on which you create an index.

See Also

CREATE INDEX

CREATE TRIGGER

CREATE VIEW

Designing an Indexed View

Views

SQL Server Architecture (SQL Server 2000)

SQL Stored Procedures
A stored procedure is a group of Transact-SQL statements compiled into a single execution plan.

Microsoft® SQL Server™ 2000 stored procedures return data in four ways:

Output parameters, which can return either data (such as an integer or character value) or a cursor variable (cursors are
result sets that can be retrieved one row at a time).

Return codes, which are always an integer value.

A result set for each SELECT statement contained in the stored procedure or any other stored procedures called by the
stored procedure.

A global cursor that can be referenced outside the stored procedure.

Stored procedures assist in achieving a consistent implementation of logic across applications. The SQL statements and logic
needed to perform a commonly performed task can be designed, coded, and tested once in a stored procedure. Each application
needing to perform that task can then simply execute the stored procedure. Coding business logic into a single stored procedure
also offers a single point of control for ensuring that business rules are correctly enforced.

Stored procedures can also improve performance. Many tasks are implemented as a series of SQL statements. Conditional logic
applied to the results of the first SQL statements determines which subsequent SQL statements are executed. If these SQL
statements and conditional logic are written into a stored procedure, they become part of a single execution plan on the server.
The results do not have to be returned to the client to have the conditional logic applied; all of the work is done on the server. The
IF statement in this example shows embedding conditional logic in a procedure to keep from sending a result set to the
application:

IF (@QuantityOrdered < (SELECT QuantityOnHand
 FROM Inventory
 WHERE PartID = @PartOrdered))
 BEGIN
 -- SQL statements to update tables and process order.
 END
ELSE
 BEGIN
 -- SELECT statement to retrieve the IDs of alternate items
 -- to suggest as replacements to the customer.
 END

Applications do not need to transmit all of the SQL statements in the procedure: they have to transmit only an EXECUTE or CALL
statement containing the name of the procedure and the values of the parameters.

Stored procedures can also shield users from needing to know the details of the tables in the database. If a set of stored
procedures supports all of the business functions users need to perform, users never need to access the tables directly; they can
just execute the stored procedures that model the business processes with which they are familiar.

An illustration of this use of stored procedures is the SQL Server system stored procedures used to insulate users from the
system tables. SQL Server includes a set of system stored procedures whose names usually start with sp_. These system stored
procedures support all of the administrative tasks required to run a SQL Server system. You can administer a SQL Server system
using the Transact-SQL administration-related statements (such as CREATE TABLE) or the system stored procedures, and never
need to directly update the system tables.

Stored Procedures and Execution Plans

In SQL Server version 6.5 and earlier, stored procedures were a way to partially precompile an execution plan. At the time the
stored procedure was created, a partially compiled execution plan was stored in a system table. Executing a stored procedure was
more efficient than executing an SQL statement because SQL Server did not have to compile an execution plan completely, it only
had to finish optimizing the stored plan for the procedure. Also, the fully compiled execution plan for the stored procedure was
retained in the SQL Server procedure cache, meaning that subsequent executions of the stored procedure could use the
precompiled execution plan.

SQL Server 2000 and SQL Server version 7.0 incorporate a number of changes to statement processing that extend many of the
performance benefits of stored procedures to all SQL statements. SQL Server 2000 and SQL Server 7.0 do not save a partially
compiled plan for stored procedures when they are created. A stored procedure is compiled at execution time, like any other
Transact-SQL statement. SQL Server 2000 and SQL Server 7.0 retain execution plans for all SQL statements in the procedure

cache, not just stored procedure execution plans. The database engine uses an efficient algorithm for comparing new Transact-
SQL statements with the Transact-SQL statements of existing execution plans. If the database engine determines that a new
Transact-SQL statement matches the Transact-SQL statement of an existing execution plan, it reuses the plan. This reduces the
relative performance benefit of precompiling stored procedures by extending execution plan reuse to all SQL statements.

SQL Server 2000 and SQL Server version 7.0 offer new alternatives for processing SQL statements. For more information, see
Query Processor Architecture.

Temporary Stored Procedures

SQL Server 2000 also supports temporary stored procedures that, like temporary tables, are dropped automatically when you
disconnect. Temporary stored procedures are stored in tempdb and are useful when connected to earlier versions of SQL Server.
Temporary stored procedures can be used when an application builds dynamic Transact-SQL statements that are executed several
times. Rather than have the Transact-SQL statements recompiled each time, you can create a temporary stored procedure that is
compiled on the first execution, and then execute the precompiled plan multiple times. Heavy use of temporary stored
procedures, however, can lead to contention on the system tables in tempdb.

Two features of SQL Server 2000 and SQL Server 7.0 eliminate the need for using temporary stored procedures:

Execution plans from prior SQL statements can be reused. This is especially powerful when coupled with the use of the new
sp_executesql system stored procedure.

Natively support for the prepare/execute model of OLE DB and ODBC without using any stored procedures.

For more information about alternatives to using temporary stored procedures, see Execution Plan Caching and Reuse.

Stored Procedure Example

This simple stored procedure example illustrates three ways stored procedures can return data:

1. It first issues a SELECT statement that returns a result set summarizing the order activity for the stores in the sales table.

2. It then issues a SELECT statement that fills an output parameter.

3. Finally, it has a RETURN statement with a SELECT statement that returns an integer. Return codes are generally used to pass
back error checking information. This procedure runs without errors, so it returns another value to illustrate how returned
codes are filled.

USE Northwind
GO
DROP PROCEDURE OrderSummary
GO
CREATE PROCEDURE OrderSummary @MaxQuantity INT OUTPUT AS
-- SELECT to return a result set summarizing
-- employee sales.
SELECT Ord.EmployeeID, SummSales = SUM(OrDet.UnitPrice * OrDet.Quantity)
FROM Orders AS Ord
 JOIN [Order Details] AS OrDet ON (Ord.OrderID = OrDet.OrderID)
GROUP BY Ord.EmployeeID
ORDER BY Ord.EmployeeID

-- SELECT to fill the output parameter with the
-- maximum quantity from Order Details.
SELECT @MaxQuantity = MAX(Quantity) FROM [Order Details]

-- Return the number of all items ordered.
RETURN (SELECT SUM(Quantity) FROM [Order Details])
GO

-- Test the stored procedure.

-- DECLARE variables to hold the return code
-- and output parameter.
DECLARE @OrderSum INT
DECLARE @LargestOrder INT

-- Execute the procedure, which returns
-- the result set from the first SELECT.
EXEC @OrderSum = OrderSummary @MaxQuantity = @LargestOrder OUTPUT

-- Use the return code and output parameter.

PRINT 'The size of the largest single order was: ' +
 CONVERT(CHAR(6), @LargestOrder)
PRINT 'The sum of the quantities ordered was: ' +
 CONVERT(CHAR(6), @OrderSum)
GO

The output from running this sample is:

EmployeeID SummSales
----------- --------------------------
1 202,143.71
2 177,749.26
3 213,051.30
4 250,187.45
5 75,567.75
6 78,198.10
7 141,295.99
8 133,301.03
9 82,964.00
The size of the largest single order was: 130
The sum of the quantities ordered was: 51317

See Also

Stored Procedures

SQL Server Architecture (SQL Server 2000)

SQL User-Defined Functions
Functions in programming languages are subroutines used to encapsulate frequently performed logic. Any code that must
perform the logic incorporated in a function can call the function rather than having to repeat all of the function logic.

Microsoft® SQL Server™ 2000 supports two types of functions:

Built-in functions

Operate as defined in the Transact-SQL Reference and cannot be modified. The functions can be referenced only in
Transact-SQL statements using the syntax defined in the Transact-SQL Reference. For more information about these built-in
functions, see Using Functions.

User-defined functions

Allow you to define your own Transact-SQL functions using the CREATE FUNCTION statement. For more information about
these built-in functions, see User-defined Functions.

User-defined functions take zero or more input parameters, and return a single value. Some user-defined functions return a
single, scalar data value, such as an int, char, or decimal value.

For example, this statement creates a simple function that returns a decimal:

CREATE FUNCTION CubicVolume
-- Input dimensions in centimeters.
 (@CubeLength decimal(4,1), @CubeWidth decimal(4,1),
 @CubeHeight decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
AS
BEGIN
 RETURN (@CubeLength * @CubeWidth * @CubeHeight)
END

This function can then be used anywhere an integer expression is allowed, such as in a computed column for a table:

CREATE TABLE Bricks
 (
 BrickPartNmbr int PRIMARY KEY,
 BrickColor nchar(20),
 BrickHeight decimal(4,1),
 BrickLength decimal(4,1),
 BrickWidth decimal(4,1),
 BrickVolume AS
 (
 dbo.CubicVolume(BrickHeight,
 BrickLength, BrickWidth)
)
)

SQL Server 2000 also supports user-defined functions that return a table data type:

A function can declare an internal table variable, insert rows into the variable, and then return the variable as its return
value.

A class of user-defined functions known as in-line functions, return the result set of a SELECT statement as a variable of type
table.

These functions can be used in places where table expressions can be specified. For more information about the table data type,
see Using Special Data.

User-defined functions that return a table can be powerful alternatives to views. A user-defined function that returns a table can
be used where table or view expressions are allowed in Transact-SQL queries. Views are limited to a single SELECT statement;
however, user-defined functions can contain additional statements that allow more powerful logic than is possible in views.

A user-defined function that returns a table can also replace stored procedures that return a single result set. The table returned
by a user-defined function can be referenced in the FROM clause of a Transact-SQL statement, whereas stored procedures that
return result sets cannot. For example, fn_EmployeesInDept is a user-defined function that returns a table and can be invoked
by a SELECT statement:

SELECT *
FROM tb_Employees AS E,

 dbo.fn_EmployeesInDept('shipping') AS EID
WHERE E.EmployeeID = EID.EmployeeID

This is an example of a statement that creates a function in the Northwind database that will return a table:

CREATE FUNCTION LargeOrderShippers (@FreightParm money)
RETURNS @OrderShipperTab TABLE
 (
 ShipperID int,
 ShipperName nvarchar(80),
 OrderID int,
 ShippedDate datetime,
 Freight money
)
AS
BEGIN
 INSERT @OrderShipperTab
 SELECT S.ShipperID, S.CompanyName,
 O.OrderID, O.ShippedDate, O.Freight
 FROM Shippers AS S
 INNER JOIN Orders AS O ON (S.ShipperID = O.ShipVia)
 WHERE O.Freight > @FreightParm
 RETURN
END

In this function, the local return variable name is @OrderShipperTab. Statements in the function build the table result returned
by the function by inserting rows into the variable @OrderShipperTab. External statements invoke the function to reference the
table returned by the function:

SELECT *
FROM LargeOrderShippers($500)

SQL Server Architecture (SQL Server 2000)

Constraints, Rules, Defaults, and Triggers
Table columns have properties other than data type and size. These other properties are an important part in ensuring the
integrity of data in a database:

Data integrity refers to each occurrence of a column having a correct data value.

The data values must be of the right data type and in the correct domain.

Referential integrity indicates that the relationships between tables have been properly maintained.

Data in one table should only point to existing rows in another table; it should not point to rows that do not exist.

Objects used to maintain both types of integrity include:

Constraints

Rules

Defaults

Triggers

SQL Server Architecture (SQL Server 2000)

Constraints
Constraints

 Topic last updated -- July 2003

Constraints allow you to define the way Microsoft® SQL Server™ 2000 automatically enforces the integrity of a database.
Constraints define rules regarding the values allowed in columns and are the standard mechanism for enforcing integrity. Using
constraints is preferred to using triggers, rules, and defaults. The query optimizer also uses constraint definitions to build high-
performance query execution plans.

Classes of Constraints

SQL Server 2000 supports five classes of constraints.

NOT NULL specifies that the column does not accept NULL values.

CHECK constraints enforce domain integrity by limiting the values that can be placed in a column.

A CHECK constraint specifies a Boolean (evaluates to TRUE or FALSE) search condition that is applied to all values entered
for the column; all values that do not evaluate to TRUE are rejected. You can specify multiple CHECK constraints for each
column. This sample shows the creation of a named constraint, chk_id, that further enforces the domain of the primary key
by ensuring that only numbers within a specified range are entered for the key.

CREATE TABLE cust_sample
 (
 cust_id int PRIMARY KEY,
 cust_name char(50),
 cust_address char(50),
 cust_credit_limit money,
 CONSTRAINT chk_id CHECK (cust_id BETWEEN 0 and 10000)
)

UNIQUE constraints enforce the uniqueness of the values in a set of columns.

No two rows in the table are allowed to have the same values for the columns in a UNIQUE constraint. Primary keys also
enforce uniqueness, but primary keys do not allow null values. A UNIQUE constraint is preferred over a unique index.

PRIMARY KEY constraints identify the column or set of columns whose values uniquely identify a row in a table.

No two rows in a table can have the same primary key value. You cannot enter a NULL for any column in a primary key.
NULL is a special value in databases that represents an unknown value, which is distinct from a blank or 0 value. Using a
small, integer column as a primary key is recommended. Each table should have a primary key.

A table may have more than one combination of columns that could uniquely identify the rows in a table; each combination
is a candidate key. The database administrator picks one of the candidate keys to be the primary key. For example, in the
part_sample table both part_nmbr and part_name could be candidate keys, but only part_nmbr is chosen as a primary
key.

CREATE TABLE part_sample
 (part_nmbr int PRIMARY KEY,
 part_name char(30),
 part_weight decimal(6,2),
 part_color char(15))

FOREIGN KEY constraints identify the relationships between tables.

A foreign key in one table points to a candidate key in another table. Foreign keys prevent actions that would leave rows
with foreign key values when there are no candidate keys with that value. In the following sample, the order_part table
establishes a foreign key referencing the part_sample table defined earlier. Usually, order_part would also have a foreign
key against an order table, but this is a simple example.

CREATE TABLE order_part

 (order_nmbr int,
 part_nmbr int
 FOREIGN KEY REFERENCES part_sample(part_nmbr)
 ON DELETE NO ACTION,
 qty_ordered int)
GO

You cannot insert a row with a foreign key value (except NULL) if there is no candidate key with that value. The ON DELETE
clause controls what actions are taken if you attempt to delete a row to which existing foreign keys point. The ON DELETE
clause has two options:

NO ACTION specifies that the deletion fails with an error.

CASCADE specifies that all the rows with foreign keys pointing to the deleted row are also deleted.

The ON UPDATE clause defines the actions that are taken if you attempt to update a candidate key value to which existing
foreign keys point. It also supports the NO ACTION and CASCADE options.

Column and Table Constraints

Constraints can be column constraints or table constraints:

A column constraint is specified as part of a column definition and applies only to that column (the constraints in the earlier
samples are column constraints).

A table constraint is declared independently from a column definition and can apply to more than one column in a table.

Table constraints must be used when more than one column must be included in a constraint.

For example, if a table has two or more columns in the primary key, you must use a table constraint to include both columns in
the primary key. Consider a table that records events happening in a computer in a factory. Assume that events of several types
can happen at the same time, but that no two events happening at the same time can be of the same type. This can be enforced in
the table by including both the type and time columns in a two-column primary key.

CREATE TABLE factory_process
 (event_type int,
 event_time datetime,
 event_site char(50),
 event_desc char(1024),
CONSTRAINT event_key PRIMARY KEY (event_type, event_time))

See Also

CREATE TABLE

Creating and Modifying a Table

SQL Server Architecture (SQL Server 2000)

Rules
Rules

Rules are a backward-compatibility feature that perform some of the same functions as CHECK constraints. CHECK constraints are
the preferred, standard way to restrict the values in a column. CHECK constraints are also more concise than rules; there can only
be one rule applied to a column, but multiple CHECK constraints can be applied. CHECK constraints are specified as part of the
CREATE TABLE statement, while rules are created as separate objects and then bound to the column.

This example creates a rule that performs the same function as the CHECK constraint example in the preceding topic. The CHECK
constraint is the preferred method to use in Microsoft® SQL Server™ 2000.

CREATE RULE id_chk AS @id BETWEEN 0 and 10000
GO
CREATE TABLE cust_sample
 (
 cust_id int
 PRIMARY KEY,
 cust_name char(50),
 cust_address char(50),
 cust_credit_limit money,
)
GO
sp_bindrule id_chk, 'cust_sample.cust_id'
GO

See Also

CREATE TABLE

Creating and Modifying a Table

SQL Server Architecture (SQL Server 2000)

Defaults
Defaults

Defaults specify what values are used in a column if you do not specify a value for the column when inserting a row. Defaults can
be anything that evaluates to a constant, such as:

Constant

Built-in function

Mathematical expression

There are two ways to apply defaults:

Create a default definition using the DEFAULT keyword in CREATE TABLE to assign a constant expression as a default on a
column.

This is the preferred, standard method. It is also the more concise way to specify a default.

Create a default object using the CREATE DEFAULT statement and bind it to columns using the sp_bindefault system
stored procedure.

This is a backward compatibility feature.

This example creates a table using one of each type of default. It creates a default object to assign a default to one column, and
binds the default object to the column. It then does a test insert without specifying values for the columns with defaults and
retrieves the test row to verify the defaults were applied.

USE pubs
GO
CREATE TABLE test_defaults
 (keycol smallint,
 process_id smallint DEFAULT @@SPID, --Preferred default definition
 date_ins datetime DEFAULT getdate(), --Preferred default definition
 mathcol smallint DEFAULT 10 * 2, --Preferred default definition
 char1 char(3),
 char2 char(3) DEFAULT 'xyz') --Preferred default definition
GO
/* Illustration only, use DEFAULT definitions instead.*/
CREATE DEFAULT abc_const AS 'abc'
GO
sp_bindefault abc_const, 'test_defaults.char1'
GO
INSERT INTO test_defaults(keycol) VALUES (1)
GO
SELECT * FROM test_defaults
GO

The output of this sample is:

Default bound to column.

(1 row(s) affected)

keycol process_id date_ins mathcol char1 char2
------ ---------- --------------------------- ------- ----- -----
1 7 Oct 16 1997 8:34PM 20 abc xyz

(1 row(s) affected)

See Also

CREATE TABLE

Creating and Modifying a Table

SQL Server Architecture (SQL Server 2000)

Triggers
Triggers

Microsoft® SQL Server™ 2000 triggers are a special class of stored procedure defined to execute automatically when an UPDATE,
INSERT, or DELETE statement is issued against a table or view. Triggers are powerful tools that sites can use to enforce their
business rules automatically when data is modified. Triggers can extend the integrity checking logic of SQL Server constraints,
defaults, and rules, although constraints and defaults should be used instead whenever they provide all the needed functionality.

Tables can have multiple triggers. The CREATE TRIGGER statement can be defined with the FOR UPDATE, FOR INSERT, or FOR
DELETE clauses to target a trigger to a specific class of data modification actions. When FOR UPDATE is specified, the IF UPDATE
(column_name) clause can be used to target a trigger to updates affecting a particular column.

Triggers can automate the processing for a company. In an inventory system, update triggers can detect when a stock level
reaches a reorder point and generate an order to the supplier automatically. In a database recording the processes in a factory,
triggers can e-mail or page operators when a process exceeds defined safety limits.

The following trigger generates an e-mail whenever a new title is added in the pubs database:

CREATE TRIGGER reminder
ON titles
FOR INSERT
AS
 EXEC master..xp_sendmail 'MaryM',
 'New title, mention in the next report to distributors.'

Triggers contain Transact-SQL statements, much the same as stored procedures. Triggers, like stored procedures, return the result
set generated by any SELECT statements in the trigger. Including SELECT statements in triggers, except statements that only fill
parameters, is not recommended. This is because users do not expect to see any result sets returned by an UPDATE, INSERT, or
DELETE statement.

You can use the FOR clause to specify when a trigger is executed:

AFTER

The trigger executes after the statement that triggered it completes. If the statement fails with an error, such as a constraint
violation or syntax error, the trigger is not executed. AFTER triggers cannot be specified for views, they can only be specified
for tables. You can specify multiple AFTER triggers for each triggering action (INSERT, UPDATE, or DELETE). If you have
multiple AFTER triggers for a table, you can use sp_settriggerorder to define which AFTER trigger fires first and which fires
last. All other AFTER triggers besides the first and last fire in an undefined order which you cannot control.

AFTER is the default in SQL Server 2000. You could not specify AFTER or INSTEAD OF in SQL Server version 7.0 or earlier,
all triggers in those versions operated as AFTER triggers.

INSTEAD OF

The trigger executes in place of the triggering action. INSTEAD OF triggers can be specified on both tables and views. You
can define only one INSTEAD OF trigger for each triggering action (INSERT, UPDATE, and DELETE). INSTEAD OF triggers can
be used to perform enhance integrity checks on the data values supplied in INSERT and UPDATE statements. INSTEAD OF
triggers also let you specify actions that allow views, which would normally not support updates, to be updatable.

See Also

Enforcing Business Rules with Triggers

SQL Server Architecture (SQL Server 2000)

Collations
The physical storage of character strings in Microsoft® SQL Server™ 2000 is controlled by collations. A collation specifies the bit
patterns that represent each character and the rules by which characters are sorted and compared.

SQL Server 2000 supports objects that have different collations being stored in a single database. Separate SQL Server 2000
collations can be specified down to the level of columns. Each column in a table can be assigned different collations. Earlier
versions of SQL Server support only one collation for each instance of SQL Server. All databases and database objects created in
an instance of SQL Server 7.0 or earlier have the same collation.

How Character Data Is Stored

In a computer, characters are represented by different patterns of bits being either ON or OFF. There are 8 bits in a byte, and the 8
bits can be turned ON and OFF in 256 different patterns. A program that uses 1 byte to store each character can therefore
represent up to 256 different characters by assigning a character to each of the bit patterns. There are 16 bits in 2 bytes, and 16
bits can be turned ON and OFF in 65,536 unique patterns. A program that uses 2 bytes to represent each character can represent
up to 65,536 characters.

Single-byte code pages are definitions of the characters mapped to each of the 256 bit patterns possible in a byte. Code pages
define bit patterns for uppercase and lowercase characters, digits, symbols, and special characters such as !, @, #, or %. Each
European language, such as German or Spanish, has its own single-byte code page. Although the bit patterns used to represent
the Latin alphabet characters A through Z are the same for all the code pages, the bit patterns used to represent accented
characters such as 'é' and 'á' vary from one code page to the next. If data is exchanged between computers running different code
pages, all character data must be converted from the code page of the sending computer to the code page of the receiving
computer. If the source data has extended characters that are not defined in the code page of the receiving computer, data is lost.
When a database serves clients from many different countries/regions, it is difficult to pick a code page for the database that
contains all the extended characters required by all the client computers. Also, there is a lot of processing time spent doing the
constant conversions from one code page to another.

Single-byte character sets are also inadequate to store all the characters used by many languages. For example, some Asian
languages have thousands of characters, so must use two bytes per character. Double-byte character sets have been defined for
these languages. Still, each of these languages have their own code page, and there are difficulties in transferring data from a
computer running one double-byte code page to a computer running another.

SQL Server 2000 supports these code pages.

Code page Description
1258 Vietnamese
1257 Baltic
1256 Arabic
1255 Hebrew
1254 Turkish
1253 Greek
1252 Latin1 (ANSI)
1251 Cyrillic
1250 Central European
950 Chinese (Traditional)
949 Korean
936 Chinese (Simplified)
932 Japanese
874 Thai
850 Multilingual (MS-DOS Latin1)
437 MS-DOS U.S. English

To address the character conversion and interpretation problems that occur when trying to support multiple code pages in a
network, the ISO standards organization and a group called the Unicode Consortium defined the Unicode standard. Unicode uses
two bytes to store each character. Because 65,536 characters are enough to cover all the commonly used characters from all the
languages of the world, all major languages are covered by the Unicode standard. If all the computers and programs in a network
use Unicode, there is no need for any character conversions, each user will see exactly the same characters as all other users, and
no loss of characters will occur.

On computers running Microsoft Windows® operating systems, the code page used by the operating system and Windows
applications is defined by the Windows locale. The locale is selected when the operating system is installed. Windows applications
interpret character data using the code page defined by the Windows locale. Windows applications also support wide character,
or Unicode, data.

SQL Server 2000 supports two categories of character data types:

The Unicode data types nchar, nvarchar, and ntext. These data types use the Unicode character representation. Code
pages do not apply to these data types.

The non-Unicode character data types char, varchar, and text. These data types use the character representation scheme
defined in a single or double-byte code page.

For more information about how character data is stored and the operation of code pages, Unicode, and sort orders, see
Developing International Software for Windows 95 and Windows NT 4.0 in the MSDN® page at http://msdn.microsoft.com.

International Data and Unicode

Storing data in multiple languages within one database is difficult to manage when using only character data and code pages. It is
difficult to find one code page for the database that can store all the required language-specific characters. It is also difficult to
ensure the proper translation of special characters when being read or updated by different clients running various code pages.
Databases that support international clients should always use Unicode data types instead of non-Unicode data types.

For example, a database of customers in North America has to handle three major languages:

Spanish names and addresses for Mexico.

French names and addresses for Quebec.

English names and addresses for the rest of Canada and the United States.

When you use only character columns and code pages, care has to be taken to ensure the database is installed with a code page
that will handle the characters of all three languages. More care must be taken to ensure the proper translation of characters from
one of the languages when read by clients running a code page for another language.

With the growth of the Internet, it is becoming more important than ever before to support many client computers running
different locales. It is difficult to pick a code page for character data types that will support all of the characters required by a
worldwide audience.

The easiest way to manage character data in international databases is to always use the Unicode nchar, nvarchar, and ntext
data types in place of their non-Unicode equivalents (char, varchar, and text). If all the applications that work with international
databases also use Unicode variables instead of non-Unicode variables, character translations do not have to be performed
anywhere in the system. All clients will see exactly the same characters in data as all other clients.

For systems that could use single-byte code pages, the fact that Unicode data needs twice as much storage space as non-Unicode
character data is at least partially offset by eliminating the need to convert extended characters between code pages. Systems
using double-byte code pages do not have this issue.

SQL Server 2000 stores all textual system catalog data in columns having Unicode data types. The names of database objects
such as tables, views, and stored procedures are stored in Unicode columns. This allows applications to be developed using only
Unicode, which avoids all issues with code page conversions.

Sort Order

A sort order specifies the rules used by SQL Server to interpret, collate, compare, and present character data. For example, a sort
order defines whether 'a' is less than, equal to, or greater than 'b'. A sort order defines whether the collation is case-sensitive, for
example whether 'm' is equal or not equal to 'M'. It also defines if the collation is accent-sensitive, for example whether 'á' is equal
or not equal to 'ä'.

SQL Server 2000 uses two sort orders with each collation, one for Unicode data and another for the character code page.

Many SQL Server collations use the same code page, but have a different sort order for the code page. This allows sites to choose:

Whether characters will simply be sorted based on the numeric value represented by their bit patterns. Binary sorting is
fastest because SQL Server does not have to make any adjustments and can use fast, simple sorting algorithms. Binary sort
orders are always case-sensitive. Because the bit patterns in a code page may not be arranged in the same sequence as

http://msdn.microsoft.com/default.asp

defined by the dictionary rules for a specific language, binary sorting sometimes does not sort characters in a sequence
users who speak that language might expect.

Between case-sensitive or case-insensitive behavior.

Between accent-sensitive or accent-insensitive behavior.

See Also

Collation Options for International Support

SQL Server Collation Fundamentals

Unicode Data

Using Unicode Data

SQL Server Architecture (SQL Server 2000)

SQL Server Collation Fundamentals
SQL Server Collation Fundamentals

Microsoft® SQL Server™ 2000 supports several collations. A collation encodes the rules governing the proper use of characters
for either a language, such as Greek or Polish, or an alphabet, such as Latin1_General (the Latin alphabet used by western
European languages).

Each SQL Server collation specifies three properties:

The sort order to use for Unicode data types (nchar, nvarchar, and ntext). A sort order defines the sequence in which
characters are sorted, and the way characters are evaluated in comparison operations.

The sort order to use for non-Unicode character data types (char, varchar, and text).

The code page used to store non-Unicode character data.

Note You cannot specify the equivalent of a code page for the Unicode data types (nchar, nvarchar, and ntext). The
double-byte bit patterns used for Unicode characters are defined by the Unicode standard and cannot be changed.

SQL Server 2000 collations can be specified at many levels. When you install an instance of SQL Server 2000, you specify the
default collation for that instance. Each time you create a database, you can specify the default collation used for the database. If
you do not specify a collation, the default collation for the database is the default collation for the instance. Whenever you define a
character column, you can specify its collation. If you do not specify a collation, the column is created with the default collation of
the database. You cannot specify a collation for character variables and parameters; they are always created with the default
collation of the database.

If all of the users of your instance of SQL Server speak the same language, you should pick the collation that supports that
language. For example, if all of the users speak French, choose the French collation.

If the users of your instance of SQL Server speak multiple languages, you should pick a collation that best supports the
requirements of the various languages. For example, if the users generally speak western European languages, choose the
Latin1_General collation. When you support users who speak multiple languages, it is most important to use the Unicode data
types, nchar, nvarchar, and ntext, for all character data. Unicode was designed to eliminate the code page conversion difficulties
of the non-Unicode char, varchar, and text data types. Collation still makes a difference when you implement all columns using
Unicode data types because it defines the sort order for comparisons and sorts of Unicode characters. Even when you store your
character data using Unicode data types you should pick a collation that supports most of the users in case a column or variable is
implemented using the non-Unicode data types.

A SQL Server collation defines how the database engine stores and operates on character and Unicode data. After data has been
moved into an application, however, character sorts and comparisons done in the application are controlled by the Windows
locale selected on the computer. The collation used for character data by applications is one of the items controlled by the
Windows locale (a locale also defines other items, such as number, time, date, and currency formats). For Microsoft Windows
NT® 4.0, Microsoft Windows® 98, and Microsoft Windows 95, the Windows locale is specified using the Regional Settings
application in Control Panel. For Microsoft Windows 2000, the locale is specified using the Regional Options application in
Control Panel. For more information about Windows locales, see Developing International Software for Windows 95 and
Windows NT 4.0 in the MSDN® page at Microsoft Web site.

Multiple collations can use the same code page for non-Unicode data. For example, the 1251 code page defines a set of Cyrillic
characters. This code page is used by several collations, such as Cyrillic_General, Ukrainian, and Russian. Although all of these
collations use the same set of bits to represent non-Unicode character data, the sorting and comparison rules they apply are
slightly different to handle the dictionary definitions of the correct sequence of characters in the language or alphabet associated
with the collation.

Because SQL Server 2000 collations control both the Unicode and non-Unicode sort orders, you do not encounter problems
caused by specifying different sorting rules for Unicode and non-Unicode data. In earlier versions of SQL Server, the code page
number, the character sort order, and the Unicode collation are specified separately. Earlier versions of SQL Server also support
varying numbers of sort orders for each code pages, and for some code pages support sort orders not available in Windows
locales. In SQL Server 7.0, it is also possible to specify a Unicode sort order that is different from the sort order chosen for non-
Unicode data. This can cause ordering and comparison operations to return different results when working with Unicode data as
opposed to non-Unicode data.

See Also

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

COLLATE

Collation Options for International Support

Collations

Unicode Data

Using Unicode Data

SQL Server Architecture (SQL Server 2000)

Selecting Collations
Selecting Collations

In Microsoft® SQL Server™ 2000, you specify a single collation name that controls all three collation attributes: the Unicode sort
order, the non-Unicode code page, and the non-Unicode sort order. None of the SQL Server 2000 collations allow different
comparison and sorting rules for Unicode and non-Unicode character data. There are two groups of SQL Server 2000 collations:
Windows collations and SQL collations.

Windows Collations

Windows collations are collations defined for SQL Server to support Microsoft Windows® locales. By specifying a Windows
collation for SQL Server, the instance of SQL Server uses the same code pages and sorting and comparison rules as an application
running on a computer for which you have specified the associated Windows locale. For example, the French Windows collation
for SQL Server matches the collation attributes of the French locale for Windows.

There are more Windows locales than there are SQL Server Windows collations. The names of Windows locales are based on a
language and territory, for example French (Canada). Several languages, however, share common alphabets and rules for sorting
and comparing characters. For example, 33 Windows locales, including all of the Portuguese, and English Windows locales, use
the Latin1 code page (1252) and follow a common set of rules for sorting and comparing characters. The SQL Server Windows
collation based on the Latin1_General code page and sorting rules supports all 33 of these Windows locales. Also, Windows
locales specify attributes not covered by SQL Server Windows collations, such as currency, date, and time formats. Because
countries/regions such as the United Kingdom and the United States have different currency, date, and time formats, they require
different Windows collations. They do not require different SQL Server collations because they have the same alphabet and rules
for sorting and comparing characters.

SQL Collations

SQL collations are a compatibility option to match the attributes of common combinations of code page number and sort orders
that have been specified in earlier versions of SQL Server. For example, for mapping a SQL Server 2000 SQL collation to what is
specified in earlier versions of SQL Server, the SQL Server 2000 SQL collation SQL_Latin1_General_CP1_CI_AS matches the SQL
Server version 7.0 default specification of:

The ISO code page 1252.

The dictionary order, case-insensitive character sort order.

The General Unicode collation.

The SQL collations available in SQL Server 2000 do not match all combinations that can be specified in earlier versions of SQL
Server. For example, no SQL Server 2000 SQL collation supports a case-sensitive sort order for non-Unicode data and case-
insensitive sort order for Unicode data. The earlier SQL collations that cannot be exactly specified in SQL Server 2000 are called
obsolescent SQL collations.

In SQL Server 2000, you should primarily use Windows collations. You should use SQL collations only to maintain compatibility
with existing instances of earlier versions of SQL Server, or to maintain compatibility in applications developed using SQL
collations in earlier versions of SQL Server.

Collation Comparison and Ordering Rules

Most of the comparison and ordering rules defined in a collation are governed by the dictionary definition of the correct sequence
of characters for the alphabet or language. The attributes you can control are whether comparisons and sorts of character and
Unicode data should be:

Based on the dictionary conventions that define the correct sequence of characters in the language or alphabet associated
with the collation, or based on the sequence of the binary bit patterns representing the different characters.

Case-sensitive or case-insensitive. For example, defining whether 'a' is equal or not equal to 'A'. If you choose case-
insensitive, comparisons always ignore case, so the uppercase version of a character evaluates to being equal to the
lowercase version of the character. When you choose case-insensitivity, the relative sequence in which uppercase and
lowercase are sorted is undefined unless you also specify uppercase preference. Uppercase preference affects only sort

operations and specifies that uppercase versions of a character come earlier in the sort sequence than lowercase versions of
the same character. Uppercase preference has no affect on comparisons, so 'A' still evaluates to being equal to 'a' when
uppercase preference is on. Uppercase preference can be specified only in SQL collations, not in Windows collations.

Sensitive or insensitive to accented characters, also known as extended characters. Accented characters are those characters
that have a diacritical mark, such as the German umlaut (ë) or the Spanish tilde (~). For example, accent sensitivity defines
whether 'a' is equal or not equal to 'ä'.

When you choose a collation, you can specify if you want binary behavior, or dictionary sorting that is sensitive or insensitive to
case and accents:

In binary collations, comparisons and sorting are based strictly on the bit pattern of the characters. This is the fastest option.
Because uppercase characters are stored with different bit patterns than their corresponding lowercase characters, and
accented characters have different bit patterns than characters without accents, binary sort orders are always case-sensitive
and accent sensitive. Binary collations also ignore dictionary sequences that have been defined for specific languages. They
simply order the characters based on the relative value of the bit patterns that represent each character. While the bit
patterns defined for Latin characters, such as 'A' or 'z', are such that binary sorting yields the correct results, the bit patterns
for some extended characters in some code pages may be different than the ordering sequence defined in dictionaries for
the language associated with a collation. This can lead to occasional ordering and comparison results that are different than
what a speaker of the language might expect.

If you do not specify a binary collation, SQL Server uses the dictionary ordering of the collation you have chosen. Dictionary
order means characters are not sorted or compared based only on their bit patterns. The collation follows the conventions
of the associated language regarding the proper sequence for characters. For example, case-insensitive sort orders must use
dictionary rules to determine which lowercase and uppercase bit patterns are equal.

Although the bit patterns in a code page generally yield the correct comparison and ordering results for any language that
uses the code page, the conventions for some of the languages may require different results than are generated for the bit
patterns of a small number of characters. For example, the Czech, Hungarian, and Polish collations use the same code page,
1250, which was designed for the Slavic languages. Each of these languages, however, use slightly different conventions for
the sequence in which accented characters should be sorted.

If you do not specify binary sorting, all SQL Server operations follow the dictionary conventions for sorting and comparing
characters. When the dictionary order is used, you can specify whether you want the collation to be sensitive or insensitive
to both case and accented characters.

Case-sensitivity applies to SQL identifiers and passwords as well as to data. If you specify a binary or case-sensitive default sort
order for an instance of SQL Server or database, all references to objects must use the same case with which they were created.
For example, consider this table:

CREATE TABLE MyTable (PrimaryKey int PRIMARY KEY, CharColumn nchar(10))

If the CREATE TABLE statement is executed on an instance of SQL Server or database that has a case-sensitive or binary sort order,
all references to the table must use the same case that was specified in the CREATE TABLE statement:

-- Object not found error because case is not correct:
SELECT * FROM MYTABLE
-- Invalid column name error because case is not correct
-- for the WHERE clause reference to the PrimaryKey column.
SELECT *
FROM MyTable
WHERE PRIMARYKEY = 123
-- Correct statement:
SELECT CharColumn
FROM MyTable
WHERE PrimaryKey = 123

See Also

Collation Options for International Support

Specifying Collations

Unicode Data

Using Unicode Data

SQL Server Architecture (SQL Server 2000)

Specifying Collations
Specifying Collations

Microsoft® SQL Server™ 2000 collations can be specified at several levels, including the following:

When you install an instance of SQL Server, you can specify the default collation for that instance during setup. The default
collation for the instance also becomes the default collation of the system databases: master, model, tempdb, msdb, and
Distribution.

When you create a database, you can use the COLLATE clause of the CREATE DATABASE statement to specify the default
collation of the database. You can also specify a collation when you create a database using SQL Server Enterprise Manager.
If you do not specify a collation, the database is assigned the default collation of the model database. The default collation
of the model database is the same as the default collation of the instance of SQL Server.

When you create a table, you can specify collations for each character string column using the COLLATE clause of the
CREATE TABLE statement. You can also specify a collation when you create a table using SQL Server Enterprise Manager. If
you do not specify a collation, the column is assigned the default collation of the database.

You can also use the database_default option in the COLLATE clause to specify that a column in a temporary table use the
collation default of the current user database for the connection instead of tempdb.

When you specify a literal string, you can use the COLLATE clause to specify the collation. If you do not specify a collation,
the literal is assigned the database default collation.

In SQL-DMO you can use the Collation property to specify collations for instances, databases, and columns. For more
information, see Collation Property.

Parameters for stored procedures or functions, user-defined data types, and variables are assigned the default collation of
the database:

The collation of an identifier depends on the level at which it is defined. Identifiers of instance-level objects, such as logins and
database names, are assigned the default collation of the instance. Identifiers of objects within a database, such as tables, views,
and column names, are assigned the default collation of the database. Variables, GOTO labels, temporary stored procedures, and
temporary tables can be created when the connection context is associated with one database, and then referenced when the
context has been switched to another database. Because of this, the identifiers for variables, GOTO labels, and temporary tables
are in the default collation of the instance.

Specifying collations for columns or literals can be done only for the char, varchar, text, nchar, nvarchar, and ntext data types.

Collations are generally identified by a collation name. There are two classes of names: Windows collation names for the new
collations aligned with Windows locales, and SQL collation names for the compatibility mode collations that result when
upgrading from earlier versions of SQL Server. For more information, see Windows Collation Name), and SQL Collation Name.

The exception to specifying collation names is in Setup:

You do not specify a collation name for Windows collations, but instead specify the collation designator, and then select
check boxes to specify binary sorting or dictionary sorting that is either sensitive or insensitive to either case or accents.

You do not specify SQL collation names, but instead select a collation based on a longer, more human-readable display
name.

You can execute the system function fn_helpcollations to retrieve a list of all the valid collation names for Windows collations
and SQL collations, for example:

SELECT *
FROM ::fn_helpcollations()

You can also use the SQL-DMO ListCollations method to get a list of the valid collation names. For more information, see
ListCollations Method.

The system catalog stored procedures have been enhanced to report the collation of all SQL Server objects that have a collation.

SQL Server can support only code pages that are supported by the underlying operating system. When you perform an action
that depends on collations, the SQL Server collation used by the referenced object must use a code page supported by the
operating system running on the computer. These actions can include:

Specifying a default collation for an instance of SQL Server.

Specifying a default collation for a database when you create the database.

Restoring a database backup. Windows must support the code page of the default collation used by the database.

Attaching a database. Windows must support the code page of the default collation used by the database.

Specifying a collation for a column when creating a table.

Specifying a collation when creating a user-defined data type.

Specifying a collation when declaring a character-string constant.

If the collation specified or the collation used by the referenced object, uses a code page not supported by the Microsoft
Windows® operating systems, SQL Server issues error 2775:

"Code page codepagenumber is not supported by the system."

Your response to this message depends on the version of the Windows operating system installed on the computer:

Microsoft Windows 2000 supports all of the code pages used by SQL Server collations, so the error message will not occur.

Microsoft Windows NT® 4.0 may require that you install a language pack to support some code pages. For more
information about installing a Windows NT language pack, see the Windows NT Help.

Microsoft Windows 98 supports only one code page on a computer. You must choose a SQL Server collation that uses the
same code page used by Windows 98.

See Also

ALTER TABLE

Collation Options for International Support

Collations

Constants

CREATE DATABASE

CREATE TABLE

DECLARE @local_variable

table

Using Unicode Data

SQL Server Architecture (SQL Server 2000)

Specifying the Default Collation for an Instance of SQL Server
Specifying the Default Collation for an Instance of SQL Server

The default collation for an instance of Microsoft® SQL Server™ 2000 is defined during setup. If you choose the minimal or
typical setup options, then Setup installs these collations:

If you upgrade a default instance of SQL Server version 6.5 or SQL Server version 7.0 to SQL Server 2000, or if you install a
default instance of SQL Server 2000 that will be version switched with a default instance of SQL Server version 6.5, SQL
Server Setup carries forward the same collation used in the existing instance of SQL Server version 6.5 or SQL Server
version 7.0, including obsolescent collations.

In all other cases, Setup chooses the Windows collation that supports the Windows locale of the computer on which the
instance of SQL Server 2000 is being installed.

Note The Setup program does not set the instance default collation to the Windows collation Latin1_General_CI_AS if the
computer is using the U.S. English locale. Instead, it sets the instance default collation to the SQL collation
SQL_Latin1_General_Cp1_CI_AS. This may change in a future release.

If you choose the Custom setup option, Setup uses the same logic as in the minimal and typical options to set the collation that is
selected when the Character Set / Sort Order / Windows Collation window is displayed. You should not use the selected
collation in these cases:

If the instance will be included in a replication scheme, all instances of SQL Server involved in the replication scheme
(Publishers, Subscribers, and Distributors) should use the same code page. You should make sure the collation selected by
Setup uses the same code page as the other instances of SQL Server in the replication scheme.

If the primary language that the instance must support is different than the Windows locale of the computer on which the
instance is being installed.

For a table showing which collation designator to specify for a Windows locale, see Windows Collation Names Table.

During setup, the master, model, tempdb, msdb, and Distribution system databases are assigned the same default collation as
the default collation chosen for the instance.

See Also

Collation Options for International Support

SQL Server Architecture (SQL Server 2000)

Mixed Collation Environments
Mixed Collation Environments

Compatibility issues can have an impact on organizations that use multiple collations to store their data. Most organizations use
the same collation for all of their Microsoft® SQL Server™ 2000 databases, thereby eliminating all collation compatibility issues.
Other organizations, however, must store data viewed by users who speak various languages and want to do so with a minimum
of collation compatibility issues.

All character and Unicode objects (such as columns, variables, and constants) have a collation. Whenever you work with objects
that have different collations and code pages, you must code your queries to comply with the rules of collation coercion. When
you code a complex expression that uses operators to combine multiple simple expressions that have different collations, all of
the collations must be implicitly convertible, or explicitly converted using the COLLATE clause. For more information about
collation coercion, see Collation Precedence.

If you do not specify a collation in a character or Unicode expression, the default collation may vary depending on the current
database setting for the connection. For example, if you do not specify a COLLATE clause on a character or Unicode constant, the
constant is assigned the default collation of the current database. This means that the result of a Transact-SQL statement may
have different collations when executed in the context of different databases.

If you are setting up replication, all of the databases involved in a replication network, including Publishers, Subscribers, and
Distributors, must have the same code page.

The bulk copy functions, BULK INSERT, and the bcp command prompt utility support column collations. For more information,
see Copying Data Between Different Collations.

Minimizing Collation Issues

If you must store character data that reflects multiple languages, you can minimize collation compatibility issues by always using
the Unicode nchar, nvarchar, and ntext data types instead of the char, varchar, text data types. Using the Unicode data types
eliminates code page conversion issues.

Another recommendation that minimizes collation compatibility issues is to standardize your site as either sensitive or insensitive
to case and accented characters. If you always choose collations with the same case and accent sensitivity, end users experience
consistent behavior across all systems. Most SQL Server 2000 sites choose to be case-insensitive and accent-sensitive. Case
sensitivity also applies to the names of SQL Server objects; therefore, if you specify case-sensitive collations, all users must specify
the correct case when querying the database. For example, if you have a case-sensitive server and create a table named
Employees, all queries must refer to the table as Employees. References that do not use the correct case, such as EMPLOYEES
or employees, are invalid.

Collations and tempdb

The tempdb database is built each time SQL Server is started, and has the same default collation as the model database, which is
typically the same as the default collation of the instance. If you create a user database and specify a different default collation
than model, the user database has a different default collation than tempdb. All temporary stored procedures or temporary
tables are created and stored in tempdb, which means that all implicit columns in temporary tables and all coercible-default
constants, variables, and parameters in temporary stored procedures have different collations than comparable objects created in
permanent tables and stored procedures.

This can lead to problems with the text data type, which does not support code page conversions. For example, an instance of
SQL Server 2000 defaults to the Latin1_General_CS_AS collation, and you execute these statements:

CREATE DATABASE TestDB COLLATE Estonian_CS_AS
USE TestDB
CREATE TABLE TestPermTab (PrimaryKey int PRIMARY KEY, TextCol text)

In this system, the tempdb database uses the Latin1_General_CS_AS collation with code page 1252, and TestDB and
TestPermTab.TextCol use the Estonian_CS_AS collation with code page 1257. If you then execute:

USE TestDB
GO
-- Create a temporary table with the same column declarations
-- as TestPermTab
CREATE TABLE #TestTempTab (PrimaryKey int PRIMARY KEY, TextCol text)
-- This statement gets an code page conversion not allowed error
-- because the temporary table is created in tempdb, which has a
-- different default collation than TestDB.

INSERT INTO #TestTempTab
 SELECT * FROM TestPermTab
GO

To eliminate the error you can use one of these alternatives:

Use the Unicode data type ntext instead of text for the two TextCol columns.

Specify that the temporary table column use the default collation of the user database, not tempdb. This allows the
temporary table to work with similarly formatted tables in multiple databases, if that is a requirement of your system.

CREATE TABLE #TestTempTab
 (PrimaryKey int PRIMARY KEY,
 TextCol text COLLATE database_default
)

Specify the correct collation for the #TestTempTab column:

CREATE TABLE #TestTempTab
 (PrimaryKey int PRIMARY KEY,
 TextCol text COLLATE Estonian_CS_AS
)

Collations in BACKUP and RESTORE

If you restore a database, RESTORE uses the collation of the source database that was recorded in the backup file. The restored
database has the same collation as the original database that was backed up. Individual objects within the database that have
different collations also retain their original collation. The database can be restored even if the instance on which you run restore
has a different default collation than the instance on which BACKUP was run.

If there is already a database with the same name on the target server, the only way to restore from the backup is to specify
REPLACE on the RESTORE statement. If you specify REPLACE, the existing database is completely replaced with the contents of the
database on the backup file, and the restored version of the database will have the same collation recorded in the backup file.

If you are restoring log backups, the destination database must have the same collation as the source database.

Collations and text column

If you create a table with a text column that has a different code page than the code page of the database's default collation, there
are only two ways you can specify data values to be inserted into the column, or update existing values. You can:

Specify a Unicode constant.

Select a value from another column with the same code page.

Assume the following database and table:

-- Create a database with a default of code page 1252.
CREATE DATABASE TestDB COLLATE Latin1_General_CS_AS
-- Create a table with a different code page, 1253.
CREATE TABLE TestTab
 (PrimaryKey int PRIMARY KEY,
 TextCol text COLLATE Greek_CS_AS
)

-- This INSERT statement successfully inserts a Unicode string.
INSERT INTO TestTab VALUES (1, N'abc')
-- This INSERT statement successfully inserts data by selecting
-- from a similarly formatted table in another database that uses
-- uses the Greek 1253 code page as its default.
INSERT INTO TestTab
 SELECT * FROM GreekDatabase.dbo.TestTab

SQL Server Architecture (SQL Server 2000)

Changing Collations
Changing Collations

You can change the collation of a column by using the ALTER TABLE statement:

CREATE TABLE MyTable
 (PrimaryKey int PRIMARY KEY,
 CharCol varchar(10) COLLATE French_CI_AS NOT NULL
)
GO
ALTER TABLE MyTable ALTER COLUMN CharCol
 varchar(10)COLLATE Latin1_General_CI_AS NOT NULL
GO

You cannot alter the collation of a column that is currently referenced by:

A computed column.

An index.

Distribution statistics, either generated automatically or by the CREATE STATISTICS statement.

A CHECK constraint.

A FOREIGN KEY constraint.

You can also use the COLLATE clause on an ALTER DATABASE to change the default collation of the database:

ALTER DATABASE MyDatabase COLLATE French_CI_AS

Altering the default collation of a database does not change the collations of the columns in any existing user-defined tables.
These can be changed with ALTER TABLE. The COLLATE CLAUSE on an ALTER DATABASE statement changes:

The default collation for the database. This new default collation is applied to all columns, user-defined data types, variables,
and parameters subsequently created in the database. It is also used when resolving the object identifiers specified in SQL
statements against the objects defined in the database.

Any char, varchar, text, nchar, nvarchar, or ntext columns in system tables to the new collation.

All existing char, varchar, text, nchar, nvarchar, or ntext parameters and scalar return values for stored procedures and
user-defined functions to the new collation.

The char, varchar, text, nchar, nvarchar, or ntext system data types, and all user-defined data types based on these
system data types, to the new default collation.

After a collation has been assigned to any object other than a column or database, you cannot change the collation except by
dropping and re-creating the object. This can be a complex operation. To change the default collation for an instance of
Microsoft® SQL Server™ 2000 you must:

Make sure you have all of the information or scripts needed to re-create your user databases and all of the objects in them.

Export all of your data using a tool such as bulk copy.

Drop all of the user databases.

Rebuild the master database specifying the new collation.

Create all of the databases and all of the objects in them.

Import all of your data.

Note Instead of changing the default collation of an instance of SQL Server 2000, you can specify a default collation for
each new database you create.

SQL Server Architecture (SQL Server 2000)

SQL Indexes
A Microsoft® SQL Server™ 2000 index is a structure associated with a table or view that speeds retrieval of rows from the table
or view. An index contains keys built from one or more columns in the table or view. These keys are stored in a structure that
allows SQL Server to find the row or rows associated with the key values quickly and efficiently.

SQL Server Architecture (SQL Server 2000)

Table Indexes
Table Indexes

Microsoft® SQL Server™ 2000 supports indexes defined on any column in a table, including computed columns.

If a table is created with no indexes, the data rows are not stored in any particular order. This structure is called a heap.

The two types of SQL Server indexes are:

Clustered

Clustered indexes sort and store the data rows in the table based on their key values. Because the data rows are stored in
sorted order on the clustered index key, clustered indexes are efficient for finding rows. There can only be one clustered
index per table, because the data rows themselves can only be sorted in one order. The data rows themselves form the
lowest level of the clustered index.

The only time the data rows in a table are stored in sorted order is when the table contains a clustered index. If a table has
no clustered index, its data rows are stored in a heap.

Nonclustered

Nonclustered indexes have a structure completely separate from the data rows. The lowest rows of a nonclustered index
contain the nonclustered index key values and each key value entry has pointers to the data rows containing the key value.
The data rows are not stored in order based on the nonclustered key.

The pointer from an index row in a nonclustered index to a data row is called a row locator. The structure of the row locator
depends on whether the data pages are stored in a heap or are clustered. For a heap, a row locator is a pointer to the row.
For a table with a clustered index, the row locator is the clustered index key.

The only time the rows in a table are stored in any specific sequence is when a clustered index is created on the table. The rows
are then stored in sequence on the clustered index key. If a table only has nonclustered indexes, its data rows are stored in a
unordered heap.

Indexes can be unique, which means no two rows can have the same value for the index key. Otherwise, the index is not unique
and multiple rows can share the same key value.

There are two ways to define indexes in SQL Server. The CREATE INDEX statement creates and names an index. The CREATE
TABLE statement supports the following constraints that create indexes:

PRIMARY KEY creates a unique index to enforce the primary key.

UNIQUE creates a unique index.

CLUSTERED creates a clustered index.

NONCLUSTERED creates a nonclustered index.

When you create an index on SQL Server 2000, you can specify whether the keys are stored in ascending or descending order.

SQL Server 2000 supports indexes defined on computed columns, as long as the expression defined for the column meets certain
restrictions, such as only referencing columns from the table containing the computed column, and being deterministic.

A fill factor is a property of a SQL Server index that controls how densely the index is packed when created. The default fill factor
usually delivers good performance, but in some cases it may be beneficial to change the fill factor. If the table is going to have
many updates and inserts, create an index with a low fill factor to leave more room for future keys. If the table is a read-only table
that will not change, create the index with a high fill factor to reduce the physical size of the index, which lowers the number of
disk reads SQL Server uses to navigate through the index. Fill factors are only applied when the index is created. As keys are
inserted and deleted, the index will eventually stabilize at a certain density.

Indexes not only speed up the retrieval of rows for selects, they also usually increase the speed of updates and deletes. This is
because SQL Server must first find a row before it can update or delete the row. The increased efficiency of using the index to
locate the row usually offsets the extra overhead needed to update the indexes, unless the table has a lot of indexes.

This example shows the Transact-SQL syntax for creating indexes on a table.

USE pubs
GO
CREATE TABLE emp_sample
 (emp_id int PRIMARY KEY CLUSTERED,
 emp_name char(50),
 emp_address char(50),
 emp_title char(25) UNIQUE NONCLUSTERED)
GO
CREATE NONCLUSTERED INDEX sample_nonclust ON emp_sample(emp_name)
GO

Deciding which particular set of indexes will optimize performance depends on the mix of queries in the system. Consider the
clustered index on emp_sample.emp_id. This works well if most queries referencing emp_sample have equality or range
comparisons on emp_id in their WHERE clauses. If the WHERE clauses of most queries reference emp_name instead of emp_id,
performance could be improved by instead making the index on emp_name the clustered index.

Many applications have a complex mix of queries that is difficult to estimate by interviewing users and programmers. SQL Server
2000 provides an Index Tuning Wizard to help design indexes in a database. The easiest way to design indexes for large schemas
with complex access patterns is to use the Index Tuning Wizard.

You provide the Index Tuning Wizard with a set of SQL statements. This could be a script of statements you build to reflect a
typical mix of statements in the system, but it is usually a SQL Profiler trace of the actual SQL statements processed on the system
during a period of time that reflects the typical load on the system. The Index Tuning Wizard analyzes the workload and the
database, and then recommends an index configuration that will improve the performance of the workload. You can choose to
either replace the existing index configuration, or to keep the existing index configuration and implement new indexes to improve
the performance of a slow-running subset of the queries.

See Also

Indexes

Parallel Operations Creating Indexes

SQL Server Architecture (SQL Server 2000)

View Indexes
View Indexes

Microsoft® SQL Server™ 2000 supports defining indexes on views. Views are sometimes called virtual tables because the result
set returned by the view has the same general form as a table with columns and rows, and views can be referenced the same way
as tables in SQL statements. The result set of a non-indexed view is not stored permanently in the database. Each time a query
references the view, SQL Server dynamically merges the logic needed to build the view result set into the logic needed to build
the complete query result set from the data in the base tables. The process of building the view results is called materializing the
view. For more information, see View Resolution.

For a nonindexed view, the overhead of dynamically building the result set for each query that references a view can be
substantial for views that involve complex processing of large numbers of rows. Examples include views that aggregate large
amounts of data, or join many rows. If such views are frequently referenced in queries, you can improve performance by creating
a unique clustered index on the view. When a unique clustered index is created on a view, the view is executed and the result set is
stored in the database in the same way a table with a clustered index is stored. For more information about the structure used to
store clustered indexes, see Clustered Indexes.

Another benefit of creating an index on a view is that the optimizer starts using the view index in queries that do not directly
name the view in the FROM clause. Existing queries can benefit from the improved efficiency of retrieving data from the indexed
view without having to be recoded.

Creating a clustered index on a view stores the result set built at the time the index is created. An indexed view also automatically
reflects modifications made to the data in the base tables after the index is created, the same way an index created on a base table
does. As modifications are made to the data in the base tables, the data modifications are also reflected in the data stored in the
indexed view. The requirement that the view's clustered index be unique improves the efficiency with which SQL Server can find
the rows in the index that are affected by any data modification.

You must have set specific SET options before you can create an index on a view. The query optimizer will not consider the index
for any subsequent SQL statements unless the connection executing the statement has the same option settings. For more
information, see SET Options That Affect Results.

Indexed views can be more complex to maintain than indexes on base tables. You should create indexes only on views where the
improved speed in retrieving results outweighs the increased overhead of making modifications. This usually occurs for views
mapped over relatively static data, that process many rows, and are referenced by many queries.

The first index created on a view must be a unique clustered index. After the unique clustered index has been created, you can
create additional nonclustered indexes. The naming conventions for indexes on views are the same as for indexes on tables. The
only difference is that the table name is replaced with a view name.

All indexes on a view are dropped if the view is dropped. All nonclustered indexes on the view are dropped if the clustered index is
dropped. Nonclustered indexes can be dropped individually. Dropping the clustered index on the view removes the stored result
set, and the optimizer returns to processing the view like a standard view.

Although only the columns that make up the clustered index key are specified in the CREATE UNIQUE CLUSTERED INDEX
statement, the complete result set of the view is stored in the database. As in a clustered index on a base table, the b-tree structure
of the clustered index contains only the key columns, but the data rows contain all of the columns in the view result set.

See Also

CREATE INDEX

Creating an Indexed View

Resolving Indexes on Views

SQL Server Architecture (SQL Server 2000)

Maximum Size of Index Keys
Maximum Size of Index Keys

Microsoft® SQL Server™ 2000 retains the 900-byte limit for the maximum size of an index key but changes the algorithm used
by CREATE INDEX to check if the specified index key exceeds the maximum allowable key size of 900 bytes. The new CREATE
INDEX algorithm is similar to the row size algorithm used for CREATE TABLE.

Microsoft SQL Server version 7.0 and earlier always used the maximum size of variable columns when checking whether the key
specified in a CREATE INDEX statement exceeded 900 bytes, for example:

CREATE TABLE TestTable
 (PrimaryKey int PRIMARY KEY,
 VarCharCol1 varchar(500),
 VarCharCol2 varchar(500)
)
-- This statement fails because the maximum sizes
-- of the two columns exceeds 900 bytes:
CREATE INDEX TestIdx ON TestTable(VarCharCol1, VarCharCol2)

In SQL Server 2000, the preceding CREATE INDEX statement succeeds with a warning message, unless one or more rows of data
will generate a key whose value exceeds 900 bytes.

The SQL Server 2000 CREATE INDEX statement uses these algorithms:

If the size of all fixed columns plus the maximum size of all variable columns specified in the CREATE INDEX statement is
less than 900 bytes, the CREATE INDEX statement completes successfully with no warnings or errors.

If the size of all fixed columns plus the maximum size of all variable columns exceeds 900, but the size of all fixed columns
plus the minimums of the variable columns is less than 900, the CREATE INDEX statement succeeds with a warning that a
subsequent INSERT or UPDATE statement may fail if it specifies values that generates a key value larger than 900 bytes. The
CREATE INDEX statement fails if existing data rows in the table have values that generate a key larger than 900 bytes. A
subsequent INSERT or UPDATE statement that specifies data values that generates a key value longer than 900 bytes fails.

The CREATE INDEX statement fails if the size of all fixed columns plus the minimum size of all variable columns specified in
the CREATE INDEX statement exceeds 900 bytes.

This table shows the results of creating indexes where the keys contain only fixed or only variable-length columns.

Index Columns

Size of the
fixed-data
column(s)

Maximum
size of

variable-
length

column(s)

MAX of the
SUM of the
index key
column
lengths*

Index
created Message

INSERT or UPDATE
run-time error due
to oversized index

key value

> 900 bytes None Not relevant No Error No index present to
generate error.

< = 900
bytes

None Not relevant Yes None No

None < = 900 bytes Not relevant Yes None No
None > 900 bytes > 900 bytes No Error No index present to

generate error.
None > 900 bytes < = 900 bytes Yes Warning Only if the sum of

current lengths of all
index columns is
greater than 900
bytes.

* None of the rows in the table at time the CREATE INDEX statement is executed can have index key values whose total lengths
exceed 900 bytes.

This table shows the results of creating indexes where the keys contain a mixture of fixed and variable-length columns.

Index Columns
Minimum size

of variable-
length

column(s) +
Size of the
fixed-data
column(s)

Maximum size
of variable-

length
column(s) +
Size of the
fixed-data
column(s)

MAX of the
SUM of the
index key
column

lengths *
Index

created Message

INSERT or
UPDATE run-

time error due
to oversized

index key value

> 900 bytes Not relevant Not relevant No Error No index present
to generate error.

< = 900 bytes < = 900 bytes Not relevant Yes None No.
< = 900 bytes > 900 bytes < = 900

bytes
Yes Warning Only if the sum of

current lengths of
all index columns
is greater than
900 bytes.

<= 900 bytes > 900 bytes > 900 bytes No Error No index present
to generate error.

* None of the rows in the table at time the CREATE INDEX statement is executed can have index key values whose total lengths
exceed 900 bytes.

See Also

CREATE INDEX

SQL Server Architecture (SQL Server 2000)

Property Management
Microsoft® SQL Server™ 2000 introduces extended properties that users can define on various objects in a database. These
extended properties can be used to store application-specific or site-specific information about the database objects. Because the
property is stored in the database, all applications reading the property can evaluate the object in the same way. This helps
enforce consistency in how data is treated by all of the programs in the system.

Each extended property has a user-defined name and value. The value of an extended property is a sql_variant that can contain
up to 7500 bytes of data. Individual database objects can have multiple extended properties.

Extended properties are managed using three system stored procedures: sp_addextendedproperty,
sp_updateextendedproperty, and sp_dropextendedproperty. You can read the value of an existing extended property using
the system function FN_LISTEXTENDEDPROPERTY.

There is no convention or standard for defining extended properties. The database designer sets the rules specifying the property
names and contents when the database is designed, and then the applications accessing the database have to be coded to follow
those rules or conventions.

See Also

Using Extended Properties on Database Objects

fn_listextendedproperty

sp_addextendedproperty

sp_dropextendedproperty

sp_updateextendedproperty

SQL Server Architecture (SQL Server 2000)

Full-Text Catalogs and Indexes
A Microsoft® SQL Server™ 2000 full-text index provides efficient support for sophisticated word searches in character string data.
The full-text index stores information about significant words and their location within a given column. This information is used to
quickly complete full-text queries that search for rows with particular words or combinations of words.

Full-text indexes are contained in full-text catalogs. Each database can contain one or more full-text catalogs. A catalog cannot
belong to multiple databases and each catalog can contain full-text indexes for one or more tables. A table can only have one full-
text index, so each table with a full-text index belongs to only one full-text catalog.

Full-text catalogs and indexes are not stored in the database to which they belong. The catalogs and indexes are managed
separately by the Microsoft Search service.

A full-text index must be defined on a base table; it cannot be defined on a view, system table, or temporary table. A full-text index
definition includes:

A column that uniquely identifies each row in the table (primary or candidate key) and does not allow NULLs.

One or more character string columns covered by the index.

The full-text index is populated with the key values. The entry for each key has information about the significant words (noise-
words or stop-words are stripped out) that are associated with the key, the column they are in, and their location in the column.

Formatted text strings, such as Microsoft® Word™ document files or HTML files, cannot be stored in character string or Unicode
columns because many of the bytes in these files contain data structures that do not form valid characters. Database applications
may still have a need to access this data and apply full-text searches to it. Many sites store this type of data in image columns,
because image columns do not require that each byte form a valid character. SQL Server 2000 introduces the ability to perform
full-text searches against these types of data stored in image columns. SQL Server 2000 supplies filters that allow it to extract the
textual data from Microsoft Office™ files (.doc, .xls, and .ppt files), text files (.txt files), and HTML files (.htm files). When you design
the table, in addition to the image column that holds the data, you include a binding column to hold the file extension for the
format of data stored in the image column. You can create a full-text index that references both the image column and the
binding column to enable full-text searches on the textual information stored in the image column. The SQL Server 2000 full-text
search engine uses the file extension information from the binding column to select the proper filter to extract the textual data
from the column.

Full-text indexing is the component that implements two Transact-SQL predicates for testing rows against a full-text search
condition:

CONTAINS

FREETEXT

Transact-SQL also has two functions that return a set of rows that match a full-text search condition:

CONTAINSTABLE

FREETEXTTABLE

Internally, SQL Server sends the search condition to the Microsoft Search service. The Microsoft Search service finds all the keys
that match the full-text search condition and returns them to SQL Server. SQL Server then uses the list of keys to determine which
table rows are to be processed.

See Also

Full-text Indexes

Full-Text Query Architecture

Full-text Querying SQL Server Data

Microsoft Search Service

SQL Server Architecture (SQL Server 2000)

Logins, Users, Roles, and Groups
Logins, users, roles, and groups are the foundation for the security mechanisms of Microsoft® SQL Server™ 2000. Users that
connect to SQL Server must identify themselves using a specific login identifier (ID). Users can then only see the tables and views
they are authorized to see, and can only execute the stored procedures and administrative functions they are authorized to
execute. This system of security is based on the IDs used to identify users.

See Also

Managing Security

SQL Server Architecture (SQL Server 2000)

Logins
Logins

 New Information - SQL Server 2000 SP3.

Login identifiers (IDs) are associated with users when they connect to an instance of Microsoft® SQL Server™ 2000. Login IDs are
the accounts that control access to the instance of SQL Server. A user cannot connect to an instance without first specifying a valid
login ID. Members of the sysadmin fixed server role define login IDs. There are two types of logins that can be defined for
instances of SQL Server:

sp_grantlogin authorizes a Microsoft Windows® network account (either a group or a user account) to be used as a SQL
Server login for connecting to SQL Server using Windows Authentication. The user does not have to specify a login when
connecting to the instance of SQL Server. SQL Server uses the Windows account to validate the connection request.

sp_addlogin defines a login account for SQL Server connections using SQL Server Authentication. The user must supply a
SQL Server login account and password when connecting to the instance of SQL Server.

Security Note When possible, use Windows Authentication.

See Also

Logins

sp_addlogin

sp_grantlogin

SQL Server Architecture (SQL Server 2000)

Users
Users

 New Information - SQL Server 2000 SP3.

A user identifier (ID) identifies a user within a database. All permissions and ownership of objects in the database are controlled
by the user account. User accounts are specific to a database; the xyz user account in the sales database is different from the xyz
user account in the inventory database, even though both accounts have the same ID. User IDs are defined by members of the
db_owner fixed database role.

A login ID by itself does not give a user permissions to access objects in any databases. A login ID must be associated with a user
ID in each database before anyone connecting with that login ID can access objects in the databases. If a login ID has not been
explicitly associated with any user ID in a database, it is associated with the guest user ID. If a database has no guest user
account, a login cannot access the database unless it has been associated with a valid user account.

When a user ID is defined, it is associated with a login ID. For example, a member of the db_owner role can associate the
Microsoft® Windows® 2000 login NETDOMAIN\Joe with user ID abc in the sales database and user ID def in the employee
database. The default is for the login ID and user ID to be the same.

This example shows giving a Windows 2000 account access to a database and associating the login with a user in the database:

USE master
GO
sp_grantlogin 'NETDOMAIN\Sue'
GO
sp_defaultdb @loginame = 'NETDOMAIN\Sue', defdb = 'sales'
GO
USE sales
GO
sp_grantdbaccess 'NETDOMAIN\Sue', 'Sue'
GO

In the sp_grantlogin statement, the Windows 2000 user NETDOMAIN\Sue is given access to Microsoft SQL Server™ 2000. The
sp_defaultdb statement makes the sales database her default database. The sp_grantdbaccess statement gives the login
NETDOMAIN\Sue access to the sales database and sets her user ID within sales to Sue.

This example shows defining a SQL Server login, assigning a default database, and associating the login with a user in the
database:

USE master
GO
sp_addlogin @loginame = 'Joan', @password = 'fff', defdb = 'sales'
GO
USE sales
GO
sp_grantdbaccess 'Joan'
GO

Security Note Batch files may contain credentials stored in plain text. Credentials may be echoed to the user's screen during
batch execution.

The sp_addlogin statement defines a SQL Server login for a worker named Joan. The statement also specifies the sales database
as the default database for the login. The sp_grantdbaccess statement grants the Joan login access to the sales database;
because no username is specified, it defaults to Joan.

A user in a database is identified by their user ID, not their login ID. For example, sa is a login account mapped to the special user
account dbo (database owner) in every database. All the security-related Transact-SQL statements use the user ID as the
security_name parameter. The administration and understanding of permissions is less confusing if the members of the
sysadmin fixed server role and the db_owner fixed database role set up the system such that the login ID and user ID of each
user are the same, but it is not a requirement.

The guest account is a special user account in SQL Server databases. If a user enters a USE database statement to access a
database in which they are not associated with a user account, they are instead associated with the guest user.

See Also

guest User

sp_addlogin

sp_defaultdb

sp_grantdbaccess

sp_grantlogin

SQL Server Architecture (SQL Server 2000)

Roles
Roles

Roles are a powerful tool that allow you to collect users into a single unit against which you can apply permissions. Permissions
granted to, denied to, or revoked from a role also apply to any members of the role. You can establish a role that represents a job
performed by a class of workers in your organization and grant the appropriate permissions to that role. As workers rotate into
the job, you simply add them as a member of the role; as they rotate out of the job, remove them from the role. You do not have
to repeatedly grant, deny, and revoke permissions to or from each person as they accept or leave the job. The permissions are
applied automatically when the users become members of the role.

Microsoft® Windows NT® and Windows® 2000 groups can be used in much the same way as roles. For more information, see
Groups.

It is easy to manage the permissions in a database if you define a set of roles based on job functions and assign each role the
permissions that apply to that job. You can then simply move users between roles rather than having to manage the permissions
for each individual user. If the function of a job changes, it is easier to simply change the permissions once for the role and have
the changes applied automatically to all members of the role.

In Microsoft® SQL Server™ 2000 and SQL Server version 7.0, users can belong to multiple roles.

The following script shows adding a few logins, users, and roles, and granting permissions to the roles.

USE master
GO
sp_grantlogin 'NETDOMAIN\John'
GO
sp_defaultdb 'NETDOMAIN\John', 'courses'
GO
sp_grantlogin 'NETDOMAIN\Sarah'
GO
sp_defaultdb 'NETDOMAIN\Sarah', 'courses'
GO
sp_grantlogin 'NETDOMAIN\Betty'
GO
sp_defaultdb 'NETDOMAIN\Betty', 'courses'
GO
sp_grantlogin 'NETDOMAIN\Ralph'
GO
sp_defaultdb 'NETDOMAIN\Ralph', 'courses'
GO
sp_grantlogin 'NETDOMAIN\Diane'
GO
sp_defaultdb 'NETDOMAIN\Diane', 'courses'
GO
USE courses
GO
sp_grantdbaccess 'NETDOMAIN\John'
GO
sp_grantdbaccess 'NETDOMAIN\Sarah'
GO
sp_grantdbaccess 'NETDOMAIN\Betty'
GO
sp_grantdbaccess 'NETDOMAIN\Ralph'
GO
sp_grantdbaccess 'NETDOMAIN\Diane'
GO
sp_addrole 'Professor'
GO
sp_addrole 'Student'
GO
sp_addrolemember 'Professor', 'NETDOMAIN\John'
GO
sp_addrolemember 'Professor', 'NETDOMAIN\Sarah'
GO
sp_addrolemember 'Professor', 'NETDOMAIN\Diane'
GO
sp_addrolemember 'Student', 'NETDOMAIN\Betty'
GO
sp_addrolemember 'Student', 'NETDOMAIN\Ralph'
GO
sp_addrolemember 'Student', 'NETDOMAIN\Diane'
GO
GRANT SELECT ON StudentGradeView TO Student
GO

GRANT SELECT, UPDATE ON ProfessorGradeView TO Professor
GO

This script gives the professors John and Sarah permission to update students' grades, while the students Betty and Ralph can
only select their grades. Diane has been added to both roles because she is teaching one class while taking another. The view
ProfessorGradeView should restrict professors to the rows for students in their classes, while StudentGradeView should
restrict students to selecting only their own grades.

There are several fixed roles defined in SQL Server 2000 and SQL Server version 7.0 during setup. Users can be added to these
roles to pick up the associated administration permissions. These are server-wide roles.

Fixed server role Description
sysadmin Can perform any activity in SQL Server.
serveradmin Can set serverwide configuration options, shut down the

server.
setupadmin Can manage linked servers and startup procedures.
securityadmin Can manage logins and CREATE DATABASE permissions,

also read error logs and change passwords.
processadmin Can manage processes running in SQL Server.
dbcreator Can create, alter, and drop databases.
diskadmin Can manage disk files.
bulkadmin Can execute BULK INSERT statements.

You can get a list of the fixed server roles from sp_helpsrvrole, and get the specific permissions for each role from
sp_srvrolepermission.

Each database has a set of fixed database roles. While roles with the same names exist in each database, the scope of an individual
role is only within a specific database. For example, if Database1 and Database2 both have user IDs named UserX, adding
UserX in Database1 to the db_owner fixed database role for Database1 has no effect on whether UserX in Database2 is a
member of the db_owner role for Database2.

Fixed database role Description
db_owner Has all permissions in the database.
db_accessadmin Can add or remove user IDs.
db_securityadmin Can manage all permissions, object ownerships, roles

and role memberships.
db_ddladmin Can issue ALL DDL, but cannot issue GRANT, REVOKE, or

DENY statements.
db_backupoperator Can issue DBCC, CHECKPOINT, and BACKUP statements.
db_datareader Can select all data from any user table in the database.
db_datawriter Can modify any data in any user table in the database.
db_denydatareader Cannot select any data from any user table in the

database.
db_denydatawriter Cannot modify any data in any user table in the

database.

You can get a list of the fixed database roles from sp_helpdbfixedrole, and get the specific permissions for each role from
sp_dbfixedrolepermission.

Every user in a database belongs to the public database role. If you want everyone in a database to be able to have a specific
permission, assign the permission to the public role. If a user has not been specifically granted permissions on an object, they use
the permissions assigned to public.

See Also

Adding a Member to a Predefined Role

sp_dbfixedrolepermission

sp_helpdbfixedrole

sp_helpsrvrole

sp_srvrolepermission

SQL Server Architecture (SQL Server 2000)

Groups
Groups

There are no groups in Microsoft® SQL Server™ 2000 or SQL Server version 7.0. You can, however, manage SQL Server security
at the level of an entire Microsoft Windows NT® or Microsoft Windows® 2000 group.

If you use sp_grantlogin and specify the name of a Windows NT or Windows 2000 group, all members of the group can then
connect to SQL Server using Windows Authentication.

After the group has been authorized to connect, you can use sp_grantdbaccess to associate the group members with a user
identifier (ID) in each database they need to access. You can use two methods:

Associate the group with a user ID in the database.

In this case, all members of the group will be associated with that user ID when they reference the database.

Associate an individual user account in the Windows NT or Windows 2000 group with a user ID in the database.

This individual will be associated with the user ID when they reference the database. None of the other individuals in the
group will be associated with the user ID. They will be assigned the user ID associated with the group login.

Consider a Windows NT or Windows 2000 group NETDOMAIN\Managers with three members: NETDOMAIN\Sue,
NETDOMAIN\Fred, and NETDOMAIN\Mary. The following Transact-SQL statements add the Windows NT or Windows 2000
group as both a login and a user in the sales database, and then associate NETDOMAIN\Sue with a specific user ID:

USE master
GO
-- Authorize all members of NETDOMAIN\Managers to connect
-- using Windows Authentication.
sp_grantlogin 'NETDOMAIN\Managers'
GO
-- Make sales the default database for all members.
sp_defaultdb 'NETDOMAIN\Managers', 'sales'
USE sales
GO
-- Grant all members of the group access to sales
-- No user ID is specified, so SQL Server creates
-- one named 'NETDOMAIN\Managers'
sp_grantdbaccess 'NETDOMAIN\Managers'
GO
-- Grant a specific member of the group access to
-- sales with a specific user.
sp_grantdbaccess 'NETDOMAIN\Sue', 'Sue'

Permissions can now be granted to either user NETDOMAIN\Managers or user Sue:

USE sales
GO
GRANT SELECT ON SalesTable TO NETDOMAIN\Managers
GO
GRANT UPDATE ON SalesTable to NETDOMAIN\Sue

The permissions applied to NETDOMAIN\Sue are the union of the permissions granted, revoked, or denied to both the
NETDOMAIN\Managers or Sue users. Any DENY permission overrides any corresponding GRANT permissions.

Unless their Windows NT or Windows 2000 account has been associated with a specific user, members of a group are subject to
the permissions assigned to the user associated with the group. If a member of the group creates an object, however, the owner
name of the object is their Windows NT or Windows 2000 account name, not the group name. Consider the
NETDOMAIN\Manager account. If NETDOMAIN\Fred connects to the sales database, he can see all tables for which
NETDOMAIN\Managers has been granted SELECT permission. If NETDOMAIN\Fred executes the following statement, the
table is created as sales.NETDOMAIN\Fred.TableX, not sales.NETDOMAIN\Managers.TableX:

CREATE TableX (cola INT PRIMARY KEY, colb CHARACTER(200))

See Also

sp_grantdbaccess

sp_grantlogin

SQL Server Architecture (SQL Server 2000)

Owners and Permissions
Every object in Microsoft® SQL Server™ 2000 is owned by a user. The owner is identified by a database user identifier (ID). When
an object is first created, the only user ID that can access the object is the user ID of the owner or creator. For any other user to
access the object, the owner must grant permissions to that user. If the owner wants only specific users to access the object, the
owner can grant permissions to those specific users.

For tables and views, the owner can grant INSERT, UPDATE, DELETE, SELECT, and REFERENCES permissions, or ALL permissions. A
user must have INSERT, UPDATE, DELETE, or SELECT permissions on a table before they can specify it in INSERT, UPDATE, DELETE,
or SELECT statements. The REFERENCES permission lets the owner of another table use columns in your table as the target of a
REFERENCES FOREIGN KEY constraint from their table. The following example illustrates granting SELECT permissions to a group
named Teachers and REFERENCES permissions to another development user:

GRANT SELECT ON MyTable TO Teachers
GRANT REFERENCES (PrimaryKeyCol) ON MyTable to DevUser1

The owner of a stored procedure can grant EXECUTE permissions for the stored procedure. If the owner of a base table wants to
prevent users from accessing the table directly, they can grant permissions on views or stored procedures referencing the table,
but not grant any permissions on the table itself. This is the foundation of the SQL Server mechanisms to ensure that users do not
see data they are not authorized to access.

Users can also be granted statement permissions. Some statements, such as CREATE TABLE and CREATE VIEW, can only be
executed by certain users (in this case, the dbo user). If the dbo wants another user to be able to create tables or views, they must
grant the permission to execute these statements to that user.

SQL Server Architecture (SQL Server 2000)

Session Context Information
Microsoft® SQL Server™ 2000 introduces the ability to programmatically associate up to 128 bytes of binary information with
the current session or connection. Session context information enables applications to set binary values that can be referenced in
multiple batches, stored procedures, triggers, or user-defined functions operating on the same session, or connection. You can set
a session context by using the new SET CONTEXT_INFO statement, and then you can retrieve the context string from the new
context_info column in the master.dbo.sysprocesses table.

Session context information differs from Transact-SQL variables, whose scope is limited to the current batch, stored procedure,
trigger, or function. Session context information can be used to store information specific to each user or the current state of the
application, which can then be used to control the logic in Transact-SQL statements.

The SET CONTEXT_INFO statement supports:

A constant, with a maximum of 128 bytes, that is either binary or a data type that can be implicitly converted to binary.

The name of a varbinary(128) or binary(128) variable.

SET CONTEXT_INFO cannot be specified in a user-defined function. You cannot supply a null value to SET CONTEXT_INFO
because the sysprocesses table, where the information is stored, does not allow null values.

To get the current session context for the current connection, select the context_info column from the
master.dbo.sysprocesses row whose SQL Server Process ID (SPID) is equal to the SPID for the connection. The SPID for the
current connection is returned by the @@SPID function:

SELECT context_info
FROM master.dbo.sysprocesses
WHERE spid = @@SPID

The value in the context_info column is initialized to 128 bytes of binary zeros if SET CONTEXT_INFO has not yet been executed
for the current connection. If SET CONTEXT_INFO has been executed, the context_info column contains the value set by the last
execution of SET CONTEXT_INFO for the current connection. The context_info column is a varbinary(128) column.

This is an example of using session context information:

-- Set context information at start.
SET CONTEXT_INFO 0x1256698456
GO
-- Perform several non-related batches.
sp_who
GO
USE Northwind
GO
SELECT CustomerID
FROM Customers
WHERE City = 'London'
GO
-- Select context information set several batches earlier.
SELECT context_info
FROM master.dbo.sysprocesses
WHERE spid = @@spid
GO

SET CONTEXT_INFO does not support referencing expressions other than constants or variable names, such as functions. If you
need to set the context information to the result of a function call, you must first place the function call result in a binary or
varbinary variable:

DECLARE @BinVar varbinary(128)
SET @BinVar = CAST(REPLICATE(0x20, 128) AS varbinary(128))
SET CONTEXT_INFO @BinVar

See Also

SET CONTEXT_INFO

sysprocesses

SQL Server Architecture (SQL Server 2000)

System Databases and Data
Microsoft® SQL Server™ 2000 systems have four system databases:

master

The master database records all of the system level information for a SQL Server system. It records all login accounts and
all system configuration settings. master is the database that records the existence of all other databases, including the
location of the database files. master records the initialization information for SQL Server; always have a recent backup of
master available.

tempdb

tempdb holds all temporary tables and temporary stored procedures. It also fills any other temporary storage needs such
as work tables generated by SQL Server. tempdb is a global resource; the temporary tables and stored procedures for all
users connected to the system are stored there. tempdb is re-created every time SQL Server is started so the system starts
with a clean copy of the database. Because temporary tables and stored procedures are dropped automatically on
disconnect, and no connections are active when the system is shut down, there is never anything in tempdb to be saved
from one session of SQL Server to another.

By default, tempdb autogrows as needed while SQL Server is running. Unlike other databases, however, it is reset to its
initial size each time the database engine is started. If the size defined for tempdb is small, part of your system processing
load may be taken up with autogrowing tempdb to the size needed to support your workload each time to restart SQL
Server. You can avoid this overhead by using ALTER DATABASE to increase the size of tempdb.

model

The model database is used as the template for all databases created on a system. When a CREATE DATABASE statement is
issued, the first part of the database is created by copying in the contents of the model database, then the remainder of the
new database is filled with empty pages. Because tempdb is created every time SQL Server is started, the model database
must always exist on a SQL Server system.

msdb

The msdb database is used by SQL Server Agent for scheduling alerts and jobs, and recording operators.

In SQL Server 2000 and SQL Server version 7.0, every database, including the system databases, has its own set of files and does
not share those files with other databases.

Database file Physical file name Default size, typical setup
master primary data Master.mdf 11.0 MB
master log Mastlog.ldf 1.25 MB
tempdb primary data Tempdb.mdf 8.0 MB
tempdb log Templog.ldf 0.5 MB
model primary data Model.mdf 0.75 MB
model log Modellog.ldf 0.75 MB
msdb primary data Msdbdata.mdf 12.0 MB
msdb log Msdblog.ldf 2.25 MB

The sizes of these files may vary slightly for different editions of SQL Server 2000. For more information about default locations
of these files, see Directories and File Locations.

Each database in SQL Server 2000 contains system tables recording the data needed by the SQL Server components. The
successful operation of SQL Server depends on the integrity of information in the system tables; therefore, Microsoft does not
support users directly updating the information in the system tables.

Microsoft provides a complete set of administrative tools that allow users to fully administer their system and manage all users
and objects in a database. Users can use the administration utilities, such as SQL Server Enterprise Manager, to directly manage
the system. Programmers can use the SQL-DMO API to include complete functionality for administering SQL Server in their
applications. Programmers building Transact-SQL scripts and stored procedures can use the system stored procedures and
Transact-SQL DDL statements to support all administrative functions in their systems.

An important function of SQL-DMO, system stored procedures, and data definition languare (DDL) statements is to shield

applications from changes in the system tables. Microsoft sometimes needs to change the system tables in new versions of SQL
Server to support new functionality being added in that version. Applications issuing SELECT statements that directly reference
system tables are frequently dependent on the old format of the system tables. Sites may not be able to upgrade to a new version
of SQL Server until they have rewritten applications that are selecting from system tables. Microsoft considers the system stored
procedures, DDL, and SQL-DMO published interfaces, and seeks to maintain the backward compatibility of these interfaces.

Microsoft does not support triggers defined on the system tables; they may alter the operation of the system.

Another important tool for querying the SQL Server catalog is the set of Information Schema Views. These views comply with the
information schema defined in the SQL-92 standard. These views provide applications a standards-based component for
querying the SQL Server catalog.

You should not code Transact-SQL statements that directly query the system tables unless that is the only way to obtain the
information required by the application. In most cases applications should obtain catalog and system information from:

The SQL-92 Information Schema Views.

SQL-DMO.

The catalog functions, methods, attributes, or properties of the data API used in the application, such as ADO, OLE DB, or
ODBC.

Transact-SQL system stored procedures, catalog statements, and built-in functions.

SQL Server Architecture (SQL Server 2000)

Physical Database Architecture
The topics in this section describe the way Microsoft® SQL Server™ 2000 files and databases are organized. The organization of
SQL Server 2000 and SQL Server version 7.0 is different from the organization of data in SQL Server version 6.5 or earlier.

SQL Server Architecture (SQL Server 2000)

Pages and Extents
The fundamental unit of data storage in Microsoft® SQL Server™ is the page. In SQL Server 2000, the page size is 8 KB. This
means SQL Server 2000 databases have 128 pages per megabyte.

The start of each page is a 96-byte header used to store system information, such as the type of page, the amount of free space
on the page, and the object ID of the object owning the page.

The table shows eight types of pages in the data files of a SQL Server 2000 database.

Page type Contents
Data Data rows with all data except text, ntext, and image data.
Index Index entries.
Text/Image Text, ntext, and image data.
Global Allocation Map,
Secondary Global
Allocation Map

Information about allocated extents.

Page Free Space Information about free space available on pages.
Index Allocation Map Information about extents used by a table or index.
Bulk Changed Map Information about extents modified by bulk operations since

the last BACKUP LOG statement.
Differential Changed
Map

Information about extents that have changed since the last
BACKUP DATABASE statement.

Log files do not contain pages; they contain a series of log records.

Data pages contain all the data in data rows except text, ntext, and image data, which is stored in separate pages. Data rows are
placed serially on the page starting immediately after the header. A row offset table starts at the end of the page. The row offset
table contains one entry for each row on the page and each entry records how far the first byte of the row is from the start of the
page. The entries in the row offset table are in reverse sequence from the sequence of the rows on the page.

Rows cannot span pages in SQL Server. In SQL Server 2000, the maximum amount of data contained in a single row is 8060
bytes, not including text, ntext, and image data.

Extents are the basic unit in which space is allocated to tables and indexes. An extent is 8 contiguous pages, or 64 KB. This means
SQL Server 2000 databases have 16 extents per megabyte.

To make its space allocation efficient, SQL Server 2000 does not allocate entire extents to tables with small amounts of data. SQL
Server 2000 has two types of extents:

Uniform extents are owned by a single object; all eight pages in the extent can only be used by the owning object.

Mixed extents are shared by up to eight objects.

A new table or index is usually allocated pages from mixed extents. When the table or index grows to the point that it has eight
pages, it is switched to uniform extents. If you create an index on an existing table that has enough rows to generate eight pages
in the index, all allocations to the index are in uniform extents.

SQL Server Architecture (SQL Server 2000)

Physical Database Files and Filegroups
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 maps a database over a set of operating-system files. Data and log information are never mixed
on the same file, and individual files are used only by one database.

SQL Server 2000 databases have three types of files:

Primary data files

The primary data file is the starting point of the database and points to the other files in the database. Every database has
one primary data file. The recommended file name extension for primary data files is .mdf.

Secondary data files

Secondary data files comprise all of the data files other than the primary data file. Some databases may not have any
secondary data files, while others have multiple secondary data files. The recommended file name extension for secondary
data files is .ndf.

Log files

Log files hold all of the log information used to recover the database. There must be at least one log file for each database,
although there can be more than one. The recommended file name extension for log files is .ldf.

SQL Server 2000 does not enforce the .mdf, .ndf, and .ldf file name extensions, but these extensions are recommended to help
identify the use of the file.

In SQL Server 2000, the locations of all the files in a database are recorded in both the master database and the primary file for
the database. Most of the time the database engine uses the file location information from the master database. For some
operations, however, the database engine uses the file location information from the primary file to initialize the file location
entries in the master database:

When attaching a database using the sp_attach_db system stored procedure.

When upgrading from SQL Server version 7.0 to SQL Server 2000.

When restoring the master database.

SQL Server 2000 files have two names:

logical_file_name is a name used to refer to the file in all Transact-SQL statements.

The logical file name must conform to the rules for SQL Server identifiers and must be unique to the database.

os_file_name is the name of the physical file.

It must follow the rules for Microsoft Windows NT® or Microsoft Windows® Me, and Microsoft Windows 98 file names.

These are examples of the logical file names and physical file names of a database created on a default instance of SQL Server
2000:

SQL Server data and log files can be placed on either FAT or NTFS file systems, but cannot be placed on compressed file systems.

Pages in a SQL Server 2000 data file are numbered sequentially starting with 0 for the first page in the file. Each file has a file ID
number. Uniquely identifying a page in a database requires both the file ID and page number. The following example shows the
page numbers in a database that has a 4-MB primary data file and a 1-MB secondary data file.

The first page in each file is a file header page containing information about the attributes of the file. Several of the other pages at
the start of the file also contain system information, such as allocation maps. One of the system pages stored in both the primary
data file and the first log file is a database boot page containing information about the attributes of the database.

SQL Server 2000 files can grow automatically from their originally specified size. When you define a file, you can specify a growth
increment. Each time the file fills, it increases its size by the growth increment. If there are multiple files in a filegroup, they do not
autogrow until all the files are full. Growth then occurs using a round-robin algorithm.

Each file can also have a maximum size specified. If a maximum size is not specified, the file can continue to grow until it has used
all available space on the disk. This feature is especially useful when SQL Server is used as a database embedded in an application
where the user does not have ready access to a system administrator. The user can let the files autogrow as needed to lessen the
administrative burden of monitoring the amount of free space in the database and allocating additional space manually.

When multiple instances of SQL Server are run on a single computer, each instance gets a different default directory to hold the
files for the databases created in the instance. For more information, see Directories and File Locations.

Database Filegroups

Database files can be grouped together in filegroups for allocation and administration purposes. Some systems can improve their
performance by controlling the placement of data and indexes onto specific disk drives. Filegroups can aid this process. The
system administrator can create filegroups for each disk drive, then assign specific tables, indexes, or the text, ntext, or image
data from a table, to specific filegroups.

No file can be a member of more than one filegroup. Tables, indexes, and text, ntext, and image data can be associated with a
filegroup, in which case all their pages will be allocated in that filegroup.

Log files are never a part of a filegroup. Log space is managed separately from data space.

Files in a filegroup will not autogrow unless there is no space available on any of the files in the filegroup.

There are two types of filegroups:

Primary

The primary filegroup contains the primary data file and any other files not specifically assigned to another filegroup. All
pages for the system tables are allocated in the primary filegroup.

User-defined

User-defined filegroups are any filegroups specified using the FILEGROUP keyword in a CREATE DATABASE or ALTER
DATABASE statement.

One filegroup in each database operates as the default filegroup. When SQL Server allocates a page to a table or index for which
no filegroup was specified when they were created, the pages are allocated from the default filegroup. Only one filegroup at a
time can be the default filegroup. Members of the db_owner fixed database role can switch the default filegroup from one
filegroup to another. If no default filegroup is specified, the primary filegroup is the default filegroup.

SQL Server 2000 can work quite effectively without filegroups, so many systems will not need to specify user-defined filegroups.
In this case, all files are included in the primary filegroup and SQL Server 2000 can allocate data anywhere in the database.
Filegroups are not the only method that can be used to distribute I/O across multiple drives.

Members of the db_owner fixed database role can back up and restore individual files or filegroups instead of backing up or
restoring an entire database.

The following example creates a database on a default instance of SQL Server 2000. The database has a primary data file, a user-
defined filegroup, and a log file. The primary data file is in the primary filegroup and the user-defined filegroup has two
secondary data files. An ALTER DATABASE statement makes the user-defined filegroup the default. A table is then created
specifying the user-defined filegroup.

USE master
GO
-- Create the database with the default data
-- filegroup and the log file. Specify the
-- growth increment and the max size for the
-- primary data file.
CREATE DATABASE MyDB
ON PRIMARY
 (NAME='MyDB_Primary',
 FILENAME=
 'c:\Program Files\Microsoft SQL Server\MSSQL\data\MyDB_Prm.mdf',
 SIZE=4,
 MAXSIZE=10,
 FILEGROWTH=1),
FILEGROUP MyDB_FG1
 (NAME = 'MyDB_FG1_Dat1',
 FILENAME =
 'c:\Program Files\Microsoft SQL Server\MSSQL\data\MyDB_FG1_1.ndf',
 SIZE = 1MB,
 MAXSIZE=10,
 FILEGROWTH=1),
 (NAME = 'MyDB_FG1_Dat2',
 FILENAME =
 'c:\Program Files\Microsoft SQL Server\MSSQL\data\MyDB_FG1_2.ndf',
 SIZE = 1MB,
 MAXSIZE=10,
 FILEGROWTH=1)
LOG ON
 (NAME='MyDB_log',
 FILENAME =
 'c:\Program Files\Microsoft SQL Server\MSSQL\data\MyDB.ldf',
 SIZE=1,
 MAXSIZE=10,
 FILEGROWTH=1)
GO
ALTER DATABASE MyDB
MODIFY FILEGROUP MyDB_FG1 DEFAULT
GO

-- Create a table in the user-defined filegroup.
USE MyDB
CREATE TABLE MyTable
 (cola int PRIMARY KEY,
 colb char(8))
ON MyDB_FG1
GO

User filegroups can be made read-only. The data cannot be altered, but the catalog can still be modified to allow work such as
permissions management.

SQL Server 2000 databases can be detached from a server and reattached to either another server or the same server. This is
especially useful in making databases distributed for use on a customer's local SQL Server installation. For example, a company
could create a database containing their current product catalog. The company could create this database on a writable compact
disc drive and make the database read-only. They could then copy the compact disc and send copies to all of their field sales
representatives equipped with a catalog application and SQL Server on Windows Me laptops. The sales representatives would
then have the latest catalog information.

SQL Server Architecture (SQL Server 2000)

Space Allocation and Reuse
Microsoft® SQL Server™ 2000 is effective at quickly allocating pages to objects and reusing space freed up by deleted rows.
These operations are internal to the system and use data structures not visible to users, yet these processes and structures are
occasionally referenced in SQL Server messages. This topic is an overview of the space allocation algorithms and data structures
to give users and administrators the knowledge needed to understand references to the terms in messages generated by SQL
Server.

SQL Server Architecture (SQL Server 2000)

Managing Extent Allocations and Free Space
Managing Extent Allocations and Free Space

The Microsoft® SQL Server™ 2000 data structures that track free space have a relatively simple structure. This has two benefits:

The free space information is densely packed, so there are relatively few pages containing this information.

This increases speed by reducing the amount of disk reads necessary to retrieve allocation information, and increasing the
chance the allocation pages will remain in memory, eliminating even more reads.

Most of the allocation information is not chained together, which simplifies the maintenance of the allocation information.

Each page allocation or deallocation can be performed quickly, decreasing the contention between concurrent tasks needing
to allocate or free pages.

SQL Server uses two types of allocation maps to record the allocation of extents:

Global Allocation Map (GAM)

GAM pages record what extents have been allocated. Each GAM covers 64,000 extents, or nearly 4 GB of data. The GAM has
one bit for each extent in the interval it covers. If the bit is 1, the extent is free; if the bit is 0, the extent is allocated.

Shared Global Allocation Map (SGAM)

SGAM pages record what extents are currently used as mixed extents and have at least one unused page. Each SGAM covers
64,000 extents, or nearly 4 GB of data. The SGAM has one bit for each extent in the interval it covers. If the bit is 1, the extent
is being used as a mixed extent and has free pages; if the bit is 0, the extent is not used as a mixed extent, or it is a mixed
extent whose pages are all in use.

Each extent has the following bit patterns set in the GAM and SGAM based on its current use.

Current use of extent GAM bit setting SGAM bit setting
Free, not in use 1 0
Uniform extent, or full mixed extent 0 0
Mixed extent with free pages 0 1

This results in simple extent management algorithms. To allocate a uniform extent, SQL Server searches the GAM for a 1 bit and
sets it to 0. To find a mixed extent with free pages, SQL Server searches the SGAM for a 1 bit. To allocate a mixed extent, SQL
Server searches the GAM for a 1 bit, sets it to 0, and then also sets the corresponding bit in the SGAM to 1. To free an extent, SQL
Server ensures the GAM bit is set to 1 and the SGAM bit is set to 0. The algorithms actually used internally by SQL Server are
more sophisticated than what is stated here (SQL Server distributes data evenly in a database), but even the real algorithms are
simplified by not having to manage chains of extent allocation information.

Page Free Space (PFS) pages record whether an individual page in a heap or an ntext, text, or image column has been allocated,
and the amount of space free on each page. Each PFS page covers approximately 8,000 pages. For each page, the PFS has a
bitmap recording whether the page is empty, 1-50% full, 51-80% full, 81-95% full, or 96-100% full.

After an extent has been allocated to an object, SQL Server uses the PFS pages to record which pages in the extent are allocated or
free, and how much free space is available for use. This information is used when SQL Server has to allocate a new page, or when
it needs to find a page with free space available to hold a newly inserted row.

A PFS page is the first page after the file header page in a data file (with page number 1). Next comes a GAM (with page number
2) followed by an SGAM (page 3). There is a PFS page approximately 8,000 pages after the first. There is another GAM each
64,000 extents after the first GAM on page 2, and another SGAM each 64,000 extents after the first SGAM on page 3.

SQL Server Architecture (SQL Server 2000)

Managing Space Used by Objects
Managing Space Used by Objects

Index Allocation Map (IAM) pages map the extents in a database file used by a heap or index. IAM pages also map the extents
allocated to the ntext, text, and image page chain for any table that has columns of these types. Each of these objects has a chain
of one or more IAM pages recording all the extents allocated to it. Each object has at least one IAM for each file on which it has
extents. They may have more than one IAM on a file if the range of the extents on the file allocated to the object exceeds the range
that an IAM can record.

IAM pages are allocated as needed for each object and are located randomly in the file. sysindexes.dbo.FirstIAM points to the
first IAM page for an object, and all the IAM pages for that object are linked in a chain.

An IAM page has a header indicating the starting extent of the range of extents mapped by the IAM. The IAM also has a large
bitmap in which each bit represents one extent. The first bit in the map represents the first extent in the range, the second bit
represents the second extent, and so on. If a bit is 0, the extent it represents is not allocated to the object owning the IAM. If the bit
is 1, the extent it represents is allocated to the object owning the IAM page.

When Microsoft® SQL Server™ 2000 needs to insert a new row and no space is available in the current page, it uses the IAM and
PFS pages to find a page with enough space to hold the row. SQL Server uses the IAM pages to find the extents allocated to the
object. For each extent, SQL Server searches the PFS pages to see if there is a page with enough free space to hold the row. Each
IAM and PFS page covers a large number of data pages, so there are few IAM and PFS pages in a database. This means that the
IAM and PFS pages are generally in memory in the SQL Server buffer pool, so they can be searched quickly.

SQL Server allocates a new extent to an object only when it cannot quickly find a page in an existing extent with enough space to
hold the row being inserted. SQL Server allocates extents from those available in the filegroup using a proportional allocation
algorithm. If a filegroup has two files, one of which has twice the free space of the other, two pages will be allocated from the file
with more empty space for every one page allocated from the other file. This means that every file in a filegroup should have a
similar percentage of space used.

SQL Server Architecture (SQL Server 2000)

Tracking Modified Extents
Tracking Modified Extents

SQL Server 2000 introduces two new internal data structures to track extents modified by bulk copy operations or modified since
the last full backup. These new data structures greatly speed differential backups and logging bulk copy operations when a
database is using the bulk-logged recovery model. Like the Global Allocation Map (GAM) and Secondary Global Allocation Map
(SGAM) pages, these new structures are bitmaps where each bit represents a single extent.

Differential Changed Map (DCM)

Tracks the extents that have changed since the last BACKUP DATABASE statement. If the bit for an extent is 1, the extent has
been modified since the last BACKUP DATABASE statement. If the bit is 0, the extent has not been modified.

Differential backups can now read just the DCM pages to find out which extents have been modified. This greatly reduces
the number of pages that a differential backup must scan. The length of time a differential backup runs is now proportional
to the number of extents modified since the last BACKUP DATABASE statement, not the overall size of the database.

Bulk Changed Map (BCM)

Tracks the extents that have been modified by bulk logged operations since the last BACKUP LOG statement. If the bit for an
extent is 1, the extent has been modified by a bulk logged operation after the last BACKUP LOG statement. If the bit is 0, the
extent has not been modified by bulk logged operations.

BCM pages are only relevant when the database is using the bulk-logged recovery model. In this recovery model, when a
BACKUP LOG is performed, the backup process scans the BCMs for extents that have been modified and includes those
extents in the log backup. This allows the bulk logged operations to be recovered if the database is restored from a database
backup and a sequence of transaction log backups. BCM pages are not relevant in a database is using the simple recovery
model because no bulk logged operations are logged. They are not relevant in a database using the full recovery model
because that recovery model treats bulk logged operations as fully logged operations.

The interval between DCM pages and BCM pages is the same as the interval between GAM and SGAM pages; 64,000 extents. The
DCM and BCM pages are located behind the GAM and SGAM pages in a physical file:

See Also

Managing Extent Allocations and Free Space

SQL Server Architecture (SQL Server 2000)

Shrinking Databases
Shrinking Databases

SQL Server 2000 autoshrinks databases that have a large amount of free space. Only those databases where the autoshrink
option has been set to true are candidates for this process. The server checks the space usage in each database periodically. If a
database is found with a lot of empty space and it has the autoshrink option set to true, SQL Server reduces the size of the files
in the database. You can also use SQL Server Enterprise Manager or the DBCC SHRINKDATABASE and DBCC SHRINKFILE
statements to shrink the files of a database manually.

Files are always shrunk from the end. For example, if you have a 5 GB file and specify 4GB as the target_size in a DBCC SHRINKDB
statement, SQL Server will free as much space as it can from the last 1 GB of the file. If there are used pages in the part of the file
being released, SQL Server first relocates the pages to the part being retained. You can only shrink a database to the point where
it has no free space remaining. For example, if a 5GB database has 4 GB of data and you specify 3 GB as the target_size of a DBCC
SHRINKDATABASE statement, only 1 GB will be freed.

If a DBCC SHRINKDATABASE or DBCC SHRINKFILE statement cannot reclaim all the space in a log file, the statement will issue an
informational message indicating what action you must perform to make more space eligible to be freed. For more information
about shrinking log files, see Shrinking the Transaction Log.

SQL Server Architecture (SQL Server 2000)

Table and Index Architecture
Objects in a Microsoft® SQL Server™ 2000 database are stored as a collection of 8-KB pages. This topic describes the way the
pages for tables and indexes are organized.

SQL Server 2000 supports indexes on views. The first index allowed on a view is a clustered index. At the time a CREATE INDEX
statement is executed on a view, the result set for the view is materialized and stored in the database with the same structure as a
table that has a clustered index. The result set that is stored is the same as that which is produced by this statement.

SELECT * FROM ViewName

The data rows for each table or indexed view are stored in a collection of 8-KB data pages. Each data page has a 96-byte header
containing system information such as the identifier (ID) of the table that owns the page. The page header also includes pointers
to the next and previous pages that are used if the pages are linked in a list. A row offset table is at the end of the page. Data rows
fill the rest of the page.

Organization of Data Pages

SQL Server 2000 tables use one of two methods to organize their data pages:

Clustered tables are tables that have a clustered index.

The data rows are stored in order based on the clustered index key. The index is implemented as a B-tree index structure
that supports fast retrieval of the rows based on their clustered index key values. The pages in each level of the index,
including the data pages in the leaf level, are linked in a doubly-linked list, but navigation from one level to another is done
using key values.

Heaps are tables that have no clustered index.

The data rows are not stored in any particular order, and there is no particular order to the sequence of the data pages. The
data pages are not linked in a linked list.

Indexed views have the same storage structure as clustered tables.

SQL Server also supports up to 249 nonclustered indexes on each table or indexed view. The nonclustered indexes have a B-tree
index structure similar to the one in clustered indexes. The difference is that nonclustered indexes have no effect on the order of
the data rows. Clustered tables and indexed views keep their data rows in order based on the clustered index key. The collection of
data pages for a heap is not affected if nonclustered indexes are defined for the table. The data pages remain in a heap unless a
clustered index is defined.

The pages holding text, ntext, and image data are managed as a single unit for each table. All of the text, ntext, and image data
for a table is stored in one collection of pages.

All of the page collections for tables, indexes and indexed views are anchored by page pointers in the sysindexes table. Every
table and indexed view has one collection of data pages, plus additional collections of pages to implement each index defined for
the table or view.

Each table, index and indexed view has a row in sysindexes uniquely identified by the combination of the object identifier (id)
column and the index identifier (indid) column. The allocation of pages to tables, indexes, and indexed views is managed by a
chain of IAM pages. The column sysindexes.FirstIAM points to first IAM page in the chain of IAM pages managing the space
allocated to the table, index or indexed view.

Each table has a set of rows in sysindexes:

A heap has a row in sysindexes with indid = 0.

The FirstIAM column points to the IAM chain for the collection of data pages for the table. The server uses the IAM pages to
find the pages in the data page collection because they are not linked together.

A clustered index on a table or view has a row in sysindexes with indid = 1.

The root column points to the top of the clustered index B-tree. The server uses the index B-tree to find the data pages.

Each nonclustered index created for a table or view has a row in sysindexes.

The values for indid in the rows for each nonclustered index range from 2 through 250. The root column points to the top
of the nonclustered index B-tree.

Each table that has at least one text, ntext, or image column also has a row in sysindexes with indid = 255.

The column FirstIAM points to the chain of IAM pages that manage the text, ntext, and image pages.

In SQL Server version 6.5 and earlier, sysindexes.first always points to the start of a heap, the start of the leaf level of an index, or
the start of a chain of text and image pages. In SQL Server version 7.0 and later, sysindexes.first is largely unused. In SQL
Server version 6.5 and earlier, sysindexes.root in a row with indid = 0 points to the last page in a heap. In SQL Server version
7.0 and later, sysindexes.root in a row with indid = 0 is unused.

SQL Server Architecture (SQL Server 2000)

Distribution Statistics
Distribution Statistics

All indexes have distribution statistics that describe the selectivity and distribution of the key values in the index. Selectivity is a
property that relates to how many rows are typically identified by a key value. A unique key has high selectivity; a key value found
in 1,000 rows has poor selectivity. The selectivity and distribution statistics are used by Microsoft® SQL Server™ 2000 to optimize
its navigation through tables and indexed views when processing Transact-SQL statements. The distribution statistics are used to
estimate how efficient an index would be in retrieving data associated with a key value or range specified in the query. The
statistics for each index are not limited to a single page but are stored as a long string of bits across multiple pages in the same
way image data is stored. The column sysindexes.statblob points to this distribution data. You can use the DBCC
SHOW_STATISTICS statement to get a report on the distribution statistics for an index.

Distribution statistics may also be maintained for unindexed columns. These can be defined manually using the CREATE
STATISTICS statement or created automatically by the query optimizer. Statistics on unindexed columns count against the limit of
249 nonclustered indexes allowed on a table.

To be useful to query optimizer, distribution statistics must be kept reasonably current. The distribution statistics should be
refreshed anytime significant numbers of changes to keys occur in the index. Distribution statistics can be updated manually
using the UPDATE STATISTICS statement. SQL Server 2000 can also detect when distribution statistics are out of date and update
the statistics automatically. This update is performed by the task that detected that the statistics needed to be updated. The update
is performed using a complex sampling method that minimizes the effect of the update on transaction throughput.

See Also

Statistical Information

SQL Server Architecture (SQL Server 2000)

Heap Structures
Heap Structures

Heaps have one row in sysindexes with indid = 0. The column sysindexes.FirstIAM points to the first IAM page in the chain of
IAM pages that manage the space allocated to the heap. Microsoft® SQL Server™ 2000 uses the IAM pages to navigate through
the heap. The data pages and the rows within them are not in any specific order, and are not linked together. The only logical
connection between data pages is that recorded in the IAM pages.

Table scans or serial reads of a heap can be done by scanning the IAM pages to find the extents holding pages for the heap.
Because the IAM represents extents in the same order they exist in the data files, this means that serial heap scans progress
uniformly down each file. This is more efficient than following the data page chains used in earlier versions of SQL Server, in
which the data page chain often takes a somewhat random path through the files of a database. Using the IAM pages to set the
scan sequence also means that rows from the heap are not typically returned in the order in which they were inserted.

SQL Server Architecture (SQL Server 2000)

Clustered Indexes
Clustered Indexes

Clustered indexes have one row in sysindexes with indid = 1. The pages in the data chain and the rows in them are ordered on
the value of the clustered index key. All inserts are made at the point the key value in the inserted row fits in the ordering
sequence.

Microsoft® SQL Server™ 2000 indexes are organized as B-trees. Each page in an index holds a page header followed by index
rows. Each index row contains a key value and a pointer to either a lower-level page or a data row. Each page in an index is called
an index node. The top node of the B-tree is called the root node. The bottom layer of nodes in the index are called the leaf nodes.
The pages in each level of the index are linked together in a doubly-linked list. In a clustered index, the data pages make up the
leaf nodes. Any index levels between the root and the leaves are collectively known as intermediate levels.

For a clustered index, sysindexes.root points to the top of the clustered index. SQL Server navigates down the index to find the
row corresponding to a clustered index key. To find a range of keys, SQL Server navigates through the index to find the starting
key value in the range, and then scans through the data pages using the previous or next pointers. To find the first page in the
chain of data pages, SQL Server follows the leftmost pointers from the root node of the index.

This illustration shows the structure of a clustered index.

SQL Server Architecture (SQL Server 2000)

Nonclustered Indexes
Nonclustered Indexes

Nonclustered indexes have the same B-tree structure as clustered indexes, with two significant differences:

The data rows are not sorted and stored in order based on their nonclustered keys.

The leaf layer of a nonclustered index does not consist of the data pages.

Instead, the leaf nodes contain index rows. Each index row contains the nonclustered key value and one or more row
locators that point to the data row (or rows if the index is not unique) having the key value.

Nonclustered indexes can be defined on a table with a clustered index, a heap, or an indexed view. In Microsoft® SQL Server™
2000, the row locators in nonclustered index rows have two forms:

If the table is a heap (does not have a clustered index), the row locator is a pointer to the row. The pointer is built from the
file identifier (ID), page number, and number of the row on the page. The entire pointer is known as a Row ID.

If the table does have a clustered index, or the index is on an indexed view, the row locator is the clustered index key for the
row. If the clustered index is not a unique index, SQL Server 2000 makes duplicate keys unique by adding an internally
generated value. This value is not visible to users; it is used to make the key unique for use in nonclustered indexes. SQL
Server retrieves the data row by searching the clustered index using the clustered index key stored in the leaf row of the
nonclustered index.

Because nonclustered indexes store clustered index keys as their row locators, it is important to keep clustered index keys as small
as possible. Do not choose large columns as the keys to clustered indexes if a table also has nonclustered indexes.

SQL Server Architecture (SQL Server 2000)

tempdb and Index Creation
tempdb and Index Creation

When you create an index, you can specify WITH SORT_IN_TEMPDB option, which directs the database engine to use tempdb to
store the intermediate sort results used to build the index. Although this option increases the amount of disk space used to create
an index, it reduces the time it takes to create an index when tempdb is on a different set of disks than the user database.

As the database engine builds an index, it goes through two phases:

The database engine first scans the data pages to retrieve key values and builds a index leaf row for each data row. When
the internal sort buffers have been filled with leaf index entries, the entries are sorted and written to disk as an intermediate
sort run. The database engine then resumes the data page scan until the sort buffers are again filled. This pattern of
scanning multiple data pages followed by sorting and writing a sort run continues until all the rows of the base table have
been processed. In a clustered index, the leaf rows of the index are the data rows of the table, so the intermediate sort runs
contain all the data rows. In a nonclustered index, the leaf rows do not contain values from nonkey columns, so are
generally smaller. A nonclustered sort run can be large, however, if the index keys are large.

The database engine merges the sorted runs of index leaf rows into a single, sorted stream. The sort merge component of
the engine starts with the first page of each sort run, finds the lowest key in all the pages, and passes that leaf row to the
index create component. The next lowest key is then processed, then the next, and so on. When the last leaf index row is
extracted from a sort run page, the process shifts to the next page from that sort run. When all the pages in a sort run extent
have been processed, the extent is freed. As each leaf index row is passed to the index create component, it is placed in a leaf
index page in the buffer. Each leaf page is written as it is filled. As leaf pages are written, the database engine also builds the
upper levels of the index. Each upper level index page is written when it is filled.

If you create a clustered index on a table that has existing nonclustered indexes, the general process is:

The nonclustered indexes are deallocated, but the definitions of the indexes are retained. The space is not available for use
until the end of the transaction containing the CREATE INDEX statement, so that the old index pages are still available if they
have to be restored during a rollback of the transaction.

The clustered index is created.

The nonclustered indexes are re-created.

When SORT_IN_TEMPDB is not specified, the sort runs are stored in the destination filegroup. During the first phase of creating
the index, the alternating reads of the base table pages and writes of the sort runs move the disk read-write heads from one area
of the disk to another. The heads are in the data page area as the data pages are scanned. They move to an area of free space
when the sort buffers fill and the current sort run has to be written to disk, then move back to the data page area as the table page
scan is resumed. The read-write head movement is higher in the second phase. At that time the sort process is typically
alternating reads from each sort run area. Both the sort runs and the new index pages are built in the destination filegroup,
meaning that at the same time the database engine is spreading reads across the sort runs, it has to periodically jump to the index
extents to write new index pages as they are filled.

If the SORT_IN_TEMPDB option is specified and tempdb is on a separate set of disks from the destination filegroup, then during
the first phase the reads of the data pages occur on a different disk than the writes to the sort work area in tempdb. This means
the disk reads of the data keys tend to proceed more serially across the disk, and the writes to the tempdb disk also tend to be
serial, as do the writes to build the final index. Even if other users are using the database and accessing separate disk addresses,
the overall pattern of reads and writes are more efficient when SORT_IN_TEMPDB is specified than when it is not.

The SORT_IN_TEMPDB option may improve the contiguity of index extents, especially if the CREATE INDEX is not being processed
in parallel. The sort work area extents are freed on a somewhat random basis with respect to their location in the database. If the
sort work areas are contained in the destination filegroup, then as the sort work extents are freed, they can be acquired by the
requests for extents to hold the index structure as it is built. This can randomize the locations of the index extents to a certain
degree. If the sort extents are held separately in tempdb, the sequence in which they are freed has no bearing on the location of
the index extents. Also, when the intermediate sort runs are stored in tempdb instead of the destination filegroup, there is more
space available in the destination filegroup, which increases the chances that index extents will be contiguous.

The SORT_IN_TEMPDB option affects only the current statement. No meta data records that the index was or was not sorted in
tempdb. For example, if you create a nonclustered index using the SORT_IN_TEMPDB option, and later create a clustered index
without specifying the option, the database engine does not use the option when it re-creates the nonclustered index.

Free Space Requirements

When you specify the SORT_IN_TEMPDB option, you must have sufficient free space available in tempdb to hold the
intermediate sort runs, and enough free space in the destination filegroup to hold the new index. The CREATE INDEX statement
fails if there is not enough free space and there is some reason the databases cannot autogrow to acquire more space (such as no
space on the disk, or autogrow turned off).

If SORT_IN_TEMPDB is not specified, the available free space in the destination filegroup must be roughly the size of the final
index. During the first phase, the sort runs are built and require about the same amount of space as the final index. During the
second phase, each sort run extent is freed after it has been processed. This means that sort run extents are freed at about the
same rate at which extents are acquired to hold the final index pages, so the overall space requirements do not greatly exceed the
size of the final index. One side effect of this is that if the amount of free space is very close to the size of the final index, the
database engine will tend to reuse the sort run extents very quickly after they are freed. Because the sort run extents are freed in a
somewhat random manner, this reduces the continuity of the index extents in this scenario. If SORT_IN_TEMPDB is not specified,
the continuity of the index extents is improved if there is enough free space available in the destination filegroup that the index
extents can be allocated from a contiguous pool rather than from the freshly deallocated sort run extents.

At the time you execute the CREATE INDEX statement, you must have available as free space:

When you create a nonclustered index:
If SORT_IN_TEMPDB is specified, there must be enough free space in tempdb to store the sort runs, and enough
free space in the destination filegroup to store the final index structure. The sort runs contain the leaf rows of the
index.

If SORT_IN_TEMPDB is not specified, the free space in the destination filegroup must be large enough to store the
final index structure. The continuity of the index extends may be improved if more free space is available.

When you create a clustered index on a table that does not have nonclustered indexes:
If SORT_IN_TEMPDB is specified, there must be enough free space in tempdb to store the sort runs, which include
the data rows of the table. There must be enough free space in the destination filegroup to store the final index
structure, including the data rows of the table and the index B-tree. A rough estimate is 1.2 times the size of the
original table, although you may need to adjust the estimate for factors such as having a large key size or a fillfactor
with a low value.

If SORT_IN_TEMPDB is not specified, the free space in the destination filegroup must be large enough to store the
final table, including the index structure. The continuity of the table and index extents may be improved if more free
space is available.

When you create a clustered index on a table that has nonclustered indexes:
If SORT_IN_TEMPDB is specified, there must be enough free space in tempdb to store the collection of sort runs for
the largest index (typically the clustered index), and enough free space in the destination filegroup to store the final
structures of all the indexes, including the clustered index that contains the data rows of the table.

If SORT_IN_TEMPDB is not specified, the free space in the destination filegroup must be large enough to store the
final table, including the structures of all the indexes. The continuity of the table and index extents may be improved
if more free space is available.

See Also

CREATE INDEX

SQL Server Architecture (SQL Server 2000)

text, ntext, and image Data
text, ntext, and image Data

Individual text, ntext, and image values can be a maximum of 2-GB, which is too long to store in a single data row. In
Microsoft® SQL Server™ 2000, small text, ntext, or image values can be stored directly in the row, but values too large to fit in
the row are stored in a collection of pages separate from the pages holding the data for the other columns of the row.

The administrator uses the text in row option in sp_tableoption to specify whether small text, ntext, or image values are
stored directly in a row:

When text in row is OFF, SQL Server 2000 has the same ntext, text, and image behavior as SQL Server version 7.0. For
each text, ntext, or image value, all that is stored in the data row is a 16-byte pointer. For each row, this pointer points to
the location of the text, ntext, or image data. A row containing multiple text, ntext, or image columns has one pointer for
each text, ntext, or image column.

When text in row is ON, SQL Server 2000 stores small text, ntext, and image values in the data row. Only text, ntext, or
image values that cannot fit in the row are stored in a separate collection of pages.

Each table has only one collection of pages to hold text, ntext, and image data. The sysindexes row that has indid = 255 is the
anchor for the collection. The text, ntext, and image data for all the rows in the table is interleaved in this collection of text and
image pages.

In SQL Server 2000, individual text, ntext, and image pages are not limited to holding data for only one occurrence of a text,
ntext, or image column. A text, ntext, or image page can hold data from multiple rows; the page can even have a mix of text,
ntext, and image data.

Although the user always works with text, ntext, and image data as if it is a single long string of bytes, the data is not stored in
that format. The data is stored in a collection of 8-KB pages that are not necessarily located next to each other. In SQL Server
2000, the pages are organized logically in a B-tree structure, and in SQL Server version 6.5 and earlier they are linked in a page
chain. The advantage of the method used by SQL Server 2000 is that operations starting in the middle of the string are more
efficient. SQL Server 2000 can quickly navigate the B-tree, and SQL Server version 6.5 must scan through the page chain.

See Also

sp_tableoption

SQL Server Architecture (SQL Server 2000)

ntext, text, and image Data When text in row Is Set to OFF
ntext, text, and image Data When text in row Is Set to OFF

The structure of the B-tree used to store text, ntext, or image data when the text in row option of sp_tableoption is set to OFF
differs slightly if there is less than 32 KB of data than if there is more.

If there is less than 32 KB of data, the 16-byte text pointer in the data row points to an 84-byte text root structure. This forms the
root node of the B-tree structure. The root node points to the blocks of text, ntext, or image data.

Although the data for text, ntext, and image columns is arranged logically in a B-tree, both the root node and the individual
blocks of data are spread throughout the chain of text, ntext, and image pages for the table. They are placed wherever there is
space available. The size of each block of data is determined by the size written by an application. Small blocks of data will be
combined to fill a page. If there is less than 64 bytes of data, it is all stored in the root structure.

For example, if an application first writes 1 KB of image data, this is stored as the first 1-KB block of image data for the row. If the
application then writes 12 KB of image data, then 7 KB is combined with the first 1-KB block so the first block becomes 8 KB. The
remaining 5 KB forms the second block of image data. (The actual capacity of each ntext, text, or image page is 8080 bytes of
data.)

Because the blocks of text, ntext, or image data and the root structures can all share space on the same text, ntext, or image
pages, SQL Server 7.0 uses less space with small amounts of text, ntext, or image data than earlier versions of SQL Server. For
example, if you insert 20 rows that each have 200 bytes of data in a text column, the data and all the root structures can all fit on
the same 8-KB page.

If the amount of data for one occurrence of a text, ntext, or image column exceeds 32 KB, SQL Server starts building
intermediate nodes between the data blocks and the root node.

The root structure and the data blocks are interleaved throughout the text, ntext, or image pages in the same manner as
described earlier. The intermediate nodes, however, are stored in pages not shared between occurrences of text, ntext, or image
columns. A page storing intermediate nodes contains only intermediate nodes for one ntext, text, or image data value in one
data row.

See Also

sp_tableoption

SQL Server Architecture (SQL Server 2000)

text, ntext, and image Data When text in row Is Set to ON
text, ntext, and image Data When text in row Is Set to ON

You enable the text in row option for a table by using sp_tableoption. With the text in row option set to ON, Microsoft® SQL
Server™ 2000 stores text, ntext, or image strings directly in the data row if:

The length of the string is shorter than the specified limit.

There is enough space available in the data row to hold the string.

When the text, ntext, or image string is stored in the data row, SQL Server does not have to access a separate page or set of
pages to read or write the string. This makes reading and writing the text, ntext, or image in-row strings about as fast as reading
or writing varchar, nvarchar, or varbinary strings.

If a text, ntext, or image string is longer than the text in row option limit or the available space in the row, the set of pointers
otherwise stored in the root node of the pointer tree are stored in the row. Moving the root node to the row itself allows SQL
Server to eliminate a page access each time it references the string value, which speeds processing.

A full root structure placed in a data row requires 72 bytes to hold five pointers. If the text in row option limit is less than 72
bytes, or if there are fewer than 72 bytes available in the row, SQL Server puts as many pointers as it can in the row. The lowest
limit is 24 bytes, which holds a root node with only one pointer.

Reducing the number of pointers in the root structure truncates the top level of the tree structure used to store the text, ntext, or
image string. For example, if the root structure has only three pointers, the top level of the tree structure can only contain three
nodes, not five. Reducing the size of the root structure can introduce extra layers in the tree structure. Setting the text in row
option limit under 72 can also cause the top level to be truncated.

When text, ntext, or image strings are stored in the row, they are stored similarly to variable-length strings. For example, if the
text in row option limit is 500 bytes and you store a 200-byte string in a row, SQL Server uses only the number of bytes needed
to store the string. If a string longer than 500 bytes is inserted, so that pointers are stored in the row, SQL Server uses only
enough space to hold the pointers and not the entire 500 bytes.

If a table has multiple text, ntext, or image columns, and you attempt to insert multiple text, ntext, or image strings, SQL
Server assigns space to the strings one at a time in sequence based on column ID. For example, assume you have a table
containing four text columns and you have set the text in row option limit to 1000. You then insert a row where with a 900-byte
string for each text column, and enough data for all of the other columns in the table so there is only 3,000 bytes of free space in
the row to hold the text strings. The strings for the first three text columns are stored in the row, using 2,700 bytes of the 3,000
bytes available. The string for the fourth text column is not stored in the row, but the pointers from the root node are stored in
the row.

Setting the text in row option on has several side effects in regards to processing text, ntext, or image data. For more
information, see Managing ntext, text, and image Data.

See Also

sp_tableoption

SQL Server Architecture (SQL Server 2000)

Transaction Log Architecture
Every Microsoft® SQL Server™ 2000 database has a transaction log that records all transactions and the database modifications
made by each transaction. This record of transactions and their modifications supports three operations:

Recovery of individual transactions.

If an application issues a ROLLBACK statement, or if SQL Server detects an error such as the loss of communication with a
client, the log records are used to roll back the modifications made by an incomplete transaction.

Recovery of all incomplete transactions when SQL Server is started.

If a server running SQL Server fails, the databases may be left in a state where some modifications were never written from
the buffer cache to the data files, and there may be some modifications from incomplete transactions in the data files. When
a copy of SQL Server is started, it runs a recovery of each database. Every modification recorded in the log which may not
have been written to the data files is rolled forward. Every incomplete transaction found in the transaction log is then rolled
back to ensure the integrity of the database is preserved.

Rolling a restored database forward to the point of failure.

After the loss of a database, as is possible if a hard drive fails on a server that does not have RAID drives, you can restore the
database to the point of failure. You first restore the last full or differential database backup, and then restore the sequence
of transaction log backups to the point of failure. As you restore each log backup, SQL Server reapplies all the modifications
recorded in the log to roll forward all the transactions. When the last log backup is restored, SQL Server then uses the log
information to roll back all transactions that were not complete at that point.

The characteristics of the SQL Server 2000 transaction log are:

The transaction log is not implemented as a table but as a separate file or set of files in the database. The log cache is
managed separately from the buffer cache for data pages, resulting in simple, fast, and robust code within the database
engine.

The format of log records and pages is not constrained to follow the format of data pages.

The transaction log can be implemented on several files. The files can be defined to autogrow as required. This reduces the
potential of running out of space in the transaction log, while at the same time reducing administrative overhead.

The mechanism to truncate unused parts of the log is quick and has minimal effect on transaction throughput.

SQL Server Architecture (SQL Server 2000)

Write-Ahead Transaction Log
Write-Ahead Transaction Log

Microsoft® SQL Server™ 2000, like many relational databases, uses a write-ahead log. A write-ahead log ensures that no data
modifications are written to disk before the associated log record.

SQL Server maintains a buffer cache into which it reads data pages when data must be retrieved. Data modifications are not made
directly to disk, but are instead made to the copy of the page in the buffer cache. The modification is not written to disk until either
the database is checkpointed, or the modifications must be written to disk so the buffer can be used to hold a new page. Writing a
modified data page from the buffer cache to disk is called flushing the page. A page modified in the cache but not yet written to
disk is called a dirty page.

At the time a modification is made to a page in the buffer, a log record is built in the log cache recording the modification. This log
record must be written to disk before the associated dirty page is flushed from the buffer cache to disk. If the dirty page were
flushed before the log record, it would create a modification on disk that could not be rolled back if the server failed before the
log record were written to disk. SQL Server has logic that prevents a dirty page from being flushed before the associated log
record. Because log records are always written ahead of the associated data pages, the log is called a write-ahead log.

See Also

Backup/Restore Architecture

Transactions Architecture

SQL Server Architecture (SQL Server 2000)

Transaction Log Logical Architecture
Transaction Log Logical Architecture

The Microsoft® SQL Server™ 2000 transaction log operates logically as if it is a serial string of log records. Each log record is
identified by a log sequence number (LSN). Each new log record is written to the logical end of the log with an LSN higher than
the LSN of the record before it.

Log records for data modifications record either the logical operation performed or before and after images of the modified data.
A before image is a copy of the data before the operation is performed; an after image is a copy of the data after the operation
has been performed. The steps to recover an operation depend on the type of log record:

Logical operation logged.
To roll the logical operation forward, it is performed again.

To roll the logical operation back, the reverse logical operation is performed.
Before and after image logged.

To roll the operation forward, the after image is applied.

To roll the operation back, the before image is applied.

Many types of operations are recorded in the transaction log, including:

The start and end of each transaction.

Every data modification (insert, update, or delete). This includes changes to system tables made by system stored
procedures or data definition language (DDL) statements.

Every extent allocation or deallocation.

The creation or dropping of a table or index.

Log records are stored in a serial sequence as they are created. Each log record is stamped with the ID of the transaction to which
it belongs. For each transaction, all log records associated with the transaction are singly-linked in a chain using backward
pointers that speed the rollback of the transaction.

Rollback statements are also logged. Each transaction reserves space on the transaction log to ensure enough log space exists to
support a rollback if an error is encountered. This reserve space is freed when the transaction completes. The amount of space
reserved depends on the operations performed in the transaction, but is generally equal to the amount of space used to log each
operation.

SQL Server Architecture (SQL Server 2000)

Checkpoints and the Active Portion of the Log
Checkpoints and the Active Portion of the Log

Checkpoints minimize the portion of the log that must be processed during a full recovery of a database. During a full recovery,
two types of actions must be performed:

The log may contain records of modifications not flushed to disk before the system stopped. These modifications must be
rolled forward.

All the modifications associated with incomplete transactions (transactions for which there is no COMMIT or ROLLBACK log
record) must be rolled back.

Checkpoints flush dirty data and log pages from the buffer cache of the current database, minimizing the number of
modifications that have to be rolled forward during a recovery.

A SQL Server 2000 checkpoint performs these processes in the current database:

Writes to the log file a record marking the start of the checkpoint.

Stores information recorded for the checkpoint in a chain of checkpoint log records. The LSN of the start of this chain is
written to the database boot page.

One piece of information recorded in the checkpoint records is the LSN of the first log image that must be present for a
successful database-wide rollback. This LSN is called the Minimum Recovery LSN (MinLSN) and is the minimum of:

The LSN of the start of the checkpoint.

The LSN of the start of the oldest active transaction.

The LSN of the start of the oldest replication transaction that has not yet replicated to all subscribers.
Another piece of information recorded in the checkpoint records is a list of all outstanding, active transactions.

Deletes all log records before the new MinLSN, if the database is using the simple recovery model.

Writes to disk all dirty log and data pages.

Writes to the log file a record marking the end of the checkpoint.

The portion of the log file from the MinLSN to the last-written log record is called the active portion of the log. This is the portion
of the log required to do a full recovery of the database. No part of the active log can ever be truncated. All log truncation must be
done from the parts of the log before the MinLSN.

This is a simplified version of the end of a transaction log with two active transactions. Checkpoint records have been compacted
to a single record.

LSN 148 is the last record in the transaction log. At the time the checkpoint recorded at LSN 147 was processed, Tran 1 had been
committed and Tran 2 was the only active transaction. That makes the first log record for Tran 2 the oldest log record for a
transaction active at the time of the last checkpoint. This makes LSN 142, the begin transaction record for Tran 2, the MinLSN.

Checkpoints occur:

When a CHECKPOINT statement is executed. The current database for the connection is checkpointed.

When ALTER DATABASE is used to change a database option. ALTER DATABASE checkpoints the database when database
options are changed.

When an instance of SQL Server is stopped by:
Executing a SHUTDOWN statement.

Using the SQL Server Service Control Manager to stop the service running an instance of the database engine.

Either of these methods checkpoints each database in the instance of SQL Server.

When an instance SQL Server periodically generates automatic checkpoints in each database to reduce the amount of time
the instance would take to recover the database.

Automatic Checkpoints

SQL Server 2000 always generates automatic checkpoints. The interval between automatic checkpoints is based on the number of
records in the log, not time. The time interval between automatic checkpoints can be highly variable. The time interval between
automatic checkpoints is long if few modifications are made in the database. Automatic checkpoints occur frequently if a lot of
data is modified.

The interval between automatic checkpoints is calculated from the recovery interval server configuration option. This option
specifies the maximum time SQL Server should use to recover a database during a system restart. SQL Server estimates how
many log records it can process in the recovery interval during a recovery operation. The interval between automatic
checkpoints also depends on whether or not the database is using the simple recovery model.

If the database is using either the full or bulk-logged recovery model, an automatic checkpoint is generated whenever the
number of log records reaches the number SQL Server estimates it can process during the time specified in the recovery
interval option.

If the database is using the simple recovery model, an automatic checkpoint is generated whenever the number of log
records reaches the lesser of these two values:

The log becomes 70 percent full.

The number of log records reaches the number SQL Server estimates it can process during the time specified in the
recovery interval option.

Automatic checkpoints truncate the unused portion of the transaction log if the database is using the simple recovery model. The
log is not truncated by automatic checkpoints if the database is using the full or bulk-logged recovery models. For more
information, see Truncating the Transaction Log.

Long-Running Transactions

The active portion of the log must include every part of all uncommitted transactions. An application that starts a transaction and
does not commit it or roll it back prevents SQL Server from advancing the MinLSN. This can cause two types of problems:

If the system is shut down after the transaction has performed many uncommitted modifications, the recovery phase of the
subsequent restart can take considerably longer than the amount of time specified in the recovery interval option.

The log may grow very large because the log cannot be truncated past the MinLSN. This happens even if the database is
using the simple recovery model, in which the transaction log is normally truncated on each automatic checkpoint.

Replication Transactions

The active portion of the log must also contain all transactions marked for replication, but that have not yet been replicated to a
subscriber. If these transactions are not replicated in a timely manner, they can also prevent truncation of the log.

See Also

Backup/Restore Architecture

CHECKPOINT

Freeing and Writing Buffer Pages

Transaction Recovery

SQL Server Architecture (SQL Server 2000)

Truncating the Transaction Log
Truncating the Transaction Log

If log records were never deleted from the transaction log, the logical log would grow until it filled all the available space on the
disks holding the physical log files. At some point in time, old log records no longer necessary for recovering or restoring a
database must be deleted to make way for new log records. The process of deleting these log records to reduce the size of the
logical log is called truncating the log.

The active portion of the transaction log can never be truncated. The active portion of the log is the part of the log needed to
recover the database at any time, so must have the log images needed to roll back all incomplete transactions. It must always be
present in the database in case the server fails because it will be required to recover the database when the server is restarted. The
record at the start of the active portion of the log is identified by the minimum recovery log sequence number (MinLSN).

The recovery model chosen for a database determines how much of the transaction log in front of the active portion must be
retained in the database. Although the log records in front of the MinLSN play no role in recovering active transactions, they are
required to roll forward modifications when using log backups to restore a database to the point of failure. If you lose a database
for some reason, you can recover the data by restoring the last database backup, and then restoring every log backup since the
database backup. This means that the sequence of log backups must contain every log record that was written since the database
backup. When you are maintaining a sequence of transaction log backups, no log record can be truncated until after it has been
written to a log backup.

The log records before the MinLSN are only needed to maintain a sequence of transaction log backups.

In the simple recovery model, a sequence of transaction logs is not being maintained. All log records before the MinLSN can
be truncated at any time, except while a BACKUP statement is being processed. NO_LOG and TRUNCATE_ONLY are the only
BACKUP LOG options that are valid for a database that is using the simple recovery model.

Note The tempdb database always uses the simple recovery model, it cannot be switched to another recovery model. Log
truncation always occurs on a checkpoint in tempdb.

In the full and bulk-logged recovery models, a sequence of transaction log backups is being maintained. The part of the
logical log before the MinLSN cannot be truncated until those log records have been copied to a log backup.

Log truncation occurs at these points:

At the completion of any BACKUP LOG statement.

Every time a checkpoint is processed, provided the database is using the simple recovery model. This includes both explicit
checkpoints resulting from a CHECKPOINT statement and implicit checkpoints generated by the system. The exception is
that the log is not truncated if the checkpoint occurs when a BACKUP statement is still active. For more information about
the interval between automatic checkpoints, see Checkpoints and the Active Portion of the Log..

Transaction logs are divided internally into sections called virtual log files. Virtual log files are the unit of truncation. When a
transaction log is truncated, all log records before the start of the virtual log file containing the MinLSN are deleted. For more
information about virtual log files, see Transaction Log Physical Architecture.

The size of a transaction log is therefore controlled in one of these ways:

When a log backup sequence is being maintained, schedule BACKUP LOG statements to occur at intervals that will keep the
transaction log from growing past the desired size.

When a log backup sequence is not maintained, specify the simple recovery model.

This illustration shows a transaction log that has four virtual logs. The log has not been truncated after the database was created.
The logical log starts at the beginning of the first virtual log and the part of virtual log 4 beyond the end of the logical file has
never been used.

This illustration shows how the log looks after truncation. The rows before the start of the virtual log containing the MinLSN
record have been truncated.

Truncation does not reduce the size of a physical log file, it reduces the size of the logical log file. For information on shrinking the
size of a physical log file, see Shrinking the Transaction Log.

See Also

BACKUP

Setting Database Options

Transaction Log Backups

Truncate Method

SQL Server Architecture (SQL Server 2000)

Transaction Log Physical Architecture
Transaction Log Physical Architecture

The transaction log in a database maps over one or more physical files. Conceptually, the log file is a serial string of log records.
Physically, the sequence of log records must be stored efficiently in the set of physical files that implement the transaction log.

Microsoft® SQL Server™ 2000 segments each physical log file internally into a number of virtual log files. Virtual log files have
no fixed size, and there is no fixed number of virtual log files for a physical log file. SQL Server chooses the size of the virtual log
files dynamically while creating or extending log files. SQL Server tries to maintain a small number of virtual files. The size of the
virtual files after a log file name extension is based on the size of the existing log and the size of the new file increment. The size or
number of virtual log files cannot be configured or set by administrators; it is determined dynamically by the SQL Server code.

The only time virtual log files affect system performance is if the log files are defined with small size and growth_increment
values. If these log files grow to a large size through many small increments, they will have a lot of virtual log files, which can slow
down recovery. It is recommended that log files be defined with a size value close to the final size needed, and also have a
relatively large growth_increment value.

The transaction log is a wrap-around log file. For example, consider a database with one physical log file divided into four virtual
log files. When the database is created, the logical log file begins at the start of the physical log file. New log records are added at
the end of the logical log, which grows toward the end of the physical log. As truncation operations occur, the records in the
virtual logs before the minimum recovery log sequence number (MinLSN) are deleted. The log in the example database would
look like the one in the illustration.

When the end of the logical log reaches the end of the physical log file, the new log records wrap around to the start of the
physical log file.

This cycle repeats endlessly, as long as the end of the logical log never reaches the beginning of the logical log. If the old log
records are truncated often enough to always leave enough room for all the new log records created through the next checkpoint,
the log never fills. If the end of the logical log does reach the start of the logical log, however, one of two things happens:

If autogrow is enabled for the log and space is available on the disk, the file is extended by the amount specified in
growth_increment and the new log records are added to the extension.

If autogrow is not enabled, or the disk holding the log file has less free space than the amount specified in
growth_increment, an 1105 error is generated.

If the log contains multiple physical log files, then the logical log will move through all of the physical log files before it wraps
back to the start of the first physical log file.

See Also

Transaction Log Backups

Transaction Logs

SQL Server Architecture (SQL Server 2000)

Shrinking the Transaction Log
Shrinking the Transaction Log

The size of the log files are physically reduced when:

A DBCC SHRINKDATABASE statement is executed.

A DBCC SHRINKFILE statement referencing a log file is executed.

An autoshrink operation occurs.

Shrinking a log is dependent on first truncating the log. Log truncation does not reduce the size of a physical log file, it reduces
the size of the logical log and marks as inactive the virtual logs that do not hold any part of the logical log. A log shrink operation
removes enough inactive virtual logs to reduce the log file to the requested size.

The unit of size reduction is a virtual log. For example, if you have a 600 MB log file that has been divided into six 100 MB virtual
logs, the size of the log file can only be reduced in 100 MB increments. The file size can be reduced to sizes such as 500 MB or 400
MB, but it cannot be reduced to sizes such as 433 MB or 525 MB.

Virtual logs that hold part of the logical log cannot be freed. If all the virtual logs in a log file hold parts of the logical log, the file
cannot be shrink until a truncation marks one or more of the virtual logs at the end of the physical log as inactive.

When any file is shrunk, the space freed must come from the end of the file. When a transaction log file is shrunk, enough virtual
logs from the end of the file are freed to reduce the log to the size requested by the user. The target_size specified by the user is
rounded to the next highest virtual log boundary. For example, if a user specifies a target_size of 325 MB for our sample 600 MB
file with 100 MB virtual log files, the last two virtual log files are removed and the new file size is 400 MB.

In SQL Server 2000, a DBCC SHRINKDATABASE or DBCC SHRINKFILE operation attempts to shrink the physical log file to the
requested size (subject to rounding) immediately:

If no part of the logical log is in the virtual logs beyond the target_size mark, the virtual logs after the target_size mark are
freed and the successful DBCC statement completes with no messages.

If part of the logical log is in the virtual logs beyond the target_size mark, SQL Server 2000 frees as much space as possible
and issues an informational message. The message tells you what actions you need to perform to get the logical log out of
the virtual logs at the end of the file. After you perform this action, you can then reissue the DBCC statement to free the
remaining space.

For example, assume that a 600 MB log file with six virtual logs has a logical log starting in virtual log 3 and ending in virtual log
4, when you execute a DBCC SHRINKFILE statement with a target_size of 275 MB:

Virtual logs 5 and 6 are freed immediately because they hold no portion of the logical log. To meet the specified target_size,
however, virtual log 4 should also be freed, but cannot because it holds the end portion of the logical log. After freeing virtual logs
5 and 6, SQL Server 2000 fills the remaining part of virtual log 4 with dummy records. This forces the end of the log file to virtual
log 1. In most systems, all transactions starting in virtual log 4 will be committed within seconds, meaning that all of the active
portion of the log moves to virtual log 1, and the log file now looks like this:

The DBCC SHRINKFILE statement also issues an informational message that it could not free all the space requested, and indicate
that you can execute a BACKUP LOG statement to make it possible to free the remaining space. Once the active portion of the log
moves to virtual log 1, a BACKUP LOG statement will truncate the entire logical log that is in virtual log 4:

Because virtual log 4 no longer holds any portion of the logical log, if you now execute the same DBCC SHRINKFILE statement
with a target_size of 275 MB, virtual log 4 will be freed and the size of the physical log file reduced to the size requested.

See Also

BACKUP

Setting Database Options

Space Allocation and Reuse

Transaction Log Backups

Truncating the Transaction Log

SQL Server Architecture (SQL Server 2000)

Relational Database Engine Architecture
The server is the component of Microsoft® SQL Server™ 2000 that receives SQL statements from clients and performs all the
actions necessary to complete the statements. This section discusses:

An overview of the components that make up the server.

How the server compiles each batch of SQL statements into an execution plan that tells the server how to process the
statement.

How the server manages Microsoft Windows® resources such as memory, threads, and tasks.

How the server determines what part of a distributed query references a linked server and what request to transmit to the
server to obtain the needed data.

How the server transmits remote stored procedure calls to remote servers.

How the server manages concurrency and transaction issues.

How the server implements server cursors.

The features that allow SQL Server to scale from small laptop computers to large servers that provide the primary data
storage for large enterprises.

How the SQL Mail component integrates SQL Server with e-mail servers to allow the server to send e-mail and pages when
specified events occur.

SQL Server Architecture (SQL Server 2000)

Relational Database Engine Architecture Overview
The server components of Microsoft® SQL Server 2000™ receive SQL statements from clients and process those SQL statements.
This illustration shows the major components involved with processing an SQL statement received from a SQL Server client.

Tabular Data Stream

SQL statements are sent from clients by using an application-level protocol specific to SQL Server called Tabular Data Stream
(TDS). SQL Server 2000 accepts the following versions of TDS:

TDS 8.0 sent by clients running versions of the SQL Server client components from SQL Server 2000. TDS 8.0 clients
support all the features of SQL Server 2000.

TDS 7.0 sent by clients running versions of the SQL Server client components from SQL Server version 7.0. TDS 7.0 clients
do not support features introduced in SQL Server 2000, and the server sometimes has to adjust the data it sends back to the
clients using TDS 7.0. For example, TDS 7.0 clients do not support the sql_variant data type, so SQL Server 2000 must
convert any sql_variant data to Unicode.

TDS 4.2 sent by clients running SQL Server client components from SQL Server 6.5, 6.0, and 4.21a. TDS 4.2 clients do not
support features introduced in either SQL Server 2000 or SQL Server 7.0, and the server sometimes has to adjust the data it
sends back to clients using TDS 4.2. For example, TDS 4.2 clients do not support Unicode data types, so SQL Server 2000
must convert any Unicode data to character data before sending it to the client, with possible loss of extended characters.
TDS 4.2 clients also do not support char, varchar, binary, or varbinary values longer than 255 bytes, so SQL Server 2000
must truncate any values longer than 255 before sending them to the client.

Server Net-Libraries

TDS packets are built by the Microsoft OLE DB Provider for SQL Server, the SQL Server ODBC driver, or the DB-Library DLL. The
TDS packets are then passed to a SQL Server client Net-Library, which encapsulates the TDS packets into network protocol
packets. On the server, the network protocol packets are received by a server Net-Library that extracts the TDS packet and passes
it to the relational database server.

This process is reversed when results are returned to the client.

Each server can be listening simultaneously on several network protocols and will be running one server Net-Library for each
protocol on which it is listening.

Relational Database Engine

The database server processes all requests passed to it from the server Net-Libraries. It compiles all the SQL statements into

execution plans, and then uses the plans to access the requested data and build the result set returned to the client.

See Also

Relational Database Components

SQL Server Architecture (SQL Server 2000)

Database Engine Components
The relational database server of Microsoft® SQL Server™ 2000 has two main parts: the relational engine and the storage engine.
One of the most important architectural changes made in SQL Server version 7.0 was to strictly separate the relational and
storage engine components within the server and to have them use the OLE DB API to communicate with each other.

The processing for a SELECT statement that references only tables in local databases can be summarized as:

1. The relational engine compiles the SELECT statement into an optimized execution plan. The execution plan defines a series
of operations against basic rowsets from the individual tables or indexes referenced in the SELECT statement.

A rowset is the OLE DB term for a result set. The rowsets requested by the relational engine return the amount of data
needed from a table or index to perform one of the operations used to build the SELECT result set. For example, this SELECT
statement requires a table scan if it references a table with no indexes:

SELECT * FROM ScanTable

The relational engine implements the table scan by requesting one rowset containing all the rows from ScanTable.

This SELECT statement only needs information available in an index:

SELECT DISTINCT LastName
FROM Northwind.dbo.Employees

The relational engine implements the index scan by requesting one rowset containing the leaf rows from the index built on
the LastName column.

This SELECT statement needs information from two indexes:

SELECT CompanyName, OrderID, ShippedDate
FROM Northwind.dbo.Customers AS Cst
 JOIN Northwind.dbo.Orders AS Ord
 ON (Cst.CustomerID = Ord.CustomerID)

The relational engine requests two rowsets, one for the clustered index on Customers and the other on one of the
nonclustered indexes in Orders.

2. The relational engine uses the OLE DB API to request that the storage engine open the rowsets.

3. As the relational engine works through the steps of the execution plan and needs data, it uses OLE DB to fetch the individual
rows from the rowsets it requested the storage engine to open. The storage engine transfers the data from the data buffers
to the relational engine.

4. The relational engine combines the data from the storage engine rowsets into the final result set transmitted back to the
user.

SQL Server Architecture (SQL Server 2000)

Relational Engine
Relational Engine

The main responsibilities of the relational engine are:

Parsing the SQL statements.

The parser scans an SQL statement and breaks it down into the logical units, such as keywords, parameters, operators, and
identifiers. The parser also breaks down the overall SQL statement into a series of smaller logical operations.

Optimizing the execution plans.

Typically, there are many ways that the server could use data from the source tables to build the result set. The query
optimizer determines what these various series of steps are, estimates the cost of each series (primarily in terms of file I/O),
and chooses the series of steps that has the lowest cost. It then combines the specific steps with the query tree to produce
an optimized execution plan.

Executing the series of logical operations defined in the execution plan.

After the query optimizer has defined the logical operations required to complete a statement, the relational engine steps
through these operations in the sequence specified in the optimized execution plan.

Processing Data Definition Language (DDL) and other statements.

These statements are not the typical SELECT, INSERT, UPDATE, or DELETE statements; these statements have special
processing needs. Examples are the SET statements to set connection options, and the CREATE statements to create objects
in a database.

Formatting results.

The relational engine formats the results returned to the client. The results are formatted as either a traditional, tabular
result set or as an XML document. The results are then encapsulated in one or more TDS packets and returned to the
application.

SQL Server Architecture (SQL Server 2000)

Storage Engine
Storage Engine

The main responsibilities of the storage engine include:

Managing the files on which the database is stored and managing the use of space in the files.

Building and reading the physical pages used to store data.

Managing the data buffers and all I/O to the physical files.

Controlling concurrency. Managing transactions and using locking to control concurrent user access to rows in the
database.

Logging and recovery.

Implementing utility functions such as the BACKUP, RESTORE, and DBCC statements and bulk copy.

SQL Server Architecture (SQL Server 2000)

SQL Server Language Support
SQL Server Language Support

Microsoft® SQL Server™ 2000 is installed with 33 natural languages defined on the server. The definitions for each language
establish how date data is interpreted:

The formats in which dates are presented:
dmy (day, month, year)

mdy (month, day, year)

ymd (year, month, day)
Short and long names for each month.

Names for each day.

Which day is considered the first day of the week.

These language definitions are stored in master.dbo.syslanguages and a language identifier (ID) identifies each language.

Each instance of SQL Server uses a default language for all connections to the server. For more information about configuring the
setting, see default language Option.

Most connections use the default language configured for the server, but each connection can individually set a SQL Server
language to be used for the connection:

Microsoft ActiveX® Data Object and OLE DB applications can include the Language keyword in a provider string specified
when they connect.

OLE DB applications can also set the provider-specific property SSPROP_INIT_CURRENTLANGUAGE before connecting.

Open Database Connectivity (ODBC) applications can include the LANGUAGE keyword in a connection string specified on
SQLDriverConnect. ODBC applications can also specify the language setting in a SQL Server ODBC data source definition.

DB-Library applications can use dblogin to allocate a loginrec, and then use the DBSETNATLANG macro to specify a
language setting before calling dbopen to connect.

Any application can use the SET LANGUAGE statement to specify the SQL Server language.

SQL Server supports having multiple, language-specific copies of the error messages stored in master.dbo.sysmessages. All
instances of SQL Server contain the set of English messages. SQL Server is localized, or translated, into French, German, Spanish,
and Japanese versions. Installations of localized versions of SQL Server install the translated set of messages in addition to the
English set. When SQL Server sends a message to a connection, it uses the localized message if the language ID of the connection
matches one of the language IDs present in sysmessages. If there is no message in sysmessages with the same language ID, the
English version of the message is sent.

SQL Server Architecture (SQL Server 2000)

Query Processor Architecture
SQL statements are the only commands sent from applications to Microsoft® SQL Server™ 2000. All of the work done by an
instance of SQL Server is the result of accepting, interpreting, and executing SQL statements. The processes by which SQL
statements are executed by SQL Server include:

Single SQL statement processing.

Batch processing.

Stored procedure and trigger execution.

Execution plan caching and reuse.

Parallel query processing.

SQL Server Architecture (SQL Server 2000)

Single SQL Statement Processing
Processing a single SQL statement is the most basic way that Microsoft® SQL Server™ 2000 executes SQL statements. The steps
used to process a single SELECT statement that references only local base tables (no views or remote tables) illustrates the basic
process.

Optimizing SELECT Statements

A SELECT statement is nonprocedural; it does not state the exact steps the database server should use to retrieve the requested
data. This means the database server must analyze the statement to determine the most efficient way to extract the requested
data. This is called optimizing the SELECT statement, and the component that does this is called the query optimizer.

A SELECT statement defines only:

The format of the result set. This is specified mostly in the select list, although other clauses such as ORDER BY and GROUP
BY also affect the final form of the result set.

The tables containing the source data. This is specified in the FROM clause.

How the tables are logically related for the purposes of the SELECT statement. This is defined in the join specifications.

What conditions the rows in the source tables must satisfy to qualify for the SELECT statement. These are specified in the
WHERE and HAVING clauses.

A query execution plan is a definition of:

The sequence in which the source tables are accessed.

Typically, there are many sequences in which the database server can access the base tables to build the result set. For
example, if the SELECT statement references three tables, the database server could first access TableA, use the data from
TableA to extract matching rows from TableB, and then use the data from TableB to extract data from TableC. The other
sequences in which the database server could access the tables are: TableC, TableB, TableA; or TableB, TableA, TableC; or
TableB, TableC, TableA; or TableC, TableA, TableB.

The methods used to extract data from each table.

Usually, there are different methods for accessing the data in each table. If only a few rows with specific key values are
needed, the database server can use an index. If all the rows in the table are needed, the database server can ignore the
indexes and do a table scan. If all the rows in a table are needed, but there is an index whose key columns are in an ORDER
BY, performing an index scan instead of a table scan may save a separate sort of the result set. If a table is very small, table
scans may be the most efficient method for almost all access to the table.

The process of choosing one execution plan out of several possible plans is called optimization. The query optimizer is one of the
most important components of a SQL database system. While some overhead is used by the query optimizer to analyze the query
and choose a plan, this overhead is saved several-fold when the query optimizer picks an efficient execution plan. For example,
two construction companies can be given identical blueprints for a house. If one company spends a few days at the start to plan
how they will build the house, and the other company starts building without planning, the company that takes the time to plan
their project will most likely finish first.

The SQL Server query optimizer is a cost-based optimizer. Each possible execution plan has an associated cost in terms of the
amount of computing resources used. The query optimizer must analyze the possible plans and choose the one with the lowest
estimated cost. Some complex SELECT statements have thousands of possible execution plans. In these cases, the query optimizer
does not analyze all possible combinations. Instead, it uses complex algorithms to find an execution plan that has a cost
reasonably close to the theoretical minimum.

The SQL Server query optimizer does not choose only the execution plan with the lowest resource cost; it chooses the plan that
returns results to the user with a reasonable cost in resources and returns the results the fastest. For example, processing a query
in parallel typically uses more resources than processing it serially, but completes the query faster. The SQL Server optimizer will
use a parallel execution plan to return results if the load on the server will not be adversely affected.

Query optimizer relies on distribution statistics when estimating the resource costs of different methods of extracting information
from a table or index. Distribution statistics are kept for columns and indexes. They indicate the selectivity of the values in a
particular index or column. For example, in a table representing cars, many cars have the same manufacturer, but each car has a

unique vehicle identification number (VIN). An index on the VIN is more selective than an index on the manufacturer. If the index
statistics are not current, the query optimizer may not make the best choice for the current state of the table. For more
information about keeping index statistics current, see Statistical Information.

The query optimizer is important because it enables the database server adjust dynamically to changing conditions in the
database without requiring input from a programmer or database administrator. This enables programmers to focus on
describing the final result of the query. They can trust that the query optimizer will always build an efficient execution plan for the
state of the database each time the statement is run.

Processing a SELECT Statement

The basic steps that SQL Server uses to process a single SELECT statement are:

1. The parser scans the SELECT statement and breaks it into logical units such as keywords, expressions, operators, and
identifiers.

2. A query tree, sometimes called a sequence tree, is built describing the logical steps needed to transform the source data into
the format needed by the result set.

3. The query optimizer analyzes all the ways the source tables can be accessed and selects the series of steps that returns the
results fastest while consuming fewer resources. The query tree is updated to record this exact series of steps, and the final,
optimized version of the query tree is called the execution plan.

4. The relational engine begins executing the execution plan. As steps that need data from the base tables are processed, the
relational engine uses OLE DB to request that the storage engine pass up data from the rowsets requested from the
relational engine.

5. The relational engine processes the data returned from the storage engine into the format defined for the result set, and
returns the result set to the client.

Processing Other Statements

The basic steps described for processing a SELECT statement apply to other SQL statements such as INSERT, UPDATE, and
DELETE. UPDATE and DELETE statements both have to target the set of rows to be modified or deleted; the process of identifying
these rows is the same process used to identify the source rows that contribute to the result set of a SELECT statement. The
UPDATE and INSERT statements may both contain embedded SELECT statements that provide the data values to be updated or
inserted.

Even Data Definition Language (DDL) statements such as CREATE PROCEDURE or ALTER TABLE are ultimately resolved to a series
of relational operations on the system catalog tables and sometimes (such as ALTER TABLE ADD COLUMN) against the data
tables.

SQL Server Architecture (SQL Server 2000)

View Resolution
View Resolution

The Microsoft® SQL Server™ 2000 query processor treats indexed and nonindexed views differently:

Indexed views are stored in the database in the same format as a table. The query processor treats indexed views the same
way it treats base tables.

Only the source of a nonindexed view is stored. The query optimizer incorporates the logic from the view source into the
execution plan it builds for the SQL statement that references the nonindexed view.

The logic used by the SQL Server query optimizer to decide when to use an indexed view is similar to the logic used to decide
when to use an index on a table. If the data in the indexed view covers the SQL statement, and the query optimizer determines
that an index on the view is the low-cost access path, the query optimizer will choose the index regardless of whether the view is
referenced in the WHERE clause. For more information, see Resolving Indexes on Views.

When an SQL statement references a nonindexed view, the parser and query optimizer analyze the source of both the SQL
statement and the view, and resolve them into a single execution plan. There is not one plan for the SQL statement and a separate
plan for the view.

For example, consider the following view:

USE Northwind
GO
CREATE VIEW EmployeeName AS
SELECT EmployeeID, LastName, FirstName
FROM Northwind.dbo.Employees
GO

Given this view, both of these SQL statements perform the same operations on the base tables and produce the same results:

/* SELECT referencing the EmployeeName view. */
SELECT LastName AS EmployeeLastName,
 OrderID, OrderDate
FROM Northwind.dbo.Orders AS Ord
 JOIN Northwind.dbo.EmployeeName as EmpN
 ON (Ord.EmployeeID = EmpN.EmployeeID)
WHERE OrderDate > '31 May, 1996'

/* SELECT referencing the Employees table directly. */
SELECT LastName AS EmployeeLastName,
 OrderID, OrderDate
FROM Northwind.dbo.Orders AS Ord
 JOIN Northwind.dbo.Employees as Emp
 ON (Ord.EmployeeID = Emp.EmployeeID)
WHERE OrderDate > '31 May, 1996'

The SQL Query Analyzer showplan feature shows that the relational engine builds the same execution plan for both of these
SELECT statements.

SQL Server Architecture (SQL Server 2000)

Resolving Indexes on Views
Resolving Indexes on Views

The Microsoft® SQL Server™ 2000 query optimizer determines whether a given query will benefit from using any indexes
defined in the database. This includes both indexed views and indexes on base tables. The SQL Server query optimizer uses an
indexed view when these conditions are met:

These session options are set to ON:
ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIERS
The NUMERIC_ROUNDABORT session option is set to OFF.

The query optimizer finds a match between the view index columns and elements in the query, such as:
Search condition predicates in the WHERE clause.

Join operations.

Aggregate functions.
The estimated cost for using the index has the lowest cost of any access mechanisms considered by the query optimizer.

Other than the requirements for the SET options, these are the same rules the query optimizer uses to determine if a table index
covers a query. Nothing has to be specified in the query to make use of an indexed view.

A query does not have to explicitly reference an indexed view in the FROM clause for the query optimizer to use the indexed view.
If the query contains references to columns in the base tables that are also present in the indexed view, and the query optimizer
estimates that using the indexed view provides the lowest cost access mechanism, the query optimizer chooses the indexed view,
similar to the way it chooses base table indexes when they are not directly referenced in a query. The query optimizer may choose
the view when it contains columns that are not referenced by the query, as long as the view offers the lowest cost option for
covering one or more of the columns specified in the query.

You can prevent view indexes from being used for a query by using the EXPAND VIEWS option. You can use the NOEXPAND view
hint to force the use of an index for an indexed view specified in the FROM clause of a query. It is recommended, however, to let
the query optimizer dynamically determine the best access methods to use for each individual query. Limit your use of EXPAND
and NOEXPAND to specific cases where testing has shown they improve performance significantly.

The EXPAND VIEWS option specifies that the query optimizer not use any view indexes for the entire query.

The query optimizer does not use any indexed views unless the view is specified in the FROM clause. The query optimizer
ignores all view indexes when estimating the low-cost method for covering columns referenced in the query.

The query optimizer treats an indexed view referenced in the FROM clause as a standard view. The query optimizer
incorporates the logic of the view into the query execution plan and dynamically builds the result set from the base tables.
The query optimizer ignores indexes defined on the view.

When NOEXPAND is specified for a view, the query optimizer considers the use of any indexes defined on the view. NOEXPAND
specified with the optional INDEX() clause forces the query optimizer to use the specified indexes. NOEXPAND can be specified
only for an indexed view and cannot be specified for a view not indexed.

SQL Server Architecture (SQL Server 2000)

Resolving Distributed Partitioned Views
Resolving Distributed Partitioned Views

 New Information - SQL Server 2000 SP3.

The Microsoft® SQL Server 2000™ query processor is enhanced to optimize the performance of distributed partitioned views.
The most important aspect of distributed partitioned view performance is minimizing the amount of data transferred between
member servers.

SQL Server 2000 builds intelligent, dynamic plans that make efficient use of distributed queries to access data from remote
member tables:

The query processor first uses OLE DB to retrieve the CHECK constraint definitions from each member table. This allows the
query processor to map the distribution of key values across the member tables.

The query processor compares the key ranges specified in an SQL statement WHERE clause to the map showing how the
rows are distributed in the member tables. The query processor then builds a query execution plan that uses distributed
queries to retrieve only those remote rows needed to complete the SQL statement. The execution plan is also built in such a
way that any access to remote member tables, for either data or meta data, are delayed until the information is required.

For example, consider a system where a customers table is partitioned across Server1 (CustomerID from 1 through 3299999),
Server2 (CustomerID from 3300000 through 6599999), and Server3 (CustomerID from 6600000 through 9999999).

Consider the execution plan built for this query executed on Server1:

SELECT *
FROM CompanyData.dbo.Customers
WHERE CustomerID BETWEEN 3200000 AND 3400000

The execution plan for this query extracts the rows with CustomerID key values from 3200000 through 3299999 from the local
member table, and issues a distributed query to retrieve the rows with key values from 3300000 through 3400000 from Server2.

The SQL Server 2000 query processor can also build dynamic logic into query execution plans for SQL statements where the key
values are not known when the plan must be built. For example, consider this stored procedure:

CREATE PROCEDURE GetCustomer @CustomerIDParameter INT
AS
-- Validate all user input. Do not concatenate user
-- input before validating it. Never execute a command
-- constructed from unvalidated user input. For more
-- information, see Validating User Input.
SELECT *
FROM CompanyData.dbo.Customers
WHERE CustomerID = @CustomerIDParameter

SQL Server 2000 cannot predict what key value will be supplied by the @CustomerIDParameter parameter each time the
procedure is executed. Because the key value cannot be predicted, the query processor also cannot predict which member table
will have to be accessed. To handle this case, SQL Server builds an execution plan that has conditional logic, called dynamic filters,
to control which member table is accessed based on the input parameter value. Assuming the GetCustomer stored procedure
was executed on Server1, the execution plan logic can be represented as:

IF @CustomerIDParameter BETWEEN 1 and 3299999
 Retrieve row from local table CustomerData.dbo.Customer_33
ELSEIF @CustomerIDParameter BETWEEN 3300000 and 6599999
 Retrieve row from linked table Server2.CustomerData.dbo.Customer_66
ELSEIF @CustomerIDParameter BETWEEN 6600000 and 9999999
 Retrieve row from linked table Server3.CustomerData.dbo.Customer_99

SQL Server 2000 sometimes builds these types of dynamic execution plans even for queries that are not parameterized. The
optimizer may auto-parameterize a query so that the execution plan can be reused. If the optimizer auto-parameterizes a query
referencing a partitioned view, then the optimizer can no longer assume the required rows will come from a specified base table,
and it will have to use dynamic filters in the execution plan. For more information, see Auto-Parameterization.

SQL Server Architecture (SQL Server 2000)

Worktables
Worktables

The relational engine may need to build a worktable to perform a logical operation specified in an SQL statement. Worktables are
typically generated for certain GROUP BY, ORDER BY, or UNION queries. For example, if an ORDER BY clause references columns
not covered by any indexes, the relational engine may need to generate a worktable to sort the result set into the order requested.

Worktables are built in tempdb and are dropped automatically at the end of the statement.

SQL Server Architecture (SQL Server 2000)

Batch Processing
 New Information - SQL Server 2000 SP3.

A batch is a collection of one or more SQL statements sent in one unit by the client. Each batch is compiled into a single execution
plan. If the batch contains multiple SQL statements, all of the optimized steps needed to perform all the statements are built into a
single execution plan.

There are several ways to specify a batch:

All the SQL statements sent in a single execution unit from an application comprise a single batch and generate a single
execution plan. For more information about how an application specifies a batch, see Batches.

All the statements in a stored procedure or trigger comprise a single batch. Each stored procedure or trigger is compiled
into a single execution plan.

The string executed by an EXECUTE statement is a batch compiled into a single execution plan.

The string executed by an sp_executesql system stored procedure is a batch compiled into a single execution plan.

When a batch sent from an application contains an EXECUTE statement, the execution plan for the executed string or stored
procedure is executed separately from the execution plan containing the EXECUTE statement. The execution plan generated for the
string executed by an sp_executesql stored procedure also remains separate from the execution plan for the batch containing
the sp_executesql call. If a statement in a batch invokes a trigger, the trigger execution plan executes separately from the original
batch.

For example, a batch that contains these four statements uses five execution plans:

An EXECUTE statement executing a stored procedure.

An sp_executesql call executing a string.

An EXECUTE statement executing a string.

An UPDATE statement referencing a table that has an update trigger.

Security Note Building certain kinds of strings dynamically may expose you to security vulnerabilities. Review all strings
containing Transact-SQL statements to be executed as batches, strings to be executed by the EXECUTE statement, or strings to be
executed by the sp_executesql stored procedure. If an application is concatenating values typed by end users into these strings,
the application must first validate the user-supplied values before executing the string. For more information, see Validating User
Input.

SQL Server Architecture (SQL Server 2000)

Stored Procedure and Trigger Execution
Microsoft® SQL Server™ 2000 stores only the source for stored procedures and triggers. When a stored procedure or trigger is
first executed, the source is compiled into an execution plan. If the stored procedure or trigger is again executed before the
execution plan is aged from memory, the relational engine detects the existing plan and reuses it. If the plan has aged out of
memory, a new plan is built. This process is similar to the process SQL Server 2000 follows for all SQL statements. The main
performance advantage that stored procedures and triggers have in SQL Server 2000 is that their SQL statements are always the
same; therefore, the relational engine matches them with any existing execution plans.

Stored procedures had a more pronounced performance advantage over other SQL statements in earlier versions of SQL Server.
Earlier versions of SQL Server did not attempt to reuse execution plans for batches that were not stored procedures or triggers.
The only way to reuse execution plans was to encode the SQL statements in stored procedures.

The execution plan for stored procedures and triggers is executed separately from the execution plan for the batch calling the
stored procedure or firing the trigger. This allows for greater reuse of the stored procedure and trigger execution plans. For more
information, see Batch Processing.

SQL Server Architecture (SQL Server 2000)

Execution Plan Caching and Reuse
Microsoft® SQL Server™ 2000 has a pool of memory used to store both execution plans and data buffers. The percentage of the
pool allocated to either execution plans or data buffers fluctuates dynamically depending on the state of the system. The part of
the memory pool used to store execution plans is called the procedure cache.

SQL Server 2000 execution plans have the following main components:

Query plan

The bulk of the execution plan is a reentrant, read-only data structure used by any number of users. This is called the query
plan. No user context is stored in the query plan. There are never more than one or two copies of the query plan in memory:
one copy for all serial executions and another for all parallel executions. The parallel copy covers all parallel executions,
regardless of their degree of parallelism.

Execution context

Each user currently executing the query has a data structure that holds the data specific to their execution, such as
parameter values. This data structure is called the execution context. The execution context data structures are reused. If a
user executes a query and one of the structures is not in use, it is reinitialized with the context for the new user.

When any SQL statement is executed in SQL Server 2000, the relational engine first looks through the procedure cache to verify
that an existing execution plan for the same SQL statement exists. SQL Server 2000 reuses any existing plan it finds, saving the
overhead of recompiling the SQL statement. If no existing execution plan exists, SQL Server 2000 generates a new execution plan
for the query.

SQL Server 2000 has an efficient algorithm to find any existing execution plans for any given SQL statement. In most systems, the
minimal resources used by this scan are less than the resources saved by being able to reuse existing plans instead of compiling
every SQL statement.

The algorithms to match new SQL statements to existing, unused execution plans in the cache require that all object references be
fully qualified. For example, the first of these SELECT statements is not matched with an existing plan, and the second is matched:

SELECT * FROM Employees

SELECT * FROM Northwind.dbo.Employees

There is a higher probability that individual execution plans will be reused in an instance of SQL Server 2000 than in SQL Server
version 6.5 and earlier.

Aging Execution Plans

After an execution plan is generated, it stays in the procedure cache. SQL Server 2000 ages old, unused plans out of the cache
only when space is needed. Each query plan and execution context has an associated cost factor that indicates how expensive the
structure is to compile. These data structures also have an age field. Each time the object is referenced by a connection, the age
field is incremented by the compilation cost factor. For example, if a query plan has a cost factor of 8 and is referenced twice, its
age becomes 16. The lazywriter process periodically scans the list of objects in the procedure cache. The lazywriter decrements
the age field of each object by 1 on each scan. The age of our sample query plan is decremented to 0 after 16 scans of the
procedure cache, unless another user references the plan. The lazywriter process deallocates an object if these conditions are met:

The memory manager requires memory and all available memory is currently in use.

The age field for the object is 0.

The object is not currently referenced by a connection.

Because the age field is incremented each time an object is referenced, frequently referenced objects do not have their age fields
decremented to 0 and are not aged from the cache. Objects infrequently referenced are soon eligible for deallocation, but are not
actually deallocated unless memory is required for other objects.

Recompiling Execution Plans

Certain changes in a database can cause an execution plan to be either inefficient or invalid, given the new state of the database.
SQL Server detects the changes that invalidate an execution plan, and marks the plan as invalid. A new plan must then be
recompiled for the next connection that executes the query. The conditions that cause a plan to be invalidated include:

Any structural changes made to a table or view referenced by the query (ALTER TABLE and ALTER VIEW).

New distribution statistics generated either explicitly from a statement such as UPDATE STATISTICS or automatically.

Dropping an index used by the execution plan.

An explicit call to sp_recompile.

Large numbers of changes to keys (generated by INSERT or DELETE statements from other users that modify a table
referenced by the query).

For tables with triggers, if the number of rows in the inserted or deleted tables grows significantly.

SQL Server Architecture (SQL Server 2000)

Parameters and Execution Plan Reuse
Parameters and Execution Plan Reuse

 New Information - SQL Server 2000 SP3.

The use of parameters, including parameter markers in ADO, OLE DB, and ODBC applications, can increase the reuse of execution
plans.

Security Note Also, using parameters or parameter markers to hold values typed by end users is more secure than
concatenating the values into a string that is then executed using either a data access API method, the EXECUTE statement, or the
sp_executesql stored procedure.

The only difference between the following two SELECT statements are the values compared in the WHERE clause:

SELECT * FROM Northwind.dbo.Products WHERE CategoryID = 1

SELECT * FROM Northwind.dbo.Products WHERE CategoryID = 4

The only difference between the execution plans for these queries is the value stored for the comparison against the CategoryID
column. While the goal is for SQL Server 2000 to always recognize that the statements generate essentially the same plan and
reuse the plans, SQL Server sometimes does not detect this in complex SQL statements.

Separating constants from the SQL statement by using parameters helps the relational engine recognize duplicate plans. You can
use parameters in the following ways:

In Transact-SQL, use sp_executesql:

DECLARE @MyIntParm INT
SET @MyIntParm = 1
EXEC sp_executesql
 N'SELECT * FROM Northwind.dbo.Products WHERE CategoryID = @Parm',
 N'@Parm INT',
 @MyIntParm

This method is recommended for Transact-SQL scripts, stored procedures, or triggers that generate SQL statements
dynamically. For more information, see Building Statements at Run Time.

ADO, OLE DB, and ODBC use parameter markers. Parameter markers are question marks (?) that replace a constant in an
SQL statement and are bound to a program variable. For example, in an ODBC application:

Use SQLBindParameter to bind an integer variable to the first parameter marker in an SQL statement.

Place the integer value in the variable.

Execute the statement, specifying the parameter marker (?):

SQLExecDirect(hstmt,
 "SELECT * FROM Northwind.dbo.Products WHERE CategoryID = ?",
 SQL_NTS);

The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver that are included with SQL Server 2000 use
sp_executesql to send statements to SQL Server 2000 when parameter markers are used in applications.

See Also

sp_executesql

Using Parameters

Command Parameters

Using Statement Parameters

SQL Server Architecture (SQL Server 2000)

Auto-Parameterization
Auto-Parameterization

 New Information - SQL Server 2000 SP3.

In Microsoft® SQL Server™ 2000, using parameters or parameter markers in Transact-SQL statements increases the ability of the
relational engine to match new SQL statements with existing, unused execution plans.

Security Note Also, using parameters or parameter markers to hold values typed by end users is more secure than
concatenating the values into a string that is then executed using either a data access API method, the EXECUTE statement, or the
sp_executesql stored procedure.

If an SQL statement is executed without parameters, SQL Server 2000 parameterizes the statement internally to increase the
possibility of matching it against an existing execution plan.

Consider this statement:

SELECT * FROM Northwind.dbo.Products WHERE CategoryID = 1

The value 1 at the end of the statement can be specified as a parameter. The relational engine builds the execution plan for this
batch as if a parameter had been specified in place of the value 1. Because of this auto-parameterization, SQL Server 2000
recognizes that the following two statements generate essentially the same execution plan and reuses the first plan for the second
statement:

SELECT * FROM Northwind.dbo.Products WHERE CategoryID = 1

SELECT * FROM Northwind.dbo.Products WHERE CategoryID = 4

When processing complex SQL statements, the relational engine may have difficulty determining which expressions can be auto-
parameterized. To increase the ability of the relational engine to match complex SQL statements to existing, unused execution
plans, explicitly specify the parameters using either sp_executesql or parameter markers. For more information, see Parameters
and Execution Plan Reuse.

SQL Server Architecture (SQL Server 2000)

Preparing SQL Statements
Preparing SQL Statements

The Microsoft® SQL Server™ 2000 relational engine introduces full support for preparing SQL statements before they are
executed. If an application needs to execute an SQL statement several times, using the database API it can:

Prepare the statement once. This compiles the SQL statement into an execution plan.

Execute the precompiled execution plan each time it needs to execute the statement. This saves recompiling the SQL
statement on each execution after the first.

Preparing and executing statements is controlled by API functions and methods. It is not a part of the Transact-SQL
language. The prepare/execute model of executing SQL statements is supported by the Microsoft OLE DB Provider for SQL
Server and the SQL Server ODBC driver. On a prepare request, either the provider or the driver sends the statement to SQL
Server with a request to prepare the statement. SQL Server compiles an execution plan and returns a handle to that plan to
the provider or driver. On an execute request, either the provider or the driver sends the server a request to execute the plan
associated with the handle.

Prepared statements cannot be used to create temporary objects on SQL Server 2000 or SQL Server version 7.0. Prepared
statements cannot reference system stored procedures that create temporary objects, such as temporary tables. These procedures
must be executed directly.

Excess use of the prepare/execute model can degrade performance. If a statement is executed only once, a direct execution
requires only one network round trip to the server. Preparing and executing an SQL statement executed only one time requires an
extra network round-trip; one trip to prepare the statement and one trip to execute it.

Preparing a statement is more effective if parameter markers are used. For example, assume an application is asked occasionally
to retrieve product information from the Northwind sample database. There are two methods for how the application can do
this.

In the first method, the application could execute a separate query for each product requested:

SELECT * FROM Northwind.dbo.Products
WHERE ProductID = 63

An alternative would be for the application to:

1. Prepare a statement containing a parameter marker (?):

SELECT * FROM Northwind.dbo.Products
WHERE ProductID = ?

2. Bind a program variable to the parameter marker.

3. Each time product information is needed, fill the bound variable with the key value and execute the statement.

The second method is more efficient when the statement is executed more than three times.

In SQL Server 2000, the prepare/execute model has little performance advantage over direct execution because of the way SQL
Server 2000 reuses execution plans. SQL Server 2000 has efficient algorithms for matching current SQL statements with
execution plans generated for prior executions of the same SQL statement. If an application executes an SQL statement with
parameter markers multiple times, SQL Server 2000 will reuse the execution plan from the first execution for the second and
subsequent executions (unless the plan ages from the procedure cache). The prepare/execute model still offers these benefits:

Finding an execution plan by an identifying handle is more efficient than the algorithms used to match an SQL statement to
existing execution plans.

The application can control when the execution plan is created and when reused.

The prepare/execute model is portable to other databases, including earlier versions of SQL Server.

Prepare and Execute in Earlier Versions of SQL Server

SQL Server version 6.5 and earlier did not support the prepare/execute model directly. The SQL Server ODBC driver, however,
supported the prepare/execute model by using stored procedures:

When an application requested that an SQL statement be prepared, the ODBC driver would wrap the SQL statement in a
CREATE PROCEDURE statement and send it to SQL Server.

On an execute request, the ODBC driver would request that SQL Server execute the generated stored procedure.

In SQL Server 6.5 and SQL Server 6.0, the generated stored procedures were temporary stored procedures stored in tempdb.
SQL Server version 4.21a and earlier did not support temporary stored procedures, so the driver generated regular stored
procedures stored in the current database. The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver
included with SQL Server 2000 follows these behaviors when connected to SQL Server version 6.5, SQL Server version 6.0, and
SQL Server version 4.21a.

See Also

Execution Plan Caching and Reuse

Parameters and Execution Plan Reuse

Executing Prepared Statements

Preparing Commands

Prepared Execution

SQL Server Architecture (SQL Server 2000)

Parallel Query Processing
Microsoft® SQL Server™ 2000 provides parallel queries to optimize query execution for computers having more than one
microprocessor. By allowing SQL Server to perform a query in parallel by using several operating system threads, SQL Server
completes complex queries with large amounts of data quickly and efficiently.

During query optimization, SQL Server looks for queries that might benefit from parallel execution. For these queries, SQL Server
inserts exchange operators into the query execution plan to prepare the query for parallel execution. An exchange operator is an
operator in a query execution plan that provides process management, data redistribution, and flow control. After exchange
operators are inserted, the result is a parallel query execution plan. A parallel query execution plan can use more than one thread,
whereas a serial execution plan, used by a nonparallel query, uses only a single thread for its execution. The actual number of
threads used by a parallel query is determined at query plan execution initialization and is called the degree of parallelism.

SQL Server Architecture (SQL Server 2000)

Degree of Parallelism
Degree of Parallelism

Microsoft® SQL Server™ 2000 detects the best degree of parallelism for each instance of a parallel query execution automatically
by considering:

1. Is SQL Server running on a computer with more than one microprocessor or CPU, such as a symmetric multiprocessing
computer (SMP)?

Only computers with more than one CPU can use parallel queries.

2. What is the number of concurrent users active on the SQL Server installation at this moment?

SQL Server monitors CPU usage and adjusts the degree of parallelism at the query startup time. Lower degrees of
parallelism are chosen if CPU usage is high.

3. Is there sufficient memory available for parallel query execution?

Each query requires a certain amount of memory to execute. Executing a parallel query requires more memory than a
nonparallel query. The amount of memory required for executing a parallel query increases with the degree of parallelism. If
the memory requirement of the parallel plan for a given degree of parallelism cannot be satisfied, SQL Server decreases the
degree of parallelism automatically or completely abandons the parallel plan for the query in the given workload context
and executes the serial plan.

4. What is the type of query executed?

Queries heavily consuming CPU cycles are the best candidates for a parallel query. For example, joins of large tables,
substantial aggregations, and sorting of large result sets are good candidates. Simple queries, often found in transaction
processing applications, find the additional coordination required to execute a query in parallel outweigh the potential
performance boost. To distinguish between queries that benefit from parallelism and those that do not benefit, SQL Server
compares the estimated cost of executing the query with the cost threshold for parallelism value. Although not
recommended, users can change the default value of 5 using sp_configure.

5. Is there a sufficient amount of rows processed in the given stream?

If the query optimizer determines the number of rows in a stream is too low, it does not introduce exchange operators to
distribute the stream. Consequently, the operators in this stream are executed serially. Executing the operators in a serial
plan avoids scenarios when the startup, distribution, and coordination cost exceeds the gains achieved by parallel operator
execution.

The INSERT, UPDATE, and DELETE operators are executed serially; however, the WHERE clause of either an UPDATE or DELETE, or
SELECT portion of an INSERT statement may be executed in parallel. The actual data changes are then serially applied to the
database.

Static and keyset cursors can be populated by parallel execution plans. However, the behavior of dynamic cursors can be provided
only by serial execution. The query optimizer always generates a serial execution plan for a query that is part of a dynamic cursor.

At execution time, SQL Server determines if the current system workload and configuration information allow for parallel query
execution. If parallel query execution is warranted, SQL Server determines the optimal number of threads and spreads the
execution of the parallel query across those threads. When a query starts executing on multiple threads for parallel execution, the
query uses the same number of threads until completion. SQL Server reexamines the optimal number of thread decisions each
time a query execution plan is retrieved from the procedure cache. For example, one execution of a query can result in use of a
serial plan, a later execution of the same query can result in a parallel plan using three threads, and a third execution can result in
a parallel plan using four threads.

Use SQL Profiler to monitor the degree of parallelism for individual statements. Use the Degree Of Parallelism event class in the
Performance event category. For more information, see Performance Event Category.

The showplan output for every parallel query will have at least one of these logical operators:

Distribute Streams

Gather Streams

Repartition Streams

See Also

Setting Configuration Options

sp_configure

System Stored Procedures

SQL Server Architecture (SQL Server 2000)

Parallel Query Example
Parallel Query Example

The following query counts the number of orders placed in a given quarter starting on April 1, 2000 in which at least one line item
of the order was received by the customer later than the committed date. This query lists the count of such orders grouped by
each order priority and sorted in ascending priority order.

This example uses theoretical table and column names.

SELECT o_orderpriority, COUNT(*) AS Order_Count
FROM orders
WHERE o_orderdate >= '2000/04/01'
 AND o_orderdate < DATEADD (mm, 3, '2000/04/01')
 AND EXISTS
 (
 SELECT *
 FROM lineitem
 WHERE l_orderkey = o_orderkey
 AND l_commitdate < l_receiptdate
)
 GROUP BY o_orderpriority
 ORDER BY o_orderpriority

Assume the following indexes are defined on the lineitem and orders tables:

CREATE INDEX l_order_dates_idx
 ON lineitem
 (l_orderkey, l_receiptdate, l_commitdate, l_shipdate)

CREATE UNIQUE INDEX o_datkeyopr_idx
 ON ORDERS
 (o_orderdate, o_orderkey, o_custkey, o_orderpriority)

Here is one possible parallel plan generated for the query shown earlier:

|--Stream Aggregate(GROUP BY:([ORDERS].[o_orderpriority])
 DEFINE:([Expr1005]=COUNT(*)))
 |--Parallelism(Gather Streams, ORDER BY:
 ([ORDERS].[o_orderpriority] ASC))
 |--Stream Aggregate(GROUP BY:
 ([ORDERS].[o_orderpriority])
 DEFINE:([Expr1005]=Count(*)))
 |--Sort(ORDER BY:([ORDERS].[o_orderpriority] ASC))
 |--Merge Join(Left Semi Join, MERGE:
 ([ORDERS].[o_orderkey])=
 ([LINEITEM].[l_orderkey]),
 RESIDUAL:([ORDERS].[o_orderkey]=
 [LINEITEM].[l_orderkey]))
 |--Sort(ORDER BY:([ORDERS].[o_orderkey] ASC))
 | |--Parallelism(Repartition Streams,
 PARTITION COLUMNS:
 ([ORDERS].[o_orderkey]))
 | |--Index Seek(OBJECT:
 ([tpcd1G].[dbo].[ORDERS].[O_DATKEYOPR_IDX]),
 SEEK:([ORDERS].[o_orderdate] >=
 Apr 1 2000 12:00AM AND
 [ORDERS].[o_orderdate] <
 Jul 1 2000 12:00AM) ORDERED)
 |--Parallelism(Repartition Streams,
 PARTITION COLUMNS:
 ([LINEITEM].[l_orderkey]),
 ORDER BY:([LINEITEM].[l_orderkey] ASC))
 |--Filter(WHERE:
 ([LINEITEM].[l_commitdate]<
 [LINEITEM].[l_receiptdate]))
 |--Index Scan(OBJECT:
 ([tpcd1G].[dbo].[LINEITEM].[L_ORDER_DATES_IDX]), ORDERED)

The illustration shows a query optimizer plan executed with a degree of parallelism equal to 4 and involving a two-table join.

The parallel plan contains three Parallelism operators. Both the Index Seek operator of the o_datkey_ptr index and the Index Scan
operator of the l_order_dates_idx index are performed in parallel, producing several exclusive streams. This can be determined
from the nearest Parallelism operators above the Index Scan and Index Seek operators, respectively. They are both repartitioning
the type of exchange; they are merely reshuffling data among the streams producing the same number of streams on their output
as they have on input. This number of streams is equal to the degree of parallelism.

The Parallelism operator above the l_order_dates_idx Index Scan operator is repartitioning its input streams using the value of
L_ORDERKEY as a key so the same values of L_ORDERKEY end up in the same output stream. At the same time, output streams
maintain the order on the L_ORDERKEY column to meet the input requirement of the Merge Join operator.

The Parallelism operator above the Index Seek operator is repartitioning its input streams using the value of O_ORDERKEY.
Because its input is not sorted on the O_ORDERKEY column values and this is the join column in the Merge Join operator, the Sort
operator between the Parallelism and Merge Join operators ensure the input is sorted for the Merge Join operator on the join
columns. The Sort operator, like the Merge Join operator, is performed in parallel.

The topmost Parallelism operator gathers results from several streams into a single stream. Partial aggregations performed by
the Stream Aggregate operator below the Parallelism operator are then accumulated into a single SUM value for each different
value of the O_ORDERPRIORITY in the Stream Aggregate operator above the Parallelism operator.

See Also

Logical and Physical Operators

SQL Server Architecture (SQL Server 2000)

Parallel Operations Creating Indexes
Parallel Operations Creating Indexes

The query plans built for the creation of indexes allow parallel, multi-threaded index create operations on computers with multiple
microprocessors.

Microsoft® SQL Server™ 2000 uses the same algorithms to determine the degree of parallelism (the total number of separate
threads to run) for create index operations as it does for other Transact-SQL statements. The only difference is that the CREATE
INDEX, CREATE TABLE, or ALTER TABLE statements that create indexes do not support the MAXDOP query hint. The maximum
degree of parallelism for an index creation is subject to the max degree of parallelism server configuration option, but you
cannot set a different MAXDOP value for individual index creation operations.

When SQL Server 2000 builds a create index query plan, the number of parallel operations is set to the lowest value of:

The number of microprocessors, or CPUs in the computer.

The number specified in the max degree of parallelism server configuration option.

The number of CPUs not already over a threshold of work performed for SQL Server threads.

For example, on a computer with eight CPUs, but where max degree of parallelism is set to 6, no more than six parallel threads
are generated for an index creation. If five of the CPUs in the computer exceed the threshold of SQL Server work when an index
creation execution plan is built, the execution plan specifies only three parallel threads.

The main phases of parallel index creation include:

A coordinating thread quickly and randomly scans the table to estimate the distribution of the index keys. The coordinating
thread establishes the key boundaries that will create a number of key ranges equal to the degree of parallel operations,
where each key range is estimated to cover similar numbers of rows. For example, if there are 4 million rows in the table,
and the degree of parallelism is 4, the coordinating thread will determine the key values that delimit 4 sets of rows with 1
million rows in each set.

The coordinating thread dispatches a number of threads equal to the degree of parallel operations, and waits for these
threads to complete their work. Each thread scans the base table using a filter that retrieves only rows with key values
within the range assigned to the thread. Each thread builds an index structure for the rows in its key range. For more
information about how an index is built, see tempdb and Index Creation.

After all the parallel threads have completed, the coordinating thread connects the index subunits into a single index.

Individual CREATE TABLE or ALTER TABLE statements can have multiple constraints that require the creation of an index. These
multiple index creation operations are performed in series, although each individual index creation operation may be a parallel
operation on a computer with multiple CPUs.

See Also

tempdb and Index Creation

SQL Server Architecture (SQL Server 2000)

Memory Architecture
Microsoft® SQL Server™ 2000 dynamically acquires and frees memory as needed. It is typically not necessary for an
administrator to specify how much memory should be allocated to SQL Server, although the option still exists and is required in
some environments. When running multiple instances of SQL Server on a computer, each instance can dynamically acquire and
free memory to adjust for changes in the workload of the instance.

SQL Server 2000 Enterprise Edition introduces support for using Microsoft Windows® 2000 Address Windowing Extensions
(AWE) to address approximately 8GB of memory for instances running on Windows 2000 Advanced Server, and approximately
64GB for instances running on Windows 2000 Data Center. Each instance using this extended memory, however, must statically
allocate the memory it needs.

Virtual Memory and the Database Engine

Virtual memory is a method of extending the available physical memory on a computer. In a virtual memory system, the
operating system creates a pagefile, or swapfile, and divides memory into units called pages. Recently referenced pages are
located in physical memory, or RAM. If a page of memory is not referenced for a while, it is written to the pagefile. This is called
swapping or paging out memory. If that piece of memory is later referenced by an application, the operating system reads the
memory page back from the pagefile into physical memory, also called swapping or paging in memory. The total amount of
memory available to applications is the amount of physical memory in the computer plus the size of the pagefile. If a computer
has 256 MB of RAM and a 256 MB pagefile, the total memory available to applications is 512 MB. Operating systems such as
Microsoft Windows NT®, Windows 2000, Windows 98, and Windows Me support virtual memory.

One of the primary design goals of all database software is to minimize disk I/O because disk reads and writes are among the
most resource-intensive operations. SQL Server builds a buffer cache in memory to hold pages read from the database. Much of
the code in SQL Server is dedicated to minimizing the number of physical reads and writes between the disk and the buffer cache.
The larger the buffer cache is, the less I/O SQL Server has to do to the database files. However, if the buffer cache causes SQL
Server memory requirements to exceed the available physical memory on the server, the operating system starts swapping
memory to and from the pagefile. All that has happened is that the physical I/O to the database files has been traded for physical
I/O to the swap file.

Having a lot of physical I/O to the database files is an inherent factor of database software. By default, SQL Server tries to reach a
balance between two goals:

Minimizing or eliminating pagefile I/O to concentrate I/O resources for reads and writes of the database files.

Minimizing physical I/O to the database files by maximizing the size of the buffer cache.

By default, the SQL Server 2000 editions dynamically manage the size of the address space for each instance. There are
differences in the way Windows NT, Windows 2000, Windows 98, and Windows Me report virtual memory usage to applications.
Because of this, SQL Server 2000 uses different algorithms to manage memory on these operating systems.

SQL Server 2000 Enterprise Edition does not default to dynamic memory management if you are using Windows 2000 AWE to
support large address spaces.

SQL Server Architecture (SQL Server 2000)

Dynamically Managing Memory on Windows NT and Windows
2000
When running on Microsoft® Windows NT® or Windows® 2000, the default memory management behavior of the SQL Server
database engine is not to acquire a specific amount of memory, but to acquire as much memory as it can without generating
excess paging I/O. The database engine does this by acquiring as much memory as is available, while leaving enough memory
free to prevent the operating system from swapping memory.

When an instance of SQL Server starts, it typically acquires 8 to 12 MB of memory to complete the initialization process. After the
instance has finished initializing, it acquires no more memory until users connect to it and start generating a workload. The
instance then keeps acquiring memory as required to support the workload. As more users connect and run queries, SQL Server
acquires the additional memory required to support the demand. The instance will keep acquiring memory until it reaches its
memory allocation target, it will not free any memory until it reaches the lower limit of the target.

To acquire as much memory as possible without generating excess paging I/O, each instance of SQL Server sets a target of
acquiring memory until free physical memory on the computer is in the range of 4 MB to 10 MB. This range was chosen because
testing has shown that Windows NT and Windows 2000 have minimal memory swapping until the memory allocations equal the
available physical memory minus 4 MB. An instance of SQL Server that is processing a heavy workload keeps the free physical
memory at the lower end (4 MB) of the range; an instance that is processing a light workload keeps the free memory at the higher
end of the range (10 MB).

An instance of SQL Server will vary its target as the workload changes. As more users connect and generate more work, the
instance will tend to acquire more memory to keep the available free memory down at the 4 MB limit. As the workload lightens,
the instance will adjust its target towards 10 MB of free space, and will free memory to the operating system. Keeping the amount
of free space between 10 MB and 4 MB keeps Windows NT or Windows 2000 from paging excessively, while at the same time
allowing SQL Server to have the largest buffer cache possible that will not cause extra swapping.

The target memory setting for an instance is related to the demand for pages in the database buffer pool relative to the size of the
available pool. At any point in time, the overall demand for buffer pages is determined by the number of data pages required to
satisfy all of the currently executing queries. If the demand for data pages is large relative to the number of pages in the buffer
cache, then each page currently in the buffer is likely to be replaced by a new page in a relatively short time. This is measured by
the page life expectancy performance counter of the Buffer Manager object. Having a high demand against a relatively small
buffer generates a short life expectancy, the net effect is that I/O is increased because pages tend to be overwritten before they
can be referenced by multiple logical reads. The database engine can alleviate this by acquiring more memory to increase the size
of the buffer cache. The database engine will target free memory at the high end of the target (10 MB) when the page life
expectancy is long, and at the low end of the target range (4 MB) when the page life expectancy is short.

As other applications are started on a computer running an instance of SQL Server, they consume memory and the amount of
free physical memory drops below the SQL Server target. The instance of SQL Server then frees enough memory from its address
space to raise the amount of free memory back to the SQL Server target. If another application is stopped and more memory
becomes available, the instance of SQL Server increases the size of its memory allocation. SQL Server can free and acquire several
megabytes of memory each second, allowing it to quickly adjust to memory allocation changes.

SQL Server Architecture (SQL Server 2000)

Effects of min and max server memory
Effects of min and max server memory

The min server memory and max server memory configuration options establish upper and lower limits to the amount of
memory used by the SQL Server database engine. The database engine does not immediately acquire the amount of memory
specified in min server memory. The database engine starts with only the memory required to initialize. As the database engine
workload increases, it keeps acquiring the memory required to support the workload. The database engine will not free any of the
acquired memory until it reaches the amount specified in min server memory. Once min server memory is reached, the
database engine then uses the standard algorithm (keeping the operating system's free memory within 4 MB to 10 MB) to
acquire and free memory as needed. The only difference is that the database engine never drops its memory allocation below the
level specified in min server memory, and never acquires more memory than the level specified in max server memory.

The amount of memory acquired by the database engine is entirely dependent on the workload placed on the instance. A SQL
Server instance that is not processing many requests may never reach min server memory.

If the same value is specified for both min server memory and max server memory, then once the memory allocated to the
database engine reaches that value, the database engine stops dynamically freeing and acquiring memory.

If an instance of SQL Server is running on a computer where other applications are frequently stopped or started, the allocation
and deallocation of memory by the instance of SQL Server may slow the startup times of other applications. Also, if SQL Server is
one of several server applications running on a single computer, the system administrators may need to control the amount of
memory allocated to SQL Server. In these cases, you can use the min server memory and max server memory options to
control how much memory SQL Server can use. For more information, see Server Memory Options.

SQL Server Architecture (SQL Server 2000)

Dynamically Managing Memory Between Multiple Instances
Dynamically Managing Memory Between Multiple Instances

When multiple instances of SQL Server are running on the same computer, each instance independently uses the standard
dynamic memory management algorithm. There is no need for the instances to communicate with each other to cooperatively
manage memory. When all but 4 MB to 10 MB of the memory on a computer is allocated, the amount of memory allocated to
each specific instance of the database engine is driven by the relative workload of each instance. The instances with higher
workloads acquire more memory, while instances processing lighter workloads acquire less memory. Regardless of the number
of instances of SQL Server on a computer, the algorithm ensures:

The overall amount of allocated memory remains under the level that would generate Windows NT® or Windows® 2000
page I/Os.

The computer memory is efficiently distributed between the instances of SQL Server based on their relative workloads.

The memory allocations are dynamic and can immediately adjust to changes in the workloads of individual instances of SQL
Server.

The interactions can be illustrated on a computer running two instances, but the same principles apply when several instances are
running on the same computer. Consider a computer with 512MB of physical memory running two instances named Instance1
and Instance2.

When both instances are first started, they typically acquire 8 MB to 12 MB of memory. As users connect to the instances, each
instance acquires enough memory to satisfy its current workload.

Once the amount of memory reaches the point where only 4 MB to 10 MB is free, the instances begin competing with each other
for memory. Assume that Instance1 has a long page life expectancy and a free memory target of 10 MB, Instance2 has a short
page life expectancy with a free memory target of 4 MB. Assume 506 MB of memory have been allocated, leaving only 6 MB free.
Because 6 MB free memory is below the 10 MB target of Instance1, Instance1 begins freeing memory. Instance2 keeps
acquiring memory because the amount of free memory is over its target of 4 MB. It does not matter how much memory either
instance actually has. What is important is that the current buffer pool of Instance2 is small relative to the demand for its data
pages, while the buffer pool of Instance1 is large relative to the demand for its data pages. So long as this is true, Instance1 will
have a free memory target of 10 MB and Instance2 will have a free memory target of 4 MB, driving Instance1 to free memory
that is taken up by Instance2.

As Instance1 frees memory, it reduces the size of its buffer cache. Eventually, Instance1 reaches a point where the reduced size
of the buffer cache starts decreasing the page life expectancy of the instance. As this happens, Instance1 starts lowering its free
memory target from 10 MB. At the same time, Instance2 is using the memory it has acquired from Instance1 to increase the size
of the Instance2 buffer cache. This increases the page life expectancy of Instance2, and so Instance2 begins raising its free
memory target from 4 MB. At some point, Instance1 will have transferred enough memory to Instance2 that both instances
have the same free memory target. As soon as the amount of free memory reaches the level that is now the target of both
instances, Instance1 stops freeing memory, Instance2 stops acquiring memory, and the system reaches a state of equilibrium.

The state of equilibrium lasts only as long as the relative workload of both instances remains constant. As soon as the workload
on one or the other of the instances changes, either increases or decreases, the instance will change its free memory target. The
instance with the higher free memory target will then start freeing memory and the instance with the lower free memory target
will start acquiring memory until a new equilibrium is reached.

The same mechanism operates with more than two instances on a computer. All of the instances will keep freeing or acquiring
memory until all of them reach the same free memory target. Once the amount free memory on the computer reaches the
common target, the instances are in equilibrium.

SQL Server Architecture (SQL Server 2000)

Dynamically Managing Memory on Windows 95 and Windows
98
When running on Microsoft® Windows® 98 and Windows Me, each instance of Microsoft SQL Server™ 2000 uses a demand-
driven algorithm for allocating memory. As more Transact-SQL statements are processed and demand for cached database pages
rises, the instance of SQL Server requests more virtual memory. When the demands on the instance of SQL Server go down, such
as when fewer Transact-SQL statements are being processed, the instance frees memory back to the operating system.

Instances of SQL Server 2000 do not run on Windows 95.

SQL Server Architecture (SQL Server 2000)

Using AWE Memory on Windows 2000
Microsoft® SQL Server™ 2000 Enterprise Edition uses the Microsoft Windows® 2000 Address Windowing Extensions (AWE) API
to support very large amounts of physical memory. SQL Server 2000 Enterprise Edition can access amounts of memory
approaching 8 GB on Windows 2000 Advanced Server and approaching 64 GB on Windows 2000 Data Center.

Standard 32-bit addresses can map a maximum of 4 GB of memory. The standard address spaces of 32-bit Microsoft Windows
NT® 4.0 and Windows 2000 processes are therefore limited to 4-GB. By default, 2 GB is reserved for the operating system, and 2
GB is made available to the application. If you specify a /3GB switch in the Boot.ini file of Windows NT Enterprise Edition or
Windows 2000 Advanced Server, the operating system reserves only 1 GB of the address space, and the application can access up
to 3 GB. For more information about the /3GB switch, see Windows NT Enterprise Edition or Windows 2000 Advanced Server
Help.

AWE is a set of extensions to the memory management functions of the Microsoft Win32® API that allow applications to address
more memory than the 4 GB that is available through standard 32-bit addressing. AWE lets applications acquire physical memory
as nonpaged memory, and then dynamically map views of the nonpaged memory to the 32-bit address space. Although the 32-
bit address space is limited to 4 GB, the nonpaged memory can be much larger. This enables memory-intensive applications, such
as large database systems, address more memory than can be supported in a 32-bit address space. For more information about
AWE, see the MSDN® page at Microsoft Web site.

Enabling AWE Memory

You must specifically enable the use of AWE memory by an instance of SQL Server 2000 Enterprise Edition by using the
sp_configure option awe enabled.

When awe enabled is set to 0, AWE memory is not used, and the instance defaults to using dynamic memory in standard
32-bit virtual address spaces.

When awe enabled is set to 1, AWE memory is used, and the instance can access up to 8 GB of physical memory on
Windows 2000 Advanced Server and 64 GB on Windows 2000 Data Center.

When an instance of SQL Server 2000 Enterprise Edition is run with awe enabled set to 1:

The instance does not dynamically manage the size of the address space.

The instance holds all memory acquired at startup until it is shut down.

The memory pages for the instance come from the Windows nonpageable pool, meaning that none of the memory of the
instance can be swapped out.

You must carefully manage the memory used by an instance of SQL Server when awe enabled is set to 1. If the instance acquires
most of the available physical memory as nonpaged memory, other applications or system processes may not be able to get the
memory they need to run. Use the max server memory configuration setting to control how much memory is used by each
instance of SQL Server that uses AWE memory. For more information, see Managing AWE Memory on Windows 2000.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

SQL Server Architecture (SQL Server 2000)

SQL Server Memory Pool
In Microsoft® Windows NT®, Windows® 2000, Windows 98, and Windows Me, the total amount of virtual memory available to
an application forms the set of valid memory addresses for the application. The total virtual memory allocation for an application
is known as its address space.

Each instance of Microsoft SQL Server™ 2000 has an address space with two main components, each of which has several
subcomponents:

Executable code

The number and size of the executable files and dynamic link libraries (DLLs) used by an instance of SQL Server varies over
time. In addition to the executable files and DLLs used by Open Data Services, the SQL Server engine, and server Net-
Libraries, the following components load in their own DLLs, and these DLLs can allocate memory themselves:

Distributed queries can load an OLE DB Provider DLL on the server running the instance of SQL Server.

Extended stored procedures are implemented as DLLs that are loaded into the address space of the instance of SQL
Server.

The OLE Automation system stored procedures are used to create instances of OLE Automation objects. Each class
of OLE Automation object loads its own code into the address space of the instance of SQL Server.

Memory pool

The memory pool is the main unit of memory for an instance of SQL Server. Almost all data structures that use memory in
an instance of SQL Server are allocated in the memory pool. The main types of objects allocated in the memory pool are:

System-level data structures

These are data structures that hold data global to the instance, such as database descriptors and the lock table.

Buffer cache

This is the pool of buffer pages into which data pages are read.

Procedure cache

This is a pool of pages containing the execution plans for all Transact-SQL statements currently executing in the
instance.

Log caches

Each log has a cache of buffer pages used to read and write log pages. The log caches are managed separately from
the buffer cache to reduce the synchronization between log and data buffers. This results in fast, robust code.

Connection context

Each connection has a set of data structures that record the current state of the connection. These data structures
hold items such as parameter values for queries and stored procedures, cursor positioning information, and tables
currently being referenced.

Stack space

Windows allocates stack space for each thread started by SQL Server. The default size for the stack space is 512K.

The size of the memory pool used by an instance of SQL Server 2000 can be very dynamic, especially on computers running
other applications or other instances of SQL Server. By default, SQL Server seeks to keep the amount of virtual memory
allocations on the computer at 4 to 10 MB less than the physical memory. The only way an instance of SQL Server can do this is
by varying the size of its address space. The only variable component in the address space for an instance of SQL Server is the
memory pool. The other variable components in the SQL Server address space, such as the number and size of OLE DB providers,
OLE Automation objects, and extended stored procedures, are all controlled by application requests. If an application executes a
distributed query, SQL Server must load the associated OLE DB provider. This means that if a SQL Server component is loaded, or
another application starts up, the only mechanism an instance of SQL Server can use to release the memory needed by the new
component or application is to reduce the size of the memory pool. SQL Server administrators can set limits on how much the
size of the memory pool varies through the min server memory and max server memory configuration options.

The regions within the memory pool are also highly dynamic. The SQL Server code constantly adjusts the amounts of the
memory pool assigned to the various areas to optimize performance. Within the memory pool, the areas used to store connection
context and system data structures are controlled by user requests. As new connections are made, SQL Server has to allocate data
structures to store their context. As new databases are defined, SQL Server has to allocate data structures to define the attributes
of the database. As tables and views are referenced, SQL Server allocates data structures describing their structure and attributes.
This leaves the buffer cache, procedure cache, and log caches as the memory units whose size is controlled by SQL Server. SQL
Server adjusts the sizes of these areas dynamically as needed to optimize performance.

For more information about the sizes of the various system and connection context data structures, see Memory Used by SQL
Server Objects Specifications.

SQL Server 2000 is very efficient in the way it stores the context and state information for each connection, typically using less
than 24 KB for each connection.

SQL Server Architecture (SQL Server 2000)

Thread and Task Architecture
Complex applications may have many tasks that could be performed at the same time. Threads are an operating system feature
that lets application logic be separated into several concurrent execution paths.

When an operating system executes an instance of an application, it creates a unit called a process to manage the instance. The
process has a thread of execution, which is the series of programming instructions performed by the application code. In a simple
application with a single set of instructions that can be performed serially, there is just one execution path, or thread, through the
application. More complex applications may have several tasks that could be performed in tandem, not serially. The application
could do this by starting separate processes for each task, but starting a process is a resource-intensive operation. Instead, an
application can start separate threads, which are relatively less resource-intensive. Each thread can be scheduled for execution
independently from the other threads associated with a process. Each thread stores the data unique to it in an area of memory
called a stack.

Threads allow complex applications to make more effective use of a CPU even on computers with a single CPU. With one CPU,
only one thread can execute at a time. If one thread executes a long running operation that does not use the CPU, such as a disk
read or write, another one of the threads can execute until the first operation completes. Being able to execute threads while other
threads are waiting for an operation to complete allows the application to maximize its use of the CPU. This is especially true for
multiuser, disk I/O intensive applications such as a database server.

Computers with multiple microprocessors, or CPUs can execute one thread per CPU at the same time. If a computer has eight
CPUs, it can concurrently execute eight threads.

Windows NT Fibers

The Microsoft® Windows® operating system code that manages threads is in the kernel. Switching threads requires switches
between the user mode of the application code and the kernel mode of the thread manager, which is a moderately expensive
operation. Microsoft Windows NT® fibers are a subcomponent of threads managed by code running in user mode. Switching
fibers does not require the user-mode to kernel-mode transition needed to switch threads. The scheduling of fibers is managed
by the application, and Windows manages the scheduling of threads. Each thread can have multiple fibers.

SQL Server Architecture (SQL Server 2000)

SQL Server Task Scheduling
Each instance of Microsoft® SQL Server™ 2000 is a separate operating system process. Each instance has to handle potentially
thousands of concurrent requests from users. Instances of SQL Server 2000 use Microsoft Windows® threads, and sometimes
fibers, to manage these concurrent tasks efficiently. Each instance of SQL Server 2000 always runs several threads for system
processes: one or more threads for each server Net-Library, a network thread to handle login requests, and a signal thread for
communicating with the service control manager.

Each instance of SQL Server has an internal layer that implements an environment similar to an operating system for scheduling
and synchronizing concurrent tasks without having to call the Windows kernel. This internal layer can schedule fibers as
effectively as it works with threads. Each instance of SQL Server maintains a pool of either threads or fibers for user connections.
The maximum size of this pool is controlled by the max worker threads server configuration option.

When an application connects to the database engine, it is assigned a system process ID (SPID). All information that must be
maintained for the life of the connection is managed in internal data structures associated with the SPID.

The database engine must actively perform work for a connection only from the time a batch is received to when the results have
been returned to the client. Even during this period, the connection may not require active processing at times, for example, when
the database engine must wait for a read operation to retrieve the data required for the current query or wait for another
connection to free a lock. Whenever the database engine starts to process work for a connection, it schedules a thread or fiber to
perform the work. After the thread or fiber completes the work for one thread, the database engine then dispatches the thread to
the next connection that is ready to work. A SPID remains constant for a connection for the life of the connection, but long-
running connections may have many different threads or fibers processing work at different times. Some statements can be
processed in parallel, in which case multiple threads or fibers may be associated with a single connection, or SPID, at the same
time.

The server configuration lightweight pooling option controls whether an instance of SQL Server 2000 uses threads or fibers.
The default is for lightweight pooling to be set to 0, in which case the instance of SQL Server schedules a thread per concurrent
user command, up to the value of max worker threads. If lightweight pooling is set to 1, SQL Server then uses fibers instead
of threads. This is called running in fiber mode. In fiber mode, an instance of SQL Server allocates one thread per CPU, and then
allocates a fiber per concurrent user command, up to the max worker threads value. An instance of SQL Server uses the same
algorithms to schedule and synchronize tasks when using either threads or fibers. SQL Server 2000 Personal Edition and SQL
Server 2000 Desktop Engine (MSDE 2000) do not support fibers.

A SQL batch is a set of one or more Transact-SQL statements sent from a client to an instance of SQL Server for execution as a
unit. As an instance of SQL Server receives batches from clients, it associates each batch with an available free thread or fiber
from the worker pool. If there are no free threads or fibers and the max worker threads value has not been reached, the instance
of SQL Server allocates a new thread or fiber for the new batch. If there are no free threads or fibers available and the max
worker threads value has already been reached, the instance blocks the new batch until a thread is freed. After a thread or fiber
is associated with a batch, it remains associated with the batch until the last of the result sets generated by the batch has been
returned to the client. At that time, the thread or fiber is freed and can be scheduled to the next available batch.

While threads and fibers are lightweight in their use of resources, they still consume resources. In systems with hundreds or
thousands of user connections, having one thread or fiber per connection could consume enough resources to reduce the
efficiency of SQL Server. Allocating a thread or fiber for each user connection is also not necessary because most connections
actually spend much of their time waiting for batches to be received from the client. The pool of worker threads for an instance of
SQL Server only needs to be large enough to service the number of user connections that are actively executing batches at the
same time in that instance. Leaving max worker threads at its default value of 255 lets the instance of SQL Server effectively
map user connections over a number of threads or fibers that do not consume too many resources.

SQL Server Architecture (SQL Server 2000)

Allocating Threads to a CPU
Allocating Threads to a CPU

By default, each instance of Microsoft® SQL Server™ 2000 starts each thread, and then Microsoft Windows NT® or Windows®
2000 assigns each thread to a specific CPU. Windows NT or Windows 2000 distribute threads from instances of SQL Server
evenly among the microprocessors, or CPUs on a computer. At times, Windows NT or Windows 2000 can also move a thread
from one CPU with heavy usage to another CPU.

SQL Server administrators can use the affinity mask configuration option to exclude one or more CPUs from being eligible to
run threads from a specific instance of SQL Server. The affinity mask value specifies a bit pattern that indicates the CPUs that are
used to run threads from that instance of SQL Server. For example, the affinity mask value 13 represents the bit pattern 1101.
On a computer with four CPUs, this indicates threads from that instance of SQL Server can be scheduled on CPUs 0, 2, and 3, but
not on CPU 1. If affinity mask is specified, the instance of SQL Server allocates threads evenly among the CPUs that have not
been masked off. Another effect of affinity mask is that Windows NT and Windows 2000 do not move threads from one CPU to
another. affinity mask is rarely used; most systems get optimal performance by letting Windows NT or Windows 2000 schedule
the threads among the available CPUs.

SQL Server Architecture (SQL Server 2000)

Using the lightweight pooling Option
Using the lightweight pooling Option

The overhead of switching thread contexts is not very large. Most instances of Microsoft® SQL Server™ will not see any
performance difference between setting the lightweight pooling option to 0 or 1. The only instances likely to benefit from
lightweight pooling are those running on a computer characterized as:

A large multi-CPU server.

All of the CPUs are running near maximum capacity.

There is a high level of context switching.

These systems may see a slight increase in performance by setting the lightweight pooling value to 1.

See Also

lightweight pooling Option

SQL Server Architecture (SQL Server 2000)

Thread and Fiber Execution
Microsoft® Windows® uses a numeric priority ranging from 1 through 31 (0 is reserved for operating system use) to schedule
threads for execution. When several threads are waiting to execute, Windows dispatches the thread with the highest priority.

Each instance of Microsoft SQL Server™ 2000 defaults to a priority of 7, which is called the normal priority. This gives SQL Server
threads a high enough priority to get adequate CPU resources without adversely affecting other applications. The priority boost
configuration option can be used to increase the priority of the threads from an instance of SQL Server to 13, which is called high
priority. This setting gives SQL Server threads a higher priority than most other applications. Thus, SQL Server threads will tend to
be dispatched whenever they are ready to run and will not be preempted by threads from other applications. This can improve
performance when a server is running only instances of SQL Server and no other applications. If a memory-intensive operation
occurs in SQL Server, however, other applications are not likely to have a high-enough priority to preempt the SQL Server thread.
If you are running multiple instances of SQL Server on a computer, and turn on priority boost for only some of the instances, the
performance of any instances running at normal priority can be adversely affected. The performance of other applications and
components on the server can be degraded if priority boost is turned on, so it should only be used under tightly controlled
conditions.

Some Transact-SQL statements require large amounts of memory for operations, such as sorts. If there is not enough memory
available, the thread waits for memory to be freed. The query wait option limits how long a thread can wait for memory.

See Also

query wait Option

SQL Server Architecture (SQL Server 2000)

I/O Architecture
The primary purpose of a database is to store and retrieve data, so performing a lot of disk reads and writes is one of the inherent
attributes of a database engine. Disk I/O operations consume many resources and take a relatively long time to complete. Much
of the logic in relational database software concerns making the pattern of I/O usage highly efficient.

Microsoft® SQL Server™ 2000 allocates much of its virtual memory to a buffer cache and uses the cache to reduce physical I/O.
Each instance of SQL Server 2000 has its own buffer cache. Data is read from the database disk files into the buffer cache.
Multiple logical reads of the data can be satisfied without requiring that the data be physically read again. The data remains in the
cache until it has not been referenced for some time and the database needs the buffer area to read in more data. Data is written
back to disk only if it is modified. Data can be changed multiple times by logical writes before a physical write transfers the new
data back to disk.

The data in a SQL Server 2000 database is stored in 8-KB pages. Each group of eight contiguous pages is a 64-KB extent. The
buffer cache is also divided into 8-KB pages.

The I/O from an instance of SQL Server is divided into logical and physical I/O. A logical read occurs every time the database
engine requests a page from the buffer cache. If the page is not currently in the buffer cache, a physical read is then performed to
read the page into the buffer cache. If the page is currently in the cache, no physical read is generated; the buffer cache simply
uses the page already in memory. A logical write occurs when data is modified in a page in memory. A physical write occurs when
the page is written to disk. It is possible for a page to remain in memory long enough to have more than one logical write made
before it is physically written to disk.

One of the basic performance optimization tasks for an instance of SQL Server involves sizing the SQL Server memory. The goal
is to make the buffer cache large enough to maximize the ratio of logical reads to physical reads, but not so large that excessive
memory swapping starts generating physical I/O to the pagefile. Instances of SQL Server 2000 do this automatically under the
default configuration settings.

By maintaining a relatively large buffer cache in virtual memory, an instance of SQL Server can significantly reduce the number of
physical disk reads it requires. After a frequently referenced page has been read into the buffer cache, it is likely to remain there,
eliminating further reads.

SQL Server 2000 uses two Microsoft Windows NT® and Windows® 2000 features to improve its disk I/O performance:

Scatter-gather I/O

Before scatter-gather I/O was introduced in Windows NT version 4.0 Service Pack 2, all of the data for a disk read or write
on Windows NT had to be in a contiguous area of memory. If a read transferred in 64 KB of data, the read request had to
specify the address of a contiguous area of 64 KB of memory. Scatter-gather I/O allows a read or write to transfer data in to
or out of discontiguous areas of memory. Windows 2000 also supports scatter-gather I/O.

If an instance of SQL Server 2000 reads in a 64 KB extent, it does not have to allocate a single 64 KB area and then copy the
individual pages to buffer cache pages. It can locate eight buffer pages, and then do a single scatter-gather I/O specifying
the address of the eight buffer pages. Windows NT or Windows 2000 places the eight pages directly into the buffer pages,
eliminating the need for the instance of SQL Server to do a separate memory copy.

Asynchronous I/O

In an asynchronous I/O, an application requests a read or write operation from Windows NT or Windows 2000. Windows
NT or Windows 2000 immediately returns control to the application. The application can then perform additional work, and
later test to see if the read or write has completed. By contrast, in a synchronous I/O, the operating system does not return
control to the application until the read or write completes. Using asynchronous I/O allows instances of SQL Server to
maximize the work done by individual threads while they are processing a batch.

SQL Server supports multiple concurrent asynchronous I/O operations against each file. SQL Server 2000 dynamically
determines the maximum number of I/O operations an instance can issue for any file.

SQL Server Architecture (SQL Server 2000)

Reading Pages
The read requests generated by an instance of Microsoft® SQL Server™ 2000 are controlled by the relational engine and further
optimized by the storage engine. The access method used to read pages from a table, such as a table scan, an index scan, or a
keyed read, determines the general pattern of reads that will be performed. The relational engine determines the most effective
access method. This request is then given to the storage engine, which optimizes the reads required to implement the access
method. The thread executing the batch schedules the reads.

Table scans are extremely efficient in SQL Server 2000. The IAM pages in a SQL Server 2000 database list the extents used by a
table or index. The storage engine can read the IAM to build a sorted list of the disk addresses that must be read. This allows SQL
Server 2000 to optimize its I/Os as large sequential reads that are done in sequence based on their location on the disk. SQL
Server 2000 issues multiple serial read-ahead reads at once for each file involved in the scan. This takes advantage of striped disk
sets. SQL Server 2000 Enterprise Edition dynamically adjusts the maximum number of read ahead pages based on the amount of
memory present; it is fixed in all other editions of SQL Server 2000.

One part of the SQL Server 2000 Enterprise Edition advanced scan feature allows multiple tasks to share full table scans. If the
execution plan of a SQL statement calls for a scan of the data pages in a table, and the relational database engine detects that the
table is already being scanned for another execution plan, the database engine joins the second scan to the first, at the current
location of the second scan. The database engine reads each page once and passes the rows from each page to both execution
plans. This continues until the end of the table is reached. At that point, the first execution plan has the complete results of a scan,
but the second execution plan must still retrieve the data pages that occur before the point at which it joined the in-progress scan.
The scan for second execution plan then wraps back to the first data page of the table and scans forward to the point at which it
joined the first scan. Any number of scans can be combined in this way, the database engine will keep looping through the data
pages until it has completed all the scans.

For example, assume that you have a table with 500,000 pages. UserA executes a SQL statement that requires a scan of the table.
When that scan has processed 100,000 pages, UserB executes another SQL statement that scans the same table. The database
engine will schedule one set of read requests for pages after 100,001, and passes the rows from each page back to both scans.
When the scan reaches the 200,000th page, UserC executes another SQL statement that scans the same table. Starting with page
200,001, the database engine passes the rows from each page it reads back to all three scans. After reading the 500,000th row, the
scan for UserA is complete, and the scans for UserB and UserC wrap back and start reading pages starting with page 1. When the
database engine gets to page 100,000, the scan for UserB is complete. The scan for Userc then keeps going alone until it reads
page 200,000, at which point all the scans have been completed.

Reading Index Pages

SQL Server 2000 reads index pages serially in key order. For example, this illustration shows a simplified representation of a set
of leaf pages containing a set of keys and the intermediate index node mapping the leaf pages.

SQL Server 2000 uses the information in the intermediate index page above the leaf level to schedule serial read-ahead I/Os for
the pages containing the keys. If a request is made for all the keys from 'ABC' to 'DEF', the instance of SQL Server 2000 first reads
the index page above the leaf page. It does not, however, simply read each individual data page in sequence from page 504 to
page 556, the last one with keys in the desired range. Instead, the storage engine scans the intermediate index page and builds a
list of the leaf pages that must be read. The storage engine then schedules all the I/Os in key order. The storage engine also
recognizes that pages 504/505 and 527/528 are contiguous, and performs a single scatter-gather read to retrieve the adjacent
pages in one operation. When there are many pages to be retrieved in a serial operation, SQL Server schedules a block of reads at
a time. When a subset of these reads is completed, SQL Server schedules an equal number of new reads until all the needed reads
have been scheduled.

SQL Server 2000 uses pre-fetching to speed the processing of non-clustered indexes. The leaf rows of a non-clustered index

contain pointers to the data rows containing each specific key value. As the database engine reads through the leaf pages of the
non-clustered index, it also starts scheduling asynchronous reads for the data rows whose pointers have already been retrieved.
This allows the database engine to start retrieving rows before it has completed the scan of the non-clustered index. This process
is followed regardless of whether or not the table has a clustered index. SQL Server 2000 Enterprise Edition uses more pre-
fetching than other editions of SQL Server, and the level of pre-fetching is not configurable in any edition.

SQL Server Architecture (SQL Server 2000)

Freeing and Writing Buffer Pages
In Microsoft® SQL Server™ 2000, one system is responsible for:

Writing modified buffer pages to disk.

Marking as free those pages that have not been referenced for some time.

SQL Server 2000 has a singly linked list containing the addresses of free buffer pages. Any thread needing a buffer page uses the
first page in the free buffer list.

The buffer cache is an in-memory structure. Each buffer page has a header that contains a reference counter and an indicator of
whether the page is dirty, which means the page contains modifications that have not yet been written to disk. The reference
counter is incremented by 1 each time a SQL statement references the buffer page. The buffer cache is periodically scanned from
the start to the end. Because the buffer cache is all in memory, these scans are very quick and require no I/O. During the scan, the
reference counter in each buffer page header is divided by 4 and the remainder discarded. When the reference counter goes to 0,
the dirty page indicator is checked. If the page is dirty, a write is scheduled to write the modifications to disk. Instances of SQL
Server use a write-ahead log, so the write of the dirty data page is blocked while the log page recording the modification is first
written to disk. After the modified page has been flushed to disk, or if the page was not dirty to start with, the page is freed. The
association between the buffer page and the data page it contains is removed and the buffer is placed on the free list.

Using this process, frequently referenced pages remain in memory while buffers holding pages not referenced eventually return
to the free buffer list. The instance of SQL Server determines internally the size of the free buffer list, based on the size of the
buffer cache. The size cannot be configured.

When an instance of SQL Server is running on Microsoft Windows NT® or Windows® 2000, the work of scanning the buffer,
writing dirty pages, and populating the free buffer list is mostly done by the individual worker threads. The worker threads
perform their scans in the interval of time after they have scheduled an asynchronous read and the read completes. A thread gets
the address of the next section of the buffer pool that needs to be scanned from a central data structure, then scans that section of
the buffer pool while the read I/O processes asynchronously. If a write must be performed, it is also scheduled asynchronously
and does not interfere with the thread's ability to process the completion of its own read.

Each instance also has a separate lazywriter thread that scans through the buffer cache. The lazywriter process sleeps for an
interval of time. When it is restarted, it checks the size of the free buffer list. If the free buffer list is below a certain point
(dependent on the size of the cache) the lazywriter process scans the buffer cache to reclaim unused pages and write dirty pages
that have a reference count of 0. On the Windows NT and Windows 2000 operating systems, most of the work populating the
free buffer list and writing dirty pages is done by the individual threads and the lazywriter thread typically finds little to do.
Windows 98 and Windows Me do not support asynchronous writes, so the lazywriter thread does the work of populating the free
buffer list and writing dirty pages.

The checkpoint process also scans the buffer cache periodically and writes any dirty log or data pages to disk. The difference is
that the checkpoint process does not place the buffer page back on the free list. The work of the checkpoint process is intended to
minimize the number of dirty pages in memory to reduce the length of a recovery if the server fails, not to populate the free
buffer list. Checkpoints typically find few dirty pages to write to disk because most dirty pages are written to disk by the worker
threads or lazywriter thread in the period between two checkpoints.

Writes of log records are usually scheduled asynchronously by a logwriter thread. The exceptions are when:

A commit forces all pending log records for a transaction to disk.

A checkpoint forces all pending log records for all transactions to disk.

SQL Server Architecture (SQL Server 2000)

Distributed Query Architecture
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 supports two methods for referencing heterogeneous OLE DB data sources in Transact-SQL
statements:

Linked server names

The system stored procedures sp_addlinkedserver and sp_addlinkedsrvlogin are used to give a server name to an OLE
DB data source. Objects in these linked servers can be referenced in Transact-SQL statements using four-part names. For
example, if a linked server name of DeptSQLSrvr is defined against another copy of SQL Server 2000, the following
statement references a table on that server:

SELECT * FROM DeptSQLSrvr.Northwind.dbo.Employees

The linked server name can also be specified in an OPENQUERY statement to open a rowset from the OLE DB data source.
This rowset can then be referenced like a table in Transact-SQL statements.

Ad hoc connector names

For infrequent references to a data source, the OPENROWSET or OPENDATASOURCE functions are specified with the
information needed to connect to the linked server. The rowset can then be referenced the same way a table is referenced in
Transact-SQL statements:

SELECT *
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0',
 'c:\MSOffice\Access\Samples\Northwind.mdb';'Admin';'';
 Employees)

SQL Server 2000 uses OLE DB to communicate between the relational engine and the storage engine. The relational engine
breaks down each Transact-SQL statement into a series of operations on simple OLE DB rowsets opened by the storage engine
from the base tables. This means the relational engine can also open simple OLE DB rowsets on any OLE DB data source.

The relational engine uses the OLE DB API to open the rowsets on linked servers, to fetch the rows, and to manage transactions.

For each OLE DB data source accessed as a linked server, an OLE DB provider must be present on the server running SQL Server.
The set of Transact-SQL operations that can be used against a specific OLE DB data source depends on the capabilities of the OLE
DB provider. For more information, see OLE DB Provider Reference for Distributed Queries.

For each instance of SQL Server 2000, members of the sysadmin fixed server role can enable or disable the use of ad-hoc
connector names for an OLE DB provider using the SQL Server DisallowAdhocAccess property. When ad-hoc access is enabled,
any user logged on to that instance can execute SQL statements containing ad-hoc connector names referencing any data source

on the network that can be accessed using that OLE DB provider. To control access to data sources, members of the sysadmin
role can disable ad-hoc access for that OLE DB provider, thereby limiting users to only those data sources referenced by linked
server names defined by the administrators. By default, ad-hoc access is enabled for the SQL Server OLE DB provider, and
disabled for all other OLE DB providers.

Distributed queries can allow users to access another data source (for example, files, non-relational data sources such as Active
Directory™, and so on) using the security context of the Microsoft Windows® account under which the SQL Server service is
running. SQL Server 2000 impersonates the login appropriately for Windows NT® logins; however, that is not possible for SQL
Server logins. This can potentially allow a distributed query user to access another data source for which they do not have
permissions, but the account under which the SQL Server service is running does have permissions. Use sp_addlinkedserver to
define the specific logins that are authorized to access the corresponding linked server. This control is not available for ad-hoc
names, so use caution in enabling an OLE DB provider for ad-hoc access.

When possible, SQL Server pushes relational operations such as joins, restrictions, projections, sorts, and group by operations to
the OLE DB data source. SQL Server does not default to scanning the base table into SQL Server and performing the relational
operations itself. SQL Server queries the OLE DB provider to determine the level of SQL grammar it supports, and, based on that
information, pushes as many relational operations as possible to the provider. For more information, see SQL Dialect
Requirements for OLE DB Providers.

SQL Server 2000 specifies a mechanism for an OLE DB provider to return statistics indicating how key values are distributed
within the OLE DB data source. This lets the SQL Server query optimizer better analyze the pattern of data in the data source
against the requirements of each SQL statement, increasing the ability of the query optimizer to generate optimal execution plans.
For more information, see Distribution Statistics Requirements for OLE DB Providers.

See Also

Configuring Linked Servers

Distributed Queries

SQL Server Architecture (SQL Server 2000)

Full-Text Query Architecture
The Microsoft® SQL Server™ 2000 full-text query component supports sophisticated searches on character string columns.

This capability is implemented by the Microsoft Search service, which has two roles:

Indexing support

Implements the full-text catalogs and indexes defined for a database. Accepts definitions of full-text catalogs, and the tables
and columns making up the indexes in each catalog. Implements requests to populate the full-text indexes.

Querying support

Processes full-text search queries. Determines which entries in the index meet the full-text selection criteria. For each entry
that meet the selection criteria, it returns the identity of the row plus a ranking value to the MSSQLServer service, where this
information is used to construct the query result set. The types of queries supported include searching for:

Words or phrases.

Words in close proximity to each other.

Inflectional forms of verbs and nouns.

The full-text engine runs as a service named Microsoft Search on Microsoft Windows NT® Server, Windows NT Advanced Server,
Windows® 2000 Server, or Windows 2000 Advanced Server. It is installed when the Full-Text Search feature is selected during
custom installation. The Microsoft Search service itself is not installed during an installation of SQL Server 2000 Desktop Engine
(MSDE 2000). While this means that the Microsoft Search service is not installed on Microsoft Windows 95, Windows 98,
Windows NT Workstation, or Windows 2000 Professional clients, these clients can make use of the service when connected to an
instance of SQL Server 2000 Standard Edition, SQL Server 2000 Developer Edition, or SQL Server 2000 Enterprise Edition.

The full-text catalogs and indexes are not stored in a SQL Server database. They are stored in separate files managed by the
Microsoft Search service. The full-text catalog files are not recovered during a SQL Server recovery. They also cannot be backed
up and restored using the Transact-SQL BACKUP and RESTORE statements. The full-text catalogs must be resynchronized
separately after a recovery or restore operation. The full-text catalog files are accessible only to the Microsoft Search service and
the Windows NT or Windows 2000 system administrator.

Communications between SQL Server and the Microsoft Search service are made through a full-text provider.

The full-text catalogs, indexes, and searches supported by the Microsoft Search service apply only to tables in SQL Server
databases. The Windows NT Indexing Service and Windows 2000 Indexing Service provides similar functionality against
operating system files. Indexing Service includes an OLE DB Provider for Indexing Service that can be used by OLE DB consumers.
SQL Server applications can access the OLE DB Provider for Indexing Service through distributed queries. Transact-SQL
statements can combine full-text searches referencing SQL Server tables with textual searches of file data by using both the full-
text SQL constructs with distributed query references to the OLE DB Provider for Indexing Service. For more information, see Full-
text Querying of File Data.

There is only one Microsoft Search service on any computer running multiple instances of SQL Server. The single instance of the
full-text search engine manages the full-text indexes for all the instances of SQL Server 2000 and SQL Server version 7.0 on the
computer.

See Also

Full-Text Catalogs and Indexes

Full-text Indexes

Full-text Search

Microsoft Search Service

SQL Server Architecture (SQL Server 2000)

Full-Text Indexing Support
This illustration shows the components that make up the full-text indexing support. These are the components involved in
defining, creating, and populating full-text indexes.

Enabling databases and tables for full-text indexing, defining, and populating the indexes is specified using:

SQL Server Enterprise Manager.

One of the nodes of a database tree in SQL Server Enterprise Manager is used to manage the full-text catalogs in the
database.

Applications using SQL Distributed Management Objects (SQL-DMO).

SQL-DMO has objects for managing full-text catalogs and indexes.

Applications using Transact-SQL and a standard database API.

Transact-SQL has a set of system stored procedures for managing full-text catalogs and indexes.

The other components define and populate full-text indexes in this manner:

1. A Microsoft® SQL Server™ 2000 database is enabled for full-text indexing.

2. The full-text catalogs for the database are specified.

3. Individual tables are enabled for full-text indexing and associated with a catalog.

4. Individual columns in each table are added to the full-text index for the table. All the meta data information from Steps from
1 through 4 is stored in system tables in SQL Server databases.

5. The full-text indexes for each table are activated on a table-by-table basis. When a full-text table index is activated, a start
seed value is sent from an instance of SQL Server to the indexing service within the Microsoft Search service. The start seed
value identifies the table involved in the full text index.

6. Population is requested on either a catalog-by-catalog or table-by-table basis. Populating on a catalog basis allows you to
populate multiple indexes in one operation; populating tables lets you populate specific indexes.

The population in Step 6 can take different forms:

Full population

If a full population is requested for a full-text catalog, index entries are built for all the rows in all the tables covered by the

catalog. If a full populates is requested for a table, index entries are built for all the rows in that table. A full population
typically occurs when a catalog or index is first populated, the indexes can then be maintained using change tracking or
incremental populations.

Change tracking population

Maintains a record of the rows that have been modified in a system table, and propagates the changes to the full-text index.
You start the change tracking by executing sp_fulltext_table and specify start_change_tracking for the @action
parameter. When using change tracking, you also specify when the changes are taken from the history table and populated
in the full-text index:

Background

After starting change tracking with start_change_tracking, you can execute sp_fulltext_table specifying
start_background_updateindex for the @action parameter. With this option, changes to rows in the table are
propagated to the full-text index as they occur.

On demand

In this option, all tracked changes are stored in the history, and only propagated to the full-text index when you
execute sp_fulltext_table specifying update_index for the @action parameter.

Scheduled

You can use SQL Agent to schedule periodic jobs that execute sp_fulltext_table specifying update_index for the
@action parameter. This will propagate all outstanding tracked changes to the index.

Incremental population

Only adjusts index entries for rows added, deleted, or modified after the last population. This feature requires that the
indexed table have a column of the timestamp data type. If the table does not have a timestamp column, only full or
change tracking populations can be performed. Requests for incremental populations on tables without timestamp
columns result in a full population operation.

If a new full-text index is defined for a table not associated with the catalog before, the next catalog-level incremental
population request builds all the entries for the table.

Incremental population requests are implemented as full populations if any of the meta data for the table has changed since
the last population. This includes altering any column, index, or full-text index definitions.

Each population request is sent to the indexing service within the Microsoft Search service:

The indexing service passes the appropriate start seed value to the SQL Server Handler. The start seed value contains
information such as the table and index involved in the population, and the timestamp value (if the table has a timestamp
column) associated with the last full or incremental population performed for the index.

The SQL Server Handler is a driver containing logic to extract text data from the SQL Server columns involved in a full-text
index. The Handler retrieves the data from SQL Server and passes it back to the index service. For a full population, the SQL
Server Handler extracts all the rows in the table. For an incremental population, the SQL Server Handler only extracts
information from rows whose current timestamp values are higher than the timestamp associated with the last
population, which is stored in the start seed.

The indexing service then passes an index identifier and the strings to be indexed to the index engine. The index engine
eliminates noise words such as a, and, or the. It also determines the word boundaries and builds a full-text index covering
the words passed down from the indexing service. This linguistic analysis differs depending on the language in which the
text is written. SQL Server 2000 supports linguistic analysis for several languages; the language is specified using
sp_fulltext_column. The full-text index is stored in the full-text catalog file.

At the end of the population, the indexing service calculates a new start seed value that records the point at which a
subsequent incremental population should start.

See Also

Full-Text Catalogs and Indexes

Full-text Indexes

Full-text Search

Microsoft Search Service

SQL Server Architecture (SQL Server 2000)

Full-Text Querying Support
When Microsoft® SQL Server™ 2000 receives a Transact-SQL statement with a full-text construct, it retrieves the needed
information from the Microsoft Search service using the full-text provider. Full-text constructs are the CONTAINS or FREETEXT
predicates, or the CONTAINSTABLE or FREETEXTTABLE rowset functions. The full-text constructs can reference multiple columns
in the full-text index if it is not known which column may contain the search conditions. The following illustration shows the flow
of this process.

The steps involved in this process include:

1. An application sends an instance of SQL Server a Transact-SQL statement with a full-text construct.

2. The SQL Server relational engine validates the full-text construct by querying the system tables to determine if the column
reference is covered by a full-text index. The relational engine reduces each SQL statement to a series of rowset operations,
and uses OLE DB to pass the operations to underlying components, usually the storage engine. The relational engine
transforms any full-text construct into a request for a rowset from the full-text provider instead of the storage engine. The
rowset requested is the set of keys satisfying the search condition and a ranking indicating how well the data for each key
met the search condition criteria. The command sent with the rowset request to the full-text provider includes the full-text
search condition.

3. The full-text provider validates the request and changes the search conditions to a form used by the querying support
component of the Microsoft Search service. The request is sent to the search service.

4. The querying support component uses the search engine component to extract the requested data from the full-text index.
This data is then passed back to the full-text provider in the form of a rowset.

5. The full-text provider returns the rowset to the relational engine.

6. The relational engine combines all the rowsets it receives from the storage engine and the full-text provider to build the
final result set it sends back to the client.

See Also

Full-Text Catalogs and Indexes

Full-text Indexes

Full-text Search

Microsoft Search Service

SQL Server Architecture (SQL Server 2000)

Extended Stored Procedure Architecture
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 extended stored procedures extend Transact-SQL functionality by enabling you to implement
logic in functions contained in dynamic-link library (DLL) files, and call those functions from Transact-SQL statements just as you
would a Transact-SQL procedure. Dynamic-link library files have the .dll file name extension. Extended stored procedures can
include most of the features of Microsoft Win32® and COM applications.

A DLL file must conform to the Extended Stored Procedure API to operate as an extended stored procedure. The DLL can contain
multiple functions identified to SQL Server as extended stored procedures; each function is identified by a separate extended
stored procedure name. When a Transact-SQL statement references one of the extended stored procedures, the relational
database engine calls the function associated with the extended stored procedure name. Extended stored procedures can open a
connection back to the SQL Server instance that called them, or connect to remote SQL Server installations.

Extended stored procedures are a part of the Open Data Services layer of the relational database engine, which is the interface
between the engine and the server Net-libraries. The server Net-Libraries receive client TDS packets and pass them to Open Data
Services. Open Data Services transforms the TDS packets into events that it passes to other parts of the relational database
engine. The database engine then uses Open Data Services to send replies back to SQL Server clients through the server Net-
Libraries.

When the relational database engine determines that a Transact-SQL statement references an extended stored procedure:

The relational database engine passes the extended stored procedure request to the Open Data Services layer.

Open Data Services then loads the DLL containing the extended stored procedure function into the SQL Server 2000
address space, if not already loaded.

Open Data Services passes the request to the extended stored procedure.

Open Data Services returns the results of the operation to the database engine.

Security Note Extended stored procedures offer performance enhancements and extend SQL Server functionality. However,
because the extended stored procedure DLL and SQL Server share the same address space, a problem procedure can adversely
affect SQL Server functioning. Although exceptions thrown by the extended stored procedure DLL are handled by SQL Server, it is
possible to damage SQL Server data areas. As a security precaution, only SQL Server system administrators can add extended
stored procedures to SQL Server. These procedures should be thoroughly tested before they are installed.

In the past, The Open Data Services API was also used to write server applications, such as gateways to other database systems.
These types of applications have been replaced by newer technologies such as:

Database APIs that support multiple different databases and other data sources, such as OLE DB and ODBC.

Applications written to the OLE DB or ODBC APIs have little need for a gateway to access different databases.

SQL Server 2000 supports heterogeneous distributed queries, which allow Transact-SQL queries to pull data from any OLE
DB data source without any need for specialized server applications.

MS DTC, which allows distributed transactions to span multiple databases.

Windows NT Component Services, for running midtier application logic.

SQL Server 2000 does not support the obsolete portions of the Open Data Services API. The only part of the original Open Data
Services API still supported by SQL Server 2000 are the extended stored procedure functions, so the API has been renamed to the
Extended Stored Procedure API.

See Also

Programming Extended Stored Procedures

SQL Server Architecture (SQL Server 2000)

Remote Stored Procedure Architecture
Remote stored procedures are a legacy feature of Microsoft® SQL Server™ 2000. Their functionality in Transact-SQL is limited to
executing a stored procedure on a remote SQL Server installation. The distributed queries introduced in SQL Server version 7.0
support this ability along with the ability to access tables on linked, heterogeneous OLE DB data sources directly from local
Transact-SQL statements. Instead of using a remote stored procedure call on SQL Server 2000, use distributed queries and an
EXECUTE statement to execute a stored procedure on a remote server.

An instance of SQL Server 2000 can send and receive remote stored procedure calls to other instances of SQL Server 2000 and
SQL Server version 7.0. An instance of SQL Server 2000 can also send and receive remote stored procedure calls to instances of
SQL Server version 6.0 or SQL Server version 6.5. A server running SQL Server 2000 can receive remote stored procedure calls
from an instance of SQL Server version 4.21a, but the instance of SQL Server 2000 cannot make remote stored procedure calls to
the instance of SQL Server version 4.21a. The instance of SQL Server 4.21a cannot recognize the version of the Tabular Data
Stream (TDS) used by SQL Server 2000.

Remote Stored Procedure Protocol Optimizations

The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver both make use of a TDS protocol performance
optimization originally introduced to support remote stored procedures. The use of this optimization can be seen in SQL Profiler
traces.

SQL Profiler traces events in an instance of SQL Server, such as receipt and return of the Tabular Data Stream (TDS) packets sent
between applications and an instance of SQL Server. TDS is the application-level protocol defined for SQL Server client/server
communications.

When an application sends a Transact-SQL batch for execution, a generic packet for executing SQL is used that shows up in the
SQL Profiler trace as SQL:BatchStarting and SQL:BatchCompleted events. When one instance of SQL Server sends a request for
another instance of SQL Server to execute a remote stored procedure, a specialized RPC TDS packet is used. The RPC packet is
tailored to the needs of transmitting requests to execute a stored procedure. The relational engine also recognizes that this is a
specialized packet and implements a number of optimizations that speeds the execution of the stored procedure. These show up
in a SQL Profiler trace as RPC:Starting and RPC:Completed events.

SQL Server 2000 does not limit the use of these specialized RPC packets to server-to-server communications. The Microsoft OLE
DB Provider for SQL Server and the SQL Server ODBC driver use this specialized RPC packet to increase performance in two
cases:

If an application uses the ODBC CALL syntax to execute a stored procedure.

When the provider or driver internally generate calls to system stored procedures.

Users analyzing SQL Profiler traces from applications using the provider or driver can see these RPC TDS events.

See Also

Configuring Remote Servers

Calling a Stored Procedure

Executing Stored Procedures

Calling a Stored Procedure (OLE DB)

TSQL Event Category

SQL Server Architecture (SQL Server 2000)

Transactions Architecture
Microsoft® SQL Server™ 2000 maintains the consistency and integrity of each database despite errors that occur in the system.
Every application that updates data in a SQL Server database does so using transactions. A transaction is a logical unit of work
made up of a series of statements (selects, inserts, updates, or deletes). If no errors are encountered during a transaction, all of the
modifications in the transaction become a permanent part of the database. If errors are encountered, none of the modifications
are made to the database.

A transaction goes through several phases:

Before the transaction starts, the database is in a consistent state.

The application signals the start of a transaction. This can be done explicitly with the BEGIN TRANSACTION statement.
Alternatively, the application can set options to run in implicit transaction mode; the first Transact-SQL statement executed
after the completion of a prior transaction starts a new transaction automatically. No record is written to the log when the
transaction starts; the first record is written to the log when the application generates the first log record for a data
modification.

The application starts modifying data. These modifications are made one table at a time. As a series of modifications are
made, they may leave the database in a temporarily inconsistent intermediate state.

When the application reaches a point where all the modifications have completed successfully and the database is once
again consistent, the application commits the transaction. This makes all the modifications a permanent part of the
database.

If the application encounters some error that prevents it from completing the transaction, it undoes, or rolls back, all the
data modifications. This returns the database to the point of consistency it was at before the transaction started.

SQL Server applications can also run in autocommit mode. In autocommit mode each individual Transact-SQL statement is
committed automatically if it is successful and rolled back automatically if it generates an error. There is no need for an
application running in autocommit mode to issue statements that specifically start or end a transaction.

All Transact-SQL statements run in a transaction: an explicit transaction, an implicit transaction, or an autocommit transaction. All
SQL Server transactions that include data modifications either reach a new point of consistency and are committed, or are rolled
back to the original point of consistency. Transactions are not left in an intermediate state where the database is not consistent.

See Also

Transactions

SQL Server Architecture (SQL Server 2000)

Transaction Recovery
Every Microsoft® SQL Server™ 2000 database has a transaction log that records data modifications made in the database. The
log records the start and end of every transaction and associates each modification with a transaction. An instance of SQL Server
stores enough information in the log to either redo (roll forward) or undo (roll back) the data modifications that make up a
transaction. Each record in the log is identified by a unique log sequence number (LSN). All of the log records for a transaction are
chained together.

An instance of SQL Server records many different types of information in the transaction log. Instances of SQL Server 2000
primarily log the logical operations performed. The operation is reapplied to roll forward a modification, and the opposite of the
logical operation is performed to roll back a modification.

Each instance of SQL Server controls when modifications are written from its data buffers to disk. An instance of SQL Server may
cache modifications in buffers for a period of time to optimize disk writes. A buffer page that contains modifications that have not
yet written to disk is known as a dirty page. Writing a dirty buffer page to disk is called flushing the page. When modifications are
cached, care must be taken to ensure that no data modification is flushed before the corresponding log image is written to the log
file. This could create a modification that could not be rolled back if necessary. To ensure that they can recover all modifications,
instances of SQL Server use a write-ahead log, which means that all log images are written to disk before the corresponding data
modification.

A commit operation forces all log records for a transaction to the log file so that the transaction is fully recoverable even if the
server is shut down. A commit operation does not have to force all the modified data pages to disk as long as all the log records
are flushed to disk. A system recovery can roll the transaction forward or backward using only the log records.

Periodically, each instance of SQL Server ensures that all dirty log and data pages are flushed. This is called a checkpoint.
Checkpoints reduce the time and resources needed to recover when an instance of SQL Server is restarted. For more information
on checkpoint processing, see Checkpoints and the Active Portion of the Log.

Rolling Back an Individual Transaction

If any errors occur during a transaction, the instance of SQL Server uses the information in the log file to roll back the transaction.
This rollback does not affect the work of any other users working in the database at the same time. Usually, the error is returned
to the application, and if the error indicates a possible problem with the transaction, the application issues a ROLLBACK statement.
Some errors, such as a 1205 deadlock error, roll back a transaction automatically. If anything stops the communication between
the client and an instance of SQL Server while a transaction is active, the instance rolls back the transaction automatically when
notified of the stoppage by the network or operating system. This could happen if the client application terminates, if the client
computer is shut down or restarted, or if the client network connection is broken. In all of these error conditions, any outstanding
transaction is rolled back to protect the integrity of the database.

Recovery of All Outstanding Transactions at Start-up

It is possible for an instance of SQL Server to sometimes stop processing (for example, if an operator restarts the server while
users are connected and working in databases). This can create two problems:

There may be an unknown number of SQL Server transactions partially completed at the time the instance stopped. These
incomplete transactions need to be rolled back.

There may be an unknown number of data modifications recorded in the SQL Server database log files, but the
corresponding modified data pages were not flushed to the data files before the server stopped. Any committed
modifications must be rolled forward.

When an instance of SQL Server is started, it must find out if either of these conditions exist and address them. The following
steps are taken in each SQL Server database that is in the instance:

The LSN of the last checkpoint is read from the database boot block along with the Minimum Recovery LSN.

The transaction log is scanned from the Minimum Recovery LSN to the end of the log. All committed dirty pages are rolled
forward by redoing the logical operation recorded in the log record.

The instance of SQL Server then scans backward through the log file rolling back all uncompleted transactions by applying
the opposite of the logical operation recorded in the log records.

The RESTORE statement also uses this type of recovery, unless a user specifies the NORECOVERY option. When restoring a

sequence of database, differential, or log backups to recover a database to a point of failure, you specify NORECOVERY on all
RESTORE statements except when restoring the last log backup. When the last backup in the sequence is restored, the RESTORE
statement also has to ensure that all uncompleted transactions are rolled back. You specify the RECOVERY option on this
RESTORE statement, in which case it uses the same logic as the startup recovery process to roll back all transactions that are still
marked incomplete at the end of the last log.

SQL Server Architecture (SQL Server 2000)

Concurrency Architecture
When many people attempt to modify data in a database at the same time, a system of controls must be implemented so that
modifications made by one person do not adversely affect those of another person. This is called concurrency control.

Concurrency control theory has two classifications for the methods of instituting concurrency control:

Pessimistic concurrency control

A system of locks prevents users from modifying data in a way that affects other users. After a user performs an action that
causes a lock to be applied, other users cannot perform actions that would conflict with the lock until the owner releases it.
This is called pessimistic control because it is mainly used in environments where there is high contention for data, where
the cost of protecting data with locks is less than the cost of rolling back transactions if concurrency conflicts occur.

Optimistic concurrency control

In optimistic concurrency control, users do not lock data when they read it. When an update is performed, the system checks
to see if another user changed the data after it was read. If another user updated the data, an error is raised. Typically, the
user receiving the error rolls back the transaction and starts over. This is called optimistic because it is mainly used in
environments where there is low contention for data, and where the cost of occasionally rolling back a transaction
outweighs the costs of locking data when read.

Microsoft® SQL Server™ 2000 supports a wide range of optimistic and pessimistic concurrency control mechanisms. Users
specify the type of concurrency control by specifying:

A transaction isolation level for a connection.

Concurrency options on cursors.

These attributes can be defined using either Transact-SQL statements or through the properties and attributes of the database
APIs such as ADO, OLE DB, and ODBC.

See Also

Four Concurrency Problems

Cursor Concurrency

SQL Server Architecture (SQL Server 2000)

Locking Architecture
A lock is an object used by software to indicate that a user has some dependency on a resource. The software does not allow
other users to perform operations on the resource that would adversely affect the dependencies of the user owning the lock.
Locks are managed internally by system software and are acquired and released based on actions taken by the user.

Microsoft® SQL Server™ 2000 uses locks to implement pessimistic concurrency control among multiple users performing
modifications in a database at the same time. By default, SQL Server manages both transactions and locks on a per connection
basis. For example, if an application opens two SQL Server connections, locks acquired by one connection cannot be shared with
the other connection. Neither connection can acquire locks that would conflict with locks held by the other connection. Only
bound connections are not affected by this rule. For more information, see Using Bound Connections.

SQL Server locks are applied at various levels of granularity in the database. Locks can be acquired on rows, pages, keys, ranges
of keys, indexes, tables, or databases. SQL Server dynamically determines the appropriate level at which to place locks for each
Transact-SQL statement. The level at which locks are acquired can vary for different objects referenced by the same query; for
example one table may be very small and have a table lock applied, while another, larger table may have row locks applied. The
level at which locks are applied does not have to be specified by users and needs no configuration by administrators. Each
instance of SQL Server ensures that locks granted at one level of granularity respect locks granted at another level. For example, if
UserA attempts to acquire a share lock on a row, the instance of SQL Server also attempts to acquire intent share locks on the
page and the table. If UserB has an exclusive lock at the page or table level, UserA is blocked from acquiring locks until the lock
held by UserB is freed.

There are several lock modes: shared, update, exclusive, intent, and schema. The lock mode indicates the level of dependency the
connection has on the locked object. SQL Server controls how the lock modes interact. For example, an exclusive lock cannot be
obtained if other connections hold shared locks on the resource.

Locks are held for the length of time needed to protect the resource at the level requested:

The duration of share locks used to protect reads depends on the transaction isolation levels. At the default transaction
isolation level of READ COMMITTED, a share lock is held only as long as it takes to read a page. In scans, the lock is held
until a lock is acquired on the next page in a scan. If the HOLDLOCK hint is specified, or the transaction isolation level is set
to either REPEATABLE READ or SERIALIZABLE, the locks are held to the end of the transaction.

Depending on the concurrency options set for a cursor, the cursor may acquire shared-mode, scroll locks to protect fetches.
When scroll locks are needed, they are held until the next fetch or the closing of the cursor, whichever happens first. If
HOLDLOCK is specified, however, the scroll locks are held until the end of the transaction.

Exclusive locks used to protect updates are held until the end of the transaction.

If a connection attempts to acquire a lock that conflicts with a lock held by another connection, the connection attempting to
acquire the lock is blocked until:

The conflicting lock is freed and the connection acquires the lock it requested.

The time-out interval for the connection expires. By default, there is no time-out interval, but some applications set a time-
out interval to prevent an indefinite wait.

If several connections become blocked waiting for conflicting locks on a single resource, the locks are granted on a first-come,
first-serve basis as the preceding connections free their locks.

SQL Server has an algorithm to detect deadlocks, a condition where two connections have blocked each other. If an instance of
SQL Server detects a deadlock, it will terminate one transaction, allowing the other to continue. For more information, see
Deadlocking.

SQL Server may dynamically escalate or deescalate the granularity or type of locks. For example, if an update acquires a large
number of row locks and has locked a significant percentage of a table, the row locks are escalated to a table lock. If a table lock is
acquired, the row locks are released. SQL Server 2000 rarely needs to escalate locks; the query optimizer usually chooses the
correct lock granularity at the time the execution plan is compiled. For more information, see Lock Escalation and Dynamic
Locking.

See Also

Locking

Cursor Locking

SQL Server Architecture (SQL Server 2000)

Latching
Latching

Latches are very lightweight, short-term synchronization objects protecting actions that need not be locked for the life of a
transaction. They are primarily used to protect a row when read for a connection.

When the relational engine is processing a query, each time a row is needed from a base table or index, the relational engine uses
the OLE DB API to request that the storage engine return the row. While the storage engine is actively transferring the row to the
relational engine, the storage engine must ensure that no other task modifies either the contents of the row or certain page
structures such as the page offset table entry locating the row being read. The storage engine does this by acquiring a latch,
transferring the row in memory to the relational engine, and then releasing the latch.

SQL Server Performance Monitor has a Latches object that indicates how many times latches could not be granted immediately
and the amount of time threads spent waiting for latches to be granted.

See Also

SQL Server: Latches Object

SQL Server Architecture (SQL Server 2000)

Distributed Transactions Architecture
Distributed transactions are transactions that involve resources from two or more sources. Microsoft® SQL Server™ 2000
supports distributed transactions, allowing users to create transactions that update multiple SQL Server databases and other
sources of data.

A distributed transaction involves:

Resource managers

The software controlling each resource involved in a distributed transaction is known as a resource manager. A distributed
transaction is made up of local transactions in each individual resource manager. Each resource manager must be able to
commit or roll back its local transaction in coordination with all the other resource managers in the distributed transaction.
SQL Server can operate as a resource manager in a distributed transaction that complies with the X/Open XA specification
for Distributed Transaction Processing.

Transaction manager

Committing or rolling back a distributed transaction is controlled by a software component called a transaction manager.
The transaction manager coordinates with each resource manager to ensure that all the local transactions making up the
distributed transaction are committed or rolled back together. The Microsoft Distributed Transaction Coordinator (MS DTC)
service operates as a transaction manager. MS DTC complies with the X/Open XA specification for Distributed Transaction
Processing.

Two-phase commit (2PC)

Special commit processing is required to prevent problems in managing transactions spanning multiple resource managers.
A commit of a large transaction can take a relatively long time as log buffers are flushed freed. The commit process itself
can also encounter errors that would force a rollback. If a transaction manager simply asked each resource manager to
commit, it could get a success status back from some resource managers and then get an error from one resource manager.
This creates a conflict because all of the distributed transaction should be rolled back, but parts are already committed. Two-
phase commits address this problem by dividing a commit into two phases:

Prepare

The transaction manager sends a prepare to commit request to each resource manager. Each resource manager
then performs all resource-intensive actions needed to complete the commit process, such as flushing all log
buffers. The resource manager only retains the minimum locks needed to maintain the integrity of the transaction,
and then returns success to the transaction manager.

Commit

If all the resource managers return success to their prepare requests, the transaction manager then sends commit
commands to each resource manager. Each resource manager then quickly records the transaction as completed
and frees the last held resources. If any resource manager returns an error to the prepare request, the transaction
manager then sends rollback commands to each resource manager.

There are several ways applications can include SQL Server 2000 in a distributed transaction:

If an application has a local transaction and issues a distributed query, the local transaction is escalated to a distributed
transaction.

Issue a BEGIN DISTRIBUTED TRANSACTION statement.

If an application has a local transaction and the option REMOTE_PROC_TRANSACTIONS is set ON, calling a remote stored
procedure escalates the local transaction to a distributed transaction.

Applications using the Microsoft OLE DB Provider for SQL Server or the SQL Server ODBC driver can use OLE DB methods
or ODBC functions to have a SQL Server connection join a distributed transaction started by the application.

See Also

Distributed Transactions

MS DTC Service

SQL Server Architecture (SQL Server 2000)

Cursor Architecture
All SQL statements operate on a set of rows. A SELECT statement returns a complete result set containing all the rows that meet
the qualifications in the SELECT statement. Applications need to process the result set one row or block of rows at a time. Cursors
are a logical extension to result sets that let applications work with the result set row by row.

Microsoft® SQL Server™ 2000 supports several mechanisms for specifying cursors:

Transact-SQL supports the SQL-92 DECLARE CURSOR, OPEN, FETCH, and CLOSE statements for managing cursors.
Transact-SQL also supports cursor extensions such as:

A DEALLOCATE statement to allow optimizations in reusing cursors.

Defining a Transact-SQL variable to have a cursor data type and then using it to refer to a cursor.

Defining a cursor to have local or global scope.

Specifying the cursor types from the OLE DB and ODBC specifications (FORWARD_ONLY, STATIC, KEYSET, and
DYNAMIC) in a DECLARE CURSOR statement.

The Microsoft OLE DB Provider for SQL Server supports the cursor functionality of the ADO and OLE DB APIs.

The Microsoft SQL Server ODBC driver supports the cursor functionality of the ODBC, RDO, DAO, and Microsoft Foundation
Classes Database Classes APIs.

Microsoft Embedded SQL for C supports the cursor functionality of the Embedded SQL standard.

The DB-Library API supports the same level of cursor functionality as the OLE DB and ODBC APIs.

See Also

Cursors

SQL Server Architecture (SQL Server 2000)

Server Scalability
Microsoft® SQL Server™ 2000 extends the scalability of SQL Server at both ends of the performance spectrum. The SQL Server
2000 database engine that runs on Microsoft Windows NT® and Windows® 2000 includes support for items such as 64 GB of
physical memory and distributed partitioned views that allow you to implement groups of database servers that can scale to meet
the processing requirements of the largest Web sites or enterprise data systems. SQL Server CE adds enhanced support for
mobile users by running on Microsoft Windows CE. These enhancements make SQL Server 2000 a good choice for managing
databases ranging from a small, personal database on a kilobyte-sized Windows CE device to terabyte-sized databases accessed
by thousands of Internet users.

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 on Large Servers
One of the primary design goals for Microsoft® SQL Server™ 2000 and SQL Server version 7.0 is to increase their ability to
implement the databases supporting the largest Web sites and enterprise systems. Although earlier versions of SQL Server do
well at supporting large numbers of concurrent users, the length of time it takes them to run utility, backup, and restore
operations limits the size of a manageable SQL Server database to 200 through 300 GB.

SQL Server 2000 Enterprise Edition is capable of handling terabyte-sized databases with thousands of concurrent users. Some of
the features that allow this are:

SQL Server Enterprise Edition can scale effectively on up to 32 microprocessors on SMP computers running Microsoft
Windows® 2000 DataCenter.

SQL Server 2000 Enterprise Edition can use up to 64 GB of physical memory (RAM) on Windows 2000 DataCenter. For
more information, see Using AWE Memory on Windows 2000.

SQL Server 2000 Enterprise Edition supports distributed partitioned views, which allow groups of database servers to
support the workload of a large Web site or enterprise system. Such a group, or federation, of servers must be administered
separately, but provide the same level of performance as a cluster of database servers. For more information, see Federated
SQL Server 2000 Servers.

SQL Server 2000 Enterprise Edition supports indexed views. Creating an index on a view causes the view to be materialized,
and its result set stored in the same format as a table. For certain types of views, this can improve performance
exponentially. For more information, see View Indexes.

The on-disk data structures that support parallel processing and serial, read-ahead scans. Table scans and index scans can
now be performed serially, which is especially useful in online analytical processing (OLAP) that characterizes data
warehouses. For more information, see I/O Architecture.

SQL Server 2000 natively supports the prepare/execute model of executing SQL statements. It also has logic to share query
execution plans between connections without requiring an application to prepare the statement. These features reduce the
overhead associated with compiling and executing statements. For more information, see Execution Plan Caching and
Reuse.

Hash and merge join types offer improved join performance. For more information, see Advanced Query Tuning Concepts.

SQL Server 2000 supports intra-query parallelism on servers that have more than one microprocessor, or CPU. Individual
SQL statements can be split into two or more tasks that operate concurrently to return the results faster. For more
information, see Parallel Query Processing.

SQL Server 2000 evaluates an SQL statement and dynamically chooses the locking granularity (row, page, table) that will
maximize concurrent throughput. For more information, see Locking Architecture.

SQL Server 2000 uses Microsoft Windows NT® and Windows 2000 asynchronous I/O and scatter-gather I/O, along with
buffer cache management algorithms to maximize OLTP performance. For more information, see I/O Architecture.

The speed of the BACKUP and RESTORE statements is fast enough to run the statements during production work because
they do not interfere with database activity. BACKUP and RESTORE use parallel I/Os when a backup is stored on multiple
backup devices. BACKUP options, such as differential backups, and backing up only files or filegroups, reduce size of
backups and their effect on the system. For more information, see Backup/Restore Architecture.

The SQL Server 2000 and SQL Server 7.0 on-disk data structures are much simpler than in earlier versions, which make the
structures more robust. Also, the database engine is coded to detect errors at relatively early points in processing and
terminate a task before it causes problems in the database itself (fail-fast logic). These improvements result in fewer
problems with on-disk structures and reduce or eliminate the need to run database integrity checks.

The algorithms in the database integrity check statements are much faster in SQL Server 2000 and SQL Server 7.0 than in

earlier versions. The integrity check statements now make a single serial scan of the database and check objects in parallel
during the scan of the database. For more information, see Data Integrity Validation.

The SQL Server 2000 and version 7.0 bulk copy components now transfer data at increased speeds. The bcp bulk copy
utility can now copy data in parallel from multiple sources into the same file concurrently. For more information, see Parallel
Data Loads.

SQL Server 2000 and version 7.0 now support doing bulk loads directly on the server without transferring the data through
a client. This is done using the new BULK INSERT statement, and is the fastest way to get large amounts of data into a table.
For more information, see BULK INSERT.

Distribution statistics indicate the selectivity of index keys and are used by the query optimizer to choose the most efficient
index when compiling a query. If the statistics are out of date, the optimizer may not generate an optimal execution plan.
SQL Server 2000 can be set up to generate distribution statistics automatically, which improves the effectiveness of the
query optimizer. The sampling processes that generate the statistics have also been improved; they can now generate
reliable statistics after scanning less data than earlier versions of SQL Server. For more information, see Statistical
Information.

SQL Server 2000 defines OLE DB extensions that OLE DB providers can use to report distribution statistics to the SQL Server
2000 database engine. This allows the engine to more efficiently optimize distributed queries. The Microsoft OLE DB
Provider for SQL Server 2000 supports these extensions, improving the performance of distributed queries referencing SQL
Server databases. For more information, see Distribution Statistics Requirements for OLE DB Providers.

SQL Server includes failover cluster support. Two to four Windows NT or Windows 2000 servers can have instances of SQL
Server and all access a set of cluster disks holding SQL Server databases and each instance is identified by a single virtual
server name. If the server currently processing SQL Server requests fails, one of the other Windows servers starts its SQL
Server services, recovers any uncompleted transactions recorded in the database logs, and begins operating in place of the
lost server. For more information, see Failover Clustering Architecture.

SQL Server 2000 introduces log shipping, which can be used to maintain a warm standby server. The transaction logs from
a production server are periodically backed up and applied to a warm standby server. If the production server fails, the
warm standby server can be brought online in its place. For more information, see Log Shipping.

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 Databases on the Desktop
 Topic last updated -- January 2004

The same Microsoft® SQL Server™ 2000 database engine that supports thousands of concurrent users can also be installed on
laptop or desktop computers running client operating system versions, such as Microsoft Windows® 98, Microsoft Windows
Millennium Edition, Microsoft Windows NT® Workstation, Windows 2000 Professional, or Windows XP. Two versions of SQL
Server 2000 that run on these operating systems are:

SQL Server 2000 Personal Edition

An edition of SQL Server 2000 used on personal workstations or small workgroup servers. SQL Server 2000 Personal
Edition includes the management tools, such as SQL Server Enterprise Manager, that come with both SQL Server 2000
Standard Edition and SQL Server 2000 Enterprise Edition.

SQL Server 2000 Desktop Engine (MSDE 2000)

A redistributable version of the SQL Server relational database engine, which third-party software developers can include in
their applications that use SQL Server to store data. The SQL Server 2000 Desktop Engine is made available as a set of
Windows Installer files that can be included in the application setup.

For more information about Desktop Engine, see Understanding SQL Server 2000 Desktop Engine (MSDE 2000).

The database engine included in these two versions of SQL Server 2000 is tuned to support the workloads typical of a single user
or a small workgroup. The database engine provides desktop users with essentially the same functionality and features as SQL
Server 2000 Standard Edition and SQL Server 2000 Enterprise Edition; however, two exceptions are:

Certain features primarily used in large production databases, such as parallel statement processing and indexed views, are
not supported. For more information about the features available in the various editions of SQL Server 2000, see Features
Supported by the Editions of SQL Server 2000.

A concurrent workload governor limits the performance of the database engine in these two editions. The performance of
individual Transact-SQL batches is decreased when more than eight operations are executed concurrently. For more
information about the workload governor, see The SQL Server 2000 Workload Governor.

The ease-of-use features of the database engine allow it to run in a laptop or desktop environment with minimal configuration
tuning from the user. The database engine automatically configures itself to acquire or free resources, such as memory and disk
space, as needed. This means that SQL Server 2000 Personal Edition and SQL Server 2000 Desktop Engine can be run on an end-
user laptop or desktop computer without requiring the user or database administrator to constantly tune the database.

SQL Server 2000 Personal Edition and SQL Server 2000 Desktop Engine (MSDE 2000) support the same programming model as
SQL Server 2000 Standard Edition and SQL Server 2000 Enterprise Edition. Applications use the same APIs (ADO, OLE DB, ODBC,
SQL-DMO, and so on) to access the data in all the editions of SQL Server 2000. The only difference is the set of features
supported in the higher-level editions, such as failover clustering or federated database servers, although most of these features
are administrative or scalability features that are transparent to most applications.

The database engine used in SQL Server 2000 supports optimizations that maximize performance in small laptop or desktop
systems with small amounts of memory:

The internal data structures of the database, such as mixed extents, significantly reduce the size of small databases, or
databases with many small tables.

When running at its default configuration settings, SQL Server configures itself dynamically to the current resource usage
on the computer without the need for tuning commands from the user.

Many configuration options that had to be set manually in SQL Server version 6.5 or earlier have been replaced with
internal logic in the database engine that configures these options automatically based on load.

It is no longer necessary to update distribution statistics manually; these are updated automatically.

Database files grow or shrink automatically depending on the amount of data.

SQL Server 2000 replication and the ability of the database engine to attach and detach databases offers good support for mobile

and disconnected users with laptops. These users can periodically connect to a regional or departmental server to resynchronize
their database information with the main database through replication. Alternatively, a database can be placed on a compact disc
and sent to remote users, where they can simply attach it to their server to get the latest information.

SQL Server Architecture (SQL Server 2000)

The SQL Server 2000 Workload Governor
The SQL Server 2000 Workload Governor

 Topic last updated -- January 2004

The version of the Microsoft® SQL Server™ 2000 database engine included in SQL Server 2000 Desktop Engine (MSDE 2000)
and SQL Server 2000 Personal Edition contains a workload governor designed to limit performance if the database engine
receives more work than is typical of a small number of users.

NOTE: The following description of the workload governor is specific to SQL Server 2000 Desktop Engine (MSDE 2000) and SQL
Server 2000 Personal Edition. Future versions of SQL Server will use other mechanisms to differentiate editions.

The Microsoft® SQL Server™ 2000 workload governor is designed to limit the performance of an instance of the database engine
any time more than eight operations are active at the same time. An instance of the SQL Server 2000 database engine is one copy
of the database software that operates as an operating system service.

The operations counted by the workload governor are:

Processing a request to open an inbound connection and login.

Processing a batch of one or more Transact-SQL statements received over an inbound connection.

Processing a distributed transaction operation, such as a prepare-to-commit or rollback operation.

Processing a request to log off and close an inbound connection.

Periodic system-generated operations such as shrinking a database if the database has the AUTO_SHRINK option turned on,
completing the deletion of rows from the base level of indexes, or populating the SQL Server performance counters in the
System Monitor.

Instances of SQL Server 2000 Personal Edition will also periodically generate system operations to process any full-text
indexes referenced by the databases managed by the instance. SQL Server 2000 Desktop Engine (MSDE 2000) does not
support full-text indexes.

Like all versions of SQL Server 2000, SQL Server 2000 Personal Edition and MSDE 2000 allow 32,767 connections to an instance
of the database engine. There is no limit for the number of connections that can be executing operations at the same time. The
only effect of the workload governor is that it starts slowing down the database engine when more than eight operations are
actively running at the same time.

Once it has been activated, the workload governor limits performance by stalling a user connection for a few milliseconds each
time the connection requests a logical read or write on any of the pages in the data files of a database. (The governor does not
affect log files.) The database engine waits before every data page reference as long as there are more than eight active
concurrent operations. When the number of active operations is eight or lower, the database engine does not wait before
scheduling any reads or writes. When the workload governor is active, it equally affects all connections; it is not limited to slowing
down only the connections that activated the governor. The length of the wait implemented by the governor is constant (it does
not vary depending on how many operations are active beyond the limit of eight).

The workload governor operates at the level of an instance of the database engine, not at the level of a database. Each instance
can have up to 32,767 databases. The workload governor is activated when there are more than eight active concurrent
operations in the instance, even if each operation is working in a different database.

In summary, the workload governor in the database engine for SQL Server 2000 Desktop Engine (MSDE 2000) and SQL Server
2000 Personal Edition works by counting active operations. When there are more than eight active operations at the same time in
the same instance of the database engine, the governor implements a slight wait before each logical read or write to a data file.
For the amount of work typical in databases used by single users or small workgroups, the cumulative effect of the waits is not
noticeable. In systems that are reading and writing large amounts of data, the cumulative affect of all the waits slows the
performance of the database engine.

The workload governor counts as operations these requests received on any inbound connection from an application or SQL
Server component:

Processing a login request.

Processing a batch of Transact-SQL statements.

Processing a distributed transaction command.

Processing a logoff request.

The workload governor also counts some system-generated operations as if they are operations on active connections.

You can view the application event log for SQL Server 3629 messages or use the DBCC CONCURRENCYVIOLATION statement to
assess how often the workload governor is activated. If the governor is frequently activated in a well-designed and well-tuned
system, and the system is generating a lot of logical reads and writes, you should consider upgrading to SQL Server 2000
Standard Edition.

See Also

Logins

Connecting to and Disconnecting from an Instance

Batches

Distributed Transactions

I/O Architecture

DBCC CONCURRENCYVIOLATION

When To Upgrade From the Governor

Data Access and the Workload Governor

Understanding When The Workload Governor Is Activated

SQL Server Architecture (SQL Server 2000)

When to Upgrade from the Governor
When to Upgrade from the Governor

 Topic last updated -- January 2004

You should consider upgrading from Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) or SQL Server 2000 Personal
Edition to SQL Server 2000 Standard Edition when performance is constrained by the workload governor. The only factor that
activates the workload governor is having more than eight active operations at the same time. Once the governor has been
activated, one factor determines how much the database engine will slow down: the cumulative number of logical reads and
writes of data pages by all the active connections.

There are two ways to find out how often the workload governor is activated:

Review the application event log for SQL Server informational message 3629. This message indicates how many concurrent
operations were active at the time the message was written. When the governor is active, it will periodically put a 3629
message in the event log.

Use the DBCC CONCURRENCYVIOLATION statement to monitor how often the workload governor is activated. This will
also give you an idea of how many active operations are being processed by the instance at the times the governor is active.

Consider upgrading to SQL Server 2000 Standard Edition under these two conditions:

DBCC CONCURRENCYVIOLATION or informational message 3629 shows that the workload governor is frequently active.

The SQL Server 2000 performance counters show a lot of logical database reads and writes.

Before upgrading to SQL Server 2000 Standard Edition for performance reasons, however, you should first use the standard SQL
Server 2000 performance monitoring facilities to ensure that the amounts of reads and writes are not due to application or
database design factors. Look for situations such as the following:

A missing or poorly designed index on a table that means many queries referencing that table generate table scans instead
of index retrievals.

Poorly coded queries that retrieve unnecessarily large result sets or force unnecessary joins, scans over many index pages,
or table scans.

A poor database design that forces unnecessary joins.

See Also

Monitoring Server Performance and Activity

DBCC CONCURRENCYVIOLATION

The SQL Server 2000 Workload Governor

Data Access and the Workload Governor

Understanding When The Workload Governor Is Activated

SQL Server Architecture (SQL Server 2000)

Data Access and the Workload Governor
Data Access and the Workload Governor

 Topic last updated -- January 2004

The database engine uses a two-stage process for reading and writing data that minimizes the number of times it must physically
access disk files, because accessing a disk file consumes a relatively large amount of computing resources.

SQL Server databases have both data and log files. Data files are divided into 8-kilobyte (KB) pages. Data and index pages store
the rows of data from tables and indexes respectively; there are also 8-KB pages that hold maps showing how the data and index
pages are allocated. Each data, index, and allocation page is stored in one of the data files that make up the database. Each
instance of the database engine maintains a large area of memory, called a buffer cache, in which it stores the pages it has read
from the data files.

When a Transact-SQL statement references a piece of data in a data file, the database engine first performs a logical read, to see if
the page containing the data is already in the buffer cache. If the page is not in the cache, then the database engine performs a
physical read, to retrieve the page from disk into the cache. No physical read is required if the page is already in the cache.

A similar two-stage process is performed for writes. A logical write is performed to update the page contents in the cache, and
then the modified page is physically written to disk.

When the workload governor is active, it operates by performing a slight delay before each logical read or write of a data, index,
or allocation page. This means that there is a direct correlation between the number of waits and the number of logical reads and
writes, and there is no correlation between the number of waits and the number of physical reads and writes. The workload
governor is not affected by configurations that decrease physical reads and writes, such as having a large cache.

See Also

Pages and Extents

I/O Architecture

SQL Server Memory Pool

The SQL Server 2000 Workload Governor

When To Upgrade From the Governor

Understanding When The Workload Governor Is Activated

SQL Server Architecture (SQL Server 2000)

Understanding When the Workload Governor Is Activated
Understanding When the Workload Governor Is Activated

 Topic last updated -- January 2004

Understanding when the workload governor is activated requires a high-level understanding of SQL Server 2000 connections
and operations.

An instance of the SQL Server 2000 database engine runs as a process separate from applications. An application works with the
instance by opening a connection to the instance, sending a series of commands over the connection, and then closing the
connection. The most common type of command the application sends is Transact-SQL batches. (A batch is one or more Transact-
SQL statements that are run as one executable unit.)

This series of commands can be illustrated using the SQL Server 2000 osql utility. When you launch osql, it uses the ODBC API to
make a connection to an instance of the database engine. As you type in Transact-SQL statements, osql builds them into a string
variable that it can pass to an ODBC API function that sends batches over the connection. osql uses a GO command to define
batches. Whenever the utility reads a GO command, it sends all of the Transact-SQL statements that have been collected since the
last GO command as a batch to the database engine.

This is an example of specifying batches in the input to the osql utility:
/* Start of the first batch, which only has one statement. */
USE Northwind
/* End of the first batch; send the USE statement to the database engine. */
GO
/* Start of the second batch, which has three statements. */
DECLARE @ExampleVariable INT
SELECT @ExampleVariable = COUNT(*)
 FROM Employees
PRINT @ExampleVariable
/* End of the second batch; send DECLARE, SELECT, PRINT to the engine. */
GO

When you are done working with the database and type an EXIT command, osql uses the ODBC API to close the connection to the
database engine. osql then shuts down.

In an instance of the database engine, the operation to open a connection includes validating the login ID and password and then
allocating the internal data structures the instance uses to manage the connection. The operation to close a connection involves
rolling back any incomplete transactions and deallocating the data structures associated with the connection.

The operation to process a batch of Transact-SQL statements starts when the batch is received over the connection and continues
until the last results have been sent back. Some of the objects stored in SQL Server databases, such as views, Transact-SQL stored
procedures, triggers, and user-defined functions, are themselves batches of SQL statements. These objects have no effect on the
workload governor. The execution of these types of objects is counted as part of the operation to process the batch sent in by the
application. The governor only detects the fact that the instance is processing the batch that came in from the application; it does
not detect how many of these objects the application batch executes.

Connections between the database engine and an application most often remain in an inactive state, waiting for the application to
build and send a new command. In systems where there are thousands of concurrent connections in an instance of the database
engine, only a small percentage of the connections transmit commands at the same time. Most of the users are doing things that
do not interact with the database, such as scrolling through a Web page, typing in new data, or answering a phone call from their
manager. Only a few of the users have just performed an action, such as clicking an ENTER button, that sent a command to the
instance.

Several SQL Server components make connections to an instance of the database engine. The workload governor does not
distinguish between connections from applications and those from SQL Server components; operations on connections from SQL
Server components are counted against the governor limits. These include connections from SQL Server Agent, Replication
agents, and Data Transformation Services (DTS) packages.

The workload governor only counts operations on connections that are coming into an instance of the database engine; it does
not count operations on connections going out to other instances. Certain kinds of Transact-SQL statements cause the instance on

which they are executed to open a connection to a remote instance of the database engine. If the local instance of the database
engine has a workload governor, the only operation counted by the local workload governor is the operation to process the batch
containing the Transact-SQL statement. If the remote instance of the database engine has a workload governor, the remote
governor will count all operations it receives over the connection. These types of Transact-SQL statements are:

Distributed queries, which cause the local instance to connect to the remote instance, send the remote instance one or
more Transact-SQL batches, and then close the connection to the remote instance. The governor on the local instance
counts only the operation of processing the batch containing the distributed query. The governor on the remote instance
counts all the operations sent over the connection.

Remote stored procedure calls, which operate the same as distributed queries.

Extended stored procedures, which can open a connection to a remote instance of SQL Server. In this case, the extended
stored procedure is treated like a distributed query. The governor on the local instance counts only the operation of
executing the batch that ran the extended stored procedure. The governor on the remote instance counts all the operations
it receives over the connection.

OLE automation objects, which can be referenced from Transact-SQL statements if the object is registered with the
instance of the database engine using the Office Automation system stored procedures, such as sp_OACreate. The
workload governor treats connections from these OLE objects the same way it treats connections from extended stored
procedures.

Extended stored procedures and OLE objects can also open a connection to the same instance of the database engine on which
they are executing. The instance treats this connection as a new inbound connection. It counts as operations all commands sent
over the connection, in addition to counting the processing of the batch that executed the extended stored procedure or OLE
object. For example, if you execute an extended stored procedure that makes a connection back to that same instance, the
governor counts processing the batch you sent as one operation, and it treats as a second operation any command that the
extended stored procedure executes on the connection it opened.

In addition to logins, batches, and logoffs, connections involved in distributed transactions can also receive commands
synchronizing the distributed transaction across multiple resources. Many of these commands are not executed directly by
applications; they are generated internally by instances of SQL Server or the transaction manager (TM) that is controlling the
distributed transaction. For example, an application could connect to an instance of SQL Server 2000 Standard Edition and
execute an UPDATE statement that references a linked table on an instance of MSDE 2000. This means that the connection opened
by the instance of Standard Edition against the instance of MSDE 2000 is in a distributed transaction. If the computer running the
application then loses its network connection, the TM instructs both instances to roll back their parts of the distributed transaction.
The workload governor counts the connection in the instance of MSDE 2000 as active for as long as it takes the instance to roll
back the distributed transaction.

See Also

Logins

Connecting to and Disconnecting from an Instance

Batches

Distributed Transactions

Distributed Queries

OLE Automation Objects in Transact-SQL

Extended Stored Procedure Architecture

Distributed Query Architecture

The SQL Server 2000 Workload Governor

When To Upgrade From the Governor

Data Access and the Workload Governor

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 on Windows 98
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 includes two main types of software that can be run on Microsoft Windows® Me or Windows 98:

Client software

All users covered by a SQL Server client access license can install the SQL Server client software on a Microsoft Windows
Millennium Edition or Windows 98 computer. The client software can be installed from the compact disc for SQL Server
2000 Enterprise Edition, SQL Server 2000 Standard Edition, or SQL Server 2000 Professional Edition using the SQL Server
Setup options Client-Tools Only or Connectivity Only. The client software is also often installed by applications that use
SQL Server to store data. The SQL Server 2000 Connectivity Only software also runs on Microsoft Windows 95.

Server software

Any user who has purchased SQL Server 2000 Personal Edition can install the server software from that edition on a
computer running the Windows Millennium Edition or Windows 98 operating systems. The SQL Server 2000 Desktop
Engine (MSDE 2000) server software can also be installed on Windows Millennium Edition or Windows 98.

SQL Server Client Software on Windows Millennium Edition, Windows 98, and Windows 95

SQL Server 2000 client software consists of:

Utilities for managing SQL Server and performing ad hoc queries of SQL Server databases.

Connectivity components such as the OLE DB Provider for SQL Server, the SQL Server ODBC driver, and the client Net-
Libraries. These are used by any application that connects to an instance of SQL Server.

The SQL Server 2000 client software runs the same on a Windows Millennium Edition, Windows 98, or Windows 95 computer as
it does on a Microsoft Windows NT® or Windows 2000 computer, with the following exceptions:

The Windows Millennium Edition, Windows 98, and Windows 95 network redirectors do not provide computer browser
support. SQL Server dialog boxes that depend on this feature to get a list of servers do not display a server list on Windows
Millennium Edition, Windows 98, or Windows 95. This includes the Register Server dialog box, the Register Server Wizard,
and the Query Analyzer Login dialog box.

The SQL Server utilities are not supported on Windows 95. They are supported on Windows Millennium Edition and
Windows 98.

The SQL Server tools that poll for the state of a server (SQL Server Enterprise Manager, SQL Server Agent) must do so
actively using a poll service state interval defined by the user.

SQL Server 2000 Server Components on Windows Millennium Edition and Windows 98

The SQL Server 2000 Personal Edition and the SQL Server 2000 Desktop Engine (MSDE 2000) are the only editions whose server
components can be installed on Windows Millennium Edition or Windows 98.

When SQL Server 2000 Personal Edition and the SQL Server 2000 Desktop Engine are running on Windows Millennium Edition
or Windows 98 computers, the following features are not available:

The Named Pipes and Banyan VINES server Net-Libraries cannot be installed on Windows Millennium Edition or Windows
98. The server NWLink IPX/SPX Net-Library is also not supported on Windows Millennium Edition or Windows 98. An
instance of SQL Server 2000 on a computer running the Windows Millennium Edition or Windows 98 operating system
cannot accept connections using these protocols. Although Windows Millennium Edition and Windows 98 do not support
these server Net-Libraries, they do support the client Net-Libraries. SQL Server clients running on Windows Millennium
Edition or Windows 98 computers can connect to instances of SQL Server on Windows NT or Windows 2000 computers
using these protocols.

Neither the client nor server AppleTalk Net-Libraries are supported on Windows Millennium Edition, Windows 98, or
Windows 95.

Windows Millennium Edition and Windows 98 do not support the server functions of the API used for Windows
Authentication. Clients cannot connect to an instance of SQL Server on a Windows Millennium Edition or Windows 98
computer using Windows Authentication. Windows Millennium Edition, Windows 98, and Windows 95 do support the client
functions of the API for Windows Authentication. SQL Server clients running on Windows Millennium Edition, Windows 98,
or Windows 95 computers can connect to instances of SQL Server 2000 on Windows NT or Windows 2000 computers
using Windows Authentication.

The server side of using encryption with the Multiprotocol Net-Library is not supported on Windows Millennium Edition or
Windows 98. Clients cannot connect to an instance of SQL Server 2000 on a Windows Millennium Edition or Windows 98
computer using Multiprotocol encryption. Windows Millennium Edition and Windows 98 do support the client functions for
Multiprotocol encryption, so SQL Server clients running on Windows Millennium Edition, Windows 98, and Windows 95
computers can connect to instances of SQL Server on Windows NT or Windows 2000 computers using Multiprotocol
encryption.

Windows Millennium Edition and Windows 98 do not support asynchronous I/O, read-ahead I/O, or scatter-gather I/O.
Because of this, the database engine cannot use some of the I/O optimizations it uses on Windows NT and Windows 2000
to maximize throughput with many concurrent users.

On Windows Millennium Edition and Windows 98, SQL Server manages its memory requests based on the amount of
database work being done instead of maintaining virtual memory at a point that minimizes swapping as it does on
Windows NT and Windows 2000. For more information, see Memory Architecture.

Windows Millennium Edition and Windows 98 do not support fibers, so the lightweight pooling option (fiber mode) is
not available. For more information, see Thread and Task Architecture.

Windows Millennium Edition and Windows 98 do not have a component that corresponds to Window NT or Windows 2000
services. The SQL Server database engine and SQL Server Agent run as executable programs on Windows Millennium
Edition and Windows 98. These SQL Server components cannot be started as services automatically. They can be started by
placing a command prompt command in the Windows Millennium Edition or Windows 98 startup group, but then they run
as a separate Microsoft MS-DOS® window.

SQL Server Service Manager is installed in the Windows Millennium Edition or Windows 98 startup group and operates
with the same user interface as it does on Windows NT and Windows 2000.

Windows Millennium Edition and Windows 98 do not have event logs. SQL Server uses a SQL Profiler–based mechanism to
launch alerts on Windows Millennium Edition and Windows 98.

SQL Server Performance Monitor is not available on Windows Millennium Edition or Windows 98 computers. Performance
Monitor counters cannot be implemented for instances of SQL Server 2000 running on Windows Millennium Edition or
Windows 98. Windows Millennium Edition, Windows 98, and Windows 95 clients cannot monitor the performance counters
of an instance of SQL Server running on Windows NT or Windows 2000.

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 and Windows CE
Microsoft® SQL Server 2000™ Windows® CE Edition provides a robust relational database engine for Windows CE devices:

Optimized for Windows CE

Microsoft® SQL Server 2000™ Windows CE Edition (SQL Server CE) is designed to run efficiently on typical Windows CE
devices. The memory footprint for SQL Server CE is approximately 1 MB. SQL Server CE was designed from the ground up
to balance size, RDBMS functionality, connectivity and performance.

SQL Server CE is implemented as a set of dynamic-link libraries (DLLs) that operate as an OLE DB CE provider. This allows
SQL Server CE to support the ADOCE and OLE DB CE APIs, and also means that multiple applications running at the same
time can share a common set of DLLs, thereby saving space.

Integrated Development Environment

SQL Server 2000 CE is tightly integrated with the Windows CE development environment in a way that leverages the
existing skills of SQL Server developers. SQL Server CE supports the ADOCE and OLE DB CE data access APIs in the
Windows CE-based versions of Microsoft® Visual Basic™ and Visual C++™. The SQL language and data access APIs used by
SQL Server CE applications are generally upwardly compatible with SQL Server applications. Programmers already used to
developing SQL Server applications using ADO or OLE DB in other Windows environments can rapidly develop data-aware
Windows CE applications using SQL Server CE.

SQL Server 2000 Interoperability

SQL Server CE can exchange data with instances of SQL Server 2000 running on other Windows platforms, giving Windows
CE applications access to centrally located data. SQL Server CE supports a wide range of connectivity options to match the
connectivity needs of different devices. SQL Server CE can operate as an anonymous merge replication subscriber to
publications from instances of SQL Server 2000 running on other Windows platforms. This allows mobile disconnected
users who must work autonomously to download data from a central database, work offline, and merge their work back
into the central database. Devices that remain connected to the network can use the Remote Data Access feature to:

Connect to instances of SQL Server on other Windows platforms.

Execute a SQL statement and pull in the result set as a recordset.

Optionally, modify the recordset and push the modifications back to the instance of SQL Server on the other
Windows platform.

The SQL Server CE connectivity options are tailored for use on wireless networks through networking features such as data
compression and messaging to reduce data transmissions, and robust recovery from lost connections.

SQL Server Architecture (SQL Server 2000)

SQL Server and Mail Integration
Microsoft® SQL Server™ provides a set of extended stored procedures that allow SQL Server to operate as a workgroup post
office for a MAPI-enabled e-mail system.

The computer running SQL Server must be set up as an e-mail client. SQL Server Enterprise Manager is used to assign an e-mail
account and password to the SQL Server installation. The mail component of SQL Server can then be enabled to start
automatically when the SQL Server Agent service is started. Alternatively, the mail component can be started and stopped at will
using the xp_startmail, xp_stopmail, and xp_sendmail stored procedures.

When the mail component of SQL Server is running, it can be used to:

Send e-mail from Transact-SQL batches, scripts, stored procedures, and triggers using xp_sendmail. The e-mail can be:
Message strings.

The result set of a query.

A Transact-SQL statement or batch to execute.

A page for an electronic pager.
Read e-mail using sp_processmail, or a combination of xp_findnextmessage, xp_readmail, and xp_deletemail. The
messages sent to SQL Server typically contain a Transact-SQL statement or batch to be executed. The statement is executed
and the result set is returned as a reply e-mail with an optional CC: list.

SQL Server events and alerts can be combined with SQL Mail functionality to build a system in which a server running SQL Server
can e-mail or page the relevant administrators automatically if serious conditions arise.

SQL Server Architecture (SQL Server 2000)

Administration Architecture
Each new version of Microsoft® SQL Server™ seeks to automate or eliminate some of the repetitive work performed by database
administrators. Because database administrators are typically among the people most highly trained in database issues at a site,
these improvements allow a valuable resource to spend more time working on database design and application data access
issues.

The administration of SQL Server 2000 exhibits these characteristics:

The SQL Server 2000 database server reduces administration work in many environments by dynamically acquiring and
freeing resources. The server automatically acquires system resources such as memory and disk space when needed, and
frees the resources when they are no longer required. Although large OLTP systems with critical performance needs are still
monitored by trained administrators, SQL Server 2000 can also be used to implement smaller desktop or workgroup
databases that do not require constant administrator attention.

SQL Server 2000 provides a set of graphical tools that allow administrators to perform administrative tasks easily and
efficiently.

SQL Server 2000 provides a set of services that allow administrators to schedule the automatic execution of repetitive tasks.

Administrators of SQL Server 2000 can program the server to handle exception conditions, or to at least send e-mail or
pages to the on-duty administrator.

SQL Server 2000 publishes the same administration Application Programming Interfaces (APIs) used by the SQL Server
utilities. These APIs support all of the administration tasks of SQL Server. This allows developers of applications that use
SQL Server 2000 as their data store to completely shield users from the administration of SQL Server 2000.

SQL Server Architecture (SQL Server 2000)

DDL and Stored Procedures
Transact-SQL is the language used for all commands sent to Microsoft® SQL Server™ 2000, from all applications. Transact-SQL
contains statements that support all administrative work done in SQL Server. These statements fall into two main categories:

Data Definition Language (DDL)

The SQL language has two main divisions: Data Definition Language (DDL), which is used to define and manage all the objects in
an SQL database, and Data Manipulation Language (DML), which is used to select, insert, update, and delete data in the objects
defined using DDL. The Transact-SQL DDL used to manage objects such as databases, tables, and views is based on SQL-92 DDL
statements, with extensions. For each object class, there are usually CREATE, ALTER, and DROP statements, such as CREATE TABLE,
ALTER TABLE, and DROP TABLE. Permissions are controlled using the SQL-92 GRANT and REVOKE statements, and the Transact-
SQL DENY statement.

System stored procedures

Administrative tasks not covered by the SQL-92 DDL are typically performed using system stored procedures. These stored
procedures have names that start with sp_ or xp_, and they are installed when SQL Server is installed. Some examples of system
stored procedures are:

sp_addtype (Defines a user-defined data type.)

sp_configure (Manages the server configuration option settings.)

xp_sendmail (Sends an e-mail or page.)

SQL Server 2000 also exposes the SQL-DMO, SQL-NS, DTS, and Replication Component APIs. These are all comprised of OLE
Automation objects that encapsulate either DDL or system stored procedures. When an application calls one of the objects, the
object actually translates the request to one or more Transact-SQL DDL or system stored procedure statements that are then sent
to the server.

SQL Server Architecture (SQL Server 2000)

SQL Distributed Management Framework
The SQL Distributed Management Framework (SQL-DMF) is an integrated framework of objects, services, and components used
to manage Microsoft® SQL Server™ 2000. SQL-DMF provides a flexible and scalable management framework that is adaptable
to the requirements of an organization. It lessens the need for user-attended maintenance tasks (such as database backup and
alert notification) by providing services that interact directly with SQL Server 2000.

The key components of SQL-DMF support the proactive management of the instances of SQL Server on your network by allowing
you to define:

All SQL Server objects and their permissions.

Repetitive administrative actions to be taken at specified intervals or times.

Corrective actions to be taken when specific conditions are detected. The corrective actions can either be tasks defined to
resolve the issue, or alerts by pages or e-mail to people who can resolve the issue.

This illustration shows the main components of SQL-DMF.

SQL Server Architecture (SQL Server 2000)

SQL-DMF Applications
There are three main classes of applications that use SQL-DMF. These applications provide the interfaces for users managing
Microsoft® SQL Server™ 2000:

SQL Server Tools

The SQL Server 2000 tools that manage SQL Server database objects use the SQL-DMO API. The primary SQL Server tool that
uses SQL-DMF is SQL Server Enterprise Manager. SQL Server Enterprise Manager supplies the primary interface for users who
are administering instances of SQL Server on the network. Also, the SQL Query Analyzer contains features (such as an object
browser) related to listing and managing database objects. These features use SQL-DMF.

COM+ applications and Active Server Pages

The SQL-DMF APIs can be used in COM+ applications and Web applications, such as Active Server Pages (ASP).

Applications and ISV tools

Applications, written either in-house or by independent software vendors (ISVs), can use the SQL-DMF APIs to administer and
configure instances of SQL Server. This allows applications to shield the administration of SQL Server from their users if the
application has chosen to embed SQL Server as its data storage mechanism. ISVs who produce tools for managing server
applications also use the SQL-DMF APIs to build features for managing SQL Server into their tools.

SQL Server Architecture (SQL Server 2000)

SQL-DMF APIs
Applications can use one of three APIs to access the core functionality of SQL-DMF: SQL Namespace, SQL Distributed
Management Objects, and Data Transformation Services. These APIs are implemented as sets of dual-interface COM interfaces.

SQL Distributed Management Objects

The SQL Distributed Management Objects (SQL-DMO) API is composed of a set of objects that encapsulate the administrative
attributes of the entities, such as tables, users, and views, found in Microsoft® SQL Server™ databases. SQL-DMO abstracts the
use of DDL, system stored procedures, registry information, and operating-system resources. SQL-DMO can be used to program
all administration and configuration tasks in SQL Server.

Data Transformation Services

The Data Transformation Services (DTS) API exposes the services provided by SQL Server to aid in building data warehouses and
data marts. These services provide the ability to transfer and transform data between heterogeneous OLE DB and ODBC data
sources. Data from objects or the result sets of queries can be transferred at regularly scheduled times or intervals, or on an as-
required basis.

Windows Management Instrumentation

The SQL Server 2000 compact disc contains support for a new API that will allow you to administer instances of SQL Server using
Windows Management Instrumentation (WMI). WMI is a scalable Windows 2000 component with an object-oriented API that lets
management applications and scripts monitor, configure, and control the operating system and devices, services, and applications
in a Windows network. Using standard Windows security, WMI allows only properly authorized users to manage the system. WMI
core components are also available for Windows NT® 4.0, Windows® 95, and Windows 98. For more information about the WMI
support for these operating systems, see the MSDN® page at Microsoft Web site.

A component, such as SQL Server, enables WMI support by supplying a WMI provider and defining a WMI class schema. The
schema models the objects in the component that can be managed using WMI. SQL Server 2000 includes a SQL Server WMI
provider and a schema class model that maps instances of SQL Server 2000 to WMI classes. The SQL Server WMI schema models
objects such as databases and tables. The SQL Server WMI implementation provides management functions such as:

Create, change, or delete managed objects. For example, create a database.

Administer managed objects. For example, back up databases and logs.

Enumerate managed objects. For example, list all the tables in a database.

Retrieve information about a specific managed object. For example, determine whether full-text indexing is enabled on the
Customers table.

Query managed objects that meet a specific criterion. For example, list all encrypted stored procedures.

Execute methods defined for managed objects. For example, execute a method that bulk copies data from a table.

Generate events when a managed object is created, changed, or deleted (for example, raise an event when a database
option is changed).

Describe relationships between managed objects (for example, identify which logins are authorized to access a database).

All WMI data is available remotely and is fully scriptable. The SQL Server 2000 WMI implementation maps over the SQL-DMO
API, but does not support the management of replication. The SQL Server WMI implementation can be used with SQL Server 7.0.

The SQL Server WMI support is not installed by SQL Server 2000 Setup. All of the WMI materials, including a separate setup and
documentation, are included in the folder \x86\OTHER\wmi on the SQL Server 2000 compact disc.

SQL Namespace

The SQL Namespace (SQL-NS) API exposes the user interface (UI) elements of SQL Server Enterprise Manager. This allows
applications to include SQL Server Enterprise Manager UI elements such as dialog boxes and wizards.

See Also

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Developing SQL-DMO Applications

Programming DTS Applications

Programming SQL-NS Applications

SQL Server Architecture (SQL Server 2000)

SQL Server Agent
SQL Server Agent runs on the server running instances of Microsoft® SQL Server™ 2000 or earlier versions of SQL Server. SQL
Server Agent is responsible for:

Running SQL Server tasks scheduled to occur at specific times or intervals.

Detecting specific conditions for which administrators have defined an action, such as alerting someone through pages or e-
mail, or a task that will address the conditions.

Running replication tasks defined by administrators.

SQL Server Agent is similar to an auxiliary operator responsible for handling the repetitive tasks and exception handling
conditions defined through the other SQL-DMF components.

See Also

DTS Overview

SQL Namespace API

SQL-DMO API

SQLServerAgent Service

SQL Server Architecture (SQL Server 2000)

Graphical Tools
Microsoft® SQL Server™ 2000 includes many graphical utilities that allow users, programmers, and administrators to efficiently:

Administer and configure SQL Server.

Determine the catalog information in a copy of SQL Server.

Design and test queries for retrieving data.

In addition to these tools, SQL Server contains several wizards to walk administrators and programmers through the steps
needed to perform more complex administrative tasks.

SQL Server Architecture (SQL Server 2000)

SQL Server Enterprise Manager
SQL Server Enterprise Manager is the primary administrative tool for Microsoft® SQL Server™ 2000 and provides a Microsoft
Management Console (MMC)–compliant user interface that allows users to:

Define groups of servers running SQL Server.

Register individual servers in a group.

Configure all SQL Server options for each registered server.

Create and administer all SQL Server databases, objects, logins, users, and permissions in each registered server.

Define and execute all SQL Server administrative tasks on each registered server.

Design and test SQL statements, batches, and scripts interactively by invoking SQL Query Analyzer.

Invoke the various wizards defined for SQL Server.

MMC is a tool that presents a common interface for managing different server applications in a Microsoft Windows® network.
Server applications provide a component called an MMC snap-in that presents MMC users with a user interface for managing the
server application. SQL Server Enterprise Manager is the Microsoft SQL Server 2000 MMC snap-in.

To launch SQL Server Enterprise Manager, select the Enterprise Manager icon in the Microsoft SQL Server program group. On
computers running Windows 2000, you can also launch SQL Server Enterprise Manager from Computer Management in Control
Panel. MMC snap-ins launched from Computer Management do not have the ability to open child windows enabled by default.
You may have to enable this option to use all the SQL Server Enterprise Manager features.

Note If you register additional SQL servers in Computer Management, and then either close Computer Management or connect
to another computer, the servers will no longer appear in Computer Management. The registered servers will appear in SQL
Server Enterprise Manager.

See Also

How to launch SQL Server Enterprise Manager in the Computer Management console (Windows)

How to enable child windows (Enterprise Manager)

Overview of the SQL Server Tools

https://msdn.microsoft.com/en-us/library/aa275328(v=sql.80).aspx

SQL Server Architecture (SQL Server 2000)

SQL Query Analyzer
SQL Query Analyzer is a graphical user interface for designing and testing Transact-SQL statements, batches, and scripts
interactively. SQL Query Analyzer can be called from SQL Server Enterprise Manager.

SQL Query Analyzer offers:

A Free-form text editor for keying in Transact-SQL statements.

Color-coding of Transact-SQL syntax to improve the readability of complex statements.

Object browser and object search tools for easily finding the objects in a database and the structure of the objects.

Templates that can be used to speed development of the Transact-SQL statements for creating SQL Server objects.
Templates are files that include the basic structure of the Transact-SQL statements needed to create objects in a database.

An interactive debugger for analyzing stored procedures.

Results presented in either a grid or a free-form text window.

Graphical diagram of the showplan information showing the logical steps built into the execution plan of a Transact-SQL
statement.

This allows programmers to determine what specific part of a poorly performing query is using a lot of resources.
Programmers can then explore changing the query in ways that minimize the resource usage while still returning the
correct data.

Index Tuning Wizard to analyze a Transact-SQL statement and the tables it references, to see if adding additional indexes
will improve the performance of the query.

See Also

Analyzing a Query

Index Tuning Wizard

Overview of SQL Query Analyzer

SQL Server Architecture (SQL Server 2000)

Windows 2000 System Monitor
The Windows 2000 System Monitor (Windows NT Performance Monitor) is a tool for monitoring resource usage on a computer
running Microsoft® Windows NT® or Microsoft Windows® 2000. Users can set up charts that present resource usage data in
graphical form. The Windows System Monitor has many different counters, each of which measures some resource on the
computer.

The Windows System Monitor is extensible so server applications can add their own performance counters. Microsoft SQL
Server™ 2000 adds counters to Windows System Monitor to track items such as:

SQL Server I/O.

SQL Server memory usage.

SQL Server user connections.

SQL Server locking.

Replication activity.

See Also

Monitoring with Windows Performance Monitor

SQL Server Architecture (SQL Server 2000)

Import and Export Data
The Import and Export Data item in the Microsoft® SQL Server™ program group starts the Data Transformation Services (DTS)
Import/Export Wizard. The wizard walks users through the DTS functions of importing, exporting, validating, and transforming
data and objects between heterogeneous OLE DB and ODBC data sources.

See Also

DTS Import/Export Wizard

SQL Server Architecture (SQL Server 2000)

SQL Profiler
SQL Profiler is a tool that captures Microsoft® SQL Server™ 2000 events from a server. The events are saved in a trace file that
can later be analyzed or used to replay a specific series of steps when trying to diagnose a problem. SQL Profiler is used for
activities such as:

Stepping through problem queries to find the cause of the problem.

Finding and diagnosing slow-running queries.

Capturing the series of SQL statements that lead to a problem. The saved trace can then be used to replicate the problem on
a test server where the problem can be diagnosed.

Monitoring the performance of SQL Server to tune workloads.

SQL Profiler also supports auditing the actions performed on instances of SQL Server. Audits record security-related actions for
later review by a security administrator. SQL Server 2000 auditing meets C2 security certification requirements.

See Also

Monitoring with SQL Profiler

Auditing SQL Server Activity

SQL Server Architecture (SQL Server 2000)

SQL Server Service Manager
SQL Server Service Manager is used to start, stop, and pause the Microsoft® SQL Server™ 2000 components on the server. These
components run as services on Microsoft Windows NT® or Microsoft Windows® 2000 and as separate executable programs on
Microsoft Windows Me and Microsoft Windows 98:

SQL Server service

Implements the SQL Server database engine. There is one SQL Server service for each instance of SQL Server running on
the computer.

SQL Server Agent service

Implements the agent that runs scheduled SQL Server administrative tasks. There is one SQL Server Agent service for each
instance of SQL Server running on the computer.

Microsoft Search service (Windows NT and Windows 2000 only)

Implements the full-text search engine. There is only one service, regardless of the number of SQL Server instances on the
computer.

MSDTC service (Windows NT and Windows 2000 only)

Manages distributed transactions. There is only one service, regardless of the number of SQL Server instances on the
computer.

MSSQLServerOlAPService service (Windows NT and Windows 2000 only)

Implements SQL Server 2000 Analysis Services. There is only one service, regardless of the number of SQL Server instances
on the computer.

Operating the SQL Server Service Manager

SQL Server Service Manager is a taskbar application and follows the standard behavior of taskbar applications. When minimized,
the SQL Server Service Manager icon appears in the area of the taskbar clock on the right of the taskbar. To get a menu that
includes all the tasks SQL Server Service Manager supports, right-click the taskbar item.

To maximize SQL Server Service Manager, double-click the icon. When SQL Server Service Manager is maximized, clicking the
close button of the SQL Server Service Manager window does not terminate the application; it only minimizes SQL Server Service
Manager to the taskbar. To terminate SQL Server Service Manager, right-click the SQL Server Service Manager icon on the
taskbar, and then select the File/Exit menu item.

See Also

Starting, Pausing, and Stopping SQL Server

SQL Server Architecture (SQL Server 2000)

Client Network Utility
The Client Network utility is used to manage the client Net-Libraries and define server alias names. It can also be used to set the
default options used by DB-Library applications.

Most users will never need to use the Client Network utility. To connect to Microsoft® SQL Server™ 2000, users can specify only
the network name of the server on which SQL Server is running, and optionally the name of the instance of SQL Server.

In some cases, an instance of SQL Server may be configured to listen on alternate network addresses. If this is done, client
applications connecting to that instance must explicitly specify the alternate address. While applications could specify the alternate
addresses on each connection request, it is easier to use the Client Network utility to set up an alias specifying the alternate
addresses. Applications can then specify the alias name in place of the server network name in their connection requests.

See Also

Communication Components

Managing Clients

SQL Server Architecture (SQL Server 2000)

Server Network Utility
The Server Network utility is used to manage the server Net-Libraries. This utility is used to specify:

The network protocol stacks on which an instance of Microsoft® SQL Server™ 2000 listens for client requests.

The sequence in which server Net-Libraries are considered when establishing connections from applications.

New network addresses that an instance of Microsoft SQL Server 2000 listens on.

Most administrators will never need to use the Server Network utility. They will specify during setup the server Net-Libraries on
which SQL Server listens.

See Also

Communication Components

Configuring Network Connections

SQL Server Architecture (SQL Server 2000)

Miscellaneous Utilities
The ODBC administrator utility and Services utility are also used to manage parts of Microsoft® SQL Server™ 2000:

ODBC Administrator

The ODBC Administrator utility is used to add, delete, and edit ODBC data sources for all ODBC drivers on the computer, including
data sources for the SQL Server ODBC driver. It can also be used to list the versions of all the ODBC drivers installed on the
computer. In Microsoft Windows NT®, Microsoft Windows® 95, and Microsoft Windows 98, the ODBC utility is in Control Panel.
In Microsoft Windows 2000, the utility is named Data Source (ODBC) utility and is in the Administrative Tools folder in Control
Panel.

Services (Windows NT and Windows 2000)

The Services application can be used to start, pause, and stop Microsoft Windows NT or Windows 2000 services, including the
services managed by SQL Server Service Manager. In Windows NT, the Services utility is in Control Panel. In Windows 2000, the
utility is in the Administrative Tools folder in Control Panel.

SQL Server also installs several command prompt utilities used when building .cmd files to work with SQL Server. For more
information, see Getting Started with Command Prompt Utilities.

SQL Server Architecture (SQL Server 2000)

Automated Administration Architecture
Microsoft® SQL Server™ 2000 provides features that allow administrators to program the server to administer itself for many
repetitive actions or exception conditions. This frees the administrators to spend more time on activities such as designing
databases and advising programmers on efficient database access coding techniques. Applications from any vendor can choose
SQL Server as their data storage component and minimize the administrative requirements of customers by automating
administrative tasks.

These automation features are not limited to database administration tasks such as scheduling backups. They can also be used to
help automate the business practices that the database supports. Applications can be scheduled to run at specific times or
intervals. Specific conditions detected in the system can be used to trigger these applications if they need to be executed before
the next scheduled time.

The features that support the automation of administrative tasks are:

SQL Server Agent

SQL Server Agent is a separate executable program that executes administrative jobs and alerts defined by the system
administrators. SQL Server Agent runs as a service named SQLServerAgent on computers running Microsoft Windows NT® or
Windows® 2000, and as an executable file on computers running Microsoft Windows Me or Microsoft Windows 98.

Jobs

A job defines an administrative task. Each job has one or more steps; each step specifies a Transact-SQL statement, Windows
command, executable program, replication agent, or Microsoft ActiveX® script. Jobs can be run once, scheduled to run at periodic
intervals, or specified to run when the server is idle.

Jobs enable administrators to define when administrative tasks are performed. Each job can combine various operating system
commands, Transact-SQL statements, stored procedures, and applications to complete complex administrative functions. Each job
step can be very complex. For example, a Windows command could be a command or batch file that contains many commands.
The Transact-SQL statement executed by a step could be a stored procedure containing many Transact-SQL statements.

SQL Server Agent runs these tasks at the specified times, without the need for human intervention. Complex procedures with
error-checking logic can be designed into each job to address the most likely conditions the job would encounter. These
capabilities result in the ability to build complex, robust jobs that run all periodic maintenance.

Events and alerts

Each instance of SQL Server 2000 running on Windows NT or Windows 2000 records significant events in the Windows NT or
Windows 2000 application log. Each entry in the log is called an event. SQL Server administrators can define alerts that specify a
job to be run when a specific event occurs. SQL Server Agent compares the SQL Server events in the application log against the
alerts defined by administrators. If a match is made, the job specified in the alert is executed.

Windows Me and Windows 98 do not have event logs. Installations of SQL Server Professional edition running on Windows Me
or Windows 98 use a SQL Profiler–based mechanism to communicate events to SQL Server Agent.

SQL Server creates events for errors with a severity of 19 or higher. Events are also raised if a RAISERROR statement is executed
using the WITH LOG clause, or the xp_logevent system stored procedure is executed. This allows Transact-SQL scripts, triggers,
stored procedures, and applications to raise events that could fire a job.

Operators

Operators are e-mail and page addresses defined to SQL Server for use in alerts. An alert can be defined that either e-mails or
pages a specific person. Instances of SQL Server running on Windows NT or Windows 2000 can also use the Windows NT or
Windows 2000 net send command to send a network message to a Windows user or group.

Triggers

Triggers are used to enforce business logic. Triggers can be integrated with automated administrative tasks by using either
RAISERROR or xp_logevent to generate an event that fires an alert. For example, a retail company has an inventory database,
and all of its suppliers accept electronic orders. Every night, a scheduled job executes an application that reviews all inventory
levels and, using guidelines established by management, either places orders with preferred providers for items in short supply or
prints a report for the purchasing agents. This could be backed up by a DELETE trigger on the parts table that fires a similar job for
emergency orders if heavy sales deplete the inventory during the day.

See Also

Automating Administrative Tasks

Enforcing Business Rules with Triggers

SQL Server Architecture (SQL Server 2000)

Backup/Restore Architecture
The backup and restore components of Microsoft® SQL Server™ 2000 allow you to create a copy of a database. This copy is
stored in a location protected from the potential failures of the server running the instance of SQL Server. If the server running
the instance of SQL Server fails, or if the database is somehow damaged, the backup copy can be used to re-create, or restore, the
database.

SQL Server 2000 provides these sophisticated backup and restore capabilities:

Options for how a database is backed up and restored:
A full database backup is a full copy of the database.

A transaction log backup copies only the transaction log.

A differential backup copies only the database pages modified after the last full database backup.

A file or filegroup restore allows the recovery of just the portion of a database that was on the failed disk.

These options allow backup and restore processes to be tailored to how critical the data in the database is. Noncritical
databases that can be easily re-created from some other source may have no backups, other databases may have simple
backups that can re-create the database to the night before a failure, and critical databases may have sophisticated backups
that will restore the database right up to the point of failure.

Control with the BACKUP and RESTORE statements.

Users can execute the BACKUP and RESTORE statements directly from applications, Transact-SQL scripts, stored procedures,
and triggers. It is more common, however, to use SQL Server Enterprise Manager to define a backup schedule, and then let
SQL Server Agent run the backups automatically according to the schedule. The Database Maintenance Plan Wizard can be
used to define and schedule a full set of backups for each database. This fully automates the backup process, requiring
minimal or no operator action.

Maintenance of a set of backup history tables in the msdb database.

The backup history tables record the backups for each database. If a database has to be restored, the Restore Database
dialog box in SQL Server Enterprise Manager presents the user with a list of all the backups available for the database. The
Restore Database dialog box also has logic to display which set of the backups in the history can be used to restore the
database in the shortest possible time. When the dialog box is displayed, the backups needed to restore the database are
checked. If a user knows that one of the backups is not available (for example, if a tape cartridge was damaged or lost), the
user can deselect that backup, and SQL Server Enterprise Manager calculates a new restore process. When the user agrees
with the restore process, SQL Server Enterprise Manager restores the database, prompting for tapes as needed.

Backups that can be performed while the database is in use, allowing backups to be made of systems that must run
continuously.

The backup processing and internal data structures of SQL Server 2000 are structured so that backups maximize their rate
of data transfer with minimal effect on transaction throughput.

Fast data transfer rates for backup and restore operations, making SQL Server 2000 capable of supporting very large
databases (VLDB).

The data structures in SQL Server 2000 databases and the backup and restore algorithms support high data transfer rates
for backup and restore operations. SQL Server backup and restore operations can also run in parallel against multiple
backup files or tape drives, which further increases the backup and restore data transfer rates.

RESTORE statement re-creates the database automatically if necessary.

This eliminates the need to execute a separate CREATE DATABASE or CREATE DATABASE FOR LOAD statement if the
database does not exist at the time the RESTORE statement is executed.

Interrupted backup and restore operations started near the point of the interruption when restarted.

Verification of a SQL Server 2000 backup before an attempt to restore the database. This includes verifying that the
collation of the database is supported by the instance of SQL Server.

Backup and restore processes should be planned together. The administrators must first determine the criticality of the data in the
database. They must determine if it is acceptable to just restore the database to a point such as the night before the failure, or if
the database must be restored to a point as close as possible to the time of failure. They must also determine how long the
database can be unavailable, whether it must be brought back online as quickly as possible, or if it does not need to be restored
immediately.

After the restore requirements are determined, the administrators can then plan a backup process that maintains a set of backups
that will meet the restore requirements. The administrators can choose the backup processes that can be performed with the
minimum effect on the system as it runs, yet still meet the restore requirements. Based on the resource requirements, the
administrators also choose the recovery model for the database. The recovery model balances logging overhead against the
criticality of fully recovering the data. The recovery models are:

Full

The data is critical and must be recoverable to the point of failure. All data modifications are logged. All SQL Server 2000
recovery options are available.

Bulk-logged

Certain bulk operations (bulk copy operations, SELECT INTO, text processing) can be replayed if necessary, so these
operations are not fully logged. Can only recover to the end of the last database or log backup.

Simple

All data modifications made since last backup are expendable, or can be redone. Lowest logging overhead, but cannot
recover past the end of the last backup.

See Also

Backing Up and Restoring Databases

SQL Server Architecture (SQL Server 2000)

Backup Devices
Backups created in Microsoft® SQL Server™ 2000 and SQL Server version 7.0 are stored using the Microsoft Tape Format
(MSTF). MSTF is not specific to tapes; it can also be used for backing up to either disks or named pipes. Each time a SQL Server
backup is performed, it forms a backup set. This backup set is stored in an MSTF unit called a media. MSTF media can store
backup sets from different software.

Using the MSTF format allows SQL Server to work with administrative utilities and products from other vendors that manage
MSTF format backups. SQL Server backup sets can share media, such as MSTF tape drives, with backup sets from other server
software. SQL Server does not compress its backup sets, but uses the compression provided on MSTF backup devices.

See Also

Using Backup Media

SQL Server Architecture (SQL Server 2000)

Types of Backup and Restore Processes
Microsoft® SQL Server™ 2000 and SQL Server version 7.0 supports four types of backups. These can be combined to form many
different types of backup and restore processes, each customized to the availability requirements of the database. The four types
are:

Database

Transaction log

Differential

File and filegroup

See Also

Designing a Backup and Restore Strategy

SQL Server Architecture (SQL Server 2000)

Database Backup and Restore
Database Backup and Restore

A database backup creates a copy of the full database. Not all pages are copied to the backup set, only those actually containing
data. Both data pages and transaction log pages are copied to the backup set.

A database backup set is used to re-create the database as it was at the time the BACKUP statement completed. If only database
backups exist for a database, it can be recovered only to the time of the last database backup taken before the failure of the server
or database.

See Also

Database Backups

SQL Server Architecture (SQL Server 2000)

Transaction Log Backup and Restore
Transaction Log Backup and Restore

A transaction log backup makes a copy of only the log file. A log file backup by itself cannot be used to restore a database. A log
file is used after a database restore to recover the database to the point of the original failure. For example, a site performs a
database backup on Sunday night and a log backup on each of the other nights. If one of the data disks for the database is lost at
2:30 P.M. Tuesday, the site can:

1. Back up the current transaction log.

2. Restore the database backup from Sunday night.

3. Restore the log backup from Monday night to roll the database forward.

4. Restore the log backup taken after the failure. This will roll the database forward to the time of the failure.

A transaction log recovery requires an unbroken chain of transaction log backups from the time of the database backup to the
time of the failure.

See Also

Transaction Log Backups

SQL Server Architecture (SQL Server 2000)

Differential Backup and Restore
Differential Backup and Restore

A differential backup creates a copy of all the pages in a database modified after the last database backup. Differential logs are
used primarily in heavily used systems where a failed database must be brought back online quickly. Differential backups are
smaller than full database backups; therefore, they have less of an effect on the system while they run.

For example, a site executes a full database backup on Sunday night. A set of transaction log backups is made every four hours
during the day, with the backups from one day overwriting the backups from the day before. Each night the site makes a
differential backup. If one of the data disks for the database fails at 9:12 A.M. on Thursday, the site can:

1. Back up the current transaction log.

2. Restore the database backup from Sunday night.

3. Restore the differential backup from Wednesday night to roll the database forward to that point.

4. Restore the transaction log backups from 4:00 A.M. and 8:00 A.M. to roll the database forward to 8:00 A.M.

5. Restore the log backup taken after the failure. This will roll the database forward to the time of the failure.

See Also

Differential Database Backups

SQL Server Architecture (SQL Server 2000)

File and Filegroup Backup and Restore
File and Filegroup Backup and Restore

Microsoft® SQL Server™ 2000 supports backing up or restoring individual files or file groups within a database. This is a
relatively sophisticated backup and restore process usually reserved for very large databases (VLDB) with high availability
requirements. If the time available for backups is not long enough to support backing up the full database, subsets of the
database can be backed up at different times.

For example, it takes three hours for a site to back up a database, and backups can be performed only during a two-hour period
each day. The site can back up half the files or file groups on one night and half the next. If a disk holding database files or
filegroups fails, the site can restore just the lost files or filegroups. The site must also be making transaction log backups, and
must restore all transaction log backups made after the file or filegroup backup.

File and filegroup restores can also be made from a full database backup set. This allows for a quicker recovery because only the
damaged files or filegroups are restored in the first step, not the entire database.

See Also

Using File Backups

SQL Server Architecture (SQL Server 2000)

Fuzzy Backup and Restore Operations
Microsoft® SQL Server™ 2000 and SQL Server version 7.0 use industry-standard fuzzy backup algorithms. These new algorithms
provide several significant benefits for users:

The BACKUP statement runs faster and has less effect on users modifying data while the statement is processing.

The RESTORE statement is faster.

A RESTORE operation restores the database to the state it was in at the time the BACKUP statement finished. In SQL Server
version 6.5 and earlier, a LOAD statement restored a database to the state it was in at the time the DUMP statement started.

In a SQL Server fuzzy backup and restore operation:

Extents containing data are written to the backup set without regard to synchronizing pages being modified by users during
the backup. This significantly reduces the effect the backup has on current users. It also allows the backup to copy pages
serially. The elimination of any random reads speeds the backup process in heavily used systems. It does mean, however,
that the pages in the backup are stored in an inconsistent, unrecovered state.

The transaction log is copied as part of the backup.

A RESTORE statement:

Creates the database if it does not exist, and initializes the extents in the database. This step is bypassed if the database
exists when the RESTORE statement is executed.

Copies in the extents found in the backup set. The process is fast because all the extents are in a serial sequence. Extents not
found in the backup set are ignored; they are not initialized as empty extents.

Uses the transaction log to recover the database. The database modifications recorded in the log are rolled forward to the
end of the log, and then any incomplete transactions are rolled back. This returns the database to a consistent, recovered
state that corresponds to the state the database was in at the time the BACKUP statement completed.

SQL Server Architecture (SQL Server 2000)

Parallel Backup and Restore
Parallel backup and restore operations improve the capability of Microsoft® SQL Server™ 2000 to manage very large databases.
The BACKUP and RESTORE statements use parallel I/O in a number of ways:

If a database has files on several disk devices, BACKUP uses one thread per disk device to read the extents from the
database.

If a backup set is stored on multiple backup devices, both the BACKUP and RESTORE statements use one thread per backup
device.

If a database is defined with files on several disk drives, and RESTORE has to create the database, RESTORE uses one thread
per disk device while it is initializing the database.

SQL Server Architecture (SQL Server 2000)

Data Import/Export Architecture
Microsoft® SQL Server™ 2000 has several components that support importing and exporting data:

Data Transformation Services

Data Transformation Services (DTS) can be used to import and export data between heterogeneous OLE DB and ODBC data
sources. A DTS package is defined that specifies the source and target OLE DB data sources; the package can then be executed on
an as-required basis or at scheduled times or intervals. A single DTS package can cover multiple tables. DTS packages are also not
limited to transferring data straight from one table to another, as the package can specify a query as the source of the data. This
allows packages to transform data, such as running a query that returns aggregate summary values instead of the raw data.

Replication

Replication is used to create copies of data in separate databases and keep these copies synchronized by replicating modifications
in one copy to all the others. If it is acceptable for each site to have data that may be a minute or so out of date, replication allows
the distribution of data without the overhead of requiring distributed transactions to ensure all sites have an exact copy of the
current data. Replication can therefore support the distribution of data for a relatively low cost in network and computing
resources.

Bulk copying

The bulk copy feature of SQL Server allows for the efficient transfer of large amounts of data. Bulk copying transfers data into or
out of one table at a time. Bulk copying supports the following bulk copy transfers:

From one SQL Server table or view to another table or view.

From a SQL Server table or view into a data file, such as a text file or tab-delimited file.

The result set of a query into a table, view, or data file.

The contents of a data file into a table or view.

There are several ways the bulk copy feature can be used:

The bcp command prompt utility.

The OLE DB Provider for SQL Server has a provider-specific IRowsetFastLoad interface for bulk copies.

The SQL Server ODBC Driver supports a set of bulk copy functions.

The Transact-SQL BULK INSERT statement. This is the fastest of the bulk copy methods. The data file is accessed directly
from SQL Server itself, eliminating the overhead of communicating data from a client application to the server.

The DB-Library API supports a set of bulk copy functions.

Distributed queries

Distributed queries allow Transact-SQL statements to reference data in an OLE DB data source. The OLE DB data sources can be
another instance of SQL Server, or a heterogeneous data source such as Microsoft Access or Oracle. SELECT INTO and INSERT
statements can be used to:

Export data from a SQL Server database to an OLE DB data source.

Import data from an OLE DB data source into SQL Server.

See Also

Distributed Queries

Importing and Exporting Data

DTS Overview

Replication Overview

SQL Server Architecture (SQL Server 2000)

Data Integrity Validation
Transact-SQL has a set of DBCC statements used to verify the integrity of a database. The DBCC statements in Microsoft® SQL
Server™ 2000 and SQL Server version 7.0 contain several improvements to the DBCC statements used in SQL Server version 6.5:

The need to run the statements is reduced significantly. Two architectural changes in SQL Server have improved the
robustness of the databases to the point that you do not have to verify their integrity:

The database engine has fail-fast logic to detect potential errors closer to the time they originate. This means errors
are less likely to persist long enough to cause problems in a database.

The data structures in the database are simpler. This means they are easier to manage and less likely to have errors.
It is not necessary to run DBCC validation statements as part of your normal backup or maintenance procedures. You
should run them as part of a system check before major changes, such as before a hardware or software upgrade, or after a
hardware failure. You should also run them if you suspect any problems with the system.

SQL Server 2000 introduces a new PHYSICAL_ONLY option that allows a DBCC statement to run faster by only checking for
the types of problems likely to be generated by a hardware problem. Run a DBCC check with PHYSICAL_ONLY if you
suspect a hardware problem on your database server.

The DBCC statements themselves also run significantly faster. Checks of complex databases typically run 8 to 10 times
faster, and checks of some individual objects have run more than 300 times faster. In SQL Server 6.5, DBCC CHECKDB
processed the tables serially. For each table, it first checked the structure of the underlying data and then checked each index
individually. This resulted in a very random pattern of reads. In SQL Server 2000, DBCC CHECKDB performs a serial scan of
the database while performing parallel checks of multiple objects as it proceeds. SQL Server 2000 also takes advantage of
multiple processors when running parallel DBCC statements.

The level of locks required by SQL Server 2000 DBCC statements are much lower than in SQL Server 7.0. DBCC statements
can now be run concurrently with data modification statements, significantly lowering their impact on users working in the
database.

The SQL Server 2000 DBCC statements can repair minor problems they might encounter. The statements have the option to
repair certain errors in the B-tree structures of indexes, or errors in some of the allocation structures.

See Also

DBCC

Optimizing DBCC Performance

SQL Server Architecture (SQL Server 2000)

 Replication Architecture
Replication is a set of technologies that allows you to keep copies of the same data on multiple sites, sometimes covering
hundreds of sites.

Replication uses a publish-subscribe model for distributing data:

A Publisher is a server that is the source of data to be replicated. The Publisher defines an article for each table or other
database object to be used as a replication source. One or more related articles from the same database are organized into a
publication. Publications are convenient ways to group related data and objects that you want to replicate together.

A Subscriber is a server that receives the data replicated by the publisher. The Subscriber defines a subscription to a
particular publication. The subscription specifies when the Subscriber receives the publication from the Publisher, and maps
the articles to tables and other database objects in the Subscriber.

A Distributor is a server that performs various tasks when moving articles from Publishers to Subscribers. The actual tasks
performed depend on the type of replication performed.

Microsoft® SQL Server™ 2000 also supports replication to and from heterogeneous data sources. OLE DB or ODBC data sources
can subscribe to SQL Server publications. SQL Server can also receive data replicated from a number of data sources, including
Microsoft Exchange, Microsoft Access, Oracle, and DB2.

Replication Types

SQL Server 2000 uses three types of replication:

Snapshot replication

Snapshot replication copies data or database objects exactly as they exist at any moment. Snapshot publications are typically
defined to happen on a scheduled basis. The Subscribers contain copies of the published articles as they existed at the last
snapshot. Snapshot replication is used where the source data is relatively static, the Subscribers can be slightly out of date, and
the amount of data to replicate is small.

Transactional replication

In transactional replication, the Subscribers are first synchronized with the Publisher, typically using a snapshot, and then, as the
publication data is modified, the transactions are captured and sent to the Subscribers. Transactional integrity is maintained
across the Subscribers by having all modifications be made at the Publisher, and then replicated to the Subscribers. Transactional
replication is used when data must be replicated as it is modified, you must preserve the transactions, and the Publishers and
Subscribers are reliably and/or frequently connected through the network.

Merge replication

Merge replication lets multiple sites work autonomously with a set of Subscribers, and then later merge the combined work back
to the Publisher. The Subscribers and Publisher are synchronized with a snapshot. Changes are tracked on both the Subscribers
and Publishers. At some later point, the changes are merged to form a single version of the data. During the merge, some
conflicts may be found where multiple Subscribers modified the same data. Merge replication supports the definition of conflict
resolvers, which are sets of rules that define how to resolve such conflicts. Custom conflict resolver scripts can be written to
handle any logic that may be needed to resolve complex conflict scenarios properly. Merge replication is used when it is
important for the Subscriber computers to operate autonomously (such as a mobile disconnected user), or when multiple
Subscribers must update the same data.

Configuring and Managing Replication

SQL Server 2000 provides several mechanisms for defining and administering replication:

SQL Server Enterprise Manager supports configuring and monitoring replication.

SQL-DMO interfaces for programmatically configuring and monitoring replication.

Programmatic interfaces for replicating data from heterogeneous data sources.

Microsoft ActiveX® controls for embedding replication functionality in custom applications.

Scripting replication using Transact-SQL system stored procedures.

See Also

Replication Overview

Snapshot Replication

How Snapshot Replication Works

Merge Replication

How Merge Replication Works

Transactional Replication

How Transactional Replication Works

Replication and Heterogeneous Data Sources

Replication Tools

SQL Server Architecture (SQL Server 2000)

Data Warehousing and Online Analytical Processing
Microsoft® SQL Server™ 2000 provides components that can be used to build data warehouses or data marts. The data
warehouses or data marts can be used for sophisticated enterprise intelligence systems that process queries required to discover
trends and analyze critical factors. These systems are called online analytical processing (OLAP) systems. The data in data
warehouses and data marts is organized differently than in traditional transaction processing databases.

Enterprise-level relational database management software, such as SQL Server 2000, was designed originally to centrally store
the data generated by the daily transactions of large companies or government organizations. Over the decades, these databases
have grown to be highly efficient systems for recording the data required to perform the daily operations of the enterprise.
Because the system is based on computers and records the business transactions of the enterprise, these systems are known as
online transaction processing (OLTP) systems.

OLTP Systems

The data in OLTP systems is organized primarily to support transactions, such as:

Recording an order from a point-of-sale terminal or entered through a Web site.

Placing an order for more supplies when inventory levels drop to a defined level.

Tracking components as they are assembled into a final product in a manufacturing facility.

Recording employee data.

Recording holders of licenses, such as restaurant or driver licenses.

Individual transactions are completed quickly and access relatively small amounts of data. OLTP systems are designed and tuned
to process hundreds or thousands of transactions being entered at the same time.

Although OLTP systems excel at recording the data required to support daily operations, OLTP data is not organized in a manner
that easily provides the information required by managers to plan the work of their organizations. Managers need summary
information from which they can analyze trends that affect their organization or team. They need to find the critical factors
affecting the success of their organization, and how best to adjust those factors to improve the success of the enterprise. They
need to find how the workload of their enterprise is affected by seasonal and yearly trends so that they can predict how many
employees and resources will be required to perform future work.

OLAP Systems

Systems designed to handle the queries required to discover trends and critical factors are called online analytical processing
(OLAP) systems. OLAP queries typically require large amounts of data. For example, the head of a government motor vehicle
licensing department could ask for a report that shows the number of each make and model of vehicle registered by the
department each year for the past 20 years. Running this type of query against the original detail data in an OLTP system has two
effects:

The query takes a long time to aggregate (sum) all of the detail records for the last 20 years, so the report is not ready in a
timely manner.

The query generates a very heavy workload that at least slows down the normal users of the system from recording
transactions at their normal pace.

Another issue is that many large enterprises do not have only one OLTP system that records all the transaction data. Most large
enterprises have multiple OLTP systems, many of which were developed at different times and use different software and
hardware. In many cases, the codes and names used to identify items in one system are different from the codes and names used
in another. Managers running OLAP queries generally need to be able to reference the data from several of these OLTP systems.

OLAP data is organized into multidimensional cubes. The structure of data in multidimensional cubes gives better performance
for OLAP queries than data organized in relational tables. The basic unit of a multidimensional cube is called a measure. Measures
are the units of data that are being analyzed. For example, a corporation that operates hardware stores wants to analyze revenue
and discounts for the different products it sells. The measures are the number of units sold, revenue, and the sum of any
discounts. The measures are organized along dimensions. In this example, a three dimensional cube could have these dimensions:
time, store, and products. Think of these dimensions as forming the logical x, y, and z axis of a three-dimensional, virtual cube.

Each dimension is divided into units called members. The members of a dimension are typically organized into a hierarchy.
Similar members are grouped together as a level of the hierarchy. For example, the top hierarchy level of a time dimension can be
years, with months at the next level, then weeks, days, and finally hours at the bottom level of the hierarchy. At each intersection
of the three dimensions, the values for the measures that match those three dimension values are recorded. For example, suppose
that the hour starting at 1:00 P.M. Saturday, Feb. 19, 2000 is a time dimension member, Store #2 of Albany, New York is a store
dimension member, and Easy-Clean Mops are a product dimension member. Where these three dimensions meet, the cell
records that 10 mops were sold for revenues of $90.00 and an average discount of $1.00.

The specific dimensions and measures defined for the cubes in any particular OLAP system depend on the kinds of analysis
important to the enterprise. Transforming OLTP data from relational tables into OLAP cubes, and the design of the cubes, is a
complex area that is the subject of many third-party books.

OLAP systems operate on OLAP data in data warehouses or data marts. A data warehouse stores enterprise-level OLAP data,
while a data mart is smaller and typically covers a single function in an organization.

See Also

Creating and Maintaining Databases Overview

Creating and Using Data Warehouses Overview

SQL Server Architecture (SQL Server 2000)

Transforming OLTP Data to OLAP Data Warehouses
The transformation of OLTP data so that it gives acceptable performance in an OLAP system requires these processes:

Merge Data

You must be able to merge all the data related to specific items (products, customers, employees) from multiple OLTP systems
into a single OLAP system. The merge process must resolve differences in encoding between the different OLTP systems. For
example, one system may assign an ID to each employee, and the other systems have no employee IDs. The merge process must
be able to match common employee data from both systems, perhaps by comparing employee names and addresses. The merge
process must also be able to convert data stored using different data types in each OLTP system to a single data type used in the
OLAP system. You must also select which columns in the OLTP system are not relevant to an OLAP system, and exclude these
columns from the merge process.

The systems providing input data for an OLAP system are not strictly limited to traditional, centrally located OLTP systems.
Valuable information may be stored in various legacy locations, even in some cases including relatively small sources such as
Microsoft® Excel spreadsheets stored on a file share.

Scrub Data

Merging the OLTP data into a data warehouse gives you an opportunity to scrub data. You may find that various OLTP systems
spell items differently, or the merge process may uncover previously unknown spelling errors. You may find other
inconsistencies, such as having different addresses for the same store, employee, or customer. These inconsistencies have to be
addressed before the data can be loaded into the data warehouse for use by the OLAP system.

Aggregate Data

OLTP data records all transaction details. OLAP queries typically need summary data, or data aggregated in some fashion. For
example, a query to retrieve the monthly sales totals for each product over the last year runs much faster if the database only has
summary rows showing the daily or hourly sales for each product, than if the query must scan every transaction detail record for
the last year.

The degree to which you aggregate the data in a data warehouse depends on a number of design factors, such as the speed
requirements of your OLAP queries and the level of granularity required for your analysis. For example, if you aggregate sales
details into daily summaries instead of hourly summaries, your OLAP queries would run faster, but you could only do this if you
had no need to analyze sales on an hourly basis.

Organize Data in Cubes

Relational OLTP data is organized in a way that makes some analysis processing difficult and time-consuming. When OLTP data is
moved into a data warehouse, it must be transformed into an organization that better supports decision support analysis. The
process of building a data warehouse involves reorganizing OLTP data stored in relational tables into OLAP data stored in
multidimensional cubes.

Transformation Stages and Data Warehousing Components

The process of making data available through OLAP applications typically goes through three phases:

1. Extract the data from OLTP or legacy data sources into a staging area.

2. Transform the data into a form usable in an OLAP system. This involves actions such as data scrubbing and aggregation.

3. Load the data into a data warehouse or data mart.

The process of extracting the data from the OLTP and legacy data sources and transforming it into the warehouse servers is called
the ETL process, and is typically run on a periodic basis, such as once a week or once a month.

Once the data is loaded into a data warehouse, an important part of an OLAP system is to provide facilities for decision makers to
access and analyze the data in the data warehouses and data marts.

The illustration shows the general categories of components that OLAP systems use to provide these services.

Data Sources

The OLTP databases and other legacy sources of data that contain the data that must be transformed into the OLAP data in data
warehouses and data marts.

Intermediate Data Stores

The combined data storage areas and processes that stage, cleanse, and transform the OLTP data into useful OLAP data.

Warehouse Servers

Warehouse servers are the computers running the relational databases that contain the data for data warehouses and data marts,
and the servers that manage the OLAP data.

Business Intelligence

The sets of tools and applications that query the OLAP data and provide reports and information to the enterprise decision
makers.

Meta Data

Models the organization of data and applications in the different OLAP components. Meta data describes objects such as tables in
OLTP databases, cubes in data warehouses and data marts, and also records which applications reference the various pieces of
data.

See Also

Creating and Using Data Warehouses Overview

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 Data Warehouse and OLAP Components
Microsoft® SQL Server™ 2000 provides several components (as shown in the illustration) that allow you to transform OLTP data
into OLAP data, and make the OLAP information available to decision makers.

Extensible Markup Language and OLE DB

Extensible Markup Language (XML) is a standard that defines a formatting and data representation language independent of
specific data stores or applications. It is becoming an increasing important standard in the transmission of data between
applications and across the Web. SQL Server 2000 is enabled to return the result sets of queries as XML documents, and also to
extract the data from XML documents and store them in the relevant tables in a database.

OLE DB is a common data access specification defined by Microsoft. Many data storage products, such as spreadsheets,
databases, or other server applications, supply OLE DB providers that can be used by an OLE DB application to access the data.
Applications using the OLE DB API can access any data for which there is an OLE DB provider. OLE DB can present its data as XML
documents. OLE DB 2.5 also includes multidimensional extensions that let OLE DB providers expose information from
multidimensional cubes.

XML and OLE DB are important mechanisms for communicating data between the various SQL Server 2000 data warehousing
components. The definitions of some of the conceptual models used by some components are based on XML.

Microsoft ActiveX® Data Objects (ADO) is an object API that maps over OLE DB, but is more concise and easier to code. Like OLE
DB, ADO can return its data as XML documents and also supports multi-dimensional extensions. Many applications use ADO as
their API for accessing OLTP data.

SQL Server 2000 Relational Database Engine

The SQL Server 2000 database engine is used primarily in the OLTP systems, and also to store the intermediate data stores used
when transforming OLTP data for storage in the data warehouse or data mart, and to store and manage the data in a data
warehouse or data mart.

Data Transformation Services

Data Transformation Services (DTS) is a component built to take data from one OLE DB data source, perform operations, such as
aggregating the data (SUM, MIN, MAX, AVG), and storing it in a destination OLE DB data source. DTS consists of packages, which
define a particular set of work that forms a logical work item. Packages contain multiple connections to data sources, tasks to be
performed, and workflows connecting connections and tasks. Examples of tasks include copying data from source to destination
connections, transforming data from a source connection and placing the transformed data in the destination connection,
executing a set of Microsoft ActiveX scripts or Transact-SQL statements against a connection.

DTS transforms OLTP data stored in relational tables into a different organization that can be used as the foundation for
multidimensional cubes. Although the data in OLTP databases is stored in entity and relationship tables, data in an OLAP data
warehouse is stored in fact and dimension tables. Fact tables store the measures exposed in multidimensional cubes, and
dimension tables stores information about dimension members.

DTS is a powerful tool for any system that must repeatedly access data in one format and transform it into another format. The
use of DTS is not limited to building data warehouses, but the power and capabilities of the component are excellently suited to
the work of transforming OLTP data into OLAP data warehouse data. For more information, see DTS Overview.

Analysis Services and Data Mining

Analysis Services is an easy-to-use, integrated, and scalable set of components that enables you to build multidimensional cubes
and provide the application programs with access to the cubes. Analysis Services is very flexible in the types of storage
mechanisms it supports for the cubes. The cubes can be stored in relational databases (ROLAP), as separate, high-performance
multidimensional data structures (MOLAP), or hybrid combinations of both (HOLAP). Analysis Services support wizards that ease
tasks such as defining dimensions and cubes. For more information, see Analysis Services Architecture.

Analysis Services exposes the data in the multidimensional cubes to applications through an OLE DB provider. The Analysis
Services provider supports multi-dimensional extensions defined as part of OLE DB 2.5, and the ActiveX Data Objects
(Multidimensional) (ADO MD) API. For more information, see Programming Analysis Services Applications.

Analysis Services also supports industry-standard data mining algorithms. Data mining supports new and sophisticated tools for
discovering trends in data and predicting future results. For more information, see Data Mining Models.

English Query

English Query allows end users to pose English language questions about information stored in SQL Server 2000 databases, or
data warehouses, and OLAP cubes. An English Query administrator defines the logical and semantic relationships between the
various tables and columns in a database or cubes, dimensions, and measures in a data warehouse. An application can be coded
to ask the end user to type in an English query into a character field on a form. The character string is then passed to the English
Query engine. The engine analysis the question against the logical definitions of the data provided by the administrator. When
querying OLAP cubes, the English Query engine returns to the application an SQL statement that extracts the requested
information from the database. When querying a data warehouse or data mart, the English Query engine returns an MDX query.
The application executes the SQL statement or MDX query and returns the results to the end user. For more information, see
English Query Overview.

Meta Data Services

SQL Server 2000 Meta Data Services stores a model that maps the organization of data in SQL Server 2000 databases and data
warehouses. This information is primarily used by third-party rapid-development tools that can either prototype applications or
provide application templates based on the information in the Meta Data Services model. For more information, see Meta Data
Services Overview.

See Also

Analysis Services Overview

Creating and Maintaining Databases Overview

Creating and Using Data Warehouses Overview

DTS Overview

English Query Overview

Meta Data Services Overview

SQL Server Architecture (SQL Server 2000)

Application Development Architecture
Applications use two components to access a database:

An application programming interface (API) or Uniform Resource Locator (URL).

A database API defines how to code an application to connect to a database and pass commands to the database. An object
model API is usually language independent and defines a set of objects, properties, and interfaces, and a C or Microsoft®
Visual Basic® API defines a set of functions for applications written in C, C++, or Visual Basic.

A Uniform Resource Locator is a string, or stream, that an Internet application can use to access resources on the Internet or
an intranet. Microsoft SQL Server™ 2000 provides an ISAPI dynamic-link library (DLL) that Microsoft Internet Information
Services (IIS) applications use to build URLs that reference instances of SQL Server 2000.

Database language.

A database language defines the syntax of the commands sent to the database. The commands sent through the API allow
the application to access and modify data. They also allow the application to create and modify objects in the database. All
commands are subject to the permissions granted to the user. SQL Server 2000 supports two languages:

Internet applications running on IIS can use XPath queries with mapping schemas.

The Transact-SQL language.
The topics in this section provide information about the APIs supported by SQL Server 2000 and the issues to consider
when choosing which API to use in an application.

Transact-SQL

Transact-SQL is the database language supported by SQL Server 2000. Transact-SQL complies with the Entry Level of the SQL-92
standard, but also supports several features from the Intermediate and Full Levels. Transact-SQL also supports some powerful
extensions to the SQL-92 standard. For more information, see Transact-SQL Overview.

The ODBC specification defines extensions to the SQL defined in the SQL-92 standard. The ODBC SQL extensions are also
supported by OLE DB. Transact-SQL supports the ODBC extensions from applications using the Microsoft ActiveX® Data Objects
(ADO), OLE DB, or ODBC APIs, or the APIs that layer over ODBC. The ODBC SQL extensions are not supported from applications
that use the DB-Library or Embedded SQL APIs.

XPath

SQL Server 2000 supports a subset of the XPath language defined by the World Wide Web Consortium (W3C). XPath is a graph
navigation language used to select nodes from XML documents. You first use a mapping schema to define an XML-based view of
the data in one or more SQL Server tables and views. You can then use XPath queries to retrieve data from that mapping schema.

You usually use XPath queries in either URLs or the ADO API, XPath queries are also supported by the OLE DB API.

APIs Supported by SQL Server

SQL Server supports a number of APIs for building general-purpose database applications, such as:

These open APIs with publicly defined specifications supported by several database vendors:
ActiveX Data Objects (ADO)

OLE DB

Open Database Connectivity (ODBC) and the object APIs built over ODBC: Remote Data Objects (RDO) and Data
Access Objects (DAO)

Embedded SQL for C (ESQL)
The legacy DB-Library for C API that was developed specifically to be used with earlier versions of SQL Server that predate
the SQL-92 standard.

Internet applications can also use URLs that specify IIS virtual roots that reference an instance of SQL Server. The URL can contain

an XPath query, a Transact-SQL statement, or a template. In addition to using URLs, Internet applications can also use ADO or OLE
DB to work with data in the form of XML documents.

SQL Server Architecture (SQL Server 2000)

Choosing an API
The general-purpose application programming interfaces (APIs) recommended for use in new applications that use Microsoft®
SQL Server™ 2000 are:

Microsoft ActiveX® Data Objects (ADO) for most database applications. ADO supports rapid development of robust
applications and has access to most SQL Server features. The SQL Server features needed by most applications are
supported by ADO when using the Microsoft OLE DB Provider for SQL Server.

URLs in Internet applications such as HTML or ASP pages.

OLE DB for COM-based tools and utilities, or COM-based system-level development requiring either top performance or
access to SQL Server features not exposed through ADO. The OLE DB Provider for SQL Server uses provider-specific
properties, interfaces, and methods to expose SQL Server features not covered by the OLE DB specification. Most of these
provider-specific features are not exposed through ADO.

ODBC for the same class of applications as are listed above for OLE DB, but which are not based on COM.

Selecting a General-Purpose API

Several factors should be considered when you select a general-purpose API to use in a SQL Server application:

Maturity of the API specification.
Existing

Existing API specifications are mature, stable specifications. Supplementary information about the API is readily
available in third-party books and classes. There is an existing pool of programmers familiar with the API.

Emerging

Emerging API specifications are recent and may be evolving rapidly. Supplementary information about the latest
version of the API may be scarce. There are relatively few programmers available who have used the API, although
programmers familiar with a similar API can be retrained quickly.

Legacy

Legacy API specifications are stable but unchanging. They may not support new features, and are likely to be
discontinued at a future date. Information about the API is readily available, but the pool of programmers familiar
with the API may be shrinking.

Overhead.
Native APIs

Native APIs are low-level APIs implemented with providers or drivers that communicate directly to SQL Server using
the Tabular Data Stream (TDS) protocol. They are relatively complex APIs, but offer the best performance because
they have the least overhead.

Object model APIs

Object model APIs use a relatively simple object model to encapsulate a native API. They are less efficient than native
APIs because they must map their objects to the underlying native API, but their performance is acceptable for
almost all applications. Applications using an object model API are simple to program and maintain. The object
model API may not support all of the features of the underlying native API.

Hosted APIs

Hosted APIs also encapsulate a native API, but do not use an object model. The efficiency, ease-of-use, and feature-
set issues for hosted APIs are similar to those for object model APIs.

Degree of developer control.

APIs vary in their overall feature set. Simple APIs such as ADO are easy to learn, program, and maintain, but they do not
support all of the capabilities of the more complex APIs such as OLE DB and ODBC. You can take advantage of the ease-of-
use advantages of the APIs such as ADO, RDO, and ESQL if they provide the functionality the application needs.

Access to SQL Server features.

Some APIs have limitations on the numbers or types of SQL Server features they can use.

Access to Microsoft SQL Server 2000 Analysis Services features.

Analysis Services, ADO MD, and OLE DB for OLAP offer support for online analytical processing. These services can be
integrated with ADO and OLE DB applications using the OLE DB Provider for SQL Server.

Programming language and tool support for the API.

The following table maps the general-purpose database APIs supported by SQL Server to the factors presented in the preceding
list.

API Maturity Overhead

Degree of
developer

control

SQL
Server
2000

feature
support

SQL
Server
2000
XML

Support

OLAP
Services
feature
support

Language
support

ADO Existing Object
Model
over OLE
DB

Moderate Most Yes Yes Microsoft
Visual Basic®
Microsoft
Visual C++®
Microsoft
Visual J++®

URL Emerging Streams
over OLE
DB

Low Limited Yes No HTML

Active Server
Pages (ASP)

OLE DB Existing Native High All Yes Yes Visual C++
ODBC Existing Native High All No No Visual C++
RDO Existing Object

Model
over
ODBC

Moderate Most No No Visual Basic
Visual J++

DAO Legacy Object
Model
over
ODBC

Low Limited No No Visual Basic
Visual C++

ESQL * Legacy Hosted
over DB-
Library

Low Limited No No Visual C++
COBOL

DB-
Library
for C *

Legacy Native High Limited No No Visual C++

* While the DB-Library and Embedded SQL for C APIs are still supported in Microsoft SQL Server 2000, no future versions of SQL
Server will include the files needed to do programming work on applications that use these APIs. Connections from existing
applications written using DB-Library and Embedded SQL for C will still be supported in the next version of SQL Server, but this
support will also be dropped in a future release. When writing new applications, avoid using these components. When modifying
existing applications, you are strongly encouraged to remove dependencies on these technologies. Instead of DB-Library or
Embedded SQL for C, you can use ADO, OLE DB, or ODBC to access data in SQL Server.

Additional APIs

SQL Server also supports a number of interfaces that allow applications to make full use of all SQL Server features:

SQL Distributed Management Objects (SQL-DMO API)

A set of COM interfaces for managing and administering SQL Server.

Replication components (Replication Component Programming API)

A set of COM interfaces for defining and managing replication between SQL Server databases. You can also replicate data
from heterogeneous databases to SQL Server.

Data Transformation Services (Data Transformation Services API)

A set of COM interfaces (based on OLE DB) for defining and executing complex data transformations between OLE DB data
providers.

Extended Stored Procedure API (Extended Stored Procedure API)

A C language API for writing SQL Server extended stored procedures.

English Query API (SQL Server and English Query)

An Automation API for evaluating strings that contain user questions against the information in SQL Server databases or
OLAP cubes. The English Query server returns the SQL statement or MDX query that will retrieve the answer to the user
question.

Analysis Services APIs (Programming Analysis Services Applications)

Analysis Services exposes multiple APIs: Decision Support Objects to manage OLAP and data mining objects, ADO
Multidimensional (ADO MD) and OLE DB OLAP extensions for accessing OLAP cubes, and data mining functionality.

Meta Data Services (Programming Meta Data Services Applications)

An Automation API that gives applications and programming tools access to a model of the meta data in SQL Server
databases.

See Also

Building SQL Server Applications Overview

SQL Server Architecture (SQL Server 2000)

SQL Server and ADO
Microsoft® ActiveX® Data Objects are a set of Automation objects that consume the OLE DB API and allow applications to
consume data from OLE DB data sources. This includes data stored in many different formats, not only SQL databases. The
ActiveX Data Object (ADO) API can be used from applications written in any automation-enabled language, such as Microsoft
Visual Basic®, Microsoft Visual C++®, Microsoft Visual J++®, and Microsoft Visual FoxPro®.

ADO applications access data through OLE DB providers. Microsoft SQL Server™ 2000 includes a native Microsoft OLE DB
Provider for SQL Server used by ADO applications to access the data in SQL Server. In SQL Server version 6.5 and earlier, ADO
applications had to use the OLE DB Provider for ODBC layered over the Microsoft SQL Server ODBC driver. Although ADO
applications can still use the OLE DB Provider for ODBC with the SQL Server ODBC driver, it is more efficient to only use the OLE
DB Provider for SQL Server.

ADO is the API most recommended for general-purpose data access to SQL Server for these reasons:

ADO is easy to learn and program.

ADO has the feature set required by most general-purpose applications.

ADO enables programmers to quickly produce robust applications.

The core capabilities of the OLE DB specification provide all the data access functionality needed by most applications. In addition,
OLE DB allows individual providers to define provider-specific mechanisms to support additional features of the data engine
accessed by the provider. ADO exposes the core capabilities of OLE DB, but does not expose provider-specific features. ADO
applications cannot access a few SQL Server features exposed through provider-specific features of the OLE DB Provider for SQL
Server, such as the IRowsetFastLoad bulk copy methods, SQL Server-specific extended diagnostic information, and auto-fetch
cursors.

ADO also supports the XML functionality of SQL Server 2000. This provides an easy migration path for Internet applications
coded to use ADO to retrieve a rowset and then convert the rowset into an XML document. The application can instead use ADO
to execute an XPath query or a SELECT statement with a FOR XML clause, in which case the result set is built as an XML document
on the server rather than having to be converted on the application computer.

ADO has evolved from the earlier, ODBC-based Remote Data Objects (RDO) and Data Access Objects (DAO) APIs. RDO and DAO
applications can be converted to ADO, and RDO and DAO application programmers quickly learn ADO. ADO is used extensively in
Active Server Pages (ASP).

See Also

Programming ADO SQL Server Applications

SQL Server Architecture (SQL Server 2000)

SQL Server and Universal Resource Locators
Uniform Resource Locators (URLs) are formatted strings or streams that an Internet application can use to reference resources on
the Internet or an intranet. Microsoft® SQL Server™ 2000 supports URLs that work with data in SQL Server databases and return
the results as XML documents. The URLs can execute XPath queries referencing mapping schemas that provide an XML-based
view of the data in SQL Server tables. The URLs can also execute Transact-SQL statements or templates.

Although not strictly an API, URLs are the recommended mechanism for accessing SQL Server data from Web applications
running on Microsoft Internet Information Services (IIS). URLs are easily integrated in HTML and XML-based environments, such
as HTML pages or Active Server Pages (ASPs). Specifying a URL that executes an XPath query or Transact-SQL statement that
returns an XML document is a relatively simple way to integrate SQL Server results into a Web application.

See Also

XML and Internet Support Overview

URL Access

SQL Server Architecture (SQL Server 2000)

SQL Server and OLE DB
OLE DB is an API that allows COM applications to consume data from OLE DB data sources. OLE DB data sources include data
stored in many different formats, not only SQL databases. An application uses an OLE DB provider to access an OLE DB data
source. An OLE DB provider is a COM component that accepts calls to the OLE DB API and does whatever is necessary to process
that request against the data source.

Microsoft® SQL Server™ 2000 includes a native Microsoft OLE DB Provider for SQL Server used by OLE DB applications to access
the data in SQL Server. The OLE DB Provider for SQL Server complies with the OLE DB 2.0 specification. Each OLE DB provider
supports a command language; the OLE DB Provider for SQL Server accepts the command syntax specified as DBGUID_SQL.
DBGUID_SQL syntax is primarily SQL-92 syntax with ODBC escape sequences.

In SQL Server version 6.5 and earlier, OLE DB applications had to use the OLE DB Provider for ODBC layered over the Microsoft
SQL Server ODBC driver. While OLE DB applications can still use the OLE DB Provider for ODBC with the SQL Server ODBC driver,
it is more efficient to use only the OLE DB Provider for SQL Server.

OLE DB is the API recommended for tools, utilities, or system level development needing either top performance or access to SQL
Server features not exposed through ADO. The core capabilities of the OLE DB specification provide all the data access
functionality needed by most applications. In addition, OLE DB allows individual providers to define provider-specific mechanisms
to support additional features of the data engine accessed by the provider. ADO applications cannot access some SQL Server
features exposed through provider-specific features of the OLE DB Provider for SQL Server, so applications needing to use the
provider-specific features of the OLE DB Provider for SQL Server must use the OLE DB API. These features include:

An IRowsetFastLoad interface to the SQL Server bulk copy component.

An ISQLServerErrorInfo interface to get SQL Server-specific information from messages and errors.

A LINKEDSERVERS rowset that exposes catalog information from the linked servers used in SQL Server distributed queries.

Various provider-specific properties to control SQL Server-specific behaviors.

OLE DB also supports the XML functionality of SQL Server 2000. This provides an easy migration path for Internet applications
coded to use OLE DB to retrieve a rowset and then convert it into an XML document. The application can instead use OLE DB to
execute an XPath query or a SELECT statement with a FOR XML clause, in which case the result set is built as an XML document on
the server rather than having to be converted on the application computer. Most application working with XML are written in
ADO or use URLs, which are less complex than OLE DB.

See Also

Programming OLE DB SQL Server Applications

SQL Server Architecture (SQL Server 2000)

SQL Server and ODBC
Open Database Connectivity (ODBC) is a Call-Level Interface (CLI) that allows C and C++ applications to access data from ODBC
data sources. A CLI is an API consisting of functions an application calls to obtain a set of services. ODBC data sources include data
stored in different formats, not just SQL databases. An application uses an ODBC driver to access a data source. An ODBC driver is
a dynamic-link library (DLL) that accepts calls to the ODBC API functions and does whatever is necessary to process that request
against the data source.

ODBC is aligned with these specifications and standards defining a CLI for data access:

The X/Open CAE Specification "Data Management: SQL Call-Level Interface (CLI)"

ISO/IEC 9075-3:1995(E) Call-Level Interface (SQL/CLI)

ODBC has been widely accepted by database programmers, and several database vendors or third-party companies supply ODBC
drivers. Several other Microsoft data access APIs were defined as simplified object models over ODBC, such as:

Remote Data Objects (RDO)

Data Access Objects (DAO)

Microsoft Foundation Classes (MFC) Database Classes

Microsoft® SQL Server™ 2000 includes a native Microsoft SQL Server ODBC driver used by ODBC applications to access the data
in SQL Server. The SQL Server ODBC Driver complies with Level 2 of the ODBC 3.51 specification and exposes all the features of
SQL Server. In SQL Server 2000 all of the SQL Server utilities except isql use the ODBC API and the SQL Server ODBC Driver.

ODBC can be used in tools, utilities, or system level development needing either top performance or access to SQL Server
features, and which are not COM applications. ODBC, like OLE DB, allows individual drivers to define driver-specific mechanisms
to support additional features of the data engine accessed by the driver. These features include:

A set of bulk copy functions based on the earlier DB-Library bulk copy functions.

Extensions to the ODBC diagnostic functions and records to get SQL Server-specific information from messages and errors.

A set of functions that exposes catalog information from the linked servers used in SQL Server distributed queries.

Various driver-specific attributes and connection string keywords to control SQL Server–specific behaviors.

See Also

Programming ODBC SQL Server Applications

SQL Server Architecture (SQL Server 2000)

SQL-DMO API
SQL Distributed Management Objects (SQL-DMO) encapsulate the objects found in Microsoft® SQL Server™ 2000 databases.
SQL-DMO allows applications written in languages that support Automation or COM to administer all parts of a SQL Server
installation. SQL-DMO is the application programming interface (API) used by SQL Server Enterprise Manager in SQL Server
2000; therefore, applications using SQL-DMO can perform all functions performed by SQL Server Enterprise Manager.

SQL-DMO is intended for any Automation or COM application that must incorporate SQL Server administration, for example:

Applications that encapsulate SQL Server as their data store and want to shield users from as much SQL Server
administration as possible.

Applications that have specialized administrative logic incorporated the application itself.

Applications that want to integrate SQL Server administrative tasks in their own user interface.

Windows Management Instrumentation

The SQL Server 2000 compact disc contains support for a new API that will allow you to administer instances of SQL Server using
Windows Management Instrumentation (WMI). WMI is a scalable Windows® 2000 component with an object-oriented API that
lets management applications and scripts monitor, configure, and control the operating system and devices, services, and
applications in a Windows network. Using standard Windows security, WMI allows only properly authorized users to manage the
system. WMI core components are also available for Windows NT® 4.0, Windows 95, and Windows 98. For more information
about the WMI support for these operating systems, see the MSDN® page at Microsoft Web site.

A component, such as SQL Server, enables WMI support by supplying a WMI provider and defining a WMI class schema. The
schema models the objects in the component that can be managed using WMI. SQL Server 2000 includes a SQL Server WMI
provider and a schema class model that maps instances of SQL Server 2000 to WMI classes. The SQL Server WMI schema models
objects such as databases and tables. The SQL Server WMI implementation provides management functions such as:

Create, change, or delete managed objects. For example, create a database.

Administer managed objects. For example, back up databases and logs.

Enumerate managed objects. For example, list all the tables in a database.

Retrieve information on a specific managed object. For example, determine whether full-text indexing is enabled on the
Customers table.

Query managed objects that meet a specific criterion. For example, list all encrypted stored procedures.

Execute methods defined for managed objects. For example, execute a method that bulk copies data from a table.

Generate events when a managed object is created, changed, or deleted (for example, send a event when a database option
is changed).

Describe relationships between managed objects (for example, identify which logins are authorized to access a database).

All WMI data is available remotely and is fully scriptable. The SQL Server 2000 WMI implementation maps over the SQL-DMO
API, but does not support the management of replication. The SQL Server WMI implementation can be used with SQL Server 7.0.

The SQL Server WMI support is not installed by SQL Server 2000 Setup. All of the WMI materials, including a separate setup and
documentation, are included in the folder \x86\OTHER\wmi on the SQL Server 2000 compact disc.

See Also

Administration Architecture

Developing SQL-DMO Applications

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

SQL Server Architecture (SQL Server 2000)

SQL Namespace API
The SQL Namespace (SQL-NS) application programming interface (API) is a set of objects that encapsulate the SQL Server
Enterprise Manager user interface. SQL-NS allows applications written in languages that support Automation or COM to include
parts of the SQL Server Enterprise Manager user interface in their own user interface.

Using SQL-NS, an application can incorporate the following SQL Server Enterprise Manager elements into its user interface:

Wizards

Dialog boxes (including property dialog boxes)

When an application uses the SQL-NS objects, SQL Server Enterprise Manager must be installed on any client that attempts to
run the SQL-NS application.

See Also

Administration Architecture

Programming SQL-NS Applications

SQL Server Architecture (SQL Server 2000)

Replication Component Programming API
Microsoft® SQL Server™ 2000 includes a set of replication objects in addition to the replication objects found in SQL-DMO. These
objects include:

The Replication Distributor Interface, which enables you to programmatically implement and manage heterogeneous
transactional replication, in conjunction with third-party programs that can perform change tracking at heterogeneous data
sources.

Microsoft ActiveX® controls that allow you to provide the functionality of the Distribution Agent or the Merge Agent in
custom programs.

See Also

Administration Architecture

Developing SQL-DMO Applications

Replication Overview

Developing Replication Applications Using ActiveX Controls

Programming Replication from Heterogeneous Data Sources

SQL Server Architecture (SQL Server 2000)

Data Transformation Services API
The Data Transformation Services (DTS) application programming interface (API) is a set of objects encapsulating services that
assist with building a data warehouse. DTS can be used in applications written in languages that support Automation or COM:

DTS transfers data between heterogeneous OLE DB data sources.

DTS performs customized transformations that can convert detailed online transaction processing (OLTP) data to a
summarized form for easy analysis of trend information.

See Also

DTS Overview

Programming DTS Applications

SQL Server Architecture (SQL Server 2000)

SQL Server and English Query
English Query provides an Automation API that lets users resolve natural-language questions about the information in a
Microsoft® SQL Server™ 2000 database.

Given a definition of the entities and relationships associated with a SQL Server database, English Query translates a natural-
language question about data in the database to a set of SQL SELECT statements that can then be executed against the SQL
Server database to get the answer.

For example, given a car sales database, an application can send English Query a string containing the question, "How many blue
Fords were sold in 1996?"

English Query returns to the application an SQL statement such as:

SELECT COUNT(*)
FROM CarSales
WHERE Make = 'Ford'
 AND Color = 'Blue'
 AND DATEPART(yy, SalesDate) = '1996'

The application can then execute the SQL statement against the SQL Server database to get a number it can return to the user.

English Query works best with a normalized database. There are two parts to using English Query in an application:

1. An administrator defines an English Query project for the database and uses that to compile what is called an English Query
application file. The English Query model is what defines the structure of the database to the English Query run-time engine.

An English Query model contains:

Definitions of entities, which are usually associated with tables and columns of the database.

Definitions of the relationships between the entities.

2. The model is defined with a Model Editor and tested with a test tool. The result is saved as an English Query project (.eqp)
file. This file is compiled to form the English Query application (.eqd) file.

English Query uses full-text search to generate powerful queries designed to extract data from SQL Server database columns
covered by full-text indexes. For more information, see Full-Text Search.

English Query also generates queries to extract data from the OLAP cubes stored in Analysis Services. When used as a front end
for Analysis Services, English Query generates the MDX statements required to extract the data from the OLAP cubes. For more
information, see Analysis Services in English Query.

English Query is an Automation server that can be called from any Automation application. The Automation server, or run-time
engine, exposes an object model API. An Automation application uses the API to load the English Query application file and then
send the run-time engine natural-language questions. The run-time engine usually returns an SQL statement or batch that will
retrieve the required information from the SQL Server database. Sometimes the run-time engine can provide the answer directly,
request clarification, or return an error.

See Also

Installing English Query

SQL Server Architecture (SQL Server 2000)

Extended Stored Procedure API
The Extended Stored Procedure application programming interface (API) is a server-based API specific to Microsoft® SQL
Server™ 2000. It can be used to produce extended stored procedures. An extended stored procedure is a C or C++ dynamic-link
library (DLL) that can be called from Transact-SQL using the same syntax as calling a Transact-SQL stored procedure. Extended
stored procedures are a way to extend the capabilities of Transact-SQL to include any resources or services available to Microsoft
Win32® applications.

See Also

Programming Extended Stored Procedures

SQL Server Architecture (SQL Server 2000)

SQL Server and Embedded SQL
Embedded SQL (ESQL) is a SQL-92 standard application programming interface (API) for SQL database access. ESQL requires a
two-step compilation process:

1. A precompiler translates Embedded SQL statements into commands in the programming language used to write the
application. The generated statements are specific to the database that supplied the precompiler, so although the original
source is generic to ESQL, the generated statements and the final executable file are specific to one database vendor.

2. The source generated by the precompiler is then compiled using the compiler for the application programming language.

Embedded SQL has a simpler syntax than COM APIs such as OLE DB or Call Level Interfaces such as ODBC, so it is easier to learn
and program. It is less flexible than OLE DB or ODBC, where well-written applications can switch from one DBMS to another by
simply switching drivers or providers. OLE DB and ODBC are also better at dealing with environments where the SQL statements
are not known when the application is compiled, such as when developing as-required query tools.

Microsoft® SQL Server™ 2000 provides an Embedded SQL precompiler for C applications. The SQL Server precompiler translates
Embedded SQL statements as calls to the appropriate DB-Library API functions. The Microsoft implementation of ESQL has the
same restrictions as DB-Library applications.

SQL Server is designed such that it can support COBOL Embedded-SQL applications compiled with third-party Embedded SQL
precompilers that support Microsoft SQL Server.

While the Embedded SQL for C API is still supported in Microsoft SQL Server 2000, no future versions of SQL Server will include
the files needed to do programming work on applications that use this API. Connections from existing applications written using
Embedded SQL for C will still be supported in the next version of SQL Server, but this support will also be dropped in a future
release. When writing new applications, avoid using Embedded SQL for C. When modifying existing applications, you are strongly
encouraged to remove dependencies on Embedded SQL for C. Instead of Embedded SQL for C, you can use Microsoft ActiveX®
Data Objects (ADO), OLE DB, or ODBC to access data in SQL Server.

See Also

Programming Embedded SQL for C

SQL Server Architecture (SQL Server 2000)

DB-Library API
DB-Library is a Call Level Interface that allows C applications to access Microsoft® SQL Server™ 2000. DB-Library was the original
application programming interface (API) that allowed applications to access SQL Server, and remains specific to SQL Server.

The DB-Library API has not been enhanced beyond the level of SQL Server version 6.5. All DB-Library applications can work with
SQL Server 2000, but only as 6.5 level clients. Features introduced in SQL Server 2000 and SQL Server version 7.0 are not
supported for DB-Library applications.

SQL Server 2000 does not include a programming environment for DB-Library for Microsoft Visual Basic®. Existing DB-Library
for Visual Basic applications can run against SQL Server 2000, but must be maintained using the software development tools
from SQL Server version 6.5. All development of new Visual Basic applications that access SQL Server should use the Visual Basic
data APIs such as Microsoft ActiveX® Data Objects (ADO) and Remote Data Objects (RDO).

While the DB-Library API is still supported in Microsoft SQL Server 2000, no future versions of SQL Server will include the files
needed to do programming work on applications that use this API. Connections from existing applications written using DB-
Library will still be supported in the next version of SQL Server, but this support will also be dropped in a future release. When
writing new applications, avoid using DB-Library. When modifying existing applications, you are strongly encouraged to remove
dependencies on DB-Library. Instead of DB-Library, you can use ADO, OLE DB, or ODBC to access data in SQL Server.

See Also

DB-Library for C Reference

SQL Server Architecture (SQL Server 2000)

SQL Syntax Recommendations
The Microsoft® SQL Server™ 2000 Transact-SQL version complies with the Entry level of the SQL-92 standard, and supports
many additional features from the Intermediate and Full levels of the standard.

The OLE DB and ODBC application programming interfaces (APIs) were developed with the understanding that applications
would use:

SQL-92 syntax when it provides the functionality needed by the application. Because the SQL dialects of most databases
now comply with the Entry level of SQL-92 and support many features in the Intermediate and Full levels, this means many
OLE DB providers and ODBC drivers can simply pass through most SQL-92 syntax without having to transform it to
something accepted by the database.

Use the ODBC extensions to SQL-92 when they provide functionality needed by the application that SQL-92 does not
support.

Use the native SQL syntax of the database engine when it provides functionality needed by the application that SQL-92 and
the ODBC extensions do not support.

This approach minimizes the overhead of OLE DB providers and ODBC drivers. The providers and drivers only have to parse
incoming SQL statements for ODBC escape sequences or SQL-92 syntax not accepted by the database. Any ODBC escape
sequences and unsupported SQL-92 syntax are transformed into the corresponding SQL syntax accepted by the database engine.
All other SQL syntax is passed through to the database engine.

SQL Server 2000 applications using OLE DB, ODBC, or one of the other APIs that encapsulate these two, should follow these
guidelines:

Use SQL-92 syntax when it provides the functionality required by the application.

Use ODBC escape sequences when they provide functionality needed by the application but not provided by SQL-92.

Use Transact-SQL syntax when it provides functionality required by the application but not provided by SQL-92 or the
ODBC escape sequences.

Using SQL with DB-Library and Embedded SQL

DB-Library supports only Transact-SQL. DB-Library does not support the ODBC escape sequences or XML functionality.

Embedded SQL for C supports only the SQL syntax defined in Embedded SQL for C and Microsoft® SQL Server™.

DB-Library has not been extended after SQL Server version 6.5. It operates as a 6.5-level client and cannot use some new features
introduced in Microsoft SQL Server 2000 and Microsoft SQL Server version 7.0. Embedded SQL uses DB-Library to communicate
with SQL Server, so it also has the same restrictions. For more information, see Connecting Early Version Clients to SQL Server
2000.

SQL Server Architecture (SQL Server 2000)

Implementation Details
The topics in this section provide information about the editions of Microsoft® SQL Server™ 2000 and the environments that
support these editions. Information about the maximum capacities and memory usage of SQL Server 2000 objects is also
provided.

SQL Server Architecture (SQL Server 2000)

Editions of SQL Server 2000
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 is available in these editions:

SQL Server 2000 Enterprise Edition

Used as a production database server. Supports all features available in SQL Server 2000, and scales to the performance levels
required to support the largest Web sites and enterprise online transaction processing (OLTP) and data warehousing systems.

SQL Server 2000 Standard Edition

Used as a database server for a small workgroup or department.

SQL Server 2000 Personal Edition

Used by mobile users who spend some of their time disconnected from the network but run applications that require SQL Server
data storage. Also used when running a stand-alone application that requires local SQL Server data storage on a client computer.

SQL Server 2000 Developer Edition

Used by programmers developing applications that use SQL Server 2000 as their data store. Although the Developer Edition
supports all the features of the Enterprise Edition that allow developers to write and test applications that can use the features, the
Developer Edition is licensed for use only as a development and test system, not a production server.

SQL Server 2000 Windows CE Edition

Microsoft® SQL Server 2000™ Windows® CE Edition (SQL Server CE) is used as the data store on Windows CE devices. Capable
of replicating data with any edition of SQL Server 2000 to keep Windows CE data synchronized with the primary database.

SQL Server 2000 Enterprise Evaluation Edition

Full-featured version available by a free download from the Web. Intended only for use in evaluating the features of SQL Server;
this version will stop running 120 days after downloading.

These editions of SQL Server 2000 also include a component that allows application developers to distribute a copy of the SQL
Server 2000 relational database engine with their applications. This component is named SQL Server 2000 Desktop Engine
(MSDE 2000). For more information, see Understanding SQL Server 2000 Desktop Engine (MSDE 2000).

While functionality of the database engine in the SQL Server 2000 Desktop Engine is similar to the database engine in the SQL
Server Editions, the size of Desktop Engine databases cannot exceed 2 GB.

Both the SQL Server 2000 Personal Edition and SQL Server 2000 Desktop Engine have a concurrent workload governor that
limits the performance of the database engine when more than 5 batches are executed concurrently. For more information about
the concurrent workload governor, see The SQL Server 2000 Workload Governor.

Upgrading From One Edition to Another

These are the supported upgrade paths between the editions and versions of SQL Server 2000:

SQL Server 2000 Personal Edition to either SQL Server 2000 Enterprise Edition or SQL Server 2000 Standard Edition.

SQL Server 2000 Standard Edition to SQL Server 2000 Enterprise Edition.

SQL Server 2000 Desktop Engine (MSDE 2000) to SQL Server 2000 Enterprise Edition or SQL Server 2000 Standard Edition.

SQL Server 2000 Enterprise Evaluation Edition to SQL Server 2000 Enterprise Edition, SQL Server 2000 Standard Edition,
SQL Server 2000 Developer Edition, or SQL Server 2000 Personal Edition. SQL Server 2000 Enterprise Evaluation Edition
upgrades are not supported in failover clusters.

SQL Server Architecture (SQL Server 2000)

Operating Systems Supported by the Editions of SQL Server
2000
This table shows the operating systems supported for running the server software from each Microsoft® SQL Server™ 2000
edition.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server CE

Enterprise
Evaluation

Edition

Microsoft
Windows®
Server 2003
DataCenter
Edition

Supported Supported Supported Supported Supported N/A Supported

Windows
Server 2003
Enterprise
Edition

Supported Supported Supported Supported Supported N/A Supported

Windows
Server 2003
Standard
Edition

Supported Supported Supported Supported Supported N/A Supported

Windows
Server 2003
Web Edition

N/A N/A N/A N/A Supported N/A N/A

Windows
XP
Professional
Edition

N/A N/A Supported Supported Supported N/A Supported

Windows
XP Home
Edition

N/A N/A Supported Supported Supported N/A Supported

Microsoft
Windows
2000
DataCenter

Supported Supported Supported Supported Supported N/A Supported

Windows
2000
Advanced
Server

Supported Supported Supported Supported Supported N/A Supported

Windows
2000 Server

Supported Supported Supported Supported Supported N/A Supported

Windows
2000
Professional

N/A N/A Supported Supported Supported N/A Supported

Microsoft
Windows
NT® 4.0
Server,
Enterprise
Edition

Supported Supported Supported Supported Supported N/A Supported

Windows
NT 4.0
Server

Supported Supported Supported Supported Supported N/A Supported

Windows
NT 4.0
Workstation

N/A N/A Supported Supported Supported N/A Supported

Microsoft
Windows
Millennium
Edition

N/A N/A Supported N/A Supported N/A N/A

Microsoft
Windows
98

N/A N/A Supported N/A Supported N/A N/A

Microsoft
Windows
CE

N/A N/A N/A N/A N/A Supported N/A

Note The client software from all SQL Server 2000 editions, except SQL Server CE, runs on any version of Microsoft Windows
NT, Microsoft Windows 2000, Microsoft Windows Server 2003, Windows Millennium Edition, and Microsoft Windows 98. Only
the server components, such as the database engine and the Analysis server, are limited to specific versions of the operating
systems. For example, although the database engine for SQL Server 2000 Enterprise Edition does not run on Windows 2000
Professional, Windows NT Workstation, or Windows 98, the SQL Server 2000 Enterprise Edition compact disc can be used to
install the client software on any of these operating systems.

All of the software from SQL Server CE runs exclusively on the Windows CE operating system.

SQL Server Architecture (SQL Server 2000)

Features Supported by the Editions of SQL Server 2000
This topic summarizes the features that the different editions of Microsoft® SQL Server™ 2000 support.

For more information about the amount of physical memory SQL Server 2000 can address, and the number of CPUs each edition
supports in symmetric multiprocessor (SMP) computers, see Maximum Capacity Specifications.

Database Engine Features Supported by the Editions of SQL Server 2000

This table shows the database engine features and the editions of SQL Server 2000 that support them.

Database
Engine
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server

CE

Enterprise
Evaluation

Edition

Multiple
Instance
Support

Supported Supported Supported Supported Supported N/A Supported

Failover
Clustering
(up to
four
nodes)

Supported N/A N/A Supported N/A N/A Supported

Failover
Support
in SQL
Server
Enterprise
Manager

Supported N/A N/A Supported N/A N/A Supported

Log
Shipping

Supported N/A N/A Supported N/A N/A Supported

Parallel
DBCC

Supported N/A N/A Supported N/A N/A Supported

Parallel
CREATE
INDEX

Supported N/A N/A Supported N/A N/A Supported

Enhanced
Read-
ahead
and Scan

Supported N/A N/A Supported N/A N/A Supported

Indexed
Views

Supported N/A N/A Supported N/A N/A Supported

Federated
Database
Server

Supported N/A N/A Supported N/A N/A Supported

System
Area
Network
(SAN)
Support

Supported N/A N/A Supported N/A N/A Supported

Graphical
DBA and
Developer
Utilities,
Wizards

Supported Supported Supported Supported N/A N/A Supported

Graphical
Utilities
Support
for
Language
Settings

Supported N/A N/A N/A N/A N/A N/A

Full-Text
Search

Supported Supported Supported
(except on
Windows
98)

Supported N/A N/A Supported

SQL Mail Supported Supported Supported Supported N/A N/A Supported

Replication Features Supported by the Editions of SQL Server 2000

This table shows the replication features and the editions of SQL Server 2000 that support them.

Replication
Publisher
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL Server
CE

Enterprise
Evaluation

Edition

Snapshot
Replication

Supported Supported Supported Supported Supported N/A Supported

Transactional
Replication

Supported Supported Subscriber
only

Supported Subscriber
only

N/A Supported

Merge
Replication

Supported Supported Supported Supported Supported Anonymous
Subscriber
only

Supported

Immediate
Updating
Subscriptions

Supported Supported Supported Supported Supported N/A Supported

Queued
Updating
Subscribers

Supported Supported Supported Supported Supported N/A Supported

Analysis Services Features Supported by the Editions of SQL Server 2000

This table shows the Analysis Services features and the editions of SQL Server 2000 that support them.

Analysis
Services
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server

CE

Enterprise
Evaluation

Edition

Analysis
Services

Supported Supported Supported Supported N/A N/A Supported

User-
defined
OLAP
Partitions

Supported N/A N/A Supported N/A N/A Supported

Partition
Wizard

Supported N/A N/A Supported N/A N/A Supported

Linked
OLAP
Cubes

Supported N/A N/A Supported N/A N/A Supported

ROLAP
Dimension
Support

Supported N/A N/A Supported N/A N/A Supported

HTTP
Internet
Support

Supported N/A N/A Supported N/A N/A Supported

Custom
Rollups

Supported Supported Supported Supported N/A N/A Supported

Calculated
Cells

Supported N/A N/A Supported N/A N/A Supported

Writeback
to
Dimensions

Supported N/A N/A Supported N/A N/A Supported

Very Large
Dimension
Support

Supported N/A N/A Supported N/A N/A Supported

Actions Supported Supported Supported Supported N/A N/A Supported
Real-time
OLAP

Supported N/A N/A Supported N/A N/A Supported

Distributed
Partitioned
Cubes

Supported N/A N/A Supported N/A N/A Supported

Data
Mining

Supported Supported Supported Supported N/A N/A Supported

Data Transformation and Decision Support Query Features Supported by the Editions of SQL Server 2000

This table shows the data transformation and decision support query features and the editions of SQL Server 2000 that support
them.

Analysis
Services
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server

CE

Enterprise
Evaluation

Edition

Data
Transformation
Services

Supported Supported Supported Supported Deployment
only

N/A Supported

Integrated Data
Mining

Supported Supported Supported Supported N/A N/A Supported

English Query Supported Supported Supported Supported N/A N/A Supported

SQL Server Architecture (SQL Server 2000)

Understanding SQL Server 2000 Desktop Engine (MSDE 2000)
 Topic last updated -- January 2004

The SQL Server 2000 Desktop Engine (MSDE 2000) is a redistributable version of the SQL Server relational database engine.
MSDE 2000 is designed to be distributed as a part of applications that require a local data store. Software developers can code the
setup of their application to install an instance of MSDE 2000 and build a database to be used by the application. The application
is then coded to perform any needed administration of that database and instance of MSDE 2000, and to use the data in the
database to store application data.

The main component in MSDE 2000, the database engine, provides for the storage of data. MSDE 2000 includes a version of the
SQL Server 2000 database engine tailored to run on a notebook or desktop client computer, operating as the local data store for
an application supporting one user or a small workgroup of users. The database engine included in MSDE 2000 includes most of
the functionality of the database engine included in the other editions of SQL Server 2000. But it does not include some features
used in large production databases, such as parallel queries and indexed views. For more information about the database engine
features supported by MSDE 2000, see Features Supported by the Editions of SQL Server 2000.

MSDE 2000 also includes parts of two SQL Server 2000 components that provide the capability to integrate MSDE 2000
databases into the data storage systems of a larger organization.

Replication allows you to copy, distribute, and modify data across multiple data sources. MSDE 2000 can be a transactional
replication subscriber in SQL Server 2000 replication topologies, and both a publisher and subscriber in snapshot and
merge replication. For more information about replication, see Replication Overview.

Data Transformation Services (DTS) is a set of tools and programming objects that let you extract, transform, and
consolidate data from many data sources into one or more other data sources. DTS packages cannot be developed using
instances of MSDE 2000, but packages developed using the other editions of SQL Server 2000 (such as Developer Edition)
can be run on instances of MSDE 2000. For more information about DTS, see DTS Overview.

Developing applications to use MSDE 2000 is very similar to writing database applications for the other versions of SQL Server
2000. The most significant difference is that MSDE 2000 does not support the SQLXML functionality, the latest version of which is
available as the SQL Server Web Services Toolkit. For more information, see Programming SQL Server 2000 Desktop Engine
(MSDE 2000) Applications.

The SQL Server 2000 Desktop Engine does not include the SQL Server 2000 graphical management tools, such as SQL Server
Enterprise Manager or SQL Server Query Analyzer. Instances of MSDE 2000 are typically administered by:

Coding the application distributing MSDE 2000 to perform database administration tasks that are typical of the application
environment.

Using the SQL Server 2000 command prompt utilities included with MSDE 2000. For example, you could use the osql
command prompt utility to run Transact-SQL statements or scripts.

You can manage instances of MSDE 2000 using the graphical tools included with another edition of SQL Server only if you
acquired MSDE through SQL Server 2000 (Developer Edition, Standard Edition, or Enterprise Edition), and if you are using
MSDE in conjunction with a properly licensed copy of SQL Server 2000.

For more information about administering MSDE 2000, see Administering SQL Server 2000 Desktop Engine (MSDE 2000).

Because MSDE 2000 uses SQL Server 2000 technology, most of the documentation for MSDE 2000 is included in SQL Server
2000 Books Online. For information on which parts of the SQL Server documentation applies to MSDE 2000, see SQL Server
2000 Desktop Engine (MSDE 2000) Documentation.

The SQL Server 2000 Desktop Engine (MSDE 2000) uses a different setup than the editions of SQL Server 2000. The MSDE 2000
setup uses Windows Installer technology and is designed to be included in an application setup program. While the MSDE 2000
setup program can be run by itself, it is a command prompt utility that has no user interface. For more information about running
the MSDE 2000 setup and incorporating it in the setup of an application, see Distributing SQL Server Applications Overview.

MSDE 2000 is available from several locations:

MSDE 2000 is distributed with several Microsoft development applications. For information on how to obtain MSDE 2000,
see this Web page. For more information on the Microsoft products that include MSDE 2000, see this Web page.

http://go.microsoft.com/fwlink/?LinkId=20023
http://go.microsoft.com/fwlink/?LinkId=20025

You can use the MSDE 2000 files in SQL Server 2000 Service Pack 3a (SP3a) or later to install instances of MSDE 2000,
provided you are covered by a license to install MSDE 2000. The latest MSDE 2000 service packs are available from this
Web page. For more information about MSDE 2000 licensing, see this Web page.

There is an early version of MSDE 2000 on SQL Server 2000 CDs. Do not use these files to install new instances of MSDE
2000. Instead, use the files from the latest SQL Server 2000 service pack.

SQL Server 2000 Desktop Engine (MSDE 2000) Architecture

SQL Server 2000 Desktop Engine (MSDE 2000) shares the same fundamental database architecture as the editions of SQL Server
2000:

The database engine operates as a service or process that is separate from any application using MSDE 2000. Up to 16
copies of the database engine from either MSDE 2000 or any other version of SQL Server can be running at the same time
on the same computer. Each copy is called an instance. Each instance is installed, started, stopped, configured, and patched
independently of the other instances. For more information about instances, see Multiple Instances of SQL Server.

Each instance of the database engine has one or more user databases that hold the data managed by that instance. SQL
Server 2000 is a relational database, which means that the data it stores is organized into relations (commonly called
tables). Each table has columns that define the characteristics of the object represented by the table, such as name, size, and
price, and rows that represent on occurrence of the object type represented by the table. For more information about tables,
see Data Types and Table Structures.

Each database has other objects besides tables that provide additional functionality. Views allow you to tailor how different
classes of users see the data in a database. Stored procedures allow you to program logic in the database. Triggers, rules,
constraints, and defaults enforce business rules when users insert, update, or delete data. For more information about these
database objects, see Database Architecture.

Applications are coded to connect to an instance of the database engine and then access the data in one or more of the
databases managed by the instance. The application runs as a separate process from the database engine. It must use the
SQL Server client communications components to send requests for data to the instance of the database engine and
retrieve any results or messages. For more information about this communications mechanism, see Communication
Components.

http://go.microsoft.com/fwlink/?LinkId=20026
http://go.microsoft.com/fwlink/?LinkId=20027

SQL Server Architecture (SQL Server 2000)

SQL Server 2000 Desktop Engine (MSDE 2000) Documentation
SQL Server 2000 Desktop Engine (MSDE 2000) Documentation

 Topic last updated -- January 2004

Microsoft has two primary sources of information about the SQL Server 2000 Desktop Engine (MSDE 2000):

A SQL Server 2000 Desktop Engine (MSDE 2000) Web site with information such as product overviews and licensing
information. For more information, see this Web site.

SQL Server 2000 Books Online. Because MSDE 2000 shares the same database engine, replication, and Data Transformation
Services technologies used by the editions of SQL Server 2000, SQL Server Books Online provides all the necessary
documentation of these components that are common to both SQL Server 2000 and MSDE 2000.

Individual topics in SQL Server Books Online document the full functionality available in SQL Server 2000 Enterprise Edition
without indicating specific syntax elements or features that are not available in other versions, such as SQL Server 2000 Standard
Edition or SQL Server 2000 Desktop Engine (MSDE 2000). Since MSDE 2000 does not include all of the features of SQL Server
2000 Enterprise Edition, you must keep in mind which features are not available in MSDE 2000 as you read SQL Server Books
Online. For a list of the features not available in SQL Server 2000 Desktop Engine (MSDE 2000), see Features Supported by the
Editions of SQL Server 2000.

The documentation that applies to MSDE 2000 is in the following main sections of SQL Server Books Online:

SQL Server Books Online Section Relevance to MSDE 2000
Understanding SQL Server 2000 Desktop
Engine (MSDE 2000)

Explains the main parts of MSDE 2000 and
how it is used.

Creating and Maintaining Databases
Overview

Describes the issues to consider and steps
to take when designing databases and the
objects in databases, such as tables, views,
stored procedures, and triggers.

Accessing and Changing Relational Data
Overview

Describes the issues to consider and steps
to take when designing applications to
work with data in databases, and when
building Transact-SQL statements.

Transact-SQL Overview Documents the syntax allowed in all
Transact-SQL statements (this is the
introductory section of the Transact-SQL
Reference).

Replication Overview Describes the issues to consider and steps
to follow when configuring replication
systems using any version of SQL Server
2000 (MSDE 2000 can participate in
replication topologies).

Replication with SQL Server 2000 Desktop
Engine (MSDE 2000)

Describes issues that are specific to using
MSDE 2000 in replication topologies.

DTS Overview Describes the issues to consider and steps
to follow when designing DTS packages
and how to run them on any version of
SQL Server 2000 (MSDE 2000 permits
some DTS functionality).

Programming SQL Server 2000 Desktop
Engine (MSDE 2000) Applications

Explains how to use the SQL Server
database programming objects in
applications working with MSDE 2000. The
topic links to the relevant programming
documentation in the SQL Server Books
Online.

http://go.microsoft.com/fwlink/?LinkId=19861

Administering SQL Server 2000 Desktop
Engine (MSDE 2000)

Explains how to administer instances of
MSDE 2000 using the tools that come with
MSDE 2000. The topic links to the relevant
administration documentation in the SQL
Server Books Online.

SQL Server Architecture (SQL Server 2000)

Programming SQL Server 2000 Desktop Engine (MSDE 2000)
Applications
Programming SQL Server 2000 Desktop Engine (MSDE 2000) Applications

 Topic last updated -- January 2004

The SQL Server 2000 Desktop Engine (MSDE 2000) includes support for all of the application programming interfaces (APIs) and
most of the functionality of the editions of SQL Server 2000. Applications are coded to work with MSDE 2000 the same way they
are coded to use any edition of SQL Server 2000.

Applications use the same general database APIs to access data in MSDE 2000 as they use to access data in any edition of
SQL Server 2000. MSDE 2000 applications are coded using the ADO.NET, ADO, OLE DB, and ODBC APIs to work with the
data in MSDE 2000 databases.

Applications can be coded to fully administer an instance of the Desktop Engine by either:
Using the SQL Server administration APIs, such as SQL-DMO, and Data Transformation Services (DTS) and
replication programming objects.

Running Transact-SQL statements using the general database APIs (such as ADO.NET, ADO, OLE DB, and ODBC).

The most significant difference between coding database applications for MSDE 2000 and coding database applications for other
versions of SQL Server 2000 is that MSDE 2000 does not support SQLXML.

MSDE 2000 applications typically contain more administration code than applications that use other editions of SQL Server. Most
applications coded to run against the other versions of SQL Server 2000 assume that one or more database administrators
(DBAs) will administer the instance of SQL Server used by the application. Most MSDE 2000 applications are designed for people
who have no database knowledge and little or no access to DBAs or other people who know about databases. Because of this,
MSDE 2000 applications are typically coded to perform the administration and configuration actions required to maintain the
associated instance of MSDE 2000 under normal operating conditions. The database engine in MSDE 2000 is designed to need
minimal, if any, ongoing maintenance once it has been installed. Programmers designing applications must ensure that the
application program, the setup program, or the application user procedures complete administration tasks, including:

Installing the instance of MSDE 2000.

Creating a database and all of the database objects used by the application, or attaching a database in which the objects
have been predefined.

Performing any required configuration of the instance, such as enabling network connections if applications on other
computers will connect to the instance.

Adding all authorized logins, and assigning the appropriate database permissions to each user or role.

Setting up any backup and restore operations required to protect the database in case the computer fails.

These sections of the SQL Server Books Online apply to coding applications for MSDE 2000:

SQL Server Books Online Section Relevance to MSDE 2000
Creating and Maintaining Databases
Overview

Describes the issues to consider and steps
to take when designing databases and the
objects in databases, such as tables, views,
stored procedures, and triggers

Accessing and Changing Relational Data
Overview

Describes the issues to consider and steps
to take when designing applications to
work with data in databases, and when
building Transact-SQL statements.

Transact-SQL Overview Documents the syntax allowed in all
Transact-SQL statements (this is the
introductory section of the Transact-SQL
Reference).

Administering SQL Server Overview Describes the issues to consider and steps
to follow when configuring and
maintaining databases and instances of
MSDE 2000.

Building SQL Server Applications Overview Describes how to choose which SQL
Server database programming interface to
use in writing database applications.
Includes links to the reference topics
describing each interface in more detail.

Managing Replication with SQL Server
2000 Desktop Engine (MSDE 2000)

Describes coding applications to manage
replication systems that include instances
of MSDE 2000.

DTS Overview Describes the issues to consider and steps
to follow when designing DTS packages
and how to run them on any version of
SQL Server 2000 (MSDE 2000 permits
some DTS functionality).

SQL Server Architecture (SQL Server 2000)

Administering SQL Server 2000 Desktop Engine (MSDE 2000)
Administering SQL Server 2000 Desktop Engine (MSDE 2000)

 Topic last updated -- January 2004

The database engine, replication, and Data Transformation Services (DTS) components in SQL Server 2000 Desktop Engine
(MSDE 2000) are administered in the same manner as in any other version of SQL Server 2000. The primary difference is that
MSDE 2000 does not include the graphical management tools or wizards, so the following mechanisms are typically used to
administer instances of MSDE 2000:

Applications can be coded to fully administer an instance of the Desktop Engine by either:
Using the SQL Server administration APIs, such as SQL-DMO, and the DTS and replication programming objects.

Running Transact-SQL statements using the general database APIs (such as ADO.NET, ADO, OLE DB, and ODBC).
The following command prompt utilities are installed by the MSDE 2000 setup application and are provided without
restrictions for use with the copy of MSDE 2000 that is installed by your application: bcp.exe, cnfgsvr.exe, dcomscm.exe,
osql.exe, sqlmangr.exe, scm.exe, sqladhlp.exe, and svrnetcn.exe. The dtsrun.exe utility is also provided, but may not be used
during development.

If you installed MSDE 2000 with another edition of SQL Server, you can administer instances of MSDE 2000 using the SQL
Server 2000 graphical tools.

The SQL Server Books Online section called "Administering SQL Server" contains the topics that document the potential
administration actions for the databases and instances of any version of SQL Server 2000. Topics in these sections contain
procedures that indicate the steps required to perform that administration task. For example, there are procedures detailing how
to perform the task using Enterprise Manager or Query Analyzer, how to perform it using SQL-DMO, and how to perform it by
running Transact-SQL statements. Note that:

The procedures documenting using a graphical tool such as Enterprise Manager or Query Analyzer typically do not apply in
MSDE 2000 environments.

Programmers coding applications to administer instances of MSDE 2000 typically use either the items documenting using
SQL-DMO or using Transact-SQL as a guide to coding their applications.

End users who must administer an instance of MSDE typically use the osql utility to run the Transact-SQL statement or
statements mentioned in the Transact-SQL item.

See Also

Administering SQL Server Overview

Using the osql Utility

Managing Replication with SQL Server 2000 Desktop Engine (MSDE 2000)

SQL Server Architecture (SQL Server 2000)

Maximum Capacity Specifications
 Topic last updated -- January 2004

The first table specifies maximum capacities that are the same for all editions of Microsoft® SQL Server™ 2000. The second and
third tables specify capacities that vary by edition of SQL Server 2000 and the operating system.

This table specifies the maximum sizes and numbers of various objects defined in Microsoft SQL Server databases, or referenced
in Transact-SQL statements. The table does not include Microsoft SQL Server 2000 Windows® CE Edition.

 Maximum sizes/numbers
Object SQL Server 7.0 SQL Server 2000

Batch size 65,536 * Network
Packet Size1

65,536 * Network
Packet Size1

Bytes per sort string column 8,000 8,000
Bytes per text, ntext, or image
column

2 GB-2 2 GB-2

Bytes per GROUP BY, ORDER BY 8,060 8,060
Bytes per index 900 9002

Bytes per foreign key 900 900
Bytes per primary key 900 900
Bytes per row 8,060 8,060
Bytes in source text of a stored
procedure

Lesser of batch size or
250 MB

Lesser of batch size or
250 MB

Clustered indexes per table 1 1
Columns in GROUP BY, ORDER BY Limited only by number

of bytes per GROUP BY,
ORDER BY

Limited only by number
of bytes per GROUP BY,
ORDER BY

Columns or expressions in a
GROUP BY WITH CUBE or WITH
ROLLUP statement

10

Columns per index 16 16
Columns per foreign key 16 16
Columns per primary key 16 16
Columns per base table 1,024 1,024
Columns per SELECT statement 4,096 4,096
Columns per INSERT statement 1,024 1,024
Connections per client Maximum value of

configured connections
Maximum value of
configured connections

Database size 1,048,516 TB3 1,048,516 TB3

Databases per instance of SQL
Server

32,767 32,767

Filegroups per database 256 256
Files per database 32,767 32,767
File size (data) 32 TB 32 TB
File size (log) 4 TB 32 TB
Foreign key table references per
table

253 253

Identifier length (in characters) 128 128
Instances per computer N/A 16
Length of a string containing SQL
statements (batch size)

65,536 * Network
packet size1

65,536 * Network
packet size1

Locks per connection Max. locks per server Max. locks per server
Locks per instance of SQL Server 2,147,483,647 (static)

40% of SQL Server
memory (dynamic)

2,147,483,647 (static)
40% of SQL Server
memory (dynamic)

Nested stored procedure levels 32 32
Nested subqueries 32 32
Nested trigger levels 32 32
Nonclustered indexes per table 249 249
Objects concurrently open in an
instance of SQL Server4

2,147,483,647 (or
available memory)

2,147,483,647 (or
available memory)

Objects in a database 2,147,483,6474 2,147,483,6474

Parameters per stored procedure 1,024 2,100
REFERENCES per table 253 253
Rows per table Limited by available

storage
Limited by available
storage

Tables per database Limited by number of
objects in a database4

Limited by number of
objects in a database4

Tables per SELECT statement 256 256
Triggers per table Limited by number of

objects in a database4
Limited by number of
objects in a database4

UNIQUE indexes or constraints per
table

249 nonclustered and 1
clustered

249 nonclustered and 1
clustered

1 Network Packet Size is the size of the tabular data scheme (TDS) packets used to communicate between applications and the
relational database engine. The default packet size is 4 KB, and is controlled by the network packet size configuration option.
2 The maximum number of bytes in any key cannot exceed 900 in SQL Server 2000. You can define a key using variable-length
columns whose maximum sizes add up to more than 900, provided no row is ever inserted with more than 900 bytes of data in
those columns. For more information, see Maximum Size of Index Keys.
3 The data portion of a database cannot exceed 2 GB in size when using the SQL Server 2000 Desktop Engine (MSDE 2000) or the
Microsoft Data Engine (MSDE) 1.0. The total size of the database, including log files, can exceed 2 GB provided the sum of the sizes
of the data files remains 2 GB or lower.
4 Database objects include all tables, views, stored procedures, extended stored procedures, triggers, rules, defaults, and
constraints. The sum of the number of all these objects in a database cannot exceed 2,147,483,647.

Maximum Numbers of Processors Supported by the Editions of SQL Server 2000

This table shows the maximum number of processors that the database engine in each SQL Server 2000 edition can use on
symmetric multiprocessing (SMP) computers. You can install an edition of SQL Server on a computer that has more processors
than the database engine will use, but the database engine will not use more processors than is indicated in this table. For
example, you can install SQL Server Standard Edition on an eight-processor computer running Windows 2000 Advanced Server,
but the database engine will not use more than four of the processors.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server

CE

Enterprise
Evaluation

Edition

Microsoft
Windows
2000
DataCenter

32 4 2 32 2 N/A 32

Windows
2000
Advanced
Server

8 4 2 8 2 N/A 8

Windows
2000 Server

4 4 2 4 2 N/A 4

Windows
2000
Professional

N/A N/A 2 2 2 N/A 2

Microsoft
Windows
NT® 4.0
Server,
Enterprise
Edition

8 8 2 8 2 N/A 8

Windows
NT 4.0
Server

4 4 2 4 2 N/A 4

Windows
NT 4.0
Workstation

N/A N/A 2 2 2 N/A 2

Microsoft
Windows
98

N/A N/A 1 Use
Desktop
Engine

1 N/A N/A

Microsoft
Windows
CE

N/A N/A N/A N/A N/A 1 N/A

Maximum Amount of Physical Memory Supported by the Editions of SQL Server 2000

This table shows the maximum amount of physical memory, or RAM, that the database engine in each SQL Server 2000 edition
can support.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine
(MSDE
2000)

SQL
Server

CE

Enterprise
Evaluation

Edition

Windows
2000
DataCenter

64 GB 2 GB 2 GB 64 GB 2 GB N/A 64 GB

Windows
2000
Advanced
Server

8 GB 2 GB 2 GB 8 GB 2 GB N/A 8 GB

Windows
2000 Server

4 GB 2 GB 2 GB 4 GB 2 GB N/A 4 GB

Windows
2000
Professional

N/A N/A 2 GB 2 GB 2 GB N/A 2 GB

Windows
NT 4.0
Server,
Enterprise
Edition

3 GB 2 GB 2 GB 3 GB 2 GB N/A 3 GB

Windows
NT 4.0
Server

2 GB 2 GB 2 GB 2 GB 2 GB N/A 2 GB

Windows
NT 4.0
Workstation

N/A N/A 2 GB 2 GB 2 GB N/A 2 GB

SQL Server Architecture (SQL Server 2000)

Configuration Option Specifications
 Topic last updated -- July 2003

Microsoft® SQL Server™ 2000 contains improved algorithms for controlling computer resources. Many of the options that must
be configured manually in earlier versions of SQL Server are managed dynamically in SQL Server 2000. These configuration
options are not applicable in SQL Server 7.0 and are marked N/A in this table.

Several configuration options are still specified in SQL Server 2000; however, instead of specifying the size of a static allocation,
the options now specify the upper limit for the number of objects allocated dynamically as needed. These options are marked
with an asterisk (*) in this table. The information in this table does not pertain to Microsoft® SQL Server 2000™ Windows® CE
Edition.

 SQL Server version 7.0 SQL Server 2000
Configuration

values
Minimum Maximum Minimum Maximum

affinity mask 0 2,147,483,647 0 2,147,483,647
allow updates 0 1 0 1
AWE enabled N/A N/A 0 1
c2 audit mode N/A N/A 0 1
cost threshold for
parallelism

0 32,767 0 32,767

Cross DB Ownership
Chaining2

N/A N/A 0 1

cursor threshold -1 2,147,483,647 -1 2,147,483,647
default full-text
language

N/A N/A 0 2,147,483,647

default language 0 9,999 0 9,999
default sort order id 0 255 N/A N/A
extended memory
size (MB)

0 2,147,483,647 N/A N/A

fill factor (%) 0 100 0 100
index create
memory (K)

704 1,600,000 704 2,147,483,647

language in cache 3 100 N/A N/A
language neutral
full-text indexing

0 1 N/A N/A

lightweight pooling 0 1 0 1
locks 5,000* 2,147,483,647* 5,000* 2,147,483,647*
max async IO 1 255 N/A N/A
max degree of
parallelism

0 32 0 32

max server memory
(MB)

4* 2,147,483,647* 4* 2,147,483,647*

max text repl size 0 2,147,483,647 0 2,147,483,647
max worker threads 10 1,024 10 32,767
media retention 0 365 0 365
min memory per
query (K)

512 2,147,483,647 512 2,147,483,647

min server memory
(MB)

0* 2,147,483,647* 0* 2,147,483,647*

nested triggers
(bytes)

0 1 0 1

network packet size 512 65,535 512 65,532
open objects 0* 2,147,483,647* 0* 2,147,483,647*
priority boost 0 1 0 1

query governor cost
limit

0 2,147,483,647 0 2,147,483,647

query wait (sec) -1 2,147,483,647 -1 2,147,483,647
recovery interval
(min)

0 32,767 0 32,767

remote access 0 1 0 1
remote login
timeout (sec)

0 2,147,483,647 0 2,147,483,647

remote proc trans 0 1 0 1
remote query
timeout (sec)

0 2,147,483,647 0 2,147,483,647

resource timeout 5 2,147,483,647 N/A N/A
scan for startup
procs

0 1 0 1

set working set size 0 1 0 1
show advanced
options

0 1 0 1

spin counter 1 2,147,483,647 N/A N/A
time slice 50 1,000 N/A N/A
two digit year cutoff 1,752 9,999 1,752 9,999
unicode comparison
style

0 2,147,483,647 N/A N/A

unicode locale id 0 2,147,483,647 N/A N/A
user connections 0* 32,767

(server)* 1
0* 32,767

(instance)* 1
user options 0 4,095 0 16,383

* Lower or upper limit for objects allocated dynamically.
1 The concurrent workload governor in SQL Server 2000 Personal Edition and SQL Server 2000 Desktop Engine (MSDE 2000)
limits performance when more than 8 operations are executed concurrently.
2 This option was added in SQL Server 2000 SP3.

SQL Server Architecture (SQL Server 2000)

Memory Used by SQL Server Objects Specifications
This table lists the amount of memory used by different objects in Microsoft® SQL Server™. The information in this table does
not pertain to Microsoft® SQL Server 2000™ Windows® CE Edition.

 Object Size
Object SQL Server 7.0 SQL Server 2000

Lock 96 bytes 64 bytes plus 32 bytes per owner.
Open database 2,880 bytes 3924 bytes plus 1640 bytes per file

and 336 bytes per filegroup.
Open object1 276 bytes 256 bytes plus 1724 bytes per index

opened on the object2.
User connection 12 KB + (3 * Network

Packet Size)3.
12 KB + (3 * Network Packet Size)3.

1 Open objects include all tables, views, stored procedures, extended stored procedures, triggers, rules, defaults, and constraints.
2 Indexes can be opened on tables or views.
3 Network Packet Size is the size of the tabular data scheme (TDS) packets used to communicate between applications and the
relational database engine. The default packet size is 4 KB, and is controlled by the network packet size configuration option.

Administering SQL Server (SQL Server 2000)

Administering SQL Server Overview
Microsoft® SQL Server™ 2000 administration applications, and the accompanying services, are designed to assist the system
administrator with all administrative tasks related to maintaining and monitoring server performance and activities.

Topic Description
Starting, Pausing, and Stopping SQL
Server

Explains how to start an instance of SQL
Server, and what you need to do before,
during, and after you log in.

Failover Clustering Describes how to set up and use a failover
cluster.

Importing and Exporting Data Describes how to retrieve data from
external sources and feed data to other
applications.

Backing Up and Restoring Databases Describes how to protect and restore data
over a wide range of potential system
problems.

Using the Copy Database Wizard Describes how to copy or move databases
between servers and upgrade databases
from SQL Server version 7.0 to SQL Server
2000.

Managing Servers Describes how to register and configure
remote and linked servers, add or remove
servers, and modify server settings.

Managing Clients Describes how to configure client
connections with server components and
change the default network protocol to
meet the needs of your site.

Automating Administrative Tasks Describes how to establish which
administrative responsibilities will occur
regularly, define jobs and alerts, and run
SQL Server Agent.

Managing Security Describes how to protect and safeguard
database access by restricting permissions
to include only authorized users.

Monitoring Server Performance and
Activity

Describes how to develop a strategy for
ensuring that server and activity
performance are at acceptable levels.

Using the Web Assistant Wizard Explains how to use the wizard to create
Web pages.

Administering SQL Server (SQL Server 2000)

Starting, Pausing, and Stopping SQL Server
Before you log in to an instance of Microsoft® SQL Server™, you need to know how to start, pause, and stop an instance of SQL
Server. After you are logged in, you can perform tasks such as administering the server or querying a database.

Using the SQL Server Service

When you start an instance of SQL Server, you are starting the SQL Server service. After you start the SQL Server service, users
can establish new connections to the server. The SQL Server service can be started and stopped as a Microsoft Windows NT® 4.0
or Windows® 2000 service, either locally or remotely. The SQL Server service is referred to as MSSQLServer if it is the default
instance, or MSSQL$instancename if it is a named instance.

Using SQL Server Service Manager

If you are running Microsoft Windows 98, SQL Server Service Manager can be used start, pause, stop and check the state of local
services, though it cannot remotely administer services.

If you have to restart your computer, SQL Server Service Manager appears automatically and the default service is displayed. It is
possible to change the default service on the local computer through the SQL Server Service Manager. When you restart the
computer, the default service will now be displayed in SQL Server Service Manager. For example, if you change the default service
to SQL Server Agent service, and then shut down the computer, the next time you start it, SQL Server Agent service will be
displayed in SQL Server Service Manager.

SQL Server Service Manager can also be used to start, pause, or stop an instance of SQL Server 2000 Analysis Services.

To change the default service

Service Manager

Service Manager

Using SQLServerAgent Service

SQLServerAgent is a Windows NT 4.0 or Windows 2000 service that executes jobs, monitors SQL Server, and fires alerts.
SQLServerAgent is the service that allows you to automate some administrative tasks. As such, you must start the
SQLServerAgent service before your local or multiserver administrative tasks can run automatically. SQL Server Agent runs as a
service called SQLServerAgent if it is the default instance or SQLAgent$instancename if it is a named instance.

If the SQL Server service and SQL Server Agent service are not configured to start automatically, you must start them manually.

Setting the Polling Interval

The service status of various SQL Server components is monitored regularly by SQL Server Enterprise Manager and SQL Server
Service Manager. Both allow the monitoring interval to be changed.

SQL Server Enterprise M anager

You can set the interval at which SQL Server Enterprise Manager checks the status of SQL Server, SQL Server Agent, the Full-Text
Search feature (which runs as the Microsoft Search service), SQL Mail, Replication Monitor, and Microsoft Distributed Transaction
Coordinator (MS DTC) to determine whether they are running, paused, or stopped. The status of each service is displayed through
its icon in the console tree of Microsoft Management Console (MMC).

SQL Server Service M anager

You can set the interval at which SQL Server Service Manager checks the status of SQL Server, SQL Server Agent, the Full-Text
Search feature, and MS DTC to determine whether they are running, paused, or stopped. View the status by clicking the SQL
Server Service Manager icon in the Windows taskbar.

To set the polling interval

Enterprise Manager

Enterprise Manager

Service Manager

Service Manager

See Also

Configuring the SQLServerAgent Service

Registering Servers

Administering SQL Server (SQL Server 2000)

Starting SQL Server
You can start an instance of Microsoft® SQL Server™ automatically, manually, or from the command prompt. Both the automatic
and manual methods start an instance of SQL Server as a Microsoft Windows NT® 4.0 or Windows® 2000 service. If you run
sqlservr from a command prompt, you cannot pause, stop, or resume an instance of SQL Server as a Windows NT 4.0 or
Windows 2000 service using any net commands.

See Also

SQL Server Service Manager

Using Startup Options

Administering SQL Server (SQL Server 2000)

Starting SQL Server Automatically
During installation, you can configure Microsoft® SQL Server™ to start automatically in the following ways:

You can configure an instance of SQL Server to start automatically each time you start the Microsoft Windows NT® 4.0 or
Windows® 2000 operating system.

You can configure a server running Microsoft Windows 98 to start automatically. Select the Auto-start service when OS
starts check box in SQL Server Service Manager. Windows 98 does not have a component that corresponds to Window NT
4.0 and Windows 2000 services. The SQL Server database engine and SQL Server Agent run as executable programs on
Windows 98. These SQL Server components cannot be started as services automatically.

Note The SQL-DMO AutoStartServer property does not work with Windows 98.

You can also use the Services application in Control Panel.

After SQL Server is installed, you can enable or disable the server configuration using SQL Server Enterprise Manager. For more
information, see the Windows NT 4.0 and Windows 2000 documentation.

To start an instance of SQL Server automatically

Enterprise Manager

Enterprise Manager

SQL-DMO

To shut off automatic startup of SQL Server

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Using Startup Options

Administering SQL Server (SQL Server 2000)

Starting SQL Server Manually
You can start an instance of Microsoft® SQL Server™ manually using the following methods.

Method Description
SQL Server Enterprise Manager Start, pause, continue, and stop an instance of a

local or remote SQL Server or the SQL Server
Agent service in the same window in which you
administer other servers and databases.

SQL Server Service Manager Start, pause, continue, and stop an instance of a
local or remote SQL Server or the SQL Server
Agent service.

Services application in Control Panel Start, pause, continue, and stop an instance of
SQL Server or the SQL Server Agent service on
the local server.

Command prompt Start an instance of SQL Server or the SQL
Server Agent service from a command prompt
by typing:
net start mssqlserver or sqlservr, or net start
SQLServerAgent or by running
SQLSERVR.EXE. If you are referring to a named
instance of SQL Server, you must specify
mssql$instancename or
SQLAgent$instancename.

Before you choose a startup method, consider the following:

If you start an instance of SQL Server using sqlservr from a command prompt (independent of the Service Control
Manager):

All system messages appear in the window used to start an instance of SQL Server.

You cannot pause, stop, or resume an instance of SQL Server as a Windows NT 4.0 or Windows 2000 service using
SQL Server Enterprise Manager, SQL Server Service Manager, the Services application in Control Panel, or any net
commands (for example, net start, net pause, net stop, and net continue).

You must shut down an instance of SQL Server before logging off Windows NT 4.0 or Windows 2000.
If you start an instance of SQL Server from a command prompt:

Any command prompt options that you type take precedence over the default command prompt options written to
the Windows 2000 registry by SQL Server Setup.

SQL Server Service Manager and SQL Server Enterprise Manager show the service as stopped.
You can log off the Windows NT 4.0 or Windows 2000 network without shutting down an instance of SQL Server.

To start the default instance of SQL Server

Enterprise Manager

Enterprise Manager

Service Manager

Service Manager

Command Prompt

Command Prompt

SQL-DMO

To start a named instance of SQL Server

Command Prompt

Command Prompt

To start a clustered instance of SQL Server

Service Manager

Service Manager

See Also

Using Startup Options

Administering SQL Server (SQL Server 2000)

Starting SQL Server in Single-User Mode
Under certain circumstances, you may need to start an instance of Microsoft® SQL Server™ in single-user mode using the startup
option -m. For example, you may want to change server configuration options or recover a damaged master database or other
system database. Both actions require starting an instance of SQL Server in single-user mode.

When you start an instance of SQL Server in single-user mode:

Only one user can connect to the server.

The CHECKPOINT process is not executed. By default, it is executed automatically at startup.

The sp_configure system stored procedure allow updates option is enabled. By default, the allow updates option is
disabled.

To start SQL Server in single-user mode

Command Prompt

Command Prompt

See Also

allow updates Option

CHECKPOINT

sp_configure

Using Startup Options

Administering SQL Server (SQL Server 2000)

Starting SQL Server with Minimal Configuration
If you have configuration problems that prevent the server from starting, you can start an instance of Microsoft® SQL Server™
using the minimal configuration startup option. This is the startup option -f. Starting an instance of SQL Server with minimal
configuration places the server in single-user mode automatically.

When you start an instance of SQL Server in minimal configuration mode:

Only a single user can connect, and the CHECKPOINT process is not executed.

Remote access and read-ahead are disabled.

Startup stored procedures do not run.

The sp_configure stored procedure allow updates option is enabled. By default, the allow updates option is disabled.

After the server has been started with minimal configuration, you should change the appropriate server option value or values,
stop, and then restart the server.

Important Stop the SQL Server Agent service before connecting to an instance of SQL Server in minimal configuration mode.
Otherwise, the SQL Server Agent service uses the connection, thereby blocking it.

To start SQL Server with minimal configuration

Command Prompt

Command Prompt

See Also

Setting Configuration Options

sp_configure

Using Startup Options

Administering SQL Server (SQL Server 2000)

Using Startup Options
When you install Microsoft® SQL Server™, SQL Server Setup writes a set of default startup options in the Microsoft Windows®
2000 registry. You can use these startup options to specify an alternate master database file, master database log file, or error
log file.

Default startup options Description
-dmaster_file_ path The fully qualified path for the master database file

(typically, C:\Program Files\Microsoft SQL
Server\MSSQL\Data\Master.mdf). If you do not provide
this option, the existing registry parameters are used.

-eerror_log_ path The fully qualified path for the error log file (typically,
C:\Program Files\Microsoft SQL
Server\MSSQL\Log\Errorlog). If you do not provide this
option, the existing registry parameters are used.

-lmaster_log_path The fully qualified path for the master database log file
(typically C:\Program Files\Microsoft SQL
Server\MSSQL\Data\Mastlog.ldf).

You can override the default startup options temporarily and start an instance of SQL Server by using the following additional
startup options.

Other startup options Description
-c Shortens startup time by starting an instance of SQL

Server independently of the Service Control Manager, so
that SQL Server does not run as a Microsoft Windows
NT® 4.0 or Windows 2000 service.

-f Starts an instance of SQL Server with minimal
configuration. Useful if the setting of a configuration
value (for example, over-committing memory) has
prevented the server from starting. Enables the
sp_configure allow updates option. By default, allow
updates is disabled.

-g Specifies the amount of virtual address space (in
megabytes) SQL Server will leave available for memory
allocations within the SQL Server process, but outside the
SQL Server memory pool. This is the area used by SQL
Server for loading items such as extended procedure .dll
files, the OLE DB providers referenced by distributed
queries, and automation objects referenced in Transact-
SQL statements. The default is 256 megabytes (MB).

Use of this option may help tune memory allocation, but
only when physical memory exceeds 2 gigabytes (GB) for
the SQL Server 2000 Personal Edition or SQL Server
2000 Standard Edition, or 3 GB for SQL Server 2000
Enterprise Edition. Configurations with less physical
memory will not benefit from using this option. Use of
this option may be appropriate in large memory
configurations in which the memory usage requirements
of SQL Server are atypical and the virtual address space
of the SQL Server process is totally in use. Incorrect use of
this option can lead to conditions under which an
instance of SQL Server may not start or may encounter
run-time errors.

Use the default for the -g parameter unless you see the
following warning in the SQL Server error log:

WARNING: Clearing procedure cache to free contiguous
memory

This message may indicate that SQL Server is trying to
free parts of the SQL Server memory pool in order to find
space for items such as extended stored procedure .dll
files or automation objects. In this case, consider
increasing the amount of memory reserved by the -g
switch. Using a value lower than the default will increase
the amount of memory available to the buffer pool and
thread stacks; this may, in turn, provide some
performance benefit to memory-intensive workloads in
systems that do not use many extended stored
procedures, distributed queries, or automation objects.

-m Starts an instance of SQL Server in single-user mode.
When you start an instance of SQL Server in single-user
mode, only a single user can connect, and the
CHECKPOINT process is not started. CHECKPOINT
guarantees that completed transactions are regularly
written from the disk cache to the database device.
(Typically, this option is used if you experience problems
with system databases that should be repaired.) Enables
the sp_configure allow updates option. By default,
allow updates is disabled.

-n Does not use the Windows application log to record SQL
Server events. If you start an instance of SQL Server with
-n, it is recommended that you use the -e startup option
too; otherwise, SQL Server events are not logged.

-s Allows you to start a named instance of SQL Server 2000.
Without the -s parameter set, the default instance will
attempt to start. You must switch to the appropriate BINN
directory for the instance at a command prompt before
starting sqlservr.exe. For example, if Instance1 were to use
\mssql$Instance1 for its binaries, the user must be in the
\mssql$Instance1\binn directory to start sqlservr.exe-
sinstance1.

/Ttrace# Indicates that an instance of SQL Server should be started
with a specified trace flag (trace#) in effect. Trace flags are
used to start the server with nonstandard behavior.

-x Disables the keeping of CPU time and cache-hit ratio
statistics. Allows maximum performance.

Important When specifying a trace flag with the /T option, use an uppercase "T" to pass the trace flag number. A lowercase "t" is
accepted by SQL Server, but this sets other internal trace flags that are required only by SQL Server support engineers.
(Parameters specified in the Control Panel startup window are not read.)

See Also

CHECKPOINT

Administering SQL Server (SQL Server 2000)

Logging In to SQL Server
 New Information - SQL Server 2000 SP3.

You can log in to an instance of Microsoft® SQL Server™ by using any of the graphical administration tools or from a command
prompt.

When you log in to an instance of SQL Server using a graphical administration tool such as SQL Server Enterprise Manager or
SQL Query Analyzer, you are prompted to supply the server name, a login ID, and a password, if necessary. How you log in to an
instance of SQL Server depends on whether SQL Server is using Windows Authentication or mixed mode (SQL Server
Authentication and Windows Authentication). If SQL Server is using Windows Authentication, you do not have to provide a login
ID each time you access a registered SQL Server. Instead, SQL Server logs you in automatically using your Microsoft Windows
NT® 4.0 or Windows® 2000 account.

Security Note When possible, use Windows Authentication.

Note If you selected a case-sensitive sort order when you installed SQL Server, your login ID is also case-sensitive.

To log in to SQL Server

Command Prompt

Command Prompt

See Also

Authentication Modes

Managing Security Accounts

Managing Servers

osql Utility

sp_password

Administering SQL Server (SQL Server 2000)

Running SQL Server
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ can run over the network or without a network.

Running SQL Server on a Network

For SQL Server to communicate over the network, the SQL Server service must be running. By default, Microsoft Windows NT®
4.0 and Windows® 2000 automatically start the built-in SQL Server service. To find out whether the SQL Server service has been
started, at the command prompt, type:

net start

If the SQL Server service has been started, the following appears in the net start output:

C:\> net start
These Windows NT services are started:

 ClipBook Server
 Computer Browser
 EventLog
 Messenger
 Network DDE
 Network DDE DSDM
 Server
 Workstation

The command completed successfully.

If the SQL Server service has not been started, at the command prompt, type:

net start server

The following message indicates that the service has been started:

The Server service was started successfully.

You can also use the Services application in Control Panel to check service status and to start and stop services. For more
information, see the Windows NT 4.0 and Windows 2000 documentation.

Running SQL Server Without a Network

When running an instance of SQL Server without a network, you do not need to start the built-in SQL Server service. Because SQL
Server Enterprise Manager, SQL Server Service Manager, and the net start and net stop commands are functional even without
a network, the procedures for starting and stopping an instance of SQL Server are identical for a network or stand-alone
operation.

When connecting to an instance of a stand-alone SQL Server from a local client such as osql, you bypass the network and
connect directly to the instance of SQL Server by using a local pipe. The difference between a local pipe and a network pipe is
whether you are using a network. Both local and network pipes establish a connection with an instance of SQL Server by using
the standard pipe (\pipe\sql\query), unless otherwise directed.

When you connect to an instance of a local SQL Server without specifying a server name, you are using a local pipe. When you
connect to an instance of a local SQL Server and specify a server name explicitly, you are using either a network pipe or another
network interprocess communication (IPC) mechanism, such as Internetwork Packet Exchange/Sequenced Packet Exchange
(IPX/SPX) (assuming you have configured SQL Server to use multiple networks). Because a stand-alone SQL Server does not
support network pipes, you must omit the unnecessary /Sserver_name argument when connecting to the instance of SQL Server
from a client. For example, to connect to a stand-alone instance of SQL Server from osql, type:

osql /U[login_id] /P[password]

See Also

Named Pipes Clients

Administering SQL Server (SQL Server 2000)

Pausing and Resuming SQL Server
When you pause an instance of Microsoft® SQL Server™, users who are connected to the server can finish tasks, but new
connections are not allowed. For example, you can pause an instance of SQL Server for a few minutes and send a shutdown
message to connected users before shutting it down. You can also resume a SQL Server service.

You can pause an instance of SQL Server before stopping the server. Pausing an instance of SQL Server prevents new users from
logging in and gives you time to send a message to current users asking them to log out before you stop the server.

Note You cannot pause an instance of SQL Server if it was started by running sqlservr. Only SQL Server services started as a
Microsoft Windows NT® 4.0 or Windows® 2000 service can be paused.

For more information about pausing and resuming an instance of SQL Server from the Services application in Control Panel, see
the Windows NT 4.0 or Windows 2000 documentation.

To pause and resume SQL Server

Service Manager

Service Manager

Command Prompt

Command Prompt

Administering SQL Server (SQL Server 2000)

Stopping SQL Server
You can stop an instance of Microsoft® SQL Server™ locally from the server or remotely from a client or another server. If you
stop an instance of SQL Server without pausing it, all server processes are terminated immediately. Stopping an instance of SQL
Server prevents new connections and disconnects current users.

The following table describes the available methods for stopping an instance of SQL Server.

Method Description
SQL Server Enterprise
Manager

Stops a local or remote instance of SQL Server or a
SQL Server Agent service.

SQL Server Service Manager Stops a local or remote instance of SQL Server or a
SQL Server Agent service from a single window or
from the Windows® taskbar.

SHUTDOWN statement Stops an instance of SQL Server when executed within
osql or another query tool. Using the WITH NOWAIT
option stops an instance of SQL Server immediately.

net stop mssqlserver Stops an instance of SQL Server either remotely or
locally if you are running the Microsoft Windows NT®
4.0 or Windows® 2000 operating systems. To stop a
named instance of SQL Server 2000, you must enter
net stop mssql$instancename from the command
prompt.

Control Panel Stops an instance of SQL Server using the Services
application in Control Panel.

CTRL+C Stops an instance of SQL Server if it was started as a
program from the command prompt.

When you stop an instance of SQL Server, the server performs these services before it shuts down:

Disables logins (except for system administrators).

Performs a CHECKPOINT in every database. However, if you stop an instance of SQL Server using CTRL+C at the command
prompt, it does not perform a CHECKPOINT in every database. Therefore, the next time the server is started, recovery time
takes longer.

Waits for all Transact-SQL statements or stored procedures currently executing to finish.

Note To bring the system to an immediate halt, you can issue the SHUTDOWN WITH NOWAIT statement from the osql utility.

To stop SQL Server

Enterprise Manager

Enterprise Manager

Command Prompt

Command Prompt

Transact-SQL

SQL-DMO

To stop a clustered instance of SQL Server

Service Manager

Service Manager

Administering SQL Server (SQL Server 2000)

Broadcasting a Shutdown Message
Before you stop an instance of Microsoft® SQL Server™, you can broadcast a message to warn users of an impending shutdown.
In the message, you can include the time the instance of SQL Server will be stopped so users can finish their tasks.

To broadcast a shutdown message

Command Prompt

Command Prompt

If SQL Server Enterprise Manager or SQL Server Service Manager is not available, you can stop an instance of SQL Server by
issuing a SHUTDOWN command from osql or another query tool.

The SHUTDOWN statement minimizes automatic recovery time when you restart an instance of SQL Server. The SHUTDOWN
statement stops an instance of SQL Server in this manner:

1. Logins are disabled (except for the system administrator login). To see a list of all current users, use the sp_who system
stored procedure. For more information, see sp_who.

2. Transact-SQL statements or stored procedures that are running are allowed to finish. To see a list of all active processes and
locks, use the sp_who and sp_lock system stored procedures. For more information, see sp_who and sp_lock.

3. A CHECKPOINT is performed in every database.

Note Issuing the SHUTDOWN WITH NOWAIT statement stops the server immediately. However, it requires more recovery
time the next time the server is started because no CHECKPOINT is issued against any databases.

To stop SQL Server immediately

Transact-SQL

See Also

sp_lock

sp_who

SQL Server Service Manager

Administering SQL Server (SQL Server 2000)

Failover Clustering
In Microsoft® SQL Server™ 2000 Enterprise Edition, SQL Server 2000 failover clustering provides high availability support. For
example, during an operating system failure or a planned upgrade, you can configure one failover cluster to fail over to any other
node in the failover cluster configuration. In this way, you minimize system downtime, thus providing high server availability.

To install, configure, and maintain a failover cluster, use SQL Server Setup. For information about upgrading to a SQL Server 2000
failover cluster, see Upgrading to a SQL Server 2000 Failover Cluster.

Use failover clustering to:

Install SQL Server on multiple nodes in a failover cluster. You are limited only by the number of nodes supported by the
operating system.

Before installing failover clustering, you must install Microsoft Windows NT® 4.0, Enterprise Edition, Microsoft Windows® 2000
Advanced Server or Windows 2000 Datacenter Server, and the Microsoft Cluster Service (MSCS).

There are specific installation steps that must be followed to use failover clustering. For more information, see Installing Failover
Clustering and Handling a Failover Cluster Installation.

Specify multiple IP addresses for each virtual server.

SQL Server 2000 allows you to use all available network IP subnets, thereby providing alternate ways to connect if one subnet
fails and increasing network scalability. For example, with a single network adaptor, a network failure can disrupt
communications. However, with multiple network cards in the server, each network can be on a different IP subnet. If one subnet
fails, at least one connection can continue to function. If a router fails, MSCS continues to function, and all IP addresses still work.
However, if the network card on the local computer fails, communication still may be disrupted. For more information, see
Creating a Failover Cluster.

Administer a failover cluster from any node in the clustered SQL Server configuration. To perform setup tasks, you must be
working from the node in control of the cluster disk resource. For more information, see Creating a Failover Cluster.

Allow one virtual server to fail over to any other node on the failover cluster configuration. For more information, see
Creating a Failover Cluster.

Add or remove nodes from the failover cluster configuration using the Setup program. For more information, see
Maintaining a Failover Cluster.

Reinstall or rebuild a virtual server on any node in the failover cluster without affecting the other nodes. For more
information, see Maintaining a Failover Cluster.

Perform full-text queries by using Microsoft Search service with failover clustering. For more information, see Using SQL
Server Tools with Failover Clustering.

Multiple Instance Support

Failover clustering also supports multiple instances. Multiple instance support makes it easier to build, install, and configure
virtual servers in a failover cluster. Applications can connect to each instance on a single computer in much the same way as they
connect to instances of SQL Server running on multiple computers. For more information about virtual servers, see Creating a
Failover Cluster.

With multiple instance support, you can isolate work environments (for example, testing from production) or volatile application
environments and provide different system administrators for each instance of SQL Server on the same computer. For more
information, see Multiple Instances of SQL Server.

See Also

Failover Clustering Architecture

Administering SQL Server (SQL Server 2000)

Failover Clustering Support
In Microsoft® SQL Server™ 2000 Enterprise Edition, the number of nodes supported in SQL Server 2000 failover clustering
depends on the operating system you are running:

Microsoft Windows NT® 4.0, Enterprise Edition, Microsoft Windows® 2000 Advanced Server, and Microsoft Windows 2000
Datacenter Server support two-node failover clustering.

Windows 2000 Datacenter Server supports up to four-node failover clustering, including an active/active/active/active
failover clustering configuration.

The following tools, features and components are supported with failover clustering:

Microsoft Search service. For more information, see Using SQL Server Tools with Failover Clustering.

Multiple instances. For more information, see Failover Clustering.

SQL Server Enterprise Manager. For more information, see Using SQL Server Tools with Failover Clustering.

Service Control Manager. For more information, see Using SQL Server Tools with Failover Clustering.

Replication. For more information, see Creating a Failover Cluster.

SQL Profiler. For more information, see Using SQL Server Tools with Failover Clustering.

SQL Query Analyzer. For more information, see Using SQL Server Tools with Failover Clustering.

SQL Mail. For more information, see Using SQL Server Tools with Failover Clustering.

The following component is not supported for failover clustering:

SQL Server 2000 Analysis Services

Note Microsoft Data Access Components (MDAC) 2.6 is not supported for SQL Server version 6.5 or SQL Server 7.0, when either
version is in a failover cluster configuration.

Before using failover clustering, consider the following:

Failover clustering resources, including the IP addresses and network name, must be used only when you are running an
instance of SQL Server 2000. They should not be used for other purposes, such as file sharing.

In a failover cluster configuration, SQL Server 2000 supports Windows NT 4.0, Enterprise Edition but requires that the
service accounts for SQL Server services (SQL Server and SQL Server Agent) be local administrators of all nodes in the
cluster.

Important SQL Server 2000 supports both Named Pipes and TCP/IP Sockets over TCP/IP within a failover cluster. However, it is
strongly recommended that you use TCP/IP Sockets in a clustered configuration.

Administering SQL Server (SQL Server 2000)

Creating a Failover Cluster
To create a Microsoft® SQL Server™ 2000 failover cluster, you must create and configure the virtual servers on which the failover
cluster runs. You create virtual servers during SQL Server Setup. Virtual servers are not provided by Microsoft Windows NT® 4.0
or Microsoft Windows® 2000.

To create a failover cluster, you must be a local administrator with rights to log on as a service and to act as part of the operating
system on all computers in the failover cluster.

Elements of a Virtual Server

A virtual server contains:

A combination of one or more disks in a Microsoft Cluster Service (MSCS) cluster group.

Each MSCS cluster group can contain at most one virtual SQL Server.

A network name for each virtual server. This network name is the virtual server name.

One or more IP addresses that are used to connect to each virtual server.

One instance of SQL Server 2000, including a SQL Server resource, a SQL Server Agent resource, and a full-text resource.

If an administrator uninstalls the instance of SQL Server 2000 within a virtual server, the virtual server, including all IP
addresses and the network name, is also removed from the MSCS cluster group.

A failover cluster can run across one or more actual Windows 2000 Advanced Server or Windows 2000 Datacenter Server servers
or Windows NT 4.0, Enterprise Edition servers that are participating nodes of the cluster. However, a SQL Server virtual server
always appears on the network as a single Windows 2000 Advanced Server, Windows 2000 Datacenter Server, or Microsoft
Windows NT 4.0, Enterprise Edition server.

Naming a Virtual Server

SQL Server 2000 depends on distinct registry keys and service names within the failover cluster so that operations will continue
correctly after a failover. Therefore, the name you provide for the instance of SQL Server 2000, including the default instance,
must be unique across all nodes in the failover cluster, as well as across all virtual servers within the failover cluster. For example,
if all instances failed over to a single server, their service names and registry keys would conflict. If INST1 is a named instance on
virtual server VIRTSRV1, there cannot be a named instance INST1 on any node in the failover cluster, either as part of a failover
cluster configuration or as a stand-alone installation.

Additionally, you must use the VIRTUAL_SERVER\Instance-name string to connect to a clustered instance of SQL Server 2000
running on a virtual server. You cannot access the instance of SQL Server 2000 by using the computer name that the clustered
instance happens to reside on at any given time. SQL Server 2000 does not listen on the IP address of the local servers. It listens
only on the clustered IP addresses created during the setup of a virtual server for SQL Server 2000.

Usage Considerations

Before you create a failover cluster, consider the following:

If you are using the Windows 2000 Address Windowing Extensions (AWE) API to take advantage of memory greater than 3
gigabytes (GB), make certain that the maximum available memory you configure on one instance of SQL Server will still be
available after you fail over to another node. If the failover node has less physical memory than the original node, instances
of SQL Server may fail to start or may start with less memory than they had on the original node. You must:

Give each server in the cluster the same amount of physical RAM.

Ensure that the summed value of the max server memory settings for all instances is less than the lowest amount
of physical RAM available on any of the virtual servers in the failover cluster.

For more information about AWE, see Using AWE Memory on Windows 2000.

If you need high-availability servers in replication, it is recommended that you use an MSCS cluster file share as your
snapshot folder when configuring a Distributor on a failover cluster. In the case of server failure, the distribution database
will be available and replication will continue to be configured at the Distributor.

Also, when creating publications, specify the MSCS cluster file share for the additional storage of snapshot files or as the
location from which Subscribers apply the snapshot. This way, the snapshot files are available to all nodes of the cluster and
to all Subscribers that must access it. For more information, see Publishers, Distributors, and Subscribers and Alternate
Snapshot Locations.

If you want to use encryption with a failover cluster, you must install the server certificate with the fully qualified DNS name
of the virtual server on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
test1.redmond.corp.microsoft.com and test2.redmond.corp.microsoft.com and a virtual SQL Server "Virtsql", you need to get
a certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the Force
protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption.

The MSCS service account must be a part of the administrator group on each node of the cluster for SQL Server. The IsAlive
thread runs under the context of the cluster service account, and not the SQL Server service account. If you remove the
MSCS service account, the IsAlive thread will no longer be able to create a trusted connection, and you will lose access to the
virtual server.

Creating a Failover Cluster

Here are the basic steps for creating a failover cluster using the Setup program:

1. Identify the information you need to create your virtual server (for example, cluster disk resource, IP addresses, and network
name) and the nodes available for failover.

The cluster disks to use for failover clustering should all be in a single cluster group and owned by the node from which the
Setup program is run. This configuration must take place before you run the Setup program. You configure this through
Cluster Administrator in Windows NT 4.0 or Windows 2000. You need one MSCS group for each virtual server you want to
set up.

2. Start the Setup program to begin your installation. After all necessary information has been entered, the Setup program
installs a new instance of SQL Server binaries on the local disk of each computer in the cluster and installs the system
databases on the specified cluster disk. The binaries are installed in exactly the same path on each cluster node, so you must
ensure that each node has a local drive letter in common with all the other nodes in the cluster.

In SQL Server 2000, during a failover only the databases fail over. In SQL Server version 6.5 and SQL Server version 7.0,
both the SQL Server databases and binaries fail over during a failover.

If any resource (including SQL Server) fails for any reason, the services (SQL Server, SQL Server Agent, Full-Text Search, and
all services in the failover cluster group) fail over to any available nodes defined in the virtual server.

3. You install one instance of SQL Server 2000, creating a new virtual server and all resources.

How to create a new failover cluster

SQL Setup

SQL Setup

How to install a one-node failover cluster

SQL Setup

SQL Setup

Upgrading to a SQL Server 2000 Failover Cluster

To upgrade from a SQL Server 6.5 or SQL Server 7.0 failover cluster to a SQL Server 2000 failover cluster, you must first
uncluster the previous installation. SQL Server 6.5 or SQL Server 7.0 clusters cannot exist on the same computer as a failover
cluster. For more information about upgrading, see Upgrading to a SQL Server 2000 Failover Cluster.

To upgrade from a SQL Server 6.5 active/passive failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 6.5 active/active failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 7.0 active/active failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 7.0 active/passive failover cluster

SQL Setup

SQL Setup

Administering SQL Server (SQL Server 2000)

Failover Clustering Example
The following example illustrates how you configure Microsoft® SQL Server™ 2000 failover clustering.

CLUSTERNODEA and CLUSTERNODEB are two computers in a failover cluster. Run SQL Server Setup on CLUSTERNODEA and
create a virtual server named "SQLCLUSTA." Then install a default instance of SQL Server 2000, which can run on both
CLUSTERNODEA and CLUSTERNODEB. From this point forward, connect to the server by specifying "SQLCLUSTA" as the server
name in the connection string.

Run the Setup program again on CLUSTERNODEB. Create a new virtual server named "SQLCLUSTB" (in a different Microsoft
Cluster Service (MSCS) cluster group) and install an instance named "Inst1" that can run on both CLUSTERNODEA and
CLUSTERNODEB. From this point forward, connect to the server by specifying "SQLCLUSTB\Inst1" as the connection string.

The two virtual servers are running in the MSCS cluster consisting of CLUSTERNODEA and CLUSTERNODEB. Other than that, they
are completely separate from each other. Each virtual server resides in a different MSCS cluster group, and each has a different
set of IP addresses, a distinct network name, and data files that reside on a separate set of shared cluster disks.

When a failover occurs for any resource in an MSCS cluster group, all resources that are members of that group also fail over. For
SQLCLUSTA, any failure (from the disk resources, IP address, the network name, or the installations of SQL Server 2000 within the
virtual server) causes all members of the cluster group to fail over when the failover threshold is reached.

The following illustration is a two-node cluster with binaries and data. Each virtual server in this illustration must have exclusive
ownership of the disk on which the data and log files are located.

See Also

Failover Clustering Architecture

Administering SQL Server (SQL Server 2000)

Upgrading to a SQL Server 2000 Failover Cluster
When you are upgrading to a Microsoft® SQL Server™ 2000 failover cluster, only one default instance is allowed. Use the Cluster
Wizard in SQL Server version 6.5 or SQL Server 7.0 to uncluster any existing SQL Server 6.5 or SQL Server 7.0 clustered instances
before upgrading to SQL Server 2000. Then run SQL Server Setup on SQL Server 2000.

SQL Server 6.5 or SQL Server 7.0 failover clusters cannot exist on the same computer as a SQL Server 2000 failover cluster. In
SQL Server 6.5 or SQL Server 7.0, in an active/active configuration or in an active/passive configuration where one server
contains an unclustered SQL Server, there is a name conflict. Both servers are default instances.

Important You cannot run the Cluster Wizard in SQL Server 6.5 or SQL Server 7.0 after SQL Server 2000 has been installed.

For SQL Server 2000, you must use a domain account for the services (SQL Server, SQL Server Agent, and all services in the
clustered group). That account must be an administrator on all computers in the cluster, if those computers are running on
Microsoft Windows NT® Server 4.0, Enterprise Edition.

Note If you are using replication on a SQL Server 6.5 or 7.0 failover cluster and upgrading to a SQL Server 2000 failover cluster,
you must uncluster the previous installation. Delete all publications, remove replication, and then reconfigure replication after
upgrading. This will not be a requirement when upgrading from SQL Server 2000 in future releases.

To upgrade from a SQL Server 6.5 active/passive failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 6.5 active/active failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 7.0 active/active failover cluster

SQL Setup

SQL Setup

To upgrade from a SQL Server 7.0 active/passive failover cluster

SQL Setup

SQL Setup

Administering SQL Server (SQL Server 2000)

Handling a Failover Cluster Installation
When you install a Microsoft® SQL Server™ 2000 failover cluster, you must:

Ensure that the operating system is installed properly and designed to support failover clustering. For more information
about what to do before installing a failover cluster, see Before Installing Failover Clustering. For more information about
the order of installation, see Installing Failover Clustering.

Consider whether the SQL Server tools, features, and components you want to use are supported with failover clustering.
For more information, see Failover Clustering Support.

Consider whether failover clustering is dependent on the products you want to use. For more information, see Failover
Clustering Dependencies.

Consider how to create a new failover cluster. For more information about creating a new failover cluster configuration, see
Creating a Failover Cluster.

Review the instructions for upgrading from a SQL Server version 6.5 or SQL Server version 7.0 cluster to a SQL Server 2000
failover cluster. For more information, see Upgrading to a SQL Server 2000 Failover Cluster.

Administering SQL Server (SQL Server 2000)

Before Installing Failover Clustering
Before you install a Microsoft® SQL Server™ 2000 failover cluster, you must select the operating system on which your computer
will run. You can use Microsoft Windows NT® 4.0, Enterprise Edition, Microsoft Windows® 2000 Advanced Server, or Microsoft
Windows 2000 Datacenter Server. You also must install Microsoft Cluster Service (MSCS).

Preinstallation Checklist

Before you begin the installation process, verify that:

There is no IRQ sharing between network interface cards (NICs) and drive/array (SCSI) controllers. Although some hardware
may support this sharing, it is not recommended.

Your hardware is listed on the Windows NT Hardware Compatibility List.

For a complete list of supported hardware, see the Hardware Compatibility List at the Microsoft Web site.

The hardware system must appear under the category of cluster. Individual cluster components added together do not
constitute an approved system. Only systems purchased as a cluster solution and listed in the cluster group are approved.
When checking the list, specify cluster as the category. All other categories are for OEM use.

MSCS has been installed completely on at least one node before you run Windows NT 4.0, Enterprise Edition or Windows
2000 Advanced Server or Windows 2000 Datacenter Server simultaneously on all nodes.

When using MSCS, you must make certain that one node is in control of the shared SCSI bus prior to the other node(s)
coming online. Failure to do this can cause application failover to go into an online pending state. As a result, the cluster
either fails on the other node or fails totally. However, if your hardware manufacturer has a proprietary installation process,
follow the hardware manufacturer instructions.

WINS is installed according to the following article in the Product Support Services Microsoft Web site:

Q258750 Recommended Private "Heartbeat" Configuration on Cluster Server

The disk drive letters for the cluster-capable disks are the same on both servers.

You have disabled NetBIOS for all private network cards before beginning SQL Server Setup.

You have cleared the system logs in all nodes and viewed the system logs again. Ensure that the logs are free of any error
messages before continuing.

http://www.microsoft.com/isapi/redir.dll?Prd=Hardware Compatibility List
http://www.microsoft.com/isapi/redir.dll?Prd=productsupport

Administering SQL Server (SQL Server 2000)

Installing Failover Clustering
If you are installing Microsoft® SQL Server™ 2000 failover clustering on Microsoft Windows NT® 4.0, Enterprise Edition, you
need to install programs in the order specified below. However, this is not necessary if you are installing failover clustering on
Microsoft Windows® 2000 Advanced Server or Windows 2000 Datacenter Server.

Caution If you do not install the programs in the following order, the software products can fail on installation and require that
you completely reinitialize the disk and restart installation.

Before installing SQL Server 2000 in a failover cluster configuration, you must upgrade any pre-release versions of SQL Server
2000.

To install failover clustering on Windows NT 4.0

1. Install Windows NT 4.0, Enterprise Edition.

Windows NT 4.0, Enterprise Edition includes Windows NT 4.0 Service Pack 3. Service Pack 3 is required to install Microsoft
Cluster Service (MSCS).

Do not go directly to Service Pack 4 or later if you intend to install the Windows NT Option Pack.

Do not install Microsoft Internet Information Server (IIS).

Important IIS is installed by default. It is recommended that you clear this option during the Windows NT 4.0 installation.

2. Install MSCS.

3. Install Microsoft Internet Explorer version 5.0 or later.

4. Manually create a Microsoft Distributed Transaction Coordinator (MS DTC) compatible resource group where MS DTC setup
can create its resources. This should contain an IP address, network name, and cluster disk resource. Any group with these
three things is compatible with MS DTC.

SQL Server Setup will install MS DTC in a later step. Install Windows NT 4.0 Option Pack only if you require components of
the Windows NT 4.0 Option pack besides MS DTC.

5. Install the latest Windows NT 4.0 Service Pack, Service Pack 5 at the latest. Click Create an uninstall directory, click Year
2000 Setup, and then select the Service Pack install for Intel based systems check box.

Do not select Microsoft Message Queue Server (MSMQ 1.0) or IIS. MSMQ 1.0 is not supported on SQL Server 2000. It is
recommended that IIS functionality be used with Windows NT Load Balancing Service (WLBS). For more information about
WLBS, search on "WLBS Features Overview" on the NT Server Microsoft Web site.

Prior to Step 5, it is recommended that you rename the hidden directory $NTServicePackUninstall$ to
$NTServicePackUninstall$.service packnumber. After installing the service pack, add a new directory. This way you have
uninstall directories available, which prevents the directories from being accidentally overwritten.

6. Install SQL Server 2000.

Note Install any additional server products before installing any other applications.

To install failover clustering on Windows 2000

1. Install Windows 2000 and accept the default application choices.

2. After installing Windows 2000 on the first node and prior to installing MSCS, click Start\Programs\Administrative
Tools\Configure Your Server.

3. Click Advanced\Cluster Service, and then in the right pane, click Learn More.

4. From Help, review Item 2 under Windows Clustering.

Windows Clustering is used during the installation of Windows 2000 and with SQL Server 2000 failover clustering. Follow
these instructions to install MSCS.

http://www.microsoft.com/isapi/redir.dll?Prd=ntserver&Ar=root

Important It is necessary to read the section on Planning for Windows Clustering\Requirements for server clusters and to
follow the Checklist for server clusters called Checklist: Creating a server cluster. This is found under the Server Clusters
section\Checklist for server clusters.

5. After you have successfully installed MSCS, you need to configure MS DTC to run on a cluster.

For more information about MS DTC, see Failover Clustering Dependencies.

6. On the Start menu, point to Programs\Administrative Tools\Cluster Administrator, and click View Groups\Cluster
Group. If the group contains an MS DTC resource, proceed to Step 9. If not, complete the following two steps.

7. On the Start menu, point to Command Prompt. Enter comclust.exe from the command prompt.

8. Repeat Step 7 on the remaining nodes of the cluster, one node at a time.

9. Install SQL Server 2000.

Note Install any additional server products before installing any user applications.

Administering SQL Server (SQL Server 2000)

Failover Clustering Dependencies
There are several products that interact with Microsoft® SQL Server™ 2000 failover clustering. To ensure that your failover
cluster functions properly, you need to understand the underlying dependencies that failover clustering has on other products.

Microsoft Distributed Transaction Coordinator (MS DTC)

SQL Server 2000 requires Microsoft Distributed Transaction Coordinator (MS DTC) in the cluster for distributed queries and two-
phase commit transactions, as well as for some replication functionality. After you install Microsoft Windows® 2000 and
configure your cluster, you must run the Cluster Wizard (the comclust.exe program) on all nodes to configure MS DTC to run in
clustered mode.

The Cluster Wizard makes the following changes to the MS DTC configuration:

It creates an MS DTC resource in a resource group containing a shared cluster disk resource and a network name resource.

It creates an MS DTC log file on the shared cluster disk contained in the MS DTC resource group. Placing the MS DTC log file
on the shared cluster disk makes it possible for the MS DTC transaction manager to access the MS DTC log file from any
system in the cluster.

It copies critical MS DTC registry entries to the shared cluster registry.

Running M S DTC in Clustered M ode

When MS DTC is running in clustered mode, only one node in the cluster runs the MS DTC transaction manager at a time.

Any process running on any node in the cluster can use MS DTC. These processes simply call the MS DTC Proxy and the MS DTC
Proxy automatically forwards MS DTC calls to the MS DTC transaction manager that is controlling the entire cluster.

If the node running the MS DTC transaction manager fails, the MS DTC transaction manager is automatically restarted on another
node in the cluster. The newly restarted MS DTC transaction manager reads the MS DTC log file on the shared cluster disk to
determine the outcome of pending and recently completed transactions. Resource managers reconnect to the MS DTC transaction
manager and perform recovery to determine the outcome of in-doubt transactions. Applications reconnect to MS DTC so they can
initiate new transactions.

For example, suppose the MS DTC transaction manager is active on system B. The application program and resource manager on
system A call the MS DTC proxy. The MS DTC proxy on system A forwards all MS DTC calls to the MS DTC transaction manager on
system B.

If system B fails, the MS DTC transaction manager on system A will take over. It will read the entire MS DTC log file on the shared
cluster disk, perform recovery, and then serve as the transaction manager for the entire cluster.

Note The MS DTC transaction manager, MS DTC Proxy, and Component Services administrative tools are installed on each node
of a Windows 2000 cluster using MSCS as part of Windows 2000 Setup.

To manually install MS DTC on a Windows 2000 system running MSCS

1. Install Windows 2000 on each node in the cluster.

2. Use the Windows 2000 Configure Your Server facility to configure your cluster.

3. From a command prompt, run comclust.exe on each node in the cluster. Comclust.exe can be found in the system32
directory.

To automatically install MS DTC on a Windows 2000 cluster system

1. Install Windows 2000 on each node in the cluster and configure your cluster using automatic installation scripts.

2. From a command prompt, run comclust.exe on each node in the cluster. Comclust.exe can be found in the system32
directory.

To upgrade a non-clustered Windows NT 4.0 SP4 system to a Windows 2000 cluster

1. Upgrade each system that will be part of the cluster to Windows 2000.

2. Use the Windows 2000 Configure Your Server facility to configure your server.

3. From a command prompt, run comclust.exe on each node in the cluster. Comclust.exe can be found in the system32
directory.

To upgrade a clustered Windows NT 4.0 SP4 system to a Windows 2000 cluster

1. Install Windows 2000 on each node in the cluster.

MS DTC requires that all nodes in the cluster be upgraded to Windows 2000 at the same time.

2. From a command prompt, run comclust.exe on each node in the cluster. Comclust.exe can be found in the system32
directory.

Important Microsoft System Management Server 1.2 is not supported with SQL Server or Microsoft Cluster Service (MSCS).

To recover from a cluster failure and rebuild MS DTC on a Windows 2000 cluster

1. When a node is lost, MS DTC will continue to work on the remaining nodes in the cluster. It does not matter whether the
node that is lost is the primary or secondary node.

2. When you are ready to restore the lost node, join the lost node back to the cluster. After the node has joined the cluster, run
Comclust.exe, which can be found in the system32 directory. This will reconfigure MS DTC on the node.

Administering SQL Server (SQL Server 2000)

Maintaining a Failover Cluster
After you have installed a Microsoft® SQL Server™ 2000 failover cluster, you can change or repair your existing setup. For
example, you can add additional nodes to a virtual server in a failover cluster, run a clustered instance as a stand-alone instance,
remove a node from a clustered instance, or recover from failover cluster failure.

Adding a Node to an Existing Virtual Server

During SQL Server Setup, you are given the option of maintaining an existing virtual server. If you choose this option, you can add
other nodes to your failover cluster configuration at a later time. You can add up to three additional nodes to an existing virtual
server configured to run on one node.

To add a node to an existing virtual server

SQL Setup

SQL Setup

Removing a Node from an Existing Failover Cluster

You can remove a node from a virtual server (for example, if a node is damaged). Each node in a virtual SQL Server is considered
a peer, and you can remove any node.

A removed node can be added back to a failover cluster at any time. For example, a removed node can be rebuilt after a failure
and added back to the failover cluster. Alternately, if a node is temporarily unavailable and later comes back online and an
instance of SQL Server 2000 from the affected virtual server is still in place, the Setup program removes this instance from the
computer before installing the binaries on the node again.

Note A damaged node does not have to be available to be removed, but the removal process will not uninstall any of the
binaries from the unavailable node.

To remove a node from an existing failover cluster

SQL Setup

SQL Setup

Running a Clustered Instance of SQL Server as a Stand-Alone Instance

Usually, you run a clustered instance of SQL Server under the control of Microsoft Cluster Service (MSCS). However, it may be
necessary to run a clustered instance of SQL Server as a stand-alone instance (for example, when you want to perform
administrative operations like running an instance of SQL Server in single-user mode). To connect to a clustered instance of SQL
Server 2000 in stand-alone mode using sockets, both the IP address and network name resources must be online for the virtual
server on which the instance was installed.

If these resources cannot be online, connect using Named Pipes. However, you must create an alias on the client side to talk to the
pipe name on which the instance of SQL Server is listening. Use SQL Server Network Utility to find out the pipe name. For more
information, see Failover Cluster Troubleshooting.

Recovering from Failover Cluster Failure

Usually, there are two scenarios that cause failover cluster failure:

In Scenario 1, failure is caused by hardware failure in Node 1 of a two-node cluster. This hardware failure could be caused
by a failure in the SCSI card or the operating system.

To recover from this failure, first remove the failover cluster using the Setup program.

To remove a failover clustered instance

SQL Setup

SQL Setup

To recover from failover cluster failure in Scenario 1

SQL Setup

SQL Setup
In Scenario 2, failure is caused by Node 1 being down or offline, but not irretrievably broken. This could be caused by an
operating system failure. However, recovering from operating system failure using the steps below can take time. If the
operating system failure can be recovered easily, avoid using Scenario 2.

To recover from this failure, first remove the failover cluster using the Setup program.

To remove a failover clustered instance

SQL Setup

SQL Setup

To recover from failover cluster failure in Scenario 2

SQL Setup

SQL Setup

Changing Service Accounts

You should not change the passwords for any of the SQL Server service accounts when a failover cluster node is down or offline.
If you have to do this, you will need to reset the password again using Enterprise Manager when all nodes are back online.

If the service account for SQL Server is not an administrator in a cluster, the administrative shares cannot be deleted on any nodes
of the cluster. The administrative shares must be available in a cluster for SQL Server to function.

See Also

Handling a Failover Cluster Installation

SQL Server Network Utility

Administering SQL Server (SQL Server 2000)

Using SQL Server Tools with Failover Clustering
You can use Microsoft® SQL Server™ 2000 failover clustering with a variety of SQL Server tools and features. However, review
the following usage considerations.

Full-Text Queries

To use the Microsoft Search service to perform full-text queries with failover clustering, consider the following:

An instance of SQL Server 2000 must run on the same system account on all failover cluster nodes in order for full-text
queries to work on failover clusters.

You must change the start-up account for SQL Server 2000 in the failover cluster using SQL Server Enterprise Manager. If
you use Control Panel or the Services Application in Microsoft Windows® 2000, you will break the full-text configuration
for SQL Server.

SQL Server Enterprise Manager

To use SQL Server Enterprise Manager with failover clustering, consider the following:

You must change the start-up account for SQL Server 2000 in the failover cluster by using SQL Server Enterprise Manager.
If you use Control Panel or the Services Application in Microsoft Windows 2000, you could break your server configuration.

When creating or altering databases, you will only be able to view the cluster disks for the local virtual server.

If you are browsing a table through SQL Server Enterprise Manager and lose the connection to SQL Server during a failover,
you will see the error message, "Communication Link Failure". You must press ESC and undo the changes to exit out of the
SQL Server Enterprise Manager window. You cannot click Run Query, save any changes, or edit the grid.

If you use Enterprise Manager to reset the properties of the SQL Server service account, you will be prompted to restart SQL
Server. When SQL Server is running in a failover cluster configuration, this will bring the full text and SQL Agent resources
offline, as well as SQL Server. However, when SQL Server is restarted, it will not bring the full text or SQL Agent resources
back online. You must start those resources manually using the Windows Cluster Administrator utility.

Service Control Manager

Use the Service Control Manager to start or stop a clustered instance of SQL Server. You cannot pause a clustered instance of SQL
Server.

To start a clustered instance of SQL Server using Service Control Manager

Service Manager

Service Manager

To stop a clustered instance of SQL Server using Service Control Manager

Service Manager

Service Manager

SQL Profiler

You can use SQL Profiler with failover clustering. However, if you experience a failover on a server where you are running a SQL
Profiler trace, you must restart the trace when the server is back online to continue tracing.

SQL Query Analyzer

You can use SQL Query Analyzer with failover clustering. However, if you experience a failover on a server where you are
executing a query, you must restart the query when the server is back online to continue execution.

SQL Mail

To use SQL Mail with failover clustering, consider the following:

An instance of SQL Server 2000 must run on the same Microsoft Windows NT® 4.0 and Windows 2000 account on all
failover cluster nodes in order for SQL Mail to work on failover clusters.

Each failover cluster node must have a MAPI profile with an identical name and settings. For more information, see
Configuring Mail Profiles.

See Also

SQL Mail

Microsoft Search Service

SQL Query Analyzer

Monitoring with SQL Profiler

SQL Server Enterprise Manager

Starting, Pausing, and Stopping SQL Server

Administering SQL Server (SQL Server 2000)

Failover Cluster Troubleshooting
This topic provides information about:

Resolving the most common Microsoft® SQL Server™ 2000 failover clustering usage issues.

Optimizing failover cluster performance.

Using failover clustering with extended stored procedures that use COM objects.

Resolving Common Usage Issues

The following list describes common usage issues and explains how to resolve them:

SQL Server 2000 cannot log on to the network after it migrates to another node.

SQL Server service account passwords must be identical on all nodes or else the node cannot restart a SQL Server service
that has migrated from a failed node.

If you change the SQL Server service account passwords on one node, you must change the passwords on all other nodes.
However, if you change the account using SQL Server Enterprise Manager, this task will be done automatically.

SQL Server cannot access the cluster disks.

A node cannot recover cluster disks that have migrated from a failed node if the shared cluster disks use a different letter
drive. The disk drive letters for the cluster disks must be the same on both servers. If they are not, review your original
installation of the operating system and Microsoft Cluster Service (MSCS). For more information, see the Microsoft
Windows NT® 4.0, Enterprise Edition, Windows® 2000 Advanced Server, or Windows 2000 Datacenter Server
documentation.

You do not want a failure of a service, such as full-text search or SQL Server Agent, to cause a failover.

To prevent the failure of specific services from causing the SQL Server group to fail over, configure those services using
Cluster Administrator in Windows NT 4.0 or Windows 2000. For example, to prevent the failure of the Full-Text Search
service from causing a failover of SQL Server, clear the Affect the Group check box on the Advanced tab of the Full Text
Properties dialog box. However, if SQL Server causes a failover, the full-text search service will restart.

SQL Server will not start automatically.

You cannot start a failover cluster automatically using SQL Server. You must use Cluster Administrator in MSCS to
automatically start a failover cluster.

The error message "No compatible resource groups found" is displayed during SQL Server Setup.

This error is caused by the Microsoft Distributed Transaction Coordinator (MS DTC) setup on Windows NT 4.0, Enterprise
Edition. MS DTC requires a group containing a network name, IP address, and shared cluster disk to be owned by the local
node when the Setup program is run. If this error is displayed, open Cluster Administrator and make certain there is a group
that meets these requirements owned by the local node. The easiest way to do this is to move a disk into the cluster group
that already contains a network name and IP address. After you have this group on the local node, click Retry.

The error message "All cluster disks available to this virtual server are owned by other node(s)" is displayed during Setup.

This message is displayed when you select the drive and path for installing data files, and the drive you selected is not
owned by the local node. Move the disk to the local node using Cluster Administrator.

The error message "Unable to delete SQL Server resources. They must be manually removed. Uninstallation will continue."
is displayed during SQL Server Setup.

This message is displayed if SQL Server Setup cannot delete all of the SQL Server resources. You must go into Control Panel
and uninstall the instance you were trying to remove on every node.

You cannot enable the clustering operating system error log.

The operating system cluster error log is used by MSCS to record information about the cluster. Use this error log to debug
cluster configuration issues. To enable the cluster error log, set the system environment variable CLUSTERLOG=<path to
file> (for example, CLUSTERLOG=c:\winnt\cluster\cluster.log). This error log is on by default in Windows 2000.

If the Network Name is offline and you cannot connect using TCP/IP, you must use Named Pipes.

To connect using Named Pipes, create an alias using the Client Network Utility to connect to the appropriate computer. For
example, if you have a cluster with two nodes (Node A and Node B), and a virtual server (Virtsql) with a default instance, you
can connect to the server that has the Network Name resource offline by doing the following:

1. Determine on which node the group containing the instance of SQL Server is running by using the Cluster
Administrator. For this example, it will be Node A.

2. Start the SQL Server service on that computer using net start. For more information about using net start, see
Starting SQL Server Manually.

3. Start the SQL Server Network Utility on Node A. View the pipe name on which the server is listening. It should be
similar to \\.\$$\VIRTSQL\pipe\sql\query.

4. On the client computer, start the Client Network Utility.

5. Create an alias SQLTEST1 to connect via Named Pipes to this pipe name. To do this, put Node A as the server name
and edit the pipe to be \\.\pipe\$$\VIRTSQL\sql\query. Connect to this instance using the alias SQLTEST1 as the server
name.

For more information, see Client Net-Libraries and Network Protocols.

Optimizing Failover Clustering Performance

To optimize performance when using failover clustering, consider the following:

If your disk controller is not external to your clustered computer, you must turn off write-caching within the controller to
prevent data loss during a failover.

Write-back caching cannot be used on host controllers in a cluster without hindering performance. However, if you use
external controllers, you continue to provide performance benefits. External disk arrays are not affected by failover
clustering and can sync the cache correctly, even across a SCSI bus.

It is recommended that you do not use the cluster drive for file shares. Using these drives impacts recovery times and can
cause a failover of the cluster group due to resource failures.

Using Extended Stored Procedures and COM Objects

When you use extended stored procedures with a failover clustering configuration, all extended stored procedures need to be
installed on the shared cluster disk. This is to ensure that when a node fails over, the extended stored procedures can still be used.

If the extended stored procedures use COM components, the administrator needs to register the COM components on each node
of the cluster. The information for loading and executing COM components must be in the registry of the active node in order for
the components to be created. Otherwise, the information will remain in the registry of the computer on which the COM
components were first registered. For more information, see Extended Stored Procedure Architecture.

Administering SQL Server (SQL Server 2000)

Importing and Exporting Data
Importing data is the process of retrieving data from sources external to Microsoft® SQL Server™ (for example, an ASCII text file)
and inserting it into SQL Server tables. Exporting data is the process of extracting data from an instance of SQL Server into some
user-specified format (for example, copying the contents of a SQL Server table to a Microsoft Access database).

Importing data from an external data source into an instance of SQL Server is likely to be the first step you perform after setting
up your database. After data has been imported into your SQL Server database, you can start to work with the database.

Importing data into an instance of SQL Server can be a one-time occurrence (for example, migrating data from another database
system to an instance of SQL Server). After the initial migration is complete, the SQL Server database is used directly for all data-
related tasks, rather than the original system. No further data imports are required.

Importing data can also be an ongoing task. For example, a new SQL Server database is created for executive reporting purposes,
but the data resides in legacy systems updated from a large number of business applications. In this case, you can copy new or
updated data from the legacy system to an instance of SQL Server on a daily or weekly basis.

Usually, exporting data is a less frequent occurrence. SQL Server provides tools and features that allow applications, such as
Access or Microsoft Excel, to connect and manipulate data directly, rather than having to copy all the data from an instance of SQL
Server to the tool before manipulating it. However, data may need to be exported from an instance of SQL Server regularly. In this
case, the data can be exported to a text file and then read by the application. Alternatively, you can copy data on an ad hoc basis.
For example, you can extract data from an instance of SQL Server into an Excel spreadsheet running on a portable computer and
take the computer on a business trip.

SQL Server provides tools for importing and exporting data to and from data sources, including text files, ODBC data sources
(such as Oracle databases), OLE DB data sources (such as other instances of SQL Server), ASCII text files, and Excel spreadsheets.

Additionally, SQL Server replication allows data to be distributed across an enterprise, copying data between locations and
synchronizing changes automatically between different copies of data.

Administering SQL Server (SQL Server 2000)

Choosing a Tool to Import or Export Data
Data can be imported to and exported from instances of Microsoft® SQL Server™ using several SQL Server tools and Transact-
SQL statements. You can also write your own programs to import and export data using the programming models and
application programming interfaces (APIs) available with SQL Server.

You can copy data to and from instances of SQL Server by:

Using the Data Transformation Services (DTS) Import/Export Wizard or DTS Designer to create a DTS package that can be
used to import, export and transform data.

For more information, see DTS Tools.

Using SQL Server replication to distribute data across an enterprise.

The replication technology in SQL Server allows you to make duplicate copies of your data, move those copies to different
locations, and synchronize the data automatically so that all copies have the same data values. Replication can be
implemented between databases on the same server or different servers connected by LANs, WANs, or the Internet.

For more information, see Replication Overview.

Using the bcp command prompt utility to import and export data between an instance of SQL Server and a data file.

Selecting data from an OLE DB provider and copying it from external data sources into an instance of SQL Server.

Using a distributed query to select data from another data source and specify the data to be inserted.

For more information, see Distributed Queries.

Using the INSERT statement to add data to an existing table.

For more information, see INSERT.

Using the BULK INSERT statement to import data from a data file to an instance of SQL Server.

For more information, see BULK INSERT.

Using the SELECT INTO statement to create a new table based on an existing table.

For more information, see SELECT.

The method chosen to import or export data depends on user requirements, for example:

The format of the source and destination data.

The location of the source and destination data.

Whether the import or export is a one-time occurrence or an ongoing task.

Whether a command prompt utility, Transact-SQL statement, or graphical interface is preferred.

The performance of the import or export operation.

This table describes the capabilities of various import and export options in SQL Server.

Required
functionality

DTS
wizards Replication bcp

BULK
INSERT

SELECT
INTO/

INSERT
Import text data YES YES YES YES 1
Export text data YES YES
Import from ODBC
data sources

YES YES

Export to ODBC data
sources

YES YES

Import from OLE DB
data sources

YES YES YES (1)

Export to OLE DB
data sources

YES YES YES

Graphical user
interface (GUI)

YES YES

Command
prompt/batch scripts

YES YES YES

Transact-SQL scripts YES YES YES
Automatic
scheduling

YES YES YES 2 YES 2

Ad hoc
import/export

YES YES YES YES

Recurring
import/export

YES YES YES

Maximum
performance

YES YES

Data transformation YES
Programmatic
interface

YES YES YES

1 Using a distributed query that retrieves data from an external source by using an OLE DB provider.
2 By explicitly creating a job scheduled using SQL Server Agent.

See Also

bcp Utility

Administering SQL Server (SQL Server 2000)

Preparing Data for Importing and Exporting
In order for the bcp and BULK INSERT utilities to insert data, the data file must be in row and column format. Microsoft® SQL
Server™ can accept data in any ASCII or binary format as long as the terminators (characters used to separate columns and rows)
can be described. The structure of the data file does not need to be identical to the structure of the SQL Server table because bcp
and BULK INSERT allow columns to be skipped or reordered during the bulk copy process.

Data that is bulk copied into an instance of SQL Server is appended to any existing contents in a table. Data that is bulk copied
from an instance of SQL Server to a data file overwrites the previous contents of the data file.

To bulk copy data:

If importing data, the destination table must already exist. If exporting to a file, bcp will create the file.

The number of fields in the data file does not have to match the number of columns in the table or be in the same order.

The data in the data file must be character format or a format generated previously by the bcp utility, such as native format.

Each column in the table must be compatible with the field in the data file being copied. For example, it is not possible to
copy an int field to a datetime column using native format bcp.

Relevant permissions to bulk copy data are required on source and destination files and tables.

To bulk copy data from a data file into a table, you must have INSERT and SELECT permissions on the table. To bulk copy a
table or view to a data file, you must have SELECT permission on the table or view being bulkcopied.

Before using bulk copy operations, consider the following:

It is possible to specify the number of rows to load from the data file rather than loading the entire file. For example, to load
only the first 150 rows from a 10,000 row data file, specify the -L last_row switch when loading the data. This can be useful
for testing a batch load process.

When using the -F first_row switch to specify the first row in the table or view to bulk copy, all rows in the table or view are
first returned to the client, and then the bcp utility determines which rows to skip and write to the data file. Therefore,
specifying -F first_row does not limit the amount of data returned to the client and does not necessarily cause the bulk copy
operation to execute any faster.

Because SQL Server can use parallel scans to retrieve data, the data bulk copied from an instance of SQL Server is not
guaranteed to be in any specific order unless you bulk copy from a query and specify an ORDER BY clause.

To copy data from earlier versions of SQL Server using native format data files, use the same version of bcp for importing,
exporting, and formatting files.

Importing and Exporting Data Example

To bulk copy data from the publishers table in the pubs database to the Publishers.txt data file in ASCII text format, from the
command prompt, execute:

bcp pubs..publishers out publishers.txt -c -Sservername -Usa -Ppassword

The contents of the Publishers.txt file:

0736 New Moon Books Boston MA USA
0877 Binnet & Hardley Washington DC USA
1389 Algodata Infosystems Berkeley CA USA
1622 Five Lakes Publishing Chicago IL USA
1756 Ramona Publishers Dallas TX USA
9901 GGG&G München -- Germany
9952 Scootney Books New York NY USA
9999 Lucerne Publishing Paris -- France

Conversely, to bulk copy data from the Publishers.txt file into the publishers2 table in the pubs database, from the command

prompt, execute:

bcp pubs..publishers2 in publishers.txt -c -Sservername -Usa -Ppassword

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..publishers2 FROM 'c:\publishers.txt'
WITH (DATAFILETYPE = 'char')

Note The publishers2 table must be created first.

See Also

bcp Utility

BULK INSERT.

Character Format

ExportData Method

ImportData Method

Managing Security Accounts

Native Format

Administering SQL Server (SQL Server 2000)

Using bcp and BULK INSERT
The bcp command prompt utility copies Microsoft® SQL Server™ data to or from a data file. It is used most frequently to transfer
large volumes of data into a SQL Server table from another program, usually another database management system (DBMS). The
data is first exported from the source program to a data file, and then imported from the data file into a SQL Server table using
bcp. Alternatively, bcp can be used to transfer data from a SQL Server table to a data file for use in other programs. For example,
the data can be copied from an instance of SQL Server into a data file. From there, another program can import the data.

Note The bcp utility is written using the ODBC bulk copy application programming interface (API). Earlier versions of the bcp
utility were written using the DB-Library bulk copy API.

Data can also be transferred into a SQL Server table from a data file using the BULK INSERT statement. However, the BULK
INSERT statement cannot bulk copy data from an instance of SQL Server to a data file. The BULK INSERT statement allows you to
bulk copy data to an instance of SQL Server using the functionality of the bcp utility with a Transact-SQL statement, rather than
from the command prompt.

It is also possible to write programs to bulk copy SQL Server data to or from a data file using the bulk copy API. The bulk copy API
can be used in ODBC, OLE DB, SQL-DMO, and DB-Library-based applications.

Trigger Execution

All bulk copy operations (the BULK INSERT statement, bcp utility, and the bulk copy API) support a bulk copy hint,
FIRE_TRIGGERS. If FIRE_TRIGGERS is specified on a bulk copy operation that is copying rows into a table, INSERT and INSTEAD OF
triggers defined on the destination table are executed for all rows inserted by the bulk copy operation. By default, bulk copy
operations do not execute triggers.

These considerations apply to bulk copy operations that specify FIRE_TRIGGERS:

Bulk copy operations that would usually be minimally logged are fully logged.

Triggers are fired once for each batch in the bulk copy operation. The inserted table passed to the trigger contains all of the
rows inserted by the batch. Specify FIRE_TRIGGERS only when bulk copying into a table with INSERT and INSTEAD OF
triggers that support multiple row inserts.

No result sets generated by the insert triggers are returned to the client performing the bulk copy operation.

See Also

SQL Server Backward Compatibility Details

Bulk-Copy Functions

Bulk-Copy Rowsets

BulkCopy Object

BULK INSERT.

Performing Bulk Copy Operations

Administering SQL Server (SQL Server 2000)

Using Native, Character, and Unicode Formats
The bcp utility can create or read data files in the following default data formats by specifying a switch at the command prompt.

Data format bcp utility switch BULK INSERT clause
Native -n DATAFILETYPE = 'native'
Character -c DATAFILETYPE = 'char'
Unicode character -w DATAFILETYPE = 'widechar'
Unicode native -N DATAFILETYPE = 'widenative'

By default, the bcp utility operates in interactive mode and queries Microsoft® SQL Server™ and the user for information
required to specify the data format. However, when using the -n, -c, -w, or -N switches, bcp does not query for information about
the SQL Server table on a column-by-column basis. It reads or writes the data using the default format specified.

By default, the BULK INSERT statement operates in character mode (char). Interactive mode does not apply.

Additionally, the –V switch causes the bcp utility to modify native (-n) or character (-c) data to a format compatible with earlier
versions of SQL Server clients. For more information, see Copying Native and Character Format Data from Earlier Versions of SQL
Server.

Native mode bulk copies are best for sql_variant columns. Unlike character or Unicode bulk copies, native mode bulk copies
preserve the meta data for each sql_variant value.

The recommended default data format depends on the type of bulk copy operation.

Bulk copy operation Native Character
Unicode
character

Unicode
native

Bulk copying data between multiple
instances of SQL Server using a data
file (no extended/double-byte
character set (DBCS) characters
involved).

YES 1 -- -- --

Bulk copying data between multiple
instances of SQL Server using a data
file (extended/DBCS characters
involved).

-- -- -- YES

Exporting data to a text file to be used
in another program.

-- YES -- --

Importing data from a text file
generated by another program.

-- YES -- --

Bulk copying data between multiple
instances of SQL Server using a data
file (Unicode data/no extended/DBCS
characters).

-- -- YES --

1 Fastest method for bulk copying data from SQL Server using bcp.

See Also

Specifying Data Formats

Administering SQL Server (SQL Server 2000)

Native Format
Native Format

The -n switch (or native value for the DATAFILETYPE clause of the BULK INSERT statement) uses native (database) data types.
Storing information in native format is useful when information must be copied from one instance of Microsoft® SQL Server™ to
another. Using native format saves time and space, preventing unnecessary conversion of data types to and from character
format. However, a data file in native format cannot be read by any program other than bcp.

For example, the command to bulk copy the publishers table in the pubs database to the Publ.txt data file using native data
format is:

bcp pubs..publishers out publ.txt -n -Sservername -Usa -Ppassword

sql_variant data stored as a SQLVARIANT in a native mode data file maintains all of its characteristics. The meta data recording
the data type of each data value is stored along with the data value and is used to re-create the data value with the same data type
in a destination sql_variant column. If the data type of the destination column is not sql_variant, each data value is converted to
the data type of the destination column, following the normal rules of implicit data conversion. If a data conversion error occurs,
the current batch is rolled back. char and varchar values transferred between sql_variant columns may have code page
conversion issues. For more information, see Copying Data Between Different Collations.

The bcp utility adds an ASCII character to the beginning of each char or varchar field equivalent to the length of the data in those
fields. Noncharacter data in the table is written to the data file in the SQL Server internal binary data format.

Important Using native mode, bcp, by default, always converts characters from the data file to ANSI characters before bulk
copying them into SQL Server and converts characters from SQL Server to OEM characters before copying them to the data file.
Extended character data can be lost during the OEM to ANSI or ANSI to OEM conversions. To prevent loss of extended characters,
use Unicode native format, or specify a code page for the bulk copy operation using -C (or the CODEPAGE clause for the BULK
INSERT statement).

Nonidentical and Improperly Defined Tables

Using native format to bulk copy data into an improperly defined table can cause the table to be loaded incorrectly. The incorrect
loading may appear as an unusual formatting of data in the target table. This also applies to client tools that use the bcp API in
native mode.

Native format is intended for high-speed data transfer between identically defined SQL Server tables. To achieve the optimum
transfer rate, few checks are performed regarding data formatting. If the table is not defined correctly, use character format.

Correct table definition includes the correct number of columns, data type, length, and NULL status.

Loading ASCII Files

Often, users attempt to load an ASCII file in the SQL Server native format. This leads to misinterpretation of the hexadecimal
values in the ASCII file and sometimes the "unexpected end of file" error message. The correct method of loading the ASCII file is
to represent each field in the data file as a character string (character format bcp) and let SQL Server do the data conversion to
internal data types (for example, int, float, or datetime) as rows are inserted into the table.

See Also

BULK INSERT.

ServerBCPDataFileType Property

Unicode Native Format

Administering SQL Server (SQL Server 2000)

Character Format
Character Format

The -c switch (or char value for the DATAFILETYPE clause of the BULK INSERT statement) uses the character (char) data format
for all columns, providing tabs between fields and a newline character at the end of each row as default terminators. Storing
information in character format is useful when the data is used with another program, such as a spreadsheet, or when the data
needs to be copied into an instance of Microsoft® SQL Server™ from another database. Character format tends to be used when
copying data from other programs that have the functionality to export and import data in plain text format.

For example, the command to bulk copy the publishers table in the pubs database to the Publ.txt data file using character format
is:

bcp pubs..publishers out publ.txt -c -Sservername -Usa -Ppassword

The following table shows the contents of the Publ.txt file.

0736 New Moon Books Boston MA USA
0877 Binnet & Hardley Washington DC USA
1389 Algodata Infosystems Berkeley CA USA
1622 Five Lakes Publishing Chicago IL USA
1756 Ramona Publishers Dallas TX USA
9901 GGG&G München Germany
9952 Scootney Books New York NY USA
9999 Lucerne Publishing Paris France

To use field and row terminators other than the default provided with character format, specify the following.

Terminator bcp utility switch BULK INSERT clause
Field -t FIELDTERMINATOR
Row -r ROWTERMINATOR

For example, the command to bulk copy the publishers table in the pubs database to the Publ.txt data file using character format,
with a comma as a field terminator and the newline character (\n) as the row terminator, is:

bcp pubs..publishers out publ.txt -c -t , -r \n -Sservername -Usa -Ppassword

Here are the contents of the Publ.txt file:

0736,New Moon Books,Boston,MA,USA
0877,Binnet & Hardley,Washington,DC,USA
1389,Algodata Infosystems,Berkeley,CA,USA
1622,Five Lakes Publishing,Chicago,IL,USA
1756,Ramona Publishers,Dallas,TX,USA
9901,GGG&G,München,Germany
9952,Scootney Books,New York,NY,USA
9999,Lucerne Publishing,Paris,France

Important Using character mode, bcp, by default, always converts characters from the data file to ANSI characters before bulk
copying them into an instance of SQL Server, and converts characters from SQL Server to OEM characters before copying them to
the data file. Extended character data can be lost during the OEM to ANSI or ANSI to OEM conversions. To prevent loss of
extended characters, use Unicode character format, or specify a code page for the bulk copy operation using -C (or the
CODEPAGE clause for the BULK INSERT statement).

sql_variant data stored in a character mode file is stored without any meta data. Each data value is converted to char following
the rules of implicit data conversion. When it is bulk copied into a sql_variant destination column, the data is imported as char.
When it is bulk copied into a destination column with a data type other than sql_variant, the values are converted from char
following the rules of implicit conversion.

Note The bcp utility exports money values in character format data files without digit grouping symbols such as comma
separators, but with four digits after the decimal point. For example, a money column containing the value 1,234,567.123456 is
bulk copied to a data file as the character string 1234567.1235.

See Also

Copying Data Between Different Collations

ServerBCPDataFileType Property

Administering SQL Server (SQL Server 2000)

Copying Native and Character Format Data from Earlier
Versions of SQL Server
Copying Native and Character Format Data from Earlier Versions of SQL Server

To copy native and character format data from Microsoft® SQL Server™ 7.0 or earlier, use the –V switch. When this switch is
specified, SQL Server 2000 uses data types from earlier versions of SQL Server. Use the –V switch to specify whether the bcp
data file is at the level of SQL Server version 6.0 (-V 60), SQL Server version 6.5 (-V 65), or SQL Server version 7.0 (-V 70).

The –V switch extends the functionality of the –6 switch used in SQL Server 7.0. Using –6 is the same as using –V 60 or –V 65.
Although SQL Server 2000 still supports the –6 switch, the use of –V is recommended.

Note The -V switch does not apply to the BULK INSERT statement.

If you bulk copy data from SQL Server 7.0 or earlier into a data file, consider the following:

bcp does not generate SQL Server 6.0 or SQL Server 6.5 date formats for any datetime or smalldatetime data. Dates are
always written in ODBC format.

Null values in bit columns are written as the value 0 because SQL Server 6.5 and earlier versions do not support nullable
bit data.

In SQL Server 6.5 or earlier, bcp represented null values as a length value of 0, whereas null is now stored as the length
value -1. In SQL Server 7.0 and SQL Server 2000, the value 0 represents a zero-length column.

bigint data copied to a SQL Server 7.0, SQL Server 6.5, or SQL Server 6.0 native mode or Unicode native mode data file is
stored as decimal(19,0). bigint data in a character mode or Unicode character mode data file is stored as a character or
Unicode string of [-]digits, (for example, –25688904432).

In a table with char or varchar fields, the bcp utility adds an ASCII character to the beginning of each data file field
equivalent to the length of the data. In a table with numeric data, the information is written to the data file in the SQL
Server internal binary data format.

Copying Date Values

In SQL Server 7.0 and SQL Server 2000, bcp uses the ODBC bulk copy API. Therefore, bcp uses the ODBC date format (yyyy-mm-
dd hh:mm:ss[.f...]) to import date values. However, in SQL Server 6.5 or earlier, bcp uses the DB-Library bulk copy API and the DB-
Library date format. Use the –V 65 switch to copy date formats from SQL Server 6.5 or earlier to SQL Server 7.0 and SQL Server
2000. If you specify –V 65, the bcp utility first attempts to convert the date value in the data file using ODBC date format. If the
conversion fails, bcp attempts to convert the date value using DB-Library formats.

Even if –V 65 is specified, however, the bcp utility always exports character format data files using the ODBC default format for
datetime and smalldatetime values. For example, a datetime column containing the date 12 Aug 1998 is bulk copied to a data
file as the character string 1998-08-12 00:00:00.000.

Important When importing data into a smalldatetime field using bcp, be sure the value for seconds is 00.000; otherwise the
bcp operation will fail. The smalldatetime data type only holds values to the nearest minute. BULK INSERT will not fail in this
instance but will truncate the seconds value.

Using the –V 65 switch can affect performance because of the overhead required to support multiple date conversions.

See Also

Using bcp and BULK INSERT

SQL Server Backward Compatibility Details

CAST and CONVERT

Use6xCompatible Property

Administering SQL Server (SQL Server 2000)

Unicode Character Format
Unicode Character Format

The -w switch (or widechar value for the DATAFILETYPE clause of the BULK INSERT statement) uses the Unicode character data
format for all columns, providing, as default terminators, tabs between fields and a newline character at the end of each row. This
allows data to be copied both from a server using a code page different from the code page used by the client running bcp, and
to another server with the same (or a different) code page as the original server:

Without loss of any character data, if the source and destination are Unicode data types.

With minimal loss of extended characters in the source data that cannot be represented at the destination if the source and
destination are not Unicode data types.

For example, the command to bulk copy the publishers table in the pubs database to the Publ.txt file using Unicode character
format is:
bcp pubs..publishers out publ.txt -w -Sservername -Usa -Ppassword

Unicode character format data files follow the conventions for Unicode files: the first two bytes of the file are either of the
hexadecimal numbers 0xFEFF or 0xFFFE. These bytes serve as byte-order marks, specifying whether the high-order byte is stored
first or last in the file.

To use field and row terminators other than the default provided with Unicode character format, specify the following.

Terminator bcp utility switch BULK INSERT clause
Field -t FIELDTERMINATOR
Row -r ROWTERMINATOR

For example, the command to bulk copy the publishers table to the Publ.txt data file using Unicode character format, with a
comma as a field terminator and the newline character (\n) as the row terminator, is:

bcp pubs..publishers out publ.txt -w -t , -r \n -Sservername -Usa -Ppassword

Two character positions are used for each character in the Publ.txt data file, with each field separated by a comma, and each row
separated by a newline character.

sql_variant data stored in a Unicode character mode data file operates the same way it does in a character mode data file, except
that the data is stored as nchar instead of char data.

See Also

ServerBCPDataFileType Property

Administering SQL Server (SQL Server 2000)

Unicode Native Format
Unicode Native Format

The -N switch (or widenative value for the DATAFILETYPE clause of the BULK INSERT statement) uses native (database) data
types for all noncharacter data, and Unicode character data format for all character (char, nchar, varchar, nvarchar, text, and
ntext) data.

Storing information in Unicode native format is useful when information must be copied from one Microsoft® SQL Server™
installation to another. Using native format for noncharacter data saves time, preventing unnecessary conversion of data types to
and from character format. Using Unicode character format for all character data prevents loss of any extended characters when
bulk loading data between servers using different code pages. However, a data file in Unicode native format can be read only by
the bcp utility and the BULK INSERT statement.

For example, the command to bulk copy the sales table in the pubs database to the Sales.dat data file using Unicode native data
format is:

bcp pubs..sales out Sales.dat -N -Sservername -Usa -Ppassword

sql_variant data stored as a SQLVARIANT in a Unicode native mode data file operates the same as it does in a native mode data
file, except that char and varchar values are converted to nchar and nvarchar. The original meta data is preserved, and the
values are converted back to their original char and varchar data type when bulk copied into the destination column.

See Also

ServerBCPDataFileType Property

Administering SQL Server (SQL Server 2000)

Specifying Data Formats
If data is being copied between an instance of Microsoft® SQL Server™ and other programs, such as another database program,
the default data type formats (native, character, or Unicode) may not be compatible with the data structures expected by the other
programs. Therefore, the bcp utility allows more detailed information regarding the structure of the data file to be specified.

If the -n, -c, -w, or -N switches are not specified, the bcp utility prompts for further information interactively on each column of
data being copied:

File storage type

Prefix length

Field length

Field terminator

Note Interactive mode is not available when using the BULK INSERT statement.

The bcp utility provides default values at each of these prompts based on the SQL Server data type of the source or destination
column. Accepting the default values supplied by bcp at these prompts produces the same result as native format (-n), and
provides a way to bulk copy data out of other programs for later reloading into SQL Server.

A format file can be created to store the responses of the prompts for each field in the data file, allowing the same responses to be
reused without having to enter them again. The format file can be used to provide all the format information required to bulk
copy data to and from an instance of SQL Server. A format file provides a flexible system for writing data files that requires little
or no editing to conform to other data formats, or for reading data files from other software.

For example, the command to bulk copy the publishers table interactively to the Publ.txt file is:

bcp pubs..publishers out publ.txt -Sservername -Usa -Ppassword

A series of prompts appears for each column of the publishers table, with the bcp-supplied default displayed in brackets. This
example is for the pub_id column in the publishers table only.

Enter the file storage type of field pub_id [char]:
Enter prefix length of field pub_id [0]:
Enter length of field pub_id [4]:
Enter field terminator [none]:

Pressing ENTER accepts the supplied default. To specify a value other than the default, enter the new value at the command
prompt.

See Also

Using Format Files

Administering SQL Server (SQL Server 2000)

File Storage Type
File Storage Type

The file storage type describes how data is stored in the data file. Data can be copied to a data file as its database table type
(native format), as a character string in ASCII format (character format), or as any data type where implicit conversion is
supported (for example, copying a smallint as an int). User-defined data types are copied as their base types.

To bulk copy data from an instance of Microsoft® SQL Server™ to a data file in the most compact storage possible (native data
format), accept the default file storage types provided by bcp.

To bulk copy data from an instance of SQL Server to a data file as ASCII text, specify char as the file storage type for all columns in
the table.

To bulk copy data to an instance of SQL Server from a data file, specify the file storage type as char for ASCII-only files, and the
following appropriate file storage type for data stored in native data type format.

File storage type Enter at command prompt
char c[har]
varchar c[har]
nchar w
nvarchar w
text T[ext]
ntext W
binary x
varbinary x
image I[mage]
datetime d[ate]
smalldatetime D
decimal n
numeric n
float f[loat]
real r
Int i[nt]
bigint B[igint]
smallint s[mallint]
tinyint t[inyint]
money m[oney]
smallmoney M
Bit b[it]
uniqueidentifier u
sql_variant V[ariant]
timestamp x

Entering a file storage type that represents an invalid implicit conversion causes bcp to fail. For example, specifying smallint for
int data causes overflow errors, but specifying int for smallint data is valid. Specifying char as the file storage type when bulk
copying any data type from an instance of SQL Server to a data file is always valid.

When noncharacter data types (for example, float, money, datetime, or int) are stored as their database types, the data is
written to the data file in the SQL Server internal binary data format.

A format file can also be generated to save the responses of the file storage type for each field. This format file can be used to
provide the default information used to bulk copy the data in the data file back into an instance of SQL Server, or to bulk copy
data out from the table another time, without needing to respecify the format.

Each native file storage type is recorded in the format file as a corresponding host file data type.

File storage type Host file data type
char SQLCHAR

varchar SQLCHAR
nchar SQLNCHAR
nvarchar SQLNCHAR
text SQLCHAR
ntext SQLNCHAR
binary SQLBINARY
varbinary SQLBINARY
image SQLBINARY
datetime SQLDATETIME
smalldatetime SQLDATETIM4
decimal SQLDECIMAL
numeric SQLNUMERIC
float SQLFLT8
real SQLFLT4
int SQLINT
bigint SQLBIGINT
smallint SQLSMALLINT
tinyint SQLTINYINT
money SQLMONEY
smallmoney SQLMONEY4
bit SQLBIT
uniqueidentifier SQLUNIQUEID
sql_variant SQLVARIANT
timestamp SQLBINARY

Because data files stored as ASCII text use char as the file storage type, only SQLCHAR appears in the format file in those
instances.

See Also

Using Format Files

Administering SQL Server (SQL Server 2000)

Prefix Length
Prefix Length

To provide the most compact file storage when bulk copying data in native format to a data file, bcp precedes each field with one
or more characters that indicates the length of the field. These characters are called length prefix characters. The number of length
prefix characters required is called the prefix length.

The number of length prefix characters required to store the length of the data field depends on the file storage type, the
nullability of a column, and whether the data is being stored in the data file in its native (database) data type or as ASCII
characters (character format). A text or image data type requires four prefix characters to store the field length, whereas a
varchar data type requires two characters.

Note These length prefix characters are stored in the data file in Microsoft® SQL Server™ internal binary data format.

Null values are represented as an empty field when copied from an instance of SQL Server to a data file. To indicate that the field
is empty (represents NULL), the field prefix contains the value -1. Any SQL Server column that allows null values requires a prefix
length of 1 or greater, depending on the file storage type.

Use these prefix lengths when bulk copying data from an instance of SQL Server to a data file, storing the data using either native
data types or as ASCII characters (text file).

SQL Server Native format Character format
data type NOT NULL NULL NOT NULL NULL

char 2 2 2 2
varchar 2 2 2 2
nchar 2 2 2 2
nvarchar 2 2 2 2
text 4 4 4 4
ntext 4 4 1 1
binary 1 1 2 2
varbinary 1 1 2 2
image 4 4 4 4
datetime 0 1 1 1
smalldatetime 0 1 1 1
decimal 1 1 1 1
numeric 1 1 1 1
float 0 1 1 1
real 0 1 1 1
int 0 1 1 1
bigint 0 1 1 1
smallint 0 1 1 1
tinyint 0 1 1 1
money 0 1 1 1
smallmoney 0 1 1 1
bit 0 1 0 1
uniqueidentifier 1 1 1 1
timestamp 1 1 2 2

When storing data as nchar rather than char, the prefix length for all data types is the same as the native data type value, except
char, varchar, text, ntext, and image, which all have a prefix length of 1.

When bulk copying data to an instance of SQL Server, the prefix length is the value specified when the data file was created
originally. If the data file was not created with bcp, it is unlikely that length prefix characters exist. In this instance, specify 0 for the
prefix length.

Note The default values provided at the prompts indicate the most efficient prefix lengths.

Administering SQL Server (SQL Server 2000)

Field Length
Field Length

When bulk copying char, nchar, or binary data with a prefix length of 0 from Microsoft® SQL Server™, bcp also prompts for a
field length. The field length indicates the maximum number of characters needed to represent data in character format. A column
of type tinyint can have values from 0 through 255; the maximum number of characters needed to represent any number in that
range is three (representing values 100 through 255). When bcp converts noncharacter data to character, it suggests a default
field length large enough to store the data.

If the file storage type is noncharacter, data is stored in the SQL Server native data representation (native format) and the bcp
utility does not prompt for a field length.

These are the default field lengths for data to be stored as char file storage type (nullable data is the same length as nonnull data).

Data type Default length (characters)
Char Length defined for the column
Varchar Length defined for the column
Nchar Twice the length defined for the column
Nvarchar Twice the length defined for the column
Text 0
Ntext 0
Bit 1
Binary Twice the length defined for the column + 1
Varbinary Twice the length defined for the column + 1
Image 0
Datetime 24
Smalldatetime 24
Float 30
Real 30
Int 12
Bigint 19
Smallint 7
Tinyint 5
Money 30
Smallmoney 30
Decimal 41*
Numeric 41*
Uniqueidentifier 37
Timestamp 17

*For more information about the decimal and numeric data types, see decimal and numeric.

These are the default field lengths for data to be stored as native file storage type (nullable data is the same length as nonnull
data, and character data is always stored in character format).

Data type Default length (characters)
bit 1
binary Length defined for the column
varbinary Length defined for the column
image 0
datetime 8
smalldatetime 4
float 8
real 4
int 4
bigint 8

smallint 2
tinyint 1
money 8
smallmoney 4
decimal *
numeric *
uniqueidentifier 16
timestamp 8

*For more information about the decimal and numeric data types, see decimal and numeric.

Accepting the bcp default values for the field length is recommended.

Note Using default data type sizes (field length) can lead to an "unexpected end of file" error message. This generally occurs with
the money and datetime data types when only part of the field occurs in the data file (for example, a datetime value of
mm/dd/yy with no time component) rather than an entire string, as expected by SQL Server. When using the default size option,
SQL Server expects to read 24 characters (the length of the datetime data type when stored in char format). To avoid this
problem, bulk copy data using field terminators, or fixed-length data fields.

Specifying a field length too short for numeric data when bulk copying data causes bcp to print an overflow message and not
copy the data. When datetime data is copied to a data file as a character string of less than 26 bytes, the data is truncated without
an error message. When creating an ASCII data file, use the default field length to ensure that data is not truncated and that
numeric overflow errors causing bcp to fail do not occur. To change the default field length, supply another value.

Note To create a data file for later reloading into SQL Server and keep the storage space to a minimum, use a length prefix
character with the default file storage type and the default field length.

The amount of storage space allocated in the data file for noncharacter data stored as char file storage type also depends on
whether a prefix length or terminators are specified:

If specifying a prefix length of 1, 2, or 4, the field length is not used. The data file storage space used is the length of the data,
the length of the prefix, plus any terminators.

If specifying a prefix length of 0 and no terminator, bcp allocates the maximum amount of space shown in the field length
prompt because this is the maximum space that may be needed for the data type in question. The field is treated as if it were
of fixed length so that it is possible to determine where one field ends and the next begins.

If specifying a prefix length of 0 and a terminator, the field length specified is ignored. The data file storage space used is the
length of the data, plus any terminators.

SQL Server char data is always stored in the data file as the full length of the defined column. For example, a column defined as
char(10) always occupies 10 characters in the data file regardless of the length of the data stored in the column; spaces are
appended to the data as padding. For more information, see SET ANSI_PADDING.

The interaction of prefix lengths (P), terminators (T), and field length on data determines the storage space used in the data file. In
this example, the field length is 8 for each column, and the 6-character value "string" is stored each time. Dashes (-) indicate
appended spaces and ellipses (...) indicate that the pattern repeats for each field.

This is the pattern for SQL Server char data.

 Prefix length = 0 Prefix length = 1, 2, or 4
No terminator string--string--... Pstring--Pstring--...
Terminator string--Tstring--T... Pstring--TPstring--T...

This is the pattern for other data types converted to char storage.

 Prefix length = 0 Prefix length = 1, 2, or 4
No terminator string--string--... PstringPstring...
Terminator stringTstringT... PstringTPstringT...

Administering SQL Server (SQL Server 2000)

Field Terminator
Field Terminator

It is possible to use optional terminating characters to mark the end of a field or row, separating one field or row in the data file
from the next. Terminating characters indicate to a program reading the data file where one field or row ends and another begins.
The default provided by the bcp utility is to use no terminating characters between fields and rows in the data file.

Field terminators are needed when the data file does not contain:

Length prefixes to indicate the length of each field (perhaps because the program reading the data file does not understand
length prefixes).

Fixed-length data fields (perhaps because storage space needs to be minimized).

The bcp utility allows many characters to be used as field or row terminators.

Terminator Indicated by
Tab \t
Newline character \n
Carriage return \r
Backslash \\
Null terminator (no visible terminator) \0
Any printable character (control characters are not
printable, except null, tab, newline, and carriage return)

(*, A, t, l, and so on)

String of up to 10 printable characters, including some or
all of the terminators listed earlier

(**\t**, end, !!!!!!!!!!, \t--
\n, and so on)

Note Only the t, n, r, \, and 0 characters work with the backslash escape character to produce a control character.

It is possible to change the default field and row terminators using the -t and -r switches of bcp. When using these switches, the
bracketed default listed in the interactive bcp prompt changes for all fields and rows to the value specified at the command
prompt. Use -t to change the default field terminator and -r to change the default row terminator.

The command to change the default field terminator to a comma (,) and the default row terminator to the newline character (\n):

bcp pubs..publishers out publ.txt -t , -r \n -Sservername -Usa -Ppassword

Important Terminators must be chosen to ensure that their pattern does not appear in any of the data. For example, when using
tab terminators with a field that contains tabs as part of the data, bcp does not know which tab represents the end of the field.
The bcp utility always looks for the first possible character(s) that matches the terminator it expects. Using a character sequence
with characters that do not occur in the data avoids this conflict.

Native format data can also conflict with terminators because this file is in the SQL Server internal binary data format. When
using native format, use length prefixes rather than field terminators.

Any data column that contains null values is considered variable length for bulk copy purposes. Therefore, a length prefix or field
terminator needs to be used to specify the length of each field.

Note The no terminator value is different from the null terminator (\0) value. The no terminator value places no row terminator
character(s). The null terminator value puts a null character after the column. A null character is invisible but real.

Because bcp does not prompt for a row terminator, the field terminator for the last column in a row serves that purpose. Given a
row with 10 columns, the field terminator for the tenth column is also the row terminator. Therefore, the terminator for the last
field can be (but is not required to be) different from the field terminator used for other fields in the same row. For tabular output,
terminate the last field with the newline character (\n) and all other fields with the tab character (\t).

A common row terminator used when exporting SQL Server data to ASCII data files is \r\n (carriage return, newline). Using both
characters as the row terminator ensures that each row of data appears on its own line in the data file. However, it is only
necessary to enter the characters \r\n as the terminator when manually editing the terminator column of a bcp format file. When
you use bcp interactively and specify \n (newline) as the row terminator, bcp prefixes the \r (carriage return) character
automatically.

See Also

ColumnDelimiter Property

RowDelimiter Property

Administering SQL Server (SQL Server 2000)

Using Format Files
When bulk copying data using interactive mode, the bcp utility prompts you to store information regarding the storage type,
prefix length, field length, and field and row terminators. The file used to store the format information for each field in the data file
is called the format file:

Do you want to save this format information in a file? [Y/n] y
Host filename: [bcp.fmt]

Although the default name for the format file is Bcp.fmt, a different file name can be specified.

This format file provides the default information used either to bulk copy the data in the data file back into an instance of
Microsoft® SQL Server™ or to bulk copy data out from the table another time, without needing to respecify the format. When
bulk copying data into or out of an instance of SQL Server with an existing format file, bcp does not prompt for the file storage
type, prefix length, field length, or field terminator because it uses the values already recorded.

To use a previously created format file when importing data into an instance of SQL Server, use the -f switch with the bcp utility
or the FORMATFILE clause with the BULK INSERT statement. For example, the command to bulk copy the contents of
New_auth.dat data file into the authors2 table in the pubs database using the previously created format file (Authors.fmt) is:

bcp pubs..authors2 in c:\new_auth.dat -fc:\authors.fmt -Sservername -Usa -Ppassword

The BULK INSERT statement can use format files saved by the bcp utility. For example:

BULK INSERT pubs..authors2 FROM 'c:\new_auth.dat'
WITH (FORMATFILE = 'c:\authors.fmt')

The format file is a tab-delimited text file with a specific structure.

The following table describes the file format structures.

Field Description
Version Version number of bcp.
Number of fields Number of fields in the data file. This must be the same for

all rows.
Host file field order Position of each field within the data file. The first field in

the row is 1, and so on.
Host file data type Data type stored in the particular field of the data file. With

ASCII data files, use SQLCHAR; for native format data files,
use default data types. For more information, see File
Storage Type.

Prefix length Number of length prefix characters for the field. Legal
prefix lengths are 0, 1, 2, and 4. To avoid specifying the
length prefix, set this to 0. A length prefix must be specified
if the field contains null data values. For more information,
see Prefix Length.

Host file data length Maximum length, in bytes, of the data type stored in the
particular field of the data file. For more information, see
Field Length.

Terminator Delimiter to separate the fields in a data file. Common
terminators are comma (,), tab (\t), and end of line (\r\n).
For more information, see Field Terminator.

Server column order Order that columns appear in the SQL Server table. For
example, if the fourth field in the data file maps to the sixth
column in a SQL Server table, then for the fourth field the
server column order is 6.
To omit a column in the table from receiving any data in
the data file, set the server column order value to 0.

Server column name Name of the column taken from the SQL Server table. It is
not necessary to use the actual name of the field. The only
condition is that the field in the format file not be blank.

Collation The collation used to store character and Unicode data in
the bulk copy data file.

Note It is possible to skip importing a table column if the field does not exist in the data file by specifying 0 prefix length, 0
length, 0 server column order, and no terminator. This effectively states that the data field does not exist in the data file, and that
the server column should not have data loaded into it.

Selectively Copying Data

A format file provides a way to bulk copy data selectively from a data file to an instance of SQL Server. This allows the transfer of
data to a table when there is a mismatch between fields in the data file and columns in the table. This approach can be used when
the fields in the data file are:

Fewer than the columns in the table.

More than the columns in the table.

In a different order from the columns in the table.

By using a format file, it is possible to bulk copy data into an instance of SQL Server without having to add or delete unnecessary
data, or reorder existing data, in the data file.

The following three topics contain examples of selectively copying data. For the following examples, first make a copy of the
authors table, named authors2, in the pubs database. To create a copy of the authors table, execute:

USE pubs
GO
SELECT * INTO authors2 FROM authors
GO

See Also

FormatFilePath Property

Administering SQL Server (SQL Server 2000)

Using a Data File with Fewer Fields
Using a Data File with Fewer Fields

In some cases, a data file may have fewer fields than there are columns in the table. For example, the New_auth.dat data file
(ASCII, or character format) does not contain matching fields for the address and zip columns in the authors2 table.

The New_auth.dat file:

777-77-7777,Smith,Chris,303 555-1213,Denver,CO,1
888-88-8888,Doe,John,206 555-1214,Seattle,WA,0
999-99-9999,Door,Jane,406 555-1234,Bozeman,MT,1

To bulk copy data selectively to the correct columns in authors2, create a default format file (Authors.fmt) with the following
command:

bcp pubs..authors2 out c:\authors.txt -Sservername -Usa -Ppassword

The bcp utility prompts for the file storage type, prefix length, field length, and field terminator of each column of authors2. The
field terminator for every column should be a comma (,), except for the contract column, which should use the row terminator \n
(newline) because it is the last column in the row. Also, the contract column has a file storage type of char, because the data file
is an ASCII file. The address and zip columns should not have field terminators and should have their field length set to 0. When
prompted for the format file name, specify Authors.fmt.

The Authors.fmt file:

8.0
9
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 2 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 3 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 0 "" 5 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 0 "" 8 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "\r\n" 9 contract SQL_Latin1_General_Cp437_BIN

The format file contains all the information necessary to bulk copy data from the data file to the Microsoft® SQL Server™ table. A
prefix length of 0, field length of 0, and no field terminator for address and zip means that these columns do not exist in the data
file. However, the format file must be modified further with a text editor to ensure that no data will be loaded into address and
zip. The server column numbers (sixth field in the format file) for these columns should be 0:

8.0
9
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 2 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 3 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 0 "" 0 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 0 "" 0 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "\r\n" 9 contract SQL_Latin1_General_Cp437_BIN

The data in the data file can now be bulk copied into authors2 using the command:

bcp pubs..authors2 in c:\new_auth.dat -fc:\authors.fmt -Sservername -Usa -Ppassword

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\new_auth.dat'
WITH (FORMATFILE = 'c:\authors.fmt')

Note Because address and zip are not present in the data file, those columns will contain NULL in the SQL Server table if no
DEFAULT values have been defined. Therefore, authors2 must allow null values in those columns.

Administering SQL Server (SQL Server 2000)

Using a Data File with More Fields
Using a Data File with More Fields

In some cases, a data file may have more fields than there are columns in the table. For example, the New_auth.dat data file (ASCII,
or character format) contains two fields (age and salutation) not contained on authors2. These fields will be omitted, or skipped,
during the bulk copy procedure.

The New_auth.dat file:

777-77-7777,Smith,Chris,303 555-1213,27 College Ave,Denver,CO,80220,1,28,Ms.
888-88-8888,Doe,John,206 555-1214,123 Maple Street,Seattle,WA,95099,0,35,Mr.
999-99-9999,Door,Jane,406 555-1234,45 East Main,Bozeman,MT,59715,1,33,Mrs.

To bulk copy data selectively to the correct columns in authors2 only, create a default format file (Authors.fmt) with the
command:

bcp pubs..authors2 out c:\authors.txt -Sservername -Usa -Ppassword

The bcp utility prompts for the file storage type, prefix length, field length, and field terminator of each column of authors2. The
field terminator for every column should be a comma (,). Also, the contract column has a file storage type of char because the
data file is an ASCII file. When prompted for the format file name, specify Authors.fmt.

The Authors.fmt file:

8.0
9
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 2 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 3 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 40 "," 5 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 5 "," 8 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "\r\n" 9 contract SQL_Latin1_General_Cp437_BIN

The format file contains all the information necessary to bulk copy data from the data file to the Microsoft® SQL Server™ table.
However, the format file needs to be modified further with a text editor to reflect the addition of two new columns: age and
salutation. The second line of the format file specifies the number of columns and should now be changed to 11 because there
are 11 fields in the data file. Two new rows need to be added to the end of the format file to provide format information for the
additional fields. The row terminator needs to be moved from the contract column to the salutation column and the server
column numbers (sixth field in the format file) for the age and salutation columns should be 0:

8.0
11
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 2 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 3 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 40 "," 5 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 5 "," 8 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "," 9 contract SQL_Latin1_General_Cp437_BIN
10 SQLCHAR 0 0 "," 0 age SQL_Latin1_General_Cp437_BIN
11 SQLCHAR 0 0 "\r\n" 0 salutation SQL_Latin1_General_Cp437_BIN

The data in the data file can now be bulk copied into authors2 using the command:

bcp pubs..authors2 in c:\new_auth.dat -fc:\authors.fmt -Sservername -Usa -Ppassword

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\new_auth.dat'
WITH (FORMATFILE = 'c:\authors.fmt')

Administering SQL Server (SQL Server 2000)

Using a Data File with Fields in a Different Order
Using a Data File with Fields in a Different Order

In some cases, a data file may have fields in an order different from the corresponding columns in the table. For example, the
New_auth.dat data file (ASCII, or character format) contains the same number of fields as the authors2 table, but the au_lname
and au_fname fields are reversed. These fields will be reordered during the bulk copy procedure.

The New_auth.dat file:

777-77-7777,Chris,Smith,303 555-1213,27 College Ave,Denver,CO,80220,1
888-88-8888,John,Doe,206 555-1214,123 Maple Street,Seattle,WA,95099,0
999-99-9999,Jane,Door,406 555-1234,45 East Main,Bozeman,MT,59715,1

To bulk copy data selectively to the correct columns in authors2, create a default format file (Authors.fmt) with the command:

bcp pubs..authors2 out c:\authors.txt -Sservername -Usa -Ppassword

The bcp utility prompts for the file storage type, prefix length, field length, and field terminator of each column of authors2. The
field terminator for every column should be a comma (,), except for the contract column, which should use the row terminator \n
(newline) because it is the last column in the row. Also, the contract column has a file storage type of char because the data file is
an ASCII file. When prompted for the format file name, specify Authors.fmt.

The Authors.fmt file:

8.0
9
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 2 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 3 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 40 "," 5 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 5 "," 8 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "\r\n" 9 contract SQL_Latin1_General_Cp437_BIN

The format file contains all the information necessary to bulk copy data from the data file to the Microsoft® SQL Server™ table.
However, the format file needs to be further modified with a text editor to change the server column order (sixth field in the
format file) of the au_lname and au_fname fields.

8.0
9
1 SQLCHAR 0 11 "," 1 au_id SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "," 3 au_lname SQL_Latin1_General_Cp437_BIN
3 SQLCHAR 0 20 "," 2 au_fname SQL_Latin1_General_Cp437_BIN
4 SQLCHAR 0 12 "," 4 phone SQL_Latin1_General_Cp437_BIN
5 SQLCHAR 0 40 "," 5 address SQL_Latin1_General_Cp437_BIN
6 SQLCHAR 0 20 "," 6 city SQL_Latin1_General_Cp437_BIN
7 SQLCHAR 0 2 "," 7 state SQL_Latin1_General_Cp437_BIN
8 SQLCHAR 0 5 "," 8 zip SQL_Latin1_General_Cp437_BIN
9 SQLCHAR 0 1 "\r\n" 9 contract SQL_Latin1_General_Cp437_BIN

The data in the data file can now be bulk copied into authors2 using the command:

bcp pubs..authors2 in c:\new_auth.dat -fc:\authors.fmt -Sservername -Usa -Ppassword

Alternatively, you can use the BULK INSERT statement from a query tool such as SQL Query Analyzer to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\new_auth.dat'
WITH (FORMATFILE = 'c:\authors.fmt')

Administering SQL Server (SQL Server 2000)

Copying Data
There are six options for copying data using bcp or BULK INSERT.

Topic Description
Copying Data Between Servers Describes which data format to use when

copying data between instances of
Microsoft® SQL Server™.

Copying Data from a Data File to SQL
Server

Describes how to copy data from a data
file to an instance of SQL Server, including
how to handle identity values and image
data.

Copying Data From a Query to a Data File Describes how to copy the result set from
a Transact SQL statement to a data file.

Copying Data To or From a Temporary
Table

Describes how to copy data to or from a
temporary table.

Copying Data To or From a View Describes how to copy data to or from a
view.

Copying Data Between Different
Collations

Describes how to copy data between
different collations, including the use of
column-level collations.

Administering SQL Server (SQL Server 2000)

Copying Data Between Servers
Copying Data Between Servers

To bulk copy data from one Microsoft® SQL Server™ database to another, data from the source database must first be bulk
copied into a file. The file is then bulk copied into the destination database.

After bulk copying data into a table, if the recovery model is simple, then a full or differential backup is recommended. If the
recovery model is bulk-logged or full, a log backup is sufficient.

Note Native, character, and Unicode format bcp can be used to bulk copy data between different instances of SQL Server on
different processor architectures. However, the same format must be used when importing as exporting.

Storing information in Unicode native format is useful when information must be copied from one instance of SQL Server to
another. Using native format for noncharacter data saves time, preventing unnecessary conversion of data types to and from
character format. Using Unicode character format for all character data prevents loss of any extended characters when bulk
loading data between servers using different code pages (character loss is possible if extended characters are copied into non-
Unicode columns and the extended character cannot be represented). However, a data file in Unicode native format cannot be
read by any program other than bcp or the BULK INSERT statement.

It is also possible to copy data from one SQL Server database to another using:

The DTS Import/Export Wizard.

The Transact-SQL statements BACKUP and RESTORE (to copy entire databases).

Distributed queries as part of an INSERT statement.

The SELECT INTO statement.

See Also

BACKUP

Distributed Queries

DTS Import/Export Wizard

INSERT

Optimizing Bulk Copy Performance

RESTORE

SELECT

Unicode Character Format

Administering SQL Server (SQL Server 2000)

Copying Data From a Data File to SQL Server
Copying Data From a Data File to SQL Server

To bulk copy a data file to an instance of Microsoft® SQL Server™, follow these guidelines:

When bulk copying data to a table with no indexes, set the recovery model to bulk-logged if you usually use full recovery.

This is recommended to help prevent the transaction log from running out of space because row inserts are not logged. The
system administrator or database owner can set this option. For more information, see Logged and Minimally Logged Bulk
Copy Operations.

If you are loading a large amount of data relative to the amount of data already in the table, it can be quicker to drop the
indexes on the table before performing the bulk copy operation.

Conversely, if you are loading a small amount of data relative to the amount of data already in the table, dropping the
indexes may not be necessary because the time taken to rebuild the indexes can be longer than performing the bulk copy
operation. For more information, see Optimizing Bulk Copy Performance.

Be sure that the user account used to log in to SQL Server using bcp (or the query tool when using the BULK INSERT
statement) has SELECT and INSERT permissions on the table (assigned by the table owner).

Note Only members of the sysadmin fixed server role can execute the BULK INSERT statement.

If the recovery model is simple, then a full or differential backup is recommended; for bulk-logged recovery and full
recovery, a log backup is sufficient. For more information, see Backup and Restore Operations.

To bulk copy data successfully into a table from a data file with the bcp utility or BULK INSERT statement, the terminators in
the data file must be known and specified.

Note A hidden character in an ASCII data file can cause problems when trying to bulk copy data into an instance of SQL Server,
resulting in an "unexpected null found" error message. Many utilities and text editors display hidden characters which can usually
be found at the bottom of the data file. Finding and removing these characters should resolve the problem.

The Newpubs.dat file:

1111,Stone Age Books,Boston,MA,USA
2222 ,Harley & Davidson,Washington,DC,USA
3333 ,Infodata Algosystems,Berkeley,CA,USA

Because the data file is all character data, the following options and switches need to be specified.

Bulk copy option bcp utility switch BULK INSERT clause
Character mode format -c DATAFILETYPE = 'char'
Field terminator -t FIELDTERMINATOR
Row terminator -r ROWTERMINATOR

In the Newpubs.dat file, each field in a row ends with a comma (,); each row ends with a newline character (\n).

The publishers2 table in the following example can be created by executing:

USE pubs
GO
SELECT * INTO publishers2 FROM publishers
GO

The command to bulk copy data from Newpubs.dat into publishers2 is:

bcp pubs..publishers2 in newpubs.dat -c -t , -r \n -Sservername -Usa -Ppassword

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..publishers2 FROM 'c:\newpubs.dat'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 ROWTERMINATOR = '\n'
)

Data from the Newpubs.dat file has been now appended to publishers2:

Pub_id pub_name city state Country
------ ---------------- ---------- ----- -----
0736 New Moon Books Boston MA USA
0877 Binnet & Hardley Washington DC USA
1111 Stone Age Books Boston MA USA
1389 Algodata Infosystems Berkeley CA USA
1622 Five Lakes Publishing Chicago IL USA
1756 Ramona Publishers Dallas TX USA
2222 Harley & Davidson Washington DC USA
3333 Infodata Algosystems Berkeley CA USA
9901 GGG&G München Germany
9952 Scootney Books New York NY USA
9999 Lucerne Publishing Paris France

Copying Data Containing Identity Values

The bcp utility and BULK INSERT statement allow data files containing identity values to be bulk copied into an instance of SQL
Server. To prevent SQL Server from supplying identity values, the bcp utility accepts the -E switch, and the BULK INSERT
statement accepts the KEEPIDENTITY clause. While the rows in the data file are bulk copied into the table, SQL Server does not
assign unique identity values automatically; the identity values are taken from the data file.

If these options are not supplied, the values for the identifier column in the data file being imported are ignored and SQL Server
assigns unique values automatically based on the seed and increment values specified during table creation. If the data file does
not contain values for the identifier column in the table, use a format file to specify that the identifier column in the table should
be skipped when importing data. SQL Server assigns unique values automatically for the column.

Importing Image Data

It is possible to bulk copy a data file as image data into an instance of SQL Server. The command to load the data file Test.doc
into the bitmap table in the pubs database using the bcp utility is:

bcp pubs..bitmap in test.doc -Usa -Ppassword -Sservername

bcp prompts:

Enter the file storage type of field c1 [image]:
Enter the prefix length of field c1 [4]: 0
Enter length of field c1 [4096]: 5578
Enter the field terminator [none]:

In this example, the data file will be loaded into column c1, and 5578 is the length of the data file.

Using the BULK INSERT statement, a format file needs to be created first and then used to provide the format information. To
create the format file, use the bcp utility:

bcp pubs..bitmap out c:\bitmap.txt -Sservername -Usa -Ppassword

The bcp utility prompts for the file storage type, prefix length, field length, and field terminator of each column of bitmap. The
values for the c1 column are listed in this table.

Prompt Value
File storage type Image
Prefix length 0
Field length 5578
Field terminator None

The Bcp.fmt file:

8.0
1
1 SQLIMAGE 0 5578 "" 1 c1

Using the BULK INSERT statement to bulk copy the Test.doc data file into the bitmap table in the pubs database, execute from a
query tool, such as SQL Query Analyzer:

BULK INSERT pubs..bitmap FROM 'c:\test.doc'
WITH (
 FORMATFILE = 'c:\Bcp.fmt'
)

Note You cannot bulk copy data into text, ntext, and image columns that have DEFAULT values.

See Also

bcp Utility

BULK INSERT.

ImportData Method

IncludeIdentityValues Property

SuspendIndexing Property

UseBulkCopyOption Property

Using a Data File with Fewer Fields

Administering SQL Server (SQL Server 2000)

Copying Data From a Query to a Data File
Copying Data From a Query to a Data File

The bcp utility allows you to copy the result set from a Transact-SQL statement to a data file. The Transact-SQL statement can be
any valid statement that returns a results set, such as a distributed query or a SELECT statement joining several tables. For
example, to copy the names of all the authors, ordered by surname, from the authors table in the pubs database to the
Authors.txt data file, execute at the command prompt:

bcp "SELECT au_fname, au_lname FROM pubs..authors ORDER BY au_lname" queryout Authors.txt -c -Sservername -Usa -
Ppassword

Bulk copying data from a query is useful if you want to ensure that the order of the data is preserved in the data file; bulk copying
data from a table or view does not guarantee the order of the data written to the data file. Preserving the order of the data in the
data file allows you to make use of the ORDER hint when bulk copying data from the data file back into a table. Using the ORDER
hint can significantly improve bulk copy performance. For more information, see Optimizing Bulk Copy Performance.

If the Transact-SQL statement returns multiple result sets, such as a SELECT statement that specifies the COMPUTE clause, or the
execution of a stored procedure that contains multiple SELECT statements, only the first result set is copied; subsequent result sets
are ignored.

See Also

bcp Utility

Ordered Data Files

Administering SQL Server (SQL Server 2000)

Copying Data To or From a Temporary Table
Copying Data To or From a Temporary Table

When using bcp or BULK INSERT to bulk copy data using a global temporary table, the table name must be specified at the
command prompt, including initial number signs (##). For example, to bulk copy data from the global temporary table
##temp_authors to the Temp_authors.txt data file, execute at the command prompt:

bcp ##temp_authors out temp_authors.txt -c -Sservername -Usa -Ppassword

However, do not specify the database name when using global temporary tables because temporary tables exist only in tempdb.
It is possible to use a local temporary table (for example, #temp_authors) only when bulk copying data using the BULK INSERT
statement.

Administering SQL Server (SQL Server 2000)

Copying Data To or From a View
Copying Data To or From a View

Data can be bulk copied to or from a view. This includes copying data from multiple joined tables, adding a WHERE clause, or
performing special formatting, such as changing data formats using the CONVERT function. For example, to bulk copy data from
the view titleview in the pubs database to the Titleview.txt data file, execute at the command prompt:

bcp pubs..titleview out titleview.txt -c -Sservername -Usa -Ppassword

To bulk copy data into a view using bcp or the BULK INSERT statement, the rules for inserting data into a view apply.

Note When data is bulk copied into a view, NULL values will be inserted even if a default value is defined for the field.

See Also

Modifying Data Through a View

Administering SQL Server (SQL Server 2000)

Copying Data Between Different Collations
Copying Data Between Different Collations

When bulk copying data using native or character format, bcp, by default, converts character data to:

OEM code page characters when exporting data from an instance of Microsoft® SQL Server™.

ANSI/Microsoft Windows® code page characters when importing data into an instance of SQL Server.

This can cause the loss of extended or DBCS characters during the conversion between OEM and ANSI code pages. To prevent the
loss of extended or DBCS characters, bcp can create data files using:

Unicode native data format (-N).

Unicode character data format (-w).

A specific code page (-C).

Unicode native format and Unicode character format convert character data to Unicode during the bulk copy, resulting in no loss
of extended characters.

Using the -C (code page) switch, the bcp utility can create or read data files using the code page specified by the user. For
example, to bulk copy the authors2 table in the pubs database to the Authors.txt data file using code page 850, execute from the
command prompt:

bcp pubs..authors2 out authors.txt -c -C850 -Sservername -Usa -Ppassword

Alternatively, using the CODEPAGE clause, the BULK INSERT statement can read data files using the code page specified by the
user. For example, to bulk copy the Authors.txt data file into the authors2 table in the pubs database using code page 850,
execute from a query tool such as SQL Query Analyzer:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 CODEPAGE = 850
)

The following are valid values for the code page.

Code page value Description
ACP Columns of char, varchar, or text data type are converted

from the ANSI/Windows code page (ISO 1252) to the SQL
Server code page when importing data to an instance of SQL
Server, and vice versa when exporting data from an instance of
SQL Server.

OEM (default) Columns of char, varchar, or text data type are converted
from the system OEM code page to the SQL Server code page
when importing data to an instance of SQL Server, and vice
versa when exporting data from an instance of SQL Server.

RAW This is the fastest option because no conversion from one code
page to another occurs.

<value> Specific code page number (for example, 850).

Column-level Collations

In SQL Server 2000, you can specify column-level collations for bulk copy operations. These collations define how character and
Unicode data is stored in the specified columns of the data file.

Users and applications specify only the collation in which the data is stored in the data file. The bulk copy components perform
internally any required translations between the data file collation and the collations of the source or destination columns in the
database.

On a bulk copy out operation, the column and default collation specifications define the code pages used to build all SQLCHAR

data in the resulting bulk copy data file. On a bulk copy in operation, the column and default collation specifications define the
code pages used to read SQLCHAR data from the source data file.

If the SORTED hint is specified on a bulk copy in operation, the collations defined for any character and Unicode columns
referenced in the SORTED hint define the expected sequence of the data.

On a bulk copy in operation, you must ensure that the collation specifications you make match the collations present in the bulk
copy data file.

Format files in SQL Server 2000 support an eighth column in which you can provide a collation specification that defines how the
data for that column is stored in the data file:

"RAW" specifies the data is stored in the collation specified in the –C switch, BCPFILECP hint, or CODEPAGE option. If none
of these is specified, the collation of the data file is that of the OEM code page of the bulk copy client computer.

"name" specifies the name of the collation used to store the data in the data file.

"" has the same meaning as RAW.

This is an example of a format file with column collations specified:

8.0
5
1 SQLCHAR 0 4 "/t" pub_id 1 "SQL_LATIN1_General_Cp1_CI_AS_KI_WI"
2 SQLCHAR 0 40 "/t" pub_name 2 "SQL_LATIN1_General_Cp850_BIN"
3 SQLCHAR 0 20 "/t" city 3 "RAW"
4 SQLCHAR 0 2 "/t" state 4 "RAW"
5 SQLCHAR 0 30 "/t" country 5 ""

Column collation specifications are ignored for columns that do not have SQLCHAR or SQLNCHAR specified as their host data
type. Collations for SQLNCHAR columns are ignored on bulk copy out operations; they apply only to bulk copy in operations
where the SQLNCHAR column is referenced in a SORTED hint. Collations apply to SQLCHAR columns on both in and out
operations.

On a bulk copy out operation, the collation specification controls only the code page used to store character data in the bulk copy
data file. It applies to:

All columns in a character mode data file.

Any column in a native mode file where SQLCHAR is specified as the host file data type.

SQLCHAR characters whose values are greater than 127 or less than 32. Collations are applied to characters whose values
are between 32 and 127, but all code pages map the same characters to the values from 32 to 127, so applying different
collations has no noticeable effect.

The rules for determining which collation is used on a bulk copy out are:

If a column collation is specified in either a format file or by using bcp_setcolfmt, the character data is stored using the
ANSI code page associated with the collation. This overrides all other methods of specifying a collation.

If a column collation was not specified, but either the bcp –C switch or the bcp_control BCPFILECP hint was specified, all
SQLCHAR data from columns having no column collation specification is stored using the code page specified in BCPFILECP
or –C. Column collations are not specified for any columns when producing a character mode data file with no format file.
This rules also applies when "" or "RAW" is specified for a column collation.

If no collations are specified at all (no column collation specifications, no –C switch, and no BCPFILECP hint), SQLCHAR data
is stored using the OEM code page of the bulk copy client computer.

On a bulk copy in operation, the collation specification controls:

How bulk copy attempts to interpret the code page of SQLCHAR columns in the data file.

How bulk copy applies the ORDER hint.

For a bulk copy in operation, code page interpretation applies only to columns stored as SQLCHAR in a data file. All columns in a
character mode data file are stored as SQLCHAR in a data file. It also applies to any column for which SQLCHAR is specified in a

format file or using bcp_setcolfmt:

If a column collation is specified in a format file or using bcp_setcolfmt, the SQLCHAR data in a data file is interpreted
using the ANSI code page associated with the specified column collation.

If a column collation is not specified, but a default code page is specified using the BULK INSERT CODEPAGE option, the bcp
–C switch, or the bcp_control BCPFILECP hint, the SQLCHAR data is interpreted using the code page specified in either
CODEPAGE, –C, or BCPFILECP.

If the user did not specify any collations (no column collation, no BULK INSERT CODEPAGE option, no bcp –C switch, no
BCPFILECP hint), then data in SQLCHAR columns is interpreted using the OEM code page of the client computer.

A bulk copy in operation also uses collations to properly interpret the ORDER bulk copy hint. This applies to both SQLCHAR and
SQLNCHAR columns. The data in the columns referenced by a SORTED hint must be in the sequence defined by the collation
mapped to those columns.

See Also

bcp Utility

BULK INSERT.

SetCodePage Method

Unicode Character Format

Unicode Native Format

Administering SQL Server (SQL Server 2000)

Bulk Copy Performance Considerations
To bulk copy data as fast as possible, it is important to understand how data is copied, and what options are available to specify
how data should be copied.

Topic Description
The Query Processor Describes how bcp and BULK INSERT

work in conjunction with the query
processor.

Logged and Nonlogged Bulk Copies Describes when bulk copy operations are
logged and how to perform nonlogged
bulk copy operations.

Parallel Data Loads Describes bulk copying data in parallel
from multiple clients to a single table.

Batch Switches Describes the switches used to control the
size of batches used in bulk copy
operations.

Constraint Checking Describes how to specify if constraints are
checked during bulk copy operations.

Ordered Data Files Describes how to specify the ordering of
data in a data file.

Bypassing DEFAULT Definitions Describes how to bypass default values
specified in the destination table.

Controlling the Locking Behavior Describes how to specify the locking
behavior used during bulk copy
operations.

See Also

Optimizing Bulk Copy Performance

Administering SQL Server (SQL Server 2000)

The Query Processor
The Query Processor

The bcp utility works in conjunction with the query processor to insert data into an instance of Microsoft® SQL Server™. The bcp
utility generates client OLE DB rowsets that are sent to SQL Server and are inserted into the table by the query processor. This has
the advantage of allowing the query processor to plan and optimize queries that import and export data from an instance of SQL
Server. It also allows optimized index maintenance, constraint checking, and parallel data load operations. The BULK INSERT
statement works in conjunction with the query processor to bulk copy data into an instance of SQL Server.

Any program written using the bulk copy API takes advantage of using client OLE DB rowsets and the SQL Server query processor
to insert data.

See Also

Bulk-Copy Rowsets

Constraint Checking

Parallel Data Loads

Query Processor Architecture

Administering SQL Server (SQL Server 2000)

Logged and Minimally Logged Bulk Copy Operations
Logged and Minimally Logged Bulk Copy Operations

When using the full recovery model, all row-insert operations performed by bcp are logged in the transaction log. For large data
loads, this can cause the transaction log to fill rapidly. To help prevent the transaction log from running out of space, a minimally
logged bulk copy can be performed if all of these conditions are met:

The recovery model is simple or bulk-logged.

The target table is not being replicated.

The target table does not have any triggers.

The target table has either 0 rows or no indexes.

The TABLOCK hint is specified. For more information, see Controlling the Locking Behavior.

Any bulk copy into an instance of Microsoft® SQL Server™ that does not meet these conditions is logged.

Before doing bulk copy operations, it is recommended that you set the recovery model to bulk-logged if you usually use full
recovery. This will prevent the bulk copy operations from using excessive log space and possibly filling the log. However, even
with bulk-logged recovery, some transaction log space will be used. You may want to create transaction log backups during the
bulk copy operation to free up transaction log space.

When bulk copying a large number of rows into a table with indexes, it can be faster to drop all the indexes, perform the bulk
copy, and re-create the indexes. For more information, see Optimizing Bulk Copy Performance.

Note Although data insertions are not logged in the transaction log when a minimally logged bulk copy is performed, SQL
Server still logs extent allocations each time a new extent is allocated to the table.

See Also

BACKUP

sp_dboption

SuspendIndexing Property

UseBulkCopyOption Property

Administering SQL Server (SQL Server 2000)

Parallel Data Loads
Parallel Data Loads

Microsoft® SQL Server™ allows data to be bulk copied into a single table from multiple clients in parallel using the bcp utility or
BULK INSERT statement. This can improve the performance of data load operations. To bulk copy data into an instance of SQL
Server in parallel:

Set the database to Bulk-Logged Recovery if you usually use the Full Recovery model.

Specify the TABLOCK hint. For more information, see Controlling the Locking Behavior.

Ensure the table does not have any indexes.

Note Any application based on the DB-Library client library supplied with SQL Server version 6.5 or earlier, including the bcp
utility, is not able to participate in parallel data loads into an instance of SQL Server. Only applications using the ODBC or SQL
OLE DB-based APIs can perform parallel data loads into a single table.

After data has been bulk copied into a single table from multiple clients, any nonclustered indexes that need to be created can also
be created in parallel by simply creating each nonclustered index from a different client concurrently.

Note Any clustered index on the table should be created first from a single client before creating the nonclustered indexes.

See Also

bcp Utility

Logged and Nonlogged Bulk Copy Operations

Optimizing Bulk Copy Performance

Administering SQL Server (SQL Server 2000)

Batch Switches
Batch Switches

The bcp utility and BULK INSERT statement accept two switches that allow the user to specify the number of rows per batch sent
to Microsoft® SQL Server™ for the bulk copy operation.

Bcp utility switch BULK INSERT clause
-b batch_size BATCHSIZE = batch_size
-h "ROWS_PER_BATCH = bb" ROWS_PER_BATCH = rows_per_batch

The use of these switches has a large effect on how data insertions are logged.

Using the -b Switch or BATCHSIZE Clause

Each batch of rows is inserted as a separate transaction. If, for any reason, the bulk copy operation terminates before completion,
only the current transaction is rolled back. For example, if a data file has 1,000 rows, and a batch size of 100 is used, SQL Server
logs the operation as 10 separate transactions; each transaction inserts 100 rows into the destination table. If the bulk copy
operation terminates while copying row 750, only the previous 49 rows are removed as SQL Server rolls back the current
transaction. The destination table still contains the first 700 rows.

Using ROWS_PER_BATCH

If the -b switch or BATCHSIZE clause is not used, the entire file is sent to SQL Server and the bulk copy operation is treated as a
single transaction. In this case, the ROWS_PER_BATCH hint or ROWS_PER_BATCH clause can be used to give an estimate of the
number of rows. SQL Server optimizes the load automatically, according to the batch size value, which may result in better
performance.

Note Generally, the larger the batch size is, the better the performance of the bulk copy operation will be. Make the batch size as
large as is practical, although accuracy in the hint is not critical.

If, for any reason, the operation terminates before completion, the entire transaction is rolled back, and no new rows are added to
the destination table.

Although all rows from the data file are copied into an instance of SQL Server in one batch, bcp displays the message "1000 rows
sent to SQL Server" after every 1000 rows. This message is for information only and occurs regardless of the batch size.

Note Supplying both switches with different batch sizes will generate an error message.

When bulk copying large data files into an instance of SQL Server, it is possible for the transaction log to fill before the bulk copy
is complete, even if the row inserts are not logged, from the extent allocation logging. In this situation, enlarge the transaction log,
allow it to grow automatically or perform the bulk copy using the -b or BATCHSIZE switch, and set the recovery model to simple.
Because only committed transactions can be truncated, this option does not free up space during the bulk copy operation if the -b
switch is not used; the entire operation is logged as a single transaction.

The bcp utility and BULK INSERT statement also accept the KILOBYTES_PER_BATCH hint or KILOBYTES_PER_BATCH clause,
respectively, which can be used to specify the approximate amount of data (in kilobytes) contained in a batch. SQL Server
optimizes the bulk load according to the value set.

Batch sizes are not applicable when bulk copying data from an instance of SQL Server to a data file.

See Also

BACKUP

bcp Utility

BULK INSERT.

ImportRowsPerBatch Property

Optimizing Bulk Copy Performance

sp_dboption

Administering SQL Server (SQL Server 2000)

Constraint Checking
Constraint Checking

The bcp utility and BULK INSERT statement accept the CHECK_CONSTRAINTS hint and CHECK_CONSTRAINT clause,
respectively, which allows the user to specify whether constraints are checked during a bulk load.

By default, constraints are ignored during the bulk load. This improves the performance of the bulk load but allows the possibility
of data being inserted into the table that violates existing constraints. The constraints will not be enforced when the bulk load is
executed without CHECK_CONSTRAINTS. CHECK_CONSTRAINTS specifies that constraints are enforced during the bulk load.
This reduces the performance of the bulk load but ensures that all data inserted does not violate any existing constraints. For
example, to bulk copy data from the Authors.txt data file to the authors2 table in the pubs database, specifying that any
constraints should be enforced, execute from the command prompt:

bcp pubs..authors2 in authors.txt -c -t, -Sservername -Usa -Ppassword -h "CHECK_CONSTRAINTS"

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 CHECK_CONSTRAINTS
)

When data is copied into a table, any triggers defined for the table are ignored.

To find any rows that violate constraints or triggers, you must check the copied data manually using queries. Bulk copy data into
the table and run queries or stored procedures that test the constraint or trigger conditions, such as:

UPDATE pubs..authors2 SET au_fname = au_fname

Although this query does not change data to a different value, it causes Microsoft® SQL Server™ to update each value in the
au_fname column to itself. This causes any constraints or triggers to be tested.

Note Although, by default, constraints on the table are not checked for the bulk copy operation unless CHECK_CONSTRAINTS is
specified, constraints act as expected for other concurrent operations, such as INSERT, UPDATE, or DELETE.

See Also

bcp Utility

BULK INSERT.

DBCC CHECKCONSTRAINTS

Administering SQL Server (SQL Server 2000)

Ordered Data Files
Ordered Data Files

The bcp utility and BULK INSERT statement accept the ORDER hint and ORDER clause, respectively, which allows the user to
specify how data in the data file is sorted. Although it is not necessary for data in the data file to be sorted in the same order as
the table, the same ordering can improve performance of the bulk copy operation.

The order of data in the table is determined by the clustered index. The order and columns listed in the ORDER hint or ORDER
clause must match the columns and be in the same order in the clustered index to improve the performance of the bulk copy
operation.

For example, to bulk copy data from the Authors.txt data file to the authors2 table in the pubs database, specifying that the data
file is in ascending order on the au_id column, execute from the command prompt:

bcp pubs..authors2 in authors.txt -c -t, -Sservername -Usa -Ppassword -h "ORDER (au_id ASC)"

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 ORDER (au_id ASC)
)

By default, the bulk copy operation assumes that the data file is unordered.

See Also

bcp Utility

BULK INSERT

Optimizing Bulk Copy Performance

Administering SQL Server (SQL Server 2000)

Bypassing DEFAULT Definitions
Bypassing DEFAULT Definitions

The bcp utility and the BULK INSERT statement accept the -k switch and the KEEPNULLS clause, respectively, which can be used to
specify that empty columns should retain a null value during the bulk copy operation, rather than have any default values for the
columns inserted.

Note If default values are not inserted, the column must be defined to allow null values.

By default, when data is copied into a table using the bcp utility or BULK INSERT statement, any defaults defined for the columns
in the table are observed. For example, if there is a null field in a data file, the default value for the column is loaded instead.

For example, the data file Publishers.txt has two rows:

0111,New Moon Books,Boston,MA,
0222,Binnet & Hardley,Washington,DC,USA

Commas separate the fields; a newline character separates the rows. There is no country for the first row. If the country column
of the publishers table had a default of "USA", the rows bulk loaded into the table by bcp or the BULK INSERT statement when
the -k switch or KEEPNULLS clause is not specified are:

0111 New Moon Books Boston MA USA
0222 Binnet & Hardley Washington DC USA

Alternatively, to bulk copy data from the Publishers.txt data file into the publishers table in the pubs database and insert the
value null into the country column, rather than the default value of "USA", execute from the command prompt:

bcp pubs..publishers in publishers.txt -c -t, -Sservername -Usa -Ppassword -k

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..publishers FROM 'c:\publishers.txt'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 KEEPNULLS
)

Note Although DEFAULT definitions on the table are not checked for the bulk copy operation if -k or KEEPNULLS is specified,
DEFAULT definitions are expected for other concurrent INSERT statements.

See Also

BACKUP

bcp Utility

Creating and Modifying DEFAULT Definitions

ServerBCPKeepNulls Property

Administering SQL Server (SQL Server 2000)

Controlling the Locking Behavior
Controlling the Locking Behavior

The bcp utility and BULK INSERT statement accept the TABLOCK hint, which allows the user to specify the locking behavior used.
TABLOCK specifies that a bulk update table-level lock is taken for the duration of the bulk copy. Using TABLOCK can improve
performance of the bulk copy operation due to reduced lock contention on the table. For example, to bulk copy data from the
Authors.txt data file to the authors2 table in the pubs database, specifying a table-level lock, execute from the command prompt:

bcp pubs..authors2 in authors.txt -c -t, -Sservername -Usa -Ppassword -h "TABLOCK"

Alternatively, you can use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 TABLOCK
)

If TABLOCK is not specified, the default uses row-level locks, unless the table lock on bulk load option is set to on. Setting the
table lock on bulk load option using sp_tableoption sets the locking behavior for a table during a bulk load.

Table lock on bulk load Table locking behavior
Off Row-level locks used
On Table-level lock used

If the TABLOCK hint is specified, the default setting for the table set with sp_tableoption is overridden for the duration of the
bulk load.

Note It is not necessary to use the TABLOCK hint to bulk load data into a table from multiple clients in parallel, but doing so can
improve performance.

See Also

bcp Utility

BULK INSERT.

sp_tableoption

Understanding Locking in SQL Server

Administering SQL Server (SQL Server 2000)

Backing Up and Restoring Databases
The backup and restore component of Microsoft® SQL Server™ 2000 provides an important safeguard for protecting critical data
stored in SQL Server databases.

With proper planning, you can recover from many failures, including:

Media failure.

User errors.

Permanent loss of a server.

Additionally, backing up and restoring databases is useful for other purposes, such as copying a database from one server to
another. By backing up a database from one computer and restoring the database to another, a copy of a database can be made
quickly and easily.

This section provides the information necessary to implement a complete backup and recovery plan.

Topic Description
Designing a Backup and Restore
Strategy

Helps you analyze and refine your data
availability requirements and choose a
recovery model for each database.

Using Recovery Models Describes each recovery model in detail, as
well as appropriate backup and restore
strategies. This topic also describes how to
switch between recovery models.

Backup and Restore Operations Describes the various types of backups
available and how they are used. This topic
also describes point-in-time recovery,
restarting a failed backup or restore,
recovering to a particular transaction, and
recovering part of a database.

Managing Backups Describes backup devices, the backup
format, and removable media terminology.
This section also describes password
security and media management including
formatting, appending, overwriting, listing,
and verifying media contents.

Backing Up and Restoring the System
Databases

Describes the procedures necessary to
protect and recover the system databases.

Handling Large Mission-Critical
Environments

Describes features and techniques
appropriate for highly available or very
large production databases. These include
using multiple backup devices, file and
filegroup backups, file differential backups,
and snapshot backups.

Copying Databases to Other Servers Describes the use of backup and restore to
quickly transport a database to another
server.

See Also

Backup/Restore Architecture

Copying Databases to Other Servers

Databases

Transactions

Administering SQL Server (SQL Server 2000)

Designing a Backup and Restore Strategy
You must identify the requirements for the availability of your data in order to choose the appropriate backup and restore
strategy. Your overall backup strategy defines the type and frequency of backups and the nature and speed of the hardware
required for them.

It is strongly recommended that you test your backup and recovery procedures thoroughly. Testing helps to ensure that you have
the required backups to recover from various failures, and that your procedures can be executed smoothly and quickly when a
real failure occurs.

This section includes the following topics.

Topic Description
Analyzing Availability and Recovery
Requirements

Explains the basic requirements for
developing a backup and restore plan.

Planning for Disaster Recovery Explains how to plan for a disaster (for
example, the complete loss of a server).

Selecting a Recovery Model Introduces Microsoft® SQL Server™ 2000
recovery models, which you implement
after analyzing your availability
requirements.

Administering SQL Server (SQL Server 2000)

Analyzing Availability and Recovery Requirements
In order to develop a successful backup and restore plan, you must understand when your data needs to be accessible and the
potential impact of data loss on your business. Answering the following questions can help you determine your availability
requirements and sensitivity to data loss. Then you can choose the correct Microsoft® SQL Server™ 2000 recovery models for
your databases and make the necessary technical and financial tradeoffs.

Here are some basic questions to help you analyze your availability and recovery requirements:

What are your availability requirements? What portion of each day must the database be online?

What is the financial cost of downtime to your business?

If you experience media failure, such as a failing disk drive, what is the acceptable downtime?

In case of a disaster, such as the loss of a server in a fire, what is the acceptable downtime?

How important is it to never lose a change?

How easy would it be to re-create lost data?

Does your organization employ system or database administrators?

Who will be responsible for performing backup and recovery operations, and how will they be trained?

Here are some questions to help you choose the tools, techniques, and hardware appropriate for your site:

How large is each database?

How often does the data in each database change?

Are some tables modified more often than others?

What are your critical database production periods?

When does the database experience heavy use, resulting in frequent inserts and updates?

Is transaction log space consumption likely to be a problem due to heavy update activity?

Is your database subject to periodic bulk data loading?

Is your database subject to risky updates or application errors that may not be detected immediately?

Is your database server part of a SQL Server 2000 failover cluster for high availability?

Is your database in a multi-server environment with centralized administration?

Managing Media

When you back up and restore a database, you need to back up the data onto media (for example, tapes and disks). It is
recommended that your backup plan include provisions for managing media, such as:

A tracking and management plan for storing and recycling backup sets.

A schedule for overwriting backup media.

In a multi-server environment, a decision to use either centralized or distributed backups.

A means of tracking the useful life of media.

A procedure to minimize the effects of the loss of a backup set or backup media (for example, a tape).

A decision to store backup sets on or offsite, and an analysis of how this will affect recovery time.

Administering SQL Server (SQL Server 2000)

Planning for Disaster Recovery
You need to create a disaster recovery plan in order to ensure that all your systems and data can be quickly restored to normal
operation in the event of a natural disaster (for example, a fire) or a technical disaster (for example, a two-disk failure in a RAID-5
array). When you create a disaster recovery plan, you prepare all the actions that must occur in response to a catastrophic event. It
is recommended that you verify your disaster recovery plan through the simulation of a catastrophic event.

Consider disaster recovery planning in light of your own environment and business needs. For example, suppose a fire occurs and
wipes out your 24-hour data center. Are you certain you can recover? How long will it take you to recover and have your system
available? How much data loss can your users tolerate?

Ideally, your disaster recovery plan states how long recovery will take and the final database state the users can expect. For
example, you might determine that after the acquisition of specified hardware, recovery will be completed in 48 hours, and data
will be guaranteed only up to the end of the previous week.

A disaster recovery plan can be structured in many different ways and can contain many types of information, including:

A plan to acquire hardware.

A communication plan.

A list of people to be contacted in the event of a disaster.

Instructions for contacting the people involved in the response to the disaster.

Information on who owns the administration of the plan.

Running a Base Functionality Script

Usually, you include a base functionality script as part of your disaster recovery plan in order to confirm that everything is
working as intended. The base functionality script provides a dependable tool for the system administrator or database
administrator to be able to see that the database is back in a viable state, without depending on end users for verification. Most
commonly, this is an .sql file with batched SQL statements run into the server from osql. For other applications, a .bat file is more
appropriate because it can contain bcp and osql commands. This base functionality script is very application specific, and it can
take many different forms. For example, on a decision support/reporting system, the script may merely be a copy of several of
your key reporting queries. For an online transaction processing (OLTP) application, the script may execute a batch of stored
procedures that execute INSERT, UPDATE, and DELETE statements.

Preparing for a Disaster

To prepare for disaster, it is recommended that you periodically perform the following steps:

Perform regular database and transaction log backups to minimize the amount of lost data. It is recommended that both
system and user databases be backed up.

Maintain system logs in a secure fashion. Keep records of all service packs installed on Microsoft® Windows NT® 4.0 or
Windows® 2000 and Microsoft SQL Server™. Keep records of network libraries used, the security mode, and the sa
password.

Maintain a base functionality script for quickly assessing minimal capability.

Assess the steps you need to take to recover from a disaster ahead of time on another server, and amend the steps as
necessary to suit your environment.

Recovering from a Disaster

To recover from a disaster, perform the following steps after acquiring suitable replacement hardware:

1. Install Windows NT 4.0 or Windows 2000, and apply the appropriate service pack. Verify that appropriate domain
functionality exists.

2. Install SQL Server, and apply the appropriate service pack. Restore the master and msdb database backups. Restart the
server after restoring the master database.

3. Reconfigure the server for the appropriate network libraries and security mode.

4. Confirm that SQL Server is running properly by checking SQL Server Service Manager and the Windows application log. If
the Windows NT 4.0 or Windows 2000 name was changed, use sp_dropserver and sp_addserver to match it with the SQL
Server computer name.

5. Restore and recover each database according to its recovery plan.

6. Verify the availability of the system. Run a base functionality script to ensure correct operation.

7. Allow users to resume normal usage.

See Also

Managing Permissions

sqlservr Application

Administering SQL Server (SQL Server 2000)

Selecting a Recovery Model
Microsoft® SQL Server™ provides three recovery models to:

Simplify recovery planning.

Simplify backup and recovery procedures.

Clarify tradeoffs between system operational requirements.

These models each address different needs for performance, disk and tape space, and protection against data loss. For example,
when you choose a recovery model, you must consider the tradeoffs between the following business requirements:

Performance of large-scale operation (for example, index creation or bulk loads).

Data loss exposure (for example, the loss of committed transactions).

Transaction log space consumption.

Simplicity of backup and recovery procedures.

Depending on what operations you are performing, more than one model may be appropriate. After you have chosen a recovery
model or models, plan the required backup and recovery procedures.

This table provides an overview of the benefits and implications of the three recovery models.

Recovery
model Benefits Work loss exposure

Recover to point in
time?

Simple Permits high-
performance bulk
copy operations.

Reclaims log space to
keep space
requirements small.

Changes since the most
recent database or
differential backup must
be redone.

Can recover to the end
of any backup. Then
changes must be
redone.

Full No work is lost due to
a lost or damaged
data file.

Can recover to an
arbitrary point in time
(for example, prior to
application or user
error).

Normally none.

If the log is damaged,
changes since the most
recent log backup must
be redone.

Can recover to any
point in time.

Bulk-Logged Permits high-
performance bulk
copy operations.

Minimal log space is
used by bulk
operations.

If the log is damaged, or
bulk operations
occurred since the most
recent log backup,
changes since that last
backup must be redone.

Otherwise, no work is
lost.

Can recover to the end
of any backup. Then
changes must be
redone.

When a database is created, it has the same recovery model as the model database. To alter the default recovery model, use
ALTER DATABASE to change the recovery model of the model database. You set the recovery model with the RECOVERY clause of
the ALTER DATABASE statement. For more information, see ALTER DATABASE.

Simple Recovery

Simple Recovery requires the least administration. In the Simple Recovery model, data is recoverable only to the most recent full
database or differential backup. Transaction log backups are not used, and minimal transaction log space is used. After the log
space is no longer needed for recovery from server failure, it is reused.

The Simple Recovery model is easier to manage than the Full or Bulk-Logged models, but at the expense of higher data loss
exposure if a data file is damaged.

Important Simple Recovery is not an appropriate choice for production systems where loss of recent changes is unacceptable.

When using Simple Recovery, the backup interval should be long enough to keep the backup overhead from affecting production
work, yet short enough to prevent the loss of significant amounts of data.

For more information, see Simple Recovery.

Full and Bulk-Logged Recovery

Full Recovery and Bulk-Logged Recovery models provide the greatest protection for data. These models rely on the transaction
log to provide full recoverability and to prevent work loss in the broadest range of failure scenarios.

The Full Recovery model provides the most flexibility for recovering databases to an earlier point in time. For more information,
see Full Recovery.

The Bulk-Logged model provides higher performance and lower log space consumption for certain large-scale operations (for
example, create index or bulk copy). It does this at the expense of some flexibility of point-in-time recovery. For more information,
see Bulk-Logged Recovery.

Because many databases undergo periods of bulk loading or index creation, you may want to switch between Bulk-Logged and
Full Recovery models. For more information, see Switching Recovery Models.

See Also

ALTER DATABASE

Administering SQL Server (SQL Server 2000)

Using Recovery Models
You can select one of three recovery models for each database in Microsoft® SQL Server™ 2000 to determine how your data is
backed up and what your exposure to data loss is. The following recovery models are available:

Simple Recovery

Simple Recovery allows the database to be recovered to the most recent backup.

Full Recovery

Full Recovery allows the database to be recovered to the point of failure.

Bulk-Logged Recovery

Bulk-Logged Recovery allows bulk-logged operations.

The recovery model of a new database is inherited from the model database when the new database is created.

Note The recovery model for a new database in SQL Server 2000 Personal Edition and SQL Server 2000 Desktop Engine (MSDE
2000) defaults to Simple Recovery.

Administering SQL Server (SQL Server 2000)

Simple Recovery
With the Simple Recovery model, the database can be recovered to the point of the last backup. However, you cannot restore the
database to the point of failure or to a specific point in time. To do that, choose either the Full Recovery or Bulk-Logged Recovery
model.

The backup strategy for simple recovery consists of:

Database backups.

Differential backups (optional).

Note This model is similar to setting the trunc. log on chkpt. database option in Microsoft® SQL Server™ version 7.0 or earlier.

To recover in the event of media failure

1. Restore the most recent full database backup.

2. If differential backups exist, restore the most recent one.

Changes since the last database or differential backup are lost.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Selecting a Recovery Model

Full Recovery

Bulk-Logged Recovery

Administering SQL Server (SQL Server 2000)

Full Recovery
The Full Recovery model uses database backups and transaction log backups to provide complete protection against media
failure. If one or more data files is damaged, media recovery can restore all committed transactions. In-process transactions are
rolled back.

Full Recovery provides the ability to recover the database to the point of failure or to a specific point in time. To guarantee this
degree of recoverability, all operations, including bulk operations such as SELECT INTO, CREATE INDEX, and bulk loading data, are
fully logged.

The backup strategy for full recovery consists of:

Database backups.

Differential backups (optional).

Transaction log backups.

Full and bulk-logged recovery are similar and many users of the Full Recovery model will use the Bulk-Logged model on
occasion. For more information, see Bulk-Logged Recovery.

Recovering in the Event of Media Failure

You can restore a database to the state it was in at the point of failure if the current transaction log file for the database is
available and undamaged. To restore the database to the point of failure:

1. Back up the currently active transaction log. For more information, see Transaction Log Backups.

2. Restore the most recent database backup without recovering the database.

3. If differential backups exist, restore the most recent one.

4. Restore each transaction log backup created since the database or differential backup in the same sequence in which they
were created without recovering the database.

5. Apply the most recent log backup (created in Step 1), and recover the database.

Important To protect against loss of transactions under the Full Recovery model, the transaction log must be protected
against damage. It is strongly recommended that fault-tolerant disk storage be used for the transaction log.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Selecting a Recovery Model

Simple Recovery

Administering SQL Server (SQL Server 2000)

Bulk-Logged Recovery
The Bulk-Logged Recovery model provides protection against media failure combined with the best performance and minimal
log space usage for certain large-scale or bulk copy operations. These operations are minimally logged:

SELECT INTO.

Bulk load operations (bcp and BULK INSERT).

CREATE INDEX (including indexed views).

text and image operations (WRITETEXT and UPDATETEXT).

In a Bulk-Logged Recovery model, the data loss exposure for these bulk copy operations is greater than in the Full Recovery
model. While the bulk copy operations are fully logged under the Full Recovery model, they are minimally logged and cannot be
controlled on an operation-by-operation basis under the Bulk-Logged Recovery model. Under the Bulk-Logged Recovery model,
a damaged data file can result in having to redo work manually.

In addition, the Bulk-Logged Recovery model only allows the database to be recovered to the end of a transaction log backup
when the log backup contains bulk changes. Point-in-time recovery is not supported.

In Microsoft® SQL Server™ 2000, you can switch between full and bulk-logged recovery models easily. It is not necessary to
perform a full database backup after bulk copy operations complete under the Bulk-Logged Recovery model. Transaction log
backups under this model capture both the log and the results of any bulk operations performed since the last backup.

The backup strategy for bulk-logged recovery consists of:

Database backups.

Differential backups (optional).

Log backups.

Backing up a log that contains bulk-logged operations requires access to all data files in the database. If the data files are not
accessible, the final transaction log cannot be backed up and all committed operations in that log will be lost.

To recover in the event of media failure

1. Back up the currently active transaction log. For more information, see Transaction Log Backups.

2. Restore the most recent full database backup.

3. If differential backups exist, restore the most recent one.

4. Apply in sequence all transaction log backups created since the most recent differential or full database backup.

5. Manually redo all changes since the most recent log backup.

Important If the active transaction log is lost (for example, due to hardware failure on the disk containing the transaction log
files), all transactions in that log are lost. To prevent loss of the active transaction log, place the transaction log files on mirrored
disks.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To back up the transaction log when the database is damaged

Transact-SQL

Transact-SQL

SQL-DMO

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To apply a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Restoring a Database to a Prior State

Transaction Logs

Transactions

Using File or Filegroup Backups

Administering SQL Server (SQL Server 2000)

Switching Recovery Models
You can switch a database from one recovery model to another in order to meet changing business needs. For example, a
mission-critical online transaction processing (OLTP) system requires full recoverability but periodically undergoes bulk load and
indexing operations. The recovery model for the database can be changed to Bulk-Logged for the duration of the load and
indexing operations and then returned to Full Recovery. This increases performance and reduces the required log space while
maintaining server protection.

Note Switching recovery models during a bulk load operation is permitted. The logging of the bulk operation changes
appropriately.

The following table indicates what action to take when switching from one recovery model to another.

From To Action Description
Full Recovery Bulk-Logged

Recovery
No action Requires no change in backup

strategy. Continue to perform
periodic database, log, and
(optionally) differential backups.

Full Recovery Simple
Recovery

Optionally back up
the transaction log
prior to the change

Executing a log backup
immediately before the change
permits recovery to that point.
After switching to the simple
model, stop executing log
backups.

Bulk-Logged
Recovery

Full Recovery No action Requires no change in backup
strategy. Recovery to any point in
time is enabled after the next log
backup. If point-in-time recovery
is important, execute a log
backup immediately after
switching.

Bulk-Logged
Recovery

Simple
Recovery

Optionally back up
the transaction log
prior to the change

Executing a log backup
immediately before the change
permits recovery to that point.
After switching to the simple
model, stop executing log
backups.

Simple
Recovery

Full Recovery Back up the database
after the change

Execute a database or differential
backup after switching to the Full
Recovery model. Begin executing
periodic database, log, and
(optionally) differential backups.

Simple
Recovery

Bulk-Logged
Recovery

Back up the database
after the change

Execute a database or differential
backup after switching to the
bulk-logged model. Begin
executing periodic database, log,
and (optionally) differential
backups.

To set or change the recovery models

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Backup and Restore Operations
Microsoft® SQL Server™ supports various types of backups to be used separately or in combination. The recovery model you
choose will determine your overall backup strategy, including the types of backups available to you. For more information, see
Designing a Backup and Restore Strategy and Using Recovery Models.

The following table illustrates the types of backups that are available for each recovery model.

Model

Backup Type

Database

Database
differential

Transaction
log

File or file
differential

Simple Required Optional Not allowed Not allowed
Full Required

(or file backups)
Optional Required Optional

Bulk-Logged Required
(or file backups)

Optional Required Optional

Backups are created on backup devices, such as disk or tape media. With SQL Server, you can decide how you want to create your
backups on backup devices. For example, you can overwrite outdated backups, or you can append new backups to the backup
media. For more information, see Managing Backups.

Performing a backup operation has minimal effect on running transactions, so backup operations can be run during normal
operations.

Note Creating or deleting database files is not possible when the database or transaction log is being backed up. If you attempt
to create or delete a database file while a backup operation is in progress, the create or delete will fail. If you attempt to start a
backup operation while a database file is being created or deleted, the backup operation will wait until the create or delete is
completed or the backup operation times out.

See Also

Selecting a Recovery Model

Analyzing Availability and Recovery Requirements

Planning for Disaster Recovery

Administering SQL Server (SQL Server 2000)

Database Backups
A database backup creates a duplicate of the data that is in the database when the backup completes. This is a single operation,
usually scheduled at regular intervals. Database backups are self-contained.

You can re-create the entire database from a database backup in one step by restoring the database. The restore process
overwrites the existing database or creates the database if it does not exist. The restored database will match the state of the
database at the time the backup completed, minus any uncommitted transactions. Uncommitted transactions are rolled back
when the database is recovered.

A database backup uses more storage space per backup than transaction log and differential database backups. Consequently,
database backups need more time to complete the backup operation and so are typically created less frequently than differential
database or transaction log backups. For more information, see Transaction Log Backups and Differential Database Backups.

Restoring a Database Backup

Restoring a database backup re-creates the database and all of its associated files that were in the database when the backup was
completed. However, any modifications made to the database after the backup was created are lost. To restore transactions made
after the database backup was created, you must use transaction log backups or differential backups.

When restoring a database, Microsoft® SQL Server™:

1. Copies all of the data from the backup into the database. The rest of the database is created as empty space.

2. Rolls back any incomplete transactions in the database backup to ensure that the database is consistent.

To prevent overwriting a database unintentionally, the restore operation performs safety checks automatically. The restore
operation fails if:

The database name in the restore operation does not match the database name recorded in the backup set.

The database named in the restore operation already exists on the server but is not the same database contained in the
database backup. For example, the database names are the same, but each database was created differently.

One or more files need to be created automatically by the restore operation, but the file names already exist.

These safety checks can be disabled if the intention is to overwrite another database. For more information, see RESTORE.

Note If you restore a database on a different instance of SQL Server than the one on which the backup was created, you may
need to run sp_change_users_login to update user login information. For more information, see sp_change_users_login.

Backing Up Full-Text Indexes

Backing up a database does not back up full-text index data in full-text catalogs. However, if full-text indexes have been defined for
tables, the meta data is backed up when a database backup is created. After a database backup is restored, the full-text index
catalogs can be re-created and repopulated. For more information, see Full-text Indexes.

Estimating the Size of Your Database Backup

Before you implement a backup and restore strategy, you need to estimate how much disk space your database backup will use.
During a database backup, the backup operation copies only the data in the database to the backup file. Because the database
backup contains only the actual data in the database and not any unused space, the database backup is likely to be smaller than
the database itself. You can estimate the size of the database backup by using the sp_spaceused system stored procedure. For
more information, see sp_spaceused.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a database backup using the Create Database Backup Wizard

Enterprise Manager

Enterprise Manager

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Database Maintenance Plan Wizard

Databases

Setting Database Options

Administering SQL Server (SQL Server 2000)

Differential Database Backups
A differential database backup records only the data that has changed since the last database backup. You can make more
frequent backups because differential database backups are smaller and faster than database backups. Making frequent backups
decreases your risk of losing data.

Note If you have created any file backups since the last full database backup, those files will be scanned by Microsoft® SQL
Server™ 2000 at the beginning of a differential database backup. This may cause some degradation of performance in the
differential database backup. For more information, see Using File Backups.

You use differential database backups to restore the database to the point at which the differential database backup was
completed. To recover to the exact point of failure, you must use transaction log backups. For more information, see Transaction
Log Backups.

Consider using differential database backups when:

Only a relatively small portion of the data in the database has changed since the last database backup. Differential database
backups are particularly effective if the same data is modified many times.

You are using the Simple Recovery model and want more frequent backups, but don't want to do frequent full database
backups.

You are using the Full or Bulk-Logged Recovery model and want to minimize the time it takes to roll forward transaction log
backups when restoring a database.

A recommended process for implementing differential database backups is:

1. Create regular database backups.

2. Create a differential database backup periodically between database backups, such as every four hours or more for highly
active systems.

3. If using Full or Bulk-Logged Recovery, create transaction log backups more frequently than differential database backups,
such as every 30 minutes.

The sequence for restoring differential database backups is:

1. Restore the most recent database backup.

2. Restore the last differential database backup.

3. Apply all transaction log backups created after the last differential database backup was created if you use Full or Bulk-
Logged Recovery.

To create a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Database Backups

Reducing Recovery Time

Administering SQL Server (SQL Server 2000)

Transaction Log Backups
The transaction log is a serial record of all the transactions that have been performed against the database since the transaction
log was last backed up. With transaction log backups, you can recover the database to a specific point in time (for example, prior
to entering unwanted data), or to the point of failure.

When restoring a transaction log backup, Microsoft® SQL Server™ rolls forward all changes recorded in the transaction log.
When SQL Server reaches the end of the transaction log, it has re-created the exact state of the database at the time the backup
operation started. If the database is recovered, SQL Server then rolls back all transactions that were incomplete when the backup
operation started.

Transaction log backups generally use fewer resources than database backups. As a result, you can create them more frequently
than database backups. Frequent backups decrease your risk of losing data.

Note Sometimes a transaction log backup is larger than a database backup. For example, a database has a high transaction rate
causing the transaction log to grow quickly. In this situation, create transaction log backups more frequently.

Transaction log backups are used only with the Full and Bulk-Logged Recovery models. For more information, see Using
Recovery Models.

Using Transaction Log Backups with Database Backups

Restoring a database using both database and transaction log backups works only if you have an unbroken sequence of
transaction log backups after the last database or differential database backup. If a log backup is missing or damaged, you must
create a database or differential database backup and start backing up the transaction logs again. Retain the previous transaction
logs backups if you want to restore the database to a point in time within those backups.

The only time database or differential database backups must be synchronized with transaction log backups is when starting a
sequence of transaction log backups. Every sequence of transaction log backups must be started by a database or differential
database backup.

Usually, the only time that a new sequence of backups is started is when the database is backed up for the first time or a change
in recovery model from Simple to Full or Bulk-Logged has occurred. For more information, see Switching Recovery Models.

Truncating the Transaction Log

When SQL Server finishes backing up the transaction log, it automatically truncates the inactive portion of the transaction log.
This inactive portion contains completed transactions and so is no longer used during the recovery process. Conversely, the active
portion of the transaction log contains transactions that are still running and have not yet completed. SQL Server reuses this
truncated, inactive space in the transaction log instead of allowing the transaction log to continue to grow and use more space.

Although the transaction log may be truncated manually, it is strongly recommended that you do not do this, as it breaks the log
backup chain. Until a full database backup is created, the database is not protected from media failure. Use manual log truncation
only in very special circumstances, and create a full database backup as soon as practical.

The ending point of the inactive portion of the transaction log, and hence the truncation point, is the earliest of the following
events:

The most recent checkpoint.

The start of the oldest active transaction, which is a transaction that has not yet been committed or rolled back.

This represents the earliest point to which SQL Server would have to roll back transactions during recovery.

The start of the oldest transaction that involves objects published for replication whose changes have not been replicated
yet.

This represents the earliest point that SQL Server still has to replicate.

Conditions for Backing Up the Transaction Log

The transaction log cannot be backed up during a full database backup or a differential database backup. However, the transaction
log can be backed up while a file backup is running.

Do not back up the transaction log:

Until a database or file backup has been created because the transaction log contains the changes made to the database
after the last backup was created. For more information, see Using File Backups.

If the transaction log has been explicitly truncated, unless a database or differential database backup is created after the
transaction log truncation occurs.

Restoring Transaction Log Backups

It is not possible to apply a transaction log backup:

Unless the database or differential database backup preceding the transaction log backup is restored first.

Unless all preceding transaction logs created since the database or differential database was backed up are applied first.

If a previous transaction log backup is lost or damaged, you can restore only transaction logs up to the last backup before
the missing transaction log.

If the database has already recovered and all outstanding transactions have been either rolled back or rolled forward.

When applying transaction log backups, the database must not be recovered until the final transaction log has been applied.
If you allow recovery to take place when applying one of the intermediate transaction log backups, you cannot restore past
that point without restarting the entire restore operation, starting with the database backup.

Creating a Sequence of Transaction Log Backups

To create a set of backups, you typically make a database backup at periodic intervals, such as daily, and transaction log backups
at shorter intervals, such as every 10 minutes. You must have at least one database backup, or a covering set of file backups, to
make log backups useful. The interval between backups varies with the criticality of the data and the workload of the server. If
your transaction log is damaged, you will lose work performed since the most recent log backup. This suggests frequent log
backups for critical data, and highlights the importance of placing the log files on fault tolerant storage.

The sequence of transaction log backups is independent of the database backups. You make one sequence of transaction log
backups, and then make periodic database backups that are used to start a restore operation. For example, assume the following
sequence of events.

Time Event
8:00 A.M. Back up database
Noon Back up transaction log
4:00 P.M. Back up transaction log
6:00 P.M. Back up database
8:00 P.M. Back up transaction log
10:00 P.M. Failure occurs

The transaction log backup created at 8:00 P.M. contains transaction log records from 4:00 P.M. through 8:00 P.M., spanning the
time when the database backup was created at 6:00 P.M. The sequence of transaction log backups is continuous from the initial
database backup created at 8:00 A.M. to the last transaction log backup created at 8:00 P.M. The following procedures can be used
to restore the database to its state at 10:00 P.M. (point of failure).

Restore the database using the last database backup created.

1. Create a backup of the currently active transaction log.

2. Restore the 6:00 P.M. database backup, and then apply the 8:00 P.M. and active transaction log backups.

The restore process detects that the 8:00 P.M. transaction log backup contains transactions that have occurred prior to the
last restored backup. Therefore, the restore operation scans down the transaction log to the point corresponding to when
the 6:00 P.M. database backup completed and rolls forward only the completed transactions from that point on within the
transaction log backup. This occurs again for the 10:00 P.M. transaction log backup.

Restore the database using an earlier database backup (earlier than the most recent database backup created).

1. Create a backup of the currently active transaction log.

2. Restore the 8:00 A.M. database backup, and then restore all four transaction log backups in sequence. Do not restore the
6:00 P.M. database backup. This rolls forward all completed transactions up to 10:00 P.M.

This process will take longer than restoring the 6:00 P.M. database backup.

The second option points out the redundant security offered by a chain of transaction log backups that can be used to restore a
database even if a database backup is lost. You can restore an earlier database backup, and then restore all of the transaction log
backups created after the database backup was created.

Note It is important not to lose a transaction log backup. Consider making multiple copies of log backup sets. This can be
accomplished by backing the log up to disk, then copying the disk file to another device, such as a separate disk or tape.

Recovery and Transaction Logs

When you finish the restore operation and recover the database, all incomplete transactions are rolled back. This is required to
restore the integrity of the database.

After this has been done, no more transaction log backups can be applied to the database. For example, a series of transaction log
backups contain a long-running transaction. The start of the transaction is recorded in the first transaction log backup, but the end
of the transaction is recorded in the second transaction log backup. There is no record of a commit or rollback operation in the
first transaction log backup. Therefore, if a recovery operation runs when the first transaction log backup is applied, the long-
running transaction is treated as incomplete. Data modifications recorded in the first transaction log backup for the transaction
are rolled back. SQL Server does not allow the second transaction log backup to be applied after the recovery operation has run.

Therefore, when restoring transaction log backups, the database must not be recovered until the final transaction log has been
applied. This prevents any transactions from being partially rolled back. The only time outstanding transactions need to be rolled
back is at the end of the last restore operation.

Administering SQL Server (SQL Server 2000)

Backup Restrictions
In Microsoft® SQL Server™, backup operations can occur while the database is online and in use. However, some operations are
not allowed during a database backup:

Creating or deleting database files.

The file truncation portion of a shrink operation on either the database (automatically or manually) or the database files.
They will fail if a backup is running. You can perform the truncation after the backup completes. For more information, see
Shrinking a Database.

If a backup is started when one of these operations is in progress, the backup waits for the operation to complete, up to the limit
set by the session timeout. If a backup is in progress and one of these operations is attempted, the operation fails and the backup
continues.

Administering SQL Server (SQL Server 2000)

Restoring a Database to a Prior State
At times, you may want to restore your database to an earlier point in time. For example, if an earlier transaction within a
database changed some data incorrectly, you will need to restore the database to a point in time earlier than the incorrect data
entry. To do this, recover the entire database to a point within a transaction log. You can recover a database to either a specific
point in time within a transaction log or to a named mark that was previously inserted into the log.

To create a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To backup the transaction log when the database is damaged

Transact-SQL

Transact-SQL

SQL-DMO

To restore to the point of failure

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

BACKUP

Administering SQL Server (SQL Server 2000)

Recovering to a Point In Time
Recovering to a Point In Time

You can recover to a point in time by recovering only the transactions that occurred before a specific point in time within a
transaction log backup, rather than the entire backup. By viewing the header information of each transaction log backup or the
information in the backupset table in msdb, you can quickly identify which backup contains the time to which you want to
restore the database. You then need only apply transaction log backups up to that point.

You cannot skip specific transactions. This would compromise the integrity of the data in the database. Any transactions that occur
after the transaction you want to undo might depend on the data modified by the undone transaction.

If you do not want to restore any modifications made to the database after a specific point in time:

Restore the last database backup without recovering the database.

Apply each transaction log backup in the same sequence in which they were created.

Recover the database at the desired point in time within a transaction log backup.

This process also can be used to restore a database and transaction logs if some transaction log backups created after a point in
time are missing or damaged.

Point-in-time recovery is not supported with the Bulk-Logged Recovery model. Bulk-Logged recovery only allows the database to
be recovered to the end of a transaction log backup when the log backup contains bulk changes.

To restore to a point in time

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

RESTORE HEADERONLY

Administering SQL Server (SQL Server 2000)

Recovering to a Named Transaction
Recovering to a Named Transaction

Microsoft® SQL Server™ 2000 supports the insertion of named marks into the transaction log to allow recovery to that specific
mark. Log marks are transactional and are inserted only if their associated transaction commits. As a result, marks can be tied to
specific work, and you can recover to a point that includes or excludes this work.

Before inserting named marks into the transaction log, consider the following:

Because transaction marks consume log space, use them only for transactions that play a significant role in the database
recovery strategy.

For each marked transaction that commits, a row is inserted in the logmarkhistory table in msdb.

If a marked transaction spans multiple databases on the same database server or on different servers, the marks must be
recorded in the logs of all the affected databases. For more information, see Backup and Recovery of Related Databases.

Inserting Named Marks into a Transaction Log

To insert marks into the transaction logs, use the BEGIN TRANSACTION statement and the WITH MARK [description] clause.
Because the name of the mark is the same as its transaction, a transaction name is required. The optional description is a textual
description of the mark.

The transaction log records the mark name, description, database, user, datetime information, and the Log Sequence Number
(LSN). To allow their reuse, the transaction names are not required to be unique. The datetime information is used along with the
name to uniquely identify the mark.

Recovering to a Mark

There are two ways to recover to a mark in the log:

Use RESTORE LOG and the WITH STOPATMARK='mark_name' clause to roll forward to the mark and include the
transaction that contains the mark.

Use RESTORE LOG and the WITH STOPBEFOREMARK='mark_name' clause to roll forward to the mark and exclude the
transaction that contains the mark.

The WITH STOPATMARK and WITH STOPBEFOREMARK clauses support an optional AFTER datetime clause. If AFTER datetime is
omitted, recovery stops at the first mark with the specified name. If AFTER datetime is specified, recovery stops at the first mark
with the specified name on or after datetime.

Note Recovering to a mark is subject to the same restrictions as point-in-time recovery. Specifically, recovering to a mark is
disallowed during intervals in which the database is undergoing operations that are bulk-logged.

Administering SQL Server (SQL Server 2000)

Recovery Paths
Recovery Paths

A new recovery path is created if you recover a database to an earlier point in time and begin using the database from that point.
This recovery path will contain new transactions that make it unique. If you need to restore the database again, it is not possible to
combine the data from the two recovery paths. You must restore data along one path or the other.

Note Restoring a full database backup and recovering the database without using any other type of backup does not result in a
new recovery path.

Examples of when a new recovery path is created include:

Restoring a full database backup and a differential backup and recovering the database without applying existing
transaction log backups.

Recovering the database at the end of a differential backup other than the most recent differential backup.

Recovering the database at the end of a transaction log backup other than the most recent transaction log backup.

Recovering the database at a specific time or a marked transaction within a transaction log backup.

In the example above, a Full Database Backup and a sequence of four Log Backups are created. The database is then restored to
the end of Log Backup 2 by restoring the Full Database Backup, Log Backup 1, and Log Backup 2. The database is recovered at this
point, creating a new recovery path. The database is then used for a time, and two more transaction log backups, Log Backup 5
and Log Backup 6, are created. If you again restore the Full Database Backup and apply transaction log backups, you must follow
one of the two recovery paths:

Log Backup 1, Log Backup 2, Log Backup 3, and Log Backup 4

-or-

Log Backup 1, Log Backup 2, Log Backup 5, and Log Backup 6

The database can be recovered at any point in time along either path, but it is not possible to combine data from the two. For
example, you cannot restore Log Backups 1 through 6 in sequence because Log Backups 3 and 4 contain data that is inconsistent
with Log Backups 5 and 6.

Administering SQL Server (SQL Server 2000)

Partial Database Restore Operations
Application or user errors often affect an isolated portion of the database, such as a table. To support recovery from these events,
Microsoft® SQL Server™ provides a mechanism to restore part of the database to another location so that the damaged or
missing data can be copied back to the original database. For example, if an application erroneously dropped a table, you may
want to restore only the part of the database that contained the table. Restoring log or differential backups can bring the table to a
point prior to when the table was dropped. Then the content of the table can be extracted and reloaded into the original database.

Performing a partial restore operation is also useful when you are:

Creating a subset of a database on another server for development or reporting purposes.

Restoring archived data.

Partial restore operations work with database filegroups. The primary filegroup is always restored, along with the files that you
specify and their corresponding filegroups. The result is a subset of the database. Filegroups that are not restored are marked as
offline and are not accessible.

Note Because the primary file is restored, all catalogs (except full-text catalogs) are restored, even those associated with files that
are not included in the restore operation.

Partial restore operations are accomplished with the PARTIAL clause of the RESTORE statement. You can also use the PARTIAL
option when restoring a full database backup. Partial database restore of file backups is not supported.

To perform a partial restore operation

1. Execute the RESTORE DATABASE statement using a full database backup, specifying:

The name of the database to restore. Specify a new name for the database, unless you are planning to overwrite the
original database or are restoring the database on a different server.

The backup device from which the database backup will be restored.

The FILEGROUP clause for each file or filegroup to restore.

Note If a file is specified, all of the files in its filegroup are also restored.

The MOVE clause if you are restoring the files in a new location.

The PARTIAL clause.

The NORECOVERY clause, if there are transaction log or differential backups to be applied. Otherwise, specify
RECOVERY.

2. Optionally, execute the RESTORE DATABASE statement to restore a differential database backup, specifying:

The name of the database to which the differential database backup will be applied.

The backup device where the differential database backup will be restored from.

The NORECOVERY clause, if you have transaction log backups to apply after the differential database backup is
restored; otherwise specify the RECOVERY clause.

3. Execute the RESTORE LOG statement to apply each transaction log backup, specifying:

The name of the database to which the log is to be applied.

The backup device from which the log backup will be restored.

The NORECOVERY clause, if there are other log backups to be applied. Otherwise, specify RECOVERY.

Examples

This example performs a partial restore operation in a database, named mywind. mywind is using the Full Recovery model. The
database is created on two filegroups, new_customers, which contains the file mywind_data_1, and sales, which contains the
file mywind_data_2:

CREATE DATABASE mywind
GO

ALTER DATABASE mywind ADD FILEGROUP new_customers
ALTER DATABASE mywind ADD FILEGROUP sales
GO

ALTER DATABASE mywind ADD FILE
 (NAME='mywind_data_1',
 FILENAME='g:\mw.dat1')
 TO FILEGROUP new_customers
ALTER DATABASE mywind
 ADD FILE
 (NAME='mywind_data_2',
 FILENAME='g:\mw.dat2')
 TO FILEGROUP sales
GO

A full database backup is performed. Then the t1 table is created on new_customers and the t2 table is created on sales. The
transaction log is backed up:

BACKUP DATABASE mywind
 TO DISK ='g:\mywind.dmp'
 WITH INIT
GO

USE mywind
GO

CREATE TABLE t1 (id int) ON new_customers
CREATE TABLE t2 (id int) ON sales
GO

BACKUP LOG mywind TO DISK='g:\mywind.dmp'
WITH NOINIT
GO

At some point, it becomes necessary to restore the t2 table on the sales filegroup. RESTORE FILELISTONLY lists the database files
and the filegroups in which they reside. RESTORE HEADERONLY lists the contents of the backup medium:

RESTORE FILELISTONLY FROM DISK='g:\mywind.dmp'
GO
RESTORE HEADERONLY FROM DISK='g:\mywind.dmp'
GO

The RESTORE DATABASE statement restores the database under a different name and the sales filegroup using the WITH
PARTIAL and NORECOVERY options. In addition, the primary file and filegroup (mywind), the log (mywind_log), and all files in
the restored filegroup (in this example, mywind_data_2 is the only file in sales) are moved to a new location. The log is then
recovered:

RESTORE DATABASE mywind_part
 FILEGROUP = 'sales'
 FROM DISK='g:\mywind.dmp'
 WITH FILE=1,NORECOVERY,PARTIAL,
 MOVE 'mywind' TO 'g:\mw2.pri',
 MOVE 'mywind_log' TO 'g:\mw2.log',
 MOVE 'mywind_data_2' TO 'g:\mw2.dat2'
GO

RESTORE LOG mywind_part
 FROM DISK = 'g:\mywind.dmp'
 WITH FILE = 2,RECOVERY
GO

Notice that t2 is accessible after the partial restore operation.
SELECT COUNT(*) FROM mywind_part..t2

Here is the result:

0

Notice that t1 is not accessible after the partial restore operation.

SELECT COUNT(*) FROM mywind_part..t1

Here is the resulting message:

The query processor is unable to produce a plan because
the table 'mywind_part..t1' is marked OFFLINE.

See Also

Recovering to a Point In Time

RESTORE

Administering SQL Server (SQL Server 2000)

Recovering a Database Without Restoring
Usually, you recover the database when you restore the last backup. It is also possible to recover the database without restoring a
backup. This is necessary if:

You did not recover the database as part of the last restore, but you now want to use the database.

Your database is in standby mode, and you want to make it updatable without applying another log backup.

To recover a database without restoring

Transact-SQL

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Restarting Interrupted Backup and Restore Operations
If a backup or restore operation is interrupted (for example, if the power fails), you can restart the backup or restore operation
from the point at which it was interrupted. This can be useful if you restore large databases onto other servers as an automated
process. If the automated process fails near the end of the restore operation, you can attempt to restart the restore operation from
where it left off, rather than restoring the whole database from the beginning.

To restart an interrupted backup operation

Transact-SQL

Transact-SQL

SQL-DMO

To restart an interrupted restore operation

Transact-SQL

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Backup and Recovery of Related Databases
Backup and Recovery of Related Databases

If you have two or more databases that must be logically consistent, you may need to implement special procedures to ensure the
recoverability of these databases.

It is important to consider the recovery goals for the entire set of databases. In the worst case you need to consider how long it
will take to recover all of the databases. To avoid excessive recovery with a large number of databases, you need to avoid sharing
media at backup time, and you need sufficient hardware to restore the databases in parallel.

Three potential related database scenarios are:

You experience media failure that affects one or more of the databases, but the transaction log(s) are not damaged. You
want to recover to current time.

One or more transaction logs are destroyed. You need to restore the set of databases to a consistent state at the time of
your last log backup.

You need to restore the entire set of databases to a mutually consistent state at some earlier point in time.

In all three of these cases, you must be using the Full Recovery model for these databases. For more information, see Full
Recovery.

The first scenario does not require you to implement any special recovery procedures. To recover the damaged databases, back
up the tail of the log, restore the damaged files or the database, and then roll forward using transaction log backups. The
undamaged databases require no action.

The other two scenarios require you to use a special procedure to ensure recoverability: marking transactions in the databases.

Marked Transaction Basics

You can mark transactions across related databases and use these marked transactions to recover related databases to the same
transaction-consistent point in time. Accomplish this by placing distributed marks across all databases before backing up the log
in any database. This will ensure that all log backups have a mark that will appear in all databases. Synchronized backups are not
necessary. Instead, placing marks in the transaction log allows synchronization during restore. Use the Full Recovery model to
ensure that all the marks will be valid.

Important Related database recovery does not allow recovery to a specific point in time. Recovery of related databases can only
be accomplished by recovering to a marked transaction.

An example of related database recovery is a bank that has a database containing checking account data and another database
containing savings account data. The two databases are located on different servers, and there are transactions that transfer funds
back and forth between checking accounts and savings accounts. When the databases are backed up while fund transfer
transactions are active in the system, even if the databases are backed up at the same time, there is a good chance that some
transfer transactions will have committed in one database but not the other. Marked transactions can be used to backup and later
restore these databases to a point where the outcome of all transactions is the same in both of the restored databases.

For this example, the backup strategy would be:

1. Set the recovery model to Full for both databases.

2. Back up each database.

Databases can be backed up in series or in parallel.

3. Prior to backing up the transaction log, run a marked transaction that spans each database.

4. Back up the transaction log on each database.

To restore the backup:

1. Restore each database backup.

2. Restore each log backup, stopping at the marked transaction.

3. Recover each database.

In the event of a media failure, if you want to recover all the databases to a marked transaction, you must determine the most
recent marked transaction that is available in all of the transaction logs. This information is stored in the logmarkhistory table,
which is in the msdb database, on all of the servers.

When you have determined the marked transaction to which you want to restore:

1. Identify the log backups for all related databases containing this mark.

2. Create transaction log backups on the undamaged databases as required.

3. Resolve hardware problems.

4. Restore and recover all related databases to the target mark.

Creating Marked Transactions

The statement BEGIN TRAN new_name WITH MARK can be nested within an already existing transaction. Upon doing so,
new_name becomes the mark name for the transaction, despite the name that the transaction may already have been given.
Issuing a second, nested BEGIN TRAN...WITH MARK will result in a warning (not error) message:

Server: Msg 3920, Level 16, State 1, Line 2
WITH MARK option only applies to the first BEGIN TRAN WITH MARK.
The option is ignored.

The transaction mark is only placed in the logs of databases that are updated by the marked transaction. In addition, the only
databases that will contain the mark are those on the server where the BEGIN TRAN...WITH MARK statement was executed. The
following example shows how to put a mark in multiple databases:

BEGIN TRAN T1
UPDATE db1.dbo.table1 set column1 = 2
BEGIN TRAN M2 WITH MARK
UPDATE db2.dbo.table1 set column1 = 2
UPDATE server2.db21.dbo.table1 set column1 = 2
SELECT * from db3.dbo.table1
COMMIT TRAN M2
UPDATE db4.dbo.table1 set column1 = 2
COMMIT TRAN T1

In this example the name of the mark is M2, and it will be placed in the logs of databases db1, db2, and db4. The mark is placed in
the logs when the transaction commit log record is generated for the COMMIT TRAN T1 statement. db1 is marked even though
the update was executed before the transaction was actually marked. db3 is not marked, despite having been accessed, because
no update was made in db3. Also, even though db21 on another server was updated within the transaction, it will not be marked
because no BEGIN TRAN...WITH MARK was actually executed by server2.

As indicated in the example, a transaction mark name is not automatically distributed to another server as the transaction spreads
to the other server. In order to force the mark's spread to the other servers, a stored procedure must be written which contains a
BEGIN TRAN name WITH MARK. That stored procedure must then be executed on the remote server under the scope of the
transaction in the originating server. For example, consider a partitioned database that exists on multiple instances of Microsoft®
SQL Server™. On each instance is a database named coyote. First, create stored procedure sp_SetMark in every database:

CREATE PROCEDURE sp_SetMark
@name nvarchar (128)
AS
BEGIN TRANSACTION @name WITH MARK
UPDATE coyote.dbo.Marks SET one = 1
COMMIT TRANSACTION
GO

Next, create stored procedure sp_MarkAll containing a transaction that will place a mark in every database. sp_MarkAll can be
run from any of the instances:

CREATE PROCEDURE sp_MarkAll
@name nvarchar (128)
AS
BEGIN TRANSACTION
EXEC instance0.coyote.dbo.sp_SetMark @name

EXEC instance1.coyote.dbo.sp_SetMark @name
EXEC instance2.coyote.dbo.sp_SetMark @name
COMMIT TRANSACTION
GO

When a marked transaction is committed, the commit log record for each database in the marked transaction is placed in the log
at a point where there are no in-doubt transactions in any of the logs. At this point, it is guaranteed that there are no transactions
that appear as committed in one log, but not committed in another log. The following steps accomplish this during the commit of
a marked transaction:

Note The commit of a distributed transaction is done in two phases: prepare and commit.

1. Prepare phase of a marking transaction will stall all new prepares and commits.

2. Only commits of already prepared transactions are allowed to continue.

3. Marking transaction then waits for all prepared transactions to drain (with time out).

4. Marked transaction is prepared and committed.

5. The stall of new prepares and commits is removed.

The stalls generated by marked transactions that span multiple databases can reduce the transaction processing performance of
the server.

While rare in practice, it is possible for the commit of a distributed (cross-server) marked transaction to deadlock with other
distributed marked transactions that are committing at the same time. When this happens, the marking transaction will be chosen
as the deadlock victim and will be rolled back. When this error occurs, the application can retry the marked transaction. When
multiple marked transactions attempt to commit concurrently, there is a higher probability of deadlock. Thus, running concurrent
marked transactions is not recommended.

If the database is using log backups, and a log backup chain is active, log marks are traced in the logmarkhistory table:

In the background after a transaction commits.

One row per marked database, containing mark name, description, commit LSN, time.

Time is computed before the commit record is generated.

All entries for a distributed mark have the same time in a given msdb database.

All times are before the timestamp in the commit log record.

See Also

BEGIN TRANSACTION

RESTORE

Distributed Transactions Architecture

Administering SQL Server (SQL Server 2000)

Managing Backups
Manage your backups carefully to ensure that you can restore your system when needed. Each backup contains the descriptive
text you provided when you created the backup, as well as expiration information. This information can be used to:

Identify a backup.

Determine when the backup can be safely overwritten.

Identify all the backups on a backup medium, such as a tape, to determine which backup needs to be restored.

Additionally, the msdb database contains a complete history of all backup and restore operations on the server. SQL Server
Enterprise Manager uses this information to suggest and execute a restore plan that can be used if a database needs to be
restored. For example, if a database backup for a user database is created every night, and transaction log backups are created
every hour during the day, this backup history information is stored in the msdb database. If the user database needs to be
restored, SQL Server Enterprise Manager can use the history information stored in msdb to apply all the transaction log backups
that relate to a specific database backup when the database backup is restored.

Note If the msdb database needs to be restored, any backup history information saved since the last backup of msdb was
created is lost.

When working with backups:

Maintain backups in a secure place, preferably at a site different from the site where the data resides.

Keep older backups for a designated amount of time in case the most recent backup is damaged, destroyed, or lost.

Establish a system for overwriting backups, reusing the oldest backups first.

Use expiration dates on backups to prevent premature overwriting.

Label backup media to prevent overwriting critical backups. This allows for easy identification of the data stored on the
backup media or the specific backup set.

See Also

Using Backup Media

Using Media Sets and Families

Viewing Information About Backups

Administering SQL Server (SQL Server 2000)

Backup Devices
When creating backups, you must select a backup device for the data to be backed up to. Microsoft® SQL Server™ 2000 can back
up databases, transaction logs, and files to disk and tape devices.

Disk Devices

Disk backup devices are files on hard disks or other disk storage media and are the same as regular operating system files.
Referring to a disk backup device is the same as referring to any other operating system file. Disk backup devices can be defined
on a local disk of a server or on a remote disk on a shared network resource, and they can be as large or as small as needed. The
maximum file size is equivalent to the free disk space available on the disk.

If the backup is to be performed over the network to a disk on a remote computer, use the universal naming convention (UNC)
name in the form \\Servername\Sharename\Path\File to specify the location of the file. As with writing files to the local hard disk,
the appropriate permissions needed to read or write to the file on the remote disk must be granted to the user account used by
SQL Server.

Because backing up data over a network can be subject to network errors, verify the backup operation after completion. For more
information, see Verifying Backups.

Important Backing up to a file on the same physical disk as the database is not recommended. If the disk device containing the
database fails, there is no way to recover the database because the backup is located on the same failed disk.

Tape Devices

Tape backup devices are used in the same way as disk devices, with the exception that:

The tape device must be connected physically to the computer running an instance of SQL Server.

Backing up to remote tape devices is not supported.

If a tape backup device is filled during the backup operation, but more data still needs to be written, SQL Server prompts for
a new tape and continues the backup operation.

Note Backups to tape devices cannot be performed on instances of SQL Server 2000 running on Microsoft Windows® 98.

To back up SQL Server (running on Microsoft Windows NT® 4.0 or Windows 2000) data to tape, use a tape backup device or tape
drive supported by Windows NT 4.0 or Windows 2000. Additionally, use only the recommended tapes for the specific tape drive
(as suggested by the drive manufacturer). For more information about installing a tape drive, see the Windows NT 4.0 and
Windows 2000 documentation.

Physical and Logical Devices

SQL Server identifies backup devices using either a physical or logical device name.

A physical backup device is the name used by the operating system to identify the backup device, for example,
C:\Backups\Accounting\Full.bak.

A logical backup device is an alias, or common name, used to identify the physical backup device. The logical device name is
stored permanently in the system tables within SQL Server. The advantage of using a logical backup device is that it can be
simpler to refer to than a physical device name. For example, a logical device name could be Accounting_Backup, but the physical
device would be C:\Backups\Accounting\Full.bak.

When backing up or restoring a database, you can use either physical or logical backup device names interchangeably.

For example, execute the BACKUP statement with either the logical or physical device name:

-- Specify the logical backup device.
BACKUP DATABASE accounting
 TO Accounting_Backup
-- Or, specify the physical backup device.
BACKUP DATABASE accounting
 TO DISK = 'C:\Backups\Accounting\Full.Bak'

To create a logical disk backup device

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a logical tape backup device

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To delete a logical backup device

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

BACKUP

Backup Devices

RESTORE

Creating SQL Server File Permissions

Using Multiple Media or Devices

Administering SQL Server (SQL Server 2000)

Using Backup Media
The backup media is the actual physical storage used by the backup device to store the backup. Backup media can be either disk
or tape.

For example, a backup device might be the file C:\Backups\Accounting\Full.bak. The backup media is the disk containing the file.
Similarly for tape, a backup device might be the \\.\TAPE0 tape device on the local computer. The backup media are the physical
tapes used to store the backup.

This section discusses the following aspects of working with backup media.

Topic Description
Using Media Sets and Families Microsoft® SQL Server™ uses media sets,

families, sequence numbers and other
methods to properly organize backups
and ensure correct media is being used
for each backup and restore operation.

Initializing Backup Media Before using the backup media for the
first time, SQL Server must initialize, or
format, the media and write a media
header.

Password Protection SQL Server 2000 allows backups to be
protected with a password. Both the
media and the backup itself can be
password protected.

Overwriting Backup Media SQL Server has safeguards to prevent you
from accidentally overwriting media.
Additionally, SQL Server can automatically
overwrite backup sets that have reached a
predefined expiration date.

Appending Backup Sets New backup sets can be appended to
existing media to make the best possible
use of the available space.

Identifying the Backup Set to Restore Backup sets are numbered so that users
can specify which backup set on the media
is to be restored.

See Also

BACKUP

RESTORE

Using Media Sets and Families

Administering SQL Server (SQL Server 2000)

Using Media Sets and Families
Using Media Sets and Families

A media set can contain one or more backup sets and describes all of the media used by those backup sets, regardless of the
number of media or backup devices involved. For example, if four tape backup devices are used when creating a database backup,
and five tapes per tape backup device are used to store the backup, the media set contains 20 tapes.

A media family describes all the media used by a single backup device for a single backup set. In the example earlier, there are
four media families with each set of five tapes used by each tape backup device comprising one media family.

The initial media is the first media in a media family. If the initial media becomes full during the backup operation, more media is
used until the backup operation is complete. All media in a media family except the initial media is described as
continuation media.

Note Only tape backup devices use continuation media, allowing Microsoft® SQL Server™ to continue writing the backup after
the initial tape is full.

To distinguish between each physical medium used within a media family, each medium is tagged with a sequence number to
specify the order in which the media were used. The initial media is tagged with 1, the second media (the first continuation media)
is tagged with 2, and so on. These sequence numbers are used when the backup set is restored to ensure that the operator
restoring the backup mounts the correct media in the correct order. Additionally, media families within a media set are numbered
sequentially.

When appending a backup set to a media set containing multiple media families, you must mount the last media in the family. If
the last media is not mounted, SQL Server scans forward to the end of the media, requiring media to be changed until the last
media in the family is mounted correctly.

Each SQL Server backup is stored on a media set, regardless of the number of backup devices used by the individual backup
operation. Examples of media sets include:

A single disk file.

A single tape.

A set of tapes written by one backup device. This set of tapes consists of a single media family (an initial media and one or
more continuation media).

A set of tapes written by four backup devices. Each set of tapes written by one backup device is the media family. Each
media family contains an initial media and possibly one or more continuation media.

A set of three disk files, used by one or more backup operations, with each backup operation using three backup devices.

When using multiple backup devices:

The entire media set created by a backup operation must be used by all subsequent backup operations. For example, if a
media set was created using two tape backup devices, all subsequent backup operations involving the same media set must
use two backup devices.

When restoring using tape devices, it is not necessary to use the same number of backup devices used by the media set
when the backup was created. For example, restoring using fewer backup devices may be necessary when moving a
database to another server, because the server may have fewer physical backup devices. You can restore media families in
parallel. However, you must complete restoring an entire media family before starting another on a given tape device.

See Also

Using Backup Media

Administering SQL Server (SQL Server 2000)

Initializing Backup Media
Initializing Backup Media

When creating a backup on a tape backup device for the first time, Microsoft® SQL Server™ needs to initialize the backup media
before the backup can be created. Initializing media causes a media header to be written and deletes any existing media header,
effectively deleting the previous contents of the tape. When initialized, previous information on the tape cannot be retrieved.

Initializing disk media involves only the backup device file(s) specified by the backup operation. Other files on the disk are
unaffected. When using backup devices for the first time, SQL Server automatically creates the file(s) needed by the backup
device(s) for the backup operation. Reinitializing disk backup devices overwrites the contents of the files used by the backup
devices and writes a new media header.

To initialize media for the first time when creating a backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Password Protection
Password Protection

Microsoft® SQL Server™ 2000 supports password protection for backup media and backup sets. Passwords are not required to
perform backup operations, but they provide an added level of security. You can use them in addition to using SQL Server
security roles. The use of password protection helps guard against:

Unauthorized restoration of databases.

Unauthorized appends to the media.

Unintentional overwriting of the media.

Important Password security does not prevent overwriting the media by formatting it or using it for a continuation volume.
Additionally, specifying a password does not encrypt the data in any way.

Passwords can be used for either media sets or backup sets:

Media set passwords protect all the data saved to that media. The media set password is set when the media header is
written; it cannot be altered. If a password is defined for the media set, the password must be supplied to perform any
append or restore operation.

You will only be able to use the media for SQL Server backup and restore operations. Specifying a media set password
prevents a Microsoft Windows NT® 4.0 or Windows® 2000 backup from being able to share the media.

Backup set passwords protect only a particular backup set. Different backup set passwords can be used for each backup set
on the media. A backup set password is set when the backup set is written to the media. If a password is defined for the
backup set, the password must be supplied to perform any restore of that backup set.

Administering SQL Server (SQL Server 2000)

Overwriting Backup Media
Overwriting Backup Media

By overwriting backups on media, the existing contents of the backup set are overwritten with the new backup and are no longer
available. For disk backup media, only the files used by the backup device(s) specified in the backup operation are overwritten;
other files on the disk are unaffected. When overwriting backups, the existing media header can be preserved, and the new
backup is created as the first backup on the backup device. If there is no existing media header, a valid media header with an
associated media name and media description is written automatically. If the existing media header is invalid, the backup
operation terminates.

Backup media is not overwritten if either of the following conditions is met:

The existing backups on the media have not expired.

The expiration date specifies the date the backup expires and can be overwritten by another backup. You can specify the
expiration date when a backup is created. By default, the expiration date is determined by the media retention option set
with sp_configure.

The media name, if provided, does not match the name on the backup media.

The media name is a descriptive name used for easy identification of the media.

However, these checks can be explicitly skipped if you are sure you want to overwrite the existing media (for example, if you know
that the backups on the tape are no longer needed).

If the backup media is password protected by Microsoft® Windows NT® 4.0 or Windows® 2000, Microsoft SQL Server™ does
not write to the media. To overwrite media that is password protected, you need to reinitialize the media.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

sp_configure

Administering SQL Server (SQL Server 2000)

Appending Backup Sets
Appending Backup Sets

Backups performed at different times from the same or different databases can be stored on the same media. Additionally, data
other than Microsoft® SQL Server™ data can be stored on the same media, such as Microsoft Windows NT® 4.0 file backups. By
appending a new backup set to existing media, the previous contents of the media remain intact, and the new backup is written
after the end of the last backup on the media.

By default, SQL Server always appends new backups to media. Appending can occur only at the end of the media. For example, if
a media contains five backup sets, it is not possible to skip the first three backup sets to overwrite the fourth backup set with a
new backup set.

If you use BACKUP WITH NOREWIND for a tape backup, the tape will be left open at the end of the operation. This allows you to
append further backups to the tape without rewinding the tape and then scanning forward again to find the last backup set. A list
of currently open tapes can be found by querying the sysopentapes table in the master database.

Windows NT 4.0 and Microsoft Windows® 2000 backups and SQL Server backups are not interoperable. Though media can be
shared between the two, a SQL Server backup cannot be used to backup Windows NT 4.0 data. You can use NTBackup to backup
database files if an instance of SQL Server is not running. Do not rely on file-level backups using NTBackup if an instance of SQL
Server is running.

To append a new backup to existing media

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

BACKUP

Administering SQL Server (SQL Server 2000)

Identifying the Backup Set to Restore
Identifying the Backup Set to Restore

Each backup set on media, including foreign backup sets such as Microsoft® Windows NT® 4.0 file backups, is numbered. This
allows the backup set you want to restore to be referenced easily. For example, the following media contains four backup sets:
two Microsoft SQL Server™ backups and two foreign backup sets (for example, Windows NT 4.0 files).

To restore a specific backup set, specify the position number of the backup set you want to restore. For example, to restore the
second SQL Server backup set, the fourth backup set on the media, specify 4 as the backup set to restore.

To restore a specific database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

BACKUP

Viewing Information About Backups

Administering SQL Server (SQL Server 2000)

Backup Formats
All media used for a backup or restore operation use a standard backup format called Microsoft® Tape Format (MTF). MTF
enables Microsoft SQL Server™ backups to coexist on the same media as backups that are not SQL Server backups (foreign
backup sets), provided that the backups use MTF. For example, SQL Server backups can exist on the same media as Microsoft
Windows NT® 4.0 and Windows® 2000 backups.

Integrating any backups supporting MTF onto a single tape reduces backup media storage requirements, costs, and
administrative overhead because the same tape media can be used to store different backups from different applications.

All media begins with a media header describing the media. The media header is usually written one time and remains intact for
the life of the media. This allows each piece of media to be tracked. The media header can contain a media name, the name given
to the particular media, and is assigned by the first person using the media. Consistent use of media names helps identify the
media and prevent errors.

See Also

BACKUP

Using Backup Media

RESTORE HEADERONLY

RESTORE LABELONLY

Administering SQL Server (SQL Server 2000)

Viewing Information About Backups
After backups are created, you may need to view information about the backups, such as:

A list of the database and transaction log files contained in a specific backup set.

The backup header information for all backups on a particular backup media.

The media header information for a particular backup medium.

Listing Database and Transaction Log Files

Information displayed when listing the database and transaction log files in a backup includes the logical name, physical name,
file type (database or log), filegroup membership, file size (in bytes), the maximum allowed file size, and the predefined file
growth size (in bytes). This information is useful to determine the names of the files in a database backup before restoring the
database backup when:

You have lost a disk drive containing one or more of the files for a database.

You can list the files in the database backup to determine which files were affected, and then restore those files onto a
different drive when restoring the entire database, or restore just those files and apply any transaction log backups created
since the database was backed up.

You are restoring a database from one server onto another server, but the directory structure and drive mapping does not
exist on the server.

Listing the files in the backup allows you to determine which files are affected. For example, the backup contains a file that it
needs to restore to the E:\ drive, but the destination server does not have an E:\ drive. The file needs to be relocated to
another location, such as the C:\ drive, when the file is restored.

Viewing Header Information

Viewing the backup header displays information about all Microsoft® SQL Server™ and foreign backup sets on the media.
Information displayed includes the types of backup devices used, the types of backup (for example, database, transaction, file, or
differential database), and backup start and stop date/time information. This information is useful when you need to determine
which backup set on the tape to restore, or the backups that are contained on the media.

Note Viewing backup header information can take a long time for high-capacity tapes because the entire media needs to be
scanned to display information about each backup on the media.

Viewing the media header displays information about the media itself, rather than the backups on the media. Media header
information displayed includes the media name, description, name of the software that created the media header, and the date
the media header was written. For more information about a detailed list of the header information displayed, see RESTORE
LABELONLY.

Note Viewing the media header is quick because only the media header is read after it has been located one time at the
beginning of the media.

The following chart provides an example of the differences between viewing backup header and media header information. In this
example, restoring the backup header information for the tape media containing two SQL Server backups and two foreign
(Microsoft Windows NT® 4.0 or Microsoft Windows® 2000) backups retrieves information for all backup sets on the media,
requiring that the entire tape be scanned. However, restoring the media header requires only information from the single media
header written at the beginning of the tape to be retrieved.

To view the data and log files in a backup set

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view backup header information

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view media header information

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Verifying Backups
Although not required, verifying a backup checks that the backup is intact physically, and that you can rely on your backup in the
event you need to use it. Verifying a backup involves:

Checking the backup set to ensure that all files have been written.

Checking to ensure that the files in the backup are readable.

Verifying a backup does not check that the structure of the data contained within the backup set is correct. For example, although
the backup set may have been written correctly, it may be possible for some type of database integrity problem to be present
within the database files that comprise the backup set. To verify the structure of the data before creating a backup, you can
perform database consistency checks. For more information about running database consistency checks, see Data Integrity
Validation.

To verify the backup set

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Backing Up and Restoring System Databases
The system databases need to be backed up just as user databases are backed up. This allows the system to be rebuilt in the event
of system or database failure, for example, if a hard disk fails. It is important to have regular backups of the following system
databases:

master

msdb

distribution (when the server is configured as a replication Distributor)

model (if modified)

Note It is not possible to back up the tempdb system database. tempdb is rebuilt each time an instance of Microsoft® SQL
Server™ is started. When an instance of SQL Server is shut down, any data in tempdb is deleted permanently.

Administering SQL Server (SQL Server 2000)

Backing Up the master Database
The master database must be backed up. If master is damaged in some way, for example because of media failure, an instance of
Microsoft® SQL Server™ may not be able to start. In this event, it is necessary to rebuild master, and then restore the database
from a backup.

Consider backing up master after any statement or system procedure is executed that changes information in master, for
example, changing a server-wide configuration option. If master is not backed up after it changes and then the backup is
restored, any changes since the last backup are lost. For example, a user database is created after master is backed up and tables
and data are added to the database. If master is then restored because of a hard disk failure, the user database will not be known
to SQL Server because there are no entries in the restored master database for this new user database. In this case, if all database
files comprising the user database still exist on the disk(s), the user database can be created by attaching the database files. For
more information, see Attaching and Detaching Databases.

Note It is recommended that user objects not be created in master; otherwise master needs to be backed up more frequently.
Additionally, user objects compete with the system objects for space.

The types of operations that cause master to be updated, and that require a backup to take place, include:

Creating or deleting a user database.

If a user database grows automatically to accommodate new data, this does not affect master. Deleting files and filegroups
does not affect master.

Adding logins or other login security-related operations.

Database security operations, such as adding a user to a database, do not affect master.

Changing any server-wide or database configuration options.

Creating or removing logical backup devices.

Configuring the server for distributed queries and remote procedure calls, such as adding linked servers or remote logins.

Note Only full database backups of master can be created.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Restoring the master Database

Administering SQL Server (SQL Server 2000)

Restoring the master Database
If master is damaged in some way, for example due to media failure, an instance of Microsoft® SQL Server™ may not be able to
start if the damage is severe. There are two methods to return master to a usable state:

Restore from a current backup.

Rebuild completely using the Rebuild Master utility.

Important Keep a current backup of master. Rebuilding master using the Rebuild Master utility causes all data stored
previously in master to be lost permanently. SQL Server will still be able to access other databases.

If an instance of SQL Server can be started because master is accessible, and at least partly usable, it is possible to restore master
from a full database backup. However, if an instance of SQL Server cannot be started because of severe damage to master, it is
not possible to restore a backup of master immediately because an instance of SQL Server needs to be running to restore any
database. The master database first needs to be rebuilt using the Rebuild Master utility, and the current database backup can be
restored as normal.

Administering SQL Server (SQL Server 2000)

Restoring the master Database from a Current Backup
Restoring the master Database from a Current Backup

If there have been any changes to master after the database backup was created, those changes are lost when the backup is
restored. Therefore, it is necessary to re-create those changes manually after restoring master from a backup by executing the
statements necessary to re-create the missing changes. For example, if any Microsoft® SQL Server™ logins have been created
after the backup was performed, those are lost when master is restored. Re-create the logins using SQL Server Enterprise
Manager or the original scripts used to create the logins.

The master database can only be restored from a backup created on an instance of SQL Server 2000. Restore of master database
backups which were made on SQL Server version 7.0 or earlier is not supported.

Note Any database users previously associated with logins that need to be re-created are orphaned because the login is lost. For
information about associating an existing database user to a new SQL Server login, see sp_addlogin. For information about
associating an existing database user with a Microsoft Windows NT® 4.0 or Windows® 2000 user, see sp_grantlogin.

If any user databases were created after master was backed up, those databases cannot be accessed once master is restored
unless:

The databases are restored from backups.

-or-

The databases are reattached to SQL Server. It is recommended that you attach the databases to avoid restore time.

Attaching the database to SQL Server re-creates the system table entries needed and makes the database available in the same
state it was before the master database was restored. It is not necessary to re-create the database first; the files can be attached
without knowing how the database was created, as long as all the files comprising the database are attached.

It is necessary to restore a backup of the database only if the data and transaction log files of the database no longer exist or are
unusable or damaged in some other way due to a media failure.

If any objects, logins, or databases, for example, have been deleted after master was backed up, those objects, logins, and
databases should be deleted from master.

Important If any databases no longer exist, but are referenced in a backup of master that is restored, SQL Server may report
errors when it starts because it cannot find those databases any longer. Those databases should be dropped after the backup is
restored.

After restoring master, the instance of SQL Server is stopped automatically. If you need to make further repairs and wish to
prevent more than a single connection to the server, you should start the server in single user mode again. Otherwise, the server
can be restarted normally. If you choose to restart the server in single-user mode, all SQL Server services (except SQL Server
itself) and utilities, such as the SQL Server Agent, should be stopped because they may try to access the instance of SQL Server.

When master has been restored and any changes have been reapplied, back up master immediately.

To start the default instance of SQL Server in single-user mode

Command Prompt

Command Prompt

To start a named instance of SQL Server in single-user mode

Command Prompt

How to start a named instance of SQL Server in single-user mode (Command Prompt)

To restore the master database

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To attach a database

Transact-SQL

SQL-DMO

See Also

Attaching and Detaching Databases

Starting SQL Server in Single-User Mode

System Tables

Administering SQL Server (SQL Server 2000)

Rebuilding the master Database
Rebuilding the master Database

The master database can be rebuilt using the Rebuild Master utility if:

A current backup of master is not available.

The backup cannot be restored because an instance of Microsoft® SQL Server™ cannot start due to severe damage to
master.

When master has been rebuilt, a current backup of master can be restored or the user databases, backup devices, SQL Server
logins, and so on can be re-created using SQL Server Enterprise Manager or the original scripts used to create those entries.

Important The Rebuild Master utility rebuilds master completely. Because the msdb and model system databases are rebuilt as
well, it will normally be necessary to restore backups of those databases.

The general steps required to rebuild master completely if no backup is available are:

Run the Rebuild Master utility to rebuild the system databases.

Important The compact disc or shared network directory containing the SQL Server installation software is required to
rebuild the master database.

Re-create any necessary backup devices.

Reimplement security operations.

Restore msdb if necessary.

Restore model if necessary.

Restore distribution if necessary.

Restore or attach user databases if necessary.

When master has been re-created and any changes have been reapplied, back up master immediately.

To rebuild the master database

Command Prompt

Command Prompt

To start SQL Server in single-user mode

Command Prompt

Command Prompt

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To attach a database

Transact-SQL

SQL-DMO

See Also

Attaching and Detaching Databases

System Tables

Administering SQL Server (SQL Server 2000)

Backing Up the model, msdb, and distribution Databases
The model, msdb, and distribution databases are backed up in the same way as user databases and should be backed up
regularly if they are changed. These databases perform the following functions:

The model database is the template used by Microsoft® SQL Server™ when creating other databases, such as tempdb or
user databases. When a database is created, the entire contents of the model database, including database options, are
copied to the new database.

The msdb database is used by SQL Server, SQL Server Enterprise Manager, and SQL Server Agent to store data, including
scheduling information and backup and restore history information.

SQL Server automatically maintains a complete online backup and restore history in msdb. This information includes who
performed the backup, at what time, and on which devices or files it is stored. This information is used by SQL Server
Enterprise Manager to propose a plan for restoring a database and applying any transaction log backups. Backup events for
all databases are recorded even if they were created with custom applications or third-party tools. For example, if you use a
Microsoft Visual Basic® application that calls SQL-DMO objects to perform backup operations, the event is logged in the
msdb system tables, the Microsoft Windows® application log, and SQL Server error log.

If you use the backup and restore history information in msdb when recovering user databases, it is recommended that you
use the Full Recovery model for msdb. Additionally, consider placing the msdb transaction log on fault tolerant storage.

The distribution database is used by the replication components of SQL Server, such as the Distribution Agent, to store
such data as transactions, snapshot jobs, synchronization status, and replication history information. Any server configured
to participate either as a remote distribution server or as a combined Publisher/Distributor has a distribution database.

Backup Considerations

It is important to back up model, msdb, or distribution after any operation that updates the database:

If model is damaged in some way due to media failure, and there is no current backup available, any user-specific template
information added to model is lost and needs to be re-created manually.

If msdb is damaged, then any scheduling information used by the SQL Server Agent is lost and needs to be re-created
manually. Backup and restore history information is also lost.

If distribution is damaged, and there is no current backup available, any replication information used by the SQL Server
replication utilities is lost and needs to be re-created manually. For this reason, consider using Full Recovery model for
distribution.

All recovery models are supported for model, msdb and distribution.

Modifying the model, msdb and distribution Databases

The model, msdb and distribution databases can be modified in the following ways:

The model database is modified only by specific user changes.

The msdb database is altered automatically by:
Scheduling tasks.

Storing Data Transformation Services (DTS) packages created with the DTS Import/Export Wizard to an instance of
SQL Server.

Maintaining online backup and restore history.

Replication.
The distribution database is altered automatically by:

The Replication Log Reader Agent utility.

The Replication Distribution Agent utility.

The Replication Snapshot Agent utility.

The Replication Merge Agent utility.

As with master, it is recommended that user objects not be created in msdb or distribution; otherwise msdb and distribution
need to be backed up more frequently. Additionally, user objects compete with the system objects for space.

See Also

Backing Up and Restoring Databases

Backing Up and Restoring Replication Databases

Configuring the SQLServerAgent Service

Replication Overview

System Tables

Using Recovery Models

Administering SQL Server (SQL Server 2000)

Restoring the model, msdb, and distribution Databases
The model, msdb, or distribution database may need to be restored from a backup when:

The master database has been rebuilt using the Rebuild master command prompt utility.

The model, msdb, or distribution database has been damaged, for example, due to media failure.

The model has been modified. In this case, it is necessary to restore model from a backup when you rebuild master
because the Rebuild Master utility deletes and re-creates model.

The model and msdb databases can only be restored from backups created on a Microsoft® SQL Server™ 2000 server. Restore
of backups of these databases made on SQL Server version 7.0 or earlier is not supported.

If msdb contains scheduling or other data used by the system, it is necessary to restore msdb from a backup when you rebuild
master because the utility deletes and re-creates msdb. This results in a loss of all scheduling information, as well as the backup
and restore history. If msdb is not restored, and is not accessible, SQL Server Agent cannot access or initiate any previously
scheduled tasks.

Meta Data Services uses msdb as the default repository database. An open connection between Meta Data Services and msdb
will disrupt an msdb restore. To release the connection, restart Enterprise Manager and then restore msdb. Do not click the Meta
Data Services node in Enterprise Manager until msdb is fully restored.

The distribution database is not rebuilt automatically when the Rebuild Master utility is used to rebuild master; therefore it is
not necessary to restore distribution after rebuilding master. If the distribution database is still intact, distribution can be re-
created automatically by attaching the database to SQL Server. Alternatively, a backup of distribution can be restored instead.

However, if distribution is not re-created by restoring a backup or attaching the database, the SQL Server replication utilities will
not run, preventing data replication. If the distribution database is used for replication by many Publishers, this can affect many
systems.

You cannot restore a database that is being accessed by users. Therefore, when restoring msdb, SQL Server Agent should be
stopped. If SQL Server Agent is running, it may access msdb. Similarly, when restoring distribution, the SQL Server replication
utilities should be stopped. If the SQL Server replication utilities are running, they may access distribution.

Replication utilities that must be stopped are:

The Replication Log Reader Agent utility.

The Replication Distribution Agent utility.

The Replication Snapshot Agent utility.

The Replication Merge Agent utility.

See Also

Attaching and Detaching Databases

Backing Up and Restoring Replication Databases

Configuring the SQLServerAgent Service

Replication Overview

Administering SQL Server (SQL Server 2000)

Handling Large Mission-Critical Environments
Mission-critical environments often require that databases be available continuously, or for extended periods of time with
minimal down-time for maintenance tasks. Therefore, the duration of unexpected situations, such as a hardware failure, that
require databases to be restored needs to be kept as short as possible. Additionally, mission-critical databases are often large,
requiring longer periods of time to back up and restore. Microsoft® SQL Server™ offers several methods for increasing the speed
of backup and restore operations, thereby minimizing the effect on users during both operations.

The following practices will help:

Use multiple backup devices simultaneously to allow backups to be written to all devices at the same time. Similarly, the
backup can be restored from multiple devices at the same time.

Use a combination of database, differential database, and transaction log backups to minimize the number of backups that
need to be applied to bring the database to the point of failure.

Use file and filegroup backups and transaction log backups, which allows only those files that contain the relevant data,
rather than the entire database, to be backed up or restored.

Use snapshot backups which reduce backup and restore time to a minimum. Snapshot backups are supported by third party
vendors. For more information, see Snapshot Backups.

Administering SQL Server (SQL Server 2000)

Using Multiple Media or Devices
Multiple backup devices can be used for backup and restore operations. This allows Microsoft® SQL Server™ to use parallel I/O
to increase the speed of backup and restore operations because each backup device can be written to or read from at the same
time as other backup devices. For enterprises with large databases, using many backup devices can greatly reduce the time taken
for backup and restore operations. SQL Server supports a maximum of 64 backup devices for a single backup operation.

However, all backup devices used in a single backup (and consequently restore) operation must be of the same type (disk or tape).
For example, to back up the sales_db database daily using database and differential database backups to tape, only multiple tape
drives can be used.

Note Tape backup devices must be attached to the server physically. It is not possible to use tape backup devices on remote
computers.

Creating and restoring backups using multiple backup devices is the same as creating and restoring backups using a single
device. The only difference is that all backup devices involved in the operation, not just one, are specified. For example, if a
database backup is to be created using three tape backup devices such as \\.\TAPE0, \\.\TAPE1, and \\.\TAPE2, each of the tape
devices needs to be specified as part of the backup operation, although fewer tape backup devices can be used when restoring the
backup later.

When creating a backup using multiple backup devices on removable media, each backup media does not need to be the same
size, have the same amount of storage available, or operate at the same speed. If one backup media used by a backup device runs
out of space while a backup is being created, SQL Server stops writing to the backup device and prompts for new media to
continue writing to that backup device. While waiting for new media to be inserted into the backup device, the backup operation
continues writing data to any other backup devices involved in the backup operation, as long as the backup media used by these
devices has space available.

For example, three tape backup devices of equal speed are used to store a database backup. The first two tape media are 10
gigabytes (GB) in size, but the third is only 5 GB in size. If the sales database, which is 20 GB in size, is backed up to all three tape
backup devices simultaneously, the backup operation will stop writing to the third backup device and prompt for a new tape
when 5 GB has been written to the tape. However, the backup operation continues writing data to the other two backup devices.
When the tape media on the third backup device is replaced with a new tape, the backup operation continues writing data to the
third backup device.

Several internal synchronization points occur when a database backup is written to multiple backup devices. The most important
synchronization point occurs when all the data in the database has been backed up, and the transaction log is about to be backed
up. All backup devices used in the backup operation must not be blocked during these synchronization points; otherwise, the
entire backup operation is blocked until all backup media is available. For example, three tape backup devices are used to store a
database backup, and the second tape backup device is blocked, waiting for the existing tape to be replaced because the space on
the tape has been exhausted. If a synchronization point occurs, the entire backup operation will stop until the tape in the second
backup device is replaced.

Important When using multiple backup devices to perform backup operations, the backup media involved can be used only for
SQL Server backup operations. For more information, see Using Backup Media.

See Also

Using Backup Media

Optimizing Backup and Restore Performance

Administering SQL Server (SQL Server 2000)

Reducing Recovery Time
Using database, differential database, and transaction log backups together can reduce the amount of time it takes to restore a
database back to any point in time after the database backup was created. Additionally, creating both differential database and
transaction log backups can increase the robustness of a backup in the event that either a transaction log backup or differential
database backup becomes unavailable, for example, due to media failure.

Typical backup procedures using database, differential database, and transaction log backups create database backups at longer
intervals, differential database backups at medium intervals, and transaction log backups at shorter intervals. For example, create
database backups weekly, differential database backups one or more times per day, and transaction log backups every ten
minutes.

If a database needs to be recovered to the point of failure, for example, due to a system failure:

1. Back up the currently active transaction log. This operation will fail if the transaction log has been damaged.

2. Restore the last database backup created.

3. Restore the last differential backup created since the database backup was created.

4. Apply all transaction log backups, in sequence, created after the last differential backup was created, finishing with the
transaction log backup created in Step 1.

Note If the active transaction log cannot be backed up, it is possible to restore the database only to the point when the last
transaction log backup was created. Changes made to the database since the last transaction log backup are lost and must be
redone manually.

By using differential database and transaction log backups together to restore a database to the point of failure, the time taken to
restore a database is reduced because only the transaction log backups created since the last differential database backup was
created need to be applied. If a differential database backup was not created, then all the transaction log backups created since the
database was backed up need to be applied.

For example, a mission-critical database system requires that a database backup is created each night at midnight, a differential
database backup is created on the hour, Monday through Saturday, and transaction log backups are created every 10 minutes
throughout the day. If the database needs to be restored to its state at 5:19 A.M. on Wednesday:

1. Restore the database backup created on Tuesday night.

2. Restore the differential database backup created at 5:00 A.M. on Wednesday.

3. Apply the transaction log backup created at 5:10 A.M. on Wednesday.

4. Apply the transaction log backup created at 5:20 A.M. on Wednesday, specifying that the recovery process only applies
transactions that occurred before 5:19 A.M.

Alternatively, if the database needs to be restored to its state at 3:04 A.M. on Thursday, but the differential database backup
created at 3:00 A.M. on Thursday is unavailable:

1. Restore the database backup created on Wednesday night.

2. Restore the differential database backup created at 2:00 A.M. on Thursday.

3. Apply all the transaction log backups created from 2:10 A.M. to 3:00 A.M. on Thursday.

4. Apply the transaction log backup created at 3:10 A.M. on Thursday, specifying that the recovery process only applies
transactions that occurred before 3:04 A.M.

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a backup of the currently active transaction log

Transact-SQL

Transact-SQL

SQL-DMO

To restore a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a differential database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To apply a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Transaction Log Backups

Administering SQL Server (SQL Server 2000)

Using File Backups
The files in a database can be backed up and restored individually. Doing this can increase the speed of recovery by allowing you
to restore only damaged files without restoring the rest of the database. For example, if a database is comprised of several files
physically located on different disks and one disk fails, only the file on the failed disk needs to be restored.

File backup and restore operations must be used in conjunction with transaction log backups. For this reason, file backups can
only be used with the Full Recovery and Bulk-Logged Recovery models. For more information on recovery models, see Selecting
a Recovery Model.

File backups offer these advantages:

Recovery from isolated media failures is faster. The damaged file or files can be quickly restored.

File and transaction log backups can be created simultaneously, allowing you to maintain regular log backup schedules.

File backups allow greater flexibility in scheduling and media handling. For example, for very large databases, full database
backups can become unmanageable.

This flexibility also is useful for large databases that contain data with varying update characteristics.

To maximize these advantages, consider your data layout and usage patterns. It is recommended that you:

Back up frequently modified data often.

Back up infrequently modified data less often.

Back up read-only data once.

Note When restoring a file backup, you must roll forward the transaction log to ensure the file is consistent with the rest of the
database. To avoid needing to roll forward many transaction log backups on files that are backed up rarely, use file differential
backups. For more information, see File Differential Backups.

File and filegroup backups are functionally equivalent. A filegroup backup is a single backup of all files in the filegroup and is
equivalent to explicitly listing all files in the filegroup when creating the backup. Files in a filegroup backup can be restored
individually or as a group.

Only one file backup operation can occur at a time. You can backup multiple files in a single operation, but this may extend your
recovery time if you only need to restore a single file, because the entire backup will be read to locate that file.

A complete set of file backups, together with backups of the transaction log covering the time that the file backups were created,
is the equivalent of a database backup.

Note Individual files can be restored from a database backup. This means that you can use database and transaction log backups
as your backup procedure, and still be able to restore individual files. However, it will take longer to locate and restore a file from
a database backup than a file backup.

The primary disadvantage of file backups as compared to database backups is the additional administrative complexity. Care must
be taken to maintain a full set of file backups and covering log backups. A media failure can render an entire database
unrecoverable if there is no backup of the damaged file.

When creating file backups, the transaction log is not captured by the backup operation. Transaction log backups must be created
after a file backup is created. After restoring files, you must bring the database to a consistent state by restoring the transaction
log backups created since the file backups were created.

Recovery time can be reduced through the use of file differential backups. For more information, see File Differential
Backups.

Restoring File Backups

After restoring files, you must restore the transaction log backups created since the file backups were created to bring the
database to a consistent state. The transaction log backup can be rolled forward quickly, because only the changes that apply to
the restored files are applied.

To restore a damaged file or files from file backups:

1. Back up the active transaction log. If you cannot do this because the log has been damaged, you must restore the entire
database.

2. Restore each damaged file from the most recent backup of that file.

3. Restore transaction log backups in sequence, starting with the backup that covers the oldest of the restored files.

4. Restore the backup of the active transaction log created in step 1.

5. Recover the database.

Important Microsoft® SQL Server™ requires that files be recovered to a state consistent with the rest of the database. It is not
possible to stop the recovery of individual files early. For this reason, you must always back up the active transaction log prior to
restoring a file backup. If the transaction log is damaged or if you wish to recover the entire database to a specific point in time,
you must restore the entire set of file backups before you apply transaction log backups. To minimize the risk of transaction log
damage, locate the transaction log on fault tolerant storage.

The procedure for restoring the entire database is similar. The only difference is that all files are restored. File backups can also be
used to restore the database to an earlier point in time. To do this, you must restore a complete set of file backups, then restore
transaction log backups in sequence to reach the desired time. You can stop at a time or a marked transaction.

For more information on point-in-time recovery, see Restoring a Database to a Prior State.

To back up files and filegroups

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To apply a transaction log backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore files and filegroups

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Files and Filegroups

Placing Indexes on Filegroups

Placing Tables on Filegroups

Administering SQL Server (SQL Server 2000)

File Differential Backups
File Differential Backups

You can create a file differential backup to back up only the data changed since the last file backup. File differential backups can
dramatically reduce recovery time by reducing the amount of transaction log that must be restored. In Microsoft® SQL Server™
2000, file differential backups can be extremely fast because SQL Server 2000 tracks changes made since the file was last backed
up. Therefore, the file is not scanned.

Consider file differential backups if:

You are backing up some files much less frequently than others.

Your files are large and the data is updated infrequently, or the same data is updated repeatedly.

You have backed up a read-only file. A recent file differential backup will eliminate the need to apply many log backups to
recover the file.

File differential backups can be used only in conjunction with file backups and are only supported by the Full Recovery and Bulk-
Logged Recovery models. For more information, see Using File Backups and Selecting a Recovery Model.

To restore a damaged file or files from file backups and file differential backups:

1. Back up the active transaction log. If you cannot do this because the log has been damaged, you must restore the entire
database.

2. Restore each damaged file from the most recent file backup of that file.

3. Restore the most recent file differential backup for each file restored in Step 2.

4. Restore transaction log backups in sequence, starting with the backup that covers the oldest of the restored files.

5. Restore the backup of the active transaction log created in Step 1.

6. Recover the database.

The procedure for restoring the entire database is similar. The only difference is that all files are restored, and you can recover to a
specific point in time or a named transaction.

Information about available backups is contained in msdb. If msdb is unavailable, this information can be obtained from the
backup itself.

It is not recommended to use both database differential and file differential backups on the same database.

Administering SQL Server (SQL Server 2000)

Snapshot Backups
Microsoft® SQL Server™ 2000 supports snapshot backup and restore technologies in conjunction with independent hardware
and software vendors. Snapshot backups minimize or eliminate the use of server resources to accomplish the backup. This is
especially beneficial for moderate to very large databases in which availability is extremely important. The primary benefits of this
technology are:

A backup can be created in a very short time, typically measured in seconds, with little or no impact on the server.

Restore can be accomplished from a disk backup just as quickly.

Backup to tape can be accomplished by another host with no impact on the production system.

A copy of a production database can be created instantly for reporting or testing.

Snapshot backups can be created for an entire database or individual files. They are functionally equivalent to conventional full
database and file backups and can be rolled forward using conventional, differential and log backups. Like other backups,
snapshot backups and restores are tracked in msdb.

The snapshot backup and restore functionality is accomplished in cooperation with third party hardware and/or software vendors.
These vendors use features of SQL Server 2000 designed for this purpose. The underlying backup technology creates an
instantaneous copy of the data being backed up. This is typically accomplished by splitting a mirrored set of disks or creating a
copy of a disk block when it is written, preserving the original. At restore time, the original is made available immediately and
synchronizing the underlying disks is done in the background, resulting in almost instantaneous restores.

For more information, see the SQL Server page at the Microsoft Web site. In addition, you can contact your enterprise storage
and/or backup software vendor.

http://www.microsoft.com/isapi/redir.dll?Prd=SQL&Ar=home

Administering SQL Server (SQL Server 2000)

Copying Databases to Other Servers
Creating database backups allows you to copy data from one computer to another. The copied database can be used for testing,
checking consistency, developing software, running reports, or possibly making databases available to remote branch operations.
By copying a database from one computer to another, it is possible to reduce resource contention because processing is offloaded
to other computers. Copied databases restored onto separate computers are often used for read-only operations.

Note With Microsoft® SQL Server™ 2000, the sort order and code page of the database being copied is no longer a concern.
SQL Server now handles multiple collations.

A database can also be copied to another computer to act as a standby server. The database and the transaction logs are copied to
another computer periodically, which can be brought online if the primary computer fails for some reason. The level of
synchronization between the primary computer and the standby server is determined by how often regular backups of the
primary computer are created and then applied to the standby server. For more information, see Using Standby Servers.

Note It is possible to back up and restore databases between computers running an instance of SQL Server on Microsoft
Windows NT® 4.0, Microsoft Windows® 2000, and Windows 98.

Other methods for copying data between multiple instances of SQL Server include using:

The Data Transformation Services (DTS) Import/Export Wizard to copy and modify data between any ODBC, OLE DB, or text
data source and an instance of SQL Server.

The bcp utility to copy data between an instance of SQL Server and a data file, using native, character, or Unicode mode.

The INSERT statement, which uses a distributed query as the select list to extract data from another data source.

The Copy Database Wizard to copy or move databases and associated meta data between servers.

See Also

bcp Utility

DTS Import/Export Wizard

Using Standby Servers

Using the Copy Database Wizard

Administering SQL Server (SQL Server 2000)

Copying Databases
The general steps required to copy a database to another computer are:

1. Back up the database from the source computer running an instance of Microsoft® SQL Server™.

2. Create backup devices, if desired, at the destination computer running an instance of SQL Server.

3. Restore the database backup to the destination computer. It is not necessary to create the files or the database before
restoring the backup.

Re-creating Database Files

Restoring a database automatically creates the files needed by the database backup to restore the backup into. The database files
(hence the database) do not need to be created before restoring a backup. By default, the files created by SQL Server during the
restoration process use the same name and path as the backup files from the original database on the source computer.
Therefore, it is useful to know in advance the files that are created automatically by the restore operation, because:

The file names may already exist on the computer, causing an error.

The directory structure or drive mapping may not exist on the computer.

For example, the backup contains a file that it needs to restore to drive E, but the destination computer does not have a drive
E.

If the database files are allowed to be replaced, any existing database and files with the same names as those in the backup
are overwritten, unless those files belong to a different database.

Moving the Database Files

If the files within the database backup cannot be restored onto the destination computer because of the reasons mentioned
earlier, it is necessary to move the files to a new location as they are being restored. For example:

It may be necessary to restore some of the database files in the backup to a different drive because of capacity
considerations. This is likely to be a common occurrence because most computers within an organization do not have the
same number and size of disk drives or identical software configurations.

It may be necessary to create a copy of an existing database on the same computer for testing purposes. In this case, the
database files for the original database already exist, so different file names need to be specified when the database copy is
created during the restore operation.

Changing the Database Name

The name of the database can be changed as it is restored to the destination computer, without having to restore the database
first and then change the name manually. For example, it may be necessary to change the database name from Sales to
SalesCopy to indicate that this is a copy of a database.

The database name explicitly supplied when restoring a database is used automatically as the new database name. Because the
database name does not already exist, a new one is created using the files in the backup.

Database Ownership

When a database is restored onto another computer, the SQL Server login or Windows NT® 4.0 or Windows® 2000 user who
initiates the restore operation becomes the owner of the new database automatically. When the database is restored, the system
administrator or the new database owner can change database ownership. To prevent unauthorized restores of a database, use
media or backup set passwords. For more information, see Password Protection.

Restoring Full-Text Index Data

If the database being copied contains tables that have been defined for full-text indexing, then the destination computer must also
have Full-Text Search installed and the MSSearch Service started before the full-text catalogs can be re-created and repopulated.

Because the meta data for the full-text index definitions is stored in the system tables of a database, it is useful to know in advance
whether any of the full-text catalogs on the source computer resided on drives and directories other than the default. These
directories or drive mappings may not exist on the destination computer and must be created first. To view the locations of the
full-text catalog(s) on the source computer, execute the sp_help_fulltext_catalogs system stored procedure. The PATH column
value is the location where the full-text catalog will be re-created on the destination computer. If the PATH column value of the
result set is NULL, then this denotes the default full-text catalog location.

To view the data and log files in a backup set

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore files and filegroups over existing files

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore files and filegroups to a new location

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restore a database with a new name

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To restart an interrupted restore operation

Transact-SQL

Transact-SQL

SQL-DMO

To change the owner of a database

Transact-SQL

SQL-DMO

See Also

RESTORE

RESTORE FILELISTONLY

Transaction Log Backups

Administering SQL Server (SQL Server 2000)

Copying Databases from Earlier Versions of SQL Server
In Microsoft® SQL Server™ 2000, you can restore a database backup created using SQL Server version 7.0. You can also use the
Copy Database Wizard to copy databases from SQL Server 7.0. For more information, see Using the Copy Database Wizard.

However, backups of the master, model and msdb created using SQL Server 7.0 cannot be restored by SQL Server 2000. Also, it
is not possible to restore a database backup created using SQL Server version 6.5 or earlier. Database backups created using SQL
Server 6.5 or earlier are in a format incompatible with SQL Server 2000.

You can, however, convert a database created using SQL Server 6.5 or earlier to SQL Server 2000 by doing one of the following:

Upgrading to SQL Server 2000.

Any databases are upgraded automatically. New backups from the upgraded computer running SQL Server can now be
restored into another computer running an instance of SQL Server 2000.

Using the Data Transformation Services (DTS) Import/Export Wizard to copy data between multiple instances of SQL Server.

Using the bcp utility to copy data from a computer running an instance of SQL Server 6.5 or earlier to a data file, and then
copy the data from the data file into a computer running an instance of SQL Server 2000.

See Also

DTS Import/Export Wizard

Importing and Exporting Data

Upgrading Databases from SQL Server 6.5 (Upgrade Wizard)

Administering SQL Server (SQL Server 2000)

Using the Copy Database Wizard
The Copy Database Wizard allows you to copy or move databases between servers. You can move and copy databases between
different instances of Microsoft® SQL Server™ 2000, and you can upgrade databases from SQL Server version 7.0 to SQL Server
2000. For more information, see Database Upgrade from SQL Server 7.0 (Copy Database Wizard).

To upgrade databases online using the Copy Database Wizard

Wizard

Wizard

You also can simplify the administration and maintenance of your databases by integrating multiple instances of SQL Server 7.0
or SQL Server 2000 into a single instance of SQL Server 2000 or into several named instances on a single computer.

In addition to copying the actual databases, you also can copy associated meta data (for example, logins and objects from the
master database required by the databases being copied).

Note It not possible to copy or move the model, msdb, or master databases using the Copy Database Wizard.

The Copy and Move Process

To use the Copy Database Wizard, you must be a system administrator or a member of the sysadmin role. If you are running
Microsoft Windows NT® 4.0 or Microsoft Windows® 2000, your user account must have administrator privileges on both the
source server and the destination server.

To use the Copy Database Wizard, you must specify:

The source server on which the databases to be copied reside.

The destination server to which the databases are to be copied or moved.

On the destination server, databases keep the same name they had on the source server. Therefore, only databases with
source names that do not exist on the destination server can be moved or copied. Databases cannot be renamed during a
move or copy operation. Name conflicts must be resolved manually prior to moving or copying databases.

The databases to be moved or copied.

To avoid data loss or inconsistency, you must be sure there are no active sessions attached to the database being moved or
copied. If there are active sessions, the Copy Database Wizard will not run.

Other objects to be copied or moved (for example, logins, shared objects from the master database, jobs and maintenance
plans, and user-defined error messages).

The schedule for the copy or move operation, if you want it to run at a later time.

When moving databases between different servers or disk drives, the Copy Database Wizard copies the database to the
destination server and verifies that it is online. The wizard does not delete the database from the source server. You must delete
the files from the source server manually after you have verified that the copy is fully operational. When moving databases
between two instances on the same server, the file system move operation is performed.

Administering SQL Server (SQL Server 2000)

Managing Servers
Microsoft® SQL Server™ server management comprises a wide variety of administration tasks, including:

Registering servers and assigning passwords.

Reconfiguring network connectivity.

Configuring linked servers, which allows you to execute distributed queries and distributed transactions on OLE DB data
sources across the enterprise.

Configuring remote servers, which allows you to use one instance of SQL Server to execute a stored procedure residing on
another instance of SQL Server.

Configuring standby servers.

Setting server configuration options.

Managing SQL Server messages.

Setting the polling intervals.

In most cases, you do not need to reconfigure the server. The default settings for the server components, configured during SQL
Server Setup, allow you to run SQL Server immediately after it is installed. However, server management is necessary in those
situations where you want to add new servers, set up special server configurations, change the network connections, or set server
configuration options to improve SQL Server performance.

Administering SQL Server (SQL Server 2000)

Registering Servers
 New Information - SQL Server 2000 SP3.

You must register a local or remote server before you can administer and manage it by using SQL Server Enterprise Manager.
When you register a server, you must specify:

The name of the server.

The type of security used to log on to the server.

Your login name and password, if appropriate.

Security Note For maximum security, you should select to prompt for the login name and password when possible.

The name of the group where you want the server to be listed after it is registered.

You also can optionally display the Microsoft® SQL Server™ state in the console, start an instance of SQL Server automatically, or
show system databases and system objects. The first two options are selected by default when you register a server.

When you run SQL Server Enterprise Manager for the first time, it automatically registers all instances of a local SQL Server.
However, if you have one instance of SQL Server registered, and then install more instances of SQL Server, only the original
instance of SQL Server will be registered. You can launch the Register Server Wizard or use the Registered SQL Server
Properties dialog box to register additional servers. The Registered SQL Server Properties dialog box is populated with the
names of all local instances of SQL Server.

If you have difficulty connecting to the remote server, you can use the Client Network Utility to configure access to the server.

To register a server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To remove a server running SQL Server

Enterprise Manager

Enterprise Manager

SQL-DMO

To change a server's registration

Enterprise Manager

Enterprise Manager

SQL-DMO

To connect to a registered server running SQL Server

Enterprise Manager

Enterprise Manager

To disconnect from a registered server running SQL Server

Enterprise Manager

Enterprise Manager

See Also

Configuring Remote Servers

Client Network Utility

Administering SQL Server (SQL Server 2000)

Creating Server Groups
You can create a server group within SQL Server Enterprise Manager and place your server within the server group. Server
groups provide a convenient way to organize a large number of servers into a few manageable groups.

To create server groups

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Accessing Server Registration Options
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ allows you to maintain shared or private registry information. Shared registry information allows
multiple users to use the same configuration from the same local computer or from a central computer. Alternatively, private
registry information prevents others from gaining access to your configuration.

If you choose to store server registration information locally (by selecting the Read/Store locally option on the SQL Server
Enterprise Manager Properties dialog box, General tab), you must also specify whether to store server registration information
independent of each user:

Selecting the Store User Independent check box on the General tab of the SQL Server Enterprise Manager Properties
dialog box maintains private registration information for each user, and does not allow multiple users to share the
registered server configuration.

Clearing the Store User Independent check box allows multiple users to share the same server configuration.

Security Note For enhanced security when connecting using SQL Server Authentication, select the Store User
Independent option.

To set access to your display of servers and groups

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Assigning an sa Password
 New Information - SQL Server 2000 SP3.

Security Note The sa login is a SQL Server login that is a member of the sysadmin fixed server role. It cannot be deleted.

When you install Microsoft® SQL Server™ and select Mixed Mode Authentication, which enables both Windows Authentication
and SQL Server Authentication, assign an sa password. Members of the sysadmin fixed server role can later change the
password.

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

If you select Windows Authentication, you cannot assign an sa password during installation. However, after installation, you
should assign an sa password. This ensures that if the authentication mode is later changed to Mixed Mode, the sa login has a
password.

When possible, use Windows Authentication.

If you must use SQL Server Authentication, use sa as your login identification with the password assigned during installation the
first time you log in to an instance of SQL Server. If you cannot provide the correct sa password, you must reinstall SQL Server.

Note Before the sa password can be changed, the server must be registered in SQL Server Enterprise Manager.

To assign the sa password on a newly installed server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

Managing Security

Administering SQL Server (SQL Server 2000)

Managing AWE Memory
Microsoft® SQL Server™ 2000 uses the Microsoft Windows® 2000 Address Windowing Extensions (AWE) API to support very
large memory sizes. SQL Server 2000 can use as much memory as Windows 2000 Advanced Server or Windows 2000
Datacenter Server allows. For more information about the AWE API, search on "awe memory" in the MSDN® Online Microsoft
Web site.

Note This feature is available only in the SQL Server 2000 Enterprise and Developer editions.

Using AWE Memory

To use AWE memory, you must run the SQL Server 2000 database engine under a Windows 2000 account that has been assigned
the Windows 2000 lock pages in memory privilege.

SQL Server Setup will automatically grant the MSSQLServer service account permission to use the Lock Page in Memory
option. If you are starting an instance of SQL Server 2000 from the command prompt using sqlservr.exe, you must manually
assign this permission to the interactive user's account using the Windows 2000 Group Policy utility (gpedit.msc), or SQL Server
will be unable to use AWE memory when not running as a service.

To enable the Lock Page in Memory option

Windows

Windows

To enable the use of AWE memory by an instance of SQL Server 2000, set the sp_configure option awe enabled. Then restart
SQL Server to activate AWE. Because the AWE option is enabled during SQL Server startup and lasts until SQL Server shutdown,
SQL Server will notify users when awe enabled is in use by sending an "Address Windowing Extension enabled" message to the
SQL Server error log. For more information about the awe enabled configuration option, see awe enabled Option.

For more information about using AWE memory, see the Windows 2000 documentation.

AWE Memory and System Resources

Instances of SQL Server 2000 do not dynamically manage the size of the address space when you enable AWE memory.
Therefore, when you enable AWE memory and start an instance of SQL Server 2000, one of the following occurs:

If sp_configure max server memory has been set and there are at least 3 gigabytes (GB) of free memory available on the
computer, the instance acquires the amount of memory specified in max server memory. If the amount of memory
available on the computer is less than max server memory (but more than 3 GB), then the instance acquires almost all of
the available memory and may leave only up to 128 megabytes (MB) of memory free.

If max server memory has not been set and there is at least 3 GB of free memory available on the computer, then the
instance acquires almost all of the available memory and may leave only up to 128 MB of memory free.

If there is less than 3 GB of free memory available on the computer, memory is dynamically allocated and, regardless of the
parameter setting for awe enabled, SQL Server will run in non-AWE mode.

Evaluating Memory Usage

The memory pool of an instance of SQL Server 2000 using AWE cannot be swapped out to the page file. Windows 2000 has to
swap out other applications if it needs to use additional physical memory, which may hinder the performance of the other
applications.

Therefore, you must ensure that there is enough memory outside of the amount used by all instances of SQL Server to satisfy the
virtual memory needs of other applications running on the computer.

Use System Monitor (Performance Monitor in Microsoft Windows NT® 4.0) to retrieve information on SQL Server memory usage
and available memory. Task Manager does not provide accurate memory usage information for AWE. Therefore, the memory
quoted for sqlservr.exe is not correct. To obtain the correct amount of SQL Server memory usage, you can use the Total Server
Memory (KB) performance counter, activated through System Monitor, or select the memory usage from sysperfinfo. For more
information, see Monitoring Memory Usage.

Running Multiple Instances

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

If you are running multiple instances of SQL Server 2000 on the same computer, and each instance uses AWE memory, you must
ensure the following:

Each instance has a max server memory setting.

The sum of the max server memory values for all the instances is less than the amount of physical memory in the
computer.

If the sum of the settings exceeds the physical memory on the computer, some of the instances either will not start or will
have less memory than is specified in max server memory. For example, suppose a computer has 16 GB of physical RAM
and has three instances of SQL Server 2000 running on it. Furthermore, max server memory is set to 8 GB for each
instance. If you stop and restart all three instances:

The first instance will start with the full amount of 8 GB of memory.

The second instance will start, but with slightly less than 8 GB of memory (up to 128 MB less).

The third instance will start in dynamic memory mode and will have 128 MB or less memory available to it.

Windows 2000 Usage Considerations

Before you configure Windows 2000 for AWE memory, consider the following:

To enable Windows 2000 Advanced Server or Windows 2000 Datacenter Server to support more than 4 GB of physical
memory, you must add the /pae parameter to the boot.ini file.

To enable Windows 2000 Advanced Server and Windows 2000 Datacenter Server to support a 3-GB virtual address space,
you must add the /3gb parameter to the boot.ini file. This allows user applications to address 3 GB of virtual memory and
reserves 1 GB of virtual memory for the operating system.

However, if there is more than 16 GB of physical memory available on a computer, Windows 2000 needs 2 GB of virtual
memory address space for system purposes and therefore can support only a 2-GB virtual address space.

In order to allow AWE to use the memory range above 16 GB, be sure the /3gb parameter is not in the boot.ini file. If it is,
Windows 2000 will be unable to address any memory above 16 GB. When allocating SQL Server AWE memory on a 32-GB
system, Windows 2000 may require at least 1 GB of available memory to manage AWE. Therefore, when starting an
instance of SQL Server with AWE enabled, it is recommend you do not use the default max server memory setting, but
instead limit it to 31 GB or less.

For more information, see Using AWE Memory on Windows 2000.

Using Failover Clustering

If you are using SQL Server 2000 failover clustering and AWE memory, you must ensure that the summed value of the max
server memory settings for all the instances is less than the lowest amount of physical RAM available on any of the servers in the
failover cluster. If the failover node has less physical memory than the original node, the instances of SQL Server 2000 may fail to
start or may start with less memory than they had on the original node.

See Also

SQL Server: Buffer Manager Object

sp_configure

Failover Clustering

Administering SQL Server (SQL Server 2000)

Configuring Network Connections
Server management includes reconfiguring the Microsoft® SQL Server™ server network connections. Most of the time, you do
not need to change the server network connections. Only reconfigure the server connections if you need to:

Configure an instance of SQL Server to listen on a particular network protocol.

Use a proxy server to connect to an instance of SQL Server.

Use a firewall system to isolate the network containing the instance of SQL Server from the rest of the Internet.

Administering SQL Server (SQL Server 2000)

Net-Libraries and Network Protocols
A matching pair of Microsoft® SQL Server™ Net-Libraries must be installed on a client and server computer to support a
particular network protocol (for example, client TCP/IP Sockets Net-Library and server TCP/IP Sockets Net-Library). Some Net-
Libraries, such as Named Pipes and Multiprotocol, support several network protocols.

All of the SQL Server client and server Net-Libraries are installed by SQL Server Setup. By default, during setup:

Named Pipes and TCP/IP Sockets listen on Microsoft Windows NT® 4.0 or Windows® 2000 servers.

TCP/IP and Shared Memory listen on Microsoft Windows 98 servers. (Shared Memory is a Net-Library used only for
client/server connections on the same computer. You do not need to configure the Shared Memory Net-Library.)

After the network connections are installed and configured, SQL Server can listen on any combination of the server Net-Libraries
simultaneously.

The correct network protocols should already be installed on the client and server. Network protocols are typically installed
during Windows setup; they are not part of SQL Server Setup. A SQL Server Net-Library will not work unless its corresponding
network protocol is already installed on both the client and server.

Activating Server Net-Libraries after Setup

If you have installed SQL Server and want to change your server Net-Libraries, start SQL Server Network Utility. This application
allows you to activate, deactivate, and reconfigure server Net-Libraries to listen for clients on their corresponding network
protocols.

Windows 98 Servers and Named Pipes

When running on Windows 98, SQL Server does not support the server Named Pipes Net-Library. If you are using a Windows 98
server to run SQL Server, either the default Net-Library for the client must be changed to TCP/IP Sockets or Multiprotocol, or a
new configuration entry must be created on the client that uses one of those Net-Libraries.

Configuring Clients

After activating the appropriate server Net-Library for a network protocol, you must configure any clients accessing the server
through that network protocol. Use Client Network Utility to:

Set up a new configuration entry to connect to that specific server.

Change the default Net-Library used by the client to support the Net-Library you just configured on the server; however, the
client Net-Library you select becomes the default Net-Library for all connections from that client.

See Also

Client Network Utility

Communication Components

Configuring Client Network Connections

Managing Clients

Client Net-Libraries and Network Protocols

SQL Server Network Utility

Administering SQL Server (SQL Server 2000)

SQL Server Network Utility
 New Information - SQL Server 2000 SP3.

In most cases, you do not need to reconfigure Microsoft® SQL Server™ to listen on additional server Net-Libraries. However, if
your server uses a network protocol on which SQL Server, by default, is not listening (for example, if your server is using NWLink
IPX/SPX), and the SQL Server server Net-Library for that protocol is not activated to listen for SQL Server clients, you must use
SQL Server Network Utility.

Although no server Net-Library configuration actions are necessary to enable SQL Server applications to connect to any instance
of SQL Server, you can do the following:

Manage the server Net-Library properties for each instance of SQL Server on a database computer.

Enable the server protocols on which the instance of SQL Server will listen. For example, enable the protocol for VIA (Virtual
Interface Architecture). This protocol provides highly reliable and efficient data transfer, when used with specific hardware.
For VIA to work, you must use the supported hardware. VIA is not available for systems running Microsoft Windows® 98.
For more information about VIA, see VIA Clients.

Disable a server protocol that is no longer needed.

Specify or change the network address on which each enabled protocol will listen.

When you are entering network addresses manually on a computer running multiple instances of SQL Server, you must not
duplicate network addresses between instances. You can specify a comma-separated list of port addresses for the TCP/IP
protocol. If you specify a list of port addresses, the instance of SQL Server will listen on those ports on each IP address
available on the computer running the instance.

If the instance is running on a SQL Server 2000 failover cluster, it will listen on those ports on each IP address selected for
SQL Server during SQL Server setup.

Enable the Secure Sockets Layer (SSL) encryption for all of the enabled server protocols. The encryption is turned on or off
for the entire enabled server protocols and you cannot specify encryption for a specific protocol. For more information
about when to use SSL encryption for security, see Net-Library Encryption.

To use SSL encryption, you must install a certificate using the fully qualified domain name of the computer running the
instance of SQL Server 2000. For more information about certificates, see the Windows 2000 documentation.

Enable a WinSock proxy. For more information about setting up a proxy server, see Connections to SQL Server Through
Proxy Server.

SQL Server Network Utility automatically detects if the instance of SQL Server you specify is on a failover cluster. If the instance is
on a failover cluster, all of the information you specify for the instance is replicated to all nodes automatically. However, if you
want to use encryption with a failover cluster, you must install the server certificate with the fully qualified DNS name of the
virtual server on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
test1.redmond.corp.microsoft.com and test2.redmond.corp.microsoft.com and a virtual SQL Server "Virtsql", you need to get a
certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the Force
protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption.

Configuring SPX Support for Multiple Instances

For each instance of SQL Server, SPX support must be individually enabled using the SQL Server Network Utility. The SQL Server
Network Utility defaults all instances of SQL Server to listen on SPX port 33854. You must change this so that each instance of
SQL Server listens on a different SPX port.

Use Client Network Utility to configure the corresponding client Net-Libraries to any server Net-Libraries you activate.

To start the SQL Server Network Utility

Network Utility

Network Utility

To load an installed server network library

Network Utility

Network Utility

To edit a server network library configuration

Network Utility

Network Utility

To view the installed SQL Server network libraries

Network Utility

Network Utility

To deactivate a server network library configuration

Network Utility

Network Utility

See Also

Configuring Client Network Connections

Client Net-Libraries and Network Protocols

Administering SQL Server (SQL Server 2000)

Connections to SQL Server Through Proxy Server
You can connect to an instance of Microsoft® SQL Server™ through Microsoft Proxy Server, a stand-alone program that provides
secured access to data. Thus, you can prevent unauthorized users from connecting to your private network. This keeps your
sensitive data secure by controlling all the permissions and accesses to the listening port. Microsoft Proxy Server is integrated
with Microsoft Windows® 2000 Server user authentication. You can block access to restricted sites by ranges of IP addresses,
domains, or individual users so you can ensure that your users are using their Internet permissions appropriately.

For more information about Local Address Table (LAT) configuration in the context of remote listen and accept calls, see the
Microsoft Proxy Server documentation.

To connect to an instance of SQL Server through Microsoft Proxy Server

SQL Setup

SQL Setup

See Also

Net-Libraries and Network Protocols

Administering SQL Server (SQL Server 2000)

Connections to SQL Server Over the Internet
You can connect to an instance of Microsoft® SQL Server™ over the Internet using SQL Query Analyzer or a client application
based on ODBC or DB-Library.

To share data over the Internet, the client and server must be connected to the Internet. In addition, you must use the TCP/IP or
Multiprotocol Net-Libraries. If you use the Multiprotocol Net-Library, ensure that TCP/IP support is enabled. If the server is
registered with Domain Name System (DNS), you can connect using its registered name.

Although this connection is less secure than a Microsoft Proxy Server connection, using a firewall or an encrypted connection will
help keep sensitive data secure.

Using a Firewall System with SQL Server

Many companies use a firewall system to isolate their networks from unplanned access from the Internet. A firewall can be used
to restrict Internet applications access to your network by forwarding only requests targeted at specific TCP/IP addresses in the
local network. Requests for all other network addresses are blocked by the firewall. You can allow Internet applications to access
an instance of SQL Server in the local network by configuring the firewall to forward network requests that specify the network
address of the instance of SQL Server.

To work effectively with a firewall, you must ensure that the instance of SQL Server always listens on the network address that the
firewall is configured to forward. The TCP/IP network addresses for SQL Server are comprised of two parts: an IP address
associated with one or more network cards in a computer, and a TCP port address specific to an instance of SQL Server. Default
instances of SQL Server use TCP port 1433 by default. Named instances, however, dynamically assign an unused TCP port
number the first time the instance is started. The named instance can also dynamically change it's TCP port address on a
subsequent startup if the original TCP port number is being used by another application. SQL Server only dynamically changes to
an unused TCP port if the port it is currently listening on was dynamically selected. That is, if the port was statically selected
(manually), SQL Server will display an error and continue to listen on other ports. It is unlikely another application would attempt
to use 1433 since that port is registered as a well-known address for SQL Server.

When using a named instance of SQL Server with a firewall, use the Server Network Utility to configure the named instance to
listen on a specific TCP port. You must pick a TCP port that is not used by another application running on the same computer or
cluster. For a list of well-known ports registered for use by various applications, see http://www.iana.org.

Have the network administrator configure the firewall to forward the IP address and TCP port the instance of SQL Server is
listening on (using either 1433 for a default instance, or the TCP port you configured a named instance to listen on). Also
configure the firewall to forward requests for UDP port 1434 on the same IP address. SQL Server 2000 uses UDP port 1434 to
establish communications links from applications.

For example, consider a computer running one default instance and two named instances of SQL Server. The computer is
configured such that the network addresses that the three instances listen on all have the same IP address. The default instance
would listen on TCP port 1433, one named instance could be assigned TCP port 1434, and the other named instance TCP port
1954. You would then configure the firewall to forward network requests for UDP port 1434 and TCP ports 1433, 1434, and 1954
on that IP address.

Establishing an Encrypted Connection

If you want users to be able to establish an encrypted connection to an instance of SQL Server, you can do so by enabling
encryption for the Multiprotocol Net-Library.

To enable encryption after SQL Server has been installed

Network Utility

Windows

http://www.iana.org/

Administering SQL Server (SQL Server 2000)

Configuring Linked Servers
A linked server configuration allows Microsoft® SQL Server™ to execute commands against OLE DB data sources on different
servers. Linked servers offer these advantages:

Remote server access.

The ability to issue distributed queries, updates, commands, and transactions on heterogeneous data sources across the
enterprise.

The ability to address diverse data sources similarly.

Linked Server Components

A linked server definition specifies an OLE DB provider and an OLE DB data source.

An OLE DB provider is a dynamic-link library (DLL) that manages and interacts with a specific data source. An OLE DB data source
identifies the specific database accessible through OLE DB. Although data sources queried through linked server definitions are
usually databases, OLE DB providers exist for a wide variety of files and file formats, including text files, spreadsheet data, and the
results of full-text content searches. The following table shows examples of the most common OLE DB providers and data sources
for SQL Server.

OLE DB provider OLE DB data source
Microsoft OLE DB Provider for SQL
Server

Instance of SQL Server (in the form
servername\instancename) and database,
such as pubs or Northwind

Microsoft OLE DB Provider for Jet Path name of .mdb database file
Microsoft OLE DB Provider for ODBC ODBC data source name (pointing to a

particular database)
Microsoft OLE DB Provider for Oracle SQL*Net alias that points to an Oracle

database
Microsoft OLE DB Provider for Indexing
Service

Content files on which property searches or
full-text searches can be run

Note SQL Server has been tested only against the Microsoft OLE DB Provider for SQL Server, Microsoft OLE DB Provider for Jet,
Microsoft OLE DB Provider for Oracle, Microsoft OLE DB Provider for Indexing Service, and the Microsoft OLE DB Provider for
ODBC. However, SQL Server distributed queries are designed to work with any OLE DB provider that implements the requisite
OLE DB interfaces.

For a data source to return data through a linked server, the OLE DB provider (DLL) for that data source must be present on the
same server as SQL Server.

Linked Server Details

This illustration shows the basics of how a linked server configuration functions.

Typically, linked servers are used to handle distributed queries. When a client application executes a distributed query through a
linked server, SQL Server breaks down the command and sends rowset requests to OLE DB. The rowset request may be in the
form of executing a query against the provider or opening a base table from the provider.

Managing a Linked Server Definition

When setting up a linked server, register the connection information and data source information with SQL Server. After
registration is accomplished, that data source can always be referred to with a single logical name.

You can create or delete a linked server definition with stored procedures or through SQL Server Enterprise Manager.

With stored procedures:
Create a linked server definition using sp_addlinkedserver. To view information about the linked servers defined in
a given instance of SQL Server, use sp_linkedservers. For more information, see sp_addlinkedserver and
sp_linkedservers.

Delete a linked server definition using sp_dropserver. You can also use this stored procedure to remove a remote
server. For more information, see sp_dropserver.

With SQL Server Enterprise Manager:
Create a linked server definition using the SQL Server Enterprise Manager console tree and the Linked Servers
node (under the Security folder). Define the name, provider properties, server options, and security options for the
linked server. For more information about the various ways a linked server can be set up for different OLE DB data
sources and the parameter values to be used, see sp_addlinkedserver.

Edit a linked server definition by right-clicking the linked server and clicking Properties.

Delete a linked server definition by right-clicking the linked server and clicking Delete.

When executing a distributed query against a linked server, include a fully qualified, four-part table name for each data source to
query. This four-part name should be in the form linked_server_name.catalog.schema.object_name. For more information, see
Distributed Queries.

See Also

Identifying a Data Source Using a Linked Server Name

OLE DB Providers Tested with SQL Server

Using Transactions with Distributed Queries

Administering SQL Server (SQL Server 2000)

Establishing Security for Linked Servers
 New Information - SQL Server 2000 SP3.

During a linked server connection (for example, when processing a distributed query), the sending server provides a login name
and password to connect to the receiving server on its behalf. For this connection to work, create a login mapping between the
linked servers using Microsoft® SQL Server™ stored procedures.

Linked server login mappings can be added using sp_addlinkedsrvlogin and removed using sp_droplinkedsrvlogin. A linked
server login mapping establishes a remote login and remote password for a given linked server and local login. When SQL Server
connects to a linked server in order to execute a distributed query or a stored procedure, it looks for any login mappings for the
current login that is executing the query of the procedure. If there is one, it sends the corresponding remote login and password
while connecting to the linked server.

Consider a mapping for a linked server, S1, that has been set up from a local login, U1, to remote login, U2, using a remote
password of "my_pwd". When local login U1 executes a distributed query that accesses a table stored in linked server S1, U2 and
"my_pwd" are passed as the user ID and password when SQL Server connects to the linked server S1.

For example, a mapping for a linked server, S1, has been set up for a local login, U1, to remote login, U2, using a remote password
of "my pwd". When local login U1 executes a distributed query that accesses a table stored in linked server S1, U2 and "my pwd"
are passed as the user ID and password when SQL Server connects to the linked server S1.

The default mapping for a linked server configuration is to emulate the current security credentials of the login. This type of
mapping is known as self mapping. When a linked server is added using sp_addlinkedserver, a default self mapping is added for
all local logins.

If security account delegation is not available on the client or sending server, or the linked server/provider does not recognize
Windows Authentication Mode, then self mapping will not work for Windows Authenticated logins. Therefore, you need to set up
a local login mapping from a Windows Authenticated login to a specific login on the linked server. In this case, the remote login
will be a SQL Server Authenticated login if the linked server is an instance of SQL Server.

Security Note When possible, use Windows Authentication.

If security account delegation is available and the linked server supports Windows Authentication, then the self mapping for the
Windows Authenticated logins will be supported. For more information about security account delegation, see Security Account
Delegation.

Distributed queries are subject to the permissions granted to the remote login by the linked server on the remote table. While
processing a distributed query, SQL Server does not perform any permission validation at compilation time. Any permission
violations are detected at query execution time as reported by the provider.

To add a linked server login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

sp_addlinkedserver

sp_addlinkedsrvlogin

sp_droplinkedsrvlogin

sp_dropserver

sp_linkedservers

sp_serveroption

Administering SQL Server (SQL Server 2000)

Configuring OLE DB Providers for Distributed Queries
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ provides a number of advanced options for managing distributed queries. Some of the options are
managed at the provider level in the Microsoft Windows® 2000 registry, and others are managed at the linked server level
through sp_serveroption. Configuring these options should be undertaken only by experienced system administrators in the
interests of maximizing the performance of distributed queries against linked servers.

OLE DB Provider Options

The OLE DB provider options for managing distributed queries are set using SQL Server Enterprise Manager. In the left pane of
SQL Server Enterprise Manager, right-click a linked server definition that uses the OLE DB provider for which you want to set the
properties. On the General tab, click Options, and then set the properties.

Provider option Description
DynamicParameters If nonzero, indicates that the provider allows '?'

parameter marker syntax for parameterized queries. Set
this option only if the provider supports the
ICommandWithParameters interface and supports a '?'
as the parameter marker. Setting this option allows SQL
Server to execute parameterized queries against the
provider. The ability to execute parameterized queries
against the provider can result in better performance for
certain queries.

NestedQueries If nonzero, indicates that the provider allows nested
SELECT statements in the FROM clause. Setting this
option allows SQL Server to delegate certain queries to
the provider that require nesting SELECT statements in
the FROM clause.

LevelZeroOnly If nonzero, only level 0 OLE DB interfaces are invoked
against the provider.

AllowInProcess If nonzero, SQL Server allows the provider to be
instantiated as an in-process server. When this option is
not set in the registry, the default behavior is to
instantiate the provider outside the SQL Server process.
Instantiating the provider outside the SQL Server process
protects the SQL Server process from errors in the
provider. When the provider is instantiated outside the
SQL Server process, updates or inserts referencing long
columns (text, ntext, or image) are not allowed.

NonTransactedUpdates If nonzero, SQL Server allows updates, even if
ITransactionLocal is not available. If this option is
enabled, updates against the provider are not
recoverable, because the provider does not support
transactions.

IndexAsAccessPath If nonzero, SQL Server attempts to use indexes of the
provider to fetch data. By default, indexes are used only
for meta data and are never opened.

DisallowAdhocAccess If a nonzero value is set, SQL Server does not allow ad
hoc access through the OPENROWSET and
OPENDATASOURCE functions against the OLE DB
provider. When this option is not set, SQL Server also
does not allow ad hoc access.

SqlServerLike If nonzero, the provider supports the LIKE operator as it is
implemented in SQL Server. When this option is set, SQL
Server will consider pushing to the provider the queries
with LIKE predicates against remote columns as part of
the distributed queries evaluation.

These options operate at the provider level. When the options are set for a provider, the settings apply to all linked server
definitions using the same OLE DB provider.

Setting either DynamicParameters or NestedQueries to nonzero values allows SQL Server to send queries requiring this
syntax to the OLE DB provider for remote query execution. These two options should be set only if the provider supports their
syntax.

Linked Server Options

Several options for managing distributed queries are available at the linked server level through sp_serveroption. The server
level options (in contrast to provider level options) only affect the behavior against the specified linked server.

The following table describes the various linked server options.

Linked server options Description
use remote collation If set to true, SQL Server will use the collation

information of character columns from the linked server.
If the linked server is an instance of SQL Server, then the
collation information is derived automatically from the
SQL Server OLE-DB provider interface. If the linked server
is not an instance of SQL Server, then SQL Server will use
the collation set in the collation name option.

If set to false, SQL Server will interpret character data
from the specified linked server in the default collation of
the instance of a local SQL Server.

collation name This specifies the collation to be used for character data
from the linked server if use remote collation is set to
true. This option is ignored if use remote collation is
set to false, or if the linked server is an instance of SQL
Server.

connection timeout This specifies the time-out value (in seconds) to be used
when SQL Server attempts to make a connection to the
linked server. If this option is not set, the current value set
for the global configuration option remote login
timeout is used as the default.

lazy schema validation If this option is set to false (the default value), SQL Server
checks for schema changes that have occurred since
compilation in remote tables. This occurs before query
execution begins. If there is a change in the schema, SQL
Server recompiles the query with the new schema.

If this option is set to true, the checking of the schema of
remote tables is delayed until execution. This can cause a
distributed query to fail with an error, if the schema of a
remote table has changed between the time the query
was compiled and executed.

You may want to set this option to true when distributed,
partitioned views are being used against a linked SQL
Server. A given table participating in the partitioned view
may not be actually used in a given execution of a query
against the view, so deferring the schema validation can
be useful to improve performance.

See Also

Establishing Security for Linked Servers

sp_addlinkedserver

sp_serveroption

Administering SQL Server (SQL Server 2000)

Configuring Remote Servers
 New Information - SQL Server 2000 SP3.

A remote server configuration allows a client connected to one instance of Microsoft® SQL Server™ to execute a stored
procedure on another instance of SQL Server without establishing another connection. The server to which the client is connected
accepts the client request and sends the request to the remote server on behalf of the client. The remote server processes the
request and returns any results to the original server, which in turn passes those results to the client. When setting up your
remote server configuration, you should also think about how to establish security. For more information about security for
remote servers, see Establishing Security for Remote Servers.

If you want to set up a server configuration in order to execute stored procedures on another server and do not have existing
remote server configurations, use linked servers instead of remote servers. Both stored procedures and distributed queries are
allowed against linked servers; however, only stored procedures are allowed against remote servers.

Note Support for remote servers is provided for backward compatibility only. New applications that must execute stored
procedures against remote instances of SQL Server should use linked servers instead.

Remote Server Details

Remote servers are set up in pairs. To set up a pair of remote servers, configure both servers to recognize each other as remote
servers. Then, verify that configuration options are set properly for both servers so that each instance of SQL Server allows
remote users to execute procedure calls. Check the configuration options in the Server Properties dialog box on both the local
and the remote servers.

In most cases, you should not need to set configuration options for remote servers; the defaults set on both local and remote
computers by SQL Server Setup allow for remote server connections.

For remote server access to work, the remote access configuration option, which controls logins from remote servers, must be
set to 1 (the default setting) on both the local and remote computers. If the setting for either server's remote access option has
been changed, you must reset the option (for one or both servers) back to 1 to allow remote access. This can be accomplished
through either SQL Server Enterprise Manager or the Transact-SQL sp_configure statement.

From the local server, you can disable a remote server configuration to prevent user access to that server.

To set up a remote server

Transact-SQL

Transact-SQL

SQL-DMO

To check and set remote server configuration options

Enterprise Manager

Enterprise Manager

SQL-DMO

To disable a remote server setup

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

See Also

Configuring Linked Servers

RECONFIGURE

remote access Option

sp_configure

Administering SQL Server (SQL Server 2000)

Establishing Security for Remote Servers
 New Information - SQL Server 2000 SP3.

Setting up security for executing remote procedure calls (RPC) against a remote server involves setting up login mappings in the
remote server and possibly in the local server running an instance of Microsoft® SQL Server™.

Note Support for remote servers is provided for backward compatibility only. New applications that must execute stored
procedures against remote instances of SQL Server should use linked servers instead.

Setting Up the Remote Server

Remote login mappings must be set up on the remote server. Using these mappings, the remote server maps the incoming login
for an RPC connection from a given server to a local login. Remote login mappings can be set up using the sp_addremotelogin
stored procedure on the remote server.

Setting Up the Local Server

In SQL Server 2000, create remote server connections for remote server logins created by Windows Authentication by:

Setting up a local login mapping on a local server that defines what login and password are used by an instance of SQL
Server when it makes an RPC connection to a remote server.

For logins created by Windows Authentication, you must create a mapping to a login name and password. This login name
and password must match the incoming login and password expected by the remote server.

Using the sp_addlinkedsrvlogin stored procedure to create local login mappings.

Note For logins created by SQL Server Authentication, it is not necessary to create any local login mappings for executing a
stored procedure against a remote server.

Security Note When possible, use Windows Authentication.

Remote Server Security Example

Consider two SQL Server installations, serverSend and serverReceive. serverReceive is configured to map an incoming login from
serverSend, called Sales_Mary, to a SQL Server authenticated login in serverReceive, called Alice. Another incoming login from
serverSend, called Joe, is mapped to a SQL Server Athenticated login in serverReceive, called Joe.

The following Transact-SQL code can be executed to configure serverSend to perform RPCs against serverReceive:

--Create remote server entry for RPCs from serverSend.
EXEC sp_addserver 'serverSend'
GO

--Create remote login mapping for login 'Sales_Mary' from serverSend
--to Alice.
EXEC sp_addremotelogin 'serverSend', 'Alice', 'Sales_Mary'
GO

--Set trusted option on for this mapping to disable password checking
--for Sales_Mary from serverSend.
EXEC sp_remoteoption 'serverSend', 'Alice', 'Sales_Mary', trusted, true
GO

--Create remote login mapping for login Joe from serverReceive to same login;
--assumes same password for Joe in both servers.
EXEC sp_addremotelogin 'serverSend', 'Joe', 'Joe'
GO

On serverSend, a local login mapping is created for a Windows Authenticated login Sales\Mary to a login Sales_Mary. No local
mapping is necessary for Joe, as the default is to use the same login name and password, and serverReceive has a mapping for
Joe:

--Create a remote server entry for RPCs from serverReceive.
EXEC sp_addserver 'serverReceive'
GO

--Create a local login mapping for the Windows Authenticated login.
--Sales\Mary to Sales_Mary.

EXEC sp_addlinkedsrvlogin 'serverReceive', false, 'Sales\Mary',
 'Sales_Mary', NULL
GO

See Also

Configuring Remote Servers

sp_addremotelogin

sysremotelogins

Administering SQL Server (SQL Server 2000)

Viewing Local or Remote Server Properties
You can review server attributes for local or remote servers (such as the Microsoft® SQL Server™ version number, type and
number of processors in the computer, and the operating system version) in one convenient location. From the local server, you
can view databases, files, logins, and tools for a remote server.

To view server properties

Enterprise Manager

Enterprise Manager

Transact-SQL

Administering SQL Server (SQL Server 2000)

Using Standby Servers
A standby server is a second server that can be brought online if the primary production server fails. The standby server contains
a copy of the databases on the primary server. A standby server can also be used when a primary server becomes unavailable due
to scheduled maintenance. For example, if the primary server needs a hardware or software upgrade, the standby server can be
used.

A standby server allows users to continue working with databases if the primary server becomes unavailable. When the primary
server becomes available again, any changes to the standby server's copies of databases must be restored back to the primary
server. Otherwise, those changes are lost. When users start using the primary server again, its databases should be backed up and
restored on the standby server again.

Implementing a standby server involves these phases:

Creating the database and ongoing transaction log backups on the primary server.

Setting up and maintaining the standby server by backing up the database on the primary server and restoring them on the
standby server.

Bringing the standby server online if the primary server fails.

Important All user processes must log in to the standby server and restart any tasks they were performing when the
primary server became unavailable. User processes are not switched automatically to the standby server and transactions
are not maintained between the primary server and the standby server. If the primary server is taken off the network or
renamed manually, and the standby server is renamed, then the standby server will have a network name and address
different from the server the users were using previously.

Periodically, transaction log backups from the databases on the primary server are applied on the standby to ensure that the
standby remains synchronized with the primary server. In the event of the primary server failing, or even if just a single database
fails, the databases on the standby server are made available to user processes. Any user processes that cannot access the
primary server should use the standby server instead.

A standby server configuration is not the same as the virtual server configuration used in Microsoft® SQL Server™ 2000 failover
clustering. A standby server contains a second copy of the SQL Server databases. In a virtual server configuration, a single copy of
the databases, loaded on a shared cluster disk, is shared by the primary and secondary physical servers that underlie the virtual
server.

Creating the Backups on the Primary Server

On the primary server:

1. Create a full database backup of each database to be duplicated. For more information, see Database Backups.

2. Periodically, create a transaction log backup of each database to be duplicated. For more information, see Transaction Log
Backups.

The frequency of transaction log backups created on the primary server depends on the volume of transaction changes of
the production server database. If the transaction frequency is high, it may be useful to back up the transaction log
frequently to minimize the potential loss of data in the event of failure.

Important When restoring a copy of master from a production server to a standby server, you cannot back up the
transaction log of master. Only a database backup and restore of master is possible.

Setting Up and Maintaining the Standby Server

A standby server is set up and maintained as follows:

1. Restore the database backups from the primary server onto the standby server in standby mode, specifying an undo file
(one undo file per database).

When a database or transaction log is restored in standby mode, recovery needs to roll back any uncommitted transactions
so that the database can be left in a logically consistent state and used, if necessary, for read-only purposes. Pages in the
database affected by the uncommitted, rolled back transactions are modified. This undoes the changes originally performed

by the uncommitted transactions. The undo file is used to save the contents of these pages before recovery modifies them
to prevent the changes performed by the uncommitted transactions from being lost. Before a subsequent transaction log
backup is next applied to the database, the uncommitted transactions that were previously rolled back by recovery must be
reapplied first. The saved changes in the undo file are reapplied to the database, and then the next transaction log is applied.

Note There must be enough disk space for the undo file to grow so that it can contain all the distinct pages from the
database that were modified by rolling back uncommitted transactions.

2. Periodically, apply each subsequent transaction log, created on the primary server, to the databases on the standby server.
Apply each transaction log in standby mode, specifying the same undo file used when previously restoring the database.

The frequency of transaction log backups applied to the standby server depends on the frequency of transaction log
backups of the primary production server database. Frequently applying the transaction log reduces the work required to
bring the standby server online in the event of a production system failure.

In standby mode, the database is available for read-only operations, such as database queries that do not attempt to modify the
database. This allows the database to be used for decision-support queries or DBCC checks.

Bringing the Standby Server Online

When the primary server initially becomes unavailable, it is unlikely that all the databases on the standby server are in complete
synchronization. Some transaction log backups created on the primary server may not have been applied to the standby server
yet. Additionally, some changes to the databases on the primary server are likely to have occurred since the transaction log on
those databases were last backed up, especially in heavily used systems. Before the users use the standby copies, it is possible to
synchronize the primary databases with the standby copies and bring the standby server online by:

1. Applying to the standby server in sequence any transaction log backups created on the primary server that have not yet
been applied.

2. Creating a backup of the active transaction log on the primary server and applying the backup to the database on the
standby server. The backup of the active transaction log when applied to the standby server allows users to work with an
exact copy of the primary database as it was immediately prior to failure (although any noncommitted transactions will
have been permanently lost). For more information, see Transaction Log Backups.

If the primary server is undamaged, as in the case of planned maintenance or upgrades, you can back up the active
transaction log with NORECOVERY. This will leave the database in the restoring state and allow you to update the primary
server with transaction log backups from the secondary server. Then you can switch back to the primary server without
creating a complete database backup of the secondary server. For more information, see BACKUP.

3. Recover the databases on the standby server. This recovers the databases without creating an undo file, making the
database available for users to modify.

A standby server can contain backups of databases from several instances of SQL Server. For example, a department could have
five servers, each running a mission-critical database system. Rather than having five separate standby servers, a single standby
server can be used. The database backups from the five primary systems can be loaded onto the single backup system, reducing
the number of resources required and saving money. It is unlikely that more than one primary system would fail at the same time.
Additionally, the standby server can be of higher specification than the primary servers to cover the remote chance that more
than one primary system is unavailable at a given time.

To set up, maintain, and bring online a standby server

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

RESTORE

Restoring a Database to a Prior State

Administering SQL Server (SQL Server 2000)

Log Shipping
In Microsoft® SQL Server™ 2000 Enterprise Edition, you can use log shipping to feed transaction logs from one database to
another on a constant basis. Continually backing up the transaction logs from a source database and then copying and restoring
the logs to a destination database keeps the destination database synchronized with the source database. This allows you to have
a backup server and also provides a way to offload query processing from the main computer (the source server) to read-only
destination servers. SQL Server 2000 Enterprise Edition must be installed on all servers used in log shipping.

Log Shipping Model

The illustration shows the log shipping model.

In this example, an enterprise has five servers: server A, server B, server C, server D, and server E. Server B is the source server,
the server on which log backups and restores are performed and copied. Server C, server D, and server E contain the destination
databases on which the log backups from server B are restored, keeping these servers in synchronization with server B. Server A
is the monitor server on which the enterprise-level monitoring of log shipping occurs. Each destination or source server is
maintained by only one monitor server. The Database Maintenance Plan Wizard is used to define an appropriate delay between
the time server B backs up the log backup and the time server C, server D, and server E must restore the log backup. If more time
elapses than defined, then server A generates an alert using SQL Server Agent. This alert can aid in troubleshooting the reason
the destination server has failed to restore the backups.

Do not use the monitor server as the source server, because the monitor server maintains critical information regarding the log
shipping system. The monitor server should be regularly backed up. Keeping the monitor server independent is also better for
performance, because monitoring adds unnecessary overhead. Also, as a source server supporting a production workload, it is
most likely to fail, which would disrupt the monitoring. The source and destination servers can be on the same computer.
However, in this case, SQL Server 2000 failover clustering may provide better results. For more information, see Failover
Clustering.

If all secondary databases configured for log shipping have been removed from the secondary servers themselves, the database
maintenance plan for log shipping can no longer be used to add the secondary databases back to the plan. The database
maintenance plan for log shipping must be removed and configured again for log shipping to work on the secondary databases.

Configuring Log Shipping with the Database Maintenance Plan Wizard

To easily configure log shipping, use the Database Maintenance Plan Wizard. With this wizard, you can:

Define how often the logs are generated, the time between a backup and a restore operation, and when a destination server
is out of synchronization with a source server.

Register any new servers.

Create the source databases on all destination servers. When adding a destination database through the Database
Maintenance Plan Wizard, you have the option of creating the databases on the destination server or using existing
databases. Any existing databases must be in standby mode before you can configure them for log shipping.

Specify which destination servers might assume the role of the source server.

Set a restore delay. This delay defines how old a transaction log must be before it is restored. If something goes wrong on
the source server, this delay provides an extra time before the corrupted log is restored onto the destination server.

Create a schedule that sets the backup schedule.

Before using the Database Maintenance Plan Wizard, consider the following:

The user configuring log shipping must be a member of the sysadmin server role in order to have permission to modify
the database to log ship.

You can configure log shipping only on one database at a time. If you select more than one database, the log shipping
option on the wizard is disabled.

The login used to start the MSSQLServer and SQLServerAgent services must have access to the log shipping plan jobs, the
source server, and the destination server.

When you use the Database Maintenance Plan Wizard to configure log shipping, you can log ship only to disks. The backup-
to-tape option is not available.

Configuring Log Shipping Manually

SQL Server 2000 supports manual log shipping from a SQL Server version 7.0 Service Pack 2 (SP2) transaction log if the pending
upgrade option is enabled on the computer running SP2.

To enable this option, execute the following code:

EXEC sp_dboption 'database name', 'pending upgrade', 'true'

However, when you are restoring the database after log shipping, you can recover only with the NORECOVERY option.

Note When you manually configure log shipping between a computer running SP2 and a computer running an instance of SQL
Server 2000, you cannot use SQL Server replication.

For more information, see the SP2 documentation.

To configure log shipping

Enterprise Manager

Enterprise Manager

To remove log shipping

Enterprise Manager

Enterprise Manager

Changing Log Shipping Roles

SQL Server 2000 allows the changing of log shipping roles through system stored procedures. Before roles can be changed,

several preliminary tasks must be performed. For more information, see How to set up and perform a log shipping role change
(Transact-SQL).

See Also

Failover Clustering

Database Maintenance Plan Wizard

Administering SQL Server (SQL Server 2000)

Modifying Log Shipping
Modifying Log Shipping

After log shipping has been configured, it is possible to add, delete, or edit the destination servers. For example, you can change
the transaction log destination, specify if you want to create a new database on the destination server, or use an existing database.
If you choose to create a new database, you must specify a database name and file directories for the data and logs.

To add or edit a destination server

Enterprise Manager

Enterprise Manager

To delete a destination server

Enterprise Manager

Enterprise Manager

To remove a log shipping pair from the log shipping monitor (Transact-SQL)

Transact-SQL

Transact-SQL

Administering SQL Server (SQL Server 2000)

Monitoring Log Shipping
Monitoring Log Shipping

After you have configured log shipping, use the monitor server to view information about the status of all the log shipping
servers.

The monitor server provides you with all of the details of log shipping, such as:

When the source server was last backed up, and when the destination servers last copied and restored the backup files.

Information about the backup failure alert.

Information detailing alert generation suppression.

Using the monitor server, you can also:

Edit the alert generation suppression information for both the source and destination servers. Alert suppression would be
used to suppress an alert during specific times and dates in the event of a backup failure.

Change the role of a server from a destination server to a source server (if the destination server was configured to assume
this role).

To view the status of servers configured for log shipping

Enterprise Manager

Enterprise Manager

To view or edit information about the source server

Enterprise Manager

Enterprise Manager

How to view or edit information about the destination server

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Concurrent Administrative Operations
This table illustrates the administrative tasks that are or are not allowed to run at the same time.

Note File shrink operations spend most processing time reallocating pages into areas retained after the shrink has completed,
and then attempt to change the file size only as the last step. File shrink operations can be started while a backup is running,
provided the backup finishes before the file shrink attempts to change the size of the files.

Administering SQL Server (SQL Server 2000)

Managing SQL Server Messages
Microsoft® SQL Server™ provides tools for managing server messages, allowing administrators to:

Search for specific error messages based on filters such as message text, error number, severity level, whether the message
is user-defined, and whether the message is logged.

Create new messages. The Manage SQL Server Messages dialog box in Enterprise Manager does not support adding pure
Unicode messages to the sysmessages table. To add such messages, use the sp_addmessage stored procedure. Be sure to
use the N prefix on the 'msg' parameter (for example, @msgtext = N'xxx').

Edit user-defined messages.

Delete user-defined messages.

To add a new SQL Server message

Enterprise Manager

Enterprise Manager

To manage SQL Server messages

Enterprise Manager

Enterprise Manager

To edit a SQL Server message

Enterprise Manager

Enterprise Manager

To delete a SQL Server message

Enterprise Manager

Enterprise Manager

See Also

Error Messages

Administering SQL Server (SQL Server 2000)

SQL Mail
SQL Mail provides a way to receive e-mail messages generated by Microsoft® SQL Server™. Messages can be triggered to
provide you with the status of a job or a warning caused by an alert. SQL Mail can include a result set in a reply to e-mail
messages that contain queries. SQL Mail allows SQL Server to send and receive e-mail by establishing a client connection with a
mail server.

SQL Server uses two services to handle mail. MSSQLServer processes mail for all of the mail stored procedures. SQLServerAgent
does not use SQL Mail to send e-mail. Instead, SQLServerAgent uses its own mail capabilities that are configured and operated
separately from SQL Mail.

The SQL Server Agent mail features will be referred to as SQL Agent Mail to distinguish it from the SQL Mail features provided by
MSSQLServer. SQL Mail establishes an extended MAPI connection with a mail host, and SQL Agent Mail establishes an extended
MAPI connection on its own. Both SQL Mail and SQL Agent Mail can connect with Microsoft Exchange Server, Microsoft Windows
NT® Mail, or a Post Office Protocol 3 (POP3) server.

SQL Mail requires a post office connection, a mail store (mailbox), a mail profile, and the Windows NT 4.0 or Microsoft Windows®
2000 domain user account used to log in to an instance of SQL Server. SQL Mail consists of a number of stored procedures,
which are used by SQL Server to process e-mail messages that are received in the designated SQL Mail account mailbox or to
reply to e-mail messages generated by the stored procedure xp_sendmail. Using SQL Mail extended stored procedures,
messages can be sent from either a trigger or a stored procedure. SQL Mail stored procedures can manipulate data, process
queries received by e-mail and return the result set by creating a reply e-mail.

Security Note For enhanced security, you should limit permissions for all SQL Mail stored procedures and extended stored
procedures to members of the sysadmin fixed server role.

Processing an E-mail Request Received by SQL Server

To process e-mail automatically, you must create a regularly scheduled job that uses the stored procedure, sp_processmail.
sp_processmail checks your SQL Mail mail profile and then checks your mailbox for mail. sp_processmail uses xp_sendmail to
execute query requests contained in the text of the e-mail and then returns the result set to the original sender and any additional
recipients. For example, a supplier may be allowed to execute a stored procedure that produces current inventory levels for all
materials supplied by the organization.

SQL Agent Mail

SQL Server Agent Mail (the SQLAgentMail service) can use its own domain account and mail profile, rather than the one set up
for SQL Mail. With SQL Server, you can configure SQL Agent Mail to send e-mail messages when:

An alert is triggered.

Alerts can be configured to send e-mail notification of specific events that occur without implementing SQL Mail. For
example, alerts can be configured to notify an operator of a particular database event that may need immediate action.

For more information about configuring alerts, see Defining Alerts.

A scheduled task (such as a database backup or replication event) succeeds or fails.

E-mail messages can be sent to a list of recipients informing them of the status of scheduled jobs for possible user action. You can
expand the capabilities of jobs to include sending a result set by e-mail to a list of recipients. For example, a monthly inventory
report could send SQL Agent Mail notification to the designated operators and the result set to the purchasing manager and
supplier.

Administering SQL Server (SQL Server 2000)

Configuring SQL Mail
SQL Mail must run using a mail profile created in the same domain account that is used to start an instance of Microsoft® SQL
Server™. Under the Support Services folder in SQL Server Enterprise Manager, you can see a graphical depiction of the SQL Mail
Service and determine if the service is running. After SQL Mail starts, you can use the stored procedures to send and receive mail.

To configure a mail profile

Windows

Windows

To set up SQL Mail

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Configuring Mail Profiles
 New Information - SQL Server 2000 SP3.

SQL Mail and SQL Agent Mail can use the same or different mail profile. If necessary, each mail profile can be configured within
its own domain account.

Configuring a SQL Mail Profile

When configured, mail profiles are specific to the Microsoft® Windows NT® 4.0 or Windows® 2000 user domain account that is
activated when a user logs on to Windows NT 4.0 or Windows 2000 successfully. SQL Mail must have a mail profile created in the
same user domain account or context that is used to start an instance of Microsoft SQL Server™. When a mail stored procedure is
executed, SQL Mail looks for the defined mail profile in the domain account that triggered it.

If you plan to use mail stored procedures you must:

Have a mail server that is extended MAPI-compliant.

Configure a mail profile for MSSQLServer to use to connect to your mail server.

Security Note For security reasons, you should ensure that users do not share the same temporary directory. Failure to
change the default of the suppress_attach parameter to TRUE in the xp_readmail stored procedure creates attachments in
the temporary directory. If two users share the same temporary directory and log on to the same computer, they will be
able to view each other's attachments. You can determine where attachments are stored, and whether two users share the
same temporary directory, by reviewing the attachments output variable. See xp_readmail for more details on suppressing
attachments.

To configure a mail profile

Windows

Windows

To set up SQL Mail

Enterprise Manager

Enterprise Manager

Configuring a SQL Agent Mail Profile

If you plan to send notifications to operators by e-mail or pager, you must:

Have a mail server that is extended MAPI-compliant.

Configure a mail profile for SQL Server Agent to use to connect to your mail server.

Have a mail server that is able to communicate with your pagers.

A mail profile is required by SQL Agent Mail to start a mail session and send notification by e-mail or pager. A SQL Server Agent
mail session is started every time that the SQLServerAgent service is started. You can create the profile with a mail client, such as
Microsoft Outlook®, that is installed locally on the SQL Server computer.

To configure a mail profile

Windows

Windows

To set up SQL Agent Mail

Enterprise Manager

Enterprise Manager

Sharing a Profile with SQL Mail

SQL Mail and SQL Agent Mail sessions may be configured to use the same Windows NT 4.0 or Windows 2000 domain user
account. When using the same domain account, SQL Mail and SQL Agent Mail can share the same mail profile using a common
mailbox.

SQL Server uses two separate mail sessions:

The MSSQLServer service uses a mail session that is referred to as SQL Mail.

SQL Server uses this mail session when database applications execute the xp_sendmail extended stored procedure to send
a message or query result set to a recipient.

The SQL Agent Mail uses a mail session that is exclusive to SQL Server Agent activities.

Creating Separate Profiles

You can configure separate mailboxes for SQL Mail and SQL Agent Mail by creating separate mail profiles. There are two ways to
accomplish this:

Use separate domain accounts for each service. This requires you to configure a mail profile for each user account.

Use the same domain account for each service and create multiple mail profiles.

For more information about setting up and configuring mail clients and mail profiles, see the Windows NT 4.0 and Windows 2000
documentation.

Administering SQL Server (SQL Server 2000)

Using SQL Mail Stored Procedures
 New Information - SQL Server 2000 SP3.

SQL Mail contains a number of stored procedures, which allow you to develop triggers, applications, and other stored procedures.
The stored procedures can then be used to manipulate mail, run queries, return a result set to a list of recipients, or reply to an e-
mail containing a simple query or stored procedure.

The following table provides a brief description of the extended procedures and how they can be used.

SQL Mail
procedures Function

xp_startmail Starts a mail client session. The mail client session must be
started prior to using any of the other mail stored procedures.

xp_stopmail Closes a Microsoft® SQL Server™ mail client session.
xp_findnextmsg Used with sp_processmail in order to process mail in the

SQL Mail inbox by accepting a message ID for input and
returning the message ID for output.

xp_readmail Used by sp_processmail to read a mail message from the
SQL Mail inbox.

xp_deletemail Used by sp_processmail to delete a message from the SQL
Mail inbox.

xp_sendmail Used by sp_processmail or as part of a stored procedure or
trigger. Can be used with alerts. Sends a message and a query
result set attachment to the specified recipients.

sp_processmail Uses extended stored procedures (xp_findnextmessage,
xp_readmail, and xp_deletemail) to process incoming mail
messages (expected to be a single query only) and uses
xp_sendmail to return the result set to the message sender.
sp_processmail must be set up as a regularly scheduled job
to check for mail received in the SQL Mail inbox.

Security Note For maximum security, you should limit permissions for all SQL Mail stored procedures and extended stored
procedures to members of the sysadmin fixed server role.

To use SQL Mail

Transact-SQL

Transact-SQL

Administering SQL Server (SQL Server 2000)

Setting Configuration Options
 New Information - SQL Server 2000 SP3.

You can manage and optimize Microsoft® SQL Server™ resources through configuration options by using SQL Server Enterprise
Manager or the sp_configure system stored procedure. The most commonly used server configuration options are available
through SQL Server Enterprise Manager; all configuration options are accessible through sp_configure. Consider the effects on
your system carefully before setting these options.

Important Advanced options are those that should be changed only by a experienced system administrator or certified SQL
Server technician.

Using the sp_configure System Stored Procedure

When using sp_configure, you must run either RECONFIGURE or RECONFIGURE WITH OVERRIDE after setting a configuration
option. The RECONFIGURE WITH OVERRIDE statement is usually reserved for configuration options that should be used with
extreme caution (for example, setting the allow updates option to 1 allows users to update fields in system tables). However,
RECONFIGURE WITH OVERRIDE works for all configuration options, and you can use it in place of RECONFIGURE.

The following is an example of a script you would use with sp_configure to change the fill factor option from its default setting
to a value of 100:

sp_configure 'fill factor', 100
GO
RECONFIGURE
GO

Categories of Configuration Options

Configuration options take effect either:

Immediately after setting the option and issuing the RECONFIGURE (or in some cases, RECONFIGURE WITH OVERRIDE)
statement.

-or-

After doing these actions and stopping and restarting an instance of SQL Server.

To configure an advanced option with sp_configure, you must first run sp_configure with the show advanced options option
set to 1, and then run RECONFIGURE:

sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO
sp_configure 'cursor threshold', 0
GO
RECONFIGURE
GO

In this example, reconfiguring the cursor threshold option to a new value takes place immediately. If you run sp_configure
again, the new value for resource timeout appears in the configuration options run_value column.

Some options require the server to be restarted before the new configuration value takes effect. For example, you cannot
configure the affinity mask option until you set show advanced options to 1, run RECONFIGURE, and stop and restart the
server. If you set the new value and run sp_configure before stopping and restarting the server, the new value appears in the
configuration options config_value column, but not in the run_value column. After stopping and restarting the server, the new
value appears in the run_value column.

If you use SQL Server Enterprise Manager to change a configuration option that requires the server to be restarted to take effect,
SQL Server displays a dialog box asking if you want to stop and restart the server.

Self-configuring options are those that SQL Server adjusts according to the needs of the system. In most cases, self-configuring
options eliminate the need to set the values manually. Examples include the min server memory and max server memory
options, and the user connections option.

Configuration Options Table

The following table lists all available configuration options, the range of possible settings, and their default values. Letter codes
signify that an option belongs to one or more of the following categories:

A: Advanced options, which should be changed only by a certified SQL Server technician and which require setting show
advanced options to 1.

RR: Options that require a server restart before taking effect.

SC: Self-configuring options.

Configuration option Minimum Maximum Default
affinity mask (A, RR) 0 2147483647 0
allow updates 0 1 0
awe enabled (A, RR) 0 1 0
c2 audit mode (A, RR) 0 1 0
cost threshold for parallelism (A) 0 32767 5
Cross DB Ownership Chaining 0 1 0
cursor threshold (A) –1 2147483647 -1
default full-text language (A) 0 2147483647 1033
default language 0 9999 0
fill factor (A, RR) 0 100 0
index create memory (A, SC) 704 2147483647 0
lightweight pooling (A, RR) 0 1 0
locks (A, RR, SC) 5000 2147483647 0
max degree of parallelism (A) 0 32 0
max server memory (A, SC) 4 2147483647 2147483647
max text repl size 0 2147483647 65536
max worker threads (A, RR) 32 32767 255
media retention (A, RR) 0 365 0
min memory per query (A) 512 2147483647 1024
min server memory (A, SC) 0 2147483647 0
Using Nested Triggers 0 1 1
network packet size (A) 512 65536 4096
open objects (A, RR, SC) 0 2147483647 0
priority boost (A, RR) 0 1 0
query governor cost limit (A) 0 2147483647 0
query wait (A) -1 2147483647 -1
recovery interval (A, SC) 0 32767 0
remote access (RR) 0 1 1
remote login timeout 0 2147483647 20
remote proc trans 0 1 0
remote query timeout 0 2147483647 600
scan for startup procs (A, RR) 0 1 0
set working set size (A, RR) 0 1 0
show advanced options 0 1 0
two digit year cutoff 1753 9999 2049
user connections (A, RR, SC) 0 32767 0
user options 0 32767 0

See Also

sp_configure

Using Options in SQL Server

Administering SQL Server (SQL Server 2000)

affinity mask Option
In Microsoft® Windows NT® 4.0 and Windows® 2000, an activity (thread) in a process can migrate from processor to processor,
with each migration reloading the processor cache. Under heavy system loads, specifying which processor should run a specific
thread can improve performance by reducing the number of times the processor cache is reloaded. The association between a
processor and a thread is called processor affinity.

Use the affinity mask option to increase performance on symmetric multiprocessor (SMP) systems (with more than four
microprocessors) operating under heavy load. You can associate a thread with a specific processor and specify which processors
Microsoft SQL Server™ will use. You can exclude SQL Server activity from processors given specific workload assignments by the
Windows NT 4.0 or Windows 2000 operating system.

If you set a bit representing a processor to 1, that processor is selected for thread assignment. When you set affinity mask to 0
(the default), the Windows NT 4.0 or Windows 2000 scheduling algorithms set the thread's affinity. When you set affinity mask
to any nonzero value, SQL Server affinity interprets the value as a bit mask that specifies those processors eligible for selection.
Excluding SQL Server threads from running on particular processors helps evaluate the system's handling of processes specific to
Windows NT 4.0 or Windows 2000. For example, you can use affinity mask to evaluate whether an additional network interface
card (NIC) increases performance or assess NIC performance with increasing loads.

Because using SQL Server processor affinity is a specialized operation, it is recommended that SQL Server processor affinity be
used only when necessary. In most cases, the Windows NT 4.0 or Windows 2000 default affinity provides the best performance.

Before you change the setting of affinity mask, keep in mind that Windows NT 4.0 assigns deferred process call (DPC) activity
associated with NICs to the highest numbered processor in the system. In systems with more than one installed and active NIC,
each additional card's activity is assigned to the next highest numbered processor. For example, an eight-processor system with
two NICs has DPCs for each NIC assigned to processor 7 and to processor 6.

Note You can use System Monitor (Performance Monitor in Windows NT 4.0) to view and analyze individual processor usage.

For example, if processors 1, 2, and 5 are selected as available with bits 1, 2, and 5 set to 1 and bits 0, 3, 4, 6, and 7 set to 0, a
hexadecimal value of 0x26 or the decimal equivalent of 38 is specified. Number the bits from the right to left. The rightmost bit is
bit 0. Set bits 1, 2, and 5 (the third, fifth, and sixth bits) to 1. The number calculated from setting the specified bits is binary
00100110, which is decimal 38 or hexadecimal 0x26.

These are affinity mask values for an eight-processor system.

Decimal value Binary bit mask Allow SQL Server threads on processors
1 00000001 0
3 00000011 0 and 1
7 00000111 0, 1, and 2
15 00001111 0, 1, 2, and 3
31 00011111 0, 1, 2, 3, and 4
63 00111111 0, 1, 2, 3, 4, and 5
127 01111111 0, 1, 2, 3, 4, 5, and 6 (isolates SQL Server

activity from DPC processor only)

affinity mask is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change affinity mask only when show advanced options is set to 1. The setting takes effect after stopping and restarting the
server.

To configure the affinity mask

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

Monitoring with System Monitor

RECONFIGURE

Setting Configuration Options

sp_configure

SQL Server Task Scheduling

Administering SQL Server (SQL Server 2000)

allow updates Option
Use the allow updates option to specify whether direct updates can be made to system tables. By default, allow updates is
disabled (set to 0), so users cannot update system tables through ad hoc updates. Users can update system tables using system
stored procedures only. When allow updates is disabled, updates are not allowed, even if you have the appropriate permissions
(assigned using the GRANT statement).

When allow updates is enabled (set to 1), any user who has appropriate permissions can update system tables directly with ad
hoc updates and can create stored procedures that update system tables.

Caution Updating fields in system tables can prevent an instance of Microsoft® SQL Server™ from running or can cause data
loss. If you create stored procedures while the allow updates option is enabled, those stored procedures always have the ability
to update system tables even after you disable allow updates. On production systems, you should not enable allow updates
except under the direction of Microsoft Product Support Services.

Because system tables are critical to the operation of SQL Server, enable allow updates only in tightly controlled situations.
Prevent other users from accessing SQL Server while you are directly updating system tables by restarting an instance of SQL
Server from the command prompt with sqlservr -m. This command starts an instance of SQL Server in single-user mode and
enables allow updates. For more information, see Starting SQL Server with Minimal Configuration.

If you set allow updates to 1 using the sp_configure system stored procedure, you must use the RECONFIGURE WITH
OVERRIDE statement. This setting takes effect immediately (without a server stop and restart).

To set the allow updates option

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

GRANT

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

awe enabled Option
In Microsoft® SQL Server™ 2000, you can use the Microsoft Windows® 2000 Address Windowing Extensions (AWE) API to
support up to a maximum of 64 gigabytes (GB) of physical memory. The specific amount of memory you can use depends on
hardware configuration and operating system support.

Note This feature is available only in the SQL Server 2000 Enterprise and Developer editions.

Enabling AWE

To enable AWE, set awe enabled to 1. SQL Server will reserve almost all available memory, leaving 128 megabytes (MB) or less,
unless a value has been specified for max server memory.

If the option has been successfully enabled, the message "Address Windowing Extension enabled" is printed in the SQL Server
error log when the instance of SQL Server 2000 is started.

awe enabled is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change awe enabled only when show advanced options is set to 1. You must restart the instance of SQL Server 2000 for
changes to take effect.

Disabling AWE

To disable AWE, set awe enabled to 0. This setting is the default. The AWE API is not used. SQL Server 2000 operates in a normal
dynamic memory allocation mode and is limited to 3 GB of physical memory.

Usage Considerations

Before enabling AWE, consider the following:

When awe enabled is set to 1, instances of SQL Server 2000 do not dynamically manage the size of the address space. SQL
Server will reserve and lock almost all available memory (or the value of max server memory if the option has been set)
when the server is started. It is strongly recommended that you set a value for the max server memory option each time
you enable AWE. Otherwise other applications or instances of SQL Server 2000 will have less than 128 MB of physical
memory in which to run.

If the total available memory is less than 3 GB, the instance of SQL Server 2000 will be started in non-AWE mode even if
awe enabled is set to 1. In this situation, you do not need to manage AWE memory because dynamic memory allocation is
used automatically.

You can determine the amount of memory you can safely allocate to instances of SQL Server 2000 by identifying how much
memory is available after all other applications to be used on the computer have been started.

Use the SQL Server Performance Monitor Total Server Memory (KB) counter to determine how much memory is
allocated by the instance of SQL Server running in AWE mode. Configure the max server memory option to leave some
additional memory free to allow for the varying needs of other applications and Windows 2000. For more information, see
Monitoring Memory Usage.

Important Using the awe enabled option and the max server memory setting can have a performance impact on other
applications or on SQL Server running in a multi-instance or cluster environment. For more information about using AWE
memory, see Managing AWE Memory.

Example

The following example shows how to enable AWE and configure a limit of 6 GB for max server memory:

sp_configure 'show advanced options', 1
RECONFIGURE
GO
sp_configure 'awe enabled', 1
RECONFIGURE
GO
sp_configure 'max server memory', 6144
RECONFIGURE
GO

See Also

Memory Architecture

SQL Server: Buffer Manager Object

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

c2 audit mode Option
In Microsoft® SQL Server™ 2000, use the c2 audit mode option to review both successful and unsuccessful attempts to access
statements and objects. With this information, you can document system activity and look for security policy violations.

C2 auditing tracks C2 audit events and records them to a file in the \mssql\data directory for default instances of SQL Server
2000, or the \mssql$instancename\data directory for named instances of SQL Server 2000. If the file reaches a size limit of 200
megabytes (MB), C2 auditing will start a new file, close the old file, and write all new audit records to the new file. This process will
continue until SQL Server is shut down or auditing is turned off.

Enabling and Disabling C2 Auditing

Before enabling and disabling C2 auditing, consider the following:

You must be a member of the sysadmin role to enable or disable C2 auditing.

c2 audit mode is an advanced option. If you are using the sp_configure system stored procedure to change the setting,
you can change c2 audit mode only when show advanced options is set to 1.

If the audit directory fills up, the instance of SQL Server will be stopped. You can restart the instance of SQL Server if
auditing is not set to start up automatically. But if auditing is set to start up automatically, you must free up disk space for
the audit log before you can restart the instance of SQL Server.

Alternatively, you can restart the instance with the –f flag, which will bypass all auditing. This is useful if you want to disable
auditing until you can free up additional disk space or in an emergency situation where you do not have enough disk space
to allocate the 200 MB audit file.

To enable C2 auditing, set the c2 audit mode option to 1. This setting establishes the C2 audit trace and turns on the option to
fail the server should the server be unable to write to the audit file for any reason. After setting the option to 1, restart the server
to begin C2 audit tracing. To stop C2 audit tracing, set c2 audit mode to 0.

Important If all audit counters are turned on for all objects, there could be a significant performance impact on the server.

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

cost threshold for parallelism Option
Use the cost threshold for parallelism option to specify the threshold where Microsoft® SQL Server™ creates and executes
parallel plans. SQL Server creates and executes a parallel plan for a query only when the estimated cost to execute a serial plan for
the same query is higher than the value set in cost threshold for parallelism. The cost refers to an estimated elapsed time in
seconds required to execute the serial plan on a specific hardware configuration. Only set cost threshold for parallelism on
symmetric multiprocessors (SMP).

Longer queries usually benefit from parallel plans; the performance advantage negates the additional time required to initialize,
synchronize, and terminate the plan. The cost threshold for parallelism option is actively used when a mix of short and longer
queries is executed. The short queries execute serial plans while the longer queries use parallel plans. The value of cost threshold
for parallelism determines which queries are considered short, thus executing only serial plans.

In certain cases, a parallel plan may be chosen even though the query's cost plan is less than the current cost threshold for
parallelism value. This is because the decision to use a parallel or serial plan, with respect to cost threshold for parallelism, is
based on a cost estimate provided before the full optimization is complete.

The cost threshold for parallelism option can be set to any value from 0 through 32767. The default value is 5.

If your computer has only one processor, if only a single CPU is available to SQL Server because of the affinity mask
configuration value, or if the max degree of parallelism option is set to 1, SQL Server ignores cost threshold for parallelism.

cost threshold for parallelism is an advanced option. If you are using the sp_configure system stored procedure to change the
setting, you can change cost threshold for parallelism only when show advanced options is set to 1. The setting takes effect
immediately (without a server stop and restart).

To configure the cost threshold for parallelism

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

affinity mask Option

max degree of parallelism Option

Parallel Query Processing

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

Cross DB Ownership Chaining
 New Information - SQL Server 2000 SP3.

Use the Cross DB Ownership Chaining option to configure cross-database ownership chaining for the instance of SQL Server.
This security enhancement was added in SQL Server 2000 SP3 to allow you to manage cross-database security.

This server option allows you to control cross-database ownership chaining at the database level or to allow cross-database
ownership chaining for all databases:

When Cross DB Ownership Chaining is off (0) for the instance, cross-database ownership chaining is off. You can turn on
cross-database ownership chaining for individual databases using sp_dboption.

By default all user databases have cross-database ownership chaining turned off. Cross-database ownership chaining is on
for the master, tempdb, and msdb system databases. You cannot change cross-database ownership chaining for the
master, msdb, model, and tempdb system databases.

When Cross DB Ownership Chaining is on (1) for the instance, cross-database ownership chaining is on for all databases.
This is equivalent to pre-SP3 functionality.

Setting this option to 1 is not recommended unless all of the databases hosted by the instance of SQL Server must
participate in cross-database ownership chaining and you are aware of the security implications of this setting. For more
information, see Using Ownership Chains.

Controlling Cross-Database Ownership Chaining

Before turning cross-database ownership chaining on or off, consider the following:

You must be a member of the sysadmin role to turn cross-database ownership chaining on or off.

Before turning off cross-database ownership chaining on a production server, fully test all applications, including third-party
applications, to ensure that the changes do not affect application functionality.

You can change the Cross DB Ownership Chaining option while the server is running if you specify RECONFIGURE with
sp_configure.

If you have databases that require cross-database ownership chaining, the recommended practice is to set the Cross DB
Ownership Chaining option to 0 and to turn on cross-database ownership for any database that must participate in cross-
database ownership chaining.

For example, if Cross DB Ownership Chaining is currently set to 1 (allowed for all databases), you can run the following
statements to turn off cross-database ownership chaining for all user databases, and then turn it on for the Northwind and
Pubs database:

USE master
EXEC sp_configure 'Cross DB Ownership Chaining', '0'; RECONFIGURE
EXEC sp_dboption 'Northwind', 'db chaining', 'ON'
EXEC sp_dboption 'Pubs', 'db chaining', 'ON'

To configure cross-database ownership chaining

Transact-SQL

See Also

Setting Configuration Options

sp_configure

RECONFIGURE

sp_dboption

Using Ownership Chains

Administering SQL Server (SQL Server 2000)

cursor threshold Option
Use the cursor threshold option to specify the number of rows in the cursor set at which cursor keysets are generated
asynchronously. If you set cursor threshold to -1, all keysets are generated synchronously, which benefits small cursor sets. If
you set cursor threshold to 0, all cursor keysets are generated asynchronously. With other values, the query optimizer compares
the number of expected rows in the cursor set and builds the keyset asynchronously if it exceeds the number set in cursor
threshold. Do not set cursor threshold too low because small result sets are better built synchronously.

When cursors generate a keyset for a result set, the query optimizer estimates the number of rows that will be returned for that
result set. If the query optimizer estimates that the number of returned rows is greater than this threshold, the cursor is generated
asynchronously, allowing the user to fetch rows from the cursor while the cursor continues to be populated. Otherwise, the cursor
is generated synchronously, and the query waits until all rows are returned.

The accuracy of the query optimizer to determine an estimate for the number of rows in a keyset depends on the currency of the
statistics for each of the tables in the cursor.

cursor threshold is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you
can change cursor threshold only when show advanced options is set to 1. The setting takes effect immediately (without a
server stop and restart).

To set the cursor threshold option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

UPDATE STATISTICS

Administering SQL Server (SQL Server 2000)

default full-text language Option
Use the default full-text language option to specify a default language value for full-text indexed columns. Linguistic analysis is
performed on all data that is full-text indexed and is dependant on the language of the data. The default value of this option is the
language of the server.

The value of the default full-text language option is used when no language has been specified for a column by using
sp_fulltext_column. If a value is specified for which a linguistic analysis package is not available, neutral is used. Neutral should
be used when the column contains data in multiple languages, or if the language being used is not supported.

The following linguistic analysis packages are part of Microsoft® SQL Server™ 2000.

Language Setting
Chinese Simplified 2052
Chinese Traditional 1028
Dutch 1043
English UK 2057
English US 1033
French 1036
German 1031
Italian 1040
Japanese 1041
Korean 1042
Neutral 0
Spanish Modern 3082
Swedish Default 1053

It is possible for additional languages to be added (for example, independent software vendors may provide additional
languages).

The default full-text language option replaces the language neutral full-text option in SQL Server version 7.0. When
upgrading from SQL Server 7.0, the default full-text language value is set based on the values of SQL Server 7.0 configuration
options Unicode locale id and language neutral full-text. This is done to allow compatibility with SQL Server 7.0 applications.

default full-text language is an advanced option. If you are using the sp_configure system stored procedure to change the
setting, you can change default full-text language only when show advanced options is set to 1.

To set the default full-text language option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

sp_fulltext_column

Administering SQL Server (SQL Server 2000)

default language Option
Use the default language option to specify the default language for all newly created logins. To set default language, specify
the langid value of the desired language, as listed in the syslanguages table. For more information, see syslanguages.

The default language for a login can be overridden by using sp_addlogin or sp_defaultlanguage. The default language for a
session is the language for that session's login, unless overridden on a per-session basis using the ODBC or OLEDB APIs.

Note The language for a session can be changed during the session through SET LANGUAGE. For more information, see SET
LANGUAGE.

For information about what the language for a session determines, see SQL Server Language Support.

To set the default language

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

fill factor Option
Use the fill factor option to specify how full Microsoft® SQL Server™ should make each page when it creates a new index using
existing data. The fill factor percentage affects performance because SQL Server must take time to split pages when they fill up.

The fill factor percentage is used only at the time the index is created. The pages are not maintained at any particular level of
fullness.

The default for fill factor is 0; valid values range from 0 through 100. A fill factor value of 0 does not mean that pages are 0
percent full. It is treated similarly to a fill factor value of 100 in that SQL Server creates clustered indexes with full data pages and
nonclustered indexes with full leaf pages. It is different from 100 in that SQL Server leaves some space within the upper level of
the index tree. There is seldom a reason to change the default fill factor value because you can override it with the CREATE
INDEX statement.

Small fill factor values cause SQL Server to create new indexes with pages that are not full. For example, a fill factor value of 10
is a reasonable choice if you are creating an index on a table that you know contains only a small portion of the data that it will
eventually hold. Smaller fill factor values cause each index to take more storage space, allowing room for subsequent insertions
without requiring page splits.

If you set fill factor to 100, SQL Server creates both clustered and nonclustered indexes with each page 100 percent full. Setting
fill factor to 100 is suitable only for read-only tables, to which additional data is never added.

fill factor is an advanced option. If you will be using the sp_configure system stored procedure to change the setting, you can
change fill factor only when show advanced options is set to 1. The setting takes effect after stopping and restarting the
server.

To set a fixed fill factor

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

CREATE INDEX

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

index create memory Option
Use the index create memory option to control the amount of memory used by index creation sorts. The index create
memory option is self-configuring and should work in most cases without requiring adjustment. However, if you experience
difficulties creating indexes, consider increasing the value of this option from its run value. Query sorts are controlled through the
min memory per query option.

The default value for this option is 0 (self-configuring).

index create memory is an advanced option. If you are using the sp_configure system stored procedure to change the setting,
you can change index create memory only when show advanced options is set to 1. The setting takes effect immediately
(without a server stop and restart).

To set the index create memory option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Server Memory Options

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

lightweight pooling Option
Use the lightweight pooling option to provide a means of reducing the system overhead associated with the excessive context
switching sometimes seen in symmetric multiprocessor (SMP) environments. When excessive context switching is present,
lightweight pooling may provide better throughput by performing the context switching inline, thus helping to reduce
user/kernel ring transitions.

Setting lightweight pooling to 1 causes Microsoft® SQL Server™ to switch to fiber mode scheduling. The default value for this
option is 0.

lightweight pooling is an advanced option. If you are using the sp_configure system stored procedure to change the setting,
you can change lightweight pooling only when show advanced options is set to 1. The setting takes effect after stopping and
restarting the server.

To set the lightweight pooling option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

SQL Server Task Scheduling

Using the lightweight pooling Options

Administering SQL Server (SQL Server 2000)

locks Option
Use the locks option to set the maximum number of available locks, thereby limiting the amount of memory Microsoft® SQL
Server™ uses for locks. The default setting is 0, which allows SQL Server to allocate and deallocate locks dynamically based on
changing system requirements.

When the server is started with locks set to 0, the lock manager allocates two percent of the memory allocated to SQL Server to
an initial pool of lock structures. As the pool of locks is exhausted, additional locks are allocated. The dynamic lock pool does not
allocate more than 40 percent of the memory allocated to SQL Server.

Generally, if more memory is required for locks than is available in current memory, and more server memory is available (the
max server memory threshold has not been reached), SQL Server allocates memory dynamically to satisfy the request for locks.
However, if allocating that memory would cause paging at the operating system level (for example, if another application was
running on the same computer as an instance of SQL Server and using that memory), more lock space is not allocated.

Allowing SQL Server to use locks dynamically is the recommended configuration. However, you can set locks and override SQL
Server's ability to allocate lock resources dynamically. Increase this value if SQL Server displays a message that you have
exceeded the number of available locks. Because each lock consumes memory (96 bytes per lock), increasing this value can
require increasing the amount of memory dedicated to the server.

locks is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can change
locks only when show advanced options is set to 1. The setting takes effect after stopping and restarting the server.

To set the locks option

Transact-SQL

SQL-DMO

See Also

Locking

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

max degree of parallelism Option
Use the max degree of parallelism option to limit the number of processors (a maximum of 32) to use in parallel plan
execution. The default value is 0, which uses the actual number of available CPUs. Set max degree of parallelism to 1 to
suppress parallel plan generation. Set the value to a number greater than 1 to restrict the maximum number of processors used
by a single query execution. If a value greater than the number of available CPUs is specified, the actual number of available CPUs
is used.

Note If the affinity mask option is not set to the default, it may restrict the number of CPUs available to Microsoft® SQL
Server™ on a symmetric multiprocessor (SMP) systems.

Change max degree of parallelism rarely for servers running on an SMP computer. If your computer has only one processor,
the max degree of parallelism value is ignored.

max degree of parallelism is an advanced option. If you are using the sp_configure system stored procedure to change the
setting, you can change max degree of parallelism only when show advanced options is set to 1. The setting takes effect
immediately (without a server stop and restart).

In addition to queries, this option also controls the parallelism of DBCC CHECKTABLE, DBCC CHECKDB, and DBCC
CHECKFILEGROUP. Parallel checking can be overridden by using trace flag 2528. For more information, see Trace Flags.

To set the max degree of parallelism option

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

affinity mask Option

cost threshold for parallelism Option

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

max text repl size Option
Use the max text repl size option to specify the maximum size (in bytes) of text and image data that can be added to a
replicated column in a single INSERT, UPDATE, WRITETEXT, or UPDATETEXT statement.

The setting takes effect immediately (without a server stop and restart).

To set the max text repl size option

Transact-SQL

SQL-DMO

See Also

INSERT

RECONFIGURE

Replication Overview

Setting Configuration Options

sp_configure

UPDATE

UPDATETEXT

WRITETEXT

Administering SQL Server (SQL Server 2000)

max worker threads Option
Use the max worker threads option to configure the number of worker threads available to Microsoft® SQL Server™ processes.
SQL Server uses the native thread services of the Microsoft Windows NT® 4.0 or Windows® 2000 operating system so that one
or more threads support each network that SQL Server supports simultaneously; another thread handles database checkpoints;
and a pool of threads handles all users.

Thread pooling helps optimize performance when large numbers of clients are connected to the server. Usually, a separate
operating system thread is created for each client connection to consume fewer system resources. However, with hundreds of
connections to the server, using a thread-per-connection can consume large amounts of system resources. max worker threads
enables SQL Server to create a pool of worker threads to service a larger number of client connections, which improves
performance.

The default setting for max worker threads (255) is best for most systems. However, depending on your system configuration,
setting max worker threads to a smaller value sometimes improves performance.

When the actual number of user connections is less than the amount set in max worker threads, one thread handles each
connection. However, if the actual number of connections exceeds the amount set in max worker threads, SQL Server pools the
worker threads so that the next available worker thread can handle the request.

When the maximum number of worker threads is reached, SQL Server returns the following message:

The working thread limit of 255 has been reached.

Because Windows 98 does not support thread pooling, the option has no effect on those systems.

max worker threads is an advanced option. If you will be using the sp_configure system stored procedure to change the
setting, you can change max worker threads only when show advanced options is set to 1. The system must be stopped and
restarted in order for the new setting to take effect.

To configure the maximum number of worker threads

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

SQL Server Task Scheduling

Administering SQL Server (SQL Server 2000)

media retention Option
Use the media retention option to provide a system-wide default for the length of time to retain each backup medium after it
has been used for a database or transaction log backup. media retention helps protect backups from being overwritten until the
specified number of days has elapsed. When you set media retention, you do not have to specify the length of time to retain
system backups each time you perform a backup. The default is 0 days. If you use the backup medium before the set number of
days has passed, Microsoft® SQL Server™ issues a warning message. SQL Server does not issue a warning unless you change the
default.

This option can be overridden by using the RETAINDAYS clause of the BACKUP statement.

media retention is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you
can change media retention only when show advanced options is set to 1. The setting takes effect after stopping and
restarting the server.

To set the backup retention duration

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

Backing Up and Restoring Databases

BACKUP

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

min memory per query Option
Use the min memory per query option to specify the minimum amount of memory (in kilobytes) that will be allocated for the
execution of a query. For example, if min memory per query is set to 2048 kilobytes (KB), the query is guaranteed to get at least
that much total memory. You can set min memory per query to any value from 512 through 2147483647 KB (2 gigabytes). The
default is 1024 KB.

The Microsoft® SQL Server™ 2000 query processor attempts to determine the optimal amount of memory to allocate to a query.
The min memory per query option lets the administrator specify the minimum amount of memory any single query will receive.
Queries will generally receive more memory than this if they have hash and sort operations on a large volume of data. Increasing
the value of min memory per query may improve performance for some small to medium sized queries, but could lead to
increased contention for memory resources. min memory per query includes memory allocated for sorting and replaces the
sort pages option in SQL Server version 7.0 or earlier.

min memory per query is an advanced option. If you are using the sp_configure system stored procedure to change the
setting, you can change min memory per query only when show advanced options is set to 1. The setting takes effect
immediately (without a server stop and restart).

To set minimum query memory

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

nested triggers Option
Use the nested triggers option to control whether a trigger can cascade (perform an action that initiates another trigger that
initiates another trigger, and so on). When nested triggers is set to 0, triggers cannot cascade. When nested triggers is set to 1
(the default), triggers can cascade to as many as 32 levels.

The setting takes effect immediately (without a server stop and restart).

To set the nested triggers option

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

Using Nested Triggers

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

network packet size Option
Use the network packet size option to set the packet size (in bytes) used across the entire network. Packets are the fixed-size
chunks of data that transfer requests and results between clients and servers. The default packet size set by Microsoft® SQL
Server™ is 4096 bytes. If an application does bulk copy operations, or sends or receives large amounts of text or image data, a
packet size larger than the default may improve efficiency because it results in fewer network reads and writes. If an application
sends and receives small amounts of information, you can set the packet size to 512 bytes, which is sufficient for most data
transfers.

Note Do not change the packet size unless you are certain that it will improve performance. For most applications, the default
packet size is best.

On systems using differing network protocols, set network packet size to the size for the most common protocol used. network
packet size improves network performance when network protocols support larger packets. Client applications can override this
value.

You can also call OLE DB, ODBC, and DB-Library functions to change the packet size.

network packet size is an advanced option. If you will be using the sp_configure system stored procedure to change the
setting, you can change network packet size only when show advanced options is set to 1. All connections created after this
setting is changed receive the new value.

To configure packet size

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

open objects Option
Use the open objects option to set the maximum number of database objects that can be open at one time on an instance of
Microsoft® SQL Server™. Database objects are those objects defined in the sysobjects table: tables, views, rules, stored
procedures, defaults, and triggers.

open objects is a dynamic self-configuring option by default (when the value is set to 0). In other words, SQL Server sets this
value depending on the current needs of the system. In most cases, you should not need to change this value.

Consider increasing the value set in open objects if SQL Server displays a message that you have exceeded the number of open
objects. Because open objects consume memory, increasing this value takes memory from other SQL Server uses and makes it
necessary to increase the amount of memory dedicated to the server. The default is to allow SQL Server to set and increase open
objects as needed.

At server startup, SQL Server builds a pool of descriptor data structures in memory that are used to describe database objects as
they are referenced. The number of descriptors built is equal to the number set in open objects. The first time a database object
is referenced, SQL Server takes one of the descriptors from the free pool of descriptor data and allocates it to the specific object. If
multiple tasks reference the same object at the same time, it is still considered one open object.

For example, two tasks issue the following command at the same time:

UPDATE table_a SET cola = @variable

There is only one descriptor allocated to table_a, which is considered one open object. However, if table_a has an update trigger,
then a second descriptor is allocated to the trigger, counting as a second open object.

Each allocated descriptor has a use counter that indicates how many concurrent queries are referencing the object it defines. The
use count is increased by one at the start of a query, and decreased by one by the end of the query. In the previous example, the
table_a descriptor would have a use count of 2 until the two queries finish; it then decreases to 0.

After the free pool of descriptors has been used, SQL Server starts reusing inactive descriptors when it needs to allocate a new
descriptor. An inactive descriptor is one whose use count is 1. The first time SQL Server has to reuse a descriptor, it issues this
message in the error log:

Warning: OPEN OBJECTS parameter may be too low;
attempt was made to free up descriptors in localdes().
Run sp_configure to increase parameter value.

SQL Server repeats this message after each 1,000 times it has to reuse a descriptor. If you notice that these messages are being
issued frequently in the error log, set open objects to a higher value.

open objects is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change open objects only when show advanced options is set to 1. The setting takes effect after stopping and restarting the
server.

To set the open objects option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

priority boost Option
Use the priority boost option to specify whether Microsoft® SQL Server™ should run at a higher Microsoft Windows NT® 4.0 or
Windows® 2000 scheduling priority than other processes on the same computer. If you set this option to 1, SQL Server runs at a
priority base of 13 in the Windows NT 4.0 or Windows 2000 scheduler. The default is 0, which is a priority base of 7.

priority boost should be used only on a computer dedicated to SQL Server, and with a symmetric multiprocessor (SMP)
configuration.

Caution Boosting the priority too high may drain resources from essential operating system and network functions, resulting in
problems shutting down SQL Server or using other Windows NT 4.0 or Windows 2000 tasks on the server.

In some circumstances, setting priority boost to anything other than the default can cause the following communication error to
be logged in the SQL Server error log:

Error: 17824, Severity: 10, State: 0 Unable to write to ListenOn
connection '<servername>', loginname '<login ID>', hostname '<hostname>'
OS Error: 64, The specified network name is no longer available.

Error 17824 indicates that SQL Server encountered connection problems while attempting to write to a client. These
communication problems may be caused by network problems, if the client has stopped responding, or if the client has been
restarted. However, error 17824 does not always indicate a network problem. Check priority boost and make sure that the
option is set to the default. Deviating from the default may cause error 17824.

priority boost is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change priority boost only when show advanced options is set to 1. The setting takes effect after stopping and restarting the
server.

To set the priority boost option

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Thread and Fiber Execution

Administering SQL Server (SQL Server 2000)

query governor cost limit Option
Use the query governor cost limit option to specify an upper limit for the time in which a query can run. Query cost refers to
the estimated elapsed time, in seconds, required to execute a query on a specific hardware configuration.

If you specify a nonzero, nonnegative value, the query governor disallows execution of any query that has an estimated cost
exceeding that value. Specifying 0 (the default) for this option turns off the query governor. In this case, all queries are allowed to
run.

If you use sp_configure to change the value of query governor cost limit, the changed value is server-wide. To change the
value on a per connection basis, use the SET QUERY_GOVERNOR_COST_LIMIT statement.

query governor cost limit is an advanced option. If you are using the sp_configure system stored procedure to change the
setting, you can change query governor cost limit only when show advanced options is set to 1. The setting takes effect
immediately (without a server stop and restart).

To set the query governor cost limit option

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

SET QUERY_GOVERNOR_COST_LIMIT

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

query wait Option
In Microsoft® SQL Server™, memory-intensive queries, such as those involving sorting and hashing, are queued when there is
not enough memory available to run the query. The query times out after a set amount of time calculated by SQL Server (25
times the estimated cost of the query) or the time amount specified by the non-negative value of the query wait.

Use the query wait option to specify the time in seconds (from 0 through 2147483647) that a query waits for resources before
timing out. If the default value of -1 is used, or if –1 is specified, then the time-out is calculated as 25 times of the estimated query
cost.

Important A transaction containing the waiting query may hold locks while the query waits for memory. In rare situations, it is
possible for an undetectable deadlock to occur. Decreasing the query wait time lowers the probability of such deadlocks.
Eventually, a waiting query will be terminated and the transaction locks released. However, increasing the maximum wait time
may increase the amount of time for the query to be terminated. Changes to this option are not recommended.

query wait is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change query wait only when show advanced options is set to 1. The setting takes effect immediately (without a server stop
and restart).

To set the query wait option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Thread and Fiber Execution

Administering SQL Server (SQL Server 2000)

recovery interval Option
Use the recovery interval option to set the maximum number of minutes per database that Microsoft® SQL Server™ needs to
recover databases. Each time an instance of SQL Server starts, it recovers each database, rolling back transactions that did not
commit and rolling forward transactions that did commit but whose changes were not yet written to disk when an instance of
SQL Server stopped. This configuration option sets an upper limit on the time it should take to recover each database. The default
is 0, indicating automatic configuration by SQL Server. In practice, this means a recovery time of less than one minute and a
checkpoint approximately every one minute for active databases.

recovery interval controls when SQL Server issues a checkpoint in each database. Checkpoints are done on a per database basis.
At a checkpoint, SQL Server ensures all log information and all modified pages are flushed from memory to disk. This limits the
time needed for recovery by limiting the number of transactions rolled forward to ensure they are on disk. No modifications done
before the checkpoint need to be rolled forward because they have been flushed to disk at the checkpoint.

recovery interval does not affect the time it takes to undo long-running transactions. For example, if a long-running transaction
has taken two hours to perform updates before the server became disabled, the actual recovery will take considerably longer than
the recovery interval value to roll back the long transaction.

SQL Server estimates how many data modifications it can roll forward in the recovery time interval. SQL Server typically issues a
checkpoint in a database when the number of data modifications made in the database after the last checkpoint reaches the
number SQL Server estimates it can roll forward in the recovery time interval. Sometimes SQL Server will issue the checkpoint
when the log becomes 70 percent full, if that is less than the estimated number. For more information, see Checkpoints and the
Active Portion of the Log.

The frequency of checkpoints in each database depends on the amount of data modifications made, not on any time-based
measure. A database used primarily for read-only operations will not have many checkpoints. A transaction database will have
frequent checkpoints.

Keep recovery interval set at 0 (self-configuring) unless you notice that checkpoints are impairing performance because they are
occurring too frequently. If this is the case, try increasing the value in small increments.

recovery interval is an advanced option. If you will be using the sp_configure system stored procedure to change the setting,
you can change recovery interval only when show advanced options is set to 1. The setting takes effect immediately (without
a server stop and restart).

To set the recovery interval

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

sp_dboption

Administering SQL Server (SQL Server 2000)

remote access Option
Use the remote access option to control executing stored procedures from remote servers running instances of Microsoft® SQL
Server™. Set remote access to 1 (default) to allow permission to execute stored procedures from remote servers. Set the option
to 0 to prevent execution of stored procedures from a remote server.

The setting takes effect after stopping and restarting the server.

To set remote server access

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

remote login timeout Option
Use the remote login timeout option to specify the number of seconds to wait before returning from a failed remote login
attempt. For example, if you are attempting to log in to a remote server and that server is down, remote login timeout ensures
that you do not have to wait indefinitely before your computer ceases its attempts to log in.

remote login timeout affects connections to OLE DB providers made for heterogeneous queries. The default setting for remote
login timeout is 20 seconds. A value of 0 allows for an infinite wait.

The setting takes effect immediately (without a server stop and restart).

To set the remote login timeout option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

remote proc trans Option
Use the remote proc trans option to protect the actions of a server-to-server procedure through a Microsoft® Distributed
Transaction Coordinator (MS DTC) transaction. Set remote proc trans to 1 to provide an MS DTC-coordinated distributed
transaction that protects the ACID properties of transactions. Sessions begun after setting this option to 1 inherit the
configuration setting as their default.

The setting takes effect immediately (without a server stop and restart).

For more information about ACID properties, see Transactions.

For more information about MS DTC, see the Microsoft Distributed Transaction Coordinator documentation.

To enforce distributed transactions for remote procedures

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

remote query timeout Option
Use the remote query timeout option to specify the number of seconds that must elapse when processing a remote operation
before Microsoft® SQL Server™ assumes the command failed or took too much time to perform (times out). The default is 600,
which allows a ten minute wait.

For heterogeneous queries, remote query timeout specifies the number of seconds (initialized in the command object using the
DBPROP_COMMANDTIMEOUT rowset property) that a remote provider should wait for result sets before the query times out.
This value is also used to set DBPROP_GENERALTIMEOUT if supported by the remote provider. This will cause any other
operations to time out after the specified number of seconds.

For remote stored procedures, remote query timeout specifies the number of seconds that must elapse after sending a remote
"EXEC sp" before the remote stored procedure times out.

The setting takes effect immediately (without a server stop and restart).

To set a time limit for remote queries

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Rowset Properties and Behaviors

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

scan for startup procs Option
Use the scan for startup procs option to scan for automatic execution of stored procedures at Microsoft® SQL Server™ startup
time. If this option is set to 1, SQL Server scans for and executes all automatically executed stored procedures defined on the
server. The default value for scan for startup procs is 0 (do not scan).

The value for this option can be set using sp_configure; however, it will be set automatically if you use sp_procoption, which is
used to mark or unmark stored procedures as automatically executed (autoprocs). When sp_procoption is used to mark the first
stored procedure as an autoproc, this option is set automatically to a value of 1. When sp_procoption is used to unmark the last
stored procedure as an autoproc, this option is automatically set to a value of 0. If you use sp_procoption to mark and unmark
autoprocs, and always unmark autoprocs before dropping them, there is no need to set this option manually.

scan for startup procs is an advanced option. If you are using the sp_configure system stored procedure to change the setting,
you can change scan for startup procs only when show advanced options is set to 1. The setting takes effect after stopping
and restarting the server.

To set the scan for startup procs option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

sp_procoption

Administering SQL Server (SQL Server 2000)

Server Memory Options
Use the two server memory options, min server memory and max server memory, to reconfigure the amount of memory (in
megabytes) in the buffer pool used by an instance of Microsoft® SQL Server™.

By default, SQL Server can change its memory requirements dynamically based on available system resources. The default setting
for min server memory is 0, and the default setting for max server memory is 2147483647. The minimum amount of memory
you can specify for max server memory is 4 megabytes (MB).

When SQL Server is using memory dynamically, it queries the system periodically to determine the amount of free physical
memory available. SQL Server grows or shrinks the buffer cache to keep free physical memory between 4 MB and 10 MB
depending on server activity. This prevents Microsoft Windows NT® 4.0 or Windows® 2000 from paging. If there is less memory
free, SQL Server releases memory to Windows NT 4.0 or Windows 2000 that usually goes on the free list. If there is more
memory free, SQL Server recommits memory to the buffer cache. SQL Server adds memory to the buffer cache only when its
workload requires more memory; a server at rest does not grow its buffer cache.

Allowing SQL Server to use memory dynamically is the recommended configuration; however, you can set the memory options
manually and override SQL Server's ability to use memory dynamically. Before you set the amount of memory for SQL Server,
determine the appropriate memory setting by subtracting from the total physical memory the memory required for Windows NT
4.0 or Windows 2000 and any other instances of SQL Server (and other system uses, if the computer is not wholly dedicated to
SQL Server). This is the maximum amount of memory you can assign to SQL Server.

Note If you have installed and are running the Full-Text Search support (Microsoft Search service, also known as MSSearch),
then you must set the max server memory option manually to leave enough memory for the MSSearch service to run. The max
server memory setting must be adjusted in conjunction with the Windows NT 4.0 virtual memory size such that the virtual
memory remaining for Full-Text Search is 1.5 times the physical memory (excluding the virtual memory requirements of the
other services on the computer). Configure the SQL Server max server memory option so that there is sufficient virtual memory
left to satisfy this Full-Text Search memory requirement. Total virtual memory - (SQL Server maximum virtual memory + virtual
memory requirements of other services) >= 1.5 times the physical memory.

Setting the Memory Options Manually

There are two principal methods for setting the SQL Server memory options manually:

In the first method, set min server memory and max server memory to the same value. This value corresponds to the
fixed amount of memory to allocate to SQL Server.

In the second method, set min server memory and max server memory to span a range of memory values. This is useful
in situations where system or database administrators want to configure an instance of SQL Server in conjunction with the
memory requirements of other applications running on the same computer.

Use min server memory to guarantee a minimum amount of memory to an instance of SQL Server. SQL Server will not
immediately allocate the amount of memory specified in min server memory on startup. However, after memory usage has
reached this value due to client load, SQL Server cannot free memory from the allocated buffer pool unless the value of min
server memory is reduced.

Note SQL Server is not guaranteed to allocate the amount of memory specified in min server memory. If the load on the server
never necessitates the allocation of the amount of memory specified in min server memory, then SQL Server will run with less
memory.

Use max server memory to prevent SQL Server from using more than the specified amount of memory, thus leaving remaining
memory available to start other applications quickly. SQL Server does not immediately allocate the memory specified in max
server memory on startup. Memory usage is increased as needed by SQL Server until reaching the value specified in max
server memory. SQL Server cannot exceed this memory usage unless the value of max server memory is raised.

Important Instances of SQL Server 2000 running in Address Windowing Extensions (AWE) memory mode do allocate all the full
amount of memory specified in max server memory on server startup. For more information about AWE memory, see
Managing AWE Memory.

There is a short delay between the start of a new application and the time SQL Server releases memory. Using max server
memory prevents this delay and may give better performance to the other application. Only set max server memory if the start
time of new applications sharing the same server as SQL Server impairs performance. It is better to let SQL Server use all of the
available memory.

If you set the memory options manually, be sure to set them appropriately for servers used in replication. If the server is a remote

Distributor or a combined Publisher/Distributor, you must assign it at least 16 MB of memory.

Ideally, you want to allocate as much memory as possible to SQL Server without causing the system to swap pages to disk. The
threshold varies depending on your system. For example, on a 32-MB system, 16 MB might be appropriate for SQL Server; on a
64-MB system, 48 MB might be appropriate.

Note As you increase the amount of SQL Server memory, ensure that there is sufficient disk space to grow the operating
system's virtual memory support file (Pagefile.sys) to accommodate additional memory. For more information about the virtual
memory support file, see the Windows NT 4.0 and Windows 2000 documentation.

The amount of memory specified must be sufficient for the SQL Server static memory needs (kernel overhead, open objects,
locks, and so on), as well as for the data cache (also called buffer cache).

Use statistics from System Monitor (Performance Monitor in Windows NT 4.0) to help you adjust the memory value if necessary.
Change this value only when you add or remove memory, or when you change how you use your system.

Virtual Memory Manager

Windows NT 4.0 and Windows 2000 provide a 4-gigabyte (GB) virtual address space at any time, the lower 2 GB of which is
private per process and available for application use. The upper 2 GB is reserved for system use. Windows NT Server, Enterprise
Edition provides a 4-GB virtual address space for each Microsoft Win32® application, the lower 3 GB of which is private per
process and available for application use. The upper 1 GB is reserved for system use.

The 4-GB address space is mapped to the available physical memory by Windows NT Virtual Memory Manager (VMM). The
available physical memory can be up to 4 GB, depending on hardware platform support.

A Win32 application such as SQL Server perceives only virtual or logical addresses, not physical addresses. How much physical
memory an application uses at a given time (the working set) is determined by available physical memory and the VMM. The
application cannot control memory residency directly.

Virtual address systems such as Windows NT 4.0 or Windows 2000 allow the over-committing of physical memory, such that the
ratio of virtual to physical memory exceeds 1:1. As a result, larger programs can run on computers with a variety of physical
memory configurations. However, using significantly more virtual memory than the combined average working sets of all the
processes results in poor performance.

SQL Server can lock memory as a working set. Because memory is locked, you can receive out of memory errors when running
other applications. If out-of-memory errors occur, you may have too much memory assigned to SQL Server. The set working set
size option (set with sp_configure or SQL Server Enterprise Manager) can disable the locking of memory as a working set. By
default, set working set size is disabled.

Configuring SQL Server manually for more virtual memory than there is physical memory can result in poor performance. Also,
the Windows NT 4.0 or Windows 2000 operating system memory requirement must be considered (about 12 MB, with some
variation depending on application overhead). System overhead requirements can grow as SQL Server parameters are configured
upward and Windows NT 4.0 or Windows 2000 needs more resident memory to support additional threads, page tables, and so
on. Allowing SQL Server to use memory dynamically helps to avoid memory-related performance problems.

min server memory and max server memory are advanced options. If you are using the sp_configure system stored
procedure to change these settings, you can change them only when show advanced options is set to 1. These settings take
effect immediately (without a server stop and restart).

To set a fixed amount of memory

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

Monitoring Server Performance and Activity

RECONFIGURE

Replication Overview

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

set working set size Option
Use the set working set size option to reserve physical memory space for Microsoft® SQL Server™ that is equal to the server
memory setting. The server memory setting is configured automatically by SQL Server based on workload and available
resources. It will vary dynamically between min server memory and max server memory. Setting set working set size means
Microsoft® Windows NT® 4.0 or Windows® 2000 do not swap out SQL Server pages even if they can be used more readily by
another process when SQL Server is idle.

Do not set set working set size if you are allowing SQL Server to use memory dynamically. Before setting set working set size
to 1, set both min server memory and max server memory to the same value, the amount of memory you want SQL Server to
use.

set working set size is an advanced option. If you are using the sp_configure system stored procedure to change the setting,
you can change set working set size only when show advanced options is set to 1. The setting takes effect after stopping and
restarting the server.

To set the working set size option

Enterprise Manager

Enterprise Manager

Transact-SQL

See Also

RECONFIGURE

Server Memory Options

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

show advanced options Option
Use the show advanced options option to display the sp_configure system stored procedure advanced options. When you set
show advanced options to 1, you can list the advanced options by using sp_configure. The default is 0.

The setting takes effect immediately (without a server stop and restart).

To set the show advanced options option

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

two digit year cutoff Option
Use the two digit year cutoff option to specify an integer from 1753 to 9999 that represents the cutoff year for interpreting
two-digit years as four-digit years.

A two-digit year that is less than or equal to the last two digits of the cutoff year is in the same century as the cutoff year. A two-
digit year that is greater than the last two digits of the cutoff year is in the century that precedes the cutoff year. For example, if
two digit year cutoff is 2049 (the default), the two-digit year 49 is interpreted as 2049 and the two-digit year 50 is interpreted
as 1950.

Note Microsoft® SQL Server™ uses 2049 as the cutoff year for interpreting dates; OLE Automation objects use 2030. You can
use the two digit year cutoff option to provide consistency in date values between SQL Server and client applications. However,
to avoid ambiguity with dates, use four-digit years in your data.

To set the two digit year cutoff option

Enterprise Manager

Enterprise Manager

Transact-SQL

Administering SQL Server (SQL Server 2000)

user connections Option
Use the user connections option to specify the maximum number of simultaneous user connections allowed on Microsoft® SQL
Server™. The actual number of user connections allowed also depends on the version of SQL Server you are using and the limits
of your application(s) and hardware. SQL Server allows a maximum of 32,767 user connections.

Because user connections is dynamic (self-configuring option), SQL Server adjusts the maximum number of user connections
automatically as needed, up to the maximum value allowable. For example, if only 10 users are logged in, 10 user connection
objects are allocated. In most cases, you should not need to change the value for this option.

You can use SQL Query Analyzer and the following Transact-SQL statement to determine the maximum number of user
connections that your system allows:

SELECT @@MAX_CONNECTIONS

user connections helps avoid overloading the server with too many concurrent connections. You can estimate the number of
connections based on system and user requirements. For example, on a system with many users, each user would not usually
require a unique connection. Connections can be shared among users. Users who are running OLE DB applications need a
connection for each open connection object, users who are running ODBC applications need a connection for each active
connection handle in the application, and users who are running DB-Library applications need one connection for each process
started that calls the DB-Library dbopen function.

Important If you must use this option, do not set the value too high because each connection takes approximately 24 kilobytes
(KB) of overhead regardless of whether the connection is being used. If you exceed the maximum number of user connections,
you receive an error message and are not able to connect until another connection becomes available.

user connections is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you
can change user connections only when show advanced options is set to 1. The setting takes effect after stopping and
restarting the server.

To set user connections

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

user options Option
Use the user options option to specify global defaults for all users. A list of default query processing options is established for
the duration of a user's work session. user options allows you to change the default values of the SET options (if the server's
default settings are not appropriate). A user can override these defaults by using the SET statement. You can configure user
options dynamically for new logins. After you change the setting of user options, new logins use the new setting; current logins
are not affected.

Value Configuration Description
1 DISABLE_DEF_CNST_CHK Controls interim or deferred constraint

checking.
2 IMPLICIT_TRANSACTIONS Controls whether a transaction is started

implicitly when a statement is executed.
4 CURSOR_CLOSE_ON_COMMIT Controls behavior of cursors after a

commit operation has been performed.
8 ANSI_WARNINGS Controls truncation and NULL in

aggregate warnings.
16 ANSI_PADDING Controls padding of fixed-length

variables.
32 ANSI_NULLS Controls NULL handling when using

equality operators.
64 ARITHABORT Terminates a query when an overflow or

divide-by-zero error occurs during query
execution.

128 ARITHIGNORE Returns NULL when an overflow or
divide-by-zero error occurs during a
query.

256 QUOTED_IDENTIFIER Differentiates between single and double
quotation marks when evaluating an
expression.

512 NOCOUNT Turns off the message returned at the end
of each statement that states how many
rows were affected.

1024 ANSI_NULL_DFLT_ON Alters the session's behavior to use ANSI
compatibility for nullability. New columns
defined without explicit nullability are
defined to allow nulls.

2048 ANSI_NULL_DFLT_OFF Alters the session's behavior not to use
ANSI compatibility for nullability. New
columns defined without explicit
nullability are defined not to allow nulls.

4096 CONCAT_NULL_YIELDS_NULL Returns NULL when concatenating a
NULL value with a string.

8192 NUMERIC_ROUNDABORT Generates an error when a loss of
precision occurs in an expression.

16384 XACT_ABORT Rolls back a transaction if a Transact- SQL
statement raises a run-time error.

Note Not all configuration values for user options are compatible with each other. For example, ANSI_NULL_DFLT_ON cannot
be enabled when ANSI_NULL_DFLT_OFF is enabled.

The bit positions in user options are identical to those in @@OPTIONS. Each connection has its own @@OPTIONS function,
which represents the configuration environment. When logging in to Microsoft® SQL Server™, a user receives a default
environment that assigns the current user options value to the @@OPTIONS. Executing SET statements for user options affects
the corresponding value in the session's @@OPTIONS.

All connections created after this setting is changed receive the new value.

To configure user options

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

RECONFIGURE

Setting Configuration Options

sp_configure

Administering SQL Server (SQL Server 2000)

Managing Clients
A client is a front-end application that uses the services provided by a server. The computer that hosts the application is referred
to as the client computer. Client software enables computers to connect to an instance of Microsoft® SQL Server™ on a network.

SQL Server clients can include applications of various types, such as:

OLE DB consumers.

These applications use the Microsoft OLE DB Provider for SQL Server or the Microsoft OLE DB Provider for ODBC to connect
to an instance of SQL Server. The OLE DB providers serve as intermediaries between SQL Server and client applications that
consume SQL Server data as OLE DB rowsets.

ODBC applications.

These include client utilities installed with SQL Server, such as SQL Server Enterprise Manager and SQL Query Analyzer, as
well as other applications that use the SQL Server ODBC driver to connect to an instance of SQL Server.

DB-Library clients.

These include the SQL Server isql command prompt utility and clients written to DB-Library.

Regardless of the type of application, managing a client consists mainly of configuring its connection with the server components
of SQL Server. Depending on the requirements of your site, client management can range from little more than entering the
name of the server computer to building a library of custom configuration entries to accommodate a diverse multiserver
environment.

Simple Client Management

For the majority of clients, the default network configuration installed during SQL Server Setup can be used without modification.
For those clients to be able to connect, you need only supply the network name of the server running one or more instances of
SQL Server. For ODBC clients, you may need to provide the client with the ODBC data source name and know how to configure
an ODBC data source.

Advanced Client Management

Advanced users can create and save individual network protocol configurations. This is useful in situations where SQL Server
clients are connecting to multiple servers running different network protocols, or where unique site considerations, such as
nonstandard port addresses, are used.

Before Configuring a Client

Before configuring a SQL Server client:

You must install a matching pair of SQL Server Net-Libraries on the client and server. By default, all of the SQL Server client
Net-Libraries and server Net-Libraries are installed automatically during the Setup program. Each pair of Net-Libraries
supports a particular network protocol (for example, the client TCP/IP Sockets Net-Library and server TCP/IP Sockets Net-
Library support TCP/IP). Some SQL Server server Net-Libraries (such as NW Link IPX/SPX) should be activated to listen for
clients, either during or after setup, using the SQL Server Network Utility.

You must install the correct network protocols on the client and server. Network protocols are typically installed during
Microsoft Windows® Setup; they are not part of SQL Server Setup or configuration. A SQL Server Net-Library will not work
unless its corresponding network protocol is installed already on both the client and server.

Client Management Tools

The following tools are used to manage most types of SQL Server clients:

Client Network Utility lets you change the default network protocols, and create and save entries that define how to connect
to specified servers.

The application is installed as part of the standard SQL Server client setup. SQL Server Client Network Registration creates
registry entries for the client network protocol configurations and default network protocol. You do not use the application
to install either the SQL Server Net-Libraries or the network protocols.

The Setup program and SQL Server Network Library Configuration let you select and activate server Net-Libraries (all the
client and server Net-Libraries are installed during setup).

Activating a server Net-Library allows SQL Server to listen for clients on the corresponding network protocol. The actual
network protocols are installed as part of Windows Setup (or through Networks in Control Panel).

The ODBC Data Source Administrator (available through ODBC in Control Panel) lets you configure ODBC data sources on
computers running the Microsoft Windows NT® 4.0, Windows 2000, Windows 95, or Windows 98 operating system.

See Also

SQL Server Network Utility

Administering SQL Server (SQL Server 2000)

Client Net-Libraries and Network Protocols
Microsoft® SQL Server™ uses a dynamic-link library (DLL) called a Net-Library to communicate with a particular network
protocol. A matching pair of Net-Libraries must be active on client and server computers to support the desired network protocol.
For example, to enable a client application to communicate with a specific instance of SQL Server across TCP/IP, the client TCP/IP
Sockets Net-Library (DBNETLIB.dll) must be configured to connect to that server on the client computer, and the server TCP/IP
Sockets Net-Library (SSNETLIB.dll) must be listening on the server computer.

By themselves, a pair of Net-Libraries cannot support a client/server connection. Both the client and server also must be running a
protocol stack supporting the Net-Libraries. For example, if the server TCP/IP Sockets Net-Library is listening on the server
computer, and the client TCP/IP Sockets Net-Library is configured to connect to that server on the client computer, the client can
only connect to the server if a TCP/IP protocol stack is installed on both computers.

Multiple Network Protocol Support

The Named Pipes and Multiprotocol Net-Libraries both support multiple network protocols (NW Link IPX/SPX, NetBEUI, and
TCP/IP), and will select automatically any supported network protocol that is available. Using either of these Net-Libraries is useful
if the client must connect to multiple servers running different network protocols, and you do not want to create and manage
configuration entries for each server-network protocol combination.

Net-Library Setup and Defaults

The client Net-Libraries are installed during SQL Server Setup. You define which client Net-Libraries are used to connect to
particular instances of SQL Server using the Client Network Utility. You can specify a default Net-Library for all connections and
also define the use of specific Net-Libraries for connecting to specific instances of SQL Server. TCP/IP is the default protocol on
clients running the Microsoft Windows NT® 4.0, Windows® 2000, Windows 95, or Windows 98 operating system.

SQL Server can be listening simultaneously on any combination of server Net-Libraries. Use SQL Server Network Library
Configuration during or after the Setup program to choose the server Net-Libraries to be activated.

For computers running Windows NT 4.0 or Windows 2000, the default server Net-Libraries are:

TCP/IP Sockets.

Named Pipes.

For computers running Windows 98, the default server Net-Libraries are:

TCP/IP Sockets.

Shared Memory.

When you install SQL Server client utilities on a workstation, SQL Server Setup installs TCP/IP as the default client protocol.

If most of the servers to which you will be connecting are not configured to support the current default client protocol, you can
change the default to another protocol.

For more information about the SQL Server Net-Libraries and the network protocols they support, see Communication
Components.

SQL Server 2000 can use the Secure Sockets Layer (SSL) to encrypt all data transmitted between an application computer and an
instance of SQL Server on a database computer. Both the client and the server computers must have the proper certificates
installed for SSL encryption to function.

Because the Shared Memory Net-Library is used only for intra-computer communications, it is inherently secure and does not
need encryption. For more information, see Net-Library Encryption.

Administering SQL Server (SQL Server 2000)

Configuring Client Network Connections
Each instance of Microsoft® SQL Server™ 2000 listens on a unique set of network addresses so that applications can connect to
different instances. SQL Server 2000 clients do not need any specific configuration to connect to an instance of SQL Server 2000.
The SQL Server 2000 client components query a computer running one or more instances of SQL Server 2000 to determine the
Net-Libraries and network addresses for each instance. The client components then choose a supported Net-Library and address
for the connection automatically, without requiring any configuration work on the client. The only information the application
must supply is the computer name and instance name.

A SQL Server 2000 default instance listens on the same network addresses as SQL Server version 7.0 or earlier, so applications
using earlier versions of the client connectivity components can continue to connect to the default instance with no change.
However, named instances of SQL Server 2000 listen on alternative network addresses, and client computers using earlier
versions of the client connectivity components must be set up to connect to the alternative addresses.

By default, on computers running Windows NT 4.0 and Windows 2000, an instance of SQL Server listens on the server TCP/IP
Sockets and Named Pipes Net-Libraries. On computers running Windows 98, an instance of SQL Server listens on the server
TCP/IP Sockets and Multiprotocol Net-Libraries. If the connection is local on a computer (client and server on the same computer),
an instance of SQL Server listens on the server Shared Memory Net-Library.

For information about compatibility issues with earlier versions of the client network utility, see SQL Server 2000 and SQL Server
version 7.0.

Administering SQL Server (SQL Server 2000)

Configuring Client Net-Libraries
The Client Network Utility is installed as part of Microsoft® SQL Server™ client setup. The application consists of several tabs and
dialog boxes in which you can:

Create client connections to specified servers and save them as configuration entries, which consist of a server alias, a client
Net-Library, and any relevant connection parameters, such as a pipe file name or port number. Any saved entry can be used
when you want to reconfigure a client connection.

Change the default client Net-Library.

Display information about the SQL Server client Net-Libraries currently installed on the system.

Display the DB-Library version currently installed on the system, and set defaults for DB-Library options.

Important The Client Network Utility creates registry entries for the server alias configurations and default client Net-
Library. The application does not install either the SQL Server client Net-Libraries or the network protocols. The SQL Server
client Net-Libraries are installed during SQL Server Setup. The network protocols are installed as part of Microsoft
Windows® Setup (or through Networks in Control Panel). A particular network protocol may not available as part of
Windows Setup. For more information about installing these network protocols, see the vendor documentation.

Viewing Network Library Information

If the Client Network Utility does not display a Net-Library version number and you are using a Net-Library provided by
Microsoft, then one of the following problems may have occurred:

You are using a version that is no longer supported.

The Client Network Utility cannot find the library in the path.

A component required by the selected default network library cannot be found.

To display network library file and version information

Client Network Utility

Client Utility

Changing Default Configurations

Most of the capabilities of the Client Network Utility are designed for advanced users who want to create and edit client
configuration entries. In most cases, the client default settings will work.

Configuring Net-Libraries has been greatly simplified for applications using the SQL Server 2000 client connectivity components
to connect to SQL Server 2000 named instances. You only have to:

Select the client protocols installed on the application computer during setup.

Select the server protocols enabled during setup for the instance of SQL Server.

No other configuration is required. You can then connect to any instance of SQL Server 2000 by specifying the network name of
the database computer and the instance name.

Note If a configured alias is connecting to the wrong server or instance, disable and then reenable the associated network
protocol. This will clear any cached connection information and allow the connection to be made correctly.

Neither the Client Network Utility nor the SQL Server Network Utility lists the Shared Memory Net-Library. Usually, the Shared
Memory Net-Library is enabled for local connections and has no configurable properties.

Note The Shared Memory Net-Library can be disabled using the Client Network Utility. This can be useful for isolating
connectivity problems.

Although no configuration actions are required on SQL Server 2000 application computers that are connecting only to instances
of SQL Server 2000, you can use the Client Network Utility to:

Enable client protocols if you need to connect to an instance of SQL Server that does not support one of the client protocols
already enabled.

Disable a client protocol that is no longer needed.

Change the order in which SQL Server considers client protocols for making connections to instances of SQL Server.

Enable the Secure Sockets Layer (SSL) encryption for all inter-computer connections.

Before enabling the SSL encryption, you must install a server certificate from a certificate authority on the database
computer, and the client must have been issued a root Certificate Authority (CA) certificate from the same Certificate
Authority. For more information about SSL encryption, see Net-Library Encryption.

If an application computer using SQL Server 2000 client components connects to database computers running an instance of SQL
Server version 7.0 or earlier, you need to configure client Net-Libraries only if the SQL Server is not listening on the default
network addresses. When adding a Named Pipe alias in the Client Network Utility, you can specify the network name of the
database computer separately in the Computer name box.

Configuring a Multiprotocol Alias

When you configure a multiprotocol alias, you can enable encryption. This encryption feature applies only to the Multiprotocol
Net-Library and is the same as the multiprotocol encryption offered in SQL Server version 7.0 and earlier. This encryption feature
is offered only for compatibility with existing applications. It is recommended that SQL Server 2000 clients use the SSL encryption
specified on the General tab in the Enable protocol encryption check box of the Client Network Utility.

To start the Client Network Utility

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Setting Up Client Configuration Entries
By default, clients running on the Microsoft® Windows NT® 4.0, Microsoft Windows® 2000, Windows 95, or Windows 98
operating system use the client TCP/IP protocol. You may need to connect using an alternate Net-Library if:

You need to add a specific client configuration for communicating with a specific server.

The server with which you want to communicate is configured to listen on another port.

In either case, you must create a configuration entry on the client.

The Client Network Utility lets you configure any of the following network protocols to communicate with a specific server:

Named Pipes

TCP/IP Sockets

Multiprotocol

NWLink IPX/SPX

AppleTalk

Banyan VINES

Other (for network protocols supplied by a third party)

The Net-Libraries for a protocol must be installed before you can set up a configuration. If the client Net-Library for a network
protocol is not installed, it will not be listed on the Network Libraries tab. You can also set up configurations for network
protocols supplied by a third party, using the Others option in the Add Network Library Configuration dialog box.

Important For a client to connect to an instance of Microsoft SQL Server™, it must use a protocol that matches one of the
protocols listening on the server. For example, if the client tries to connect to an instance of SQL Server using TCP/IP, and the
server has only the NWLink IPX/SPX protocol installed, the client will not be able to establish a connection. In that case, you must
use the SQL Server Network Utility on the server to activate the server NWLink IPX/SPX protocol, and SQL Server Network Utility
on the client to configure the client NWLink IPX/SPX protocol to connect to that server. Both the client and the server must be
running the same network protocol.

Client configuration information is used by SQL Server in the following manner:

If the server name matches a server specified in the Server alias configurations list, then the client connects using the
protocol and associated parameters of that configuration.

If the server name does not match a server specified in the Server alias configurations list, then the default protocol is
used.

If no default protocol has been defined, then TCP/IP is used.

To add a network library configuration

Client Network Utility

Client Utility

To edit a network library configuration

Client Network Utility

Client Utility

To delete a network library configuration

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

TCP/IP Sockets Clients
TCP/IP Sockets Clients

Microsoft® SQL Server™ supports client communication with the TCP/IP network protocol using standard Microsoft Windows®
sockets.

Important The TCP/IP Sockets Net-Libraries have been tested extensively on supported platforms for connecting to instances of
SQL Server. If you have purchased a non-TCP/IP Sockets network protocol from a third-party vendor and want to use it to
connect to SQL Server, the connection should work if the protocol properly supports TCP/IP Sockets. However, the use of third-
party TCP/IP protocols on these platforms is not guaranteed. You can test to see if your sockets are functioning by using the ping
command from a command prompt.

Simplified System Administration Using DHCP and WINS

Microsoft Windows NT® version 3.5 or later provides easy administration of large TCP/IP networks by offering the Dynamic Host
Configuration Protocol (DHCP) service for automatic TCP/IP configuration, and the Windows Internet Name Service (WINS) for
dynamic mapping of network names and addresses. This enables users to operate in large-scale TCP/IP networking environments
with little administrative support.

If your network has a DHCP service and WINS, you can use SQL Server instance names to specify a connection to a server. If your
network does not have these services, then you should specify the server using the IP address.

To configure a client to use TCP/IP (Client Network Utility)

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Named Pipes Clients
Named Pipes Clients

Named Pipes clients usually connect using the server instance name on the default pipe. However, if a server is set up to listen on
an alternate pipe, the client must also be configured to communicate to that pipe.

To alias a client to an alternate pipe

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Multiprotocol Clients
Multiprotocol Clients

The Multiprotocol selection has two key features:

Automatic selection of an available network protocol to communicate with an instance of Microsoft® SQL Server™.

This is convenient when you want to connect to multiple servers running different network protocols but do not want to
reconfigure the client connection for each server. If the client and server Net-Libraries for TCP/IP Sockets, NWLink IPX/SPX,
or Named Pipes are installed on the client and server, the Multiprotocol Net-Library will automatically choose the first
available network protocol to establish a connection.

Client encryption.

You can enforce encryption over the Multiprotocol Net-Library on clients running on the Microsoft Windows NT® 4.0,
Windows® 2000, Windows 95, or Windows 98 operating system to prevent others from intercepting and viewing sensitive
data.

The Multiprotocol Net-Library takes advantage of the remote procedure call (RPC) facility of Windows NT 4.0 and Windows 2000,
which provides Windows Authentication. For the Multiprotocol Net-Library, clients determine the server address using the server
name.

Usage Considerations

Before using the Multiprotocol Net-Library, consider the following:

The Multiprotocol Net-Library does not support named instances of SQL Server 2000. You can use the Multiprotocol Net-
Library to connect to the default instance of SQL Server on a computer, but you cannot connect to any named instances.

The Multiprotocol Net-Library does not support server enumeration. From applications that can list servers by calling
dbserverenum, you cannot identify servers running an instance of SQL Server and listening on the Multiprotocol Net-
Library.

Multiprotocol Name Resolution

Using the RPC run time, which is called by the Multiprotocol Net-Library, clients can connect to servers using a variety of other
protocols. When establishing a connection, the Multiprotocol Net-Library passes the computer name to the RPC run time, which
determines the available network protocols and attempts to use each one until a connection is established. Only NWLink IPX/SPX,
TCP/IP Sockets, and Named Pipes are tested and supported.

To accomplish the computer name to node connection, the RPC run time uses a naming service compatible with the network
protocol used (WINS for TCP/IP, SAP for NWLink IPX/SPX, and Net BIOS broadcasts for Named Pipes). Only the computer name
should be specified, because a local RPC database is used to resolve the names over the supported protocols.

Client Encryption

You can enforce encryption over the Multiprotocol Net-Library on a per-client basis. Only this client's communications are
encrypted. Other clients using the Multiprotocol Net-Library that do not have this parameter set do not use encryption.

To configure a client to use the Multiprotocol Net-Library

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

NetWare Link IPX/SPX Clients
NetWare Link IPX/SPX Clients

You can configure Microsoft® SQL Server™ clients to communicate with instances of SQL Server by using the NW Link IPX/SPX
Compatible Transport, the native protocol of Novell NetWare networks.

The Client Network Utility provides two specification methods for creating an NW Link IPX/SPX network protocol configuration:

By service name and port number

By network address, port number, and network number

Consult your network administrator for this information before setting up the configuration.

To configure a client to use the NWLink IPX/SPX network library

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

AppleTalk ADSP Clients
AppleTalk ADSP Clients

Microsoft® SQL Server™ can communicate with clients using the AppleTalk ADSP network protocol.

The AppleTalk Net-Library does not support server enumeration. From applications that can list servers by calling
dbserverenum, you cannot identify instances of SQL Server listening on the AppleTalk Net-Library.

If you experience difficulties establishing connections from clients through AppleTalk, review the error messages listed in the
Microsoft Windows® application log and the SQL Server error log, and verify that the AppleTalk Net-Library is loaded correctly.

If the AppleTalk Net-Library is loaded on the server correctly, you see a message in the Windows application log or the SQL
Server error log similar to the following:

Using 'SSMSADSN.DLL' version '6.00.0.0' to listen on 'servicename'

To configure a client to use the AppleTalk network library

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Banyan VINES Clients
Banyan VINES Clients

Microsoft® SQL Server™ supports Banyan VINES Sequenced Packet Protocol (SPP) across the Banyan VINES IP network protocol.

Clients running the Microsoft Windows NT® 4.0 or Windows® 2000 operating system require Banyan VINES client software
version 5.56(2) or later.

A StreetTalk language PC-based service name has the form: servicename@group@org where servicename is the StreetTalk PC-
based service name used by the server.

Note The service name used by a server must first be created using the MSERVICE program included with Banyan VINES
software.

If a client application gives a partial StreetTalk name (a name that does not include the group and organization) as the server
name, the VINES SPP Net-Library uses standard VINES services to complete the rest of the StreetTalk name with your login
defaults. If no PC-based service or nickname matching the server name is found within the user's own group and organization,
the VINES SPP Net-Library looks for a special group named MSSQL within your organization. This allows network administrators
to define a group of SQL Servers that are accessible with one-part names from all groups in the same organization.

You can override the default name MSSQL modifying the Banyan VINES properties using the Client Network Utility.

The VINES SPP Net-Library files do not support the use of StreetTalk names that contain embedded spaces, and they use one
VINES IP socket per server and one SPP connection per database connection.

To configure a client to use the Banyan VINES network library

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

VIA Clients
VIA Clients

 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 introduces new Net-Libraries to be used for highly reliable, fast, efficient data transfer between
servers in the same data center. These new Net-Libraries contain functionality for different hardware sets based around the
Virtual Interface Architecture (VIA). SQL Server 2000 comes with Net-Libraries to support hardware from QLogic and Giganet.

To configure a client to use the VIA network library

Client Network Utility

Client Network Utility

See Also

SQL Server Network Utility

Communication Components

Administering SQL Server (SQL Server 2000)

Other Network Protocol Clients
Other Network Protocol Clients

You can create network configurations for network protocols not listed in the Add Network Library Configuration dialog box.
To do so, use the Others option. To use this option, you must have already installed the client and server Net-Libraries supporting
the network protocol.

Use the Others option when the client communicates with a server that is listening on a protocol supplied by a third party, such
as NLSPY32.

To use this option, you must know:

The name of the DLL for the network library supplied by the third party.

Any required parameters and their format.

To configure a client to use a nonstandard network library

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Configuring ODBC Data Sources
An ODBC application uses a data source to connect to an instance of Microsoft® SQL Server™. A data source is a stored definition
that records:

The ODBC driver to use for connections specifying the data source.

The information used by the ODBC driver to connect to a source of data.

Driver-specific options to be used for the connection. For example, a SQL Server ODBC data source can record the SQL-92
options to use, or whether the drivers should record performance statistics.

Each ODBC data source on a client has a unique data source name (DSN). An ODBC data source for the SQL Server ODBC driver
includes all the information used to connect to an instance of SQL Server, plus any essential options.

Administering SQL Server (SQL Server 2000)

Using the ODBC Data Source Administrator
To configure Microsoft® SQL Server™ ODBC data sources, use the ODBC Data Source Administrator. For more information, see
Miscellaneous Utilities.

Using the ODBC Data Source Administrator, you can:

Display version information for the SQL Server ODBC driver currently installed on the system.

Add, change, and remove data sources for the SQL Server ODBC driver.

The ODBC Data Source Administrator can create tabs for user, system, and file data sources.

User data sources are specific to the Microsoft Windows NT® 4.0, Windows® 2000, Windows 95, or Windows 98 account that is
in effect when they are created. They are not visible to any other login account. They are not always visible to applications running
as a service on a computer running Windows NT 4.0 or Windows 2000.

System data sources are visible to all login accounts on a client. They are always visible to applications running as a service on a
computer running Windows NT 4.0 or Windows 2000.

File data sources were added with ODBC version 3.0. File data sources are not stored in the system registry; they are stored in a
file on the client.

After you choose the type of data source, the ODBC Data Source Administrator starts the SQL Server DSN Configuration Wizard,
which guides you through the process of adding an ODBC data source.

To check the ODBC SQL Server driver version

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Using ODBC API Functions
You can add an ODBC data source to connect to an instance of Microsoft® SQL Server™ by writing one of the following ODBC
API functions into your application.

SQLConfigDataSource

User or system data sources can be created by an ODBC application that calls the SQLConfigDataSource function with the
fRequest parameter set to either ODBC_ADD_DSN or ODBC_ADD_SYS_DSN.

SQLWriteFileDSN

A file data source can be created by an ODBC application that calls the SQLWriteFileDSN function.

SQLDriverConnect

If an application specifies the SAVEFILE keyword in the connect string of a successful call to SQLDriverConnect, a file data source
is created using the information specified in the SQLDriverConnect connect string.

SQLCreateDataSource

An ODBC application can call the function SQLCreateDataSource to display an ODBC dialog box that guides a user through
creating a data source.

Data sources that reference the SQL Server ODBC driver contain driver-specific information and options. When a data source is
created with either SQLConfigDataSource or SQLWriteFileDSN, all of the driver-specific information is supplied through
keyword-value pairs in a character string passed to the function. When a data source is created using the ODBC Data Source
Administrator or SQLCreateDataSource dialog boxes, the SQL Server DSN Configuration Wizard is invoked to help you specify
the driver-specific information.

See Also

SQLConfigDataSource

SQLDriverConnect

SQLPrepare

Administering SQL Server (SQL Server 2000)

Adding or Deleting an ODBC Data Source
You must add an ODBC data source to connect your ODBC client to an instance of Microsoft® SQL Server™. You can use the
ODBC Data Source Administrator in Control Panel and the SQL Server DSN Configuration Wizard to accomplish this. You can also
add a data source programmatically using one of several ODBC API functions; however, these methods are recommended only
for advanced users.

ODBC data sources can be deleted in several ways:

Using the ODBC Data Source Administrator utility in Control Panel,

Calling SQLConfigDataSource with the fRequest parameter set to either SQL_REMOVE_DSN or SQL_REMOVE_SYS_DSN.

Deleting the file containing the data source.

To add a data source

ODBC

ODBC

To delete a data source

ODBC

ODBC

See Also

Adding a Data Source

SQLConfigDataSource

Administering SQL Server (SQL Server 2000)

Configuring OLE DB Clients
Configuring OLE DB clients to connect to an instance of Microsoft® SQL Server™ requires making the server name and
connection information available to the client (or OLE DB consumer) through an OLE DB provider. SQL Server connections
through OLE DB are generally made using either:

Microsoft OLE DB Provider for SQL Server (SQLOLEDB).

Microsoft OLE DB Provider for ODBC.

Connecting SQLOLEDB Clients

SQLOLEDB, the SQL Server native OLE DB provider, exposes interfaces to consumers who want access to data on one or more
instances of SQL Server. Using SQLOLEDB allows you to develop an OLE DB consumer optimized for SQL Server databases.
Unlike the Microsoft OLE DB Provider for ODBC, which can access data from a number of OLE DB-compliant ODBC applications,
you can only use SQLOLEDB with SQL Server. You cannot use the information in an ODBC SQL Server data source name (DSN) to
make a connection.

When setting up clients through the Microsoft OLE DB Provider for SQL Server, the client should provide the necessary
connection attributes, and either prompt for connection data or supply that data from an OLE DB data source saved in a persisted
file.

Connecting OLE DB Provider for ODBC Clients

Using the Microsoft OLE DB Provider for ODBC allows you to use a single OLE DB provider to connect to multiple ODBC data
sources, including SQL Server. However, connecting to SQL Server clients with this provider has more administrative overhead
than using the native Microsoft OLE DB Provider for SQL Server.

Usually, when connecting to an instance of SQL Server using the Microsoft OLE DB Provider for ODBC, the information you need
is created through the ODBC Data Source Administrator and saved in a SQL Server ODBC DSN (as either a user, system, or file
DSN). Therefore, you can code your application to use a SQL Server DSN to make a connection.

See Also

Programming OLE DB SQL Server Applications

Administering SQL Server (SQL Server 2000)

DB-Library Options
The Client Network Utility includes file information on the DB-Library installed on your computer, and options for setting DB-
Library preferences. Options include:

DB-Library information

Includes the file name, version, date, and size of the currently installed DB-Library. This type of information is useful if you
have a technical support issue with DB-Library.

Automatic ANSI to OEM conversion

Enables DB-Library to convert characters from OEM to ANSI when communicating with an instance of Microsoft® SQL
Server™, and from ANSI to OEM when communicating with the client from an instance of SQL Server. By default, the
Automatic ANSI to OEM conversion option is selected for clients running Microsoft Windows NT® 4.0, Windows® 2000,
Windows 95, or Windows 98. For more information, see Using the DB-Library Automatic ANSI to OEM Conversion Option.

Use international settings

Enables DB-Library to get date, time, and currency formats from the system rather than using hard-coded parameters or
parameters specified in Sqlcommn.loc. By default, the Use international settings option is selected for clients running
Windows NT 4.0, Windows 2000, Windows 95, or Windows 98.

To set DB-Library conversion preferences

Client Network Utility

Client Utility

Administering SQL Server (SQL Server 2000)

Using the DB-Library Automatic ANSI to OEM Conversion
Option
When enabled, the Automatic ANSI to OEM conversion option converts a character set when communicating from:

ANSI clients to OEM servers.

OEM clients to ANSI servers.

This option is enabled by default. When the option is disabled, conversion of characters is disabled for all connections.

If the client code page is different from the code page on the instance of SQL Server, then the character set should be converted.
Microsoft Windows NT®, Microsoft Windows® 2000, Windows 95, and Windows 98 have both an ANSI and an OEM character
set, which are set during installation. For U.S. English, Windows NT, Windows 2000, Windows 95, and Windows 98 use the default
ANSI character set, code page 1252, and the default OEM character set, code page 437. Windows 3.x runs as an extension to MS-
DOS, and has only the default ANSI character set of code page 1252. The Windows NT 4.0 and Windows 2000 Console is
internally Unicode, which behaves like an OEM character set.

Any clients running Windows NT 4.0, Windows 2000, Windows 95, or Windows 98 are considered ANSI clients. Console-based
applications, such as the isql utility, are considered OEM clients.

A server with the default code page of 12xx, such as 1252, is considered to be an ANSI server; with any other code page, it is
considered to be an OEM server (for example, code page 850 or 437).

Although default code page values exist for both ANSI and OEM, the client's current operating system code page determines
conversion values when characters are translated.

Administering SQL Server (SQL Server 2000)

Checking the Validity of Saved Data
Checking the Validity of Saved Data

You can use the Transact-SQL string function ASCII(char_expr) to reveal a character saved in a Microsoft® SQL Server™ database.
You can also use the ASCII(column_name) function to reveal the ASCII value for a particular column in the database.

Another way to reveal the code page is to set Automatic ANSI to OEM conversion to OFF and query the data from SQL Query
Analyzer.

For example, assume you have saved the character "±" on a server using the OEM code page 437. If you select this data from SQL
Query Analyzer (which is using ANSI code page 1252) when Automatic ANSI to OEM conversion is on, you see the "±"
character. The OEM 437 "±" (which has an ASCII value of 241) has been converted to the ANSI 1252 "±" (ASCII 177). However, if
you select the data from SQL Query Analyzer when Automatic ANSI to OEM conversion is off, you see the "ñ" character (ASCII
241). The OEM 437 ASCII value of 241 has been directly replaced by the ANSI 1252 ASCII value of 241.

Automatic ANSI to OEM
conversion

OEM code page 437 ANSI code page 1252

ON ± (ASCII 241) ± (ASCII 177)
OFF ± (ASCII 241) ñ (ASCII 241)

Administering SQL Server (SQL Server 2000)

Code Page Incompatibilities
Code Page Incompatibilities

When a character in one code page is unavailable on another and conversion occurs, the character is converted to its closest
equivalent character in the other code page. For example, ASCII 156 (œ) in code page 1252 is converted to ASCII 111 (o) in code
page 437 because this is the most similar character in the code page 437. When you convert this ANSI character back to code
page 1252, the result is ASCII 111 (o) because ASCII 111 (o) exists in both code pages. The original 1252 character (œ) is lost. This
means that incorrect data is saved in the database if the character exists in one code page but not the other, and Automatic ANSI
to OEM conversion is turned on.

Conversion ANSI code page 1252 OEM code page 437
ANSI to OEM œ (ASCII 156) Does not exist. Substitutes o (ASCII 111).
OEM to ANSI o (ASCII 111) o (ASCII 111).

When you save data on a server with a code page different from the code page that is used by the clients, be sure to test the data
for accuracy. If possible, choose characters that convert easily between ANSI and OEM.

Administering SQL Server (SQL Server 2000)

 Automating Administrative Tasks
Automated administration is the programmed response to a predictable administrative responsibility or server event. By using
automated administration, you can free time to perform administrative tasks that lack predictable or programmable responses
and require creativity.

For example, if you want to back up all the company servers every weekday after hours, you can create a job to perform this task.
Schedule the job to run at the required time. If the job encounters a problem, SQL Server Agent can record the event and page
you.

If you are running multiple instances of Microsoft® SQL Server™, use multiserver administration to automate tasks. For more
information, see Multiserver Administration.

To automate administration:

Establish which administrative responsibilities or server events occur regularly and can be administered programmatically.

Define a set of jobs, alerts and operators by using SQL Server Enterprise Manager, Transact-SQL scripts, or SQL-DMO
objects. For more information, see Creating Jobs.

Run the SQL Server Agent service.

Automatic Administration Components

Jobs, alerts, and operators are the three main components of automatic administration.

Jobs

A job is a specified series of operations performed sequentially by SQL Server Agent. Use jobs to define an administrative task
that can be executed one or more times and monitored for success or failure each time it executes. Execute jobs:

On one local server or on multiple remote servers.

According to one or more schedules.

By one or more alerts.

For more information, see Creating Jobs.

Alerts

An alert signals the designated operator that an event has occurred. For example, an event can be a job starting or system
resources reaching a threshold. You define the conditions under which an alert is generated. You also define which of the
following actions the alert takes:

Notify one or more operators.

Forward the event to another server.

Execute a job.

For more information, see Defining Alerts.

Operators

An operator is an individual responsible for the maintenance of one or more instances of SQL Server. In some enterprises,
operator responsibilities are assigned to one individual. In larger enterprises with multiple servers, many individuals share
operator responsibilities.

Operators are notified of alerts in one or more of the following ways:

E-mail

You can define the e-mail alias of an operator as the alias for a group of individuals. In this way, all members of that alias
are notified at the same time.

Pager (through e-mail)

net send

For more information, see Defining Operators.

Administering SQL Server (SQL Server 2000)

Multiserver Administration
 New Information - SQL Server 2000 SP3.

Multiserver administration is the process of automating administration across multiple instances of Microsoft® SQL Server™.

Use multiserver administration if you:

Manage two or more servers.

Schedule information flows between enterprise servers for data warehousing.

With multiserver administration, you must have at least one master server and at least one target server. A master server
distributes jobs to and receives events from target servers. A master server stores the central copy of job definitions for jobs run
on target servers. Target servers connect periodically to their master server to update their list of jobs to perform. If a new job
exists, the target server downloads the job and disconnects from the master server. After the target server completes the job, it
reconnects to the master server and reports the status of the job.

For example, if you administer departmental servers across a large corporation, you can define:

One backup job with job steps.

Operators to notify in case of failure.

An execution schedule.

Write this backup job one time on the master server and then enlist each departmental server as a target server. In this way, all
the departmental servers run the same backup job even though you defined it only one time.

Multiserver administration features are intended for members of the sysadmin role. However, a member of the sysadmin role
on the target server cannot edit the operations performed on the target server by the master server. This security measure
prevents job steps from being accidentally deleted and operations on the target server from being interrupted.

Important You cannot configure SQL Server 7.0 master or target servers with SQL Server 2000 SP3 master or target servers.

Creating a Multiserver Environment

To create a multiserver environment, use the Make Master Server Wizard. The wizard takes you through the following steps:

Checking the security settings for the SQL Server Agent service and the SQL Server service on all servers that will become
target servers.

It is recommended that both services be running in Microsoft Windows NT® 4.0 or Windows® 2000 domain accounts.

Creating a master server operator (MSXOperator) on the master server.

The MSXOperator is the only operator that can receive notifications for multiserver jobs.

Starting the SQL Server Agent service on the master server.

Enlisting one or more servers as target servers.

If you have a large number of target servers, it is recommended that you define your master server on a nonproduction server, so
production is not slowed by target server traffic. If you also forward events to this server, you can centralize administration on one
server. For more information, see Managing Events.

If you are using the Make Master Server Wizard on a computer configured with Windows Authentication, you must restart the
computer. This is because the wizard requires Mixed Mode Authentication (Windows Authentication and SQL Server
Authentication). The wizard will change the authentications mode for you, but then you must restart SQL Server and SQL Server
Agent on the master server.

When creating a multiserver environment, consider the following:

Each target server reports to only one master server. You must defect a target server from one master before you can enlist
it into a different one.

The master and target servers must be running on the Windows NT 4.0 or Windows 2000 operating system.

When changing the name of a target server, you must defect it before changing the name and reenlist it after the change.

If you want to dismantle a multiserver configuration, you must defect all the target servers from the master server.

To make a master server

Enterprise Manager

Enterprise Manager

Transact-SQL

To make a target server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To enlist a target server from a master server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To defect a target server from a master server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To defect multiple target servers from a master server

Enterprise Manager

Enterprise Manager

To check the status of a target server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Server Polling

The polling interval, which has a default of one minute, controls how frequently the target server downloads operations and how

frequently the target server uploads the results of job execution. Consequently, if the execution frequency of a multiserver job is
greater than that of the polling interval, then not all job execution outcomes will be uploaded. In that case, it is necessary to view
the job history on the target server in order to see all the results of job execution.

When a target server polls the master server, it reads the operations assigned to the target server from the sysdownloadlist
table in the msdb database. These operations control multiserver jobs and various aspects of the behavior of a target server.
Examples of operations include deleting a job, inserting a job, starting a job, and updating the polling interval of a target server.

Operations are posted to the sysdownloadlist table in one of two ways:

Explicitly, by using sp_post_msx_operation.

Implicitly, by using other job stored procedures.

If you use job stored procedures to modify multiserver job schedules or job steps, or SQL-DMO objects to control multiserver
jobs, issue this command after modifying a multiserver job's steps or schedules to keep the target servers synchronized with the
current job definition:

EXECUTE msdb.dbo.sp_post_msx_operation 'INSERT', 'JOB', '<job id>'

You do not have to post operations explicitly if you use:

SQL Server Enterprise Manager to control multiserver jobs.

Job stored procedures that do not modify job schedules or job steps.

See Also

SQL Server 2000 and SQL Server version 7.0

ApplyToTargetServerGroup Method

Registering Servers

JobSchedule Object

JobServer Object

JobStep Object

sp_add_targetservergroup

sp_delete_targetserver

sp_delete_targetservergroup

sp_help_downloadlist

sp_help_jobserver

sp_help_targetservergroup

sp_resync_targetserver

sp_update_targetservergroup

sysjobservers

syslogins

systargetservers

Administering SQL Server (SQL Server 2000)

Configuring the SQLServerAgent Service
SQLServerAgent is a Microsoft® Windows NT® 4.0 or Windows® 2000 service that executes jobs, monitors Microsoft SQL
Server™, and fires alerts. SQLServerAgent is the service that allows you to automate some administrative tasks. As such, you must
start the SQLServerAgent service before your local or multiserver administrative tasks can run automatically. SQL Server Agent is
also supported on the Microsoft Windows 98 operating system, but SQL Server Agent cannot be used with Windows
Authentication when run on Windows 98.

You can specify some configuration options for SQL Server Agent during SQL Server installation. The full set of configuration
options is available from within SQL Server Enterprise Manager only.

Note You can click SQL Server Agent in the console tree of SQL Server Enterprise Manager to administer jobs, operators, alerts,
and the SQL Server Agent service.

See Also

Security Levels

Starting SQL Server Manually

Administering SQL Server (SQL Server 2000)

Starting SQLServerAgent Service
 New Information - SQL Server 2000 SP3.

The service startup account defines the Microsoft® Windows NT® 4.0 or Windows® 2000 account in which the SQLServerAgent
service runs. This information defines the network permissions of the SQLServerAgent service. These are the available options:

System account

The system account is the built-in local system administrator account. It is a member of the Administrators group on the
local computer, and is therefore a member of the sysadmin role within Microsoft SQL Server™.

Use System account if your jobs require resources from the local system only.

This account

This account enables you to specify in which Windows NT 4.0 or Windows 2000 domain account SQLServerAgent runs.
The domain account that you specify must be a member of the sysadmin role on the local instance of SQL Server.

Use This account if:

You want to forward events to the application logs of other computers running on the Windows NT 4.0 or Windows
2000 operating system.

Your jobs require resources across the network, including replication resources.

You want to notify operators through e-mail or pagers.

Note If the Microsoft Exchange or Microsoft Outlook® client is configured to deliver mail to a personal folder that
is password-protected, SQL Server Agent cannot start its mail session. To avoid this, remove the password
protection from the .pst file.

If you are running SQLServerAgent in an account other than a Windows NT 4.0 or Windows 2000 domain account, the following
will occur:

CmdExec and ActiveScripting steps of jobs owned by nonsysadmins will fail.

The autorestart features in SQLServerAgent will not work.

On-idle job schedules will not allow the job to run.

For best results, use a Windows NT 4.0 or Windows 2000 domain account that has sufficient permissions across the domain to
access information necessary for SQL Server Agent job execution. You can change the SQLServerAgent service account to a non-
Windows NT 4.0 administrator account. However, the Windows NT 4.0 account must be a member of the sysadmin fixed server
role to run SQL Server Agent.

Security Note For maximum security, configure the service account for SQL Agent as a domain account in the Administrators
local group. In addition, connect the SQL Agent host account to SQL Server using integrated authentication, and set the proxy
account. For more information, see xp_sqlagent_proxy_account

For multiserver administration, the master server uses xp_sqlagent_msx_account to set or retrieve the SQLAgentService
account from the TSX server. For more information, see xp_sqlagent_msx_account

To set the service startup account for SQL Server Agent

Enterprise Manager

Enterprise Manager

Note If you are running SQL Server Agent on Windows NT 4.0 or Windows 2000, using SQL Server Service Manager, you can
specify to autostart SQL Server Agent when the operating system starts. However, this option is not available on the Microsoft
Windows 98 operating system.

To set the mail profile for SQL Server Agent

Enterprise Manager

Enterprise Manager

See Also

Setting up Windows Services Accounts

Administering SQL Server (SQL Server 2000)

Connecting to SQL Server
 New Information - SQL Server 2000 SP3.

Two methods define how the SQL Server Agent service connects to an instance of a local Microsoft® SQL Server™. Regardless of
the method you select, the account must have system administrator permissions within SQL Server.

Use Windows Authentication

This method forces the SQL Server Agent service to connect to an instance of SQL Server using the Microsoft Windows
NT® 4.0 or Windows® 2000 domain account you defined as the service startup account.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

This method forces the SQL Server Agent service to connect to an instance of SQL Server using a SQL Server authenticated
login. Only logins that are members of the sysadmin role are available.

Select Use SQL Server Authentication if you are running SQLServerAgent on a server that is not running on the Windows
NT 4.0 or Windows 2000 operating system.

Both options allow you to set a time limit for logins. If the SQLServerAgent service requires more time to connect to the local
instance of SQL Server than the duration you have specified, the login session will time out. You can specify a value from 5
through 45 seconds for the login time-out.

To set the SQL Server connection

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Specifying a SQL Server Alias
By default, SQL Server Agent connects to an instance of Microsoft® SQL Server™ over named pipes using dynamic server names
that require no additional client configuration.

You must specify a server connection alias only when:

You are using a nondefault network transport to connect to an instance of SQL Server.

You are connecting to an instance of SQL Server that listens on an alternate named pipe.

To set a SQL Server alias

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Using the SQL Server Agent Error Log
SQL Server Agent creates an error log that, by default, records warnings and errors. The following types of messages are
displayed in the SQL Server Agent error log:

Warning messages that provide information about potential problems, such as, "Job test was deleted while it was
executing."

Error messages that usually require intervention by a system administrator to resolve, such as, "Unable to start mail
session." Error messages can be sent to a specific user or computer by network popup.

SQL Server maintains up to nine SQL Server Agent error logs. Each archived error log has an extension indicating the relative age
of the error log. For example, an extension of .1 indicates the newest archived error log and an extension of .9 indicates the oldest
archived error log.

By default, execution trace messages are not written to the SQL Server Agent error log, because they can fill it, thereby reducing
your ability to select and analyze more difficult errors. As the SQL Server Agent error log adds an additional processing load to
the server, consider what value you attain by capturing execution trace messages to this error log. Generally, it is best to capture
all messages only when you are debugging a specific problem.

When SQL Server Agent is stopped, you can modify the location of the error log. When the Microsoft® SQL Server™ error log is
empty, it cannot be viewed.

To view the SQL Server Agent error log

Enterprise Manager

Enterprise Manager

To view a master SQL Server Agent error log

Enterprise Manager

Enterprise Manager

To rename a SQL Server Agent error log

Enterprise Manager

Enterprise Manager

To send SQL Server Agent error messages

Enterprise Manager

Enterprise Manager

To write execution trace messages to the SQL Server Agent error log

Enterprise Manager

Enterprise Manager

See Also

Monitoring the Environment

Monitoring the Error Logs

Administering SQL Server (SQL Server 2000)

Implementing Jobs
Using SQL Server Agent jobs, you can automate administrative tasks and run them on a recurring basis. You can run a job
manually or schedule it to run in response to schedules and alerts.

This illustration shows the job execution and job step processing that occurs when a job is run by SQL Server Agent.

Jobs can be written to run on the local instance of Microsoft® SQL Server™ or on multiple servers. To run jobs on multiple
servers, you must set up at least one master server and one or more target servers.

Anyone can create a job, but a job can be edited only by its owner or members of the sysadmin role.

Administering SQL Server (SQL Server 2000)

Creating Jobs
A job is a specified series of operations performed sequentially by SQL Server Agent. A job can perform a wide range of activities,
including running Transact-SQL scripts, command line applications, and Microsoft® ActiveX® scripts. Jobs can be created to run
tasks that are often repeated or schedulable, and they can automatically notify users of job status by generating alerts.

To create a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To give others ownership of a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Organizing Jobs

Microsoft SQL Server™ 2000 provides job categories to help you organize your jobs for easy filtering and grouping. For example,
you can organize all your database backup jobs in the Database Maintenance category. You can also create your own job
categories.

Multiserver categories exist only on a master server. There is only one default job category available only on a master server:
[Uncategorized (Multi-Server)]. When a multiserver job is downloaded, its category is changed to Jobs from MSX at the target
server.

To create a job category

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To delete a job category

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To assign a job to a job category

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To change the membership of a job category

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To list category information

Transact-SQL

SQL-DMO

Modifying Job Ownership

For security reasons, only the job owner or a member of the sysadmin role can change the definition of an existing job, start and
stop the job, or give another user ownership of the job.

However, if you create a job that requires a drive letter or a universal naming convention (UNC) path, the job may run under your
Microsoft Windows NT® 4.0 or Windows® 2000 user account while testing it. When SQL Server Agent then runs the job, it may
not have the necessary permissions, drive letter configurations, or access to the required drive to execute the job. For more
information, see Managing Security.

See Also

Creating Job Steps

Multiserver Administration

Scheduling Jobs

Running Jobs

Modifying and Viewing Jobs

https://msdn.microsoft.com/en-us/library/ms917328(v=sql.80).aspx

Administering SQL Server (SQL Server 2000)

Creating Job Steps
A job step is an action that the job takes on a database or a server. Every job must have at least one job step. Job steps can be
operating system commands, Transact-SQL statements, Microsoft® ActiveX® scripts, or replication tasks.

CmdExec Job Steps

CmdExec job steps are operating system commands or executable programs ending with .bat, .cmd, .com, or .exe.

When you create a CmdExec job step, you must specify:

The process exit code returned if the command was successful.

The CmdExec command (for example,
C:\Program Files\Microsoft SQL Server\80\Tools\Binn\Osql.exe\E\Q "sp_who").

A full path to all executables.

To create a CmdExec job step

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To reset SQLAgent permissions

Enterprise Manager

Enterprise Manager

Transact-SQL Job Steps

When you create a Transact-SQL job step, you must:

Identify the database in which to execute the job.

Write the Transact-SQL statement, stored procedure, or extended stored procedure.

Optionally, you can open an existing Transact-SQL file as the command for the job step.

Members of the sysadmin role can write job steps to run in the context of another database user. For example, a system
administrator can run a job that creates database objects in the pubs database on behalf of another database user.

Note A single Transact-SQL job step can contain multiple batches. Transact-SQL job steps can contain embedded GO commands,
just like osql.exe.

To create a Transact-SQL job step

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To define Transact-SQL job step options

Enterprise Manager

Enterprise Manager

SQL-DMO

ActiveX Scripting Job Steps

When you create an ActiveX scripting job step, you must:

Identify the scripting language in which the job step is written.

Write the ActiveX script.

You can also open an existing ActiveX script file as the command for the job step. ActiveX script commands can alternatively be
externally compiled (for example, using Microsoft Visual Basic®) and then run as CmdExec executables.

When a job step command is an ActiveX script, you can use the SQLActiveScriptHost object to print output to the job step
history log or create COM objects. SQLActiveScriptHost is a global object that is introduced by SQL Server Agent hosting
system into the script name space. The object has two methods (PrintObject and CreateObject). The following examples show
how ActiveX scripting works in Visual Basic Scripting Edition (VBScript) and PerlScript.

Rem VBScript job step example:
Sub main()
 Set DMOServer = CreateObject("SQLDMO.SQLServer")
 DMOServer.LoginSecure = True
 DMOServer.Connect "myserver"
 Print DMOServer.Name
 DMOServer.Disconnect
 Set DMOServer = Nothing
End Sub

#PerlScript job step example:
sub main() {
 $DMOServer = $SQLActiveScriptHost->CreateObject("SQLDMO.SQLServer");
 $DMOServer->SetLoginSecure(1);
 $DMOServer->Connect('.\sql2k');
 $SQLActiveScriptHost->Print($DMOServer->Name);
 $DMOServer->Disconnect();
 $DMOServer = undef;
}

To create an ActiveX Script job step

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Replication Job Steps

When you create a publication using replication, replication jobs are created automatically. The type of replication (snapshot,
transactional, or merge) and options used determine the type of job that is created.

Replication job steps execute one of these replication agents:

Distribution Agent (Distribution job)

Log Reader Agent (LogReader job)

Merge Agent (Merge job)

Queue Reader Agent (QueueReader job)

Snapshot Agent (Snapshot job)

When replication is set up, the replication agents can run continuously after SQL Server Agent is started, on demand, or according
to a schedule.

Note It is recommended that you use Replication Monitor to control replication job steps.

Administering SQL Server (SQL Server 2000)

Handling Multiple Job Steps
If your job has more than one job step, you must impose an order of execution on the job steps. This is called control-of-flow. You
can add new job steps and rearrange the flow of job steps at any time. The changes take effect the next time the job is run. This
illustration shows a control-of-flow for a database backup job.

You define a control-of-flow action for the success and failure of each job step. You must specify the action to be taken when a job
step succeeds and when a job step fails. You can also define the number of and interval between retry attempts for failed job
steps.

Job steps must be atomic. A job cannot pass Boolean values, data, or numeric values between job steps. You can pass values from
one Transact-SQL job step to another by using permanent tables or global temporary tables. You can pass values from one
CmdExec job step to another by using files.

Note If you create looping job steps (job step 1 is followed by job step 2, then job step 2 returns to job step 1), a warning
message appears when the job is created using SQL Server Enterprise Manager.

SQL Server Agent records job and job step execution information in the job history.

To set job step success or failure flow

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To set up the job history log

Enterprise Manager

Enterprise Manager

To view the job history

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

How to monitor replication agent performance (Enterprise Manager)

sp_add_job

sysjobhistory

sysjobs

sysjobsteps

Administering SQL Server (SQL Server 2000)

Scheduling Jobs
Scheduling your administrative jobs is one way to automate administrative tasks. You can schedule local jobs or multiserver jobs.
You can define a job to run:

Whenever SQL Server Agent starts.

Whenever CPU utilization of the computer is at a level you have defined as idle.

One time, at a specific date and time.

On a recurring schedule.

In response to an alert.

You can also execute a job manually; scheduling jobs is optional.

Note Only one instance of the job can be run at a time. If you execute a job manually while it is running as scheduled, SQL Server
Agent refuses the request.

All jobs are enabled by default. To prevent a job from running according to its schedule, you must disable the schedule. The job
can still execute in response to an alert or when a user runs the job manually.

SQL Server Agent automatically disables schedules that are no longer current. If you edit the schedule after it has been disabled
by SQL Server Agent, you must explicitly reenable it. Schedules are disabled if:

They are defined to run one time, at a specific date and time, and that time has passed.

They are defined to run on a recurring schedule, and the end date has passed.

CPU Idle Schedules

To maximize CPU resources, you can define a CPU idle condition for SQL Server Agent. SQL Server Agent uses the CPU idle
condition setting to determine the most advantageous time to execute jobs.

For example, you can schedule a daily backup job to occur during CPU idle time and slow production periods.

Before you define jobs to execute during CPU idle time, determine how much CPU the job requires. You can use SQL Profiler or
System Monitor (Performance Monitor in Windows NT 4.0) to monitor server traffic and collect statistics. You can use the
information you gather to set the CPU idle time percentage.

Define the CPU idle condition as a percentage below which the average CPU usage must remain for a specified time. Next, set the
amount of time. When this time has been exceeded, SQL Server Agent starts all jobs that have a CPU idle time schedule.

To schedule a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To disable a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To set CPU idle time and duration

Enterprise Manager

Enterprise Manager

See Also

sp_help_jobschedule

sysjobschedules

Administering SQL Server (SQL Server 2000)

Specifying Job Responses
You can define job responses to occur after a job completes. Typical job responses include:

Notifying the operator by using e-mail, electronic paging, or a net send message.

Use one of these job responses if the operator must perform a follow-up action. For example, if a backup job completes
successfully, the operator must be notified to remove the backup tape and store it in a safe location.

Writing an event message to the Microsoft® Windows® application log.

You can use this response only for failed jobs.

Automatically deleting the job.

Use this job response if you are certain that you will not need to rerun this job.

To notify an operator of job status

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To write the job status to the Windows application log

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To automatically delete a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To set the polling interval for target servers

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Running Jobs
You may need to execute a job often, but not regularly. In such cases, you can write a job once and execute it manually as needed.
You can also execute jobs manually that have been assigned a schedule. For example, even though you have scheduled a master
database backup job to occur in the evening, you may want to back up the database immediately after making changes to the
system tables.

If a job has started according to its schedule, you cannot start another instance of that job on the same server until the scheduled
job has completed. In multiserver environments, every target server can run one instance of the same job simultaneously.

You can disable a job if you do not want it to run. You can also stop a job while it is executing. In most cases, when you issue a
stop command, the current job step is canceled and any retry logic is ignored. Some job steps, such as long-running Transact-SQL
statements (BACKUP) or some DBCC commands, may not respond quickly to stop requests. When you stop a job, a job-canceled
entry is recorded in the job history.

Multiserver Job Processing

You can run a multiserver job on one or more target servers. Each target server connects periodically to the master server,
downloads an actual copy of any new jobs assigned to the target server, then disconnects from the master server. The target
server stores a complete copy of the job locally, then reconnects to the master server to upload the job outcome status.

Note If the master server is inaccessible when the target server attempts to upload job status, the job status is spooled until the
master server is accessible again.

To start a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To stop a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To force a target server to poll the master server

Enterprise Manager

Enterprise Manager

To set the polling interval for target servers

Enterprise Manager

Enterprise Manager

Transact-SQL

See Also

sysdownloadlist

Administering SQL Server (SQL Server 2000)

SQL Server Agent Permissions Checks
 New Information - SQL Server 2000 SP3.

SQL Server Agent ensures that the job owner has permission to append or overwrite a file in one of the following ways:

If the job owner is a member of the sysadmin fixed server role, the job can be written to the server.

If the job owner is a Windows user, SQL Server tests to see if the user has permission to write to the server.

If the job owner is a SQL Server user, SQL Server tests the SQL Server Agent proxy account for permission to write to the
server. If the proxy account has not been set, no log will be written.

In all cases, jobs are written with SQL Server Agent credentials, but SQL Server now tests to ensure the user has permission to
write to the server. Errors appear in the job history, but the job steps will not fail if the log file cannot be written.

Administering SQL Server (SQL Server 2000)

Modifying and Viewing Jobs
After you have created a job, you can view the job definition. After you have executed a job, you can view its history. If the
requirements of a job change, you can modify the job so that it performs differently.

Note The job must have been executed at least one time for there to be a job history. You can limit the total size and the size per
job of the job history log.

You can modify:

Response options.

Schedules.

Job steps.

Ownership.

Job category.

Target servers (multiserver jobs only).

If you make changes to multiserver job definitions outside of SQL Server Enterprise Manager, you must post the changes to the
download list so that target servers can download the updated job again. To ensure that target servers have the most current job
definitions, post an INSERT instruction after you update the multiserver job:

EXECUTE sp_post_msx_operation 'INSERT', 'JOB', '<job id>'

You must notify the target servers manually that the job has been modified using the above command after you finish modifying
the schedules and steps of a multiserver job using any of the following procedures:

sp_add_jobstep

sp_update_jobstep

sp_delete_jobstep

sp_add_jobschedule

sp_update_jobschedule

sp_delete_jobschedule

Note It is not necessary to call sp_post_msx_operation after you call sp_update_job or sp_delete_job, because these
stored procedures post the required changes to the download list automatically.

To view a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To view the job history

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To check the status of a target server

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To resize the job history log

Enterprise Manager

Enterprise Manager

To clear the job history log

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To modify a job

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

To modify the target servers for a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To modify a target server's location

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To delete a job

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To synchronize target server clocks

Enterprise Manager

Enterprise Manager

Transact-SQL

To force a target server to poll the master server

Enterprise Manager

Enterprise Manager

Transact-SQL

See Also

sp_delete_jobserver

sp_update_job

sysjobhistory

Administering SQL Server (SQL Server 2000)

Scripting Jobs Using Transact-SQL
You can generate Transact-SQL scripts to create the jobs that you have defined. With job scripting, you can:

Control versions of job creation source code.

Migrate jobs from test into production.

Script alerts and operators.

It is also possible to create a script on a computer running an instance of Microsoft® SQL Server™ 2000 that can be run on a
computer running an instance of SQL Server version 7.0. If you choose to create a SQL Server 7.0 compatible script, certain SQL
Server 2000 features are ignored, such as:

Column level collation.

User-defined functions, extended properties.

INSTEAD OF triggers on tables and views.

Indexes on views (indexed views).

Indexes on computed columns.

Descending indexes.

Reference permissions on views.

This option is only available on an instance of SQL Server 2000.

To script jobs using Transact-SQL

Enterprise Manager

Enterprise Manager

To create a SQL Server 7.0 compatible script

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Responding to Events
Microsoft® SQL Server™ events are written to the Microsoft Windows® application log. You can define an alert on one or more
events to specify how SQL Server Agent should respond.

SQL Server Agent monitors the Windows application log for SQL Server events. When events that you have defined for action
occur, SQL Server Agent responds automatically according to your specifications. For example, if an event of severity 17 occurs,
you can specify that an operator be notified immediately.

Automated event response is called alerting. When an event occurs, SQL Server Agent compares the event details against the
alerts defined by the SQL Server administrator. If it finds a match, SQL Server Agent performs the defined response.

You can define alerts to:

Notify operators.

Execute a job.

Forward the event to the Windows application log on another server.

Administering SQL Server (SQL Server 2000)

Defining Operators
The primary attributes of an operator are name and contact information. It is recommended that you define operators before you
define alerts. You must set up one or more of the following in order to notify an operator:

For e-mail, a MAPI-1-compliant e-mail client.

SQL Server Agent requires a valid mail profile in order to send e-mail. Examples of MAPI-1 clients include Microsoft®
Outlook® and Microsoft Exchange client.

For paging, third-party pager-to-e-mail software and/or hardware.

You need these to use the pager notification features.

To use net send notifications, you must be running the Microsoft Windows NT® 4.0 or Windows® 2000 operating system.

Naming an Operator

Every operator must have a name. Operator names must be unique and can be no longer than 128 characters.

Providing Contact Information

An operator's contact information defines how the operator is notified. Operators can be notified by e-mail, pager, or net send:

E-mail Notification

SQL Server Agent establishes its own mail session using the mail profile information supplied in the SQL Agent Properties
dialog box.

Pager Notification

Paging is implemented using e-mail. To set up pager notification, you must install on the mail server software that
processes inbound mail and converts it to a pager message. The software can take one of several approaches, including:

Forwarding the mail to a remote mail server at the pager provider's site.

The pager provider must offer this service, although the software required is generally available as part of the local
mail system. For more information, see the pager documentation.

Routing the mail by way of the Internet to a mail server at the pager provider's site.

This is a variation on the first approach.

Processing the inbound mail and dial using an attached modem.

This software is proprietary to pager service providers. The software acts as a mail client that periodically processes
its inbox either by interpreting all or part of the e-mail address information as a pager number, or by matching the
e-mail name to a pager number in a translation table.

If all of the operators share a pager provider, you can use SQL Server Enterprise Manager to specify any special e-mail formatting
required by the pager-to-e-mail system. The special formatting can be a prefix or a suffix:

Subject line

Cc line

To line

Note If you are using a low-capacity alphanumeric paging system (for example, limited to 64 characters per page), you can
shorten the text sent by excluding the error text from the pager notification.

net send

The net send notification method specifies the recipient (computer or user) of a network message. This method is not
supported on the Windows 98 operating system.

Designating a Fail-Safe Operator

The fail-safe operator is notified about an alert after all pager notifications to the designated operators have failed. For example, if
you have defined three operators for pager notifications and none of the designated operators can be paged, the fail-safe
operator is notified.

The fail-safe operator is notified when:

The operator(s) responsible for the alert could not be paged.

Reasons for this include incorrect pager addresses and off-duty operators.

SQL Server Agent cannot access system tables in the msdb database.

The sysnotifications system table specifies operator responsibilities for alerts.

Because the fail-safe operator is a safety feature, you cannot delete the operator assigned to fail-safe duty without reassigning
fail-safe duty to another operator or deleting the fail-safe assignment.

To create an operator

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

To assign alerts to an operator

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To format pager addresses

Enterprise Manager

Enterprise Manager

SQL-DMO

To designate a fail-safe operator

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

AddNotification Method

AlertSystem Object

Operator Object

sp_add_alert

sp_add_operator

sp_help_notification

sp_help_operator

Administering SQL Server (SQL Server 2000)

Modifying and Viewing Operators
Because operators are individuals with changing responsibilities and job schedules, you may need to update operator
information. After an operator has been created, you can:

View an operator's information.

You can view the alerts for which the operator is responsible. You can view the dates of the most recent attempts by SQL
Server Agent to notify the operator.

Edit an operator's information.

You can edit the notification addresses, pager on-duty schedule, assigned alerts, and notification methods.

Change an operator's availability.

By default, operators are available to receive notifications (enabled) as soon as they are defined. You can specify the
operator as unavailable to receive notifications (disabled) when you create it or at any time thereafter.

For example, if an individual who is assigned operator responsibilities goes on vacation, you can disable the operator. The
alerts assigned to that operator and the notification methods for those alerts have not changed; only the operator's
availability to respond to alerts has been changed. When the individual returns from vacation, you do not need to redefine
the operator; rather, you reenable the operator.

Delete an operator.

You can delete an operator when the individual no longer has operator responsibilities. When you delete an operator, you
also delete all of the operator's alert notifications. You cannot remove an operator that has been assigned to be the fail-safe
operator. You first must remove the fail-safe duty from the operator or reassign the fail-safe duty to another operator
before you can delete the operator.

To view information about an operator

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To edit an operator

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

To change an operator's availability

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To delete an operator

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Alerting Operators
You can choose the operators to be notified in response to an alert. You can assign rotating responsibilities for operator
notification by using pagers. For example, if one or more defined alerts occur on Monday, Wednesday, or Friday, Mary is notified.
If those alerts occur on Tuesday, Thursday, or Saturday, Joe is notified. If Mary or Joe cannot be notified on the respective day, or if
the alert occurs on Sunday, the fail-safe operator is notified.

You notify operators using one or more of these methods:

E-mail

Pager

net send

The SQLServerAgent service uses a mail session that is exclusive to SQL Server Agent activities. If you are using a SQL Mail
session for the MSSQLServer service, it is recommended that SQL Server Agent and Microsoft® SQL Server™ use the same
Microsoft Windows NT® 4.0 or Windows® 2000 domain user account. This allows both mail sessions to use the same mail
profile. If SQL Server Agent and SQL Server use separate domain user accounts, you must configure a mail profile for each
service.

To define the response to an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To set the mail profile for SQL Server Agent

Enterprise Manager

Enterprise Manager

See Also

Configuring Mail Profiles

Administering SQL Server (SQL Server 2000)

Defining Alerts
Errors and messages, or events, are generated by Microsoft® SQL Server™ and entered into the Microsoft Windows® application
log. SQL Server Agent reads the application log and compares events to alerts that you have defined. When SQL Server Agent
finds a match, it fires an alert.

By default, the following SQL Server events are logged in the Windows application log:

Severity 19 or higher sysmessages errors.

You can use sp_altermessage to designate specific sysmessages errors as "always logged" to log error messages with a
severity lower than 19.

Any RAISERROR statement invoked by using the WITH LOG syntax.

RAISERROR WITH LOG is the recommended way to write to the Windows application log from an instance of SQL Server.

Any application logged by using xp_logevent.

Note Make sure that the Windows application log is of sufficient size to avoid losing SQL Server event information.

Alerts must be defined before notifications can be sent. The primary attributes of an alert are name and event or performance
condition specification.

Naming an Alert

Every alert must have a name. Alert names must be unique and can be no longer than 128 characters.

Selecting an Event

You can specify an alert to occur in response to one or more events. You specify the set of events to trigger an alert according to:

Error number.

SQL Server Agent fires an alert when a specific error occurs.

Severity level.

SQL Server Agent fires an alert when any error of the specific severity occurs.

Database.

Specifies a database in which the event occurred if you want to restrict the alert.

Event text.

Specifies a text string in the event message if you want to restrict the alert.

Selecting a Performance Condition

You can specify a performance condition to monitor by firing an alert when the performance threshold is reached. To set a
performance condition you must define the following:

Object.

The area of SQL Server performance to be monitored.

Counter.

The attribute with the area to be monitored. Performance data is sampled periodically, which can lead to a small delay (a
few seconds) between the threshold being reached and the performance alert firing.

Instance.

The specific instance (if any) of the attribute to be monitored.

Alert if counter/value.

The behavior the counter or counter instance must exhibit for the alert to fire.

Creating a User-defined Event Message

You can create user-defined event messages if you have special event tracking needs that are not addressed by standard SQL
Server event messages. User-defined event messages generate error numbers greater than 50,000. Additionally, you can assign
them a severity level.

User-defined event messages must be unique and have a unique error number. They can each have a unique language.

Note When using SQL Server Enterprise Manager, you should select the Write to Windows NT application event log option.
By default, user-defined messages with severities less than 19 are not sent to the Windows application log when they occur and
therefore do not trigger SQL Server Agent alerts.

If you administer a multiple language SQL Server environment, create user-defined messages in each of the languages you
support. For example, if you are creating a new event message that will be used on both an English and a German server, use the
same event number for both, but assign a different language for each.

To create an alert using an error number

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To create an alert using severity level

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To define the response to an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To create a user-defined event error message

Enterprise Manager

Enterprise Manager

Transact-SQL

To edit a user-defined event error message

Enterprise Manager

Enterprise Manager

Transact-SQL

To delete a user-defined event error message

Enterprise Manager

Enterprise Manager

Transact-SQL

To disable or reactivate an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

See Also

xp_logevent

Administering SQL Server (SQL Server 2000)

Modifying and Viewing Alerts
After you create an alert, you can:

View the alert's information.

You can view the characteristics of an alert, the date of the most recent occurrence of and response to the alert, as well as
the number of times the alert has occurred since the count was last reset.

Modify the alert's information.

You can add new operators, reset the number of times an alert has occurred, disable an alert, or change a database.

Delete the alert.

You can delete an alert that is no longer needed. When you delete an alert, you also delete all of the alert's operator
notifications.

To view information about an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To edit an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

To delete an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Copying Operators or Alerts to Other Servers
You can generate a Transact-SQL script to create one or all of the operators or alerts that you have defined. If the same group of
operators is responsible for responding to the same alerts on other servers, you can save time by automatically scripting all the
predefined operators and alerts, and then copying to those servers.

To script operators using Transact-SQL

Enterprise Manager

Enterprise Manager

To script alerts using Transact-SQL

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Managing Events
You can forward all Microsoft® SQL Server™ event messages that meet or exceed a specific error severity level to one instance of
SQL Server. The forwarding server is a dedicated server that can also be a master server. You can use event-forwarding to enable
centralized alert management for a group of servers. In this way, you can reduce the workload on heavily used servers.

In a multiserver environment, it is recommended that you designate the master server as the alerts management server.

Advantages

Advantages of setting up an alerts management server include:

Centralization.

Centralized control and a consolidated view of the events of several instances of SQL Server is possible from a single server.

Scalability.

Many physical servers can be administered as one logical server. You can add or remove servers to this physical server
group as needed.

Efficiency.

Configuration time is reduced, because you need to define alerts and operators only once on one server.

Disadvantages

Disadvantages of setting up an alerts management server include:

Increased traffic.

Forwarding events to an alerts management server can increase network traffic, although this can be moderated by
restricting event-forwarding to severity events only above a designated level.

Single point of failure.

Server load.

Handling alerts for the forwarded events causes an increased processing load at the alerts-forwarding server.

Guidelines

When configuring event forwarding, follow these guidelines:

Avoid running critical or heavily used applications on the alerts-forwarding server.

Avoid configuring many servers to share the same forwarding server. If congestion results, reduce the number of servers
that use a particular alerts management server.

The servers that are registered within SQL Server Enterprise Manager constitute the list of servers available to be chosen by
that server as the alerts-forwarding server.

Define alerts that require a server-specific response on the local instance of SQL Server instead of forwarding them.

The alerts-forwarding server views all the servers forwarding to it as a logical whole. For example, an alerts-forwarding
server responds in the same way to a 605 event from server A and a 605 event from server B.

After configuring your alert system, periodically check the Microsoft Windows® application log for SQL Server Agent
events.

Failure conditions encountered by the alerts engine are written to the local Windows application log with a source name of
SQL Server Agent. For example, if SQL Server Agent cannot send an e-mail notification as it has been defined, an event is
logged in the application log.

If a locally defined alert is disabled and an event occurs that would have caused the alert to fire, the event is forwarded to the
alerts-forwarding server (if it satisfies the alert forwarding condition). This allows local overrides (alerts defined locally that are

also defined at the alerts forwarding server) to be turned off and on as needed by the user at the local site. You can also request
that events always be forwarded, even if they are handled by local alerts.

To designate an events forwarding server

Enterprise Manager

Enterprise Manager

SQL-DMO

To define the response to an alert

Enterprise Manager

Enterprise Manager

Transact-SQL

SQL-DMO

Running Event-Triggered Jobs

You can define a job to be executed in response to an alert. For example, you can execute a job that corrects or further diagnoses a
problem detected by the alert.

Note Given that a job can raise an event, be careful not to create a recursive alert-job loop.

See Also

sysmessages

Administering SQL Server (SQL Server 2000)

Monitoring the Environment
SQL Server Agent monitors itself and the Microsoft® SQL Server™ service.

Self-Monitoring

SQL Server Agent starts the xp_sqlagent_monitor extended stored procedure (SQL Server Agent Monitor) to monitor the
SQLServerAgent service to ensure that it is available to execute scheduled jobs, raise alerts, and notify operators. If the
SQLServerAgent service terminates unexpectedly, the SQL Server Agent Monitor restarts the service.

Restarting the SQL Server Service

SQL Server Agent can restart the local instance of SQL Server if it has terminated for reasons other than a typical shutdown.
Automatic restart is enabled by default. SQL Server Agent restarts the instance of SQL Server when it detects abnormal
termination. This allows an alert to be set on this event.

Note If you are using SQL Server 2000 failover clustering, you must ensure auto-restart is disabled in order for failover
clustering to work.

To set job execution shutdown

Enterprise Manager

Enterprise Manager

To autostart SQL Server Agent Monitor

Enterprise Manager

Enterprise Manager

SQL-DMO

To send SQL Server Agent error messages

Enterprise Manager

Enterprise Manager

To view SQL Server Agent error log

Enterprise Manager

Enterprise Manager

To rename a SQL Server Agent error log

Enterprise Manager

Enterprise Manager

To view a master SQL Server Agent error log

Enterprise Manager

Enterprise Manager

See Also

StopMonitor Method

Administering SQL Server (SQL Server 2000)

Managing Security
A database must have a solid security system to control which activities can be performed and which information can be viewed
and modified. A solid security system ensures the protection of data, regardless of how users gain access to the database.

This section describes the security tools built into Microsoft® SQL Server™ 2000 and includes information about:

Security Architecture

Planning Security

Creating Security Accounts

Managing Security Accounts

Managing Permissions

Advanced Security Topics

Auditing SQL Server Activity

Administering SQL Server (SQL Server 2000)

Security Architecture
 New Information - SQL Server 2000 SP3.

The architecture of a security system is based on users and groups of users. The following illustration shows how users and local
and global groups in Microsoft® Windows NT® 4.0 and Windows® 2000 can map to security accounts in Microsoft SQL
Server™, and how SQL Server can handle security accounts independently of the accounts in Windows NT 4.0 and Windows
2000.

Security Note When possible, use Windows Authentication.

The CORPUSERS local group contains two users and a global group, Mktg, which also contains two users. SQL Server allows
Windows NT 4.0 and Windows 2000 local and global groups to be used directly to organize its user accounts. Additionally, the
Windows NT 4.0 users Fred and Jerry, not part of a Windows NT 4.0 group, can be added to an instance of SQL Server either
directly as a Windows NT 4.0 user (Fred for example), or as a SQL Server user (Jerry).

SQL Server extends this model further with the use of roles. Roles are groups of users organized for administrative purposes, like
Windows NT 4.0 or Windows 2000 groups, but are created in SQL Server when an equivalent Windows NT 4.0 or Windows 2000
group does not exist. For example, the Managers role contains the Windows NT 4.0 Mktg global group and the Windows NT 4.0
users Frank and Fred.

SQL Server also provides security at the application level through the use of individual database application roles.

For more information, see the Windows NT 4.0 or Windows 2000 documentation.

See Also

Creating Security Accounts

Administering SQL Server (SQL Server 2000)

Planning Security
A security plan identifies which users can see which data and perform which activities in the database. To develop a security plan:

1. List all the items and activities in the database that must be controlled through security.

2. Identify the individuals and groups in the company.

3. Cross-reference the two lists to identify which users can see which sets of data and perform which activities in the database.

See Also

Single Person Security Example

Small Company Security Example

Corporate Environment Security Example

Administering SQL Server (SQL Server 2000)

Single Person Security Example
 New Information - SQL Server 2000 SP3.

In the simplest possible security system, a single person is responsible for all aspects of the database and will be its sole user. This
hypothetical user (Tom Brown in London) must be able to:

Create the database and its tables.

Write programs that interface with the data.

Load and maintain data.

Produce reports.

The users-to-activity map for this example lists the single user and the activities he needs to perform.

User account Activity
LONDON\tombrown All database access

The first step in creating a security system is to grant login permission to the LONDON\tombrown Windows user account.
Because the predefined sysadmin role contains all permissions necessary for this user, the LONDON\tombrown login account
should be added as a member of the sysadmin role. When LONDON\tombrown connects to an instance of SQL Server, SQL
Server calls back to Microsoft Windows NT® 4.0 or Windows® 2000 to authenticate the connection. If it is validated, the
connection is accepted, and the login is allowed to perform activities based on the permissions associated with the sysadmin
role.

If Tom Brown did not have a Windows NT 4.0 or Windows 2000 login, he could be given a SQL Server login. In this case, an
instance of SQL Server would need to be running under Mixed Mode, which allows users to log in under Windows NT 4.0,
Windows 2000, or SQL Server logins. A login named tombro could be added to SQL Server independent of the Windows NT 4.0
or Windows 2000 login, and tombro could then be added to the sysadmin role. When the user logs into Windows NT 4.0 or
Windows 2000 and attempts to connect to an instance of SQL Server, he must specify the tombro login name and password that
SQL Server knows.

Security Note When possible, use Windows Authentication.

Administering SQL Server (SQL Server 2000)

Small Company Security Example
 New Information - SQL Server 2000 SP3.

In a moderately complex security system, multiple people perform various tasks in the database. For example, a database
administrator is responsible for the database environment: creating the database, tables, and security accounts, performing
backups, and tuning the database. Two developers are responsible for writing client applications to provide an interface to the
data. Managers prepare information reports from the database and so need access to all available data. The administrative staff
performs customer and sales data entry and must be able to view all data.

The users-to-activity map for this example is slightly more complicated than a single user database.

User account Activity
LONDON\joetuck All database access.
LONDON\marysmith,
LONDON\billb

Full access to data and the ability to create procedures.

LONDON\managers Full access to all data.
LONDON\admins Full access to customer data and sales. Read-only

access for all other data.

The first step in installing the security for this example is to grant login permission to LONDON\joetuck. Then, because the
LONDON\joetuck login requires full access, the next step is to add this user to the sysadmin role.

Login permissions must also be added for the developers, LONDON\marysmith and LONDON\billb. Since these developers
are not system administrators, do not add them to the sysadmin server role. Instead, grant them access to the database, and then
grant object and statement permissions in the database.

However, if you granted these permissions to each developer, the same time-consuming task would have to be performed each
time another developer (or another 10 developers) joined the project. A better solution is to add a SQL Server database role
named developers, granting object and statement permissions to the role. When developer accounts such as
LONDON\marysmith and LONDON\billb are added to the developers role, they automatically obtain the permissions granted
to the role.

Finally, login rights must be added to SQL Server for the LONDON\managers and LONDON\admins Windows groups. You
then add database user accounts for the groups. You can assign permissions to the group user accounts or you can create
database roles, to which you can add the group user accounts. When a member of the LONDON\managers group connects, the
member is recognized as a member of the Windows group and is allowed to connect to SQL Server. The login is granted any
database permissions granted to the group's user account and any roles to which the group belongs. The same is true for
members of the LONDON\admins group.

Administering SQL Server (SQL Server 2000)

Corporate Environment Security Example
In a large corporate security system, there is a complex web of users who perform specialized, exclusive tasks.

A single person is responsible for all aspects of the database application. A few people are responsible for creating databases and
tables, but they must not be allowed to see sensitive personnel information about their coworkers (or even themselves). An
evening team backs up data, but these workers need not see the data, nor create tables and databases. The Personnel department
must have access to general employee information, and a few select individuals in this department are the only people in the
company with access to confidential and sensitive employee information. Also, customer service employees need to see but not
change product specifications in response to customer inquiries.

The users-to-activity map for this example is fairly complex.

User account Activity
LONDON\annej All database access
LONDON\dbadmins Create databases
LONDON\dboperations Perform evening backups
LONDON\personnel Full access to general employee data
LONDON\mikebo,
LONDON\marym,
LONDON\billsm

Full access to confidential data

LONDON\custservice Read-only access to product information

The LONDON\annej user account must be granted login rights to Microsoft® SQL Server™ and added to the sysadmin role
because the sysadmin role has full permissions across the server. The LONDON\dbadmins Microsoft Windows NT® 4.0 and
Windows® 2000 group user account must be added in SQL Server and granted permission to create databases. The
LONDON\operations Windows NT 4.0 group should be added also and granted only the BACKUP DATABASE permissions to
allow them to perform backups.

The LONDON\personnel Windows NT 4.0 and Windows 2000 group should be added and granted the permissions to see only
the nonsensitive columns in the employees table, as well as the permissions to see other tables.

The users LONDON\mikebo, LONDON\marym, and LONDON\billsm are members of the LONDON\personnel Windows NT
4.0 group, so they already have the permissions necessary to do most of their work. However, they also need special access to the
sensitive employee information columns. To meet this need, create a database role called PersonnelSecure in SQL Server and
grant the permissions required to see the sensitive employee information. Individual users get the special permissions in SQL
Server when added to the role. Or, add the special permissions to their user accounts directly.

The final step is to add an account for the LONDON\custservice Windows NT 4.0 group in SQL Server, and grant it permission
to see product information.

Administering SQL Server (SQL Server 2000)

Security Levels
A user passes through two stages of security when working in Microsoft® SQL Server™: authentication and authorization
(permissions validation). The authentication stage identifies the user using a login account and verifies only the ability to connect
to an instance of SQL Server. If authentication is successful, the user connects to an instance of SQL Server. The user then needs
permissions to access databases on the server, which is done by granting access to an account in each database, mapped to the
user login. The permissions validation stage controls the activities the user is allowed to perform in the SQL Server database.

Administering SQL Server (SQL Server 2000)

Authentication Modes
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ can operate in one of two security (authentication) modes:

Windows Authentication Mode (Windows Authentication)

Windows Authentication mode allows a user to connect through a Microsoft Windows NT® 4.0 or Windows® 2000 user
account.

Mixed Mode (Windows Authentication and SQL Server Authentication)

Mixed Mode allows users to connect to an instance of SQL Server using either Windows Authentication or SQL Server
Authentication. Users who connect through a Windows NT 4.0 or Windows 2000 user account can make use of trusted
connections in either Windows Authentication Mode or Mixed Mode.

SQL Server Authentication is provided for backward compatibility. For example, if you create a single Windows 2000 group
and add all necessary users to that group you will need to grant the Windows 2000 group login rights to SQL Server and
access to any necessary databases.

Security Note When possible, use Windows Authentication.

Windows Authentication

When a user connects through a Windows NT 4.0 or Windows 2000 user account, SQL Server revalidates the account name and
password by calling back to Windows NT 4.0 or Windows 2000 for the information.

SQL Server achieves login security integration with Windows NT 4.0 or Windows 2000 by using the security attributes of a
network user to control login access. A user's network security attributes are established at network login time and are validated
by a Windows domain controller. When a network user tries to connect, SQL Server uses Windows-based facilities to determine
the validated network user name. SQL Server then verifies that the person is who they say they are, and then permits or denies
login access based on that network user name alone, without requiring a separate login name and password.

Login security integration operates over any supported network protocol in SQL Server.

Note If a user attempts to connect to an instance of SQL Server providing a blank login name, SQL Server uses Windows
Authentication. Additionally, if a user attempts to connect to an instance of SQL Server configured for Windows Authentication
Mode by using a specific login, the login is ignored and Windows Authentication is used.

Windows Authentication has certain benefits over SQL Server Authentication, primarily due to its integration with the Windows
NT 4.0 and Windows 2000 security system. Windows NT 4.0 and Windows 2000 security provides more features, such as secure
validation and encryption of passwords, auditing, password expiration, minimum password length, and account lockout after
multiple invalid login requests.

Because Windows NT 4.0 and Windows 2000 users and groups are maintained only by Windows NT 4.0 or Windows 2000, SQL
Server reads information about a user's membership in groups when the user connects. If changes are made to the accessibility
rights of a connected user, the changes become effective the next time the user connects to an instance of SQL Server or logs on
to Windows NT 4.0 or Windows 2000 (depending on the type of change).

Note Windows Authentication Mode is not available when an instance of SQL Server is running on Windows 98 or Microsoft
Windows Millennium Edition.

SQL Server Authentication

When a user connects with a specified login name and password from a nontrusted connection, SQL Server performs the
authentication itself by checking to see if a SQL Server login account has been set up and if the specified password matches the
one previously recorded. If SQL Server does not have a login account set, authentication fails and the user receives an error
message.

SQL Server Authentication is provided for backward compatibility because applications written for SQL Server version 7.0 or
earlier may require the use of SQL Server logins and passwords. Additionally, SQL Server Authentication is required when an
instance of SQL Server is running on Windows 98 because Windows Authentication Mode is not supported on Windows 98.
Therefore, SQL Server uses Mixed Mode when running on Windows 98 (but supports only SQL Server Authentication).

Even though Windows Authentication is recommended, SQL Server Authentication may be required for connections with clients
other than Windows NT 4.0 and Windows 2000 clients; it may also be necessary for legacy applications.

Note When connecting to an instance of SQL Server running on Windows NT 4.0 or Windows 2000 using Named Pipes, the user
must have permission to connect to the Windows NT Named Pipes IPC, \\<computername>\IPC$. If the user does not have
permission to connect, it is not possible to connect to an instance of SQL Server using Named Pipes unless either the Windows
NT 4.0 or Windows 2000 guest account on the computer is enabled (disabled by default), or the permission "access this
computer from the network" is granted to their user account.

To set up Windows Authentication Mode security

Enterprise Manager

Enterprise Manager

SQL-DMO

To set up Mixed Mode security

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Backward Compatibility

Administering SQL Server (SQL Server 2000)

Security Account Delegation
 New Information - SQL Server 2000 SP3.

Security account delegation is the ability to connect to multiple servers, and with each server change, to retain the authentication
credentials of the original client. For example, if a user (LONDON\joetuck) connects to ServerA, which then connects to ServerB,
ServerB knows that the connection security identity is LONDON\joetuck.

To use delegation, all servers that you are connecting to must be running Microsoft® Windows® 2000, with Kerberos support
enabled, and you must be using Microsoft Active Directory™, the directory service for Windows 2000. The following options in
Active Directory must be specified as follows in order for delegation to work:

The Account is sensitive and cannot be delegated check box must not be selected for the user requesting delegation.

The Account is trusted for delegation check box must be selected for the service account of SQL Server.

The Computer is trusted for delegation check box must be selected for the server running an instance of Microsoft SQL
Server™.

To use security account delegation, SQL Server must have:

A Service Principal Name (SPN) assigned by the Windows 2000 account domain administrator.

The SPN must be assigned to the service account of the SQL Server service on that particular computer. Delegation enforces
mutual authentication. The SPN proves that SQL Server is verified on the particular server, at the particular socket address,
by the Windows 2000 account domain administrator. You can have your domain administrator establish an SPN for SQL
Server with the setspn utility through the Windows 2000 Resource Kit.

To create an SPN for SQL Server, enter the following code at a command prompt:

setspn -A MSSQLSvc/Host:port serviceaccount

For example:

setspn -A MSSQLSvc/server1.redmond.microsoft.com sqlaccount

For more information about the setspn utility, see the Windows 2000 documentation.

Before enabling delegation, consider the following:

You must be using TCP/IP. You cannot use Named Pipes, because the SPN targets a particular TCP/IP socket. If you are
using multiple ports, you must have a SPN for each port.

You can also enable delegation by running under the LocalSystem account. SQL Server will self-register at service startup
and register the SPN. When SQL Server shuts down, the SPNs will be unregistered for the LocalSystem account.

Security Note The LocalSystem account has elevated local privileges. Enable delegation using a domain user account
whenever possible.

Note If you change service accounts in SQL Server, you need to delete any previous SPNs and create new ones.

Adding an SPN to SQL Server

To add an SPN on an instance of SQL Server named "myserver.microsoft.com", for an instance listening on port 1433, using
service account MYDOMAIN\sqlsvc, run the following at a command prompt:

setspn -A MSSQLSvc/myserver.microsoft.com:1433 sqlsvc

You cannot use the NetBIOS name. You must use the fully qualified DNS name. If the NetBIOS name of the SQL server computer
is the same as the domain name, do not specify the domain qualifier for the service account. You must use only the account name.

If the NetBIOS name of the SQL Server computer is not the same as the domain name, you must specify the domain qualifier for
the service account, as in the following example:

setspn -A MSSQLSvc/myserver.microsoft.com:1433 MYDOMAIN\sqlsvc

To change and use the LocalSystem account, enter the following code at a command prompt to delete the previously registered
SPN :

setspn -D MSSQLSvc/myserver.microsoft.com:1433 sqlsvc

Security Note The LocalSystem account has elevated local privileges. Enable delegation using a domain user account whenever
possible.

For more information about security account delegation, see the Windows 2000 documentation.

Administering SQL Server (SQL Server 2000)

Permissions Validation
 New Information - SQL Server 2000 SP3.

After a user has been authenticated and allowed to log in to an instance of Microsoft® SQL Server™, a separate user account is
required in each database the user must access. Requiring a user account in each database prevents users from connecting to an
instance of SQL Server and accessing all the databases on a server. For example, if a server contains a personnel database and a
recruiting database, users who should be able to access the recruiting database but not the personnel database would have a
user account created only in the recruiting database.

The user account in each database is used to apply security permissions for the objects (for example, tables, views, and stored
procedures) in that database. This user account can be mapped from Microsoft Windows NT® 4.0 and Windows® 2000 user
accounts, Windows NT 4.0 and Windows 2000 groups in which the user is a member, or SQL Server login accounts. If there is no
account mapped directly, the user may be allowed to work in a database under the guest account, if one exists. The activities a
user is allowed to perform are controlled by the permissions applied to the user account from which they gained access to a
database.

Security Note When possible, use Windows Authentication. Also, avoid using the guest account; all logins without their own
database permissions obtain the database permissions granted to this account. If you must use the guest account, grant it
minimum permissions.

SQL Server accepts commands after a user gains access to a database. All activities a user performs in a database are
communicated to SQL Server through Transact-SQL statements. When an instance of SQL Server receives a Transact-SQL
statement, it ensures the user has permission to execute the statement in the database. If the user does not have permission to
execute a statement or access an object used by the statement, SQL Server returns a permissions error.

Administering SQL Server (SQL Server 2000)

Hierarchical Security
The security environment in Microsoft® SQL Server™ is stored, managed, and enforced through a hierarchical system of users. To
simplify the administration of many users, SQL Server uses groups and roles:

A group is an administrative unit within Microsoft Windows NT® 4.0 and Windows® 2000 that contains Windows NT 4.0
and Windows 2000 users or other groups.

A role is an administrative unit within SQL Server that contains SQL Server logins, Windows NT 4.0 and Windows 2000
logins, groups, or other roles.

Arranging users into groups and roles makes it easier to grant or deny permissions to many users at once. The security settings
defined for a group are applied to all members of that group. When a group is a member of a higher-level group, all members of
the group inherit the security settings of the higher-level group, in addition to the security settings defined for the group itself or
user accounts.

The organizational chart of the security system often corresponds to the organizational chart of a company.

These two organizational charts are largely compatible, but there is one common rule for a company's organizational hierarchy
that does not apply to the security model: an individual reports only to one manager. This rule implies that an employee can fall
into only a single branch of the hierarchical model, as shown in the diagram.

The requirements of a database security system go beyond this one-manager limitation; employees belong to security groups
that do not fall within the strict organizational plan of the company. For example, administrative staff exists in every branch of the
company and require security permissions regardless of their organizational branch. To support this broader model, the security
system in Windows NT 4.0, Windows 2000, and SQL Server allows groups to be defined across a hierarchy. An Administrative
group can be created to contain administrative employees for every branch of the company from the Corporate group to the
Payroll group.

This hierarchical system of security groups simplifies management of security settings. It allows security settings to be applied
collectively to all group members, without having to be defined redundantly for each person. The hierarchical model also
accommodates security settings applied only to a single user.

Administering SQL Server (SQL Server 2000)

Creating Security Accounts
 New Information - SQL Server 2000 SP3.

Each user must gain access to an instance of Microsoft® SQL Server™ through a login account that establishes the user's ability
to connect (authentication). This login then has to be mapped to a SQL Server user account, which is used to control activities
performed in the database (permissions validation). Therefore, a single login is mapped to one user account created in each
database the login is accessing. If no user account exists in a database, the user cannot access the database even though the user
may be able to connect to an instance of SQL Server.

Security Note Avoid using the guest account; all logins without their own database permissions obtain the database
permissions granted to this account. If you must use the guest account, grant it minimum permissions.

The accounts used to log in to SQL Server are either created in SQL Server (and use SQL Server Authentication) or are created in
Microsoft Windows NT® 4.0 or Windows® 2000 and granted login rights (using Windows Authentication).

Security Note When possible, use Windows Authentication.

Administering SQL Server (SQL Server 2000)

Security Rules
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ logins, users, roles, and passwords can contain from 1 through 128 characters, including letters,
symbols, and digits, (for example Andrew-Fuller, Margaret Peacock, or 139abc). Therefore, Microsoft Windows NT® 4.0,
Microsoft Windows® 2000, or Microsoft Windows 98 user names can be used as SQL Server logins.

However, because logins, user names, roles, and passwords are often used in Transact-SQL statements, certain symbols must be
delimited with double quotation marks ("), or square brackets ([]). Use delimiters in Transact-SQL statements when the SQL
Server login, user, role, or password:

Contains, or begins with, a space character.

Begins with the $ or @ character.

Note It is not necessary to specify delimiters when entering logins, users, roles, and passwords into the text boxes of the
SQL Server graphical client tools, such as SQL Server Enterprise Manager.

Additionally, a SQL Server login, user, or role cannot:

Contain a backslash (\) character, unless referring to an existing Windows NT 4.0 or Windows 2000 user or group. The
backslash separates the Windows NT 4.0 or Windows 2000 computer or domain name from the user name.

Already exist in the current database (or master, for logins only).

Be NULL, or an empty string ("").

If used in an OLE DB or ODBC connection string, a login or password must not contain the following characters: []{}(),;?*! @.
These characters are used to either initialize the connection or separate connection values.

Security Note Use strong passwords. A strong password makes it more difficult for unauthorized users to break into a system
by cracking the password. A strong password is at least seven characters long; contains a combination of letters, numbers, and
symbol characters within the password; and is not a dictionary word, command name, person's name, or system user name. A
strong password also is updated regularly and is significantly different from previous passwords.

SQL Server user names and passwords must follow the rules above when used in Transact-SQL statements and connection
strings.

See Also

Delimited Identifiers

Administering SQL Server (SQL Server 2000)

Adding a Windows User or Group
Microsoft® Windows NT® 4.0 and Windows® 2000 accounts (users or groups) must be granted permissions to connect to an
instance of Microsoft SQL Server™ before they can access a database. If all members of a Windows NT 4.0 or Windows 2000
group will be connecting to an instance of SQL Server, you can grant permission to the group as a whole. Managing group
permissions is much easier than managing permissions for individual users. If the group should not be granted permission
collectively, grant permission to connect to an instance of SQL Server for each individual Windows NT 4.0 or Windows 2000 user.

Users

When granting a Windows NT 4.0 or Windows 2000 user access to connect to an instance of SQL Server, specify the Windows NT
4.0 or Windows 2000 domain or computer name to which the user belongs, followed by a backslash, and then the user. For
example, to grant access to the Windows NT 4.0 or Windows 2000 user Andrew, in the Windows NT 4.0 or Windows 2000
domain LONDON, specify LONDON\Andrew as the user name.

Local and Global Groups

There are several types of Windows NT 4.0 and Windows 2000 groups, including global and local:

Global groups contain user accounts from the Windows NT 4.0 or Windows 2000 domain in which they are created. Global
groups cannot contain other groups or users from other domains and cannot be created on a computer running Microsoft
Windows NT 4.0 Workstation or Microsoft Windows 2000 Professional.

Local groups can contain user accounts and global groups from the domain in which they are created and in any trusted
domain. Local groups cannot contain other local groups.

Additionally, Windows NT 4.0 and Windows 2000 have predefined, built-in local groups (for example, Administrators, Users,
and Guests).

When granting a Windows NT 4.0 or Windows 2000 local or global group access to connect to an instance of SQL Server, specify
the domain or computer name the group is defined on, followed by a backslash, and then the group name. For example, to grant
access to a global group called SQL_Users, in the LONDON domain, specify LONDON\SQL_Users as the group name.

To grant access to a Windows NT 4.0 or Windows 2000 built-in, local group, specify BUILTIN instead of the domain or computer
name. To grant access to the built-in Windows NT 4.0 and Windows 2000 local group Administrators, specify
BUILTIN\Administrators as the group name.

For more information about these accounts, see the Windows NT 4.0 and Windows 2000 documentation.

To grant a Windows user or group login access to SQL Server

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Granting a Windows User or Group Access to a Database
Granting a Windows User or Group Access to a Database

To obtain access to a Microsoft® SQL Server™ database, a Microsoft Windows NT® 4.0 and Windows® 2000 user or group must
have a corresponding user account in each database they need to access. Additionally, permissions must be applied to this user
account.

Although possible, it is not necessary to add an individual user account in a database for each Windows NT 4.0 and Windows
2000 user in a Windows NT 4.0 and Windows 2000 group whose members all perform the same activities. Accounts can be
added for groups rather than for each individual member. When the group members need to work in a database, they are
granted access through their membership in the Windows NT 4.0 and Windows 2000 group; there is not a specific account for
individual users within the group. For example, a Windows NT 4.0 and Windows 2000 group London\Managers contains the
Windows NT 4.0 and Windows 2000 user London\JoeB. The SQL Server system administrator grants login access only to
London\Managers. The owner of database Accounts grants only London\Managers permission to access Accounts. Although
London\JoeB does not have explicit permission granted to connect to an instance of SQL Server or to access Accounts, he can
connect to the instance of SQL Server and access Accounts due to his membership in London\Managers.

Add individual Windows NT 4.0 and Windows 2000 users to a database only if the user performs activities different from other
members of any Windows NT 4.0 or Windows 2000 group (for example, special database administrative duties).

Note Users who are granted access to an instance of SQL Server through their memberships in a Windows NT 4.0 or Windows
2000 group do not have entries for their individual Windows NT 4.0 or Windows 2000 user accounts in the system tables.
However, an entry is created for their individual user accounts if they create objects, such as a table or a stored procedure, in a
SQL Server database.

To grant a Windows user or group access to a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Adding a SQL Server Login
 New Information - SQL Server 2000 SP3.

Security Note When possible, use Windows Authentication.

Add Microsoft® SQL Server™ login accounts that allow a connection by means of a specified login name and password, rather
than through a Microsoft Windows NT® 4.0 or Windows® 2000 user or group account, if:

An instance of SQL Server is running on Microsoft Windows 98.

SQL Server is configured to operate in Mixed Mode and you must add SQL Server logins accounts for connections from
clients that do not use supported versions of Windows or from legacy applications that use SQL Server Authentication.

Adding SQL Server logins is required:

For applications that connect to products from other vendors.

For applications designed to for users who do not have Windows NT 4.0 or Windows 2000 accounts.

To connect to an instance of SQL Server running on Windows 98.

To add a SQL Server login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

System Administrator (sa) Login
System Administrator (sa) Login

 New Information - SQL Server 2000 SP3.

System administrator (sa) is a special login provided for backward compatibility. By default, it is assigned to the sysadmin fixed
server role and cannot be changed. Although sa is a built-in administrator login, do not use it routinely. Instead, make system
administrators members of the sysadmin fixed server role, and have them log on using their own logins. Use sa only when there
is no other way to log in to an instance of Microsoft® SQL Server™ (for example, when other system administrators are
unavailable or have forgotten their passwords).

During installation, SQL Server Setup prompts you to set an sa login password if you request Mixed Mode authentication. You
should assign a password immediately to prevent unauthorized access to an instance of SQL Server using the sa login.

By contrast, if you select Windows Authentication during installation, assign a password to the sa login after installation to ensure
that the sa login has a password in case you later change the mode to Mixed Mode authentication.

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

See Also

Assigning an sa Password

Administering SQL Server (SQL Server 2000)

Granting a SQL Server Login Access to a Database
Granting a SQL Server Login Access to a Database

 New Information - SQL Server 2000 SP3.

Security Note When possible, use Windows Authentication.

Add a Microsoft® SQL Server™ user account to each database for each SQL Server login that requires access to the database. If a
user is not created in the database, the SQL Server login cannot access the database.

To grant a SQL Server login access to a database, the SQL Server login must already exist. Furthermore, SQL Server logins must
be granted access to a database one at a time.

To grant a SQL Server login access to a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Database Owner (dbo)
The dbo is a user that has implied permissions to perform all activities in the database. Any member of the sysadmin fixed server
role who uses a database is mapped to the special user inside each database called dbo. Also, any object created by any member
of the sysadmin fixed server role belongs to dbo automatically.

For example, if user Andrew is a member of the sysadmin fixed server role and creates a table T1, T1 belongs to dbo and is
qualified as dbo.T1, not as Andrew.T1. Conversely, if Andrew is not a member of the sysadmin fixed server role but is a
member only of the db_owner fixed database role and creates a table T1, T1 belongs to Andrew and is qualified as Andrew.T1.
The table belongs to Andrew because he did not qualify the table as dbo.T1.

The dbo user cannot be deleted and is always present in every database.

Only objects created by members of the sysadmin fixed server role (or by the dbo user) belong to dbo. Objects created by any
other user who is not also a member of the sysadmin fixed server role (including members of the db_owner fixed database
role):

Belong to the user creating the object, not dbo.

Are qualified with the name of the user who created the object.

See Also

Delimited Identifiers

sp_changedbowner

Administering SQL Server (SQL Server 2000)

Database Object Owner
A user who creates a database object (a table, index, view, trigger, function, or stored procedure) is called a database object owner.
Permission to create database objects must be given by the database owner or system administrator. However, after these
permissions are granted, a database object owner can create an object and grant other users permission to use that object.

Database object owners have no special login IDs or passwords. The creator of a database object is granted all permissions
implicitly but must give explicit permissions to other users before they can access the object.

Referencing database objects

When users access an object created by another user, the object should be qualified with the name of the object owner; otherwise,
Microsoft® SQL Server™ may not know which object to use because there could be many objects of the same name owned by
different users. If an object is not qualified with the object owner when it is referenced (for example, my_table instead of
owner.my_table), SQL Server looks for an object in the database in the following order:

1. Owned by the current user.

2. Owned by dbo.

If the object is not found, an error is returned.

For example, user John is a member of the db_owner fixed database role, but not the sysadmin fixed server role, and creates
table T1. All users, except John, who want to access T1 must qualify T1 with the user name John. If T1 is not qualified with the
user name John, SQL Server first looks for a table named T1 owned by the current user and then owned by dbo. If the current
user and dbo do not own a table named T1, an error is returned. If the current user or dbo owns another table named T1, the
other table named T1, rather than John.T1, is used.

If a database object owner must be removed from a database, the owned objects must be dropped first or their ownership
transferred to another user.

Note SQL Server allows a role or Microsoft Windows NT® 4.0 or Windows® 2000 group to be specified as the owner of an
object. For example, to create the table group_table owned by the Windows NT 4.0 or Windows 2000 group LONDON\Users,
specify [LONDON\Users].group_table as the qualified table name. All members of the LONDON\Users group have database
object owner permissions on group_table.

See Also

Delimited Identifiers

sp_changeobjectowner

Administering SQL Server (SQL Server 2000)

guest User
 New Information - SQL Server 2000 SP3.

The guest user account allows a login without a user account to access a database. A login assumes the identity of the guest user
when both of the following conditions are met:

The login has access to an instance of Microsoft® SQL Server™ but does not have access to the database through his or her
own user account.

The database contains a guest user account.

Permissions can be applied to the guest user as if it were any other user account. The guest user can be deleted and added to all
databases except master and tempdb, where it must always exist. By default, a guest user account does not exist in newly
created databases.

Avoid using the guest account; all logins without their own database permissions obtain the database permissions granted to this
account. If you must use the guest account, grant minimum permissions.

For example, to add a guest user account to a database named Accounts, run the following code in SQL Query Analyzer:

USE Accounts
GO
EXECUTE sp_grantdbaccess guest

To grant a SQL Server login access to a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Creating User-Defined SQL Server Database Roles
Create Microsoft® SQL Server™ database roles when a group of users needs to perform a specified set of activities in SQL Server
and one of the following is true:

There is no applicable Microsoft Windows NT® 4.0 or Windows® 2000 group.

You do not have permissions to manage Windows NT 4.0 or Windows 2000 user accounts.

Note Avoid deep levels of nested roles because this can affect performance.

For example, a company may form a Charity Event Committee involving employees from different departments and from several
different levels in the organization. These employees need access to a special project table in the database. There is no existing
Windows NT 4.0 or Windows 2000 group that includes just these employees, and there is no other reason to create one in
Windows NT 4.0 or Windows 2000. A custom SQL Server database role, CharityEvent, can be created for this project and
individual Windows NT 4.0 and Windows 2000 users added to the database role. When permissions are applied, the users in the
database role gain table access. Permissions for other database activities are not affected, and the CharityEvent users are the
only ones who can work with the project table.

SQL Server roles exist within a database and cannot span more than one database.

The advantages of using database roles include:

For any user, more than one database role can be active at any time.

SQL Server roles can contain Windows NT 4.0 or Windows 2000 groups and users and SQL Server users and other roles,
provided that all users, groups, and roles exist in the current database.

A user can belong to more than one role in the same database.

A scalable model is provided for setting up the correct level of security within a database.

Note A database role is owned by either the user explicitly specified as the owner when the role is created, or the user who
created the role when no owner is specified. The owner of the role determines who can be added or removed from the role.
However, because a role is not a database object, multiple roles of the same name in the same database owned by different
users cannot be created.

To create a SQL Server database role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

SQL Server Backward Compatibility Details

Administering SQL Server (SQL Server 2000)

Adding a Member to a SQL Server Database Role
When you add a new user account in Microsoft® SQL Server™ or change the permissions of an existing user, you can add the
user to a SQL Server database role rather than applying permissions directly to the account. Roles can simplify security
administration in databases with a large number of users or with a complex security system.

SQL Server users, Microsoft Windows NT® 4.0 or Windows® 2000 users and groups, and other SQL Server database roles all
can be added as a member of a role. Because a role is restricted to a single database and cannot be added from one database to
another, you can add users, groups, and roles known only to that database.

Note When you add a Windows NT 4.0 or Windows 2000 login without a user account in the database to a SQL Server database
role, SQL Server creates a user account in the database automatically, even if that Windows NT 4.0 or Windows 2000 login cannot
otherwise access the database.

A user account can be a member of any number of roles within the same database and can hold permissions appropriate to each
role. For example, a SQL Server user can be a member of the admin role and the users role for the same database, with each role
granting different permissions. The permission on an object granted to a member of more than one role are the cumulative
permissions of the roles. However, a denied permission in one role has precedence over the same permission granted in another
role. For example, the admin role may grant access to a table, whereas the users role denies access to the same table. A member
of both roles is denied access to the table because denied access is more restrictive and has precedence.

Users to be added to a user-defined database role must already have permission to access the database containing the user-
defined role.

To add a member to a SQL Server database role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Adding a Member to a Predefined Role
The security mechanism in Microsoft® SQL Server™ includes several predefined roles with implied permissions that cannot be
granted to other user accounts. If you have users who require these permissions, you must add their accounts to these predefined
roles. The two types of predefined roles are fixed server and fixed database.

Fixed Server Roles

Fixed server roles, which cannot be created, are defined at the server level and exist outside of individual databases. To add a user
to a fixed server role, the user must have a SQL Server or Microsoft Windows NT® 4.0 or Windows® 2000 login account. Any
member of a fixed server role can add other logins.

Important Windows NT 4.0 or Windows 2000 users who are members of the BUILTIN\Administrators group are members of
the sysadmin fixed server role automatically.

The following table describes the fixed server roles.

Fixed server role Description
sysadmin Performs any activity in SQL Server. The permissions of this

role span all of the other fixed server roles.
serveradmin Configures server-wide settings.
setupadmin Adds and removes linked servers, and executes some

system stored procedures, such as sp_serveroption.
securityadmin Manages server logins.
processadmin Manages processes running in an instance of SQL Server.
dbcreator Creates and alters databases.
diskadmin Manages disk files.
bulkadmin Executes the BULK INSERT statement.

The securityadmin has permission to execute the sp_password stored procedure for all users other than members of the
sysadmin role.

The bulkadmin fixed server role has permission to execute BULK INSERT statements. Members of the bulkadmin role can add
other logins to the role, as all members of any given fixed server role can do. However, due to the security implications associated
with executing the BULK INSERT statement (the BULK INSERT statement requires read access to any data on the network and
machine the server is running on), it may not be desirable for members of the bulkadmin role to grant permission to others. The
bulkadmin role provides members of the sysadmin fixed server role with a method to delegate tasks requiring execution of the
BULK INSERT statement, without granting users sysadmin rights. Members of the bulkadmin role are allowed to execute the
BULK INSERT statement, but they still must have the INSERT permission on the table on which you wish to insert data.

To add a member to a fixed server role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Fixed Database Roles

Fixed database roles, which can be created, are defined at the database level and exist in each database. You can add any valid
user account (a Windows NT 4.0 or Windows 2000 user or group, or a SQL Server user or role) as a member of a fixed database
role. Each member gains the permissions applied to the fixed database role. Any member of a fixed database role can add other
users to the role.

The following table describes the fixed database roles.

Fixed database role Description

db_owner Performs the activities of all database roles, as well as
other maintenance and configuration activities in the
database. The permissions of this role span all of the other
fixed database roles.

db_accessadmin Adds or removes Windows NT 4.0 or Windows 2000
groups and users, and SQL Server users in the database.

db_datareader Sees all data from all user tables in the database.
db_datawriter Adds, changes, or deletes data from all user tables in the

database.
db_ddladmin Adds, modifies, or drops objects in the database (runs all

DDLs).
db_securityadmin Manages roles and members of SQL Server 2000

database roles, and manages statement and object
permissions in the database.

db_backupoperator Has permission to back up the database.
db_denydatareader Denies permission to select data in the database.
db_denydatawriter Denies permission to change data in the database.

To add a member to a SQL Server (fixed) database role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

public Role
public Role

 New Information - SQL Server 2000 SP3.

The public role is a special database role to which every database user belongs. The public role:

Captures all default permissions for users in a database.

Cannot have users, groups, or roles assigned to it because they belong to the role by default.

Is contained in every database, including master, msdb, tempdb, model, and all user databases.

Cannot be dropped.

To protect against unauthorized data access, minimize the permissions granted to the public role. Instead, grant permissions to
other database roles and to user accounts associated with logins.

Administering SQL Server (SQL Server 2000)

Using the Create Login Wizard
 New Information - SQL Server 2000 SP3.

Although the steps required to grant login access to Microsoft® SQL Server™ and a database can be performed separately, the
Create Login Wizard can simplify the process. The Create Login Wizard allows you to:

Choose which authentication mode to use to connect to an instance of SQL Server (Windows Authentication Mode or Mixed
Mode).

Add a Microsoft Windows NT® 4.0, Windows® 2000 or SQL Server login.

Security Note When possible, use Windows Authentication.

Add a Windows NT 4.0, Windows 2000 or SQL Server login to a fixed server role.

Add a Windows NT 4.0, Windows 2000 or SQL Server user to one or more databases, thereby granting the user access to
those databases.

To grant SQL Server login access to a user by using the Create Login Wizard

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Managing Security Accounts
After security accounts have been added to Microsoft® SQL Server™, you can modify them as business needs change. This
usually involves viewing, modifying, and removing the security accounts in the database to fit the needs of your business.

Administering SQL Server (SQL Server 2000)

Viewing Logins
 New Information - SQL Server 2000 SP3.

View Microsoft® SQL Server™ logins to determine if a user or Microsoft Windows NT® 4.0 or Windows® 2000 group has
permission to connect to an instance of SQL Server, and to identify which databases the login can access. Also, view a login before
removing it to see which database users must be removed; it is not possible to remove a login without first removing the
associated users.

You can view:

Users in each database associated with the login.

Default database and language the login uses when the user first connects to an instance of SQL Server.

Windows NT 4.0 or Windows 2000 security identifier (SID).

Note It is not possible to view the password of any login unless the password is NULL. Passwords are encrypted when
stored in SQL Server.

Security Note To protect against unauthorized access, do not assign a NULL password to a SQL Server login.

To view a SQL Server login or Windows user or group

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Modifying Logins
 New Information - SQL Server 2000 SP3.

After a login has been created, it may be necessary to change the password (in the case of SQL Server logins), default database, or
default language. For example, a user may forget her password, want to change the password for security reasons, need to use a
different database on a regular basis, or need to see messages in a different language.

Note If a user forgets a password, a member of the sysadmin or securityadmin fixed server role can change the password
without knowing the original password. A user cannot change a password if he has forgotten it. Members of the securityadmin
role cannot change the password of members of the sysadmin role. Passwords for Windows accounts must be changed in
Windows by the user or a Windows administrator.

To change the password of a SQL Server login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To change the default database of a login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To change the default language of a login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Removing Logins and Users
 New Information - SQL Server 2000 SP3.

The process of deactivating security accounts (for example, when an employee leaves a company) is similar to the process of
adding a new user. First, the domain administrator should remove the user's Windows NT 4.0 or Windows 2000 account. If the
user has Microsoft SQL Server™ database user accounts, remove them from the databases. Finally, remove the login account
from SQL Server.

Removing a SQL Server user or Windows NT 4.0 or Windows 2000 user or group from a SQL Server database automatically
removes the permissions defined for the user or group and prevents that user from using the database under the old security
account. The permissions do not have to be removed separately. However, it is not possible to remove a user from SQL Server if
that user currently owns objects (tables, procedures, or views) within a database. If the user owns objects, then either drop those
objects before removing the user or transfer ownership to another existing user by using the sp_changeobjectowner system
stored procedure.

Removing a user does not remove a login automatically, so it does not prevent the user from connecting to an instance of SQL
Server. After being removed, the user can log in to the databases only through the guest account and perform activities under
those permissions. To prevent a user from connecting to an instance of SQL Server, remove his or her login.

If a linked server login is set up but is no longer required, remove it to prevent unauthorized access to the linked server and to
keep the security system as simple as possible.

To remove a user or group from a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To remove a SQL Server login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To revoke a Windows user or group login access from SQL Server

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To remove a linked server login

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

sp_changeobjectowner

Administering SQL Server (SQL Server 2000)

Denying Login Access to Windows Accounts
When a Microsoft® Windows NT® 4.0 or Windows® 2000 user belongs to a Windows NT 4.0 or Windows 2000 group that has
a login account in Microsoft SQL Server™, the user is allowed to connect through the group login. However, there may be times
when such users or groups need to be prevented from connecting to an instance of SQL Server. You can deny login access to any
Windows NT 4.0 or Windows 2000 user or group. Users cannot connect to an instance of SQL Server if their user account, or any
group in which they are a member, has been denied login access.

To deny login access to a Windows user or group

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Viewing Roles
When creating and using a database, you may need to find information about a Microsoft® SQL Server™ database role or a fixed
server role. For example, you may need to see which roles exist in the current database, or list the fixed server roles.

To view the roles defined in the current database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the fixed database roles defined in the current database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the fixed server roles

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Viewing and Modifying Role Memberships
While using a database, you may need to list the members of a database role or fixed server role. Or, when a Microsoft® SQL
Server™ user no longer needs the permissions from a user-defined, fixed database or server role of which she is a member, you
may want to remove the user from the role to keep the security system as simple as possible.

To view the members of a database role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To remove a user account from a database role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the members of a fixed server role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To remove a login from a fixed server role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Removing a SQL Server Database Role
The changing security requirements of a database can render a Microsoft® SQL Server™ database role obsolete. Remove roles
when you have removed all users and are certain that the role and its permissions will not be required in the future. Empty roles
can be saved if the permissions may be required for a new user. However, from an administrative perspective, it is much easier to
work with a security system that is not cluttered with unnecessary security roles. SQL Server operates faster with a simpler
security system, although it is will not be a problem unless there are an extremely large number of roles.

Note It is not possible to remove fixed server roles or fixed database roles.

To remove a SQL Server role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Viewing Database Users
 New Information - SQL Server 2000 SP3.

Viewing a Microsoft® SQL Server™ user account in a database shows:

The roles of which the user is a member.

The login account associated with the user.

The default database.

Use this information to understand how the user fits into the security system of the database.

To view a database user

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the Windows groups that have access to the current database

Transact-SQL

SQL-DMO

Administering SQL Server (SQL Server 2000)

Managing Permissions
When users connect to an instance of Microsoft® SQL Server™, the activities they can perform are determined by the
permissions granted to:

Their security accounts.

The Microsoft Windows NT® 4.0 or Windows® 2000 groups or role hierarchies to which their security accounts belong.

The user must have the appropriate permissions to perform any activity that involves changing the database definition or
accessing data.

Managing permissions includes granting or revoking user rights to:

Work with data and execute procedures (object permissions).

Create a database or an item in the database (statement permissions).

Utilize permissions granted to predefined roles (implied permissions).

Object Permissions

Working with data or executing a procedure requires a class of permissions known as object permissions:

SELECT, INSERT, UPDATE, and DELETE statement permissions, which can be applied to the entire table and view.

SELECT and UPDATE statement permissions, which can be selectively applied to individual columns of a table or view.

SELECT permissions, which may be applied to user-defined functions.

INSERT and DELETE statement permissions, which affect the entire row, and therefore can be applied only to the table and
view and not to individual columns.

EXECUTE statement permissions, which affect stored procedures and functions.

Statement Permissions

Activities involved in creating a database or an item in a database, such as a table or stored procedure, require a different class of
permissions called statement permissions. For example, if a user must be able to create a table within a database, then grant the
CREATE TABLE statement permission to the user. Statement permissions, such as CREATE DATABASE, are applied to the statement
itself, rather than to a specific object defined in the database.

Statement permissions are:

BACKUP DATABASE

BACKUP LOG

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

Implied Permissions

Implied permissions control those activities that can be performed only by members of predefined system roles or owners of
database objects. For example, a member of the sysadmin fixed server role inherits automatically full permission to do or see
anything in a SQL Server installation.

Database object owners also have implied permissions that allow them to perform all activities with the object they own. For
example, a user who owns a table can view, add, or delete data, alter the table definition, or control permissions that allow other
users to work with the table.

See Also

BACKUP DATABASE

BACKUP LOG

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

Administering SQL Server (SQL Server 2000)

Granting Permissions
Grant statement and object permissions that allow a user account to:

Perform activities or work with data in the current database.

Restrict them from activities or information not part of their intended function.

For example, you may be inclined to grant SELECT object permission on the payroll table to all members of the personnel
role, allowing all members of personnel to view payroll. Months later, you may overhear members of personnel
discussing management salaries, information not meant to be seen by all personnel members. In this situation, grant
SELECT access to personnel for all columns in payroll except the salary column.

Note It is possible to grant permissions only to user accounts in the current database, for objects in the current database. If
a user needs permissions to objects in another database, create the user account in the other database, or grant the user
account access to the other database, as well as the current database. System stored procedures are the exception because
EXECUTE permissions are already granted to the public role, which allows everyone to execute them. However, after
EXECUTE has been issued, the system stored procedures check the user's role membership. If the user is not a member of
the appropriate fixed server or database role necessary to run the stored procedure, the stored procedure will not continue.

To allow access by granting permissions (on an object)

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To grant statement permissions to users within a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To grant permissions on multiple objects to a user, group, or role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To grant, deny, or revoke permissions on multiple objects to a user-defined role

Enterprise Manager

Enterprise Manager

Administering SQL Server (SQL Server 2000)

Denying Permissions
Microsoft® SQL Server™ allows Microsoft Windows NT® 4.0 or Windows® 2000 users and groups, SQL Server users, and SQL
Server database roles to be members of other roles. This results in a hierarchical security system that allows permissions to be
applied through several levels of roles and members. But there may be times when you want to limit the permissions of a user or
role. Denying permissions on a user account:

Removes permission granted previously to the user, group, or role.

Deactivates permission inherited from another role(s).

Ensures that a user, group, or role will not inherit permission from a higher level group or role in the future.

For example, you may need to provide all tenured employees in your company with access to several tables in a database, with
the exception of a few new employees scattered throughout the organization who you want to prevent from seeing the
CorporateSecrets table.

Create a role for each department in the company and add all employees to their department role. Then create a company-wide
Corporate role, to which you add each of the individual department roles and grant permissions to view the tables. At this point,
every employee in the company can see all the tables because each inherits permission from the Corporate role through his
department roles.

To selectively prevent employees from seeing CorporateSecrets, create a Nonsecure role, and add the individual employees
who should not see the table. When you deny permission to view CorporateSecrets to Nonsecure, this access is removed from
all members of Nonsecure, while the rest of the employees in the company are not affected.

You also can deny permissions to an individual user. In the previous example, a nonemployee may have a Windows NT 4.0 or
Windows 2000 account while working on a short-term project in the database. You can deny the permissions to see
CorporateSecrets to his individual user account without creating a SQL Server database role for the purpose.

Note You can deny permissions to user accounts only in the current database, for objects in the current database.

To prevent access by denying permissions (on an object)

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To deny statement permissions from users within a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To deny permissions on multiple objects to a user, group, or role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Revoking Permissions
You can revoke a permission that has been granted or denied previously. Revoking is similar to denying in that both remove a
granted permission at the same level. However, although revoking a permission removes a granted permission, it does not
prevent the user, group, or role from inheriting a granted permission from a higher level. Therefore, if you revoke permission for
a user to view a table, you do not necessarily prevent the user from viewing the table because permission to view the table was
granted to a role to which he belongs.

For example, removing SELECT access on the Employees table from the HumanResources role revokes permission so that
HumanResources can no longer use the table. If HumanResources is a member of the Administration role. If you later grant
SELECT permission on Employees to Administration, members of HumanResources can see the table through their
membership in Administration. However, if you deny permission to HumanResources, the permission is not inherited if later
granted to Administration because the deny permission cannot be undone by a permission at a different level.

Similarly, it is also possible to remove a previously denied permission by revoking the deny for the permission. However, if a user
has other denied permissions at the group or role level, then the user still is denied access.

Note You can revoke permissions to user accounts only in the current database, for objects in the current database.

To revoke permissions on an object

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To revoke statement permissions from users in a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To revoke permissions on multiple objects from a user, group, or role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Resolving Permission Conflicts
The permissions granted to a group or role are inherited by members of that group or role. Although a user may have permission
granted or revoked at one level, conflicting permissions at a higher level (for example, due to role membership) can prevent or
allow a user access to an object.

Deny

A denied permission always takes precedence. Denied permission at any level (user, group, or role) denies the permission on the
object regardless of existing granted or revoked permissions for that user. For example, if user John, who as a member of the
sales role is granted SELECT permissions on the customer table, is explicitly denied SELECT permissions on the customer table,
he can no longer access it. Similarly, if the sales role is denied access to customer, but John is granted access, he is denied
access.

Note Microsoft® SQL Server™ always processes denied permissions first. If you deny permissions to public, you prevent
anyone from accessing an object, including the issuer of the DENY statement.

Revoke

A revoked permission removes only the granted or denied permission at the level revoked (user, group, or role). The same
permission granted or denied at another level such as a group or role containing the user, group, or role still applies. For example,
if the sales role is granted SELECT permissions on the customer table, and John (a member of sales) is explicitly revoked SELECT
permissions on the customer table, he still can access the table because of his membership in the sales role. To prevent John
from accessing the customer table, do one of the following:

Revoke permission (assuming no other permissions have been granted elsewhere).

Deny permission to the sales role (preventing all members of sales from accessing the table).

Explicitly deny John SELECT permissions on customer.

Grant

A granted permission removes the denied or revoked permission at the level granted (user, group, or role). The same permission
denied at another level such as group or role containing the user still applies. However, although the same permission revoked at
another level still applies, it does not prevent the user from accessing the object. For example, if John is already explicitly denied
access to customer, has his access to sales, revoked, and then is explicitly granted access to customer, he now can access
customer because the deny is removed. The revoke permission for sales joined with the granted permission for John gives
John a granted permission overall.

Therefore, a user receives the union of all the permissions granted, denied, or revoked on an object, with any denied permissions
taking precedence over the same permissions granted or revoked at another level.

The following diagram shows how the three permission management activities affect the state of a permission for a user account.

Database Access vs. Object Access

As an example of a permission conflict, a Microsoft Windows NT® 4.0 user LONDON\joe belongs to the LONDON\clerks and
LONDON\secretaries Windows NT 4.0 groups. LONDON\joe can log in to an instance of SQL Server because the
LONDON\clerks group has been granted permissions to connect to an instance of SQL Server. Additionally, LONDON\joe can
access the secrets database because the LONDON\secretaries group has been granted permissions to access the database.

Note At this point there is no specific entry in the SQL Server system tables, sysusers and sysxlogins, for LONDON\joe. These
system tables contain only entries for the LONDON\clerks and LONDON\secretaries groups.

LONDON\joe creates a table, joetable, in the secrets database. At this point, a new entry is created in the sysusers table for
LONDON\joe specifying him as the object owner but not granting him database access. If LONDON\joe is dropped from the
LONDON\secretaries group, he can no longer access the secrets database, although he owns an object, joetable, in the
database.

See Also

Adding a Windows NT User or Group

Administering SQL Server (SQL Server 2000)

Permissions for User-Defined Functions
Permissions for User-Defined Functions

Functions are subroutines made up of one or more Transact-SQL statements that can be used to encapsulate code for reuse.
Microsoft® SQL Server™ 2000 allows users to create their own user-defined functions.

User-defined functions are managed through the following statements:

CREATE FUNCTION, which creates a user-defined function.

ALTER FUNCTION, which modifies user-defined functions.

DROP FUNCTION, which drops user-defined functions.

Each fully qualified user-defined function name (database_name.owner_name.function_name) must be unique.

You must have been granted CREATE FUNCTION permissions to create, alter, or drop user-defined functions. Users other than the
owner must be granted EXECUTE permission on a function (if the function is scalar-valued) before they can use it in a Transact-
SQL statement. If the function is table-valued, the user must have SELECT permissions on the function before referencing it. If a
CREATE TABLE or ALTER TABLE statement references a user-defined function in a CHECK constraint, a DEFAULT clause, or a
computed column, the table owner must also own the function. If the function is being schema-bound, you must have
REFERENCE permission on tables, views, and functions referenced by the function.

REFERENCE permissions can be granted through the GRANT statement to views and user-defined functions in addition to tables.

See Also

User-Defined Functions

Administering SQL Server (SQL Server 2000)

Using Ownership Chains
 New Information - SQL Server 2000 SP3.

Views, stored procedures, and user-defined functions provide a secondary method of granting permissions to users. They provide
users with access to underlying items in the database, possibly without permissions granted on specific objects and statements.

Views can depend on other views or tables. Procedures and user-defined functions can depend on other procedures, functions,
views, or tables. These dependencies can be thought of as an ownership chain. Ownership chains apply only to object permissions
(SELECT, INSERT, UPDATE, DELETE, and EXECUTE).

Often, the owner of a source object (the view, stored procedure, or user-defined function) also owns all target objects (the objects
it depends on). When one user owns the source object and all target objects, the ownership chain is said to be unbroken. If
different users own the target objects, the ownership chain is broken. SQL Server relies on the state of the ownership chain to
determine when to check permissions.

When an ownership chain is unbroken, SQL Server checks permission on the source object only. This enables a user to grant
permissions on views, stored procedures, and user-defined functions instead of on each database object. This can greatly simplify
permissions management.

If the ownership chain is broken, SQL Server checks permissions on each branch of the chain owned by a different user. Only
those statements where the user has the necessary permissions will be executed, and the remaining statements will get an
"Insufficient Permissions" error. In this way, SQL Server allows object owners to retain control over permissions.

Note When temporary objects are created within a stored procedure, they are owned by the procedure owner and not by the
user currently executing the procedure.

Examples

If one user owns the source object and all target objects, the user can grant permissions on the source object. For example, Mary
has created a view called auview1 that depends on the authors table, which she also owns. If Mary grants Sue permission to use
auview1, Sue can see data in the view that is from the authors table, event without permissions on the table.

If a user creates a view or stored procedure that depends on objects owned by another user, SQL Server checks permissions on
objects owned by other users. For example, Joe creates a procedure called procedure1, which depends on procedure2 (also
owned by Joe), and procedure3 (owned by Sue). These procedures in turn depend on other tables and views owned by Joe and
Sue. The following graphic shows the ownership chains.

Joe grants Mary permission to use procedure1. SQL Server checks the permissions on procedure1, procedure3, view2,
table2, and table3 to check that Mary is allowed to use them.

Cross-Database Ownership Chaining

Cross-database ownership chaining occurs when a source object depends on objects in other databases.

Cross-database ownership chaining works in the same way as ownership chaining within a database. The only distinction is that
an unbroken ownership chain is based on all objects being owned by the same login account, not the same database user name.
This is because one login account can have different user names in different databases.

In a cross-database ownership chain, if the source object in the source database and the target objects in the target databases are
owned by the same login account, SQL Server does not check permissions on the target objects.

For example, if two databases are owned by the same login account, the dbo users in these databases are mapped to the same
login account. If cross-database ownership chaining is enabled for these databases, source objects in the dbo schema can access
target objects in the dbo schema of both databases.

Security Considerations for Cross-Database Ownership Chaining

Ownership chaining within a database is a useful application design technique; however, Microsoft does not recommend cross-
database ownership chaining because of possible security risks. These risks are due to the actions that highly-privileged users can
perform:

Database owners and members of the db_ddladmin or db_owners database roles can create objects owned by other
users. These objects can potentially target objects in other databases. This means that if you enable cross-database
ownership chaining, you must fully trust your highly-privileged users with data in other databases.

Users with the CREATE DATABASE permission can create new databases and attach existing databases. If cross-database
ownership chaining is enabled, these users can access objects in other databases from newly created or attached databases.

Even though cross-database ownership chaining is not recommended, some applications might require cross-database
ownership chaining. Additionally, there are some environments where you can fully trust your highly-privileged users. For this
reason, cross-database ownership chaining is configurable.

Configuring Cross-Database Ownership Chaining

Because of the security implications of cross-database ownership chaining, SQL Server 2000 SP3 allows you to turn cross-
database ownership chaining on or off for each database. For more information, see Setting Configuration Options.

See Also

Using Views as Security Mechanisms

Using Stored Procedures as Security Mechanisms

sp_configure

sp_dboption

Administering SQL Server (SQL Server 2000)

Using Views as Security Mechanisms
Using Views as Security Mechanisms

Views can serve as security mechanisms by restricting the data available to users. Some data can be accessible to users for query
and modification, while the rest of the table or database is invisible and inaccessible. Permission to access the subset of data in a
view must be granted, denied, or revoked, regardless of the set of permissions in force on the underlying table(s).

For example, the salary column in a table contains confidential employee information, but the rest of the columns contain
information that should be available to all users. You can define a view that includes all of the columns in the table with the
exception of the sensitive salary column. As long as table and view have the same owner, granting SELECT permissions on the
view allows the user to see nonconfidential columns in the view without having any permissions on the table itself.

By defining different views and granting permissions selectively on them, users, groups, or roles can be restricted to different
subsets of data. For example:

Access can be restricted to a subset of the rows of a base table. For example, define a view that contains only rows for
business and psychology books and keep information about other types of books hidden from users.

Access can be restricted to a subset of the columns of a base table. For example, define a view that contains all the rows of
the titles table but omits the royalty and advance columns because this information is sensitive.

Access can be restricted to a row-and-column subset of a base table.

Access can be restricted to the rows that qualify for a join of more than one base table. For example, define a view that joins
the titles, authors, and titleauthor tables to display the names of authors and books they have written. This view hides
personal data about the authors, and financial information about the books.

Access can be restricted to a statistical summary of data in a base table. For example, define a view that contains only the
average price of each type of book.

Access can be restricted to a subset of another view or of some combination of views and base tables.

Permissions and ALTER VIEW

Use the ALTER VIEW Transact-SQL statement to change the definition of a view without having to drop the view and reapply
permissions. Any permissions applied to a column in the view are based on the column name defined in the view, rather than the
underlying column in the table. Therefore, changing the definition of the view with ALTER VIEW by using the same column name
but a different underlying column in a table results in the same permissions for the new column. This example assumes the user
Fred exists in the pubs database:

USE pubs
GO
CREATE VIEW v1 AS SELECT title_id, title FROM titles
GO
GRANT SELECT(title_id) ON v1 TO Fred
GO
ALTER VIEW v1 AS SELECT qty AS 'title_id' FROM sales
GO

Although the view is altered so that the title_id column name refers to the qty column in the sales table, rather than the title_id
column in the titles table, the SELECT permissions granted to Fred on the title_id column name still apply.

See Also

ALTER VIEW

CREATE VIEW

Administering SQL Server (SQL Server 2000)

Using Stored Procedures as Security Mechanisms
Using Stored Procedures as Security Mechanisms

 New Information - SQL Server 2000 SP3.

Stored procedures, commonly used as an interface to perform complex activities, can be used to restrict statement permissions.

For example, in an archiving scenario, you may need to copy data older than a specified date into an archive table, and then delete
the data from the primary table. If you grant users permission to run the INSERT and DELETE statements, they can perform the
required actions and much more. For example, users could delete or incorrectly update data.

Instead of granting broad permissions, you can create a stored procedure that performs the required actions, and then grant
users permission to execute the stored procedure. This protects data in the underlying tables from user error.

You also can call stored procedures from external applications, instead of using dynamic SQL embedded in the source code. This
provides security benefits such as hiding the database structure from anyone with access to the source code.

See Also

Granting Permissions

CREATE PROCEDURE

Administering SQL Server (SQL Server 2000)

Advanced Security Topics
The security topics presented here go beyond the basic use of security in Microsoft® SQL Server™ and provide more detail for
specialized applications.

Administering SQL Server (SQL Server 2000)

Establishing Application Security and Application Roles
 New Information - SQL Server 2000 SP3.

The security system in Microsoft® SQL Server™ is implemented at the lowest level: the database itself. This is the best method for
controlling user activities regardless of the application used to communicate with SQL Server. However, sometimes security
controls must be customized to accommodate the special requirements of an individual application, especially when dealing with
complex databases and databases with large tables.

Additionally, you may want users to be restricted to accessing data only through a specific application (for example using SQL
Query Analyzer or Microsoft Excel) or to be prevented from accessing data directly. Restricting user access in this way prohibits
users from connecting to an instance of SQL Server using an application such as SQL Query Analyzer and executing a poorly
written query, which can negatively affect the performance of the whole server.

SQL Server accommodates these needs through the use of application roles. Application roles are different than standard roles in
that:

Application roles contain no members.

Microsoft Windows NT® 4.0 or Windows® 2000 groups, users, and roles cannot be added to application roles; the
permissions of the application role are gained when the application role is activated for the user's connection through a
specific application or applications. A user's association with an application role is due to his ability to run an application
that activates the role, rather than his being a member of the role.

Application roles are inactive by default and require a password to be activated.

Application roles bypass standard permissions.

When an application role is activated for a connection by the application, the connection permanently loses all permissions
applied to the login, user account, or other groups or database roles in all databases for the duration of the connection. The
connection gains the permissions associated with the application role for the database in which the application role exists.
Because application roles are applicable only to the database in which they exist, the connection can gain access to another
database only through permissions granted to the guest user account in the other database. Therefore, if the guest user
account does not exist in a database, the connection cannot gain access to that database. If the guest user account does exist
in the database but permissions to access an object are not explicitly granted to guest, the connection cannot access that
object, regardless of who created the object. The permissions the user gained from the application role remain in effect until
the connection logs out of an instance of SQL Server.

To ensure that all the functions of the application can be performed, a connection must lose default permissions applied to
the login and user account or other groups or database roles in all databases for the duration of the connection and gain the
permissions associated with the application role. For example, if a user is usually denied access to a table that the
application must access, then the denied access should be revoked so the user can use the application successfully.
Application roles overcome any conflicts with user's default permissions by temporarily suspending the user's default
permissions and assigning them only the permissions of the application role.

Application roles allow the application, rather than SQL Server, to take over the responsibility of user authentication. However,
because SQL Server still must authenticate the application when it accesses databases, the application must provide a password
because there is no other way to authenticate an application.

If ad hoc access to a database is not required, users and Windows NT 4.0 or Windows 2000 groups do not need to be granted any
permissions because all permissions can be assigned by the applications they use to access the database. In such an environment,
standardizing on one system-wide password assigned to an application role is possible, assuming access to the applications is
secure.

Security Note When using application roles, you cannot audit individual user activity. You can audit only the activity of the
application role.

There are several options for managing application-role passwords other than hard coding them into applications (which is not
recommended). For example, an encrypted key stored in the registry (or a SQL Server database), for which only the application
has the decryption code, can be used. The application reads the key, decrypts it, and uses the value to set the application role.
Using the Multiprotocol Net-Library, the network packet containing the password can also be encrypted. Additionally, the
password can be encrypted, before being sent to an instance of SQL Server, when the role is activated.

When an application user connects to an instance of SQL Server using Windows Authentication Mode, an application role can be

used to set the permissions the Windows NT 4.0 or Windows 2000 user has in a database when using the application. This
method allows Windows NT 4.0 or Windows 2000 auditing of the user account and control over user permissions, while she uses
the application, to be easily maintained.

If SQL Server Authentication is used and auditing user access in the database is not required, it can be easier for the application to
connect to an instance of SQL Server using a predefined SQL Server login. For example, an order entry application authenticates
users running the application itself, and then connects to an instance of SQL Server using the same OrderEntry login. All
connections use the same login, and relevant permissions are granted to this login.

Security Note Application roles work with both authentication modes. When possible, use Windows Authentication.

Example

As an example of application role usage, a user Sue runs a sales application that requires SELECT, UPDATE, and INSERT
permissions on the Products and Orders tables in database Sales to work, but she should not have any SELECT, INSERT, or
UPDATE permissions when accessing the Products or Orders tables using SQL Query Analyzer or any other tool. To ensure this,
create one user-database role that denies SELECT, INSERT, or UPDATE permissions on the Products and Orders tables, and add
Sue as a member of that database role. Then create an application role in the Sales database with SELECT, INSERT, and UPDATE
permissions on the Products and Orders tables. When the application runs, it provides the password to activate the application
role by using sp_setapprole, and gains the permissions to access the Products and Orders tables. If Sue tries to log in to an
instance of SQL Server using any tool except the application, she will not be able to access the Products or Orders tables.

To create an application role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To set an application role

Transact-SQL

To change the password of an application role

Transact-SQL

SQL-DMO

To remove an application role

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Allowing Other Accounts to Grant Object Permissions
When you grant an object permission to a user account in a database, you can optionally specify the WITH GRANT OPTION
clause, which allows the user account to grant that object permission to others. A user account can be a Microsoft® Windows
NT® 4.0 or Windows® 2000 user or group or a Microsoft SQL Server™ user or role.

For example, if you use the WITH GRANT OPTION clause when you grant permissions on the salaries table to the user user_a,
user_a is able to grant the same permissions on the table to any other user account in the database. For groups and roles, if you
grant permissions on the salaries table to role role_a specifying the WITH GRANT OPTION clause, each member of role_a can
grant the object permission to any other user account, provided that the AS clause of the GRANT statement is specified. For more
information, see GRANT.

Important When you use the WITH GRANT OPTION clause, you have no future control over which security accounts will receive
that permission.

When you revoke a permission granted using the WITH GRANT OPTION clause, specify the CASCADE clause to have the
permissions revoked from the user account as well as any other accounts that received the permission from the initial account.

For example, you have granted a permission specifying WITH GRANT OPTION to the user user_a. User_a granted the permission
specifying WITH GRANT OPTION to the user user_b, and user_b granted the permission to the user user_c. User_a has left the
company, but SQL Server does not allow you to remove a user account if it has granted a permission specifying the WITH GRANT
OPTION clause to another account. Specifying the WITH GRANT OPTION clause has created a chain from user_a through user_b
to user_c. You cannot remove the account for user_a until the permissions are revoked for user_b and user_c. When you revoke
the permission from user_a and specify the CASCADE option, the permission is removed from the user_a, user_b, and user_c
accounts. You then may remove the user_a account.

Administering SQL Server (SQL Server 2000)

Creating SQL Server File Permissions
Microsoft® SQL Server™ must create and access files in order to store databases, database backups, error logs, and so on. This
SQL Server process must run in the context of a security account with the necessary permissions to create and access these files,
whether these files exist on the local computer or a network drive on a remote computer. The security account SQL Server uses
depends on the method used to start the instance of SQL Server. If an instance of SQL Server is started:

As a service on Microsoft Windows NT® 4.0 or Windows® 2000 using the Service Control Manager, SQL Server uses the
security account assigned to the SQL Server service.

At the command prompt, independent of the Service Control Manager, SQL Server uses the security account of the logged
on user.

In Microsoft Windows 98 and Microsoft Windows Millennium Edition, SQL Server uses the security account of the logged
on user.

The security account used by SQL Server requires full access permissions to the file system to create, read, write, delete, and
execute files. For example, using the NTFS file system, the security account used by SQL Server requires authority to create files
with NTFS Full Control permission.

To prevent unauthorized access to the files used by SQL Server, adjust the permissions on the files directly to allow only the
security account used by SQL Server access to the files.

Note If SQL Server uses the Windows NT 4.0 and Windows 2000 LocalSystem built-in security account, file permissions must
be granted to the SYSTEM account of the local computer running an instance of SQL Server.

Securing the Windows NT Registry

SQL Server Setup removes write permissions from the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers
key in the Windows 2000 registry for users who are not SQL Server system administrators. This prevents nonadministrator users
from setting the provider options for linked server definitions when using SQL Server Enterprise Manager.

See Also

Setting up Windows Services Accounts

Starting SQL Server

Administering SQL Server (SQL Server 2000)

Using Encryption and Obfuscation
 Topic last updated -- June 2007

Encryption is a method for keeping sensitive information confidential by changing data into an unreadable form. Encryption
ensures that data remains secure by keeping the information hidden from everyone, even if the encrypted data is viewed directly.
Decryption is the process of changing encrypted data back into its original form so it can be viewed by authorized users.

Obfuscation converts passwords and definitions of stored procedures, views, triggers, and functions to an unreadable format.
Note that obfuscated passwords, stored procedures, views, triggers, and functions can be reverse engineered.

Microsoft® SQL Server™ encrypts or can encrypt any data sent between the client and the server as network packets.

SQL Server can obfuscate:

Login and application role passwords stored in SQL Server.

Stored procedure definitions.

User-defined function definitions.

View definitions.

Trigger definitions.

Default definitions.

Rule definitions.

Note If you are running Microsoft Windows® 2000 and want to use the Windows 2000 Encrypted File System to encrypt
any SQL Server files, you must unencrypt the files before you can change the SQL Server service accounts. If you do not
unencrypt the files and then reset the SQL Server service accounts, you cannot unencrypt the files.

Login and Application Role Passwords

Login and application role passwords stored in the SQL Server system tables are always obfuscated. This prevents non-
administrative users from viewing any passwords, including their own. Additionally, application role passwords can be obfuscated
when the application role is activated before they are sent over the network. Note that obfuscated passwords may be susceptible
to de-obfuscation attempts.

Note Using the sp_addlogin system stored procedure, SQL Server logins can be added without obfuscating the password, if
required. However, this is not recommended unless the passwords are already obfuscated because they are being imported from
another instance of SQL Server.

Data in Network Packets

SQL Server allows data sent between the client and the server to be encrypted. This ensures that any application or user
intercepting the data packets on the network cannot view confidential or sensitive data (for example, passwords sent across the
network as a user logs into an instance of SQL Server). SQL Server can use the Secure Sockets Layer (SSL) to encrypt all data
transmitted between an application computer and an instance of SQL Server. The SSL encryption is performed within the Super
Socket Net-Library (Dbnetlib.dll and Ssnetlib.dll) and applies to all inter-computer protocols supported by SQL Server 2000.
Enabling encryption marginally slows the performance of the Net-Libraries because encryption requires the following additional
actions:

An extra network round trip is required at connect time.

All packets sent from the application to the instance of SQL Server must be encrypted by the client Net-Library and
decrypted by the server Net-Library.

All packets sent from the instance of SQL Server to the application must be encrypted by the server Net-Library and
decrypted by the client Net-Library.

Shared memory Net-Library communications are inherently secure without the need for encryption. The shared memory Net-
Library does not participates in inter-computer communications. The area of memory shared between the application process and
the database engine process cannot be accessed from any other Windows process.

For compatibility with earlier versions of SQL Server, the Multiprotocol Net-Library continues to support its own encryption. This
encryption is specified independently of the SSL encryption and is implemented by calling the Windows RPC encryption API. It
does not require the use of certificates. The level of RPC encryption, 40-bit or 128-bit, depends on the version of the Windows
operating system that is running on the application and database computers. The Multiprotocol Net-Library is not supported by
named instances. For more information about SSL, see Net-Library Encryption.

Configuring a Multiprotocol Alias

When you configure a multiprotocol alias, enable encryption. This encryption feature applies only to the Multiprotocol Net-
Library. This encryption feature is offered only for compatibility with existing applications. SQL Server clients should use the SSL
encryption specified on the General tab in the Enable protocol encryption check box of the Client Network Utility. For more
information on the Client Network Utility, see Configuring Client Net-Libraries.

To start the Client Network Utility

Client Network Utility

Client Network Utility

To configure a client to use the Multiprotocol Net-Library

Client Utility

Client Utility

Stored Procedure, Function, View, and Trigger Definitions

When the definition of a stored procedure, function, trigger, or view is saved in the syscomments system table, it can be
obfuscated (for example, if a SQL Server system contains proprietary stored procedures, functions, triggers, or views whose
definitions should not be viewed by users and third parties). Note that obfuscated stored procedures, functions, triggers, and
views can be reverse engineered because SQL Server must de-obfuscate these database objects for execution. In SQL Server
2000, the obfuscated text of these database object definitions, which are visible in the syscomments system table, may be
susceptible to de-obfuscation attempts.

See Also

Client and Server Net-Libraries

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TRIGGER

CREATE VIEW

Multiprotocol Clients

Net-Library Encryption

sp_addlogin

sp_addrole

sp_approlepassword

sp_setapprole

Administering SQL Server (SQL Server 2000)

Revealing SQL Server on a Network
When you install Microsoft® SQL Server™, SQL Server Setup makes an entry in the Microsoft Windows® 2000 registry that
enables Named Pipes clients to see SQL Server in a server enumeration box in SQL Query Analyzer. SQL Server automatically
announces itself as a service over Named Pipes to make it easier to locate servers running an instance of SQL Server. However, if
you are using Active Directory™, the directory service included in Windows 2000, this functionality is no longer necessary.

Stop SQL Server from announcing itself over Named Pipes by running the NET CONFIG SERVER command with the switch as
/HIDDEN:YES. You can reveal the server at any time.

To reveal or cancel the announcement of SQL Server on a network

Windows NT

Windows NT

Administering SQL Server (SQL Server 2000)

Scripting Data Access Controls in Internet Explorer
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ ships with several data access controls:

SQL Namespace (SQL-NS)

SQL Distribution control (replication)

SQL Merge control (replication)

These controls are signed and marked "safe for initialization and scripting" and can be used in Microsoft Internet Explorer 5 or
later.

Before deploying controls that can connect to data sources, you should thoroughly understand the security implications. When
you use any of the SQL Server controls, the primary security concern is the ability to run under the authorized user's account
through a Windows Authentication login to an instance of SQL Server. A Web page with a scripted control runs with the network
identity of the user browsing the page. If the data source connection is based on the connected user's network identity (using
Windows Authentication login), the control can access any data that the user browsing the page can access. If a Web page using
the control is sent to a user, the control has the permissions of the user browsing the Web page. The control can then perform,
without the user's knowledge, any actions the user has permission to perform in the database. This is one reason why it is
important to limit database and server permissions as much as possible.

To help prevent unauthorized access or changes to a database, all the data access controls that are marked as "safe for scripting"
take into account security zones settings when being loaded in Internet Explorer version 4.0 or later. If a control is not marked safe
for scripting, it can run a script inside of Internet Explorer only at the Low security mode of Internet Explorer, and even then only
after the user responded to a message stating that a script will be run.

Internet Explorer 4.0 does not provide an explicit security option for data access. Therefore, all the controls marked safe for
scripting allow, prompt, or disallow scripting based on the security zone being used. The following table shows the Internet
Explorer 4.0 settings.

Security zone Internet Explorer 4.0 notification
Local computer zone Controls can be initialized or scripted regardless of data

source or scripts.
Local intranet zone User is warned of potential safety violation prior to

loading the page. User can accept or reject initialization
or scripting.

Trusted sites zone Controls can be initialized or scripted regardless of data
source or scripts.

Internet zone User is warned of potential safety violation prior to
loading the page. User can accept or reject initialization
or scripting.

Restricted sites zone Scripting errors occur if user attempts to view page and
execute script.

In contrast to Internet Explorer 4.0, Internet Explorer 5 supports an explicit security option for data access called "Access data
sources across domains." This option can be customized, and the setting of this action is used to determine how the controls
behave when they are run in Internet Explorer 5. The default settings in Internet Explorer 5 are the same as the programmed
settings in Internet Explorer 4.0.

As with all security concerns, you must take specific actions to safeguard your system. SQL Server is protected from security
problems only if users with the ability to use Windows Authentication logins configure the security settings correctly, and answer
all security prompts correctly, and if the administrator properly limits the permissions of all users. When you grant database
permissions, you should never grant permissions that you do not want users to have. Properly granting permissions will mitigate
most security concerns.

Security Note These general steps to safeguard your system apply to any scripting host, including Microsoft Excel spreadsheets
or Microsoft Word documents. Users should always enable the macro warning feature or similar security setting of an application
to detect and prevent any attacks on data.

See Also

Developing SQL-DMO Applications

Programming SQL-NS Applications

Administering SQL Server (SQL Server 2000)

Auditing SQL Server Activity
Microsoft® SQL Server™ 2000 provides auditing as a way to trace and record activity that has happened on each instance of SQL
Server (for example, successful and failed logins). SQL Server 2000 also provides an interface, SQL Profiler, for managing audit
records. Auditing can only be enabled or modified by members of the sysadmin fixed security role, and every modification of an
audit is an auditable event.

There are two type of auditing:

Auditing, which provides some level of auditing but does not require the same number of policies as C2 auditing.

C2 auditing, which requires that you follow very specific security policies. For more information about C2 auditing, see C2
Auditing.

Both types of auditing can be done by using SQL Profiler.

Using SQL Profiler

SQL Profiler provides the user interface for auditing events. There are several categories of events that can be audited using SQL
Profiler, such as:

End user activity (all SQL commands, logout/login, enabling of application roles).

DBA activity (DDL, other than grant/revoke/deny and security events, Configuration (DB or server).

Security events (grant/revoke/deny, login user/role add/remove/configure).

Utility events (backup/restore/bulk insert/BCP/DBCC commands.

Server events (shutdown, pause, start).

Audit events (add audit, modify audit, stop audit).

For more information about what categories of events can be monitored, see Security Audit Event Category.

It is possible to audit the following aspects of SQL Server through SQL Profiler:

Date and time of event.

User who caused the event to occur.

Type of event.

Success or failure of the event.

The origin of the request (for example, the Microsoft Windows NT® 4.0 computer name).

The name of the object accessed.

Text of the SQL statement (passwords replaced with ****).

If you are a member of the sysadmin or securityadmin fixed server role and you reset your own password by using
sp_password with all three arguments specified ('old_password', 'new_password', 'login'), the audit record will reflect that
you are changing someone else's password.

Auditing can have a significant performance impact. If all audit counters are turned on for all objects, the performance impact
could be high. It is necessary to evaluate how many events need to be audited compared to the resulting performance impact.
Audit trail analysis can be costly, so it is recommended that audit activity be run on a server separate from the production server.

Note If SQL Server is started with the -f flag, auditing will not run.

See Also

Monitoring with SQL Profiler

Administering SQL Server (SQL Server 2000)

Using Audit Logs
SQL Profiler system stored procedures support file rollover. The maximum file size for the audit log is fixed at 200 megabytes
(MB). When the audit log file reaches 200 MB, a new file will be created and the old file handle will be closed. If the directory fills
up (for example, if the disk quota for the user of the service account has filled up or the disk is full), then the instance of
Microsoft® SQL Server™ is stopped. The system administrator needs to either free up disk space for the audit log before
restarting the instance of SQL Server or restart the instance of SQL Server (if auditing is not configured to start automatically).

Use file rollover to prevent the audit trace from failing because the audit log filled up. However, SQL Server will not shut down
unless the user specifically requested this feature when they created the trace. An audit failure produces an entry in the Microsoft
Windows® event log and the SQL Server error log.

It is strongly recommended that during SQL Server Setup you create a new directory to contain your audit files. \mssql\audit is
the suggested path. If you are running SQL Server on a named instance, the suggested path is MSSQL$Instance\audit.

Administering SQL Server (SQL Server 2000)

C2 Auditing
C2 auditing is necessary if you are running a C2 certified system. A C2 certified system meets a government standard that defines
the security level. To have a C2 certified Microsoft® SQL Server™, you must configure SQL Server in the evaluated C2
configuration. For more information about C2 certification, see the C2 Administrator's and User's Security Guide.

Administering SQL Server (SQL Server 2000)

 Monitoring Server Performance and Activity
Microsoft® SQL Server™ 2000 provides a variety of tools that can be used to monitor the performance of an instance of SQL
Server and the user activity that occurs in databases. Monitoring allows you to determine whether your database application is
working efficiently and as expected, even as your application, database, and environment change. For example, as more
concurrent users use a database application, the load on SQL Server can increase. By monitoring, you can determine whether the
current instance of SQL Server or system configuration must be changed to handle the increased workload, or whether the
increased load is having no significant effect on performance.

To monitor an application, an instance of SQL Server, or the operating system environment (hardware and software):

Determine your monitoring goals.

Choose the appropriate tool for the type of monitoring you will perform.

Use the tool to monitor SQL Server or the system environment and analyze the captured data.

Identify the events to monitor.

The events determine which activities are monitored and captured. Your selection of events to monitor will depend on what
is being monitored and why. For example, when monitoring disk activity, it is not necessary to monitor SQL Server locks.

Determine the event data to capture.

The event data describes each instance of an event as it occurs. For example, when monitoring lock events, you can capture
data describing the tables, users, and connections affected by the lock event. The following explains the process involved in
capturing event data and putting it to use.

Apply filters to limit the event data collected.

Limiting the event data allows the system to focus on the events pertinent to the monitoring scenario. For example,
if you want to monitor slow queries, you can use a filter to monitor only those queries issued by the application that
take more than 30 seconds to execute against a particular database.

Monitor (capture) events.

Once enabled, active monitoring captures data from the specified application, instance of SQL Server, or operating
system. For example, when disk activity is monitored using System Monitor (Performance Monitor in Microsoft
Windows NT® 4.0), monitoring captures event data such as disk reads and writes and displays it to the screen.

Save captured event data.

Saving captured data allows you to analyze it at a later time or even replay it using SQL Profiler. Captured event data
is saved to a file that can be loaded back into the tool that originally created the file for analysis. SQL Profiler allows
event data to be saved to a SQL Server table. Saving captured event data is vital when creating a performance
baseline. The performance baseline data is saved and used when comparing recently captured event data to
determine whether performance is optimal.

Create definition files containing the settings specified to capture the events.

Definition files include specifications about the events themselves, event data, and filters that are used to capture
data. These files can be used to monitor a specific set of events at a later time without redefining the events, event
data, and filters. For example, if you want to monitor frequently the number of deadlocks and the users involved in
those deadlocks, you can create a file defining those events, event data, and event filters; save the definition; and
reapply the filter the next time you want to monitor deadlocks. SQL Profiler uses trace definition files for this
purpose.

Analyze captured event data.

In order to be analyzed, the captured, saved event data is loaded into the application that captured the data. For
example, a captured trace from SQL Profiler can be reloaded into SQL Profiler for viewing and analysis. Analyzing
event data involves determining what is happening and why. This information allows you to make changes that can
improve performance, such as adding more memory, changing indexes, correcting coding problems with Transact-
SQL statements or stored procedures, and so on, depending on the type of analysis performed. For example, you
can use the Index Tuning Wizard to analyze a captured trace from SQL Profiler automatically and make index

recommendations based on the results.

Replay captured event data.

Only available in SQL Profiler, event replay allows you to establish a test copy of the database environment from
which the data was captured and repeat the captured events as they occurred originally on the real system. You can
replay them at the same speed as they originally occurred, as fast as possible (to stress the system), or more likely,
one step at a time (to analyze the system after each event has occurred). By analyzing the exact events in a test
environment, you can prevent detrimental effects on the production system.

Monitoring SQL Server allows you to:

Determine whether it is possible to improve performance. For example, by monitoring the response times for frequently
used queries, you can determine whether changes to the query or indexes on the tables are necessary.

Evaluate user activity. For example, by monitoring users attempting to connect to an instance of SQL Server, you can
determine whether security is set up adequately and test applications and development systems. For example, by
monitoring SQL queries as they are executed, you can determine whether they are written correctly and producing the
expected results.

Troubleshoot any problems or debug application components, such as stored procedures.

See Also

Index Tuning Wizard

Optimizing Database Performance Overview

Administering SQL Server (SQL Server 2000)

Evaluating Performance
Optimal performance comes from minimal response times and maximum throughput as a result of efficient network traffic, disk
I/O, and CPU time. This goal is achieved by analyzing thoroughly the application requirements, understanding the logical and
physical structure of the data, and assessing and negotiating tradeoffs between conflicting uses of the database, such as online
transaction processing (OLTP) versus decision support.

Response Time vs. Throughput

Response time is measured as the length of time required for the first row of the result set to be returned to the user in the form
of visual confirmation that a query is being processed.

Throughput is a measure of the total number of queries handled by the server during a given time.

As the number of users increases, so does the competition for a server's resources, which in turn causes response time to increase
and overall throughput to decrease.

Factors That Affect Performance

The following areas affect the performance of SQL Server:

System resources (hardware)

The Microsoft Windows NT® 4.0 and Windows® 2000 operating systems

Database applications

Client applications

Network

Before these areas can be monitored, you must know what level of performance is reasonable given normal working conditions.
To do this, establish a server performance baseline by monitoring Microsoft® SQL Server™ performance at regular intervals,
even when no problems occur.

Troubleshooting Problems

You can monitor the following areas to troubleshoot problems:

SQL Server stored procedures or batches of SQL statements submitted by user applications.

User activity, such as blocking locks or deadlocks.

Hardware activity, such as disk usage

Problems can include:

Application development errors involving incorrectly written Transact-SQL statements.

Hardware errors, such as disk or network-related errors.

Excessive blocking due to an incorrectly designed database.

SQL Profiler can be used to monitor and troubleshoot Transact-SQL and application-related problems. System Monitor
(Performance Monitor in Windows NT 4.0) can be used to monitor hardware and other system-related problems.

Administering SQL Server (SQL Server 2000)

Establishing a Performance Baseline
Establishing a Performance Baseline

To determine whether your Microsoft® SQL Server™ system is performing optimally, take performance measurements over time
and establish a server performance baseline. Compare each new set of measurements with those taken earlier.

After you establish a server performance baseline, compare the baseline statistics to current server performance. Numbers far
above or far below your baseline are candidates for further investigation. They may indicate areas in need of tuning or
reconfiguration. For example, if the amount of time to execute a set of queries increases, examine the queries to determine if they
can be rewritten or if column statistics or new indexes must be added.

At a minimum, use baseline measurements to determine:

Peak and off-peak hours of operation.

Production query or batch command response times.

Database backup and restore completion times.

See Also

sp_configure

Administering SQL Server (SQL Server 2000)

Identifying Bottlenecks
Identifying Bottlenecks

Bottlenecks are caused by excessive demand on a system resource, and they are present in every system, to varying degrees. By
monitoring the Microsoft® SQL Server™ system for bottlenecks, you can determine whether changes can be made to the limiting
component to make it perform at an optimal level.

Reasons that bottlenecks occur include:

Insufficient resources, requiring additional or upgraded components.

Resources of the same type that do not share workloads evenly (for example, one disk is being monopolized).

Malfunctioning resources.

Incorrectly configured resources.

Analyzing Bottlenecks

When analyzing event data, low numbers can be just as meaningful as high numbers. If a number is lower than expected, it may
indicate a problem in another area. For example:

Some other component may be preventing the load from reaching this component.

Network congestion may be preventing client requests from reaching the server.

A bottleneck may be preventing client computers from accessing the server as frequently as expected.

System Monitor (Performance Monitor in Microsoft Windows NT® 4.0) may be employed incorrectly. For example, if you
have not turned on the disk counters, or you are looking at the wrong instance, the wrong counters, or at the wrong
computer, event data numbers may appear inexplicably low.

A low number also can mean that the system is performing better than expected.

These are five key areas to monitor when tracking server performance and identifying bottlenecks.

Bottleneck candidate Effects on the server
Memory usage Insufficient memory allocated or available to SQL Server

will degrade performance. Data must be read from the
disk continually rather than residing in the data cache.
Windows NT 4.0 and Microsoft Windows® 2000 perform
excessive paging by swapping data to and from the disk as
the pages are needed.

CPU processor utilization A constantly high CPU rate may indicate the need for a
CPU upgrade or the addition of multiple processors.

Disk I/O performance A slow disk I/O (disk reads and writes) will cause
transaction throughput to degrade.

User connections An improperly configured number of users can cause the
system to run slowly or restrict the amount of memory
otherwise available to SQL Server.

Blocking locks A process may be forcing another process to wait, thereby
slowing down or stopping the blocking process.

See Also

Monitoring CPU Use

Monitoring Disk Activity

Monitoring Memory Usage

SQL Server: General Statistics Object

SQL Server: Locks Object

Administering SQL Server (SQL Server 2000)

Determining User Activity
Determining User Activity

You can monitor individual user activity to pinpoint transactions that may be blocking other transactions or causing the
performance of Microsoft® SQL Server™ to be slower than expected.

Monitoring user activity helps identify trends such as the types of transactions run by certain users, the number of inefficient ad
hoc queries being run, and the types of transactions requiring the most resources.

To collect statistical information about users, use either SQL Profiler or System Monitor (Windows NT Performance Monitor in
Windows NT® 4.0). Use the SQL Server Enterprise Manager Current Activity window to perform ad hoc monitoring of SQL
Server, which allows you to determine user activity on the system.

See Also

Monitoring with SQL Server Enterprise Manager

Sessions Event Category

SQL Server: General Statistics Object

Administering SQL Server (SQL Server 2000)

Choosing a Monitoring Tool
Microsoft® SQL Server™ provides a comprehensive set of tools for monitoring events in SQL Server. Your choice of tool will
depend on the type of monitoring and the events to be monitored. For example, ad hoc monitoring to determine the number of
users currently connected to an instance of SQL Server can be accomplished by using the sp_who system stored procedure,
rather than creating a trace and using SQL Profiler.

SQL Profiler

Enables you to monitor server and database activity (for example, number of deadlocks, fatal errors, tracing stored procedures
and Transact-SQL statements, or login activity). You can capture SQL Profiler data to a SQL Server table or a file for later analysis,
and also replay the events captured on SQL Server, step by step, to see exactly what happened. SQL Profiler tracks engine process
events, such as the start of a batch or a transaction.

System Monitor

Enables you to monitor server performance and activity using predefined objects and counters or user-defined counters to
monitor events. System Monitor (Performance Monitor in Microsoft Windows NT® 4.0) collects counts rather than data about the
events (for example, memory usage, number of active transactions, number of blocked locks, or CPU activity). You can set
thresholds on specific counters to generate alerts that notify operators. System Monitor primarily tracks resource usage, such as
the number of buffer manager page requests in use.

System Monitor works only on Microsoft Windows® 2000 and can monitor (remotely or locally) an instance of SQL Server on
Windows NT 4.0 or Windows 2000 only.

Current activity window (SQL Server Enterprise Manager)

Graphically displays information about processes running currently on an instance of SQL Server, blocked processes, locks, and
user activity. This is useful for ad hoc views of current activity.

Error Logs

Contain additional information about events in SQL Server than is available elsewhere. You can use the information in the error
log to troubleshoot SQL Server-related problems. The Windows application event log provides an overall picture of events
occurring on the Windows NT 4.0 and Windows 2000 system as a whole, as well as events in SQL Server, SQL Server Agent, and
full-text search.

sp_who

Reports snapshot information about current SQL Server users and processes, including the currently executing statement and
whether the statement is blocked. This is a Transact-SQL alternative to viewing user activity in the current activity window in SQL
Server Enterprise Manager.

sp_lock

Reports snapshot information about locks, including the object ID, index ID, type of lock, and type or resource to which the lock
applies. This is a Transact-SQL alternative to viewing lock activity in the current activity window in SQL Server Enterprise
Manager.

sp_spaceused

Displays an estimate of the current amount of disk space used by a table (or a whole database). This is a Transact-SQL alternative
to viewing database usage in SQL Server Enterprise Manager.

sp_monitor

Displays statistics, including CPU usage, I/O usage, and the amount of time idle since sp_monitor was last executed.

DBCC statements

Enables you to check performance statistics and the logical and physical consistency of a database. For more information, see
DBCC.

Built-in functions

Display snapshot statistics about SQL Server activity since the server was started; these statistics are stored in predefined SQL
Server counters. For example, @@CPU_BUSY contains the amount of time the CPU has been executing SQL Server code;
@@CONNECTIONS contains the number of SQL Server connections or attempted connections; and @@PACKET_ERRORS
contains the number of network packets occurring on SQL Server connections. For more information, see Functions.

SQL Profiler stored procedures and functions

Use Transact-SQL stored procedures to gather SQL Profiler statistics. For more information, see System Stored Procedures.

Trace flags

Display information about a specific activity within the server and are used to diagnose problems or performance issues (for
example, deadlock chains). For more information, see Trace Flags.

Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) is an application protocol that offers network management services. Using SNMP,
you can monitor an instance of SQL Server across different platforms (for example, Windows NT 4.0, Windows 98, and UNIX).
With SQL Server and the Microsoft SQL Server Management Information Base (MSSQL-MIB), you can use SNMP applications to
monitor the status of SQL Server installations. You can monitor performance information, access databases, and view server and
database configuration parameters.

The choice of a monitoring tool depends on the type of events and activity to be monitored.

Event or activity
SQL

Profiler
System
Monitor

Current
activity
window

Transact-
SQL

Error logs

Trend analysis Yes Yes
Replaying captured
events

Yes

Ad hoc monitoring Yes Yes Yes Yes
Generating alerts Yes
Graphical interface Yes Yes Yes Yes
Using within
custom application

Yes 1 Yes

1 Using SQL Profiler system stored procedures.

The key difference between the two main monitoring tools, SQL Profiler and System Monitor, is that SQL Profiler monitors engine
events while System Monitor monitors resource usage associated with server processes. For example, SQL Profiler can be used to
monitor deadlocks events, including the users and objects involved in the deadlock. System Monitor can be used to monitor the
total number of deadlocks occurring in a database or on a specific object.

Windows NT 4.0 and Windows 2000 also provides these monitoring tools:

Task Manager

Shows a synopsis of the processes and applications running on the system.

Network Monitor Agent

Assists in monitoring network traffic.

For more information about Windows NT 4.0 or Windows 2000 tools, see the Windows NT 4.0 or Windows 2000 documentation.

Administering SQL Server (SQL Server 2000)

Monitoring with SQL Profiler
SQL Profiler is a graphical tool that allows system administrators to monitor events in an instance of Microsoft® SQL Server™.
You can capture and save data about each event to a file or SQL Server table to analyze later. For example, you can monitor a
production environment to see which stored procedures are hampering performance by executing too slowly.

Use SQL Profiler to monitor only the events in which you are interested. If traces are becoming too large, you can filter them
based on the information you want, so that only a subset of the event data is collected. Monitoring too many events adds
overhead to the server and the monitoring process and can cause the trace file or trace table to grow very large, especially when
the monitoring process takes place over a long period of time.

After you have traced events, SQL Profiler allows captured event data to be replayed against an instance of SQL Server, thereby
effectively reexecuting the saved events as they occurred originally.

Use SQL Profiler to:

Monitor the performance of an instance of SQL Server.

Debug Transact-SQL statements and stored procedures.

Identify slow-executing queries.

Test SQL statements and stored procedures in the development phase of a project by single-stepping through statements to
confirm that the code works as expected.

Troubleshoot problems in SQL Server by capturing events on a production system and replaying them on a test system.
This is useful for testing or debugging purposes and allows users to continue using the production system without
interference.

Audit and review activity that occurred on an instance of SQL Server. This allows a security administrator to review any of
the auditing events, including the success and failure of a login attempt and the success and failure of permissions in
accessing statements and objects.

SQL Profiler provides a graphical user interface to a set of stored procedures that can be used to monitor an instance of SQL
Server. For example, it is possible to create your own application that uses SQL Profiler stored procedures to monitor SQL Server.

You must have at least 10 megabytes (MB) of free space to run SQL Profiler. If free space drops below 10 MB while you are using
SQL Profiler, all SQL Profiler functions will stop.

Starting SQL Profiler

SQL Profiler is started from the Microsoft® Windows NT® 4.0, Microsoft Windows® 2000 or Microsoft Windows 98 Start menu,
or from SQL Server Enterprise Manager.

With Windows Authentication mode, the user account that runs SQL Profiler must be granted permission to connect to an
instance of SQL Server.

To start SQL Profiler

Enterprise Manager

Enterprise Manager

See Also

SQL Profiler Terminology

System Stored Procedures

Administering SQL Server (SQL Server 2000)

SQL Profiler Keyboard Shortcuts
The following table shows the keyboard shortcuts available in SQL Profiler.

CTRL+Shift+Delete Clear a trace window
CTRL+F4 Close a trace window
- Collapse a trace grouping
CTRL+C Copy
ALT+Delete Delete a trace
+ Expand a trace grouping
CTRL+F Find
F3 Find the next item
Shift+F3 Find the previous item
F1 Display available help
CTRL+N Open a new trace
ALT+F7 Replay the settings
CTRL+F10 Run to cursor
F5 Start a replay
F11 Step
Shift+F5 Stop a replay
F9 Toggle a breakpoint

Administering SQL Server (SQL Server 2000)

SQL Profiler Terminology
To use SQL Profiler, you need to understand the terminology that describes the way the tool functions. For example, you create a
template that defines the data you want to collect. You collect this data by running a trace on the events defined in the template.
While the trace is running, the event classes and data columns that describe the event data are displayed in SQL Profiler.

Template

A template defines the criteria for each event you want to monitor with SQL Profiler. For example, you can create a template,
specifying which events, data columns, and filters to use. Then you can save the template and launch a trace with the current
template settings. The trace data captured is based upon the options specified in the template. A template is not executed, and
must be saved to a file with the .tdf extension.

Trace

A trace captures data based upon the selected events, data columns, and filters. For example, you can create a template to monitor
exception errors. To do this, you would select to trace the Exception event class, and the Error, State, and Severity data columns,
which need to be collected for the trace results to provide meaningful data. After you save the template, you can then run it as a
trace, and collect data on any Exception events that occur in the server. This trace data can be saved and then replayed at a later
date, or used immediately for analysis.

Filter

When you create a trace or template, you can define criteria to filter the data collected by the event. If traces are becoming
too large, you can filter them based on the information you want, so that only a subset of the event data is collected. If a
filter is not set, all events of the selected event classes are returned in the trace output. For example, you can limit the
Microsoft® Windows® 2000 user names in the trace to specific users, reducing the output data to only those users in
which you are interested.

Event Category

An event category defines the way events are grouped. For example, all lock events classes are grouped within the Locks event
category. However, event categories only exist within SQL Profiler. This term does not reflect the way engine events are grouped.

Event

An event is an action generated within the Microsoft SQL Server™ engine. For example:

The login connections, failures, and disconnections.

The Transact-SQL SELECT, INSERT, UPDATE, and DELETE statements.

The remote procedure call (RPC) batch status.

The start or end of a stored procedure.

The start or end of statements within stored procedures.

The start or end of an SQL batch.

An error written to the SQL Server error log.

A lock acquired or released on a database object.

An opened cursor.

Security permissions checks.

All of the data that is generated as a result of an event is displayed in the trace in a single row. This row contains columns of data
called event classes that describe the event in detail.

Event Class

An event class is the column that describes the event that was produced by the server. The event class determines the type of data
collected, and not all data columns are applicable to all event classes. Examples of event classes include:

SQL:BatchCompleted, which indicates the completion of an SQL batch.

Audit Login, which collects all new connection events since the trace was started.

Audit Logout, which collects all new disconnect events since the trace was started.

Lock:Acquired, which indicates a lock on a resource, such as a data page, has been achieved.

Lock:Released, which indicates a lock on a resource, such as a page, has been released.

Data Column

The data columns describe the data collected for each of the event classes captured in the trace. Because the event class
determines the type of data collected, not all data columns are applicable to all event classes. For example, the Binary Data data
column, when captured for the Lock:Acquired event class, contains the value of the locked page ID or row but has no value for
the Integer Data data column. Default data columns are populated automatically for all event classes.

Administering SQL Server (SQL Server 2000)

SQL Profiler Scenarios
Typically, you use SQL Profiler to:

Find the worst-performing queries

For example, you can create a trace that captures events relating to TSQL and Stored Procedure event classes, specifically
RPC:Completed and SQL:BatchCompleted. Include all data columns in the trace, group by Duration, and specify event
criteria. For example, if you specify that the Duration of the event must be at least 1,000 milliseconds, you can eliminate
short-running events from the trace. The Duration minimum value can be increased as required. If you want to monitor
only one database at a time, specify a value for the Database ID event criteria.

Identify the cause of a deadlock

For example, you can create a trace that captures events relating to TSQL and Stored Procedure event classes
(RPC:Starting and SQL:BatchStarting) and Locks event classes (Lock:Deadlock and Lock:Deadlock Chain). Include all
data columns in the trace and group by Event Class. If you want to monitor only one database at a time, specify a value for
the Database ID event criteria.

To view the connections involved in a deadlock, do one of the following:

Open the trace containing the captured data, group the data by ClientProcessID, and expand both connections
involved in the deadlock.

Save the captured data to a trace file and open the trace file twice to make the file visible in two separate SQL
Profiler windows. Group the captured data by ClientProcessID and then expand the client process ID involved in
the deadlock; each deadlocked connection is in a separate window. Tile the windows to view the events causing the
deadlock.

Monitor stored procedure performance

For example, you can create a trace that captures events relating to Stored Procedures event classes (SP:Completed,
SP:Starting, SP:StmtCompleted and SP:StmtStarting), and TSQL event classes (SQL:BatchStarting and
SQL:BatchCompleted). Include all data columns in the trace and group by ClientProcessID. If you want to monitor only
one database at a time, specify a value for the Database ID event criteria. Similarly, if you want to monitor only one stored
procedure at a time, specify a value for the Object ID event criteria.

Audit Microsoft® SQL Server™ activity

You can audit activity in SQL Server using SQL Profiler. For example, if the security administrator always needs to know who is
logged in to the server, you can create a SQL Profiler trace that provides a complete view of users who have logged in or out of
the server. This information can then be used for legal purposes to document activity and for technical purposes to track security
policy violations.

To set up a SQL Profiler trace that tracks users who have logged in or out of the server, do the following:

1. Create a trace, selecting Audit Login Event.

2. To return the appropriate information, specify the following data columns:

EventClass (selected by default)

EventSubClass

LoginSID

LoginName

Monitor Transact-SQL activity per user.

You can create a trace that captures events relating to the Sessions event class, ExistingConnection, and TSQL event
classes. Include all data columns in the trace, do not specify any event criteria, and group the captured events by
DBUserName.

See Also

Locks Event Category

Sessions Event Category

Stored Procedures Event Category

TSQL Event Category

Administering SQL Server (SQL Server 2000)

Monitoring with SQL Profiler Event Categories
In SQL Profiler, use event categories to monitor events in Microsoft® SQL Server™. Event categories contain event classes that
have been grouped together within the SQL Profiler user interface. For more information, see SQL Profiler Terminology.

The following table describes the SQL Profiler event categories and their associated event classes.

Event category Description
Cursors Collection of event classes produced by cursor operations.
Database Collection of event classes produced when data or log files

grow or shrink automatically.
Errors and Warnings Collection of event classes produced when a SQL Server

error or warning occurs (for example, an error during the
compilation of a stored procedure or an exception in SQL
Server).

Locks Collection of event classes produced when a lock is acquired,
cancelled, released, etc.

Objects Collection of event classes produced when database objects
are created, opened, closed, dropped, or deleted.

Performance Collection of event classes produced when SQL data
manipulation (DML) operators execute.

Scans Collection tables and indexes are scanned.
Security Audit Collection of event classes used to audit server activity.
Sessions Collection of event classes produced by clients connecting to

and disconnecting from an instance of SQL Server.
Stored Procedures Collection of event classes produced by the execution of

stored procedures.
Transactions Collection of event classes produced by the execution of

Microsoft Distributed Transaction Coordinator (MS DTC)
transactions or by writing to the transaction log.

TSQL Collection of event classes produced by the execution of
Transact-SQL statements passed to an instance of SQL
Server from the client.

User Configurable Collection of user-configurable event classes.

Administering SQL Server (SQL Server 2000)

SQL Profiler Event Classes
SQL Profiler Event Classes

In SQL Profiler, event classes are rows that describe the events you are tracing. Within SQL Profiler, event classes are grouped into
event categories. For example, all lock event classes are grouped within the Locks event category. For more information, see SQL
Profiler Terminology.

Administering SQL Server (SQL Server 2000)

SQL Profiler Default Event Classes
SQL Profiler Default Event Classes

When a new trace is created, it is defined with a set of default event classes. You can remove these event classes and add others
when you create new traces. Unless removed explicitly, the default event classes are present each time a new trace is created.

These are the default event classes for a new trace.

Default event class Description
Audit Login Event Collects all new connection events (for example, a client

requesting a connection to a server running an instance of
Microsoft® SQL Server™) since the trace was started.

Audit Logout Event Collects all new disconnect events (for example, a client
issues a disconnect command) since the trace was started.

ExistingConnection Detects activity by all users connected to an instance of SQL
Server before the trace was started.

RPC:Completed Indicates that a remote procedure call (RPC) has completed.
SQL:BatchCompleted Indicates that a transact-SQL batch has completed.

See Also

Creating and Managing Traces and Templates

Administering SQL Server (SQL Server 2000)

SQL Profiler Data Columns
SQL Profiler Data Columns

SQL Profiler allows you to select data columns when you create a template. These data columns represent the information you
would like returned when a trace is running. The data displayed in SQL Profiler can be displayed either in the order the events
occur or in a group based on one or a combination of data columns.

For example, to identify the user events that are taking the longest to execute, group events by DBUserName and Duration. SQL
Profiler displays the execution time for each event. This functionality is similar to the Transact-SQL GROUP BY clause. For more
information, see GROUP BY.

Note You cannot group by the StartTime or EndTime data columns.

If SQL Profiler can connect to an instance of Microsoft® SQL Server™ on which the trace data was captured, SQL Profiler tries to
populate the Database ID, Object ID, and Index ID data columns with the names of the database, object, and index, respectively.
Otherwise, SQL Profiler displays identification numbers (IDs).

The output of some data columns used in SQL Profiler can contain integer values representing bitmap expressions. Bitmap
expressions provide a concise method of presenting a combination of several parameters without the need for enumeration. In
the following table, the integer values representing the type of permissions checked in the Permissions data column are bitmap
expressions. Any one or an aggregation of the values listed may be produced. For example, SQL Profiler may return the value 8,
representing INSERT, or 40 representing EXECUTE (32) and INSERT (8).

Aggregated bitmap values represent a specific combination of two or more bitmap expressions. Given an aggregated bitmap
value of intX, only the combination of bitmap expressions intA + intB [+ ...] can be combined to make intX.

The following table describes the SQL Profiler data columns, and which are selected by default.

Data column
Column
Number Description

Application
Name1

10 Name of the client application that created the
connection to an instance of SQL Server. This column
is populated with the values passed by the application
rather than the displayed name of the program.

Binary Data 2 Binary value dependent on the event class captured in
the trace.

ClientProcessID1 9 ID assigned by the host computer to the process
where the client application is running. This data
column is populated if the client process ID is
provided by the client.

Column
Permissions

44 Indicates whether a column permission was set. Parse
the statement text to determine which permissions
were applied to which columns.

CPU 18 Amount of CPU time (in milliseconds) used by the
event.

Database ID1 3 ID of the database specified by the USE database
statement or the default database if no USE database
statement has been issued for a given instance. SQL
Profiler displays the name of the database if the
Server Name data column is captured in the trace
and the server is available. Determine the value for a
database by using the DB_ID function.

DatabaseName 35 Name of the database in which the user statement is
running.

DBUserName1 40 SQL Server user name of the client.
Duration 13 Amount of time (in milliseconds) taken by the event.
End Time 15 Time at which the event ended. This column is not

populated for event classes that refer to an event
starting, such as SQL:BatchStarting or SP:Starting.

Error 31 Error number of a given event. Often this is the error
number stored in sysmessages.

EventClass1 27 Type of event class captured.
EventSubClass1 21 Type of event subclass, providing further information

about each event class. For example, event subclass
values for the Execution Warning event class
represent the type of execution warning:

1 = Query wait. The query must wait for resources
(for example, memory) before it can execute.
2 = Query time-out. The query timed out while
waiting for required resources to execute. This data
column is not populated for all event classes.

FileName 36 The logical name of the file being modified.
Handle 33 Integer used by ODBC, OLE DB, or DB-Library to

coordinate server execution.
Host Name1 8 Name of the computer on which the client is running.

This data column is populated if the host name is
provided by the client. To determine the host name,
use the HOST_NAME function.

Index ID 24 ID for the index on the object affected by the event. To
determine the index ID for an object, use the indid
column of the sysindexes system table.

Integer Data 25 Integer value dependent on the event class captured
in the trace.

LoginName 11 Name of the login of the user (either SQL Server
security login or the Microsoft Windows® login
credentials in the form of DOMAIN\Username).

LoginSid1 41 Security identification number (SID) of the logged-in
user. You can find this information in the sysxlogins
table of the master database. Each SID is unique for
each login in the server.

Mode 32 Integer used by various events to describe a state the
event has received or is requesting.

NestLevel 29 Integer representing the data returned by
@@NESTLEVEL.

NT Domain
Name1

7 Microsoft Windows NT® 4.0 or Windows 2000
domain to which the user belongs.

NT User Name1 6 Windows NT 4.0 or Windows 2000 user name.
Object ID 22 System-assigned ID of the object.
ObjectName 34 Name of the object being referenced.
ObjectType 28 Value representing the type of the object involved in

the event. This value corresponds to the type column
in sysobjects.

Owner Name 37 Database user name of the object owner.
Permissions 19 Integer value representing the type of permissions

checked. Values are:

1 = SELECT ALL
2 = UPDATE ALL
4 = REFERENCES ALL
8 = INSERT
16 = DELETE
32 = EXECUTE (procedures only)
4096 = SELECT ANY (at least one column)
8192 = UPDATE ANY
16384 = REFERENCES ANY

Reads 16 Number of logical disk reads performed by the server
on behalf of the event.

RoleName 38 Name of an application role being enabled.

Server Name1 26 Name of the instance of SQL Server being traced.
Severity 20 Severity level of an exception.
SPID1 12 Server Process ID assigned by SQL Server to the

process associated with the client.
Start Time1 14 Time at which the event started, when available.
State 30 Equivalent to an error state code.
Success 23 Represents whether the event was successful. Values

include:

1 = Success.
0 = Failure

For example, a 1 means success of a permissions
check and a 0 means a failure of that check.

TargetLoginName 42 For actions which target a login (for example, adding
a new login), the name of the targeted login.

TargetLoginSid 43 For actions which target a login (for example, adding
a new login), the SID of the targeted login.

TargetUserName 39 For actions which target a database user (for example,
granting permission to a user), the name of that user.

TextData 1 Text value dependent on the event class captured in
the trace. However, if you are tracing a parameterized
query, the variables will not be displayed with data
values in the TextData column.

Transaction ID 4 System-assigned ID of the transaction.
Writes 17 Number of physical disk writes performed by the

server on behalf of the event.

1 These data columns are populated by default for all events.

Administering SQL Server (SQL Server 2000)

Cursors Event Category
Cursors Event Category

Use the Cursors event category to monitor cursor operations. For example, you can determine when a cursor is executed and
what type of cursor is used by monitoring the CursorOpen, CursorExecute, and CursorImplicitConversion event classes.
Tracing specific event classes can be useful to determine the actual cursor type used for an operation by an instance of
Microsoft® SQL Server™, rather than the cursor type specified by the application.

See Also

Cursors Event Classes

Cursors Data Columns

Administering SQL Server (SQL Server 2000)

Cursors Event Classes
Cursors Event Classes

The following table describes the Cursors event classes in the Cursors event category.

Event class Description
CursorClose A cursor previously opened on a Transact-SQL

statement by ODBC, OLE DB, or DB-Library is closed.
CursorExecute A cursor previously prepared on a Transact-SQL

statement by ODBC, OLE DB, or DB-Library is executed.
For more information, see How to prepare and execute
a statement (ODBC).

CursorImplicitConversion A cursor on a Transact-SQL statement is converted by
Microsoft® SQL Server™ from one type to another.

Triggered for ANSI and non-ANSI cursors.

CursorOpen A cursor is opened on a Transact-SQL statement by
ODBC, OLE DB, or DB-Library.

CursorPrepare A cursor on a Transact-SQL statement is prepared for
use by ODBC, OLE DB, or DB-Library. For more
information, see How to prepare and execute a
statement (ODBC).

CursorRecompile A cursor opened on a Transact-SQL statement by ODBC
or DB-Library has been recompiled either directly or
indirectly due to a schema change.

Triggered for ANSI and non-ANSI cursors.

CursorUnprepare A prepared cursor on a Transact-SQL statement is
deleted by ODBC, OLE DB, or DB-Library.

See Also

Cursors Event Category

Cursors Data Columns

Administering SQL Server (SQL Server 2000)

Cursors Data Columns
Cursors Data Columns

The following table lists the data columns for each event class in the Cursors event category.

Event class Data column Description
CursorClose Event Class Type of event recorded = 78.
 Handle Handle of the cursor.
CursorExecute Event Class

Handle

Integer Data

Type of event recorded = 74.

Handle of the cursor.

Cursor type. Values are:

1 = Keyset
2 = Dynamic
4 = Forward only
8 = Static
16 = Fast forward

CursorImplicitConversion Event Class Type of event recorded = 76.
 Handle Handle of the cursor.
 Integer Data Requested cursor type. Values are:

1 = Keyset
2 = Dynamic
4 = Forward only
8 = Static
16 = Fast forward

 Binary Data Resulting cursor type. Values are:

1 = Keyset
2 = Dynamic
4 = Forward only
8 = Static
16 = Fast forward

CursorOpen Event Class

Handle

Integer Data

Type of event recorded = 53.

Handle of the cursor.

Cursor type. Values are:

1 = Keyset
2 = Dynamic
4 = Forward only
8 = Static
16 = Fast forward

CursorPrepare Event Class Type of event recorded = 70.
 Handle Handle of the prepared cursor.
CursorRecompile Event Class

Handle

Type of event recorded = 75.

Handle of the cursor that had to be
recompiled.

CursorUnprepare Event Class

Event Sub Class

Type of event recorded = 77.

Handle of the cursor created by
CursorPrepare.

See Also

Cursors

Cursors Event Classes

Cursors Event Category

Administering SQL Server (SQL Server 2000)

Database Event Category
Database Event Category

Use the Database event category to monitor when data or log files grow or shrink automatically.

See Also

Database Event Classes

Database Data Columns

Administering SQL Server (SQL Server 2000)

Database Event Classes
Database Event Classes

The following table describes the Database event classes in the Database event category.

Event class Description
DataFileAutoGrow Indicates that the data file grew automatically. This event

is not triggered if the data file is grown explicitly through
ALTER DATABASE.

DataFileAutoShrink Indicates that the data file has been shrunk.
LogFileAutoGrow Indicates that the log file grew automatically. This event

is not triggered if the log file is grown explicitly through
ALTER DATABASE.

LogFileAutoShrink Indicates that the log file has been shrunk.

See Also

Database Event Category

Database Data Columns

Administering SQL Server (SQL Server 2000)

Database Data Columns
Database Data Columns

The following lists the data columns for each event class in the Database event category.

Event class Data column Description
Data File Auto Grow Event Class Type of event recorded = 92.
 End Time The time the data file auto grow

ended.
 Duration The length of time (in milliseconds)

necessary to extend the file.
 File Name The logical name of the file being

extended.
 Integer Data The number of 8-kilobyte (KB) pages

by which the file increased.
Data File Auto Shrink Event Class Type of event recorded = 94.
 End Time The time the auto shrink ended.
 Duration The time (in milliseconds) to shrink

the file.
 File Name The logical name of the file being

shrunk.
 Integer Data The number of 8 KB pages by which

the file was reduced.
Log File Auto Grow Event Class Type of event recorded = 93.
 End Time The time the log file auto grow ended.
 Duration The time (in milliseconds) needed to

extend the file.
 File Name The logical name of the file being

extended.
 Integer Data The number of 8 KB pages by which

the file increased.
Log File Auto Shrink Event Class Type of event recorded = 95.
 End Time The time the log file auto shrink

ended.
 Duration The time (in milliseconds) needed to

shrink the file.
 File Name The logical name of the file being

shrunk.
 Integer Data The number of 8 KB pages by which

the file was reduced.

See Also

Database Event Category

Database Event Classes

Administering SQL Server (SQL Server 2000)

Errors and Warnings Event Category
Errors and Warnings Event Category

Use the Errors and Warnings event category to monitor many of the errors and warnings raised by Microsoft® SQL Server™
and components such as OLE DB. Typically, you use the following event classes to look for problems that may be encountered
while running applications or executing procedures.

See Also

Errors and Warnings Event Classes

Errors and Warnings Data Columns

Administering SQL Server (SQL Server 2000)

Errors and Warnings Event Classes
Errors and Warnings Event Classes

The following table describes the Errors and Warnings event classes in the Errors and Warnings event category.

Event class Description
Attention Collects all attention events, such as client-interrupt

requests or when a client connection is broken.
ErrorLog Error events have been logged in the Microsoft® SQL

Server™ error log.
EventLog Events have been logged in the Microsoft Windows®

application log.
Exception Exception has occurred in SQL Server.
Execution Warnings Any warnings that occurred during the execution of a

SQL Server statement or stored procedure.
Hash Warning Hashing operation may have encountered a problem.
Missing Column
Statistics

Column statistics for the query optimizer are not
available.

Missing Join Predicate Executing query has no join predicate. This can result in
a long-running query.

OLEDB Errors OLE DB error has occurred.
Sort Warnings Sort operations do not fit into memory. This does not

include sort operations from the creation of indexes,
only sort operations within a query (for example, an
ORDER BY clause used in a SELECT statement).

The Execution Warnings event class can be monitored to determine how long, if at all, queries had to wait for resources before
proceeding. This is important for determining whether there are any contention issues in the system that can affect performance
and therefore need investigating. Use the Locks event classes to determine the objects affected.

The Hash Warning event class can be used to monitor when a hash recursion or hash bail has occurred during a hashing
operation. Hash recursion occurs when the build input does not fit into memory, resulting in input split into multiple partitions,
which are processed separately. If any of these partitions still do not fit into memory, they are split further into sub-partitions,
which then are processed separately. This process continues until each partition fits into memory or the maximum recursion level
is reached (displayed in the Integer Data data column), thus causing hash bail.

Hash bail occurs when a hashing operation reaches its maximum recursion depth and reverts to an alternate plan to process its
remaining partitioned data. Hash bail is due usually to skewed data, trace flags, or bit counting. To eliminate or reduce the chance
of hash bail, verify that statistics exist on the columns being joined or grouped. For more information, see Statistical Information.

If hash bail continues to occur each time the query is executed, consider using an optimizer hint to force a different algorithm to
be used by the query optimizer and then compare the performance of the query. For more information about join hints, see
FROM.

By monitoring the Missing Column Statistics event class, you can determine whether there are statistics missing for a column
used by a query. Missing statistics can cause the optimizer to choose a less-efficient query plan. For more information about
creating column statistics, see Statistical Information.

The Sort Warnings event class can be used to monitor query performance. If a query involving a sort operation generates a Sort
Warnings event class with an Event Sub Class data column value of 2, the performance of the query can be affected because
multiple passes over the data are required to sort the data. Investigate the query further to determine whether the sort operation
can be eliminated.

See Also

Errors and Warnings Event Category

Errors and Warnings Data Columns

Administering SQL Server (SQL Server 2000)

Errors and Warnings Data Columns
Errors and Warnings Data Columns

These are the data columns for each event class in the Errors and Warnings event category.

Event class Data column Description
Attention Event Class Type of event recorded = 16.
ErrorLog Event Class Type of event recorded = 22.
 Error Error number.
 Severity Severity of the error generated.
 Text Data Text of the error message.
EventLog Event Class Type of event recorded = 21.
 Binary Data Binary value dependent on the event

class captured in the trace.
 Error Error number.
 Severity Error severity.
 Text Data Text of the error message, if available.
Exception Event Class Type of event recorded = 33.
 Error Error number.
 State Server state.
 Severity Error severity.
Execution Warnings Event Class Type of event recorded = 67.
 Event Sub Class The type of execution warning. Can

have these values:

1 = Query wait. The query must wait
for resources (for example, memory)
before it can execute.
2 = Query time-out. The query timed
out while waiting for required
resources to execute.

 Error Error number.
Hash Warning Event Class Type of event recorded = 55.
 Event Sub Class Type of hash operation. Can have these

values:

0 = Hash recursion.
1 = Hash bail.

 Integer Data Recursion level (hash recursion only).
 Object ID Node ID of the root of the hash

involved in the repartition.
Missing Column
Statistics

Event Class Type of event recorded = 79.

 Text Data List of the columns with missing
statistics.

Missing Join
Predicate

Event Class Type of event recorded = 80.

OLEDB Errors Event Class Type of event recorded = 61.
 Text Data Error message from OLE DB.
Sort Warnings Event Class Type of event recorded = 69.

 Event Sub Class Type of sort warning. Can have these
values:

1 = Single pass. When the sort table
was written to disk, only a single
additional pass over the data to be
sorted was required to obtain sorted
output.
2 = Multiple pass. When the sort table
was written to disk, multiple passes
over the data were required to obtain
sorted output.

See Also

Error Messages

Monitoring the Error Logs

Errors and Warnings Event Classes

Errors and Warnings Event Category

Administering SQL Server (SQL Server 2000)

Locks Event Category
Locks Event Category

Use the Locks event category to monitor Microsoft® SQL Server™ lock activity. By monitoring the Locks event classes, you can
investigate contention issues caused by users and applications using a database concurrently.

Because lock events are so prolific, capturing the lock event classes can incur significant overhead on the server being traced and
result in very large trace files or trace tables.

See Also

Locks Event Classes

Locks Data Columns

Administering SQL Server (SQL Server 2000)

Locks Event Classes
Locks Event Classes

The following table describes the Locks event classes in the Locks event category.

Event class Description
Lock:Acquired Acquisition of a lock on a resource, such as a data page, has

been achieved. For more information about resources that
can be locked, see Understanding Locking in SQL Server.

Lock:Cancel Acquisition of a lock on a resource has been canceled (for
example, due to a deadlock).

Lock:Deadlock Two concurrent transactions have deadlocked each other by
trying to obtain incompatible locks on resources that the
other transaction owns. For more information, see
Deadlocking.

Lock:Deadlock
Chain

This event is produced for each of the events leading up to
the deadlock.

Lock:Escalation A finer-grained lock has been converted to a coarser-grained
lock (for example, a row lock that is converted to a page lock).

Lock:Released A lock on a resource, such as a page, has been released.
Lock:Timeout A request for a lock on a resource, such as a page, has timed

out due to another transaction holding a blocking lock on the
required resource. Time-out is determined by the
@@LOCK_TIMEOUT system function and can be set with the
SET LOCK_TIMEOUT statement. For more information, see
Customizing the Lock Time-out.

The Lock:Acquired and Lock:Released event classes can be used to monitor when objects are being locked, the type of locks
taken, and for how long the locks were retained. Locks retained for long periods of time may cause contention and should be
investigated. For example, an application can be acquiring locks on rows in a table, and then waiting for user input. Because user
input can take a long time, the locks can block other users. In this instance, the application should be redesigned to make lock
requests only when necessary and not require user input when locks have been acquired.

The Lock:Deadlock, Lock:Deadlock Chain, and Lock:Timeout event classes can be used to monitor when deadlocks and time-
out conditions occur, and which objects are involved. This information is useful to determine whether deadlocks and time-outs
are affecting the performance of your application significantly, and which objects are involved. The application code that modifies
these objects can then be examined to determine whether changes to minimize deadlocks and time-outs can be made. For more
information about reducing deadlocks, see Avoiding Deadlocks.

See Also

Locks Event Category

Locks Data Columns

Administering SQL Server (SQL Server 2000)

Locks Data Columns
Locks Data Columns

The following table lists the data columns for each event class in the Locks event category.

Event class Data column Description
Lock:Acquired Event Class Type of event recorded = 24.
 Mode Lock mode, such as intent exclusive, of

the lock that was acquired.
 Binary Data Resource type.
 End Time End time of the event.
 Duration Wait between the time the lock request

was issued and the time the lock was
acquired.

 Object ID ID of the object on which the lock was
acquired.

 Index ID ID of the index, if the object lock was on
an index.

Lock:Cancel Event Class Type of event recorded = 26.
 Mode Mode of the lock that was canceled.
 Binary Data Resource type.
 End Time End time of the event.
 Duration Wait between the time the lock requested

was issued and the time the lock was
canceled.

 Object ID ID of the object on which the lock was
canceled.

 Index ID ID of the index, if the object lock was on
an index.

Lock:Deadlock Event Class Type of event recorded = 25.
 Mode Lock mode of the lock that triggered the

deadlock.
 Binary Data Resource type.
 End Time End time of the deadlock.
 Integer Data Deadlock number. Numbers are assigned,

beginning with zero, when the server is
started and incremented for each
deadlock.

 Duration Wait between the time the lock request
was issued and the time the deadlock
occurred.

 Object ID ID of the object in contention.
 Index ID ID of the index, if the object lock was on

an index.
Lock:Deadlock
Chain

Event Class Type of event recorded = 59.

 Mode Lock mode of each lock in the deadlock
chain.

 Binary Data Resource type.
 Integer Data Deadlock number. Numbers are assigned,

beginning with zero, when the server is
started and incremented for each
deadlock.

 Object ID ID of the object that was locked.
 Index ID ID of the index, if the object lock was on

an index.

Lock:Escalation Event Class Type of event recorded = 60.
 Object ID ID of the object on which the lock was

escalated.
 Index ID ID of the index, if the object lock was on

an index.
 Mode Lock mode after the escalation.
Lock:Released Event Class Type of event recorded = 23.
 Binary Data Resource type.
 End Time End time of the event.
 Duration Wait time between the time the lock

request was issued and the time the lock
was released.

 Object ID ID of the object on which the lock was
released.

 Index ID ID of the index, if the object lock was on
an index.

Lock:Timeout Event Class Type of event recorded = 27.
 Mode Lock mode of the requested lock that has

timed out.
 Binary Data Resource type.
 End Time End time of the event.
 Duration Wait time between the time the lock

request was issued and the time the lock
was released.

 Object ID ID of the object on which the lock was
timed out.

 Index ID ID of the index, if the object lock was on
an index.

See Also

Locking

Locks Event Category

Locks Event Classes

Administering SQL Server (SQL Server 2000)

Objects Event Category
Objects Event Category

Use the Objects event classes to monitor when an object (for example, a database, table, index, view, or stored procedure) is
opened, created, deleted, or used.

Because object events are so prolific, capturing the object event classes can incur significant overhead on the server being traced
and result in large trace files or trace tables.

See Also

Objects Event Classes

Objects Data Columns

Administering SQL Server (SQL Server 2000)

Objects Event Classes
Objects Event Classes

The following table describes the Objects event classes in the Objects event category.

Event class Description
Auto Stats Indicates when the automatic creation and updating of

statistics has occurred.
Object:Closed Indicates when an open object has been closed (for example,

such as at the end of a SELECT, INSERT, or DELETE statement).
Object:Created Object has been created (for example, for CREATE INDEX,

CREATE TABLE, and CREATE DATABASE statements).
Object:Deleted Object has been deleted (for example, for DROP INDEX and

DROP TABLE statements).
Object:Opened Indicates when an object has been accessed (for example, for

SELECT, INSERT, or DELETE statements).

The Object:Created and Object:Deleted event classes can be used to determine whether many ad hoc objects are being created
or deleted (for example, by ODBC applications that often create temporary stored procedures). By monitoring the DBUserName
and NT User Name default data columns in addition to the Objects event classes, you can determine the name of the user who is
creating, deleting, or accessing objects. This can be used to determine whether your security policies are correctly implemented,
for example, to confirm that users who are not allowed to create or delete objects are not doing so.

The event classes Object:Closed and Object:Opened are provided for running traces on SQL Server 7.0 and earlier. These
objects do not exist in SQL Server 2000.

See Also

Objects Event Category

Objects Data Columns

Administering SQL Server (SQL Server 2000)

Objects Data Columns
Objects Data Columns

The following table lists the data columns for each event class in the Objects event category.

Event class Data column Description
Auto Stats Event Class Type of event recorded = 58.
Object:Created Event Class Type of event recorded = 46.
 Object Type Type of object created.
 Object Name Name of the object that was

created.
 Object ID ID of the object that was created.
 Index ID Index ID, if an index was created.
Object:Deleted Event Class Type of event recorded = 47.
 Object Type Type of the object that was

deleted.
 Object Name Name of the object that was

deleted.
 Object ID ID of the object that was deleted.
 Index ID Index ID, if an index was deleted.

See Also

Creating and Maintaining Databases Overview

Objects Event Category

Objects Event Classes

Administering SQL Server (SQL Server 2000)

Performance Event Category
Performance Event Category

Use the Performance event category to monitor showplan event classes and event classes that are produced from the execution
of SQL data manipulation language (DML) operators.

See Also

Performance Event Classes

Performance Data Columns

Administering SQL Server (SQL Server 2000)

Performance Event Classes
Performance Event Classes

The following table describes the Performance event classes in the Performance event category.

Event class Description
Degree Of
Parallelism11

Describes the degree of parallelism assigned to the SQL
statement. Occurs before a SELECT, INSERT, UPDATE, or DELETE
statement is executed. If you are tracing a Microsoft® SQL
Server™ version 7.0 server, this event will trace an INSERT
statement.

Degree of
Parallelism21

Describes the degree of parallelism assigned to the SQL
statement. Occurs before a SELECT, INSERT, UPDATE, or DELETE
statement is executed. If you are tracing a SQL Server 7.0 server,
this event will trace an UPDATE statement.

Degree of
Parallelism31

Describes the degree of parallelism assigned to the SQL
statement. Occurs before a SELECT, INSERT, UPDATE, or DELETE
statement is executed. If you are tracing a SQL Server 7.0 server,
this event will trace a DELETE statement.

Degree of
Parallelism41

Describes the degree of parallelism assigned to the SQL
statement. Occurs before a SELECT, INSERT, UPDATE, or DELETE
statement is executed. If you are tracing a SQL Server 7.0 server,
this event will trace a SELECT statement.

Execution Plan Displays the plan tree of the SQL statement being executed.
Show Plan All Displays the query plan with full compile-time details (for

example, costing estimates and column lists) of the SQL
statement being executed.

Show Plan
Statistics

Displays the query plan with full run-time details, including
actual number of rows passing through each operation, of the
SQL statement which was executed.

Show Plan Text Displays the query plan tree of the SQL statement being
executed.

1 If you are tracing a SQL Server 2000 server, this event will trace SELECT, INSERT, UPDATE, or DELETE statements.

See Also

Performance Event Category

Performance Data Columns

Administering SQL Server (SQL Server 2000)

Performance Data Columns
Performance Data Columns

The following table lists the data columns for each event class in the Performance event category.

Event class Data column Description
Degree of
Parallelism1

Event Class Type of event recorded = 28.

 Event Sub Class If you are tracing a Microsoft® SQL
Server™ 2000 server, the Event Sub
Class can have these values, which
reflect the type of statement:

1 = Select

2 = Insert

3 = Update

4 = Delete

 Binary Data Supplied binary data, which is the
number of CPUs used to perform the
statement.

 Integer Data Pages used in memory for the query
plan.

Degree of
Parallelism2

Event Class Type of event recorded =28.

 Event Sub Class If you are tracing a SQL Server 2000
server, the Event Sub Class can have
these values, which reflect the type of
statement:

1 = Select

2 = Insert

3 = Update

4 = Delete

 Binary Data Supplied binary data, which is the
number of CPUs used to perform the
statement.

 Integer Data Pages used in memory for the query
plan.

Degree of
Parallelism3

Event Class Type of event recorded = 28.

 Event Sub Class If you are tracing a SQL Server 2000
server, the Event Sub Class can have
these values, which reflect the type of
statement:

1 = Select

2 = Insert

3 = Update

4 = Delete

 Binary Data Supplied binary data, which is the
number of CPUs used to perform the
statement.

 Integer Data Pages used in memory for the query
plan.

Degree of
Parallelism4

Event Class Type of event recorded = 28.

 Event Sub Class If you are tracing a SQL Server 2000
server, the Event Sub Class can have
these values, which reflect the type of
statement:

1 = Select

2 = Insert

3 = Update

4 = Delete

 Binary Data Supplied binary data, which is the
number of CPUs used to perform the
statement.

 Integer Data Pages used in memory for the query
plan.

Execution Plan Event Class Type of event recorded = 68.
 Binary Data Estimated cost of the execution plan.
 Object ID ID of the object that had its statistics

updated.
 Integer Data Estimated number of rows returned.
 Text Data Execution plan tree. Only SQL

statements are expressed. Transact-
SQL constructs are not represented.

Show Plan All Event Class Type of event recorded = 97.
 Binary Data Estimated cost of the query.
 Integer Data Expected number of rows to be

returned.
 Text Data Showplan ALL results of the statement.
Show Plan Statistics Event Class Type of event recorded = 98.
 Binary Data Estimated cost of the query.
 Integer Data Expected number of rows to be

returned.
 Text Data Showplan Statistics results of the

statement.
Show Plan Text Event Class Type of event recorded = 96.
 Binary Data Estimated cost of the query.
 Integer Data Expected number of rows to be

returned.
 Text Data Showplan Text results of the statement.

See Also

Performance Event Category

Performance Event Classes

Administering SQL Server (SQL Server 2000)

Scans Event Category
Scans Event Category

Use the Scans event category to monitor when a table or index is being scanned during the execution of a query.

Using the Scan:Started and Scan:Stopped event classes, it is possible to monitor the type of scans being performed by a query
on a specific object.

See Also

Scans Event Classes

Scans Data Columns

Administering SQL Server (SQL Server 2000)

Scans Event Classes
Scans Event Classes

The following table describes the Scans event classes in the Scans event category.

Event class Description
Scan: Started Table or index scan has started.
Scan: Stopped Table or index scan has stopped.

See Also

Scans Event Category

Scans Data Columns

Administering SQL Server (SQL Server 2000)

Scans Data Columns
Scans Data Columns

The following table lists the data columns for each event class in the Scans event category.

Event class Data column Description
Scan: Started Event Class Type of event recorded = 51.
 Mode Scan mode. Can have these values:

1 = Normal
2 = First
4 = Back
8 = Unordered
16 = No data
32 = Reserved
64 = Exlatch
128 = Index supplied
256 = Marker

 Object ID ID of the object that is being scanned.
 Index ID ID of the index, if an index is being

scanned.
 Transaction ID ID of the transaction of which the scan

is a part.
Scan: Stopped Event Class Type of event recorded = 52.
 Mode Mode that was used to perform the

scan. Can have these values:

1 = Normal
2 = First
4 = Back
8 = Unordered
16 = No data
32 = Reserved
64 = Exlatch
128 = Index supplied
256 = Marker

 End Time End time of the event.
 Duration Duration of the scan.
 Reads Number of logical pages read.
 Index ID ID of the index, if an index is being

scanned.
 Object ID ID of the object that is being scanned.

By monitoring the Index ID default data column, you can determine the identification number of the index being used by a
specific query. The Index ID data column contains either:

The value 1 when the clustered index of the table is being scanned.

-or-

The value greater than 2 and less than 255 when a non-clustered index of the table is being scanned.

See Also

Scans Event Category

Scans Event Classes

Administering SQL Server (SQL Server 2000)

Security Audit Event Category
Security Audit Event Category

Use the Security Audit event category to monitor auditing activity.

See Also

Security Audit Event Classes

Security Audit Data Columns

Administering SQL Server (SQL Server 2000)

Security Audit Event Classes
Security Audit Event Classes

The following table describes the Security Audit event classes in the Security Audit event category.

Event class Description
Audit Add DB User Event Records the addition and removal of database users

(Microsoft Windows NT® 4.0, Microsoft Windows®
2000, or Microsoft SQL Server™).

Audit Add Login to Server
Role Event

Records the addition or removal of logins to and from
a fixed server role for sp_addsrvrolemember and
sp_dropsrvrolemember.

Audit Add Member to DB
Role Event

Records the addition and removal of members to and
from a database role (fixed or user-defined) for
sp_addrolemember, sp_droprolemember, and
sp_changegroup.

Audit Add Role Event Records add or drop actions on database roles for
sp_addrole and sp_droprole.

Audit Addlogin Event Records add and drop actions on SQL Server logins for
sp_addlogin and sp_droplogin.

Audit App Role Change
Password Event

Records changes to the password of an application.

Audit Backup/Restore
Event

Records BACKUP and RESTORE events.

Audit Change Audit Event Records AUDIT modifications.
Audit DBCC Event Records DBCC commands that have been issued.
Audit Login Event Collects all new connection events since the trace was

started (for example, a client requesting a connection to
a server running an instance of SQL Server).

Audit Login Change
Password Event

Records SQL Server login password changes.
Passwords are not recorded.

If you are a member of the sysadmin or
securityadmin fixed server role and you reset your
own password by using sp_password with all three
arguments specified ('old_password', 'new_password',
'login'), the audit record will reflect that you are
changing someone else's password.

Audit Login Change
Property Event

Records modifications on login property, except
passwords for sp_defaultdb and
sp_defaultlanguage.

Audit Login Failed Event Indicates that a login attempt to an instance of SQL
Server from a client has failed.

Audit Login GDR Event Records grant, revoke, and deny actions on Windows
NT 4.0 or Windows 2000 account login rights for
sp_grantlogin, sp_revokelogin, and sp_denylogin.

Audit Logout Event Collects all new disconnect events since the trace was
started, such as when a client issues a disconnect
command.

Audit Object Derived
Permission Event

Records when a CREATE, ALTER, or DROP command is
issued for the specified object.

Audit Object GDR Event Records permissions events for GRANT, DENY, REVOKE
objects.

Audit Object Permission
Event

Records the successful or unsuccessful use of object
permissions.

Audit Server Starts and
Stops Event

Records shut down, start, and pause activities for
services.

Audit Statement GDR
Event

Records permission events for GRANT, DENY, REVOKE
statements.

Audit Statement
Permission Event

Records the use of statement permissions.

See Also

Security Audit Event Category

Security Audit Data Columns

Administering SQL Server (SQL Server 2000)

Security Audit Data Columns
Security Audit Data Columns

The following table lists the data columns for each event class in the Security Audit event category.

Event class Data column Description
Audit Add DB User
Event

Event Class Type of event recorded = 109.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = sp_adduser
2 = sp_dropuser
3 = grantdbaccess
4 = revokedbaccess

 Database Name Name of the database to which the user
is being added.

 DBUserName The issuer's user name in the database.
 Target Login SID SID of the targeted Microsoft®

Windows® login.
 Target Login

Name
Name of the targeted Windows login.

 Target User
Name

Name of the database user being
added to the database.

 Role Name Name of a role to which the new
database user is being added.

Audit Add Login to
Server Role Event

Event Class Type of event recorded = 108.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Add
2 = Drop

 Target Login SID Security identification number (SID) of
the targeted Windows login.

 Target Login
Name

Name of the targeted Windows login.

 Role Name Name of the role to which the login is
being added.

Audit Add Member to
DB Role Event

Event Class Type of event recorded = 110.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Add
2 = Drop

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Target Login SID The SID of the targeted login.
 Target Login

Name
The name of the login that is having
role membership modified.

 Target User
Name

Name of the user that is having role
membership modified.

Audit Add Role Event Event Class Type of event recorded = 111.
 Success The success or failure of the audit

indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Add
2 = Drop

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Role Name Name of the role being created in the

database.
Audit Addlogin Event Event Class Type of event being recorded = 104.
 Success The success or failure of the audit

indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Add
2 = Drop

 Target Login SID Security identification number (SID)
assigned to the login being added.

 Target Login
Name

Name of the login being added.

Audit App Role
Change Password
Event

Event Class Type of event recorded = 112.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Value is:

Always = 1

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Role Name Database application role name whose

password is being changed.
Audit Backup/Restore
Event

Event Class Type of event recorded = 115.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Backup
2 = Restore

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Text Data The SQL text of the backup/restore

statement.
Audit Change Audit
Event

Event Class Type of event recorded = 117.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = New audit started
2 = Audit stopped

Audit DBCC Event Event Class Type of event recorded = 116.
 Success The success or failure of the audit

indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Value is:

Always = 1

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Text Data The SQL text of the DBCC command.
Audit Login Event Event Class Type of event being recorded = 14.
 Text Data A delimited list of all set options.
 Binary Data Session level settings, including ANSI

nulls, ANSI padding, cursor close on
commit, null concatenation, and quoted
identifiers.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

Audit Login Change
Password Event

Event Class Type of event recorded = 107.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = User changed his or her own
password.
2 = User changed the password of
another user.

 Target Login SID Security identification number (SID) of
the targeted Windows login.

 Target Login
Name

Name of the targeted Windows login.

Audit Login Change
Property Event

Event Class Type of event being recorded = 106.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Default database
2 = Default language

 Target Login SID Security identification number (SID) of
the targeted Windows login.

 Target Login
Name

Name of the targeted Windows login.

Audit Login Failed
Event

Event Class Type of event being recorded = 20

 Success The success or failure of the audit
indicator. Value will always be:

0 = Failure

Audit Login GDR Event Event Class Type of event being recorded = 105.
 Success The success or failure of the audit

indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Grant
2 = Revoke
3 = Deny

 Target Login SID Security identification number (SID) of
the targeted Windows login.

 Target Login
Name

Name of the targeted Windows login.

Audit Logout Event Event Class Type of event being recorded = 15.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 End Time The end time of the log out.
 Duration The approximate amount of time since

the user logged in.
 Reads The amount of logical read I/Os issued

by this user during the connection.
 Writes The amount of logical write I/Os issued

by this user during the connection.
 CPU The amount of CPU used by this user

during the connection.
Audit Object Derived
Permission Event

Event Class Type of event being recorded = 118.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Create object
2 = Alter object
3 = Drop object

 Database Name The name of the database in which the
object is being created, altered, or
dropped.

 DBUserName The issuer's user name in the database.
 Object Type Type of object being created, altered, or

dropped. Values are:

1 = Index
2 = Database
3 = User object
4 = CHECK constraint
5 = Default or DEFAULT constraint
6 = FOREIGN KEY constraint
7 = PRIMARY KEY constraint
8 = Stored procedure
9 = User-defined function (UDF)
10 = Rule
11 = Replication filter stored procedure
12 = System table
13 = Trigger
14 = Inline function
15 = Table valued UDF
16 = UNIQUE constraint
17 = User table
18 = View
19 = Extended stored procedure
20 = Ad-hoc query
21 = Prepared query
22 = Statistics

 Object Name The name of the object that is being
created, altered, or dropped.

 Owner Name The database username of the object
owner of the object being created,
altered, or dropped.

 Text Data The SQL text of the statement.
Audit Object GDR
Event

Event Class Type of event being recorded = 103.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = Grant
2 = Revoke
3 = Deny

 Database Name Name of the database that the
GRANT/DENY/REVOKE of the object
permission is run in.

 DBUserName The issuer's user name in the database.
 Owner Name Name of the user who owns the object

against which the
GRANT/DENY/REVOKE statement is
being run.

 Object Name Name of the object to which the
permissions are being applied.

 Permissions Type of statement issued. Values are:

1 = SELECT ALL
2 = UPDATE ALL
4 = REFERENCES ALL
8 = INSERT
16 = DELETE
32 = EXECUTE (procedures only)

 Column
Permissions

Indicates whether a column permission
was set. Values are:

0 = No
1 = Yes

 Text Data The SQL text of the
GRANT/REVOKE/DENY statement.

Audit Object
Permission Event

Event Class Type of event recorded = 114.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Value is:

Always = 1

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Owner Name Owner name of the object for which the

permissions are being checked.
 Object Name Name of the object whose permissions

are being checked.

 Permissions Type of statement issued. Values are:

1 = SELECT ALL
2 = UPDATE ALL
4 = REFERENCES ALL
8 = INSERT
16 = DELETE
32 = EXECUTE (procedures only)

 Column
Permissions

Indicates whether a column permission
was used. Parse the statement text to
determine which permissions were
applied to which columns.

 Text Data Text value dependent on the event class
captured.

Audit Server Starts and
Stops Event

Event Class Type of event recorded = 118.

 Event Sub Class Class of event within the event. Values
are:

1 = Instance Shutdown
2 = Instance Started
3 = Instance Pause
4 = Instance Continued

 Login SID Security identification number (SID) of
the login running the
GRANT/DENY/REVOKE statement for
the Windows login.

 Login Name Name of the login running
GRANT/DENY/REVOKE statement for
the Windows login.

Audit Statement GDR
Event

Event Class Type of event being recorded = 102.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Values
are:

1 = GRANT
2 = REVOKE
3 = DENY

 Database Name Name of the database to which the
GRANT/DENY/REVOKE statement
permission is being applied.

 DBUserName The issuer's user name in the database.
 Permissions Type of statement issued. Values are:

1 = CREATE DATABASE (master
database only)
2 = CREATE TABLE
4 = CREATE PROCEDURE
8 = CREATE VIEW
16 = CREATE RULE
32 = CREATE DEFAULT
64 = BACKUP DATABASE
128 = BACKUP LOG
512 = CREATE FUNCTION

 Text Data The SQL text of the
GRANT/DENY/REVOKE statement.

Audit Statement
Permission Event

Event Class Type of event recorded = 113.

 Success The success or failure of the audit
indicator. Values are:

0 = Failure
1 = Success

 Event Sub Class Class of event within the event. Value is:

Always = 1

 Database Name Name of the database in which the
command is being run.

 DBUserName The issuer's user name in the database.
 Permissions Type of statement issued. Values are:

1 = CREATE DATABASE (master
database only)
2 = CREATE TABLE
4 = CREATE PROCEDURE
8 = CREATE VIEW
16 = CREATE RULE
32 = CREATE DEFAULT
64 = BACKUP DATABASE
128 = BACKUP LOG
512 = CREATE FUNCTION

 Text Data Text value dependent on the event class
captured.

See Also

Security Audit Event Category

Security Audit Event Classes

Administering SQL Server (SQL Server 2000)

Sessions Event Category
Sessions Event Category

Use the Sessions event category to monitor Microsoft® SQL Server™ user connections.

See Also

Sessions Event Classes

Sessions Data Columns

Administering SQL Server (SQL Server 2000)

Sessions Event Classes
Sessions Event Classes

The following table describes the Sessions event classes in the Sessions event category.

Event class Description
ExistingConnection Detects activity by all users connected to Microsoft® SQL

Server™ before the trace was started.

Using the ExistingConnection event classes, it is possible to monitor the length of time each user connection was connected to
an instance of SQL Server, and the amount of SQL Server processor time the queries submitted on the connection took to
execute. This information can be useful for determining:

The amount of time and the volume of activity used by each SQL Server user. This can be useful for tracking database
activity and charging each user for the time and SQL Server CPU time (CPU data column) used.

The security of the system, by checking the users connecting to and using an instance of SQL Server.

See Also

Sessions Event Category

Sessions Data Columns

Administering SQL Server (SQL Server 2000)

Sessions Data Columns
Sessions Data Columns

The following table lists the data columns for each event class in the Sessions event category.

Event class Data column Description
Existing
Connection

Event Class Type of event recorded = 17.

 Binary Data Session level settings, including ANSI
nulls, ANSI padding, cursor close on
commit, null concatenation, and quoted
identifiers. For more information, see SET.

In addition to the data columns that are specific to the Existing Connection event class, by monitoring the DBUserName and
NT User Name default data columns, you can map the name of the user to each connection.

See Also

Sessions Event Category

Sessions Event Classes

Administering SQL Server (SQL Server 2000)

Stored Procedures Event Category
Stored Procedures Event Category

Use the Stored Procedures event category to monitor the execution of stored procedures.

See Also

Stored Procedures Event Classes

Stored Procedures Data Columns

Administering SQL Server (SQL Server 2000)

Stored Procedures Event Classes
Stored Procedures Event Classes

The following table describes the Stored Procedures event classes in the Stored Procedures event category.

Event class Description
RPC Output Parameter Displays information about output parameters of a

previously executed remote procedure call (RPC).
RPC:Completed Occurs when an RPC has been completed.
RPC:Starting Occurs when an RPC has started.
SP:CacheHit Procedure is found in the cache.
SP:CacheInsert Item is inserted into the procedure cache.
SP:CacheMiss Stored procedure is not found in the procedure cache.
SP:CacheRemove Item has been removed from the procedure cache.
SP:Completed Stored procedure has completed.
SP: ExecContextHit Execution version of a stored procedure has been

found in the cache.
SP:Recompile Stored procedure has been recompiled.
SP:Starting Stored procedure has started.
SP: StmtCompleted Statement within a stored procedure has completed.
SP:StmtStarting Statement within a stored procedure has started.

By monitoring the SP:CacheHit and SP:CacheMiss event classes, you can determine how often executed stored procedures are
found in the cache. For example, if the SP:CacheMiss event class occurs frequently, it can indicate that more memory should be
made available to Microsoft® SQL Server™, thereby increasing the size of the procedure cache. By monitoring the Object ID of
the SP:CacheHit event class, you can determine which stored procedures reside in the cache.

The SP:CacheInsert, SP:CacheRemove, and SP:Recompile event classes can be used to determine which stored procedures are
brought into cache (first executed), removed from the cache (aged out of the cache), and recompiled. For more information about
recompiling stored procedures, see Recompiling a Stored Procedure. This information is useful to determine how stored
procedures are being used by applications.

A stored procedure has a compiled version with shared data and an execution context version with session-specific data. When a
stored procedure is looked up in the cache, execution contexts are looked for first. If none are found, the cache is searched for
compiled plans. Use the SP:ExecContextHit event class to monitor execution contexts. If the SP:ExecContextHit event class is
not generated for a stored procedure, then the stored procedure has no execution time cachable queries.

The execution of a stored procedure can be monitored by the SP:Starting, SP:StmtStarting, SP:StmtCompleted, and
SP:Completed event classes and all the TSQL event classes.

Note SP:StmtStarting is provided for backward compatibility only. You should now use SQL:StmtStarting to trace this event. If
you do choose to trace SP:StmtStarting, SQL Profiler will trace SQL:StmtStarting, as the two events are mapped together.

See Also

Stored Procedures Event Category

Stored Procedures Data Columns

Administering SQL Server (SQL Server 2000)

Stored Procedures Data Columns
Stored Procedures Data Columns

The following table lists the data columns for each event class in the Stored Procedure event category.

Event class Data column Description
RPC Output
Parameter

Event Class Type of event recorded = 100.

 Object Name Name of the output parameter from the
RPC event (for example, handle).

 Text Data Value of the parameter named in object
name that was returned by the remote
procedure call (RPC).

RPC:Completed Event Class Type of event recorded = 10.
 End Time End time of the RPC.
 Duration Duration of the RPC.
 CPU Amount of CPU used by the RPC.
 Reads Number of page reads issued by the RPC.
 Writes Number of page writes issued by the

RPC.
 Text Data Text of the RPC.
RPC:Starting Event Class Type of event recorded = 11.
 Text Data Text of the RPC.
SP:CacheHit Event Data Type of event recorded = 38.
 Object ID Object ID of the stored procedure found

in the cache.
 Object Name Name of the stored procedure found in

the cache.
 Text Data Text of the SQL statement that was found

in the cache.
SP:CacheInsert Event Class Type of event recorded = 35.
 Object ID Object ID of the stored procedure.
 Object Name Name of the stored procedure found in

the cache.
 Text Data Text of the SQL statement that is being

cached.
SP:CacheMiss Event Class Type of event recorded = 34.
 Event Sub Class Nesting level of the stored procedure.
 Object Name The name of the stored procedure found

in the cache.
SP:CacheRemove Event Class Type of event recorded = 36.
 Object ID Object ID of the stored procedure.
 Object Name Name of the stored procedure found in

the cache.
 Text Data Text of the SQL statement being removed

from the cache.
SP:Completed Event Class Type of event recorded = 43.
 Nest Level Nesting level of the stored procedure.
 End Time End time of the event.
 Duration Length of time the stored procedure ran.
 Object ID Object ID of the stored procedure.
 Object Name Name of the stored procedure found in

the cache.
 Object Type Type of stored procedure that was called.
 Text Data Text of the stored procedure call.

SP:ExecContextHit Event Class Type of event recorded = 39.
 Object ID Object ID of the stored procedure.
 Object Name The name of the stored procedure found

in the cache.
 Text Data The text of the stored procedure call

found in the cache.
SP:Recompile Event Class Type of event recorded = 37.
 Nest Level Nesting level of the stored procedure.
 Object ID The object ID of the stored procedure.
 Object Name The name of the stored procedure found

in the cache.
 Text Data The text of the stored procedure call that

triggered the recompile.
SP:Starting Event Class Type of event recorded = 42.
 Nest Level Nesting level of the stored procedure.
 Object ID The object ID of the stored procedure.
 Object Name The name of the stored procedure found

in the cache.
 Object Type The type of stored procedure being

started.
 Text Data The text of the stored procedure call.
SP:StmtCompleted Event Class Type of event recorded = 45.
 Event Sub Class Nesting level of the stored procedure.
 Integer Data Actual rows returned by the statement.
 Object ID System-assigned ID of the stored

procedure.
 Text Data Text of the statement in the stored

procedure.
SP:StmtStarting Event Class Type of event recorded = 44.
 Event Sub Class Nesting level of the stored procedure.
 Object ID System-assigned ID of the stored

procedure.
 Text Data Text of the statement in the stored

procedure.

See Also

Stored Procedures

Stored Procedures Event Category

Stored Procedures Event Classes

Administering SQL Server (SQL Server 2000)

Transactions Event Category
Transactions Event Category

The Transactions event classes can be used to monitor the status of transactions.

See Also

Transactions Event Classes

Transactions Data Columns

Administering SQL Server (SQL Server 2000)

Transactions Event Classes
Transactions Event Classes

The following table describes the Transactions event classes in the Transactions event category.

Event class Description
DTCTransaction Tracks Microsoft® Distributed Transaction Coordinator (MS

DTC) coordinated transactions between two or more databases.
SQLTransaction Tracks Transact-SQL BEGIN, COMMIT, SAVE, and ROLLBACK

TRANSACTION statements.
TransactionLog Tracks when transactions are written to the transaction log.

Use the DTCTransaction event class to monitor the state of MS DTC transactions as they occur. This can be useful when testing
an application that uses distributed transactions.

Monitor the SQLTransaction event class when testing your application stored procedures or triggers to determine, for example,
when transactions are committed or rolled back.

Use the TransactionLog event class when you want to monitor activity in the Microsoft SQL Server™ transaction log, for
example, to test your application and determine the types of logging activity.

See Also

Transactions Event Category

Transactions Data Columns

Administering SQL Server (SQL Server 2000)

Transactions Data Columns
Transactions Data Columns

The following table lists the data columns for each event class in the Transactions event category.

Event class Data column Description
DTCTransaction Event Class Type of event recorded = 19.
 Event Sub Class Microsoft® Distributed Transaction

Coordinator (MS DTC) state. For more
information, see the MS DTC
documentation. Possible values include:

0 = GET_DTC_ADDRESS_SUB_CLASS
1 = PROPAGATE_XACT_SUB_CLASS
2 = DOWORK_SUB_CLASS
3 = CLOSE_CONN_SUB_CLASS
4 = DTC_VIRGIN_SUB_CLASS
5 = DTC_IDLE_SUB_CLASS
6 = DTC_BEG_DIST_SUB_CLASS
7 = DTC_ENLISTING_SUB_CLASS
8 = DTC_INT_ACTIVE_SUB_CLASS
9 = DTC_INT_COMMIT_SUB_CLASS
10 = DTC_INT_ABORT_SUB_CLASS
11 =
DTC_INT_ASYNC_ABORT_SUB_CLASS
12 = DTC_ACTIVE_SUB_CLASS
13 = DTC_INIT_PREPARE_SUB_CLASS
14 = DTC_PREPARING_SUB_CLASS
15 = DTC_PREPARED_SUB_CLASS
16 = DTC_ABORTING_SUB_CLASS
17 = DTC_COMMITTING_SUB_CLASS
18 =
DTC_DO_ASYNC_ABORT_SUB_CLASS
19 = DTC_DISASTER_SUB_CLASS
20 = DTC_DRAIN_ABORT_SUB_CLASS
21 = DTC_ASYNC_ABORT_SUB_CLASS
22 = DTC_TM_RECOVERY_SUB_CLASS

 End Time The end time of the event.
 Duration The length of the DTC transaction.
 Reads The number of page reads generated

locally by the DTC transaction.
 Writes The number of page writes generated

locally by the DTC transaction.
 CPU The amount of CPU used by the DTC

transaction.
 Integer Data Transaction isolation level. Possible values

are:

256 = Read uncommitted
4096 = Read Committed
65536 = Repeatable read
1048576 = Serializable
4294967295 = Unspecified

 Binary Data Globally unique ID (GUID), in hexadecimal
form, of the transaction, if available. For
possible values of the Binary Data, see
Table 2 below.

SQLTransaction Event Class Type of event recorded = 50.

 Event Sub Class Type of SQL transaction event. Possible
values include:

0 = Begin Transaction
1 = Commit Transaction
2 = Rollback Transaction
3 = A Savepoint was issued

 End Time The end time of the event. This option is
only for a COMMIT or ROLLBACK.

 Duration How long the transaction ran for. This
option is only for a COMMIT or
ROLLBACK.

 Transaction ID The internal ID number of the transaction.
 Text Data The savepoint or rollback name, if

provided.
 Object Name The transaction name, if provided.
TransactionLog Event Class Type of event recorded = 54.
 Event Sub Class Type of transaction log event, such as

BEGINXACT(null).
 Integer Data The length of the log record.
 Binary Data The Replication log_pubid is the

publication ID that is currently being
worked on. If you are using replication and
look in the table for MSPublications there
is a column of publication_id. This is the
value represented in Binary Data. You can
use this ID to find the publication and any
articles associated with it.

 End Time The end time of the event.
 Reads The number of read I/Os issued to

perform the log entry.
 Writes The number of I/Os issued to perform the

log entry.
 CPU The amount of CPU used to write the

transaction entry.
 Transaction ID The internal ID number of the transaction.
 Object ID The ID of the object that has logged

modifications.
 Index ID The ID of the index that has logged

modifications.

See Also

Transactions Event Category

Transactions Event Classes

Administering SQL Server (SQL Server 2000)

TSQL Event Category
TSQL Event Category

The TSQL event classes can be used to monitor the execution and completion of a batch, and a Transact-SQL statement.

See Also

TSQL Event Classes

TSQL Data Columns

Administering SQL Server (SQL Server 2000)

TSQL Event Classes
TSQL Event Classes

The following table describes the TSQL event classes in the TSQL event category.

Event class Description
Exec Prepared SQL Indicates when a prepared SQL statement or

statements have been executed by ODBC,
OLEDB, or DB-Library.

Prepare SQL Indicates when an SQL statement or statements
have been prepared for use by ODBC, OLEDB, or
DB-Library.

SQL:BatchCompleted Transact-SQL batch has completed.
SQL:BatchStarting Transact-SQL batch has started.
SQL:StmtCompleted Transact-SQL statement has completed.
SQL:StmtStarting Transact-SQL statement has started.
Unprepare SQL Indicates when a prepared SQL statement or

statements have been unprepared by ODBC,
OLEDB, or DB-Library.

By monitoring the TSQL event classes and monitoring the events using single stepping, you can monitor your application queries.
The SQL:BatchStarting event class will show the Transact-SQL submitted in a batch, while the SQL:StmtStarting event class
shows the individual statement within a batch. By replaying the SQL:BatchCompleted event class, any results returned by the
batch are displayed and can be checked to ensure they match the expected results.

Monitoring the Start Time, End Time, and Duration default data columns reveals when the events start and complete, and how
long each remote procedure call (RPC), batch, or statement takes to complete. By grouping events based on the Duration default
data column, you can easily determine the longest running queries. Monitoring the NT User Name and DBUserName default
data columns can also identify users who submit these queries.

See Also

TSQL Event Category

TSQL Data Columns

Administering SQL Server (SQL Server 2000)

TSQL Data Columns
TSQL Data Columns

The following table lists the data columns for each event class in the TSQL event category.

Event class Data column Description
Exec Prepared SQL Event Class Type of event recorded = 72.
 Handle Handle of the prepared TSQL statement.
Prepare SQL Event Class Type of event recorded = 71.
 Handle Handle of the prepared TSQL statement.
SQL:BatchCompleted Event Class Type of event recorded = 12.
 Duration The duration of the event.
 End Time The end time of the event.
 Reads The number of page read I/Os caused

by the batch.
 Writes The number of page write I/Os caused

by the batch.
 CPU The CPU used during the batch.
 Text Data The text of the batch.
SQL:BatchStarting Event Class Type of event recorded = 13.
 Text Data The text of the batch.
SQL:StmtCompleted Event Class Type of event recorded = 41.
 Duration The duration of the event.
 End Time The end time of the event.
 Reads The number of page reads issued by the

SQL statement.
 Writes The number of page writes issued by

the SQL statement.
 CPU The CPU used by the SQL statement.
 Integer Data The number of rows returned by the

SQL statement.
 Object ID The object ID of the parent stored

procedure, if the SQL statement was run
within a stored procedure.

 Nest Level The nest level of the stored procedure, if
the SQL statement was run within a
stored procedure.

 Text Data The text of the statement that is about
to be executed.

SQL:StmtStarting Event Class Type of event recorded = 40.
 Object ID The object ID of the parent stored

procedure, if the SQL statement was run
within a stored procedure.

 Nest Level The next level of the stored procedure, if
the SQL statement was run within a
stored procedure.

 Text Data The text of the statement that is about
to be executed.

Unprepare SQL Event Class Type of event recorded = 73.
 Handle The handle of the prepared TSQL

statement.

See Also

TSQL Event Category

TSQL Event Classes

Administering SQL Server (SQL Server 2000)

User Configurable Event Category
User Configurable Event Category

Use the User Configurable event category to monitor user-defined events. Create user-defined events to monitor events that
cannot be monitored by the system-supplied events in other event categories. For example, a user-defined event can be created
to monitor the progress of the application you are testing. As the application runs, it can generate events at predefined points,
allowing you to determine the current execution point in your application.

See Also

User Configurable Event Classes

User Configurable Data Columns

Administering SQL Server (SQL Server 2000)

User Configurable Event Classes
User Configurable Event Classes

As user-defined events are generated by your application using the sp_trace_generateevent stored procedure, the event_class
parameter you specify determines which of the following 10 event classes to monitor.

The following table describes the User Configurable event classes in User Configurable event category.

Event class Description
UserConfigurable (0-9) Event data defined by the user.

See Also

User Configurable Event Category

User Configurable Data Columns

Administering SQL Server (SQL Server 2000)

User Configurable Data Columns
User Configurable Data Columns

The following table lists the data columns for each event class in the User Configurable event category.

Event class Data column Description
UserConfigurable (0-9) Text Data Text value dependent on the event class

captured in the trace.
 Binary Data Binary value dependent on the event

class captured in the trace.

Not all data columns will be produced for the User Configurable event classes. When you create a trace, you can select the
following columns:

Application Name

Binary Data

Database ID

Host Name

Login Name

Login SID

NT Domain Name

NT User Name

Server Name

Text Data

To create a user-defined event class

Transact-SQL

See Also

User Configurable Event Category

User Configurable Event Classes

Administering SQL Server (SQL Server 2000)

Creating and Managing Traces and Templates
In Microsoft® SQL Server™, you can use SQL Profiler to create one or more templates that define the criteria for each event you
want to monitor. You can save the template to a file with the .tdf extension. A template is not executed. After you define the
template, you run a trace that records the data for each event you selected.

For example, you can create a template, specifying which events, data columns, and filters to use. Then you can save the template
and launch a trace with the current template settings. The trace data captured is based upon the options specified in the template.
You can specify where the trace results can be saved (for example, in a trace file (.trc extension file) or a trace table).

Default Templates

Before creating a trace using SQL Profiler, you can specify a default trace template. To select a default trace template, go to the
Tools menu, and then select Options.

You can also specify:

To start the default trace immediately after making a connection.

The number of lines of trace data buffered for display. If window auto-scrolling is disabled and the specified limit is reached,
the trace pauses until you scroll down to the last row. At this point, 10 percent of the top rows are deleted and the trace
continues.

A font for the displayed trace data.

A font size for the displayed trace data.

When creating a trace, you can specify the following:

A trace name.

Which instance of SQL Server to trace.

Options for saving trace data. For example, you can choose to capture trace data to the server file. If you choose this option,
you must capture trace data to the server being traced and set a maximum file size for the server file. If the maximum file
size is reached, you can enable the file rollover option, which creates new files to store the trace data. You can also save a
trace to a file, table, or a combination of these options. If you will be tracing a large amount of data, you should save the
data to the server file. This guarantees that all events produced will be saved in the file. There is a limit of 1 gigabyte (GB) for
maximum file size.

A trace stop time.

Events to trace. For more information about the event classes available, see Monitoring with SQL Profiler Event Categories.

Data columns to capture. For more information about the data columns available, see Monitoring with SQL Profiler Event
Categories.

Filters that specify the criteria for determining which events to capture.

Using System Stored Procedures

SQL Profiler uses system stored procedures to create traces and send the trace output to the appropriate destination. These
system stored procedures can be used from within your own applications to create traces manually, instead of using SQL Profiler.
This allows you to write custom applications specific to the needs of your enterprise.

The following table compares the SQL Server 2000 system stored procedures to the SQL Server version 7.0 stored procedures.

7.0 extended stored procedure 2000 stored procedures
xp_trace_geteventclassrequired fn_trace_geteventinfo
xp_trace_getqueuecreateinfo fn_trace_geteventinfo

xp_trace_getqueueproperties fn_trace_geteventinfo
xp_trace_getqueuecreateinfo fn_trace_getinfo
xp_trace_getqueuedestination fn_trace_getinfo
xp_trace_getqueueproperties fn_trace_getinfo
xp_trace_addnewqueue sp_trace_create
xp_trace_setqueuecreateinfo sp_trace_create
xp_trace_setqueuedestination sp_trace_create
xp_trace_generate_event sp_trace_generateevent
xp_trace_addnewqueue sp_trace_setevent
xp_trace_eventclassrequired sp_trace_setevent
xp_trace_seteventclassrequired sp_trace_setevent
xp_trace_destroyqueue sp_trace_setstatus
xp_trace_pausequeue sp_trace_setstatus
xp_trace_restartqueue sp_trace_setstatus
xp_trace_startconsumer sp_trace_setstatus
xp_trace_getappfilter fn_trace_getfilterinfo
xp_trace_getconnectionidfilter fn_trace_getfilterinfo
xp_trace_getcpufilter fn_trace_getfilterinfo
xp_trace_getdbIdfilter fn_trace_getfilterinfo
xp_trace_getdurationfilter fn_trace_getfilterinfo
xp_trace_geteventfilter fn_trace_getfilterinfo
xp_trace_gethostfilter fn_trace_getfilterinfo
xp_trace_gethpIdfilter fn_trace_getfilterinfo
xp_trace_getIndIdfilter fn_trace_getfilterinfo
xp_trace_getntdmfilter fn_trace_getfilterinfo
xp_trace_getntnmfilter fn_trace_getfilterinfo
xp_trace_getobjidfilter fn_trace_getfilterinfo
xp_trace_getreadfilter fn_trace_getfilterinfo
xp_trace_getserverfilter fn_trace_getfilterinfo
xp_trace_getseverityfilter fn_trace_getfilterinfo
xp_trace_getspIdfilter fn_trace_getfilterinfo
xp_trace_getsysobjectsfilter fn_trace_getfilterinfo
xp_trace_gettextfilter fn_trace_getfilterinfo
xp_trace_getuserfilter fn_trace_getfilterinfo
xp_trace_getwritefilter fn_trace_getfilterinfo
xp_trace_setappfilter sp_trace_setfilter
xp_trace_setconnectionidfilter sp_trace_setfilter
xp_trace_setcpufilter sp_trace_setfilter
xp_trace_setdbIdfilter sp_trace_setfilter
xp_trace_setdurationfilter sp_trace_setfilter
xp_trace_seteventfilter sp_trace_setfilter
xp_trace_sethostfilter sp_trace_setfilter
xp_trace_sethpIdfilter sp_trace_setfilter
xp_trace_setIndIdfilter sp_trace_setfilter
xp_trace_setntdmfilter sp_trace_setfilter
xp_trace_setntnmfilter sp_trace_setfilter
xp_trace_setobjidfilter sp_trace_setfilter
xp_trace_setreadfilter sp_trace_setfilter
xp_trace_setserverfilter sp_trace_setfilter
xp_trace_setseverityfilter sp_trace_setfilter
xp_trace_setspIdfilter sp_trace_setfilter
xp_trace_setsysobjectsfilter sp_trace_setfilter
xp_trace_settextfilter sp_trace_setfilter
xp_trace_setuserfilter sp_trace_setfilter

xp_trace_setwritefilter sp_trace_setfilter

System stored procedures expose the underlying architecture used to create traces. The architecture components are:

Producer

Generates the events to be monitored. The SQL Server lock manager, which generates lock events, is an example of a producer.
For more information, see Locks Event Category.

Filter

Restricts the data monitored by the trace. For more information, see Limiting Traces.

Destination

Houses event data extracted from the trace in files.

To define your own trace using stored procedures:

1. Specify the events to capture using sp_trace_setevent.

2. Specify any event filters. For more information, see How to set a trace filter (Transact-SQL).

3. Specify the destination for the captured event data using sp_trace_create.

To set trace definition defaults

Profiler

Profiler

To set trace display defaults

Profiler

Profiler

To create a trace

Profiler

Profiler

Transact-SQL

Transact-SQL

To add or remove events from a trace template

Profiler

Profiler

Transact-SQL

Administering SQL Server (SQL Server 2000)

Limiting Traces
Limiting Traces

If a filter is not set, all events of the selected event classes are returned in the trace output. Filters limit the events collected in the
trace. For example, limiting the Microsoft® Windows NT® 4.0 or Windows® 2000 user names in the trace to specific users
reduces the output data to only those users in which you are interested.

Trace event criteria are parameters used to restrict (filter) the event data captured within the trace. For example, you can monitor
the activity of a specific application or exclude an application from monitoring (the default trace event criteria excludes SQL
Profiler from monitoring itself). For example, when monitoring queries to determine the batches that take the longest time to
execute, you can set the trace event criteria to monitor (trace) only those batches that take longer than 30 seconds to execute (a
CPU minimum value of 30,000 milliseconds). You can specify filters by right-clicking on the appropriate trace event criteria value
and entering the information.

To filter events in a trace template

Profiler

Profiler

Transact-SQL

Transact-SQL

To modify filters

Profiler

Profiler

Each trace event criteria parameter has a set of values that determine whether the event data is included in the trace when the
event class is monitored by SQL Profiler. The values applicable depend on the event criteria chosen.

Event criteria option Description
Like Specifies that the trace event data must be like the text

entered. Allows multiple values.
Not like Specifies that the trace event data must not be like the

text entered. Allows multiple values.
Equals Specifies that the trace event data must be equal to the

value entered. Allows multiple values.
Not equal to Specifies that the trace event data must not be equal to

the value entered. Allows multiple values.
Greater than or equal Specifies that the trace event data must be greater than

or equal to the value entered.
Less than or equal Specifies that the trace event data must be less than or

equal to the value entered.

The following table lists the trace event criteria (filters), and the options available for each.

Trace event
criteria Description Like

Not
like Equals

Not
equal

to

Greater
than or
equal

Less than
or equal

Application
Name

Application that
generates the event,
for example, Query
Analyzer.

Yes Yes

Client
ProcessID

The process ID of the
application calling
Microsoft® SQL
Server™.

 Yes Yes Yes Yes

Column
Permissions

Indicator of whether
a column permission
was set.

 Yes Yes Yes Yes

CPU Amount of CPU time
(in milliseconds).

 Yes Yes Yes Yes

Database ID ID assigned to the
database. The value
for a database can be
determined by using
the DB_ID function.

 Yes Yes Yes Yes

Database
Name

Name of the
database in which
the statement of the
user is running.

Yes Yes

Duration Amount of elapsed
time for remote
procedure calls
(RPCs) and language
statements, locks,
sessions, and other
events that have a
defined elapsed time.

 Yes Yes Yes Yes

End Time Time at which the
event ended. This
column is not
populated for
starting event
classes, such as
SQL:BatchStarting
or SP:Starting.

 Yes Yes

Error Error number of a
given event. Often
this is the error
number stored in
sysmessages.

 Yes Yes Yes Yes

File Name The logical name of
the file being
modified.

Yes Yes

Handle Integer used by
ODBC, OLEDB, or
DB-Library to
coordinate execution
with the server.

 Yes Yes Yes Yes

Host Name Name of the
computer that
generates the event.
To determine the
host name, use the
HOST_NAME
function.

Yes Yes

Index ID Index ID for the
object. To determine
the index ID for an
object, use the indid
column of the
sysindexes system
table.

 Yes Yes Yes Yes

Login Name Name of the login of
the user (either SQL
Server security login
or the Windows
login credentials in
the form of
DOMAIN\Username).

Yes Yes

Mode Integer used by
various events to
describe a state the
event has received or
is requesting.

 Yes Yes Yes Yes

NT Domain
Name

Windows NT or
Windows 2000
domain of the client
that generates the
event.

Yes Yes

NT User
Name

Individual
responsible for
generating the event.

Yes Yes

Object ID Unique ID for the
monitored object.
Alternatively, by
selecting the
Exclude system
objects check box,
all objects are
monitored, except
system objects such
as the sysobjects
table.

 Yes Yes Yes Yes

Object Name The name of the
object being
referenced.

Yes Yes

Object Type Value representing
the type of the object
involved in the event.
This value
corresponds to the
type column in
sysobjects.

 Yes Yes Yes Yes

Owner Name Database user name
of the object owner.

Yes Yes

Permissions Integer value
representing the type
of permissions
checked. Values are:

1 = SELECT ALL
2 = UPDATE ALL
4 = REFERENCES
ALL
8 = INSERT
16 = DELETE
32 = EXECUTE
(procedures only)
4096 = SELECT ANY
(at least one column)
8192 = UPDATE ANY
16384 =
REFERENCES ANY

 Yes Yes Yes Yes

Reads Number of logical
reads performed by
the server executing
the statement.

 Yes Yes Yes Yes

Role Name Name of an
application role
being enabled.

Yes Yes

Severity Range of error
severity levels.

 Yes Yes Yes Yes

SPID Each connection has
a unique SPID.

 Yes Yes Yes Yes

DBUserName User who generates
the event.

Yes Yes

Start Time Time at which the
event started, when
available.

 Yes Yes

State Equivalent to an
error state code.

 Yes Yes Yes Yes

Success 1 = success.
0 = failure (for
example, a 1 means
success of a
permissions check
and a 2 means a
failure of that check).

 Yes Yes Yes Yes

Target Login
Name

For actions which
target a login (for
instance, adding a
new login), the name
of the targeted login.

Yes Yes

Target User
Name

For actions which
target a database
user (for instance,
granting permission
to a user), the name
of that user.

Yes Yes

Text Data Text contained within
the event data.

Yes Yes

Writes Number of disk
writes performed by
the server executing
the statement.

 Yes Yes Yes Yes

As a security mechanism, SQL Profiler automatically omits from the trace any of the security-related stored procedures affecting
passwords. This security mechanism is nonconfigurable and always in effect, preventing users, who otherwise have permissions
to trace all activity on SQL Server, from capturing passwords.

The following security-related stored procedures are not monitored:

See Also

sp_addapprole

sp_adddistpublisher

sp_adddistributiondb

sp_adddistributor

sp_addlinkedserver

sp_addlinkedsrvlogin

sp_addlogin

sp_addmergepullsubscription_agent

sp_addpullsubscription_agent

sp_addremotelogin

sp_addsubscriber

sp_approlepassword

sp_changedistpublisher

sp_changesubscriber

sp_dsninfo

sp_helpsubscription_properties

sp_link_publication

sp_password

sp_setapprole

Administering SQL Server (SQL Server 2000)

Maximum File and Data Size
Maximum File and Data Size

Using the Maximum file size and the Maximum rows options, you can specify the maximum size of the file or table holding the
trace information and control the amount of space and resources used by a trace.

If a trace defined to save data to a file is started using SQL Profiler and the file already exists, you can append to or overwrite the
file. If you choose to append to the file, and the trace file already meets or exceed the specified maximum file size, you are notified
and given the opportunity to either increase the maximum file size or specify a new file. The same is true for trace tables.

Maximum File Size

A trace with a maximum file size specified stops saving trace information to the file after the maximum file size has been reached.
The maximum file size option must be used when you are saving trace data to a file. The default maximum file size is 5 megabyte
(MB). The file rollover option is enabled by default when you are saving trace data to a file.

There is a limit of 1 gigabyte (GB) for the maximum file size option.

How to set a maximum file size for a trace file

Profiler

Profiler

Maximum Data Size

Specifying a maximum data size in a table makes it easier to run unattended traces. For example, if you need to start a trace that
saves trace data to a file and/or a table but want to stop the trace if the file becomes too large, you can do so automatically. By
specifying the maximum file size and/or rows, the user can guarantee that the trace file or table will not grow beyond the
specified limit.

When the maximum data size is set through the SQL Profiler user interface and the maximum size has been reached, the trace
continues to run, but the trace information is no longer recorded. However, by using system stored procedures, you can specify
that the trace stops when the maximum data size has been reached.

How to set a maximum table size for a trace

Profiler

Profiler

See Also

sp_trace_create

Administering SQL Server (SQL Server 2000)

Datetime Filter
Datetime Filter

You can set a trace to filter out events that do not occur during a specified time. For example, if you want to view an event that
started between 2:00 A.M. and 2:30 A.M., you can set a trace to automatically filter out all events starting before 2:00 A.M. and
after 2:30 A.M. Start Time and End Time filters capture events that occur only between the specified times. The trace itself is
active during the time and does not autostart or stop at the Start Time and End Time. These times affect only the filter.

How to set a Start Time filter for a trace

Profiler

Profiler

How to set an End Time filter for a trace

Profiler

Profiler

Administering SQL Server (SQL Server 2000)

System SPID
System SPID

You can define a trace that records only Microsoft® SQL Server™ processes while filtering out any unnecessary system events.
Filtering out system server process IDs (SPIDs) saves system resources and time when you run a trace on a busy server.

How to filter system IDs in a trace

Profiler

Profiler

Administering SQL Server (SQL Server 2000)

Saving Traces and Templates
Saving Traces and Templates

 Topic last updated -- July 2003

Saving a trace involves saving the captured event data to a specified place. Saving a template involves saving the definition of the
trace, such as specified data columns, events, and filters.

Saving Event Data

Save the captured event data to a file or a Microsoft® SQL Server™ table when you need to analyze or replay the captured data at
a later time (for example, for trend forecasting or troubleshooting and debugging application problems). You can:

Use a trace file or trace table to create a workload that is used as input for the Index Tuning Wizard.

Use a trace file to capture events and send the trace file to the support provider for analysis.

Use the query processing tools in SQL Server to access the data or to view the data in SQL Profiler. However, only members
of the sysadmin fixed server role or the table creator can access the trace table directly.

Important Capturing trace data to a table is slower than capturing to a file. An alternative is to capture a trace to a file,
open the trace file, and then save the trace as a trace table.

When using a trace file, SQL Profiler saves captured event data (not trace definitions) to a SQLProfiler (*.trc) file. The extension is
added to the end of the file automatically when the trace file is saved, regardless of any other specified extension. For example, if
you specify a trace file called Trace.dat, the file created is called Trace.dat.trc.

To save a trace to a trace file, the SQL Server service account must have write permission on the trace file directory. If the SQL
Server service account is not an administrator on the computer where the trace file is located, you must explicitly grant write
permission to the SQL Server service account.

Note If SQL Profiler is running on Microsoft Windows® 2000 or Microsoft Windows NT® 4.0, you cannot open trace or script
files on a Windows 98 shared directory.

Saving Templates

The template definition of a trace includes the event classes, data columns, event criteria (filters), and all other properties (except
the captured event data) used to create a trace. Templates created using SQL Profiler are saved in a file on the computer running
SQL Profiler.

If you frequently monitor SQL Server, save templates in order to analyze performance. The templates capture the same event data
each time and use the same trace definition to monitor the same events without having to define the event classes and data
columns every time you create a trace. Additionally, a template can be given to another user to monitor specific SQL Server
events. For example, a support provider can supply a customer with a template. The template is used by the customer to capture
the required event data, which is then sent to the support provider for analysis.

To save a trace to a file

Profiler

Profiler

Transact-SQL

To save a trace to a table

Profiler

Profiler

Administering SQL Server (SQL Server 2000)

Modifying Templates
Modifying Templates

You can modify templates saved in the file on the local computer running SQL Profiler and templates derived from files. You may
need to derive a template from a trace file if you cannot remember the original template that was used to create the trace, or if
you want to run the same trace at a later date. Template properties, such as event classes and data columns, are modified in the
same way in which the properties were originally set. Event classes and data columns can be added or removed, and filters can be
changed. After the template is modified, saving it with the same name overwrites the original template. For more information, see
Creating and Managing Traces and Templates.

When working with existing traces, you can view the properties, but you cannot modify them.

Warning Saving a trace file with the same name overwrites the original trace file, causing any of the originally captured events
or data columns that were removed or filtered to be lost.

To derive a template from a trace file or trace table

Profiler

Profiler

To modify a trace template

Profiler

Profiler

Transact-SQL

Transact-SQL

To add or remove events from a trace template or trace file

Profiler

Profiler

Transact-SQL

To add or remove data columns from a trace template

Profiler

Profiler

Administering SQL Server (SQL Server 2000)

Starting, Pausing, and Stopping Traces
Starting, Pausing, and Stopping Traces

After you have created a template using SQL Profiler, you can start, pause, or stop capturing data using the new trace.

When you start a trace and the server is the defined source, Microsoft® SQL Server™ creates a queue that provides a temporary
holding place for captured server events.

Each trace can have multiple producers. A producer collects events in a specific event category and sends the data to the queue.
Events are read off the queue in the order in which they were placed. This method is called first-in/first-out (FIFO).

When using SQL Profiler, starting a trace opens a new trace window (if one is not already open), and data is immediately
captured. When using SQL Server system stored procedures, you start a trace either manually or automatically every time an
instance of SQL Server starts. A soon as the trace is started, data is captured. When a trace has been started, you can modify the
name of the trace only.

Pausing a trace prevents further event data from being captured until the trace is restarted. Restarting a trace resumes trace
operations. Any previously captured data is not lost. When the trace is restarted, data capturing is resumed from that point
onward. When a trace is paused, you can change the name, events, columns, and filters. However, you cannot change the
destination(s) to which you are sending the trace or the server connection.

Stopping a trace stops data from being captured. After a trace is stopped, it cannot be restarted without losing any previously
captured data, unless the data has been captured to a trace file or trace table. All trace properties that were previously selected are
preserved when a trace is stopped. When a trace is stopped, you can change the name, events, columns, and filters.

To run a trace after it has been paused or stopped

Profiler

Profiler

Transact-SQL

To pause a trace

Profiler

Profiler

Transact-SQL

To stop a trace

Profiler

Profiler

To clear a trace window

Profiler

Profiler

To close a trace window

Profiler

Profiler

Transact-SQL

Administering SQL Server (SQL Server 2000)

Viewing and Analyzing Traces
Viewing and Analyzing Traces

Use SQL Profiler to view captured event data in a trace. SQL Profiler displays data based on defined trace properties. One way to
analyze Microsoft® SQL Server™ data is to copy the data to another program, such as SQL Query Analyzer or the Index Tuning
Wizard. The Index Tuning Wizard can use a trace file that contains SQL batch and remote procedure call (RPC) events (and Text
data columns). By specifying a server and database name when using the wizard, the captured data can be analyzed against a
different server and database. For more information, see Index Tuning Wizard.

When a trace is opened using SQL Profiler, it is not necessary for the trace file to have the .trc file extension if the file was created
by either SQL Profiler or the Profiler stored procedures.

Note SQL Profiler can also read SQL Trace .log files and generic SQL script files. When opening a SQL Trace .log file that does not
have a .log file extension, for example trace.txt, specify SQLTrace_Log as the file format.

The SQL Profiler display can be configured with customized font, font size, preview lines, and client buffer size to assist in trace
analysis.

Analyzing Data to Troubleshoot

Using SQL Profiler, you can troubleshoot data, such as queries that perform poorly or have exceptionally high numbers of logical
reads, can be found by grouping traces or trace files by the Duration, CPU, Reads, or Writes data columns.

Additional information can be found by saving traces to tables and using Transact-SQL to query the event data. For example, to
determine which SQL:BatchCompleted events had excessive wait time, execute:

SELECT TextData, Duration, CPU
FROM trace_table_name
WHERE EventClass = 12 -- SQL:BatchCompleted events
AND CPU < (.4 * Duration)

Displaying Object Names When Viewing Traces

If you capture the Server Name and Database ID data columns in your trace, SQL Profiler displays the object name instead of
the object ID (for example, Orders instead of the number 165575628). Similarly, if you capture the Server Name, Database ID,
and Object ID, SQL Profiler displays the index name instead of the index ID.

If you choose to group by the Object ID data column, group by the Server Name and Database ID data columns first, and then
Object ID. Similarly, if you choose to group by the Index ID data column, group by the Server Name, Database ID, and Object
ID data columns first, and then Index ID. You need to group in this way because object and index IDs are not unique between
servers and databases (and objects for index IDs).

Finding Specific Events Within a Trace

Here are the basic steps for finding and grouping events in a trace:

1. Create your trace.

When defining the trace, capture the Event Class, ClientProcessID, and Start Time data columns in addition to any
other data columns you want to capture.

Group the captured data by the Event Class data column, and capture the trace to a file or table.

2. Find the target events.

Open the trace file or table, and expand the node of the desired event class, for example, Deadlock Chain. (The file
can be opened for viewing while the trace is writing to it unless the trace is located on a computer running Microsoft
Windows® Windows 98. Use the Refresh command in the View menu to display the new rows.)

Search through the trace until you find the events for which you are looking (you can use the Find option on the Edit
menu of SQL Profiler to help you find values in the trace). Note the values in the ClientProcessID and Start Time
data columns of the desired events.

3. Display the events in context.

Display the trace data column properties, and group by ClientProcessID instead of Event Class.

Expand the nodes of each client process ID you want to view. Search through the trace manually, or use the Find
option until you find the previously noted Start Time values of the target events. The events are displayed in
chronological order with the other events that belong to each selected client process ID. For example, the Deadlock
and Deadlock Chain events, captured within the trace, will be immediately after the SQL:BatchStarting events
within the expanded client process ID.

The same technique can be used to find events grouped by Server Name, Database ID, and Object ID. Once you have found the
events for which you are looking, group by ClientProcessID, Application Name, or another event class to view related activity
in chronological order.

To view a saved trace

Transact-SQL

Transact-SQL

To view filter information

Profiler

Profiler

Transact-SQL

Transact-SQL

To open a trace data file

Profiler

Profiler

If a trace file is located on a computer running Microsoft Windows 95 or Windows 98, the trace file cannot be opened by SQL
Profiler while the file is also being used to capture events. Additionally:

SQL Profiler, running on Microsoft Windows NT® 4.0, cannot open trace or script files located on a Windows 95 or
Windows 98 shared directory.

SQL Profiler can incur problems when accessing trace or script files located on remote computers if those files subsequently
become unavailable.

To open a trace table

Profiler

Profiler

See Also

SQL Profiler Performance Considerations

Administering SQL Server (SQL Server 2000)

Replaying Traces
Replaying Traces

When you create or edit a trace, you can save the trace to replay it later. SQL Profiler features a multithreaded playback engine
that can simulate user connections and SQL Server Authentication, allowing the user to reproduce the activity captured in the
trace. Therefore, replay is useful when troubleshooting an application or process problem. When you have identified the problem
and implemented corrections, run the trace that found the potential problem against the corrected application or process, then
replay the original trace to compare results.

Trace replay supports debugging using break points and run-to-cursor, which especially improves the analysis of long scripts. For
more information, see Single-Stepping Traces.

Replay Requirements

In addition to any other event classes you want to monitor, the following event classes must be captured in a trace to allow the
trace to be replayed:

Connect

CursorExecute (only required when replaying server-side cursors)

CursorOpen (only required when replaying server-side cursors)

CursorPrepare (only required when replaying server-side cursors)

Disconnect

Exec Prepared SQL (only required when replaying server-side prepared SQL statements)

ExistingConnection

Prepare SQL (only required when replaying server-side prepared SQL statements)

RPC:Starting

SQL:BatchStarting

In addition to any other data columns you want to capture, the following data columns must be captured in a trace to allow the
trace to be replayed:

Application Name

Binary Data

ClientProcessID or SPID

Database ID

Event Class

Event Sub Class

Host Name

Integer Data

Server Name

SQL User Name

Start Time

Text

Note Use the sample trace template SQLProfilerTSQL_Replay for traces capturing data for replay.

In order to replay a trace against a computer running Microsoft® SQL Server™ (the target), other than the computer originally
traced (the source):

All logins and users contained in the trace must already be created on the target and in the same database as the source.

All logins and users in the target must have the same permissions they had in the source.

All login passwords must be the same as the user executing the replay.

Replaying events associated with missing or incorrect logins will result in replay errors, but the replay operation will continue.

In order to replay a trace against an instance of SQL Server (the target), other than the computer originally traced (the source),
either:

Database IDs on the target must be the same as those on the source. This can be accomplished by creating from the source
a backup of the master database, and any user databases referenced in the trace, and restoring them on the target.

The default database for each login contained in the trace must be set (on the target) to the respective target database of the
login. For example, the trace to be replayed contains activity for the login, Fred, in the database Fred_Db on the source.
Therefore, on the target, the default database for the login, Fred, must be set to the database that matches Fred_Db (even if
the database name is different). To set the default database of the login, use sp_defaultdb system stored procedure.

Replay Options

Before replaying a captured trace, you can specify:

Server

The server is the name of the instance of SQL Server against which you want to replay the trace. The server must adhere to
the replay requirements previously mentioned.

Output file name

The output file contains the result of replaying the trace for later viewing. If Progress is selected, then the output file can be
also replayed at a later time. By default, SQL Profiler displays only the results of replaying the trace to the screen.

Replay Options
Replay events in the order they were traced. This option enables debugging.

Specify to replay events in the order they were traced. This allows you to use debugging methods such as stepping
through each trace.

Replay events using multiple threads. This option optimizes performance and disables debugging.

Specify to replay events using multiple threads. This optimizes performance, but debugging is disabled.

Display replay results

Specify to display the results of the replay. This is the default option. If the trace you are replaying is very large, you
may want to disable this to save disk space.

Note For best replay performance, it is recommended that you select to replay events using multiple threads, and do not select
to display the replay results.

Replay Considerations

SQL Profiler cannot replay traces:

Captured from connections that connected to an instance of SQL Server using Windows Authentication Mode. For
information about Windows Authentication Mode, see Authentication Modes.

Containing replication and other transaction log activity.

Containing operations that involve globally unique identifiers (GUID). For information about GUIDs, see Autonumbering and
Identifier Columns.

Containing operations on text, ntext, and image columns involving the bcp utility, BULK INSERT, READTEXT, WRITETEXT,
and UPDATETEXT statements, and full-text operations.

Containing session binding: sp_getbindtoken and sp_bindsession system stored procedures.

Additionally, SQL Profiler cannot replay SQL Trace .log files that contain SQL Server 6.5 server-side cursor statements
(sp_cursor).

Unexpected results or replay errors can occur when replaying a trace containing the Sessions event classes (Security Audit
Login, Security Audit Logout, and Existing Connection) if the Binary Data data column is not also captured in the trace. The
Binary Data data column, for the Session event classes, contains information required to set ANSI nulls, ANSI padding, cursor
close on commit, concat null yields null, and quoted identifier session settings. For more information, see SET.

When replaying a trace containing concurrent connections, SQL Profiler creates a thread for each connection. Therefore, system
performance of the computer replaying the trace can be affected if the trace contains many concurrent connections. To reduce the
effect on system performance, filter the trace by specifying a value(s) for the Application Name, SQL User Name, or another
data column captured in the trace, to focus the trace on only those events you need to monitor.

Note If you do not use the provided replay template (SQLProfilerTSQL-Replay), you may encounter difficulties capturing the
current database context. For more information, see Troubleshooting SQL Profiler.

To replay a trace table

Profiler

Profiler

See Also

bcp Utility

BULK INSERT

Full-text Indexes

READTEXT

sp_defaultdb

UPDATETEXT

WRITETEXT

Administering SQL Server (SQL Server 2000)

Single-Stepping Traces
Single-Stepping Traces

Rather than replay all events in a trace to completion, SQL Profiler allows you to replay a trace in the following ways:

A single event at a time

By replaying a trace a single event at a time, you can examine the effects of each event after it has occurred. When trace
replay is continued using single stepping, the next event is replayed, and then the trace is paused again.

To a breakpoint

By specifying one or more breakpoints in the trace, all events to the event marked with the breakpoint are replayed, as
specified by the replay options without any user intervention, and then trace replay is paused. Trace replay can continue one
event at a time, to the next breakpoint (if one exists), to a cursor, or to the end of the trace. Replaying a trace to a breakpoint
is useful if you want to replay a trace without examining each event up to the breakpoint. For example, you have debugged
your code and determined that all events up to a breakpoint execute as expected and do not need to be examined further.

To a cursor

By replaying a trace to a cursor (a highlighted event in the trace), all events to the highlighted event are replayed without
any user intervention. However, if a breakpoint is marked in the trace between the cursor and the point in the trace where
execution will next begin from, replay will stop at the breakpoint rather than continue to the cursor. Remove all breakpoints
in the trace to replay the trace to the cursor. Similar to a breakpoint, replaying a trace to a cursor is useful if you want to
replay a trace without examining each event up to the cursor.

Single stepping is useful for debugging the events captured in a trace. For example, you can create a trace monitoring the
execution of all batches submitted. By replaying the events in the trace one at a time (single stepping), you can determine the
effects of each batch as they occur, allowing you to debug your code. This is much more effective than placing large amounts of
debug code between batches. Debug code generally creates more output that needs to be separated from the actual results
generated, and that must be correctly removed when debugging is complete.

To replay a single event at a time

Profiler

Profiler

To replay to a breakpoint

Profiler

Profiler

To replay to the cursor

Profiler

Profiler

Administering SQL Server (SQL Server 2000)

Deleting Traces
Deleting Traces

Deleting a trace permanently removes it. Delete only traces you no longer need. You must stop the trace before deleting it.

You can also choose to pause or stop the trace instead of deleting it. For more information, see Starting, Pausing, and Stopping
Traces.

To delete a trace

Transact-SQL

Transact-SQL

Administering SQL Server (SQL Server 2000)

SQL Profiler Performance Considerations
Here are some hints and tips that can help you use SQL Profiler more effectively.

Running Too Many Traces

If an instance of Microsoft® SQL Server™ is running too slowly, SQL Profiler may have too many traces or a complex trace may
be running. Stop any running traces to see whether performance improves. If stopping traces improves performance, then
examine your traces carefully to make sure they are not tracing more information than necessary. Make sure you are not running
too many complex traces simultaneously.

Managing Large Trace Files

Large trace files can use significant amounts of disk space and can be slow and expensive to send across networks. Reduce the
size of a saved trace file by removing unwanted event types and/or data columns and applying filters to limit the trace to a
specific trace event criteria, such as ClientProcessID, SPID, or a set of values for Application Name. Save the trace file with the
same name or a new name.

Warning Saving a trace file with the same name overwrites the original file, causing any of the originally captured events or data
columns that were removed or filtered to be lost.

Administering SQL Server (SQL Server 2000)

Monitoring with System Monitor
If you are running the Microsoft® Windows® 2000 operating system, use System Monitor (Performance Monitor in Microsoft
Windows NT® 4.0) to measure the performance of Microsoft SQL Server™. You can view SQL Server objects and performance
counters as well as the behavior of other objects, such as processors, memory, cache, threads, and processes. Each of these
objects has an associated set of counters that measure device usage, queue lengths, delays, and other indicators of throughput
and internal congestion.

System Monitor makes it possible to obtain up-to-the-second SQL Server activity and performance statistics. With this graphical
tool, you can:

View data simultaneously from any number of computers.

View and change charts to reflect current activity, and show counter values that are updated at a user-defined frequency.

Export data from charts, logs, alert logs, and reports to spreadsheet or database applications for further manipulation and
printing.

Add system alerts that list an event in the alert log and can notify you by reverting to the Alert view or issuing a network
alert.

Run a predefined application the first time or every time a counter value goes over or under a user-defined value.

Create log files that contain data about various objects from different computers.

Append to one file selected sections from other existing log files to form a long-term archive.

View current-activity reports, or create reports from existing log files.

Save individual chart, alert, log, or report settings, or the entire workspace setup for reuse when needed.

Note You can use either the System Monitor or Performance Monitor to do these tasks.

For information about Windows NT 4.0 and Windows 2000 objects and counters, see the Windows NT 4.0 and Windows 2000
documentation.

Administering SQL Server (SQL Server 2000)

Monitoring Disk Activity
Monitoring Disk Activity

Microsoft® SQL Server™ uses Microsoft Windows NT® 4.0 or Windows® 2000 I/O calls to perform disk reads and writes. SQL
Server manages when and how disk I/O is performed, but the Windows operating system performs the underlying I/O
operations. The I/O subsystem includes the system bus, disk controller cards, disks, tape drives, CD-ROM drive, and many other
I/O devices. Disk I/O is frequently the cause of bottlenecks in a system.

Monitoring Disk I/O and Detecting Excess Paging

Two of the counters that can be monitored to determine disk activity include:

PhysicalDisk: % Disk Time

PhysicalDisk: Avg. Disk Queue Length

In System Monitor (Performance Monitor in Windows NT 4.0), the PhysicalDisk: % Disk Time counter monitors the percentage
of time that the disk is busy with read/write activity. If the PhysicalDisk: % Disk Time counter is high (more than 90 percent),
check the Physical Disk: Current Disk Queue Length counter to see how many system requests are waiting for disk access. The
number of waiting I/O requests should be sustained at no more than 1.5 to 2 times the number of spindles making up the
physical disk. Most disks have one spindle, although redundant array of inexpensive disks (RAID) devices usually have more. A
hardware RAID device appears as one physical disk in System Monitor; RAID devices created through software appear as multiple
instances.

Use the values of the Current Disk Queue Length and % Disk Time counters to detect bottlenecks within the disk subsystem. If
Current Disk Queue Length and % Disk Time counter values are consistently high, consider:

Using a faster disk drive.

Moving some files to an additional disk or server.

Adding additional disks to a RAID array, if one is being used.

If you are using a RAID device, the % Disk Time counter can indicate a value greater than 100 percent. If it does, use the
PhysicalDisk: Avg. Disk Queue Length counter to determine how many system requests, on average, are waiting for disk
access.

Applications and systems that are I/O-bound may keep the disk constantly active.

Monitor the Memory: Page Faults/sec counter to make sure that the disk activity is not caused by paging. In Windows NT 4.0 or
Windows 2000, paging is caused by:

Processes configured to use too much memory.

File system activity.

If you have more than one logical partition on the same hard disk, use the Logical Disk counters instead of the Physical Disk
counters. Looking at the logical disk counters will help you determine which files are heavily accessed. After you have found the
disks with high levels of read/write activity, look at the read-specific and write-specific counters (for example, Logical Disk: Disk
Write Bytes/sec) for the type of disk activity that is causing the load on each logical volume.

Isolating Disk Activity Created by SQL Server

To determine the amount of I/O generated by SQL Server components, examine the following performance areas:

Writing pages to disk

Reading pages from disk

The number of page reads and writes that SQL Server performs can be monitored using the SQL Server: Buffer Manager Page
Reads/sec and Page Writes/sec counters. If these values start to approach the capacity of the hardware I/O subsystem, try to
reduce the values by tuning your application or database to reduce I/O operations (such as index coverage, better indexes, or

normalization), increasing the I/O capacity of the hardware, or by adding memory.

Administering SQL Server (SQL Server 2000)

Monitoring CPU Usage
Monitoring CPU Usage

Monitor an instance of Microsoft® SQL Server™ periodically to determine if CPU usage rates are within normal ranges. A
continually high CPU usage rate may indicate the need for a CPU upgrade or the addition of multiple processors. Alternately, a
high CPU usage rate may indicate a poorly tuned or designed application. Optimizing the application can lower CPU utilization.

A good way to determine this is to use the Processor:% Processor Time counter in System Monitor (Performance Monitor in
Microsoft Windows NT® 4.0). This counter monitors the amount of time the CPU spends processing a nonidle thread. A
consistent state of 80 to 90 percent may indicate the need for a CPU upgrade or the addition of more processors. For
multiprocessor systems, a separate instance of this counter should be monitored for each processor. This value represents the
sum of processor time on a specific processor. To determine the average for all processors, use the System: %Total Processor
Time counter instead.

Optionally, you can also monitor:

Processor: % Privileged Time

This counter corresponds to the percentage of time the processor is spending executing Windows NT 4.0 or Microsoft
Windows® 2000 kernel commands such as processing SQL Server I/O requests. If this counter is consistently high when
the Physical Disk counters is high, consider a faster or more efficient disk subsystem.

Note Different disk controllers and drivers use different amounts of kernel processing time. Efficient controllers and drivers
use less privileged time, leaving more processing time available for user applications, increasing overall throughput.

Processor: %User Time

This counter corresponds to the percentage of time the processor is spending executing user processes such as SQL Server.

System: Processor Queue Length

This counter corresponds to the number of threads waiting for processor time. A processor bottleneck develops when
threads of a process require more processor cycles than are available. If more than a few processes are trying to utilize the
processor's time, you might need to install a faster processor or an additional processor if you are using a multiprocessor
system.

When you examine processor usage, consider the type of work the instance of SQL Server is performing. If SQL Server is
performing a lot of calculations, such as queries involving aggregates or memory-bound queries that require no disk I/O, 100
percent of the processor's time can be used. If this causes the performance of other applications to suffer, try changing the
workload (for example, by dedicating the computer to running the instance of SQL Server).

Values around 100 percent, where many client requests are executing, may indicate that processes are queuing up, waiting for
processor time, and causing a bottleneck. Resolve the problem by adding more powerful processors.

Administering SQL Server (SQL Server 2000)

Monitoring Memory Usage
Monitoring Memory Usage

Monitor an instance of Microsoft® SQL Server™ periodically to confirm that memory usage is within typical ranges and that no
processes, including SQL Server, are lacking or consuming too much memory.

To monitor for a low-memory condition, start with the following object counters:

Memory: Available Bytes

Memory: Pages/sec

The Available Bytes counter indicates how many bytes of memory are currently available for use by processes. The Pages/sec
counter indicates the number of pages that either were retrieved from disk due to hard page faults or written to disk to free space
in the working set due to page faults.

Low values for the Available Bytes counter can indicate that there is an overall shortage of memory on the computer or that an
application is not releasing memory. A high rate for the Pages/sec counter could indicate excessive paging. Monitor the
Memory: Page Faults/sec counter to make sure that the disk activity is not caused by paging.

A low rate of paging (and hence page faults) is typical, even if the computer has plenty of available memory. The Microsoft
Windows NT® Virtual Memory Manager (VMM) steals pages from SQL Server and other processes as it trims the working-set
sizes of those processes, causing page faults. To determine whether SQL Server rather than another process is causing excessive
paging, monitor the Process: Page Faults/sec counter for the SQL Server process instance.

For more information about resolving excessive paging, see the Windows NT 4.0 or Microsoft Windows® 2000 documentation.

Isolating Memory Used by SQL Server

By default, SQL Server changes its memory requirements dynamically, based on available system resources. If SQL Server needs
more memory, it queries the operating system to determine whether free physical memory is available and uses the available
memory. If SQL Server does not need the memory currently allocated to it, it releases the memory to the operating system.
However, the option to dynamically use memory can be overridden using the min server memory, max server memory, and
set working set size server configuration options. For more information, see Server Memory Options.

To monitor the amount of memory being used by SQL Server, examine the following performance counters:

Process: Working Set

SQL Server: Buffer Manager: Buffer Cache Hit Ratio

SQL Server: Buffer Manager: Total Pages

SQL Server: Memory Manager: Total Server Memory (KB)

The Working Set counter shows the amount of memory used by a process. If this number is consistently below the amount of
memory SQL Server is configured to use (set by the min server memory and max server memory server options), SQL Server
is configured for more memory than it needs. Otherwise, fix the size of the working set using the set working set size server
option. For more information, see set working set size Option.

The Buffer Cache Hit Ratio counter is application specific; however, a rate of 90 percent or higher is desirable. Add more
memory until the value is consistently greater than 90 percent, indicating that more than 90 percent of all requests for data were
satisfied from the data cache.

If the Total Server Memory (KB) counter is consistently high compared to the amount of physical memory in the computer, it
may indicate that more memory is required.

Administering SQL Server (SQL Server 2000)

Creating a SQL Server Database Alert
Creating a SQL Server Database Alert

Using System Monitor (Performance Monitor in Microsoft® Windows NT® 4.0), you can create an alert to be raised when a
threshold value for a System Monitor counter has been reached. In response to the alert, System Monitor can launch an
application, such as a custom application written to handle the alert condition. For example, you could create an alert that is raised
when the number of deadlocks exceeds a specific value.

Note Performance condition alerts are only available for the first 99 databases. Any databases created after the first 99
databases will not be included in the sysperfinfo system table, and using the sp_add_alert procedure will return an error.

Alerts also can be defined using SQL Server Enterprise Manager and SQL Server Agent. For more information, see Defining Alerts.

To set up a SQL Server database alert using System Monitor

Windows 2000

Windows

For more information about creating alerts using System Monitor, see the Microsoft Windows® 2000 documentation.

To set up a SQL Server database alert using Performance Monitor

Windows NT

Windows NT

For more information about creating alerts using Performance Monitor, see the Windows NT 4.0 documentation.

See Also

sp_add_alert

sysperfinfo

Administering SQL Server (SQL Server 2000)

System Monitor Scenarios
When monitoring Microsoft® SQL Server™ and the operating system to investigate performance-related issues, there are three
main areas on which to concentrate your initial efforts:

Disk activity.

Processor utilization.

Memory usage.

It can be useful to monitor Microsoft Windows NT® 4.0 or Microsoft Windows® 2000 and SQL Server counters at the same time
to determine any correlation between the performance of SQL Server and Windows NT 4.0 or Windows 2000. For example,
monitoring the Windows NT 4.0 or Windows 2000 disk I/O counters and the SQL Server Buffer Manager counters at the same
time can show how the whole system is behaving.

Monitoring a computer using System Monitor (Performance Monitor in Windows NT 4.0) can slightly impact the performance of
the computer. Therefore, either log the System Monitor data to another disk (or computer) so that it reduces the effect on the
computer being monitored, or run System Monitor remotely. Monitor only the counters in which you are interested. Monitoring
too many counters adds overhead to the monitoring process and will impact the computer being monitored, possibly affecting
the results.

Administering SQL Server (SQL Server 2000)

Running System Monitor
System Monitor (Performance Monitor in Microsoft® Windows NT® 4.0) collects information from Microsoft SQL Server™ using
remote procedure calls (RPC). Any user who has Microsoft Windows® 2000 permissions to run System Monitor can use it to
monitor SQL Server.

Note When using either System Monitor or Performance Monitor, you cannot connect to an instance of SQL Server running on
Microsoft Windows 98.

As with all performance monitoring tools, expect some performance overhead when monitoring SQL Server with System
Monitor. The actual overhead in any specific instance will depend on the hardware platform, the number of counters, and the
selected update interval. However, the integration of System Monitor with SQL Server is designed to minimize the impact.

To start System Monitor

Windows

Windows

To start Performance Monitor

Windows

Windows NT

Administering SQL Server (SQL Server 2000)

Creating Charts, Alerts, Logs, and Reports
System Monitor (Performance Monitor in Microsoft® Windows NT® 4.0) allows you to create charts, alerts, logs, and reports to
monitor an instance of Microsoft SQL Server™.

Charts

Charts can monitor the current performance of selected objects and counters (for example, the CPU usage or disk I/O). You can
add to a chart various combinations of System Monitor objects and counters, as well as Windows NT 4.0 or Microsoft Windows®
2000 objects and counters.

Each chart represents a subset of information you want to monitor. For example, one chart can track memory usage statistics and
a second chart can track disk I/O statistics.

Using a chart can be useful for:

Investigating why a computer or application is slow or inefficient.

Continually monitoring systems to find intermittent performance problems.

Discovering why you need to increase capacity.

Displaying a trend as a line chart.

Displaying a comparison as a histogram chart.

Charts are useful for short-term, real-time monitoring of a local or remote computer (for example, when you want to monitor an
event as it occurs).

Alerts

Using alerts, System Monitor can track specific events and notify you of these events as requested. An alert log can monitor the
current performance of selected counters and instances for objects in SQL Server. When a counter exceeds a given value, the log
records the date and time of the event. An event can also generate a network alert. You can have a specified program run the first
time or every time an event occurs. For example, an alert can send a network message to all system administrators that the
instance of SQL Server is getting low on disk space.

Logs

Logs allow you to record information on the current activity of selected objects and computers for later viewing and analysis. You
can collect data from multiple systems into a single log file. For example, you can create various logs to accumulate information
on the performance of selected objects on various computers for future analysis. You can save these selections under a file name
and reuse them when you want to create another log of similar information for comparison.

Log files provide a wealth of information for troubleshooting or planning. Whereas charts, alerts, and reports on current activity
provide instant feedback, log files enable you to track counters over a long period of time, thereby allowing you to examine
information more thoroughly and to document system performance.

Reports

Reports allow you to display constantly changing counter and instance values for selected objects. Values appear in columns for
each instance. You can adjust report intervals, print snapshots, and export data. Use reports when you need to display the raw
numbers.

For more information about charts, alerts, logs, and reports, or about Windows NT 4.0 or Windows 2000 objects and counters,
see the Windows 4.0 or Windows 2000 documentation.

Administering SQL Server (SQL Server 2000)

Using SQL Server Objects
Microsoft® SQL Server™ provides objects and counters that can be used by System Monitor (Performance Monitor in Microsoft
Windows NT® 4.0) to monitor activity in computers running an instance of SQL Server. An object is any Windows NT 4.0,
Microsoft Windows® 2000 or SQL Server resource, such as a SQL Server lock or Windows NT 4.0 or Windows 2000 process.
Each object contains one or more counters that determine various aspects of the objects to monitor. For example, the SQL Server
Locks object contains counters called Number of Deadlocks/sec or Lock Timeouts/sec.

Some objects have several instances if multiple resources of a given type exist on the computer. For example, the Processor
object type will have multiple instances if a system has multiple processors. The Databases object type has one instance for each
database on SQL Server. Some object types (for example, the Memory Manager object) have only one instance. If an object type
has multiple instances, you can add counters to track statistics for each instance, or in many cases, all instances at once.

Note Performance condition alerts are only available for the first 99 databases. Any databases created after the first 99
databases will not be included in the sysperfinfo system table, and using the sp_add_alert procedure will return an error.

By adding or removing counters to the chart and saving the chart settings, you can specify the SQL Server objects and counters
monitored when System Monitor is started.

SQL Server object Counter
SQL Server: Buffer Manager Buffer Cache Hit Ratio
SQL Server: General Statistics User Connections
SQL Server: Memory Manager Total Server Memory (KB)
SQL Server: SQL Statistics SQL Compilations/sec
SQL Server: Buffer Manager Page Reads/sec
SQL Server: Buffer Manager Page Writes/sec

You can configure System Monitor to display statistics from any SQL Server counter. In addition, you can set a threshold value for
any SQL Server counter and then generate an alert when a counter exceeds a threshold. For more information about setting an
alert, see Creating a SQL Server Database Alert.

Note SQL Server statistics are displayed only when an instance of SQL Server is running. If you stop and restart an instance of
SQL Server, the display of statistics is interrupted and then resumed automatically.

These are the SQL Server objects.

SQL Server object Description
SQL Server: Access Methods Searches through and measures allocation of

SQL Server database objects (for example, the
number of index searches or number of pages
that are allocated to indexes and data).

SQL Server: Backup Device Provides information about backup devices
used by backup and restore operations, such as
the throughput of the backup device.

SQL Server: Buffer Manager Provides information about the memory
buffers used by SQL Server, such as free
memory and buffer cache hit ratio.

SQL Server: Buffer Partition Object Provides information about how frequently
SQL Server requests and accesses free pages.

SQL Server: Cache Manager Provides information about the SQL Server
cache used to store objects such as stored
procedures, triggers, and query plans.

SQL Server: Databases Provides information about a SQL Server
database, such as the amount of free log space
available or the number of active transactions
in the database. There can be multiple instances
of this object.

SQL Server: General Statistics Provides information about general server-
wide activity, such as the number of users who
are connected to an instance of SQL Server.

SQL Server: Latches Provides information about the latches on
internal resources, such as database pages, that
are used by SQL Server.

SQL Server: Locks Provides information about the individual lock
requests made by SQL Server, such as lock
time-outs and deadlocks. There can be multiple
instances of this object.

SQL Server: Memory Manager Provides information about SQL Server
memory usage, such as the total number of
lock structures currently allocated.

SQL Server: Replication Agents Provides information about the SQL Server
replication agents currently running.

SQL Server: Replication Dist. Measures the number of commands and
transactions read from the distribution
database and delivered to the Subscriber
databases by the Distribution Agent.

SQL Server: Replication Logreader Measures the number of commands and
transactions read from the published databases
and delivered to the distribution database by
the Log Reader Agent.

SQL Server: Replication Merge Provides information about SQL Server merge
replication, such as errors generated or the
number of replicated rows that are merged
from the Subscriber to the Publisher.

SQL Server: Replication Snapshot Provides information about SQL Server
snapshot replication, such as the number of
rows that are bulk copied from the publishing
database.

SQL Server: SQL Statistics Provides information about aspects of SQL
queries, such as the number of batches of
Transact-SQL statements received by SQL
Server.

SQL Server: User Settable Object Performs custom monitoring. Each counter can
be a custom stored procedure or any Transact-
SQL statement that returns a value to be
monitored.

Administering SQL Server (SQL Server 2000)

SQL Server: Access Methods Object
SQL Server: Access Methods Object

The Access Methods object in Microsoft® SQL Server™ provides counters to monitor how the logical pages within the database
are accessed. Physical access to the database pages on disk is monitored using the Buffer Manager counters. Monitoring the
methods used to access database pages can help you to determine whether query performance can be improved by adding or
modifying indexes or by rewriting queries. The Access Methods counters can also be used to monitor the amount of data,
indexes, and free space within the database, thereby indicating data volume and fragmentation (excessive fragmentation can
impair performance).

These are the SQL Server Access Methods counters.

SQL Server Access Methods
counters

Description

Extent Deallocations/sec Number of extents deallocated per second from
database objects used for storing index or data
records.

Extents Allocated/sec Number of extents allocated per second to
database objects used for storing index or data
records.

Forwarded Records/sec Number of records per second fetched through
forwarded record pointers.

FreeSpace Page Fetches/sec Number of pages returned per second by free
space scans used to satisfy requests to insert
record fragments.

FreeSpace Scans/sec Number of scans per second that were initiated
to search for free space in which to insert a new
record fragment.

Full Scans/sec Number of unrestricted full scans per second.
These can be either base-table or full-index
scans.

Index Searches/sec Number of index searches per second. These
are used to start range scans and single index
record fetches and to reposition an index.

Mixed Page Allocations/sec Number of pages allocated per second from
mixed extents. These are used for storing the
first eight pages that are allocated to an index
or table.

Page Deallocations/sec Number of pages deallocated per second from
database objects used for storing index or data
records.

Page Splits/sec Number of page splits per second that occur as
the result of overflowing index pages.

Pages Allocated/sec Number of pages allocated per second to
database objects used for storing index or data
records.

Probe Scans/sec Number of probe scans per second. These are
used to find rows in an index or base table
directly.

Range Scans/sec Number of qualified range scans through
indexes per second.

Scan Point Revalidations/sec Number of times per second that the scan point
had to be revalidated to continue the scan.

Skipped Ghosted Records/sec Number of ghosted records per second skipped
during scans.

Table Lock Escalations/sec Number of times locks on a table were
escalated.

Workfiles Created/sec Number of work files created per second.

Worktables Created/sec Number of work tables created per second.
Worktables From Cache Ratio Percentage of work tables created where the

initial pages were immediately available in the
work table cache.

See Also

Indexes

Pages and Extents

Administering SQL Server (SQL Server 2000)

SQL Server: Backup Device Object
SQL Server: Backup Device Object

The Backup Device object provides counters to monitor Microsoft® SQL Server™ backup devices used for backup and restore
operations. Monitor backup devices when you want to determine the throughput or the progress and performance of your
backup and restore operations on a per device basis. To monitor the throughput of the entire database backup or restore
operation, use the Backup/Restore Throughput/sec counter of the SQL Server Databases object. For more information, see
SQL Server: Databases Object.

This is the SQL Server Backup Device counter.

SQL Server Backup Device counters Description
Device Throughput Bytes/sec Throughput of read and write operations (in

bytes per second) for a backup device used
when backing up or restoring databases.
This counter exists only while the backup or
restore operation is executing.

See Also

Backup Devices

Administering SQL Server (SQL Server 2000)

SQL Server: Buffer Manager Object
SQL Server: Buffer Manager Object

The Buffer Manager object provides counters to monitor how Microsoft® SQL Server™ uses:

Memory to store data pages, internal data structures, and the procedure cache.

Counters to monitor the physical I/O as SQL Server reads database pages from and writes database pages to disk.

Monitoring the memory and the counters used by SQL Server helps you determine:

If bottlenecks exist due to a lack of available physical memory for storing frequently accessed data in cache, in which case
SQL Server must retrieve the data from disk.

If query performance can be improved by adding more memory or by making more memory available to the data cache or
SQL Server internal structures.

How often SQL Server needs to read data from disk. Compared to other operations, such as memory access, physical I/O
consumes a lot of time. Minimizing physical I/O can improve query performance.

You can also monitor Microsoft Windows® 2000 Address Windowing Extensions (AWE) activity in SQL Server with the AWE
counters. For example, you can make sure that SQL Server has enough memory allocated for AWE to run properly. For more
information, see Using AWE Memory on Windows 2000 or awe enabled Option.

These are the SQL Server Buffer Manager counters.

SQL Server Buffer Manager
counters

Description

AWE Lookup Maps/sec Number of times that a database page was
requested by the server, found in the buffer
pool, and mapped. When it is mapped, it is
made a part of the server's virtual address
space.

AWE Stolen Maps/sec Number of times that a buffer was taken from
the free list and mapped.

AWE Unmap Call/Sec Number of calls to unmap buffers. When a
buffer is unmapped, it is excluded from the
virtual server address space. One or more
buffers may be unmapped on each call.

AWE Unmap Pages/Sec Number of SQL Server buffers that are
unmapped.

AWE Write Maps/Sec Number of times that it is necessary to map in
a dirty buffer so it can be written to disk.

Buffer Cache Hit Ratio Percentage of pages found in the buffer cache
without having to read from disk. The ratio is
the total number of cache hits divided by the
total number of cache lookups since an
instance of SQL Server was started. After a
long period of time, the ratio moves very little.
Because reading from the cache is much less
expensive than reading from disk, you want
this ratio to be high. Generally, you can
increase the buffer cache hit ratio by
increasing the amount of memory available to
SQL Server.

Checkpoint pages/sec Number of pages flushed to disk per second
by a checkpoint or other operation that require
all dirty pages to be flushed.

Database pages Number of pages in the buffer pool with
database content.

Free list stall/sec Number of requests that had to wait for a free
page.

Free pages Total number of pages on all free lists.
Lazy Writes/sec Number of buffers written per second by the

buffer manager's lazy writer. The lazy writer is
a system process that flushes out batches of
dirty, aged buffers (buffers that contain
changes that must be written back to disk
before the buffer can be reused for a different
page) and make them available to user
processes. The lazy writer eliminates the need
to perform frequent checkpoints in order to
create available buffers.

Page life expectancy Number of seconds a page will stay in the
buffer pool without references.

Page lookups/sec Number of requests to find a page in the
buffer pool.

Page Reads/sec Number of physical database page reads that
are issued per second. This statistic displays
the total number of physical page reads across
all databases. Because physical I/O is
expensive, you may be able to minimize the
cost, either by using a larger data cache,
intelligent indexes, and more efficient queries,
or by changing the database design.

Page Writes/sec Number of physical database page writes
issued.

Procedure cache pages Number of pages used to store compiled
queries.

Readahead Pages/sec Number of pages read in anticipation of use.
Reserved Pages Number of buffer pool reserved pages.
Stolen Pages Number of pages used for miscellaneous

server purposes (including procedure cache).
Target Pages Ideal number of pages in the buffer pool.
Total Pages Number of pages in the buffer pool (includes

database, free, and stolen pages).

See Also

Pages and Extents

Server Memory Options

SQL Server: Cache Manager Object

Administering SQL Server (SQL Server 2000)

SQL Server: Buffer Partition Object
SQL Server: Buffer Partition Object

The Buffer Partition object provides counters to monitor how Microsoft® SQL Server™ uses free pages.

SQL Server Buffer Partition counters Description
Free list empty/sec Number of times a free page was requested

and none was available.
Free list requests/sec Number of times a free page was requested.
Free pages Total number of pages on all free lists.

Administering SQL Server (SQL Server 2000)

SQL Server: Cache Manager Object
SQL Server: Cache Manager Object

The Cache Manager object provides counters to monitor how Microsoft® SQL Server™ uses memory to store objects such as
stored procedures, ad hoc and prepared Transact-SQL statements, and triggers. Multiple instances of the Cache Manager object
can be monitored at the same time, with each instance representing a different type of plan to monitor.

Cache Manager instance Description
Ad hoc SQL Plans Query plans produced from an ad hoc Transact-SQL

query, including auto-parameterized queries. SQL
Server caches the plans for ad hoc SQL statements for
later reuse if the identical Transact-SQL statement is
later executed.

Misc. Normalized Trees Normalized trees for views, rules, computed columns,
and check constraints.

Prepared SQL Plans Query plans that correspond to Transact-SQL
statements prepared using sp_prepare,
sp_cursorprepare, or auto-parameterization. User-
parameterized queries (even if not explicitly prepared)
are also monitored as Prepared SQL Plans.

Procedure Plans Query plans generated by creating a stored procedure.
Replication Procedure
Plans

Query plans of a replication system stored procedure.

Trigger Plans Query plans generated by creating a trigger.

These are the SQL Server Cache Manager counters.

SQL Server Cache Manager counters Description
Cache Hit Ratio Ratio between cache hits and lookups.
Cache Object Counts Number of cache objects in the cache.
Cache Pages Number of 8-kilobyte (KB) pages used by

cache objects.
Cache Use Counts/sec Times each type of cache object has been

used.

For more information about caching query plans, see Execution Plan Caching and Reuse.

See Also

Server Memory Options

SQL Server: Buffer Manager Object

Administering SQL Server (SQL Server 2000)

SQL Server: Databases Object
SQL Server: Databases Object

The Databases object in Microsoft® SQL Server™ provides counters to monitor bulk copy operations, backup and restore
throughput, and transaction log activities. Monitor transactions and the transaction log to determine how much user activity is
occurring in the database and how full the transaction log is becoming. The amount of user activity can determine the
performance of the database and affect log size, locking, and replication. Monitoring low-level log activity to gauge user activity
and resource usage can help you to identify performance bottlenecks.

Multiple instances of the Databases object, each representing a single database, can be monitored at the same time.

These are the SQL Server Databases counters.

SQL Server Databases counters Description
Active Transactions Number of active transactions for the

database.
Backup/Restore Throughput/sec Read/write throughput for backup and

restore operations of a database per second.
For example, you can measure how the
performance of the database backup
operation changes when more backup
devices are used in parallel or when faster
devices are used. Throughput of a database
backup or restore operation allows you to
determine the progress and performance of
your backup and restore operations.

Bulk Copy Rows/sec Number of rows bulk copied per second.
Bulk Copy Throughput/sec Amount of data bulk copied (in kilobytes)

per second.
Data File(s) Size (KB) Cumulative size (in kilobytes) of all the data

files in the database including any automatic
growth. Monitoring this counter is useful,
for example, for determining the correct size
of tempdb.

DBCC Logical Scan Bytes/sec Number of logical read scan bytes per
second for database consistency checker
(DBCC) statements.

Log Bytes Flushed/sec Total number of log bytes flushed.
Log Cache Hit Ratio Percentage of log cache reads satisfied from

the log cache.
Log Cache Reads/sec Reads performed per second through the

log manager cache.
Log File(s) Size (KB) Cumulative size (in kilobytes) of all the

transaction log files in the database.
Log File(s) Used Size (KB) The cumulative used size of all the log files

in the database.
Log Flush Wait Time Total wait time (in milliseconds) to flush the

log.
Log Flush Waits/sec Number of commits per second waiting for

the log flush.
Log Flushes/sec Number of log flushes per second.
Log Growths Total number of times the transaction log

for the database has been expanded.
Log Shrinks Total number of times the transaction log

for the database has been shrunk.
Log Truncations Total number of times the transaction log

for the database has been truncated.
Percent Log Used Percentage of space in the log that is in use.

Repl. Pending Xacts Number of transactions in the transaction
log of the publication database marked for
replication, but not yet delivered to the
distribution database.

Repl. Trans. Rate Number of transactions per second read out
of the transaction log of the publication
database and delivered to the distribution
database.

Shrink Data Movement Bytes/sec Amount of data being moved per second by
autoshrink operations, or DBCC
SHRINKDATABASE or DBCC SHRINKFILE
statements.

Transactions/sec Number of transactions started for the
database per second.

See Also

Transaction Logs

Transactions

Administering SQL Server (SQL Server 2000)

SQL Server: General Statistics Object
SQL Server: General Statistics Object

The General Statistics object in Microsoft® SQL Server™ provides counters to monitor general server-wide activity, such as the
number of current connections and the number of users connecting and disconnecting per second from computers running an
instance of SQL Server. This can be useful when you are working on large online transaction processing (OLTP) type systems
where there are many clients connecting and disconnecting from an instance of SQL Server.

These are the SQL Server General Statistics counters.

SQL Server General Statistics
counters

Description

Logins/sec Total number of logins started per second.
Logouts/sec Total number of logout operations started

per second.
User Connections Number of user connections. Because each

user connection consumes some memory,
configuring overly high numbers of user
connections could affect throughput. Set
user connections to the maximum expected
number of concurrent users.

Administering SQL Server (SQL Server 2000)

SQL Server: Latches Object
SQL Server: Latches Object

The Latches object in Microsoft® SQL Server™ provides counters to monitor internal SQL Server resource locks called latches.
Monitoring the latches to determine user activity and resource usage can help you to identify performance bottlenecks.

These are the SQL Server Latches counters.

SQL Server Latches counters Description
Average Latch Wait Time (ms) Average latch wait time (in milliseconds) for

latch requests that had to wait.
Latch Waits/sec Number of latch requests that could not be

granted immediately.
Total Latch Wait Time (ms) Total latch wait time (in milliseconds) for latch

requests in the last second.

See Also

Latching

Administering SQL Server (SQL Server 2000)

SQL Server: Locks Object
SQL Server: Locks Object

The Locks object in Microsoft® SQL Server™ provides information about SQL Server locks on individual resource types. Locks
are held on SQL Server resources, such as rows read or modified during a transaction, to prevent concurrent use of resources by
multiple transactions. For example, if an exclusive (X) lock is held on a row within a table by a transaction, no other transaction can
modify that row until the lock is released. Minimizing locks increases concurrency, which can improve performance. Multiple
instances of the Locks object can be monitored at the same time, with each instance representing a lock on a resource type.

SQL Server can lock these resources.

Item Description
Database Database.
Extent Contiguous group of eight data pages or index pages.
Key Row lock within an index.
Page 8-kilobyte (KB) data page or index page.
RID Row ID. Used to lock a single row within a table.
Table Entire table, including all data and indexes.

These are the SQL Server Locks counters.

SQL Server Locks counters Description
Average Wait Time (ms) Average amount of wait time (in milliseconds) for

each lock request that resulted in a wait.
Lock Requests/sec Number of new locks and lock conversions per

second requested from the lock manager.
Lock Timeouts/sec Number of lock requests per second that timed

out, including internal requests for NOWAIT
locks.

Lock Wait Time (ms) Total wait time (in milliseconds) for locks in the
last second.

Lock Waits/sec Number of lock requests per second that
required the caller to wait.

Number of Deadlocks/sec Number of lock requests per second that resulted
in a deadlock.

See Also

Understanding Locking in SQL Server

Administering SQL Server (SQL Server 2000)

SQL Server: Memory Manager Object
SQL Server: Memory Manager Object

The Memory Manager object in Microsoft® SQL Server™ provides counters to monitor overall server memory usage.
Monitoring overall server memory usage to gauge user activity and resource usage can help you to identify performance
bottlenecks. Monitoring the memory used by an instance of SQL Server can help determine:

If bottlenecks exist due to a lack of available physical memory for storing frequently accessed data in cache. If so, SQL Server
must retrieve the data from disk.

If query performance can be improved by adding more memory or by making more memory available to the data cache or
SQL Server internal structures.

These are the SQL Server Memory Manager counters.

SQL Server Memory Manager
counters

Description

Connection Memory (KB) Total amount of dynamic memory the server
is using for maintaining connections.

Granted Workspace Memory (KB) Total amount of memory currently granted
to executing processes such as hash, sort,
bulk copy, and index creation operations.

Lock Blocks Current number of lock blocks in use on the
server (refreshed periodically). A lock block
represents an individual locked resource,
such as a table, page, or row.

Lock Blocks Allocated Current number of allocated lock blocks. At
server startup, the number of allocated lock
blocks plus the number of allocated lock
owner blocks depends on the SQL Server
Locks configuration option. If more lock
blocks are needed, the value increases.

Lock Memory (KB) Total amount of dynamic memory the server
is using for locks.

Lock Owner Blocks Number of lock owner blocks currently in
use on the server (refreshed periodically). A
lock owner block represents the ownership
of a lock on an object by an individual thread.
Therefore, if three threads each have a
shared (S) lock on a page, there will be three
lock owner blocks.

Lock Owner Blocks Allocated Current number of allocated lock owner
blocks. At server startup, the number of
allocated lock owner blocks and the number
of allocated lock blocks depend on the SQL
Server Locks configuration option. If more
lock owner blocks are needed, the value
increases dynamically.

Maximum Workspace Memory
(KB)

Maximum amount of memory available for
executing processes such as hash, sort, bulk
copy, and index creation operations.

Memory Grants Outstanding Total number of processes per second that
have successfully acquired a workspace
memory grant.

Memory Grants Pending Total number of processes per second
waiting for a workspace memory grant.

Optimizer Memory (KB) Total amount of dynamic memory the server
is using for query optimization.

SQL Cache Memory (KB) Total amount of dynamic memory the server
is using for the dynamic SQL cache.

Target Server Memory (KB) Total amount of dynamic memory the server
can consume.

Total Server Memory (KB) Total amount of dynamic memory (in
kilobytes) that the server is using currently.

See Also

Understanding Locking in SQL Server

Administering SQL Server (SQL Server 2000)

SQL Server: Replication Agents Object
SQL Server: Replication Agents Object

The Replication Agents object in Microsoft® SQL Server™ provides counters to monitor the SQL Server replication agents that
are running currently. Monitoring the number of running Distribution and Merge Agents is useful to determine the number of
Subscribers to which published databases are replicating. Multiple instances of the Replication Agents object can be monitored
at the same time, with each instance representing a single replication agent (for example, Log Reader; Snapshot; Distribution; and
Merge).

This is the SQL Server Replication Agents counter.

SQL Server Replication Agents
counters

Description

Running Number of instances of a given replication
agent running currently.

Administering SQL Server (SQL Server 2000)

SQL Server: Replication Distribution Object
SQL Server: Replication Distribution Object

The Replication Dist. object in Microsoft® SQL Server™ provides counters to monitor the number of commands and
transactions read from the distribution database and delivered to the subscriber databases by the SQL Server Distribution Agent.

These are the SQL Server Replication Dist. counters.

SQL Server Replication Dist.
counters

Description

Dist:Delivered Cmds/sec Number of distribution commands delivered
per second to the Subscriber.

Dist:Delivered Trans/sec Number of distribution transactions delivered
per second to the Subscriber.

Dist:Delivery Latency Distribution latency (in milliseconds). The time
it takes for transactions to be delivered to the
Distributor and applied at the Subscriber.

See Also

Replication Distribution Agent Utility

Administering SQL Server (SQL Server 2000)

SQL Server: Replication Logreader Object
SQL Server: Replication Logreader Object

The Replication Logreader object in Microsoft® SQL Server™ provides counters to monitor the Log Reader Agent.

These are the SQL Server Replication Logreader counters.

SQL Server Replication Logreader
counters

Description

Logreader:Delivered Cmds/sec Number of Log Reader Agent
commands delivered per second to the
Distributor.

Logreader:Delivered Trans/sec Number of Log Reader Agent
transactions delivered per second to the
Distributor.

Logreader:Delivery Latency Current amount of time, in milliseconds,
elapsed from when transactions are
applied at the Publisher to when they are
delivered to the Distributor.

See Also

Replication Log Reader Agent Utility

Administering SQL Server (SQL Server 2000)

SQL Server: Replication Merge Object
SQL Server: Replication Merge Object

The Replication Merge object in Microsoft® SQL Server™ provides counters to monitor each SQL Server merge execution that
moves data changes up from a merge replication Subscriber to the Publisher, and down from the Publisher to the Subscriber.

These are the SQL Server Replication Merge counters.

SQL Server Replication Merge
counters

Description

Conflicts/sec Number of conflicts per second that
occurred in the Publisher/Subscriber upload
and download. This value should always be
zero. A nonzero value may require notifying
the losing side, overriding the conflict, and
so on.

Downloaded Changes/sec Number of rows per second merged
(inserted, updated, and deleted) from the
Publisher to the Subscriber.

Uploaded Changes/sec Number of rows per second merged
(inserted, updated, and deleted) from the
Subscriber to the Publisher.

Administering SQL Server (SQL Server 2000)

SQL Server: Replication Snapshot Object
SQL Server: Replication Snapshot Object

The Replication Snapshot object in Microsoft® SQL Server™ provides counters to monitor SQL Server snapshot replication.

These are the SQL Server Replication Snapshot counters.

SQL Server Replication Snapshot
counters

Description

Snapshot:Delivered Cmds/sec Number of commands delivered per
second to the Distributor.

Snapshot:Delivered Trans/sec Number of transactions delivered per
second to the Distributor.

See Also

Replication Snapshot Agent Utility

Administering SQL Server (SQL Server 2000)

SQL Server: SQL Statistics Object
SQL Server: SQL Statistics Object

The SQL Statistics object in Microsoft® SQL Server™ provides counters to monitor compilation and the type of requests sent to
an instance of SQL Server. Monitoring the number of query compilations and recompilations and the number of batches received
by an instance of SQL Server gives you an indication of how quickly SQL Server is processing user queries and how effectively the
query optimizer is processing the queries.

Compilation is a significant part of a query's turnaround time. The objective of the cache is to reduce compilation by storing
compiled queries for later reuse, thus eliminating the need to recompile queries when later executed. However, each unique query
must be compiled at least once. Query recompilations can be caused by the following factors:

Schema changes, including base schema changes such as adding columns or indexes to a table, or statistics schema
changes such as inserting or deleting a significant number of rows from a table.

Environment (SET statement) changes. Changes in session settings such as ANSI_PADDING or ANSI_NULLS can cause a
query to be recompiled.

These are the SQL Statistics counters.

SQL Server SQL Statistics
counters

Description

Auto-Param Attempts/sec Number of auto-parameterization attempts per
second. Total should be the sum of the failed,
safe, and unsafe auto-parameterizations. Auto-
parameterization occurs when an instance of
SQL Server attempts to reuse a cached plan for
a previously executed query that is similar to,
but not the same as, the current query. For more
information, see Auto-parameterization.

Batch Requests/sec Number of Transact-SQL command batches
received per second. This statistic is affected by
all constraints (such as I/O, number of users,
cache size, complexity of requests, and so on).
High batch requests mean good throughput. For
more information, see Batch Processing.

Failed Auto-Params/sec Number of failed auto-parameterization
attempts per second. This should be small.

Safe Auto-Params/sec Number of safe auto-parameterization attempts
per second.

SQL Compilations/sec Number of SQL compilations per second.
Indicates the number of times the compile code
path is entered. Includes compiles due to
recompiles. After SQL Server user activity is
stable, this value reaches a steady state.

SQL Re-Compilations/sec Number of SQL recompiles per second. Counts
the number of times recompiles are triggered. In
general, you want the recompiles to be low.

Unsafe Auto-Params/sec Number of unsafe auto-parameterization
attempts per second. The table has
characteristics that prevent the cached plan from
being shared. These are designated as unsafe.

See Also

SQL Server: Cache Manager Object

Administering SQL Server (SQL Server 2000)

SQL Server: User Settable Object
SQL Server: User Settable Object

The User Settable object in Microsoft® SQL Server™ allows you to create custom counter instances. Use custom counter
instances to monitor aspects of the server not monitored by existing counters, such as components unique to your SQL Server
database (for example, the number of customer orders logged or the product inventory).

The SQL Server User Settable object contains 10 instances of the query counter: User counter 1 through User counter 10.
These counters map to the SQL Server stored procedures sp_user_counter1 through sp_user_counter10. As these stored
procedures are executed by user applications, the values set by the stored procedures are displayed in System Monitor
(Performance Monitor in Microsoft Windows NT® 4.0). A counter can monitor any single integer value (for example, a stored
procedure that counts how many orders for a particular product have occurred in one day).

Note The user counter stored procedures are not polled automatically by System Monitor. They must be explicitly executed by a
user application for the counter values to be updated. Use a trigger to automatically update the value of the counter. For example,
to create a counter that monitors the number of rows in a table, create an INSERT and DELETE trigger on the table that executes:

SELECT COUNT(*) FROM table

Whenever the trigger is fired because of an INSERT or DELETE operation occurring on the table, the System Monitor counter is
automatically updated.

This is the SQL Server User Settable counter.

SQL Server User Settable
counters

Description

Query Defined by the user.

To make use of the user counter stored procedures, execute them from your own application with a single integer parameter
representing the new value for the counter. For example, to set User counter 1 to the value 10, execute this Transact-SQL
statement:

EXECUTE sp_user_counter1 10

The user counter stored procedures can be called from anywhere other stored procedures can be called, such as your own stored
procedures. For example, you can create the following stored procedure to count the number of connections and attempted
connections made since an instance of SQL Server was started:

DROP PROC My_Proc
GO
CREATE PROC My_Proc
AS
 EXECUTE sp_user_counter1 @@CONNECTIONS
GO

The @@CONNECTIONS function returns the number of connections or attempted connections since an instance of SQL Server
was started. This value is passed to the sp_user_counter1 stored procedure as the parameter.

Important Make the queries defined in the user counter stored procedures as simple as possible. Memory-intensive queries that
perform substantial sort or hash operations or queries that perform large amounts of I/O are expensive to execute and can impact
performance.

Administering SQL Server (SQL Server 2000)

Monitoring with SQL Server Enterprise Manager
Use SQL Server Enterprise Manager to view the following information about current Microsoft® SQL Server™ activity:

Current user connections and locks.

Process number, status, locks, and commands that active users are running.

Objects that are locked, and the kinds of locks that are present.

If you are a system administrator, you can view additional information about a selected process, send a message to a user who is
connected currently to an instance of SQL Server, or terminate a selected process.

Use the current activity window in SQL Server Enterprise Manager to perform ad hoc monitoring of an instance of SQL Server.
This allows you to determine, at a glance, the volume and general types of activity on the system, for example:

Current blocked and blocking transactions.

Currently connected users on an instance of SQL Server and the last statement executed.

Locks that are in effect.

SQL Server activity can be monitored using the sp_who and sp_lock system stored procedures.

Here are icons and descriptions of the icons in the current activity window.

Icon Description
Current Activity gives process and lock information at a
designated time. This information is a snapshot taken every time
you open or refresh Current Activity. The time of the snapshot is
displayed in the left pane. Current Activity provides information
about the processes (connections) running, the locks a certain
connection is holding or trying to acquire, and the current and
waiting locks on databases and tables.
Process Info provides information about the current connections
and activity in a system. A connection can be in three states:
running, sleeping, or background. The database context is also
displayed. There are some server processes, which are started
before the master database is brought online, that have no
database context.
Running process that is waiting for a lock or user input.

Sleeping process that is waiting for a lock or user input.

Background process that wakes up periodically to execute work.
SPID 2 (Lock Monitor), 3 (Lazy Writer) and 6 are background
processes.
Process (SPID) that is blocking one or more connections.

Process (SPID) that is blocked by another connection.

Process that is not blocking or being blocked.

Process that is not blocking or being blocked.

Table lock. If an index is involved, the index name is listed in the
index column. The resource locator of the locked part is displayed
in the resource column.
Database lock.

Here are descriptions of the process information in the Current Activity window.

Item Description

Process ID SQL Server Process ID.
Context ID Execution context ID used to uniquely identify the subthreads

operating on behalf of a single process.
User ID of the user who executed the command.
Database Database currently being used by the process.
Status Status of the process (for example, running, sleeping,

runnable, and background).
Open Transactions Number of open transactions for the process.
Command Command currently being executed.
Application Name of the application program being used by the process.
Wait Time Current wait time in milliseconds. When the process is not

waiting, the wait time is zero.
Wait Type Indicates the name of the last or current wait type.
Wait Resources Textual representation of a lock resource.
CPU Cumulative CPU time for the process. The entry is updated

only for processes performed on behalf of Transact-SQL
statements executed when SET STATISTICS TIME ON has
been activated in the same session. The CPU column is
updated when a query has been executed with SET
STATISTICS TIME ON. When zero is returned, SET STATISTICS
TIME is OFF.

Physical IO Cumulative disk reads and writes for the process.
Memory Usage Number of pages in the procedure cache that are currently

allocated to this process. A negative number indicates that
the process is freeing memory allocated by another process.

Login Time Time at which a client process logged into the server. For
system processes, the time at which SQL Server startup
occurred is displayed.

Last Batch Last time a client process executed a remote stored
procedure call or an EXECUTE statement. For system
processes, the time at which SQL Server startup occurred is
displayed.

Host Name of the workstation.
Network Library Column in which the client's network library is stored. Every

client process comes in on a network connection. Network
connections have a network library associated with them that
allows them to make the connection. For more information,
see Client and Server Net-Libraries.

Network Address Assigned unique identifier for the network interface card on
each user's workstation. When the user logs in, this identifier
is inserted in the Network Address column.

Blocked By Process ID (SPID) of a blocking process.
Blocking Process ID (SPID) of processes that are blocked.

Here are descriptions of the lock information in the Current Activity window.

Item Type Description
spid spid Server process ID of the current user process.
ecid ecid Execution context ID. Represents the ID of a given

thread associated with a specific spid.
Lock type RID Row identifier. Used to lock a single row

individually within a table.
 KEY Key; a row lock within an index. Used to protect key

ranges in serializable transactions.
 PAG Data or index page.
 EXT Contiguous group of eight data pages or index

pages.

 TAB Entire table, including all data and indexes.
 DB Database.
Lock mode Shared (S) Used for operations that do not change or update

data (read-only operations), such as a SELECT
statement.

 Update (U) Used on resources that can be updated. Prevents a
common form of deadlock that occurs when
multiple sessions are reading, locking, and then
potentially updating resources later.

 Exclusive (X) Used for data modification operations, such as
UPDATE, INSERT, or DELETE. Ensures that multiple
updates cannot be made to the same resource at
the same time.

 Intent Used to establish a lock hierarchy.
 Schema Used when an operation dependent on the schema

of a table is executing. There are two types of
schema locks: schema stability (Sch-S) and schema
modification (Sch-M).

 Bulk update (BU) Used when bulk copying data into a table and the
TABLOCK hint is specified.

 RangeS_S Shared range, shared resource lock; serializable
range scan.

 RangeS_U Shared range, update resource lock; serializable
update scan.

 RangeI_N Insert range, null resource lock. Used to test ranges
before inserting a new key into an index.

 RangeX_X Exclusive range, exclusive resource lock. Used
when updating a key in a range.

Status GRANT Lock was obtained.
 WAIT Lock is blocked by another process.
 CNVT Lock is being converted to another lock. A lock

being converted to another lock is held in one
mode but is waiting to acquire a stronger lock
mode (for example, update to exclusive). When
diagnosing blocking issues, a CNVT can be
considered similar to a WAIT.

Owner Owner The lock owner: xact (transaction), sess (session), or
curs (cursor).

Index Index The index associated with the resource. If the index
is clustered, you see the table name instead.

Resource RID Row identifier of the locked row within the table.
The row is identified by a fileid:page:rid
combination, where rid is the row identifier on the
page.

 KEY Hexadecimal number used internally by SQL
Server.

 PAG Page number. The page is identified by a
fileid:page combination, where fileid is the fileid in
the sysfiles table, and page is the logical page
number within that file.

 EXT First page number in the extent being locked. The
page is identified by a fileid:page combination.

 TAB No information is provided because the ObjId
column already contains the object ID of the table.

 DB No information is provided because the dbid
column already contains the database ID of the
database.

To view current server activity

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the last command batch for a connection

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the current locks

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To send a message to a currently connected user

Enterprise Manager

Enterprise Manager

To terminate a process

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Administering SQL Server (SQL Server 2000)

Monitoring the Error Logs
Microsoft® SQL Server™ logs events (although only certain system events and user-defined events) to the SQL Server error log
and the Microsoft Windows® application log. Use the information in the error log to troubleshoot problems related to SQL
Server.

The Windows application logs provide an overall picture of events that occur on the Windows NT® 4.0 and Windows 2000
systems, as well as events in SQL Server and SQL Server Agent. Use Event Viewer to view the Windows application log and to
filter the information. For example, you can filter events, such as information, warning, error, success audit, and failure audit.

Both logs automatically timestamp all recorded events.

Comparing Error and Application Log Output

You can use both the SQL Server error log and the Windows application log to identify the cause of problems. For example, while
monitoring the SQL Server error log, you may detect a certain set of messages for which you do not know the cause. By
comparing the dates and times for events between these logs, you can narrow the list of probable causes.

Administering SQL Server (SQL Server 2000)

Viewing the SQL Server Error Log
View the Microsoft® SQL Server™ error log to ensure that processes have completed successfully (for example, backup and
restore operations, batch commands, or other scripts and processes). This can be helpful to detect any current or potential
problem areas, including automatic recovery messages (particularly if an instance of SQL Server has been stopped and restarted),
kernel messages, and so on.

View the SQL Server error log by using SQL Server Enterprise Manager or any text editor. By default, the error log is located at
Program Files\Microsoft SQL Server\Mssql\Log\Errorlog.

A new error log is created each time an instance of SQL Server is started, although the sp_cycle_errorlog system stored
procedure can be used to cycle the error log files without having to restart the instance of SQL Server. Typically, SQL Server
retains backups of the previous six logs and gives the most recent log backup the extension .1, the second most recent the
extension .2, and so on. The current error log has no extension.

To view the SQL Server error log

Enterprise Manager

Enterprise Manager

SQL-DMO

To cycle the SQL Server error log

Transact-SQL

Administering SQL Server (SQL Server 2000)

Viewing the Windows Application Log
When Microsoft® SQL Server™ is configured to use the Microsoft Windows® application log, each SQL Server session writes
new events to that log. Unlike the SQL Server error log, a new application log is not created each time you start an instance of
SQL Server.

View and manage the Windows application log by using Event Viewer in Microsoft Windows NT® 4.0 or Windows 2000.

There are three logs that can be viewed with Event Viewer.

Windows log type Description
System log Records events logged by the Windows NT 4.0 or Windows

2000 system components. For example, the failure of a driver
or other system component to load during startup is recorded
in the system log.

Security log Records security events, such as failed login attempts. This
helps track changes to the security system and identify
possible breaches to security. For example, attempts to log on
to the system may be recorded in the security log, depending
on the audit settings in the User Manager.

Only members of the sysadmin fixed server role can view the
security log.

Application log Records events that are logged by applications. For example, a
database application might record a file error in the application
log.

For more information about using Event Viewer, managing the application log, and understanding the information it presents, see
the Windows NT 4.0 or Windows 2000 documentation.

To view the Windows application log

Windows NT

Windows NT

Administering SQL Server (SQL Server 2000)

Monitoring with Transact-SQL Statements
Microsoft® SQL Server™ provides several Transact-SQL statements and system stored procedures that allow ad hoc monitoring
of an instance of SQL Server. Use these statements when you want to gather, at a glance, information about server performance
and activity. For example:

Current locks.

Current user activity.

Last command batch submitted by a user.

Data space used by a table or database.

Space used by a transaction log.

Oldest active transaction (including replicated transactions) in the database.

Performance information relating to I/O, memory, and network throughput.

Procedure cache usage.

General statistics about SQL Server activity and usage, such as the amount of time the CPU has been performing SQL
Server operations or the amount of time SQL Server has spent performing I/O operations.

Most of this information can also be monitored using SQL Server Enterprise Manager, SQL-DMO, or System Monitor
(Performance Monitor in Microsoft Windows NT® 4.0).

To view the current locks

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the current server activity

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the last command batch for a connection

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the data space information for a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the log space information for a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the oldest active transaction in the database

Transact-SQL

To view performance information

Transact-SQL

To view procedure cache usage

Transact-SQL

To view general statistics about SQL Server activity and usage

Transact-SQL

See Also

Monitoring with SQL Server Enterprise Manager

Monitoring with System Monitor

Administering SQL Server (SQL Server 2000)

Monitoring with SNMP
Simple Network Management Protocol (SNMP) is an application protocol that offers network management services. Using SNMP,
you can monitor an instance of Microsoft® SQL Server™ across different platforms (for example, Microsoft Windows NT® 4.0,
Microsoft Windows® 98, and UNIX).

With SQL Server and the Microsoft SQL Server Management Information Base (MSSQL-MIB), you can use SNMP applications to:

Monitor the status of SQL Server installations. SNMP can only be used to monitor the default instances of SQL Server.

Monitor performance information.

Access databases.

View server and database configuration parameters.

Administering SQL Server (SQL Server 2000)

SNMP Terminology
Simple Network Management Protocol (SNMP) terms are defined in the following table.

Term Description
SNMP An application that monitors the status and performance of

Microsoft® SQL Server™ installations, explores defined databases,
and views server and database configuration parameters.

SNMP agent SQL Server SNMP extension agent (Sqlsnmp.dll). Server software
that extends the functionality of the SNMP service. The SNMP agent
processes requests for data and data objects that reside on the local
server.

Administering SQL Server (SQL Server 2000)

Enabling SNMP Support on SQL Server
Microsoft® SQL Server™ support of SNMP is enabled automatically if Microsoft Windows NT® 4.0 or Microsoft Windows® 2000
support of SNMP is installed on the computer when you run SQL Server Setup. If SNMP is not installed on the computer when
you run the Setup program, SQL Server support of SNMP is not enabled.

Administering SQL Server (SQL Server 2000)

Enabling SQL Server Support of SNMP on Windows 98
You can monitor remote connections to computers running Microsoft® Windows® 98 if your network uses Simple Network
Management Protocol (SNMP).

The database controlled by an SNMP agent is known as SNMP Management Information Base (MIB). The values contained in an
SNMP MIB can be shared with the SNMP MIB of another application.

Microsoft SQL Server™ Management Information Base (MSSQL-MIB), stored in the Mssql.mib file, and the SQL Server SNMP
extension agent (Sqlsnmp.dll) are copied to the system by SQL Server Setup and are enabled if SNMP is running at the time of
installation. SNMP can be activated or deactivated at any time by selecting the Enable SNMP check box in the SQL Server
Network Utility dialog box.

For more information about SNMP, see the SNMP application documentation.

To enable SQL Server support of SNMP on Windows 98

Windows

Windows

Administering SQL Server (SQL Server 2000)

Enabling SQL Server MIB
The database controlled by a Simple Network Management Protocol (SNMP) agent is known as SNMP Management Information
Base (MIB). The values contained in an SNMP MIB can be shared with the SNMP MIB of another application.

Microsoft® SQL Server™ Management Information Base (MSSQL-MIB), stored in the Mssql.mib file, and the SQL Server SNMP
extension agent (Sqlsnmp.dll) are copied to the system by SQL Server Setup and are enabled if SNMP is running at the time of
installation.

For more information about SNMP, see the SNMP application documentation.

Copying the MSSQL-MIB to an SNMP Workstation

For SNMP applications to monitor the status of a SQL Server installation, a copy of MSSQL-MIB, stored in the Mssql.mib file, must
be placed on the monitoring workstation and loaded into the SNMP application. MSSQL-MIB enables the SNMP application to
access and monitor the SQL Server SNMP extension agent on an instance of SQL Server.

The Mssql.mib file is a text file that contains the definitions of objects available to SNMP workstations. The file consists of read-
only variables for monitoring general performance counters, the status of SQL Server installation and databases, and limited
discovery of configuration options and database files. Mssql.mib does not define any writable objects.

The following table describes the SNMP tables. These tables are SNMP tables, not SQL Server tables.

SNMP table Description
MssqlSrvTable Contains a description of the SQL Server

installation. Has a single row for each installation of
SQL Server version 6.5 or earlier or multiple rows
for each instance of SQL Server version 7.0 or SQL
Server 2000 running on the server.

MssqlSrvInfoTable Contains general information about the active SQL
Server process, including performance counters.

MssqlSrvConfigParamTable Lists SQL Server configuration parameters.
MssqlSrvDeviceTable Contains an entry for each SQL Server database file

defined on the system.
MssqlDbTable Lists defined SQL Server databases. Contains a

single row for each database.
MssqlDbOptionTable Lists database options set for each SQL Server

database.

For more information, see the SNMP application documentation.

To copy the SQL Server MSSQL-MIB to an SNMP workstation

Windows NT

Windows NT

Administering SQL Server (SQL Server 2000)

Using the Web Assistant Wizard
You can use the Web Assistant Wizard to generate standard HTML files from Microsoft® SQL Server™ data. The Web Assistant
Wizard generates HTML files by using Transact-SQL queries, stored procedures, and extended stored procedures. You can use the
wizard to generate an HTML file on a one time basis or as a regularly scheduled SQL Server task. You also can update an HTML
file using a trigger.

With the Web Assistant Wizard, you can:

Schedule a task to update a Web page automatically. For example, you can update a price list when a new item is added or a
price is changed, thereby maintaining a dynamic inventory and price list for customers and sales staff.

Publish and distribute management reports, including the latest sales statistics, resource allocations, or other SQL Server
data.

Publish server reports with information about who is accessing the server currently, and about which locks are being held
by which users.

Publish information outside of SQL Server using extended stored procedures.

Publish server jump lists using a table of favorite Web sites.

Use the sp_makewebtask stored procedure to generate an HTML file. This system stored procedure can be called by a
Transact-SQL program. You can also call system stored procedures to run or drop the task.

The Web Assistant Wizard runs from SQL Server Enterprise Manager.

See Also

sp_dropwebtask

sp_makewebtask

sp_runwebtask

Administering SQL Server (SQL Server 2000)

Configuring the Web Assistant Wizard
Before running the Web Assistant Wizard, you must:

Set appropriate permissions.

Choose the database to publish.

Create queries.

Setting Permissions

To run the Web Assistant Wizard, you must have:

CREATE PROCEDURE permissions in the selected database.

SELECT permissions on chosen columns.

Permissions to create files in the account in an instance of Microsoft® SQL Server™.

Choosing the Database to Publish

The Web Assistant Wizard works with databases created by SQL Server. Select the database to publish in the console tree of SQL
Server Enterprise Manager. If the server does not appear in this list, run the Register Server Wizard.

Creating Queries

You can run queries by:

Using tables and columns you specify.

Creating result sets from a stored procedure.

Selecting data using Transact-SQL statements.

The Web Assistant Wizard requires that each job be named, and a default name is supplied. For jobs that will run at a later time or
for jobs that run on a continuous basis, choose a name that will help you remember the focus of this query.

Administering SQL Server (SQL Server 2000)

Receiving Query Results with the Web Assistant Wizard
To receive query results, use your own HTML template file. A template file is any HTML file with the marker
<%insert_data_here%> to indicate where the query results should be inserted. If you use an alternate character set, you must
insert the necessary meta tag information into the Web page manually, specifying the character chosen.

Creating and Maintaining Databases (SQL Server 2000)

Creating and Maintaining Databases Overview
A client/server database system comprises two components:

Programs that provide an interface for client-based users to access data.

The database structure that manages and stores the data on the server.

For example, if you use Microsoft® SQL Server™ 2000 to create a checking account application, you must set up a database
structure to manage the account transaction data and an application that acts as the user interface to the database, allowing users
to access checking account information.

Creating a database to serve your business needs requires an understanding of how to design, create, and maintain each of these
components to ensure that your database performs optimally.

Topic Description
Databases Describes how databases are used to represent,

manage, and access data.
Tables Describes how tables are used to store rows of data and

define the relationships between multiple tables.
Indexes Describes how indexes are used to increase the speed of

accessing the data in the table.
Views Describes views and their usefulness in providing an

alternative way of looking at the data in one or more
tables.

Stored Procedures Describes how these Transact-SQL programs centralize
business rules, tasks, and processes within the server.

Enforcing Business Rules
with Triggers

Describes the function of triggers as special types of
stored procedures executed only when data in a table is
modified.

Full-Text Indexes Describes how full-text indexes facilitate the querying of
data stored in character-based columns, such as
varchar and text.

Creating and Maintaining Databases (SQL Server 2000)

Databases
A database in Microsoft® SQL Server™ 2000 consists of a collection of tables that contain data and other objects, such as views,
indexes, stored procedures, and triggers, defined to support activities performed with the data. The data stored in a database is
usually related to a particular subject or process, such as inventory information for a manufacturing warehouse.

SQL Server can support many databases. Each database can store either interrelated orunrelated data from other databases. For
example, a server can have one database that stores personnel data and another that stores product-related data. Alternatively,
one database can store current customer order data, and another related database can store historical customer orders used for
yearly reporting.

Before you create a database, it is important to understand the parts of a database and how to design these parts to ensure that
the database performs well after it is implemented.

Important It is recommended that you do not create any user objects, such as tables, views, stored procedures, or triggers, in the
master database. The master database contains the system tables that store the system information used by SQL Server, such as
configuration option settings.

Creating and Maintaining Databases (SQL Server 2000)

Parts of a Database
A database in Microsoft® SQL Server™ 2000 consists of a collection of tables that stores a specific set of structured data. A table
contains a collection of rows (referred to as records or tuples) and columns (referred to as attributes). Each column in the table is
designed to store a certain type of information (for example, dates, names, dollar amounts, or numbers). Tables have several types
of controls (constraints, rules, triggers, defaults, and customized user data types) that ensure the validity of the data. Tables can
have indexes similar to those in books that allow rows to be found quickly. Declarative referential integrity (DRI) constraints can
be added to the tables to ensure that interrelated data in different tables remains consistent. A database can also store procedures
that use Transact-SQL programming code to perform operations with the data in the database, such as storing views that provide
customized access to table data.

For example, you create a database named MyCoDB to manage the data in your company. In the MyCoDb database, you create a
table named Employees to store information about each employee, and the table contains columns named EmpId, LastName,
FirstName, Dept, and Title. To ensure that no two employees share the same EmpId and that the Dept column contains only
valid numbers for the departments in your company, you must add constraints to the table. Because you want to be able to
quickly find the data for an employee, based on the employee ID or last name, you define indexes. You will have to add a row of
data to the Employees table for each employee, so you create a procedure named AddEmployee, which is customized to accept
the data values for a new employee and performs the operation of adding the row to the Employees table. You may need a
departmental summary of employees, in which case you define a view called DeptEmps that combines data from the
Departments and Employees tables and produces the output. This illustration shows the parts of the MyCoDB that is created.

Creating and Maintaining Databases (SQL Server 2000)

Files and Filegroups
Microsoft® SQL Server™ 2000 maps a database using a set of operating-system files. All data and objects in the database, such
as tables, stored procedures, triggers, and views, are stored within these operating-system files:

Primary

This file contains the startup information for the database and is used to store data. Every database has one primary data
file.

Secondary

These files hold all of the data that does not fit in the primary data file. If the primary file can hold all of the data in the
database, databases do not need to have secondary data files. Some databases may be large enough to need multiple
secondary data files or to use secondary files on separate disk drives to spread data across multiple disks.

Transaction Log

These files hold the log information used to recover the database. There must be at least one log file for each database.

For example, a simple database, sales, can be created with one primary file that contains all data and objects and a log file that
contains the transaction log information. Alternatively, a more complex database, orders, can be created with one primary file and
five secondary files; the data and objects within the database spread across all six files, and four additional log files contain the
transaction log information.

Filegroups allow files to be grouped together for administrative and data allocation/placement purposes. For example, three files
(Data1.ndf, Data2.ndf, and Data3.ndf) can be created on three disk drives, respectively, and assigned to the filegroup fgroup1. A
table can then be created specifically on the filegroup fgroup1. Queries for data from the table will be spread across the three
disks, thereby improving performance. The same performance improvement can be accomplished with a single file created on a
RAID (redundant array of independent disks) stripe set. Files and filegroups, however, allow you to easily add new files on new
disks. Additionally, if your database exceeds the maximum size for a single Microsoft Windows NT® file, you can use secondary
data files to allow your database to continue to grow.

Rules for Designing Files and Filegroups

Rules for designing files and filegroups include:

A file or filegroup cannot be used by more than one database. For example, file sales.mdf and sales.ndf, which contain data
and objects from the sales database, cannot be used by any other database.

A file can be a member of only one filegroup.

Data and transaction log information cannot be part of the same file or filegroup.

Transaction log files are never part of any filegroups.

See Also

CREATE DATABASE

Physical Database Files and Filegroups

Placing Tables on Filegroups

Transaction Logs

Creating and Maintaining Databases (SQL Server 2000)

Default Filegroups
Default Filegroups

A database comprises a primary filegroup and any user-defined filegroups.

The filegroup that contains the primary file is the primary filegroup. When a database is created, the primary filegroup contains
the primary data file and any other files that are not put into another filegroup. All system tables are allocated in the primary
filegroup. If the primary filegroup runs out of space, no new catalog information can be added to the system tables. The primary
filegroup only fills if either autogrow is turned off or all the disks holding the files in the primary filegroup run out of space. If this
happens, either turn autogrow back on, or move other files off the disks to free more space.

User-defined filegroups are any filegroups that are specifically created by the user when first creating or later altering the
database. If a user-defined filegroup fills up, only the user tables specifically allocated to that filegroup would be affected.

At any time, exactly one filegroup is designated as the DEFAULT filegroup. When objects are created in the database without
specifying to which filegroup they belong, they are assigned to the default filegroup. The default filegroup must be large enough
to hold any objects not allocated to a user-defined filegroup. Initially, the primary filegroup is the default filegroup.

The default filegroup can be changed using the ALTER DATABASE statement. By changing the default filegroup, any objects that
do not have a filegroup specified when they are created are allocated to the data files in the new default filegroup. However,
allocation for the system objects and tables remains within the PRIMARY filegroup, not the new default filegroup.

Changing the default filegroups prevents user objects that are not specifically created on a user-defined filegroup from
competing with the system objects and tables for data space.

See Also

ALTER DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Using Files and Filegroups
Using Files and Filegroups

Filegroups use a proportional fill strategy across all the files within each filegroup. As data is written to the filegroup, Microsoft®
SQL Server™ 2000 writes an amount proportional to the free space in the file to each file within the filegroup, rather than writing
all the data to the first file until full, and then writing to the next file. For example, if file f1 has 100 megabytes (MB) free and file f2
has 200 MB free, one extent is allocated from file f1, two extents from file f2, and so on. This way both files become full at about
the same time, and simple striping is achieved.

As soon as all the files in a filegroup are full, SQL Server automatically expands one file at a time in a round-robin fashion to
accommodate more data (provided that the database is set to grow automatically). For example, a filegroup comprises three files,
all set to automatically grow. When space in all files in the filegroup is exhausted, only the first file is expanded. When the first file
is full, and no more data can be written to the filegroup, the second file is expanded. When the second file is full, and no more data
can be written to the filegroup, the third file is expanded. If the third file becomes full, and no more data can be written to the
filegroup, the first file is expanded again, and so on.

Using files and filegroups improves database performance by allowing a database to be created across multiple disks, multiple
disk controllers, or RAID (redundant array of independent disks) systems. For example, if your computer has four disks, you can
create a database that comprises three data files and one log file, with one file on each disk. As data is accessed, four read/write
heads can simultaneously access the data in parallel, which speeds up database operations.

Additionally, files and filegroups allow data placement because a table can be created in a specific filegroup. This improves
performance because all I/O for a specific table can be directed at a specific disk. For example, a heavily used table can be placed
on one file in one filegroup, located on one disk, and the other, less heavily accessed tables in the database can be placed on the
other files in another filegroup, located on a second disk.

Recommendations

These are some general recommendations for files and filegroups:

Most databases will work well with a single data file and a single transaction log file.

If you use multiple files, create a second filegroup for the additional file and make that filegroup the default filegroup. This
way, the primary file will contain only system tables and objects.

To maximize performance, create files or filegroups on as many different available local physical disks as possible, and place
objects that compete heavily for space in different filegroups.

Use filegroups to allow placement of objects on specific physical disks.

Place different tables used in the same join queries in different filegroups. This will improve performance, due to parallel
disk I/O searching for joined data.

Place heavily accessed tables and the nonclustered indexes belonging to those tables on different filegroups. This will
improve performance, due to parallel I/O if the files are located on different physical disks.

Do not place the transaction log file or files on the same physical disk with the other files and filegroups.

See Also

CREATE DATABASE

Physical Database Files and Filegroups

Placing Tables on Filegroups

Transaction Logs

Creating and Maintaining Databases (SQL Server 2000)

Using Files and Filegroups to Manage Database Growth
Using Files and Filegroups to Manage Database Growth

When creating a database using files and filegroups, you must specify an initial size for the file. Microsoft® SQL Server™ 2000
creates the data files based on the size you provide. As data is added to the database, these files become full. However, you must
consider whether and how the database will grow beyond the initial space you allocate if more data is added to the database than
will fit in the files.

By default, SQL Server allows the data files to grow as much as necessary until disk space is exhausted. Therefore, if you do not
want the database files to be allowed to grow any larger than when they were initially created, this must be specified at database
creation time using SQL Server Enterprise Manager or the CREATE DATABASE statement.

Alternatively, SQL Server allows you to create data files that are allowed to grow automatically when they fill with data, but only
to a predefined maximum size. This can prevent the disk drives from running out of disk space completely.

Recommendations

When you create a database, make the data files as large as possible, based on the maximum amount of data you expect in the
database. Permit the data files to grow automatically but place a limit on the growth by specifying a maximum data file growth
size that leaves some available space on the hard disk. This allows the database to grow if more data is added than expected, but
does not fill up the disk drive. If the initial data file size is exceeded and the file starts to grow automatically, reevaluate the
expected maximum database size and plan accordingly by adding more disk space (if necessary) and creating and adding more
files or filegroups to the database.

However, if the database is not supposed to expand beyond its initial size, set the maximum growth size of the database to zero.
This prevents the database files from growing. If the database files fill with data, no more data is added until more data files are
added to the database or existing files are expanded.

Fragmentation of Files

Allowing files to grow automatically can cause fragmentation of those files if a large number of files share the same disk.
Therefore, it is recommended that files or filegroups be created on as many different available local physical disks as possible.
Place objects that compete heavily for space in different filegroups.

See Also

ALTER DATABASE

CREATE DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Read-Only Filegroups
Read-Only Filegroups

Microsoft® SQL Server™ 2000 allows filegroups to be marked as read-only. Any existing filegroup, except the primary filegroup,
can be marked as read-only. A filegroup marked read-only cannot be modified in any way.

Place tables that must not be modified, such as historical data, on filegroups, and then mark the filegroup as read-only. This
prevents accidental updates. The read-only filegroup can then be backed up and restored on another instance of SQL Server
without concern for recovery of transaction logs.

See Also

ALTER DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Transaction Logs
A database in Microsoft® SQL Server™ 2000 has at least one data file and one transaction log file. Data and transaction log
information is never mixed on the same file, and individual files are used by only one database.

SQL Server uses the transaction log of each database to recover transactions. The transaction log is a serial record of all
modifications that have occurred in the database as well as the transaction that performed each modification. The transaction log
records the start of each transaction. It records the changes to the data and enough information to undo the modifications (if
necessary later) made during each transaction. For some large operations, such as CREATE INDEX, the transaction log instead
records the fact that the operation took place. The log grows continuously as logged operations occur in the database.

The transaction log records the allocation and deallocation of pages and the commit or rollback of each transaction. This allows
SQL Server either to apply (roll forward) or back out (roll back) each transaction in the following ways:

A transaction is rolled forward when you apply a transaction log. SQL Server copies the after image of every modification to
the database or reruns statements such as CREATE INDEX. These actions are applied in the same sequence in which they
originally occurred. At the end of this process, the database is in the same state it was in at the time the transaction log was
backed up.

A transaction is rolled back when you back out an incomplete transaction. SQL Server copies the before images of all
modifications to the database since the BEGIN TRANSACTION. If it encounters transaction log records indicating that a
CREATE INDEX was performed, it performs operations that logically reverse the statement. These before images and
CREATE INDEX reversals are applied in the reverse of their original sequence.

At a checkpoint, SQL Server ensures that all transaction log records and database pages modified are written to disk. During the
recovery process of each database that occurs when SQL Server is restarted, a transaction must be rolled forward only when it is
not known whether all the data modifications in the transaction were actually written from the SQL Server buffer cache to disk.
Because a checkpoint forces all modified pages to disk, it represents the point at which the startup recovery must start rolling
forward transactions. Because all pages modified before the checkpoint are guaranteed to be on disk, there is no need to roll
forward anything done before the checkpoint.

Transaction log backups enable you to recover the database to a specific point in time (for example, prior to entering unwanted
data), or to the point of failure. Transaction log backups should be a consideration in your media recovery strategy. For more
information, see Selecting a Recovery Model.

See Also

CREATE DATABASE

Transactions

Transaction Log Backups

Creating and Maintaining Databases (SQL Server 2000)

Virtual Log Files
Virtual Log Files

Each transaction log file is divided logically into smaller segments called virtual log files. Virtual log files are the unit of truncation
for the transaction log. When a virtual log file no longer contains log records for active transactions, it can be truncated and the
space becomes available to log new transactions.

The smallest size for a virtual log file is 256 kilobytes (KB). The minimum size for a transaction log is 512 KB, which provides two
256-KB virtual log files. The number and size of the virtual log files in a transaction log increase as the size of the log file increases.
A small log file can have a small number of small virtual log files (for example, a 5-MB log file that comprises five 1-MB virtual log
files). A large log file can have larger virtual log files (for example, a 500-MB log file that comprises ten 50-MB virtual log files).

Microsoft® SQL Server™ 2000 tries to avoid having many small virtual log files. The number of virtual log files grows much more
slowly than the size. If a log file grows in small increments, it tends to have many small virtual log files. If the log file grows in
larger increments, SQL Server creates a smaller number of larger virtual log files. For example, if the transaction log is growing by
1-MB increments, the virtual log files are smaller and more numerous compared to a transaction log growing at 50-MB
increments. A large number of virtual log files can increase the time taken to perform database recovery.

As records are written to the log, the end of the log grows from one virtual log file to the next. If there is more than one physical
log file for a database, the end of the log grows through each virtual log file in each physical file before circling back to the first
virtual log file in the first physical file. Only when all log files are full will the log begin to grow automatically.

See Also

Shrinking a Database

Creating and Maintaining Databases (SQL Server 2000)

Database Design Considerations
Designing a database requires an understanding of both the business functions you want to model and the database concepts
and features used to represent those business functions.

It is important to accurately design a database to model the business because it can be time consuming to change the design of a
database significantly once implemented. A well-designed database also performs better.

When designing a database, consider:

The purpose of the database and how it affects the design. Create a database plan to fit your purpose.

Database normalization rules that prevent mistakes in the database design.

Protection of your data integrity.

Security requirements of the database and user permissions.

Performance needs of the application. You must ensure that the database design takes advantage of Microsoft® SQL
Server™ 2000 features that improve performance. Achieving a balance between the size of the database and the hardware
configuration is also important for performance.

Maintenance.

Estimating the size of a database.

Creating and Maintaining Databases (SQL Server 2000)

Creating a Database Plan
The first step in creating a database is creating a plan that serves both as a guide to be used when implementing the database and
as a functional specification for the database after it has been implemented. The complexity and detail of a database design is
dictated by the complexity and size of the database application as well as the user population.

The nature and complexity of a database application, as well as the process of planning it, can vary greatly. A database can be
relatively simple and designed for use by a single person, or it can be large and complex and designed, for example, to handle all
the banking transactions for hundreds of thousands of clients. In the first case, the database design may be little more than a few
notes on some scratch paper. In the latter case, the design may be a formal document with hundreds of pages that contain every
possible detail about the database.

In planning the database, regardless of its size and complexity, use these basic steps:

Gather information.

Identify the objects.

Model the objects.

Identify the types of information for each object.

Identify the relationships between objects.

Gathering Information

Before creating a database, you must have a good understanding of the job the database is expected to perform. If the database is
to replace a paper-based or manually performed information system, the existing system will give you most of the information
you need. It is important to interview everyone involved in the system to find out what they do and what they need from the
database. It is also important to identify what they want the new system to do, as well as to identify the problems, limitations, and
bottlenecks of any existing system. Collect copies of customer statements, inventory lists, management reports, and any other
documents that are part of the existing system, because these will be useful to you in designing the database and the interfaces.

Identifying the Objects

During the process of gathering information, you must identify the key objects or entities that will be managed by the database.
The object can be a tangible thing, such as a person or a product, or it can be a more intangible item, such as a business
transaction, a department in a company, or a payroll period. There are usually a few primary objects, and after these are identified,
the related items become apparent. Each distinct item in your database should have a corresponding table.

The primary object in the pubs sample database included with Microsoft® SQL Server™ 2000 is a book. The objects related to
books within this company's business are the authors who write the books, the publishers who manufacture the books, the stores
which sell them, and the sales transactions performed with the stores. Each of these objects is a table in the database.

Modeling the Objects

As the objects in the system are identified, it is important to record them in a way that represents the system visually. You can use
your database model as a reference during implementation of the database.

For this purpose, database developers use tools that range in technical complexity from pencils and scratch paper to word
processing or spreadsheet programs, and even to software programs specifically dedicated to the job of data modeling for
database designs. Whatever tool you decide to use, it is important that you keep it up-to-date.

SQL Server Enterprise Manager includes visual design tools such as the Database Designer that can be used to design and create
objects in the database. For more information see, Database Designer.

Identifying the Types of Information for Each Object

After the primary objects in the database have been identified as candidates for tables, the next step is to identify the types of
information that must be stored for each object. These are the columns in the object's table. The columns in a database table
contain a few common types of information:

Raw data columns

https://msdn.microsoft.com/en-us/library/aa292883(v=sql.80).aspx

These columns store tangible pieces of information, such as names, determined by a source external to the database.

Categorical columns

These columns classify or group the data and store a limited selection of data such as true/false, married/single,
VP/Director/Group Manager, and so on.

Identifier columns

These columns provide a mechanism to identify each item stored in the table. These columns often have id or number in
their names (for example, employee_id, invoice_number, and publisher_id). The identifier column is the primary
component used by both users and internal database processing for gaining access to a row of data in the table. Sometimes
the object has a tangible form of ID used in the table (for example, a social security number), but in most situations you can
define the table so that a reliable, artificial ID can be created for the row.

Relational or referential columns

These columns establish a link between information in one table and related information in another table. For example, a
table that tracks sales transactions will commonly have a link to the customers table so that the complete customer
information can be associated with the sales transaction.

Identifying the Relationships Between Objects

One of the strengths of a relational database is the ability to relate or associate information about various items in the database.
Isolated types of information can be stored separately, but the database engine can combine data when necessary. Identifying the
relationships between objects in the design process requires looking at the tables, determining how they are logically related, and
adding relational columns that establish a link from one table to another.

For example, the designer of the pubs database has created tables for titles and publishers in the database. The titles table
contains information for each book: an identifier column named title_id; raw data columns for the title, the price of the book, and
the publishing date; and some columns with sales information for the book. The table contains a categorical column named type,
which allows the books to be grouped by the type of content in the book. Each book also has a publisher, but the publisher
information is in another table; therefore, the titles table has a pub_id column to store just the ID of the publisher. When a row of
data is added for a book, the publisher ID is stored with the rest of the book information.

Creating and Maintaining Databases (SQL Server 2000)

Online Transaction Processing vs. Decision Support
Many applications fall into two main categories of database applications:

Online transaction processing (OLTP)

Decision support

The characteristics of these application types have a dramatic effect on the design considerations for a database.

Online Transaction Processing

Online Transaction processing database applications are optimal for managing changing data, and usually have a large number of
users who will be simultaneously performing transactions that change real-time data. Although individual requests by users for
data tend to reference few records, many of these requests are being made at the same time. Common examples of these types of
databases are airline ticketing systems and banking transaction systems. The primary concerns in this type of application are
concurrency and atomicity.

Concurrency controls in a database system ensure that two users cannot change the same data, or that one user cannot change a
piece of data before another user is done with it. For example, if you are talking to an airline ticket agent to reserve the last
available seat on a flight and the agent begins the process of reserving the seat in your name, another agent should not be able to
tell another passenger that the seat is available.

Atomicity ensures that all of the steps involved in a transaction complete successfully as a group. If any step fails, no other steps
should be completed. For example, a banking transaction may involve two steps: taking funds out of your checking account and
placing them into your savings account. If the step that removes the funds from your checking account succeeds, you want to
make sure that the funds are placed into your savings account or put back into your checking account.

Online Transaction Processing Design Considerations

Transaction processing system databases should be designed to promote:

Good data placement.

I/O bottlenecks are a big concern for OLTP systems due to the number of users modifying data all over the database.
Determine the likely access patterns of the data and place frequently accessed data together. Use filegroups and RAID
(redundant array of independent disks) systems to assist in this.

Short transactions to minimize long-term locks and improve concurrency.

Avoid user interaction during transactions. Whenever possible, execute a single stored procedure to process the entire
transaction. The order in which you reference tables within your transactions can affect concurrency. Place references to
frequently accessed tables at the end of the transaction to minimize the duration that locks are held.

Online backup.

OLTP systems are often characterized by continuous operations (24 hours a day, 7 days a week) for which downtime is kept
to an absolute minimum. Although Microsoft® SQL Server™ 2000 can back up a database while it is being used, schedule
the backup process to occur during times of low activity to minimize effects on users.

High normalization of the database.

Reduce redundant information as much as possible to increase the speed of updates and hence improve concurrency.
Reducing data also improves the speed of backups because less data needs to be backed up.

Little or no historical or aggregated data.

Data that is rarely referenced can be archived into separate databases, or moved out of the heavily updated tables into
tables containing only historical data. This keeps tables as small as possible, improving backup times and query
performance.

Careful use of indexes.

Indexes must be updated each time a row is added or modified. To avoid over-indexing heavily updated tables, keep indexes
narrow. Use the Index Tuning Wizard to design your indexes.

Optimum hardware configuration to handle the large numbers of concurrent users and quick response times required by
an OLTP system.

Decision Support

Decision-support database applications are optimal for data queries that do not change data. For example, a company can
periodically summarize its sales data by date, sales region, or product and store this information in a separate database to be used
for analysis by senior management. To make business decisions, users need to be able to determine trends in sales quickly by
querying the data based on various criteria. However, they do not need to change this data. The tables in a decision-support
database are heavily indexed, and the raw data is often preprocessed and organized to support the various types of queries to be
used. Because the users are not changing data, concurrency and atomicity issues are not a concern; the data is changed only by
periodic, bulk updates made during off-hour, low-traffic times in the database.

Decision Support Design Considerations

Decision-support system databases should be designed to promote:

Heavy indexing.

Decision-support systems have low update requirements but large volumes of data. Use many indexes to improve query
performance.

Denormalization of the database.

Introduce preaggregated or summarized data to satisfy common query requirements and improve query response times.

Use of a star or snowflake schema to organize the data within the database.

See Also

Creating a Data Warehouse

Parts of a Data Warehouse

Creating and Maintaining Databases (SQL Server 2000)

Normalization
The logical design of the database, including the tables and the relationships between them, is the core of an optimized relational
database. A good logical database design can lay the foundation for optimal database and application performance. A poor logical
database design can impair the performance of the entire system.

Normalizing a logical database design involves using formal methods to separate the data into multiple, related tables. A greater
number of narrow tables (with fewer columns) is characteristic of a normalized database. A few wide tables (with more columns)
is characteristic of an nonnomalized database.

Reasonable normalization often improves performance. When useful indexes are available, the Microsoft® SQL Server™ 2000
query optimizer is efficient at selecting rapid, efficient joins between tables.

Some of the benefits of normalization include:

Faster sorting and index creation.

A larger number of clustered indexes. For more information, see Clustered Indexes.

Narrower and more compact indexes.

Fewer indexes per table, which improves the performance of INSERT, UPDATE, and DELETE statements.

Fewer null values and less opportunity for inconsistency, which increase database compactness.

As normalization increases, so do the number and complexity of joins required to retrieve data. Too many complex relational joins
between too many tables can hinder performance. Reasonable normalization often includes few regularly executed queries that
use joins involving more than four tables.

Sometimes the logical database design is already fixed and total redesign is not feasible. Even then, however, it might be possible
to normalize a large table selectively into several smaller tables. If the database is accessed through stored procedures, this
schema change could take place without affecting applications. If not, it might be possible to create a view that hides the schema
change from the applications.

Achieving a Well-Designed Database

In relational-database design theory, normalization rules identify certain attributes that must be present or absent in a well-
designed database. A complete discussion of normalization rules goes well beyond the scope of this topic. However, there are a
few rules that can help you achieve a sound database design:

A table should have an identifier.

The fundamental rule of database design theory is that each table should have a unique row identifier, a column or set of
columns used to distinguish any single record from every other record in the table. Each table should have an ID column,
and no two records can share the same ID value. The column or columns serving as the unique row identifier for a table is
the primary key of the table.

A table should store only data for a single type of entity.

Attempting to store too much information in a table can prevent the efficient and reliable management of the data in the
table. In the pubs database in SQL Server 2000, the titles and publishers information is stored in two separate tables.
Although it is possible to have columns that contain information for both the book and the publisher in the titles table, this
design leads to several problems. The publisher information must be added and stored redundantly for each book
published by a publisher. This uses extra storage space in the database. If the address for the publisher changes, the change
must be made for each book. And if the last book for a publisher is removed from the title table, the information for that
publisher is lost.

In the pubs database, with the information for books and publishers stored in the titles and publishers tables, the
information about the publisher has to be entered only once and then linked to each book. Therefore, if the publisher
information is changed, it must be changed in only one place, and the publisher information will be there even if the
publisher has no books in the database.

A table should avoid nullable columns.

Tables can have columns defined to allow null values. A null value indicates that there is no value. Although it can be useful
to allow null values in isolated cases, it is best to use them sparingly because they require special handling that increases the
complexity of data operations. If you have a table with several nullable columns and several of the rows have null values in
the columns, you should consider placing these columns in another table linked to the primary table. Storing the data in two
separate tables allows the primary table to be simple in design but able to accommodate the occasional need for storing
this information.

A table should not have repeating values or columns.

The table for an item in the database should not contain a list of values for a specific piece of information. For example, a
book in the pubs database might be coauthored. If there is a column in the titles table for the name of the author, this
presents a problem. One solution is to store the name of both authors in the column, but this makes it difficult to show a list
of the individual authors. Another solution is to change the structure of the table to add another column for the name of the
second author, but this accommodates only two authors. Yet another column must be added if a book has three authors.

If you find that you need to store a list of values in a single column, or if you have multiple columns for a single piece of
data (au_lname1, au_lname2, and so on), you should consider placing the duplicated data in another table with a link back
to the primary table. The pubs database has a table for book information and another table that stores only the ID values
for the books and the IDs of the authors of the books. This design allows any number of authors for a book without
modifying the definition of the table and allocates no unused storage space for books with a single author.

Creating and Maintaining Databases (SQL Server 2000)

Data Integrity
Enforcing data integrity ensures the quality of the data in the database. For example, if an employee is entered with an
employee_id value of 123, the database should not allow another employee to have an ID with the same value. If you have an
employee_rating column intended to have values ranging from 1 to 5, the database should not accept a value of 6. If the table
has a dept_id column that stores the department number for the employee, the database should allow only values that are valid
for the department numbers in the company.

Two important steps in planning tables are to identify valid values for a column and to decide how to enforce the integrity of the
data in the column. Data integrity falls into these categories:

Entity integrity

Domain integrity

Referential integrity

User-defined integrity

Entity Integrity

Entity integrity defines a row as a unique entity for a particular table. Entity integrity enforces the integrity of the identifier
column(s) or the primary key of a table (through indexes, UNIQUE constraints, PRIMARY KEY constraints, or IDENTITY properties).

Domain Integrity

Domain integrity is the validity of entries for a given column. You can enforce domain integrity by restricting the type (through
data types), the format (through CHECK constraints and rules), or the range of possible values (through FOREIGN KEY constraints,
CHECK constraints, DEFAULT definitions, NOT NULL definitions, and rules).

Referential Integrity

Referential integrity preserves the defined relationships between tables when records are entered or deleted. In Microsoft® SQL
Server™ 2000, referential integrity is based on relationships between foreign keys and primary keys or between foreign keys and
unique keys (through FOREIGN KEY and CHECK constraints). Referential integrity ensures that key values are consistent across
tables. Such consistency requires that there be no references to nonexistent values and that if a key value changes, all references
to it change consistently throughout the database.

When you enforce referential integrity, SQL Server prevents users from:

Adding records to a related table if there is no associated record in the primary table.

Changing values in a primary table that result in orphaned records in a related table.

Deleting records from a primary table if there are matching related records.

For example, with the sales and titles tables in the pubs database, referential integrity is based on the relationship between the
foreign key (title_id) in the sales table and the primary key (title_id) in the titles table.

User-Defined Integrity

User-defined integrity allows you to define specific business rules that do not fall into one of the other integrity categories. All of
the integrity categories support user-defined integrity (all column- and table-level constraints in CREATE TABLE, stored
procedures, and triggers).

See Also

Specifying a Column Data Type

Using Constraints, Defaults, and Null Values

Creating and Maintaining Databases (SQL Server 2000)

Data Security
One of the functions of a database is to protect the data by preventing certain users from seeing or changing highly sensitive data
and preventing all users from making costly mistakes. The security system in Microsoft® SQL Server™ 2000 controls user- access
to the data, and user-permissions to perform activities in the database.

See Also

Setting Up Security Accounts

Creating and Maintaining Databases (SQL Server 2000)

Database Performance
When you design a database, you must ensure that the database performs all the important functions correctly and quickly. Some
performance issues can be resolved after the database is in production, but other performance issues may be the result of a poor
database design and can be addressed only by changing the structure and design of the database.

When you design and implement a database, you should identify the large tables in the database and the more complex
processes that the database will perform, and give special consideration to performance when designing these tables. Also
consider the effect on performance of increasing the number of users who can access the database.

Examples of design changes that improve performance include:

If a table containing hundreds of thousands of rows must be summarized for a daily report, you can add a column or
columns to the table that contains preaggregated data to be used only for the report.

Databases can be overnormalized, which means the database is defined with numerous, small, interrelated tables. When the
database is processing the data in these tables, it has to perform a great deal of extra work to combine the related data. This
extra processing can reduce the performance of the database. In these situations, denormalizing the database slightly to
simplify complex processes can improve performance.

In conjunction with correct database design, correct use of indexes, RAID (redundant array of independent disks), and filegroups is
important for achieving good performance.

Hardware Considerations

Generally, the larger the database, the greater the hardware requirements. But there are other determining factors: the number of
concurrent users/sessions, transaction throughput, and the types of operations within the database. For example, a database
containing infrequently updated data for a school library would generally have lower hardware requirements than a 1-terabyte
(TB) data warehouse containing frequently analyzed sales, product, and customer information of a large corporation. Aside from
the disk storage requirements, more memory and faster processors would be needed for the data warehouse to enable more of
the data to be cached in memory and queries referencing large amounts of data to be processed quickly.

See Also

Database Design

Indexes

Physical Database Files and Filegroups

RAID

Creating and Maintaining Databases (SQL Server 2000)

Maintenance
After a database has been created and all objects and data have been added and are in use, there will be times when maintenance
must be performed. For example, it is important to back up the database regularly. You may also need to create some new
indexes to improve performance. These issues should be taken into consideration when you design the database to minimize the
effect on users, the time taken to perform the task, and the effort involved.

Maintenance design guidelines include:

Designing the database to be as small as possible and to exclude redundant information.

Normalizing your database can help you achieve this. For example, reducing the size of the database can help reduce the
time taken to back up or, more importantly, restore a database. This is especially important during a restore operation
because the database is unavailable while it is being restored.

Designing partitioned tables rather than a single table, if the table will contain a large number of rows.

For example, a table containing every credit card transaction received by a bank could be split into multiple tables, with each
table holding data for a single month. This can ease index maintenance if new indexes would otherwise have to be added to
improve query performance. It may be necessary to create the index only on data from the last three months because older
data is no longer referenced. The larger the table, the longer it takes to create new indexes.

Microsoft® SQL Server™ 2000 provides the Database Maintenance Plan Wizard for automating many of these tasks, thereby
reducing or removing the work involved in database maintenance.

See Also

Database Maintenance Plan Wizard

Creating and Maintaining Databases (SQL Server 2000)

Estimating the Size of a Database
When designing a database, you may need to estimate how big the database will be when filled with data. Estimating the size of
the database can help you determine the hardware configuration you will need for:

Achieving the performance required by your applications. For more information, see Hardware Considerations in Database
Performance.

Ensuring the appropriate physical amount of disk space to store the data and indexes.

Estimating the size of a database can also lead you to determine whether the database design needs refining. For example, you
may determine that the estimated size of the database is too large to implement in your organization and that more
normalization is required. Conversely, the estimated size may be smaller than expected, allowing you to denormalize the database
to improve query performance.

To estimate the size of a database, estimate the size of each table individually, and then add the values obtained. The size of a
table depends on whether the table has indexes, and if so, what type of indexes.

See Also

Designing Tables

Indexes

Query Tuning

Table and Index Architecture

Creating and Maintaining Databases (SQL Server 2000)

Estimating the Size of a Table
Estimating the Size of a Table

The following steps can be used to estimate the amount of space required to store the data in a table:

1. Specify the number of rows present in the table:

Number of rows in the table = Num_Rows

2. If there are fixed-length and variable-length columns in the table definition, calculate the space that each of these groups of
columns occupies within the data row. The size of a column depends on the data type and length specification. For more
information, see Data Types.

Number of columns = Num_Cols

Sum of bytes in all fixed-length columns = Fixed_Data_Size

Number of variable-length columns = Num_Variable_Cols

Maximum size of all variable-length columns = Max_Var_Size

3. If there are fixed-length columns in the table, a portion of the row, known as the null bitmap, is reserved to manage column
nullability. Calculate its size:

Null Bitmap (Null_Bitmap) = 2 + ((Num_Cols + 7) / 8)

Only the integer portion of the above expression should be used; discard any remainder.

4. If there are variable-length columns in the table, determine how much space is used to store the columns within the row:

Total size of variable-length columns (Variable_Data_Size) = 2 + (Num_Variable_Cols x 2) + Max_Var_Size

If there are no variable-length columns, set Variable_Data_Size to 0.

This formula assumes that all variable-length columns are 100 percent full. If you anticipate that a lower percentage of the
variable-length column storage space will be used, you can adjust the result by that percentage to yield a more accurate
estimate of the overall table size.

5. Calculate the row size:

Total row size (Row_Size) = Fixed_Data_Size + Variable_Data_Size + Null_Bitmap +4

The final value of 4 represents the data row header.

6. Calculate the number of rows per page (8096 free bytes per page):

Number of rows per page (Rows_Per_Page) = (8096) / (Row_Size + 2)

Because rows do not span pages, the number of rows per page should be rounded down to the nearest whole row.

7. If a clustered index is to be created on the table, calculate the number of reserved free rows per page, based on the fill factor
specified. For more information, see Fill Factor. If no clustered index is to be created, specify Fill_Factor as 100.

Number of free rows per page (Free_Rows_Per_Page) = 8096 x ((100 - Fill_Factor) / 100) / (Row_Size + 2)

The fill factor used in the calculation is an integer value rather than a percentage.

Because rows do not span pages, the number of rows per page should be rounded down to the nearest whole row. As the
fill factor grows, more data will be stored on each page and there will be fewer pages.

8. Calculate the number of pages required to store all the rows:

Number of pages (Num_Pages) = Num_Rows / (Rows_Per_Page - Free_Rows_Per_Page)

The number of pages estimated should be rounded up to the nearest whole page.

9. Calculate the amount of space required to store the data in a table (8192 total bytes per page):

Table size (bytes) = 8192 x Num_Pages

See Also

Designing Tables

Creating and Maintaining Databases (SQL Server 2000)

Estimating the Size of a Table Without a Clustered Index
Estimating the Size of a Table Without a Clustered Index

The following steps can be used to estimate the amount of space required to store the data and any additional nonclustered
indexes on a table that does not have a clustered index:

1. Calculate the space used to store data.

2. Calculate the space used to store each additional nonclustered index.

3. Sum the values calculated.

For each calculation, specify the number of rows that will be present in the table. The number of rows in the table will have a
direct effect on the size of the table:

Number of rows in the table = Num_Rows

Calculate the Space Used to Store Data

To calculate the space used to store data, see Estimating the Size of a Table.

Note the value calculated:

Space used to store data = Data_Space_Used

Calculate the Space Used to Store Each Additional Nonclustered Index

The followings steps can be used to estimate the size of a single nonclustered index on a table that does not have a clustered
index:

1. If the index definition includes fixed-length and variable-length columns, calculate the space each of these groups of
columns occupies within the index row. The size of a column depends on the data type and length specification. For more
information, see Data Types.

Number of columns in index key = Num_Key_Cols

Sum of bytes in all fixed-length key columns = Fixed_Key_Size

Number of variable-length columns in index key = Num_Variable_Key_Cols

Maximum size of all variable-length key columns = Max_Var_Key_Size

2. If there are fixed-length columns in the index, a portion of the index row is reserved for the null bitmap. Calculate its size:

Index Null Bitmap (Index_Null_Bitmap) = 2 + ((Num_Key_Cols + 7) / 8)

Only the integer portion of the above expression should be used; discard any remainder.

3. If there are variable-length columns in the index, determine how much space is used to store the columns within the index
row:

Total size of variable-length columns (Variable_Key_Size) = 2 + (Num_Variable_Key_Cols x 2) + Max_Var_Key_Size

If there are no variable-length columns, set Variable_Key_Size to 0.

This formula assumes that all variable-length key columns are 100 percent full. If you anticipate that a lower percentage of
the variable-length key column storage space will be used, you can adjust the result by that percentage to yield a more
accurate estimate of the overall index size.

4. Calculate the index row size:

Total index row size (Index_Row_Size) = Fixed_Key_Size + Variable_Key_Size + Index_Null_Bitmap + 1 + 8

5. Calculate the number of index rows per page (8096 free bytes per page):

Number of index rows per page (Index_Rows_Per_Page) = (8096) / (Index_Row_Size + 2)

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

6. Calculate the number of reserved free index rows per leaf page, based on the fill factor specified for the nonclustered index.
For more information, see Fill Factor.

Number of free index rows per leaf page (Free_Index_Rows_Per_Page) = 8096 x ((100 - Fill_Factor) / 100) /
Index_Row_Size

The fill factor used in the calculation is an integer value rather than a percentage.

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

7. Calculate the number of pages required to store all the index rows at each level of the index:

Number of pages (level 0) (Num_Pages_Level_0) = Num_Rows / (Index_Rows_Per_Page - Free_Index_Rows_Per_Page)

Number of pages (level 1) (Num_Pages_Level_1) = Num_Pages_Level_0 / Index_Rows_Per_Page

Repeat the second calculation, dividing the number of pages calculated from the previous level n by Index_Rows_Per_Page
until the number of pages for a given level n (Num_Pages_Level_n) equals one (root page). For example, to calculate the
number of pages required for the second index level:

Number of pages (level 2) (Num_Pages_Level_2) = Num_Pages_Level_1 / Index_Rows_Per_Page

For each level, the number of pages estimated should be rounded up to the nearest whole page.

Sum the number of pages required to store each level of the index:

Total number of pages (Num_Index_Pages) = Num_Pages_Level_0 + Num_Pages_Level_1 + Num_Pages_Level_2 + ... +
Num_Pages_Level_n

8. Calculate the size of the index (8192 total bytes per page):

Nonclustered index size (bytes) = 8192 x Num_Index_Pages

Calculate the Size of the Table

Calculate the size of the table:

Total table size (bytes) = Data_Space_Used + Nonclustered index size + ...n

See Also

Creating an Index

Nonclustered Indexes

Creating and Maintaining Databases (SQL Server 2000)

Estimating the Size of a Table with a Clustered Index
Estimating the Size of a Table with a Clustered Index

The following steps can be used to estimate the amount of space required to store the data and any additional nonclustered
indexes on a table that has a clustered index:

1. Calculate the space used to store data.

2. Calculate the space used to store the clustered index.

3. Calculate the space used to store each additional nonclustered index.

4. Sum the values calculated.

For each calculation, specify the number of rows that will be present in the table. The number of rows in your table will have a
direct effect on the size of your table:

Number of rows in the table = Num_Rows

Calculate the Space Used to Store Data

For more information about how to calculate the space used to store data, see Estimating the Size of a Table.

Note the value calculated:

Space used to store data = Data_Space_Used

Calculate the Space Used to Store the Clustered Index

The following steps can be used to estimate the amount of space required to store the clustered index:

1. A clustered index definition can include fixed-length and variable-length columns. To estimate the size of the clustered
index, you must specify the space each of these groups of columns occupies within the index row:

Number of columns in index key = Num_CKey_Cols

Sum of bytes in all fixed-length key columns = Fixed_CKey_Size

Number of variable-length columns in index key = Num_Variable_CKey_Cols

Maximum size of all variable-length key columns = Max_Var_CKey_Size

2. If there are fixed-length columns in the clustered index, a portion of the index row is reserved for the null bitmap. Calculate
its size:

Index Null Bitmap (CIndex_Null_Bitmap) = 2 + ((Num_CKey_Cols + 7) / 8)

Only the integer portion of the above expression should be used; discard any remainder.

3. If there are variable-length columns in the index, determine how much space is used to store the columns within the index
row:

Total size of variable length columns (Variable_CKey_Size) = 2 + (Num_Variable_CKey_Cols x 2) + Max_Var_CKey_Size

If there are no variable-length columns, set Variable_CKey_Size to 0.

This formula assumes that all variable-length key columns are 100 percent full. If you anticipate that a lower percentage of
the variable-length key column storage space will be used, you can adjust the result by that percentage to yield a more
accurate estimate of the overall index size.

4. Calculate the index row size:

Total index row size (CIndex_Row_Size) = Fixed_CKey_Size + Variable_CKey_Size + CIndex_Null_Bitmap + 1 + 8

5. Calculate the number of index rows per page (8096 free bytes per page):

Number of index rows per page (CIndex_Rows_Per_Page) = (8096) / (CIndex_Row_Size + 2)

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

6. Calculate the number of pages required to store all the index rows at each level of the index.

Number of pages (level 0) (Num_Pages_CLevel_0) = (Data_Space_Used / 8192) / CIndex_Rows_Per_Page

Number of pages (level 1) (Num_Pages_CLevel_1) = Num_Pages_CLevel_0 / CIndex_Rows_Per_Page

Repeat the second calculation, dividing the number of pages calculated from the previous level n by CIndex_Rows_Per_Page
until the number of pages for a given level n (Num_Pages_CLevel_n) equals one (index root page). For example, to calculate
the number of pages required for the second index level:

Number of pages (level 2) (Num_Pages_CLevel_2) = Num_Pages_CLevel_1 / CIndex_Rows_Per_Page

For each level, the number of pages estimated should be rounded up to the nearest whole page.

Sum the number of pages required to store each level of the index:

Total number of pages (Num_CIndex_Pages) = Num_Pages_CLevel_0 + Num_Pages_CLevel_1 +
Num_Pages_CLevel_2 + ... + Num_Pages_CLevel_n

7. Calculate the size of the clustered index (8192 total bytes per page):

Clustered index size (bytes) = 8192 x Num_CIndex_Pages

Calculate the Space Used to Store Each Additional Nonclustered Index

The following steps can be used to estimate the amount of space required to store each additional nonclustered index:

1. A nonclustered index definition can include fixed-length and variable-length columns. To estimate the size of the
nonclustered index, you must calculate the space each of these groups of columns occupies within the index row:

Number of columns in index key = Num_Key_Cols

Sum of bytes in all fixed-length key columns = Fixed_Key_Size

Number of variable-length columns in index key = Num_Variable_Key_Cols

Maximum size of all variable-length key columns = Max_Var_Key_Size

2. If there are fixed-length columns in the index, a portion of the index row is reserved for the null bitmap. Calculate its size:

Index Null Bitmap (Index_Null_Bitmap) = 2 + ((Num_Key_Cols + 7) / 8)

Only the integer portion of the above expression should be used; discard any remainder.

3. If there are variable-length columns in the index, determine how much space is used to store the columns within the index
row:

Total size of variable length columns (Variable_Key_Size) = 2 + (Num_Variable_Key_Cols x 2) + Max_Var_Key_Size

If there are no variable-length columns, set Variable_Key_Size to 0.

This formula assumes that all variable-length key columns are 100 percent full. If you anticipate that a lower percentage of
the variable-length key column storage space will be used, you can adjust the result by that percentage to yield a more
accurate estimate of the overall index size.

4. Calculate the nonleaf index row size:

Total nonleaf index row size (NL_Index_Row_Size) = Fixed_Key_Size + Variable_Key_Size + Index_Null_Bitmap + 1 + 8

5. Calculate the number of nonleaf index rows per page:

Number of nonleaf index rows per page (NL_Index_Rows_Per_Page) =
(8096) / (NL_Index_Row_Size + 2)

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

6. Calculate the leaf index row size:

Total leaf index row size (Index_Row_Size) = CIndex_Row_Size + Fixed_Key_Size + Variable_Key_Size + Index_Null_Bitmap +
1

The final value of 1 represents the index row header. CIndex_Row_Size is the total index row size for the clustered index key.

7. Calculate the number of leaf level index rows per page:

Number of leaf level index rows per page (Index_Rows_Per_Page) = (8096) / (Index_Row_Size + 2)

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

8. Calculate the number of reserved free index rows per page based on the fill factor specified for the nonclustered index. For
more information, see Fill Factor.

Number of free index rows per page (Free_Index_Rows_Per_Page) = 8096 x ((100 - Fill_Factor) / 100) / Index_Row_Size

The fill factor used in the calculation is an integer value rather than a percentage.

Because index rows do not span pages, the number of index rows per page should be rounded down to the nearest whole
row.

9. Calculate the number of pages required to store all the index rows at each level of the index:

Number of pages (level 0) (Num_Pages_Level_0) = Num_Rows / (Index_Rows_Per_Page - Free_Index_Rows_Per_Page)

Number of pages (level 1) (Num_Pages_Level_1) = Num_Pages_Level_0 / NL_Index_Rows_Per_Page

Repeat the second calculation, dividing the number of pages calculated from the previous level n by
NL_Index_Rows_Per_Page until the number of pages for a given level n (Num_Pages_Level_n) equals one (root page).

For example, to calculate the number of pages required for the second and third index levels:

Number of data pages (level 2) (Num_Pages_Level_2) = Num_Pages_Level_1 / NL_Index_Rows_Per_Page

Number of data pages (level 3) (Num_Pages_Level_3) = Num_Pages_Level_2 / NL_Index_Rows_Per_Page

For each level, the number of pages estimated should be rounded up to the nearest whole page.

Sum the number of pages required to store each level of the index:

Total number of pages (Num_Index_Pages) = Num_Pages_Level_0 + Num_Pages_Level_1 +Num_Pages_Level_2 + ... +
Num_Pages_Level_n

10. Calculate the size of the nonclustered index:

Nonclustered index size (bytes) = 8192 x Num_Index_Pages

Calculate the Size of the Table

Calculate the size of the table:

Total table size (bytes) = Data_Space_Used + Clustered index size + Nonclustered index size + ...n

See Also

Clustered Indexes

Creating an Index

Nonclustered Indexes

Creating and Maintaining Databases (SQL Server 2000)

 Creating a Database
To create a database determine the name of the database, its owner (the user who creates the database), its size, and the files and
filegroups used to store it.

Before creating a database, consider that:

Permission to create a database defaults to members of the sysadmin and dbcreator fixed server roles, although
permissions can be granted to other users.

The user who creates the database becomes the owner of the database.

A maximum of 32,767 databases can be created on a server.

The name of the database must follow the rules for identifiers.

Three types of files are used to store a database:

Primary files

These files contain the startup information for the database. The primary files are also used to store data. Every database has
one primary file.

Secondary files

These files hold all the data that does not fit in the primary data file. Databases do not need secondary data files if the
primary file is large enough to hold all the data in the database. Some databases may be large enough to need multiple
secondary data files, or they may use secondary files on separate disk drives to spread the data across multiple disks.

Transaction log

These files hold the log information used to recover the database. There must be at least one transaction log file for each
database, although there may be more than one. The minimum size for a log file is 512 kilobytes (KB).

Important Microsoft® SQL Server™ 2000 data and transaction log files must not be placed on compressed file systems or
a remote network drive, such as a shared network directory.

When a database is created, all the files that comprise the database are filled with zeros to overwrite any existing data left on the
disk by previously deleted files. Although this means that the files take longer to create, this action prevents the operating system
from having to fill the files with zeros when data is written to the files for the first time during usual database operations. This
improves the performance of day-to-day operations.

It is recommended that you specify a maximum size to which the file is permitted to grow. This prevents the file from growing, as
data is added, until disk space is exhausted. To specify a maximum size for the file, use the MAXSIZE parameter of the CREATE
DATABASE statement or the Restrict filegrowth (MB) option when using the Properties dialog box in SQL Server Enterprise
Manager to create the database.

After you create a database, it is recommended that you create a backup of the master database.

To create a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a database using the Create Database Wizard

Enterprise Manager

Enterprise Manager

See Also

Changing the Database Owner

Files and Filegroups

Using Identifiers

sp_helpfile

sp_helpfilegroup

Creating and Maintaining Databases (SQL Server 2000)

Using Raw Partitions
Microsoft® SQL Server™ 2000 supports the use of raw partitions for creating database files. Raw partitions are disk partitions
that have not been formatted with a Microsoft Windows NT® file system, such as FAT and NTFS. In some cases, using databases
created on raw partitions can yield a slight performance gain over NTFS or FAT. However, for most installations the preferred
method is to use files created on NTFS or FAT partitions.

When creating a database file on a raw partition, you do not specify the physical names of the files comprising the database; you
specify only the drive letters of the disks on which the database files should be created.

If you are using Microsoft Windows® 2000 Server, you can create mounted drives to point to raw partitions. When you mount a
local drive at an empty folder, Windows 2000 assigns a drive path to the drive rather than a drive letter. Mounted drives are not
subject to the 26-drive limit imposed by drive letters; therefore, you can use an unlimited number of raw partitions. When you
create a database file on a mounted drive, you must end the drive path to the file name with a trailing backslash (\), for example,
E:\Sample name\. For information about creating a mounted drive, see the Windows 2000 Server documentation.

There are several limitations to consider when using raw partitions:

Only one database file can be created on each raw partition. The logical partition must be configured as a single database
file, because there is no file system on the raw partition.

Standard file-system operations such as copy, move, and delete cannot be used with raw partitions.

Database files located on raw partitions cannot be backed up using the Windows NT Backup utility. However, SQL Server
database or transaction log backups can still be created.

Database files on raw partitions cannot be automatically expanded. Either initially create the database at its full size, or
manually expand the database files. For more information, see Expanding a Database.

Only lettered partitions, such as E:, or mounted drives, such as E:\Sample name\ can be used. Numbered devices cannot be
used.

File-system services such as bad block replacement are not available with raw partitions.

See Also

CREATE DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Modifying a Database
After a database is created, changes can be made to its original definition. Changes can include:

Expanding the data or transaction log space allocated to the database.

Shrinking the data and transaction log space allocated to the database.

Adding or removing data and transaction log files.

Creating filegroups.

Changing the default filegroup.

Change the configuration settings for the database.

Placing databases offline.

Attaching new and detaching unused databases.

Changing the name of the database.

Changing the owner of the database.

Before changes are made to the database, it is sometimes necessary to take the database out of normal operating mode. In those
situations, determine the appropriate method for terminating transactions.

Creating and Maintaining Databases (SQL Server 2000)

Expanding a Database
Microsoft® SQL Server™ 2000 can automatically expand a database according to growth parameters defined when the database
was created. You can also manually expand a database by allocating additional file space on an existing database file or allocating
space on another new file. You may need to expand the data or transaction log space if the existing files are becoming full. If a
database has already exhausted the space allocated to it and it cannot grow automatically, Error 1105 is raised.

When expanding a database, you must increase the size of the database by at least 1 megabyte (MB). Permission for expanding a
database defaults to the database owner and is automatically transferred with database ownership. When a database is expanded,
the new space is immediately made available to either the data or transaction log file, depending on which file was expanded.

If the transaction log is not set up to expand automatically, it can run out of space if certain types of activity occur in the database.
The transaction log is purged only of inactive (committed) transactions when it is backed up, or at each checkpoint when the
database is using the simple recovery model. SQL Server can then reuse this truncated, unused portion of the transaction log. For
more information about truncating the transaction log, see Truncating the Transaction Log.

SQL Server does not truncate the transaction log when backing up the database.

When you expand a database, it is recommended that you specify a maximum size to which the file is permitted to grow. This
prevents the file from growing until disk space is exhausted. To specify a maximum size for the file, use the MAXSIZE parameter of
the ALTER DATABASE statement or the Restrict filegrowth (MB) option when using the Properties dialog box in SQL Server
Enterprise Manager to expand the database.

Expanding a database to increase space for data or the transaction log follows the same process.

Expanding tempdb

By default, the tempdb database automatically grows as space is needed because the MAXSIZE of the files is set to UNLIMITED.
Therefore, tempdb can continue growing until space on the disk that contains tempdb is exhausted. To prevent tempdb from
growing without limits, set a MAXSIZE for tempdb by using the ALTER DATABASE statement or SQL Server Enterprise Manager.

Conversely, if tempdb has been set at a MAXSIZE, and you want to increase the size of tempdb, you must do one of the
following:

Increase the size of the files in the default filegroup currently used by tempdb.

Add a new file to the default filegroup.

Allow the files used by tempdb to grow automatically.

Important User-defined filegroups cannot be used with tempdb. They can be used only with the default filegroup.

Moving tempdb

To change the physical location of the tempdb database:

1. Alter the tempdb database, using the ALTER DATABASE statement and MODIFY FILE clause, to change the physical file
names of each file in tempdb to reference the new physical location, such as the new disk.

2. Stop and restart SQL Server.

3. Delete the old tempdb database files from the original location.

To increase the size of a database

Transact-SQL

Enterprise Manager

Enterprise Manager

To change the physical location of a database

Transact-SQL

See Also

ALTER DATABASE

Changing the Default Filegroup

Using Files and Filegroups to Manage Database Growth

Creating and Maintaining Databases (SQL Server 2000)

Shrinking a Database
Microsoft® SQL Server™ 2000 allows each file within a database to be shrunk to remove unused pages. Both data and
transaction log files can be shrunk. The database files can be shrunk manually, either as a group or individually. The database can
be set to shrink automatically at given intervals. This activity occurs in the background and does not affect any user activity within
the database.

When the database is set to shrink automatically using the ALTER DATABASE AUTO_SHRINK option (or the sp_dboption system
stored procedure), shrinking occurs when a significant amount of free space is available in the database. However, if the
percentage of free space to be removed cannot be configured, as much free space as possible is removed. To configure the
amount of free space to be removed, such as only 50 percent of the current free space in the database, use the Properties dialog
box in SQL Server Enterprise Manager to shrink the database.

You cannot shrink an entire database to be smaller than its original size. Therefore, if a database was created with a size of 10
megabytes (MB) and grew to 100 MB, the smallest the database could be shrunk to, assuming all the data in the database has
been deleted, is 10 MB.

However, you can shrink the individual database files smaller than their initial size by using the DBCC SHRINKFILE statement. You
must shrink each file individually, rather than attempting to shrink the entire database.

There are fixed boundaries from which a transaction log file can be shrunk. The size of the virtual log determines the possible
reduction in size. Therefore, the log file can never be shrunk to a size less than the virtual log file. In addition, the log file is shrunk
in increments equal to the size of the virtual log file. For example, a transaction log file of 1 gigabyte (GB) may comprise five
virtual log files of 200 MB each. Shrinking the transaction log file deletes unused virtual log files, but leaves at least one virtual log
file. Because each virtual log file in this example is 200 MB, the transaction log can shrink only to a minimum of 200 MB and can
shrink only in increments of 200 MB. To allow a transaction log file to shrink to a smaller size, create a smaller transaction log and
allow it to grow automatically, rather than creating a large transaction log file.

In SQL Server 2000, a DBCC SHRINKDATABASE or DBCC SHRINKFILE operation attempts to shrink a transaction log file to the
requested size (subject to rounding) immediately. You should truncate the log file prior to shrinking the file to reduce the size of
the logical log and mark as inactive virtual logs that do not hold any part of the logical log. For more information, see Shrinking
the Transaction Log.

Note It is not possible to shrink the database or transaction log while the database or transaction log is being backed up.
Conversely, it is not possible to create a database or transaction log backup while the database or transaction log is being shrunk.

To shrink a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To set a database to shrink automatically

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To shrink a database file

Transact-SQL

SQL-DMO

See Also

Virtual Log Files

Creating and Maintaining Databases (SQL Server 2000)

Adding and Deleting Data and Transaction Log Files
Data and transaction log files can be added to expand a database or deleted to shrink a database. When a file is added, the file is
available immediately for use by the database.

Important Microsoft® SQL Server™ 2000 data and transaction log files must not be placed on compressed file systems.

SQL Server uses a proportional fill strategy across all the files within each filegroup, writing an amount of data proportional to the
free space in the file and allowing the new file starts to be used immediately. This way all files tend to become full at about the
same time. Transaction log files, however, cannot be part of a filegroup; they are separate from one another. As the transaction
log grows, the first log file fills, then the second, and so on, using a fill-and-go strategy rather than a proportional fill strategy.
Therefore, when a log file is added, it cannot be used by the transaction log until the other files have been filled first.

When adding files to the database, you can specify the size of the file (default is 1 MB), the maximum size to which the file should
grow if space within the file is exhausted, the amount by which the file grows each time it needs to grow (default is 10 percent),
and the filegroup to which the file belongs, as appropriate.

Deleting a data or transaction log file removes the file from the database. It is not possible to remove a file from the database
unless there is no existing data or transaction log information on the file; the file must be completely empty before it can be
removed. To migrate data from a data file to other files in the same filegroup, use the DBCC SHRINKFILE statement and specify
the EMPTYFILE clause. SQL Server no longer allows data to be placed on the file, thereby allowing it to be deleted by using the
ALTER DATABASE statement or the property page within SQL Server Enterprise Manager.

It is not possible to migrate the transaction log data from one log file to another to delete a transaction log file. To purge inactive
transactions from a transaction log file, the transaction log must be truncated or backed up. When the transaction log file no
longer contains any active or inactive transactions, the log file can be removed from the database.

Important After you add or delete files, create a database backup immediately. A transaction log backup should not be created
until after a full database backup is created.

To add data or transaction log files to a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To delete data or log files from a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Physical Database Files and Filegroups

sp_helpfile

Using Files and Filegroups to Manage Database Growth

Creating and Maintaining Databases (SQL Server 2000)

Creating Filegroups
Filegroups can be created when the database is first created or later when more files are added to the database. However, it is not
possible to move files to a different filegroup after the files have been added to the database.

A file cannot be a member of more than one filegroup. Tables, indexes, and text, ntext, and image data can be associated with a
specific filegroup. This means that all their pages are allocated from the files in that filegroup.

There are three types of filegroups:

Primary filegroup

This filegroup contains the primary data file and any other files not placed into another filegroup. All pages for the system
tables are allocated from the primary filegroup.

User-defined filegroup

This filegroup is any filegroup specified using the FILEGROUP keyword in a CREATE DATABASE or ALTER DATABASE
statement, or on the Properties dialog box within SQL Server Enterprise Manager.

Default filegroup

The default filegroup contains the pages for all tables and indexes that do not have a filegroup specified when they are
created. In each database, only one filegroup at a time can be the default filegroup. If no default filegroup is specified, the
default is the primary filegroup.

A maximum of 256 filegroups can be created for each database. Filegroups can contain only data files. Transaction log files cannot
be part of a filegroup.

Note Filegroups cannot be created independently of database files. The filegroup is an administrative mechanism of grouping
files within the database.

To add a filegroup when creating a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To add a filegroup to a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Physical Database Files and Filegroups

sp_helpfilegroup

sp_helpfile

Using Files and Filegroups to Manage Database Growth

Creating and Maintaining Databases (SQL Server 2000)

Changing the Default Filegroup
When you change the default filegroup, any objects for which no filegroups have been initially specified are allocated to the data
files in the new default filegroup. Changing the default filegroup prevents user objects that are not specifically created on a user-
defined filegroup from competing with the system objects and tables for data space.

To change the default filegroup

Transact-SQL

SQL-DMO

See Also

Default Filegroups

Creating and Maintaining Databases (SQL Server 2000)

Setting Database Options
 Topic last updated -- January 2004

A number of database-level options that determine the characteristics of the database can be set for each database. Only the
system administrator, database owner, members of the sysadmin and dbcreator fixed server roles and db_owner fixed
database roles can modify these options. These options are unique to each database and do not affect other databases. The
database options can be set by using the SET clause of the ALTER DATABASE statement, the sp_dboption system stored
procedure or, in some cases, SQL Server Enterprise Manager.

Note Server-wide settings are set using the sp_configure system stored procedure or SQL Server Enterprise Manager. For more
information, see Setting Configuration Options. Connection-level settings are specified by using SET statements. For more
information, see SET Options.

After you set a database option, a checkpoint is automatically issued that causes the modification to take effect immediately.

To change the default values for any of the database options for newly created databases, change the appropriate database option
in the model database. For example, if you want the default setting of the AUTO_SHRINK database option to be ON for any new
databases subsequently created, set the AUTO_SHRINK option for model to ON.

There are five categories of database options:

Auto options

Cursor options

Recovery options

SQL options

State options

Auto Options

Auto options control certain automatic behaviors.

AUTO_CLOSE

When set to ON, the database is closed and shut down cleanly when the last user of the database exits and all processes in the
database complete, thereby freeing any resources. By default, this option is set to ON for all databases when using Microsoft®
SQL Server™ 2000 Desktop Engine (MSDE 2000), and OFF for all other editions, regardless of operating system. The database
reopens automatically when a user tries to use the database again. If the database was shut down cleanly, the database is not
reopened until a user tries to use the database the next time SQL Server is restarted. When set to OFF, the database remains open
even if no users are currently using the database.

The AUTO_CLOSE option is useful for desktop databases because it allows database files to be managed as normal files. They can
be moved, copied to make backups, or even e-mailed to other users. The AUTO_CLOSE option should not be used for databases
accessed by an application that repeatedly makes and breaks connections to SQL Server. The overhead of closing and reopening
the database between each connection will impair performance.

The status of this option can be determined by examining the IsAutoClose property of the DATABASEPROPERTYEX function.

AUTO_CREATE_STATISTICS

When set to ON, statistics are automatically created on columns used in a predicate. Adding statistics improves query
performance because the SQL Server query optimizer can better determine how to evaluate a query. If the statistics are not used,
SQL Server automatically deletes them. When set to OFF, statistics are not automatically created by SQL Server; instead, statistics
can be manually created. For more information, see Statistical Information.

By default, AUTO_CREATE_STATISTICS is ON.

The status of this option can be determined by examining the IsAutoCreateStatistics property of the DATABASEPROPERTYEX
function.

AUTO_UPDATE_STATISTICS

When set to ON, existing statistics are automatically updated when the statistics become out-of-date because the data in the
tables has changed. When set to OFF, existing statistics are not automatically updated; instead, statistics can be manually updated.
For more information, see Statistical Information.

By default, AUTO_UPDATE_STATISTICS is set to ON.

The status of this option can be determined by examining the IsAutoUpdateStatistics property of the DATABASEPROPERTYEX
function.

AUTO_SHRINK

When set to ON, the database files are candidates for periodic shrinking. Both data file and log files can be shrunk automatically
by SQL Server. When set to OFF, the database files are not automatically shrunk during periodic checks for unused space. By
default, this option is set to ON for all databases when using SQL Server Personal Edition, and OFF for all other editions,
regardless of operating system.

AUTO_SHRINK only reduces the size of the transaction log if the database is set to SIMPLE recovery model or if the log is backed
up.

The AUTO_SHRINK option causes files to be shrunk when more than 25 percent of the file contains unused space. The file is
shrunk to a size where 25 percent of the file is unused space, or to the size of the file when it was created, whichever is greater.

It is not possible to shrink a read-only database.

The status of this option can be determined by examining the IsAutoShrink property of the DATABASEPROPERTYEX function.

Cursor Options

Cursor options control cursor behavior and scope.

CURSOR_CLOSE_ON_COMMIT

When set to ON, any open cursors are closed automatically (in compliance with SQL-92) when a transaction is committed. By
default, this setting is OFF and cursors remain open across transaction boundaries, closing only when the connection is closed or
when they are explicitly closed.

Connection-level settings (set using the SET statement) override the default database setting for CURSOR_CLOSE_ON_COMMIT.
By default, ODBC and OLE DB clients issue a connection-level SET statement setting CURSOR_CLOSE_ON_COMMIT to OFF for the
session when connecting to SQL Server. For more information, see SET CURSOR_CLOSE_ON_COMMIT.

The status of this option can be determined by examining the IsCloseCursorsOnCommitEnabled property of the
DATABASEPROPERTYEX function.

CURSOR_DEFAULT LOCAL | GLOBAL

When CURSOR_DEFAULT LOCAL is set, and a cursor is not defined as GLOBAL when it is created, the scope of the cursor is local
to the batch, stored procedure, or trigger in which the cursor was created. The cursor name is valid only within this scope. The
cursor can be referenced by local cursor variables in the batch, stored procedure, or trigger, or a stored procedure OUTPUT
parameter. The cursor is implicitly deallocated when the batch, stored procedure, or trigger terminates, unless it was passed back
in an OUTPUT parameter. If it is passed back in an OUTPUT parameter, the cursor is deallocated when the last variable referencing
it is deallocated or goes out of scope.

When CURSOR_DEFAULT GLOBAL is set, and a cursor is not defined as LOCAL when created, the scope of the cursor is global to
the connection. The cursor name can be referenced in any stored procedure or batch executed by the connection. The cursor is
implicitly deallocated only at disconnect. CURSOR_DEFAULT GLOBAL is the default setting. For more information, see DECLARE
CURSOR.

The status of this option can be determined by examining the IsLocalCursorsDefault property of the DATABASEPROPERTYEX
function.

Recovery Options

Recovery options controls the recovery model for the database.

RECOVERY FULL | BULK_LOGGED | SIMPLE

When FULL is specified, database backups and transaction log backups are used to provide full recoverability from media failure.
All operations, including bulk operations such as SELECT INTO, CREATE INDEX, and bulk loading data, are fully logged. For more
information, see Full Recovery.

When BULK_LOGGED is specified, logging for all SELECT INTO, CREATE INDEX, and bulk loading data operations is minimal and
therefore requires less log space. In exchange for better performance and less log space usage, the risk of exposure to loss is
greater than with full recovery. For more information, see Bulk-Logged Recovery.

When SIMPLE is specified, the database can be recovered only to the last full database backup or last differential backup. For
more information, see Simple Recovery.

SIMPLE is the default setting for SQL Server Personal Edition and the Desktop Engine (MSDE 2000), and FULL is the default for all
other editions.

The status of this option can be determined by examining the Recovery property of the DATABASEPROPERTYEX function.

TORN_PAGE_DETECTION

This recovery option allows SQL Server to detect incomplete I/O operations caused by power failures or other system outages.

When set to ON, this option causes a bit to be reversed for each 512-byte sector in an 8-kilobyte (KB) database page when the
page is written to disk. If a bit is in the wrong state when the page is later read by SQL Server, the page was written incorrectly; a
torn page is detected. Torn pages are usually detected during recovery because any page that was written incorrectly is likely to
be read by recovery.

Although SQL Server database pages are 8 KB, disks perform I/O operations using a 512-byte sector. Therefore, 16 sectors are
written per database page. A torn page can occur if the system fails (for example, due to power failure) between the time the
operating system writes the first 512-byte sector to disk and the completion of the 8-KB I/O operation. If the first sector of a
database page is successfully written before the failure, the database page on disk will appear as updated, although it may not
have succeeded.

Note Using battery-backed disk caches can ensure that data is successfully written to disk or not written at all.

If a torn page is detected, an I/O error is raised and the connection is killed. If the torn page is detected during recovery, the
database is also marked suspect. The database backup should be restored, and any transaction log backups applied, because it is
physically inconsistent.

By default, TORN_PAGE_DETECTION is ON.

The current setting of this option can be determined by examining the IsTornPageDetectionEnabled property of
DATABASEPROPERTYEX.

SQL Options

SQL options control ANSI compliance options.

ANSI_NULL_DEFAULT

Allows the user to control the database default nullability. When NULL or NOT NULL is not specified explicitly, a user-defined data
type or a column definition uses the default setting for nullability. Nullability is determined by session and database settings.
Microsoft SQL Server™2000 defaults to NOT NULL. For ANSI compatibility, setting the database option ANSI_NULL_DEFAULT to
ON changes the database default to NULL.

When this option is set to ON, all user-defined data types or columns that are not explicitly defined as NOT NULL during a
CREATE TABLE or ALTER TABLE statement default to allowing null values. Columns that are defined with constraints follow
constraint rules regardless of this setting.

Connection-level settings (set using the SET statement) override the default database-level setting for ANSI_NULL_DEFAULT. By
default, ODBC and OLE DB clients issue a connection-level SET statement setting ANSI_NULL_DEFAULT to ON for the session
when connecting to SQL Server. For more information, see SET ANSI_NULL_DFLT_ON.

The status of this option can be determined by examining the IsAnsiNullDefault property of the DATABASEPROPERTYEX
function.

ANSI_NULLS

When set to ON, all comparisons to a null value evaluate to NULL (unknown). When set to OFF, comparisons of non-Unicode
values to a null value evaluate to TRUE if both values are NULL. By default, the ANSI_NULLS database option is OFF.

Connection-level settings (set using the SET statement) override the default database setting for ANSI_NULLS. By default, ODBC
and OLE DB clients issue a connection-level SET statement setting ANSI_NULLS to ON for the session when connecting to SQL
Server. For more information, see SET ANSI_NULLS.

SET ANSI_NULLS also must be set to ON when you create or manipulate indexes on computed columns or indexed views.

The status of this option can be determined by examining the IsAnsiNullsEnabled property of the DATABASEPROPERTYEX
function.

ANSI_PADDING

When set to ON, trailing blanks in character values inserted into varchar columns and trailing zeros in binary values inserted into
varbinary columns are not trimmed. Values are not padded to the length of the column. When set to OFF, the trailing blanks (for
varchar) and zeros (for varbinary) are trimmed. This setting affects only the definition of new columns.

Char(n) and binary(n) columns that allow nulls are padded to the length of the column when SET ANSI_PADDING is set to ON,
but trailing blanks and zeros are trimmed when SET ANSI_PADDING is OFF. Char(n) and binary(n) columns that do not allow
nulls are always padded to the length of the column.

Important It is recommended that ANSI_PADDING always be set to ON. SET ANSI_PADDING must be ON when creating or
manipulating indexes on computed columns or indexed views.

The status of this option can be determined by examining the IsAnsiPaddingEnabled property of the DATABASEPROPERTYEX
function.

ANSI_WARNINGS

When set to ON, errors or warnings are issued when conditions such as "divide by zero" occur or null values appear in aggregate
functions. When set to OFF, no warnings are raised when null values appear in aggregate functions, and null values are returned
when conditions such as "divide by zero" occur. By default, ANSI_WARNINGS is OFF.

SET ANSI_WARNINGS must be set to ON when you create or manipulate indexes on computed columns or indexed views.

Connection-level settings (set using the SET statement) override the default database setting for ANSI_WARNINGS. By default,
ODBC and OLE DB clients issue a connection-level SET statement setting ANSI_WARNINGS to ON for the session when
connecting to SQL Server. For more information, see SET ANSI_WARNINGS.

The status of this option can be determined by examining the IsAnsiWarningsEnabled property of the DATABASEPROPERTYEX
function.

ARITHABORT

When set to ON, an overflow or divide-by-zero error causes the query or batch to terminate. If the error occurs in a transaction,
the transaction is rolled back. When set to OFF, a warning message is displayed if one of these errors occurs, but the query, batch,
or transaction continues to process as if no error occurred.

SET ARITHABORT must be set to ON when you create or manipulate indexes on computed columns or indexed views

The status of this option can be determined by examining the IsArithmeticAbortEnabled property of the
DATABASEPROPERTYEX function.

NUMERIC_ROUNDABORT

If set to ON, an error is generated when loss of precision occurs in an expression. When set to OFF, losses of precision do not
generate error messages and the result is rounded to the precision of the column or variable storing the result.

SET NUMERIC_ROUNDABORT must be set to OFF when you create or manipulate indexes on computed columns or indexed
views.

The status of this option can be determined by examining the IsNumericRoundAbortEnabled property of the
DATABASEPROPERTYEX function.

CONCAT_NULL_YIELDS_NULL

When set to ON, if one of the operands in a concatenation operation is NULL, the result of the operation is NULL. For example,
concatenating the character string "This is" and NULL results in the value NULL, rather than the value "This is".

When set to OFF, concatenating a null value with a character string yields the character string as the result; the null value is
treated as an empty character string. By default, CONCAT_NULL_YIELDS_NULL is OFF.

SET CONCAT_NULL_YIELDS_NULL must be set to ON when you create or manipulate indexes on computed columns or indexed
views.

Connection-level settings (set using the SET statement) override the default database setting for CONCAT_NULL_YIELDS_NULL.
By default, ODBC and OLE DB clients issue a connection-level SET statement setting CONCAT_NULL_YIELDS_NULL to ON for the
session when connecting to SQL Server. For more information, see SET CONCAT_NULL_YIELDS_NULL.

The status of this option can be determined by examining the IsNullConcat property of the DATABASEPROPERTYEX function.

QUOTED_IDENTIFIER

When set to ON (default), identifiers can be delimited by double quotation marks and literals must be delimited by single
quotation marks. All strings delimited by double quotation marks are interpreted as object identifiers. Quoted identifiers do not
have to follow the Transact-SQL rules for identifiers. They can be keywords and can include characters not generally allowed in
Transact-SQL identifiers. If a single quotation mark (') is part of the literal string, it can be represented by double quotation marks
(").

When set to OFF, identifiers cannot be in quotation marks and must follow all Transact-SQL rules for identifiers. Literals can be
delimited by either single or double quotation marks.

SQL Server also allows identifiers to be delimited by square brackets ([]). Bracketed identifiers can always be used, regardless of
the setting of QUOTED_IDENTIFIER. For more information, see Delimited Identifiers.

SET QUOTED_IDENTIFIER must be set to ON when you create or manipulate indexes on computed columns or indexed views.

When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the table's meta data even if the option is set to
OFF when the table is created.

Connection-level settings (set using the SET statement) override the default database setting for QUOTED_IDENTIFIER. By default,
ODBC and OLE DB clients issue a connection-level SET statement setting QUOTED_IDENTIFIER to ON when connecting to SQL
Server. For more information, see SET QUOTED_IDENTIFIER.

The status of this option can be determined by examining the IsQuotedIdentifiersEnabled property of the
DATABASEPROPERTYEX function.

RECURSIVE_TRIGGERS

When set to ON, triggers are allowed to fire recursively. When set to OFF (default), triggers cannot be fired recursively.

Note Only direct recursion is prevented when RECURSIVE_TRIGGERS is set to OFF. To disable indirect recursion, you must also
set the nested triggers server option to 0.

The status of this option can be determined by examining the IsRecursiveTriggersEnabled property of the
DATABASEPROPERTYEX function.

State Options

State options control whether the database is online or offline, who can connect to the database, and whether the database is in
read-only mode. A termination clause can be used to control how connections are terminated when the database is transitioned
from one state to another.

OFFLINE | ONLINE

When OFFLINE is specified, the database is closed and shutdown cleanly and marked offline. The database cannot be modified
while the database is offline.

When ONLINE is specified, the database is open and available for use. ONLINE is the default setting.

The status of this option can be determined by examining the Status property of the DATABASEPROPERTYEX function.

READ_ONLY | READ_WRITE

When READ_ONLY is specified, the database is in read-only mode. Users can retrieve data from the database, but cannot modify
the data. Because a read-only database does not allow data modifications:

Automatic recovery is skipped at system startup.

Shrinking the database is not possible.

No locking takes place in read-only databases, which can result in faster query performance.

When READ_WRITE is specified, users can retrieve and modify data. READ_WRITE is the default setting.

The status of this option can be determined by examining the Updateability property of the DATABASEPROPERTYEX function.

SINGLE_USER | RESTRICTED_USER | MULTI_USER

SINGLE_USER allows one user at a time to connect to the database. All other user connections are broken. The timeframe for
breaking the connection is controlled by the termination clause of the ALTER DATABASE statement. New connection attempts are

refused. The database remains in SINGLE_USER mode even if the user who set the option logs off. At that point, a different user
(but only one) can connect to the database.

To allow multiple connections, the database must be changed to RESTRICTED_USER or MULTI_USER mode.

RESTRICTED_USER allows only members of the db_owner fixed database role and dbcreator and sysadmin fixed server roles to
connect to the database, but it does not limit their number. Users who are not members of these roles are disconnected in the
timeframe specified by the termination clause of the ALTER DATABASE statement. Moreover, new connection attempts by
unqualified users are refused.

MULTI_USER allows all users with the appropriate permissions to connect to the database. MULTI_USER is the default setting.

The status of this option can be determined by examining the UserAccess property of the DATABASEPROPERTYEX function.

WITH <termination>

The termination clause of the ALTER DATABASE statement specifies how to terminate incomplete transactions when the database
is to be transitioned from one state to another. Transactions are terminated by breaking their connections to the database. If the
termination clause is omitted, the ALTER DATABASE statement waits indefinitely, until the transactions commit or roll back on
their own.

ROLLBACK AFTER integer [SECONDS]
ROLLBACK AFTER integer SECONDS waits for the specified number of seconds and then breaks unqualified connections.
Incomplete transactions are rolled back. When the transition is to SINGLE_USER mode, unqualified connections are all
connections except the one issuing the ALTER DATABASE statement. When the transition is to RESTRICTED_USER mode,
unqualified connections are connections for users who are not members of the db_owner fixed database role and dbcreator
and sysadmin fixed server roles.

ROLLBACK IMMEDIATE
ROLLBACK IMMEDIATE breaks unqualified connections immediately. All incomplete transactions are rolled back. Unqualified
connections are the same as those described for ROLLBACK AFTER integer SECONDS.

NO_WAIT
NO_WAIT checks for connections before attempting to change the database state and causes the ALTER DATABASE statement
to fail if certain connections exist. When the transition is to SINGLE_USER mode, the ALTER DATABASE statement fails if any
other connections exist. When the transition is to RESTRICTED_USER mode, the ALTER DATABASE statement fails if any
unqualified connections exist.

To change database options

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

DATABASEPROPERTYEX

SET

sp_configure

sp_dboption

SQL Server Editions

user options Option

Creating and Maintaining Databases (SQL Server 2000)

Creating a Removable Database
In Microsoft® SQL Server™ 2000, you can create a database for read-only purposes that can be distributed by way of removable
media, such as CD-ROM. This can be useful for distributing large databases containing history data, such as a database containing
detailed sales data for the last year.

To create a removable media database, you create the database using the sp_create_removable system stored procedure rather
than using SQL Server Enterprise Manager or the CREATE DATABASE statement.

The sp_create_removable system stored procedure creates three or more files:

One file containing the system tables

One file containing the transaction log

One or more files containing the data tables

Although the database itself is likely to remain on the read-only media, such as CD-ROM, the system tables and transaction log
are placed in separate files on writable media so that management tasks can be accomplished, such as adding users to the
database, granting permissions, and so on.

A database can use multiple removable media devices. However, all media must be available simultaneously. For example, if a
database uses three compact discs, then the system must have three CD-ROM drives and have all discs available when the
database is used.

After the database has been created, you can use the sp_certify_removable system stored procedure to ensure that the database
is configured properly for distribution on removable media. If the database is configured correctly, the database is placed offline,
allowing the files to be copied to the removable media. By placing the database offline, users are prevented from accessing the
database, and no modifications to the database can be made until the database is placed online. To make the database available
again on the same server, place the database online.

After the files have been distributed on removable media, the database can be made available by attaching the files to a different
instance of SQL Server. For more information, see Attaching and Detaching a Database.

To place a database online or offline

Transact-SQL

SQL-DMO

See Also

sp_certify_removable

sp_create_removable

Creating and Maintaining Databases (SQL Server 2000)

Attaching and Detaching a Database
In Microsoft® SQL Server™ 2000, the data and transaction log files of a database can be detached and then reattached to another
server, or even to the same server. Detaching a database removes the database from SQL Server but leaves the database intact
within the data and transaction log files that compose the database. These data and transaction log files can then be used to
attach the database to any instance of SQL Server, including the server from which the database was detached. This makes the
database available in exactly the same state it was in when it was detached.

Detaching and attaching databases is useful if you want to move a database:

From one computer to another without having to re-create the database and then restore the database backup manually.

To a different physical disk, for example, when the disk containing the database file has run out of disk space and you want
to expand the existing file rather than add a new file to the database on the other disk.

To move a database, or database file, to another server or disk:

1. Detach the database.

2. Move the database file(s) to the other server or disk.

3. Attach the database specifying the new location of the moved file(s).

When you attach a database, the name and physical location of the primary data file must be specified. The primary file contains
the information needed to find the other files comprising the database unless one or more of those files have changed location
since the database was detached. Any files that have changed location must be specified in addition to the primary file. Otherwise,
SQL Server tries to attach the files based on incorrect file location information stored in the primary file, and the database will not
be successfully attached.

If you attach a database to a server other than the server from which the database was detached, and the detached database was
enabled for replication, you should run sp_removedbreplication to remove replication from the database. Alternatively, you can
remove replication from the database prior to detaching it.

Errors produced while detaching a database may prevent both the database from closing cleanly and the transaction log from
being rebuilt. If you receive an error message, perform these corrective actions:

1. Reattach all files associated with the database, not just the primary file.

2. Resolve the problem that caused the error message.

3. Detach the database again.

To attach a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To detach a database

Transact-SQL

Enterprise Manager

Enterprise Manager

See Also

Files and Filegroups

Creating and Maintaining Databases (SQL Server 2000)

Attaching a Single-File Database
Attaching a Single-File Database

If a database comprises only a single data file and a single transaction log file, the database can be attached to an instance of
Microsoft® SQL Server™ 2000 without using the transaction log file, provided the database was cleanly shut down with no users
and no open transactions. When the data file is attached, SQL Server creates a new transaction log file automatically.

The database must have been successfully detached from SQL Server using the sp_detach_db system stored procedure.

Single-file databases are useful if you want to e-mail databases to other users. All the data is stored in a single file; attaching the
single file to SQL Server automatically re-creates a transaction log so that the database can be used.

To attach a single-file database

Transact-SQL

SQL-DMO

Creating and Maintaining Databases (SQL Server 2000)

Renaming a Database
In Microsoft® SQL Server™ 2000, you can change the name of a database to be changed. Before you rename a database, you
should make sure that no one is using the database and that the database is set to single-user mode. The name of the database
can include any characters as long as they follow the rules for identifiers.

To rename a database

Transact-SQL

SQL-DMO

See Also

Using Identifiers

https://msdn.microsoft.com/en-us/library/ms947983(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Changing the Database Owner
In Microsoft® SQL Server™ 2000, the owner of the current database can be changed. Any user (SQL Server login or Microsoft
Windows NT® user) who has access to connect to SQL Server can become the owner of a database.

Ownership of the system databases (master, model, and tempdb) cannot be changed.

To change the owner of a database

Transact-SQL

SQL-DMO

Creating and Maintaining Databases (SQL Server 2000)

Transaction Termination for Changing Database States
Microsoft® SQL Server™ 2000 includes the ability to easily shut down or otherwise change the state of a database, automatically
terminating the sessions of affected users and rolling back the associated transactions. Affected sessions may be terminated
immediately, or may be allowed to continue to their normal conclusion with an optional time-out.

It is often necessary to stop or restrict activity on a database to perform maintenance or other operations without taking down the
server, for example:

Single-user mode: only one user is allowed

Restricted-user mode: only members of the db_owner, dbcreator, or sysadmin roles are allowed

Offline: the database is offline

Read-only mode: no changes are allowed

Transitioning into any of these states requires the termination of transactions and the associated sessions that do not meet the
requirements of the new state.

There are three types of transaction termination:

Normal

New transactions are prevented from starting. Incomplete transactions are allowed to commit or rollback on their own.

Normal with time-out

New transactions are prevented from starting. Incomplete transactions are allowed to commit or roll back on their own until
the time-out is reached, at which time they are rolled back.

Immediate

An immediate termination prevents new transactions from starting, and rolls back incomplete transactions unconditionally.

The user initiating the change remains connected and able to perform further commands.

Use the ALTER DATABASE statement to specify the database state and a transaction termination type.

See Also

ALTER DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Viewing a Database
You can view the definition of a database and its configuration settings when you are troubleshooting or considering making
changes to a database.

To view a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the settings for a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view a list of databases on a server

Transact-SQL

Enterprise Manager

Enterprise Manager

Creating and Maintaining Databases (SQL Server 2000)

Displaying Database and Transaction Log Space
Microsoft® SQL Server™ 2000 can display the number of rows, reserved disk space, and disk space used by a table in a database.
SQL Server can also display the reserved disk space that is used by an entire database as well as statistics about the use of
transaction log space in a database. This indicates how much data is in the database, whether the database must be expanded (if
autogrow is not permitted), and how fast the database is growing (if you maintain a history of the data space that is used).

To display data space information for a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To display log space information for a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Creating and Maintaining Databases (SQL Server 2000)

Documenting and Scripting Databases
 New Information - SQL Server 2000 SP3.

With Microsoft® SQL Server™ 2000, you can document an existing database structure (schema) by generating one or more SQL
scripts. An SQL script can be viewed in SQL Server Enterprise Manager, SQL Query Analyzer, or by using any text editor.

A schema generated as an SQL script can be used in many ways, including:

To maintain a backup script that will allow the user to re-create all users, groups, logins, and permissions.

To create or update database development code.

To create a test or development environment from an existing schema.

To train newly hired employees.

SQL scripts contain descriptions of the statements used to create a database and its objects. You can generate scripts from the
objects in an existing database, and then add these objects to another database by running the scripts against that database. In
effect, this re-creates the whole database structure and any individual database objects. The schema of the following objects can
be generated and saved as a script.

Tables User-defined data types
Indexes Triggers
Views Users, groups, and roles
Stored procedures Logins
Defaults Rules
Table keys/declarative referential
integrity (DRI)

Object-level permissions

Full-text indexes

The schema for the objects generated can be saved in a single SQL Script file, or in several files with each file containing the
schema of just one object. You can also save the schema generated for a single object (or a group of objects) into one or more
SQL script files. Examples of SQL script files that you can generate include:

An entire database saved into a single SQL script file.

Table-only schema for one, some, or all tables in a database saved into one or more SQL script files.

Table and index schema saved into one SQL script file, stored procedures saved into another SQL script file, and defaults
and rules saved into yet another SQL script file.

Security Note Script files may contain credentials or other sensitive information stored in plain text. Keep script files in a
secure location.

To generate a script

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

ALTER DATABASE

Creating and Maintaining Databases (SQL Server 2000)

Database Maintenance Plan Wizard
The Database Maintenance Plan Wizard can be used to help you set up the core maintenance tasks necessary to ensure that your
database performs well, is regularly backed up in case of system failure, and is checked for inconsistencies. The Database
Maintenance Plan Wizard creates a Microsoft® SQL Server™ 2000 job that performs these maintenance tasks automatically at
scheduled intervals.

The maintenance tasks that can be scheduled to run automatically are:

Reorganizing the data on the data and index pages by rebuilding indexes with a new fill factor. This ensures that database
pages contain an equally distributed amount of data and free space, which allows future growth to be faster. For more
information, see Fill Factor.

Compressing data files by removing empty database pages.

Updating index statistics to ensure the query optimizer has up-to-date information about the distribution of data values in
the tables. This allows the query optimizer to make better judgments about the best way to access data because it has more
information about the data stored in the database. Although index statistics are automatically updated by SQL Server
periodically, this option can force the statistics to be updated immediately.

Performing internal consistency checks of the data and data pages within the database to ensure that a system or software
problem has not damaged data.

Backing up the database and transaction log files. Database and log backups can be retained for a specified period. This
allows you to create a history of backups to be used in the event that you need to restore the database to a time earlier than
the last database backup.

Setting up log shipping. Log shipping allows the transaction logs from one database (the source) to be constantly fed to
another database (the destination). Keeping the destination database in synchronization with the source database allows
you to have a standby server, and also provides a way to offload query processing from the main computer (source server)
to read-only destination servers.

The results generated by the maintenance tasks can be written as a report to a text file, HTML file, or the
sysdbmaintplan_history tables in the msdb database. The report can also be e-mailed to an operator.

To start the Database Maintenance Plan Wizard

Enterprise Manager

Enterprise Manager

To configure log shipping

Enterprise Manager

Enterprise Manager

Creating and Maintaining Databases (SQL Server 2000)

Deleting a Database
You can delete a nonsystem database when it is no longer needed or if it is moved to another database or server. When a
database is deleted, the files and their data are deleted from the disk on the server. When a database is deleted, it is permanently
deleted and cannot be retrieved without using a previous backup. System databases (msdb, master, model, tempdb) cannot be
deleted.

It is recommended that you back up the master database after a database is deleted, because deleting a database updates the
system tables in master. If master needs to be restored, any database that has been deleted since the last backup of master will
still have references in the system tables and may cause error messages to be raised.

To delete a database

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To create a database backup

Transact-SQL

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Backing Up and Restoring Databases

Creating and Maintaining Databases (SQL Server 2000)

Tables
Tables are database objects that contain all the data in a database. A table definition is a collection of columns. In tables, data is
organized in a row-and-column format similar to a spreadsheet. Each row represents a unique record, and each column
represents a field within the record. For example, a table containing employee data for a company can contain a row for each
employee and columns representing employee information such as employee number, name, address, job title, and home phone
number.

Creating and Maintaining Databases (SQL Server 2000)

Designing Tables
When you design a database, you decide what tables you need, what type of data goes in each table, who can access each table,
and so on. As you create and work with tables, you continue to make more detailed decisions about them.

The most efficient way to create a table is to define everything you need in the table at one time, including its data restrictions and
additional components. However, you can also create a basic table, add some data to it, and then work with it for a while. This
approach gives you a chance to see what types of transactions are most common and what types of data are frequently entered
before you commit to a firm design by adding constraints, indexes, defaults, rules, and other objects.

It is a good idea to outline your plans on paper before creating a table and its objects. Decisions that must be made include:

Types of data the table will contain.

Columns in the table and the data type (and length, if required) for each column.

Which columns accept null values.

Whether and where to use constraints or defaults and rules.

Types of indexes needed, where required, and which columns are primary keys and which are foreign keys.

See Also

Indexes

Creating and Maintaining Databases (SQL Server 2000)

Specifying a Column Data Type
Assigning a data type to each column is one of the first steps to take in designing a table. Data types define the data value allowed
for each column. To assign a data type to a column, you can use Microsoft® SQL Server™ 2000 base data types or create your
own user-defined data types based on these system data types. For example, if you want to include only names in a column, you
can assign a character data type to the column. Similarly, if you want a column to contain only numbers, you can assign a numeric
data type. For more information about user-defined data types, see Creating User-Defined Data Types.

SQL Server also supports SQL-92 synonyms for several base data types. For more information, see Data Type Synonyms.

Enforcing Data Integrity

System and user-defined data types can be used to enforce data integrity, because the data entered or changed must conform to
the type specified in the original CREATE TABLE statement. For example, you cannot store a surname in a column defined as
datetime because a datetime column accepts only valid dates. For the most part, keep numeric data in numeric columns,
especially if calculations must be performed on the numeric data at a later date.

Creating and Maintaining Databases (SQL Server 2000)

Binary Data
Binary Data

Binary data consists of hexadecimal numbers. For example, the decimal number 245 is hexadecimal F5. Binary data is stored using
the binary, varbinary, and image data types in Microsoft® SQL Server™ 2000. A column assigned the binary data type must
have the same fixed length (up to 8 KB) for each row. In a column assigned the varbinary data type, entries can vary in the
number of hexadecimal digits (up to 8 KB) they contain. Columns of image data can be used to store variable-length binary data
exceeding 8 KB, such as Microsoft Word documents, Microsoft Excel spreadsheets, and images that include bitmaps, Graphics
Interchange Format (GIF), and Joint Photographic Experts Group (JPEG) files.

In general, use varbinary for storing binary data, unless the length of the data exceeds 8 KB, in which case you should use image.
It is recommended that the defined length of a binary column be no larger than the expected maximum length of the binary data
to be stored.

See Also

binary and varbinary

image

Using Binary Data

Using Data Types

Using text and image Data

Creating and Maintaining Databases (SQL Server 2000)

Character Data
Character Data

Character data consists of any combination of letters, symbols, and numeric characters. For example, valid character data includes
"928", "Johnson", and "(0*&(%B99nh jkJ". In Microsoft® SQL Server™ 2000, character data is stored using the char, varchar, and
text data types.

The storage size of char is a specified number of bytes, not to exceed 8,000. For varchar, the storage size is the actual length in
bytes of the data entered, again not to exceed 8,000 bytes. Storage size of text also depends on the length of the data entered, but
can store up to 231-1 (2,147,483,647) bytes.

Use varchar when the entries in a column vary in the number of characters they contain, but the length of any entry does not
exceed 8 kilobytes (KB). Use char when every entry for a column has the same fixed length (up to 8 KB). Columns of text data can
be used to store ASCII characters longer than 8 KB. For example, because HTML documents are all ASCII characters and usually
longer than 8 KB, they can be stored in text columns in SQL Server prior to being viewed in a browser.

It is recommended that the defined length of a character column be no larger than the maximum expected length of the character
data to be stored.

To store international character data in SQL Server, use the nchar, nvarchar, and ntext data types.

See Also

char and varchar

ntext, text, and image

Using char and varchar Data

Using Data Types

Using text and image Data

Using Unicode Data

Creating and Maintaining Databases (SQL Server 2000)

Unicode Data
Unicode Data

Traditional non-Unicode data types in Microsoft® SQL Server™ 2000 allow the use of characters that are defined by a particular
character set. A character set is chosen during SQL Server Setup and cannot be changed. Using Unicode data types, a column can
store any character defined by the Unicode Standard, which includes all of the characters defined in the various character sets.
Unicode data types take twice as much storage space as non-Unicode data types.

Unicode data is stored using the nchar, nvarchar, and ntext data types in SQL Server. Use these data types for columns that
store characters from more than one character set. Use nvarchar when a column's entries vary in the number of Unicode
characters (up to 4,000) they contain. Use nchar when every entry for a column has the same fixed length (up to 4,000 Unicode
characters). Use ntext when any entry for a column is longer than 4,000 Unicode characters.

Note The SQL Server Unicode data types are based on the National Character data types in the SQL-92 standard. SQL-92 uses
the prefix character n to identify these data types and values.

See Also

Collations

nchar and nvarchar

ntext, text, and image

Using Unicode Data

Creating and Maintaining Databases (SQL Server 2000)

Date and Time Data
Date and Time Data

Date and time data consists of valid date or time combinations. For example, valid date and time data includes both "4/01/98
12:15:00:00:00 PM" and "1:28:29:15:01 AM 8/17/98". Date and time data is stored using the datetime and smalldatetime data
types in Microsoft® SQL Server™ 2000. Use datetime to store dates in the range from January 1, 1753 through December 31,
9999 (requires 8 bytes of storage per value). Use smalldatetime to store dates in the range from January 1, 1900 through June
6, 2079 (requires 4 bytes of storage per value).

See Also

datetime and smalldatetime

Using Data Types

Using Date and Time Data

Creating and Maintaining Databases (SQL Server 2000)

Numeric Data
Numeric Data

Numeric data consists of numbers only. Numeric data includes positive and negative numbers, decimal and fractional numbers,
and whole numbers (integers).

Integer Data

Integer data consists of negative or positive whole numbers, such as -15, 0, 5, and 2509. Integer data is stored using the bigint,
int, smallint, and tinyint data types in Microsoft® SQL Server™ 2000. The bigint data type can store a larger range of numbers
than the int data type. The int data type can store a larger range of integers than smallint, which can store a larger range of
numbers than tinyint.

Use the bigint data type to store numbers in the range from -2^63 (-9,223,372,036,854,775,808) through 2^63-1
(9,223,372,036,854,775,807). Storage size is 8 bytes.

Use the int data type to store numbers in the range from -2,147,483,648 through 2,147,483,647 only (requires 4 bytes of storage
per value).

Use the smallint data type to store numbers in the range from -32,768 through 32,767 only (requires 2 bytes of storage per
value), and the tinyint data type to store numbers in the range from 0 through 255 only (requires 1 byte of storage per value).

Decimal Data

Decimal data consists of data that is stored to the least significant digit. Decimal data is stored using decimal or numeric data
types in SQL Server. The number of bytes required to store a decimal or numeric value depends on the total number of digits
for the data and the number of decimal digits to the right of the decimal point. For example, more bytes are required to store the
value 19283.29383 than to store the value 1.1.

In SQL Server, the numeric data type is equivalent to the decimal data type.

Approximate Numeric Data

Approximate numeric (floating-point) data consists of data preserved as accurately as the binary numbering system can offer.
Approximate numeric data is stored using the float and real data types in SQL Server. For example, because the fraction one-
third in decimal notation is .333333 (repeating), this value cannot be represented precisely using approximate decimal data.
Therefore, the value retrieved from SQL Server may not be exactly what was stored originally in the column. Additional examples
of numeric approximations are floating-point values ending in .3, .6, and .7.

See Also

decimal and numeric

float and real

int, bigint, smallint, and tinyint

Using Data Types

Using decimal, float, and real Data

Using Integer Data

Creating and Maintaining Databases (SQL Server 2000)

Monetary Data
Monetary Data

Monetary data represents positive or negative amounts of money. In Microsoft® SQL Server™ 2000, monetary data is stored
using the money and smallmoney data types. Monetary data can be stored to an accuracy of four decimal places. Use the
money data type to store values in the range from -922,337,203,685,477.5808 through +922,337,203,685,477.5807 (requires 8
bytes to store a value). Use the smallmoney data type to store values in the range from -214,748.3648 through 214,748.3647
(requires 4 bytes to store a value). If a greater number of decimal places are required, use the decimal data type instead.

See Also

money and smallmoney

Using Data Types

Using Monetary Data

Creating and Maintaining Databases (SQL Server 2000)

Special Data
Special Data

Special data consists of data that does not fit any of the categories of data such as binary data, character data, Unicode data, date
and time data, numeric data and monetary data.

Microsoft® SQL Server™ 2000 includes four types of special data:

timestamp

Is used to indicate the sequence of SQL Server activity on a row, represented as an increasing number in a binary format. As
a row is modified in a table, the timestamp is updated with the current database timestamp value obtained from the
@@DBTS function. timestamp data is not related to the date and time of an insert or change to data. To automatically
record times that data modifications take place in a table, use either a datetime or smalldatetime data type to record the
events and triggers.

Note In SQL Server, rowversion is a synonym for timestamp.

bit

Consists of either a 1 or a 0. Use the bit data type when representing TRUE or FALSE, or YES or NO. For example, a client
questionnaire that asks if this is the client's first visit can be stored in a bit column.

uniqueidentifier

Consists of a 16-byte hexadecimal number indicating a globally unique identifier (GUID). The GUID is useful when a row
must be unique among many other rows. For example, use the uniqueidentifier data type for a customer identification
number column to compile a master company customer list from multiple countries/regions.

sql_variant

A data type that stores values of various SQL Server–supported data types, except text, ntext, timestamp, image, and
sql_variant.

table

A special data type used to store a result set for later processing. The table data type can be used only to define local
variables of type table or the return value of a user-defined function.

user-defined

Allows a user-defined data type, product_code, for example, that is based on the char data type and defined as two
uppercase letters followed by a five-digit supplier number.

See Also

bit

sql_variant

table

timestamp

uniqueidentifier

Using Data Types

Using Special Data

Using uniqueidentifier Data

Creating and Maintaining Databases (SQL Server 2000)

Creating User-Defined Data Types
Creating User-Defined Data Types

User-defined data types are based on the system data types in Microsoft® SQL Server™ 2000. User-defined data types can be
used when several tables must store the same type of data in a column and you must ensure that these columns have exactly the
same data type, length, and nullability. For example, a user-defined data type called postal_code could be created based on the
char data type. User-defined data types are not supported in table variables.

When a user-defined data type is created, you must supply these parameters:

Name

System data type upon which the new data type is based

Nullability (whether the data type allows null values)

When nullability is not explicitly defined, it will be assigned based on the ANSI null default setting for the database or
connection.

Note If a user-defined data type is created in the model database, it exists in all new user-defined databases. However, if the
data type is created in a user-defined database, the data type exists only in that user-defined database.

To create user-defined data types

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To delete user-defined data types

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

ALTER TABLE

CREATE TABLE

Using Data Types

Creating and Maintaining Databases (SQL Server 2000)

Text in Row Data
Microsoft® SQL Server™ 2000 supports the ability to store small to medium text, ntext, and image values in a data row. The
feature is best used for tables in which the data in text, ntext, and image columns is usually read or written in one unit and most
statements referencing the table use the text, ntext, and image data.

Unless the text in row option is specified, text, ntext, or image strings are large character or binary strings (up to 2 gigabytes)
stored outside a data row. The data row contains only a 16-byte text pointer that points to the root node of a tree built of internal
pointers that map the pages in which the string fragments are stored. For more information about the storage of text, ntext, or
image strings, see text, ntext, and image Data.

You can set a text in row option for tables containing text, ntext, or image columns. You can also specify a text in row option
limit, from 24 through 7,000 bytes. With this option set, text, ntext, or image strings are stored directly in the data row if:

The length of the string is shorter than the specified limit.

There is enough space available in the data row to hold the string.

When the text, ntext, or image string is stored in the data row, SQL Server does not have to access a separate page or set of
pages to read or write the string. This makes reading and writing the text, ntext, or image in-row strings about as fast as reading
or writing varchar, nvarchar, or varbinary strings.

If a text, ntext, or image string is longer than the text in row option limit or the available space in the row, the set of pointers
that are otherwise stored in the root node of the pointer tree are stored in the row. The pointers are stored in the row if:

The amount of space needed to store the pointers is shorter than the specified text in row option limit.

There is enough space available in the data row to hold the pointers.

When pointers are moved from the root node to the row itself, SQL Server does not have to use a root node. This can eliminate a
page access when reading or writing the string, which speeds processing.

When root nodes are used, they are stored as one of the string fragments in a text, ntext, or image page and can hold up to five
internal pointers. SQL Server needs 72 bytes of space in the row to store five pointers for an in-row string. If there is not enough
space in the row to hold the pointers when the text in row option is on, SQL Server may have to allocate an 8-K page to hold
them. You should not set the text in row limit to less than 72 unless you are certain that all strings stored in the column are either
short or over 3 MB.

When text, ntext, or image strings are stored in the row, they are stored similarly to variable-length strings. For example, if the
text in row option limit is 500 bytes and you store a 200-byte string in a row, SQL Server uses only the number of bytes needed
to store the string. If a string is inserted that is longer than 500 bytes, so that pointers are stored in the row, SQL Server uses only
enough space to hold the pointers and not the entire 500 bytes.

If a table has multiple text, ntext, or image columns, and you attempt to insert multiple text, ntext, or image strings, SQL
Server assigns space to the strings one at a time in sequence based on column ID. For example, assume you have a table
containing four text columns and you have set the text in row option limit to 1000. You then insert a row with a 900-byte string
for each text column, and enough data for all of the other columns in the table, leaving only 3,000 bytes of free space in the row
to hold the text strings. The strings for the first three text columns are stored in the row, using 2,700 bytes of the 3,000 bytes
available. The string for the fourth text column is not stored in the row, but the pointers from the root node are stored in the row.

Enabling and Disabling the text in row Option

You can enable the text in row option for a table by using sp_tableoption:

sp_tableoption N'MyTable', 'text in row', 'ON'

Optionally, you can specify a maximum limit, from 24 through 7,000 bytes, for the length of a text, ntext, and image string that
can be stored in a data row:

sp_tableoption N'MyTable', 'text in row', '1000'

If you specify on instead of a specific limit, the limit defaults to 256 bytes. This default value allows you most of the performance
benefits that can be gained from the text in row option. Although you generally should not set the value below 72, you also
should not set the value too high, especially for tables in which most statements do not reference the text, ntext, and image
columns, or in which there are multiple text, ntext, and image columns. If you set a large text in row limit, and many strings are

stored in the row itself, you can significantly reduce the number of data rows that fit on each page. If most statements referencing
the table do not access the text, ntext, or image columns, decreasing the rows in a page can increase the pages that must be
read to process queries. Reducing the rows per page can increase the size of indexes and the pages that might need to be scanned
if the optimizer finds no usable index. The text in row limit default value of 256 is large enough to ensure that small strings and
the root text pointers can be stored in the rows, but not so large that it decreases the rows per page enough to affect
performance.

You can also use sp_tableoption to turn the option off by specifying an option value of either off or 0:

sp_tableoption N'MyTable', 'text in row', 'OFF'

Effects of the text in row Option

The text in row option has these effects:

After you have turned on the text in row option, you can use the TEXTPRT, READTEXT, UPDATETEXT or WRITETEXT
statements, to read or modify parts of any text, ntext, or image value stored in the table. In SELECT statements you can
read an entire text, ntext, or image string, or use the SUBSTRING function to read parts of the string. All INSERT or
UPDATE statements referencing the table must specify complete strings and cannot modify only a part of a text, ntext, or
image string.

When the text in row option is first enabled, existing text, ntext, or image strings are not immediately converted to in-
row strings. The strings are converted to in-row strings only if they are subsequently updated. Any text, ntext, or image
string inserted after the text in row option is turned on is inserted as an in-row string.

Turning off the text in row option can be a long-running, logged operation. The table is locked and all in-row text, ntext,
and image strings are converted to regular text, ntext, and image strings. The length of time the command must run and
the amount of data modified depends on how many text, ntext, and image strings must be converted from in-row strings
to regular strings.

The text in row option does not affect the operation of the OLE DB Provider for SQL Server or the SQL Server ODBC driver,
other than to speed access to the text, ntext, and image data.

The DB-Library text and image functions, such as dbreadtext and dbwritetext, cannot be used on a table after the text in
row option has been turned on.

The text in row option is set to 256 automatically for:

Variables with a table data type.

Tables returned by user-defined functions that return a table.

This setting cannot be changed.

Creating and Maintaining Databases (SQL Server 2000)

Autonumbering and Identifier Columns
For each table, a single identifier column can be created that contains system-generated sequential values that uniquely identify
each row within the table. For example, an identifier column can generate unique customer receipt numbers for an application
automatically as rows are inserted into the table. Identifier columns usually contain values unique within the table on which they
are defined. This means that other tables containing identifier columns can contain the same identity values used by another
table. However, this is usually not a problem because the identifier values are typically used only within the context of a single
table, and the identifier columns do not relate to other identifier columns in other tables.

A single, globally unique, identifier column can be created per table that contains values unique across all networked computers
in the world. A column guaranteed to contain globally unique values is often useful when similar data from multiple database
systems must be merged (for example, in a customer billing system with data located in various company subsidiaries around the
world). When the data is merged into the central site for consolidation and reporting, using globally unique values prevents
customers in different countries/regions from having the same billing number or customer ID.

Microsoft® SQL Server™ 2000 uses globally unique identifier columns for merge replication to ensure that rows are uniquely
identified across multiple copies of the table.

See Also

Creating and Modifying Identifier Columns

Merge Replication

NEWID

uniqueidentifier

Using Uniqueidentifier Data

Creating and Maintaining Databases (SQL Server 2000)

Using Constraints, Defaults, and Null Values
Planning tables requires identifying valid values for a column and deciding how to enforce the integrity of the data in the column.
Microsoft® SQL Server™ 2000 provides several mechanisms to enforce the integrity of the data in a column:

PRIMARY KEY constraints

FOREIGN KEY constraints

UNIQUE constraints

CHECK constraints

DEFAULT definitions

Nullability

See Also

Data Integrity

Creating and Maintaining Databases (SQL Server 2000)

PRIMARY KEY Constraints
PRIMARY KEY Constraints

A table usually has a column or combination of columns whose values uniquely identify each row in the table. This column (or
columns) is called the primary key of the table and enforces the entity integrity of the table. You can create a primary key by
defining a PRIMARY KEY constraint when you create or alter a table.

A table can have only one PRIMARY KEY constraint, and a column that participates in the PRIMARY KEY constraint cannot accept
null values. Because PRIMARY KEY constraints ensure unique data, they are often defined for identity column.

When you specify a PRIMARY KEY constraint for a table, Microsoft® SQL Server™ 2000 enforces data uniqueness by creating a
unique index for the primary key columns. This index also permits fast access to data when the primary key is used in queries.

If a PRIMARY KEY constraint is defined on more than one column, values may be duplicated within one column, but each
combination of values from all the columns in the PRIMARY KEY constraint definition must be unique.

As shown in the following illustration, the au_id and title_id columns in the titleauthor table form a composite PRIMARY KEY
constraint for the titleauthor table, which ensures that the combination of au_id and title_id is unique.

When you work with joins, PRIMARY KEY constraints relate one table to another. For example, to determine which authors have
written which books, you can use a three-way join between the authors table, the titles table, and the titleauthor table. Because
titleauthor contains columns for both the au_id and title_id columns, the titles table can be accessed by the relationship
between titleauthor and titles.

See Also

Creating and Modifying PRIMARY KEY Constraints

Creating and Maintaining Databases (SQL Server 2000)

FOREIGN KEY Constraints
FOREIGN KEY Constraints

A foreign key (FK) is a column or combination of columns used to establish and enforce a link between the data in two tables. A
link is created between two tables by adding the column or columns that hold one table's primary key values to the other table.
This column becomes a foreign key in the second table.

You can create a foreign key by defining a FOREIGN KEY constraint when you create or alter a table.

For example, the titles table in the pubs database has a link to the publishers table because there is a logical relationship
between books and publishers. The pub_id column in the titles table matches the primary key column of the publishers table.
The pub_id column in the titles table is the foreign key to the publishers table.

A FOREIGN KEY constraint does not have to be linked only to a PRIMARY KEY constraint in another table; it can also be defined to
reference the columns of a UNIQUE constraint in another table. A FOREIGN KEY constraint can contain null values; however, if any
column of a composite FOREIGN KEY constraint contains null values, then verification of the FOREIGN KEY constraint will be
skipped.

Note A FOREIGN KEY constraint can reference columns in tables in the same database or within the same table (self-referencing
tables), for example, an employee table that contains three columns: employee_number, employee_name, and
manager_employee_number. Because the manager is an employee too, there is a foreign key relationship from the
manager_employee_number column to the employee_number column.

Although the primary purpose of a FOREIGN KEY constraint is to control the data that can be stored in the foreign key table, it
also controls changes to data in the primary key table. For example, if the row for a publisher is deleted from the publishers
table, and the publisher's ID is used for books in the titles table, the relational integrity between the two tables is broken; the
deleted publisher's books are orphaned in the titles table without a link to the data in the publishers table. A FOREIGN KEY
constraint prevents this situation. The constraint enforces referential integrity by ensuring that changes cannot be made to data in
the primary key table if those changes invalidate the link to data in the foreign key table. If an attempt is made to delete the row in
a primary key table or to change a primary key value, the action will fail if the deleted or changed primary key value corresponds
to a value in the FOREIGN KEY constraint of another table. To change or delete a row in a FOREIGN KEY constraint successfully,
you must first either delete the foreign key data in the foreign key table or change the foreign key data in the foreign key table,
thereby linking the foreign key to different primary key data.

A FOREIGN KEY constraint is a candidate for an index because:

Changes to PRIMARY KEY constraints are checked with FOREIGN KEY constraints in related tables.

Foreign key columns are often used in join criteria when the data from related tables is combined in queries by matching
the column(s) in the FOREIGN KEY constraint of one table with the primary or unique key column(s) in the other table. An
index allows Microsoft® SQL Server™ 2000 to find related data in the foreign key table quickly. However, creating this index
is not a requirement. Data from two related tables can be combined even if no PRIMARY KEY or FOREIGN KEY constraints
are defined between the tables, but a foreign key relationship between two tables indicates that the two tables have been
optimized to be combined in a query that uses the keys as its criteria. For more information about using FOREIGN KEY
constraints with joins, see Join Fundamentals.

See Also

Creating and Modifying FOREIGN KEY Constraints

Indexes

Creating and Maintaining Databases (SQL Server 2000)

Cascading Referential Integrity Constraints
Cascading Referential Integrity Constraints

Cascading referential integrity constraints allow you to define the actions Microsoft® SQL Server™ 2000 takes when a user
attempts to delete or update a key to which existing foreign keys point.

The REFERENCES clauses of the CREATE TABLE and ALTER TABLE statements support ON DELETE and ON UPDATE clauses:

[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]

NO ACTION is the default if ON DELETE or ON UPDATE is not specified. NO ACTION specifies the same behavior that occurs in
earlier versions of SQL Server.

ON DELETE NO ACTION

Specifies that if an attempt is made to delete a row with a key referenced by foreign keys in existing rows in other tables, an error
is raised and the DELETE is rolled back.

ON UPDATE NO ACTION

Specifies that if an attempt is made to update a key value in a row whose key is referenced by foreign keys in existing rows in
other tables, an error is raised and the UPDATE is rolled back.

CASCADE allows deletions or updates of key values to cascade through the tables defined to have foreign key relationships that
can be traced back to the table on which the modification is performed. CASCADE cannot be specified for any foreign keys or
primary keys that have a timestamp column.

ON DELETE CASCADE

Specifies that if an attempt is made to delete a row with a key referenced by foreign keys in existing rows in other tables, all rows
containing those foreign keys are also deleted. If cascading referential actions have also been defined on the target tables, the
specified cascading actions are also taken for the rows deleted from those tables.

ON UPDATE CASCADE

Specifies that if an attempt is made to update a key value in a row, where the key value is referenced by foreign keys in existing
rows in other tables, all of the foreign key values are also updated to the new value specified for the key. If cascading referential
actions have also been defined on the target tables, the specified cascading actions are also taken for the key values updated in
those tables.

Examples of cascading referential actions can be based on the FK_Products_Suppliers constraint on the Products table in
Northwind. This constraint establishes a foreign key relationship from the SupplierID column in the Products table to the
SupplierID primary key column in the Suppliers table. If ON DELETE CASCADE is specified for the constraint, deleting the row in
Suppliers where SupplierID equals 1 also deletes the three rows in Products where SupplierID equals 1. If ON UPDATE
CASCADE is specified for the constraint, updating the SupplierID value in the Suppliers table from 1 through 55 also updates
the SupplierID values in the three rows in Products whose SupplierID values currently equal 1.

Cascading actions cannot be specified for a table that has an INSTEAD OF UPDATE or INSTEAD OF DELETE trigger. After a
cascading action has been defined for a table, an INSTEAD OF UPDATE or INSTEAD OF DELETE trigger cannot be added to it.

Multiple Cascading Actions

Individual DELETE or UPDATE statements can start a series of cascading referential actions. For example, a database contains three
tables, TableA, TableB, and TableC. A foreign key in TableB is defined with ON DELETE CASCADE against the primary key in
TableA. A foreign key in TableC is defined with ON DELETE CASCADE against the primary key in TableB. If a DELETE statement
deletes rows in TableA, the operation also deletes any rows in TableB that have foreign keys matching the deleted primary keys
in TableA, and then deletes any rows in TableC that have foreign keys that match the deleted primary keys in TableB.

The series of cascading referential actions triggered by a single DELETE or UPDATE must form a tree containing no circular
references. No table can appear more than once in the list of all cascading referential actions that result from the DELETE or
UPDATE. The tree of cascading referential actions must not have more than one path to any given table. Any branch of the tree is
terminated when it encounters a table for which NO ACTION has been specified or is the default.

Triggers and Cascading Referential Actions

Cascading referential actions fire the AFTER triggers in this sequence:

1. All of the cascading referential actions directly caused by the original DELETE or UPDATE are performed first.

2. When the original cascading referential actions have completed, the AFTER triggers on the original table are fired,
regardless of whether any rows were updated.

3. AFTER triggers on tables in the chain of cascaded referential actions are then fired, but only if one or more rows in the table
have been updated or deleted.

If any errors are generated by any of the original set of cascading referential actions, an error is raised, no AFTER triggers are
fired, and the DELETE or UPDATE is rolled back.

An AFTER trigger can execute a DELETE or UPDATE statement that starts another chain of cascading referential actions. Each
secondary chain of referential actions is treated independently. These secondary chains of referential actions behave like the
primary chain. All of the secondary referential actions are completed before any secondary triggers are fired. Within each
independent unit, there is no defined order in which the cascading referential actions are executed and the affected triggers are
fired.

A table that has an INSTEAD OF trigger cannot also have a REFERENCES clause that specifies a cascading action. An AFTER trigger
on a table targeted by a cascading action, however, can execute an INSERT, UPDATE, or DELETE statement on another table or
view that fires an INSTEAD OF trigger defined on that object.

Cascading Referential Constraints Catalog Information

The following catalog information is available about cascading referential constraints.

The Transact-SQL OBJECTPROPERTY function supports these new values for the property parameter.

Value Object Description
CnstIsDeleteCascade Constraint FOREIGN KEY constraint defined with ON

DELETE CASCADE
CnstIsUpdateCascade Constraint FOREIGN KEY constraint defined with ON

UPDATE CASCADE

The REFERENTIAL_CONSTRAINTS information schema view returns CASCADE in the UPDATE_RULE or DELETE_RULE column
when either ON UPDATE CASCADE or ON DELETE CASCADE is specified. NO ACTION is returned when either ON UPDATE NO
ACTION or ON DELETE NO ACTION is specified, or if ON UPDATE or ON DELETE is not specified at all.

The UPDATE_RULE and DELETE_RULE columns returned by sp_fkeys and sp_foreignkeys are set to 0 when CASCADE is
specified, and return 1 when NO ACTION is specified or is the default.

When a foreign key is specified as the object of sp_help, the output result set contains these new columns.

Column name Data type Description
delete_action nvarchar(9) Indicates whether the delete action is

CASCADE, NO ACTION, or N/A (not
applicable).

update_action nvarchar(9) Indicates whether the update action is
CASCADE, NO ACTION, or N/A (not
applicable).

Creating and Maintaining Databases (SQL Server 2000)

UNIQUE Constraints
UNIQUE Constraints

You can use UNIQUE constraints to ensure that no duplicate values are entered in specific columns that do not participate in a
primary key. Although both a UNIQUE constraint and a PRIMARY KEY constraint enforce uniqueness, use a UNIQUE constraint
instead of a PRIMARY KEY constraint when you want to enforce the uniqueness of a column, or combination of columns, that is
not the primary key.

Multiple UNIQUE constraints can be defined on a table, whereas only one PRIMARY KEY constraint can be defined on a table.

Also, unlike PRIMARY KEY constraints, UNIQUE constraints allow the value NULL. However, as with any value participating in a
UNIQUE constraint, only one NULL value is allowed per column.

A UNIQUE constraint can also be referenced by a FOREIGN KEY constraint.

See Also

Creating and Modifying UNIQUE Constraints

Creating and Maintaining Databases (SQL Server 2000)

CHECK Constraints
CHECK Constraints

CHECK constraints enforce domain integrity by limiting the values that are accepted by a column. They are similar to FOREIGN
KEY constraints in that they control the values that are placed in a column. The difference is in how they determine which values
are valid: FOREIGN KEY constraints get the list of valid values from another table, and CHECK constraints determine the valid
values from a logical expression that is not based on data in another column. For example, it is possible to limit the range of
values for a salary column by creating a CHECK constraint that allows only data that ranges from $15,000 through $100,000. This
prevents salaries from being entered beyond the normal salary range.

You can create a CHECK constraint with any logical (Boolean) expression that returns TRUE or FALSE based on the logical
operators. For the previous example, the logical expression is:

salary >= 15000 AND salary <= 100000

It is possible to apply multiple CHECK constraints to a single column. These are evaluated in the order in which created. It is also
possible to apply a single CHECK constraint to multiple columns by creating it at the table level. For example, a multiple-column
CHECK constraint can be used to confirm that any row with a country column value of USA also has a two-character value in the
state column. This allows multiple conditions to be checked in one place.

See Also

Creating and Modifying CHECK Constraints

Creating and Maintaining Databases (SQL Server 2000)

DEFAULT Definitions
DEFAULT Definitions

Each column in a record must contain a value, even if that value is NULL. There are situations when you need to load a row of data
into a table but you do not know the value for a column, or the value does not yet exist. If the column allows null values, you can
load the row with a null value. Because nullable columns may not be desirable, a better solution can be to define, where
appropriate, a DEFAULT definition for the column. For example, it is common to specify zero as the default for numeric columns,
or N/A as the default for string columns when no value is specified.

When you load a row into a table with a DEFAULT definition for a column, you implicitly instruct Microsoft® SQL Server™ 2000
to load a default value in the column when you do not specify a value for the column.

Note You can also explicitly instruct SQL Server to insert the default value for the column using the DEFAULT VALUES clause of
the INSERT STATEMENT.

If a column does not allow null values and does not have a DEFAULT definition, you must specify a value for the column explicitly
or SQL Server will return an error indicating that the column does not allow null values.

The value inserted into a column defined by the combination of the DEFAULT definition, the nullability of the column, and the
value inserted into the column can be summarized.

Column definition
No entry,

no DEFAULT definition
No entry,

DEFAULT definition
Enter a

null value
Allows null values NULL Default value NULL
Disallows null values Error Default value Error

DEFAULT Objects

A DEFAULT object is defined for a specific database and is shared by columns of different tables by being bound to each column
to which the default applies. For example, if several of your tables have a quantity column, you can define a DEFAULT object in
your database that inserts a value of 1 in the quantity column when the user leaves that column blank in any table.

If a DEFAULT object is bound to a column, you can specify a different default value for that column in a specific table. This unbinds
the existing DEFAULT object from the column before the new default value is bound to the column.

See Also

Allowing Null Values

Creating and Modifying DEFAULT Definitions

Creating and Maintaining Databases (SQL Server 2000)

Allowing Null Values
Allowing Null Values

The nullability of a column determines if the rows in the table can contain a null value for that column. A null value, or NULL, is
not the same as zero (0), blank, or a zero-length character string such as ""; NULL means that no entry has been made. The
presence NULL usually implies that the value is either unknown or undefined. For example, a null value in the price column of the
titles table of the pubs database does not mean that the book has no price; NULL means that the price is unknown or has not
been set. In general, avoid permitting null values because they incur more complexity in queries and updates and because there
are other column options, such as PRIMARY KEY constraints, that cannot be used with nullable columns.

If a row is inserted but no value is included for a column that allows null values, Microsoft® SQL Server™ 2000 supplies the value
NULL (unless a DEFAULT definition or object exists). A column defined with the keyword NULL also accepts an explicit entry of
NULL from the user, no matter what data type it is or if it has a default associated with it. The value NULL should not be placed
within quotation marks because it will be interpreted as the character string 'NULL', rather than the null value.

Specifying a column as not permitting null values can help maintain data integrity by ensuring that a column in a row always
contains data. If null values are not allowed, the user entering data in the table must enter a value in the column or the table row
cannot be accepted into the database.

Note Columns defined with a PRIMARY KEY constraint or IDENTITY property cannot allow null values.

See Also

Null Values

Column Properties

https://msdn.microsoft.com/en-us/library/aa292875(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying a Table
After you have designed the database , the tables that will store the data in the database can be created. The data is usually stored
in permanent tables. Tables are stored in the database files until they are deleted and are available to any user who has the
appropriate permissions.

Temporary Tables

You can also create temporary tables. Temporary tables are similar to permanent tables, except temporary tables are stored in
tempdb and are deleted automatically when no longer in use.

The two types of temporary tables, local and global, differ from each other in their names, their visibility, and their availability.
Local temporary tables have a single number sign (#) as the first character of their names; they are visible only to the current
connection for the user; and they are deleted when the user disconnects from instances of Microsoft® SQL Server™ 2000. Global
temporary tables have two number signs (##) as the first characters of their names; they are visible to any user after they are
created; and they are deleted when all users referencing the table disconnect from SQL Server.

For example, if you create a table named employees, the table can be used by any person who has the security permissions in
the database to use it, until the table is deleted. If you create a local temporary table named #employees, you are the only person
who can work with the table, and it is deleted when you disconnect. If you create a global temporary table named ##employees,
any user in the database can work with this table. If no other user works with this table after you create it, the table is deleted
when you disconnect. If another user works with the table after you create it, SQL Server deletes it when both of you disconnect.

Table Properties

You can define up to 1,024 columns per table. Table and column names must follow the rules for identifiers; they must be unique
within a given table, but you can use the same column name in different tables in the same database. You must also define a data
type for each column.

Although table names must be unique for each owner within a database, you can create multiple tables with the same name if
you specify different owners for each. You can create two tables named employees and designate Jonah as the owner of one
and Sally as the owner of the other. When you need to work with one of the employees tables, you can distinguish between the
two tables by specifying the owner with the name of the table.

To create a table

Transact-SQL

Enterprise Manager

SQL-DMO

Modifying Tables

After a table is created, you can change many of the options that were defined for the table when it was originally created,
including:

Columns can be added, modified, or deleted. For example, the column name, length, data type, precision, scale, and
nullability can all be changed, although some restrictions exist. For more information, see Modifying Column Properties.

PRIMARY KEY and FOREIGN KEY constraints can be added or deleted.

UNIQUE and CHECK constraints and DEFAULT definitions (and objects) can be added or deleted.

An identifier column can be added or deleted using the IDENTITY or ROWGUIDCOL property. The ROWGUIDCOL property
can also be added to or removed from an existing column, although only one column in a table can have the ROWGUIDCOL
property at any one time.

A table and selected columns within the table can be registered for full-text indexing.

For more information about the modifications that can be made to a table, see ALTER TABLE.

The name or owner of a table can also be changed. When you do this, you must also change the name of the table in any triggers,
stored procedures, Transact-SQL scripts, or other programming code that uses the old name or owner of the table.

https://msdn.microsoft.com/en-us/library/aa275820(v=sql.80).aspx

To rename a table

Transact-SQL

Enterprise Manager

SQL-DMO

To change the owner of a table

Transact-SQL

SQL-DMO

See Also

Specifying a Column Data Type

Using Identifiers

Placing Tables on Filegroups

https://msdn.microsoft.com/en-us/library/aa276113(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms947983(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Modifying Column Properties
Each column in a table has a set of properties, such as name, data type, nullability, and data length. The entire set of properties for
a column makes up the definition of the column in a table.

The column properties can be specified directly in a database table by using a database diagram. Three column properties are
required before you can create a table in the database:

Column name

Data type

Data length

The properties of a column can be changed, for example, by renaming it, altering its length, specifying a default value, and so on.

Column Data Type

The data type of an existing column can be changed provided that the existing data in the column can be implicitly converted to
the new data type. For more information, see ALTER TABLE.

Column Data Length

When you select a data type, length is defined automatically. You can increase or decrease the length property only for a column
with a data type of binary, char, nchar, varbinary, varchar, or nvarchar. For columns with other data types, the length is
derived from the data type and cannot be changed. If the new specified length is smaller than the original column length, all
values in the column that exceed the new length are truncated without any warning. It is not possible to change the length of a
column defined with a PRIMARY KEY or FOREIGN KEY constraint.

Note Changing the column data length re-creates the table in the database when you save the table or database diagram using
SQL Server Enterprise Manager.

Column Precision

The precision of a numeric column is the maximum number of digits used by the selected data type. The precision of a
nonnumeric column generally refers to either the maximum length or the defined length of the column.

For all data types except decimal and numeric, precision is defined automatically. You can change the column precision for the
decimal and numeric data types if you want to redefine the maximum number of digits these columns use. SQL Server
Enterprise Manager prevents you from changing the precision of a column that does not have one of these assigned data types.

Note Changing the column precision re-creates the table in the database when you save the table or database diagram using
SQL Server Enterprise Manager.

Column Scale

The scale of a numeric or decimal column is to the maximum number of digits to the right of the decimal point. When you select
a data type, the column scale by default is set to 0. For columns with approximate floating point numbers, the scale is undefined
because the number of digits to the right of the decimal point is not fixed. You can change the scale for a numeric or decimal
column if you want to redefine the number of digits that can appear to the right of the decimal point.

Note Changing the column scale re-creates the table in the database when you save the table or diagram using SQL Server
Enterprise Manager.

Column Nullability

A column can be defined to either allow or disallow null values. By default, a column permits null values. An existing column can
be changed to disallow null values only if no existing null values exist in the column and there is no existing index created on the
column. To disallow null values in an existing column that contains null values:

1. Add a new column with a DEFAULT definition that inserts a valid value in place of NULL.

2. Copy the data in the old (existing) column to the new column.

3. Delete the old column.

An existing column that does not allow null values can be changed to allow null values unless a PRIMARY KEY constraint is
defined on the column.

Note Changing the nullability on a new, nonkey column re-creates the table in the database when you save the table or database
diagram using Database Diagrams within SQL Server Enterprise Manager.

To set column properties

Transact-SQL

Enterprise Manager

SQL-DMO

To view column properties

Transact-SQL

Enterprise Manager

SQL-DMO

To rename a column

Transact-SQL

Enterprise Manager

SQL-DMO

See Also

Working with Tables

Database Objects

Precision, Scale, and Length

https://msdn.microsoft.com/en-us/library/aa276120(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292875(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa276108(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa937436(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Adding and Deleting Columns
Microsoft® SQL Server™ 2000 allows columns to be added to existing tables, provided that the column allows null values or a
DEFAULT constraint is created on the column. When you add a new column to a table, SQL Server inserts a value in that column
for each existing row of data in the table. For this reason, it is useful to add a DEFAULT definition to the column when you add it to
the table. If the new column does not have a DEFAULT definition, you must specify that the new column allows null values. SQL
Server inserts null values into the column or returns an error if the new column does not allow null values.

Conversely, columns can be deleted from existing tables. However, it is not possible to delete a column that is:

Involved in replication.

Used in an index.

Used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint.

Associated with a DEFAULT definition, or bound to a default object.

Bound to a rule.

Registered for full-text support.

Used as a full-text key for a table.

To add or delete a column

Transact-SQL

Enterprise Manager

SQL-DMO

To copy columns from one table to another

Enterprise Manager

https://msdn.microsoft.com/en-us/library/aa275831(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying PRIMARY KEY Constraints
A single PRIMARY KEY constraint can be:

Created when the table is created, as part of the table definition.

Added to an existing table, provided that no other PRIMARY KEY constraint already exists (a table can have only one
PRIMARY KEY constraint).

Modified or deleted, if it already exists. For example, you may want the PRIMARY KEY constraint of the table to reference
other columns, or you may want to change the column order, index name, clustered option, or fill factor of the PRIMARY
KEY constraint. It is not possible to change the length of a column defined with a PRIMARY KEY constraint.

Note To modify a PRIMARY KEY constraint using Transact-SQL or SQL-DMO, you must first delete the existing PRIMARY
KEY constraint and then re-create it with the new definition.

When a PRIMARY KEY constraint is added to an existing column or columns in the table, Microsoft® SQL Server™ 2000 checks
the existing data in the columns to ensure that the existing data follows the rules for primary keys:

No null values

No duplicate values

If a PRIMARY KEY constraint is added to a column that has duplicate or null values, SQL Server returns an error and does not add
the constraint. It is not possible to add a PRIMARY KEY constraint that violates these rules.

SQL Server automatically creates a unique index to enforce the uniqueness requirement of the PRIMARY KEY constraint. If a
clustered index does not already exist on the table, or a nonclustered index is not explicitly specified, a unique, clustered index is
created to enforce the PRIMARY KEY constraint.

Important A PRIMARY KEY constraint cannot be deleted if referenced by a FOREIGN KEY constraint in another table; the
FOREIGN KEY constraint must be deleted first.

To create a PRIMARY KEY constraint when creating a table

Transact-SQL

SQL-DMO

To create or delete a PRIMARY KEY constraint on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To modify a PRIMARY KEY constraint

Enterprise Manager

See Also

Primary Key Constraints

https://msdn.microsoft.com/en-us/library/aa275852(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259130(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying FOREIGN KEY Constraints
FOREIGN KEY constraints can be:

Created when the table is created, as part of the table definition.

Added to an existing table provided that the FOREIGN KEY constraint is linked to an existing PRIMARY KEY constraint or
UNIQUE constraint in another (or the same) table. A table can contain multiple FOREIGN KEY constraints.

Modified or deleted if FOREIGN KEY constraints already exist. For example, you may want the table's FOREIGN KEY
constraint to reference other columns. It is not possible to change the length of a column defined with a FOREIGN KEY
constraint.

Note To modify a FOREIGN KEY constraint using Transact-SQL or SQL-DMO, you must first delete the existing FOREIGN
KEY constraint and then re-create it with the new definition.

When a FOREIGN KEY constraint is added to an existing column or columns in the table, Microsoft® SQL Server™ 2000 by default
checks the existing data in the columns to ensure that all values, except NULL, exist in the column(s) of the referenced PRIMARY
KEY or UNIQUE constraint. However, SQL Server can be prevented from checking the data in the column against the new
constraint and made to add the new constraint regardless of the data in the column. This option is useful when the existing data
already meets the new FOREIGN KEY constraint, or when a business rule requires the constraint to be enforced only from this
point forward.

However, you should be careful when adding a constraint without checking existing data because this bypasses the controls in
SQL Server that enforce the data integrity of the table.

Disabling FOREIGN KEY Constraints

Existing FOREIGN KEY constraints can be disabled for:

INSERT and UPDATE statements

This allows data in the table to be modified without being validated by the constraints. Disable a FOREIGN KEY constraint
during INSERT and UPDATE statements if new data will violate the constraint or if the constraint should apply only to the
data already in the database.

Replication processing.

Disable a FOREIGN KEY constraint during replication if the constraint is specific to the source database. When a table is
replicated, the table definition and data are copied from the source database to a destination database. These two databases
are usually, but not necessarily, on separate servers. If the FOREIGN KEY constraints are specific to the source database but
are not disabled during replication, they may unnecessarily prevent new data from being entered in the destination
database.

Delete a FOREIGN KEY constraint, thus removing the requirement, to enforce referential integrity between the foreign key
columns and the related primary key (or UNIQUE constraint) columns in another table.

To create a FOREIGN KEY constraint when creating a table

Transact-SQL

SQL-DMO

To create a FOREIGN KEY constraint on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To prevent checking of existing data when creating a FOREIGN KEY constraint

Transact-SQL

Enterprise Manager

https://msdn.microsoft.com/en-us/library/aa275844(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259118(v=sql.80).aspx

SQL-DMO

To modify a FOREIGN KEY constraint

Enterprise Manager

To disable a FOREIGN KEY constraint for INSERT and UPDATE statements

Transact-SQL

Enterprise Manager

SQL-DMO

To disable a FOREIGN KEY constraint for replication

Transact-SQL

Enterprise Manager

SQL-DMO

To delete a FOREIGN KEY constraint

Transact-SQL

Enterprise Manager

SQL-DMO

See Also

Foreign Key Constraints

https://msdn.microsoft.com/en-us/library/aa259118(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275865(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275864(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275855(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying UNIQUE Constraints
 Topic last updated -- July 2003

UNIQUE constraints can be:

Created when the table is created, as part of the table definition.

Added to an existing table, provided that the column or combination of columns comprising the UNIQUE constraint
contains only unique values. A table can contain multiple UNIQUE constraints.

Modified or deleted if they already exist. For example, you may want the UNIQUE constraint of the table to reference other
columns, or you may want to change the type of index clustering.

Note To modify a UNIQUE constraint using Transact-SQL or SQL-DMO, you must first delete the existing UNIQUE
constraint and then re-create it with the new definition.

When a UNIQUE constraint is added to an existing column or columns in the table, Microsoft® SQL Server™ 2000 by default
checks the existing data in the columns to ensure all values are unique. If a UNIQUE constraint is added to a column that has
duplicated values, SQL Server returns an error and does not add the constraint.

SQL Server automatically creates a UNIQUE index to enforce the uniqueness requirement of the UNIQUE constraint. Therefore, if
an attempt to insert a duplicate row is made, SQL Server returns an error message that says the UNIQUE constraint has been
violated and does not add the row to the table. Unless a clustered index is explicitly specified, a unique, nonclustered index is
created by default to enforce the UNIQUE constraint.

Delete a UNIQUE constraint to remove the uniqueness requirement for values entered in the column or combination of columns
included in the constraint. It is not possible to delete a UNIQUE constraint if the associated column is used as the full-text key of
the table.

To create a UNIQUE constraint when creating a table

Transact-SQL

Enterprise Manager

To create a UNIQUE constraint on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To modify a UNIQUE constraint

Enterprise Manager

To delete a UNIQUE constraint

Transact-SQL

Enterprise Manager

SQL-DMO

See Also

UNIQUE Constraints

https://msdn.microsoft.com/en-us/library/aa275848(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275848(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259139(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275861(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying CHECK Constraints
CHECK constraints can be:

Created when the table is created, as part of the table definition.

Added to an existing table. Tables and columns can contain multiple CHECK constraints.

Modified or deleted if they already exist. For example, you can modify the expression used by the CHECK constraint on a
column in the table.

Note To modify a CHECK constraint using Transact-SQL or SQL-DMO, you must first delete the existing CHECK constraint
and then re-create it with the new definition.

When a CHECK constraint is added to an existing table, the CHECK constraint can apply either to new data only or to existing data
as well. By default, the CHECK constraint applies to existing data as well as any new data. The option of applying the constraint to
new data only is useful when the existing data already meets the new CHECK constraint, or when a business rule requires the
constraint to be enforced only from this point forward.

For example, an old constraint may require that postal codes be limited to five digits but a new constraint requires nine-digit
postal codes. Old data with five-digit postal codes is still valid and will co-exist with new data that contains nine-digit postal codes.
Therefore, only new data should be checked against the new constraint.

However, you should be careful when adding a constraint without checking existing data because this bypasses the controls in
Microsoft® SQL Server™ 2000 that enforce the integrity rules for the table.

Disabling CHECK Constraints

Existing CHECK constraints can be disabled for:

INSERT and UPDATE statements, thereby allowing data in the table to be modified without being validated by the
constraints. Disable a CHECK constraint during INSERT and UPDATE statements if new data will violate the constraint or if
the constraint should apply only to the data already in the database.

Replication processing. Disable a CHECK constraint during replication if the constraint is specific to the source database.
When a table is replicated, the table definition and data are copied from the source database to a destination database.
These two databases are usually, but not necessarily, on separate servers. If the CHECK constraints specific to the source
database are not disabled, they may unnecessarily prevent new data from being entered in the destination database.

Delete a CHECK constraint to remove the limitations on acceptable data values in the column or columns included in the
constraint expression.

To create a CHECK constraint when creating a table

Transact-SQL

SQL-DMO

To create a CHECK constraint on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To prevent checking of existing data when creating a CHECK constraint

Transact-SQL

Enterprise Manager

SQL-DMO

To modify a CHECK constraint

Enterprise Manager

https://msdn.microsoft.com/en-us/library/aa275821(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259104(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259104(v=sql.80).aspx

To disable a CHECK constraint for INSERT and UPDATE statements

Transact-SQL

Enterprise Manager

SQL-DMO

To disable a CHECK constraint for replication

Transact-SQL

Enterprise Manager

SQL-DMO

To delete a CHECK constraint

Transact-SQL

Enterprise Manager

SQL-DMO

See Also

CHECK Constraints

https://msdn.microsoft.com/en-us/library/aa275863(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275862(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275853(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying DEFAULT Definitions
DEFAULT definitions can be:

Created when the table is created, as part of the table definition.

Added to an existing table. Each column in a table can contain a single DEFAULT definition.

Modified or deleted if DEFAULT definitions already exist. For example, you can modify the value inserted in a column when
no value is entered.

Note To modify a DEFAULT definition using Transact-SQL or SQL-DMO, you must first delete the existing DEFAULT
definition and then re-create it with the new definition.

DEFAULT definitions cannot be created on columns defined with:

A timestamp data type.

An IDENTITY or ROWGUIDCOL property.

An existing DEFAULT definition or DEFAULT object.

Note The default value must be compatible with the data type of the column to which the DEFAULT definition applies. For
example, the default value for an int column must be an integer number, not a character string.

When a DEFAULT definition is added to an existing column in a table, Microsoft® SQL Server™ 2000 by default applies the new
default only to new rows of data added to the table; existing data inserted using the previous DEFAULT definition is unaffected.
However, when adding a new column to an existing table, you can specify that SQL Server insert the default value (specified by
the DEFAULT definition) rather than a null value into the new column for the existing rows in the table.

When you delete a DEFAULT definition, SQL Server inserts a null value rather than the default value when no value is inserted into
the column for new rows. However, no changes are made to the existing data in the table.

To create a DEFAULT definition on a column when creating a table

Transact-SQL

Enterprise Manager

SQL-DMO

To create or delete a DEFAULT definition on a column of an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To create a DEFAULT object

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To delete a DEFAULT object

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

https://msdn.microsoft.com/en-us/library/aa275873(v=sql.80).aspx

DEFAULT Definitions

Creating and Maintaining Databases (SQL Server 2000)

Creating and Modifying Identifier Columns
Only one identifier column and one globally unique identifier column can be created for each table.

IDENTITY Property

Identifier columns can be implemented using the IDENTITY property, which allows the application developer to specify both an
identity number for the first row inserted into the table (Identity Seed property) and an increment (Identity Increment
property) to be added to the seed to determine successive identity numbers. When inserting values into a table with an identifier
column, Microsoft® SQL Server™ 2000 automatically generates the next identity value by adding the increment to the seed.

When you use the IDENTITY property to define an identifier column, consider that:

A table can have only one column defined with the IDENTITY property, and that column must be defined using the decimal,
int, numeric, smallint, bigint, or tinyint data type.

The seed and increment can be specified. The default value for both is 1.

The identifier column must not allow null values and must not contain a DEFAULT definition or object.

The column can be referenced in a select list by using the IDENTITYCOL keyword after the IDENTITY property has been set.

The OBJECTPROPERTY function can be used to determine if a table has an IDENTITY column, and the COLUMNPROPERTY
function can be used to determine the name of the IDENTITY column.

Globally Unique Identifiers

Although the IDENTITY property automates row numbering within one table, separate tables, each with its own identifier column,
can generate the same values. This is because the IDENTITY property is guaranteed to be unique only for the table on which it is
used. If an application must generate an identifier column that is unique across the entire database, or every database on every
networked computer in the world, use the ROWGUIDCOL property, the uniqueidentifier data type, and the NEWID function.

When you use the ROWGUIDCOL property to define a globally unique identifier column, consider that:

A table can have only one ROWGUIDCOL column, and that column must be defined using the uniqueidentifier data type.

SQL Server does not automatically generate values for the column. To insert a globally unique value, create a DEFAULT
definition on the column that uses the NEWID function to generate a globally unique value.

The column can be referenced in a select list by using the ROWGUIDCOL keyword after the ROWGUIDCOL property is set.
This is similar to the way an IDENTITY column can be referenced using the IDENTITYCOL keyword.

The OBJECTPROPERTY function can be used to determine if a table has a ROWGUIDCOL column, and the
COLUMNPROPERTY function can be used to determine the name of the ROWGUIDCOL column.

Because the ROWGUIDCOL property does not enforce uniqueness, the UNIQUE constraint should be used to ensure that
unique values are inserted into the ROWGUIDCOL column.

Note If an identifier column exists for a table with frequent deletions, gaps can occur between identity values; deleted identity
values are not reused. To avoid such gaps, do not use the IDENTITY property. Instead, you can create a trigger that determines a
new identifier value, based on existing values in the identifier column, as rows are inserted.

To create a new identifier column when creating a table

Transact-SQL

Enterprise Manager

SQL-DMO

To create a new identifier column on an existing table

Transact-SQL

https://msdn.microsoft.com/en-us/library/aa276120(v=sql.80).aspx

Enterprise Manager

SQL-DMO

To delete an identifier column

Transact-SQL

Enterprise Manager

SQL-DMO

See Also

Autonumbering and Identifier Columns

COLUMNPROPERTY

NEWID

OBJECTPROPERTY

uniqueidentifier

Using Uniqueidentifier Data

https://msdn.microsoft.com/en-us/library/aa276120(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275854(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Viewing a Table
After you have created the tables in a database, you may need to find information about the table properties (for example, the
name or data type of a column, the nature of its indexes, and so on). Additionally, and most importantly, you will need to view the
data in the table.

You can also display the dependencies of the table to determine which objects, such as views, stored procedures, and triggers,
depend on the table. If you make any changes to the table, dependent objects may be affected.

To view the definition of a table

Transact-SQL

Enterprise Manager

SQL-DMO

To view the data in a table

Transact-SQL

Enterprise Manager

To view the dependencies of a table

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view column properties

Transact-SQL

Enterprise Manager

SQL-DMO

Viewing Foreign Key Attributes

View the foreign key attributes of a relationship if you want to see which columns participate in the foreign key side of a
relationship. If the foreign key columns are related to a primary key, the primary key columns are identified in your database
diagram by a primary key symbol in the row selector.

To view the foreign key attributes of a relationship

Transact-SQL

Enterprise Manager

SQL-DMO

To view the constraints in a table

Transact-SQL

SQL-DMO

See Also

Query Fundamentals

Viewing an Index

https://msdn.microsoft.com/en-us/library/aa292875(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292879(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa276120(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa276136(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Deleting a Table
At times you need to delete a table (for example, when you want to implement a new design or free up space in the database).
When you delete a table, its structural definition, data, full-text indexes, constraints, and indexes are permanently deleted from the
database, and the space formerly used to store the table and its indexes is made available for other tables. You can explicitly drop
a temporary table if you do not want to wait until it is dropped automatically.

If you need to delete tables that are related through FOREIGN KEY and UNIQUE or PRIMARY KEY constraints, you must delete the
tables with the FOREIGN KEY constraints first. If you need to delete a table that is referenced in a FOREIGN KEY constraint but you
cannot delete the entire foreign key table, you must delete the FOREIGN KEY constraint.

To delete a table

Transact-SQL

Enterprise Manager

SQL-DMO

To delete a FOREIGN KEY constraint

Transact-SQL

Enterprise Manager

SQL-DMO

https://msdn.microsoft.com/en-us/library/aa275860(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275855(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Indexes
 Topic last updated -- July 2003

Indexes in databases are similar to indexes in books. In a book, an index allows you to find information quickly without reading
the entire book. In a database, an index allows the database program to find data in a table without scanning the entire table. An
index in a book is a list of words with the page numbers that contain each word. An index in a database is a list of values in a table
with the storage locations of rows in the table that contain each value. Indexes can be created on either a single column or a
combination of columns in a table and are implemented in the form of B-trees. An index contains an entry with one or more
columns (the search key) from each row in a table. A B-tree is sorted on the search key, and can be searched efficiently on any
leading subset of the search key. For example, an index on columns A, B, C can be searched efficiently on A, on A, B, and A, B, C.

Most books contain one general index of words, names, places, and so on. Databases contain individual indexes for selected types
or columns of data: this is similar to a book that contains one index for names of people and another index for places. When you
create a database and tune it for performance, you should create indexes for the columns used in queries to find data.

In the pubs sample database provided with Microsoft® SQL Server™ 2000, the employee table has an index on the emp_id
column. The following illustration shows how the index stores each emp_id value and points to the rows of data in the table with
each value.

When SQL Server executes a statement to find data in the employee table based on a specified emp_id value, it recognizes the
index for the emp_id column and uses the index to find the data. If the index is not present, it performs a full table scan starting at
the beginning of the table and stepping through each row, searching for the specified emp_id value.

SQL Server automatically creates indexes for certain types of constraints (for example, PRIMARY KEY and UNIQUE constraints).
You can further customize the table definitions by creating indexes that are independent of constraints.

The performance benefits of indexes, however, do come with a cost. Tables with indexes require more storage space in the
database. Also, commands that insert, update, or delete data can take longer and require more processing time to maintain the
indexes. When you design and create indexes, you should ensure that the performance benefits outweigh the extra cost in storage
space and processing resources.

See Also

Full-Text Indexes

Index Tuning Wizard

Index Tuning Recommendations

Table and Index Architecture

Creating and Maintaining Databases (SQL Server 2000)

Designing an Index
When Microsoft® SQL Server™ 2000 executes a query, the query optimizer evaluates the costs of the available methods for
retrieving the data and uses the most efficient method. SQL Server can perform a table scan, or it can use an index if one exists.
When performing a table scan, SQL Server starts at the beginning of the table, steps row-by-row through all the rows in the table,
and extracts the rows that meet the criteria of the query. When SQL Server uses an index, it finds the storage location of the rows
needed by the query and extracts only the needed rows.

When you are considering whether to create an index on a column, consider if and how an indexed column is to be used in
queries. Indexes are useful when a query:

Searches for rows that match a specific search key value (an exact match query). An exact match comparison is one in which
the query uses the WHERE statement to specify a column entry with a given value. For example:

WHERE emp_id = 'VPA30890F'

Searches for rows with search key values in a range of values (a range query). A range query is one in which the query
specifies any entry whose value is between two values. For example:

WHERE job_lvl BETWEEN 9 and 12

Or

WHERE job_lvl >= 9 and job_lvl <= 12

Searches for rows in a table T1 that match, based on a join predicate, a row in another table T2 (an index nested loops join).

Produces sorted query output without an explicit sort operation, in particular for sorted dynamic cursors.

Scans rows in a sorted order to permit an order-based operation, such as merge join and stream aggregation, without an
explicit sort operation.

Scans all rows in a table with better performance than a table scan, due to the reduced column set and overall data volume
to be scanned (a covering index for the query at hand).

Searches for duplicates of new search key values in insert and update operations, to enforce PRIMARY KEY and UNIQUE
constraints.

Searches for matching rows between two tables for which a FOREIGN KEY constraint is defined.

Queries using LIKE comparisons can benefit from an index if the pattern starts with a specific character string, for example 'abc%';
but not if the pattern starts with a wildcard search, for example '%xyz'.

In many queries, the benefits of indexes can be combined. For example, an index enables a range query in addition to providing
fast access to a single row. SQL Server can use multiple indexes for a single table in the same query, as well as combining multiple
indexes (using a join algorithm) so that the search keys together cover a query. Additionally, SQL Server automatically determines
which indexes to exploit for a query and ensures that all indexes for a table are maintained when the table is modified.

Additional Guidelines for Designing Indexes

Additional guidelines to consider when designing indexes include:

Large numbers of indexes on a table affect the performance of INSERT, UPDATE, and DELETE statements because all indexes
must be adjusted appropriately as data in the table changes. Conversely, large numbers of indexes can help the
performance of queries that do not modify data (SELECT statements) because SQL Server has more indexes to choose from
to determine the best way to access the data as fast as possible.

Covered queries can improve performance. Covered queries are queries where all the columns specified in the query are
contained within the same index. For example, a query retrieving columns a and b from a table that has a composite index
created on columns a, b, and c is considered covered. Creating indexes that cover a query can improve performance
because all the data for the query is contained within the index itself; only the index pages, not the data pages, of the table

must be referenced to retrieve the data, thereby reducing overall I/O. Although adding columns to an index to cover queries
can improve performance, maintaining the extra columns in the index incurs update and storage costs.

Indexing small tables may not be optimal because it can take SQL Server longer to traverse the index searching for data
than to perform a simple table scan.

SQL Profiler and the Index Tuning Wizard should be used to help analyze queries and determine which indexes to create.
The selection of the right indexes for a database and its workload is a very complex balancing act between query speed and
update cost. Narrow indexes (indexes with few columns in the search key) require less disk space and maintenance
overhead. Wide indexes, on the other hand, cover more queries. There are no simple rules for determining the right set of
indexes. Experienced database administrators can often design a good set of indexes, but this task is very complex, time-
consuming, and error-prone even for moderately complex databases and workloads. The Index Tuning Wizard can be used
to automate this task. For more information, see Index Tuning Wizard.

You can specify indexes on views. For more information, see Designing an Indexed View.

You can specify indexes on computed columns. For more information, see Creating Indexes on Computed Columns.

Index Characteristics

After you have determined that an index is justified for a query, you can customize the type of index that best fits your situation.
Characteristics of indexes include:

Clustered versus nonclustered

Unique versus nonunique

Single-column versus multicolumn

Ascending or descending order on the columns in the index

Covering or noncovering

You can also customize the initial storage characteristics of the index to optimize its maintenance by setting a fill factor, and
customize its location using files and filegroups to optimize performance.

See Also

Designing Tables

Fill Factor

Placing Indexes on Filegroups

Query Tuning

Understanding Merge Joins

Understanding Nested Loops Joins

Creating and Maintaining Databases (SQL Server 2000)

Using Clustered Indexes
A clustered index determines the physical order of data in a table. A clustered index is analogous to a telephone directory, which
arranges data by last name. Because the clustered index dictates the physical storage order of the data in the table, a table can
contain only one clustered index. However, the index can comprise multiple columns (a composite index), like the way a telephone
directory is organized by last name and first name.

A clustered index is particularly efficient on columns that are often searched for ranges of values. After the row with the first value
is found using the clustered index, rows with subsequent indexed values are guaranteed to be physically adjacent. For example, if
an application frequently executes a query to retrieve records between a range of dates, a clustered index can quickly locate the
row containing the beginning date, and then retrieve all adjacent rows in the table until the last date is reached. This can help
increase the performance of this type of query. Also, if there is a column(s) that is used frequently to sort the data retrieved from a
table, it can be advantageous to cluster (physically sort) the table on that column(s) to save the cost of a sort each time the
column(s) is queried.

Clustered indexes are also efficient for finding a specific row when the indexed value is unique. For example, the fastest way to
find a particular employee using the unique employee ID column emp_id is to create a clustered index or PRIMARY KEY
constraint on the emp_id column.

Note PRIMARY KEY constraints create clustered indexes automatically if no clustered index already exists on the table and a
nonclustered index is not specified when you create the PRIMARY KEY constraint.

Alternatively, a clustered index could be created on lname, fname (last name, first name), because employee records are often
grouped and queried in this way rather than by employee ID.

Considerations

It is important to define the clustered index key with as few columns as possible. If a large clustered index key is defined, any
nonclustered indexes that are defined on the same table will be significantly larger because the nonclustered index entries contain
the clustering key. The Index Tuning Wizard does not return an error when saving an SQL script to a disk with insufficient
available space. For more information about how nonclustered indexes are implemented in Microsoft® SQL Server™ 2000, see
Nonclustered Indexes.

The Index Tuning Wizard can consume significant CPU and memory resources during analysis. It is recommended that tuning
should be performed against a test version of the production server rather than the production server. Additionally, the wizard
should be run on a separate computer from the computer running SQL Server. The wizard cannot be used to select or create
indexes and statistics in databases on SQL Server version 6.5 or earlier.

Before creating clustered indexes, understand how your data will be accessed. Consider using a clustered index for:

Columns that contain a large number of distinct values.

Queries that return a range of values using operators such as BETWEEN, >, >=, <, and <=.

Columns that are accessed sequentially.

Queries that return large result sets.

Columns that are frequently accessed by queries involving join or GROUP BY clauses; typically these are foreign key
columns. An index on the column(s) specified in the ORDER BY or GROUP BY clause eliminates the need for SQL Server to
sort the data because the rows are already sorted. This improves query performance.

OLTP-type applications where very fast single row lookup is required, typically by means of the primary key. Create a
clustered index on the primary key.

Clustered indexes are not a good choice for:

Columns that undergo frequent changes

This results in the entire row moving (because SQL Server must keep the data values of a row in physical order). This is an
important consideration in high-volume transaction processing systems where data tends to be volatile.

Wide keys

The key values from the clustered index are used by all nonclustered indexes as lookup keys and therefore are stored in
each nonclustered index leaf entry.

See Also

Clustered Indexes

Creating an Index

Creating and Modifying PRIMARY KEY Constraints

Creating and Maintaining Databases (SQL Server 2000)

Using Nonclustered Indexes
A nonclustered index is analogous to an index in a textbook. The data is stored in one place, the index in another, with pointers to
the storage location of the data. The items in the index are stored in the order of the index key values, but the information in the
table is stored in a different order (which can be dictated by a clustered index). If no clustered index is created on the table, the
rows are not guaranteed to be in any particular order.

Similar to the way you use an index in a book, Microsoft® SQL Server™ 2000 searches for a data value by searching the
nonclustered index to find the location of the data value in the table and then retrieves the data directly from that location. This
makes nonclustered indexes the optimal choice for exact match queries because the index contains entries describing the exact
location in the table of the data values being searched for in the queries. If the underlying table is sorted using a clustered index,
the location is the clustering key value; otherwise, the location is the row ID (RID) comprised of the file number, page number, and
slot number of the row. For example, to search for an employee ID (emp_id) in a table that has a nonclustered index on the
emp_id column, SQL Server looks through the index to find an entry that lists the exact page and row in the table where the
matching emp_id can be found, and then goes directly to that page and row.

Multiple Nonclustered Indexes

Some books contain multiple indexes. For example, a gardening book can contain one index for the common names of plants and
another index for the scientific names because these are the two most common ways in which the readers find information. The
same is true for nonclustered indexes. You can define a nonclustered index for each of the columns commonly used to find the
data in the table.

Considerations

Before you create nonclustered indexes, understand how your data will be accessed. Consider using nonclustered indexes for:

Columns that contain a large number of distinct values, such as a combination of last name and first name (if a clustered
index is used for other columns). If there are very few distinct values, such as only 1 and 0, most queries will not use the
index because a table scan is usually more efficient.

Queries that do not return large result sets.

Columns frequently involved in search conditions of a query (WHERE clause) that return exact matches.

Decision-support-system applications for which joins and grouping are frequently required. Create multiple nonclustered
indexes on columns involved in join and grouping operations, and a clustered index on any foreign key columns.

Covering all columns from one table in a given query. This eliminates accessing the table or clustered index altogether.

See Also

Creating an Index

Index Tuning Wizard

Nonclustered Indexes

Creating and Maintaining Databases (SQL Server 2000)

Using Unique Indexes
A unique index ensures that the indexed column contains no duplicate values. In the case of multicolumn unique indexes, the
index ensures that each combination of values in the indexed column is unique. For example, if a unique index full_name is
created on a combination of last_name, first_name, and middle_initial columns, no two people could have the same full name
in the table.

Both clustered and nonclustered indexes can be unique. Therefore, provided that the data in the column is unique, you can create
both a unique clustered index and multiple-unique nonclustered indexes on the same table.

Considerations

Specifying a unique index makes sense only when uniqueness is a characteristic of the data itself. If uniqueness must be enforced
to ensure data integrity, create a UNIQUE or PRIMARY KEY constraint on the column rather than a unique index. For example, if
you plan to query frequently on the Social Security number (ssn) column in the employee table (in which the primary key is
emp_id), and you want to ensure that Social Security numbers are unique, create a UNIQUE constraint on ssn. If the user enters
the same Social Security number for more than one employee, an error is displayed.

Creating a PRIMARY KEY or UNIQUE constraint automatically creates a unique index on the specified columns in the table. There
are no significant differences between creating a UNIQUE constraint and creating a unique index manually. Data validation occurs
in the same manner and the query optimizer does not differentiate between a unique index created by a constraint or created
manually. A unique index and a UNIQUE constraint cannot be created if there duplicate key values exist.

Creating a unique index instead of non-unique on the same combination of columns provides additional information for the
query optimizer; therefore, creating a unique index is preferred.

See Also

Creating an Index

Index Tuning Wizard

Creating and Maintaining Databases (SQL Server 2000)

Fill Factor
When you create a clustered index, the data in the table is stored in the data pages of the database according to the order of the
values in the indexed columns. When new rows of data are inserted into the table or the values in the indexed columns are
changed, Microsoft® SQL Server™ 2000 may have to reorganize the storage of the data in the table to make room for the new
row and maintain the ordered storage of the data. This also applies to nonclustered indexes. When data is added or changed, SQL
Server may have to reorganize the storage of the data in the nonclustered index pages. When a new row is added to a full index
page, SQL Server moves approximately half the rows to a new page to make room for the new row. This reorganization is known
as a page split. Page splitting can impair performance and fragment the storage of the data in a table. For more information, see
Table and Index Architecture.

When creating an index, you can specify a fill factor to leave extra gaps and reserve a percentage of free space on each leaf level
page of the index to accommodate future expansion in the storage of the table's data and reduce the potential for page splits. The
fill factor value is a percentage from 0 to 100 that specifies how much to fill the data pages after the index is created. A value of
100 means the pages will be full and will take the least amount of storage space. This setting should be used only when there will
be no changes to the data, for example, on a read-only table. A lower value leaves more empty space on the data pages, which
reduces the need to split data pages as indexes grow but requires more storage space. This setting is more appropriate when
there will be changes to the data in the table.

The fill factor option is provided for fine-tuning performance. However, the server-wide default fill factor, specified using the
sp_configure system stored procedure, is the best choice in the majority of situations.

Note Even for an application oriented for many insert and update operations, the number of database reads typically outnumber
database writes by a factor of 5 to 10. Therefore, specifying a fill factor other than the default can degrade database read
performance by an amount inversely proportional to the fill factor setting. For example, a fill factor value of 50 percent can cause
database read performance to degrade by two times.

It is useful to set the fill factor option to another value only when a new index is created on a table with existing data, and then
only when future changes in that data can be accurately predicted.

The fill factor is implemented only when the index is created; it is not maintained after the index is created as data is added,
deleted, or updated in the table. Trying to maintain the extra space on the data pages would defeat the purpose of originally using
the fill factor because SQL Server would have to perform page splits to maintain the percentage of free space, specified by the fill
factor, on each page as data is entered. Therefore, if the data in the table is significantly modified and new data added, the empty
space in the data pages can fill. In this situation, the index can be re-created and the fill factor specified again to redistribute the
data.

See Also

Creating an Index

fill factor Option

Table and Index Architecture

Creating and Maintaining Databases (SQL Server 2000)

Index Tuning Wizard
The Index Tuning Wizard allows you to select and create an optimal set of indexes and statistics for a Microsoft® SQL Server™
2000 database without requiring an expert understanding of the structure of the database, the workload, or the internals of SQL
Server.

To build a recommendation of the optimal set of indexes that should be in place, the wizard requires a workload. A workload
consists of an SQL script or a SQL Profiler trace saved to a file or table containing SQL batch or remote procedure call (RPC) event
classes and the Event Class and Text data columns. For more information, see TSQL Event Category.

If you do not have an existing workload for the Index Tuning Wizard to analyze, you can create one using SQL Profiler. Either
create a workload using the Sample 1 - TSQL trace definition or create a new trace that captures the default events and data
columns. After you have determined that the trace has captured a representative sample of the normal database activity, the
wizard can analyze the workload and recommend an index configuration that will improve the performance of the database.

The Index Tuning Wizard can:

Recommend the best mix of indexes for a database given a workload, by using the query optimizer to analyze the queries in
the workload.

Analyze the effects of the proposed changes, including index usage, distribution of queries among tables, and performance
of queries in the workload.

Recommend ways to tune the database for a small set of problem queries.

Allow you to customize the recommendation by specifying advanced options such as disk space constraints.

A recommendation consists of SQL statements that can be executed to create new, more effective indexes and, if wanted, drop
existing indexes that are ineffective. Indexed views are recommended on platforms that support their use. After the Index Tuning
Wizard has suggested a recommendation, it can then be:

Implemented immediately.

Scheduled to be implemented later by creating a SQL Server job that executes an SQL script.

Saved to an SQL script, to be executed manually by the user at a later time or on a different server.

Considerations

The Index Tuning Wizard does not recommend indexes on:

Tables referenced by cross-database queries that do not exist in the currently selected database.

System tables.

PRIMARY KEY constraints and unique indexes.

Other Index Tuning Wizard considerations include:

The Index Tuning Wizard is limited to a maximum of 32,767 tunable queries in a workload. Additional queries in the
workload will not be considered. Additionally, queries with quoted identifiers are not considered for tuning.

The Index Tuning Wizard gathers statistics by sampling the data. Consequently, successive executions of the wizard on the
same workload may result in variations in the indexes recommended as well as the improvements that result from
implementing the recommendation.

The Index Tuning Wizard cannot be used to select or create indexes and statistics in databases on SQL Server version 6.5 or
earlier.

The Index Tuning Wizard does not give an error when saving an SQL Script to a disk with insufficient available space.

The Index Tuning Wizard can consume significant CPU and memory resources during analysis. It is recommended that
tuning should be performed against a test version of the production server, rather than the production server. Additionally,
the wizard should be run on a separate computer from the computer running an instance of SQL Server.

The Index Tuning Wizard may not make index suggestions if:

There is not enough data in the tables being sampled.

The suggested indexes do not offer enough projected improvement in query performance over existing indexes.

The queries in the workload are analyzed in the security context of the user who invokes the Index Tuning Wizard. The user must
be a member of the sysadmin fixed server role.

To reduce the execution time of the Index Tuning Wizard:

Ensure that Perform thorough analysis is not selected in the Select Server and Database dialog box. Performing a
thorough analysis causes the Index Tuning Wizard to perform an exhaustive analysis of the queries, resulting in a longer
execution time. However, selecting this option can result in a greater overall improvement in the performance of the tuned
workload.

Tune only a subset of the tables in the database.

Reduce the size of the workload file.

The Index Tuning Wizard does not recommend that any indexes be dropped if the Keep all existing indexes option is selected.
Only new indexes are recommended, if appropriate. Clearing this option can result in a greater overall improvement in the
performance of the workload. Additionally, the Index Tuning Wizard does not recommend dropping indexes on PRIMARY KEY
constraints or UNIQUE indexes. However, it may drop or replace a clustered index that is not unique or currently created on a
PRIMARY KEY constraint.

The Index Tuning Wizard includes any index hint or query hint in the final recommendation, even if the index is not optimal for the
table. Indexes on other tables referenced in the query may be proposed and recommended; however, all indexes specified as hints
will always be part of the final recommendation. Hints can prevent the Index Tuning Wizard from choosing a better execution
plan. Consider removing any index hint from queries before analyzing the workload.

Using Index Tuning Wizard in SQL Query Analyzer

Index Analysis in SQL Query Analyzer allows a single query or batch to be analyzed and a recommendation generated for the
optimal set of indexes that should be in place to support the given query or batch. Only members of the sysadmin fixed server
role can perform Index Analysis using SQL Query Analyzer.

To defer building the indexes recommended by Index Tuning Wizard, save the recommended SQL script using SQL Query
Analyzer. Saving the SQL script to a file allows the Transact-SQL statements recommended by Index Analysis to be examined
before being executed. The SQL script can then be edited before being executed (for example, the names of the generated indexes
can be changed).

To start the Index Tuning Wizard

Enterprise Manager

Enterprise Manager

To analyze a query using Index Tuning Wizard

Query Analyzer

Query Analyzer

See Also

Creating and Managing Traces and Templates

Monitoring with SQL Profiler

Creating and Maintaining Databases (SQL Server 2000)

Creating an Index
After the design has been determined, indexes can be created on the tables in a database.

Microsoft® SQL Server™ 2000 automatically creates unique indexes to enforce the uniqueness requirements of PRIMARY KEY
and UNIQUE constraints. Unless a clustered index already exists on the table or a nonclustered index is explicitly specified, a
unique, clustered index is created to enforce the PRIMARY KEY constraint. Unless a clustered index is explicitly specified, a unique,
nonclustered index is created by default to enforce the UNIQUE constraint.

If you need to create an index that is independent of a constraint, you can use the CREATE INDEX statement. By default, a
nonclustered index is created if the clustering option is not specified.

Additional considerations for creating an index include:

Only the owner of the table can create indexes on the same table.

Only one clustered index can be created per table.

The maximum number of nonclustered indexes that can be created per table is 249 (including any indexes created by
PRIMARY KEY or UNIQUE constraints).

The maximum size of all nonvariable-length columns that comprise the index is 900 bytes. For example, a single index could
not be created on three columns defined as char(300), char(300), and char (301) because the total width exceeds 900
bytes.

The maximum number of columns that can comprise the same index is 16.

When you create indexes with the CREATE INDEX statement, you must specify the name of the index, table, and columns to which
the index applies. New indexes created as part of a PRIMARY KEY or UNIQUE constraint or using SQL Server Enterprise Manager
are automatically given system-defined names based on the database table name. If you create multiple indexes on a table, the
index names are appended with _1, _2, and so on. The index can be renamed if necessary.

Note You cannot create an index in the current database while the current database is being backed up.

If a clustered index is created on a table with several secondary indexes, all of the secondary indexes must be rebuilt so that they
contain the clustering key value instead of the row identifier (RID). Likewise, if a clustered index is deleted on a table that has
several nonclustered indexes, the nonclustered indexes are all rebuilt as part of the DROP operation. This may take significant
time on large tables.

The preferred way to build indexes on large tables is to start with the clustered index and then build the nonclustered indexes.
When dropping all indexes, drop the nonclustered indexes first and the clustered index last. That way, no indexes need to be
rebuilt.

Clustered Indexes

When you create a clustered index, the table is copied, the data in the table is sorted, and then the original table is deleted.
Therefore, enough empty space must exist in the database to hold a copy of the data.

By default, the data in the table is sorted when the index is created. However, if the data is already sorted because the clustered
index already exists and is being re-created using the same name and columns, the sort operation can be automatically skipped
by rebuilding the index, rather than creating the index again. The rebuild operation checks that the rows are sorted while building
the index. If any rows are not correctly sorted, the operations cancels and the index is not created.

Unique Indexes

Creating a unique index ensures that any attempt to duplicate key values fails. If a single query is created that causes duplicate
and nonduplicate key values to be added, SQL Server rejects all rows, including the nonduplicate key values. For example, if a
single insert statement retrieves 20 rows from table A and inserts them into table B, and 10 of those rows contain duplicate key
values, by default all 20 rows are rejected. However, the IGNORE_DUP_KEY clause can be specified when creating the index that
causes only the duplicate key values to be rejected; the nonduplicate key values are added. In the previous example, only the 10
duplicate key values would be rejected; the other 10 nonduplicate key values would be inserted into table B.

A unique index cannot be created if there are any duplicate key values. For example, if you want to create a unique,
composite index on columns a and b, but there are two rows in the table that contain the values 1 and 2 for a and b respectively,

the unique index cannot be created.

Note You cannot create a unique index on a single column if that column contains NULL in more than one row. Similarly, you
cannot create a unique index on multiple columns if the combination of columns contains NULL in more than one row. These are
treated as duplicate values for indexing purposes.

To create an index when creating a table

Transact-SQL

Enterprise Manager

SQL-DMO

To create an index on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

You can also create an index using the Create Index Wizard in SQL Server Enterprise Manager.

To create an index using the Create Index Wizard

Enterprise Manager

Enterprise Manager

See Also

Full-Text Indexes

DBCC SHOWCONTIG

Fill Factor

index create memory Option

Placing Indexes on Filegroups

PRIMARY KEY Constraints

UNIQUE Constraints

https://msdn.microsoft.com/en-us/library/aa275837(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275837(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Creating Indexes on Computed Columns
Indexes can be defined on computed columns, provided these requirements are met:

The computed_column_expression must be deterministic. Expressions are deterministic if they always return the same result
for a given set of inputs. computed_column_expression is deterministic if:

All functions referenced by the expression are deterministic and precise. This includes both user-defined and built-in
functions. For more information, see Deterministic and Nondeterministic Functions.

All columns referenced in the expression come from the table containing the computed column.

No column reference pulls data from multiple rows. For example, aggregate functions such as SUM or AVG depend
on data from multiple rows and would make a computed_column_expression nondeterministic.

The IsDeterministic property of the COLUMNPROPERTY function reports whether a computed_column_expression is
deterministic.

A computed column expression is precise if:

It is not an expression of the float data type

It does not use in its definition a float data type. For example, in the following statement, column y is int and
deterministic, but not precise:

CREATE TABLE t2 (a int, b int, c int, x float,
 y AS CASE x
 WHEN 0 THEN a
 WHEN 1 THEN b
 ELSE c
 END)

The IsPrecise property of the COLUMNPROPERTY function reports whether a computed_column_expression is precise.

Note Any float expression is considered nonprecise and cannot be a key of an index; a float expression can be used in an
indexed view but not as a key. This is true also for computed columns. Any function, expression, user-defined function, or
view definition is considered non-deterministic if it contains any float expressions, including logical ones (comparisons).

The ANSI_NULL connection-level option must be set to ON when the CREATE TABLE statement is executed. The
OBJECTPROPERTY function reports whether the option is on through the IsAnsiNullsOn property.

The computed_column_expression defined for the computed column cannot evaluate to the text, ntext, or image data
types.

The connection on which the index is created, and all connections attempting INSERT, UPDATE, or DELETE statements that
will change values in the index, must have six SET options set to ON and one option set to OFF. The optimizer ignores an
index on a computed column for any SELECT statement executed by a connection that does not have these same option
settings.

These options must be set to ON:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIER

In addition to these ON settings, the NUMERIC_ROUNDABORT option must be set to OFF. For more information, see SET
Options That Affect Results.

Creating and Maintaining Databases (SQL Server 2000)

Creating Indexes on Views
Indexes can be defined on views. Indexed views are a method of storing the result set of the view in the database, thereby
reducing the overhead of dynamically building the result set. An indexed view also automatically reflects modifications made to
the data in the base tables after the index is created.

Note Indexed views can be created in any edition of SQL Server 2000. In SQL Server 2000 Enterprise Edition, the query optimizer
will automatically consider the indexed view. To use an indexed view in all other editions, the NOEXPAND hint must be used.

Indexed views include these benefits:

Indexed views are implemented through simple syntax extensions to the CREATE INDEX and CREATE VIEW statements.

The data in indexed views are updated automatically as data in the base tables are updated, in much the same way that the
keys in indexes on base tables are updated automatically. You do not need to synchronize the contents of the indexed view
with the data in the underlying base tables.

Indexed views are considered by the SQL Server optimizer without the need to specify special hints in queries. The optimizer
considers the indexed view even if a query does not directly reference the view in the FROM clause by trying to match the
query plan generated for the view with some portion of the plan generated for the query.

To introduce indexed views in an existing database, you have to issue only the relevant CREATE VIEW and CREATE INDEX
statements. Few changes have to be made to application code for SQL Server to take advantage of any indexes on views.

The Index Tuning Wizard recommends indexed views in addition to recommending indexes on base tables. Using the wizard
greatly enhances an administrator's ability to determine the combination of indexes and indexed views that optimize the
performance of the typical mix of queries executed against a database.

Indexed views can be more complex to maintain than indexes based on base tables. You should create indexes only on views
where the improved speed in retrieving results outweighs the increased overhead of making modifications.

See Also

Designing an Indexed View

Creating an Indexed View

Resolving Indexes on Views

Creating and Maintaining Databases (SQL Server 2000)

SET Options That Affect Results
Indexed views and indexes on computed columns involve storing results in the database for later reference. These stored results
are valid only if all connections referring to the results can generate the same result set as the connection that created the stored
result set.

Indexed Views

Indexed views store the result set returned by a view by creating a clustered index on the view. For complex views, the stored
result set greatly speeds data retrieval. An indexed view is useful only as long as all operations referencing the view use exactly
the same algorithms when building their results. Like indexes for computed columns, this includes:

The CREATE INDEX statement that first builds the result set.

Any subsequent INSERT, UPDATE, or DELETE statements that affect the base data used to build the view result set.

All queries for which the optimizer must determine if the indexed view will be useful.

Indexes on Computed Columns

Indexes on computed columns must calculate the computed column values to build the keys stored in the index. An index on a
computed column works only as long as all operations using the index use exactly the same algorithms to determine the key
values:

The original CREATE INDEX statement that establishes the first set of key values.

As later INSERT, UPDATE and DELETE statements create, alter, or remove key values, the operations are not valid unless the
key values are computed with the same algorithms used by the original create index operation.

For the index to be useful for any subsequent statement, all of the key values stored in the index must be the same as would
be generated by the current settings of the connection executing the statement.

SET Option Settings

Any SET options that affect the results generated by Transact-SQL statements must have the same settings for all operations
referencing the index. There are seven SET options that affect the results stored in computed columns and returned by views. All
connections using indexes on computed columns or indexed views must have the same settings for these seven options:

These six SET options must be set to ON:
ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIER
The NUMERIC_ROUNDABORT option must be set to OFF.

These SET options must be set correctly for any connection that creates an index on a view or computed column. Any connection
executing INSERT, UPDATE or DELETE statements that change data values stored in the indexes must have the correct settings.
This includes bulk copy, Data Transformation Services (DTS), and replication operations. Microsoft® SQL Server™ 2000 generates
an error and rolls back any insert, update, or delete operation attempted by a connection that does not have the proper option
settings. The optimizer does not consider using an index on a computed column or view in the execution plan of any Transact-
SQL statement if the connection does not have the correct option settings.

For example, a table is defined and populated using this script:

CREATE TABLE Parts
 (PartID int PRIMARY KEY,
 PartName char(10),
 PartMaterial char(10),
 PartColor char(10),
 PartDescription AS PartMaterial + PartColor
)
GO
INSERT INTO Parts VALUES (1, 'Table', 'Wood', 'Red')
INSERT INTO Parts VALUES (2, 'Chair', 'Fabric', 'Blue')
INSERT INTO Parts VALUES (3, 'Bolt', 'Steel', NULL)
GO

The value calculated for the PartDescription column for the row, where PartID is 3, depends on the
CONCAT_NULL_YIELDS_NULL option. If CONCAT_NULL_YIELDS_NULL is set to ON, the calculated value is NULL. If
CONCAT_NULL_YIELDS_NULL is set to OFF, the calculated value is the string 'Steel'. For an index on the PartDescription column
to be properly maintained, all INSERT, UPDATE, and DELETE operations must have the same setting of
CONCAT_NULL_YIELDS_NULL ON as the connection that created the index. The index is also not used by the optimizer for any
connection with a different CONCAT_NULL_YIELDS_NULL setting from the connections that created the key values.

SET Option Settings for OLE DB and ODBC Connections

Six of the seven SET option settings required for indexes on computed columns and views are the default settings for the OLE DB
Provider for SQL Server and the SQL Server ODBC driver. These settings are:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

CONCAT_NULL_YIELDS_NULL

NUMERIC_ROUNDABORT

QUOTED_IDENTIFIER

These settings also enforce the rules of the SQL-92 standard and are the recommended settings for SQL Server. Because DTS,
replication, and bulk copy operations in SQL Server 2000 use OLE DB or ODBC, these options are also automatically set for these
operations. Some of the SQL Server utilities set one or more of the ANSI settings to OFF to maintain compatibility with earlier
versions of the utilities.

SET ARITHABORT ON is the one option that is not automatically set for connections using the OLE DB Provider for SQL Server or
the SQL Server ODBC driver. OLE DB and ODBC connections do not specify an ARITHABORT setting, so connections default to the
server default, which is ARITHABORT OFF. This server default is controlled by the user options server option. The user options
bit that equates to 64 should be set for any server on which you implement indexes on views or computed columns. For more
information about how to set this option, see user options Option.

Precedence for Setting Options

The settings for the SET options can be specified at several levels. The final setting for each session option for a particular
connection is determined by the highest precedence operation that sets the option. The precedence of the sessionsetting
operations is (with the highest precedent at the top of the list):

Any application can explicitly override any default settings by executing a SET statement after it has connected to a server.
The SET statement overrides all previous settings and can be used to turn options on and off dynamically as the application
executes.

OLE DB and ODBC applications can specify the option settings that are in effect at connection time by specifying option
settings in connection strings.

You can SET options to ON or OFF for any SQL Server ODBC data source by using the ODBC application in Control Panel, or
the ODBC SQLConfigDataSource function. Any connection made by an ODBC application using that data source uses the
specified defaults, unless the application overrides the defaults in the connect string or with SET statements after

connecting.

The OLE DB Provider for SQL Server and the SQL Server ODBC driver automatically set the seven session options to the
settings required for indexed views. DB-Library and Embedded SQL for C applications do not, so systems using these APIs
must either code the applications to issue the proper SET statements or change the database or server defaults to the
correct settings.

You can establish default settings for a database using ALTER DATABASE or SQL Server Enterprise Manager.

You can establish default settings for a server by using either sp_configure or SQL Server Enterprise Manager to set the
server configuration option named user options. For more information, see user options Option.

The connection option settings required for indexed views and indexes on computed columns must be active:

For any connection that creates an index on a view or computed column.

For any INSERT, UPDATE, or DELETE statements that attempt to modify data covered by an index on a view or computed
column.

Before the optimizer can consider using an index on a view or computed column to cover a query.

For indexed views, the ANSI_NULLS and QUOTED_IDENTIFIER options must be set to ON when the view is created, because
these two settings are stored as object properties with the view definition.

Considerations

The SET statement can change the options dynamically; therefore, issuing SET statements in a database that has indexes on views
and computed columns must be done carefully. For example, an application can make a connection in which the default settings
allow an indexed view to be referenced. If the connection calls a stored procedure whose first statement is SET ANSI_WARNINGS
OFF, that statement overrides previous defaults or settings for ANSI_WARNINGS. The optimizer ignores all indexed views or
indexes on computed columns when processing any statement in the stored procedure. Any statements in the stored procedure
that attempted an INSERT, UPDATE, or DELETE that affected an indexed view or an index on a computed column generate an
error.

The logic in some stored procedures or triggers originally developed in earlier versions of SQL Server depends on options such as
QUOTED_IDENTIFIER or ANSI_NULLS being set to OFF. Also, DB-Library and Embedded SQL for C applications do not, by default,
set any session options. Connections from these applications can create problems for other stored procedures or triggers that
depend on the options being set to ON. The recommended solution has been to code SET statements at the start of either of these
types of stored procedures and triggers to ensure they had the operating environment they required. In SQL Server 2000, if a
stored procedure or trigger sets any of the options needed by indexes on views and computed columns to a value other than
those required by the indexes, the indexes are not used to cover any SELECT statements executed by the stored procedure or
trigger. Any INSERT, UPDATE, or DELETE statements executed by these stored procedures and triggers fails if they modify data
covered by an index on a view or computed column. In SQL Server 2000 instances that use indexes on views and computed
columns, stored procedures and triggers should be written to work with the seven SET options needed to support these indexes.
SET statements should be used only in stored procedures and triggers for these systems if they receive connections from clients
using DB-Library, Embedded SQL for C, or ODBC drivers from SQL Server version 6.5 or earlier. The stored procedures and
triggers should set only the options to those required by indexes on views and computed columns.

Three other session options can potentially affect the format of result sets: DATEFIRST, DATEFORMAT, and LANGUAGE. Any
functions whose results would be affected by changes to these options are classified as nondeterministic and cannot be used in
views or computed columns that are indexed.

See Also

CREATE INDEX

Distributed Queries

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

SET ARITHABORT

SET CONCAT_NULL_YIELDS_NULL

SET NUMERIC_ROUNDABORT

SET QUOTED_IDENTIFIER

Creating and Maintaining Databases (SQL Server 2000)

Creating Ascending and Descending Indexes
 Topic last updated -- July 2003

When defining indexes, you can specify whether the data for each column is stored in ascending or descending order. If neither
direction is specified, ascending is the default, which maintains compatibility with earlier versions of Microsoft® SQL Server™.

The syntax of the CREATE TABLE, CREATE INDEX, and ALTER TABLE statements supports the keywords ASC (specifies ascending)
and DESC (specifies descending) on individual columns in indexes:

CREATE TABLE ObjTable
 (ObjID int PRIMARY KEY,
 ObjName char(10),
 ObjWeight decimal(9,3)
)
CREATE NONCLUSTERED INDEX DescIdx ON
 ObjTable(ObjName ASC, ObjWeight DESC)

The INDEXKEY_PROPERTY meta data function reports whether an index column is stored in ascending or descending order. In
addition, the sp_helpindex and sp_helpconstraint system stored procedures report the direction of index key columns. The
descending indexed column will be listed in the result set with a minus sign (-) following its name. The default, an ascending
indexed column, will be listed by its name alone.

The ability to specify the order in which key values are stored in an index is most useful in cases where most queries referencing
the table have ORDER BY clauses that specify different directions for the key columns. For example, the index defined previously
on the ObjTable can completely eliminate the need for a SORT operator in the query plan if ObjName ASC, ObjWeight DESC are
specified in the ORDER BY clause of the query.

The internal algorithms of SQL Server can navigate equally efficiently in both directions on a single-column index, regardless of
the sequence in which the keys are stored. For example, specifying DESC on a single-column index does not make queries with an
ORDER BY IndexKeyCol DESC clause run faster than if ASC was specified for the index.

Creating and Maintaining Databases (SQL Server 2000)

Statistical Information
Microsoft® SQL Server™ 2000 allows statistical information regarding the distribution of values in a column to be created. This
statistical information can be used by the query processor to determine the optimal strategy for evaluating a query. When you
create an index, SQL Server automatically stores statistical information regarding the distribution of values in the indexed
column(s). The query optimizer in SQL Server uses these statistics to estimate the cost of using the index for a query. Additionally,
when the AUTO_CREATE_STATISTICS database option is set to ON (default), SQL Server automatically creates statistics for
columns without indexes that are used in a predicate.

As the data in a column changes, index and column statistics can become out-of-date and cause the query optimizer to make less-
than-optimal decisions on how to process a query. For example, if you create a table with an indexed column and 1,000 rows of
data, all with unique values in the indexed column, the query optimizer considers the indexed column a good way to collect the
data for a query. If you update the data in the column so there are many duplicated values, the column is no longer an ideal
candidate for use in a query. However, the query optimizer still considers it to be a good candidate based on the index's outdated
distribution statistics, which are based on the data before the update.

Note Out-of-date or missing statistics are indicated as warnings (table name in red text) when the execution plan of a query is
graphically displayed using SQL Query Analyzer. For more information, see Graphically Displaying the Execution Plan Using SQL
Query Analyzer. Additionally, monitoring the Missing Column Statistics event class using SQL Profiler indicates when statistics
are missing. For more information, see Errors and Warnings Event Category.

Therefore, SQL Server automatically updates this statistical information periodically as the data in the tables changes. The
sampling is random across data pages, and taken from the table or the smallest nonclustered index on the columns needed by the
statistics. After a data page has been read from disk, all the rows on the data page are used to update the statistical information.
The frequency at which the statistical information is updated is determined by the volume of data in the column or index and the
amount of changing data. For example, the statistics for a table containing 10,000 rows may need updating when 1,000 index
values have changed because 1,000 values may represent a significant percentage of the table. However, for a table containing 10
million index entries, 1,000 changing index values is less significant, and so the statistics may not be automatically updated. SQL
Server, however, always ensures that a minimum number of rows are sampled; tables that are smaller than 8 megabytes (MB) are
always fully scanned to gather statistics.

The cost of this automatic statistical update is minimized by sampling the data, rather than analyzing all of it. Under some
circumstances, statistical sampling will not be able to accurately characterize the data in a table. You can control the amount of
data that is sampled during manual statistics updates on a table-by-table basis by using the SAMPLE and FULLSCAN clauses of
the UPDATE STATISTICS statement. The FULLSCAN clause specifies that all of the data in the table is scanned to gather statistics,
whereas the SAMPLE clause can be used to specify either the percentage of rows to sample or the number of rows to sample.

You can also tell SQL Server not to maintain statistics for a given column or index in these ways:

Use the sp_autostats system stored procedure.

Use the STATISTICS_NORECOMPUTE clause of the CREATE INDEX statement.

Use the NORECOMPUTE clause of the UPDATE STATISTICS statement.

Use the NORECOMPUTE clause of the CREATE STATISTICS statement.

Set the AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to OFF using the ALTER DATABASE
statement. For more information, see Setting Database Options.

If you instruct SQL Server not to maintain statistics automatically, you must manually update the statistical information.

Note The UPDATE STATISTICS statement reenables automatic statistical updating unless the NORECOMPUTE clause is specified.

Statistics can also be created on all eligible columns in all user tables in the current database in a single statement by using the
sp_createstats system stored procedure. Columns not eligible for statistics include nondeterministic or nonprecise computed
columns, or columns of image, text, and ntext data types.

The statistics generated for a column can be deleted if you no longer want to retain and maintain them. Statistics created on
columns by SQL Server (when the AUTO_CREATE_STATISTICS database option is set to ON) are aged and dropped automatically.

Creating statistics manually allows you to create statistics that contain multiple column densities (average number of duplicates
for the combination of columns). For example, a query contains the clause:

WHERE a = 7 and b = 9

Creating manual statistics on both columns together (a, b) can allow SQL Server to make a better estimate for the query because
the statistics also contain the average number of distinct values for the combination of columns a and b.

To create statistics on a column

Transact-SQL

Query Analyzer

Query Analyzer

SQL-DMO

To create statistics on all eligible columns on all user tables

Transact-SQL

To manually update statistics

Transact-SQL

Query Analyzer

Query Analyzer

SQL-DMO

To view the statistics for a table

Transact-SQL

SQL-DMO

To delete the statistics for a column

Transact-SQL

Query Analyzer

Query Analyzer

SQL-DMO

See Also

CREATE INDEX

Distribution Statistics

sp_autostats

sp_dboption

Creating and Maintaining Databases (SQL Server 2000)

Rebuilding an Index
When you create an index in the database, the index information used by queries is stored in index pages. The sequential index
pages are chained together by pointers from one page to the next. When changes are made to the data that affect the index, the
information in the index can become scattered in the database. Rebuilding an index reorganizes the storage of the index data (and
table data in the case of a clustered index) to remove fragmentation. This can improve disk performance by reducing the number
of page reads required to obtain the requested data

In Microsoft® SQL Server™ 2000, rebuilding an index using the DROP_EXISTING clause of the CREATE INDEX statement can be
efficient if you re-create the index in a single step, rather than delete the old index and then create the same index again. This is a
benefit for both clustered and nonclustered indexes.

Rebuilding a clustered index by deleting the old index and then re-creating the same index again is expensive because all the
secondary indexes use the clustering key to point to the data rows. If you simply delete the clustered index and re-create it, you
cause all the nonclustered indexes to be deleted and re-created twice. This occurs once when you delete the clustered index, and a
second time when you re-create it. You avoid this expense by re-creating the index in one step. Re-creating the index in a single
step tells SQL Server that you are reorganizing an existing index and avoids the unnecessary work of deleting and re-creating
nonclustered indexes. This method also has the significant advantage of using the sorted order of the data in the existing index,
thus avoiding the need to sort the data again. This is useful for both clustered and nonclustered indexes, and significantly reduces
the cost of rebuilding an index. Additionally, SQL Server allows you to rebuild (in one step) one or more indexes on a table by
using the DBCC DBREINDEX statement, without having to rebuild each index separately.

DBCC DBREINDEX is also useful to rebuild indexes enforcing PRIMARY KEY or UNIQUE constraints without having to delete and
re-create the constraints (because an index created to enforce a PRIMARY KEY or UNIQUE constraint cannot be deleted without
deleting the constraint first). For example, you may want to rebuild an index on a PRIMARY KEY constraint to reestablish a given
fill factor for the index.

DBCC INDEXDEFRAG can defragment clustered and nonclustered indexes on tables and views. DBCC INDEXDEFRAG defragments
the leaf level of an index so that the physical order of the pages matches the left-to-right logical order of the leaf nodes, thus
improving index-scanning performance.

To delete an index

Transact-SQL

Enterprise Manager

SQL-DMO

To create an index on an existing table

Transact-SQL

Enterprise Manager

SQL-DMO

To re-create an index in one step

Transact-SQL

SQL-DMO

To rebuild one or more indexes on a table

Transact-SQL

To modify an index

Enterprise Manager

See Also

Creating an Index

Deleting an Index

https://msdn.microsoft.com/en-us/library/aa275856(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275837(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa276118(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Renaming an Index
You can rename an index as long as index names are unique within the table. For example, two tables can have an index named
XPK_1, but the same table cannot have two indexes named XPK_1. Renaming an index changes only the name of the index; the
index is not rebuilt.

Note When you create a PRIMARY KEY or UNIQUE constraint on a table, an index with the same name as the constraint is
automatically created for the table. Because index names must be unique for a table, you cannot create or rename an index to
have the same name as the PRIMARY KEY or UNIQUE constraint for the table.

To rename an index

Transact-SQL

Enterprise Manager

SQL-DMO

To modify an index

Enterprise Manager

See Also

Creating an Index

https://msdn.microsoft.com/en-us/library/aa276109(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa276118(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Viewing an Index
After you have created indexes or PRIMARY KEY or UNIQUE constraints on tables, you may need to find information about the
indexes. For example, you may need to find out the types of indexes and the columns that are indexes on a particular table or the
total space in the database used by an index.

Each table registered for full-text indexing has one of its indexes selected as the full-text key. You can view the properties of an
index to determine if an index is the full-text key.

To view the indexes on a table

Transact-SQL

Enterprise Manager

SQL-DMO

SQL Server Enterprise Manager can display the names of all the indexes in a database and the tables to which the indexes belong.

To view all indexes in a database

Enterprise Manager

Enterprise Manager

To view the space used by an index

Transact-SQL

SQL-DMO

To view index properties

Transact-SQL

SQL-DMO

See Also

Creating an Index

Full-Text Indexes

https://msdn.microsoft.com/en-us/library/aa276118(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Deleting an Index
When you no longer need an index, you can delete it from a database and reclaim the storage space it currently uses. This
reclaimed space can then be used by any object in the database.

Deleting a clustered index can take some time, because all nonclustered indexes on the same table must be rebuilt. For more
information about the relationship between clustered and nonclustered indexes, see Nonclustered Indexes.

You cannot delete an index used by either a PRIMARY KEY or UNIQUE constraint without deleting the constraint. To delete and re-
create an index used by a PRIMARY KEY or UNIQUE constraint without having to delete and re-create the constraint (for example,
to reimplement the original fill factor used by the index), rebuild the index in one step. For more information about rebuilding the
index, see Rebuilding an Index. An index specified as the full-text key for the table cannot be deleted. View index properties to
determine if the index is the full-text key.

Rebuilding an index, rather than deleting and re-creating it, is also useful to re-create a clustered index, because the process of
rebuilding the index can remove the need to sort the data by the index columns if the data is already in sorted order.

Indexes created on any views or tables (permanent and temporary) are automatically deleted when the view or table is deleted.

Note Only the owner of a table can delete its indexes. The owner cannot transfer the permission to other users.

To delete an index

Transact-SQL

Enterprise Manager

SQL-DMO

To view index properties

Transact-SQL

SQL-DMO

See Also

Creating an Index

https://msdn.microsoft.com/en-us/library/aa275856(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Views
A view is a virtual table whose contents are defined by a query. Like a real table, a view consists of a set of named columns and
rows of data. However, a view does not exist as a stored set of data values in a database. The rows and columns of data come
from tables referenced in the query defining the view and are produced dynamically when the view is referenced.

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one or more
tables or from other views in the current or other databases. Distributed queries can also be used to define views that use data
from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly structured data from different
servers each of which stores data for a different region of your organization.

There are no restrictions on querying through views and few restrictions on modifying data through them.

This illustration shows a view based on two tables.

See Also

SQL Views

Creating and Maintaining Databases (SQL Server 2000)

Scenarios for Using Views
Views are generally used to focus, simplify, and customize the perception each user has of the database. Views can be used as
security mechanisms by allowing users to access data through the view, without granting the users permissions to directly access
the underlying base tables of the view. Views can also be used, when copying data to and from Microsoft® SQL Server™ 2000, to
improve performance and to partition data.

To Focus on Specific Data

Views allow users to focus on specific data that interests them and on the specific tasks for which they are responsible.
Unnecessary data can be left out of the view. This also increases the security of the data because users can see only the data that
is defined in the view and not the data in the underlying table. For more information about using views for security purposes, see
Using Views as Security Mechanisms.

To Simplify Data Manipulation

Views can simplify how users manipulate data. You can define frequently used joins, projections, UNION queries, and
SELECT queries as views so that users do not have to specify all the conditions and qualifications each time an additional
operation is performed on that data. For example, a complex query that is used for reporting purposes and performs subqueries,
outer joins, and aggregation to retrieve data from a group of tables can be created as a view. The view simplifies access to the
data because the underlying query does not have to be written or submitted each time the report is generated; the view is queried
instead. For more information about manipulating data, see Query Fundamentals.

You can also create inline user-defined functions that logically operate as parameterized views, or views that have parameters in
WHERE-clause search conditions. For more information, see Inline User-defined Functions.

To Customize Data

Views allow different users to see data in different ways, even when they are using the same data concurrently. This is particularly
advantageous when users with many different interests and skill levels share the same database. For example, a view can be
created that retrieves only the data for the customers with whom an account manager deals. The view can determine which data
to retrieve based on the login ID of the account manager who uses the view.

To Export and Import Data

Views can be used to export data to other applications. For example, you may want to use the stores and sales tables in the pubs
database to analyze sales data using Microsoft® Excel. To do this, you can create a view based on the stores and sales tables. You
can then use the bcp utility to export the data defined by the view. Data can also be imported into certain views from data files
using the bcp utility or BULK INSERT statement providing that rows can be inserted into the view using the INSERT statement. For
more information about the restrictions for copying data into views, see INSERT. For more information about using the bcp utility
and BULK INSERT statement to copy data to and from a view, see Copying To or From a View.

To Combine Partitioned Data

The Transact-SQL UNION set operator can be used within a view to combine the results of two or more queries from separate
tables into a single result set. This appears to the user as a single table called a partitioned view. For example, if one table contains
sales data for Washington, and another table contains sales data for California, a view could be created from the UNION of those
tables. The view represents the sales data for both regions.

To use partitioned views, you create several identical tables, specifying a constraint to determine the range of data that can be
added to each table. The view is then created using these base tables. When the view is queried, SQL Server automatically
determines which tables are affected by the query and references only those tables. For example, if a query specifies that only
sales data for the state of Washington is required, SQL Server reads only the table containing the Washington sales data; no other
tables are accessed.

Partitioned views can be based on data from multiple heterogeneous sources, such as remote servers, not just tables in the same
database. For example, to combine data from different remote servers each of which stores data for a different region of your
organization, you can create distributed queries that retrieve data from each data source, and then create a view based on those
distributed queries. Any queries read only data from the tables on the remote servers that contains the data requested by the
query; the other servers referenced by the distributed queries in the view are not accessed.

When you partition data across multiple tables or multiple servers, queries accessing only a fraction of the data can run faster
because there is less data to scan. If the tables are located on different servers, or on a computer with multiple processors, each

table involved in the query can also be scanned in parallel, thereby improving query performance. Additionally, maintenance
tasks, such as rebuilding indexes or backing up a table, can execute more quickly.

By using a partitioned view, the data still appears as a single table and can be queried as such without having to reference the
correct underlying table manually.

Partitioned views are updatable if either of these conditions is met:

An INSTEAD OF trigger is defined on the view with logic to support INSERT, UPDATE, and DELETE statements.

Both the view and the INSERT, UPDATE, and DELETE statements follow the rules defined for updatable partitioned views. For
more information, see Creating a Partitioned View.

See Also

Join Fundamentals

Using Views with Partitioned Data

Creating and Maintaining Databases (SQL Server 2000)

Creating a View
 Topic last updated -- June 2007

Before you create a view, consider these guidelines:

You can create views only in the current database. However, the tables and views referenced by the new view can exist in
other databases or even other servers if the view is defined using distributed queries.

View names must follow the rules for identifiers and must be unique for each user. Additionally, the name must not be the
same as any tables owned by that user.

You can build views on other views and on procedures that reference views. Microsoft® SQL Server™ 2000 allows views to
be nested up to 32 levels.

You cannot associate rules or DEFAULT definitions with views.

You cannot associate AFTER triggers with views, only INSTEAD OF triggers.

The query defining the view cannot include the ORDER BY, COMPUTE, or COMPUTE BY clauses or the INTO keyword.

You cannot define full-text index definitions on views.

You cannot create temporary views, and you cannot create views on temporary tables.

Views or tables participating in a view created with the SCHEMABINDING clause cannot be dropped, unless the view is
dropped or changed so that it no longer has schema binding. In addition, ALTER TABLE statements on tables that participate
in views having schema binding will fail if these statements affect the view definition.

You cannot issue full-text queries against a view, although a view definition can include a full-text query if the query
references a table that has been configured for full-text indexing.

You must specify the name of every column in the view if:
Any of the columns in the view is derived from an arithmetic expression, a built-in function, or a constant.

Two or more of the columns in the view would otherwise have the same name (usually because the view definition
includes a join and the columns from two or more different tables have the same name).

You want to give any column in the view a name different from the column from which it is derived. (You can also
rename columns in the view.) A view column inherits the data type of the column from which it is derived, whether
or not you rename it.

Note This rule does not apply when a view is based on a query containing an outer join because columns may
change from not allowing null values to allowing them.

Otherwise, you do not need to specify column names when creating the view. SQL Server gives the columns of the
view the same names and data types as the columns to which the query defining the view refers. The select list can
be a full or partial list of the column names in the base tables.

To create a view you must be granted permission to do so by the database owner and you must have appropriate permissions on
any tables or views referenced in the view definition.

By default, as rows are added or updated through a view, they disappear from the scope of the view when they no longer fall into
the criteria of the query defining the view. For example, a query can be created, defining a view that retrieves all rows from a table
where the employee's salary is less than $30,000. If the employee's salary is increased to $32,000, then querying the view no
longer displays that particular employee because his or her salary does not conform to the criteria set by the view. However, the
WITH CHECK OPTION clause forces all data modification statements executed against the view to adhere to the criteria set within
the SELECT statement defining the view. If you use this clause, rows cannot be modified in a way that causes them to disappear
from the view. Any modification that would cause this to happen is canceled and an error is displayed.

The definition of a sensitive view can be obfuscated by using the WITH ENCRYPTION option. Note that obfuscated view
definitions can be reverse engineered because SQL Server must de-obfuscate them when they are executed. In SQL Server 2000,
the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

To create a view

Transact-SQL

Enterprise Manager

SQL-DMO

You can also create a view using the SQL Server Enterprise Manager Create View Wizard.

To create a view using the Create View Wizard

Enterprise Manager

Enterprise Manager

See Also

Modifying Data Through a View

SQL Views

View Resolution

Using Views as Security Mechanisms

https://msdn.microsoft.com/en-us/library/aa292947(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Designing an Indexed View
Indexed views improve the performance of some types of queries dramatically.

Note Indexed views can be created in any edition of SQL Server 2000. In SQL Server 2000 Enterprise Edition, the query optimizer
will automatically consider the indexed view. To use an indexed view in all other editions, the NOEXPAND hint must be used.

Indexed views work best when the underlying data is infrequently updated. The maintenance of an indexed view can be higher
than the cost of maintaining a table index. If the underlying data is updated frequently, then the cost of maintaining the indexed
view data may outweigh the performance benefits of using the indexed view.

Indexed views improve the performance of these types of queries:

Joins and aggregations that process many rows.

Join and aggregation operations that are frequently performed by many queries.

For example, in an online-transaction-processing (OLTP) database that is recording inventories, many queries would be
expected to join the Parts, PartSupplier, and Suppliers tables. Although each query that performs this join may not
process many rows, the overall join processing of hundreds of thousands of such queries can be significant. Because these
relationships are not likely to be updated frequently, the overall performance of the entire system could be improved by
defining an indexed view that stores the joined results.

Decision support workloads.

Analysis systems are characterized by storing summarized, aggregated data that is infrequently updated. Further
aggregating the data and joining many rows characterizes many decision support queries.

Indexed views usually do not improve the performance of these types of queries:

OLTP systems with many writes.

Databases with many updates.

Queries that do not involve aggregations or joins.

Aggregations of data with a high degree of cardinality for the key. A high degree of cardinality means the key contains
many different values. A unique key has the highest possible degree of cardinality because every key has a different value.
Indexed views improve performance by reducing the number of rows a query has to access. If the view result set has almost
as many rows as the base table, then there is little performance benefit from using the view. For example, consider this
query on a table that has 1,000 rows:

SELECT PriKey, SUM(SalesCol)
FROM ExampleTable
GROUP BY PriKey

If the cardinality of the table key is 100, then an indexed view built using the result of this query would only have 100 rows.
Queries using the view would on average need one tenth of the reads needed against the base table. If the key is a unique
key, the cardinality of the key is 1000 and the view result set returns 1000 rows. A query has no performance gain from
using this indexed view instead of directly reading the base table.

Expanding joins, which are views whose result sets are larger than the original data in the base tables.

Combining Indexed Views with Queries

Although the restrictions on the types of views that can be indexed may prevent you from designing a view that solves a complete
problem, you may be able to design multiple smaller indexed views that speed parts of the process.

Consider these examples:

A frequently executed query aggregates data in one database, aggregates data in another database, and then joins the
results. Because an indexed view cannot reference tables from more than one database, you cannot design a single view to
perform the entire process. You can, however, create an indexed view in each database that does the aggregation for that
database. If the optimizer can match the indexed views against existing queries, at least the aggregation processing will be

speeded up without the need to recode existing queries. Although the join processing is not faster, the overall query is faster
because it uses the aggregations stored in the indexed views.

A frequently executed query aggregates data from several tables, and then uses UNION to combine the results. UNION is
not allowed in an indexed view. You can once again design views to do each of the individual aggregation operations. The
optimizer can then select the indexed views to speed up queries with no need to recode the queries. While the UNION
processing is not improved, the individual aggregation processes are.

Design indexed views that can satisfy multiple operations. Because the optimizer can use an indexed view even when it is not
specified in the FROM clause, a well-designed indexed view can speed the processing of many queries.

For example, consider creating an index on this view:

CREATE VIEW ExampleView (PriKey, SumColx, CountColx)
AS
SELECT PriKey, SUM(Colx), COUNT_BIG(Colx)
FROM MyTable
GROUP BY PriKey

Not only can this view satisfy queries that directly reference the view columns, it can also be used to satisfy queries that query the
base table and contain expressions such as SUM(Colx), COUNT_BIG(Colx), COUNT(Colx), and AVG(Colx). All such queries will be
faster because they only have to retrieve the small number of rows in the view rather than reading the full number of rows from
the base tables.

See Also

Creating Indexes on Computed Columns

Resolving Indexes on Views

View Indexes

Creating and Maintaining Databases (SQL Server 2000)

Creating an Indexed View
Views are also known as virtual tables because the result set returned by the view has the same general form as a table with
columns and rows, and views can be referenced the same way as tables in SQL statements. The result set of a standard view is not
stored permanently in the database. Each time a query references the view, Microsoft® SQL Server™ 2000 dynamically merges
the logic needed to build the view result set into the logic needed to build the complete query result set from the data in the base
tables. The process of building the view results is called materializing the view. For more information, see View Resolution.

For a standard view, the overhead of dynamically building the result set for each query that references a view can be substantial
for views that involve complex processing of large numbers of rows, such as aggregating large amounts of data, or joining many
rows. If such views are frequently referenced in queries, you can improve performance by creating a unique clustered index on
the view. When a unique clustered index is created on a view, the view is executed and the result set is stored in the database in
the same way a table with a clustered index is stored. For more information about the structure used to store clustered indexes,
see Clustered Indexes.

Note Indexed views can be created in any edition of SQL Server 2000. In SQL Server 2000 Enterprise Edition, the query optimizer
will automatically consider the indexed view. To use an indexed view in all other editions, the NOEXPAND hint must be used.

Another benefit of creating an index on a view is that the optimizer starts using the view index in queries that do not directly
name the view in the FROM clause. Existing queries can benefit from the improved efficiency of retrieving data from the indexed
view without having to be recoded. For more information, see Resolving Indexes on Views.

Creating a clustered index on a view stores the data as it exists at the time the index is created. An indexed view also automatically
reflects modifications made to the data in the base tables after the index is created, the same way an index created on a base table
does. As modifications are made to the data in the base tables, the data modifications are also reflected in the data stored in the
indexed view. The requirement that the clustered index of the view be unique improves the efficiency with which SQL Server can
find the rows in the index that are affected by any data modification.

Indexed views can be more complex to maintain than indexes on base tables. You should create indexes only on views where the
improved speed in retrieving results outweighs the increased overhead of making modifications. This usually occurs for views
that are mapped over relatively static data, process many rows, and are referenced by many queries.

Requirements for the View

A view must meet these requirements before you can create a clustered index on it:

The ANSI_NULLS and QUOTED_IDENTIFIER options must have been set to ON when the CREATE VIEW statement was
executed. The OBJECTPROPERTY function reports this for views through the ExecIsAnsiNullsOn or
ExecIsQuotedIdentOn properties.

The ANSI_NULLS option must have been set to ON for the execution of all CREATE TABLE statements that create tables
referenced by the view.

The view must not reference any other views, only base tables.

All base tables referenced by the view must be in the same database as the view and have the same owner as the view.

The view must be created with the SCHEMABINDING option. SCHEMABINDING binds the view to the schema of the
underlying base tables.

User-defined functions referenced in the view must have been created with the SCHEMABINDING option.

Tables and user-defined functions must be referenced by two-part names. One-part, three-part, and four-part names are
not allowed.

All functions referenced by expressions in the view must be deterministic. The IsDeterministic property of the
OBJECTPROPERTY function reports if a user-defined function is deterministic. For more information, see Deterministic and
Nondeterministic Functions.

The SELECT statement in the view cannot contain these Transact-SQL syntax elements:
The select list cannot use the * or table_name.* syntax to specify columns. Column names must be explicitly stated.

A table column name used as a simple expression cannot be specified in more than one view column. A column can
be referenced multiple times provided all, or all but one, reference to the column is part of a complex expression or a
parameter to a function. For example, this select list is invalid:

SELECT ColumnA, ColumnB, ColumnA

These select lists are valid:

SELECT ColumnA, COUNT(ColumnA), ColumnA + Column B AS AddColAColB FROM T1

SELECT SUM(ColumnA), ColumnA % ColumnB AS ModuloColAColB, COUNT_BIG(*) FROM T1 GROUP BY ColumnA

A derived table.

Rowset functions.

UNION operator.

Subqueries.

Outer or self joins.

TOP clause.

ORDER BY clause.

DISTINCT keyword.

COUNT(*) (COUNT_BIG(*) is allowed.)

The AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggregate functions. If AVG, MAX, MIN, STDEV, STDEVP, VAR, or
VARP are specified in queries referencing the indexed view, the optimizer can often calculate the needed result if the
view select list contains these substitute functions.

Complex aggregate function Substitute simple aggregate functions
AVG(X) SUM(X), COUNT_BIG(X)
STDEV(X) SUM(X), COUNT_BIG(X), SUM(X**2)
STDEVP(X) SUM(X), COUNT_BIG(X), SUM(X**2)
VAR(X) SUM(X), COUNT_BIG(X), SUM(X**2)
VARP(X) SUM(X), COUNT_BIG(X), SUM(X**2)

For example, an indexed view select list cannot contain the expression AVG(SomeColumn). If the view select list
contains the expressions SUM(SomeColumn) and COUNT_BIG(SomeColumn), SQL Server can calculate the average
for a query that references the view and specifies AVG(SomeColumn).

A SUM function that references a nullable expression.

The full-text predicates CONTAINS or FREETEXT.

COMPUTE or COMPUTE BY clause.
If GROUP BY is not specified, the view select list cannot contain aggregate expressions.

If GROUP BY is specified, the view select list must contain a COUNT_BIG(*) expression, and the view definition cannot
specify HAVING, CUBE, or ROLLUP.

A column resulting from an expression that either evaluates to a float value or uses float expressions for its evaluation
cannot be a key of an index in an indexed view or a table.

Requirements for the CREATE INDEX Statement

The first index created on a view must be a unique clustered index. After the unique clustered index has been created, you can
create additional nonclustered indexes. The naming conventions for indexes on views are the same as for indexes on tables. The
only difference is that the table name is replaced with a view name. For more information, see CREATE INDEX.

The CREATE INDEX statement must meet these requirements in addition to the normal CREATE INDEX requirements:

The user executing the CREATE INDEX statement must be the view owner.

These SET options must be set to ON when the CREATE INDEX statement is executed:
ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIERS
The NUMERIC_ROUNDABORT option must be set to OFF.

The view cannot include text, ntext, or image columns, even if they are not referenced in the CREATE INDEX statement.

If the SELECT statement in the view definition specifies a GROUP BY clause, the key of the unique clustered index can
reference only columns specified in the GROUP BY clause.

Considerations

After the clustered index is created, any connection attempting to modify the base data for the view must also have the same
option settings required to create the index. SQL Server generates an error and rolls back any INSERT, UPDATE, or DELETE
statement that will affect the result set of the view if the connection executing the statement does not have the proper option
settings. For more information, see SET Options That Affect Results.

All indexes on a view are dropped if the view is dropped. All nonclustered indexes on the view are dropped if the clustered index is
dropped. Nonclustered indexes can be dropped individually. Dropping the clustered index on the view removes the stored result
set, and the optimizer returns to processing the view like a standard view.

Although only the columns that make up the clustered index key are specified in the CREATE UNIQUE CLUSTERED INDEX
statement, the complete result set of the view is stored in the database. As in a clustered index on a base table, the B-tree structure
of the clustered index contains only the key columns, but the data rows contain all of the columns in the view result set.

If you want to add indexes to views in an existing system, you must schema bind any view on which you want to place an index.
You can:

Drop the view and re-create it specifying WITH SCHEMABINDING.

You can create a second view that has the same text as the existing view but a different name. The optimizer considers the
indexes on the new view, even if it is not directly referenced in the FROM clause of queries.

Note Views or tables participating in a view created with the SCHEMABINDING clause cannot be dropped, unless the view is
dropped or changed so that it no longer has schema binding. In addition, ALTER TABLE statements on tables that participate in
views having schema binding will fail if these statements affect the view definition.

You must ensure that the new view meets all of the requirements of an indexed view. This may require you to change the
ownership of the view and all base tables it references so they are all owned by the same user.

See Also

CREATE INDEX

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

SET ARITHABORT

SET CONCAT_NULL_YIELDS_NULL

SET NUMERIC_ROUNDABORT

SET QUOTED_IDENTIFIER

Creating and Maintaining Databases (SQL Server 2000)

Creating a Partitioned View
A partitioned view joins horizontally partitioned data from a set of member tables across one or more servers, making the data
appear as if from one table. Microsoft® SQL Server™ 2000 distinguishes between local and distributed partitioned views. In a
local partitioned view, all participating tables and the view reside on the same instance of SQL Server. In a distributed partitioned
view, at least one of the participating tables resides on a different (remote) server. In addition, SQL Server 2000 differentiates
between partitioned views that are updatable and views that are read-only copies of the underlying tables.

Distributed partitioned views can be used to implement a federation of database servers. A federation is a group of servers
administered independently, but which cooperate to share the processing load of a system. Forming a federation of database
servers by partitioning data is the mechanism that enables you to scale out a set of servers to support the processing
requirements of large, multitiered Web sites. For more information, see Designing Federated Database Servers.

Before implementing a partitioned view, you must first partition a table horizontally. In designing a partitioning scheme, it must
be clear what data belongs to each member table. The original table is replaced with several smaller member tables. Each
member table has the same number of columns as the original table, and each column has the same attributes (such as data type,
size, collation) as the corresponding column in the original table. If you are creating a distributed partitioned view, each member
table is on a separate member server. For the greatest location transparency, the name of the member databases should be the
same on each member server, although this is not a requirement. For example: Server1.CustomerDB, Server2.CustomerDB,
Server3.CustomerDB.

You design the member tables so that each table stores a horizontal slice of the original table based on a range of key values. The
ranges are based on the data values in a partitioning column. The range of values in each member table is enforced by a CHECK
constraint on the partitioning column, and ranges cannot overlap. For example, you cannot have one table with a range from 1
through 200000, and another with a range from 150000 through 300000 because it would not be clear which table contains the
values from 150000 through 200000.

For example, you are partitioning a Customer table into three tables. The CHECK constraint for these tables is:

-- On Server1:
CREATE TABLE Customers_33
 (CustomerID INTEGER PRIMARY KEY
 CHECK (CustomerID BETWEEN 1 AND 32999),
 ... -- Additional column definitions)

-- On Server2:
CREATE TABLE Customers_66
 (CustomerID INTEGER PRIMARY KEY
 CHECK (CustomerID BETWEEN 33000 AND 65999),
 ... -- Additional column definitions)

-- On Server3:
CREATE TABLE Customers_99
 (CustomerID INTEGER PRIMARY KEY
 CHECK (CustomerID BETWEEN 66000 AND 99999),
 ... -- Additional column definitions)

After creating the member tables, you define a distributed partitioned view on each member server, with each view having the
same name. This allows queries referencing the distributed partitioned view name to run on any of the member servers. The
system operates as if a copy of the original table is on each member server, but each server has only a member table and a
distributed partitioned view. The location of the data is transparent to the application.

You build the distributed partitioned views by:

Adding linked server definitions on each member server containing the connection information needed to execute
distributed queries on the other member servers. This gives a distributed partitioned view access to data on the other
servers.

Setting the lazy schema validation option, using sp_serveroption, for each linked server definition used in distributed
partitioned views. This optimizes performance by ensuring the query processor does not request meta data for any of the
linked tables until data is actually needed from the remote member table.

Creating a distributed partitioned view on each member server. The views use distributed SELECT statements to access data
from the linked member servers, and merges the distributed rows with rows from the local member table.

To create distributed partitioned views for the preceding example, you must:

Add a linked-server definition named Server2 with the connection information for Server2, and a linked server definition
named Server3 for access to Server3.

Create this distributed partitioned view:

CREATE VIEW Customers AS
 SELECT * FROM CompanyDatabase.TableOwner.Customers_33
UNION ALL
 SELECT * FROM Server2.CompanyDatabase.TableOwner.Customers_66
UNION ALL
 SELECT * FROM Server3.CompanyDatabase.TableOwner.Customers_99

Perform the same steps on Server2 and Server3.

Updatable Partitioned Views

If a local or distributed partitioned view is not updatable, it can serve only as a read-only copy of the original table. An updatable
partitioned view can exhibit all the capabilities of the original table.

A view is considered an updatable partitioned view if:

The view is a set of SELECT statements whose individual result sets are combined into one using the UNION ALL statement.
Each individual SELECT statement references one SQL Server base table. The table can be either a local table or a linked
table referenced using a four-part name, the OPENROWSET function, or the OPENDATASOURCE function (you cannot use
an OPENDATASOURCE or OPENROWSET function that specifies a pass-through query).

The view will not be updatable if a trigger or cascading update or delete is defined on one or more member tables.

Table Rules

Member tables are defined in the FROM clause in each SELECT statement in the view definition. Each member table must adhere
to these rules:

Member tables cannot be referenced more than once in the view.

Member tables cannot have indexes created on any computed columns.

Member tables must have all PRIMARY KEY constraints on an identical number of columns.

Member tables must have the same ANSI padding setting. For more information about the ANSI padding setting, see SET
ANSI_PADDING.

Column Rules

Columns are defined in the select list of each SELECT statement in the view definition. The columns must follow these rules.

All columns in each member table must be included in the select list. SELECT * FROM <member table> is acceptable syntax.

Columns cannot be referenced more than once in the select list.

The columns must be in the same ordinal position in the select list

The columns in the select list of each SELECT statement must be of the same type (including data type, precision, scale, and
collation). For example, this view definition fails because the first column in both SELECT statements does not have the same
data type:

CREATE VIEW NonUpdatable
AS
SELECT IntPrimaryKey, IntPartNmbr
FROM FirstTable
 UNION ALL
SELECT NumericPrimaryKey, IntPartNmbr

FROM SecondTable

Partitioning Column Rules

A partitioning column exists on each member table and, through CHECK constraints, identifies the data available in that specific
table. Partitioning columns must adhere to these rules:

Each base table has a partitioning column whose key values are enforced by CHECK constraints. The key ranges of the
CHECK constraints in each table do not overlap with the ranges of any other table. Any given value of the partitioning
column must map to only one table. The CHECK constraints can only use these operators: BETWEEN, AND, OR, <, <=, >, >=,
=.

The partitioning column cannot be an identity, default or timestamp column.

The partitioning column must be in the same ordinal location in the select list of each SELECT statement in the view. For
example, the partitioning column is always the first column in each select list, or the second column in each select list, and
so on.

Partitioning columns cannot allow nulls.

Partitioning columns must be a part of the primary key of the table.

Partitioning columns cannot be computed columns.

There must be only one constraint on the partitioning column. If there is more than one constraint, SQL Server ignores all
the constraints and will not consider them when determining whether or not the view is a partitioned view.

There are no restrictions on the updatability of the partitioning columns.

A partitioned column that meets all these rules will support all of the optimizations that are supported by the SQL Server 2000
query optimizer. For more information, see Resolving Distributed Partitioned Views.

Data Modification Rules

In addition to the rules defined for updatable partitioned views, data modification statements referencing the view must adhere to
the rules defined for INSERT, UPDATE and DELETE statements.

Note You can modify data through a partitioned view only if you install Microsoft SQL Server 2000 Enterprise Edition or
Microsoft. SQL Server 2000 Developer Edition.

IN SERT Statements

INSERT statements add data to the member tables through the partitioned view. The INSERT statements must adhere to these
rules:

All columns must be included in the INSERT statement even if the column can be NULL in the base table or has a DEFAULT
constraint defined in the base table.

The DEFAULT keyword cannot be specified in the VALUES clause of the INSERT statement.

INSERT statements must supply a value that satisfies the logic of the CHECK constraint defined on the partitioning column
for one of the member tables.

INSERT statements are not allowed if a member table contains a column with an identity property.

INSERT statements are not allowed if a member table contains a timestamp column.

INSERT statements are not allowed if there is a self-join with the same view or any of the member table.

UPDATE Statements

UPDATE statements modify data in one or more of the member tables through the partitioned view. The UPDATE statements
must adhere to these rules:

UPDATE statements cannot specify the DEFAULT keyword as a value in the SET clause even if the column has a DEFAULT
value defined in the corresponding member table

The value of a column with an identity property cannot be changed: however, the other columns can be updated.

The value of a PRIMARY KEY cannot be changed if the column contains text, image or ntext data.

Updates are not allowed if a base table contains a timestamp column.

Updates are not allowed if there is a self-join with the same view or any of the member tables.

The DEFAULT keyword cannot be specified in the SET clause of the UPDATE statement.

DELETE Statements

DELETE statements remove data in one or more of the member tables through the partitioned view. The DELETE statements must
adhere to this rule:

DELETE statements are not allowed if there is a self-join with the same view or any of the member tables.

Distributed Partition View Rules

In addition to the rules defined for partitioned views, distributed (remote) partition views have these additional conditions:

A distributed transaction will be started to ensure atomicity across all nodes affected by the update.

The XACT_ABORT SET option must be set to ON.

smallmoney and smalldatetime columns in remote tables are mapped as money and datetime respectively.
Consequently, the corresponding columns in the local tables should also be money and datetime.

Any linked server cannot be a loopback linked server, that is, a linked server that points to the same instance of SQL Server.

A view that references partitioned tables without following all these rules may still be updatable if there is an INSTEAD OF trigger
on the view. The query optimizer, however, may not always be able to build execution plans for a view with an INSTEAD OF
trigger that are as efficient as the plans for a partitioned view that follows all of the rules.

See Also

CREATE VIEW

Designing Partitions

Scenarios for Using Views

Using Partitioned Views

.

Creating and Maintaining Databases (SQL Server 2000)

Modifying and Renaming a View
After a view is defined, you can change its name or modify its definition without dropping and re-creating the view, thereby losing
the permissions associated with the view. When you rename a view, follow these guidelines:

The view to be renamed must be in the current database.

The new name must follow the rules for identifiers.

You can rename only views that you own.

The database owner can change the name of any user's view.

Altering a view does not affect any dependent objects, such as stored procedures or triggers, unless the definition of the view
changes in such a way that the dependent object is no longer valid. For example, a view authors_view in the pubs database is
defined as:

CREATE VIEW authors_view
AS
 SELECT au_id FROM authors

The stored procedure authors_proc is defined as:

CREATE PROC authors_proc
AS
 SELECT au_id from authors_view

authors_view is modified to retrieve the column au_lname instead of au_id:

ALTER VIEW authors_view
AS
 SELECT au_lname FROM authors

authors_proc now fails when executed because the column au_id no longer exists in the view.

You can also modify a view to encrypt its definition, or to ensure that all data modification statements executed against the view
adhere to the criteria set within the SELECT statement defining the view. For more information, see Creating a View.

To modify a view

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To rename a view

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Note Renaming a view does not change the name of the view in the text of the view's definition. To change the name of the view
in the definition, modify the view directly.

https://msdn.microsoft.com/en-us/library/ms947983(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Modifying Data Through a View
You can modify data through a view in these ways:

Use INSTEAD OF triggers with logic to support INSERT, UPDATE and DELETE statements.

Use updatable partitioned views that modify one or more member tables.

If a view does not use an INSTEAD OF trigger or is not an updatable partitioned view, it can still be updatable provided that:

The view contains at least one table in the FROM clause of the view definition; the view cannot be based solely on an
expression.

No aggregate functions (AVG, COUNT, SUM, MIN, MAX, GROUPING, STDEV, STDEVP, VAR, VARP) or GROUP BY, UNION,
DISTINCT, or TOP clauses are used in the select list. However, aggregate functions can be used within a subquery defined in
the FROM clause provided that the derived values generated by the aggregate functions are not modified.

Note Partitioned views using the UNION ALL operator can be updatable.

No derived columns are used in the select list. Derived columns are result set columns formed by anything other than a
simple column reference.

Guidelines for Modifying Data Through a View

Before you modify data through a view without using an INSTEAD OF trigger or an updatable partitioned view, consider these
guidelines:

All data modification statements executed against the view must adhere to the criteria set within the SELECT statement
defining the view if the WITH CHECK OPTION clause is used in the definition of the view. If the WITH CHECK OPTION clause
is used, rows cannot be modified in a way that causes them to disappear from the view. Any modification that would cause
this to happen is canceled and an error is displayed.

SQL Server must be able to resolve unambiguously the modification operation to specific rows in one of the base tables
referenced by the view. You cannot use data modification statements on more than one underlying table in a single
statement. Therefore, the columns listed in the UPDATE or INSERT statement must belong to a single base table within the
view definition.

All the columns in the underlying table that are being updated and do not allow null values have values specified in either
the INSERT statement or DEFAULT definitions. This ensures that all the columns in the underlying table that require values
have them.

The data modified in the columns in the underlying table must adhere to the restrictions on those columns, such as
nullability, constraints, DEFAULT definitions and so on. For example, if a row is deleted, all the underlying FOREIGN KEY
constraints in related tables must still be satisfied for the delete to succeed.

A distributed partition view (remote view) cannot be updated using a keyset-driven cursor. This restriction can be resolved
by declaring the cursor on the underlying tables and not on the view itself.

Additionally, to delete data in a view:

Only one table can be listed in the FROM clause of the view definition.

The READTEXT and WRITETEXT statements cannot be used with text, ntext, or image columns in a view.

To add data through a view

Transact-SQL

To change data through a view

Transact-SQL

To delete data through a view

Transact-SQL

Creating and Maintaining Databases (SQL Server 2000)

Getting Information About a View
You can gain information about the definition of a view if it is not encrypted. You may need to see the definition of the view to
understand how its data is derived from the source tables or to see the data defined by the view.

Views are queried the same way that ordinary tables are queried. However, any table hints used when querying the view are
ignored. For more information about table hints, see SELECT.

If you change the name of an object referenced by a view, you must modify the view so that its text reflects the new name.
Therefore, before renaming an object, display the dependencies of the object first to determine if any views are affected by the
proposed change.

To get information about a view

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the data defined by a view

Transact-SQL

Enterprise Manager

To display the dependencies of a view

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Query Fundamentals

https://msdn.microsoft.com/en-us/library/aa292879(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Deleting a View
After a view has been created, you can delete the view if it is not needed, or if you want to clear the view definition and the
permissions associated with it. When a view is deleted, the tables and the data upon which it is based are not affected. Any queries
that use objects that depend on the deleted view fail when they are next executed, unless a view with the same name is created.
However, if the new view does not reference objects expected by any objects dependent on the new view, queries using the
dependent objects fail when executed. For example, a view my_view that retrieves all columns from the authors table in the
pubs database is deleted and replaced by a new view called my_view that retrieves all columns from the titles table instead. Any
stored procedures that reference columns from the underlying authors table in my_view now fail because those columns are
replaced by columns from the titles table instead.

To delete a view

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Modifying and Renaming a View

Programming Stored Procedures

Creating and Maintaining Databases (SQL Server 2000)

Stored Procedures
When you create an application with Microsoft® SQL Server™ 2000, the Transact-SQL programming language is the primary
programming interface between your applications and the SQL Server database. When you use Transact-SQL programs, two
methods are available for storing and executing the programs. You can store the programs locally and create applications that
send the commands to SQL Server and process the results, or you can store the programs as stored procedures in SQL Server
and create applications that execute the stored procedures and process the results.

Stored procedures in SQL Server are similar to procedures in other programming languages in that they can:

Accept input parameters and return multiple values in the form of output parameters to the calling procedure or batch.

Contain programming statements that perform operations in the database, including calling other procedures.

Return a status value to a calling procedure or batch to indicate success or failure (and the reason for failure).

You can use the Transact-SQL EXECUTE statement to run a stored procedure. Stored procedures are different from functions in
that they do not return values in place of their names and they cannot be used directly in an expression.

The benefits of using stored procedures in SQL Server rather than Transact-SQL programs stored locally on client computers are:

They allow modular programming.

You can create the procedure once, store it in the database, and call it any number of times in your program. Stored
procedures can be created by a person who specializes in database programming, and they can be modified independently
of the program source code.

They allow faster execution.

If the operation requires a large amount of Transact-SQL code or is performed repetitively, stored procedures can be faster
than batches of Transact-SQL code. They are parsed and optimized when they are first executed, and a compiled version of
the stored procedure remains in memory cache for later use. This means the stored procedure does not need to be reparsed
and reoptimized with each use resulting in much faster execution times.

They can reduce network traffic.

An operation requiring hundreds of lines of Transact-SQL code can be performed through a single statement that executes
the code in a procedure, rather than by sending hundreds of lines of code over the network.

They can be used as a security mechanism.

Users can be granted permission to execute a stored procedure even if they do not have permission to execute the
procedure's statements directly.

A SQL Server stored procedure is created with the Transact-SQL CREATE PROCEDURE statement and can be modified with the
ALTER PROCEDURE statement. The stored procedure definition contains two primary components: the specification of the
procedure name and its parameters, and the body of the procedure, which contains Transact-SQL statements that perform the
procedure's operations.

See Also

Catalog Stored Procedures

System Stored Procedures

Creating and Maintaining Databases (SQL Server 2000)

Extended Stored Procedures
 New Information - SQL Server 2000 SP3.

Extended stored procedures allow you to create your own external routines in a programming language such as C. The extended
stored procedures appear to users as normal stored procedures and are executed in the same way. Parameters can be passed to
extended stored procedures, and they can return results and return status. Extended stored procedures can be used to extend the
capabilities of Microsoft® SQL Server™ 2000.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Extended stored procedures are dynamic-link libraries (DLLs) that SQL Server can dynamically load and execute. Extended stored
procedures run directly in the address space of SQL Server and are programmed using the SQL Server Open Data Services API.

Security Note Extended stored procedures should not be used to instantiate the Microsoft .NET Framework common language
runtime and execute managed code. This scenario will not be supported in future versions of SQL Server.

After an extended stored procedure has been written, members of the sysadmin fixed server role can register the extended
stored procedure with SQL Server and then grant permission to other users to execute the procedure. Extended stored
procedures can be added only to the master database.

Note Extended stored procedures may produce memory leaks or other problems that reduce the performance and reliability of
the server. You should consider storing extended stored procedures in an instance of SQL Server separate from the instance
containing the referenced data and using distributed queries to access the database. For more information, see Distributed
Queries.

To add an extended stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

See Also

Adding an Extended Stored Procedure to SQL Server

How Extended Stored Procedures Work

Creating Extended Stored Procedures

Sample Extended Stored Procedures

Debugging an Extended Stored Procedure

Creating and Maintaining Databases (SQL Server 2000)

Creating a Stored Procedure
You can create stored procedures using the CREATE PROCEDURE Transact-SQL statement. Before creating a stored procedure,
consider that:

CREATE PROCEDURE statements cannot be combined with other SQL statements in a single batch.

Permission to create stored procedures defaults to the database owner, who can transfer it to other users.

Stored procedures are database objects, and their names must follow the rules for identifiers.

You can create a stored procedure only in the current database.

When creating a stored procedure, you should specify:

Any input parameters and output parameters to the calling procedure or batch.

The programming statements that perform operations in the database, including calling other procedures.

The status value returned to the calling procedure or batch to indicate success or failure (and the reason for failure).

System Stored Procedures

Many of your administrative activities in Microsoft® SQL Server™ 2000 are performed through a special kind of procedure
known as a system stored procedure. System stored procedures are created and stored in the master database and have the sp_
prefix. System stored procedures can be executed from any database without having to qualify the stored procedure name fully
using the database name master.

It is strongly recommended that you do not create any stored procedures using sp_ as a prefix. SQL Server always looks for a
stored procedure beginning with sp_ in this order:

1. The stored procedure in the master database.

2. The stored procedure based on any qualifiers provided (database name or owner).

3. The stored procedure using dbo as the owner, if one is not specified.

Therefore, although the user-created stored procedure prefixed with sp_ may exist in the current database, the master database is
always checked first, even if the stored procedure is qualified with the database name.

Important If any user-created stored procedure has the same name as a system stored procedure, the user-created stored
procedure will never be executed.

Grouping

A procedure can be created with the same name as an existing stored procedure if it is given a different identification number,
which allows the procedures to be grouped logically. Grouping procedures with the same name allows them to be deleted at the
same time. Procedures used in the same application are often grouped this way. For example, the procedures used with the
my_app application might be named my_proc;1, my_proc;2, and so on. Deleting my_proc deletes the entire group. After
procedures have been grouped, individual procedures within the group cannot be deleted.

Temporary Stored Procedures

Private and global temporary stored procedures, analogous to temporary tables, can be created with the # and ## prefixes added
to the procedure name. # denotes a local temporary stored procedure; ## denotes a global temporary stored procedure. These
procedures do not exist after SQL Server is shut down.

Temporary stored procedures are useful when connecting to earlier versions of SQL Server that do not support the reuse of
execution plans for Transact-SQL statements or batches. Applications connecting to SQL Server version 2000 should use the
sp_executesql system stored procedure instead of temporary stored procedures. For more information, see Execution Plan
Caching and Reuse.

Only the connection that created a local temporary procedure can execute it, and the procedure is automatically deleted when the
connection is closed (when the user logs out of SQL Server).

Any connection can execute a global temporary stored procedure. A global temporary stored procedure exists until the
connection used by the user who created the procedure is closed and any currently executing versions of the procedure by any
other connections are completed. Once the connection that was used to create the procedure is closed, no further execution of the
global temporary stored procedure is allowed. Only those connections that have already started executing the stored procedure
are allowed to complete.

If a stored procedure not prefixed with # or ## is created directly in the tempdb database, the stored procedure is automatically
deleted when SQL Server is shut down because tempdb is re-created every time SQL Server is started. Procedures created
directly in tempdb exist even after the creating connection is terminated. As with any other object, permissions to execute the
temporary stored procedure can be granted, denied, and revoked to other users.

To create a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

You can also create a stored procedure using the SQL Server Enterprise Manager Create Stored Procedure Wizard.

To create a stored procedure using the Create Stored Procedure Wizard

SQL-DMO

SQL-DMO

See Also

Adding an Extended Stored Procedure to SQL Server

Programming Stored Procedures

Creating Extended Stored Procedures

sp_executesql

Recompiling a Stored Procedure

System Stored Procedures

Creating and Maintaining Databases (SQL Server 2000)

Specifying Parameters
 New Information - SQL Server 2000 SP3.

A stored procedure communicates with the calling program through its parameters. When a program executes a stored
procedure, it can pass values to the stored procedure through the parameters of the stored procedure. These values can be used
as standard variables in the Transact-SQL programming language. The stored procedure can also return values to the calling
program through OUTPUT parameters. A stored procedure can have as many as 2100 parameters, with each parameter having a
name, data type, direction, and default value.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

See Also

Parameters

Returning Data Using OUTPUT Parameters

Creating and Maintaining Databases (SQL Server 2000)

Specifying a Name
Specifying a Name

Each stored procedure parameter must be defined with a unique name. Stored procedure names must begin with a single @
character, as in a standard Transact-SQL variable, and must follow the rules for object identifiers. The parameter name can be
used in the stored procedure to obtain and change the value of the parameter.

Values can be passed to stored procedures either by explicitly naming the parameters and assigning the appropriate value or by
supplying the parameter values given in the CREATE PROCEDURE statement without naming them. For example, if the stored
procedure my_proc expects three parameters named @first, @second, and @third, the values passed to the stored procedure
can be assigned to the parameter names, such as:

EXECUTE my_proc @second = 2, @first = 1, @third = 3

Or by position without naming them:

EXECUTE my_proc 1, 2, 3

Naming the parameters when executing the stored procedure allows the parameters to be supplied in any order. If the
parameters are not named, they must be supplied in the same order (left to right) as they are defined in the stored procedure.
Additionally, all parameters preceding a given parameter must be supplied even if they are optional and have default values. For
example, if the parameters of my_proc are all optional, my_proc could be executed by supplying values only for the first and
second parameters, but not by supplying values only for the second and third parameters. This is necessary because, otherwise,
Microsoft® SQL Server™ 2000 cannot identify the parameters that are being specified.

See Also

EXECUTE

Using Identifiers

Specifying a Default Value

Creating and Maintaining Databases (SQL Server 2000)

Specifying a Data Type
Specifying a Data Type

Parameters in a stored procedure are defined with a data type, much as a column in a table is defined. A stored procedure
parameter can be defined with any of the Microsoft® SQL Server™ 2000 data types, except the table data type . Stored
procedure parameters can also be defined with user-defined data types.

Note The cursor data type can be used only as an OUTPUT parameter to a stored procedure. For more information about using
cursor variables, see Scope of Transact-SQL Cursor Names.

The data type of a parameter determines the type and range of values that are accepted for the parameter. For example, if you
define a parameter with a tinyint data type, only numeric values ranging from 0 to 255 are accepted. An error is returned if a
stored procedure is executed with a value incompatible with the data type.

See Also

Creating User-Defined Data Types

CREATE PROCEDURE

Data Types

Creating and Maintaining Databases (SQL Server 2000)

Specifying the Direction of a Parameter
Specifying the Direction of a Parameter

All procedure parameters can receive input values when the stored procedure is executed by the program that calls the stored
procedure.

Examples

The following stored procedure, get_sales_for_title, uses an input parameter. The @title parameter in the stored procedure
receives the input value of a title of a book specified by the calling program. The SELECT statement uses the @title parameter to
obtain the correct ytd_sales value and displays the value.

CREATE PROCEDURE get_sales_for_title
@title varchar(80) -- This is the input parameter.
AS

-- Get the sales for the specified title.
SELECT "YTD_SALES" = ytd_sales
FROM titles
WHERE title = @title

RETURN
GO

If you specify the OUTPUT keyword for a parameter in the stored procedure definition, the stored procedure can return the
current value of the parameter to the calling program when the stored procedure exits. The calling program must also use the
OUTPUT keyword when executing the stored procedure to save the parameter's value in a variable that can be used in the calling
program. For more information, see Returning Data Using OUTPUT Parameters.

Creating and Maintaining Databases (SQL Server 2000)

Specifying a Default Value
Specifying a Default Value

 New Information - SQL Server 2000 SP3.

You can create a stored procedure with optional parameters by specifying a default value for optional parameters. When the
stored procedure is executed, the default value is used if no other value has been specified.

Specifying default values is necessary because a system error is returned if a parameter does not have a default value specified in
the stored procedure and the calling program does not provide a value for the parameter when the stored procedure is executed.

If no value can be specified appropriately as a default for the parameter, you can specify NULL as the default for a parameter and
have the stored procedure return a customized message if the stored procedure is executed without a value for the parameter.

Note If the default value is a character string that contains embedded blanks or punctuation, or if it begins with a number (for
example, 6xxx), it must be enclosed in single, straight quotation marks.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Examples

This example shows the get_sales_for_title procedure with special handling for cases when the stored procedure is executed
without a value for the @title parameter:

CREATE PROCEDURE get_sales_for_title
@title varchar(80) = NULL, -- NULL default value
@ytd_sales int OUTPUT
AS

-- Validate the @title parameter.
IF @title IS NULL
BEGIN
 PRINT 'ERROR: You must specify a title value.'
 RETURN
END

-- Get the sales for the specified title and
-- assign it to the output parameter.
SELECT @ytd_sales = ytd_sales
FROM titles
WHERE title = @title

RETURN
GO

The following example shows the my_proc procedure with default values for each of the three parameters @first, @second, and
@third, and the values displayed when the stored procedure is executed with other parameter values:

CREATE PROCEDURE my_proc
@first int = NULL, -- NULL default value
@second int = 2, -- Default value of 2
@third int = 3 -- Default value of 3
AS

-- Display values.
SELECT @first, @second, @third
GO

EXECUTE my_proc -- No parameters supplied
GO

Displays:

NULL 2 3

EXECUTE my_proc 10, 20, 30 -- All parameters supplied
GO

Displays:

10 20 30

EXECUTE my_proc @second = 500 -- Only second parameter supplied by name
GO

Displays:

NULL 500 3

EXECUTE my_proc 40, @third = 50 -- Only first and third parameters
GO -- are supplied.

Displays:

40 2 50

See Also

EXECUTE

Creating and Maintaining Databases (SQL Server 2000)

Programming Stored Procedures
 Topic last updated -- June 2007

Almost any Transact-SQL code that can be written as a batch can be used to create a stored procedure.

Rules for Programming Stored Procedures

Rules for programming stored procedures include:

The CREATE PROCEDURE definition itself can include any number and type of SQL statements except for the following
CREATE statements, which cannot be used anywhere within a stored procedure:
CREATE DEFAULT CREATE TRIGGER
CREATE PROCEDURE CREATE VIEW
CREATE RULE

Other database objects can be created within a stored procedure. You can reference an object created in the same stored
procedure as long as it is created before it is referenced.

You can reference temporary tables within a stored procedure.

If you create a local temporary table inside a stored procedure, the temporary table exists only for the purposes of the
stored procedure; it disappears when you exit the stored procedure.

If you execute a stored procedure that calls another stored procedure, the called stored procedure can access all objects
created by the first stored procedure, including temporary tables.

If you execute a remote stored procedure that makes changes on a remote instance of Microsoft® SQL Server™ 2000, those
changes cannot be rolled back. Remote stored procedures do not take part in transactions.

The maximum number of parameters in a stored procedure is 2100.

The maximum number of local variables in a stored procedure is limited only by available memory.

Depending on available memory, the maximum size of a stored procedure is 128 megabytes (MB).

For more information about the rules for creating stored procedures, see CREATE PROCEDURE.

Qualifying Names Inside Stored Procedures

Inside a stored procedure, object names used with statements (for example, SELECT or INSERT) that are not user-qualified default
to the owner of the stored procedure. If a user who creates a stored procedure does not qualify the name of the tables referenced
in SELECT, INSERT, UPDATE, or DELETE statements within the stored procedure, access to those tables through the stored
procedure is restricted by default to the creator of the procedure.

Object names used with the statements ALTER TABLE, CREATE TABLE, DROP TABLE, TRUNCATE TABLE, CREATE INDEX, DROP
INDEX, UPDATE STATISTICS, and DBCC must be qualified with the name of the object owner if other users are to use of the stored
procedure. For example, Mary, who owns table marytab, must qualify the name of her table when it is used with one of these
statements if she wants other users to be able to execute the stored procedure in which the table is used.

This rule is necessary because object names are resolved when the stored procedure is run. If marytab is not qualified and John
tries to execute the procedure, SQL Server looks for a table called marytab owned by John.

Obfuscating Procedure Definitions

To convert the original text of the CREATE PROCEDURE statement to an obfuscated format, use the WITH ENCRYPT option. Note
that obfuscated stored procedures can be reverse engineered because SQL Server must de-obfuscate procedures for execution. In
SQL Server 2000, the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation
attempts.

Using the WITH ENCRYPTION option prevents the stored procedure from being published as part of SQL Server replication.

SET Statement Options

When an ODBC application connects to SQL Server, the server automatically sets these options for the session:

SET QUOTED_IDENTIFIER ON

SET TEXTSIZE 2147483647

SET ANSI_DEFAULTS ON

SET CURSOR_CLOSE_ON_COMMIT OFF

SET IMPLICIT_TRANSACTIONS OFF

These settings increase the portability of ODBC applications. Because DB-Library-based applications generally do not set these
options, stored procedures should be tested with the SET options listed above turned both on and off. This ensures that the stored
procedures work correctly regardless of the options a particular connection may have set when it invokes the stored procedure. A
stored procedure that requires a particular setting for one of these options should issue a SET statement at the start of the stored
procedure. This SET statement remains in effect only for the execution of the stored procedure; when the stored procedure ends,
the original setting is restored.

Examples

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

A. Create a stored procedure that uses parameters

This example creates a stored procedure that is useful in the pubs database. Given the last and first name of an author, the stored
procedure displays the title and publisher of each book by that author.

CREATE PROC au_info @lastname varchar(40), @firstname varchar(20)
AS
SELECT au_lname, au_fname, title, pub_name
FROM authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id
 JOIN titles ON titleauthor.title_id = titles.title_id
 JOIN publishers ON titles.pub_id = publishers.pub_id
WHERE au_fname = @firstname
AND au_lname = @lastname
GO

When a message appears stating that the command did not return any data and it did not return any rows, the stored procedure
has been created.

Now execute the au_info stored procedure:

EXECUTE au_info Ringer, Anne
GO

Here is the result set:
au_lname au_fname title pub_name
--------- --------- --------------------- ----------------
Ringer Anne The Gourmet Microwave Binnet & Hardley
Ringer Anne Is Anger the Enemy? New Moon Books

(2 row(s) affected)

B. Create a stored procedure that uses default values for parameters

This example creates a stored procedure, pub_info2, that displays the names of all authors who have written a book published by
the publisher given as a parameter. If no publisher name is supplied, the stored procedure shows the authors published by
Algodata Infosystems.

CREATE PROC pub_info2 @pubname varchar(40) = 'Algodata Infosystems'
AS
SELECT au_lname, au_fname, pub_name
FROM authors a INNER JOIN titleauthor ta ON a.au_id = ta.au_id
 JOIN titles t ON ta.title_id = t.title_id
 JOIN publishers p ON t.pub_id = p.pub_id
WHERE @pubname = p.pub_name

Execute pub_info2 with no parameter specified:

EXECUTE pub_info2
GO

Here is the result set:
au_lname au_fname pub_name
---------------- ---------------- --------------------
Green Marjorie Algodata Infosystems
Bennet Abraham Algodata Infosystems
O'Leary Michael Algodata Infosystems
MacFeather Stearns Algodata Infosystems
Straight Dean Algodata Infosystems
Carson Cheryl Algodata Infosystems
Dull Ann Algodata Infosystems
Hunter Sheryl Algodata Infosystems
Locksley Charlene Algodata Infosystems

(9 row(s) affected)

C. Execute a stored procedure that overrides the default value of a parameter w ith an explicit value

In this example, the stored procedure, showind2, the default value for the @table parameter is titles.

CREATE PROC showind2 @table varchar(30) = 'titles'
AS
SELECT TABLE_NAME = sysobjects.name,
INDEX_NAME = sysindexes.name, INDEX_ID = indid
FROM sysindexes INNER JOIN sysobjects ON sysobjects.id = sysindexes.id
WHERE sysobjects.name = @table

The column headings (for example, TABLE_NAME) make the results more readable. Here is what the stored procedure shows for
the authors table:

EXECUTE showind2 authors
GO

TABLE_NAME INDEX_NAME INDEX_ID
---------- ---------- ----------
authors UPKCL_auidind 1
authors aunmind 2

(2 row(s) affected)

If you do not supply a value, SQL Server uses the default table, titles:

EXECUTE showind2
GO

Here is the result set:
TABLE_NAME INDEX_NAME INDEX_ID
---------- ---------- ----------
titles UPKCL_titleidind 1
titles titleind 2

(2 row(s) affected)

D. Create a stored procedure using a parameter default of N ULL

The parameter default can be the value NULL. In this case, if you do not supply a parameter, SQL Server executes the stored

procedure according to its other statements. No error message is displayed.

The procedure definition can also specify that some other action be taken if you do not give a parameter. For example:

CREATE PROC showind3 @table varchar(30) = NULL
AS IF @table IS NULL
 PRINT 'Give a table name'
ELSE
 SELECT TABLE_NAME = sysobjects.name,
 INDEX_NAME = sysindexes.name, INDEX_ID = indid
 FROM sysindexes INNER JOIN sysobjects
 ON sysobjects.id = sysindexes.id
 WHERE sysobjects.name = @table

E. Create a stored procedure using a parameter default including wildcard characters

The default can include wildcard characters (%, _, [] and [^]) if the stored procedure uses the parameter with the LIKE keyword. For
example, showind can be modified to display information about the system tables if you do not supply a parameter:

CREATE PROC showind4 @table varchar(30) = 'sys%'
AS SELECT TABLE_NAME = sysobjects.name,
 INDEX_NAME = sysindexes.name, INDEX_ID = indid
FROM sysindexes INNER JOIN sysobjects
ON sysobjects.id = sysindexes.id
WHERE sysobjects.name LIKE @table

The following variation of the stored procedure au_info has defaults with wildcard characters for both parameters:

CREATE PROC au_info2 @lastname varchar(30) = 'D%',
 @firstname varchar(18) = '%'
AS
SELECT au_lname, au_fname, title, pub_name
FROM authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id
 JOIN titles ON titleauthor.title_id = titles.title_id
 JOIN publishers ON titles.pub_id = publishers.pub_id
WHERE au_fname LIKE @firstname
 AND au_lname LIKE @lastname

If au_info2 is executed with no parameters, all the authors with last names beginning with the letter D are displayed:

EXECUTE au_info2
GO

Here is the result set:
au_lname au_fname title pub_name
-------- -------- --------------------- -------------------
Dull Ann Secrets of Silicon Val Algodata Infosystems
del Castillo Innes Silicon Val Gastrono Binnet & Hardley
DeFrance Michel The Gourmet Microwave Binnet & Hardley

(3 row(s) affected)

This example omits the second parameter when defaults for two parameters have been defined, so you can find the books and
publishers for all authors with the last name Ringer:

EXECUTE au_info2 Ringer
GO

au_lname au_fname title pub_name
--------- --------- ---------------------- ----------------
Ringer Anne The Gourmet Microwave Binnet & Hardley
Ringer Anne Is Anger the Enemy? New Moon Books
Ringer Albert Is Anger the Enemy? New Moon Books
Ringer Albert Life Without Fear New Moon Books

(4 row(s) affected)

See Also

CREATE PROCEDURE

EXECUTE

Effects of SQL-92 Options

Rollbacks in Stored Procedures and Triggers

Creating and Maintaining Databases (SQL Server 2000)

Nesting Stored Procedures
Nesting Stored Procedures

Stored procedures are nested when one stored procedure calls another. You can nest stored procedures up to 32 levels. The
nesting level increases by one when the called stored procedure begins execution and decreases by one when the called stored
procedure completes execution. Attempting to exceed the maximum of 32 levels of nesting causes the whole calling stored
procedure chain to fail. The current nesting level for the stored procedures in execution is stored in the @@NESTLEVEL function.

Although the nesting limit is 32 levels, Microsoft® SQL Server™ 2000 has no limit on the number of stored procedures that can
be invoked from a given stored procedure, provided that the subordinate stored procedures do not invoke other subordinate
stored procedures and the maximum nesting level is never exceeded.

An error in a nested stored procedure is not necessarily fatal to the calling stored procedure. When invoking stored procedures
within stored procedures, use the Transact-SQL RETURN statement to return a return code and check the return code from the
calling stored procedure. In this way, you can specify the behavior of your stored procedures when errors occur. For more
information about using return codes, see Returning Data Using a Return Code.

Stored procedures can even do a nested call to themselves, a technique known as recursion.

See Also

@@NESTLEVEL

Creating and Maintaining Databases (SQL Server 2000)

Deferred Name Resolution and Compilation
Deferred Name Resolution and Compilation

When a stored procedure is created, the statements in the procedure are parsed for syntactical accuracy. If a syntactical error is
encountered in the procedure definition, an error is returned and the stored procedure is not created. If the statements are
syntactically correct, the text of the stored procedure is stored in the syscomments system table.

When a stored procedure is executed for the first time, the query processor reads the text of the stored procedure from the
syscomments system table of the procedure and checks that the names of the objects used by the procedure are present. This
process is called deferred name resolution because table objects referenced by the stored procedure need not exist when the
stored procedure is created, but only when it is executed.

Note Deferred Name Resolution can only be used when you reference nonexistent table objects. All other objects must exist at
the time the stored procedure is created. For example, when you reference an existing table in a stored procedure you cannot list
nonexistent columns for that table.

In the resolution stage, Microsoft® SQL Server™ 2000 also performs other validation activities (for example, checking the
compatibility of a column data type with variables). If the objects referenced by the stored procedure are missing when the stored
procedure is executed, the stored procedure stops executing when it gets to the statement that references the missing object. In
this case, or if other errors are found in the resolution stage, an error is returned.

Note If an object referenced by a stored procedure is deleted or renamed, then an error is returned when the stored procedure is
executed. However, if an object referenced in a stored procedure is replaced with an object of the same name, the stored
procedure executes without having to be recompiled. For example, if stored procedure proc1 references table test1, and test1 is
deleted and a different table called test1 is created, proc1 references the new table. The stored procedure does not have to be
recompiled.

If procedure execution successfully passes the resolution stage, the SQL Server query optimizer analyzes the Transact-SQL
statements in the stored procedure and creates an execution plan. The execution plan describes the fastest method of executing
the stored procedure, based on information such as:

The amount of data in the tables.

The nature and presence of indexes on the tables and the distribution of data in the indexed columns.

The comparison operators and comparison values used in WHERE clause conditions.

The presence of joins and UNION, GROUP BY, and ORDER BY keywords.

After the query optimizer has analyzed these factors in the stored procedure, it places the execution plan in memory. The process
of analyzing the stored procedure and creating an execution plan is called compilation. The optimized in-memory execution plan
is used to execute the query. The execution plan stays in memory until SQL Server is restarted, or until space is needed for storage
of another object.

When the stored procedure is subsequently executed, SQL Server reuses the existing execution plan if it is still in memory. If the
execution plan is no longer in memory, a new execution plan is created. For more information, see Stored Procedure and Trigger
Execution.

See Also

CREATE PROCEDURE

Execution Plan Caching and Reuse

Creating and Maintaining Databases (SQL Server 2000)

Returning Data from a Stored Procedure
Microsoft® SQL Server™ 2000 stored procedures return data in four forms:

Output parameters, which can return either data (such as an integer or character value) or a cursor variable (cursors are
result sets that can be retrieved one row at a time). For more information about using cursor variables, see Scope of
Transact-SQL Cursor Names.

Return codes, which are always an integer value.

A result set for each SELECT statement contained in the stored procedure or any other stored procedures called by the
stored procedure. For more information about using the SELECT statement, see Query Fundamentals.

A global cursor that can be referenced outside the stored procedure. For more information about using cursor variables, see
Scope of Transact-SQL Cursor Names.

Creating and Maintaining Databases (SQL Server 2000)

Returning Data Using OUTPUT Parameters
Returning Data Using OUTPUT Parameters

 New Information - SQL Server 2000 SP3.

If you specify the OUTPUT keyword for a parameter in the procedure definition, the stored procedure can return the current value
of the parameter to the calling program when the stored procedure exits. To save the value of the parameter in a variable that can
be used in the calling program, the calling program must use the OUTPUT keyword when executing the stored procedure.

Examples

The following example shows a stored procedure with an input and an output parameter. The first parameter in the stored
procedure @title receives the input value specified by the calling program, and the second parameter @ytd_sales is used to
return the value to the calling program. The SELECT statement uses the @title parameter to obtain the correct ytd_sales value,
and assigns the value to the @ytd_sales output parameter.

CREATE PROCEDURE get_sales_for_title
@title varchar(80), -- This is the input parameter.
@ytd_sales int OUTPUT -- This is the output parameter.
AS

-- Get the sales for the specified title and
-- assign it to the output parameter.
SELECT @ytd_sales = ytd_sales
FROM titles
WHERE title = @title

RETURN
GO

The following program executes the stored procedure with a value for the input parameter and saves the output value of the
stored procedure in the @ytd_sales_for_title variable local to the calling program.

-- Declare the variable to receive the output value of the procedure.
DECLARE @ytd_sales_for_title int

-- Execute the procedure with a title_id value
-- and save the output value in a variable.

EXECUTE get_sales_for_title
"Sushi, Anyone?", @ytd_sales = @ytd_sales_for_title OUTPUT

-- Display the value returned by the procedure.
PRINT 'Sales for "Sushi, Anyone?": ' + convert(varchar(6),@ytd_sales_for_title)
GO

Sales for "Sushi, Anyone?": 4095

Input values can also be specified for OUTPUT parameters when the stored procedure is executed. This allows the stored
procedure to receive a value from the calling program, change it or perform operations with it, then return the new value to the
calling program. In the earlier example, the @ytd_sales_for_title variable can be assigned a value prior to executing the stored
procedure. The @ytd_sales variable contains the value of the parameter in the body of the stored procedure, and the value of the
@ytd_sales variable is returned to the calling program when the stored procedure exits. This is often referred to as "pass-by-
reference capability."

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

If you specify OUTPUT for a parameter when you execute a stored procedure and the parameter is not defined using OUTPUT in
the stored procedure, you get an error message. You can execute a stored procedure with OUTPUT parameters and not specify
OUTPUT when executing the stored procedure. No error is returned, but you cannot use the output value in the calling program.

See Also

EXECUTE

Scope of Transact-SQL Cursor Names

Creating and Maintaining Databases (SQL Server 2000)

Returning Data Using a Return Code
Returning Data Using a Return Code

 New Information - SQL Server 2000 SP3.

A stored procedure can return an integer value called a return code to indicate the execution status of a procedure. You specify
the return code for a stored procedure using the RETURN statement. As with OUTPUT parameters, you must save the return code
in a variable when the stored procedure is executed to use the return code value in the calling program. For example, the
assignment variable @result of data type int is used to store the return code from the stored procedure my_proc:

DECLARE @result int
EXECUTE @result = my_proc

Return codes are commonly used in control-of-flow blocks within stored procedures to set the return code value for each
possible error situation. You can use the @@ERROR function after a Transact-SQL statement to detect if an error occurred during
the execution of the statement.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Examples

A. Return a different return code depending on the type of error

This example shows the get_sales_for_title procedure with special handling that sets special return code values for various
errors. The table shows the integer value assigned by the stored procedure to each possible error.

Value Meaning
0 Successful execution.
1 Required parameter value not specified.
2 Invalid parameter value specified.
3 Error occurred getting sales value.
4 NULL sales value found for the title.

CREATE PROCEDURE get_sales_for_title
-- This is the input parameter, with a default.
@title varchar(80) = NULL,
-- This is the output parameter.
@ytd_sales int OUTPUT
AS

-- Validate the @title parameter.
IF @title IS NULL
BEGIN
 PRINT "ERROR: You must specify a title value."
 RETURN(1)
END
ELSE
BEGIN
 -- Make sure the title is valid.
 IF (SELECT COUNT(*) FROM titles
 WHERE title = @title) = 0
 RETURN(2)
END

-- Get the sales for the specified title and
-- assign it to the output parameter.
SELECT @ytd_sales = ytd_sales
FROM titles
WHERE title = @title

-- Check for SQL Server errors.
IF @@ERROR <> 0
BEGIN
 RETURN(3)
END
ELSE
BEGIN

 -- Check to see if the ytd_sales value is NULL.
 IF @ytd_sales IS NULL
 RETURN(4)
 ELSE
 -- SUCCESS!!
 RETURN(0)
END

GO

Using return codes in this manner allows your calling programs to detect and handle the errors that occur when the stored
procedure is executed.

B. Handle the different return codes returned from a stored procedure

This example creates a program to handle the return codes returned from the get_sales_for_title procedure.

-- Declare the variables to receive the output value and return code
-- of the procedure.
DECLARE @ytd_sales_for_title int, @ret_code INT

-- Execute the procedure with a title_id value
-- and save the output value and return code in variables.
EXECUTE @ret_code = get_sales_for_title
"Sushi, Anyone?",
@ytd_sales = @ytd_sales_for_title OUTPUT

-- Check the return codes.
IF @ret_code = 0
BEGIN
 PRINT "Procedure executed successfully"
 -- Display the value returned by the procedure.
 PRINT 'Sales for "Sushi, Anyone?": ' + CONVERT(varchar(6),@ytd_sales_for_title)
END
ELSE IF @ret_code = 1
 PRINT "ERROR: No title_id was specified."
ELSE IF @ret_code = 2
 PRINT "ERROR: An invalid title_id was specified."
ELSE IF @ret_code = 3
 PRINT "ERROR: An error occurred getting the ytd_sales."

GO

Creating and Maintaining Databases (SQL Server 2000)

Executing a Stored Procedure
When you have to execute a stored procedure, use the Transact-SQL EXECUTE statement. You can execute a stored procedure
without using the EXECUTE keyword if the stored procedure is the first statement in the batch.

Parameter values can be supplied if a stored procedure is written to accept them.

Note If you supply parameters in the form @parameter = value, you can supply them in any order. You can also omit
parameters for which defaults have been supplied. If you supply one parameter in the form @parameter = value, you must
supply all subsequent parameters this way. If you do not supply parameters in the form @parameter = value, you must supply
them in the order given in the CREATE PROCEDURE statement.

When executing a stored procedure, the server rejects any parameters that were not included with the parameter list during
procedure creation. Any parameter passed by reference (explicitly passing the parameter name) is not accepted if the parameter
name does not match.

Although you can omit parameters for which defaults have been supplied, you can only truncate the list of parameters. For
example, if a stored procedure has five parameters, you can omit both the fourth and the fifth parameters, but you cannot skip the
fourth and still include the fifth unless you supply parameters in the form @parameter = value.

The default value of a parameter, if defined for the parameter in the stored procedure, is used when:

No value for the parameter is specified when the stored procedure is executed.

The DEFAULT keyword is specified as the value for the parameter.

To execute a stored procedure that is grouped with other stored procedures of the same name, specify the identification number
of the stored procedure within the group. For example, to execute the second stored procedure in the group my_proc, execute:

EXECUTE my_proc;2

To execute a stored procedure

Transact-SQL

See Also

Batches

Execution Characteristics of Extended Stored Procedures

SQL Profiler Scenarios

Specifying Parameters

Debugging an Extended Stored Procedure

SQL Stored Procedures

Returning Data Using a Return Code

Recompiling a Stored Procedure

Creating and Maintaining Databases (SQL Server 2000)

Automatic Execution of Stored Procedures
When you mark stored procedures for automatic execution, these stored procedures are executed every time Microsoft® SQL
Server™ 2000 starts.

This is useful if you have operations that you want to perform regularly, or if you have a stored procedure that runs as a
background process and is expected to be running at all times. Another use for automatic execution of stored procedures is to
have the stored procedure perform system or maintenance tasks in tempdb, such as creating a global temporary table. This
ensures that such a temporary table will always exist when tempdb is re-created as SQL Server starts.

A stored procedure that is automatically executed operates with the same permissions as members of the sysadmin fixed server
role. Any error messages generated by the stored procedure are written to the SQL Server error log. Do not return any result sets
from a stored procedure that is executed automatically. Because the stored procedure is being executed by SQL Server rather than
a user, there is nowhere for the result sets to go.

Although stored procedures are set for automatic execution individually, the SQL Server scan for startup procs configuration
option can be set to prevent all stored procedures from executing automatically when SQL Server starts.

To set or unset a stored procedure for automatic execution

Transact-SQL

SQL-DMO

To set or unset the scan for startup procs configuration option

Transact-SQL

See Also

scan for startup procs Option

Creating and Maintaining Databases (SQL Server 2000)

Modifying and Renaming a Stored Procedure
If you need to change the statements or parameters in a stored procedure, you can either delete and re-create the stored
procedure or alter the stored procedure in a single step. When you delete and re-create a stored procedure, all permissions
associated with the stored procedure are lost. When you alter the stored procedure, the procedure or parameter definition is
changed but the permissions defined for the stored procedure are retained.

You can also rename a stored procedure. The new name must follow the rules for identifiers. You can rename only the stored
procedures that you own, but the database owner can change the name of any user's stored procedure. The stored procedure to
be renamed must be in the current database.

A stored procedure can also be modified to encrypt the definition or cause the procedure to be recompiled each time it is
executed.

Note Changing the name or definition of a stored procedure can cause any dependent objects to fail when executed if those
dependent objects are not also updated to reflect the changes made to the stored procedure.

To modify a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To rename a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Note Renaming a stored procedure does not change the name of the stored procedure in the text of the procedure's definition.
To change the name of the stored procedure in the definition, modify the stored procedure directly.

Caution Extended stored procedures should not be renamed unless the code used to define the extended stored procedure is
changed too. Otherwise, the stored procedure will not be able to execute.

See Also

Deferred Name Resolution and Compilation

https://msdn.microsoft.com/en-us/library/ms947983(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Recompiling a Stored Procedure
 Topic last updated -- July 2003

As a database is changed by such actions as adding indexes or changing data in indexed columns, the original query plans used to
access its tables should be optimized again by recompiling them. This optimization happens automatically the first time a stored
procedure is run after Microsoft® SQL Server™ 2000 is restarted. It also occurs if an underlying table used by the stored
procedure changes. But if a new index is added from which the stored procedure might benefit, optimization does not
automatically happen (until the next time the stored procedure is run after SQL Server is restarted).

SQL Server provides three ways to recompile a stored procedure:

The sp_recompile system stored procedure forces a recompile of a stored procedure the next time it is run.

Creating a stored procedure that specifies the WITH RECOMPILE option in its definition indicates that SQL Server does not
cache a plan for this stored procedure; the stored procedure is recompiled each time it is executed. Use the WITH
RECOMPILE option when stored procedures take parameters whose values differ widely between executions of the stored
procedure, resulting in different execution plans to be created each time. Use of this option is uncommon, and causes the
stored procedure to execute more slowly because the stored procedure must be recompiled each time it is executed.

You can force the stored procedure to be compiled by specifying the WITH RECOMPILE option when you execute the stored
procedure. Use this option only if the parameter you are supplying is atypical or if the data has significantly changed since
the stored procedure was created.

Note If an object referenced by a stored procedure is deleted or renamed, an error is returned when the stored procedure is
executed. If, however, an object referenced in a stored procedure is replaced with an object of the same name, the stored
procedure executes without having to be recompiled.

To recompile a stored procedure next time it is run

Transact-SQL

See Also

Creating a Stored Procedure

Deferred Name Resolution and Compilation

Executing a Stored Procedure

Programming Stored Procedures

Creating and Maintaining Databases (SQL Server 2000)

Viewing a Stored Procedure
Several system stored procedures provide information from the system tables about stored procedures. Using these stored
procedures, you can:

See the Transact-SQL statements used to create a stored procedure. This can be useful if you do not have the Transact-SQL
script files used to create the stored procedure.

Get information about a stored procedure such as its owner, when it was created, and its parameters.

List the objects used by the specified stored procedure, and the procedures that use the specified stored procedure. This
information can be used to identify the procedures affected by the changing or removal of an object in the database.

To view the definition of a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view information about a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the dependencies of a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view information about an extended stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

See Also

Querying Extended Stored Procedures Installed in SQL Server

Creating and Maintaining Databases (SQL Server 2000)

Deleting a Stored Procedure
You can delete a stored procedure when you no longer need it. If a stored procedure that has been deleted is called by another
stored procedure, Microsoft® SQL Server™ 2000 displays an error message when the calling procedure is executed. However, if a
new stored procedure of the same name and the same parameters is defined to replace the one that was deleted, other
procedures that reference it will still execute successfully. For example, if stored procedure proc1 references stored procedure
proc2, and proc2 is deleted and a different stored procedure called proc2 is created, proc1 now references the new stored
procedure. proc1 does not have to be recompiled.

After stored procedures have been grouped, individual stored procedures within the group cannot be deleted. Deleting a stored
procedure deletes all stored procedures in the same group.

To delete a stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To delete an extended stored procedure

Transact-SQL

Enterprise Manager

Enterprise Manager

See Also

Deferred Name Resolution and Compilation

Removing an Extended Stored Procedure from SQL Server

Creating and Maintaining Databases (SQL Server 2000)

Enforcing Business Rules with Triggers
Microsoft® SQL Server™ 2000 provides two primary mechanisms for enforcing business rules and data integrity: constraints and
triggers. A trigger is a special type of stored procedure that automatically takes effect when the data in a specified table is
modified. A trigger is invoked in response to an INSERT, UPDATE, or DELETE statement. A trigger can query other tables and can
include complex Transact-SQL statements. The trigger and the statement that fires it are treated as a single transaction, which can
be rolled back from within the trigger. If a severe error is detected (for example, insufficient disk space), the entire transaction
automatically rolls back.

Triggers are useful in these ways:

Triggers can cascade changes through related tables in the database; however, these changes can be executed more
efficiently using cascading referential integrity constraints.

Triggers can enforce restrictions that are more complex than those defined with CHECK constraints.

Unlike CHECK constraints, triggers can reference columns in other tables. For example, a trigger can use a SELECT from
another table to compare to the inserted or updated data and to perform additional actions, such as modify the data or
display a user-defined error message.

Triggers can also evaluate the state of a table before and after a data modification and take action(s) based on that
difference.

Multiple triggers of the same type (INSERT, UPDATE, or DELETE) on a table allow multiple, different actions to take place in
response to the same modification statement.

Triggers Compared to Constraints

Constraints and triggers each have benefits that make them useful in special situations. The primary benefit of triggers is that they
can contain complex processing logic that uses Transact-SQL code. Therefore, triggers can support all of the functionality of
constraints; however, triggers are not always the best method for a given feature.

Entity integrity should always be enforced at the lowest level by indexes that are part of PRIMARY KEY and UNIQUE constraints or
are created independently of constraints. Domain integrity should be enforced through CHECK constraints, and
referential integrity (RI) should be enforced through FOREIGN KEY constraints, assuming their features meet the functional needs
of the application.

Triggers are most useful when the features supported by constraints cannot meet the functional needs of the application. For
example:

FOREIGN KEY constraints can validate a column value only with an exact match to a value in another column, unless the
REFERENCES clause defines a cascading referential action.

A CHECK constraint can validate a column value only against a logical expression or another column in the same table. If
your application requires that a column value be validated against a column in another table, you must use a trigger.

Constraints can communicate about errors only through standardized system error messages. If your application requires
(or can benefit from) customized messages and more complex error handling, you must use a trigger.

Triggers can cascade changes through related tables in the database; however, these changes can be executed more efficiently
through cascading referential integrity constraints.

Triggers can disallow or roll back changes that violate referential integrity, thereby canceling the attempted data
modification. Such a trigger might go into effect when you change a foreign key and the new value does not match its
primary key. For example, you can create an insert trigger on titleauthor.title_id that rolls back an insert if the new value
does not match some value in titles.title_id. However, FOREIGN KEY constraints are usually used for this purpose.

If constraints exist on the trigger table, they are checked after the INSTEAD OF trigger execution but prior to the AFTER
trigger execution. If the constraints are violated, the INSTEAD OF trigger actions are rolled back and the AFTER trigger is not
executed.

See Also

Cascading Referential Integrity Constraints

CHECK Constraints

Data Integrity

Stored Procedures

Using Constraints, Defaults, and Null Values

Creating and Maintaining Databases (SQL Server 2000)

Designing Triggers
Microsoft® SQL Server™ 2000 provides two options when designing triggers:

INSTEAD OF triggers are executed in place of the usual triggering action. INSTEAD OF triggers can also be defined on views
with one or more base tables, where they can extend the types of updates a view can support.

AFTER triggers are executed after the action of the INSERT, UPDATE, or DELETE statement is performed. Specifying AFTER is
the same as specifying FOR, which is the only option available in earlier versions of SQL Server. AFTER triggers can be
specified only on tables.

This table compares the functionality of the AFTER and INSTEAD OF triggers.

Function AFTER trigger INSTEAD OF trigger
Applicability Tables Tables and views
Quantity per table or view Multiple per triggering

action (UPDATE, DELETE,
and INSERT)

One per triggering action
(UPDATE, DELETE, and INSERT)

Cascading references No restrictions apply INSTEAD OF UPDATE and DELETE
triggers re not allowed on tables
that are targets of cascaded
referential integrity constraints.

Execution After:

Constraint
processing

Declarative
referential actions

inserted and
deleted tables
creation

The triggering
action

Before:

Constraint processing

In place of:

The triggering action

After:

inserted and deleted
tables creation

Order of execution First and last execution
may be specified

Not applicable

text, ntext, and image
column references in
inserted and deleted
tables

Not allowed Allowed

See Also

Using the inserted and deleted Tables

Creating and Maintaining Databases (SQL Server 2000)

Specifying When a Trigger Fires
You can specify one of two options to control when a trigger fires:

AFTER triggers fire after the triggering action (INSERT, UPDATE, or DELETE),INSTEAD OF triggers and constraints are
processed. You can request AFTER triggers by specifying either the AFTER or FOR keywords. Because the FOR keyword has
the same effect as AFTER, triggers with the FOR keyword are also classified as AFTER triggers.

INSTEAD OF triggers fire in place of the triggering action and before constraints are processed. If there are AFTER triggers
on the table, they will fire after constraint processing. If the constraints are violated, the INSTEAD OF trigger actions are
rolled back and the AFTER trigger is not executed.

Each table or view can have one INSTEAD OF trigger for each triggering action (UPDATE, DELETE, and INSERT). A table can have
several AFTER triggers for each triggering action.

Examples

A. Use the IN STEAD OF trigger to replace the standard triggering action

CREATE TRIGGER TableAInsertTrig ON TableA
INSTEAD OF INSERT
AS ...

B. Use the AFTER trigger to augment the standard triggering action

CREATE TRIGGER TableBDeleteTrig ON TableB
AFTER DELETE
AS ...

C. Use the FOR trigger to augment the standard triggering action

-- This statement uses the FOR keyword to generate an AFTER trigger.
CREATE TRIGGER TableCUpdateTrig ON TableC
FOR UPDATE
AS ...

Creating and Maintaining Databases (SQL Server 2000)

Trigger Execution
AFTER triggers are never executed if a constraint violation occurs; therefore, these triggers cannot be used for any processing that
might prevent constraint violations.

INSTEAD OF triggers are executed instead of the triggering action. These triggers are executed after the inserted and deleted
tables reflecting the changes to the base table are created, but before any other actions are taken. They are executed before any
constraints, so can perform preprocessing that supplements the constraint actions.

If an INSTEAD OF trigger defined on a table executes a statement against the table that would usually fire the INSTEAD OF trigger
again, the trigger is not called recursively. Instead, the statement is processed as if the table had no INSTEAD OF trigger and starts
the chain of constraint operations and AFTER trigger executions. For example, if a trigger is defined as an INSTEAD OF INSERT
trigger for a table, and the trigger executes an INSERT statement on the same table, the INSERT statement executed by the
INSTEAD OF trigger does not call the trigger again. The INSERT executed by the trigger starts the process of performing constraint
actions and firing any AFTER INSERT triggers defined for the table.

If an INSTEAD OF trigger defined on a view executes a statement against the view that would usually fire the INSTEAD OF trigger
again, it is not called recursively. Instead, the statement is resolved as modifications against the base tables underlying the view. In
this case, the view definition must meet all of the restrictions for an updatable view. For a definition of updatable views, see
Modifying Data Through a View. For example, if a trigger is defined as an INSTEAD OF UPDATE trigger for a view, and the trigger
executes an UPDATE statement referencing the same view, the UPDATE statement executed by the INSTEAD OF trigger does not
call the trigger again. The UPDATE executed by the trigger is processed against the view as if the view did not have an INSTEAD
OF trigger. The columns changed by the UPDATE must be resolved to a single base table. Each modification to an underlying base
table starts the chain of applying constraints and firing AFTER triggers defined for the table.

Trigger performance overhead is usually low. The time involved in running a trigger is spent mostly in referencing other tables,
which can be either in memory or on the database device. The deleted and inserted tables are always in memory. The location of
other tables referenced by the trigger determines the amount of time the operation requires.

Note The use of cursors in triggers is not recommended because of the potentially negative impact on performance. Use rowset-
based logic rather than cursors to design a trigger that affects multiple rows.

See Also

Using the inserted and deleted Tables

Creating and Maintaining Databases (SQL Server 2000)

Designing INSTEAD OF Triggers
The primary advantage of INSTEAD OF triggers is that they allow views that would not be updatable support updates. A view
comprising multiple base tables must use an INSTEAD OF trigger to support inserts, updates and deletes that reference data in
the tables. Another advantage of INSTEAD OF triggers is that they allow you to code logic that can reject parts of a batch while
allowing other parts of a batch succeed.

An INSTEAD OF trigger can take actions such as:

Ignoring parts of a batch.

Not processing a part of a batch and logging the problem rows.

Taking an alternative action if an error condition is encountered.

Note INSTEAD OF DELETE and INSTEAD OF UPDATE triggers cannot be defined on a table that has a foreign key defined with a
DELETE or UPDATE action.

Coding this logic as part of an INSTEAD OF trigger prevents all applications accessing the data from having to reimplement the
logic.

In the following sequence of Transact-SQL statements, an INSTEAD OF trigger updates two base tables from a view. In addition,
two approaches to handling errors are shown:

Duplicate inserts to the Person table are ignored, and the information from the insert is logged in the PersonDuplicates
table.

Inserts of duplicates to the EmployeeTable are turned into an UPDATE statement that retrieves the current information
into the EmployeeTable without generating a duplicate key violation.

The Transact-SQL statements create two base tables, a view, a table to record errors, and the INSTEAD OF trigger on the view.
These tables separate personal and business data and are the base tables for the view:

CREATE TABLE Person
 (
 SSN char(11) PRIMARY KEY,
 Name nvarchar(100),
 Address nvarchar(100),
 Birthdate datetime
)

CREATE TABLE EmployeeTable
 (
 EmployeeID int PRIMARY KEY,
 SSN char(11) UNIQUE,
 Department nvarchar(10),
 Salary money,
 CONSTRAINT FKEmpPer FOREIGN KEY (SSN)
 REFERENCES Person (SSN)
)

This view reports all relevant data from the two tables for a person:

CREATE VIEW Employee AS
SELECT P.SSN as SSN, Name, Address,
 Birthdate, EmployeeID, Department, Salary
FROM Person P, EmployeeTable E
WHERE P.SSN = E.SSN

You can record attempts to insert rows with duplicate social security numbers. The PersonDuplicates table logs the inserted
values, the name of the user who attempted the insert, and the time of the insert:

CREATE TABLE PersonDuplicates
 (
 SSN char(11),
 Name nvarchar(100),
 Address nvarchar(100),
 Birthdate datetime,
 InsertSNAME nchar(100),
 WhenInserted datetime
)

The INSTEAD OF trigger inserts rows into multiple base tables from a single view. Attempts to insert rows with duplicate social
security numbers are recorded in the PersonDuplicates table. Duplicate rows in the EmployeeTable are changed to update
statements.

CREATE TRIGGER IO_Trig_INS_Employee ON Employee
INSTEAD OF INSERT
AS
BEGIN
SET NOCOUNT ON
-- Check for duplicate Person. If no duplicate, do an insert.
IF (NOT EXISTS (SELECT P.SSN
 FROM Person P, inserted I
 WHERE P.SSN = I.SSN))
 INSERT INTO Person
 SELECT SSN,Name,Address,Birthdate
 FROM inserted
ELSE
-- Log attempt to insert duplicate Person row in PersonDuplicates table.
 INSERT INTO PersonDuplicates
 SELECT SSN,Name,Address,Birthdate,SUSER_SNAME(),GETDATE()
 FROM inserted
-- Check for duplicate Employee. If no duplicate, do an insert.
IF (NOT EXISTS (SELECT E.SSN
 FROM EmployeeTable E, inserted
 WHERE E.SSN = inserted.SSN))
 INSERT INTO EmployeeTable
 SELECT EmployeeID,SSN, Department, Salary
 FROM inserted
ELSE
--If duplicate, change to UPDATE so that there will not
--be a duplicate key violation error.
 UPDATE EmployeeTable
 SET EmployeeID = I.EmployeeID,
 Department = I.Department,
 Salary = I.Salary
 FROM EmployeeTable E, inserted I
 WHERE E.SSN = I.SSN
END

Creating and Maintaining Databases (SQL Server 2000)

Creating a Trigger
Before you create a trigger, consider that:

The CREATE TRIGGER statement must be the first statement in the batch. All other statements that follow in that batch are
interpreted as part of the definition of the CREATE TRIGGER statement.

Permission to create triggers defaults to the table owner, who cannot transfer it to other users.

Triggers are database objects, and their names must follow the rules for identifiers.

You can create a trigger only in the current database, although a trigger can reference objects outside of the current
database.

A trigger cannot be created on a temporary or system table, although triggers can reference temporary tables. System
tables should not be referenced; use the Information Schema Views instead. For more information, see Information Schema
Views.

INSTEAD OF DELETE and INSTEAD OF UPDATE triggers cannot be defined on a table that has a foreign key defined with a
DELETE or UPDATE action.

Although a TRUNCATE TABLE statement is like a DELETE statement without a WHERE clause (it deletes all rows), it does not
cause DELETE triggers to fire because the TRUNCATE TABLE statement is not logged.

The WRITETEXT statement does not cause the INSERT or UPDATE triggers to fire.

When you create a trigger, specify:

The name.

The table upon which the trigger is defined.

When the trigger is to fire.

The data modification statements that activate the trigger. Valid options are INSERT, UPDATE, or DELETE. More than one
data modification statement can activate the same trigger. For example, a trigger can be activated by an INSERT and an
UPDATE statement.

The programming statements that perform the trigger action.

Multiple Triggers

A table can have multiple AFTER triggers of a given type provided they have different names; each trigger can perform numerous
functions. However, each trigger can apply to only one table, although a single trigger can apply to any subset of three user
actions (UPDATE, INSERT, and DELETE).

A table can have only one INSTEAD OF trigger of a given type.

Trigger Permissions and Ownership

CREATE TRIGGER permissions default to the table owner on which the trigger is defined, the sysadmin fixed server role, and
members of the db_owner and db_ddladmin fixed database roles, and are not transferable.

If an INSTEAD OF trigger is created on a view, the ownership chain is broken if the view owner does not also own the base tables
referenced by the view and trigger. For a base table not owned by the view owner, the table owner must separately grant the
necessary permissions to anybody reading or updating the view. If the same user owns both the view and the underlying base
tables, they have to grant other users permissions only on the view, not individual base tables. For more information, see Using
Ownership Chains.

To create a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Creating and Maintaining Databases (SQL Server 2000)

Programming Triggers
 Topic last updated -- June 2007

Almost any Transact-SQL statement that can be written as a batch can be used to create a trigger, except for these:

ALTER DATABASE CREATE DATABASE DISK INIT
DISK RESIZE DROP DATABASE LOAD DATABASE
LOAD LOG RECONFIGURE RESTORE DATABASE
RESTORE LOG

Important The DISK RESIZE, DISK INIT, LOAD DATABASE, and LOAD LOG statements are included in Microsoft® SQL Server
2000™ for backward compatibility only, and may not be supported in the future.

Obfuscating Trigger Definitions

To convert the original text of the CREATE TRIGGER statement to an obfuscated format, use the WITH ENCRYPT option. Note that
obfuscated triggers can be reverse engineered because SQL Server must de-obfuscate triggers for execution. In SQL Server 2000,
the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using WITH ENCRYPTION prevents the trigger from being published as part of SQL Server replication.

SET Statement Options

When an ODBC application connects to SQL Server, the server automatically sets these options for the session:

SET QUOTED_IDENTIFIER ON

SET TEXTSIZE 2147483647

SET ANSI_DEFAULTS ON

SET CURSOR_CLOSE_ON_COMMIT OFF

SET IMPLICIT_TRANSACTIONS OFF

These settings increase the portability of ODBC applications. Because DB-Library–based applications generally do not set these
options, triggers should be tested with the SET options listed above set to both ON and OFF. This ensures that the triggers work
correctly regardless of the options a particular connection may have set when it invokes the trigger. A trigger that requires a
particular setting for one of these options should issue a SET statement at the start of the trigger. This SET statement remains in
effect only for the execution of the trigger; when the trigger completes, the original setting is restored.

Testing for Changes to Specific Columns

The IF UPDATE (column_name) clause in the definition of a trigger can be used to determine if an INSERT or UPDATE statement
affected a specific column in the table. The clause evaluates to TRUE whenever the column is assigned a value.

Note Because a specific value in a column cannot be deleted using the DELETE statement, the IF UPDATE clause does not apply to
the DELETE statement.

Alternatively, the IF COLUMNS_UPDATED() clause can be used to check which columns in a table were updated by an INSERT or
UPDATE statement. This clause uses an integer bitmask to specify the columns to test. For more information, see CREATE
TRIGGER.

Examples

A. Use the IF UPDATE clause to test data modifications

This example creates an INSERT trigger my_trig on table my_table and tests whether column b was affected by any INSERT
statements.

CREATE TABLE my_table*

(a int NULL, b int NULL)
GO

CREATE TRIGGER my_trig
ON my_table
FOR INSERT
AS
IF UPDATE(b)
 PRINT 'Column b Modified'
GO

B. Use the COLUM N S UPDATED() clause to test data modifications

This example obtains similar results using the COLUMNS_UPDATED() clause.

CREATE TRIGGER my_trig2
ON my_table
FOR INSERT
AS
IF (COLUMNS_UPDATED() & 2 = 2)
 PRINT 'Column b Modified'
GO

Deferred Name Resolution

Triggers can refer to tables that do not exist at trigger creation time. This is called deferred name resolution. For more information
about deferred name resolution, see Deferred Name Resolution and Compilation.

Note If an object referenced by a trigger is deleted or renamed, an error is returned when the trigger is executed. However, if an
object referenced in a trigger is replaced with an object of the same name, the trigger executes without having to be re-created.
For example, if trigger trig1 references table test1, and test1 is deleted and a different table called test1 is created, trig1 now
references the new table.

Returning Results

It is recommended that a trigger not return any results. This is because special handling for these returned results must be written
into every application in which modifications to the trigger table are allowed. To prevent any results from being returned from a
trigger, do not include either SELECT statements or variable assignments in the definition of the trigger. If variable assignment
must occur in a trigger, use a SET NOCOUNT statement at the beginning of the trigger to eliminate the return of any result sets.

See Also

CREATE TRIGGER

SELECT

SET

Creating and Maintaining Databases (SQL Server 2000)

Using Triggers that Include COMMIT or ROLLBACK
TRANSACTION
Microsoft SQL Server 2000 increments the transaction count within a statement only when the transaction count is 0 at the start
of the statement. In SQL Server version 7.0, the transaction count is always incremented, regardless of the transaction count at the
start of the statement. This can cause the value returned by @@TRANCOUNT in triggers to be lower in SQL Server 2000 than it is
in SQL Server version 7.0.

In SQL Server 2000, if a COMMIT TRANSACTION or COMMIT WORK statement is executed in a trigger, and there is no
corresponding explicit or implicit BEGIN TRANSACTION statement at the start of the trigger, users may see different behavior
than on SQL Server version 7.0. Placing COMMIT TRANSACTION or COMMIT WORK statements in a trigger is not recommended.

When triggers that include ROLLBACK TRANSACTION statements are executed from a batch, they cancel the entire batch. In the
following example, if the INSERT statement fires a trigger that includes a ROLLBACK TRANSACTION, the DELETE statement is not
executed because the batch is canceled:

/* Start of Batch */
INSERT employee VALUES ('XYZ12345M', 'New', 'M', 'Employee', 1, 1, '9952', '6/1/95') -- Causes trigger to fire
and ROLLBACK TRANSACTION.
DELETE employee WHERE emp_id = 'PMA42628M'
GO

If triggers that include ROLLBACK TRANSACTION statements are fired from within a user-defined transaction, the ROLLBACK
TRANSACTION rolls back the entire transaction. In this example, if the INSERT statement fires a trigger that includes a ROLLBACK
TRANSACTION, the UPDATE statement is also rolled back:

/* Start of Transaction */
BEGIN TRANSACTION
UPDATE employee SET hire_date = '7/1/94' WHERE emp_id = 'VPA30890F'
INSERT employee VALUES ('XYZ12345M', 'New', 'M', 'Employee', 1, 1, '9952', '6/1/95') -- Causes trigger to fire
and ROLLBACK TRANSACTION

See Also

Rollbacks in Stored Procedures and Triggers

ROLLBACK TRANSACTION

Transactions

Creating and Maintaining Databases (SQL Server 2000)

Using the inserted and deleted Tables
Two special tables are used in trigger statements: the deleted table and the inserted table. Microsoft® SQL Server™ 2000
automatically creates and manages these tables. You can use these temporary, memory-resident tables to test the effects of
certain data modifications and to set conditions for trigger actions; however, you cannot alter the data in the tables directly.

The inserted and deleted tables are used primarily in triggers to:

Extend referential integrity between tables.

Insert or update data in base tables underlying a view.

Check for errors and take action based on the error.

Find the difference between the state of a table before and after a data modification and take action(s) based on that
difference.

The deleted table stores copies of the affected rows during DELETE and UPDATE statements. During the execution of a DELETE or
UPDATE statement, rows are deleted from the trigger table and transferred to the deleted table. The deleted table and the
trigger table ordinarily have no rows in common.

The inserted table stores copies of the affected rows during INSERT and UPDATE statements. During an insert or update
transaction, new rows are added simultaneously to both the inserted table and the trigger table. The rows in the inserted table
are copies of the new rows in the trigger table.

An update transaction is similar to a delete operation followed by an insert operation; the old rows are copied to the deleted
table first, and then the new rows are copied to the trigger table and to the inserted table.

When you set trigger conditions, use the inserted and deleted tables appropriately for the action that fired the trigger. Although
referencing the deleted table while testing an INSERT, or the inserted table while testing a DELETE does not cause any errors,
these trigger test tables do not contain any rows in these cases.

Note If trigger actions depend on the number of rows a data modification effects, use tests (such as an examination of
@@ROWCOUNT) for multirow data modifications (an INSERT, DELETE, or UPDATE based on a SELECT statement), and take
appropriate actions.

SQL Server 2000 does not allow text, ntext, or image column references in the inserted and deleted tables for AFTER triggers;
however, these column references are allowed for INSTEAD OF triggers. For more information, see CREATE TRIGGER.

Using the inserted and deleted Tables in INSTEAD OF Triggers

The inserted and deleted tables passed to INSTEAD OF triggers defined on tables follow the same rules as the inserted and
deleted tables passed to AFTER triggers. The format of the inserted and deleted tables is the same as the format of the table on
which the INSTEAD OF trigger is defined. Each column in the inserted and deleted tables maps directly to a column in the base
table.

The rules regarding when an INSERT or UPDATE statement referencing a table with an INSTEAD OF trigger must supply values for
columns are the same as if the table did not have an INSTEAD OF trigger:

Values cannot be specified for computed columns or columns with a timestamp data type.

Values cannot be specified for columns with an IDENTITY property, unless IDENTITY_INSERT is ON for that table. When
IDENTITY_INSERT is ON, INSERT statements must supply a value.

INSERT statements must supply values for all NOT NULL columns that do not have DEFAULT constraints.

For any columns except computed, identity, or timestamp columns, values are optional for any column that allows nulls, or
any NOT NULL column that has a DEFAULT definition.

When an INSERT, UPDATE, or DELETE statement references a view that has an INSTEAD OF trigger, the database engine calls the
trigger instead of taking any direct action against any table. The trigger must use the information presented in the inserted and
deleted tables to build any statements needed to implement the requested action in the base tables even when the format of the
information in the inserted and deleted tables built for the view is different than the format of the data in the base tables.

The format of the inserted and deleted tables passed to an INSTEAD OF trigger defined on a view matches the select list of the
SELECT statement defined for the view. For example:

CREATE VIEW EmployeeNames (EmployeeID, LName, FName)
AS
SELECT EmployeeID, LastName, FirstName
FROM Northwind.dbo.Employees

The result set for this view has three columns: an int column and two nvarchar columns. The inserted and deleted tables
passed to an INSTEAD OF trigger defined on the view also have an int column named EmployeeID, an nvarchar column named
LName, and an nvarchar column named FName.

The select list of a view can also contain expressions that do not map directly to a single base table column. Some view
expressions, such as a constant or function invocation, may not reference any columns and can be ignored. Complex expressions
can reference multiple columns, yet the inserted and deleted tables have only one value for each inserted row. The same issues
apply to simple expressions in a view if they reference a computed column that has a complex expression. An INSTEAD OF trigger
on the view must handle these types of expressions. For more information, see Expressions and Computed Columns in INSTEAD
OF Triggers on Views.

Creating and Maintaining Databases (SQL Server 2000)

Multirow Considerations
An important consideration to keep in mind when writing the code for a trigger is that the statement that causes the trigger to fire
can be a single statement that affects multiple rows of data, rather than a single row. This is common for UPDATE and DELETE
triggers because these statements often affect multiple rows. It is less common for INSERT triggers, because the basic INSERT
statement adds only a single row. However, because an INSERT trigger can be fired by an INSERT INTO (table_name) SELECT
statement, the insertion of many rows may result in a single trigger invocation.

Multirow considerations are particularly important when the function of a trigger is to automatically recalculate summary values
from one table and store the results in another for ongoing tallies.

Note The use of cursors in triggers is not recommended because of the potentially negative impact on performance. Use rowset-
based logic rather than cursors to design a trigger that affects multiple rows.

Examples

The triggers in the following examples are designed to store a running total of a column in another table.

A. Store a running total for a single-row insert

The first version of the trigger works well for a single-row insert, when a row of data is loaded into the sales table. An INSERT
statement fires the trigger, and the new row is loaded into the inserted table for the duration of the trigger execution. The
UPDATE statement reads the qty column value for the row and adds it to the existing value in the ytd_sales column in the titles
table. The WHERE clause ensures that the updated row in the sales table matches the title_id of the row in the inserted table.

-- Trigger is valid for single-row inserts.
CREATE TRIGGER intrig
ON sales
AFTER INSERT AS

 UPDATE titles
 SET ytd_sales = ytd_sales + qty
 FROM inserted
 WHERE titles.title_id = inserted.title_id

B. Store a running total for a multirow or single row insert

In the case of a multirow insert, the trigger in Example A might not operate correctly; the expression to the right of an assignment
expression in an UPDATE statement (ytd_sales + qty) can be only a single value, not a list of values. So the effect of the trigger is
to obtain a value from any single row in the inserted table and add it to the existing ytd_sales value in the titles table for a given
title_id value. This might not have the desired effect if a single title_id value occurred more than once in the inserted table.

To update the titles table properly, the trigger has to accommodate the possibility of multiple rows in the inserted table. This can
be done with the SUM function that calculates the total qty for a group of rows in the inserted table for each title_id. The SUM
function is placed in a correlated subquery (the SELECT statement in parentheses), which returns a single value for each title_id in
the inserted table that matches or is correlated with a title_id in the titles table.

-- Trigger is valid for multirow and single-row inserts.
CREATE TRIGGER intrig
ON sales
AFTER INSERT AS

 UPDATE titles
 SET ytd_sales = ytd_sales +
 (SELECT SUM(qty) -- Correlated subquery.
 FROM inserted
 WHERE titles.title_id = inserted.title_id)
 WHERE titles.title_id IN
 (SELECT title_id FROM inserted)

This trigger also works correctly in a single-row insert; the sum of the qty value column is the sum of a single row. However, with
this trigger the correlated subquery and the IN operator used in the WHERE clause require additional processing from Microsoft®
SQL Server™ 2000, which is unnecessary for a single-row insert.

C. Store a running total based on the type of insert

You can change the trigger to use the method optimal for the number of rows. For example, the @@ROWCOUNT function can be
used in the logic of the trigger to distinguish between a single and a multirow insert.

-- Trigger valid for multirow and single row inserts
-- and optimal for single row inserts.
CREATE TRIGGER intrig
ON sales
FOR INSERT AS
IF @@ROWCOUNT = 1
BEGIN
 UPDATE titles
 SET ytd_sales = ytd_sales + qty
 FROM inserted
 WHERE titles.title_id = inserted.title_id
END
ELSE
BEGIN
 UPDATE titles
 SET ytd_sales = ytd_sales +
 (SELECT SUM(qty)
 FROM inserted
 WHERE titles.title_id = inserted.title_id)
 WHERE titles.title_id IN
 (SELECT title_id FROM inserted)
END

Creating and Maintaining Databases (SQL Server 2000)

Conditional INSERT Trigger
A trigger rejects or accepts each data modification transaction as a whole. However, you do not have to roll back all data
modifications simply because some of them are unacceptable. Using a correlated subquery in a trigger can force the trigger to
examine the modified rows one by one.

Examples

A. Use an AFTER IN SERT trigger

The following example assumes the existence of a table called newsale in the pubs database. This the CREATE statement for
newsale:

CREATE TABLE newsale
 (stor_id char(4),
 ord_num varchar(20),
 date datetime,
 qty smallint,
 payterms varchar(12),
 title_id tid)

If you want to examine each of the records you are trying to insert, the trigger conditionalinsert analyzes the insert row by row,
and then deletes the rows that do not have a title_id in titles.

CREATE TRIGGER conditionalinsert
ON sales
AFTER INSERT AS
IF
(SELECT COUNT(*) FROM titles, inserted
WHERE titles.title_id = inserted.title_id) <> @@ROWCOUNT
BEGIN
 DELETE sales FROM sales, inserted
 WHERE sales.title_id = inserted.title_id AND
 inserted.title_id NOT IN
 (SELECT title_id
 FROM titles)
 PRINT 'Only sales records with matching title_ids added.'
END

When unacceptable titles have been inserted, the transaction is not rolled back; instead, the trigger deletes the unwanted rows.
This ability to delete rows that have been inserted relies on the order in which processing occurs when triggers are fired. First,
rows are inserted into the sales table and the inserted table, and then the trigger fires.

To test the trigger, insert four rows in the newsale table. Two of the newsale rows have title_ids that do not match any of those
already in the titles table:

newsale

stor_id ord_num date qty payterms title_id
------- -------- ------------------- --- -------- --------
7066 QA7442.3 Jul 25 1995 8:35AM 75 Net 30 PS1372
7066 QA7442.3 Jul 24 1995 8:35AM 75 Net 60 BU7832
7067 D4482 Jul 27 1995 12:00AM 10 Net 30 PSxxxx
7131 N914008 Jul 27 1995 12:00AM 20 Net 30 PSyyyy

Next, insert data from newsale into sales. The statement looks like this:

INSERT sales
SELECT * FROM newsale

The title_ids PSxxxx and PSyyyy do not match any in the titles table, and the conditionalinsert trigger deletes these two rows
from the sales and inserted tables.

Creating and Maintaining Databases (SQL Server 2000)

Specifying First and Last Triggers
You can specify that one of the AFTER triggers associated with a table be either the first AFTER trigger or the last AFTER trigger
executed for each of the INSERT, DELETE, and UPDATE triggering actions. The AFTER triggers that are fired between the first and
last triggers are executed in undefined order.

To specify the order for an AFTER trigger, use the sp_settriggerorder stored procedure. The options available are:

First

Specifies that the trigger is the first AFTER trigger fired for a triggering action.

Last

Specifies that the trigger is the last AFTER trigger fired for a triggering action.

None

Specifies that there is no specific order in which the trigger should be fired. Used mainly to reset a trigger from being either
first or last.

This is an example of using sp_settriggerorder:

sp_settriggerorder @triggername = 'MyTrigger', @order = 'first', @stmttype = 'UPDATE'

Important The first and last triggers must be two different triggers.

A table may have INSERT, UPDATE, and DELETE triggers defined on it at the same time. Each statement type can have its own first
and last triggers, but they cannot be the same triggers.

If the first or last trigger defined for a table does not cover a triggering action, such as not covering FOR UPDATE, FOR DELETE, or
FOR INSERT, there is no first or last trigger for the missing actions.

INSTEAD OF triggers cannot be specified as first or last triggers. INSTEAD OF triggers are fired before updates are made to the
underlying tables. However, if updates are made by an INSTEAD OF trigger to underlying tables, the updates occur after triggers
defined on the table, including the first trigger. For example, if an INSTEAD OF trigger on a view updates a base table and the base
table contains three triggers, the three triggers in the table fire before the data is inserted by the INSTEAD OF trigger. For more
information, see Specifying When a Trigger Fires.

If an ALTER TRIGGER statement changes a first or last trigger, the First or Last attribute is dropped and the order value is set to
None; the order must be reset with sp_settriggerorder.

The OBJECTPROPERTY function reports whether a trigger is a first or last trigger using the properties ExecIsFirstTrigger and
ExecIsLastTrigger.

Replication generates a first trigger automatically for any table that is an immediate or queued update subscriber. Replication
requires that its trigger is the first trigger. Replication raises an error if you try to make a table that has a first trigger an
immediate or queued update Subscriber. If you make a user-defined trigger a first trigger after a table has been made an
immediate or queued update Subscriber, sp_settriggerorder returns an error. If you use ALTER on the replication trigger, or use
sp_settriggerorder to change the replication trigger to a last or none trigger, the subscription does not work correctly.

See Also

OBJECTPROPERTY

sp_settriggerorder

Creating and Maintaining Databases (SQL Server 2000)

Using Nested Triggers
Triggers are nested when a trigger performs an action that initiates another trigger, which can initiate another trigger, and so on.
Triggers can be nested up to 32 levels, and you can control whether triggers can be nested through the nested triggers server
configuration option.

If nested triggers are allowed and a trigger in the chain starts an infinite loop, the nesting level is exceeded and the trigger
terminates.

You can use nested triggers to perform useful housekeeping functions such as storing a backup copy of rows affected by a
previous trigger. For example, you can create a trigger on titleauthor that saves a backup copy of the titleauthor rows that the
delcascadetrig trigger deleted. With the delcascadetrig trigger in effect, deleting title_id PS2091 from titles deletes the
corresponding row or rows from titleauthor. To save the data, you create a DELETE trigger on titleauthor that saves the deleted
data into another separately created table, del_save. For example:

CREATE TRIGGER savedel
 ON titleauthor
FOR DELETE
AS
 INSERT del_save
 SELECT * FROM deleted

Using nested triggers in an order-dependent sequence is not recommended. Use separate triggers to cascade data modifications.

Note Because triggers execute within a transaction, a failure at any level of a set of nested triggers cancels the entire transaction,
and all data modifications are rolled back. Include PRINT statements in your triggers so that you can determine where the failure
occurred.

Recursive Triggers

A trigger does not call itself recursively unless the RECURSIVE_TRIGGERS database option is set. There are two types of recursion:

Direct recursion

Occurs when a trigger fires and performs an action that causes the same trigger to fire again. For example, an application
updates table T3, which causes trigger Trig3 to fire. Trig3 updates table T3 again, which causes trigger Trig3 to fire again.

Indirect recursion

Occurs when a trigger fires and performs an action that causes another trigger (either on the same table or on another
table) to fire. This second trigger performs an action that causes the original trigger to fire again. For example, an application
updates table T1, which causes trigger Trig1 to fire. Trig1 updates table T2, which causes trigger Trig2 to fire. Trig2 in turn
updates table T1 that causes Trig1 to fire again.

Only direct recursion is prevented when the RECURSIVE_TRIGGERS database option is set to OFF. To disable indirect recursion,
set the nested triggers server option to 0, as well.

Examples

A. Use recursive triggers to solve self-referencing relationships

One use for recursive triggers is on a table with a self-referencing relationship (also known as transitive closure). For example, the
table emp_mgr defines:

An employee (emp) in a company.

The manager for each employee (mgr).

The total number of employees in the organizational tree reporting to each employee (NoOfReports).

A recursive UPDATE trigger can be used to keep the NoOfReports column up-to-date as new employee records are inserted. The
INSERT trigger updates the NoOfReports column of the manager record, which recursively updates the NoOfReports column of
other records up the management hierarchy.

USE pubs
GO
-- Turn recursive triggers ON in the database.

ALTER DATABASE pubs
 SET RECURSIVE_TRIGGERS ON
GO
CREATE TABLE emp_mgr (
 emp char(30) PRIMARY KEY,
 mgr char(30) NULL FOREIGN KEY REFERENCES emp_mgr(emp),
 NoOfReports int DEFAULT 0
)
GO
CREATE TRIGGER emp_mgrins ON emp_mgr
FOR INSERT
AS
DECLARE @e char(30), @m char(30)
DECLARE c1 CURSOR FOR
 SELECT emp_mgr.emp
 FROM emp_mgr, inserted
 WHERE emp_mgr.emp = inserted.mgr

OPEN c1
FETCH NEXT FROM c1 INTO @e
WHILE @@fetch_status = 0
BEGIN
 UPDATE emp_mgr
 SET emp_mgr.NoOfReports = emp_mgr.NoOfReports + 1 -- Add 1 for newly
 WHERE emp_mgr.emp = @e -- added employee.

 FETCH NEXT FROM c1 INTO @e
END
CLOSE c1
DEALLOCATE c1
GO
-- This recursive UPDATE trigger works assuming:
-- 1. Only singleton updates on emp_mgr.
-- 2. No inserts in the middle of the org tree.
CREATE TRIGGER emp_mgrupd ON emp_mgr FOR UPDATE
AS
IF UPDATE (mgr)
BEGIN
 UPDATE emp_mgr
 SET emp_mgr.NoOfReports = emp_mgr.NoOfReports + 1 -- Increment mgr's
 FROM inserted -- (no. of reports) by
 WHERE emp_mgr.emp = inserted.mgr -- 1 for the new report.

 UPDATE emp_mgr
 SET emp_mgr.NoOfReports = emp_mgr.NoOfReports - 1 -- Decrement mgr's
 FROM deleted -- (no. of reports) by 1
 WHERE emp_mgr.emp = deleted.mgr -- for the new report.
END
GO
-- Insert some test data rows.
INSERT emp_mgr(emp, mgr) VALUES ('Harry', NULL)
INSERT emp_mgr(emp, mgr) VALUES ('Alice', 'Harry')
INSERT emp_mgr(emp, mgr) VALUES ('Paul', 'Alice')
INSERT emp_mgr(emp, mgr) VALUES ('Joe', 'Alice')
INSERT emp_mgr(emp, mgr) VALUES ('Dave', 'Joe')
GO
SELECT * FROM emp_mgr
GO
-- Change Dave's manager from Joe to Harry
UPDATE emp_mgr SET mgr = 'Harry'
WHERE emp = 'Dave'
GO
SELECT * FROM emp_mgr
GO

Here are the results before the update:

emp mgr NoOfReports
------------------------------ ----------------------------- -----------
Alice Harry 2
Dave Joe 0
Harry NULL 1
Joe Alice 1
Paul Alice 0

Here are the results after the update:

emp mgr NoOfReports
------------------------------ ----------------------------- -----------
Alice Harry 2
Dave Harry 0

Harry NULL 2
Joe Alice 0
Paul Alice 0

To set the nested triggers option

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To set the recursive triggers database option

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

CREATE TRIGGER

nested triggers Option

Creating and Maintaining Databases (SQL Server 2000)

Using INSTEAD OF Triggers
INSTEAD OF triggers override the standard actions of the triggering statement (INSERT, UPDATE, or DELETE). For example, an
INSTEAD OF trigger can be defined to perform error or value checking on one or more columns, and then perform additional
actions before inserting the record. For instance, when the value being updated in an hourly wage column in a payroll table
exceeds a specified value, a trigger can be defined to either produce an error message and roll back the transaction, or insert a
new record into an audit log before inserting the record into the payroll table. For more information, see Designing INSTEAD OF
Triggers.

INSTEAD OF triggers can be defined on either tables or views; however, INSTEAD OF triggers are most useful for extending the
types of updates a view can support. For example, INSTEAD OF triggers can provide the logic to modify multiple base tables
through a view or to modify base tables that contain these columns:

timestamp data type

Computed columns

Identity columns

Creating and Maintaining Databases (SQL Server 2000)

INSTEAD OF INSERT Triggers
INSTEAD OF INSERT Triggers

INSTEAD OF INSERT triggers can be defined on a view or table to replace the standard action of the INSERT statement. Usually,
the INSTEAD OF INSERT trigger is defined on a view to insert data into one or more base tables.

Columns in the view select list can be nullable or not nullable. If a view column does not allow nulls, an INSERT statement must
provide values for the column. View columns allow nulls if the expression defining the view column includes items such as:

References to any base table column that allows nulls.

Arithmetic operators.

References to functions.

CASE or COALESCE with a nullable subexpression.

NULLIF.

You can use the AllowsNull property reported by the COLUMNPROPERTY function to determine whether a view column allows
nulls. The sp_help stored procedure also reports which view columns allow nulls.

An INSERT statement referencing a view that has an INSTEAD OF INSERT trigger must supply values for every view column that
does not allow nulls. This includes view columns that reference columns in the base table for which input values cannot be
specified:

Computed columns in the base table.

Identity columns in the base table for which IDENTITY INSERT is OFF.

Base table columns with the timestamp data type.

If the INSTEAD OF INSERT view trigger generates an INSERT against the base table using the data in the inserted table, it must
ignore the values for these types of columns by not including the columns in the select list of the INSERT statement. The INSERT
statement can generate dummy values for these types of columns.

For example, while an INSERT statement must specify a value for a view column that maps to an identity or computed column in a
base table, it can supply a placeholder value. The INSTEAD OF trigger can ignore the value supplied when it forms the INSERT
statement that inserts the values into the base table.

These statements create a table, view, and trigger that illustrate the process:

CREATE TABLE BaseTable
 (PrimaryKey int IDENTITY(1,1)
 Color nvarchar(10) NOT NULL,
 Material nvarchar(10) NOT NULL,
 ComputedCol AS (Color + Material)
)
GO

--Create a view that contains all columns from the base table.
CREATE VIEW InsteadView
AS SELECT PrimaryKey, Color, Material, ComputedCol
FROM BaseTable
GO

--Create an INSTEAD OF INSERT trigger on the view.
CREATE TRIGGER InsteadTrigger on InsteadView
INSTEAD OF INSERT
AS
BEGIN
 --Build an INSERT statement ignoring inserted.PrimaryKey and
 --inserted.ComputedCol.
 INSERT INTO BaseTable
 SELECT Color, Material
 FROM inserted
END

GO

An INSERT statement that refers directly to BaseTable cannot supply a value for the PrimaryKey and ComputedCol columns.
For example:

--A correct INSERT statement that skips the PrimaryKey and ComputedCol columns.
INSERT INTO BaseTable (Color, Material)
 VALUES (N'Red', N'Cloth')

--View the results of the INSERT statement.
SELECT PrimaryKey, Color, Material, ComputedCol
FROM BaseTable

--An incorrect statement that tries to supply a value for the
--PrimaryKey and ComputedCol columns.
INSERT INTO BaseTable
 VALUES (2, N'Green', N'Wood', N'GreenWood')

INSERT statements that refer to InsteadView, however, must supply a value for PrimaryKey and ComputedCol:

--A correct INSERT statement supplying dummy values for the
--PrimaryKey and ComputedCol columns.
INSERT INTO InsteadView (PrimaryKey, Color, Material, ComputedCol)
 VALUES (999, N'Blue', N'Plastic', N'XXXXXX')
--View the results of the INSERT statement.
SELECT PrimaryKey, Color, Material, ComputedCol
FROM InsteadView

The inserted table passed to InsteadTrigger is built with a nonnullable PrimaryKey and ComputedCol column; therefore, the
INSERT statement referencing the view must supply a value for those columns. The values 999 and N'XXXXXX' are passed in to
InsteadTrigger, but the INSERT statement in the trigger does not select either inserted.PrimaryKey or inserted.ComputedCol;
therefore, the values are ignored. The row actually inserted into BaseTable has 2 in PrimaryKey and N'BluePlastic' in
ComputedCol.

The values contained in the inserted table for computed, identity, and timestamp columns are different for INSTEAD OF INSERT
triggers specified on tables compared to an INSTEAD OF triggers specified on views.

Base table
column

Value in inserted table in any
INSERT trigger on a table

Value in inserted table in
an INSTEAD OF INSERT

trigger on a view
Is a computed
column.

Computed expression User-specified value or NULL

Has an IDENTITY
property.

0 if IDENTITY_INSERT is OFF,
specified value if IDENTITY_INSERT
is ON

User-specified value or NULL

Has a timestamp
data type.

Binary zeros if the column does
not allow nulls, NULL if column
allows nulls

User-specified value or NULL

An INSERT statement that directly references a base table does not have to supply values for a NOT NULL column that also has a
DEFAULT definition. If the INSERT statement does not supply a value, the default value is used. If a NOT NULL column with a
DEFAULT definition is referenced by a simple expression in a view that has an INSTEAD OF INSERT trigger, however, any INSERT
statement referencing the view must supply a value for the column. This value is required to build the inserted table passed to
the trigger. A convention is required for a value that signals to the trigger that the default value should be used. The best
convention is for the INSERT statement to supply the default value.

The deleted table in an INSTEAD OF INSERT trigger is always empty.

See Also

COLUMNPROPERTY

sp_help

Creating and Maintaining Databases (SQL Server 2000)

INSTEAD OF UPDATE Triggers
INSTEAD OF UPDATE Triggers

INSTEAD OF UPDATE triggers can be defined on a view or table to replace the standard action of the UPDATE statement. Usually,
the INSTEAD OF UPDATE trigger is defined on a view to modify data in one or more base tables.

UPDATE statements that reference views with INSTEAD OF UPDATE triggers must supply values for all nonnullable view columns
referenced in the SET clause. This includes view columns that reference columns in the base table for which input values cannot
be specified, such as:

Computed columns in the base table.

Identity columns in the base table for which IDENTITY INSERT is set to OFF.

Base table columns with the timestamp data type.

Usually, when an UPDATE statement that references a table attempts to set the value of a computed, identity, or timestamp
column, an error is generated because the values for these columns must be determined by Microsoft® SQL Server™. These
columns must be included in the UPDATE statement to meet the NOT NULL requirement of the column. However, if the UPDATE
statement references a view with an INSTEAD OF UPDATE trigger, the logic defined in the trigger can bypass these columns and
avoid the error. To do so, the INSTEAD OF UPDATE trigger must not try to update the values for the corresponding columns in the
base table. This is done by not including the columns in the SET clause of the UPDATE statement. When a record is processed
from the inserted table, the computed, identity, or timestamp column can contain a dummy value to meet the NOT NULL
column requirement, but the INSTEAD OF UPDATE trigger ignores those values and the correct values are set by SQL Server.

This solution works because an INSTEAD OF UPDATE trigger does not have to process data from the inserted columns that are
not updated. In the inserted table passed to an INSTEAD OF UPDATE trigger, the columns specified in the SET clause follow the
same rules as the inserted columns in an INSTEAD OF INSERT trigger. For columns not specified in the SET clause, the inserted
table contains the values as they existed before the UPDATE statement was issued. The trigger can test whether a specific column
has been updated using the IF UPDATE(column) clause. For more information, see INSTEAD OF INSERT Triggers.

INSTEAD OF UPDATE triggers should use values supplied for computed, identity, or timestamp columns only in WHERE clause
search conditions.

The logic an INSTEAD OF UPDATE trigger on a view should use to process updated values supplied for computed, identity,
timestamp, or default columns is the same as the logic applied to inserted values for these column types.

Note INSTEAD OF UPDATE triggers cannot be defined on a table that has a foreign key defined with an UPDATE action.

Creating and Maintaining Databases (SQL Server 2000)

INSTEAD OF DELETE Triggers
INSTEAD OF DELETE Triggers

INSTEAD OF DELETE triggers can be defined on a view or table to replace the standard action of the DELETE statement. Usually,
the INSTEAD OF DELETE trigger is defined on a view to modify data in one or more base tables.

DELETE statements do not specify modifications to existing data values. DELETE statements specify only the rows that are to be
deleted. The inserted table passed to a DELETE trigger is always empty. The deleted table sent to a DELETE trigger contains an
image of the rows as they existed before the UPDATE statement was issued. In the case of an INSTEAD OF DELETE trigger on a
view or table, the format of the deleted table is based on the format of the select list defined for the view.

Note INSTEAD OF DELETE triggers cannot be defined on a table that has a foreign key defined with a DELETE action.

Creating and Maintaining Databases (SQL Server 2000)

Expressions and Computed Columns in INSTEAD OF Triggers
Expressions and Computed Columns in INSTEAD OF Triggers

The select list of a view can have expressions other than simple expressions made up of only a column name. INSTEAD OF
triggers on these views must have logic to correctly determine from the values specified on INSERT and UPDATE what values
must be set into columns in the base table. Examples of such expressions include:

View expressions that do not map to any column in any table, such as a constant or some types of functions.

View expressions that map to multiple columns, such as complex expressions formed by concatenating strings from two or
more columns.

View expressions that transform the value of a single base table column, such as referencing a column in a function.

These issues also apply to view columns that are simple expressions referencing a computed column in a base table. The
expression defining the computed column can have the same form as a more complex expression in the view select list.

Views can contain expressions in their select list that do not map to any base table columns, for example:

CREATE VIEW ExpressionView
AS
SELECT *, GETDATE() AS TodaysDate
FROM Northwind.dbo.Employees

Although the TodaysDate column does not map to any table column, Microsoft® SQL Server™ 2000 must build a TodaysDate
column in the inserted table it passes to an INSTEAD OF trigger defined on ExpressionView. The inserted.TodaysDate column
is nullable, however, so an INSERT referencing ExpressionView does not have to supply a value for this column. Because the
expression does not map to a column in a table, the trigger can ignore any value supplied by the INSERT in this column.

The same approach should be applied to simple view expressions that reference computed columns in base tables that also build
a result that is not dependent on other columns, for example:

CREATE TABLE ComputedExample
 (
 PrimaryKey int PRIMARY KEY,
 ComputedCol AS SUSER_NAME()
)

Some complex expressions map to multiple columns:

CREATE TABLE SampleTable
 (
 PriKey int,
 FirstName nvarchar(20),
 LastName nvarchar(30)
)
GO
CREATE VIEW ConcatView
AS
SELECT PriKey, FirstName + ' ' + LastName AS CombinedName
FROM SampleTable

The expression CombinedName in ConcatView has the concatenated values of the FirstName and LastName values. If an
INSTEAD OF INSERT trigger is defined on ConcatView, you must have a convention for how INSERT statements supply a value
for the CombinedName column that lets the trigger determine which part of the string should be put in the FirstName column
and which part should be put in the LastName column. If you choose a convention of having INSERT statements specify the value
of CombinedName using the convention 'first_name;last_name', this trigger can successfully process an INSERT:

CREATE TRIGGER InsteadSample on ConcatView
INSTEAD OF INSERT
AS
BEGIN

 INSERT INTO SampleTable
 SELECT PriKey,
 -- Pull out the first name string.
 SUBSTRING(
 CombinedName,
 1,
 (CHARINDEX(';', CombinedName) - 1)

),
 -- Pull out the last name string.
 SUBSTRING(
 CombinedName,
 (CHARINDEX(';', CombinedName) + 1),
 DATALENGTH(CombinedName)
)
 FROM inserted
END

Similar logic is needed to process view columns that are simple expressions referring to computed columns that have complex
expressions.

Some view expressions can transform the value of a base table column, for example, by performing a mathematical operation or
using the column as a parameter to a function. In this case, the logic in the INSTEAD OF INSERT trigger can take a couple of
approaches:

The convention can be that all INSERT statements supply the raw value to place in the base table, and the trigger logic
moves the value from the inserted table to the base table.

The convention can be that all INSERT statements supply the value they expect to have returned by a SELECT on the view, in
which case the logic in the trigger must reverse the operation. For example:

CREATE TABLE BaseTable
 (
 PrimaryKey int PRIMARY KEY,
 ColumnB int,
 ColumnC decimal(19,3)
)

CREATE VIEW SquareView AS
SELECT PrimaryKey, ColumnB,
 -- Square the value of ColumnC
 SQUARE(ColumnC) AS SquareC
FROM BaseTable

CREATE TRIGGER SquareTrigger ON SquareView
INSTEAD OF INSERT
AS
BEGIN
 INSERT INTO BaseTable
 SELECT PrimaryKey, ColumnB,
 -- Perform logical inverse of function in view.
 SQRT(SquareC)
 FROM inserted
END

For some expressions, such as complex expressions using mathematical operations like addition and subtraction, it may not be
possible for users to supply a value that the trigger can use to unambiguously build values for the destination base table columns.
For example, if a view select list contains the expression IntColA + IntColB AS AddedColumns, what does a value of 10 in
inserted.AddedColumns mean? Is 10 the result of 3 + 7, 2 + 8, or 5 + 5? There is no way to tell from the value of
inserted.AddedColumns alone what values should be placed in IntColA and IntColB.

In these cases, the trigger can be coded to use alternative sources of information to determine the values to set in the base table
columns. For views that have INSTEAD OF triggers, the view select list must contain enough information to build values for all
non-null columns in the base tables modified by the trigger. Not all data must come directly from the inserted table. In some
cases, the values in the inserted table can be key values that the trigger uses to retrieve the relevant data from other base tables.

Creating and Maintaining Databases (SQL Server 2000)

Using text, ntext, and image Data in INSTEAD OF Triggers
Data modifications may involve text, ntext, and image columns. In base tables, the value stored in a text, ntext, or image
column is a text pointer pointing to the pages holding the data. For more information, see text, ntext, and image Data.

Although AFTER triggers do not support text, ntext, or image data in the inserted and deleted tables, INSTEAD OF triggers do
support them. text, ntext, and image data is stored in the inserted and deleted tables differently from the way the data is
stored in base tables. text, ntext, and image data is not stored as a separate chain of pages. Instead, they are stored as a
continuous string within each row, which means there are no text pointers for text, ntext, or image columns in the inserted and
deleted tables. The TEXTPTR and TEXTVALID functions and the READTEXT, UPDATETEXT, and WRITETEXT statements are not valid
against text, ntext, or image columns from the inserted or deleted tables. All other uses of text, ntext, or image columns are
supported, such as referring to them in select lists, WHERE clause search conditions, or the SUBSTRING, PATINDEX, or
CHARINDEX functions. Operations on text, ntext, or image data in the INSTEAD OF triggers are affected by the current SET
TEXTSIZE option, which can be determined with the @@TEXTSIZE function.

The type of text, ntext, or image data stored in the inserted and deleted tables varies depending on the triggering action
(INSERT, UPDATE, or DELETE):

On INSERT statements, the inserted table contains the new value for the text, ntext, or image column. The deleted table
has no rows.

On DELETE statements, the inserted table has no rows and the deleted table rows contain the values the text, ntext, or
image column had before the DELETE started.

On UPDATE statements in which the text, ntext, or image value is not changed, both the inserted and deleted table rows
contain the same values for the text, ntext, or image column.

On UPDATE statements in which the text, ntext, or image value is changed, the deleted table contains the data values as
they existed before the UPDATE started, and the inserted table contains the data with any modifications specified in the SET
clause.

If an INSERT, UPDATE, or DELETE statement modifies many rows with large text, ntext, or image values, considerable memory
can be required to hold the copies of the text, ntext, or image data in the inserted and deleted tables. Copying these large
amounts of data can also lower performance. INSERT, UPDATE, and DELETE statements that reference views or tables that have
INSTEAD OF triggers should modify one row at a time, or only a few rows at a time, whenever possible.

Creating and Maintaining Databases (SQL Server 2000)

Activating Triggers with Implicit and Explicit Null Values
Inserting an explicit null value into a column or using the DEFAULT keyword to assign a value to a column activates the trigger as
expected. Similarly, when no value is specified in the INSERT statement for a column, the trigger is still activated when:

An implicit null value is inserted into a column because no DEFAULT definition exists.

A default value is inserted into a column because a DEFAULT definition does exist.

Examples

A. Test trigger activation with null and default values

The following examples show how a trigger is affected by implicit and explicit null values. A small table is created to hold two
integer values. One column can contain null values; the other column contains a default value. A trigger evaluates whether the
both columns are modified, and displays a message when the trigger is activated. A series of INSERT statements tests trigger
activation by inserting combinations of implicit and explicit null values.

CREATE TABLE t1
(a int NULL, b int NOT NULL DEFAULT 99)
GO

CREATE TRIGGER t1trig
ON t1
FOR INSERT, UPDATE
AS
IF UPDATE(a) AND UPDATE(b)
 PRINT 'FIRING'
GO

--When two values are inserted, the UPDATE is TRUE for both columns and the trigger is activated.
INSERT t1 (a, b)
VALUES (1, 2)

--When two values are updated, the UPDATE is TRUE for both columns and the trigger is activated.
UPDATE t1
SET a = 1, b = 2

--When an explicit NULL is inserted in column a, the UPDATE is TRUE for both columns and the trigger is
activated.
INSERT t1
VALUES (NULL, 2)

--When an explicit NULL is updated in column a, the UPDATE is TRUE for both columns,the trigger is activated.
UPDATE t1
SET a = NULL, b = 2

--When an implicit NULL is inserted in column a, the UPDATE is TRUE for both columns and the trigger is
activated.
INSERT t1 (b)
VALUES (2)

--When column a is updated with an implicit NULL, the UPDATE is FALSE for both columns and the trigger is not
activated.
UPDATE t1
SET b = 2

--When the default value is implicitly inserted in column b, the UPDATE is TRUE for both columns and the trigger
is activated.
INSERT t1 (a)
VALUES (2)

--When column b is updated with an implicit NULL, the UPDATE is FALSE for both columns and the trigger is not
activated.
UPDATE t1
SET a = 2

--When the default value is explicitly inserted in column b, the UPDATE is TRUE for both columns and the trigger
is activated.
INSERT t1 (a, b)
VALUES (2, DEFAULT)

--When column b is updated explicitly with the default value, the UPDATE is TRUE for both columns and the
trigger is activated.
UPDATE t1

SET a = 2, b = DEFAULT

See Also

DEFAULT Definitions

Null Values

Creating and Maintaining Databases (SQL Server 2000)

Modifying and Renaming a Trigger
If you must modify the definition of a trigger, you can either drop and re-create the trigger or redefine the existing trigger in a
single step.

If you change the name of an object referenced by a trigger, you must modify the trigger so that its text reflects the new name.
Therefore, before renaming an object, display the dependencies of the object first to determine if any triggers are affected by the
proposed change.

You can also rename a trigger. The new name must follow the rules for identifiers. You can rename only the triggers that you
own, but the database owner can change the name of any user's triggers. The trigger to be renamed must be in the current
database.

A trigger can also be modified to encrypt its definition.

To modify a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To rename a trigger

Transact-SQL

SQL-DMO

Note Renaming a trigger does not change the name of the trigger in the text of the trigger definition. To change the name of the
trigger in the definition, modify the trigger directly.

To view the dependencies of a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Getting Information About a View

Viewing a Table

https://msdn.microsoft.com/en-us/library/ms947983(v=sql.80).aspx

Creating and Maintaining Databases (SQL Server 2000)

Viewing a Trigger
In Microsoft® SQL Server™ 2000, you can determine the types of triggers on a table, the name of the trigger, its owner, and the
date it was created.

You can also:

Gain information about the definition of a trigger if it was not encrypted when created or modified. You may need to see the
definition of the trigger to see its Transact-SQL statements or to understand how it affects the table upon which it is defined.

List the objects used by the specified trigger. This information can be used to identify the objects that affect the trigger if
they are changed or deleted in the database.

The result set of sp_helptrigger contains the columns isafter and isinsteadof to report whether a trigger is an AFTER or
INSTEAD OF trigger. The OBJECTPROPERTY function reports whether a trigger is an AFTER or INSTEAD OF trigger through the
ExecIsInsteadOfTrigger and ExecIsAfterTrigger properties.

To view the types of triggers on a table

Transact-SQL

SQL-DMO

To view information about a trigger

Transact-SQL

SQL-DMO

To view a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

To view the dependencies of a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

OBJECTPROPERTY

sp_helptrigger

Creating and Maintaining Databases (SQL Server 2000)

Deleting a Trigger
When a trigger is no longer needed, you can delete it. When a trigger is deleted, the table and the data upon which it is based are
not affected. Deleting a table automatically deletes any triggers on the table. Permissions to delete a trigger default to the owner
of the table upon which the trigger is defined.

To delete a trigger

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

Creating and Maintaining Databases (SQL Server 2000)

User-Defined Functions
Functions are subroutines made up of one or more Transact-SQL statements that can be used to encapsulate code for reuse.
Microsoft® SQL Server™ 2000 does not limit users to the built-in functions defined as part of the Transact-SQL language, but
allows users to create their own user-defined functions.

User-defined functions are created using the CREATE FUNCTION statement, modified using the ALTER FUNCTION statement, and
removed using the DROP FUNCTION statement. Each fully qualified user-defined function name
(database_name.owner_name.function_name) must be unique.

You must have been granted CREATE FUNCTION permissions to create, alter, or drop user-defined functions. Users other than the
owner must be granted appropriate permissions on a function before they can use it in a Transact-SQL statement. To create or
alter tables with references to user-defined functions in the CHECK constraint, DEFAULT clause, or computed column definition,
you must also have REFERENCES permission on the functions.

Transact-SQL errors that cause a statement to be canceled and continue with the next statement in the module (such as triggers
or stored procedures) are treated differently inside a function. In functions, such errors cause the execution of the function to stop.
This in turn causes the statement that invoked the function to be canceled.

Types of User-Defined Functions

SQL Server 2000 supports three types of user-defined functions:

Scalar functions

Inline table-valued functions

Multistatement table-valued functions

A user-defined function takes zero or more input parameters and returns either a scalar value or a table. A function can have a
maximum of 1024 input parameters. When a parameter of the function has a default value, the keyword DEFAULT must be
specified when calling the function to get the default value. This behavior is different from parameters with default values in
stored procedures in which omitting the parameter also implies the default value. User-defined functions do not support output
parameters.

Scalar functions return a single data value of the type defined in a RETURNS clause. All scalar data types, including bigint and
sql_variant, can be used. The timestamp data type, user-defined data type, and nonscalar types, such as table or cursor, are not
supported. The body of the function, defined in a BEGIN...END block, contains the series of Transact-SQL statements that return
the value. The return type can be any data type except text, ntext, image, cursor, and timestamp.

Table-valued functions return a table. For an inline table-valued function, there is no function body; the table is the result set of a
single SELECT statement. For a multistatement table-valued function, the function body, defined in a BEGIN...END block, contains
the TRANSACT-SQL statements that build and insert rows into the table that will be returned. For more information about inline
table-valued functions, see Inline User-Defined Functions. For more information about table-valued functions, see User-Defined
Functions That Return a table Data Type.

The statements in a BEGIN...END block cannot have any side effects. Function side effects are any permanent changes to the state
of a resource that has a scope outside the function such as a modification to a database table. The only changes that can be made
by the statements in the function are changes to objects local to the function, such as local cursors or variables. Modifications to
database tables, operations on cursors that are not local to the function, sending e-mail, attempting a catalog modification, and
generating a result set that is returned to the user are examples of actions that cannot be performed in a function.

The types of statements that are valid in a function include:

DECLARE statements can be used to define data variables and cursors that are local to the function.

Assignments of values to objects local to the function, such as using SET to assign values to scalar and table local variables.

Cursor operations that reference local cursors that are declared, opened, closed, and deallocated in the function. FETCH
statements that return data to the client are not allowed. Only FETCH statements that assign values to local variables using
the INTO clause are allowed.

Control-of-flow statements.

SELECT statements containing select lists with expressions that assign values to variables that are local to the function.

UPDATE, INSERT, and DELETE statements modifying table variables that are local to the function.

EXECUTE statements calling an extended stored procedure.

The number of times that a function specified in a query is actually executed can vary between execution plans built by the
optimizer. An example is a function invoked by a subquery in a WHERE clause. The number of times the subquery and its function
is executed can vary with different access paths chosen by the optimizer.

Built-in functions that can return different data on each call are not allowed in user-defined functions. The built-in functions not
allowed in user-defined functions are:

@@CONNECTIONS @@PACK_SENT GETDATE
@@CPU_BUSY @@PACKET_ERRORS GetUTCDate
@@IDLE @@TIMETICKS NEWID
@@IO_BUSY @@TOTAL_ERRORS RAND
@@MAX_CONNECTIONS @@TOTAL_READ TEXTPTR
@@PACK_RECEIVED @@TOTAL_WRITE

Schema-Bound Functions

CREATE FUNCTION supports a SCHEMABINDING clause that binds the function to the schema of any objects it references, such as
tables, views, and other user-defined functions. An attempt to alter or drop any object referenced by a schema-bound function
fails.

These conditions must be met before you can specify SCHEMABINDING in CREATE FUNCTION:

All views and user-defined functions referenced by the function must be schema-bound.

All objects referenced by the function must be in the same database as the function. The objects must be referenced using
either one-part or two-part names.

You must have REFERENCES permission on all objects (tables, views, and user-defined functions) referenced in the function.

You can use ALTER FUNCTION to remove the schema binding. The ALTER FUNCTION statement should redefine the function
without specifying WITH SCHEMABINDING.

Calling User-Defined Functions

When calling a scalar user-defined function, you must supply at least a two-part name:

SELECT *, MyUser.MyScalarFunction()
FROM MyTable

Table-valued functions can be called by using a one-part name:

SELECT *
FROM MyTableFunction()

However, when you call SQL Server built-in functions that return a table, you must add the prefix :: to the name of the function:

SELECT * FROM ::fn_helpcollations()

A scalar function can be referenced any place an expression of the same data type returned by the function is allowed in a
Transact-SQL statement, including computed columns and CHECK constraint definitions. For example, this statement creates a
simple function that returns a decimal:

CREATE FUNCTION CubicVolume
-- Input dimensions in centimeters
 (@CubeLength decimal(4,1), @CubeWidth decimal(4,1),
 @CubeHeight decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
AS

BEGIN
 RETURN (@CubeLength * @CubeWidth * @CubeHeight)
END

This function can then be used anywhere an integer expression is allowed, such as in a computed column for a table:

CREATE TABLE Bricks
 (
 BrickPartNmbr int PRIMARY KEY,
 BrickColor nchar(20),
 BrickHeight decimal(4,1),
 BrickLength decimal(4,1),
 BrickWidth decimal(4,1),
 BrickVolume AS
 (
 dbo.CubicVolume(BrickHeight,
 BrickLength, BrickWidth)
)
)

dbo.CubicVolume is an example of a user-defined function that returns a scalar value. The RETURNS clause defines a scalar data
type for the value returned by the function. The BEGIN...END block contains one or more Transact-SQL statements that implement
the function. Each RETURN statement in the function must have an argument that returns a data value that has the data type
specified in the RETURNS clause, or a data type that can be implicitly converted to the type specified in RETURNS. The value of the
RETURN argument is the value returned by the function.

Obtaining Information About Functions

Several catalog objects report information about user-defined functions:

sp_help reports information about user-defined functions.

sp_helptext reports the source of user-defined functions.

Three information schema views report information about user-defined functions: ROUTINES, PARAMETERS, and
ROUTINE_COLUMNS. These information schema views also report information for stored procedures.

Creating and Maintaining Databases (SQL Server 2000)

User-Defined Functions That Return a table Data Type
 New Information - SQL Server 2000 SP3.

User-defined functions that return a table can be powerful alternatives to views. A user-defined function that returns a table can
be used where table or view expressions are allowed in Transact-SQL queries. While views are limited to a single SELECT
statement, user-defined functions can contain additional statements that allow more powerful logic than is possible in views.

A user-defined function that returns a table can also replace stored procedures that return a single result set. The table returned
by a user-defined function can be referenced in the FROM clause of a Transact-SQL statement, but stored procedures that return
result sets cannot. For example, assume that fn_EmployeesInDept is a user-defined function that returns a table and can be
invoked by a SELECT statement such as:

SELECT * FROM tb_Employees AS E INNER JOIN
 dbo.fn_EmployeesInDept('shipping') AS EID
 ON E.EmployeeID = EID.EmployeeID

In a user-defined function that returns a table:

The RETURNS clause defines a local return variable name for the table returned by the function. The RETURNS clause also
defines the format of the table. The scope of the local return variable name is local within the function.

The Transact-SQL statements in the function body build and insert rows into the return variable defined by the RETURNS
clause.

When a RETURN statement is executed, the rows inserted into the variable are returned as the tabular output of the
function. The RETURN statement cannot have an argument.

No Transact-SQL statements in a function that returns a table can return a result set directly to a user. The only information the
function can return to the user is the table returned by the function.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

This example creates a function in the Northwind database that returns a table:

CREATE FUNCTION LargeOrderShippers (@FreightParm money)
RETURNS @OrderShipperTab TABLE
 (
 ShipperID int,
 ShipperName nvarchar(80),
 OrderID int,
 ShippedDate datetime,
 Freight money
)
AS
BEGIN
 INSERT @OrderShipperTab
 SELECT S.ShipperID, S.CompanyName,
 O.OrderID, O.ShippedDate, O.Freight
 FROM Shippers AS S INNER JOIN Orders AS O
 ON S.ShipperID = O.ShipVia
 WHERE O.Freight > @FreightParm
 RETURN
END

In this function, the local return variable name is @OrderShipperTab. Statements in the function body insert rows into the
variable @OrderShipperTab to build the table result returned by the function.

This query references the table returned by the function in its FROM clause:

SELECT *
FROM LargeOrderShippers($500)

Note The text in row table option is automatically set to 256 for a table returned by a user-defined function. This cannot be
changed. The READTEXT, WRITETEXT, and UPDATETEXT statements cannot be used to read or write parts of any text, ntext, or
image columns in the table. For more information, see Text in Row Data.

Creating and Maintaining Databases (SQL Server 2000)

Inline User-Defined Functions
 New Information - SQL Server 2000 SP3.

Inline user-defined functions are a subset of user-defined functions that return a table. Inline functions can be used to achieve the
functionality of parameterized views.

Consider this view:

CREATE VIEW vw_CustomerNamesInWA AS
SELECT CustomerID, CompanyName
FROM Northwind.dbo.Customers
WHERE Region = 'WA'

You can create a more generalized version, vw_CustomerNamesInRegion, by replacing the WHERE Region = 'WA' with a
WHERE Region = @RegionParameter and letting users specify the region they are interested in viewing. Views, however, do not
support parameters in the search conditions specified in the WHERE clause.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Inline user-defined functions can be used to support parameters in the search conditions specified in the WHERE clause. This is an
example of a function that allows users to specify the region in their select:

CREATE FUNCTION fn_CustomerNamesInRegion
 (@RegionParameter nvarchar(30))
RETURNS table
AS
RETURN (
 SELECT CustomerID, CompanyName
 FROM Northwind.dbo.Customers
 WHERE Region = @RegionParameter
)
GO
-- Example of calling the function for a specific region
SELECT *
FROM fn_CustomerNamesInRegion(N'WA')
GO

Inline user-defined functions follow these rules:

The RETURNS clause contains only the keyword table. You do not have to define the format of a return variable because it
is set by the format of the result set of the SELECT statement in the RETURN clause.

There is no function_body delimited by BEGIN and END.

The RETURN clause contains a single SELECT statement in parentheses. The result set of the SELECT statement forms the
table returned by the function. The SELECT statement used in an inline function is subject to the same restrictions as SELECT
statements used in views.

The table-valued function accepts only constants or @local_variable arguments

Inline functions can also be used to increase the power of indexed views. The indexed view itself cannot use parameters in its
WHERE clause search conditions to tailor the stored result set to specific users. You can, however, define an indexed view that
stores the complete set of data that matches the view, and then define an inline function over the indexed view that contains
parameterized search conditions that allow users to tailor their results. If the view definition is complex, most of the work
performed to build a result set involves operations such as building aggregates or joining several tables when the clustered index
is created on the view. If you then create an inline function that references the view, the function can apply the user's
parameterized filters to pull specific rows from the result set that was built by the CREATE INDEX statement. The complex
aggregations and joins are done once, at CREATE INDEX time, and all subsequent queries referencing the inline function filter
rows from the simplified, stored result set. For example:

1. You define a view vw_QuarterlySales that aggregates all sales data into a result set that reports summarized sales data by
quarter for all stores.

2. You create a clustered index on vw_QuarterlySales to materialize a result set containing the summarized data.

3. You create an inline function to filter the summarized data:

CREATE FUNCTION fn_QuarterlySalesByStore
 (
 @StoreID int
)
RETURNS table
AS
RETURN (
 SELECT *
 FROM SalesDB.dbo.vw_QuarterlySales
 WHERE StoreID = @StoreID
)

4. Users can then get the data for their specific store by selecting from the inline function:

SELECT *
FROM fn_QuarterlySalesByStore(14432)

Most of the work needed to satisfy the queries issued at Step 4 is to aggregate the sales data by quarter. This work is done once at
Step 2. Each individual SELECT statement in Step 4 uses the function fn_QuarterlySalesByStore to filter out the aggregated data
specific to their store.

Creating and Maintaining Databases (SQL Server 2000)

Deterministic and Nondeterministic Functions
All functions are deterministic or nondeterministic:

Deterministic functions always return the same result any time they are called with a specific set of input values.

Nondeterministic functions may return different results each time they are called with a specific set of input values.

Whether a function is deterministic or nondeterministic is called the determinism of the function.

For example, the DATEADD built-in function is deterministic because it always returns the same result for any given set of
argument values for its three parameters. GETDATE is not deterministic because it is always invoked with the same argument, yet
the value it returns changes each time it is executed.

Earlier versions of Microsoft® SQL Server™ have no functionality that is dependent on the determinism of functions. In Microsoft
SQL Server 2000, nondeterministic functions cannot be specified in two types of Transact-SQL expressions:

An index cannot be created on a computed column if the computed_column_expression references any nondeterministic
functions.

A clustered index cannot be created on a view if the view references any nondeterministic functions.

One of the properties SQL Server records for user-defined functions is whether the function is deterministic. A nondeterministic
user-defined function cannot be invoked by either a view or computed column if you want to create an index on the view or
computed column.

User-Defined Function Determinism

Whether a user-defined function is deterministic or nondeterministic depends on how the function is coded. User-defined
functions are deterministic if:

The function is schema-bound.

All built-in or user-defined functions called by the user-defined function are deterministic.

The body of the function references no database objects outside the scope of the function. For example, a deterministic
function cannot reference tables other than table variables that are local to the function.

The function does not call any extended stored procedures.

User-defined functions that do not meet these criteria are marked as nondeterministic. Built-in nondeterministic functions are not
allowed in the body of user-defined functions.

Built-in Function Determinism

You cannot influence the determinism of any built-in function. Each built-in function is deterministic or nondeterministic based on
how the function is implemented by Microsoft SQL Server.

All of the aggregate and string built-in functions are deterministic except the string functions CHARINDEX and PATINDEX. For a
list of these functions, see Aggregate Functions and String Functions.

These built-in functions from categories of built-in functions other than aggregate and string functions are always deterministic:

ABS DATEDIFF PARSENAME
ACOS DAY POWER
ASIN DEGREES RADIANS
ATAN EXP ROUND
ATN2 FLOOR SIGN
CEILING ISNULL SIN
COALESCE ISNUMERIC SQUARE
COS LOG SQRT
COT LOG10 TAN

DATALENGTH MONTH YEAR
DATEADD NULLIF

These functions are not always deterministic but can be used in indexed views or indexes on computed columns when they are
specified in a deterministic manner.

Function Comments
CAST Deterministic unless used with datetime, smalldatetime, or

sql_variant.
CONVERT Deterministic unless used with datetime, smalldatetime, or

sql_variant. The datetime and smalldatetime data types are
deterministic if the style parameter is also specified.

CHECKSUM Deterministic, with the exception of CHECKSUM(*).
ISDATE Deterministic only if used with the CONVERT function, the

CONVERT style parameter is specified and style is not equal to 0,
100, 9, or 109.

RAND RAND is deterministic only when a seed parameter is specified.

All of the configuration, cursor, meta data, security, and system statistical functions are nondeterministic. For a list of these
functions, see Configuration Functions, Cursor Functions, Meta Data Functions, Security Functions, and System Statistical
Functions.

These built-in functions from other categories are always nondeterministic:

@@ERROR FORMATMESSAGE NEWID
@@IDENTITY GETANSINULL PATINDEX
@@ROWCOUNT GETDATE PERMISSIONS
@@TRANCOUNT GetUTCDate SESSION_USER
APP_NAME HOST_ID STATS_DATE
CHARINDEX HOST_NAME SYSTEM_USER
CURRENT_TIMESTAMP IDENT_INCR TEXTPTR
CURRENT_USER IDENT_SEED TEXTVALID
DATENAME IDENTITY USER_NAME

Calling Extended Stored Procedures from Functions

Functions that call extended stored procedures are nondeterministic because the extended stored procedures can cause side
effects on the database. Side effects are changes to a global state of the database, such as an update to a table, or to an external
resource, such as a file or the network (for example, modifying a file or sending an e-mail message). You should not rely on
returning a consistent result set when executing an extended stored procedure from a user-defined function. User-defined
functions that create side effects on the database are not recommended.

When called from inside a function, the extended stored procedure cannot return result sets to the client. Any Open Data Services
API that returns result sets to the client will have a return code of FAIL.

The extended stored procedure can connect back to SQL Server; however, the procedure cannot join the same transaction as the
original function that invoked the extended stored procedure.

Similar to invocations from a batch or stored procedure, the extended stored procedure is executed in the context of the Microsoft
Windows® security account under which SQL Server is running. The owner of the extended stored procedure should consider
this when granting permissions to other users to execute the procedure.

Creating and Maintaining Databases (SQL Server 2000)

Rewriting Stored Procedures as Functions
This topic describes how to determine whether to rewrite existing stored procedure logic as user-defined functions. For example,
if you want to invoke a stored procedure directly from a query, repackage the code as a user-defined function.

In general, if the stored procedure returns a (single) result set, define a table-valued function. If the stored procedure computes a
scalar value, define a scalar function.

Criteria for Table-Valued Functions

If a stored procedure meets the following criteria, it is a good candidate for being rewritten as a table-valued function:

The logic is expressible in a single SELECT statement but is a stored procedure, rather than a view, only because of the need
for parameters. This scenario can be handled with an inline table-valued function.

The stored procedure does not perform update operations (except to table variables).

There is no need for dynamic EXECUTE statements

The stored procedure returns one result set.

The primary purpose of the stored procedure is to build intermediate results that are to be loaded into a temporary table,
which is then queried in a SELECT statement. INSERT...EXEC statements can be written using table-valued functions. For
example, consider the following sequence:

INSERT #temp EXEC sp_getresults
SELECT ...
 FROM #temp, t1
 WHERE ...

The sp_getresults stored procedure can be rewritten as a table-valued function, for example fn_results(), which means the
preceding statements can be rewritten as:

SELECT ...
 FROM fn_results(), t1
 WHERE ...

Creating and Maintaining Databases (SQL Server 2000)

Using Extended Properties on Database Objects
Microsoft® SQL Server™ 2000 introduces extended properties that users can define on various objects in a database. These
extended properties can be used to store application-specific or site-specific information about the database objects. Because the
property is stored in the database, all applications reading the property can evaluate the object in the same way. This helps
enforce consistency in the way data is treated by all of the programs in the system.

Each extended property has a user-defined name and value. The value of an extended property is a sql_variant value that can
contain up to 7,500 bytes of data. Individual database objects can have multiple extended properties.

Possible uses of extended properties include:

Specifying a caption for a table, view, or column. All applications can then use the same caption in a user interface that
displays information from that table, view, or column.

Specifying an input mask for a column so that all applications can validate data before executing a Transact-SQL statement.

Specifying formatting rules for displaying the data in a column.

Recording a description of specific database objects that applications can display to users.

Specifying the size and window location at which a column should be displayed.

For the purposes of specifying extended properties, the objects in a SQL Server 2000 database are classified into three levels (0, 1,
2). Level 0 is the highest level and 2 is the lowest level. The table lists the level-0 objects, user and user-defined data type, with
their valid level-1 and level-2 objects.

Level 0 Level 1 Level 2
User Table Column, index, constraint, trigger

View Column, INSTEAD OF trigger
Schema-bound view Column, index, INSTEAD OF

trigger
Stored procedure Parameter
Rule <None>
Default <None>
Function Column, parameter, constraint,
Schema-bound function Column, parameter, constraint

User-defined data type <None> <None>

Extended properties are not supported on objects that are not listed as level 0, 1, or 2 objects.

References to an object in one level must be qualified with the names of the higher level objects that own or contain them. For
example, when referencing a column (level 2) you must also specify the table (level 1) that contains the column and the user (level
0) who owns the table.

Extended properties provide only a named location in which to store data. All applications must be coded to query the property
and take appropriate action. For example, adding a caption property to a column does not create a caption that can be displayed
by an application. Each application must be coded to read the caption and display it properly.

Extended properties are managed using three system stored procedures:

sp_addextendedproperty

Adds a new extended property to a database object.

sp_updateextendedproperty

Updates the value of an existing extended property.

sp_dropextendedproperty

Drops an existing extended property.

You can retrieve the value of an existing extended property using the system function FN_LISTEXTENDEDPROPERTY.

The following is an example of a table that has:

Caption extended properties for the table and the columns.

Input-mask extended properties for the columns.

USE Northwind
GO
CREATE TABLE TestExProp
 (PriKey int PRIMARY KEY IDENTITY(1,1),
 USPhoneNmbr char(13)
 CHECK (USPhoneNmbr LIKE
 '([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]'
),
 USSocialScrty char(11)
 CHECK (USSocialScrty LIKE
 '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]'
)
)
GO
sp_addextendedproperty 'Caption', 'Caption Test Table',
 'user', dbo, 'table', TestExProp
GO
sp_addextendedproperty 'Caption', 'Primary Key',
 'user', dbo, 'table', TestExProp, 'column', PriKey
GO
sp_addextendedproperty 'Input Mask', '(NNN)NNN-NNNN',
 'user', dbo, 'table', TestExProp, 'column', USPhoneNmbr
GO
sp_addextendedproperty 'Caption', 'US Phone Number',
 'user', dbo, 'table', TestExProp, 'column', USPhoneNmbr
GO
sp_addextendedproperty 'Input Mask', 'NNN-NN-NNNN',
 'user', dbo, 'table', TestExProp, 'column', USSocialScrty
GO
sp_addextendedproperty 'Caption', 'US Social Security Number',
 'user', dbo, 'table', TestExProp, 'column', USSocialScrty
GO

This statement updates the primary-key caption property:

sp_updateextendedproperty 'Caption', 'Primary Key - Integer',
 'user', dbo, 'table', TestExProp, 'column', PriKey

This statement drops the input-mask properties:

sp_dropextendedproperty 'Input Mask',
 'user', dbo, 'table', TestExProp,
 'column', USSocialScrty
GO
sp_dropextendedproperty 'Input Mask',
 'user', dbo, 'table', TestExProp,
 'column', USPhoneNmbr
GO

This statement retrieves the table-caption property:

SELECT *
FROM ::FN_LISTEXTENDEDPROPERTY('Caption', 'User','dbo','table',
 'TestExProp', default, default)

The example shows using CHECK constraints and an input-mask property to specify the pattern of data for each column. Most
sites choose one or the other unless:

The CHECK constraints were used as an interim measure until all the programs dealing with this table could be changed to
use the input mask properties.

The site also supports users who can update the data through ad hoc tools that do not read the extended properties.

The advantage of the input mask over the CHECK constraint is that the logic is applied in the applications, which can generate
more informative errors if a user provides improperly formatted data. The disadvantage of the input mask is that it requires a
separate call to fn_listextendedproperty to obtain the property, and the logic to enforce the mask must be added in all
programs.

See Also

fn_listextendedproperty

Property Management

sp_addextendedproperty

sp_dropextendedproperty

sp_updateextendedproperty

Creating and Maintaining Databases (SQL Server 2000)

Full-Text Indexes
Full-text support for Microsoft® SQL Server™ 2000 data involves two features: the ability to issue queries against character data,
and the creation and maintenance of the underlying indexes facilitating these queries.

Full-text indexes differ from regular SQL indexes in a number of ways.

Regular SQL indexes Full-text indexes
Stored under the control of the
database in which they are defined.

Stored in the file system, but administered
through the database.

Several regular indexes per table are
allowed.

Only one full-text index per table is
allowed.

Updated automatically when the data
upon which they are based is inserted,
updated, or deleted.

Addition of data to full-text indexes, called
population, can be requested through
either a schedule or a specific request, or
can occur automatically with the addition
of new data.

Not grouped. Grouped within the same database into
one or more full-text catalogs.

Created and dropped using SQL Server
Enterprise Manager, wizards, or
Transact-SQL statements.

Created, managed, and dropped using SQL
Server Enterprise Manager, wizards, or
stored procedures.

These differences make a number of administrative tasks necessary. Full-text administration is carried out at several levels:

Server

Certain server-wide properties, such as resource_usage, can be set to increase and reduce the amount of system resources
used by the full-text service.

Note The full-text engine runs as a service named Microsoft Search on Microsoft Windows NT® Server 4.0 and Windows®
2000, but not on Windows 95, Windows 98, or Windows ME. The full-text engine can be custom-installed on Windows NT
Workstation 4.0. Windows 95, Windows 98, Windows Millennium, and Windows NT Workstation 4.0 clients can make use
of the service when they are connected to an instance of SQL Server Standard or Enterprise edition.

Database

A database must be enabled to use the full-text service. Meta data for one or more full-text catalogs can be created and
dropped in an enabled database.

Full-text catalog

A full-text catalog contains full-text indexes in a database. Each catalog can serve the indexing needs of one or more tables
within a database. The catalog is populated with indexes using the administrative facilities described here. (Full-text catalogs
must reside on a local hard drive associated with the instance of SQL Server. Removable drives, floppy disks, and network
drives are not supported.) A maximum of 256 full-text catalogs can be created on each server.

Note Full-text indexing is fully supported in a Windows NT failover cluster environment. For more information, see
Running Full-Text Queries with Failover Clustering.

Table

A table must first be enabled for full-text support. Then meta data, such as the name of the table and its full-text catalog, is
created for the full-text index associated with the table. After the table is enabled, you can populate it with the data in
columns enabled for full-text support. If the full-text definition for a table is changed (for example, by including a new
column that will also be indexed for a full-text search), the associated full-text catalog must be repopulated to synchronize
the full-text index with the new full-text definition.

Column

Columns that support full-text queries can be added or dropped from an inactive registered table.

At all these levels, facilities are available to retrieve meta data and status information.

Like regular SQL indexes, full-text indexes can be automatically updated as data is modified in the associated tables. Alternatively,

full-text indexes can be repopulated manually at appropriate intervals. This repopulation can be time-consuming and resource-
intensive; therefore, it is an asynchronous process that usually runs in the background during periods of low database activity.

Tables with the same update characteristics (such as small number of changes versus large number of changes, or tables that
change frequently during a particular time of day) should be grouped together and assigned to the same full-text catalog. By
setting up full-text catalog population schedules in this way, full-text indexes stay synchronous with the tables without adversely
affecting the resource usage of the database server during periods of high database activity.

It is important to plan the placement of full-text indexes for tables in full-text catalogs. When you assign a table to a full-text
catalog, consider the following guidelines:

Always select the smallest unique index available for your full-text unique key. (A 4-byte, integer-based index is optimal.)
This reduces the resources required by Microsoft Search service in the file system significantly. If the primary key is large
(over 100 bytes), consider choosing another unique index in the table (or creating another unique index) as the full-text
unique key. Otherwise, if the full-text unique key size reaches the maximum size allowed (450 bytes), full-text population
will not be able to proceed.

If you are indexing a table that has millions of rows, assign the table to its own full-text catalog.

Consider the amount of change occurring in the tables being full-text indexed, as well as the number of table rows. If the
total number of rows being changed, together with the numbers of rows in the table present during the last full-text
population, represents millions of rows, assign the table to its own full-text catalog.

See Also

sp_fulltext_table

Creating and Maintaining Databases (SQL Server 2000)

Administering Full-Text Features Using SQL Enterprise
Manager
You can administer full-text indexes using the Full-Text Indexing Wizard or shortcut menus in SQL Server Enterprise Manager.

To enable a database for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To enable a table for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To enable a column for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To edit a full-text index on a table

Enterprise Manager

Enterprise Manager

Transact-SQL

To remove a full-text index from a table

Enterprise Manager

Enterprise Manager

Transact-SQL

To create a full-text catalog

Enterprise Manager

Enterprise Manager

Transact-SQL

To rebuild a full-text catalog

Enterprise Manager

Enterprise Manager

Transact-SQL

To rebuild all full-text catalogs in a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To start and stop a full or incremental population of a full-text index

Enterprise Manager

Enterprise Manager

Transact-SQL

To check the status, tables, and schedules of a full-text catalog

Enterprise Manager

Enterprise Manager

To change or create a new schedule of a full-text catalog

Enterprise Manager

Enterprise Manager

To remove a full-text catalog from a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To remove all full-text catalogs from a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To clean up a full-text catalog on a server

Enterprise Manager

Enterprise Manager

Transact-SQL

To repopulate all full-text catalogs for a database

Enterprise Manager

Enterprise Manager

Transact-SQL

Creating and Maintaining Databases (SQL Server 2000)

Administering Full-Text Features Using Stored Procedures and
Scalar Functions
Administering full-text features using stored procedures and scalar functions is described through examples provided in these
topics:

Enabling Others to Issue Full-Text Queries

Performing Investigation and Clean-up Tasks for Full-Text Catalogs

Performing Infrequent Tasks

The examples in these topics use two fictitious tables, writers and books, in the pubs database. This table shows the writers table
and the columns that are candidates for full-text indexing, specifically the varchar data type.

Column name Data type
Enable full-text

features?
writer_name char(40) No
citizenship char(40) No
organization varchar(100) Yes
royalties_ytd decimal(7,2) No
Royalyties_lifetime decimal(7,2) No
Bio varchar(500) Yes
writer_id integer (with a unique value enforced

by the writer_id_index index)
No

last_changed timestamp No

This table shows the books table and the columns that are candidates for full-text indexing, specifically the varchar and text data
types.

Column name Data type
Enable full-text

features?
writer_name char(40) No
Title varchar(120) Yes
Size smallint No
pub_date datetime No
the_words text Yes
Abstract varchar(500) Yes
isbn char(15) (with a unique value enforced

by the isbn_index index)
No

last_changed timestamp No

For more information about both querying and indexing, see Example of Combining Full-Text Administration and Full-Text Query.

Creating and Maintaining Databases (SQL Server 2000)

Enabling Others to Issue Full-Text Queries
This example demonstrates how to use SQL Server Service Manager to enable others to issue full-text queries against the writers
and books tables. The writers and books tables are fictitious tables located in the pubs database. For a description of the tables,
see Administering Full-Text Features Using Stored Procedures and Scalar Functions_administering_full-
text_features_using_stored_procedures_and_scalar_functions

1. Use SQL Server Service Manager to verify the full-text service, Microsoft Search, is running.

If necessary, the service can be started and stopped in one of these ways:

Use the shortcut menu of the Full-Text Search service in SQL Server Enterprise Manager.

Use Microsoft Search service in SQL Server Service Manager.

Type net start mssearch from a command prompt.

2. Find out if the pubs database has been enabled for full-text processing by executing this statement:

SELECT DatabaseProperty ('Pubs', 'IsFulltextEnabled')

For more information, see DATABASEPROPERTY.

This returns 1 if full-text support has been enabled, and 0 if it has not.

3. If not enabled (which is the default for newly created databases), enable the pubs database for full-text processing. Using
pubs, execute this stored procedure:

sp_fulltext_database 'enable'

For more information, see sp_fulltext_database.

4. Create a full-text catalog named PubsCatalog, opting for the default directory, by executing this stored procedure in the
pubs database:

sp_fulltext_catalog 'PubsCatalog', 'create'

For more information, see sp_fulltext_catalog.

This creates meta data about a full-text catalog in the system tables of the database and builds an empty full-text catalog in
the file system.

5. Register the writers and books tables for full-text processing by executing this stored procedure once for each table:

sp_fulltext_table 'writers', 'create', 'PubsCatalog',
'writer_id_index'
sp_fulltext_table 'books', 'create', 'PubsCatalog', 'isbn_index'

For more information, see sp_fulltext_table.

Both tables use the PubsCatalog full-text catalog. These stored procedure calls create meta data about both full-text
indexes.

6. For each table, specify the names of the columns that are to support full-text queries by executing this stored procedure
once for each column:

sp_fulltext_column 'writers', 'organization', 'add'
sp_fulltext_column 'writers', 'bio', 'add'
sp_fulltext_column 'books', 'writer_name', 'add'
sp_fulltext_column 'books', 'the words', 'add'
sp_fulltext_column 'books', 'abstract', 'add'

For more information, see sp_fulltext_column.

Note A mistake was made for the sake of illustration: for the books table, the writer_name column, rather than the titles
column, has been registered.

These stored procedure calls augment meta data about both full-text indexes.

7. Create a full-text index for these tables by executing this stored procedure once for each table:

sp_fulltext_table 'writers', 'activate'
sp_fulltext_table 'books', 'activate'

This does not actually create the full-text indexes. Rather, it registers the tables in the full-text catalog so that data from these
tables will be included in the next population.

8. Start a full population of the PubsCatalog full-text catalog by executing this stored procedure:

sp_fulltext_catalog 'PubsCatalog', 'start_full'

Because the population of a full-text catalog is an asynchronous operation, it is unlikely that the full-text indexes are created
immediately.

9. Verify the progress of the population of the PubsCatalog full-text catalog by executing this statement:

SELECT FulltextCatalogProperty ('PubsCatalog', 'PopulateStatus')

For more information, see FULLTEXTCATALOGPROPERTY.

This returns 0 if the service is idle for the full-text catalog and therefore finished, and 1 or more to indicate the stage of
population.

10. Issue Transact-SQL queries to confirm that the administration was executed correctly. For example:

SELECT B.writer_name, B.pub_date, B.the_words, A.royalties_ytd
FROM writers A, books B
WHERE A.writer_name = B.writer_name
AND A.citizenship = 'Canadian'
AND CONTAINS (B.the_words, '"Indexing Service" NEAR "Indexing Service"')

SELECT writer_name, pub_date, abstract
FROM books
WHERE CONTAINS (title, '"Classic" NEAR "French" NEAR "Cooking"')

This last query results in an error because the title column was not enabled for full-text queries.

11. Check for errors by executing this statement:

SELECT COLUMNPROPERTY (OBJECT_ID('books'), 'title', 'IsFullTextIndexed')

For more information, see COLUMNPROPERTY.

This returns 1 if the title column is part of the full-text index for the books table, and 0 if it is not.

12. List the columns participating in full-text processing for the books table by executing this stored procedure:

sp_help_fulltext_columns 'books'

For more information, see sp_help_fulltext_columns.

Note The results of this query show there was a mistake and that the writer_name column, rather than the title column,
was included in the full-text index definition.

13. Deactivate the books table so that the title column can be added to the full-text index and the writer_name column can be
removed by executing this stored procedure:

sp_fulltext_table 'books', 'deactivate'

In addition to allowing columns to be added and deleted, deactivating the books table means the table no longer
participates in the population of the PubsCatalog full-text catalog. However, the meta data remains and the table can be
reactivated. The existing full-text index for the books table remains in place until the next full population of the
PubsCatalog full-text catalog, but it is unused because Microsoft® SQL Server™ 2000 blocks queries on deactivated tables.

14. Add the title column and remove the writer_name column from the meta data for the full-text index of the books table.

Execute this stored procedure once for each column:

sp_fulltext_column 'books', 'writer_name', 'drop'
sp_fulltext_column 'books', 'title', 'add'

For more information, see sp_fulltext_column.

15. Reactivate the books table using this stored procedure:

sp_fulltext_table 'books', 'activate'

If the table is reactivated and the index is not repopulated, the old index is still available for queries against the remaining
full-text enabled columns, but not for queries against any new full-text enabled columns. Before repopulation, data from
deleted columns can be matched on queries that specify a search of all full-text columns by typing an asterisk (*) for the
column name.

16. Start an incremental population of the PubsCatalog full-text catalog by executing this stored procedure:

sp_fulltext_catalog 'PubsCatalog', 'start_incremental'

An incremental population refreshes the full-text catalog by indexing data in full-text enabled columns with these
characteristics:

Rows that have been updated or inserted since the last population.

Tables that have a timestamp column.

All rows that have been enabled for full-text processing since the last population, or that have a schema that has been
modified in any way since the last population.

17. After repopulation of the PubsCatalog full-text catalog completes, reissue the Transact-SQL query from Step 10. This time,
no error occurs.

Creating and Maintaining Databases (SQL Server 2000)

Performing Investigation and Clean-up Tasks for Full-Text
Catalogs
In this example, you perform typical investigation and clean-up tasks. Assume that you have already connected to the pubs
database, the full-text service has been started, and that you are working with the fictitious writers and books tables. For a
description of the tables, see Administering Full-Text Features Using Stored Procedures and Scalar Functions_administering_full-
text_features_using_stored_procedures_and_scalar_functions

1. Obtain a list of all the full-text catalogs linked to the pubs database by executing this stored procedure:

sp_help_fulltext_catalogs

For more information, see sp_help_fulltext_catalogs

Because the pubs database is the current database, this stored procedure returns the following meta data for all the full-text
catalogs linked to the pubs database:

Name and integer identifier of the full-text catalog

Full-text catalog root directory

Full-text catalog population status

Number of tables linked to this full-text catalog

A variation of this stored procedure in which a full-text catalog name parameter is specified returns this information for a
single full-text catalog.

2. Obtain a list of all the tables in the database that have been enabled for full-text processing by executing this stored
procedure:

sp_help_fulltext_tables

For more information, see sp_help_fulltext_tables

This stored procedure returns the following meta data for each table:

The two-part name of the table

The integer identifier of the column used as the table's full-text key

The name of the index that is used to impose a unique constraint on the full-text key column

The full-text status of the table

The name of the full-text catalog of the table

Two other variations of this stored procedure are supported. If the fulltext_catalog_name parameter is specified, this
information is returned for all the tables linked to that full-text catalog. If both the catalog_name and table_name
parameters are specified, or if just the table_name parameter is specified, then this information is returned for that table.

3. Obtain a list of all the columns in the database that have been enabled for full-text processing by executing this stored
procedure:

sp_help_fulltext_columns

For more information, see sp_help_fulltext_columns

This stored procedure returns the following meta data about each column:

The two-part name of the table in the column

The name and integer identifier of the column

A variation of this stored procedure, in which a table name parameter is specified, returns this information for a single table.

The compiled lists indicate some issues. The mycatalog full-text catalog is no longer used except by the mytable table,
which no longer has any full-text columns that can be queried.

4. Unregister the mytable table for full-text processing by executing this stored procedure:

sp_fulltext_table 'MyTable', 'drop'

For more information, see sp_fulltext_table.

This drops the meta data about full-text indexing for the table. The existing full-text index remains in place until the next full
population or until the full-text catalog is dropped. However, it remains unused. For more information, see sp_fulltext_table.

5. Drop the mycatalog full-text catalog from the file system and its meta data from the system tables by executing this stored
procedure:

sp_fulltext_catalog 'MyCatalogue', 'drop'

For more information, see sp_fulltext_catalog.

You must complete Step 4 before a full-text catalog can be dropped because its text-catalog meta data must be updated to
remove all full-text indexes.

There is at least one full-text catalog in the file system that no longer has corresponding SQL Server meta data. The usual
cause of this is the removal of a database.

6. Remove from the file system all full-text catalogs that no longer have meta data for them in SQL Server by executing this
stored procedure:

sp_fulltext_service 'Clean_Up'

For more information, see sp_fulltext_service.

The structure of the MixedUpCtlg full-text catalog does not match the meta data currently recorded for it in SQL Server.
This can occur when the full-text catalog is being dropped, or the database is being dropped and the Microsoft Search
service is not running. The drop action changes the meta data related to the full-text catalogs, but is unable to complete the
operation because the Microsoft Search service is not running. This leads to inconsistency between the full-text meta data in
SQL Server and the associated physical full-text catalog in the file system. This inconsistency can be corrected by invoking
the clean-up action on sp_fulltext_service. (Microsoft Search service must be running.)

7. Rebuild, but do not repopulate, the MixedUpCtlg full-text catalog by executing this stored procedure:

sp_fulltext_catalog 'MixedUpCtlg', 'Rebuild'

For more information, see sp_fulltext_catalog.

The sp_fulltext_database stored procedure with the ENABLE option may be used to rebuild all known full-text catalogs.

8. Start a full population of the MixedUpCtlg full-text catalog by executing this stored procedure:

sp_fulltext_catalog 'MixedUpCtlg', 'start_full'

Note Full-text catalogs can be created, dropped, and modified as needed; however, avoid making schema changes on
multiple catalogs at the same time.

Creating and Maintaining Databases (SQL Server 2000)

Performing Infrequent Tasks
The examples in this scenario demonstrate the full-text indexing tasks typically required less frequently than other administrative
tasks.

Changing the Amount of Resources Used for Full-Text Indexing and Searching

Determine if the level of resource usage has been assigned to the full-text service and how long the full-text service has to wait
after a request for population.

1. After starting the server, execute this statement:

SELECT FulltextServiceProperty ('IsFullTextInstalled')

For more information, see FULLTEXTSERVICEPROPERTY.

This returns 1 if the service has been installed, and 0 if it has not.

2. Determine the level of resource usage assigned to the full-text service by executing this statement:

SELECT FulltextServiceProperty ('ResourceUsage')

This returns a value from 1 (background) through 5 (dedicated).

3. To determine how long the full-text service has to wait to initialize after a request to populate a full-text index, execute this
statement:

SELECT FulltextServiceProperty ('ConnectTimeout')

This returns the current time-out value.

4. Because this installation of Microsoft® SQL Server™ 2000 is heavily loaded, you may decide to increase the initialization
time-out from the default of 20 seconds to 90 seconds by executing this stored procedure:

sp_fulltext_service 'ConnectTimeout', 90

For more information, see sp_fulltext_service.

Inquiring About the Full-Text Key Column

Determine whether the regular SQL Server mag_id_index index on the magazines table in the pubs database is used to enforce
the uniqueness of the full-text key column.

1. Execute this statement:

SELECT IndexProperty (Object_Id('magazines'), 'mag_id_index', 'IsFulltextKey')

For more information, see INDEXPROPERTY.

This returns a value of 1 if the index is used to enforce uniqueness of the full-text key column, and 0 if it does not.

2. Find the name of the full-text key column in the books table by executing this statement:

SELECT ObjectProperty(Object_Id('books'), 'TableFulltextKeyColumn')

For more information, see OBJECTPROPERTY.

Creating and Maintaining Databases (SQL Server 2000)

Maintaining Full-Text Indexes
There are three ways to maintain a full-text index:

Full rebuild

Rescans all rows. Completely rebuilds the full-text index. You can perform a full rebuild immediately or on a schedule, using
SQL Server Agent.

Timestamp-based incremental rebuild

Rescans those rows that have changed since the last full or incremental rebuild. This requires a timestamp column on the
table. Changes that do not update the timestamp, such as WRITETEXT and UPDATETEXT, are not detected. You can perform
an incremental rebuild immediately or on a schedule.

Change tracking

Maintains a list of all changes to the indexed data. Changes made with WRITETEXT and UPDATETEXT are not detected. You
can update the full-text index with these changes immediately, on a schedule, or as they occur, using the background update
index option.

The method you use depends on factors such as the CPU and available memory, the amount and rate of change of data, the
amount of available disk space, and the importance of the full-text index being current. Use these recommendations as a guide for
selecting a maintenance method.

Use change tracking with the background update index option when CPU and memory are available, the value of an up-to-
date index is high, and immediate propagation can keep up with the rate of changes.

Use change tracking with scheduled propagation when CPU and memory can be used at scheduled times, disk space for
storing changes is available, and changes between the scheduled times are not so significant that the propagation takes
longer than a full rebuild.

Use a full rebuild when a large percentage of records change or are added at once. If a large percentage of records change
over an extended period of time, consider using change tracking with scheduled or background update index.

Use an incremental rebuild when a large number, but not a large percentage, of documents change at one time. If a large
number of records change over an extended period of time, consider using change tracking with scheduled or background
update index.

See Also

OBJECTPROPERTY

sp_fulltext_table

Creating and Maintaining Databases (SQL Server 2000)

Filtering Supported File Types
When a cell in an image column contains one of certain types of documents, full-text search uses a filter to interpret the binary
data. The filter extracts the textual information from the document and submits it for indexing and subsequent querying.

Microsoft® SQL Server™ 2000 includes filters for these file extensions: .doc, .xls, .ppt, .txt, and .htm.

Many document types can be stored in a single image column. For each document, SQL Server chooses the correct filter based
on the file extension. Because the file extension is not visible when the file is stored in an image column, the file extension must
be stored in a separate column on the table. This type column can be of any character-based data type and contains the document
file extension, such as .doc for a Microsoft Word document. If the type column is NULL, the document is assumed to be a text file
(.txt).

Note For full-text indexing, a document must be less than 16 megabytes (MB) in size and must not contain more than 256
kilobytes (KB) of filtered text.

The document-type column is created in these ways:

In the Full-Text Indexing Wizard, select the image column for indexing, and then specify a Binding column to hold the
document type.

The sp_fulltext_column stored procedure accepts an argument for the column to contain the document types.

To view the document type, use the sp_help_fulltext_columns stored procedure to return the column name and column ID.

After the image column is indexed, it can be queried using the search predicates CONTAINS and FREETEXT.

Note A filter may be able to handle objects embedded in the parent object, depending on its implementation. SQL Server does
not configure filters to follow links to other objects.

You can create custom filters for full-text indexing of additional file types. For more information about creating custom filters,
search on "custom filters" in the Platform SDK section of the MSDN® Library at Microsoft Web site.

See Also

sp_fulltext_column

sp_help_fulltext_columns

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

Creating and Maintaining Databases (SQL Server 2000)

Column-Level Linguistic Analysis
Linguistic analysis is performed on all full-text indexed data. Linguistic analysis involves finding word boundaries (word-breaking)
and conjugating verbs (stemming). The rules for this analysis differ for different languages, and you can specify a different
language for each full-text indexed column. Microsoft® SQL Server™ 2000 includes linguistic analysis packages for these locales.

Neutral German
Chinese_Simplified Italian
Chinese_Traditional Japanese
Dutch Korean
English_UK Spanish_Modern
English_US Swedish_Default
French

Use neutral when a column contains data in multiple languages or in an unsupported language.

The linguistic analysis performed on arguments to the full-text query functions, CONTAINS, FREETEXT, CONTAINSTABLE, and
FREETEXTTABLE, is determined by the language of the full-text indexed column being queried. If no language is specified for a
column, the default is the value of the configuration option, 'default full-text language'.

For a localized version of SQL Server, SQL Server Setup sets the default full-text language option to the language of the server
if an appropriate match exists. For a nonlocalized version of SQL Server, the default full-text language option defaults to
neutral.

Note All columns listed in a single full-text query function clause must use the same language.

The default full-text language configuration option replaces the language neutral full-text option in SQL Server version 7.0.
During an upgrade from SQL Server 7.0 to SQL Server 2000, the default full-text language value is set, based on the values of
the Unicode locale id and language neutral full-text options.

See Also

sp_fulltext_column

Creating and Using Data Warehouses (SQL Server 2000)

Creating and Using Data Warehouses Overview
Organizations collect data in the normal course of business operations. The purpose of a data warehouse is to consolidate and
organize this data so it can be analyzed and used to support business decisions. In many cases a data warehouse contains the
living history of the organization.

Data warehouses usually contain historical data, often collected from a variety of disparate sources such as online transaction
processing (OLTP) systems, legacy systems, text files, or spreadsheets. A data warehouse combines this data, cleanses it for
accuracy and consistency, and organizes it for ease and efficiency of querying.

Some definitions of a data warehouse include several elements such as a data preparation area, the cleansing process, the
database that holds the data warehouse data, and the tools that organize and present the data to client applications. Other
definitions restrict the data warehouse to the database that contains the data warehouse data. In large data warehousing
applications, data is often segmented into specialized components, called data marts, that address individual components of the
organization. Some definitions consider data marts to be part of the data warehouse; other definitions consider them to be
separate entities. The intended meaning of the term data warehouse is usually clear from the context in which it is used. The
topics in this section generally use the broadest definition and address individual elements as components within the context of
the data warehouse.

Data warehousing is an advanced and complex technology. A complete treatment of data warehousing is not possible in this
document, but many excellent books and training courses are available to enhance your understanding. The topics in this section
discuss the elements and processes of data warehousing and identify the many powerful tools provided by Microsoft® SQL
Server™ 2000 to help you in the task of creating, using, and maintaining a data warehouse.

Topic Description
SQL Server 2000 Tools for Data
Warehouses

Describes tools provided by SQL Server 2000 that
are commonly used in data warehouse applications.

Parts of a Data Warehouse Describes the elements that make up a data
warehouse.

Creating a Data Warehouse Describes the steps in creating a data warehouse.
Using a Data Warehouse Describes the tools and methods used to prepare

data for presentation and to provide client access to
the information.

Maintaining a Data Warehouse Describes the processes involved in updating data
in the data warehouse and modifying the
presentation of information to users.

Creating and Using Data Warehouses (SQL Server 2000)

SQL Server 2000 Tools for Data Warehouses
Microsoft® SQL Server™ 2000 provides many tools that support database applications. Some of these tools are used more often
than others in data warehouse applications, and some are specifically designed to address special needs of data warehouses. The
tools listed here are commonly used in data warehouse applications, although most are also applicable to other database
applications. Many other tools not mentioned here can often be used to solve specific problems in data warehouse applications.

General descriptions of the tools commonly used in data warehouse applications are provided here with links to more detailed
information about the tools themselves. The uses of these tools in data warehouse applications are specifically discussed in other
topics in this section.

Relational Database

Data warehouses use relational database technology as the foundation for their design, construction, and maintenance. The core
component of SQL Server 2000 is a powerful and full-featured relational database engine. SQL Server 2000 provides many tools
for design and manipulation of relational databases, regardless of the applications for which the databases are used. Information
about the many relational database management tools is provided throughout the SQL Server 2000 documentation. For more
information, see SQL Server 2000 Features.

Data Transformation Services

Data warehouse applications require the transformation of data from many sources into a cohesive, consistent set of data
configured appropriately for use in data warehouse operations. SQL Server 2000 provides a powerful tool for such tasks, Data
Transformation Services (DTS). DTS can access data from a wide variety of sources and transform it using built-in and custom
transformation specifications. For more information, see DTS Overview.

Replication

Database replication is a powerful tool with many uses. Often used to distribute data and coordinate updates of distributed data
in online transaction processing systems (OLTP), replication can also be used in data warehouses. Some potential data warehouse
applications of replication are the distribution of data from a central data warehouse to data marts, and the updating of data
warehouse data from the data preparation area. For more information, see Replication Overview.

Analysis Services

Data warehouses collect and organize enterprise data to support organizational decision-making through analysis. SQL Server
2000 Analysis Services provides online analytical processing (OLAP) technology to organize massive amounts of data warehouse
data for rapid analysis by client tools, and sophisticated data mining technology to analyze and discover information within the
data warehouse data. For more information, see Analysis Services Overview.

English Query

English Query provides access to data warehouse data using English language queries such as "Show me the sales for stores in
California for 1996 through 1998." English Query is a development tool for creating client applications that transform English
language into the syntax of SQL to query relational databases or the syntax of Multidimensional Expressions (MDX) to query
OLAP cubes. You can develop English Query models specific to your data warehouse to reduce sophisticated and complex SQL or
MDX queries to simple English questions. For more information, see English Query Overview.

Meta Data Services

Many of the various tools in SQL Server 2000 store meta data in a centralized repository in the msdb system database. SQL
Server 2000 Meta Data Services provides a browser for viewing this meta data and application interfaces for use in developing
custom meta data applications. For more information, see Meta Data Services Overview.

Creating and Using Data Warehouses (SQL Server 2000)

Parts of a Data Warehouse
There are several physical and functional elements that make up a data warehouse. The topics in this section discuss these
elements.

Topic Description
Data Marts Describes data marts, which contain portions of data

warehouse data for specialized purposes.
Relational Databases Describes the roles and uses of relational databases in

data warehouses.
Data Sources Describes various sources of organizational data

typically used in data warehouses.
Data Preparation Area Describes the area where data extracted from data

sources is prepared for use in a data warehouse.
Presentation Services Describes the services that organize and analyze data

warehouse information and make it available to client
applications.

End-User Analysis Describes the use of client applications to access and
analyze information in a data warehouse.

Creating and Using Data Warehouses (SQL Server 2000)

Data Marts
In some data warehouse implementations, a data mart is a miniature data warehouse; in others, it is just one segment of the data
warehouse. Data marts are often used to provide information to functional segments of the organization. Typical examples are
data marts for the sales department, the inventory and shipping department, the finance department, upper level management,
and so on. Data marts can also be used to segment data warehouse data to reflect a geographically compartmentalized business
in which each region is relatively autonomous. For example, a large service organization may treat regional operating centers as
individual business units, each with its own data mart that contributes to the master data warehouse.

Data marts are sometimes designed as complete individual data warehouses and contribute to the overall organization as a
member of a distributed data warehouse. In other designs, data marts receive data from a master data warehouse through
periodic updates, in which case the data mart functionality is often limited to presentation services for clients.

Regardless of the functionality provided by data marts, they must be designed as components of the master data warehouse so
that data organization, format, and schemas are consistent throughout the data warehouse. Inconsistent table designs, update
mechanisms, or dimension hierarchies can prevent data from being reused throughout the data warehouse, and they can result in
inconsistent reports from the same data. For example, it is unlikely that summary reports produced from a finance department
data mart that organizes the sales force by management reporting structure will agree with summary reports produced from a
sales department data mart that organizes the same sales force by geographical region. It is not necessary to impose one view of
data on all data marts to achieve consistency; it is usually possible to design consistent schemas and data formats that permit rich
varieties of data views without sacrificing interoperability. For example, the use of a standard format and organization for time,
customer, and product data does not preclude data marts from presenting information in the diverse perspectives of inventory,
sales, or financial analysis.

Data marts should be designed from the perspective that they are components of the data warehouse regardless of their
individual functionality or construction. This provides consistency and usability of information throughout the organization.

Microsoft® SQL Server™ 2000 tools used for a data mart may include any of the tools used for data warehouses depending on
how the data mart is designed. If the data mart is created and maintained locally and participates in the organization's data
warehouse as an independent contributor, its creation and maintenance will involve all the operations of a data warehouse. If the
data mart is a local access point for data distributed from a central data warehouse, only a subset of the tools may be involved.

Distributing Data Warehouse Data to Data Marts

If data warehouse data is maintained in a central data warehouse, the data is prepared and loaded into the data warehouse at the
central site and then distributed to local data marts.

SQL Server Agent and Data Transformation Services (DTS) can be used to schedule and perform data transfers, including filtering
data appropriate to the data mart and updating the appropriate tables in the data mart. DTS packages can also be created and
scheduled to update OLAP cubes in the data mart after new data is received from the central data warehouse.

Some data warehouse distribution scenarios may also use replication to coordinate and maintain data mart data.

See Also

DTS Overview

SQLServerAgent Service

Replication Overview

Creating and Using Data Warehouses (SQL Server 2000)

Relational Databases
Relational databases are the underlying engines that provide power to data warehouses. Many of the characteristics and features
that have been developed and enhanced to make relational databases the workhorses of online transactional processing (OLTP)
systems are directly applicable to data warehouses.

Relational databases are used in data warehouse systems to stage, cleanse, and transform incoming data in the data preparation
database, contain and manage the massive quantities of data in the data warehouse database, and support data marts.

Data warehouses store, manage, and manipulate huge quantities of data, often on the order of hundreds of millions of rows of
historical information. The relational database must provide rapid data transfer and update, flexible and efficient indexing, and
sophisticated and effective query capabilities to organize and retrieve data warehouse data. Sophisticated locking mechanisms
and high multi-table transaction throughput may be more important in OLTP systems than in data warehouses, but such features
are often based on extremely efficient relational engine design, which is very important in data warehouse operations.

Microsoft® SQL Server™ 2000 provides an extremely powerful relational database for OLTP systems and data warehouse data
storage. It also includes many powerful features critical to data warehouses, such as Data Transformation Services (DTS),
replication management, SQL Server 2000 Analysis Services with its multidimensional online analytical processing (OLAP) and
data mining server and management support, SQL Server 2000 Meta Data Services, and English Query for natural language
querying of both relational and multidimensional data.

See Also

Creating and Maintaining Databases Overview

Optimizing Database Performance Overview

Creating and Using Data Warehouses (SQL Server 2000)

Data Sources
Data warehouses are intended to provide information to decision makers. To do so, data warehouses must gather and consolidate
data from many sources in the organization into a consistent set of data that accurately reflects the organization's business
operation and history.

Organizations often have multiple online transaction processing (OLTP) systems to capture daily business operations. These OLTP
systems are seldom designed at the same time as data warehouses. They may even be designed by different organizations, which
is often the case when organizations grow through acquisitions and mergers. Database schemas and data element identification
keys often vary from database to database. For example, the customer table in the OLTP of an acquired company may contain
many of the same customers and products as the acquiring company but use a different identification system. Data extracted
from these OLTP systems must be transformed into a common representation.

Legacy systems that have been in use for many years often contain denormalized data as well as unusual data identification
designs and limited query flexibility.

Data critical for business analysis may even reside on individual desktop computers in personal databases and spreadsheets,
especially in organizations that developed and grew without a central information technology group. Such data must also be
captured into the data warehouse.

Sources of data to be used in the data warehouse must be identified and techniques developed for extracting the data from them.
Data Transformation Services (DTS) provides powerful tools for extracting and transforming data from diverse data sources. For
more information, see DTS Overview and DTS Basics.

Creating and Using Data Warehouses (SQL Server 2000)

Data Preparation Area
Data to be used in the data warehouse must be extracted from the data sources, cleansed and formatted for consistency, and
transformed into the data warehouse schema. The data preparation area, sometimes called the data staging area, is a relational
database into which data is extracted from the data sources, transformed into common formats, checked for consistency and
referential integrity, and made ready for loading into the data warehouse database. The data preparation area and the data
warehouse database can be combined in some data warehouse implementations as long as the cleansing and transformation
operations do not interfere with the performance or operation of serving the end users of the data warehouse data. Performing
the preparation operations in source databases is rarely an option because of the diversity of data sources and the processing
load that data preparation can impose on online transaction processing systems. The relational database used for data
preparation, regardless of where it is performed, must have powerful data manipulation and transformation capabilities such as
those provided by Microsoft® SQL Server™ 2000.

After the initial load of a data warehouse, the data preparation area is used in an ongoing basis to prepare new data for updating
the data warehouse. In most data warehouse systems, these ongoing operations are performed on a periodic basis, often
scheduled to minimize performance impact on the operational data source systems.

The use of a data preparation area that is separated from the data sources and the data warehouse promotes effective data
warehouse management. Attempting to transform data in the data source systems can interfere with online transaction
processing (OLTP) performance, and many legacy systems do not have effective or easily implemented transformation
capabilities. Reconciliation of inconsistencies in data extracted from various sources can rarely be accomplished until the data is
collected in a common database, at which time data integrity errors can more easily be identified and rectified.

The data preparation area should isolate raw data from the data warehouse data to preserve the integrity of the data warehouse
and permit it to perform its primary function of preparing information for presentation and supporting access by clients. If the
data warehouse database is used for data preparation, care should be taken to avoid introducing errors into the data warehouse
data and to minimize the effect of data preparation processing on the performance of the data warehouse. Many data warehouse
database operations require sophisticated queries and the processing of large amounts of data; data cleansing can interfere with
these operations.

The data preparation area is a relational database that serves as a general work area for the data preparation operations. It will
contain tables that relate source data keys to surrogate keys used in the data warehouse, tables of transformation data, and many
temporary tables. It will also contain the processes and procedures, such as Data Transformation Services (DTS) packages, that
extract data from source data systems.

See Also

Creating and Maintaining Databases Overview

Accessing and Changing Relational Data Overview

Creating and Using Data Warehouses (SQL Server 2000)

Presentation Services
The purpose of a data warehouse is to expose business information for use by decision makers in the organization. A data
warehouse containing hundreds of millions of pieces of data is of no use to a decision maker without tools to assist in the analysis
and evaluation process. These analysis tools can vary from simple reports to sophisticated data mining algorithms. Application
programming interfaces (APIs) must also be available to support the development of custom applications that use data
warehouse information.

Predefined Reports

Simple predefined summary reports can provide managers with periodic or on-demand snapshots of the state of the business at
a point in time. More sophisticated reports can display trends of predetermined business variables. Such reports are useful and
have historically been produced from online transaction (OLTP) systems. To capture up-to-the-minute status, snapshot detail and
summary reports must continue to be produced from the data source systems. Periodic reports that are coordinated with data
warehouse updates can be shifted to the data warehouse to reduce loads on operational systems. Reports that use historical data
to evaluate trends should be accomplished in the data warehouse, which contains readily available historical data in appropriate
formats, and which is designed to process large quantities of data for summarization.

You can prepare predefined reports in your Microsoft® SQL Server™ 2000 data warehouse by developing client applications that
access either the relational database or multidimensional data cubes prepared by SQL Server 2000 Analysis Services. For more
information, see Building SQL Server Applications Overview.

Online Analytical Processing

Predefined reports serve their specific purposes well but are not suited to explorative analysis. Analysts want to discover trends
and anomalies in the data and explore various areas of the data to find the sources of these trends and anomalies. Online
analytical processing (OLAP) is a tool designed to facilitate this kind of analysis of massive amounts of data warehouse data.

This example illustrates explorative analysis and OLAP. A manager notices a larger than normal sales amount in a predefined
summary report and wants to find the cause. The cause may be external to the business, such as an unusual weather condition
that drove the sales of related merchandise, or internal, such as a sales promotion. The increased sales may be spread across a
geographic region or isolated to a single store, and they may have occurred over a short or relatively long period of time.

To explore data in the data warehouse, the manager asks questions of the data and then asks related or different questions based
on the answers. The manager may first ask for the sales data summarized by week for the quarter in question, then drill down to
the days of the week to find that the unusual sales amount is a one-time event. Having discovered the time of the event, the
manager then explores the sales by product and finds that a large sale of a specific product was made on that day. Based on these
answers, the manager then asks for the sales by region and drills down to find that a particular store filled a large order of a
specific product on a specific day.

OLAP technology has been developed to facilitate this kind of explorative analysis. Analysis Services includes an Analysis server
that uses OLAP technology to prepare large quantities of data warehouse data for exploration in real time. Multidimensional data
structures called cubes are predefined and created to organize and summarize data warehouse data in such a way that typical
explorative analysis questions can be answered with little or no querying of the relational database. In a typical Analysis Services
implementation in a data warehouse, the manager in the example could find the answer in less than a minute because the
Analysis server can answer each of the example questions in a second or two, even if there were millions of items in the data
being explored. For more information, see Analysis Services Overview.

Data Mining

In contrast to OLAP, which organizes data into predefined multidimensional structures to facilitate exploration, data mining
performs the explorative analysis and identifies interesting nuggets of information such as groupings of data for the analyst or
manager to examine. Data mining can also create decision trees that can be used to predict future data based on attributes of
existing data elements.

Analysis Services incorporates sophisticated data mining algorithms that can be used to analyze data in the relational database or
in OLAP cubes. The results of the data mining analysis can also be used with OLAP cubes to enhance explorative analysis. For
example, you can let data mining find groupings of customers according to their attributes and then use these groupings to create
an additional dimensional view of OLAP data cubes and explore the data from the perspective of these groupings. For more
information, see Analysis Services Overview.

Application Programming Interfaces

SQL Server 2000 provides a number of APIs that can be used to develop client applications tailored to your data warehouse
needs. Some APIs provide access to database and tool object models so that custom administrative applications can be
developed. Other APIs provide access to data through standard interfaces such as OLE DB for use by custom end-user
applications. For more information, see Building SQL Server Applications Overview.

Creating and Using Data Warehouses (SQL Server 2000)

End-User Analysis
Microsoft® SQL Server™ 2000 and its components provide an open environment for access to data warehouse data. This offers
opportunities for independent software vendors to develop sophisticated data analysis and presentation applications for end
users. Many third-party client applications that work with SQL Server 2000 and its components are available.

SQL Server 2000 also integrates well with Microsoft Office 2000 to provide end users with easy to use tools for analyzing data
warehouse data. Using components of Microsoft Office 2000 you can query SQL Server 2000 databases to incorporate data
warehouse data into Microsoft Excel spreadsheets, Microsoft Access databases, or other documents. Excel 2000 PivotTables® can
connect directly to SQL Server 2000 Analysis Services cubes to explore data, and users can create local cubes to take with them
when offline from the data warehouse.

Creating and Using Data Warehouses (SQL Server 2000)

Creating a Data Warehouse
Creating a data warehouse is a significant project with a number of steps. The topics in this section address these steps.

Topic Description
Designing a Data Warehouse Describes considerations specific to designing data

warehouses and the use of dimensional modeling.
Creating the Data Preparation
Area

Describes the creation of the relational database used
to prepare data for the data warehouse.

Creating the Data Warehouse
Database

Describes the creation of the relational database that
holds the data warehouse data.

Extracting Data from
Operational Systems

Describes the process of extracting data from
operational systems into the data preparation area.

Cleansing and Transforming
Data

Describes the process of cleansing and transforming
data in the data preparation area before loading the
data into the data warehouse.

Loading Data into the Data
Warehouse Database

Describes the process of loading data into the data
warehouse database from the data preparation area.

Preparing Presentation
Information

Describes the process of preparing data in the data
warehouse for presentation to users.

Distributing Data to Data Marts Describes the process of distributing data from the
data warehouse to data marts.

Creating and Using Data Warehouses (SQL Server 2000)

Designing a Data Warehouse
Designing a data warehouse is very different from designing an online transaction processing (OLTP) system. In contrast to an
OLTP system in which the purpose is to capture high rates of data changes and additions, the purpose of a data warehouse is to
organize large amounts of stable data for ease of analysis and retrieval. Because of these differing purposes, there are many
considerations in data warehouse design that differ from OLTP database design.

Data warehouse data must be organized to meet the purpose of the data warehouse, which is rapid access to information for
analysis and reporting. Dimensional modeling is used in the design of data warehouse databases to organize the data for
efficiency of queries that are intended to analyze and summarize large volumes of data. The data warehouse schema is almost
always very different and much simpler than the schema of an OLTP system designed using entity-relation modeling.

Verification tables used in OLTP systems to validate data entry transactions are not necessary in the data warehouse database.
This is because the data warehouse data has been cleansed and verified before it is posted to the data warehouse database, and
historical data is not expected to change frequently once it is in the data warehouse.

Transaction locking considerations, and transactions themselves, play very small roles in data warehouse databases. OLTP
systems specialize in large volumes of data update transactions. In contrast, data warehouses specialize in rapid retrieval of
information from stable data, and data updates consist primarily of periodic additions of new data.

Backup and restore strategies also differ in a data warehouse from those necessary for an OLTP system. Much of the data in a
data warehouse is unchanging history and does not need repetitive backup. Backup of new data can be accomplished at the time
of update, and in some situations it is feasible to do these backups from the data preparation database to minimize performance
impact on the data warehouse database. Restore policies for a data warehouse might also differ from those for an OLTP,
depending on how critical it is for an organization to have uninterrupted access to data warehouse data.

There are some considerations to take into account when designing the data warehouse if you are planning to use Microsoft®
SQL Server™ 2000 Analysis Services for OLAP and data mining. For more information, see Analysis Services Overview and OLAP
and Data Warehouses.

Data Mart Design

There are two approaches to creating a data warehouse system for an organization. A central data warehouse can be developed
and implemented first with data marts created later, or data marts can be implemented such that they make up the data
warehouse when their information is joined. In either approach, design must be centralized so that all of the organization's data
warehouse information is consistent and usable. Data marts that adhere to central design specifications produce reports that are
consistent even though the data resides in different places. For example, a sales data mart must use the same product table
arranged in the same way as the inventory data mart or summary information will be inconsistent between the two.

See Also

Using Dimensional Modeling

Fact Tables

Aggregation Tables

Dimension Tables

Indexes

Creating and Using Data Warehouses (SQL Server 2000)

Using Dimensional Modeling
Entity-relation modeling is often used to create a single complex model of all of the organization's processes. This approach has
proven effective in creating efficient online transaction processing (OLTP) systems. In contrast, dimensional modeling creates
individual models to address discrete business processes. For example, sales information may go to one model, inventory to
another, and customer accounts to yet another. Each model captures facts in a fact table and attributes of those facts in dimension
tables linked to the fact table. The schemas produced by these arrangements are called star or snowflake schemas, and have been
proven effective in data warehouse design.

Dimensional modeling organizes information into structures that often correspond to the way analysts want to query data
warehouse data. For example, the question, "What were the sales of food items in the northwest region in the third quarter of
1999?" represents the use of three dimensions (product, geography, time) to specify the information to be summarized.

A Data Warehouse Model

A simple dimensional model of sales information might include a fact table named Sales_Fact that contains one record for each
line item of each sale, capturing the quantity sold, the unit cost, and the sale value. Varieties of information about a sales record
might include the customer, the store where the sale occurred, the time and date of the sale, and the product sold. Each of these
categories of information is organized into its own dimension table. Customer information is placed in a Customer dimension
table, store information in a Store dimension table, time and date information in a Time dimension table, and product
information in a Product dimension table.

In a star schema, each dimension table has a single-part primary key that links to one part of the multipart primary key in the fact
table. In a snowflake schema, one or more dimension tables are decomposed into multiple tables with the subordinate dimension
tables joined to a primary dimension table instead of to the fact table. In most designs, star schemas are preferable to snowflake
schemas because they involve fewer joins for information retrieval and are easier to manage.

Creating and Using Data Warehouses (SQL Server 2000)

Fact Tables
Each data warehouse or data mart includes one or more fact tables. Central to a star or snowflake schema, a fact table captures
the data that measures the organization's business operations. A fact table might contain business sales events such as cash
register transactions or the contributions and expenditures of a nonprofit organization. Fact tables usually contain large numbers
of rows, sometimes in the hundreds of millions of records when they contain one or more years of history for a large
organization.

A key characteristic of a fact table is that it contains numerical data (facts) that can be summarized to provide information about
the history of the operation of the organization. Each fact table also includes a multipart index that contains as foreign keys the
primary keys of related dimension tables, which contain the attributes of the fact records. Fact tables should not contain
descriptive information or any data other than the numerical measurement fields and the index fields that relate the facts to
corresponding entries in the dimension tables.

In the FoodMart 2000 sample database provided with Microsoft® SQL Server™ 2000 Analysis Services, one fact table,
sales_fact_1998, contains the following columns.

Column Description
product_id Foreign key for dimension table product.
time_id Foreign key for dimension table time_by_day.
customer_id Foreign key for dimension table customer.
promotion_id Foreign key for dimension table promotion.
store_id Foreign key for dimension table store.
store_sales Currency column containing the value of the sale.
store_cost Currency column containing the cost to the store of the sale.
unit_sales Numeric column containing the quantity sold.

In this fact table, each entry represents the sale of a specific product on a specific day to a specific customer in accordance with a
specific promotion at a specific store. The business measurements captured are the value of the sale, the cost to the store, and the
quantity sold.

The most useful measures to include in a fact table are numbers that are additive. Additive measures allow summary information
to be obtained by adding various quantities of the measure, such as the sales of a specific item at a group of stores for a particular
time period. Nonadditive measures such as inventory quantity-on-hand values can also be used in fact tables, but different
summarization techniques must then be used.

Aggregation in Fact Tables

Aggregation is the process of calculating summary data from detail records. It is often tempting to reduce the size of fact tables by
aggregating data into summary records when the fact table is created. However, when data is summarized in the fact table,
detailed information is no longer directly available to the analyst. If detailed information is needed, the detail rows that were
summarized will have to be identified and located, possibly in the source system that provided the data. Fact table data should be
maintained at the finest granularity possible. Aggregating data in the fact table should only be done after considering the
consequences.

Mixing aggregated and detailed data in the fact table can cause issues and complications when using the data warehouse. For
example, a sales order often contains several line items and may contain a discount, tax, or shipping cost that is applied to the
order total instead of individual line items, yet the quantities and item identification are recorded at the line item level.
Summarization queries become more complex in this situation, and tools such as Analysis Services often require the creation of
special filters to deal with the mixture of granularity.

There are two approaches that can be used in this situation. One approach is to allocate the order level values to line items based
on value, quantity, or shipping weight. Another approach is to create two fact tables, one containing data at the line item level, the
other containing the order level information. The order identification key should be carried in the detail fact table so the two
tables can be related. The order table can then be used as a dimension table to the detail table, with the order-level values
considered as attributes of the order level in the dimension hierarchy.

Creating and Using Data Warehouses (SQL Server 2000)

Aggregation Tables
Aggregation tables are tables that contain summaries of fact table information. These tables are used to improve query
performance when SQL is used as the query mechanism. OLAP technology, such as that provided by Microsoft® SQL Server™
2000 Analysis Services, eliminates the need for such tables. Analysis Services creates OLAP cubes that contain preaggregated
summaries so that queries can be answered quickly, regardless of the level of summarization required to answer the query. It is
not necessary to create aggregation tables in the data warehouse when Analysis Services is used to provide presentation services.
Analysis Services creates aggregations as necessary and stores them in tables in the data warehouse database or in internal
multidimensional structures. For more information, see Analysis Services Overview.

Creating and Using Data Warehouses (SQL Server 2000)

Dimension Tables
Dimension tables contain attributes that describe fact records in the fact table. Some of these attributes provide descriptive
information; others are used to specify how fact table data should be summarized to provide useful information to the analyst.
Dimension tables contain hierarchies of attributes that aid in summarization. For example, a dimension containing product
information would often contain a hierarchy that separates products into categories such as food, drink, and nonconsumable
items, with each of these categories further subdivided a number of times until the individual product SKU is reached at the
lowest level.

Dimensional modeling produces dimension tables in which each table contains fact attributes that are independent of those in
other dimensions. For example, a customer dimension table contains data about customers, a product dimension table contains
information about products, and a store dimension table contains information about stores. Queries use attributes in dimensions
to specify a view into the fact information. For example, a query might use the product, store, and time dimensions to ask the
question "What was the cost of nonconsumable goods sold in the northeast region in 1999?" Subsequent queries might drill
down along one or more dimensions to examine more detailed data, such as "What was the cost of kitchen products in New York
City in the third quarter of 1999?" In these examples, the dimension tables are used to specify how a measure (cost) in the fact
table is to be summarized.

Columns in a dimension table can be used to categorize the information into hierarchical levels. For example, a dimension table
for stores in the FoodMart 2000 sample database includes the following columns that specify the hierarchy levels.

Column Description
store_country Specifies the country or region in which the store is located.

This is the country level of the hierarchy.
store_state Specifies the state in which the store is located. This is the state

level of the hierarchy.
store_city Specifies the city or province in which the store is located. This

is the city level of the hierarchy.
store_id Specifies the individual store. This is the lowest level of the

hierarchy. This field contains the primary key of the store
dimension table and is used to join the dimension table to the
fact table.

store_name Specifies the name of the store. The values in this column are
used to identify the store to users in a readable form.

Other columns not shown provide additional attribute information. For information about how dimension tables are used in
OLAP cubes built using Microsoft® SQL Server™ 2000 Analysis Services, see Dimensions.

Varieties of Dimension Tables

The preceding example illustrates a dimension table that contains a balanced hierarchy that is separated into regular levels. Other
types of dimension tables contain less balanced information, such as part-breakdown structures or organization charts in which
the hierarchy is represented by parent-child relationships instead of an array of levels.

Surrogate Keys

It is important that primary keys of dimension tables remain stable. It is strongly recommended that surrogate keys be created
and used for primary keys for all dimension tables. Surrogate keys are keys that are maintained within the data warehouse
instead of keys taken from source data systems. There are several reasons for the use of surrogate keys:

Data tables in various source systems may use different keys for the same entity.

Legacy systems that provide historical data might have used a different numbering system than a current online transaction
processing system. A surrogate key uniquely identifies each entity in the dimension table regardless of its source key. A
separate field can be used to contain the key used in the source system.

Systems developed independently in company divisions may not use the same keys, or they may use keys that conflict with
data in the systems of other divisions. This situation may not cause problems when each division independently reports
summary data, but it cannot be permitted in the data warehouse where data is consolidated.

Keys may change or be reused in the source data systems.

This situation is usually less likely than others, but some systems have been known to reuse keys belonging to obsolete
data. However, the key may still be in use in historical data in the data warehouse, and the same key cannot be used to
identify different entities.

Changes in organizational structures may move keys in the hierarchy.

This can be a common situation. For example, if a salesperson is transferred from one region to another, the company may
prefer to track two things: sales data for the salesperson with the person's original region for data prior to the transfer date,
and sales data for the salesperson in the person's new region after the transfer date. To represent this organization of data,
the salesperson's record must exist in two places in the sales force dimension table, which is not possible if the
salesperson's company employee identification number is used as the primary key for the dimension table. A surrogate key
allows the same salesperson to participate in different locations in the dimension hierarchy.

In this case, the salesperson will be represented twice in the dimension table with two different surrogate keys. These
surrogate keys are used to join the salesperson's records to the sets of facts appropriate to the various locations in the
hierarchy occupied by the salesperson.

The employee's identification number should be carried in a separate column in the table so information about the
employee can be reviewed or summarized regardless of the number of times the employee's record appears in the
dimension table.

Dimensions that exhibit this type of change are called slowly changing dimensions.

Another example of a situation that causes this type of change is the creation of a new version of a product, such as a
reduced-fat version of a food item. The item will receive a new SKU or Uniform Product Code (UPC), but may retain most of
the same attributes of the original item, which is still manufactured and sold. The appropriate use of surrogate keys can
allow the two versions of the item to be summarized together or separately.

The implementation and management of surrogate keys is the responsibility of the data warehouse. OLTP systems are rarely
affected by these situations, and the purpose of these keys is to accurately track history in the data warehouse. Surrogate keys are
maintained in the data preparation area during the data transformation process.

Referential Integrity

Referential integrity must be maintained between all dimension tables and the fact table. Each fact record contains foreign keys
that relate to primary keys in the dimension tables. Every fact record must have a related record in every dimension table used
with that fact table. Missing records in a dimension table can cause facts to be ignored when the dimension table is joined to the
fact table to respond to queries or for the population of OLAP cubes. Queries can return inconsistent results if records are missing
in one or more dimension tables. Queries that join a defective dimension table to the fact table will exclude facts whereas queries
that do not join the defective dimension table will include those facts.

Shared Dimensions

A data warehouse must provide consistent information for similar queries. One method to maintain consistency is to create
dimension tables that are shared and used by all components and data marts in the data warehouse. Candidates for shared
dimensions include customers, time, products, and geographical dimensions such as the store dimension in the example earlier in
this topic. For example, requiring that all OLAP cubes and data marts use the same shared time dimension enforces consistency of
results summarized by time.

Creating and Using Data Warehouses (SQL Server 2000)

Indexes
Indexes play an important role in data warehouse performance, as they do in any relational database. Every dimension table must
be indexed on its primary key. Indexes on other columns such as those that identify levels in the hierarchical structure can also be
useful in the performance of some specialized queries.

The fact table must be indexed on the composite primary key made up of the foreign keys of the dimension tables.

These are the primary indexes needed for most data warehouse applications because of the simplicity of star and snowflake
schemas. Special query and reporting requirements may indicate the need for additional indexes.

See Also

Creating and Maintaining Databases Overview

Creating and Using Data Warehouses (SQL Server 2000)

Creating the Data Preparation Area
You will need to create tables and other database objects to support the data extraction, cleansing, and transformation operations
required to prepare the data for loading into the data warehouse. You can create a separate database for the data preparation
area, or you can create these items in the data warehouse database.

The data preparation area should include tables to contain the incoming data, tables to aid in implementing surrogate keys, and
tables to hold transformed data. Other tables may be required for reconciling data from diverse data sources; such tables may
contain cross-reference information to identify common entities such as customer records from systems that use different keys. A
variety of temporary tables may also be needed for intermediate transformations.

The specific design of the data preparation area will depend on the diversity of data sources, the degree of transformation
necessary to organize the data for data warehouse loading, and the consistency of the incoming data.

Data that is ready to load into the data warehouse should be in tables that have schemas identical to the target tables in the data
warehouse. If not, the data should be ready to load into the data warehouse tables through a transformation that can be
accomplished in a single step as it is loaded.

The data preparation area should also contain the processes that are used to extract the data from the data sources, the processes
that transform and cleanse the data, and the processes that load the data to the data warehouse. These processes may be in the
form of SQL queries, stored procedures, Data Transformation Services (DTS) packages, or documents of manual instructions. As
in the development of any database system, the objective is to automate as much of the process as possible and to manage and
maintain the automated tools developed. Storing and maintaining the transformation processes in the data preparation area
permits the use of standard database backup and restore mechanisms to preserve them.

Regardless of whether a separate database is used, creating the data preparation area involves creating tables, views, indexes, DTS
packages, and other elements common to relational databases.

See Also

Data Preparation Area

Creating and Maintaining Databases Overview

Creating and Using Data Warehouses (SQL Server 2000)

Creating the Data Warehouse Database
You can create the data warehouse database after the data warehouse schema has been designed. You will need to create tables
for facts and dimensions, and establish indexes on key fields in all tables.

The data warehouse database schema is often quite simple compared to those of OLTP databases or the data preparation area. A
star schema consists of a single fact table and a number of dimension tables. A snowflake schema adds secondary dimension
tables. More complex data warehouses may contain multiple fact tables and a number of dimension tables, some of which are
common to all fact tables and others that are specific to a single fact table.

For example, a data warehouse may contain both sales information and inventory information. Because sales data and inventory
data are different in nature, they should be stored in different fact tables. Some dimension tables, such as a product dimension
table, might be common to both sales and inventory, whereas others, such as sales force or warehouse location, might be specific
to individual fact tables.

The FoodMart 2000 sample database provided with Microsoft® SQL Server™ 2000 Analysis Services illustrates a data
warehouse that contains both inventory and sales data. For more information, see Analysis Services Overview.

See Also

Designing a Data Warehouse

Creating and Maintaining Databases Overview

Creating and Using Data Warehouses (SQL Server 2000)

Extracting Data from Operational Systems
Data that will be used in a data warehouse must be extracted from the operational systems that contain the source data. Data is
initially extracted during the data warehouse creation, and ongoing periodic extractions occur during updates of the data
warehouse. Data extraction can be a simple operation, if the source data resides in a single relational database, or a very complex
operation, if the source data resides in multiple heterogeneous operational systems. The goal of the data extraction process is to
bring all source data into a common, consistent format so it can be made ready for loading into the data warehouse.

It is better if data in the source operational systems does not contain validation errors. For example, purchase records for which
there are no corresponding customer records to identify the purchasers are clearly errors in the source data, and you should
correct them in the source operational system before the data is extracted for loading into the data warehouse. You may be able
to implement error checking in the source operational system so such errors can be detected before extracting data for the data
warehouse. If such errors are frequent, you may need to have the operational system examined and modified to reduce such
errors because such errors may affect the organization's business as well as its data warehouse.

You may not be able to identify validation errors until the data has been extracted from the operational systems. This situation can
occur when data is extracted from multiple data sources. For example, reconciling data extracted from separate sales tracking,
shipping, and billing systems may uncover discrepancies that must be addressed in one or more of the source systems.

You may also identify inconsistencies other than errors in data after it has been extracted. For example, different data sources may
use different coding systems for the same kind of data. You can often use translation tables to reconcile these differences during
the extraction operation or later during transformation operations. For example, a legacy system may code state or province
names using a three-character code, whereas another system may use a two-character code. The data from one or both of these
systems must be translated into a single set of codes before loading the data into the data warehouse.

In other cases, you may discover inconsistencies if source systems permit free-form entry of text information. Such data is often
internally inconsistent because different data-entry personnel may enter the same data in different ways. Inconsistent
representations of the same data must be reconciled if such data is to be used for analysis. For example, in a data source that
permits free-form text entry for the state or province portion of an address, the state of Florida may be entered as FL, Fla, Florida,
or even Flor. It may be difficult to modify legacy source systems to implement a standard coding validation. Manual
transformation adjustments may be necessary to reconcile such differences if the contributing source systems cannot be
modified.

You can use the powerful transformation capabilities of Data Transformation Services (DTS) in Microsoft® SQL Server™ 2000
during the extraction process to reconcile many formatting, data encoding, and other inconsistencies. Other transformations must
be accomplished after the data has been extracted from the source systems.

Some of the tools available in SQL Server 2000 for extracting data are:

Transact-SQL

Distributed queries

DTS

Command line applications

bcp utility

BULK INSERT statement for loading from text files

ActiveX scripts

In some data warehouse implementations, you may also find that you can use Replication to copy data from source systems to
the data preparation area.

See Also

Accessing and Changing Relational Data Overview

Importing and Exporting Data

DTS Overview

Replication Overview

Creating and Using Data Warehouses (SQL Server 2000)

Cleansing and Transforming Data
You can accomplish many data transformations during the process of extracting data from the source systems. However, there
are often additional tasks to complete before you can load data into the data warehouse. For example, you must reconcile
inconsistent data from heterogeneous data sources after extraction and complete other formatting and cleansing tasks. You
should also wait until after the extraction process to incorporate surrogate keys. Some transformations that you might technically
accomplish during the extraction process may interfere with the performance or operation of the online source system; you
should defer these tasks until after extraction is complete.

After extraction from the source systems, the data should reside in a data preparation area where the cleansing and
transformations can be completed before the data is loaded into the data warehouse. The data preparation area can be a separate
database or separate tables in the data warehouse database. During the cleansing and transformation phase, you can execute
procedures to validate and verify data consistency, transform data into common formats, and incorporate surrogate keys.

You may need to perform manual operations to reconcile data inconsistencies or to resolve ambiguous text field entries. Each
time a manual operation is required, you should try to identify a way to eliminate the manual step in future data transformation
operations. In some cases, you may be able to modify the source data systems to eliminate the cause at the source. In other cases,
you may be able to establish an automated process that will set aside unresolved data for later manual exception processing so
the bulk of the data can be loaded into the data warehouse without delay for manual intervention.

Some typical data transformations include:

Combining multiple name fields into one field.

Breaking down date fields into separate year, month, and day fields.

Mapping data from one representation to another, such as TRUE to 1 and FALSE to 0 or postal codes from numeric to text.

Mapping data from multiple representations to a single representation, such as a common format for telephone numbers,
or different credit rating codes to a common "Good, Average, Poor" representation.

Creating and applying surrogate keys for dimension table records.

Some of the tools available in Microsoft® SQL Server™ 2000 for transforming data are:

Transact-SQL queries

DTS packages

Command line applications

ActiveX scripts

See Also

Accessing and Changing Relational Data Overview

DTS Overview

Automating Administrative Tasks

Creating and Using Data Warehouses (SQL Server 2000)

Loading Data into the Data Warehouse Database
After the data has been cleansed and transformed into a structure consistent with the data warehouse requirements, data is ready
for loading into the data warehouse. You may make some final transformation during the loading operation, although you should
complete any transformations that could identify inconsistencies before the final loading operation.

The initial load of the data warehouse consists of populating the tables in the data warehouse schema and then verifying that the
data is ready for use. You can use various methods to load the data warehouse tables, such as:

Transact-SQL

DTS

bcp utility

When you load data into the data warehouse, you are populating the tables that will be used by the presentation applications that
make the data available to users. Loading data often involves the transfer of large amounts of data from source operational
systems, a data preparation area database, or preparation area tables in the data warehouse database. Such operations can
impose significant processing loads on the databases involved and should be accomplished during a period of relatively low
system use.

After the data has been loaded into the data warehouse database, verify the referential integrity between dimension and fact
tables to ensure that all records relate to appropriate records in other tables. You should verify that every record in a fact table
relates to a record in each dimension table that will be used with that fact table. For example, if a fact table of product sales is to
be used with dimension tables for customers, products, time, and stores, then for each sale record in the fact table there must be a
record in each dimension table that relates to the sale record through correspondence of primary keys. This verification ensures
that for every sale, the customer who made the purchase, the product sold, and the time and location of the sale are identified.

Data integrity in the reverse order is not necessary. That is, it is not necessary for every record in a dimension table to relate to a
record in the fact table. For example, dimensions in a sales data warehouse typically are shared dimensions, which contain the full
sets of customers, products, stores, and so on. A fact table may contain sales records for a specific time period during which some
customers did not make any purchases and some products were not sold.

Most queries that retrieve data from the data warehouse use inner joins between the fact and dimension tables. Such queries will
ignore facts for which at least one of the joined dimension tables does not contain a matching record, causing retrieved data to be
inaccurate and possibly inconsistent among different queries. For example, if a customer record is missing for a particular sales
fact record, any query that includes the customer dimension table will ignore the sales fact record, but any query that does not
include the customer dimension table will contain the sales fact record. A query that computes the sum of sale amounts by
customer will yield a different grand total than a query that computes the sum of sale amounts by product, because the first query
ignores the sale for which there is no customer and the second query includes it.

If you use a dimension table containing data that does not apply to all facts, you must include a record in the dimension table that
can be used to relate to the remaining facts. For example, in a table of sales promotion records, you can include a generic record
that you can use to relate to any sales fact for which there is no applicable sales promotion. Without this generic promotion
record any query that joins the promotion table to the sales fact table will not include sales for which there is no corresponding
promotion.

To verify referential integrity in a star schema you can use a simple SQL query that counts the rows returned when all appropriate
dimension tables are joined to the fact table using inner joins. The number of rows returned by this query should match the
number of rows in the fact table. If you are using a snowflake schema, you should also verify referential integrity between
dimension tables and the subordinate tables to which they are linked to verify that no records in any table are eliminated by inner
joins to subordinate tables. You should perform this verification by starting with the tables at the lowest level of the snowflake
dimension and joining them to the tables at the next higher level, continuing until the primary dimension table has been verified.
This is an important step because there can be situations in which the dimension may verify correctly against the current fact
table, even though some dimension records are missing; these records will be needed when new facts are added.

See Also

Accessing and Changing Relational Data Overview

Creating and Using Data Warehouses (SQL Server 2000)

Preparing Presentation Information
Because access to data warehouse data is often provided through client applications, there are often tasks that must be performed
in the data warehouse to prepare the information for presentation to end users. Part of the data warehouse design effort is to
identify any special data configuration requirements necessary for these applications and often to configure the applications
themselves as described in the application documentation. For more information, see Using a Data Warehouse.

Creating and Using Data Warehouses (SQL Server 2000)

Distributing Data to Data Marts
Your data warehouse design may include data marts for specific business areas such as sales, warehouse, and financial
departments. Each such data mart contains a subset of the data warehouse data, but it should use common shared dimensions to
prevent inconsistencies in analysis and reporting. For example, a Products dimension table may be used in all data marts, but a
financial business planning dimension table may only be appropriate for financial data marts. Other data marts may contain
region-specific data to augment region-specific operational database systems.

The initial load of a data mart from the data warehouse copies all applicable shared dimension tables and the fact data
appropriate to the data mart. Special dimension tables unique to a data mart may be created locally if they are to be used only
within the department or group served by the data mart; dimensions that are used to create reports for comparison to reports
from other data marts should be shared dimensions that are administered centrally at the data warehouse and loaded from data
warehouse tables. You can use many or all of the same tools to load data marts that you use to load the data warehouse database.

See Also

Updating Data Marts

Creating and Using Data Warehouses (SQL Server 2000)

Using a Data Warehouse
The traditional role of a data warehouse is to collect and organize historical business data so it can be analyzed to assist
management in making business decisions. Until recently, access to data warehouses was limited to database experts who could
create the sophisticated queries necessary to retrieve, summarize, and format information for use by analysts and executive
decision makers. As data warehouses become more common and businesses involve lower levels of management in the decision-
making process, the need has become greater for direct end-user access to data warehouse data by people with minimal
database expertise.

The data warehouse must accommodate the requirements of a continually increasing variety of applications that access data
warehouse data. Most applications must be set up and initially configured before they can work effectively with a data warehouse,
and this work is often performed or managed by the data warehouse administrator. In some cases the data warehouse must
incorporate modifications in order to meet the requirements of a new application.

In addition to end-user applications for data access, other applications continue to be developed that execute within the data
warehouse environment to configure and analyze data in new and powerful ways. Such applications require administration and
maintenance by the data warehouse administrator.

New uses for data warehouse technology are continually being developed. Some organizations now collect, analyze, and package
data for sale to customers. Real-time data warehouses, once a term with no meaning, are now emerging for use in online
commerce.

The topics in this section describe various technologies that can be used with data warehouses.

Topic Description
SQL Queries Describes the uses of SQL queries in a data warehouse.
OLAP and Data Mining Describes online analytical processing (OLAP) and data

mining technologies used with data warehouses.
English Query Describes the component of Microsoft® SQL Server™

2000 that enables querying a data warehouse using
English words and phrases.

Microsoft Office 2000 Describes how Microsoft Office 2000 components can
use data in a data warehouse.

Web Access and Reporting Describes access to data warehouse data and reports
over the Web.

Offline OLAP Cubes Describes the use of offline cube for data analysis when
users are not connected to SQL Server 2000 Analysis
Services.

Third-Party Applications Describes the use of third-party applications with data
warehouses.

Custom Applications Describes the availability of application programming
interfaces (APIs) that can be used to create custom
applications that administer or use data warehouses.

Creating and Using Data Warehouses (SQL Server 2000)

SQL Queries
End users seldom access data warehouse data directly using Structured Query Language (SQL) queries. Analytical SQL queries
can be quite complex, requiring database expertise to create correctly. The volume of data in a data warehouse is often so large
that sophisticated SQL techniques are needed to achieve useful performance. A SQL query that joins three or four dimension
tables to a fact table containing millions of rows and uses aggregate functions such as SUM to summarize and group the results
can impose a significant load on any relational database and often yields performance that is not acceptable for online analysis.

SQL queries are often created by database experts for use with predefined reports that are executed on a regular basis during
periods of low activity. Auxiliary summarization tables can be created and used to optimize the performance of these queries;
such tables must be initially designed and populated when the data warehouse is loaded, and then updated every time the data
warehouse is updated.

The use of SQL queries is one of the oldest methods of accessing data warehouse data. There are many books and training
courses available that offer very sophisticated techniques for configuring data warehouse information and designing effective
SQL queries that address complex analytical tasks.

Microsoft® SQL Server™ 2000 provides sophisticated query processing and optimization techniques and a powerful language,
Transact-SQL, to address the needs of the data warehouse implementation. For more information, see Accessing and Changing
Relational Data Overview.

Creating and Using Data Warehouses (SQL Server 2000)

OLAP and Data Mining
Online analytical processing (OLAP) is a technology that uses multidimensional data representations, called cubes, to provide
rapid access to data warehouse data. Cubes model data in the dimension and fact tables in the data warehouse and provide
sophisticated query and analysis capabilities to client applications.

Data mining uses sophisticated algorithms to analyze data and create models that represent information about the data. Data
mining models can be used to predict characteristics of new data or to identify groups of data entities that have similar
characteristics.

Microsoft® SQL Server™ 2000 Analysis Services provides a powerful server and administrative tools to create and manage OLAP
data and serve online client applications. Analysis Services also incorporates data mining algorithms that can analyze relational
data in the data warehouse database and multidimensional data in cubes.

Cubes and data mining models must be designed, configured, and processed before they can be used by client applications, and
they usually require updating when the data warehouse data is updated. For more information, see Analysis Services Overview.

Creating and Using Data Warehouses (SQL Server 2000)

English Query
English Query provides a system for developing client applications that enable end users to access data using English words and
phrases. English Query can be used to access data in the data warehouse database or in cubes created by Microsoft® SQL
Server™ 2000 Analysis Services.

To develop an English Query application, a model must first be created that relates database tables, fields, cubes, and data to
English words and phrases. An English Query application can then be generated and incorporated into custom Web or client
applications and made available to end users. For more information, see English Query Overview.

Creating and Using Data Warehouses (SQL Server 2000)

Microsoft Office 2000
Data warehouse data in a Microsoft® SQL Server™ 2000 database can be accessed by Microsoft Office components such as
Microsoft Excel or Microsoft Access. However, the volume of data in most data warehouses often dictates that special queries or
data tables be created and maintained to support the use of these components by end users. Such special queries and tables must
be created and maintained as part of the data warehouse.

One exception is the integration of Excel PivotTables® with SQL Server 2000 Analysis Services. When Analysis Services is used to
create and manage OLAP data, end users can easily connect to cubes through an Analysis server and analyze data online or create
cubes on their local computer for offline use. For more information, see the Microsoft Office 2000 documentation.

Creating and Using Data Warehouses (SQL Server 2000)

Web Access and Reporting
Web applications that provide end-user access to data warehouse data are popular because the client can use a standard Web
browser instead of an application that must be installed, configured, and maintained. Initially limited to simple viewing of data
presented on static Web pages, current technology now enables the creation of sophisticated interactive applications that allow
users to query and update data in data warehouses and cubes.

Microsoft® SQL Server™ 2000 and its components, such as Analysis Services and English Query, offer a number of ways to query
and update data over the Web when used with Microsoft Internet Information Services (IIS). SQL Server 2000 introduces support
for XML functionality for storing, retrieving, and updating information using XML, XML-Data Reduced (XDR) schemas, and XPath
queries over HTTP connections. The PivotTable® Service component of Analysis Services can be used with IIS to provide Web
access to cubes using Multidimensional Expressions (MDX) syntax for querying. English Query applications can be embedded into
Active Server Pages (ASP) or COM-based applications to support Web queries in English.

Web data access applications are developed using APIs provided by SQL Server 2000 and its components. Web applications can
be as simple as displaying a predefined report or executing predefined queries against the data warehouse database or OLAP
cubes, or they can be as complex as any directly connected client-server application. The impact of a Web application on data
warehouse design or maintenance is determined by the application.

See Also

XML and Internet Support Overview

PivotTable Service

Developing and Deploying English Query Applications

Creating and Using Data Warehouses (SQL Server 2000)

Offline OLAP Cubes
Cubes used in online analytical processing (OLAP) provide a multidimensional view of data warehouse data that end users find
easy to use and explore as they search for answers to business questions. Microsoft® SQL Server™ 2000 Analysis Services
provides the capability through its PivotTable® Service component for client applications to create subsets of data warehouse
cubes and save them locally for offline analysis. End-user applications can also use PivotTable Service in an offline mode to create
offline cubes directly from relational databases.

Third-party applications and custom applications can use PivotTable Service to create and manage offline cubes. One end-user
application that provides offline cube support is Microsoft Excel 2000. For more information, see the Excel documentation.

Offline cubes are created and managed by end-user applications and generally have little impact on data warehouse or cube
design. Maintenance of offline cube data is the responsibility of the end user, who can refresh data from online cubes or update
offline cubes created from local databases as necessary. Offline cubes do not interfere with normal data warehouse and cube
management and maintenance.

See Also

PivotTable Service

Creating and Using Data Warehouses (SQL Server 2000)

Third-Party Applications
Many applications have been commercially developed for use with data warehouses and OLAP cubes. Each application has
unique requirements that may or may not require design changes to a data warehouse for effective operation of the application.
Some applications operate on the data warehouse to provide additional analysis, management, or maintenance capabilities.
Others are client applications that provide analysis capabilities for end users. Commercial applications usually require setup and
configuration before they can use data warehouse data effectively. Applications may also need configuration adjustments in order
to accommodate changes in the data warehouse and updates to data.

Creating and Using Data Warehouses (SQL Server 2000)

Custom Applications
Microsoft® SQL Server™ 2000 and its components provide a rich set of application programming interfaces (APIs) that can be
used to develop custom applications to enhance and automate data warehouse administration, or to create client applications
tailored to your business needs. For more information, see Building SQL Server Applications Overview.

Creating and Using Data Warehouses (SQL Server 2000)

Maintaining a Data Warehouse
Data warehouses collect and organize historical business data so it can be analyzed to assist management in making business
decisions. To achieve this purpose, the data warehouse is created and initially loaded with the existing historical business data. It is
then periodically updated with new data from operational data systems. Much of the effort in data warehouse maintenance is
involved with updating the data in the data warehouse, adjusting data presentation applications to incorporate new data, and
updating data marts.

Topics in this section describe common tasks performed to maintain data warehouses.

Topic Description
Updating Data Warehouse Data Describes the process and tasks involved in

updating a data warehouse.
Administering a Data Warehouse Describes common data warehouse

administration tasks.
Tuning Data Warehouse Performance Describes ways to improve data warehouse

performance.

Creating and Using Data Warehouses (SQL Server 2000)

Updating Data Warehouse Data
Updating data warehouse data includes periodically extracting data from operational systems, cleansing and transforming the
data, and loading the new data into the data warehouse. Each data update also includes tasks that must be accomplished to
synchronize cubes if Microsoft® SQL Server™ 2000 Analysis Services is used for online analytical processing (OLAP), and to
update any data marts that are part of the data warehouse.

The process of extracting, cleansing, and transforming data for a periodic update is essentially the same as the process used in the
initial loading of the data warehouse, although the update process is often much less complex and more automated than the
initial load process. Procedures and automated tasks developed during the initial load process can reduce the amount of manual
effort required during updates. Corrections to source operational systems identified and implemented during the initial load also
reduce the number of inconsistencies and errors that must be addressed during updates. However, it is often the case that manual
intervention is required during updates to ensure the data is ready for loading into the data warehouse.

One difference between the initial data load and data updates is that verifying the referential integrity should be performed
incrementally on update data before it is loaded into the data warehouse and made available to users. Updates often include
additions and changes to dimension tables as well as the addition of rows to the fact tables. The new and changed data should be
checked for internal consistency as well as verified against existing data in the data warehouse before it is loaded into the data
warehouse.

After the update data has been made ready for loading into the data warehouse, you can use Transact-SQL, Data Transformation
Services (DTS), or the bcp utility to update the data warehouse tables. Depending on the design and implementation of the
presentation applications that provide access to data warehouse data for end users, you may need to take the data warehouse
offline during the update to prevent inconsistencies in query results.

See Also

Extracting Data from Operational Systems

Cleansing and Transforming Data

Loading Data into the Data Warehouse Database

Scheduling Data Updates

Synchronizing OLAP Cubes

Updating Data Marts

Creating and Using Data Warehouses (SQL Server 2000)

Scheduling Data Updates
Data warehouses used for the analysis of historical business data are better served by periodic updates than they are by online
data updates. Constantly changing data can interfere with the analysis process, which requires time and iterative querying to
refine and verify results. The frequency of data warehouse updates depends on the needs of the organization and the uses of the
data warehouse. Typical update periods may be monthly, weekly, or daily. There are several items to consider when scheduling
data warehouse updates.

Although the amount of data involved in a data warehouse update is usually much less than the amount of data initially loaded,
the process of extracting, cleansing and transforming, and loading the data can still adversely affect the operational systems
involved. When you load data into the data warehouse, you are populating the tables that will be used by the presentation
applications that make the data available to users. Loading data often involves the transfer of large amounts of data from source
operational systems, a data preparation area database, or preparation area tables in the data warehouse database. Such
operations can impose significant processing loads on the databases involved and should be accomplished during periods of
relatively low system use.

You must also coordinate data warehouse update operations with the operation of the presentation services that make the data
available to users. If you are loading large amounts of data, you may want to perform bulk loads without using transactions or
logging. In this case, you may need to take the data warehouse offline during the loading operation to prevent users from
accessing data that could be inconsistent while it is being loaded to various tables.

Presentation applications that provide access to the data warehouse by end users may require adjustment to accommodate new
data. For example, Microsoft® SQL Server™ 2000 Analysis Services cubes often require updating or reprocessing to incorporate
new data in the data warehouse. For more information, see Synchronizing OLAP Cubes.

Creating and Using Data Warehouses (SQL Server 2000)

Synchronizing OLAP Cubes
If you are using Microsoft® SQL Server™ 2000 Analysis Services with your data warehouse to analyze and prepare OLAP data for
presentation to users, you must be familiar with the effects of data changes on Analysis Services cubes before updating data in
the data warehouse. In some situations, users can receive inconsistent results after data warehouse data changes until summary
information is updated to incorporate new detail data.

The effects of changes in underlying data on cubes vary with the types of cubes in use. For example, multidimensional OLAP
(MOLAP) cubes are unaffected by changes in underlying data until the cubes are reprocessed. Depending on how they are
defined, relational OLAP (ROLAP) cubes and hybrid OLAP (HOLAP) cubes may be immediately affected and require updating or
reprocessing to regain consistency. Real-time cubes are designed to incorporate new data warehouse data immediately. For more
information, see Analysis Services Overview and Maintaining OLAP Data.

Creating and Using Data Warehouses (SQL Server 2000)

Updating Data Marts
In some data warehouse implementations, data marts receive their data from the master data warehouse. In other
implementations the data marts are updated locally and contribute data to the data warehouse database. Moving updated data to
or from data marts can be straightforward if the data marts are designed to be consistent with the master data warehouse. The
use of standardized schemas, shared dimensions, and common fact table formats greatly contribute to the ease of data mart
maintenance.

If the data marts receive data updates from a master data warehouse, you should be able to design automated tasks that filter the
data warehouse update data and post the appropriate data subset to each data mart during the update of the data warehouse
database. Presentation applications used by the data mart may need to be adjusted to accommodate the new data.

If a data mart collects data locally and contributes data to the master data warehouse, you may need to treat the data mart as if it
were an operational data source and bring the data into a preparation area for cleansing and verification against the data
warehouse before posting it to the data warehouse. If the data mart is designed and managed as an integral part of the data
warehouse, the verification process may not be necessary and the data can be loaded directly from the data mart into the data
warehouse database. In either case, you may need to adjust presentation applications to accommodate the new data.

You can use Transact-SQL, Data Transformation Services (DTS), the bcp utility, or custom applications to update the data mart or
data warehouse tables. You may also be able to use replication to perform data mart updates. For more information, see
Replication Overview.

Creating and Using Data Warehouses (SQL Server 2000)

Administering a Data Warehouse
Administering a data warehouse is both similar to and different from administering an online transaction processing (OLTP)
system. It is similar in that data warehouse data is stored and maintained in a relational database, so the tools used to administer
relational databases can be used with data warehouses. It is different in that OLTP systems are generally characterized by high-
volume transaction updates to volatile data, whereas data warehouses are generally characterized by massive amounts of stable
historical data. These differences call for different approaches to data warehouse administrative tasks such as backing up data and
automating recurring tasks.

See Also

Administering SQL Server Overview

Administering Analysis Services

Backing Up Data Warehouse Data

Automating Data Warehouse Tasks

Creating and Using Data Warehouses (SQL Server 2000)

Backing Up Data Warehouse Data
An online transaction processing (OLTP) system captures incoming data and updates a database. To ensure against loss of data,
the system logs transactions as they are performed, and administrators develop backup strategies that include periodic full and
incremental backups of database. These strategies are designed to prevent loss of data, to minimize interference with operational
transaction processing, and to provide for rapid recovery from system malfunctions.

In contrast, a data warehouse stores massive amounts of stable historical data that is updated on a managed periodic schedule.
For data warehouses, you should design backup strategies to minimize full backups and to use incremental backups for data
updates.

Recovery time constraints are often more flexible and less restrictive for data warehouse malfunctions than for OLTP
malfunctions. More permissive recovery time constraints usually permit full data warehouse backups to be made much less
frequently than are required for OLTP systems. For example, a table of sales facts may contain hundreds of millions of rows that
reflect sales for ten years of history. It is quite unlikely that changes will be made to sales data after the business has performed a
year-end closing process.

Repeated backups of data that has not changed are unnecessary, and backup strategies should take this into account. Depending
on recovery time constraints and data volume, a strategy may be created that backs up data added during data warehouse
updates using incremental backups, and then creates a backup of only the data added during the current year after year-end
closing. To recover from a complete failure of the data warehouse database would require loading multiple backups, one for each
year prior to the current year, then incremental backups for the current year updates.

Microsoft® SQL Server™ 2000 Analysis Services maintains OLAP data in special-purpose Analysis server databases, which can be
archived and restored separately from data warehouse database backups.

See Also

Backing Up and Restoring Databases

Archiving and Restoring Databases

Creating and Using Data Warehouses (SQL Server 2000)

Automating Data Warehouse Tasks
There are numerous tasks involved in administering and maintaining a data warehouse. Many of these tasks can be automated
using a variety of tools available in Microsoft® SQL Server™ 2000. Appropriate tasks can be scheduled for periodic
accomplishment.

A data warehouse must be updated on a periodic basis to incorporate new data from ongoing business operations. You can
combine various SQL Server 2000 processing features and methods to define jobs that perform the data extractions. You can
schedule the periodic execution of such jobs and provide automatic notification of job completion and status.

In addition to the built-in tools, SQL Server 2000 provides a number of programming object models and interfaces that can be
used to create custom applications that perform administrative tasks. You can use programming languages such as C/C++,
Microsoft Visual Basic®, or scripting to create these applications. For more information, see Building SQL Server Applications
Overview and other topics in the Building SQL Server Applications section of Books Online.

See Also

Automating Administrative Tasks

Overview of the SQL Server Tools

Updating Data Warehouse Data

https://msdn.microsoft.com/en-us/library/aa275328(v=sql.80).aspx

Creating and Using Data Warehouses (SQL Server 2000)

Tuning Data Warehouse Performance
A data warehouse must provide rapid evaluation of queries that analyze and summarize huge numbers of rows of data from
multiple joined tables. Microsoft® SQL Server™ 2000 provides information you can use to optimize the performance of the
relational database that contains the data warehouse data. Database performance can be affected by many choices you make in
the logical design of the database, its physical implementation, index tuning, query tuning, and so on. For more information, see
Optimizing Database Performance Overview.

Although the performance of SQL Server 2000 Analysis Services depends to a large extent on the performance of the data
warehouse database, its performance is also influenced by the design of the data warehouse database and the Analysis Services
cubes. You can also tune the performance of Analysis Services by using tools that analyze usage patterns by adjusting the amount
of aggregations that are precalculated when cubes are processed, optimizing cube schemas to avoid unnecessary joins, and so on.
Computer hardware configurations also affect the performance of Analysis servers. For more information, see Analyzing and
Optimizing Performance.

Accessing and Changing Relational Data (SQL Server 2000)

Accessing and Changing Relational Data Overview
Accessing and Changing Relational Data contains information about how you retrieve data from SQL Server tables and modify
data in SQL Server tables. SQL Server applications typically work with SQL Server data in one of two ways:

Applications use database Application Programming Interfaces (APIs) such as ADO, OLE DB, or ODBC to execute Transact-
SQL statements that work with SQL Server data in the form of tabular result sets.

Internet applications use Universal Resource Locators (URLs) or the ADO or OLE DB APIs to execute either XPath queries or
Transact-SQL statements that work with SQL Server data in the form of XML documents.

Accessing and Changing Relational Data deals with fundamental aspects of building and executing Transact-SQL statements and
processing results in the form of relational (or tabular) result sets. For more information about using XPath queries or Transact-
SQL statements that work with XML documents, see Overview of XML and Internet Access.

Topic Description
Query Tools and Programming
Interfaces

Describes the different classes of tools used to
work with SQL Server. Outlines how Transact-SQL
interfaces with utilities and database APIs.

Transact-SQL Syntax Elements Describes the primary syntax elements used in
Transact-SQL statements.

Accessing and Changing Data
Fundamentals

Describes fundamental issues that SQL Server
applications must address, but which are not
specific to any Transact-SQL statement:

Choosing a database
Using Transact-SQL batches and scripts
Using variables and parameters
Controlling the flow of logic
Understanding permissions

Query Fundamentals Descirbes the fundamental processes of building
Transact-SQL statements. Describes the main
clauses used in the SELECT, INSERT, DELETE, and
UPDATE statements:

Select list
FROM clause
WHERE clause
ORDER BY clause
JOIN clauses

Advanced Query Concepts Describes advanced concepts such as:

Using aggregate functions
Using GROUP BY and UNION
Partitioning views
Subqueries
Summarizing data
Error handling
Transact-SQL tips

Modifying Data Describes the methods for inserting new rows,
and updating or deleting existing rows.

Transactions Describes how several data modification
statements can be grouped in a transaction.

Cursors Describes how SELECT statements always return a
set of rows, but applications sometimes need to
go through the result set one row at a time.
Cursors support processing a result set one row,
or a block of rows, at a time.

Locking Describes how SQL Server prevents multiple
users from modifying the same data at the same
time.

Distributed Queries Describes how to code Transact-SQL statements
that reference data on separate instances of SQL
Server, or even in non-SQL Server OLE DB or
ODBC data sources.

Full-text Search Describes how to use more powerful text search
functionality than is supported in SQL-92, and
include files outside a database in the text
searches.

Accessing and Changing Relational Data (SQL Server 2000)

Query Tools and Programming Interfaces
Users who access and change data in instances of Microsoft® SQL Server™ require different levels of Transact-SQL knowledge,
depending on the way users access the database:

Users of graphical report generators and general business applications need little or no knowledge of Transact-SQL. The
applications present either easy-to-use charts and graphs, which require little database knowledge, or dialog boxes based
on the user's business functions.

Users of general purpose SQL applications, such as SQL Query Analyzer and the osql utility, must understand how to use
Transact-SQL from the utilities or in scripts of Transact-SQL statements.

Application programmers must have a complete understanding of the Transact-SQL functionality in SQL applications, as
well as how to use a database application programming interface (API) to provide data values for Transact-SQL statements
and to retrieve data in a relational (tabular) result set.

Internet application programmers must understand the fundamentals of how Transact-SQL statements work with relational
rowsets, but they must also understand how SQL Server works with XML documents. They must understand:

How merged schemas present XML-based views of the data in SQL Server tables, and how to use XPath queries to
retrieve that data in the form of XML documents.

How to use the FOR XML clause to direct SELECT statements to return results as XML documents instead of tabular
result sets.

How to add XML documents to a database and then use the OPENXML clause to present the data from the
document as a relational result set.

How to execute Transact-SQL statements, query templates, and XPath queries using Universal Resource Locators
(URLs), ADO, or OLE DB.

Many users may, at different times, work in all categories of applications. Application programmers may use a SQL Server tool,
such as SQL Query Analyzer, to test their Transact-SQL statements before coding them into an application. Database
administrators work at all levels as they work with users and programmers to design new features and resolve database
problems.

The topics in Accessing and Changing Relational Data pertain primarily to users of generic SQL tools and application
programmers. Where relevant, information about additional features available to application programmers is provided. Internet
programmers must know many of the concepts in Accessing and Changing Relational Data to understand the effects of the many
Transact-SQL statements they execute. For information specific to working with data in the form of XML documents, see XML and
Internet Support Overview.

Accessing and Changing Relational Data (SQL Server 2000)

Query Tools
Microsoft® offers these tools for accessing and changing data in instances of Microsoft SQL Server™:

SQL Query Analyzer

SQL Server Enterprise Manager

osql Utility

bcp Utility

The level of Transact-SQL knowledge required to use these tools varies.

Accessing and Changing Relational Data (SQL Server 2000)

SQL Server Tools
SQL Query Analyzer and the osql utility support using Transact-SQL interactively to access and change data, and the bcp utility
can be used to insert large numbers of new rows into a table quickly. SQL Server Enterprise Manager is used to administer
multiple instances of SQL Server from a single console.

SQL Query Analyzer and osql are used to:

Execute one or more Transact-SQL statements.

Either display the results of a query to the user, or save the results in a text file.

Using SQL Query Analyzer, you can connect simultaneously to multiple instances of SQL Server Enterprise Manager. SQL Server
Enterprise Manager also supports working with multiple instances of SQL Server at the same time. The osql and bcp utilities only
support working with one instance at a time.

Accessing and Changing Relational Data (SQL Server 2000)

Using SQL Query Analyzer
Using SQL Query Analyzer

SQL Query Analyzer is a Microsoft® Win32® application that is an excellent tool for the ad hoc, interactive execution of Transact-
SQL statements and scripts. To use SQL Query Analyzer, users must understand Transact-SQL.

In SQL Query Analyzer, users enter Transact-SQL statements in a full-text window, execute the statements, and view the results in
a results window. Users also can open a text file containing Transact-SQL statements, execute the statements, and view the results
in the results window.

SQL Query Analyzer also provides tools for determining how Microsoft SQL Server is interpreting and working with a Transact-
SQL statement. A user can:

Display a graphical representation of the execution plan generated for the statement.

Start the Index Tuning Wizard to determine which indexes can be defined for the underlying tables to optimize the
performance of the statement.

Display statistics about the performance of the statement.

Accessing and Changing Relational Data (SQL Server 2000)

Using SQL Server Enterprise Manager
Using SQL Server Enterprise Manager

SQL Query Analyzer can be started from SQL Server Enterprise Manager.

In SQL Server Enterprise Manager, on the Tools menu, click SQL Query Analyzer to run SQL Query Analyzer. With SQL Query
Analyzer, users can interactively design and execute queries.

SQL Server Enterprise Manager also includes the Query Designer, a graphical user interface (GUI) tool for designing queries used
in specific objects:

In the console tree, in the database you are working on, right-click Views, and then click New View. Query Designer can be
used to design the SELECT statement for the view. For more information, see Creating Views.

In DTS Designer, open a DTS package and add an Execute SQL task, and then click Build Query to access the DTS Query
Designer. For more information, see DTS Query Designer.

In the right pane, right-click a table, click Open Table, and then click Return all rows to see all the rows in the table. Query
Designer can be used to change the query to see specific rows. For more information, see Performing Basic Operations with
Queries.

The Query Designer window has four separate panes for specifying or displaying different items associated with a query.

Pane Description
Diagram Has a diagram showing the tables referenced in the query. The

diagram shows all columns for each table and checks the columns
used in the result set.

SQL Shows the SQL statement syntax.
Grid Shows the details of the result set columns, such as name, data type,

and size.
Results Shows the result set returned by the last query execution.

For more information about using Query Designer panes, see Query and View Designer Layout.

https://msdn.microsoft.com/en-us/library/aa292947(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292867(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa290279(v=sql.80).aspx

Accessing and Changing Relational Data (SQL Server 2000)

Using the osql Utility
Using the osql Utility

 Topic last updated -- January 2004

The osql utility is a Microsoft® Win32® command prompt utility for ad hoc, interactive execution of Transact-SQL statements
and scripts.

The osql utility is typically used in these ways:

Users interactively enter Transact-SQL statements in a manner similar to working on the command prompt. The results are
displayed in the command prompt window.

Users submit an osql job either specifying a single Transact-SQL statement to execute or pointing the utility to a text file
that contains Transact-SQL statements to execute. The output is usually directed to a text file, but it also can be displayed in
the command prompt window.

To use osql interactively or to build script files to be run using osql, users must understand Transact-SQL. The following sections
of SQL Server Books Online document building Transact-SQL statements:

Section Description
Accessing and Changing Relational Data
Overview

Documents how to build Transact-SQL
statements from individual syntax elements
and to build multiple Transact-SQL
statements into batches or scripts.

Creating and Maintaining Databases
Overview

Documents how to use Transact-SQL
statements to create databases and all the
data objects in a database. Also documents
some database maintenance functions.

Administering SQL Server Overview Documents the administration tasks that
can be performed on instances of SQL
Server and SQL Server databases. The topic
for each administration task indicates any
Transact-SQL statement that can be used to
perform the task.

Transact-SQL Overview This is the start of the Transact-SQL
Reference, which documents the full syntax
of every Transact-SQL statement.

Comparing the osql and isql Utilities

The osql utility uses the ODBC database application programming interface (API). It is a replacement for the isql command
prompt utility based on the DB-Library API. Both utilities are provided with Microsoft SQL Server™ 2000. The DB-Library API
remains at a SQL Server 6.5 level; therefore, applications that depend on DB-Library, such as isql, do not support some SQL
Server 2000 features. For example, isql cannot access columns defined with the ntext data type and truncates any char, varchar,
nchar, or nvarchar columns longer than 255 bytes. It also cannot retrieve results as XML documents. Except for these limitations
in isql, both osql and isql support the same features. For more information about features not supported by isql, see Connecting
Early Version Clients to SQL Server 2000.

See Also

osql Utility

Running the osql Utility

Running Transact-SQL Statements Interactively Using osql

Running Transact-SQL Script Files Using osql

isql Utility

Accessing and Changing Relational Data (SQL Server 2000)

Running the osql Utility
Running the osql Utility

 Topic last updated -- January 2004

To run the osql utility, first open a command prompt window by clicking Start, clicking All Programs, pointing to Accessories,
and then clicking Command Prompt. In the Command Prompt window, type the command you want to run at the blinking
underscore, which is called the command prompt.

You run the osql utility by typing osql at the command prompt, followed by a list of switches that specify the options you require.
For a complete list of the switches supported by osql, see osql Utility. The switches used most often are:

A server switch (-S) that identifies the instance of SQL Server to which osql connects.
If you specify -S ComputerName, osql connects to the default instance on the specified computer.

If you specify -S ComputerName\InstanceName, osql connects to the specified named instance on that computer.

If you do not specify -S, osql connects to the default instance on the same computer on which osql is running.

For more information about instances, see Multiple Instances of SQL Server.

Authentication switches (-E, -U, -P) that specify the credentials osql uses to connect to the instance of SQL Server.
If you specify -E, osql requests a Windows Authentication connection using your current Windows login account.
This is the most secure option for connecting to an instance of SQL Server.

If the instance of SQL Server only supports SQL Server Authentication, however, you must use the -U switch to
specify a SQL Server login account and the -P switch to specify the password for that account.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt
users to enter their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you
should encrypt them with the Win32 cryptoAPI.

Security Note To mask your password, do not specify the -P switch along with the -U switch. Instead, after
specifying osql along with the -U switch and other switches (do not specify -P), press enter, and osql will prompt
you for a password. This method will ensure that your password is masked when it is entered.

For more information about logging in to an instance of SQL Server, see Logins.

Input switches (-Q, -q, and -i) that identify the location of the input to osql.
If you specify -q Transact-SQL statement, osql will connect to an instance of SQL Server, run the specified Transact-
SQL statement, and then prompt you to enter additional Transact-SQL statements or osql commands.

If you specify -Q Transact-SQL statement, osql will connect to an instance of SQL Server, run the Transact-SQL
statement, disconnect, and terminate.

If you have a text file that contains one or more Transact-SQL statements, use the -i filename switch to tell osql to
use that file as its source of Transact-SQL statements. osql connects to an instance of SQL Server, sends all the
Transact-SQL statements in the input file, disconnects, and terminates.

If you do not specify -Q, -q, or -i, osql connects to an instance of SQL Server and then displays a 1> followed by a
blinking underscore called the osql prompt. You can then enter Transact-SQL statements or osql commands at the
osql prompt. For more information about osql commands, see osql Utility.

An output switch (-o) that specifies the file in which osql is to place its output. If you specify -o filename, osql creates a text
file of that name and places all of its output in the specified file. If you do not specify -o, osql displays all of its output in the
same command prompt window in which osql is running.

Examples of Running the osql Utility

The following are common uses of the osql utility:

http://go.microsoft.com/fwlink/?LinkId=9504

Connecting to a default instance using Windows Authentication to interactively run Transact-SQL statements:

osql -E -S ComputerName

Connecting to a named instance using Windows Authentication to interactively run Transact-SQL statements:

osql -E -S ComputerName\InstanceName

Connecting to a named instance using Windows Authentication and specifying input and output files:

osql -E -S ComputerName\InstanceName -i MyScript.sql -o MyOutput.rpt

Connecting to the default instance on the local computer using Windows Authentication, executing a query, and having osql
remain running after the query completes:

osql -E -q "SELECT * FROM Northwind.dbo.Shippers"

Connecting to the default instance on the local computer using Windows Authentication, executing a query, directing the
output to a file, and having osql terminate after the query completes:

osql -E -Q "SELECT * FROM Northwind.dbo.Shippers" -o MyOutput.rpt

Connecting to a named instance using SQL Server Authentication to interactively run Transact-SQL statements, with osql
prompting you for your password:

osql -U MyLogin -S ComputerName\InstanceName

Getting a list of the switches supported by the osql utility:

osql -?

See Also

Running Transact-SQL Statements Interactively Using osql

Running Transact-SQL Script Files Using osql

Administering SQL Server Using osql

Accessing and Changing Relational Data (SQL Server 2000)

Running Transact-SQL Statements Interactively Using osql
Running Transact-SQL Statements Interactively Using osql

 Topic last updated -- January 2004

You can use the osql utility interactively to execute Transact-SQL statements in a command prompt window. To interactively
execute Transact-SQL statements using osql, run the utility without using the -Q, -q, or -i switches to specify any input files or
queries. For example:

osql -E -S ComputerName\InstanceName

When it is executed without input files or queries, osql connects to the specified instance of SQL Server and then displays a new
line with a 1> followed by a blinking underscore, called the osql prompt. The 1 signifies that this is the first line of a Transact-SQL
statement, and the osql prompt is the point at which the Transact-SQL statement will start when you type it in.

At the osql prompt, you may type in both Transact-SQL statements and osql commands, such as GO and EXIT. As you type
Transact-SQL statements and press ENTER, osql caches the statements but does not run them. To run the cached Transact-SQL
statements, type GO at the start of a new line, and then press ENTER. osql then sends to the instance of SQL Server all Transact-
SQL statements it has cached . All of the Transact-SQL statements that are entered from one GO to the next GO are called a batch
of Transact-SQL statements. After you have run the last batch of Transact-SQL statements, type EXIT or QUIT at the start of a new
line to terminate osql.

Interactive osql Example

This is an example of what you see when running osql interactively.

When you open a command prompt window, it only has one line similar to:
C:\Documents and Settings> _

This means the folder C:\Documents and Settings is the current folder, and if you specify a file name Windows will look for the file
in that folder.

If you then type in osql -E to connect to the default instance of SQL Server on the local computer, the contents of the command
prompt window will be:
C:\Documents and Settings>osql -E
1> _

This means that you have connected to the instance of SQL Server and that osql is now ready to accept Transact-SQL statements
and osql commands. The flashing underscore after the 1> is the osql prompt that marks location at which the statements and
commands you type in will be displayed. If you then type USE Northwind and press ENTER, and then type GO and press ENTER,
the contents of the command prompt window will be:
C:\Documents and Settings>osql -E
1> USE Northwind
2> GO
1> _

Pressing ENTER after entering USE Northwind signaled osql to start a new line. Pressing ENTER after typing GO signaled osql to
send the USE Northwind statement to the instance of SQL Server. A USE statement has no output, so when SQL Server sent osql
a message that the USE statement completed successfully, osql displayed a new 1> _ prompt as a signal to you that you can enter
a new statement or command.

This illustrates what the command prompt window contains if you now type in a SELECT statement, a GO to execute the SELECT,
and an EXIT to terminate osql:
C:\Documents and Settings>osql -E
1> USE Northwind
2> GO
1> SELECT SupplierID, CompanyName
2> FROM Suppliers
3> WHERE CompanyName LIKE 'T%'

4> GO
 SupplierID CompanyName
 ----------- --
 4 Tokyo Traders
(1 row affected)
1> EXIT
C:\Documents and Settings>

The lines after the line 4> GO show how osql displays the output of a SELECT statement. After the EXIT command, the command
prompt window displays the same line it did when you first opened the command prompt. This indicates that osql has
terminated. You can now close the command prompt window by typing another EXIT command.

See Also

osql Utility

Running the osql Utility

Running Transact-SQL Script Files Using osql

Accessing and Changing Relational Data (SQL Server 2000)

Running Transact-SQL Script Files Using osql
Running Transact-SQL Script Files Using osql

 Topic last updated -- January 2004

You can use osql to execute database script files, which are text files containing a mix of Transact-SQL statements and osql
commands. osql works with the statements and commands in the script file in a manner very similar to how it works with
statements and commands entered interactively. The main difference is that osql reads through the input file without pause
instead of waiting for a user to enter the statements and commands.

There are different ways to create database script files:

You can interactively build and debug a set of Transact-SQL statements in SQL Server Query Analyzer, and then save the
contents of the Query window as a script file.

You can create a text file containing Transact-SQL statements using a text editor such as notepad.

You can use SQL Server Enterprise Manager to generate scripts for creating objects in a database. For more information, see
Documenting and Scripting Databases.

For more information about the uses of Transact-SQL scripts, see Transact-SQL Scripts.

Example of Running a Script Using osql

This is an example of creating a script file and running the script using osql.

Open Notepad and type the following Transact-SQL statements and osql commands:
USE Northwind
GO
SELECT SupplierID, CompanyName
FROM Suppliers
WHERE CompanyName LIKE 'T%'
GO

Use the File/Save As menu to save this as a file named MyScript.sql in a folder C:\MyFolder. Run the following command from
the command prompt to run the script and place the output in a file named MyOutput.rpt in the same folder:
osql -E -i C:\MyFolder\MyScript.sql -o C:\MyFolder\MyOutput.rpt

When you view the contents of MyOutput.rpt in Notepad, you will see:
1> 2> 1> 2> 3> 4> SupplierID CompanyName
 ----------- --
 4 Tokyo Traders
(1 row affected)
1>

You can use the -n switch to suppress the batch line numbers (1> 2> 1> 2> 3> 4>):
osql -E -h-1 -i C:\MyFolder\MyScript.sql -o C:\MyFolder\NoHeaders.rpt

When you view the contents of NoHeaders.rpt, you will see:
 SupplierID CompanyName
 ----------- --
 4 Tokyo Traders

(1 row affected)

See Also

osql Utility

Running the osql Utility

Running Transact-SQL Statements Interactively Using osql

Accessing and Changing Relational Data (SQL Server 2000)

Administering SQL Server Using osql
Administering SQL Server Using osql

 Topic last updated -- January 2004

While SQL Server Enterprise Manager is the main tool used to administer instances of SQL Server and SQL Server databases,
practically all SQL Server administration can be done using the osql utility.

In fact, almost every SQL Server administrative action can be performed using multiple methods:

Using the SQL Server Enterprise Manager user interface.

Coding an application to use one or more SQL-DMO objects, methods, or properties.

Coding an application to run a Transact-SQL statement using one of the database application programming interfaces
(APIs) such as ADO.NET, ADO, OLE DB, or ODBC.

Using either SQL Query Analyzer or osql to run a Transact-SQL statement.

In SQL Server Books Online, the section "Administering SQL Server" contains a large number of topics that document the
fundamental administrative actions, such as backing up and recovering databases, that are typical for instances of SQL Server. The
section "Creating and Maintaining Databases" contains topics documenting the tasks required to create and manage databases.
After covering the concepts of how an administrative action works, the topics in these sections include procedures that tell users
the steps required to perform that task. There will be information indicating how to perform the task using SQL Server Enterprise
Manager, how to perform it using SQL-DMO, and how to perform it by running Transact-SQL statements. To perform the task
using osql, select the section listing the Transact-SQL statements, and then use osql to run those statements.

The SQL Server 2000 Desktop Engine (MSDE 2000) is unique in that it does not include administration tools with a graphical user
interface, such as SQL Server Enterprise Manager or SQL Query Analyzer. MSDE 2000 end users typically must run Transact-SQL
statements using osql to perform any administrative actions not handled by the application that installed MSDE 2000. For more
information, see Administering SQL Server 2000 Desktop Engine (MSDE 2000).

Examples of Administering SQL Server Using osql

The following examples illustrate typical administrative tasks using osql to run Transact-SQL statements.

Granting Access to a Windows User

When using Windows Authentication, Windows users or groups must first be given permission to connect to an instance of SQL
Server, and then they must be given permission to use one or more databases in that instance of SQL Server. The topic in SQL
Server Books Online called "Adding a Windows User or Group" explains how to do this. At the bottom of the topic, the label To
grant a Windows user or group login access to SQL Server has a Transact-SQL link to the sp_grantlogin system stored
procedure. This means that you use sp_grantlogin to grant this access:
EXEC sp_grantlogin 'OurDomain\TestLogin'

Once the Windows user or group has been granted permission to connect to an instance of SQL Server, they must also be given
permissions to use a database. The topic in SQL Server Books Online called "Granting a Windows User or Group Access to a
Database" explains how to do this. The Transact-SQL link under the label To grant a Windows user or group access to a
database links to the sp_grantdbaccess Transact-SQL statement:
USE MyDatabase
GO
EXEC sp_grantdbaccess 'OurDomain\TestLogin', 'TestUser'

This command gives the TestLogin account permission to use the MyDatabase database. It also establishes a user account
named TestUser that will identify that login in MyDatabase.

Creating a Database

All data stored by SQL Server is stored in databases. The topic in SQL Server Books Online called "Creating a Database" explains
how to do this. The Transact-SQL link under the label To create a database links to the CREATE DATABASE statement:

CREATE DATABASE MyDB

A database is just a container holding objects such as tables, indexes, views, stored procedures, triggers, and user-defined
functions. Each of these objects has corresponding CREATE Transact-SQL statements that you use to define them. For example,
you use CREATE TABLE to define the structure of a new table, and CREATE PROCEDURE to define the code in a new stored
procedure:
USE MyDB
GO
CREATE TABLE TestTable
 (PrimaryKey INT PRIMARY KEY,
 LastName NVARCHAR(35),
 BirtDate DATETIME
)
GO

For more information on creating databases and the objects in databases, see Creating and Maintaining Databases Overview.

Backup and Restore a Database

To protect the data in SQL Server databases, back up each database periodically. In the event of a system problem, such as the
failure of a computer or hard disk, you can restore the database from the last backup after fixing the system. The topic in SQL
Server Books online called "Database Backups" explains how to do this. The Transact-SQL links at the bottom of the topic indicate
you use the BACKUP statement to make a database backup and the RESTORE statement to restore a database using the previous
backup:
USE MyDB
GO
BACKUP DATABASE MyDB
 TO TAPE = '\\.\tape0'
 WITH FORMAT,
 NAME = 'Full Backup of MyDB'
GO

You can later rebuild MyDB using that backup:
USE master
GO
RESTORE DATABASE MyDB
 FROM TAPE = '\\.\tape0'
GO

Attaching and Detaching a Database

You can transfer a database from one instance to another by detaching it from the source instance of SQL Server, copying the
files to the destination computer, and attaching the database to an instance of SQL Server on that computer. The topic in SQL
Server Books Online called "Attaching and Detaching a Database" explains how to do this. The Transact-SQL link under the label
To detach a database links to the sp_detach_db system stored procedure:
EXEC sp_detach_db N'MyDB', N'true'

The Transact-SQL link under the label To detach a database links to the sp_attach_db system stored procedure:
EXEC sp_attach_db @dbname= N'MyDB',
 @filename1 = N'C:\Program Files\Microsoft SQL Server\MSSQL\Data\MyDB.mdf',
 @filename2 = N'C:\Program Files\Microsoft SQL Server\MSSQL\Data\MyDBLog.ldf'

See Also

Creating and Maintaining Databases Overview

Administering SQL Server Overview

osql Utility

Running the osql Utility

Running Transact-SQL Statements Interactively Using osql

Running Transact-SQL Script Files Using osql

Accessing and Changing Relational Data (SQL Server 2000)

Using the bcp Utility
Using the bcp Utility

The bcp bulk copy utility can be used to insert large numbers of new rows into Microsoft® SQL Server™ tables. The utility
requires no knowledge of Transact-SQL, but users must understand the structure of the tables into which the new rows are being
copied, as well as the types of data that are valid for the rows in the table.

See Also

bcp Utility

Accessing and Changing Relational Data (SQL Server 2000)

Programming Interfaces
Microsoft® SQL Server™ supports a number of database application programming interfaces (APIs) used to write applications
that store their data in SQL Server databases. Although the users of these applications need little, if any, database knowledge, the
programmers who develop the applications must know how to use the database APIs to execute the Transact-SQL statements or
XPath queries that give the application access to the data stored in SQL Server databases.

Accessing and Changing Relational Data (SQL Server 2000)

Microsoft Programming Environments
Microsoft® Visual Studio® includes the major Microsoft development systems: Microsoft Visual Basic®, Microsoft Visual C++®,
Microsoft Visual J++®, Microsoft Visual InterDev™, and Microsoft Visual FoxPro®.

These systems support the development of Microsoft Windows® and Web-based applications. Microsoft SQL Server™ supports
the database application programming interfaces (APIs) used by these and other languages when building applications that store
their data in a database: ADO, OLE DB, ODBC, Embedded SQL, and legacy APIs such as DB-Library. SQL Server 2000 also supports
accessing instances of SQL Server through Uniform Resource Locators (URLs), and processing data in the form of XML
documents.

In addition to being familiar with the use of Transact-SQL, programmers must understand how the database API interacts with
Transact-SQL. They must understand how to supply data values for parameters, and how to move the data values in a result set
into variables in their applications.

Internet application programmers must also understand how to work with SQL Server 2000 data as XML documents. For more
information, see XML and Internet Support Overview.

Accessing and Changing Relational Data (SQL Server 2000)

Application Programming Interfaces
Microsoft® SQL Server™ supports several database application programming interfaces (APIs): Active Data Object (ADO), OLE
DB, Open Database Connectivity (ODBC), Remote Data Object (RDO), Data Access Object (DAO), the Microsoft Foundation Class
(MFC) Database Classes, Embedded SQL, and DB-Library. SQL Server supports these APIs usually in the form of a dynamic-link
library (DLL) called a provider or driver. The provider or driver translates the calls made by the application to the database API
into commands sent to an instance of SQL Server.

To work with a database, an API:

1. Opens a connection to the database.

2. Sets options that control certain behaviors, such as whether cursors will be used, what type of cursor will be used, and
whether updates are allowed.

3. Executes a Transact-SQL statement. Optionally, the application may also use program variables to supply parameter values
for the executed statement. An application may execute only one statement at a time on each connection, or it may execute
several simultaneously.

4. Moves the data values of return codes, output parameters, and result sets into program variables, where they can be used
by the application logic. If the statement returns its result set in the form of an XML document, the application can stream
that to a component that consumes XML documents.

5. Disconnects when finished working in the database.

The application programmer must understand both Transact-SQL and the proper use of the database API.

See Also

Application Development Architecture

Building SQL Server Applications Overview

Accessing and Changing Relational Data (SQL Server 2000)

Connecting to and Disconnecting from an Instance
Connecting to and Disconnecting from an Instance

An application must connect to an instance of Microsoft® SQL Server™ before it can work with a SQL Server database.
Connection occurs through a component such as shared memory or a network. An application can open multiple connections to
an instance of SQL Server.

After a connection is made, the application can execute Transact-SQL statements through the connection. After an application
completes all the work that must be done in an instance of SQL Server, the application disconnects. This frees all resources held
by the connection in the server and terminates the network or shared-memory connection between the application and the
instance.

In general, connections:

Are associated with a database, which the application can change as needed. Object references that do not specify a
database are assumed to be in the current database associated with the connection.

Are associated with a specific login account. The login account is associated with user IDs in the SQL Server databases. A
connection cannot perform an action in a database that is not permitted to the user ID associated with the connection's
login account.

Are the units of transaction control. If a connection is broken, all uncommitted modifications made by statements executed
through the connection are rolled back without affecting uncommitted modifications made through other connections
opened by the same application. Locks held by one connection opened by an application prevent the locked rows from
being worked on by other connections opened by the same application.

Have attributes, such as the transaction isolation level, which can be set by the application to specify connection-level
behaviors.

Internet applications also connect to an instance of SQL Server, either through an ADO or OLE DB connection, or by specifying a
SQL Server virtual root in a Uniform Resource Locator (URL). While the Internet application uses Transact-SQL statements or
XPath queries that use XML documents instead of relational result sets, all of the characteristics listed above still apply to the
connection.

Accessing and Changing Relational Data (SQL Server 2000)

Preparing and Executing Statements
Preparing and Executing Statements

With Microsoft® SQL Server™ tools, such as SQL Query Analyzer or the osql utility, a user can key in and execute one or more
Transact-SQL statements. Everything needed by the Transact-SQL statements must be specified in the batch of statements
executed. Everything must be part of the character text of the Transact-SQL statements.

The database APIs support many options for executing a Transact-SQL statement. The most important options are:

Using precompiled execution plans of frequently used statements. If a Transact-SQL statement is executed several times, the
application can prepare the statement once, and then execute it as many times as needed. Preparing a statement directs the
server to compile the statement into an execution plan. Subsequent executions are faster because they use the precompiled
plan so the statement has to be compiled only once.

For better performance, the statement preparation may be deferred until the statement is executed or a metaproperty
operation (such as SQLDescribeCol or SQLDescribeParam in ODBC) is performed. This is the default behavior. Any errors
in the statement being prepared are not known until the statement is executed or a metaproperty operation is performed.
Setting appropriate statement options can turn off this default behavior.

Binding program variables with the parameters. Instead of having to include the actual data values for input parameters as
part of the Transact-SQL statement, an application can associate, or bind, program variables with the parameters. This
means that the parameter values do not have to be converted to character strings to be included in the text of the Transact-
SQL statement, but instead can be used in their native format.

Prepared statements cannot be used to create temporary objects in SQL Server 2000 or SQL Server 7.0. Prepared statements
cannot reference system stored procedures that create temporary objects, such as temporary tables. These procedures must be
executed directly.

Accessing and Changing Relational Data (SQL Server 2000)

Processing Results
Processing Results

With Microsoft® SQL Server™ tools, such as SQL Query Analyzer or the osql utility, the results of a Transact-SQL statement are
either displayed as character text or saved in a text file. SQL Server displays the entire result set at once, rather than fetching the
rows one at a time.

When an application executes a Transact-SQL statement that returns a relational result set, the database APIs enable an
application to associate, or bind, the columns of a result set with variables in the application. When a result set row is retrieved,
the data in the row columns is moved into the bound variables where it can then be used by the application. Once again, the data
can be retrieved in its native format without being converted to character text.

The database APIs also support cursor processing of relational result sets. This allows the application to retrieve the rows in the
result set one at a time, or one block of rows at a time. The application is not forced to retrieve and store the entire result set
before processing it.

When an application executes an XPath query or Transact-SQL statement that returns an XML document, the document is
returned as a stream object. For more information, see XML and Internet Support Overview.

Data Type Conversions

Programmers building database applications that use relational result sets must handle two levels of data conversion:

All of the Transact-SQL statements coded in the application must comply with the Transact-SQL data conversion rules when
combining objects with operators and functions. The Transact-SQL data conversion and precedence rules also determine
the final output data type of these operations.

The program must comply with the database API data conversion rules when moving data between program variables and
database objects such as result set columns, parameters, and return codes.

Transact-SQL supports conversion of data values from one data type to another. For example, this statement converts an integer
value into a character string:

CAST (123 AS VARCHAR(5))

The conversions can be explicit, using the CAST function, or they can be implicit. For example, if an int column is compared to a
char column, the char value is implicitly converted to an int before the comparison is made. The Transact-SQL Reference defines
the implicit and explicit conversions allowed by SQL Server. These rules apply only to conversions between Transact-SQL objects.

Another set of rules applies when converting between Transact-SQL objects such as parameters, return codes, and result set
columns and their bound program variables. These rules are defined in the documentation for the provider or driver supporting
the API. The rules can vary among the APIs. For example, the SQL Server ODBC driver supports converting the data from a
datetime result set column into an ODBC timestamp data structure, but the DB-Library interface does not allow this conversion
because it does not support ODBC timestamp data structures.

See Also

Data Type Conversion

CAST and CONVERT

Data Types

Mapping Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Syntax Elements
Transact-SQL has several syntax elements that are used by, or influence, most statements:

Identifiers

Are the names of objects such as tables, views, columns, databases, and servers.

Data types

Define the types of data contained by data objects, such as columns, variables, and parameters. Most Transact-SQL statements do
not reference data types explicitly, but the results of most statements are influenced by the interactions between the data types of
the objects referenced in the statement.

Functions

Are syntax elements that take zero, one, or more input values and return a scalar value or a tabular set of values. Examples include
the SUM function for adding several values, the DATEDIFF function for determining how many units of time separate two dates,
the @@SERVERNAME function for getting the name of an instance of Microsoft® SQL Server™, or the OPENQUERY function for
executing a Transact-SQL statement against a remote server and retrieving the result set.

Expressions

Are units of syntax that Microsoft SQL Server can resolve to single values. Examples of expressions include constants, functions
that return a single value, a reference to a column, or a variable.

Operators

Work with one or more simple expressions to form a more complex expression. For example, combining the minus sign (-) with
the constant 12 results in the constant -12. The multiplication sign (*) in the expression PriceColumn *1.1 increases the price by
10 percent.

Comments

Are pieces of text inserted into Transact-SQL statements or scripts to explain the purpose of the statement. The comments are not
executed by SQL Server.

Reserved Keywords

Are words reserved for the use of SQL Server and should not be used for the names of objects in a database.

Accessing and Changing Relational Data (SQL Server 2000)

Using Identifiers
The database object name is known as its identifier. Everything in Microsoft® SQL Server™ can have an identifier. Servers,
databases, and database objects such as tables, views, columns, indexes, triggers, procedures, constraints, rules, and so on can
have identifiers. Identifiers are required for most objects, but are optional for some objects, such as constraints.

An object identifier is created when the object is defined. The identifier is then used to reference the object. For example, this
statement creates a table with the identifier TableX, and two columns with the identifiers KeyCol and Description:

CREATE TABLE TableX
(KeyCol INT PRIMARY KEY, Description NVARCHAR(80))

This table also has an unnamed constraint. The PRIMARY KEY constraint has no identifier.

Classes of Identifiers

There are two classes of identifiers:

Regular identifiers

Conform to the rules for the format of identifiers. Regular identifiers are not delimited when used in Transact-SQL statements.

SELECT *
FROM TableX
WHERE KeyCol = 124

Delimited identifiers

Are enclosed in double quotation marks (") or brackets ([]). Identifiers that comply with the rules for the format of identifiers may
or may not be delimited.

SELECT *
FROM [TableX] --Delimiter is optional.
WHERE [KeyCol] = 124 --Delimiter is optional.

Identifiers that do not comply with all of the rules for identifiers must be delimited in a Transact-SQL statement.

SELECT *
FROM [My Table] --Identifier contains a space and uses a reserved keyword.
WHERE [order] = 10 --Identifier is a reserved keyword.

Both regular and delimited identifiers must contain from 1 through 128 characters. For local temporary tables, the identifier can
have a maximum of 116 characters.

Rules for Regular Identifiers

The rules for the format of regular identifiers are dependent on the database compatibility level, which can be set with
sp_dbcmptlevel. For more information, see sp_dbcmptlevel. When the compatibility level is 80, the rules are:

1. The first character must be one of the following:

A letter as defined by the Unicode Standard 2.0. The Unicode definition of letters includes Latin characters from a
through z and from A through Z, in addition to letter characters from other languages.

The underscore (_), "at" sign (@), or number sign (#).

Certain symbols at the beginning of an identifier have special meaning in SQL Server. An identifier beginning with the
"at" sign denotes a local variable or parameter. An identifier beginning with a number sign denotes a temporary table
or procedure. An identifier beginning with double number signs (##) denotes a global temporary object.

Some Transact-SQL functions have names that start with double at signs (@@). To avoid confusion with these
functions, it is recommended that you do not use names that start with @@.

2. Subsequent characters can be:

Letters as defined in the Unicode Standard 2.0.

Decimal numbers from either Basic Latin or other national scripts.

The "at" sign, dollar sign ($), number sign, or underscore.

3. The identifier must not be a Transact-SQL reserved word. SQL Server reserves both the uppercase and lowercase versions
of reserved words.

4. Embedded spaces or special characters are not allowed.

When used in Transact-SQL statements, identifiers that fail to comply with these rules must be delimited by double quotation
marks or brackets.

See Also

ALTER TABLE

CREATE DATABASE

CREATE DEFAULT

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

DECLARE @local_variable

DELETE

Delimited Identifiers

INSERT

Reserved Keywords

SELECT

UPDATE

Accessing and Changing Relational Data (SQL Server 2000)

Using Identifiers as Object Names
The complete name of an object consists of four identifiers: the server name, database name, owner name, and object name. They
appear in the following format:

[[[server.] [database] .] [owner_name] .] object_name

The server, database, and owner names are known as the qualifiers of the object name. When referring to an object, it is not
necessary to specify the server, database, and owner. The qualifiers can be omitted by marking their positions with a period. The
valid forms of object names are:

server.database.owner_name.object_name
server.database..object_name
server..owner_name.object_name
server...object_name

database.owner_name.object_name
database..object_name

owner_name.object_name

object_name

An object name that specifies all four parts is known as a fully qualified name. Each object created in Microsoft® SQL Server™
must have a unique, fully qualified name. For example, there can be two tables named xyz in the same database if they have
different owners.

Column names must be unique within a table or view. Assume that both a table and a view in the customer database have the
same column named telephone. To refer to the telephone column in the employees table, specify
customer..employees.telephone. To refer to the telephone column in the mktg_view view (marketing department view),
specify customer..mktg_view.telephone.

Most object references use three-part names and default to the local server. Four-part names are generally used for distributed
queries or remote stored procedure calls and use this format.

linkedserver.catalog.schema.object_name

The table shows the part names and their descriptions.

Part name Description
linkedserver Name of the linked server that contains the object referenced by

the distributed query.
Catalog Name of the catalog that contains the object referenced by the

distributed query.
Schema Name of the schema that contains the object referenced by the

distributed query.
object_name Object name or table name.

For distributed queries, the server part of a four-part name refers to a linked server. A linked server is a server name defined with
sp_addlinkedserver. The linked server identifies an OLE DB provider and an OLE DB data source that can return a record set that
SQL Server can use as part of a Transact-SQL statement.

See the documentation for the OLE DB provider specified for the linked server to determine what components in the OLE DB data
source are used for the catalog and schema parts of the name. If the linked server is running an instance of SQL Server, the
catalog name is the database containing the object, and the schema is the owner of the object. For more information about four-
part names and distributed queries, see Distributed Queries.

For remote procedure calls, the server part of a four-part name refers to a remote server. A remote server, which is specified with
sp_addserver, is an instance of SQL Server accessed through the local server. Execute stored procedures on the remote server
using this format for the procedure name:

server.database.owner_name.procedure

All four parts of the name are required when using a remote stored procedure. For more information about remote servers, see
Configuring Remote Servers.

See Also

FROM

Transact-SQL Syntax Conventions

Accessing and Changing Relational Data (SQL Server 2000)

Object Visibility and Qualification Rules
When you create an object, Microsoft® SQL Server™ 2000 uses the following defaults for the parts of the name not specified:

Server defaults to the local server.

Database defaults to the current database.

Owner_name defaults to the username in the specified database associated with the login ID of the current connection.

For example, if a user is logged on to Northwind as the database owner (dbo) user, either of the following two statements
creates a table named Northwind.dbo.TableX:

CREATE TABLE TableX (cola INT PRIMARY KEY, colb NCHAR(3))

-Or-

CREATE TABLE Northwind.dbo.TableX
 (cola INT PRIMARY KEY, colb NCHAR(3))

Note It is recommended that the full table or view name be specified to eliminate possible confusion relating to the object in
question.

Similarly, when you refer to an object, Microsoft® SQL Server™ uses the following defaults for the parts of the name not
specified:

Server defaults to the local server.

Database defaults to the current database.

owner_name defaults to the username in the specified database associated with the login ID of the current connection. If
that user owns no object with the specified name, SQL Server looks for an object with the specified name owned by the
database owner (dbo) user.

For example, assume LoginX connects to a server that has two databases: DBY and DBZ. LoginX is associated with UserA in
database DBY and with UserB in database DBZ.

LoginX executes a SELECT statement in the current database:

USE DBY
SELECT * FROM DBY..TableX

Because LoginX is associated with UserA in DBY, SQL Server first looks for DBY.UserA.TableX. If there is no table with this
name, SQL Server looks for a table DBY.dbo.TableX.

In the next example, LoginX executes a SELECT statement on a table not in the current database:

USE DBY
SELECT * FROM DBZ..TableY

Because LoginX is associated with UserB in database DBZ, SQL Server first looks for DBZ.UserB.TableY. If there is no table with
this name, SQL Server then looks for a table DBZ.dbo.TableY.

Note SQL Server does not try to deduce the owner of remote tables based on the current login. To ensure that distributed
queries execute properly, use fully qualified names.

The visibility for stored procedures that begin with sp_ differs from the visibility for regular stored procedures. For more
information, see CREATE PROCEDURE.

Accessing and Changing Relational Data (SQL Server 2000)

Delimited Identifiers
An identifier that complies with all the rules for the format of identifiers can be used with or without delimiters. An identifier that
does not comply with the rules for the format of regular identifiers must always be delimited.

Delimited identifiers are used in these situations:

When reserved words are used for object names or portions of object names.

It is recommended that reserved keywords not be used as object names. Databases upgraded from earlier versions of
Microsoft® SQL Server™ may contain identifiers that include words not reserved in the earlier version, but are reserved
words for SQL Server 2000. You can refer to the object using delimited identifiers until the name can be changed.

When using characters not listed as qualified identifiers.

SQL Server allows any character in the current code page to be used in a delimited identifier; however, indiscriminate use of
special characters in an object name may make SQL statements and scripts difficult to read and maintain.

Types of delimiters used in Transact-SQL:

Note Delimiters are for identifiers only. Delimiters cannot be used for keywords, whether or not they are marked as reserved in
SQL Server.

Quoted identifiers are delimited by double quotation marks ("):

SELECT * FROM "Blanks in Table Name"

Bracketed identifiers are delimited by brackets ([]):

SELECT * FROM [Blanks In Table Name]

Quoted identifiers are valid only when the QUOTED_IDENTIFIER option is set to ON. By default, the Microsoft OLE DB Provider for
SQL Server and SQL Server ODBC driver set QUOTED_IDENTIFIER ON when they connect. DB-Library does not set
QUOTED_IDENTIFIER ON by default. Regardless of the interface used, individual applications or users may change the setting at
any time. SQL Server provides a number of ways to specify this option. For example, in SQL Server Enterprise Manager and SQL
Query Analyzer, the option can be set in a dialog box. In Transact-SQL, the option can be set at various levels using SET
QUOTED_IDENTIFIER, the quoted identifier option of sp_dboption, or the user options option of sp_configure.

When QUOTED_IDENTIFIER is ON, SQL Server follows the SQL-92 rules for the use of double quotation marks and the single
quotation mark (') in SQL statements:

Double quotation marks can be used only to delimit identifiers. They cannot be used to delimit character strings.

To maintain compatibility with existing applications, SQL Server does not fully enforce this rule. Character strings can be
enclosed in double quotation marks if the string does not exceed the length of an identifier; this practice is not
recommended.

Single quotation marks must be used to enclose character strings. They cannot be used to delimit identifiers.

If the character string contains an embedded single quotation mark, insert an additional single quotation mark in front of
the embedded mark:

SELECT * FROM "My Table"
WHERE "Last Name" = 'O''Brien'

When QUOTED_IDENTIFIER is OFF, SQL Server follows these rules for the use of single and double quotation marks:

Quotation marks cannot be used to delimit identifiers. Instead, use brackets as delimiters.

Single or double quotation marks can be used to enclose character strings.

If double quotation marks are used, embedded single quotation marks do not have to be denoted by two single quotation
marks:

SELECT * FROM [My Table]
WHERE [Last Name] = "O'Brien"

Delimiters in brackets can always be used, regardless of the setting of QUOTED_IDENTIFIER.

Rules for Delimited Identifiers

The rules for the format of delimited identifiers are:

1. Delimited identifiers can contain the same number of characters as regular identifiers (from 1 through 128 characters, not
including the delimiter characters). Local temporary table identifiers can be a maximum of 116 characters.

2. The body of the identifier can contain any combination of characters in the current code page except the delimiting
characters themselves. For example, delimited identifiers can contain spaces, any characters valid for regular identifiers, and
any of the following characters:
tilde (~) hyphen (-)
exclamation point (!) left brace ({)
percent (%) right brace (})
caret (^) apostrophe (')
ampersand (&) period (.)
left parenthesis (() backslash (\)
right parenthesis ()) accent grave (`)

These examples use quoted identifiers for table names and column names. Both methods for specifying delimited identifiers are
shown:

SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE "$Employee Data"
(
 "^First Name" varchar(25) NOT NULL,
 "^Last Name" varchar(25) NOT NULL,
 "^Dept ID" int
)
-- INSERT statements go here.
SET QUOTED_IDENTIFIER OFF
GO
CREATE TABLE [^$Employee Data]
(
 [^First Name] varchar(25) NOT NULL,
 [^Last Name] varchar(25) NOT NULL,
 [^Dept ID] int
)
-- INSERT statements go here.

After the $Employee Data and ^$Employee Data tables are created and data is entered, rows can be retrieved:

SET QUOTED_IDENTIFIER ON
GO
SELECT *
FROM "$Employee Data"
SET QUOTED_IDENTIFIER OFF
GO
-- Or
SELECT *
FROM [^$Employee Data]

In this example, a table named table contains columns tablename, user, select, insert, and so on. Because TABLE, SELECT,
INSERT, UPDATE, and DELETE are reserved keywords, the identifiers must be delimited each time the objects are accessed.

SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE "table"
(
 tablename char(128) NOT NULL,
 "USER" char(128) NOT NULL,
 "SELECT" char(128) NOT NULL,
 "INSERT" char(128) NOT NULL,
 "UPDATE" char(128) NOT NULL,
 "DELETE" char(128) NOT NULL
)

If the SET QUOTED_IDENTIFIER option is not ON, the table and columns cannot be accessed unless bracket delimiters are used.

SET QUOTED_IDENTIFIER OFF
GO
SELECT *
FROM "table"

Here is the result set:

Msg 170, Level 15, State 1
Line 1: Incorrect syntax near 'table'.

Here is the result set (using bracket delimiters):

SET QUOTED_IDENTIFIER OFF
GO
SELECT *
FROM [table]

Delimiting Identifiers with Multiple Parts

When using qualified object names you may have to delimit more than one of the identifiers that make up the object name. Each
identifier must be delimited individually, for example:

/* SQL-92 quoted identifier syntax */
SELECT *
FROM "My DB"."My#UserID"."My.Table"

-Or-

/* Transact-SQL bracketed identifier syntax */
/* Not available in SQL Server 6.5 or earlier */
SELECT *
FROM [My DB].[My#UserID].[My.Table]

There are some special rules regarding how you delimit multi-part stored procedure names in the ODBC CALL statement. For
more information, see Calling a Stored Procedure.

Using Identifiers as Parameters in SQL Server

Many system stored procedures, functions, and DBCC statements take object names as parameters. Some of these parameters
accept multipart object names, while others accept only single-part names. Whether a single-part or multipart name is expected
determines how a parameter is parsed and used internally by SQL Server.

Single-part Parameter N ames

If the parameter is a single-part identifier, the name can be specified:

Without quotation marks or delimiters.

Enclosed in single quotation marks.

Enclosed in double quotation marks.

Enclosed in brackets.

For single-part names, the string inside the single quotation marks represents the object name. If delimiters are used inside single
quotation marks, the delimiter characters are treated as part of the name.

If the name contains a period or another character that is not part of the character set defined for regular identifiers, you must
enclose the object name in single quotation marks, double quotation marks, or brackets.

M ultipart Parameter N ames

Multipart names are qualified names that include the database or owner name in addition to the object name. SQL Server
requires that when a multipart name is used as a parameter, the entire string that constitutes the multipart name must be
enclosed in a set of single quotation marks.

EXEC MyProcedure @name = 'dbo.Employees'

If individual name parts require delimiters, each part of the name should be delimited separately as required. For example, if a
name part contains a period, double quotation mark, or left or right bracket, use brackets or double quotation marks to delimit
the part. Enclose the complete name in single quotation marks.

For example, the table name, tab.one, contains a period. To prevent the name from being interpreted as a three-part name,
dbo.tab.one, delimit the table name part.

EXEC sp_help 'dbo.[tab.one]'

This example shows the same table name delimited with double quotation marks.

SET QUOTED_IDENTIFIER ON
GO
EXEC sp_help 'dbo."tab.one"'
GO

This table lists some of the Transact-SQL functions, DBCC statements, and system stored procedures that use multipart names.

Function or stored procedure name Parameter name
COL_LENGTH table
DBCC CHECKIDENT table_name
DBCC CHECKTABLE table_name
DBCC DBREINDEX database.owner.table_name
DBCC SHOW_STATISTICS table
DBCC TEXTALLOC table_name
DBCC UPDATEUSAGE table_name
IDENT_INCR table_or_view
IDENT_SEED table_or_view
INDEX_COL table
OBJECT_ID object
sp_addextendedproc procedure
sp_autostats table_name
sp_bindefault default

object_name
sp_bindrule rule

object_name
sp_changeobjectowner object
sp_depends object
sp_dropextendedproc procedure
sp_fulltext_column qualified_table_name
sp_fulltext_table qualified_table_name
sp_help name
sp_helpconstraint table
sp_help_fulltext_columns table_name
sp_help_fulltext_columns_cursor table_name
sp_help_fulltext_tables table_name
sp_help_fulltext_tables_cursor table_name
sp_helpindex name
sp_helprotect object_statement
sp_helptext name
sp_helptrigger table
sp_procoption procedure
sp_recompile table
sp_rename object_name
sp_spaceused objname
sp_tableoption table
sp_unbindefault object_name
sp_unbindrule object_name

See Also

ALTER DATABASE

ALTER PROCEDURE

ALTER TABLE

ALTER TRIGGER

ALTER VIEW

CREATE DATABASE

CREATE DEFAULT

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE TRIGGER

Reserved Keywords

SET QUOTED_IDENTIFIER

Accessing and Changing Relational Data (SQL Server 2000)

Using Data Types
Objects that contain data have an associated data type that defines the kind of data (character, integer, binary, and so on) the
object can contain. The following objects have data types:

Columns in tables and views.

Parameters in stored procedures.

Variables.

Transact-SQL functions that return one or more data values of a specific data type.

Stored procedures that have a return code, which always has an integer data type.

Assigning a data type to an object defines four attributes of the object:

The kind of data contained by the object. For example, character, integer or binary.

The length of the stored value, or its size.

The length of an image, binary, and varbinary data type is defined in bytes. The length of any of the numeric data types is
the number of bytes required to hold the number of digits allowed for that data type. The length of the character string and
Unicode data types is defined in characters.

The precision of the number (numeric data types only).

The precision is the number of digits the number can contain. For example, a smallint object can hold a maximum of 5
digits; it has a precision of 5.

The scale of the number (numeric data types only).

The scale is the number of digits that can be stored to the right of the decimal point. For example, an int object cannot
accept a decimal point and has a scale of 0. A money object can have a maximum of 4 digits to the right of the decimal
point and has a scale of 4.

If an object is defined as money, it can contain a maximum of 19 digits, 4 of which can be to the right of the decimal. The object
uses 8 bytes to store the data. The money data type therefore has a precision of 19, a scale of 4, and a length of 8.

Transact-SQL has these base data types.

bigint binary bit char cursor
datetime decimal float image int
money nchar ntext nvarchar real
smalldatetime smallint smallmoney text timestamp
tinyint varbinary varchar uniqueidentifier

All data stored in Microsoft® SQL Server™ must be compatible with one of these base data types. The cursor data type is the only
base data type that cannot be assigned to a table column. It can be used only for variables and stored procedure parameters.

Several base data types have synonyms (for example, rowversion is a synonym for timestamp, and national character
varying is a synonym for nvarchar). For more information about the behavior of synonyms, see Data Type Synonyms.

User-defined data types can also be created, for example:

-- Create a birthday datetype that allows nulls.
EXEC sp_addtype birthday, datetime, 'NULL'
GO
-- Create a table using the new data type.
CREATE TABLE employee

emp_id char(5)
emp_first_name char(30)
emp_last_name char(40)

emp_birthday birthday

User-defined data types are always defined in terms of a base data type. They provide a mechanism for applying a name to a data
type that is more descriptive of the types of values to be held in the object. This can make it easier for a programmer or database
administrator to understand the intended use of any object defined with the data type.

Instances of SQL Server include a user-defined data type named sysname. sysname is used for table columns, variables, and
stored procedure parameters that store object names. The exact definition of sysname is related to the rules for identifiers;
therefore, it can vary between instances of SQL Server. sysname is functionally equivalent to nvarchar(128). SQL Server version
6.5 or earlier only supports only smaller identifiers; thus, in earlier versions, sysname is defined as varchar(30).

See Also

CREATE TABLE

Data Types

Designing Tables

sp_addtype

Accessing and Changing Relational Data (SQL Server 2000)

Using Binary Data
The binary and varbinary data types store strings of bits. Although character data is interpreted based on the Microsoft® SQL
Server™ 2000 code page, binary and varbinary data is simply a stream of bits. binary and varbinary data can be a maximum of
8,000 bytes.

Binary constants have a leading 0x (a zero and the lowercase letter x) followed by the hexadecimal representation of the bit
pattern. For example, 0x2A specifies the hexadecimal value of 2A, which is equivalent to a decimal value of 42 or a one-byte bit
pattern of 00101010.

Use binary data when storing hexadecimal values such as a security identification number (SID), a GUID (using the
uniqueidentifier data type), or a complex number that can be stored using hexadecimal shorthand.

This Transact-SQL example stores a SID and hexadecimal literal:

USE pubs
CREATE TABLE mycustomertable
(
 user_login varbinary(85) DEFAULT SUSER_SID(),
 data_value varbinary(1)
)

INSERT mycustomertable (data_value)
 VALUES (0x4F)

See Also

Binary Data

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Using char and varchar Data
The char and varchar data types store data composed of:

Uppercase or lowercase characters such as a, b, and C.

Numerals such as 1, 2, or 3.

Special characters such as the "at" sign (@), ampersand (&), and exclamation point (!).

char or varchar data can be a single character, or a string with a maximum of 8,000 characters.

Each char and varchar data value has a collation. Collations define attributes such as the bit patterns used to represent each
character, comparison rules, and sensitivity to case or accenting. Each database has a default collation. When a column is defined,
or a constant specified, they are assigned the default collation of the database unless you assign a specific collation using the
COLLATE clause. When two char or varchar values having different collations are combined or compared, collation precedence
rules determine which collation is used for the operation.

Character constants must be enclosed in single quotation marks (') or double quotation marks ("). Enclosing a character constant
in single quotation marks is recommended. Enclosing a character constant in double quotation marks is sometimes not allowed
when the QUOTED IDENTIFIER option is set to ON.

This Transact-SQL example sets a character variable to a value:

DECLARE @MyCharVar CHAR(25)
SET @MyCharVar = 'Ricardo Adocicados'

When using single quotation marks to delimit a character constant that contains an embedded single quotation mark, use two
single quotation marks to represent the embedded single quotation mark, for example:

SET @MyCharVar = 'O''Leary'

If the data to be stored is longer than the number of characters allowed, the data is truncated. For example, if a column is defined
as char(10) and the value "This is a really long character string" is stored into the column, Microsoft® SQL Server™ truncates the
character string to "This is a".

The char data type is a fixed-length data type when the NOT NULL clause is specified. If a value shorter than the length of the
column is inserted into a char NOT NULL column, the value is right-padded with blanks to the size of the column. For example, if
a column is defined as char(10) and the data to be stored is "music", SQL Server stores this data as "music_____", where "_"
indicates a blank.

If ANSI_PADDING is ON when a char NULL column is created, it behaves the same as a char NOT NULL column: values are right-
padded to the size of the column. If ANSI_PADDING is OFF when a char NULL column is created, it behaves like a varchar
column with ANSI_PADDING set OFF: trailing blanks are truncated.

The varchar data type is a variable-length data type. Values shorter than the size of the column are not right-padded to the size of
the column. If the ANSI_PADDING option was set to OFF when the column was created, any trailing blanks are truncated from
character values stored in the column. If ANSI_PADDING was set ON when the column was created, trailing blanks are not
truncated.

The CHAR function can be used to convert an integer code to an ASCII character. This is useful when trying to specify control
characters, such as a carriage return or line feed. Use CHAR(13) and CHAR(10) to put a carriage return and new line in a character
string:

PRINT 'First line.' + CHAR(13) + CHAR(10) + 'Second line.'

The way the bit patterns stored in the bytes of a character string are interpreted is based on the Microsoft SQL Server code page
specified during Setup. A char or varchar object can contain any character in the SQL Server code page. For more information,
see Collations.

DB-Library applications and applications using the SQL Server ODBC drivers from SQL Server version 6.5 or earlier support only
a maximum of 255 bytes of character data. If these applications attempt to retrieve character parameters of SQL Server version
7.0 or later, or result set columns containing more than 255 bytes of data, the character data is truncated at 255 bytes.

See Also

Character Data

Collations

Collation Precedence

Data Types

SET ANSI_PADDING

sp_dbcmptlevel

Accessing and Changing Relational Data (SQL Server 2000)

Using Date and Time Data
Microsoft® SQL Server™ 2000 has the datetime and smalldatetime data types to store date and time data.

There are no separate time and date data types for storing only times or only dates. If only a time is specified when setting a
datetime or smalldatetime value, the date defaults to January 1, 1900. If only a date is specified, the time defaults to 12:00 A.M.
(Midnight).

On datetime data you can perform operations such as:

Entering new or changing existing dates.

Performing date and time calculations, such as adding or subtracting dates. For more information about date arithmetic, see
+ (Add) and - (Subtract).

Searching for a particular date and/or time.

You can perform some arithmetic calculations on datetime data with the system date functions. For more information, see
Functions.

Here are some guidelines when using date and time data:

To search for an exact match on both date and time, use an equal sign (=). Microsoft SQL Server returns date and time
values exactly matching the month, day, and year, and at the precise time of 12:00:00:000 A.M. (default).

To search for a partial date or time value, use the LIKE operator. SQL Server first converts the dates to datetime format and
then to varchar. Because the standard display formats do not include seconds or milliseconds, you cannot search for them
with LIKE and a matching pattern, unless you use the CONVERT function with the style parameter set to 9 or 109. For more
information about searching for partial dates or times, see LIKE.

SQL Server evaluates datetime constants at run time. A date string that works for the date formats expected by one
language may be unrecognizable if the query is executed by a connection using a different language and date format
setting. For example, this view works correctly for connections made with the language set to U.S. English, but not for
connections made using other languages:

CREATE VIEW USA_Dates AS
SELECT *
FROM Northwind.dbo.Orders
WHERE OrderDate < 'May 1, 1997'

When you use datetime constants in queries executed by connections using different language settings, ensure that the
dates are acceptable for all the language settings. The same care must be taken with datetime constants in permanent
objects in international databases, such as table constraints and view WHERE clauses. For more information about date
formats interpreted the same by all language settings, see Writing International Transact-SQL Statements.

SQL Server recognizes date and time data enclosed in single quotation marks (') in these formats:

Alphabetic date formats (for example, 'April 15, 1998')

Numeric date formats (for example, '4/15/1998', 'April 15, 1998')

Unseparated string formats (for example, '19981207', 'December 12, 1998')

Accessing and Changing Relational Data (SQL Server 2000)

Alphabetic Date Format
Alphabetic Date Format

Microsoft® SQL Server™ 2000 allows you to specify date data with a month specified as the full month name (for example, April)
or the month abbreviation (for example, Apr) given in the current language; commas are optional and capitalization (case) is
ignored.

Here are some guidelines for the use of alphabetic date formats:

Enclose the date and time data in single quotation marks (').

These are the valid alphabetic formats for SQL Server date data (characters enclosed in brackets are optional):

Apr[il] [15][,] 1996
Apr[il] 15[,] [19]96
Apr[il] 1996 [15]

[15] Apr[il][,] 1996
15 Apr[il][,][19]96
15 [19]96 apr[il]
[15] 1996 apr[il]

1996 APR[IL] [15]
1996 [15] APR[IL]

If you specify only the last two digits of the year, values less than the last two digits of the value of the two digit year
cutoff configuration option are in the same century as the cutoff year. Values greater than or equal to the value of this
option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2050 (default), 25 is
interpreted as 2025 and 50 is interpreted as 1950. To avoid ambiguity, use four-digit years.

If the day is missing, the first day of the month is supplied.

The SET DATEFORMAT session setting is not applied when you specify the month in alphabetic form.

See Also

Date and Time Data

datetime and smalldatetime

LIKE

SET DATEFORMAT

Accessing and Changing Relational Data (SQL Server 2000)

Numeric Date Format
Numeric Date Format

Microsoft® SQL Server™ 2000 allows you to specify date data with a numeric month specified. For example, 5/20/97 represents
the twentieth day of May, 1997. When using numeric date format, specify the month, day, and year in a string with slash marks
(/), hyphens (-), or periods (.) as separators. This string must appear in the following form:

number separator number separator number [time] [time]

These numeric formats are valid:

[0]4/15/[19]96 -- (mdy)
[0]4-15-[19]96 -- (mdy)
[0]4.15.[19]96 -- (mdy)
[04]/[19]96/15 -- (myd)

15/[0]4/[19]96 -- (dmy)
15/[19]96/[0]4 -- (dym)
[19]96/15/[0]4 -- (ydm)
[19]96/[04]/15 -- (ymd)

When the language is set to us_english, the default order for the date is mdy. You can change the date order with the SET
DATEFORMAT statement, which can also affect the date order, depending on the language.

The setting for SET DATEFORMAT determines how date values are interpreted. If the order does not match the setting, the values
are not interpreted as dates (because they are out of range), or the values are misinterpreted. For example, 12/10/08 can be
interpreted as one of six dates, depending on the DATEFORMAT setting.

See Also

Date and Time Data

datetime and smalldatetime

SET DATEFORMAT

Accessing and Changing Relational Data (SQL Server 2000)

Unseparated String Format
Unseparated String Format

Microsoft® SQL Server™ 2000 allows you to specify date data as an unseparated string. The date data can be specified with four,
six, or eight digits, an empty string, or a time value without a date value.

The SET DATEFORMAT session setting does not apply to all-numeric date entries (numeric entries without separators). Six- or
eight-digit strings are always interpreted as ymd. The month and day must always be two digits.

This is the valid unseparated string format:

[19]960415

A string of only four digits is interpreted as the year. The month and date are set to January 1. When specifying only four digits,
you must include the century.

See Also

Date and Time Data

datetime and smalldatetime

SET DATEFORMAT

Accessing and Changing Relational Data (SQL Server 2000)

Time Formats
Time Formats

Microsoft® SQL Server™ 2000 recognizes the following formats for time data. Enclose each format with single quotation marks
(').

14:30
14:30[:20:999]
14:30[:20.9]
4am
4 PM
[0]4[:30:20:500]AM

You can specify a suffix of AM or PM to indicate if the time value is before or after 12 noon. The case of AM or PM is ignored.

Hours can be specified using either a 12-hour or 24-hour clock. This is how the hour values are interpreted:

The hour value of 0 represents the hour after midnight (AM), regardless of whether or not you specify AM. You cannot
specify PM when the hour equals 0.

Hour values from 1 through 11 represent the hours before noon if neither AM nor PM is specified. They also represent the
hours before noon when AM is specified. They represent hours after noon if PM is specified.

The hour value 12 represents the hour that starts at noon if neither AM nor PM is specified. If AM is specified, it represents
the hour that starts at midnight. If PM is specified, it represents the hour that starts at noon. For example: 12:01 is 1 minute
after noon, as is 12:01 PM, while 12:01 AM is 1 minute after midnight. Specifying 12:01 AM is the same as specifying 00:01
or 00:01 AM.

Hour values from 13 through 23 represents hours after noon if AM or PM is specified. They also represent the hours after
noon when PM is specified. You cannot specify AM when the hour value is from 13 through 23.

An hour value of 24 is not valid, use 12:00 AM or 00:00 to represent midnight.

Milliseconds can be preceded by either a colon (:) or a period (.). If preceded by a colon, the number means thousandths-of-a-
second. If preceded by a period, a single digit means tenths-of-a-second, two digits mean hundredths-of-a-second, and three
digits mean thousandths-of-a-second. For example, 12:30:20:1 indicates twenty and one-thousandth seconds past 12:30;
12:30:20.1 indicates twenty and one-tenth seconds past 12:30.

See Also

Date and Time Data

datetime and smalldatetime

Accessing and Changing Relational Data (SQL Server 2000)

ODBC Datetime Format
ODBC Datetime Format

The ODBC API defines escape sequences to represent date and time values, which ODBC calls timestamp data. This ODBC
timestamp format is also supported by the OLE DB language definition (DBGUID-SQL) supported by the Microsoft OLE DB
Provider for SQL Server. Applications using the ADO, OLE DB, and ODBC-based APIs can use this ODBC timestamp format to
represent dates and times.

ODBC timestamp escape sequences are of the format:

{ literal_type 'constant_value' }

literal_type

Specifies the type of the escape sequence. Timestamps have three literal_type specifiers:

d = date only

t = time only

ts = timestamp (time + date)

'constant_value'

Is the value of the escape sequence. constant_value must follow these formats for each literal_type.

literal_type constant_value format
D yyyy-mm-dd
T hh:mm:ss[.fff]
Ts yyyy-mm-dd hh:mm:ss[.fff]

These are examples of ODBC time and date constants:

{ ts '1998-05-02 01:23:56.123' }

{ d '1990-10-02' }

{ t '13:33:41' }

Do not confuse the ODBC and OLE DB timestamp data type name with the Transact-SQL timestamp data type name. The ODBC
and OLE DB timestamp data type records dates and times. The Transact-SQL timestamp data type is a binary data type with no
time-related values.

Accessing and Changing Relational Data (SQL Server 2000)

Using Integer Data
Integers are whole numbers and contain no decimals or fractions.

Microsoft® SQL Server™ 2000 has the following sizes of integer data types:

bigint

Has a length of 8 bytes and stores numbers from
–2^63 (-9,223,372,036,854,775,808) through 2^63-1 (9,223,372,036,854,775,807).

integer or int

Has a length of 4 bytes, and stores numbers from -2,147,483,648 through 2,147,483,647.

smallint

Has a length of 2 bytes, and stores numbers from -32,768 through 32,767.

tinyint

Has a length of 1 byte, and stores numbers from 0 through 255.

Integer objects and expressions can be used with any mathematical operations. Any fractions generated by these operations are
truncated, not rounded. For example, SELECT 5/3 returns a value of 1, not the value 2, which would return if the fractional result
were rounded.

The integer data types are the only ones that can be used with the IDENTITY property, which is an automatically incrementing
number. The IDENTITY property is typically used to automatically generate unique identification numbers or primary keys.

Integer data does not need to be enclosed in single quotation marks like character or date and time data.

See Also

CAST and CONVERT

int, bigint, smallint, and tinyint

Numeric Data

Accessing and Changing Relational Data (SQL Server 2000)

Using bigint Data
Using bigint Data

The bigint data type is intended for use in cases where integer values might exceed the range supported by the int data type. For
compatibility, the int data type remains the primary integer data type in Microsoft® SQL Server™ 2000.

Unless explicitly stated, functions, statements, and system stored procedures that accept int expressions for their parameters have
not been changed to support implicit conversion of bigint expressions to those parameters. Thus, SQL Server only implicitly
converts bigint to int when the bigint value is within the range supported by the int data type. A conversion error occurs at run
time if the bigint expression contains a value outside the range supported by the int data type.

bigint in Transact-SQL Functions

Although SQL Server sometimes promotes tinyint or smallint values to int data type, it will not automatically promote tinyint,
smallint, or int to bigint. For example, if the data type of the parameter expression is tinyint or smallint, certain aggregate
functions promote the data type of the return value to an int. These aggregate functions will not return a bigint unless the
parameter expression is of type bigint.

When you specify bigint parameters and the return values are of type bigint, you may use the following Transact-SQL functions.

ABS FLOOR POWER
AVG IDENTITY RADIANS
CEILING MAX ROUND
COALESCE MIN SIGN
DEGREES NULLIF SUM

When you reference bigint columns or variables, but you are not looking for bigint data types for return values, you may use
these functions.

@@IDENTITY ISNULL VARP
COL_LENGTH ISNUMERIC
DATALENGTH STDEV[P]

SQL Server provides these functions specifically for use with bigint values.

COUNT_BIG

Use when counting the number of items in a group if the value exceeds the range supported by the int data type, and returns
bigint. COUNT_BIG is like the COUNT function except for the return type.

ROWCOUNT_BIG

Use when counting the number of rows affected in the last statement executed and the value exceeds the range supported by the
int data type. This function is similar to the ROWCOUNT function, except that ROWCOUNT_BIG returns a bigint data type.

bigint in Other Transact-SQL Elements

The CAST and CONVERT clauses support bigint. These clauses apply similar conversion rules for bigint as for the other integer
data types. The bigint data type fits above int and below smallmoney in the data type precedence chart. For more information
about bigint conversions, see CAST and CONVERT.

When using the CASE expression, you will get a result of type bigint if the result_expression or the optional else_result_expression
evaluate to bigint.

You may use the bigint data type in all syntax locations where integer data types are specified in these Transact-SQL statements:

ALTER PROCEDURE

ALTER TABLE

CREATE PROCEDURE

CREATE TABLE

DECLARE variable

In addition, the SQL Server catalog components report information about bigint columns.

Specifying bigint Constants

Whole number constants that are outside the range supported by the int data type continue to be interpreted as numeric, with a
scale of 0 and a precision sufficient to hold the value specified. For example, the constant 3000000000 is interpreted as numeric.
These numeric constants are implicitly convertible to bigint and can be assigned to bigint columns and variables:

CREATE TABLE BigintTable (ColA bigint)

INSERT INTO BigintTable VALUES (3000000000)

SELECT *
FROM BigintTable
WHERE ColA = 3000000000

You can also cast constants to bigint:

CAST(3000000000 AS bigint)

To get a bigint value into an sql_variant column, use this method:

CREATE TABLE VariantTable (ColA sql_variant)

-- Inserts a value with a numeric base data type.
INSERT INTO VariantTable VALUES (3000000000)
-- Inserts a value with a bigint base data type.
INSERT INTO VariantTable VALUES (CAST(3000000000 AS bigint))

See Also

CASE

CAST and CONVERT

COUNT_BIG

int, bigint, smallint, and tinyint

Numeric Data

sql_variant

Accessing and Changing Relational Data (SQL Server 2000)

Using decimal, float, and real Data
The decimal data type can store a maximum of 38 digits, all of which can be to the right of the decimal point. The decimal data
type stores an exact representation of the number; there is no approximation of the stored value.

The two attributes that define decimal columns, variables, and parameters are:

p

Specifies the precision, or the number of digits the object can hold.

s

Specifies the scale, or the number of digits that can be placed to the right of the decimal point.

p and s must observe the rule: 0 <= s <= p <= 38.

The default maximum precision of numeric and decimal data types is 38. In Transact-SQL, numeric is functionally equivalent to
the decimal data type.

Use the decimal data type to store numbers with decimals when the data values must be stored exactly as specified.

For more information about how mathematical operations affect the precision and scale of the result, see Precision, Scale, and
Length.

Using float and real Data

The float and real data types are known as approximate data types. The behavior of float and real follows the IEEE 754
specification on approximate numeric data types.

Approximate numeric data types do not store the exact values specified for many numbers; they store an extremely close
approximation of the value. For many applications, the tiny difference between the specified value and the stored approximation
is not noticeable. At times, though, the difference becomes noticeable. Because of the approximate nature of the float and real
data types, do not use these data types when exact numeric behavior is required, such as in financial applications, in operations
involving rounding, or in equality checks. Instead, use the integer, decimal, money, or smallmoney data types.

Avoid using float or real columns in WHERE clause search conditions, especially the = and <> operators. It is best to limit float
and real columns to > or < comparisons.

The IEEE 754 specification provides four rounding modes: round to nearest, round up, round down, and round to zero.
Microsoft® SQL Server™ uses round up. All are accurate to the guaranteed precision but can result in slightly different floating-
point values. Because the binary representation of a floating-point number may use one of many legal rounding schemes, it is
impossible to reliably quantify a floating-point value.

See Also

Data Types

Numeric Data

Accessing and Changing Relational Data (SQL Server 2000)

Using Monetary Data
Microsoft® SQL Server™ stores monetary data (currency values) using two data types: money and smallmoney. These data
types can use any one of the following currency symbols.

Currency or monetary data does not need to be enclosed in single quotation marks ('). However, the monetary data value must be
preceded by the appropriate currency symbol. For example, to specify 100 English pounds, use £100.

money and smallmoney are limited to four decimal points. Use the decimal data type if more decimal points are required.

Use a period to separate partial monetary units, like cents, from whole monetary units. For example, 2.15 specifies 2 dollars and
15 cents.

Comma separators are not allowed in money or smallmoney constants, although the display format of these data types
includes comma separators. You can specify the comma separators only in character strings explicitly cast to money or
smallmoney, for example:

USE Northwind
GO
CREATE TABLE TestMoney (cola INT PRIMARY KEY, colb MONEY)
GO
SET NOCOUNT ON
GO

-- The following three INSERT statements work.
INSERT INTO TestMoney VALUES (1, $123.45)
GO
INSERT INTO TestMoney VALUES (2, $123123.45)
GO
INSERT INTO TestMoney VALUES (3, CAST('$444,123.45' AS MONEY))
GO

-- This INSERT statement gets an error because of the comma
-- separator in the money string.
INSERT INTO TestMoney VALUES (3, $555,123.45)
GO
SET NOCOUNT OFF
GO
SELECT * FROM TestMoney
GO

See Also

Data Types

Monetary Data

money and smallmoney

Accessing and Changing Relational Data (SQL Server 2000)

Using text and image Data
Microsoft® SQL Server™ 2000 stores character strings longer than 8,000 characters and binary data longer than 8,000 bytes in
special data types named text and image. Unicode strings longer than 4,000 characters are stored in the ntext data type.

For example, a large text file (.txt) of customer information must be imported into your SQL Server database. This data should be
stored as one piece of data rather than integrated into the multiple columns of your data tables. You can create a column with the
text data type for this purpose. However, if you must store company logos currently stored as Tagged Image File Format (TIFF)
images (.tif) that are 10 KB each, create a column with the image data type.

If the textual data to be stored is in Unicode format, use the ntext data type. For example, a form letter created for international
customers is likely to contain international spellings and characters used in various different languages. Store this data in an
ntext column.

Each text and ntext data value has a collation. Collations define attributes such as comparison rules and sensitivity to case or
accenting. The collations for text values also specify a code page, which defines the bit patterns used to represent each character.
Each ntext value uses the Unicode code page, which is the same for all the collations. Each database has a default collation. When
a text or ntext column is created, it is assigned the default collation of the database unless you assign a specific collation using
the COLLATE clause. When two text or ntext values having different collations are combined or compared, collation precedence
rules determine which collation is used for the operation.

Data in an image data is stored as a string of bits and is not interpreted by SQL Server. Any interpretation of the data in an
image column must be made by the application. For example, an application could store data in an image column using a BMP,
TIFF, GIF, or JPEG format. The application that reads the data from the image column must recognize the format of the data and
display it correctly. All an image column does is provide a location to store the stream of bits that make up the image data value.

Using text in row to Store text, ntext, and image Values

Usually, text, ntext, or image strings are large (a maximum of 2GB) character or binary strings stored outside a data row. The
data row contains only a 16-byte text pointer that points to the root node of a tree built of internal pointers that map the pages in
which the string fragments are stored.

With Microsoft SQL Server, you can store small to medium text, ntext, and image values in a data row, thereby increasing the
speed of queries accessing these values.

When the text, ntext, or image string is stored in the data row, SQL Server does not have to access a separate page or set of
pages to read or write the string. This makes reading and writing the text, ntext, or image in-row strings about as fast as reading
or writing varchar, nvarchar, or varbinary strings.

To store text, ntext, or image strings in the data row, enable the text in row option using the sp_tableoption stored procedure.

sp_tableoption N'MyTable', 'text in row', 'ON'

Optionally, you can specify a maximum limit, from 24 through 7000 bytes, for the length of a text, ntext, and image string
stored in a data row:

sp_tableoption N'MyTable', 'text in row', '1000'

If you specify 'ON' instead of a specific limit, the limit defaults to 256 bytes. This default value provides most of the performance
benefits: It is large enough to ensure that small strings and the root text pointers can be stored in the rows but not so large that it
decreases the rows per page enough to affect performance.

Although in general, you should not set the value below 72, you also should not set the value too high, especially for tables where
most statements do not reference the text, ntext, and image columns or there are multiple text, ntext, and image columns.

You can also use sp_tableoption to turn the option off by specifying an option value of either 'OFF' or 0:

sp_tableoption N'MyTable', 'text in row', 'OFF'

See Also

Character Data

Data Types

sp_tableoption

Accessing and Changing Relational Data (SQL Server 2000)

Using uniqueidentifier Data
The uniqueidentifier data type stores 16-byte binary values that operate as globally unique identifiers (GUIDs). A GUID is a
unique binary number; no other computer in the world will generate a duplicate of that GUID value. The main use for a GUID is
for assigning an identifier that must be unique in a network that has many computers at many sites.

A GUID value for a uniqueidentifier column is usually obtained:

In a Transact-SQL statement, batch, or script by calling the NEWID function.

In application code by calling an application API function or method that returns a GUID.

The Transact-SQL NEWID function and the application API functions and methods generate new uniqueidentifier values from
the identification number of their network card plus a unique number from the CPU clock. Each network card has a unique
identification number. The uniqueidentifier returned by NEWID is generated using the network card on the server. The
uniqueidentifier returned by application API functions and methods is generated using the network card on the client.

A uniqueidentifier is not typically defined as a constant because it is difficult to ensure that the uniqueidentifier created is
actually unique. There are two ways to specify a uniqueidentifier constant:

Character string format

'6F9619FF-8B86-D011-B42D-00C04FC964FF'

Binary format

0xff19966f868b11d0b42d00c04fc964ff

The uniqueidentifier data type does not automatically generate new IDs for inserted rows the way the IDENTITY property does.
To get new uniqueidentifier values, a table must have a DEFAULT clause specifying the NEWID function, or INSERT statements
must use the NEWID function:

CREATE TABLE MyUniqueTable
 (UniqueColumn UNIQUEIDENTIFIER DEFAULT NEWID(),
 Characters VARCHAR(10))
GO
INSERT INTO MyUniqueTable(Characters) VALUES ('abc')
INSERT INTO MyUniqueTable VALUES (NEWID(), 'def')
GO

uniqueidentifier columns may contain multiple occurrences of an individual uniqueidentifier value, unless the UNIQUE or
PRIMARY KEY constraints are also specified for the column. A foreign key column referencing a uniqueidentifier primary key in
another table will have multiple occurrences of individual uniqueidentifier values when multiple rows reference the same
primary key in the source table.

A table can have multiple uniqueidentifier columns. One uniqueidentifier column for each table may be specified with the
ROWGUIDCOL property. The ROWGUIDCOL property indicates that the uniqueidentifier values in the column uniquely identify
rows in the table. The property does not do anything to enforce this, however. The uniqueness must be enforced through other
mechanisms, such as specifying the PRIMARY KEY constraint for the column. The ROWGUIDCOL property is primarily used by
SQL Server replication.

The main advantage of the uniqueidentifier data type is that the values generated by the Transact-SQL NEWID function or the
application GUID functions are guaranteed to be unique throughout the world.

The uniqueidentifier data type has several disadvantages:

The values are long and obscure. This makes them difficult for users to type correctly, and more difficult for users to
remember.

The values are random and cannot accept any patterns that may make them more meaningful to users.

There is no way to determine the sequence in which uniqueidentifier values were generated. They are not suited for
existing applications that depend on incrementing key values serially.

At 16 bytes, the uniqueidentifier data type is relatively large compared to other data types such as 4-byte integers. This
means indexes built using uniqueidentifier keys may be relatively slower than implementing the indexes using an int key.

Consider using the IDENTITY property when global uniqueness is not necessary, or when having a serially incrementing key is
desirable.

See Also

Data Types

uniqueidentifier

Accessing and Changing Relational Data (SQL Server 2000)

Using Special Data
Special data types are those that do not fit into any of the other data type categories. For example, to store data as 1 or 0
corresponding to yes or no values in a customer survey, use the bit data type. Microsoft® SQL Server™ 2000 has several data
types that fit into this category:

bit

bit data does not need to be enclosed in single quotation marks. It is numeric data similar to SQL Server integer and
numeric data, except that only 0s and 1s can be stored in bit columns.

sql_variant

The sql_variant data type in SQL Server allows a single column, parameter, or variable to store data values of different data
types. Each instance of an sql_variant column records the data value and the metadata describing the value: its base data
type, maximum size, scale, precision, and collation.

The second table in this example contains an sql_variant column:

CREATE TABLE ObjectTable
 (ObjectID int
 CONSTRAINT PKObjectTable PRIMARY KEY,
 ObjectName nvarchar(80),
 ObjectWeight decimal(10,3),
 ObjectColor nvarchar(20)
)

CREATE TABLE VariablePropertyTable
 (ObjectID int REFERENCES ObjectTable(ObjectID),
 PropertyName nvarchar(100),
 PropertyValue sql_variant,
 CONSTRAINT PKVariablePropertyTable
 PRIMARY KEY(ObjectID, PropertyName)
)

To get the meta data information for any specific sql_variant instance, use the SQL_VARIANT_PROPERTY function.

table

table data type is like temporary tables and can be used to store a result set for later processing. This data type can only be
used to define local variables of type table and the return value of a user-defined function.

The definition of a table variable or return value includes definitions of the columns, the data type, precision, and scale of
each column, and optional PRIMARY KEY, UNIQUE, NULL, and CHECK constraints. A user-defined data type cannot be used
as a data type.

The format of the rows stored in a table variable or returned by a user-defined function must be defined when the variable
is declared or the function is created. The syntax is based on the CREATE TABLE syntax. For example:

DECLARE @TableVar TABLE
 (Cola int PRIMARY KEY,
 Colb char(3))

INSERT INTO @TableVar VALUES (1, 'abc')
INSERT INTO @TableVar VALUES (2, 'def')

SELECT * FROM @TableVar
GO

table variables and user-defined functions that return a table can be used only in certain SELECT and INSERT statements,
and where tables are supported in the UPDATE, DELETE, and DECLARE CURSOR statements. table variables and user-
defined functions that return a table cannot be used in any other Transact-SQL statements.

Indexes or other constraints applied to the table must be defined as part of the DECLARE variable or CREATE FUNCTION

statement. They cannot be applied later, because the CREATE INDEX or ALTER TABLE statements cannot reference table
variables and user-defined functions.

For more information about the syntax used to define the table variables and user-defined functions, see DECLARE
@local_variable and CREATE FUNCTION.

timestamp

The SQL Server timestamp data type has nothing to do with times or dates. SQL Server timestamps are binary numbers
that indicate the relative sequence in which data modifications took place in a database. The timestamp data type was
originally implemented to support the SQL Server recovery algorithms. Each time a page was modified, it was stamped with
the current @@DBTS value and @@DBTS was incremented by one. This was sufficient for recovery to determine the
relative sequence in which pages had been modified, but the timestamp values had no relationship to time.

In SQL Server version 7.0 and SQL Server 2000, @@DBTS is only incremented for use in timestamp columns. If a table
contains a timestamp column, every time a row is modified by an INSERT, UPDATE, or DELETE statement, the timestamp
value in the row is set to the current @@DBTS value, and then @@DBTS is incremented by one.

Never use timestamp columns in keys, especially primary keys, because the timestamp value changes every time the row
is modified.

To record the times data modifications take place in a table, use either a datetime or smalldatetime data type to record
the events and triggers to automatically update the values when any modification takes place.

User-defined data types

User-defined data types allow you to extend an SQL Server base data type (such as varchar) with a descriptive name and
format tailored to a specific use. For example, this statement implements a birthday user-defined data type that allows
NULLs, using the datetime base data type:

EXEC sp_addtype birthday, datetime, 'NULL'

Be careful when choosing the base types for implementing user-defined data types. For example, in the United States, Social
Security numbers have a format of nnn-nn-nnnn. While Social Security numbers contain numbers, the numbers form an
identifier and are not subjected to mathematical operations. It is therefore common practice to create a user-defined Social
Security number data type as varchar and create a CHECK constraint to enforce the format of the social security numbers
stored in the table:

EXEC sp_addtype SSN, 'VARCHAR(11)', 'NOT NULL'
GO
CREATE TABLE ShowSSNUsage
 (EmployeeID INT PRIMARY KEY,
 EmployeeSSN SSN,
 CONSTRAINT CheckSSN CHECK (EmployeeSSN LIKE
 '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]')
)
GO

If the SSN columns are typically used as key columns in indexes, especially clustered indexes, the size of the keys can be
shrunk from 11 bytes to 4 if the SSN user-defined data type is instead implemented using the int base data type. This
reduction in key size improves data retrieval. The improved efficiency of data retrieval and the elimination of the need for
the CHECK constraint will usually outweigh the extra conversion processing from int to a character format when displaying
or modifying SSN values.

See Also

CREATE FUNCTION

Data Types

DECLARE @local_variable

Special Data

SQL_VARIANT_PROPERTY

table

Accessing and Changing Relational Data (SQL Server 2000)

Using sql_variant Data
Using sql_variant Data

The sql_variant data type operates similarly to the variant data type in Microsoft® Visual Basic®. It allows a single column,
parameter, or variable to store data values of different data types. For example, a single sql_variant column can hold int,
decimal, char, binary, and nchar values. Each instance of an sql_variant column records the data value and the meta data
information, which includes the base data type, maximum size, scale, precision, and collation.

The sql_variant data type follows these rules:

1. General value assignment

sql_variant objects can hold data of any SQL Server data type except text, ntext, image, and timestamp. An
instance of sql_variant data also cannot have sql_variant as its underlying base data type.

Constants of any type can be specified in predicates or assignments referencing sql_variant columns.

If an sql_variant value is NULL, it is not considered to have an underlying base data type. This rule applies even when
the null value comes from a variable or column with a specific data type.

In this example, the value of VariantCol is set to NULL with no associated data type, even though the null value came
from an int variable:

DECLARE @IntVar int
SET @IntVar = NULL
UPDATE SomeTable SET VariantCol = @IntVar WHERE PriKey = 123

In assignments from sql_variant objects to an object with any other data type, the sql_variant value must be
explicitly cast to the data type of the destination. No implicit conversions are supported when an sql_variant value is
assigned to an object with another data type.

For compatibility with other data types, the catalog objects (such as the DATALENGTH function) that report the length
of sql_variant objects report the length of the data. The length of the meta data contained in an sql_variant object is
not returned.

sql_variant columns always operate with ANSI_PADDING ON. If char, nchar, varchar, nvarchar, or varbinary
values are assigned from a source that has ANSI_PADDING OFF, the values are not padded.

2. sql_variant in tables

sql_variant columns can be used in indexes and unique keys, as long as the length of the data in the key columns
does not exceed 900 bytes.

sql_variant columns do not support the IDENTITY property, but sql_variant columns are allowed as part primary or
foreign keys.

sql_variant columns cannot be used in a computed column.

Use ALTER TABLE to change a column of any data type except text, ntext, image, timestamp, or sql_variant to
sql_variant. All existing values are converted to sql_variant values whose base data type is the same as the data type
of the column before the ALTER TABLE statement was executed. ALTER TABLE cannot be used to change the data type
of an sql_variant column to any other data type because there are no supported implicit conversions from
sql_variant to other data types.

3. Collation

The COLLATE clause cannot be used to assign a column collation to an sql_variant column. The character-based
values (char, nchar, varchar, and nvarchar) in an sql_variant column can be of any collation, and a single
sql_variant column can hold character-based values of mixed collations.

When a value is assigned to an sql_variant instance, both the data value and base data type of the source are
assigned. If the source value has a collation, the collation is also assigned. If the source value has a user-defined data
type, the base data type of the user-defined data type is assigned, not the user-defined data type. The sql_variant
instance does not inherit any rules or defaults bound to the user-defined data type. If a value from a column with an
identity property is assigned to an sql_variant instance, the sql_variant takes the base data type of the source
column but does not inherit the IDENTITY property. It is an error to assign a text, ntext, or image value to an
sql_variant instance. Implicit conversions are supported when assigning values from objects with other data types to
an sql_variant object.

sql_variant Comparisons

sql_variant columns can contain values of several base data types and collations, so special rules apply when comparing
sql_variant operands. These rules apply to operations involving comparisons, such as:

Transact-SQL comparison operators

ORDER BY, GROUP BY

Indexes

The MAX and MIN aggregate functions

UNION (without ALL)

CASE expressions

For sql_variant comparisons, the SQL Server data type hierarchy order is grouped into data type families (the sql_variant family
has the highest family precedence).

Data type hierarchy Data type family
sql_variant sql_variant
datetime Datetime
smalldatetime Datetime
float approximate number
real approximate number
decimal exact number
money exact number
smallmoney exact number
bigint exact number
int exact number
smallint exact number
tinyint exact number
bit exact number
nvarchar Unicode
nchar Unicode
varchar Unicode
char Unicode
varbinary Binary
binary Binary
uniqueidentifier Uniqueidentifier

These rules apply to sql_variant comparisons:

When sql_variant values of different base data types are compared, and the base data types are in different data type
families, the value whose data type family is higher in the hierarchy chart is considered the higher of the two values.

When sql_variant values of different base data types are compared, and the base data types are in the same data type
family, the value whose base data type is lower in the hierarchy chart is implicitly converted to the other data type and the
comparison is then made.

When sql_variant values of the char, varchar, nchar, or varchar data types are compared, they are evaluated based on the
following criteria: LCID, LCID version, comparison flags, and sort ID. Each of these criteria are compared as integer values,
and in the order listed.

These rules can yield different results for comparisons between sql_variant values than comparisons between values of the same
base data type.

Operand A Operand B
Non-variant
comparison result

sql_variant comparison
result

'123' char 111 int A > B B > A
50000 int 5E1 float A > B B > A

Because values from different data type families must be explicitly cast before being referenced in comparison predicates, the
effects of the rules are observed only when ordering result sets on an sql_variant column. The values in this table are examples
of the rules regarding data type precedence.

PriKey VariantCol
1 50.0 (base type float)
2 5000 (base type int)
3 '124000' (base type char(6))

This is the result of the statement SELECT * FROM VariantTest ORDER BY VariantCol ASC.

PriKey VariantCol
3 '124000' (base type char(6))
2 5000 (base type int)
1 50.0 (base type float)

The values in this table are examples of the rules regarding collation precedence using different collations.

IntKey VariantCol
1 qrs (varchar SQL_Latin1_General_Pref_Cp1_CI_AS)
2 abc (varchar SQL_Latin1_General_Pref_Cp1_CI_AS)
3 qrs (varchar SQL_Latin1_General_CP1_CS_AS)
4 17.5 (decimal)
5 abc (varchar SQL_Latin1_General_CP1_CS_AS)
6 klm (varchar SQL_Latin1_General_CP1_CS_AS)
7 1.2 (decimal)

This is the result of the statement SELECT * FROM CollateTest ORDER BY VariantCol. This table shows values from the exact
number data type family grouped together, and varchar values grouped within their respective collations.

IntKey VariantCol
5 abc (varchar SQL_Latin1_General_CP1_CS_AS)
6 klm (varchar SQL_Latin1_General_CP1_CS_AS)
3 qrs (varchar SQL_Latin1_General_CP1_CS_AS)
2 abc (varchar SQL_Latin1_General_Pref_Cp1_CI_AS)
1 qrs (varchar SQL_Latin1_General_Pref_Cp1_CI_AS)
7 1.2 (decimal)
4 17.5 (decimal)

Functions and sql_variant Data

The following Transact-SQL functions support sql_variant parameters and return an sql_variant value when an sql_variant
parameter is specified:

COALESCE

MAX

MIN

NULLIF

These functions support references to sql_variant columns or variables and do not use sql_variant as the data type of their
return values.

COL_LENGTH DATALENGTH TYPEPROPERTY
COLUMNPROPERTY ISNULL

These Transact-SQL functions do not support sql_variant parameters.

AVG RADIANS STDEV[P]
IDENTITY ROUND SUM
ISNUMERIC SIGN VAR[P]
POWER

The CAST and CONVERT functions support sql_variant

The new function SQL_VARIANT_PROPERTY(): is used to obtain property information about sql_variant values, such as data type,
precision, or scale.

Other Transact-SQL Elements and sql_variant Data

sql_variant columns are not supported in the LIKE predicate.

sql_variant columns are not supported in full-text indexes. They cannot be specified in full-text functions such as
CONTAINSTABLE and FREETEXTTABLE.

These Transact-SQL statements support specifying sql_variant in the same syntax locations that other integer data types are
specified:

ALTER PROCEDURE

ALTER TABLE

CREATE PROCEDURE

CREATE TABLE

DECLARE variable

The Microsoft® SQL Server™ 2000 catalog components report information about sql_variant columns.

The result of the CASE expression is sql_variant if any of the input or result expressions evaluate to sql_variant. The underlying
base type of the result is that of the expression evaluated as the result at run time.

Operands of numeric or string concatenation operators cannot be sql_variant:

-- Generates an error:
SELECT VariantCol + @CharacterVar
FROM MyTable

Casting the sql_variant operand can perform the operation:

-- Does not generates an error:
SELECT CAST(VariantCol AS varchar(25)) + @CharacterVar

FROM MyTable

Applications and sql_variant Data

If an application requests a result set in which a given column returns sql_variant data of a single underlying base data type, the
application can use the CAST or CONVERT functions in the Transact-SQL statements to return the sql_variant data by using the
underlying base data type. In this case the application treats the data the same way as a result set column of the underlying base
data type. This topic describes how Microsoft® SQL Server™ returns sql_variant data that has not been cast or converted to a
specific base data type.

The OLE DB Provider for SQL Server introduces a provider-specific OLE DB type DBTYPE_SQLVARIANT for use with sql_variant
columns and parameters.

The SQL Server ODBC Driver introduces a provider-specific ODBC database data type SQL_SS_VARIANT for use with sql_variant
columns and parameters.

SQL Server converts sql_variant values to nvarchar(4000) when working with applications that have connected with the
following interfaces:

The OLE DB Provider for SQL Server version 7.0.

The SQL Server ODBC Driver from SQL Server 7.0.

If the resulting string exceeds 4000 characters, SQL Server returns the first 4000 characters.

SQL Server converts sql_variant values to varchar(255) when working with applications that have connected with the following
interfaces:

The SQL Server ODBC Drivers from SQL Server version 6.5 or earlier.

Any version of the DB-Library dll.

If the resulting string exceeds 255 characters, SQL Server returns the first 255 characters.

See Also

CAST and CONVERT

sql_variant

SQL_VARIANT_PROPERTY

Accessing and Changing Relational Data (SQL Server 2000)

Using Unicode Data
The Unicode specification defines a single encoding scheme for most characters widely used in businesses around the world. All
computers consistently translate the bit patterns in Unicode data into characters using the single Unicode specification. This
ensures that the same bit pattern is always converted to the same character on all computers. Data can be freely transferred from
one database or computer to another without concern that the receiving system will translate the bit patterns into characters
incorrectly.

One problem with data types that use 1 byte to encode each character is that the data type can only represent 256 different
characters. This forces multiple encoding specifications (or code pages) for different alphabets such as European alphabets, which
are relatively small. It is also impossible to handle systems such as the Japanese Kanji or Korean Hangul alphabets that have
thousands of characters.

Each Microsoft® SQL Server™ collation has a code page that defines what patterns of bits represent each character in char,
varchar, and text values. Individual columns and character constants can be assigned a different code page. Client computers use
the code page associated with the operating system locale to interpret character bit patterns. There are many different code
pages. Some characters appear on some code pages, but not on others. Some characters are defined with one bit pattern on some
code pages, and with a different bit pattern on other code pages. When you build international systems that must handle different
languages, it becomes difficult to pick code pages for all the computers that meet the language requirements of multiple
countries/regions. It is also difficult to ensure that every computer performs the correct translations when interfacing with a
system using a different code page.

The Unicode specification addresses this problem by using 2 bytes to encode each character. There are enough different patterns
(65,536) in 2 bytes for a single specification covering the most common business languages. Because all Unicode systems
consistently use the same bit patterns to represent all characters, there is no problem with characters being converted incorrectly
when moving from one system to another. You can minimize character conversion issues by using Unicode data types
throughout your system.

In Microsoft SQL Server, these data types support Unicode data:

nchar

nvarchar

ntext

Note The n prefix for these data types comes from the SQL-92 standard for National (Unicode) data types.

Use of nchar, nvarchar, and ntext is the same as char, varchar, and text, respectively, except that:

Unicode supports a wider range of characters.

More space is needed to store Unicode characters.

The maximum size of nchar and nvarchar columns is 4,000 characters, not 8,000 characters like char and varchar.

Unicode constants are specified with a leading N: N'A Unicode string'.

All Unicode data uses the same Unicode code page. Collations do not control the code page used for Unicode columns, only
attributes such as comparison rules and case sensitivity.

See Also

Collations

Data Types

NCHAR

UNICODE

Unicode Data

Accessing and Changing Relational Data (SQL Server 2000)

Data Type Conversion
In Transact-SQL, two levels of data type conversions are possible:

When data from one object is moved to, compared with, or combined with data from another object, the data may have to
be converted from the data type of one object to the data type of the other.

When data from a Transact-SQL result column, return code, or output parameter is moved into a program variable, it must
be converted from the Microsoft® SQL Server™ data type to the data type of the variable.

There are two categories of data type conversions:

Implicit conversions are invisible to the user.

SQL Server automatically converts the data from one data type to another. For example, if a smallint is compared to an int,
the smallint is implicitly converted to int before the comparison proceeds.

Explicit conversions use the CAST or CONVERT functions.

The CAST and CONVERT functions convert a value (a local variable, a column, or another expression) from one data type to
another. For example, the following CAST function converts the numeric value of $157.27 into a character string of '$157.27':

CAST ($157.27 AS VARCHAR(10))

CAST is based on the SQL-92 standard and is preferred over CONVERT.

When converting from the data type of one SQL Server object to another, some implicit and explicit data type conversions are not
supported. For example, an nchar value cannot be converted to an image value at all. An nchar can only be converted to binary
using explicit conversion; an implicit conversion to binary is not supported. An nchar can be either explicitly or implicitly
converted to nvarchar.

When handling sql_variant data types, SQL Server supports implicit conversions of objects with other data types to sql_variant
type. However, SQL Server does not support implicit conversions from sql_variant data to an object with another data type.

For more information about supported conversions between SQL Server objects, see CAST and CONVERT.

When converting between an application variable and an SQL Server result set column, return code, parameter, or parameter
marker, the supported data type conversions are defined by the database application programming interface.

Accessing and Changing Relational Data (SQL Server 2000)

Moving Data to Program Variables
Moving Data to Program Variables

Applications accessing Microsoft® SQL Server™ 2000 databases through a database application programming interface (API)
must move data between application variables and:

Result set columns.

Applications must move data from the columns of a fetched row in a result set into application variables.

Return codes.

Applications must move data from a stored procedure return code into an application variable.

Parameters.

Applications must move data between stored procedure parameters and application variables. Parameters can be input or
output parameters, so data movement can be either from the variable to the parameter, or from the parameter to the
variable.

Parameter markers.

ODBC and OLE DB parameter markers are used in SQL statements in place of either input expressions (such as in a WHERE
clause search condition) or stored procedure parameters and return codes. Applications must move data from application
variables and the expression replaced by the parameter marker. For more information, see Parameter Markers.

Many database APIs use the concept of binding to specify how the data is to be moved between an application variable and the
SQL Server object. Database APIs provide functions that an application can call to:

Determine the data type, size, precision, and scale of a result set column, return code, parameter, or parameter marker. After
the application has received this information it can allocate a variable or an array of variables with compatible attributes.

Bind the result set column, return code, parameter, or parameter marker to a specific variable or array of variables. The
binding information typically includes:

The address and attributes (data type, size, precision, and scale) of the variable.

The name and attributes of the database object.

Data movement typically occurs:

When a Transact-SQL statement or batch is executed. The OLE DB provider or ODBC driver pulls in the data bound to any
input parameters or parameter markers and includes them in the packet sent to SQL Server.

When a result set row is fetched. The OLE DB provider or ODBC driver moves the data for each column to the bound
variables.

After all the result sets from a stored procedure have been fetched or canceled. The OLE DB provider or ODBC driver moves
the data for any output parameters or return codes to their bound variables.

The bound application variables are not required to have the same data type as the SQL Server object to which they are bound. If
the data types are different, the OLE DB provider or ODBC driver converts the data when it is moved. The set of conversions
supported by each OLE DB provider and ODBC driver are specified in the documentation for the provider or driver.

See Also

Using Variables and Parameters

Accessing and Changing Relational Data (SQL Server 2000)

Converting binary and varbinary Data
Converting binary and varbinary Data

When data is converted from a string data type (char, varchar, nchar, nvarchar, binary, varbinary, text, ntext, or image) to a
binary or varbinary data type of unequal length, Microsoft® SQL Server™ pads or truncates the data on the right. When other
data types are converted to binary or varbinary, the data is padded or truncated on the left. Padding is done with hexadecimal
zeros.

Converting data to the binary and varbinary data types is useful if binary data is the easiest way to move data around. For any
value of any type, converting that value to a binary value of large enough size, and then back to the type, will always result in the
same value if both conversions are on the same version of SQL Server. The binary representation of a value may change from
release to release of SQL Server.

The conversion of money, datetime, smalldatetime, and numeric data types to or from binary or varbinary are different
from earlier versions of SQL Server because of a change in storage representation.

You can convert int, smallint, and tinyint to binary or varbinary, but if you convert the binary value back to an integer value, it
will be different from the original integer value if truncation has occurred. For example, this SELECT statement shows that the
integer value 123456 is usually stored as a binary 0x0001e240:

SELECT CAST(123456 AS BINARY(4))

This SELECT statement shows that if the binary target is too small to hold the entire value, the leading digits are silently truncated
so that the same number is stored as 0xe240:

SELECT CAST(123456 AS BINARY(2))

This batch shows that the silent truncation can affect arithmetic operations without raising an error:

DECLARE @BinaryVariable2 BINARY(2)

SET @BinaryVariable2 = 123456
SET @BinaryVariable2 = @BinaryVariable2 + 1

SELECT CAST(@BinaryVariable2 AS INT)
GO

The final result is 57921, not 123457.

Note Conversions between any data type and the binary data types are not guaranteed to be the same between SQL Server
versions.

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting bit Data
Converting bit Data

Converting to bit promotes any nonzero value to 1.

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting Character Data
Converting Character Data

When character expressions are converted to a character data type of a different size, values too long for the new data type are
truncated.

When a character expression is converted to a character expression of a different data type or size (such as from char(5) to
varchar(5), or char(20) to char(15)), the collation of the input value is assigned to the converted value. If a non-character
expression is converted to a character data type, the default collation of the current database is assigned to the converted value. In
either case, you can assign a specific collation using the COLLATE clause.

Note Code page translations are supported for char and varchar data types, but not for text data type. As with previous
versions of Microsoft® SQL Server™, data loss during code page translations are not reported.

Character expressions being converted to an approximate numeric data type can include optional exponential notation (a
lowercase e or uppercase E followed by an optional plus (+) or minus (-) sign and then a number).

Character expressions being converted to an exact numeric data type must consist of digits, a decimal point, and an optional plus
(+) or minus (-). Leading blanks are ignored. Comma separators (such as the thousands separator in 123,456.00) are not allowed
in the string.

Character expressions being converted to money or smallmoney data types can also include an optional decimal point and
dollar sign ($). Comma separators (as in $123,456.00) are allowed.

This example shows how to convert data for display. This example converts sales data to character data prior to performing a
string comparison and converts the current date to style 3, dd/mm/yy.

USE pubs
GO
SELECT title,
 CAST(ytd_sales AS CHAR(12)),
 CAST(GETDATE() AS CHAR(12))
FROM titles
WHERE CAST(ytd_sales AS CHAR(20)) LIKE '1%'
GO

This example converts a uniqueidentifier value to a char data type.

DECLARE @myid uniqueidentifier
SET @myid = NEWID()
SELECT CONVERT(char(255), @myid) AS 'Char'
GO

This example converts the current date to style 3, dd/mm/yy.

SELECT CONVERT(char(12), GETDATE(), 3)
GO

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting datetime and smalldatetime Data
Converting datetime and smalldatetime Data

When converting to datetime, Microsoft® SQL Server™ 2000 rejects all values it cannot recognize as dates (including dates
earlier than January 1, 1753). You can convert datetime values to smalldatetime when the date is in the proper range (from
January 1, 1900 through June 6, 2079). The time value is rounded to the nearest minute.

This example converts smalldatetime and datetime values to varchar and binary data types, respectively.

DECLARE @mydate_sm SMALLDATETIME
SET @mydate_sm = '4/05/98'

SELECT CAST(@mydate_sm AS VARCHAR) AS SM_DATE_VARCHAR
GO

DECLARE @mydate DATETIME
SET @mydate = '4/05/98'

SELECT CAST(@mydate AS BINARY) AS DATE_BINARY
GO

Here is the result set:

(1 row(s) affected)

SM_DATE_VARCHAR

Apr 5 1998 12:00AM

(1 row(s) affected)

DATE_BINARY
--
0x008c3000000000

(1 row(s) affected)

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting float and real Data
Converting float and real Data

Values of float are truncated when converted to any integer type.

When converting from float or real to character data, the string function STR() is usually a better choice than CAST(), because
STR() enables more control over formatting. For more information, see Functions.

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting money Data
Converting money Data

When converting to money from integer data types, units are assumed to be in monetary units. For example, the integer value of
4 is converted to the money equivalent of 4 monetary units.

This example converts smallmoney and money values to varchar and decimal data types, respectively.

USE pubs
GO
DECLARE @mymoney_sm SMALLMONEY
SET @mymoney_sm = 3148.29
SELECT CAST(@mymoney_sm AS VARCHAR) AS "SM_MONEY VARCHAR"
GO
DECLARE @mymoney MONEY
SET @mymoney = 3148.29
SELECT CAST(@mymoney AS DECIMAL) AS "MONEY DECIMAL"
GO

Here is the result set:

SM_MONEY VARCHAR

3148.29

(1 row(s) affected)

MONEY DECIMAL

3148

(1 row(s) affected)

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Converting decimal and numeric Data
Converting decimal and numeric Data

For the decimal and numeric data types, Microsoft® SQL Server™ considers each specific combination of precision and scale as
a different data type. For example, decimal(5,5) and decimal(5,0) are considered different data types.

In Transact-SQL statements, a constant with a decimal point is automatically converted into a numeric data value, using the
minimum precision and scale necessary. For example, the constant 12.345 is converted into a numeric value with a precision of 5
and a scale of 3.

Converting from decimal or numeric to float or real can result in some loss of precision. Converting from int, smallint,
tinyint, float, real, money, or smallmoney to either decimal or numeric can result in overflow.

By default, SQL Server uses rounding when converting a number to a decimal or numeric value with a lower precision and
scale. However, if the SET ARITHABORT option is ON, SQL Server raises an error when overflow occurs. Loss of only precision and
scale is not sufficient to raise an error.

See Also

CAST and CONVERT

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Data Type Conversions Using OLE Automation Stored
Procedures
Data Type Conversions Using OLE Automation Stored Procedures

Because Microsoft® SQL Server™ uses Transact-SQL data types, and OLE Automation uses Microsoft Visual Basic® data types,
the OLE Automation stored procedures must convert the data that passes between them.

The following table describes SQL Server to Visual Basic data type conversions.

SQL Server data type Visual Basic data type
char, varchar, text, nvarchar, ntext String
decimal, numeric String
bit Boolean
binary, varbinary, image One-dimensional Byte() array
int Long
smallint Integer
tinyint Byte
float Double
real Single
money, smallmoney Currency
datetime, smalldatetime Date
anything set to NULL Variant set to Null

All single SQL Server values are converted to a single Visual Basic value with the exception of binary, varbinary, and image
values. These values are converted to a one-dimensional Byte() array in Visual Basic. This array has a range of Byte(0 To length–1)
where length is the number of bytes in the SQL Server binary, varbinary, or image values.

These are the conversions from Visual Basic data types to SQL Server data types.

Visual Basic data type SQL Server data type
Long, Integer, Byte, Boolean, Object int
Double, Single float
Currency money
Date datetime
String with 4000 characters or less varchar/nvarchar
String with more than 4000 characters text/ntext
One-dimensional Byte() array with 8000 bytes or less varbinary
One-dimensional Byte() array with more than 8000
bytes

image

See Also

How to create an OLE Automation object (Transact-SQL)

OLE Automation Sample Script

How to debug a custom OLE Automation server (Transact-SQL)

System Stored Procedures

Accessing and Changing Relational Data (SQL Server 2000)

Using Constants
A constant is a symbol that represents a specific data value. The format of a constant depends on the data type of the value it
represents. Constants are also called literals. Some examples of constants are:

Character strings:

'O''Brien'
'The level for job_id: %d should be between %d and %d.'

Unicode strings:

N'Michél'

Binary string constants:

0x12Ef
0x69048AEFDD010E

bit constants are represented by the numbers 0 or 1.

datetime constants:

'April 15, 1998'
'04/15/98'
'14:30:24'
'04:24 PM'

integer constants:

1894
2

decimal constants:

1894.1204
2.0

float and real constants:

101.5E5
0.5E-2

money constants:

$12
$542023.14

uniqueidentifier constants:

0xff19966f868b11d0b42d00c04fc964ff
'6F9619FF-8B86-D011-B42D-00C04FC964FF'

For numeric constants, to specify the sign of the numeric value use the unary + and - operators:

+$156.45
-73.52E8
-129.42
+442

Character and Unicode constants are assigned the default collation of the current database, unless you assign a specific collation
using the COLLATE clause:

'abc' COLLATE French_CI_AI
N'lustig' COLLATE German_Phonebook_CS_AS

Using Constants in Transact-SQL

In Transact-SQL, constants can be used in many ways. Here are some examples:

As a constant value in an arithmetic expression:

SELECT Price + $.10
FROM MyTable

As the data value a column is compared against in a WHERE clause:

SELECT *
FROM MyTable
WHERE LastName = 'O''Brien'

As the data value to be placed in a variable:

SET @DecimalVar = -1200.02

As the data value that should be placed in a column of the current row. This is specified with the SET clause of the UPDATE
statement or the VALUES clause of an INSERT statement:

UPDATE MyTable
SET Price = $99.99
WHERE PartNmbr = 1234

INSERT INTO MyTable VALUES (1235, $88.88)

As the character string that specifies the text of the message issued by a PRINT or RAISERROR statement:

PRINT 'This is a message.'

As the value to test for in a conditional statement such as an IF statement or CASE functions:

IF (@@SALESTOTAL > $100000.00)
 EXECUTE Give_Bonus_Procedure

See Also

Constants

INSERT

Expressions

LIKE

Operators

PRINT

ALTER TABLE

RAISERROR

CREATE TABLE

UPDATE

DELETE

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Using Functions
Microsoft® SQL Server™ 2000 has built-in functions to perform certain operations. The function categories are:

Aggregate functions.

Perform operations that combine multiple values into one. Examples are COUNT, SUM, MIN, and MAX.

Configuration functions.

Are scalar functions that return information about configuration settings.

Cursor functions.

Return information about the status of a cursor.

Date and time functions.

Manipulate datetime and smalldatetime values.

Mathematical functions.

Perform trigonometric, geometric, and other numeric operations.

Meta data functions.

Return information on the attributes of databases and database objects.

Rowset functions.

Return rowsets that can be used in the place of a table reference in a Transact-SQL statement.

Security functions.

Return information about users and roles.

String functions.

Manipulate char, varchar, nchar, nvarchar, binary, and varbinary values.

System functions.

Operate on or report on various system level options and objects.

System statistical functions.

Return information regarding the performance of SQL Server.

Text and image functions.

Manipulate text and image values.

Uses of Functions

Functions can be used or included in:

The select list of a query using a SELECT statement to return a value.

SELECT DB_NAME()

A WHERE clause search condition of a SELECT or data-modification (SELECT, INSERT, DELETE, or UPDATE) statement to limit
the rows that qualify for the query.

SELECT *
FROM [Order Details]
WHERE Quantity =
 (SELECT MAX(Quantity) FROM [Order Details])

The search condition (WHERE clause) of a view to make the view dynamically conform to the user or environment at run
time.

CREATE VIEW ShowMyEmploymentInfo AS

SELECT * FROM Employees
WHERE EmployeeID = SUSER_SID()
GO

Any expression.

A CHECK constraint or trigger to check for specified values when data is inserted.

CREATE TABLE SalesContacts
 (SalesRepID INT PRIMARY KEY CHECK (SalesRepID = SUSER_SID()),
 ContactName VARCHAR(50) NULL,
 ContactPhone VARCHAR(13) NULL)

A DEFAULT constraint or trigger to supply a value in case one is not specified on an INSERT.

CREATE TABLE SalesContacts
 (
 SalesRepID INT PRIMARY KEY CHECK (SalesRepID = SUSER_SID()),
 ContactName VARCHAR(50) NULL,
 ContactPhone VARCHAR(13) NULL,
 WhenCreated DATETIME DEFAULT GETDATE(),
 Creator INT DEFAULT SUSER_SID()
)
GO

Functions are always used with parentheses, even when there is no parameter. An exception to this are the niladic functions
(functions that take no parameters) used with the DEFAULT keyword. For more information about the DEFAULT keyword, see
ALTER TABLE and CREATE TABLE, or Defaults.

The parameters to specify a database, computer, login, or database user are sometimes optional. If they are not specified, they
default to the current database, host computer, login, or database user.

Functions can be nested (one function used inside another function).

Using Deterministic and Nondeterministic Functions

A function is either deterministic or nondeterministic. When it always returns the same result any time it is called with a specific
set of input values, the function is called deterministic. When it returns different results each time it is called with a specific set of
input values, it is nondeterministic.

A function's determinism can limit where it can be used. Only deterministic functions can be invoked in views and computed
columns indexed.

For more information see Deterministic and Nondeterministic Functions.

Accessing and Changing Relational Data (SQL Server 2000)

Using System Functions
System functions allow you to access information from Microsoft® SQL Server™ system tables without accessing the system
tables directly.

The names of some Transact-SQL system functions begin with two at signs (@@). Although in earlier versions of SQL Server the
@@functions are referred to as global variables, they are not variables and do not have the same behaviors as variables. The
@@functions are system functions, and their syntax usage follows the rules for functions.

This group of five pairs of system functions for databases, hosts, objects, logins, and users returns a name when given an
identifier (ID) and returns an ID when given a name:

DB_ID and DB_NAME

HOST_ID and HOST_NAME

OBJECT_ID and OBJECT_NAME

SUSER_ID and SUSER_NAME (or SUSER_SID and SUSER_SNAME)

USER_ID and USER_NAME

For example, use the DB_ID function to get a database ID number rather than executing a SELECT of the sysobjects table.

The following example shows how to retrieve the username for the current user who is logged on (using SQL Server
Authentication):

SELECT SUSER_NAME()

The following functions are similar, but they do not occur in complementary pairs and they take more than one input parameter:

COL_NAME

Returns a column name.

COL_LENGTH

Returns a column length.

INDEX_COL

Returns an index column name.

COL_LENGTH returns the length of a column, not the length of any individual strings stored in the column. Use the DATALENGTH
function to determine the total number of characters in a specific value.

This example returns the column length and data length of the LastName column in the Employees table:

SELECT COL_LENGTH('Employees', 'LastName') AS Col_Length,
 DATALENGTH(LastName) AS DataLength
FROM Employees
WHERE EmployeeID > 6

Note It is recommended that the system functions, Information Schema Views, or the system stored procedures be used to gain
access to system information without querying the system tables directly. System tables can change significantly between
versions of SQL Server.

See Also

System Functions

ALTER TABLE

DEFAULT Definitions

CREATE TABLE

Accessing and Changing Relational Data (SQL Server 2000)

Using String Functions
String functions are used for various operations on character and binary strings, and they return values commonly needed for
operations on character data. Most string functions can be used only on char, nchar, varchar, and nvarchar data types or the
data types that implicitly convert to them. A few string functions can also be used on binary and varbinary data.

You can use string functions to:

Retrieve only a portion of a string (SUBSTRING).

Search for similarities in the sounds of a character string (SOUNDEX and DIFFERENCE).

Find a starting position for a particular string in a column or expression. For example, the position number of the letter A in
"What a beautiful day!"

Concatenate strings into one string. For example, combining a first name, last name, and middle name or initial into a full
name.

Convert a nonstring value to a string value (such as converting the value of 15.7 stored as a float to char).

Inserting a specific string into an existing string. For example, inserting the string "Once" into the existing string of "upon a
time" to produce the string "Once upon a time".

When string functions operate on strings that have different collations, the collation of the result is determined using the rules of
collation precedence. For more information, see Collation Precedence.

Accessing and Changing Relational Data (SQL Server 2000)

Using SUBSTRING
Using SUBSTRING

The SUBSTRING function returns a portion of either a character or binary string, or a text string, and takes three parameters:

A character or binary string, a column name, or a string-valued expression that includes a column name.

The position at which the substring should begin.

The length (in number of characters, or in number of bytes for binary) of the string to be returned.

This example displays the first initial and last name of each employee, for example, A Fuller:

USE Northwind
SELECT SUBSTRING(FirstName, 1, 1), LastName
FROM Employees

This example displays the second, third, and fourth characters of the string constant abcdef:

SELECT x = SUBSTRING('abcdef', 2, 3)

x

bcd

(1 row(s) affected)

See Also

String Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing CHARINDEX and PATINDEX
Comparing CHARINDEX and PATINDEX

The CHARINDEX and PATINDEX functions return the starting position of a pattern you specify. PATINDEX can use wildcard
characters while CHARINDEX cannot.

These functions take two parameters:

The pattern whose position you want. With PATINDEX, the pattern is a literal string that can contain wildcard characters.
With CHARINDEX, the pattern is a literal string (no wildcard characters).

A string-valued expression, usually a column name, in which Microsoft® SQL Server™ searches for the specified pattern.

For example, find the position at which the pattern "wonderful" begins in a certain row of the notes column in the titles table.
USE pubs
SELECT CHARINDEX('wonderful', notes)
FROM titles
WHERE title_id = 'TC3218'

Here is the result set:

46
(1 row(s) affected)

If you do not restrict the rows to be searched, the query returns all rows in the table and it reports nonzero values for those rows
in which the pattern was found, and zero for all others.

For example, to use wildcards to find the position at which the pattern "candies" begins in any row of the Description column in
the Categories table:

USE Northwind
GO
SELECT CategoryID, PATINDEX('%candies%', Description)AS POSITION
FROM Categories
WHERE PATINDEX('%candies%', Description) <> 0

If you do not restrict the rows to be searched, the query returns all rows in the table and reports nonzero values for those rows in
which the pattern was found.

PATINDEX is useful with text data types; it can be used in a WHERE clause in addition to IS NULL, IS NOT NULL, and LIKE (the only
other comparisons that are valid on text in a WHERE clause).

See Also

String Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using STR
Using STR

The STR function converts numbers to characters, with optional parameters for specifying the total length of the result, including
the decimal point and the number of places after the decimal point.

Length and decimal parameters to STR (if supplied) should be positive. The default length is 10. The number is rounded to an
integer by default or if the decimal parameter is 0. The specified length should be greater than or equal to the part of the number
before the decimal point plus the number sign (if any):

This example converts the float expression of 123.45 to a character with a length of 6 characters and 2 decimal places.

SELECT STR(123.45, 6, 2)

Here is the result set:

123.45

(1 row(s) affected)

If the integer part of the expression converted to a character string exceeds the length specified in STR, STR returns ** for the
specified length. For example, the number 1234567.89 has 7 digits to the left of the decimal point. If the length parameter on STR
is 7 or more, the resulting string contains the integer and as many of the decimals as will fit. If the length parameter in STR is 6 or
less, then asterisks are returned. For example, the batch:

SELECT STR(1234567.89, 7, 2)
SELECT STR(1234567.89, 6, 2)

Here is the result set:

1234568

(1 row(s) affected)

(1 row(s) affected)

STR offers more flexibility than CAST when converting decimal data types to characters because it gives explicit control over
formatting.

See Also

String Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using STUFF
Using STUFF

The STUFF function inserts a string into another string. It deletes a specified length of characters in the first string at the start
position and then inserts the second string into the first string at the start position.

If the start position or the length is negative, or if the starting position is larger than length of the first string, a null string is
returned. If the length to delete is longer than the first string, it is deleted to the first character in the first string.

This example puts in the character string of "xyz" starting at the second character of the "abc" character expression, and replaces a
total of three characters.

SELECT STUFF('abc', 2, 3, 'xyz')

Here is the result set:

axyz

(1 row(s) affected)

See Also

String Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing SOUNDEX and DIFFERENCE
Comparing SOUNDEX and DIFFERENCE

The SOUNDEX function converts a character string to a four-digit code for use in a comparison. Vowels are ignored in the
comparison. Nonalphabetic characters are used to terminate the comparison. This function always returns some value.

This example displays the results of the SOUNDEX function for the similar character strings of "Smith" and "Smythe". When
character strings are similar, both strings have the same SOUNDEX codes.

SELECT SOUNDEX ('smith'), SOUNDEX ('smythe')

Here is the result set:
----- -----
S530 S530
(1 row(s) affected)

The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity between them, returning a
value from 0 through 4, where 4 is the best match. This example returns a DIFFERENCE of 4 for the first SELECT because
"Smithers" and "Smothers" differ by only one character.

SELECT DIFFERENCE('smithers', 'smothers')

Here is the result set:

 4
(1 row(s) affected)

The following example returns a DIFFERENCE of 3, indicating that the two character strings have a similar sound even though
they differ in several characters.

SELECT DIFFERENCE('Jeff', 'Geoffe')

See Also

String Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using text, ntext, and image Functions
There are two text, ntext, and image functions used exclusively for operations on text, ntext, and image data:

TEXTPTR returns a binary(16) object containing a pointer to a text, ntext, or image instance. The pointer remains valid
until the row is deleted.

TEXTVALID function checks whether a specified text pointer is valid or not.

Text pointers are passed to the READTEXT, UPDATETEXT, WRITETEXT, PATINDEX, DATALENGTH, and SET TEXTSIZE Transact-SQL
statements used to manipulate text, ntext, and image data.

In Transact-SQL statements, text, ntext, and image data is always referenced using pointers or the address of the data.

This example uses the TEXTPTR function to locate the text column (pr_info) associated with pub_id 0736 in the pub_info table
of the pubs database. It first declares the local variable @val. The text pointer (a long binary string) is then put into @val and
supplied as a parameter to the READTEXT statement, which returns 10 bytes starting at the fifth byte (offset of 4).

USE pubs
DECLARE @val varbinary(16)
SELECT @val = textptr(pr_info) FROM pub_info
WHERE pub_id = '0736'
READTEXT pub_info.pr_info @val 4 10

Here is the result set:

(1 row(s) affected)

pr_info
--
 is sample

Explicit conversion using the CAST function is supported from text to varchar, from ntext to nvarchar, and from image to
varbinary or binary, but the text or image data is truncated to 8,000 bytes and ntext data is truncated at 4,000 characters
(8,000 bytes). Conversion of text, ntext, or image to another data type is not supported, implicitly or explicitly. However, indirect
conversion of text, ntext or image data can be done, for example:

CAST(CAST(text_column_name AS VARCHAR(10)) AS INT).

See Also

Text and Image Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using Mathematical Functions
A mathematical function performs a mathematical operation on numeric expressions and returns the result of the operation.
Mathematical functions operate on the Microsoft® SQL Server™ system-supplied numeric data (decimal, integer, float, real,
money, smallmoney, smallint, and tinyint). The precision of built-in operations on float data type data is six decimal places by
default.

By default, a number passed to a mathematical function will be interpreted as a decimal data type. The CAST or CONVERT
functions can be used to change the data type to something else, such as a float. For example, the value returned by the FLOOR
function has the data type of the input value. The input of this SELECT statement is a decimal, and FLOOR returns 123, which is a
decimal value:

SELECT FLOOR(123.45)

123

(1 row(s) affected)

But, this example uses a float value and FLOOR returns a float value:

SELECT FLOOR (CONVERT (float, 123.45))

123.000000

(1 row(s) affected)

A floating point underflow error occurs when the float or real result of a mathematical function is too small to display. A result of
0.0 is returned and no error message is displayed. For example, the mathematical calculation of 2 to the -100.0 power has a result
0.0.

Domain errors occur when the value provided in the mathematical function is not a valid value. For example, values specified for
the ASIN function must be from -1.00 through 1.00. If a range of -2 is specified, a domain error occurs.

Range errors occur when the value specified is outside of the allowable values. For example, POWER(10.0, 400) is out of the range
of the maximum of ~2e+308 of the float data type, while POWER(-10.0, 401) is out of the range of the minimum of ~ -2e+308
of the float data type.

This table shows mathematical functions that produce either a domain or range error.

Mathematical function Result
SQRT(-1) Domain error.
POWER(10.0, 400) Arithmetic Overflow error.
POWER(10.0, -400) Value of 0.0 (floating point underflow).

Error traps are provided to handle domain or range errors of these functions. You can use:

SET ARITHABORT ON, which terminates the query and quits the user-defined transaction. The SET ARITHABORT setting
overrides the setting for SET ANSI_WARNINGS.

SET ANSI_WARNINGS ON, which stops the command.

SET ARITHIGNORE ON, which causes no warning message to be displayed. Both the SET ARITHABORT and SET
ANSI_WARNINGS settings override the SET ARITHIGNORE setting.

If neither of these options is set, SQL Server returns NULL and returns a warning message after the query is executed. For more
information, see SET ARITHABORT, SET ANSI_WARNINGS, and SET ARITHIGNORE.

Internal conversion to float can cause loss of precision if either the money or numeric data types are used.

Accessing and Changing Relational Data (SQL Server 2000)

Using Trigonometric Functions
Using Trigonometric Functions

Microsoft® SQL Server™ 2000 provides trigonometric functions that return radians.

Functions returning radians Use radians as input value
ACOS TAN
COS SIN
ATAN ASIN
ATN2
COT

ACOS and COS

Both ACOS and COS are trigonometric functions. The ACOS function returns the angle, in radians, whose cosine is the given float
expression. The COS function returns the cosine of the specified angle, in radians, given the float expression. For example, this
SELECT statement calculates the ACOS of -.997 and the COS for the value 1.134:

SELECT ACOS(-.997), COS(1.134)

Therefore, the angle that measures 3.06411360866591 radians has a cosine value of -.997, and the angle measuring 1.134
radians has a cosine value of 1.134.

The valid ranges for ACOS are from -1 through 1.

ASIN and SIN

Both ASIN and SIN are trigonometric functions that use a float expression. The ASIN function calculates the angle, measured in
radians, whose sine is the given float expression. The SIN function calculates the trigonometric sine value of the angle, measured
in radians, as a float expression.

This example calculates the ASIN of -.7582 and the SIN of 5. The angle that measures -0.860548023283932 in radians has a sine
value of -.7582 and the angle that measures 5 radians has a sine value of -0.958924274663138.

SELECT ASIN(-.7582), SIN(5)

The valid ranges for ASIN are from -1 through 1.

ATAN, ATN2, TAN, and COT

The ATAN, ATN2, TAN, and COT functions are mathematical functions. The ATAN function returns the measurement of the angle,
in radians, whose tangent is the given float expression. An angle having a tangent value of -27.29 measures
-1.53416925536896 in radians.

The ATN2 function returns the angle, in radians, for an angle whose tangent is between the two given float expressions. An angle
with a tangent from 3.273 through 15 measures 0.214832755968629 in radians.

The TAN function returns the trigonometric tangent of the given float expression. An angle that measures 27.92 radians has a
tangent of -0.36994766163616.

The COT function returns the trigonometric cotangent of the specified angle, in radians, specified in the given float expression. An
angle of 97.1928 radians has a cotangent value of -5.02149424849997.

DEGREES

The DEGREES function returns a numeric expression, the measurement of an angle, in degrees, from the angle's measurement in
radians. An angle measuring
-14.578 radians measures -835.257873741714090000 degrees.

SELECT DEGREES(-14.578)

RADIANS

The RADIANS function calculates the angle in radians given the angle's measurement in degrees. To calculate the measurement in
radians of an angle that measures 10.75 degrees, use:

SELECT RADIANS(10.75)

See Also

Mathematical Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing CEILING and FLOOR
Comparing CEILING and FLOOR

The CEILING function returns the smallest integer greater than or equal to the given numeric expression. The FLOOR function
returns the largest integer less than or equal to the given numeric expression. For example, given a numeric expression of
12.9273, CEILING returns 13, and FLOOR returns 12. The return value of both FLOOR and CEILING has the same data type as the
input numeric expression.

See Also

Mathematical Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing LOG and LOG10
Comparing LOG and LOG10

The LOG function returns the natural logarithm for the given float expression. Natural logarithms are calculated by using the
base-2 system. However, the LOG10 function returns the base-10 logarithm. Use both LOG and LOG10 for trigonometric
applications. For example, this SELECT statement calculates both the LOG and LOG10 of the value 1.75:

SELECT LOG(1.75), LOG10(1.75)

See Also

Mathematical Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using the POWER and EXP Exponential Functions
Using the POWER and EXP Exponential Functions

The POWER function returns the value of the given numeric expression to the specified power. POWER(2,3) returns 2 to the third
power, or the value 8. Negative powers can be specified, so POWER(2.000, -3) returns 0.125. Notice that the result of POWER(2, -
3) is 0. This is because the result is the same data type as the given numeric expression. Therefore, if the result has three decimal
places, the number to raise to a given power must have three decimals, too.

The EXP function returns the exponential value in scientific notation of the given float expression. So, with a value of
198.1938327, the EXP function returns a value of 1.18710159597953e+086.

SELECT EXP(198.1938327)

See Also

Mathematical Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using RAND
Using RAND

The RAND function calculates a random floating-point number from 0 through 1, and can optionally take a tinyint, int, or
smallint value for the starting point of the random number to calculate.

This example calculates two random numbers. The first RAND() function lets Microsoft® SQL Server™ pick the seed value, and
the second RAND() function uses the value of 3 for the starting position.

SELECT RAND(), RAND(3)

The RAND function is a pseudorandom number generator that operates in a manner similar to the C run-time library rand
function. If no seed is provided, the system generates its own variable seed numbers. If you call RAND with a seed value, you must
use variable seed values to generate random numbers. If you call RAND multiple times with the same seed value, it returns the
same generated value. This script returns the same value for the calls to RAND because they all use the same seed value:

SELECT RAND(159784)
SELECT RAND(159784)
SELECT RAND(159784)

A common way to generate random numbers from RAND is to include something relatively variable as the seed value, such as
adding several parts of a GETDATE:

SELECT RAND((DATEPART(mm, GETDATE()) * 100000)
 + (DATEPART(ss, GETDATE()) * 1000)
 + DATEPART(ms, GETDATE()))

When you use an algorithm based on GETDATE to generate seed values, RAND can still generate duplicate values if the calls to
RAND are made within the interval of the smallest datepart used in the algorithm. This is especially likely if the calls to RAND are
included in a single batch. Multiple calls to RAND in a single batch can be executed within the same millisecond, which is the
smallest increment of DATEPART. In this case, incorporate a value based on something other than time to generate the seed
values.

See Also

Mathematical Functions

Accessing and Changing Relational Data (SQL Server 2000)

Date Functions
Date functions are used to display information about dates and times. These functions manipulate datetime and smalldatetime
values, performing arithmetic operations on them. Date functions can be used anywhere an expression can be used.

SQL Server recognizes a wide variety of datetime data entry formats. You can use the SET DATEFORMAT statement to set the
order of the dateparts (month/day/year) for entering datetime or smalldatetime data. Enclose datetime or smalldatetime
values in single quotation marks.

See Also

Date and Time Functions

Accessing and Changing Relational Data (SQL Server 2000)

Using GETDATE
Using GETDATE

The GETDATE function produces the current date and time in Microsoft® SQL Server™ internal format for datetime values.
GETDATE takes the null parameter ().

This example finds the current system date and time:

SELECT GETDATE()

Here is the result set:

July 29 1995 2:50 PM

(1 row(s) affected)

You can use GETDATE in designing a report to have the current date and time printed every time the report is produced. GETDATE
is also useful for functions such as logging the time a transaction occurred on an account.

You can use GETDATE anywhere to return the current system date. For example, you can use GETDATE as a default value for data
entry, with a local variable, or comparing an order date to today's date.

See Also

Date and Time Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing DATEPART and DATENAME
Comparing DATEPART and DATENAME

The DATEPART and DATENAME functions produce the specified part of a datetime value (the year, quarter, day, hour, and so on)
as either an integer or an ASCII string. Because smalldatetime is accurate only to the minute, when a smalldatetime value is
used with either of these functions, the seconds and milliseconds returned are always zero.

These examples assume the date May 29:

SELECT DATEPART(month, GETDATE())

Here is the result set:

5

(1 row(s) affected)

SELECT DATENAME(month, GETDATE())

Here is the result set:

May

(1 row(s) affected)

See Also

Date and Time Functions

Accessing and Changing Relational Data (SQL Server 2000)

Comparing DATEADD and DATEDIFF
Comparing DATEADD and DATEDIFF

The DATEADD function adds an interval to a date you specify. For example, if the publication dates of all books in the titles table
slipped three days, you could get the new publication dates with this statement:

USE pubs
SELECT DATEADD(day, 3, pubdate)
FROM titles

If the date parameter is a smalldatetime data type, the result is also a smalldatetime. You can use DATEADD to add seconds or
milliseconds to a smalldatetime value, but doing this is meaningful only if the result date returned by DATEADD changes by at
least 1 minute.

The DATEDIFF function calculates the amount of time in dateparts between the second and first of two dates you specify. In other
words, it finds an interval between two dates. The result is a signed integer value equal to date2 - date1 in date parts.

This query uses the date November 30, 1995, and finds the number of days that elapsed between pubdate and that date:

USE pubs
SELECT DATEDIFF(day, pubdate, 'Nov 30 1995')
FROM titles

For the rows in titles having a pubdate of October 21, 1995, the result produced by the last query is 40. (There are 40 days
between October 21 and November 30.) To calculate an interval in months, use this query:

USE pubs
SELECT interval = DATEDIFF(month, pubdate, 'Nov 30 1995')
FROM titles

The query produces a value of 1 for the rows with a pubdate in October and a value of 5 for the rows with a pubdate in June.

When the first date in the DATEDIFF function is later than the second date specified, the resulting value is negative. Because two of
the rows in titles have values for pubdate assigned using the GETDATE function as a default, these values are set to the date that
your pubs database was created and return negative values in the two preceding queries.

If one or both of the date arguments is a smalldatetime value, they are converted to datetime values internally for the
calculation. Seconds and milliseconds in smalldatetime values are automatically set to 0 for the purpose of calculation.

See Also

CAST and CONVERT

DATENAME

Date and Time Functions

DATEPART

DATEADD

GETDATE

DATEDIFF

SET DATEFORMAT

Accessing and Changing Relational Data (SQL Server 2000)

Functions That Return User Names and User IDs
Several system functions return user names and user IDs. Understanding the parameters and output of these functions requires
an understanding of the types of names and IDs used in Microsoft® SQL Server™ 2000.

Each user logging on to SQL Server has two levels of names in SQL Server, and each name is associated with a unique ID:

Login names.

Each user authorized to log on to SQL Server has one login name that gives them access to an instance of SQL Server. There
are two types of login names:

Microsoft Windows® account names.

Members of the sysadmin or securityadmin fixed server roles can authorize the Windows accounts of individual
users or Windows groups to log on to an instance of SQL Server using sp_grantlogin. The user identified by the
Windows account, or any person in the Windows group, can then connect to an instance of SQL Server using
Windows Authentication. Each Windows account or group name is stored in master.dbo.syslogins.loginname.
The Windows security_identifier for the Windows account or group is stored in syslogins.sid.

SQL Server login names.

These are used when logging-on using SQL Server Authentication. SQL Server login names are defined by members
of the sysadmin or securityadmin fixed server roles using sp_addlogin. Each SQL Server login name is stored in
master.dbo.syslogins.loginname. SQL Server generates a GUID used as a security_identifier and stores it in
syslogins.sid.

SQL Server 2000 uses master.dbo.syslogins.sid as the security_identifier for the login name.

Database user name.

Each Windows account or SQL Server login must be associated with a user name in each database the user is authorized to
access, or the database must have guest access enabled. Database user names are defined by members of the db_owner or
db_accessadmin fixed database role, and are stored in the sysusers table found in each database. Each database user
name is associated with a database user ID stored in sysusers.uid.

The security_identifier for each user is stored in sysusers.sid; therefore, users can be mapped back to their associated
logins. It is less confusing if the same name for the database user is used for the SQL Server login or Windows account;
however, there is no requirement to do this.

For more information about login and database user accounts, see Logins, Users, Roles, and Groups.

Getting Login Accounts or IDs

When connected to SQL Server 2000, use:

SUSER_SNAME to get the SQL Server login name or Windows account associated with a security_identifier.

SUSER_SID to get the security_identifier associated with a SQL Server login name or Windows NT account.

SUSER_SID() (SUSER_SID specified without a login_account parameter) to get the security_identifier of the current
connection regardless of whether SQL Server Authentication or Windows Authentication is used.

The SQL-92 function SYSTEM_USER to get the Windows account for a Windows Authentication connection or the SQL
Server login name for an SQL Server Authentication connection. In Transact-SQL, SYSTEM_USER is implemented as a
synonym for SUSER_SNAME() (SUSER_SNAME specified without a security_identifier).

In SQL Server 2000, the functions that return login names or accounts operate in this manner:

SUSER_SNAME(security_identifier)

SUSER_SNAME takes either:

The security_identifier for a Windows account or group, in which case it returns the name of the Windows account
or group.

The pseudo security_identifier generated for a SQL Server login, in which case it returns the SQL Server login name.

If a security_identifier is not specified for a connection made using Windows Authentication, SUSER_SNAME returns the
name of the Windows account associated with the connection. If the connection was made using SQL Server Authentication,
SUSER_SNAME returns the SQL Server login associated with the connection.

SYSTEM_USER

This SQL-92 function is implemented as a synonym for SUSER_SNAME() (SUSER_SNAME specified without a
security_identifier parameter) in Transact-SQL.

Getting Database User Names or User IDs

When connected to SQL Server 2000, use:

USER_ID to get the database user ID associated with a database user name.

USER_ID() to get the database user ID associated with the current connection.

USER_NAME to get the database user name associated with a database user ID.

Either the SQL-92 CURRENT_USER or SESSION_USER functions to get the database user name associated with the current
connection. In Transact-SQL these functions are implemented as synonyms for the USER_NAME() (USER_NAME specified
without a database_user_ID parameter). The Transact-SQL function USER is also implemented as a synonym for
USER_NAME().

SQL-92 allows for SQL statements to be coded in SQL modules that can have authorization identifiers separate from the
authorization identifier of the user that has connected to a SQL database. SQL-92 specifies that SESSION_USER always
return the authorization identifier of the user that made the connection. CURRENT_USER returns the authorization identifier
of the SQL module for any statements executed from a SQL module, or of the user that made the connection if the SQL
statements were not executed from a SQL module. If the SQL module does not have a separate authorization identifier,
SQL-92 specifies that CURRENT_USER return the same value as SESSION_USER. Microsoft SQL Server does not have
separate authorization identifiers for SQL modules; therefore, CURRENT_USER and SESSION_USER are always the same.
The USER function is defined by SQL-92 as a backward compatibility function for applications written to earlier versions of
the standard. It is specified to return the same value as CURRENT_USER.

In SQL Server, the functions that return login names or accounts operate in this manner:

USER_ID('database_user_name')

USER_ID returns the database user ID associated with the specified database user name. If database_user_name is not
specified, USER_ID returns the database user ID associated with the current connection.

USER_NAME(database_user_ID)

USER_NAME returns the database user name associated with the specified database user ID. If database_user_ID is not
specified, USER_NAME returns the database user name associated with the current connection.

CURRENT_USER, SESSION_USER, USER

These functions are synonyms for USER_NAME() (USER NAME specified without a database_user_ID parameter).

See Also

CURRENT_USER

SYSTEM_USER

USER_ID

SUSER_SID

USER_NAME

SUSER_SNAME

Accessing and Changing Relational Data (SQL Server 2000)

Conversion Functions
Use the conversion functions, CAST and CONVERT, to convert expressions of one data type to another data type when these
conversions are not performed automatically by Microsoft® SQL Server™ 2000. These conversion functions are also used to
obtain a variety of special data formats. Either of the conversion functions can be used in the select list, in the WHERE clause, and
anywhere an expression is allowed.

Use CAST rather than CONVERT if you want Transact-SQL program code to comply with SQL-92. Use CONVERT rather than CAST
to take advantage of the style functionality in CONVERT.

When using either CAST or CONVERT, two pieces of information are required:

The expression to convert (for example, the sales report requires the sales data to be converted from monetary data to
character data).

The data type to convert the given expression to, for example, varchar or any other SQL Server-supplied data type.

Unless you store the converted value, a conversion is valid only for the length of the CAST or CONVERT function.

This example uses CAST in the first SELECT statement and CONVERT in the second SELECT statement to convert the title column
to a char(50) column, to make the results more readable:

USE pubs
SELECT CAST(title AS char(50)), ytd_sales
FROM titles
WHERE type = 'trad_cook'

Or

USE pubs
SELECT CONVERT(char(50), title), ytd_sales
FROM titles
WHERE type = 'trad_cook'

Here is the result set: (for either query)

 ytd_sales
--- -----------
Onions, Leeks, and Garlic: Cooking Secrets of the 375
Fifty Years in Buckingham Palace Kitchens 15096
Sushi, Anyone? 4095

(3 row(s) affected)

In this example, the ytd_sales column, an int column, is converted to a char(20) column so that it can be used with the LIKE
predicate:

USE pubs
SELECT title, ytd_sales
FROM titles
WHERE CAST(ytd_sales AS char(20)) LIKE '15%'
 AND type = 'trad_cook'

Here is the result set:
Title ytd_sales
--- ---------
Fifty Years in Buckingham Palace Kitchens 15096

(1 row(s) affected)

SQL Server automatically handles certain data type conversions. For example, if you compare a char and a datetime expression,
or a smallint and an int expression, or char expressions of different lengths, SQL Server converts them automatically. This is
called an implicit conversion. You do not have to use the CAST function for these conversions. However, it is acceptable to use the
CAST when:

Two expressions are exactly the same data type.

Two expressions are implicitly convertible.

It is necessary to explicitly convert the data types.

If you attempt a conversion that is not possible (for example, converting a char expression that includes letters to int), SQL Server
displays an error message.

If you do not specify a length when converting for the data type, SQL Server automatically supplies a length of 30.

When converting to datetime or smalldatetime, SQL Server rejects all values it cannot recognize as dates (including dates
earlier than January 1, 1753). You can convert datetime values to smalldatetime when the date is in the proper range (from
January 1, 1900 through June 6, 2079). The time value is rounded to the nearest minute.

Converting to bit changes any nonzero value to 1.

When converting to money or smallmoney, integers are assumed to be monetary units. For example, the integer value of 4 is
converted to the money equivalent of 4 dollars (for us_english, the default language). Numbers to the right of the decimal in
floating-point values are rounded to four decimal places for money values. Expressions of data types char or varchar that are
being converted to an integer data type must consist only of digits and an optional plus or minus sign (+ or -). Leading blanks are
ignored. Expressions of data types char or varchar converted to money can also include an optional decimal point and leading
dollar sign ($).

Expressions of data types char or varchar that are being converted to float or real can also include optional exponential notation
(e or E, followed by an optional + or - sign, and then a number).

When character expressions are converted to a data type of a different size, values too long for the new data type are truncated,
and SQL Server displays an asterisk (*) in both the osql utility and SQL Query Analyzer. When numeric expressions are too long
for the new data type to display, values are truncated. This is an example of character truncation:

USE pubs
SELECT SUBSTRING(title, 1, 25) AS Title, CONVERT(char(2), ytd_sales)
FROM titles
WHERE type = 'trad_cook'

Here is the result set:

Title
------------------------- --
Onions, Leeks, and Garlic *
Fifty Years in Buckingham *
Sushi, Anyone? *

(3 row(s) affected)

When converting between data types in which the target data type has fewer decimal places than the source data type, the value
is truncated. For example, the result of CAST(10.3496 AS money) is $10.35.

You can explicitly convert text data to char or varchar, and image data to binary or varbinary. Because these data types are
limited to 8,000 characters, you are limited to the maximum length of the character and binary data types, 8,000 characters. You
can explicitly convert ntext data to nchar or nvarchar, but the maximum length is 4,000 characters. If you do not specify the
length, the converted value has a default length of 30 characters. Implicit conversion is not supported.

The style Parameter

The style parameter of CONVERT provides a variety of date display formats when converting datetime data to char or varchar.
The number you supply as the style parameter determines how the datetime data is displayed. The year can be displayed in
either two or four digits. By default, SQL Server supplies a two-digit year. To display a four-digit year including the century (yyyy),
even if the year data was stored by using a two-digit year format, add 100 to a style value to get a four-place year.

This example shows CONVERT with the style parameter:

SELECT CONVERT(char(12), GETDATE(), 3)

This statement converts the current date to style 3, dd/mm/yy.

See Also

CAST and CONVERT

Functions

Accessing and Changing Relational Data (SQL Server 2000)

Invoking User-Defined Functions
When you reference or invoke a user-defined function, you specify the function name followed by parentheses. Within the
parentheses, you can specify expressions called arguments that provide the data to be passed in to the parameters. You cannot
specify parameter names in the arguments when invoking a function. When you invoke a function, you must supply argument
values for all of the parameters and you must specify the argument values in the same sequence in which the parameters are
defined in the CREATE FUNCTION statement. For example, if a function named fn_MyIntFunc that returns an integer is defined
with an integer parameter and an nchar(20) parameter, it can be invoked using:

SELECT *
FROM SomeTable
WHERE PriKey = dbo.fn_MyIntFunc(1, N'Anderson')

This is an example of invoking a function named fn_MyTableFunc defined to return a table:

SELECT *
FROM dbo.fn_MyTableFunc(123.09, N'O''Neill')

See Also

User-Defined Functions

CREATE FUNCTION

Accessing and Changing Relational Data (SQL Server 2000)

Invoking User-Defined Functions That Return a Scalar Value
Invoking User-Defined Functions That Return a Scalar Value

You can invoke a user-defined function that returns a scalar value anywhere a scalar expression of the same data type is allowed
in Transact-SQL statements:

Queries

User-defined functions that return scalar values are allowed in these locations:

As an expression in the select_list of a SELECT statement:

SELECT *, dbo.fn_CalculateDaysLate(RequiredDate) AS DaysLate
FROM Northwind.dbo.Employees

As an expression or string_expression in a WHERE or HAVING clause predicate:

SELECT *
FROM Northwind.dbo.[Order Details]
WHERE UnitPrice < dbo.fn_MeanUnitPrice()

As a group_by_expression in a GROUP BY clause.

As an order_by_expression in an ORDER BY clause.

As an expression in the SET clause in an UPDATE statement:

UPDATE Orders
 SET ShipVia = dbo.fn_FindLeastCostShipper(ShipCity)
 WHERE OrderID = 10274

As an expression in the VALUES clause of an INSERT statement:

INSERT INTO Shippers
 VALUES (4, dbo.fn_GetShipperName(), n'(503)555-9931'

User-defined functions referenced in these locations are logically executed once per row.

CHECK constraints

User-defined functions that return scalar values can be invoked in CHECK constraints if the argument values passed to the
function reference columns only in the table or constants. Each time the query processor checks the constraint, query processor
calls the function with the argument values associated with the current row being checked. The owner of a table must also be the
owner of the user-defined function invoked by a CHECK constraint on the table.

DEFAULT definitions

User-defined functions can be invoked as the constant_expression of DEFAULT definitions if the argument values passed to the
function contains only constants. The owner of the table must also be the owner of the user-defined function invoked by a
DEFAULT definition on the table.

Computed columns

Functions can be invoked by computed columns if the argument values passed to the function reference only columns in the table
or constants. The owner of the table must also be the owner of the user-defined function invoked by a computed column in the
table.

Assignment operators

Assignment operators (left_operand = right_operand) can invoke user-defined functions that return a scalar value in the
expression specified as the right operand.

Control-of-Flow statements

User-defined functions that return scalar values can be invoked by control-of-flow statements in their Boolean expressions.

CASE expressions

User-defined functions that return a scalar value can be invoked in any of the CASE expressions.

PRINT statements

User-defined functions that return a character string can be invoked as the string_expr expression of PRINT statements.

Functions and stored procedures

Function arguments can also be a reference to a user-defined function that returns a scalar value.

RETURN integer_expression statements in stored procedures can invoke user-defined functions that return an integer as the
integer_expression.

RETURN return_type_spec statements in user-defined functions can invoke user-defined functions that return a scalar data
type such as the return_type_spec, provided the value returned by the invoked user-defined function can be implicitly
converted to the return data type of the invoking function.

Executing User-Defined Functions That Return a Scalar Value

You can execute user-defined functions that return scalar values in the same manner as stored procedures. When executing a
user-defined function that returns a scalar value, the parameters are specified as they are for stored procedures:

The argument values are not enclosed in parentheses.

Parameter names can be specified.

If parameter names are specified, the argument values do not have to be in the same sequence as the parameters.

This is a definition of a user-defined function that returns a decimal:

CREATE FUNCTION fn_CubicVolume
-- Input dimensions in centimeters.
 (@CubeLength decimal(4,1), @CubeWidth decimal(4,1),
 @CubeHeight decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
WITH SCHEMABINDING
AS
BEGIN
 RETURN (@CubeLength * @CubeWidth * @CubeHeight)
END

This is an example of executing the fn_CubicVolume function. Using the Transact-SQL EXECUTE statement, the arguments are
identified in a different order than the parameters in the function definition:

DECLARE @MyDecimalVar decimal(12,3)
EXEC @MyDecimalVar = dbo.fn_CubicVolume @CubeLength = 12.3,
 @CubeHeight = 4.5, @CubeWidth = 4.5

This is an example of executing the fn_CubicVolume function without specifying the parameter names:

DECLARE @MyDecimalVar decimal(12,3)
EXEC @MyDecimalVar = dbo.fn_CubicVolume 12.3, 4.5, 4.5

You can also use the ODBC CALL syntax to execute the fn_CubicVolume function from OLE DB or ODBC applications:

-- First use SQLBindParam to bind the return value parameter marker
-- to a program variable of the appropriate type
SQLExecDirect(hstmt,
 "{ CALL ? = fn_CubicVolume(12.3, 4.5, 4.5) }",
 SQL_NTS);

Accessing and Changing Relational Data (SQL Server 2000)

Invoking User-Defined Functions That Return a Table Data
Type
Invoking User-Defined Functions That Return a Table Data Type

You can invoke a user-defined function that returns a table where table expressions are allowed in the FROM clause of SELECT,
INSERT, UPDATE, or DELETE statements. An invocation of a user-defined function that returns a table can be followed by an
optional table alias. This example illustrates calling a function fn_Products and assigning an alias:

SELECT OD.OrderID, OD.ProductID, fnPr.Price
FROM OrderDetails as OD, fn_Products('Discontinued') AS fnPr
WHERE OD.ProductID = fnPr.ProductID
ORDER BY OD.OrderID, OD.ProductID

When a user-defined function that returns a table is invoked in the FROM clause of a subquery, the function arguments cannot
reference any columns from the outer query.

Static, read-only cursors are the only type of cursor that can be opened on a SELECT statement whose FROM clause refers to a
user-defined function that returns a table.

A SELECT statement that references a user-defined function that returns a table invokes the function once.

See Also

User-Defined Functions That Return a Table

Inline User-Defined Functions

table

Accessing and Changing Relational Data (SQL Server 2000)

Invoking Built-in User-Defined Functions
Invoking Built-in User-Defined Functions

Microsoft® SQL Server™ 2000 implements several built-in functions as user-defined functions that return a table. The invocation
of these built-in user-defined functions follows special rules:

For built-in user-defined functions that return a table, the function name must be specified with a leading double colon (::)
to distinguish it from user-defined functions that are not built-in. It also must be specified as a one-part name with no
database or owner qualifications. For example:

SELECT *
FROM ::fn_helpcollations()

For built-in user-defined functions that return a scalar value, the function name must be specified as a one-part name (do
not specify database or owner). Do not specify a leading double colon (::).

Accessing and Changing Relational Data (SQL Server 2000)

Expressions
An expression is a combination of identifiers, values, and operators that Microsoft® SQL Server™ can evaluate to get a result. The
data can be used in several different places when accessing or changing data. Expressions can be used, for example, as part of the
data to retrieve (in a query) or as a search condition to look for data meeting a set of criteria.

An expression can be a:

Constant

Function

Column name

Variable

Subquery

CASE, NULLIF or COALESCE

An expression can also be built from combinations of these entities joined by operators.

In the following SELECT statement, for each row of the result set, SQL Server can resolve LastName to a single value; therefore, it
is an expression.

SELECT LastName
FROM Northwind..Employees

An expression can also be a calculation, such as (price * 1.5) or (price + sales_tax).

In an expression, enclose character date values in single quotation marks. In the following SELECT the character literal B% used as
the pattern for the LIKE clause must be in single quotation marks:

SELECT LastName, FirstName
FROM Northwind..Employees
WHERE LastName LIKE 'B%'

In the following SELECT, the date value is enclosed in quotation marks:

SELECT *
FROM Northwind..Orders
WHERE OrderDate = 'Sep 13 1996'

In this example, more than one expression is used in the query. For example, col1, SUBSTRING, col3, price, and 1.5 are all
expressions.

SELECT col1, SUBSTRING('This is a long string', 1, 5), col3, price * 1.5
FROM mytable

See Also

CASE

INSERT

COALESCE

UPDATE

Functions

DELETE

SELECT

Expressions

Accessing and Changing Relational Data (SQL Server 2000)

Using Operators in Expressions
Operators allow you to perform arithmetic, comparison, concatenation, or assignment of values. For example, you can test data to
verify that the country column for your customer data is populated (or not NULL).

In queries, anyone who can see the data in the table that needs to be used with some type of operator can perform operations.
You need the appropriate permissions before you can successfully change the data.

Operators are used in Microsoft® SQL Server™ to:

Change data, either permanently or temporarily.

Search for rows or columns that meet a specified condition.

Implement a decision between columns of data or between expressions.

Test for specific conditions before beginning or committing a transaction, or before executing specific lines of code.

SQL Server has seven categories of operators.

To perform this type of operation Use this operator category
Compare a value against another value or an
expression.

Comparison operators

Test for the truth of a condition, such as AND, OR,
NOT, LIKE, ANY, ALL, IN.

Logical

Addition, subtraction, multiplication, division,
modulo.

Arithmetic operators

Performs an operation on one operand, such as
positive or negative or one's complement.

Unary

Temporarily turn regular numeric values (like 150)
into an integer and perform bitwise (0 and 1)
arithmetic.

Bitwise Operators

Either permanently or temporarily combine two
strings (either character or binary data) into one
string.

String Concatenation Operator

Assigns a value to a variable, or associates a result
set column with an alias.

Assignment

An expression can be built from several smaller expressions combined by operators. In these complex expressions, the operators
are evaluated in order based on the SQL Server definition of operator precedence. Operators with higher precedence are
performed before operators with lower precedence. For more information, see Operators.

When simple expressions are combined to form a complex expression, the data type of the result is determined by combining the
rules for the operators with the rules for data type precedence. If the result is a character or Unicode value, the collation of the
result is determined by combining the rules for the operators with the rules for collation precedence. There are also rules that
determine the precision, scale, and length of the result based on the precision, scale, and length of the simple expressions.

See Also

Collation Precedence

Data Type Precedence

Precision, Scale, and Length

Accessing and Changing Relational Data (SQL Server 2000)

Arithmetic Operators
Arithmetic Operators

Arithmetic operators can be used for any arithmetic computations, such as:

Addition.

Subtraction.

Multiplication.

Division.

Modulo (the remainder from a division operation).

Here is some information about arithmetic operators:

When there is more than one arithmetic operator in an expression, multiplication, division, and modulo are calculated first,
followed by subtraction and addition.

When all arithmetic operators in an expression have the same level of precedence, the order of execution is left to right.

Expressions within parentheses take precedence over all other operations.

The following SELECT statement subtracts the part of the year-to-date sales that the author receives (sales * author's royalty
percentage / 100) from the total sales. The result is the amount of money the publisher receives. The product of ytd_sales and
royalty is calculated first because the operator is multiplication. Next, the total is divided by 100. The result is subtracted from
ytd_sales.

USE pubs
SELECT title_id, ytd_sales - ytd_sales * royalty / 100
FROM titles

For clarity, you can use parentheses:

USE pubs
SELECT title_id, ytd_sales - ((ytd_sales * royalty) / 100)
FROM titles

You can also use parentheses to change the order of execution. Calculations inside parentheses are evaluated first. If parentheses
are nested, the most deeply nested calculation has precedence. For example, the result and meaning of the preceding query can
be changed if you use parentheses to force the evaluation of subtraction before multiplication:

USE pubs
SELECT title_id, (ytd_sales - ytd_sales) * royalty / 100
FROM titles

See Also

- (Subtract)

+ (Add)

* (Multiply)

/ (Divide)

Accessing and Changing Relational Data (SQL Server 2000)

Bitwise Operators
Bitwise Operators

Bitwise operators are used on int, smallint, or tinyint data. The ~ (Bitwise NOT) operator can also use bit data. All bitwise
operators perform an operation on the one or more specified integer values as translated to binary expressions within Transact-
SQL statements. For example, the ~ (Bitwise NOT) operator changes binary 1s to 0s and 0s to 1s. To check bitwise operations, you
can convert or calculate decimal values.

For example, you want to add 150 and 75 together, but you're interested in not only the decimal value of 225, but want to use
binary arithmetic (addition of 0s and 1s). Use the bitwise AND operator (&) for this purpose.

If you are storing integer data (normal decimal values like the 150 and 75 mentioned earlier) and want to perform internal
translation to do binary math, use bitwise operators. Bitwise operators are also valuable to get a NOT value which is not
necessarily the exact opposite.

See Also

& (Bitwise AND)

~ (Bitwise NOT)

| (Bitwise OR)

^ (Bitwise Exclusive OR)

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Comparison Operators
Comparison Operators

Comparison operators are used with character, numeric, or date data and can be used in the WHERE or HAVING clause of a query.
Comparison operators evaluate to a Boolean data type; they return TRUE or FALSE based on the outcome of the tested condition.

For example, to calculate a bonus for those employees who have been hired on or before March 15, 1998, a computation of
whether the hire_date for an employee is less than or equal to March 15, 1998 provides the list of employees who should receive
bonuses.

Valid comparison operators are:

> (greater than).

< (less than).

= (equals).

<= (less than or equal to).

>= (greater than or equal to).

!= (not equal to).

<> (not equal to).

!< (not less than).

!> (not greater than).

Comparison operators can also be used in program logic to check for a condition. For example, if the country column is UK rather
than Spain, different shipping rates may apply. In this case, a combination of a comparison operator, an expression (the column
name), a literal ('UK') and a control-of-flow programming keyword (IF) are used together to achieve this purpose.

Anyone with access to the actual data (for queries) can use comparison operators in additional queries. For those data-
modification statements, it is recommended that you use comparison operators only if you know you have the appropriate
permissions and that data will be changed by only a limited group of people (to maintain data integrity).

Queries also use string comparisons to compare the value in a local variable, cursor, or column with a constant. For example, all
customer rows should be printed if the country is the UK. The table shows string comparison examples between Unicode and
non-Unicode data; ST1 is char and ST2 is nchar.

Comparison Description
ST1 = ST2 Equivalent to CONVERT(nchar, ST1) = ST2 or

CAST(ST1 as nchar) = ST2.
ST1 = 'non-Unicode string' Regular SQL-92 string comparison.
ST2 = 'non-Unicode string' Equivalent to ST2 = CONVERT(nchar, 'non-

Unicode string') or ST2 = CAST('non-Unicode
string' AS nchar).

ST2 = N'Unicode string' Unicode comparison.
CONVERT(nchar, ST1) = ST2
or
CAST(ST1 AS nchar) = ST2

Unicode comparison.

ST1 = CONVERT(char, ST2)
or
ST1 = CAST(ST2 AS char)

Regular SQL-92 string comparison.

N'' (Unicode empty string in
parentheses)

Empty string.

'' (non-Unicode empty string) Either an empty string or a string containing one
blank character (depending on SQL-92 settings).

See Also

= (Equals)

<> (Not Equal To)

> (Greater Than)

!< (Not Less Than)

< (Less Than)

!= (Not Equal To)

>= (Greater Than or Equal To)

!> (Not Greater Than)

<= (Less Than or Equal To)

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

String Concatenation Operator
String Concatenation Operator

The string concatenation operator is the plus sign (+). You can combine, or concatenate, two or more character strings into a
single character string. You can also concatenate binary strings. This is an example of concatenation:

SELECT ('abc' + 'def')

Here is the result set:

abcdef

(1 row(s) affected)

This query displays names of authors with California addresses under the Moniker column in last name, first name order, with a
comma and space after the last name.

USE Northwind
GO
SELECT LastName + ', ' + FirstName AS Moniker
FROM Employees
WHERE Region = 'WA'

Here is the result set:

Moniker

Davolio, Nancy
Fuller, Andrew
Leverling, Janet
Peacock, Margaret
Callahan, Laura

(15 row(s) affected)

Other data types, such as datetime and smalldatetime, must be converted to character strings using the CAST conversion
function before they can be concatenated with a string.

USE pubs
SELECT 'The due date is ' + CAST(pubdate AS varchar(128))
FROM titles
WHERE title_id = 'BU1032'

Here is the result set:

The due date is Jun 12 1991 12:00AM

(1 row(s) affected)

The empty string ('') is evaluated as a single space:

SELECT 'abc' + '' + 'def'

Here is the result set:

abcdef

(1 row(s) affected)

Note Whether an empty string ('') is interpreted as a single blank character or as an empty character is determined by the
compatibility level setting of sp_dbcmptlevel. For this example, if sp_dbcmptlevel is 65, empty literals are treated as a single
blank.

When the input strings both have the same collation, the output string has the same collation as the inputs. When the input
strings have different collations, the rules of collation precedence determine the collation of the output string. You can also assign
a specific collation using the COLLATE clause.

See Also

COLLATE

Collation Precedence

Operators

sp_dbcmptlevel

+ (String Concatentation)

Accessing and Changing Relational Data (SQL Server 2000)

Null Values
A value of NULL indicates the value is unknown. A value of NULL is different from an empty or zero value. No two null values are
equal. Comparisons between two null values, or between a NULL and any other value, return unknown because the value of each
NULL is unknown.

Null values usually indicate data that is unknown, not applicable, or to be added at a later time. For example, a customer's middle
initial may not be known at the time the customer places an order.

Here is some information about nulls:

To test for null values in a query use IS NULL or IS NOT NULL in the WHERE clause.

When query results are viewed in SQL Query Analyzer, null values are shown as (null) in the result set.

Null values can be inserted into a column by explicitly stating NULL in an INSERT or UPDATE statement, or by leaving a
column out of an INSERT statement, or when adding a new column to an existing table using the ALTER TABLE statement.

Null values cannot be used for information required to distinguish one row in a table from another row in a table (for
example, foreign or primary keys).

In program code, you can check for null values so that certain calculations are performed only on rows with valid (or not NULL)
data. For example, a report can print the social security column only if there is data that is not NULL in the column. Eliminating
null values when performing calculations can be important because certain calculations (such as an average) can be inaccurate if
NULL columns are included.

If it is possible that null values may be stored in your data, it is a good idea to create queries and data-modification statements
that either eliminate NULLs or transform NULLs into some other value (if you do not want null values appearing in your data).

Important To minimize maintenance and possible effects on existing queries or reports, it is recommended that you minimize
the use of null values. Plan your queries and data-modification statements so that null values have minimal effect.

When null values are present in data, logical and comparison operators can potentially return a third result of UNKNOWN instead
of just TRUE or FALSE. This need for three-valued logic is a source of many application errors. These tables outline the effect of
introducing null comparisons.

This table shows the results of applying an AND operator to two Boolean operands.

AND TRUE UNKNOWN FALSE
TRUE TRUE UNKNOWN FALSE
UNKNOWN UNKNOWN UNKNOWN FALSE
FALSE FALSE FALSE FALSE

This table shows the results of applying an OR operator to two Boolean operands.

OR TRUE UNKNOWN FALSE
TRUE TRUE TRUE TRUE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE UNKNOWN FALSE

This table shows how the NOT operator negates, or reverses, the result of a Boolean operator.

Boolean expression to which the
NOT operator is applied Evaluates to

TRUE FALSE
UNKNOWN UNKNOWN
FALSE TRUE

The SQL-92 standard introduces the keywords IS NULL and IS NOT NULL to test for the presence of null values.

Boolean expression
to which the

IS NULL operator
is applied Evaluates to

Boolean expression
to which the
IS NOT NULL

operator is applied Evaluates to
TRUE FALSE TRUE TRUE
NULL TRUE NULL FALSE
FALSE FALSE FALSE TRUE

Transact-SQL also offers an extension for null processing. If the option ANSI_NULLS is set off, then comparisons between nulls,
such as NULL = NULL, evaluate to TRUE. Comparisons between NULL and any data value evaluate to FALSE.

See Also

AND

NOT

CREATE TABLE

OR

Allowing Null Values

Modifying Column Properties

ISNULL

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Using Comments
Comments are nonexecuting text strings in program code (also known as remarks). Comments can be used to document code or
temporarily disable parts of Transact-SQL statements and batches being diagnosed. Using comments to document code makes
future program code maintenance easier. Comments are often used to record the program name, the author name, and the dates
of major code changes. Comments can be used to describe complicated calculations or explain a programming method.

Microsoft® SQL Server™ supports two types of commenting characters:

-- (double hyphens). These comment characters can be used on the same line as code to be executed, or on a line by
themselves. Everything from the double hyphens to the end of the line is part of the comment. For a multiple-line comment,
the double hyphens must appear at the beginning of each comment line. For more information about using the comment
characters, see -- (Comment).

/* ... */ (forward slash-asterisk character pairs). These comment characters can be used on the same line as code to be
executed, on lines by themselves, or even within executable code. Everything from the open comment pair (/*) to the close
comment pair (*/) is considered part of the comment. For a multiple-line comment, the open-comment character pair (/*)
must begin the comment, and the close-comment character pair (*/) must end the comment. No other comment characters
should appear on any lines of the comment. For more information about using the /* ... */ comment characters, see /* ... */
(Comment).

Multiple-line /* */ comments cannot span a batch. The complete comment must be contained within a batch. For example, in SQL
Query Analyzer and the osql utility, the GO command signals the end of a batch. When the utilities read the characters GO in the
first two bytes of a line, they send all the code since the last GO command to the server as one batch. If a GO occurs at the start of
a line between the /* and */ delimiters, then an unmatched comment delimiter will be sent with each batch and they will trigger
syntax errors. For example, the following script contains syntax errors:

USE Northwind
GO
SELECT * FROM Employees
/* The
GO in this comment causes it to be broken in half */
SELECT * FROM Products
GO

Here are some valid comments:

USE Northwind
GO
-- First line of a multiple-line comment.
-- Second line of a multiple-line comment.
SELECT * FROM Employees
GO

/* First line of a multiple-line comment.
 Second line of a multipl-line comment. */
SELECT * FROM Products
GO

-- Using a comment in a Transact-SQL statement
-- during diagnosis.
SELECT EmployeeID, /* FirstName, */ LastName
FROM Employees

-- Using a comment after the code on a line.
USE Northwind
GO
UPDATE Products
SET UnitPrice = UnitPrice * .9 -- Try to build market share.
GO

Here is some basic information regarding comments:

All alphanumeric characters or symbols can be used within the comment. SQL Server ignores all characters within a
comment, although SQL Query Analyzer, osql, and isql will search for GO as the first two characters in lines within a
multiple line comment.

There is no maximum length for a comment within a batch. A comment can consist of one or more lines.

Accessing and Changing Relational Data (SQL Server 2000)

Using Reserved Keywords
Microsoft® SQL Server™ 2000 reserves certain keywords for its exclusive use. For example, using either the Transact-SQL DUMP
or BACKUP keyword in an osql or SQL Query Analyzer session tells SQL Server to make a backup copy of all or part of a
database, or a backup copy of the log.

It is not legal to include the reserved keywords in a Transact-SQL statement in any location except that defined by SQL Server. No
objects in the database should be given a name that matches a reserved keyword. If such a name exists, the object must always be
referred to using delimited identifiers. Although this method does allow for objects whose names are reserved words, it is
recommended that you do not name any database objects with a name that is the same as a reserved word.

The system and database administrators roles or the database creator is usually responsible for checking for reserved keywords
in Transact-SQL code and database names.

Use a naming convention that avoids using reserved keywords. Consonants or vowels can be removed if an object name must
resemble a reserved keyword. For example, a procedure named bckup that performs BACKUP statements for all user-defined
databases.

See Also

Reserved Keywords

SET QUOTED_IDENTIFIER

Delimited Identifiers

CREATE TABLE

ALTER TABLE

CREATE RULE

CREATE DATABASE

ALTER DATABASE

Accessing and Changing Relational Data (SQL Server 2000)

Accessing and Changing Data Fundamentals
The primary purpose of a Microsoft® SQL Server™ 2000 database is to store data and then make that data available to
authorized applications and users. While database administrators create and maintain the database, users work with the contents
of the database:

Accessing, or retrieving, existing data

Changing, or updating, existing data

Adding, or inserting, new data

Deleting existing data

Accessing and changing data in Microsoft SQL Server is accomplished by using an application or utility to send data retrieval and
modification requests to SQL Server. For example, you can connect to SQL Server using SQL Server Enterprise Manager, SQL
Query Analyzer, or the osql utility to begin working with the data in SQL Server.

Applications and utilities use two components to access SQL Server:

Database application programming interfaces (APIs) send commands to SQL Server and retrieve the results of these
commands. The APIs can be general-purpose database APIs such as ADO, OLE DB, ODBC, or DB-Library. They can also be
APIs designed specifically to use special features in SQL Server, such as SQL-DMO, SQL-DTS, or the SQL Server replication
components.

Commands sent to SQL Server are Transact-SQL statements.

Transact-SQL statements are built using the SQL language defined in the Transact-SQL Reference. Most of these operations
are implemented using one of four Transact-SQL statements:

The SELECT statement is used to retrieve existing data.

The UPDATE statement is used to change existing data.

The INSERT statement is used to add new data rows.

The DELETE statement is used to remove rows that are no longer needed.

These four statements form the core of the SQL language. Understanding how these four statements work is a large part of
understanding how SQL works.

Graphical or forms-based query tools require no knowledge of SQL. They present the user with a graphical representation of the
table. The user can graphically select the columns to be retrieved and easily specify how to qualify the rows to be retrieved.

Some applications, such as SQL Query Analyzer and the osql utility, are tools for executing Transact-SQL statements. These
statements are entered interactively or read from a file. To use these tools, you must be able to build Transact-SQL statements.

Applications written to the general-purpose database APIs, such as ADO, OLE DB, ODBC, or DB-Library, also send Transact-SQL
statements to SQL Server. These applications present the user with an interface reflecting the business function they support.
When the user has indicated what business function should be performed, the application uses one of the database APIs to pass
SQL statements to SQL Server. You must be able to build Transact-SQL statements to code these types of applications.

Other applications, such as SQL Server Enterprise Manager, use an object model that increases efficiency in using SQL Server.
SQL Server Enterprise Manager uses an object model that eases the task of administering SQL Servers. APIs such as SQL-DMO,
SQL-DTS, and the replication components also use similar object models. The objects themselves, however, communicate with
SQL Server using Transact-SQL. Knowing the Transact-SQL language can help you understand these objects.

Building Transact-SQL Statements

Accessing and Changing Data Fundamentals contains information about the basic elements used to build Transact-SQL
statements. It also provides information about the functions Transact-SQL can perform, as well as similar functionality offered by
the database APIs.

A SELECT statement contains the common elements used in Transact-SQL statements. For example, to select the names, contact
names, and telephone numbers of customers who live in the USA from the Customers table in the Northwind database, these
elements are used:

The name of the database containing the table (Northwind)

The name of the table containing the data (Customers)

A list of the columns for which data is to be returned (CompanyName, ContactName, Phone)

Selection criteria (only for customers living in the USA)

This is the Transact-SQL syntax to retrieve this information:

SELECT CompanyName, ContactName, Phone
FROM Northwind.dbo.Customers
WHERE Country = 'USA'

Additional elements used in Transact-SQL statements include:

Functions.

Functions are used in SQL Server queries, reports, and many Transact-SQL statements to return information, similar to
functions in other programming languages. They take input parameters and return a value that can be used in expressions.
For example, the DATEDIFF function takes two dates and a datepart (weeks, days, months, and so on) as arguments, and
returns the number of datepart units there are between the two dates.

Identifiers.

Identifiers are the names given to objects such as tables, views, databases, and indexes. An identifier can be specified
without delimiters (for example, TEST), with quoted delimiters ("TEST"), or in brackets ([TEST]).

Comments.

Comments are nonexecuting remarks in program code.

Expressions.

Expressions include constants or literal values (for example, 5 is a numeric literal), functions, column names, arithmetic,
bitwise operations, scalar subqueries, CASE functions, COALESCE functions, or NULLIF functions.

Reserved keywords.

Words that SQL Server reserves for its own functionality. It is recommended that you avoid using these reserved keywords
as identifiers.

Null values.

Null values are values that are unknown. You can use values of NULL to indicate that this information will come later. For
example, if the contact at the Leka Trading company changes and the new contact is unknown, you could indicate the
unknown contact name with a value of NULL.

Data types.

Data types define the format in which data is stored. For example, you can use any of the character or Unicode data types
(char, varchar, nchar, or nvarchar) to store character data such as customer names.

Batches.

Batches are groups of statements transmitted and executed as a unit. Some Transact-SQL statements cannot be grouped in
a batch. For example, to create five new tables in the pubs database, each CREATE TABLE statement must be in its own batch
or unit. This is an example of a Transact-SQL batch:

USE Northwind
SELECT *
FROM Customers
WHERE Region = 'WA'
 AND Country = 'USA'

ORDER BY PostalCode ASC, CustomerID ASC
UPDATE Employees
SET City = 'Missoula'
WHERE CustomerID = 'THECR'
GO

Control-of-flow language.

Control-of-flow language allows program code to take action, depending on whether a condition is met. For example, IF the
amount of products ordered are equal to or less than the amount of products currently on hand, THEN we must order more
products.

Operators.

SQL Server includes operators, which allow certain actions to be performed on data. For example, using arithmetic
operators, you can perform mathematical operations such as addition and subtraction on your data.

See Also

Data Types

CREATE TABLE

Expressions

ALTER TABLE

Using Identifiers

Operators

Functions

Accessing and Changing Relational Data (SQL Server 2000)

Choosing a Database
All objects in Microsoft® SQL Server™ are stored in databases. All references to SQL Server objects have to be resolved to the
specific database in which they reside.

Explicit database references occur when a Transact-SQL statement names the database holding the data. This example
explicitly names the Northwind database:

SELECT *
FROM Northwind..Employees

Implicit database references occur when a Transact-SQL statement does not specify the database:

SELECT *
FROM Employees

To resolve implicit database references, SQL Server uses the concept of a current database. Every connection to SQL Server
always has a database set as the current database. All object references that do not specify a database name are assumed to refer
to the current database. For example, if a connection has Northwind set as its current database, any statement referring to an
object named Products is resolved to the Products table in Northwind.

Every SQL Server login has a default database. At the time the login is defined by a member of the sysadmin fixed server role, the
default database for the login can be specified. If a default database is not specified, master becomes the default database for the
login. The default database for a login can be changed later using the sp_defaultdb stored procedure.

When you first connect to SQL Server, the default database for the login is usually made the current database. You can, however,
specify a specific database as the current database at connect time. This request overrides the default database designated for the
login. Here are the ways you can specify a database on a connect request:

In the osql and isql utilities, specify the database name using the /d switch.

In ADO, specify the database name in the Initial Catalog property of an ADO connection object.

In OLE DB, specify the database name in the DBPROP_INIT_CATALOG property.

In ODBC, you can set a database name in an ODBC data source using the Database box of the Microsoft SQL Server DSN
Configuration Wizard or the DATABASE = parameter on a call to SQLConfigDataSource. You can also specify DATABASE =
on a call to SQLDriverConnect or SQLBrowseConnect.

You can switch the current database setting at any time while you are connected to SQL Server. This is called using, or choosing, a
database. Here are ways you can switch the current database:

You can execute the Transact-SQL USE database_name statement, regardless of the database API an application is using.

In SQL Query Analyzer, you can select a database in the Database list box at the top of the Query Window.

In ODBC, you can call SQLSetConnectAttr to set the SQL_ATTR_CURRENT_CATALOG connection attribute.

In DB-Library, you can call the dbuse function.

Note In many Transact-SQL reference examples, "USE pubs" or "USE Northwind" is the first line in the example. This
ensures the examples are executed against the explicitly specified database instead of another database.

See Also

osql Utility

USE

Accessing and Changing Relational Data (SQL Server 2000)

Using Multiple Statements
To perform processes that cannot be done using a single Transact-SQL statement, Microsoft® SQL Server™ allows you to group
Transact-SQL statements together in several ways:

Using batches

A batch is a group of one or more Transact-SQL statements that are sent from an application to the server as one unit. SQL
Server executes each batch as a single executable unit.

Using stored procedures

A stored procedure is a group of Transact-SQL statements that have been predefined and precompiled on the server. The
stored procedure can accept parameters, and can return result sets, return codes, and output parameters to the calling
application.

Using triggers

A trigger is a special type of stored procedure. It is not called directly by applications. It is instead executed whenever a user
performs a specified modification (INSERT, UPDATE, or DELETE) to a table.

Using scripts

A script is a series of Transact-SQL statements stored in a file. The file can be used as input to the osql utility or SQL Query
Analyzer. The utilities then execute the Transact-SQL statements stored in the file.

The following SQL Server features allow you control the use of multiple Transact-SQL statements at a time:

Control-of-flow statements

Allow you to include conditional logic. For example, if the country is Canada, perform one series of Transact-SQL
statements. If the country is U.K., do some other series of Transact-SQL statements.

Variables

Allow you to store data for use as input in a later Transact-SQL statement. For example, you can code a query that needs
different data values specified in the WHERE clause each time the query is executed. You can write the query to use variables
in the WHERE clause, and code logic to fill the variables with the proper data. The parameters of stored procedures are a
special class of variables.

Error handling

Lets you customize the way SQL Server responds to problems. You can specify appropriate actions to take when errors
occur, or display customized error messages that are more informative to a user than a generic SQL Server error.

Accessing and Changing Relational Data (SQL Server 2000)

Batches
 New Information - SQL Server 2000 SP3.

A batch is a group of one or more Transact-SQL statements sent at one time from an application to Microsoft® SQL Server™ for
execution. SQL Server compiles the statements of a batch into a single executable unit, called an execution plan. The statements in
the execution plan are then executed one at a time.

A compile error, such as a syntax error, prevents the compilation of the execution plan, so none of the statements in the batch are
executed.

A run-time error, such as an arithmetic overflow or a constraint violation, has one of two effects:

Most run-time errors stop the current statement and the statements that follow it in the batch.

A few run-time errors, such as constraint violations, stop only the current statement. All the remaining statements in the
batch are executed.

The statements executed before the one that encountered the run-time error are not affected. The only exception is if the batch is
in a transaction and the error causes the transaction to be rolled back. In this case, any uncommitted data modifications made
before the run-time error are rolled back.

Assume there are 10 statements in a batch. If the fifth statement has a syntax error, none of the statements in the batch are
executed. If the batch is compiled, and the second statement then fails while executing, the results of the first statement are not
affected because it has already executed.

These rules apply to batches:

CREATE DEFAULT, CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE TRIGGER, and CREATE VIEW
statements cannot be combined with other statements in a batch. The CREATE statement must begin the batch. All other
statements that follow in that batch will be interpreted as part of the definition of the first CREATE statement.

A table cannot be altered and then the new columns referenced in the same batch.

If an EXECUTE statement is the first statement in a batch, the EXECUTE keyword is not required. The EXECUTE keyword is
required if the EXECUTE statement is not the first statement in the batch.

Security Note Batch files may contain credentials stored in plain text. Credentials may be echoed to the user's screen
during batch execution.

Accessing and Changing Relational Data (SQL Server 2000)

Specifying Batches
Specifying Batches

Batches are implemented as part of the database APIs.

In ADO, a batch is the string of Transact-SQL statements enclosed in the CommandText property of a Command object:

Dim Cmd As New ADODB.Command
Set Cmd.ActiveConnection = Cn
Cmd.CommandText = "SELECT * FROM Suppliers; SELECT * FROM Products"
Cmd.CommandType = adCmdText
Cmd.Execute

In OLE DB, a batch is the string of Transact-SQL statements enclosed in the string used to set the command text:

WCHAR* wszSQLString =
L"SELECT * FROM Employees; SELECT * FROM Products";
hr = pICommandText->SetCommandText
 (DBGUID_DBSQL, wszSQLString)

In ODBC, a batch is the string of Transact-SQL statements enclosed on a SQLPrepare or SQLExecDirect call:

SQLExecDirect(hstmt1,
 "SELECT * FROM Employees; SELECT * FROM Products",
 SQL_NTS):

In DB-Library, a batch is comprised of the Transact-SQL statements stored in the command buffer using dbcmd or dbfcmd
before dbsqlsend or dbsqlexec are called:

dbcmd (dbproc,
 "SELECT * FROM Suppliers; SELECT * FROM Products");
dbsqlexec (dbproc);

Some data access tools, such as Microsoft® Access, do not have an explicit batch terminator.

The GO Command

SQL Query Analyzer, the osql utility, and the isql utility use the GO command to signal the end of a batch. GO is not a Transact-
SQL statement; it simply signals to the utilities how many SQL statements should be included in a batch. In SQL Query Analyzer
and osql, all the Transact-SQL statements from one GO command to the next are put in the string sent to SQLExecDirect. In isql,
all the Transact-SQL statements between GO commands are placed into the command buffer before being executed.

For example, if these statements are executed in SQL Query Analyzer:

SELECT @@VERSION
SET NOCOUNT ON
GO

SQL Query Analyzer does the equivalent of:

SQLExecDirect(hstmt,
"SELECT @@VERSION SET NOCOUNT ON",
SQL_NTS);

Because a batch is compiled into a single execution plan, a batch must be logically complete. The execution plan created for one
batch has no ability to reference any variables declared in another batch. Comments must both start and end in one batch. For
more information, see SQL Query Analyzer.

See Also

GO

osql Utility

Accessing and Changing Relational Data (SQL Server 2000)

Batch Examples
Batch Examples

These examples are scripts that use SQL Query Analyzer and the osql utility GO command to define batch boundaries.

This example creates a view. Because CREATE VIEW must be the only statement in a batch, the GO commands are required to
isolate the CREATE VIEW statement from the USE and SELECT statements around it.

USE pubs
GO /* Signals the end of the batch */

CREATE VIEW auth_titles
AS
SELECT *
FROM authors
GO /* Signals the end of the batch */

SELECT *
FROM auth_titles
GO /* Signals the end of the batch */

This example shows several batches combined into one transaction. The BEGIN TRANSACTION and COMMIT statements delimit
the transaction boundaries. The BEGIN TRANSACTION, USE, CREATE TABLE, SELECT, and COMMIT statements are all in their own
single-statement batches. All of the INSERT statements are included in one batch.

BEGIN TRANSACTION
GO
USE pubs
GO
CREATE TABLE mycompanies
(
 id_num int IDENTITY(100, 5),
 company_name nvarchar(100)
)
GO
INSERT mycompanies (company_name)
 VALUES ('New Moon Books')
INSERT mycompanies (company_name)
 VALUES ('Binnet & Hardley')
INSERT mycompanies (company_name)
 VALUES ('Algodata Infosystems')
INSERT mycompanies (company_name)
 VALUES ('Five Lakes Publishing')
INSERT mycompanies (company_name)
 VALUES ('Ramona Publishers')
INSERT mycompanies (company_name)
 VALUES ('GGG&G')
INSERT mycompanies (company_name)
 VALUES ('Scootney Books')
INSERT mycompanies (company_name)
 VALUES ('Lucerne Publishing')
GO
SELECT *
FROM mycompanies
ORDER BY company_name ASC
GO
COMMIT
GO

The following script illustrates two problems. First, the variable @MyVar is declared in the second batch and referenced in the
third. Also, the second batch has the start of a comment, but no end. The third batch has the end of the comment, but when osql
reads the GO command it sends the first batch to Microsoft® SQL Server™ where the /* with no matching */ generates a syntax
error.

USE Northwind
GO
DECLARE @MyVar INT
/* Start of the split comment.
GO
End of the split comment. */
SELECT @MyVar = 29
GO

Accessing and Changing Relational Data (SQL Server 2000)

Stored Procedures and Triggers
A stored procedure is a group of Transact-SQL statements that is compiled one time, and then can be executed many times. This
increases performance when the stored procedure is executed because the Transact-SQL statements do not have to be
recompiled.

A trigger is a special type of stored procedure that is not called directly by a user. When the trigger is created, it is defined to
execute when a specific type of data modification is made against a specific table or column.

A CREATE PROCEDURE or CREATE TRIGGER statement cannot span batches. This means that a stored procedure or trigger is
always created in a single batch and compiled into an execution plan. The execution plan is created the first time the stored
procedure or trigger is executed.

See Also

Stored Procedures

Enforcing Business Rules with Triggers

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Scripts
A script is a series of Transact-SQL statements stored in a file. The file can be used as input to SQL Query Analyzer or the osql and
isql utilities. The utilities then execute the SQL statements stored in the file.

Transact-SQL scripts have one or more batches. The GO command signals the end of a batch. If a Transact-SQL script does not
have any GO commands, it is executed as a single batch.

Transact-SQL scripts can be used to:

Keep a permanent copy of the steps used to create and populate the databases on your server (a backup mechanism).

Transfer the statements from one computer to another, when necessary.

Quickly educate new employees by enabling them to find problems in the code, understand the code, or change the code.

Accessing and Changing Relational Data (SQL Server 2000)

Using Variables and Parameters
Transact-SQL has several ways to pass data between Transact-SQL statements. Among these are:

Transact-SQL local variables.

A Transact-SQL variable is an object in Transact-SQL batches and scripts that can hold a data value. After the variable has
been declared, or defined, one Transact-SQL statement in a batch can set the variable to a value and a later statement in the
batch can get the value from the variable. For example:

DECLARE @EmpIDVar INT

SET @EmpIDVar = 1234

SELECT *
FROM Employees
WHERE EmployeeID = @EmpIDVar

Transact-SQL parameters.

A parameter is an object used to pass data between a stored procedure and the batch or script that executes the stored
procedure. Parameters can be either input or output parameters. For example:

CREATE PROCEDURE ParmSample @EmpIDParm INT AS
SELECT *
FROM Employees
WHERE EmployeeID = @EmpIDParm
GO

EXEC ParmSample @EmpIDParm = 1234
GO

Applications use application variables and parameter markers to work with the data from Transact-SQL statements.

Application variables

The application programming languages such as C, C++, Basic, and Java have their own variables for holding data.
Applications using the database APIs must move the data returned by Transact-SQL statements into application variables
before they can work with the data. This is typically done using a process called binding. The application uses an API
function to bind the result set column to a program variable. When a row is fetched the API provider or driver moves the
data from the column to the bound program variable.

Parameter markers

Parameter markers are supported by the ADO, OLE DB, and ODBC-based database APIs. A parameter marker is a question
mark (?) placed in the location of an input expression in a Transact-SQL statement. The parameter marker is then bound to
an application variable. This allows data from application variables to be used as input in Transact-SQL statements.
Parameter markers also let stored procedure output parameters and return codes be bound to application variables. The
output data is then returned to the bound variables when the procedure is executed. The DB-Library API also supports
binding stored procedure parameter and return codes to program variables.

See Also

DECLARE @local_variable

SELECT

Functions

SET @local variable

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Variables
Transact-SQL Variables

A Transact-SQL local variable is an object that can hold a single data value of a specific type. Variables in batches and scripts are
typically used:

As a counter either to count the number of times a loop is performed or to control how many times the loop is performed.

To hold a data value to be tested by a control-of-flow statement.

To save a data value to be returned by a stored procedure return code.

Note The names of some Transact-SQL system functions begin with two at signs (@@). Although in earlier versions of SQL
Server, the @@functions are referred to as global variables, they are not variables and do not have the same behaviors as
variables. The @@functions are system functions, and their syntax usage follows the rules for functions.

The following script creates a small test table and populates it with 26 rows. The script uses a variable to do three things:

Control how many rows are inserted by controlling how many times the loop is executed.

Supply the value inserted into the integer column.

Function as part of the expression that generates letters to be inserted into the character column.

-- Create the table.
CREATE TABLE TestTable (cola INT, colb CHAR(3))
GO
SET NOCOUNT ON
GO
-- Declare the variable to be used.
DECLARE @MyCounter INT

-- Initialize the variable.
SET @MyCounter = 0

-- Test the variable to see if the loop is finished.
WHILE (@MyCounter < 26)
BEGIN
 -- Insert a row into the table.
 INSERT INTO TestTable VALUES
 -- Use the variable to provide the integer value
 -- for cola. Also use it to generate a unique letter
 -- for each row. Use the ASCII function to get the
 -- integer value of 'a'. Add @MyCounter. Use CHAR to
 -- convert the sum back to the character @MyCounter
 -- characters after 'a'.
 (@MyCounter,
 CHAR((@MyCounter + ASCII('a')))
)
 -- Increment the variable to count this iteration
 -- of the loop.
 SET @MyCounter = @MyCounter + 1
END
GO
SET NOCOUNT OFF
GO

Declaring a Transact-SQL Variable

The DECLARE statement initializes a Transact-SQL variable by:

Assigning a name. The name must have a single @ as the first character.

Assigning a system-supplied or user-defined data type and a length. For numeric variables, a precision and scale are also
assigned.

Setting the value to NULL.

Note Use system-supplied data types for local variables to minimize future maintenance issues.

For example, the following DECLARE statement creates a local variable named @mycounter with an int data type.

DECLARE @MyCounter INT

To declare more than one local variable, use a comma after the first local variable defined, and then specify the next local variable
name and data type.

For example, this DECLARE statement creates three local variables named @last_name, @fname and @state, and initializes each
to NULL:

DECLARE @LastName NVARCHAR(30), @FirstName NVARCHAR(20), @State NCHAR(2)

The scope of a variable is the range of Transact-SQL statements that can reference the variable. The scope of a variable lasts from
the point it is declared until the end of the batch or stored procedure in which it is declared. For example, this script generates a
syntax error because the variable is declared in one batch and referenced in another:

DECLARE MyVariable INT
SET @MyVariable = 1
GO -- This terminates the batch.
-- @MyVariable has gone out of scope and no longer exists.

-- This SELECT statement gets a syntax error because it is
-- no longer legal to reference @MyVariable.
SELECT *
FROM Employees
WHERE EmployeeID = @MyVariable

Setting a Value in a Transact-SQL Variable

When a variable is first declared, its value is set to NULL. To assign a value to a variable, use the SET statement. This is the
preferred method of assigning a value to a variable. A variable can also have a value assigned by being referenced in the select list
of a SELECT statement.

To assign a variable a value by using the SET statement, include the variable name and the value to assign to the variable. This is
the preferred method of assigning a value to a variable. This batch, for example, declares two variables, assigns values to them,
and then uses them in the WHERE clause of a SELECT statement:

USE Northwind
GO
-- Declare two variables.
DECLARE @FirstNameVariable NVARCHAR(20),
 @RegionVariable NVARCHAR(30)

-- Set their values.
SET @FirstNameVariable = N'Anne'
SET @RegionVariable = N'WA'

-- Use them in the WHERE clause of a SELECT statement.
SELECT LastName, FirstName, Title
FROM Employees
WHERE FirstName = @FirstNameVariable
 OR Region = @RegionVariable
GO

A variable can also have a value assigned by being referenced in a select list. If a variable is referenced in a select list, it should be
assigned a scalar value or the SELECT statement should only return one row. For example:

USE Northwind
GO
DECLARE @EmpIDVariable INT

SELECT @EmpIDVariable = MAX(EmployeeID)
FROM Employees
GO

If a SELECT statement returns more than one row and the variable references a nonscalar expression, the variable is set to the
value returned for the expression in the last row of the result set. For example, in this batch @EmpIDVariable is set to the
EmployeeID value of the last row returned, which is 1:

USE Northwind
GO
DECLARE @EmpIDVariable INT

SELECT @EmpIDVariable = EmployeeID
FROM Employees
ORDER BY EmployeeID DESC

SELECT @EmpIDVariable
GO

See Also

DECLARE @local_variable

SET @local_variable

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Parameters
Parameters

Parameters are used to exchange data between stored procedures and the application or tool that called the stored procedure:

Input parameters allow the caller to pass a data value to the stored procedure.

Output parameters allow the stored procedure to pass a data value or a cursor variable back to the caller.

Every stored procedure returns an integer return code to the caller. If the stored procedure does not explicitly set a value for
the return code, the return code is 0.

The following stored procedure shows the use of an input parameter, an output parameter, and a return code:

USE Northwind
GO
-- Create a procedure that takes one input parameter
-- and returns one output parameter and a return code.
CREATE PROCEDURE SampleProcedure @EmployeeIDParm INT,
 @MaxQuantity INT OUTPUT
AS
-- Declare and initialize a variable to hold @@ERROR.
DECLARE @ErrorSave INT
SET @ErrorSave = 0

-- Do a SELECT using the input parameter.
SELECT FirstName, LastName, Title
FROM Employees
WHERE EmployeeID = @EmployeeIDParm

-- Save any nonzero @@ERROR value.
IF (@@ERROR <> 0)
 SET @ErrorSave = @@ERROR

-- Set a value in the output parameter.
SELECT @MaxQuantity = MAX(Quantity)
FROM [Order Details]

IF (@@ERROR <> 0)
 SET @ErrorSave = @@ERROR

-- Returns 0 if neither SELECT statement had
-- an error; otherwise, returns the last error.
RETURN @ErrorSave
GO

When a stored procedure is executed, input parameters can either have their value set to a constant or use the value of a variable.
Output parameters and return codes must return their values into a variable. Parameters and return codes can exchange data
values with either Transact-SQL variables or application variables.

If a stored procedure is called from a batch or script, the parameters and return code values can use Transact-SQL variables
defined in the same batch. This example is a batch that executes the procedure created earlier. The input parameter is specified as
a constant and the output parameter and return code place their values in Transact-SQL variables:

-- Declare the variables for the return code and output parameter.
DECLARE @ReturnCode INT
DECLARE @MaxQtyVariable INT

-- Execute the stored procedure and specify which variables
-- are to receive the output parameter and return code values.
EXEC @ReturnCode = SampleProcedure @EmployeeIDParm = 9,
 @MaxQuantity = @MaxQtyVariable OUTPUT

-- Show the values returned.
PRINT ' '
PRINT 'Return code = ' + CAST(@ReturnCode AS CHAR(10))
PRINT 'Maximum Quantity = ' + CAST(@MaxQtyVariable AS CHAR(10))
GO

An application can use parameter markers bound to program variables to exchange data between application variables,
parameters, and return codes.

See Also

SQL Stored Procedures

Stored Procedures

Parameter Markers

CREATE PROCEDURE

DECLARE @local_variable

Accessing and Changing Relational Data (SQL Server 2000)

Application Variables
Application Variables

The application programming languages such as C, C++, Basic, and Java use variables to hold data. Variables are areas of storage
that can hold a data value. Each application variable has a data type and size. Numeric variables also have a precision (the number
of digits the variable can hold) and scale (the number of digits that are to the right of the decimal point).

In order for an application to work with the data returned from Transact-SQL statements, it must have a mechanism to move the
Transact-SQL data into application variables. The database APIs support the concept of binding a result set column, parameter,
return code, or parameter marker in a Transact-SQL statement to an application variable.

To retrieve the data in a result set, an application uses a process similar to this:

1. Executes a Transact-SQL statement.

2. Calls a database API function to find out how many columns are in the result set.

3. For each result set column the application:

Calls a database API function that returns the attributes (data type, size, and so on) of the column.

Allocates an application variable with attributes compatible with the attributes of the column.

Calls a database API function to bind, or map, the result set column with the application variable.

4. Uses database API functions to fetch the result set rows one row at a time. On each fetch, the values of each result set
column are placed in the application variable bound to the column.

Applications can vary this process. For example, if the application is executing a hard-coded Transact-SQL statement against a
known table, the attributes of the result set columns are known in advance and the application does not have to call the database
API to get these attributes.

If the application binds a result set column to an application variable whose data type differs from that of the associated database
object, then the OLE DB provider or ODBC driver must convert the data. For example, if an application binds a money column to a
character array, the OLE DB provider or ODBC driver has to convert the money data to a character string. The documentation for
the Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver define the data type conversions they support.

For more information about retrieving parameters and return codes in applications, see Parameter Markers.

See Also

Using the Fields Collection and Field Object

Rowsets

Processing Results

Results Processing

Accessing and Changing Relational Data (SQL Server 2000)

Parameter Markers
Parameter Markers

Parameter markers are supported by the ADO, OLE DB, and ODBC-based database APIs. A parameter marker is a question mark
(?) placed in the location of an input or output expression in a Transact-SQL statement. Parameter markers allow an application to
optimize the case where the same Transact-SQL statement is executed several times with different values for the input and output
expressions.

For example, a user may have given an application five different stock symbols and the application has to call a stored procedure
that gets the current data for each stock. The application could:

Prepare this Transact-SQL statement:

EXEC GetQuoteProcedure @StockSymbolParameter = ?

Bind an application variable to the parameter marker (?).

Execute a loop:
Move the next stock symbol to the bound variable.

Execute the statement to retrieve the quote for that stock. (there are symbols)

Parameter markers are not limited to being mapped to stored procedure parameters. They can be used anywhere an input
expression is used:

UPDATE Employees
SET Title = ?
WHERE EmployeeID = ?

Parameter markers can also be used to map stored procedure output parameters and return codes. When the application
executes a stored procedure, the OLE DB provider or ODBC driver moves the data values from any output parameters or return
codes into the variables bound to the parameter's markers. For example, an application can execute this procedure, which returns
an integer return code and a character output parameter:

1. Prepare a statement:

{? = CALL MyProc (?)}

2. Bind the first parameter marker to an integer variable and the second marker to a character array.

3. Execute the statement.

4. Fetch or cancel all the result sets returned by the stored procedure.

At this point, the Microsoft OLE DB Provider for SQL Server or SQL Server ODBC driver will have placed the return code and
output parameter value in the bound variables. Microsoft® SQL Server™ returns output parameter and return code values in the
last packet it returns to the client. Therefore, the application must process or cancel all result sets returned by the stored
procedure before it has access to the return code and output parameter values.

The ADO API has a variation on this process for executing stored procedures. An ADO application:

1. Sets the Command object type to adCmdStoredProc.

2. Sets the command text to just the name of the procedure.

3. Builds a Parameters collection binding all the parameters and return codes to application variables.

4. Executes the Command object.

Parameter markers are associated with a database object that has a specific data type. If the application binds a parameter marker
to a variable whose data type differs from that of the associated database object, then the OLE DB provider or ODBC driver must
convert the data. For example, if an application binds an integer return code to a character array, then the OLE DB provider or

ODBC driver must convert the return code integer data to a character string. For information about the data type conversions that
are supported, see the documentation for OLE DB Provider for SQL Server and SQL Server ODBC driver.

See Also

Executing Prepared Statements

Parameters Collection

Parameter Object

Running Stored Procedures (OLE DB)

Command Parameters

Using Statement Parameters

Accessing and Changing Relational Data (SQL Server 2000)

Control-of-Flow
Transact-SQL provides special words called control-of-flow language that control the flow of execution of Transact-SQL
statements, statement blocks, and stored procedures. These words can be used in ad hoc Transact-SQL statements, in batches,
and in stored procedures.

Without control-of-flow language, separate Transact-SQL statements are performed sequentially, as they occur. Control-of-flow
language permits statements to be connected, related to each other, and made interdependent using programming-like
constructs.

These control-of-flow words are useful when you need to direct Transact-SQL to take some kind of action. For example, use a
BEGIN...END pair of statements when including more than one Transact-SQL statement in a logical block. Use an IF...ELSE pair of
statements when a certain statement or block of statements needs to be executed IF some condition is met, and another
statement or block of statements should be executed if that condition is not met (the ELSE condition).

The control-of-flow statements cannot span multiple batches or stored procedures.

These are the control-of-flow keywords.

BEGIN...END WAITFOR
GOTO WHILE
IF...ELSE BREAK
RETURN CONTINUE

See Also

Using CASE

CONTINUE

Using GOTO

DECLARE @local_variable

Using RETURN

ELSE (IF...ELSE)

Using WAITFOR

END (BEGIN...END)

Control-of-Flow Language

EXECUTE

-- (Comment)

IF...ELSE

/*...*/ (Comment)

PRINT

BEGIN...END

RAISERROR

BREAK

WHILE

Accessing and Changing Relational Data (SQL Server 2000)

Using BEGIN...END
Using BEGIN...END

The BEGIN and END statements are used to group multiple Transact-SQL statements into a logical block. Use the BEGIN and END
statements anywhere a control-of-flow statement must execute a block of two or more Transact-SQL statements.

For example, when an IF statement controls the execution of only one Transact-SQL statement, no BEGIN or END statement is
needed:

IF (@@ERROR <> 0)
 SET @ErrorSaveVariable = @@ERROR

If @@ERROR is 0, only the single SET statement is jumped.

Use BEGIN and END statements to make the IF statement skip a block of statements when it evaluates to FALSE:

IF (@@ERROR <> 0)
BEGIN
 SET @ErrorSaveVariable = @@ERROR
 PRINT 'Error encountered, ' +
 CAST(@ErrorSaveVariable AS VARCHAR(10))
END

The BEGIN and END statements must be used as a pair: one cannot be used without the other. The BEGIN statement appears on a
line by itself followed by the block of Transact-SQL statements. Finally, the END statement appears on a line by itself to indicate
the end of the block.

The BEGIN and END statements are used when:

A WHILE loop needs to include a block of statements.

An element of a CASE function needs to include a block of statements.

An IF or ELSE clause needs to include a block of statements.

See Also

BEGIN...END

END (BEGIN...END)

Control-of-Flow Language

Accessing and Changing Relational Data (SQL Server 2000)

Using GOTO
Using GOTO

The GOTO statement causes the execution of a Transact-SQL batch to jump to a label. None of the statements between the GOTO
statement and the label are executed. The label name is defined using the syntax:

label_name:

Use the GOTO statement sparingly. Excessive use of the GOTO statement can make it difficult to understand the logic of a
Transact-SQL batch. The logic implemented using GOTO can almost always be implemented using the other control-of-flow
statements. GOTO is best used for breaking out of deeply nested control-of-flow statements.

The label that is the target of a GOTO identifies only the target of the jump. The label does nothing to isolate the statements
following it from the statements immediately before it. Any user executing the statements immediately before the label skips the
label and executes the statements after the label. This happens unless the statement immediately preceding the label is itself a
control-of-flow statement, such as a RETURN.

This is an example of a GOTO:

IF (SELECT SYSTEM_USER()) = 'payroll'
 GOTO calculate_salary
-- Other program code would appear here.
-- When the IF statement evaluates to TRUE, the statements
-- between the GOTO and the calculate_salary label are
-- ignored. When the IF statement evaluates to FALSE the
-- statements following the GOTO are executed.
calculate_salary:
 -- Statements to calculate a salary would appear after the label.

See Also

GOTO

Accessing and Changing Relational Data (SQL Server 2000)

Using IF...ELSE
Using IF...ELSE

The IF statement is used to test for a condition. The resulting flow of control depends on whether the optional ELSE statement is
specified:

IF specified without ELSE

When the IF statement evaluates to TRUE, the statement or block of statements following the IF statement are executed.
When the IF statement evaluates to FALSE, the statement, or block of statements, following the IF statement is skipped.

IF specified with ELSE

When the IF statement evaluates to TRUE, the statement, or block of statements, following the IF statement, is executed.
Then control jumps to the point after the statement, or block of statements, following the ELSE statement. When the IF
statement evaluates to FALSE, the statement, or block of statements, following the IF statement is skipped and the
statement, or block of statements, following the optional ELSE statement is executed.

For example, if a stored procedure has been saving any error codes returned by @@ERROR during a transaction, it might have an
IF statement similar to the following at the end of the procedure:

IF (@ErrorSaveVariable <> 0)
BEGIN
 PRINT 'Errors encountered, rolling back.'
 PRINT 'Last error encountered: ' +
 CAST(@ErrorSaveVariable AS VARCHAR(10))
 ROLLBACK
END
ELSE
BEGIN
 PRINT 'No Errors encountered, committing.'
 COMMIT
END
RETURN @ErrorSaveVariable

See Also

ELSE (IF...ELSE)

IF...ELSE

Accessing and Changing Relational Data (SQL Server 2000)

Using RETURN
Using RETURN

The RETURN statement unconditionally terminates a query, stored procedure, or batch. None of the statements in a stored
procedure or batch following the RETURN statement are executed.

When used in a stored procedure, the RETURN statement can specify an integer value to return to the calling application, batch, or
procedure. If no value is specified on RETURN, a stored procedure returns the value 0.

Most stored procedures follow the convention of using the return code to indicate the success or failure of the stored procedure.
The stored procedures return a value of 0 when no errors were encountered. Any nonzero value indicates an error occurred. For
example:

USE Northwind
GO
-- Create a procedure that takes one input parameter
-- and returns one output parameter and a return code.
CREATE PROCEDURE SampleProcedure @EmployeeIDParm INT,
 @MaxQuantity INT OUTPUT
AS
-- Declare and initialize a variable to hold @@ERROR.
DECLARE @ErrorSave INT
SET @ErrorSave = 0

-- Do a SELECT using the input parameter.
SELECT FirstName, LastName, Title
FROM Employees
WHERE EmployeeID = @EmployeeIDParm

-- Save any nonzero @@ERROR value.
IF (@@ERROR <> 0)
 SET @ErrorSave = @@ERROR

-- Set a value in the output parameter.
SELECT @MaxQuantity = MAX(Quantity)
FROM [Order Details]

IF (@@ERROR <> 0)
 SET @ErrorSave = @@ERROR

-- Returns 0 if neither SELECT statement had
-- an error, otherwise returns the last error.
RETURN @ErrorSave
GO

A Transact-SQL batch or stored procedure that executes a stored procedure can retrieve the return code into an integer variable:

DECLARE @ReturnStatus INT
DECLARE @MaxQtyVariable INT
EXECUTE @ReturnStatus = SampleProcedure @EmployeeIDParm = 9,
 @MaxQtyVariable = @MaxQuantity OUTPUT

-- Show the values returned.
PRINT ' '
PRINT 'Return code = ' + CAST(@ReturnStatus AS CHAR(10))
PRINT 'Maximum Quantity = ' + CAST(@MaxQtyVariable AS CHAR(10))
GO

Applications that call a stored procedure can bind to an integer variable a parameter marker corresponding to the return code.

See Also

EXECUTE

RETURN

Parameter Markers

Accessing and Changing Relational Data (SQL Server 2000)

Using WAITFOR
Using WAITFOR

The WAITFOR statement suspends the execution of a connection until either:

A specified time interval has passed.

A specified time of day is reached.

The WAITFOR statement is specified with one of two clauses:

The DELAY keyword followed by an amount_of_time_to_pass before completing the WAITFOR statement. The time to wait
before completing the WAITFOR statement can be up to 24 hours.

The TIME keyword followed by a time_to_execute, which specifies completion of the WAITFOR statement.

This example uses the DELAY keyword to wait for two seconds before performing a SELECT statement:

WAITFOR DELAY '00:00:02'
SELECT EmployeeID FROM Northwind.dbo.Employees

This example uses the TIME keyword to wait until 10 P.M. to perform a check of the pubs specified database to make sure that all
pages are correctly allocated and used:

USE pubs
BEGIN
 WAITFOR TIME '22:00'
 DBCC CHECKALLOC
END

The disadvantage of the WAITFOR statement is that the connection from the application remains suspended until the WAITFOR
completes. WAITFOR is best used when an application or stored procedure must suspend processing for some relatively limited
amount of time. Using SQL Server Agent or SQL-DMO to schedule a task is a better method of executing an action at a specific
time of day.

See Also

WAITFOR

Accessing and Changing Relational Data (SQL Server 2000)

Using WHILE...BREAK or CONTINUE
Using WHILE...BREAK or CONTINUE

The WHILE statement repeats a statement or block of statements as long as a specified condition remains true.

Two Transact-SQL statements are commonly used with WHILE: BREAK or CONTINUE. The BREAK statement exits the innermost
WHILE loop and the CONTINUE statement restarts a WHILE loop. A program might execute a BREAK statement if, for example,
there are no other rows to process. A CONTINUE statement could be executed if, for example, the execution of the code should
continue.

Note If a SELECT statement is used as the condition for the WHILE statement, the SELECT statement must be in parentheses.

This example uses a WHILE statement to control how many fetches are done:

USE Northwind
GO
DECLARE abc CURSOR FOR
SELECT * FROM Shippers

OPEN abc

FETCH NEXT FROM abc
WHILE (@@FETCH_STATUS = 0)
 FETCH NEXT FROM abc

CLOSE abc
DEALLOCATE abc
GO

Other valid WHILE condition tests could be the following:

WHILE (@ACounterVariable < 100)

Or

WHILE EXISTS(SELECT au_lname FROM authors WHERE au_fname = 'Anne')

See Also

BEGIN...END

END (BEGIN...END)

BREAK

WHILE

CONTINUE

Accessing and Changing Relational Data (SQL Server 2000)

Using CASE
Using CASE

The CASE function is a special Transact-SQL expression that allows an alternative value to be displayed depending on the value of
a column. This change in data is temporary; therefore, there are no permanent changes to the data. For example, the CASE
function can display California in a query result set for rows that have the value CA in the state column.

The CASE function consists of:

The CASE keyword.

The column name to transform.

WHEN clauses specifying the expressions to search for and THEN clauses specifying the expressions to replace them with.

The END keyword.

An optional AS clause defining an alias for the CASE function.

This example displays, in the query result set, the full name of the state each author lives in:

SELECT au_fname, au_lname,
 CASE state
 WHEN 'CA' THEN 'California'
 WHEN 'KS' THEN 'Kansas'
 WHEN 'TN' THEN 'Tennessee'
 WHEN 'OR' THEN 'Oregon'
 WHEN 'MI' THEN 'Michigan'
 WHEN 'IN' THEN 'Indiana'
 WHEN 'MD' THEN 'Maryland'
 WHEN 'UT' THEN 'Utah'
 END AS StateName
FROM pubs.dbo.authors
ORDER BY au_lname

See Also

CASE

NULLIF

COALESCE

Conditional Data Processing Using CASE

Accessing and Changing Relational Data (SQL Server 2000)

Building Statements at Run Time
 New Information - SQL Server 2000 SP3.

Most Microsoft® SQL Server™ applications that have to dynamically build SQL statements at run time do so before calling a
database API function or method to execute the statement. For example, a C-language application using ODBC can dynamically
build one or more SQL statements into a character array, then pass that array to the ODBC SQLPrepare or SQLExecDirect
functions.

Transact-SQL supports two methods of building SQL statements at run time in Transact-SQL scripts, stored procedures, and
triggers:

Use the sp_executesql system stored procedure to execute a Unicode string. sp_executesql supports parameter
substitution similar to the RAISERROR statement.

Use the EXECUTE statement to execute a character string. The EXECUTE statement does not support parameter substitution
in the executed string.

This is a simple example of using sp_executesql to execute a dynamically built string containing an SQL statement:

USE Northwind
DECLARE @SQLString NVARCHAR(500)

/* Set column list. CHAR(13) is a carriage return, line feed.*/
SET @SQLString = N'SELECT FirstName, LastName, Title' + CHAR(13)

/* Set FROM clause with carriage return, line feed. */
SET @SQLString = @SQLString + N'FROM Employees' + CHAR(13)

/* Set WHERE clause. */
SET @SQLString = @SQLString + N'WHERE LastName LIKE ''D%'''

EXEC sp_executesql @SQLString
GO

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Accessing and Changing Relational Data (SQL Server 2000)

Using sp_executesql
Using sp_executesql

Using sp_executesql is recommended over using the EXECUTE statement to execute a string. Not only does the support for
parameter substitution make sp_executesql more versatile than EXECUTE, it also makes sp_executesql more efficient because it
generates execution plans that are more likely to be reused by SQL Server.

Self-contained Batches

When either sp_executesql or the EXECUTE statement executes a string, the string is executed as its own self-contained batch.
SQL Server compiles the Transact-SQL statement or statements in the string into an execution plan that is separate from the
execution plan of the batch that contained the sp_executesql or EXECUTE statement. These rules apply for self-contained batches:

The Transact-SQL statements in the sp_executesql or EXECUTE string are not compiled into an execution plan until
sp_executesql or the EXECUTE statement are executed. The strings are not parsed or checked for errors until they are
executed. The names referenced in the strings are not resolved until they are executed.

The Transact-SQL statements in the executed string do not have access to any of the variables declared in the batch that
contains the sp_executesql or EXECUTE statement. The batch containing the sp_executesql or EXECUTE statement does
not have access to variables or local cursors defined in the executed string.

If the executed string has a USE statement that changes the database context, the change to the database context only lasts
until sp_executesql or the EXECUTE statement completes.

Executing these two batches illustrates these points:

/* Show not having access to variables from the calling batch. */
DECLARE @CharVariable CHAR(3)
SET @CharVariable = 'abc'
/* sp_executesql fails because @CharVariable has gone out of scope. */
sp_executesql N'PRINT @CharVariable'
GO

/* Show database context resetting after sp_executesql completes. */
USE pubs
GO
sp_executesql N'USE Northwind'
GO
/* This statement fails because the database context
 has now returned to pubs. */
SELECT * FROM Shippers
GO

Substituting Parameter Values

sp_executesql supports the substitution of parameter values for any parameters specified in the Transact-SQL string, but the
EXECUTE statement does not. Therefore, the Transact-SQL strings generated by sp_executesql are more similar than those
generated by the EXECUTE statement. The SQL Server query optimizer will probably match the Transact-SQL statements from
sp_executesql with execution plans from the previously executed statements, saving the overhead of compiling a new execution
plan.

With the EXECUTE statement, all parameter values must be converted to character or Unicode and made a part of the Transact-
SQL string:

DECLARE @IntVariable INT
DECLARE @SQLString NVARCHAR(500)
/* Build and execute a string with one parameter value. */
SET @IntVariable = 35
SET @SQLString = N'SELECT * FROM pubs.dbo.employee WHERE job_lvl = ' +
 CAST(@IntVariable AS NVARCHAR(10))
EXEC(@SQLString)
/* Build and execute a string with a second parameter value. */
SET @IntVariable = 201
SET @SQLString = N'SELECT * FROM pubs.dbo.employee WHERE job_lvl = ' +
 CAST(@IntVariable AS NVARCHAR(10))
EXEC(@SQLString)

If the statement is executed repeatedly, a completely new Transact-SQL string must be built for each execution, even when the
only differences are in the values supplied for the parameters. This generates extra overhead in several ways:

The ability of the SQL Server query optimizer to match the new Transact-SQL string with an existing execution plan is
hampered by the constantly changing parameter values in the text of the string, especially in complex Transact-SQL
statements.

The entire string must be rebuilt for each execution.

Parameter values (other than character or Unicode values) must be cast to a character or Unicode format for each execution.

sp_executesql supports the setting of parameter values separately from the Transact-SQL string:

DECLARE @IntVariable INT
DECLARE @SQLString NVARCHAR(500)
DECLARE @ParmDefinition NVARCHAR(500)

/* Build the SQL string once. */
SET @SQLString =
 N'SELECT * FROM pubs.dbo.employee WHERE job_lvl = @level'
/* Specify the parameter format once. */
SET @ParmDefinition = N'@level tinyint'

/* Execute the string with the first parameter value. */
SET @IntVariable = 35
EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @level = @IntVariable
/* Execute the same string with the second parameter value. */
SET @IntVariable = 32
EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @level = @IntVariable

This sp_executesql example accomplishes the same task as the EXECUTE example shown earlier, but with these additional
benefits:

Because the actual text of the Transact-SQL statement does not change between executions, the query optimizer should
match the Transact-SQL statement in the second execution with the execution plan generated for the first execution.
Therefore, SQL Server does not have to compile the second statement.

The Transact-SQL string is built only once.

The integer parameter is specified in its native format. Conversion to Unicode is not required.

Note Object names in the statement string must be fully qualified in order for SQL Server to reuse the execution plan.

Reusing Execution Plans

In earlier versions of SQL Server, the only way to be able to reuse execution plans was to define the Transact-SQL statements as a
stored procedure and have the application execute the stored procedure. This generates extra administrative overhead for the
applications. Using sp_executesql can help reduce this overhead while still allowing SQL Server to reuse execution plans.
sp_executesql can be used instead of stored procedures when executing a Transact-SQL statement a number of times, when the
only variation is in the parameter values supplied to the Transact-SQL statement. Because the Transact-SQL statements
themselves remain constant and only the parameter values change, the SQL Server query optimizer is likely to reuse the
execution plan it generates for the first execution.

This example builds and executes a DBCC CHECKDB statement for every database on a server, except for the four system
databases:

USE master
GO
SET NOCOUNT ON
GO
DECLARE AllDatabases CURSOR FOR
SELECT name FROM sysdatabases WHERE dbid > 4

OPEN AllDatabases

DECLARE @DBNameVar NVARCHAR(128)
DECLARE @Statement NVARCHAR(300)

FETCH NEXT FROM AllDatabases INTO @DBNameVar
WHILE (@@FETCH_STATUS = 0)
BEGIN
 PRINT N'CHECKING DATABASE ' + @DBNameVar
 SET @Statement = N'USE ' + @DBNameVar + CHAR(13)
 + N'DBCC CHECKDB (' + @DBNameVar + N')'
 EXEC sp_executesql @Statement
 PRINT CHAR(13) + CHAR(13)
 FETCH NEXT FROM AllDatabases INTO @DBNameVar
END

CLOSE AllDatabases
DEALLOCATE AllDatabases
GO
SET NOCOUNT OFF
GO

The SQL Server ODBC driver uses sp_executesql to implement SQLExecDirect when the Transact-SQL statement being
executed contains bound parameter markers. The one exception is that sp_executesql is not used with data-at-execution
parameters. This allows applications that use the standard ODBC functions, or that use the APIs defined over ODBC (such as RDO),
to gain the advantages provided by sp_executesql. Existing ODBC applications ported to SQL Server 2000 automatically acquire
the performance gains without having to be rewritten. For more information, see Using Statement Parameters.

The Microsoft OLE DB Provider for SQL Server also uses sp_executesql to implement the direct execution of statements with
bound parameters. Applications using OLE DB or ADO gain the advantages provided by sp_executesql without having to be
rewritten.

See Also

DECLARE @local_variable

SELECT

EXECUTE

Accessing and Changing Relational Data (SQL Server 2000)

Permissions
Every object in a Microsoft® SQL Server™ 2000 database has an owner, typically the user ID in effect for the connection that
created the object. Other users cannot access that object until the owner authorizes their user ID to access the object.

Certain Transact-SQL statements are also limited to specific user IDs. For example, CREATE DATABASE is limited to members of
the sysadmin and dbcreator fixed server roles. Users cannot access an object or execute a statement unless authorized.

All Transact-SQL statements that a user issues are subject to the permissions the user has been granted. Members of the
sysadmin fixed server role, members of the db_owner fixed database role, and owners of database objects can grant, deny, or
revoke permissions for a person or role. When using Transact-SQL, use the GRANT, DENY, and REVOKE statements to specify
who can use which data-modification statements:

GRANT gives permissions to either work with data or execute other Transact-SQL statements.

DENY denies permission and prevents the specified user, group, or role from inheriting the permission through group and
role memberships.

REVOKE removes previously granted or denied permissions.

The permissions that can be granted for objects are:

SELECT

Permits a user to issue SELECT statements against a table or view.

INSERT

Permits a user to issue INSERT statements against a table or view.

UPDATE

Permits a user to issue UPDATE statements against a table or view.

DELETE

Permits a user to issue DELETE statements against a table or view.

REFERENCES

Permits a user to make foreign key references to the primary key and unique columns of a table. Also used to allow
SCHEMABINDING references from views and functions.

EXECUTE

Permits a user to issue EXECUTE statements against a stored procedure.

Permissions can also be granted to execute Transact-SQL statements that are usually limited to members of a specific role. For
example, a member of the sysadmin fixed server role can grant CREATE DATABASE permissions to a user who usually could not
create databases.

See Also

Logins

DENY

Logins, Users, Roles, and Groups

GRANT

Managing Security

REVOKE

Accessing and Changing Relational Data (SQL Server 2000)

Using Options in SQL Server
Microsoft® SQL Server™ 2000 provides options that affect the result and performance of SQL statements. Transact-SQL allows
you to set these options in the following ways:

Server-wide configuration options (server options) are set by executing the sp_configure stored procedure.

Database-level options (database options) are set by executing the sp_dboption stored procedure.

The database compatibility level is set by executing the sp_dbcmptlevel stored procedure.

Connection-level options (SET options) are specified with SET statements, such as SET ANSI_PADDING and SET
ANSI_NULLS.

Statement-level options (query hints, table hints, and join hints) are specified in individual Transact-SQL statements.

ODBC applications can specify connection options that control some of the ANSI SET options. The Microsoft OLE DB Provider for
SQL Server and SQL Server ODBC driver both set several SET options by default. Options can also be set using the SQL Server
Enterprise Manager.

Avoid changing SET options and setting them through the SET statements. Instead, it is recommended that SET options be set at
the connection level through the connection properties of ODBC or OLE DB. Alternatively, change SET option settings using the
sp_configure stored procedure.

Hierarchy of Options

When an option is supported at more than one level:

1. A database option overrides a server option.

2. A SET option overrides a database option.

3. A hint overrides a SET option.

Note sp_configure provides the option user options, which allows you to change the default values of several SET
options. Although user options appears to be a server option, it is a SET option.

Accessing and Changing Relational Data (SQL Server 2000)

SET Options
This table contains an alphabetic list of SET options and the corresponding database and server options supported in Microsoft®
SQL Server™ 2000.

SET option
Database

option
Server option Default

setting
ANSI_DEFAULTS None None n/a
ANSI_NULL_DFLT_OFF
ANSI_NULL_DFLT_ON

ANSI null
default

user options
assigns a default

OFF

ANSI_NULLS ANSI nulls user options
assigns a default

OFF

ANSI_PADDING None user options
assigns a default

ON

ANSI_WARNINGS ANSI
warnings

user options
assigns a default

OFF

ARITHABORT None user options
assigns a default

OFF

ARITHIGNORE None user options
assigns a default

OFF

CONCAT_NULL_YIELDS_NULL concat null
yields null

None OFF

CONTEXT_INFO None None OFF
CURSOR_CLOSE_ON_COMMIT cursor close

on commit
user options
assigns a default

OFF

DATEFIRST None None 7
DATEFORMAT None None mdy
DEADLOCK_PRIORITY None None NORMAL
DISABLE_DEF_CNST_CHK None user options

assigns a default
OFF

FIPS_FLAGGER None None OFF
FMTONLY None None OFF
SET FORCEPLAN None None OFF
IDENTITY_INSERT None OFF
IMPLICIT_TRANSACTIONS None user options

assigns a default
OFF

LANGUAGE None None us_english
LOCK_TIMEOUT None None No limit
NOCOUNT None user options

assigns a default
OFF

NOEXEC None None OFF
NUMERIC_ROUNDABORT None None OFF
OFFSETS None None OFF
PARSEONLY None None OFF
QUERY_GOVERNOR_COST_LIMIT None query governor

cost limit
OFF

QUOTED_IDENTIFIER quoted
identifier

user options
assigns a default

OFF

REMOTE_PROC_TRANSACTIONS None None OFF
ROWCOUNT None None OFF
SHOWPLAN_ALL None None OFF
SHOWPLAN_TEXT None None OFF
STATISTICS IO None None OFF
STATISTICS PROFILE None None n/a
STATISTICS TIME None None OFF
TEXTSIZE None None OFF

TRANSACTION ISOLATION LEVEL None None n/a
XACT_ABORT None None OFF

Parse-Time and Execute-Time SET Options

The point at which a SET option takes effect depends upon whether the option is a parse-time option or an execute-time option.
Parse-time options take effect during parsing, as the options are encountered in text, without regard to control of flow statements.
Execute-time options take effect during the execution of the code in which they are specified. If execution fails before the SET
statement is executed, the option is not set. If execution fails after the SET statement is executed, the option is set.

The QUOTED_IDENTIFIER, PARSEONLY, OFFSETS, and FIPS_FLAGGER options are parse-time options. All other SET options are
execute-time options.

SET QUOTED_IDENTIFIER and SET ANSI_NULLS statements that occur within a batch or stored procedure do not affect that batch
or stored procedure. Instead, the settings that are used for statements inside the batch or stored procedure are the settings that
are in effect when the batch or stored procedure is created.

Duration of SET Options

This section describes the duration of SET options.

SET options that are set by a user in a script apply until reset or the user's session with the server is terminated.

SET options that are set within a stored procedure or trigger apply until reset inside that stored procedure or trigger, or until
control returns to the code that invoked the stored procedure or trigger.

Unless explicitly reset, SET option values from all higher level code apply within a stored procedure or trigger.

Unless explicitly or implicitly reset, SET options set for a connection apply after connecting to a different database.

Note An additional consideration is that when a user connects to a database, some option may be set ON automatically,
based on the values specified by the prior use of the user options, server option or the values that apply to all ODBC and
OLE DB connections.

Shortcut SET Option

Transact-SQL provides the SET ANSI_DEFAULTS statement as a shortcut for setting these SQL-92 standard options:

SET ANSI_NULLS

SET CURSOR_CLOSE_ON_COMMIT

SET ANSI_NULL_DFLT_ON

SET IMPLICIT_TRANSACTIONS

SET ANSI_PADDING

SET QUOTED_IDENTIFIER

SET ANSI_WARNINGS

The shortcut resets the values for these options. Any individual option set after the shortcut is used overrides the corresponding
value set by the shortcut.

Note SET ANSI_DEFAULTS does not set all of the options required to comply with the SQL-92 standard.

Accessing and Changing Relational Data (SQL Server 2000)

Database Options
 New Information - SQL Server 2000 SP3.

This table is an alphabetic list of database options and corresponding SET and server options supported in Microsoft® SQL
Server™ 2000.

Database
option SET option

Server
option

Default
setting

ANSI null
default

ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF

user options
assigns a default

OFF

ANSI nulls ANSI_NULLS user options
assigns a default

OFF

ANSI warnings ANSI_WARNINGS user options
assigns a default

OFF

auto create
statistics

None None ON

auto update
statistics

None None ON

autoclose None None FALSE1

autoshrink None None FALSE
concat null
yields null

CONCAT_NULL_YIELDS_NULL None OFF

cursor close on
commit

CURSOR_CLOSE_ON_COMMIT user options
assigns a default

OFF

db chaining None Cross DB
Ownership
Chaining
determines if the
server observes
this option

OFF

dbo use only None None FALSE
default to local
cursor

None None FALSE

merge publish None None FALSE
offline None None FALSE
published None None FALSE
quoted
identifier

QUOTED_IDENTIFIER user options
assigns a default

OFF

read only None None FALSE
recursive
triggers

None None FALSE

select into/
bulkcopy

None None FALSE

single user None None FALSE
subscribed None None TRUE
torn page
detection

 None TRUE

trunc. log on
chkpt.

None None TRUE

1 By default, autoclose is set to TRUE in SQL Server 2000 Desktop Engine (MSDE 2000).

The default database options for a new database are those defined in the model database. In new SQL Server installations, the
settings in the model and master databases are the same.

A change to a database option forces a recompile of everything in the cache.

Options and Database Context

The database context of scripts and the batches within scripts is determined by the most recent connection. The connection can be
explicitly set with the USE statement in Transact-SQL and by both implicit and explicit means in other environments such as ODBC
and OLE DB. For more information, see Choosing a Database.

When a stored procedure is executed from a batch or another stored procedure, it is executed under the option settings of the
database in which it is stored. For example, when stored procedure db1.dbo.sp1 calls stored procedure db2.dbo.sp2, sp1 is
executed under the current compatibility level setting of db1, and sp2 is executed under the current compatibility level setting of
db2.

When a Transact-SQL statement refers to objects in multiple databases, the current database context and the current connection
context (the database defined by the USE statement if it is in a batch, or the database that contains the stored procedure if it is in a
stored procedure) apply to that statement.

Accessing and Changing Relational Data (SQL Server 2000)

Server Options
 New Information - SQL Server 2000 SP3.

This table is an alphabetic list of server options and corresponding database and SET options supported in Microsoft® SQL
Server™ 2000.

Server option SET option
Database

option
Default
setting

affinity mask None None 0
allow updates None None 0
awe enabled None None 0
c2 audit mode None None 0
cost threshold for
parallelism

None None 5

Cross DB Ownership
Chaining

None db chaining 0

cursor threshold None None -1
default full-text
language

None None 1033

default language None None 0
fill factor None None 0
index create memory None None 0
lightweight pooling None None 0
locks None None 0
max degree of
parallelism

None None 0

max server memory None None 2147483647
max text repl size None None 65536
max worker threads None None 255
media retention None None 0
min memory per query None None 1024
min server memory None None 0
nested triggers None None 1
network packet size None None 4096
open objects None None 0
priority boost None None 0
query governor cost
limit

QUERY_GOVERNOR_COST_
LIMIT

None 0

query wait None None -1
recovery interval None None 0
remote access None None 1
remote login timeout None None 20
remote proc trans None None 0
remote query timeout None None 600
scan for startup procs None None 0
set working set size None None 0
show advanced options None None 0
two digit year cutoff None None 2049
user connections None None 0
user options ANSI_NULL_DFLT_ON

ANSI_NULL_DFLT_OFF
ANSI null
default

OFF

 ANSI_NULLS ANSI nulls OFF
 ANSI_PADDING None ON

 ANSI_WARNINGS ANSI
warnings

OFF

CURSOR_CLOSE_ON_COMMIT cursor close
on commit

OFF

 IMPLICIT_TRANSACTIONS None OFF
QUOTED_IDENTIFIER quoted

identifier
OFF

 ARITHABORT None OFF
 ARITHIGNORE None OFF
 DISABLE_DEF_CNST_CHK None OFF
 NOCOUNT None OFF

Accessing and Changing Relational Data (SQL Server 2000)

Hints
This table lists the options available for join hints, query hints, and table hints in Microsoft® SQL Server™ 2000.

Hint
type Option Description

Default
setting

Join LOOP | HASH
| MERGE | REMOTE

Specifies the strategy to use
when joining the rows of two
tables.

Chosen by SQL
Server.

Query { HASH | ORDER } GROUP Specifies whether hashing or
ordering is used to compute
GROUP BY and COMPUTE
aggregations.

Chosen by SQL
Server.

Query { MERGE | HASH |
CONCAT } UNION

Specifies the strategy to use for
all UNION operations within
the query.

Chosen by SQL
Server.

Query FAST integer Optimizes the query for
retrieval of the specified
number of rows.

No such
optimization.

Query FORCE ORDER Performs joins in the order in
which the tables appear in the
query.

Chosen by SQL
Server.

Query ROBUST PLAN Creates a plan that
accommodates maximum
potential row size.

Chosen by SQL
Server.

Table FASTFIRSTROW Has the same effect as
specifying the FAST 1 query
hint.

No such
optimization.

Table INDEX = Instructs SQL Server to use the
specified indexes for a table.

Chosen by SQL
Server.

Table HOLDLOCK
| SERIALIZABLE
| REPEATABLEREAD
| READCOMMITTED
| READUNCOMMITTED
| NOLOCK

Specifies the isolation level for
a table.

Defaults to a
transaction
isolation level.

Table ROWLOCK
| PAGLOCK
| TABLOCK
| TABLOCKX
| NOLOCK

Specifies locking granularity for
a table.

Chosen by SQL
Server.

Table READPAST Skips locked rows altogether. Wait for locked
rows.

Table UPDLOCK Takes update locks instead of
shared locks. Cannot be used
with NOLOCK or XLOCK.

Take shared
locks.

Table XLOCK Takes an exclusive lock that will
be held until the end of the
transaction. Cannot be used
with NOLOCK or UPDLOCK.

Chosen by SQL
Server.

Accessing and Changing Relational Data (SQL Server 2000)

Database Compatibility Level Option
Transact-SQL provides the sp_dbcmptlevel stored procedure that sets certain database behaviors to be compatible with the
specified earlier version of Microsoft® SQL Server™.

A special rule applies to the relationship among the database compatibility level option, the concat null yields null database
option, and the CONCAT_NULL_YIELDS_NULL SET option. The settings of concat null yields null and
CONCAT_NULL_YIELDS_NULL are ignored when the value of compatibility level is for a release earlier than SQL Server 7.0.

The compatibility level affects the behaviors in the specified database, not the entire server. For more information, see
sp_dbcmptlevel.

Accessing and Changing Relational Data (SQL Server 2000)

Behavior if Both ARITHABORT and ARITHIGNORE Are Set ON
If both the ARITHABORT and ARITHIGNORE query-processing options are set ON, ARITHABORT takes precedence.

ARITHABORT and ARITHIGNORE are two distinct options; setting one ON does not set the other OFF automatically. For example, if
an application contains these statements then both options are set ON:

SET ARITHABORT ON
SET ARITHIGNORE ON
GO

When a SET statement is executed in a stored procedure, the new setting is active only until the procedure is completed. When the
procedure is completed, the connection's setting for that option will go back to what it was before the procedure was executed.

Effect of ANSI_WARNINGS Setting

The ANSI_WARNINGS setting affect query processor behavior despite the current settings of ARITHABORT and ARITHIGNORE.

For example, even if SET ARITHABORT or SET ARITHIGNORE is OFF, if SET ANSI_WARNINGS is ON, SQL Server still returns an
error message when encountering divide-by-zero or overflow errors.

This table summarizes the behavior.

ARITHABORT ANSI_WARNINGS Behavior
ON ON Abort statement only.
ON OFF Abort batch.
OFF ON Abort statement only.
OFF OFF Continue; value is NULL.

See Also

SET ANSI_WARNINGS

SET ARITHABORT

SET ARITHIGNORE

Accessing and Changing Relational Data (SQL Server 2000)

Query Fundamentals
A query is a request for data stored in Microsoft® SQL Server™ 2000. A query can be issued using several forms:

An MS Query or Microsoft Access user can use a graphical user interface (GUI) to pick the data the user wants to see from
one or more SQL Server tables.

A user of SQL Query Analyzer or the osql utility can issue a SELECT statement.

A Microsoft Visual Basic® application can map the data from a SQL Server table into a bound control, such as a grid.

Although queries have various ways of interacting with a user, they all accomplish the same task: They present the result set of a
SELECT statement to the user. Even if the user never specifies a SELECT statement, as is usually the case with graphical tools such
as MS Query, the client software transforms each user query into a SELECT statement that is sent to SQL Server.

The SELECT statement retrieves data from SQL Server and presents it back to the user in one or more result sets. A result set is a
tabular arrangement of the data from the SELECT. Like an SQL table, the result set comprises columns and rows.

The full syntax of the SELECT statement is complex, but most SELECT statements describe four primary properties of a result set:

The number and attributes of the columns in the result set. These attributes must be defined for each result set column:
The data type of the column.

The size of the column, and for numeric columns, the precision and scale.

The source of the data values returned in the column.
The tables from which the result set data is retrieved, and any logical relationships between the tables.

The conditions that the rows in the source tables must meet to qualify for the SELECT. Rows that do not meet the conditions
are ignored.

The sequence in which the rows of the result set are ordered.

This SELECT statement finds the product ID, name, and unit price of any products whose unit price exceeds $40:

SELECT ProductID, ProductName, UnitPrice
FROM Products
WHERE UnitPrice > $40
ORDER BY UnitPrice ASC

The column names listed after the SELECT keyword (ProductID, ProductName, and UnitPrice) form the select list. This specifies
that the result set has three columns, and each column has the name, data type, and size of the associated column in the
Products table. Because the FROM clause specifies only one base table, all column names in the SELECT statement refer to
columns in that table.

The FROM clause lists the single table, Products, from which the data is to be retrieved.

The WHERE clause specifies that the only rows in Products that qualify for this SELECT are those in which the value of the
UnitPrice column exceeds $40.

The ORDER BY clause specifies that the result set is to be sorted in ascending sequence based on the value in the UnitPrice
column.

See Also

FROM

SELECT

Distributed Queries

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Parts of a SELECT Statement
The full syntax of the SELECT statement is complex, but the main clauses can be summarized as:

SELECT select_list
[INTO new_table_name]
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]
[HAVING search_conditions]
[ORDER BY order_list [ASC | DESC]]

select_list

Describes the columns of the result set. It is a comma-separated list of expressions. Each expression defines both the format (data
type and size) and the source of the data for the result set column. Each select list expression is usually a reference to a column in
the source table or view the data is coming from, but can be any other expression, such as a constant or a Transact-SQL function.
Using the * expression in a select list specifies that all columns in the source table are returned.

INTO new_table_name

Specifies that the result set is used to create a new table. new_table_name specifies the name of the new table.

FROM table_list

Contains a list of the tables from which the result set data is retrieved. These sources can be:

Base tables in the local server running Microsoft® SQL Server™.

Views in the local SQL Server. SQL Server internally resolves a view reference to references against the base tables that
make up the view.

Linked tables, which are tables in OLE DB data sources made accessible to SQL Server. This is called a distributed query. OLE
DB data sources can be accessed from SQL Server by linking them as a linked server, or referencing the data source in an
OPENROWSET or OPENQUERY function.

The FROM clause can also contain join specifications, which define the specific path SQL Server is to use in navigating from
one table to another.

The FROM clause is also used on the DELETE and UPDATE statements to define the tables that are modified.

WHERE search_conditions

The WHERE clause is a filter that defines the conditions each row in the source tables must meet to qualify for the SELECT. Only
rows that meet the conditions contribute data to the result set. Data from rows that do not meet the conditions are not used.

The WHERE clause is also used on the DELETE and UPDATE statements to define the rows in the target tables that are modified.

GROUP BY group_by_list

The GROUP BY clause partitions the result set into groups based on the values in the columns of the group_by_list. For example,
the Northwind Orders table has three values in ShipVia. A GROUP BY ShipVia clause partitions the result set into three groups,
one for each value of ShipVia.

HAVING search_conditions

The HAVING clause is an additional filter that is applied to the result set. Logically, the HAVING clause filters rows from the
intermediate result set built from the application of any FROM, WHERE, or GROUP BY clauses in the SELECT statement. HAVING
clauses are most commonly used with a GROUP BY clause, although a GROUP BY clause is not required before a HAVING clause.

ORDER BY order_list [ASC | DESC]

The ORDER BY clause defines the order in which the rows in the result set are sorted. order_list specifies the result set columns
that make up the sort list. The ASC and DESC keywords are used to specify if the rows are sorted in an ascending or descending
sequence.

ORDER BY is important because relational theory specifies that the rows in a result set cannot be assumed to have any sequence
unless ORDER BY is specified. ORDER BY must be used in any SELECT statement for which the order of the result set rows is

important.

The clauses in a SELECT statement must be specified in the proper order.

Each reference to a database object must be unambiguous. Ambiguity can come from these sources:

There may be multiple objects with the same name in a system. For example, both User1 and User2 may have defined a
table named TableX. To resolve the ambiguity and specify the TableX owned by User1, qualify the table name with at least
the user ID:

SELECT *
FROM User1.TableX

The database in which the object resides may not always be the current database when the SELECT statement is executed.
To ensure that the proper object is always used, regardless of the current database setting, qualify the object name with the
database and owner:

SELECT *
FROM Northwind.dbo.Shippers

The tables and views specified in the FROM clause may have duplicate column names. It is especially likely that foreign keys
will have the same column name as their related primary key. To resolve the ambiguity between duplicate names, the
column name must be qualified with the table or view name:

SELECT DISTINCT Customers.CustomerID, Customers.CompanyName
FROM Customers JOIN Orders ON
 (Customers.CustomerID = Orders.CustomerID)
WHERE Orders.ShippedDate > 'May 1 1998'

This syntax becomes cumbersome when the table and view names must themselves be fully qualified. This problem is
resolved by assigning a correlation name (also known as a range variable or alias) to the table, using the AS keyword in the
FROM clause. The fully qualified table or view name has to be specified only in the FROM clause. All other table or view
references can then use the correlation name. Applying correlation names and fully qualifying the tables in the earlier
sample results in this SELECT statement:

SELECT DISTINCT Cst.CustomerID, Cst.CompanyName
FROM Northwind.dbo.Customers AS Cst
 JOIN
 Northwind.dbo.Orders AS Ord
 ON (Cst.CustomerID = Ord.CustomerID)
WHERE Ord.ShippedDate > 'May 1 1998'

For more information about object qualification, see Using Identifiers.

Many Transact-SQL examples in the SQL Server Books Online are simplified by not using qualified names. Although these
elements are left out of the examples to promote readability, it is recommended that Transact-SQL statements in production
systems use qualified names.

See Also

Expressions

SELECT

IDENTITY (Property)

Accessing and Changing Relational Data (SQL Server 2000)

Using the Select List
The select list defines the columns in the result set of a SELECT statement. The select list is a series of expressions separated by
commas. Each expression defines a column in the result set. The columns in the result set are in the same order as the sequence
of expressions in the select list.

These attributes of the result set columns are defined by the expressions in the select list:

The data type, size, precision, and scale of the result set column are the same as those of the expression defining the column.

The name of the result set column is the name associated with the expression defining the column. The optional AS keyword
can be used to change the name, or to assign a name if the expression has no name.

The data values for the result set column are derived from the evaluation of the expression for each row of the result set.

The select list can also contain keywords controlling the final format of the result set:

DISTINCT

The DISTINCT keyword eliminates duplicate rows from a result set. For example, there are many rows in the Northwind
Orders table with the same value for ShipCity. To get a list of the ShipCity values with duplicates removed:

SELECT DISTINCT ShipCity, ShipRegion
FROM Orders
ORDER BY ShipCity

TOP n

The TOP keyword specifies that the first n rows of the result set are returned. If ORDER BY is specified, the rows are selected
after the result set is ordered. n is the number of rows to return, unless the PERCENT keyword is specified. PERCENT
specifies that n is the percentage of rows in the result set that are returned. For example, this SELECT statement returns the
first 10 cities, in alphabetic sequence, from the Orders table:

SELECT DISTINCT TOP 10 ShipCity, ShipRegion
FROM Orders
ORDER BY ShipCity

The items in the select list can include:

A simple expression: a reference to a function, a local variable, a constant, or a column in a table or view.

A scalar subquery, which is a SELECT statement that evaluates to a single value for each result set row.

A complex expression built by using operators on one or more simple expressions.

The * keyword, which specifies that all columns in a table are returned.

Variable assignment in the form @local_variable = expression. The SET @local_variable statement can also be used for
variable assignment.

The IDENTITYCOL keyword, which is resolved as a reference to the column in the table having the IDENTITY property. For
example, the IDENTITY property has been defined for the OrderID column in the Northwind Orders table, so the
expression Orders. IDENTITYCOL is equal to Orders.OrderID.

The ROWGUILDCOL keyword, which is resolved as a reference to the column in a table having the ROWGUIDCOL property.

Creating a new column (using SELECT INTO) that uses the IDENTITY property by using the specified syntax. For example, to
create a new column named counter in the authors table that is an int column, you should start at a value of 100 and
increment by values of 1 for each succeeding number, use counter = IDENTITY(int, 100, 1).

Temporarily adding a column to the query results that designates whether the CUBE or ROLLUP operation added the row or

not. Use the GROUPING keyword.

This example shows many of the items that can be in a select list:

SELECT FirstName + ' ' + LastName AS "Employee Name",
 IDENTITYCOL AS "Employee ID",
 HomePhone,
 Region,
 10 AS Constant
FROM Northwind.dbo.Employees
ORDER BY LastName, FirstName ASC

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Choosing All Columns
The asterisk (*) has a special meaning in SELECT statements:

When specified without a qualifier, it is resolved as a reference to all columns in all tables or views specified in the FROM
clause. This example retrieves all book information stored in the Shippers table:

USE Northwind
GO
SELECT *
FROM Shippers
ORDER BY CompanyName
GO

When qualified with a table or view name, it is resolved as a reference to all the columns in the table or view. This example
uses the asterisk to reference all the columns in the Shippers table:

USE Northwind
GO
SELECT Orders.OrderID, Shippers.*
FROM Shippers
 JOIN
 Orders
 ON (Shippers.ShipperID = Orders.ShipVia)
ORDER BY Orders.OrderID
GO

When * is used, the order of the columns in the result set is the same as the order in which they were specified in the CREATE
TABLE, ALTER TABLE, or CREATE VIEW statements.

Because SELECT * finds all columns currently in a table, changes in the structure of a table (adding, removing, or renaming
columns) are automatically reflected each time a SELECT * statement is executed.

If a SELECT is used in an application or script that has logic dependent on the number of columns in the result set, it is better to
specify all the columns in the select list rather than specify an asterisk. If columns are later added to the table or views referenced
by the SELECT statement, the application is shielded from the change if the columns were listed individually. If * was specified, the
new columns become a part of the result set and may affect the logic of the application or script.

This example retrieves all columns in the publishers table and displays them in the order in which they were defined when the
publishers table was created:

USE Northwind
GO
SELECT *
FROM [Order Details]
ORDER BY OrderID ASC
GO

To get exactly the same results, explicitly list all the column names in the table, in order, after the SELECT statement:

USE Northwind
GO
SELECT OrderID, ProductID, UnitPrice, Quantity, Discount
FROM [Order Details]
ORDER BY OrderID ASC
GO

Note To find out the column names for a table, use sp_help, use SELECT column_name FROM
INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = table, or use SELECT TOP 0 * FROM table.

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Choosing Specific Columns
To select specific columns in a table, explicitly list each column in the select list. For example, to list only the author first names and
their telephone numbers, use:

SELECT FirstName, HomePhone
FROM Northwind.dbo.Employees
ORDER BY FirstName ASC

Specifying the columns in the select list can also include specifying an alias (for example, proj_sales AS "Projected Sales") or
other expressions, such as (price = price * 1.15, or SUM(SalesAmount).

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Constants in Query Result Sets
Constants are not usually specified as a separate column in a result set. It is usually more efficient for an application itself to build
the constant value into the results when they are displayed, rather than requiring the server to incorporate the constant value in
every result set row returned across the network.

Exceptions to this general rule include:

Stored procedures may be called by many different applications or scripts. These procedures do not have access to the
constant value that should be incorporated in the results. The SELECT statement in the procedure itself should then specify
the constant as part of the select list.

When a site wants to enforce a formatting or display standard, the format can be built into a view or stored procedure.

A SELECT statement may be executed from a script or a tool that does not support merging constants with a result set after
the result set has been returned from the server.

Character string constants are included for proper formatting or readability when character columns are concatenated. This
example combines the LastName and FirstName columns into a single column. The character string ', ' separates the two parts
of the name in the new combined column:

SELECT LastName + ', ' + FirstName AS EmployeeName
FROM Northwind.dbo.Employees
ORDER BY LastName, FirstName ASC

See Also

+ (Add)

String Concatenation Operator

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Computed Values in the Select List
A select list can contain expressions that are built by applying operators to one or more simple expressions. This allows result sets
to contain values that do not exist in the base tables, but are calculated from the values stored in the base tables. These result set
columns are called derived columns, and include:

Calculations and computations that use arithmetic operators or functions on numeric columns or constants:

SELECT ROUND((UnitPrice * .9), 2) AS DiscountPrice
FROM Products
WHERE ProductID = 58

Data type conversions:

SELECT (CAST(ProductID AS VARCHAR(10)) + ': '
 + ProductName) AS ProductIDName
FROM Products

CASE functions:

SELECT ProductID, ProductName,
 CASE CategoryID
 WHEN 1 THEN ROUND((UnitPrice * .6), 2)
 WHEN 2 THEN ROUND((UnitPrice * .7), 2)
 WHEN 3 THEN ROUND((UnitPrice * .8), 2)
 ELSE ROUND((UnitPrice * .9), 2)
 END AS DiscountPrice
FROM Products

Subqueries:

SELECT Prd.ProductID, Prd.ProductName,
 (SELECT SUM(OD.UnitPrice * OD.Quantity)
 FROM Northwind.dbo.[Order Details] AS OD
 WHERE OD.ProductID = Prd.ProductID
) AS SumOfSales
FROM Northwind.dbo.Products AS Prd
ORDER BY Prd.ProductID

Calculations and computations can be performed with data by using numeric columns or numeric constants in a select list with
arithmetic operators, functions, conversions, or nested queries. Arithmetic operators let you add, subtract, multiply, and divide
numeric data.

The following arithmetic operators are supported.

Symbol Operation
+ Addition
- Subtraction
/ Division
* Multiplication
% Modulo

The arithmetic operators that perform addition, subtraction, division, and multiplication can be used on any numeric column or
expression (int, smallint, tinyint, decimal, numeric, float, real, money, or smallmoney). The modulo operator can only be
used on int, smallint, or tinyint columns or expressions.

Arithmetic operations can also be performed on datetime and smalldatetime columns using the date functions or regular
addition or subtraction arithmetic operators.

You can use arithmetic operators to perform computations involving one or more columns. The use of constants in arithmetic
expressions is optional, as shown in this example:

SELECT ProductID, ProductName,
 UnitPrice * UnitsInStock AS InventoryValue
FROM Northwind.dbo.Products

See Also

FROM

SELECT

Operators

Join Fundamentals

Subquery Fundamentals

+ (Add)

- (Subtract)

Functions

Accessing and Changing Relational Data (SQL Server 2000)

Assigning Result Set Column Names
The AS clause can be used either to change the name of a result set column or assign a name to a derived column.

When a result set column is defined by a reference to a column in a table or view, the name of the result set column is the same
as the name of the referenced column. The AS clause can be used to assign a different name, or alias, to the result set column. This
can be done to increase readability. For example:

SELECT EmpSSN AS "Employee Social Security Number"
FROM EmpTable

Derived columns are those columns in the select list that are specified as something other than a simple reference to a column.
Derived columns have no name unless the AS clause is used to assign a name. In this example, the derived column specified using
the DATEDIFF function would have no name if the AS clause were removed:

SELECT OrderID,
 DATEDIFF(dd, ShippedDate, GETDATE()) AS DaysSinceShipped
FROM Northwind.dbo.Orders
WHERE ShippedDate IS NOT NULL

The AS clause is the syntax defined in the SQL-92 standard for assigning a name to a result set column. This is the preferred
syntax to use in Microsoft® SQL Server™.

column_name AS column_alias

Or

result_column_expression AS derived_column_name

Transact-SQL also supports the following syntax for compatibility with earlier versions of SQL Server:

column_alias = column_name

Or

derived_column_name = result_column_expression

For example, the last sample can be coded as:

SELECT OrderID,
 DaysSinceShipped = DATEDIFF(dd, ShippedDate, GETDATE())
FROM Northwind.dbo.Orders
WHERE ShippedDate IS NOT NULL

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Delimiting Result Set Column Names
The name of a result set column is an identifier. If the name is a regular identifier that follows the rules for identifiers, it does not
have to be delimited. If the name does not follow the rules for identifiers it must be delimited using either brackets ([]) or double
quotation marks (""). Double quotation marks can be used to delimit result set column names, regardless of the setting of the
QUOTED_IDENTIFIER option.

Note A name of up to 128 characters can be supplied for a result set column name. However, DB-Library applications, such as
the isql utility, truncate the name of any result set column to 30 characters in the query output. The SQL Server ODBC drivers
from SQL Server version 6.5 or earlier also truncate the result set column names to 30 characters.

This example retrieves the publisher name from the publishers table with a column heading of Book Publisher rather than the
default column heading of pub_name:

USE pubs
SELECT pub_name AS "Book Publisher"
FROM publishers
ORDER BY pub_name ASC

In addition, Transact-SQL reserved keywords can be used in quoted column headings. For example, this query uses the reserved
word SUM as a column heading:

USE pubs
SELECT SUM(ytd_sales) AS "sum"
FROM titles

Transact-SQL also supports using single quotation marks ('') to delimit a result set column name. This allows compatibility with
earlier versions of SQL Server:

USE pubs
SELECT SUM(ytd_sales) AS 'sum'
FROM titles

See Also

Using Identifiers

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Eliminating Duplicates with DISTINCT
The DISTINCT keyword eliminates duplicate rows from the results of a SELECT statement. If DISTINCT is not specified, all rows are
returned, including duplicates. For example, if you select all the author IDs in titleauthor without DISTINCT, the following rows
are returned (with some duplicate listings):

USE pubs
SELECT au_id
FROM titleauthor

Here is the result set:

au_id

172-32-1176
213-46-8915
213-46-8915
238-95-7766
267-41-2394
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391
724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
899-46-2035
998-72-3567
998-72-3567

(25 row(s) affected)

With DISTINCT, you can eliminate duplicates and see only the unique author IDs:

USE pubs
SELECT DISTINCT au_id
FROM titleauthor

Here is the result set:

au_id

172-32-1176
213-46-8915
238-95-7766
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
998-72-3567

(19 row(s) affected)

Important The output for statements involving DISTINCT depends on the collation of the column or expression on which the
DISTINCT is applied. For more information about the effects of different collations, see SQL Server Collation Fundamentals.

For the DISTINCT keyword, null values are considered to be duplicates of each other. When DISTINCT is included in a SELECT
statement, only one NULL is returned in the results, regardless of how many null values are encountered.

Note For compatibility with the SQL-92 standard and other implementations of Microsoft® SQL Server™, the ALL keyword can
explicitly ask for all rows. However, there is no need to specify ALL because it is the default.

Accessing and Changing Relational Data (SQL Server 2000)

Limiting Result Sets Using TOP and PERCENT
The TOP clause limits the number of rows returned in the result set.

TOP n [PERCENT]

n specifies how many rows are returned. If PERCENT is not specified, n is the number of rows to return. If PERCENT is specified, n
is the percentage of the result set rows to return:

TOP 120 /*Return the top 120 rows of the result set. */
TOP 15 PERCENT /* Return the top 15% of the result set. */.

If a SELECT statement that includes TOP also has an ORDER BY clause, the rows to be returned are selected from the ordered
result set. The entire result set is built in the specified order and the top n rows in the ordered result set are returned.

The other method of limiting the size of a result set is to execute a SET ROWCOUNT n statement before executing a statement.
SET ROWCOUNT differs from TOP in these ways:

The SET ROWCOUNT limit applies to building the rows in the result set after an ORDER BY is evaluated. When ORDER BY is
specified, the SELECT statement is terminated when n rows have been selected from a set of values that has been sorted
according to specified ORDER BY classification.

The TOP clause applies to the single SELECT statement in which it is specified. SET ROWCOUNT remains in effect until
another SET ROWCOUNT statement is executed, such as SET ROWCOUNT 0 to turn the option off.

See Also

SELECT

SET ROWCOUNT

Accessing and Changing Relational Data (SQL Server 2000)

Using the FROM Clause
The FROM clause is required in every SELECT statement in which data is being retrieved from tables or views. Use the FROM
clause to:

List the tables and views containing the columns referenced in the select list and in the WHERE clause. The table or view
names can be aliased using the AS clause.

Join types. These are qualified by join conditions specified in the ON clause.

The FROM clause is a comma-separated list of table names, view names, and JOIN clauses.

Transact-SQL has extensions that support the specification of objects other than tables or views in the FROM clause. These other
objects return a result set, or rowset in OLE DB terms, that form a virtual table. The SELECT statement then operates as if the result
set were a table.

The FROM clause can specify:

One or more tables or views. For example:

SELECT *
FROM Shippers

Joins between two tables or views:

SELECT Cst.CustomerID, Cst.CompanyName, Cst.ContactName,
 Ord.ShippedDate, Ord.Freight
FROM Northwind.dbo.Orders AS Ord
 JOIN
 Northwind.dbo.Customers AS Cst
 ON (Cst.CustomerID = Ord.CustomerID)

One or more derived tables, which are SELECT statements in the FROM clause referred to by an alias or a user-specified
name. The result set of the SELECT in the FROM clause forms a table used by the outer SELECT statement. For example, this
SELECT uses a derived table to find if any store carries all book titles in the pubs database:

SELECT ST.stor_id, ST.stor_name
FROM stores AS ST,
 (SELECT stor_id, COUNT(DISTINCT title_id) AS title_count
 FROM sales
 GROUP BY stor_id
) AS SA
WHERE ST.stor_id = SA.stor_id
 AND SA.title_count = (SELECT COUNT(*) FROM titles)

One or more tables or views from a linked server defined using sp_addlinkedserver. A linked server can be any OLE DB
data source.

An OLE DB rowset returned by either the OPENROWSET or OPENQUERY functions.

The basis of Microsoft® SQL Server™ 2000 distributed queries are linked servers, OPENROWSET, and OPENQUERY. They provide
the ability to query or modify data in any OLE DB data source as a part of Transact-SQL statements.

SELECT Statements Without FROM Clauses

The SELECT statements that do not require a FROM clause are those that are not selecting data from any tables in the database.
These SELECT statements only select data from local variables or Transact-SQL functions that do not operate on a column, for
example:

SELECT @MyIntVariable
SELECT @@VERSION
SELECT DB_ID('Northwind')

See Also

Distributed Queries

OPENQUERY

FROM

Using Joins

OPENROWSET

Accessing and Changing Relational Data (SQL Server 2000)

Using Table Aliases
The readability of a SELECT statement can be improved by giving a table an alias, also known as a correlation name or range
variable. A table alias can be assigned either with or without the AS keyword:

table_name AS table alias

table_name table_alias

In this example, the alias p is assigned to publishers.

USE pubs
SELECT p.pub_id, p.pub_name
FROM publishers AS p

If an alias is assigned to a table, all explicit references to the table in the Transact-SQL statement must use the alias, not the table
name. For example, the following SELECT generates a syntax error because it uses the name of the table when an alias has been
assigned:

SELECT Customers.CustomerID, /* Illegal reference to Customers. */
 Cst.FirstName, Cst.LastName
FROM Northwind.dbo.Customers AS Cst

See Also

FROM

Accessing and Changing Relational Data (SQL Server 2000)

Filtering Rows with WHERE and HAVING
The WHERE and HAVING clauses in a SELECT statement control the rows from the source tables that are used to build the result
set. WHERE and HAVING are filters. They specify a series of search conditions, and only those rows that meet the terms of the
search conditions are used to build the result set. Those rows meeting the search conditions are said to be qualified to participate
in the result set. For example, the WHERE clause in this SELECT statement qualifies the rows only where the region is Washington
State:

SELECT CustomerID, CompanyName
FROM Northwind.dbo.Customers
WHERE Region = 'WA'

The HAVING clause is typically used in conjunction with the GROUP BY clause, although it can be specified without GROUP BY.
The HAVING clause specifies further filters that are applied after the WHERE clause filters. For example, this WHERE clause only
qualifies orders selling a product with a unit price exceeding $100, and the HAVING clause further restricts the result to only thos
orders that include more than 100 units:

SELECT OrdD1.OrderID AS OrderID,
 SUM(OrdD1.Quantity) AS "Units Sold",
 SUM(OrdD1.UnitPrice * OrdD1.Quantity) AS Revenue
FROM [Order Details] AS OrdD1
WHERE OrdD1.OrderID in (SELECT DISTINCT OrdD2.OrderID
 FROM [Order Details] AS OrdD2
 WHERE OrdD2.UnitPrice > $100)
GROUP BY OrdD1.OrderID
HAVING SUM(OrdD1.Quantity) > 100

The search conditions, or qualifications, in the WHERE and HAVING clauses can include:

Comparison operators (such as =, < >, <, and >). For example, this query retrieves the rows from the Products table for the
products that are in product category 2:

SELECT ProductID, ProductName
FROM Northwind.dbo.Products
WHERE CategoryID = 2
ORDER BY ProductID

Ranges (BETWEEN and NOT BETWEEN). For example, this query retrieves rows from the Products table with categories
from 2 to 4:

SELECT CategoryID, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE CategoryID BETWEEN 2 and 4
ORDER BY CategoryID, ProductID

Lists (IN, NOT IN). For example, this query retrieves rows from the Products table in which the Category ID matches one in
a list of IDs:

SELECT CategoryID, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE CategoryID IN (1,4,5,7)
ORDER BY CategoryID, ProductID

Pattern matches (LIKE and NOT LIKE). For example, this query retrieves rows from the Products table in which the product
name starts with the letters Ch:

SELECT CategoryID, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE ProductName LIKE 'Ch%'
ORDER BY CategoryID, ProductID

Note The only WHERE conditions that you can use on text columns are functions that return another data type, such as
PATINDEX(), or the operators, such as IS NULL, IS NOT NULL, LIKE, and NOT LIKE.

Null values (IS NULL and IS NOT NULL). For example, this query retrieves rows from the Customers table in which the
customers' region is not NULL:

SELECT CompanyName, City, Region, Country
FROM Northwind.dbo.Customers
WHERE Region IS NOT NULL
ORDER BY CompanyName

Note Use caution when comparing null values. For example, specifying = NULL is not the same as specifying IS NULL. For
more information, see Null Values.

All records (=ALL, >ALL, <= ALL, ANY). For example, this query retrieves order and product IDs from the Order Details
table in which the quantity of the product shipped is larger than the quantity shipped for any product in category 1:

USE Northwind
GO
SELECT OrdD1.OrderID, OrdD1.ProductID
FROM "Order Details" OrdD1
WHERE OrdD1.Quantity > ALL
 (SELECT OrdD2.Quantity
 FROM "Order Details" OrdD2 JOIN Products Prd
 ON OrdD2.ProductID = Prd.ProductID
 WHERE Prd.CategoryID = 1)
GO

Combinations of these conditions (AND, OR, NOT). For example, this query retrieves all products for which either the stock
level is lower than the reorder point or the product comes from supplier 15 and is in category 4:

SELECT ProductID, ProductName
FROM Northwind.dbo.Products
WHERE UnitsInStock < ReorderLevel
 OR (SupplierID = 15 AND CategoryID = 4)

Note When you search for a Unicode string in a WHERE clause, place the N character before the search string, for example:

SELECT CompanyName, ContactName, Phone, Fax
FROM Northwind.dbo.Customers
WHERE CompanyName = N'Berglunds snabbköp'

See Also

IS [NOT] NULL

Operators

ISNULL

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Comparison Search Conditions
Microsoft® SQL Server™ 2000 uses these comparison operators.

Operator Meaning
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
< > Not equal to (SQL-92 compatible)
!> Not greater than
!< Not less than
!= Not equal to

Comparison operators are specified between two expressions. For example, to retrieve the names of only those products for
which the unit price is greater than $50, use:

SELECT ProductName
FROM Northwind.dbo.Products
WHERE UnitPrice > $50.00

When you compare character string data, the logical sequence of the characters is defined by the collation of the character data.
The result of comparison operators such as < and > are controlled by the character sequence defined by the collation. The same
SQL Collation might have different sorting behavior for Unicode and non-Unicode data. (For more information, see SQL Server
Collation Fundamentals.)

Trailing blanks are ignored in comparisons in non-Unicode data; for example, these are equivalent:

WHERE au_lname = 'White'
WHERE au_lname = 'White '
WHERE au_lname = 'White' + SPACE(1)

The use of NOT negates an expression. For example, this query finds all products that have a unit price of $50 or more, which is
logically the same as asking for all products that do not have a unit price of less than $50:

SELECT ProductID, ProductName, UnitPrice
FROM Northwind.dbo.Products
WHERE NOT UnitPrice < $50
ORDER BY ProductID

See Also

String Concatenation Operator

+ (String Concatentation)

Data Types

Operators

SQL Server Collation Fundamentals

Accessing and Changing Relational Data (SQL Server 2000)

Range Search Conditions
A range search is one that returns all values between two specified values. Inclusive ranges return any values that match the two
specified values. Exclusive ranges do not return any values that match the two specified values.

The BETWEEN keyword specifies an inclusive range to search. For example, this SELECT returns all products whose units in stock
is between 15 and 25:

SELECT UnitsInStock, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE UnitsInStock BETWEEN 15 AND 25
ORDER BY UnitsInStock

The results of this SELECT statement contains any products that have either 15 or 25 units in stock.

SELECT UnitsInStock, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE UnitsInStock = 15 OR UnitsInStock = 25
ORDER BY UnitsInStock

To specify an exclusive range, use the greater-than and less-than operators (> and <). The following query using the greater-than
and less-than operators returns different results than the last example because these operators do not include rows matching the
values that limit the range.

SELECT UnitsInStock, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE UnitsInStock > 15 AND UnitsInStock < 25
ORDER BY UnitsInStock

NOT BETWEEN finds all rows outside the range you specify. Use this query to find all products for which the number of units in
stock are outside the 15 to 25 range:

SELECT UnitsInStock, ProductID, ProductName
FROM Northwind.dbo.Products
WHERE UnitsInStock NOT BETWEEN 15 AND 25
ORDER BY UnitsInStock

See Also

WHERE

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

List Search Conditions
The IN keyword allows you to select rows that match any one of a list of values. For example, without IN, if you want a list of the
names and states of all authors who live in California, Indiana, or Maryland, you would need this query:

SELECT ProductID, ProductName
FROM Northwind.dbo.Products
WHERE CategoryID = 1 OR CategoryID = 4 OR CategoryID = 5

However, you can get the same results with less typing if you use IN:

SELECT ProductID, ProductName
FROM Northwind.dbo.Products
WHERE CategoryID IN (1, 4, 5)

The items following the IN keyword must be separated by commas and be enclosed in parentheses.

Perhaps the most important use for the IN keyword is in nested queries, also referred to as subqueries. For more information
about subqueries, see Subquery Fundamentals.

This query finds all au_ids in the titleauthor table for authors who make less than 50 percent of the royalty on any one book,
and then selects from the authors table all author names with au_ids that match the results from the titleauthor query:

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id IN
 (SELECT au_id
 FROM titleauthor
 WHERE royaltyper < 50)

The results show that several authors fall into the less than 50 percent category.

This query finds the names of authors who do not make less than 50 percent of the royalties on at least one book:

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id NOT IN
 (SELECT au_id
 FROM titleauthor
 WHERE royaltyper < 50)

NOT IN finds the authors who do not match the items in the values list.

See Also

WHERE

Data Types

Accessing and Changing Relational Data (SQL Server 2000)

Pattern Matching in Search Conditions
The LIKE keyword searches for character string, date, or time values that match a specified pattern. For more information, see Data
Types. The LIKE keyword uses a regular expression to contain the pattern that the values are matched against. The pattern
contains the character string to search for, which can contain any combination of four wildcards.

Wildcard Meaning
% Any string of zero or more characters.
_ Any single character.
[] Any single character within the specified range (for example,

[a-f]) or set (for example, [abcdef]).
[^] Any single character not within the specified range (for

example, [^a - f]) or set (for example, [^abcdef]).

Enclose the wildcard(s) and the character string in single quotation marks, for example:

LIKE 'Mc%' searches for all strings that begin with the letters Mc (McBadden).

LIKE '%inger' searches for all strings that end with the letters inger (Ringer, Stringer).

LIKE '%en%' searches for all strings that contain the letters en anywhere in the string (Bennet, Green, McBadden).

LIKE '_heryl' searches for all six-letter names ending with the letters heryl (Cheryl, Sheryl).

LIKE '[CK]ars[eo]n' searches for Carsen, Karsen, Carson, and Karson (Carson).

LIKE '[M-Z]inger' searches for all names ending with the letters inger that begin with any single letter from M through Z
(Ringer).

LIKE 'M[^c]%' searches for all names beginning with the letter M that do not have the letter c as the second letter
(MacFeather).

This query finds all phone numbers in the authors table that have area code 415:

SELECT phone
FROM pubs.dbo.authors
WHERE phone LIKE '415%'

You can use NOT LIKE with the same wildcards. To find all phone numbers in the authors table that have area codes other than
415, use either of these equivalent queries:

SELECT phone
FROM pubs.dbo.authors
WHERE phone NOT LIKE '415%'

-- Or

SELECT phone
FROM pubs.dbo.authors
WHERE NOT phone LIKE '415%'

The IS NOT NULL clause can be used with wildcards and the LIKE clause. For example, this query retrieves telephone numbers
from the authors table in which the telephone number begins with 415 and IS NOT NULL:

USE pubs
SELECT phone
FROM authors
WHERE phone LIKE '415%' and phone IS NOT NULL

Important The output for statements involving the LIKE keyword depends on the sort order chosen during installation. For more
information about the effects of different sort orders, see Collations.

The only WHERE conditions that you can use on text columns are LIKE, IS NULL, or PATINDEX.

Wildcards used without LIKE are interpreted as constants rather than as a pattern, that is, they represent only their own values.

The following query attempts to find any phone numbers that consist of the four characters 415% only. It will not find phone
numbers that start with 415. For more information about constants, see Using Constants.

SELECT phone
FROM pubs.dbo.authors
WHERE phone = '415%'

Another important consideration in using wildcards is their effect on performance. If a wildcard begins the expression, an index
cannot be used. (Just as you wouldn't know where to start in a phone book if given the name '%mith', not 'Smith'.) A wildcard in
or at the end of an expression does not preclude use of an index (just as in a phone book, you would know where to search if the
name was 'Samuel%', regardless of whether the names Samuels and Samuelson are both there).

Searching for Wildcard Characters

You can search for wildcard characters. There are two methods for specifying a character that would ordinarily be a wildcard:

Use the ESCAPE keyword to define an escape character. When the escape character is placed in front of the wildcard in the
pattern, the wildcard is interpreted as a character. For example, to search for the string 5% anywhere in a string, use:

WHERE ColumnA LIKE '%5/%%' ESCAPE '/'

In this LIKE clause, the leading and ending percent signs (%) are interpreted as wildcards, and the percent sign preceded by a
slash (/) is interpreted as the % character.

Use square brackets ([]) to enclose the wildcard by itself. To search for a dash (-), rather than using it to specify a search
range, use the dash as the first character inside a set of brackets:

WHERE ColumnA LIKE '9[-]5'

The table shows the use of wildcards enclosed in square brackets.

Symbol Meaning
LIKE '5[%]' 5%
LIKE '5%' 5 followed by any string of 0 or more characters
LIKE '[_]n' _n
LIKE '_n' an, in, on (and so on)
LIKE '[a-cdf]' a, b, c, d, or f
LIKE '[-acdf]' -, a, c, d, or f
LIKE '[[]' [
LIKE ']']

When string comparisons are performed with LIKE, all characters in the pattern string are significant, including every leading
and/or trailing blank (space). If a comparison to return all rows with a string LIKE 'abc ' (abc followed by a single space) is
requested, a row in which the value of that column is abc (abc without a space) is not returned. The reverse, however, is not true.
Trailing blanks in the expression to which the pattern is matched are ignored. If a comparison to return all rows with a string LIKE
'abc' (abc without a space) is requested, all rows that start with abc and have zero or more trailing blanks are returned.

See Also

LIKE

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

NULL Comparison Search Conditions
The value NULL means the data value for the column is unknown or not available. NULL is not synonymous with zero (numeric or
binary value), a zero-length string, or blank (character value). Rather, null values allow you to distinguish between an entry of zero
(numeric columns) or blank (character columns) and a nonentry (NULL for both numeric and character columns).

NULL can be entered in a column for which null values are permitted (as specified in the CREATE TABLE statement) in two ways:

Microsoft® SQL Server™ 2000 automatically enters the value NULL if no data is entered and there is no default or DEFAULT
constraint on the column or data type.

The user can explicitly enter the value NULL by typing NULL without quotation marks. If the word NULL is typed into a
character column with quotation marks, it is treated as the letters N, U, L, and L, not as a null value.

When null values are retrieved, an application typically displays a string such as NULL, or (NULL), or (null) in the appropriate
position. For example, the advance column of the titles table allows null values:

SELECT title_id, type, advance
FROM pubs.dbo.titles
WHERE advance IS NULL

Here is the result set:

title_id type advance
-------- ------------ --------------------------
MC3026 UNDECIDED (null)
PC9999 popular_comp (null)

(2 row(s) affected)

Comparing Null Values

Care must be taken when comparing null values. The behavior of the comparison depends on the setting of the SET ANSI_NULLS
option.

When SET ANSI_NULLS is ON, a comparison in which one or more of the expressions is NULL does not yield either TRUE or
FALSE; it yields UNKNOWN. This is because a value that is unknown cannot be compared logically against any other value. This
occurs if either an expression is compared to the literal NULL, or if two expressions are compared and one of them evaluates to
NULL. For example, this comparison always yields UNKNOWN when ANSI_NULLS is ON:

ytd_sales > NULL

This comparison also yields UNKNOWN any time the variable contains the value NULL:

ytd_sales > @MyVariable

Use the IS NULL or IS NOT NULL clauses to test for a NULL value. This can add complexity to the WHERE clause. For example, the
Region column in the Northwind Customers table allows null values. If a SELECT statement is to test for null values in addition
to others, it must include an IS NULL clause:

SELECT CustomerID, CompanyName, Region
FROM Northwind.dbo.Customers
WHERE Region IN ('WA', 'SP', 'BC')
 OR Region IS NULL

Transact-SQL supports an extension that allows for the comparison operators to return TRUE or FALSE when comparing against
null values. This option is activated by setting ANSI_NULLS OFF. When ANSI_NULLS is OFF, comparisons such as ColumnA =
NULL return TRUE when ColumnA contains a null value and FALSE when ColumnA contains some value besides NULL. Also, a
comparison of two expressions that have both evaluated to null values yields TRUE. With ANSI_NULLS set OFF, this SELECT
statement returns all the rows in the Customer table for which Region is a null value:

SELECT CustomerID, CompanyName, Region
FROM Northwind.dbo.Customers
WHERE Region = NULL

Regardless of the ANSI_NULLS setting, Null values are always considered equal for the purposes of the ORDER BY, GROUP BY,
and DISTINCT keywords. Also, a unique index or UNIQUE constraint that allows NULL can contain only one row with a NULL key
value. A subsequent row with NULL is rejected. A primary key cannot have NULL in any column that is part of the key.

Computations involving NULL evaluate to NULL because the result must be UNKNOWN if any of the factors is unknown. For
example, column1 + 1 evaluates to NULL if column1 is NULL.

When the columns being searched include those defined as allowing null values, you can find null or nonnull values in the
database with this pattern:

WHERE column_name IS [NOT] NULL

See Also

Null Values

IS [NOT] NULL

Accessing and Changing Relational Data (SQL Server 2000)

Logical Operators
The logical operators are AND, OR, and NOT. AND and OR are used to connect search conditions in WHERE clauses. NOT reverses
the result of a search condition.

AND joins two conditions and returns TRUE only when both conditions are true. For example, this query returns only the one row
in which the customer ID starts with the letter F and the contact name is Lino Rodriguez:

SELECT CustomerID, CompanyName, ContactName
FROM Northwind.dbo.Customers
WHERE CustomerID LIKE N'F%'
 AND ContactName = N'Lino Rodriguez'

OR also connects two conditions, but it returns TRUE when either of the conditions is true. The following query returns two rows,
one with a customer ID of CACTU and the other with a contact name of Lino Rodriguez:

SELECT CustomerID, CompanyName, ContactName
FROM Customers
WHERE CustomerID = N'CACTU'
 OR ContactName = N'Lino Rodriguez'

See Also

WHERE

Operators

Accessing and Changing Relational Data (SQL Server 2000)

Logical Operator Precedence
Logical Operator Precedence

When more than one logical operator is used in a statement, NOT is evaluated first, then AND, and finally OR. Arithmetic (and
bitwise) operators are handled before logical operators.

In this example, the advance condition pertains to psychology books and not to business books because AND has precedence
over OR:

SELECT title_id, type, advance
FROM pubs.dbo.titles
WHERE type = 'business' OR type = 'psychology'
 AND advance > $5500

You can change the meaning of the query by adding parentheses to force evaluation of the OR first. This query finds all business
and psychology books that have advances over $5,500:

SELECT title_id, type, advance
FROM titles
WHERE (type = 'business' OR type = 'psychology')
 AND advance > $5500

The use of parentheses, even when not required, can improve the readability of queries and reduce the chance of making a subtle
mistake because of operator precedence. There is no significant performance penalty in using parentheses. This example is more
readable than the original example, although they are syntactically the same:

SELECT title_id, type, advance
FROM pubs.dbo.titles
WHERE type = 'business'
 OR (type = 'psychology' AND advance > $5500)

See Also

Operators

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Joins
In earlier versions of Microsoft® SQL Server™ 2000, left and right outer join conditions were specified in the WHERE clause using
the *= and =* operators. In some cases, this syntax results in an ambiguous query that can be interpreted in more than one way.
SQL-92 compliant outer joins are specified in the FROM clause and do not result in this ambiguity. Because the SQL-92 syntax is
more precise, detailed information about using the old Transact-SQL outer join syntax in the WHERE clause is not included with
this release. The syntax may not be supported in a future version of SQL Server. Any statements using the Transact-SQL outer
joins should be changed to use the SQL-92 syntax.

The SQL-92 standard does support the specification of inner joins in either the FROM or WHERE clause. Inner joins specified in
the WHERE clause do not have the same problems with ambiguity as the Transact-SQL outer join syntax.

See Also

FROM

Join Fundamentals

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Sorting Rows with ORDER BY
The ORDER BY clause sorts query results by one or more columns up to 8,060 bytes. For more information about the maximum
ORDER BY clause size, see SELECT.

A sort can be ascending (ASC) or descending (DESC). If neither is specified, ASC is assumed.

Important The exact results of an ORDER BY clause depend on the collation chosen during installation. For information about
the effects of different collations, see SQL Server Collation Fundamentals.

This query returns results ordered by ascending pub_id:

USE pubs
SELECT pub_id, type, title_id
FROM titles
ORDER BY pub_id

Here is the result set:

pub_id type title_id
------ ------------ --------
0736 business BU2075
0736 psychology PS2091
0736 psychology PS2106
0736 psychology PS3333
0736 psychology PS7777
0877 mod_cook MC2222
0877 mod_cook MC3021
0877 UNDECIDED MC3026
0877 psychology PS1372
0877 trad_cook TC3218
0877 trad_cook TC4203
0877 trad_cook TC7777
1389 business BU1032
1389 business BU1111
1389 business BU7832
1389 popular_comp PC1035
1389 popular_comp PC8888
1389 popular_comp PC9999

(18 row(s) affected)

If more than one column is named in the ORDER BY clause, sorts are nested. The following statement sorts the rows in the titles
table, first by publisher in descending order, and then by type in ascending order within each publisher, and finally by price (also
ascending, because DESC is not specified).

USE pubs
SELECT pub_id, type, title_id, price
FROM titles
ORDER BY pub_id DESC, type, price

Note You cannot use ORDER BY on columns that have the text or image data types. Also, subqueries, aggregates, and constant
expressions are not allowed in the ORDER BY list; however, a user-specified name can be used in the select list for aggregates or
expressions, for example:

SELECT type, sum (ytd_sales) AS sales_total
FROM titles
GROUP BY type
ORDER BY sales_total

Accessing and Changing Relational Data (SQL Server 2000)

Join Fundamentals
By using joins, you can retrieve data from two or more tables based on logical relationships between the tables. Joins indicate
how Microsoft® SQL Server™ 2000 should use data from one table to select the rows in another table.

A join condition defines the way two tables are related in a query by:

Specifying the column from each table to be used for the join. A typical join condition specifies a foreign key from one table
and its associated key in the other table.

Specifying a logical operator (=, <>, and so on) to be used in comparing values from the columns.

Joins can be specified in either the FROM or WHERE clauses. The join conditions combine with the WHERE and HAVING search
conditions to control the rows that are selected from the base tables referenced in the FROM clause.

Specifying the join conditions in the FROM clause helps separate them from any other search conditions that may be specified in
a WHERE clause, and is the recommended method for specifying joins. A simplified SQL-92 FROM clause join syntax is:

FROM first_table join_type second_table [ON (join_condition)]

join_type specifies what kind of join is performed: an inner, outer, or cross join. join_condition defines the predicate to be
evaluated for each pair of joined rows. This is an example of a FROM clause join specification:

FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)

This is a simple SELECT statement using this join:

SELECT ProductID,
 Suppliers.SupplierID,
 CompanyName
FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)
WHERE UnitPrice > $10
 AND CompanyName LIKE N'F%'
GO

The select returns the product and supplier information for any combination of parts supplied by a company for which the
company name starts with the letter F and the price of the product is more than $10.

When multiple tables are referenced in a single query, all column references must be unambiguous. In the previous example, both
the Products and Suppliers table have a column named SupplierID. Any column name that is duplicated between two or more
tables referenced in the query must be qualified with the table name. All references to the SupplierID columns in the example are
qualified.

When a column name is not duplicated in two or more tables used in the query, references to it do not have to be qualified with
the table name. This is shown in the previous example. Such a SELECT statement is sometimes difficult to understand because
there is nothing to indicate the table that provided each column. The readability of the query is improved if all columns are
qualified with their table names. The readability is further improved if table aliases are used, especially when the table names
themselves must be qualified with the database and owner names. This is the same example, except that table aliases have been
assigned and the columns qualified with table aliases to improve readability:

SELECT P.ProductID,
 S.SupplierID,
 S.CompanyName
FROM Suppliers AS S JOIN Products AS P
 ON (S.SupplierID = P.SupplierID)
WHERE P.UnitPrice > $10
 AND S.CompanyName LIKE N'F%'

The previous examples specified the join conditions in the FROM clause, which is the preferred method. This query contains the
same join condition specified in the WHERE clause:

SELECT P.ProductID,
 S.SupplierID,
 S.CompanyName
FROM Suppliers AS S, Products AS P
WHERE S.SupplierID = P.SupplierID
 AND P.UnitPrice > $10
 AND S.CompanyName LIKE N'F%'

The select list for a join can reference all the columns in the joined tables, or any subset of the columns. The select list is not
required to contain columns from every table in the join. For example, in a three-table join, only one table can be used to bridge
from one of the other tables to the third table, and none of the columns from the middle table have to be referenced in the select
list.

Although join conditions usually have equality comparisons (=), other comparison or relational operators can be specified, as can
other predicates. For more information, see Using Operators in Expressions and WHERE.

When SQL Server processes joins, the query engine chooses the most efficient method (out of several possibilities) of processing
the join. Although the physical execution of various joins uses many different optimizations, the logical sequence is:

The join conditions in the FROM clause are applied.

The join conditions and search conditions from the WHERE clause are applied.

The search conditions from the HAVING clause are applied.

This sequence can sometimes influence the results of the query if conditions are moved between the FROM and WHERE clauses.

Columns used in a join condition are not required to have the same name or be the same data type. However, if the data types are
not identical, they must be compatible, or be types that SQL Server can implicitly convert. If the data types cannot be implicitly
converted, the join condition must explicitly convert the data type using the CAST function. For more information about implicit
and explicit conversions, see Data Type Conversion.

Most queries using a join can be rewritten using a subquery (a query nested within another query), and most subqueries can be
rewritten as joins. For more information about subqueries, see Subquery Fundamentals.

Note Tables cannot be joined directly on ntext, text, or image columns. However, tables can be joined indirectly on ntext, text,
or image columns by using SUBSTRING. For example, SELECT * FROM t1 JOIN t2 ON SUBSTRING(t1.textcolumn, 1, 20) =
SUBSTRING(t2.textcolumn, 1, 20) performs a two-table inner join on the first 20 characters of each text column in tables t1 and t2.
In addition, another possibility for comparing ntext or text columns from two tables is to compare the lengths of the columns
with a WHERE clause, for example (where a self-join is performed on the pub_info table):

WHERE DATALENGTH(p1.pr_info) = DATALENGTH(p2.pr_info)

See Also

Logical Operator Precedence

SELECT Examples

Accessing and Changing Relational Data (SQL Server 2000)

Using Joins
Join conditions can be specified in either the FROM or WHERE clauses; specifying them in the FROM clause is recommended.
WHERE and HAVING clauses can also contain search conditions to further filter the rows selected by the join conditions.

Joins can be categorized as:

Inner joins (the typical join operation, which uses some comparison operator like = or <>). These include equi-joins and
natural joins.

Inner joins use a comparison operator to match rows from two tables based on the values in common columns from each
table. For example, retrieving all rows where the student identification number is the same in both the students and
courses tables.

Outer joins. Outer joins can be a left, a right, or full outer join.

Outer joins are specified with one of the following sets of keywords when they are specified in the FROM clause:

LEFT JOIN or LEFT OUTER JOIN

The result set of a left outer join includes all the rows from the left table specified in the LEFT OUTER clause, not just
the ones in which the joined columns match. When a row in the left table has no matching rows in the right table,
the associated result set row contains null values for all select list columns coming from the right table.

RIGHT JOIN or RIGHT OUTER JOIN.

A right outer join is the reverse of a left outer join. All rows from the right table are returned. Null values are
returned for the left table any time a right table row has no matching row in the left table.

FULL JOIN or FULL OUTER JOIN.

A full outer join returns all rows in both the left and right tables. Any time a row has no match in the other table, the
select list columns from the other table contain null values. When there is a match between the tables, the entire
result set row contains data values from the base tables.

Cross joins.

Cross joins return all rows from the left table, each row from the left table is combined with all rows from the right table.
Cross joins are also called Cartesian products.

For example, here is an inner join retrieving the authors who live in the same city and state as a publisher:

USE pubs
SELECT a.au_fname, a.au_lname, p.pub_name
FROM authors AS a INNER JOIN publishers AS p
 ON a.city = p.city
 AND a.state = p.state
ORDER BY a.au_lname ASC, a.au_fname ASC

The tables or views in the FROM clause can be specified in any order with an inner join or full outer join; however, the order of
tables or views specified when using either a left or right outer join is important. For more information about table ordering with
left or right outer joins, see Using Outer Joins.

See Also

Operators

CAST and CONVERT

Using Operators in Expressions

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Using Inner Joins
Using Inner Joins

An inner join is a join in which the values in the columns being joined are compared using a comparison operator.

In the SQL-92 standard, inner joins can be specified in either the FROM or WHERE clause. This is the only type of join that SQL-92
supports in the WHERE clause. Inner joins specified in the WHERE clause are known as old-style inner joins.

This Transact-SQL query is an example of an inner join:

USE pubs
SELECT *
FROM authors AS a INNER JOIN publishers AS p
 ON a.city = p.city
ORDER BY a.au_lname DESC

This inner join is known as an equi-join. It returns all the columns in both tables, and returns only the rows for which there is an
equal value in the join column.

Here is the result set:

au_id au_lname au_fname phone address city
----------- -------- -------- ------------ --------------- --------
238-95-7766 Carson Cheryl 415 548-7723 589 Darwin Ln. Berkeley
409-56-7008 Bennet Abraham 415 658-9932 6223 Bateman St. Berkeley

state zip contract pub_id pub_name city state country
----- ----- -------- ------ --------------------- -------- ----- -------
CA 94705 1 1389 Algodata Infosystems Berkeley CA USA
CA 94705 1 1389 Algodata Infosystems Berkeley CA USA

(2 row(s) affected)

In the result set, the city column appears twice. Because there is no point in repeating the same information, one of these two
identical columns can be eliminated by changing the select list. The result is called a natural join. You can restate the preceding
Transact-SQL query to form a natural join. For example:

USE pubs
SELECT p.pub_id, p.pub_name, p.state, a.*
FROM publishers p INNER JOIN authors a
 ON p.city = a.city
ORDER BY a.au_lname ASC, a.au_fname ASC

Here is the result set:

pub_id pub_name state au_id au_lname au_fname
------ --------------- -------- ----------- -------- -------- 1389 Algodata Infosystems CA 409-
56-7008 Bennet Abraham
1389 Algodata Infosystems CA 238-95-7766 Carson Cheryl

phone address city state zip contract
--------------- ------------- -------- ----- ----- ---------
415 658-9932 6223 Bateman St. Berkeley CA 94705 1
415 548-7723 589 Darwin Ln. Berkeley CA 94705 1

(2 row(s) affected)

In this example, publishers.city does not appear in the results.

Joins Using Operators Other Than Equal

You can also join values in two columns that are not equal. The same operators and predicates used for inner joins can be used
for not-equal joins. For more information about the available operators and predicates that can be used in joins, see Using
Operators in Expressions and WHERE.

This Transact-SQL example is of a greater-than (>) join which finds New Moon authors who live in states that come alphabetically
after Massachusetts, where New Moon Books is located.

USE pubs
SELECT p.pub_name, p.state, a.au_lname, a.au_fname, a.state
FROM publishers p INNER JOIN authors a
 ON a.state > p.state

WHERE p.pub_name = 'New Moon Books'
ORDER BY au_lname ASC, au_fname ASC

Here is the result set:

pub_name state au_lname au_fname state
---------------- ------- -------------------- -------------------- -----
New Moon Books MA Blotchet-Halls Reginald OR
New Moon Books MA del Castillo Innes MI
New Moon Books MA Greene Morningstar TN
New Moon Books MA Panteley Sylvia MD
New Moon Books MA Ringer Albert UT
New Moon Books MA Ringer Anne UT

(6 row(s) affected)

Joins Using the Not-equal Operator

The not-equal join (< >) is rarely used. As a general rule, not-equal joins make sense only when used with a self-join. For example,
this not-equal Transact-SQL join and self-join are used to find the categories with two or more inexpensive (less than $15) books
of different prices:

USE pubs
SELECT DISTINCT t1.type, t1.price
FROM titles t1 INNER JOIN titles t2
 ON t1.type = t2.type
 AND t1.price <> t2.price
WHERE t1.price < $15 AND t2.price < $15

Note The expression NOT column_name = column_name is equivalent to column_name < > column_name.

This Transact-SQL example uses a not-equal join combined with a self-join to find all rows in the titleauthor table in which two
or more rows have the same title_id but different au_id numbers (that is, books with more than one author):

USE pubs
SELECT DISTINCT t1.au_id, t1.title_id
FROM titleauthor t1 INNER JOIN titleauthor t2
 ON t1.title_id = t2.title_id
WHERE t1.au_id <> t2.au_id
ORDER BY t1.au_id

Here is the result set:

au_id title_id
----------- --------
213-46-8915 BU1032
267-41-2394 BU1111
267-41-2394 TC7777
409-56-7008 BU1032
427-17-2319 PC8888
472-27-2349 TC7777
672-71-3249 TC7777
722-51-5454 MC3021
724-80-9391 BU1111
724-80-9391 PS1372
756-30-7391 PS1372
846-92-7186 PC8888
899-46-2035 MC3021
899-46-2035 PS2091
998-72-3567 PS2091

(15 row(s) affected)

See Also

Conversion Functions

WHERE

SELECT Examples

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Using Outer Joins
Using Outer Joins

Inner joins return rows only when there is at least one row from both tables that matches the join condition. Inner joins eliminate
the rows that do not match with a row from the other table. Outer joins, however, return all rows from at least one of the tables or
views mentioned in the FROM clause, as long as those rows meet any WHERE or HAVING search conditions. All rows are
retrieved from the left table referenced with a left outer join, and all rows from the right table referenced in a right outer join. All
rows from both tables are returned in a full outer join

Microsoft® SQL Server™ 2000 uses these SQL-92 keywords for outer joins specified in a FROM clause:

LEFT OUTER JOIN or LEFT JOIN

RIGHT OUTER JOIN or RIGHT JOIN

FULL OUTER JOIN or FULL JOIN

SQL Server supports both the SQL-92 outer join syntax and a legacy syntax for specifying outer joins based on using the *= and
=* operators in the WHERE clause. The SQL-92 syntax is recommended because it is not subject to the ambiguity that sometimes
results from the legacy Transact-SQL outer joins.

Using Left Outer Joins

Consider a join of the authors table and the publishers table on their city columns. The results show only the authors who live
in cities in which a publisher is located (in this case, Abraham Bennet and Cheryl Carson).

To include all authors in the results, regardless of whether a publisher is located in the same city, use an SQL-92 left outer join.
The following is the query and results of the Transact-SQL left outer join:

USE pubs
SELECT a.au_fname, a.au_lname, p.pub_name
FROM authors a LEFT OUTER JOIN publishers p
 ON a.city = p.city
ORDER BY p.pub_name ASC, a.au_lname ASC, a.au_fname ASC

Here is the result set:

au_fname au_lname pub_name
-------------------- ------------------------------ -----------------
Reginald Blotchet-Halls NULL
Michel DeFrance NULL
Innes del Castillo NULL
Ann Dull NULL
Marjorie Green NULL
Morningstar Greene NULL
Burt Gringlesby NULL
Sheryl Hunter NULL
Livia Karsen NULL
Charlene Locksley NULL
Stearns MacFeather NULL
Heather McBadden NULL
Michael O'Leary NULL
Sylvia Panteley NULL
Albert Ringer NULL
Anne Ringer NULL
Meander Smith NULL
Dean Straight NULL
Dirk Stringer NULL
Johnson White NULL
Akiko Yokomoto NULL
Abraham Bennet Algodata Infosystems
Cheryl Carson Algodata Infosystems

(23 row(s) affected)

The LEFT OUTER JOIN includes all rows in the authors table in the results, whether or not there is a match on the city column in
the publishers table. Notice that in the results there is no matching data for most of the authors listed; therefore, these rows
contain null values in the pub_name column.

Using Right Outer Joins

Consider a join of the authors table and the publishers table on their city columns. The results show only the authors who live
in cities where a publisher is located (in this case, Abraham Bennet and Cheryl Carson). The SQL-92 right outer join operator,
RIGHT OUTER JOIN, indicates all rows in the second table are to be included in the results, regardless of whether there is
matching data in the first table.

To include all publishers in the results, regardless of whether a city has a publisher located in the same city, use an SQL-92 right
outer join. Here is the Transact-SQL query and results of the right outer join:

USE pubs
SELECT a.au_fname, a.au_lname, p.pub_name
FROM authors AS a RIGHT OUTER JOIN publishers AS p
 ON a.city = p.city
ORDER BY p.pub_name ASC, a.au_lname ASC, a.au_fname ASC

Here is the result set:

au_fname au_lname pub_name
-------------------- ------------------------ --------------------
Abraham Bennet Algodata Infosystems
Cheryl Carson Algodata Infosystems
NULL NULL Binnet & Hardley
NULL NULL Five Lakes Publishing
NULL NULL GGG&G
NULL NULL Lucerne Publishing
NULL NULL New Moon Books
NULL NULL Ramona Publishers
NULL NULL Scootney Books

(9 row(s) affected)

An outer join can be further restricted by using a predicate (such as comparing the join to a constant). This example contains the
same right outer join, but eliminates all titles that have sold fewer than 50 copies:

USE pubs
SELECT s.stor_id, s.qty, t.title
FROM sales s RIGHT OUTER JOIN titles t
 ON s.title_id = t.title_id
 AND s.qty > 50
ORDER BY s.stor_id ASC

Here is the result set:

stor_id qty title
------- ------ ---
(null) (null) But Is It User Friendly?
(null) (null) Computer Phobic AND Non-Phobic Individuals: Behavior
 Variations
(null) (null) Cooking with Computers: Surreptitious Balance Sheets
(null) (null) Emotional Security: A New Algorithm
(null) (null) Fifty Years in Buckingham Palace Kitchens
7066 75 Is Anger the Enemy?
(null) (null) Life Without Fear
(null) (null) Net Etiquette
(null) (null) Onions, Leeks, and Garlic: Cooking Secrets of the
 Mediterranean
(null) (null) Prolonged Data Deprivation: Four Case Studies
(null) (null) Secrets of Silicon Valley
(null) (null) Silicon Valley Gastronomic Treats
(null) (null) Straight Talk About Computers
(null) (null) Sushi, Anyone?
(null) (null) The Busy Executive's Database Guide
(null) (null) The Gourmet Microwave
(null) (null) The Psychology of Computer Cooking
(null) (null) You Can Combat Computer Stress!

(18 row(s) affected)

For more information about predicates, see WHERE.

Using Full Outer Joins

To retain the nonmatching information by including nonmatching rows in the results of a join, use a full outer join. Microsoft®
SQL Server™ 2000 provides the full outer join operator, FULL OUTER JOIN, which includes all rows from both tables, regardless
of whether or not the other table has a matching value.

Consider a join of the authors table and the publishers table on their city columns. The results show only the authors who live
in cities in which a publisher is located (in this case, Abraham Bennet and Cheryl Carson). The SQL-92 FULL OUTER JOIN operator
indicates that all rows from both tables are to be included in the results, regardless of whether there is matching data in the
tables.

To include all publishers and all authors in the results, regardless of whether a city has a publisher located in the same city, or
whether a publisher is located in the same city, use a full outer join. The following is the query and results of the Transact-SQL full
outer join:

USE pubs
SELECT a.au_fname, a.au_lname, p.pub_name
FROM authors a FULL OUTER JOIN publishers p
 ON a.city = p.city
ORDER BY p.pub_name ASC, a.au_lname ASC, a.au_fname ASC

Here is the result set:

au_fname au_lname pub_name
-------------------- ---------------------------- --------------------
Reginald Blotchet-Halls NULL
Michel DeFrance NULL
Innes del Castillo NULL
Ann Dull NULL
Marjorie Green NULL
Morningstar Greene NULL
Burt Gringlesby NULL
Sheryl Hunter NULL
Livia Karsen NULL
Charlene Locksley NULL
Stearns MacFeather NULL
Heather McBadden NULL
Michael O'Leary NULL
Sylvia Panteley NULL
Albert Ringer NULL
Anne Ringer NULL
Meander Smith NULL
Dean Straight NULL
Dirk Stringer NULL
Johnson White NULL
Akiko Yokomoto NULL
Abraham Bennet Algodata Infosystems
Cheryl Carson Algodata Infosystems
NULL NULL Binnet & Hardley
NULL NULL Five Lakes Publishing
NULL NULL GGG&G
NULL NULL Lucerne Publishing
NULL NULL New Moon Books
NULL NULL Ramona Publishers
NULL NULL Scootney Books

(30 row(s) affected)

See Also

Operators

SELECT

Using Operators in Expressions

SELECT Examples

Writing Readable Code

Accessing and Changing Relational Data (SQL Server 2000)

Using Cross Joins
Using Cross Joins

A cross join that does not have a WHERE clause produces the Cartesian product of the tables involved in the join. The size of a
Cartesian product result set is the number of rows in the first table multiplied by the number of rows in the second table. This is
an example of a Transact-SQL cross join:

USE pubs
SELECT au_fname, au_lname, pub_name
FROM authors CROSS JOIN publishers
ORDER BY au_lname DESC

The result set contains 184 rows (authors has 23 rows and publishers has 8; 23 multiplied by 8 equals 184).

However, if a WHERE clause is added, the cross join behaves as an inner join. For example, these Transact-SQL queries produce
the same result set:

USE pubs
SELECT au_fname, au_lname, pub_name
FROM authors CROSS JOIN publishers
WHERE authors.city = publishers.city
ORDER BY au_lname DESC

-- Or
USE pubs
SELECT au_fname, au_lname, pub_name
FROM authors INNER JOIN publishers
ON authors.city = publishers.city
ORDER BY au_lname DESC

See Also

WHERE

SELECT

Operators

SELECT Examples

Using Operators in Expressions

Accessing and Changing Relational Data (SQL Server 2000)

Using Self-Joins
Using Self-Joins

A table can be joined to itself in a self-join. For example, you can use a self-join to find out the authors in Oakland, California who
live in the same ZIP Code area.

Because this query involves a join of the authors table with itself, the authors table appears in two roles. To distinguish these
roles, you must give the authors table two different aliases (au1 and au2) in the FROM clause. These aliases are used to qualify
the column names in the rest of the query. This is an example of the self-join Transact-SQL statement:

USE pubs
SELECT au1.au_fname, au1.au_lname, au2.au_fname, au2.au_lname
FROM authors au1 INNER JOIN authors au2
 ON au1.zip = au2.zip
WHERE au1.city = 'Oakland'
ORDER BY au1.au_fname ASC, au1.au_lname ASC

Here is the result set:

au_fname au_lname au_fname au_lname
-------------------- ------------------- -------------------- ---------
Dean Straight Dean Straight
Dean Straight Dirk Stringer
Dean Straight Livia Karsen
Dirk Stringer Dean Straight
Dirk Stringer Dirk Stringer
Dirk Stringer Livia Karsen
Livia Karsen Dean Straight
Livia Karsen Dirk Stringer
Livia Karsen Livia Karsen
Marjorie Green Marjorie Green
Stearns MacFeather Stearns MacFeather

(11 row(s) affected)

To eliminate the rows in the results in which the authors match themselves and to eliminate rows that are identical, except the
order of the authors is reversed, make this change to the Transact-SQL self-join query:

USE pubs
SELECT au1.au_fname, au1.au_lname, au2.au_fname, au2.au_lname
FROM authors au1 INNER JOIN authors au2
 ON au1.zip = au2.zip
WHERE au1.city = 'Oakland'
 AND au1.state = 'CA'
 AND au1.au_id < au2.au_id
ORDER BY au1.au_lname ASC, au1.au_fname ASC

Here is the result set:

au_fname au_lname au_fname au_lname
------------ ----------------- -------------------- --------------------
Dean Straight Dirk Stringer
Dean Straight Livia Karsen
Dirk Stringer Livia Karsen

(3 row(s) affected)

It is now clear that Dean Straight, Dirk Stringer, and Livia Karsen all have the same ZIP Code and live in Oakland, California.

See Also

WHERE

SELECT

Operators

SELECT Examples

Using Operators in Expressions

Accessing and Changing Relational Data (SQL Server 2000)

Joining Three or More Tables
Joining Three or More Tables

Although each join specification joins only two tables, FROM clauses can contain multiple join specifications. This allows many
tables to be joined for a single query.

The titleauthor table of the pubs database offers a good example of a situation in which joining more than two tables is helpful.
This Transact-SQL query finds the titles of all books of a particular type and the names of their authors:

USE pubs
SELECT a.au_lname, a.au_fname, t.title
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id JOIN titles t
 ON ta.title_id = t.title_id
WHERE t.type = 'trad_cook'
ORDER BY t.title ASC

Here is the result set:

au_lname au_fname title
----------------- -------------------- ----------
Blotchet-Halls Reginald Fifty Years in Buckingham Palace
 Kitchens
Panteley Sylvia Onions, Leeks, and Garlic:
 Cooking Secrets of the Mediterranean
O'Leary Michael Sushi, Anyone?
Gringlesby Burt Sushi, Anyone?
Yokomoto Akiko Sushi, Anyone?

(5 row(s) affected)

Notice that one of the tables in the FROM clause, titleauthor, does not contribute any columns to the results. Also, none of the
joined columns, au_id and title_id, appear in the results. Nonetheless, this join is possible only by using titleauthor as an
intermediate table.

The middle table of the join (the titleauthor table) can be called the translation table or intermediate table, because titleauthor
is an intermediate point of connection between the other tables involved in the join.

When there is more than one join operator in the same statement, either to join more than two tables or to join more than two
pairs of columns, the join expressions can be connected with AND or with OR.

See Also

WHERE

SELECT

Operators

SELECT Examples

Accessing and Changing Relational Data (SQL Server 2000)

Null Values and Joins
When there are null values in the columns of the tables being joined, the null values do not match each other. The presence of null
values in a column from one of the tables being joined can be returned only by using an outer join (unless the WHERE clause
excludes null values).

Here are two tables that each have NULL in the column that will participate in the join:

table1 table2
a b c d
------- ------ ------- ------
 1 one NULL two
 NULL three 4 four
 4 join4

A join that compares the values in column a against column c does not get a match on the columns that have values of NULL:

SELECT *
FROM table1 t1 JOIN table2 t2
 ON t1.a = t2.c
ORDER BY t1.a

Only one row with 4 in column a and c is returned:

a b c d
----------- ------ ----------- ------
4 join4 4 four

(1 row(s) affected)

Null values returned from a base table are also difficult to distinguish from the null values returned from an outer join. For
example, this SELECT statement does a left outer join on these two tables:

SELECT *
FROM table1 t1 LEFT OUTER JOIN table2 t2
 ON t1.a = t2.c
ORDER BY t1.a

Here is the result set:

a b c d
----------- ------ ----------- ------
NULL three NULL NULL
1 one NULL NULL
4 join4 4 four

(3 row(s) affected)

The results do not make it easy to distinguish a NULL in the data from a NULL that represents a failure to join. When null values
are present in data being joined, it is usually preferable to omit them from the results by using a regular join.

See Also

sp_dbcmptlevel

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Specifying Joins in FROM or WHERE Clauses
The rows selected by a query are filtered first by the FROM clause join conditions, then the WHERE clause search conditions, and
then the HAVING clause search conditions. Inner joins can be specified in either the FROM or WHERE clause without affecting the
final result.

Outer join conditions, however, may interact differently with the WHERE clause search conditions, depending on whether the join
conditions are in the FROM or WHERE clause. Therefore, the ability to specify Transact-SQL outer joins in the WHERE clause is not
recommended, is no longer documented, and will be dropped in a future release.

For example, these queries both specify a left outer join to SELECT 23 rows that display the title identification number, title name,
and the number of books sold:

-- Join in WHERE clause.
USE pubs
SELECT t.title_id, t.title, s.qty
FROM titles AS t, sales AS s
WHERE t.title_id *= s.title_id

-- Join in FROM clause.
USE pubs
SELECT t.title_id, t.title, s.qty
FROM titles AS t LEFT OUTER JOIN sales AS s
 ON t.title_id = s.title_id

In this query, a search condition is also specified in the WHERE clause:

-- Join and search condition in WHERE clause.
USE pubs
SELECT t.title_id, t.title, s.qty
FROM titles AS t, sales AS s
WHERE t.title_id *= s.title_id
 AND s.stor_id = '7066'

The condition stor_id = '7066' is evaluated along with the join. The join only selects the rows for stor_id 7066 from the sales
table, but because it is an outer join null values are supplied as the store information in all the other rows. This query returns 18
rows.

The join condition can be moved to the FROM clause, and the stor_id condition left in the WHERE clause:

USE pubs
SELECT t.title_id, t.title, s.qty
FROM titles AS t LEFT OUTER JOIN sales AS s
 ON t.title_id = s.title_id
WHERE s.stor_id = '7066'

This query returns only two rows because the restriction of stor_id = '7066' is applied after the left outer join has been
performed. This eliminates all the rows from the outer join that have NULL for their stor_id. To return the same information with
the join condition in the FROM clause, specify the stor_id = '7066' condition as part of the ON join_criteria section in the FROM
clause and remove the WHERE clause:

USE pubs
SELECT t.title_id, t.title, s.qty
FROM titles AS t LEFT OUTER JOIN sales AS s
 ON t.title_id = s.title_id
 AND s.stor_id = '7066'

See Also

WHERE

Using Operators in Expressions

Accessing and Changing Relational Data (SQL Server 2000)

Advanced Query Concepts
After you have mastered query fundamentals, you can explore these advanced query concepts for query solutions:

Using aggregate functions in the select list

Grouping rows with GROUP BY

Combining results with UNION

Subquery fundamentals

Conditional data processing using CASE

Parallel queries

Summarizing data

See Also

Query Fundamentals

Accessing and Changing Relational Data (SQL Server 2000)

Using Aggregate Functions in the Select List
Aggregate functions (such as SUM, AVG, COUNT, COUNT(*), MAX, and MIN) generate summary values in query result sets. An
aggregate function (with the exception of COUNT(*)) processes all the selected values in a single column to produce a single
result value. Aggregate functions can be applied to all rows in a table, to a subset of the table specified by a WHERE clause, or to
one or more groups of rows in the table. When an aggregate function is applied, a single value is generated from each set of
rows.

This example calculates the sum of year-to-date sales for all books in the titles table:

USE pubs
SELECT SUM(ytd_sales)
FROM titles

Here is the result set:

97446

(1 row(s) affected)

With this query, you can find the average price of all books if prices were doubled:

USE pubs
SELECT avg(price * 2)
FROM titles

Here is the result set:

29.53

(1 row(s) affected)

The table shows the syntax of the aggregate functions and their results (expression is almost always a column name).

Aggregate function Result
SUM([ALL | DISTINCT] expression) Total of the values in the numeric

expression
AVG([ALL | DISTINCT] expression) Average of the values in the numeric

expression
COUNT([ALL | DISTINCT] expression) Number of values in the expression
COUNT(*) Number of selected rows
MAX(expression) Highest value in the expression
MIN(expression) Lowest value in the expression

SUM, AVG, COUNT, MAX, and MIN ignore null values; COUNT(*) does not.

The optional keyword DISTINCT can be used with SUM, AVG, and COUNT to eliminate duplicate values before an aggregate
function is applied (the default is ALL).

SUM and AVG can be used only with numeric columns, for example int, smallint, tinyint, decimal, numeric, float, real,
money, and smallmoney data types. MIN and MAX cannot be used with bit data types. Aggregate functions other than
COUNT(*) cannot be used with text and image data types.

With these exceptions, aggregate functions can be used with any type of column. For example, in a character data type column,
use MIN (minimum) to find the lowest value (the one closest to the beginning of the alphabet):

USE pubs
SELECT MIN(au_lname)
FROM authors

Here is the result set:

Bennet

(1 row(s) affected)

The result type returned by an aggregate function may have a larger precision than the inputs so that the result type is large
enough to hold the aggregated result value. For example, the SUM or AVG functions return an int value when the data type of the
inputs is smallint or tinyint. For more information about the data type returned by an aggregate function, see the topic for the
function in Microsoft® SQL Server™ 2000 Transact-SQL Reference.

Note The output for statements, involving MIN or MAX on character columns, depends on the collation chosen during
installation. For more information about the effects of different collations, see SQL Server Collation Fundamentals.

When aggregate functions are used in a select list, the select list can contain only:

Aggregate functions.

Grouping columns from a GROUP BY clause.

An expression that returns the same value for every row in the result set, such as a constant.

For more information about generating aggregate values for result sets containing multiple rows, see Grouping Rows with
GROUP BY.

Aggregate functions cannot be used in a WHERE clause. However, a SELECT statement with aggregate functions in its select list
often includes a WHERE clause that restricts the rows to which the aggregate function is applied. If a SELECT statement includes a
WHERE clause (but not a GROUP BY clause), an aggregate function produces a single value for the subset of rows specified by the
WHERE clause. This is true whether it is operating on all rows in a table or on a subset of rows defined by a WHERE clause. Such a
function is called a scalar aggregate.

This query returns the average advance and the sum of year-to-date sales for business books only:

USE pubs
SELECT AVG(advance), SUM(ytd_sales)
FROM titles
WHERE type = 'business'

Here is the result set:

--------- -------
6,281.25 30788

(1 row(s) affected)

You can use more than one aggregate function in the same select list and produce more than one scalar aggregate in a single
SELECT statement.

See Also

Aggregate Functions

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Using COUNT(*)
COUNT(*) does not require an expression parameter because it does not use information about any particular column. It counts
the total number of rows that meet the qualifications of the query. COUNT(*) returns the number of rows that match the search
conditions specified in the query without eliminating duplicates. It counts each row separately, including rows that contain null
values. This query finds the total number of books in titles:

USE pubs
SELECT COUNT(*)
FROM titles

Here is the result set:

18

(1 row(s) affected)

COUNT(*) can be combined with other aggregate functions. This query shows COUNT(*) combined with an AVG function in which
both aggregate functions aggregate data only from the rows that satisfy the WHERE clause search condition:

USE pubs
SELECT COUNT(*), AVG(price)
FROM titles
WHERE advance > $1000

Here is the result set:

----------- ------
15 14.42

(1 row(s) affected)

See Also

COUNT

Accessing and Changing Relational Data (SQL Server 2000)

Using DISTINCT
The DISTINCT keyword is optional with SUM, AVG, and COUNT. When DISTINCT is used, duplicate values are eliminated before
the sum, average, or count is calculated.

If you use DISTINCT, the expression must consist of a column name only. It cannot include an arithmetic expression.

This query returns the average prices of business books (without duplicate values):

USE pubs
SELECT AVG(DISTINCT price)
FROM titles
WHERE type = 'business'

Here is the result set:

14.64

(1 row(s) affected)

Without DISTINCT, the AVG function finds the average price of all business titles:

USE pubs
SELECT AVG(price)
FROM titles
WHERE type = 'business

Here is the result set:

13.73

(1 row(s) affected)

See Also

Aggregate Functions

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Null Values
Null values in a column are ignored while an aggregate function is operating. For example, the count of advances in the titles
table is not the same as the count of title names because null values in the advance column are not counted.

USE pubs
SELECT COUNT(advance)
FROM titles

Here is the result set:

16

(1 row(s) affected)

USE pubs
SELECT COUNT(title)
FROM titles

Here is the result set:

18

(1 row(s) affected)

If no rows meet the condition(s) specified in the WHERE clause, COUNT returns a value of zero. The other functions all return
NULL. COUNT(*), counts each row, even if all column values are NULL. Here are examples:

USE pubs
SELECT COUNT(DISTINCT title)
FROM titles
WHERE type = 'poetry'

Here is the result set:

0

(1 row(s) affected)

USE pubs
SELECT AVG(advance)
FROM titles
WHERE type = 'poetry'

Here is the result set:

(null)

(1 row(s) affected)

Accessing and Changing Relational Data (SQL Server 2000)

Grouping Rows with GROUP BY
The GROUP BY clause is used to produce aggregate values for each row in the result set. When used without a GROUP BY clause,
aggregate functions report only one aggregate value for a SELECT statement.

This example returns the number of units sold for each product in category 2:

USE Northwind
SELECT OrdD.ProductID AS ProdID,
 SUM(OrdD.Quantity) AS AmountSold
FROM [Order Details] AS OrdD JOIN Products as Prd
 ON OrdD.ProductID = Prd.ProductID
 AND Prd.CategoryID = 2
GROUP BY OrdD.ProductID

Here is the result set:

ProdID AmountSold
----------- -----------
3 328
4 453
5 298
6 301
8 372
15 122
44 601
61 603
63 445
65 745
66 239
77 791

(12 row(s) affected)

The GROUP BY keywords are followed by a list of columns, known as the grouping columns. The GROUP BY clause restricts the
rows of the result set; there is only one row for each distinct value in the grouping column or columns. Each result set row
contains summary data related to the specific value in its grouping columns.

There are restrictions on the items that can be specified in the select list when a SELECT statement contains a GROUP BY. Items
allowed in the select list are:

The grouping columns.

Expressions that return only one value for each value in the grouping columns, such as aggregate functions that have a
column name as one of their parameters. These are known as vector aggregates.

For example, TableX contains:
ColumnA ColumnB ColumnC
------- ------- -------
1 abc 5
1 def 4
1 ghi 9
2 jkl 8
2 mno 3

If ColumnA is the grouping column, there will be two rows in the result set, one summarizing the information for the value 1, and
the other summarizing the information for value 2.

When ColumnA is the grouping column, the only way ColumnB or ColumnC can be referenced is if they are parameters in an
aggregate function that can return a single value for each value in ColumnA. It is legal for the select list to include expressions
such as MAX(ColumnB), SUM(ColumnC), or AVG(ColumnC):

SELECT ColumnA,
 MAX(ColumnB) AS MaxB,
 SUM(ColumnC) AS SumC
FROM TableX
GROUP BY ColumnA

This select returns two rows, one for each unique value in ColumnA:

ColumnA MaxB SumC
----------- ---- -----------
1 ghi 18
2 mno 11

(2 row(s) affected)

It is not legal, however, to have just the expression ColumnB in the select list:

SELECT ColumnA,
 ColumnB,
 SUM(ColumnC) AS SumC
FROM TableX
GROUP BY ColumnA

Because the GROUP BY can return only one row with a value of 1 in ColumnA, there is no way to return the three values of
ColumnB (abc, def, and ghi) associated with the value 1 in ColumnA.

You cannot use GROUP BY or HAVING on ntext,text,image, or bit columns unless they are in a function that returns a value
having another data type. Examples of such functions are SUBSTRING and CAST.

See Also

CAST and CONVERT

SUBSTRING

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

GROUP BY Components
The GROUP BY clause contains the following components:

One or more aggregate-free expressions. These are usually references to the grouping columns.

Optionally, the ALL keyword, which specifies that all groups produced by the GROUP BY clause are returned, even if some of
the groups do not have any rows that meet the search conditions.

CUBE or ROLLUP.

Typically, the HAVING clause is used with the GROUP BY clause, although HAVING can be specified separately.

You can group by an expression as long as it does not include aggregate functions, for example:

SELECT DATEPART(yy, HireDate) AS Year,
 COUNT(*) AS NumberOfHires
FROM Northwind.dbo.Employees
GROUP BY DATEPART(yy, HireDate)

This is the result set.

Year NumberOfHires
1992 3
1993 3
1994 3

(3 row(s) affected)

In a GROUP BY, you must specify the name of a table or view column, not the name of a result set column assigned with an AS
clause. For example, replacing the GROUP BY DATEPART(yy, HireDate) clause with GROUP BY Year is not legal.

You can list more than one column in the GROUP BY clause to nest groups; that is, you can group a table by any combination of
columns. For example, this query finds the average price and the sum of year-to-date sales, grouped by type and publisher ID:

USE pubs
SELECT type, pub_id, 'avg' = AVG(price), 'sum' = sum(ytd_sales)
FROM titles
GROUP BY type, pub_id

Here is the result set:

type pub_id avg sum
------------ ------ ---------------------- -----------
business 0736 2.99 18722
psychology 0736 11.48 9564
mod_cook 0877 11.49 24278
psychology 0877 21.59 375
trad_cook 0877 15.96 19566
UNDECIDED 0877 NULL NULL
business 1389 17.31 12066
popular_comp 1389 21.48 12875

(8 row(s) affected)

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

GROUP BY and the WHERE Clause
GROUP BY and the WHERE Clause

You can use a WHERE clause in a query containing a GROUP BY clause. Rows not meeting the conditions in the WHERE clause are
eliminated before any grouping is done. For example:

USE pubs
SELECT type, AVG(price)
FROM titles
WHERE advance > $5000
GROUP BY type

Here is the result set:

type
------------ --------------------------
business 2.99
mod_cook 2.99
popular_comp 21.48
psychology 14.30
trad_cook 17.97

(5 row(s) affected)

Only rows with advances greater than $5,000 are included in the groups shown in the query results.

See Also

SELECT

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Choosing Rows with the HAVING Clause
Choosing Rows with the HAVING Clause

The HAVING clause sets conditions on the GROUP BY clause similar to the way WHERE interacts with SELECT. The WHERE search
condition is applied before the grouping operation occurs; the HAVING search condition is applied after the grouping operation
occurs. The HAVING syntax is similar to the WHERE syntax, except HAVING can contain aggregate functions. HAVING clauses can
reference any of the items that appear in the select list.

This query finds publishers whose year-to-date sales are greater than $40,000:

USE pubs
SELECT pub_id, total = SUM(ytd_sales)
FROM titles
GROUP BY pub_id
HAVING SUM(ytd_sales) > 40000

Here is the result set:

pub_id total
------ -----------
0877 44219

(1 row(s) affected)

To make sure there are at least six books involved in the calculations for each publisher, this example uses HAVING COUNT(*) > 5
to eliminate the publishers that return totals for fewer than six books:

USE pubs
SELECT pub_id, total = SUM(ytd_sales)
FROM titles
GROUP BY pub_id
HAVING COUNT(*) > 5

Here is the result set:

pub_id total
------ -----------
0877 44219
1389 24941

(2 row(s) affected)

Understanding the correct sequence in which the WHERE, GROUP BY, and HAVING clauses are applied helps in coding efficient
queries:

The WHERE clause is used to filter the rows that result from the operations specified in the FROM clause.

The GROUP BY clause is used to group the output of the WHERE clause.

The HAVING clause is used to filter rows from the grouped result.

For any search conditions that could be applied either before or after the grouping operation, it is more efficient to specify them
in the WHERE clause. This reduces the number of rows that have to be grouped. The only search conditions that should be
specified in the HAVING clause are those search conditions that must be applied after the grouping operation has been
performed.

The Microsoft® SQL Server™ 2000 query optimizer can deal with most of these conditions. If the query optimizer determines that
a HAVING search condition can be applied before the grouping operation, it will do so. The query optimizer might not be able to
recognize all of the HAVING search conditions that can be applied before the grouping operation. It is recommended that you
place all such search conditions in the WHERE clause instead of the HAVING clause.

The following query shows HAVING with an aggregate function. It groups the rows in the titles table by type and eliminates the
groups that include only one book:

USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING COUNT(*) > 1

Here is the result set:

type

business
mod_cook
popular_comp
psychology
trad_cook

(5 row(s) affected)

This is an example of a HAVING clause without aggregate functions. It groups the rows in titles by type and eliminates those
types that do not start with the letter p.

USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING type LIKE 'p%'

Here is the result set:

type

popular_comp
psychology

(2 row(s) affected)

When multiple conditions are included in HAVING, they are combined with AND, OR, or NOT. The following example shows how
to group titles by publisher, including only those publishers with identification numbers greater than 0800, who have paid more
than $15,000 in total advances, and who sell books for an average of less than $20.

SELECT pub_id, SUM(advance) AS AmountAdvanced,
 AVG(price) AS AveragePrice
FROM pubs.dbo.titles
WHERE pub_id > '0800'
GROUP BY pub_id
HAVING SUM(advance) > $15000
 AND AVG(price) < $20

ORDER BY can be used to order the output of a GROUP BY clause. This example shows using the ORDER BY clause to define the
order in which the rows from a GROUP BY clause are returned:

SELECT pub_id, SUM(advance) AS AmountAdvanced,
 AVG(price) AS AveragePrice
FROM pubs.dbo.titles
WHERE pub_id > '0800'
 AND price >= $5
GROUP BY pub_id
HAVING SUM(advance) > $15000
 AND AVG(price) < $20
ORDER BY pub_id DESC

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

GROUP BY and ALL
GROUP BY and ALL

Transact-SQL provides the ALL keyword in the GROUP BY clause. ALL is meaningful only when the SELECT statement also
includes a WHERE clause.

If you use ALL, the query results include all groups produced by the GROUP BY clause, even if some of the groups have no rows
that meet the search conditions. Without ALL, a SELECT statement that includes GROUP BY does not show groups for which no
rows qualify.

Here are examples:

USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY type

Here is the result set:

type
------------ --------------------------
business 17.31
popular_comp 20.00
psychology 14.14
trad_cook 17.97

(4 row(s) affected)

USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY ALL type

Here is the result set:

type
------------ --------------------------
business 17.31
mod_cook (null)
popular_comp 20.00
psychology 14.14
trad_cook 17.97
UNDECIDED (null)

(6 row(s) affected)

The first query produces groups only for those books that commanded royalties of 10 percent. Because no modern cookbooks
have a royalty of 10 percent, there is no group in the results for the mod_cook type.

The second query produces groups for all types, including modern cookbooks and UNDECIDED, even though the modern
cookbook group does not include any rows that meet the qualification specified in the WHERE clause.

The column that holds the aggregate value (the average price) is NULL for groups that lack qualifying rows.

See Also

ALL

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

GROUP BY and Null Values
GROUP BY and Null Values

If the grouping column contains a null value, that row becomes a group in the results. If the grouping column contains more than
one null value, the null values are put into a single group. This behavior is defined in the SQL-92 standard.

The royalty column in the titles table contains some null values, for example:

SELECT royalty, AVG(price * 2) AS AveragePrice
FROM pubs.dbo.titles
GROUP BY royalty

Here is the result set:

royalty AveragePrice
----------- --------------------------
(null) (null)
10 32.89
12 30.94
14 23.90
16 45.90
24 5.98

(6 row(s) affected)

This SELECT statement can be changed to remove the null values by adding a WHERE clause:

SELECT royalty, AVG(price * 2) AS AveragePrice
FROM pubs.dbo.titles
WHERE royalty IS NOT NULL
GROUP BY royalty

Accessing and Changing Relational Data (SQL Server 2000)

Combining Results with UNION
The UNION operator allows you to combine the results of two or more SELECT statements into a single result set. The result sets
combined using UNION must all have the same structure. They must have the same number of columns, and the corresponding
result set columns must have compatible data types. For more information, see Guidelines for Using UNION.

UNION is specified as:

select_statement UNION [ALL] select_statement

For example, Table1 and Table2 have the same two-column structure.
Table1 Table2
ColumnA ColumnB ColumnC ColumnD
char(4) int char(4) int
------- --- ------- ---
abc 1 ghi 3
def 2 jkl 4
ghi 3 mno 5

This query creates a UNION between the tables:

SELECT * FROM Table1
UNION
SELECT * FROM Table2

Here is the result set:

ColumnA ColumnB
------- --------
abc 1
def 2
ghi 3
jkl 4
mno 5

The result set column names of a UNION are the same as the column names in the result set of the first SELECT statement in the
UNION. The result set column names of the other SELECT statements are ignored.

By default, the UNION operator removes duplicate rows from the result set. If you use ALL, all rows are included in the results and
duplicates are not removed.

The exact results of a UNION operation depend on the collation chosen during installation and the ORDER BY clause. For more
information about the effects of different collations, see SQL Server Collation Fundamentals.

Any number of UNION operators can appear in a Transact-SQL statement, for example:

SELECT * FROM TableA
UNION
SELECT * FROM TableB
UNION
SELECT * FROM TableC
UNION
SELECT * FROM TableD

By default, Microsoft® SQL Server™ 2000 evaluates a statement containing UNION operators from left to right. Use parentheses
to specify the order of evaluation. For example, the following statements are not equivalent:

/* First statement. */
SELECT * FROM TableA
UNION ALL
(SELECT * FROM TableB
 UNION
 SELECT * FROM TableC
)
GO

/* Second statement. */
(SELECT * FROM TableA
 UNION ALL
 SELECT * FROM TableB

)
UNION
SELECT * FROM TableC)
GO

In the first statement, duplicates are eliminated in the union between TableB and TableC. In the union between that set and
TableA, duplicates are not eliminated. In the second statement, duplicates are included in the union between TableA and TableB
but are eliminated in the subsequent union with TableC. ALL has no effect on the final result of this expression.

When UNION is used, the individual SELECT statements cannot have their own ORDER BY or COMPUTE clauses. There can be
only one ORDER BY or COMPUTE clause after the last SELECT statement; it is applied to the final, combined result set. GROUP BY
and HAVING can be specified only in the individual SELECT statements.

See Also

UNION

Accessing and Changing Relational Data (SQL Server 2000)

Guidelines when Using UNION
Follow these guidelines when using UNION operators:

All select lists in the statements being combined with UNION must have the same number of expressions (column names,
arithmetic expressions, aggregate functions, and so on).

Corresponding columns in the result sets being combined with UNION, or any subset of columns used in individual queries,
must be of the same data type, have an implicit data conversion possible between the two data types, or have an explicit
conversion supplied. For example, UNION is not possible between a column of datetime data type and one of binary data
type unless an explicit conversion is supplied, while UNION is possible between a column of money data type and one of
int data type because they can be implicitly converted.

Corresponding result set columns in the individual statements being combined with UNION must occur in the same order
because UNION compares the columns one-to-one in the order given in the individual queries.

Here is an example.

table3 table4
a b c a b
int char(4) char(4) char(4) float
--- ------- ------- ------- -------
1 abc jkl jkl 1.000
2 def mno mno 5.000
3 ghi pqr

Execute this query:

SELECT a, b FROM table3
UNION
SELECT b, a FROM table4

Here is the result set:

a b
-------- -----
1.000000 abc
2.000000 def
3.000000 ghi
1.000000 jkl
5.000000 mno

When different data types are combined in a UNION operation, they are converted using the rules of data type precedence.
In the preceding example, the int values are converted to float because float has a higher precedence than int. For more
information, see Data Type Precedence.

This query produces an error message because the data types of corresponding columns are not compatible:

SELECT b, c FROM table3
UNION
SELECT a, b FROM table4

The column names in the table resulting from UNION are taken from the first individual query in the UNION statement. To
refer to a column in the result set by a new name (for example, in an ORDER BY clause), the column must be referred to that
way in the first SELECT:

SELECT city AS Cities FROM stores_west
UNION
SELECT city FROM stores_east
ORDER BY city

See Also

UNION

Accessing and Changing Relational Data (SQL Server 2000)

Using UNION with Other Transact-SQL Statements
Follow these guidelines when using UNION with other Transact-SQL statements:

The first query in the UNION statement can contain an INTO clause that creates a table to hold the final result set. Only the
first query can use an INTO clause. If it appears anywhere else, Microsoft® SQL Server™ 2000 displays an error message.
Also, remember that if the select into/bulkcopy option is not set, SELECT INTO can create only temporary tables.

ORDER BY and COMPUTE clauses to define the order of the final results or compute summary values are allowed only at
the end of the UNION statement. They cannot be used within the individual queries that make up the UNION statement.

GROUP BY and HAVING clauses can be used within individual queries only; they cannot be used to affect the final result set.

The UNION operator can be used within an INSERT statement.

The FOR BROWSE clause cannot be used in statements involving the UNION operator.

See Also

SELECT

UNION

Accessing and Changing Relational Data (SQL Server 2000)

Using Partitioned Views
Partitioned views allow the data in a large table to be split into smaller member tables. The data is partitioned between the
member tables based on ranges of data values in one of the columns. The data ranges for each member table are defined in a
CHECK constraint specified on the partitioning column. A view that uses UNION ALL to combine selects of all the member tables
into a single result set is then defined. When SELECT statements referencing the view specify a search condition on the partition
column, the query optimizer uses the CHECK constraint definitions to determine which member table contains the rows.

For example, a sales table that records sales for 1998 has been partitioned into 12 member tables, one for each month. Each
member table has a constraint defined on the OrderMonth column:

CREATE TABLE May1998sales
 (OrderID INT,
 CustomerID INT NOT NULL,
 OrderDate DATETIME NULL
 CHECK (DATEPART(yy, OrderDate) = 1998),
 OrderMonth INT
 CHECK (OrderMonth = 5),
 DeliveryDate DATETIME NULL
 CHECK(DATEPART(mm, DeliveryDate) = 5)
 CONSTRAINT OrderIDMonth PRIMARY KEY(OrderID, OrderMonth)
)

The application populating May1998Sales must ensure all rows have 5 in the OrderMonth column and the order date specifies
a date in May, 1998. This is enforced by the constraints defined on the table.

A view is then defined that uses UNION ALL to select the data from all 12 member tables as a single result set:

CREATE VIEW Year1998Sales
AS
SELECT * FROM Jan1998Sales
UNION ALL
SELECT * FROM Feb1998Sales
UNION ALL
SELECT * FROM Mar1998Sales
UNION ALL
SELECT * FROM Apr1998Sales
UNION ALL
SELECT * FROM May1998Sales
UNION ALL
SELECT * FROM Jun1998Sales
UNION ALL
SELECT * FROM Jul1998Sales
UNION ALL
SELECT * FROM Aug1998Sales
UNION ALL
SELECT * FROM Sep1998Sales
UNION ALL
SELECT * FROM Oct1998Sales
UNION ALL
SELECT * FROM Nov1998Sales
UNION ALL
SELECT * FROM Dec1998Sales

For example, this SELECT statement

SELECT *
FROM Year1998Sales
WHERE OrderMonth IN (5,6) AND CustomerID = 64892

The SQL Server query optimizer recognizes that the search condition in this SELECT statement references only rows in the
May1998Sales and Jun1998Sales tables, and limits its search to those tables.

To perform updates on a partitioned view, the partitioning column must be a part of the primary key of the base table. If a view is
not updatable, you can create an INSTEAD OF trigger on the view that allows updates. You should design error handling into the
trigger to ensure no duplicate rows are inserted. For an example of an INSTEAD OF trigger designed on a view, see Designing
INSTEAD OF Triggers.

CHECK constraints are not needed for the partitioned view to return the correct results. However, if the CHECK constraints have
not been defined, the query optimizer must search all the tables instead of only those that cover the search condition on the
partitioning column. Without the CHECK constraints, the view operates like any other view with UNION ALL. The query optimizer
cannot make any assumptions about the values stored in different tables and it cannot skip searching the tables that participate in
the view definition.

If all the member tables referenced by a partitioned view are on the same server, the view is a local partitioned view. If the
member tables are on multiple servers, the view is a distributed partitioned view. Distributed partitioned views can be used to
spread the database processing load of a system across a group of servers.

Partitioned views make it easier to maintain the member tables independently. For example, at the end of a period:

The definition of the partitioned view for current results can be changed to add the newest period and drop the oldest
period.

The definition of the partitioned view for past results can be changed to add the period just dropped from the current
results view. The past results view can also be updated to remove and archive the oldest period it covers.

When you insert data into the partitioned views, the sp_executesql system stored procedure can be used to create INSERT
statements with execution plans that have a high chance of being reused in systems with many concurrent users.

See Also

Creating a Partitioned View

Resolving Distributed Partitioned Views

Federated SQL Server 2000 Servers

ALTER VIEW

SELECT

CREATE VIEW

sp_executesql

Accessing and Changing Relational Data (SQL Server 2000)

Designing Applications to Use Federated Database Servers
Updatable distributed partitioned views support having groups of Microsoft® SQL Server™ 2000 servers cooperate in processing
the database workload of the largest, multi-tier Web sites. While each server is administered independently, the instances of SQL
Server 2000 on each server use distributed partitioned views to share the work. A group of autonomous servers that cooperate to
share work is called a federation.

You build federated database servers by creating databases on each server, and then partitioning tables across the databases.
Each original table is split into a member table on each member server. Each member table has a subset of the rows from the
original table; the original table is partitioned horizontally across the member tables. When designing a federated database
system, partition all the tables so that all related data is located on the same member server.

One result of partitioning tables across a set of federated database servers is a set of data routing rules. An application can match
some piece of data it can infer from user requests against the data routing rules to determine which member server has most of
the data required by the SQL statements the application must generate to satisfy the user request. For more information, see
Designing Federated Database Servers.

In a multi-tier Windows DNA architecture, a system is implemented in these tiers:

Users services tier. A set of thin clients that focus on managing the application user interface. The user services tier calls the
next tier to perform the business functions needed to support user requests.

Business services tier. A set of COM+ components that encapsulate the business logic of the organization. The business
services tier uses the next tier for any permanent data storage that needs to be done.

Data services tier. A set of components, such as SQL Server databases, that can store data in a permanent medium. This is
also called persisting the data.

In Windows DNA, the business services tier is designed as a set of COM+ components running on application servers. This allows
Microsoft® Windows® 2000 Network Load Balancing to distribute the user requests evenly across the business tier. Because any
user request can be processes on any application server, the business components must have some mechanism for routing the
SQL statements they generate to the appropriate member server. The business components must be able to match some piece of
information in the data received from the client against the data routing rules to determine what member server should process
the request.

A flexible mechanism for implementing data routing in the business services tier is store the routing rules in a persistent store,
such as SQL Server 2000 or Windows 2000 Active Directory, and having the business components retrieve them at run time. You
can code a COM+ component that will match keys against the routing rules to determine which member server would most
efficiently process the query. This COM+ routing component can then be called by any other COM+ component in the business
services tier that needs to access the partitioned data. For example, in a system accessing customer data partitioned on customer
ID, you could:

Create a routing rules table recording which keys are maintained on each member server.

Create a data routing business component that takes either one key value or the starting and ending keys of a range of key
values as input. The COM+ component would read the routing rules table, compare the input key or key ranges against the
key ranges recorded for each member server, and then return the name of the member server having the best match to the
calling component or application.

Code the general business services tier components or applications to always call the data routing component when
executing an SQL statement referencing the partitioned view. The business component will use the server name returned by
the data routing component to select the database connection on which to execute the SQL statement.

This method requires no changes to application code if the partitioning of the data is changed. The data routing rules can be
changed while the applications are running.

Accessing and Changing Relational Data (SQL Server 2000)

Subquery Fundamentals
A subquery is a SELECT query that returns a single value and is nested inside a SELECT, INSERT, UPDATE, or DELETE statement, or
inside another subquery. A subquery can be used anywhere an expression is allowed. In this example a subquery is used as a
column expression named MaxUnitPrice in a SELECT statement.

SELECT Ord.OrderID, Ord.OrderDate,
 (SELECT MAX(OrdDet.UnitPrice)
 FROM Northwind.dbo.[Order Details] AS OrdDet
 WHERE Ord.OrderID = OrdDet.OrderID) AS MaxUnitPrice
FROM Northwind.dbo.Orders AS Ord

A subquery is also called an inner query or inner select, while the statement containing a subquery is also called an outer query or
outer select.

Many Transact-SQL statements that include subqueries can be alternatively formulated as joins. Other questions can be posed
only with subqueries. In Transact-SQL, there is usually no performance difference between a statement that includes a subquery
and a semantically equivalent version that does not. However, in some cases where existence must be checked, a join yields better
performance. Otherwise, the nested query must be processed for each result of the outer query to ensure elimination of
duplicates. In such cases, a join approach would yield better results. This is an example showing both a subquery SELECT and a
join SELECT that return the same result set:

/* SELECT statement built using a subquery. */
SELECT ProductName
FROM Northwind.dbo.Products
WHERE UnitPrice =
 (SELECT UnitPrice
 FROM Northwind.dbo.Products
 WHERE ProductName = 'Sir Rodney''s Scones')

/* SELECT statement built using a join that returns
 the same result set. */
SELECT Prd1.ProductName
FROM Northwind.dbo.Products AS Prd1
 JOIN Northwind.dbo.Products AS Prd2
 ON (Prd1.UnitPrice = Prd2.UnitPrice)
WHERE Prd2.ProductName = 'Sir Rodney''s Scones'

A subquery nested in the outer SELECT statement has the following components:

A regular SELECT query including the regular select list components.

A regular FROM clause including one or more table or view names.

An optional WHERE clause.

An optional GROUP BY clause.

An optional HAVING clause.

The SELECT query of a subquery is always enclosed in parentheses. It cannot include a COMPUTE or FOR BROWSE clause, and
may only include an ORDER BY clause when a TOP clause is also specified.

A subquery can be nested inside the WHERE or HAVING clause of an outer SELECT, INSERT, UPDATE, or DELETE statement, or
inside another subquery. Up to 32 levels of nesting is possible, although the limit varies based on available memory and the
complexity of other expressions in the query. Individual queries may not support nesting up to 32 levels. A subquery can appear
anywhere an expression can be used, if it returns a single value.

If a table appears only in a subquery and not in the outer query, then columns from that table cannot be included in the output
(the select list of the outer query).

Statements that include a subquery usually take one of these formats:

WHERE expression [NOT] IN (subquery)

WHERE expression comparison_operator [ANY | ALL] (subquery)

WHERE [NOT] EXISTS (subquery)

In some Transact-SQL statements, the subquery can be evaluated as if it were an independent query. Conceptually, the subquery
results are substituted into the outer query (although this is not necessarily how Microsoft® SQL Server™ actually processes
Transact-SQL statements with subqueries).

There are three basic types of subqueries. Those that:

Operate on lists introduced with IN, or those that a comparison operator modified by ANY or ALL.

Are introduced with an unmodified comparison operator and must return a single value.

Are existence tests introduced with EXISTS.

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Subquery Rules
A subquery is subject to a number of restrictions:

The select list of a subquery introduced with a comparison operator can include only one expression or column name
(except that EXISTS and IN operate on SELECT * or a list, respectively).

If the WHERE clause of an outer query includes a column name, it must be join-compatible with the column in the subquery
select list.

The ntext, text and image data types are not allowed in the select list of subqueries.

Because they must return a single value, subqueries introduced by an unmodified comparison operator (one not followed
by the keyword ANY or ALL) cannot include GROUP BY and HAVING clauses.

The DISTINCT keyword cannot be used with subqueries that include GROUP BY.

The COMPUTE and INTO clauses cannot be specified.

ORDER BY can only be specified if TOP is also specified.

A view created with a subquery cannot be updated.

The select list of a subquery introduced with EXISTS by convention consists of an asterisk (*) instead of a single column
name. The rules for a subquery introduced with EXISTS are identical to those for a standard select list because a subquery
introduced with EXISTS constitutes an existence test and returns TRUE or FALSE, rather than data.

Accessing and Changing Relational Data (SQL Server 2000)

Qualifying Column Names in Subqueries
In the following example, the pub_id column in the WHERE clause of the outer query is implicitly qualified by the table name in
the outer query's FROM clause, publishers. The reference to pub_id in the select list of the subquery is qualified by the
subquery's FROM clause, that is, by the titles table.

USE pubs
SELECT pub_name
FROM publishers
WHERE pub_id NOT IN
 (SELECT pub_id
 FROM titles
 WHERE type = 'business'

The general rule is that column names in a statement are implicitly qualified by the table referenced in the FROM clause at the
same level.

Here's what the query looks like with these implicit assumptions specified:

USE pubs
SELECT pub_name
FROM publishers
WHERE publishers.pub_id NOT IN
 (SELECT titles.pub_id
 FROM titles
 WHERE type = 'business')

It is never wrong to state the table name explicitly, and it is always possible to override implicit assumptions about table names
with explicit qualifications.

See Also

FROM

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Subquery Types
Subqueries can be specified in many places:

With aliases

With IN or NOT IN

In UPDATE, DELETE, and INSERT statements

With comparison operators

With ANY, SOME, or ALL

With EXISTS or NOT EXISTS

In place of an expression

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with Aliases
Subqueries with Aliases

Many statements in which the subquery and the outer query refer to the same table can be stated as self-joins (joining a table to
itself). For example, you can find authors who live in the same city as Livia Karsen by using a subquery:

USE pubs
SELECT au_lname, au_fname, city
FROM authors
WHERE city IN
 (SELECT city
 FROM authors
 WHERE au_fname = 'Livia'
 AND au_lname = 'Karsen')

Here is the result set:

au_lname au_fname city
-- -------------------- ----------
Green Marjorie Oakland
Straight Dean Oakland
Stringer Dirk Oakland
MacFeather Stearns Oakland
Karsen Livia Oakland

(5 row(s) affected)

Or you can use a self-join:

USE pubs
SELECT au1.au_lname, au1.au_fname, au1.city
FROM authors AS au1 INNER JOIN authors AS au2 ON au1.city = au2.city
 AND au2.au_lname = 'Karsen'
 AND au2.au_fname = 'Livia'

Table aliases are required because the table being joined to itself appears in two different roles. Aliases can also be used in nested
queries that refer to the same table in an inner and outer query.

USE pubs
SELECT au1.au_lname, au1.au_fname, au1.city
FROM authors AS au1
WHERE au1.city in
 (SELECT au2.city
 FROM authors AS au2
 WHERE au2.au_fname = 'Livia'
 AND au2.au_lname = 'Karsen')

Explicit aliases make it clear that reference to authors in the subquery does not mean the same thing as the reference in the outer
query.

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with IN
Subqueries with IN

The result of a subquery introduced with IN (or with NOT IN) is a list of zero or more values. After the subquery returns results,
the outer query makes use of them.

This query finds the names of the publishers who have published business books.

USE pubs
SELECT pub_name
FROM publishers
WHERE pub_id IN
 (SELECT pub_id
 FROM titles
 WHERE type = 'business')

Here is the result set:

pub_name
--
Algodata Infosystems
New Moon Books

(2 row(s) affected)

This statement is evaluated in two steps. First, the inner query returns the identification numbers of the publishers that have
published business books (1389 and 0736). Second, these values are substituted into the outer query, which finds the names that
go with the identification numbers in publishers.

USE pubs
SELECT pub_name
FROM publishers
WHERE pub_id in ('1389', '0736')

One difference in using a join rather than a subquery for this and similar problems is that the join lets you show columns from
more than one table in the result. For example, if you want to include the titles of the business books in the result, you must use a
join version.

USE pubs
SELECT pub_name, title
FROM publishers INNER JOIN titles ON publishers.pub_id = titles.pub_id
 AND type = 'business'

Here is the result set:

pub_name title
---------------------- ---
Algodata Infosystems The Busy Executive's Database Guide
Algodata Infosystems Cooking with Computers: Surreptitious Balance
 Sheets
New Moon Books You Can Combat Computer Stress!
Algodata Infosystems Straight Talk About Computers

(4 row(s) affected)

This query shows the join produces four rows, not two as in the preceding subquery.

Here is another example of a query that can be formulated with either a subquery or a join. This query finds the names of all
second authors who live in California and who receive less than 30 percent of the royalties for a book.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE state = 'CA'
 AND au_id IN
 (SELECT au_id
 FROM titleauthor
 WHERE royaltyper < 30
 AND au_ord = 2)

Here is the result set:

au_lname au_fname

-- --------------------
MacFeather Stearns

(1 row(s) affected)

The inner query is evaluated, producing the ID numbers of the three authors who meet the subquery qualifications. The outer
query is then evaluated. Notice that you can include more than one condition in the WHERE clause of both the inner and the outer
query.

Using a join, the same query is expressed like this:

USE pubs
SELECT au_lname, au_fname
FROM authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id
WHERE state = 'CA'
 AND royaltyper < 30
 AND au_ord = 2

A join can always be expressed as a subquery. A subquery can often, but not always, be expressed as a join. This is because joins
are symmetric: you can join table A to B in either order and get the same answer. The same is not true if a subquery is involved.

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with NOT IN
Subqueries with NOT IN

Subqueries introduced with the keyword NOT IN also return a list of zero or more values.

This query finds the names of the publishers who have not published business books.

USE pubs
SELECT pub_name
FROM publishers
WHERE pub_id NOT IN
 (SELECT pub_id
 FROM titles
 WHERE type = 'business')

The query is exactly the same as the one in Subqueries with IN, except that NOT IN is substituted for IN. However, this statement
cannot be converted to a join. The analogous not-equal join has a different meaning: It finds the names of publishers who have
published some book that is not a business book. For information about interpreting the meaning of joins not based on equality,
see Joining Three or More Tables.

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries in UPDATE, DELETE, and INSERT Statements
Subqueries in UPDATE, DELETE, and INSERT Statements

Subqueries can be nested in UPDATE, DELETE, and INSERT statements, as well as in SELECT statements.

The following query doubles the price of all books published by New Moon Books. The query updates the titles table; its
subquery references the publishers table.

UPDATE titles
SET price = price * 2
WHERE pub_id IN
 (SELECT pub_id
 FROM publishers
 WHERE pub_name = 'New Moon Books')

Here's an equivalent UPDATE statement using a join:

UPDATE titles
SET price = price * 2
FROM titles INNER JOIN publishers ON titles.pub_id = publishers.pub_id
 AND pub_name = 'New Moon Books'

You can remove all sales records of business books with this nested query:

DELETE sales
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'business')

Here's an equivalent DELETE statement using a join:

DELETE sales
FROM sales INNER JOIN titles ON sales.title_id = titles.title_id
 AND type = 'business'

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with Comparison Operators
Subqueries with Comparison Operators

Subqueries can be introduced with one of the comparison operators (=, < >, >, > =, <, ! >, ! <, or < =).

A subquery introduced with an unmodified comparison operator (a comparison operator not followed by ANY or ALL) must
return a single value rather than a list of values, like subqueries introduced with IN. If such a subquery returns more than one
value, Microsoft® SQL Server™ displays an error message.

To use a subquery introduced with an unmodified comparison operator, you must be familiar enough with your data and with the
nature of the problem to know that the subquery will return exactly one value.

For example, if you assume each publisher is located in only one city, and you want to find the names of authors who live in the
city in which Algodata Infosystems is located, you can write a statement with a subquery introduced with the simple =
comparison operator.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city =
 (SELECT city
 FROM publishers
 WHERE pub_name = 'Algodata Infosystems')

Here is the result set:

au_lname au_fname
-------- --------
Carson Cheryl
Bennet Abraham

(2 row(s) affected)

If, however, Algodata Infosystems was located in multiple cities, then an error message would result. Instead of the = comparison
operator, an IN formulation could be used (= ANY also works).

Subqueries introduced with unmodified comparison operators often include aggregate functions, because these return a single
value. For example, this statement finds the names of all books priced higher than the current minimum price.

USE pubs
SELECT DISTINCT title
FROM titles
WHERE price >
 (SELECT MIN(price)
 FROM titles)

Here is the result set:

title
--
But Is It User Friendly?
Computer Phobic and Non-Phobic Individuals: Behavior Variations
Cooking with Computers: Surreptitious Balance Sheets
Emotional Security: A New Algorithm
Fifty Years in Buckingham Palace Kitchens
Is Anger the Enemy?
Life Without Fear
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
Prolonged Data Deprivation: Four Case Studies
Secrets of Silicon Valley
Silicon Valley Gastronomic Treats
Straight Talk About Computers
Sushi, Anyone?
The Busy Executive's Database Guide

(14 row(s) affected)

Because subqueries introduced with unmodified comparison operators must return a single value, they cannot include GROUP BY
or HAVING clauses unless you know the GROUP BY or HAVING clause itself returns a single value. For example, this query finds
the books priced higher than the lowest priced book that has a type 'trad_cook'.

USE pubs
SELECT DISTINCT title

FROM titles
WHERE price >
 (SELECT MIN(price)
 FROM titles
 GROUP BY type
 HAVING type = 'trad_cook')

Here is the result set:

title
--
But Is It User Friendly?
Computer Phobic AND Non-Phobic Individuals: Behavior Variations
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
Prolonged Data Deprivation: Four Case Studies
Secrets of Silicon Valley
Silicon Valley Gastronomic Treats
Straight Talk About Computers
Sushi, Anyone?
The Busy Executive's Database Guide

(9 row(s) affected)

Accessing and Changing Relational Data (SQL Server 2000)

Comparison Operators Modified by ANY, SOME, or ALL
Comparison Operators Modified by ANY, SOME, or ALL

Comparison operators that introduce a subquery can be modified by the keywords ALL or ANY. SOME is an SQL-92 standard
equivalent for ANY.

Subqueries introduced with a modified comparison operator return a list of zero or more values and can include a GROUP BY or
HAVING clause. These subqueries can be restated with EXISTS.

Using the > comparison operator as an example, >ALL means greater than every value--in other words, greater than the
maximum value. For example, >ALL (1, 2, 3) means greater than 3. >ANY means greater than at least one value, that is, greater
than the minimum. So >ANY (1, 2, 3) means greater than 1.

For a row in a subquery with >ALL to satisfy the condition specified in the outer query, the value in the column introducing the
subquery must be greater than each value in the list of values returned by the subquery.

Similarly, >ANY means that for a row to satisfy the condition specified in the outer query, the value in the column that introduces
the subquery must be greater than at least one of the values in the list of values returned by the subquery.

Note This example can be run many different ways, as long as the inner query returns only one value.

USE pubs
-- Option 1 using MAX in the inner query
SELECT title
FROM titles
HAVING MAX(advance) > ALL
WHERE advance > ALL
 (
 SELECT MAX(advance)
 FROM publishers INNER JOIN titles ON
 titles.pub_id = publishers.pub_id
 WHERE pub_name = 'Algodata Infosystems'
)

-- Option 2 using GROUP BY and HAVING and no ALL
USE pubs
SELECT title
FROM titles
GROUP BY title
HAVING MAX(advance) >
 (
 SELECT MAX(advance)
 FROM publishers INNER JOIN titles ON
 titles.pub_id = publishers.pub_id
 WHERE pub_name = 'Algodata Infosystems'
)

The following query provides an example of a subquery introduced with a comparison operator modified by ANY. It finds the
titles that received an advance larger than the minimum advance amount paid by Algodata Infosystems.

USE pubs
SELECT title
FROM titles
WHERE advance > ANY
 (SELECT advance
 FROM publishers INNER JOIN titles
 ON titles.pub_id = publishers.pub_id
 AND pub_name = 'Algodata Infosystems')

Here is the result set:

title

You Can Combat Computer Stress!
The Gourmet Microwave
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals: Behavior Variations
Life Without Fear
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean
Sushi, Anyone?

(8 row(s) affected)

For each title, the inner query finds a list of advance amounts paid by Algodata. The outer query looks at all values in the list and
determines whether the title currently being considered has commanded an advance larger than any of those amounts. In other
words, it finds titles with advances as large or larger than the lowest value paid by Algodata.

If the subquery does not return any values, the entire query fails to return any values.

The =ANY operator is equivalent to IN. For example, to find authors who live in the same city as a publisher, you can use either IN
or =ANY.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city IN
 (SELECT city
 FROM publishers)

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city = ANY
 (SELECT city
 FROM publishers)

Here is the result set for either query:

au_lname au_fname
-------- ---------
Carson Cheryl
Bennet Abraham

(2 row(s) affected)

The < >ANY operator, however, differs from NOT IN: < >ANY means not = a, or not = b, or not = c. NOT IN means not = a, and
not = b, and not = c. <>ALL means the same as NOT IN.

For example, this query finds the authors who live in a city in which no publisher is located.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city <> ANY
 (SELECT city
 FROM publishers)

Here is the result set:

au_lname au_fname
-- --------------------
White Johnson
Green Marjorie
Carson Cheryl
O'Leary Michael
Straight Dean
Smith Meander
Bennet Abraham
Della Buena Ann
Gringlesby Burt
Locksley Charlene
Greene Morningstar
Blotchet-Halls Reginald
Yokomoto Akiko
del Covello Innes
DeFrance Michel
Stringer Dirk
MacFeather Stearns
Karsen Livia
Panteley Sylvia
Hunter Sheryl
McBadden Heather
Ringer Anne
Ringer Albert

(23 row(s) affected)

The results include all 23 authors because every author lives in a city in which one or more of the publishers is not located. The
inner query finds all the cities in which publishers are located, and then, for each city, the outer query finds the authors who don't
live there.

However, when you use NOT IN in this query, the results include all the authors except Cheryl Carson and Abraham Bennet, who
live in Berkeley, where Algodata Infosystems is located.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city NOT IN
 (SELECT city
 FROM publishers)

Here is the result set:

au_lname au_fname
-- --------------------
White Johnson
Green Marjorie
O'Leary Michael
Straight Dean
Smith Meander
Della Buena Ann
Gringlesby Burt
Locksley Charlene
Greene Morningstar
Blotchet-Halls Reginald
Yokomoto Akiko
del Covello Innes
DeFrance Michel
Stringer Dirk
MacFeather Stearns
Karsen Livia
Panteley Sylvia
Hunter Sheryl
McBadden Heather
Ringer Anne
Ringer Albert

(21 row(s) affected)

You can get the same results with the < >ALL operator, which is equivalent to NOT IN.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city <> ALL
 (SELECT city
 FROM publishers)

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with EXISTS
Subqueries with EXISTS

When a subquery is introduced with the keyword EXISTS, it functions as an existence test. The WHERE clause of the outer query
tests for the existence of rows returned by the subquery. The subquery does not actually produce any data; it returns a value of
TRUE or FALSE.

A subquery introduced with EXISTS has the following syntax:

WHERE [NOT] EXISTS (subquery)

This query finds the names of all publishers who publish business books:

USE pubs
SELECT pub_name
FROM publishers
WHERE EXISTS
 (SELECT *
 FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = 'business')

Here is the result set:

pub_name

New Moon Books
Algodata Infosystems

(2 row(s) affected)

To determine the results of this query, consider each publisher's name in turn. Does this value cause the subquery to return at
least one row? In other words, does it cause the existence test to evaluate to TRUE?

In this case, the first publisher name is Algodata Infosystems, with identification number 1389. Are there any rows in the titles
table in which pub_id is 1389 and type is business? If so, Algodata Infosystems should be one of the values selected. The same
process is repeated for each of the other publisher names.

Notice that subqueries introduced with EXISTS are a bit different from other subqueries in these ways:

The keyword EXISTS is not preceded by a column name, constant, or other expression.

The select list of a subquery introduced by EXISTS almost always consists of an asterisk (*). There is no reason to list column
names because you are simply testing for the existence of rows that meet the conditions specified in the subquery.

The EXISTS keyword is important because often there is no alternative, nonsubquery formulation. Although some queries
formulated with EXISTS cannot be expressed any other way, all queries that use IN or a comparison operator modified by ANY or
ALL can be expressed with EXISTS.

Examples of queries using EXISTS and equivalent alternatives follow.

Here are two ways to find authors who live in the same city as a publisher:

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE city =ANY
 (SELECT city
 FROM publishers)
-- Or
USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE exists
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)

Here is the result set for either query:

au_lname au_fname

-------- --------
Carson Cheryl
Bennet Abraham

(2 row(s) affected)

These two queries find titles of books published by any publisher located in a city that begins with the letter B:

USE pubs
SELECT title
FROM titles
WHERE pub_id IN
 (SELECT pub_id
 FROM publishers
 WHERE city LIKE 'B%')
-- Or
USE pubs
SELECT title
FROM titles
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE pub_id = titles.pub_id
 AND city LIKE 'B%')

Here is the result set for either query:

title
--
The Busy Executive's Database Guide
Cooking with Computers: Surreptitious Balance Sheets
You Can Combat Computer Stress!
Straight Talk About Computers
But Is It User Friendly?
Secrets of Silicon Valley
Net Etiquette
Is Anger the Enemy?
Life Without Fear
Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm

(11 row(s) affected)

See Also

EXISTS

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries with NOT EXISTS
Subqueries with NOT EXISTS

NOT EXISTS works like EXISTS, except the WHERE clause in which it is used is satisfied if no rows are returned by the subquery.

For example, to find the names of publishers who do not publish business books:

USE pubs
SELECT pub_name
FROM publishers
WHERE NOT EXISTS
 (SELECT *
 FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = 'business')

Here is the result set:

pub_name
--
Binnet & Hardley
Five Lakes Publishing
Ramona Publishers
GGG&G
Scootney Books
Lucerne Publishing

(6 row(s) affected)

This query finds the titles for which there have been no sales.

USE pubs
SELECT title
FROM titles
WHERE NOT EXISTS
 (SELECT title_id
 FROM sales
 WHERE title_id = titles.title_id)

Here is the result set:

title

The Psychology of Computer Cooking
Net Etiquette

(2 row(s) affected)

See Also

EXISTS

NOT

Accessing and Changing Relational Data (SQL Server 2000)

Using EXISTS and NOT EXISTS to Find Intersection and
Difference
Using EXISTS and NOT EXISTS to Find Intersection and Difference

Subqueries introduced with EXISTS and NOT EXISTS can be used for two set-theory operations: intersection and difference. The
intersection of two sets contains all elements that belong to both of the original sets. The difference contains elements that belong
only to the first of the two sets.

The intersection of authors and publishers over the city column is the set of cities in which both an author and a publisher are
located.

USE pubs
SELECT DISTINCT city
FROM authors
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)

Here is the result set:

city

Berkeley

(1 row(s) affected)

Of course, this query could be written as a simple join.

USE pubs
SELECT DISTINCT authors.city
FROM authors INNER JOIN publishers
ON authors.city = publishers.city

The difference between authors and publishers over the city column is the set of cities where an author lives but no publisher is
located, that is, all the cities except Berkeley.

USE pubs
SELECT DISTINCT city
FROM authors
WHERE NOT EXISTS
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)

This query could also be written as:

USE pubs
SELECT DISTINCT city
FROM authors
WHERE city NOT IN
 (SELECT city
 FROM publishers)

Accessing and Changing Relational Data (SQL Server 2000)

Subqueries Used in Place of an Expression
Subqueries Used in Place of an Expression

In Transact-SQL, a subquery can be substituted anywhere an expression can be used in SELECT, UPDATE, INSERT, and DELETE
statements, except in an ORDER BY list.

The following example illustrates how you might use this enhancement. This query finds the price of a popular computer book,
the average price of all books, and the difference between the price of the book and the average price of all books.

USE pubs
SELECT title, price,
(SELECT AVG(price) FROM titles) AS average,
price-(SELECT AVG(price) FROM titles) AS difference
FROM titles
WHERE type='popular_comp'

Here is the result set:

title price average difference
------------------------ -------------- -------------- ----------------
But Is It User Friendly? 22.95 14.77 8.18
Secrets of Silicon Valley 20.00 14.77 5.23
Net Etiquette (null) 14.77 (null)

(3 row(s) affected)

Accessing and Changing Relational Data (SQL Server 2000)

Multiple Levels of Nesting
A subquery can itself include one or more subqueries. Any number of subqueries can be nested in a statement.

This query finds the names of authors who have participated in writing at least one popular computer book.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id IN
 (SELECT au_id
 FROM titleauthor
 WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'popular_comp'))

Here is the result set:

au_lname au_fname
-- --------------------
Carson Cheryl
Dull Ann
Locksley Charlene
Hunter Sheryl

(4 row(s) affected)

The innermost query returns the title ID numbers PC1035, PC8888, and PC9999. The query at the next higher level is evaluated
with these title IDs and returns the author ID numbers. Finally, the outer query uses the author IDs to find the names of the
authors.

You can also express this query as a join:

USE pubs
SELECT au_lname, au_fname
FROM authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id
 JOIN titles ON titleauthor.title_id = titles.title_id
WHERE type = 'popular_comp'

Accessing and Changing Relational Data (SQL Server 2000)

Correlated Subqueries
Many queries can be evaluated by executing the subquery once and substituting the resulting value or values into the WHERE
clause of the outer query. In queries that include a correlated subquery (also known as a repeating subquery), the subquery
depends on the outer query for its values. This means that the subquery is executed repeatedly, once for each row that might be
selected by the outer query.

This query finds the names of all authors who earn 100 percent of the shared royalty (royaltyper) on a book.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE 100 IN
 (SELECT royaltyper
 FROM titleauthor
 WHERE titleauthor.au_ID = authors.au_id)

Here is the result set:

au_lname au_fname
-- --------------------
White Johnson
Green Marjorie
Carson Cheryl
Straight Dean
Locksley Charlene
Blotchet-Halls Reginald
del Castillo Innes
Panteley Sylvia
Ringer Albert

(9 row(s) affected)

Unlike most of the subqueries shown earlier, the subquery in this statement cannot be resolved independently of the main query.
It needs a value for authors.au_id, but this value is a variable. It changes as Microsoft® SQL Server™ examines different rows of
the authors table.

That is exactly how this query is evaluated: SQL Server considers each row of the authors table for inclusion in the results by
substituting the value in each row into the inner query. For example, if SQL Server first examines the row for Cheryl Carson, the
variable authors.au_id takes the value 238-95-7766, which SQL Server substitutes into the inner query.

USE pubs
SELECT royaltyper
FROM titleauthor
WHERE au_id = '238-95-7766'

The result is 100, so the outer query evaluates to:

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE 100 IN (100)

Because this is true, the row for Cheryl Carson is included in the results. Go through the same procedure with the row for
Abraham Bennet; you'll see that this row is not included in the results.

Accessing and Changing Relational Data (SQL Server 2000)

Correlated Subqueries with Aliases
Correlated Subqueries with Aliases

Correlated subqueries can be used in operations such as selecting data from a table referenced in the outer query. In this case a
table alias (also called a correlation name) must be used to specify unambiguously which table reference to use. For example, you
can use a correlated subquery to find the types of books published by more than one publisher. Aliases are required to
distinguish the two different roles in which the titles table appears.

USE pubs
SELECT DISTINCT t1.type
FROM titles t1
WHERE t1.type IN
 (SELECT t2.type
 FROM titles t2
 WHERE t1.pub_id <> t2.pub_id)

Here is the result set:

type

business
psychology

(2 row(s) affected)

The preceding nested query is equivalent to this self-join:

USE pubs
SELECT DISTINCT t1.type
FROM titles t1 INNER JOIN titles t2 ON t1.type = t2.type
 AND t1.pub_id <> t2.pub_id

Accessing and Changing Relational Data (SQL Server 2000)

Correlated Subqueries with Comparison Operators
Correlated Subqueries with Comparison Operators

Use a correlated subquery with a comparison operator to find sales where the quantity is less than the average quantity for sales
of that title.

USE pubs
SELECT s1.ord_num, s1.title_id, s1.qty
FROM sales s1
WHERE s1.qty <
 (SELECT AVG(s2.qty)
 FROM sales s2
 WHERE s2.title_id = s1.title_id)

Here is the result set:

ord_num title_id qty
-------------------- -------- ------
6871 BU1032 5
722a PS2091 3
D4482 PS2091 10
N914008 PS2091 20
423LL922 MC3021 15

(5 row(s) affected)

The outer query selects the rows of sales (that is, of s1) one by one. The subquery calculates the average quantity for each sale
being considered for selection in the outer query. For each possible value of s1, Microsoft® SQL Server™ evaluates the subquery
and puts the record being considered in the results if the quantity is less than the calculated average.

Sometimes a correlated subquery mimics a GROUP BY clause. This example finds all titles that have a price greater than the
average for books of its type.

USE pubs
SELECT t1.type, t1.title
FROM titles t1
WHERE t1.price >
 (SELECT AVG(t2.price)
 FROM titles t2
 WHERE t1.type = t2.type)

Here is the result set:

type title
------------ ---
business The Busy Executive's Database Guide
business Straight Talk About Computers
mod_cook Silicon Valley Gastronomic Treats
popular_comp But Is It User Friendly?
psychology Computer Phobic AND Non-Phobic Individuals: Behavior
 Variations
psychology Prolonged Data Deprivation: Four Case Studies
trad_cook Onions, Leeks, and Garlic: Cooking Secrets of the
 Mediterranean

(7 row(s) affected)

For each possible value of t1, SQL Server evaluates the subquery and includes the row in the results if the price value of that row
is greater than the calculated average. It is not necessary to group by type explicitly, because the rows for which average price is
calculated are restricted by the WHERE clause in the subquery.

Accessing and Changing Relational Data (SQL Server 2000)

Correlated Subqueries in a HAVING Clause
Correlated Subqueries in a HAVING Clause

A correlated subquery can also be used in the HAVING clause of an outer query. This construction can be used to find the types of
books for which the maximum advance is more than twice the average within a given group.

In this case, the subquery is evaluated once for each group defined in the outer query (once for each type of book).

USE pubs
SELECT t1.type
FROM titles t1
GROUP BY t1.type
HAVING MAX(t1.advance) >=ALL
 (SELECT 2 * AVG(t2.advance)
 FROM titles t2
 WHERE t1.type = t2.type)

Here is the result set:

type

mod_cook

(1 row(s) affected)

Accessing and Changing Relational Data (SQL Server 2000)

Conditional Data Processing Using CASE
The CASE function is used to evaluate several conditions and return a single value for each condition. A common use of the CASE
function is to replace codes or abbreviations with more readable values. The following query uses the CASE function to rename
book categories so that they are more understandable.

USE pubs
SELECT
 CASE type
 WHEN 'popular_comp' THEN 'Popular Computing'
 WHEN 'mod_cook' THEN 'Modern Cooking'
 WHEN 'business' THEN 'Business'
 WHEN 'psychology' THEN 'Psychology'
 WHEN 'trad_cook' THEN 'Traditional Cooking'
 ELSE 'Not yet categorized'
 END AS Category,
CONVERT(varchar(30), title) AS "Shortened Title",
price AS Price
FROM titles
WHERE price IS NOT NULL
ORDER BY 1

Here is the result set:

category shortened title Price
------------------- ------------------------------ -------
Business Cooking with Computers: Surrep 11.95
Business Straight Talk About Computers 19.99
Business The Busy Executive's Database 19.99
Business You Can Combat Computer Stress 2.99
Modern Cooking Silicon Valley Gastronomic Tre 19.99
Modern Cooking The Gourmet Microwave 2.99
Popular Computing But Is It User Friendly? 22.95
Popular Computing Secrets of Silicon Valley 20.00
Psychology Computer Phobic AND Non-Phobic 21.59
Psychology Emotional Security: A New Algo 7.99
Psychology Is Anger the Enemy? 10.95
Psychology Life Without Fear 7.00
Psychology Prolonged Data Deprivation: Fo 19.99
Traditional Cooking Fifty Years in Buckingham Pala 11.95
Traditional Cooking Onions, Leeks, and Garlic: Coo 20.95
Traditional Cooking Sushi, Anyone? 14.99

(16 row(s) affected)

Another use of CASE is to categorize data. The following query uses the CASE function to categorize prices.

SELECT
 CASE
 WHEN price IS NULL THEN 'Not yet priced'
 WHEN price < 10 THEN 'Very Reasonable Title'
 WHEN price >= 10 and price < 20 THEN 'Coffee Table Title'
 ELSE 'Expensive book!'
 END AS "Price Category",
CONVERT(varchar(20), title) AS "Shortened Title"
FROM pubs.dbo.titles
ORDER BY price

Here is the result set:

Price Category Shortened Title
--------------------- --------------------
Not yet priced The Psychology of Co
Not yet priced Net Etiquette
Very Reasonable Title You Can Combat Compu
Very Reasonable Title The Gourmet Microwav
Very Reasonable Title Life Without Fear
Very Reasonable Title Emotional Security:
Coffee Table Title Is Anger the Enemy?
Coffee Table Title Cooking with Compute
Coffee Table Title Fifty Years in Bucki
Coffee Table Title Sushi, Anyone?
Coffee Table Title The Busy Executive's
Coffee Table Title Straight Talk About
Coffee Table Title Silicon Valley Gastr
Coffee Table Title Prolonged Data Depri
Expensive book! Secrets of Silicon V

Expensive book! Onions, Leeks, and G
Expensive book! Computer Phobic AND
Expensive book! But Is It User Frien

(18 row(s) affected)

See Also

CASE

Accessing and Changing Relational Data (SQL Server 2000)

Summarizing Data
Producing summary reports of aggregated transaction data for decision support systems can be a complex and resource-
intensive operation. Microsoft® SQL Server™ 2000 provides two flexible and powerful components for building SQL Server 2000
Analysis Services. These components are the main tools programmers should use in performing multidimensional analysis of
SQL Server data:

Data Transformation Services (DTS)

DTS supports extracting transaction data and transforming it into summary aggregates in a data warehouse or data mart.
For more information, see DTS Overview.

Microsoft SQL Server Analysis Services

Analysis Services organizes data from a data warehouse into multidimensional cubes with precalculated summary
information to provide rapid answers to complex analytical queries. PivotTable® Service provides client access to
multidimensional data. Analysis Services also provides a set of wizards for defining the multidimensional structures used in
the Analysis processing, and a Microsoft Management Console snap-in for administering the Analysis structures.
Applications can then use either the OLE DB for Analysis API or the Microsoft ActiveX® Data Objects (Multidimensional)
(ADO MD) API to analyze the Analysis data. For more information, see Analysis Services Overview.

Using Transact-SQL for Simple Summary Reports

Applications generating simple summary reports can use these Transact-SQL elements:

The CUBE or ROLLUP operators, which are both part of the GROUP BY clause of the SELECT statement.

The COMPUTE or COMPUTE BY operators, which are also associated with GROUP BY.

These operators generate result sets that contain both detail rows for each item in the result set and summary rows for each
group showing the aggregate totals for that group. The GROUP BY clause can be used to generate results that contain aggregates
for each group, but no detail rows.

It is recommended that applications use Analysis Services instead of CUBE, ROLLUP, COMPUTE, or COMPUTE BY. CUBE and
ROLLUP should be reserved for environments that do not have access to OLE DB or ADO, such as scripts or stored procedures.

COMPUTE and COMPUTE BY are supported for backward compatibility. The ROLLUP operator is preferred over either COMPUTE
or COMPUTE BY. The summary values generated by COMPUTE or COMPUTE BY are returned as separate result sets interleaved
with the result sets returning the detail rows for each group, or a result set containing the totals appended after the main result
set. Handling these multiple result sets increases the complexity of the code in an application. Neither COMPUTE nor COMPUTE
BY are supported with server cursors, and ROLLUP is. CUBE and ROLLUP generate a single result set containing embedded
subtotal and total rows. The query optimizer can also sometimes generate more efficient execution plans for ROLLUP than it can
for COMPUTE and COMPUTE BY.

When GROUP BY is used without these operators, it returns a single result set with one row per group containing the aggregate
subtotals for the group. There are no detail rows in the result set.

Accessing and Changing Relational Data (SQL Server 2000)

Summarizing Data Using CUBE
The CUBE operator generates a result set that is a multidimensional cube. A multidimensional cube is an expansion of fact data, or
data that records individual events. The expansion is based on columns that the user wants to analyze. These columns are called
dimensions. The cube is a result set containing a cross tabulation of all the possible combinations of the dimensions.

The CUBE operator is specified in the GROUP BY clause of a SELECT statement. The select list contains the dimension columns and
aggregate function expressions. The GROUP BY specifies the dimension columns and the keywords WITH CUBE. The result set
contains all possible combinations of the values in the dimension columns, along with the aggregate values from the underlying
rows that match that combination of dimension values.

For example, a simple table Inventory contains:

Item Color Quantity
-------------------- -------------------- --------------------------
Table Blue 124
Table Red 223
Chair Blue 101
Chair Red 210

This query returns a result set that contains the Quantity subtotal for all possible combinations of Item and Color:

SELECT Item, Color, SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item, Color WITH CUBE

Here is the result set:

Item Color QtySum
-------------------- -------------------- --------------------------
Chair Blue 101.00
Chair Red 210.00
Chair (null) 311.00
Table Blue 124.00
Table Red 223.00
Table (null) 347.00
(null) (null) 658.00
(null) Blue 225.00
(null) Red 433.00

The following rows from the result set are of special interest:

Chair (null) 311.00

This row reports a subtotal for all rows having the value Chair in the Item dimension. The value NULL is returned for the Color
dimension to show that aggregate reported by the row includes rows with any value of the Color dimension.

Table (null) 347.00

This row is similar, but reports the subtotal for all rows having Table in the Item dimension.

(null) (null) 658.00

This row reports the grand total for the cube. Both the Item and Color dimensions have the value NULL showing that all values of
both dimensions are summarized in the row.

(null) Blue 225.00
(null) Red 433.00

These two rows report the subtotals for the Color dimension. Both have NULL in the Item dimension to show that the aggregate
data came from rows having any value for the Item dimension.

Using GROUPING to Distinguish Null Values

The null values generated by the CUBE operation present a problem: How can a NULL generated by the CUBE operation be
distinguished from a NULL returned in the actual data? This is achieved using the GROUPING function. The GROUPING function
returns 0, if the column value came from the fact data, and 1 if the column value is a NULL generated by the CUBE operation. In a
CUBE operation, a generated NULL represents all values. The SELECT statement can be written to use the GROUPING function to
substitute the string ALL in place of any generated NULL. Because a NULL from the fact data indicates the data value is unknown,
the SELECT can also be coded to return the string UNKNOWN in place of any NULL from the fact data. For example:

SELECT CASE WHEN (GROUPING(Item) = 1) THEN 'ALL'
 ELSE ISNULL(Item, 'UNKNOWN')
 END AS Item,
 CASE WHEN (GROUPING(Color) = 1) THEN 'ALL'
 ELSE ISNULL(Color, 'UNKNOWN')
 END AS Color,
 SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item, Color WITH CUBE

Multidimensional Cubes

The CUBE operator can be used to generate n-dimensional cubes, or cubes with any number of dimensions. A single dimension
cube can be used to generate a total, for example:

SELECT CASE WHEN (GROUPING(Item) = 1) THEN 'ALL'
 ELSE ISNULL(Item, 'UNKNOWN')
 END AS Item,
 SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item WITH CUBE
GO

This SELECT statement returns a result set showing both the subtotals for each value of Item and the grand total for all values of
Item:

Item QtySum
-------------------- --------------------------
Chair 311.00
Table 347.00
ALL 658.00

SELECT statements that contain a CUBE with many dimensions can generate large result sets, because these statements generate
rows for all combinations of the values in all the dimensions. These large result sets may contain too much data to be easily read
and understood. One solution to this problem is to put the SELECT statement into a view:

CREATE VIEW InvCube AS
SELECT CASE WHEN (GROUPING(Item) = 1) THEN 'ALL'
 ELSE ISNULL(Item, 'UNKNOWN')
 END AS Item,
 CASE WHEN (GROUPING(Color) = 1) THEN 'ALL'
 ELSE ISNULL(Color, 'UNKNOWN')
 END AS Color,
 SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item, Color WITH CUBE

The view can then be used to query only the dimension values of interest:

SELECT *
FROM InvCube
WHERE Item = 'Chair'
 AND Color = 'ALL'

Item Color QtySum
-------------------- -------------------- --------------------------
Chair ALL 311.00

(1 row(s) affected)

See Also

SELECT

Summarizing Data Using ROLLUP

Accessing and Changing Relational Data (SQL Server 2000)

Summarizing Data Using ROLLUP
The ROLLUP operator is useful in generating reports that contain subtotals and totals. The ROLLUP operator generates a result set
that is similar to the result sets generated by the CUBE operator. For more information, see Summarizing Data Using CUBE.

The differences between CUBE and ROLLUP are:

CUBE generates a result set showing aggregates for all combinations of values in the selected columns.

ROLLUP generates a result set showing aggregates for a hierarchy of values in the selected columns.

For example, a simple table Inventory contains:

Item Color Quantity
-------------------- -------------------- --------------------------
Table Blue 124
Table Red 223
Chair Blue 101
Chair Red 210

This query generates a subtotal report:

SELECT CASE WHEN (GROUPING(Item) = 1) THEN 'ALL'
 ELSE ISNULL(Item, 'UNKNOWN')
 END AS Item,
 CASE WHEN (GROUPING(Color) = 1) THEN 'ALL'
 ELSE ISNULL(Color, 'UNKNOWN')
 END AS Color,
 SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item, Color WITH ROLLUP

Item Color QtySum
-------------------- -------------------- --------------------------
Chair Blue 101.00
Chair Red 210.00
Chair ALL 311.00
Table Blue 124.00
Table Red 223.00
Table ALL 347.00
ALL ALL 658.00

(7 row(s) affected)

If the ROLLUP keyword in the query is changed to CUBE, the CUBE result set is the same, except these two additional rows are
returned at the end:

ALL Blue 225.00
ALL Red 433.00

The CUBE operation generated rows for possible combinations of values from both Item and Color. For example, not only does
CUBE report all possible combinations of Color values combined with the Item value Chair (Red, Blue, and Red + Blue), it also
reports all possible combinations of Item values combined with the Color value Red (Chair, Table, and Chair + Table).

For each value in the columns on the right in the GROUP BY clause, the ROLLUP operation does not report all possible
combinations of values from the column (or columns) on the left. For example, ROLLUP does not report all the possible
combinations of Item values for each Color value.

The result set of a ROLLUP operation has functionality similar to that returned by a COMPUTE BY; however, ROLLUP has these
advantages:

ROLLUP returns a single result set; COMPUTE BY returns multiple result sets that increase the complexity of application
code.

ROLLUP can be used in a server cursor; COMPUTE BY cannot.

The query optimizer can sometimes generate more efficient execution plans for ROLLUP than it can for COMPUTE BY.

See Also

SELECT

Summarizing Data Using COMPUTE and COMPUTE BY

Accessing and Changing Relational Data (SQL Server 2000)

Summarizing Data Using COMPUTE and COMPUTE BY
The COMPUTE and COMPUTE BY clauses are provided for backward compatibility. Instead, use these components:

Microsoft® SQL Server™ 2000 Analysis Services in conjunction with OLE DB for Analysis Services or Microsoft ActiveX®
Data Objects Multidimensional (ADO MD). For more information, see Microsoft SQL Server™ 2000 Analysis Services.

The ROLLUP operator. For more information, see Summarizing Data Using ROLLUP.

A COMPUTE BY clause allows you to see both detail and summary rows with one SELECT statement. You can calculate summary
values for subgroups, or a summary value for the entire result set.

The COMPUTE clause takes the following information:

The optional BY keyword, which calculates the specified row aggregate on a per column basis.

A row aggregate function name; for example, SUM, AVG, MIN, MAX, or COUNT.

A column to perform the row aggregate function upon.

Results Sets Generated by COMPUTE

The summary values generated by COMPUTE appear as separate result sets in the query results. The results of a query that
includes a COMPUTE clause are like a control-break report, which is a report whose summary values are controlled by the
groupings, or breaks, that you specify. You can produce summary values for groups, and you can calculate more than one
aggregate function for the same group.

When COMPUTE is specified with the optional BY clause, there are two result sets for each group that qualifies for the SELECT:

The first result set for each group has the set of details rows containing the select list information for that group.

The second result set for each group has one row containing the subtotals of the aggregate functions specified in the
COMPUTE clause for that group.

When COMPUTE is specified without the optional BY clause, there are two result sets for the SELECT:

The first result set for each group has all of the detail rows containing the select list information.

The second result set has one row containing the totals of the aggregate functions specified in the COMPUTE clause.

Examples Using COMPUTE

This SELECT statement uses a simple COMPUTE clause to produce a grand total of the sum of the price and advances from the
titles table:

USE pubs
SELECT type, price, advance
FROM titles
ORDER BY type
COMPUTE SUM(price), SUM(advance)

This query adds the optional BY keyword to the COMPUTE clause to produce subtotals for each group:

USE pubs
SELECT type, price, advance
FROM titles
ORDER BY type
COMPUTE SUM(price), SUM(advance) BY type

The results of this SELECT statement are returned in 12 result sets, 2 result sets for each of the 6 groups. The first result set for
each group has a set of rows containing the information called for in the select list. The second result set for each group contains
the subtotals of the two SUM functions in the COMPUTE clause.

Note Some utilities, such as osql, display multiple subtotal or total aggregate summaries in a way that may lead users to assume
that each subtotal is a separate row in a result set. This is due to how the utility formats the output; the subtotal or total
aggregates are returned in one row. Other applications, such as SQL Query Analyzer, format multiple aggregates on the same

line.

Comparing COMPUTE to GROUP BY

To summarize the differences between COMPUTE and GROUP BY:

GROUP BY produces a single result set. There is one row for each group containing only the grouping columns and
aggregate functions showing the subaggregate for that group. The select list can contain only the grouping columns and
aggregate functions.

COMPUTE produces multiple result sets. One type of result set contains the detail rows for each group containing the
expressions from the select list. The other type of result set contains the subaggregate for a group, or the total aggregate for
the SELECT statement. The select list can contain expressions other than the grouping columns or aggregate functions. The
aggregate functions are specified in the COMPUTE clause, not in the select list.

This query uses GROUP BY and aggregate functions; it returns one result set having one row per group containing the aggregate
subtotals for that group:

USE pubs
SELECT type, SUM(price), SUM(advance)
FROM titles
GROUP BY type

Note You cannot include ntext, text, or image data types in a COMPUTE or COMPUTE BY clause.

See Also

Query Fundamentals

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Error Handling
Errors raised in Microsoft® SQL Server™ 2000 have several attributes:

Error number.

Each error condition has a unique error number.

Error message string.

The error message gives diagnostic information about the cause of the error. Many error messages have substitution
variables in which information, such as the name of the object generating the error, is placed. Every error number has a
unique error message.

Severity.

The severity indicates how serious the error is. Errors with a low severity, such as 1 or 2, are information messages or low-
level warnings. Errors with a high severity indicate problems that should be addressed as soon as possible.

State code.

Some error codes can be raised at multiple points in the source code for SQL Server. For example, an "1105" error can be
raised for several different conditions. Each place the error code is raised assigns a unique state code. A Microsoft support
engineer can use the state code from an error to find the location in the source code where that error code is being raised,
which may provide additional ideas on how to diagnose the problem.

Procedure name.

If the error occurred in a stored procedure, the name of the stored procedure may be available.

Line number.

The line number indicates which statement in a stored procedure generated the error.

All of the SQL Server errors are stored in the system table master.dbo.sysmessages. User-defined messages can also be stored
in sysmessages. The RAISERROR statement can then be used to return these user-defined errors to an application if necessary.

All the database APIs, such as ADO, OLE DB, ODBC, DB-Library, and Embedded SQL, report the basic error attributes: the error
number and message string. However, there are variations in how many of the other error attributes each database can report.

Other SQL Server components can also raise errors:

The OLE DB provider, ODBC driver, and DB-Library dynamic-link library raise errors of their own. The format of these errors
is consistent with the formats defined in the API specifications.

The Net-Libraries raise errors of their own.

Open Data Services raises errors in its own format.

The SQL Server wizards, applications, and utilities such as the Index Tuning Wizard, SQL Server Enterprise Manager, and the
osql utility can raise their own errors.

Embedded SQL can raise SQL-92 errors.

See Also

sysmessages

Accessing and Changing Relational Data (SQL Server 2000)

Handling Errors and Messages in Applications
Errors raised either by Microsoft® SQL Server™ 2000 or the RAISERROR statement are not part of a result set. Errors are
returned to applications through an error handling mechanism separate from the processing of result sets.

Each database API has some set of functions, interfaces, methods, objects or structures through which they return errors and
messages. Each API function or method typically returns a status code indicating the success of that operation. If the status is
anything other than success, the application can call the error functions, methods, or objects to retrieve the error information.

SQL Server actually has two mechanisms for returning error information:

Errors
The errors from sysmessages with a severity of 11 or higher.

Any RAISERROR statement with a severity of 11 or higher.
Messages

The output of the PRINT statement.

The output of several DBCC statements.

The errors from sysmessages with a severity of 10 or lower.

Any RAISERROR statement with a severity of 10 or lower.

Applications using APIs such as ADO and OLE DB cannot generally distinguish between errors and messages. In ODBC
applications, messages generate a SQL_SUCCESS_WITH_INFO function return code, and errors usually generate a SQL_ERROR
return code. The difference is most pronounced in DB-Library, in which errors are returned to the application error handler
function, and messages are returned to the application message handler function.

ODBC Error Handling

The ODBC specification introduced an error model that has served as the foundation of the error models of the generic database
APIs such as ADO, OLE DB, and the APIs built over ODBC (RDO, DAO, and the MFC Database Classes). In the ODBC model, errors
have the following attributes:

SQLSTATE

The SQLSTATE is a five-character error code defined originally in the ODBC specification. SQLSTATEs are common across all
ODBC drivers and provide a way for applications to code basic error handling without testing for all the different error
codes returned by various databases. The ODBC SQLSTATE has nothing to do with the state attribute of SQL Server error
messages.

ODBC 2.x returns one set of SQLSTATE codes, and ODBC 3.x returns a set of SQLSTATE codes aligned with the X/Open Data
Management: Structured Query Language (SQL), version 2 standard. Because all ODBC drivers return the same sets of
SQLSTATE codes, applications basing their error handling on SQLSTATE codes are more portable.

Native error number

The native error number is the error number from the underlying database. ODBC applications receive the SQL Server error
numbers as native error numbers.

Error message string

The error message is returned in the error message string parameter.

When an ODBC function returns a status other than SQL_SUCCESS, the application can call SQLGetDiagRec to get the error
information. For example, if an ODBC application gets a syntax error (SQL Server error number 170), SQLGetDiagRec returns:

szSqlState = 42000, pfNative = 170
szErrorMsg =
'[Microsoft][ODBC SQL Server Driver][SQL Server]
 Line 1: Incorrect syntax near *'

The ODBC SQLGetDiagField function allows ODBC drivers to specify driver-specific diagnostic fields in the diagnostic records

returned by the driver. The SQL Server ODBC driver specifies driver-specific fields to hold SQL Server error information such as
the SQL Server severity and state codes.

For more information about retrieving error messages in ODBC applications, see Handling Errors and Messages.

ADO Error Handling

ADO uses an Errors object and Errors collection to return standard error information such as SQLSTATE, native error number,
and the error message string. These are the same as their ODBC counterparts. ADO does not support any provider-specific error
interfaces, so SQL Server-specific error information such as the severity or state are available to ADO applications.

For more information about retrieving error messages in ADO applications, see Handling Errors and Messages in ADO.

OLE DB Error Handling

OLE DB uses the IErrorInfo interface to return standard error information such as the SQLSTATE, native error number, and error
string. These are the same as their ODBC counterparts. The Microsoft OLE DB Provider for SQL Server defines an
ISQLServerErrorInfo interface to return SQL Server-specific information such as the severity, state, procedure name, and line
number.

For more information about retrieving error messages in OLE DB applications, see Errors.

DB-Library Error Handling

DB-Library uses a different mechanism for returning error information to an application. An application defines two call-back
functions, an error handler and a message handler. When the DB-Library dynamic-link library has errors or messages to return, it
calls the application's error handler or message handler function. Because DB-Library is specific to SQL Server, all SQL Server
error information is available in the error and message handlers. DB-Library returns PRINT messages and low-severity error or
RAISERROR messages to the message handler. High severity errors and RAISERROR messages are returned to the error handler
function.

For more information about DB-Library error handling see Error and Message Handling.

Accessing and Changing Relational Data (SQL Server 2000)

Using @@ERROR
 Topic last updated -- July 2003

The @@ERROR system function returns 0 if the last Transact-SQL statement executed successfully; if the statement generated an
error, @@ERROR returns the error number. The value of @@ERROR changes on the completion of each Transact-SQL statement.

Because @@ERROR gets a new value when every Transact-SQL statement completes, process @@ERROR in one of two ways:

Test or use @@ERROR immediately after the Transact-SQL statement.

Save @@ERROR in an integer variable immediately after the Transact-SQL statement completes. The value of the variable
can be used later.

@@ERROR is the only part of a Microsoft® SQL Server™ 2000 error available within the batch, stored procedure, or trigger that
generated the error. All other parts of the error, such as its severity, state, and message text containing replacement strings such
as object names, are returned only to the application in which they can be processed using the API error handling mechanisms.
Also, @@ERROR is raised only for errors, not for warnings; therefore, batches, stored procedures, and triggers do not have
visibility to any warnings that may have occurred.

A common use of @@ERROR is to indicate the success or failure of a stored procedure. An integer variable is initialized to 0. After
each Transact-SQL statement completes, @@ERROR is tested for being 0, and if it is not 0, it is stored in the variable. The
procedure then returns the variable on the RETURN statement. If none of the Transact-SQL statements in the procedure had an
error, the variable remains at 0. If one or more statements generated an error, the variable holds the last error number. This is a
simple stored procedure with this logic:

USE Northwind
GO
DROP PROCEDURE SampleProcedure
GO
-- Create a procedure that takes one input parameter
-- and returns one output parameter and a return code.
CREATE PROCEDURE SampleProcedure @EmployeeIDParm INT,
 @MaxQuantity INT OUTPUT
AS

-- Declare and initialize a variable to hold @@ERROR.
DECLARE @ErrorSave1 INT, @ErrorSave2 INT
SET @ErrorSave1 = 0

-- Do a SELECT using the input parameter.
SELECT FirstName, LastName, Title
FROM Employees
WHERE EmployeeID = @EmployeeIDParm

-- Save @@ERROR value in first local variable.
SET @ErrorSave1 = @@ERROR

-- Set a value in the output parameter.
SELECT @MaxQuantity = MAX(Quantity)
FROM [Order Details]

-- Save @@ERROR value in second local variable.
SET @ErrorSave2 = @@ERROR
-- If second test variable contains non-zero value, overwrite value in first local variable.
IF (@ErrorSave2 <> 0) SET @ErrorSave1 = @ErrorSave2

-- Returns 0 if neither SELECT statement had
-- an error, otherwise returns the last error.
RETURN @ErrorSave1
GO

There are situations when @@ERROR can be used with @@ROWCOUNT. In the following example, @@ERROR is used to
determine if a constraint violation error occurred, and @@ROWCOUNT is used to determine the number of rows modified by the
UPDATE statement, if any rows were successfully changed.

BEGIN TRAN
 DECLARE @RowCount INT, @Error INT
 UPDATE Northwind.dbo.Products
 SET UnitPrice = UnitPrice * 1.1
 WHERE CategoryID IN (1, 2, 5, 6)
SELECT @Error = @@ERROR, @RowCount = @@ROWCOUNT
IF @Error = 547

 PRINT 'A CHECK CONSTRAINT violation occurred'
IF @RowCount = 0
 PRINT 'No rows updated.'
ELSE
 PRINT STR(@RowCount) + ' rows updated.'
COMMIT -- Commits rows successfully updated.

See Also

@@ERROR

@@ROWCOUNT

Accessing and Changing Relational Data (SQL Server 2000)

Using PRINT
The PRINT statement takes either one character or a Unicode string expression as a parameter. It returns the string as a message
to the application. The message is returned as an informational error in ADO, OLE DB, and ODBC applications. SQLSTATE is set to
01000, the native error is set to 0, and the error message string is set to the character string specified in the PRINT statement. The
string is returned to the message handler call-back function in DB-Library applications.

The PRINT statement accepts any character string expression, including character or Unicode constants, a character or Unicode
local variable name, or a function that returns a character or Unicode string. With Microsoft® SQL Server™ 2000, PRINT also
accepts complex strings built by concatenating two or more constants, local variables, or functions.

Use PRINT to help in troubleshooting Transact-SQL code, to check the values of data, or to produce reports.

This example uses PRINT inside an IF statement to return a message to the application:

IF (SELECT COUNT(au_lname) FROM authors WHERE state = 'UT') > 0
 PRINT 'More than one author resides in the state of Utah.'

This example prints a combination of a local variable, system functions, and a text string using concatenation:

USE Northwind
GO
DECLARE @MyObject NVARCHAR(128)

SET @MyObject = 'Products'

PRINT 'Object Name: ' + @MyObject
PRINT ' Object ID: ' + STR(Object_ID(@MyObject))
PRINT 'The computer ' + RTRIM(@@SERVERNAME) + ' is running '
 + RTRIM(@@VERSION)
GO
-- This shows building a character variable into a print
-- message. This is required for earlier versions of SQL
-- Server, in which the PRINT statement did not support
-- concatenation.
DECLARE @Msg VARCHAR(255)
SELECT @Msg = 'The computer ' + RTRIM(@@SERVERNAME) + ' is running '
 + RTRIM(@@VERSION)
PRINT @Msg

Accessing and Changing Relational Data (SQL Server 2000)

Using RAISERROR
RAISERROR is a more powerful statement than PRINT for returning messages back to applications. RAISERROR can return
messages in either of these forms:

A user-defined error message that has been added to master.dbo.sysmessages using the sp_addmessage system stored
procedure.

A message string specified in the RAISERROR statement.

RAISERROR also has these extensions to the capabilities of PRINT:

RAISERROR can assign a specific error number, severity, and state.

RAISERROR can request that the error be logged in the Microsoft® SQL Server™ 2000 error log and the Microsoft
Windows NT® application log.

The message string can contain substitution variables and arguments, much like the C language printf function.

When RAISERROR is used with the msg_id of a user-defined message in sysmessages, msg_id is returned as the SQL Server
error number, or native error code. When RAISERROR is used with a msg_str instead of a msg_id, the SQL Server error number
and native error number returned is 50000.

When you use RAISERROR to return a user-defined error message, use a different state number in each RAISERROR that
references that error. This can aid in diagnosing the errors when they are raised.

Use RAISERROR to help in troubleshooting Transact-SQL code, to check the values of data, or to return messages that contain
variable text.

This example substitutes the values from the DB_ID and DB_NAME functions in a message sent back to the application:

DECLARE @DBID INT
SET @DBID = DB_ID()

DECLARE @DBNAME NVARCHAR(128)
SET @DBNAME = DB_NAME()

RAISERROR
 ('The current database ID is:%d, the database name is: %s.',
 16, 1, @DBID, @DBNAME)

This example accomplishes the same process using a user-defined message:

sp_addmessage 50005, 16,
 'The current database ID is:%d, the database name is: %s.'
GO
DECLARE @DBID INT
SET @DBID = DB_ID()

DECLARE @DBNAME NVARCHAR(128)
SET @DBNAME = DB_NAME()

RAISERROR (50005, 16, 1, @DBID, @DBNAME)
GO

This second RAISERROR example shows that substitution parameters can be specified in a user-defined error and filled with
substitution arguments at the time the RAISERROR statement executes.

Accessing and Changing Relational Data (SQL Server 2000)

Querying SQL Server System Catalogs
Dynamic applications that are not hard-coded to work with a specific set of tables and views must have a mechanism for
determining the structure and attributes of the objects in any database to which it connects. The applications may need
information such as:

The number and names of the tables and views in a database.

The number of columns in a table or view, along with each column's name, data type, scale, and precision.

The constraints defined on a table.

The indexes and keys defined for a table.

The Microsoft® SQL Server™ 2000 system catalog provides this information for SQL Server databases. The core of the SQL
Server system catalogs is a set of system tables containing meta data describing the objects in a SQL Server database. Meta data
is data that describes the attributes of objects in a system.

SQL Server applications can access the information in the system catalogs in several ways by using:

Information Schema Views

Information Schema Views are based on catalog view definitions in the SQL-92 standard. They present the catalog
information in a format independent of any catalog table implementation, thus are not affected by changes in the
underlying catalog tables. Applications that use these views are portable between heterogeneous SQL-92 compliant
database systems. For more information, see Information Schema Views.

OLE DB schema rowsets

The OLE DB specification defines an IDBSchemaRowset interface that exposes a set of schema rowsets that contain the
catalog information. The OLE DB schema rowsets are a standard method of presenting catalog information supported by
different OLE DB providers. The rowsets are independent of the structure of the underlying catalog tables. For more
information, see Schema Rowset Support in SQLOLEDB.

The OLE DB Provider for SQL Server supports an extension to IDBSchemaRowset that reports catalog information for the
linked servers used in distributed queries. For more information, see LINKEDSERVERS Rowset.

ODBC catalog functions

The ODBC specification defines a set of catalog functions that return result sets that contain the catalog information. These
functions are a standard method of presenting catalog information supported by different ODBC drivers. The result sets are
independent of the structure of the underlying catalog tables.

The SQL Server ODBC driver supports two driver-specific functions that report catalog information for the linked servers
used in distributed queries. For more information, see Using Catalog Functions.

System stored procedures and functions

Transact-SQL defines server system stored procedures and system functions that return catalog information. Although
these stored procedures and functions are specific to SQL Server, they insulate users from the structure of the underlying
system catalog tables. For more information, see Metadata Functions and System Stored Procedures.

It is not recommended that users query the system catalog tables directly. This should only be done if none of the methods above
supply the needed information. The structure of the system catalog tables is dependent on the underlying architecture of SQL
Server, and changes from one version to another. Even an application that only issues SELECT statements may have to be at least
partially rewritten when migrating to a new version of SQL Server if it directly queries system tables that change or are not
present in the new version.

Updating, deleting, or inserting data in a system table can cause unpredictable effects in a SQL Server system. Such updates are
not supported by Microsoft.

Accessing and Changing Relational Data (SQL Server 2000)

Managing ntext, text, and image Data
The Microsoft® SQL Server™ ntext, text, and image data types are capable of holding extremely large amounts of data (up to 2
GB) in a single value. A single data value is typically larger than can be retrieved by an application in one step; some values may
be larger than the virtual memory available on the client. Therefore, special steps are usually needed to retrieve these values.

If an ntext, text, and image data value is no longer than a Unicode, character, or binary string (4,000 characters, 8,000
characters, 8,000 bytes respectively), the value can be referenced in SELECT, UPDATE, and INSERT statements much the same way
as the smaller data types. For example, an ntext column with a short value can be referenced in a SELECT statement select list the
same way an nvarchar column is referenced. Some restrictions that must be observed, such as not being able to directly
reference an ntext, text, or image column in a WHERE clause. These columns can be included in a WHERE clause as parameters
of a function that returns another data type (such as ISNULL, SUBSTRING or PATINDEX) or in an IS NULL, IS NOT NULL, or LIKE
expression.

Handling Larger Data Values

When the ntext, text, and image data values get larger, however, they must be handled on a block-by-block basis. Both
Transact-SQL and the database APIs contain functions that allow applications to work with ntext, text, and image data block by
block.

The database APIs follow a common pattern in the ways they handle long ntext, text, and image columns:

To read a long column, the application simply includes the ntext, text, or image column in a select list, and then binds the
column to a program variable large enough to hold a reasonable block of the data. The application then executes the
statement and uses an API function or method to retrieve the data into the bound variable one block at a time.

To write a long column, the application executes an INSERT or UPDATE statement with a parameter marker (?) in the place
of the value to be placed in the ntext, text, or image column. The parameter marker (or parameter in the case of ADO) is
bound to a program variable large enough to hold the blocks of data. The application goes into a loop where it first moves
the next set of data into the bound variable, and then calls an API function or method to write that block of data. This is
repeated until the entire data value has been sent.

Using text in row

In Microsoft SQL Server 2000, users can enable a text in row option on a table so it could store text, ntext, or image data in its
data row.

To enable the option, execute the sp_tableoption stored procedure, specifying text in row as the option name and on as the
option value. The default maximum size that can be stored in a row for a BLOB (binary large object: text, ntext, or image data) is
256 bytes, but values may range from 24 through 7000. To specify a maximum size that is not the default, specify an integer
within the range as the option value.

text, ntext, or image strings are stored in the data row if the following conditions apply:

text in row is enabled.

The length of the string is shorter than the limit specified in @OptionValue

There is enough space available in the data row.

When BLOB strings are stored in the data row, reading and writing the text, ntext, or image strings can be as fast as reading or
writing character and binary strings. SQL Server does not have to access separate pages to read or write the BLOB string.

If a text, ntext, or image string is larger than the specified limit or the available space in the row, pointers are stored in the row
instead. The conditions for storing the BLOB strings in the row still apply though: There must be enough space in the data row to
hold the pointers.

For more information, see sp_tableoption.

Using text pointers

Unless the text in row option is specified, text, ntext, or image strings are stored outside a data row; only the text pointers to
these strings reside in the data rows. Text pointers point to the root node of a tree built of internal pointers that map to the pages

in which string fragments (of text, ntext, and image data) are actually stored.

In row text pointers in SQL Server 2000 are different from the text pointers in earlier versions of SQL Server. In row text pointers
behave like file handles for BLOB data; earlier text pointers function like addresses to the BLOB data. Thus, when using in row text
pointers, keep in mind the following characteristics:

Important Although an in row text is allowed in a cursor, an in row text pointer is not. SQL Server will return the error message
(8654, 16, 1, 'A cursor plan could not be generated for the given statement because it contains textptr(inrow lob).', 1033) if you
attempt to declare a cursor that contains an in row text pointer.

1. Number

A maximum of 1024 active in row text pointers are allowed per transaction per database.

2. Locking

When a user obtains an active text pointer, SQL Server 2000 locks the data row and ensures no other user modifies or
deletes the row while the first user has the text pointer. The lock is released when the text pointer becomes invalid. To
invalidate a text pointer, use sp_invalidate_textptr.

A text pointer cannot be used to update BLOB values when the isolation level of the transaction is read uncommitted, or the
database is in read-only mode.

SQL Server 2000 does not lock the data row if the database is in single-user mode.

To illustrate, given the following table:

CREATE TABLE t1 (c1 int, c2 text)
EXEC sp_tableoption 't1', 'text in row', 'on'
INSERT t1 VALUES ('1', 'a')

The following transaction will succeed:

INSERT t1 VALUES ('1','This is text.')
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO
BEGIN TRAN
DECLARE @ptr varbinary(16)
SELECT @ptr = textptr(c2)
FROM t1
WHERE c1 = 1
READTEXT t1.c2 @ptr 0 5
COMMIT TRAN
GO

The following transaction will fail:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO
BEGIN TRAN
DECLARE @ptr varbinary(16)
SELECT @ptr = textptr(c2)
FROM t1
WHERE c1 = 1
WRITETEXT t1.c2 @ptr 'xx'
COMMIT TRAN
GO

3. Duration

In row text pointers are valid only within a transaction. When a transaction is committed, the text pointer becomes invalid.

Within a transaction, in row text pointers can be invalidated when any of the following actions take place:

The session ends.

The data row is deleted in the same transaction. (Other transactions cannot delete a data row because of the lock
obtained on it.)

The schema of a table in which the text pointer resides is changed. Schema-changing actions that invalidate text
pointers include: creating or dropping clustered index, altering or dropping the table, truncating the table, changing
the text in row option through sp_tableoption, and executing sp_indexoption.

Using the earlier example, the following script would work in earlier versions of SQL Server, but will generate an error in
SQL Server 2000.

DECLARE @ptrval varbinary(16)
PRINT 'get error here'
SELECT @ptrval = TEXTPTR(c2)
FROM t1
WHERE c1 = 1
READTEXT t1.c2 @ptrval 0 1

In SQL Server 2000, the in row text pointer must be used inside a transaction:

BEGIN TRAN
DECLARE @ptrval varbinary(16)
SELECT @ptrval = TEXTPTR(c2)
FROM t1
WHERE c1 = 1
READTEXT t1.c2 @ptrval 0 1
COMMIT

4. NULL text

You can get an in row text pointer on NULL text that is generated by INSERT. Previously, you can get text pointers only after
updating a BLOB to NULL.

For example, the following code does not work in SQL Server 7.0, but works in SQL Server 2000.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
GO
INSERT INTO t1 VALUES (4, NULL)
BEGIN TRAN
DECLARE @ptrval VARBINARY(16)
SELECT @ptrval = TEXTPTR(c2)
FROM t1
WHERE c1 = 4
WRITETEXT t1.c2 @ptrval 'x4'
COMMIT

In SQL Server 7.0, you must do the following:

INSERT INTO t1 VALUES (4, NULL)
UPDATE t1
 SET c2 = NULL
 WHERE c1 = 4
DECLARE @ptrval VARBINARY(16)
SELECT @ptrval = TEXTPTR(c2)
FROM t1
WHERE c1 = 4
WRITETEXT t1.c2 @ptrval 'x4'

This table summarizes the differences.

Difference in row text pointer Non in row text pointer
Number Maximum of 1024 active per transaction

per database.
Unlimited.

Locking Data row is S locked until the pointer
becomes invalid.

Locks are not obtained when the
transaction is 'read uncommitted', or the
database is 'single-user' or 'read-only'
mode.

Data row is not locked.

Duration Becomes invalid at the end of transaction
or session, when a row is deleted or the
schema of the table is changed.

Becomes invalid when the
row is deleted.

NULL text Obtainable right after the insert of NULL
text.

Obtainable only after
update.

Using ntext, text, and image Data with Database APIs

This is a summary of the ways the database APIs handle ntext, text, and image data:

ADO

ADO can map ntext, text, or image columns or parameters to a Field or Parameter object. Use the GetChunk method to
retrieve the data one block at a time and the AppendChunk method to write data one block at a time. For more
information, see Managing Long Data Types.

OLE DB

OLE DB uses the ISequentialStream interface to support ntext, text, and image data types. The
ISequentialStream::Read method reads the long data one block at a time, and ISequentialStream::Write writes the long
data to the database one block at a time. For more information, see BLOBs and OLE Objects.

ODBC

ODBC has a feature called "data-at-execution" to deal with the ODBC data types for long data: SQL_WLONGVARCHAR
(ntext), SQL_LONGVARCHAR (text), and SQL_LONGVARBINARY (image). These data types are bound to a program
variable. SQLGetData is then called to retrieve the long data one block at a time, and SQLPutData is called to send long
data one block at a time. For more information, see Managing text and image Columns.

DB-Library

DB-Library applications also bind ntext, text, and image columns to program variables. The DB-Library function dbtxtptr
is used to get a pointer to the location of the long column occurrence in the database. dbreadtext is used to read the long
data one block at a time. Functions such as dbwritetext, dbupdatetext, and dbmoretext are used to write the long data
one block at a time.

Note Accessing in row text with DB-Library is not supported.

For more information, see Text and Image Functions.

Accessing and Changing Relational Data (SQL Server 2000)

Retrieving ntext, text, or image Values
You can retrieve ntext, text or image values by:

Simply referencing the column in a SELECT statement.

For example, this query returns all information in the pr_info column for each publisher:

USE pubs
SELECT pr_info
FROM pub_info

This is the method used in a database application using an API such as ADO, OLE DB, ODBC, or DB-Library. The column is
bound to a program variable, and then a special API function or method is used to retrieve the data one block at a time.

When this method is used in Transact-SQL scripts, stored procedures, and triggers, it works only for relatively short values.
If the length of the data is longer than the length specified in SET TEXTSIZE, you must use increase TEXTSIZE or use another
method. The current TEXTSIZE setting is reported by the @@TEXTSIZE function and is changed with the SET TEXTSIZE
statement:

SET TEXTSIZE 64512

The default setting for TEXTSIZE is 4096 (4 KB). This statement resets TEXTSIZE to its default value:

SET TEXTSIZE 0

The full amount of data is returned if the length is less than TEXTSIZE.

The DB-Library API also supports a dbtextsize parameter that controls the length of ntext, text, and image data that can
be selected. The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver automatically set @@TEXTSIZE
to its maximum of 2 GB.

Using the TEXTPTR function to get a text pointer that is passed to the READTEXT statement.

The READTEXT statement is used to read blocks of ntext, text, or image data. For example, this query returns the first 25
characters (or first row) of the sample text data for each publisher:

USE pubs
DECLARE @textpointer varbinary(16)
SELECT @textpointer = TEXTPTR(pr_info)
FROM pub_info
READTEXT pub_info.pr_info @textpointer 1 25

Using the SUBSTRING function to retrieve a block of data starting at a specific offset from the start of the column.

For example, this query returns the first 25 characters (or first row) of the sample text data for each publisher:

USE pubs
SELECT SUBSTRING(pr_info, 1, 25) AS pr_info
FROM pub_info

Using the PATINDEX function to retrieve offset of some particular pattern of bytes.

This value can then be used in a SUBSTRING function or READTEXT statement to retrieve the data. For example, this query
searches for the string Germany in the pr_info column of the pub_info table and returns the starting position of 103 (the G
of the string Germany begins at character 103 of the pr_info column):

USE pubs
SELECT PATINDEX('%Germany%', pr_info) AS pr_info
FROM pub_info

PATINDEX operates on text and character data types only; it does not accept image values.

Retrieving Parts of ntext, text, or image Values

These methods are not limited to retrieving the entire ntext, text, or image value starting with the first byte. The methods can be
combined to provide flexible processing that retrieves different parts of the ntext, text, or image values. For example, this
SELECT statement retrieves whatever part of a text value is between a start tag and an end tag:

USE Northwind
GO
CREATE TABLE TextParts (ColA INT PRIMARY KEY, ColB TEXT)
GO
INSERT INTO TextParts
 VALUES(1,
 'Sample string START TAG What I want END TAG Trailing text.')
GO
SELECT SUBSTRING(ColB,
 /* Calculate start as start of tag + tag length. */
 (PATINDEX('%START TAG%', ColB) + 10),
 /* Calculate SUBSTRING length as end - start. */
 (
 PATINDEX('%END TAG%', ColB) -
 (PATINDEX('%START TAG%', ColB) + 10)
)
)
FROM TextParts
GO

Here is the result set:

What I want

(1 row(s) affected)

Note When you are selecting image data, the returned value includes the characters 0x, which indicate that the data is
hexadecimal. These two characters are counted as part of TEXTSIZE.

See Also

READTEXT

SET TEXTSIZE

SELECT

Text and Image Functions

BLOBs and OLE Objects

Managing Long Data Types

Managing text and image Columns

Accessing and Changing Relational Data (SQL Server 2000)

Modifying ntext, text, or image Values
You can modify ntext, text, or image values by:

Using a database API such as ADO, OLE DB, or ODBC to execute an UPDATE or INSERT statement with a program variable
bound to a parameter marker for the ntext, text, or image column. Then call the appropriate database API functions to
send long data to the database one block at a time. DB-Library supports the same functionality with its text and image
functions.

Using the WRITETEXT statement to rewrite the entire data value for the column.

For example, this query changes the contents of the pr_info column for New Moon Books:

USE pubs
sp_dboption 'pubs', 'select into/bulkcopy', 'true'
DECLARE @ptrval varbinary(16)
SELECT @ptrval = TEXTPTR(pr_info)
FROM pub_info pr INNER JOIN publishers p
 ON p.pub_id = pr.pub_id
 AND p.pub_name = 'New Moon Books'
WRITETEXT pub_info.pr_info @ptrval 'New Moon Books (NMB) '
sp_dboption 'pubs', 'select into/bulkcopy', 'true'

Use the UPDATETEXT statement to update specific blocks of an ntext, text, or image column.

For example, this query replaces the eighty-eighth character in the text column for New Moon Books (the second letter o in
Moon) with the letter z:

USE pubs
sp_dboption 'pubs', 'select into/bulkcopy', 'true'
DECLARE @ptrval varbinary(16)
SELECT @ptrval = TEXTPTR(pr_info)
 FROM pub_info pr INNER JOIN publishers p
 ON p.pub_id = pr.pub_id
 AND p.pub_name = 'New Moon Books'
UPDATETEXT pub_info.pr_info @ptrval 88 1 'z'
sp_dboption 'pubs', 'select into/bulkcopy', 'false'

See Also

WRITETEXT

UPDATETEXT

Managing Long Data Types

BLOBs and OLE Objects

Managing text and image Columns

Text and Image Functions

Accessing and Changing Relational Data (SQL Server 2000)

OLE Automation Objects in Transact-SQL
Transact-SQL includes several system stored procedures that allow OLE Automation objects to be referenced in Transact-SQL
batches, stored procedures, and triggers. These system stored procedures run as extended stored procedures, and the OLE
Automation objects that are executed through the stored procedures run in the Microsoft® SQL Server™ 2000 address space in
the same way that an extended stored procedure runs.

The OLE Automation stored procedures allow Transact-SQL batches to reference SQL DMO objects and custom OLE Automation
objects, such as objects that expose the IDispatch interface. A custom in-process OLE server created using Microsoft Visual Basic®
must have an error handler (specified with the On Error GoTo statement) for the Class_Initialize and Class_Terminate
subroutines. The error handlers prevent unhandled errors from occurring in these subroutines. Unhandled errors in the
Class_Initialize and Class_Terminate subroutines can cause unpredictable errors, such as an SQL Server access violation. Error
handlers for other subroutines are also recommended.

The first step when using an OLE Automation object in Transact-SQL is to call the sp_OACreate system stored procedure to
create an instance of the object in the SQL Server address space.

After an instance of the object has been created, call these stored procedures to work with the properties, methods, and error
information related to the object:

sp_OAGetProperty obtains the value of a property.

sp_OASetProperty sets the value of a property.

sp_OAMethod calls a method.

sp_OAGetErrorInfo obtains the most recent error information.

When there is no more need for the object, call sp_OADestroy to deallocate the instance of the object created with sp_OACreate.

OLE Automation objects return data through property values and methods. sp_OAGetProperty and sp_OAMethod return these
data values in the form of a result set.

The scope of an OLE Automation object is a batch. All references to the object must be contained in a single batch, stored
procedure, or trigger.

When referencing objects, the SQL Server OLE Automation objects support traversing the object to other objects it contains. For
example, when using the SQL-DMO SQLServer object, references can be made to databases and tables contained on that server.
For more information, see Object Hierarchy Syntax.

See Also

sp_OACreate

sp_OAGetProperty

sp_OASetProperty

sp_OAMethod

sp_OAGetErrorInfo

sp_OADestroy

Accessing and Changing Relational Data (SQL Server 2000)

OLE Automation Return Codes and Error Information
The OLE Automation system stored procedures return an int return code that is the HRESULT returned by the underlying OLE
Automation operation. An HRESULT of 0 indicates success. A nonzero HRESULT is an OLE error code of the hexadecimal form
0x800nnnnn, but when returned as an int value in a stored procedure return code, it has the form –214nnnnnnn.

For example, passing an invalid object name (SQLDMO.Xyzzy) to sp_OACreate causes the procedure to return an int HRESULT of
–2147221005, which is 0x800401f3 in hexadecimal.

You can use CONVERT(binary(4), @hresult) to convert an int HRESULT to a binary value. However, using CONVERT(char(10),
CONVERT(binary(4), @hresult)) results in an unreadable string because each byte of the HRESULT is converted to a single ASCII
character. You can use the following sample sp_hexadecimal stored procedure to convert an int HRESULT to a char value that
contains a readable hexadecimal string.

CREATE PROCEDURE sp_hexadecimal
 @binvalue varbinary(255),
 @hexvalue varchar(255) OUTPUT
AS
DECLARE @charvalue varchar(255)
DECLARE @i int
DECLARE @length int
DECLARE @hexstring char(16)
SELECT @charvalue = '0x'
SELECT @i = 1
SELECT @length = DATALENGTH(@binvalue)
SELECT @hexstring = '0123456789abcdef'
WHILE (@i <= @length)
BEGIN
DECLARE @tempint int
DECLARE @firstint int
DECLARE @secondint int
SELECT @tempint = CONVERT(int, SUBSTRING(@binvalue,@i,1))
SELECT @firstint = FLOOR(@tempint/16)
SELECT @secondint = @tempint - (@firstint*16)
SELECT @charvalue = @charvalue +
SUBSTRING(@hexstring, @firstint+1, 1) +
SUBSTRING(@hexstring, @secondint+1, 1)
SELECT @i = @i + 1
END
SELECT @hexvalue = @charvalue

You can use the following sample stored procedure, sp_displayoaerrorinfo, to display OLE Automation error information when
one of the OLE Automation procedures returns a nonzero HRESULT return code. This sample stored procedure uses
sp_hexadecimal.

CREATE PROCEDURE sp_displayoaerrorinfo
 @object int,
 @hresult int
AS
DECLARE @output varchar(255)
DECLARE @hrhex char(10)
DECLARE @hr int
DECLARE @source varchar(255)
DECLARE @description varchar(255)
PRINT 'OLE Automation Error Information'
EXEC sp_hexadecimal @hresult, @hrhex OUT
SELECT @output = ' HRESULT: ' + @hrhex
PRINT @output
EXEC @hr = sp_OAGetErrorInfo @object, @source OUT, @description OUT
IF @hr = 0
BEGIN
SELECT @output = ' Source: ' + @source
PRINT @output
SELECT @output = ' Description: ' + @description
PRINT @output
END
ELSE
BEGIN
 PRINT ' sp_OAGetErrorInfo failed.'
 RETURN
END

See Also

sp_OAGetErrorInfo

Accessing and Changing Relational Data (SQL Server 2000)

OLE Automation Result Sets
If an OLE Automation property or method returns data in an array with one or two dimensions, the array is returned to the client
as a result set:

A one-dimensional array is returned to the client as a single-row result set with as many columns as there are elements in
the array. For example, an array(10) is returned as a single row of 10 columns.

A two-dimensional array is returned to the client as a result set with as many columns as there are elements in the first
dimension of the array and with as many rows as there are elements in the second dimension of the array. For example, an
array(2,3) is returned as 2 columns in 3 rows.

When a property return value or method return value is an array, sp_OAGetProperty or sp_OAMethod returns a result set to
the client. (Method output parameters cannot be arrays.) These procedures scan all the data values in the array to determine the
appropriate Microsoft® SQL Server™ data types and data lengths to use for each column in the result set. For a particular column,
these procedures use the data type and length required to represent all data values in that column.

When all data values in a column share the same data type, that data type is used for the whole column. When data values in a
column use different data types, the data type of the whole column is chosen based on the following table.

 int float money datetime varchar nvarchar
int int float money varchar varchar nvarchar
float float float money varchar varchar nvarchar
money money money money varchar varchar nvarchar
datetime varchar varchar varchar datetime varchar nvarchar
varchar varchar varchar varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar

For more information about how the OLE Automation stored procedures convert data between Microsoft Visual Basic® and SQL
Server data types, see Data Type Conversions Using OLE Automation Stored Procedures.

Accessing and Changing Relational Data (SQL Server 2000)

Diagnosing OLE Automation Objects in Transact-SQL
When developing Transact-SQL batches that call custom OLE Automation objects, errors can occur in processing the data
returned from the object. The problems can be diagnosed through Microsoft® Visual Basic® if the source code for the object is
available. To do this, Visual Basic must be installed on the computer running the instance of Microsoft SQL Server™ 2000 and
both SQL Server and Visual Basic must be running under the same Microsoft Windows® user account. SQL Server must be
started from the command prompt and started independently of Windows Service Control Manager (by using the sqlservr /c
command), or the SQL Server service must be started under the same Windows user account used to log on to the system.

When running Visual Basic and SQL Server under the same Windows user accounts:

1. Load the custom OLE Automation server project into Visual Basic.

2. Set breakpoint(s) on the desired lines of source code.

3. On the Visual Basic Run menu, click Start With Full Compile.

This registers and runs the custom OLE Automation server.

4. Use the OLE Automation stored procedures to call the OLE objects exposed by the custom OLE Automation server.

When a breakpoint is hit, the Visual Basic debugger is activated.

For more information, see the Microsoft Visual Basic documentation.

Accessing and Changing Relational Data (SQL Server 2000)

OLE Automation Sample Script
 New Information - SQL Server 2000 SP3.

This is an example of a Transact-SQL statement batch that uses the OLE Automation stored procedures to create and use an SQL-
DMO SQLServer object. Portions of the code are used as examples in the stored procedure references.

DECLARE @object int
DECLARE @hr int
DECLARE @property varchar(255)
DECLARE @return varchar(255)
DECLARE @src varchar(255), @desc varchar(255)

-- Create a SQLServer object.
SET NOCOUNT ON

-- First, create the object.
EXEC @hr = sp_OACreate 'SQLDMO.SQLServer', @object OUT
IF @hr <> 0
 -- Report the error.
 EXEC sp_OAGetErrorInfo @object, @src OUT, @desc OUT
 SELECT hr=convert(varbinary(4),@hr), Source=@src, Description=@desc
 GOTO END_ROUTINE
ELSE
 -- An object is successfully created.
 BEGIN
 -- Set a property.
 EXEC @hr = sp_OASetProperty @object, 'HostName', 'Gizmo'
 IF @hr <> 0 GOTO CLEANUP

 -- Get a property using an output parameter.
 EXEC @hr = sp_OAGetProperty @object, 'HostName', @property OUT
 IF @hr <> 0
 GOTO CLEANUP
 ELSE
 PRINT @property

 -- Get a property using a result set.
 EXEC @hr = sp_OAGetProperty @object, 'HostName'
 IF @hr <> 0 GOTO CLEANUP

 -- Get a property by calling the method.
 EXEC @hr = sp_OAMethod @object, 'HostName', @property OUT
 IF @hr <> 0
 GOTO CLEANUP
 ELSE
 PRINT @property

 -- Call a method.
 -- SECURITY NOTE - When possible, use Windows Authentication.
 EXEC @hr = sp_OAMethod @object, 'Connect', NULL, 'my_server', 'my_login', 'my_password'
 IF @hr <> 0 GOTO CLEANUP

 -- Call a method that returns a value.
 EXEC @hr = sp_OAMethod @object, 'VerifyConnection', @return OUT
 IF @hr <> 0
 GOTO CLEANUP
 ELSE
 PRINT @return
 END

CLEANUP:
 -- Check whether an error occurred.
 IF @hr <> 0
 BEGIN
 -- Report the error.
 EXEC sp_OAGetErrorInfo @object, @src OUT, @desc OUT
 SELECT hr=convert(varbinary(4),@hr), Source=@src, Description=@desc
 END

 -- Destroy the object.
 BEGIN
 EXEC @hr = sp_OADestroy @object
 -- Check if an error occurred.
 IF @hr <> 0
 BEGIN
 -- Report the error.
 EXEC sp_OAGetErrorInfo @object, @src OUT, @desc OUT

 SELECT hr=convert(varbinary(4),@hr), Source=@src, Description=@desc
 END
 END

END_ROUTINE:
RETURN

See Also

sp_OACreate

sp_OAGetProperty

sp_OASetProperty

sp_OAMethod

sp_OADestroy

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Tips
Database programmers sometimes encounter puzzling query issues that other programmers may already have resolved. This
section lists some of the common challenges and guidelines that improve query performance.

Cross-Tab Reports. Creates summary information. Most cross-tab reports can be generated by using either the CASE
function or the CUBE or ROLLUP options of SELECT.

Expanding Hierarchies. Shows the hierarchical steps of getting to a particular result (for example, tracing a genealogical
family tree from a great-great-grandparent to yourself).

Expanding Networks. Shows the multiple hierarchical steps (for example, all flights originating from Seattle and landing in
New York).

Writing International Transact-SQL Statements. Lists guidelines for writing applications that can be adapted for use around
the world.

Writing Readable Code Lists good programming practices that make code usable, flexible, and understandable.

Transact-SQL Programming for Improved Performance

When writing Transact-SQL statements, batches, stored procedures, and triggers, use the programming features in Microsoft®
SQL Server™ 2000 to create efficient code.

Reusing Execution Plans

SQL Server 2000 has a better chance of reusing execution plans of Transact-SQL statements if they are written following these
guidelines.

Use fully qualified names of objects such as tables and views.

Use parameterized queries, and supply the parameter values instead of specifying stored procedure parameter values or the
values in search condition predicates directly. Use either the parameter substitution in sp_executesql or the parameter
binding of the ADO, OLE DB, ODBC, and DB-Library APIs.

For example, do not code this SELECT:

SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = 3

Instead, using ODBC as an example, use the SQLBindParameter ODBC function to bind the parameter marker (?) to a
program variable and code the SELECT statement as:

SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = ?

In a Transact-SQL script, stored procedure, or trigger, use sp_executesql to execute the SELECT statement:

DECLARE @IntVariable INT
DECLARE @SQLString NVARCHAR(500)
DECLARE @ParmDefinition NVARCHAR(500)

/* Build the SQL string. */
SET @SQLString =
 N'SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = @ShipID'
/* Specify the parameter format once. */
SET @ParmDefinition = N'@ShipID int'

/* Execute the string. */
SET @IntVariable = 3
EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @ShipID = @IntVariable

Use sp_executesql when you do not need the overhead of defining stored procedures. Always use sp_executesql instead
of a temporary stored procedure.

For more information, see Execution Plan Caching and Reuse and Building Statements at Run Time.

Reusing Execution Plans for Batches

When multiple concurrent applications will be executing the same batch with a known set of parameters, implement the batch as
a stored procedure that will be called by the applications.

When an ADO, OLE DB, or ODBC application will be executing the same batch multiple times, use the PREPARE/EXECUTE model of
executing the batch. Use parameter markers bound to program variables to supply all needed input values, such as the
expressions used in an UPDATE VALUES clause or in the predicates in a search condition.

Using the ODBC Escape Sequence

When calling a stored procedure from an ADO, OLE DB, or ODBC application, use the ODBC { CALL procedure_name } escape
sequence instead of the Transact-SQL EXECUTE statement. For more information, see Calling a Stored Procedure.

Outstanding Transactions and Result Sets

Do not keep a transaction outstanding for long periods of time. A long-standing transaction can reduce throughput by holding
locks on rows for long times, preventing other connections from accessing the rows in a timely manner.

Do not keep a result set outstanding for a long period of time. After executing a Transact-SQL batch, fully process or cancel all
result sets from the batch as quickly as possible.

M inimizing Rows and Operations

Minimize the number of rows returned from a SELECT statement by using the WHERE and HAVING clauses to select only the
rows needed.

Minimize the use of not equal operations, <>, or !=. SQL Server has to scan a table or index to find all values to see if they are not
equal to the value given in the expression. Try rephrasing the expression using ranges:

WHERE KeyColumn < 'TestValue' AND KeyColumn > 'TestValue'

Reduce roundtrips between the application and the server by:

Including multiple statements in a single batch sent from the application to the server. For more information, see Batches.

Placing several Transact-SQL statements in a single stored procedure. This reduces the amount of information that has to be
sent from the application.

Reserving the use of server cursors to when the cursor functionality is needed by the application; use a default result set
instead. For more information, see Cursors.

For ODBC applications, consider using a fast forward-only cursor with the autofetch option. For more information, see Fast
Forward-Only Cursors (ODBC).

Using Advanced Features

Use advanced features available in Transact-SQL to perform work in one batch on the server instead of pulling the results to the
application and then using them to send another Transact-SQL statement to SQL Server:

Use variables and control-of-flow statements to build logic into batches, stored procedures, and triggers instead of pulling
large result sets to the client and performing the logic there. For more information, see Using Multiple Statements.

Use constructs, such as CASE, to include logic in individual Transact-SQL statements. For more information, see Using CASE.

Use the UPDATE statement with the FROM clause to update values in one table using values from other tables in one
operation instead of selecting the source result set to the client and then updating the target table one row at a time.

Use the join capabilities of SQL Server 2000. For more information, see Join Fundamentals.

Keeping Data Defin ition Language Statements Together

Within a batch, keep all data definition language (DDL) statements for a temporary table together. For example:

/* Example 1. */
CREATE TABLE #temp1 (ColA INT NOT NULL)
CREATE UNIQUE INDEX MyIndex ON #temp1(ColA)
INSERT INTO #temp1 SELECT IntCol FROM SomeTable
SELECT * FROM #temp1
GO

/* Example 2. */
CREATE TABLE #temp1 (ColA INT UNIQUE NOT NULL)
INSERT INTO #temp1 SELECT IntCol FROM SomeTable
SELECT * FROM #temp1
GO

Do not code:
/* Example 3. */
CREATE TABLE #temp1 (ColA INT NOT NULL)
INSERT INTO #temp1 SELECT IntCol FROM SomeTable
CREATE UNIQUE INDEX MyIndex ON #temp1(ColA)
SELECT * FROM #temp1
GO

Each time a DDL operation is performed on a temporary table, all batches that refer to it must be recompiled. The query optimizer
ensures that the CREATE statements in Examples 1 and 2 are done in one operation and the batches are recompiled only once. In
Example 3, the INSERT statement between the CREATE statements forces a separate recompile for each CREATE statement.

M inimizing the Use of Temporary Tables

Minimize the use of temporary tables as places to store intermediate results in a series of Transact-SQL statements. Some logic is
too complex to perform in a single Transact-SQL statement. In these cases, you must code multiple Transact-SQL statements and
use temporary tables to pass the results of one statement to the next. Creating and maintaining the temporary tables requires
overhead; if possible, consider coding the operation as a single, more complex Transact-SQL statement.

In SQL Server 2000, use of temporary tables in stored procedures and triggers may cause the stored procedure or trigger to be
recompiled every time it is used. To avoid such recompilation, stored procedures or triggers that use temporary tables must meet
the following requirements:

In the stored procedure or trigger, all statements that contain the name of a temporary table must refer to a temporary table
created in the same stored procedure. The temporary table cannot have been created in a calling or called stored procedure,
or in a string executed using EXECUTE or sp_executesql.

All statements that contain the name of a temporary table must appear syntactically after its creation in the stored
procedure or trigger.

The stored procedure or trigger cannot contain any DECLARE CURSOR statement whose SELECT statement references a
temporary table.

All statements that contain the name of any temporary table must precede any DROP TABLE statement that references a
temporary table. DROP TABLE statements are not needed for temporary tables created in a stored procedure; the tables are
dropped automatically when the procedure terminates.

Statements creating a temporary table (such as CREATE TABLE or SELECT INTO) may not appear in a control-of-flow
statement such as IF...ELSE or WHILE.

Preventing Issues with Dates

To prevent issues with the interpretation of centuries in dates, do not specify years using two digits. For example:

/* Do this. */
SELECT *
FROM Northwind.dbo.Orders
WHERE OrderDate > '12/31/1997'
/* Do not do this. */
SELECT *
FROM Northwind.dbo.Orders
WHERE OrderDate > '12/31/97'

Accessing and Changing Relational Data (SQL Server 2000)

Cross-Tab Reports
Sometimes it is necessary to rotate results so that columns are presented horizontally and rows are presented vertically. This is
known as creating a PivotTable®, creating a cross-tab report, or rotating data.

Assume there is a table Pivot that has one row per quarter. A SELECT of Pivot reports the quarters vertically:

Year Quarter Amount
---- ------- ------
1990 1 1.1
1990 2 1.2
1990 3 1.3
1990 4 1.4
1991 1 2.1
1991 2 2.2
1991 3 2.3
1991 4 2.4

A report must be produced with a table that contains one row for each year, with the values for each quarter appearing in a
separate column, such as:
Year Q1 Q2 Q3 Q4
1990 1.1 1.2 1.3 1.4
1991 2.1 2.2 2.3 2.4

These are the statements used to create the Pivot table and populate it with the data from the first table:

USE Northwind
GO

CREATE TABLE Pivot
(Year SMALLINT,
 Quarter TINYINT,
 Amount DECIMAL(2,1))
GO
INSERT INTO Pivot VALUES (1990, 1, 1.1)
INSERT INTO Pivot VALUES (1990, 2, 1.2)
INSERT INTO Pivot VALUES (1990, 3, 1.3)
INSERT INTO Pivot VALUES (1990, 4, 1.4)
INSERT INTO Pivot VALUES (1991, 1, 2.1)
INSERT INTO Pivot VALUES (1991, 2, 2.2)
INSERT INTO Pivot VALUES (1991, 3, 2.3)
INSERT INTO Pivot VALUES (1991, 4, 2.4)
GO

This is the SELECT statement used to create the rotated results:

SELECT Year,
 SUM(CASE Quarter WHEN 1 THEN Amount ELSE 0 END) AS Q1,
 SUM(CASE Quarter WHEN 2 THEN Amount ELSE 0 END) AS Q2,
 SUM(CASE Quarter WHEN 3 THEN Amount ELSE 0 END) AS Q3,
 SUM(CASE Quarter WHEN 4 THEN Amount ELSE 0 END) AS Q4
FROM Northwind.dbo.Pivot
GROUP BY Year
GO

This SELECT statement also handles a table in which there are multiple rows for each quarter. The GROUP BY combines all rows in
Pivot for a given year into a single row in the output. When the grouping operation is being performed, the CASE functions in the
SUM aggregates are applied in such a way that the Amount values for each quarter are added into the proper column in the
result set and 0 is added to the result set columns for the other quarters.

If the results of this SELECT statement are used as input to a spreadsheet, it is easy for the spreadsheet to calculate a total for each
year. When the SELECT is used from an application it may be easier to enhance the SELECT statement to calculate the yearly total.
For example:

SELECT P1.*, (P1.Q1 + P1.Q2 + P1.Q3 + P1.Q4) AS YearTotal
FROM (SELECT Year,
 SUM(CASE P.Quarter WHEN 1 THEN P.Amount ELSE 0 END) AS Q1,
 SUM(CASE P.Quarter WHEN 2 THEN P.Amount ELSE 0 END) AS Q2,
 SUM(CASE P.Quarter WHEN 3 THEN P.Amount ELSE 0 END) AS Q3,
 SUM(CASE P.Quarter WHEN 4 THEN P.Amount ELSE 0 END) AS Q4
 FROM Pivot AS P
 GROUP BY P.Year) AS P1
GO

Both GROUP BY with CUBE and GROUP BY with ROLLUP compute the same sort of information as shown in the example, but in a
slightly different format.

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Expanding Hierarchies
Databases often store hierarchical information. For example, consider the following table, which contains data that hierarchically
represents the regions of the world.

CREATE TABLE Hierarchy
 (Parent VARCHAR(20) NOT NULL,
 Child VARCHAR(20),
 CONSTRAINT UIX_ParentChild
 UNIQUE NONCLUSTERED (Parent,Child))

CREATE CLUSTERED INDEX CIX_Parent
 ON Hierarchy(Parent)
GO

INSERT Hierarchy VALUES('World','Europe')
INSERT Hierarchy VALUES('World','North America')
INSERT Hierarchy VALUES('Europe','France')
INSERT Hierarchy VALUES('France','Paris')
INSERT Hierarchy VALUES('North America','United States')
INSERT Hierarchy VALUES('North America','Canada')
INSERT Hierarchy VALUES('United States','New York')
INSERT Hierarchy VALUES('United States','Washington')
INSERT Hierarchy VALUES('New York','New York City')
INSERT Hierarchy VALUES('Washington','Redmond')
GO

This representation does not show clearly the structure implied by the data.

Parent Child
---------------------------------- ----------------------------------
World Europe
World North America
Europe France
France Paris
North America United States
North America Canada
United States New York
United States Washington
New York New York City
Washington Redmond

This example is easier to interpret:

World
 North America
 Canada
 United States
 Washington
 Redmond
 New York
 New York City
 Europe
 France
 Paris

The following Transact-SQL procedure expands an encoded hierarchy to any arbitrary depth. Although Transact-SQL supports
recursion, it is more efficient to use a temporary table as a stack to keep track of all of the items for which processing has begun
but is not complete. When processing is complete for a particular item, it is removed from the stack. New items are added to the
stack as they are identified.

CREATE PROCEDURE expand (@current char(20)) AS
 SET NOCOUNT ON
 DECLARE @lvl int, @line char(20)
 CREATE TABLE #stack (item char(20), lvl int)
 INSERT INTO #stack VALUES (@current, 1)
 SELECT @lvl = 1
 WHILE @lvl > 0
 BEGIN
 IF EXISTS (SELECT * FROM #stack WHERE lvl = @lvl)
 BEGIN
 SELECT @current = item
 FROM #stack
 WHERE lvl = @lvl
 SELECT @line = space(@lvl - 1) + @current
 PRINT @line
 DELETE FROM #stack

 WHERE lvl = @lvl
 AND item = @current
 INSERT #stack
 SELECT Child, @lvl + 1
 FROM Hierarchy
 WHERE Parent = @current
 IF @@ROWCOUNT > 0
 SELECT @lvl = @lvl + 1
 END
 ELSE
 SELECT @lvl = @lvl - 1
 END -- WHILE

The input parameter (@current) indicates the place in the hierarchy to start. It also keeps track of the current item in the main
loop.

The local variables used are @lvl, which keeps track of the current level in the hierarchy, and @line, which is a work area used to
construct the indented line.

The SET NOCOUNT ON statement avoids cluttering the output with ROWCOUNT messages from each SELECT.

The temporary table, #stack, is created and primed with the item identifier of the starting point in the hierarchy, and @lvl is set to
match. The lvl column in #stack allows the same item to appear at multiple levels in the database. Although this situation does
not apply to the geographic data in the example, it can apply in other examples.

In this example, when @lvl is greater than 0, the procedure follows these steps:

1. If there are any items in the stack at the current level (@lvl), the procedure chooses one and calls it @current.

2. Indents the item @lvl spaces, and then prints the item.

3. Deletes the item from the stack so it will not be processed again, and then adds all its child items to the stack at the next
level (@lvl + 1). This is the only place where the hierarchy table (#stack) is used.

With a conventional programming language, you would have to find each child item and add it to the stack individually.
With Transact-SQL, you can find all child items and add them with a single statement, avoiding another nested loop.

4. If there are child items (IF @@ROWCOUNT > 0), descends one level to process them (@lvl = @lvl + 1); otherwise,
continues processing at the current level.

5. If there are no items on the stack awaiting processing at the current level, goes back one level to see if there are any
awaiting processing at the previous level (@lvl = @lvl - 1). When there is no previous level, the expansion is complete.

Executing the procedure expand with different parameters will return result sets illustrating the level in the hierarchy in which
the specified parameter belongs.

EXEC expand 'World'

--This is the result set.
World
 North America
 United States
 Washington
 Redmond
 New York
 New York City
 Canada
 Europe
 France
 Paris

EXEC expand 'United States'

--This is the result set.
United States
 Washington
 Redmond
 New York
 New York City

Accessing and Changing Relational Data (SQL Server 2000)

Expanding Networks
In a network, an item can have more than one superior. For example, the following data is a representation of airline flights
among a number of cities:

Departure Destination
---------------------------------- ----------------------------------
Chicago New York
Chicago Milwaukee
Denver Chicago
Seattle Chicago
Seattle Denver
Seattle San Francisco

With this data, finding all routes between a given pair of cities is a common problem:

Itineraries

Seattle, Chicago, New York
Seattle, Denver, Chicago, New York

To solve this problem, you can make these changes to the example in Expanding Hierarchies:

Two additional input parameters are required: the goal city and the depth-of-search limit.

The current itinerary is saved in another temporary table and displayed only when a goal is reached.

To avoid expanding around a cycle in the network, do not expand cities that appear in the current itinerary.

These changes are shown in this example (not from the pubs database):

CREATE PROCEDURE route
(@current char(20), @dest char(20), @maxlevel int = 5) AS
SET NOCOUNT ON
DECLARE @level int
CREATE TABLE #stack (city char(20), level int)
CREATE TABLE #list (city char(20), level int)
INSERT #stack VALUES (@current, 1)
SELECT @level = 1

WHILE @level > 0
BEGIN
 IF EXISTS (SELECT * FROM #stack WHERE level = @level)
 BEGIN
 SELECT @current = city
 FROM #stack
 WHERE level = @level
 DELETE FROM #stack
 WHERE level = @level
 AND city = @current
 DELETE FROM #list
 WHERE level >= @level
 IF EXISTS (SELECT * FROM #list WHERE city = @current)
 CONTINUE
 INSERT #list VALUES(@current, @level)
 IF(@current = @dest)
 BEGIN
 SELECT city AS itinerary
 FROM #list
 CONTINUE
 END

 INSERT #stack
 SELECT destination, @level + 1
 FROM flights
 WHERE departure = @current
 AND @level < @maxlevel
 IF @@rowcount > 0
 SELECT @level = @level + 1
 END
 ELSE
 SELECT @level = @level - 1
END -- WHILE

In this example, when @level is greater than 0, the procedure follows these steps:

1. The current city is added to #list by clearing anything at the current level or below (DELETE FROM #list WHERE level > =
@level), and then by adding the current city (INSERT #list VALUES(@current, @level)).

2. When the goal city is reached (@current = @dest), the procedure displays the path (SELECT itinerary = city FROM #list)
and does not expand the path any further (CONTINUE).

3. The depth of search is limited by adding a condition (@level < @maxlevel) to the INSERT statement that adds cities to the
stack.

The IF EXISTS statement at the beginning of the WHILE loop skips the current city if it is already in the current itinerary.

If the flights table also contains cost information, the lowest cost route can be found by saving the current itinerary if its total cost
is less than the best cost so far:

SELECT @cost = sum(cost)
FROM #list
IF @cost < @lowest_cost
BEGIN
 @lowest_cost = @cost
 TRUNCATE TABLE #best_route
 INSERT #best_route
 SELECT *
 FROM #list
END

For greater efficiency, stop expanding the current route if the current cost exceeds the cost of the best route:

IF (SELECT SUM(cost) FROM #list) > @lowest_cost
 CONTINUE

If the flights table includes a departure and arrival time, you can add an IF statement to expand only the routes that have a
departure time at least one hour after the arrival time of the current route:

IF ((SELECT SUM(cost) FROM #list) > @lowest_cost)
 AND datediff(hh, departuretime, @arrivaltime) > 1)
CONTINUE

Accessing and Changing Relational Data (SQL Server 2000)

Writing International Transact-SQL Statements
Databases and database applications that use Transact-SQL statements will become more portable from one language to another,
or will support multiple languages, if these guidelines are followed:

Replace all uses of the char, varchar, and text data types with nchar, nvarchar, and ntext. This eliminates the need to
consider code page conversion issues.

When performing month and day-of-week comparisons and operations, use the numeric dateparts rather than the name
strings. Different language settings return different names for the months and week days. For example,
DATENAME(MONTH,GETDATE()) returns May when the language is set to U.S. English, returns Mai when the language is set
to German, and returns mai when the language is set to French. Instead, use a function such as DATEPART that uses the
number of the month instead of the name. Use the DATEPART names when building result sets to be displayed to a user
because the date names are often more meaningful than a numeric representation; however, do not code any logic that
depends on the displayed names being from a specific language.

When specifying dates in comparisons or for input to INSERT or UPDATE statements, use constants that are interpreted the
same for all language settings:

ADO, OLE DB, and ODBC applications should use the ODBC timestamp, date, and time escape clauses of:
{ ts 'yyyy-mm-dd hh:mm:ss[.fff] '} such as: { ts '1998-09-24 10:02:20' }
{ d 'yyyy-mm-dd'} such as: { d '1998-09-24' }
{ t 'hh:mm:ss'} such as: { t '10:02:20'}

Applications using other APIs, or Transact-SQL scripts, stored procedures, and triggers, should use the unseparated
numeric strings (for example, yyyymmdd as 19980924).

Applications using other APIs, or Transact-SQL scripts stored procedures, and triggers should use the CONVERT
statement with an explicit style parameter for all conversions between the date and smalldate data types and
character string data types. For example, this statement is interpreted the same for all language or date format
connection settings:

SELECT *
FROM Northwind.dbo.Orders
WHERE OrderDate = CONVERT(DATETIME, '7/19/1996', 101)

For more information, see CAST and CONVERT.

Accessing and Changing Relational Data (SQL Server 2000)

Writing Readable Code
Here are guidelines for writing readable code:

Use comments to describe the program or script, including the author, the date, and a description of the modifications.

Put each major Transact-SQL clause on a separate line so the statements are easier to read:

USE pubs
SELECT au_fname, au_lname
FROM authors
WHERE state = 'CA'

Put Transact-SQL keywords such as SELECT and FROM, function names such as SUM, AVG, DATEPART, CASE, and
CONVERT, and data types such as INT, CHAR, NTEXT in uppercase:

USE pubs
CREATE TABLE myauthors
(
 first VARCHAR(30) NOT NULL,
 last VARCHAR(40) NOT NULL,
 address VARCHAR(40) NOT NULL,
 city VARCHAR(30) NOT NULL,
 state VARCHAR(2) NOT NULL,
 zip CHAR(9) NOT NULL,
 phone VARCHAR(20) NULL
)

Define and use a style convention for object names consistently. Two typical conventions are:
Capitalize the first letter in each name part; do not separate name parts with underscores: TableName.

Make all characters lowercase and separate name parts with underscore characters (_): table_name.

Even if the current instance of Microsoft® SQL Server™ is not case sensitive, readability is improved if a consistent style is
used. It is good practice to always code object names in Transact-SQL statements using the exact same case as was used to
define the object.

For objects that are common in your organization, define a set of standard abbreviations to be used consistently in object
names.

Use single quotation marks for all character, string, binary, and Unicode constants, so that quoted identifiers are the only
items that use double quotation marks (").

Use easy-to-type and easy-to-remember alias names when using multitable joins. For example, an alias of t for the titles
table and an alias of a for the authors table.

If the information following a Transact-SQL keyword wraps to another line, consider tabbing the second and successive
lines in one tab (usually five spaces) to make it easier to find the major keywords.

Use parentheses to indicate the execution order of complex mathematical computations. This allows for easier readability.
For example, use "(price * 1.15) + sales" instead of "price * 1.15 + sales".

See Also

Batches

Functions

Accessing and Changing Relational Data (SQL Server 2000)

Modifying Data
The topics in this section describe the techniques for manipulating data in the tables of a relational database. You can add new
rows of data, change the data in existing rows, and delete rows.

See Also

Adding Data

Changing Data

Deleting Data

Accessing and Changing Relational Data (SQL Server 2000)

Adding Data
Microsoft® SQL Server™ supports these ways to add data to a table:

The INSERT statement with one of two options:
A VALUES clause to insert one row with a specific set of values.

A SELECT subquery to insert data selected from a table or view.
Database application programming interfaces (APIs)

Support options for inserting data while processing a result set.

The WRITETEXT statement and several database API options

Can be used to add ntext, text, or image data to a row.

Functions in the database APIs (ADO, OLE DB, ODBC, and DB-Library)

Support adding new ntext, text, and image data to a row.

The SELECT INTO statement

Can be used to create a new table containing all the rows of the SELECT INTO result set.

The bulk copy component for inserting large numbers of rows

There are three main ways to specify bulk copy operations:

The bulk copy program (the bcp utility), a command prompt utility.

The BULK INSERT statement used in Transact-SQL batches, stored procedures, and triggers.

The bulk copy APIs for OLE DB, ODBC, and DB-Library applications.

INSERT statements work on views as well as on tables, with some restrictions. For more information, see Creating a View.

Accessing and Changing Relational Data (SQL Server 2000)

Adding Rows with INSERT
The INSERT statement adds one or more new rows to a table. In a simplified treatment, INSERT has this form:

INSERT [INTO] table_or_view [(column_list)] data_values

The statement causes the data_values to be inserted as one or more rows into the named table or view. column_list is a list of
column names, separated by commas, that can be used to specify the columns for which data is supplied. If column_list is not
specified, all the columns in the table or view receive data.

When a column_list does not name all the columns in a table or view, a value of NULL (or the default value if a default is defined
for the column) is inserted into any column not named in the list. All columns not specified in the column list must either allow
null values or have a default assigned.

INSERT statements do not specify values for the following types of columns because Microsoft® SQL Server™ generates the
values for columns of these types:

Columns with an IDENTITY property that generates the values for the column.

Columns that have a default that uses the NEWID function to generate a unique GUID value.

Computed columns.

These are virtual columns that were defined as an expression calculated from one or more other columns in the CREATE
TABLE statement, such as:

CREATE TABLE TestTable
 (ColA INT PRIMARY KEY,
 ColB INT NOT NULL,
 ColC AS (ColA + ColB) * 2)

The data values supplied must match the column list. The number of data values must be the same as the number of columns,
and the data type, precision, and scale of each data value must match those of the corresponding column. There are two ways to
specify the data values:

Use a VALUES clause to specify the data values for one row:

INSERT INTO MyTable (PriKey, Description)
 VALUES (123, 'A description of part 123.')

Use a SELECT subquery to specify the data values for one or more rows.

INSERT INTO MyTable (PriKey, Description)
 SELECT ForeignKey, Description
 FROM SomeView

Accessing and Changing Relational Data (SQL Server 2000)

Inserting a Row Using INSERT...Values
Inserting a Row Using INSERT...Values

The VALUES keyword specifies the values for one row of a table. The values are specified as a comma-separated list of scalar
expressions whose data type, precision, and scale must be the same as or implicitly convertible to the corresponding column in
the column list. If a column list is not specified, the values must be specified in the same sequence as the columns in the table or
view.

For example, this statement inserts a new shipper into the Shippers table using the VALUES clause:

INSERT INTO Northwind.dbo.Shippers (CompanyName, Phone)
 VALUES (N'Snowflake Shipping', N'(503)555-7233')

A column list is required for this insert because the ShipperID column has the IDENTITY property; therefore, values cannot be
inserted into it.

To insert data using INSERT

Transact-SQL

Accessing and Changing Relational Data (SQL Server 2000)

Inserting Rows Using INSERT...SELECT
Inserting Rows Using INSERT...SELECT

The SELECT subquery in the INSERT statement can be used to add values into a table from one or more other tables or views.
Using a SELECT subquery also lets more than one row be inserted at one time.

This INSERT statement inserts into a separate table some of the data from all the rows in titles whose type is modern cooking:

USE pubs
INSERT INTO MyBooks
 SELECT title_id, title, type
 FROM titles
 WHERE type = 'mod_cook'

The select list of the subquery must match the column list of the INSERT statement. If no column list is specified, the select list
must match the columns in the table or view being inserted into.

Another use of the INSERT...SELECT statement is to insert data from a source outside of Microsoft® SQL Server™. The SELECT in
the INSERT statement can:

Reference a remote table on a linked server by using a four-part name. For more information, Identifying a Data Source
Using a Linked Server Name.

Reference a remote table using OPENROWSET. For more information, see Identifying a Data Source Using the Ad Hoc
Name.

Use the result set of a query executed on a remote server. For more information, see Using Pass-through Queries as Tables.

Accessing and Changing Relational Data (SQL Server 2000)

Inserting Rows Using SELECT INTO
Inserting Rows Using SELECT INTO

The SELECT INTO statement creates a new table and populates it with the result set of the SELECT. The structure of the new table
is defined by the attributes of the expressions in the select list, for example:

SELECT Shippers.*, Link.Address, Link.City,
 Link.Region, Link.PostalCode
INTO NewShippers
FROM Shippers
 JOIN LinkServer.DB.dbo.Shippers AS Link
 ON (Shippers.ShipperID = Link.ShipperID)

SELECT INTO can be used to combine data from several tables or views into one table. It can also be used to create a new table
containing data selected from a linked server.

See Also

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Adding a Row Using a Result Set Position
The ADO, OLE DB and ODBC application programming interfaces (APIs) support adding rows while processing the result set of a
query. The fundamental process is to:

1. Bind the result set columns to program variables.

2. Execute the query.

3. Execute API functions or methods to position the application on a row within the result set.

4. Fill the bound program variables with the data values for the new row to be inserted.

5. Execute one of these functions or methods to insert the row:

In ADO, call the AddNew method of the Recordset object.

In OLE DB, call the InsertRow method of the IRowsetChange interface.

In ODBC 3.x, call the SQLBulkOperations function with the SQL_ADD option.

The new row is not necessarily inserted at a position based on the application's position within the result set. The new row is
inserted at a position in the base tables related to the values of any clustered key values specified.

Accessing and Changing Relational Data (SQL Server 2000)

Adding ntext, text, or image Data to Inserted Rows
These are ways to add ntext, text, or image values to a row:

Specify relatively short amounts of data in an INSERT statement in the same way char, nchar, or binary data is.

Use the WRITETEXT statement. For more information, see WRITETEXT.

ADO applications can use the AppendChunk method to specify long amounts of ntext, text, or image data. For more
information, see Managing Long Data Types.

OLE DB applications can use the ISequentialStream interface to write new ntext, text, or image values. For more
information, see BLOBs and OLE Objects.

ODBC applications can use the data-at-execution form of SQLPutData to write new ntext, text, or image values. For more
information, see Managing text and image Columns.

DB-Library applications can use the dbwritetext function. For more information, see Text and Image Functions.

See Also

BACKUP

UPDATETEXT

INSERT

Accessing and Changing Relational Data (SQL Server 2000)

Adding Rows Using Bulk Copy Operations
The Microsoft® SQL Server™ bulk copy components support:

Inserting numbers of rows into a table or view.

Retrieving large numbers of rows from a table, view, or query.

Bulk copy is the fastest way to add large numbers of rows in SQL Server. There are three ways to run bulk copy operations:

Use the bulk copy program (the bcp utility).

bcp is a command prompt utility. bcp provides for running bulk copies in .bat and .cmd scripts. bcp is used to bulk copy
large files into tables or views in SQL Server databases.

Use the BULK INSERT statement in Transact-SQL batches, stored procedures, and triggers to bulk copy data from a file into
a table or view in a SQL Server database.

The BULK INSERT statement is executed on the server in the context of the MSSQLServer service, not on the client. If the file
being bulk copied is also on the server the data is not moved across the network at all. This makes a BULK INSERT from a
file on the server the fastest bulk copy option. For more information, see BULK INSERT.

Use the bulk copy APIs for OLE DB, ODBC, and DB-Library applications.

The bcp utility is an ODBC command prompt utility that uses the SQL Server ODBC driver bulk copy functions. Any
application can use these published bulk copy functions in ODBC or DB-Library applications to run bulk copy operations.
Applications can bulk copy from files into a SQL Server table or view. Applications can also bulk copy from program
variables into a SQL Server table or view. For more information about OLE DB bulk copies, see Bulk-Copy Rowsets. For
more information about ODBC bulk copies, see Performing Bulk Copy Operations. For more information about DB-Library
bulk copies, see Bulk-Copy Functions.

To add data using the bcp utility

Client Utility

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data
After the tables have been created and the data added, changing or updating data in the tables becomes one of the day-to-day
processes in maintaining a database. Microsoft® SQL Server™ provides these ways to change data in an existing table:

The UPDATE statement

Can be used to update data in specific rows in a table or view.

Database application programming interfaces (APIs)

Support options for updating data at the current position of a result set. Transact-SQL server cursors also support updating
data at the current row of a cursor.

The UPDATETEXT statement

Can be used to update specific ntext, text, and image values.

Updates work on views as well as on tables, with some restrictions. For more information, see Creating a View.

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data with UPDATE
The UPDATE statement can change data values in single rows, groups of rows, or all the rows in a table or view. It can also be
used to update rows in a remote server using either a linked server name or the OPENROWSET, OPENDATASOURCE, and
OPENQUERY functions, as long as the OLE DB provider used to access the remote server supports updates. An UPDATE statement
referencing a table or view can change the data in only one base table at a time.

The UPDATE statement has these major clauses:

SET

Contains a comma-separated list of the columns to be updated and the new value for each column, in the form
column_name = expression. The value supplied by the expressions includes items such as constants, values selected from a
column in another table or view, or values calculated by a complex expression.

FROM

Identifies the tables or views that supply the values for the expressions in the SET clause, and optional join conditions
between the source tables or views.

WHERE

Specifies the search condition that defines the rows from the source tables and views that qualify to provide values to the
expressions in the SET clause.

This update statement increases the prices of all the Northwind products in category 2 by 10 percent:

UPDATE Northwind.dbo.Products
SET UnitPrice = UnitPrice * 1.1
WHERE CategoryID = 2

To change data using UPDATE

Transact-SQL

Note UPDATE is logged; if you are changing large blocks of text or image data, consider using the UPDATETEXT or WRITETEXT
statement, which by default is not logged. For more information, see Adding ntext, text, or image Data to Inserted Rows.

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data Using the SET Clause
Changing Data Using the SET Clause

SET specifies the columns to be changed and the new values for the columns. The values in the specified columns are updated
with the values given in the SET in all rows that match the WHERE clause search condition. If no WHERE clause is specified, all
rows are updated. For example, if all the publishing houses in the publishers table move their head offices to Atlanta, Georgia,
this UPDATE statement would be used:

UPDATE publishers SET city = 'Atlanta', state = 'Georgia'

Computed column values can be calculated and used in an update. For example, to double all the prices in the titles table, the
price column in the titles table can be set to equal price * 2.

The expressions used in the SET clause can also be subqueries that return only one value; for example, if the Northwind database
had an OrderSummary table:

UPDATE OrderSummary
SET Last30Days =
 (SELECT SUM(OrdDet.UnitPrice * OrdDet.Quantity)
 FROM [Order Details] AS OrdDet
 JOIN Orders AS Ord
 ON (OrdDet.OrderID = Ord.OrderID
 AND Ord.OrderDate > DATEADD(dd,-30,GETDATE()))
)

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data Using the WHERE Clause
Changing Data Using the WHERE Clause

The WHERE clause performs two functions:

Specifies the rows to be updated.

Indicates the rows from the source tables that qualify to supply values for the update if a FROM clause is also specified.

If no WHERE clause is specified all rows in the table are updated.

This UPDATE statement implements a name change for one of the shippers:

UPDATE Northwind.dbo.Shippers
SET CompanyName = 'United Shippers'
WHERE CompanyName = 'United Packages'

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data Using the FROM Clause
Changing Data Using the FROM Clause

Use the FROM clause to pull data from one or more tables or views into the table you want to update. For example, when author
Dirk Stringer gets a contract, a title identification number is assigned to his book, The Psychology of Computer Cooking, in the
titles table. Dirk's row in the titleauthor table can be updated by adding a title identification number for this latest book.

This example updates Dirk Stringer's row in the titleauthor table to add a title identification number for his latest book:

UPDATE titleauthor
 SET title_id = titles.title_id
 FROM titles INNER JOIN titleauthor
 ON titles.title_id = titleauthor.title_id
 INNER JOIN authors
 ON titleauthor.au_id = authors.au_id
 WHERE titles.title = 'Net Etiquette'
 AND au_lname = 'Locksley'

To update data using UPDATE

Transact-SQL

See Also

FROM

WHERE

UPDATE

Accessing and Changing Relational Data (SQL Server 2000)

Changing Data with a Cursor
The ADO, OLE DB, and ODBC application programming interfaces (APIs) support updating the current row on which the
application is positioned in a result set. The fundamental process is to:

1. Bind the result set columns to program variables.

2. Execute the query.

3. Execute API functions or methods to position the application on a row within the result set.

4. Fill the bound program variables with the new data values for any columns to be updated.

5. Execute one of these functions or methods to insert the row:

In ADO, call the Update method of the Recordset object.

In OLE DB, call the SetData method of the IRowsetChange interface.

In ODBC, call the SQLSetPos function with the SQL_UPDATE option.

When using a Transact-SQL server cursor, you can update the current row by using an UPDATE statement that includes a WHERE
CURRENT OF clause. Changes made with this clause affect only the row on which the cursor is positioned. When a cursor is based
on a join, only the table_name specified in the UPDATE statement is modified. Other tables participating in the cursor are not
affected.

USE Northwind
GO
DECLARE abc CURSOR FOR
SELECT CompanyName
FROM Shippers

OPEN abc
GO

FETCH NEXT FROM abc
GO

UPDATE Shippers SET CompanyName = N'Speedy Express, Inc.'
WHERE CURRENT OF abc
GO

CLOSE abc
DEALLOCATE abc
GO

For information about joins, see Join Fundamentals.

See Also

UPDATE

Accessing and Changing Relational Data (SQL Server 2000)

Changing ntext, text, or image Data
These are ways to update ntext, text, or image values in a row when replacing the entire value:

Specify relatively short amounts of data in an UPDATE statement in the same way char, nchar, or binary data is.

Use the Transact-SQL WRITETEXT statement. For more information, see WRITETEXT.

ADO applications can use the AppendChunk method to specify long amounts of ntext, text, or image data. For more
information, see Managing Long Data Types.

OLE DB applications can use the ISequentialStream interface to write new ntext, text, or image values. For more
information, see BLOBs and OLE Objects.

ODBC applications can use the data-at-execution form of SQLPutData to write new ntext, text, or image values. For more
information, see Managing text and image Columns.

DB-Library applications can use the dbwritetext function. For more information, see Text and Image Functions.

Microsoft® SQL Server™ also supports updating only a portion of an ntext, text, or image value. In DB-Library this can be done
using the dbupdatetext function. For more information, see dbupdatetext. All other applications and Transact-SQL scripts,
batches, stored procedures, and triggers can use the UPDATETEXT statement to update only a portion of an ntext, text, or image
column.

This script shows using UPDATETEXT in conjunction with PATINDEX to find and replace a specific string in a text value:

USE Northwind
GO
CREATE TABLE TextParts (ColA INT PRIMARY KEY, ColB TEXT)
GO
INSERT INTO TextParts
 VALUES(1,
 'Sample string START TAG Text to go END TAG Trailing text.')
GO
DECLARE @PtrVar BINARY(16)
DECLARE @InsertPos INT
DECLARE @DeleteLen INT

SELECT @PtrVar = TEXTPTR(ColB),
 @InsertPos = (PATINDEX('%START TAG%', ColB) + 9),
 @DeleteLen = (
 PATINDEX('%END TAG%', ColB) -
 (PATINDEX('%START TAG%', ColB) + 9
 + 2 /* allow for blanks */)
)
FROM TextParts
WHERE ColA = 1

UPDATETEXT TextParts.ColB
 @PtrVar
 @InsertPos
 @DeleteLen
 WITH LOG
 'The new text'
GO

SELECT * FROM TextParts
GO

The result set from the final SELECT statement is:

ColA ColB
----------- --
1 Sample string START TAG The new text END TAG Trailing text.

To update data using UPDATETEXT

Transact-SQL

Accessing and Changing Relational Data (SQL Server 2000)

Deleting Data
Microsoft® SQL Server™ supports these ways to delete data in an existing table:

The DELETE statement

The deletion of the current row in a result set or cursor

The TRUNCATE TABLE statement

The data modification statements work on views as well as on tables, with some restrictions. For more information, see Creating a
View.

Accessing and Changing Relational Data (SQL Server 2000)

Deleting Rows with DELETE
The DELETE statement removes one or more rows in a table or view. A simplified form of the DELETE syntax is:

DELETE table_or_view FROM table_sources WHERE search_condition

table_or_view names a table or view from which the rows are to be deleted. All rows in table_or_view that meet the qualifications
of the WHERE search condition are deleted. If a WHERE clause is not specified, all the rows in table_or_view are deleted. The
FROM clause specifies additional tables or views and join conditions that can be used by the predicates in the WHERE clause
search condition to qualify the rows to be deleted from table_or_view. Rows are not deleted from the tables named in the FROM
clause, only from the table named in table_or_view.

Any table that has all rows removed remains in the database. The DELETE statement deletes only rows from the table; the table
must be removed from the database by using the DROP TABLE statement.

To delete rows using DELETE

Transact-SQL

This script shows the three DELETE statements needed to delete the rows associated with products supplied by the company
named Lyngbysild in the Northwind database. This would not be a typical business operation because it involves deleting lines
from existing orders, but it does show a series of deletes of differing complexity.

USE Northwind
GO
DELETE [Order Details]
FROM Suppliers, Products
WHERE Products.SupplierID = Suppliers.SupplierID
 AND Suppliers.CompanyName = 'Lyngbysild'
 AND [Order Details].ProductID = Products.ProductID
GO
DELETE Products
FROM Suppliers
WHERE Products.SupplierID = Suppliers.SupplierID
 AND Suppliers.CompanyName = 'Lyngbysild'
GO
DELETE Suppliers
WHERE CompanyName = 'Lyngbysild'
GO

See Also

DROP TABLE

Accessing and Changing Relational Data (SQL Server 2000)

Deleting Rows in Result Sets
The ADO, OLE DB, and ODBC application programming interfaces (APIs) support deleting the current row on which an application
is positioned in a result set. The application executes a statement, and then fetches rows from the result set. After an application
has fetched the row, it can use the following functions or methods to delete the row:

ADO applications use the Delete method of the Recordset object.

OLE DB applications use the DeleteRows method of the IRowsetChange interface.

ODBC applications use the SQLSetPos function with the SQL_DELETE option.

DB-library applications use dbcursor to perform a CRS_DELETE operation.

Transact-SQL scripts, stored procedures, and triggers can use the WHERE CURRENT OF clause on a DELETE statement to delete
the cursor row on which they are currently positioned, for example:

DECLARE abc CURSOR FOR
 SELECT * FROM MyTable

OPEN abc

FETCH NEXT FROM abc

DELETE MyTable WHERE CURRENT OF abc

CLOSE abc

DEALLOCATE abc

Accessing and Changing Relational Data (SQL Server 2000)

Deleting All Rows Using TRUNCATE TABLE
The TRUNCATE TABLE statement is a fast, nonlogged method of deleting all rows in a table. It is almost always faster than a
DELETE statement with no conditions because DELETE logs each row deletion, and TRUNCATE TABLE logs only the deallocation of
whole data pages. TRUNCATE TABLE immediately frees all the space occupied by that table's data and indexes. The distribution
pages for all indexes are also freed.

As with DELETE, the definition of a table emptied using TRUNCATE TABLE remains in the database, along with its indexes and
other associated objects. The DROP TABLE statement must be used to drop the definition of the table.

To delete all rows in a table using TRUNCATE TABLE

Transact-SQL

See Also

DROP TABLE

Accessing and Changing Relational Data (SQL Server 2000)

Transactions
A transaction is a sequence of operations performed as a single logical unit of work. A logical unit of work must exhibit four
properties, called the ACID (Atomicity, Consistency, Isolation, and Durability) properties, to qualify as a transaction:

Atomicity

A transaction must be an atomic unit of work; either all of its data modifications are performed, or none of them is performed.

Consistency

When completed, a transaction must leave all data in a consistent state. In a relational database, all rules must be applied to the
transaction's modifications to maintain all data integrity. All internal data structures, such as B-tree indexes or doubly-linked lists,
must be correct at the end of the transaction.

Isolation

Modifications made by concurrent transactions must be isolated from the modifications made by any other concurrent
transactions. A transaction either sees data in the state it was in before another concurrent transaction modified it, or it sees the
data after the second transaction has completed, but it does not see an intermediate state. This is referred to as serializability
because it results in the ability to reload the starting data and replay a series of transactions to end up with the data in the same
state it was in after the original transactions were performed.

Durability

After a transaction has completed, its effects are permanently in place in the system. The modifications persist even in the event of
a system failure.

Specifying and Enforcing Transactions

SQL programmers are responsible for starting and ending transactions at points that enforce the logical consistency of the data.
The programmer must define the sequence of data modifications that leave the data in a consistent state relative to the
organization's business rules. The programmer then includes these modification statements in a single transaction so that
Microsoft® SQL Server™ can enforce the physical integrity of the transaction.

It is the responsibility of an enterprise database system, such as SQL Server, to provide mechanisms ensuring the physical
integrity of each transaction. SQL Server provides:

Locking facilities that preserve transaction isolation.

Logging facilities that ensure transaction durability. Even if the server hardware, operating system, or SQL Server itself fails,
SQL Server uses the transaction logs, upon restart, to automatically roll back any uncompleted transactions to the point of
the system failure.

Transaction management features that enforce transaction atomicity and consistency. After a transaction has started, it must
be successfully completed, or SQL Server undoes all of the data modifications made since the transaction started.

Accessing and Changing Relational Data (SQL Server 2000)

Controlling Transactions
 New Information - SQL Server 2000 SP3.

Applications control transactions mainly by specifying when a transaction starts and ends. This can be specified using either
Transact-SQL statements or database API functions. The system must also be able to correctly handle errors that terminate a
transaction before it completes.

Transactions are managed at the connection level. When a transaction is started on a connection, all Transact-SQL statements
executed on that connection are part of the transaction until the transaction ends.

Starting Transactions

You can start transactions in Microsoft® SQL Server™ as explicit, autocommit, or implicit transactions.

Explicit transactions

Explicitly start a transaction by issuing a BEGIN TRANSACTION statement.

Autocommit transactions

This is the default mode for SQL Server. Each individual Transact-SQL statement is committed when it completes. You do not have
to specify any statements to control transactions.

Implicit transactions

Set implicit transaction mode on through either an API function or the Transact-SQL SET IMPLICIT_TRANSACTIONS ON
statement. The next statement automatically starts a new transaction. When that transaction is completed, the next Transact-SQL
statement starts a new transaction.

Connection modes are managed at the connection level. If one connection changes from one transaction mode to another it has
no effect on the transaction modes of any other connection.

Ending Transactions

You can end transactions with either a COMMIT or ROLLBACK statement.

COMMIT

If a transaction is successful, commit it. A COMMIT statement guarantees all of the transaction's modifications are made a
permanent part of the database. A COMMIT also frees resources, such as locks, used by the transaction.

ROLLBACK

If an error occurs in a transaction, or if the user decides to cancel the transaction, then roll the transaction back. A ROLLBACK
statement backs out all modifications made in the transaction by returning the data to the state it was in at the start of the
transaction. A ROLLBACK also frees resources held by the transaction.

Specifying Transaction Boundaries

You can identify when SQL Server transactions start and end with Transact-SQL statements or API functions and methods.

Transact-SQL statements

Use the BEGIN TRANSACTION, COMMIT TRANSACTION, COMMIT WORK, ROLLBACK TRANSACTION, ROLLBACK WORK, and SET
IMPLICIT_TRANSACTIONS statements to delineate transactions. These are primarily used in DB-Library applications and in
Transact-SQL scripts, such as the scripts that are run using the osql command prompt utility.

API functions and methods

Database APIs such as ODBC, OLE DB, and ADO contain functions or methods used to delineate transactions. These are the
primary mechanisms used to control transactions in a SQL Server application.

Each transaction must be managed by only one of these methods. Using both methods on the same transaction can lead to
undefined results. For example, you should not start a transaction using the ODBC API functions, and then use the Transact-SQL
COMMIT statement to complete the transaction. This would not notify the SQL Server ODBC driver that the transaction was
committed. In this case, use the ODBC SQLEndTran function to end the transaction.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed

from unvalidated user input. For more information, see Validating User Input.

Errors During Transaction Processing

If a severe error prevents the successful completion of a transaction, SQL Server automatically rolls back the transaction and frees
all resources held by the transaction. If the client's network connection to SQL Server is broken, any outstanding transactions for
the connection are rolled back when the network notifies SQL Server of the break. If the client application fails or if the client
computer goes down or is restarted, this also breaks the connection, and SQL Server rolls back any outstanding connections
when the network notifies it of the break. If the client logs off the application, any outstanding transactions are rolled back.

If a run-time statement error (such as a constraint violation) occurs in a batch, the default behavior in SQL Server is to roll back
only the statement that generated the error. You can change this behavior using the SET XACT_ABORT statement. After SET
XACT_ABORT ON is executed, any run-time statement error causes an automatic rollback of the current transaction. Compile
errors, such as syntax errors, are not affected by SET XACT_ABORT.

It is the responsibility of the programmer to code the application to specify the correct action (COMMIT or ROLLBACK) if a run-
time or compile error occurs.

See Also

BEGIN TRANSACTION

ROLLBACK TRANSACTION

COMMIT TRANSACTION

ROLLBACK WORK

COMMIT WORK

SET IMPLICIT_TRANSACTIONS

Performing Transactions in ADO

Transactions

Performing Transactions (ODBC)

SET XACT_ABORT

Accessing and Changing Relational Data (SQL Server 2000)

Explicit Transactions
An explicit transaction is one in which you explicitly define both the start and end of the transaction. Explicit transactions were also
called user-defined or user-specified transactions in earlier versions of Microsoft® SQL Server™.

DB-Library applications and Transact-SQL scripts use the BEGIN TRANSACTION, COMMIT TRANSACTION, COMMIT WORK,
ROLLBACK TRANSACTION, or ROLLBACK WORK Transact-SQL statements to define explicit transactions.

BEGIN TRANSACTION

Marks the starting point of an explicit transaction for a connection.

COMMIT TRANSACTION or COMMIT WORK

Used to end a transaction successfully if no errors were encountered. All data modifications made in the transaction become a
permanent part of the database. Resources held by the transaction are freed.

ROLLBACK TRANSACTION or ROLLBACK WORK

Used to erase a transaction in which errors are encountered. All data modified by the transaction is returned to the state it was in
at the start of the transaction. Resources held by the transaction are freed.

You can also use explicit transactions in OLE DB. Call the ITransactionLocal::StartTransaction method to start a transaction. Call
either the ITransaction::Commit or ITransaction::Abort method with fRetaining set to FALSE to end the transaction without
automatically starting another transaction.

In ADO, use the BeginTrans method on a Connection object to start an explicit transaction. To end the transaction, call the
Connection object's CommitTrans or RollbackTrans methods.

The ODBC API does not support explicit transactions, only autocommit and implicit transactions.

Explicit transaction mode lasts only for the duration of the transaction. When the transaction ends, the connection returns to the
transaction mode it was in before the explicit transaction was started, either implicit or autocommit mode.

See Also

BEGIN TRANSACTION

ROLLBACK TRANSACTION

COMMIT TRANSACTION

ROLLBACK WORK

COMMIT WORK

Performing Transactions in ADO

Supporting Local Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Autocommit Transactions
Autocommit mode is the default transaction management mode of Microsoft® SQL Server™. Every Transact-SQL statement is
committed or rolled back when it completes. If a statement completes successfully, it is committed; if it encounters any error, it is
rolled back. A SQL Server connection operates in autocommit mode whenever this default mode has not been overridden by
either explicit or implicit transactions. Autocommit mode is also the default mode for ADO, OLE DB, ODBC, and DB-Library.

A SQL Server connection operates in autocommit mode until a BEGIN TRANSACTION statement starts an explicit transaction, or
implicit transaction mode is set on. When the explicit transaction is committed or rolled back, or when implicit transaction mode is
turned off, SQL Server returns to autocommit mode.

Compile and Run-time Errors

In autocommit mode, it sometimes appears as if SQL Server has rolled back an entire batch instead of just one SQL statement.
This happens only if the error encountered is a compile error, not a run-time error. A compile error prevents SQL Server from
building an execution plan, so nothing in the batch is executed. Although it appears that all the statements before the one
generating the error were rolled back, the error prevented anything in the batch from being executed. In this example, none of the
INSERT statements in the third batch are executed because of a compile error. It appears that the first two INSERT statements are
rolled back when they are never executed.

USE pubs
GO
CREATE TABLE TestBatch (Cola INT PRIMARY KEY, Colb CHAR(3))
GO
INSERT INTO TestBatch VALUES (1, 'aaa')
INSERT INTO TestBatch VALUES (2, 'bbb')
INSERT INTO TestBatch VALUSE (3, 'ccc') /* Syntax error */
GO
SELECT * FROM TestBatch /* Returns no rows */
GO

In this example, the third INSERT statement generates a run-time duplicate primary key error. The first two INSERT statements are
successful and committed, so they remain after the run-time error.

USE pubs
GO
CREATE TABLE TestBatch (Cola INT PRIMARY KEY, Colb CHAR(3))
GO
INSERT INTO TestBatch VALUES (1, 'aaa')
INSERT INTO TestBatch VALUES (2, 'bbb')
INSERT INTO TestBatch VALUES (1, 'ccc') /* Duplicate key error */
GO
SELECT * FROM TestBatch /* Returns rows 1 and 2 */
GO

SQL Server uses delayed name resolution, in which object names are not resolved until execution time. In this example, the first
two INSERT statements are executed and committed, and those two rows remain in the TestBatch table after the third INSERT
statement generates a run-time error by referring to a table that does not exist.

USE pubs
GO
CREATE TABLE TestBatch (Cola INT PRIMARY KEY, Colb CHAR(3))
GO
INSERT INTO TestBatch VALUES (1, 'aaa')
INSERT INTO TestBatch VALUES (2, 'bbb')
INSERT INTO TestBch VALUES (3, 'ccc') /* Table name error */
GO
SELECT * FROM TestBatch /* Returns rows 1 and 2 */
GO

See Also

Transactions

Transactions in ODBC

Accessing and Changing Relational Data (SQL Server 2000)

Implicit Transactions
When a connection is operating in implicit transaction mode, Microsoft® SQL Server™ automatically starts a new transaction
after the current transaction is committed or rolled back. You do nothing to delineate the start of a transaction; you only commit
or roll back each transaction. Implicit transaction mode generates a continuous chain of transactions.

After implicit transaction mode has been set on for a connection, SQL Server automatically starts a transaction when it first
executes any of these statements:

ALTER TABLE INSERT
CREATE OPEN
DELETE REVOKE
DROP SELECT
FETCH TRUNCATE TABLE
GRANT UPDATE

The transaction remains in effect until you issue a COMMIT or ROLLBACK statement. After the first transaction is committed or
rolled back, SQL Server automatically starts a new transaction the next time any of these statements are executed by the
connection. SQL Server keeps generating a chain of implicit transactions until implicit transaction mode is turned off.

Implicit transaction mode is set either using the Transact-SQL SET statement, or through database API functions and methods.

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Implicit Transactions
DB-Library applications and Transact-SQL scripts use the Transact-SQL SET IMPLICIT_TRANSACTIONS ON statement to start
implicit transaction mode. Use the SET IMPLICIT_TRANSACTIONS OFF statement to turn implicit transaction mode off. Use the
COMMIT TRANSACTION, COMMIT WORK, ROLLBACK TRANSACTION, or ROLLBACK WORK statements to end each transaction.

SET QUOTED_IDENTIFIER OFF
GO
SET NOCOUNT OFF
GO
USE pubs
GO
CREATE TABLE ImplicitTran (Cola int PRIMARY KEY,
 Colb char(3) NOT NULL)
GO
SET IMPLICIT_TRANSACTIONS ON
GO
/* First implicit transaction started by an INSERT statement */
INSERT INTO ImplicitTran VALUES (1, 'aaa')
GO
INSERT INTO ImplicitTran VALUES (2, 'bbb')
GO
/* Commit first transaction */
COMMIT TRANSACTION
GO
/* Second implicit transaction started by a SELECT statement */
SELECT COUNT(*) FROM ImplicitTran
GO
INSERT INTO ImplicitTran VALUES (3, 'ccc')
GO
SELECT * FROM ImplicitTran
GO
/* Commit second transaction */
COMMIT TRANSACTION
GO
SET IMPLICIT_TRANSACTIONS OFF
GO

See Also

COMMIT TRANSACTION

ROLLBACK WORK

COMMIT WORK

SET IMPLICIT_TRANSACTIONS

ROLLBACK TRANSACTION

BEGIN TRANSACTION

Accessing and Changing Relational Data (SQL Server 2000)

API Implicit Transactions
The API mechanisms used to set implicit transactions are ODBC and OLE DB.

ODBC

Call the SQLSetConnectAttr function with Attribute set to SQL_ATTR_AUTOCOMMIT and ValuePtr set to
SQL_AUTOCOMMIT_OFF to start implicit transaction mode.

The connection remains in implicit transaction mode until you call SQLSetConnectAttr with Attribute set to
SQL_ATTR_AUTOCOMMIT and ValuePtr set to SQL_AUTOCOMMIT_ON.

Call the SQLEndTran function with CompletionType set to either SQL_COMMIT or SQL_ROLLBACK to commit or roll back
each transaction.

When SQL_AUTOCOMMIT_OFF is set by an ODBC application, the Microsoft® SQL Server™ ODBC driver issues a SET
IMPLICIT_TRANSACTION ON statement.

OLE DB

OLE DB does not have a method to set implicit transaction mode specifically.

Call the ITransactionLocal::StartTransaction method to start an explicit transaction.

When you then call either the ITransaction::Commit or ITransaction::Abort method with fRetaining set to TRUE, OLE DB
completes the current transaction and goes into implicit transaction mode. The connection remains in implicit transaction
mode as long as you set fRetaining on ITransaction::Commit or ITransaction::Abort to TRUE.

Call ITransaction::Commit or ITransaction::Abort with fRetaining set to FALSE to stop implicit transaction mode.

ADO

ADO does not support implicit transactions. ADO applications use either autocommit mode or explicit transactions.

See Also

Transactions

Performing Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Distributed Transactions
Distributed transactions span two or more servers known as resource managers. The management of the transaction must be
coordinated between the resource managers by a server component called a transaction manager. Microsoft® SQL Server™ can
operate as a resource manager in distributed transactions coordinated by transaction managers such as the Microsoft Distributed
Transaction Coordinator (MS DTC), or other transaction managers that support the X/Open XA specification for Distributed
Transaction Processing. For more information, see the Microsoft Distributed Transaction Coordinator documentation.

A transaction within a single SQL Server that spans two or more databases is actually a distributed transaction. SQL Server,
however, manages the distributed transaction internally; to the user it operates as a local transaction.

At the application, a distributed transaction is managed much the same as a local transaction. At the end of the transaction, the
application requests the transaction to be either committed or rolled back. A distributed commit must be managed differently by
the transaction manager to minimize the risk that a network failure may result in some resource managers successfully
committing while others roll back the transaction. This is achieved by managing the commit process in two phases (the prepare
phase and the commit phase), which is known as a two-phase commit (2PC).

Prepare phase

When the transaction manager receives a commit request, it sends a prepare command to all the resource managers involved in
the transaction. Each resource manager then does everything required to make the transaction durable and all buffers holding log
images for the transaction are flushed to disk. As each resource manager completes the prepare phase, it returns success or
failure of the prepare to the transaction manager.

Commit phase

If the transaction manager receives successful prepares from all the resource managers, it sends commit commands to each
resource manager. The resource managers can then complete the commit. If all the resource managers report a successful
commit, the transaction manager then sends a success notification to the application. If any resource manager reported a failure
to prepare, the transaction manager sends a rollback command to each resource manager and indicates the failure of the commit
to the application.

SQL Server applications can manage distributed transactions either through Transact-SQL or the database API.

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Distributed Transactions
The distributed transactions started in Transact-SQL have a relatively simple structure:

1. A Transact-SQL script or application connection executes a Transact-SQL statement that starts a distributed transaction.

2. The Microsoft® SQL Server™ executing the statement becomes the controlling server in the transaction.

3. The script or application then executes either distributed queries against linked servers or remote stored procedures against
remote servers.

4. As distributed queries and remote procedure calls are made, the controlling server automatically calls MS DTC to enlist the
linked and remote servers in the distributed transaction.

5. When the script or application issues either a COMMIT or ROLLBACK statement, the controlling SQL Server calls MS DTC to
manage the two phase commit process, or to notify the linked and remote servers to roll back their transactions.

Required Transact-SQL Statements

The Transact-SQL statements controlling the distributed transactions are few because most of the work is done internally by
Microsoft® SQL Server™ and MS DTC. The only Transact-SQL statements required in the Transact-SQL script or application are
those required to:

Start a distributed transaction.

Perform distributed queries against linked servers or execute remote procedure calls against remote servers.

Call the standard Transact-SQL COMMIT TRANSACTION, COMMIT WORK, ROLLBACK TRANSACTION, or ROLLBACK WORK
statements to complete the transaction.

For any Transact-SQL distributed transaction, the SQL Server processing the Transact-SQL script or connection
automatically calls MS DTC to coordinate the commitment or rollback of the transaction.

Starting Distributed Transactions

You can start distributed transactions in Transact-SQL in these ways:

Start an explicit distributed transaction using the BEGIN DISTRIBUTED TRANSACTION statement.

You can also execute a distributed query against a linked server. The SQL Server you have connected to calls MS DTC to
manage the distributed transaction with the linked server. You can also call remote stored procedures on a remote SQL
Server as part of the distributed transaction.

While in a local transaction, execute a distributed query.

If the OLE DB data source supports the ITransactionJoin interface, the transaction is promoted to a distributed transaction,
even if the query is a read-only query. If the data source does not support ITransactionJoin, only read-only statements are
allowed.

If SET REMOTE_PROC_TRANSACTIONS ON has been executed and a local transaction calls a remote stored procedure on
another SQL Server, the local transaction is promoted to a distributed transaction.

SQL Server uses MS DTC to coordinate the transaction with the remote server.

Calls to remote stored procedures execute outside the scope of a local transaction if
REMOTE_PROC_TRANSACTIONS is set to OFF. The work done by the remote procedure is not rolled back if the local
transaction is rolled back. The work done by the remote stored procedure is committed at the time the procedure
completes, not when the local transaction is committed.

The REMOTE_PROC_TRANSACTIONS option is a compatibility option that affects only remote stored procedure calls made to
remote servers defined using sp_addserver. For more information about remote stored procedures, see Remote Stored
Procedure Architecture. The option does not apply to distributed queries that execute a stored procedure on a linked server

defined using sp_addlinkedserver. For more information about distributed queries, see Distributed Queries.

See Also

BEGIN DISTRIBUTED TRANSACTION

ROLLBACK TRANSACTION

COMMIT TRANSACTION

ROLLBACK WORK

COMMIT WORK

SET REMOTE_PROC_TRANSACTIONS

Accessing and Changing Relational Data (SQL Server 2000)

MS DTC Distributed Transactions
Applications written using OLE DB, ODBC, ADO, or DB-Library can use Transact-SQL distributed transactions by issuing Transact-
SQL statements to start and stop Transact-SQL distributed transactions. OLE DB and ODBC, however, also contain support at the
API level for managing distributed transactions. OLE DB and ODBC applications can use these API functions to manage distributed
transactions that include other COM resource managers that support MS DTC transactions other than Microsoft® SQL Server™.
They can also use the API functions to gain more control over the boundaries of a distributed transaction that includes several
SQL Servers.

ODBC Distributed Transactions

You can control local transactions at the ODBC API level by setting the connection attribute SQL_ATTR_AUTOCOMMIT to
SQL_AUTOCOMMIT_OFF, and then by calling the ODBC SQLEndTran function to commit or roll back each transaction. Do not
use these functions to manage a distributed transaction in an ODBC application. Use the MS DTC COM methods instead:

Call DtcGetTransactionManager to connect to MS DTC.

Call ITransactionDispenser::BeginTransaction to start the distributed transaction and get a transaction object.

For each ODBC connection participating in the distributed transaction, call the ODBC function SQLSetConnectAttr with
fOption set to SQL_COPT_SS_ENLIST_IN_DTC and vParam holding the address of the transaction object from
ITransactionDispenser::BeginTransaction.

When the transaction is completed, instead of calling the ODBC SQLEndTran function, call the ITransaction::Commit or
ITransaction::Rollback methods on the transaction object obtained from ITransactionDispenser::BeginTransaction.

OLE DB Distributed Transactions

The model for controlling a distributed transaction in OLE DB is similar to controlling a local transaction. To control a local
transaction, an OLE DB consumer:

Uses the ITransactionLocal::StartTransaction method to start the local transaction and get a transaction object.

The consumer then calls the ITransaction::Commit or ITransaction::Rollback methods on the transaction object obtained
by ITransactionLocal::StartTransaction.

To control a distributed transaction, the consumer instead:

Calls DtcGetTransactionManager to connect to MS DTC.

Calls ITransactionDispenser::BeginTransaction to start the distributed transaction and get a transaction object.

Calls the ITransactionJoin interface of the distributed transaction object for each connection participating in the distributed
transaction.

Calls the ITransaction::Commit or ITransaction::Rollback methods of the distributed transaction object to complete the
transaction.

See Also

Supporting Distributed Transactions

Performing Distributed Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Distributed Queries and Distributed Transactions
Microsoft® SQL Server™ allows you to create links to OLE DB data sources called linked servers. After linking to an OLE DB data
source, you can:

Reference rowsets from the OLE DB data sources as tables in Transact-SQL statements.

Pass commands to the OLE DB data sources and include the resulting rowsets as tables in Transact-SQL statements.

Each distributed query can reference multiple linked servers and can perform either update or read operations against each
individual linked server. A single distributed query can perform read operations against some linked servers and update
operations against other linked servers. In general, Microsoft SQL Server requires distributed transactions support from the
corresponding OLE DB provider whenever data from more than one linked server are likely to be updated in a transaction. Hence,
the types of queries that are supported against linked servers depend on the level of support for transactions present in the OLE
DB providers. OLE DB defines two optional interfaces for transaction management:

ITransactionLocal supports local transactions in the OLE DB data source.

ITransactionJoin lets the provider join a distributed transaction that includes other resource managers.

Any provider that supports ITransactionJoin also supports ITransactionLocal.

If a distributed query is executed when the connection is in autocommit mode, these rules apply:

Only read operations are allowed against providers that do not support ITransactionLocal.

All update operations are allowed against any providers that support ITransactionLocal.

The controlling SQL Server automatically calls ITransactionLocal in each linked server participating in an update operation
to start a local transaction, and commits them when the statement succeeds or rolls them back if the statement fails.

If a distributed query is against a distributed partitioned view or if it is executed when the connection is in either an explicit or
implicit transaction, these rules apply:

Only read operations are allowed against providers that do not support ITransactionJoin. Providers that do not support
any transactions or only support ITransactionLocal cannot participate in update operations.

If SET XACT_ABORT is ON, all update operations are allowed against any providers that support ITransactionJoin. The
controlling SQL Server automatically calls ITransactionJoin in each linked server participating in an update operation to
enroll it in the distributed transaction. MS DTC then either commits them or rolls them back when the controlling server
indicates the transaction is either committed or rolled back.

If SET XACT_ABORT is OFF, the linked server must also support nested transactions before update operations are allowed.
Nested transactions are supported if the provider supports calling ITransactionLocal::StartTransaction when there is
already an existing transaction for the session. This allows SQL Server to roll back individual statements in distributed
queries without rolling back the entire transaction.

The above rules imply the following restriction for providers that do not support nested transaction: update operations are
allowed in a distributed transaction only if the XACT_ABORT option is ON.

See Also

Distributed Queries

Accessing and Changing Relational Data (SQL Server 2000)

Advanced Topics
 New Information - SQL Server 2000 SP3.

Mismanagement of transactions often leads to contention and performance problems in systems that have many users. As the
number of users in a system increases, it becomes important to have applications that use transactions efficiently. A transaction
can hold some locks, such as those protecting updates, until the transaction ends. An application that allows users to control when
a transaction ends presents an opportunity for a malicious user to deny access to data that is being locked. For example, it is
generally a bad practice for an application to interact with a user while the application has a transaction open unless the
application places a limit on how long it will wait for a user response before ending the transaction.

Microsoft® SQL Server™ also supports nesting transactions, transaction savepoints, and bound transactions, which offer
programmers additional options for writing efficient transactions.

Accessing and Changing Relational Data (SQL Server 2000)

Nesting Transactions
 New Information - SQL Server 2000 SP3.

Explicit transactions can be nested. This is primarily intended to support transactions in stored procedures that can be called either
from a process already in a transaction or from processes that have no active transaction.

The following example shows the intended use of nested transactions. The procedure TransProc enforces its transaction
regardless of the transaction mode of any process that executes it. If TransProc is called when a transaction is active, the nested
transaction in TransProc is largely ignored, and its INSERT statements are committed or rolled back based on the final action
taken for the outer transaction. If TransProc is executed by a process that does not have an outstanding transaction, the COMMIT
TRANSACTION at the end of the procedure effectively commits the INSERT statements.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

SET QUOTED_IDENTIFIER OFF
GO
SET NOCOUNT OFF
GO
USE pubs
GO
CREATE TABLE TestTrans(Cola INT PRIMARY KEY,
 Colb CHAR(3) NOT NULL)
GO
CREATE PROCEDURE TransProc @PriKey INT, @CharCol CHAR(3) AS
BEGIN TRANSACTION InProc
INSERT INTO TestTrans VALUES (@PriKey, @CharCol)
INSERT INTO TestTrans VALUES (@PriKey + 1, @CharCol)
COMMIT TRANSACTION InProc
GO
/* Start a transaction and execute TransProc */
BEGIN TRANSACTION OutOfProc
GO
EXEC TransProc 1, 'aaa'
GO
/* Roll back the outer transaction, this will
 roll back TransProc's nested transaction */
ROLLBACK TRANSACTION OutOfProc
GO
EXECUTE TransProc 3,'bbb'
GO
/* The following SELECT statement shows only rows 3 and 4 are
 still in the table. This indicates that the commit
 of the inner transaction from the first EXECUTE statement of
 TransProc was overridden by the subsequent rollback. */
SELECT * FROM TestTrans
GO

Committing inner transactions is ignored by Microsoft® SQL Server™. The transaction is either committed or rolled back based
on the action taken at the end of the outermost transaction. If the outer transaction is committed, the inner nested transactions
are also committed. If the outer transaction is rolled back, then all inner transactions are also rolled back, regardless of whether or
not the inner transactions were individually committed.

Each call to COMMIT TRANSACTION or COMMIT WORK applies to the last executed BEGIN TRANSACTION. If the BEGIN
TRANSACTION statements are nested, then a COMMIT statement applies only to the last nested transaction, which is the
innermost transaction. Even if a COMMIT TRANSACTION transaction_name statement within a nested transaction refers to the
transaction name of the outer transaction, the commit applies only to the innermost transaction.

It is not legal for the transaction_name parameter of a ROLLBACK TRANSACTION statement to refer to the inner transactions of a
set of named nested transactions. transaction_name can refer only to the transaction name of the outermost transaction. If a
ROLLBACK TRANSACTION transaction_name statement using the name of the outer transaction is executed at any level of a set
of nested transactions, all the nested transactions are rolled back. If a ROLLBACK WORK or ROLLBACK TRANSACTION statement
without a transaction_name parameter is executed at any level of a set of nested transaction, it rolls back all the nested
transactions, including the outermost transaction.

The @@TRANCOUNT function records the current transaction nesting level. Each BEGIN TRANSACTION statement increments
@@TRANCOUNT by one. Each COMMIT TRANSACTION or COMMIT WORK statement decrements @@TRANCOUNT by one. A
ROLLBACK WORK or a ROLLBACK TRANSACTION statement that does not have a transaction name rolls back all nested
transactions and decrements @@TRANCOUNT to 0. A ROLLBACK TRANSACTION that uses the transaction name of the
outermost transaction in a set of nested transactions rolls back all the nested transactions and decrements @@TRANCOUNT to 0.

When you are unsure if you are already in a transaction, SELECT @@TRANCOUNT to determine if it is 1 or more. If
@@TRANCOUNT is 0 you are not in a transaction.

See Also

@@TRANCOUNT

COMMIT WORK

BEGIN TRANSACTION

ROLLBACK TRANSACTION

COMMIT TRANSACTION

ROLLBACK WORK

Accessing and Changing Relational Data (SQL Server 2000)

Transaction Savepoints
 New Information - SQL Server 2000 SP3.

Savepoints offer a mechanism to roll back portions of transactions. You create a savepoint using the SAVE TRANSACTION
savepoint_name statement, and then later execute a ROLLBACK TRANSACTION savepoint_name statement to roll back to the
savepoint instead of rolling back to the start of a transaction.

Savepoints are useful in situations where errors are unlikely to occur. The use of a savepoint to roll back part of a transaction in
the case of an infrequent error can be more efficient than having each transaction test to see if an update is valid before making
the update. Updates and rollbacks are expensive operations, so savepoints are effective only if the probability of encountering the
error is low and the cost of checking the validity of an update beforehand is relatively high.

This example shows the use of a savepoint in an order system in which there is a low probability of running out of stock because
the company has effective suppliers and reorder points. Usually an application would verify that there is enough stock on hand
before attempting to make the updates that would record the order. This example assumes that, for some reason (such as
connecting over a slow modem or WAN), first verifying the quantity of stock available is relatively expensive. The application
could be coded to just make the update, and if it gets an error indicating that there is not enough stock, it rolls back the update. In
this case, a quick check of @@ERROR after the insert is much faster than verifying the amount before the update.

The InvCtrl table has a CHECK constraint that triggers a 547 error if the QtyInStk column goes below 0. The OrderStock
procedure creates a savepoint. If a 547 error occurs, it rolls back to the savepoint and returns the number of items on hand to the
calling process. The calling process can then decide if it wants to replace the order for the quantity on hand. If OrderStock returns
a 0, the calling process knows there was enough stock on hand to satisfy the order.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

SET NOCOUNT OFF
GO
USE pubs
GO
CREATE TABLE InvCtrl
 (WhrhousID int,
 PartNmbr int,
 QtyInStk int,
 ReordrPt int,
 CONSTRAINT InvPK PRIMARY KEY
 (WhrhousID, PartNmbr),
 CONSTRAINT QtyStkCheck CHECK (QtyInStk > 0))
GO
CREATE PROCEDURE OrderStock @WhrhousID int, @PartNmbr int,
 @OrderQty int
AS
DECLARE @ErrorVar int
SAVE TRANSACTION StkOrdTrn
UPDATE InvCtrl SET QtyInStk = QtyInStk - @OrderQty
WHERE WhrhousID = 1
 AND PartNmbr = 1
SELECT @ErrorVar = @@error
IF (@ErrorVar = 547)
BEGIN
 ROLLBACK TRANSACTION StkOrdTrn
 RETURN (SELECT QtyInStk
 FROM InvCtrl
 WHERE WhrhousID = @WhrhousID
 AND PartNmbr = @PartNmbr)
END
ELSE
 RETURN 0
GO

See Also

ROLLBACK TRANSACTION

SAVE TRANSACTION

Accessing and Changing Relational Data (SQL Server 2000)

Using Bound Connections
Bound connections allow two or more connections to share the same transaction and locks. Bound connections can work on the
same data without lock conflicts. Bound connections can be created from multiple connections within the same application, or
from multiple applications with separate connections. Bound connections make coordinating actions across multiple connections
easier.

To participate in a bound connection, a connection calls sp_getbindtoken or srv_getbindtoken (Open Data Services) to get a
bind token. A bind token is a character string that uniquely identifies each bound transaction. The bind token is then sent to the
other connections participating in the bound connection. The other connections bind to the transaction by calling
sp_bindsession, using the bind token received from the first connection.

Bind tokens must be transmitted from the application code that makes the first connection to the application code making any of
the subsequent bound connections. There is no Transact-SQL statement or API function that an application can use to get the bind
token for a transaction started by another process. Some methods that can be used to transmit a bind token are:

If the connections are all made from the same application process, bind tokens can be stored in global memory or passed
into functions as a parameter.

If the connections are made from separate application processes, bind tokens can be transmitted using interprocess
communication (IPC), such as a remote procedure call (RPC) or dynamic data exchange (DDE).

Bind tokens can be stored in a table in Microsoft® SQL Server™ that can be read by processes wanting to bind to the first
connection.

Only one connection in a set of bound connections can be active at any time. If one connection is executing a statement on the
server or has results pending from the server, no other connections that share the same transaction can access the server until the
current connection finishes processing or cancels the current statement. If the server is busy, an error occurs indicating the
transaction space is in use and the connection should retry later.

Types of Bound Connections

The two types of bound connections are local and distributed.

Local bound connection

Allows bound connections to share the transaction space of a single transaction on a single server.

Distributed bound connection

Allows bound connections to share the same transaction across two or more servers until the entire transaction is either
committed or rolled back by using Microsoft Distributed Transaction Coordinator (MS DTC).

Distributed bound connections are not identified by a character string bind token; they are identified by distributed transaction
identification numbers. If a bound connection is involved in a local transaction and executes an RPC on a remote server with SET
REMOTE_PROC_TRANSACTIONS ON, the local bound transaction is automatically promoted to a distributed bound transaction
by MS DTC and an MS DTC session is started.

When to Use Bound Connections

Bound connections are useful in developing extended stored procedures that must execute Transact-SQL statements on behalf of
the process that calls them. Having the calling process pass in a bind token as one parameter of the extended stored procedure
allows the procedure to join the transaction space of the calling process, thereby integrating the extended stored procedure with
the calling process.

Bound connections can be used to develop three-tier applications in which business logic is represented in separate programs
that work cooperatively on a single business transaction.

The following example of bound connections illustrates how two connections can access the same transaction: A customer
decides to purchase a product at a local department store. The salesperson accesses a sales transaction system that inserts a row
into the sales transaction table, including a credit card authorization number. Two connections are made to the same server,
connection C1 and connection C2. C1 begins a transaction that adds a product sale row to the sales table. A credit card
authorization number must be added to the new sales transaction row. During the credit card authorization process, the extended
stored procedure creates connection C2 to dial out across a telephone line to the credit card company and modifies the sales

transaction row with the credit card authorization number. Only by using bound connections can both connections access the
same row without locking conflicts.

See Also

sp_bindsession

srv_getbindtoken

sp_getbindtoken

SET REMOTE_PROC_TRANSACTIONS

Accessing and Changing Relational Data (SQL Server 2000)

Adjusting Transaction Isolation Levels
The isolation property is one of the four ACID properties a logical unit of work must display to qualify as a transaction. It is the
ability to shield transactions from the effects of updates performed by other concurrent transactions. The level of isolation is
actually customizable for each transaction.

Microsoft® SQL Server™ supports the transaction isolation levels defined in SQL-92. Setting transaction isolation levels allows
programmers to trade off increased risk of certain integrity problems with support for greater concurrent access to data. Each
isolation level offers more isolation than the previous level, but does so by holding more restrictive locks for longer periods. The
transaction isolation levels are:

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

Transaction isolation levels can be set using Transact-SQL or through a database API:

Transact-SQL

Transact-SQL scripts and DB-Library applications use the SET TRANSACTION ISOLATION LEVEL statement.

ADO

ADO applications set the IsolationLevel property of the Connection object to adXactReadUncommitted, adXactReadCommitted,
adXactRepeatableRead, or adXactReadSerializable.

OLE DB

OLE DB applications call ITransactionLocal::StartTransaction with isoLevel set to ISOLATIONLEVEL_READUNCOMMITTED,
ISOLATIONLEVEL_READCOMMITTED, ISOLATIONLEVEL_REPEATABLEREAD, or ISOLATIONLEVEL_SERIALIZABLE

ODBC

ODBC applications call SQLSetConnectAttr with Attribute set to SQL_ATTR_TXN_ISOLATION and ValuePtr set to
SQL_TXN_READ_UNCOMMITTED, SQL_TXN_READ_COMMITTED, SQL_TXN_REPEATABLE_READ, or SQL_TXN_SERIALIZABLE.

See Also

Isolation Levels in SQLOLEDB

SET TRANSACTION ISOLATION LEVEL

Accessing and Changing Relational Data (SQL Server 2000)

Rollbacks in Stored Procedures and Triggers
If @@TRANCOUNT has a different value when a stored procedure finishes than it had when the procedure was executed, an
informational error 266 is generated. This error is not generated by the same condition in triggers.

A 266 error is generated when a stored procedure is called with an @@TRANCOUNT of 1 or greater and the procedure executes
a ROLLBACK TRANSACTION or ROLLBACK WORK statement. This is because ROLLBACK rolls back all outstanding transactions
and decrements @@TRANCOUNT to 0, which is a lower value than it had when the procedure was called.

If a ROLLBACK TRANSACTION is issued in a trigger:

All data modifications made to that point in the current transaction are rolled back, including any that were made by the
trigger.

The trigger continues executing any remaining statements after the ROLLBACK statement. If any of these statements modify
data, the modifications are not rolled back. No nested triggers are fired by the execution of these remaining statements.

None of the statements in the batch after the statement that fired the trigger are executed.

A ROLLBACK in a trigger closes and deallocates all cursors that were declared and opened in the batch containing the
statement that fired the trigger. This includes cursors declared and opened in stored procedures called by the batch that
fired the trigger. Cursors declared in a batch prior to the batch that fired the trigger are only closed, except that STATIC or
INSENSITIVE cursors are left open if:

CURSOR_CLOSE_ON_COMMIT is set OFF.

The static cursor is either synchronous, or a fully populated asynchronous cursor.

A trigger always operates as if there were an outstanding transaction in effect when the trigger is executed. This is definitely true if
the statement firing the trigger is in an implicit or explicit transaction. It is also true in autocommit mode. When a statement
begins executing in autocommit mode, there is an implied BEGIN TRANSACTION to allow the recovery of all modifications
generated by the statement if it encounters an error. This implied transaction has no effect on the other statements in the batch
because it is either committed or rolled back when the statement completes. This implied transaction is still in effect, however,
when a trigger is called.

This means that any time a BEGIN TRANSACTION statement is issued in the trigger, it is actually beginning a nested transaction.
Because a nested BEGIN TRANSACTION statement is ignored when rolling back nested transactions, ROLLBACK TRANSACTION
issued in the trigger always rolls back past any BEGIN TRANSACTION statements issued by the trigger itself. ROLLBACK rolls back
to the outermost BEGIN TRANSACTION.

You must use the SAVE TRANSACTION statement to do a partial rollback in a trigger, even if it is always called in autocommit
mode. This is illustrated by the following trigger:

CREATE TRIGGER TestTrig ON TestTab FOR UPDATE AS
SAVE TRANSACTION MyName
INSERT INTO TestAudit
 SELECT * FROM inserted
IF (@@error <> 0)
BEGIN
 ROLLBACK TRANSACTION MyName
END

This also affects COMMIT TRANSACTION statements that follow a BEGIN TRANSACTION statement in a trigger. Because BEGIN
TRANSACTION starts a nested transaction, a subsequent COMMIT statement applies only to the nested transaction. If a
ROLLBACK TRANSACTION statement is executed after COMMIT, ROLLBACK rolls back everything to the outermost BEGIN
TRANSACTION. This is illustrated by the following trigger:

CREATE TRIGGER TestTrig ON TestTab FOR UPDATE AS
BEGIN TRANSACTION
INSERT INTO TrigTarget
 SELECT * FROM inserted
COMMIT TRANSACTION
ROLLBACK TRANSACTION

This trigger will never insert into the TrigTarget table. BEGIN TRANSACTION always starts a nested transaction. COMMIT
TRANSACTION commits only the nested transaction, while the following ROLLBACK TRANSACTION rolls everything back to the
outermost BEGIN TRANSACTION.

See Also

@@TRANCOUNT

ROLLBACK WORK

ROLLBACK TRANSACTION

Nesting Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Statements Allowed in Transactions
You can use all Transact-SQL statements in a transaction, except for the following statements:

ALTER DATABASE LOAD DATABASE
BACKUP LOG LOAD TRANSACTION
CREATE DATABASE RECONFIGURE
DISK INIT RESTORE DATABASE
DROP DATABASE RESTORE LOG
DUMP TRANSACTION UPDATE STATISTICS

Also, you cannot use sp_dboption to set database options or use any system procedures that modify the master database inside
user-defined transactions.

Accessing and Changing Relational Data (SQL Server 2000)

Coding Efficient Transactions
It is important to keep transactions as short as possible. When a transaction is started, a DBMS must hold many resources to the
end of the transaction to protect the ACID properties of the transaction. If data is modified, the modified rows must be protected
with exclusive locks that prevent any other transaction from reading the rows, and exclusive locks must be held until the
transaction is committed or rolled back. Depending on transaction isolation level settings, SELECT statements may acquire locks
that must be held until the transaction is committed or rolled back. Especially in systems with many users, transactions must be
kept as short as possible to reduce locking contention for resources between concurrent connections. Long-running, inefficient
transactions may not be a problem with small numbers of users, but they are intolerable in a system with thousands of users.

Coding Guidelines

These are guidelines for coding efficient transactions:

Do not require input from users during a transaction.

Get all required input from users before a transaction is started. If additional user input is required during a transaction, roll
back the current transaction and restart the transaction after the user input is supplied. Even if users respond immediately,
human reaction times are vastly slower than computer speeds. All resources held by the transaction are held for an
extremely long time, which has the potential for causing blocking problems. If users do not respond, the transaction remains
active and locking critical resources until they respond, which may not happen for several minutes, or even hours.

Do not open a transaction while browsing through data, if at all possible.

Transactions should not be started until all preliminary data analysis has been completed.

Keep the transaction as short as possible.

After you know the modifications that have to be made, start a transaction, execute the modification statements, then
immediately commit or roll back. Do not open the transaction before it is required.

Make intelligent use of lower transaction isolation levels.

Many applications can be readily coded to use a read-committed transaction isolation level. Not all transactions require the
serializable transaction isolation level.

Make intelligent use of lower cursor concurrency options, such as optimistic concurrency options.

In a system with a low probability of concurrent updates, the overhead of dealing with an occasional "somebody else
changed your data after you read it" error can be much lower than the overhead of always locking rows as they are read.

Access the least amount of data possible while in a transaction.

This lessens the number of locked rows, thereby reducing contention between transactions.

Avoiding Concurrency Problems

To prevent concurrency problems, manage implicit transactions carefully. When using implicit transactions, the next Transact-SQL
statement after COMMIT or ROLLBACK automatically starts a new transaction. This can cause a new transaction to be opened
while the application browses through data, or even when it requires input from the user. After completing the last transaction
required to protect data modifications, turn off implicit transactions until a transaction is once again required to protect data
modifications. This process lets Microsoft® SQL Server™ use autocommit mode while the application is browsing data and
getting input from the user.

Accessing and Changing Relational Data (SQL Server 2000)

Locking
Microsoft® SQL Server™ 2000 uses locking to ensure transactional integrity and database consistency. Locking prevents users
from reading data being changed by other users, and prevents multiple users from changing the same data at the same time. If
locking is not used, data within the database may become logically incorrect, and queries executed against that data may produce
unexpected results.

Although SQL Server enforces locking automatically, you can design applications that are more efficient by understanding and
customizing locking in your applications.

Accessing and Changing Relational Data (SQL Server 2000)

Concurrency Problems
If locking is not available and several users access a database concurrently, problems may occur if their transactions use the same
data at the same time. Concurrency problems include:

Lost or buried updates.

Uncommitted dependency (dirty read).

Inconsistent analysis (nonrepeatable read).

Phantom reads.

Lost Updates

Lost updates occur when two or more transactions select the same row and then update the row based on the value originally
selected. Each transaction is unaware of other transactions. The last update overwrites updates made by the other transactions,
which results in lost data.

For example, two editors make an electronic copy of the same document. Each editor changes the copy independently and then
saves the changed copy, thereby overwriting the original document. The editor who saves the changed copy last overwrites
changes made by the first editor. This problem could be avoided if the second editor could not make changes until the first editor
had finished.

Uncommitted Dependency (Dirty Read)

Uncommitted dependency occurs when a second transaction selects a row that is being updated by another transaction. The
second transaction is reading data that has not been committed yet and may be changed by the transaction updating the row.

For example, an editor is making changes to an electronic document. During the changes, a second editor takes a copy of the
document that includes all the changes made so far, and distributes the document to the intended audience. The first editor then
decides the changes made so far are wrong and removes the edits and saves the document. The distributed document contains
edits that no longer exist, and should be treated as if they never existed. This problem could be avoided if no one could read the
changed document until the first editor determined that the changes were final.

Inconsistent Analysis (Nonrepeatable Read)

Inconsistent analysis occurs when a second transaction accesses the same row several times and reads different data each time.
Inconsistent analysis is similar to uncommitted dependency in that another transaction is changing the data that a second
transaction is reading. However, in inconsistent analysis, the data read by the second transaction was committed by the
transaction that made the change. Also, inconsistent analysis involves multiple reads (two or more) of the same row and each
time the information is changed by another transaction; thus, the term nonrepeatable read.

For example, an editor reads the same document twice, but between each reading, the writer rewrites the document. When the
editor reads the document for the second time, it has changed. The original read was not repeatable. This problem could be
avoided if the editor could read the document only after the writer has finished writing it.

Phantom Reads

Phantom reads occur when an insert or delete action is performed against a row that belongs to a range of rows being read by a
transaction. The transaction's first read of the range of rows shows a row that no longer exists in the second or succeeding read,
as a result of a deletion by a different transaction. Similarly, as the result of an insert by a different transaction, the transaction's
second or succeeding read shows a row that did not exist in the original read.

For example, an editor makes changes to a document submitted by a writer, but when the changes are incorporated into the
master copy of the document by the production department, they find that new unedited material has been added to the
document by the author. This problem could be avoided if no one could add new material to the document until the editor and
production department finish working with the original document.

Accessing and Changing Relational Data (SQL Server 2000)

Optimistic and Pessimistic Concurrency
Microsoft® SQL Server™ 2000 offers both optimistic and pessimistic concurrency control. Optimistic concurrency control uses
cursors. Pessimistic concurrency control is the default for SQL Server.

Optimistic Concurrency

Optimistic concurrency control works on the assumption that resource conflicts between multiple users are unlikely (but not
impossible), and allows transactions to execute without locking any resources. Only when attempting to change data are
resources checked to determine if any conflicts have occurred. If a conflict occurs, the application must read the data and attempt
the change again.

Pessimistic Concurrency

Pessimistic concurrency control locks resources as they are required, for the duration of a transaction. Unless deadlocks occur, a
transaction is assured of successful completion.

See Also

Cursor Concurrency

Deadlocking

Accessing and Changing Relational Data (SQL Server 2000)

Isolation Levels
When locking is used as the concurrency control mechanism, it solves concurrency problems. This allows all transactions to run in
complete isolation of one another, although there can be more than one transaction running at any time.

Serializability is the database state achieved by running a set of concurrent transactions equivalent to the database state that
would be achieved if the set of transactions were executed serially in order.

SQL-92 Isolation Levels

Although serialization is important to transactions to ensure that the data in the database is correct at all times, many transactions
do not always require full isolation. For example, several writers are working on different chapters of the same book. New
chapters can be submitted to the project at any time. However, after a chapter has been edited, a writer cannot make any changes
to the chapter without the editor's approval. This way, the editor can be assured of the accuracy of the book project at any point in
time, despite the arrival of new unedited chapters. The editor can see both previously edited chapters and recently submitted
chapters.

The level at which a transaction is prepared to accept inconsistent data is termed the isolation level. The isolation level is the
degree to which one transaction must be isolated from other transactions. A lower isolation level increases concurrency, but at the
expense of data correctness. Conversely, a higher isolation level ensures that data is correct, but can affect concurrency negatively.
The isolation level required by an application determines the locking behavior SQL Server uses.

SQL-92 defines the following isolation levels, all of which are supported by SQL Server:

Read uncommitted (the lowest level where transactions are isolated only enough to ensure that physically corrupt data is
not read).

Read committed (SQL Server default level).

Repeatable read.

Serializable (the highest level, where transactions are completely isolated from one another).

If transactions are run at an isolation level of serializable, any concurrent overlapping transactions are guaranteed to be
serializable.

These isolation levels allow different types of behavior.

Isolation level Dirty read Nonrepeatable read Phantom
Read uncommitted Yes Yes Yes
Read committed No Yes Yes
Repeatable read No No Yes
Serializable No No No

Transactions must be run at an isolation level of repeatable read or higher to prevent lost updates that can occur when two
transactions each retrieve the same row, and then later update the row based on the originally retrieved values. If the two
transactions update rows using a single UPDATE statement and do not base the update on the previously retrieved values, lost
updates cannot occur at the default isolation level of read committed.

Accessing and Changing Relational Data (SQL Server 2000)

Understanding Locking in SQL Server
Microsoft® SQL Server™ 2000 has multigranular locking that allows different types of resources to be locked by a transaction. To
minimize the cost of locking, SQL Server locks resources automatically at a level appropriate to the task. Locking at a smaller
granularity, such as rows, increases concurrency, but has a higher overhead because more locks must be held if many rows are
locked. Locking at a larger granularity, such as tables, are expensive in terms of concurrency because locking an entire table
restricts access to any part of the table by other transactions, but has a lower overhead because fewer locks are being maintained.

SQL Server can lock these resources (listed in order of increasing granularity).

Resource Description
RID Row identifier. Used to lock a single row within a table.
Key Row lock within an index. Used to protect key ranges in

serializable transactions.
Page 8 kilobyte –(KB) data page or index page.
Extent Contiguous group of eight data pages or index pages.
Table Entire table, including all data and indexes.
DB Database.

SQL Server locks resources using different lock modes that determine how the resources can be accessed by concurrent
transactions.

SQL Server uses these resource lock modes.

Lock mode Description
Shared (S) Used for operations that do not change or update data (read-

only operations), such as a SELECT statement.
Update (U) Used on resources that can be updated. Prevents a common

form of deadlock that occurs when multiple sessions are
reading, locking, and potentially updating resources later.

Exclusive (X) Used for data-modification operations, such as INSERT, UPDATE,
or DELETE. Ensures that multiple updates cannot be made to the
same resource at the same time.

Intent Used to establish a lock hierarchy. The types of intent locks are:
intent shared (IS), intent exclusive (IX), and shared with intent
exclusive (SIX).

Schema Used when an operation dependent on the schema of a table is
executing. The types of schema locks are: schema modification
(Sch-M) and schema stability (Sch-S).

Bulk Update (BU) Used when bulk-copying data into a table and the TABLOCK hint
is specified.

Shared Locks

Shared (S) locks allow concurrent transactions to read (SELECT) a resource. No other transactions can modify the data while
shared (S) locks exist on the resource. Shared (S) locks on a resource are released as soon as the data has been read, unless the
transaction isolation level is set to repeatable read or higher, or a locking hint is used to retain the shared (S) locks for the
duration of the transaction.

Update Locks

Update (U) locks prevent a common form of deadlock. A typical update pattern consists of a transaction reading a record,
acquiring a shared (S) lock on the resource (page or row), and then modifying the row, which requires lock conversion to an
exclusive (X) lock. If two transactions acquire shared-mode locks on a resource and then attempt to update data concurrently, one
transaction attempts the lock conversion to an exclusive (X) lock. The shared-mode-to-exclusive lock conversion must wait
because the exclusive lock for one transaction is not compatible with the shared-mode lock of the other transaction; a lock wait
occurs. The second transaction attempts to acquire an exclusive (X) lock for its update. Because both transactions are converting to
exclusive (X) locks, and they are each waiting for the other transaction to release its shared-mode lock, a deadlock occurs.

To avoid this potential deadlock problem, update (U) locks are used. Only one transaction can obtain an update (U) lock to a
resource at a time. If a transaction modifies a resource, the update (U) lock is converted to an exclusive (X) lock. Otherwise, the
lock is converted to a shared-mode lock.

Exclusive Locks

Exclusive (X) locks prevent access to a resource by concurrent transactions. No other transactions can read or modify data locked
with an exclusive (X) lock.

Intent Locks

An intent lock indicates that SQL Server wants to acquire a shared (S) lock or exclusive (X) lock on some of the resources lower
down in the hierarchy. For example, a shared intent lock placed at the table level means that a transaction intends on placing
shared (S) locks on pages or rows within that table. Setting an intent lock at the table level prevents another transaction from
subsequently acquiring an exclusive (X) lock on the table containing that page. Intent locks improve performance because SQL
Server examines intent locks only at the table level to determine if a transaction can safely acquire a lock on that table. This
removes the requirement to examine every row or page lock on the table to determine if a transaction can lock the entire table.

Intent locks include intent shared (IS), intent exclusive (IX), and shared with intent exclusive (SIX).

Lock mode Description
Intent shared (IS) Indicates the intention of a transaction to read some (but not

all) resources lower in the hierarchy by placing S locks on
those individual resources.

Intent exclusive (IX) Indicates the intention of a transaction to modify some (but
not all) resources lower in the hierarchy by placing X locks on
those individual resources. IX is a superset of IS.

Shared with intent
exclusive (SIX)

Indicates the intention of the transaction to read all of the
resources lower in the hierarchy and modify some (but not
all) resources lower in the hierarchy by placing IX locks on
those individual resources. Concurrent IS locks at the top-level
resource are allowed. For example, an SIX lock on a table
places an SIX lock on the table (allowing concurrent IS locks),
and IX locks on the pages being modified (and X locks on the
modified rows). There can be only one SIX lock per resource at
one time, preventing updates to the resource made by other
transactions, although other transactions can read resources
lower in the hierarchy by obtaining IS locks at the table level.

Schema Locks

Schema modification (Sch-M) locks are used when a table data definition language (DDL) operation (such as adding a column or
dropping a table) is being performed.

Schema stability (Sch-S) locks are used when compiling queries. Schema stability (Sch-S) locks do not block any transactional
locks, including exclusive (X) locks. Therefore, other transactions can continue to run while a query is being compiled, including
transactions with exclusive (X) locks on a table. However, DDL operations cannot be performed on the table.

Bulk Update Locks

Bulk update (BU) locks are used when bulk copying data into a table and either the TABLOCK hint is specified or the table lock
on bulk load table option is set using sp_tableoption. Bulk update (BU) locks allow processes to bulk copy data concurrently
into the same table while preventing other processes that are not bulk copying data from accessing the table.

See Also

Deadlocking

Cursor Locking

Locking Hints

Accessing and Changing Relational Data (SQL Server 2000)

Lock Compatibility
Only compatible lock types can be placed on a resource that is already locked. For example, while an exclusive (X) lock is held, no
other transaction can acquire a lock of any kind (shared, update, or exclusive) on that resource until the exclusive (X) lock is
released at the end of the first transaction. Alternatively, if a shared (S) lock has been applied to a resource, other transactions can
also acquire a shared lock or an update (U) lock on that item, even if the first transaction has not completed. However, other
transactions cannot acquire an exclusive lock until the shared lock has been released.

Resource lock modes have a compatibility matrix that shows which locks are compatible with other locks obtained on the same
resource (listed in increasing lock strength).

 Existing granted mode
Requested mode IS S U IX SIX X

Intent shared (IS) Yes Yes Yes Yes Yes No
Shared (S) Yes Yes Yes No No No
Update (U) Yes Yes No No No No
Intent exclusive (IX) Yes No No Yes No No
Shared with intent
exclusive (SIX)

Yes No No No No No

Exclusive (X) No No No No No No

Note An intent exclusive (IX) lock is compatible with an IX lock mode because IX means the intention to update only some of the
rows rather than all of them. Other transactions that want to read or update some of the rows are also permitted providing they
are not the same rows being updated by other transactions.

The schema stability (Sch-S) lock is compatible with all lock modes except the schema modification (Sch-M) lock mode.

The schema modification (Sch-M) lock is incompatible with all lock modes.

The bulk update (BU) lock is compatible only with schema stability (Sch-S) and other bulk update (BU) locks.

Accessing and Changing Relational Data (SQL Server 2000)

Key-Range Locking
Key-range locking solves the phantom read concurrency problem and supports serializable transactions. Key-range locks cover
individual records and the ranges between records, preventing phantom insertions or deletions into a set of records accessed by a
transaction. Key-range locks are used only on behalf of transactions operating at the serializable isolation level.

Serializability requires that any query executed during a transaction must obtain the same set of rows if it is executed again at
some later point within the same transaction. If this query attempts to fetch a row that does not exist, the row must not be
inserted by other transactions until the transaction that attempts to access the row completes. If a second transaction were
allowed to insert the row, it would appear as a phantom.

If a second transaction attempts to insert a row that resides on a locked data page, page-level locking prevents the phantom row
from being added, and serializability is maintained. However, if the row is added to a data page not already locked by the first
transaction, a locking mechanism should be in place to prevent the row from being added.

A key-range lock works by covering the index rows and the ranges between those index rows rather than locking the entire base
table rows. Because any attempt to insert, update, or delete any row within the range by a second transaction requires a
modification to the index, the second transaction is blocked until the first transaction completes because key-range locks cover
the index entries.

Key-Range Lock Modes

Key-range locks include both a range and a row component, specified in range-row format:

Range represents the lock mode protecting the range between two consecutive index entries.

Row represents the lock mode protecting the index entry.

Mode represents the combined lock mode used. Key-range lock modes consist of two parts. The first represents the type of
lock used to lock the index range (RangeT) and the second represents the lock type used to lock a specific key (K). The two
parts are connected with an underscore (_), such as RangeT_K.

Range Row Mode Description
RangeS S RangeS_S Shared range, shared resource lock; serializable

range scan.
RangeS U RangeS_U Shared range, update resource lock; serializable

update scan.
RangeI Null RangeI_N Insert range, null resource lock; used to test ranges

before inserting a new key into an index.
RangeX X RangeX_X Exclusive range, exclusive resource lock; used when

updating a key in a range.

Note The internal Null lock mode is compatible with all other lock modes.

Key-range lock modes have a compatibility matrix that shows which locks are compatible with other locks obtained on
overlapping keys and ranges.

 Existing granted mode
Requested

mode
S U X RangeS_S RangeS_U RangeI_N RangeX_X

Shared (S) Yes Yes No Yes Yes Yes No
Update (U) Yes No No Yes No Yes No
Exclusive (X) No No No No No Yes No
RangeS_S Yes Yes No Yes Yes No No
RangeS_U Yes No No Yes No No No
RangeI_N Yes Yes Yes No No Yes No
RangeX_X No No No No No No No

Conversion Locks

Conversion locks are created when a key-range lock overlaps another lock.

Lock 1 Lock 2 Conversion Lock
S RangeI_N RangeI_S
U RangeI_N RangeI_U
X RangeI_N RangeI_X
RangeI_N RangeS_S RangeX_S
RangeI_N RangeS_U RangeX_U

Conversion locks can be observed for a short period of time under different complex circumstances, sometimes while running
concurrent processes.

Serializable Range Scan, Singleton Fetch, Delete, and Insert

Key-range locking ensures that these scenarios are serializable:

Range scan query

Singleton fetch of nonexistent row

Delete operation

Insert operation

However, the following conditions must be satisfied before key-range locking can occur:

The transaction-isolation level must be set to SERIALIZABLE.

The operation performed on the data must use an index range access. Range locking is activated only when query
processing (such as the optimizer) chooses an index path to access the data.

The following examples for each of the scenarios are based upon this table and index.

Range Scan Query

To ensure a range scan query is serializable, the same query should return the same results each time it is executed within the

same transaction. New rows must not be inserted within the range scan query by other transactions; otherwise, these become
phantom inserts. For example, the following query uses the table and index in the previous illustration:

SELECT name FROM mytable WHERE name BETWEEN 'A' AND 'C'

Key-range locks are placed on the index entries corresponding to the range of data rows where the name is between the values
Adam and Dale, preventing new rows qualifying in the previous query from being added or deleted. Although the first name in
this range is Adam, the RangeS_S mode key-range lock on this index entry ensures that no new names beginning with the letter A
can be added before Adam, such as Abigail. Similarly, the RangeS_S key-range lock on the index entry for Dale ensures that no
new names beginning with the letter C can be added after Carlos, such as Clive.

Note The number of RangeS_S locks held is n+1, where n is the number of rows that satisfy the query.

Singleton Fetch of N onexistent Data

If a query within a transaction attempts to select a row that does not exist, issuing the query at a later point within the same
transaction has to return the same result. No other transaction can be allowed to insert that nonexistent row. For example, given
this query:

SELECT name FROM mytable WHERE name = 'Bill'

A key-range lock is placed on the index entry corresponding to the name range from Ben to Bing because the name Bill would be
inserted between these two adjacent index entries. The RangeS_S mode key-range lock is placed on the index entry Bing. This
prevents any other transaction from inserting values, such as Bill, between the index entries Ben and Bing.

Delete Operation

When deleting a value within a transaction, the range the value falls into does not have to be locked for the duration of the
transaction performing the delete operation. Locking the deleted key value until the end of the transaction is sufficient to maintain
serializability. For example, given this DELETE statement:

DELETE mytable WHERE name = 'Bob'

An exclusive (X) lock is placed on the index entry corresponding to the name Bob. Other transactions can insert or delete values
before or after the deleted value Bob. However, any transaction attempting to read, insert, or delete the value Bob will be blocked
until the deleting transaction either commits or rolls back.

Range delete can be executed using three basic lock modes: row, page, or table lock. The page, table, or row locking strategy is
decided by query optimizer, or can be specified by the user through optimizer hints such as ROWLOCK, PAGLOCK, or TABLOCK.
In case page or table lock is used, SQL Server immediately releases the index page containing the deleted rows assuming that all
rows are deleted from this page. In contrast, when row lock is used, all deleted rows are marked only as deleted; they are removed
from the index page later using a background task.

Insert Operation

When inserting a value within a transaction, the range the value falls into does not have to be locked for the duration of the
transaction performing the insert operation. Locking the inserted key value until the end of the transaction is sufficient to
maintain serializability. For example, given this INSERT statement:

INSERT mytable VALUES ('Dan')

The RangeI_N mode key-range lock is placed on the index entry corresponding to the name David to test the range. If the lock is
granted, Dan is inserted and an exclusive (X) lock is placed on the value Dan. The RangeI_N mode key-range lock is necessary only
to test the range and is not held for the duration of the transaction performing the insert operation. Other transactions can insert
or delete values before or after the inserted value Dan. However, any transaction attempting to read, insert, or delete the value
Dan will be locked until the inserting transaction either commits or rolls back.

Accessing and Changing Relational Data (SQL Server 2000)

Lock Escalation
Lock escalation is the process of converting many fine-grain locks into fewer coarse-grain locks, reducing system overhead.
Microsoft® SQL Server™ 2000 automatically escalates row locks and page locks into table locks when a transaction exceeds its
escalation threshold.

For example, when a transaction requests rows from a table, SQL Server automatically acquires locks on those rows affected and
places higher-level intent locks on the pages and table, or index, which contain those rows. When the number of locks held by the
transaction exceeds its threshold, SQL Server attempts to change the intent lock on the table to a stronger lock (for example, an
intent exclusive (IX) would change to an exclusive (X) lock). After acquiring the stronger lock, all page and row level locks held by
the transaction on the table are released, reducing lock overhead.

SQL Server may choose to do both row and page locking for the same query, for example, placing page locks on the index (if
enough contiguous keys in a nonclustered index node are selected to satisfy the query) and row locks on the data. This reduces
the likelihood that lock escalation will be necessary.

Lock escalation thresholds are determined dynamically by SQL Server and do not require configuration.

See Also

locks Option

Accessing and Changing Relational Data (SQL Server 2000)

Dynamic Locking
Although row level locks increase concurrency, it is at the cost of system overhead. Table or page locks lower overhead, but at the
expense of lowering concurrency.

Microsoft® SQL Server™ 2000 uses a dynamic locking strategy to determine the most cost-effective locks. SQL Server
automatically determines what locks are most appropriate when the query is executed, based on the characteristics of the schema
and query. For example, to reduce the overhead of locking, the optimizer may choose page-level locks in an index when
performing an index scan.

Dynamic locking has the following advantages:

Simplified database administration. Database administrators no longer have to be concerned with adjusting lock escalation
thresholds.

Increased performance. SQL Server minimizes system overhead by using locks appropriate to the task.

Application developers can concentrate on development. SQL Server adjusts locking automatically.

Accessing and Changing Relational Data (SQL Server 2000)

Displaying Locking Information
Microsoft® SQL Server™ 2000 provides a report of the active locks when the sp_lock system stored procedure is executed.

Here is the result set.
spid dbid ObjId IndId Type Resource Mode Status
1 1 0 0 DB S GRANT
6 1 0 0 DB S GRANT
7 1 0 0 DB S GRANT
8 1 0 0 DB S GRANT
8 1 1396200024 0 RID 1:1225:2 X GRANT
8 1 1396200024 0 PAG 1:1225 IX GRANT
8 1 1396200024 2 PAG 1:1240 IX GRANT
8 1 21575115 0 TAB IS GRANT
8 1 1396200024 2 KEY (03000100cb04) X GRANT
8 1 1396200024 0 TAB IX GRANT

Type Column

The Type column shows the type of the resource currently locked.

Resource type Description
RID Row identifier used to lock a single row within a table.
KEY Row lock within an index. Used to protect key ranges in

serializable transactions.
PAG Data or index page.
EXT Contiguous group of eight data pages or index pages.
TAB Entire table, including all data and indexes.
DB Database.

Resource Column

The Resource column provides information about the resource being locked.

Resource type Description
RID Row identifier of the locked row within the table. The row is

identified by a fileid:page:rid combination, where rid is the row
identifier on the page.

KEY Hexadecimal number used internally by SQL Server.
PAG Page number. The page is identified by a fileid:page combination,

where fileid is the fileid in the sysfiles table, and page is the
logical page number within that file.

EXT First page number in the extent being locked. The page is
identified by a fileid:page combination.

TAB No information is provided because the ObjId column already
contains the object ID of the table.

DB No information is provided because the dbid column already
contains the database ID of the database.

In the result set from sp_lock, the RID resource type being locked has a resource description of 1:1225:2. This indicates that row
identifier 2, on page number 1225, on fileid 1 has a lock applied to it. For more information, see Troubleshooting Deadlocks.

Mode Column

The Mode column describes the type of lock being applied to the resource. The types of locks include any multigranular lock.

Status Column

The Status column shows if the lock has been obtained (GRANT), is blocking on another process (WAIT), or is being converted to
another lock (CNVT). A lock being converted to another lock is held in one mode, but is waiting to acquire a stronger lock mode
(for example, update to exclusive). When diagnosing blocking issues, a CNVT can be considered similar to WAIT.

Other Tools for Monitoring Locking Activity

Using sp_lock to display locking information may not always be feasible when many locks are held and released faster than
sp_lock can display them. In this case, SQL Profiler can be used to monitor and record locking information. Additionally, Windows
Performance Monitor can be used to monitor lock activity using the SQL Server Locks Object counter.

To view the current locks

Transact-SQL

Enterprise Manager

Enterprise Manager

SQL-DMO

See Also

Locks Event Category

syslockinfo

SQL Server: Locks Object

sp_lock

Accessing and Changing Relational Data (SQL Server 2000)

Customizing Locking with SQL Server
Although Microsoft® SQL Server™ 2000 implements locking automatically, it is possible to customize this in applications by:

Handling deadlocks and setting the deadlock priority.

Handling time-outs and setting the lock time-out duration.

Setting the transaction isolation level.

Using table-level locking hints with the SELECT, INSERT, UPDATE, and DELETE statements.

Configuring the locking granularity for an index.

Accessing and Changing Relational Data (SQL Server 2000)

Deadlocking
A deadlock occurs when there is a cyclic dependency between two or more threads for some set of resources.

Deadlock is a condition that can occur on any system with multiple threads, not just on a relational database management system.
A thread in a multi-threaded system may acquire one or more resources (for example, locks). If the resource being acquired is
currently owned by another thread, the first thread may have to wait for the owning thread to release the target resource. The
waiting thread is said to have a dependency on the owning thread for that particular resource.

If the owning thread wants to acquire another resource that is currently owned by the waiting thread, the situation becomes a
deadlock: both threads cannot release the resources they own until their transactions are committed or rolled back, and their
transactions cannot be committed or rolled back because they are waiting on resources the other owns. For example, thread T1
running transaction 1 has an exclusive lock on the Supplier table. Thread T2 running transaction 2 obtains an exclusive lock on
the Part table, and then wants a lock on the Supplier table. Transaction 2 cannot obtain the lock because transaction 1 has it.
Transaction 2 is blocked, waiting on transaction 1. Transaction 1 then wants a lock on the Part table, but cannot obtain it because
transaction 2 has it locked. The transactions cannot release the locks held until the transaction is committed or rolled back. The
transactions cannot commit or roll back because they require a lock held by the other transaction to continue.

Note Deadlocking is often confused with normal blocking. When one transaction has a lock on a resource that another
transaction wants, the second transaction waits for the lock to be released. By default, SQL Server transactions do not time out
(unless LOCK_TIMEOUT is set). The second transaction is blocked, not deadlocked. For more information, see Customizing the
Lock Time-out.

In this illustration, thread T1 has a dependency on thread T2 for the Part table lock resource. Similarly, thread T2 has a
dependency on thread T1 for the Supplier table lock resource. Because these dependencies form a cycle, there is a deadlock
between threads T1 and T2.

Accessing and Changing Relational Data (SQL Server 2000)

Detecting and Ending Deadlocks
Detecting and Ending Deadlocks

In Microsoft® SQL Server™ 2000, a single user session may have one or more threads running on its behalf. Each thread may
acquire or wait to acquire a variety of resources, such as:

Locks.

Parallel query execution-related resources (coordinator, producer, consumer threads associated with an exchange port).

Threads.

Memory.

All these resources, except memory, participate in the SQL Server deadlock detection scheme. For memory, SQL Server uses a
time-out based mechanism, which is controlled by the query wait option in sp_configure.

In SQL Server 2000, deadlock detection is performed by a separate thread called the lock monitor thread. The lock monitor thread
initiates a deadlock search for a particular thread in one of the following conditions:

The thread has been waiting for the same resource for a specified period of time. The lock monitor thread periodically
wakes up and identifies all the threads waiting on some resource. If these threads continue to wait on the same resource
when the lock monitor wakes up again, it initiates a deadlock search for the waiting thread.

The thread waits on a resource and initiates an eager deadlock search.

SQL Server typically performs periodic deadlock detection only; it does not use the eager mode. Because the number of deadlocks
encountered in the system is usually small, periodic deadlock detection helps to reduce the overhead of deadlock detection in the
system.

When the lock monitor initiates deadlock search for a particular thread, it identifies the resource on which the thread is waiting.
The lock monitor then finds the owner(s) for that particular resource and recursively continues the deadlock search for those
threads until it finds a cycle. A cycle identified in this manner forms a deadlock.

After a deadlock is identified, SQL Server ends a deadlock by choosing the thread automatically (the deadlock victim) that can
break the deadlock. SQL Server rolls back the deadlock victim's transaction, notifies the thread's application (by returning error
message number 1205), cancels the thread's current request, and then allows the transactions of the nonbreaking threads to
continue.

Typically, SQL Server chooses the thread running the transaction that is least expensive to undo as the deadlock victim.
Alternatively, a user can set the DEADLOCK_PRIORITY of a session to LOW, using the SET statement. The DEADLOCK_PRIORITY
option controls how sessions are weighed in deadlock situations. If a session's setting is set to LOW, that session becomes the
preferred victim when involved in a deadlock situation.

Identifying Deadlocks

After a deadlock is identified, SQL Server chooses a particular thread as the deadlock victim and returns an error message with a
list of resources involved in the deadlock. The deadlock message takes the following form:

Your transaction (process ID #52) was deadlocked on {lock | communication buffer | thread} resources with
another process and has been chosen as the deadlock victim. Rerun your transaction.

The threads and resources involved in a deadlock are located in the error log. For more information about how to identify the
deadlocked threads and the resources involved in a deadlock, see Troubleshooting Deadlocks.

See Also

SET DEADLOCK_PRIORITY

Accessing and Changing Relational Data (SQL Server 2000)

Handling Deadlocks
Handling Deadlocks

When a transaction submitted by an application is chosen as the deadlock victim, the transaction is terminated automatically and
rolled back, and error message 1205 is returned to the application. Because any application submitting SQL queries can be
chosen as the deadlock victim, applications should have an error handler that can trap error message 1205. If an application does
not trap the error, it can proceed unaware that its transaction has been rolled back, and errors can occur.

Implementing an error handler that traps error message 1205 allows an application to handle the deadlock situation and take
remedial action (for example, automatically resubmitting the query that was involved in the deadlock). Resubmitting the query
automatically can mean that the user does not need to know that a deadlock occurred.

Before resubmitting a query automatically, client programs should pause to give the transaction holding the required locks a
chance to complete and release those locks. This minimizes the likelihood of the transaction being deadlocked again as it attempts
to obtain those locks.

Note A deadlock does not always cancel the batch in which the error was returned. It is important for the client program to check
for errors because a deadlock does not always return a failed return code. In most cases, if a deadlock has occurred and the batch
has not been canceled automatically, the application should cancel the current query. If this is not done, SQL Server may still have
results pending on the connection that it expects the client to process. If any pending results are not processed, an error occurs
when the application next tries to send a command to SQL Server.

See Also

Handling Errors and Messages

Accessing and Changing Relational Data (SQL Server 2000)

Minimizing Deadlocks
Minimizing Deadlocks

Although deadlocks cannot be avoided completely, the number of deadlocks can be minimized. Minimizing deadlocks can
increase transaction throughput and reduce system overhead because fewer transactions are:

Rolled back, undoing all the work performed by the transaction.

Resubmitted by applications because they were rolled back when deadlocked.

To help minimize deadlocks:

Access objects in the same order.

Avoid user interaction in transactions.

Keep transactions short and in one batch.

Use a low isolation level.

Use bound connections.

Access Objects in the Same Order

If all concurrent transactions access objects in the same order, deadlocks are less likely to occur. For example, if two concurrent
transactions obtain a lock on the Supplier table, and then on the Part table, one transaction is blocked on the Supplier table until
the other transaction is completed. After the first transaction commits or rolls back, the second continues. A deadlock does not
occur. Using stored procedures for all data modifications can standardize the order of accessing objects.

Avoid User Interaction in Transactions

Avoid writing transactions that include user interaction because the speed of batches running without user intervention is much
faster than the speed at which a user can manually respond to queries, such as replying to a prompt for a parameter requested by
an application. For example, if a transaction is waiting for user input, and the user goes to lunch, or even home for the weekend,
the user holds up the transaction from completing. This degrades system throughput because any locks held by the transaction
are released only when the transaction is committed or rolled back. Even if a deadlock situation does not arise, other transactions
accessing the same resources are blocked, waiting for the transaction to complete.

Keep Transactions Short and in One Batch

A deadlock typically occurs when several long-running transactions execute concurrently in the same database. The longer the
transaction, the longer the exclusive or update locks are held, blocking other activity and leading to possible deadlock situations.

Keeping transactions in one batch minimizes network roundtrips during a transaction, reducing possible delays in completing the
transaction and releasing locks.

Use a Low Isolation Level

Determine whether a transaction can run at a lower isolation level. Implementing read committed allows a transaction to read
data previously read (not modified) by another transaction without waiting for the first transaction to complete. Using a lower
isolation level, such as read committed, holds shared locks for a shorter duration than a higher isolation level such as serializable,
thereby reducing locking contention.

Use Bound Connections

Using bound connections, two or more connections opened by the same application can cooperate. Any locks acquired by the
secondary connections are held as if they were acquired by the primary connection, and vice versa, and therefore do not block
each other.

See Also

Using Bound Connections

Accessing and Changing Relational Data (SQL Server 2000)

Customizing the Lock Time-out
When Microsoft® SQL Server™ 2000 cannot grant a lock to a transaction on a resource because another transaction already
owns a conflicting lock on that resource, the first transaction becomes blocked waiting on that resource. If this causes a deadlock,
SQL Server terminates one of the participating transactions (with no time-out involved). If there is no deadlock, the transaction
requesting the lock is blocked until the other transaction releases the lock. By default, there is no mandatory time-out period, and
no way to test if a resource is locked before locking it, except to attempt to access the data (and potentially get blocked
indefinitely).

Note The sp_who system stored procedure can be used to determine if a process is being blocked, and who is blocking it.

The LOCK_TIMEOUT setting allows an application to set a maximum time that a statement waits on a blocked resource. When a
statement has waited longer than the LOCK_TIMEOUT setting, the blocked statement is canceled automatically, and error message
1222 "Lock request time-out period exceeded" is returned to the application.

However, any transaction containing the statement is not rolled back or canceled by SQL Server. Therefore, the application must
have an error handler that can trap error message 1222. If an application does not trap the error, it can proceed unaware that an
individual statement within a transaction has been canceled, and errors can occur because statements later in the transaction may
depend on the statement that was never executed.

Implementing an error handler that traps error message 1222 allows an application to handle the time-out situation and take
remedial action for example, automatically resubmitting the statement that was blocked, or rolling back the entire transaction.

To determine the current LOCK_TIMEOUT setting, execute the @@LOCK_TIMEOUT function, for example:

DECLARE @Timeout int
SELECT @Timeout = @@lock_timeout
SELECT @Timeout
GO

See Also

@@LOCK_TIMEOUT

SET LOCK_TIMEOUT

sp_who

Handling Errors and Messages

Accessing and Changing Relational Data (SQL Server 2000)

Customizing Transaction Isolation Level
By default, Microsoft® SQL Server™ 2000 operates at an isolation level of READ COMMITTED. However, an application may have
to operate at a different isolation level. To make use of either more or less strict isolation levels in applications, locking can be
customized for an entire session by setting the isolation level of the session with the SET TRANSACTION ISOLATION LEVEL
statement.

When the isolation level is specified, the locking behavior for all SELECT statements in the SQL Server session operates at that
isolation level and remains in effect until the session terminates, or until the isolation level is set to another level. For example, to
set the transaction isolation level to SERIALIZABLE, ensuring that no phantom rows can be inserted by concurrent transactions
into the authors table, execute:

USE pubs
GO
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO
BEGIN TRANSACTION
SELECT au_lname FROM authors

Note The isolation level can be overridden, if necessary, for individual SELECT statements by specifying a table-level locking hint.
Specifying a table-level locking hint does not affect other statements in the session. It is recommended that table-level locking
hints be used to change the default locking behavior only when absolutely necessary.

To determine the transaction isolation level currently set, use the DBCC USEROPTIONS statement, for example:

USE pubs
GO
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO
DBCC USEROPTIONS
GO

Set Option Value
Textsize 4096
Language us_english
Dateformat mdy
Datefirst 7
isolation level repeatable read

(5 rows affected)
DBCC execution completed. If DBCC printed error messages, see your System Administrator.

See Also

DBCC USEROPTIONS

SET TRANSACTION ISOLATION LEVEL

SELECT

Accessing and Changing Relational Data (SQL Server 2000)

Locking Hints
A range of table-level locking hints can be specified using the SELECT, INSERT, UPDATE, and DELETE statements to direct
Microsoft® SQL Server™ 2000 to the type of locks to be used. Table-level locking hints can be used when a finer control of the
types of locks acquired on an object is required. These locking hints override the current transaction isolation level for the session.

Note The SQL Server query optimizer automatically makes the correct determination. It is recommended that table-level locking
hints be used to change the default locking behavior only when necessary. Disallowing a locking level can affect concurrency
adversely.

Locking hint Description
HOLDLOCK Hold a shared lock until completion of the transaction

instead of releasing the lock as soon as the required table,
row, or data page is no longer required. HOLDLOCK is
equivalent to SERIALIZABLE.

NOLOCK Do not issue shared locks and do not honor exclusive locks.
When this option is in effect, it is possible to read an
uncommitted transaction or a set of pages that are rolled
back in the middle of a read. Dirty reads are possible. Only
applies to the SELECT statement.

PAGLOCK Use page locks where a single table lock would usually be
taken.

READCOMMITTED Perform a scan with the same locking semantics as a
transaction running at the READ COMMITTED isolation level.
By default, SQL Server 2000 operates at this isolation level.

READPAST Skip locked rows. This option causes a transaction to skip
rows locked by other transactions that would ordinarily
appear in the result set, rather than block the transaction
waiting for the other transactions to release their locks on
these rows. The READPAST lock hint applies only to
transactions operating at READ COMMITTED isolation and
will read only past row-level locks. Applies only to the
SELECT statement.

READUNCOMMITTED Equivalent to NOLOCK.
REPEATABLEREAD Perform a scan with the same locking semantics as a

transaction running at the REPEATABLE READ isolation level.
ROWLOCK Use row-level locks instead of the coarser-grained page-

and table-level locks.
SERIALIZABLE Perform a scan with the same locking semantics as a

transaction running at the SERIALIZABLE isolation level.
Equivalent to HOLDLOCK.

TABLOCK Use a table lock instead of the finer-grained row- or page-
level locks. SQL Server holds this lock until the end of the
statement. However, if you also specify HOLDLOCK, the lock
is held until the end of the transaction.

TABLOCKX Use an exclusive lock on a table. This lock prevents others
from reading or updating the table and is held until the end
of the statement or transaction.

UPDLOCK Use update locks instead of shared locks while reading a
table, and hold locks until the end of the statement or
transaction. UPDLOCK has the advantage of allowing you to
read data (without blocking other readers) and update it
later with the assurance that the data has not changed since
you last read it.

XLOCK Use an exclusive lock that will be held until the end of the
transaction on all data processed by the statement. This lock
can be specified with either PAGLOCK or TABLOCK, in which
case the exclusive lock applies to the appropriate level of
granularity.

For example, if the transaction isolation level is set to SERIALIZABLE, and the table-level locking hint NOLOCK is used with the
SELECT statement, key-range locks typically used to maintain serializable transactions are not taken.

USE pubs
GO
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO
BEGIN TRANSACTION
SELECT au_lname FROM authors WITH (NOLOCK)
GO

The locks generated are:

EXEC sp_lock
GO

spid dbid ObjId IndId Type Resource Mode Status
1 1 0 0 DB S GRANT
6 1 0 0 DB S GRANT
7 1 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 117575457 0 TAB Sch-S GRANT
9 4 0 0 DB S GRANT
9 1 21575115 0 TAB IS GRANT

SELECT object_name(117575457)
GO

authors

The only lock taken that references authors is a schema stability (Sch-S) lock. In this case, serializability is no longer guaranteed.

See Also

DELETE

INSERT

SELECT

SET TRANSACTION ISOLATION LEVEL

UPDATE

Accessing and Changing Relational Data (SQL Server 2000)

Customizing Locking for an Index
The Microsoft® SQL Server™ 2000 dynamic locking strategy automatically chooses the best locking granularity for queries in
most cases. In cases where access patterns are well understood and consistent, limiting the locking levels available for an index
can be beneficial.

For example, a database application uses a lookup table that is refreshed weekly in a batch process. The most efficient locking
strategy is to turn off page and row locking and allow all concurrent readers to get a shared (S) lock on the table, reducing
overhead. During the weekly batch update, the update process can take an exclusive (X) lock, and then update the entire table.

The granularity of locking used on an index can be set using the sp_indexoption system stored procedure. To display the current
locking option for a given index, use the INDEXPROPERTY function. Page-level locks, row-level locks, or a combination of page-
level and row-level locks can be disallowed for a given index.

Disallowed locks Index accessed by
Page level Row-level and table-level locks
Row level Page-level and table-level locks
Page level and row level Table-level locks

For example, when a table is known to be a point of contention, it can be beneficial to disallow page-level locks, thereby allowing
only row-level locks. Or, if table scans are always used to access an index or table, disallowing page-level and row-level locks can
help by allowing only table-level locks.

Important The SQL Server query optimizer automatically makes the correct determination. It is recommended that you do not
override the choices the optimizer makes. Disallowing a locking level can affect the concurrency for a table or index adversely. For
example, specifying only table-level locks on a large table accessed heavily by many users can affect performance significantly.
Users must wait for the table-level lock to be released before accessing the table.

See Also

INDEXPROPERTY

sp_indexoption

Accessing and Changing Relational Data (SQL Server 2000)

Cursors
Operations in a relational database act on a complete set of rows. The set of rows returned by a SELECT statement consists of all
the rows that satisfy the conditions in the WHERE clause of the statement. This complete set of rows returned by the statement is
known as the result set. Applications, especially interactive online applications, cannot always work effectively with the entire
result set as a unit. These applications need a mechanism to work with one row or a small block of rows at a time. Cursors are an
extension to result sets that provide that mechanism.

Cursors extend result processing by:

Allowing positioning at specific rows of the result set.

Retrieving one row or block of rows from the current position in the result set.

Supporting data modifications to the rows at the current position in the result set.

Supporting different levels of visibility to changes made by other users to the database data that is presented in the result
set.

Providing Transact-SQL statements in scripts, stored procedures, and triggers access to the data in a result set.

Requesting a Cursor

Microsoft® SQL Server™ 2000 supports two methods for requesting a cursor:

Transact-SQL

The Transact-SQL language supports a syntax for using cursors modeled after the SQL-92 cursor syntax.

Database application programming interface (API) cursor functions

SQL Server supports the cursor functionality of these database APIs:

ADO (Microsoft ActiveX® Data Object)

OLE DB

ODBC (Open Database Connectivity)

DB-Library

An application should never mix these two methods of requesting a cursor. An application that has used the API to specify cursor
behaviors should not then execute a Transact-SQL DECLARE CURSOR statement to also request a Transact-SQL cursor. An
application should only execute DECLARE CURSOR if it has set all the API cursor attributes back to their defaults.

If neither a Transact-SQL nor API cursor has been requested, SQL Server defaults to returning a complete result set, known as a
default result set, to the application.

Cursor Process

Transact-SQL cursors and API cursors have different syntax, but the following general process is used with all SQL Server cursors:

1. Associate a cursor with the result set of a Transact-SQL statement, and define characteristics of the cursor, such as whether
the rows in the cursor can be updated.

2. Execute the Transact-SQL statement to populate the cursor.

3. Retrieve the rows in the cursor you want to see. The operation to retrieve one row or one block of rows from a cursor is
called a fetch. Performing a series of fetches to retrieve rows in either a forward or backward direction is called scrolling.

4. Optionally, perform modification operations (update or delete) on the row at the current position in the cursor.

5. Close the cursor.

Accessing and Changing Relational Data (SQL Server 2000)

Default Result Sets
Microsoft® SQL Server™ 2000 sends result sets back to clients in the following way:

1. SQL Server receives a network packet from the client containing the Transact-SQL statement or batch of Transact-SQL
statements to be executed.

2. SQL Server compiles and executes the statement or batch.

3. SQL Server begins putting the rows of the result set (or multiple result sets from a batch or stored procedure) in network
packets and sending them to the client. SQL Server puts as many result set rows as possible in each packet.

4. The packets containing the result set rows are cached in the network buffers of the client. As the client application fetches
the rows, the ODBC driver, OLE DB provider, or DB-Library dynamic-link library (DLL) pulls the rows from the network
buffers and transfers the data to the client application. The client retrieves the results one row at a time in a forward
direction.

The client cannot send any other Transact-SQL statements on that connection until the application has either processed all the
rows returned by SQL Server or sent SQL Server a request to cancel the rest of the results. No updates can be done on the
connection until all the results have been processed; the result sets are read-only.

Note Firehose cursor is an obsolete term for default result sets.

This is the type of result set processing SQL Server uses when no cursors have been requested. This happens when the following
conditions are met:

The application does not use the DECLARE CURSOR statement to request a Transact-SQL server cursor. The application
instead executes the Transact-SQL statements, such as SELECT, directly.

If the application uses ADO, OLE DB, and ODBC, it leaves all API cursor attributes at their default settings so that no API
cursors are requested. This default set of attributes is to request a forward-only, read-only cursor with a rowset size of 1.

If the application uses DB-Library, it uses the DB-Library core functions to execute the statement and process the result set.

Because this type of processing is used when all cursor attributes are set to their defaults, and when no cursor processing is
actually involved from SQL Server or the database API, this is called a default result set.

A default result set is not given to an application in one large block. The result set is cached in the network buffers on the client.
The application fetches through the result set one row at a time. On each fetch, the OLE DB provider, ODBC driver, or DB-Library
DLL moves the data from the next row in the network buffer into variables in the application. OLE DB, ODBC, and ADO
applications use the same API functions to retrieve the rows that they would use to fetch the rows from a cursor. DB-Library
applications use the core function dbnextrow to fetch each row.

Default result sets are the most efficient way to transmit results to the client. The only packet sent from the client computer to the
server is the original packet with the statement to execute. When the results are sent back to the client, SQL Server puts as many
result set rows as it can into each packet, minimizing the number of packets sent to the client.

All Transact-SQL statements are supported when using default result sets. You can also execute batches or stored procedures
containing multiple statements that return result sets when using default result sets.

Default result sets can only be used to send result sets back to a client application. The data in a default result set is not available
to any other Transact-SQL statement or variable in a batch, stored procedure, or trigger. For example, consider this statement in a
stored procedure or trigger:

SELECT ProductID FROM Northwind.dbo.Products

The statement generates a default result set containing the IDs of all the products in the Northwind database. None of the other
Transact-SQL statements or variables in the stored procedure or trigger can reference this list of product IDs. The only thing that
is done with this result set is that SQL Server sends it to the client. For the data in this result set to be used by other Transact-SQL
statements, it would have to be in a Transact-SQL server cursor:

DECLARE abc CURSOR FOR
SELECT ProductID FROM Northwind.dbo.Products

See Also

Using Default Result Sets

Rowsets and SQL Server Cursors

Using Default Result Sets

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Implementations
Microsoft® SQL Server™ 2000 supports three cursor implementations:

Transact-SQL cursors.

Are based on the DECLARE CURSOR syntax and are used mainly in Transact-SQL scripts, stored procedures, and triggers.
Transact-SQL cursors are implemented on the server and are managed by Transact-SQL statements sent from the client to the
server. They are also contained in batches, stored procedures, or triggers.

Application programming interface (API) server cursors

Support the API cursor functions in OLE DB, ODBC and DB-Library. API server cursors are implemented on the server. Each time a
client application calls an API cursor function, the SQL Server OLE DB provider, ODBC driver, or DB-Library dynamic-link library
(DLL) transmits the request to the server for action against the API server cursor.

Client cursors

Are implemented internally by the SQL Server ODBC driver, the DB-Library DLL, and by the DLL that implements the ADO API.
Client cursors are implemented by caching all the result set rows on the client. Each time a client application calls an API cursor
function, the SQL Server ODBC driver, the DB-Library DLL, or the ADO DLL performs the cursor operation on the result set rows
cached on the client.

Because Transact-SQL cursors and API server cursors are implemented on the server, they are referred to collectively as server
cursors.

Do not mix the use of these various types of cursors. If you execute a DECLARE CURSOR and OPEN statement from an
application, first set the API cursor attributes to their defaults. If you set API cursor attributes to something other than their
defaults and then execute a DECLARE CURSOR and OPEN statement, you are asking SQL Server to map an API cursor over a
Transact-SQL cursor. For example, do not set the ODBC attributes that call for mapping a keyset-driven cursor over a result set,
and then use that statement handle to execute a DECLARE CURSOR and OPEN calling for an INSENSITIVE cursor.

A potential drawback of server cursors is that they currently do not support all Transact-SQL statements. Server cursors do not
support Transact-SQL statements that generate multiple result sets; therefore, they cannot be used when the application executes
a stored procedure or a batch that contain more than one SELECT statement. Server cursors also do not support SQL statements
containing the keywords COMPUTE, COMPUTE BY, FOR BROWSE, or INTO.

Server Cursors vs. Default Result Sets

Using a cursor is less efficient than using a default result set. In a default result set the only packet sent from the client to the
server is the packet containing the statement to execute. When using a server cursor, each FETCH statement must be sent from
the client to the server, where it must be parsed and compiled into an execution plan.

If a Transact-SQL statement will return a relatively small result set that can be cached in the memory available to the client
application, and you know before executing the statement that you must retrieve the entire result set, use a default result set. Use
server cursors only when cursor operations are required to support the functionality of the application, or when only part of the
result set is likely to be retrieved.

Server Cursors vs. Client Cursors

There are several advantages to using server cursors instead of client cursors:

Performance

If you are going to access a fraction of the data in the cursor (typical of many browsing applications), using server cursors
provides optimal performance because only fetched data is sent over the network. Client cursors cache the entire result set
on the client.

Additional cursor types

If the SQL Server ODBC driver used only client cursors, it could support only forward-only and static cursors. By using API
server cursors the driver can also support keyset-driven and dynamic cursors. SQL Server also supports the full range of
cursor concurrency attributes only through server cursors. Client cursors are limited in the functionality they support.

More accurate positioned updates

Server cursors directly support positioned operations, such as the ODBC SQLSetPos function or UPDATE and DELETE

statements with the WHERE CURRENT OF clause. Client cursors, on the other hand, simulate positioned cursor updates by
generating a Transact-SQL searched UPDATE statement, which leads to unintended updates if more than one row matches
the WHERE clause conditions of the UPDATE statement.

Memory usage

When using server cursors, the client does not need to cache large amounts of data or maintain information about the
cursor position because the server does that.

Multiple active statements

When using server cursors, no results are left outstanding on the connection between cursor operations. This allows you to
have multiple cursor-based statements active at the same time.

The operation of all server cursors, except static or insensitive cursors, depends on the schema of the underlying tables. Any
schema changes to those tables after a cursor has been declared results in an error on any subsequent operation on that cursor.

Accessing and Changing Relational Data (SQL Server 2000)

Specifying Cursors
In the OLE DB, ODBC, and ADO specifications, a cursor is implicitly opened over any result set returned by a Transact-SQL
statement. Before executing a Transact-SQL statement, set attributes or properties to define the characteristics of the cursor. You
can then call API functions to fetch one row or batch of rows at a time. The default settings for the API cursor attributes or
properties have the same characteristics as a SQL Server default result set. The SQL Server ODBC driver and Microsoft OLE DB
Provider for SQL Server both implement default result sets when the cursor attributes or properties are set to their defaults. No
cursor is used in this case. The driver and provider only implement a cursor if any of the cursor attributes or properties are
changed from their defaults.

OLE DB, ODBC, and ADO each use different terms in referring to this combination of a result set and cursor:

OLE DB uses the term rowset to refer to the combination of a result set and its associated cursor behaviors.

ODBC uses the terms result set and cursor somewhat interchangeably because it considers each result set to have a cursor
automatically mapped over it. A rowset in ODBC is specifically the number of rows returned on a fetch.

ADO uses the term, recordset, in the same way that OLE DB uses the term, rowset.

The DB-Library API supports two ways to process result sets. The DB-Library core functions support processing the results of a
Transact-SQL statement only as a default result set. The core functions allow you only to retrieve the rows of a result set one at a
time in a forward-only direction, and do not support making updates through the result set. If you want to use cursor processing
in a DB-Library application, you must use the special functions from the DB-Library Cursor Library instead of the core functions.

The default of the Microsoft OLE DB Provider for SQL Server, SQL Server ODBC driver, and DB-Library is to use an API server
cursor to implement any requested cursor functions. ODBC client applications can use client cursors instead of server cursors by
loading the ODBC Cursor Library. DB-Library applications can use client cursors by setting the DBCLIENTCURSOR option. OLE DB
does not have its own implementation of client cursors, but the ADO API does.

The following illustration summarizes what type of cursor or result set is implemented based on the current API cursor settings
and the Transact-SQL statement being executed. The cells with "Do not combine cursor types" indicate that both a Transact-SQL
server cursor and an API cursor are being requested at the same time. This can result in undefined behavior and should not be
done.

Accessing and Changing Relational Data (SQL Server 2000)

Transact-SQL Cursors
Transact-SQL cursors are used mainly in stored procedures, triggers, and Transact-SQL scripts in which they make the contents of
a result set available to other Transact-SQL statements.

The typical process for using a Transact-SQL cursor in a stored procedure or trigger is:

1. Declare Transact-SQL variables to contain the data returned by the cursor. Declare one variable for each result set column.
Declare the variables to be large enough to hold the values returned by the column and with a data type that can be
implicitly converted from the data type of the column.

2. Associate a Transact-SQL cursor with a SELECT statement using the DECLARE CURSOR statement. The DECLARE CURSOR
statement also defines the characteristics of the cursor, such as the cursor name and whether the cursor is read-only or
forward-only.

3. Use the OPEN statement to execute the SELECT statement and populate the cursor.

4. Use the FETCH INTO statement to fetch individual rows and have the data for each column moved into a specified variable.
Other Transact-SQL statements can then reference those variables to access the fetched data values. Transact-SQL cursors
do not support fetching blocks of rows.

5. When you are finished with the cursor, use the CLOSE statement. Closing a cursor frees some resources, such as the
cursor's result set and its locks on the current row, but the cursor structure is still available for processing if you reissue an
OPEN statement. Because the cursor is still present, you cannot reuse the cursor name at this point. The DEALLOCATE
statement completely frees all resources allocated to the cursor, including the cursor name. After a cursor is deallocated, you
must issue a DECLARE statement to rebuild the cursor.

Monitoring Transact-SQL Cursor Activity

You can use the sp_cursor_list system stored procedure to get a list of cursors visible to the current connection, and
sp_describe_cursor, sp_describe_cursor_columns, and sp_describe_cursor_tables to determine the characteristics of a
cursor.

After the cursor is opened, the @@CURSOR_ROWS function or the cursor_rows column returned by sp_cursor_list or
sp_describe_cursor indicates the number of rows in the cursor.

After each FETCH statement, @@FETCH_STATUS is updated to reflect the status of the last fetch. You can also get this status
information from the fetch_status column returned by sp_describe_cursor. @@FETCH_STATUS reports conditions such as
fetching beyond the first or last row in the cursor. @@FETCH_STATUS is global to your connection and is reset by each fetch on
any cursor open for the connection. If you must know the status later, save @@FETCH_STATUS into a user variable before
executing another statement on the connection. Even though the next statement may not be a FETCH, it could be an INSERT,
UPDATE or DELETE that fires a trigger containing FETCH statements that reset @@FETCH_STATUS. The fetch_status column
returned by sp_describe_cursor is specific to the cursor specified and is not affected by FETCH statements that reference other
cursors. sp_describe_cursor is, however, affected by FETCH statements that reference the same cursor, so care is still needed in
its use.

After a FETCH is completed, the cursor is positioned on the fetched row. The fetched row is known as the current row. If the cursor
was not declared as a read-only cursor, you can execute an UPDATE or DELETE statement with a WHERE CURRENT OF
cursor_name clause to modify the current row.

The name given to a Transact-SQL cursor by the DECLARE CURSOR statement can be either global or local. Global cursor names
are referenced by any batch, stored procedure, or trigger executing on the same connection. Local cursor names cannot be
referenced outside the batch, stored procedure, or trigger in which the cursor is declared. Local cursors in triggers and stored
procedures are therefore protected from unintended references outside the stored procedure or trigger.

Using the cursor Variable

Microsoft® SQL Server™ 2000 also supports variables with a cursor data type. A cursor can be associated with a cursor variable
by either of two methods:

/* Use DECLARE @local_variable, DECLARE CURSOR and SET. */
DECLARE @MyVariable CURSOR

DECLARE MyCursor CURSOR FOR
SELECT LastName FROM Northwind.dbo.Employees

SET @MyVariable = MyCursor

/* Use DECLARE @local_variable and SET */
DECLARE @MyVariable CURSOR

SET @MyVariable = CURSOR SCROLL KEYSET FOR
SELECT LastName FROM Northwind.dbo.Employees

After a cursor has been associated with a cursor variable, the cursor variable can be used instead of the cursor name in Transact-
SQL cursor statements. Stored procedure output parameters can also be assigned a cursor data type and associated with a
cursor. This allows stored procedures to expose local cursors in a controlled manner.

Referencing Transact-SQL Cursors

Transact-SQL cursor names and variables are referenced only by Transact-SQL statements; they cannot be referenced by the API
functions of OLE DB, ODBC, ADO, and DB-Library. For example, if you use DECLARE CURSOR and OPEN a Transact-SQL cursor,
there is no way to use the ODBC SQLFetch or SQLFetchScroll functions to fetch a row from the Transact-SQL cursor.
Applications that need cursor processing and are using these APIs should use the cursor support built into the database API
instead of Transact-SQL cursors.

You can use Transact-SQL cursors in applications by using FETCH and binding each column returned by the FETCH to a program
variable. The Transact-SQL FETCH does not support batches, however, so this is the least efficient way to return data to an
application. Fetching each row requires a roundtrip to the server. It is more efficient to use the cursor functionality built into the
database APIs that support fetching batches of rows.

Transact-SQL cursors are extremely efficient when contained in stored procedures and triggers. This is because everything is
compiled into one execution plan on the server and there is no network traffic associated with fetching rows.

See Also

@@FETCH_STATUS

FETCH

CLOSE

Cursor Functions

OPEN

DEALLOCATE

WHERE

DECLARE CURSOR

Scope of Transact-SQL Cursor Names

Accessing and Changing Relational Data (SQL Server 2000)

API Server Cursors
The OLE DB, ODBC, ADO, and DB-Library APIs support mapping cursors over the result sets of executed SQL statements. The
Microsoft® SQL Server™ OLE DB provider, SQL Server ODBC driver, and DB-Library dynamic-link library (DLL) implement these
operations through the use of API server cursors. API server cursors are cursors implemented on the server and managed by API
cursor functions. As the application calls the API cursor functions, the cursor operation is transmitted to the server by the OLE DB
provider, ODBC driver, or DB-Library DLL.

When using an API server cursor in OLE DB, ODBC, and ADO, use the functions or methods of the API to:

1. Open a connection.

2. Set attributes or properties defining the characteristics of the cursor the API automatically maps over each result set.

3. Execute one or more Transact-SQL statements.

4. Use API functions or methods to fetch the rows in the result sets.

In DB-Library, use the special DB-Library Cursor Library functions to work with an API server cursor.

When the API cursor attributes or properties are set to their default settings, the SQL Server OLE DB provider and SQL Server
ODBC driver use default result sets. Although the API is technically asking for a cursor, the default cursor characteristics match the
behavior of a default result set. The OLE DB provider and ODBC driver, therefore, implement the default cursor options using a
default result set because it is the most efficient way to retrieve rows from the server. When using default result sets, an
application can execute any Transact-SQL statement or batch, but it can only have one outstanding statement on a connection.
This means the application must process or cancel all the result sets returned by one statement before it can execute another
statement on the connection.

When the API cursor attributes or properties are set to anything other than their defaults, the OLE DB provider for SQL Server and
the SQL Server ODBC driver use API server cursors instead of default result sets. Each call to an API function that fetches rows
generates a roundtrip to the server to fetch the rows from the API server cursor.

DB-Library applications use the DB-Library Cursor Library functions to request cursors. If DBCLIENTCURSOR is not set, the DB-
Library Cursor Library functions use API server cursors in the same way as the SQL Server OLE DB provider and SQL Server
ODBC driver.

API Server Cursor Restrictions

An application cannot execute the following statements when using API server cursors:

Transact-SQL statements that SQL Server does not support in server cursors.

Batches or stored procedures that return multiple result sets.

SELECT statements that contain COMPUTE, COMPUTE BY, FOR BROWSE, or INTO clauses.

An EXECUTE statement referencing a remote stored procedure.

API Server Cursor Implementation

The OLE DB provider for SQL Server, the SQL Server ODBC driver, and the DB-Library DLL use these special system stored
procedures to signal cursor operations to the server:

sp_cursoropen defines the SQL statement to be associated with the cursor and the cursor options, then populates the
cursor.

sp_cursorfetch fetches a row or block of rows from the cursor.

sp_cursorclose closes and deallocates the cursor.

sp_cursoroption is used to set various cursor options.

sp_cursor is used to request positioned updates.

sp_cursorprepare compiles the Transact-SQL statement or batch associated with a cursor into an execution plan but does
not create the cursor.

sp_cursorexecute creates and populates a cursor from the execution plan created by sp_cursorprepare.

sp_cursorunprepare discards the execution plan from sp_cursorprepare.

These system stored procedures will show up in SQL Profiler traces of ADO, OLE DB,, ODBC, and DB-Library applications that are
using API server cursors. They are intended only for the internal use of the SQL Server Provider for OLE DB, the SQL Server ODBC
driver, and the DB-Library DLL. The full functionality of these procedures is available to the applications through the use of the
cursor functionality of the database APIs. Specifying the procedures directly in an application is not supported.

When SQL Server executes a statement for a connection, no other statements can be executed on the connection until all the
results from the first statement have been processed or canceled. This rule still holds when using API server cursors, but to the
application it looks like SQL Server has started supporting multiple active statements on a connection. This is because the full
result set is stored in the server cursor and the only statements being transmitted to SQL Server are the executions of the
sp_cursor system stored procedures. SQL Server executes the stored procedure, and as soon as the client retrieves the result set
it can execute any other statement. The OLE DB provider and ODBC driver always retrieve all the results from an sp_cursor stored
procedure before they return control to the application. This lets applications interleave fetches against multiple active server
cursors.

This table shows how an application can process two cursors at the same time on a connection using two statement handles.

Statement handle 1 Statement handle 2
Set cursor attributes such that an API
server cursor will be used.

SQLExecDirect an SQL statement. The
ODBC driver calls sp_cursoropen and
retrieves the result set returned by the
procedure.

 Set cursor attributes such that an API server
cursor will be used.

 SQLExecDirect an SQL statement. The
ODBC driver calls sp_cursoropen and
retrieves the result set returned by the
procedure.

SQLFetchScroll to retrieve the first
block of rows. The driver calls
sp_cursorfetch and then retrieves the
result set returned by the procedure.

 SQLFetchScroll to retrieve the first block of
rows. The driver calls sp_cursorfetch and
then retrieves the result set returned by the
procedure.

SQLFetchScroll to retrieve another
block of rows. The driver calls
sp_cursorfetch and then retrieves the
result set returned by the procedure.

 SQLFetchScroll to retrieve another block of
rows. The driver calls sp_cursorfetch and
then retrieves the result set returned by the
procedure.

Call SQLFreeStmt or SQLCloseCursor.
The driver calls sp_cursorclose.

 Call SQLFreeStmt or SQLCloseCursor. The
driver calls sp_cursorclose.

Because no results are left outstanding on the connection after any call to an sp_cursor stored procedure, you can execute
multiple Transact-SQL statements concurrently on a single connection, provided they are all executed with API server cursors.

Specifying API Server Cursors

Here is a summary of how API server cursors are used in the APIs:

OLE DB

1. Open a session object, open a command object, and specify the command text.

2. Set rowset properties such as DBPROP_OTHERINSERT, DBPROP_OTHERUPDATEDELETE, DBPROP_OWNINSERT,
DBPROP_OWNUDPATEDELETE to control cursor behaviors.

3. Execute the command object.

4. Fetch the rows in the result set using such methods as IRowset::GetNextRows, IRowsetLocate::GetRowsAt,
IRowsetLocate::GetRowsAtBookmark, and IRowsetScroll::GetRowsAtRatio.

ODBC

1. Open a connection and call SQLAllocHandle to allocate statement handles.

2. Call SQLSetStmtAttr to set the SQL_ATTR_CURSOR_TYPE, SQL_ATTR_CONCURRENCY, and
SQL_ATTR_ROW_ARRAY_SIZE attributes. Alternatively, you can specify cursor behaviors by setting the attributes
SQL_ATTR_CURSOR_SCROLLABLE and SQL_ATTR_CURSOR_SENSITIVITY.

3. Execute a Transact-SQL statement using either SQLExecDirect or SQLPrepare and SQLExecute.

4. Fetch rows or blocks of rows using SQLFetch or SQLFetchScroll.

ADO

1. Define a Connection object and a Recordset object, and then execute the Open method on the Connection object.

2. Execute the Open method on the Recordset object specifying a CursorType and/or a LockType parameter.

3. Fetch rows using the Move, MoveFirst, MoveLast, MoveNext, and MovePrevious recordset methods.

DB-Library

1. The DB-Library core functions always use a default result set.

2. Use the DB-Library Cursor Library functions without setting DBCLIENTCURSOR to use API server cursors.

See Also

Using Cursors with ADO

Rowsets and SQL Server Cursors

Using Cursors

Cursor Functions

Accessing and Changing Relational Data (SQL Server 2000)

Client Cursors
Both ODBC and DB-Library support client cursors, cursors implemented on the client. In a client cursor, a default result set is used
to cache the entire result set on the client and all cursor operations are performed against this client cache. None of the server
cursor functionality of Microsoft® SQL Server™ 2000 is used. Client cursors support only forward-only and static cursors, not
keyset-driven or dynamic cursors.

The DB-Library client cursors were originally implemented before SQL Server supported server cursors. ODBC implements client
cursors that use the ODBC Cursor Library. This is intended for use with ODBC drivers that support only the default settings for
cursor characteristics. Because both DB-Library and the SQL Server ODBC driver offer full support for cursor operations through
server cursors, limit the use of client cursors.

Client cursors should be used only to alleviate the restriction that server cursors do not support all Transact-SQL statements or
batches. If a static scrolling cursor is needed on a Transact-SQL statement or batch that cannot be executed with a server cursor,
consider using a client cursor.

See Also

ODBC Cursor Library

Cursor Functions

Accessing and Changing Relational Data (SQL Server 2000)

Fetching and Scrolling
The operation to retrieve a row from a cursor is called a fetch. These are the fetch options:

FETCH FIRST

Fetches the first row in the cursor.

FETCH NEXT

Fetches the row after the last row fetched.

FETCH PRIOR

Fetches the row before the last row fetched.

FETCH LAST

Fetches the last row in the cursor.

FETCH ABSOLUTE n

Fetches the nth row from the first row in the cursor if n is a positive integer. If n is a negative integer, the row n rows before
the end of the cursor is fetched. If n is 0, no rows are fetched.

FETCH RELATIVE n

Fetches the row n rows from the last row fetched. If n is positive, the row n rows after the last row fetched is fetched. If n is
negative, the row n rows before the last row fetched is fetched. If n is 0, the same row is fetched again.

When a cursor is opened, the current row position in the cursor is logically before the first row. This causes the different fetch
options to have the following behaviors if they are the first fetch performed after the cursor is opened:

FETCH FIRST

Fetches the first row in the cursor.

FETCH NEXT

Fetches the first row in the cursor.

FETCH PRIOR

Does not fetch a row.

FETCH LAST

Fetches the last row in the cursor.

FETCH ABSOLUTE n

Fetches the nth row from the first row in the cursor if n is a positive integer. If n is a negative integer, then the row n rows
before the end of the cursor is fetched (for example, n = -1 returns the last row in the cursor). If n is 0, no rows are fetched.

FETCH RELATIVE n

Fetches the nth row in the cursor if n is positive. No rows are fetched if n is negative or 0.

Transact-SQL cursors are limited to fetching one row at a time. API server cursors support fetching blocks of rows with each fetch.
A cursor that supports fetching multiple rows at a time is called a block cursor.

Cursor Classifications

A cursor can be classified by the fetch options it supports:

Forward-only

Rows must be fetched serially from the first row to the last row. FETCH NEXT is the only fetch operation allowed.

Scrollable

Rows can be randomly fetched from anywhere in the cursor. All the fetch operations are allowed (except that dynamic
cursors do not support fetch absolute).

Scrollable cursors are especially useful for supporting online applications. A cursor can be mapped to a grid or list box in the
application. As the user scrolls up and down and all around the grid, the application uses scroll fetches to retrieve the rows from
the cursor the user wants to see.

APIs for Fetching Rows

The APIs for the actual statements, functions, or methods used have different names to fetch rows:

Transact-SQL cursors use the FETCH FIRST, FETCH LAST, FETCH NEXT, FETCH PRIOR, FETCH ABSOLUTE(n), and FETCH
RELATIVE(n) statements.

OLE DB uses methods such as IRowset::GetNextRows, IRowsetLocate::GetRowsAt,
IRowsetLocate::GetRowsAtBookmark, and IRowsetScroll::GetRowsAtRatio.

ODBC uses the SQLFetch function, which is the same as a FETCH NEXT for one row, or the SQLFetchScroll function.
SQLFetchScroll supports block cursors and all the fetch options (first, last, next, prior, absolute, relative).

ADO uses the Move, MoveFirst, MoveLast, MoveNext, and MovePrevious Recordset methods to acquire a position in a
cursor. The GetRows recordset method is then used to retrieve one or more rows at that position. GetRows can also be
called directly with the Start parameter set to the number of the row to fetch.

DB-Library uses the dbcursorfetch and dbcursorfetchex functions.

See Also

Scrolling and Retrieving Rows

Fetching Rows

Cursor Functions

FETCH

Using Cursors

Cursor Functions

Accessing and Changing Relational Data (SQL Server 2000)

Controlling Cursor Behavior
There are two models for specifying the behavior of a cursor:

Cursor types

The database APIs usually specify the behavior of cursors by dividing them into four cursor types: forward-only, static (sometimes
called snapshot or insensitive), keyset-driven, and dynamic.

Cursor behaviors

The SQL-92 standard defines the DECLARE CURSOR keywords SCROLL and INSENSITIVE to specify the behavior of cursors.
Some database APIs also support defining cursor behavior in terms of scrollability and sensitivity.

ADO and DB-Library support specifying only cursor types, not cursor behaviors.

ODBC supports specifying cursor behavior using either the cursor types or the cursor behaviors of scrollability and insensitivity.

Prior to Microsoft® SQL Server™ version 7.0, the DECLARE CURSOR statement used to define Transact-SQL cursors supported
only cursor behaviors of SCROLL and INSENSITIVE. In SQL Server 7.0, DECLARE CURSOR has been extended to support cursor-
type keywords.

OLE DB's cursor behavior model differs from both cursor behaviors and cursor types.

Do not specify both cursor types and cursor behaviors for a cursor. Use one or the other. Because ODBC and Transact-SQL
cursors support both cursor behaviors and cursor types, use either ODBC or Transact-SQL when defining the cursor. The ODBC
specification states that specifying both cursor behaviors and cursor types can lead to unpredictable results.

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Types
ODBC, ADO, and DB-Library define four cursor types supported by Microsoft® SQL Server™2000. The DECLARE CURSOR
statement has been extended; thus you can specify the four cursor types for Transact-SQL cursors. These cursors vary in their
ability to detect changes to the result set and in the resources, such as memory and space in tempdb, they consume. A cursor can
detect changes to rows only when it attempts to fetch those rows a second time. There is no way for the data source to notify the
cursor of changes to the currently fetched rows. The ability of a cursor to detect changes is also influenced by the transaction
isolation level.

The four API server cursor types supported by SQL Server are:

Static cursors

Dynamic cursors

Forward-only cursors

Keyset-driven cursors

Static cursors detect few or no changes but consume relatively few resources while scrolling, although they store the entire cursor
in tempdb. Dynamic cursors detect all changes but consume more resources while scrolling, although they make the lightest use
of tempdb. Keyset-driven cursors lie in between, detecting most changes but at less expense than dynamic cursors.

Although the database API cursor models consider a forward-only cursor to be a distinct type of cursor, SQL Server does not. SQL
Server considers both forward-only and scroll as options that can be applied to static, keyset-driven, and dynamic cursors.

See Also

DECLARE CURSOR

Using Server Cursors with ADO

Rowsets and SQL Server Cursors

How Cursors Are Implemented

dbcursoropen

Accessing and Changing Relational Data (SQL Server 2000)

Forward-only Cursors
A forward-only cursor does not support scrolling; it supports only fetching the rows serially from the start to the end of the
cursor. The rows are not retrieved from the database until they are fetched. The effects of all INSERT, UPDATE, and DELETE
statements made by the current user or committed by other users that affect rows in the result set are visible as the rows are
fetched from the cursor. Because the cursor cannot be scrolled backward, however, changes made to rows in the database after
the row was fetched are not visible through the cursor, except for the case where a value used to determine the location of the
row within the result set is modified, such as updating a column covered by a clustered index.

Although the database API cursor models consider a forward-only cursor to be a distinct type of cursor, Microsoft® SQL Server™
2000 does not. SQL Server considers both forward-only and scroll as options that can be applied to static, keyset-driven, and
dynamic cursors. Transact-SQL cursors support forward-only static, keyset-driven, and dynamic cursors. The database API cursor
models assume that static, keyset-driven, and dynamic cursors are always scrollable. When a database API cursor attribute or
property is set to forward-only, SQL Server implements this as a forward-only dynamic cursor.

Accessing and Changing Relational Data (SQL Server 2000)

Fast Forward-only Cursors
Fast Forward-only Cursors

Microsoft® SQL Server™ 2000 implements a performance optimization called a fast forward-only cursor. Fast forward-only
cursors are supported in two environments:

Transact-SQL cursors can specify the FAST_FORWARD clause on DECLARE CURSOR. This opens an optimized forward-only,
read-only cursor.

Applications using the Microsoft OLE DB Provider for SQL Server can set the rowset properties DBPROP_SERVERCURSOR,
DBPROP_OTHERINSERT, DBPROP_OTHERUPDATEDELETE, DBPROP_OWNINSERT, and
DBPROP_OWNUPDATEDELETE to VARIANT_TRUE.

Applications using the Microsoft SQL Server ODBC driver can set the driver-specific statement attribute
SQL_SOPT_SS_CURSOR_OPTIONS to SQL_CO_FFO or SQL_CO_FFO_AF. Setting SQL_CO_FFO requests that the cursor be
opened with the same optimizations as the FAST_FORWARD clause on DECLARE CURSOR. SQL_CO_FFO_AF request that an
autofetch option also be enabled.

Using the Autofetch Option

Although some performance improvements are realized by specifying FAST_FORWARD on DECLARE CURSOR, or by specifying
SQL_CO_FFO in ODBC applications, the most important performance gain comes from specifying SQL_CO_FFO_AF in ODBC
applications to enable the autofetch option. Autofetch enables two optimizations that can significantly reduce network traffic:

When the cursor is opened, the first row or batch of rows is automatically fetched from the cursor. This saves having to send
a fetch request across the network.

When a fetch hits the end of the cursor, the cursor is automatically closed. This saves having to send a separate close
request across the network.

The most dramatic improvement is seen when processing cursors with relatively small result sets that can be cached in the
memory of an application. The fast forward-only cursor with autofetch enabled represents the most efficient method of getting a
result set into an ODBC application. When the autofetch option is on for a cursor containing n rows, an ODBC application can:

Specify a rowset size of n+1.

Allocate arrays of n+1 variables to hold the data from the result set columns.

Bind the result set columns to the arrays.

Execute the SQL statement that generates the cursor.

When the SQL Server ODBC driver executes the statement, it requests that the cursor be opened. Because autofetch is enabled,
the server fetches and sends back n rows. The server fits as many rows as possible into each network packet returned to the client.
When the server attempts to fetch the row at n+1 it detects the end of the cursor and automatically closes the cursor. When the
application then executes SQLCloseCursor or SQLFreeStmt the ODBC driver does not have to send any close request to the
server. The entire operation is done with only one packet being sent from the client to the server, and a minimal number of
packets being returned from the server to the client.

Implicit Conversion of Fast Forward-only Cursors

Fast forward-only cursors are implicitly converted to other cursor types when:

If the SELECT statement joins one or more tables with trigger tables (INSERTED/DELETED), the cursor is converted to a static
cursor.

If the SELECT statement references text, ntext, or image columns the cursor is converted to a dynamic cursor if the OLE DB
Provider for SQL Server or the SQL Server ODBC driver are used.

If a fast forward-only cursor is not read-only, it is converted to a dynamic cursor.

If the SELECT statement is a distributed query that references one or more remote tables on linked servers, the cursor is
converted to a keyset-driven cursor.

If the SELECT statement references text, ntext, or image columns and a TOP clause, the cursor is converted to a keyset-
driven cursor.

See Also

Rowsets and SQL Server Cursors

Fast Forward-Only Cursors (ODBC)

Accessing and Changing Relational Data (SQL Server 2000)

Static Cursors
The complete result set of a static cursor is built in tempdb when the cursor is opened. A static cursor always displays the result
set as it was when the cursor was opened.

The cursor does not reflect any changes made in the database that affect either the membership of the result set or changes to the
values in the columns of the rows that make up the result set. A static cursor does not display new rows inserted in the database
after the cursor was opened, even if they match the search conditions of the cursor SELECT statement. If rows making up the
result set are updated by other users, the new data values are not displayed in the static cursor. The static cursor displays rows
deleted from the database after the cursor was opened. No UPDATE, INSERT, or DELETE operations are reflected in a static cursor
(unless the cursor is closed and reopened), not even modifications made using the same connection that opened the cursor.

Microsoft® SQL Server™ static cursors are always read-only.

Because the result set of a static cursor is stored in a work table in tempdb, the size of the rows in the result set cannot exceed the
maximum row size for a SQL Server table.

Transact-SQL and DB-Library use the term insensitive for static cursors. Some database APIs identify them as snapshot cursors.

Accessing and Changing Relational Data (SQL Server 2000)

Keyset-driven Cursors
The membership and order of rows in a keyset-driven cursor are fixed when the cursor is opened. Keyset-driven cursors are
controlled by a set of unique identifiers (keys) known as the keyset. The keys are built from a set of columns that uniquely identify
the rows in the result set. The keyset is the set of the key values from all the rows that qualified for the SELECT statement at the
time the cursor was opened. The keyset for a keyset-driven cursor is built in tempdb when the cursor is opened.

Changes to data values in nonkeyset columns (made by the cursor owner or committed by other users) are visible as the user
scrolls through the cursor. Inserts to the database made outside the cursor are not visible in the cursor unless the cursor is closed
and reopened. Inserts made through the cursor using an API function such as the ODBC SQLSetPos function are visible at the end
of the cursor. @@FETCH_STATUS returns a "row missing" status when an attempt is made to fetch a row deleted after the cursor
was opened. An update to a key column operates like a delete of the old key value followed by an insert of the new key value. The
new key value is not visible if the update was not made through the cursor; it is visible at the end of the cursor if the update was
made through the cursor using either an API function such as SQLSetPos or the Transact-SQL WHERE CURRENT OF clause and
the SELECT statement did not contain a JOIN condition in the FROM clause. The new key value is not visible if the insert contained
a remote table in the FROM clause. Attempts to retrieve the old key value get the same missing row fetch status as a deleted row.

Note An index on computed columns cannot be used when declaring a keyset-driven cursor on a remote table. You can create
another index to provide the unique keys for that remote table.

Accessing and Changing Relational Data (SQL Server 2000)

Dynamic Cursors
Dynamic cursors are the opposite of static cursors. Dynamic cursors reflect all changes made to the rows in their result set when
scrolling through the cursor. The data values, order, and membership of the rows in the result set can change on each fetch. All
UPDATE, INSERT, and DELETE statements made by all users are visible through the cursor. Updates are visible immediately if they
are made through the cursor using either an API function such as SQLSetPos or the Transact-SQL WHERE CURRENT OF clause.
Updates made outside the cursor are not visible until they are committed, unless the cursor transaction isolation level is set to
read uncommitted.

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Behaviors
Both ODBC and Transact-SQL cursors support specifying cursor characteristics using the SQL-92 cursor behaviors of scrollability
and sensitivity.

Cursor behaviors are specified in the following ways:

Transact-SQL cursors use the SQL-92 syntax of specifying SCROLL and INSENSITIVE before the CURSOR keyword on the
DECLARE statement.

The ODBC API uses the SQL_ATTR_CURSOR_SCROLLABLE and SQL_ATTR_CURSOR_SENSITIVITY statement attributes.

See Also

DECLARE CURSOR

How Cursors Are Implemented

Accessing and Changing Relational Data (SQL Server 2000)

Scrollable
The scrollable behavior of a cursor defines the fetch options the cursor supports.

If the SCROLL keyword is specified on a DECLARE statement, or if SQL_ATTR_CURSOR_SCROLLABLE is set to SQL_SCROLLABLE,
the cursor supports all of the fetch options.

If the SCROLL keyword is omitted from a SQL-92 style DECLARE statement or if SQL_ATTR_CURSOR_SCROLLABLE is set to
SQL_NONSCROLLABLE, the cursor supports only fetch next operations.

See Also

DECLARE CURSOR

SQLSetStmtAttr

Accessing and Changing Relational Data (SQL Server 2000)

Sensitivity
The sensitivity behavior of a cursor defines whether updates made against the base rows (used to build the cursor) are visible
through the cursor. Sensitivity also defines whether updates can be made through the cursor.

If the INSENSITIVE keyword is specified on a Transact-SQL DECLARE statement, or if SQL_ATTR_CURSOR_SENSITIVITY is set to
either SQL_UNSPECIFIED or SQL_INSENSITIVE in ODBC, the cursor does not reflect data modifications. The cursor is read-only
and does not support updates.

If the INSENSITIVE keyword is omitted from a Transact-SQL DECLARE statement, or if SQL_ATTR_CURSOR_SENSITIVITY is set to
SQL_SENSITIVE in ODBC, the cursor reflects data modifications made by the current user or committed by other users. Positioned
updates can be made using the cursor, except when using a read-only cursor.

See Also

DECLARE CURSOR

SQLSetStmtAttr

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Locking
In Microsoft® SQL Server™, the SELECT statement in a cursor definition is subject to the same transaction locking rules that apply
to any other SELECT statement. In cursors, however, an additional set of scroll locks can be acquired based on the specification of
a cursor concurrency level.

The transaction locks acquired by any SELECT statement, including the SELECT statement in a cursor definition, are controlled by:

The transaction isolation level setting for the connection.

Any locking hints specified in the FROM clause.

These locks are held until the end of the current transaction for both cursors and independent SELECT statements. When SQL
Server is running in autocommit mode, each individual SQL statement is a transaction and the locks are freed when the statement
finishes. If SQL Server is running in explicit or implicit transaction mode, then the locks are held until the transaction is either
committed or rolled back.

For example, the locking done for these two Transact-SQL examples is essentially the same:

/* Example 1 */
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO
BEGIN TRANSACTION
GO
SELECT * FROM authors
GO

/* Example 2 */
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO
BEGIN TRANSACTION
GO
DECLARE abc CURSOR STATIC FOR
SELECT * FROM authors
GO
OPEN abc
GO

Setting the transaction isolation level to repeatable read means that both the independent SELECT statement in Example 1 and the
SELECT statement contained in the DECLARE CURSOR of Example 2 generate share locks on each row they read, and the share
locks are held until the transaction is committed or rolled back.

Acquiring Locks

Although cursors obey the same rules as independent SELECT statements, regarding the type of transaction locks acquired, the
locks are acquired at different times. The locks generated by an independent SELECT or a cursor are always acquired when a row
is retrieved. For an independent SELECT, all the rows are retrieved when the statement is executed. Cursors, however, retrieve the
rows at different times depending on the type of cursor:

Static cursors retrieve the entire result set at the time the cursor is opened. This locks each row of the result set at open time.

Keyset-driven cursors retrieve the keys of each row of the result set at the time the cursor is opened. This locks each row of
the result set at open time.

Dynamic cursors (including regular forward-only cursors) do not retrieve rows until they are fetched. Locks are not acquired
on the rows until they have been fetched.

Fast forward-only cursors vary in when they acquire their locks depending on the execution plan chosen by the query
optimizer. If a dynamic plan is chosen, no locks are taken until the rows are fetched. If worktables are generated, then the
rows are read into the worktable and locked at open time.

Cursors also support their own concurrency specifications, some of which generate additional locks on the rows in each fetch.
These scroll locks are held until the next fetch operation or until the cursor is closed, whichever comes first. If the connection
option to keep cursors open on a commit is set on, these locks will be kept across a commit or rollback operation.

Accessing and Changing Relational Data (SQL Server 2000)

Cursors and Transactions
Microsoft® SQL Server™ 2000 supports setting either connection or database options to control whether cursors are closed or
left open on commits and rollbacks.

If the option is set that cursors are closed on commits or rollbacks, then all scroll locks are automatically freed when the cursor
closes. If the option is set that cursors remain open on a commit, then any active scroll locks are kept until the next fetch or until
the cursor closes. All transaction locks, even those on rows in a cursor, are freed when the transaction is committed or rolled back,
regardless of whether the cursors stay open.

See Also

SET CURSOR_CLOSE_ON_COMMIT

sp_dboption

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Concurrency
Microsoft® SQL Server™ 2000 supports four concurrency options for server cursors:

READ_ONLY

OPTIMISTIC WITH VALUES

OPTIMISTIC WITH ROW VERSIONING

SCROLL LOCKS

READ_ONLY:

Positioned updates through the cursor are not allowed, and no locks are held on the rows that make up the result set.

OPTIMISTIC WITH VALUES

Optimistic concurrency control is a standard part of transaction control theory. Optimistic concurrency control is used in
situations when there is only a slight chance that a second user may update a row in the interval between when a cursor is
opened and when the row is updated. When a cursor is opened with this option, no locks are held on the underlying rows, which
helps maximize throughput. If the user attempts to modify a row, the current values in the row are compared with the values
retrieved when the row was last fetched. If any of the values have changed, the server knows that someone else has already
updated the row, and it returns an error. If the values are the same, the server performs the modification.

Selecting this concurrency option forces the user or programmer to accept the responsibility of dealing with the occasional error
indicating another user has modified the row. A typical action taken by an application that receives this error is to refresh the
cursor, get the new values, and then let the user decide whether to perform the modification on the new values. text, ntext, and
image columns are not used for concurrency comparisons in SQL Server version 6.5 or earlier.

Note In SQL Server 2000 and SQL Server 7.0, if the underlying table has a timestamp column, OPTIMISTIC WITH ROW
VERSIONING is used even if OPTIMISTIC WITH VALUES is specified. If OPTIMISTIC WITH ROW VERSIONING is specified and the
table does not have timestamps, OPTIMISTIC WITH VALUES is used.

OPTIMISTIC WITH ROW VERSIONING

This optimistic concurrency control option is based on row versioning. With row versioning, the underlying table must have a
version identifier of some type that the server can use to determine whether the row has been changed after it was read into the
cursor. In SQL Server, that capability is provided by the timestamp data type, which is a binary number that indicates the relative
sequence of modifications in a database. Each database has a global current timestamp value, @@DBTS. Each time a row with a
timestamp column is modified in any way, SQL Server stores the current @@DBTS value in the timestamp column and then
increments @@DBTS. If a table has a timestamp column, then the timestamps are taken down to the row level. The server can
then compare the current timestamp value of a row with the timestamp value that was stored when the row was last fetched to
determine whether the row has been updated. The server does not have to compare the values in all columns, only the
timestamp column. If an application requests optimistic concurrency with row versioning on a table that does not have a
timestamp column, the cursor defaults to values-based optimistic concurrency control.

SCROLL LOCKS

This option implements pessimistic concurrency control, in which the application attempts to lock the underlying database rows
at the time they are read into the cursor result set. When using server cursors, an update lock is placed on the row when it is read
into the cursor. If the cursor is opened within a transaction, the transaction update lock is held until the transaction is either
committed or rolled back; the cursor lock is dropped when the next row is fetched. If the cursor has been opened outside a
transaction, the lock is dropped when the next row is fetched. Therefore, a cursor should be opened in a transaction whenever the
user wants full pessimistic concurrency control. An update lock prevents any other task from acquiring an update or exclusive
lock, which prevents any other task from updating the row. An update lock, however, does not block a shared lock, so it does not
prevent other tasks from reading the row unless the second task is also requesting a read with an update lock.

Scroll Locks

These cursor concurrency options may generate scroll locks, depending on the locking hints specified in the SELECT statement in
the cursor definition. Scroll locks are acquired on each row in a fetch and held until the next fetch or the close of the cursor,
whichever occurs first. On the next fetch, the server acquires scroll locks for the rows in the new fetch and then releases the scroll
locks for the rows in the previous fetch. Scroll locks are independent of transaction locks and may persist past a commit or

rollback operation. If the option to close cursors on commit is off, a COMMIT does not close any open cursors and scroll locks are
preserved past the commit to maintain the isolation of the fetched data.

The type of scroll locks acquired depends on the cursor concurrency option and the locking hints in the cursor SELECT statement.

Locking hints Read only
Optimistic
with values

Optimistic with
row versioning Locking

No Hints No locking No locking No locking Update
NOLOCK* No locking No locking No locking No locking
HOLDLOCK Share Share Share Update
UPDLOCK Update Update Update Update
TABLOCKX No locking No locking No locking Update
All Others No locking No locking No locking Update

*Specifying the NOLOCK hint makes the table on which it is specified read-only through the cursor.

Specifying Cursor Concurrency Options

The concurrency options are specified differently in each cursor environment:

Transact-SQL cursors

Specify the READ_ONLY, SCROLL_LOCK, and OPTIMISTIC keywords on the DECLARE CURSOR statement. The OPTIMISTIC
keyword specifies optimistic with row versioning, Transact-SQL cursors do not support the optimistic with values
concurrency option.

ADO applications

Specify adLockReadOnly, adLockPessimistic, adLockOptimistic, or adLockBatchOptimistic in the LockType property
of a Recordset object.

ODBC applications

Set the statement attribute SQL_ATTR_CONCURRENCY to SQL_CONCUR_READ_ONLY, SQL_CONCUR_ROWVER,
SQL_CONCUR_VALUES, or SQL_CONCUR_LOCK.

DB-Library applications

Set the dbcursoropen parameter concuropt to CUR_READONLY, CUR_OPTCC (for optimistic using row versioning),
CUR_OPTCCVAL, or CUR_LOCKCC.

See Also

DECLARE CURSOR

Using Server Cursors with ADO

dbcursoropen

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Transaction Isolation Levels
The transaction locking behavior of a specific cursor is determined by combining the locking behaviors of the cursor concurrency
setting, any locking hints specified in the cursor SELECT, and transaction isolation level options.

Microsoft® SQL Server™ 2000 supports these cursor transaction isolation levels:

Read Committed

SQL Server acquires a share lock while reading a row into a cursor but frees the lock immediately after reading the row. Because
shared lock requests are blocked by an exclusive lock, a cursor is prevented from reading a row that another task has updated but
not yet committed. Read committed is the default isolation level setting for both SQL Server and ODBC.

Read Uncommitted

SQL Server requests no locks while reading a row into a cursor and honors no exclusive locks. Cursors can be populated with
values that have already been updated but not yet committed. The user is bypassing all of the locking transaction control
mechanisms in SQL Server.

Repeatable Read or Serializable

SQL Server requests a shared lock on each row as it is read into the cursor as in READ COMMITTED, but if the cursor is opened
within a transaction, the shared locks are held until the end of the transaction instead of being freed after the row is read. This has
the same effect as specifying HOLDLOCK on a SELECT statement.

See Also

Customizing Transaction Isolation Level

Adjusting Transaction Isolation Levels

Cursor Concurrency

Accessing and Changing Relational Data (SQL Server 2000)

Changing Rows with Positioned Operations
Updatable cursors support data modification statements that update rows through the cursor. When positioned on a row in an
updatable cursor, you can perform update or delete operations that target the base table rows used to build the current row in the
cursor. These are called position updates.

The positioned updates are performed on the same connection that opened the cursor. This allows the data modifications to share
the same transaction space as the cursor, and prevents the updates from being blocked by locks held by the cursor.

There are two methods for performing positioned updates in a cursor:

The Transact-SQL WHERE CURRENT OF clause on an UPDATE or DELETE statement.

A database API positioned update function or method, such as the ODBC SQLSetPos function.

Performing Positioned Updates with Transact-SQL

The Transact-SQL WHERE CURRENT OF clause is typically used in Transact-SQL stored procedures, triggers, and scripts when
modifications need to be made based on specific rows in a cursor. The stored procedure, trigger, or script will:

DECLARE and OPEN a cursor.

Use FETCH statements to get positioned on a row in the cursor.

Execute an UPDATE or DELETE statement using a WHERE CURRENT OF clause. Use the cursor_name from the DECLARE
statement as the cursor_name in the WHERE CURRENT OF clause.

Performing Positioned Updates with APIs

Cursors created through the OLE DB, ADO, and DB-Library API functions and methods are not used in WHERE CURRENT OF
clauses because they do not have names. ODBC, however, supports getting a name for an API server cursor with the
SQLGetCursorName function. After setting the cursor attributes and opening a cursor by executing a Transact-SQL statement,
use the SQLGetCursorName function to get a name for the cursor. After positioning in the cursor, execute an UPDATE or DELETE
statement with a WHERE CURRENT OF clause referencing the name returned by SQLGetCursorName. But this method is not
recommended. Instead, it is better to use the positioned update functions in the ODBC API.

The database APIs support two different methods for performing positioned operations on API server cursors. ODBC and DB-
Library share one model, OLE DB and ADO the other.

In ODBC and DB-Library, bind the columns in the cursor to program variables, then position on a specific row in a cursor. If
performing a positioned update, change the data values in the program variables to the new values. Call these functions to
perform the positioned operation:

ODBC: The SQLSetPos function

DB-Library: The dbcursor function

These functions have the following options:

SQLSetPos(SQL_POSITION)

ODBC only, positions the ODBC cursor on a specific row in the current rowset.

SQLSetPos(SQL_REFRESH), dbcursor(CRS_REFRESH)

Refreshes program variables bound to the result set columns with the values from the row the cursor is currently positioned on.

SQLSetPos(SQL_UPDATE), dbcursor(CRS_UPDATE)

Updates the current row in the cursor with the values stored in the program variables bound to the result set columns.

SQLSetPos(SQL_DELETE), dbcursor(CRS_DELETE)

Deletes the current row in the cursor.

dbcursor(CRS_LOCKCC)

DB-Library only, locks the current row.

OLE DB and ADO use a different model to support positioned updates.

In OLE DB, when positioned on a row within the rowset, call the IRowsetChange::SetData or IRowsetChange::DeleteRows
methods to perform positioned updates. If the OLE DB provider supports IRowsetUpdate::Update, the changes made with the
IRowsetChange methods are cached until you call IRowsetUpdate::Update. If the OLE DB provider does not support
IRowsetUpdate::Update, the changes made with the IRowsetChange methods are made immediately.

In ADO, when positioned on a row within the recordset, call the Recordset object's Update or Delete methods to perform
positioned updates. If the OLE DB provider supports IRowsetUpdate::Update, the changes made with the Recordset object's
Update or Delete methods are cached until you call the Recordset object's UpdateBatch method. If the OLE DB provider does
not support IRowsetUpdate::Update, the changes made with the Recordset object's Update or Delete methods are made
immediately.

See Also

WHERE

Positioned Updates (ODBC)

dbcursor

Accessing and Changing Relational Data (SQL Server 2000)

Cursor Programming Details
Choosing the correct cursor options is an important part of developing a Microsoft® SQL Server™ 2000 application.

Using block cursors can reduce the number of network roundtrips between the client and SQL Server, thereby improving
performance. SQL Server may implicitly convert a cursor type if you execute a Transact-SQL statement not supported by the
cursor type you requested. SQL Server populates the keyset of a large keyset-driven cursor asynchronously, which shortens the
time between when the cursor is opened and when you can fetch the first rows.

Accessing and Changing Relational Data (SQL Server 2000)

Choosing a Cursor Type
Choosing a cursor type depends on several variables, including:

Size of the result set.

Percentage of the data likely to be needed.

Performance of the cursor open.

Need for cursor operations, such as scrolling or positioned updates.

Level of visibility to data modifications made by other users.

The default settings are fine for a small result set if no updating is done, but a dynamic cursor is preferred for a large result set in
which the user is likely to find an answer before retrieving many of the rows.

Rules for Choosing a Cursor Type

Some simple rules to follow in choosing a cursor type are:

Use default settings for singleton selects (returns one row), or other small result sets. It is more efficient to cache a small
result set on the client and scroll through the cache instead of asking the server to implement a cursor.

Use the default settings when fetching an entire result set to the client, such as when producing a report. Default result sets
are the fastest way to transmit data to the client.

Default result sets cannot be used if the application is using positioned updates.

Default result sets cannot be used if the application is using multiple active statements. If cursors are being used only to
support multiple active statements, choose fast forward-only cursors.

Default result sets must be used for any Transact-SQL statement or batch of Transact-SQL statements that will generate
multiple result sets.

Dynamic cursors open faster than static or keyset-driven cursors. Internal temporary work tables must be built when static
and keyset-driven cursors are opened, but they are not required for dynamic cursors.

In joins, keyset-driven and static cursors can be faster than dynamic cursors.

Keyset-driven or static cursors must be used if you want to do absolute fetches.

Static and keyset-driven cursors increase the usage of tempdb. Static server cursors build the entire cursor in tempdb;
keyset-driven cursors build the keyset in tempdb.

If a cursor must remain open through a rollback operation, use a synchronous static cursor and set
CURSOR_CLOSE_ON_COMMIT to OFF.

Each call to an API fetch function or method causes a roundtrip to the server when using server cursors. Applications should
minimize these roundtrips by using block cursors with a reasonably large number of rows returned on each fetch.

See Also

Cursor Types

Accessing and Changing Relational Data (SQL Server 2000)

Block Cursors
API server cursors are not limited to fetching one row at a time; they can retrieve multiple rows in each fetch. When working with
a client/server database, such as Microsoft® SQL Server™, it is more efficient to fetch several rows at a time. The number of rows
returned on a fetch is called the rowset size. Cursors that have a rowset size greater than one are called block cursors. In the
supported APIs, you can use the block cursors in these ways:

ODBC

1. Set the statement attribute SQL_ATTR_ROWSET_SIZE to the size of the rowset.

2. Use column-wise or row-wise binding to bind the columns to arrays of variables to hold the data from the rows
returned. The number of elements in each array is equal to the rowset size.

3. Each call to SQLFetchScroll fetches the number of rows set with SQL_ATTR_ROWSET_SIZE.

OLE DB

1. Allocate an array of row handles and bind the columns represented by each handle to an array of variables to hold the
column data.

2. Call IRowset::GetNextRows with the cRows parameter set to the number of handles in the row handle array and the
address of the array of row handles in the prghRows parameter.

ADO

1. Dim a variant to hold the data for the number of rows you want to retrieve.

2. Optionally, position at the proper point in the cursor using the recordset methods Move, MoveFirst, MoveLast,
MoveNext, and MovePrevious.

3. Call the recordset method GetRows with the array parameter holding the address of the variant to hold the rows and
the Crows parameter holding the number of rows to return. Optionally, have the Start parameter indicate the fetch
position in the recordset.

DB-Library

1. Allocate arrays to hold the data for each column, and bind each array to its target column using dbcursorbind.

2. Call dbcursorfetchex with the rownum parameter set to the number of rows to fetch.

See Also

Rowsets and SQL Server Cursors

Cursor Rowset Size

dbcursorfetchex

dbcursorbind

Accessing and Changing Relational Data (SQL Server 2000)

Implicit Cursor Conversions
Applications can request a cursor type and then execute a Transact-SQL statement that is not supported by server cursors of the
type requested. Microsoft® SQL Server™ returns an error that indicates the cursor type has changed.

These are the factors that trigger SQL Server to implicitly convert a cursor from one type to another.

Step
Conversion
triggered by

Forward-
only

Fast-
forward

Keyset-
driven Dynamic

Go to
step

1 Cursor references a
view with a TOP
clause.

Becomes
static.

Becomes
static.

Becomes
static.

Becomes
static.

Done

2 Query FROM clause
references no tables.

Becomes
static.

 Becomes
static.

Becomes
static.

Done

3 Query contains:
select list aggregates
GROUP BY
UNION
DISTINCT
HAVING

Becomes
static.

 Becomes
static.

Becomes
static.

Done

4 Query references an
inserted or deleted
table within a trigger.

Becomes
static.

 Becomes
static.

Becomes
static.

Done

5 Query joins a trigger
table to another table.

 Becomes
static.

 Done

6 READ_ONLY is not
specified.

 Becomes
static.

 8

7 ODBC API server
cursor references text,
ntext, or image
columns.

 Becomes
dynamic.

 8

8 Query generates an
internal work table, for
example the columns
of an ORDER BY are
not covered by an
index.

Becomes
keyset.

 Becomes
keyset.

10

9 Query references
remote tables in linked
servers.

Becomes
keyset.

Becomes
keyset.

 Becomes
keyset.

10

10 Query references at
least one table without
a unique index.

 Becomes
static.

 Done

11 Cursor references
text, ntext, or image
columns; and the
query contains a TOP
clause.

 Becomes
keyset.

 Done

SQL Server version 6.5 has this restriction in addition to the restrictions in SQL Server 7.0:

If a dynamic cursor is requested and the Transact-SQL statement contains an ORDER BY that does not match an index or
subquery, the cursor is converted to a keyset-driven or static cursor. If all the tables have a unique index, but no index that
covers the ORDER BY, the cursor is converted to a keyset-driven cursor. If at least one table has no index that covers the
ORDER BY and at least one has no unique index (not necessarily the same table), the cursor is converted to static.

An index column cannot be used to cover the ORDER BY if there are index columns to its left that are not referenced by the
ORDER BY. For example, if an index is defined as using MyTable (LastName, FirstName), the index cannot be used to
cover a statement using ORDER BY FirstName.

The SQL Server version 6.0 restriction regarding dynamic cursors is more simply defined:

If a dynamic cursor is requested and there is at least one table that does not have a unique index, the cursor is converted to
a static cursor.

If you are using API server cursors and get a message indicating the cursor type has been changed, you can call the following
functions to see the type of cursor SQL Server opened:

ODBC: Call SQLGetInfo for the SQL_CURSOR_TYPE attribute.

DB-Library: Call dbcursorinfoex and refer to the Type field in the DBCURSORINFO structure returned by dbcursorinfoex.

Transact-SQL: Use sp_describe_cursor and refer to the model and scrollable columns in the cursor returned by the
procedure.

See Also

Implicit Cursor Conversions (ODBC)

dbcursorinfoex

Accessing and Changing Relational Data (SQL Server 2000)

Asynchronous Population
Microsoft® SQL Server™ 2000 offers a performance optimization of populating large keyset-driven or static cursors
asynchronously. Keyset-driven and static cursors use work tables built in tempdb. Keyset-driven cursors use the work table to
store their keyset, the set of keys that identify the rows in the cursor. Static cursors use work table to store the rows comprising
the cursor. If the SQL Server query optimizer estimates that the number of rows returned in a keyset-driven or static cursor will
exceed the value of the sp_configure cursor threshold parameter, the server starts a separate thread to populate the work table.
Control is immediately returned to the application, which can start fetching the first rows in the cursor instead of having to wait
until the entire work table has been populated before performing the first fetch.

There is some extra overhead associated with populating a cursor asynchronously. It is more efficient not to populate small
cursors asynchronously, so the sp_configure cursor threshold value should not be set too low. Reserve the use of
asynchronous population for large cursors.

The @@CURSOR_ROWS function reports the number of rows in a cursor. If you select @@CURSOR_ROWS on a cursor with a
work table that is still being populated, @@CURSOR_ROWS returns a negative number. The absolute value of the number
returned is the number of the rows that have been populated in the work table up to that time. For example, if
@@CURSOR_ROWS is selected while the keyset of a keyset-driven cursor is still being populated, but 1,243 keys are already in
the keyset, @@CURSOR_ROWS returns a value of -1243.

See Also

@@CURSOR_ROWS

sp_configure

Accessing and Changing Relational Data (SQL Server 2000)

Scope of Transact-SQL Cursor Names
Microsoft® SQL Server™ 2000 supports the GLOBAL and LOCAL keywords on the DECLARE CURSOR statement to define the
scope of the cursor name. GLOBAL specifies that the cursor name is global to the connection. LOCAL specifies that the cursor
name is LOCAL to the stored procedure, trigger, or batch containing the DECLARE CURSOR statement.

Prior to Microsoft SQL Server version 7.0, the names of Transact-SQL cursors were global to the connection. You could execute
one stored procedure that creates a cursor, and then call another stored procedure that fetches the rows from that cursor:

USE pubs
GO
CREATE PROCEDURE OpenCrsr AS

DECLARE SampleCrsr CURSOR FOR
SELECT au_lname
FROM authors
WHERE au_lname LIKE 'S%'

OPEN SampleCrsr
GO

CREATE PROCEDURE ReadCrsr AS
FETCH NEXT FROM SampleCrsr
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT FROM SampleCrsr
END
GO

EXEC OpenCrsr /* DECLARES and OPENS SampleCrsr. */
GO
EXEC ReadCrsr /* Fetches the rows from SampleCrsr. */
GO
CLOSE SampleCrsr
GO
DEALLOCATE SampleCrsr
GO

Local cursors offer important protection for cursors implemented in stored procedures and triggers. Global cursors can be
referenced outside the stored procedure or trigger in which they are declared. Consequently, they can be inadvertently changed
by statements outside the stored procedure or trigger. Local cursors are more secure than global cursors because they cannot be
referenced outside a stored procedure, unless deliberately passed back to the caller as a cursor output parameter.

Because global cursors can be referenced outside a stored procedure or trigger, they can have unintended side effects that
influence other statements. An example is a stored procedure that creates a global cursor with a name of xyz and leaves the
cursor open when it completes. An attempt to declare another global cursor with the name xyz after the stored procedure
completed fails with a duplicate name error.

Global and local cursors have separate name spaces, so it is possible to have both a global cursor and a local cursor with the same
name at the same time. The Transact-SQL statements that accept a cursor name parameter also support the GLOBAL keyword to
identify the scope of the name. If GLOBAL is not specified, and there are both a local and global cursor with the name specified in
the cursor name parameter, the local cursor is referenced.

The database option default to local cursor controls the default taken by the DECLARE CURSOR statement if neither LOCAL nor
GLOBAL is specified. If default to local cursor is true, Transact-SQL cursors default to local. If the option is false, Transact-SQL
cursors default to global. In SQL Server 2000, the default to local cursors option itself defaults to FALSE to match the behavior
of earlier versions of SQL Server.

Stored procedures that DECLARE and OPEN local cursors can pass the cursors out for use by the calling stored procedure, trigger,
or batch. This is done using an OUTPUT parameter defined with the new CURSOR VARYING data type. Cursor variables can only
be used as OUTPUT parameters. They cannot be used for input parameters. The cursor must be open when the stored procedure
completes to be passed back in an OUTPUT parameter. Local variables can also be declared with the new CURSOR data type to
hold a reference to a local cursor.

USE pubs
GO
/* Create a procedure with a cursor output parameter. */
CREATE PROCEDURE OpenCrsr @OutCrsr CURSOR VARYING OUTPUT AS

SET @OutCrsr = CURSOR FOR
SELECT au_lname
FROM authors

WHERE au_lname LIKE 'S%'

OPEN @OutCrsr
GO

/* Allocate a cursor variable. */
DECLARE @CrsrVar CURSOR

/* Execute the procedure created earlier to fill
 the variable. */
EXEC OpenCrsr @OutCrsr = @CrsrVar OUTPUT

/* Use the variable to fetch the rows from the cursor. */
FETCH NEXT FROM @CrsrVar
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT FROM @CrsrVar
END

CLOSE @CrsrVar

DEALLOCATE @CrsrVar
GO

The database APIs do not support cursor output parameters on stored procedures. A stored procedure that contains a cursor
output parameter cannot be executed directly from a database API function. These stored procedures can only be executed from
another stored procedure, a trigger, or a Transact-SQL batch or script.

A GLOBAL cursor is available until it is explicitly deallocated or the connection is closed. LOCAL cursors are implicitly deallocated
when the stored procedure, trigger, or batch in which they were created terminates, unless the cursor has been passed back as a
parameter. The LOCAL cursor will then be implicitly deallocated when the parameter or variable referencing the cursor in the
code that called the procedure goes out scope.

See Also

DECLARE CURSOR

sp_dboption

Accessing and Changing Relational Data (SQL Server 2000)

Getting Server Cursor Meta Data
There are two ways to get meta data describing a server cursor:

Applications using API server cursors with a database API such as ADO, OLE DB, ODBC, or DB-Library typically use the
cursor functionality of the API to get information about the state of the cursor.

Transact-SQL scripts, stored procedures, and triggers can use the Transact-SQL functions and system stored procedures
discussed in this topic to get information about a Transact-SQL cursor.

There are several system functions that report status information for a server cursor, or a server cursor assigned to a cursor
variable:

CURSOR_STATUS

Indicates whether a cursor is open or closed, or if a cursor variable is currently associated with a cursor.

@@FETCH_STATUS

Indicates the success or failure of the last fetch operation performed for the connection.

@@CURSOR_ROWS

Reports the number of rows populated in the last cursor opened for the connection.

There are several system stored procedures that report the characteristics of a server cursor, or a server cursor assigned to a
cursor variable:

sp_describe_cursor

Returns a cursor describing the attributes of a cursor, such as its scope, name, type, status, and the number of rows.

sp_describe_cursor_columns

Returns a cursor describing the attributes of each column in the cursor, such as the column's name, position, size, and data
type.

sp_describe_cursor_tables

Returns a cursor describing the base tables referenced by the cursor.

sp_cursor_list

Returns a cursor listing all the currently visible cursors for the connection. The format of the cursor returned by
sp_cursor_list is the same as the cursor from sp_describe_cursor.

These system stored procedures return their result sets as output cursor variables. The database APIs do not support cursor
variables, so these procedures cannot be called from applications, only within Transact-SQL scripts, stored procedures, and
batches. Applications should use the cursor functionality of the database APIs to get the metadata for API server cursors.

Be careful with the status information returned by these functions and stored procedures, especially @@FETCH_STATUS. The
information returned by @@FETCH_STATUS changes every time a FETCH statement is issued against any cursor open for the
connection. A stored procedure or trigger that may need to refer to the status information after executing several additional
statements should save @@FETCH_STATUS in an integer variable immediately after the FETCH statement. @@FETCH_STATUS
may be reset even if there are no FETCH statements in the batch between the FETCH and the statement that tests the status. If an
intervening INSERT, UPDATE or DELETE statement fires a trigger, the trigger can open and fetch from a cursor.
@@FETCH_STATUS would then contain the status of the last FETCH statement in the trigger.

The stored procedures report their status information for a specific cursor, so their status information is not affected by
operations on other cursors. Their status information is still affected by operations on the same cursor, so care must still be taken
in using the status information returned by the stored procedures.

See Also

@@CURSOR_ROWS

@@FETCH_STATUS

CURSOR_STATUS

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

sp_describe_cursor_tables

Accessing and Changing Relational Data (SQL Server 2000)

Using Cursors with Distributed Queries
When using cursors with distributed queries, both insensitive (static) and keyset-driven cursor types are supported when the
provider supports the necessary OLE DB functionality. Dynamic or forward-only cursors requested with a distributed query are
implicitly converted to keyset-driven cursors.

A keyset-driven cursor is supported on a distributed query if all local and remote tables in the query have a unique key. For the
conditions under which a keyset cursor is supported on a distributed query, Keyset-driven Cursors Requirements for OLE DB
Providers.

If a keyset-driven cursor is allowed on a distributed query, then it can also be used to update any of the underlying remote tables
if the provider requirements for updatability are met. For the requirements for updates on a remote table, see UPDATE and
DELETE Requirements for OLE DB Providers.

See Also

DECLARE CURSOR

Using Cursors

Using Server Cursors with ADO

Accessing and Changing Relational Data (SQL Server 2000)

Distributed Queries
 New Information - SQL Server 2000 SP3.

Distributed queries access data from multiple heterogeneous data sources, which can be stored on either the same or different
computers. Microsoft® SQL Server™ 2000 supports distributed queries by using OLE DB, the Microsoft specification of an
application programming interface (API) for universal data access.

This Distributed Queries section discusses general distributed query concepts and describes how to use Transact-SQL statements
in distributed queries to access data on separate instances of SQL Server, or non-SQL Server data sources. Other sections of SQL
Server Books Online contain additional related information.

For this information See
Configuring OLE DB providers and linked
servers

Configuring Linked Servers

Configuring OLE DB Providers for
Distributed Queries

Distributed queries in distributed
transactions

Distributed Queries and Distributed
Transactions

Information about specific OLE DB
Providers

OLE DB Providers Tested with SQL Server

Language support for OLE DB providers SQL Dialect Requirements for OLE DB
Providers

Linked servers Accessing External Data
ODBC and distributed queries Schema Functions Supporting Distributed

Queries
Performance issues Optimizing Distributed Queries
Reference for OLE DB Provider developers OLE DB Provider Reference for Distributed

Queries
Statistics requirements Distribution Statistics Requirements for

OLE DB Providers

Programming OLE DB SQL Server
Applications

Transact-SQL language in distributed
queries

External Data and Transact-SQL

System Stored Procedures

Troubleshooting distributed queries Distributed Queries Error Messages

Distributed queries provide SQL Server users with access to:

Distributed data stored in multiple instances of SQL Server.

Heterogeneous data stored in various relational and non-relational data sources accessed using an OLE DB provider.

Distributed queries can allow users to access another data source (for example, files, non-relational data sources such as Active
Directory™, and so on) using the security context of the Microsoft Windows® account under which the SQL Server service is
running. SQL Server 2000 impersonates the login appropriately for Windows NT® logins; however, that is not possible for SQL
Server logins. This can potentially allow a distributed query user to access another data source for which they do not have
permissions, but the account under which the SQL Server service is running does have permissions. Use the sp_addlinkedserver
stored procedure to define the specific logins that are authorized to access the corresponding linked server. This control is not
available for ad hoc names, so use caution in enabling an OLE DB provider for ad hoc access.

OLE DB providers expose data in tabular objects called rowsets. SQL Server 2000 allows rowsets from OLE DB providers to be
referenced in Transact-SQL statements as if they were a SQL Server table.

Tables and views in external data sources can be referenced directly in SELECT, INSERT, UPDATE, and DELETE Transact-SQL
statements. Because distributed queries use OLE DB as the underlying interface, distributed queries can access traditional
relational DBMS systems with SQL query processors, as well as data managed by data sources of varying capabilities and
sophistication. As long as the software owning the data exposes it in a tabular rowset through an OLE DB provider, the data can

be used in distributed queries.

Note Using distributed queries in SQL Server is similar to the linked table functionality through ODBC, which was supported
previously by Microsoft Access. This functionality is now built into SQL Server with OLE DB as the interface to external data.

Example

You are a regional sales manager for a large insurance company that has subsidiaries in several countries. Each regional office
selects the product that stores its sales data. The United Kingdom subsidiary stores its data in Oracle; the Australian subsidiary
stores its data in Access; the Spanish subsidiary stores data in Microsoft Excel; and the United States subsidiary stores its data in
SQL Server. You want a report that lists, on a quarterly basis for the last three years, the insurance policies, the subsidiaries, and
the sales representatives with the highest quarterly sales figures. Each of these queries can be accomplished by using a single
distributed query, running on SQL Server.

See Also

Configuring Linked Servers

Distributed Queries and Distributed Transactions

Security Account Delegation

Accessing and Changing Relational Data (SQL Server 2000)

Accessing External Data
To access data from an OLE DB data source, provide Microsoft® SQL Server™ 2000 with the following information:

The name of the OLE DB provider that exposes the data source.

Any information the OLE DB provider needs to locate the source of the data.

Either the name of an object that the OLE DB data source can expose as a rowset, or a query that can be sent to the OLE DB
provider that will cause it to expose a rowset. The objects that can be exposed as rowsets are known as remote tables. The
queries that generate rowsets are known as pass-through queries.

Optionally, you can supply SQL Server with valid login IDs for the OLE DB data source.

SQL Server 2000 supports these methods for referencing heterogeneous OLE DB data sources in Transact-SQL statements: the
linked server name and the ad hoc computer name.

Linked Server Names

A linked server is a virtual server that has been defined to Microsoft® SQL Server™ 2000 with all the information needed to
access an OLE DB data source. A linked server name is defined using the sp_addlinkedserver system stored procedure. The
linked server definition contains all the information needed to locate the OLE DB data source. Local SQL Server logins are then
mapped to logins in the linked server using sp_addlinkedsrvlogin. Remote tables can then be referenced by using the linked
server name:

As the server name in a four-part name used as a table or view reference in a Transact-SQL statement. The other three parts
of the name reference an object in the linked server that is exposed as a rowset.

As an input parameter to an OPENQUERY function. OPENQUERY sends the OLE DB provider a command to execute. The
returned rowset can then be used as a table or view reference in a Transact-SQL statement.

Ad Hoc Names

An ad hoc name is used for infrequent queries against OLE DB data sources that are not defined as a linked server name. In SQL
Server 2000, the OPENROWSET and OPENDATASOURCE functions provide connection information for accessing data from OLE
DB data sources.

OPENROWSET and OPENDATASOURCE should be used only to reference OLE DB data sources that are accessed infrequently. For
any data sources that will be accessed more than a few times, define a linked server. Neither OPENDATASOURCE nor
OPENROWSET provide all of the functionality of linked server definitions, including security management and the ability to query
catalog information. Each time these functions are called, all connection information, including passwords, must be provided.

OPENROWSET and OPENDATASOURCE appear to be functions; however, they are macros and do not support supplying
Transact-SQL variables as arguments.

The OPENROWSET function can be used with any OLE DB provider that returns a rowset, and can be used anywhere a table or
view reference is used in a Transact-SQL statement. OPENROWSET is specified with:

All the information needed to connect to the OLE DB data source.

Either the name of an object that will generate a rowset, or a query that will generate a rowset.

The OPENDATASOURCE function provides connection information as part of a four-part object name. This function supports only
OLE DB providers that expose multiple rowsets using the catalog.schema.object notation. OPENDATASOURCE can be used in the
same Transact-SQL syntax locations a linked server name can be used. OPENDATASOURCE is specified with:

The name registered as the PROGID of the OLE DB provider used to access the data source.

A connection string that specifies the various connection properties to be passed to the OLE DB provider. The connection
string syntax is a sequence of keyword-value pairs. The basic syntax is defined in the Microsoft® Data Access Software
Development Kit, and each provider documents the specific keyword-value pairs it supports. For more information about
connection strings, see OPENDATASOURCE.

Accessing Linked Servers

After a linked server is created using sp_addlinkedserver, it can be accessed using:

Distributed queries. Accessing tables in the linked server through SELECT, INSERT, UPDATE, and DELETE statements using a
linked server-based name.

Remote stored procedures. Stored procedures can be executed against the linked server using a four-part name.

Servers running an instance of SQL Server can be defined as a remote server using sp_addserver. The remote server then can be
referenced in remote stored procedure calls. The remote server component is maintained as a compatibility feature for existing
applications.

As applications are ported to SQL Server 2000, they may need to run for a period of time with some new code using distributed
queries against a linked server definition and some legacy code using a remote server definition. Both linked servers and remote
servers use the same name space, so either the linked server or the remote server definition has to use a name that is different
than the network name of the server being accessed remotely. Define one of the entries with a different server name, and use
sp_setnetname to associate that definition with the network name of the remote server.

Note The examples in this section use system stored procedures to configure linked servers because these system stored
procedures succinctly show the parameters used. However, SQL Server Enterprise Manager also supports configuring linked
servers. For more information, see Configuring Linked Servers.

Accessing and Changing Relational Data (SQL Server 2000)

Identifying a Data Source Using a Linked Server Name
After a linked server is defined, a four-part name in the form linked_server_name.catalog.schema.object_name can be used in
Transact-SQL statements to reference data objects in that linked server. The table describes the parts of a four-part name.

Part name Description
linked_server_name Linked server referencing the OLE DB data source
catalog Catalog in the OLE DB data source that contains the object
schema Schema in the catalog that contains the object
object_name Data object in the schema

Microsoft® SQL Server™ uses the linked server name to identify the OLE DB provider and the data source. The catalog, schema,
and object_name parameters are passed to the OLE DB provider to identify a specific data object. When the linked server refers to
an instance of SQL Server, catalog refers to a database and schema refers to an owner ID.

This illustration shows how a four-part SQL Server name resolves to an object in the OLE DB provider.

Always use fully qualified names when working with objects on linked servers. There is no support for implicit resolution to the
dbo owner name for tables in linked servers. Because of this, a query without a schema name generates a 7314 error even when
the linked server is another instance of SQL Server. SQL Server does not support full-text search over linked servers.

See Also

OPENQUERY

Accessing and Changing Relational Data (SQL Server 2000)

Identifying a Data Source Using an Ad Hoc Name
 New Information - SQL Server 2000 SP3.

An ad hoc name can be used as a table reference when the OLE DB data source will not be referenced often enough to warrant
configuring a linked server. In Microsoft® SQL Server™ 2000, you can use the OPENROWSET and OPENDATASOURCE functions
to provide an ad hoc name.

Important For each instance of SQL Server 2000, members of the sysadmin fixed server role can enable or disable the use of ad
hoc connector names for an OLE DB provider using the SQL Server DisallowAdhocAccess property. When ad hoc access is
enabled, any user logged on to that instance can execute SQL statements containing ad hoc connector names referencing any
data source on the network that can be accessed using that OLE DB provider. To control access to data sources, members of the
sysadmin role can disable ad hoc access for that OLE DB provider, thereby limiting users to only those data sources referenced
by linked server names defined by the administrators. By default, ad hoc access is enabled for the SQL Server OLE DB provider,
and disabled for all other OLE DB providers.

Both the OPENROWSET and OPENDATASOURCE functions provide ad hoc connection information. You can use these functions
to specify all the information needed to access the OLE DB data source. However, you cannot use OPENROWSET and
OPENDATASOURCE interchangeably.

You can use the OPENROWSET function wherever the OLE DB provider returns rowsets either by specifying a table (or view)
name or by specifying a query that returns a rowset. The OPENROWSET function can be used in the place of a table or view name
in a Transact-SQL statement.

--This example uses an ad hoc name to retrieve data from the Customers table of a Microsoft Access version of
the Northwind sample database.
SELECT *
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0',
 'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'password',
 Customers)

Use OPENDATASOURCE only when the provider exposes rowsets and uses the catalog.schema.object notation. This function can
be used in the same Transact-SQL syntax locations a linked server name can be used. Thus, in the catalog.schema.object notation,
OPENDATASOURCE can be used as the first part of a four-part name that refers to a table or a view name.

-- SELECT from a table on another instance of SQL Server.
SELECT *
FROM OPENDATASOURCE(
 'SQLOLEDB',
 'Data Source=ServerName;User ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

Both OPENROWSET and OPENDATASOURCE should be used only for accessing external data for ad hoc situations, when it is not
possible to configure a permanent linked server. These functions do not provide all of the functionality available from a linked
server, such as management of login mappings, ability to query the linked server's meta data, and the ability to configure various
connection settings such as time-out values.

The arguments of OPENROWSET and OPENDATASOURCE do not support variables. They have to be specified as string-literal. If
variables need to be passed in as arguments to these functions, a query string containing these variables can be constructed
dynamically and executed using the EXEC statement.

See Also

OPENDATASOURCE

OPENROWSET

Accessing and Changing Relational Data (SQL Server 2000)

Using Pass-Through Queries as Tables
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 sends pass-through queries as uninterpreted query strings to an OLE DB data source. The query
must be in a syntax the OLE DB data source will accept. A Transact-SQL statement uses the results from a pass-through query as
though it is a regular table reference.

This example uses a pass-through query to retrieve a result set from a Microsoft Access version of the Northwind sample
database.

SELECT *
FROM OpenRowset('Microsoft.Jet.OLEDB.4.0',
 'c:\northwind.mdb';'admin'; 'password',
 'SELECT CustomerID, CompanyName
 FROM Customers
 WHERE Region = ''WA'' ')

The ways to generate a rowset from an OLE DB provider are:

Reference an object in the data source that the provider can expose as a tabular rowset. All providers support this capability.

Send the provider a command that the provider can process and expose the results of the command as a rowset. This
capability requires that the provider support the OLE DB Command object and all of its mandatory interfaces.

When a provider supports the Command object, these Transact-SQL functions can be used to send it commands (called pass-
through queries):

OPENQUERY sends a command string to an OLE DB data source using a linked server name.

OPENROWSET and OPENDATASOURCE support sending a command string to an OLE DB data source. The resulting rowset
can be referenced using an ad hoc name.

The OLE DB specification does not define a single command language to be used by all OLE DB providers. OLE DB providers are
allowed to support any command language that is related to the data they expose. OLE DB providers that expose the data in
relational databases generally support the SQL language. Other types of providers, such as those exposing the data in an e-mail
file or network directory, generally support a different language.

See Also

FROM

OPENDATASOURCE

OPENQUERY

OPENROWSET

Accessing and Changing Relational Data (SQL Server 2000)

External Data and Transact-SQL
As long as the provider supports the required OLE DB interfaces, each class of Transact-SQL statements mentioned later is
allowed. Here is the subset of the Transact-SQL language allowed on remote tables accessed through linked server-based names
or ad hoc names:

All queries with the standard form of SELECT select_list FROM clause WHERE clause are allowed. The INTO new_table_name
clause of SELECT is not allowed when the new_table_name refers to a remote table.

In SELECT, INSERT, UPDATE, and DELETE statements, columns in remote tables cannot be qualified with a single-part or
four-part table name. The remote tables should be aliased in the FROM clause and the alias name should be used to qualify
the column name.

When specifying a large object (LOB) column from a remote table as an item in the select_list of a SELECT statement, the
SELECT statement cannot contain an ORDER BY clause.

The IS NULL and IS NOT NULL predicates cannot reference LOB columns in a remote table.

GROUP BY ALL is not allowed in a distributed query when the query also has a WHERE clause. GROUP BY without
specifying ALL is supported.

INSERT statements are allowed against remote tables as long as the provider meets the OLE DB requirements for INSERT
statements. For more information, see INSERT Requirements for OLE DB Providers.

UPDATE and DELETE statements are allowed against remote tables if the provider meets the OLE DB interface requirements
on the specified table. For more information, see UPDATE and DELETE Requirements for OLE DB Providers.

A remote table can be updated or deleted through a cursor defined on a distributed query when the remote table is
specified in the UPDATE or DELETE statement (UPDATE or DELETE remote_table WHERE CURRENT OF cursor_name) if the
provider meets the conditions for updatability on the remote table. For more information, see Using Cursors with
Distributed Queries.

READTEXT, WRITETEXT, and UPDATETEXT statements are not supported against remote tables.

Columns with large object data types (such as text, ntext, or image) cannot be referenced in update or insert operations if
the provider is instantiated outside the Microsoft® SQL Server™ 2000 process (provider option AllowInProcess is 0). For
more information, see Configuring OLE DB Providers for Distributed Queries.

Data Definition Language statements (such as CREATE, ALTER, or DROP statements) are not allowed against linked servers.

No other database-level operations or statements are allowed on linked servers.

STATIC or INSENSITIVE cursors can reference remote tables. KEYSET cursors can reference remote tables if the OLE DB
provider meets certain requirements. For more information about these requirements, see Keyset-driven Cursors
Requirements for OLE DB Providers. No other type of cursor can reference a remote table.

Stored procedures are supported only against SQL Server data sources.

Accessing and Changing Relational Data (SQL Server 2000)

Setting SQL-92 Options for Distributed Queries
A connection must have the ANSI_NULLS and ANSI_WARNINGS options turned on before it can execute distributed queries.

See Also

SET ANSI_DEFAULTS

Accessing and Changing Relational Data (SQL Server 2000)

Using Transactions with Distributed Queries
Microsoft® SQL Server™ 2000 supports transaction-based access to external data using the ITransactionLocal (local
transaction) and ITransactionJoin (distributed transactions) OLE DB interfaces. Using distributed transactions, SQL Server
ensures that a transaction involving multiple nodes is either committed or rolled back in all the nodes. If the provider does not
support participating in a distributed transaction (does not support ITransactionJoin), only read-only operations are allowed
against that provider when inside a transaction.

When a disallowed statement is encountered, the statement returns an error message and the user transaction, if any, terminates
execution.

See Also

Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Data Type Mapping
An OLE DB provider exposes the data types of its data in terms of OLE DB type identifiers called DBTYPEs. Data types are
converted between OLE DB data types and native Microsoft® SQL Server™ data types by mapping data:

From OLE DB data types to SQL Server native data types. This conversion occurs when SQL Server reads data from the OLE
DB data source, either in SELECT statements or in the reading side of UPDATE, INSERT, or in DELETE statements.

From SQL Server native data types to OLE DB data types. This conversion occurs when SQL Server writes data, mostly in
INSERT or UPDATE statements, into the OLE DB data source in which the modified table is a remote table.

Data Type Mapping from the OLE DB Provider to SQL Server

Data type mapping from the OLE DB provider to SQL Server defines the allowed comparisons and expressions, and the valid
explicit conversions involving remote data. The data type of remote_column corresponds to the mapped local data type as shown
in the Data Type Mapping table.

The type rules for remote table columns in expressions can be described by this rule: a given remote column value is legal in a
Transact-SQL expression if the corresponding mapped SQL Server data type in the following table is legal in the same context. For
example, consider the expression:

local_column operator remote_column

local_column is a local table column and remote_column is a remote table column. This is a valid expression if operator is a valid
operator for the local column's data type and for the data type to which the DBTYPE of remote_column maps.

Similarly, CAST(remote_column AS data_type_1) is allowed if the DBTYPE of remote_column maps to the SQL Server native
data_type_2 and explicit conversion from data_type_2 to data_type_1 is allowed. For example, a column of data type
DBTYPE_DATE on the provider side can be converted to a datetime column in SQL Server. However, the DBTYPE_DATE data
cannot be converted directly to varchar.

The mapping to a SQL Server type is determined by the DBTYPE and the DBCOLUMNFLAGS values describing the column. This
information comes from the provider through either the COLUMNS schema rowset or through the IColumnsInfo interface. In
the case of the COLUMNS schema rowset, the DATA_TYPE and COLUMN_FLAGS columns represent these values. In the case of
the IColumnsInfo::GetColumnInfo interface, the wType and dwFlags members of the DBCOLUMNINFO structure represent this
information.

The Data Type Mapping table shows data type mappings from the OLE DB provider to SQL Server. For a given column, given its
DBTYPE and its DBCOLUMNFLAG value, the corresponding SQL Server data type can be found.

DBTYPE DBCOLUMNFLAGS
SQL Server data

type
DBTYPE_I1 numeric(3, 0)1

DBTYPE_I2 smallint
DBTYPE_I4 Int
DBTYPE_I8 bigint
DBTYPE_UI1 tinyint
DBTYPE_UI2 numeric(5,0)
DBTYPE_UI4 numeric(10,0)
DBTYPE_UI8 numeric(20,0)
DBTYPE_R4 Float
DBTYPE_R8 Real
DBTYPE_NUMERIC numeric
DBTYPE_DECIMAL decimal
DBTYPE_CY money
DBTYPE_BSTR DBCOLUMNFLAGS_ISLONG = true ntext
DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH =

true
nchar

DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH =
false

nvarchar

DBTYPE_IDISPATCH Error

DBTYPE_ERROR Error
DBTYPE_BOOL Bit
DBTYPE_VARIANT nvarchar(4000)
DBTYPE_IUNKNOWN Error
DBTYPE_GUID uniqueidentifier
DBTYPE_BYTES DBCOLUMNFLAGS_ISLONG = true or

Maximum column size > 8,000 bytes
image

DBTYPE_BYTES DBCOLUMNFLAGS_ISROWVER = true,
DBCOLUMNFLAGS_ISFIXEDLENGTH =
true,
Column size = 8

timestamp

DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH =
true

binary

DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH =
false

varbinary

DBTYPE_STR DBCOLUMNFLAGS_ISFIXEDLENGTH =
true

char

DBTYPE_ STR DBCOLUMNFLAGS_ISFIXEDLENGTH =
false

varchar

DBTYPE_STR DBCOLUMNFLAGS_ISLONG = true or
Maximum column size > 4,000
characters

text

DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXED nchar
DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXEDLENGTH =

false
nvarchar

DBTYPE_WSTR DBCOLUMNFLAGS_ISLONG = true or
Maximum column size > 4,000
characters

ntext

DBTYPE_UDT Error
DBTYPE_DATE datetime
DBTYPE_DBDATE Error
DBTYPE_DBTIME Error
DBTYPE_DBTIMESTAMP datetime
DBTYPE_ARRAY Error
DBTYPE_BYREF Ignored
DBTYPE_VECTOR Error
DBTYPE_RESERVED Error

1 numeric(p,s) indicates the SQL Server data type numeric with precision p and scale s.

Note If the data must be converted to a native data type different from the shown default, an explicit conversion (using either the
CAST or CONVERT function) is required. For more information, see CAST and CONVERT.

Data Type Mapping from SQL Server to the OLE DB Provider

Native SQL Server data types map to OLE DB types using the same table name. A mapping from a SQL Server type S1 to a given
OLE DB type T is allowed if either of these conditions exist:

The corresponding mapping can be found in Table 1.

There is an allowed implicit conversion of the data type S1 to another SQL Server data type S2 and a mapping from S2 to T
is defined in Table 1.

Accessing and Changing Relational Data (SQL Server 2000)

Collations in Distributed Queries
In Microsoft® SQL Server™ version 7.0, the local SQL Server always had only one server-wide collation (code page and sort
order). All character data from remote data sources were interpreted using the local server-wide collation. However, Microsoft
SQL Server 2000 supports multiple collations, which can be different for each column; each character value has an associated
collation property. SQL Server 2000 interprets the collation property of character data from a remote data source and treats it
accordingly.

SQL Server 2000 uses the collation of remote data for comparison and ordering operations on character data (both Unicode and
non-Unicode). The collation information for remote character data is determined differently depending on whether or not the
data source corresponds to a SQL Server:

The SQL Server data OLE DB provider automatically reports the collation for each column it returns.

For remote tables that are not in SQL Server, but for which the collation is known to be the same as one of the collations
supported by SQL Server, the administrator can specify the default collation of the OLE DB data source as part of the linked
server definition. SQL Server can then use the default collation as the collation for all columns returned from that linked
server.

After SQL Server determines the collation of a remote character column, it follows the same rules for converting, comparing, and
operating on remote table columns as it does for local columns. For more information about the rules SQL Server applies to
collations and the collation names supported by SQL Server, see SQL Server Collation Fundamentals.

The linked server options defined by using sp_serveroption control if and how SQL Server uses collations from linked servers:

UseRemoteCollation specifies whether the collation of a remote column or of a local server will be used. When TRUE, the
collation of remote columns is used for SQL Server data sources, and the collation specified in CollationName is used for
data sources other than SQL Server. When FALSE, distributed queries always use the default collation of the local server
instance, and CollationName and the collation of remote columns are ignored.

CollationName specifies the name of the collation used by the remote data source if UseRemoteCollation is TRUE and
the data source is not a SQL Server data source. The name must be one of the collations supported by SQL Server. Use this
option when accessing an OLE DB data source other than SQL Server, but whose collation matches one of the SQL Server
collations. SQL Server data sources report their column collations, and CollationName is ignored for linked servers that
reference SQL Server data sources.

Note The only way to enable using remote collations is through the linked server options, therefore, queries constructed
using ad hoc names such as OPENROWSET and OPENDATASOURCE cannot use collation information of remote character
data. In addition, all linked servers in SQL Server 7.0 that are upgraded to SQL Server 2000 are set to UseRemoteCollation
= False.

The following table summarizes how SQL Server determines the collation used for each column.

 Use Remote Collation = ON Use Remote Collation = OFF

Linked server
type

Collation
name

Not set

Collation
name

Set (to CollX)

Collation
name
Not set

Collation
name

Set (to CollX)
SQL Server Remote

column's actual
collation

Remote
column's actual
collation

Default collation
of local SQL
Server instance

Collation of
local SQL Server
instance

Others Default collation
of local SQL
Server instance

CollX Default collation
of local SQL
Server instance

Default collation
of local SQL
Server instance

Accessing and Changing Relational Data (SQL Server 2000)

Obtaining Meta Data from Linked Servers
OLE DB providers expose meta data about their data through the IDBSchemaRowset interface, which can be used to retrieve
information in the form of OLE DB rowset objects. Microsoft® SQL Server™ 2000 uses this interface to get meta data about
remote tables. This meta data is exposed to the user through these interfaces:

Driver-specific functions from the SQL Server ODBC driver. For more information, see SQLLinkedServers and
SQLLinkedCatalogs.

Provider-specific rowsets from the SQL Server OLE DB provider. For more information, see Schema Rowsets.

Several ODBC catalog functions accept two-part names referencing objects on linked servers.

System stored procedures similar to the existing catalog stored procedures that return meta data on linked servers.

These system stored procedures can be used to retrieve meta data from linked servers.

sp_linkedservers sp_primarykeys
sp_catalogs sp_indexes
sp_column_privileges sp_table_privileges
sp_columns_ex sp_tables_ex
sp_foreignkeys

Note SQL Server is the only data source against which stored procedures are supported in distributed queries.

SQL Server uses the IDBSchemaRowset interface of the OLE DB provider to implement these meta data extensions. Because this
interface is an optional interface, a provider may not implement this interface. Meta data is not available on linked servers defined
against such providers.

See Also

System Stored Procedures

Upgrading the Catalog Stored Procedures

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Providers Tested with SQL Server
Microsoft® SQL Server™ 2000 distributed queries have been tested with several OLE DB providers. Some of the tested OLE DB
providers are installed with SQL Server 2000:

Microsoft OLE DB Provider for SQL Server

Microsoft OLE DB Provider for ODBC

Microsoft OLE DB Provider for Jet

Microsoft OLE DB Provider for DTS Packages

Microsoft OLE DB Provider for Oracle

The other tested providers are available through Microsoft Windows® 2000 (Microsoft OLE DB Provider for Microsoft Directory
Services and the Microsoft OLE DB Provider for Microsoft Indexing Service), and the Microsoft Host Integration Server (Microsoft
OLE DB Provider for DB2).

This table shows the OLE DB providers that have been tested with SQL Server distributed queries. All of these providers support
being referenced in a SELECT statement by specifying a pass-through query in the OPENQUERY and OPENROWSET functions.

Data source
Provider

name

Use in
four-part

names

Use in pass-
through
queries

Use in
INSERT,
UPDATE,

or DELETE

Use in
distributed

transactions
SQL Server 6.5
or later

Microsoft OLE
DB Provider
for SQL
Server

Yes Yes Yes Yes

ODBC Data
Sources

Microsoft OLE
DB Provider
for ODBC

Yes* Yes Yes* Yes*

Microsoft
Access (Jet)
databases

Microsoft OLE
DB Provider
for Jet version
4.00

Yes Yes Yes (No if
the
database
was created
with
Microsoft
Jet version
4.0 or
earlier)

No

Microsoft Excel
spreadsheets

Microsoft OLE
DB Provider
for Jet version
4.00

Yes Yes Yes No

Data
Transformation
Service Package
Data Source
Object

Microsoft OLE
DB Provider
for DTS
Packages

Yes Yes No No

Oracle
databases

Microsoft OLE
DB Provider
for Oracle
version 2.6

Yes Yes Yes Yes

Microsoft
Windows®
2000 Directory

Microsoft OLE
DB Provider
for Microsoft
Directory
Services

No Yes No No

Local file
system
(through
Indexing
Services)

Microsoft OLE
DB Provider
for Microsoft
Indexing
Service
(Requires
Microsoft
Windows
NT® 4.0
Service Pack 4
or later)

No Yes No No

IBM DB2
databases

Microsoft OLE
DB Provider
for DB2

Yes Yes Yes No

* The capabilities of the Microsoft OLE DB Provider for ODBC depend on the ODBC driver being used. The provider may not
support all these capabilities with some ODBC drivers.

Although Microsoft supports only distributed queries that reference the providers tested by Microsoft, distributed queries should
work with any OLE DB provider that meets the requirements documented in the OLE DB Provider Reference for Distributed
Queries.

If a provider does not support being used in a four-part name, it can be referenced in an OPENQUERY or OPENROWSET function
using a pass-through query.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for SQL Server
 New Information - SQL Server 2000 SP3.

The Microsoft OLE DB Provider for SQL Server provides an OLE DB interface to Microsoft® SQL Server™ 2000 databases. Using
the OLE DB Provider for SQL Server, SQL Server distributed queries can query data in remote instances of SQL Server.

To create a linked server to access a SQL Server database

1. Execute sp_addlinkedserver to create the linked server, specifying SQLOLEDB as provider_name, and the network name
of the server running the remote instance of SQL Server as data_source.

For example, to create a linked server named LinkSQLSrvr that operates against the instance of SQL Server running on the
server whose network name is NetSQLSrvr, execute:

sp_addlinkedserver N'LinkSQLSrvr', ' ', N'SQLOLEDB', N'NetSQLSrvr'

2. Map each local login that needs access to the linked server to a SQL Server Authentication login on the linked server.

This example maps access for the local login ITServer\Joe to the SQL Server Authentication login Visitor on the linked
server named LinkedSQLSrvr.

sp_addlinkedsrvlogin N'LinkSQLSrvr', false, N'ITServer\Joe', N'Visitor', N'VisitorPwd'

When distributed queries are executed against a server running SQL Server version 7.0 or earlier, the catalog stored procedures
on the earlier version must be upgraded to ensure the proper operation of the distributed queries. For example, if a server is
running an instance of SQL Server 7.0, the catalog stored procedures on the server must be upgraded to SQL Server 2000 before
it can be referenced in a distributed query from a server running an instance of SQL Server 2000. For more information, see
Upgrading the Catalog Stored Procedures (OLE DB).

When a remote SQL Server table is updated, the local server or client will not receive any result sets or messages resulting from
triggers fired for that update.

When using four-part names, always specify the schema name. Not specifying a schema name in a distributed query prevents
OLE DB from finding tables. When referencing local tables, SQL Server uses defaults if an owner name is not specified. The
following SELECT statement would generate a 7314 error, even if the linked server login mapped to a dbo user in the Northwind
database on the linked server:

sp_addlinkedserver @server = N'LinkServer',
 @srvproduct = N' ',
 @provider = N'SQLOLEDB',
 @datasrc = N'ServerNetName',
 @catalog = N'Northwind'
GO
SELECT *
FROM LinkServer.Northwind..Shippers

This example defines both a linked server and a remote server that both access the same computer whose network name is
othersite. The linked server definition uses the same name as the network name of the remote server; the remote server
definition uses another name.

/* Create a linked server definition to othersite. */
EXEC sp_addlinkedserver 'othersite', N'SQL Server'

/* Create a remote server definition using a
 fictitious name. */
EXEC sp_addserver 'RPCothersite'

/* Set the fictitious nameto the network name faraway. */
EXEC sp_setnetname 'RPCothersite', 'othersite'

These names can be referenced in distributed queries or remote procedure calls.

/* A distributed query referencing othersite. */
SELECT *
FROM othersite.Northwind.dbo.Employees
/* A remote procedure call to the same server. */
EXEC RPCothersite.master.dbo.sp_who
/* Distributed queries can be used to execute
 stored procedures on the other server. */
EXEC othersite.master.dbo.sp_who

There are differences in the login mapping mechanism between stored procedures executed through linked server and stored
procedures executed through remote servers.

Transaction Considerations With Linked SQL Servers

The Microsoft OLE DB Provider for SQL Server does not support nested transactions. Therefore, XACT_ABORT should be set to ON
for data modification operations inside implicit or explicit transactions and for data modification operations against distributed
partitioned views.

Loopback connections to the same instance of SQL Server are not supported when inside an implicit or explicit transaction or
distributed partitioned view.

See Also

Distributed Queries and Distributed Transactions

Accessing and Changing Relational Data (SQL Server 2000)

Linked Server Considerations in a Clustered SQL Server
Linked Server Considerations in a Clustered SQL Server

When linked servers are configured in a clustered SQL Server against OLE DB providers not shipped with Microsoft® SQL
Server™ 2000, make sure that the OLE DB providers are installed in all nodes of the cluster. In addition, any properties that define
the linked server should be location transparent; they should not contain information that assumes SQL Server is always running
on a given node of the cluster.

This example defines a linked server against a server running SQL Server and references one of the remote tables using a four-
part name in a SELECT statement.

sp_addlinkedserver @server = N'LinkServer',
 @srvproduct = N' ',
 @provider = N'SQLOLEDB',
 @datasrc = N'ServerNetName',
 @catalog = N'Northwind'
GO
SELECT *
FROM LinkServer.Northwind.dbo.Shippers
GO

Loopback Linked Servers

Linked servers can be defined to point back (loop back) to the server on which they are defined. Loopback servers are most useful
when testing an application that uses distributed queries on a single server network.

For example, executing the sp_addlinkedserver stored procedure on a server named MyServer defines a loopback linked server:

sp_addlinkedserver @server = N'MyLink',
 @srvproduct = N' ',
 @provider = N'SQLOLEDB',
 @datasrc = N'MyServer',
 @catalog = N'Northwind'
GO

Transact-SQL statements that use MyLink as the server name loop through the SQLOLEDB provider and back to the local server.

Loopback linked servers cannot be used in a distributed transaction. Attempting a distributed query against a loopback linked
server from within a distributed transaction causes an error:

Msg: 3910 Level: 16 State: 1
[Microsoft][ODBC SQL Server Driver][SQL Server]Transaction context in use by another session.

Accessing and Changing Relational Data (SQL Server 2000)

Distributed Queries on Multiple Instances of SQL Server
Distributed Queries on Multiple Instances
of SQL Server

Specifying an instance of Microsoft® SQL Server™ 2000 on a server running multiple instances of SQL Server requires no syntax
changes to the Transact-SQL elements used in distributed queries. Instances can be specified in distributed queries using one of
these methods:

Specify a server name using the syntax 'server_name/instance_name' in the @datasrc parameter of sp_addlinkedserver.

Specify Server=server_name; INSTANCENAME=instance_name in a connection string.

If an instance is not specified, the distributed query connects to the default instance of SQL Server 2000 on the specified server.

Examples of specifying a specific instance named Payroll on a server named London are:

-- Define a linked server on an instance of SQL Server using @datasrc.
sp_addlinkedserver
 @server = 'LondonPayroll1',
 @provider = 'SQLOLEDB',
 @datasource = 'London/Payroll'

-- Define a linked server on an instance of SQL Server using
-- INSTANCENAME in a provider string.
sp_addlinkedserver
 @server = 'LondonPayroll2',
 @provider = 'SQLOLEDB',
 @provstr = 'Server=London;INSTANCENAME=Payroll'

-- Specify an instance of SQL Server in OPENDATASOURCE
-- using Data Source.
SELECT *
FROM OPENDATASOURCE(
 'SQLOLEDB',
 'Data Source=London/Payroll;User ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

-- Specify an instance of SQL Server in OPENROWSET
-- using a provider string.
SELECT a.*
FROM OPENROWSET(
 'SQLOLEDB',
 'Data Source=London;INSTANCENAME=Payroll;
 User ID=MyUID;Password=MyPass',
 Northwind.dbo.Categories
) AS a

-- Specify an instance of SQL Server in OPENROWSET
-- using a the datasource parameter.
SELECT a.*
FROM OPENROWSET(
 'SQLOLEDB','London/Payroll','MyUID','MyPass',
 'SELECT * FROM Northwind.dbo.Categories'
) AS a

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for ODBC
The OLE DB Provider for ODBC provides an OLE DB interface to ODBC data sources. Using the OLE DB Provider for ODBC,
Microsoft® SQL Server™ distributed queries can access all ODBC data.

Note For SQL Server 2000 data sources, use the OLE DB Provider for SQL Server. Do not use the OLE DB Provider for ODBC.

To create a linked server to access an ODBC database when using an ODBC data source:

1. Create a System data source on the computer on which SQL Server is installed.

2. Execute sp_addlinkedserver to create the linked server, specifying MSDASQL or NULL as provider_name, and the name of
an ODBC system data source as data_source.

ODBC user data sources cannot be used for distributed queries because SQL Server runs as a service on Microsoft Windows
NT®, and services do not always have access to user data sources. For example, a system data source with a name of
SystemDSN references a server that is running SQL Server and that has pubs as the default database:

sp_addlinkedserver 'SQLPubs', ' ', 'MSDASQL', 'SystemDSN'

Linked servers can use the OLE DB Provider for ODBC without using an ODBC data source. The linked server is defined in one
step. All the information the OLE DB Provider for ODBC needs to locate an ODBC driver and connect to a source of ODBC data
must be defined in provider_string.

This example creates a linked server named SQLPubs on the pubs database of the SQL Server named SalesSvr through ODBC
by specifying provider_string.

sp_addlinkedserver 'SQLPubs', ' ', 'MSDASQL', NULL, NULL,
'Driver={SQL Server};Database=pubs;Server=SalesSvr;UID=sa;PWD=sapassword;'

These restrictions exist if a linked server is defined using the OLE DB Provider for ODBC and accesses a SQL Server database:

Tables cannot be referenced if they have one or more timestamp columns.

Tables cannot be referenced if they have nullable char, varchar, nchar, nvarchar, binary, or varbinary columns and the
ANSI_PADDING option was set OFF when the table was created.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for Jet
The Microsoft® OLE DB Provider for Jet provides an OLE DB interface to Microsoft Access databases, and allows Microsoft SQL
Server™ 2000 distributed queries to query Access databases.

To create a linked server to access an Access database

1. Execute sp_addlinkedserver to create the linked server, specifying Microsoft.Jet.OLEDB.4.0 as provider_name, and the full
path name of the Access .mdb database file as data_source. The .mdb database file must reside on the server. data_source is
evaluated on the server, not the client, and the path must be valid on the server.

For example, to create a linked server named Nwind that operates against the Access database named Nwind.mdb in the
C:\Mydata directory, execute:

sp_addlinkedserver 'Nwind', 'Access 97', 'Microsoft.Jet.OLEDB.4.0',
 'c:\mydata\Nwind.mdb'

2. To access an unsecured Access database, SQL Server logins attempting to access an Access database should have a login
mapping defined to the username Admin with no password.

This example enables access for the local user Joe to the linked server named Nwind.

sp_addlinkedsrvlogin 'Nwind', false, 'Joe', 'Admin', NULL

To access a secured Access database, configure the registry (using the Registry Editor) to use the correct Workgroup
Information file used by Access. Use the Registry Editor to add the full path name of the Workgroup Information file used by
Access to this registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\SystemDB

After the registry entry is configured, use sp_addlinkedsrvlogin to create login mappings from local logins to Access
logins:

sp_addlinkedsrvlogin 'Nwind', false, 'Joe',
 'AccessUser', 'AccessPwd'

Access databases do not have catalog and schema names. Therefore, tables in an Access-based linked server can be referenced in
distributed queries using a four-part name of the form linked_server...table_name.

This example retrieves all rows from the Employees table in the linked server named Nwind.

SELECT *
FROM Nwind...Employees

To create a linked server against an Excel spreadsheet:

The Microsoft OLE DB Provider for Jet 4.0 can be used to access Microsoft Excel spreadsheets.

To create a linked server that accesses an Excel spreadsheet, use the format of this example.

sp_addlinkedserver N'Excel', N'Jet 4.0',
 N'Microsoft.Jet.OLEDB.4.0',
 N'c:\data\MySheet.xls', NULL, N'Excel 5.0'
GO
sp_addlinkedsrvlogin N'Excel', false, sa, N'ADMIN', NULL
GO

To access data from an Excel spreadsheet, associate a range of cells with a name. A named range can be accessed by using
the name of the range as the table name. The following query can be used to access a named range called SalesData using
the linked server set up in the previous example.

SELECT *
FROM EXCEL...SalesData
GO

When you insert a row into a named range of cells, the row will be added after the last row that is part of the named range

of cells. Thus, if you want to insert row rA after the column heading, associate the column heading cells with a name and use
that name as the table name. The range of cells will grow automatically as rows are inserted.

To set up a linked server against a formatted text file:

Microsoft OLE DB Provider for Jet can be used to access and query text files.

To create a linked server for accessing text files directly without linking the files as tables in an Access .mdb file, execute
sp_addlinkedserver, as in this example.

The provider is Microsoft.Jet.OLEDB.4.0 and the provider string is 'Text'. The data source is the full path name of the
directory that contains the text files. A schema.ini file, which describes the structure of the text files, must exist in the same
directory as the text files. For more information about creating a schema.ini file, see the Jet Database Engine documentation.

--Create a linked server.
EXEC sp_addlinkedserver txtsrv, 'Jet 4.0',
 'Microsoft.Jet.OLEDB.4.0',
 'c:\data\distqry',
 NULL,
 'Text'
GO

--Set up login mappings.
EXEC sp_addlinkedsrvlogin txtsrv, FALSE, NULL, Admin, NULL
GO

--List the tables in the linked server.
EXEC sp_tables_ex txtsrv
GO

--Query one of the tables: file1#txt
--using a 4-part name.
SELECT *
FROM txtsrv...[file1#txt]

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for DTS Packages
The Microsoft OLE DB Provider for DTS Packages is a read-only provider that exposes Data Transformation Services Package Data
Source Objects. The provider can be used to expose the rowset from a package using either OPENROWSET or referencing the
package using a four-part name in a Transact-SQL statement. OPENQUERY can also be used to send a command to the provider
using its command language. For more information about using the Microsoft OLE DB Provider for DTS Packages, see DTS Driver
Support for Heterogeneous Data Types.

To define a linked server to access a DTS package data source object after the data source object has been defined in
DTS

Execute sp_addlinkedserver to create the linked server, specifying DTSPackageDSO as provider_name, the package name
as product_name, and switches for the dtsrun command prompt utility as data_source.

For example, to create a linked server named MyDTSPackage that accesses a DTS package saved to the file
C:\Dts\DTSFilePackage.dts, execute:

sp_addlinkedserver MyDTSPackage, 'PackageName', 'DTSPackageDSO', '/FC:\Dts\DTSFilePackage.dts'

Then, the rowset exposed by this DTS package can be referenced using either the name of the DTS package or the name of a
step in the DTS package:

SELECT * FROM MyDTSPackage...DTSStep1

The package name or step name are defined in DTS.

In addition, DTS packages can be referenced using the OPENROWSET function. For more information, see Querying a DTS
Package from External Sources.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for Oracle
The Microsoft OLE DB Provider for Oracle allows distributed queries to query data in Oracle databases.

Note Oracle client software does not support distributed queries using Microsoft OLE DB Provider for Oracle when the
distributed transactions are executed from an instance of SQL Server installed on Microsoft Windows® 98.

To create a linked server to access an Oracle database instance

1. Ensure the Oracle client software on the server running SQL Server is at the level required by the provider. The Microsoft
OLE DB Provider for Oracle requires Oracle Client Software Support File version 7.3.3.4.0 or later, and SQL*Net version
2.3.3.0.4.

2. Create an SQL*Net alias name on the server running SQL Server that points to an Oracle database instance. For more
information, see the Oracle documentation.

3. Execute sp_addlinkedserver to create the linked server, specifying MSDAORA as provider_name, and the SQL*Net alias
name for the Oracle database instance as data_ source.

This example assumes that an SQL*Net alias name has been defined as OracleDB.

sp_addlinkedserver 'OrclDB', 'Oracle', 'MSDAORA', 'OracleDB'

4. Use sp_addlinkedsrvlogin to create login mappings from SQL Server logins to Oracle logins.

This example maps the SQL Server login Joe to the linked server defined in Step 3 using the Oracle login and password
OrclUsr and OrclPwd:

sp_addlinkedsrvlogin 'OrclDB', false, 'Joe', 'OrclUsr', 'OrclPwd'

Each Oracle database instance has only one catalog with an empty name. Tables in an Oracle linked server must be referenced
using a four-part name of the form OracleLinkedServerName..OwnerUserName.TableName. For example, this SELECT statement
references the table SALES owned by the Oracle user MARY in the server mapped by the OrclDB linked server:

SELECT *
FROM OrclDB..MARY.SALES

Use these rules when referencing tables in an Oracle linked server:

If the table and column names were created in Oracle without quoted identifiers, use all uppercase names.

If the table and column names were created in Oracle with quoted identifiers, use the same case for all letters of the names
as was used when the names were created in Oracle.

INSERT statements should supply values for all columns in a table even if certain columns in the table can be NULL or have
default values.

Registry Entries

To enable the OLE DB Provider for Oracle to work with your Oracle client software, the client's registry must be modified by
running a registry file from a command line. Multiple instances of the client software should not run concurrently. These files are
listed in the following table and are located within the same directory structure that contains your Microsoft Data Access
Component (MDAC) installation, which typically is in C:\Program Files\Common Files\System Files\OLE DB.

Oracle client Windows NT or 9x Windows 2000
7.x mtxoci7x_winnt.reg mtxoci7x_win2k.reg
8.0 mtxoci80x_winnt.reg mtxoci80x_win2k.reg
8.1 mtxoci81x_winnt.reg mtxoci81x_win2k.reg

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for Microsoft Directory Services
 New Information - SQL Server 2000 SP3.

The Microsoft OLE DB Provider for Microsoft Directory Services provides access to information in the Microsoft® Windows®
2000 Directory Service. This OLE DB Provider supports two command dialects, LDAP and SQL, to access the directory service and
return results in a tabular form that can be queried using SQL Server distributed queries.

To create a linked server against Windows 2000 Directory Service

Create a linked server using ADSDSOObject as the provider_name and adsdatasource as the data_source argument of
the sp_addlinkedserver system stored procedure.

EXEC sp_addlinkedserver 'ADSI', 'Active Directory Services 2.5',
'ADSDSOObject', 'adsdatasource'
GO

For Windows authenticated logins, the self-mapping is sufficient to access the directory using SQL Server Security Delegation.
Because the self-mapping is created by default for linked servers created through sp_addlinkedserver, no other login mapping
is necessary.

For SQL Server authenticated logins, suitable login/passwords can be configured for connecting to the directory service using the
sp_addlinkedsrvlogin system stored procedure.

Security Note When possible, use Windows Authentication.

Querying the Directory Service

The Microsoft OLE DB Provider for Microsoft Directory Services supports two command dialects, LDAP and SQL, to query the
Directory Service. The OPENQUERY function can be used to send a command to the Directory Service and consume its results in a
SELECT statement.

The following example shows creating a view that uses OPENQUERY to return information from the directory at the server
ADSISrv whose domain address is sales.northwind.com. The command inside the OPENQUERY function is an SQL query against
the directory to return the Name, SN, and ST attributes of objects belonging to Class Contact at a specified hierarchical location
(OU=Sales) in the directory. The view then can be used in any SQL Server queries.

CREATE VIEW viewADContacts
AS
SELECT [Name], SN [Last Name], ST State
FROM OPENQUERY(ADSI,
 'SELECT Name, SN, ST
 FROM ''LDAP://ADSISrv/ OU=Sales,DC=sales,DC=northwind,DC=com''
 WHERE objectCategory = ''Person'' AND
 objectClass = ''contact''')
GO
SELECT * FROM viewADContacts

For more information about the LDAP and SQL dialects, see Microsoft Active Directory Services documentation.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for Microsoft Indexing Service
 New Information - SQL Server 2000 SP3.

Microsoft® Windows 2000 includes Microsoft Internet Information Services (IIS) and Microsoft Indexing Service version 3.0.
These services enable filtering files based on their properties and performing full-text indexing and retrieval of file data. (For
Microsoft Windows NT® 4.0 systems, the Windows NT 4.0 Option Pack includes IIS 4.0 and Microsoft Indexing Service 2.0.)

Indexing Service also includes the Microsoft OLE DB Provider for Microsoft Indexing Service. This provider can be used to perform
full-text or property value searches on nondatabase files. A linked server definition can be made using sp_addlinkedserver, and
security can be set up using SQL Server Enterprise Manager. Distributed queries can then reference the provider to retrieve
indexing information.

To create a linked server to access an Indexing Service full-text index

1. Create the full-text index using Indexing Service. By default, Indexing Service installs a catalog named default. For more
information, see the Indexing Service documentation.

2. Execute sp_addlinkedserver to create the linked server, specifying MSIDXS as provider_name, and the name of the full-
text index as data_source.

For example, to create a linked server named FTIndexWeb that accesses a full-text index named Web, execute:

sp_addlinkedserver FTIndexWeb, 'Index Server', 'MSIDXS', 'Web'

3. The security authorization of Indexing Service clients is based on the Windows account of the process consuming the OLE
DB Provider for Microsoft Index Service. Distributed queries are run in the context of the Microsoft SQL Server™ 2000
process. Because SQL Server typically runs under an account that has a high level of authorization, some SQL Server users
use an Indexing Service linked server to access information that they are not authorized to access. Members of the
sysadmin fixed server role address this problem by strictly controlling the SQL Server logins that are authorized to perform
distributed queries using an Indexing Service linked server.

The administrator first uses sp_droplinkedsrvlogin to remove all login mappings to the Indexing Service linked server, for
example:

sp_droplinkedsrvlogin FTIndexWeb, NULL

The administrator then uses sp_addlinkedsrvlogin to authorize individual logins to access the linked server, for example:

sp_addlinkedsrvlogin FTIndexWeb, true, 'SomeLogin'

To perform these actions, right-click the linked server in SQL Server Enterprise Manager, click Properties, and then select
the Security tab.

Transact-SQL statements can use the OPENQUERY function to send commands to Indexing Service using an SQL syntax that is
consistent with the full-text query syntax supported in SQL Server for full-text searches of data stored in the database. The SQL
full-text syntax supported by Indexing Service is defined in the Index Server Programmer's Guide found either on the Microsoft
Development Network or in the Indexing Service documentation in the Windows NT 4.0 Option Pack. For more information about
using the OLE DB Provider for Microsoft Indexing Service in Transact-SQL statements, see Full-text Querying of File Data.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2, distributed with Microsoft® Host Integration Server 2000, allows Microsoft SQL Server™
2000 distributed queries to query data in DB2 databases.

To create a linked server to access a DB2 database

1. Install the Windows NT Client for Host Integration Server 2000 or the Windows 9x Client for Host Integration Server 2000
on a computer running an instance of SQL Server. Select the options to install the OLE DB Provider for DB2 and the network
components needed to communicate with an IBM computer running in an SNA network.

2. Determine the connection string the OLE DB Provider for DB2 needs to access the DB2 data source you want to query. The
best way to determine a connection string is to build a Data Link file using the Host Integration Server New OLE DB Data
Source application. For more information, see the Microsoft Host Integration Server 2000 documentation.

3. Execute sp_addlinkedserver to create a linked server, specifying DB2OLEDB as the provider_name, the name of the DB2
catalog containing the data you want to access as catalog, and the connection string from Step 2 as provider_string.

This example shows how to use sp_addlinkedserver to create a linked server definition accessing a DB2 database:

EXEC sp_addlinkedserver @server = 'DB2SRV',
 @srvproduct = 'Microsoft OLE DB Provider for DB2',
 @catalog = 'SEATTLE',
 @provider = 'DB2OLEDB',
 @provstr =
 'NetLib=SNA;NetAddr=;NetPort=;RemoteLU=SEATTLE;LocalLU=LOCAL;
 ModeName=QPCSUPP;InitCat=SEATTLE;
 Default Schema=WNW3XX;PkgCol=WNW3XX;TPName=;Commit=YES;
 IsoLvl=NC;AccMode=;CCSID=37;PCCodePage=1252;BinAsChar=NO;
 Data Source=Seattle_WNW3XX'

4. Execute sp_addlinkedsrvlogin to create login mappings from SQL Server 2000 logins to DB2 logins.

This example maps the SQL Server 2000 login SQLJoe to DB2 login DB2Joe:

EXEC sp_addlinkedsrvlogin 'DB2SRV', false, 'SQLJoe', 'DB2Joe', 'JoePwd'

After completing these steps, you can use the linked server name DB2SRV as the server name in four part names and as
linked_server in the OPENQUERY function. For example:

SELECT *
FROM DB2SRV.SEATTLE.WNW3XX.DEPARTMENT

Or

SELECT *
FROM OPENQUERY(DB2SRV, 'SELECT * FROM SEATTLE.WNW3XX.EMP_ACT')

When the distributed queries against DB2 data sources involve NULL comparisons, use IS NULL or IS NOT NULL rather than
comparison operators, such as =, <, or >. In addition, INSERT statements should supply values for all columns in a table even if
certain columns in the table can be NULL or have default values.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider for Exchange
The Microsoft® OLE DB Provider for Exchange exposes data stored in a Microsoft Exchange 2000 Web Store in tabular form. This
data can be queried using an SQL-like language that is very similar to the SQL subset supported by the OLE DB Provider for
Microsoft Indexing Service.

Microsoft SQL Server™ 2000 distributed queries can be used to query data from the Exchange Web Store through this OLE DB
Provider and can be joined with tables in SQL Server. The Exchange Web Store should be located in the same computer as SQL
Server. Web Stores located in other computers cannot be accessed using the OLE DB Provider for Exchange.

The OLE DB Provider for Exchange is available as part of Microsoft Exchange 2000.

To create a linked server against an Exchange Web Store

Use 'exoledb.datasource.1' as the provider_name argument, and the URL corresponding to the root folder of the Web Store
as the data_source argument of the sp_addlinkedserver system stored procedure.

EXEC sp_addlinkedserver 'exchange',
'Exchange OLE DB provider',
'exoledb.DataSource.1',
'file:\\.\backofficestorage\localhost\public folders'

For Windows NT Authenticated logins, there are no login mappings necessary. They are impersonated by SQL Server when
it connects to the OLE DB Provider for Exchange. For SQL Authenticated logins, set up login mappings by supplying the user
name and password, as necessary.

The following restrictions are applicable when querying data from the OLE DB Provider for Exchange:

Only pass-through queries are supported. Four-part names cannot be used against the Exchange OLE DB provider.

All character columns from the OLE DB Provider for Exchange are exposed to SQL Server as ntext columns. In order to
perform comparisons against these columns, they have to be converted explicitly to nvarchar using the CONVERT function.

Multi-valued columns from the Exchange provider with OLE DB DBTYPE DBTYPE_VECTOR are not supported from SQL
Server Distributed Queries.

To access data in the Exchange Web Store from SQL Server, through a linked server established as above

Create views that retrieve the required properties as columns from the Web Store folder of interest. The view definition
converts string columns to nvarchar so that they can be filtered through conditions in the WHERE clause.

For example, let the Web Store contain a folder called Contacts that contains a list of contacts. The following script creates a
view against the Contacts folder while retrieving the Contact's first name, last name, company name, and date of birth.

CREATE VIEW Contacts
AS
SELECT convert(nvarchar(30),"urn:schemas:contacts:sn") LastName,
Convert(nvarchar(30),"urn:schemas:contacts:givenname")
FirstName,
 Convert(nvarchar(30), "urn:schemas:contacts:o") Company,
 Convert(nvarchar(50), "urn:schemas:contacts:email1") Email,
 "urn:schemas:contacts:bday" BirthDay
FROM OpenQuery(Exchange,
 'SELECT "urn:schemas:contact:sn",
 "urn:schema:contacts:givenname",
 "urn:schemas:contacts:o",
 "urn:schemas:contacts:email1"
 "urn:schemas:contacts:bday"
 FROM SCOPE(''.\contacts'')'

Now the views can be queried and joined with local SQL Server tables like regular tables. For example, the Contacts view
can be joined with a local Suppliers table to determine Contact information for the list of Supplier companies.

SELECT FirstName, LastName, Email, Company
FROM Suppliers S, Contacts C
WHERE S.Company = C.CompanyName

For information on the SQL language supported by the Exchange OLE DB provider see Microsoft Exchange 2000 documentation.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Provider Reference for Distributed Queries
The behavior of distributed queries against a remote table depends on the functionality of the OLE DB provider used to access the
table. The OLE DB specification defines a set of objects for OLE DB providers. Each object has a set of interfaces. Many of these
objects and interfaces are optional and may not be supported by a provider. If an OLE DB provider does not support some of
these objects and interfaces, distributed query functionality that depends on these components will not work with remote tables
accessed through that provider.

Accessing and Changing Relational Data (SQL Server 2000)

OLE DB Objects Consumed by Distributed Queries
The following table shows the OLE DB objects and interfaces consumed by Transact-SQL distributed queries. An OLE DB provider
must support at least a minimal set of objects and interfaces before it can be used in any Transact-SQL distributed queries. These
objects and interfaces are marked with a Yes in the Required column of the table. The objects and interfaces with a No in the
Required column are needed only to support advanced distributed query functionality. If the interface is not supported by the
provider, related Transact-SQL functionality is not supported. For example, if the IRowsetLocate and IRowsetChange interfaces
are not supported, UPDATE or DELETE statements do not function on remote tables.

Object Interface Required Description
Data Source IDBInitialize Yes Initialize and set up data and

security context.
 IDBCreateSession Yes Create a DB Session object.
 IDBProperties Yes Get information about the

capabilities of provider and set
initialization properties.

 IDBInfo No Get information about the SQL
syntax supported by the
provider.

DB Session IDBSchemaRowset No Get table and/or column meta
data. Rowsets needed are
TABLES and COLUMNS. Other
rowsets used, if available, are
TABLES_INFO, CATALOGS,
INDEXES, STATISTICS,
TABLE_STATISTICS, VIEWS,
PRIMARY_KEYS,
TABLE_PRIVILEGES, and
COLUMN_PRIVILEGES.

 IopenRowset Yes Open a rowset on a table, index,
or histogram.

 IGetDataSource Yes Return to the data source object
from a DB Session object.

 IDBCreateCommand No Create a command object
(query).

 ITransactionLocal No Use to start a transaction on the
provider.

 ITransactionJoin No Use for distributed transaction
support. If this interface is not
supported, updates against a
remote provider are not allowed
in a user transaction.

Rowset (on
a table)

Irowset Yes Scan rows.

 Iaccessor Yes Bind to columns in a rowset.
 IcolumnsInfo Yes Get information about columns

in a rowset.
 IrowsetInfo Yes Get information about rowset

properties.
 IRowsetLocate No Required for UPDATE or DELETE

operations and index-based
lookups.

 IRowsetChange No Required for INSERT, UPDATE,
or DELETE operations on a table.
Rowsets against base tables
should support this interface for
supporting INSERT, UPDATE, or
DELETE statements.

 IconvertType Yes Verify if a rowset supports
specific data type conversions
on its columns.

Rowset (on
an index)

Irowset Yes Scan rows.

 Iaccessor Yes Bind to columns in a rowset.
 IcolumnsInfo Yes Get information about columns

in a rowset.
 IrowsetInfo Yes Get information about rowset

properties.
 IrowsetIndex Yes Required for rowsets on an

index; used for indexing
functionality (set range, seek).

 IconvertType Yes Verify if the rowset supports
specific data type conversions
on its columns.

Command
(optional)

Icommand Yes Use for executing queries.

 ICommandText Yes Use for defining the query text.
 ICommandProperties Yes Specify required properties on

rowsets returned by the
command.

 ICommandWith
Parameters

No Use for parameterized query
execution.

 ICommandPrepare No Use for preparing a command
to get meta data.

Error
(optional)

IerrorRecords Yes Get a pointer to an IErrorInfo
interface for an error record.

 IerrorInfo Yes Get a text description of an error
record.

Any Object
(optional)

ISupportErrorInfo No Determine if a given interface
supports error objects.

Accessing and Changing Relational Data (SQL Server 2000)

Four-Part Name Requirements for OLE DB Providers
Distributed queries can use four-part names only if the OLE DB provider supports:

The IDBSchemaRowset interface.

Restrictions on all the name parts that it supports in the IDBSchemaRowset interface. Restrictions are a mechanism
defined in OLE DB for specifying the search criteria for meta data queries using the OLE DB schema rowsets.

The literals DBLITERAL_CATALOG_SEPARATOR, DBLITERAL_SCHEMA_SEPARATOR, and DBLITERAL_QUOTE in the IDBInfo
interface. Microsoft® SQL Server™ 2000 uses defaults, which may not work with providers that do not support these
literals.

If an OLE DB provider does not meet these requirements, it can be referenced only using pass-through queries in the
OPENDATASOURCE or OPENROWSET function.

Accessing and Changing Relational Data (SQL Server 2000)

UPDATE and DELETE Requirements for OLE DB Providers
Transact-SQL UPDATE and DELETE statements can reference remote tables only if the following conditions are met by the OLE DB
provider that is used to access the remote table:

The provider must support bookmarks on the rowset opened through IOpenRowset on the table being updated or deleted.

The provider must support the IRowsetLocate and IRowsetChange interfaces on the rowset opened through
IOpenRowset on the table being updated or deleted.

The IRowsetChange interface must support update (SetData) and delete (DeleteRows) methods.

The Microsoft OLE DB Provider for SQL Server supports these interfaces only on a table that has a unique index. Consequently,
UPDATE or DELETE statements are permitted against a remote table in another instance of Microsoft® SQL Server™ only if the
table has a unique index.

Accessing and Changing Relational Data (SQL Server 2000)

INSERT Requirements for OLE DB Providers
Transact-SQL INSERT statements can reference remote tables only if the following conditions are met by the OLE DB provider that
is used to access the remote table:

The provider must support the IRowsetChange interface on the rowset opened through IOpenRowset on the table having
data inserted into it.

The IRowsetChange interface on the base table being inserted into must support the insert (InsertRow) method.

Accessing and Changing Relational Data (SQL Server 2000)

Keyset-Driven Cursors Requirements for OLE DB Providers
Transact-SQL keyset-driven cursors can reference remote tables only if the following conditions are met:

The distributed query must meet the requirements for SELECT statements used in a DECLARE CURSOR statement that
declares the keyset-driven cursor. For more information about the Transact-SQL conditions for keyset-driven cursor
support, see DECLARE CURSOR.

All local tables in the query must have a unique index. The index of the remote table should be exposed through the
INDEXES rowset of the IDBSchemaRowset interface.

Index Requirements on OLE DB Providers

SQL Server can use indexes on tables from an OLE DB provider to evaluate certain queries. For this, the provider should expose
OLE DB interfaces that allow scanning an index rowset and seek into the base table rowset using bookmarks obtained from the
index rowset.

Using the OLE DB provider's indexes has performance benefits only when the index and table rowsets are on the same computer
as the instance of Microsoft® SQL Server™. Thus, the Index AS Access Path option should be set only if the data source is on the
same computer as SQL Server.

SQL Server can use an OLE DB provider's indexes only if the following conditions are met:

The provider must support the IDBSchemaRowset interface with the TABLES, COLUMNS, and INDEXES schema rowsets.

The provider must support opening a rowset on an index through IOpenRowset by specifying the index name and the
corresponding base table name.

The Index object must support all its mandatory interfaces: IRowset, IRowsetIndex, IAccessor, IColumnsInfo,
IRowsetInfo, and IConvertTypes.

Rowsets opened against the indexed base table (through IOpenRowset) must support the IRowsetLocate interface for
positioning on a row based off a bookmark.

If the OLE DB provider meets these requirements, the SQL Server administrator can set the Index As Access Path provider
option to enable SQL Server to use the provider's indexes to evaluate the queries. By default, SQL Server does not attempt to use
the provider's indexes unless this option is set.

Updatable Keyset Cursor Requirements

A remote table can be updated or deleted through a keyset cursor defined on a distributed query. For example:

UPDATE | DELETE remote_table WHERE CURRENT OF cursor_name.

Here are the conditions under which updatable cursors against distributed queries are allowed:

The provider should meet the conditions for updates and deletes on the remote table. For more information, see UPDATE
and DELETE Requirements for OLE DB Providers.

All the cursor operations must be in an explicit user transaction (or multi-statement transaction) with read-repeatable
isolation level or serializable isolation level.

The provider must support distributed transactions with the ITransactionJoin interface.

Accessing and Changing Relational Data (SQL Server 2000)

Distribution Statistics Requirements for OLE DB Providers
Microsoft® SQL Server™ 2000 defines extensions to the OLE DB specification that allow OLE DB providers to report statistics on
numbers of rows and ranges of key values in the data they provide. SQL Server can use this information to increase the
performance of distributed queries.

SQL is a nonprocedural language. SQL statements do not specify the steps needed to accomplish the result you want. The
statements define the format of the result set and the conditions rows in base tables must meet to be used in building the result
set. The database engine must analyze each SQL statement and determine the most efficient way to access the base tables. The
part of the database engine that performs this task is called the optimizer.

The results of the optimization process is improved if the optimizer has access to statistics describing the distribution of the
values in base table columns referenced in WHERE clause predicates. The distribution statistics used by the optimizer include:

The number of rows in a table, also called the cardinality of the table.

The number of distinct values stored in a column, also called the cardinality of the column.

Information about how the distinct values in a column are distributed across the rows of the table.

To improve the optimization of distributed queries, SQL Server defines extensions to the OLE DB specification that OLE DB
providers can use to report distribution statistics on the rowsets, or tables, they expose. While these extensions are defined in the
SQL Server documentation, individual OLE DB provider developers must code support for the extensions in their providers if they
want to make the information available to SQL Server. If a provider has code that supports the extensions, SQL Server can use the
extensions to optimize the performance of distributed queries. If a provider does not support the extensions, SQL Server uses
simple estimates of the distribution statistics.

Note The Microsoft OLE DB Provider for SQL Server and the Microsoft OLE DB Provider for Oracle support distribution statistics.

The distribution statistics extensions are built around a unit called a statistic. Each table can have zero or more statistics, and each
statistic reports data for one or more columns. A statistic records:

The cardinality of the values, or the number of unique values, in each individual column covered by the statistic.

The cardinality of the concatenated values of all the columns covered by the statistic.

Optionally, a histogram reporting information about different ranges of key values in the first column covered by the
statistic. The values reported can include the number of rows in each key range, the number of unique values in each key
range, or the number of rows in the table whose key values are less than or equal to the highest key value in the range.

Here is an example table.

ColumnA ColumnB
'abc' 'xyz'
'abc' 'xyz'
'def' 'xyz'
'mno' 'xyz'
'mno' 'mmm'
'tuv' 'xyz'

If a statistic covers ColumnA and ColumnB, the cardinality of the combined values of the two columns is 5 because the first two
rows have the same value ('abc' + 'xyz') for the combination of ColumnA and ColumnB. The cardinality of ColumnA is 4 and
the cardinality of ColumnB is 2. A simple, 4-step histogram on ColumnA could report.

Value range Percentage of table rows in the range
'aaa' to 'hzz' 50%
'iaa' to 'nzz' 33%
'oaa' to 'rzz' 00%
'taa' to 'zzz' 17%

Different OLE DB data sources record distribution statistics on different combinations of columns, and the set of statistics reported
by an OLE DB provider is implementation defined. For example, SQL Server versions 6.5 or earlier build distribution statistics only
for columns covered by indexes and have one statistic for each index defined on a table. SQL Server version 7.0 and later builds
these statistics:

One statistic for each index defined on a table.

One statistic for each CREATE STATISTIC statement.

One statistic for each statistic generated automatically. For more information, see Statistical Information.

A column has a high degree of selectivity if it is likely to return a small number of rows for a given value specified in a predicate
argument. The distribution statistics can be used to estimate the degree of selectivity:

Columns with high cardinality have more data values, and each data value is likely to match a smaller number of rows than
a column with low cardinality.

If an OLE DB provider provides a histogram reporting how the values are distributed in a column, the SQL Server optimizer
can also estimate if the specific value in a predicate argument is in a range that has good or poor selectivity.

Having good distribution statistics for a linked server can also help the optimizer build an efficient execution plan for the local part
of a distributed query.

The SQL Server optimizer uses the distribution statistics in an attempt to reduce the amount of data that must be communicated
between the OLE DB provider and SQL Server. For example, when performing a distributed join between TableA on the local
server and TableB on a linked server, SQL Server can use the distribution statistics to determine which of these processes is most
efficient:

Send the rows from TableA that match non-join predicates to the linked server and have the linked server perform the join.

Retrieve the rows from TableB that match non-join predicates to the local server and perform the join on the local server.

If an OLE DB provider does not report cardinality information about a column, the SQL Server optimizer estimates a low
cardinality. If a provider does not report a distribution histogram for a statistic, the optimizer operates as if the values are evenly
distributed in the rows of the table.

SQL Server uses the following extensions from OLE DB providers to report distribution statistics:

A new data source property, DBPROP_TABLESTATISTICS, indicates if the provider reports distribution statistics.

A new IDBSchemaRowset, TABLE_STATISTICS, lists the statistics available for a given base table, including column and row
cardinality.

IOpenRowset::OpenRowset is enhanced to accept new arguments identifying a statistic. When a statistic is specified,
OpenRowset returns a histogram rowset showing the distribution of values in the first column covered by the statistic
specified in StatisticID.

These extensions to OLE DB are included in OLE DB version 2.6. For information about these extensions regarding distribution
statistics, see the OLE DB 2.6 specification.

An OLE DB provider can choose to implement a performance enhancement of sampling only a part of the rows in a base table to
determine the distribution statistics and histograms. These providers should scale their cardinality and histogram data to reflect
the total values for the table before reporting them in the TABLE_STATISTICS and histogram rowsets.

Whether or not an OLE DB provider keeps the data in the TABLE_STATISTICS and the histogram rowset up-to-date with the
current contents of the base table is implementation defined.

Accessing and Changing Relational Data (SQL Server 2000)

SQL Dialect Requirements for OLE DB Providers
The level of SQL supported by an OLE DB provider determines how effectively Microsoft® SQL Server™ 2000 delegates
distributed query operations to the OLE DB provider. If a provider does not support SQL, but opens only rowsets, SQL Server
must retrieve the entire rowset and perform all logical operations, even if the distributed query only needs a subset of the rows in
the source rowset. If an OLE DB provider supports many SQL syntax elements, SQL Server generates more sophisticated queries
that let the source provider filter unnecessary rows before returning the rowset to SQL Server.

The OLE DB specification defines a DBPROP_SQLSUPPORT property through which providers can report the level of SQL syntax
they support. The minimum level of SQL support that SQL Server versions require in distributed queries are:

SQL Server 2000: DBPROPVAL_SQL_SUBMINIMUM

SQL Server 7.0: DBPROPVAL_SQL_ANSI92_ENTRY or DBPROPVAL_SQL_ODBC_CORE

In addition to supporting a lower level of SQL syntax from underlying OLE DB providers, SQL Server 2000 defines a new
SQLPROPSET_OPTHINTS property set that providers can use to specify that they support individual SQL syntax elements that are
beyond those defined for DBPROPVAL_SQL_SUBMINIMUM. If a provider supports one or two features that can be used to
optimize distributed queries, but does not support the full DBPROPVAL_SQL_ANSI92_ENTRY or DBPROPVAL_SQL_ODBC_CORE
syntax, the provider can use the SQLPROPSET_OPTHINTS properties to notify SQL Server of the optimization features it does
support.

DBPROPVAL_SQL_SUBMINIMUM Syntax

Programming the SQLPROPSET_OPTHINTS Property Set

Accessing and Changing Relational Data (SQL Server 2000)

DBPROPVAL_SQL_SUBMINIMUM Syntax
DBPROPVAL_SQL_SUBMINIMUM Syntax

The requirements for DBPROPVAL_SQL_SUBMINIMUM are that the provider supports the features of
DBPROPVAL_SQL_ODBC_MINIMUM, with these differences:

Features in DBPROPVAL_SQL_ODBC_MINIMUM, but not in DBPROPVAL_SQL_SUBMINIMUM:

DDL statements.
INSERT, UPDATE, and DELETE statements.
Dynamic parameter markers.
Multiple tables in the FROM clause.

Features in DBPROPVAL_SQL_SUBMINIMUM, but not in DBPROPVAL_SQL_ODBC_MINIMUM:

Column aliases in the select list.
Integer and exact numeric constants
IS [NOT] NULL predicate.

Although the DBPROPVAL_SQL_SUBMINIMUM grammar is defined in relation to DBPROPVAL_SQL_ODBC_MINIMUM, the SQL
Server distributed query optimizer never tests for DBPROPVAL_SQL_ODBC_MINIMUM.

The DBPROPVAL_SQL_SUBMINIMUM grammar uses these conventions.

Convention Used for
UPPERCASE SQL keywords.
italic User-supplied parameters in SQL syntax.
| (vertical bar) Separating syntax items within brackets or braces. You can

choose only one of the items.
[] (brackets) Optional syntax items. Do not type the brackets.
{} (braces) Required syntax items. Do not type the braces.
[,...n] Indicating that the preceding item can be repeated n number

of times. Commas separate the occurrences.
[...n] Indicating that the preceding item can be repeated n number

of times. The occurrences are separated by blanks.
<label> ::= The name for a block of syntax. This convention is used to

group and label portions of lengthy syntax or a unit of syntax
that can be used in more than one place within a statement.
Each location in which the block of syntax can be used is
indicated with the label enclosed in chevrons: <label>.

This is the syntax grammar for DBPROPVAL_SQL_SUBMINIMUM, as expected by SQL Server:

<select_statement> ::=

 SELECT [ALL | DISTINCT] <select_list>

 FROM <table_reference_list>

 [WHERE <search_condition>]

 [<order_by_clause>]

SELECT clause

<select_list> ::= * | <select_sublist>[,...n]

<select_sublist> ::=

 expression [<alias>]

<alias> ::= <user_defined_name>

FROM clause

<table_reference_list> ::=

 <table_reference>

<table_reference> ::=

 <table_name>

<table_name> ::=

 <table_identifier>

<table_identifier> ::=

 <user_defined_name>

WHERE clause

<search_condition> ::=

 <boolean_term> [OR <search_condition>]

<boolean_term> ::=

 <boolean_factor> [AND <boolean_term>]

<boolean_factor> ::=

 [NOT] <boolean_primary>

<boolean_primary> ::=

 <comparison_predicate> | <search_condition>

<comparison_predicate> ::=

 <expression> <comparison_operator> <expression>

 | <expression> IS [NOT] NULL

<comparison_operator> ::=

 < | > | <= | >= | = | <>

ORDER BY clause

<order_by_clause> ::=

 ORDER BY <sort_specification>[,...n]

<sort_specification> ::=

 { | <column_name> } [ASC | DESC]

Common Syntactic Elements

<expression> ::=

 <term> | <expression> {+|_} <term>

<term> ::= <factor> | <term> {*|/} <factor>

<factor>::= [+|-] <primary>

<primary> ::= <column_name> | <literal> | (<expression>)

<column_name> ::=

 [<table_name>].<column_identifier>

<literal> ::= <character_string_literal>

 | <integer_literal>

 | <exact_numeric_literal>

<character_string_literal> ::=

 '{character}[...n]'

Character is any character in the character set of the provider or data source. Use two single quotation marks ('') to represent a
single quotation mark (apostrophe) in the literal string.

<integer_literal> ::=

 [+|-] <unsigned_integer>

<exact_numeric_literal>::=

 [+|-] <unsigned_integer> [<period><unsigned_integer]

 | <period><unsigned_integer>

<column_identifier> ::=

 <user_defined_name>

<user_defined_name> ::=

 <letter>[<digit>|<letter>|_][...n]

<unsigned_integer> ::=

 {<digit>}[...n]

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<letter> ::= <lower_case_letter>|<upper_case_letter>

<lower_case_letter> ::=

 a|b|c|d|e|f|g|h|I|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|z

<upper_case_letter> ::=

 A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|X|Y|Z

<period> ::= .

Accessing and Changing Relational Data (SQL Server 2000)

Programming the SQLPROPSET_OPTHINTS Property Set
Programming the SQLPROPSET_OPTHINTS Property Set

Individual OLE DB providers can support some SQL functionality beyond that defined in DBPROPVAL_SQL_SUBMINIMUM, but
not all of the functionality in DBPROPVAL_SQL_ODBC_CORE or DBPROPVAL_SQL_ANSI92_ENTRY. The Microsoft® SQL Server™
2000 query optimizer can use some of the functionality supported by these drivers to increase the performance of distributed
queries. These providers can use the SQLPROPSET_OPTHINTS property set to inform SQL Server of the features they support that
can speed distributed queries.

Although the SQLPROPSET_OPTHINTS property set is defined in the SQL Server documentation, individual OLE DB provider
developers must code support for the property set in their providers. After support for this property set is coded into the provider,
SQL Server uses it to optimize the performance of distributed queries.

OLE DB providers that support DBPROPVAL_SQL_ANSI92_ENTRY or DBPROPVAL_SQL_ODBC_CORE do not need any of the
SQLPROPSET_OPTHINTS properties, except for SQLPROP_DATELITERALS. These providers must support all of the functionality
covered by the SQLPROPSET_OPTHINTS property set (except for SQLPROP_DATELITERALS) to qualify for
DBPROPVAL_SQL_ANSI92_ENTRY or DBPROPVAL_SQL_ODBC_CORE support.

These are the properties reported through SQLPROPSET_OPTHINTS.

Property Description
SQLPROP_ANSILIKE Specifies the LIKE clause is supported as defined in the

SQL-92 Entry Level, with the % and _ wildcards.
SQLPROP_DATELITERALS Specifies the provider supports datetime literals, or

constants as per Transact-SQL syntax.
SQLPROP_DYNAMICSQL Specifies the provider supports the ODBC parameter

marker syntax using question marks: ?.
SQLPROP_INNERJOIN Specifies the provider supports references to multiple

tables in the WHERE clause, as long as they are not
outer join references.

SQLPROP_GROUPBY Specifies the provider supports the GROUP BY and
HAVING clauses in a SELECT statement. The property
also specifies the provider supports the AVG, COUNT,
MIN, MAX, and SUM aggregate functions, as long as
DISTINCT is not specified as an aggregate argument.

SQLPROP_NESTEDQUERIES Specifies the provider supports nested SELECT
statements in the FROM clause.

SQLPROP_SUBQUERIES Specifies the provider supports subqueries as defined in
the SQL-92 Entry Level.

These are the constants used to define the SQLPROPSET_OPTHINTS property set in the code of OLE DB providers:

Extern const GUID SQLPROPSET_OPTHINTS =

{ 0x2344480c, 0x33a7, 0x11d1,

 { 0x9b, 0x1a, 0x0, 0x60, 0x8, 0x26, 0x8b, 0x9e }

};

enum SQLPROPERTIES

{

 SQLPROP_NESTEDQUERIES = 0x4,

 SQLPROP_DYNAMICSQL = 0x5,

 SQLPROP_GROUPBY = 0x6,

 SQLPROP_DATELITERALS = 0x7,

 SQLPROP_ANSILIKE = 0x8,

 SQLPROP_INNERJOIN = 0x9,

 SQLPROP_SUBQUERIES = 0x10,

}

Accessing and Changing Relational Data (SQL Server 2000)

Full-text Search
Traditionally, retrieving specific text data from database columns or file systems has been a cumbersome and expensive process,
often requiring third-party tools.

Microsoft® SQL Server™ provides a rich text data retrieval system. SQL Server 2000 offers an enhanced full-text search service
that allows you to:

Update indexes in the background.

Populating or updating an index does not have to interfere with other tasks. Full-text index updates can be scheduled in the
background using the Full-text Indexing wizard, SQL Server Enterprise Manager, or the SQL Server Agent job scheduler.

Choose among three methods of maintaining a full-text index.

Depending on your data and resources, you can choose among the full rebuild, the timestamp-based incremental rebuild,
and the change tracking methods to maintain your full-text indexes. The full rebuild method involves rescanning all rows.
The timestamp-based incremental rebuild method only rescans those rows that have changed since the last rebuild (full or
incremental) of the index. With the change tracking method, SQL Server maintains a list of all changes to the indexed data
and you can use this list to update the full-text index. For more information, see Maintaining Full-text Indexes.

Index and search certain types of data stored in image columns.

Using full-text search, you can index and query certain types of data stored in image columns. Full-text search uses one of
several supported filters to interpret the data and extract the text data for indexing and querying. SQL Server provides filters
for the .doc, .xls, .ppt, .txt, and .htm file extensions. For more information, see Filtering Supported File Types.

Once the image column is indexed, you can search the column using the search predicates CONTAINS and FREETEXT. For
more information, see Using Full-text Predicates to Query Image Columns.

Limit the number of matches returned.

When you use the optional top_n_by_rank argument of the CONTAINSTABLE or FREETEXTTABLE rowset function in your
query, SQL Server will only return the top ranked matches, up to the n number specified. For more information, see Limiting
Result Sets in the Using the CONTAINSTABLE and FREETEXTTABLE Rowset-valued Functions.

See Also

CONTAINS

CONTAINSTABLE

FREETEXT

FREETEXTTABLE

sp_fulltext_columns

Accessing and Changing Relational Data (SQL Server 2000)

Full-text Querying SQL Server Data
Digital information is stored in both database columns and in the file system as unstructured data, primarily text. Some text data
is stored in database character-type columns as well. For example, in Microsoft® SQL Server™, such data can be stored in
database columns with the char, varchar, text, ntext, nchar, or nvarchar data types.

Consequently, a method for retrieving this text data from the database is needed. Relational database management systems
traditionally have had limited capabilities for finding patterns in textual data. For example, a system may be able to retrieve text
based on pattern matching, but cannot handle searches that look up words and phrases in close proximity to one another.

Previously, corporate users of relational database management systems had to buy expensive third-party offerings to retrieve or
query data stored in these character-based database columns. These solutions typically involved a two-step process:

1. Pull data out of the database through a bridge or gateway.

2. Store the data as character-based operating-system files so that full-text indexing can be applied.

Using this two-step process meant that there was no seamless way for combining a full-text query with a regular, structured
relational query. SQL Server solves this problem by allowing full-text queries to be issued against plain character-based data in
SQL Server tables, including words and phrases, or multiple forms of a word or phrase.

To enable a database for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To enable a table for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To enable a column for full-text indexing

Enterprise Manager

Enterprise Manager

Transact-SQL

To edit a full-text index on a table

Enterprise Manager

Enterprise Manager

Transact-SQL

To remove full-text indexing from a table

Enterprise Manager

Enterprise Manager

Transact-SQL

To create a full-text catalog

Enterprise Manager

Enterprise Manager

Transact-SQL

To rebuild a full-text catalog

Enterprise Manager

Enterprise Manager

Transact-SQL

To rebuild all full-text catalogs in a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To start and stop a full or incremental population of a full-text index

Enterprise Manager

Enterprise Manager

Transact-SQL

To check the status, tables, and schedules of a full-text catalog

Enterprise Manager

Enterprise Manager

To change or create a new schedule for a full-text catalog

Enterprise Manager

Enterprise Manager

To remove a full-text catalog from a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To remove all full-text catalogs in a database

Enterprise Manager

Enterprise Manager

Transact-SQL

To clean up the full-text catalogs on a server

Enterprise Manager

Enterprise Manager

Transact-SQL

To repopulate all full-text catalogs for a database

Enterprise Manager

Enterprise Manager

Transact-SQL

Accessing and Changing Relational Data (SQL Server 2000)

Full-text Index and Querying Concepts
The principal design requirement for full-text indexing, querying, and synchronization is the presence of a full-text unique key
column (or single-column primary key) on all tables that are registered for full-text search. A full-text index keeps track of which
significant words are used and where they are located.

For example, consider a full-text index for a DevTools table. A full-text index may indicate that the word Microsoft is found at
word number 423 and word number 982 in the Abstract column for the row associated with a ProductID of 6. This index
structure supports an efficient search for all items containing indexed words and advanced search operations, such as phrase
searches and proximity searches.

To prevent the full-text index from becoming bloated with words that do not help the search, extra words such as a, and, is, or the
are ignored. For example, specifying the phrase "the products ordered during these summer months" is the same as specifying
the phrase "products ordered during summer months." Rows with either string are returned.

Noise-word lists for many languages are provided in the directory \Mssql\Ftdata\Sqlserver\Config. This directory is created, and
the noise-word files are installed when you set up Microsoft® SQL Server™ with the full-text search support. The noise-word files
can be edited. For example, system administrators at high-tech companies might add the word computer to their noise-word list.
(If you edit a noise-word file, you must repopulate the full-text catalogs before the changes will take effect.) The table shows the
noise-word files and their respective languages.

Noise-word file Language
Noise.chs Simplified Chinese
Noise.cht Traditional Chinese
Noise.dat Language Neutral
Noise.deu German
Noise.eng English UK
Noise.enu English US
Noise.esn Spanish
Noise.fra French
Noise.ita Italian
Noise.jpn Japanese
Noise.kor Korean
Noise.nld Dutch
Noise.sve Swedish

When processing a full-text query, the search engine returns the key values of the rows that match the search criteria to Microsoft
SQL Server. Consider a SciFi table in which the Book_No column is the primary key column.

Book_No Writer Title
A025 Asimov Foundation's Edge
A027 Asimov Foundation and Empire
C011 Clarke Childhood's End
V109 Verne Mysterious Island

If you want to use a full-text retrieval query to find the book titles that include the word Foundation. In this case, the values of
A025 and A027 are obtained from the full-text index. SQL Server then uses these keys and other field information to respond to
the query.

This table shows the language in which the full-text index data is stored. The language is based on the Unicode collation locale
identifier selected during SQL Server Setup.

Unicode collation locale identifier Language for full-text data storage
Chinese Bopomofo (Taiwan) Traditional Chinese
Chinese Punctuation Simplified Chinese
Chinese Stroke Count Simplified Chinese
Chinese Stroke Count (Taiwan) Traditional Chinese
Dutch Dutch
English UK English UK

French French
General Unicode English US
German German
German Phonebook German
Italian Italian
Japanese Japanese
Japanese Unicode Japanese
Korean Korean
Korean Unicode Korean
Spanish (Modern) Spanish
Swedish/Finnish Swedish

All other Unicode collation locale identifier values that are not in this list get mapped to the neutral language word-breaker and -
stemmer, which uses white spaces to delimit words.

Note The Unicode collation locale identifier setting is used against all data types eligible for full-text indexing (such as char,
nchar, and so on). If you have the sort order of a char, varchar, or text type column set to a language setting different from the
Unicode collation locale identifier language, the Unicode collation locale identifier is still used during full-text indexing and
querying of the char, varchar, and text type columns.

Accessing and Changing Relational Data (SQL Server 2000)

Implementation of Full-text Search
With a full-text query, you can perform a linguistic search of character data in tables enabled for full-text search. A linguistic
search operates on words and phrases, unlike the LIKE predicate, which is used to search character patterns. Also, the Full-Text
Search feature can weigh query terms and report how well a match scored or ranked against the original search term.

Implementing a full-text search in a given database involves these tasks:

1. Identify the tables and columns that are to be registered for full-text search.

2. Index the data in the registered columns and populate full-text indexes with the nonextraneous words.

3. Issue queries against the registered columns for populated full-text indexes.

4. Ensure that subsequent changes to the data in registered columns get propagated to the index, thus keeping the full-text
index synchronized with the data.

Tasks 1, 2, and 4 are accomplished using graphical tools and wizards, available through SQL Server Enterprise Manager or built-in
procedures. For more information about administering full-text indexes, see Maintaining Full-Text Indexes.

Note SQL Server does not support full-text search over linked servers.

Information about issuing queries against registered columns for populated full-text indexes (task 3) is the primary subject of the
full-text topics in Accessing and Changing Data.

Unlike standard relational database indexes, full-text indexes are not instantly modified when values in full-text registered
columns are updated, when rows are added to full-text registered tables, or when rows are deleted from full-text registered tables.
Rather, full-text indexes are repopulated asynchronously because:

It typically takes significantly more time to update a full-text index than a standard index.

Full-text searches are usually less precise than standard searches in that the search result is a set of rows that contain the
word or phrase being searched no matter where they appear in the character stream. For example, using a standard index, a
search returns a precise character pattern or number that exactly matched the original query. For full-text search, you can
retrieve close approximations of the data, such as the plural forms of a noun, the various forms that a verb may take, or the
uppercase or lowercase forms of the original search condition.

Full-text indexes are used for a different purpose than regular indexes, which must be updated immediately when data in its
associated table changes. Full-text indexes can be synchronized with its table data. Although full-text index population can
take time, these updates need not be disruptive. They can be scheduled in the background using the SQL Server Agent job
scheduler, the sp_add_job stored procedures, or the Full-text Indexing Wizard.

When you repopulate an index, after changes to data have been made, the unique key column values are passed to the index
engine to identify those items that need to be reindexed.

Accessing and Changing Relational Data (SQL Server 2000)

Full-text Query Transact-SQL Components
Microsoft® SQL Server™ provides these Transact-SQL components for full-text querying.

Transact-SQL predicates

These predicates can be used in any search condition (including a WHERE clause) of a SELECT statement.

CONTAINS

FREETEXT

Transact-SQL rowset-valued functions

These functions can be used in the FROM clause of a SELECT statement.

CONTAINSTABLE

FREETEXTTABLE

Transact-SQL full-text properties

These Transact-SQL functions return information about the full-text properties of database objects.

SERVERPROPERTY

IsFullTextInstalled indicates that the full-text component is installed with the current instance of SQL Server. This property
is the counterpart of the FULLTEXTSERVICEPROPERTY function property with the same name.

DATABASEPROPERTYEX and DATABASEPROPERTY

IsFullTextEnabled indicates whether a database has been enabled for full-text indexing.

COLUMNPROPERTY

IsFullTextIndexed indicates whether a column has been enabled for full-text indexing.

OBJECTPROPERTY

TableFullTextBackgroundUpdateIndexOn indicates whether a table has full-text background update indexing.

TableFullTextCatalogId provides the full-text catalog ID in which the full-text index data for the table resides.

TableFullTextChangeTrackingOn indicates whether full-text change-tracking is enabled on the table.

TableFullTextKeyColumn provides the column ID of the full-text unique key column.

TableFullTextPopulateStatus indicate the population status of a full-text table.

TableHasActiveFulltextIndex indicates whether a table has an active full-text index.

INDEXPROPERTY

IsFulltextKey indicates whether the index is the full-text key for a table.

Transact-SQL has functions that specifically return full-text properties.

FULLTEXTCATALOGPROPERTY returns information about full-text catalog properties: PopulateStatus, ItemCount, IndexSize,
UniqueKeyCount, LogSize, and PopulateCompletionAge. For more information, see FULLTEXTCATALOGPROPERTY.

FULLTEXTSERVICEPROPERTY returns information about the full-text service-level properties: ResourceUsage, ConnectTimeout,
DataTimeout, and IsFulltextInstalled. IsFulltextInstalled returns the same information as the SERVERPROPERTY property of
the same name. For more information, see FULLTEXTSERVICEPROPERTY.

Transact-SQL full-text system stored procedures

These stored procedures can be used in conjunction with writing a query. For example, you can use them to find the names of the
full-text indexed columns for a table and the column ID of a full-text unique key column before specifying a query.

sp_fulltext_database is a stored procedure that enables or removes full-text indexing from the current database.

sp_fulltext_catalog, sp_fulltext_table, and sp_fulltext_column are stored procedures used in defining full-text indexes
and initiating full-text index population.

sp_help_fulltext_catalogs, sp_help_fulltext_tables, sp_help_fulltext_columns, and a variation of these stored
procedures are used to query the full-text index meta data defined by the system stored procedures identified earlier.

Note The full-text system stored procedures cannot be used in a transaction.

Accessing and Changing Relational Data (SQL Server 2000)

Using the CONTAINS Predicate
You can use the CONTAINS predicate to search a database for a specific phrase. Of course, such a query can be written using the
LIKE predicate. However, many forms of CONTAINS provide far more text query capabilities than can be obtained with LIKE.
Additionally, unlike using the LIKE predicate, a CONTAINS search is always case insensitive.

Note The full-text search queries behave in a case-insensitive manner for those languages (mostly Latin-based) for which case
sensitivity is meaningful. However, in Japanese, there are multiple phonetic orthographies in which the concept of orthographic
normalization is akin to case insensitivity (for example, kana = insensitivity). This type of orthographic normalization is not
supported.

Assume that you want to search within the Northwind database to find the phrase "bean curd". If you use the CONTAINS
predicate, this is a fairly easy query.

USE Northwind
GO
SELECT Description
FROM Categories
WHERE Description LIKE '%bean curd%'
GO

Or, using CONTAINS:

USE Northwind
GO
SELECT Description
FROM Categories
WHERE CONTAINS(Description, ' "bean curd" ')
GO

The CONTAINS predicate uses functional notation in which the first parameter is the name of the column being searched and the
second parameter is a full-text search condition. The search condition, in this case "bean curd", can be quite complex and is made
up of one or more terms, which are described later.

The CONTAINS predicate supports complex syntax to search character-based columns for:

One or more specific words and/or phrases (simple term).

A word is one or more characters without spaces or punctuation. A valid phrase can consist of multiple words with spaces
with or without punctuation between them. For example, croissant is a word, and café au lait is a phrase. Words and phrases
such as these are called simple terms.

Inflectional form of a specific word (generation term).

For example, search for the inflectional form of the word drive. If various rows in the table include the words drive, drives,
drove, driving, and driven, all would be in the result set because each of these can be inflectionally generated from the word
drive.

A word or a phrase where the words begin with specified text (prefix term).

In case of a phrase, each word within the phrase is considered to be a prefix. For example, the term auto tran* matches
automatic transmission and automobile transducer.

Words or phrases using weighted values (weighted term).

For example, you want to find a word that has a higher designated weighting than another word. It returns ranked query
results.

A word or phrase close to another word or phrase (proximity term).

For example, you want to find the rows in which the word ice is near the word hockey or in which the phrase ice skating is
near the phrase ice hockey.

A CONTAINS predicate can combine several of these terms by using AND and OR, for example, to find all rows with latte and New
York-style bagel in the same full-text enabled database column. Furthermore, terms can be negated by the use of AND NOT, for
example bagel and not cream cheese.

When you use CONTAINS, remember SQL Server discards noise words from the search criteria. Noise words are those words
such as a, and, is, or the, which can occur frequently but do not really help when searching for specific text.

Accessing and Changing Relational Data (SQL Server 2000)

Searching for Specific Words or Phrases (Simple Term)
Searching for Specific Words or Phrases (Simple Term)

In Latin-based and other single-byte languages, a group of characters is typically interpreted as a word if it is framed by spaces or
punctuation, and a phrase if it consists of multiple words with spaces, and with (or without) punctuation between them. For
example, in the English language, a word such as clock or calendar consists of one or more characters without spaces or
punctuation. In most languages, a phrase consists of multiple words with spaces, and with (or without) punctuation between
them, such as cheese, crackers, and apple juice.

Asian languages are different in that an Asian language character can also be a word, and a phrase is a group of words that do not
necessarily have to have spaces or punctuation between them.

The following query searches for the word business in the notes column of the titles table.

USE pubs
GO
SELECT title_id, title, notes
FROM titles
WHERE CONTAINS(notes, 'business')
GO

This query searches for the phrase "common business applications" in the notes column of the titles table.

USE pubs
GO
SELECT title_id, title, notes
FROM titles
WHERE CONTAINS(notes, ' "common business applications" ')
GO

A CONTAINS predicate, can only be used with tables that have columns enabled for full-text querying. For more information
about enabling one or more columns for full-text querying, see sp_fulltext_table and sp_fulltext_column and Full-text Indexes.

One or more table columns can be enabled for full-text querying. A given full-text predicate against that table can either access a
single, enabled column or all of the enabled columns in a table. Assuming that both the title and notes columns in the titles
table in the pubs database are full-text enabled, then the following query returns the title ID, title, and price for all rows in which
the phrase "French gourmet" is present in either of the full-text enabled columns:

USE pubs
GO
SELECT title_id, title, price
FROM titles
WHERE CONTAINS(*, ' "French gourmet" ')
GO

The asterisk (*), used in place of a column name, indicates all full-text enabled columns for the table.

Accessing and Changing Relational Data (SQL Server 2000)

Combining Full-text Search Operators Using AND, OR, and
AND NOT
Combining Full-text Search Operators Using AND, OR, and AND NOT

You can use parentheses and the Boolean operators (AND, AND NOT, and OR) between search conditions in a CONTAINS
predicate. Assume one or more rows in the titles table contains information about favorite recipes and gourmet recipes. To
retrieve rows that contain text for either type of recipe, use an OR between the "favorite recipes" and "gourmet recipes" phrases.

USE pubs
GO
SELECT title, notes
FROM titles
WHERE CONTAINS(notes, ' "favorite recipes" OR "gourmet recipes" ')
GO

This example searches for all rows in the titles table in which the title contains cooking, but neither computers nor computer.

USE pubs
GO
SELECT title_id, title, ytd_sales
FROM titles
WHERE CONTAINS(title, ' cooking AND NOT ("computer*")')
GO

This example obtains a list of product category descriptions in which the description mentions both words beers and ales.

USE Northwind
GO
SELECT CategoryName, Description
FROM Categories
WHERE CONTAINS(Description, ' beers AND ales ')
GO

Phrases and predicates can be combined to search for combinations of words and phrases. For example, you can search for all
rows that contain either ice skating or hockey but not references to the Olympics. The WHERE clause for using the CONTAINS
predicate looks like this:

WHERE CONTAINS (*, '("ice skating" or hockey) AND NOT olympics')

Accessing and Changing Relational Data (SQL Server 2000)

Searching for Multiple Forms of Words or Phrases (Prefix
Term)
Searching for Multiple Forms of Words or Phrases (Prefix Term)

You can search columns for text that begin with a specified word or phrase. The specified text used for the search is called a prefix
term.

When the prefix term is a word, all entries in the column that begin with the word will be returned. For example, to search for all
rows that contain the word ice, as in ice, ice cream, or ice-shaved drinks, the query looks like this:

USE Northwind
GO
SELECT Description, CategoryName
FROM Categories
WHERE CONTAINS (Description, ' "ice*" ')
GO

All text that matches the text specified before the asterisk (*) is returned. If the text and asterisk are not delimited by double
quotation marks, as in CONTAINS (DESCRIPTION, 'ice*'), full-text search considers the asterisk as a character and will search for
exact matches to ice*.

When the prefix term is a phrase, each word making up the phrase is considered a separate prefix term. All rows that have words
beginning with the prefix terms will be returned. For example, the prefix term "light bread*" will find rows with text of either "light
breaded", "lightly breaded", or "light bread."

USE Northwind
GO
SELECT Description, CategoryName
FROM Categories
WHERE CONTAINS (Description, ' "light bread*" ')
GO

Accessing and Changing Relational Data (SQL Server 2000)

Searching for Any Form of a Specific Word (Generation Term)
Searching for Any Form of a Specific Word (Generation Term)

You can search for all the different tenses of a verb or both the singular and plural forms of a noun. For example, this query
searches for any form of dry (dry, dried, drying, and so on) in the Description column of the Categories table.

USE Northwind
GO
SELECT Description, CategoryName
FROM Categories
WHERE CONTAINS (Description, 'FORMSOF(INFLECTIONAL, "dry")')
GO

Note that a single term cannot be used to match both nouns and verbs in the same query.

Accessing and Changing Relational Data (SQL Server 2000)

Searching for Words or Phrases Using Weighted Values
(Weighted Term)
Searching for Words or Phrases Using Weighted Values (Weighted Term)

You can search for words or phrases and specify a weighting value. Weight, a number from 0.0 through 1.0, indicates the degree
of importance for each word and phrase within a set of words and phrases. A weight value of 0.0 is the lowest value available, and
a weight value of 1.0 is the highest available value. For example, this query searches for all customer addresses, using weight
values, in which any text beginning with the string "des" is near either Rue or Bouchers. Microsoft® SQL Server™ gives a higher
rank to those rows with more of the words specified. Therefore, SQL Server gives a higher rank to a row with des Rue Bouchers
than to a row with des Rue.

USE Northwind
GO
SELECT CompanyName, ContactName, Address
FROM Customers
WHERE CONTAINS(Address, 'ISABOUT ("*des*",
 Rue WEIGHT(0.5),
 Bouchers WEIGHT(0.9)
) ')
GO

A weighted term can be used in conjunction with any of the other four types of terms.

Accessing and Changing Relational Data (SQL Server 2000)

Searching for Words or Phrases Close to Another Word or
Phrase (Proximity Term)
Searching for Words or Phrases Close to Another Word or Phrase (Proximity Term)

You can search for words or phrases in close proximity to another word or phrase. In addition, you can specify two words or
phrases in any order and get the same result. This example searches for the word user close to the word computers.

USE pubs
GO
SELECT title, notes
FROM titles
WHERE CONTAINS (notes, 'user NEAR computers')
GO

However, you can also reverse the words in the WHERE clause to get the same result:

WHERE CONTAINS (notes, 'computers NEAR user')

You can specify the tilde (~) in place of the NEAR keyword in the earlier queries, and get the same results:

WHERE CONTAINS (notes, 'computers ~ user')

More than two words or phase can be specified in the search conditions. For example, it is possible to say:

WHERE CONTAINS (notes, ' hardware ~ softward ~ computer ')

This means that hardware should be in close proximity to software, and software should be in close proximity to computer.

In addition, matching the prefix of a word can be combined with searching for a word or phrase in close proximity to another
word or phrase. This example searches for all descriptions in which the description has sauces in close proximity to any form of
mix, such as mixing, or mixed.

WHERE CONTAINS(Description, ' sauces ~ "mix*" ')

To find wheat bread mix and also wheatberry bread mix, you could use this type of search:

WHERE CONTAINS(Description, ' "wheat*" ~ "bread mix" ')

See Also

CONTAINS

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Using the FREETEXT Predicate
With a FREETEXT predicate, you can enter any set of words or phrases, or even a complete sentence. The full-text query engine
examines this text, identifies all the significant words and noun phrases, and internally constructs a query with those terms. This
example uses a FREETEXT predicate against a column named description.

FREETEXT (description, ' "The Fulton County Grand Jury said Friday an investigation of Atlanta's recent primary
election produced no evidence that any irregularities took place." ')

The search engine identifies words and noun phrases such as the following:

Words

Fulton, county, grand, jury, Friday, investigation, Atlanta, recent, primary, election, produce, evidence, irregularities

Phrases

Fulton county grand jury, primary election, grand jury, Atlanta's recent primary election

The words and phrases in the FREETEXT string (and their inflectionally generated variations) are internally combined into a query,
weighted for proper ranking, and then the actual search is performed.

See Also

FREETEXT

Accessing and Changing Relational Data (SQL Server 2000)

Using Full-text Predicates to Query image Columns
CONTAINS and FREETEXT predicates may be used to search indexed image columns.

Many document types can be stored in a single image column. Microsoft® SQL Server™ supports certain document types and
provides a filter for these types. This release provides filters for Office documents, text files, and HTML files.

When an image column participates in a full-text index, the full-text service looks at the extensions of the documents in the
image column and applies a corresponding filter to interpret the binary data and extract the textual information needed for
indexing and querying.

Thus, when you set up full-text indexing on an image column in a table, you must create a separate column to hold information
about the document. This type column can be of any character-based data type and contains the document file extension, such as
doc for a Microsoft Word document. If the type column is NULL, the full-text service will assume the document is a text file.

In the Full-Text Indexing Wizard, if you select an image column for indexing, you must also specify a Binding column to
hold the document type.

The sp_fulltext_column stored procedure also accepts an argument for the column to contain the document types.

The sp_help_fulltext_columns stored procedure also returns column name and column id of the document type column.

For more information about setting up full-text indexes and searches on image columns, see Filtering Supported File Types.

Once indexed, the image column can be queried like any other column in a table, using the predicates CONTAINS and FREETEXT.

Accessing and Changing Relational Data (SQL Server 2000)

Combining Full-text Predicates with Other Transact-SQL
Predicates
The CONTAINS and FREETEXT predicates can be combined with any of the other Transact-SQL predicates, such as LIKE and
BETWEEN; they can also be used in a subquery. This example searches for descriptions in which the category is not Seafood, and
in which the description contains the word sauces and the word seasonings.

USE Northwind
GO
SELECT Description
FROM Categories
WHERE CategoryName <> 'Seafood' AND
 CONTAINS(Description, ' sauces AND seasonings ')
GO

The following query uses CONTAINS within a subquery. Using the pubs database, the query obtains the title value of all the
books in the titles table for the publisher that is located close to the flying saucer in Moonbeam, Ontario. (This information about
the publisher is in the pr_info column in the pub_info table, and there is only one such publisher.)

USE pubs
GO
-- Add some interesting rows to some tables.
INSERT INTO publishers
 VALUES ('9970',
 'Penumbra Press',
 'Moonbeam',
 'ON',
 'Canada')
INSERT INTO pub_info (pub_id, pr_info)
 VALUES ('9970',
 'Penumbra press is located in the small village of Moonbeam. Moonbeam is well known as the flying
saucer capital of Ontario. You will often find one or more flying saucers docked close to the tourist
information centre on the north side of highway 11.')
INSERT INTO titles
 VALUES ('FP0001',
 'Games of the World',
 'crafts',
 '9970',
 9.85,
 0.00,
 20,
 213,
 'A crafts book! A sports book! A history book! The fun and excitement of a world at play -
beautifully described and lavishly illustrated',
 '1977/09/15')
GO
-- Given the full-text catalog for these tables is pubs_ft_ctlg,
-- repopulate it so new rows are included in the full-text indexes.
sp_fulltext_catalog 'pubs_ft_ctlg', 'start_full'
WAITFOR DELAY '00:00:30' -- Wait 30 seconds for population.
GO
-- Issue the query.
SELECT T.title, P.pub_name
FROM publishers P,
 titles T
WHERE P.pub_id = T.pub_id
 AND P.pub_id = (SELECT pub_id
 FROM pub_info
 WHERE CONTAINS (pr_info,
 ' moonbeam AND
 ontario AND
 "flying saucer" '))
GO

See Also

CONTAINS

FREETEXT

WHERE

Accessing and Changing Relational Data (SQL Server 2000)

Using the CONTAINSTABLE and FREETEXTTABLE Rowset-
valued Functions
The CONTAINSTABLE and FREETEXTTABLE functions are used to specify full-text queries that return relevance rankings for each
row. These functions are very similar but used differently from the full-text predicates, CONTAINS and FREETEXT.

Differentiating the full-text predicates from the functions

Although both the full-text predicates and the full-text rowset-valued functions are used for full-text queries, and the Transact-
SQL statement used to specify the full-text search condition is the same in both the predicates and the functions, there are major
differences in the way that these are used:

CONTAINS and FREETEXT both return a TRUE or FALSE value, so they are typically specified in the WHERE clause of a
SELECT statement.

CONTAINSTABLE and FREETEXTTABLE both return a table of zero, one, or more rows, so they must always be specified in
the FROM clause.

CONTAINS and FREETEXT can only be used to specify selection criteria, which Microsoft® SQL Server™ uses to determine
the membership of the result set.

CONTAINSTABLE and FREETEXTTABLE are also used to specify selection criteria. The table returned has a column named
KEY that contains full-text key values. Each full-text registered table has a column whose values are guaranteed to be unique.
The values returned in the KEY column of CONTAINSTABLE or FREETEXTTABLE are the unique values, from the full-text
registered table, of the rows that match the selection criteria specified in the full-text search condition.

Furthermore, the table produced by CONTAINSTABLE and FREETEXTTABLE has a column named RANK, which contains
values from 0 through 1000. These values are used to rank the rows returned according to how well they met the selection
criteria.

Queries that use the CONTAINSTABLE and FREETEXTTABLE functions are more complex than those that use the CONTAINS and
FREETEXT predicates because qualifying rows returned by the functions must be explicitly joined with the rows in the original SQL
Server table.

This example returns the description and category name of all food categories for which the Description column contains the
words "sweet and savory" near either the word "sauces" or the word "candies." All rows with a category name "Seafood" are
disregarded. Only rows with a rank value of 2 or higher are returned.

USE Northwind
GO
SELECT FT_TBL.Description,
 FT_TBL.CategoryName,
 KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 CONTAINSTABLE (Categories, Description,
 '("sweet and savory" NEAR sauces) OR
 ("sweet and savory" NEAR candies)'
) AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
WHERE KEY_TBL.RANK > 2
 AND FT_TBL.CategoryName <> 'Seafood'
ORDER BY KEY_TBL.RANK DESC

This example returns the description and category name of the top 10 food categories where the Description column contains
the words "sweet and savory" near either the word "sauces" or the word "candies."

SELECT FT_TBL.Description,
 FT_TBL.CategoryName,
 KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 CONTAINSTABLE (Categories, Description,
 '("sweet and savory" NEAR sauces) OR
 ("sweet and savory" NEAR candies)'
 , 10
) AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]

Comparison between CON TAIN STABLE and CON TAIN S

The CONTAINSTABLE function and the CONTAINS predicate use similar search conditions.

However, in CONTAINSTABLE you specify the table that will be full-text searched, the column (or all the columns) in the table to
be searched, and the search condition. A fourth parameter, an optional one, makes it possible for the user to indicate that only the
highest specified number of matches be returned. For more information, see the Limiting Result Sets section.

CONTAINSTABLE returns a table that includes a column named RANK. This RANK column contains a value for each row that
indicates how well a row matched the selection criteria.

This query specifies using CONTAINSTABLE to return a rank value for each row.

USE Northwind
GO
SELECT K.RANK, CompanyName, ContactName, Address
FROM Customers AS C
 INNER JOIN
 CONTAINSTABLE(Customers,Address, 'ISABOUT ("des*",
 Rue WEIGHT(0.5),
 Bouchers WEIGHT(0.9)
)
 '
) AS K
 ON C.CustomerID = K.[KEY]

Here is the result set:

RANK CompanyName ContactName address
---- ------------ ----------- -------
123 Bon app' Laurence Lebihan 12, rue des Bouchers
65 Du monde entier Janine Labrune 67, rue des Cinquante Otages
15 France restauration Carine Schmitt 54, rue Royale
15 La maison d'Asie Annette Roulet 1 rue Alsace-Lorraine
15 Maison Dewey Catherine Dewey Rue Joseph-Bens 532
15 Mère Paillarde Jean Fresnière 43 rue St. Laurent
15 Spécialités du monde Dominique Perrier 25, rue Lauriston
15 Vins et alcools Paul Henriot 59 rue de l'Abbaye
 Chevalier
15 Victuailles en stock Mary Saveley 2, rue du Commerce

Comparison between FREETEXTTABLE and FREETEXT

The following query extends a FREETEXTTABLE query to return the highest ranked rows first and to add the ranking of each row to
the select list. To specify the query, you must know that CategoryID is the unique key column for the Categories table.

USE Northwind
GO
SELECT KEY_TBL.RANK, FT_TBL.Description
FROM Categories AS FT_TBL
 INNER JOIN
 FREETEXTTABLE(Categories, Description,
 'How can I make my own beers and ales?') AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
ORDER BY KEY_TBL.RANK DESC
GO

The only difference in the syntax of FREETEXTTABLE and FREETEXT is the insertion of the table name as the first parameter.

Here is an extension of the same query that only returns rows with a rank value of 10 or greater:

USE Northwind
GO
SELECT KEY_TBL.RANK, FT_TBL.Description
FROM Categories FT_TBL
 INNER JOIN
 FREETEXTTABLE (Categories, Description,
 'How can I make my own beers and ales?') AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
WHERE KEY_TBL.RANK >= 10
ORDER BY KEY_TBL.RANK DESC
GO

Identifying the Unique Key Column N ame

Queries that use rowset-valued functions are complicated because it is necessary to know the name of the unique key column.
Each full-text enabled table has the TableFulltextKeyColumn property that contains the column ID number of the column that
has been selected for enforcing unique rows for the table. This example shows how the name of the key column can be obtained

and used programmatically.

USE Northwind
GO
DECLARE @key_column sysname
SET @key_column = Col_Name(Object_Id('Categories'),
 ObjectProperty(Object_id('Categories'),
 'TableFulltextKeyColumn')
)
print @key_column
EXECUTE ('SELECT Description, KEY_TBL.RANK
 FROM Categories FT_TBL
 INNER JOIN
 FreetextTable (Categories, Description,
 ''How can I make my own beers and ales?'') AS KEY_TBL
 ON FT_TBL.'
 +
 @key_column
 +
 ' = KEY_TBL.[KEY]
 WHERE KEY_TBL.RANK >= 10
 ORDER BY KEY_TBL.RANK DESC
 ')
GO

You can avoid the complexity of using CONTAINSTABLE and FREETEXTTABLE by writing stored procedures that accept a few facts
about the query and then create and execute the appropriate query. A simplified procedure that submits a FREETEXTTABLE query
follows. The table shows the procedure parameters (all input).

Parameter Required Description
@additional_predicates Optional If there are any, these get added with

AND after the FREETEXT predicate.
KEY_TBL.RANK can be used within
expressions.

@freetext_column Yes
@freetext_search Yes Search condition.
@from_table Yes
@order_by_list Optional KEY_TBL.RANK can be one of the

columns specified.
@select_list Yes KEY_TBL.RANK can be one of the

columns specified.

The code for the procedure is:

CREATE PROCEDURE freetext_rank_proc
 @select_list nvarchar(1000),
 @from_table nvarchar(517),
 @freetext_column sysname,
 @freetext_search nvarchar(1000),
 @additional_predicates nvarchar(500) = '',
 @order_by_list nvarchar(500) = ''
AS
BEGIN
 DECLARE @table_id integer,
 @unique_key_col_name sysname,
 @add_pred_var nvarchar(510),
 @order_by_var nvarchar(510)

 -- Get the name of the unique key column for this table.
 SET @table_id = Object_Id(@from_table)
 SET @unique_key_col_name =
 Col_Name(@table_id,
 ObjectProperty(@table_id, 'TableFullTextKeyColumn'))

 -- If there is an additional_predicate, put AND() around it.
 IF @additional_predicates <> ''
 SET @add_pred_var = 'AND (' + @additional_predicates + ')'
 ELSE
 SET @add_pred_var = ''

 -- Insert ORDER BY, if needed.
 IF @order_by_list <> ''
 SET @order_by_var = 'ORDER BY ' + @order_by_var
 ELSE

 SET @order_by_var = ''

 -- Execute the SELECT statement.
 EXECUTE ('SELECT '
 + @select_list
 + ' FROM '
 + @from_table
 + ' AS FT_TBL, FreetextTable('
 + @from_table
 + ','
 + @freetext_column
 + ','''
 + @freetext_search
 + ''') AS KEY_TBL '
 + 'WHERE FT_TBL.'
 + @unique_key_col_name
 + ' = KEY_TBL.[KEY] '
 + @add_pred_var
 + ' '
 + @order_by_var
)
END

This procedure can be used to submit the query:

USE Northwind
GO
EXECUTE freetext_rank_proc
 'Description, KEY_TBL.RANK', -- Select list
 'Categories', -- From
 'Description', -- Column
 'How can I make my own beers and ales?', -- Freetext search
 'KEY_TBL.RANK >= 10', -- Additional predicate
 'KEY_TBL.RANK DESC' -- Order by
GO

Limiting Result Sets

In many full-text queries, the number of items matching the search condition is very large. To prevent queries from returning too
many matches, use the optional argument, top_n_by_rank, in CONTAINSTABLE and FREETEXTTABLE to specify the number of
matches according to rank you want returned.

With this information, Microsoft® SQL Server™ orders the matches by rank and returns only up to the specified number. This
choice can result in a dramatic increase in performance. For example, a query that would normally return 100,000 rows from a
table of one million rows will be processed more quickly if only the top 100 rows are requested.

If you want only the top 3 matches returned on an earlier example using CONTAINSTABLE, here's how the query looks:

USE Northwind
GO
SELECT K.RANK, CompanyName, ContactName, Address
FROM Customers AS C
 INNER JOIN
 CONTAINSTABLE(Customers,Address, 'ISABOUT ("des*",
 Rue WEIGHT(0.5),
 Bouchers WEIGHT(0.9))', 3) AS K
 ON C.CustomerID = K.[KEY]

Here is the result set:

RANK CompanyName ContactName address
---- ------------ ----------- -------
123 Bon app' Laurence Lebihan 12, rue des Bouchers
65 Du monde entier Janine Labrune 67, rue des Cinquante Otages
15 France restauration Carine Schmitt 54, rue Royale

See Also

CONTAINSTABLE

FREETEXTTABLE

Accessing and Changing Relational Data (SQL Server 2000)

Using Transact-SQL Functions to Obtain Full-text Property
Values
Several Transact-SQL functions can be used to obtain the values of full-text properties. For example, the
TableFulltextKeyColumn property can be used to programmatically obtain the identity of a unique key column for a table. Also,
the IsFullTextEnabled property can be used to check whether full-text querying is enabled for a database. This example checks
to see whether full-text querying is enabled for the Northwind database.

USE Northwind
GO
SELECT DATABASEPROPERTY('Northwind', 'IsFullTextEnabled')

If a value of 1 is returned, the Northwind database has been enabled for full-text querying. A value of 0 indicates that the
Northwind database has not been enabled for full-text querying.

The table contains a complete list of properties. It should be noted that many of these properties are useful only for full-text
administration.

Function Property
COLUMNPROPERTY IsFulltextIndexed
DATABASEPROPERTY IsFulltextEnabled
DATABASEPROPERTYEX IsFulltextEnabled
INDEXPROPERTY IsFulltextKey
OBJECTPROPERTY TableFulltextBackgroundUpdateIndexOn
 TableFulltextCatalogId
 TableFulltextChangeTrackingOn
 TableFulltextKeyColumn
 TableFulltextPopulateStatus
 TableHasActiveFulltextIndex
FULLTEXTCATALOGPROPERTY PopulateStatus
 ItemCount
 IndexSize
 UniqueKeyCount
 LogSize
 PopulateCompletionAge
FULLTEXTSERVICEPROPERTY ResourceUsage
 ConnectTimeout
 IsFullTextInstalled

See Also

COLUMNPROPERTY

DATABASEPROPERTY

DATABASEPROPERTYEX

FULLTEXTCATALOGPROPERTY

FULLTEXTSERVICEPROPERTY

INDEXPROPERTY

OBJECTPROPERTY

Accessing and Changing Relational Data (SQL Server 2000)

Example of Combining Full-text Administration and Full-text
Query
Full-text indexes can be administered using either SQL Server Enterprise Manager or stored procedures. Sometimes it is
convenient to combine full-text administrative stored procedures in the same script as the queries. The following example script
combines these tasks:

Create and populate a table.

Enable the pubs database for full-text searching.

Create a full-text catalog.

Register the new table and certain columns in it for full-text search.

Populate the new full-text catalog with full-text index information from the new table.

Execute a full-text query against the new table.

USE pubs
-- Create and populate a table.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'FulltextTest')
 DROP TABLE FulltextTest
GO
CREATE TABLE FulltextTest
 (article_id int IDENTITY(100,1)
 CONSTRAINT PK_title_id PRIMARY KEY,
 article_title nvarchar(200)
)
GO
INSERT FulltextTest (article_title) VALUES (N'Steven Buchanan has always enjoyed ice skating.')
INSERT FulltextTest (article_title) VALUES (N'Elvis Stoiko: The best male figure skater')
INSERT FulltextTest (article_title) VALUES (N'Steven Buchanan On Ice: Skating Reaches Tops in Public Opinion
Poll')
INSERT FulltextTest (article_title) VALUES (N'Last night, Steven Buchanan skated on the ice!! Skating fans
cheer!')
INSERT FulltextTest (article_title) VALUES (N'Ice-skating brings out the best in Steven. Buchanan exults in
first victory...')
GO

-- Enable full-text searching in the database.
EXEC sp_fulltext_database 'enable'
GO

-- Create a new full-text catalog.
EXEC sp_fulltext_catalog 'StevenBCatalog',
 'create'
GO

-- Register the new table and column within it for full-text querying,
-- then activate the table.
EXEC sp_fulltext_table 'FulltextTest',
 'create',
 'StevenBCatalog',
 'PK_title_id'
EXEC sp_fulltext_column 'FulltextTest',
 'article_title',
 'add'
EXEC sp_fulltext_table 'FulltextTest',
 'activate'
GO

-- Start full population of the full-text catalog. Note that it is
-- asynchronous, so delay must be built in if populating a
-- large index.

EXEC sp_fulltext_catalog 'StevenBCatalog',
 'start_full'
WHILE (SELECT fulltextcatalogproperty('StevenBCatalog',
'populatestatus')) <> 0
 BEGIN

 WAITFOR DELAY '00:00:02' -- Check
 every 2 seconds to see if full-text index population is complete.
 CONTINUE
END

GO

-- Execute a full-text query against the new table.
SELECT article_title
FROM FulltextTest
WHERE CONTAINS(article_title, ' "Steven Buchanan" AND "ice skating" ')

Here is the result set:

article_title
--
Steven Buchanan has always enjoyed ice skating.
Last night, Steven Buchanan skated on the ice!! Skating fans cheer!
Steven Buchanan On Ice: Skating Reaches Tops in Public Opinion Poll
Ice-skating brings out the best in Steven. Buchanan exults in first victory...
(4 row(s) affected)

Accessing and Changing Relational Data (SQL Server 2000)

Full-text Querying of File Data
Microsoft® SQL Server™ supports textual queries against data residing in the file system, as well as SQL Server data. Products
and features that support this capability include SQL Server distributed queries, Microsoft Internet Information Services 4.0, and
Microsoft Indexing Service version 2.0.

A large portion of digitally stored information is still in the form of unstructured data, primarily text, stored in the file system. This
information is often related to data within the database, which requires that queries be run against both sources. However, it is
often inappropriate to import this data from the file system. Distributed queries coupled with extensions to the SQL language
make it possible to write such queries without the data. This is known as file content search.

There are two major types of textual queries:

Property search

Applies filters to documents to extract properties, such as author, subject, type, word count, printed page count, and time last
written, and then issues queries against those properties.

Full-text search

Creates indexes of all nonnoise words in the documents, and then uses these indexes to support linguistic searches and proximity
searches.

For example, the following query selects the names, sizes, and authors of all Microsoft Word files on the D drive that contains the
phrase "SQL Server" in close proximity to text. It then joins this with the writers table to obtain the author's citizenship.

SELECT Q.FileName, Q.Size, Q.DocAuthor, W.Citizenship
FROM OpenQuery(MyLinkedServer,
 'SELECT FileName, Size, DocAuthor
 FROM SCOPE('' "D:\" '')
 WHERE CONTAINS(''"SQL Server"
 NEAR() text'')
 AND FileName LIKE ''%.doc%'' '
) > 0 AS Q,
 writers AS W
WHERE Q.DocAuthor = W.writer_name

File content search relies upon the Microsoft OLE DB Provider for Microsoft Indexing Service 2.0. It also relies upon Indexing
Service for the support of the underlying filters and full-text indexes.

The OLE DB Provider for Indexing Service 2.0 supports the ability to support SQL queries against data in the file system
independent of SQL Server. The core extensions to the SQL language to support such queries are the same in both products.
However, there are certain extensions that are not relevant to Indexing Service 2.0. For more information about the syntax of full-
text queries against data in SQL Server, see Full-text Querying SQL Server Data.

See Also

CONTAINS

WHERE

FREETEXT

Accessing and Changing Relational Data (SQL Server 2000)

Using Microsoft Internet Information Services and Indexing
Service for File Content Searches
Microsoft® Internet Information Services (IIS) 4.0 and Indexing Service version 2.0 (both part of Microsoft Windows NT® 4.0
Option Pack) combine to provide property filtering and searching as well as full-text indexing and searching of file data. Text
query support against file data has an advantage over text query support against database data because, in Microsoft SQL
Server™ the latter is limited to queries against character-based columns. These file content search capabilities are independent of
SQL Server, and support SQL-based queries within ADO (ActiveX® Data Objects). The SQL used in ADO queries is consistent with
the SQL extensions explained here.

Format Filters

Indexing Service provides filters for several popular file formats including Microsoft Word, Microsoft PowerPoint®, Microsoft
Excel, and HTML. Filters are also available for plain-text. Filters can be written by customers and third-party vendors for other
formats as well. One purpose of a filter is to provide support for nonplain-text documents. The other purpose is to capture
property values both from the file content and about the files. Assuming that each file is a document, examples of properties
include each document's title, the number of pages with notes in each PowerPoint document, the number of paragraphs in each
document, the last date and time each file was accessed, and the physical path to each file. For a list of properties, see Using File
Properties for File Content Searches. For a complete list, the Indexing Service documentation.

Phrase and Proximity Searches

Full-text indexes for file system searches are created by scanning the content of files. The process consists of keeping track of the
significant words that are used and where they are located. For example, a full-text index may indicate that the word Canada is
found at word number 227, word 473, and word number 1017 in a given file. This index structure supports an efficient search for
all items containing indexed words, and advanced search operations such as phrase searches and proximity searches. An example
of a phrase search is looking for "white elephant", where white is followed by elephant. An example of a proximity search is
looking for phrases in which big occurs near house. To prevent the full-text index from becoming bloated with words that do not
help the search, noise-words, such as a, and, and the, are ignored.

Noise Words

Noise-word lists for many languages are provided and the set of supported languages is growing. The choice of a particular
noise-word list is based on the language of the material which is file-format-dependent during the filtering process: Some files
have the language setting by section (for example, by paragraph), whereas some specify the language setting as a property of the
document. These noise-word lists should be sufficient for most normal operations, but can be modified for specific environments
with a text editor. For more information, see the Indexing Service 2.0 documentation in the Windows NT 4.0 Option Pack.

Text-search Catalog

Indexing Service stores indexes and property values in a text-search catalog. By default, a text-search catalog named Web is
created when Indexing Service is installed. A given text-search catalog references one or more IIS virtual directories (also known
as virtual roots). A virtual directory references one or more physical directories and, optionally, other virtual directories. After a
real file is linked to the text catalog through a virtual directory, Indexing Service is notified of the new files that must be indexed
and begins the filtering and indexing of the properties and content associated with these files. Indexing Service is also notified of
any subsequent changes to these files and will refilter and reindex the updated files.

Accessing and Changing Relational Data (SQL Server 2000)

Using Virtual Tables for File Content Queries
Every SQL query must have at least one defined table specified, which means the number and types of columns is either known in
advance or specified as part of the query. A relational database usually contains a number of predefined tables and the meta data
about the columns of these tables is stored in a schema.

The collection of files in a file system, however, does not generally have such a predefined structure. The properties of a file are
perhaps similar to columns, but there is no deterministic set of properties for files. A file itself may be similar to a row, but files are
usually not grouped into a homogeneous collection akin to the rows in a table. Thus, the table concept is unclear, SELECT * is
meaningless, and both the rows and the columns are unbounded. Another way of looking at this is that a file system effectively
has a universal schema consisting of every possible file property, both already known and as yet unknown.

Microsoft® Indexing Service solves this problem by providing the SCOPE function which defines the set of rows that makes up a
virtual table and provides file properties that substitute for columns.

Accessing and Changing Relational Data (SQL Server 2000)

Using SCOPE Function for File System Queries
Using SCOPE Function for File System Queries

SCOPE is specified in the FROM clause of the Indexing Service query and is used to specify the set of files that makes up a virtual
table. Here is the syntax.

The table shows the syntax elements and their descriptions.

Syntax element Description
() The virtual table consists of all the files registered in the

text catalog and data source for the linked server
specified in the OPENQUERY() function.

DEEP TRAVERSAL OF The virtual table consists of all the files in the directory
at the specified path or virtual directory as well as all
the files in all subdirectories (to any level) are
considered to be part of the virtual table. If neither
DEEP nor SHALLOW is specified, DEEP is the default.

SHALLOW TRAVERSAL OF The virtual table consists of only of the files in the top-
level directory at the specified path or virtual directory
are considered to be part of the virtual table.

physical_path This is a path to a real directory. If a real directory is
specified, the filtering and indexing is done as part of
the processing of the query. This can be time-
consuming.

virtual_directory This is the alias (or chains of aliases) assigned to a
virtual directory that has been registered in the text
catalog and data source for the linked server specified
in the OPENQUERY() function. In this case, the filtering
and indexing probably has been done and, thus, the
query is much faster than when a physical_path is
specified.

Accessing and Changing Relational Data (SQL Server 2000)

Using File Properties for File Content Searches
Using File Properties for File Content Searches

Microsoft® Indexing Service filters and maintains in excess of 50 file properties. All of these can be specified in text file search
queries. From the perspective of writing a SELECT statement, there are 3 types of properties:

Those that can only be specified in a WHERE clause.

Those that can be specified in a WHERE clause and, in addition, can be specified in the ORDER BY clause.

Those that can be specified in a WHERE clause and, in addition, can be specified in a select list.

The table shows a list of the properties.

Property name Data type Description
Use in

ORDER BY
Use in

select list
Access datetime Most recent date and

time that the file was
accessed.

Yes Yes

Characterization nvarchar or
ntext

Abstract of the
contents of the file.
Note that, in this
version of Indexing
Service this is usually
the first paragraph or
first section of a
document. In a future
version, it will be an
actual summary.

 Yes

Contents nvarchar or
ntext

Main contents of the
file.

Create datetime Date and time that
the file was created.

Yes Yes

Directory nvarchar Physical path to the
file, not including the
file name.

Yes Yes

DocAuthor nvarchar Document author. Yes Yes
DocComments nvarchar Comments about the

document.
Yes Yes

DocLastAuthor nvarchar Most recent user that
edited the document.

Yes Yes

DocLastPrinted datetime Date and time that
the document was
last printed.

Yes

DocPageCount integer Number of pages in
the document.

Yes

DocPartTitles array of
varchar

Names of document
parts:
Slide titles in
Microsoft
PowerPoint®
Spreadsheets in
Microsoft Excel
Documents in
Microsoft Word.

DocSubject nvarchar Subject of the
document.

Yes Yes

DocTitle nvarchar Title of the document. Yes Yes

DocWordCount integer Number of words in
the document.

Yes -

FileIndex decimal(19,0) Unique identifier of
the file.

Yes Yes

FileName nvarchar Name of the file. Yes Yes
HitCount integer Number of words

matching query.
Yes Yes

Path nvarchar Full physical path to
the file, including file
name.

Yes Yes

Rank integer Value from 0 to 1000
indicating how closely
this row matches the
selection criteria.

Yes Yes

Size decimal(19,0) Size of file, in bytes. Yes Yes

Customers and third-party vendors can write filters to add to this set of properties. They can also add properties, for example, by
adding their own tags to an HTML document. In addition, to permit the query and retrieval of such user-defined properties, the
Transact-SQL extensions to Indexing Service include support for a SET statement that allows the specification of new property
names and their associated types.

Example Queries Using Virtual Tables

You can specify a query with the equivalent of a table in the file system resulting in the select list and FROM clause. For other
parts of a SELECT statement, the properties can be used in place of columns in the WHERE clause and the ORDER BY clause.
However, the GROUP BY and HAVING clause are not supported. The examples that follow show the use of all supported clauses.

This query selects the full physical path and the file creation timestamp of all files in the SQL-standards virtual directory and all its
subdirectories in which the document contains the phrase "overloaded function".

SELECT *
FROM OPENQUERY(FileSystem,
 'SELECT Path, Create
 FROM SCOPE('' "/SQL-standards" '')
 WHERE CONTAINS(Contents, '' "overloaded function" '') '
)

This query is similar to the previous, except that only files directly in the SQL-standards virtual directory are considered.

SELECT *
FROM OPENQUERY(FileSystem,
 'SELECT Path, Create
 FROM SCOPE('' SHALLOW TRAVERSAL OF "/SQL-standards" '')
 WHERE CONTAINS(Contents, '' "overloaded function" '') ')

In this next query, only files directly in the SQL3 virtual subdirectory are considered.

SELECT *
FROM OPENQUERY(FileSystem,
 'SELECT Path, Create
 FROM SCOPE('' "/SQL-standards/SQL3" '')
 WHERE CONTAINS(Contents, '' "overloaded function" '') ')

This query selects author, title, subject, and file name of documents, in all files that are either in the /corpus virtual directory and
its subdirectories or in the \temp directory on the C drive, where the document is at least 5,000 words and the author is either
Wendy Vasse or Anas Abbar. Rows representing documents with the most pages are ordered highest:

SELECT *
FROM OPENQUERY(FileSystem,
 'SELECT DocAuthor, DocTitle, DocSubject, FileName
 FROM SCOPE('' "/corpus" '',
 '' "C:\temp" '')
 WHERE DocWordCount >= 5000 AND
 (DocAuthor = ''Wendy Vasse'' OR
 DocAuthor = ''Anas Abar'')
 ORDER BY DocPageCount DESC ')

Accessing and Changing Relational Data (SQL Server 2000)

Sample Full-text Query Using File Content and Database Data
The first query returns the title and publication year of qualifying books that are represented by files in the virtual directory with
the alias /pubs. To satisfy the query, a book must cost less than $20.00 and text in the Characterization property must indicate
that the book is about ice hockey. It is known that the year portion of the Create property is always the publication year of the
book. The customer has defined the BookCost property (of type money), which filters out the cost of each book.

SELECT Q.DocTitle, DATEPART(YEAR, Q.Create)
FROM OPENQUERY(FileSystem,
 'SELECT DocTitle, Create
 FROM SCOPE('' "/pubs" '')
 WHERE BookCost <= 20.00
 AND CONTAINS(Characterization, '' "ice hockey" '')
 ') AS Q

The table alias value Q has been assigned to the table returned by the OPENQUERY function. This alias is then used to qualify the
items in the outer select list. Here, the SQL Server DATEPART() function is used to pass on only the year portion of the create
datetime value.

This second query returns the same information as the previous one. The difference is that the price of a book is obtained from
the document_cost column in the BookCost table in the database, rather than from a property in the file system. The primary
key of the BookCost table is the combination of document_author and document_title.

SELECT Q.DocTitle, DATEPART(YEAR, Q.Create)
FROM OPENQUERY(FileSystem,
 'SELECT DocTitle, Create, DocAuthor, DocTitle
 FROM SCOPE('' "/pubs" '')
 AND CONTAINS(Characterization, '' "ice hockey" '')
 ') AS Q,
 BookCost as B
WHERE Q.DocAuthor = B.document_author
 AND Q.DocTitle = B.document_title
 AND B.document_cost <= 20.00

The table returned by the OPENQUERY function is joined to the real BookCost table in the database, then rows with a suitable cost
are filtered out for inclusion in the outer SELECT.

This last query also joins data from the file system and the database and, this time, data from both appears in the outer select list.
Furthermore, the Rank property, which indicates how well the selected rows met the selection criteria, appears in the select list
and is used to ensure that higher-ranking rows appear before lower-ranking rows in the outer SELECT. In this example, the
wording on the plaques in the Hockey Hall of Fame is recorded on files. There is a file for each plaque, and the plaque number can
be obtained with the DocSubject property. The HockeyHall table contains PlaqueNo, PlayerName, StartYear, and LastYear
columns with the primary key being PlaqueNo. The query returns the PlayerName and PlaqueNo from the table and the Rank
and DocComments properties from the file. Only players who might have played for the Canadian or U.S. teams in the early
1900s are returned.

SELECT HH.PlayerName, HH.PlaqueNo, Q.Rank, Q.DocComments
FROM OPENQUERY(FileSystem,
 'SELECT DocSubject, DocComments, Rank
 FROM SCOPE('' "/hall_of_fame" '')
 WHERE CONTAINS(Contents, '' Canada OR "United States" '')
 ') AS Q,
 HockeyHall as HH
WHERE Q.DocSubject = HH.PlaqueNo
 AND HH.StartYear < 1915 AND HH.EndYear < 1899
ORDER BY Q.Rank DESC

XML and Internet Support (SQL Server 2000)

XML and Internet Support Overview
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 introduces new features that support XML functionality. The combination of these features makes
SQL Server 2000 an XML-enabled database server. These new features include:

The ability to access SQL Server using HTTP.

Support for XDR (XML-Data Reduced) schemas and the ability to specify XPath queries against these schemas.

The ability to retrieve and write XML data:
Retrieve XML data using the SELECT statement and the FOR XML clause.

Write XML data using OPENXML rowset provider.

Retrieve XML data using the XPath query language.
Enhancements to the Microsoft SQL Server 2000 OLE DB provider (SQLOLEDB) that allow XML documents to be set as
command text and to return result sets as a stream.

For the latest updates relating to SQL Server support for XML, see the XML Developer Center on MSDN® at Microsoft Web site.

Note The Msxml2.dll is installed with SQL Server 2000, but additional tools are not installed. For example, Xmlinst.exe, the tool
used to configure Microsoft Internet Explorer to use MSXML2, is not installed. The full MSXML2 package must be installed to
obtain this functionality. MSXML2 can be downloaded from the XML Developer Center on MSDN at Microsoft Web site.

Getting Started with XML

To use the XML functionality that Microsoft SQL Server 2000 provides, you must have a working knowledge of XML, URL syntax,
and HTTP methods. You should also be familiar with these terms:

XML document

Is a document that contains XML elements and attributes.

Document Type Definition (DTD)

Defines the elements and attributes that can be used in an XML document.

Style sheet

Describes the way data is to be formatted or displayed. The Extensible Stylesheet Language (XSL) is the language that is
commonly used with XML documents.

Form

Is a structured document used to collect and submit data for processing.

Template

A concept introduced in SQL Server 2000, a template is a valid XML document containing one or more SQL statements. The
template files are used to specify queries (SQL and XPath queries). Instead of specifying queries in the URL, template files
containing the queries are specified in the URL.

Virtual root

A concept introduced by Microsoft Internet Information Services (IIS), the virtual root is usually administered as part of IIS.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

http://www.microsoft.com/isapi/redir.dll?Prd=XML
http://www.microsoft.com/isapi/redir.dll?Prd=XML
http://go.microsoft.com/fwlink/?LinkId=9503

Creating XML Views Using Annotated XDR Schemas

Using XPath Queries

Retrieving and Writing XML Data

XML and Internet Support (SQL Server 2000)

IIS Virtual Directory Management for SQL Server
 New Information - SQL Server 2000 SP3.

The IIS Virtual Directory Management for SQL Server utility is provided to create a virtual root specific to Microsoft® SQL
Server™ 2000. You can interact with the IIS Virtual Directory Management for SQL Server application in two ways:

Graphically, using the IIS Virtual Directory Management for SQL Server utility.

Programmatically, using the IIS Virtual Directory Management for SQL Server object model.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft SQLXML. For the
latest enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that
accompanies this service pack provides security considerations for developing applications.

See Also

Accessing SQL Server Using HTTP

http://go.microsoft.com/fwlink/?LinkId=9503

XML and Internet Support (SQL Server 2000)

System Requirements for IIS Virtual Directory Management
The IIS Virtual Directory Management for SQL Server utility can run on a computer running any edition of Microsoft® Windows
NT® 4.0 or Microsoft Windows® 2000. Computers running Windows NT 4.0 require:

Microsoft Internet Information Server 4.0 or higher (or Peer Web Services 4.0 or higher on Windows NT Workstation 4.0).

Microsoft Management Console 1.2 (installed by the Windows NT Option Pack and by SQL Server 2000 Setup).

For computers running Microsoft Windows 2000 Professional, the Administrative Tools pack (Adminpak.msi) must be installed.
This file is located in the %windir%\System32 folder of the Windows 2000 Server editions.

XML and Internet Support (SQL Server 2000)

Using IIS Virtual Directory Management for SQL Server Utility
Before accessing a Microsoft® SQL Server™ 2000 database using HTTP, you must set up an appropriate virtual directory. Use the
IIS Virtual Directory Management for SQL Server utility (click Configure SQL XML Support in IIS in the SQL Server Tools
program group) to define and register a new virtual directory, also known as the virtual root, on the computer running Microsoft
Internet Information Services (IIS). This utility instructs IIS to create an association between the new virtual directory and an
instance of Microsoft SQL Server. For information about the user interface for this utility, see IIS Virtual Directory Management
Utility.

The name of the IIS server and the virtual directory must be specified as part of the URL. The information in the virtual directory
(including login, password, and access permissions) is used to establish a connection to a specific database and execute the query.

The URL can be specified to:

Directly access the database objects, such as tables.

In this case, the URL would include a virtual name of dbobject type.

Execute template files.

A template is a valid XML document consisting of one or more SQL statements. When a template file is specified at the URL,
the SQL commands stored in the template file are executed. SQL queries can be directly specified at the URL, but this is not
recommended for security reasons.

Execute XPath queries.

The XPath queries are executed against an annotated mapping schema file specified as part of the URL.

Virtual Names

To allow a template file, mapping schema file, or a database object (such as a table or view) as part of the URL, virtual names of
type template, schema, and dbobject must be created. The virtual name is specified as part of the URL to execute a template
file, an XPath query against a mapping schema file, or to access a database object directly.

The type (template, schema, dbobject) of the virtual name specified at the URL is also used to determine the file type specified
at the URL (template file or a mapping schema file). For example, this URL accesses a SQL Server database using a template:

http://IISServer/nwind/TemplateVirtualName/Template.xml

TemplateVirtualName is a virtual name of template type, which identifies that the specified file (Template.xml) is a template
file.

See Also

Accessing SQL Server Using HTTP

https://msdn.microsoft.com/en-us/library/aa669896(v=sql.80).aspx

XML and Internet Support (SQL Server 2000)

Creating the nwind Virtual Directory
 New Information - SQL Server 2000 SP3.

This example creates the nwind virtual directory. The nwind virtual directory is used in most of the examples that are used to
illustrate URL access to Microsoft® SQL Server™ 2000.

Before you create the nwind virtual directory, you need a physical directory associated with the virtual directory that you are
creating (for example, C:\Inetpub\Wwwroot\nwind where nwind is the physical directory associated with the nwind virtual
directory that is created in the following procedure).

You also need to create two subdirectories in the physical directory associated with the virtual directory (for example,
C:\Inetpub\Wwwroot\nwind\template, and C:\Inetpub\Wwwroot\nwind\schema). These are the directories associated with the
virtual names of template and schema types that are created as part of creating nwind virtual directory.

To create the nwind virtual directory

1. In the Microsoft SQL Server program group, click Configure SQL XML Support in IIS.

2. Expand a server, and then click the Web site you want.

3. On the Action menu, point to New, and then click Virtual Directory. The property page for the new virtual directory is
displayed on the screen.

4. On the General tab of the New Virtual Directory Properties dialog box, enter the name of the virtual directory. For this
example, type nwind and the physical directory path (for example, C:\Inetpub\Wwwroot\nwind, assuming you have a
subdirectory nwind created in the C:\Inetpub\Wwwroot directory). You can optionally use the Browse button to select the
directory.

5. On the Security tab, select SQL Server and Use Windows Integration Authentication.

6. On the Data Source tab, in the SQL Server box, enter the name of a server, for example (local), and optionally, the name of
an instance of SQL Server 2000 if more than one instance is installed on the specified computer. In the Database box, enter
Northwind as the name of the default database.

7. On the Settings tab, select the Allow URL queries, Allow template queries, Allow XPath, and Allow POST options.

8. On the Virtual Names tab, click New to create the virtual name for the template type.

In the Virtual Name Configuration dialog box:

Enter template in the Virtual name box (it can be any user specified name). In the Type list, select template. Enter
the path (for example, C:\Inetpub\Wwwroot\nwind\template, assuming there is a subdirectory template in the
physical directory associated with the virtual directory, however the existence of the path is not checked). Click Save to
save the virtual name.

9. On the Virtual Names tab, click New to create the virtual names for the schema type.

Enter schema in the Virtual name box (it can be any user specified name). In the Type list, select schema. Enter the
path (for example, C:\Inetpub\Wwwroot\nwind\schema, assuming there is a subdirectory schema in the physical
directory associated with the virtual directory). Click the Save button to save the virtual name.

10. On the Virtual Names tab, click New to create the virtual names for the template and schema types.

Enter dbobject in the Virtual name box (it can be any user specified name). In the Type list, select dbobject. Click
the Save button to save the virtual name.

11. Click OK to save the settings.

This creates a virtual directory nwind. The queries specified using this virtual directory are, by default, executed against the
Northwind database.

To test the virtual directory, in the browser type: http://<IISServer>/nwind?sql=SELECT * FROM Employees FOR XML

AUTO&root=root and press ENTER.

See Also

Using IIS Virtual Directory Management for SQL Server Utility

XML and Internet Support (SQL Server 2000)

IIS Virtual Directory Management for SQL Server Object Model
 New Information - SQL Server 2000 SP3.

The IIS Virtual Directory Management for SQL Server object model consists of these objects:

SQLVDirControl object

SQLVDirs collection object

SQLVDir object

VirtualNames collection object

VirtualName object

In an object model, the content and functionality of an application are provided by objects. The objects are units of related content
and functionality. A collection object, on the other hand, is an object that contains a set of related objects. You can use a collection
object to get to an individual object, usually with an Item method. For example, you can use the Item method of the SQLVDirs
collection object to access one of the virtual directories.

In this object model, SQLVDirControl is the top-level object and is the only object that can be created directly. All other objects
must be obtained from the SQLVDirControl object or its derivatives.

The object hierarchy (object model) is the way the objects in the application are arranged relative to each other. This illustration
shows the object hierarchy in the object model to create a virtual root.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft® SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

See Also

Accessing SQL Server Using HTTP

http://go.microsoft.com/fwlink/?LinkId=9503

XML and Internet Support (SQL Server 2000)

SQLVDirControl Object
SQLVDirControl is the only object in the object hierarchy that can be accessed directly using Automation. All other objects are
accessed through this object or its derivatives.

SQLVDirControl supports these methods:

Connect

Connects to a specific Microsoft® Internet Information Services (IIS) server. The two parameters to this method are: IIS Server
name and Web Site number (the number of the Web site in the metabase tree). If none of the parameters is supplied, the local
server is the default value for the IIS server, and the first Web site (default Web site) on that IIS server is selected as the default.

Disconnect

Disconnects from the last connected IIS server and the Web site. There are no parameters to this method. You must call
Disconnect to close the connection when you are finished or before you connect to another server or Web site.

Note You cannot issue multiple Connect calls to establish connections to many IIS servers. However, if you are trying to connect
to the same IIS server but possibly different Web sites, you can call Connect multiple times without calling Disconnect.

SQLVDirs

The SQLVDirs method retrieves the virtual directory collection of the Web site to which you are connected. After you are
connected to a specific IIS server and Web site, call the SQLVDirs to obtain the SQLVDirs collection object, which provides access
to the virtual directory objects.

Examples

This example shows how to connect to a specific IIS server and Web site on the IIS server. The first Web site is selected on the IIS
server.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect "IISServer", "1"
Set ObjDirs = ObjXML.SQLVDirs
...

ObjXML.Disconnect

XML and Internet Support (SQL Server 2000)

SQLVDirs Collection Object
The SQLVDirs collection object is returned by the SQLVDirControl.SQLVDirs method. With the SQLVDirs collection object, you
can access a specific virtual directory (using the Item method), create a new virtual directory (using the AddVirtualDirectory
method), or remove an existing virtual directory (using the RemoveVirtualDirectory method).

The SQLVDirs collection object supports these standard methods:

Next method

Retrieves the next virtual directory (or directories). An integer specified for Next determines the number of virtual directories to
retrieve.

Skip method

Skips the virtual directory (or directories). A number specified for Skip determines how many virtual directories to skip.

Reset method

Resets the collection index to the first virtual directory.

Clone method

Returns a copy of the SQLVDirs collection object.

Count method

Returns the number of virtual directories.

Item method

Retrieves one virtual directory. You can specify an integer (starting with 0 for the first virtual directory) or the name of the virtual
directory.

The SQLVDirs collection object also supports these methods:

AddVirtualDirectory method

Takes the name of the virtual directory to create. This method creates a new virtual directory in the metabase with all the defaults.
However, some properties, like the default database are not set.

The AddVirtualDirectory method or Item method returns a SQLVDir object that represents the virtual directory.

RemoveVirtualDirectory method

Removes the virtual directory from the Microsoft® Internet Information Sevices (IIS) metabase.

Examples

This example establishes a connection to the first Web site on an IIS server. The first virtual directory object (index value 0) on the
connected Web site is accessed.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
' or ObjVDirs(0) since Item() is the default
...
ObjXML.Disconnect

XML and Internet Support (SQL Server 2000)

SQLVDir Object
The SQLVDir object is a virtual directory object obtained by calling the Item method (or by calling the AddVirtualDirectory
method if you are creating a new virtual directory).

The SQLVDir object supports the following properties. You can get and set values for all of these properties except the Password
property (for which you can set, but cannot get, the value).

Name property

Is the name of the virtual directory.

PhysicalPath property

Is the full physical path to the directory associated with the virtual directory.

ServerName property

Is the name of the server running Microsoft® SQL Server™ 2000, which is the data source for the virtual directory.

DatabaseName property

Is the default database used in queries against this virtual directory.

UserName property

Is the user login that is used to connect to the data source.

Password property

Is the user password that is used to connect to the data source.

SecurityMode property

Is the login authentication method that is used with the virtual directory, such as SQL Authentication or Windows Integrated
Authentication. You can specify one of these values.

Value Description
1 SQL Server login
2 Microsoft Windows® anonymous login
4 Basic authentication
8 Windows Integrated Authentication

Caution If you are changing the connection settings (changing server name, database name, user name, password or the
security mode), it is recommended that the virtual directory access be disallowed. The virtual directory can be disabled by setting
the AllowFlags property to 0.

AllowFlags property

Provides the type of access allowed through this virtual directory. You can specify one (or a combination) of these values.

Value Description
1 URL queries
8 Template access
64 XPath queries

EnablePasswordSync property

Specifies whether Microsoft® Internet Information Services (IIS) is allowed to handle the anonymous password synchronization.

DLLPath property

Provides the full path to the Sqlisapi.dll.

AdditionalSettings property

Are user-defined settings appended to the OLE DB connection string.

The SQLVDir object also supports this method:

VirtualNames method

Is the collection of virtual name mappings for the virtual directory.

Examples

This example establishes a connection to the first Web site on an IIS server. The first virtual directory object (index 0) on the
connected Web site is accessed. The PhysicalPath property of the object is set to C:\inetpub.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
ObjVDir.PhysicalPath = "C:\"
ObjVDir.PhysicalPath = ObjVDir.PhysicalPath & "inetpub"
...
ObjXML.Disconnect

XML and Internet Support (SQL Server 2000)

VirtualNames Collection Object
The VirtualNames collection object is a collection of virtual names in the virtual directory object (SQLVDir object). The
VirtualNames collection object is similar to the SQLVDirs object (which is a collection of virtual root objects). The VirtualNames
collection object supports these standard methods:

Next method

Retrieves the next virtual name (or names). An integer specified for Next determines the number of virtual names to retrieve.

Skip method

Skips the virtual name (or names). A number specified for Skip determines how many virtual names to skip.

Reset method

Resets the collection index to the first virtual name.

Clone method

Returns a copy of the VirtualNames collection object.

Count method

Returns the number of virtual names.

Item method

Retrieves one virtual name. You can specify an integer (starting with 0 for the first virtual directory) or the name of the virtual
name.

The VirtualNames collection object also supports these methods:

AddVirtualName method

Passes the name of the virtual name, type of the virtual name, and the directory path associated with the virtual name to create.
The AddVirtualName method or Item method returns an interface to a VirtualName object that represents the virtual name.

RemoveVirtualName method

Removes the virtual name that is specified.

Examples

This example shows the steps for accessing a VirtualNames collection object.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
Set ObjNames = ObjVdir.VirtualNames
...
ObjXML.Disconnect

XML and Internet Support (SQL Server 2000)

VirtualName Object
The VirtualName object is obtained by calling the Item method (or by calling the AddVirtualName method if you are creating
a new virtual name).

The VirtualName object supports these properties:

Name property

Is the name of the virtual name that is being created.

Type property

Is the virtual name type. You can specify one of these values.

Value Description
1 Virtual name of type dbobject.
2 Virtual name of type schema.
4 Virtual name of type template.

Path property

Is the directory path (absolute or relative) associated with the virtual name.

Examples

This example shows the steps for accessing an existing VirtualName object and for setting some of its attributes.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
Set ObjNames = ObjVdir.VirtualNames
Set ObjVName1 = ObjNames.Item(0)
ObjVName1.Type = 2
ObjVName1.Name = "MySchema"
ObjVName1.Path = "C:\inetpub\schema"
...
ObjXML.Disconnect

This statement creates a new virtual name:

Set NewVName = ObjNames.AddVirtualName "MyNewSchema", 2, "C:\inetpub\schema"

XML and Internet Support (SQL Server 2000)

Creating the nwind Virtual Directory Using the Object Model
This Microsoft® Visual Basic® Scripting Edition (VBScript) sample creates the same nwind virtual directory that is described in
Creating the nwind Virtual Directory.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl")
ObjXML.Connect 'Connect to the local computer and Web site "1"

Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.AddVirtualDirectory("nwind")

'General tab in UI
ObjVDir.PhysicalPath = "C:\Inetpub\wwwroot\nwind"

'Security tab in UI
ObjVDir.UserName = "UserLogin" 'SQL Server login
ObjVDir.Password = "UserPassword"

'Data source tab in UI
'(local) is default for the SQL Server
ObjVDir.DatabaseName = "Northwind"

'Settings tab in UI
objVDir.AllowFlags = 73 'afURL_QUERIES OR afTEMPLATES OR afXPath

'Virtual Name Configuration tab in the UI
Set objVNames = objVDir.VirtualNames
objVNames.AddVirtualName "dbobject", 1, ""
objVNames.AddVirtualName "schema", 2, "C:\Inetpub\wwwroot\nwind\schema"
objVNames.AddVirtualName "template", 4 , "C:\Inetpub\wwwroot\nwind\template"

'Disconnect from the server.
objXML.Disconnect

msgbox "Done."

XML and Internet Support (SQL Server 2000)

Accessing SQL Server Using HTTP
 New Information - SQL Server 2000 SP3.

You can access Microsoft® SQL Server™ 2000 using HTTP. For more information about the URL syntax that is support by the SQL
ISAPI extension, see URL Access. Before queries can be specified using HTTP, a virtual root must be created using the IIS Virtual
Directory Management for SQL Server utility. For more information, see Creating the nwind Virtual Directory.

The HTTP access to SQL Server allows you to:

Specify SQL queries directly in the URL, for example:

http://IISServer/nwind?sql=SELECT+*+FROM+Customers+FOR+XML+AUTO&root=root

The FOR XML clause returns the result as an XML document instead of a standard rowset. The root parameter identifies the
single top-level element.

Specify templates directly in the URL.

Templates are valid XML documents containing one or more SQL statements. The templates allow you to put together data
to form a valid XML document, which is not necessarily the case when queries are specified directly in the URL. For example:

http://IISServer/nwind?template=<ROOT+xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>SELECT+*+FROM+Customers+FOR+XML+AUTO</sql:query></ROOT>

Specify template files in the URL.

Writing long SQL queries at the URL can be cumbersome. In addition, browsers may have limitations on the amount of text
that can be entered in the URL. To avoid these problems, templates can be written and stored in a file. A template is a valid
XML document containing one or more SQL statements and XPath queries. You can specify a template file directly in a URL,
for example:

http://IISServer/nwind/TemplateVirtualName/templatefile.xml

In the URL, TemplateVirtualName is the virtual name of template type that is created using the IIS Virtual Directory
Management for SQL Server utility.

Template files also enhance security by removing the details of database queries from the user. By storing the template file
in the virtual root directory (or its subdirectories) where the database is registered, security can be enforced by removing
the URL query-processing service on the virtual root, and leaving only the SQL Server XML ISAPI to process the files and
return the result set.

Write XPath queries against the annotated XML-Data Reduced (XDR) schemas (also referred to as mapping schemas).

Writing XPath queries against the mapping schemas is conceptually similar to creating views using the CREATE VIEW
statement and writing SQL queries against them, for example:

http://IISServer/nwind/SchemaVirtualName/schemafile.xml/Customer[@CustomerID="ALFKI"]

In the URL:

SchemaVirtualName is the virtual name of schema type that is created using the IIS Virtual Directory
Management for SQL Server utility.

Customer[@CustomerID="ALFKI"] is the XPath query executed against the schemafile.xml specified in the URL.
Specify database objects directly in the URL.

The database objects, such as tables and views, can be specified as part of the URL, and an XPath can be specified against
the database object, for example:

http://IISServer/nwind/dbobjectVirtualName/XpathQuery

In the URL, dbobjectVirtualName is the virtual name of dbobject type that is created using IIS Virtual Directory
Management for SQL Server utility.

Note When an operation that requires resources such as memory (creating temporary tables and temporary stored

procedures, declaring cursors, executing sp_xml_preparedocument, and so on) is executed at the URL, the resources must
be freed by executing appropriate corresponding commands (such as, DROP TABLE, DROP PROCEDURE, DEALLOCATE the
cursor, or EXECUTE sp_xml_removedocument).

XML Documents and Document Fragments

When you execute a template or a query with the root parameter, the result is a full XML document with a single top-level
element. For example, this URL executes a template:

http://IISServer/VirtualRoot/TemplateVirutalName/MyTemplate.xml

This is a sample template file (MyTemplate.xml):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT *
 FROM Customers
 FOR XML AUTO
 </sql:query>
</ROOT>

The <ROOT> tag in the template provides the top-level single element for the resulting XML document.

The queries can be specified directly in the URL. In this case, the root parameter specifies the top-level element of the document
returned:

http://IISServer/VirtualRoot?sql=SELECT * FROM Customers FOR XML AUTO&root=root

If you write the same query without the root parameter, an XML document fragment (an XML document without the single top-
level element) is returned. This fragment has no header information. For example, this URL returns a document fragment:

http://IISServer/VirtualRoot?sql=SELECT * FROM Customers FOR XML AUTO

The byte-order mark identifying the document encoding is returned when you request an XML document. A byte-order mark is a
standard sequence of bytes identifying encoding type of the XML document. The XML parsers use this byte-order mark to
determine the document encoding (such as Unicode). For example the byte-order mark, oxff, 0xfe identifies the document as
Unicode. By default, the parser assumes the UTF-8 as the document encoding.

The byte-order mark is not returned when you request a XML fragment, because the byte-order mark belongs to the XML
document header, which is missing in the XML fragment.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

See Also

Retrieving XML Documents Using FOR XML

Using IIS Virtual Directory Management for SQL Server Utility

http://go.microsoft.com/fwlink/?LinkId=9503

XML and Internet Support (SQL Server 2000)

Three-Tier System Architecture
The illustration shows the three-tier system architecture and describes the way HTTP requests from the client are handled.

The middle tier is the Microsoft® Internet Information Services (IIS) server on which you must first create a virtual root using the
IIS Virtual Directory Management for SQL Server utility. The IIS server name specified in the URL identifies the IIS server. The IIS
server examines the virtual root specified in the URL and determines whether an ISAPI DLL extension (Sqlisapi.dll) has been
registered for the virtual root that is specified in the URL. The IIS server loads the DLL and passes on the URL request to the DLL.
The Sqlisapi.dll extension communicates with the OLE DB Provider for SQL Server (SQLOLEDB) and establishes connection with
the instance of Microsoft SQL Server™ identified in the virtual root.

The entire XML functionality is implemented in Sqlxmlx.dll. When SQLOLEDB determines that the command is an XML command,
the provider passes that command to Sqlxmlx.dll, which executes the command and returns the result to SQLOLEDB.

The template files, XML-Data Reduced (XDR) schema files, and Extensible Stylesheet Language (XSL) files reside on the IIS server.
The XPath queries and the XDR schemas are handled on the IIS server. The XPath queries are translated into SQL commands by
Sqlxmlx.dll.

The FOR XML clause and OPENXML are implemented on the server running SQL Server.

XML and Internet Support (SQL Server 2000)

Special Characters
Some characters have special meanings when they are used in a URL or in an XML document, and must be encoded properly for
these meanings to take effect.

Special Characters in a URL

In queries executed at the URL, special characters are specified as %xx, where xx is the hexadecimal value of the character. The
following table lists these special characters and describes their meanings. For more information, see the RFC1738 specification at
http://www.faqs.org/rfcs/rfc1738.html.

Special
character Special meaning

Hexadecimal
value

+ Indicates a space (spaces cannot be used in a URL). %2B
/ Separates directories and subdirectories. %2F
? Separates the actual URL and the parameters. %3F
% Specifies special characters. %25
Indicates bookmarks. %23
& Separator between parameters specified in the URL. %26

For example, consider this query:

SELECT *
FROM Employees
WHERE EmployeeID=?

Because the ? character has a special meaning in the URL (separates the URL and the parameters being passed), it is encoded as
%3F when this query is specified in the URL.

The following URL executes the query. In the URL, the parameter value is passed. For more information about executing SQL
statement using HTTP, see Executing SQL Statements Using HTTP.

http://IISServer/nwind?sql=SELECT * FROM Employees WHERE EmployeeID=%3F FOR XML AUTO&root=root&EmployeeID=1

Any special character (such as a + character) to the right of a ? character is escaped by the browser (that is, a + character to the
right of a ? is converted to %20).

Special Characters in XML

Characters such as the > and < characters are XML markup characters and have special meaning in XML. When these characters
are specified in SQL queries (or an XPath queries), they must be properly encoded (also referred to as entity encoding). The
following table lists these special characters and describes their meanings. For more information, see the XML 1.0 specification at
XML 1.0 Specifications.

Special character Special meaning Entity encoding
> Begins a tag. >
< Ends a tag. <
" Quotation mark. "
' Apostrophe. '
& Ampersand. &

For example, consider this SQL query:

SELECT TOP 2 *
FROM [Order Details]
WHERE UnitPrice < 10
FOR XML AUTO

Because the < character has a special meaning in XML, it must be encoded as > when this query is specified in a template (an
XML document) This is the template with the query:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>

http://www.faqs.org/rfcs/rfc1738.html
http://www.w3c.org/

 SELECT top 2 *
 FROM [Order Details]
 WHERE UnitPrice < 10
 FOR XML AUTO
 </sql:query>
</ROOT>

For more information about templates, see Executing SQL Queries Using Templates and Executing XPath Queries Using
Templates.

Entity Encoding Within URL Encoding

At times you may have to specify both the URL encoding and entity encoding. For example, this template can be specified directly
in the URL (instead of specifying the file name):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT top 2 *
 FROM [Order Details]
 WHERE UnitPrice < 10
 FOR XML AUTO
 </sql:query>
</ROOT>

In this case, the & character in the entity encoding < (specified for < markup character) has a special meaning in the URL and
requires further encoding. The & character must be encoded as %26; otherwise it is treated as a parameter separator in the URL.
The URL is then specified as:

http://IISServer/nwind?template=<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT TOP 2 *
FROM [Order Details] WHERE UnitPrice %26lt; 10 FOR XML AUTO</sql:query></ROOT>

See Also

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using IIS Virtual Directory Management for SQL Server Utility

XML and Internet Support (SQL Server 2000)

Executing SQL Statements Using HTTP
Microsoft® SQL Server™ 2000 can be accessed directly by queries executed at the URL (if the allow URL queries option was
selected when the virtual root was registered). Clients can make requests using HTTP methods GET and POST. For more
information about the URL syntax that is support by the SQL ISAPI extension, see URL Access.

Examples

In the following examples, nwind is a virtual directory used to access the Northwind database. For more information about
creating the nwind virtual directory, see Creating the nwind Virtual Directory.

In the example queries, if a query returns more than one element at the root of the document, the root element can be added by
including either of these:

A SELECT <ROOT> in the query.

Passing a root keyword as a parameter to the query with a value ROOT (this value can be anything).

A. Specify a simple query

The following statement returns all of the customer data in the Customers table in the Northwind database. In this query, the
XML mode is set to RAW.

http://IISServer/Nwind?sql=SELECT+top+2+CustomerID,+ContactName+FROM+Customers+FOR+XML+RAW&root=ROOT

Here is the result set:

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
 <Customers CustomerID="ALFKI" ContactName="Maria Andears" />
 <Customers CustomerID="ANATR" ContactName="Ana Trujillo" />
</ROOT>

B. Specify a query on multiple tables

In this example, the SELECT statement returns information from the Customers and Orders tables in the Northwind database.
The XML mode is set to AUTO.

http://IISServer/nwind?
sql=SELECT+top+2+Customers.CustomerID,OrderID,OrderDate+FROM+Customers,+Orders+WHERE+Customers.CustomerID=Orders
.CustomerID+Order+by+Customers.CustomerID,OrderID+FOR+XML+AUTO&root=ROOT

This is the partial result:

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
 <Customers CustomerID="ALFKI">
 <Orders OrderID="10643" OrderDate="1997-08-25T00:00:00" />
 <Orders OrderID="10692" OrderDate="1997-10-03T00:00:00" />
 </Customers>
</ROOT>

C. Specify special characters in the query

The following query returns all distinct contact titles starting with Sa from the Customers table in the Northwind database. The
example uses the LIKE clause and the special character % to search for the contact titles. In the LIKE clause, the special character %
is specified as %25.

http://IISServer/nwind?
sql=SELECT+DISTINCT+ContactTitle+FROM+Customers+WHERE+ContactTitle+LIKE+'Sa%25'+ORDER+BY+ContactTitle+FOR+XML+AU
TO&root=ROOT

Here is the result set:

<ROOT>
 <Customers ContactTitle="Sales Agent" />
 <Customers ContactTitle="Sales Associate" />
 <Customers ContactTitle="Sales Manager" />
 <Customers ContactTitle="Sales Representative" />
</ROOT>

In the following example, order and order detail information is retrieved from the Orders and Order Details tables.

http://IISServer/nwind?sql=SELECT+'<ROOT>'+SELECT+Orders.OrderID,+[Order+Details].OrderID,
[Order+Details].ProductID,[Order+Details].UnitPrice+FROM+Orders,+[Order+Details]+WHERE+Orders.OrderID=
[Order+Details].OrderID+ORDER+BY+Orders.OrderID+FOR+XML+AUTO;SELECT+'</ROOT>'

This is the partial result:

<ROOT>
<Orders OrderID="10248">
 <Order_x0020_Details OrderID="10248" ProductID="11" UnitPrice="14.00" />
 <Order_x0020_Details OrderID="10248" ProductID="42" UnitPrice="9.80" />
</Orders>
<Orders OrderID="10249">
 <Order_x0020_Details OrderID="10249" ProductID="14" UnitPrice="18.60" />
</Orders>
</ROOT>

D. Specify a query without the FOR XM L clause

You can specify SQL queries without the FOR XML clause. The result is returned as a stream. In the query, you can specify only
one column because streaming is not supported over multiple column results. In this example, the query returns the first name of
employees from the Employees table in the Northwind database. The result is returned as a concatenated string of first names.

http://IISServer/nwind?sql=SELECT+FirstName+FROM+Employees

E. Specify the contenttype keyword

The contenttype keyword specifies the content-type of the document returned. text/XML is the default content-type of the
document except when xsl is specified in the URL. When xsl is specified in the URL and contenttype is not specified, then
contenttype defaults to text/html.

In this example, the query returns a picture of an employee from the Employees table in the Northwind database. FOR XML
mode is not specified because the returned data is compatible with the receiving application (that is, the browser can handle the
returned data).

http://IISServer/nwind?sql=SELECT+Photo+FROM+Employees+WHERE+EmployeeID=1

In retrieving images, contenttype is generally specified. If contenttype is specified, the ISAPI extension does not search for and
remove any Access header information. Therefore, to retrieve any images that have the Access header information, contenttype
should not be specified as shown in the previous example. In all other cases, contenttype should be specified as shown in this
example:

http://iisserver/virtualroot?sql=SELECT+Picture+FROM+TableName+WHERE+SomeID=1&contenttype=image/jpeg

The images can also be brought into an HTML document. In the following example, an .htm file (File1.htm) is created with these
contents:

When this file is opened in the browser, an employee photo is displayed.

F. Specify the xsl keyword

In this example, the query returns the first and last name of all employees in the Employee table in the Northwind database.
employee.xsl processes the result set.

When xsl is specified in the URL but contenttype is not specified in the URL and there is no content-type defined in the XSL style
sheet, contenttype defaults to text/html. Therefore, the result is displayed in the form of a table with two columns (firstname,
lastname).

http://IISServer/nwind?sql=SELECT+FirstName,LastName+FROM+Employees+FOR+XML+AUTO&xsl=employee.xsl&root=root

The .xsl file is provided here. This file must exist in the virtual root directory or one of its subdirectories (in which case the file path
specified is relative to the virtual root directory). In this example, the .xsl file is stored in the virtual root directory.

<?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match = 'Employees'>
 <TR>
 <TD><xsl:value-of select = '@FirstName' /></TD>
 <TD><xsl:value-of select = '@LastName' /></TD>

 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:300;'>
 <TR><TH colspan='2'>Employees</TH></TR>
 <TR><TH >First name</TH><TH>Last name</TH></TR>
 <xsl:apply-templates select = 'root' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Instead of specifying the contenttype in the URL, contenttype can also be specified as the value of the media-type attribute of
the <xsl:output> element. For example, <xsl:output media-type="text/html" /> can be added after the namespace
declaration in the preceding XSL file.

G. Pass parameters to SQL statements

Parameters can be passed to SQL queries. In this example, employee information for a given employee ID is returned from the
Employees table in the Northwind database. The value of EmployeeID is provided as input to the query. Note that the ?
character, used for a parameter marker in the URL, is a special character and is encoded as %3F. For more information about
special characters, see Special Characters.

http://IISServer/nwind?
sql=SELECT+FirstName,LastName+FROM+Employees+WHERE+EmployeeID=%3F+FOR+XML+AUTO&EmployeeID=1&root=ROOT

Here is the result set:

<ROOT>
 <Employees FirstName="Nancy" LastName="Davolio" />
</ROOT>

In this query, two parameter values are passed to the query:

http://IISServer/nwind?
sql=SELECT+'<ROOT>';SELECT+EmployeeID,Title+FROM+Employees+WHERE+LastName=%3F+and+FirstName=%3F+FOR+XML+AUTO;SEL
ECT+'</ROOT>'&LastName=Davolio&FirstName=Nancy

Here is the result set:

<ROOT>
 <Employees EmployeeID="1" Title="Sales Representative" />
</ROOT>

See Also

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using IIS Virtual Directory Management for SQL Server Utility

XML and Internet Support (SQL Server 2000)

Executing Stored Procedures Using HTTP
Stored procedures can be executed at the URL, using either the Transact-SQL execute syntax: EXECUTE MySP; or the ODBC call
syntax: {call+MySP}.

Parameters can be passed to stored procedures. Parameters are selected by taking any unused name=value pairs and supplying
them as parameters to the query in the order supplied. For more information about the URL syntax that is support by the SQL
ISAPI extension, see URL Access.

Examples

In the following examples, nwind is a virtual directory used to access the Northwind database. For more information about
creating the nwind virtual directory, see Creating the nwind Virtual Directory.

A. Execute a simple stored procedure

This example creates and executes a stored procedure that returns a category name from the Categories table in the Northwind
database. The stored procedure takes no parameters.

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'CategoryInfo' AND type = 'P')
 DROP PROCEDURE CategoryInfo
GO
CREATE PROCEDURE CategoryInfo
AS
 SELECT CategoryName
 FROM Categories
 FOR XML AUTO
GO

This stored procedure can be executed using a URL:

http://IISServer/nwind?sql=EXECUTE+CategoryInfo&root=ROOT

B. Execute a stored procedure with a parameter

In this example, a stored procedure with parameters is executed using a URL. The stored procedure retrieves, for a given category
ID, the category name from the Category table in the Northwind database.

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'CategoryInfoWithInputParam' AND type = 'P')
 DROP PROCEDURE CategoryInfoWithInputParam
GO

CREATE PROCEDURE CategoryInfoWithInputParam
 @CategoryID int
AS
 SELECT '<ROOT>'
 SELECT CategoryName
 FROM Categories
 WHERE Categories.CategoryID = @CategoryID
 FOR XML AUTO
 SELECT '</ROOT>'
GO

This stored procedure can be executed using a URL:

http://IISServer/nwind?sql=execute+CategoryInfoWithInputParam+1

Or

http://IISServer/nwind?sql=execute+CategoryInfoWithInputParam+@CategoryID=1

The first example specifies the parameter value (1) by position (that is, without a parameter name). The second example specifies
the parameter name with the value.

C. Execute a stored procedure using the Transact-SQL EXECUTE and ODBC Call syntax

This stored procedure returns employee information for a given employee from the Employees table in the Northwind
database. The stored procedure takes the employee first name and last name as input and returns the employee ID, employee

title, and the birth date.

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'FindEmp' AND type = 'P')
 DROP PROCEDURE FindEmp
GO

CREATE PROCEDURE FindEmp @FName varchar(20), @LName varchar(20) AS
SELECT EmployeeID, Title, BirthDate
FROM Employees
WHERE FirstName = @FName
AND LastName = @LName
FOR XML AUTO
GO

The Transact-SQL EXECUTE statement can be specified to execute the stored procedure:

http://IISServer/nwind?sql=SELECT+'<ROOT>';EXECUTE+FindEmp+'Nancy'+,+'Davolio';SELECT+'</ROOT>'

Or

http://IISServer/nwind?sql=SELECT+'<ROOT>';EXECUTE+FindEmp+@FName='Nancy'+,+@LName='Davolio';SELECT+'</ROOT>'

ODBC call syntax can also be specified to execute the stored procedure:

http://IISServer/nwind?sql=SELECT+'<ROOT>';{CALL+FindEmp}+'Nancy'+,+'Davolio';SELECT+'</ROOT>'

Or

http://IISServer/nwind?sql=SELECT+'<ROOT>';{CALL+FindEmp}+@FName='Nancy'+,+@LName='Davolio';SELECT+'</ROOT>'

See Also

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using IIS Virtual Directory Management for SQL Server Utility

XML and Internet Support (SQL Server 2000)

Executing Template Files Using HTTP
Writing long SQL queries at the URL can get cumbersome. Instead, templates can be used to specify queries (SQL or XPath). The
template file name is specified in the URL. A template is a well-formed XML document containing one or more SQL statements
and XPath queries.

Using a template you can:

Specify SQL queries or XPath queries. When XPath queries are specified in the template, the mapping XML-Data Reduced
(XDR) schema file against which the query is to be executed is also identified in the template.

Specify a top-level element for the XML fragment that is returned by executing SQL or XPath queries; thereby, making the
result of executing the template in the URL a valid XML document.

Define parameters that can be passed to SQL statements or XPath queries.

Declare namespaces.

Specify an Extensible Stylesheet Language (XSL) style sheet to apply to the resulting document.

Template files also enhance security. Because the URLs (and thus the queries in the URL) can be edited, by having the queries
stored in a file (template file), you can prevent users from modifying the queries and obtaining information you do not want them
to see.

The security is enforced by removing the URL query-processing service on the virtual root and leaving only the Microsoft® SQL
Server™ XML ISAPI to process the files and return the result set. The virtual root is registered using IIS Virtual Directory
Management for SQL Server utility.

Before templates can be specified in the URL, the virtual name of template type must be created using the IIS Virtual Directory
Management for SQL Server utility. For more information, see Using IIS Virtual Directory Management for SQL Server Utility.

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Using XML Templates
This general form for a template shows the way SQL queries and XPath queries are specified:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:xsl='XSL FileName' >
 <sql:header>
 <sql:param>..</sql:param>
 <sql:param>..</sql:param>...n
 </sql:header>
 <sql:query>
 sql statement(s)
 </sql:query>
 <sql:xpath-query mapping-schema="SchemaFileName.xml">
 XPath query
 </sql:xpath-query>
</ROOT>

Everything in a template is optional. The elements <header>, <param>, <query>, <XPath-query>, and the attribute mapping-
schema are defined in the sql namespace. Therefore, the namespace declaration xmlns:sql="urn:schemas-microsoft-
com:xml-sql" is required. The namespace can be named anything; sql is just an alias.

<ROOT>

This tag is specified to provide a single top-level element (also referred as root tag) for the resulting XML document. The <ROOT>
tag can have any name.

<sql:header>

This tag is used to hold any header values. In the current implementation, only the <sql:param> element can be specified in this
tag. The <sql:header> tag acts as containing tag, allowing you to define multiple parameters. With all the parameter definitions in
one place, processing the parameter definitions is more efficient.

<sql:param>

This element is used to define a parameter that is passed to the query inside the template. Each <param> element defines one
parameter. Multiple <param> elements can be specified in the <sql:header> tag.

<sql:query>

This element is used to specify SQL queries. You can specify multiple <sql:query> elements in a template.

<sql:xpath-query>

This element is used to specify an XPath query. Because the XPath query is executed against the annotated XML-Data Reduced
(XDR) schema, the schema file name must be specified using the mapping-schema attribute.

sql:xsl

This attribute is used to specify an Extensible Stylesheet Language (XSL) style sheet that will be applied to the resulting XML
document. In specifying the XSL file, a relative or an absolute path can be specified. This relative path specified is relative to the
directory associated with the virtual name of template type. For example, if the directory associated with the virtual name of
template type is C:\Template, then the relative path, Xyz/MyXSL.xml specified for sql:xsl maps to C:\Template\Xyz\MyXSL.xml.

mapping-schema

This attribute is used to identify the annotated XDR schema. This attribute is specified only if you are executing an XPath query in
the template. The XPath query is executed against the annotated XDR schema. In specifying the mapping schema file, a relative or
an absolute path can be specified. This relative path specified is relative to the directory associated with the virtual name of
template type. For example, if the directory associated with the virtual name of template type is C:\Template, then the relative
path, Schema/MSchema.xml specified for mapping-schema maps to C:\Template\Schema\MSchema.xml.

Note Each <sql:query> or <sql:XPath-query> represents a separate transaction. Therefore, if you have multiple <sql:query> or
<sql:XPath-query> tags in the template, and if one fails, the others will proceed.

If contenttype is set, Sqlisapi.dll returns that header information to the browser. If the contenttype is not set, the first character
in the template file is used by the urlmon to determine the content-type. If the first character in the template is the < character or
a Unicode byte order mark (0xFFFE), text/xml is returned to the browser as the content-type, and the browser displays the result.
Otherwise, Sqlisapi.dll does not send the content-type header information that instructs the browser on how to display the result;
therefore, you do not see the result in the browser.

Before templates can be specified in the URL, the virtual name of template type must be created using the IIS Virtual Directory

Management for SQL Server utility. For more information, see Using IIS Virtual Directory Management for SQL Server Utility.

Storing the Templates

The template is stored in the directory associated with the virtual name of template type or one its subdirectories:

If the template is stored in the directory associated with virtual name of template type, the URL query looks like:

http://IISServer/nwind/TemplateVirtualName/TemplateFile.xml

If the template is stored in the subdirectory associated with virtual name of template type (xyz), the URL query looks like:

http://IISServer/nwind/TemplateVirtualName/xyz/TemplateFile.xml

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Executing SQL Queries Using Templates
In the following examples, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility,
and template is the virtual name of template type defined when the virtual directory is created (any name can be given to a
virtual name when it is created). For more information, see Using IIS Virtual Directory Management for SQL Server Utility.

The <sql:query> tag is used to specify SQL statements.

Examples

A. Create a template file w ith a simple SELECT statement

This template specifies a simple SELECT statement.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT top 2 CustomerID, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</ROOT>

This template is stored in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/File1.xml

The query specified in the template is replaced by its result. Therefore, the XML document returned has the same structure as the
template itself, including the <ROOT> tag that is added.

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste" />
 <Customers CustomerID="ANATR" CompanyName="Ana Trujillo Emparedados y helados" />
</ROOT>

B. Execute a stored procedure in a template file

A stored procedure can also be executed in a template. The stored procedure is also specified in the <sql:query> tag.

Consider this stored procedure:

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'CategoryInfo' AND type = 'P')
 DROP PROCEDURE CategoryInfo
GO
CREATE PROCEDURE CategoryInfo
AS
 SELECT CategoryName
 FROM Categories
 WHERE Categories.CategoryID = 2
 FOR XML AUTO

The stored procedure can be executed in a template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 exec CategoryInfo
 </sql:query>
</ROOT>

This template is stored in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/File1.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Categories CategoryName="Condiments" />
</ROOT>

C. Use entity references in a template

Because a template is an XML document, entity references must be used for special characters. This example uses the entity
reference (<) for the special markup character (<).

Consider this template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT top 2 *
 FROM [Order Details]
 WHERE UnitPrice < 10
 FOR XML AUTO
 </sql:query>
</ROOT>

This template is stored in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/File1.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order_x0020_Details OrderID="10248" ProductID="42"
 UnitPrice="9.8" Quantity="10" Discount="0"/>
 <Order_x0020_Details OrderID="10250" ProductID="41"
 UnitPrice="7.7" Quantity="10" Discount="0"/>
</ROOT>

If this template is specified directly in the URL, additional encoding is needed. Because the < character is a special character in
XML and because it is specified in a template (an XML document), it is encoded as <. And because the & character is a special
character in this URL, & must be encoded as %26 when this template is specified in the URL.

The template is then specified in the URL as:

http://IISServer/nwind?template=<ROOT%20xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>SELECT%20top%202%20*%20FROM%20[Order%20Details]%20WHERE%20UnitPrice%20%26lt;%2010%20FOR%20XML%20AUTO<
/sql:query></ROOT>

D. Specify templates directly in the URL

Templates can be specified directly in the URL. In this example, a template containing a simple SELECT statement is specified in
the URL:

http://IISServer/nwind?template=<ROOT+xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>SELECT+*+FROM+Customers+FOR+XML+AUTO</sql:query></ROOT>

Caution Specifying templates directly in the URL is not recommended for security reasons.

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

XML and Internet Support (SQL Server 2000)

Passing Parameters to Templates
SQL queries requiring parameter values can be specified in templates. The <sql:header> tag is specified to define parameters. The
parameters can be assigned default values. The default parameter values are used when a template is executed without specifying
parameter values.

Templates can also be used to specify XPath queries against annotated XDR (XML-Data Reduced) schemas. The <sql:xpath-query>
tag is used to specify the XPath query. For more information and an example, see Using XPath Queries.

Examples

In the following examples, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility,
and template is the virtual name of template type defined when the virtual directory is created (any name can be given to a
virtual name when it is created). For more information, see Using IIS Virtual Directory Management for SQL Server Utility.

A. Specify default parameters in a template

Parameter values can be assigned default values in a template. The stored procedure in this example requires one input
parameter (@CategoryName).

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'CategoryInfoWithInputParam' AND type = 'P')
 DROP PROCEDURE CategoryInfoWithInputParam
GO
CREATE PROCEDURE CategoryInfoWithInputParam
 @CategoryName varchar(35)
AS
 SELECT CategoryName, Description
 FROM Categories
 WHERE Categories.CategoryName = @CategoryName for xml auto

A template with a call to execute the stored procedure can be created as shown in the following example. The template specifies a
default value (Condiments) for the parameter @CategoryName.

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header>
 <sql:param name='CategoryName'>Condiments</sql:param>
 </sql:header>
 <sql:query >
 exec CategoryInfoWithInputParam @CategoryName
 </sql:query>
</ROOT>

This template is saved in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/File1.xml

Because no parameters are passed to the file, the default value (Condiments) is used.

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Categories CategoryName="Condiments" Description="Sweet and savory
 sauces, relishes, spreads, and seasonings" />
</ROOT>

The template can be also be executed directly at the URL:

http://IISServer/nwind?template=<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:header><sql:param
name='CategoryName'>Condiments</sql:param></sql:header><sql:query >exec CategoryInfoWithInputParam
@CategoryName</sql:query></ROOT>

Caution Specifying queries or templates directly in the URL is not recommended for security reasons.

B. Pass a parameter value to a template

Parameters can be passed to template files. In this example, the stored procedure requires one input parameter
(@CategoryName).

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'CategoryInfoWithInputParam' AND type = 'P')

 DROP PROCEDURE CategoryInfoWithInputParam
GO
CREATE PROCEDURE CategoryInfoWithInputParam
 @CategoryName varchar(35)
AS
 SELECT CategoryName, Description
 FROM Categories
 WHERE Categories.CategoryName = @CategoryName for xml auto

The stored procedure is called in the template as shown in the example that follows. The template specifies a default value for the
parameter @CategoryName.

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header>
 <sql:param name='CategoryName'>Condiments</sql:param>
 </sql:header>
 <sql:query >
 exec CategoryInfoWithInputParam @CategoryName
 </sql:query>
</ROOT>

This template is stored in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/File1.xml?CategoryName=Beverages

If a parameter value is passed to the file at run time, the specified value is used instead of the default value. In the following call to
execute a template file, the value Beverages is passed to the file.

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Categories CategoryName="Beverages" Description="Soft drinks,
 coffees, teas, beers, and ales" />
</ROOT>

The template can be executed directly using a URL:

http://IISServer/nwind?template=<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:header><sql:param
name='CategoryName'>Condiments</sql:param></sql:header><sql:query >exec CategoryInfoWithInputParam
@CategoryName</sql:query></ROOT>&CategoryName=Beverages

Caution Specifying queries or templates directly in the URL is not recommended for security reasons.

C. Pass multiple parameters to a template

Multiple parameters can be passed to a template. In this example, two parameters with default values are specified in
<sql:header>. The template also specifies two queries that require parameter values.

This template consists of two SQL queries, each of which takes one parameter:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name='CustomerID'>ALFKI</sql:param>
 <sql:param name='EmployeeID'>1</sql:param>
 </sql:header>
 <sql:query>
 SELECT CustomerID,CompanyName
 FROM Customers
 WHERE CustomerID=@CustomerID
 FOR XML AUTO
 </sql:query>
 <sql:query>
 SELECT EmployeeID,LastName,FirstName
 FROM Employees
 WHERE EmployeeID=@EmployeeID
 FOR XML AUTO
 </sql:query>
</ROOT>

This template is stored in a file (File1.xml) and executed using a URL:

http://IISServer/nwind/template/template5.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste" />

 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy" />
</ROOT>

In the following example, only the CustomerID parameter value is provided. Therefore, the default customer ID value ALFKI is
ignored. Because no value is provided for EmployeeID parameter, the default value is used.

http://IISServer/nwind/template/template5.xml?CustomerID=BERGS

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers CustomerID="BERGS" CompanyName="Berglunds snabbköp" />
 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy" />
</ROOT>

The template is executed by passing both parameter values (default values are ignored).

http://IISServer/nwind/template/template5.xml?CustomerID=BERGS&EmployeeID=2

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

XML and Internet Support (SQL Server 2000)

Specifying an XSL Style Sheet in a Template
An Extensible Stylesheet Language (XSL) style sheet can be applied to the query results. When you execute a template using HTTP,
you can specify an XSL file in these ways:

Use the sql:xsl attribute in the template.

Use the xsl keyword as part of the URL to specify the XSL file that will be used to process the resulting XML data.

If the XSL file is specified both in the template using sql:xsl and in the URL using the keyword xsl, the XSL style sheet specified in
the template is applied to the results first, and then the XSL file specified in the URL is applied.

Examples

In the following example, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility,
and template is the virtual name of template type defined when the virtual directory is created (any name can be given to a
virtual name when it is created). For more information, see Using IIS Virtual Directory Management for SQL Server Utility.

A. Specify sql:xsl in a template to process the result

In this example, a template includes a simple SELECT statement. The query result is processed according to the instructions in the
XSL file specified using sql:xsl.

<?xml version ='1.0' encoding='UTF-8'?>
 <root xmlns:sql='urn:schemas-microsoft-com:xml-sql'
 sql:xsl='MyXSL.xsl'>
 <sql:query>
 SELECT FirstName, LastName FROM Employees FOR XML AUTO
 </sql:query>
</root>

For illustration purposes, the template (TemplateWithXSL.xml) is stored in the directory associated with the virtual name
(template), of template type. The XSL file (MyXSL.xsl) is also stored in the same directory.

This is the XSL file:

<?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match = 'Employees'>
 <TR>
 <TD><xsl:value-of select = '@FirstName' /></TD>
 <TD><xsl:value-of select = '@LastName' /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:300;'>
 <TR><TH colspan='2'>Employees</TH></TR>
 <TR><TH >First name</TH><TH>Last name</TH></TR>
 <xsl:apply-templates select = 'root' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

This URL executes the template:

http://IISServer/nwind/template/TemplateWithXSL.xml?contenttype=text/html

The result is displayed in a two-column table format (FirstName and LastName).

You can also specify the XSL file in the URL instead of in a template (using sql:xsl), . In this case, the XSL file must be stored in the
directory associated with the virtual root (nwind) or one of its subdirectories, in which case the relative path must be specified in
the URL. Assuming the XSL file is stored in the directory associated with the nwind virtual directory, this URL executes the
template:

http://IISServer/nwind/template/templateFile.xml?xsl=MyXSL.xsl

If the XSL file is stored in a subdirectory (x) of the virtual root directory, the URL with a relative path is specified as:

http://IISServer/nwind/template/templateFile.xml?xsl=/x/MyXSL.xsl

If the XSL file is specified in the template using sql:xsl and in the URL using the keyword xsl, the XSL style sheet specified in the
template is applied to the results first, and then the XSL file specified in the URL is applied.

XML and Internet Support (SQL Server 2000)

Executing XPath Queries Using Templates
The <sql:xpath-query> tag is used to specify the XPath query in the template. The XPath query is executed against the annotated
XML-Data Reduced (XDR) mapping schema specified using he mapping-schema attribute of the <xpath-query> element. For
more information about XDR schemas, see Creating XML Views Using Annotated XDR Schemas. For more information about
XPath queries, see Using XPath Queries.

The mapping XDR schema specified in the template must be stored in the directory associated with the template virtual name
(created using IIS Virtual Directory Management for SQL Server utility) or one of its subdirectories, in which case you must specify
the relative path in the mapping-schema attribute.

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Creating XML Views Using Annotated XDR Schemas

XML and Internet Support (SQL Server 2000)

Executing XPath Queries Using HTTP
The XPath queries against annotated XML-Data Reduced (XDR) schema can be specified directly in the URL. For more information
about the URL syntax that is supported by the SQL ISAPI extension, see URL Access.

The annotated XDR schemas provide an XML view of the relational data. To execute an XPath query against an annotated XDR
schema, the schema file is specified as part of the URL.

To specify an XPath query against an annotated XDR schema, you must create a virtual name of schema type using the IIS Virtual
Directory Management for SQL Server utility. The XDR schema specified in the URL must be stored in the directory associated
with virtual name of schema type or one of its subdirectories:

If the annotated XDR schema is stored in the directory associated with the virtual name of schema type, the URL query
looks like:

http://IISServer/nwind/SchemaVirtualName/XDRSchema.xml/XpathQuery

If the annotated XDR schema is stored in a subdirectory (xyz) associated with virtual name of schema type, the path
relative to the directory associated with virtual name of schema type is included in the URL. In this case, the URL query
looks like:

http://IISServer/nwind/SchemaVirtualName/xyz/XDRSchema.xml/XpathQuery

Examples

In this example, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility, and
schema is the virtual name of schema type defined when the virtual directory is created (any name can be given to a virtual
name when it is created).

A. Specify an XPath query in the URL

For example, consider this annotated XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />
 <AttributeType name="Phone" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <attribute type="Phone" />
 </ElementType>
</Schema>

For illustration purposes, this XDR schema is stored as MySchema.xml in the directory associated with the virtual name of
schema type.

This URL executes an XPath query against the XDR schema (MySchema.xml) specified in the URL. The XPath query requests all the
customers with CustomerID of ALFKI.

http://IISServer/nwind/schema/MySchema.xml/Customer[@CustomerID="ALFKI"]

This is the result:

<Customer CustomerID="ALFKI" ContactName="Maria Anders" Phone="030-0074321" />

If the query returns more than one customer, you must specify the root keyword to return a well-formed XML document. The
following XPath query returns all the customers. In the URL, the root keyword is specified:

http://IISServer/nwind/schema/MySchema.xml/Customer?root=root

This is the partial result:

<?xml version="1.0" encoding="utf-8" ?>
<root>

 <Customer CustomerID="ALFKI" ContactName="Maria Anders"
 Phone="030-0074321" />
 <Customer CustomerID="ANATR" ContactName="Ana Trujillo"
 Phone="(5) 555-4729" />
 ...
</root>

See Also

Using Annotated XDR Schemas in Queries

Using XPath Queries

Creating XML Views Using Annotated XDR Schemas

XML and Internet Support (SQL Server 2000)

Accessing Database Objects Using HTTP
 New Information - SQL Server 2000 SP3.

The database objects, such as tables and views, can be accessed directly using a URL. In this case, the XPath query is specified
directly against the database object to obtain the result (one row/one column value). For more information about the URL syntax
that is supported by the SQL ISAPI extension, see URL Access.

In the URL, the virtual name of dbobject type is specified when accessing database objects directly.

The FOR XML queries can return references to binary data. You can retrieve the binary data associated with the reference by
sending another URL request with the dbobject reference in it. This is the primary purpose for the dbobject virtual name type.
For more information about queries that use FOR XML, see Retrieving XML Documents Using FOR XML.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

Examples

In the following examples, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility.
The dbobject is the virtual name of dbobject type and template is a virtual name of template type defined when the virtual
directory is created (any name can be given to a virtual name when it is created). For more information, see Using IIS Virtual
Directory Management for SQL Server Utility.

A. Retrieve an employee's photo using the virtual name of dbobject type in the URL

The XPath query specified retrieves Photo column from Employees table. In the URL,
Employees[@EmployeeID='1']/@Photo is the XPath query. In the query, Employees is the table name and
@EmployeeID='1' is the predicate that finds an employee with an ID value of 1. @Photo is the column from which to retrieve
the value.

http://IISServer/nwind/dbobject/Employees[@EmployeeID='1']/@Photo

The query is translated into the following SELECT statement:

SELECT Photo
FROM Employees
WHERE EmployeeID='1'

Note The XPath query must identify a single row and a single column.

B. Execute a query to obtain references to image data and to apply an XSL style sheet to process the references

In this example, a SELECT statement is specified to retrieve the employee ID and photo. The query returns references to the image
data. These references are used in the Extensible Stylesheet Language (XSL) file to retrieve the employee photos and to display
them in the browser.

The query is specified in a template. For illustration purposes, the template file is saved as TemplateWithAnXSL.xml file in the
template subdirectory of the virtual root (assuming this is the directory specified when the virtual name of template type is
created).

<?xml version ='1.0' encoding='UTF-8'?>
<root xmlns:sql='urn:schemas-microsoft-com:xml-sql' sql:xsl='photo.xsl'>
 <sql:query >
 SELECT EmployeeID, Photo FROM Employees FOR XML AUTO
 </sql:query>
</root>-

This is the XSL file (Photo.xsl) to process the result set. For illustration purposes, this file is stored in the template directory.

<?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version="1.0">
 <xsl:template match = 'Employees'>
 <TR>
 <TD><xsl:value-of select = '@EmployeeID' /></TD>
 <TD> <xsl:attribute name='src'>
 ../<xsl:value-of select = '@Photo'/>
 </xsl:attribute>

http://go.microsoft.com/fwlink/?LinkId=9503

 </TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 <!--<BASE href='http://localhost/nwind/'></BASE> -->
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:300;'>
 <TR><TH colspan='2'>Employees</TH></TR>
 <TR><TH >EmployeeID</TH><TH>Photo</TH></TR>
 <xsl:apply-templates select = 'root' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

This URL executes the template:

http://IISServer/nwind/template/TemplatewithAnXSL.xml?contenttype=text/html

After applying the XSL file, the query result is displayed as a two-column table (EmployeeID and Photo).

C. Specify special characters in the query

In a URL, the question mark (?) separates the URL and the parameters being passed to the URL. Any special characters, such as the
plus sign (+) to the right of the ?, are escaped by the browser (that is, a + to the right of a ? is converted to %20).

The URL in this example produces an error because the + in the predicate expression is interpreted as an addition operator
(because there is no ? in the URL).

http://IISServer/nwind/dbobject/Orders[@OrderID=10248+and+@EmployeeID=5]/@CustomerID

You must specify %20 in place of + in the URL.

http://IISServer/nwind/dbobject/Orders[@OrderID=10248%20and%20@EmployeeID=5]/@CustomerID

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Sample Applications to Post Templates
 New Information - SQL Server 2000 SP3.

The topics in this section present simple applications that show how to post templates.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft® SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

http://go.microsoft.com/fwlink/?LinkId=9503

XML and Internet Support (SQL Server 2000)

Using HTML Forms to Post Templates
HTML forms can be used to post templates. The input mechanism of HTML forms can be used to obtain user input for the values
of the parameters that can be passed to an SQL statement. In the TEXTAREA element of the HTML form, template is used as the
variable name for the NAME attribute. The body of the TEXTAREA is then sent as a value for template.

Examples

In the following examples, nwind is a virtual directory created using the IIS Virtual Directory Management for SQL Server utility
(any name can be given to a virtual name when it is created). For more information, see Using IIS Virtual Directory Management
for SQL Server Utility.

A. Post a simple template in a form

The HTML form in this example prompts the user to enter an employee ID. The ID value is used as an input parameter to the
SELECT statement in the template. The query returns the first and last name of employees from the Employees table in the
Northwind database. This form can be saved in an .htm file and opened in the browser.

<head>
<TITLE>Sample Form </TITLE>
</head>
<body>
For a given employee ID, employee first and last name is retrieved.
<form action="http://IISServer/nwind" method="POST">
Employee ID Number
<input type=text name=EmployeeID value='1'>
<input type=hidden name=contenttype value=text/xml>
<input type=hidden name=template value='
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:header>
 <sql:param name="EmployeeID">1</sql:param>
</sql:header>
<sql:query>
 SELECT FirstName, LastName
 FROM Employees
 WHERE EmployeeID=@EmployeeID
 FOR XML AUTO
</sql:query>
</ROOT>
'>
<p><input type="submit">
</form>
</body>

B. Post a template in an HTM L form and provide an XSL file to process the output

In this example, a simple HTML form is used to post a template. The template contains a SELECT statement that returns first and
last names from the Employees table in the Northwind database.

When this HTML document is opened in the browser, the user can specify the content-type and the Extensible Stylesheet
Language (XSL) file to process the result set. If the content-type is specified as text/html, the XSL file processes the result set and
produces a two-column table as output.

If the content-type is specified as text/xml, the result is displayed in form of an XML document.

Note The XSL file must reside in the physical directory (or one of its subdirectories) associated with the virtual directory. If the file
is stored in the physical directory, only the file name has to be specified. If the file is stored in one of the subdirectories of the
physical directory, the directory path relative to the physical directory is specified.
<body>
Hi there
<form action="http://IISServer/nwind" method="POST">
contenttype
<input name=contenttype value="text/html">

xsl
<input name=xsl value="emp.xsl">

<input type=hidden name=template value='
<ROOT>
<sql:query xmlns:sql="urn:schemas-microsoft-com:xml-sql">
Select FirstName, LastName from Employees for xml auto</sql:query>
</ROOT>
'>
<p><input type="submit">
</form>
</body>

The XSL file is given below. The XSL transformation is applied to the result set.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match = "Employees">
 <TR>
 <TD><xsl:value-of select = "@FirstName" /></TD>
 <TD><xsl:value-of select = "@LastName" /></TD>
 </TR>
</xsl:template>

<xsl:template match = "/">
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border="1" style="width:300;">
 <TR><TH colspan="2">Employees</TH></TR>
 <TR><TH >FirstName</TH><TH>LastName</TH></TR>
 <xsl:apply-templates select = "ROOT" />
 </TABLE>
 </BODY>
 </HTML>
</xsl:template>
</xsl:stylesheet>

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Posting Templates Directly to the Virtual Directory
 New Information - SQL Server 2000 SP3.

This Microsoft® Visual Basic® example shows how templates can be sent directly to the virtual directory without using a Web
browser. In this example, a template consisting of a SELECT statement is sent directly to the nwind virtual directory. For
information about how to create the nwind virtual directory, see Creating the nwind Virtual Directory.

Option Explicit

'The code uses ADO to establish a SQL Server connection and passes in a
'template to the server. The template executes a stored procedure
'(update_employee) which accepts an XML document as input. The stored
'procedure uses OPENXML to shred the document and generate a rowset
'which is used to update the records in the Employee table.
'The template is then executed on the server and the resulting stream
'is returned to the client. The stream contains the resulting XML
'document.

Sub Main()
 On Error GoTo HandleError

 Dim xmlHttp As New MSXML2.xmlHttp
 Dim doc As New MSXML2.DOMDocument
 Dim strQuery As String
 Dim strURL As String
 Dim strPostBody As String

 ' Set the post body - this is the query/request.
 strPostBody = "<?xml version='1.0' encoding='UTF-16'?> " & _
 "<root> " & _
 "<sql:query xmlns:sql='urn:schemas-microsoft-com:xml-sql'> " & _
 " select top 1 OrderID, OrderDate from Orders for xml raw "
& _
 "</sql:query> " & _
 "</root> "

 ' Validate the document using the MSXML parser.
 doc.loadXML strPostBody

 If doc.parseError.errorCode Then
 ' Do something with the error.
 End If

 ' Post the template.
 xmlHttp.Open "POST", "http://localhost/nwind", False
 xmlHttp.setRequestHeader "Content-type", "application/xml"
 xmlHttp.send doc

 ' Retrieve the results.
 Debug.Print xmlHttp.responseText

 ' Clean up.
 Set xmlHttp = Nothing
 Set doc = Nothing
 Exit Sub

HandleError:
 ' Clean up.
 Set xmlHttp = Nothing
 Set doc = Nothing

 If Err <> 0 Then
 MsgBox Err.Source & "-->" & Err.Description, , "Error"
 End If
End Sub

Private Sub Form_Load()
Main
End Sub

See Also

Using IIS Virtual Directory Management for SQL Server Utility

Accessing SQL Server Using HTTP

Retrieving XML Documents Using FOR XML

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Creating XML Views Using Annotated XDR Schemas
You can create XML views of relational data using XDR (XML-Data Reduced) schemas. These views can then be queried using
XPath queries. This is similar to creating views using CREATE VIEW statements and specifying SQL queries against the view.

An XML schema describes the structure of an XML document and also various constraints on the data in the document. When you
specify XPath queries against the schema, the structure of the XML document returned is determined by the schema against
which the XPath query is executed.

In Microsoft® SQL Server™ 2000, the XML-Data Reduced (XDR) language is used to create the schemas. The XDR is flexible and
overcomes some of the limitations of the Document Type Definition (DTD), which also describes the document structure. Unlike
DTDs, XDR schemas describe the structure of the document using the same syntax as the XML document. Additionally, in a DTD,
all the data contents are character data. XDR language schemas allow you to specify the data type of an element or an attribute.

In an XDR schema, the <Schema> element encloses the entire schema. As properties of the <Schema> element, you can describe
attributes that define the schema name and the namespaces in which the schema reside. In the XDR language, all element
declarations must be contained within the <Schema> element.

The minimum XDR schema is:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data">
 ...
</Schema>

The <Schema> element is derived from the xml-data namespace (urn:schemas-microsoft-com:xml-data).

Note This documentation assumes that you are familiar with XML-Data language.

Annotations to the XDR Schema

You can use an XDR schema with annotations that describe the mapping to the database to query the database and return the
results in the form of an XML document. SQL Server 2000 introduces a number of annotations that you can use to map the XDR
schema to the database tables and columns. XPath queries can be specified against the XML view created by the XDR schema to
query the database and obtain results as an XML.

This is an alternative to the more complex process of writing a SQL query that uses the FOR XML EXPLICIT mode for describing
the XML document structure as part of the query For more information about SELECT queries with the FOR XML EXPLICIT mode,
see Using EXPLICIT Mode. However, for overcoming most of the limitations of XPath queries against mapping schemas, use SQL
queries with the FOR XML EXPLICIT mode to return results in form of an XML document.

If you have public XDR schemas (such as a Microsoft BizTalk™ schemas), you can perform either of these:

Write the FOR XML EXPLICIT mode query so the data that is generated is valid against the public XDR schema; however,
writing FOR XML EXPLICIT queries can be cumbersome.

Make a private copy of the public XDR schema. Then add annotations to this private copy, thus generating a mapping
schema. You can specify XPath queries against the mapping schema. As a result, what the query generates is the data in the
namespace of the public schema. Creating annotated schemas and specifying XPath queries against them is a much simpler
process than writing the complex FOR XML EXPLICIT queries. The illustration shows the process.

Note The Microsoft BizTalk™ Framework is an effort to define a standard XML format to common business objects, such as

Contacts, Orders, and Appointments. You can find copies of these business schemas at http://biztalk.org.

Mapping Schema

In the context of the relational database, it is useful to map the arbitrary XDR schema to a relational store. One way to achieve this
is to annotate the XDR schema. An XDR schema with the annotations is referred to as a mapping schema, which provides
information pertaining to how XML data is to be mapped to relational store. A mapping schema is, in effect, an XML view of the
relational data. These mappings can be used to retrieve relational data as an XML document.

Microsoft SQL Server 2000 introduces a number of annotations that can be used in the XDR schema to map the elements and
attributes to the database tables and columns. You can specify queries against the mapping schemas (XML views) using XPath
(XML Path). The mapping schema describes the resulting document structure.

Namespace for Annotations

In an XDR schema, the annotations are specified using this namespace: urn:schemas-microsoft-com:xml-sql.

The example show that the easiest way to specify the namespace is to specify it in the <Schema> tag . The annotations must be
namespace-qualified to the urn:schemas-microsoft-com:xml-sql namespace.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 >

</Schema>

The namespace prefix that is used is arbitrary. In this documentation, the sql prefix is used to denote the annotation namespace
and to distinguish annotations in this namespace from those in other namespaces.

Namespace for Data Types

XDR schemas allow you to specify the data type of an element or an attribute. The data types are specified using this namespace:
urn:schemas-microsoft-com:datatypes.

This is the minimum XDR schema with the namespace declarations:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 ...
</Schema>

The namespace prefix that is used is arbitrary. In this documentation, the dt prefix is used to denote the data type namespace and
to distinguish annotations in this namespace from those in other namespaces.

The <Schema> element is derived from the xml-data namespace: urn:schemas-microsoft-com:xml-data.

Example of an XDR Schema

This example shows how annotations are added to the XDR schema. This XDR schema consists of an <Employee> element and
the EmpID, Fname, and Lname attributes.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employee" >
 <AttributeType name="EmpID" />
 <AttributeType name="FName" />
 <AttributeType name="LName" />

 <attribute type="EmpID" />
 <attribute type="FName" />
 <attribute type="LName" />
</ElementType>
</Schema>

Now, annotations are added to this XDR schema to map its elements and attributes to the database tables and columns. This is
the annotated XDR schema:

http://biztalk.org/BizTalk/default.asp

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employee" sql:relation="Employees" >
 <AttributeType name="EmpID" />
 <AttributeType name="FName" />
 <AttributeType name="LName" />

 <attribute type="EmpID" sql:field="EmployeeID" />
 <attribute type="FName" sql:field="FirstName" />
 <attribute type="LName" sql:field="LastName" />
</ElementType>
</Schema>

In the mapping schema, the <Employee> element is mapped to the Employees table using sql:relation annotation. The
attributes EmpID, Fname, and Lname are mapped to the EmployeeID, FirstName, and LastName columns in the Employees
table using the sql:field annotations.

This annotated XDR schema provides the XML view of the relational data. This XML view can be queried using the XPath (XML
Path) language. The query returns an XML document as a result, instead of the rowset returned by the SQL queries.

Note In the mapping schema, the specified relational values (such as table name and column name) are case-sensitive.

See Also

XML Error Messages

XML and Internet Support (SQL Server 2000)

Annotations to the XDR Schema
Microsoft® SQL Server™ 2000 introduces a number of annotations to the XDR schema language. These annotations can be used
within the XDR schema to specify XML-to-relational mapping. This includes mapping between elements and attributes in the XDR
schema to tables/views and columns in the databases. By default, an element name in an annotated schema maps to a table
(view) name in the specified database and the attribute name maps to the column name. These annotations can also be used to
specify the hierarchical relationships in XML (thus, representing the relationships in the database).

The table shows the list of annotations.

Annotation Description Topic link
sql:relation Maps an XML item to the database

table.
Using sql:relation

sql:field Maps an XML item and the database
column.

Using sql:field

sql:is-constant Creates an XML element that does not
map to any table. The element appears
in the query output.

Creating Constant
Elements Using sql:is-
constant

sql:map-field Allows schema items to be excluded
from the result.

Excluding Schema
Elements from the
Resulting XML
Document Using
sql:map-field

<sql:relationship> Specifies relationships between XML
elements. The key, key-relation,
foreign-key and foreign-relation
attributes are used to establish the
relationship.

Specifying Relationships
Using <sql:relationship>

sql:limit-field
sql:limit-value

Allows limiting the values returned
based on a limiting value.

Filtering Values Using
sql:limit-field and
sql:limit-value

sql:key-fields Allows specification of column(s) that
uniquely identify the rows in a table.

Identifying Key Columns
Using sql:key-fields

sql:target-
namespace

Allows placing the elements and
attributes from the default namespace
into a different namespace for query
results.

Specifying a Target
Namespace Using
sql:target-namespace

sql:id-prefix Creates valid XML ID, IDREF, and
IDREFS. Prepends the values of ID,
IDREF, and IDREFS with a string.

Creating Valid ID, IDREF,
and IDREFS Type
Attributes Using sql:id-
prefix

sql:use-cdata Allows specifying CDATA sections to
be used for certain elements in the
XML document.

Creating CDATA Sections
Using sql:use-cdata

sql:url-encode When XML element/attribute is
mapped to a SQL Server BLOB column,
allows requesting a reference (URI) to
be returned that can be used later for
BLOB data.

Requesting URL
References to BLOB Data
Using sql:url-encode

sql:overflow-field Identifies the database column that
contains the overflow data.

Retrieving Unconsumed
Data Using sql:overflow-
field

Note All of the examples presented in the topics in this section specify simple XPath queries against the annotated XDR schema
described in each example. Prior familiarity with XPath language is assumed. For more information, see Using XPath Queries.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML Error Messages

XML and Internet Support (SQL Server 2000)

Default Mapping of XDR Elements and Attributes to Tables and
Columns
In an annotated XDR schema, an <element>, by default, maps to the same name table/view, and an attribute maps to the same
name column.

You can map the noncomplex subelements in the schema to the database columns. To map an <element> to a column in the
database, the content attribute is specified for that element with the textOnly value. If content=textOnly is not specified in
mapping an <element> to a database column, the sql:field annotation must be explicitly specified to map the <element> to a
database column. For more information, see Using sql:field.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify default mapping

In this example, the <Employees> element maps to the Employees table in the Northwind database, and all the attributes map
to same name columns in the Employees table. In this XDR schema, no annotations are specified.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees" >
 <AttributeType name="EmployeeID" />
 <AttributeType name="FirstName" />
 <AttributeType name="LastName" />

 <attribute type="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="LastName" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema (MySchema.xml) is relative to the directory associated with the
template virtual name. An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<?xml version="1.0" encoding="UTF-8" ?>
<ROOT>
 <Employees EID="1" FirstName="Nancy" LastName="Davolio"></Employee>
 <Employees EID="2" FirstName="Andrew" LastName="Fuller"></Employee>
</ROOT>

B. M ap an XM L <element> to a database column

By default, an XML <element> maps to a database table, and an <attribute> maps to database column. To map an <element> to
a database column, content attribute is specified with textOnly value.

This XDR schema consists of <Employees> element with <FirstName> and <LastName> subelements and an EmployeeID
attribute.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="FirstName" content="textOnly" />
<ElementType name="LastName" content="textOnly" />

<ElementType name="Employees" >
 <AttributeType name="EmployeeID" />

 <attribute type="EmployeeID" />
 <element type="FirstName" />
 <element type="LastName" />
</ElementType>
</Schema>

By default the <Employees> element in the XDR schema maps to the Employees table in the database. The content attribute is
specified on <FirstName> and <LastName> subelements. Therefore, these subelements will map to the same name columns in
the Employees table.

Note Mixed content (elements with both text and subelements) is not supported.

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EmployeeID="1">
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Explicit Mapping of XDR Elements and Attributes to Tables and
Columns
In providing an XML view of the relational database through an XDR schema, the elements and attributes in the schema must be
mapped to database tables and columns. The rows in the database table/view will map to elements in XML. The column values in
the database map to attributes or elements. To obtain a single value from the database, the mapping specified in the mapping
XDR schema must have both relation and field specification.

By default, an element name in an annotated schema maps to the table (view) name in the specified database, and the attribute
name (and noncomplex subelements with text-only content) maps to the column name. If the element/attribute name is the same
as a table (view)/column name in the database, there is no need to explicitly specify any mappings.

However, if the element/attribute name is not the same as the table (view)/column name in the database, the following
annotations are used to specify the mapping between an element/attribute in an XML document and the table/column in a
database:

sql:relation

Maps an XML element to a database table.

sql:field

Maps an attribute or a noncomplex subelement to a database column.

When XPath queries are specified against the annotated XDR schema, the data for the elements and attributes in the schema is
retrieved from the tables and columns to which they map.

See Also

Default Mapping of XDR Elements and Attributes to Tables and Columns

XML and Internet Support (SQL Server 2000)

Using sql:relation
Using sql:relation

The sql:relation annotation is added to map an XML node in the XDR schema to a database table. A table/view name is specified
as the value of sql:relation annotation.

The sql:relation annotation can be added to an <ElementType>, <element>, or <attribute> node in the XDR schema.
sql:relation specifies the mapping between <ElementType>, <element>, or <attribute> in the schema to a table/view in a
database.

When sql:relation is specified on <ElementType>, the scope of this annotation applies to all the attribute and subelement
specifications in that <ElementType>. Therefore, it provides a shortcut in writing annotations. When sql:relation is specified
directly on the <element>, there is also scoping introduced to attributes specified within an <ElementType>. sql:relation is
ignored on <AttributeType>.

sql:relation is useful in cases in which identifiers that are valid in Microsoft® SQL Server™ are invalid in XML. For example,
Order Details is a valid table name in SQL Server but invalid in XML. In such cases, sql:relation annotation can be used to
specify the mapping, for example:

<ElementType name="OD" sql:relation="[Order Details]">

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:relation on <ElementType> containing attributes

In this example, the XDR schema consists of <Customer> element with CustomerID, ContactName, and Phone attributes. The
sql:relation annotation is specified on the <ElementType>, mapping Customer element to the Customers table. The scope of
this mapping applies to all the attributes in the <ElementType>. Therefore, all the attributes map to columns in the Customers
table.

The default mapping takes places for the attributes, for example, the attributes map to same name columns in the Customers
table.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />
 <AttributeType name="Phone" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <attribute type="Phone" />
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">

 /Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" ContactName="Maria Anders"
 Phone="030-0074321" />
</ROOT>

B. Specify sql:relation on <ElementType> containing subelements and attributes

In this example, the XDR schema consists of <Customer> element with CustomerID, ContactName attributes and <Address>
subelement. The sql:relation annotation is specified on the <ElementType>, mapping Customer element to the Customers
table. The scope of this mapping applies to all the attributes in the <ElementType>. Therefore, all the attributes map to columns in
the Customers table.

The default mapping takes places for the attributes. The attributes map to columns with the same name in the Customers table.

In this example, the content attribute is specified on the <Address> subelement. Without the content=textOnly attribute, the
<Address> element does not map to the address column in the Customers table because, by default, elements map to a table
and not to a field.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <ElementType name="Address" content="textOnly" />
 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <element type="Address" />
 </ElementType>
</Schema>

As an alternative, instead of specifying content=textOnly attribute, you can specify sql:field annotation to map the <Address>
subelement to the Address column:

<element type="Address" sql:field="Address" >

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.

An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" ContactName="Maria Anders">
 <Address>Obere Str. 57</Address>
 </Customer>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Using sql:field
Using sql:field

The sql:field annotation specifies the mapping between element or attribute in an annotated schema to a column in a database.
sql:field can be added to an element or attribute. sql:field is ignored on <AttributeType> elements of the annotated schema. The
sql:field attribute specifies the name of the mapped column in a table or view.

For example, sql:field can be used to specify the name of column when that name does not match with the field in schema
specified in XDR. The value of sql:field must be a column name. Four-part column names such as
database.owner.table.columnname are not allowed. This is true for all annotations that take a column name as its value.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:field for an <attribute> of the XDR schema

In this annotated schema, the sql:field annotation is specified on the <attribute> element of the schema. The sql:field attribute
maps the Company attribute in the schema to the CompanyName column in the Customers table.

Because the attribute name CustomerID in the XDR schema is the same as the CustomerID column in the Customers table,
sql:field is not specified. The mapping is by default.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="Company" />

 <attribute type="CustomerID" />
 <attribute type="Company" sql:field="CompanyName" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" Company="Alfreds Futterkiste" />

</ROOT>

In a mapping schema, attributes can be globally declared (for example, <AttributeType...>, declared outside the scope of the
<ElementType>), and then referenced in <attribute type=...>, as shown in this schema.

In this schema, the Contact attribute is declared globally and referenced in the scope of the Customer <ElementType>.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<AttributeType name="Contact" />

<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="Company" />

 <attribute type="CustomerID" />
 <attribute type="Company" sql:field="CompanyName" />
 <attribute type="Contact" sql:field="ContactName" />
</ElementType>
</Schema>

B. Specify sql:field for an <element> in the XDR schema

In this annotated schema, the sql:field annotation is specified on <element> in the schema. The sql:field annotation maps the
<CompanyName> subelement in the schema to the CompanyName column in the Customers table.

Without the explicit annotation, the <CompanyName> subelement of the <Customer> element in the schema will not map to the
CompanyName column of the Customers table because the default mapping of elements is to a relation, not to a field (the
exception to this occurs when the <ElementType> contains a textOnly attribute).

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="CompanyName" />
 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />

 <attribute type="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have created (or one
of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/Schema6T.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI">
 <CompanyName>Alfreds Futterkiste</CompanyName>
 </Customer>
</ROOT>

If content="textOnly" is specified on CompanyName <ElementType>, the sql:field annotation is not required on the
<CompanyName> subelement. The CompanyName subelement will map to the CompanyName column in the Customer table.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="CompanyName" content="textOnly" />
 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />

 <attribute type="CustomerID" />
 <element type="CompanyName" />
 </ElementType>
</Schema>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Specifying Relationships Using <sql:relationship>
The elements in an XML document can be related. The elements can be nested hierarchically, and ID, IDREF, or IDREFS
relationships can be specified between the elements.

For example, in an XDR schema, a <customer> element contains <order> subelements. The <customer> element maps to
Customers table and <order> element maps to Orders table in the database. These underlying tables, Customers and Orders
are related because customers place orders. The CustomerID in Orders table is a foreign key referring to CustomerID primary
key in Customers table. You can establish these relationships among mapping schema elements using the <sql:relationship>
annotation.

In the annotated XDR schema, the <sql:relationship> annotation is used to nest the schema elements hierarchically based on the
primary key and foreign key relationships among the underlying tables to which the elements map. In specifying the
<sql:relationship> annotation, you must identify:

The primary table (Customers) and the foreign table (Orders) and

The necessary join condition (CustomerID in Orders is a foreign key referring to CustomerID primary key in Customers
table).

This information is used in generating the proper hierarchy (for each <customer> element, the related <order> elements appear
as subelements).

To provide the table names and the necessary join information, the following attributes are specified with the <sql:relationship>
annotation. These attributes are valid only with the <sql:relationship> element:

key-relation

Specifies the primary relation (table).

key

Specifies the primary key of the key-relation. If the primary key is composed of multiple columns, values are specified with
a space between them. There is positional mapping between the values specified for the multicolumn key and the
corresponding foreign key.

foreign-relation

Specifies the foreign relation (table).

foreign-key

Specifies the foreign key in the foreign-relation referring to key in key-relation. If the foreign key is composed of
multiple attributes (columns), the foreign key values are specified with a space between them. There is positional mapping
between the values specified for the multicolumn key and the corresponding foreign key.

Note You must ensure that the Microsoft® SQL Server™ data types of the key and foreign-key are such that they can be
implicitly converted if necessary.

The <sql:relationship> tag can be added only to <element> or <attribute> elements in an annotated schema. When
<sql:relationship> is specified on an <attribute>, there should be a sql:relation and sql:field specified for the attribute to ensure
that a single value is retrieved (multiple attributes of the same name are invalid in XML). When <sql:relationship> is specified on
an <element>, the relationship may result in a single value or a set of values.

The <sql:relationship> tag is used to specify a single logical relationship between two entities. The attributes define the relations
and fields used to define the logical relationship. Multiple instances of <sql:relationship> may be specified within an <element>
or <attribute> in the annotated schema, which indicates a complex relationship between the <element> or <attribute> and its
contained element. All instances of <sql:relationship> are used together to define the complex relationship.

When multiple instances of <sql:relationship> tag are specified within an <element> or <attribute>, the order in which they
appear is significant.

sql:key-fields must be specified in an <element> containing a child element and a <sql:relationship>, defined between the
element and the child, that does not provide the primary key of the table specified in the parent element. For more information,
see Identifying Key Columns Using sql:key-fields. To produce proper nesting in the result, it is recommended that sql:key-fields
be specified in all schemas.

Note In the mapping schema, relational values such as table name and column name are case-sensitive.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify <sql:relationship> on an <element>

This annotated XDR schema includes <Customer> and <Order> elements. The <Order> element is a subelement of <Customer>
element.

In the schema, the <sql:relationship> annotation is specified on the <Order> subelement. The annotation identifies CustomerID
in the Orders table as a foreign key referring to the CustomerID primary key in the Customers table. Therefore, orders
belonging to a customer appear as a subelement of that <Customer> element.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="CustomerID" />
 <AttributeType name="OrderID" />
 <AttributeType name="OrderDate" />

 <attribute type="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="OrderDate" />
</ElementType>
<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <attribute type="CustomerID" />
 <element type="Order" >
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="Orders" />
 </element>
</ElementType>
</Schema>

Note In the mapping schema, the relational values such as the table name and column name are case-sensitive. In the previous
example, Customers is the value of sql:relation attribute. The corresponding key-relation attribute value must also be
Customers.

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI">
 <Order CustomerID="ALFKI" OrderID="10643"
 OrderDate="1997-08-25T00:00:00" />
 <Order CustomerID="ALFKI" OrderID="10692"
 OrderDate="1997-10-03T00:00:00" />
 ...
 </Customer>
</ROOT>

B. Specify <sql:relationship> on an <attribute> and create document references using ID and IDREFS.

In this example, local document references are specified using ID and IDREFS. The sample XDR schema consists of <Customer>
element that maps to the Customers table. This element consists of an <Order> subelement that maps to the Orders table.

In the example, <sql:relationship> is specified twice:

<sql:relationship> is specified on the <Order> subelement. Therefore, orders belonging to a customer will appear as
subelement of that <Customer> element.

<sql:relationship> is also specified on the OrderIDList attribute of the <Customer> element. This attribute is defined as
IDREFS type referring to the OrderID attribute (an ID type attribute) of the <Order> element. Therefore, <sql:relationship>
is required. In this case, the <sql:relationship> annotation allows a list of orders belonging to a customer to appear with that
<Customer> element.

Attributes specified as IDREFS can be used to refer to ID type attributes, thus enabling intradocument links.

Because numbers are not valid ID values (must be name tokens), sql:id-prefix has been used to make the Order ID a string value.
For more information, see Using sql:id-prefix.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="OrderID" dt:type="id" sql:id-prefix="Ord-" />
 <AttributeType name="OrderDate" />

 <attribute type="OrderID" />
 <attribute type="OrderDate" />
 </ElementType>

 <ElementType name="Customer" sql:relation="Customers">
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <AttributeType name="OrderIDList" dt:type="idrefs"
 sql:id-prefix="Ord-"/>
 <attribute type="OrderIDList" sql:relation="Orders"
 sql:field="OrderID">
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-relation="Orders"
 foreign-key="CustomerID" />
 </attribute>
 <element type="Order">
 <sql:relationship key-relation="Customers"
 key="CustomerID"
 foreign-relation="Orders"
 foreign-key="CustomerID" />
 </element>
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="schema/MySchema.xml">
 Customer[@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" ContactName="Maria Anders"
 OrderIDList="Ord-10643 Ord-10692 Ord-10702
 Ord-10835 Ord-10952 Ord-11011">
 <Order OrderID="Ord-10643" OrderDate="1997-08-25T00:00:00" />
 <Order OrderID="Ord-10692" OrderDate="1997-10-03T00:00:00" />
 <Order OrderID="Ord-10702" OrderDate="1997-10-13T00:00:00" />
 <Order OrderID="Ord-10835" OrderDate="1998-01-15T00:00:00" />
 <Order OrderID="Ord-10952" OrderDate="1998-03-16T00:00:00" />
 <Order OrderID="Ord-11011" OrderDate="1998-04-09T00:00:00" />
 </Customer>
</ROOT>

C. Specify <sql:relationship> on multiple <element>s

In this example, the annotated XDR schema consists of the <Customer>, <Order>, and <OD> elements.

The <Order> element is a subelement of <Customer> element. <sql:relationship> is specified on the <Order> subelement so
that orders belonging to a customer appear as subelements of <Customer>.

The <Order> element includes <OD> subelement. <sql:relationship> is specified on <OD> subelement so that the order details
belonging to an order appear as subelements of that <Order> element.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="OD" sql:relation="[Order Details]" >
 <AttributeType name="OrderID" />
 <AttributeType name="ProductID" />

 <attribute type="OrderID" />
 <attribute type="ProductID" />
</ElementType>

<ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="CustomerID" />
 <AttributeType name="OrderID" />
 <AttributeType name="OrderDate" />

 <attribute type="CustomerID" />
 <attribute type="OrderID" />

 <attribute type="OrderDate" />
 <element type="OD" >
 <sql:relationship
 key-relation="Orders"
 key="OrderID"
 foreign-key="OrderID"
 foreign-relation="[Order Details]" />
 </element>
</ElementType>

<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />

 <attribute type="CustomerID" />
 <element type="Order" >
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="Orders" />
 </element>
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template returns order information for a customer whose CustomerID is ALFKI and OrderID is 10643.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ALFKI"]/Order[@OrderID=10643]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Order CustomerID="ALFKI" OrderID="10643"
 OrderDate="1997-08-25T00:00:00">
 <OD OrderID="10643" ProductID="28" />
 <OD OrderID="10643" ProductID="39" />
 <OD OrderID="10643" ProductID="46" />
</Order>
</ROOT>

D. Specify indirect relationships

In this example, the annotated XDR schema consists of the <Customer>, <OD> elements. The relationship between these
elements is indirect (Customers table is related to Order Details table through the Orders table). To relate a customer to the
order details, first the relationship between the Customer table and the Orders table is specified. Then, the relationship between
the Orders and Order Details tables is specified.

This is the schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"

 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="OD" sql:relation="[Order Details]" >
 <AttributeType name="OrderID" />
 <AttributeType name="ProductID" />
 <AttributeType name="UnitPrice" />

 <attribute type="OrderID" />
 <attribute type="ProductID" />
 <attribute type="UnitPrice" />
</ElementType>
<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <attribute type="CustomerID" />
 <element type="OD" >
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-relation="Orders"
 foreign-key="CustomerID"/>
 <sql:relationship
 key-relation="Orders"
 key="OrderID"
 foreign-relation="[Order Details]"
 foreign-key="OrderID" />
 </element>
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template returns order information for a customer whose CustomerID is ALFKI and OrderID is 10643.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:xpath-query mapping-schema="TestSchema1.xml" >
/Customer[@CustomerID="ALFKI"]
</sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI">
 <OD OrderID="10643" ProductID="28" UnitPrice="45.6" />
 <OD OrderID="10643" ProductID="39" UnitPrice="18" />
 <OD OrderID="10643" ProductID="46" UnitPrice="12" />
 ...
 </Customer>
</ROOT>

E. Specify multikey join relationships

In specifying a join using <sql:relationship>, you can specify a join involving two or more columns. In this case, the column names
for key and foreign-key are listed using a space.

This example assumes these two tables exist:

Cust(fname, lname)

Ord(OrderID, fname, lname)

The fname and lname columns form the primary key of the Cust table. The OrderID is the primary key of the Ord table. The
fname and lname in Ord table are foreign keys referring to fname and lname primary key of the Cust table.

This schema consists of <Cust> and <Ord> elements. <sql:relationship> is used to join them.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Ord" sql:relation="Ord" >
 <AttributeType name="OrderID" />

 <attribute type="OrderID" />
</ElementType>

<ElementType name="Cust" sql:relation="Cust" >
 <AttributeType name="fname" />
 <AttributeType name="lname" />
 <attribute type="fname" />
 <attribute type="lname" />
 <element type="Ord" >
 <sql:relationship
 key-relation="Cust"
 key="fname lname"
 foreign-relation="Ord"
 foreign-key="fname lname"/>
 </element>
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Create the two tables: Cust and Ord.

2. Add this sample data:

INSERT INTO Cust values ('Nancy', 'Davolio')
INSERT INTO Cust values('Andrew', 'Fuller')
INSERT INTO Ord values (1,'Nancy', 'Davolio')
INSERT INTO Ord values (2,'Nancy', 'Davolio')
INSERT INTO Ord values (3,'Andrew', 'Fuller')

3. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

4. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template returns customer information.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <sql:xpath-query mapping-schema="TestSchema1.xml" >
 /Cust
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

5. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

6. Here is the partial result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <Cust fname="Andrew" lname="Fuller">
 <Ord OrderID="3" />
 </Cust>
 <Cust fname="Nancy" lname="Davolio">
 <Ord OrderID="1" />
 <Ord OrderID="2" />
 </Cust>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Creating Constant Elements Using sql:is-constant
Because of the default mapping, every element and attribute in the XDR schema maps to a database table and column. At times,
you may want create an element in the XDR schema that does not map to any database table or column but still appears in the
XML document. These are called constant elements. To create a constant element, specify the sql:is-constant annotation. sql:is-
constant takes a Boolean value (0 = FALSE, 1 = TRUE).

This annotation is specified on <ElementType>, which does not map to any database table, thereby making it a constant element.
The sql:is-constant annotation can be used for:

Adding a top-level element to the XML document. XML requires a single top-level element (<root> element) for the
document.

Creating container elements, for example, an <Orders> element that wraps all Orders.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:is-constant to add a container element

In this annotated XDR schema, <OrderList> is defined as a constant element containing all the <Orders> subelements. The sql:is-
constant annotation is specified on the OrderList <ElementType>, making it a constant, and therefore not mapping to any
database table. Although <OrderList> element does not map to any database table/column, it still appears in the resulting XML as
a container element containing <Orders> subelements.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Orders" >
 <AttributeType name="OrderID" />
 <attribute type="OrderID" />
</ElementType>
<ElementType name="OrderList" sql:is-constant="1">
 <element type="Orders">
 <sql:relationship
 key-relation="Customers"
 foreign-relation="Orders"
 key="CustomerID"
 foreign-key="CustomerID" />
 </element>
</ElementType>
<ElementType name="Customers" >
 <AttributeType name="CustomerID" />
 <attribute type="CustomerID" />
 <element type="OrderList" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The XPath
query in the template selects all <Employees> elements with EmployeeID attribute value 1.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:xpath-query mapping-schema="TestSchema1.xml" >
/Customers
</sql:xpath-query>

</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers CustomerID="ALFKI">
 <OrderList>
 <Orders OrderID="10643" />
 <Orders OrderID="10692" />
 <Orders OrderID="10702" />
 <Orders OrderID="10835" />
 <Orders OrderID="10952" />
 <Orders OrderID="11011" />
 </OrderList>
</Customers>
...
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Excluding Schema Elements from the Resulting XML Document
Using sql:map-field
Because of the default mapping, every element and attribute in the XDR schema maps to a database table and column. At times,
you may want create an element in the XDR schema that does not map to any database table or column and does not appear in
the XML. This is done by specifying the sql:map-field annotation.

The sql:map-field annotation differs from sql:is-constant in that the unmapped elements and attributes do not appear in the
XML document. sql:map-field is especially useful if the schema cannot be modified or is used to validate XML from other
sources yet contains data that is not stored in your database.

sql:map-field takes a Boolean value (0 = FALSE, 1 = TRUE). The sql:map-field annotation is valid only on an <attribute>,
<element> or <ElementTypes> with text-only content (content=textOnly). The annotation is not valid on an <element> or
<ElementTypes> that maps to tables.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify the sql:map-field annotation

Assume you have an XDR schema from some other source. This XDR schema consists of <Employees> element with
EmployeeID, FirstName, LastName, and HomeAddress attributes.

In mapping this XDR schema to the Employees table in the database, sql:map-field is specified on the HomeAddress attribute
because the Employees table does not store home addresses of employees. As a result, this attribute is not returned in the
resulting XML document when an XPath query is specified againt the mapping schema.

Default mapping takes place for the rest of the schema. The <Employees> element maps to the Employees table, and all the
attributes map to the columns with the same name in the Employees table. For more information about default mapping, see
Default Mapping of XDR Elements and Attributes to Tables and Columns.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees" >
 <AttributeType name="EmployeeID" />
 <AttributeType name="FirstName" />
 <AttributeType name="LastName" />
 <AttributeType name="HomeAddress" />

 <attribute type="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="LastName" />
 <attribute type="HomeAddress" sql:map-field="0" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchema.xml) and save it in the directory associated with the template virtual name. The query in
the template selects all Employees with EmployeeID equal to 1.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:xpath-query mapping-schema="MySchema.xml">
 /Employees[@EmployeeID=1]

</sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

4. Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EmployeeID="1" FirstName="Nancy" LastName = "Davolio"/>
</ROOT>

Note that the EmployeeID, FirstName, and LastName are present, but HomeAddress is not because the mapping
schema specified 0 for the sql:map-field attribute.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Filtering Values Using sql:limit-field and sql:limit-value
You can limit rows returned from a database query based on some limiting value. These annotations are used to identify the
database column that contains the limiting values and to specify a specific limiting value to be used to filter the data returned.

The sql:limit-field annotation is used to identify a column that contains a limiting value. sql:limit-field is used to qualify the join
relationship specified using <sql:relationship>. sql:limit-field must be used on an element or attribute that has
<sql:relationship> specified.

The sql:limit-value annotation is used to specify the limited value in the column specified in a sql:limit-field annotation. This
annotation is optional. If sql:limit-value is not specified, a null value is assumed.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Limit the customer addresses returned to a specific address type

In this example, a database contains two tables:

Customer (CustomerID, CompanyName)

Addresses (CustomerID, AddressType, StreetAddress)

A customer can have a shipping and/or a billing address (the AddressType column values are Shipping and Billing).

This is the mapping schema in which the ShipTo schema attribute maps to StreetAddress column in the Addresses relation. The
values returned for this attribute are limited to only Shipping addresses by specifying the sql:limit-field and sql:limit-value
annotations. Similarly, the BillTo schema attribute returns only the Billing address of a customer.

This is the schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Customer" sql:relation="Customer" >
 <AttributeType name="CustomerID" />
 <AttributeType name="CompanyName" />
 <AttributeType name="BillTo" />
 <AttributeType name="ShipTo" />

 <attribute type="CustomerID" />
 <attribute type="CompanyName" />
 <attribute type="BillTo"
 sql:limit-field="AddressType"
 sql:limit-value="billing"
 sql:field="StreetAddress"
 sql:relation="Addresses" >
 <sql:relationship
 key="CustomerID"
 key-relation="Customer"
 foreign-relation="Addresses"
 foreign-key="CustomerID" />
 </attribute>
 <attribute type="ShipTo"
 sql:limit-field="AddressType"
 sql:limit-value="shipping"
 sql:field="StreetAddress"
 sql:relation="Addresses" >
 <sql:relationship
 key="CustomerID"
 key-relation="Customer"
 foreign-relation="Addresses"
 foreign-key="CustomerID" />

 </attribute>
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Create two tables:

CREATE TABLE Customer (CustomerID int primary key,
 CompanyName varchar(30))
CREATE TABLE Addresses(CustomerID int,
 StreetAddress varchar(50),
 AddressType varchar(10))

2. Add the sample data:

INSERT INTO Customer values (1, 'Company A')
INSERT INTO Customer values (2, 'Company B')

INSERT INTO Addresses values
 (1, 'Obere Str. 57 Berlin', 'billing')
INSERT INTO Addresses values
 (1, 'Avda. de la Constitución 2222México D.F.', 'shipping')
INSERT INTO Addresses values
 (2, '120 Hanover Sq., London', 'billing')
INSERT INTO Addresses values
 (2, 'Forsterstr. 57, Mannheim', 'shipping')

3. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

4. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchemaT.xml">
 /Customer
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

5. Execute the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MySchemaT.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="1" CompanyName="Company A"
 BillTo="Obere Str. 57 Berlin"
 ShipTo="Avda. de la Constitución 2222México D.F." />
 <Customer CustomerID="2" CompanyName="Company B"
 BillTo="120 Hanover Sq., London"
 ShipTo="Forsterstr. 57, Mannheim" />
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Identifying Key Columns Using sql:key-fields
When an XPath query is specified against the XDR schema, key information is required in most cases to obtain proper nesting in
the result. Specifying the sql:key-fields annotation is a way to ensure that the appropriate hierarchy is generated.

Note To produce proper nesting in the result, it is recommended that sql:key-fields be specified in all schemas.

In many instances, it is necessary to understand how to uniquely identify the rows in a table to generate the appropriate XML
hierarchy. The sql:key-fields annotation can be added to the <element> and <ElementType> to identify column(s) that uniquely
identify rows in the table.

The value of sql:key-fields identifies the column(s) that uniquely identify the rows in the relation specified in the <ElementType>.
If more than one column is required to uniquely identify a row, the column values are listed separated with a space.

sql:key-fields must be specified in an element containing a child element and a <sql:relationship>, defined between the element
and the child, that does not provide the primary key of the table specified in the parent element.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Produce the appropriate nesting when <sql:relationship> does not provide sufficient information

This example shows where sql:key-fields must be specified.

Consider the following schema. The schema specifies hierarchy between <Order> and <Customer> elements in which <Order>
element is the parent and the <Customer> element is a child.

The <sql:relationship> tag is used to specify the parent-child relationship. <sql:relationship> identifies CustomerID as foreign-
key in the Orders table referring to CustomerID key in the Customers table. This information provided in <sql:relationship> is
not sufficient to uniquely identify rows the parent table (Orders). Therefore, without sql:key-fields, the hierarchy generated is
inaccurate.

With sql:key-fields specified on <Order>, the annotation uniquely identifies the rows in the parent (Orders table) and its child
elements appear below its parent.

This is the schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Customer" sql:relation="Customers">
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 </ElementType>

 <ElementType name="Order" sql:relation="Orders"
 sql:key-fields="OrderID" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />

 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 <element type="Customer" >
 <sql:relationship
 key-relation="Orders"
 key="CustomerID"
 foreign-relation="Customers"
 foreign-key="CustomerID" />
 </element>
 </ElementType>
</Schema>

Creating a working sample of this schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The XPath
query in the template returns all the <Order> elements.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Order
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.
An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="10248" CustomerID="VINET">
 <Customer CustomerID="VINET" ContactName="Paul Henriot" />
 </Order>
 <Order OrderID="10249" CustomerID="TOMSP">
 <Customer CustomerID="TOMSP" ContactName="Karin Josephs" />
 </Order>
</ROOT>

B. Specify sql:key-fields to produce proper nesting in the result

In this schema, there is no hierarchy specified using <sql:relationship>. The schema still requires the sql:key-fields annotation
specified to uniquely identify employees in the Employees table.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Region" content="textOnly" >
 <AttributeType name="EmployeeID" />
 <attribute type="EmployeeID" />
 </ElementType>

 <ElementType name="Employees" sql:key-fields="EmployeeID" >
 <element type="Region" />
 </ElementType>
</Schema>

Creating a working sample of this schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The XPath
query in the template returns all the <Order> elements.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.

An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml
This is the result:
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees>
 <Region EmployeeID="1">WA</Region>
 </Employees>
 <Employees>
 <Region EmployeeID="2">WA</Region>
 </Employees>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Specifying a Target Namespace Using sql:target-namespace
The sql:target-namespace annotation can be used to place elements and attributes from the default namespace into a different
namespace. The sql:target-namespace attribute can be added only to the <Schema> tag in the XDR schema.

The value of sql:target-namespace is the namespace URI (Uniform Resource Identifier) to be used for generating elements and
attributes specified in the mapping schema. This URI is applied to all elements and attributes in the default namespace. The XML
document returned from queries against this schema contain xmlns:prefix="uri" declarations and prefix the element and
attribute names accordingly. The URI that is used comes from the value of the sql:target-namespace annotation. However, the
prefix is generated arbitrarily and does not correspond to any values in the schema (even if the prefixes are used in the schema).

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify a target namespace

In this example, sql:target-namespace annotation is used to specify the target namespace. As a result, all the elements and
attributes that would have gone to the default namespace are redirected to the target namespace (MyNamespace).

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:target-namespace="urn:MyNamespace">
<ElementType name="Orders" >
 <AttributeType name="OrderID" />
 <attribute type="OrderID"/>
</ElementType>
<ElementType name="Customers" >
 <AttributeType name="CustomerID" />
 <attribute type="CustomerID" />
 <AttributeType name="Contact" />
 <attribute type="Contact" sql:field="ContactName" />
 <element type="Orders" >
 <sql:relationship
 key="CustomerID"
 foreign-key="CustomerID"
 key-relation="Customers"
 foreign-relation="Orders" />
 </element>
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml"
 xmlns:x="urn:MyNamespace" >
 x:Customers
 </sql:xpath-query>
</ROOT>

The XPath query in the template requests all the <Customer> elements defined in the namespace MyNamespace. In the
template a prefix, x, is bound to the namespace.

The directory path specified for the mapping schema is relative to the directory associated with the template virtual name.

An absolute path can also be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. This URL executes the template:

http://IISServer/VirtualRoot/template/TargetNST.xml

4. Here is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <y0:Customers xmlns:y0="urn:MyNamespace" CustomerID="ALFKI"
 Contact="Maria Anders">
 <y0:Orders OrderID="10643" />
 <y0:Orders OrderID="10692" />
 <y0:Orders OrderID="10702" />
 <y0:Orders OrderID="10835" />
 <y0:Orders OrderID="10952" />
 <y0:Orders OrderID="11011" />
 </y0:Customers>
</ROOT>

Note that the prefixes generated are arbitrary, but map to the same namespace.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Creating Valid ID, IDREF, and IDREFS Type Attributes Using
sql:id-prefix
An attribute can be specified to be an ID type attribute. Attributes specified as IDREF or IDREFS can then be used to refer to the
ID type attributes, thus enabling intradocument links.

ID, IDREF, and IDREFS correspond to PK/FK (primary key/foreign key) relationships in the database, with few differences. In the
XML document, the values of ID type attributes must be distinct. If you have CustomerID and OrderID attributes in an XML
document, these values must be distinct. However, in a database, CustomerID and OrderID columns can have the same values
(for example, CustomerID = 1 and OrderID = 1 are valid in the database).

For the ID, IDREF, and IDREFS attributes to be valid:

The value of ID must be unique within the XML document.

For every IDREF and IDREFS, the referenced ID values must be in the XML document.

The value of an ID, IDREF, and IDREFS must be named token (for example, integer value 101 cannot be an ID value).

The attributes of ID, IDREF, and IDREFS type cannot be mapped to columns of type text, ntext, image, or any other binary
data type (for example, timestamp).

If an XML document contains multiple IDs, to ensure the values are unique, sql:id-prefix annotation is used. For more
information about sql:id-prefix, see Using sql:id-prefix.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Using sql:id-prefix
Using sql:id-prefix

The sql:id-prefix annotation is used to create a valid XML ID, IDREF, or IDREFS attribute.

In an XML document, the values of ID type attributes must be distinct. If there are multiple ID type attributes in an XML document,
to ensure that the values of these attributes are distinct, specify the sql:id-prefix attribute for the ID type attributes. sql:id-prefix
is also used to create named tokens from numbers. The value specified for sql:id-prefix must be a valid name character.

The sql:id-prefix attribute is used to prepend the values of ID, IDREF, and IDREFS with a string, thereby, making it unique. No
checks are made to ensure the validity of the prefixes and the uniqueness of the values of ID, IDREF, or IDREFS.

sql:id-prefix is ignored on attributes that are not of type ID, IDREF, or IDREFS.

Note Each value of the ID, IDREF, and IDREFS attributes is limited to 4,000 characters, including the prefix (if specified).

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:id-prefix for an ID type attribute

In this XDR schema, OrderID and EmployeeID attributes are declared as ID type. To ensure that the IDs are unique and valid,
sql:id-prefix annotation is specified for these attributes:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Order" sql:relation="Orders" sql:key-fields="OrderID">
 <AttributeType name="OrderID" dt:type="id" sql:id-prefix="Ord-" />
 <AttributeType name="OrderDate" />

 <attribute type="OrderID" />
 <attribute type="OrderDate" />
 </ElementType>

 <ElementType name="Employee" sql:relation="Employees">
 <AttributeType name="EmployeeID" dt:type="id" />
 <AttributeType name="LastName" />

 <attribute type="EmployeeID" />
 <attribute type="LastName" />
 <AttributeType name="OrderList" dt:type="idrefs"
 sql:id-prefix="Ord-" />
 <attribute type="OrderList" sql:relation="Orders" sql:field="OrderID">
 <sql:relationship
 key-relation="Employees"
 key="EmployeeID"
 foreign-relation="Orders"
 foreign-key="EmployeeID" />
 </attribute>
 <element type="Order">
 <sql:relationship key-relation="Employees"
 key="EmployeeID"
 foreign-relation="Orders"
 foreign-key="EmployeeID" />
 </element>
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The XPath
query in the template returns the <Employee> and <Order> subelements where EmployeeID is 1.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 Employee[@EmployeeID="1"]
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EmployeeID="1" LastName="Davolio" OrderList="Ord-10258 Ord-
 10270 Ord-10275 Ord-10285">
 <Order OrderID="Ord-10258" OrderDate="1996-07-17T00:00:00" />
 <Order OrderID="Ord-10270" OrderDate="1996-08-01T00:00:00" />
 <Order OrderID="Ord-10275" OrderDate="1996-08-07T00:00:00" />
 <Order OrderID="Ord-10285" OrderDate="1996-08-20T00:00:00" />
 </Employee>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Data Type Coercions
The data type of an element or an attribute can be specified in an XDR schema. When an XDR schema is used to extract data from
the database, the appropriate data format is output as a result of a query. The dt:type and sql:datatype annotations are used to
control the mapping between XDR data types and Microsoft® SQL Server™ 2000 data types.

dt:type

You can use the dt:type attribute to specify the XML data type of an attribute or element that maps to a column. The dt:type
attribute can be specified on <AttributeType> or <ElementType>. The dt:type affects the document returned from the server and
also the XPath query executed. When an XPath query is executed against a mapping schema containing dt:type, XPath uses the
data type indicated when processing the query. For more information about how XPath uses dt:type, see XPath Data Types.

In a document returned, all SQL Server data types are converted into string representations. Some data types require additional
conversions. The following table lists the conversions that are used for various dt:type values.

XML data type SQL Server conversion
bit CONVERT(bit, COLUMN)
date LEFT(CONVERT(nvarchar(4000), COLUMN, 126), 10)
fixed.14.4 CONVERT(money, COLUMN)
id/idref/idrefs id-prefix + CONVERT(nvarchar(4000), COLUMN, 126)
nmtoken/nmtokens id-prefix + CONVERT(nvarchar(4000), COLUMN, 126)
time/time.tz SUBSTRING(CONVERT(nvarchar(4000), COLUMN, 126),

1+CHARINDEX(N'T', CONVERT(nvarchar(4000),
COLUMN, 126)), 24)

All others No additional conversion

Note that some SQL Server values cannot be converted to some XML data types, either because the conversion is not possible
(for example, "XYZ" to a number data type) or because the value exceeds the range of that data type (for example, -100000
converted to ui2). Incompatible type conversions may result in invalid XML documents or SQL Server errors.

Mapping from SQL Server Data Types to XML Data Types

The table shows a natural mapping from SQL Server data types to XML data types.

SQL Server data type XML data type
bigint i8
binary bin.base64
bit boolean
char char
datetime datetime
decimal r8
float r8
image bin.base64
int int
money r8
nchar string
ntext string
nvarchar string
numeric r8
real r4
smalldatetime datetime
smallint i2
smallmoney fixed.14.4
sysname string
text string
timestamp ui8

tinyint ui1
varbinary bin.base64
varchar string
uniqueidentifier uuid

sql:datatype

The XML data type bin.base64 maps to various Microsoft® SQL Server™ data types (binary, image, varbinary). To clearly map
the XML data type bin.base64 to a specific SQL Server data, the sql:datatype annotation is used. sql:datatype specifies the SQL
Server data type of the column to which the attribute maps.

This is useful when data is being stored in the database. By specifying the sql:datatype annotation, you can identify the explicit
SQL Server data type. The data item is then stored as the type specified in sql:datatype.

The valid values for sql:datatype are text, ntext, image, and binary).

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify dt:type on an attribute

In this XDR schema, dt:type is specified on the OrdDate and ShipDate attributes.

For the ReqDate attribute, no XPath data type is specified. Therefore, XPath returns the SQL Server datetime values retrieved
from the RequiredDate column in the database.

The date XPath data type is specified on OrdDate attribute. XPath returns only the date part of the values (and no time) retrieved
from OrderDate column.

The time XPath data type is specified on ShipDate attribute. XPath returns only the time part of the values (and no date)
retrieved from ShippedDate column.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Order" sql:relation="Orders">
 <AttributeType name="OID" />
 <AttributeType name="CustID" />
 <AttributeType name="OrdDate" dt:type="date" />
 <AttributeType name="ReqDate" />
 <AttributeType name="ShipDate" dt:type="time" />

 <attribute type="OID" sql:field="OrderID" />
 <attribute type="CustID" sql:field="CustomerID" />
 <attribute type="OrdDate" sql:field="OrderDate" />
 <attribute type="ReqDate" sql:field="RequiredDate" />
 <attribute type="ShipDate" sql:field="ShippedDate" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">

 /Order
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OID="10248" CustID="VINET" OrdDate="1996-07-04"
 ReqDate="1996-08-01T00:00:00"
 ShipDate="00:00:00" />
 <Order OID="10249" CustID="TOMSP" OrdDate="1996-07-05"
 ReqDate="1996-08-16T00:00:00"
 ShipDate="00:00:00" />
 ...
</ROOT>

B. Specify sql:datatype on an attribute

In this example, sql:datatype is used to identify the SQL Server data type of the Photo column.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employee" sql:relation="Employees">
 <AttributeType name="EID" />
 <AttributeType name="fname" />
 <AttributeType name="lname" />
 <AttributeType name="photo" />

 <attribute type="EID" sql:field="EmployeeID" />
 <attribute type="fname" sql:field="FirstName" />
 <attribute type="lname" sql:field="LastName" />
 <attribute type="photo" sql:field="Photo" sql:datatype="image" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (Schema19T.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employee[@EID="1"]
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EID="1" fname="Nancy" lname="Davolio"
 photo="Binary base 64 image returned here"/>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Creating CDATA Sections Using sql:use-cdata
In XML, CDATA sections are used to escape blocks of text containing characters that would otherwise be recognized as markup.

Microsoft® SQL Server™ data may contain characters that are considered special by the XML parser, for example, characters such
as <, >, <=, & are treated as markup characters. If you want to avoid SQL Server data containing special characters being treated
as markup, you can wrap them in a CDATA section. The text placed in the CDATA section is treated as plain text.

The sql:use-cdata annotation is used specify if the data returned by SQL Server be wrapped in a CDATA section. Use sql:use-
cdata annotation to indicate if the value from the column specified by sql:field should be enclosed in a CDATA section. The
sql:use-cdata annotation can be specified on <ElementType> or <element>, and takes a Boolean value (0 = FALSE, 1 = TRUE).
sql:use-cdata cannot be used with sql:url-encode or on any of the attribute types ID, IDREF, IDREFS, NMTOKEN, or
NMTOKENS.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:use-cdata on an element

In this schema, sql:use-cdata is set to 1 (TRUE) for the <ProductName> element. As a result, the data for <ProductName> is
returned in the CDATA section.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="ProductName" content="textOnly" />
 <ElementType name="Products" >
 <element type="ProductName" sql:use-cdata="1" />
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Products
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Products>
 <ProductName>
 <![CDATA[Alice Mutton]]>
 </ProductName>
 </Products>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Requesting URL References to BLOB Data Using sql:url-encode
In the annotated XDR schema, when an attribute (or element) is mapped to a Microsoft® SQL Server™ BLOB column, the data is
returned in Base 64-encoded format within XML. For a description of the SQL Server data types and their corresponding XML
data types, see Data Type Coercions.

If you want a reference to the data (URI) to be returned that can be used later to retrieve the BLOB data in a binary format, specify
the sql:url-encode annotation.

Specify sql:url-encode annotation to indicate that a URL to the field should be returned instead of the value of the field. sql:url-
encode depends on the primary key to generate a singleton select in the URL. The primary key can be specified using sql:key-
fields annotation. For more information, see Identifying Key Columns Using sql:key-fields.

The sql:url-encode annotation takes a Boolean type value (0 = FALSE, 1 = TRUE). sql:url-encode cannot be used with sql:use-
cdata or on any of the attribute types ID, IDREF, IDREFS, NMTOKEN, or NMTOKENS.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:url-encode to obtain a URL reference to BLOB data

In this example, the mapping schema specifies sql:url-encode on the Photo attribute to retrieve the URI reference to the
employee photo (instead of retrieving the binary data in Base 64-encoded format).

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Employee" sql:relation="Employees"
 sql:key-fields="EmployeeID" >
 <AttributeType name="EmployeeID" />
 <AttributeType name="Photo" />

 <attribute type="EmployeeID" />
 <attribute type="Photo" sql:url-encode="1" />
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employee[@EmployeeID=1]
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EmployeeID="1"
 Photo="dbobject/Employees[@EmployeeID="1"]/@Photo" />
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Retrieving Unconsumed Data Using sql:overflow-field
When records are inserted in the database from an XML document using OPENXML, all the unconsumed data from the source
XML document can be stored in a column. In retrieving data from the database using annotated schemas, the sql:overflow-field
attribute can be specified to identify the column in the table in which the overflow data is stored.

This data is then retrieved in these ways:

Attributes stored in the overflow column are added to the element containing the sql:overflow-field annotation.

The subelements, and their descendents, stored in the overflow column in the database are added as subelements, following
the content that is explicitly specified in the schema (no order is preserved).

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify sql:overflow-field for an <ElementType> in the XDR schema

The example assumes this table exists:

CREATE TABLE Customers2 (
 CustomerID VARCHAR(10),
 ContactName VARCHAR(30),
 OverflowData NVARCHAR(200))
GO
INSERT INTO Customers2 VALUES (
 'ALFKI',
 'Joe',
 N'<xyz><address>111 Maple, Seattle</address></xyz>')
GO

In this example, the mapping schema retrieves the unconsumed data stored in the OverflowData column of the Customers2
table. The sql:overflow-field attribute is specified on the <ElementType>.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Customers2" sql:overflow-field="OverflowData" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />

 <attribute type="CustomerID" />
 <attribute type="ContactName"/>
 </ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 Customers2
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers2 CustomerID="ALFKI" ContactName="Joe">
 <address>111 Maple, Seattle</address>
 </Customers2>
</ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Specifying Default Values for Attributes in the XDR Schema
In a database columns can be assigned default values. Similarly, in an XDR schema, default values can be set for attributes
(elements cannot be assigned default values in the XDR schema). The XDR schema allows the default attribute specification on
<AttributeType>.

If a column value associated with an attribute is NULL, that attribute is not returned for that instance of the element. But if the
default attribute is specified on the <AttributeType>, then the attribute is returned with the default value specified.

For example, in extracting data from the database into an XML document, if one of the attribute values is missing, a default value
of that attribute in the XDR schema is used.

Note The default values may not appear in the document that is returned, rather this value is used by the validating parser
whenever the attribute is not present.

The default value is used if the parser used is schema-aware. That is, for the MSXML parser, you must ensure that the
resolveExternals flag is set to TRUE (the default), and the parser then fetches the schemas. Once parsed, the individual instances
have the attributes (for which the default is specified), regardless of whether the attribute was included in the XML document. The
DOM supplies the default value.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type. For more information about creating the nwind virtual directory, see Creating
the nwind Virtual Directory.

In creating working samples in each example, templates are used to specify XPath queries against the mapping XDR schema.
There are different ways of using annotated XDR schemas in queries, for example, inline schemas and schemas in the URL. For
more information, see Using Annotated XDR Schemas in Queries.

A. Specify the default value for an attribute in the XDR schema

In this example, attribute Title is given a default value of XYZ. When employee records are retrieved, a default value is assigned
for the employees who do not have a title.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employees" >
 <AttributeType name="EID" />
 <AttributeType name="FirstName" />
 <AttributeType name="LastName" />
 <AttributeType name="Title" default="XYZ"/>

 <attribute type="EID" sql:field="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="LastName" />
 <attribute type="Title" />
</ElementType>
</Schema>

Testing a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory associated with the template virtual name that you have already created
(or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create this template (MySchemaT.xml) and save it in the directory associated with the template virtual name. The query in
the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is a partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EID="1" FirstName="Nancy" LastName="Liverling" />
 <Employees EID="2" FirstName="Andrew" LastName="Fuller"
 Title="Vice President, Sales" />
 </ROOT>

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML and Internet Support (SQL Server 2000)

Using Annotated XDR Schemas in Queries
These are the ways queries can be specified against annotated schema to retrieve data from the database:

Specify XPath queries in a template against the XDR schema

The <sql:xpath-query> element allows you to specify an XPath query against the XML view defined by the annotated
schema. The annotated schema against which the XPath query is to be executed is identified by using mapping-schema
attribute of the <sql:xpath-query> element.

Templates are valid XML documents that contain one or more queries. The FOR XML and XPath queries return a document
fragment. Templates act as containers for the resulting document fragments (templates provide a way to specify a single,
top-level element).

The examples in this topic use templates to specify an XPath query against an annotated schema to retrieve data from the
database.

For more information about templates, see Executing Template Files Using a URL.

Inline Mapping Schemas

An annotated schema can be included directly in a template. The sql:is-mapping-schema annotation is used to specify an
inline annotated schema. sql:is-mapping-schema takes a Boolean type value (0 = FALSE, 1 = TRUE). sql:is-mapping-
schema is specified on the <Schema> element in the template.

The sql:id attribute uniquely identifies the element in which it is contained. sql:id is of the ID type attribute and is specified
on the <Schema> element. The value assigned to sql:id is then used to reference the inline annotated schema using the
mapping-schema attribute in <sql:xpath-query>.

For example, this is a template with an inline annotated schema is specified:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Schema xmlns="urn:schemas-microsoft-com:xml-data"

 sql:id="MyMappingSchema"
 sql:is-mapping-schema="1">

 <ElementType name="Employees" >
 <AttributeType name="EmployeeID" />
 <AttributeType name="FirstName" />
 <AttributeType name="LastName" />

 <attribute type="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="LastName" />
 </ElementType>
 </Schema>

<sql:xpath-query mapping-schema="#MyMappingSchema">
 Employees
</sql:xpath-query>
</ROOT>

For illustration purposes, this template is stored in the template subdirectory of the virtual root directory, and the file name
is InlineSchemaTemplate.xml.

This URL executes the template:

http://IISServer/VirtualRoot/template/InlineSchemaTemplate.xml

In the URL, template is a virtual name (created by using the IIS Virtual Directory Management for SQL Server utility) of the
template type, followed by the template file name.

Mapping Schema in the URL

An XPath query can be specified against the annotated schema directly in a URL. This is performed by creating a virtual
name of schema type and by specifying the annotated schema and the XPath query at the URL.

For example, consider this annotated schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />
 <AttributeType name="Phone" />

 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <attribute type="Phone" />
 </ElementType>
</Schema>

For illustration purposes, this XDR schema is stored in the schema subdirectory of the virtual root directory, and the file
name is Schema2.xml.

An XPath query against the annotated schema can be specified directly in the URL:

http://IISServer/VirtualRoot/schema/Schema2.xml/Customer[@CustomerID="ALFKI"]

In the URL, schema is the virtual name of schema type (created by using the IIS Virtual Directory Management for SQL
Server utility). Schema2.xml is the annotated schema file followed by an XPath query requesting all the customers with a
CustomerID of ALFKI.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

Executing Template Files Using HTTP

XML Error Messages

XML and Internet Support (SQL Server 2000)

Schema Caching
Schema caching significantly improves the performance of an XPath query. When an XPath query is executed against an
annotated XDR schema, the schema is stored in memory, and the necessary data structures are built in memory. If schema
caching is set, the schema remains in memory, thereby improving performance for subsequent XPath queries.

You can set the schema cache size by adding the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXMLX\SchemaCacheSize.

The schema size is set based on the available memory and the number of schemas you are using. The default SchemaCacheSize
size is 31. If you set SchemaCacheSize higher, more memory is used. Therefore, you can increase the cache size if schema access
seems slow, or decrease the cache size if memory is low.

For performance reasons, it is recommended that you set SchemaCacheSize higher than the number of mapping schemas you
usually use. As the number of schemas increase, if SchemaCacheSize is less than the number of schemas you have, the
performance degrades.

Note During development, it is recommended that you do not cache the schemas, because the changes to the schemas are not
reflected in the cache for about two minutes.

See Also

IIS Virtual Directory Management for SQL Server

Using XPath Queries

Accessing SQL Server Using HTTP

XML Error Messages

XML and Internet Support (SQL Server 2000)

Using XPath Queries
The Microsoft® SQL Server™ 2000 support for annotated XDR schemas allows you to create XML views of the relational data
stored in the database. You can use a subset of the XPath language to query the XML views created by an annotated XDR schema.

The XPath query can be specified as part of a URL or within a template. The mapping schema determines the structure of this
resulting fragment, and the values are retrieved from the database. This process is conceptually similar to creating views using the
CREATE VIEW statement and writing SQL queries against them.

Note To understand XPath queries, you must be familiar with the concepts of templates (for more information, see Using XML
Templates), HTTP access to SQL Server (for more information, see Accessing SQL Server Using HTTP), mapping schema (for more
information, see Creating XML Views Using Annotated XDR Schemas), and the XPath standard defined by the World Wide Web
Consortium (W3C).

An XML document consists of nodes such as an element node, attribute node, text node, and so on. For example, consider this
XML document:

<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was
 very satisfied</Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue white red">
 <Urgency>Important</Urgency>
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>

In this document, Customer is an element node, cid is an attribute node, and Important is a text node.

XPath (XML Path Language) is a graph navigation language. XPath is used to select a set of nodes from an XML document. Each
XPath operator selects a node-set based on a node-set selected by a previous XPath operator. For example, given a set of
<Customer> nodes, XPath can select all <Order> nodes with the date attribute value 7/14/1999. The resulting node-set contains
all the orders with order date 7/14/1999.

Note XPath language is defined by the W3C as a standard navigation language. The XPath language specification, XML Path
Language (XPath) version 1.0 W3C Proposed Recommendation 8 October 1999, can be found at the W3C Web site at
http://www.w3.org/TR/1999/PR-xpath-19991008.html. A subset of this specification is implemented in SQL Server 2000. For
more information, see XPath Guidelines and Limitations.

Supported Functionality

The table shows the features of the XPath language that are implemented in SQL Server 2000.

Feature Item Link to sample queries
Axes attribute, child, parent,

and self axes
Specifying Axes in XPath
Queries

Boolean-valued predicates
including successive and
nested predicates

 Specifying Arithmetic
Operators in XPath Queries

All relational operators =, !=, <, <=, >, >= Specifying Relational
Operators in XPath Queries

Arithmetic operators +, -, *, div Specifying Arithmatic
Operators in XPath

Explicit conversion
functions

number(), string(),
Boolean()

Specifying Explicit
Conversion Functions in
XPath Queries

Boolean operators AND, OR Specifying Boolean
Operators in XPath Queries

Boolean functions true(), false(), not() Specifying Boolean
Functions in XPath Queries

XPath variables Specifying XPath Variables
in XPath Queries

http://www.w3.org/TR/1999/PR-xpath-19991008.html

Unsupported Functionality

The table shows the features of the XPath language that are not implemented in SQL Server 2000.

Feature Item
Axes ancestor, ancestor-or-self, descendant,

descendant-or-self (//), following, following-
sibling, namespace, preceding, preceding-
sibling

Numeric-valued predicates
Arithmetic operators mod
Node functions ancestor, ancestor-or-self, descendant,

descendant-or-self (//), following, following-
sibling, namespace, preceding, preceding-
sibling

String functions string(), concat(), starts-with(), contains(),
substring-before(), substring-after(),
substring(), string-length(), normalize(),
translate()

Boolean functions lang()
Numeric functions sum(), floor(), ceiling(), round()
Union operator |

Specifying an XPath Query

XPath queries can be specified directly in the URL or in a template that is specified in the URL. Parameters can be passed to the
XPath queries specified directly in the URL or in the template using XPath variables.

XPath Queries in a URL

XPath queries can be directly specified in the URL, for example:

http://IISServer/VirtualRoot/SchemaVirtualName/SchemaFile/XPathQuery[?root=ROOT]

The root parameter is specified to provide a single top-level element. Any value can be specified for this parameter. If the query
returns only one element (or if you want to receive a collection of top-level nodes), you do not have to specify this parameter.

The SchemaVirtualName in the URL is a virtual name of schema type created using the IIS Virtual Directory Management for
SQL Server utility. For more information, see IIS Virtual Directory Management for SQL Server.

When you specify XPath queries in the URL, note the following URL-specific behavior:

XPath may contain characters such as # or + that have special meanings in the URLs. Escape these characters using the URL
percent encoding, or specify the XPath in a template. For example, the URL
http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers[@CustomerID="#"] is truncated at the # symbol,
resulting in an invalid XPath.

XPath expressions such as .. or // that resemble special file paths are interpreted by some browsers and modified before
passing the URL to the server. Consequently, XPaths containing these expressions may not work as expected from the URL.
For example:

The URL http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers/.. may be transformed by the
browser to http://IIServer/VirtualRoot/VirtualName/SchemaFile/, which is invalid XPath.

The URL http://IISServer/VirtualRoot/VirtualName/SchemaFile//Customers may be transformed by the
browser to http://IISServer/VirtualRoot/VirtualName/SchemaFile/Customers, which is different XPath.

XPath Queries in a Template

You can write the XPath queries in a template and specify the template in the URL. For example, this is a template with an XPath

query:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="FilePath/AnnotatedSchemaFile.xml">
 Specify the XPath query
 </sql:xpath-query>
</ROOT>

This template file is stored in the directory specified at the time a virtual name of type template is created. For more information
about creating virtual names, see Using IIS Virtual Directory Management for SQL Server Utility.

This URL executes the template:

http://IISServer/VirtualRoot/VirtualName/TemplateFile.xml

The VirtualName specified in the URL is of template type.

Note There is no namespace support for XPath queries specified directly in the URL. If you want to use a namespace in an XPath
query, template should be used. For more information about templates, see Executing Template Files Using a URL.

When you specify XPath queries in a template, note the following behavior:

XPath may contain characters such as < or & that have special meanings in XML (and template is an XML document). You
must escape these characters using XML &-encoding, or specify the XPath in the URL.

See Also

Retrieving XML Documents Using FOR XML

Accessing SQL Server Using HTTP

IIS Virtual Directory Management for SQL Server

XML Error Messages

XML and Internet Support (SQL Server 2000)

Guidelines for Using XPath Queries
Microsoft® SQL Server™ 2000 implements a subset of the World Wide Web Consortium (W3C) XPath specification, which is
located at http://www.w3.org/TR/1999/PR-xpath-19991008.html. The implementation of XPath queries in SQL Server 2000
differs from the W3C specification in these areas:

Root queries

SQL Server 2000 does not support the root query (/). Every XPath query must begin at a top-level <ElementType> in the
schema.

Reporting errors

The W3C XPath specification defines no error conditions. XPath queries that fail to select any nodes return an empty node-
set. In SQL Server 2000, a query may return many types of error messages. For more information, see Errors in XPath
Queries.

Document order

In SQL Server 2000, document order is not always determined. Consequently, numeric predicates and axes that use
document order (such as following) are not implemented.

The lack of document order also means that the string value of a node can be evaluated only when that node maps to a
single column in a single row. An element with subelements or an IDREFS or NMTOKENS node cannot be converted to
string.

Note In some cases, the key-fields annotation or keys from the relationship annotation can result in a deterministic
document order. However, this is not the primary use of these annotations For more information, see Identifying Key
Columns Using sql:key-fields and Specifying Relationships Using <sql:relationship>.

Data types

SQL Server 2000 has limitations in implementing the XPath string, number, and boolean data types. For more
information, see XPath Data Types.

Cross-product queries

SQL Server 2000 does not support cross-product XPath queries, such as
Customer[Order/@OrderDate=Order/@ShippedDate]. This query selects all Customers with any Order for which the
OrderDate equals the ShippedDate of any Order.

However, SQL Server 2000 does support queries such as Customer[Order[@OrderDate=@ShippedDate]], which selects
Customers with any Order for which the OrderDate equals its ShippedDate.

See Also

Using XPath Queries

XML Error Messages

XML and Internet Support (SQL Server 2000)

Specifying a Location Path
XPath queries are specified in the form of an expression. There are various kinds of expressions. A location path is an expression
that selects a set of nodes relative to the context node. The result of evaluating an expression that is a location path is a node-set.

Types of Location Paths

A location path can take either of these forms:

Absolute location path

An absolute location path starts at the root node of the document. It consists of a slash mark (/) optionally followed by a
relative location path. The slash mark (/) selects the root node of the document.

Relative location path

A relative location path starts at the context node in the document. A location path consists of a sequence of one or more
location steps separated by a slash mark (/). Each step selects a set of nodes relative to the context node. The initial sequence
of steps selects a set of nodes relative to a context node. Each node in that set is used as a context node for the following
step. The sets of nodes identified by that step are joined. For example, child::Order/child::OrderDetail selects the
<OrderDetail> element children of the <Order> element children of the context node.

Note In this implementation of XPath, every XPath query begins at the root context, even if the XPath is not explicitly
absolute. For example, an XPath query beginning with Customer is treated as /Customer. In the XPath query,
Customer[Order], Customer begins at the root context but the Order begins at the Customer context. For more
information, see XPath Guidelines and Limitations.

Location Steps

A location path (absolute or relative) is composed of location steps that contain three parts:

Axis

The axis specifies the tree relationship between the nodes selected by the location step and the context node. The parent,
child, attribute, and self axes are supported. If a child axis is specified in the location path, all the nodes selected by the
query are the children of the context node. If a parent axis is specified, the node selected is the parent node of the context
node. If an attribute axis is specified, the nodes selected are the attributes of the context node.

Node test

A node test specifies the node type selected by the location step. Every axis (child, parent, attribute, and self) has a
principal node type. For the attribute axis, the principal node type is <attribute>. For the parent, child, and self axes, the
principal node type is <element>.

For example, if the location path specifies child::Customer, the <Customer> element children of the context node are
selected. Because the child axis has <element> as its principal node type, the node test, Customer, is TRUE if Customer is
an <element> node.

Selection predicates (zero or more)

A predicate filters a node-set with respect to an axis. Specifying selection predicates in an XPath expression is similar to
specifying a WHERE clause in a SELECT statement. The predicate is specified between brackets. Applying the test specified in
the selection predicates filters the nodes returned by the node test. For each node in the node-set to be filtered, the
predicate expression is evaluated with that node as the context node, with the number of nodes in the node-set as context
size. If the predicate expression evaluates to TRUE for that node, the node is included in the resulting node-set.

The syntax for a location step is the axis name and node test separated by two colons (::), followed by zero or more
expressions, each in square brackets. For example, in the XPath expression (location path)
child::Customer[@CustomerID='ALFKI'], selects all the <Customer> element children of the context node. Then the test
in the predicate is applied to the node-set, which returns only the <Customer> element nodes with attribute value 'ALFKI'
for its CustomerID attribute.

XML and Internet Support (SQL Server 2000)

Specifying an Axis
The axis specifies the tree relationship between the nodes selected by the location step and the context node. These axes are
supported:

child

Contains the child of the context node.

This XPath expression (location path) selects from the current context node all the <Customer> children:

child::Customer

In this XPath query, child is the axis. Customer is the node test.

parent

Contains the parent of the context node.

This XPath expression selects all the <Customer> parents of the <Order> children:

child::Customer/child::Order[parent::Customer/@customerID="ALFKI"]

This is same as specifying Child::Customer. In this XPath query, child and parent are the axes. Customer and Order are
the node tests.

attribute

Contains the attribute of the context node.

This XPath expression selects CustomerID attribute of the context node:

attribute::CustomerID

self

Contains the context node itself.

This XPath expression selects the current node if it is the <Order> node:

self::Order

In this XPath query, self is the axis, and Order is the node test.

XML and Internet Support (SQL Server 2000)

Specifying a Node Test in the Location Path
A node test specifies the node type selected by the location step. Every axis (child, parent, attribute, and self) has a principal
node type. For the attribute axis, the principal node type is <attribute>. For the parent, child, and self axes, the principal node
type is <element>.

Note The wildcard node test * (for example, child::*) is not supported.

Node Test: Example 1

The location path child::Customer selects <Customer> element children of the context node.

In the example, child is the axis and Customer is the node test. The principal node type for the child axis is <element>.
Therefore, the node test is TRUE if the <Customer> node is an <element> node. If the context node has no <Customer> children,
an empty set of nodes is returned.

Node Test: Example 2

The location path attribute::CustomerID selects CustomerID attribute of the context node.

In the example, attribute is the axis and CustomerID is the node test. The principal node type of the attribute axis is <attribute>.
Therefore, the node test is TRUE if CustomerID is an <attribute> node. If the context node has no CustomerID, an empty set of
nodes is returned.

Note In this implementation of XPath, if a location step refers to an <element> or an <attribute> type that is not declared in the
schema, an error is generated. This is different from the implementation of XPath in MSXML, which returns an empty node set.

Abbreviated Syntax for the Axes

The following abbreviated syntax for the location path is supported:

attribute:: can be abbreviated to @.

The location path Customer[@CustomerID="ALFKI"] is the same as child::Customer[attribute::CustomerID="ALFKI"].

child:: can be omitted from a location step.

Thus, child is the default axis. The location path Customer/Order is the same as child::Customer/child::Order.

self::node() can be abbreviated to one period (.), and parent::node() can be abbreviated to two periods (..).

XML and Internet Support (SQL Server 2000)

Specifying Selection Predicates in the Location Path
A predicate filters a node-set with respect to an axis (similar to a WHERE clause in a SELECT statement). The predicate is specified
between brackets. For each node in the node-set to be filtered, the predicate expression is evaluated with that node as the context
node, with the number of nodes in the node-set as context size. If the predicate expression evaluates to TRUE for that node, the
node is included in the resulting node-set.

XPath also allows position-based filtering. A predicate expression evaluating to a number selects that ordinal node. For example,
the location path Customer[3] returns the third customer. Such numeric predicates are not supported. Only predicate
expressions that return a Boolean result are supported.

Note For information about the limitations of this XPath implementation of XPath and the differences between it and the W3C
specification, see XPath Guidelines and Limitations.

Selection Predicate: Example 1

This XPath expression (location path) selects from the current context node all the <Customer> element children that have the
CustomerID attribute with value of ALFKI:

/child::Customer[attribute::CustomerID="ALFKI"]

In this XPath query, child, and attribute are the axis name. Customer is the node test (TRUE if Customer is an <element node>,
because <element> is the principal node type for the child axis). attribute::CustomerID="ALFKI" is the predicate. In the
predicate, attribute is the axis and CustomerID is the node test (TRUE if CustomerID is an attribute of the context node, because
<attribute> is the principal node type of attribute axis).

Using the abbreviated syntax, the XPath query can also be specified as:

/Customer[@CustomerID="ALFKI"]

Selection Predicate: Example 2

This XPath expression (location path) selects from the current context node all the <Order> grandchildren that have the OrderID
attribute with the value 1:

/child::Customer/child::Order[attribute::OrderID="1"]

In this XPath expression, child and attribute are the axis names. Customer, Order, and OrderID are the node tests.
attribute::OrderID="1" is the predicate.

Using the abbreviated syntax, the XPath query can also be specified as:

/Customer/Order[@OrderID="1"]

Selection Predicate: Example 3

This XPath expression (location path) selects from the current context node all the <Customer> children that have one or more
<ContactName> children:

child::Customer[child::ContactName]

The example assumes that the <ContactName> is a <child> element of the <Customer> element in the XML document, which is
referred to as element-centric mapping in an annotated XDR schema. For more information, see Creating XML Views Using
Annotated XDR Schemas.

In this XPath expression, child is the axis name. Customer is the node test (TRUE if Customer is an <element> node, because
<element> is the principal node type for child axis). child::ContactName is the predicate. In the predicate, child is the axis and
ContactName is the node test (TRUE if ContactName is an <element> node).

This expression returns only the <Customer> element children of the context node that have <ContactName> element children.

Using the abbreviated syntax, the XPath query can also be specified as:

Customer[ContacName]

Selection Predicate: Example 4

This XPath expression selects <Customer> element children of the context node that do not have <ContactName> element

children:

child::Customer[not(child::ContactName)]

The example assumes that the <ContactName> is a subelement of <Customer> element in the XML document and the
ContactName is a field that is not required in the database.

In this example, child is the axis. Customer is the node test (TRUE if Customer is an <element> node).
not(child::ContactName) is the predicate. In the predicate child is the axis and ContactName is the node test (TRUE if
ContactName is an <element> node).

Using the abbreviate syntax, the XPath query can also be specified as:

Customer[not(ContactName)]

Selection Predicate: Example 5

This XPath expression selects from the current context node all the <Customer> children that have the CustomerID attribute:

child::Customer[attribute::CustomerID]

In this example, child is the axis and Customer is node test (TRUE if Customer is an <element> node). attribute::CustomerID is
the predicate. In the predicate, attribute is the axis and CustomerID is the predicate (TRUE if CustomerID is an <attribute>
node).

Using the abbreviated syntax, the XPath query can also be specified as:

Customer[@CustomerID]

See Also

Creating XML Views Using Annotated XDR Schemas

Retrieving XML Documents Using FOR XML

Accessing SQL Server Using HTTP

XML and Internet Support (SQL Server 2000)

Sample XPath Queries
The sample XPath queries refer to the following mapping schema. The mapping schema is an annotated XML-Data Reduced
(XDR) schema. For more information about mapping schemas, see Creating XML Views Using Annotated XDR Schemas.

Note Before you can execute the sample XPath queries using a URL, you must create a virtual root to access the Northwind
database and the virtual names of template and schema types. For information about creating the sample nwind virtual
directory and the virtual names, see Creating the nwind Virtual Directory. For more information about accessing Microsoft® SQL
Server™ using HTTP, see Accessing SQL Server Using HTTP.

There are two ways to execute XPath queries against the annotated XDR schemas:

Create a template with an XPath query in it. This template is then executed in the URL (for example,
http://IISServer/VirtualRoot/TemplateVirtualName/TemplateFile.xml). In the template, you specify the mapping schema
against which the XPath query is to be executed. In this case, the mapping schema must be stored in the directory (or one of
its subdirectories, in which case a relative path is specified as the value of the mapping-schema attribute in the template)
associated with virtual name of template type.

The XPath query can be directly specified in the URL (for example,
http://IISServer/VirtualRoot/SchemaVirtualName/SchemaFile.xml/XPathQuery). In this case, the schema file must be stored
in the directory associated with the virtual name of schema type.

Sample Annotated XDR Schema

In all the examples in this section, for illustration purposes, the XPath queries are specified in a template and the template is
executed using HTTP. Therefore, you must use this mapping schema file, (SampleSchema1.xml), which is saved in the directory
associated with virtual name of template type:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <ElementType name="Customer" sql:relation="Customers">
 <AttributeType name="CustomerID" dt:type="id" />
 <AttributeType name="CompanyName" />
 <AttributeType name="ContactName" />
 <AttributeType name="City" />
 <AttributeType name="Fax" />
 <AttributeType name="Orders" dt:type="idrefs" sql:id-prefix="Ord-" />

 <attribute type="CustomerID" />
 <attribute type="CompanyName" />
 <attribute type="ContactName" />
 <attribute type="City" />
 <attribute type="Fax" />
 <attribute type="Orders" sql:relation="Orders" sql:field="OrderID">
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-relation="Orders"
 foreign-key="CustomerID" />
 </attribute>

 <element type="Order">
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-relation="Orders"
 foreign-key="CustomerID" />
 </element>
 </ElementType>

 <ElementType name="Order" sql:relation="Orders">
 <AttributeType name="OrderID" dt:type="id" sql:id-prefix="Ord-" />
 <AttributeType name="EmployeeID" />
 <AttributeType name="OrderDate" />
 <AttributeType name="RequiredDate" />
 <AttributeType name="ShippedDate" />

 <attribute type="OrderID" />
 <attribute type="EmployeeID" />

 <attribute type="OrderDate" />
 <attribute type="RequiredDate" />
 <attribute type="ShippedDate" />

 <element type="OrderDetail">
 <sql:relationship
 key-relation="Orders"
 key="OrderID"
 foreign-relation="[Order Details]"
 foreign-key="OrderID" />
 </element>
 </ElementType>

 <ElementType name="OrderDetail" sql:relation="[Order Details]"
 sql:key-fields="OrderID ProductID">
 <AttributeType name="ProductID" dt:type="idref"
 sql:id-prefix="Prod-" />
 <AttributeType name="UnitPrice"/>
 <AttributeType name="Quantity" />

 <attribute type="ProductID" />
 <attribute type="UnitPrice" sql:field="UnitPrice" />
 <attribute type="Quantity" />

 <element type="Discount" sql:field="Discount"/>
 </ElementType>

 <ElementType name="Discount" dt:type="string"
 sql:relation="[Order Details]"/>

<ElementType name="Employee" sql:relation="Employees">
 <AttributeType name="EmployeeID" />
 <AttributeType name="LastName" />
 <AttributeType name="FirstName" />
 <AttributeType name="Title" />

 <attribute type="EmployeeID" />
 <attribute type="LastName" />
 <attribute type="FirstName" />
 <attribute type="Title" />
</ElementType>
</Schema>

Note

The sample queries are grouped by the type of XPath operation that is performed by the query.

See Also

XML Error Messages

XML and Internet Support (SQL Server 2000)

Specifying Axes in XPath Queries
The following examples show how axes are specified in XPath queries. The XPath queries in these examples are specified against
the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample XPath Queries.

Examples

A. Retrieve child elements of the context node

This XPath query selects all the <Customer> child elements of the context node:

/child::Employee

In the query, child is the axis and Customer is the node test (TRUE if Customer is an <element> node, because <element> is the
primary node type associated with the child axis).

The child axis is the default. Therefore, the query can be written as:

/Employee

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema2.xml">
 /Employee
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/child::Customer?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EmployeeID="1" LastName="Davolio"
 FirstName="Nancy" Title="Sales Representative" />
 <Employee EmployeeID="2" LastName="Fuller"
 FirstName="Andrew" Title="Vice President, Sales" />
 ...
</ROOT>

B. Retrieve grandchildren of the context node

This XPath query selects all the <Order> element children of the <Customer> element children of the context node:

/child::Customer/child::Order

In the query, child is the axis and Customer and Order are the node tests (these node tests are TRUE if Customer and Order are
<element> nodes, because the <element> node is the primary node for the child axis). For each node matching <Customer>,
the nodes matching <Orders> are added to the result. Only <Order> is returned in the result set.

The child axis is the default. Therefore, the query can be specified as:

/Customer/Order

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer/Order
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:
http://IISServer/nwind/schema/SampleSchema1.xml/Customer/Order?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>
 </OrderDetail>
 </Order>
 ...
</ROOT>

If the XPath query is specified as Customer/Order/OrderDetail, from each node matching <Customer>, the query navigates to
their <Order> elements. And for each node matching <Order>, the query adds the nodes <OrderDetail> to the result. Only
<OrderDetail> is returned in the result set.

C. Use .. to specify the parent axis

This query retrieves all the <Order> elements whose parent is <Customer> element with a CustomerID attribute value of ALFKI.
The query uses parent axis in the predicate to find parent of <Order> element.

/child::Customer/child::Order[../@CustomerID="ALFKI"]

The child axis is the default axis. Therefore, the query can be specified as:

/Customer/Order[../@CustomerID="ALFKI"]

The XPath query is equivalent to:

/Customer[@CustomerID="ALFKI"]/Order.

Note The XPath query /Order[../@CustomerID="ALFKI"] will return an error because there is no parent of Order. Although
there may be elements in the mapping schema that contain Order, the XPath did not begin at any of them; consequently, Order is
considered to be the top-level element type in the document.

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer/Order[../@CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

3. Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>
 </OrderDetail>
 ...
</Order>
</ROOT>

D. Specify the attribute axis

This XPath query selects all the <Customer> child elements of the context node with a CustomerID attribute value of ALFKI:

/child::Customer[attribute::CustomerID="ALFKI"]

In the predicate attribute::CustomerID, attribute is the axis and CustomerID is the node test (if CustomerID is an attribute the
node test is TRUE, because the <attribute> node is the primary node for the attribute axis).

A shortcut to the attribute axis (@) can be specified, and because child is the default axis, it can be omitted from the query:

/Customer[@CustomerID="ALFKI"]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 child::Customer[attribute::CustomerID="ALFKI"]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@CustomerID="ALFKI"]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any

value).

Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
 ContactName="Maria Anders" PostalCode="12209"
 Country="Germany" Phone="030-0074321" Fax="030-0076545"
 Orders="Ord-10643 Ord-10692 Ord-10702 Ord-10835 Ord-10952
 Ord-11011">
 <Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>
 </OrderDetail>
 </Order>
 ...
</ROOT>

XML and Internet Support (SQL Server 2000)

Specifying Boolean-Valued Predicates in XPath Queries
The following examples show how Boolean-valued predicates are specified in XPath queries. The XPath queries in these examples
are specified against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see
Sample XPath Queries.

Examples

A. Specify multiple predicates

This XPath query uses multiple predicates to find order information for a given order ID and a customer ID:

/child::Customer[attribute::CustomerID="ALFKI"]/child::Order[attribute::OrderID="Ord-10643"]

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted from the query:

/Customer[@CustomerID="ALFKI"]/Order[@OrderID="Ord-10643"]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[@CustomerID="ALFKI"]/Order[@OrderID="Ord-10643"]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@CustomerID="ALFKI"]/Order[@OrderID="Ord-10643"]?
root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

Here is the partial result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>
 </OrderDetail>
 </Order>
</ROOT>

B. Specify successive and nested predicates

This query shows using successive predicates. The query returns all the <Customer> child elements of the context node that have

both a City attribute with a value of London and a Fax attribute:

/child::Customer[attribute::City="London"][attribute::Fax]

The query returns the <Customer> elements that satisfy both the conditions specified in the predicates.

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted from the query:

/Customer[@City="London"][@Fax]

The following XPath query illustrates the use of nested predicates. The query returns all the <Customer> child elements of the
context node that include <Order> subelements with at least one of <Order> element that has an EmployeeID attribute value of
2.

/Customer[Order[@EmployeeID=2]]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[@City="London"][@Fax]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:
http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@City="London"][@Fax]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

C. Specify a top-level predicate

This query returns the <Customer> child element nodes of the context node that have <Order> element children. The query tests
the location path as the top-level predicate:

/child::Customer[child::Order]

The child axis is the default. Therefore, the query can be specified as:

/Customer[Order]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[Order]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISserver/nwind/schema/SampleSchema1.xml/Customer[Order]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any

value).

Here is the partial result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
 ContactName="Maria Anders" PostalCode="12209" Country="Germany"
 Phone="030-0074321" Fax="030-0076545" Orders="Ord-10643 Ord-10692
 Ord-10702 Ord-10835 Ord-10952 Ord-11011">
 <Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>
 </OrderDetail>
 </Order>
 ...
 <Customer>
 ...
<ROOT>

XML and Internet Support (SQL Server 2000)

Specifying Relational Operators in XPath Queries
The following examples show how relational operators are specified in XPath queries. The XPath queries in these examples are
specified against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample
XPath Queries.

Examples

A. Specify relational operator

This XPath query returns the <Customer> elements with at least one child <Order> containing an <OrderDetail> child with a
Quantity attribute with a value greater than 5:

/child::Customer[Order/OrderDetail[@Quantity>5]]

The predicate specified in the brackets filters the <Customer> elements. Only the <Customer> elements that have at least one
<OrderDetail> grandchild with a Quantity attribute value greater than 5 are returned.

The child axis is the default. Therefore, the query can be specified as:

/Customer[Order/OrderDetail[@Quantity>5]]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[Order/OrderDetail[@Quantity>5]]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/Customer[Order/OrderDetail[@Quantity>5]]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
 ContactName="Maria Anders" PostalCode="12209" Country="Germany"
 Phone="030-0074321" Fax="030-0076545"
 Orders="Ord-10643 Ord-10692 Ord-10702 Ord-10835 Ord-10952
 Ord-11011">
 <Order OrderID="Ord-10643" EmployeeID="6"
 OrderDate="1997-08-25T00:00:00"
 RequiredDate="1997-09-22T00:00:00"
 ShippedDate="1997-09-02T00:00:00">
 <OrderDetail ProductID="Prod-28" UnitPrice="45.6" Quantity="15">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-39" UnitPrice="18" Quantity="21">
 <Discount>0.25</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-46" UnitPrice="12" Quantity="2">
 <Discount>0.25</Discount>

 </OrderDetail>
 </Order>
 </Customer>
 ...
</ROOT>

B. Specify relational operator in the XPath query and use Boolean function to compare the result

This query returns all the <Order> element children of the context node that have an EmployeeID attribute value that is less
than 4:

/child::Customer/child::Order[(attribute::EmployeeID < 4)=true()]

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted from the query:

/Customer/Order[(@EmployeeID < 4)=true()]

Note When this query is specified in a template, the < character must be entity encoded because the < character has special
meaning in an XML document. In a template, use < to specify the < character.

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer/Order[(@EmployeeID<4)=true()]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

XML and Internet Support (SQL Server 2000)

Specifying Arithmetic Operators in XPath Queries
The following example shows how arithmetic operators are specified in XPath queries. The XPath queries in these example is
specified against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample
XPath Queries.

Examples

A. Specify the * arithmetic operator

This XPath query returns <OrderDetail> elements that satisfy the predicate specified:

/child::OrderDetail[@UnitPrice * @Quantity = 98]

In the query, child is the axis and OrderDetail is the node test (TRUE if OrderDetail is an <element node>, because <element>
node is the primary node for the child axis). For all the <OrderDetail> element nodes, the test in the predicate is applied, and only
those nodes that satisfy the condition are returned.

Note The numbers in XPath are double-precision floating-point numbers, and comparing floating-point numbers as in the
example causes rounding.

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /OrderDetail[@UnitPrice * @Quantity = 98]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/OrderDetail[@UnitPrice*@Quantity=98]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value). An arithmetic operator cannot be used when an XPath query is specified directly in the URL, because the plus sign
(+) has a special meaning in the URL. This issue does not arise if the query is specified in the template.

Here is the partial result set of the template execution:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <OrderDetail ProductID="Prod-33" UnitPrice="2" Quantity="49">
 <Discount>0</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-42" UnitPrice="9.8" Quantity="10">
 <Discount>0</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-52" UnitPrice="7" Quantity="14">
 <Discount>5.0000001E-2</Discount>
 </OrderDetail>
 <OrderDetail ProductID="Prod-67" UnitPrice="14" Quantity="7">
 <Discount>0</Discount>
 </OrderDetail>
 ...
</ROOT>

XML and Internet Support (SQL Server 2000)

Specifying Explicit Conversion Functions in XPath Queries
The following examples show how explicit conversion functions are specified in XPath queries. The XPath queries in these
examples are specified against the mapping schema contained in SampleSchema1.xml. For information about this sample
schema, see Sample XPath Queries.

Examples

A. Use the number() explicit conversion function

The number() function converts an argument to a number.

Assume the value of EmployeeID is nonnumeric, the following query converts EmployeeID to a number and compares it with
the value 4. The query returns all <Employee> element children of the context node with the EmployeeID attribute that has a
numeric value of 4:

/child::Employee[number(attribute::EmployeeID)=4]

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted from the query:

/Employee[number(@EmployeeID)=4]

In relational terms, the query returns an employee with an EmployeeID of 4.

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Employee[number(@EmployeeID)=4]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

B. Use the string() explicit conversion function

The string() function converts an argument to a string.

The following query converts EmployeeID to a string and compares it with the value 4. The query returns all <Employee>
element children of the context node with the EmployeeID attribute that has a string value of 4:

/child::Employee[string(attribute::EmployeeID)="4"]

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted from the query:

/Employee[string(@EmployeeID)="4"]

In relational terms, the query returns an employee who has an EmployeeID of 4.

The following query returns <Customer> elements with a ContactName attribute that is a nonempty string:

Customer[string(@ContactName)=true()]

To test the XPath query against the mapping schema

1. Create the folloiwng template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 Employee[string(@EmployeeID)="4"]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

XML and Internet Support (SQL Server 2000)

Specifying Boolean Operators in XPath Queries
The following example shows how Boolean operators are specified in XPath queries. The XPath queries in this examples is
specified against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample
XPath Queries.

Examples

A. Specify the OR Boolean operator

This XPath query returns the <Customer> element children of the context node with the CustomerID attribute value of ALFKI or
ANATR:

/child::Customer[attribute::CustomerID="ALFKI" or attribute::CustomerID="ANATR"]

A shortcut to the attribute axis (@) can be specified, and because the child axis is the default, it can be omitted:

/Customer[@CustomerID="ALFKI" or @CustomerID="ANATR"]

In the predicate, attribute is the axis and CustomerID is the node test (TRUE if CustomerID is an <attribute> node, because the
<attribute> node is the primary node for the attribute axis). The predicate filters the <Customer> elements and returns only
those that satisfy the condition specified in the predicate.

To test the XPath queries against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[@CustomerID="ALFKI" or @CustomerID="ANATR"]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@CustomerID="ALFKI" or @CustomerID="ANATR"]?
root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

XML and Internet Support (SQL Server 2000)

Specifying Boolean Functions in XPath Queries
The following examples show how Boolean functions are specified in XPath queries. The XPath queries in these examples are
specified against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample
XPath Queries.

Examples

A. Specify the not() Boolean function

This query returns all the <Customer> child elements of the context node that do not have <Order> subelements:

/child::Customer[not(child::Order)]

The child axis is the default. Therefore, the query can be specified as:

/Customer[not(Order)]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with the virtual name template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 Customer[not(Order)]
</sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

This XPath query can be specified directly in the URL:

http://IISServer/nwind/schema/SampleSchema1.xml/Customer[not(Order)]?root=root

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of
schema type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any
value).

Here is the result:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="FISSA"
 CompanyName="FISSA Fabrica Inter. Salchichas S.A."
 ContactName="Diego Roel"
 PostalCode="28034" Country="Spain"
 Phone="(91) 555 94 44" Fax="(91) 555 55 93" />
 <Customer CustomerID="PARIS"
 CompanyName="Paris spécialités"
 ContactName="Marie Bertrand"
 PostalCode="75012" Country="France"
 Phone="(1) 42.34.22.66" Fax="(1) 42.34.22.77" />
 </ROOT>

B. Specify the true() and false() Boolean functions

This query returns all <Customer> element children of the context node that do not have <Order> subelements. In relational
terms, this query returns all customers who have not placed any orders.

/child::Customer[child::Order=false()]

The child axis is the default. Therefore, the query can be specified as:

/Customer[Order=false()]

This query is equivalent to:

/Customer[not(Order)]

The following query returns all the customers who have placed at least one order:

/Customer[Order=true()]

This query is equivalent to:

/Customer[Order]

To test the XPath query against the mapping schema

1. Create the following template (MyTemplate.xml) and save it in the directory associated with template virtual name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 /Customer[Order=false()]
 </sql:xpath-query>
</ROOT>

2. This URL executes the template:

http://IISServer/VirtualRoot/template/MyTemplate.xml

XML and Internet Support (SQL Server 2000)

Specifying XPath Variables in XPath Queries
The following examples show how XPath variables are passed in XPath queries. The XPath queries in these examples are specified
against the mapping schema contained in SampleSchema1.xml. For information about this sample schema, see Sample XPath
Queries.

Examples

A. Use the XPath variables

A sample template consists of two XPath queries. Each of the XPath queries takes one parameter. The template also specifies
default values for these parameters. The default values are used if parameter values are not specified. Two parameters with
default values are specified in <sql:header>.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name='CustomerID'>ALFKI</sql:param>
 <sql:param name='EmployeeID'>1</sql:param>
 </sql:header>
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 Customer[@CustomerID=$CustomerID]
 </sql:xpath-query >
 <sql:xpath-query mapping-schema="SampleSchema1.xml">
 Employee[@EmployeeID=$EmployeeID]
 </sql:xpath-query>
</ROOT>

This template is stored in a file (MyTemplate.xml) and executed using a URL:

http://IISServer/VirtualRoot/template/MyTemplate.xml

In the URL, no parameters are passed. Therefore, the default parameter values are used.

In the following URL, the CustomerID parameter value is provided. Therefore, the default customer ID value ALFKI is ignored.
Because no value is provided for the EmployeeID parameter, the default value is used.

http://IISServer/VirtualRoot/template/MyTemplate.xml?CustomerID=BERGS

In the following URL, both parameter values are passed (default values are ignored).

http://IISServer/VirtualRoot/template/MyTemplate.xml?CustomerID=BERGS&EmployeeID=2

Note The XPath query can be specified directly in the URL:
http://IISServer/nwind/schema/SampleSchema1.xml/Customer[@CustomerID=$CustomerID]?
CustomerID=ANATR&root=root.

The virtual name schema is of schema type. The schema file is stored in the directory associated with virtual name of schema
type. The root parameter is used to specify a top-level element for the resulting XML document (root can be any value).

XML and Internet Support (SQL Server 2000)

XPath Data Types
Microsoft® SQL Server™ 2000, XPath, and XDR (XML-Data Reduced) have very different data types. For example, XPath does not
have integer or date data types, but SQL Server and XDR have many. XDR uses nanosecond precision for time values, and SQL
Server uses at most 1/300-second precision. Consequently, mapping one data type to another is not always possible. For more
information about mapping SQL Server data types to XDR data types, see Data Type Coercions.

XPath has three data types: string, number, and boolean. The number data type is always an IEEE 754 double-precision
floating-point. The SQL Server float(53) data type is the closest to XPath number. However, float(53) is not exactly IEEE 754. For
example, neither NaN (Not-a-Number) nor infinity is used. Attempting to convert a nonnumeric string to number and trying to
divide by zero results in an error.

XPath Conversions

When you use an XPath query such as OrderDetail[@UnitPrice > "10.0"], implicit and explicit data type conversions can
change the meaning of the query in subtle ways. Therefore, it is important to understand how XPath data types are implemented.
The XPath language specification, XML Path Language (XPath) version 1.0 W3C Proposed Recommendation 8 October 1999, can
be found at the W3C Web site at http://www.w3.org/TR/1999/PR-xpath-19991008.html.

XPath operators are divided into four categories:

Boolean operators (and, or)

Relational operators (<, >, <=, >=)

Equality operators (=, !=)

Arithmetic operators (+, -, *, div, mod)

Each category of operator converts its operands differently. XPath operators implicitly convert their operands if necessary.
Arithmetic operators convert their operands to number, and result in a number value. Boolean operators convert their operands
to boolean, and result in a Boolean value. Relational operators and equality operators result in a Boolean value. However, they
have different conversion rules depending on the original data types of their operands, as shown in this table.

Operand Relational operator Equality operator
Both operands are
node-sets

TRUE if and only if there is a
node in one set and a node in
the second set such that the
comparison of their string
values is TRUE.

Same

One is a node-set, the
other a string

TRUE if and only if there is a
node in the node-set such that
when converted to number,
the comparison of it with the
string converted to number
is TRUE.

TRUE if and only if there is a
node in the node-set such that
when converted to string, the
comparison of it with the string
is TRUE.

One is a node-set, the
other a number

TRUE if and only if there is a
node in the node-set such that
when converted to number,
the comparison of it with the
number is TRUE.

Same

One is a node-set, the
other a boolean

TRUE if and only if there is a
node in the node-set such that
when converted to boolean
and then to number, the
comparison of it with the
boolean converted to
number is TRUE.

TRUE if and only if there is a
node in the node-set such that
when converted to boolean,
the comparison of it with the
boolean is TRUE.

Neither is a node-set Convert both operands to
number and then compare.

Convert both operands to a
common type and then
compare. Convert to boolean if
either is boolean, number if
either is number; otherwise,
convert to string.

Note Because XPath relational operators always convert their operands to number, string comparisons are not possible. To
include date comparisons, SQL Server 2000 offers this variation to the XPath specification: When a relational operator compares a
string to a string, a node-set to a string, or a string-valued node-set to a string-valued node-set, a string comparison (not a
number comparison) is performed.

Node-Set Conversions

Node-set conversions are sometimes nonintuitive. A node-set is converted to a string by taking the string value of only the first
node in the set. A node-set is converted to number by converting it to string, and then converting string to number. A node-set
is converted to boolean by testing for its existence.

Note Because SQL Server 2000 does not perform positional selection (for example, the XPath query Customer[3] means the
third customer. This type of positional selection is not supported in SQL Server 2000.) on node-sets, the node-set-to-string or
node-set-to-number conversions as described by the XPath specification are not implemented. SQL Server 2000 uses "any"
semantics wherever the XPath specification specifies "first" semantics. For example, based on the W3C XPath specification, this
XPath query Order[OrderDetail/@UnitPrice > 10.0] selects those orders with the first OrderDetail that has a UnitPrice
greater than 10.0. In SQL Server 2000, this XPath query selects those orders with any OrderDetail that has a UnitPrice that is
greater than 10.0.

Conversion to boolean generates an existence test; therefore, the XPath query Products[@Discontinued=true()] is equivalent
to the SQL expression "Products.Discontinued is not null", not the SQL expression "Products.Discontinued = 1". To get the latter
meaning, first convert the node-set to a non-boolean type, such as number. For example, Products[number(@Discontinued)
= true()].

Because most operators are defined to be TRUE if they are TRUE for any or one of the nodes in the node-set, these operations
always evaluate to FALSE if the node-set is empty. Thus, if A is empty, both A = B and A != B are FALSE, and not(A=B) and
not(A!=B) are TRUE.

Usually, an attribute or element that maps to a column exists if the value of that column in the database is not null. Elements that
map to rows exist if any of their children exist. For more information see, Using sql:relation and Using sql:field.

Note Elements annotated with is-constant always exist. Consequently, XPath predicates cannot be used on is-constant
elements. For more information, see Creating Constant Elements Using sql:is-constant.

When a node-set is converted to string or number, its XDR type (if any) is inspected in the annotated schema and that type is
used to determine the conversion that is required.

Mapping XDR Data Types to XPath Data Types

The XPath data type of a node is derived from the XDR data type in the schema, as shown in this table (the node EmployeeID is
used for illustrative purpose).

XDR data type
Equivalent

XPath data type SQL Server conversion used
None
bin.base64
bin.hex

N/A None
EmployeeID

boolean boolean CONVERT(bit, EmployeeID)
number, int, float,
i1, i2, i4, i8,
r4, r8
ui1, ui2, ui4, ui8

number CONVERT(float(53), EmployeeID)

id, idref, idrefs
entity, entities
enumeration
notation
nmtoken, nmtokens
char
dateTime
dateTime.tz
string
uri
uuid

string CONVERT(nvarchar(4000), EmployeeID,
126)

fixed14.4 N/A (there is no
data type in XPath
that is equivalent
to the fixed14.4
XDR data type)

CONVERT(money, EmployeeID)

date string LEFT(CONVERT(nvarchar(4000),
EmployeeID, 126), 10)

time

time.tz

string SUBSTRING(CONVERT(nvarchar(4000),
EmployeeID, 126), 1 + CHARINDEX(N'T',
CONVERT(nvarchar(4000), EmployeeID,
126)), 24)

The date and time conversions are designed to work whether the value is stored in the database using the SQL Server datetime
data type or a string. Note that the SQL Server datetime data type does not use timezone and has a smaller precision than the
XML time data type. To include the timezone data type or additional precision, store the data in SQL Server 2000 using a string
type.

When a node is converted from its XDR data type to the XPath data type, additional conversion is sometimes necessary (from one
XPath data type to another XPath data type). For example, consider this XPath query:

(@m + 3) = 4

If @m is of the fixed14.4 XDR data type, the conversion from XDR data type to XPath data type is accomplished using:

CONVERT(money, m)

In this conversion, the node m is converted from fixed14.4 to money. However, adding the value of 3, requires additional
conversion:

CONVERT(float(CONVERT(money, m))

The XPath expression is evaluated as:

CONVERT(float(CONVERT(money, m)) + CONVERT(float(53), 3) = CONVERT(float(53), 3)

As shown in the following table, this is the same conversion that is applied for other XPath expressions (such as literals or
compound expressions).

 X is unknown X is string X is number X is boolean
string(X) CONVERT

(nvarchar
(4000), X, 126)

- CONVERT
(nvarchar
(4000), X, 126)

CASE WHEN X
THEN N'true'
ELSE N'false'
END

number(X) CONVERT
(float(53), X)

CONVERT
(float(53), X)

- CASE WHEN X
THEN 1 ELSE 0
END

boolean(X) - LEN(X) > 0 X != 0 -

Examples

A. Convert a data type in an XPath query

In the following XPath query specified against an annotated XDR schema, the query selects all the Employee nodes with the
EmployeeID attribute value of E-1, where "E-" is the prefix specified using the sql:id-prefix annotation.
Employee[@EmployeeID="E-1"]

The predicate in the query is equivalent to the SQL expression:
N'E-' + CONVERT(nvarchar(4000), Employees.EmployeeID, 126) = N'E-1'

Because EmployeeID is one of the id (idref, idrefs, nmtoken, nmtokens, and so on) data type values in the XDR schema,
EmployeeID is converted to the string XPath data type using the conversion rules described previously.
CONVERT(nvarchar(4000), Employees.EmployeeID, 126)

The "E-" prefix is added to the string, and the result is then compared with N'E-1'.

B. Perform several data type conversions in an XPath query

Consider this XPath query specified against an annotated XDR schema: OrderDetail[@UnitPrice * @Quantity > 98]

This XPath query returns all the <OrderDetail> elements satisfying the predicate @UnitPrice * @Quantity > 98. If the UnitPrice
is annotated with a fixed14.4 data type in the annotated schema, this predicate is equivalent to the SQL expression:
CONVERT(float(53), CONVERT(money, [Order Details].UnitPrice)) * CONVERT(float(53), [Order Details].Quantity) >
CONVERT(float(53), 98)

In converting the values in the XPath query, the first conversion converts the XDR data type to the XPath data type. Because the
XDR data type of UnitPrice is fixed14.4, as described in the previous table, this is the first conversion that is used:

CONVERT(money, [Order Details].UnitPrice))

Because the arithmetic operators convert their operands to the number XPath data type, the second conversion (from one XPath
data type to another XPath data type) is applied in which the value is converted to float(53) (float(53) is close to the XPath
number data type):

CONVERT(float(53), CONVERT(money, [Order Details].UnitPrice))

Assuming the Quantity attribute has no XDR data type, Quantity is converted to a number XPath data type in a single
conversion:

CONVERT(float(53), [Order Details].Quantity)

Similarly, the value 98 is converted to the number XPath data type:

CONVERT(float(53), 98)

Note If the XDR data type used in the schema is incompatible with the underlying SQL Server data type in the database, or if an
impossible XPath data type conversion is performed, SQL Server may return an error. For example, if EmployeeID attribute is
annotated with id-prefix annotation, the XPath Employee[@EmployeeID=1] generates an error because EmployeeID has the
id-prefix annotation and cannot be converted to number.

See Also

XML Error Messages

XML and Internet Support (SQL Server 2000)

Retrieving and Writing XML Data
You can execute SQL queries to return results as XML rather than standard rowsets. These queries can be executed directly or
from within stored procedures. To retrieve results directly, you use the FOR XML clause of the SELECT statement, and within the
FOR XML clause you specify an XML mode: RAW, AUTO, or EXPLICIT.

For example, this SELECT statement retrieves information from Customers and Orders table in the Northwind database. This
query specifies the AUTO mode in the FOR XML clause:

SELECT Customers.CustomerID, ContactName, CompanyName,
 Orders.CustomerID, OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
AND (Customers.CustomerID = N'ALFKI'
 OR Customers.CustomerID = N'XYZAA')
ORDER BY Customers.CustomerID
FOR XML AUTO

Whereas you can use the FOR XML clause to retrieve data as an XML document, you can use the Transact-SQL OPENXML function
to insert data represented as an XML document. OPENXML is a rowset provider similar to a table or a view, providing a rowset
over in-memory XML documents. OPENXML allows access to XML data as if it is a relational rowset by providing a rowset view of
the internal representation of an XML document. The records in the rowset can be stored in database tables. OPENXML can be
used in SELECT, and SELECT INTO statements where a source table or view can be specified.

The following example shows the use of OPENXML in an INSERT statement and a SELECT statement. The sample XML document
consists of <Customers> and <Orders> elements. First, the sp_xml_preparedocument stored procedure parses the XML
document. The parsed document is a tree representation of the nodes (elements, attributes, text, comments, and so on) in the XML
document. OPENXML then refers to this parsed XML document and provides a rowset view of all or parts of this XML document.
An INSERT statement using OPENXML can insert data from such a rowset into a database table. Several OPENXML calls can be
used to provide rowset view of various parts of the XML document and process them, for example, inserting them into different
tables (this process is also referred to as "Shredding XML into tables"). In the following example, an XML document is shredded in
a way that <Customers> elements are stored in the Customers table and <Orders> elements are stored in the Orders table
using two INSERT statements.

The example also shows a SELECT statement with OPENXML that retrieves CustomerID and OrderDate from the XML document.

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc OUTPUT,
 N'<ROOT>
 <Customers CustomerID="XYZAA" ContactName="Joe"
 CompanyName="Company1">
 <Orders CustomerID="XYZAA"
 OrderDate="2000-08-25T00:00:00"/>
 <Orders CustomerID="XYZAA"
 OrderDate="2000-10-03T00:00:00"/>
 </Customers>
 <Customers CustomerID="XYZBB" ContactName="Steve"
 CompanyName="Company2">No Orders yet!
 </Customers>
 </ROOT>'
-- Use OPENXML to provide rowset consisting of customer data.
INSERT Customers
SELECT *
FROM OPENXML(@hDoc, N'/ROOT/Customers')
 WITH Customers
-- Use OPENXML to provide rowset consisting of order data.
INSERT Orders
SELECT *
FROM OPENXML(@hDoc, N'//Orders')
 WITH Orders
-- Using OPENXML in a SELECT statement.
SELECT * FROM OPENXML(@hDoc, N'/ROOT/Customers/Orders') with (CustomerID nchar(5) '../@CustomerID', OrderDate
datetime)
-- Remove the internal representation of the XML document.
EXEC sp_xml_removedocument @hDoc

This illustration shows the parsed XML tree of the preceding XML document that was created by sp_xml_pareparedocument.

See Also

OPENXML

Writing XML Using OPENXML

Retrieving XML Documents Using FOR XML

XML and Internet Support (SQL Server 2000)

Retrieving XML Documents Using FOR XML
 New Information - SQL Server 2000 SP3.

You can execute SQL queries against existing relational databases to return results as XML documents rather than as standard
rowsets. To retrieve results directly, use the FOR XML clause of the SELECT statement, and within the FOR XML clause, specify one
of these XML modes:

RAW

AUTO

EXPLICIT

These modes are in effect only for the execution of the query for which they are set. They do not affect the results of any
subsequent queries. In addition to specifying the XML mode, you can also request the XML-Data schema.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft® SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

See Also

Executing Template Files Using a URL

SELECT

http://go.microsoft.com/fwlink/?LinkId=9503

XML and Internet Support (SQL Server 2000)

Basic Syntax of the FOR XML Clause
Basic Syntax of the FOR XML Clause

The basic syntax for specifying the XML mode in the FOR clause is:

FOR XML mode [, XMLDATA] [, ELEMENTS][, BINARY BASE64]

Arguments

XML mode

Specifies the XML mode. XML mode determines the shape of the resulting XML.
mode can be RAW, AUTO, or EXPLICIT.

XMLDATA

Specifies that an XML-Data schema should be returned. The schema is prepended to the document as an inline schema.

ELEMENTS

If the ELEMENTS option is specified, the columns are returned as subelements. Otherwise, they are mapped to XML attributes. This
option is supported in AUTO mode only.

BINARY BASE64

If the BINARY Base64 option is specified, any binary data returned by the query is represented in base64-encoded format. To
retrieve binary data using RAW and EXPLICIT mode, this option must be specified. In AUTO mode, binary data is returned as a
reference by default.

See Also

SELECT

XML and Internet Support (SQL Server 2000)

Guidelines for Using the FOR XML Clause
Guidelines for Using the FOR XML Clause

The FOR XML clause is valid only in the SELECT statement and is subject to these limitations:

FOR XML is not valid in subselections, whether it is in UPDATE, INSERT, or DELETE statements, a nested SELECT statement,
or other statements (SELECT INTO, assignment). For example, subselects as shown in these examples are not supported:

Example A

SELECT *
FROM Table1
WHERE(SELECT * FROM Table2 FOR XML RAW)

Example B

DECLARE @doc nchar(3000)
SET @doc = (SELECT * FROM Customers WHERE CustomerID = 'ALFKI' FOR XML RAW)

FOR XML is not valid for any selection that is used with a COMPUTE BY or FOR BROWSE clause, for example:

SELECT OrderID, UnitPrice
FROM [Order Details]
ORDER BY OrderID COMPUTE SUM(UnitPrice) BY OrderID

GROUP BY and aggregate functions are currently not supported with FOR XML AUTO. For example:

SELECT max(price), min(price), avg(price)
FROM titles
FOR XML AUTO

FOR XML is not valid in a SELECT statement used in a view definition or in a user-defined function that returns a rowset. For
example, this statement is not allowed:

CREATE VIEW AllOrders AS SELECT * FROM Orders FOR XML AUTO

However, a statement such as the following is allowed:

SELECT * FROM ViewName FOR XML AUTO are allowed.

FOR XML cannot be used in a selection that requires further processing in a stored procedure.

FOR XML cannot be used with cursors.

Generally, FOR XML cannot be used for any selections that do not produce direct output to the Microsoft® SQL Server™
2000 client.

FOR XML cannot be used in a stored procedure when called in an INSERT statement.

When a SELECT statement with a FOR XML clause specifies a four-part name in the query, the server name is not returned
in the resulting XML document when the query is executed on the local computer. However, the server name is returned as
the four-part name when the query is executed on a network server.

For example, consider this query:

SELECT TOP 1 LastName
FROM ServerName.Northwind.dbo.Employees
FOR XML AUTO

When ServerName is a local server, the query returns:

<Northwind.dbo.Employees LastName="Buchanan"/>

When ServerName is a network server, the query returns:

<ServerName.Northwind.dbo.Employees LastName="Buchanan"/>

This can be avoided by specifying this alias:

SELECT TOP 1 LastName
FROM ServerName.Northwind.dbo.Employees x
FOR XML AUTO

This query returns:

<x ="Buchanan"/>

Using derived tables in a SELECT statement with FOR XML AUTO may not produce the nesting you want.

The FOR BROWSE mode is implemented when a query with the FOR XML AUTO mode is specified. The FOR XML AUTO
mode uses the information provided by the FOR BROWSE mode in determining the hierarchy in the result set.

For example, consider the following query. A derived table P is created in the query.

SELECT c.CompanyName,
 o.OrderID,
 o.OrderDate,
 p.ProductName,
 p.Quantity,
 p.UnitPrice,
 p.Total
FROM Customers AS c
 JOIN
 Orders AS o
 ON
 c.CustomerID = o.CustomerID
 JOIN
 (
 SELECT od.OrderID,
 pr.ProductName,
 od.Quantity,
 od.UnitPrice,
 od.Quantity * od.UnitPrice AS total
 FROM Products AS pr
 JOIN
 [Order Details] AS od
 ON
 pr.ProductID = od.ProductID
) AS p
 ON
 o.OrderID = p.OrderID
FOR XML AUTO

This is the partial result:

<c CompanyName="Vins et alcools Chevalier">
 <o OrderID="10248" OrderDate="1996-07-04T00:00:00">
 <pr ProductName="Queso Cabrales">
 <od Quantity="12" UnitPrice="14.0000" total="168.0000"/>
 </pr>
 <pr ProductName="Singaporean Hokkien Fried Mee">
 <od Quantity="10" UnitPrice="9.8000" total="98.0000"/>
 </pr>
</c>

In the resulting XML document, the <p> element is missing, and the <pr> and <od> elements are returned. This occurs

because the query optimizer eliminates the P table in the result and returns a result set consisting of the od and pr tables.

This can be avoided by rewriting the query. For example, you can rewrite the query is to create a view and use it in the
SELECT statement:

CREATE VIEW p AS
 SELECT od.OrderID,
 pr.ProductName,
 od.Quantity,
 od.UnitPrice,
 od.Quantity * od.UnitPrice AS total
 FROM Products AS pr
 JOIN
 [Order Details] AS od
 ON
 pr.ProductID = od.ProductID

And then write the SELECT statement:

SELECT c.CompanyName,
 o.OrderID,
 o.OrderDate,
 p.ProductName,
 p.Quantity,
 p.UnitPrice,
 p.total
FROM Customers AS c
 JOIN
 Orders AS o
 ON
 c.CustomerID = o.CustomerID
 JOIN
 p
 ON
 o.OrderID = p.OrderID
FOR XML AUTO

This is the partial result:

<c CompanyName="Vins et alcools Chevalier">
 <o OrderID="10248" OrderDate="1996-07-04T00:00:00">
 <p ProductName="Queso Cabrales"
 Quantity="12"
 UnitPrice="14.0000"
 total="168.0000"/>
 </o>
</c>

In addition, SQL Server names containing characters that are invalid in XML names (such as spaces) are translated into XML
names in a way in which the invalid characters are translated into escaped numeric entity encoding.

There are only two nonalphabetic characters that can begin an XML name: the colon (:) and the underscore (_). Because the colon
(:) is already reserved for namespaces, the underscore (_) is chosen as the escape character. The escape rules used for encoding
are:

Any UCS-2 character that is not a valid XML name character (according to the XML 1.0 specification) is escaped as _xHHHH_,
where HHHH stands for the four-digit hexadecimal UCS-2 code for the character in the most significant bit-first order. For
example, the table name Order Details is encoded as Order_x0020_Details.

Characters that do not fit into the UCS-2 realm (the UCS-4 additions of the range U+00010000 to U+0010FFFF) are
encoded as _xHHHHHHHH_, where HHHHHHHH stands for the eight-digit hexadecimal UCS-4 encoding of the character.

The underscore character does not need to be escaped unless it is followed by the character x. For example, the table name
Order_Details is not encoded.

The colon (:) in identifiers is not escaped so that the namespace element and attribute names can be generated by the FOR
XML query. For example, the following query generates a namespace attribute with a colon in the name:

SELECT 'namespace-urn' as 'xmlns:namespace',
 1 as 'namespace:a'
FOR XML RAW

The query produces this result:

<row xmlns:namespace="namespace-urn" namespace:a="1"/>

In a SELECT query, casting of any column to a binary large object (BLOB) makes it a temporary entity (losing its associated
table name and column name). This causes AUTO mode queries to generate an error because it does not know where to
place this value in the XML hierarchy, for example:

CREATE TABLE MyTable (Col1 int PRIMARY KEY, Col2 binary)
INSERT INTO MyTable VALUES (1, 0x7)

This query produces an error because of the casting to a BLOB:

SELECT Col1,
 CAST(Col2 as image) as Col2
FROM MyTable
FOR XML AUTO

If you remove the casting, the query produces results as expected:

SELECT Col1,
 Col2
FROM MyTable
FOR XML AUTO

This is the result:

<Computed Col1="1" Col2="dbobject/Computed[@Col1='1']/@Col2"/>

See Also

Executing SQL Statements Using HTTP

Executing Template Files Using HTTP

SELECT

XML and Internet Support (SQL Server 2000)

Using RAW Mode
Using RAW Mode

RAW mode transforms each row in the query result set into an XML element with the generic identifier row. Each column value
that is not NULL is mapped to an attribute of the XML element in which the attribute name is the same as the column name.

The BINARY BASE64 option must be specified in the query to return the binary data in base64-encoded format. In RAW mode,
retrieving binary data without specifying the BINARY BASE64 option results in an error.

When an XML-Data schema is requested, the schema, declared as a namespace, appears at the beginning of the data. In the result,
the schema namespace reference is repeated for every top-level element.

Examples

The queries in these examples can be executed using SQL Query Analyzer. To execute these queries using HTTP, see Accessing
SQL Server Using HTTP.

A. Retrieve customer and order information using the RAW mode

This query returns customer and order information. RAW mode is specified in the FOR XML clause.

SELECT Customers.CustomerID, Orders.OrderID, Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerID
FOR XML RAW

This is the partial result:

<row CustomerID="ALFKI" OrderID="10643" OrderDate="1997-08-25T00:00:00"/>
<row CustomerID="ANATR" OrderID="10308" OrderDate="1996-09-18T00:00:00"/>
<row CustomerID="ANATR" OrderID="10625" OrderDate="1997-08-08T00:00:00"/>
<row CustomerID="AROUT" OrderID="10355" OrderDate="1996-11-15T00:00:00"/>

The same query can be specified using an outer join to return all customers in the result set, regardless of whether there are any
orders for those customers.

SELECT C.CustomerID, O.OrderID, O.OrderDate
FROM Customers C LEFT OUTER JOIN Orders O ON C.CustomerID = O.CustomerID
ORDER BY C.CustomerID
FOR XML RAW

This is the partial result:

<row CustomerID="BONAP" OrderID="11076" OrderDate="1998-05-06T00:00:00"/>
<row CustomerID="FISSA"/>
<row CustomerID="PARIS"/>
<row CustomerID="RICSU" OrderID="11075" OrderDate="1998-05-06T00:00:00"/>

B. Specify the XM LDATA option to request XM L-Data schema

This query returns the XML-DATA schema that describes the document structure:

SELECT TOP 2 Customers.CustomerID, Orders.OrderID, Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerID
FOR XML RAW , XMLDATA

This is the partial result:

<Schema name="Schema3" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="row" content="empty" model="closed">
 <AttributeType name="CustomerID" dt:type="string"/>
 <AttributeType name="OrderID" dt:type="i4"/>
 <AttributeType name="OrderDate" dt:type="dateTime"/>
 <attribute type="CustomerID"/><attribute type="OrderID"/>
 <attribute type="OrderDate"/>
 </ElementType>
</Schema>

<row xmlns="x-schema:#Schema3" CustomerID="ALFKI" OrderID="10643"
 OrderDate="1997-08-25T00:00:00"/>
<row xmlns="x-schema:#Schema3" CustomerID="ALFKI" OrderID="10692"
 OrderDate="1997-10-03T00:00:00"/>

Note The <Schema> is declared as a namespace. To avoid namespace collisions when multiple XML-Data schemas are
requested in different FOR XML queries, the namespace identifier (Schema3 in this example) changes with every query execution.
The namespace identifier is made up of Schema followed by an integer.

C. Retrieve binary data

This query returns an employee photo from Employees table. Photo is an image column in the Employees table. The BINARY
BASE64 option is specified in the query to return the binary data in base64-encoded format.

SELECT TOP 1 Photo
FROM Employees
WHERE EmployeeID=1
FOR XML RAW, BINARY BASE64

This is the result:

<row Photo="Binary data in base64 format"/>

D. Directly specify a URL to retrieve binary data

Because the RAW mode does not support addressing the binary data as URLs, this example creates a URL directly, using the
DBOBJECT/TABLE[@PK1="v1"]/@COLUMN syntax. This returns a reference to an image data that can be used in subsequent
operations.

SELECT TOP 1 EmployeeID,
 'dbobject/Employees[@EmployeeID='+CAST(EmployeeID as
 nvarchar(4000))+']/@Photo' Photo
FROM Employees
FOR XML RAW

This is the result:

<row EmployeeID="3"
 Photo="dbobject/Employees[@EmployeeID3]/@Photo"/>

See Also

SELECT

XML and Internet Support (SQL Server 2000)

Using AUTO Mode
Using AUTO Mode

AUTO mode returns query results as nested XML elements. Each table in the FROM clause, from which at least one column is
listed in the SELECT clause, is represented as an XML element. The columns listed in the SELECT clause are mapped to the
appropriate attribute of the element. When the ELEMENTS option is specified, the table columns are mapped to subelements
instead of attributes. By default, AUTO mode maps the table columns to XML attributes.

A table name (or the alias if provided) maps to the XML element name. A column name (or the alias if provided) maps to an
attribute name or noncomplex subelement name when the ELEMENTS option is specified in the query.

The hierarchy (nesting of the elements) in the result set is based on the order of tables identified by the columns specified in the
SELECT clause; therefore, the order in which column names are specified in the SELECT clause is significant.

The tables are identified and nested in the order in which the column names are listed in the SELECT clause. The first, leftmost
table identified forms the top element in the resulting XML document. The second leftmost table (identified by columns in the
SELECT statement) forms a subelement within the top element, and so on.

If a column name listed in the SELECT clause is from a table that is already identified by a previously specified column in the
SELECT clause, the column is added as an attribute (or as a subelement if ELEMENTS option is specified) of the element already
created, instead of opening a new level of hierarchy (adding a new subelement for that table).

For example, execute this query:

SELECT Customers.CustomerID, Orders.OrderID, Customers.ContactName
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
FOR XML AUTO

This is the partial result:

<Customers CustomerID="ALFKI" ContactName="Maria Anders">
 <Orders OrderID="10643"/>
 <Orders OrderID="10692"/>
 <Orders OrderID="10702"/>
 <Orders OrderID="10835"/>
 <Orders OrderID="10952"/>
 <Orders OrderID="11011"/>
</Customers>

Note that in the SELECT clause, CustomerID identifies the Customers table. Therefore, a <Customers> element is created and
CustomerID is added as its attribute. Next, the OrderID column name identifies the Orders table. An <Orders> element is added
as a subelement of <Customers>, and the OrderID attribute is added to the <Orders> element. Now, the ContactName column
identifies the Customers table, which was already identified by the CustomerID column. Therefore, no new element is created.
Instead, ContactName attribute is added to the <Customers> element that is already created.

This query specifies the ELEMENT option. Therefore, an element-centric document is returned.

SELECT Customers.CustomerID, Orders.OrderID, Customers.ContactName
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
FOR XML AUTO, ELEMENTS

This is the partial result:

<Customers>
 <CustomerID>ALFKI</CustomerID>
 <ContactName>Maria Anders</ContactName>
 <Orders><OrderID>10643</OrderID></Orders>
 <Orders><OrderID>10692</OrderID></Orders>
 <Orders><OrderID>10702</OrderID></Orders>
 <Orders><OrderID>10835</OrderID></Orders>
 <Orders><OrderID>10952</OrderID></Orders>
 <Orders><OrderID>11011</OrderID></Orders>
</Customers>

This query returns employee and order information. Again, the AUTO mode is specified in the FOR XML clause.

SELECT Employees.EmployeeID, LastName, FirstName,
 OrderID, OrderDate, Orders.EmployeeID
FROM Orders, Employees

WHERE Orders.EmployeeID = Employees.EmployeeID
ORDER BY Employees.EmployeeID
FOR XML AUTO

The partial result is shown below. The table name appears as a tag for the XML element in the output. There is one <Employee>
element for each value of EmployeeID.

<Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy">
 <Orders OrderID="10258" OrderDate="1996-07-17T00:00:00" EmployeeID="1"/>
 <Orders OrderID="10270" OrderDate="1996-08-01T00:00:00" EmployeeID="1"/>
</Employees>
<Employees EmployeeID="2" LastName="Fuller" FirstName="Andrew">
 <Orders OrderID="10248" OrderDate="1996-07-04T00:00:00" EmployeeID="5"/>
 <Orders OrderID="10249" OrderDate="1996-07-05T00:00:00" EmployeeID="6"/>
</Employees>

Because the Employees table is identified before the Orders table in the SELECT clause, the <Employees> element appears as
the outmost element in the resulting hierarchy that contains the <Orders> subelements.

In this example, comparing the EmployeeID values from one row to the next creates the <Employees> elements in the resulting
XML document. This is done because EmployeeID is the primary key of the table. If EmployeeID is not identified as the primary
key of the Employees table, all the column values from the Employees table specified in the SELECT statement (EmployeeID,
LastName, and FirstName) are compared from one row to the next. If any of the values differ from one row to the next, then a
new <Employees> element is added in the result.

In comparing these column values, if any of the columns to be compared are of type text, ntext, or image, FOR XML assumes
that values are different (although they may be the same because Microsoft® SQL Server™ 2000 does not support comparing
large objects); and elements are added to the result for each row selected.

When a column in the SELECT clause cannot be associated with any of the tables identified in the FROM clause (in case of an
aggregate column or computed column), the column is added in the XML document in the deepest nesting level in place when it
is encountered in the list. If such a column appears as the first column in the SELECT clause, the column is added to the top
element.

If the * wildcard character is specified in the SELECT clause, the nesting is determined in the same way as described above (based
on the order the rows are returned by the query engine).

The GROUP BY and aggregate functions are not supported in the AUTO mode. However, for a work around in which a nested
SELECT is used to retrieve the information, see Example C that follows.

If BINARY BASE64 option is specified in the query, the binary data is returned in base64 encoding format. By default (if BINARY
BASE64 option is not specified), the AUTO mode supports URL encoding of binary data. That is, instead of returning the binary
data, a reference (a relative URL to the virtual root of the database where query is executed) is returned that can be used to access
the actual binary data in subsequent operations. The query must provide enough information such as primary key columns to
identify the image.

In a query specified against a table or view, if an alias is specified for the binary column of the view, the alias is returned in the
URL encoding of the binary data. In subsequent operations, the alias is meaningless, and the URL encoding cannot be used to
retrieve the image. Therefore, do not use aliases when querying a view using FOR XML AUTO mode.

When a view is created using a SELECT statement with TOP n option or DISTINCT option, the primary key information is lost.
Therefore, if a query is specified against this view to retrieve a binary column using OPEN XML AUTO mode, an error is returned.
For example, if you create the following view:

CREATE VIEW MyView as SELECT TOP 2 * FROM Employees

This query generates an error because MyView does not have EmployeeID as its primary key:

SELECT EmployeeID, Photo
FROM MyView
WHERE EmployeeID = 1
FOR XML AUTO

If the same query is specified against the Employees table,

SELECT EmployeeID, Photo
FROM Employees
WHERE EmployeeID = 1
FOR XML AUTO

you get these results:

<Employees EmployeeID="1"

 Photo="dbobject/Employees[@EmployeeID='1']/@Photo"
/>

Examples

The queries in these examples can be executed using SQL Query Analyzer. To execute these queries using HTTP, see Accessing
SQL Server Using HTTP.

A. Retrieve employee and order information using the AUTO mode

This query returns employee and order information. AUTO mode is specified in the FOR XML clause:

SELECT Employees.EmployeeID, LastName, FirstName,
 OrderID, OrderDate, Orders.EmployeeID
FROM Orders, Employees
WHERE Orders.EmployeeID = Employees.EmployeeID
ORDER BY Employees.EmployeeID
FOR XML AUTO

The partial result is shown below. The table name appears as a tag for the XML element in the output. There is one <Employee>
element for each value of EmployeeID.

<Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy">
 <Orders OrderID="10258" OrderDate="1996-07-17T00:00:00" EmployeeID="1"/>
 <Orders OrderID="10270" OrderDate="1996-08-01T00:00:00" EmployeeID="1"/>
</Employees>
<Employees EmployeeID="2" LastName="Fuller" FirstName="Andrew">
 <Orders OrderID="10248" OrderDate="1996-07-04T00:00:00" EmployeeID="5"/>
 <Orders OrderID="10249" OrderDate="1996-07-05T00:00:00" EmployeeID="6"/>
</Employees>

If the same query is specified in such a way that in the SELECT clause the column from the Orders table is specified before the
columns in the Employees table, the hierarchy produced has the <Orders> element as top element and the <Employees>
elements at the next level in the hierarchy.

SELECT OrderID, OrderDate, Orders.EmployeeID,
 Employees.EmployeeID, LastName, FirstName
FROM Orders, Employees
WHERE Orders.EmployeeID = Employees.EmployeeID
ORDER BY Employees.EmployeeID
FOR XML AUTO

This is the partial result:

<Orders OrderID="10258" OrderDate="1996-07-17T00:00:00" EmployeeID="1">
 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy"/>
</Orders>
<Orders OrderID="10270" OrderDate="1996-08-01T00:00:00" EmployeeID="1">
 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy"/>
</Orders>

In the following query, the Orders table is the leftmost table based on the columns specified in the SELECT statement. As a result
the <Orders> elements are created as top elements. The columns in the Employees table are specified next in the SELECT
statement. The <Employees> element appears nested inside the <Orders> element. Finally, a column in the Orders table is
specified in the SELECT statement. However, because the Orders table is already at the top level in the hierarchy, this column is
added to that element, and no further elements are created.

SELECT OrderID, Orders.EmployeeID,
 Employees.EmployeeID, LastName, FirstName, OrderDate
FROM Orders, Employees
WHERE Orders.EmployeeID = Employees.EmployeeID
AND Employees.EmployeeID=1 or Employees.EmployeeID=2
ORDER BY Employees.EmployeeID
FOR XML AUTO

This is the partial result:

<Orders OrderID="10258" EmployeeID="1" OrderDate="1996-07-17T00:00:00">
 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy"/>
</Orders>
<Orders OrderID="10270" EmployeeID="1" OrderDate="1996-08-01T00:00:00">
 <Employees EmployeeID="1" LastName="Davolio" FirstName="Nancy"/>
</Orders>

B. Specify aliases for table names

This query returns customer and order information. Aliases are used for table names.

SELECT C.CustomerID, O.OrderID, O.OrderDate
FROM Customers C LEFT OUTER JOIN Orders O ON C.CustomerID = O.CustomerID
ORDER BY C.CustomerID
FOR XML AUTO

The partial result set is shown below. The element names are the same as the aliases specified for the tables used in the query.

<C CustomerID="ALFKI">
 <O OrderID="10643" OrderDate="1997-08-25T00:00:00"/>
 <O OrderID="10692" OrderDate="1997-10-03T00:00:00"/>
</C>
<C CustomerID="ANATR">
 <O OrderID="10308" OrderDate="1996-09-18T00:00:00"/>
</C>

In a nested query, if an alias is specified in the inner query, depending on how the optimizer handles the query, the alias is not
preserved. For example:

SELECT TOP 2 *
FROM (SELECT FirstName+' '+LastName as FullName FROM Employees) as EMP
FOR XML AUTO

The query produces this result:

<Employees FullName="Nancy Davolio"/>
<Employees FullName="Andrew Fuller"/>

In the result, the element name is <Employees> instead of <EMP>.

C. Specify GROUP BY and aggregate functions

The GROUP BY and aggregate functions are not currently supported with FOR XML AUTO mode. The following query uses a
nested query approach to find the number of orders a customer has placed. This query returns customer information including
the number of orders the customer has placed, the order information and the order detail information.

The inner SELECT statement produces a table with customer information along with the number of orders the customer has
placed (GROUP BY and COUNT() function are used). This inner table is then joined with tables in FROM clause of the outer query
where the FOR XML mode is specified.

SELECT Cust.CustomerID, ContactName, NoOfOrders,
 O.OrderID, O.CustomerID,
 OD.ProductID, OD.Quantity
FROM (SELECT C.CustomerID, C.ContactName, count(*) as NoOfOrders
 FROM Customers C left outer join
 Orders O ON C.CustomerID = O.CustomerID
 GROUP BY C.CustomerID, C.ContactName) Cust
 left outer join Orders O on Cust.CustomerID = O.CustomerID
 left outer join [Order Details] OD on O.OrderID = OD.OrderID
FOR XML AUTO

This is the partial result:

<Cust CustomerID="ALFKI" ContactName="Maria Anders" NoOfOrders="6">
 <O OrderID="10643" CustomerID="ALFKI">
 <OD ProductID="28" Quantity="15"/>
 <OD ProductID="39" Quantity="21"/>
 <OD ProductID="46" Quantity="2"/>
 </O>
 <O OrderID="10692" CustomerID="ALFKI">
 <OD ProductID="63" Quantity="20"/>
 </O>
</Cust>

D. Specify computed columns in the AUTO mode

This query returns concatenated employee names and the order ID of the orders the employee has taken. The computed column
is assigned to the innermost level encountered at that point. The concatenated employee names are added as attributes of
<Order> element in the result.

SELECT FirstName+' '+LastName as Name,
 Orders.OrderID
FROM Employees left outer join Orders on
 Employees.EmployeeID=Orders.EmployeeID

ORDER BY Name
FOR XML AUTO

This is the partial result:

<Orders Name="Andrew Fuller" OrderID="10265"/>
<Orders Name="Andrew Fuller" OrderID="10277"/>

To get the <Emp> elements with Name attribute containing the order subelements, the query is rewritten using a subselect. The
innerselect creates a temporary Emp table with the computed column containing the names of the employees. This table is then
joined with the Orders table to get the result.

SELECT Emp.name, Orders.OrderID
FROM (SELECT FirstName+' '+LastName as Name,
 EmployeeID
 FROM Employees) Emp
 left outer join Orders on Emp.EmployeeID = Orders.EmployeeID
ORDER BY Emp.Name
FOR XML AUTO

This is the partial result:

<Emp name="Andrew Fuller">
 <Orders OrderID="10265"/>
 <Orders OrderID="10277"/>
 <Orders OrderID="10280"/>
</Emp>

E. Return binary data

This query returns an employee photo from the Employees table. Photo is an image column in the Employees table. The AUTO
mode, by default, returns a reference (relative URL to the virtual root of the database where the query is executed) to the binary
data. The EmployeeID key attribute must be specified to identify the image. In retrieving an image reference as in this example,
the primary key of the table must also be specified in the SELECT clause to uniquely identify a row.

SELECT EmployeeID, Photo
FROM Employees
WHERE EmployeeID=1
FOR XML AUTO

This is the result:

<Employees EmployeeID="1" Photo="dbobject/Employees[@EmployeeID='1']/@Photo"/>

The same query is executed with the BINARY BASE64 option. The query returns the binary data in base64-encoded format.

SELECT Photo
FROM Employees
WHERE EmployeeID=1
FOR XML AUTO, BINARY Base64

This is the result:

<Employees Photo="Here you see the Picture in base64 format"/>

In retrieving binary data using AUTO mode, a reference (a relative URL to the virtual root of the database where the query is
executed), instead of the binary data, is returned by default (for example, BINARY BASE64 option is not specified). In case-
insensitive databases, if the table or column name specified in the query does not match the table or column name in the
database, the query executes; however, the case returned in the reference will not be consistent. For example:

SELECT TOP 2 PHOTO, EMPLOYEEID FROM EMPLOYEES FOR XML AUTO

This is the result:

<EMPLOYEES PHOTO="dbobject/EMPLOYEES[@EmployeeID='1']/@Photo"
 EMPLOYEEID="1"/>
<EMPLOYEES PHOTO="dbobject/EMPLOYEES[@EmployeeID='2']/@Photo"
 EMPLOYEEID="2"/>

This could be a problem, especially if two templates request data from the same table in a case-insensitive database but use
queries with different cases. To avoid such a problem, it is recommended that the case of the table or column name specified in
the queries match the case of table or column name in the database.

F. Understand the encoding

This example shows various encoding that takes place in the result.

1. Create this table:

CREATE TABLE [Special Chars] (Col1 char(1) primary key, [Col#&2] varbinary(50))

2. Add following data to the table:

INSERT INTO [Special Chars] values ('&', 0x20)
INSERT INTO [Special Chars] values ('#', 0x20)

3. This query returns the data from the table. The FOR XML AUTO mode is specified. Binary data is returned as a reference.

SELECT * FROM [Special Chars] FOR XML AUTO

This is the result:

<Special_x0020_Chars
Col1="#"
Col_x0023__x0026_2="dbobject/Special_x0020_Chars[@Col1='#']/@Col_x0023__x0026_2"
/>
<Special_x0020_Chars
Col1="&"
Col_x0023__x0026_2="dbobject/Special_x0020_Chars[@Col1='&']/@Col_x0023__x0026_2"
/>

This is the process for encoding special characters in the result:

In the query result, the special XML and URL characters in the element and attribute names returned are encoded using the
hexadecimal value of the corresponding Unicode character encoded. In the preceding result, the element name <Special
Chars> is returned as <Special_x0020_Chars>. The attribute name <Col#&2> is returned as <Col_x0023__x0026_2> (both
XML and URL special characters are encoded).

If the values of the elements or attribute contain any of the five standard XML character entities (', "", <, >, and &), these
special XML characters are always encoded using XML character encoding. In the above result, the value & in the value of
attribute <Col1> is encoded as &. However, the # character remains # because it is a valid XML character (not a
special XML character).

If the values of the elements or attributes contain any special URL characters that have special meaning in the URL, they are
encoded only in the DBOBJECT URL value and encoded only when the special character is part of a table or column name. In
the result, the character # that is part of table name Col#&2 is encoded as _x0023_ in the DBOJBECT URL.

G. Specify the ELEM EN TS option

This query returns customer and order information. The query specifies the ELEMENTS option. As a result, the table columns are
mapped to subelements.

SELECT Customers.CustomerID, ContactName, OrderID, OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerID
FOR XML AUTO, ELEMENTS

This is the result:

<Customers>
 <CustomerID>ALFKI</CustomerID>
 <ContactName>Maria Anders</ContactName>
 <Orders>
 <OrderID>10835</OrderID>
 <OrderDate>1998-01-15T00:00:00</OrderDate>
 </Orders>
 <Orders>
 <OrderID>10952</OrderID>
 <OrderDate>1998-03-16T00:00:00</OrderDate>
 </Orders>
</Customers>

In the element-centric mapping, you can specify the same alias for different columns in the query. This results in multiple
subelements with the same name (this is not allowed in attribute-centric mapping), for example:

SELECT FirstName name, LastName name
FROM Employees
FOR XML AUTO, ELEMENTS

This is the partial result:

<Employees>
 <name>Nancy</name>
 <name>Davolio</name>
</Employees>
 ...

See Also

SELECT

XML and Internet Support (SQL Server 2000)

Using EXPLICIT Mode
Using EXPLICIT Mode

In an EXPLICIT mode, the query writer controls shape of the XML document returned by the execution of the query. The query
must be written in a specific way so that the additional information about the expected nesting is explicitly specified as part of the
query. You can also specify additional configurations at the column level using the directives. When you specify EXPLICIT mode,
you must assume the responsibility for ensuring that the generated XML is well-formed and valid (in case of an XML-DATA
schema).

Processing EXPLICIT Mode Queries and the Universal Table

The EXPLICIT mode transforms the rowset resulting from the query execution into an XML document. For the EXPLICIT mode to
produce the XML document, the rowset must have certain format. This requires the SELECT query to be written in a certain way to
produce the rowset with a specific format (called the universal table), which can then be processed to produce the requested XML
document.

First the EXPLICIT mode requires the query to produce two meta data columns:

The first column specified in the SELECT clause must be a named (Tag) tag number. The Tag column stores the tag number
of the current element. Tag is an integer data type.

The second column specified must be a named (Parent) tag number of the parent element. The Parent column stores the
tag number of the parent element. Tag is an integer data type.

These columns are used to determine the parent-child hierarchy in the XML tree. This information is then used to produce the
desired XML tree. If the parent tag value stored in Parent column is 0 or NULL, the row is placed on the top level of the XML
hierarchy.

The remainder of the universal table fully describes the resulting XML document. An example of a universal table showing the
nesting for the <Customer>, <Order>, and <OrderDetail> elements is shown in this illustration.

The data in the rowset (universal table) is partitioned vertically into groups. Each group becomes an XML element in the result.

A query that generates this sample universal table will produce the following XML document in the EXPLICIT mode (one of the
examples below describes the query). Only the partial output is shown:

<Customer cid="C1" name="Janine">
 <Order id="O1" date="1/20/1996">
 <OrderDetail id="OD1" pid="P1"/>
 <OrderDetail id="OD2" pid="P2"/>
 </Order>
 <Order id="O2" date="3/29/1997">
 ...
</Customer>

The FOR XML EXPLICIT mode requires that the SELECT query specify the column names in the universal table in a certain way. It
requires that the SELECT query associate the element names with the tag numbers and provide the property names (attribute
names by default) in the column names of the universal table. In addition, to get the correct children instances associated with
their parent, the rowset needs to be ordered such that the parent is followed immediately by its children.

To summarize, the information provided in the column names of the universal table, the values in the Tag and Parent meta
columns, and the data in the universal table format are used to generate the desired XML document in the EXPLICIT mode.

Specifying Column Names in a Universal Table

The SELECT query must specify the column names in a universal table. The column names in the universal table are encoded

using XML generic identifiers and attribute names. The encoding of the element name, the attribute names, and other
transformation information in the column name in the universal table are specified as:

ElementName!TagNumber!AttributeName!Directive

Arguments

ElementName

Is the resulting generic identifier of the element (for example, if Customers is specified as ElementName, then <Customers> is
the element tag).

TagNumber

Is the tag number of the element. TagNumber, with the help of the two meta data columns (Tag and Parent) in the universal
table, is used to express the nesting of XML elements in the XML tree. Every TagNumber correspond to exactly one ElementName.

AttributeName

Is either the name of the XML attribute (if Directive is not specified) or the name of the contained element (if Directive is either
xml, cdata, or element). If Directive is specified, AttributeName can be empty. In this case, the value contained in the column is
directly contained by the element with the specified ElementName.

Directive

Is an optional directive. If Directive is not specified, AttributeName must be specified. If AttributeName is not specified and
Directive is not specified (for example, Customer!1), an element directive is implied (for example, Customer!1!!element), and
data is contained.

Directive has two purposes. This option is used to encode ID, IDREF, and IDREFS by using the keywords ID, IDREF, and IDREFS. It
is also used to indicate how to map the string data to XML using the keywords hide, element, xml, xmltext, and cdata.
Combining directives between these two groups is allowed in most of the cases, but not combining among themselves.

ID
An element attribute can be specified to be an ID type attribute. IDREF and IDREFS attributes can then be used to refer to them,
enabling intradocument links. If XMLDATA is not requested, this keyword has no effect.

IDREF
Attributes specified as IDREF can be used to refer to ID type attributes, enabling intradocument links. If XMLDATA is not
requested, this keyword has no effect.

IDREFS
Attributes specified as IDREFS can be used to refer to ID type attributes, enabling intradocument links. If XMLDATA is not
requested, this keyword has no effect.

hide
The attribute is not displayed. This may be useful for ordering the result by an attribute that will not appear in the result.

element
This does not generate an attribute. Instead it generates a contained element with the specified name (or generate contained
element directly if no attribute name is specified). The contained data is encoded as an entity (for example, the < character
becomes <). This keyword can be combined with ID, IDREF, or IDREFS.

xml
This is the same as an element directive except that no entity encoding takes place (for example, the < character remains <).
This directive is not allowed with any other directive except hide.

xmltext
The column content should be wrapped in a single tag that will be integrated with the rest of the document. This directive is
useful in fetching overflow (unconsumed) XML data stored in a column by OPENXML. For more information, see Writing XML
Using OPENXML.

If AttributeName is specified, the tag name is replaced by the specified name; otherwise, the attribute is appended to the current
list of attributes of the enclosing elements and by putting the content at the beginning of the containment without entity
encoding. The column with this directive must be a text type (varchar, nvarchar, char, nchar, text, ntext). This directive can be
used only with hide. This directive is useful in fetching overflow data stored in a column.

If the content is not a well-formed XML, the behavior is undefined.

cdata
Contains the data by wrapping it with a CDATA section. The content is not entity encoded. The original data type must be a text
type (varchar, nvarchar, text, ntext). This directive can be used only with hide. When this directive is used, AttributeName
must not be specified.

Examples

The queries in these examples can be executed using SQL Query Analyzer. To execute these queries using HTTP, see Accessing
SQL Server Using HTTP.

The process for writing queries using EXPLICIT mode is explained in detail in Examples A and B. This process applies to the other
examples that follow.

A. Retrieve customer and order information

This example retrieves customer and order information. Assume you want the following hierarchy generated:

<Customer CustomerID="ALFKI">

 <Order OrderID=10643>
 <Order OrderID=10692>

 ...

</Customer>
<Customer CustomerID="ANATR" >

 <Order OrderID=10308 >
 <Order OrderID=10625 >

 ...

</Customer>

The universal table produced by the query from which the resulting XML tree is produced contains two meta data columns: Tag
and Parent. Therefore, in specifying the query the SELECT clause must specify these columns. The values in these columns are
used in generating the XML hierarchy.

The <Customer> element is at the top level. In this example, this element is assigned a Tag value of 1 (this can be any number,
but there is unique number associated with each element name). Because <Customer> is a top-level element, its Parent tag value
is NULL.

The <Order> element is a child of the <Customer> element. Therefore, the Parent tag value for <Order> element is 1
(identifying <Customer> as its parent element). The <Order> element is assigned a Tag value of 2.

You can write a query with two SELECT statements and use UNION ALL to combine the results of the statements:

In the first SELECT statement in the query, all the <Customer> elements and their attribute values are obtained. In a query
with multiple SELECT statements, only the column names (universal table column names) that are specified in the first query
are used. The column names specified in the subsequent SELECT statements are ignored. Therefore, the column names for
the universal table that specify the XML element and attribute names are included in this query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 NULL as [Order!2!OrderID]
FROM Customers

In the second query, all <Order> elements and their attribute values are retrieved:

SELECT 2,
 1,
 Customers.CustomerID,
 Orders.OrderID
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

The two SELECT statements in the query are combined with a UNION ALL.

The universal table rowset (containing all data and meta data) is scanned one row at a time, in a forward-only manner,
producing the resulting XML tree. To yield the proper XML document hierarchy, it is also important to specify the order of
rows in the universal table. This is achieved by using the ORDER BY clause in the query.

This is the final query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 NULL as [Order!2!OrderID]
FROM Customers

UNION ALL
SELECT 2,
 1,
 Customers.CustomerID,
 Orders.OrderID
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID], [Order!2!OrderID]
FOR XML EXPLICIT

The resulting universal table is a four-column table. For illustration purposes, only a few rows are shown.

Tag Parent Customer!1!CustomerID Order!2!OrderID
1 NULL ALFKI NULL
2 1 ALFKI 10643
2 1 ALFKI 10692
2 1 ALFKI 10702
2 1 ALFKI 11011
2 1 ALFKI ...
1 NULL ANATR NULL
2 1 ANATR 10308
2 1 ANATR 10625
2 1 ANATR ...

The processing of the rows in the universal table to produce the resulting XML tree is described here:

1. The first row identifies Tag value 1. All columns with the Tag value 1 are identified. In this case, there is only one column:
Customer!1!CustomerID. This column name is composed of element name (Customer), tag number (1), and attribute
name (CustomerID). Therefore, a <Customer> element is created, and an attribute CustomerID is added to it. The column
value is then assigned as the attribute value.

2. The second row has the Tag value 2. Therefore, all columns with the Tag value 2 are identified. There is only one column
with the Tag value 2: Order!2!OrderID. The column name is composed of element name (Order), tag number (2) and
attribute name (OrderID). This row also identifies <Customer> as its parent (Parent value is 1). As a result, an <Order>
element is created as a child of the <Customer> element and an attribute OrderID is added to it. The column value is then
assigned as the attribute value.

3. All the subsequent rows with Tag value 2 are processed in the same manner.

4. A row with Tag value 1 is identified. It identifies the Customer!1!CustomerID column with the Tag value 1. This column
identifies a <Customer> element with no parent (Parent is NULL). Thus, both the previous <Order> tag and the previous
<Customer> tag are closed. A new <Customer> tag is opened, and the process is repeated.

Because Directive is not specified in the query, the attribute name is the name of the XML attribute. This is the partial result set:

<Customer CustomerID="ALFKI">
 <Order OrderID="10643" />
 <Order OrderID="10692" />
 <Order OrderID="10702" />
 <Order OrderID="11011" />
</Customer>
<Customer CustomerID="ANATR">

 <Order OrderID="10308" />
 <Order OrderID="10625" />
</Customer>

B. Specify the element directive

This example retrieves the customer and order information. Assume you want the following hierarchy generated: (note that
<OrderID> is a subelement of <Order> and not an attribute):

<Customer CustomerID="ALFKI">
 <Order OrderDate="1997-08-25T00:00:00">
 <OrderID>10643</OrderID>
 </Order>
 <Order OrderDate="1997-10-03T00:00:00">
 <OrderID>10692</OrderID>
 </Order>
 ...
</Customer>

The <Customer> element is at the top level. In this example, it is assigned a Tag value of 1. Because <Customer> is a top-level
element, its Parent tag value is NULL.

The <Order> element is a child of <Customer> element. Therefore, the Parent tag value for <Order> element is 1 (identifying
<Customer> as its parent element) and it is assigned a Tag value of 2.

The <Order> element has <OrderID> as a contained element (not an attribute). Therefore, in retrieving this value, the element
directive must be specified.

You can write a query with two SELECT statements and use a UNION ALL to combine the results of the statements:

In the first SELECT statement in the query, all the <Customer> elements and their attribute values are obtained. In a query
with multiple SELECT statements, only the column names (universal table column names) that are specified in the first query
are used. The column names specified in the subsequent SELECT statements are ignored. Therefore, the column names for
the universal table that specify the XML element and attribute names are included in this query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 NULL as [Order!2!OrderID!element],
 NULL as [Order!2!OrderDate]
FROM Customers

In the second query, all <Order> elements and their attribute values are retrieved. This query selects
Customers.CustomerID because of the required grouping of parent with children using ORDER BY clause.

SELECT 2, 1,
 Customers.CustomerID,
 Orders.OrderID,
 Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

The two SELECT statements in the query are combined with a UNION ALL.

The ORDER BY clause is used to specify the order of the rows in the universal table rowset that is generated.

This is the final query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 NULL as [Order!2!OrderID!element],
 NULL as [Order!2!OrderDate]
FROM Customers

UNION ALL

SELECT 2,
 1,
 Customers.CustomerID,
 Orders.OrderID,
 Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID], [Order!2!OrderID!element]
FOR XML EXPLICIT

The resulting universal table is a five-column table. For illustration purposes, only a few rows are shown.

Tag Parent
Customer!1!CustomerID Order!2!OrderID!element

Order!2!OrderDate
1 NULL ALFKI NULL NULL
2 1 ALFKI 10692 1997-10-

03T00:00:00
2 1 ALFKI 10702 1997-10-

13T00:00:00
2 1 ALFKI 10835 1998-01-

15T00:00:00
...
1 NULL ANATR 10308 1996-09-

18T00:00:00
1 NULL ANATR

The processing of the rows in the rowset to produce the resulting XML tree is described here:

1. The first row identifies Tag value 1. Therefore, all the columns with Tag value 1 are identified. In this case there is only one
column: Customer!1!CustomerID column. This column name is composed of element name (Customer), tag number (1)
and attribute name (CustomerID). Therefore, a <Customer> element is created and an attribute CustomerID is added to it.
The column value is then assigned as the attribute value.

2. The second row has Tag value 2. All the columns with Tag value 2 are identified. There are two columns
(Order!2!OrderID!element and Order!2!OrderDate) with the tag number 2.

Column Order!2!OrderDate is composed of element name (Order), tag number (2) and the attribute name
(OrderDate). This row identifies <Customer> as its parent (Parent value is 1). Therefore, an <Order> element is
created as a child of the <Customer> element, and an attribute OrderID is added to it. The column value is assigned
as the attribute value.

The column name, Order!2!OrderID!element consists of the directive (element). Therefore, a contained element
(<OrderID>) is generated. The column value is assigned as the element value.

3. All the subsequent rows with Tag value 2 are processed in the same manner.

4. A row with Tag value 1 is identified. It identifies Customer!1!CustomerID column with Tag value 1. This column identifies
a <Customer> element with no parent (Parent is NULL). Therefore, both the previous <Order> tag and the previous
<Customer> tag are closed. A new <Customer> tag is opened, and the process is repeated.

Note In the query, if the column name (Order!2!OrderID!element) is changed so that the attribute name is not specified
(Order!2!!element), the query generates the contained element directly.

C. Specify the element directive and the entity encoding

If the directive is set to element, the contained data is entity encoded. For example, if one of the customer contact names in the
Customers table is Mar<ia Anders, the following query encodes the contained data:

--Update customer record.
UPDATE Customers
SET ContactName='Mar<ia Anders'
WHERE ContactName='Maria Anders'

GO

The following query returns the customer ID and contact name information.

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B.

SELECT 1 as Tag, NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 Customers.ContactName as [Customer!1!ContactName!element]
FROM Customers
ORDER BY [Customer!1!CustomerID]
FOR XML EXPLICIT
GO
-- set the value back to original
UPDATE Customers
SET ContactName='Maria Anders'
WHERE ContactName='Mar<ia Anders'
GO

The partial result is shown below. Because the element directive is specified in the query, the attribute name specified is the
name of the contained element. Also the ContactName is entity encoded (the < character in the ContactName is returned as
<)

<Customer CustomerID="ALFKI">
 <ContactName>Mar<ia Anders</ContactName>
</Customer>
<Customer CustomerID="ANATR">
 <ContactName>Ana Trujillo</ContactName>
</Customer>

D. Specify the xml directive

The xml directive is similar to element directive except that the contained data is not entity encoded (the < character remains <).
For example, if one of the customer contact names in the Customers table is Mar<ia Andears, the following query does not
entity encode the contained data and generates an XML document that is not well-formed.

-- Update a customer record.
UPDATE Customers
SET ContactName='Mar<ia Anders'
WHERE ContactName='Maria Anders'
GO

The following query returns the customer ID and contact name information.

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B.

SELECT 1 as Tag, NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 Customers.ContactName as [Customer!1!ContactName!xml]
FROM Customers
ORDER BY [Customer!1!CustomerID]
FOR XML EXPLICIT
GO
-- Set customer record back to the original.
UPDATE Customers
SET ContactName='Maria Anders'
WHERE ContactName='Mar<ia Anders'
GO

The partial result is shown below. Because the directive is specified in the query, the attribute name specified is the name of the
contained element.

<Customer CustomerID="ALFKI">
 <ContactName>Mar<ia Anders</ContactName>
</Customer>
<Customer CustomerID="ANATR">
 <ContactName>Ana Trujillo</ContactName>
</Customer>

E. Specify the h ide directive

This example shows the use of the hide directive. This directive is useful when you want the query to return an attribute for
ordering the rows in the universal table returned by the query but you do not want that attribute in the final resulting XML

document.

Assume you want the following hierarchy generated where the <Customer> elements are ordered by CustomerID, and within
each <Customer> element, the <Order> elements are sorted by OrderID. Note that the OrderID attribute is not in the resulting
XML document:

<Customer CustomerID="ALFKI">
 <Order OrderDate="1997-08-25T00:00:00" />
 <Order OrderDate="1997-10-03T00:00:00" />
 <Order OrderDate="1997-10-13T00:00:00" />
</Customer>

In this case, the OrderID is retrieved for ordering purposes but in specifying the column name for this attribute, the hide directive
is specified. As a result the OrderID attribute is not displayed as part of the resulting XML document.

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B.

This is the query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 NULL as [Order!2!OrderID!hide],
 NULL as [Order!2!OrderDate]
FROM Customers
UNION ALL
SELECT 2,
 1,
 Customers.CustomerID,
 Orders.OrderID,
 Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID], [Order!2!OrderID!hide]
FOR XML EXPLICIT

This is the partial result. The OrderID attribute is not in the resulting document.

<Customer CustomerID="ALFKI">
 <Order OrderDate="1997-08-25T00:00:00" />
 <Order OrderDate="1997-10-03T00:00:00" />
 <Order OrderDate="1997-10-13T00:00:00" />
</Customer>
<Customer CustomerID="ANATR">
 <Order OrderDate="1996-09-18T00:00:00" />
 <Order OrderDate="1997-08-08T00:00:00" />
</Customer>

F. Specify the cdata directive

If the directive is set to cdata, the contained data is not entity encoded but is put in the CDATA section. The cdata attributes must
be nameless.

The following query wraps the contact names in the CDATA sections. The process of writing the query to produce the universal
table and the processing of the universal table rowset to produce the resulting XML document is similar to the process described
in Example A and Example B.

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID],
 Customers.ContactName as [Customer!1!!cdata]
FROM Customers
ORDER BY [Customer!1!CustomerID]
FOR XML EXPLICIT

The partial result is shown below. The contained data is wrapped in the CDATA section, and the contained data is not entity
encoded (the contact name remains Mar<ia Ande!rs).

<Customer CustomerID="ALFKI">
 <![CDATA[Maria Anders]]>
</Customer>
<Customer CustomerID="ANATR">
 <![CDATA[Ana Trujillo]]>
</Customer>

G. Specify the ID and IDREF directives

In an XML document, an element attribute can be specified as an ID type attribute and the IDREF attributes in the document can
then be used to refer to them, thereby enabling intradocument links (similar to the primary key and foreign key relationship in
relational databases).

The query in this example returns an XML document that consists of the ID and IDREF attributes. The example retrieves customer
and order information. The query is to return this XML document:

<Customer CustomerID="ALFKI">
 <Order CustomerID="ALFKI" OrderDate="1997-08-25T00:00:00">
 <OrderID>10643</OrderID>
 </Order>
 <Order CustomerID="ALFKI" OrderDate="1997-10-03T00:00:00">
 <OrderID>10692</OrderID>
 </Order>
</Customer>
...

Assume also that the CustomerID attribute of the <Customer> element is to be of ID type and the CustomerID attribute of
<Order> element is to be an IDREF type. Because an order can belong to only one customer, an IDREF is specified.

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B. The only addition to the query is that the
directives (ID and IDREF) are specified as part of the columns.

This is the query:

SELECT 1 as Tag,
 NULL as Parent,
 Customers.CustomerID as [Customer!1!CustomerID!id],
 NULL as [Order!2!OrderID!element],
 NULL as [Order!2!CustomerID!idref],
 NULL as [Order!2!OrderDate]
FROM Customers
UNION ALL
SELECT 2,
 1,
 Customers.CustomerID,
 Orders.OrderID, Orders.CustomerID,
 Orders.OrderDate
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID
ORDER BY [Customer!1!CustomerID!id], [Order!2!OrderID!element]
FOR XML EXPLICIT, XMLDATA

The ID or IDREF directives specified in the query mark the elements/attributes in the XML-Data schema. In the query:

ID directive is specified as part of the universal table column name (Customer!1!CustomerID!id). This directive makes the
CustomerID attribute of the <Customer> element in the returned XML documents an ID type attribute. In the XML-Data
schema the dt:type value is ID in the AttributeType declaration.

IDREF directive is specified as part of the universal table column name (Order!2!OrderID!idref). This directive makes the
OrderID attribute of the <Order> element in the returned XML documents an IDREF type attribute. In the XML-Data
schema the dt:type value is IDREF in the AttributeType declaration.

You can obtain the XML-Data schema by specifying the XMLDATA schema option in the query. Note that the ID and IDREF
directives specified in the query overwrite the data types in the XML-Data schema.

This is the partial result. Because the XMLDATA schema option is specified in the query, the schema is prepended to the result.

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-
com:datatypes">
<ElementType name="Customer" content="mixed" model="open">
 <AttributeType name="CustomerID" dt:type="id"/>
 <attribute type="CustomerID"/>
</ElementType>
<ElementType name="Order" content="mixed" model="open">
 <AttributeType name="CustomerID" dt:type="idref"/>
 <AttributeType name="OrderDate" dt:type="dateTime"/>
 <element type="OrderID"/>
 <attribute type="CustomerID"/>
 <attribute type="OrderDate"/>
</ElementType>
<ElementType name="OrderID" content="textOnly" model="closed"

 dt:type="i4"/>
</Schema>
<Customer xmlns="x-schema:#Schema1" CustomerID="ALFKI">
 <Order CustomerID="ALFKI" OrderDate="1997-08-25T00:00:00">
 <OrderID>10643</OrderID>
 </Order>
 <Order CustomerID="ALFKI" OrderDate="1997-10-03T00:00:00">
 <OrderID>10692</OrderID>
 </Order>
</Customer>

H. Specify the ID and IDREFS attributes

An element attribute can be specified as an ID type attribute, and the IDREFS attribute can then be used to refer to it, thereby
enabling intradocument links (similar to the primary key, foreign key relationships in relational databases).

This example shows how the ID and IDREFS directives can be specified as part of the column names in a query to create XML
attributes of ID and IDREFS types. Because IDs cannot be integer values, the ID values in this example are converted (type casted);
prefixes are used for the ID values.

In the ORDER BY clause, the customer name is specified as the ordering attribute to show that attributes that are not ID can be
used to sort the result.

Assume these tables exist in the database:

-- Create Customers2 table.
CREATE TABLE Customers2 (CustomerID int primary key,
 CustomerName varchar(50))
GO
-- Insert records in Customers2 table.
INSERT INTO Customers2 values (1, 'Joe')
INSERT INTO Customers2 values (2, 'Bob')
INSERT INTO Customers2 values (3, 'Mary')
Go
-- Create Orders2 table.
CREATE TABLE Orders2 (OrderID int primary key,
 CustomerID int references Customers2)
GO
-- Insert records in Orders2 table.
INSERT INTO Orders2 values (5, 3)
INSERT INTO Orders2 values (6, 1)
INSERT INTO Orders2 values (9, 1)
INSERT INTO Orders2 values (3, 1)
INSERT INTO Orders2 values (8, 2)
INSERT INTO Orders2 values (7, 2)
GO

Assume a query is to return an XML document with this hierarchy:

<Cust CustID="1" CustName="Joe" OrderIDList="O-3 O-6 O-9">
 <Order Oid="O-3"/>
 <Order Oid="O-6"/>
 <Order Oid="O-9"/>
</Cust>
<Cust CustID="2" CustName="Bob" OrderIDList="O-7 O-8">
 <Order Oid="O-7"/>
 <Order Oid="O-8"/>
</Cust>
<Cust CustID="3" CustName="Mary" OrderIDList="O-5">
 <Order Oid="O-5"/>
</Cust>

The OrderIDList attribute of the <Cust> element is a multivalued attribute referring to the Oid attribute of <Order> element. To
establish this link, the Oid attribute must be declared of ID type, and the OrderIDList attribute of the <Cust> element must be
declared of IDREFS type. Because a customer can place many orders, IDREFS type is used.

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B. The only addition to the query is that the
directives (ID and IDREFS) are specified as part of the columns.

This is the query:

-- Generate Customer element without IDREFS attribute.
SELECT 1 AS tag,
 NULL AS parent,
 CustomerID AS "Cust!1!CustID",
 CustomerName AS "Cust!1!CustName",

 NULL AS "Cust!1!OrderIDList!idrefs",
 NULL AS "Order!2!Oid!id"
FROM Customers2
UNION ALL
-- Now add the IDREFS. Note that Customers2.CustomerName
-- is repeated because it is listed in the ORDER BY clause
-- (otherwise, NULL would suffice).
SELECT 1 AS tag,
 NULL AS parent,
 Customers2.CustomerID,
 Customers2.CustomerName,
 'O-'+CAST(Orders2.OrderID as varchar(5)),
 NULL
FROM Customers2 join Orders2 on Customers2.CustomerID = Orders2.CustomerID

UNION ALL
-- Now add the subelements (Orders2).
-- Customers2.CustomerID is repeated because it is the parent key.
-- Customers2.CustomerName is repeated because it is listed
-- in the ORDER BY clause.
SELECT 2 AS tag,
 1 AS parent,
 Customers2.CustomerID,
 Customers2.CustomerName,
 NULL,
 'O-'+CAST(Orders2.OrderID as varchar(5))
FROM Customers2 JOIN Orders2 ON Customers2.CustomerID = Orders2.CustomerID

-- Now order by name and by key. No order on the last column
-- is required because the key of Orders2 is not a parent.
ORDER BY "Cust!1!CustID", "Order!2!Oid!id", "Cust!1!OrderIDList!idrefs"
FOR XML EXPLICIT, XMLDATA

The ID or IDREFS directives specified in the query mark the elements/attributes in the XML-Data schema. In the query:

ID directive is specified as part of the universal table column name (Order!2!Oid!id). The directive makes the Oid attribute
of the <Order> element in the returned XML documents an ID type attribute. In the XML-Data schema the dt:type value is
ID in the AttributeType declaration.

IDREF directive is specified as part of the universal table column name (Cust!1!OrderIDList!idrefs). The directive makes the
OrderIDList attribute of the <Cust> element in the returned XML documents an IDREF type attribute. In the XML-Data
schema the dt:type value is IDREFS in the AttributeType declaration.

You can obtain the XML-Data schema by specifying the XMLDATA option in the query. Note that the ID and IDREFS directives
specified in the query overwrite the data types in the XML-Data schema.

This is the result:

<Schema name="Schema8" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="Cust" content="mixed" model="open">
 <AttributeType name="CustID" dt:type="i4"/>
 <AttributeType name="CustName" dt:type="string"/>
 <AttributeType name="OrderIDList" dt:type="idrefs"/>
 <attribute type="CustID"/>
 <attribute type="CustName"/>
 <attribute type="OrderIDList"/>
 </ElementType>
 <ElementType name="Order" content="mixed" model="open">
 <AttributeType name="Oid" dt:type="id"/>
 <attribute type="Oid"/>
 </ElementType>
 </Schema>
 <Cust xmlns="x-schema:#Schema8" CustID="1" CustName="Joe"
 OrderIDList="O-3 O-6 O-9">
 <Order Oid="O-3"/>
 <Order Oid="O-6"/>
 <Order Oid="O-9"/>
 </Cust>
 <Cust xmlns="x-schema:#Schema8" CustID="2" CustName="Bob"
 OrderIDList="O-7 O-8">
 <Order Oid="O-7"/>
 <Order Oid="O-8"/>
 </Cust>
 <Cust xmlns="x-schema:#Schema8" CustID="3" CustName="Mary"
 OrderIDList="O-5">
 <Order Oid="O-5"/>
 </Cust>

I. Specify the xmltext directive

This example shows how data in the overflow column is addressed using the xmltext directive in a SELECT statement using
EXPLICIT mode.

Consider the Person table. This table has the Overflow column that stores unconsumed part of XML document.

CREATE TABLE Person(PersonID varchar(5), PersonName varchar(20), Overflow nvarchar(200))
INSERT INTO Person VALUES ('P1','Joe',N'<SomeTag attr1="data">content</SomeTag>')
INSERT INTO Person VALUES ('P2','Joe',N'<SomeTag attr2="data"/>')
INSERT INTO Person VALUES ('P3','Joe',N'<SomeTag attr3="data" PersonID="P">content</SomeTag>')

This query retrieves columns from the Person table. For the Overflow column, AttributeName is not specified, but directive is set
to xmltext as part of providing universal table column name.

SELECT 1 as Tag, NULL as parent,
 PersonID as [Parent!1!PersonID],
 PersonName as [Parent!1!PersonName],
 overflow as [Parent!1!!xmltext] -- No AttributeName; xmltext directive
FROM Person
FOR XML EXPLICIT

Because AttributeName is not specified for the Overflow column and the xmltext directive is specified, in the resulting XML
document the attributes in the <overflow> element are appended to the attribute list of the enclosing <Parent> element, and
because the PersonID attribute in the <xmltext> element conflicts with the PersonID attribute retrieved on the same element
level, the attribute in the <xmltext> element is ignored (even if PersonID is NULL). Generally, an attribute overrides an attribute
of the same name in the overflow.

This is the result:

<Parent PersonID="P1" PersonName="Joe" attr1="data">
content</Parent>
<Parent PersonID="P2" PersonName="Joe" attr2="data">
</Parent>
<Parent PersonID="P3" PersonName="Joe" attr3="data">
content</Parent>

If the overflow data had subelements and the same query is specified, the subelements in the Overflow column are added as the
subelements of the enclosing <Parent> element.

For example, change the data in the Person table so that the Overflow column now has subelements:

TRUNCATE TABLE Person
INSERT INTO Person VALUES ('P1','Joe',N'<SomeTag attr1="data">content</SomeTag>')
INSERT INTO Person VALUES ('P2','Joe',N'<SomeTag attr2="data"/>')
INSERT INTO Person VALUES ('P3','Joe',N'<SomeTag attr3="data" PersonID="P"><name>content</name></SomeTag>')

If the same query is executed, the subelements in the <xmltext> element are added as subelements of the enclosing <Parent>
element.

SELECT 1 as Tag, NULL as parent,
 PersonID as [Parent!1!PersonID],
 PersonName as [Parent!1!PersonName],
 overflow as [Parent!1!!xmltext] -- no AttributeName, xmltext directive
FROM Person
FOR XML EXPLICIT

This is the result:

<Parent PersonID="P1" PersonName="Joe" attr1="data">
content</Parent>
<Parent PersonID="P2" PersonName="Joe" attr2="data">
</Parent>
<Parent PersonID="P3" PersonName="Joe" attr3="data">
<name>content</name></Parent>

If AttributeName is specified with the xmltext directive, the attributes of the <overflow> element are added as attributes of the
subelements of the enclosing <Parent> element. The name specified for AttributeName becomes the name of the subelement

In this query, AttributeName (<overflow>) is specified along with the xmltext directive.

SELECT 1 as Tag, NULL as parent,
 PersonID as [Parent!1!PersonID],
 PersonName as [Parent!1!PersonName],
 overflow as [Parent!1!overflow!xmltext] -- overflow is AttributeName
 -- xmltext is directive

FROM Person
FOR XML EXPLICIT

This is the result:

<Parent PersonID="P1" PersonName="Joe">
<overflow attr1="data">
content</overflow>
</Parent>
<Parent PersonID="P2" PersonName="Joe">
<overflow attr2="data"/>
</Parent>
<Parent PersonID="P3" PersonName="Joe">
<overflow attr3="data" PersonID="P">
<name>content</name></overflow>
</Parent>

In this query element, directive is specified for PersonName attribute. This results in PersonName added as subelement of the
enclosing <Parent> element. The attributes of the <xmltext> are still appended to the enclosing <Parent> element. The contents
of <overflow> element (subelements and so on) are prepended to the other subelements of the enclosing <Parent> elements.

SELECT 1 as Tag, NULL as parent,
 PersonID as [Parent!1!PersonID],
 PersonName as [Parent!1!PersonName!element], -- element directive
 overflow as [Parent!1!!xmltext]
FROM Person
FOR XML EXPLICIT

This is the result:

<Parent PersonID="P1" attr1="data">
 content <PersonName>Joe</PersonName>
</Parent>
<Parent PersonID="P2" attr2="data">
 <PersonName>Joe</PersonName>
</Parent>
<Parent PersonID="P3" attr3="data">
 <name>content</name> <PersonName>Joe</PersonName>
</Parent>

If the xmltext column data contain attributes on the root element, these attributes are not shown in XML-Data schema and the
MSXML parser does not validate the resulting XML document fragment, for example:

SELECT 1 as Tag,
 0 as Parent,
 N'<overflow a="1"/>' as 'overflow!1!!xmltext'
FOR XML EXPLICIT, xmldata

This is the result. Note that in the returned schema, the overflow attribute a is missing from the schema.

<Schema name="Schema12" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="overflow" content="mixed" model="open">
 </ElementType>
</Schema>
 <overflow xmlns="x-schema:#Schema12" a="1"> </overflow>

J. Obtain an XM L document consisting of customers, orders, and order details

The query in this example generates the universal table rowset described in the conceptual discussion earlier in the topic.

Assume this is the hierarchy to be generated:

<Customer cid="C1" name="Janine">
 <Order id="O1" date="1/20/1996">
 <OrderDetail id="OD1" pid="P1"/>
 <OrderDetail id="OD2" pid="P2"/>
 </Order>
 <Order id="O2" date="3/29/1997">
 ...
</Customer>

The process of writing the query to produce the universal table and the processing of the universal table rowset to produce the
resulting XML document is similar to the process described in Example A and Example B.

SELECT 1 as Tag,
 NULL as Parent,

 C.CustomerID as [Customer!1!cid],
 C.ContactName as [Customer!1!name],
 NULL as [Order!2!id],
 NULL as [Order!2!date],
 NULL as [OrderDetail!3!id!id],
 NULL as [OrderDetail!3!pid!idref]
FROM Customers C
UNION ALL
SELECT 2 as Tag,
 1 as Parent,
 C.CustomerID,
 NULL,
 O.OrderID,
 O.OrderDate,
 NULL,
 NULL
FROM Customers C, Orders O
WHERE C.CustomerID = O.CustomerID
UNION ALL
SELECT 3 as Tag,
 2 as Parent,
 C.CustomerID,
 NULL,
 O.OrderID,
 NULL,
 OD.OrderID,
 OD.ProductID
FROM Customers C, Orders O, [Order Details] OD
WHERE C.CustomerID = O.CustomerID
AND O.OrderID = OD.OrderID
ORDER BY [Customer!1!cid], [Order!2!id]
FOR XML EXPLICIT

This is the partial result:

<Customer cid="ALFKI" name="Maria Anders">
 <Order id="10643" date="1997-08-25T00:00:00">
 <OrderDetail id="10643" pid="28"></OrderDetail>
 <OrderDetail id="10643" pid="39"></OrderDetail>
 </Order>
 <Order id="10692" date="1997-10-03T00:00:00">
 <OrderDetail id="10692" pid="63"></OrderDetail>
 </Order>
 <Order id="10702" date="1997-10-13T00:00:00">
 <OrderDetail id="10702" pid="3"></OrderDetail>
 <OrderDetail id="10702" pid="76"></OrderDetail>
 </Order>
</Customer>

See Also

SELECT

XML and Internet Support (SQL Server 2000)

Specifying the XMLDATA Schema Option in a Query
Specifying the XMLDATA Schema Option in a Query

The primary purpose for specifying XMLDATA in a query is to receive XML data type information that can be used where data
types are necessary (for example, in handling numeric expressions). Otherwise, everything in an XML document is a textual string.
Generating an XML-Data schema is an overhead on the server, is likely to affect performance, and should be used only when data
types are needed.

If the database column from which values are retrieved is of type sql_variant, there is no data type information in the XML-Data
schema. If a given query designates different XML elements with same name, XMLDATA may produce an invalid XML-Data
schema. This is because element name collisions and data type names are not resolved (you might have two elements with same
name but different data types).

Example

A. Specify the XM LDATA schema option

This query specifies the XMLDATA schema option. The query returns customer and order information.

SELECT Customers.CustomerID, ContactName,
 Orders.OrderID, OrderDate, Orders.CustomerID,
 ProductID, Quantity
FROM Customers, Orders, [Order Details]
WHERE Customers.CustomerID = Orders.CustomerID
AND Orders.OrderID = [Order Details].OrderID
ORDER BY Customers.CustomerID, Orders.OrderID
FOR XML AUTO, XMLDATA

This is the partial result. The XML-Data schema is generated and prepended to the result. The table name [Order Details] is an
invalid XML name because of the space in the table name. This invalid character is converted into escaped numeric encoding.

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-
com:datatypes">
<ElementType name="Customers" content="eltOnly" model="closed">
<element type="Orders"/>
 <AttributeType name="CustomerID" dt:type="string"/>
 <AttributeType name="ContactName" dt:type="string"/>
 <attribute type="CustomerID"/>
 <attribute type="ContactName"/>
</ElementType>
<ElementType name="Orders" content="eltOnly" model="closed">
<element type="Order_0020_Details"/>
 <AttributeType name="OrderID" dt:type="i4"/>
 <AttributeType name="OrderDate" dt:type="dateTime"/>
 <AttributeType name="CustomerID" dt:type="string"/>
 <attribute type="OrderID"/>
 <attribute type="OrderDate"/>
 <attribute type="CustomerID"/>
</ElementType>
<ElementType name="Order_0020_Details" content="empty" model="closed">
 <AttributeType name="ProductID" dt:type="i4"/>
 <AttributeType name="Quantity" dt:type="i2"/>
 <attribute type="ProductID"/>
 <attribute type="Quantity"/>
</ElementType>
</Schema>
<Customers xmlns="x-schema:#Schema1" CustomerID="ALFKI" ContactName="Maria Anders">
 <Orders OrderID="10643" OrderDate="1997-08-25T00:00:00"
 CustomerID="ALFKI">
 <Order_0020_Details ProductID="28" Quantity="15"/>
 <Order_0020_Details ProductID="39" Quantity="21"/>
 </Orders>
 <Orders OrderID="10692" OrderDate="1997-10-03T00:00:00"
 CustomerID="ALFKI">
 <Order_0020_Details ProductID="63" Quantity="20"/>
 </Orders>
</Customers>

The query in the following example assigns the same alias to the EmployeeID and LastName columns, and Employees table
specified in the FROM clause:

SELECT EmployeeID emp,

 LastName emp
FROM Employees emp
FOR XML AUTO, ELEMENTS, XMLDATA

Only the resulting XML-Data schema is shown. In the schema there are three <emp> elements. Also note that two of the <emp>
elements have different data types.

<Schema name="Schema2" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-
com:datatypes">
<ElementType name="emp" content="mixed" model="closed">
 <element type="emp"/>
 <element type="emp"/>
</ElementType>
<ElementType name="emp" content="textOnly" model="closed" dt:type="i4"/>
<ElementType name="emp" content="textOnly" model="closed" dt:type="string"/>
</Schema>

XML and Internet Support (SQL Server 2000)

Writing XML Using OPENXML
 New Information - SQL Server 2000 SP3.

OPENXML is a Transact-SQL keyword that provides a rowset over in-memory XML documents. OPENXML is a rowset provider
similar to a table or a view. OPENXML allows access to XML data as if it is a relational rowset by providing a rowset view of the
internal representation of an XML document. The records in the rowset can be stored in database tables (similar to the rowsets
provided by tables and views).

OPENXML can be used in SELECT, and SELECT INTO statements wherever rowset providers, such as a table, a view or
OPENROWSET can appear as the source. For information about the syntax of OPENXML, see OPENXML.

To write queries against an XML document using OPENXML, you must first call sp_xml_preparedocument, which parses the
XML document and returns a handle to the parsed document that is ready for consumption. The parsed document is a tree
representation of various nodes (elements, attributes, text, comment, and so on) in the XML document. The document handle is
passed to OPENXML, which then provides a rowset view of the document based on the parameters passed to it.

Security Note If sufficient memory is not available, you may not want to parse large XML documents

The internal representation of an XML document must be removed from memory by calling sp_xml_removedocument system
stored procedure to free the memory.

This illustration shows the process.

Note To understand OPENXML, familiarity with XPath queries and understanding of XML is required. For more information
about XPath support in Microsoft® SQL Server™ 2000, see Using XPath Queries.

OPENXML Parameters

The parameters to OPENXML include:

An XML document handle (idoc)

An XPath expression to identify the nodes to be mapped to rows (rowpattern)

A description of the rowset to be generated

Mapping between the rowset columns and the XML nodes

XM L Document Handle (idoc)

The document handle is returned by the sp_xml_preparedocument stored procedure.

XPath Expression to Identify the N odes to Be Processed (rowpattern)

The XPath expression specified as rowpattern identifies a set of nodes in the XML document. Each node identified by rowpattern
corresponds to a single row in the rowset generated by OPENXML.

The nodes identified by the XPath expression can be any XML node (elements, attributes, processing instructions, and so on) in the
XML document. If rowpattern identifies a set of elements in the XML document, there is one row in the rowset for each element
node identified. For example, if rowpattern ends in an attribute, a row is created for each attribute node selected by rowpattern.

Description of the Rowset to Be Generated

A rowset schema must be provided to OPENXML to generate the rowset. You can specify the rowset schema by using the optional
WITH clause. These options are available for specifying the rowset schema:

Specify the complete schema in the WITH clause.

In specifying the rowset schema you specify the column names and their data types and their mapping to the XML
document.

You can specify the column pattern (using the ColPattern parameter in the SchemaDeclaration). The column pattern
specified is used to map a rowset column to the XML node identified by rowpattern and also to determine the type of
mapping.

If ColPattern is not specified for a column, the rowset column maps to the XML node with same name based on the
mapping specified by the flags parameter. However, if ColPattern is specified as part of schema specification in the WITH
clause, it overwrites the mapping specified in the flags parameter.

Specify the name of an existing table in the WITH clause.

You can simply specify an existing table name whose schema can be used by OPENXML to generate the rowset.

Do not specify the WITH clause.

In this case, OPENXML returns a rowset in the edge table format. This is called an edge table because, in this table format,
every edge in the parsed XML document tree maps to a row in the rowset.

Edge tables represent the fine-grained XML document structure (for example, element/attribute names, the document
hierarchy, the namespaces, processing instructions, and so on) in a single table. The edge table format allows you to get
additional information that is not exposed through the metaproperties. For more information about metaproperties, see
Specifying Metaproperties in OPENXML.

The additional information provided by edge table allows you to store and query the data type of an element/attribute, the
node type (element node, attribute node, or a value node), store and query information about the XML document structure,
and to possibly build your own XML document management system.

Using an edge table, you can write stored procedures that take XML documents as a BLOB input, produce the edge table,
and then extract and analyze the document on its finest level (find the document hierarchy, element/attribute names,
namespaces, processing instructions, and so on).

The edge table also can serve as a storage format for XML documents when mapping to other relational formats does not
make sense, and an ntext field is not providing enough structural information.

Whenever you would use an XML parser to examine the XML document, you can use edge table to get the same
information.

This table describes the structure of the edge table.

Column name Data type Description
id Bigint Is the unique ID of the document node.

The root element has an ID value 0. The negative ID
values are reserved.

parentid Bigint Identifies the parent of the node. The parent
identified by this ID is not necessarily the parent
element but it depends on the NodeType of the
node whose parent is identified by this ID. For
example, if the node is a text node, the parent of it
may be an attribute node.

If the node is at the top level in the XML document,
its ParentID is NULL.

nodetype Int Identifies the node type. Is an integer that
corresponds to the XML DOM node type numbering
(see DOM for node information).

Some of the node types are:

1 = Element node
2 = Attribute node
3 = Text node

localname nvarchar Gives the local name of the element or attribute. Is
NULL if the DOM object does not have a name.

prefix nvarchar Is the namespace prefix of the node name.
namespaceuri nvarchar Is the namespace URI of the node. If the value is

NULL, no namespace is present.
datatype nvarchar Is the actual data type of the element or attribute

row and is NULL otherwise. The data type is inferred
from the inline DTD or from the inline schema.

prev Bigint Is the XML ID of the previous sibling element. Is
NULL if there is no direct previous sibling.

text Ntext Contains the attribute value or the element content
in text form (or is NULL if the edge table entry does
not need a value).

M apping Between the Rowset Columns and the XM L N odes

In the OPENXML statement, you can optionally specify the type of mapping (attribute-centric, element-centric) between the
rowset columns and the XML nodes identified by the rowpattern. This information is used in transformation between the XML
nodes and the rowset columns.

There are two ways to specify the mapping (you can specify both):

Use the flags parameter.

The mapping specified by the flags parameter assumes name correspondence where the XML nodes map to corresponding
rowset columns with same name.

Use the ColPattern parameter.

ColPattern, an XPath expression, is specified as part of SchemaDeclaration in the WITH clause. The mapping specified in
ColPattern overwrites the mapping specified by flags parameter.

ColPattern can be used to specify the special nature of the mapping (in case of attribute-centric and element-centric
mapping) that overwrites or enhances the default mapping indicated by the flags.

ColPattern is specified if:

The column name in the rowset is different from the element/attribute name to which it is mapped. In this case
ColPattern is used to identify the XML element/attribute name to which the rowset column maps.

You want to map a metaproperty attribute to the column. In this case, ColPattern is used to identify the
metaproperty to which the rowset column maps. For more information about using metaproperties , see Specifying
Metaproperties in OPENXML.

Both the flags and ColPattern parameters are optional. If no mapping is specified, attribute-centric mapping (default value of flags
parameter) is assumed by default.

Attribute-centric M apping

If the flags parameter in OPENXML is set to attributes map to the columns in the rowset based on the name correspondence.
Name correspondence means that XML attributes of a given name are stored in a column in the rowset with the same name.

If the column name is different from the attribute name to which it maps, ColPattern must be specified.

If XML attribute has a namespace qualifier, the column name in the rowset must have the qualifier as well.

Element-centric M apping

Setting the flags parameter in OPENXML to 2 (XML_ELEMENTS) specifies the element-centric mapping. It is similar to attribute-
centric mapping except for these differences:

The name correspondence of the mapping (for example, a column mapping to an XML element with the same name)
chooses the noncomplex subelements, unless a column-level pattern is specified. In the retrieval case, if subelement is
complex (contains further subelements), the column is set to NULL. Attribute values of the subelements are disregarded.

Multiple subelements with the same name overwrite each other in the order retrieved. Fusion on the parent appends
subelement in case of name equivalence.

See Also

sp_xml_preparedocument

sp_xml_removedocument

OPENXML

XML and Internet Support (SQL Server 2000)

Using OPENXML
The examples in this topic show how OPENXML is used in creating a rowset view of an XML document. For information about the
syntax of OPENXML, see OPENXML. The examples show all aspects of OPENXML except specifying metaproperties in OPENXML.
For more information about specifying metaproperties in OPENXML, see Specifying Metaproperties in OPENXML.

Examples

In retrieving the data, rowpattern is used to identify the nodes in the XML document that determine the rows. rowpattern is
expressed in the XPath pattern language used in the MSXML XPath implementation. For example, if the pattern ends in an
element or an attribute, a row is created for each element or attribute node selected by rowpattern.

The flags value provides default mapping. In the SchemaDeclaration, if no ColPattern is specified, the mapping specified in flags is
assumed. The flags value is ignored if ColPattern is specified in SchemaDeclaration. The specified ColPattern determines the
mapping (attribute-centric or element-centric) and also the behavior in dealing with overflow and unconsumed data.

A. Execute a simple SELECT statement with OPEN XM L

The XML document in this example consists of the <Customer>, <Order>, and <OrderDetail> elements. The OPENXML
statement retrieves customer information in a two-column rowset (CustomerID and ContactName) from the XML document.

First, the sp_xml_preparedocument stored procedure is called to obtain a document handle. This document handle is passed to
OPENXML.

In the OPENXML statement:

rowpattern (/ROOT/Customer) identifies the <Customer> nodes to process.

The flags parameter value is set to 1 indicating attribute-centric mapping. As a result, the XML attributes map to the
columns in the rowset defined in SchemaDeclaration.

In SchemaDeclaration (in the WITH clause), the specified ColName values match the corresponding XML attribute names.
Therefore, the ColPattern parameter is not specified in SchemaDeclaration.

And then, the SELECT statement retrieves all the columns in the rowset provided by OPENXML.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5"
 OrderDate="1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3"
 OrderDate="1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer',1)
 WITH (CustomerID varchar(10),
 ContactName varchar(20))
EXEC sp_xml_removedocument @idoc

This is the result:

CustomerID ContactName
---------- --------------------
VINET Paul Henriot
LILAS Carlos Gonzlez

If the same SELECT statement is executed with flags set to 2, indicating element-centric mapping, because <Customer>
elements do not have any subelements, the values of CustomerID and ContactName for both the customers are returned as
NULL.

If in the XML document, the <CustomerID> and <ContactName> are subelements, the element-centric mapping retrieves the
values.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer>
 <CustomerID>VINET</CustomerID>
 <ContactName>Paul Henriot</ContactName>
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5" OrderDate="1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer>
 <CustomerID>LILAS</CustomerID>
 <ContactName>Carlos Gonzlez</ContactName>
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3" OrderDate="1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer',2)
 WITH (CustomerID varchar(10),
 ContactName varchar(20))
EXEC sp_xml_removedocument @idoc

This is the result:

CustomerID ContactName
---------- --------------------
VINET Paul Henriot
LILAS Carlos Gonzlez

B. Specify ColPattern for mapping between rowset columns and the XM L attributes/elements

This example shows how the XPath pattern is specified in the optional ColPattern parameter to provide mapping between rowset
columns and the XML attributes (and elements).

The XML document in this example consists of the <Customer>, <Order>, and <OrderDetail> elements. The OPENXML
statement retrieves customer and order information as a rowset (CustomerID, OrderDate, ProdID, and Qty) from the XML
document.

First, the sp_xml_preparedocument stored procedure is called to obtain a document handle. This document handle is passed to
OPENXML.

In the OPENXML statement:

rowpattern (/ROOT/Customer/Order/OrderDetail) identifies the <OrderDetail> nodes to process.

For illustration purposes, the flags parameter value is set to 2 indicating element-centric mapping. However, the mapping
specified in ColPattern overwrites this mapping (the XPath pattern specified in ColPattern maps the columns in the rowset
to attributes thus resulting in an attribute-centric mapping).

In SchemaDeclaration (in the WITH clause), ColPattern is also specified with the ColName and ColType parameters. The optional
ColPattern is the XPath pattern specified to indicate:

The OrderID, CustomerID, and OrderDate columns in the rowset map to the attributes of the parent of the nodes
identified by rowpattern. rowpattern identifies the <OrderDetail> nodes. Therefore, the CustomerID and OrderDate
columns map to CustomerID and OrderDate attributes of the <Order> element.

The ProdID and Qty columns in the rowset map to the ProductID and Quantity attributes of the nodes identified in
rowpattern.

And then the SELECT statement retrieves all the columns in the rowset provided by OPENXML.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5"
 OrderDate="1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3"
 OrderDate="1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT stmt using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer/Order/OrderDetail',2)
 WITH (OrderID int '../@OrderID',
 CustomerID varchar(10) '../@CustomerID',
 OrderDate datetime '../@OrderDate',
 ProdID int '@ProductID',
 Qty int '@Quantity')

This is the result:

OrderID CustomerID OrderDate ProdID Qty

10248 VINET 1996-07-04 00:00:00.000 11 12
10248 VINET 1996-07-04 00:00:00.000 42 10
10283 LILAS 1996-08-16 00:00:00.000 72 3

The XPath pattern specified as ColPattern can also be specified to map the XML elements to the rowset columns (resulting in
element-centric mapping). In the following example, the XML document <CustomerID> and <OrderDate> are subelements of
<Orders> element. Because ColPattern overwrites the mapping specified in flags parameter, the flags parameter is not specified
in OPENXML.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order EmployeeID="5" >
 <OrderID>10248</OrderID>
 <CustomerID>VINET</CustomerID>
 <OrderDate>1996-07-04T00:00:00</OrderDate>
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order EmployeeID="3" >
 <OrderID>10283</OrderID>
 <CustomerID>LILAS</CustomerID>
 <OrderDate>1996-08-16T00:00:00</OrderDate>
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT stmt using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer/Order/OrderDetail')
 WITH (CustomerID varchar(10) '../CustomerID',
 OrderDate datetime '../OrderDate',
 ProdID int '@ProductID',
 Qty int '@Quantity')
EXEC sp_xml_removedocument @idoc

C. Combining attribute-centric and element-centric mapping

In this example, the flags parameter is set to 3, indicating that both attribute-centric and element-centric mapping is to be
applied. In this case, the attribute-centric mapping is applied first, and then element-centric mapping is applied for all the
columns not yet dealt with.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" >
 <ContactName>Paul Henriot</ContactName>
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5"
 OrderDate="1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" >
 <ContactName>Carlos Gonzlez</ContactName>
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3"
 OrderDate="1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'

-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer',3)
 WITH (CustomerID varchar(10),
 ContactName varchar(20))

EXEC sp_xml_removedocument @idoc

This is the result

CustomerID ContactName
---------- --------------------
VINET Paul Henriot
LILAS Carlos Gonzlez

The attribute-centric mapping is applied for CustomerID. There is no ContactName attribute in the <Customers> element;
therefore, element-centric mapping is applied.

D. Specify text() XPath function as ColPattern

The XML document in this example consists of the <Customer> and <Order> elements. The OPENXML statement retrieves a
rowset consisting of the oid attribute from the <Order> element, the ID of the parent of the node (identified by rowpattern), and
the leaf-value string of the element content.

First, the sp_xml_preparedocument stored procedure is called to obtain a document handle. This document handle is passed to
OPENXML.

In the OPENXML statement:

rowpattern (/root/Customer/Order) identifies the <Order> nodes to process.

The flags parameter value is set to 1, indicating attribute-centric mapping. As a result, the XML attributes map to the
rowset columns defined in SchemaDeclaration.

In SchemaDeclaration (in the WITH clause), the rowset column names, oid and amount, match the corresponding XML
attribute names. Therefore, the ColPattern parameter is not specified. For the comment column in the rowset, the XPath
function (text()) is specified as ColPattern. This overwrites the attribute-centric mapping specified in flags, and the
column contains the leaf-value string of the element content.

And then, the SELECT statement retrieves all the columns in the rowset provided by OPENXML.

DECLARE @idoc int
DECLARE @doc varchar(1000)
--sample XML document
SET @doc ='

<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was very satisfied
 </Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue
 white red">
 <Urgency>Important</Urgency>
 Happy Customer.
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>
'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/root/Customer/Order', 1)
 WITH (oid char(5),
 amount float,
 comment ntext 'text()')
EXEC sp_xml_removedocument @idoc

This is the result:

oid amount comment
----- ----------- -----------------------------
O1 3.5 NULL
O2 13.4 Customer was very satisfied
O3 100.0 Happy Customer.
O4 10000.0 NULL

E. Specify TableName in the WITH clause

This example specifies TableName in the WITH clause instead of SchemaDeclaration in the WITH clause. This is useful if you have
a table with the structure you want and no column patterns (ColPattern parameter) are required.

The XML document in this example consists of the <Customer> and <Order> elements. The OPENXML statement retrieves order
information in a three-column rowset (oid, date, and amount) from the XML document.

First, the sp_xml_preparedocument stored procedure is called to obtain a document handle. This document handle is passed to
OPENXML.

In the OPENXML statement:

rowpattern (/root/Customer/Order) identifies the <Order> nodes to process.

There is no SchemaDeclaration in the WITH clause. Instead, a table name is specified. Therefore, the table schema is used as
the rowset schema.

The flags parameter value is set to 1, indicating attribute-centric mapping. Therefore, attributes of the elements (identified
by rowpattern) map to the rowset columns with the same name.

And then the SELECT statement retrieves all the columns in the rowset provided by OPENXML.

-- Create a test table. This table schema is used by OPENXML as the
-- rowset schema.
CREATE TABLE T1(oid char(5), date datetime, amount float)
DECLARE @idoc int
DECLARE @doc varchar(1000)
-- Sample XML document
SET @doc ='
<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was very
 satisfied</Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue
 white red">

 <Urgency>Important</Urgency>
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>
'
--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/root/Customer/Order', 1)
 WITH T1
EXEC sp_xml_removedocument @idoc

This is the result:

oid date amount
----- --------------------------- ----------
O1 1996-01-20 00:00:00.000 3.5
O2 1997-04-30 00:00:00.000 13.4
O3 1999-07-14 00:00:00.000 100.0
O4 1996-01-20 00:00:00.000 10000.0

F. Obtain the result in an edge table format

In this example, the WITH clause is not specified in the OPENXML statement. As a result, the rowset generated by OPENXML has
an edge table format. The SELECT statement returns all the columns in the edge table.

The sample XML document in the example consists of the <Customer>, <Order>, and <OrderDetail> elements.

First, the sp_xml_preparedocument stored procedure is called to obtain a document handle. This document handle is passed to
OPENXML.

In the OPENXML statement:

rowpattern (/ROOT/Customer) identifies the <Customer> nodes to process.

The WITH clause is not provided; therefore, OPENXML returns the rowset in an edge table format.

And then the SELECT statement retrieves all the columns in the edge table.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order CustomerID="VINET" EmployeeID="5" OrderDate=
 "1996-07-04T00:00:00">
 <OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order CustomerID="LILAS" EmployeeID="3" OrderDate=
 "1996-08-16T00:00:00">
 <OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer')
EXEC sp_xml_removedocument @idoc

The result is returned as an edge table. You can write queries against the edge table to obtain information:

The following query returns the number of Customer nodes in the document. Because the WITH clause is not specified,
OPENXML returns an edge table. The SELECT statement queries the edge table.

SELECT count(*)
FROM OPENXML(@idoc, '/')
WHERE localname = 'Customer'

This query returns local names of XML nodes of element type.

SELECT distinct localname
FROM OPENXML(@idoc, '/')
WHERE nodetype = 1
ORDER BY localname

G. Specify rowpattern ending with an attribute

The XML document in this example consists of the <Customer>, <Order>, and <OrderDetail> elements. The OPENXML
statement retrieves order details information in a three-column rowset (ProductID, Quantity, and OrderID) from the XML
document.

First, the sp_xml_preparedocument is called to obtain a document handle. This document handle is passed to OPENXML.

In the OPENXML statement:

rowpattern (/ROOT/Customer/Order/OrderDetail/@ProductID) ends with an XML attribute (ProductID). In the resulting
rowset, a row is created for each attribute node selected in the XML document.

In this example, the flags parameter is not specified. Instead, the mappings are specified by the ColPattern parameter.

In SchemaDeclaration (in the WITH clause), ColPattern is also specified with the ColName and ColType parameters. The optional
ColPattern is the XPath pattern specified to indicate:

The XPath pattern (.) specified as ColPattern for the ProdID column in the rowset identifies the context node (current node).
As per the rowpattern specified, it is the ProductID attribute of the <OrderDetail> element.

The ColPattern, ../@Quantity, specified for the Qty column in the rowset identifies the Quantity attribute of the parent
(<OrderDetail>) node of the context node (<ProductID>).

Similarly, the ColPattern, ../../@OrderID, specified for the OID column in the rowset identifies the OrderID attribute of the
parent (<Order>) of the parent (<OrderDetail>) node of the context node (<ProductID>).

And then, the SELECT statement retrieves all the columns in the rowset provided by OPENXML.

DECLARE @idoc int
DECLARE @doc varchar(1000)
--Sample XML document
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5" OrderDate=
 "1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3" OrderDate=
 "1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT stmt using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer/Order/OrderDetail/@ProductID')
 WITH (ProdID int '.',
 Qty int '../@Quantity',
 OID int '../../@OrderID')
EXEC sp_xml_removedocument @idoc

This is the result:

ProdID Qty OID
----------- ----------- -------
11 12 10248
42 10 10248

72 3 10283

H. Specify an XM L document with multiple text nodes

If you have multiple text nodes in an XML document, a SELECT statement with a ColPattern (text()) returns only the first text node
instead of all. For example:

DECLARE @h int
EXEC sp_xml_preparedocument @h OUTPUT,
 N'
 <root xmlns:a="urn:1">
 <a:Elem abar="asdf">
 T<a>aU
 </a:Elem>
 </root>',
 '<ns xmlns:b="urn:1" />'

SELECT * FROM openxml(@h, '/root/b:Elem')
 WITH (Col1 varchar(20) 'text()')

The SELECT statement returns T as the result (and not TaU)

I. Retrieve individual values from multivalued attributes

An XML document can have attributes that are multivalued. For example the IDREFS attribute can be multivalued. In an XML
document, the multivalued attribute values are specified as a string with the values separated by a space. In the following XML
document, the attends attribute of the <Student> element and the attendedBy attribute of <Class> are multivalued. Retrieving
individual values from a multivalued XML attribute and storing each value in a separate row in the database requires additional
work. This example shows the process.

This sample XML document consists of the following elements:

<Student>

Consists of id (student ID), name, and attends attributes. The attends attribute is a multivalued attribute.

<Class>

Consists of id (class ID), name, and attendedBy attributes. The attendedBy attribute is a multivalued attribute.

This attends attribute in <Student> and the attendedBy attribute in <Class> represent a m:n relationship between Student
and Class tables. A student can take many classes and a class can have many students.

Assume you want to shred this document and save it in the database as follows:

Save the <Student> data in the Students table.

Save the <Class> data in the Courses table.

Save he m:n relationship data (between Student and Class) in the CourseAttendence table. Additional work is required to
extract the values. To retrieve this information and store it in the table, use these stored procedures:

Insert_Idrefs_Values

Inserts the values of course ID and student ID in the CourseAttendence table.

Extract_idrefs_values

Extracts the individual student IDs from each <Course> element. An edge table is used to retrieve these values.

Here are the steps:

1. Create the following tables:

DROP TABLE CourseAttendance
DROP TABLE Students
DROP TABLE Courses
GO
CREATE TABLE Students(
 id varchar(5) primary key,

 name varchar(30)
)
GO
CREATE TABLE Courses(
 id varchar(5) primary key,
 name varchar(30),
 taughtBy varchar(5)
)
GO
CREATE TABLE CourseAttendance(
 id varchar(5) references Courses(id),
 attendedBy varchar(5) references Students(id),
 constraint CourseAttendance_PK primary key (id, attendedBy)
)
go

2. Create these stored procedures:

DROP PROCEDURE f_idrefs
GO
CREATE PROCEDURE f_idrefs
 @t varchar(500),
 @idtab varchar(50),
 @id varchar(5)
AS
DECLARE @sp int
DECLARE @att varchar(5)
SET @sp = 0
WHILE (LEN(@t) > 0)
BEGIN
 SET @sp = CHARINDEX(' ', @t+ ' ')
 SET @att = LEFT(@t, @sp-1)
 EXEC('INSERT INTO '+@idtab+' VALUES ('''+@id+''', '''+@att+''')')
 SET @t = SUBSTRING(@t+ ' ', @sp+1, LEN(@t)+1-@sp)
END
Go

DROP PROCEDURE fill_idrefs
GO
CREATE PROCEDURE fill_idrefs
 @xmldoc int,
 @xpath varchar(100),
 @from varchar(50),
 @to varchar(50),
 @idtable varchar(100)
AS
DECLARE @t varchar(500)
DECLARE @id varchar(5)

/* Temporary Edge table */
SELECT *
INTO #TempEdge
FROM OPENXML(@xmldoc, @xpath)

DECLARE fillidrefs_cursor CURSOR FOR
 SELECT CAST(iv.text AS nvarchar(200)) AS id,
 CAST(av.text AS nvarchar(4000)) AS refs
 FROM #TempEdge c, #TempEdge i,
 #TempEdge iv, #TempEdge a, #TempEdge av
 WHERE c.id = i.parentid

 AND UPPER(i.localname) = UPPER(@from)
 AND i.id = iv.parentid
 AND c.id = a.parentid
 AND UPPER(a.localname) = UPPER(@to)
 AND a.id = av.parentid

OPEN fillidrefs_cursor
FETCH NEXT FROM fillidrefs_cursor INTO @id, @t
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 IF (@@FETCH_STATUS <> -2)
 BEGIN
 execute f_idrefs @t, @idtable, @id
 END
 FETCH NEXT FROM fillidrefs_cursor INTO @id, @t
END
CLOSE fillidrefs_cursor
DEALLOCATE fillidrefs_cursor
Go

3. This is the sample document that is shredded and the data is stored in the preceding tables.

DECLARE @h int
EXECUTE sp_xml_preparedocument @h OUTPUT, '
<Data>
 <Student id = "s1" name = "Student1" attends = "c1 c3 c6" />
 <Student id = "s2" name = "Student2" attends = "c2 c4" />
 <Student id = "s3" name = "Student3" attends = "c2 c4 c6" />
 <Student id = "s4" name = "Student4" attends = "c1 c3 c5" />
 <Student id = "s5" name = "Student5" attends = "c1 c3 c5 c6" />
 <Student id = "s6" name = "Student6" />

 <Class id = "c1" name = "Intro to Programming"
 attendedBy = "s1 s4 s5" />
 <Class id = "c2" name = "Databases"
 attendedBy = "s2 s3" />
 <Class id = "c3" name = "Operating Systems"
 attendedBy = "s1 s4 s5" />
 <Class id = "c4" name = "Networks" attendedBy = "s2 s3" />
 <Class id = "c5" name = "Algorithms and Graphs"
 attendedBy = "s4 s5"/>
 <Class id = "c6" name = "Power and Pragmatism"
 attendedBy = "s1 s3 s5" />
</Data>'

INSERT INTO Students SELECT * FROM OPENXML(@h, '//Student') WITH Students

INSERT INTO Courses SELECT * FROM OPENXML(@h, '//Class') WITH Courses
/* Using the edge table */
EXECUTE fill_idrefs @h, '//Class', 'id', 'attendedby', 'CourseAttendance'

SELECT * FROM Students
SELECT * FROM Courses
SELECT * FROM CourseAttendance

EXECUTE sp_xml_removedocument @h

See Also

sp_xml_preparedocument

sp_xml_removedocument

OPENXML

Writing XML Using OPENXML

XML and Internet Support (SQL Server 2000)

Specifying Metaproperties in OPENXML
Metaproperty attributes in an XML document are attributes that describe the properties of an XML item (element, attribute, or any
other DOM node). These attributes do not physically exist in the XML document text; however, OPENXML provides these
metaproperties for all the XML items. These metaproperties allow you to extract information (such as local positioning and
namespace information) of XML nodes, which provide more details than is visible in the textual representation.

You can map these metaproperties to the rowset columns in an OPENXML statement using the ColPattern parameter. The
columns will contain the values of the metaproperties to which they are mapped. For more information about the syntax of
OPENXML, see OPENXML.

To access the metaproperty attributes, a namespace specific to Microsoft® SQL Server™ 2000 (urn:schemas-microsoft-
com:xml-metaprop) is provided that allows the user to access the metaproperty attributes. If the result of an OPENXML query is
returned in an edge table format, the edge table contains one column for each metaproperty attribute (except for the xmltext
metaproperty).

Some of the metaproperty attributes are used for processing purposes. For example, xmltext metaproperty attribute is used for
overflow handling. Overflow handling refers to the unconsumed, unprocessed data in the document. One of the columns in the
rowset generated by OPENXML can be identified as overflow column by mapping it to xmltext metaproperty using the
ColPattern parameter. The column then receives the overflow data (the flags parameter determines whether the column contains
only the unconsumed data or everything).

The following table lists the metaproperty attributes that each parsed XML element possesses. These metaproperty attributes can
be accessed using the namespace urn:schemas-microsoft-com:xml-metaprop. Any value set by the user directly in the XML
document using these metaproperties is disregarded.

Note You cannot reference these metaproperties in any XPath navigation.

Metaproperty
attribute

Description

@mp:id Provides system-generated, document-wide identifier of the
DOM node (element, attribute, and so on). This ID is
guaranteed to refer to the same XML node as long as the
document is not reparsed.

An XML ID of 0 indicates that the element is a root element. Its
parent XML ID is NULL.

@mp:localname Stores the local part of the name of the node. It is used with
prefix and namespace URI (Uniform Resource Identifier) to
name element or attribute nodes.

@mp:namespaceuri Provides the namespace URI of the current element. If the
value of this attribute is NULL, no namespace is present

@mp:prefix Stores the namespace prefix of the current element name.

If no prefix is present (NULL) and a URI is given, indicates that
the specified namespace is the default namespace. If no URI is
given, no namespace is attached.

@mp:prev Stores the previous sibling relative to a node, thereby,
providing information about the ordering of elements in the
document.

@mp:prev contains the XML ID of the previous sibling that
has the same parent element. If an element is at the beginning
of the sibling list, @mp:prev is NULL.

@mp:xmltext This metaproperty is used for processing purposes. Is the
textual serialization of the element and its attributes and
subelements as used in the overflow handling of OPENXML.

This table shows additional parent properties that are provided that allow you to retrieve information about the hierarchy.

Parent metaproperty attribute Description

@mp:parentid Corresponds to ../@mp:id
@mp:parentlocalname Corresponds to ../@mp:localname
@mp:parentnamespacerui Corresponds to ../@mp:namespaceuri
@mp:parentprefix Corresponds to ../@mp:prefix

Examples

A. M ap the OPEN XM L rowset columns to the metaproperties

This example creates a rowset view of the sample XML document by using OPENXML. This example shows how the various
metaproperty attributes can be mapped to rowset columns in an OPENXML statement using the ColPattern parameter.

In the OPENXML statement:

The id column is mapped to the @mp:id metaproperty attribute indicating that the column contains the system-generated
unique XML ID of the element.

The parent column is mapped to @mp:parentid, indicating that the column contains the XML ID of the parent of the
element.

The parentLocalName column is mapped to @mp:parentlocalname, indicating that the column contains the local name
of the parent.

And then, the SELECT statement returns the rowset provided by OPENXML:

DECLARE @idoc int
DECLARE @doc varchar(1000)
-- Sample XML document
SET @doc ='
<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was very satisfied</Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue white red">
 <Urgency>Important</Urgency>
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>
'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/root/Customer/Order', 9)
 WITH (id int '@mp:id',
 oid char(5),
 date datetime,
 amount real,
 parentIDNo int '@mp:parentid',
 parentLocalName varchar(40) '@mp:parentlocalname')
EXEC sp_xml_removedocument @idoc

This is the result:

id oid date amount parentIDNo parentLocalName
--- ------- ---------------------- ---------- ------------ ---------------
6 O1 1996-01-20 00:00:00.000 3.5 2 Customer
10 O2 1997-04-30 00:00:00.000 13.4 2 Customer
19 O3 1999-07-14 00:00:00.000 100.0 15 Customer
25 O4 1996-01-20 00:00:00.000 10000.0 15 Customer

B. Retrieve the entire XM L document

In this example, OPENXML creates a one-column rowset view of the sample XML document. This column (Col1) is mapped to the
xmltext metaproperty, making it an overflow column. Therefore, the column receives the unconsumed data, which is the entire
document in this case.

And then the SELECT statement returns the entire rowset.

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<?xml version="1.0"?>
<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was very
 satisfied</Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue
 white red">
 <MyTag>Testing to see if all the subelements are returned</MyTag>
 <Urgency>Important</Urgency>
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>
'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/')
 WITH (Col1 ntext '@mp:xmltext')

To retrieve the entire document without the XML declaration, the query can be specified as:

SELECT *
FROM OPENXML (@idoc, '/root')
 WITH (Col1 ntext '@mp:xmltext')
EXEC sp_xml_removedocument @idoc

The query returns the root element with the name root and the data contained by the root element

C. Specify the xmltext metaproperty to retrieve the unconsumed data in a column

This example creates a rowset view of the sample XML document by using OPENXML. The example shows how to retrieve
unconsumed XML data by mapping the xmltext metaproperty attribute to a rowset column in OPENXML.

The comment column is identified as the overflow column by mapping it to the @mp:xmltext metaproperty. The flags
parameter is set to 9 (XML_ATTRIBUTE and XML_NOCOPY), indicating attribute-centric mapping and that only the unconsumed
data should be copied to the overflow column.

And then the SELECT statement returns the rowset provided by OPENXML.

In this example, @mp:parentlocalname metaproperty is set for a column (ParentLocalName) in the rowset generated by
OPENXML. As a result, this column contains the local name of the parent element.

Two additional columns are specified in the rowset (parent and comment). The parent column is mapped to @mp:parentid,
indicating that the column contains the XML ID of the parent element of the element. The comment column is identified as the
overflow column by mapping it to @mp:xmltext metaproperty.

DECLARE @idoc int
DECLARE @doc varchar(1000)
-- sample XML document
SET @doc ='
<root>
 <Customer cid= "C1" name="Janine" city="Issaquah">
 <Order oid="O1" date="1/20/1996" amount="3.5" />
 <Order oid="O2" date="4/30/1997" amount="13.4">Customer was very satisfied</Order>
 </Customer>
 <Customer cid="C2" name="Ursula" city="Oelde" >
 <Order oid="O3" date="7/14/1999" amount="100" note="Wrap it blue white red">
 <Urgency>Important</Urgency>
 </Order>
 <Order oid="O4" date="1/20/1996" amount="10000"/>
 </Customer>
</root>
'
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/root/Customer/Order', 9)
 WITH (oid char(5),
 date datetime,
 comment ntext '@mp:xmltext')
EXEC sp_xml_removedocument @idoc

This is the result. Because the oid and date columns are already consumed, they do not appear in the overflow column.

oid date comment
----- --------------------------- --
O1 1996-01-20 00:00:00.000 <Order amount="3.5"/>
O2 1997-04-30 00:00:00.000 <Order amount="13.4">Customer was very
 satisfied</Order>
O3 1999-07-14 00:00:00.000 <Order amount="100" note="Wrap it blue
 white red"><Urgency>
 Important</Urgency></Order>
O4 1996-01-20 00:00:00.000 <Order amount="10000"/>

See Also

Writing XML Using OPENXML

OPENXML

XML and Internet Support (SQL Server 2000)

XML System Stored Procedures
Microsoft® SQL Server™ 2000 provides these system stored procedures that are used in conjunction with OPENXML:

sp_xml_preparedocument

sp_xml_removedocument

To write queries using OPENXML, you must first create an internal representation of the XML document by calling
sp_xml_preparedocument. The stored procedure returns a handle to the internal representation of the XML document. This
handle is then passed to OPENXML, which provides rowset views of the document based on Xpaths; namely one row pattern and
one or more column patterns.

The internal representation of an XML document can be removed from memory by calling sp_xml_removedocument system
stored procedure.

See Also

OPENXML

XML and Internet Support (SQL Server 2000)

Sample XML Applications
The topics in this section present simple applications that demonstrate how to pass an XML document from the client to the
server. The XML document is then shredded using OPENXML and the necessary updates are applied to the database tables.

XML and Internet Support (SQL Server 2000)

Sample HTML Form to Insert Records Using OPENXML
Sample HTML Form to Insert Records Using OPENXML

This sample HTML form prompts a user to enter an employee ID, first name, and last name. After the user has entered the data in
the form, an XML document containing the employee element to be inserted in the database is created. The XML document is
passed as a parameter to the template.

Before executing this example, you must create a virtual root. For more information, see Creating the nwind Virtual Directory.

This example shows:

How to create a simple HTML form.

How to create an XML document from the data entered in the HTML form.

How to pass the XML document to the template.

How to use the OPENXML clause in an INSERT statement to add the record in the database.

The template executes a stored procedure. The XML document is passed to the stored procedure as a text parameter.

The stored procedure:

Calls sp_xml_preparedocument to create an internal representation of the XML document passed as a text parameter.

Calls the INSERT statement to insert the employee record in the Employee table. The record to be inserted is provided by
OPENXML, which creates a rowset view of the XML document.

These are the steps to create a working sample:

1. Create this table:

CREATE TABLE Employee(eid int, fname varchar(20), lname varchar(20))

2. Create these stored procedure in the database:

CREATE PROC sp_insert_employee @empdata ntext
AS
 DECLARE @hDoc int
 EXEC sp_xml_preparedocument @hDoc OUTPUT, @empdata
 INSERT INTO Employee
 SELECT *
 FROM OPENXML(@hDoc, '/Employee')
 WITH Employee
 EXEC sp_xml_removedocument @hDoc

3. Create the following template. The template must be stored in the directory associated with the virtual name of template
type (if you have created the sample nwind virtual directory, the template is stored in the template subdirectory of the
virtual root directory). Save the template as MyTemplate.xml.

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>
<sql:param name="empdata"><Employee/></sql:param>
</sql:header>
<sql:query>exec sp_insert_employee @empdata
</sql:query>
</root>

This is the HTML form:

<html>
<body>

 <form action="http://IISServer/nwind/template
 /MyTemplate.xml" method="post">
 <input type="hidden" id="e" name="empdata">
 <input type="hidden" name="contenttype" value="text/xml">
 EmployeeID: <input type=text id=eid value="1">

 First Name: <input type=text id=fname value="Harry">

 Last Name: <input type=text id=lname value="Smith">

 <input type=submit onclick="Insert_Employee(e, eid,
 lname, fname)" value="Insert Employee">

<script>
 function Insert_Employee(e, eid, lname, fname)
 {
 e.value = '<Employee eid="' + eid.value +
 '" lname="' + lname.value + '" fname="' +
 fname.value + '"/>';
 }
</script>
</form>
</body>
</html>

XML and Internet Support (SQL Server 2000)

Sample HTML Form to Update Records Using OPENXML
Sample HTML Form to Update Records Using OPENXML

This sample application shows how data in an XML documents can be used to update records in a database table. The application
shows the process of:

Executing a template from an HTML form.

Passing an XML document as a parameter to the template.

Executing SQL statements (stored procedures) in a template.

Using the OPENXML rowset provider with UPDATE to apply the updates.

The application assumes that the client has an XML document that is created using another application. The application uses
OPENXML to shred the XML document and creates the rowset that is passed to UPDATE statement.

Before executing this example, you must create a virtual root. For more information, see Creating the nwind Virtual Directory.

The template executes a stored procedure (sp_update_employee). The XML document is passed to the stored procedure as a
text parameter.

The stored procedure:

Calls sp_xml_preparedocument to create an internal representation of the XML document passed as a text parameter.

Calls the UPDATE statement to update the employee records in the Employee table. OPENXML provides the rowset view
of the XML, which is used in the UPDATE statement.

These are the steps to create a working sample:

1. Create this table:

CREATE TABLE Employee(eid int, fname varchar(20), lname varchar(20))

2. Add sample data:

INSERT INTO Employee VALUES (1, 'Nancy', 'Davolio')
INSERT INTO Employee VALUES (2, 'Andrew', 'Fuller')

3. Create this stored procedure in the database:

CREATE PROC sp_update_employee @empdata ntext
AS
DECLARE @hDoc int
exec sp_xml_preparedocument @hDoc OUTPUT,@empdata
UPDATE Employee
SET
 Employee.fname = XMLEmployee.fname,
 Employee.lname = XMLEmployee.lname
FROM OPENXML(@hDoc, '/root/Employee')
 WITH Employee XMLEmployee
WHERE Employee.eid = XMLEmployee.eid
EXEC sp_xml_removedocument @hDoc
SELECT *
from Employee
FOR XML AUTO

4. Create the following template. The template must be stored in the directory associated with the virtual name of template
type (if you have created the sample nwind virtual directory, the template is stored in the template subdirectory of the
virtual root directory). Save the template as UpdateEmployee.xml.

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name="empdata"><Employee/></sql:param>
 </sql:header>
 <sql:query>
 exec sp_update_employee @empdata
 </sql:query>
</root>

This is the HTML form:

<html>
<body>
<form name="Employee"
 action="http://localhost/nwind/Template/UpdateEmployee.XML"
 method="POST">
This app assumes that client has this simple
XML document created using some other application and you want to
update the tables based on the data in this document.

<input type=hidden name="contenttype" value="text/xml">
<textarea name="empdata" cols=50 rows=5>
 <root>
 <Employee eid="1" lname="Leverling" fname="Janet"/>
 <Employee eid="2" lname="Peacock" fname="Margaret"/>
 </root>
</textarea>

<input type=Submit value="Submit">
</form>
</body>
</html>

See Also

IIS Virtual Directory Management for SQL Server

Executing Template Files Using HTTP

Using XPath Queries

XML and Internet Support (SQL Server 2000)

Sample Visual Basic Application to Update Records Using
OPENXML and ADO
Sample Visual Basic Application to Update Records Using OPENXML and ADO

 New Information - SQL Server 2000 SP3.

The application is based on the assumption that the client has an XML document (created with some other application) that is to
be used to apply updates to the database.

This example shows:

Writing a simple Microsoft® Visual Basic® application to update the database using XML documents.

Using ADO to execute XML templates.

Creating and execute templates and pass parameters to the templates.

Creating a rowset from an XML document using OPENXML.

These are the steps to create a working sample:

1. Create this table:

CREATE TABLE Employee(eid int, fname varchar(20), lname varchar(20))

2. Add sample data:

INSERT INTO Employee VALUES (1, 'Nancy', 'Davolio')
INSERT INTO Employee VALUES (2, 'Andrew', 'Fuller')

3. Create the following stored procedure in the database:

CREATE PROC update_employee @empdata nvarchar(4000)
AS
 DECLARE @hDoc int
 exec sp_xml_preparedocument @hDoc OUTPUT,@empdata
 UPDATE Employee
 SET
 Employee.fname = XMLEmployee.fname,
 Employee.lname = XMLEmployee.lname
 FROM OPENXML(@hDoc, 'update/Employee')
 WITH Employee XMLEmployee
 WHERE Employee.eid = XMLEmployee.eid
 EXEC sp_xml_removedocument @hDoc

4. Create a Visual Basic project (a standard EXE project is sufficient).

5. Add Microsoft ActiveX® Data Objects 2.6 Library to the project references.

6. Add the following code:

Option Explicit

'The code uses ADO to establish a SQL Server connection and passes in a
'template to the server. The template executes a stored procedure
'(update_employee) which accepts an XML document as input. The stored
'procedure uses OPENXML to shred the document and generate a rowset
'which is used to update the records in the Employee table.
'The template is then executed on the server and the resulting stream
'is returned to the client. The stream contains the resulting XML
'document.

Sub Main()
 On Error GoTo HandleError

 Dim cmd As New ADODB.Command
 Dim conn As New ADODB.Connection
 Dim strmIn As New ADODB.Stream
 Dim strmOut As New ADODB.Stream
 Dim SQLxml As String

 ' Open a connection to the SQL Server.
 conn.Provider = "SQLOLEDB"
 conn.Open "Server=(local);Database=Northwind;Integrated Security=SSPI;"

 Set cmd.ActiveConnection = conn

 ' Build the command string in the form of an XML template.
 SQLxml = "<root xmlns:sql=""urn:schemas-microsoft-com:xml-sql""><sql:query><![CDATA["
 SQLxml = SQLxml & "exec update_employee N'<update><Employee eid=""1"" lname=""Leverling"" fname=""Janet""/>"
 SQLxml = SQLxml & "<Employee eid=""2"" lname=""Peacock"" fname=""Margaret""/></update>']]>"
 SQLxml = SQLxml & "</sql:query></root>"

 ' Set the command dialect to XML.
 cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

 ' Open the command stream and write our template to it.
 strmIn.Open
 strmIn.WriteText SQLxml
 strmIn.Position = 0

 Set cmd.CommandStream = strmIn

 ' Execute the command, open the return stream, and read the result.
 strmOut.Open
 strmOut.LineSeparator = adCRLF
 cmd.Properties("Output Stream").Value = strmOut
 cmd.Execute , , adExecuteStream
 strmOut.Position = 0
 Debug.Print strmOut.ReadText

 ' Clean up.
 conn.Close
 Set conn = Nothing
 Set strmIn = Nothing
 Set strmOut = Nothing
 Set cmd = Nothing
 Exit Sub

HandleError:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 ' Clean up.
 Set conn = Nothing
 Set strmIn = Nothing
 Set strmOut = Nothing
 Set cmd = Nothing

 If Err <> 0 Then
 MsgBox Err.Source & "-->" & Err.Description, , "Error"
 End If
End Sub

Private Sub Form_Load()
Main
End Sub

XML and Internet Support (SQL Server 2000)

OLE DB Provider for SQL Server Extensions for XML
The Microsoft® OLE DB Provider for SQL Server (SQLOLEDB) supports a new dialect called DBGUID_MSSQLXML to execute XML
templates with embedded queries (such as SQL FOR XML and XPath queries). Templates are valid XML documents containing one
or more queries. The FOR XML and XPath queries return a document fragment. The templates act as a container for the resulting
document fragment.

Setting an XML Command Using ICommandText

The ICommandText::SetCommandText and ICommand::Execute methods have been enhanced to allow XML documents to
be set as command text, to execute the command and retrieve the results as a stream that can then be used in further processing,
such as passing the XML document to DOM (Document Object Model).

The XML templates can be passed to the ICommandText::SetCommandText method. When XML templates are set as
command text using ICommandText::SetCommandText, the consumer must pass DBGUID_MSSQLXML as the GUID of the
command syntax. This new GUID indicates that the command text is an XML template.

The consumer must call ICommand::Execute to execute XML templates. To obtain an XML document as a result set, the riid is
set to IStream, in which case the provider returns the result set as a stream.

Limitations of ICommandText

The template being passed to ICommandText::SetCommandText can be large. And if the template being executed is stored in a
file, overhead is required to read the file, buffer its contents, and then set command text using
ICommandText::SetCommandText.

In addition, the ICommandText::SetCommandText expects the command string to be a Unicode string. If the actual XML file is
in some encoding, additional overhead is required to convert the file to Unicode before passing it to
IcommandText::SetCommandText as a command.

Setting an XML Command Using ICommandStream

The OLE DB (version 2.6) interface ICommandStream, although similar to ICommandText, passes a command as a stream
object rather than as a string.

SQLOLEDB has implemented the optional ICommandStream interface on the command object. The ICommandStream
interface allows you to pass a stream to the command object.

The ICommandStream interface allows a command to be in any encoding that the XML parser understands. Thus, when
ICommand::Execute is called, the command text is read out of the stream directly and no conversion is required. Executing XML
commands using ICommandStream interface is more efficient.

Both the ICommandStream::GetCommandStream and ICommandStream::SetCommandStream interfaces are
implemented in SQLOLEDB.

For ICommandStream, the default dialect (DBGUID_DEFAULT) is DBGUID_MSSQLXML. The dialects supported by
ICommandStream::SetCommandStream are provider-specific. SQLOLEDB supports DBGUID_MSSSQLXML only (DBGUID_SQL
and DBGUID_XPATH are not supported.)

If you read from the stream returned by GetCommandStream before EXECUTE is called, EXECUTE may fail unless EXECUTE can
read from the proper position in the stream.

Support for the OLE DB (Version 2.6) DBPROPSET_STREAM Property Set

SQLOLEDB has implemented DBPROPSET_STREAM property set (in the Stream property group), which includes these properties:

DBPROP_OUTPUTSTREAM

The value passed in this property is a Variant containing a pointer to either IStream or ISequentialStream. When this property
is set, ICommand::Execute returns results in the stream specified by this property. This avoids extra copies of the data because
you can pass the stream to other users, such as the XML parser.

DBPROP_OUTPUTENCODING

This property specifies the requested encoding for the stream returned by the Execute method. Some of the commonly used
encodings are UTF-8, ANSI, and Unicode. The UTF-8 is the default encoding if the value of this property is NULL.

Requesting ISequentialStream on ICommand::Execute

You can request ISequentialStream on ICommand::Execute.

While reading from a stream as long as there is data to read, ISequentialStream::Read will return S_OK. After the end of the
stream is reached, a subsequent read will return S_FALSE, unless there were errors during the execution of the command. If there
were any errors, DB_S_ERRORSOCCURED is returned only on the first read after the end of the stream was reached. All the
subsequent reads will return S_FALSE.

In executing the command, if there are any errors, the errors are returned as processing instructions (PIs) in the stream. All the
errors are returned after the last read. Applications that do not have access to error objects can examine the stream contents for
the PI containing the errors.

ISequentialStream is supported only when the selected result is a single-column rowset.

SQLOLEDB Provider-Specific Properties

To support XML-specific behavior, SQLOLEDB has implemented the following provider-specific properties in the
DBPROPSET_SQLSERVERSTREAM property set (Stream property group). These properties allow you to specify the mapping
schema against which an XPath query can be specified as a command, or to specify an XSL file to process the result. Some of
these properties are useful for enhancing security and performance.

SSPROP_STREAM_BASEPATH

This property is used to specify the base path. This base path is used in resolving relative paths specified for the XSL file, mapping
schema, or external schema references in a template.

SSPROP_STREAM_MAPPINGSCHEMA

This property is used for specifying a schema for the XPath queries. The path specified can be relative or absolute. If the path
specified is relative, the base path specified in SSPROP_STREAM_BASEPATH is used to resolve the relative path. If the base path is
not specified, the relative path is relative to the current directory

SSPROP_STREAM_XSL

This property is used for specifying an XSL file. The path specified can be relative or absolute. If the path specified is relative, the
base path specified in SSPROP_STREAM_BASEPATH is used to resolve the relative path. If the base path is not specified, the
relative path is relative to the current directory.

SSPROP_STREAM_CONTENTTYPE

If an XSL style sheet is applied to the result, the media-type property on <xsl:output> in the XSL file is returned as the value of this
property.

SSPROP_STREAM_FLAGS

This property is used to specify certain security restrictions. For example, you may not want to allow URL references to files or
absolute paths to files (such as external sites). You may not want to allow queries in the templates. The property can be assigned
values STREAM_FLAGS_DISALLOW_URL, STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH, or STREAM_FLAGS_DISALLOW_QUERY.

For more information about these properties, see Initialization and Authorization Properties.

XML and Internet Support (SQL Server 2000)

Using ICommandStream to Set an XML Command
The OLE DB (version 2.6) interface ICommandStream passes a command as a stream object rather than as a string.

This interface allows command to be in any encoding that the XML parser understands. When ICommand::Execute is called, the
command text is read out of the stream directly and no conversion is required. Therefore, executing XML commands using
ICommandStream interface is more efficient.

To set XML as a command using ICommandStream and retrieving the result as an XML document

OLE DB

OLE DB

Transact-SQL Reference (SQL Server 2000)

Transact-SQL Overview
Transact-SQL is central to the use of Microsoft® SQL Server™. All applications that communicate with SQL Server do so by
sending Transact-SQL statements to the server, regardless of an application's user interface.

Transact-SQL is generated from many kinds of applications, including:

General office productivity applications.

Applications that use a graphical user interface (GUI) to allow users to select the tables and columns from which they want
to see data.

Applications that use general language sentences to determine what data a user wants to see.

Line of business applications that store their data in SQL Server databases. These can include both applications from other
vendors and applications written in-house.

Transact-SQL scripts that are run using utilities such as osql.

Applications created with development systems such as Microsoft Visual C++®, Microsoft Visual Basic®, or Microsoft
Visual J++® that use database application programming interfaces (APIs) such as ADO, OLE DB, and ODBC.

Web pages that extract data from SQL Server databases.

Distributed database systems from which data from SQL Server is replicated to various databases or distributed queries are
executed.

Data warehouses in which data is extracted from online transaction processing (OLTP) systems and summarized for
decision-support analysis.

For information about how Transact-SQL interacts with APIs and application components such as transaction control, cursors, and
locking, see Accessing and Changing Relational Data Overview.

Transact-SQL Reference (SQL Server 2000)

Transact-SQL Syntax Conventions
The syntax diagrams in the Transact-SQL Reference use these conventions.

Convention Used for
UPPERCASE Transact-SQL keywords.
italic User-supplied parameters of Transact-SQL syntax.
| (vertical bar) Separating syntax items within brackets or braces. You can

choose only one of the items.
[] (brackets) Optional syntax items. Do not type the brackets.
{} (braces) Required syntax items. Do not type the braces.
[,...n] Indicating that the preceding item can be repeated n number

of times. The occurrences are separated by commas.
[...n] Indicating that the preceding item can be repeated n number

of times. The occurrences are separated by blanks.
bold Database names, table names, column names, index names,

stored procedures, utilities, data type names, and text that
must be typed exactly as shown.

<label> ::= The name for a block of syntax. This convention is used to
group and label portions of lengthy syntax or a unit of syntax
that can be used in more than one place within a statement.
Each location in which the block of syntax can be used is
indicated with the label enclosed in chevrons: <label>.

Unless specified otherwise, all Transact-SQL references to the name of a database object can be a four-part name in the form:

 [
 server_name.[database_name].[owner_name].
 | database_name.[owner_name].
 | owner_name.
]
]
object_name

server_name specifies a linked server name or remote server name.

database_name specifies the name of a Microsoft® SQL Server™ database when the object resides in a SQL Server
database. It specifies an OLE DB catalog when the object is in a linked server.

owner_name specifies the user that owns the object if the object is in a SQL Server database. It specifies an OLE DB schema
name when the object is in a linked server.

object_name refers to the name of the object.

When referencing a specific object, you do not always have to specify the server, database, and owner for SQL Server to identify
the object. Intermediate nodes can be omitted; use periods to indicate these positions. The valid formats of object names are:

server.database.owner.object

server.database..object

server..owner.object

server...object

database.owner.object

database..object

owner.object

object

Code Example Conventions

Unless stated otherwise, the examples were tested using SQL Query Analyzer and its default settings for these options:

QUOTED_IDENTIFIER

ANSI_NULLS

ANSI_WARNINGS

ANSI_PADDING

ANSI_NULL_DFLT_ON

CONCAT_NULL_YIELDS_NULL

Most code examples in the Transact-SQL Reference have been tested on servers running a case-sensitive sort order. The test
servers were usually running the ANSI/ISO 1252 code page.

Transact-SQL Data Type Categories

Data types with similar characteristics are classified into categories. Categories that contain two or three data types generally have
a category name derived from the data types in that category. For example, the money and smallmoney category contains the
money data type and the smallmoney data type. Data type names always appear in bold, even when used as part of a category
name.

Transact-SQL Data Type Hierarchy

The following data type hierarchy shows the SQL Server data type categories, subcategories, and data types used in the SQL
Server documentation. For example, the exact numeric category contains three subcategories: integers, decimal, and money and
smallmoney.

The exact numeric category also contains all of the data types in these three subcategories: bigint, int, smallint, tinyint, bit,
decimal, money, and smallmoney. Any reference to exact numeric in the Transact-SQL Reference refers to these eight data
types.

In this hierarchy the category names built from two or more data types use the conjunction "and." The conjunction "or" may be
used in the Transact-SQL Reference if it is more appropriate for the context in which the name is used.

The data types specified in this hierarchy also pertain to synonyms. For example, int refers to both int and its synonym integer.
For more information, see Data Types.

numeric
 exact numeric
 integer
 bigint
 int
 smallint
 tinyint
 bit
 decimal and numeric
 decimal
 numeric
 money and smallmoney
 money
 smallmoney
 approximate numeric
 float
 real
 datetime and smalldatetime
 datetime
 smalldatetime

character and binary string

 character string
 char, varchar, and text
 char and varchar
 char
 varchar
 text
 Unicode character string
 nchar and nvarchar
 nchar
 nvarchar
 ntext
 binary strings
 binary and varbinary
 binary
 varbinary
 image

cursor

sql_variant

table

timestamp

uniqueidentifier

Additional data type categories used in the Transact-SQL Reference are described in these two hierarchies:

text, ntext, and image
 text and ntext
 text
 ntext
 image

short string
 short character
 char and varchar
 char
 varchar
 nchar and nvarchar
 nchar
 nvarchar
 binary and varbinary
 binary
 varbinary

Transact-SQL Reference (SQL Server 2000)

New and Enhanced Features in Transact-SQL
Transact-SQL in Microsoft® SQL Server™ 2000 provides new and enhanced statements, stored procedures, functions, data types,
DBCC statements, and information schema views.

Data Types

New data types
bigint table
sql_variant

Database Console Commands (DBCC)

New commands
DBCC CHECKCONSTRAINTS DBCC DROPCLEANBUFFERS
DBCC CLEANTABLE DBCC FREEPROCCACHE
DBCC CONCURRENCYVIOLATION DBCC INDEXDEFRAG

Enhanced commands
DBCC CHECKALLOC DBCC CHECKFILEGROUP
DBCC CHECKDB DBCC SHOWCONTIG
DBCC CHECKTABLE

Functions

New functions
BINARY_CHECKSUM fn_virtualfilestats
CHECKSUM GETUTCDATE
CHECKSUM_AGG HAS_DBACCESS
COLLATIONPROPERTY IDENT_CURRENT
COUNT_BIG INDEXKEY_PROPERTY
DATABASEPROPERTYEX OBJECTPROPERTY
fn_helpcollations OPENDATASOURCE
fn_listextendedproperty OPENXML
fn_servershareddrives ROWCOUNT_BIG
fn_trace_geteventinfo SCOPE_IDENTITY
fn_trace_getfilterinfo SERVERPROPERTY
fn_trace_getinfo SESSIONPROPERTY
fn_trace_gettable SQL_VARIANT_PROPERTY

Information Schema Views

New information schema views
PARAMETERS ROUTINE_COLUMNS
ROUTINES

Replication Stored Procedures

New replication stored procedures
sp_addmergealternatepublisher sp_getqueuedrows
sp_addscriptexec sp_getsubscriptiondtspackagename
sp_adjustpublisheridentityrange sp_helparticledts

sp_attachsubscription sp_helpmergealternatepublisher
sp_browsesnapshotfolder sp_helpreplicationoption
sp_browsemergesnapshotfolder sp_ivindexhasnullcols
sp_changesubscriptiondtsinfo sp_marksubscriptionvalidation
sp_copysnapshot sp_mergearticlecolumn
sp_disableagentoffload sp_repladdcolumn
sp_dropanonymouseagent sp_repldropcolumn
sp_dropmergealternatepublisher sp_restoredbreplication
sp_enableagentoffload sp_resyncmergesubscription
sp_getagentoffloadinfo sp_vupgrade_replication

Reserved Keywords

COLLATE, FUNCTION, and OPENXML are reserved keywords in SQL Server 2000.

The following words have been unreserved.

AVG COMMITTED
CONFIRM CONTROLROW
COUNT ERROREXIT
FLOPPY ISOLATION
LEVEL MAX
MIN MIRROREXIT
ONCE ONLY
PERM PERMANENT
PIPE PREPARE
PRIVILEGES REPEATABLE
SERIALIZABLE SUM
TAPE TEMP
TEMPORARY UNCOMMITTED
WORK

Statements

New statements
ALTER FUNCTION DROP FUNCTION
CREATE FUNCTION

Enhanced statements
ALTER DATABASE CREATE TABLE
ALTER TABLE CREATE TRIGGER
BACKUP INDEXPROPERTY
COLUMNPROPERTY OBJECTPROPERTY
CREATE INDEX RESTORE
CREATE STATISTICS

System Stored Procedures

New system stored procedures
sp_addextendedproperty sp_delete_maintenance_plan_job
sp_add_log_shipping_database sp_dropextendedproperty
sp_add_log_shipping_plan sp_get_log_shipping_monitor_info
sp_add_log_shipping_plan_database sp_helpconstraint
sp_add_log_shipping_primary sp_helpindex

sp_add_log_shipping_secondary sp_help_maintenance_plan
sp_add_maintenance_plan sp_invalidate_textptr
sp_add_maintenance_plan_db sp_remove_log_shipping_monitor
sp_add_maintenance_plan_job sp_resolve_logins
sp_can_tlog_be_applied sp_settriggerorder
sp_change_monitor_role sp_trace_create
sp_change_primary_role sp_trace_generateevent
sp_change_secondary_role sp_trace_setevent
sp_create_log_shipping_monitor_account sp_trace_setfilter
sp_define_log_shipping_monitor sp_trace_setstatus
sp_delete_log_shipping_database sp_updateextendedproperty
sp_delete_log_shipping_plan sp_update_log_shipping_monitor_info
sp_delete_log_shipping_plan_database sp_update_log_shipping_plan
sp_delete_log_shipping_primary sp_update_log_shipping_plan_database
sp_delete_log_shipping_secondary sp_xml_preparedocument
sp_delete_maintenance_plan sp_xml_removedocument
sp_delete_maintenance_plan_db

Enhanced system stored procedures
sp_helptrigger sp_serveroption

sp_tableoption sp_who

System Tables

New system tables
logmarkhistory MSsync_states
log_shipping_databases sysdbmaintplan_databases
log_shipping_monitor sysdbmaintplan_history
log_shipping_plan_databases sysdbmaintplan_jobs
log_shipping_plan_history sysdbmaintplans
log_shipping_plans sysmergeschemaarticles
log_shipping_secondaries sysopentapes
Mssub_identity_range

Transact-SQL Reference (SQL Server 2000)

+ (Add)
Adds two numbers. This addition arithmetic operator can also add a number, in days, to a date.

Syntax

expression + expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in the numeric category except the bit data type.

Result Types

Returns the data type of the argument with the higher precedence. For more information, see Data Type Precedence.

Examples

A. Use the addition operator to calculate the total units available for customers to order

This example adds the current number of products in stock and the number of units currently on order for all products in the
Products table.

USE Northwind
GO
SELECT ProductName, UnitsInStock + UnitsOnOrder
FROM Products
ORDER BY ProductName ASC
GO

B. Use the addition operator to add days to date and time values

This example adds a number of days to a datetime date.

USE master
GO
SET NOCOUNT ON
DECLARE @startdate datetime, @adddays int
SET @startdate = '1/10/1900 12:00 AM'
SET @adddays = 5
SET NOCOUNT OFF
SELECT @startdate + 1.25 AS 'Start Date',
 @startdate + @adddays AS 'Add Date'

Here is the result set:

Start Date Add Date
--------------------------- ---------------------------
Jan 11 1900 6:00AM Jan 15 1900 12:00AM

(1 row(s) affected)

C. Add character and integer data types

This example adds an int data type value and a character value by converting the character data type to int. If an invalid character
exists in the char string, SQL Server returns an error.

DECLARE @addvalue int
SET @addvalue = 15
SELECT '125127' + @addvalue

Here is the result set:

125142

(1 row(s) affected)

See Also

CAST and CONVERT

Data Type Conversion

Data Types

Expressions

Functions

Operators

SELECT

Transact-SQL Reference (SQL Server 2000)

+ (Positive)
A unary operator that returns the positive value of a numeric expression (a unary operator).

Syntax

+ numeric_expression

Arguments

numeric_expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in the numeric data type category except the datetime
or smalldatetime data types.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint expression is promoted to a smallint result.

Examples

This example sets a variable to a positive value.

DECLARE @MyNumber decimal(10,2)
SET @MyNumber = +123.45

See Also

Data Types

Expressions

Operators

Transact-SQL Reference (SQL Server 2000)

+ (String Concatenation)
An operator in a string expression that concatenates two or more character or binary strings, columns, or a combination of strings
and column names into one expression (a string operator).

Syntax

expression + expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types in the character and binary data type category, except
the image, ntext, or text data types. Both expressions must be of the same data type, or one expression must be able to be
implicitly converted to the data type of the other expression.

An explicit conversion to character data must be used when concatenating binary strings and any characters between the binary
strings. The following example shows when CONVERT (or CAST) must be used with binary concatenation and when CONVERT (or
CAST) does not need to be used.

DECLARE @mybin1 binary(5), @mybin2 binary(5)
SET @mybin1 = 0xFF
SET @mybin2 = 0xA5
-- No CONVERT or CAST function is necessary because this example
-- concatenates two binary strings.
SELECT @mybin1 + @mybin2
-- A CONVERT or CAST function is necessary because this example
-- concatenates two binary strings plus a space.
SELECT CONVERT(varchar(5), @mybin1) + ' '
 + CONVERT(varchar(5), @mybin2)
-- Here is the same conversion using CAST
SELECT CAST(@mybin1 AS varchar(5)) + ' '
 + CAST(@mybin2 AS varchar(5))

Result Types

Returns the data type of the argument with the highest precedence. For more information, see Data Type Precedence.

Remarks

When you concatenate null values, either the concat null yields null setting of sp_dboption or SET
CONCAT_NULL_YIELDS_NULL determines the behavior when one expression is NULL. With either concat null yields null or SET
CONCAT_NULL_YIELDS_NULL enabled ON, 'string' + NULL returns NULL. If either concat null yields null or SET
CONCAT_NULL_YIELDS_NULL is disabled, the result is 'string'.

Examples

A. Use string concatenation

This example creates a single column (under the column heading Name) from multiple character columns, with the author's last
name followed by a comma, a single space, and then the author's first name. The result set is in ascending, alphabetical order by
the author's last name, and then by the author's first name.

USE pubs
SELECT (au_lname + ', ' + au_fname) AS Name
FROM authors
ORDER BY au_lname ASC, au_fname ASC

Here is the result set:

Name
--
Bennet, Abraham
Blotchet-Halls, Reginald
Carson, Cheryl
DeFrance, Michel
del Castillo, Innes
Dull, Ann

Green, Marjorie
Greene, Morningstar
Gringlesby, Burt
Hunter, Sheryl
Karsen, Livia
Locksley, Charlene
MacFeather, Stearns
McBadden, Heather
O'Leary, Michael
Panteley, Sylvia
Ringer, Albert
Ringer, Anne
Smith, Meander
Straight, Dean
Stringer, Dirk
White, Johnson
Yokomoto, Akiko

(23 row(s) affected)

B. Combine numeric and date data types

This example uses the CAST function to concatenate numeric and date data types.

USE pubs
SELECT 'The order date is ' + CAST(ord_date AS varchar(30))
FROM sales
WHERE ord_num = 'A2976'
ORDER BY ord_num

Here is the result set:

--
The order date is May 24 1993 12:00AM

(1 row(s) affected)

C. Use multiple string concatenation

This example concatenates multiple strings to form one long string. To display the last name and the first initial of each author
living in the state of California, a comma is placed after the last name and a period after the first initial.

USE pubs
SELECT (au_lname + ',' + SPACE(1) + SUBSTRING(au_fname, 1, 1) + '.') AS Name
FROM authors
WHERE state = 'CA'
ORDER BY au_lname ASC, au_fname ASC

Here is the result set:

Name
--
Bennet, A.
Carson, C.
Dull, A.
Green, M.
Gringlesby, B.
Hunter, S.
Karsen, L.
Locksley, C.
MacFeather, S.
McBadden, H.
O'Leary, M.
Straight, D.
Stringer, D.
White, J.
Yokomoto, A.

(15 row(s) affected)

See Also

CAST and CONVERT

Data Type Conversion

Data Types

Expressions

Functions

Operators

SELECT

SET

Setting Database Options

sp_dboption

Transact-SQL Reference (SQL Server 2000)

- (Negative)
Is a unary operator that returns the negative value of a numeric expression (a unary operator).

Syntax

- numeric_expression

Arguments

numeric_expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the numeric data type category except the datetime
or smalldatetime data types.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint expression is promoted to a signed smallint result.

Examples

A. Set a variable to a negative value

This example sets a variable to a negative value.

DECLARE @MyNumber decimal(10,2)
@MyNumber = -123.45

B. N egate a value

This example negates a variable.

DECLARE @Num1 int
SET @Num1 = 5
SELECT -@Num1

See Also

Data Types

Expressions

Operators

Transact-SQL Reference (SQL Server 2000)

- (Subtract)
Subtracts two numbers. This subtraction arithmetic operator can also subtract a number, in days, from a date.

Syntax

expression - expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the numeric data type category except the bit data
type.

Result Types

Returns the data type of the argument with the higher precedence. For more information, see Data Type Precedence.

Examples

A. Use subtraction in a SELECT statement

This example returns the amount of the year-to-date revenues retained by the company for each book title.

USE pubs
GO
SELECT title,
 (
 (price * ytd_sales) * CAST(((100 - royalty) / 100.0)
 AS MONEY)
) AS IncomeAfterRoyalty
FROM titles
WHERE royalty <> 0
ORDER BY title_id ASC
GO

Parentheses can be used to change the order of execution. Calculations inside parentheses are evaluated first. If parentheses are
nested, the most deeply nested calculation has precedence. For example, the result and meaning of the preceding query can be
changed if you use parentheses to force the evaluation of subtraction before multiplication, which in this case would yield a
meaningless number.

B. Use date subtraction

This example subtracts a number of days from a datetime date.

USE pubs
GO
DECLARE @altstartdate datetime
SET @altstartdate = '1/10/1900 3:00 AM'
SELECT @altstartdate - 1.5 AS 'Subtract Date'

Here is the result set:

Subtract Date

Jan 8 1900 3:00PM

(1 row(s) affected)

See Also

Data Types

Expressions

Functions

Operators

SELECT

Transact-SQL Reference (SQL Server 2000)

* (Multiply)
Multiplies two expressions (an arithmetic multiplication operator).

Syntax

expression * expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the numeric data type category except the datetime
or smalldatetime data types.

Result Types

Returns the data type of the argument with the higher precedence. For more information, see Data Type Precedence.

Examples

This example retrieves the title identification number and the price of modern cookbooks, and uses the * arithmetic operator to
multiply the price by 1.15.

USE pubs
SELECT title_id, price * 1.15 AS NewPrice
FROM titles
WHERE type = 'mod_cook'
ORDER BY title_id ASC

See Also

Data Types

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

/ (Divide)
Divides one number by another (an arithmetic division operator).

Syntax

dividend / divisor

Arguments

dividend

Is the numeric expression to divide. dividend can be any valid Microsoft® SQL Server™ expression of any of the data types of the
numeric data type category except the datetime and smalldatetime data types.

divisor

Is the numeric expression to divide the dividend by. divisor can be any valid SQL Server expression of any of the data types of the
numeric data type category except the datetime and smalldatetime data types.

Result Types

Returns the data type of the argument with the higher precedence. For more information about data type precedence, see Data
Type Precedence.

If an integer dividend is divided by an integer divisor, the result is an integer that has any fractional part of the result truncated.

Remarks

The actual value returned by the / operator is the quotient of the first expression divided by the second expression.

Examples

This example uses the division arithmetic operator to calculate the royalty amounts due for authors who have written business
books.

USE pubs
GO
SELECT ((ytd_sales * price) * royalty)/100 AS 'Royalty Amount'
FROM titles
WHERE type = 'business'
ORDER BY title_id

See Also

Data Types

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

% (Modulo)
Provides the remainder of one number divided by another.

Syntax

dividend % divisor

Arguments

dividend

Is the numeric expression to divide. dividend must be any valid Microsoft® SQL Server™ expression of the integer data type
category. (A modulo is the integer that remains after two integers are divided.)

divisor

Is the numeric expression to divide the dividend by. divisor must be any valid SQL Server expression of any of the data types of
the integer data type category.

Result Types

int

Remarks

The modulo arithmetic operator can be used in the select list of the SELECT statement with any combination of column names,
numeric constants, or any valid expression of the integer data type category.

Examples

This example returns the book title number and any modulo (remainder) of dividing the price (converted to an integer value) of
each book into the total yearly sales (ytd_sales * price).

USE pubs
GO
SELECT title_id,
 CAST((ytd_sales * price) AS int) % CAST(price AS int) AS Modulo
FROM titles
WHERE price IS NOT NULL and type = 'trad_cook'
ORDER BY title_id
GO

See Also

Expressions

Functions

LIKE

Operators

SELECT

Transact-SQL Reference (SQL Server 2000)

% (Wildcard - Character(s) to Match)
Matches any string of zero or more characters. This wildcard character can be used as either a prefix or a suffix.

See Also

LIKE

Transact-SQL Reference (SQL Server 2000)

& (Bitwise AND)
Performs a bitwise logical AND operation between two integer values.

Syntax

expression & expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the integer data type category. expression is an integer
parameter that is treated and transformed into a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise & operator performs a bitwise logical AND between the two expressions, taking each corresponding bit for both
expressions. The bits in the result are set to 1 if and only if both bits (for the current bit being resolved) in the input expressions
have a value of 1; otherwise, the bit in the result is set to 0.

The & bitwise operator can be used only on expressions of the integer data type category.

If the left and right expressions have different integer data types (for example, the left expression is smallint and the right
expression is int), the argument of the smaller data type is converted to the larger data type. In this example, the smallint
expression is converted to an int.

Examples

This example creates a table with int data types to show the values, and puts the table into one row.

USE master
GO
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'bitwise')
 DROP TABLE bitwise
GO
CREATE TABLE bitwise
(
 a_int_value int NOT NULL,
 b_int_value int NOT NULL
)
GO
INSERT bitwise VALUES (170, 75)
GO

This query performs the bitwise AND between the a_int_value and b_int_value columns.

USE master
GO
SELECT a_int_value & b_int_value
FROM bitwise
GO

Here is the result set:

10

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise AND operation on these two values produces the
binary result 0000 0000 0000 1010, which is decimal 10.

(A & B)

 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 0000 1010

See Also

Expressions

Operators (Bitwise Operators)

Transact-SQL Reference (SQL Server 2000)

| (Bitwise OR)
Performs a bitwise logical OR operation between two given integer values as translated to binary expressions within Transact-
SQL statements.

Syntax

expression | expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the integer data type category. expression is an integer
that is treated and transformed into a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise | operator performs a bitwise logical OR between the two expressions, taking each corresponding bit for both
expressions. The bits in the result are set to 1 if either or both bits (for the current bit being resolved) in the input expressions
have a value of 1; if neither bit in the input expressions is 1, the bit in the result is set to 0.

The | bitwise operator requires two expressions, and it can be used on expressions of only the integer data type category.

If the left and right expressions have different integer data types (for example, the left expression is smallint and the right
expression is int), the argument of the smaller data type is converted to the larger data type. In this example, the smallint
expression is converted to an int.

Examples

This example creates a table with int data types to show the original values and puts the table into one row.

USE master
GO
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'bitwise')
 DROP TABLE bitwise
GO
CREATE TABLE bitwise
(
 a_int_value int NOT NULL,
b_int_value int NOT NULL
)
GO
INSERT bitwise VALUES (170, 75)
GO

This query performs the bitwise OR on the a_int_value and b_int_value columns.

USE master
GO
SELECT a_int_value | b_int_value
FROM bitwise
GO

Here is the result set:

235

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise OR operation on these two values produces the
binary result 0000 0000 1110 1011, which is decimal 235.

(A | B)
 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 1110 1011

See Also

Expressions

Operators (Bitwise Operators)

Transact-SQL Reference (SQL Server 2000)

^ (Bitwise Exclusive OR)
Performs a bitwise exclusive OR operation between two given integer values as translated to binary expressions within Transact-
SQL statements.

Syntax

expression ^ expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the integer data type category, or of the binary or
varbinary data type. expression is an integer that is treated and transformed into a binary number for the bitwise operation.

Note Only one expression can be of either binary or varbinary data type in a bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Remarks

The bitwise ^ operator performs a bitwise logical ^ between the two expressions, taking each corresponding bit for both
expressions. The bits in the result are set to 1 if either (but not both) bits (for the current bit being resolved) in the input
expressions have a value of 1; if both bits are either a value of 0 or 1, the bit in the result is cleared to a value of 0.

The ^ bitwise operator can be used only on columns of the integer data type category.

If the left and right expressions have different integer data types (for example, the left expression is smallint and the right
expression is int), then the argument of the smaller data type is converted to the larger data type. In this example, the smallint
expression is converted to an int.

Examples

This example creates a table with int data types to show the original values, and puts the table into one row.

USE master
GO
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'bitwise')
 DROP TABLE bitwise
GO
CREATE TABLE bitwise
(
 a_int_value int NOT NULL,
b_int_value int NOT NULL
)
GO
INSERT bitwise VALUES (170, 75)
GO

This query performs the bitwise exclusive OR on the a_int_value and b_int_value columns.

USE master
GO
SELECT a_int_value ^ b_int_value
FROM bitwise
GO

Here is the result set:

225

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise exclusive OR operation on these two values produces

the binary result 0000 0000 1110 0001, which is decimal 225.

(A ^ B)
 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 1110 0001

See Also

Expressions

Operators (Bitwise Operators)

Transact-SQL Reference (SQL Server 2000)

~ (Bitwise NOT)
Performs a bitwise logical NOT operation for one given integer value as translated to binary expressions within Transact-SQL
statements.

Syntax

~ expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression of any of the data types of the integer data type category, or of the binary or
varbinary data type. expression is an integer that is treated and transformed into a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, a tinyint if the input values are tinyint, or a
bit if the input values are bit.

Remarks

The bitwise ~ operator performs a bitwise logical NOT for the expression, taking each corresponding bit. The bits in the result are
set to 1 if one bit (for the current bit being resolved) in expression has a value of 0; otherwise, the bit in the result is cleared to a
value of 1.

The ~ bitwise operator can be used only on columns of the integer data type category.

Important When performing any kind of bitwise operation, the storage length of the expression used in the bitwise operation is
important. It is recommended that you use the same number of bytes when storing values. For example, storing the decimal value
of 5 as a tinyint, smallint, or int produces a value stored with different numbers of bytes. tinyint stores data using 1 byte,
smallint stores data using 2 bytes, and int stores data using 4 bytes. Therefore, performing a bitwise operation on an int decimal
value can produce different results as compared to a direct binary or hexidecimal translation, especially when the ~ (bitwise NOT)
operator is used. The bitwise NOT operation may occur on a variable of a shorter length that, when converted to a longer data
type variable, may not have the bits in the upper 8 bits set to the expected value. It is recommended that you convert the smaller
data type variable to the larger data type, and then perform the NOT operation on the result.

Examples

This example creates a table with int data types to show the values, and puts the table into one row.

USE master
GO
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'bitwise')
 DROP TABLE bitwise
GO
CREATE TABLE bitwise
(
 a_int_value tinyint NOT NULL,
b_int_value tinyint NOT NULL
)
GO
INSERT bitwise VALUES (170, 75)
GO

This query performs the bitwise NOT on the a_int_value and b_int_value columns.

USE master
GO
SELECT ~ a_int_value, ~ b_int_value
FROM bitwise

Here is the result set:

--- ---
85 180

(1 row(s) affected)

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. Performing the bitwise NOT operation on
this value produces the binary result 0000 0000 0101 0101, which is decimal 85.

 (~A)
 0000 0000 1010 1010

 0000 0000 0101 0101

See Also

Expressions

Operators (Bitwise Operators)

Transact-SQL Reference (SQL Server 2000)

= (Equals)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if both operands
are equal; otherwise, the result is FALSE. If either or both operands are NULL and SET ANSI_NULLS is set to ON, the result is
NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is NULL, and TRUE if both operands are NULL.

Syntax

expression = expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

> (Greater Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand has a higher value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL and SET
ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is NULL,
and TRUE if both operands are NULL.

Syntax

expression > expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

< (Less Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand has a lower value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL and SET
ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is NULL,
and TRUE if both operands are NULL.

Syntax

expression < expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

>= (Greater Than or Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand has a higher or equal value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL
and SET ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands
is NULL, and TRUE if both operands are NULL.

Syntax

expression > = expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

<= (Less Than or Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand has a lower or equal value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL and
SET ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is
NULL, and TRUE if both operands are NULL.

Syntax

expression = < expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

<> (Not Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand is not equal to the right operand; otherwise, the result is FALSE. If either or both operands are NULL and SET
ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands is NULL,
and TRUE if both operands are NULL.

Syntax

expression < > expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

!< (Not Less Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand does not have a lower value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL
and SET ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands
is NULL, and TRUE if both operands are NULL.

Syntax

expression ! < expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

!= (Not Equal To)
Tests whether one expression is not equal to another expression (a comparison operator). Functions the same as the Not Equal To
(<>) comparison operator.

See Also

Expressions

<> (Not Equal To)

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

!> (Not Greater Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE if the left
operand does not have a higher value than the right operand; otherwise, the result is FALSE. If either or both operands are NULL
and SET ANSI_NULLS is set to ON, the result is NULL. If SET ANSI_NULLS is set to OFF, the result is FALSE if one of the operands
is NULL, and TRUE if both operands are NULL.

Syntax

expression ! > expression

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. Both expressions must have implicitly convertible data types. The conversion
depends on the rules of data type precedence. For more information, see Data Type Precedence.

Result Types

Boolean

See Also

Data Types

Expressions

Operators (Comparison Operators)

Transact-SQL Reference (SQL Server 2000)

-- (Comment)
Indicates user-provided text. Comments can be inserted on a separate line, nested (-- only) at the end of a Transact-SQL
command line, or within a Transact-SQL statement. The comment is not evaluated by the server. Two hyphens (--) is the SQL-92
standard indicator for comments.

Syntax

-- text_of_comment

Arguments

text_of_comment

Is the character string containing the text of the comment.

Remarks

Use -- for single-line or nested comments. Comments inserted with -- are delimited by the newline character.

There is no maximum length for comments.

Note Including a GO command within a comment generates an error message.

Examples

This example uses the -- commenting characters.

-- Choose the pubs database.
USE pubs
-- Choose all columns and all rows from the titles table.
SELECT *
FROM titles
ORDER BY title_id ASC -- We don't have to specify ASC because that
-- is the default.

See Also

/*...*/ (Comment)

Control-of-Flow Language

Using Comments

Transact-SQL Reference (SQL Server 2000)

/*...*/ (Comment)
Indicates user-provided text. The text between the /* and */ commenting characters is not evaluated by the server.

Syntax

/ * text_of_comment * /

Arguments

text_of_comment

Is the character string(s) containing the text of the comment.

Remarks

Comments can be inserted on a separate line or within a Transact-SQL statement. Multiple-line comments must be indicated by
/* and */. A stylistic convention often used for multiple-line comments is to begin the first line with /*, subsequent lines with **,
and end with */.

There is no maximum length for comments.

Note Including a GO command within a comment generates an error message.

Examples

This example uses comments to document and test the behavior during different phases of development for a trigger. In this
example, parts of the trigger are commented out to narrow down problems and test only one of the conditions. Both styles of
comments are used; SQL-92 style (--) comments are shown both alone and nested.

Note The following CREATE TRIGGER statement fails because a trigger named employee_insupd already exists in the pubs
database.

CREATE TRIGGER employee_insupd
/*
 Because CHECK constraints can only reference the column(s)
 on which the column- or table-level constraint has
 been defined, any cross-table constraints (in this case,
 business rules) need to be defined as triggers.

 Employee job_lvls (on which salaries are based) should be within
 the range defined for their job. To get the appropriate range,
 the jobs table needs to be referenced. This trigger will be
 invoked for INSERT and UPDATES only.
*/
ON employee
FOR INSERT, UPDATE
AS
/* Get the range of level for this job type from the jobs table. */
DECLARE @min_lvl tinyint, -- Minimum level var. declaration
 @max_lvl tinyint, -- Maximum level var. declaration
 @emp_lvl tinyint, -- Employee level var. declaration
 @job_id smallint -- Job ID var. declaration
SELECT @min_lvl = min_lvl, -- Set the minimum level
 @max_lvl = max_lvl, -- Set the maximum level
 @emp_lvl = i.job_lvl, -- Set the proposed employee level
 @job_id = i.job_id -- Set the Job ID for comparison
FROM employee e, jobs j, inserted i
WHERE e.emp_id = i.emp_id AND i.job_id = j.job_id
IF (@job_id = 1) and (@emp_lvl <> 10)
BEGIN
 RAISERROR ('Job id 1 expects the default level of 10.', 16, 1)
 ROLLBACK TRANSACTION
END
/* Only want to test first condition. Remaining ELSE is commented out.
-- Comments within this section are unaffected by this commenting style.
ELSE
IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl) -- Check valid range

BEGIN
 RAISERROR ('The level for job_id:%d should be between %d and %d.',
 16, 1, @job_id, @min_lvl, @max_lvl)
 ROLLBACK TRANSACTION
END
*/
GO

See Also

-- (Comment)

Control-of-Flow Language

Using Comments

Transact-SQL Reference (SQL Server 2000)

[] (Wildcard - Character(s) to Match)
Matches any single character within the specified range or set that is specified inside the square brackets.

See Also

LIKE

Transact-SQL Reference (SQL Server 2000)

[^] (Wildcard - Character(s) Not to Match)
Matches any single character not within the specified range or set that is specified inside the square brackets.

See Also

LIKE

Transact-SQL Reference (SQL Server 2000)

_ (Wildcard - Match One Character)
Matches any single character, and can be used as either a prefix or suffix.

See Also

LIKE

Transact-SQL Reference (SQL Server 2000)

@@CONNECTIONS
Returns the number of connections, or attempted connections, since Microsoft® SQL Server™ was last started.

Syntax

@@CONNECTIONS

Return Types

integer

Remarks

Connections are different from users. Applications, for example, can open multiple connections to SQL Server without the user
observing the connections.

To display a report containing several SQL Server statistics, including connection attempts, run sp_monitor.

Examples

This example shows the number of login attempts as of the current date and time.

SELECT GETDATE() AS 'Today''s Date and Time',
 @@CONNECTIONS AS 'Login Attempts'

Here is the result set:

Today's Date and Time Login Attempts
--------------------------- ---------------
1998-04-09 14:28:46.940 18

See Also

Configuration Functions

sp_monitor

Transact-SQL Reference (SQL Server 2000)

@@CPU_BUSY
Returns the time in milliseconds (based on the resolution of the system timer) that the CPU has spent working since Microsoft®
SQL Server™ was last started.

Syntax

@@CPU_BUSY

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including CPU activity, run sp_monitor.

Examples

This example shows SQL Server CPU activity as of the current date and time.

SELECT @@CPU_BUSY AS 'CPU ms', GETDATE() AS 'As of'

Here is the result set:

CPU ms As of
----------------- ---------------------------
20 1998-04-18 14:43:08.180

See Also

@@IDLE

@@IO_BUSY

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@CURSOR_ROWS
Returns the number of qualifying rows currently in the last cursor opened on the connection. To improve performance,
Microsoft® SQL Server™ can populate large keyset and static cursors asynchronously. @@CURSOR_ROWS can be called to
determine that the number of the rows that qualify for a cursor are retrieved at the time @@CURSOR_ROWS is called.

Return value Description
-m The cursor is populated asynchronously. The value returned (-m)

is the number of rows currently in the keyset.
-1 The cursor is dynamic. Because dynamic cursors reflect all

changes, the number of rows that qualify for the cursor is
constantly changing. It can never be definitely stated that all
qualified rows have been retrieved.

0 No cursors have been opened, no rows qualified for the last
opened cursor, or the last-opened cursor is closed or deallocated.

n The cursor is fully populated. The value returned (n) is the total
number of rows in the cursor.

Syntax

@@CURSOR_ROWS

Return Types

integer

Remarks

The number returned by @@CURSOR_ROWS is negative if the last cursor was opened asynchronously. Keyset-driver or static
cursors are opened asynchronously if the value for sp_configure cursor threshold is greater than 0, and the number of rows in
the cursor result set is greater than the cursor threshold.

Examples

This example declares a cursor and uses SELECT to display the value of @@CURSOR_ROWS. The setting has a value of 0 before
the cursor is opened, and a value of -1 to indicate that the cursor keyset is populated asynchronously.

SELECT @@CURSOR_ROWS
DECLARE authors_cursor CURSOR FOR
SELECT au_lname FROM authors
OPEN authors_cursor
FETCH NEXT FROM authors_cursor
SELECT @@CURSOR_ROWS
CLOSE authors_cursor
DEALLOCATE authors_cursor

0

(1 row(s) affected)

au_lname
--
White

(1 row(s) affected)

-1

(1 row(s) affected)

See Also

Asynchronous Population

Cursor Functions

OPEN

Transact-SQL Reference (SQL Server 2000)

@@DATEFIRST
 Topic last updated -- July 2003

Returns the current value of the SET DATEFIRST parameter, which indicates the specified first day of each week: 1 for Monday, 3
for Wednesday, and so on through 7 for Sunday.

Syntax

@@DATEFIRST

Return Types

tinyint

Remarks

The U.S. English default is 7, Sunday.

Examples

This example sets the first day of the week to 5 (Friday), and assumes the current day, today, to be Saturday. The SELECT
statement returns the DATEFIRST value and the number of the current day of the week.

SET DATEFIRST 5
SELECT @@DATEFIRST AS '1st Day', DATEPART(dw, GETDATE()) AS 'Today'

Here is the result set.

1st Day Today
---------------- --------------
5 2

See Also

DATEPART

Configuration Functions

SET DATEFIRST

Transact-SQL Reference (SQL Server 2000)

@@DBTS
Returns the value of the current timestamp data type for the current database. This timestamp is guaranteed to be unique in the
database.

Syntax

@@DBTS

Return Types

varbinary

Remarks

@@DBTS returns the current database's last-used timestamp value. A new timestamp value is generated when a row with a
timestamp column is inserted or updated.

Examples

This example returns the current timestamp from the pubs database.

USE pubs
SELECT @@DBTS

See Also

Configuration Functions

Cursor Concurrency

Data Types

Transact-SQL Reference (SQL Server 2000)

@@ERROR
Returns the error number for the last Transact-SQL statement executed.

Syntax

@@ERROR

Return Types

integer

Remarks

When Microsoft® SQL Server™ completes the execution of a Transact-SQL statement, @@ERROR is set to 0 if the statement
executed successfully. If an error occurs, an error message is returned. @@ERROR returns the number of the error message until
another Transact-SQL statement is executed. You can view the text associated with an @@ERROR error number in the
sysmessages system table.

Because @@ERROR is cleared and reset on each statement executed, check it immediately following the statement validated, or
save it to a local variable that can be checked later.

Examples

A. Use @ @ ERROR to detect a specific error

This example uses @@ERROR to check for a check constraint violation (error #547) in an UPDATE statement.

USE pubs
GO
UPDATE authors SET au_id = '172 32 1176'
WHERE au_id = "172-32-1176"

IF @@ERROR = 547
 print "A check constraint violation occurred"

B. Use @ @ ERROR to conditionally exit a procedure

The IF...ELSE statements in this example test @@ERROR after an INSERT statement in a stored procedure. The value of the
@@ERROR variable determines the return code sent to the calling program, indicating success or failure of the procedure.

USE pubs
GO

-- Create the procedure.
CREATE PROCEDURE add_author
@au_id varchar(11),@au_lname varchar(40),
@au_fname varchar(20),@phone char(12),
@address varchar(40) = NULL,@city varchar(20) = NULL,
@state char(2) = NULL,@zip char(5) = NULL,
@contract bit = NULL
AS

-- Execute the INSERT statement.
INSERT INTO authors
(au_id, au_lname, au_fname, phone, address,
 city, state, zip, contract) values
(@au_id,@au_lname,@au_fname,@phone,@address,
 @city,@state,@zip,@contract)

-- Test the error value.
IF @@ERROR <> 0
BEGIN
 -- Return 99 to the calling program to indicate failure.
 PRINT "An error occurred loading the new author information"
 RETURN(99)
END
ELSE
BEGIN
 -- Return 0 to the calling program to indicate success.
 PRINT "The new author information has been loaded"

 RETURN(0)
END
GO

C. Use @ @ ERROR to check the success of several statements

This example depends on the successful operation of the INSERT and DELETE statements. Local variables are set to the value of
@@ERROR after both statements and are used in a shared error-handling routine for the operation.

USE pubs
GO
DECLARE @del_error int, @ins_error int
-- Start a transaction.
BEGIN TRAN

-- Execute the DELETE statement.
DELETE authors
WHERE au_id = '409-56-7088'

-- Set a variable to the error value for
-- the DELETE statement.
SELECT @del_error = @@ERROR

-- Execute the INSERT statement.
INSERT authors
 VALUES('409-56-7008', 'Bennet', 'Abraham', '415 658-9932',
 '6223 Bateman St.', 'Berkeley', 'CA', '94705', 1)
-- Set a variable to the error value for
-- the INSERT statement.
SELECT @ins_error = @@ERROR

-- Test the error values.
IF @del_error = 0 AND @ins_error = 0
BEGIN
 -- Success. Commit the transaction.
 PRINT "The author information has been replaced"
 COMMIT TRAN
END
ELSE
BEGIN
 -- An error occurred. Indicate which operation(s) failed
 -- and roll back the transaction.
 IF @del_error <> 0
 PRINT "An error occurred during execution of the DELETE
 statement."

 IF @ins_error <> 0
 PRINT "An error occurred during execution of the INSERT
 statement."

 ROLLBACK TRAN
END
GO

D. Use @ @ ERROR with @ @ ROWCOUN T

This example uses @@ERROR with @@ROWCOUNT to validate the operation of an UPDATE statement. The value of @@ERROR
is checked for any indication of an error, and @@ROWCOUNT is used to ensure that the update was successfully applied to a row
in the table.

USE pubs
GO
CREATE PROCEDURE change_publisher
@title_id tid,
@new_pub_id char(4)
AS

-- Declare variables used in error checking.
DECLARE @error_var int, @rowcount_var int

-- Execute the UPDATE statement.
UPDATE titles SET pub_id = @new_pub_id
WHERE title_id = @title_id

-- Save the @@ERROR and @@ROWCOUNT values in local
-- variables before they are cleared.
SELECT @error_var = @@ERROR, @rowcount_var = @@ROWCOUNT

-- Check for errors. If an invalid @new_pub_id was specified
-- the UPDATE statement returns a foreign-key violation error #547.
IF @error_var <> 0
BEGIN
 IF @error_var = 547
 BEGIN
 PRINT "ERROR: Invalid ID specified for new publisher"
 RETURN(1)
 END
 ELSE
 BEGIN
 PRINT "ERROR: Unhandled error occurred"
 RETURN(2)
 END
END

-- Check the rowcount. @rowcount_var is set to 0
-- if an invalid @title_id was specified.
IF @rowcount_var = 0
BEGIN
 PRINT "Warning: The title_id specified is not valid"
 RETURN(1)
END
ELSE
BEGIN
 PRINT "The book has been updated with the new publisher"
 RETURN(0)
END
GO

See Also

Error Handling

@@ROWCOUNT

SET @local_variable

sysmessages

System Functions

Transact-SQL Reference (SQL Server 2000)

@@FETCH_STATUS
Returns the status of the last cursor FETCH statement issued against any cursor currently opened by the connection.

Return value Description
0 FETCH statement was successful.
-1 FETCH statement failed or the row was beyond the result set.
-2 Row fetched is missing.

Syntax

@@FETCH_STATUS

Return Types

integer

Remarks

Because @@FETCH_STATUS is global to all cursors on a connection, use @@FETCH_STATUS carefully. After a FETCH statement is
executed, the test for @@FETCH_STATUS must occur before any other FETCH statement is executed against another cursor. The
value of @@FETCH_STATUS is undefined before any fetches have occurred on the connection.

For example, a user executes a FETCH statement from one cursor, and then calls a stored procedure that opens and processes the
results from another cursor. When control is returned from the called stored procedure, @@FETCH_STATUS reflects the last
FETCH executed in the stored procedure, not the FETCH statement executed before the stored procedure is called.

Examples

This example uses @@FETCH_STATUS to control cursor activities in a WHILE loop.

DECLARE Employee_Cursor CURSOR FOR
SELECT LastName, FirstName FROM Northwind.dbo.Employees
OPEN Employee_Cursor
FETCH NEXT FROM Employee_Cursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM Employee_Cursor
END
CLOSE Employee_Cursor
DEALLOCATE Employee_Cursor

See Also

Cursor Functions

FETCH

Transact-SQL Reference (SQL Server 2000)

@@IDENTITY
Returns the last-inserted identity value.

Syntax

@@IDENTITY

Return Types

numeric

Remarks

After an INSERT, SELECT INTO, or bulk copy statement completes, @@IDENTITY contains the last identity value generated by the
statement. If the statement did not affect any tables with identity columns, @@IDENTITY returns NULL. If multiple rows are
inserted, generating multiple identity values, @@IDENTITY returns the last identity value generated. If the statement fires one or
more triggers that perform inserts that generate identity values, calling @@IDENTITY immediately after the statement returns the
last identity value generated by the triggers. If a trigger is fired after an insert action on a table that has an identity column, and
the trigger inserts into another table that does not have an identity column, @@IDENTITY will return the identity value of the first
insert. The @@IDENTITY value does not revert to a previous setting if the INSERT or SELECT INTO statement or bulk copy fails, or
if the transaction is rolled back.

@@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT are similar functions in that they return the last value inserted into the
IDENTITY column of a table.

@@IDENTITY and SCOPE_IDENTITY will return the last identity value generated in any table in the current session. However,
SCOPE_IDENTITY returns the value only within the current scope; @@IDENTITY is not limited to a specific scope.

IDENT_CURRENT is not limited by scope and session; it is limited to a specified table. IDENT_CURRENT returns the identity value
generated for a specific table in any session and any scope. For more information, see IDENT_CURRENT.

The scope of the @@IDENTITY function is the local server on which it is executed. This function cannot be applied to remote or
linked servers. To obtain an identity value on a different server, execute a stored procedure on that remote or linked server and
have that stored procedure, which is executing in the context of the remote or linked server, gather the identity value and return it
to the calling connection on the local server.

Examples

This example inserts a row into a table with an identity column and uses @@IDENTITY to display the identity value used in the
new row.

INSERT INTO jobs (job_desc,min_lvl,max_lvl)
VALUES ('Accountant',12,125)
SELECT @@IDENTITY AS 'Identity'

See Also

CREATE TABLE

IDENT_CURRENT

INSERT

SCOPE_IDENTITY

SELECT

System Functions

Transact-SQL Reference (SQL Server 2000)

@@IDLE
Returns the time in milliseconds (based on the resolution of the system timer) that Microsoft® SQL Server™ has been idle since
last started.

Syntax

@@IDLE

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, run sp_monitor.

Examples

This example shows the number of milliseconds SQL Server was idle between the start time and the current time.

SELECT @@IDLE AS 'Idle ms', GETDATE() AS 'As of'

Here is the result set:

Idle Ms As of
----------------- ---------------------------
277593 1998-04-18 16:41:07.160

See Also

@@CPU_BUSY

sp_monitor

@@IO_BUSY

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@IO_BUSY
Returns the time in milliseconds (based on the resolution of the system timer) that Microsoft® SQL Server™ has spent
performing input and output operations since it was last started.

Syntax

@@IO_BUSY

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, run sp_monitor.

Examples

This example shows the number of milliseconds SQL Server has spent performing input/output operations between start time
and the current time.

SELECT @@IO_BUSY AS 'IO ms', GETDATE() AS 'As of'

Here is the result set:

IO ms As of
------------------ -----------------------------
31 1998-04-18 16:49:49.650

See Also

@@CPU_BUSY

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@LANGID
Returns the local language identifier (ID) of the language currently in use.

Syntax

@@LANGID

Return Types

smallint

Remarks

To view information about language settings (including language ID numbers), run sp_helplanguage with no parameter
specified.

Examples

This example sets the language for the current session to Italian, and then uses @@LANGID to return the ID for Italian.

SET LANGUAGE 'Italian'
SELECT @@LANGID AS 'Language ID'

Here is the result set:

Language ID

6

See Also

Configuration Functions

SET LANGUAGE

sp_helplanguage

Transact-SQL Reference (SQL Server 2000)

@@LANGUAGE
Returns the name of the language currently in use.

Syntax

@@LANGUAGE

Return Types

nvarchar

Remarks

To view information about language settings (including valid official language names), run sp_helplanguage with no parameter
specified.

Examples

This example returns the language for the current session.

SELECT @@LANGUAGE AS 'Language Name'

Here is the result set:

Language Name

us_english

See Also

Configuration Functions

SET LANGUAGE

sp_helplanguage

Transact-SQL Reference (SQL Server 2000)

@@LOCK_TIMEOUT
Returns the current lock time-out setting, in milliseconds, for the current session.

Syntax

@@LOCK_TIMEOUT

Return Types

integer

Remarks

SET LOCK_TIMEOUT allows an application to set the maximum time that a statement waits on a blocked resource. When a
statement has waited longer than the LOCK_TIMEOUT setting, the blocked statement is automatically canceled, and an error
message is returned to the application.

At the beginning of a connection, @@LOCK_TIMEOUT returns a value of -1.

Examples

This example shows the result set when a LOCK_TIMEOUT value is not set.

SELECT @@LOCK_TIMEOUT

Here is the result set:

-1

This example sets LOCK_TIMEOUT to 1800 milliseconds, and then calls @@LOCK_TIMEOUT.

SET LOCK_TIMEOUT 1800
SELECT @@LOCK_TIMEOUT

Here is the result set:

1800

See Also

Configuration Functions

Customizing the Lock Time-out

SET LOCK_TIMEOUT

Transact-SQL Reference (SQL Server 2000)

@@MAX_CONNECTIONS
Returns the maximum number of simultaneous user connections allowed on a Microsoft® SQL Server™. The number returned is
not necessarily the number currently configured.

Syntax

@@MAX_CONNECTIONS

Return Types

integer

Remarks

The actual number of user connections allowed also depends on the version of SQL Server installed and the limitations of your
application(s) and hardware.

To reconfigure SQL Server for fewer connections, use sp_configure.

Examples

This example assumes that SQL Server has not been reconfigured for fewer user connections.

SELECT @@MAX_CONNECTIONS

Here is the result set:

32767

See Also

sp_configure

Configuration Functions

user connections Option

Transact-SQL Reference (SQL Server 2000)

@@MAX_PRECISION
Returns the precision level used by decimal and numeric data types as currently set in the server.

Syntax

@@MAX_PRECISION

Return Types

tinyint

Remarks

By default, the maximum precision returns 38.

Examples

SELECT @@MAX_PRECISION

See Also

Configuration Functions

decimal and numeric

Precision, Scale, and Length

Transact-SQL Reference (SQL Server 2000)

@@NESTLEVEL
Returns the nesting level of the current stored procedure execution (initially 0).

Syntax

@@NESTLEVEL

Return Types

integer

Remarks

Each time a stored procedure calls another stored procedure, the nesting level is incremented. When the maximum of 32 is
exceeded, the transaction is terminated.

Examples

This example creates two procedures: one that calls the other, and one that displays the @@NESTLEVEL setting of each.

CREATE PROCEDURE innerproc as
select @@NESTLEVEL AS 'Inner Level'
GO

CREATE PROCEDURE outerproc as
select @@NESTLEVEL AS 'Outer Level'
EXEC innerproc
GO

EXECUTE outerproc
GO

Here is the result set:

Outer Level

1

Inner Level

2

See Also

Configuration Functions

Creating a Stored Procedure

@@TRANCOUNT

Transact-SQL Reference (SQL Server 2000)

@@OPTIONS
Returns information about current SET options.

Syntax

@@OPTIONS

Return Types

integer

Remarks

SET options can be modified as a whole by using the sp_configure user options configuration option. Each user has an
@@OPTIONS function that represents the configuration. When first logging on, all users are assigned a default configuration set
by the system administrator.

You can change the language and query-processing options by using the SET statement.

Examples

This example sets NOCOUNT ON and then tests the value of @@OPTIONS. The NOCOUNT ON option prevents the message
about the number of rows affected from being sent back to the requesting client for every statement in a session. The value of
@@OPTIONS is set to 512 (0x0200), which represents the NOCOUNT option. This example tests whether the NOCOUNT option is
enabled on the client. For example, it can help track performance differences on a client.

SET NOCOUNT ON
IF @@OPTIONS & 512 > 0
 RAISERROR ('Current user has SET NOCOUNT turned on.',1,1)

See Also

Configuration Functions

sp_configure

user options Option

Transact-SQL Reference (SQL Server 2000)

@@PACK_RECEIVED
Returns the number of input packets read from the network by Microsoft® SQL Server™ since last started.

Syntax

@@PACK_RECEIVED

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packets sent and received, run sp_monitor.

Examples

SELECT @@PACK_RECEIVED

See Also

@@PACK_SENT

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@PACK_SENT
Returns the number of output packets written to the network by Microsoft® SQL Server™ since last started.

Syntax

@@PACK_SENT

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packets sent and received, run sp_monitor.

Examples

SELECT @@PACK_SENT

See Also

@@PACK_RECEIVED

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@PACKET_ERRORS
Returns the number of network packet errors that have occurred on Microsoft® SQL Server™ connections since SQL Server was
last started.

Syntax

@@PACKET_ERRORS

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including packet errors, run sp_monitor.

Examples

SELECT @@PACKET_ERRORS

See Also

@@PACK_RECEIVED

@@PACK_SENT

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@PROCID
Returns the stored procedure identifier (ID) of the current procedure.

Syntax

@@PROCID

Return Types

integer

Examples

This example creates a procedure that uses SELECT to display the @@PROCID setting from inside the procedure.

CREATE PROCEDURE testprocedure AS
SELECT @@PROCID AS 'ProcID'
GO
EXEC testprocedure
GO

See Also

CREATE PROCEDURE

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

@@REMSERVER
Returns the name of the remote Microsoft® SQL Server™ database server as it appears in the login record.

Syntax

@@REMSERVER

Return Types

nvarchar(256)

Remarks

@@REMSERVER enables a stored procedure to check the name of the database server from which the procedure is run.

Examples

This example creates a procedure, check_server, that returns the name of the remote server.

CREATE PROCEDURE check_server
AS
SELECT @@REMSERVER

The stored procedure is created on SEATTLE1, the local server. The user logs on to a remote server, LONDON2, and runs
check_server.

exec SEATTLE1...check_server

Here is the result set:

LONDON2

See Also

Configuration Functions

Configuring Remote Servers

Transact-SQL Reference (SQL Server 2000)

@@ROWCOUNT
 Topic last updated -- July 2003

Returns the number of rows affected by the last statement.

Syntax

@@ROWCOUNT

Return Types

integer

Remarks

This variable is set to 0 by any statement that does not return rows, such as an IF statement.

If the table has more than 2 billion rows, use ROWCOUNT_BIG(). For more information, see ROWCOUNT_BIG().

Examples

This example executes UPDATE and uses @@ROWCOUNT to detect if any rows were changed.

UPDATE authors SET au_lname = 'Jones'
WHERE au_id = '999-888-7777'
IF @@ROWCOUNT = 0
 print 'Warning: No rows were updated'

See Also

@@ERROR

System Functions

Transact-SQL Reference (SQL Server 2000)

@@SERVERNAME
Returns the name of the local server running Microsoft® SQL Server™.

Syntax

@@SERVERNAME

Return Types

nvarchar

Remarks

SQL Server Setup sets the server name to the computer name during installation. Change @@SERVERNAME by using
sp_addserver and then restarting SQL Server. This method, however, is not usually required.

With multiple instances of SQL Server installed, @@SERVERNAME returns the following local server name information if the local
server name has not been changed since setup.

Instance Server information
Default instance 'servername'
Named instance 'servername\instancename'
Virtual server - default instance 'virtualservername'
Virtual server - named instance 'virtualservername\instancename'

Although the @@SERVERNAME function and the SERVERNAME property of SERVERPROPERTY function may return strings with
similar formats, the information can be different. The SERVERNAME property automatically reports changes in the network name
of the computer.

In contrast, @@SERVERNAME does not report such changes. @@SERVERNAME reports changes made to the local server name
using the sp_addserver or sp_dropserver stored procedure.

Examples

SELECT @@SERVERNAME

See Also

Configuration Functions

SERVERPROPERTY

sp_addserver

Transact-SQL Reference (SQL Server 2000)

@@SERVICENAME
Returns the name of the registry key under which Microsoft® SQL Server™ is running. @@SERVICENAME returns MSSQLServer
if the current instance is the default instance; this function returns the instance name if the current instance is a named instance.

Syntax

@@SERVICENAME

Return Types

nvarchar

Remarks

SQL Server runs as a service named MSSQLServer on Microsoft Windows NT®. It does not run as a service on Windows® 98
because the operating system does not support services.

Examples

SELECT @@SERVICENAME

Here is the result set:

MSSQLServer

See Also

Configuration Functions

MSSQLServer Service

Transact-SQL Reference (SQL Server 2000)

@@SPID
Returns the server process identifier (ID) of the current user process.

Syntax

@@SPID

Return Types

smallint

Remarks

@@SPID can be used to identify the current user process in the output of sp_who.

Examples

This example returns the process ID, login name, and user name for the current user process.

SELECT @@SPID AS 'ID', SYSTEM_USER AS 'Login Name', USER AS 'User Name'

Here is the result set:

ID Login Name User Name
----- ------------- -----------
11 sa dbo

See Also

Configuration Functions

sp_lock

sp_who

Transact-SQL Reference (SQL Server 2000)

@@TEXTSIZE
Returns the current value of the TEXTSIZE option of the SET statement, which specifies the maximum length, in bytes, of text or
image data that a SELECT statement returns.

Syntax

@@TEXTSIZE

Return Types

integer

Remarks

The default size is 4096 bytes.

Examples

This example uses SELECT to display the @@TEXTSIZE value before and after it is changed with the SET TEXTSIZE statement.

SELECT @@TEXTSIZE
SET TEXTSIZE 2048
SELECT @@TEXTSIZE

Here is the result set:

64512

2048

See Also

Configuration Functions

SET TEXTSIZE

Transact-SQL Reference (SQL Server 2000)

@@TIMETICKS
Returns the number of microseconds per tick.

Syntax

@@TIMETICKS

Return Types

integer

Remarks

The amount of time per tick is computer-dependent. Each tick on the operating system is 31.25 milliseconds, or one thirty-second
of a second.

Examples

SELECT @@TIMETICKS

See Also

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@TOTAL_ERRORS
Returns the number of disk read/write errors encountered by Microsoft® SQL Server™ since last started.

Syntax

@@TOTAL_ERRORS

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including total number of errors, run sp_monitor.

Examples

This example shows the number of errors encountered by SQL Server as of the current date and time.

SELECT @@TOTAL_ERRORS AS 'Errors', GETDATE() AS 'As of'

Here is the result set:

Errors As of
------- -------------------------------
0 1998-04-21 22:07:30.013

See Also

sp_monitor

System Statistical Functions

Transact-SQL Reference (SQL Server 2000)

@@TOTAL_READ
Returns the number of disk reads (not cache reads) by Microsoft® SQL Server™ since last started.

Syntax

@@TOTAL_READ

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including read and write activity, run sp_monitor.

Examples

This example shows the total number of disk read and writes as of the current date and time.

SELECT @@TOTAL_READ AS 'Reads', @@TOTAL_WRITE AS 'Writes', GETDATE() AS 'As of'

Here is the result set:

Reads Writes As of
--------- ----------- ------------------------------
978 124 1998-04-21 22:14:22.37

See Also

sp_monitor

System Statistical Functions

@@TOTAL_WRITE

Transact-SQL Reference (SQL Server 2000)

@@TOTAL_WRITE
Returns the number of disk writes by Microsoft® SQL Server™ since last started.

Syntax

@@TOTAL_WRITE

Return Types

integer

Remarks

To display a report containing several SQL Server statistics, including read and write activity, run sp_monitor.

Examples

This example shows the total number of disk reads and writes as of the current date and time.

SELECT @@TOTAL_READ AS 'Reads', @@TOTAL_WRITE AS 'Writes', GETDATE() AS 'As of'

Here is the result set:

Reads Writes As of
--------- ----------- ------------------------------
978 124 1998-04-21 22:14:22.37

See Also

sp_monitor

System Statistical Functions

@@TOTAL_READ

Transact-SQL Reference (SQL Server 2000)

@@TRANCOUNT
Returns the number of active transactions for the current connection.

Syntax

@@TRANCOUNT

Return Types

integer

Remarks

The BEGIN TRANSACTION statement increments @@TRANCOUNT by 1. ROLLBACK TRANSACTION decrements
@@TRANCOUNT to 0, except for ROLLBACK TRANSACTION savepoint_name, which does not affect @@TRANCOUNT. COMMIT
TRANSACTION or COMMIT WORK decrement @@TRANCOUNT by 1.

Examples

This example uses @@TRANCOUNT to test for open transactions that should be committed.

BEGIN TRANSACTION
UPDATE authors SET au_lname = upper(au_lname)
WHERE au_lname = 'White'
IF @@ROWCOUNT = 2
 COMMIT TRAN

IF @@TRANCOUNT > 0
BEGIN
 PRINT 'A transaction needs to be rolled back'
 ROLLBACK TRAN
END

See Also

BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

System Functions

Transact-SQL Reference (SQL Server 2000)

@@VERSION
Returns the date, version, and processor type for the current installation of Microsoft® SQL Server™.

Syntax

@@VERSION

Return Types

nvarchar

Remarks

The information returned by @@VERSION is similar to the product name, version, platform, and file data returned by the
xp_msver stored procedure, which provides more detailed information.

Examples

This example returns the date, version, and processor type for the current installation.

SELECT @@VERSION

See Also

Configuration Functions

xp_msver

Transact-SQL Reference (SQL Server 2000)

ABS
Returns the absolute, positive value of the given numeric expression.

Syntax

ABS (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

This example shows the effect of the ABS function on three different numbers.

SELECT ABS(-1.0), ABS(0.0), ABS(1.0)

Here is the result set:

---- ---- ----
1.0 .0 1.0

The ABS function can produce an overflow error, for example:

SELECT ABS(convert(int, -2147483648))

Here is the error message:

Server: Msg 8115, Level 16, State 2
Arithmetic overflow error converting expression to type int.

See Also

CAST and CONVERT

Data Types

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

ACOS
Returns the angle, in radians, whose cosine is the given float expression; also called arccosine.

Syntax

ACOS (float_expression)

Arguments

float_expression

Is an expression of the type float or real, with a value from -1 through 1. Values outside this range return NULL and report a
domain error.

Return Types

float

Examples

This example returns the ACOS of the given angle.

SET NOCOUNT OFF
DECLARE @angle float
SET @angle = -1
SELECT 'The ACOS of the angle is: ' + CONVERT(varchar, ACOS(@angle))

Here is the result set:

The ACOS of the angle is: 3.14159

(1 row(s) affected)

This example sets @angle to a value outside the valid range.

SET NOCOUNT OFF
DECLARE @angle float
SET @angle = 1.01
SELECT 'The ACOS of the angle is: ' + CONVERT(varchar, ACOS(@angle))

Here is the result set:

--
NULL

(1 row(s) affected)

A domain error occurred.

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

ALL
Compares a scalar value with a single-column set of values.

Syntax

scalar_expression { = | <> | != | > | >= | !> | < | <= | !< } ALL (subquery)

Arguments

scalar_expression

Is any valid Microsoft® SQL Server™ expression.

{ = | <> | != | > | >= | !> | < | <= | !< }

Is a comparison operator.

subquery

Is a subquery that returns a result set of one column. The data type of the returned column must be the same data type as the
data type of scalar_expression.

Is a restricted SELECT statement (the ORDER BY clause, the COMPUTE clause, and the INTO keyword are not allowed).

Return Types

Boolean

Result Value

Returns TRUE when the comparison specified is TRUE for all pairs (scalar_expression, x) where x is a value in the single-column
set; otherwise returns FALSE.

See Also

CASE

Expressions

Functions

LIKE

Operators (Logical Operators)

SELECT (Subqueries)

WHERE

Transact-SQL Reference (SQL Server 2000)

ALTER DATABASE
 Topic last updated -- January 2004

Adds or removes files and filegroups from a database. Can also be used to modify the attributes of files and filegroups, such as
changing the name or size of a file. ALTER DATABASE provides the ability to change the database name, filegroup names, and the
logical names of data files and log files.

ALTER DATABASE supports the setting of database options. In previous versions of Microsoft® SQL Server™, these options could
be set with the sp_dboption stored procedure. SQL Server continues to support sp_dboption in this release but may not do so
in the future. Use the DATABASEPROPERTYEX function to retrieve current settings for database options.

Syntax

ALTER DATABASE database
{ ADD FILE < filespec > [,...n] [TO FILEGROUP filegroup_name]
| ADD LOG FILE < filespec > [,...n]
| REMOVE FILE logical_file_name
| ADD FILEGROUP filegroup_name
| REMOVE FILEGROUP filegroup_name
| MODIFY FILE < filespec >
| MODIFY NAME = new_dbname
| MODIFY FILEGROUP filegroup_name {filegroup_property | NAME = new_filegroup_name }
| SET < optionspec > [,...n] [WITH < termination >]
| COLLATE < collation_name >
}

< filespec > ::=

(NAME = logical_file_name
 [, NEWNAME = new_logical_name]
 [, FILENAME = 'os_file_name']
 [, SIZE = size]
 [, MAXSIZE = { max_size | UNLIMITED }]
 [, FILEGROWTH = growth_increment])

< optionspec > ::=

 < state_option >
 | < cursor_option >
 | < auto_option >
 | < sql_option >
 | < recovery_option >

 < state_option > ::=
 { SINGLE_USER | RESTRICTED_USER | MULTI_USER }
 | { OFFLINE | ONLINE }
 | { READ_ONLY | READ_WRITE }

 < cursor_option > ::=
 CURSOR_CLOSE_ON_COMMIT { ON | OFF }
 | CURSOR_DEFAULT { LOCAL | GLOBAL }

 < auto_option > ::=
 AUTO_CLOSE { ON | OFF }
 | AUTO_CREATE_STATISTICS { ON | OFF }
 | AUTO_SHRINK { ON | OFF }
 | AUTO_UPDATE_STATISTICS { ON | OFF }

 < sql_option > ::=
 ANSI_NULL_DEFAULT { ON | OFF }
 | ANSI_NULLS { ON | OFF }
 | ANSI_PADDING { ON | OFF }
 | ANSI_WARNINGS { ON | OFF }
 | ARITHABORT { ON | OFF }

 | CONCAT_NULL_YIELDS_NULL { ON | OFF }
 | NUMERIC_ROUNDABORT { ON | OFF }
 | QUOTED_IDENTIFIER { ON | OFF }
 | RECURSIVE_TRIGGERS { ON | OFF }

 < recovery_option > ::=
 RECOVERY { FULL | BULK_LOGGED | SIMPLE }
 | TORN_PAGE_DETECTION { ON | OFF }

< termination > ::=

 ROLLBACK AFTER integer [SECONDS]
 | ROLLBACK IMMEDIATE
 | NO_WAIT

Arguments

database

Is the name of the database changed.

ADD FILE

Specifies that a file is added.

TO FILEGROUP

Specifies the filegroup to which to add the specified file.

filegroup_name

Is the name of the filegroup to add the specified file to.

ADD LOG FILE

Specifies that a log file be added to the specified database.

REMOVE FILE

Removes the file description from the database system tables and deletes the physical file. The file cannot be removed unless
empty.

ADD FILEGROUP

Specifies that a filegroup is to be added.

filegroup_name

Is the name of the filegroup to add or drop.

REMOVE FILEGROUP

Removes the filegroup from the database. The filegroup cannot be removed unless it is empty. Use ALTER DATABASE REMOVE
FILE to delete all files from the filegroup.

MODIFY FILE

Specifies the given file that should be modified, including the FILENAME, SIZE, FILEGROWTH, and MAXSIZE options. Only one of
these properties can be changed at a time. NAME must be specified in the <filespec> to identify the file to be modified. If SIZE is
specified, the new size must be larger than the current file size. FILENAME can be specified only for files in the tempdb database,
and the new name does not take effect until Microsoft SQL Server is restarted.

To modify the logical name of a data file or log file, specify in NAME the logical file name to be renamed, and specify for
NEWNAME the new logical name for the file.

Thus:

MODIFY FILE (NAME = logical_file_name, NEWNAME = new_logical_name...).

For optimum performance during multiple modify-file operations, several ALTER DATABASE database MODIFY FILE statements
can be run concurrently.

MODIFY NAME = new_dbname

Renames the database.

MODIFY FILEGROUP filegroup_name { filegroup_property | NAME = new_filegroup_name }

Specifies the filegroup to be modified and the change needed.

If filegroup_name and NAME = new_filegroup_name are specified, changes the filegroup name to the new_filegroup_name.

If filegroup_name and filegroup_property are specified, indicates the given filegroup property be applied to the filegroup. The
values for filegroup_property are:

READONLY
Specifies the filegroup is read-only. Updates to objects in it are not allowed. The primary filegroup cannot be made read-only.
Only users with exclusive database access can mark a filegroup read-only.

READWRITE
Reverses the READONLY property. Updates are enabled for the objects in the filegroup. Only users who have exclusive access to
the database can mark a filegroup read/write.

DEFAULT
Specifies the filegroup as the default database filegroup. Only one database filegroup can be default. CREATE DATABASE sets
the primary filegroup as the initial default filegroup. New tables and indexes are created in the default filegroup—if no filegroup
is specified in the CREATE TABLE, ALTER TABLE, or CREATE INDEX statements.

COLLATE < collation_name >

Specifies the collation for the database. Collation name can be either a Windows collation name or a SQL collation name. If not
specified, the database is assigned the default collation of the SQL Server instance.

For more information about the Windows and SQL collation names, see COLLATE.

<filespec>

Controls the file properties.

NAME
Specifies a logical name for the file.

logical_file_name
Is the name used in Microsoft SQL Server when referencing the file. The name must be unique within the database and conform
to the rules for identifiers. The name can be a character or Unicode constant, a regular identifier, or a delimited identifier. For
more information, see Using Identifiers.

FILENAME
Specifies an operating system file name. When used with MODIFY FILE, FILENAME can be specified only for files in the tempdb
database. The new tempdb file name takes effect only after SQL Server is stopped and restarted.

'os_file_name'
Is the path and file name used by the operating system for the file. The file must reside in the server in which SQL Server is
installed. Data and log files should not be placed on compressed file systems.

If the file is on a raw partition, os_file_name must specify only the drive letter of an existing raw partition. Only one file can be
placed on each raw partition. Files on raw partitions do not autogrow; therefore, the MAXSIZE and FILEGROWTH parameters are
not needed when os_file_name specifies a raw partition.

SIZE
Specifies the file size.

size
Is the size of the file. The KB, MB, GB, and TB suffixes can be used to specify kilobytes, megabytes, gigabytes, or terabytes. The
default is MB. Specify a whole number; do not include a decimal. The minimum value for size is 512 KB, and the default if size is
not specified is 1 MB. When specified with ADD FILE, size is the initial size for the file. When specified with MODIFY FILE, size is
the new size for the file, and must be larger than the current file size.

MAXSIZE
Specifies the maximum file size.

max_size
Is the maximum file size. The KB, MB, GB, and TB suffixes can be used to specify kilobytes, megabytes, gigabytes, or terabytes.
The default is MB. Specify a whole number; do not include a decimal. If max_size is not specified, the file size will increase until
the disk is full. The Microsoft Windows NT® application log warns an administrator when a disk is about to become full.

UNLIMITED
Specifies that the file increases in size until the disk is full.

FILEGROWTH

Specifies file increase increment.
growth_increment

Is the amount of space added to the file each time new space is needed. A value of 0 indicates no increase. The value can be
specified in MB, KB, or %. Specify a whole number; do not include a decimal. When % is specified, the increment size is the
specified percentage of the file size at the time the increment occurs. If a number is specified without an MB, KB, or % suffix, the
default is MB. The default value if FILEGROWTH is not specified is 10%, and the minimum value is 64 KB. The size specified is
rounded to the nearest 64 KB.

<state_option>

Controls user access to the database, whether the database is online, and whether writes are allowed.

SINGLE_USER | RESTRICTED_USER | MULTI_USER
Controls which users may access the database. When SINGLE_USER is specified, only one user at a time can access the
database. When RESTRICTED_USER is specified, only members of the db_owner, dbcreator, or sysadmin roles can use the
database. MULTI_USER returns the database to its normal operating state.

OFFLINE | ONLINE
Controls whether the database is offline or online.

READ_ONLY | READ_WRITE
Specifies whether the database is in read-only mode. In read-only mode, users can read data from the database, not modify it.
The database cannot be in use when READ_ONLY is specified. The master database is the exception, and only the system
administrator can use master while READ_ONLY is set. READ_WRITE returns the database to read/write operations.

<cursor_option>

Controls cursor options.

CURSOR_CLOSE_ON_COMMIT ON | OFF
If ON is specified, any cursors open when a transaction is committed or rolled back are closed. If OFF is specified, such cursors
remain open when a transaction is committed; rolling back a transaction closes any cursors except those defined as
INSENSITIVE or STATIC.

CURSOR_DEFAULTLOCAL | GLOBAL
Controls whether cursor scope defaults to LOCAL or GLOBAL.

<auto_option>

Controls automatic options.

AUTO_CLOSE ON | OFF
If ON is specified, the database is shut down cleanly and its resources are freed after the last user exits. If OFF is specified, the
database remains open after the last user exits.

AUTO_CREATE_STATISTICS ON | OFF
If ON is specified, any missing statistics needed by a query for optimization are automatically built during optimization.

AUTO_SHRINK ON | OFF
If ON is specified, the database files are candidates for automatic periodic shrinking.

AUTO_UPDATE_STATISTICS ON | OFF
If ON is specified, any out-of-date statistics required by a query for optimization are automatically built during optimization. If
OFF is specified, statistics must be updated manually. The UPDATE STATISTICS statement reenables automatic statistical
updating unless the NORECOMPUTE clause is specified.

<sql_option>

Controls the ANSI compliance options.

ANSI_NULL_DEFAULT ON | OFF
If ON is specified, CREATE TABLE follows SQL-92 rules to determine whether a column allows null values.

ANSI_NULLS ON | OFF
If ON is specified, all comparisons to a null value evaluate to UNKNOWN. If OFF is specified, comparisons of non-UNICODE
values to a null value evaluate to TRUE if both values are NULL.

ANSI_PADDING ON | OFF
If ON is specified, strings are padded to the same length before comparison or insert. If OFF is specified, strings are not padded.

ANSI_WARNINGS ON | OFF
If ON is specified, errors or warnings are issued when conditions such as divide-by-zero occur.

ARITHABORT ON | OFF
If ON is specified, a query is terminated when an overflow or divide-by-zero error occurs during query execution.

CONCAT_NULL_YIELDS_NULL ON | OFF
If ON is specified, the result of a concatenation operation is NULL when either operand is NULL. If OFF is specified, the null

value is treated as an empty character string. The default is OFF.
QUOTED_IDENTIFIER ON | OFF

If ON is specified, double quotation marks can be used to enclose delimited identifiers.
NUMERIC_ROUNDABORT ON | OFF

If ON is specified, an error is generated when loss of precision occurs in an expression.
RECURSIVE_TRIGGERS ON | OFF

If ON is specified, recursive firing of triggers is allowed. RECURSIVE_TRIGGERS OFF, the default, prevents direct recursion only.
To disable indirect recursion as well, set the nested triggers server option to 0 using sp_configure.

<recovery_options>

Controls database recovery options.

RECOVERY FULL | BULK_LOGGED | SIMPLE
If FULL is specified, complete protection against media failure is provided. If a data file is damaged, media recovery can restore
all committed transactions.

If BULK_LOGGED is specified, protection against media failure is combined with the best performance and least amount of log
memory usage for certain large scale or bulk operations. These operations include SELECT INTO, bulk load operations (bcp and
BULK INSERT), CREATE INDEX, and text and image operations (WRITETEXT and UPDATETEXT).

Under the bulk-logged recovery model, logging for the entire class is minimal and cannot be controlled on an operation-by-
operation basis.

If SIMPLE is specified, a simple backup strategy that uses minimal log space is provided. Log space can be automatically reused
when no longer needed for server failure recovery.

Important The simple recovery model is easier to manage than the other two models but at the expense of higher data loss
exposure if a data file is damaged. All changes since the most recent database or differential database backup are lost and must
be re-entered manually.

The default recovery model is determined by the recovery model of the model database. To change the default for new
databases, use ALTER DATABASE to set the recovery option of the model database.

TORN_PAGE_DETECTION ON | OFF
If ON is specified, incomplete pages can be detected. The default is ON.

WITH <termination>

Specifies when to roll back incomplete transactions when the database is transitioned from one state to another. Only one
termination clause can be specified and it follows the SET clauses.

ROLLBACK AFTER integer [SECONDS] | ROLLBACK IMMEDIATE
Specifies whether to roll back after the specified number of seconds or immediately. If the termination clause is omitted,
transactions are allowed to commit or roll back on their own.

NO_WAIT
Specifies that if the requested database state or option change cannot complete immediately without waiting for transactions to
commit or roll back on their own, the request will fail.

Remarks

To remove a database, use DROP DATABASE. To rename a database, use the MODIFY NAME = new_dbname option with ALTER
DATABASE. For more information about decreasing the size of a database, see DBCC SHRINKDATABASE.

Before you apply a different or new collation to a database, ensure the following conditions are in place:

1. You are the only one currently using the database.

2. No schema bound object is dependent on the collation of the database.

If the following objects, which are dependent on the database collation, exist in the database, the ALTER DATABASE database
COLLATE statement will fail. SQL Server will return an error message for each object blocking the ALTER action:

User-defined functions and views created with SCHEMABINDING.

Computed columns.

CHECK constraints.

Table-valued functions that return tables with character columns with collations inherited from the default database
collation.

3. Altering the database collation does not create duplicates among any system names for the database objects.

These namespaces may cause the failure of a database collation alteration if duplicate names result from the changed
collation:

Object names (such as procedure, table, trigger, or view).

Schema names (such as group, role, or user).

Scalar-type names (such as system and user-defined types).

Full-text catalog names.

Column or parameter names within an object.

Index names within a table.

Duplicate names resulting from the new collation will cause the alter action to fail and SQL Server will return an error
message specifying the namespace where the duplicate was found.

You cannot add or remove a file while a BACKUP statement is executing.

To specify a fraction of a megabyte in the size parameters, convert the value to kilobytes by multiplying the number by 1024. For
example, specify 1536 KB instead of 1.5MB (1.5 x 1024 = 1536).

Permissions

ALTER DATABASE permissions default to members of the sysadmin and dbcreator fixed server roles, and to members of the
db_owner fixed database roles. These permissions are not transferable.

Examples

A. Add a file to a database

This example creates a database and alters it to add a new 5-MB data file.

USE master
GO
CREATE DATABASE Test1 ON
(
 NAME = Test1dat1,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\t1dat1.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB
)
GO
ALTER DATABASE Test1
ADD FILE
(
 NAME = Test1dat2,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\t1dat2.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB
)
GO

B. Add a filegroup with two files to a database

This example creates a filegroup in the Test 1 database created in Example A and adds two 5-MB files to the filegroup. It then
makes Test1FG1 the default filegroup.

USE master
GO
ALTER DATABASE Test1
ADD FILEGROUP Test1FG1
GO

ALTER DATABASE Test1
ADD FILE
(NAME = test1dat3,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\t1dat3.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB),
(NAME = test1dat4,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\t1dat4.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP Test1FG1

ALTER DATABASE Test1
MODIFY FILEGROUP Test1FG1 DEFAULT
GO

C. Add two log files to a database

This example adds two 5-MB log files to a database.

USE master
GO
ALTER DATABASE Test1
ADD LOG FILE
(NAME = test1log2,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\test2log.ldf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB),
(NAME = test1log3,
 FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\test3log.ldf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
GO

D. Remove a file from a database

This example removes one of the files added to the Test1 database in Example B.

USE master
GO
ALTER DATABASE Test1
REMOVE FILE test1dat4
GO

E. M odify a file

This example increases the size of one of the files added to the Test1 database in Example B.

USE master
GO
ALTER DATABASE Test1
MODIFY FILE
 (NAME = test1dat3,
 SIZE = 20MB)
GO

F. M ake the primary filegroup the default

This example makes the primary filegroup the default filegroup if another filegroup was made the default earlier.

USE master
GO
ALTER DATABASE Test1
MODIFY FILEGROUP [PRIMARY] DEFAULT
GO

G. Remove a filegroup

This example removes a filegroup from the Test1 database. To run this example, you must complete examples A, B, and F.

USE master
GO
--All files within the filegroup must be removed first.
ALTER DATABASE Test1 REMOVE FILE test1dat3
GO
ALTER DATABASE Test1 REMOVE FILE test1dat4
GO
ALTER DATABASE Test1 REMOVE FILEGROUP Test1FG1
GO

H. Set database options

This example sets three database options for the pubs sample database. QUOTED_IDENTIFIER is set to ON, the recovery option is
set to FULL, and the database state is set to MULTI_USER.

USE master
GO
ALTER DATABASE pubs
SET QUOTED_IDENTIFIER ON, RECOVERY FULL, MULTI_USER

I. M ove the tempdb database

This example moves tempdb from its current location on disk to another disk location.

Note This example is applicable to tempdb only. To move user databases, use sp_detach_db and sp_attach_db. For more
information, see Attaching and Detaching a Database.

1. Determine the logical file names for the tempdb database.

USE tempdb
GO
EXEC sp_helpfile
GO
--The logical name for each file is contained in the NAME column.

2. Change the location of each file using ALTER DATABASE.

USE master
GO
ALTER DATABASE tempdb
MODIFY FILE (NAME = tempdev, FILENAME = 'E:SQLData\tempdb.mdf')
GO
ALTER DATABASE tempdb
MODIFY FILE (NAME = templog, FILENAME = 'E:SQLData\templog.ldf')
GO

3. Stop and restart SQL Server.

See Also

CREATE DATABASE

DROP DATABASE

sp_helpdb

sp_helpfile

sp_helpfilegroup

sp_renamedb

sp_spaceused

Using Recovery Models

Transact-SQL Reference (SQL Server 2000)

ALTER FUNCTION
 Topic last updated -- June 2007

Alters an existing user-defined function, previously created by executing the CREATE FUNCTION statement, without changing
permissions and without affecting any dependent functions, stored procedures, or triggers.

For more information about the parameters used in the ALTER FUNCTION statement, see CREATE FUNCTION.

Syntax

Scalar Functions

ALTER FUNCTION [owner_name.] function_name
 ([{ @parameter_name scalar_parameter_data_type [= default] } [,...n]])

RETURNS scalar_return_data_type

[WITH < function_option> [,...n]]

[AS]

BEGIN
 function_body
 RETURN scalar_expression
END

Inline Table-valued Functions

ALTER FUNCTION [owner_name.] function_name
 ([{ @parameter_name scalar_parameter_data_type [= default] } [,...n]])

RETURNS TABLE

[WITH < function_option > [,...n]]

[AS]

RETURN [(] select-stmt [)]

Multi-statement Table-valued Functions

ALTER FUNCTION [owner_name.] function_name
 ([{ @parameter_name scalar_parameter_data_type [= default] } [,...n]])

RETURNS @return_variable TABLE < table_type_definition >

[WITH < function_option > [,...n]]

[AS]

BEGIN
 function_body
 RETURN
END

< function_option > ::=
 { ENCRYPTION | SCHEMABINDING }

< table_type_definition > :: =
 ({ column_definition | table_constraint } [,...n])

Arguments

owner_name

Is the name of the user ID that owns the user-defined function to be changed. owner_name must be an existing user ID.

function_name

Is the user-defined function to be changed. Function names must conform to the rules for identifiers and must be unique within

the database and to its owner.

@parameter_name

Is a parameter in the user-defined function. One or more parameters can be declared. A function can have a maximum of 1,024
parameters. The value of each declared parameter must be supplied by the user when the function is executed (unless a default
for the parameter is defined). When a parameter of the function has a default value, the keyword "default" must be specified when
calling the function in order to get the default value. This behavior is different from parameters with default values in stored
procedures in which omitting the parameter also implies the default value.

Specify a parameter name using an at sign (@) as the first character. The parameter name must conform to the rules for
identifiers. Parameters are local to the function; the same parameter names can be used in other functions. Parameters can take
the place only of constants; they cannot be used in place of table names, column names, or the names of other database objects.

scalar_parameter_data_type

Is the parameter data type. All scalar data types, including bigint and sql_variant, can be used as a parameter for user-defined
functions. The timestamp data type is not supported. Nonscalar types such as cursor and table cannot be specified.

scalar_return_data_type

Is the return value of a scalar user-defined function. scalar_return_data_type can be any of the scalar data types supported by SQL
Server, except text, ntext, image, and timestamp.

scalar_expression

Specifies that the scalar function returns a scalar value.

TABLE

Specifies that the return value of the table-valued function is a table.

In inline table-valued functions, the TABLE return value is defined through a single SELECT statement. Inline functions do not have
associated return variables.

In multi-statement table-valued functions, @return_variable is a TABLE variable, used to store and accumulate the rows that
should be returned as the value of the function.

function_body

Specifies that a series of Transact-SQL statements, which together do not produce a side effect, define the value of the function.
function_body is used only in scalar functions and multi-statement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that together evaluate to a scalar value.

In multi-statement table-valued functions, function_body is a series of Transact-SQL statements that populate a table return
variable.

select-stmt

Is the single SELECT statement that defines the return value of an inline table-valued function.

ENCRYPTION

Indicates that SQL Server will convert the original text of the function statement to an obfuscated format. Note that obfuscated
functions can be reverse engineered because SQL Server must de-obfuscate functions for execution. In SQL Server 2000, the
obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using ENCRYPTION prevents the function from being published as part of SQL Server replication.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references. This condition will prevent changes to the function if
other schema bound objects are referencing it.

The binding of the function to the objects it references is removed only when one of two actions take place:

The function is dropped.

The function is altered (using the ALTER statement) with the SCHEMABINDING option not specified.

For a list of conditions that must be met before a function can be schema bound, see CREATE FUNCTION.

table_type_definition

Defines the table data type. The table declaration includes column definitions, names, data types and constraints. The only
constraint types allowed are PRIMARY KEY, UNIQUE, NULL and CHECK.

Remarks

ALTER FUNCTION cannot be used to change a scalar-valued function to a table-valued function, or vice versa. Also, ALTER
FUNCTION cannot be used to change an inline function to a multistatement function, or vice versa.

Permissions

ALTER FUNCTION permissions default to members of the sysadmin fixed server role, and the db_owner and db_ddladmin
fixed database roles, and the owner of the function, and are not transferable.

Owners of functions have EXECUTE permission on their functions. However, other users may be granted such permissions as well.

See Also

CREATE FUNCTION

DROP FUNCTION

Transact-SQL Reference (SQL Server 2000)

ALTER PROCEDURE
 Topic last updated -- June 2007

Alters a previously created procedure, created by executing the CREATE PROCEDURE statement, without changing permissions
and without affecting any dependent stored procedures or triggers. For more information about the parameters used in the
ALTER PROCEDURE statement, see CREATE PROCEDURE.

Syntax

ALTER PROC [EDURE] procedure_name [; number]
 [{ @parameter data_type }
 [VARYING] [= default] [OUTPUT]
] [,...n]
[WITH
 { RECOMPILE | ENCRYPTION
 | RECOMPILE , ENCRYPTION
 }
]
[FOR REPLICATION]
AS
 sql_statement [...n]

Arguments

procedure_name

Is the name of the procedure to change. Procedure names must conform to the rules for identifiers.

;number

Is an existing optional integer used to group procedures of the same name so that they can be dropped together with a single
DROP PROCEDURE statement.

@parameter

Is a parameter in the procedure.

data_type

Is the data type of the parameter.

VARYING

Specifies the result set supported as an output parameter (constructed dynamically by the stored procedure and whose contents
can vary). Applies only to cursor parameters.

default

Is a default value for the parameter.

OUTPUT

Indicates that the parameter is a return parameter.

n

Is a placeholder indicating up to 2,100 parameters can be specified.

{RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}

RECOMPILE indicates that Microsoft® SQL Server™ does not cache a plan for this procedure and the procedure is recompiled at
run time.

ENCRYPTION indicates that SQL Server will convert the original text of the stored procedure to an obfuscated format. Note that
obfuscated stored procedures can be reverse engineered because SQL Server must de-obfuscate procedures for execution. In SQL
Server 2000, the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using ENCRYPTION prevents the procedure from being published as part of SQL Server replication.

Note During an upgrade, SQL Server uses the obfuscated comments stored in syscomments to re-create obfuscated
procedures.

FOR REPLICATION

Specifies that stored procedures created for replication cannot be executed on the Subscriber. A stored procedure created with the
FOR REPLICATION option is used as a stored procedure filter and only executed during replication. This option cannot be used
with the WITH RECOMPILE option.

AS

Are the actions the procedure is to take.

sql_statement

Is any number and type of Transact-SQL statements to be included in the procedure. Some limitations do apply. For more
information, see sql_statement Limitations in CREATE PROCEDURE.

n

Is a placeholder indicating that multiple Transact-SQL statements can be included in the procedure. For more information, see
CREATE PROCEDURE.

Remarks

For more information about ALTER PROCEDURE, see Remarks in CREATE PROCEDURE.

Note If a previous procedure definition was created using WITH ENCRYPTION or WITH RECOMPILE, these options are only
enabled if they are included in ALTER PROCEDURE.

Permissions

ALTER PROCEDURE permissions default to members of the sysadmin fixed server role, and the db_owner and db_ddladmin
fixed database roles, and the owner of the procedure, and are not transferable.

Permissions and the startup property remain unchanged for a procedure modified with ALTER PROCEDURE.

Examples

This example creates a procedure called Oakland_authors that, by default, contains all authors from the city of Oakland,
California. Permissions are granted. Then, when the procedure must be changed to retrieve all authors from California, ALTER
PROCEDURE is used to redefine the stored procedure.

USE pubs
GO
IF EXISTS(SELECT name FROM sysobjects WHERE name = 'Oakland_authors' AND type = 'P')
 DROP PROCEDURE Oakland_authors
GO
-- Create a procedure from the authors table that contains author
-- information for those authors who live in Oakland, California.
USE pubs
GO
CREATE PROCEDURE Oakland_authors
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
WHERE city = 'Oakland'
and state = 'CA'
ORDER BY au_lname, au_fname
GO
-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c ON o.id = c.id
WHERE o.type = 'P' and o.name = 'Oakland_authors'
-- Here, EXECUTE permissions are granted on the procedure to public.
GRANT EXECUTE ON Oakland_authors TO public
GO
-- The procedure must be changed to include all
-- authors from California, regardless of what city they live in.
-- If ALTER PROCEDURE is not used but the procedure is dropped
-- and then re-created, the above GRANT statement and any
-- other statements dealing with permissions that pertain to this
-- procedure must be re-entered.
ALTER PROCEDURE Oakland_authors

WITH ENCRYPTION
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
WHERE state = 'CA'
ORDER BY au_lname, au_fname
GO
-- Here is the statement to actually see the text of the procedure.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c ON o.id = c.id
WHERE o.type = 'P' and o.name = 'Oakland_authors'
GO

See Also

Data Types

DROP PROCEDURE

EXECUTE

Programming Stored Procedures

System Tables

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

ALTER TABLE
 Topic last updated -- July 2003

Modifies a table definition by altering, adding, or dropping columns and constraints, or by disabling or enabling constraints and
triggers.

Syntax

ALTER TABLE table
{ [ALTER COLUMN column_name
 { new_data_type [(precision [, scale])]
 [COLLATE < collation_name >]
 [NULL | NOT NULL]
 | {ADD | DROP } ROWGUIDCOL }
]
 | ADD
 { [< column_definition >]
 | column_name AS computed_column_expression
 } [,...n]
 | [WITH CHECK | WITH NOCHECK] ADD
 { < table_constraint > } [,...n]
 | DROP
 { [CONSTRAINT] constraint_name
 | COLUMN column } [,...n]
 | { [WITH CHECK | WITH NOCHECK] CHECK | NOCHECK } CONSTRAINT
 { ALL | constraint_name [,...n] }
 | { ENABLE | DISABLE } TRIGGER
 { ALL | trigger_name [,...n] }
}

< column_definition > ::=
 { column_name data_type }
 [[DEFAULT constant_expression] [WITH VALUES]
 | [IDENTITY [(seed , increment) [NOT FOR REPLICATION]]]
]
 [ROWGUIDCOL]
 [COLLATE < collation_name >]
 [< column_constraint >] [...n]

< column_constraint > ::=
 [CONSTRAINT constraint_name]
 { [NULL | NOT NULL]
 | [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor]
 [ON { filegroup | DEFAULT }]
]
 | [[FOREIGN KEY]
 REFERENCES ref_table [(ref_column)]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 [NOT FOR REPLICATION]
]
 | CHECK [NOT FOR REPLICATION]
 (logical_expression)
 }

< table_constraint > ::=
 [CONSTRAINT constraint_name]
 { [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]

 { (column [,...n]) }
 [WITH FILLFACTOR = fillfactor]
 [ON {filegroup | DEFAULT }]
]
 | FOREIGN KEY
 [(column [,...n])]
 REFERENCES ref_table [(ref_column [,...n])]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 [NOT FOR REPLICATION]
 | DEFAULT constant_expression
 [FOR column] [WITH VALUES]
 | CHECK [NOT FOR REPLICATION]
 (search_conditions)
 }

Arguments

table

Is the name of the table to be altered. If the table is not in the current database or owned by the current user, the database and
owner can be explicitly specified.

ALTER COLUMN

Specifies that the given column is to be changed or altered. ALTER COLUMN is not allowed if the compatibility level is 65 or
earlier. For more information, see sp_dbcmptlevel.

The altered column cannot be:

A column with a text, image, ntext, or timestamp data type.

The ROWGUIDCOL for the table.

A computed column or used in a computed column.

A replicated column.

Used in an index, unless the column is a varchar, nvarchar, or varbinary data type, the data type is not changed, and the
new size is equal to or larger than the old size.

Used in statistics generated by the CREATE STATISTICS statement. First remove the statistics using the DROP STATISTICS
statement. Statistics automatically generated by the query optimizer are automatically dropped by ALTER COLUMN.

Used in a PRIMARY KEY or [FOREIGN KEY] REFERENCES constraint.

Used in a CHECK or UNIQUE constraint, except that altering the length of a variable-length column used in a CHECK or
UNIQUE constraint is allowed.

Associated with a default, except that changing the length, precision, or scale of a column is allowed if the data type is not
changed.

Some data type changes may result in a change in the data. For example, changing an nchar or nvarchar column to char or
varchar can result in the conversion of extended characters. For more information, see CAST and CONVERT. Reducing the
precision and scale of a column may result in data truncation.

column_name

Is the name of the column to be altered, added, or dropped. For new columns, column_name can be omitted for columns created
with a timestamp data type. The name timestamp is used if no column_name is specified for a timestamp data type column.

new_data_type

Is the new data type for the altered column. Criteria for the new_data_type of an altered column are:

The previous data type must be implicitly convertible to the new data type.

new_data_type cannot be timestamp.

ANSI null defaults are always on for ALTER COLUMN; if not specified, the column is nullable.

ANSI padding is always on for ALTER COLUMN.

If the altered column is an identity column, new_data_type must be a data type that supports the identity property.

The current setting for SET ARITHABORT is ignored. ALTER TABLE operates as if the ARITHABORT option is ON.

precision

Is the precision for the specified data type. For more information about valid precision values, see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see Precision, Scale, and Length.

COLLATE < collation_name >

Specifies the new collation for the altered column. Collation name can be either a Windows collation name or a SQL collation
name. For a list and more information, see Windows Collation Name and SQL Collation Name.

The COLLATE clause can be used to alter the collations only of columns of the char, varchar, text, nchar, nvarchar, and ntext
data types. If not specified, the column is assigned the default collation of the database.

ALTER COLUMN cannot have a collation change if any of the following conditions apply:

If a check constraint, foreign key constraint, or computed columns reference the column changed.

If any index, statistics, or full-text index are created on the column. Statistics created automatically on the column changed
will be dropped if the column collation is altered.

If a SCHEMABOUND view or function references the column.

For more information about the COLLATE clause, see COLLATE.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not allow null values can be added with ALTER TABLE only
if they have a default specified. A new column added to a table must either allow null values, or the column must be specified with
a default value.

If the new column allows null values and no default is specified, the new column contains a null value for each row in the table. If
the new column allows null values and a default definition is added with the new column, the WITH VALUES option can be used to
store the default value in the new column for each existing row in the table.

If the new column does not allow null values, a DEFAULT definition must be added with the new column, and the new column
automatically loads with the default value in the new columns in each existing row.

NULL can be specified in ALTER COLUMN to make a NOT NULL column allow null values, except for columns in PRIMARY KEY
constraints. NOT NULL can be specified in ALTER COLUMN only if the column contains no null values. The null values must be
updated to some value before the ALTER COLUMN NOT NULL is allowed, such as:

UPDATE MyTable SET NullCol = N'some_value' WHERE NullCol IS NULL

ALTER TABLE MyTable ALTER COLUMN NullCOl NVARCHAR(20) NOT NULL

If NULL or NOT NULL is specified with ALTER COLUMN, new_data_type [(precision [, scale])] must also be specified. If the data
type, precision, and scale are not changed, specify the current column values.

[{ADD | DROP} ROWGUIDCOL]

Specifies the ROWGUIDCOL property is added to or dropped from the specified column. ROWGUIDCOL is a keyword indicating
that the column is a row global unique identifier column. Only one uniqueidentifier column per table can be designated as the
ROWGUIDCOL column. The ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column. It also does not automatically
generate values for new rows inserted into the table. To generate unique values for each column, either use the NEWID function
on INSERT statements or specify the NEWID function as the default for the column.

ADD

Specifies that one or more column definitions, computed column definitions, or table constraints are added.

computed_column_expression

Is an expression that defines the value of a computed column. A computed column is a virtual column not physically stored in the
table but computed from an expression using other columns in the same table. For example, a computed column could have the
definition: cost AS price * qty. The expression can be a noncomputed column name, constant, function, variable, and any
combination of these connected by one or more operators. The expression cannot be a subquery.

Computed columns can be used in select lists, WHERE clauses, ORDER BY clauses, or any other locations where regular
expressions can be used, with these exceptions:

A computed column cannot be used as a DEFAULT or FOREIGN KEY constraint definition or with a NOT NULL constraint
definition. However, a computed column can be used as a key column in an index or as part of any PRIMARY KEY or
UNIQUE constraint, if the computed column value is defined by a deterministic expression and the data type of the result is
allowed in index columns.

For example, if the table has integer columns a and b, the computed column a+b may be indexed but computed column
a+DATEPART(dd, GETDATE()) cannot be indexed because the value may change in subsequent invocations.

A computed column cannot be the target of an INSERT or UPDATE statement.

Note Because each row in a table may have different values for columns involved in a computed column, the computed
column may not have the same result for each row.

n

Is a placeholder indicating that the preceding item can be repeated n number of times.

WITH CHECK | WITH NOCHECK

Specifies whether the data in the table is or is not validated against a newly added or re-enabled FOREIGN KEY or CHECK
constraint. If not specified, WITH CHECK is assumed for new constraints, and WITH NOCHECK is assumed for re-enabled
constraints.

If you do not want to verify new CHECK or FOREIGN KEY constraints against existing data, use WITH NOCHECK. This is not
recommended except in rare cases. The new constraint will be evaluated in all future updates. Any constraint violations
suppressed by WITH NOCHECK when the constraint is added may cause future updates to fail if they update rows with data that
does not comply with the constraint.

Constraints defined WITH NOCHECK are not considered by the query optimizer. These constraints are ignored until all such
constraints are re-enabled using ALTER TABLE table CHECK CONSTRAINT ALL.

DROP { [CONSTRAINT] constraint_name | COLUMN column_name }

Specifies that constraint_name or column_name is removed from the table. DROP COLUMN is not allowed if the compatibility
level is 65 or earlier. Multiple columns and constraints can be listed. A column cannot be dropped if it is:

A replicated column.

Used in an index.

Used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint.

Associated with a default defined with the DEFAULT keyword, or bound to a default object.

Bound to a rule.

{ CHECK | NOCHECK} CONSTRAINT

Specifies that constraint_name is enabled or disabled. When disabled, future inserts or updates to the column are not validated
against the constraint conditions. This option can only be used with FOREIGN KEY and CHECK constraints.

ALL
Specifies that all constraints are disabled with the NOCHECK option, or enabled with the CHECK option.

{ENABLE | DISABLE} TRIGGER

Specifies that trigger_name is enabled or disabled. When a trigger is disabled it is still defined for the table; however, when
INSERT, UPDATE, or DELETE statements are executed against the table, the actions in the trigger are not performed until the
trigger is re-enabled.

ALL
Specifies that all triggers in the table are enabled or disabled.

trigger_name
Specifies the name of the trigger to disable or enable.

column_name data_type

Is the data type for the new column. data_type can be any Microsoft® SQL Server™ or user-defined data type.

DEFAULT

Is a keyword that specifies the default value for the column. DEFAULT definitions can be used to provide values for a new column
in the existing rows of data. DEFAULT definitions cannot be added to columns that have a timestamp data type, an IDENTITY
property, an existing DEFAULT definition, or a bound default. If the column has an existing default, the default must be dropped
before the new default can be added. To maintain compatibility with earlier versions of SQL Server, it is possible to assign a
constraint name to a DEFAULT.

IDENTITY

Specifies that the new column is an identity column. When a new row is added to the table, SQL Server provides a unique,
incremental value for the column. Identity columns are commonly used in conjunction with PRIMARY KEY constraints to serve as
the unique row identifier for the table. The IDENTITY property can be assigned to a tinyint, smallint, int, bigint, decimal(p,0),
or numeric(p,0) column. Only one identity column can be created per table. The DEFAULT keyword and bound defaults cannot
be used with an identity column. Either both the seed and increment must be specified, or neither. If neither are specified, the
default is (1,1).

Seed
Is the value used for the first row loaded into the table.

Increment
Is the incremental value added to the identity value of the previous row loaded.

NOT FOR REPLICATION

Specifies that the IDENTITY property should not be enforced when a replication login, such as sqlrepl, inserts data into the table.
NOT FOR REPLICATION can also be specified on constraints. The constraint is not checked when a replication login inserts data
into the table.

CONSTRAINT

Specifies the beginning of a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK constraint, or a DEFAULT definition.

constraint_name

Is the new constraint. Constraint names must follow the rules for identifiers, except that the name cannot begin with a number
sign (#). If constraint_name is not supplied, a system-generated name is assigned to the constraint.

PRIMARY KEY

Is a constraint that enforces entity integrity for a given column or columns through a unique index. Only one PRIMARY KEY
constraint can be created for each table.

UNIQUE

Is a constraint that provides entity integrity for a given column or columns through a unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE constraint. PRIMARY KEY constraints
default to CLUSTERED; UNIQUE constraints default to NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified in ALTER TABLE. If a clustered
constraint or index already exists on a table, PRIMARY KEY constraints default to NONCLUSTERED.

WITH FILLFACTOR = fillfactor

Specifies how full SQL Server should make each index page used to store the index data. User-specified fillfactor values can be
from 1 through 100. If a value is not specified, the default is 0. A lower fillfactor value creates an index with more space available
for new index entries without having to allocate new space. For more information, see CREATE INDEX.

ON {filegroup | DEFAULT}

Specifies the storage location of the index created for the constraint. If filegroup is specified, the index is created in the named
filegroup. If DEFAULT is specified, the index is created in the default filegroup. If ON is not specified, the index is created in the
filegroup that contains the table. If ON is specified when adding a clustered index for a PRIMARY KEY or UNIQUE constraint, the
entire table is moved to the specified filegroup when the clustered index is created.

DEFAULT, in this context, is not a keyword. DEFAULT is an identifier for the default filegroup and must be delimited, as in ON
"DEFAULT" or ON [DEFAULT].

FOREIGN KEY...REFERENCES

Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY constraints require that each value in
the column exists in the specified column in the referenced table.

ref_table

Is the table referenced by the FOREIGN KEY constraint.

ref_column

Is a column or list of columns in parentheses referenced by the new FOREIGN KEY constraint.

ON DELETE {CASCADE | NO ACTION}

Specifies what action occurs to a row in the table altered, if that row has a referential relationship and the referenced row is
deleted from the parent table. The default is NO ACTION.

If CASCADE is specified, a row is deleted from the referencing table if that row is deleted from the parent table. If NO ACTION is
specified, SQL Server raises an error and the delete action on the row in the parent table is rolled back.

The CASCADE action ON DELETE cannot be defined if an INSTEAD OF trigger ON DELETE already exists on the table in question.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table. The
Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If a DELETE statement is executed on a row in the Customers table, and an ON DELETE CASCADE action is specified for
Orders.CustomerID, SQL Server checks for one or more dependent rows in the Orders table. If any exist, the dependent row in
the Orders table will be deleted, as well as the row referenced in the Customers table.

On the other hand, if NO ACTION is specified, SQL Server raises an error and rolls back the delete action on the Customers row if
there is at least one row in the Orders table that references it.

ON UPDATE {CASCADE | NO ACTION}

Specifies what action occurs to a row in the table altered, if that row has a referential relationship and the referenced row is
updated in the parent table. The default is NO ACTION.

If CASCADE is specified, the row is updated in the referencing table if that row is updated in the parent table. If NO ACTION is
specified, SQL Server raises an error and the update action on the row in the parent table is rolled back.

The CASCADE action ON UPDATE cannot be defined if an INSTEAD OF trigger ON UPDATE already exists on the table in question.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table. The
Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on a row in the Customers table, and an ON UPDATE CASCADE action is specified for
Orders.CustomerID, SQL Server checks for one or more dependent rows in the Orders table. If any exist, the dependent row in
the Orders table will be updated, as well as the row referenced in the Customers table.

On the other hand, if NO ACTION is specified, SQL Server raises an error and rolls back the update action on the Customers row
if there is at least one row in the Orders table that references it.

[ASC | DESC]

Specifies the order in which the column or columns participating in table constraints are sorted. The default is ASC.

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in a new column added to existing rows. WITH VALUES
can be specified only when DEFAULT is specified in an ADD column clause. If the added column allows null values and WITH
VALUES is specified, the default value is stored in the new column added to existing rows. If WITH VALUES is not specified for
columns that allow nulls, the value NULL is stored in the new column in existing rows. If the new column does not allow nulls, the
default value is stored in new rows regardless of whether WITH VALUES is specified.

column[,...n]

Is a column or list of columns in parentheses used in a new constraint.

constant_expression

Is a literal value, a NULL, or a system function used as the default column value.

FOR column

Specifies the column associated with a table-level DEFAULT definition.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be entered into a column or columns.

logical_expression

Is a logical expression used in a CHECK constraint and returns TRUE or FALSE. Logical_expression used with CHECK constraints
cannot reference another table but can reference other columns in the same table for the same row.

Remarks

To add new rows of data, use the INSERT statement. To remove rows of data, use the DELETE or TRUNCATE TABLE statements. To
change the values in existing rows, use UPDATE.

The changes specified in ALTER TABLE are implemented immediately. If the changes require modifications of the rows in the table,
ALTER TABLE updates the rows. ALTER TABLE acquires a schema modify lock on the table to ensure no other connections
reference even the meta data for the table during the change. The modifications made to the table are logged and fully
recoverable. Changes that affect all the rows in very large tables, such as dropping a column or adding a NOT NULL column with
a default, can take a long time to complete and generate many log records. These ALTER TABLE statements should be executed
with the same care as any INSERT, UPDATE, or DELETE statement that affects a large number of rows.

If there are any execution plans in the procedure cache referencing the table, ALTER TABLE marks them to be recompiled on their
next execution.

If the ALTER TABLE statement specifies changes on column values referenced by other tables, either of two events occurs
depending on the action specified by ON UPDATE or ON DELETE in the referencing tables.

If no value or NO ACTION (the default) is specified in the referencing tables, an ALTER TABLE statement against the parent
table that causes a change to the column value referenced by the other tables will be rolled back and SQL Server raises an
error.

If CASCADE is specified in the referencing tables, changes caused by an ALTER TABLE statement against the parent table are
applied to the parent table and its dependents.

ALTER TABLE statements that add a sql_variant column can generate the following warning:

The total row size (xx) for table 'yy' exceeds the maximum number of bytes per row (8060). Rows that exceed the
maximum number of bytes will not be added.

This warning occurs because sql_variant can have a maximum length of 8016 bytes. When a sql_variant column contains values
close to the maximum length, it can overshoot the row's maximum size limit.

The restrictions that apply to ALTER TABLE statements on tables with schema bound views are the same as the restrictions
currently applied when altering tables with a simple index. Adding a column is allowed. However, removing or changing a column
that participates in any schema bound view is not allowed. If the ALTER TABLE statement requires altering a column used in a
schema bound view, the alter action fails and SQL Server raises an error message. For more information about SCHEMABINDING
and indexed views, see CREATE VIEW.

Adding or removing triggers on base tables is not affected by creating a schema bound view referencing the tables.

Indexes created as part of a constraint are dropped when the constraint is dropped. Indexes that were created with CREATE INDEX
must be dropped with the DROP INDEX statement. The DBCC DBREINDEX statement can be used to rebuild an index part of a
constraint definition; the constraint does not need to be dropped and added again with ALTER TABLE.

All indexes and constraints based on a column must be removed before the column can be removed.

When constraints are added, all existing data is verified for constraint violations. If any violations occur, the ALTER TABLE
statement fails and an error is returned.

When a new PRIMARY KEY or UNIQUE constraint is added to an existing column, the data in the column(s) must be unique. If
duplicate values are found, the ALTER TABLE statement fails. The WITH NOCHECK option has no effect when adding PRIMARY KEY
or UNIQUE constraints.

Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and PRIMARY KEY constraints cannot
cause the number of indexes on the table to exceed 249 nonclustered indexes and 1 clustered index.

If a column is added having a uniqueidentifier data type, it can be defined with a default that uses the NEWID() function to
supply the unique identifier values in the new column for each existing row in the table.

SQL Server does not enforce an order in which DEFAULT, IDENTITY, ROWGUIDCOL, or column constraints are specified in a
column definition.

The ALTER COLUMN clause of ALTER TABLE does not bind or unbind any rules on a column. Rules must be bound or unbound
separately using sp_bindrule or sp_unbindrule.

Rules can be bound to a user-defined data type. CREATE TABLE then automatically binds the rule to any column defined having
the user-defined data type. ALTER COLUMN does not unbind the rule when changing the column data type. The rule from the
original user-defined data type remains bound to the column. After ALTER COLUMN has changed the data type of the column,
any subsequent sp_unbindrule execution that unbinds the rule from the user-defined data type does not unbind it from the
column for which data type was changed. If ALTER COLUMN changes the data type of a column to a user-defined data type
bound to a rule, the rule bound to the new data type is not bound to the column.

Permissions

ALTER TABLE permissions default to the table owner, members of the sysadmin fixed server role, and the db_owner and
db_ddladmin fixed database roles, and are not transferable.

Examples

A. Alter a table to add a new column

This example adds a column that allows null values and has no values provided through a DEFAULT definition. Each row will have
a NULL in the new column.

CREATE TABLE doc_exa (column_a INT)
GO
ALTER TABLE doc_exa ADD column_b VARCHAR(20) NULL
GO
EXEC sp_help doc_exa
GO
DROP TABLE doc_exa
GO

B. Alter a table to drop a column

This example modifies a table to remove a column.

CREATE TABLE doc_exb (column_a INT, column_b VARCHAR(20) NULL)
GO
ALTER TABLE doc_exb DROP COLUMN column_b
GO
EXEC sp_help doc_exb
GO
DROP TABLE doc_exb
GO

C. Alter a table to add a column with a constraint

This example adds a new column with a UNIQUE constraint.

CREATE TABLE doc_exc (column_a INT)

GO
ALTER TABLE doc_exc ADD column_b VARCHAR(20) NULL
 CONSTRAINT exb_unique UNIQUE
GO
EXEC sp_help doc_exc
GO
DROP TABLE doc_exc
GO

D. Alter a table to add an unverified constraint

This example adds a constraint to an existing column in the table. The column has a value that violates the constraint; therefore,
WITH NOCHECK is used to prevent the constraint from being validated against existing rows, and to allow the constraint to be
added.

CREATE TABLE doc_exd (column_a INT)
GO
INSERT INTO doc_exd VALUES (-1)
GO
ALTER TABLE doc_exd WITH NOCHECK
ADD CONSTRAINT exd_check CHECK (column_a > 1)
GO
EXEC sp_help doc_exd
GO
DROP TABLE doc_exd
GO

E. A lter a table to add several columns with constraints

This example adds several columns with constraints defined with the new column. The first new column has an IDENTITY
property; each row in the table has new incremental values in the identity column.

CREATE TABLE doc_exe (column_a INT CONSTRAINT column_a_un UNIQUE)
GO
ALTER TABLE doc_exe ADD

/* Add a PRIMARY KEY identity column. */
column_b INT IDENTITY
CONSTRAINT column_b_pk PRIMARY KEY,

/* Add a column referencing another column in the same table. */
column_c INT NULL
CONSTRAINT column_c_fk
REFERENCES doc_exe(column_a),

/* Add a column with a constraint to enforce that */
/* nonnull data is in a valid phone number format. */
column_d VARCHAR(16) NULL
CONSTRAINT column_d_chk
CHECK
(column_d IS NULL OR
column_d LIKE "[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]" OR
column_d LIKE
"([0-9][0-9][0-9]) [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"),

/* Add a nonnull column with a default. */
column_e DECIMAL(3,3)
CONSTRAINT column_e_default
DEFAULT .081
GO
EXEC sp_help doc_exe
GO
DROP TABLE doc_exe
GO

F. Add a nullable column with default values

This example adds a nullable column with a DEFAULT definition, and uses WITH VALUES to provide values for each existing row in
the table. If WITH VALUES is not used, each row has the value NULL in the new column.

ALTER TABLE MyTable
ADD AddDate smalldatetime NULL
CONSTRAINT AddDateDflt
DEFAULT getdate() WITH VALUES

G. Disable and reenable a constraint

This example disables a constraint that limits the salaries accepted in the data. WITH NOCHECK CONSTRAINT is used with ALTER
TABLE to disable the constraint and allow an insert that would normally violate the constraint. WITH CHECK CONSTRAINT re-
enables the constraint.

CREATE TABLE cnst_example
(id INT NOT NULL,
 name VARCHAR(10) NOT NULL,
 salary MONEY NOT NULL
 CONSTRAINT salary_cap CHECK (salary < 100000)
)

-- Valid inserts
INSERT INTO cnst_example VALUES (1,"Joe Brown",65000)
INSERT INTO cnst_example VALUES (2,"Mary Smith",75000)

-- This insert violates the constraint.
INSERT INTO cnst_example VALUES (3,"Pat Jones",105000)

-- Disable the constraint and try again.
ALTER TABLE cnst_example NOCHECK CONSTRAINT salary_cap
INSERT INTO cnst_example VALUES (3,"Pat Jones",105000)

-- Reenable the constraint and try another insert, will fail.
ALTER TABLE cnst_example CHECK CONSTRAINT salary_cap
INSERT INTO cnst_example VALUES (4,"Eric James",110000)

H. Disable and reenable a trigger

This example uses the DISABLE TRIGGER option of ALTER TABLE to disable the trigger and allow an insert that would normally
violate the trigger. It then uses ENABLE TRIGGER to re-enable the trigger.

CREATE TABLE trig_example
(id INT,
name VARCHAR(10),
salary MONEY)
go
-- Create the trigger.
CREATE TRIGGER trig1 ON trig_example FOR INSERT
as
IF (SELECT COUNT(*) FROM INSERTED
WHERE salary > 100000) > 0
BEGIN
print "TRIG1 Error: you attempted to insert a salary > $100,000"
ROLLBACK TRANSACTION
END
GO
-- Attempt an insert that violates the trigger.
INSERT INTO trig_example VALUES (1,"Pat Smith",100001)
GO
-- Disable the trigger.
ALTER TABLE trig_example DISABLE TRIGGER trig1
GO
-- Attempt an insert that would normally violate the trigger
INSERT INTO trig_example VALUES (2,"Chuck Jones",100001)
GO
-- Re-enable the trigger.
ALTER TABLE trig_example ENABLE TRIGGER trig1
GO
-- Attempt an insert that violates the trigger.
INSERT INTO trig_example VALUES (3,"Mary Booth",100001)
GO

See Also

DROP TABLE

sp_help

Transact-SQL Reference (SQL Server 2000)

ALTER TRIGGER
 Topic last updated -- June 2007

Alters the definition of a trigger created previously by the CREATE TRIGGER statement. For more information about the
parameters used in the ALTER TRIGGER statement, see CREATE TRIGGER.

Syntax

ALTER TRIGGER trigger_name
ON (table | view)
[WITH ENCRYPTION]
{
 { (FOR | AFTER | INSTEAD OF) { [DELETE] [,] [INSERT] [,] [UPDATE] }
 [NOT FOR REPLICATION]
 AS
 sql_statement [...n]
 }
 |
 { (FOR | AFTER | INSTEAD OF) { [INSERT] [,] [UPDATE] }
 [NOT FOR REPLICATION]
 AS
 { IF UPDATE (column)
 [{ AND | OR } UPDATE (column)]
 [...n]
 | IF (COLUMNS_UPDATED () { bitwise_operator } updated_bitmask)
 { comparison_operator } column_bitmask [...n]
 }
 sql_statement [...n]
 }
}

Arguments

trigger_name

Is the existing trigger to alter.

table | view

Is the table or view on which the trigger is executed.

WITH ENCRYPTION

Indicates that SQL Server will convert the original text of the trigger definition to an obfuscated format. Note that obfuscated
triggers can be reverse engineered because SQL Server must de-obfuscate triggers for execution. In SQL Server 2000, the
obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using WITH ENCRYPTION prevents the trigger from being published as part of SQL Server replication.

Note If a previous trigger definition was created using WITH ENCRYPTION or RECOMPILE, these options are only enabled if they
are included in ALTER TRIGGER.

AFTER

Specifies that the trigger is fired only after the triggering SQL statement is executed successfully. All referential cascade actions
and constraint checks also must have been successful before this trigger executes.

AFTER is the default, if only the FOR keyword is specified.

AFTER triggers may be defined only on tables.

INSTEAD OF

Specifies that the trigger is executed instead of the triggering SQL statement, thus overriding the actions of the triggering
statements.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE statement can be defined on a table or view. However, it is
possible to define views on views where each view has its own INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on views created with WITH CHECK OPTION. SQL Server will raise an error if an INSTEAD
OF trigger is added to a view for which WITH CHECK OPTION was specified. The user must remove that option using ALTER VIEW
before defining the INSTEAD OF trigger.

{ [DELETE] [,] [INSERT] [,] [UPDATE] } | { [INSERT] [,] [UPDATE]}

Are keywords that specify which data modification statements, when attempted against this table or view, activate the trigger. At
least one option must be specified. Any combination of these in any order is allowed in the trigger definition. If more than one
option is specified, separate the options with commas.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that have a referential relationship specifying a cascade
action ON DELETE. Similarly, the UPDATE option is not allowed on tables that have a referential relationship specifying a cascade
action ON UPDATE. For more information, see ALTER TABLE.

NOT FOR REPLICATION

Indicates that the trigger should not be executed when a replication login such as sqlrepl modifies the table involved in the
trigger.

AS

Are the actions the trigger is to take.

sql_statement

Is the trigger condition(s) and action(s).

n

Is a placeholder indicating that multiple Transact-SQL statements can be included in the trigger.

IF UPDATE (column)

Tests for an INSERT or UPDATE action to a specified column and is not used with DELETE operations.

UPDATE(column) can be used anywhere inside the body of the trigger.

{AND | OR}

Specifies another column to test for either an INSERT or UPDATE action.

column

Is the name of the column to test for either an INSERT or UPDATE action.

IF (COLUMNS_UPDATED())

Tests to see, in an INSERT or UPDATE trigger only, whether the mentioned column or columns were inserted or updated.
COLUMNS_UPDATED returns a varbinary bit pattern that indicates which columns of the table were inserted or updated.

COLUMNS_UPDATED can be used anywhere inside the body of the trigger.

bitwise_operator

Is the bitwise operator to use in the comparison.

updated_bitmask

Is the integer bitmask of those columns actually updated or inserted. For example, table t1 contains columns C1, C2, C3, C4, and
C5. To check whether columns C2, C3, and C4 are all updated (with table t1 having an UPDATE trigger), specify a value of 14. To
check whether only C2 is updated, specify a value of 2.

comparison_operator

Is the comparison operator. Use the equal sign (=) to check whether all columns specified in updated_bitmask are actually
updated. Use the greater than symbol (>) to check whether any or not all columns specified in the updated_bitmask are updated.

column_bitmask

Is the integer bitmask of the columns to check.

Remarks

For more information about ALTER TRIGGER, see Remarks in CREATE TRIGGER.

Note Because Microsoft does not support the addition of user-defined triggers on system tables, it is recommended that no
user-defined triggers be created on system tables.

ALTER TRIGGER supports manually updateable views through INSTEAD OF triggers on tables and views. Microsoft® SQL Server™
applies ALTER TRIGGER the same way for all types of triggers (AFTER, INSTEAD-OF).

The first and last AFTER triggers to be executed on a table may be specified by using sp_settriggerorder. Only one first and one
last AFTER trigger may be specified on a table; if there are other AFTER triggers on the same table, they will be executed in an
undefined sequence.

If an ALTER TRIGGER statement changes a first or last trigger, the first or last attribute set on the modified trigger is dropped, and
the order value must be reset with sp_settriggerorder.

An AFTER trigger is executed only after the triggering SQL statement, including all referential cascade actions and constraint
checks associated with the object updated or deleted, is executed successfully. The AFTER trigger operation checks for the effects
of the triggering statement as well as all referential cascade UPDATE and DELETE actions caused by the triggering statement.

When a DELETE action to a child or referencing table is the result of a CASCADE on a DELETE from the parent table, and an
INSTEAD OF trigger on DELETE is defined on that child table, the trigger is ignored and the DELETE action is executed.

Permissions

ALTER TRIGGER permissions default to members of the db_owner and db_ddladmin fixed database roles, and to the table
owner. These permissions are not transferable.

Examples

This example creates a trigger that prints a user-defined message to the client when a user tries to add or change data in the
roysched table. Then, the trigger is altered using ALTER TRIGGER to apply the trigger only on INSERT activities. This trigger is
helpful because it reminds the user who updates or inserts rows into this table to also notify the book authors and publishers.

USE pubs
GO
CREATE TRIGGER royalty_reminder
ON roysched
WITH ENCRYPTION
FOR INSERT, UPDATE
AS RAISERROR (50009, 16, 10)
GO
-- Now, alter the trigger.
USE pubs
GO
ALTER TRIGGER royalty_reminder
ON roysched
FOR INSERT
AS RAISERROR (50009, 16, 10)

Message 50009 is a user-defined message in sysmessages. For more information about creating user-defined messages, see
sp_addmessage.

See Also

DROP TRIGGER

Programming Stored Procedures

sp_addmessage

Transactions

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

ALTER VIEW
 Topic last updated -- June 2007

Alters a previously created view (created by executing CREATE VIEW), including indexed views, without affecting dependent stored
procedures or triggers and without changing permissions. For more information about the parameters used in the ALTER VIEW
statement, see CREATE VIEW.

Syntax

ALTER VIEW [< database_name > .] [< owner > .] view_name [(column [,...n])]
[WITH < view_attribute > [,...n]]
AS
 select_statement
[WITH CHECK OPTION]

< view_attribute > ::=
 { ENCRYPTION | SCHEMABINDING | VIEW_METADATA }

Arguments

view_name

Is the view to change.

column

Is the name of one or more columns, separated by commas, to be part of the given view.

Important Column permissions are maintained only when columns have the same name before and after ALTER VIEW is
performed.

Note In the columns for the view, the permissions for a column name apply across a CREATE VIEW or ALTER VIEW statement,
regardless of the source of the underlying data. For example, if permissions are granted on the title_id column in a CREATE VIEW
statement, an ALTER VIEW statement can rename the title_id column (for example, to qty) and still have the permissions
associated with the view using title_id.

n

Is a placeholder indicating the column can be repeated n number of times.

WITH ENCRYPTION

Indicates that SQL Server will convert the original text of the view definition to an obfuscated format. Note that obfuscated views
can be reverse engineered because SQL Server must de-obfuscate views for execution. In SQL Server 2000, the obfuscated text is
visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using WITH ENCRYPTION prevents the view from being published as part of SQL Server replication.

SCHEMABINDING

Binds the view to the schema. When SCHEMABINDING is specified, the select_statement must include the two-part name
(owner.object) of tables, views, or user-defined functions referenced.

Views or tables participating in a view created with the schema binding clause cannot be dropped unless that view is dropped or
changed so it no longer has schema binding. Otherwise, SQL Server raises an error. In addition, ALTER TABLE statements on
tables that participate in views having schema binding will fail if these statements affect the view definition.

VIEW_METADATA

Specifies that SQL Server will return to the DBLIB, ODBC, and OLE DB APIs the meta data information about the view, instead of
the base table or tables, when browse-mode meta data is being requested for a query that references the view. Browse-mode
meta data is additional meta data returned by SQL Server to the client-side DB-LIB, ODBC, and OLE DB APIs, which allow the
client-side APIs to implement updatable client-side cursors. Browse-mode meta data includes information about the base table
that the columns in the result set belong to.

For views created with VIEW_METADATA option, the browse-mode meta data returns the view name as opposed to the base table
names when describing columns from the view in the result set.

When a view is created WITH VIEW_METADATA, all its columns (except for timestamp) are updatable if the view has INSERT or
UPDATE INSTEAD OF triggers. See Updatable Views in CREATE VIEW.

AS

Are the actions the view is to take.

select_statement

Is the SELECT statement that defines the view.

WITH CHECK OPTION

Forces all data modification statements executed against the view to adhere to the criteria set within the select_statement defining
the view.

Remarks

For more information about ALTER VIEW, see Remarks in CREATE VIEW.

Note If the previous view definition was created using WITH ENCRYPTION or CHECK OPTION, these options are enabled only if
included in ALTER VIEW.

If a view currently in use is modified by using ALTER VIEW, Microsoft® SQL Server™ takes an exclusive schema lock on the view.
When the lock is granted, and there are no active users of the view, SQL Server deletes all copies of the view from the procedure
cache. Existing plans referencing the view remain in the cache but are recompiled when invoked.

ALTER VIEW can be applied to indexed views. However, ALTER VIEW unconditionally drops all indexes on the view.

Permissions

ALTER VIEW permissions default to members of the db_owner and db_ddladmin fixed database roles, and to the view owner.
These permissions are not transferable.

To alter a view, the user must have ALTER VIEW permission along with SELECT permission on the tables, views, and table-valued
functions being referenced in the view, and EXECUTE permission on the scalar-valued functions being invoked in the view.

In addition, to alter a view WITH SCHEMABINDING, the user must have REFERENCES permissions on each table, view, and user-
defined function that is referenced.

Examples

A. Alter a view

This example creates a view that contains all authors called All_authors. Permissions are granted to the view, but requirements
are changed to select authors from Utah. Then, ALTER VIEW is used to replace the view.

-- Create a view from the authors table that contains all authors.
CREATE VIEW All_authors (au_fname, au_lname, address, city, zip)
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
GO
-- Grant SELECT permissions on the view to public.
GRANT SELECT ON All_authors TO public
GO
-- The view needs to be changed to include all authors
-- from Utah.
-- If ALTER VIEW is not used but instead the view is dropped and
-- re-created, the above GRANT statement and any other statements
-- dealing with permissions that pertain to this view
-- must be re-entered.
ALTER VIEW All_authors (au_fname, au_lname, address, city, zip)
AS
SELECT au_fname, au_lname, address, city, zip
FROM pubs..authors
WHERE state = 'UT'
GO

B. Use @ @ ROWCOUN T function in a view

This example uses the @@ROWCOUNT function as part of the view definition.

USE pubs
GO
CREATE VIEW yourview
AS
 SELECT title_id, title, mycount = @@ROWCOUNT, ytd_sales
 FROM titles
GO
SELECT *
FROM yourview
GO
-- Here, the view is altered.
USE pubs
GO
ALTER VIEW yourview
AS
 SELECT title, mycount = @@ ROWCOUNT, ytd_sales
 FROM titles
 WHERE type = 'mod_cook'
GO
SELECT *
FROM yourview
GO

See Also

CREATE TABLE

CREATE VIEW

DROP VIEW

Programming Stored Procedures

SELECT

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

AND
Combines two Boolean expressions and returns TRUE when both expressions are TRUE. When more than one logical operator is
used in a statement, AND operators are evaluated first. You can change the order of evaluation by using parentheses.

Syntax

boolean_expression AND boolean_expression

Arguments

boolean_expression

Is any valid Microsoft® SQL Server™ expression that returns a Boolean value: TRUE, FALSE, or UNKNOWN.

Result Types

Boolean

Result Value

Returns TRUE when both expressions are TRUE.

Remarks

This chart outlines the outcomes when you compare TRUE and FALSE values using the AND operator.

 TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

See Also

Expressions

Functions

Operators (Logical Operators)

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

ANY
Compares a scalar value with a single-column set of values. For more information, see SOME | ANY.

Transact-SQL Reference (SQL Server 2000)

APP_NAME
Returns the application name for the current session if set by the application.

Syntax

APP_NAME ()

Return Types

nvarchar(128)

Examples

This example checks whether the client application that initiated this process is a SQL Query Analyzer session.

DECLARE @CurrentApp varchar(35)
SET @CurrentApp = APP_NAME()
IF @CurrentApp <> 'MS SQL Query Analyzer'
PRINT 'This process was not started by a SQL Query Analyzer query session.'

See Also

System Functions

Transact-SQL Reference (SQL Server 2000)

ASCII
Returns the ASCII code value of the leftmost character of a character expression.

Syntax

ASCII (character_expression)

Arguments

character_expression

Is an expression of the type char or varchar.

Return Types

int

Examples

This example, which assumes an ASCII character set, returns the ASCII value and char character for each character in the string
"Du monde entier."

SET TEXTSIZE 0
SET NOCOUNT ON
-- Create the variables for the current character string position
-- and for the character string.
DECLARE @position int, @string char(15)
-- Initialize the variables.
SET @position = 1
SET @string = 'Du monde entier'
WHILE @position <= DATALENGTH(@string)
 BEGIN
 SELECT ASCII(SUBSTRING(@string, @position, 1)),
 CHAR(ASCII(SUBSTRING(@string, @position, 1)))
 SET @position = @position + 1
 END
SET NOCOUNT OFF
GO

Here is the result set:

----------- -
68 D

----------- -
117 u

----------- -
32

----------- -
109 m

----------- -
111 o

----------- -
110 n

----------- -
100 d

----------- -
101 e

----------- -
32

----------- -
101 e

----------- -
110 n

----------- -
116 t

----------- -
105 i

----------- -
101 e

----------- -
114 r

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

ASIN
Returns the angle, in radians, whose sine is the given float expression (also called arcsine).

Syntax

ASIN (float_expression)

Arguments

float_expression

Is an expression of the type float, with a value from -1 through 1. Values outside this range return NULL and report a domain
error.

Return Types

float

Examples

This example takes a float expression and returns the ASIN of the given angle.

-- First value will be -1.01, which fails.
DECLARE @angle float
SET @angle = -1.01
SELECT 'The ASIN of the angle is: ' + CONVERT(varchar, ASIN(@angle))
GO

-- Next value is -1.00.
DECLARE @angle float
SET @angle = -1.00
SELECT 'The ASIN of the angle is: ' + CONVERT(varchar, ASIN(@angle))
GO

-- Next value is 0.1472738.
DECLARE @angle float
SET @angle = 0.1472738
SELECT 'The ASIN of the angle is: ' + CONVERT(varchar, ASIN(@angle))
GO

Here is the result set:

The ASIN of the angle is:

(1 row(s) affected)

Domain error occurred.

The ASIN of the angle is: -1.5708

(1 row(s) affected)

The ASIN of the angle is: 0.147811

(1 row(s) affected)

See Also

CEILING

Mathematical Functions

SET ARITHIGNORE

SET ARITHABORT

Transact-SQL Reference (SQL Server 2000)

ATAN
Returns the angle in radians whose tangent is the given float expression (also called arctangent).

Syntax

ATAN (float_expression)

Arguments

float_expression

Is an expression of the type float.

Return Types

float

Examples

This example takes a float expression and returns the ATAN of the given angle.

SELECT 'The ATAN of -45.01 is: ' + CONVERT(varchar, ATAN(-45.01))
SELECT 'The ATAN of -181.01 is: ' + CONVERT(varchar, ATAN(-181.01))
SELECT 'The ATAN of 0 is: ' + CONVERT(varchar, ATAN(0))
SELECT 'The ATAN of 0.1472738 is: ' + CONVERT(varchar, ATAN(0.1472738))
SELECT 'The ATAN of 197.1099392 is: ' + CONVERT(varchar, ATAN(197.1099392))
GO

Here is the result set:

The ATAN of -45.01 is: -1.54858

(1 row(s) affected)

The ATAN of -181.01 is: -1.56527

(1 row(s) affected)

The ATAN of 0 is: 0

(1 row(s) affected)

The ATAN of 0.1472738 is: 0.146223

(1 row(s) affected)

The ATAN of 197.1099392 is: 1.56572

(1 row(s) affected)

See Also

CEILING

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

ATN2
Returns the angle, in radians, whose tangent is between the two given float expressions (also called arctangent).

Syntax

ATN2 (float_expression , float_expression)

Arguments

float_expression

Is an expression of the float data type.

Return Types

float

Examples

This example calculates the ATN2 for the given angles.

DECLARE @angle1 float
DECLARE @angle2 float
SET @angle1 = 35.175643
SET @angle2 = 129.44
SELECT 'The ATN2 of the angle is: ' + CONVERT(varchar,ATN2(@angle1,@angle2))
GO

Here is the result set:

The ATN2 of the angle is: 0.265345

(1 row(s) affected)

See Also

CAST and CONVERT

float and real

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

AVG
Returns the average of the values in a group. Null values are ignored.

Syntax

AVG ([ALL | DISTINCT] expression)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that AVG be performed only on each unique instance of a value, regardless of how many times the value occurs.

expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate
functions and subqueries are not permitted.

Return Types

The return type is determined by the type of the evaluated result of expression.

Expression result Return type
integer category int
decimal category (p, s) decimal(38, s) divided by decimal(10, 0)
money and smallmoney category money
float and real category float

Important Distinct aggregates, for example, AVG(DISTINCT column_name), COUNT(DISTINCT column_name), MAX(DISTINCT
column_name), MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not supported when using CUBE or
ROLLUP. If used, Microsoft® SQL Server™ returns an error message and cancels the query.

Examples

A. Use SUM and AVG functions for calculations

This example calculates the average advance and the sum of year-to-date sales for all business books. Each of these aggregate
functions produces a single summary value for all of the retrieved rows.

USE pubs

SELECT AVG(advance), SUM(ytd_sales)
FROM titles
WHERE type = 'business'

Here is the result set:

-------------------------- -----------
6,281.25 30788

(1 row(s) affected)

B. Use SUM and AVG functions with a GROUP BY clause

When used with a GROUP BY clause, each aggregate function produces a single value for each group, rather than for the whole
table. This example produces summary values for each type of book that include the average advance for each type of book and
the sum of year-to-date sales for each type of book.

USE pubs

SELECT type, AVG(advance), SUM(ytd_sales)
FROM titles

GROUP BY type
ORDER BY type

Here is the result set:

type
------------ -------------------------- -----------
business 6,281.25 30788
mod_cook 7,500.00 24278
popular_comp 7,500.00 12875
psychology 4,255.00 9939
trad_cook 6,333.33 19566
UNDECIDED NULL NULL

(6 row(s) affected)

C. Use AVG with DISTIN CT

This statement returns the average price of business books.

USE pubs

SELECT AVG(DISTINCT price)
FROM titles
WHERE type = 'business'

Here is the result set:

11.64

(1 row(s) affected)

D. Use AVG without DISTIN CT

Without DISTINCT, the AVG function finds the average price of all business titles in the titles table.

USE pubs

SELECT AVG(price)
FROM titles
WHERE type = 'business'

Here is the result set:

13.73

(1 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

BACKUP
Backs up an entire database, transaction log, or one or more files or filegroups. For more information about database backup and
restore operations, see Backing Up and Restoring Databases.

Syntax

Backing up an entire database:

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] FORMAT | NOFORMAT]
 [[,] { INIT | NOINIT }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] { NOSKIP | SKIP }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]

Backing up specific files or filegroups:

BACKUP DATABASE { database_name | @database_name_var }
 < file_or_filegroup > [,...n]
TO < backup_device > [,...n]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] FORMAT | NOFORMAT]
 [[,] { INIT | NOINIT }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] { NOSKIP | SKIP }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]

Backing up a transaction log:

BACKUP LOG { database_name | @database_name_var }
{
 TO < backup_device > [,...n]
 [WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]

 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] FORMAT | NOFORMAT]
 [[,] { INIT | NOINIT }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] NO_TRUNCATE]
 [[,] { NORECOVERY | STANDBY = undo_file_name }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOSKIP | SKIP }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]
}

< backup_device > ::=
 {
 { logical_backup_device_name | @logical_backup_device_name_var }
 |
 { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

< file_or_filegroup > ::=
 {
 FILE = { logical_file_name | @logical_file_name_var }
 |
 FILEGROUP = { logical_filegroup_name | @logical_filegroup_name_var }
 }

Truncating the transaction log:

BACKUP LOG { database_name | @database_name_var }
{
 [WITH
 { NO_LOG | TRUNCATE_ONLY }]
}

Arguments

DATABASE

Specifies a complete database backup. If a list of files and filegroups is specified, only those files and filegroups are backed up.

Note During a full database or differential backup, Microsoft® SQL Server™ backs up enough of the transaction log to produce a
consistent database for when the database is restored. Only a full database backup can be performed on the master database.

{ database_name | @database_name_var }

Is the database from which the transaction log, partial database, or complete database is backed up. If supplied as a variable
(@database_name_var), this name can be specified either as a string constant (@database_name_var = database name) or as a
variable of character string data type, except for the ntext or text data types.

< backup_device >

Specifies the logical or physical backup device to use for the backup operation. Can be one or more of the following:

{ logical_backup_device_name } | { @logical_backup_device_name_var }
Is the logical name, which must follow the rules for identifiers, of the backup device(s) (created by sp_addumpdevice) to which
the database is backed up. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = logical backup device name) or as a variable of
character string data type, except for the ntext or text data types.

{ DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be created on the specified disk or tape device. The physical device specified need not exist prior to executing
the BACKUP statement. If the physical device exists and the INIT option is not specified in the BACKUP statement, the backup is
appended to the device.

When specifying TO DISK or TO TAPE, enter the complete path and file name. For example, DISK = 'C:\Program Files\Microsoft
SQL Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'.

Note If a relative path name is entered for a backup to disk, the backup file is placed in the default backup directory. This
directory is set during installation and stored in the BackupDirectory registry key under
KEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer\MSSQLServer.

If using a network server with a Uniform Naming Convention (UNC) name or using a redirected drive letter, specify a device
type of disk.

When specifying multiple files, logical file names (or variables) and physical file names (or variables) can be mixed. However, all
devices must be of the same type (disk, tape, or pipe).

Backup to tape is not supported on Windows 98.

n

Is a placeholder that indicates multiple backup devices may be specified. The maximum number of backup devices is 64.

BLOCKSIZE = { blocksize | @blocksize_variable }

Specifies the physical block size, in bytes. On Windows NT systems, the default is the default block size of the device. Generally,
this parameter is not required as SQL Server will choose a blocksize that is appropriate to the device. On Windows 2000-based
computers, the default is 65,536 (64 KB, which is the maximum size SQL Server supports).

For DISK, BACKUP automatically determines the appropriate block size for disk devices.

Note To transfer the resulting backup set to a CD-ROM and then restore from that CD-ROM, set BLOCKSIZE to 2048.

The default BLOCKSIZE for tape is 65,536 (64 KB). Explicitly stating a block size overrides SQL Server's selection of a block size.

DESCRIPTION = { 'text' | @text_variable }

Specifies the free-form text describing the backup set. The string can have a maximum of 255 characters.

DIFFERENTIAL

Specifies the database or file backup should consist only of the portions of the database or file changed since the last full backup.
A differential backup usually takes up less space than a full backup. Use this option so that all individual log backups since the last
full backup do not need to be applied. For more information, see Differential Database Backups and File Differential Backups.

Note During a full database or differential backup, SQL Server backs up enough of the transaction log to produce a consistent
database when the database is restored.

EXPIREDATE = { date | @date_var }

Specifies the date when the backup set expires and can be overwritten. If supplied as a variable (@date_var), this date is specified
as either a string constant (@date_var = date), as a variable of character string data type (except for the ntext or text data types),
a smalldatetime, or datetime variable, and must follow the configured system datetime format.

RETAINDAYS = { days | @days_var }

Specifies the number of days that must elapse before this backup media set can be overwritten. If supplied as a variable
(@days_var), it must be specified as an integer.

Important If EXPIREDATE or RETAINDAYS is not specified, expiration is determined by the media retention configuration
setting of sp_configure. These options only prevent SQL Server from overwriting a file. Tapes can be erased using other
methods, and disk files can be deleted through the operating system. For more information about expiration verification, see SKIP
and FORMAT in this topic.

PASSWORD = { password | @password_variable }

Sets the password for the backup set. PASSWORD is a character string. If a password is defined for the backup set, the password
must be supplied to perform any restore operation from the backup set.

Important A backup set password protects the contents of the backup set from unauthorized access through SQL Server 2000
tools, but does not protect the backup set from being overwritten.

For more information about using passwords, see the Permissions section.

FORMAT

Specifies that the media header should be written on all volumes used for this backup operation. Any existing media header is
overwritten. The FORMAT option invalidates the entire media contents, ignoring any existing content.

Important Use FORMAT carefully. Formatting one backup device or medium renders the entire media set unusable. For
example, if a single tape belonging to an existing striped media set is initialized, the entire media set is rendered useless.

By specifying FORMAT, the backup operation implies SKIP and INIT; these do not need to be explicitly stated.

NOFORMAT

Specifies the media header should not be written on all volumes used for this backup operation and does not rewrite the backup
device unless INIT is specified.

INIT

Specifies that all backup sets should be overwritten, but preserves the media header. If INIT is specified, any existing backup set
data on that device is overwritten.

The backup media is not overwritten if any one of the following conditions is met:

All backup sets on the media have not yet expired. For more information, see the EXPIREDATE and RETAINDAYS options.

The backup set name given in the BACKUP statement, if provided, does not match the name on the backup media. For more
information, see the NAME clause.

Use the SKIP option to override these checks. For more information about interactions when using SKIP, NOSKIP, INIT, and
NOINIT, see the Remarks section.

Note If the backup media is password protected, SQL Server does not write to the media unless the media password is supplied.
This check is not overridden by the SKIP option. Password-protected media may be overwritten only by reformatting it. For more
information, see the FORMAT option.

NOINIT

Indicates that the backup set is appended to the specified disk or tape device, preserving existing backup sets. NOINIT is the
default.

The FILE option of the RESTORE command is used to select the appropriate backup set at restore time. For more information, see
RESTORE.

If a media password is defined for the media set, the password must be supplied.

MEDIADESCRIPTION = { text | @text_variable }

Specifies the free-form text description, maximum of 255 characters, of the media set.

MEDIANAME = { media_name | @media_name_variable }

Specifies the media name, a maximum of 128 characters, for the entire backup media set. If MEDIANAME is specified, it must
match the previously specified media name already existing on the backup volume(s). If not specified or if the SKIP option is
specified, there is no verification check of the media name.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

Sets the password for the media set. MEDIAPASSWORD is a character string.

If a password is defined for the media set, the password must be supplied to create a backup set on that media set. In addition,
that media password also must be supplied to perform any restore operation from the media set. Password-protected media may
be overwritten only by reformatting it. For more information, see the FORMAT option.

For more information about using passwords, see the Permissions section.

NAME = { backup_set_name | @backup_set_var }

Specifies the name of the backup set. Names can have a maximum of 128 characters. If NAME is not specified, it is blank.

NORECOVERY

Used only with BACKUP LOG. Backs up the tail of the log and leaves the database in the Restoring state. NORECOVERY is useful

when failing over to a secondary database or when saving the tail of the log prior to a RESTORE operation.

STANDBY = undo_file_name

Used only with BACKUP LOG. Backs up the tail of the log and leaves the database in read-only and standby mode. The undo file
name specifies storage to hold rollback changes which must be undone if RESTORE LOG operations are to be subsequently
applied.

If the specified undo file name does not exist, SQL Server creates it. If the file does exist, SQL Server overwrites it. For more
information, see Using Standby Servers.

NOREWIND

Specifies that SQL Server will keep the tape open after the backup operation. NOREWIND implies NOUNLOAD. SQL Server will
retain ownership of the tape drive until a BACKUP or RESTORE command is used WITH REWIND.

If a tape is inadvertently left open, the fastest way to release the tape is by using the following RESTORE command:

RESTORE LABELONLY FROM TAPE = <name> WITH REWIND

A list of currently open tapes can be found by querying the sysopentapes table in the master database.

REWIND

Specifies that SQL Server will release and rewind the tape. If neither NOREWIND nor REWIND is specified, REWIND is the default.

NOSKIP

Instructs the BACKUP statement to check the expiration date of all backup sets on the media before allowing them to be
overwritten.

SKIP

Disables the backup set expiration and name checking usually performed by the BACKUP statement to prevent overwrites of
backup sets. For more information, see the Remarks section.

NOUNLOAD

Specifies the tape is not unloaded automatically from the tape drive after a backup. NOUNLOAD remains set until UNLOAD is
specified. This option is used only for tape devices.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the backup is finished. UNLOAD is set by default when a new
user session is started. It remains set until that user specifies NOUNLOAD. This option is used only for tape devices.

RESTART

Specifies that SQL Server restarts an interrupted backup operation. The RESTART option saves time because it restarts the backup
operation at the point it was interrupted. To RESTART a specific backup operation, repeat the entire BACKUP statement and add
the RESTART option. Using the RESTART option is not required but can save time.

Important This option can only be used for backups directed to tape media and for backups that span multiple tape volumes. A
restart operation never occurs on the first volume of the backup.

STATS [= percentage]

Displays a message each time another percentage completes, and is used to gauge progress. If percentage is omitted, SQL Server
displays a message after each 10 percent is completed.

< file_or_filegroup >

Specifies the logical names of the files or filegroups to include in the database backup. Multiple files or filegroups may be
specified.

FILE = { logical_file_name | @logical_file_name_var }

Names one or more files to include in the database backup.

FILEGROUP = { logical_filegroup_name | @logical_filegroup_name_var }

Names one or more filegroups to include in the database backup.

Note Back up a file when the database size and performance requirements make a full database backup impractical. To back up

the transaction log separately, use BACKUP LOG.

Important To recover a database using file and filegroup backups, a separate backup of the transaction log must be provided by
using BACKUP LOG. For more information about file backups, see Backing up Using File Backups.

File and filegroup backups are not allowed if the recovery model is simple.

n

Is a placeholder indicating that multiple files and filegroups may be specified. There is no maximum number of files or filegroups.

LOG

Specifies a backup of the transaction log only. The log is backed up from the last successfully executed LOG backup to the current
end of the log. Once the log is backed up, the space may be truncated when no longer required by replication or active
transactions.

Note If backing up the log does not appear to truncate most of the log, an old open transaction may exist in the log. Log space
can be monitored with DBCC SQLPERF (LOGSPACE). For more information, see Transaction Log Backups.

NO_LOG | TRUNCATE_ONLY

Removes the inactive part of the log without making a backup copy of it and truncates the log. This option frees space. Specifying
a backup device is unnecessary because the log backup is not saved. NO_LOG and TRUNCATE_ONLY are synonyms.

After backing up the log using either NO_LOG or TRUNCATE_ONLY, the changes recorded in the log are not recoverable. For
recovery purposes, immediately execute BACKUP DATABASE.

NO_TRUNCATE

Allows backing up the log in situations where the database is damaged.

Remarks

Database or log backups can be appended to any disk or tape device, allowing a database, and its transaction logs, to be kept
within one physical location.

SQL Server uses an online backup process to allow a database backup while the database is still in use. The following list includes
operations that cannot run during a database or transaction log backup:

File management operations such as the ALTER DATABASE statement with either the ADD FILE or REMOVE FILE options;
INSERT, UPDATE, or DELETE statements are allowed during a backup operation.

Shrink database or shrink file. This includes autoshrink operations.

If a backup is started when one of these operations is in progress, the backup ends. If a backup is running and one of these
operations is attempted, the operation fails.

Cross-platform backup operations, even between different processor types, can be performed as long as the collation of the
database is supported by the operating system. For more information, see SQL Server Collation Fundamentals.

Backup File Format

SQL Server backups can coexist on tape media with Windows NT backups because the SQL Server 2000 backup format conforms
to Microsoft Tape Format (MTF); the same format used by Windows NT tape backups. To ensure interoperability, the tape should
be formatted by NTBackup.

Backup Types

Backup types supported by SQL Server include:

Full database backup, which backs up the entire database including the transaction log.

Differential database backup performed between full database backups.

Transaction log backup.

A sequence of log backups provides for a continuous chain of transaction information to support recovery forward from

database, differential, or file backups.

File(s) and Filegroup(s) backup.

Use BACKUP to back up database files and filegroups instead of the full database when time constraints make a full
database backup impractical. To back up a file instead of the full database, put procedures in place to ensure that all files in
the database are backed up regularly. Also, separate transaction log backups must be performed. After restoring a file
backup, apply the transaction log to roll the file contents forward to make it consistent with the rest of the database.

Backup devices used in a stripe set must always be used in a stripe set (unless reinitialized at some point with FORMAT) with the
same number of devices. After a backup device is defined as part of a stripe set, it cannot be used for a single devicebackup unless
FORMAT is specified. Similarly, a backup device that contains nonstriped backups cannot be used in a stripe set unless FORMAT is
specified. Use FORMAT to split a striped backup set.

If neither MEDIANAME nor MEDIADESCRIPTION is specified when a media header is written, the media header field
corresponding to the blank item is empty.

BACKUP LOG cannot be used if the recovery model is SIMPLE. Use BACKUP DATABASE instead.

Interaction of SKIP, N OSKIP, IN IT, and N OIN IT

This table shows how the { INIT | NOINIT } and { NOSKIP | SKIP } clauses interact.

Note In all these interactions, if the tape media is empty or the disk backup file does not exist, write a media header and proceed.
If the media is not empty and does not contain a valid media header, give feedback that this is not valid MTF media and abort the
backup.

 INIT NOINIT
SKIP If the volume contains a valid1 media

header, verify the media password
and overwrite any backup sets on the
media, preserving only the media
header.

If the volume does not contain a valid
media header, generate one with the
given MEDIANAME,
MEDIAPASSWORD, and
MEDIADESCRIPTION, if any.

If the volume contains a valid
media header, verify the media
password and append the backup
set, preserving all existing backup
sets.

If the volume does not contain a
valid media header, an error occurs.

NOSKIP If the volume contains a valid media
header, perform the following checks:

Verify the media password.2

If MEDIANAME was specified,
verify that the given media
name matches the media
header's media name.

Verify that there are no
unexpired backup set(s) already
on the media.
If there are, abort the backup.

If these checks pass, overwrite any
backup sets on the media, preserving
only the media header.

If the volume does not contain a valid
media header, generate one with the
given MEDIANAME,
MEDIAPASSWORD, and
MEDIADESCRIPTION, if any.

If the volume contains a valid
media header, verify the media
password* and verify that the
media name matches the given
MEDIANAME, if any. If it matches,
append the backup set, preserving
all existing backup sets.

If the volume does not contain a
valid media header, an error occurs.

1. Validity includes the MTF version number and other header information. If the version specified is unsupported or an
unexpected value, an error occurs.
2. The user must belong to the appropriate fixed database or server roles and provide the correct media password to perform a
backup operation.

Note To maintain backward compatibility, the DUMP keyword can be used in place of the BACKUP keyword in the BACKUP
statement syntax. In addition, the TRANSACTION keyword can be used in place of the LOG keyword.

Backup History Tables

SQL Server includes these backup history tables that track backup activity:

backupfile

backupmediafamily

backupmediaset

backupset

When a RESTORE is performed, the backup history tables are modified.

Compatibility Considerations

Caution Backups created with Microsoft® SQL Server™ 2000 cannot be restored in earlier versions of SQL Server.

Permissions

BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin fixed server role and the db_owner and
db_backupoperator fixed database roles.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, restore is not allowed unless the correct media password and
backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password for objects that were not created with associated passwords.

BACKUP creates the backup set with the backup set password supplied through the PASSWORD option. In addition, BACKUP will
normally verify the media password given by the MEDIAPASSWORD option prior to writing to the media. The only time that
BACKUP will not verify the media password is when it formats the media, which overwrites the media header. BACKUP formats
the media only:

If the FORMAT option is specified.

If the media header is invalid and INIT is specified.

If the operation is writing a continuation volume.

If BACKUP writes the media header, BACKUP will assign the media set password to the value specified in the MEDIAPASSWORD
option.

For more information about the impact of passwords on SKIP, NOSKIP, INIT, and NOINIT options, see the Remarks section.

Ownership and permission problems on the backup device's physical file can interfere with a backup operation. SQL Server must
be able to read and write to the device; the account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a device in the system tables, does not check file access permissions. Such
problems on the backup device's physical file may not appear until the physical resource is accessed when the backup or restore
is attempted.

Examples

A. Back up the entire M yN wind database

Note The MyNwind database is shown for illustration only.

This example creates a logical backup device in which a full backup of the MyNwind database is placed.

-- Create a logical backup device for the full MyNwind backup.
USE master
EXEC sp_addumpdevice 'disk', 'MyNwind_1', 'c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\MyNwind_1.dat'

-- Back up the full MyNwind database.
BACKUP DATABASE MyNwind TO MyNwind_1

B. Back up the database and log

This example creates both a full database and log backup. The database is backed up to a logical backup device called
MyNwind_2, and then the log is backed up to a logical backup device called MyNwindLog1.

Note Creating a logical backup device needs to be done only once.

-- Create the backup device for the full MyNwind backup.
USE master
EXEC sp_addumpdevice 'disk', 'MyNwind_2',
 'c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\MyNwind_2.dat'

--Create the log backup device.
USE master
EXEC sp_addumpdevice 'disk', 'MyNwindLog1',
 'c:\Program Files\Microsoft SQL Server\MSSQL\BACKUP\MyNwindLog1.dat'

-- Back up the full MyNwind database.
BACKUP DATABASE MyNwind TO MyNwind_2

-- Update activity has occurred since the full database backup.

-- Back up the log of the MyNwind database.
BACKUP LOG MyNwind
 TO MyNwindLog1

See Also

Backup Formats

DBCC SQLPERF

RESTORE

RESTORE FILELISTONLY

RESTORE HEADERONLY

RESTORE LABELONLY

RESTORE VERIFYONLY

sp_addumpdevice

sp_configure

sp_dboption

sp_helpfile

sp_helpfilegroup

Using Identifiers

Using Media Sets and Families

Transact-SQL Reference (SQL Server 2000)

BEGIN...END
Encloses a series of Transact-SQL statements so that a group of Transact-SQL statements can be executed. BEGIN and END are
control-of-flow language keywords.

Syntax

BEGIN
 {
 sql_statement
 | statement_block
 }
END

Arguments

{ sql_statement | statement_block }

Is any valid Transact-SQL statement or statement grouping as defined with a statement block.

Remarks

BEGIN...END blocks can be nested.

Although all Transact-SQL statements are valid within a BEGIN...END block, certain Transact-SQL statements should not be
grouped together within the same batch (statement block). For more information, see Batches and the individual statements used.

Examples

In this example, BEGIN and END define a series of Transact-SQL statements that execute together. If the BEGIN...END block were
not included, the IF condition would cause only the ROLLBACK TRANSACTION to execute, and the print message would not be
returned.

USE pubs
GO
CREATE TRIGGER deltitle
ON titles
FOR delete
AS
IF (SELECT COUNT(*) FROM deleted, sales
 WHERE sales.title_id = deleted.title_id) > 0
 BEGIN
 ROLLBACK TRANSACTION
 PRINT 'You can't delete a title with sales.'
END

See Also

ALTER TRIGGER

Control-of-Flow Language

CREATE TRIGGER

END (BEGIN...END)

Transact-SQL Reference (SQL Server 2000)

BEGIN DISTRIBUTED TRANSACTION
Specifies the start of a Transact-SQL distributed transaction managed by Microsoft Distributed Transaction Coordinator (MS DTC).

Syntax

BEGIN DISTRIBUTED TRAN [SACTION]
 [transaction_name | @tran_name_variable]

Arguments

transaction_name

Is a user-defined transaction name used to track the distributed transaction within MS DTC utilities. transaction_name must
conform to the rules for identifiers but only the first 32 characters are used.

@tran_name_variable

Is the name of a user-defined variable containing a transaction name used to track the distributed transaction within MS DTC
utilities. The variable must be declared with a char, varchar, nchar, or nvarchar data type.

Remarks

The server executing the BEGIN DISTRIBUTED TRANSACTION statement is the transaction originator and controls the completion
of the transaction. When a subsequent COMMIT TRANSACTION or ROLLBACK TRANSACTION statement is issued for the
connection, the controlling server requests that MS DTC manage the completion of the distributed transaction across the servers
involved.

There are two ways remote SQL servers are enlisted in a distributed transaction:

A connection already enlisted in the distributed transaction performs a remote stored procedure call referencing a remote
server.

A connection already enlisted in the distributed transaction executes a distributed query referencing a remote server.

For example, if BEGIN DISTRIBUTED TRANSACTION is issued on ServerA, the connection calls a stored procedure on ServerB and
another stored procedure on ServerC, and the stored procedure on ServerC executes a distributed query against ServerD, then
all four SQL servers are involved in the distributed transaction. ServerA is the originating, controlling server for the transaction.

The connections involved in Transact-SQL distributed transactions do not get a transaction object they can pass to another
connection for it to explicitly enlist in the distributed transaction. The only way for a remote server to enlist in the transaction is to
be the target of a remote stored procedure call or a distributed query.

The sp_configure remote proc trans option controls whether calls to remote stored procedures in a local transaction
automatically cause the local transaction to be promoted to a distributed transaction managed by MS DTC. The connection-level
SET option REMOTE_PROC_TRANSACTIONS can be used to override the server default established by sp_configure remote
proc trans. With this option set on, a remote stored procedure call causes a local transaction to be promoted to a distributed
transaction. The connection that creates the MS DTC transaction becomes the originator for the transaction. COMMIT
TRANSACTION initiates an MS DTC coordinated commit. If the sp_configure remote proc trans option is set on, remote stored
procedure calls in local transactions are automatically protected as part of distributed transactions without having to rewrite
applications to specifically issue BEGIN DISTRIBUTED TRANSACTION instead of BEGIN TRANSACTION.

When a distributed query is executed in a local transaction, the transaction is automatically promoted to a distributed transaction
if the target OLE DB data source supports ITransactionLocal. If the target OLE DB data source does not support
ITransactionLocal, only read-only operations are allowed in the distributed query.

For more information about the distributed transaction environment and process, see the Microsoft Distributed Transaction
Coordinator documentation.

Permissions

BEGIN DISTRIBUTED TRANSACTION permissions default to any valid user.

Examples

This example updates the author's last name on the local and remote databases. The local and remote databases will both either
commit or roll back the transaction.

Note Unless MS DTC is currently installed on the computer running Microsoft® SQL Server™, this example produces an error
message. For more information about installing MS DTC, see the Microsoft Distributed Transaction Coordinator documentation.

USE pubs
GO
BEGIN DISTRIBUTED TRANSACTION
UPDATE authors
 SET au_lname = 'McDonald' WHERE au_id = '409-56-7008'
EXECUTE remote.pubs.dbo.changeauth_lname '409-56-7008','McDonald'
COMMIT TRAN
GO

See Also

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT WORK

Distributed Transactions

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION

Transact-SQL Reference (SQL Server 2000)

BEGIN TRANSACTION
Marks the starting point of an explicit, local transaction. BEGIN TRANSACTION increments @@TRANCOUNT by 1.

Syntax

BEGIN TRAN [SACTION] [transaction_name | @tran_name_variable
 [WITH MARK ['description']]]

Arguments

transaction_name

Is the name assigned to the transaction. transaction_name must conform to the rules for identifiers but identifiers longer than 32
characters are not allowed. Use transaction names only on the outermost pair of nested BEGIN...COMMIT or BEGIN...ROLLBACK
statements.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name. The variable must be declared with a char, varchar,
nchar, or nvarchar data type.

WITH MARK ['description']

Specifies the transaction is marked in the log. description is a string that describes the mark.

If WITH MARK is used, a transaction name must be specified. WITH MARK allows for restoring a transaction log to a named mark.

Remarks

BEGIN TRANSACTION represents a point at which the data referenced by a connection is logically and physically consistent. If
errors are encountered, all data modifications made after the BEGIN TRANSACTION can be rolled back to return the data to this
known state of consistency. Each transaction lasts until either it completes without errors and COMMIT TRANSACTION is issued
to make the modifications a permanent part of the database, or errors are encountered and all modifications are erased with a
ROLLBACK TRANSACTION statement.

BEGIN TRANSACTION starts a local transaction for the connection issuing the statement. Depending on the current transaction
isolation level settings, many resources acquired to support the Transact-SQL statements issued by the connection are locked by
the transaction until it is completed with either a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement. Transactions
left outstanding for long periods of time can prevent other users from accessing these locked resources.

Although BEGIN TRANSACTION starts a local transaction, it is not recorded in the transaction log until the application
subsequently performs an action that must be recorded in the log, such as executing an INSERT, UPDATE, or DELETE statement.
An application can perform actions such as acquiring locks to protect the transaction isolation level of SELECT statements, but
nothing is recorded in the log until the application performs a modification action.

Naming multiple transactions in a series of nested transactions with a transaction name has little effect on the transaction. Only
the first (outermost) transaction name is registered with the system. A rollback to any other name (other than a valid savepoint
name) generates an error. None of the statements executed before the rollback are in fact rolled back at the time this error occurs.
The statements are rolled back only when the outer transaction is rolled back.

BEGIN TRANSACTION starts a local transaction. The local transaction is escalated to a distributed transaction if the following
actions are performed before it is committed or rolled back:

An INSERT, DELETE, or UPDATE statement is executed that references a remote table on a linked server. The INSERT,
UPDATE, or DELETE statement fails if the OLE DB provider used to access the linked server does not support the
ITransactionJoin interface.

A call is made to a remote stored procedure when the REMOTE_PROC_TRANSACTIONS option is set to ON.

The local copy of SQL Server becomes the transaction controller and uses MS DTC to manage the distributed transaction.

M arked Transactions

The WITH MARK option causes the transaction name to be placed in the transaction log. When restoring a database to an earlier

state, the marked transaction can be used in place of a date and time. For more information, see Restoring a Database to a Prior
State, Recovering to a Named Transaction, and RESTORE.

Additionally, transaction log marks are necessary if you need to recover a set of related databases to a logically consistent state.
Marks can be placed in the transaction logs of the related databases by a distributed transaction. Recovering the set of related
databases to these marks results in a set of databases that are transactionally consistent. Placement of marks in related databases
requires special procedures. For more information, see Backup and Recovery of Related Databases.

The mark is placed in the transaction log only if the database is updated by the marked transaction. Transactions that do not
modify data are not marked.

BEGIN TRAN new_name WITH MARK can be nested within an already existing transaction that is not marked. Upon doing so,
new_name becomes the mark name for the transaction, despite the name that the transaction may already have been given. In
the following example, M2 is the name of the mark.

BEGIN TRAN T1
UPDATE table1 ...
BEGIN TRAN M2 WITH MARK
UPDATE table2 ...
SELECT * from table1
COMMIT TRAN M2
UPDATE table3 ...
COMMIT TRAN T1

Attempting to mark a transaction that is already marked results in a warning (not error) message:

BEGIN TRAN T1 WITH MARK
UPDATE table1 ...
BEGIN TRAN M2 WITH MARK

Server: Msg 3920, Level 16, State 1, Line 3
WITH MARK option only applies to the first BEGIN TRAN WITH MARK.
The option is ignored.

Permissions

BEGIN TRANSACTION permissions default to any valid user.

Examples

A. N aming a transaction

This example demonstrates how to name a transaction. Upon committing the named transaction, royalties paid for all popular
computer books are increased by 10 percent.

DECLARE @TranName VARCHAR(20)
SELECT @TranName = 'MyTransaction'

BEGIN TRANSACTION @TranName
GO
USE pubs
GO
UPDATE roysched
SET royalty = royalty * 1.10
WHERE title_id LIKE 'Pc%'
GO

COMMIT TRANSACTION MyTransaction
GO

Transact-SQL Reference (SQL Server 2000)

BETWEEN
Specifies a range to test.

Syntax

test_expression [NOT] BETWEEN begin_expression AND end_expression

Arguments

test_expression

Is the expression to test for in the range defined by begin_expression and end_expression. test_expression must be the same data
type as both begin_expression and end_expression.

NOT

Specifies that the result of the predicate be negated.

begin_expression

Is any valid Microsoft® SQL Server™ expression. begin_expression must be the same data type as both test_expression and
end_expression.

end_expression

Is any valid SQL Server expression. end_expression must be the same data type as both test_expression and begin_expression.

AND

Acts as a placeholder indicating that test_expression should be within the range indicated by begin_expression and end_expression.

Result Types

Boolean

Result Value

BETWEEN returns TRUE if the value of test_expression is greater than or equal to the value of begin_expression and less than or
equal to the value of end_expression.

NOT BETWEEN returns TRUE if the value of test_expression is less than the value of begin_expression or greater than the value of
end_expression.

Remarks

To specify an exclusive range, use the greater than (>) and less than operators (<). If any input to the BETWEEN or NOT BETWEEN
predicate is NULL, the result is UNKNOWN.

Examples

A. Use BETWEEN

This example returns title identifiers for books with year-to-date unit sales from 4,095 through 12,000.

USE pubs
GO
SELECT title_id, ytd_sales
FROM titles
WHERE ytd_sales BETWEEN 4095 AND 12000
GO

Here is the result set:

title_id ytd_sales
-------- -----------
BU1032 4095
BU7832 4095
PC1035 8780

PC8888 4095
TC7777 4095

(5 row(s) affected)

B. Use > and < instead of BETWEEN

This example, which uses greater than (>) and less than (<) operators, returns different results because these operators are not
inclusive.

USE pubs
GO
SELECT title_id, ytd_sales
FROM titles
WHERE ytd_sales > 4095 AND ytd_sales < 12000
GO

Here is the result set:

title_id ytd_sales
-------- -----------
PC1035 8780

(1 row(s) affected)

C. Use N OT BETWEEN

This example finds all rows outside a specified range (from 4,095 through 12,000).

USE pubs
GO
SELECT title_id, ytd_sales
FROM titles
WHERE ytd_sales NOT BETWEEN 4095 AND 12000
GO

Here is the result set:

title_id ytd_sales
-------- -----------
BU1111 3876
BU2075 18722
MC2222 2032
MC3021 22246
PS1372 375
PS2091 2045
PS2106 111
PS3333 4072
PS7777 3336
TC3218 375
TC4203 15096

(11 row(s) affected)

See Also

> (Greater Than)

< (Less Than)

Expressions

Functions

Operators (Logical Operators)

SELECT (Subqueries)

WHERE

Transact-SQL Reference (SQL Server 2000)

binary and varbinary
Binary data types of either fixed-length (binary) or variable-length (varbinary).

binary [(n)]

Fixed-length binary data of n bytes. n must be a value from 1 through 8,000. Storage size is n+4 bytes.

varbinary [(n)]

Variable-length binary data of n bytes. n must be a value from 1 through 8,000. Storage size is the actual length of the data
entered + 4 bytes, not n bytes. The data entered can be 0 bytes in length. The SQL-92 synonym for varbinary is binary varying.

Remarks

When n is not specified in a data definition, or variable declaration statement, the default length is 1. When n is not specified with
the CAST function, the default length is 30.

Use binary when column data entries are consistent in size.

Use varbinary when column data entries are inconsistent in size.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

BINARY_CHECKSUM
Returns the binary checksum value computed over a row of a table or over a list of expressions. BINARY_CHECKSUM can be used
to detect changes to a row of a table.

Syntax

BINARY_CHECKSUM (* | expression [,...n])

Arguments

*

Specifies that the computation is over all the columns of the table. BINARY_CHECKSUM ignores columns of noncomparable data
types in its computation. Noncomparable data types are text, ntext, image, and cursor, as well as sql_variant with any of the
above types as its base type.

expression

Is an expression of any type. BINARY_CHECKSUM ignores expressions of noncomparable data types in its computation.

Remarks

BINARY_CHECKSUM(*), computed on any row of a table, returns the same value as long the row is not subsequently modified.
BINARY_CHECKSUM(*) will return a different value for most, but not all, changes to the row, and can be used to detect most row
modifications.

BINARY_CHECKSUM can be applied over a list of expressions, and returns the same value for a given list. BINARY_CHECKSUM
applied over any two lists of expressions returns the same value if the corresponding elements of the two lists have the same type
and byte representation. For this definition, NULL values of a given type are considered to have the same byte representation.

BINARY_CHECKSUM and CHECKSUM are similar functions: they can be used to compute a checksum value on a list of
expressions, and the order of expressions affects the resultant value. The order of columns used in the case of
BINARY_CHECKSUM(*) is the order of columns specified in the table or view definition, including computed columns.

CHECKSUM and BINARY_CHECKSUM return different values for the string data types, where locale can cause strings with
different representation to compare equal. The string data types are char, varchar, nchar, nvarchar, or sql_variant (if the base
type of sql_variant is a string data type). For example, the BINARY_CHECKSUM values for the strings "McCavity" and "Mccavity"
are different. In contrast, in a case-insensitive server, CHECKSUM returns the same checksum values for those strings. CHECKSUM
values should not be compared against BINARY_CHECKSUM values.

Examples

A. Use BIN ARY_CHECKSUM to detect changes in the rows of a table.

This example uses BINARY_CHECKSUM to detect changes in a row of the Products table in the Northwind database.

/*Get the checksum value before the values in the specific rows (#13-15) are changed.*/
USE Northwind
GO
CREATE TABLE TableBC (ProductID int, bchecksum int)
INSERT INTO TableBC
 SELECT ProductID, BINARY_CHECKSUM(*)
 FROM Products
/*TableBC contains a column of 77 checksum values corresponding to each row in the Products table.*/

--A large company bought products 13-15.
--The new company modified the products names and unit prices.
--Change the values of ProductsName and UnitPrice for rows 13, 14, and 15 of the Products table.*/
UPDATE Products
SET ProductName='Oishi Konbu', UnitPrice=5
WHERE ProductName='Konbu'

UPDATE Products
SET ProductName='Oishi Tofu', UnitPrice=20
WHERE ProductName='Tofu'

UPDATE Products
SET ProductName='Oishi Genen Shouyu', UnitPrice=12

WHERE ProductName='Genen Shouyu'

--Determine the rows that have changed.
SELECT ProductID
FROM TableBC
WHERE EXISTS (
 SELECT ProductID
 FROM Products
 WHERE Products.ProductID = TableBC.ProductID
 AND BINARY_CHECKSUM(*) <> TableBC.bchecksum)

Here is the result set:

ProductID
13
14
15

See Also

CHECKSUM

CHECKSUM_AGG

Transact-SQL Reference (SQL Server 2000)

bit
Integer data type 1, 0, or NULL.

Remarks

Microsoft® SQL Server™ optimizes the storage used for bit columns. If there are 8 or fewer bit columns in a table, the columns
are stored as 1 byte. If there are from 9 through 16 bit columns, they are stored as 2 bytes, and so on.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

syscolumns

UPDATE

Transact-SQL Reference (SQL Server 2000)

BREAK
Exits the innermost WHILE loop. Any statements following the END keyword are ignored. BREAK is often, but not always, activated
by an IF test.

See Also

Control-of-Flow Language

WHILE

Transact-SQL Reference (SQL Server 2000)

BULK INSERT
 Topic last updated -- July 2003

Copies a data file into a database table or view in a user-specified format.

Syntax

BULK INSERT [['database_name'.] ['owner'].] { 'table_name' FROM 'data_file' }
 [WITH
 (
 [BATCHSIZE [= batch_size]]
 [[,] CHECK_CONSTRAINTS]
 [[,] CODEPAGE [= 'ACP' | 'OEM' | 'RAW' | 'code_page']]
 [[,] DATAFILETYPE [=
 { 'char' | 'native'| 'widechar' | 'widenative' }]]
 [[,] FIELDTERMINATOR [= 'field_terminator']]
 [[,] FIRSTROW [= first_row]]
 [[,] FIRE_TRIGGERS]
 [[,] FORMATFILE = 'format_file_path']
 [[,] KEEPIDENTITY]
 [[,] KEEPNULLS]
 [[,] KILOBYTES_PER_BATCH [= kilobytes_per_batch]]
 [[,] LASTROW [= last_row]]
 [[,] MAXERRORS [= max_errors]]
 [[,] ORDER ({ column [ASC | DESC] } [,...n])]
 [[,] ROWS_PER_BATCH [= rows_per_batch]]
 [[,] ROWTERMINATOR [= 'row_terminator']]
 [[,] TABLOCK]
)
]

Arguments

'database_name'

Is the database name in which the specified table or view resides. If not specified, this is the current database.

'owner'

Is the name of the table or view owner. owner is optional if the user performing the bulk copy operation owns the specified table
or view. If owner is not specified and the user performing the bulk copy operation does not own the specified table or view,
Microsoft® SQL Server™ returns an error message, and the bulk copy operation is canceled.

'table_name'

Is the name of the table or view to bulk copy data into. Only views in which all columns refer to the same base table can be used.
For more information about the restrictions for copying data into views, see INSERT.

'data_file'

Is the full path of the data file that contains data to copy into the specified table or view. BULK INSERT can copy data from a disk
(including network, floppy disk, hard disk, and so on).

data_file must specify a valid path from the server on which SQL Server is running. If data_file is a remote file, specify the
Universal Naming Convention (UNC) name.

BATCHSIZE [= batch_size]

Specifies the number of rows in a batch. Each batch is copied to the server as one transaction. SQL Server commits or rolls back,
in the case of failure, the transaction for every batch. By default, all data in the specified data file is one batch.

CHECK_CONSTRAINTS

Specifies that any constraints on table_name are checked during the bulk copy operation. By default, constraints are ignored.
Note that the MAX_ERRORS option does not apply to constraint checking.

CODEPAGE [= 'ACP' | 'OEM' | 'RAW' | 'code_page']

Specifies the code page of the data in the data file. CODEPAGE is relevant only if the data contains char, varchar, or text columns
with character values greater than 127 or less than 32.

CODEPAGE value Description
ACP Columns of char, varchar, or text data type are converted

from the ANSI/Microsoft Windows® code page (ISO
1252) to the SQL Server code page.

OEM (default) Columns of char, varchar, or text data type are converted
from the system OEM code page to the SQL Server code
page.

RAW No conversion from one code page to another occurs; this
is the fastest option.

code_page Specific code page number, for example, 850.

DATAFILETYPE [= {'char' | 'native' | 'widechar' | 'widenative' }]

Specifies that BULK INSERT performs the copy operation using the specified default.

DATAFILETYPE
value

Description

char (default) Performs the bulk copy operation from a data file
containing character data.

native Performs the bulk copy operation using the native
(database) data types. The data file to load is created by
bulk copying data from SQL Server using the bcp utility.

widechar Performs the bulk copy operation from a data file
containing Unicode characters.

widenative Performs the same bulk copy operation as native, except
char, varchar, and text columns are stored as Unicode in
the data file. The data file to be loaded was created by bulk
copying data from SQL Server using the bcp utility. This
option offers a higher performance alternative to the
widechar option, and is intended for transferring data
from one computer running SQL Server to another by
using a data file. Use this option when transferring data
that contains ANSI extended characters in order to take
advantage of native mode performance.

FIELDTERMINATOR [= 'field_terminator']

Specifies the field terminator to be used for char and widechar data files. The default is \t (tab character).

FIRSTROW [= first_row]

Specifies the number of the first row to copy. The default is 1, indicating the first row in the specified data file.

FIRE_TRIGGERS

Specifies that any insert triggers defined on the destination table will execute during the bulk copy operation. If FIRE_TRIGGERS is
not specified, no insert triggers will execute.

FORMATFILE [= 'format_file_path']

Specifies the full path of a format file. A format file describes the data file that contains stored responses created using the bcp
utility on the same table or view. The format file should be used in cases in which:

The data file contains greater or fewer columns than the table or view.

The columns are in a different order.

The column delimiters vary.

There are other changes in the data format. Format files are usually created by using the bcp utility and modified with a text
editor as needed. For more information, see bcp Utility.

KEEPIDENTITY

Specifies that the values for an identity column are present in the file imported. If KEEPIDENTITY is not given, the identity values
for this column in the data file imported are ignored, and SQL Server automatically assigns unique values based on the seed and
increment values specified during table creation. If the data file does not contain values for the identity column in the table or
view, use a format file to specify that the identity column in the table or view should be skipped when importing data; SQL Server
automatically assigns unique values for the column. For more information, see DBCC CHECKIDENT.

KEEPNULLS

Specifies that empty columns should retain a null value during the bulk copy operation, rather than have any default values for
the columns inserted.

KILOBYTES_PER_BATCH [= kilobytes_per_batch]

Specifies the approximate number of kilobytes (KB) of data per batch (as kilobytes_per_batch). By default, KILOBYTES_PER_BATCH
is unknown.

LASTROW [= last_row]

Specifies the number of the last row to copy. The default is 0, indicating the last row in the specified data file.

MAXERRORS [= max_errors]

Specifies the maximum number of syntax errors and compilation errors that can occur before the bulk copy operation is canceled.
Each row that cannot be imported by the bulk copy operation is ignored and counted as one error. If max_errors is not specified,
the default is 10.

Note The MAX_ERRORS option does not apply to constraint checks (or to converting money and bigint data types).

ORDER ({ column [ASC | DESC] } [,...n])

Specifies how the data in the data file is sorted. Bulk copy operation performance is improved if the data loaded is sorted
according to the clustered index on the table. If the data file is sorted in a different order, or there is no clustered index on the
table, the ORDER clause is ignored. The column names supplied must be valid columns in the destination table. By default, the
bulk insert operation assumes the data file is unordered.

n

Is a placeholder indicating that multiple columns can be specified.

ROWS_PER_BATCH [= rows_per_batch]

Specifies the number of rows of data per batch (as rows_per_batch). Used when BATCHSIZE is not specified, resulting in the entire
data file sent to the server as a single transaction. The server optimizes the bulk load according to rows_per_batch. By default,
ROWS_PER_BATCH is unknown.

ROWTERMINATOR [= 'row_terminator']

Specifies the row terminator to be used for char and widechar data files. The default is \n (newline character).

TABLOCK

Specifies that a table-level lock is acquired for the duration of the bulk copy operation. A table can be loaded concurrently by
multiple clients if the table has no indexes and TABLOCK is specified. By default, locking behavior is determined by the table
option table lock on bulk load. Holding a lock only for the duration of the bulk copy operation reduces lock contention on the
table, significantly improving performance.

Remarks

The BULK INSERT statement can be executed within a user-defined transaction. Rolling back a user-defined transaction that uses a
BULK INSERT statement and BATCHSIZE clause to load data into a table or view using multiple batches rolls back all batches sent
to SQL Server.

Permissions

Only members of the sysadmin and bulkadmin fixed server roles can execute BULK INSERT.

Examples

This example imports order detail information from the specified data file using a pipe (|) as the field terminator and |\n as the
row terminator.

BULK INSERT Northwind.dbo.[Order Details]
 FROM 'f:\orders\lineitem.tbl'
 WITH
 (
 FIELDTERMINATOR = '|',
 ROWTERMINATOR = '|\n'
)

This example specifies the FIRE_TRIGGERS argument.

BULK INSERT Northwind.dbo.[Order Details]
 FROM 'f:\orders\lineitem.tbl'
 WITH
 (
 FIELDTERMINATOR = '|',
 ROWTERMINATOR = ':\n',
 FIRE_TRIGGERS
)

See Also

bcp Utility

Collations

Copying Data Between Different Collations

Copying Data Using bcp or BULK INSERT

Parallel Data Loads

sp_tableoption

Using Format Files

Transact-SQL Reference (SQL Server 2000)

CASE
Evaluates a list of conditions and returns one of multiple possible result expressions.

CASE has two formats:

The simple CASE function compares an expression to a set of simple expressions to determine the result.

The searched CASE function evaluates a set of Boolean expressions to determine the result.

Both formats support an optional ELSE argument.

Syntax

Simple CASE function:
CASE input_expression
 WHEN when_expression THEN result_expression
 [...n]
 [
 ELSE else_result_expression
]
END

Searched CASE function:
CASE
 WHEN Boolean_expression THEN result_expression
 [...n]
 [
 ELSE else_result_expression
]
END

Arguments

input_expression

Is the expression evaluated when using the simple CASE format. input_expression is any valid Microsoft® SQL Server™
expression.

WHEN when_expression

Is a simple expression to which input_expression is compared when using the simple CASE format. when_expression is any valid
SQL Server expression. The data types of input_expression and each when_expression must be the same or must be an implicit
conversion.

n

Is a placeholder indicating that multiple WHEN when_expression THEN result_expression clauses, or multiple WHEN
Boolean_expression THEN result_expression clauses can be used.

THEN result_expression

Is the expression returned when input_expression equals when_expression evaluates to TRUE, or Boolean_expression evaluates to
TRUE. result expression is any valid SQL Server expression.

ELSE else_result_expression

Is the expression returned if no comparison operation evaluates to TRUE. If this argument is omitted and no comparison
operation evaluates to TRUE, CASE returns NULL. else_result_expression is any valid SQL Server expression. The data types of
else_result_expression and any result_expression must be the same or must be an implicit conversion.

WHEN Boolean_expression

Is the Boolean expression evaluated when using the searched CASE format. Boolean_expression is any valid Boolean expression.

Result Types

Returns the highest precedence type from the set of types in result_expressions and the optional else_result_expression. For more
information, see Data Type Precedence.

Result Values

Simple CASE function:

Evaluates input_expression, and then, in the order specified, evaluates input_expression = when_expression for each WHEN
clause.

Returns the result_expression of the first (input_expression = when_expression) that evaluates to TRUE.

If no input_expression = when_expression evaluates to TRUE, SQL Server returns the else_result_expression if an ELSE clause
is specified, or a NULL value if no ELSE clause is specified.

Searched CASE function:

Evaluates, in the order specified, Boolean_expression for each WHEN clause.

Returns result_expression of the first Boolean_expression that evaluates to TRUE.

If no Boolean_expression evaluates to TRUE, SQL Server returns the else_result_expression if an ELSE clause is specified, or a
NULL value if no ELSE clause is specified.

Examples

A. Use a SELECT statement with a simple CASE function

Within a SELECT statement, a simple CASE function allows only an equality check; no other comparisons are made. This example
uses the CASE function to alter the display of book categories to make them more understandable.

USE pubs
GO
SELECT Category =
 CASE type
 WHEN 'popular_comp' THEN 'Popular Computing'
 WHEN 'mod_cook' THEN 'Modern Cooking'
 WHEN 'business' THEN 'Business'
 WHEN 'psychology' THEN 'Psychology'
 WHEN 'trad_cook' THEN 'Traditional Cooking'
 ELSE 'Not yet categorized'
 END,
 CAST(title AS varchar(25)) AS 'Shortened Title',
 price AS Price
FROM titles
WHERE price IS NOT NULL
ORDER BY type, price
COMPUTE AVG(price) BY type
GO

Here is the result set:

Category Shortened Title Price
------------------- ------------------------- --------------------------
Business You Can Combat Computer S 2.99
Business Cooking with Computers: S 11.95
Business The Busy Executive's Data 19.99
Business Straight Talk About Compu 19.99

 avg
 ==========================
 13.73

Category Shortened Title Price
------------------- ------------------------- --------------------------
Modern Cooking The Gourmet Microwave 2.99
Modern Cooking Silicon Valley Gastronomi 19.99

 avg
 ==========================
 11.49

Category Shortened Title Price
------------------- ------------------------- --------------------------
Popular Computing Secrets of Silicon Valley 20.00

Popular Computing But Is It User Friendly? 22.95

 avg
 ==========================
 21.48

Category Shortened Title Price
------------------- ------------------------- --------------------------
Psychology Life Without Fear 7.00
Psychology Emotional Security: A New 7.99
Psychology Is Anger the Enemy? 10.95
Psychology Prolonged Data Deprivatio 19.99
Psychology Computer Phobic AND Non-P 21.59

 avg
 ==========================
 13.50

Category Shortened Title Price
------------------- ------------------------- --------------------------
Traditional Cooking Fifty Years in Buckingham 11.95
Traditional Cooking Sushi, Anyone? 14.99
Traditional Cooking Onions, Leeks, and Garlic 20.95

 avg
 ==========================
 15.96

(21 row(s) affected)

B. Use a SELECT statement with simple and searched CASE function

Within a SELECT statement, the searched CASE function allows values to be replaced in the result set based on comparison values.
This example displays the price (a money column) as a text comment based on the price range for a book.

USE pubs
GO
SELECT 'Price Category' =
 CASE
 WHEN price IS NULL THEN 'Not yet priced'
 WHEN price < 10 THEN 'Very Reasonable Title'
 WHEN price >= 10 and price < 20 THEN 'Coffee Table Title'
 ELSE 'Expensive book!'
 END,
 CAST(title AS varchar(20)) AS 'Shortened Title'
FROM titles
ORDER BY price
GO

Here is the result set:

Price Category Shortened Title
--------------------- --------------------
Not yet priced Net Etiquette
Not yet priced The Psychology of Co
Very Reasonable Title The Gourmet Microwav
Very Reasonable Title You Can Combat Compu
Very Reasonable Title Life Without Fear
Very Reasonable Title Emotional Security:
Coffee Table Title Is Anger the Enemy?
Coffee Table Title Cooking with Compute
Coffee Table Title Fifty Years in Bucki
Coffee Table Title Sushi, Anyone?
Coffee Table Title Prolonged Data Depri
Coffee Table Title Silicon Valley Gastr
Coffee Table Title Straight Talk About
Coffee Table Title The Busy Executive's
Expensive book! Secrets of Silicon V
Expensive book! Onions, Leeks, and G
Expensive book! Computer Phobic And
Expensive book! But Is It User Frien

(18 row(s) affected)

C. Use CASE with SUBSTRIN G and SELECT

This example uses CASE and THEN to produce a list of authors, the book identification numbers, and the book types each author
has written.

USE pubs
SELECT SUBSTRING((RTRIM(a.au_fname) + ' '+
 RTRIM(a.au_lname) + ' '), 1, 25) AS Name, a.au_id, ta.title_id,
 Type =
 CASE
 WHEN SUBSTRING(ta.title_id, 1, 2) = 'BU' THEN 'Business'
 WHEN SUBSTRING(ta.title_id, 1, 2) = 'MC' THEN 'Modern Cooking'
 WHEN SUBSTRING(ta.title_id, 1, 2) = 'PC' THEN 'Popular Computing'
 WHEN SUBSTRING(ta.title_id, 1, 2) = 'PS' THEN 'Psychology'
 WHEN SUBSTRING(ta.title_id, 1, 2) = 'TC' THEN 'Traditional Cooking'
 END
FROM titleauthor ta JOIN authors a ON ta.au_id = a.au_id

Here is the result set:

Name au_id title_id Type
------------------------- ----------- -------- -------------------
Johnson White 172-32-1176 PS3333 Psychology
Marjorie Green 213-46-8915 BU1032 Business
Marjorie Green 213-46-8915 BU2075 Business
Cheryl Carson 238-95-7766 PC1035 Popular Computing
Michael O'Leary 267-41-2394 BU1111 Business
Michael O'Leary 267-41-2394 TC7777 Traditional Cooking
Dean Straight 274-80-9391 BU7832 Business
Abraham Bennet 409-56-7008 BU1032 Business
Ann Dull 427-17-2319 PC8888 Popular Computing
Burt Gringlesby 472-27-2349 TC7777 Traditional Cooking
Charlene Locksley 486-29-1786 PC9999 Popular Computing
Charlene Locksley 486-29-1786 PS7777 Psychology
Reginald Blotchet-Halls 648-92-1872 TC4203 Traditional Cooking
Akiko Yokomoto 672-71-3249 TC7777 Traditional Cooking
Innes del Castillo 712-45-1867 MC2222 Modern Cooking
Michel DeFrance 722-51-5454 MC3021 Modern Cooking
Stearns MacFeather 724-80-9391 BU1111 Business
Stearns MacFeather 724-80-9391 PS1372 Psychology
Livia Karsen 756-30-7391 PS1372 Psychology
Sylvia Panteley 807-91-6654 TC3218 Traditional Cooking
Sheryl Hunter 846-92-7186 PC8888 Popular Computing
Anne Ringer 899-46-2035 MC3021 Modern Cooking
Anne Ringer 899-46-2035 PS2091 Psychology
Albert Ringer 998-72-3567 PS2091 Psychology
Albert Ringer 998-72-3567 PS2106 Psychology

(25 row(s) affected)

See Also

Data Type Conversion

Data Types

Expressions

SELECT

System Functions

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

CAST and CONVERT
Explicitly converts an expression of one data type to another. CAST and CONVERT provide similar functionality.

Syntax

Using CAST:
CAST (expression AS data_type)
Using CONVERT:
CONVERT (data_type [(length)] , expression [, style])

Arguments

expression

Is any valid Microsoft® SQL Server™ expression. For more information, see Expressions.

data_type

Is the target system-supplied data type, including bigint and sql_variant. User-defined data types cannot be used. For more
information about available data types, see Data Types.

length

Is an optional parameter of nchar, nvarchar, char, varchar, binary, or varbinary data types.

style

Is the style of date format used to convert datetime or smalldatetime data to character data (nchar, nvarchar, char, varchar,
nchar, or nvarchar data types), or the string format when converting float, real, money, or smallmoney data to character data
(nchar, nvarchar, char, varchar, nchar, or nvarchar data types).

SQL Server supports the date format in Arabic style, using Kuwaiti algorithm.

In the table, the two columns on the left represent the style values for datetime or smalldatetime conversion to character data.
Add 100 to a style value to get a four-place year that includes the century (yyyy).

Without century
(yy)

With century
(yyyy) Standard Input/Output**

- 0 or 100 (*) Default mon dd yyyy hh:miAM
(or PM)

1 101 USA mm/dd/yy
2 102 ANSI yy.mm.dd
3 103 British/French dd/mm/yy
4 104 German dd.mm.yy
5 105 Italian dd-mm-yy
6 106 - dd mon yy
7 107 - Mon dd, yy
8 108 - hh:mm:ss
- 9 or 109 (*) Default +

milliseconds
mon dd yyyy
hh:mi:ss:mmmAM (or
PM)

10 110 USA mm-dd-yy
11 111 JAPAN yy/mm/dd
12 112 ISO yymmdd
- 13 or 113 (*) Europe default +

milliseconds
dd mon yyyy
hh:mm:ss:mmm(24h)

14 114 - hh:mi:ss:mmm(24h)
- 20 or 120 (*) ODBC canonical yyyy-mm-dd

hh:mi:ss(24h)

- 21 or 121 (*) ODBC canonical (with
milliseconds)

yyyy-mm-dd
hh:mi:ss.mmm(24h)

- 126(***) ISO8601 yyyy-mm-dd
Thh:mm:ss.mmm(no
spaces)

- 130* Hijri**** dd mon yyyy
hh:mi:ss:mmmAM

- 131* Hijri**** dd/mm/yy
hh:mi:ss:mmmAM

* The default values (style 0 or 100, 9 or 109, 13 or 113, 20 or 120, and 21 or 121) always return the century (yyyy).
** Input when converting to datetime; output when converting to character data.
*** Designed for XML use. For conversion from datetime or smalldatetime to character data, the output format is as described
in the table. For conversion from float, money, or smallmoney to character data, the output is equivalent to style 2. For
conversion from real to character data, the output is equivalent to style 1.
****Hijri is a calendar system with several variations, of which Microsoft® SQL Server™ 2000 uses the Kuwaiti algorithm.

Important By default, SQL Server interprets two-digit years based on a cutoff year of 2049. That is, the two-digit year 49 is
interpreted as 2049 and the two-digit year 50 is interpreted as 1950. Many client applications, such as those based on OLE
Automation objects, use a cutoff year of 2030. SQL Server provides a configuration option (two digit year cutoff) that changes
the cutoff year used by SQL Server and allows the consistent treatment of dates. The safest course, however, is to specify four-
digit years.

When you convert to character data from smalldatetime, the styles that include seconds or milliseconds show zeros in these
positions. You can truncate unwanted date parts when converting from datetime or smalldatetime values by using an
appropriate char or varchar data type length.

This table shows the style values for float or real conversion to character data.

Value Output
0 (default) Six digits maximum. Use in scientific notation, when appropriate.
1 Always eight digits. Always use in scientific notation.
2 Always 16 digits. Always use in scientific notation.

In the following table, the column on the left represents the style value for money or smallmoney conversion to character data.

Value Output
0 (default) No commas every three digits to the left of the decimal point, and

two digits to the right of the decimal point; for example, 4235.98.
1 Commas every three digits to the left of the decimal point, and two

digits to the right of the decimal point; for example, 3,510.92.
2 No commas every three digits to the left of the decimal point, and

four digits to the right of the decimal point; for example, 4235.9819.

Return Types

Returns the same value as data type 0.

Remarks

Implicit conversions are those conversions that occur without specifying either the CAST or CONVERT function. Explicit
conversions are those conversions that require the CAST (CONVERT) function to be specified. This chart shows all explicit and
implicit data type conversions allowed for SQL Server system-supplied data types, including bigint and sql_variant.

Note Because Unicode data always uses an even number of bytes, use caution when converting binary or varbinary to or from
Unicode supported data types. For example, this conversion does not return a hexadecimal value of 41, but of 4100: SELECT
CAST(CAST(0x41 AS nvarchar) AS varbinary)

Automatic data type conversion is not supported for the text and image data types. You can explicitly convert text data to
character data, and image data to binary or varbinary, but the maximum length is 8000. If you attempt an incorrect conversion
(for example, if you convert a character expression that includes letters to an int), SQL Server generates an error message.

When the output of CAST or CONVERT is a character string, and the input is a character string, the output has the same collation
and collation label as the input. If the input is not a character string, the output has the default collation of the database, and a
collation label of coercible-default. For more information, see Collation Precedence.

To assign a different collation to the output, apply the COLLATE clause to the result expression of the CAST or CONVERT function.
For example:

SELECT CAST('abc' AS varchar(5)) COLLATE French_CS_AS

There is no implicit conversion on assignment from the sql_variant data type but there is implicit conversion to sql_variant.

When converting character or binary expressions (char, nchar, nvarchar, varchar, binary, or varbinary) to an expression of a
different data type, data can be truncated, only partially displayed, or an error is returned because the result is too short to display.
Conversions to char, varchar, nchar, nvarchar, binary, and varbinary are truncated, except for the conversions shown in this
table.

From data type To data type Result
int, smallint, or tinyint char *
 varchar *
 nchar E
 nvarchar E
money, smallmoney, numeric,
decimal, float, or real

char E

 varchar E
 nchar E

 nvarchar E

* Result length too short to display.
E Error returned because result length is too short to display.

Microsoft SQL Server guarantees that only roundtrip conversions, conversions that convert a data type from its original data type
and back again, will yield the same values from release to release. This example shows such a roundtrip conversion:

DECLARE @myval decimal (5, 2)
SET @myval = 193.57
SELECT CAST(CAST(@myval AS varbinary(20)) AS decimal(10,5))
-- Or, using CONVERT
SELECT CONVERT(decimal(10,5), CONVERT(varbinary(20), @myval))

Do not attempt to construct, for example, binary values and convert them to a data type of the numeric data type category. SQL
Server does not guarantee that the result of a decimal or numeric data type conversion to binary will be the same between
releases of SQL Server.

This example shows a resulting expression too small to display.

USE pubs
SELECT SUBSTRING(title, 1, 25) AS Title, CAST(ytd_sales AS char(2))
FROM titles
WHERE type = 'trad_cook'

Here is the result set:

Title
------------------------- --
Onions, Leeks, and Garlic *
Fifty Years in Buckingham *
Sushi, Anyone? *

(3 row(s) affected)

When data types are converted with a different number of decimal places, the value is truncated to the most precise digit. For
example, the result of SELECT CAST(10.6496 AS int) is 10.

When data types in which the target data type has fewer decimal points than the source data type are converted, the value is
rounded. For example, the result of CAST(10.3496847 AS money) is $10.3497.

SQL Server returns an error message when non-numeric char, nchar, varchar, or nvarchar data is converted to int, float,
numeric, or decimal. SQL Server also returns an error when an empty string (" ") is converted to numeric or decimal.

Using Binary String Data

When binary or varbinary data is converted to character data and an odd number of values is specified following the x, SQL
Server adds a 0 (zero) after the x to make an even number of values.

Binary data consists of the characters from 0 through 9 and from A through F (or from a through f), in groups of two characters
each. Binary strings must be preceded by 0x. For example, to input FF, type 0xFF. The maximum value is a binary value of 8000
bytes, each of which is FF. The binary data types are not for hexadecimal data but rather for bit patterns. Conversions and
calculations of hexadecimal numbers stored as binary data can be unreliable.

When specifying the length of a binary data type, every two characters count as one. A length of 10 signifies that 10 two-
character groupings will be entered.

Empty binary strings, represented by 0x, can be stored as binary data.

Examples

A. Use both CAST and CON VERT

Each example retrieves the titles for those books that have a 3 in the first digit of year-to-date sales, and converts their ytd_sales
to char(20).

-- Use CAST.
USE pubs
GO
SELECT SUBSTRING(title, 1, 30) AS Title, ytd_sales
FROM titles

WHERE CAST(ytd_sales AS char(20)) LIKE '3%'
GO

-- Use CONVERT.
USE pubs
GO
SELECT SUBSTRING(title, 1, 30) AS Title, ytd_sales
FROM titles
WHERE CONVERT(char(20), ytd_sales) LIKE '3%'
GO

Here is the result set (for either query):

Title ytd_sales
------------------------------ -----------
Cooking with Computers: Surrep 3876
Computer Phobic AND Non-Phobic 375
Emotional Security: A New Algo 3336
Onions, Leeks, and Garlic: Coo 375

(4 row(s) affected)

B. Use CAST with arithmetic operators

This example calculates a single column computation (Copies) by dividing the total year-to-date sales (ytd_sales) by the
individual book price (price). This result is converted to an int data type after being rounded to the nearest whole number.

USE pubs
GO
SELECT CAST(ROUND(ytd_sales/price, 0) AS int) AS 'Copies'
FROM titles
GO

Here is the result set:

Copies

205
324
6262
205
102
7440
NULL
383
205
NULL
17
187
16
204
418
18
1263
273

(18 row(s) affected)

C. Use CAST to concatenate

This example concatenates noncharacter, nonbinary expressions using the CAST data type conversion function.

USE pubs
GO
SELECT 'The price is ' + CAST(price AS varchar(12))
FROM titles
WHERE price > 10.00
GO

Here is the result set:

The price is 19.99
The price is 11.95
The price is 19.99
The price is 19.99
The price is 22.95
The price is 20.00

The price is 21.59
The price is 10.95
The price is 19.99
The price is 20.95
The price is 11.95
The price is 14.99

(12 row(s) affected)

D. Use CAST for more readable text

This example uses CAST in the select list to convert the title column to a char(50) column so the results are more readable.

USE pubs
GO
SELECT CAST(title AS char(50)), ytd_sales
FROM titles
WHERE type = 'trad_cook'
GO

Here is the result set:

 ytd_sales
-- ---------
Onions, Leeks, and Garlic: Cooking Secrets of the 375
Fifty Years in Buckingham Palace Kitchens 15096
Sushi, Anyone? 4095

(3 row(s) affected)

E. Use CAST with LIKE clause

This example converts an int column (the ytd_sales column) to a char(20) column so that it can be used with the LIKE clause.

USE pubs
GO
SELECT title, ytd_sales
FROM titles
WHERE CAST(ytd_sales AS char(20)) LIKE '15%'
 AND type = 'trad_cook'
GO

Here is the result set:

title ytd_sales
-- -----------
Fifty Years in Buckingham Palace Kitchens 15096

(1 row(s) affected)

See Also

Data Type Conversion

SELECT

System Functions

Transact-SQL Reference (SQL Server 2000)

CEILING
Returns the smallest integer greater than, or equal to, the given numeric expression.

Syntax

CEILING (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

This example shows positive numeric, negative, and zero values with the CEILING function.

SELECT CEILING($123.45), CEILING($-123.45), CEILING($0.0)
GO

Here is the result set:

--------- --------- -------------------------
124.00 -123.00 0.00

(1 row(s) affected)

See Also

System Functions

Transact-SQL Reference (SQL Server 2000)

char and varchar
Fixed-length (char) or variable-length (varchar) character data types.

char[(n)]

Fixed-length non-Unicode character data with length of n bytes. n must be a value from 1 through 8,000. Storage size is n bytes.
The SQL-92 synonym for char is character.

varchar[(n)]

Variable-length non-Unicode character data with length of n bytes. n must be a value from 1 through 8,000. Storage size is the
actual length in bytes of the data entered, not n bytes. The data entered can be 0 characters in length. The SQL-92 synonyms for
varchar are char varying or character varying.

Remarks

When n is not specified in a data definition or variable declaration statement, the default length is 1. When n is not specified with
the CAST function, the default length is 30.

Objects using char or varchar are assigned the default collation of the database, unless a specific collation is assigned using the
COLLATE clause. The collation controls the code page used to store the character data.

Sites supporting multiple languages should consider using the Unicode nchar or nvarchar data types to minimize character
conversion issues. If you use char or varchar:

Use char when the data values in a column are expected to be consistently close to the same size.

Use varchar when the data values in a column are expected to vary considerably in size.

If SET ANSI_PADDING is OFF when CREATE TABLE or ALTER TABLE is executed, a char column defined as NULL is handled as
varchar.

When the collation code page uses double-byte characters, the storage size is still n bytes. Depending on the character string, the
storage size of n bytes may be less than n characters.

See Also

CAST and CONVERT

COLLATE

Collations

Data Type Conversion

Data Types

sp_dbcmptlevel

Specifying Collations

Using char and varchar Data

Using Unicode Data

Transact-SQL Reference (SQL Server 2000)

CHAR
A string function that converts an int ASCII code to a character.

Syntax

CHAR (integer_expression)

Arguments

integer_expression

Is an integer from 0 through 255. NULL is returned if the integer expression is not in this range.

Return Types

char(1)

Remarks

CHAR can be used to insert control characters into character strings. The table shows some commonly used control characters.

Control character Value
Tab CHAR(9)
Line feed CHAR(10)
Carriage return CHAR(13)

Examples

A. Use ASCII and CHAR to print ASCII values from a string

This example prints the ASCII value and character for each character in the string New Moon.

SET TEXTSIZE 0
-- Create variables for the character string and for the current
-- position in the string.
DECLARE @position int, @string char(8)
-- Initialize the current position and the string variables.
SET @position = 1
SET @string = 'New Moon'
WHILE @position <= DATALENGTH(@string)
 BEGIN
 SELECT ASCII(SUBSTRING(@string, @position, 1)),
 CHAR(ASCII(SUBSTRING(@string, @position, 1)))
 SET @position = @position + 1
 END
GO

Here is the result set:

----------- -
78 N

----------- -
101 e

----------- -
119 w

----------- -
32

----------- -
77 M

----------- -
111 o

----------- -
111 o

----------- -
110 n

----------- -

B. Use CHAR to insert a control character

This example uses CHAR(13) to print name, address, and city information on separate lines, when the results are returned in text.

USE Northwind
SELECT FirstName + ' ' + LastName, + CHAR(13) + Address,
 + CHAR(13) + City, + Region
FROM Employees
WHERE EmployeeID = 1

Here is the result set:

Nancy Davolio
507 - 20th Ave. E.
Apt. 2A
Seattle WA

Note In this record, the data in the Address column also contains a control character.

See Also

+ (String Concatenation)

String Functions

Transact-SQL Reference (SQL Server 2000)

CHARINDEX
Returns the starting position of the specified expression in a character string.

Syntax

CHARINDEX (expression1 , expression2 [, start_location])

Arguments

expression1

Is an expression containing the sequence of characters to be found. expression1 is an expression of the short character data type
category.

expression2

Is an expression, usually a column searched for the specified sequence. expression2 is of the character string data type category.

start_location

Is the character position to start searching for expression1 in expression2. If start_location is not given, is a negative number, or is
zero, the search starts at the beginning of expression2.

Return Types

int

Remarks

If either expression1 or expression2 is of a Unicode data type (nvarchar or nchar) and the other is not, the other is converted to a
Unicode data type.

If either expression1 or expression2 is NULL, CHARINDEX returns NULL when the database compatibility level is 70 or later. If the
database compatibility level is 65 or earlier, CHARINDEX returns NULL only when both expression1 and expression2 are NULL.

If expression1 is not found within expression2, CHARINDEX returns 0.

Examples

The first code example returns the position at which the sequence "wonderful" begins in the notes column of the titles table. The
second example uses the optional start_location parameter to begin looking for wonderful in the fifth character of the notes
column. The third example shows the result set when expression1 is not found within expression2.

USE pubs
GO
SELECT CHARINDEX('wonderful', notes)
FROM titles
WHERE title_id = 'TC3218'
GO

-- Use the optional start_location parameter to start searching
-- for wonderful starting with the fifth character in the notes
-- column.
USE pubs
GO
SELECT CHARINDEX('wonderful', notes, 5)
FROM titles
WHERE title_id = 'TC3218'
GO

Here is the result set for the first and second queries:

46

(1 row(s) affected)

USE pubs
GO
SELECT CHARINDEX('wondrous', notes)

FROM titles
WHERE title_id='TC3218'
GO

Here is the result set.

0

(1 row(s) affected)

See Also

+ (String Concatenation)

String Functions

Transact-SQL Reference (SQL Server 2000)

CHECKPOINT
Forces all dirty pages for the current database to be written to disk. Dirty pages are data or log pages modified after entered into
the buffer cache, but the modifications have not yet been written to disk. For more information about log truncation, see
Truncating the Transaction Log.

Syntax

CHECKPOINT

Remarks

The CHECKPOINT statement saves time in a subsequent recovery by creating a point at which all modifications to data and log
pages are guaranteed to have been written to disk.

Checkpoints also occur:

When a database option is changed with ALTER DATABASE. A checkpoint is executed in the database in which the option is
changed.

When a server is stopped, a checkpoint is executed in each database on the server. These methods of stopping Microsoft®
SQL Server™ 2000 checkpoint each database:

Using SQL Server Service Manager.

Using SQL Server Enterprise Manager.

Using the SHUTDOWN statement.

Using the Windows NT command net stop mssqlserver on the command prompt.

Using the services icon in the Windows NT control panel, selecting the mssqlserver service, and clicking the stop
button.

The SHUTDOWN WITH NOWAIT statement shuts down SQL Server without executing a checkpoint in each database. This may
cause the subsequent restart to take a longer time than usual to recover the databases on the server.

SQL Server 2000 also automatically checkpoints any database where the lesser of these conditions occur:

The active portion of the log exceeds the size that the server could recover in the amount of time specified in the recovery
interval server configuration option.

If the database is in log truncate mode and the log becomes 70 percent full.

A database is in log truncate mode when both these conditions are TRUE:

The database is using the simple recovery model.

One of these events has occurred after the last BACKUP DATABASE statement referencing the database was executed:
A BACKUP LOG statement referencing the database is executed with either the NO_LOG or TRUNCATE_ONLY
clauses.

A nonlogged operation is performed in the database, such as a nonlogged bulk copy operation or a nonlogged
WRITETEXT statement is executed.

An ALTER DATABASE statement that adds or deletes a file in the database is executed.

Permissions

CHECKPOINT permissions default to members of the sysadmin fixed server role and the db_owner and db_backupoperator
fixed database roles, and are not transferable.

See Also

ALTER DATABASE

Checkpoints and the Active Portion of the Log

recovery interval Option

Setting Database Options

SHUTDOWN

Transact-SQL Reference (SQL Server 2000)

CHECKSUM
Returns the checksum value computed over a row of a table, or over a list of expressions. CHECKSUM is intended for use in
building hash indices.

Syntax

CHECKSUM (* | expression [,...n])

Arguments

*

Specifies that computation is over all the columns of the table. CHECKSUM returns an error if any column is of noncomparable
data type. Noncomparable data types are text, ntext, image, and cursor, as well as sql_variant with any of the above types as
its base type.

expression

Is an expression of any type except a noncomparable data type.

Return Types

int

Remarks

CHECKSUM computes a hash value, called the checksum, over its list of arguments. The hash value is intended for use in building
hash indices. If the arguments to CHECKSUM are columns, and an index is built over the computed CHECKSUM value, the result is
a hash index, which can be used for equality searches over the columns.

CHECKSUM satisfies the properties of a hash function: CHECKSUM applied over any two lists of expressions returns the same
value if the corresponding elements of the two lists have the same type and are equal when compared using the equals (=)
operator. For the purpose of this definition, NULL values of a given type are considered to compare as equal. If one of the values
in the expression list changes, the checksum of the list also usually changes. However, there is a small chance that the checksum
will not change.

BINARY_CHECKSUM and CHECKSUM are similar functions: they can be used to compute a checksum value on a list of
expressions, and the order of expressions affects the resultant value. The order of columns used in the case of CHECKSUM(*) is
the order of columns specified in the table or view definition, including computed columns.

CHECKSUM and BINARY_CHECKSUM return different values for the string data types, where locale can cause strings with
different representation to compare equal. The string data types are char, varchar, nchar, nvarchar, or sql_variant (if its base
type is a string data type). For example, the BINARY_CHECKSUM values for the strings "McCavity" and "Mccavity" are different. In
contrast, in a case-insensitive server, CHECKSUM returns the same checksum values for those strings. CHECKSUM values should
not be compared against BINARY_CHECKSUM values.

Examples

Using CHECKSUM to build hash indices

The CHECKSUM function may be used to build hash indices. The hash index is built by adding a computed checksum column to
the table being indexed, then building an index on the checksum column.

-- Create a checksum index.
SET ARITHABORT ON
USE Northwind
GO
ALTER TABLE Products
ADD cs_Pname AS checksum(ProductName)
CREATE INDEX Pname_index ON Products (cs_Pname)

The checksum index can be used as a hash index, particularly to improve indexing speed when the column to be indexed is a long
character column. The checksum index can be used for equality searches.

/*Use the index in a SELECT query. Add a second search
condition to catch stray cases where checksums match,

but the values are not identical.*/
SELECT *
FROM Products
WHERE checksum(N'Vegie-spread') = cs_Pname
AND ProductName = N'Vegie-spread'

Creating the index on the computed column materializes the checksum column, and any changes to the ProductName value will
be propagated to the checksum column. Alternatively, an index could be built directly on the column indexed. However, if the key
values are long, a regular index is not likely to perform as well as a checksum index.

See Also

BINARY_CHECKSUM

CHECKSUM_AGG

Transact-SQL Reference (SQL Server 2000)

CHECKSUM_AGG
Returns the checksum of the values in a group. Null values are ignored.

Syntax

CHECKSUM_AGG ([ALL | DISTINCT] expression)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that CHECKSUM_AGG return the checksum of unique values.

expression

Is a constant, column, or function, and any combination of arithmetic, bitwise, and string operators. expression is an expression of
the int data type. Aggregate functions and subqueries are not allowed.

Return Types

Returns the checksum of all expression values as int.

Remarks

CHECKSUM_AGG can be used along with BINARY_CHECKSUM to detect changes in a table.

The order of the rows in the table does not affect the result of CHECKSUM_AGG. In addition, CHECKSUM_AGG functions may be
used with the DISTINCT keyword and the GROUP BY clause.

If one of the values in the expression list changes, the checksum of the list also usually changes. However, there is a small chance
that the checksum will not change.

CHECKSUM_AGG has similar functionality with other aggregate functions. For more information, see Aggregate Functions.

Examples

A. Use CHECKSUM _AGG with BIN ARY_CHECKSUM to detect changes in a table.

This example uses CHECKSUM_AGG with the BINARY_CHECKSUM function to detect changes in the Products table.

USE Northwind
GO
SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*))
FROM Products

B. Use CHECKSUM _AGG with BIN ARY_CHECKSUM to detect changes in a column of a table.

This example detects changes in UnitsInStock column of the Products table in the Northwind database.

--Get the checksum value before the column value is changed.
USE Northwind
GO
SELECT CHECKSUM_AGG(CAST(UnitsInStock AS int))
FROM Products

Here is the result set:

57

--Change the value of a row in the column
UPDATE Products --
SET UnitsInStock=135
WHERE UnitsInStock=125

--Get the checksum of the modified column.

SELECT CHECKSUM_AGG(CAST(UnitsInStock AS int))
FROM Products

Here is the result set:

195

See Also

BINARY_CHECKSUM

CHECKSUM

Transact-SQL Reference (SQL Server 2000)

CLOSE
Closes an open cursor by releasing the current result set and freeing any cursor locks held on the rows on which the cursor is
positioned. CLOSE leaves the data structures accessible for reopening, but fetches and positioned updates are not allowed until
the cursor is reopened. CLOSE must be issued on an open cursor; it is not allowed on cursors that have only been declared or are
already closed.

Syntax

CLOSE { { [GLOBAL] cursor_name } | cursor_variable_name }

Arguments

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of an open cursor. If both a global and a local cursor exist with cursor_name as their name, cursor_name refers to the
global cursor when GLOBAL is specified; otherwise, cursor_name refers to the local cursor.

cursor_variable_name

Is the name of a cursor variable associated with an open cursor.

Examples

This example shows the correct placement of the CLOSE statement in a cursor-based process.

USE pubs
GO

DECLARE authorcursor CURSOR FOR
SELECT au_fname, au_lname
FROM authors
ORDER BY au_fname, au_lname

OPEN authorcursor
FETCH NEXT FROM authorcursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM authorcursor
END

CLOSE authorcursor
DEALLOCATE authorcursor
GO

See Also

Cursors

DEALLOCATE

FETCH

OPEN

Transact-SQL Reference (SQL Server 2000)

COALESCE
Returns the first nonnull expression among its arguments.

Syntax

COALESCE (expression [,...n])

Arguments

expression

Is an expression of any type.

n

Is a placeholder indicating that multiple expressions can be specified. All expressions must be of the same type or must be
implicitly convertible to the same type.

Return Types

Returns the same value as expression.

Remarks

If all arguments are NULL, COALESCE returns NULL.

COALESCE(expression1,...n) is equivalent to this CASE function:

CASE
 WHEN (expression1 IS NOT NULL) THEN expression1
 ...
 WHEN (expressionN IS NOT NULL) THEN expressionN
 ELSE NULL

Examples

In this example, the wages table is shown to include three columns with information about an employee's yearly wage:
hourly_wage, salary, and commission. However, an employee receives only one type of pay. To determine the total amount
paid to all employees, use the COALESCE function to receive only the nonnull value found in hourly_wage, salary, and
commission.

SET NOCOUNT ON
GO
USE master
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'wages')
 DROP TABLE wages
GO
CREATE TABLE wages
(
 emp_id tinyint identity,
 hourly_wage decimal NULL,
 salary decimal NULL,
 commission decimal NULL,
 num_sales tinyint NULL
)
GO
INSERT wages VALUES(10.00, NULL, NULL, NULL)
INSERT wages VALUES(20.00, NULL, NULL, NULL)
INSERT wages VALUES(30.00, NULL, NULL, NULL)
INSERT wages VALUES(40.00, NULL, NULL, NULL)
INSERT wages VALUES(NULL, 10000.00, NULL, NULL)
INSERT wages VALUES(NULL, 20000.00, NULL, NULL)
INSERT wages VALUES(NULL, 30000.00, NULL, NULL)
INSERT wages VALUES(NULL, 40000.00, NULL, NULL)
INSERT wages VALUES(NULL, NULL, 15000, 3)
INSERT wages VALUES(NULL, NULL, 25000, 2)
INSERT wages VALUES(NULL, NULL, 20000, 6)
INSERT wages VALUES(NULL, NULL, 14000, 4)
GO
SET NOCOUNT OFF

GO
SELECT CAST(COALESCE(hourly_wage * 40 * 52,
 salary,
 commission * num_sales) AS money) AS 'Total Salary'
FROM wages
GO

Here is the result set:

Total Salary

20800.0000
41600.0000
62400.0000
83200.0000
10000.0000
20000.0000
30000.0000
40000.0000
45000.0000
50000.0000
120000.0000
56000.0000

(12 row(s) affected)

See Also

CASE

System Functions

Transact-SQL Reference (SQL Server 2000)

COLLATE
A clause that can be applied to a database definition or a column definition to define the collation, or to a character string
expression to apply a collation cast.

Syntax

COLLATE {< collation_name > | database_default}
< collation_name > :: =
 { Windows_collation_name } | { SQL_collation_name }

Arguments

collation_name

Is the name of the collation to be applied to the expression, column definition, or database definition. collation_name can be only
a specified Windows_collation_name or a SQL_collation_name.

Windows_collation_name
Is the collation name for Windows collation. See Windows Collation Names.

SQL_collation_name
Is the collation name for a SQL collation. See SQL Collation Names.

database_default

Causes the COLLATE clause to inherit the collation of the current database.

Remarks

The COLLATE clause can be specified at several levels, including the following:

1. Creating or altering a database.

You can use the COLLATE clause of the CREATE DATABASE or ALTER DATABASE statement to specify the default collation of
the database. You can also specify a collation when you create a database using SQL Server Enterprise Manager. If you do
not specify a collation, the database is assigned the default collation of the SQL Server instance.

2. Creating or altering a table column.

You can specify collations for each character string column using the COLLATE clause of the CREATE TABLE or ALTER TABLE
statement. You can also specify a collation when you create a table using SQL Server Enterprise Manager. If you do not
specify a collation, the column is assigned the default collation of the database.

You can also use the database_default option in the COLLATE clause to specify that a column in a temporary table use the
collation default of the current user database for the connection instead of tempdb.

3. Casting the collation of an expression.

You can use the COLLATE clause to cast a character expression to a certain collation. Character literals and variables are
assigned the default collation of the current database. Column references are assigned the definition collation of the
column. For the collation of an expression, see Collation Precedence.

The collation of an identifier depends on the level at which it is defined. Identifiers of instance-level objects, such as logins and
database names, are assigned the default collation of the instance. Identifiers of objects within a database, such as tables, views,
and column names, are assigned the default collation of the database. For example, two tables with names differing only in case
may be created in a database with case-sensitive collation, but may not be created in a database with case-insensitive collation.

Variables, GOTO labels, temporary stored procedures, and temporary tables can be created when the connection context is
associated with one database, and then referenced when the context has been switched to another database. The identifiers for
variables, GOTO labels, temporary stored procedures, and temporary tables are in the default collation of the instance.

The COLLATE clause can be applied only for the char, varchar, text, nchar, nvarchar, and ntext data types.

Collations are generally identified by a collation name. The exception is in Setup where you do not specify a collation name for
Windows collations, but instead specify the collation designator, and then select check boxes to specify binary sorting or
dictionary sorting that is either sensitive or insensitive to either case or accents.

You can execute the system function fn_helpcollations to retrieve a list of all the valid collation names for Windows collations
and SQL collations:

SELECT *
FROM ::fn_helpcollations()

SQL Server can support only code pages that are supported by the underlying operating system. When you perform an action
that depends on collations, the SQL Server collation used by the referenced object must use a code page supported by the
operating system running on the computer. These actions can include:

Specifying a default collation for a database when you create or alter the database.

Specifying a collation for a column when creating or altering a table.

When restoring or attaching a database, the default collation of the database and the collation of any char, varchar, and
text columns or parameters in the database must be supported by the operating system.

Code page translations are supported for char and varchar data types, but not for text data type. Data loss during code
page translations is not reported.

If the collation specified or the collation used by the referenced object, uses a code page not supported by Windows®, SQL Server
issues error. For more information, see the Collations section in the SQL Server Architecture chapter of the SQL Server Books
Online.

See Also

ALTER TABLE

Collation Options for International Support

Collation Precedence

Collations

Constants

CREATE DATABASE

CREATE TABLE

DECLARE @local_variable

table

Using Unicode Data

Transact-SQL Reference (SQL Server 2000)

Windows Collation Name
Specifies the Windows collation name in the COLLATE clause. The Windows collations name is composed of the collation
designator and the comparison styles.

Syntax

< Windows_collation_name > :: =
 CollationDesignator_<ComparisonStyle>
 < ComparisonStyle > :: =
 CaseSensitivity_AccentSensitivity
 [_KanatypeSensitive [_WidthSensitive]]
 | _BIN

Arguments

CollationDesignator

Specifies the base collation rules used by the Windows collation. The base collation rules cover:

The alphabet or language whose sorting rules are applied when dictionary sorting is specified

The code page used to store non-Unicode character data.

Examples are Latin1_General or French, both of which use code page 1252, or Turkish, which uses code page 1254.

CaseSensitivity

CI specifies case-insensitive, CS specifies case-sensitive.

AccentSensitivity

AI specifies accent-insensitive, AS specifies accent-sensitive.

KanatypeSensitive

Omitted specifies kanatype-insensitive, KS specifies kanatype-sensitive.

WidthSensitivity

Omitted specifies width-insensitive, WS specifies width-sensitive.

BIN

Specifies the binary sort order is to be used.

Remarks

The collation designators for Microsoft® SQL Server™ 2000 Windows collations are:

SQL Server 2000
Collation Designator

Code Page for
non-Unicode

data
Supported Windows Locales

Albanian 1250 Albanian
Arabic 1256 Arabic (Algeria), Arabic (Bahrain),

Arabic (Egypt), Arabic (Iraq), Arabic
(Jordan), Arabic (Kuwait), Arabic
(Lebanon), Arabic (Libya), Arabic
(Morocco), Arabic (Oman), Arabic
(Qatar), Arabic (Saudi Arabia), Arabic
(Syria), Arabic (Tunisia), Arabic
(United Arab Emirates), Arabic
(Yemen), Farsi, Urdu

Chinese_PRC 936 Chinese (Hong Kong S.A.R.), Chinese
(People's Republic of China), Chinese
(Singapore)

Chinese_PRC_Stroke 936 Stroke sort with Chinese (PRC)
Chinese_Taiwan_Bopomofo 950 Bopomofo with Chinese (Taiwan)
Chinese_Taiwan_Stroke 950 Chinese (Taiwan)
Croatian 1250 Croatian
Cyrillic_General 1251 Bulgarian, Byelorussian, Russian,

Serbian
Czech 1250 Czech
Danish_Norwegian 1252 Danish, Norwegian (Bokmål),

Norwegian (Nyorsk)
Estonian 1257 Estonian
Finnish_Swedish 1252 Finnish, Swedish
French 1252 French (Belgium), French (Canada),

French (Luxemburg), French
(Standard), French (Switzerland)

Georgian_Modern_Sort 1252 Modern Sort with Georgian
German_PhoneBook 1252 PhoneBook sort with German
Greek 1253 Greek
Hebrew 1255 Hebrew
Hindi For Unicode data

types only
Hindi

Hungarian 1250 Hungarian
Hungarian_Technical 1250
Icelandic 1252 Icelandic
Japanese 932 Japanese
Japanese_Unicode 932
Korean_Wansung 949 Korean
Korean_Wansung_Unicode 949
Latin1_General 1252 Afrikaans, Basque, Catalan, Dutch

(Belgium), Dutch (Standard), English
(Australia), English (Great Britain),
English (Canada), English (Caribbean)
English (Ireland), English (Jamaican),
English (New Zealand), English (South
Africa), English (United States),
Faeroese, German (Austria), German
(Liechtenstein), German
(Luxembourg), German (Standard),
German (Switzerland), Indonesian,
Italian, Italian (Switzerland),
Portuguese (Brazil), Portuguese
(Portugal)

Latvian 1257 Latvian
Lithuanian 1257 Lithuanian
Lithuanian_Classic 1257
FYRO Macedonian 1251 Macedonian (FYROM)
Mexican_Trad_Spanish 1252 Spanish (Mexican), Spanish

(Traditional Sort)
Modern_Spanish 1252 Spanish (Argentina), Spanish (Bolivia),

Spanish (Chile), Spanish (Colombia),
Spanish (Costa Rica), Spanish
(Dominican Republic), Spanish
(Ecuador), Spanish (Guatemala),
Spanish (Modern Sort), Spanish
(Panama), Spanish (Paraguay),
Spanish (Peru), Spanish (Uruguay),
Spanish (Venezuela)

Polish 1250 Polish

Romanian 1250 Romanian
Slovak 1250 Slovak
Slovenian 1250 Slovenian
Thai 874 Thai
Turkish 1254 Turkish
Ukrainian 1251 Ukrainian
Vietnamese 1258 Vietnamese

Examples

These are some examples of Windows collation names:

Latin1_General_CI_AS

Collation uses the Latin1 General dictionary sorting rules, code page 1252. Is case-insensitive and accent-sensitive.

Estonian_CS_AS

Collation uses the Estonian dictionary sorting rules, code page 1257. Is case-sensitive and accent-sensitive.

Latin1_General_BIN

Collation uses code page 1252 and binary sorting rules. The Latin1 General dictionary sorting rules are ignored.

See Also

ALTER TABLE

Collation Settings in Setup

Constants

CREATE DATABASE

CREATE TABLE

DECLARE @local_variable

table

Windows Collation Names Table

Transact-SQL Reference (SQL Server 2000)

SQL Collation Name
A single string that specifies the collation name for a SQL collation.

Syntax

< SQL_collation_name > :: =
 SQL_SortRules[_Pref]_CPCodepage_<ComparisonStyle>
 <ComparisonStyle> ::=
 _CaseSensitivity_AccentSensitivity | _BIN

Arguments

SortRules

A string identifying the alphabet or language whose sorting rules are applied when dictionary sorting is specified. Examples are
Latin1_General or Polish.

Pref

Specifies uppercase preference.

Codepage

Specifies a one to four digit number identifying the code page used by the collation. CP1 specifies code page 1252, for all other
code pages the complete code page number is specified. For example, CP1251 specifies code page 1251 and CP850 specifies
code page 850.

CaseSensitivity

CI specifies case-insensitive, CS specifies case-sensitive.

AccentSensitivity

AI specifies accent-insensitive, AS specifies accent-sensitive.

BIN

Specifies the binary sort order is to be used.

Remarks

This table lists the SQL collation names.

Sort order ID SQL collation name
30 SQL_Latin1_General_Cp437_BIN
31 SQL_Latin1_General_Cp437_CS_AS
32 SQL_Latin1_General_Cp437_CI_AS
33 SQL_Latin1_General_Pref_CP437_CI_AS
34 SQL_Latin1_General_Cp437_CI_AI
40 SQL_Latin1_General_Cp850_BIN
41 SQL_Latin1_General_Cp850_CS_AS
42 SQL_Latin1_General_Cp850_CI_AS
43 SQL_Latin1_General_Pref_CP850_CI_AS
44 SQL_Latin1_General_Cp850_CI_AI
49 SQL_1Xcompat_CP850_CI_AS
50 Latin1_General_BIN
51 SQL_Latin1_General_Cp1_CS_AS
52 SQL_Latin1_General_Cp1_CI_AS
53 SQL_Latin1_General_Pref_CP1_CI_AS
54 SQL_Latin1_General_Cp1_CI_AI
55 SQL_AltDiction_Cp850_CS_AS
56 SQL_AltDiction_Pref_CP850_CI_AS

57 SQL_AltDiction_Cp850_CI_AI
58 SQL_Scandinavian_Pref_Cp850_CI_AS
59 SQL_Scandinavian_Cp850_CS_AS
60 SQL_Scandinavian_Cp850_CI_AS
61 SQL_AltDiction_Cp850_CI_AS
71 Latin1_General_CS_AS
72 Latin1_General_CI_AS
73 Danish_Norwegian_CS_AS
74 Finnish_Swedish_CS_AS
75 Icelandic_CS_AS
80 Hungarian_BIN (or Albanian_BIN, Czech_BIN, and so on)1
81 SQL_Latin1_General_Cp1250_CS_AS
82 SQL_Latin1_General_Cp1250_CI_AS
83 SQL_Czech_Cp1250_CS_AS
84 SQL_Czech_Cp1250_CI_AS
85 SQL_Hungarian_Cp1250_CS_AS
86 SQL_Hungarian_Cp1250_CI_AS
87 SQL_Polish_Cp1250_CS_AS
88 SQL_Polish_Cp1250_CI_AS
89 SQL_Romanian_Cp1250_CS_AS
90 SQL_Romanian_Cp1250_CI_AS
91 SQL_Croatian_Cp1250_CS_AS
92 SQL_Croatian_Cp1250_CI_AS
93 SQL_Slovak_Cp1250_CS_AS
94 SQL_Slovak_Cp1250_CI_AS
95 SQL_Slovenian_Cp1250_CS_AS
96 SQL_Slovenian_Cp1250_CI_AS
104 Cyrillic_General_BIN (or Ukrainian_BIN, Macedonian_BIN)
105 SQL_Latin1_General_Cp1251_CS_AS
106 SQL_Latin1_General_Cp1251_CI_AS
107 SQL_Ukrainian_Cp1251_CS_AS
108 SQL_Ukrainian_Cp1251_CI_AS
112 Greek_BIN
113 SQL_Latin1_General_Cp1253_CS_AS
114 SQL_Latin1_General_Cp1253_CI_AS
120 SQL_MixDiction_Cp1253_CS_AS
121 SQL_AltDiction_Cp1253_CS_AS
124 SQL_Latin1_General_Cp1253_CI_AI
128 Turkish_BIN
129 SQL_Latin1_General_Cp1254_CS_AS
130 SQL_Latin1_General_Cp1254_CI_AS
136 Hebrew_BIN
137 SQL_Latin1_General_Cp1255_CS_AS
138 SQL_Latin1_General_Cp1255_CI_AS
144 Arabic_BIN
145 SQL_Latin1_General_Cp1256_CS_AS
146 SQL_Latin1_General_Cp1256_CI_AS
153 SQL_Latin1_General_Cp1257_CS_AS
154 SQL_Latin1_General_Cp1257_CI_AS
155 SQL_Estonian_Cp1257_CS_AS
156 SQL_Estonian_Cp1257_CI_AS
157 SQL_Latvian_Cp1257_CS_AS
158 SQL_Latvian_Cp1257_CI_AS
159 SQL_Lithuanian_Cp1257_CS_AS

160 SQL_Lithuanian_Cp1257_CI_AS
183 SQL_Danish_Pref_Cp1_CI_AS
184 SQL_SwedishPhone_Pref_Cp1_CI_AS
185 SQL_SwedishStd_Pref_Cp1_CI_AS
186 SQL_Icelandic_Pref_Cp1_CI_AS
192 Japanese_BIN
193 Japanese_CI_AS
194 Korean_Wansung_BIN
195 Korean_Wansung_CI_AS
196 Chinese_Taiwan_Stroke_BIN
197 Chinese_Taiwan_Stroke_CI_AS
198 Chinese_PRC_BIN
199 Chinese_PRC_CI_AS
200 Japanese_CS_AS
201 Korean_Wansung_CS_AS
202 Chinese_Taiwan_Stroke_CS_AS
203 Chinese_PRC_CS_AS
204 Thai_BIN
205 Thai_CI_AS
206 Thai_CS_AS
210 SQL_EBCDIC037_CP1_CS_AS
211 SQL_EBCDIC273_CP1_CS_AS
212 SQL_EBCDIC277_CP1_CS_AS
213 SQL_EBCDIC278_CP1_CS_AS
214 SQL_EBCDIC280_CP1_CS_AS
215 SQL_EBCDIC284_CP1_CS_AS
216 SQL_EBCDIC285_CP1_CS_AS
217 SQL_EBCDIC297_CP1_CS_AS

1For Sort Order ID 80, use any of the Window collations with the code page of 1250, and binary order. For example: Albanian_BIN,
Croatian_BIN, Czech_BIN, Romanian_BIN, Slovak_BIN, Slovenian_BIN.

See Also

ALTER TABLE

Collation Settings in Setup

Constants

CREATE DATABASE

CREATE TABLE

DECLARE @local_variable

table

SQL Collation Names Table (Compatibility collations)

Transact-SQL Reference (SQL Server 2000)

COLLATIONPROPERTY
Returns the property of a given collation.

Syntax

COLLATIONPROPERTY(collation_name, property)

Arguments

collation_name

Is the name of the collation. collation_name is nvarchar(128), and has no default.

property

Is the property of the collation. property is varchar(128), and can be any of these values:

Property name Description
CodePage The nonUnicode code page of the collation.
LCID The Windows LCID of the collation.

Returns NULL for SQL collations.
ComparisonStyle The Windows comparison style of the collation.

Returns NULL for binary or SQL collations.

Return Types

sql_variant

Examples

SELECT COLLATIONPROPERTY('Traditional_Spanish_CS_AS_KS_WS', 'CodePage')

Result Set

1252

See Also

fn_helpcollations

Transact-SQL Reference (SQL Server 2000)

COL_LENGTH
Returns the defined length (in bytes) of a column.

Syntax

COL_LENGTH ('table' , 'column')

Arguments

'table'

Is the name of the table for which to determine column length information. table is an expression of type nvarchar.

'column'

Is the name of the column for which to determine length. column is an expression of type nvarchar.

Return Types

int

Examples

This example shows the return values for a column of type varchar(40) and a column of type nvarchar(40).

USE pubs
GO
CREATE TABLE t1
 (c1 varchar(40),
 c2 nvarchar(40)
)
GO
SELECT COL_LENGTH('t1','c1')AS 'VarChar',
 COL_LENGTH('t1','c2')AS 'NVarChar'
GO
DROP TABLE t1

Here is the result set.

VarChar NVarChar
40 80

See Also

Expressions

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

COL_NAME
Returns the name of a database column given the corresponding table identification number and column identification number.

Syntax

COL_NAME (table_id , column_id)

Arguments

table_id

Is the identification number of the table containing the database column. table_id is of type int.

column_id

Is the identification number of the column. column_id parameter is of type int.

Return Types

sysname

Remarks

The table_id and column_id parameters together produce a column name string.

For more information about obtaining table and column identification numbers, see OBJECT_ID.

Examples

This example returns the name of the first column in the Employees table of the Northwind database.

USE Northwind
SET NOCOUNT OFF
SELECT COL_NAME(OBJECT_ID('Employees'), 1)

Here is the result set:

EmployeeID

(1 row(s) affected)

See Also

Expressions

Metadata Functions

sysobjects

Transact-SQL Reference (SQL Server 2000)

COLUMNPROPERTY
Returns information about a column or procedure parameter.

Syntax

COLUMNPROPERTY (id , column , property)

Arguments

id

Is an expression containing the identifier (ID) of the table or procedure.

column

Is an expression containing the name of the column or parameter.

property

Is an expression containing the information to be returned for id, and can be any of these values.

Value Description Value returned
AllowsNull Allows null values. 1 = TRUE

0 = FALSE
NULL = Invalid input

IsComputed The column is a computed column. 1 = TRUE
0 = FALSE
NULL = Invalid input

IsCursorType The procedure parameter is of
type CURSOR.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsDeterministic The column is deterministic. This
property applies only to computed
columns and view columns.

1 = TRUE
0 = FALSE
NULL = Invalid input. Not
a computed column or
view column.

IsFulltextIndexed The column has been registered
for full-text indexing.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsIdentity The column uses the IDENTITY
property.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsIdNotForRepl The column checks for the
IDENTITY_INSERT setting. If
IDENTITY NOT FOR REPLICATION
is specified, the IDENTITY_INSERT
setting is not checked.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsIndexable The column can be indexed. 1 = TRUE
0 = FALSE
NULL = Invalid input

IsOutParam The procedure parameter is an
output parameter.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsPrecise The column is precise. This
property applies only to
deterministic columns.

1 = TRUE
0 = FALSE
NULL = Invalid input. Not
a deterministic column

IsRowGuidCol The column has the
uniqueidentifier data type and is
defined with the ROWGUIDCOL
property.

1 = TRUE
0 = FALSE
NULL = Invalid input

Precision Precision for the data type of the
column or parameter.

The precision of the
specified column data type

NULL = Invalid input

Scale Scale for the data type of the
column or parameter.

The scale

NULL = Invalid input

UsesAnsiTrim ANSI padding setting was ON
when the table was initially
created.

1= TRUE
0= FALSE
NULL = Invalid input

Return Types

int

Remarks

When checking a column's deterministic property, test first whether the column is a computed column. IsDeterministic returns
NULL for noncomputed columns.

Computed columns can be specified as index columns.

Examples

This example returns the length of the au_lname column.

SELECT COLUMNPROPERTY(OBJECT_ID('authors'),'au_lname','PRECISION')

See Also

Metadata Functions

OBJECTPROPERTY

TYPEPROPERTY

Transact-SQL Reference (SQL Server 2000)

COMMIT TRANSACTION
Marks the end of a successful implicit or user-defined transaction. If @@TRANCOUNT is 1, COMMIT TRANSACTION makes all
data modifications performed since the start of the transaction a permanent part of the database, frees the resources held by the
connection, and decrements @@TRANCOUNT to 0. If @@TRANCOUNT is greater than 1, COMMIT TRANSACTION decrements
@@TRANCOUNT only by 1.

Syntax

COMMIT [TRAN [SACTION] [transaction_name | @tran_name_variable]]

Arguments

transaction_name

Is ignored by Microsoft® SQL Server™. transaction_name specifies a transaction name assigned by a previous BEGIN
TRANSACTION. transaction_name must conform to the rules for identifiers, but only the first 32 characters of the transaction
name are used. transaction_name can be used as a readability aid by indicating to programmers which nested BEGIN
TRANSACTION the COMMIT TRANSACTION is associated with.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name. The variable must be declared with a char, varchar,
nchar, or nvarchar data type.

Remarks

It is the responsibility of the Transact-SQL programmer to issue COMMIT TRANSACTION only at a point when all data referenced
by the transaction is logically correct.

If the transaction committed was a Transact-SQL distributed transaction, COMMIT TRANSACTION triggers MS DTC to use a two-
phase commit protocol to commit all the servers involved in the transaction. If a local transaction spans two or more databases on
the same server, SQL Server uses an internal two-phase commit to commit all the databases involved in the transaction.

When used in nested transactions, commits of the inner transactions do not free resources or make their modifications
permanent. The data modifications are made permanent and resources freed only when the outer transaction is committed. Each
COMMIT TRANSACTION issued when @@TRANCOUNT is greater than 1 simply decrements @@TRANCOUNT by 1. When
@@TRANCOUNT is finally decremented to 0, the entire outer transaction is committed. Because transaction_name is ignored by
SQL Server, issuing a COMMIT TRANSACTION referencing the name of an outer transaction when there are outstanding inner
transactions only decrements @@TRANCOUNT by 1.

Issuing a COMMIT TRANSACTION when @@TRANCOUNT is 0 results in an error that there is no corresponding BEGIN
TRANSACTION.

You cannot roll back a transaction after a COMMIT TRANSACTION statement is issued because the data modifications have been
made a permanent part of the database.

Microsoft SQL Server 2000 increments the transaction count within a statement only when the transaction count is 0 at the start
of the statement. In SQL Server version 7.0, the transaction count is always incremented, regardless of the transaction count at the
start of the statement. This can cause the value returned by @@TRANCOUNT in triggers to be lower in SQL Server 2000 than it is
in SQL Server version 7.0.

In SQL Server 2000, if a COMMIT TRANSACTION or COMMIT WORK statement is executed in a trigger, and there is no
corresponding explicit or implicit BEGIN TRANSACTION statement at the start of the trigger, users may see different behavior
than on SQL Server version 7.0. Placing COMMIT TRANSACTION or COMMIT WORK statements in a trigger is not recommended.

Examples

A. Commit a transaction.

This example increases the advance to be paid to an author when year-to-date sales of a title are greater than $8,000.

BEGIN TRANSACTION
USE pubs
GO
UPDATE titles
SET advance = advance * 1.25

WHERE ytd_sales > 8000
GO
COMMIT
GO

B. Commit a nested transaction.

This example creates a table, generates three levels of nested transactions, and then commits the nested transaction. Although
each COMMIT TRANSACTION statement has a transaction_name parameter, there is no relationship between the COMMIT
TRANSACTION and BEGIN TRANSACTION statements. The transaction_name parameters are simply readability aids to help the
programmer ensure the proper number of commits are coded to decrement @@TRANCOUNT to 0, and thereby commit the
outer transaction.

CREATE TABLE TestTran (Cola INT PRIMARY KEY, Colb CHAR(3))
GO
BEGIN TRANSACTION OuterTran -- @@TRANCOUNT set to 1.
GO
INSERT INTO TestTran VALUES (1, 'aaa')
GO
BEGIN TRANSACTION Inner1 -- @@TRANCOUNT set to 2.
GO
INSERT INTO TestTran VALUES (2, 'bbb')
GO
BEGIN TRANSACTION Inner2 -- @@TRANCOUNT set to 3.
GO
INSERT INTO TestTran VALUES (3, 'ccc')
GO
COMMIT TRANSACTION Inner2 -- Decrements @@TRANCOUNT to 2.
-- Nothing committed.
GO
COMMIT TRANSACTION Inner1 -- Decrements @@TRANCOUNT to 1.
-- Nothing committed.
GO
COMMIT TRANSACTION OuterTran -- Decrements @@TRANCOUNT to 0.
-- Commits outer transaction OuterTran.
GO

See Also

BEGIN DISTRIBUTED TRANSACTION

BEGIN TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION

@@TRANCOUNT

Transactions

Transact-SQL Reference (SQL Server 2000)

COMMIT WORK
Marks the end of a transaction.

Syntax

COMMIT [WORK]

Remarks

This statement functions identically to COMMIT TRANSACTION, except COMMIT TRANSACTION accepts a user-defined
transaction name. This COMMIT syntax, with or without specifying the optional keyword WORK, is compatible with SQL-92.

See Also

BEGIN DISTRIBUTED TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION

@@TRANCOUNT

Transact-SQL Reference (SQL Server 2000)

Constants
A constant, also known as a literal or a scalar value, is a symbol that represents a specific data value. The format of a constant
depends on the data type of the value it represents.

Character string constants

Character string constants are enclosed in single quotation marks and include alphanumeric characters (a-z, A-Z, and 0-9) and
special characters, such as exclamation point (!), at sign (@), and number sign (#). Character string constants are assigned the
default collation of the current database, unless the COLLATE clause is used to specify a collation. Character strings typed by users
are evaluated through the code page of the computer and are translated to the database default code page if necessary. For more
information, see Collations.

If the QUOTED_IDENTIFIER option has been set OFF for a connection, character strings can also be enclosed in double quotation
marks, but the Microsoft® OLE DB Provider for Microsoft SQL Server™ and ODBC driver automatically use SET
QUOTED_IDENTIFIER ON. The use of single quotation marks is recommended.

If a character string enclosed in single quotation marks contains an embedded quotation mark, represent the embedded single
quotation mark with two single quotation marks. This is not necessary in strings embedded in double quotation marks.

Examples of character strings are:

'Cincinnati'
'O''Brien'
'Process X is 50% complete.'
'The level for job_id: %d should be between %d and %d.'
"O'Brien"

Empty strings are represented as two single quotation marks with nothing in between. In 6.x compatibility mode, an empty string
is treated as a single space.

Character string constants support enhanced collations.

Unicode strings

Unicode strings have a format similar to character strings but are preceded by an N identifier (N stands for National Language in
the SQL-92 standard). The N prefix must be uppercase. For example, 'Michél' is a character constant while N'Michél' is a Unicode
constant. Unicode constants are interpreted as Unicode data, and are not evaluated using a code page. Unicode constants do have
a collation, which primarily controls comparisons and case sensitivity. Unicode constants are assigned the default collation of the
current database, unless the COLLATE clause is used to specify a collation. Unicode data is stored using two bytes per character, as
opposed to one byte per character for character data. For more information, see Using Unicode Data.

Unicode string constants support enhanced collations.

Binary constants

Binary constants have the suffix 0x and are a string of hexadecimal numbers. They are not enclosed in quotation marks. Examples
of binary strings are:

0xAE
0x12Ef
0x69048AEFDD010E
0x (empty binary string)

bit constants

bit constants are represented by the numbers zero or one, and are not enclosed in quotation marks. If a number larger than one
is used, it is converted to one.

datetime constants

datetime constants are represented using character date values in specific formats, enclosed in single quotation marks. For more
information about the formats for datetime constants, see Using Date and Time Data. Examples of date constants are:

'April 15, 1998'
'15 April, 1998'
'980415'
'04/15/98'

Examples of time constants are:

'14:30:24'

'04:24 PM'

integer constants

integer constants are represented by a string of numbers not enclosed in quotation marks and do not contain decimal points.
integer constants must be whole numbers; they cannot contain decimals. Examples of integer constants are:

1894
2

decimal constants

decimal constants are represented by a string of numbers that are not enclosed in quotation marks and contain a decimal point.
Examples of decimal constants are:

1894.1204
2.0

float and real constants

float and real constants are represented using scientific notation. Examples of float or real values are:

101.5E5
0.5E-2

money constants

money constants are represented as string of numbers with an optional decimal point and an optional currency symbol as a
prefix. They are not enclosed in quotation marks. Examples of money constants are:

$12
$542023.14

uniqueidentifier constants

uniqueidentifier constants are a string representing a globally unique identifier (GUID) value. They can be specified in either a
character or binary string format. Both of these examples specify the same GUID:

'6F9619FF-8B86-D011-B42D-00C04FC964FF'
0xff19966f868b11d0b42d00c04fc964ff

Specifying Negative and Positive Numbers

To indicate whether a number is positive or negative, apply the + or - unary operators to a numeric constant. This creates a
numeric expression that represents the signed numeric value. Numeric constants default to positive if the + or - unary operators
are not applied.

Signed integer expressions:

+145345234
-2147483648

Signed decimal expressions:

+145345234.2234
-2147483648.10

Signed float expressions:

+123E-3
-12E5

Signed money expressions:

-$45.56
+$423456.99

Enhanced Collations

SQL Server 2000 supports character and Unicode string constants that support enhanced collations.

To utilize enhanced collation, use the COLLATE clause.

See Also

Collations

Data Types

Expressions

Operators

Using Constants

Transact-SQL Reference (SQL Server 2000)

CONTAINS
Is a predicate used to search columns containing character-based data types for precise or fuzzy (less precise) matches to single
words and phrases, the proximity of words within a certain distance of one another, or weighted matches. CONTAINS can search
for:

A word or phrase.

The prefix of a word or phrase.

A word near another word.

A word inflectionally generated from another (for example, the word drive is the inflectional stem of drives, drove, driving,
and driven).

A word that has a higher designated weighting than another word.

Syntax

CONTAINS
 ({ column | * } , '< contains_search_condition >'
)
< contains_search_condition > ::=
 { < simple_term >
 | < prefix_term >
 | < generation_term >
 | < proximity_term >
 | < weighted_term >
 }
 | { (< contains_search_condition >)
 { AND | AND NOT | OR } < contains_search_condition > [...n]
 }
< simple_term > ::=
 word | " phrase "
< prefix term > ::=
 { "word * " | "phrase * " }
< generation_term > ::=
 FORMSOF (INFLECTIONAL , < simple_term > [,...n])
< proximity_term > ::=
 { < simple_term > | < prefix_term > }
 { { NEAR | ~ } { < simple_term > | < prefix_term > } } [...n]
< weighted_term > ::=
 ISABOUT
 ({ {
 < simple_term >
 | < prefix_term >
 | < generation_term >
 | < proximity_term >
 }
 [WEIGHT (weight_value)]
 } [,...n]
)

Arguments

column

Is the name of a specific column that has been registered for full-text searching. Columns of the character string data types are
valid full-text searching columns.

*

Specifies that all columns in the table registered for full-text searching should be used to search for the given contains search
condition(s). If more than one table is in the FROM clause, * must be qualified by the table name.

<contains_search_condition>

Specifies some text to search for in column.

word

Is a string of characters without spaces or punctuation.

phrase

Is one or more words with spaces between each word.

Note Some languages, such as those in Asia, can have phrases that consist of one or more words without spaces between them.

<simple_term>

Specifies a match for an exact word (one or more characters without spaces or punctuation in single-byte languages) or a phrase
(one or more consecutive words separated by spaces and optional punctuation in single-byte languages). Examples of valid
simple terms are "blue berry", blueberry, and "Microsoft SQL Server". Phrases should be enclosed in double quotation marks ("").
Words in a phrase must appear in the same order as specified in <contains_search_condition> as they appear in the database
column. The search for characters in the word or phrase is case insensitive. Noise words (such as a, and, or the) in full-text indexed
columns are not stored in the full-text index. If a noise word is used in a single word search, SQL Server returns an error message
indicating that only noise words are present in the query. SQL Server includes a standard list of noise words in the directory
\Mssql\Ftdata\Sqlserver\Config.

Punctuation is ignored. Therefore, CONTAINS(testing, "computer failure") matches a row with the value, "Where is my computer?
Failure to find it would be expensive."

<prefix_term>

Specifies a match of words or phrases beginning with the specified text. Enclose a prefix term in double quotation marks ("") and
add an asterisk (*) before the ending quotation mark, so that all text starting with the simple term specified before the asterisk is
matched. The clause should be specified this way: CONTAINS (column, '"text*"') The asterisk matches zero, one, or more
characters (of the root word or words in the word or phrase). If the text and asterisk are not delimited by double quotation marks,
as in CONTAINS (column, 'text*'), full-text search considers the asterisk as a character and will search for exact matches to
text*.

When <prefix_term> is a phrase, each word contained in the phrase is considered to be a separate prefix. Therefore, a query
specifying a prefix term of "local wine *" matches any rows with the text of "local winery", "locally wined and dined", and so on.

<generation_term>

Specifies a match of words when the included simple terms include variants of the original word for which to search.

INFLECTIONAL
Specifies that the plural and singular, as well as the gender and neutral forms of nouns, verbs, and adjectives should be
matched. The various tenses of verbs should be matched too.

A given <simple_term> within a <generation_term> will not match both nouns and verbs.

<proximity_term>

Specifies a match of words or phrases that must be close to one another. <proximity_term> operates similarly to the AND
operator: both require that more than one word or phrase exist in the column being searched. As the words in <proximity_term>
appear closer together, the better the match.

NEAR | ~
Indicates that the word or phrase on the left side of the NEAR or ~ operator should be approximately close to the word or
phrase on the right side of the NEAR or ~ operator. Multiple proximity terms can be chained, for example:

a NEAR b NEAR c

This means that word or phrase a should be near word or phrase b, which should be near word or phrase c.

Microsoft® SQL Server™ ranks the distance between the left and right word or phrase. A low rank value (for example, 0)
indicates a large distance between the two. If the specified words or phrases are far apart from each other, the query is
considered to be satisfied; however, the query has a very low (0) rank value. However, if <contains_search_condition> consists
of only one or more NEAR proximity terms, SQL Server does not return rows with a rank value of 0. For more information
about ranking, see CONTAINSTABLE.

<weighted_term>

Specifies that the matching rows (returned by the query) match a list of words and phrases, each optionally given a weighting
value.

ISABOUT
Specifies the <weighted_term> keyword.

WEIGHT (weight_value)
Specifies a weight value, which is a number from 0.0 through 1.0. Each component in <weighted_term> may include a
weight_value. weight_value is a way to change how various portions of a query affect the rank value assigned to each row
matching the query. Weighting forces a different measurement of the ranking of a value because all the components of
<weighted_term> are used together to determine the match. A row is returned if there is a match on any one of the ISABOUT
parameters, whether or not a weight value is assigned. To determine the rank values for each returned row that indicates the
degree of matching between the returned rows, see CONTAINSTABLE.

AND | AND NOT | OR

Specifies a logical operation between two contains search conditions. When <contains_search_condition> contains parenthesized
groups, these parenthesized groups are evaluated first. After evaluating parenthesized groups, these rules apply when using these
logical operators with contains search conditions:

NOT is applied before AND.

NOT can only occur after AND, as in AND NOT. The OR NOT operator is not allowed. NOT cannot be specified before the
first term (for example, CONTAINS (mycolumn, 'NOT "phrase_to_search_for" ').

AND is applied before OR.

Boolean operators of the same type (AND, OR) are associative and can therefore be applied in any order.

n

Is a placeholder indicating that multiple contains search conditions and terms within them can be specified.

Remarks

CONTAINS is not recognized as a keyword if the compatibility level is less than 70. For more information, see sp_dbcmptlevel.

Examples

A. Use CON TAIN S with <simple_term>

This example finds all products with a price of $15.00 that contain the word "bottles".

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE UnitPrice = 15.00
 AND CONTAINS(QuantityPerUnit, 'bottles')
GO

B. Use CON TAIN S and phrase in <simple_term>

This example returns all products that contain either the phrase "sasquatch ale" or "steeleye stout".

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE CONTAINS(ProductName, ' "sasquatch ale" OR "steeleye stout" ')
GO

C. Use CON TAIN S with <prefix_term>

This example returns all product names with at least one word starting with the prefix choc in the ProductName column.

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE CONTAINS(ProductName, ' "choc*" ')
GO

D. Use CON TAIN S and OR with <prefix_term>

This example returns all category descriptions containing the strings "sea" or "bread".

USE Northwind
SELECT CategoryName
FROM Categories
WHERE CONTAINS(Description, '"sea*" OR "bread*"')
GO

E. Use CON TAIN S with <proximity_term>

This example returns all product names that have the word "Boysenberry" near the word "spread".

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE CONTAINS(ProductName, 'spread NEAR Boysenberry')
GO

F. Use CON TAIN S with <generation_term>

This example searches for all products with words of the form dry: dried, drying, and so on.

USE Northwind
GO
SELECT ProductName
FROM Products
WHERE CONTAINS(ProductName, ' FORMSOF (INFLECTIONAL, dry) ')
GO

G. Use CON TAIN S with <weighted_term>

This example searches for all product names containing the words spread, sauces, or relishes, and different weightings are given
to each word.

USE Northwind
GO
SELECT CategoryName, Description
FROM Categories
WHERE CONTAINS(Description, 'ISABOUT (spread weight (.8),
 sauces weight (.4), relishes weight (.2))')
GO

H. Use CON TAIN S with variables

This example uses a variable instead of a specific search term.

USE pubs
GO
DECLARE @SearchWord varchar(30)
SET @SearchWord ='Moon'
SELECT pr_info FROM pub_info WHERE CONTAINS(pr_info, @SearchWord)

See Also

FREETEXT

FREETEXTTABLE

Using the CONTAINS Predicate

WHERE

Transact-SQL Reference (SQL Server 2000)

CONTAINSTABLE
Returns a table of zero, one, or more rows for those columns containing character-based data types for precise or fuzzy (less
precise) matches to single words and phrases, the proximity of words within a certain distance of one another, or weighted
matches. CONTAINSTABLE can be referenced in the FROM clause of a SELECT statement as if it were a regular table name.

Queries using CONTAINSTABLE specify contains-type full-text queries that return a relevance ranking value (RANK) for each row.
The CONTAINSTABLE function uses the same search conditions as the CONTAINS predicate.

Syntax

CONTAINSTABLE (table , { column | * } , ' < contains_search_condition > '
 [, top_n_by_rank])
< contains_search_condition > ::=
 { < simple_term >
 | < prefix_term >
 | < generation_term >
 | < proximity_term >
 | < weighted_term >
 }
 | { (< contains_search_condition >)
 { AND | AND NOT | OR } < contains_search_condition > [...n]
 }
< simple_term > ::=
 word | " phrase "
< prefix term > ::=
 { "word * " | "phrase * " }
< generation_term > ::=
 FORMSOF (INFLECTIONAL , < simple_term > [,...n])
< proximity_term > ::=
 { < simple_term > | < prefix_term > }
 { { NEAR | ~ } { < simple_term > | < prefix_term > } } [...n]
< weighted_term > ::=
 ISABOUT
 ({ {
 < simple_term >
 | < prefix_term >
 | < generation_term >
 | < proximity_term >
 }
 [WEIGHT (weight_value)]
 } [,...n]
)

Arguments

table

Is the name of the table that has been marked for full-text querying. table can be a one-, two-, or three-part database object name.
For more information, see Transact-SQL Syntax Conventions. table cannot specify a server name and cannot be used in queries
against linked servers.

column

Is the name of the column to search, which resides in table. Columns of the character string data types are valid full-text searching
columns.

*

Specifies that all columns in the table that have been registered for full-text searching should be used to search for the given
contains search condition(s).

top_n_by_rank

Specifies that only the n highest ranked matches, in descending order, are returned. Applies only when an integer value, n, is
specified.

<contains_search_condition>

Specifies some text to search for in column. For more information, see CONTAINS.

Remarks

The table returned has a column named KEY that contains full-text key values. Each full-text indexed table has a column whose
values are guaranteed to be unique, and the values returned in the KEY column are the full-text key values of the rows that match
the selection criteria specified in the contains search condition. The TableFulltextKeyColumn property, obtained from the
OBJECTPROPERTY function, provides the identity for this unique key column. To obtain the rows you want from the original table,
specify a join with the CONTAINSTABLE rows. The typical form of the FROM clause for a SELECT statement using
CONTAINSTABLE is:

SELECT select_list
FROM table AS FT_TBL INNER JOIN
 CONTAINSTABLE(table, column, contains_search_condition) AS KEY_TBL
 ON FT_TBL.unique_key_column = KEY_TBL.[KEY]

The table produced by CONTAINSTABLE includes a column named RANK. The RANK column is a value (from 0 through 1000) for
each row indicating how well a row matched the selection criteria. This rank value is typically used in one of these ways in the
SELECT statement:

In the ORDER BY clause to return the highest-ranking rows as the first rows in the table.

In the select list to see the rank value assigned to each row.

In the WHERE clause to filter out rows with low rank values.

CONTAINSTABLE is not recognized as a keyword if the compatibility level is less than 70. For more information, see
sp_dbcmptlevel.

Permissions

Execute permissions are available only by users with the appropriate SELECT privileges on the table or the referenced table's
columns.

Examples

A. Return rank values using CON TAIN STABLE

This example searches for all product names containing the words breads, fish, or beers, and different weightings are given to
each word. For each returned row matching this search criteria, the relative closeness (ranking value) of the match is shown. In
addition, the highest ranking rows are returned first.

USE Northwind
GO
SELECT FT_TBL.CategoryName, FT_TBL.Description, KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 CONTAINSTABLE(Categories, Description,
 'ISABOUT (breads weight (.8),
 fish weight (.4), beers weight (.2))') AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
ORDER BY KEY_TBL.RANK DESC
GO

B. Return rank values greater than specified value using CON TAIN STABLE

This example returns the description and category name of all food categories for which the Description column contains the
words "sweet and savory" near either the word "sauces" or the word "candies". All rows with a category name "Seafood" are
disregarded. Only rows with a rank value of 2 or higher are returned.

USE Northwind
GO
SELECT FT_TBL.Description,
 FT_TBL.CategoryName,
 KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 CONTAINSTABLE (Categories, Description,
 '("sweet and savory" NEAR sauces) OR
 ("sweet and savory" NEAR candies)'
) AS KEY_TBL

 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
WHERE KEY_TBL.RANK > 2
 AND FT_TBL.CategoryName <> 'Seafood'
ORDER BY KEY_TBL.RANK DESC

C. Return top 10 ranked results using CON TAIN STABLE and Top_n_by_rank

This example returns the description and category name of the top 10 food categories where the Description column contains
the words "sweet and savory" near either the word "sauces" or the word "candies".

SELECT FT_TBL.Description,
 FT_TBL.CategoryName,
 KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 CONTAINSTABLE (Categories, Description,
 '("sweet and savory" NEAR sauces) OR
 ("sweet and savory" NEAR candies)'
 , 10
) AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]

See Also

CONTAINS

Full-text Querying SQL Server Data

Rowset Functions

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

CONTINUE
Restarts a WHILE loop. Any statements after the CONTINUE keyword are ignored. CONTINUE is often, but not always, activated by
an IF test. For more information, see WHILE and Control-of-Flow Language.

Transact-SQL Reference (SQL Server 2000)

Control-of-Flow Language
The table shows the Transact-SQL control-of-flow keywords.

Keyword Description
BEGIN...END Defines a statement block.
BREAK Exits the innermost WHILE loop.
CONTINUE Restarts a WHILE loop.
GOTO label Continues processing at the statement following the

label as defined by label.
IF...ELSE Defines conditional, and optionally, alternate execution

when a condition is FALSE.
RETURN Exits unconditionally.
WAITFOR Sets a delay for statement execution.
WHILE Repeats statements while a specific condition is TRUE.

Other Transact-SQL statements that can be used with control-of-flow language statements are:

CASE

/*...*/ (Comment)

-- (Comment)

DECLARE @local_variable

EXECUTE

PRINT

RAISERROR

Transact-SQL Reference (SQL Server 2000)

COS
A mathematic function that returns the trigonometric cosine of the given angle (in radians) in the given expression.

Syntax

COS (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example returns the COS of the given angle.

DECLARE @angle float
SET @angle = 14.78
SELECT 'The COS of the angle is: ' + CONVERT(varchar,COS(@angle))
GO

Here is the result set:

The COS of the angle is: -0.599465

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

COT
A mathematic function that returns the trigonometric cotangent of the specified angle (in radians) in the given float expression.

Syntax

COT (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example returns the COT for the given angle.

DECLARE @angle float
SET @angle = 124.1332
SELECT 'The COT of the angle is: ' + CONVERT(varchar,COT(@angle))
GO

Here is the result set:

The COT of the angle is: -0.040312

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

COUNT
Returns the number of items in a group.

Syntax

COUNT ({ [ALL | DISTINCT] expression] | * })

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that COUNT returns the number of unique nonnull values.

expression

Is an expression of any type except uniqueidentifier, text, image, or ntext. Aggregate functions and subqueries are not
permitted.

*

Specifies that all rows should be counted to return the total number of rows in a table. COUNT(*) takes no parameters and cannot
be used with DISTINCT. COUNT(*) does not require an expression parameter because, by definition, it does not use information
about any particular column. COUNT(*) returns the number of rows in a specified table without eliminating duplicates. It counts
each row separately, including rows that contain null values.

Important Distinct aggregates, for example AVG(DISTINCT column_name), COUNT(DISTINCT column_name), MAX(DISTINCT
column_name), MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not supported when using CUBE or
ROLLUP. If used, Microsoft® SQL Server™ returns an error message and cancels the query.

Return Types

int

Remarks

COUNT(*) returns the number of items in a group, including NULL values and duplicates.

COUNT(ALL expression) evaluates expression for each row in a group and returns the number of nonnull values.

COUNT(DISTINCT expression) evaluates expression for each row in a group and returns the number of unique, nonnull values.

Examples

A. Use COUN T and DISTIN CT

This example finds the number of different cities in which authors live.

USE pubs
GO
SELECT COUNT(DISTINCT city)
FROM authors
GO

Here is the result set:

16

(1 row(s) affected)

B. Use COUN T(*)

This example finds the total number of books and titles.

USE pubs
GO
SELECT COUNT(*)
FROM titles
GO

Here is the result set:

18

(1 row(s) affected)

C. Use COUN T(*) w ith other aggregates

The example shows that COUNT(*) can be combined with other aggregate functions in the select list.

USE pubs
GO
SELECT COUNT(*), AVG(price)
FROM titles
WHERE advance > $1000
GO

Here is the result set:

----------- --------------------------
15 14.42

(1 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

COUNT_BIG
Returns the number of items in a group. COUNT_BIG works like the COUNT function. The only difference between them is their
return values: COUNT_BIG always returns a bigint data type value. COUNT always returns an int data type value.

Syntax

COUNT_BIG ({ [ALL | DISTINCT] expression } | *)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that COUNT_BIG returns the number of unique nonnull values.

expression

Is an expression of any type except uniqueidentifier, text, image, or ntext. Aggregate functions and subqueries are not
permitted.

*

Specifies that all rows should be counted to return the total number of rows in a table. COUNT_BIG(*) takes no parameters and
cannot be used with DISTINCT. COUNT_BIG(*) does not require an expression parameter because, by definition, it does not use
information about any particular column. COUNT_BIG(*) returns the number of rows in a specified table without eliminating
duplicates. It counts each row separately, including rows that contain null values.

Return Types

bigint

Remarks

COUNT_BIG(*) returns the number of items in a group, including NULL values and duplicates.

COUNT_BIG(ALL expression) evaluates expression for each row in a group and returns the number of nonnull values.

COUNT_BIG(DISTINCT expression) evaluates expression for each row in a group and returns the number of unique, nonnull
values.

See Also

int, bigint, smallint, and tinyint

Transact-SQL Reference (SQL Server 2000)

CREATE DATABASE
Creates a new database and the files used to store the database, or attaches a database from the files of a previously created
database.

Note For more information about backward compatibility with DISK INIT, see Devices (Level 3) in Microsoft® SQL Server™
Backward Compatibility Details.

Syntax

CREATE DATABASE database_name
[ON
 [< filespec > [,...n]]
 [, < filegroup > [,...n]]
]
[LOG ON { < filespec > [,...n] }]
[COLLATE collation_name]
[FOR LOAD | FOR ATTACH]

< filespec > ::=

[PRIMARY]
([NAME = logical_file_name ,]
 FILENAME = 'os_file_name'
 [, SIZE = size]
 [, MAXSIZE = { max_size | UNLIMITED }]
 [, FILEGROWTH = growth_increment]) [,...n]

< filegroup > ::=

FILEGROUP filegroup_name < filespec > [,...n]

Arguments

database_name

Is the name of the new database. Database names must be unique within a server and conform to the rules for identifiers.
database_name can be a maximum of 128 characters, unless no logical name is specified for the log. If no logical log file name is
specified, Microsoft® SQL Server™ generates a logical name by appending a suffix to database_name. This limits database_name
to 123 characters so that the generated logical log file name is less than 128 characters.

ON

Specifies that the disk files used to store the data portions of the database (data files) are defined explicitly. The keyword is
required when followed by a comma-separated list of <filespec> items defining the data files for the primary filegroup. The list of
files in the primary filegroup can be followed by an optional, comma-separated list of <filegroup> items defining user filegroups
and their files.

n

Is a placeholder indicating that multiple files can be specified for the new database.

LOG ON

Specifies that the disk files used to store the database log (log files) are explicitly defined. The keyword is followed by a comma-
separated list of <filespec> items defining the log files. If LOG ON is not specified, a single log file is automatically created with a
system-generated name and a size that is the larger of these values:.5 MB or 25 percent of the sum of the sizes of all the data files
for the database.

FOR LOAD

This clause is supported for compatibility with earlier versions of Microsoft SQL Server. The database is created with the dbo use
only database option turned on, and the status is set to loading. This is not required in SQL Server version 7.0 because the
RESTORE statement can recreate a database as part of the restore operation.

FOR ATTACH

Specifies that a database is attached from an existing set of operating system files. There must be a <filespec> entry specifying

https://msdn.microsoft.com/en-us/library/aa197110(v=sql.80).aspx

the first primary file. The only other <filespec> entries needed are those for any files that have a different path from when the
database was first created or last attached. A <filespec> entry must be specified for these files. The database attached must have
been created using the same code page and sort order as SQL Server. Use the sp_attach_db system stored procedure instead of
using CREATE DATABASE FOR ATTACH directly. Use CREATE DATABASE FOR ATTACH only when you must specify more than 16
<filespec> items.

If you attach a database to a server other than the server from which the database was detached, and the detached database was
enabled for replication, you should run sp_removedbreplication to remove replication from the database.

collation_name

Specifies the default collation for the database. Collation name can be either a Windows collation name or a SQL collation name. If
not specified, the database is assigned the default collation of the SQL Server instance.

For more information about the Windows and SQL collation names, see COLLATE.

PRIMARY

Specifies that the associated <filespec> list defines the primary file. The primary filegroup contains all of the database system
tables. It also contains all objects not assigned to user filegroups. The first <filespec> entry in the primary filegroup becomes the
primary file, which is the file containing the logical start of the database and its system tables. A database can have only one
primary file. If PRIMARY is not specified, the first file listed in the CREATE DATABASE statement becomes the primary file.

NAME

Specifies the logical name for the file defined by the <filespec>. The NAME parameter is not required when FOR ATTACH is
specified.

logical_file_name

Is the name used to reference the file in any Transact-SQL statements executed after the database is created. logical_file_name
must be unique in the database and conform to the rules for identifiers. The name can be a character or Unicode constant, or a
regular or delimited identifier.

FILENAME

Specifies the operating-system file name for the file defined by the <filespec>.

'os_file_name'

Is the path and file name used by the operating system when it creates the physical file defined by the <filespec>. The path in
os_file_name must specify a directory on an instance of SQL Server. os_file_name cannot specify a directory in a compressed file
system.

If the file is created on a raw partition, os_file_name must specify only the drive letter of an existing raw partition. Only one file can
be created on each raw partition. Files on raw partitions do not autogrow; therefore, the MAXSIZE and FILEGROWTH parameters
are not needed when os_file_name specifies a raw partition.

SIZE

Specifies the size of the file defined in the <filespec>. When a SIZE parameter is not supplied in the <filespec> for a primary file,
SQL Server uses the size of the primary file in the model database. When a SIZE parameter is not specified in the <filespec> for a
secondary or log file, SQL Server makes the file 1 MB.

size

Is the initial size of the file defined in the <filespec>. The kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffixes can
be used. The default is MB. Specify a whole number; do not include a decimal. The minimum value for size is 512 KB. If size is not
specified, the default is 1 MB. The size specified for the primary file must be at least as large as the primary file of the model
database.

MAXSIZE

Specifies the maximum size to which the file defined in the <filespec> can grow.

max_size

Is the maximum size to which the file defined in the <filespec> can grow. The kilobyte (KB), megabyte (MB), gigabyte (GB), or
terabyte (TB) suffixes can be used. The default is MB. Specify a whole number; do not include a decimal. If max_size is not
specified, the file grows until the disk is full.

Note The Microsoft Windows NT® S/B system log warns the SQL Server system administrator if a disk is almost full.

UNLIMITED

Specifies that the file defined in the <filespec> grows until the disk is full.

FILEGROWTH

Specifies the growth increment of the file defined in the <filespec>. The FILEGROWTH setting for a file cannot exceed the
MAXSIZE setting.

growth_increment

Is the amount of space added to the file each time new space is needed. Specify a whole number; do not include a decimal. A
value of 0 indicates no growth. The value can be specified in MB, KB, GB, TB, or percent (%). If a number is specified without an MB,
KB, or % suffix, the default is MB. When % is specified, the growth increment size is the specified percentage of the size of the file
at the time the increment occurs. If FILEGROWTH is not specified, the default value is 10 percent and the minimum value is 64 KB.
The size specified is rounded to the nearest 64 KB.

Remarks

You can use one CREATE DATABASE statement to create a database and the files that store the database. SQL Server implements
the CREATE DATABASE statement in two steps:

1. SQL Server uses a copy of the model database to initialize the database and its meta data.

2. SQL Server then fills the rest of the database with empty pages, except for pages that have internal data recording how the
space is used in the database.

Any user-defined objects in the model database are therefore copied to all newly created databases. You can add to the model
database any objects, such as tables, views, stored procedures, data types, and so on, to be included in all databases.

Each new database inherits the database option settings from the model database (unless FOR ATTACH is specified). For
example, the database option select into/bulkcopy is set to OFF in model and any new databases you create. If you use ALTER
DATABASE to change the options for the model database, these option settings are in effect for new databases you create. If FOR
ATTACH is specified on the CREATE DATABASE statement, the new database inherits the database option settings of the original
database.

A maximum of 32,767 databases can be specified on a server.

There are three types of files used to store a database:

The primary file contains the startup information for the database. The primary file is also used to store data. Every database
has one primary file.

Secondary files hold all of the data that does not fit in the primary data file. Databases need not have any secondary data
files if the primary file is large enough to hold all of the data in the database. Other databases may be large enough to need
multiple secondary data files, or they may use secondary files on separate disk drives to spread the data across multiple
disks.

Transaction log files hold the log information used to recover the database. There must be at least one transaction log file
for each database, although there may be more than one. The minimum size for a transaction log file is 512 KB.

Every database has at least two files, a primary file and a transaction log file.

Although 'os_file_name' can be any valid operating system file name, the name more clearly reflects the purpose of the file if you
use the following recommended extensions.

File type File name extension
Primary data file .mdf
Secondary data file .ndf
Transaction log file .ldf

Note The master database should be backed up when a user database is created.

Fractions cannot be specified in the SIZE, MAXSIZE, and FILEGROWTH parameters. To specify a fraction of a megabyte in SIZE
parameters, convert to kilobytes by multiplying the number by 1,024. For example, specify 1,536 KB instead of 1.5 MB (1.5

multiplied by 1,024 equals 1,536).

When a simple CREATE DATABASE database_name statement is specified with no additional parameters, the database is made
the same size as the model database.

All databases have at least a primary filegroup. All system tables are allocated in the primary filegroup. A database can also have
user-defined filegroups. If an object is created with an ON filegroup clause specifying a user-defined filegroup, then all the pages
for the object are allocated from the specified filegroup. The pages for all user objects created without an ON filegroup clause, or
with an ON DEFAULT clause, are allocated from the default filegroup. When a database is first created the primary filegroup is the
default filegroup. You can specify a user-defined filegroup as the default filegroup using ALTER DATABASE:

ALTER DATABASE database_name MODIFY FILEGROUP filegroup_name DEFAULT

Each database has an owner who has the ability to perform special activities in the database. The owner is the user who creates
the database. The database owner can be changed with sp_changedbowner.

To display a report on a database, or on all the databases for an instance of SQL Server, execute sp_helpdb. For a report on the
space used in a database, use sp_spaceused. For a report on the filegroups in a database use sp_helpfilegroup, and use
sp_helpfile for a report of the files in a database.

Earlier versions of SQL Server used DISK INIT statements to create the files for a database before the CREATE DATABASE
statement was executed. For backward compatibility with earlier versions of SQL Server, the CREATE DATABASE statement can
also create a new database on files or devices created with the DISK INIT statement. For more information, see SQL Server
Backward Compatibility Details.

Permissions

CREATE DATABASE permission defaults to members of the sysadmin and dbcreator fixed server roles. Members of the
sysadmin and securityadmin fixed server roles can grant CREATE DATABASE permissions to other logins. Members of the
sysadmin and dbcreator fixed server role can add other logins to the dbcreator role. The CREATE DATABASE permission must
be explicitly granted; it is not granted by the GRANT ALL statement.

CREATE DATABASE permission is usually limited to a few logins to maintain control over disk usage on an instance of SQL Server.

Examples

A. Create a database that specifies the data and transaction log files

This example creates a database called Sales. Because the keyword PRIMARY is not used, the first file (Sales_dat) becomes the
primary file. Because neither MB or KB is specified in the SIZE parameter for the Sales_dat file, it defaults to MB and is allocated in
megabytes. The Sales_log file is allocated in megabytes because the MB suffix is explicitly stated in the SIZE parameter.

USE master
GO
CREATE DATABASE Sales
ON
(NAME = Sales_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\saledat.mdf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5)
LOG ON
(NAME = 'Sales_log',
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\salelog.ldf',
 SIZE = 5MB,
 MAXSIZE = 25MB,
 FILEGROWTH = 5MB)
GO

B. Create a database specifying multiple data and transaction log files

This example creates a database called Archive with three 100-MB data files and two 100-MB transaction log files. The primary
file is the first file in the list and is explicitly specified with the PRIMARY keyword. The transaction log files are specified following
the LOG ON keywords. Note the extensions used for the files in the FILENAME option: .mdf is used for primary data files, .ndf is
used for the secondary data files, and .ldf is used for transaction log files.

USE master
GO
CREATE DATABASE Archive
ON
PRIMARY (NAME = Arch1,

 FILENAME = 'c:\program files\microsoft sql server\mssql\data\archdat1.mdf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20),
(NAME = Arch2,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\archdat2.ndf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20),
(NAME = Arch3,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\archdat3.ndf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20)
LOG ON
(NAME = Archlog1,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\archlog1.ldf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20),
(NAME = Archlog2,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\archlog2.ldf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20)
GO

C. Create a simple database

This example creates a database called Products and specifies a single file. The file specified becomes the primary file, and a 1-MB
transaction log file is automatically created. Because neither MB or KB is specified in the SIZE parameter for the primary file, the
primary file is allocated in megabytes. Because there is no <filespec> for the transaction log file, the transaction log file has no
MAXSIZE and can grow to fill all available disk space.

USE master
GO
CREATE DATABASE Products
ON
(NAME = prods_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\prods.mdf',
 SIZE = 4,
 MAXSIZE = 10,
 FILEGROWTH = 1)
GO

D. Create a database without specifying files

This example creates a database named mytest and creates a corresponding primary and transaction log file. Because the
statement has no <filespec> items, the primary database file is the size of the model database primary file. The size of the
transaction log is the larger of these values:.5 MB or 25 percent of the sum of the sizes of all the data files for the database.
Because MAXSIZE is not specified, the files can grow to fill all available disk space.

CREATE DATABASE mytest

E. Create a database without specifying SIZE

This example creates a database named products2. The file prods2_dat becomes the primary file with a size equal to the size of
the primary file in the model database. The transaction log file is created automatically and is 25 percent of the size of the
primary file, or 512 KB, whichever is larger. Because MAXSIZE is not specified, the files can grow to fill all available disk space.

USE master
GO
CREATE DATABASE Products2
ON
(NAME = prods2_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\prods2.mdf')
GO

F. Create a database with filegroups

This example creates a database named sales with three filegroups:

The primary filegroup with the files Spri1_dat and Spri2_dat. The FILEGROWTH increments for these files is specified as 15
percent.

A filegroup named SalesGroup1 with the files SGrp1Fi1 and SGrp1Fi2.

A filegroup named SalesGroup2 with the files SGrp2Fi1 and SGrp2Fi2.

CREATE DATABASE Sales
ON PRIMARY
(NAME = SPri1_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SPri1dat.mdf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 15%),
(NAME = SPri2_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SPri2dt.ndf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 15%),
FILEGROUP SalesGroup1
(NAME = SGrp1Fi1_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SG1Fi1dt.ndf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5),
(NAME = SGrp1Fi2_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SG1Fi2dt.ndf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5),
FILEGROUP SalesGroup2
(NAME = SGrp2Fi1_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SG2Fi1dt.ndf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5),
(NAME = SGrp2Fi2_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\SG2Fi2dt.ndf',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5)
LOG ON
(NAME = 'Sales_log',
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\salelog.ldf',
 SIZE = 5MB,
 MAXSIZE = 25MB,
 FILEGROWTH = 5MB)
GO

G. Attach a database

Example B creates a database named Archive with the following physical files:

c:\program files\microsoft sql server\mssql\data\archdat1.mdf
c:\program files\microsoft sql server\mssql\data\archdat2.ndf
c:\program files\microsoft sql server\mssql\data\archdat3.ndf
c:\program files\microsoft sql server\mssql\data\archlog1.ldf
c:\program files\microsoft sql server\mssql\data\archlog2.ldf

The database can be detached using the sp_detach_db stored procedure, and then reattached using CREATE DATABASE with the
FOR ATTACH clause:

sp_detach_db Archive
GO
CREATE DATABASE Archive
ON PRIMARY (FILENAME = 'c:\program files\microsoft sql server\mssql\data\archdat1.mdf')
FOR ATTACH
GO

H. Use raw partitions

This example creates a database called Employees using raw partitions. The raw partitions must exist when the statement is
executed, and only one file can go on each raw partition.

USE master
GO
CREATE DATABASE Employees
ON

(NAME = Empl_dat,
 FILENAME = 'f:',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5)
LOG ON
(NAME = 'Sales_log',
 FILENAME = 'g:',
 SIZE = 5MB,
 MAXSIZE = 25MB,
 FILEGROWTH = 5MB)
GO

I. Use mounted drives

This example creates a database called Employees using mounted drives pointing to raw partitions. This feature is available only
in Microsoft® Windows® 2000 Server. The mounted drives and raw partitions must exist when the statement is executed, and
only one file can go on each raw partition. When creating a database file on a mounted drive, a trailing backslash (\) must end the
drive path.

USE master
GO
CREATE DATABASE Employees
ON
(NAME = Empl_dat,
 FILENAME = 'd:\sample data dir\',
 SIZE = 10,
 MAXSIZE = 50,
 FILEGROWTH = 5)
LOG ON
(NAME = 'Sales_log',
 FILENAME = 'd:\sample log dir\',
 SIZE = 5MB,
 MAXSIZE = 25MB,
 FILEGROWTH = 5MB)
GO

See Also

ALTER DATABASE

DROP DATABASE

sp_attach_db

sp_changedbowner

sp_detach_db

sp_helpdb

sp_helpfile

sp_helpfilegroup

sp_removedbreplication

sp_renamedb

sp_spaceused

Using Raw Partitions

Transact-SQL Reference (SQL Server 2000)

CREATE DEFAULT
Creates an object called a default. When bound to a column or a user-defined data type, a default specifies a value to be inserted
into the column to which the object is bound (or into all columns, in the case of a user-defined data type) when no value is
explicitly supplied during an insert. Defaults, a backward compatibility feature, perform some of the same functions as default
definitions created using the DEFAULT keyword of ALTER or CREATE TABLE statements. Default definitions are the preferred,
standard way to restrict column data because the definition is stored with the table and automatically dropped when the table is
dropped. A default is beneficial, however, when the default is used multiple times for multiple columns.

Syntax

CREATE DEFAULT default
 AS constant_expression

Arguments

default

Is the name of the default. Default names must conform to the rules for identifiers. Specifying the default owner name is optional.

constant_expression

Is an expression that contains only constant values (it cannot include the names of any columns or other database objects). Any
constant, built-in function, or mathematical expression can be used. Enclose character and date constants in single quotation
marks ('); monetary, integer, and floating-point constants do not require quotation marks. Binary data must be preceded by 0x,
and monetary data must be preceded by a dollar sign ($). The default value must be compatible with the column data type.

Remarks

A default name can be created only in the current database. Within a database, default names must be unique by owner. When a
default is created, use sp_bindefault to bind it to a column or to a user-defined data type.

If the default is not compatible with the column to which it is bound, Microsoft® SQL Server™ generates an error message when
trying to insert the default value. For example, N/A cannot be used as a default for a numeric column.

If the default value is too long for the column to which it is bound, the value is truncated.

CREATE DEFAULT statements cannot be combined with other Transact-SQL statements in a single batch.

A default must be dropped before creating a new one of the same name, and the default must be unbound by executing
sp_unbindefault before it is dropped.

If a column has both a default and a rule associated with it, the default value must not violate the rule. A default that conflicts with
a rule is never inserted, and SQL Server generates an error message each time it attempts to insert the default.

When bound to a column, a default value is inserted when:

A value is not explicitly inserted.

Either the DEFAULT VALUES or DEFAULT keywords are used with INSERT to insert default values.

If NOT NULL is specified when creating a column and a default is not created for it, an error message is generated when a user
fails to make an entry in that column. This table illustrates the relationship between the existence of a default and the definition of
a column as NULL or NOT NULL. The entries in the table show the result.

Column
definition

No entry, no
default

No entry,
default

Enter NULL, no
default

Enter NULL,
default

NULL NULL default NULL NULL
NOT NULL Error default error error

Note Whether SQL Server interprets an empty string as a single space or as a true empty string is controlled by the
sp_dbcmptlevel setting. If the compatibility level is less than or equal to 65, SQL Server interprets empty strings as single spaces.
If the compatibility level is equal to 70, SQL Server interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

To rename a default, use sp_rename. For a report on a default, use sp_help.

Permissions

CREATE DEFAULT permissions default to members of the sysadmin fixed server role and the db_ddladmin and db_owner fixed
database roles. Members of the sysadmin, db_owner and db_securityadmin roles can transfer permissions to other users.

Examples

A. Create a simple character default

This example creates a character default called unknown.

USE pubs
GO
CREATE DEFAULT phonedflt AS 'unknown'

B. Bind a default

This example binds the default created in example A. The default takes effect only if there is no entry in the phone column of the
authors table. Note that no entry is not the same as an explicit null value.

Because a default named phonedflt does not exist, the following Transact-SQL statement fails. This example is for illustration
only.

USE pubs
GO
sp_bindefault phonedflt, 'authors.phone'

See Also

ALTER TABLE

Batches

CREATE RULE

CREATE TABLE

DROP DEFAULT

DROP RULE

Expressions

INSERT

sp_bindefault

sp_help

sp_helptext

sp_rename

sp_unbindefault

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

CREATE FUNCTION
 Topic last updated -- June 2007

Creates a user-defined function, which is a saved Transact-SQL routine that returns a value. User-defined functions cannot be
used to perform a set of actions that modify the global database state. User-defined functions, like system functions, can be
invoked from a query. They also can be executed through an EXECUTE statement like stored procedures.

User-defined functions are modified using ALTER FUNCTION, and dropped using DROP FUNCTION.

Syntax

Scalar Functions

CREATE FUNCTION [owner_name.] function_name
 ([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [,...n]])

RETURNS scalar_return_data_type

[WITH < function_option> [[,] ...n]]

[AS]

BEGIN
 function_body
 RETURN scalar_expression
END

Inline Table-valued Functions

CREATE FUNCTION [owner_name.] function_name
 ([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [,...n]])

RETURNS TABLE

[WITH < function_option > [[,] ...n]]

[AS]

RETURN [(] select-stmt [)]

Multi-statement Table-valued Functions

CREATE FUNCTION [owner_name.] function_name
 ([{ @parameter_name [AS] scalar_parameter_data_type [= default] } [,...n]])

RETURNS @return_variable TABLE < table_type_definition >

[WITH < function_option > [[,] ...n]]

[AS]

BEGIN
 function_body
 RETURN
END

< function_option > ::=
 { ENCRYPTION | SCHEMABINDING }

< table_type_definition > :: =
 ({ column_definition | table_constraint } [,...n])

Arguments

owner_name

Is the name of the user ID that owns the user-defined function. owner_name must be an existing user ID.

function_name

Is the name of the user-defined function. Function names must conform to the rules for identifiers and must be unique within the
database and to its owner.

@parameter_name

Is a parameter in the user-defined function. One or more parameters can be declared in a CREATE FUNCTION statement. A
function can have a maximum of 1,024 parameters. The value of each declared parameter must be supplied by the user when the
function is executed, unless a default for the parameter is defined. When a parameter of the function has a default value, the
keyword "default" must be specified when calling the function in order to get the default value. This behavior is different from
parameters with default values in stored procedures in which omitting the parameter also implies the default value.

Specify a parameter name using an at sign (@) as the first character. The parameter name must conform to the rules for
identifiers. Parameters are local to the function; the same parameter names can be used in other functions. Parameters can take
the place only of constants; they cannot be used in place of table names, column names, or the names of other database objects.

scalar_parameter_data_type

Is the parameter data type. All scalar data types, including bigint and sql_variant, can be used as a parameter for user-defined
functions. The timestamp data type and user-defined data types are not supported. Nonscalar types such as cursor and table
cannot be specified.

scalar_return_data_type

Is the return value of a scalar user-defined function. scalar_return_data_type can be any of the scalar data types supported by SQL
Server, except text, ntext, image, and timestamp.

scalar_expression

Specifies the scalar value that the scalar function returns.

TABLE

Specifies that the return value of the table-valued function is a table. Only constants and @local_variables can be passed to table-
valued functions.

In inline table-valued functions, the TABLE return value is defined through a single SELECT statement. Inline functions do not have
associated return variables.

In multi-statement table-valued functions, @return_variable is a TABLE variable, used to store and accumulate the rows that
should be returned as the value of the function.

function_body

Specifies that a series of Transact-SQL statements, which together do not produce a side effect, define the value of the function.
function_body is used only in scalar functions and multi-statement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that together evaluate to a scalar value.

In multi-statement table-valued functions, function_body is a series of Transact-SQL statements that populate a table return
variable.

select-stmt

Is the single SELECT statement that defines the return value of an inline table-valued function.

ENCRYPTION

Indicates that SQL Server will convert the original text of the CREATE FUNCTION statement to an obfuscated format. Note that
obfuscated functions can be reverse engineered because SQL Server must de-obfuscate functions for execution. In SQL Server
2000, the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using ENCRYPTION prevents the function from being published as part of SQL Server replication.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references. If a function is created with the SCHEMABINDING
option, then the database objects that the function references cannot be altered (using the ALTER statement) or dropped (using a
DROP statement).

The binding of the function to the objects it references is removed only when one of two actions take place:

The function is dropped.

The function is altered (using the ALTER statement) with the SCHEMABINDING option not specified.

A function can be schema-bound only if the following conditions are true:

The user-defined functions and views referenced by the function are also schema-bound.

The objects referenced by the function are not referenced using a two-part name.

The function and the objects it references belong to the same database.

The user who executed the CREATE FUNCTION statement has REFERENCES permission on all the database objects that the
function references.

The CREATE FUNCTION statement with the SCHEMABINDING option specified will fail if the above conditions are not true.

table_type_definition

Defines the table data type. The table declaration includes column definitions, names, data types and constraints. The only
constraint types allowed are PRIMARY KEY, UNIQUE, NULL and CHECK.

Remarks

User-defined functions are either scalar-valued or table-valued. Functions are scalar-valued if the RETURNS clause specified one
of the scalar data types. Scalar-valued functions can be defined using multiple Transact-SQL statements.

Functions are table-valued if the RETURNS clause specified TABLE. Depending on how the body of the function is defined, table-
valued functions can be classified as inline or multi-statement functions.

If the RETURNS clause specifies TABLE with no accompanying column list, the function is an inline function. Inline functions are
table-valued functions defined with a single SELECT statement making up the body of the function. The columns, including the
data types, of the table returned by the function are derived from the SELECT list of the SELECT statement defining the function.

If the RETURNS clause specifies a TABLE type with columns and their data types, the function is a multi-statement table-valued
function.

The following statements are allowed in the body of a multi-statement function. Statements not in this list are not allowed in the
body of a function:

Assignment statements.

Control-of-Flow statements.

DECLARE statements defining data variables and cursors that are local to the function.

SELECT statements containing select lists with expressions that assign values to variables that are local to the function.

Cursor operations referencing local cursors that are declared, opened, closed, and deallocated in the function. Only FETCH
statements that assign values to local variables using the INTO clause are allowed; FETCH statements that return data to the
client are not allowed.

INSERT, UPDATE, and DELETE statements modifying table variables local to the function.

EXECUTE statements calling an extended stored procedures.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command
constructed from unvalidated user input. For more information, see Validating User Input.

Function Determinism and Side Effects

Functions are either deterministic or nondeterministic. They are deterministic when they always return the same result any time
they are called with a specific set of input values. They are nondeterministic when they could return different result values each
time they are called with the same specific set of input values.

Nondeterministic functions can cause side effects. Side effects are changes to some global state of the database, such as an

update to a database table, or to some external resource, such as a file or the network (for example, modify a file or send an e-
mail message).

Built-in nondeterministic functions are not allowed in the body of user-defined functions; they are as follows:

@@CONNECTIONS @@TOTAL_ERRORS
@@CPU_BUSY @@TOTAL_READ
@@IDLE @@TOTAL_WRITE
@@IO_BUSY GETDATE
@@MAX_CONNECTIONS GETUTCDATE
@@PACK_RECEIVED NEWID
@@PACK_SENT RAND
@@PACKET_ERRORS TEXTPTR
@@TIMETICKS

Although nondeterministic functions are not allowed in the body of user-defined functions, these user-defined functions still can
cause side effects if they call extended stored procedures.

Functions that call extended stored procedures are considered nondeterministic because extended stored procedures can cause
side effects on the database. When user defined functions call extended stored procedures that can have side effects on the
database, do not rely on a consistent result set or execution of the function.

Calling extended stored procedures from functions

The extended stored procedure, when called from inside a function, cannot return result sets to the client. Any ODS APIs that
return result sets to the client will return FAIL. The extended stored procedure could connect back to Microsoft® SQL Server™;
however, it should not attempt to join the same transaction as the function that invoked the extended stored procedure.

Similar to invocations from a batch or stored procedure, the extended stored procedure will be executed in the context of the
Windows® security account under which SQL Server is running. The owner of the stored procedure should consider this when
giving EXECUTE privileges on it to users.

Function Invocation

Scalar-valued functions may be invoked where scalar expressions are used, including computed columns and CHECK constraint
definitions. When invoking scalar-valued functions, at minimum use the two-part name of the function.

[database_name.]owner_name.function_name ([argument_expr][,...])

If a user-defined function is used to define a computed column, the function's deterministic quality also defines whether an index
may be created on that computed column. An index can be created on a computed column that uses a function only if the
function is deterministic. A function is deterministic if it always returns the same value, given the same input.

Table-valued functions can be invoked using a single part name.

[database_name.][owner_name.]function_name ([argument_expr][,...])

System table functions that are included in Microsoft® SQL Server™ 2000 need to be invoked using a '::' prefix before the
function name.

SELECT *
FROM ::fn_helpcollations()

Transact-SQL errors that cause a statement to be stopped and then continued with the next statement in a stored procedure are
treated differently inside a function. In functions, such errors will cause the function execution to be stopped. This in turn will
cause the statement that invoked the function to be stopped.

Permissions

Users should have the CREATE FUNCTION permission to execute the CREATE FUNCTION statement.

CREATE FUNCTION permissions default to members of the sysadmin fixed server role, and the db_owner and db_ddladmin
fixed database roles. Members of sysadmin and db_owner can grant CREATE FUNCTION permissions to other logins by using
the GRANT statement.

Owners of functions have EXECUTE permission on their functions. Other users do not have EXECUTE permissions unless EXECUTE

permissions on the specific function are granted to them.

In order to create or alter tables with references to user-defined functions in the CONSTRAINT, DEFAULT clauses, or computed
column definition, the user must also have REFERENCES permission to the functions.

Examples

A. Scalar-valued user-defined function that calculates the ISO week

In this example, a user-defined function, ISOweek, takes a date argument and calculates the ISO week number. For this function
to calculate properly, SET DATEFIRST 1 must be invoked before the function is called.

CREATE FUNCTION ISOweek (@DATE datetime)
RETURNS int
AS
BEGIN
 DECLARE @ISOweek int
 SET @ISOweek= DATEPART(wk,@DATE)+1
 -DATEPART(wk,CAST(DATEPART(yy,@DATE) as CHAR(4))+'0104')
--Special cases: Jan 1-3 may belong to the previous year
 IF (@ISOweek=0)
 SET @ISOweek=dbo.ISOweek(CAST(DATEPART(yy,@DATE)-1
 AS CHAR(4))+'12'+ CAST(24+DATEPART(DAY,@DATE) AS CHAR(2)))+1
--Special case: Dec 29-31 may belong to the next year
 IF ((DATEPART(mm,@DATE)=12) AND
 ((DATEPART(dd,@DATE)-DATEPART(dw,@DATE))>= 28))
 SET @ISOweek=1
 RETURN(@ISOweek)
END

Here is the function call. Notice that DATEFIRST is set to 1.

SET DATEFIRST 1
SELECT master.dbo.ISOweek('12/26/1999') AS 'ISO Week'

Here is the result set.

ISO Week

51

B. In line table-valued function

This example returns an inline table-valued function.

USE pubs
GO
CREATE FUNCTION SalesByStore (@storeid varchar(30))
RETURNS TABLE
AS
RETURN (SELECT title, qty
 FROM sales s, titles t
 WHERE s.stor_id = @storeid and
 t.title_id = s.title_id)

C. M ulti-statement table-valued function

Given a table that represents a hierarchical relationship:

CREATE TABLE employees (empid nchar(5) PRIMARY KEY,
 empname nvarchar(50),
 mgrid nchar(5) REFERENCES employees(empid),
 title nvarchar(30)
)

The table-valued function fn_FindReports(InEmpID), which -- given an Employee ID -- returns a table corresponding to all the
employees that report to the given employee directly or indirectly. This logic is not expressible in a single query and is a good
candidate for implementing as a user-defined function.

CREATE FUNCTION fn_FindReports (@InEmpId nchar(5))
RETURNS @retFindReports TABLE (empid nchar(5) primary key,
 empname nvarchar(50) NOT NULL,
 mgrid nchar(5),
 title nvarchar(30))
/*Returns a result set that lists all the employees who report to given

employee directly or indirectly.*/
AS
BEGIN
 DECLARE @RowsAdded int
 -- table variable to hold accumulated results
 DECLARE @reports TABLE (empid nchar(5) primary key,
 empname nvarchar(50) NOT NULL,
 mgrid nchar(5),
 title nvarchar(30),
 processed tinyint default 0)
-- initialize @Reports with direct reports of the given employee
 INSERT @reports
 SELECT empid, empname, mgrid, title, 0
 FROM employees
 WHERE empid = @InEmpId
 SET @RowsAdded = @@rowcount
 -- While new employees were added in the previous iteration
 WHILE @RowsAdded > 0
 BEGIN
 /*Mark all employee records whose direct reports are going to be
 found in this iteration with processed=1.*/
 UPDATE @reports
 SET processed = 1
 WHERE processed = 0
 -- Insert employees who report to employees marked 1.
 INSERT @reports
 SELECT e.empid, e.empname, e.mgrid, e.title, 0
 FROM employees e, @reports r
 WHERE e.mgrid=r.empid and e.mgrid <> e.empid and r.processed = 1
 SET @RowsAdded = @@rowcount
 /*Mark all employee records whose direct reports have been found
 in this iteration.*/
 UPDATE @reports
 SET processed = 2
 WHERE processed = 1
 END

 -- copy to the result of the function the required columns
 INSERT @retFindReports
 SELECT empid, empname, mgrid, title
 FROM @reports
 RETURN
END
GO

-- Example invocation
SELECT *
FROM fn_FindReports('11234')
GO

See Also

ALTER FUNCTION

DROP FUNCTION

Invoking User-defined Functions

User-defined Functions

Transact-SQL Reference (SQL Server 2000)

CREATE INDEX
 Topic last updated -- July 2003

Creates an index on a given table or view.

Only the table or view owner can create indexes on that table. The owner of a table or view can create an index at any time,
whether or not there is data in the table. Indexes can be created on tables or views in another database by specifying a qualified
database name.

Syntax

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON { table | view } (column [ASC | DESC] [,...n])
[WITH < index_option > [,...n]]
[ON filegroup]

< index_option > :: =
 { PAD_INDEX |
 FILLFACTOR = fillfactor |
 IGNORE_DUP_KEY |
 DROP_EXISTING |
 STATISTICS_NORECOMPUTE |
 SORT_IN_TEMPDB
}

Arguments

UNIQUE

Creates a unique index (one in which no two rows are permitted to have the same index value) on a table or view. A clustered
index on a view must be UNIQUE.

Microsoft® SQL Server™ checks for duplicate values when the index is created (if data already exists) and checks each time data is
added with an INSERT or UPDATE statement. If duplicate key values exist, the CREATE INDEX statement is canceled and an error
message giving the first duplicate is returned. Multiple NULL values are considered duplicates when UNIQUE index is created.

When a unique index exists, UPDATE or INSERT statements that would generate duplicate key values are rolled back, and SQL
Server displays an error message. This is true even if the UPDATE or INSERT statement changes many rows but causes only one
duplicate. If an attempt is made to enter data for which there is a unique index and the IGNORE_DUP_KEY clause is specified, only
the rows violating the UNIQUE index fail. When processing an UPDATE statement, IGNORE_DUP_KEY has no effect.

SQL Server does not allow the creation of a unique index on columns that already include duplicate values, whether or not
IGNORE_DUP_KEY is set. If attempted, SQL Server displays an error message; duplicates must be eliminated before a unique index
can be created on the column(s).

CLUSTERED

Creates an object where the physical order of rows is the same as the indexed order of the rows, and the bottom (leaf) level of the
clustered index contains the actual data rows. A table or view is allowed one clustered index at a time.

A view with a clustered index is called an indexed view. A unique clustered index must be created on a view before any other
indexes can be defined on the same view.

Create the clustered index before creating any nonclustered indexes. Existing nonclustered indexes on tables are rebuilt when a
clustered index is created.

If CLUSTERED is not specified, a nonclustered index is created.

Note Because the leaf level of a clustered index and its data pages are the same by definition, creating a clustered index and
using the ON filegroup clause effectively moves a table from the file on which the table was created to the new filegroup. Before
creating tables or indexes on specific filegroups, verify which filegroups are available and that they have enough empty space for
the index. It is important that the filegroup have at least 1.2 times the space required for the entire table.

NONCLUSTERED

Creates an object that specifies the logical ordering of a table. With a nonclustered index, the physical order of the rows is

independent of their indexed order. The leaf level of a nonclustered index contains index rows. Each index row contains the
nonclustered key value and one or more row locators that point to the row that contains the value. If the table does not have a
clustered index, the row locator is the row's disk address. If the table does have a clustered index, the row locator is the clustered
index key for the row.

Each table can have as many as 249 nonclustered indexes (regardless of how they are created: implicitly with PRIMARY KEY and
UNIQUE constraints, or explicitly with CREATE INDEX). Each index can provide access to the data in a different sort order.

For indexed views, nonclustered indexes can be created only on a view with a clustered index already defined. Thus, the row
locator of a nonclustered index on an indexed view is always the clustered key of the row.

index_name

Is the name of the index. Index names must be unique within a table or view but do not need to be unique within a database.
Index names must follow the rules of identifiers.

table

Is the table that contains the column or columns to be indexed. Specifying the database and table owner names is optional.

view

Is the name of the view to be indexed. The view must be defined with SCHEMABINDING in order to create an index on it. The view
definition also must be deterministic. A view is deterministic if all expressions in the select list, and the WHERE and GROUP BY
clauses are deterministic. Also, all key columns must be precise. Only nonkey columns of the view may contain float expressions
(expressions that use float data type), and float expressions cannot be used anywhere else in the view definition.

To find a column in the view that is deterministic, use the COLUMNPROPERTY function (IsDeterministic property). The IsPrecise
property of the function can be used to determine that the key columns are precise.

A unique clustered index must be created on a view before any nonclustered index is created.

Indexed views may be used by the query optimizer in SQL Server Enterprise to speed up the query execution. The view does not
need to be referenced in the query for the optimizer to consider that view for a substitution. To use an indexed view in all other
editions, the NOEXPAND hint must be used.

When creating indexed views or manipulating rows in tables participating in an indexed view, seven SET options must be
assigned specific values. The SET options ARITHABORT, CONCAT_NULL_YIELDS_NULL, QUOTED_IDENTIFIER, ANSI_NULLS,
ANSI_PADDING, and ANSI_WARNINGS must be ON. The SET option NUMERIC_ROUNDABORT must be OFF.

If any of these settings is different, data modification statements (INSERT, UPDATE, DELETE) on any table referenced by an indexed
view fail and SQL Server raises an error listing all SET options that violate setting requirements. In addition, for a SELECT
statement that involves an indexed view, if the values of any of the SET options are not the required values, SQL Server processes
the SELECT without considering the indexed view substitution. This ensures correctness of query result in cases where it can be
affected by the above SET options.

If the application uses a DB-Library connection, all seven SET options on the server must be assigned the required values. (By
default, OLE DB and ODBC connections have set all of the required SET options correctly, except for ARITHABORT.)

Some operations, like BCP, replication, or distributed queries may fail to execute their updates against tables participating in
indexed views if not all of the listed SET options have the required value. In the majority of cases, this issue can be prevented by
setting ARITHABORT to ON (through user options in the server configuration option).

It is strongly recommended that the ARITHABORT user option be set server-wide to ON as soon as the first indexed view or index
on a computed column is created in any database on the server.

See the Remarks section for more information on considerations and restrictions on indexed views.

column

Is the column or columns to which the index applies. Specify two or more column names to create a composite index on the
combined values in the specified columns. List the columns to be included in the composite index (in sort-priority order) inside
the parentheses after table.

Note Columns consisting of the ntext, text, or image data types cannot be specified as columns for an index. In addition, a view
cannot include any text, ntext, or image columns, even if they are not referenced in the CREATE INDEX statement.

Composite indexes are used when two or more columns are best searched as a unit or if many queries reference only the
columns specified in the index. As many as 16 columns can be combined into a single composite index. All the columns in a
composite index must be in the same table. The maximum allowable size of the combined index values is 900 bytes. That is, the
sum of the lengths of the fixed-size columns that make up the composite index cannot exceed 900 bytes. For more information

about variable type columns in composite indexes, see the Remarks section.

[ASC | DESC]

Determines the ascending or descending sort direction for the particular index column. The default is ASC.

n

Is a placeholder indicating that multiple columns can be specified for any particular index.

PAD_INDEX

Specifies the space to leave open on each page (node) in the intermediate levels of the index. The PAD_INDEX option is useful only
when FILLFACTOR is specified, because PAD_INDEX uses the percentage specified by FILLFACTOR. By default, SQL Server ensures
that each index page has enough empty space to accommodate at least one row of the maximum size the index can have, given
the set of keys on the intermediate pages. If the percentage specified for FILLFACTOR is not large enough to accommodate one
row, SQL Server internally overrides the percentage to allow the minimum.

Note The number of rows on an intermediate index page is never less than two, regardless of how low the value of FILLFACTOR.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full SQL Server should make the leaf level of each index page during index creation.
When an index page fills up, SQL Server must take time to split the index page to make room for new rows, which is quite
expensive. For update-intensive tables, a properly chosen FILLFACTOR value yields better update performance than an improper
FILLFACTOR value. The value of the original FILLFACTOR is stored with the index in sysindexes.

When FILLFACTOR is specified, SQL Server rounds up the number of rows to be placed on each page. For example, issuing
CREATE CLUSTERED INDEX ... FILLFACTOR = 33 creates a clustered index with a FILLFACTOR of 33 percent. Assume that SQL
Server calculates that 5.2 rows is 33 percent of the space on a page. SQL Server rounds so that six rows are placed on each page.

Note An explicit FILLFACTOR setting applies only when the index is first created. SQL Server does not dynamically keep the
specified percentage of empty space in the pages.

User-specified FILLFACTOR values can be from 1 through 100. If no value is specified, the default is 0. When FILLFACTOR is set to
0, only the leaf pages are filled. You can change the default FILLFACTOR setting by executing sp_configure.

Use a FILLFACTOR of 100 only if no INSERT or UPDATE statements will occur, such as with a read-only table. If FILLFACTOR is
100, SQL Server creates indexes with leaf pages 100 percent full. An INSERT or UPDATE made after the creation of an index with a
100 percent FILLFACTOR causes page splits for each INSERT and possibly each UPDATE.

Smaller FILLFACTOR values, except 0, cause SQL Server to create new indexes with leaf pages that are not completely full. For
example, a FILLFACTOR of 10 can be a reasonable choice when creating an index on a table known to contain a small portion of
the data that it will eventually hold. Smaller FILLFACTOR values also cause each index to take more storage space.

The following table illustrates how the pages of an index are filled up if FILLFACTOR is specified.

FILLFACTOR Intermediate page Leaf page
0 percent One free entry 100 percent full
1 - 99 percent One free entry <= FILLFACTOR percent full
100 percent One free entry 100 percent full

One free entry is the space on the page that can accommodate another index entry.

Important Creating a clustered index with a FILLFACTOR affects the amount of storage space the data occupies because SQL
Server redistributes the data when it creates the clustered index.

IGNORE_DUP_KEY

Controls what happens when an attempt is made to insert a duplicate key value into a column that is part of a unique clustered
index. If IGNORE_DUP_KEY was specified for the index and an INSERT statement that creates a duplicate key is executed, SQL
Server issues a warning and ignores the duplicate row.

If IGNORE_DUP_KEY was not specified for the index, SQL Server issues an error message and rolls back the entire INSERT
statement.

The table shows when IGNORE_DUP_KEY can be used.

Index type Options
Clustered Not allowed

Unique clustered IGNORE_DUP_KEY allowed
Nonclustered Not allowed
Unique nonclustered IGNORE_DUP_KEY allowed

DROP_EXISTING

Specifies that the named, preexisting clustered or nonclustered index should be dropped and rebuilt. The index name specified
must be the same as a currently existing index. Because nonclustered indexes contain the clustering keys, the nonclustered
indexes must be rebuilt when a clustered index is dropped. If a clustered index is recreated, the nonclustered indexes must be
rebuilt to take the new set of keys into account.

The DROP_EXISTING clause enhances performance when re-creating a clustered index (with either the same or a different set of
keys) on a table that also has nonclustered indexes. The DROP_EXISTING clause replaces the execution of a DROP INDEX
statement on the old clustered index followed by the execution of a CREATE INDEX statement for the new clustered index. The
nonclustered indexes are rebuilt once, and only if the keys are different.

If the keys do not change (the same index name and columns as the original index are provided), the DROP_EXISTING clause does
not sort the data again. This can be useful if the index must be compacted.

A clustered index cannot be converted to a nonclustered index using the DROP_EXISTING clause; however, a unique clustered
index can be changed to a non-unique index, and vice versa.

Note When executing a CREATE INDEX statement with the DROP_EXISTING clause, SQL Server assumes that the index is
consistent, that is, there is no corruption in the index. The rows in the specified index should be sorted by the specified key
referenced in the CREATE INDEX statement.

STATISTICS_NORECOMPUTE

Specifies that out-of-date index statistics are not automatically recomputed. To restore automatic statistics updating, execute
UPDATE STATISTICS without the NORECOMPUTE clause.

Important Disabling automatic recomputation of distribution statistics may prevent the SQL Server query optimizer from
picking optimal execution plans for queries involving the table.

SORT_IN_TEMPDB

Specifies that the intermediate sort results used to build the index will be stored in the tempdb database. This option may reduce
the time needed to create an index if tempdb is on a different set of disks than the user database, but it increases the amount of
disk space used during the index build.

For more information, see tempdb and Index Creation.

ON filegroup

Creates the specified index on the given filegroup. The filegroup must have already been created by executing either CREATE
DATABASE or ALTER DATABASE.

Remarks

Space is allocated to tables and indexes in increments of one extent (eight 8-kilobyte pages) at a time. Each time an extent is filled,
another is allocated. Indexes on very small or empty tables will use single page allocations until eight pages have been added to
the index and then will switch to extent allocations. For a report on the amount of space allocated and used by an index, use
sp_spaceused.

Creating a clustered index on a table (heap) or existing clustered index requires additional workspace available in your database
to accommodate data sorting and a temporary copy of the original table or existing clustered index data. You will need a
minimum workspace equal to 1.2 times the size of the heap or existing clustered index. A fill factor value less than 100 will require
more space than the 1.2 factor. Once the index has been created, any space not required by the new clustered index is released.
For information on calculating the size of a table with a clustered index, see Estimating the Size of a Table with a Clustered Index.

When creating an index in SQL Server 2000, you can use the SORT_IN_TEMPDB option to direct the database engine to store the
intermediate index sort results in tempdb. This option may reduce the time needed to create an index if tempdb is on a different
set of disks than the user database, but it increases the amount of disk space used to create an index. In addition to the space
required in the user database to create the index, tempdb must have about the same amount of additional space to hold the
intermediate sort results. For more information, see tempdb and Index Creation.

The CREATE INDEX statement is optimized like any other query. The SQL Server query processor may choose to scan another
index instead of performing a table scan to save on I/O operations. The sort may be eliminated in some situations.

On multiprocessor computers on SQL Server Enterprise and Developer Editions, CREATE INDEX automatically uses more
processors to perform the scan and sort, in the same way as other queries do. The number of processors employed to execute a
single CREATE INDEX statement is determined by the configuration option max degree of parallelism as well as the current
workload. If SQL Server detects that the system is busy, the degree of parallelism of the CREATE INDEX operation is automatically
reduced before statement execution begins.

Entire filegroups affected by a CREATE INDEX statement since the last filegroup backup must be backed up as a unit. For more
information about file and filegroup backups, see BACKUP.

Backup and CREATE INDEX operations do not block each other. If a backup is in progress, index is created in a fully logged mode,
which may require extra log space.

To display a report on an object's indexes, execute sp_helpindex.

Indexes can be created on a temporary table. When the table is dropped or the session ends, all indexes and triggers are dropped.

Variable type columns in indexes

The maximum size allowed for an index key is 900 bytes, but SQL Server 2000 allows indexes to be created on columns that may
have large variable type columns with a maximum size greater than 900 bytes.

During index creation, SQL Server checks the following conditions:

The sum of all fixed data columns that participate in the index definition must be less or equal to 900 bytes. When the index
to be created is composed of fixed data columns only, the total size of the fixed data columns must be less or equal to 900
bytes. Otherwise, the index will not be created and SQL Server will return an error.

If the index definition is composed of fixed- and variable-type columns, and the fixed-data columns meet the previous
condition (less or equal to 900 bytes), SQL Server still checks the total size of the variable type columns. If the maximum size
of the variable-type columns plus the size of the fixed-data columns is greater than 900 bytes, SQL Server creates the index,
but returns a warning to the user. The warning alerts the user that if subsequent insert or update actions on the variable-
type columns result in a total size greater than 900 bytes, the action will fail and the user will get a run-time error. Likewise,
if the index definition is composed of variable-type columns only, and the maximum total size of these columns is greater
than 900 bytes, SQL Server will create the index, but return a warning.

For more information, see Maximum Size of Index Keys.

Considerations when indexing computed columns and views

In SQL Server 2000, indexes also can be created on computed columns and views. Creating a unique clustered index on a view
improves query performance because the view is stored in the database in the same way a table with a clustered index is stored.

The UNIQUE or PRIMARY KEY may contain a computed column as long as it satisfies all conditions for indexing. Specifically, the
computed column must be deterministic, precise, and must not contain text, ntext, or image columns. For more information
about determinism, see Deterministic and Nondeterministic Functions.

Creation of an index on a computed column or view may cause the failure of an INSERT or UPDATE operation that previously
worked. Such a failure may take place when the computed column results in arithmetic error. For example, although computed
column c in the following table will result in an arithmetic error, the INSERT statement will work:

CREATE TABLE t1 (a int, b int, c AS a/b)
GO
INSERT INTO t1 VALUES ('1', '0')
GO

If, instead, after creating the table, you create an index on computed column c, the same INSERT statement now will fail.

CREATE TABLE t1 (a int, b int, c AS a/b)
GO
CREATE UNIQUE CLUSTERED INDEX Idx1 ON t1.c
GO
INSERT INTO t1 VALUES ('1', '0')
GO

The result of a query using an index on a view defined with numeric or float expressions may be different from a similar query
that does not use the index on the view. This difference may be the result of rounding errors during INSERT, DELETE, or UPDATE
actions on underlying tables.

To prevent SQL Server from using indexed views, include the OPTION (EXPAND VIEWS) hint on the query. Also, setting any of the

listed options incorrectly will prevent the optimizer from using the indexes on the views. For more information about the OPTION
(EXPAND VIEWS) hint, see SELECT.

Restrictions on indexed views

The SELECT statement defining an indexed view must not have the TOP, DISTINCT, COMPUTE, HAVING, and UNION keywords. It
cannot have a subquery.

The SELECT list may not include asterisks (*), 'table.*' wildcard lists, DISTINCT, COUNT(*), COUNT(<expression>), computed
columns from the base tables, and scalar aggregates.

Nonaggregate SELECT lists cannot have expressions. Aggregate SELECT list (queries that contain GROUP BY) may include SUM
and COUNT_BIG(<expression>); it must contain COUNT_BIG(*). Other aggregate functions (MIN, MAX, STDEV,...) are not allowed.

Complex aggregation using AVG cannot participate in the SELECT list of the indexed view. However, if a query uses such
aggregation, the optimizer is capable of using this indexed view to substitute AVG with a combination of simple aggregates SUM
and COUNT_BIG.

A column resulting from an expression that either evaluates to a float data type or uses float expressions for its evaluation
cannot be a key of an index in an indexed view or on a computed column in a table. Such columns are called nonprecise. Use the
COLUMNPROPERTY function to determine if a particular computed column or a column in a view is precise.

Indexed views are subject to these additional restrictions:

The creator of the index must own the tables. All tables, the view, and the index, must be created in the same database.

The SELECT statement defining the indexed view may not contain views, rowset functions, inline functions, or derived tables.
The same physical table may occur only once in the statement.

In any joined tables, no OUTER JOIN operations are allowed.

No subqueries or CONTAINS or FREETEXT predicates are allowed in the search condition.

If the view definition contains a GROUP BY clause, all grouping columns as well as the COUNT_BIG(*) expression must
appear in the view's SELECT list. Also, these columns must be the only columns in the CREATE UNIQUE CLUSTERED INDEX
clause.

The body of the definition of a view that can be indexed must be deterministic and precise, similar to the requirements on indexes
on computed columns. See Creating Indexes on Computed Columns.

The compatibility level of the database cannot be less than 80. A database containing an indexed view cannot be changed to a
compatibility level lower than 80.

Permissions

CREATE INDEX permissions default to the sysadmin fixed server role and the db_ddladmin and db_owner fixed database roles
and the table owner, and are not transferable.

Examples

A. Use a simple index

This example creates an index on the au_id column of the authors table.

SET NOCOUNT OFF
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'au_id_ind')
 DROP INDEX authors.au_id_ind
GO
USE pubs
CREATE INDEX au_id_ind
 ON authors (au_id)
GO

B. Use a unique clustered index

This example creates an index on the employeeID column of the emp_pay table that enforces uniqueness. This index physically
orders the data on disk because the CLUSTERED clause is specified.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'emp_pay')
 DROP TABLE emp_pay
GO
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'employeeID_ind')
 DROP INDEX emp_pay.employeeID_ind
GO
USE pubs
GO
CREATE TABLE emp_pay
(
 employeeID int NOT NULL,
 base_pay money NOT NULL,
 commission decimal(2, 2) NOT NULL
)
INSERT emp_pay
 VALUES (1, 500, .10)
INSERT emp_pay
 VALUES (2, 1000, .05)
INSERT emp_pay
 VALUES (3, 800, .07)
INSERT emp_pay
 VALUES (5, 1500, .03)
INSERT emp_pay
 VALUES (9, 750, .06)
GO
SET NOCOUNT OFF
CREATE UNIQUE CLUSTERED INDEX employeeID_ind
 ON emp_pay (employeeID)
GO

C. Use a simple composite index

This example creates an index on the orderID and employeeID columns of the order_emp table.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'order_emp')
 DROP TABLE order_emp
GO
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'emp_order_ind')
 DROP INDEX order_emp.emp_order_ind
GO
USE pubs
GO
CREATE TABLE order_emp
(
 orderID int IDENTITY(1000, 1),
 employeeID int NOT NULL,
 orderdate datetime NOT NULL DEFAULT GETDATE(),
 orderamount money NOT NULL
)

INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (5, '4/12/98', 315.19)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (5, '5/30/98', 1929.04)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (1, '1/03/98', 2039.82)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (1, '1/22/98', 445.29)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (4, '4/05/98', 689.39)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (7, '3/21/98', 1598.23)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (7, '3/21/98', 445.77)
INSERT order_emp (employeeID, orderdate, orderamount)
 VALUES (7, '3/22/98', 2178.98)
GO

SET NOCOUNT OFF
CREATE INDEX emp_order_ind
 ON order_emp (orderID, employeeID)

D. Use the FILLFACTOR option

This example uses the FILLFACTOR clause set to 100. A FILLFACTOR of 100 fills every page completely and is useful only when
you know that index values in the table will never change.

SET NOCOUNT OFF
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'zip_ind')
 DROP INDEX authors.zip_ind
GO
USE pubs
GO
CREATE NONCLUSTERED INDEX zip_ind
 ON authors (zip)
 WITH FILLFACTOR = 100

E. Use the IGN ORE_DUP_KEY

This example creates a unique clustered index on the emp_pay table. If a duplicate key is entered, the INSERT or UPDATE
statement is ignored.

SET NOCOUNT ON
USE pubs
IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'emp_pay')
 DROP TABLE emp_pay
GO
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'employeeID_ind')
 DROP INDEX emp_pay.employeeID_ind
GO
USE pubs
GO
CREATE TABLE emp_pay
(
 employeeID int NOT NULL,
 base_pay money NOT NULL,
 commission decimal(2, 2) NOT NULL
)
INSERT emp_pay
 VALUES (1, 500, .10)
INSERT emp_pay
 VALUES (2, 1000, .05)
INSERT emp_pay
 VALUES (3, 800, .07)
INSERT emp_pay
 VALUES (5, 1500, .03)
INSERT emp_pay
 VALUES (9, 750, .06)
GO
SET NOCOUNT OFF
GO
CREATE UNIQUE CLUSTERED INDEX employeeID_ind
 ON emp_pay(employeeID)
 WITH IGNORE_DUP_KEY

F. Create an index with PAD_IN DEX

This example creates an index on the author's identification number in the authors table. Without the PAD_INDEX clause, SQL
Server creates leaf pages that are 10 percent full, but the pages above the leaf level are filled almost completely. With PAD_INDEX,
the intermediate pages are also 10 percent full.

Note At least two entries appear on the index pages of unique clustered indexes when PAD_INDEX is not specified.

SET NOCOUNT OFF
USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'au_id_ind')
 DROP INDEX authors.au_id_ind
GO
USE pubs

CREATE INDEX au_id_ind
 ON authors (au_id)
 WITH PAD_INDEX, FILLFACTOR = 10

G. Create an index on a view

This example will create a view and an index on that view. Then, two queries are included using the indexed view.

USE Northwind
GO

--Set the options to support indexed views.
SET NUMERIC_ROUNDABORT OFF
GO
SET ANSI_PADDING,ANSI_WARNINGS,CONCAT_NULL_YIELDS_NULL,ARITHABORT,QUOTED_IDENTIFIER,ANSI_NULLS ON
GO

--Create view.
CREATE VIEW V1
WITH SCHEMABINDING
AS
 SELECT SUM(UnitPrice*Quantity*(1.00-Discount)) AS Revenue, OrderDate, ProductID, COUNT_BIG(*) AS COUNT
 FROM dbo.[Order Details] od, dbo.Orders o
 WHERE od.OrderID=o.OrderID
 GROUP BY OrderDate, ProductID
GO

--Create index on the view.
CREATE UNIQUE CLUSTERED INDEX IV1 ON V1 (OrderDate, ProductID)
GO

--This query will use the above indexed view.
SELECT SUM(UnitPrice*Quantity*(1.00-Discount)) AS Rev, OrderDate, ProductID
FROM dbo.[Order Details] od, dbo.Orders o
WHERE od.OrderID=o.OrderID AND ProductID in (2, 4, 25, 13, 7, 89, 22, 34)
 AND OrderDate >= '05/01/1998'
GROUP BY OrderDate, ProductID
ORDER BY Rev DESC

--This query will use the above indexed view.
SELECT OrderDate, SUM(UnitPrice*Quantity*(1.00-Discount)) AS Rev
FROM dbo.[Order Details] od, dbo.Orders o
WHERE od.OrderID=o.OrderID AND DATEPART(mm,OrderDate)= 3
 AND DATEPART(yy,OrderDate) = 1998
GROUP BY OrderDate
ORDER BY OrderDate ASC

See Also

ALTER DATABASE

CREATE DATABASE

CREATE STATISTICS

CREATE TABLE

Data Types

DBCC SHOW_STATISTICS

Designing an Index

DROP INDEX

DROP STATISTICS

Indexes

INSERT

RECONFIGURE

SET

sp_autostats

sp_createstats

sp_dbcmptlevel

sp_dboption

sp_helpindex

sp_spaceused

sysindexes

Transactions

UPDATE

UPDATE STATISTICS

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

CREATE PROCEDURE
 Topic last updated -- June 2007

Creates a stored procedure, which is a saved collection of Transact-SQL statements that can take and return user-supplied
parameters.

Procedures can be created for permanent use or for temporary use within a session (local temporary procedure) or for temporary
use within all sessions (global temporary procedure).

Stored procedures can also be created to run automatically when Microsoft® SQL Server™ starts.

Syntax

CREATE PROC [EDURE] [owner.] procedure_name [; number]
 [{ @parameter data_type }
 [VARYING] [= default] [OUTPUT]
] [,...n]

[WITH
 { RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]

[FOR REPLICATION]

AS sql_statement [...n]

Arguments

owner

Is the name of the user ID that owns the stored procedure. owner must be either the name of the current user or the name of a
role that a current user is a member of.

procedure_name

Is the name of the new stored procedure. Procedure names must conform to the rules for identifiers and must be unique within
the database and its owner. For more information, see Using Identifiers.

Local or global temporary procedures can be created by preceding the procedure_name with a single number sign
(#procedure_name) for local temporary procedures and a double number sign (##procedure_name) for global temporary
procedures. The complete name, including # or ##, cannot exceed 128 characters. Specifying the procedure owner name is
optional.

;number

Is an optional integer used to group procedures of the same name so they can be dropped together with a single DROP
PROCEDURE statement. For example, the procedures used with an application called orders may be named orderproc;1,
orderproc;2, and so on. The statement DROP PROCEDURE orderproc drops the entire group. If the name contains delimited
identifiers, the number should not be included as part of the identifier; use the appropriate delimiter around procedure_name
only.

@parameter

Is a parameter in the procedure. One or more parameters can be declared in a CREATE PROCEDURE statement. The value of each
declared parameter must be supplied by the user when the procedure is executed (unless a default for the parameter is defined or
the value is set to equal another parameter). A stored procedure can have a maximum of 2,100 parameters.

Specify a parameter name using an at sign (@) as the first character. The parameter name must conform to the rules for
identifiers. Parameters are local to the procedure; the same parameter names can be used in other procedures. By default,
parameters can take the place only of constants; they cannot be used in place of table names, column names, or the names of
other database objects. For more information, see EXECUTE.

data_type

Is the parameter data type. All data types, except the table data type, can be used as a parameter for a stored procedure. However,
the cursor data type can be used only on OUTPUT parameters. When you specify a data type of cursor, the VARYING and
OUTPUT keywords must also be specified. For more information about SQL Server - supplied data types and their syntax, see

Data Types.

Note There is no limit on the maximum number of output parameters that can be of cursor data type.

VARYING

Specifies the result set supported as an output parameter (constructed dynamically by the stored procedure and whose contents
can vary). Applies only to cursor parameters.

default

Is a default value for the parameter. If a default is defined, the procedure can be executed without specifying a value for that
parameter. The default must be a constant or it can be NULL. It can include wildcard characters (%, _, [], and [^]) if the procedure
uses the parameter with the LIKE keyword.

OUTPUT

Indicates that the parameter is a return parameter. The value of this option can be returned to EXEC[UTE]. Use OUTPUT
parameters to return information to the calling procedure. Text, ntext, and image parameters can be used as OUTPUT
parameters. An output parameter using the OUTPUT keyword can be a cursor placeholder.

n

Is a placeholder indicating that a maximum of 2,100 parameters can be specified.

{RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}

RECOMPILE indicates that SQL Server does not cache a plan for this procedure and the procedure is recompiled at run time. Use
the RECOMPILE option when using atypical or temporary values without overriding the execution plan cached in memory.

ENCRYPTION indicates that SQL Server converts the original text of the CREATE PROCEDURE statement to an obfuscated format.
Note that obfuscated stored procedures can be reverse engineered because SQL Server must de-obfuscate procedures for
execution. In SQL Server 2000, the obfuscated text is visible in the syscomments system table and may be susceptible to de-
obfuscation attempts.

Using ENCRYPTION prevents the procedure from being published as part of SQL Server replication.

Note During an upgrade, SQL Server uses the obfuscated comments stored in syscomments to re-create obfuscated
procedures.

FOR REPLICATION

Specifies that stored procedures created for replication cannot be executed on the Subscriber. A stored procedure created with the
FOR REPLICATION option is used as a stored procedure filter and only executed during replication. This option cannot be used
with the WITH RECOMPILE option.

AS

Specifies the actions the procedure is to take.

sql_statement

Is any number and type of Transact-SQL statements to be included in the procedure. Some limitations apply.

n

Is a placeholder that indicates multiple Transact-SQL statements may be included in this procedure.

Remarks

The maximum size of a stored procedure is 128 MB.

A user-defined stored procedure can be created only in the current database (except for temporary procedures, which are always
created in tempdb). The CREATE PROCEDURE statement cannot be combined with other Transact-SQL statements in a single
batch.

Parameters are nullable by default. If a NULL parameter value is passed and that parameter is used in a CREATE or ALTER TABLE
statement in which the column referenced does not allow NULLs, SQL Server generates an error. To prevent passing a NULL
parameter value to a column that does not allow NULLs, add programming logic to the procedure or use a default value (with the
DEFAULT keyword of CREATE or ALTER TABLE) for the column.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

It is recommended that you explicitly specify NULL or NOT NULL for each column in any CREATE TABLE or ALTER TABLE
statement in a stored procedure, such as when creating a temporary table. The ANSI_DFLT_ON and ANSI_DFLT_OFF options
control the way SQL Server assigns the NULL or NOT NULL attributes to columns if not specified in a CREATE TABLE or ALTER
TABLE statement. If a connection executes a stored procedure with different settings for these options than the connection that
created the procedure, the columns of the table created for the second connection can have different nullability and exhibit
different behaviors. If NULL or NOT NULL is explicitly stated for each column, the temporary tables are created with the same
nullability for all connections that execute the stored procedure.

SQL Server saves the settings of both SET QUOTED_IDENTIFIER and SET ANSI_NULLS when a stored procedure is created or
altered. These original settings are used when the stored procedure is executed. Therefore, any client session settings for SET
QUOTED_IDENTIFIER and SET ANSI_NULLS are ignored during stored procedure execution. SET QUOTED_IDENTIFIER and SET
ANSI_NULLS statements that occur within the stored procedure do not affect the functionality of the stored procedure.

Other SET options, such as SET ARITHABORT, SET ANSI_WARNINGS, or SET ANSI_PADDINGS are not saved when a stored
procedure is created or altered. If the logic of the stored procedure is dependent on a particular setting, include a SET statement at
the start of the procedure to ensure the proper setting. When a SET statement is executed from a stored procedure, the setting
remains in effect only until the stored procedure completes. The setting is then restored to the value it had when the stored
procedure was called. This allows individual clients to set the options wanted without affecting the logic of the stored procedure.

Note Whether SQL Server interprets an empty string as either a single space or as a true empty string is controlled by the
compatibility level setting. If the compatibility level is less than or equal to 65, SQL Server interprets empty strings as single
spaces. If the compatibility level is equal to 70, SQL Server interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

Getting Information About Stored Procedures

To display the text used to create the procedure, execute sp_helptext in the database in which the procedure exists with the
procedure name as the parameter.

Note Stored procedures created with the ENCRYPTION option cannot be viewed with sp_helptext.

For a report on the objects referenced by a procedure, use sp_depends.

To rename a procedure, use sp_rename.

Referencing Objects

SQL Server allows the creation of stored procedures that reference tables that do not yet exist. At creation time, only syntax
checking is done. The stored procedure is compiled to generate an execution plan when executed if a valid plan does not already
exist in the cache. Only during compilation are all objects referenced in the stored procedure resolved. Thus, a syntactically correct
stored procedure that references tables that do not exist can be created successfully; however, the store procedure will fail at run
time if the referenced tables do not exist. For more information, see Deferred Name Resolution and Compilation.

Deferred N ame Resolution and Compatibility Level

SQL Server allows Transact-SQL stored procedures to refer to tables that do not exist at creation time. This ability is called
deferred name resolution. An error message is returned at run time if the table or column referenced does not exist. If the
Transact-SQL stored procedure refers to a table defined within the stored procedure, a warning is issued at creation time if the
compatibility level setting (set by executing sp_dbcmptlevel) is 65. For more information, see sp_dbcmptlevel and Deferred
Name Resolution and Compilation.

Executing Stored Procedures

When a CREATE PROCEDURE statement is executed successfully, the procedure name is stored in the sysobjects system table
and the text of the CREATE PROCEDURE statement is stored in syscomments. When executed for the first time, the procedure is
compiled to determine an optimal access plan to retrieve the data.

Parameters Using the cursor Data Type

Stored procedures can use the cursor data type only for OUTPUT parameters. If the cursor data type is specified for a parameter,
both the VARYING and OUTPUT parameters are required. If the VARYING keyword is specified for a parameter, the data type
must be cursor and the OUTPUT keyword must be specified.

Note The cursor data type cannot be bound to application variables through the database APIs such as OLE DB, ODBC, ADO, and
DB-Library. Because OUTPUT parameters must be bound before an application can execute a stored procedure, stored procedures

with cursor OUTPUT parameters cannot be called from the database APIs. These procedures can be called from Transact-SQL
batches, stored procedures, or triggers only when the cursor OUTPUT variable is assigned to a Transact-SQL local cursor
variable.

Cursor Output Parameters

The following rules pertain to cursor output parameters when the procedure is executed:

For a forward-only cursor, the rows returned in the cursor's result set are only those rows at and beyond the position of the
cursor at the conclusion of the stored procedure executed, for example:

A nonscrollable cursor is opened in a procedure on a result set named RS of 100 rows.

The procedure fetches the first 5 rows of result set RS.

The procedure returns to its caller.

The result set RS returned to the caller consists of rows from 6 through 100 of RS, and the cursor in the caller is
positioned before the first row of RS.

For a forward-only cursor, if the cursor is positioned before the first row upon completion of the stored procedure, the
entire result set is returned to the calling batch, stored procedure, or trigger. When returned, the cursor position is set
before the first row.

For a forward-only cursor, if the cursor is positioned beyond the end of the last row upon completion of the stored
procedure, an empty result set is returned to the calling batch, stored procedure, or trigger.

Note An empty result set is not the same as a null value.

For a scrollable cursor, all the rows in the result set are returned to the calling batch, stored procedure, or trigger at the
conclusion of the execution of the stored procedure. When returned, the cursor position is left at the position of the last
fetch executed in the procedure.

For any type of cursor, if the cursor is closed, then a null value is passed back to the calling batch, stored procedure, or
trigger. This will also be the case if a cursor is assigned to a parameter, but that cursor is never opened.

Note The closed state matters only at return time. For example, it is valid to close a cursor part way through the procedure, to
open it again later in the procedure, and return that cursor's result set to the calling batch, stored procedure, or trigger.

Temporary Stored Procedures

SQL Server supports two types of temporary procedures: local and global. A local temporary procedure is visible only to the
connection that created it. A global temporary procedure is available to all connections. Local temporary procedures are
automatically dropped at the end of the current session. Global temporary procedures are dropped at the end of the last session
using the procedure. Usually, this is when the session that created the procedure ends.

Temporary procedures named with # and ## can be created by any user. When the procedure is created, the owner of the local
procedure is the only one who can use it. Permission to execute a local temporary procedure cannot be granted for other users. If
a global temporary procedure is created, all users can access it; permissions cannot be revoked explicitly. Explicitly creating a
temporary procedure in tempdb (naming without a number sign) can be performed only by those with explicit CREATE
PROCEDURE permission in the tempdb database. Permission can be granted and revoked from these procedures.

Note Heavy use of temporary stored procedures can create contention on the system tables in tempdb and adversely affect
performance. It is recommended that sp_executesql be used instead. sp_executesql does not store data in the system tables
and therefore avoids the problem.

Automatically Executing Stored Procedures

One or more stored procedures can execute automatically when SQL Server starts. The stored procedures must be created by the
system administrator and executed under the sysadmin fixed server role as a background process. The procedure(s) cannot have
any input parameters.

There is no limit to the number of startup procedures you can have, but be aware that each consumes one connection while
executing. If you must execute multiple procedures at startup but do not need to execute them in parallel, make one procedure the
startup procedure and have that procedure call the other procedures. This uses only one connection.

Execution of the stored procedures starts when the last database is recovered at startup. To skip launching these stored
procedures, specify trace flag 4022 as a startup parameter. If you start SQL Server with minimal configuration (using the -f flag),
the startup stored procedures are not executed. For more information, see Trace Flags.

To create a startup stored procedure, you must be logged in as a member of the sysadmin fixed server role and create the stored
procedure in the master database.

Use sp_procoption to:

Designate an existing stored procedure as a startup procedure.

Stop a procedure from executing at SQL Server startup.

Stored Procedure N esting

Stored procedures can be nested; that is one stored procedure calling another. The nesting level is incremented when the called
procedure starts execution, and decremented when the called procedure finishes execution. Exceeding the maximum levels of
nesting causes the whole calling procedure chain to fail. The current nesting level is returned by the @@NESTLEVEL function.

To estimate the size of a compiled stored procedure, use these Performance Monitor Counters.

Performance Monitor object name Performance Monitor Counter name
SQLServer: Buffer Manager Procedure Cache Pages
SQLServer: Cache Manager Cache Hit Ratio
 Cache Pages
 Cache Object Counts*

* These counters are available for various categories of cache objects including adhoc sql, prepared sql, procedures, triggers, and
so on.

For more information, see SQL Server: Buffer Manager Object and SQL Server: Cache Manager Object.

sql_statement Limitations

Any SET statement can be specified inside a stored procedure except SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL, which
must be the only statements in the batch. The SET option chosen remains in effect during the execution of the stored procedure
and then reverts to its former setting.

Inside a stored procedure, object names used with certain statements must be qualified with the name of the object owner if other
users are to use the stored procedure. The statements are:

ALTER TABLE

CREATE INDEX

CREATE TABLE

All DBCC statements

DROP TABLE

DROP INDEX

TRUNCATE TABLE

UPDATE STATISTICS

Permissions

CREATE PROCEDURE permissions default to members of the sysadmin fixed server role, and the db_owner and db_ddladmin
fixed database roles. Members of the sysadmin fixed server role and the db_owner fixed database role can transfer CREATE
PROCEDURE permissions to other users. Permission to execute a stored procedure is given to the procedure owner, who can then

set execution permission for other database users.

Examples

A. Use a simple procedure with a complex SELECT

This stored procedure returns all authors (first and last names supplied), their titles, and their publishers from a four-table join.
This stored procedure does not use any parameters.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'au_info_all' AND type = 'P')
 DROP PROCEDURE au_info_all
GO
CREATE PROCEDURE au_info_all
AS
SELECT au_lname, au_fname, title, pub_name
 FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON t.title_id = ta.title_id INNER JOIN publishers p
 ON t.pub_id = p.pub_id
GO

The au_info_all stored procedure can be executed in these ways:

EXECUTE au_info_all
-- Or
EXEC au_info_all

Or, if this procedure is the first statement within the batch:

au_info_all

B. Use a simple procedure with parameters

This stored procedure returns only the specified authors (first and last names supplied), their titles, and their publishers from a
four-table join. This stored procedure accepts exact matches for the parameters passed.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'au_info' AND type = 'P')
 DROP PROCEDURE au_info
GO
USE pubs
GO
CREATE PROCEDURE au_info
 @lastname varchar(40),
 @firstname varchar(20)
AS
SELECT au_lname, au_fname, title, pub_name
 FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON t.title_id = ta.title_id INNER JOIN publishers p
 ON t.pub_id = p.pub_id
 WHERE au_fname = @firstname
 AND au_lname = @lastname
GO

The au_info stored procedure can be executed in these ways:

EXECUTE au_info 'Dull', 'Ann'
-- Or
EXECUTE au_info @lastname = 'Dull', @firstname = 'Ann'
-- Or
EXECUTE au_info @firstname = 'Ann', @lastname = 'Dull'
-- Or
EXEC au_info 'Dull', 'Ann'
-- Or
EXEC au_info @lastname = 'Dull', @firstname = 'Ann'
-- Or
EXEC au_info @firstname = 'Ann', @lastname = 'Dull'

Or, if this procedure is the first statement within the batch:

au_info 'Dull', 'Ann'
-- Or

au_info @lastname = 'Dull', @firstname = 'Ann'
-- Or
au_info @firstname = 'Ann', @lastname = 'Dull'

C. Use a simple procedure with wildcard parameters

This stored procedure returns only the specified authors (first and last names supplied), their titles, and their publishers from a
four-table join. This stored procedure pattern matches the parameters passed or, if not supplied, uses the preset defaults.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'au_info2' AND type = 'P')
 DROP PROCEDURE au_info2
GO
USE pubs
GO
CREATE PROCEDURE au_info2
 @lastname varchar(30) = 'D%',
 @firstname varchar(18) = '%'
AS
SELECT au_lname, au_fname, title, pub_name
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON t.title_id = ta.title_id INNER JOIN publishers p
 ON t.pub_id = p.pub_id
WHERE au_fname LIKE @firstname
 AND au_lname LIKE @lastname
GO

The au_info2 stored procedure can be executed in many combinations. Only a few combinations are shown here:

EXECUTE au_info2
-- Or
EXECUTE au_info2 'Wh%'
-- Or
EXECUTE au_info2 @firstname = 'A%'
-- Or
EXECUTE au_info2 '[CK]ars[OE]n'
-- Or
EXECUTE au_info2 'Hunter', 'Sheryl'
-- Or
EXECUTE au_info2 'H%', 'S%'

D. Use OUTPUT parameters

OUTPUT parameters allow an external procedure, a batch, or more than one Transact-SQL statements to access a value set during
the procedure execution. In this example, a stored procedure (titles_sum) is created and allows one optional input parameter and
one output parameter.

First, create the procedure:

USE pubs
GO
IF EXISTS(SELECT name FROM sysobjects
 WHERE name = 'titles_sum' AND type = 'P')
 DROP PROCEDURE titles_sum
GO
USE pubs
GO
CREATE PROCEDURE titles_sum @TITLE varchar(40) = '%', @SUM money OUTPUT
AS
SELECT 'Title Name' = title
FROM titles
WHERE title LIKE @TITLE
SELECT @SUM = SUM(price)
FROM titles
WHERE title LIKE @TITLE
GO

Next, use the OUTPUT parameter with control-of-flow language.

Note The OUTPUT variable must be defined during the table creation as well as during use of the variable.

The parameter name and variable name do not have to match; however, the data type and parameter positioning must match
(unless @SUM = variable is used).

DECLARE @TOTALCOST money

EXECUTE titles_sum 'The%', @TOTALCOST OUTPUT
IF @TOTALCOST < 200
BEGIN
 PRINT ' '
 PRINT 'All of these titles can be purchased for less than $200.'
END
ELSE
 SELECT 'The total cost of these titles is $'
 + RTRIM(CAST(@TOTALCOST AS varchar(20)))

Here is the result set:

Title Name
--
The Busy Executive's Database Guide
The Gourmet Microwave
The Psychology of Computer Cooking

(3 row(s) affected)

Warning, null value eliminated from aggregate.

All of these titles can be purchased for less than $200.

E. Use an OUTPUT cursor parameter

OUTPUT cursor parameters are used to pass a cursor that is local to a stored procedure back to the calling batch, stored
procedure, or trigger.

First, create the procedure that declares and then opens a cursor on the titles table:

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'titles_cursor' and type = 'P')
DROP PROCEDURE titles_cursor
GO
CREATE PROCEDURE titles_cursor @titles_cursor CURSOR VARYING OUTPUT
AS
SET @titles_cursor = CURSOR
FORWARD_ONLY STATIC FOR
SELECT *
FROM titles

OPEN @titles_cursor
GO

Next, execute a batch that declares a local cursor variable, executes the procedure to assign the cursor to the local variable, and
then fetches the rows from the cursor.

USE pubs
GO
DECLARE @MyCursor CURSOR
EXEC titles_cursor @titles_cursor = @MyCursor OUTPUT
WHILE (@@FETCH_STATUS = 0)
BEGIN
 FETCH NEXT FROM @MyCursor
END
CLOSE @MyCursor
DEALLOCATE @MyCursor
GO

F. Use the WITH RECOM PILE option

The WITH RECOMPILE clause is helpful when the parameters supplied to the procedure will not be typical, and when a new
execution plan should not be cached or stored in memory.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'titles_by_author' AND type = 'P')
 DROP PROCEDURE titles_by_author
GO
CREATE PROCEDURE titles_by_author @LNAME_PATTERN varchar(30) = '%'
WITH RECOMPILE
AS
SELECT RTRIM(au_fname) + ' ' + RTRIM(au_lname) AS 'Authors full name',
 title AS Title
FROM authors a INNER JOIN titleauthor ta

 ON a.au_id = ta.au_id INNER JOIN titles t
 ON ta.title_id = t.title_id
WHERE au_lname LIKE @LNAME_PATTERN
GO

G. Use the WITH EN CRYPTION option

The WITH ENCRYPTION clause obfuscates the text of a stored procedure. This example creates an obfuscated procedure, uses the
sp_helptext system stored procedure to get information on that obfuscated procedure, and then attempts to get information on
that procedure directly from the syscomments table.

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'encrypt_this' AND type = 'P')
 DROP PROCEDURE encrypt_this
GO
USE pubs
GO
CREATE PROCEDURE encrypt_this
WITH ENCRYPTION
AS
SELECT *
FROM authors
GO

EXEC sp_helptext encrypt_this

Here is the result set:

The object's comments have been encrypted.

Next, select the identification number and text of the obfuscated stored procedure contents.

SELECT c.id, c.text
FROM syscomments c INNER JOIN sysobjects o
 ON c.id = o.id
WHERE o.name = 'encrypt_this'

Here is the result set:

Note The text column output is shown on a separate line. When executed, this information appears on the same line as the id
column information.

id text
---------- --
1413580074 ?????????????????????????????????
e??

(1 row(s) affected)

H. Create a user-defined system stored procedure

This example creates a procedure to display all the tables and their corresponding indexes with a table name beginning with the
string emp. If not specified, this procedure returns all tables (and indexes) with a table name beginning with sys.

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'sp_showindexes' AND type = 'P')
 DROP PROCEDURE sp_showindexes
GO
USE master
GO
CREATE PROCEDURE sp_showindexes
 @TABLE varchar(30) = 'sys%'
AS
SELECT o.name AS TABLE_NAME,
 i.name AS INDEX_NAME,
 indid AS INDEX_ID
FROM sysindexes i INNER JOIN sysobjects o
 ON o.id = i.id
WHERE o.name LIKE @TABLE
GO
USE pubs
EXEC sp_showindexes 'emp%'
GO

Here is the result set:

TABLE_NAME INDEX_NAME INDEX_ID
---------------- ---------------- ----------------
employee employee_ind 1
employee PK_emp_id 2

(2 row(s) affected)

I. Use deferred name resolution

This example shows a procedure that uses deferred name resolution. The stored procedure is created although the table that is
referenced does not exist at compile time. The table must exist, however, at the time the procedure is executed.

USE master
GO
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'proc1' AND type = 'P')
 DROP PROCEDURE proc1
GO
-- Create a procedure on a nonexistent table.
USE pubs
GO
CREATE PROCEDURE proc1
AS
 SELECT *
 FROM does_not_exist
GO
-- This statement returns the text of the procedure proc1.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c
 ON o.id = c.id
WHERE o.type = 'P' AND o.name = 'proc1'
GO

See Also

ALTER PROCEDURE

Batches

Control-of-Flow Language

Cursors

DBCC

DECLARE @local_variable

DROP PROCEDURE

Functions

GRANT

Programming Stored Procedures

SELECT

sp_addextendedproc

sp_depends

sp_helptext

sp_procoption

sp_recompile

sp_rename

System Tables

Using Comments

Using Variables and Parameters

Transact-SQL Reference (SQL Server 2000)

CREATE RULE
Creates an object called a rule. When bound to a column or a user-defined data type, a rule specifies the acceptable values that
can be inserted into that column. Rules, a backward compatibility feature, perform some of the same functions as check
constraints. CHECK constraints, created using the CHECK keyword of ALTER or CREATE TABLE, are the preferred, standard way to
restrict the values in a column (multiple constraints can be defined on one or multiple columns). A column or user-defined data
type can have only one rule bound to it. However, a column can have both a rule and one or more check constraints associated
with it. When this is true, all restrictions are evaluated.

Syntax

CREATE RULE rule
 AS condition_expression

Arguments

rule

Is the name of the new rule. Rule names must conform to the rules for identifiers. Specifying the rule owner name is optional.

condition_expression

Is the condition(s) defining the rule. A rule can be any expression valid in a WHERE clause and can include such elements as
arithmetic operators, relational operators, and predicates (for example, IN, LIKE, BETWEEN). A rule cannot reference columns or
other database objects. Built-in functions that do not reference database objects can be included.

condition_expression includes one variable. The at sign (@) precedes each local variable. The expression refers to the value
entered with the UPDATE or INSERT statement. Any name or symbol can be used to represent the value when creating the rule,
but the first character must be the at sign (@).

Remarks

The CREATE RULE statement cannot be combined with other Transact-SQL statements in a single batch. Rules do not apply to
data already existing in the database at the time the rules are created, and rules cannot be bound to system data types. A rule can
be created only in the current database. After creating a rule, execute sp_bindrule to bind the rule to a column or to a user-
defined data type.

The rule must be compatible with the column data type. A rule cannot be bound to a text, image, or timestamp column. Be sure
to enclose character and date constants with single quotation marks (') and to precede binary constants with 0x. For example,
"@value LIKE A%" cannot be used as a rule for a numeric column. If the rule is not compatible with the column to which it is
bound, Microsoft® SQL Server™ returns an error message when inserting a value, but not when the rule is bound.

A rule bound to a user-defined data type is activated only when you attempt to insert a value into, or to update, a database
column of the user-defined data type. Because rules do not test variables, do not assign a value to a user-defined data type
variable that would be rejected by a rule bound to a column of the same data type.

To get a report on a rule, use sp_help. To display the text of a rule, execute sp_helptext with the rule name as the parameter. To
rename a rule, use sp_rename.

A rule must be dropped (using DROP RULE) before a new one with the same name is created, and the rule must be unbound
(using sp_unbindrule) before it is dropped. Use sp_unbindrule to unbind a rule from a column.

You can bind a new rule to a column or data type without unbinding the previous one; the new rule overrides the previous one.
Rules bound to columns always take precedence over rules bound to user-defined data types. Binding a rule to a column replaces
a rule already bound to the user-defined data type of that column. But binding a rule to a data type does not replace a rule bound
to a column of that user-defined data type. The table shows the precedence in effect when binding rules to columns and to user-
defined data types where rules already exist.

 Old rule bound to
New rule bound to user-defined data type Column

User-defined data type Old rule replaced No change
Column Old rule replaced Old rule replaced

If a column has both a default and a rule associated with it, the default must fall within the domain defined by the rule. A default

that conflicts with a rule is never inserted. SQL Server generates an error message each time it attempts to insert such a default.

Note Whether SQL Server interprets an empty string as a single space or as a true empty string is controlled by the setting of
sp_dbcmptlevel. If the compatibility level is less than or equal to 65, SQL Server interprets empty strings as single spaces. If the
compatibility level is equal to 70, SQL Server interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

Permissions

CREATE RULE permissions default to the members of the sysadmin fixed server role and the db_ddladmin and db_owner fixed
database roles. Members of the sysadmin, db_owner and db_securityadmin roles can transfer permissions to other users.

Examples

A. Rule with a range

This example creates a rule that restricts the range of integers inserted into the column(s) to which this rule is bound.

CREATE RULE range_rule
AS
@range >= $1000 AND @range < $20000

B. Rule with a list

This example creates a rule that restricts the actual values entered into the column or columns (to which this rule is bound) to only
those listed in the rule.

CREATE RULE list_rule
AS
@list IN ('1389', '0736', '0877')

C. Rule with a pattern

This example creates a rule to follow a pattern of any two characters followed by a hyphen, any number of characters (or no
characters), and ending with an integer from 0 through 9.

CREATE RULE pattern_rule
AS
@value LIKE '_ _-%[0-9]'

See Also

ALTER TABLE

Batches

CREATE DEFAULT

CREATE TABLE

DROP DEFAULT

DROP RULE

Expressions

sp_bindrule

sp_help

sp_helptext

sp_rename

sp_unbindrule

Using Identifiers

WHERE

Transact-SQL Reference (SQL Server 2000)

CREATE SCHEMA
Creates a schema that can be thought of as a conceptual object containing definitions of tables, views, and permissions.

Syntax

CREATE SCHEMA AUTHORIZATION owner
 [< schema_element > [...n]]

< schema_element > ::=
 { table_definition | view_definition | grant_statement }

Arguments

AUTHORIZATION owner

Specifies the ID of the schema object owner. This identifier must be a valid security account in the database.

table_definition

Specifies a CREATE TABLE statement that creates a table within the schema.

view_definition

Specifies a CREATE VIEW statement that creates a view within the schema.

grant_statement

Specifies a GRANT statement that grants permissions for a user or a group of users.

Remarks

CREATE SCHEMA provides a way to create tables and views and to grant permissions for objects with a single statement. If errors
occur when creating any objects or granting any permissions specified in a CREATE SCHEMA statement, none of the objects are
created.

The created objects do not have to appear in logical order, except for views that reference other views. For example, a GRANT
statement can grant permission for an object before the object itself is created, or a CREATE VIEW statement can appear before
the CREATE TABLE statements creating the tables referenced by the view. Also, CREATE TABLE statements can declare foreign keys
to tables specified later. The exception is that if the select from one view references another view, the referenced view must be
specified before the view that references it.

Permissions

CREATE SCHEMA permissions default to all users, but they must have permissions to create the objects that participate in the
schema.

Examples

A. Grant access to objects before object creation

This example shows permissions granted before the objects are created.

CREATE SCHEMA AUTHORIZATION ross
GRANT SELECT on v1 TO public
CREATE VIEW v1(c1) AS SELECT c1 from t1
CREATE TABLE t1(c1 int)

B. Create mutually dependent FOREIGN KEY constraints

This example creates mutually dependent FOREIGN KEY constraints. Other methods would take several steps to accomplish what
is enabled by this CREATE SCHEMA example.

CREATE SCHEMA AUTHORIZATION ross
CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 INT REFERENCES t2(c1))
CREATE TABLE t2 (c1 INT PRIMARY KEY, c2 INT REFERENCES t1(c1))

Transact-SQL Reference (SQL Server 2000)

CREATE STATISTICS
Creates a histogram and associated density groups (collections) over the supplied column or set of columns.

Syntax

CREATE STATISTICS statistics_name
ON { table | view } (column [,...n])
 [WITH
 [[FULLSCAN
 | SAMPLE number { PERCENT | ROWS }] [,]]
 [NORECOMPUTE]
]

Arguments

statistics_name

Is the name of the statistics group to create. Statistics names must conform to the rules for identifiers.

table

Is the name of the table on which to create the named statistics. Table names must conform to the rules for identifiers. table is the
table with which the column is associated. Specifying the table owner name is optional. Statistics can be created on tables in
another database by specifying a qualified database name.

view

Is the name of the view on which to create the named statistics. A view must have a clustered index before statistics can be
created on it. View names must conform to the rules for identifiers. view is the view with which the column is associated.
Specifying the view owner name is optional. Statistics can be created on views in another database by specifying a qualified
database name.

column

Is the column or set of columns on which to create statistics. Computed columns and columns of the ntext, text, or image data
types cannot be specified as statistics columns.

n

Is a placeholder indicating that multiple columns can be specified.

FULLSCAN

Specifies that all rows in table should be read to gather the statistics. Specifying FULLSCAN provides the same behavior as
SAMPLE 100 PERCENT. This option cannot be used with the SAMPLE option.

SAMPLE number { PERCENT | ROWS }

Specifies that a percentage, or a specified number of rows, of the data should be read using random sampling to gather the
statistics. number can be only an integer: if PERCENT, number should be from 0 through 100; if ROWS, number can be from 0 to
the n total rows.

This option cannot be used with the FULLSCAN option. If no SAMPLE or FULLSCAN option is given, an automatic sample is
computed by Microsoft® SQL Server™.

NORECOMPUTE

Specifies that automatic recomputation of the statistics should be disabled. If this option is specified, SQL Server continues to use
previously created (old) statistics even as the data changes. The statistics are not automatically updated and maintained by SQL
Server, which may produce suboptimal plans.

Warning It is recommended that this option be used rarely and only by a trained system administrator.

Remarks

Only the table owner can create statistics on that table. The owner of a table can create a statistics group (collection) at any time,
whether or not there is data in the table.

CREATE STATISTICS can be executed on views with clustered index, or indexed views. Statistics on indexed views are used by the
optimizer only if the view is directly referenced in the query and the NOEXPAND hint is specified for the view. Otherwise, the
statistics are derived from the underlying tables before the indexed view is substituted into the query plan. Such substitution is
supported only on Microsoft SQL Server 2000 Enterprise and Developer Editions.

Permissions

CREATE STATISTICS permissions default to members of the sysadmin fixed server role and the db_ddladmin and db_owner
fixed database roles and the table owner, and are not transferable.

Examples

A. Use CREATE STATISTICS with SAM PLE number PERCEN T

This example creates the names statistics group (collection), which calculates random sampling statistics on five percent of the
CompanyName and ContactName columns of the Customers table.

CREATE STATISTICS names
 ON Customers (CompanyName, ContactName)
 WITH SAMPLE 5 PERCENT
GO

B. Use CREATE STATISTICS with FULLSCAN and N ORECOM PUTE

This example creates the names statistics group (collection), which calculates statistics for all rows in the CompanyName and
ContactName columns of the Customers table and disables automatic recomputation of statistics.

CREATE STATISTICS names
 ON Northwind..Customers (CompanyName, ContactName)
 WITH FULLSCAN, NORECOMPUTE
GO

See Also

CREATE INDEX

DBCC SHOW_STATISTICS

DROP STATISTICS

sp_autostats

sp_createstats

sp_dboption

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

CREATE TABLE
 Topic last updated -- July 2003

Creates a new table.

Syntax

CREATE TABLE
 [database_name.[owner] . | owner.] table_name
 ({ < column_definition >
 | column_name AS computed_column_expression
 | < table_constraint > } [,...n]
)

[ON { filegroup | DEFAULT }]
[TEXTIMAGE_ON { filegroup | DEFAULT }]

< column_definition > ::= column_name data_type
 [COLLATE < collation_name >]
 [[DEFAULT constant_expression]
 | [IDENTITY [(seed , increment) [NOT FOR REPLICATION]]]
]
 [ROWGUIDCOL]
 [< column_constraint >] [...n]

< column_constraint > ::= [CONSTRAINT constraint_name]
 { [NULL | NOT NULL]
 | [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor]
 [ON {filegroup | DEFAULT}]]
]
 | [[FOREIGN KEY]
 REFERENCES ref_table [(ref_column)]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 [NOT FOR REPLICATION]
]
 | CHECK [NOT FOR REPLICATION]
 (logical_expression)
 }

< table_constraint > ::= [CONSTRAINT constraint_name]
 { [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 { (column [ASC | DESC] [,...n]) }
 [WITH FILLFACTOR = fillfactor]
 [ON { filegroup | DEFAULT }]
]
 | FOREIGN KEY
 [(column [,...n])]
 REFERENCES ref_table [(ref_column [,...n])]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION]
 (search_conditions)
 }

Arguments

database_name

Is the name of the database in which the table is created. database_name must specify the name of an existing database.
database_name defaults to the current database if not specified. The login for the current connection must be associated with an
existing user ID in the database specified by database_name, and that user ID must have create table permissions.

owner

Is the name of the user ID that owns the new table. owner must be an existing user ID in the database specified by
database_name. owner defaults to the user ID associated with the login for the current connection in the database specified in
database_name. If the CREATE TABLE statement is executed by a member of the sysadmin fixed server role, or a member of the
db_dbowner or db_ddladmin fixed database roles in the database specified by database_name, owner can specify a user ID
other than the one associated with the login of the current connection. If the CREATE TABLE statement is executed by a login
associated with a user ID that has only create table permissions, owner must specify the user ID associated with the current login.
Members of the sysadmin fixed server role, or logins aliased to the dbo user are associated with the user ID dbo; therefore,
tables created by these users default to having dbo as the owner. Tables created by any logins not in either of these two roles
have owner default to the user ID associated with the login.

table_name

Is the name of the new table. Table names must conform to the rules for identifiers. The combination of owner.table_name must
be unique within the database. table_name can contain a maximum of 128 characters, except for local temporary table names
(names prefixed with a single number sign (#)) that cannot exceed 116 characters.

column_name

Is the name of a column in the table. Column names must conform to the rules for identifiers and must be unique in the table.
column_name can be omitted for columns created with a timestamp data type. The name of a timestamp column defaults to
timestamp if column_name is not specified.

computed_column_expression

Is an expression defining the value of a computed column. A computed column is a virtual column not physically stored in the
table. It is computed from an expression using other columns in the same table. For example, a computed column can have the
definition: cost AS price * qty. The expression can be a noncomputed column name, constant, function, variable, and any
combination of these connected by one or more operators. The expression cannot be a subquery.

Computed columns can be used in select lists, WHERE clauses, ORDER BY clauses, or any other locations in which regular
expressions can be used, with the following exceptions:

A computed column cannot be used as a DEFAULT or FOREIGN KEY constraint definition or with a NOT NULL constraint
definition. However, a computed column can be used as a key column in an index or as part of any PRIMARY KEY or
UNIQUE constraint, if the computed column value is defined by a deterministic expression and the data type of the result is
allowed in index columns.

For example, if the table has integer columns a and b, the computed column a+b may be indexed, but computed column
a+DATEPART(dd, GETDATE()) cannot be indexed because the value may change in subsequent invocations.

A computed column cannot be the target of an INSERT or UPDATE statement.

Note Each row in a table can have different values for columns involved in a computed column, therefore the computed
column may not have the same value for each row.

The nullability of computed columns is determined automatically by SQL Server based on the expressions used. The result
of most expressions is considered nullable even if only non-nullable columns are present because possible underflows or
overflows will produce NULL results as well. Use the COLUMNPROPERTY function (AllowsNull property) to investigate the
nullability of any computed column in a table. An expression expr that is nullable can be turned into a non-nullable one by
specifying ISNULL(check_expression, constant) where the constant is a non-NULL value substituted for any NULL result.

ON {filegroup | DEFAULT}

Specifies the filegroup on which the table is stored. If filegroup is specified, the table is stored in the named filegroup. The
filegroup must exist within the database. If DEFAULT is specified, or if ON is not specified at all, the table is stored on the default
filegroup.

ON {filegroup | DEFAULT} can also be specified in a PRIMARY KEY or UNIQUE constraint. These constraints create indexes. If
filegroup is specified, the index is stored in the named filegroup. If DEFAULT is specified, the index is stored in the default
filegroup. If no filegroup is specified in a constraint, the index is stored on the same filegroup as the table. If the PRIMARY KEY or
UNIQUE constraint creates a clustered index, the data pages for the table are stored in the same filegroup as the index.

Note DEFAULT, in the context of ON {filegroup | DEFAULT} and TEXTIMAGE_ON {filegroup | DEFAULT}, is not a keyword.
DEFAULT is an identifier for the default filegroup and must be delimited, as in ON "DEFAULT" or ON [DEFAULT] and
TEXTIMAGE_ON "DEFAULT" or TEXTIMAGE_ON [DEFAULT].

TEXTIMAGE_ON

Are keywords indicating that the text, ntext, and image columns are stored on the specified filegroup. TEXTIMAGE ON is not
allowed if there are no text, ntext, or image columns in the table. If TEXTIMAGE_ON is not specified, the text, ntext, and image
columns are stored in the same filegroup as the table.

data_type

Specifies the column data type. System or user-defined data types are acceptable. User-defined data types are created with
sp_addtype before they can be used in a table definition.

The NULL/NOT NULL assignment for a user-defined data type can be overridden during the CREATE TABLE statement. However,
the length specification cannot be changed; you cannot specify a length for a user-defined data type in a CREATE TABLE
statement.

DEFAULT

Specifies the value provided for the column when a value is not explicitly supplied during an insert. DEFAULT definitions can be
applied to any columns except those defined as timestamp, or those with the IDENTITY property. DEFAULT definitions are
removed when the table is dropped. Only a constant value, such as a character string; a system function, such as SYSTEM_USER();
or NULL can be used as a default. To maintain compatibility with earlier versions of SQL Server, a constraint name can be
assigned to a DEFAULT.

constant_expression

Is a constant, NULL, or a system function used as the default value for the column.

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table, Microsoft® SQL Server™ provides a
unique, incremental value for the column. Identity columns are commonly used in conjunction with PRIMARY KEY constraints to
serve as the unique row identifier for the table. The IDENTITY property can be assigned to tinyint, smallint, int, bigint,
decimal(p,0), or numeric(p,0) columns. Only one identity column can be created per table. Bound defaults and DEFAULT
constraints cannot be used with an identity column. You must specify both the seed and increment or neither. If neither is
specified, the default is (1,1).

seed

Is the value used for the very first row loaded into the table.

increment

Is the incremental value added to the identity value of the previous row loaded.

NOT FOR REPLICATION

Indicates that the IDENTITY property should not be enforced when a replication login such as sqlrepl inserts data into the table.
Replicated rows must retain the key values assigned in the publishing database; the NOT FOR REPLICATION clause ensures that
rows inserted by a replication process are not assigned new identity values. Rows inserted by other logins continue to have new
identity values created in the usual way. It is recommended that a CHECK constraint with NOT FOR REPLICATION also be defined
to ensure that the identity values assigned are within the range wanted for the current database.

ROWGUIDCOL

Indicates that the new column is a row global unique identifier column. Only one uniqueidentifier column per table can be
designated as the ROWGUIDCOL column. The ROWGUIDCOL property can be assigned only to a uniqueidentifier column. The
ROWGUIDCOL keyword is not valid if the database compatibility level is 65 or lower. For more information, see sp_dbcmptlevel.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column. It also does not automatically
generate values for new rows inserted into the table. To generate unique values for each column, either use the NEWID function
on INSERT statements or use the NEWID function as the default for the column.

collation_name

Specifies the collation for the column. Collation name can be either a Windows collation name or a SQL collation name. The
collation_name is applicable only for columns of the char, varchar, text, nchar, nvarchar, and ntext data types. If not specified,
the column is assigned either the collation of the user-defined data type, if the column is of a user-defined data type, or the

default collation of the database.

For more information about the Windows and SQL collation names, see COLLATE.

CONSTRAINT

Is an optional keyword indicating the beginning of a PRIMARY KEY, NOT NULL, UNIQUE, FOREIGN KEY, or CHECK constraint
definition. Constraints are special properties that enforce data integrity and they may create indexes for the table and its columns.

constraint_name

Is the name of a constraint. Constraint names must be unique within a database.

NULL | NOT NULL

Are keywords that determine if null values are allowed in the column. NULL is not strictly a constraint but can be specified in the
same manner as NOT NULL.

PRIMARY KEY

Is a constraint that enforces entity integrity for a given column or columns through a unique index. Only one PRIMARY KEY
constraint can be created per table.

UNIQUE

Is a constraint that provides entity integrity for a given column or columns through a unique index. A table can have multiple
UNIQUE constraints.

CLUSTERED | NONCLUSTERED

Are keywords to indicate that a clustered or a nonclustered index is created for the PRIMARY KEY or UNIQUE constraint. PRIMARY
KEY constraints default to CLUSTERED and UNIQUE constraints default to NONCLUSTERED.

You can specify CLUSTERED for only one constraint in a CREATE TABLE statement. If you specify CLUSTERED for a UNIQUE
constraint and also specify a PRIMARY KEY constraint, the PRIMARY KEY defaults to NONCLUSTERED.

[WITH FILLFACTOR = fillfactor]

Specifies how full SQL Server should make each index page used to store the index data. User-specified fillfactor values can be
from 1 through 100, with a default of 0. A lower fill factor creates the index with more space available for new index entries
without having to allocate new space.

FOREIGN KEY...REFERENCES

Is a constraint that provides referential integrity for the data in the column or columns. FOREIGN KEY constraints require that each
value in the column exists in the corresponding referenced column(s) in the referenced table. FOREIGN KEY constraints can
reference only columns that are PRIMARY KEY or UNIQUE constraints in the referenced table or columns referenced in a UNIQUE
INDEX on the referenced table.

ref_table

Is the name of the table referenced by the FOREIGN KEY constraint.

(ref_column[,...n])

Is a column, or list of columns, from the table referenced by the FOREIGN KEY constraint.

ON DELETE {CASCADE | NO ACTION}

Specifies what action takes place to a row in the table created, if that row has a referential relationship and the referenced row is
deleted from the parent table. The default is NO ACTION.

If CASCADE is specified, a row is deleted from the referencing table if that row is deleted from the parent table. If NO ACTION is
specified, SQL Server raises an error and the delete action on the row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table. The
Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If a DELETE statement is executed on a row in the Customers table, and an ON DELETE CASCADE action is specified for
Orders.CustomerID, SQL Server checks for one or more dependent rows in the Orders table. If any, the dependent rows in the
Orders table are deleted, as well as the row referenced in the Customers table.

On the other hand, if NO ACTION is specified, SQL Server raises an error and rolls back the delete action on the Customers row if
there is at least one row in the Orders table that references it.

ON UPDATE {CASCADE | NO ACTION}

Specifies what action takes place to a row in the table created, if that row has a referential relationship and the referenced row is
updated in the parent table. The default is NO ACTION.

If CASCADE is specified, the row is updated in the referencing table if that row is updated in the parent table. If NO ACTION is
specified, SQL Server raises an error and the update action on the row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table:
Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on a row in the Customers table, and an ON UPDATE CASCADE action is specified for
Orders.CustomerID, SQL Server checks for one or more dependent rows in the Orders table. If any exist, the dependent rows in
the Orders table are updated, as well as the row referenced in the Customers.

Alternately, if NO ACTION is specified, SQL Server raises an error and rolls back the update action on the Customers row if there
is at least one row in the Orders table that references it.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be entered into a column or columns.

NOT FOR REPLICATION

Keywords used to prevent the CHECK constraint from being enforced during the distribution process used by replication. When
tables are subscribers to a replication publication, do not update the subscription table directly, instead update the publishing
table, and let replication distribute the data back to the subscribing table. A CHECK constraint can be defined on the subscription
table to prevent users from modifying it. Unless the NOT FOR REPLICATION clause is added, however, the CHECK constraint also
prevents the replication process from distributing modifications from the publishing table to the subscribing table. The NOT FOR
REPLICATION clause means the constraint is enforced on user modifications but not on the replication process.

The NOT FOR REPLICATION CHECK constraint is applied to both the before and after image of an updated record to prevent
records from being added to or deleted from the replicated range. All deletes and inserts are checked; if they fall within the
replicated range, they are rejected.

When this constraint is used with an identity column, SQL Server allows the table not to have its identity column values reseeded
when a replication user updates the identity column.

logical_expression

Is a logical expression that returns TRUE or FALSE.

column

Is a column or list of columns, in parentheses, used in table constraints to indicate the columns used in the constraint definition.

[ASC | DESC]

Specifies the order in which the column or columns participating in table constraints are sorted. The default is ASC.

n

Is a placeholder indicating that the preceding item can be repeated n number of times.

Remarks

SQL Server can have as many as two billion tables per database and 1,024 columns per table. The number of rows and total size
of the table are limited only by the available storage. The maximum number of bytes per row is 8,060. If you create tables with
varchar, nvarchar, or varbinary columns in which the total defined width exceeds 8,060 bytes, the table is created, but a
warning message appears. Trying to insert more than 8,060 bytes into such a row or to update a row so that its total row size
exceeds 8,060 produces an error message and the statement fails.

CREATE TABLE statements that include a sql_variant column can generate the following warning:

The total row size (xx) for table 'yy' exceeds the maximum number of bytes per row (8060). Rows that exceed the
maximum number of bytes will not be added.

This warning occurs because sql_variant can have a maximum length of 8016 bytes. When a sql_variant column contains values
close to the maximum length, it can overshoot the row's maximum size limit.

Each table can contain a maximum of 249 nonclustered indexes and 1 clustered index. These include the indexes generated to
support any PRIMARY KEY and UNIQUE constraints defined for the table.

SQL Server does not enforce an order in which DEFAULT, IDENTITY, ROWGUIDCOL, or column constraints are specified in a
column definition.

When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the table's meta data, even if the option is set
to OFF when the table is created.

Temporary Tables

You can create local and global temporary tables. Local temporary tables are visible only in the current session; global temporary
tables are visible to all sessions.

Prefix local temporary table names with single number sign (#table_name), and prefix global temporary table names with a
double number sign (##table_name).

SQL statements reference the temporary table using the value specified for table_name in the CREATE TABLE statement:

CREATE TABLE #MyTempTable (cola INT PRIMARY KEY)
INSERT INTO #MyTempTable VALUES (1)

If a local temporary table is created in a stored procedure or application that can be executed at the same time by several users,
SQL Server has to be able to distinguish the tables created by the different users. SQL Server does this by internally appending a
numeric suffix to each local temporary table name. The full name of a temporary table as stored in the sysobjects table in
tempdb consists of table name specified in the CREATE TABLE statement and the system-generated numeric suffix. To allow for
the suffix, table_name specified for a local temporary name cannot exceed 116 characters.

Temporary tables are automatically dropped when they go out of scope, unless explicitly dropped using DROP TABLE:

A local temporary table created in a stored procedure is dropped automatically when the stored procedure completes. The
table can be referenced by any nested stored procedures executed by the stored procedure that created the table. The table
cannot be referenced by the process which called the stored procedure that created the table.

All other local temporary tables are dropped automatically at the end of the current session.

Global temporary tables are automatically dropped when the session that created the table ends and all other tasks have
stopped referencing them. The association between a task and a table is maintained only for the life of a single Transact-
SQL statement. This means that a global temporary table is dropped at the completion of the last Transact-SQL statement
that was actively referencing the table when the creating session ended.

A local temporary table created within a stored procedure or trigger can have the same name as a temporary table created before
the stored procedure or trigger is called. However, if a query references a temporary table, and two temporary tables with the
same name exist at that time, it is not defined which table the query is resolved against. Nested stored procedures can also create
temporary tables with the same name as a temporary table created by the stored procedure that called it. All references to the
table name in the nested stored procedure are resolved to the table created in the nested procedure, for example:

CREATE PROCEDURE Test2
AS
CREATE TABLE #t(x INT PRIMARY KEY)
INSERT INTO #t VALUES (2)
SELECT Test2Col = x FROM #t
GO
CREATE PROCEDURE Test1
AS
CREATE TABLE #t(x INT PRIMARY KEY)
INSERT INTO #t VALUES (1)
SELECT Test1Col = x FROM #t
EXEC Test2
GO
CREATE TABLE #t(x INT PRIMARY KEY)
INSERT INTO #t VALUES (99)
GO
EXEC Test1
GO

Here is the result set:

(1 row(s) affected)

Test1Col

1

(1 row(s) affected)

Test2Col

2

When you create local or global temporary tables, the CREATE TABLE syntax supports constraint definitions with the exception of
FOREIGN KEY constraints. If a FOREIGN KEY constraint is specified in a temporary table, the statement returns a warning message
indicating that the constraint was skipped, and the table is still created without the FOREIGN KEY constraints. Temporary tables
cannot be referenced in FOREIGN KEY constraints.

Consider using table variables instead of temporary tables. Temporary tables are useful in cases when indexes need to be created
explicitly on them, or when the table values need to be visible across multiple stored procedures or functions. In general, table
variables contribute to more efficient query processing. For more information, see table.

PRIM ARY KEY Constraints

A table can contain only one PRIMARY KEY constraint.

The index generated by a PRIMARY KEY constraint cannot cause the number of indexes on the table to exceed 249
nonclustered indexes and 1 clustered index.

If CLUSTERED or NONCLUSTERED is not specified for a PRIMARY KEY constraint, CLUSTERED is used if there are no
clustered indexes specified for UNIQUE constraints.

All columns defined within a PRIMARY KEY constraint must be defined as NOT NULL. If nullability is not specified, all
columns participating in a PRIMARY KEY constraint have their nullability set to NOT NULL.

UN IQUE Constraints

If CLUSTERED or NONCLUSTERED is not specified for a UNIQUE constraint, NONCLUSTERED is used by default.

Each UNIQUE constraint generates an index. The number of UNIQUE constraints cannot cause the number of indexes on the
table to exceed 249 nonclustered indexes and 1 clustered index.

FOREIGN KEY Constraints

When a value other than NULL is entered into the column of a FOREIGN KEY constraint, the value must exist in the
referenced column; otherwise, a foreign key violation error message is returned.

FOREIGN KEY constraints are applied to the preceding column unless source columns are specified.

FOREIGN KEY constraints can reference only tables within the same database on the same server. Cross-database referential
integrity must be implemented through triggers. For more information, see CREATE TRIGGER.

FOREIGN KEY constraints can reference another column in the same table (a self-reference).

The REFERENCES clause of a column-level FOREIGN KEY constraint can list only one reference column, which must have the
same data type as the column on which the constraint is defined.

The REFERENCES clause of a table-level FOREIGN KEY constraint must have the same number of reference columns as the
number of columns in the constraint column list. The data type of each reference column must also be the same as the
corresponding column in the column list.

CASCADE may not be specified if a column of type timestamp is part of either the foreign key or the referenced key.

It is possible to combine CASCADE and NO ACTION on tables that have referential relationships with each other. If SQL
Server encounters NO ACTION, it terminates and rolls back related CASCADE actions. When a DELETE statement causes a
combination of CASCADE and NO ACTION actions, all the CASCADE actions are applied before SQL Server checks for any
NO ACTION.

A table can contain a maximum of 253 FOREIGN KEY constraints.

FOREIGN KEY constraints are not enforced on temporary tables.

A table can reference a maximum of 253 different tables in its FOREIGN KEY constraints.

FOREIGN KEY constraints can reference only columns in PRIMARY KEY or UNIQUE constraints in the referenced table or in a
UNIQUE INDEX on the referenced table.

DEFAULT Defin itions

A column can have only one DEFAULT definition.

A DEFAULT definition can contain constant values, functions, SQL-92 niladic functions, or NULL. The table shows the niladic
functions and the values they return for the default during an INSERT statement.

SQL-92 niladic function Value returned
CURRENT_TIMESTAMP Current date and time.
CURRENT_USER Name of user performing insert.
SESSION_USER Name of user performing insert.
SYSTEM_USER Name of user performing insert.
USER Name of user performing insert.

constant_expression in a DEFAULT definition cannot refer to another column in the table, or to other tables, views, or stored
procedures.

DEFAULT definitions cannot be created on columns with a timestamp data type or columns with an IDENTITY property.

DEFAULT definitions cannot be created for columns with user-defined data types if the user-defined data type is bound to a
default object.

CHECK Constraints

A column can have any number of CHECK constraints, and the condition can include multiple logical expressions combined
with AND and OR. Multiple CHECK constraints for a column are validated in the order created.

The search condition must evaluate to a Boolean expression and cannot reference another table.

A column-level CHECK constraint can reference only the constrained column, and a table-level CHECK constraint can
reference only columns in the same table.

CHECK CONSTRAINTS and rules serve the same function of validating the data during INSERT and DELETE statements.

When a rule and one or more CHECK constraints exist for a column or columns, all restrictions are evaluated.

Additional Constraint Information

An index created for a constraint cannot be dropped with the DROP INDEX statement; the constraint must be dropped with
the ALTER TABLE statement. An index created for and used by a constraint can be rebuilt with the DBCC DBREINDEX
statement.

Constraint names must follow the rules for identifiers, except that the name cannot begin with a number sign (#). If
constraint_name is not supplied, a system-generated name is assigned to the constraint. The constraint name appears in
any error message about constraint violations.

When a constraint is violated in an INSERT, UPDATE, or DELETE statement, the statement is terminated. However, the
transaction (if the statement is part of an explicit transaction) continues to be processed. You can use the ROLLBACK
TRANSACTION statement with the transaction definition by checking the @@ERROR system function.

If a table has FOREIGN KEY or CHECK CONSTRAINTS and triggers, the constraint conditions are evaluated before the trigger is

executed.

For a report on a table and its columns, use sp_help or sp_helpconstraint. To rename a table, use sp_rename. For a report on
the views and stored procedures that depend on a table, use sp_depends.

Space is generally allocated to tables and indexes in increments of one extent at a time. When the table or index is created, it is
allocated pages from mixed extents until it has enough pages to fill a uniform extent. After it has enough pages to fill a uniform
extent, another extent is allocated each time the currently allocated extents become full. For a report about the amount of space
allocated and used by a table, execute sp_spaceused.

N ullability Rules Within a Table Defin ition

The nullability of a column determines whether or not that column can allow a null value (NULL) as the data in that column. NULL
is not zero or blank: it means no entry was made or an explicit NULL was supplied, and it usually implies that the value is either
unknown or not applicable.

When you create or alter a table with the CREATE TABLE or ALTER TABLE statements, database and session settings influence and
possibly override the nullability of the data type used in a column definition. It is recommended that you always explicitly define a
column as NULL or NOT NULL for noncomputed columns or, if you use a user-defined data type, that you allow the column to
use the default nullability of the data type.

When not explicitly specified, column nullability follows these rules:

If the column is defined with a user-defined data type:
SQL Server uses the nullability specified when the data type was created. Use sp_help to get the default nullability
of the data type.

If the column is defined with a system-supplied data type:
If the system-supplied data type has only one option, it takes precedence. timestamp data types must be NOT
NULL.

If the setting of sp_dbcmptlevel is 65 or lower, bit data types default to NOT NULL if the column does not have an
explicit NULL or NOT NULL. For more information, see sp_dbcmptlevel.

If any session settings are ON (turned on with the SET statement), then:

If ANSI_NULL_DFLT_ON is ON, NULL is assigned.

If ANSI_NULL_DFLT_OFF is ON, NOT NULL is assigned.

If any database settings are configured (changed with sp_dboption), then:

If ANSI null default is true, NULL is assigned.

If ANSI null default is false, NOT NULL is assigned.

When neither of the ANSI_NULL_DFLT options is set for the session and the database is set to the default (ANSI null
default is false), then the SQL Server default of NOT NULL is assigned.

If the column is a computed column, its nullability is always determined automatically by SQL Server. Use the
COLUMNPROPERTY function (AllowsNull property) to find out the nullability of such a column.

Note The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server both default to having ANSI_NULL_DFLT_ON
set to ON. ODBC and OLE DB users can configure this in ODBC data sources, or with connection attributes or properties set by the
application.

Permissions

CREATE TABLE permission defaults to the members of the db_owner and db_ddladmin fixed database roles. Members of the
db_owner fixed database role and members of the sysadmin fixed server role can transfer CREATE TABLE permission to other
users.

Examples

A. Use PRIM ARY KEY constraints

This example shows the column definition for a PRIMARY KEY constraint with a clustered index on the job_id column of the jobs
table (allowing the system to supply the constraint name) in the pubs sample database.

job_id smallint
 PRIMARY KEY CLUSTERED

This example shows how a name can be supplied for the PRIMARY KEY constraint. This constraint is used on the emp_id column
of the employee table. This column is based on a user-defined data type.

emp_id empid
 CONSTRAINT PK_emp_id PRIMARY KEY NONCLUSTERED

B. Use FOREIGN KEY constraints

A FOREIGN KEY constraint is used to reference another table. Foreign keys can be single-column keys or multicolumn keys. This
example shows a single-column FOREIGN KEY constraint on the employee table that references the jobs table. Only the
REFERENCES clause is required for a single-column FOREIGN KEY constraint.

job_id smallint NOT NULL
 DEFAULT 1
 REFERENCES jobs(job_id)

You can also explicitly use the FOREIGN KEY clause and restate the column attribute. Note that the column name does not have to
be the same in both tables.

FOREIGN KEY (job_id) REFERENCES jobs(job_id)

Multicolumn key constraints are created as table constraints. In the pubs database, the sales table includes a multicolumn
PRIMARY KEY. This example shows how to reference this key from another table; an explicit constraint name is optional.

CONSTRAINT FK_sales_backorder FOREIGN KEY (stor_id, ord_num, title_id)
 REFERENCES sales (stor_id, ord_num, title_id)

C. Use UN IQUE constraints

UNIQUE constraints are used to enforce uniqueness on nonprimary key columns. This example shows a column called
pseudonym on the authors table. It enforces a restriction that authors' pen names must be unique.

pseudonym varchar(30) NULL
UNIQUE NONCLUSTERED

This example shows a UNIQUE constraint created on the stor_name and city columns of the stores table, where the stor_id is
actually the PRIMARY KEY; no two stores in the same city should be the same.

CONSTRAINT U_store UNIQUE NONCLUSTERED (stor_name, city)

D. Use DEFAULT defin itions

Defaults supply a value (with the INSERT and UPDATE statements) when no value is supplied. In the pubs database, many
DEFAULT definitions are used to ensure that valid data or placeholders are entered.

On the jobs table, a character string default supplies a description (column job_desc) when the actual description is not entered
explicitly.

DEFAULT 'New Position - title not formalized yet'

In the employee table, the employees can be employed by an imprint company or by the parent company. When an explicit
company is not supplied, the parent company is entered (note that, as shown here, comments can be nested within the table
definition).

DEFAULT ('9952')
/* By default the Parent Company Publisher is the company
to whom each employee reports. */

In addition to constants, DEFAULT definitions can include functions. Use this example to get the current date for an entry:

DEFAULT (getdate())

Niladic-functions can also improve data integrity. To keep track of the user who inserted a row, use the niladic-function for USER
(do not surround the niladic-functions with parentheses):

DEFAULT USER

E. Use CHECK constraints

This example shows restrictions made to the values entered into the min_lvl and max_lvl columns of the jobs table. Both of
these constraints are unnamed:

CHECK (min_lvl >= 10)

and

CHECK (max_lvl <= 250)

This example shows a named constraint with a pattern restriction on the character data entered into the emp_id column of the
employee table.

CONSTRAINT CK_emp_id CHECK (emp_id LIKE
 '[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]' OR
 emp_id LIKE '[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]')

This example specifies that the pub_id must be within a specific list or follow a given pattern. This constraint is for the pub_id of
the publishers table.

CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]')

F. Complete table defin itions

This example shows complete table definitions with all constraint definitions for three tables (jobs, employee, and publishers)
created in the pubs database.

/* ************************** jobs table ************************** */
CREATE TABLE jobs
(
 job_id smallint
 IDENTITY(1,1)
 PRIMARY KEY CLUSTERED,
 job_desc varchar(50) NOT NULL
 DEFAULT 'New Position - title not formalized yet',
 min_lvl tinyint NOT NULL
 CHECK (min_lvl >= 10),
 max_lvl tinyint NOT NULL
 CHECK (max_lvl <= 250)
)

/* ************************* employee table ************************* */
CREATE TABLE employee
(
 emp_id empid
 CONSTRAINT PK_emp_id PRIMARY KEY NONCLUSTERED
 CONSTRAINT CK_emp_id CHECK (emp_id LIKE
 '[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]' or
 emp_id LIKE '[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]'),
 /* Each employee ID consists of three characters that
 represent the employee's initials, followed by a five
 digit number ranging from 10000 through 99999 and then the
 employee's gender (M or F). A (hyphen) - is acceptable
 for the middle initial. */
 fname varchar(20) NOT NULL,
 minit char(1) NULL,
 lname varchar(30) NOT NULL,
 job_id smallint NOT NULL
 DEFAULT 1
 /* Entry job_id for new hires. */
 REFERENCES jobs(job_id),
 job_lvl tinyint
 DEFAULT 10,
 /* Entry job_lvl for new hires. */
 pub_id char(4) NOT NULL
 DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 /* By default, the Parent Company Publisher is the company
 to whom each employee reports. */
 hire_date datetime NOT NULL
 DEFAULT (getdate())
 /* By default, the current system date is entered. */
)

/* ***************** publishers table ******************** */
CREATE TABLE publishers
(
 pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL
 DEFAULT('USA')
)

G. Use the uniqueidentifier data type in a column

This example creates a table with a uniqueidentifier column. It uses a PRIMARY KEY constraint to protect the table against users
inserting duplicated values, and it uses the NEWID() function in the DEFAULT constraint to provide values for new rows.

CREATE TABLE Globally_Unique_Data
(guid uniqueidentifier
 CONSTRAINT Guid_Default
 DEFAULT NEWID(),
Employee_Name varchar(60),
CONSTRAINT Guid_PK PRIMARY KEY (Guid)
)

H. Use an expression for a computed column

This example illustrates the use of an expression ((low + high)/2) for calculating the myavg computed column.

CREATE TABLE mytable
 (
 low int,
 high int,
 myavg AS (low + high)/2
)

I. Use the USER_N AM E function for a computed column

This example uses the USER_NAME function in the myuser_name column.

CREATE TABLE mylogintable
 (
 date_in datetime,
 user_id int,
 myuser_name AS USER_NAME()
)

J. Use N OT FOR REPLICATION

This example shows using the IDENTITY property on a table subscribed to a replication. The table includes a CHECK constraint to
ensure that the SaleID values generated on this system do not grow into the range assigned to the replication Publisher.

CREATE TABLE Sales
 (SaleID INT IDENTITY(100000,1) NOT FOR REPLICATION,
 CHECK NOT FOR REPLICATION (SaleID <= 199999),
 SalesRegion CHAR(2),
 CONSTRAINT ID_PK PRIMARY KEY (SaleID)
)

See Also

ALTER TABLE

COLUMNPROPERTY

CREATE INDEX

CREATE RULE

CREATE VIEW

Data Types

DROP INDEX

DROP RULE

DROP TABLE

sp_addtype

sp_depends

sp_help

sp_helpconstraint

sp_rename

sp_spaceused

Transact-SQL Reference (SQL Server 2000)

CREATE TRIGGER
 Topic last updated -- June 2007

Creates a trigger, which is a special kind of stored procedure that executes automatically when a user attempts the specified data-
modification statement on the specified table. Microsoft® SQL Server™ allows the creation of multiple triggers for any given
INSERT, UPDATE, or DELETE statement.

Syntax

CREATE TRIGGER trigger_name
ON { table | view }
[WITH ENCRYPTION]
{
 { { FOR | AFTER | INSTEAD OF } { [INSERT] [,] [UPDATE] [,] [DELETE] }
 [WITH APPEND]
 [NOT FOR REPLICATION]
 AS
 [{ IF UPDATE (column)
 [{ AND | OR } UPDATE (column)]
 [...n]
 | IF (COLUMNS_UPDATED () { bitwise_operator } updated_bitmask)
 { comparison_operator } column_bitmask [...n]
 }]
 sql_statement [...n]
 }
}

Arguments

trigger_name

Is the name of the trigger. A trigger name must conform to the rules for identifiers and must be unique within the database.
Specifying the trigger owner name is optional.

Table | view

Is the table or view on which the trigger is executed and is sometimes called the trigger table or trigger view. Specifying the
owner name of the table or view is optional. A view can be referenced only by an INSTEAD OF trigger.

WITH ENCRYPTION

Indicates that SQL Server will convert the original text of the CREATE TRIGGER statement to an obfuscated format. Note that
obfuscated triggers can be reverse engineered because SQL Server must de-obfuscate triggers for execution. In SQL Server 2000,
the obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using WITH ENCRYPTION prevents the trigger from being published as part of SQL Server replication.

AFTER

Specifies that the trigger is fired only when all operations specified in the triggering SQL statement have executed successfully. All
referential cascade actions and constraint checks also must succeed before this trigger executes.

AFTER is the default, if FOR is the only keyword specified.

AFTER triggers cannot be defined on views.

INSTEAD OF

Specifies that the trigger is executed instead of the triggering SQL statement, thus overriding the actions of the triggering
statements.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE statement can be defined on a table or view. However, it is
possible to define views on views where each view has its own INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on updateable views WITH CHECK OPTION. SQL Server will raise an error if an INSTEAD OF
trigger is added to an updateable view WITH CHECK OPTION specified. The user must remove that option using ALTER VIEW

before defining the INSTEAD OF trigger.

{ [DELETE] [,] [INSERT] [,] [UPDATE] }

Are keywords that specify which data modification statements, when attempted against this table or view, activate the trigger. At
least one option must be specified. Any combination of these in any order is allowed in the trigger definition. If more than one
option is specified, separate the options with commas.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that have a referential relationship specifying a cascade
action ON DELETE. Similarly, the UPDATE option is not allowed on tables that have a referential relationship specifying a cascade
action ON UPDATE.

WITH APPEND

Specifies that an additional trigger of an existing type should be added. Use of this optional clause is needed only when the
compatibility level is 65 or lower. If the compatibility level is 70 or higher, the WITH APPEND clause is not needed to add an
additional trigger of an existing type (this is the default behavior of CREATE TRIGGER with the compatibility level setting of 70 or
higher.) For more information, see sp_dbcmptlevel.

WITH APPEND cannot be used with INSTEAD OF triggers or if AFTER trigger is explicitly stated. WITH APPEND can be used only
when FOR is specified (without INSTEAD OF or AFTER) for backward compatibility reasons. WITH APPEND and FOR (which is
interpreted as AFTER) will not be supported in future releases.

NOT FOR REPLICATION

Indicates that the trigger should not be executed when a replication process modifies the table involved in the trigger.

AS

Are the actions the trigger is to perform.

sql_statement

Is the trigger condition(s) and action(s). Trigger conditions specify additional criteria that determine whether the attempted
DELETE, INSERT, or UPDATE statements cause the trigger action(s) to be carried out.

The trigger actions specified in the Transact-SQL statements go into effect when the DELETE, INSERT, or UPDATE operation is
attempted.

Triggers can include any number and kind of Transact-SQL statements. A trigger is designed to check or change data based on a
data modification statement; it should not return data to the user. The Transact-SQL statements in a trigger often include control-
of-flow language. A few special tables are used in CREATE TRIGGER statements:

deleted and inserted are logical (conceptual) tables. They are structurally similar to the table on which the trigger is
defined, that is, the table on which the user action is attempted, and hold the old values or new values of the rows that may
be changed by the user action. For example, to retrieve all values in the deleted table, use:

SELECT *
FROM deleted

In a DELETE, INSERT, or UPDATE trigger, SQL Server does not allow text, ntext, or image column references in the
inserted and deleted tables if the compatibility level is equal to 70. The text, ntext, and image values in the inserted and
deleted tables cannot be accessed. To retrieve the new value in either an INSERT or UPDATE trigger, join the inserted table
with the original update table. When the compatibility level is 65 or lower, null values are returned for inserted or deleted
text, ntext, or image columns that allow null values; zero-length strings are returned if the columns are not nullable.

If the compatibility level is 80 or higher, SQL Server allows the update of text, ntext, or image columns through the
INSTEAD OF trigger on tables or views.

n

Is a placeholder indicating that multiple Transact-SQL statements can be included in the trigger. For the IF UPDATE (column)
statement, multiple columns can be included by repeating the UPDATE (column) clause.

IF UPDATE (column)

Tests for an INSERT or UPDATE action to a specified column and is not used with DELETE operations. More than one column can
be specified. Because the table name is specified in the ON clause, do not include the table name before the column name in an IF
UPDATE clause. To test for an INSERT or UPDATE action for more than one column, specify a separate UPDATE(column) clause
following the first one. IF UPDATE will return the TRUE value in INSERT actions because the columns have either explicit values or

implicit (NULL) values inserted.

Note The IF UPDATE (column) clause functions identically to an IF, IF...ELSE or WHILE statement and can use the BEGIN...END
block. For more information, see Control-of-Flow Language.

UPDATE(column) can be used anywhere inside the body of the trigger.

column

Is the name of the column to test for either an INSERT or UPDATE action. This column can be of any data type supported by SQL
Server. However, computed columns cannot be used in this context. For more information, see Data Types.

IF (COLUMNS_UPDATED())

Tests, in an INSERT or UPDATE trigger only, whether the mentioned column or columns were inserted or updated.
COLUMNS_UPDATED returns a varbinary bit pattern that indicates which columns in the table were inserted or updated.

The COLUMNS_UPDATED function returns the bits in order from left to right, with the least significant bit being the leftmost. The
leftmost bit represents the first column in the table; the next bit to the right represents the second column, and so on.
COLUMNS_UPDATED returns multiple bytes if the table on which the trigger is created contains more than 8 columns, with the
least significant byte being the leftmost. COLUMNS_UPDATED will return the TRUE value for all columns in INSERT actions
because the columns have either explicit values or implicit (NULL) values inserted.

COLUMNS_UPDATED can be used anywhere inside the body of the trigger.

bitwise_operator

Is the bitwise operator to use in the comparison.

updated_bitmask

Is the integer bitmask of those columns actually updated or inserted. For example, table t1 contains columns C1, C2, C3, C4, and
C5. To check whether columns C2, C3, and C4 are all updated (with table t1 having an UPDATE trigger), specify a value of 14. To
check whether only column C2 is updated, specify a value of 2.

comparison_operator

Is the comparison operator. Use the equal sign (=) to check whether all columns specified in updated_bitmask are actually
updated. Use the greater than symbol (>) to check whether any or some of the columns specified in updated_bitmask are
updated.

column_bitmask

Is the integer bitmask of those columns to check whether they are updated or inserted.

Remarks

Triggers are often used for enforcing business rules and data integrity. SQL Server provides declarative referential integrity (DRI)
through the table creation statements (ALTER TABLE and CREATE TABLE); however, DRI does not provide cross-database
referential integrity. To enforce referential integrity (rules about the relationships between the primary and foreign keys of tables),
use primary and foreign key constraints (the PRIMARY KEY and FOREIGN KEY keywords of ALTER TABLE and CREATE TABLE). If
constraints exist on the trigger table, they are checked after the INSTEAD OF trigger execution and prior to the AFTER trigger
execution. If the constraints are violated, the INSTEAD OF trigger actions are rolled back and the AFTER trigger is not executed
(fired).

The first and last AFTER triggers to be executed on a table may be specified by using sp_settriggerorder. Only one first and one
last AFTER trigger for each of the INSERT, UPDATE, and DELETE operations may be specified on a table; if there are other AFTER
triggers on the same table, they are executed randomly.

If an ALTER TRIGGER statement changes a first or last trigger, the first or last attribute set on the modified trigger is dropped, and
the order value must be reset with sp_settriggerorder.

An AFTER trigger is executed only after the triggering SQL statement, including all referential cascade actions and constraint
checks associated with the object updated or deleted, has executed successfully. The AFTER trigger sees the effects of the
triggering statement as well as all referential cascade UPDATE and DELETE actions caused by the triggering statement.

If an INSTEAD OF trigger defined on a table executes a statement against the table that would usually fire the INSTEAD OF trigger
again, the trigger is not called recursively. Instead, the statement is processed as if the table had no INSTEAD OF trigger and starts
the chain of constraint operations and AFTER trigger executions. For example, if a trigger is defined as an INSTEAD OF INSERT
trigger for a table, and the trigger executes an INSERT statement on the same table, the INSERT statement executed by the

INSTEAD OF trigger does not call the trigger again. The INSERT executed by the trigger starts the process of performing constraint
actions and firing any AFTER INSERT triggers defined for the table.

If an INSTEAD OF trigger defined on a view executes a statement against the view that would usually fire the INSTEAD OF trigger
again, it is not called recursively. Instead, the statement is resolved as modifications against the base tables underlying the view. In
this case, the view definition must meet all of the restrictions for an updatable view. For a definition of updatable views, see
Modifying Data Through a View. For example, if a trigger is defined as an INSTEAD OF UPDATE trigger for a view, and the trigger
executes an UPDATE statement referencing the same view, the UPDATE statement executed by the INSTEAD OF trigger does not
call the trigger again. The UPDATE executed by the trigger is processed against the view as if the view did not have an INSTEAD
OF trigger. The columns changed by the UPDATE must be resolved to a single base table. Each modification to an underlying base
table starts the chain of applying constraints and firing AFTER triggers defined for the table.

Trigger Limitations

CREATE TRIGGER must be the first statement in the batch and can apply to only one table.

A trigger is created only in the current database; however, a trigger can reference objects outside the current database.

If the trigger owner name is specified (to qualify the trigger), qualify the table name in the same way.

The same trigger action can be defined for more than one user action (for example, INSERT and UPDATE) in the same CREATE
TRIGGER statement.

INSTEAD OF DELETE/UPDATE triggers cannot be defined on a table that has a foreign key with a cascade on DELETE/UPDATE
action defined.

Any SET statement can be specified inside a trigger. The SET option chosen remains in effect during the execution of the trigger
and then reverts to its former setting.

When a trigger fires, results are returned to the calling application, just as with stored procedures. To eliminate having results
returned to an application due to a trigger firing, do not include either SELECT statements that return results, or statements that
perform variable assignment in a trigger. A trigger that includes either SELECT statements that return results to the user or
statements that perform variable assignment requires special handling; these returned results would have to be written into every
application in which modifications to the trigger table are allowed. If variable assignment must occur in a trigger, use a SET
NOCOUNT statement at the beginning of the trigger to eliminate the return of any result sets.

A TRUNCATE TABLE statement is not caught by a DELETE trigger. Although a TRUNCATE TABLE statement is, in effect, a DELETE
without a WHERE clause (it removes all rows), it is not logged and thus cannot execute a trigger. Because permission for the
TRUNCATE TABLE statement defaults to the table owner and is not transferable, only the table owner should be concerned about
inadvertently circumventing a DELETE trigger with a TRUNCATE TABLE statement.

The WRITETEXT statement, whether logged or unlogged, does not activate a trigger.

These Transact-SQL statements are not allowed in a trigger:

ALTER DATABASE CREATE DATABASE DISK INIT
DISK RESIZE DROP DATABASE LOAD DATABASE
LOAD LOG RECONFIGURE RESTORE DATABASE
RESTORE LOG

Note Because SQL Server does not support user-defined triggers on system tables, it is recommended that no user-defined
triggers be created on system tables.

M ultiple Triggers

SQL Server allows multiple triggers to be created for each data modification event (DELETE, INSERT, or UPDATE). For example, if
CREATE TRIGGER FOR UPDATE is executed for a table that already has an UPDATE trigger, then an additional update trigger is
created. In earlier versions, only one trigger for each data modification event (INSERT, UPDATE, DELETE) was allowed for each
table.

Note The default behavior for CREATE TRIGGER (with the compatibility level of 70) is to add additional triggers to existing
triggers, if the trigger names differ. If trigger names are the same, SQL Server returns an error message. However, if the
compatibility level is equal to or less than 65, any new triggers created with the CREATE TRIGGER statement replace any existing
triggers of the same type, even if the trigger names are different. For more information, see sp_dbcmptlevel.

Recursive Triggers

SQL Server also allows recursive invocation of triggers when the recursive triggers setting is enabled in sp_dboption.

Recursive triggers allow two types of recursion to occur:

Indirect recursion

Direct recursion

With indirect recursion, an application updates table T1, which fires trigger TR1, updating table T2. In this scenario, trigger T2
then fires and updates table T1.

With direct recursion, the application updates table T1, which fires trigger TR1, updating table T1. Because table T1 was updated,
trigger TR1 fires again, and so on.

This example uses both indirect and direct trigger recursion. Assume that two update triggers, TR1 and TR2, are defined on table
T1. Trigger TR1 updates table T1 recursively. An UPDATE statement executes each TR1 and TR2 one time. In addition, the
execution of TR1 triggers the execution of TR1 (recursively) and TR2. The inserted and deleted tables for a given trigger contain
rows corresponding only to the UPDATE statement that invoked the trigger.

Note The above behavior occurs only if the recursive triggers setting of sp_dboption is enabled. There is no defined order in
which multiple triggers defined for a given event are executed. Each trigger should be self-contained.

Disabling the recursive triggers setting only prevents direct recursions. To disable indirect recursion as well, set the nested
triggers server option to 0 using sp_configure.

If any of the triggers do a ROLLBACK TRANSACTION, regardless of the nesting level, no further triggers are executed.

N ested Triggers

Triggers can be nested to a maximum of 32 levels. If a trigger changes a table on which there is another trigger, the second
trigger is activated and can then call a third trigger, and so on. If any trigger in the chain sets off an infinite loop, the nesting level
is exceeded and the trigger is canceled. To disable nested triggers, set the nested triggers option of sp_configure to 0 (off). The
default configuration allows nested triggers. If nested triggers is off, recursive triggers is also disabled, regardless of the recursive
triggers setting of sp_dboption.

Deferred N ame Resolution

SQL Server allows Transact-SQL stored procedures, triggers, and batches to refer to tables that do not exist at compile time. This
ability is called deferred name resolution. However, if the Transact-SQL stored procedure, trigger, or batch refers to a table
defined in the stored procedure or trigger, a warning is issued at creation time only if the compatibility level setting (set by
executing sp_dbcmptlevel) is equal to 65. A warning is issued at compile time if a batch is used. An error message is returned at
run time if the table referenced does not exist. For more information, see Deferred Name Resolution and Compilation.

Permissions

CREATE TRIGGER permissions default to the table owner on which the trigger is defined, the sysadmin fixed server role, and
members of the db_owner and db_ddladmin fixed database roles, and are not transferable.

To retrieve data from a table or view, a user must have SELECT statement permission on the table or view. To update the content
of a table or view, a user must have INSERT, DELETE, and UPDATE statement permissions on the table or view.

If an INSTEAD OF trigger exists on a view, the user must have INSERT, DELETE, and UPDATE privileges on that view to issue
INSERT, DELETE, and UPDATE statements against the view, regardless of whether the execution actually performs such an
operation on the view.

Examples

A. Use a trigger with a reminder message

This example trigger prints a message to the client when anyone tries to add or change data in the titles table.

Note Message 50009 is a user-defined message in sysmessages. For more information about creating user-defined messages,
see sp_addmessage.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'reminder' AND type = 'TR')
 DROP TRIGGER reminder

GO
CREATE TRIGGER reminder
ON titles
FOR INSERT, UPDATE
AS RAISERROR (50009, 16, 10)
GO

B. Use a trigger with a reminder e-mail message

This example sends an e-mail message to a specified person (MaryM) when the titles table changes.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'reminder' AND type = 'TR')
 DROP TRIGGER reminder
GO
CREATE TRIGGER reminder
ON titles
FOR INSERT, UPDATE, DELETE
AS
 EXEC master..xp_sendmail 'MaryM',
 'Don''t forget to print a report for the distributors.'
GO

C. Use a trigger business ru le between the employee and jobs tables

Because CHECK constraints can reference only the columns on which the column- or table-level constraint is defined, any cross-
table constraints (in this case, business rules) must be defined as triggers.

This example creates a trigger that, when an employee job level is inserted or updated, checks that the specified employee job
level (job_lvls), on which salaries are based, is within the range defined for the job. To get the appropriate range, the jobs table
must be referenced.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'employee_insupd' AND type = 'TR')
 DROP TRIGGER employee_insupd
GO
CREATE TRIGGER employee_insupd
ON employee
FOR INSERT, UPDATE
AS
/* Get the range of level for this job type from the jobs table. */
DECLARE @min_lvl tinyint,
 @max_lvl tinyint,
 @emp_lvl tinyint,
 @job_id smallint
SELECT @min_lvl = min_lvl,
 @max_lvl = max_lvl,
 @emp_lvl = i.job_lvl,
 @job_id = i.job_id
FROM employee e INNER JOIN inserted i ON e.emp_id = i.emp_id
 JOIN jobs j ON j.job_id = i.job_id
IF (@job_id = 1) and (@emp_lvl <> 10)
BEGIN
 RAISERROR ('Job id 1 expects the default level of 10.', 16, 1)
 ROLLBACK TRANSACTION
END
ELSE
IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl)
BEGIN
 RAISERROR ('The level for job_id:%d should be between %d and %d.',
 16, 1, @job_id, @min_lvl, @max_lvl)
 ROLLBACK TRANSACTION
END

D. Use deferred name resolution

This example creates two triggers to illustrate deferred name resolution.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'trig1' AND type = 'TR')
 DROP TRIGGER trig1
GO
-- Creating a trigger on a nonexistent table.
CREATE TRIGGER trig1

on authors
FOR INSERT, UPDATE, DELETE
AS
 SELECT a.au_lname, a.au_fname, x.info
 FROM authors a INNER JOIN does_not_exist x
 ON a.au_id = x.au_id
GO
-- Here is the statement to actually see the text of the trigger.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c
 ON o.id = c.id
WHERE o.type = 'TR' and o.name = 'trig1'

-- Creating a trigger on an existing table, but with a nonexistent
-- column.
USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'trig2' AND type = 'TR')
 DROP TRIGGER trig2
GO
CREATE TRIGGER trig2
ON authors
FOR INSERT, UPDATE
AS
 DECLARE @fax varchar(12)
 SELECT @fax = phone
 FROM authors
GO
-- Here is the statement to actually see the text of the trigger.
SELECT o.id, c.text
FROM sysobjects o INNER JOIN syscomments c
 ON o.id = c.id
WHERE o.type = 'TR' and o.name = 'trig2'

E. Use COLUM N S_UPDATED

This example creates two tables: an employeeData table and an auditEmployeeData table. The employeeData table, which
holds sensitive employee payroll information, can be modified by members of the human resources department. If the
employee's social security number (SSN), yearly salary, or bank account number is changed, an audit record is generated and
inserted into the auditEmployeeData audit table.

By using the COLUMNS_UPDATED() function, it is possible to test quickly for any changes to these columns that contain sensitive
employee information. This use of COLUMNS_UPDATED() only works if you are trying to detect changes to the first 8 columns in
the table.

USE pubs
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'employeeData')
 DROP TABLE employeeData
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'auditEmployeeData')
 DROP TABLE auditEmployeeData
GO
CREATE TABLE employeeData (
 emp_id int NOT NULL,
 emp_bankAccountNumber char (10) NOT NULL,
 emp_salary int NOT NULL,
 emp_SSN char (11) NOT NULL,
 emp_lname nchar (32) NOT NULL,
 emp_fname nchar (32) NOT NULL,
 emp_manager int NOT NULL
)
GO
CREATE TABLE auditEmployeeData (
 audit_log_id uniqueidentifier DEFAULT NEWID(),
 audit_log_type char (3) NOT NULL,
 audit_emp_id int NOT NULL,
 audit_emp_bankAccountNumber char (10) NULL,
 audit_emp_salary int NULL,
 audit_emp_SSN char (11) NULL,
 audit_user sysname DEFAULT SUSER_SNAME(),
 audit_changed datetime DEFAULT GETDATE()
)
GO
CREATE TRIGGER updEmployeeData

ON employeeData
FOR update AS
/*Check whether columns 2, 3 or 4 has been updated. If any or all of columns 2, 3 or 4 have been changed, create
an audit record. The bitmask is: power(2,(2-1))+power(2,(3-1))+power(2,(4-1)) = 14. To check if all columns 2,
3, and 4 are updated, use = 14 in place of >0 (below).*/

 IF (COLUMNS_UPDATED() & 14) > 0
/*Use IF (COLUMNS_UPDATED() & 14) = 14 to see if all of columns 2, 3, and 4 are updated.*/
 BEGIN
-- Audit OLD record.
 INSERT INTO auditEmployeeData
 (audit_log_type,
 audit_emp_id,
 audit_emp_bankAccountNumber,
 audit_emp_salary,
 audit_emp_SSN)
 SELECT 'OLD',
 del.emp_id,
 del.emp_bankAccountNumber,
 del.emp_salary,
 del.emp_SSN
 FROM deleted del

-- Audit NEW record.
 INSERT INTO auditEmployeeData
 (audit_log_type,
 audit_emp_id,
 audit_emp_bankAccountNumber,
 audit_emp_salary,
 audit_emp_SSN)
 SELECT 'NEW',
 ins.emp_id,
 ins.emp_bankAccountNumber,
 ins.emp_salary,
 ins.emp_SSN
 FROM inserted ins
 END
GO

/*Inserting a new employee does not cause the UPDATE trigger to fire.*/
INSERT INTO employeeData
 VALUES (101, 'USA-987-01', 23000, 'R-M53550M', N'Mendel', N'Roland', 32)
GO

/*Updating the employee record for employee number 101 to change the salary to 51000 causes the UPDATE trigger
to fire and an audit trail to be produced.*/

UPDATE employeeData
 SET emp_salary = 51000
 WHERE emp_id = 101
GO
SELECT * FROM auditEmployeeData
GO

/*Updating the employee record for employee number 101 to change both the bank account number and social
security number (SSN) causes the UPDATE trigger to fire and an audit trail to be produced.*/

UPDATE employeeData
 SET emp_bankAccountNumber = '133146A0', emp_SSN = 'R-M53550M'
 WHERE emp_id = 101
GO
SELECT * FROM auditEmployeeData
GO

F. Use COLUM N S_UPDATED to test more than 8 columns

If you must test for updates that affect columns other than the first 8 columns in a table, you must use the SUBSTRING function to
test the proper bit returned by COLUMNS_UPDATED. This example tests for updates that affect columns 3, 5, or 9 in the
Northwind.dbo.Customers table.

USE Northwind
DROP TRIGGER tr1

GO
CREATE TRIGGER tr1 ON Customers
FOR UPDATE AS
 IF ((SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(3-1))
 + power(2,(5-1)))
 AND (SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(1-1)))
)
 PRINT 'Columns 3, 5 and 9 updated'
GO

UPDATE Customers
 SET ContactName=ContactName,
 Address=Address,
 Country=Country
GO

See Also

ALTER TABLE

ALTER TRIGGER

CREATE TABLE

DROP TRIGGER

Programming Stored Procedures

sp_depends

sp_help

sp_helptext

sp_rename

sp_settriggerorder

sp_spaceused

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

CREATE VIEW
 Topic last updated -- June 2007

Creates a virtual table that represents the data in one or more tables in an alternative way. CREATE VIEW must be the first
statement in a query batch.

Syntax

CREATE VIEW [< owner > .] view_name [(column [,...n])]
[WITH < view_attribute > [,...n]]
AS
select_statement
[WITH CHECK OPTION]

< view_attribute > ::=
 { ENCRYPTION | SCHEMABINDING | VIEW_METADATA }

Arguments

Owner

Is the name of the user ID that owns the view. Owner must be an existing user ID.

view_name

Is the name of the view. View names must follow the rules for identifiers. Specifying the view owner name is optional.

column

Is the name to be used for a column in a view. Naming a column in CREATE VIEW is necessary only when a column is derived
from an arithmetic expression, a function, or a constant, when two or more columns may otherwise have the same name (usually
because of a join), or when a column in a view is given a name different from that of the column from which derived. Column
names can also be assigned in the SELECT statement.

If column is not specified, the view columns acquire the same names as the columns in the SELECT statement.

Note In the columns for the view, the permissions for a column name apply across a CREATE VIEW or ALTER VIEW statement,
regardless of the source of the underlying data. For example, if permissions are granted on the title_id column in a CREATE VIEW
statement, an ALTER VIEW statement can name the title_id column with a different column name, such as qty, and still have the
permissions associated with the view using title_id.

n

Is a placeholder that indicates that multiple columns can be specified.

AS

Are the actions the view is to perform.

select_statement

Is the SELECT statement that defines the view. It can use more than one table and other views. To select from the objects
referenced in the SELECT clause of a view created, it is necessary to have the appropriate permissions.

A view does not have to be a simple subset of the rows and columns of one particular table. A view can be created using more
than one table or other views with a SELECT clause of any complexity.

In an indexed view definition, the SELECT statement must be a single table statement or a multitable JOIN with optional
aggregation.

There are a few restrictions on the SELECT clauses in a view definition. A CREATE VIEW statement cannot:

Include COMPUTE or COMPUTE BY clauses.

Include ORDER BY clause, unless there is also a TOP clause in the select list of the SELECT statement.

Include the INTO keyword.

Reference a temporary table or a table variable.

Because select_statement uses the SELECT statement, it is valid to use <join_hint> and <table_hint> hints as specified in the
FROM clause. For more information, see FROM and SELECT.

Functions can be used in the select_statement.

select_statement can use multiple SELECT statements separated by UNION or UNION ALL.

WITH CHECK OPTION

Forces all data modification statements executed against the view to adhere to the criteria set within select_statement. When a
row is modified through a view, the WITH CHECK OPTION ensures the data remains visible through the view after the
modification is committed.

WITH ENCRYPTION

Indicates that SQL Server will convert the original text of the CREATE VIEW statement to an obfuscated format. Note that
obfuscated views can be reverse engineered because SQL Server must de-obfuscate views for execution. In SQL Server 2000, the
obfuscated text is visible in the syscomments system table and may be susceptible to de-obfuscation attempts.

Using WITH ENCRYPTION prevents the view from being published as part of SQL Server replication.

SCHEMABINDING

Binds the view to the schema. When SCHEMABINDING is specified, the select_statement must include the two-part names
(owner.object) of tables, views, or user-defined functions referenced.

Views or tables participating in a view created with the schema binding clause cannot be dropped unless that view is dropped or
changed so that it no longer has schema binding. Otherwise, SQL Server raises an error. In addition, ALTER TABLE statements on
tables that participate in views having schema binding will fail if these statements affect the view definition.

VIEW_METADATA

Specifies that SQL Server will return to the DBLIB, ODBC, and OLE DB APIs the metadata information about the view, instead of
the base table or tables, when browse-mode metadata is being requested for a query that references the view. Browse-mode
metadata is additional metadata returned by SQL Server to the client-side DB-LIB, ODBC, and OLE DB APIs, which allow the client-
side APIs to implement updatable client-side cursors. Browse-mode meta data includes information about the base table that the
columns in the result set belong to.

For views created with VIEW_METADATA option, the browse-mode meta data returns the view name as opposed to the base table
names when describing columns from the view in the result set.

When a view is created WITH VIEW_METADATA, all its columns (except for timestamp) are updatable if the view has INSERT or
UPDATE INSTEAD OF triggers. See Updatable Views later in this topic.

Remarks

A view can be created only in the current database. A view can reference a maximum of 1,024 columns.

When querying through a view, Microsoft® SQL Server™ checks to make sure that all the database objects referenced anywhere
in the statement exist, that they are valid in the context of the statement, and that data modification statements do not violate any
data integrity rules. A check that fails returns an error message. A successful check translates the action into an action against the
underlying table(s).

If a view depends on a table (or view) that was dropped, SQL Server produces an error message if anyone tries to use the view. If
a new table (or view) is created, and the table structure does not change from the previous base table, to replace the one dropped,
the view again becomes usable. If the new table (or view) structure changes, then the view must be dropped and recreated.

When a view is created, the name of the view is stored in the sysobjects table. Information about the columns defined in a view is
added to the syscolumns table, and information about the view dependencies is added to the sysdepends table. In addition, the
text of the CREATE VIEW statement is added to the syscomments table. This is similar to a stored procedure; when a view is
executed for the first time, only its query tree is stored in the procedure cache. Each time a view is accessed, its execution plan is
recompiled.

The result of a query using an index on a view defined with numeric or float expressions may be different from a similar query
that does not use the index on the view. This difference may be the result of rounding errors during INSERT, DELETE, or UPDATE
actions on underlying tables.

SQL Server saves the settings of SET QUOTED_IDENTIFIER and SET ANSI_NULLS when a view is created. These original settings
are restored when the view is used. Therefore, any client session settings for SET QUOTED_IDENTIFIER and SET ANSI_NULLS is
ignored when accessing the view.

Note Whether SQL Server interprets an empty string as a single space or as a true empty string is controlled by the setting of
sp_dbcmptlevel. If the compatibility level is less than or equal to 65, SQL Server interprets empty strings as single spaces. If the
compatibility level is equal to or higher than 70, SQL Server interprets empty strings as empty strings. For more information, see
sp_dbcmptlevel.

Updatable Views

Microsoft SQL Server 2000 enhances the class of updatable views in two ways:

INSTEAD OF Triggers: INSTEAD OF triggers can be created on a view in order to make a view updatable. The INSTEAD OF
trigger is executed instead of the data modification statement on which the trigger is defined. This trigger allows the user to
specify the set of actions that need to take place in order to process the data modification statement. Thus, if an INSTEAD OF
trigger exists for a view on a given data modification statement (INSERT, UPDATE, or DELETE), the corresponding view is
updatable through that statement. For more information about INSTEAD OF triggers, see Designing INSTEAD OF triggers.

Partitioned Views: If the view is of a specified form called 'partitioned view,' the view is updatable, subject to certain
restrictions. Partitioned views and their updatability are discussed later in this topic.

When needed, SQL Server will distinguish Local Partitioned Views as the views in which all participating tables and the
view are on the same SQL Server, and Distributed Partitioned Views as the views in which at least one of the tables in the
view resides on a different (remote) server.

If a view does not have INSTEAD OF triggers, or if it is not a partitioned view, then it is updatable only if the following conditions
are satisfied:

The select_statement has no aggregate functions in the select list and does not contain the TOP, GROUP BY, UNION (unless
the view is a partitioned view as described later in this topic), or DISTINCT clauses. Aggregate functions can be used in a
subquery in the FROM clause as long as the values returned by the functions are not modified. For more information, see
Aggregate Functions.

select_statement has no derived columns in the select list. Derived columns are result set columns formed by anything other
than a simple column expression, such as using functions or addition or subtraction operators.

The FROM clause in the select_statement references at least one table. select_statement must have more than non-tabular
expressions, which are expressions not derived from a table. For example, this view is not updatable:

CREATE VIEW NoTable AS
SELECT GETDATE() AS CurrentDate,
 @@LANGUAGE AS CurrentLanguage,
 CURRENT_USER AS CurrentUser

INSERT, UPDATE, and DELETE statements also must meet certain qualifications before they can reference a view that is updatable,
as specified in the conditions above. UPDATE and INSERT statements can reference a view only if the view is updatable and the
UPDATE or INSERT statement is written so that it modifies data in only one of the base tables referenced in the FROM clause of
the view. A DELETE statement can reference an updatable view only if the view references exactly one table in its FROM clause.

Partitioned Views

A partitioned view is a view defined by a UNION ALL of member tables structured in the same way, but stored separately as
multiple tables in either the same SQL Server or in a group of autonomous SQL Server 2000 servers, called Federated SQL Server
2000 Servers.

In designing a partitioning scheme, it must be clear what data belongs to each partition. For example, if you have Customers
table data distributed in three member tables in three server locations (Customers_33 on Server1, Customers_66 on Server2,
and Customers_99 on Server3), a partitioned view on Server1 would be defined this way:

--Partitioned view as defined on Server1
CREATE VIEW Customers
AS
--Select from local member table

SELECT *
FROM CompanyData.dbo.Customers_33
UNION ALL
--Select from member table on Server2
SELECT *
FROM Server2.CompanyData.dbo.Customers_66
UNION ALL
--Select from mmeber table on Server3
SELECT *
FROM Server3.CompanyData.dbo.Customers_99

In general, a view is said to be a partitioned view if it is of the following form:

SELECT <select_list1>
FROM T1
UNION ALL
SELECT <select_list2>
FROM T2
UNION ALL
...
SELECT <select_listn>
FROM Tn

Conditions for Creating Partitioned Views

1. SELECT list

All columns in the member tables should be selected in the column list of the view definition.

The columns in the same ordinal position of each select_list should be of the same type, including collations. It is not
sufficient for the columns to be implicitly convertible types, as is generally the case for UNION.

Also, at least one column (for example <col>) must appear in all the SELECT lists in the same ordinal position. This
<col> should be defined such that the member tables T1, ..., Tn have CHECK constraints C1, ..., Cn defined on <col>
respectively.

Constraint C1 defined on table T1 must follow this form:

C1 ::= < simple_interval > [OR < simple_interval > OR ...]
< simple_interval > :: =
 < col > { < | > | <= | >= | = }
 | < col > BETWEEN < value1 > AND < value2 >
 | < col > IN (value_list)
 | < col > { > | >= } < value1 > AND
 < col > { < | <= } < value2 >

The constraints should be such that any given value of <col> can satisfy at most one of the constraints C1, ..., Cn so
that the constraints should form a set of disjointed or non-overlapping intervals. The column <col> on which the
disjointed constraints are defined is called the 'partitioning column.' Note that the partitioning column may have
different names in the underlying tables. The constraints should be in an enabled state in order for them to meet the
above conditions of the partitioning column. If the constraints are disabled, re-enable constraint checking with either
the WITH CHECK option or the CHECK constraint_name options of ALTER TABLE.

Here are some examples of valid sets of constraints:

{ [col < 10], [col between 11 and 20] , [col > 20] }
{ [col between 11 and 20], [col between 21 and 30], [col between 31 and 100] }

The same column cannot be used multiple times in the SELECT list.

2. Partitioning column

The partitioning column is a part of the PRIMARY KEY of the table.

It cannot be a computed, identity, default, or timestamp column.

If there is more than one constraint on the same column in a member table, SQL Server ignores all the constraints and
will not consider them when determining whether or not the view is a partitioned view. To meet the conditions of the

partitioned view, there should be only one partitioning constraint on the partitioning column.

There are no restrictions on the updatability of the partitioning column.

3. Member tables (or underlying tables T1, ..., Tn)

The tables can be either local tables or tables from other SQL Servers referenced either through a four-part name or
an OPENDATASOURCE- or OPENROWSET-based name. (The OPENDATASOURCE and OPENROWSET syntax can
specify a table name, but not a pass-through query.) For more information, see OPENDATASOURCE and
OPENROWSET .

If one or more of the member tables are remote, the view is called distributed partitioned view, and additional
conditions apply. They are discussed later in this section.

The same table cannot appear twice in the set of tables that are being combined with the UNION ALL statement.

The member tables cannot have indexes created on computed columns in the table.

The member tables should have all PRIMARY KEY constraints on an identical number of columns.

All member tables in the view should have the same ANSI padding setting (which is set using the user options option
in sp_configure or the SET option).

Conditions for Modifying Partitioned Views

Only the Developer and Enterprise Editions of SQL Server 2000 allow INSERT, UPDATE, and DELETE operations on partitioned
views. To modify partitioned views, the statements must meet these conditions:

The INSERT statement must supply values for all the columns in the view, even if the underlying member tables have a
DEFAULT constraint for those columns or if they allow NULLs. For those member table columns that have DEFAULT
definitions, the statements cannot use the keyword DEFAULT explicitly.

The value being inserted into the partitioning column should satisfy at least one of the underlying constraints; otherwise, the
INSERT action will fail with a constraint violation.

UPDATE statements cannot specify the DEFAULT keyword as a value in the SET clause even if the column has a DEFAULT
value defined in the corresponding member table.

PRIMARY KEY columns cannot be modified through an UPDATE statement if the member tables have text, ntext, or image
columns.

Columns in the view that are an IDENTITY column in one or more of the member tables cannot be modified through an
INSERT or UPDATE statement.

If one of the member tables contains a timestamp column, the view cannot be modified through an INSERT or UPDATE
statement.

If one of the member tables contains a trigger or a CASCADING ON UPDATE or CASCADING ON DELETE constraint, the
view cannot be modified.

INSERT, UPDATE, and DELETE actions against a partitioned view are not allowed if there is a self-join with the same view or
with any of the member tables in the statement.

Note To update a partitioned view, the user must have INSERT, UPDATE, and DELETE permissions on the member tables.

Additional Conditions for Distributed Partitioned Views

For distributed partitioned views (when one or more member tables are remote), the following additional conditions apply:

A distributed transaction will be started to ensure atomicity across all nodes affected by the update.

The XACT_ABORT SET option should be set to ON for INSERT, UPDATE, or DELETE statements to work.

Any smallmoney and smalldatetime columns in remote tables that are referenced in a partitioned view are mapped as
money and datetime respectively. Consequently, the corresponding columns (in the same ordinal position in the select
list) in the local tables should be money and datetime.

Any linked server in the partitioned view cannot be a loopback linked server (a linked server that points to the same SQL
Server).

The setting of the SET ROWCOUNT option is ignored for INSERT, UPDATE, and DELETE actions that involve updatable partitioned
views and remote tables.

When the member tables and partitioned view definition are in place, Microsoft SQL Server 2000 builds intelligent plans that use
queries efficiently to access data from member tables. With the CHECK constraint definitions, the query processor maps the
distribution of key values across the member tables. When a user issues a query, the query processor compares the map to the
values specified in the WHERE clause, and builds an execution plan with a minimal amount of data transfer between member
servers. Thus, although some member tables may be located in remote servers, SQL Server 2000 will resolve distributed queries
so that the amount of distributed data that has to be transferred is minimal. For more information about how SQL Server 2000
resolves queries on partitioned views, see Resolving Distributed Partitioned Views.

Considerations for Replication

In order to create partitioned views on member tables that are involved in replication, the following considerations apply:

If the underlying tables are involved in merge replication or transactional replication with updating subscribers, the
uniqueidentifier column should also be included in the SELECT list.

Any INSERT actions into the partitioned view must provide a NEWID() value for the uniqueidentifier column. Any UPDATE
actions against the uniqueidentifier column must supply NEWID() as the value since the DEFAULT keyword cannot be used.

The replication of updates made using the view is exactly the same as when replicating tables in two different databases;
that is, the tables are served by different replication agents and the order of the updates is not guaranteed.

Permissions

CREATE VIEW permission defaults to the members of the db_owner and db_ddladmin fixed database roles. Members of the
sysadmin fixed server role and the db_owner fixed database role can transfer CREATE VIEW permission to other users.

To create a view, the user must have CREATE VIEW permission. To execute the view, the user must have SELECT permission on the
tables, views, and table-valued functions being referenced in the view, and EXECUTE permission on the scalar-valued functions
being invoked in the view.

In addition, to create a view WITH SCHEMABINDING, the user must have REFERENCES permissions on each table, view, and user-
defined function that is referenced.

Examples

A. Use a simple CREATE VIEW

This example creates a view with a simple SELECT statement. A simple view is helpful when a combination of columns is queried
frequently.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'titles_view')
 DROP VIEW titles_view
GO
CREATE VIEW titles_view
AS
SELECT title, type, price, pubdate
FROM titles
GO

B. Use WITH EN CRYPTION

This example uses the WITH ENCRYPTION option and shows computed columns, renamed columns, and multiple columns.

USE pubs

IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'accounts')
 DROP VIEW accounts
GO
CREATE VIEW accounts (title, advance, amt_due)
WITH ENCRYPTION
AS
SELECT title, advance, price * royalty * ytd_sales
FROM titles
WHERE price > $5
GO

Here is the query to retrieve the identification number and text of the obfuscated view definition:

USE pubs
GO
SELECT c.id, c.text
FROM syscomments c, sysobjects o
WHERE c.id = o.id and o.name = 'accounts'
GO

Here is the result set:

Note The text column output is shown on a separate line. When the procedure is executed, this information appears on the
same line as the id column information.

id text
----------- --
661577395
???...

(1 row(s) affected)

C. Use WITH CHECK OPTION

This example shows a view named CAonly that allows data modifications to apply only to authors within the state of California.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'CAonly')
 DROP VIEW CAonly
GO
CREATE VIEW CAonly
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH CHECK OPTION
GO

D. Use built-in functions with in a view

This example shows a view definition that includes a built-in function. When you use functions, the derived column must include a
column name in the CREATE VIEW statement.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'categories')
 DROP VIEW categories
GO
CREATE VIEW categories (category, average_price)
AS
SELECT type, AVG(price)
FROM titles
GROUP BY type
GO

E. Use @ @ ROWCOUN T function in a view

This example uses the @@ROWCOUNT function as part of the view definition.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'myview')
 DROP VIEW myview
GO
CREATE VIEW myview

AS
 SELECT au_lname, au_fname, @@ROWCOUNT AS bar
 FROM authors
 WHERE state = 'UT'
GO
SELECT *
FROM myview

F. Use partitioned data

This example uses tables named SUPPLY1, SUPPLY2, SUPPLY3, and SUPPLY4, which correspond to the supplier tables from
four offices, located in different countries/regions.

--create the tables and insert the values
CREATE TABLE SUPPLY1 (
 supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 1 and 150),
 supplier CHAR(50)
)
CREATE TABLE SUPPLY2 (
 supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 151 and 300),
 supplier CHAR(50)
)
CREATE TABLE SUPPLY3 (
 supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 301 and 450),
 supplier CHAR(50)
)
CREATE TABLE SUPPLY4 (
 supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 451 and 600),
 supplier CHAR(50)
)
INSERT SUPPLY1 VALUES ('1', 'CaliforniaCorp')
INSERT SUPPLY1 VALUES ('5', 'BraziliaLtd')
INSERT SUPPLY2 VALUES ('231', 'FarEast')
INSERT SUPPLY2 VALUES ('280', 'NZ')
INSERT SUPPLY3 VALUES ('321', 'EuroGroup')
INSERT SUPPLY3 VALUES ('442', 'UKArchip')
INSERT SUPPLY4 VALUES ('475', 'India')
INSERT SUPPLY4 VALUES ('521', 'Afrique')

--create the view that combines all supplier tables
CREATE VIEW all_supplier_view
AS
SELECT *
FROM SUPPLY1
 UNION ALL
SELECT *
FROM SUPPLY2
 UNION ALL
SELECT *
FROM SUPPLY3
 UNION ALL
SELECT *
FROM SUPPLY4

See Also

ALTER TABLE

ALTER VIEW

DELETE

DROP VIEW

INSERT

Programming Stored Procedures

sp_depends

sp_help

sp_helptext

sp_rename

sp_refreshview

System Tables

UPDATE

Using Identifiers

Using Views with Partitioned Data

Transact-SQL Reference (SQL Server 2000)

CURRENT_TIMESTAMP
Returns the current date and time. This function is equivalent to GETDATE().

Syntax

CURRENT_TIMESTAMP

Return Types

datetime

Examples

A. Use CURREN T_TIM ESTAM P to return the current date and time

This example returns the value of CURRENT_TIMESTAMP and a text description.

SELECT 'The current time is: '+ CONVERT(char(30), CURRENT_TIMESTAMP)

Here is the result set:

The current time is: Feb 24 1998 3:45PM

(1 row(s) affected)

B. Use CURREN T_TIM ESTAM P as a DEFAULT constraint

This example creates a table that uses CURRENT_TIMESTAMP as a DEFAULT constraint for the sales_date column of a sales row.

USE pubs
GO
CREATE TABLE sales2
(
 sales_id int IDENTITY(10000, 1) NOT NULL,
 cust_id int NOT NULL,
 sales_date datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
 sales_amt money NOT NULL,
 delivery_date datetime NOT NULL DEFAULT DATEADD(dd, 10, GETDATE())
)
GO
INSERT sales2 (cust_id, sales_amt)
 VALUES (20000, 550)

This query selects all information from the sales2 table.

USE pubs
GO
SELECT *
FROM sales2
GO

Here is the result set:

sales_id cust_id sales_date sales_amt delivery_date
----------- ---------- ------------------- --------- -------------------
10000 20000 Mar 4 1998 10:06AM 550.00 Mar 14 1998 10:06AM

(1 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

System Functions

Transact-SQL Reference (SQL Server 2000)

CURRENT_USER
Returns the current user. This function is equivalent to USER_NAME().

Syntax

CURRENT_USER

Return Types

sysname

Examples

A. Use CURREN T_USER to return the current username

This example declares a variable as char, assigns the current value of CURRENT_USER to it, and then returns the variable with a
text description.

SELECT 'The current user is: '+ convert(char(30), CURRENT_USER)

Here is the result set:

The current user is: dbo

(1 row(s) affected)

B. Use CURREN T_USER as a DEFAULT constraint

This example creates a table that uses CURRENT_USER as a DEFAULT constraint for the order_person column on a sales row.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'orders2')
 DROP TABLE orders2
GO
SET NOCOUNT ON
CREATE TABLE orders2
(
 order_id int IDENTITY(1000, 1) NOT NULL,
 cust_id int NOT NULL,
 order_date datetime NOT NULL DEFAULT GETDATE(),
 order_amt money NOT NULL,
 order_person char(30) NOT NULL DEFAULT CURRENT_USER
)
GO
INSERT orders2 (cust_id, order_amt)
VALUES (5105, 577.95)
GO
SET NOCOUNT OFF

This query selects all information from the orders2 table.

SELECT *
FROM orders2

Here is the result set:

order_id cust_id order_date order_amt order_person
----------- ----------- ------------------- ------------- --------------
1000 5105 Mar 4 1998 10:13AM 577.95 dbo

(1 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

System Functions

Transact-SQL Reference (SQL Server 2000)

cursor
A data type for variables or stored procedure OUTPUT parameters that contain a reference to a cursor. Any variables created with
the cursor data type are nullable.

The operations that can reference variables and parameters having a cursor data type are:

The DECLARE @local_variable and SET @local_variable statements.

The OPEN, FETCH, CLOSE, and DEALLOCATE cursor statements.

Stored procedure output parameters.

The CURSOR_STATUS function.

The sp_cursor_list, sp_describe_cursor, sp_describe_cursor_tables, and sp_describe_cursor_columns system stored
procedures.

Important The cursor data type cannot be used for a column in a CREATE TABLE statement.

See Also

CAST and CONVERT

CURSOR_STATUS

Data Type Conversion

Data Types

DECLARE CURSOR

DECLARE @local_variable

SET @local_variable

Transact-SQL Reference (SQL Server 2000)

CURSOR_STATUS
A scalar function that allows the caller of a stored procedure to determine whether or not the procedure has returned a cursor
and result set for a given parameter.

Syntax

CURSOR_STATUS
 (
 { 'local' , 'cursor_name' }
 | { 'global' , 'cursor_name' }
 | { 'variable' , 'cursor_variable' }
)

Arguments

'local'

Specifies a constant that indicates the source of the cursor is a local cursor name.

'cursor_name'

Is the name of the cursor. A cursor name must conform to the rules for identifiers.

'global'

Specifies a constant that indicates the source of the cursor is a global cursor name.

'variable'

Specifies a constant that indicates the source of the cursor is a local variable.

'cursor_variable'

Is the name of the cursor variable. A cursor variable must be defined using the cursor data type.

Return Types

smallint

Return
value Cursor name Cursor variable

1 The result set of the cursor has at
least one row and:

For insensitive and keyset
cursors, the result set has at least
one row.

For dynamic cursors, the result
set can have zero, one, or more
rows.

The cursor allocated to this variable is
open and:

For insensitive and keyset cursors, the
result set has at least one row.

For dynamic cursors, the result set can
have zero, one, or more rows.

0 The result set of the cursor is
empty.*

The cursor allocated to this variable is
open, but the result set is definitely
empty.*

-1 The cursor is closed. The cursor allocated to this variable is
closed.

-2 Not applicable. Can be:

No cursor was assigned to this OUTPUT
variable by the previously called
procedure.

A cursor was assigned to this OUTPUT
variable by the previously called
procedure, but it was in a closed state
upon completion of the procedure.
Therefore, the cursor is deallocated and
not returned to the calling procedure.

There is no cursor assigned to a declared
cursor variable.

-3 A cursor with the specified name
does not exist.

A cursor variable with the specified
name does not exist, or if one exists it
has not yet had a cursor allocated to it.

* Dynamic cursors never return this result.

Examples

This example creates a procedure named lake_list and uses the output from executing lake_list as a check for CURSOR_STATUS.

Note This example depends on a procedure named check_authority, which has not been created.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'lake_list' AND type = 'P')
 DROP PROCEDURE lake_list
GO
CREATE PROCEDURE lake_list
 (@region varchar(30),
 @size integer,
 @lake_list_cursor CURSOR VARYING OUTPUT)
AS
BEGIN
 DECLARE @ok SMALLINT
 EXECUTE check_authority @region, username, @ok OUTPUT
 IF @ok = 1
 BEGIN
 SET @lake_list_cursor =CURSOR LOCAL SCROLL FOR
 SELECT name, lat, long, size, boat_launch, cost
 FROM lake_inventory
 WHERE locale = @region AND area >= @size
 ORDER BY name
 OPEN @lake_list_cursor
 END
END
DECLARE @my_lakes_cursor CURSOR
DECLARE @my_region char(30)
SET @my_region = 'Northern Ontario'
EXECUTE lake_list @my_region, 500, @my_lakes_cursor OUTPUT
IF Cursor_Status('variable', '@my_lakes_cursor') <= 0
 BEGIN
 /* Some code to tell the user that there is no list of
 lakes for him/her */
 END
ELSE
 BEGIN
 FETCH @my_lakes_cursor INTO -- Destination here
 -- Continue with other code here.
END

See Also

Cursor Functions

Data Types

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

Cursors
Microsoft® SQL Server™ statements produce a complete result set, but there are times when the results are best processed one
row at a time. Opening a cursor on a result set allows processing the result set one row at a time. SQL Server version 7.0 also
introduces assigning a cursor to a variable or parameter with a cursor data type.

Cursor operations are supported on these statements:

CLOSE

CREATE PROCEDURE

DEALLOCATE

DECLARE CURSOR

DECLARE @local_variable

DELETE

FETCH

OPEN

UPDATE

SET

These system functions and system stored procedures also support cursors:

@@CURSOR_ROWS

CURSOR_STATUS

@@FETCH_STATUS

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

sp_describe_cursor_tables

See Also

Cursors

Transact-SQL Reference (SQL Server 2000)

DATABASEPROPERTY
Returns the named database property value for the given database and property name.

Important Use the Microsoft® SQL Server™ 2000 function DATABASEPROPERTYEX to obtain information about the current
setting of database options or the properties of a specified database. The DATABASEPROPERTY function is provided for backward
compatibility.

Syntax

DATABASEPROPERTY(database , property)

Arguments

database

Is an expression containing the name of the database for which to return the named property information. database is
nvarchar(128).

property

Is an expression containing the name of the database property to return. property is varchar(128), and can be one of these
values.

Value Description Value returned
IsAnsiNullDefault Database follows SQL-92

rules for allowing null
values.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAnsiNullsEnabled All comparisons to a null
evaluate to unknown.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAnsiWarningsEnabled Error or warning
messages are issued when
standard error conditions
occur.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAutoClose Database shuts down
cleanly and frees
resources after the last
user exits.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAutoCreateStatistics Existing statistics are
automatically updated
when the statistics
become out-of-date
because the data in the
tables has changed.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAutoShrink Database files are
candidates for automatic
periodic shrinking.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsAutoUpdateStatistics Auto update statistics
database option is
enabled.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsBulkCopy Database allows
nonlogged operations.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsCloseCursorsOnCommitEnabled Cursors that are open
when a transaction is
committed are closed.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsDboOnly Database is in DBO-only
access mode.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsDetached Database was detached by
a detach operation.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsEmergencyMode Emergency mode is
enabled to allow suspect
database to be usable.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsFulltextEnabled Database is full-text
enabled.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsInLoad Database is loading. 1 = TRUE
0 = FALSE
NULL = Invalid
input

IsInRecovery Database is recovering. 1 = TRUE
0 = FALSE
NULL1 = Invalid
input

IsInStandBy Database is online as
read-only, with restore log
allowed.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsLocalCursorsDefault Cursor declarations
default to LOCAL.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsNotRecovered Database failed to recover. 1 = TRUE
0 = FALSE
NULL = Invalid
input

IsNullConcat Null concatenation
operand yields NULL.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsOffline Database is offline. 1 = TRUE
0 = FALSE
NULL = Invalid
input

IsQuotedIdentifiersEnabled Double quotation marks
can be used on identifiers.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsReadOnly Database is in a read-only
access mode.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsRecursiveTriggersEnabled Recursive firing of triggers
is enabled.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsShutDown Database encountered a
problem at startup.

1 = TRUE
0 = FALSE
NULL1 = Invalid
input

IsSingleUser Database is in single-user
access mode.

1 = TRUE
0 = FALSE
NULL = Invalid
input

IsSuspect Database is suspect. 1 = TRUE
0 = FALSE
NULL = Invalid
input

IsTruncLog Database truncates its
logon checkpoints.

1 = TRUE
0 = FALSE
NULL = Invalid
input

Version Internal version number of
the Microsoft® SQL
Server™ code with which
the database was created.
For internal use only by
SQL Server tools and in
upgrade processing.

Version number
= Database is
open
NULL = Database
is closed

1. Returned value is also NULL if the database has never been started, or has been autoclosed.

Return Types

integer

Examples

This example returns the setting for the IsTruncLog property for the master database.

USE master
SELECT DATABASEPROPERTY('master', 'IsTruncLog')

Here is the result set:

1

See Also

Control-of-Flow Language

DATABASEPROPERTYEX

DELETE

INSERT

Metadata Functions

SELECT

sp_dboption

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

DATABASEPROPERTYEX
 Topic last updated -- January 2004

Returns the current setting of the specified database option or property for the specified database.

Syntax

DATABASEPROPERTYEX(database , property)

Arguments

database

Is an expression that evaluates to the name of the database for which a property setting is to be returned. database is
nvarchar(128).

property

Is an expression that indicates the option or property setting to be returned. property is nvarchar(128), and can be one of these
values.

Value Description Value returned
Collation Default collation name

for the database.
Collation name

IsAnsiNullDefault Database follows SQL-
92 rules for allowing
null values.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAnsiNullsEnabled All comparisons to a
null evaluate to
unknown.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAnsiPaddingEnabled Strings are padded to
the same length before
comparison or insert.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAnsiWarningsEnabled Error or warning
messages are issued
when standard error
conditions occur.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsArithmeticAbortEnabled Queries are terminated
when an overflow or
divide-by-zero error
occurs during query
execution.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAutoClose Database shuts down
cleanly and frees
resources after the last
user exits.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAutoCreateStatistics Existing statistics are
automatically updated
when the statistics
become out-of-date
because the data in the
tables has changed.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAutoShrink Database files are
candidates for
automatic periodic
shrinking.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsAutoUpdateStatistics Auto update statistics
database option is
enabled.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsCloseCursorsOnCommitEnabled Cursors that are open
when a transaction is
committed are closed.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsFulltextEnabled Database is full-text
enabled.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsInStandBy Database is online as
read-only, with restore
log allowed.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsLocalCursorsDefault Cursor declarations
default to LOCAL.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsMergePublished The tables of a
database can be
published for
replication, if
replication is installed.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsNullConcat Null concatenation
operand yields NULL.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsNumericRoundAbortEnabled Errors are generated
when loss of precision
occurs in expressions.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsPublished The tables of the
database can be
published for snapshot
or transactional
replication, if
replication is installed.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsQuotedIdentifiersEnabled Double quotation
marks can be used on
identifiers.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsRecursiveTriggersEnabled Recursive firing of
triggers is enabled.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsSubscribed Database can be
subscribed for
publication.

1 = TRUE
0 = FALSE
NULL = Invalid input

IsTornPageDetectionEnabled Microsoft® SQL
Server™ detects
incomplete I/O
operations caused by
power failures or other
system outages.

1 = TRUE
0 = FALSE
NULL = Invalid input

Recovery Recovery model for the
database.

FULL = full recovery
model
BULK_LOGGED =
bulk logged model
SIMPLE = simple
recovery model

SQLSortOrder SQL Server sort order
ID supported in
previous versions of
SQL Server.

0 = Database is
using Windows
collation
>0 = SQL Server
sort order ID

Status Database status. ONLINE = database
is available for query
OFFLINE = database
was explicitly taken
offline
RESTORING =
database is being
restored
RECOVERING =
database is
recovering and not
yet ready for queries
SUSPECT = database
cannot be recovered

Updateability Indicates whether data
can be modified.

READ_ONLY = data
can be read but not
modified
READ_WRITE = data
can be read and
modified

UserAccess Indicates which users
can access the
database.

SINGLE_USER =
only one db_owner,
dbcreator, or
sysadmin user at a
time
RESTRICTED_USER
= only members of
db_owner,
dbcreator, and
sysadmin roles
MULTI_USER = all
users

Version Internal version
number of the
Microsoft SQL Server
code with which the
database was created.
For internal use only
by SQL Server tools
and in upgrade
processing.

Version number =
Database is open
NULL = Database is
closed

Return Types

sql_variant

Remarks

This function returns only one property setting at a time.

DATABASEPROPERTY is supported for backward compatibility but does not provide information about the properties added in
this release. Also, many properties supported by DATABASEPROPERTY have been replaced by new properties in
DATABASEPROPERTYEX.

Examples

A. Retrieving the status of the autoshrink database option

This example returns the status of the autoshrink database option for the Northwind database.

SELECT DATABASEPROPERTYEX('Northwind', 'IsAutoShrink')

Here is the result set (indicates that autoshrink is off):

0

B. Retrieving the default collation for a database

This example returns the name of the default collation for the Northwind database.

SELECT DATABASEPROPERTYEX('Northwind', 'Collation')

Here is the result set:

SQL_Latin1_General_CP1_CS_AS

See Also

ALTER DATABASE

COLLATE

Transact-SQL Reference (SQL Server 2000)

Data Types
In Microsoft® SQL Server™, each column, local variable, expression, and parameter has a related data type, which is an attribute
that specifies the type of data (integer, character, money, and so on) that the object can hold. SQL Server supplies a set of system
data types that define all of the types of data that can be used with SQL Server. The set of system-supplied data types is shown
below.

User-defined data types, which are aliases for system-supplied data types, can also be defined. For more information about user-
defined data types, see sp_addtype and Creating User-defined Data Types.

When two expressions that have different data types, collations, precision, scale, or length are combined by an operator:

The data type of the resulting value is determined by applying the rules of data type precedence to the data types of the
input expressions. For more information, see Data Type Precedence.

If the result data type is char, varchar, text, nchar, nvarchar, or ntext, the collation of the result value is determined by the
rules of collation precedence. For more information, see Collation Precedence.

The precision, scale, and length of the result depend on the precision, scale, and length of the input expressions. For more
information, see Precision, Scale, and Length.

SQL Server provides data type synonyms for SQL-92 compatibility. For more information, see Data Type Synonyms.

Exact Numerics

Integers

bigint

Integer (whole number) data from -2^63 (-9,223,372,036,854,775,808) through 2^63-1 (9,223,372,036,854,775,807).

int

Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647).

smallint

Integer data from -2^15 (-32,768) through 2^15 - 1 (32,767).

tinyint

Integer data from 0 through 255.

bit

bit

Integer data with either a 1 or 0 value.

decimal and numeric

decimal

Fixed precision and scale numeric data from -10^38 +1 through 10^38 –1.

numeric

Functionally equivalent to decimal.

money and smallmoney

money

Monetary data values from -2^63 (-922,337,203,685,477.5808) through 2^63 - 1 (+922,337,203,685,477.5807), with accuracy to
a ten-thousandth of a monetary unit.

smallmoney

Monetary data values from -214,748.3648 through +214,748.3647, with accuracy to a ten-thousandth of a monetary unit.

Approximate Numerics

float

Floating precision number data with the following valid values: -1.79E + 308 through -2.23E - 308, 0 and 2.23E + 308 through
1.79E + 308.

real

Floating precision number data with the following valid values: -3.40E + 38 through -1.18E - 38, 0 and 1.18E - 38 through 3.40E +
38.

datetime and smalldatetime

datetime

Date and time data from January 1, 1753, through December 31, 9999, with an accuracy of three-hundredths of a second, or 3.33
milliseconds.

smalldatetime

Date and time data from January 1, 1900, through June 6, 2079, with an accuracy of one minute.

Character Strings

char

Fixed-length non-Unicode character data with a maximum length of 8,000 characters.

varchar

Variable-length non-Unicode data with a maximum of 8,000 characters.

text

Variable-length non-Unicode data with a maximum length of 2^31 - 1 (2,147,483,647) characters.

Unicode Character Strings

nchar

Fixed-length Unicode data with a maximum length of 4,000 characters.

nvarchar

Variable-length Unicode data with a maximum length of 4,000 characters. sysname is a system-supplied user-defined data type
that is functionally equivalent to nvarchar(128) and is used to reference database object names.

ntext

Variable-length Unicode data with a maximum length of 2^30 - 1 (1,073,741,823) characters.

Binary Strings

binary

Fixed-length binary data with a maximum length of 8,000 bytes.

varbinary

Variable-length binary data with a maximum length of 8,000 bytes.

image

Variable-length binary data with a maximum length of 2^31 - 1 (2,147,483,647) bytes.

Other Data Types

cursor

A reference to a cursor.

sql_variant

A data type that stores values of various SQL Server-supported data types, except text, ntext, timestamp, and sql_variant.

table

A special data type used to store a result set for later processing .

timestamp

A database-wide unique number that gets updated every time a row gets updated.

uniqueidentifier

A globally unique identifier (GUID).

See Also

CREATE PROCEDURE

CREATE TABLE

DECLARE @local_variable

EXECUTE

Expressions

Functions

LIKE

SET

sp_bindefault

sp_bindrule

sp_droptype

sp_help

sp_rename

sp_unbindefault

sp_unbindrule

Using Unicode Data

Transact-SQL Reference (SQL Server 2000)

Data Type Precedence
When two expressions of different data types are combined by an operator, the data type precedence rules specify which data
type is converted to the other. The data type with the lower precedence is converted to the data type with the higher precedence.
If the conversion is not a supported implicit conversion, an error is returned. When both operand expressions have the same data
type, the result of the operation has that data type.

This is the precedence order for the Microsoft® SQL Server™ 2000 data types:

sql_variant (highest)

datetime

smalldatetime

float

real

decimal

money

smallmoney

bigint

int

smallint

tinyint

bit

ntext

text

image

timestamp

uniqueidentifier

nvarchar

nchar

varchar

char

varbinary

binary (lowest)

Transact-SQL Reference (SQL Server 2000)

Collation Precedence
Collation precedence, also known as collation coercion rules, is the term given to the set of rules that determine:

The collation of the final result of an expression that is evaluated to a character string.

The collation used by collation-sensitive operators that use character string inputs but do not return a character string, such
as LIKE and IN.

The collation precedence rules apply only to the character string data types, char, varchar, text, nchar, nvarchar, and ntext.
Objects with other data types do not participate in collation evaluations.

The collation of all objects falls into one of four categories. The name of each category is called the collation label.

Collation label Types of objects
Coercible-default Any Transact-SQL character string variable, parameter, literal,

or the output of a catalog built-in function, or a built-in
function that does not take string inputs but produces a string
output.

If the object is declared in a user-defined function, stored
procedure, or trigger, it is assigned the default collation of the
database in which the function, stored procedure, or trigger is
created. If the object is declared in a batch, it is assigned the
default collation of the current database for the connection.

Implicit X A column reference. The collation of the expression (denoted
by X) is taken from the collation defined for the column in the
table or view.

Even if the column was explicitly assigned a collation by a
COLLATE clause in the CREATE TABLE or CREATE VIEW
statement, the column reference is classified as implicit.

Explicit X An expression that is explicitly cast to a specific collation
(denoted by X) using a COLLATE clause in the expression.

No-collation Indicates that the value of an expression is the result of an
operation between two strings with conflicting collations of the
implicit collation label. The expression result is defined as not
having a collation.

The collation label of a simple expression that references only one character string object is the collation label of the referenced
object.

The collation label of a complex expression that references two operand expressions with the same collation label is the collation
label of the operand expressions.

The collation label of the final result of a complex expression that references two operand expressions with different collations is
based on these rules:

Explicit takes precedence over implicit. Implicit takes precedence over coercible-default. In other words,

Explicit > Implicit > Coercible-Default

Combining two explicit expressions that have been assigned different collations generates an error.

Explicit X + Explicit Y = Error

Combining two implicit expressions that have different collations yields a result of no-collation.

Implicit X + Implicit Y = No-collation

Combining an expression with no-collation with an expression of any label, except explicit collation (see following bullet),
yields a result that has the no-collation label.

No-collation + anything = No-collation

Combining an expression with no-collation with an expression that has an explicit collation, yields an expression with an
explicit label.

No-collation + Explicit X = Explicit

These examples illustrate the rules.

USE tempdb
GO

CREATE TABLE TestTab (
 id int,
 GreekCol nvarchar(10) collate greek_ci_as,
 LatinCol nvarchar(10) collate latin1_general_cs_as
)
INSERT TestTab VALUES (1, N'A', N'a')
GO

The predicate in the following query has collation conflict and generates an error:

SELECT *
FROM TestTab
WHERE GreekCol = LatinCol

This is the result set.

Msg 446, Level 16, State 9, Server CTSSERV, Line 1
Cannot resolve collation conflict for equal to operation.

The predicate in the following query is evaluated in collation greek_ci_as because the right expression has the explicit label, which
takes precedence over the implicit label of the right expression:

SELECT *
FROM TestTab
WHERE GreekCol = LatinCol COLLATE greek_ci_as

This is the result set.

id GreekCol LatinCol
 ----------- -------------------- --------------------
 1 a A

(1 row affected)

The case expressions in the following queries have no collation label so they cannot appear in the select list or be operated by
collation-sensitive operators. However, the expressions can be operated on by collation-insensitive operators.

SELECT (CASE WHEN id > 10 THEN GreekCol ELSE LatinCol END)
FROM TestTab

Here is the result set.

Msg 451, Level 16, State 1, Line 1
Cannot resolve collation conflict for column 1 in SELECT statement.

SELECT PATINDEX((CASE WHEN id > 10 THEN GreekCol ELSE LatinCol END), 'a')
FROM TestTab

Here is the result set.

Msg 446, Level 16, State 9, Server LEIH2, Line 1
Cannot resolve collation conflict for patindex operation.

SELECT (CASE WHEN id > 10 THEN GreekCol ELSE LatinCol END) COLLATE Latin1_General_CI_AS
FROM TestTab

Here is the result set.

a

(1 row affected)

This table summarizes the rules.

Operand coercion
label Explicit X Implicit X

Coercible-
default No-collation

Explicit Y Generates
Error

Result is
Explicit Y

Result is
Explicit Y

Result is
Explicit Y

Implicit Y Result is
Explicit X

Result is No-
collation

Result is
Implicit Y

Result is No-
collation

Coercible-default Result is
Explicit X

Result is
Implicit X

Result is
Coercible-
default

Result is No-
collation

No-collation Result is
Explicit X

Result is No-
collation

Result is No-
collation

Result is No-
collation

Operators and functions are either collation sensitive or insensitive:

Collation sensitive means that specifying a no-collation operand is a compile-time error. The expression result cannot be
no-collation.

Collation insensitive means that the operands and result can be no-collation.

The comparison operators, and the MAX, MIN, BETWEEN, LIKE, and IN operators, are collation sensitive. The string used by the
operators is assigned the collation label of the operand that has the higher precedence. The UNION operator is also collation
sensitive, and all string operands and the final result is assigned the collation of the operand with the highest precedence. The
collation precedence of the UNION operands and result are evaluated column by column.

The assignment operator is collation insensitive and the right expression is cast to the left collation.

The string concatenation operator is collation insensitive, the two string operands and the result are assigned the collation label of
the operand with the highest collation precedence. The UNION ALL and CASE operators are collation insensitive, and all string
operands and the final results are assigned the collation label of the operand with the highest precedence. The collation
precedence of the UNION ALL operands and result are evaluated column by column.

THE CAST, CONVERT, and COLLATE functions are collation sensitive for char, varchar, and text data types. If the input and output
of the CAST and CONVERT functions are character strings, the output string has the collation label of the input string. If the input
is not a character string, the output string is coercible-default and assigned the collation of the current database for the
connection, or the database containing the user-defined function, stored procedure, or trigger in which the CAST or CONVERT is
referenced.

For the built-in functions that return a string but do not take a string input, the result string is coercible-default and is assigned
either the collation of the current database, or the collation of the database containing the user-defined function, stored
procedure, or trigger in which the function is referenced.

These functions are collation-sensitive and their output strings have the collation label of the input string:

CHARINDEX

DIFFERENCE

ISNUMERIC

LEFT

LEN

LOWER

PATINDEX

REPLACE

REVERSE

RIGHT

SOUNDEX

STUFF

SUBSTRING

UPPER

These additional rules also apply to collation precedence:

You cannot have multiple COLLATE clauses on an expression that is already an explicit expression. For example, this WHERE
clause is illegal because a COLLATE clause is specified for an expression that is already an explicit expression:

WHERE ColumnA = ('abc' COLLATE French_CI_AS) COLLATE French_CS_AS

Code page conversions for text data types are not allowed. You cannot cast a text expression from one collation to another
if they have the different code pages. The assignment operator cannot assign values if the collation of the right text operand
has a different code page than the left text operand.

Determination of collation precedence takes place after data type conversion. The operand from which the resulting collation is
taken can be different from the operand that supplies the data type of the final result. For example, consider this batch:

CREATE TABLE TestTab
 (PrimaryKey int PRIMARY KEY,
 CharCol char(10) COLLATE French_CI_AS
)

SELECT *
FROM TestTab
WHERE CharCol LIKE N'abc'

The Unicode data type of the simple expression N'abc' has a higher data type precedence, so the resulting expression has the
Unicode data type assigned to N'abc'. The expression CharCol, however, has a collation label of Implicit, while N'abc' has a lower
coercion label of coercible-default, so the collation used is the French_CI_AS collation of CharCol.

See Also

COLLATE

Data Type Conversion

Transact-SQL Reference (SQL Server 2000)

Precision, Scale, and Length
Precision is the number of digits in a number. Scale is the number of digits to the right of the decimal point in a number. For
example, the number 123.45 has a precision of 5 and a scale of 2.

The default maximum precision of numeric and decimal data types is 38. In previous versions of SQL Server, the default
maximum was 28.

Length for a numeric data type is the number of bytes used to store the number. Length for a character string or Unicode data
type is the number of characters. The length for binary, varbinary, and image data types is the number of bytes. For example, an
int data type can hold 10 digits, is stored in 4 bytes, and does not accept decimal points. The int data type has a precision of 10, a
length of 4, and a scale of 0.

When two char, varchar, binary, or varbinary expressions are concatenated, the length of the resulting expression is the sum of
the lengths of the two source expressions or 8,000 characters, whichever is less.

When two nchar or nvarchar expressions are concatenated, the length of the resulting expression is the sum of the lengths of
the two source expressions, or 4,000 characters, whichever is less.

The precision and scale of the numeric data types besides decimal are fixed. If an arithmetic operator has two expressions of the
same type, then the result has the same data type with the precision and scale defined for that type. If an operator has two
expressions with different numeric data types, then the rules of data type precedence define the data type of the result. The result
has the precision and scale defined for its data type.

This table defines how the precision and scale of the result are calculated when the result of an operation is of type decimal. The
result is decimal when:

Both expressions are decimal.

One expression is decimal and the other is a data type with a lower precedence than decimal.

The operand expressions are denoted as expression e1, with precision p1 and scale s1, and expression e2, with precision p2 and
scale s2. The precision and scale for any expression that is not decimal is the precision and scale defined for the data type of the
expression.

Operation Result precision Result scale *
e1 + e2 max(s1, s2) + max(p1-s1, p2-s2) + 1 max(s1, s2)
e1 - e2 max(s1, s2) + max(p1-s1, p2-s2) max(s1, s2)
e1 * e2 p1 + p2 + 1 s1 + s2
e1 / e2 p1 - s1 + s2 + max(6, s1 + p2 + 1) max(6, s1 + p2 + 1)

* The result precision and scale have an absolute maximum of 38. When a result precision is greater than 38, the corresponding
scale is reduced to prevent the integral part of a result from being truncated.

Transact-SQL Reference (SQL Server 2000)

Data Type Synonyms
Data type synonyms are included for SQL-92 compatibility.

Synonym Mapped to system data type
Binary varying Varbinary
char varying Varchar
character Char
character char(1)
character(n) char(n)
character varying(n) varchar(n)
Dec decimal
Double precision float
float[(n)] for n = 1-7 real
float[(n)] for n = 8-15 float
integer int
national character(n) nchar(n)
national char(n) nchar(n)
national character varying(n) nvarchar(n)
national char varying(n) nvarchar(n)
national text ntext
rowversion timestamp

Data type synonyms can be used in place of the corresponding base data type name in data definition language (DDL) statements,
such as CREATE TABLE, CREATE PROCEDURE, or DECLARE @variable. The synonyms have no visibility after the object is created,
however. When the object is created, it is assigned the base data type associated with the synonym, and there is no record that the
synonym was specified in the statement that created the object.

All objects derived from the original object, such as result set columns or expressions, are assigned the base data type. All
subsequent meta data functions performed on the original object and any derived objects will report the base data type, not the
synonym. This includes meta data operations, such as sp_help and other system stored procedures, the information schema
views, or the various data access API meta data operations that report the data types of table or result set columns.

Data type synonyms also cannot be specified in the graphical administration utilities, such as SQL Server Enterprise Manager.

For example, you can create a table specifying national character varying:

CREATE TABLE ExampleTable (PriKey int PRIMARY KEY, VarCHarCol national character varying(10))

VarCharCol is actually assigned an nvarchar(10) data type, and all subsequent meta data functions will report it as an
nvarchar(10) column. The meta data functions will never report them as national character varying(10) column.

Transact-SQL Reference (SQL Server 2000)

DATALENGTH
Returns the number of bytes used to represent any expression.

Syntax

DATALENGTH (expression)

Arguments

expression

Is an expression of any type.

Return Types

int

Remarks

DATALENGTH is especially useful with varchar, varbinary, text, image, nvarchar, and ntext data types because these data
types can store variable-length data.

The DATALENGTH of NULL is NULL.

Note Compatibility levels can affect return values. For more information about compatibility levels, see sp_dbcmptlevel.

Examples

This example finds the length of the pub_name column in the publishers table.

USE pubs
GO
SELECT length = DATALENGTH(pub_name), pub_name
FROM publishers
ORDER BY pub_name
GO

Here is the result set:

length pub_name
----------- --
20 Algodata Infosystems
16 Binnet & Hardley
21 Five Lakes Publishing
5 GGG&G
18 Lucerne Publishing
14 New Moon Books
17 Ramona Publishers
14 Scootney Books

(8 row(s) affected)

See Also

CAST and CONVERT

Data Types

System Functions

Transact-SQL Reference (SQL Server 2000)

DATEADD
Returns a new datetime value based on adding an interval to the specified date.

Syntax

DATEADD (datepart , number, date)

Arguments

datepart

Is the parameter that specifies on which part of the date to return a new value. The table lists the dateparts and abbreviations
recognized by Microsoft® SQL Server™.

Datepart Abbreviations
Year yy, yyyy
quarter qq, q
Month mm, m
dayofyear dy, y
Day dd, d
Week wk, ww
Hour hh
minute mi, n
second ss, s
millisecond ms

number

Is the value used to increment datepart. If you specify a value that is not an integer, the fractional part of the value is discarded.
For example, if you specify day for datepart and1.75 for number, date is incremented by 1.

date

Is an expression that returns a datetime or smalldatetime value, or a character string in a date format. For more information
about specifying dates, see datetime and smalldatetime.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit year
cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value of this
option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is interpreted as
2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

Return Types

Returns datetime, but smalldatetime if the date argument is smalldatetime.

Examples

This example prints a listing of a time frame for titles in the pubs database. This time frame represents the existing publication
date plus 21 days.

USE pubs
GO
SELECT DATEADD(day, 21, pubdate) AS timeframe
FROM titles
GO

Here is the result set:

timeframe

Jul 3 1991 12:00AM
Jun 30 1991 12:00AM
Jul 21 1991 12:00AM
Jul 13 1991 12:00AM

Jun 30 1991 12:00AM
Jul 9 1991 12:00AM
Mar 14 1997 5:09PM
Jul 21 1991 12:00AM
Jul 3 1994 12:00AM
Mar 14 1997 5:09PM
Nov 11 1991 12:00AM
Jul 6 1991 12:00AM
Oct 26 1991 12:00AM
Jul 3 1991 12:00AM
Jul 3 1991 12:00AM
Nov 11 1991 12:00AM
Jul 3 1991 12:00AM
Jul 3 1991 12:00AM

(18 row(s) affected)

See Also

CAST and CONVERT

Data Types

Date and Time Functions

Time Formats

Transact-SQL Reference (SQL Server 2000)

DATEDIFF
Returns the number of date and time boundaries crossed between two specified dates.

Syntax

DATEDIFF (datepart , startdate , enddate)

Arguments

datepart

Is the parameter that specifies on which part of the date to calculate the difference. The table lists dateparts and abbreviations
recognized by Microsoft® SQL Server™.

Datepart Abbreviations
Year yy, yyyy
quarter qq, q
Month mm, m
dayofyear dy, y
Day dd, d
Week wk, ww
Hour hh
minute mi, n
second ss, s
millisecond ms

startdate

Is the beginning date for the calculation. startdate is an expression that returns a datetime or smalldatetime value, or a
character string in a date format.

Because smalldatetime is accurate only to the minute, when a smalldatetime value is used, seconds and milliseconds are
always 0.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit year
cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value of this
option are in the century that precedes the cutoff year. For example, if the two digit year cutoff is 2049 (default), 49 is
interpreted as 2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

For more information about specifying time values, see Time Formats. For more information about specifying dates, see datetime
and smalldatetime.

enddate

Is the ending date for the calculation. enddate is an expression that returns a datetime or smalldatetime value, or a character
string in a date format.

Return Types

integer

Remarks

startdate is subtracted from enddate. If startdate is later than enddate, a negative value is returned.

DATEDIFF produces an error if the result is out of range for integer values. For milliseconds, the maximum number is 24 days, 20
hours, 31 minutes and 23.647 seconds. For seconds, the maximum number is 68 years.

The method of counting crossed boundaries such as minutes, seconds, and milliseconds makes the result given by DATEDIFF
consistent across all data types. The result is a signed integer value equal to the number of datepart boundaries crossed between
the first and second date. For example, the number of weeks between Sunday, January 4, and Sunday, January 11, is 1.

Examples

This example determines the difference in days between the current date and the publication date for titles in the pubs database.

USE pubs
GO
SELECT DATEDIFF(day, pubdate, getdate()) AS no_of_days
FROM titles
GO

See Also

CAST and CONVERT

Data Types

Date and Time Functions

Transact-SQL Reference (SQL Server 2000)

DATENAME
Returns a character string representing the specified datepart of the specified date.

Syntax

DATENAME (datepart , date)

Arguments

datepart

Is the parameter that specifies the part of the date to return. The table lists dateparts and abbreviations recognized by Microsoft®
SQL Server™.

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
weekday dw
hour hh
minute mi, n
second ss, s
millisecond ms

The weekday (dw) datepart returns the day of the week (Sunday, Monday, and so on).

Is an expression that returns a datetime or smalldatetime value, or a character string in a date format. Use the datetime data
type for dates after January 1, 1753. Store as character data for earlier dates. When entering datetime values, always enclose
them in quotation marks. Because smalldatetime is accurate only to the minute, when a smalldatetime value is used, seconds
and milliseconds are always 0. For more information about specifying dates, see datetime and smalldatetime. For more
information about specifying time values, see Time Formats.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit year
cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value of this
option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is interpreted as
2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

Return Types

nvarchar

Remarks

SQL Server automatically converts between character and datetime values as necessary, for example, when you compare a
character value with a datetime value.

Examples

This example extracts the month name from the date returned by GETDATE.

SELECT DATENAME(month, getdate()) AS 'Month Name'

Here is the result set:

Month Name

February

See Also

CAST and CONVERT

Data Types

Date and Time Functions

Transact-SQL Reference (SQL Server 2000)

DATEPART
Returns an integer representing the specified datepart of the specified date.

Syntax

DATEPART (datepart , date)

Arguments

datepart

Is the parameter that specifies the part of the date to return. The table lists dateparts and abbreviations recognized by Microsoft®
SQL Server™.

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
weekday dw
hour hh
minute mi, n
second ss, s
millisecond ms

The week (wk, ww) datepart reflects changes made to SET DATEFIRST. January 1 of any year defines the starting number for the
week datepart, for example: DATEPART(wk, 'Jan 1, xxxx') = 1, where xxxx is any year.

The weekday (dw) datepart returns a number that corresponds to the day of the week, for example: Sunday = 1, Saturday = 7.
The number produced by the weekday datepart depends on the value set by SET DATEFIRST, which sets the first day of the week.

date

Is an expression that returns a datetime or smalldatetime value, or a character string in a date format. Use the datetime data
type only for dates after January 1, 1753. Store dates as character data for earlier dates. When entering datetime values, always
enclose them in quotation marks. Because smalldatetime is accurate only to the minute, when a smalldatetime value is used,
seconds and milliseconds are always 0.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit year
cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value of this
option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is interpreted as
2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

For more information about specifying time values, see Time Formats. For more information about specifying dates, see datetime
and smalldatetime.

Return Types

int

Remarks

The DAY, MONTH, and YEAR functions are synonyms for DATEPART(dd, date), DATEPART(mm, date), and DATEPART(yy, date),
respectively.

Examples

The GETDATE function returns the current date; however, the complete date is not always the information needed for comparison
(often only a portion of the date is compared). This example shows the output of GETDATE as well as DATEPART.

SELECT GETDATE() AS 'Current Date'
GO

Here is the result set:

Current Date

Feb 18 1998 11:46PM

SELECT DATEPART(month, GETDATE()) AS 'Month Number'
GO

Here is the result set:

Month Number

2

This example assumes the date May 29.

SELECT DATEPART(month, GETDATE())
GO

Here is the result set:

5

(1 row(s) affected)

In this example, the date is specified as a number. Notice that SQL Server interprets 0 as January 1, 1900.

SELECT DATEPART(m, 0), DATEPART(d, 0), DATEPART(yy, 0)

Here is the result set:

----- ------ ------
1 1 1900

See Also

CAST and CONVERT

Data Types

Date and Time Functions

Transact-SQL Reference (SQL Server 2000)

datetime and smalldatetime
Date and time data types for representing date and time of day.

datetime

Date and time data from January 1, 1753 through December 31, 9999, to an accuracy of one three-hundredth of a second
(equivalent to 3.33 milliseconds or 0.00333 seconds). Values are rounded to increments of .000, .003, or .007 seconds, as shown
in the table.

Example Rounded example
01/01/98 23:59:59.999 1998-01-02 00:00:00.000
01/01/98 23:59:59.995,
01/01/98 23:59:59.996,
01/01/98 23:59:59.997, or
01/01/98 23:59:59.998

1998-01-01 23:59:59.997

01/01/98 23:59:59.992,
01/01/98 23:59:59.993,
01/01/98 23:59:59.994

1998-01-01 23:59:59.993

01/01/98 23:59:59.990 or
01/01/98 23:59:59.991

1998-01-01 23:59:59.990

Microsoft® SQL Server™ rejects all values it cannot recognize as dates between 1753 and 9999.

smalldatetime

Date and time data from January 1, 1900, through June 6, 2079, with accuracy to the minute. smalldatetime values with 29.998
seconds or lower are rounded down to the nearest minute; values with 29.999 seconds or higher are rounded up to the nearest
minute.

--returns time as 12:35
SELECT CAST('2000-05-08 12:35:29.998' AS smalldatetime)
GO
--returns time as 12:36
SELECT CAST('2000-05-08 12:35:29.999' AS smalldatetime)
GO

Remarks

Values with the datetime data type are stored internally by Microsoft SQL Server as two 4-byte integers. The first 4 bytes store
the number of days before or after the base date, January 1, 1900. The base date is the system reference date. Values for
datetime earlier than January 1, 1753, are not permitted. The other 4 bytes store the time of day represented as the number of
milliseconds after midnight.

The smalldatetime data type stores dates and times of day with less precision than datetime. SQL Server stores
smalldatetime values as two 2-byte integers. The first 2 bytes store the number of days after January 1, 1900. The other 2 bytes
store the number of minutes since midnight. Dates range from January 1, 1900, through June 6, 2079, with accuracy to the
minute.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

DAY
Returns an integer representing the day datepart of the specified date.

Syntax

DAY (date)

Arguments

date

Is an expression of type datetime or smalldatetime.

Return Type

int

Remarks

This function is equivalent to DATEPART(dd, date).

Examples

This example returns the number of the day from the date 03/12/1998.

SELECT DAY('03/12/1998') AS 'Day Number'
GO

Here is the result set:

Day Number

12

In this example, the date is specified as a number. Notice that Microsoft® SQL Server™ interprets 0 as January 1, 1900.

SELECT MONTH(0), DAY(0), YEAR(0)

Here is the result set.

----- ------ ------
1 1 1900

See Also

Date and Time Functions

datetime and smalldatetime

Expressions

Transact-SQL Reference (SQL Server 2000)

DB_ID
Returns the database identification (ID) number.

Syntax

DB_ID (['database_name'])

Arguments

'database_name'

Is the database name used to return the corresponding database ID. database_name is nvarchar. If database_name is omitted,
the current database ID is returned.

Return Types

smallint

Examples

This example examines each database in sysdatabases using the database name to determine the database ID.

USE master
SELECT name, DB_ID(name) AS DB_ID
FROM sysdatabases
ORDER BY dbid

Here is the result set:

name DB_ID
------------------------------ ------
master 1
tempdb 2
model 3
msdb 4
pubs 5

(5 row(s) affected)

See Also

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

DB_NAME
Returns the database name.

Syntax

DB_NAME (database_id)

Arguments

database_id

Is the identification number (ID) of the database to be returned. database_id is smallint, with no default. If no ID is specified, the
current database name is returned.

Return Types

nvarchar(128)

Examples

This example examines each database in sysdatabases using the database identification number to determine the database
name.

USE master
SELECT dbid, DB_NAME(dbid) AS DB_NAME
FROM sysdatabases
ORDER BY dbid
GO

Here is the result set:

dbid DB_NAME
------ ------------------------------
1 master
2 tempdb
3 model
4 msdb
5 pubs

(5 row(s) affected)

See Also

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

DBCC
The Transact-SQL programming language provides DBCC statements that act as Database Console Commands for Microsoft®
SQL Server™ 2000. These statements check the physical and logical consistency of a database. Many DBCC statements can fix
detected problems.

Database Console Command statements are grouped into these categories.

Statement category Perform
Maintenance statements Maintenance tasks on a database, index, or filegroup.
Miscellaneous statements Miscellaneous tasks such as enabling row-level locking

or removing a dynamic-link library (DLL) from memory.
Status statements Status checks.
Validation statements Validation operations on a database, table, index, catalog,

filegroup, system tables, or allocation of database pages.

The DBCC statements of SQL Server 2000 take input parameters and return values. All DBCC statement parameters can accept
both Unicode and DBCS literals.

Using DBCC Result Set Outputs

Many DBCC commands can produce output in tabular form (using the WITH TABLERESULTS option). This information can be
loaded into a table for further use. An example script is shown below:

-- Create the table to accept the results
CREATE TABLE #tracestatus (
 TraceFlag INT,
 Status INT
)

-- Execute the command, putting the results in the table
INSERT INTO #tracestatus
 EXEC ('DBCC TRACESTATUS (-1) WITH NO_INFOMSGS')

-- Display the results
SELECT *
FROM #tracestatus
GO

Maintenance Statements

DBCC DBREINDEX

DBCC DBREPAIR

DBCC INDEXDEFRAG

DBCC SHRINKDATABASE

DBCC SHRINKFILE

DBCC UPDATEUSAGE

Miscellaneous Statements

DBCC dllname (FREE)

DBCC HELP

DBCC PINTABLE

DBCC ROWLOCK

DBCC TRACEOFF

DBCC TRACEON

DBCC UNPINTABLE

Status Statements

DBCC INPUTBUFFER

DBCC OPENTRAN

DBCC OUTPUTBUFFER

DBCC PROCCACHE

DBCC SHOWCONTIG

DBCC SHOW_STATISTICS

DBCC SQLPERF

DBCC TRACESTATUS

DBCC USEROPTIONS

Validation Statements

DBCC CHECKALLOC

DBCC CHECKCATALOG

DBCC CHECKCONSTRAINTS

DBCC CHECKDB

DBCC CHECKFILEGROUP

DBCC CHECKIDENT

DBCC CHECKTABLE

DBCC NEWALLOC

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKALLOC
Checks the consistency of disk space allocation structures for a specified database.

Syntax

DBCC CHECKALLOC
 ('database_name'
 [, NOINDEX
 |
 { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST
 | REPAIR_REBUILD
 }]
) [WITH { [ALL_ERRORMSGS | NO_INFOMSGS]
 [, [TABLOCK]]
 [, [ESTIMATEONLY]]
 }
]

Arguments

'database_name'

Is the database for which to check allocation and page usage. If not specified, the default is the current database. Database names
must conform to the rules for identifiers. For more information, see Using Identifiers.

NOINDEX

Specifies that nonclustered indexes for nonsystem tables should not be checked.

Note NOINDEX is maintained for backward compatibility only. All indexes are checked when executing DBCC CHECKALLOC.

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD

Specifies that DBCC CHECKALLOC repair the found errors. The given database_name must be in single-user mode to use one of
these repair options, and can be one of the following.

Value Description
REPAIR_ALLOW_DATA_LOSS Performs all repairs done by REPAIR_REBUILD and

includes allocation and deallocation of rows and
pages for correcting allocation errors, structural
row or page errors, and deletion of corrupted text
objects. These repairs can result in some data loss.
The repair can be done under a user transaction to
allow the user to roll back the changes made. If
repairs are rolled back, the database will still
contain errors and should be restored from a
backup. If a repair for an error has been skipped
due to the provided repair level, any repairs that
depend on the repair are also skipped. After
repairs are completed, back up the database.

REPAIR_FAST Performs minor, nontime-consuming repair
actions such as repairing extra keys in
nonclustered indexes. These repairs can be done
quickly and without risk of data loss.

REPAIR_REBUILD Performs all repairs done by REPAIR_FAST and
includes time-consuming repairs such as
rebuilding indexes. These repairs can be done
without risk of data loss.

WITH

Specifies options on the number of error messages returned, locks obtained, or estimating tempdb requirements. If neither
ALL_ERRORMSGS nor NO_INFOMSGS is specified, Microsoft® SQL Server™ 2000 returns all error messages.

ALL_ERRORMSGS

Displays all error messages. If not specified, SQL Server displays a maximum of 200 error messages per object.

NO_INFOMSGS

Suppresses all informational messages and the report of space used.

TABLOCK

Causes DBCC command to obtain shared table locks. Ignored for DBCC CHECKALLOC.

ESTIMATE ONLY

Displays the estimated amount of tempdb space required to run DBCC CHECKALLOC with all of the other specified options.

Remarks

DBCC CHECKALLOC checks allocation and page usage in a database, including indexed views. The NOINDEX option, used only for
backward compatibility, also applies to indexed views.

It is not necessary to execute DBCC CHECKALLOC if DBCC CHECKDB has already been executed. DBCC CHECKDB is a superset of
DBCC CHECKALLOC and includes allocation checks in addition to checks of index structure and data integrity.

DBCC CHECKDB is the safest repair statement because it identifies and repairs the widest possible range of errors. If only
allocation errors are reported for a database, execute DBCC CHECKALLOC with a repair option to correct them. However, to
ensure that all errors (including allocation errors) are repaired properly, execute DBCC CHECKDB with a repair option. DBCC
CHECKALLOC messages are sorted by object ID, except for those messages generated from tempdb. DBCC CHECKALLOC
validates the allocation of all data pages in the database while DBCC CHECKDB validates the page information used in the storage
of data in addition to validating the allocation information.

DBCC CHECKALLOC does not acquire table locks by default. Instead, it acquires schema locks that prevent meta data changes but
allow changes to the data while the DBCC CHECKALLOC is in progress. The DBCC statement collects information, and then scans
the log for any additional changes made, merging the two sets of information together to produce a consistent view of the data at
the end of the scan.

Result Sets

This table describes the information DBCC CHECKALLOC returns.

Item Description
FirstIAM Internal use only.
Root Internal use only.
Dpages Data page count from sysindexes.
Pages used Allocated pages.
Dedicated extents Extents allocated to the object.

If mixed allocation pages are used, there may be pages
allocated with no extents.

The second part of a DBCC CHECKALLOC report is an allocation summary for each index in each file. This summary gives users an
idea of the distribution of the data.

Item Description
Reserved Pages allocated to the index and the unused pages in

allocated extents.
Used Pages allocated and in use by the index.

Whether or not any options (except WITH NO_INFOMSGS) are specified, DBCC CHECKALLOC returns this result set (values may
vary):

DBCC results for 'master'.

Table sysobjects Object ID 1.
Index ID 1 FirstIAM (1:11) Root (1:12) Dpages 22.
 Index ID 1. 24 pages used in 5 dedicated extents.
Index ID 2 FirstIAM (1:1368) Root (1:1362) Dpages 10.
 Index ID 2. 12 pages used in 2 dedicated extents.
Index ID 3 FirstIAM (1:1392) Root (1:1408) Dpages 4.
 Index ID 3. 6 pages used in 0 dedicated extents.
Total number of extents is 7.

'...'

Table spt_server_info Object ID 1938105945.
Index ID 1 FirstIAM (1:520) Root (1:508) Dpages 1.
 Index ID 1. 3 pages used in 0 dedicated extents.
Total number of extents is 0.

Processed 52 entries in sysindexes for database ID 1.
File 1. Number of extents = 210, used pages = 1126, reserved pages = 1280.
 File 1 (number of mixed extents = 73, mixed pages = 184).
 Object ID 1, Index ID 0, data extents 5, pages 24, mixed extent pages 9.
'...'
 Object ID 1938105945, Index ID 0, data extents 0, pages 3, mixed extent pages 3.
Total number of extents = 210, used pages = 1126, reserved pages = 1280 in this database.
 (number of mixed extents = 73, mixed pages = 184) in this database.
CHECKALLOC found 0 allocation errors and 0 consistency errors in database 'master'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC CHECKALLOC returns this result set when the ESTIMATE ONLY option is specified.

Estimated TEMPDB space needed for CHECKALLOC (KB)

34

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKALLOC permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, and
are not transferable.

Examples

This example executes DBCC CHECKALLOC for the current database and for the pubs database.

-- Check the current database.
DBCC CHECKALLOC
GO
-- Check the pubs database.
DBCC CHECKALLOC ('pubs')
GO

See Also

DBCC

DBCC NEWALLOC

Space Allocation and Reuse

sp_dboption

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKCATALOG
Checks for consistency in and between system tables in the specified database.

Syntax

DBCC CHECKCATALOG
 ('database_name'
) [WITH NO_INFOMSGS]

Arguments

'database_name'

Is the database for which to check system table consistency. If not specified, the default is the current database. Database names
must conform to the rules for identifiers. For more information, see Using Identifiers.

WITH NO_INFOMSGS

Suppresses all informational messages and the report of space used when there are less than 200 error messages. If not specified,
DBCC CHECKCATALOG displays all error messages. DBCC CHECKCATALOG messages are sorted by object ID, except for those
messages generated from tempdb.

Remarks

DBCC CHECKCATALOG checks that every data type in syscolumns has a matching entry in systypes and that every table and
view in sysobjects has at least one column in syscolumns.

Result Sets

If no database is specified, DBCC CHECKCATALOG returns this result set (message):

DBCC results for 'current database'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

If Northwind is provided as a database name, DBCC CHECKCATALOG returns this result set (message):

DBCC results for 'Northwind'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKCATALOG permissions default to members of the sysadmin fixed server role, the db_owner and
db_backupoperator fixed database roles, and are not transferable.

Examples

This example checks the allocation and structural integrity of objects in both the current database and in the pubs database.

-- Check the current database.
DBCC CHECKCATALOG
GO
-- Check the pubs database.
DBCC CHECKCATALOG ('pubs')
GO

See Also

DBCC

System Tables

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKCONSTRAINTS
Checks the integrity of a specified constraint or all constraints on a specified table.

Syntax

DBCC CHECKCONSTRAINTS
 [('table_name' | 'constraint_name'
)]

 [WITH { ALL_ERRORMSGS | ALL_CONSTRAINTS }]

Arguments

'table_name' | 'constraint_name'

Is the table or constraint to be checked. If table_name is specified, all enabled constraints on that table are checked. If
constraint_name is specified, only that constraint is checked. If neither a table_name nor a constraint_name is specified, all
enabled constraints on all tables in the current database are checked.

A constraint name uniquely identifies the table to which it belongs. For more information, see Using Identifiers.

ALL_CONSTRAINTS

Checks all enabled and disabled constraints on the table, if the table name is specified or if all tables are checked. Otherwise,
checks only the enabled constraint. ALL_CONSTRAINTS has no effect when a constraint name is specified.

ALL_ERRORMSGS

Returns all rows that violate constraints in the table checked. The default is the first 200 rows.

Remarks

DBCC CHECKCONSTRAINTS constructs and executes a query for all foreign key constraints and check constraints on a table.

For example, a foreign key query will be of the form:

SELECT columns
FROM table_being_checked LEFT JOIN referenced_table
 ON table_being_checked.fkey1 = referenced_table.pkey1
 AND table_being_checked.fkey2 = referenced_table.pkey2
WHERE table_being_checked.fkey1 IS NOT NULL
 AND referenced_table.pkey1 IS NULL
 AND table_being_checked.fkey2 IS NOT NULL
 AND referenced_table.pkey2 IS NULL

The query data is stored in a temp table. When all requested tables or constraints have been checked, the result set is returned.

DBCC CHECKCONSTRAINTS checks the integrity of foreign key and checked constraints, but does not check the integrity of a
table's on-disk data structures. These data structure checks can be performed with DBCC CHECKDB and DBCC CHECKTABLE.

Result Sets

DBCC CHECKCONSTRAINTS return a rowset with the following columns.

Column name Data type Description
Table Name varchar Name of the table.
Constraint Name varchar Name of the constraint violated.
Where varchar Column value assignments that identify the row

or rows violating the constraint.

The value in this column may be used in a
WHERE clause of a SELECT statement querying
for rows violating the constraint.

For example, a DBCC CHECKCONSTRAINT on the orders table yields the following result.

Table Name Constraint Name Where
----------- ----------------------- -----------------------
orders PartNo_FKey PartNo = '12'

The value PartNo = '12' in the Where column can be used in a SELECT statement that identifies the row violating the constraint
PartNo_FKEY.

Select *
From orders
Where PartNo = '12'

The user then may decide to modify, delete or otherwise adjust the rows.

Permissions

DBCC CHECKCONSTRAINTS permissions default to members of the sysadmin fixed server role and the db_owner fixed
database role, and are not transferable.

Examples

A. Check a table.

This example checks the constraint integrity of the authors table in the pubs database.

DBCC CHECKCONSTRAINTS ('authors')
GO

B. Check a specific constraint

This example checks the integrity of the PartNo_FKey constraint. The constraint name uniquely identifies the table it is declared
upon.

DBCC CHECKCONSTRAINTS ('PartNo_Fkey')
GO

C. Check all enabled and disabled constraints on all tables

This example checks the integrity of all enabled and disabled constraints on all tables in the current database.

DBCC CHECKCONSTRAINTS WITH ALL_CONSTRAINTS
GO

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKDB
Checks the allocation and structural integrity of all the objects in the specified database.

Syntax

DBCC CHECKDB
 ('database_name'
 [, NOINDEX
 | { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST
 | REPAIR_REBUILD
 }]
) [WITH { [ALL_ERRORMSGS]
 [, [NO_INFOMSGS]]
 [, [TABLOCK]]
 [, [ESTIMATEONLY]]
 [, [PHYSICAL_ONLY]]
 }
]

Arguments

'database_name'

Is the database for which to check all object allocation and structural integrity. If not specified, the default is the current database.
Database names must conform to the rules for identifiers. For more information, see Using Identifiers.

NOINDEX

Specifies that nonclustered indexes for nonsystem tables should not be checked. NOINDEX decreases the overall execution time
because it does not check nonclustered indexes for user-defined tables. NOINDEX has no effect on system tables, because DBCC
CHECKDB always checks all system table indexes.

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST| REPAIR_REBUILD

Specifies that DBCC CHECKDB repair the found errors. The given database_name must be in single-user mode to use a repair
option and can be one of the following.

Value Description
REPAIR_ALLOW_DATA_LOSS Performs all repairs done by REPAIR_REBUILD and

includes allocation and deallocation of rows and
pages for correcting allocation errors, structural
row or page errors, and deletion of corrupted text
objects. These repairs can result in some data loss.
The repair may be done under a user transaction to
allow the user to roll back the changes made. If
repairs are rolled back, the database will still
contain errors and should be restored from a
backup. If a repair for an error has been skipped
due to the provided repair level, any repairs that
depend on the repair are also skipped. After repairs
are completed, back up the database.

REPAIR_FAST Performs minor, nontime-consuming repair
actions such as repairing extra keys in
nonclustered indexes. These repairs can be done
quickly and without risk of data loss.

REPAIR_REBUILD Performs all repairs done by REPAIR_FAST and
includes time-consuming repairs such as
rebuilding indexes. These repairs can be done
without risk of data loss.

WITH

Specifies options on the number of error messages returned, locks obtained, or estimating tempdb requirements.

ALL_ERRORMSGS

Displays an unlimited number of errors per object. If ALL_ERRORMSGS is not specified, displays up to 200 error messages for
each object. Error messages are sorted by object ID, except for those messages generated from tempdb.

NO_INFOMSGS

Suppresses all informational messages (Severity 10) and the report of space used.

TABLOCK

Causes DBCC CHECKDB to obtain shared table locks. TABLOCK will cause DBCC CHECKDB to run faster on a database under
heavy load, but decreases the concurrency available on the database while DBCC CHECKDB is running.

ESTIMATE ONLY

Displays the estimated amount of tempdb space needed to run DBCC CHECKDB with all of the other specified options. The check
is not performed.

PHYSICAL_ONLY

Limits the checking to the integrity of the physical structure of the page and record headers, and to the consistency between the
pages' object ID and index ID and the allocation structures. Designed to provide a low overhead check of the physical consistency
of the database, this check also detects torn pages and common hardware failures that can compromise a user's data.
PHYSICAL_ONLY always implies NO_INFOMSGS and is not allowed with any of the repair options.

Remarks

DBCC CHECKDB performs a physical consistency check on indexed views. The NOINDEX option, used only for backward
compatibility, also applies to any secondary indexes on indexed views.

DBCC CHECKDB is the safest repair statement because it identifies and repairs the widest possible errors. If only allocation errors
are reported for a database, execute DBCC CHECKALLOC with a repair option to repair these errors. However, to ensure that all
errors, including allocation errors, are properly repaired, execute DBCC CHECKDB with a repair option rather than DBCC
CHECKALLOC with a repair option.

DBCC CHECKDB validates the integrity of everything in a database. There is no need to run DBCC CHECKALLOC or DBCC
CHECKTABLE if DBCC CHECKDB either is currently or has been recently executed.

DBCC CHECKDB performs the same checking as if both a DBCC CHECKALLOC statement and a DBCC CHECKTABLE statement
were executed for each table in the database.

DBCC CHECKDB does not acquire table locks by default. Instead, it acquires schema locks that prevent meta data changes but
allow changes to the data. The schema locks acquired will prevent the user from getting an exclusive table lock required to build a
clustered index, drop any index, or truncate the table.

The DBCC statement collects information, and then scans the log for any additional changes made, merging the two sets of
information together to produce a consistent view of the data at the end of the scan.

When the TABLOCK option is specified, DBCC CHECKDB acquires shared table locks. This allows more detailed error messages for
some classes of errors and minimizes the amount of tempdb space required by avoiding the use of transaction log data. The
TABLOCK option will not block the truncation of the log and will allow the command to run faster.

DBCC CHECKDB checks the linkages and sizes of text, ntext, and image pages for each table, and the allocation of all the pages
in the database.

For each table in the database, DBCC CHECKDB checks that:

Index and data pages are correctly linked.

Indexes are in their proper sort order.

Pointers are consistent.

The data on each page is reasonable.

Page offsets are reasonable.

Errors indicate potential problems in the database and should be corrected immediately.

By default, DBCC CHECKDB performs parallel checking of objects. The degree of parallelism is determined automatically by the
query processor. The maximum degree of parallelism is configured in the same manner as that of parallel queries. Use the
sp_configure system stored procedure to restrict the maximum number of processors available for DBCC checking. For more
information, see max degree of parallelism Option.

Parallel checking can be disabled by using trace flag 2528. For more information, see Trace Flags.

Result Sets

Whether or not any options (except for the NO_INFOMSGS or NOINDEX options) are specified, DBCC CHECKDB returns this result
set for the current database, if no database is specified (values may vary):

DBCC results for 'master'.
DBCC results for 'sysobjects'.
There are 862 rows in 13 pages for object 'sysobjects'.
DBCC results for 'sysindexes'.
There are 80 rows in 3 pages for object 'sysindexes'.
'...'
DBCC results for 'spt_provider_types'.
There are 23 rows in 1 pages for object 'spt_provider_types'.
CHECKDB found 0 allocation errors and 0 consistency errors in database 'master'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

IF the NO_INFOMSGS option is specified, DBCC CHECKDB returns this result set (message):

The command(s) completed successfully.

DBCC CHECKDB returns this result set when the ESTIMATEONLY option is specified.

Estimated TEMPDB space needed for CHECKALLOC (KB)

13

(1 row(s) affected)

Estimated TEMPDB space needed for CHECKTABLES (KB)
--
57

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKDB permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, and are
not transferable.

Examples

A. Check both the current and the pubs database

This example executes DBCC CHECKDB for the current database and for the pubs database.

-- Check the current database.
DBCC CHECKDB
GO
-- Check the pubs database without nonclustered indexes.
DBCC CHECKDB ('pubs', NOINDEX)
GO

B. Check the current database, suppressing informational messages

This example checks the current database and suppresses all informational messages.

DBCC CHECKDB WITH NO_INFOMSGS
GO

See Also

Features Supported by the Editions of SQL Server 2000

How to configure the number of processors available for parallel queries (Enterprise Manager)

Physical Database Architecture

sp_helpdb

System Tables

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKFILEGROUP
Checks the allocation and structural integrity of all tables (in the current database) in the specified filegroup.

Syntax

DBCC CHECKFILEGROUP
 ([{ 'filegroup' | filegroup_id }]
 [, NOINDEX]
) [WITH { [ALL_ERRORMSGS | NO_INFOMSGS]
 [, [TABLOCK]]
 [, [ESTIMATEONLY]]
 }
]

Arguments

'filegroup'

Is the name of the filegroup for which to check table allocation and structural integrity. If not specified, the default is the primary
filegroup. Filegroup names must conform to the rules for identifiers. For more information, see Using Identifiers.

filegroup_id

Is the filegroup identification (ID) number for which to check table allocation and structural integrity. Obtain filegroup_id from
either the FILEGROUP_ID function or the sysfilegroups system table in the database containing the filegroup.

NOINDEX

Specifies that nonclustered indexes for nonsystem tables should not be checked. This decreases execution time. NOINDEX has no
effect on system tables. DBCC CHECKFILEGROUP always checks all system table indexes when run on the default filegroup.

WITH

Specifies options on the number of error messages returned, locks obtained, or estimating tempdb requirements. If neither
ALL_ERRORMSGS nor NO_INFOMSGS is specified, Microsoft® SQL Server™ returns all error messages.

ALL_ERRORMSGS

Displays all error messages. If not specified, SQL Server displays a maximum of 200 error messages per table. Error messages are
sorted by object ID, except for those messages generated from tempdb.

NO_INFOMSGS

Suppresses all informational messages and the report of space used.

TABLOCK

Causes DBCC CHECKFILEGROUP to obtain shared table locks.

ESTIMATE ONLY

Displays the estimated amount of tempdb space required to run DBCC CHECKFILEGROUP with all of the other specified options.

Remarks

DBCC CHECKFILEGROUP and DBCC CHECKDB are similar DBCC statements. The main difference lies in the check conducted by
DBCC CHECKFILEGROUP: it is limited to the single specified filegroup and required tables.

Executing DBCC CHECKFILEGROUP statements on all filegroups in a database is the same as running a single DBCC CHECKDB
statement. The only difference is that any table with indexes on different filegroups has the table and indexes checked multiple
times (one time for each filegroup holding the table or any of its indexes).

DBCC CHECKFILEGROUP prevents modification of all tables and indexes in the filegroup (as well as tables in other filegroups
whose indexes are in the filegroup currently checked) for the duration of the operation.

During DBCC CHECKFILEGROUP execution, table creation and deletion actions are not allowed.

DBCC CHECKFILEGROUP does not acquire table locks by default. Instead, it acquires schema locks that prevent meta data changes

but allow changes to the data. The DBCC statement collects information, then scans the log for any additional changes made,
merging the two sets of information together to produce a consistent view of the data at the end of the scan.

When the TABLOCK option is specified, DBCC CHECKFILEGROUP acquires shared table locks. This allows more detailed error
messages for some classes of errors and minimizes the amount of tempdb space required by avoiding the use of transaction log
data.

DBCC CHECKFILEGROUP checks the linkages and sizes of text, ntext, and image pages for each filegroup, and the allocation of
all the pages in the filegroup.

DBCC CHECKFILEGROUP also performs a physical consistency check on indexed views. The NOINDEX option, used only for
backward compatibility, also applies to indexed views.

For each table in the filegroup, DBCC CHECKFILEGROUP checks that:

Index and data pages are correctly linked.

Indexes are in their proper sort order.

Pointers are consistent.

The data on each page is reasonable.

Page offsets are reasonable.

If a nonclustered index in the filegroup being explicitly checked is associated with a table in another filegroup, the table in the
other filegroup (not originally explicitly checked) is also checked because verifying the index also requires verification of the base
table structure. If a table in the filegroup being checked has a nonclustered index in another filegroup, however, the index is not
checked because:

The base table structure is not dependent on the structure of a nonclustered index.

The DBCC CHECKFILEGROUP statement is focused on validating only objects in the filegroup. Nonclustered indexes do not
have to be scanned to validate the base table.

Only checking the index when the filegroup holding it is specifically checked reduces duplicate processing when DBCC
CHECKFILEGROUP is run on multiple filegroups in a database.

It is not possible to have a clustered index and a table on different filegroups, so these considerations only apply to nonclustered
indexes.

The references to filegroup and filegroup_id are only relevant in the current database. Be sure to switch context to the proper
database before executing DBCC CHECKFILEGROUP. For more information about changing the current database, see USE.

By default, DBCC CHECKFILEGROUP performs parallel checking of objects. The degree of parallelism is determined automatically
by the query processor. The maximum degree of parallelism is configured in the same manner as that of parallel queries. Use the
sp_configure system stored procedure to restrict the maximum number of processors available for DBCC checking. For more
information, see max degree of parallelism Option.

Parallel checking can be disabled by using trace flag 2528. For more information, see Trace Flags.

Result Sets

Whether or not any options (except NOINDEX) are specified, DBCC CHECKFILEGROUP returns this result set for the current
database, if no database is specified (values may vary):

DBCC results for 'master'.
DBCC results for 'sysobjects'.
There are 862 rows in 13 pages for object 'sysobjects'.
DBCC results for 'sysindexes'.
There are 80 rows in 3 pages for object 'sysindexes'.
'...'
DBCC results for 'spt_provider_types'.
There are 23 rows in 1 pages for object 'spt_provider_types'.
CHECKFILEGROUP found 0 allocation errors and 0 consistency errors in database 'master'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC CHECKFILEGROUP returns this result set if the NO_INFOMSGS option is specified:

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC CHECKFILEGROUP returns this result set when the ESTIMATEONLY option is specified.

Estimated TEMPDB space needed for CHECKALLOC (KB)

15

(1 row(s) affected)

Estimated TEMPDB space needed for CHECKTABLES (KB)
--
207

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKFILEGROUP permissions default to members of the sysadmin fixed server role or the db_owner fixed database
role, and are not transferable.

Examples

A. Check the PRIM ARY filegroup in the pubs database

This example checks the pubs database primary filegroup.

USE pubs
GO
DBCC CHECKFILEGROUP
GO

B. Check the pubs PRIM ARY filegroup without nonclustered indexes

This example checks the pubs database primary filegroup (excluding nonclustered indexes) by specifying the identification
number of the primary filegroup, and by specifying the NOINDEX option.

USE pubs
GO
DBCC CHECKFILEGROUP (1, NOINDEX)
GO

See Also

Features Supported by the Editions of SQL Server 2000

FILEGROUP_ID

How to configure the number of processors available for parallel queries (Enterprise Manager)

Physical Database Architecture

sp_helpfile

sp_helpfilegroup

sysfilegroups

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKIDENT
Checks the current identity value for the specified table and, if needed, corrects the identity value.

Syntax

DBCC CHECKIDENT
 ('table_name'
 [, { NORESEED
 | { RESEED [, new_reseed_value] }
 }
]
)

Arguments

'table_name'

Is the name of the table for which to check the current identity value. Table names must conform to the rules for identifiers. For
more information, see Using Identifiers. The table specified must contain an identity column.

NORESEED

Specifies that the current identity value should not be corrected.

RESEED

Specifies that the current identity value should be corrected.

new_reseed_value

Is the value to use in reseeding the identity column.

Remarks

If necessary, DBCC CHECKIDENT corrects the current identity value for a column. The current identity value is not corrected,
however, if the identity column was created with the NOT FOR REPLICATION clause (in either the CREATE TABLE or ALTER TABLE
statement).

Invalid identity information can cause error message 2627 when a primary key or unique key constraint exists on the identity
column.

The specific corrections made to the current identity value depend on the parameter specifications.

DBCC CHECKIDENT statement Identity correction(s) made
DBCC CHECKIDENT ('table_name',
NORESEED)

The current identity value is not reset. DBCC
CHECKIDENT returns a report indicating the
current identity value and what it should be.

DBCC CHECKIDENT ('table_name')
or DBCC CHECKIDENT
('table_name', RESEED)

If the current identity value for a table is lower
than the maximum identity value stored in the
column, it is reset using the maximum value in
the identity column.

DBCC CHECKIDENT ('table_name',
RESEED, new_reseed_value)

The current identity value is set to the
new_reseed_value. If no rows have been
inserted to the table since it was created, the
first row inserted after executing DBCC
CHECKIDENT will use new_reseed_value as the
identity. Otherwise, the next row inserted will
use new_reseed_value + 1. If the value of
new_reseed_value is less than the maximum
value in the identity column, error message
2627 will be generated on subsequent
references to the table.

The current identity value can be larger than the maximum value in the table. DBCC CHECKIDENT does not reset the current
identity value automatically in this case. To reset the current identity value when it is larger than the maximum value in the
column, use either of two methods:

Execute DBCC CHECKIDENT ('table_name', NORESEED) to determine the current maximum value in the column, and then
specify that as the new_reseed_value in a DBCC CHECKIDENT ('table_name', RESEED, new_reseed_value) statement.

Execute DBCC CHECKIDENT ('table_name', RESEED, new_reseed_value) with new_reseed_value set to a very low value, and
then run DBCC CHECKIDENT ('table_name', RESEED).

Result Sets

Whether or not any of the options are specified (for a table containing an identity column; this example uses the jobs table of the
pubs database), DBCC CHECKIDENT returns this result set (values may vary):

Checking identity information: current identity value '14', current column value '14'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKIDENT permissions default to the table owner, members of the sysadmin fixed server role, and the db_owner and
db_ddladmin fixed database role, and are not transferable.

Examples

A. Reset the current identity value, if needed

This example resets the current identity value, if needed, of the jobs table.

USE pubs
GO
DBCC CHECKIDENT (jobs)
GO

B. Report the current identity value

This example reports the current identity value in the jobs table, and does not correct the identity value, if incorrect.

USE pubs
GO
DBCC CHECKIDENT (jobs, NORESEED)
GO

C. Force the current identity value to 30

This example forces the current identity value in the jobs table to a value of 30.

USE pubs
GO
DBCC CHECKIDENT (jobs, RESEED, 30)
GO

See Also

ALTER TABLE

CREATE TABLE

DBCC

IDENTITY (Property)

USE

Transact-SQL Reference (SQL Server 2000)

DBCC CHECKTABLE
Checks the integrity of the data, index, text, ntext, and image pages for the specified table or indexed view.

Syntax

DBCC CHECKTABLE
 ('table_name' | 'view_name'
 [, NOINDEX
 | index_id
 | { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST
 | REPAIR_REBUILD }
]
) [WITH { [ALL_ERRORMSGS | NO_INFOMSGS]
 [, [TABLOCK]]
 [, [ESTIMATEONLY]]
 [, [PHYSICAL_ONLY]]
 }
]

Arguments

'table_name' | 'view_name'

Is the table or indexed view for which to check data page integrity. Table or view names must conform to the rules for identifiers.
For more information, see Using Identifiers.

NOINDEX

Specifies that nonclustered indexes for nonsystem tables should not be checked.

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD

Specifies that DBCC CHECKTABLE repair the found errors. The database must be in single-user mode to use a repair option and
can be one of the following.

Value Description
REPAIR_ALLOW_DATA_LOSS Performs all repairs done by REPAIR_REBUILD and

includes allocation and deallocation of rows and
pages for correcting allocation errors, structural
row or page errors, and deletion of corrupted text
objects. These repairs can result in some data loss.
The repair may be done under a user transaction to
allow the user to roll back the changes made. If
repairs are rolled back, the database will still
contain errors and should be restored from a
backup. If a repair for an error has been skipped
due to the provided repair level, any repairs that
depend on the repair are also skipped. After repairs
are completed, back up the database.

REPAIR_FAST Performs minor, nontime-consuming repair
actions such as repairing extra keys in
nonclustered indexes. These repairs can be done
quickly and without risk of data loss.

REPAIR_REBUILD Performs all repairs done by REPAIR_FAST and
includes time-consuming repairs such as
rebuilding indexes. These repairs can be done
without risk of data loss.

index_id

Is the index identification (ID) number for which to check data page integrity. If an index_id is specified, DBCC CHECKTABLE checks

only that index.

WITH

Specifies options on the number of error messages returned, locks obtained, or estimating tempdb requirements. If neither
ALL_ERRORMSGS nor NO_INFOMSGS is specified, Microsoft® SQL Server™ returns all error messages.

ALL_ERRORMSGS

Displays all error messages. If not specified, SQL Server displays a maximum of 200 error messages per table. Error messages are
sorted by object ID.

NO_INFOMSGS

Suppresses all informational messages and the report of space used.

TABLOCK

Causes DBCC CHECKTABLE to obtain a shared table lock.

ESTIMATE ONLY

Displays the estimated amount of tempdb space needed to run DBCC CHECKTABLE with all of the other specified options.

PHYSICAL_ONLY

Limits the checking to the integrity of the physical structure of the page and record headers, and to the consistency between the
pages' object ID and index ID and the allocation structures. Designed to provide a low overhead check of the physical consistency
of the database, this check also detects torn pages and common hardware failures that can compromise a user's data.
PHYSICAL_ONLY always implies NO_INFOMSGS and is not allowed with any of the repair options.

Remarks

DBCC CHECKTABLE performs a physical consistency check on tables and indexed views. The NOINDEX option, used only for
backward compatibility, also applies to indexed views.

For the specified table, DBCC CHECKTABLE checks that:

Index and data pages are correctly linked.

Indexes are in their proper sort order.

Pointers are consistent.

The data on each page is reasonable.

Page offsets are reasonable.

DBCC CHECKTABLE checks the linkages and sizes of text, ntext, and image pages for the specified table. However, DBCC
CHECKTABLE does not verify the consistency of all the allocation structures in the database. Use DBCC CHECKALLOC to do this
verification.

DBCC CHECKTABLE does not acquire a table lock by default. Instead, it acquires a schema lock that prevents meta data changes
but allows changes to the data. The DBCC statement collects information, then scans the log for any additional changes made,
merging the two sets of information together to produce a consistent view of the data at the end of the scan.

When the TABLOCK option is specified, DBCC CHECKTABLE acquires a shared table lock. This allows more detailed error
messages for some classes of errors and minimizes the amount of tempdb space required by avoiding the use of transaction log
data.

To perform DBCC CHECKTABLE on every table in the database, use DBCC CHECKDB.

By default, DBCC CHECKTABLE performs parallel checking of objects. The degree of parallelism is determined automatically by the
query processor. The maximum degree of parallelism is configured in the same manner as that of parallel queries. Use the
sp_configure system stored procedure to restrict the maximum number of processors available for DBCC checking. For more
information, see max degree of parallelism Option.

Parallel checking can be disabled by using trace flag 2528. For more information, see Trace Flags.

Result Sets

DBCC CHECKTABLE returns this result set (same result set is returned if you specify only the table name or if you provide any of
the options); this example specifies the authors table in the pubs database (values may vary):

DBCC results for 'authors'.
There are 23 rows in 1 pages for object 'authors'.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC CHECKTABLE returns this result set when the ESTIMATEONLY option is specified.

Estimated TEMPDB space needed for CHECKTABLES (KB)
--
2

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CHECKTABLE permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, or
the table owner, and are not transferable.

Examples

A. Check a specific table

This example checks the data page integrity of the authors table.

DBCC CHECKTABLE ('authors')
GO

B. Check the table without checking nonclustered indexes

This example checks the data page integrity of the authors table without checking nonclustered indexes.

DBCC CHECKTABLE ('authors') WITH PHYSICAL_ONLY
GO

C. Check a specific index

This example checks a specific index, obtained by accessing sysindexes.

USE pubs
DECLARE @indid int
SELECT @indid = indid
FROM sysindexes
WHERE id = OBJECT_ID('authors') AND name = 'aunmind'
DBCC CHECKTABLE ('authors', @indid)
GO

See Also

DBCC

Features Supported by the Editions of SQL Server 2000

How to configure the number of processors available for parallel queries (Enterprise Manager)

Table and Index Architecture

Transact-SQL Reference (SQL Server 2000)

DBCC CLEANTABLE
 Topic last updated -- July 2003

Reclaims space for dropped variable length columns and text columns.

Syntax

DBCC CLEANTABLE
 ({ 'database_name' | database_id }
 , { 'table_name' | table_id | 'view_name' | view_id }
 [, batch_size]
)

Arguments

'database_name' | database_id

Is the database in which the table to be cleaned belongs.

'table_name' | table_id | 'view_name' | view_id

Is the table or view to be cleaned.

batch_size

Is the number of rows processed per transaction. If not specified, the statement processes the entire table in one transaction.

Remarks

DBCC CLEANTABLE reclaims space after a variable length column or a text column is dropped using the ALTER TABLE DROP
COLUMN statement. It does not reclaim space after a fixed length column is dropped.

DBCC CLEANTABLE runs as one or more transactions. If a batch size is not specified, the statement processes the entire table in
one transaction. For some large tables, the length of the single transaction and the log space required may be too much. If a batch
size is specified, the statement runs in a series of transactions, each including the specified number of rows. DBCC CLEANTABLE
cannot be run as a transaction inside another transaction.

This operation is fully logged.

DBCC CLEANTABLE is not supported for use on system tables or temporary tables.

Result Sets

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CLEANTABLE permissions default to members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed
database roles, and the table owner.

Transact-SQL Reference (SQL Server 2000)

DBCC CONCURRENCYVIOLATION
 Topic last updated -- January 2004

Displays statistics on how many times more than eight operations were run concurrently on SQL Server 2000 Desktop Engine
(MSDE 2000) or SQL Server 2000 Personal Edition. Also Controls whether these statistics are also recorded in the SQL Server
error log.

Syntax

DBCC CONCURRENCYVIOLATION [(DISPLAY | RESET | STARTLOG | STOPLOG)]

Arguments

DISPLAY

Displays the current values of the concurrency violation counters. The counters record how many times more than eight
operations were run concurrently since logging was started or the counters were last reset. DISPLAY is the default if no option is
specified.

RESET

Sets all the concurrency violation counters to zero.

STARTLOG

Enables logging the concurrency violation counters in the SQL Server event log once a minute whenever there are more than
eight concurrent operations.

STOPLOG

Stops the periodic logging of the concurrency violation counters in the SQL Server event log.

Remarks

DBCC CONCURRENCYVIOLATION can be executed on any Edition of SQL Server 2000, but is only effective on the SQL Server
2000 editions that have a concurrent workload governor: SQL Server 2000 Desktop Engine (MSDE 2000) and SQL Server 2000
Personal Edition. On all other editions, it has no effect other than returning the message:

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

SQL Server 2000 Desktop Engine and SQL Server 2000 Personal Edition have a concurrent workload governor that limits
performance when more than eight operations are run concurrently. Counts of the number of times more than eight operations
are run concurrently are maintained in internal counters. You can display the contents of these counters using the DBCC
CONCURRENCYVIOLATION statement with either the DISPLAY parameter or no parameter. You should consider upgrading to
another edition of SQL Server 2000 if performance on a well-tuned system is slow, and DBCC CONCURRENCYVIOLATIONS
shows that the database engine has often had significantly more than eight operations running concurrently.

You can enable periodic logging of the concurrency violation counters in the SQL Server event log using the DBCC
CONCURRENCYVIOLATION(STARTLOG) statement. When logging is enabled, the concurrency violation counters are logged in
the event log once a minute if there are more than eight operations running concurrently. The counters are not written to the
error log whenever there are seven or less concurrent operations.

The primary output of the DBCC CONCURRENCYVIOLATION statement is in these lines:

Concurrency violations since 2000-02-02 11:03:17.20
 1 2 3 4 5 6 7 8 9 10-100 >100
 5 3 1 0 0 0 0 0 0 0 0

The first line indicates how long the counters have been accumulating statistics.

The second line is built of headings that indicate which counter is being reported in that field of the message. Each heading
indicates how far over the eight-operation limit each violation was. The 1 represents the count of the number of times nine
operations (eight operation limit + 1 violation) were executing concurrently, the 2 represents the count of the number of
times ten operations (eight + two) were running concurrently, and so on. The heading 10-100 represents the count of the
number of times the system was between 10 and 100 operations over the limit, and the heading >100 indicates the number

of times the system was more than 100 operations over the limit.

The third line reports how many times the indicated number of operations were executing concurrently. In the example line
above, there were five times when the system was one operation over the limit, three times it was two operations over the
limit, and one time it was three operations over the limit.

When periodic logging is enabled, a message in this format is placed in the SQL Server error log once a minute whenever more
than five operations are executing concurrently:

2000-02-02 11:03:17.20 spid 12 This SQL Server has been opimized for 5 concurrent queries. This limit has been
exceeded by 2 queries and performance may be adversely affected.

Note The message refers to five concurrent queries instead of eight operations, the governor limit is not defined in terms of
queries.

Result Sets

If periodic logging of the concurrency violation counters is enabled, DBCC CONCURRENCYVIOLATION returns this result set
(message):

Concurrency violations since 2000-02-02 11:03:17.20
 1 2 3 4 5 6 7 8 9 10-100 >100
 5 3 1 0 0 0 0 0 0 0 0
Concurrency violations will be written to the SQL Server error log.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

If periodic logging of the concurrency violation counters is not enabled, DBCC CONCURRENCYVIOLATION returns this result set
(message):

Concurrency violations since 2000-02-02 11:03:17.20
 1 2 3 4 5 6 7 8 9 10-100 >100
 5 3 1 0 0 0 0 0 0 0 0
Concurrency violations will not be written to the SQL Server error log.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC CONCURRENCYVIOLATION permissions default to members of the sysadmin fixed server role and are not transferable.

Examples

This example displays the current counter values, and then resets the counters.

-- Display the current counter values.
DBCC CONCURRENCYVIOLATION
GO
-- Reset the counter values to 0.
DBCC CONCURRENCYVIOLATION(RESET)
GO

See Also

DBCC

The SQL Server 2000 Workload Governor

Transact-SQL Reference (SQL Server 2000)

DBCC DBREPAIR
Drops a damaged database.

Important DBCC DBREPAIR is included in Microsoft® SQL Server™ 2000 for backward compatibility only. It is recommended
that DROP DATABASE be used to drop damaged databases. In a future version of SQL Server, DBCC DBREPAIR may not be
supported.

See Also

DBCC

DROP DATABASE

Transact-SQL Reference (SQL Server 2000)

DBCC DBREINDEX
 Topic last updated -- July 2003

Rebuilds one or more indexes for a table in the specified database.

Syntax

DBCC DBREINDEX
 ('database.owner.table_name'
 [, index_name
 [, fillfactor]
]
) [WITH NO_INFOMSGS]

Arguments

'database.owner.table_name'

Is the name of the table for which to rebuild the specified index(es). Database, owner, and table names must conform to the rules
for identifiers. For more information, see Using Identifiers. The entire database.owner.table_name must be enclosed in single
quotation marks (') if either the database or owner parts are supplied. The single quotation marks are not necessary if only
table_name is specified.

index_name

Is the name of the index to rebuild. Index names must conform to the rules for identifiers. If index_name is not specified or is
specified as ' ', all indexes for the table are rebuilt.

fillfactor

Is the percentage of space on each index page to be used for storing data when the index is created. fillfactor replaces the original
fillfactor as the new default for the index and for any other nonclustered indexes rebuilt because a clustered index is rebuilt. When
fillfactor is 0, DBCC DBREINDEX uses the original fillfactor specified when the index was created.

WITH NO_INFOMSGS

Suppresses all informational messages (with severity levels from 0 through 10).

Remarks

DBCC DBREINDEX rebuilds an index for a table or all indexes defined for a table. By allowing an index to be rebuilt dynamically,
indexes enforcing either PRIMARY KEY or UNIQUE constraints can be rebuilt without having to drop and re-create those
constraints. This means an index can be rebuilt without knowing the table's structure or constraints, which could occur after a bulk
copy of data into the table.

If either index_name or fillfactor is specified, all preceding parameters must also be specified.

DBCC DBREINDEX is an offline operation. While this operation is running, the underlying table is unavailable to users of the
database.

DBCC DBREINDEX can rebuild all of the indexes for a table in one statement, which is easier than coding multiple DROP INDEX
and CREATE INDEX statements. Because the work is done by one statement, DBCC DBREINDEX is automatically atomic, while
individual DROP INDEX and CREATE INDEX statements would have to be put in a transaction to be atomic. Also, DBCC
DBREINDEX can take advantage of more optimizations with DBCC DBREINDEX than it can with individual DROP INDEX and
CREATE INDEX statements.

DBCC DBREINDEX is not supported for use on system tables.

Result Sets

Whether or not any of the options (except NO_INFOMSGS) are specified (the table name must be specified), DBCC DBREINDEX
returns this result set; this example uses the authors table of the pubs database (values will vary):

Index (ID = 1) is being rebuilt.
Index (ID = 2) is being rebuilt.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC DBREINDEX returns this result set (message) if the NO_INFOMSGS option is specified:

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC DBREINDEX permissions default to members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed
database roles, and the table owner, and are not transferable.

Examples

A. Rebuild an index

This example rebuilds the au_nmind clustered index with a fillfactor of 80 on the authors table in the pubs database.

DBCC DBREINDEX ('pubs.dbo.authors', UPKCL_auidind, 80)

B. Rebuild all indexes

This example rebuilds all indexes on the authors table using a fillfactor value
of 70.

DBCC DBREINDEX (authors, '', 70)

See Also

ALTER TABLE

CREATE TABLE

DBCC

Table and Index Architecture

Transact-SQL Reference (SQL Server 2000)

DBCC dllname (FREE)
Unloads the specified extended stored procedure dynamic-link library (DLL) from memory.

Syntax

DBCC dllname (FREE)

Arguments

dllname

Is the name of the DLL to release from memory.

Remarks

When an extended stored procedure is executed, the DLL remains loaded by Microsoft® SQL Server™ until the server is shut
down. This statement allows a DLL to be unloaded from memory without shutting down SQL Server. Execute
sp_helpextendedproc to display the DLL files currently loaded by SQL Server.

Result Sets

DBCC dllname (FREE) returns this result set (message) when a valid DLL is specified:

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC dllname (FREE) permissions default to members of the sysadmin fixed server role or the db_owner fixed database role,
and are not transferable.

Examples

This example assumes an extended procedure xp_sample is implemented as Xp_sample.dll and has been executed. It uses the
DBCC dllname (FREE) statement to unload the Xp_sample.dll file associated with the xp_sample extended procedure.

DBCC xp_sample (FREE)

See Also

DBCC

Execution Characteristics of Extended Stored Procedures

sp_addextendedproc

sp_dropextendedproc

sp_helpextendedproc

Unloading an Extended Stored Procedure DLL

Transact-SQL Reference (SQL Server 2000)

DBCC DROPCLEANBUFFERS
Removes all clean buffers from the buffer pool.

Syntax

DBCC DROPCLEANBUFFERS

Remarks

Use DBCC DROPCLEANBUFFERS to test queries with a cold buffer cache without shutting down and restarting the server.

Result Sets

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC DROPCLEANBUFFERS permissions default to members of the sysadmin fixed server role only, and are not transferable.

Transact-SQL Reference (SQL Server 2000)

DBCC FREEPROCCACHE
Removes all elements from the procedure cache.

Syntax

DBCC FREEPROCCACHE

Remarks

Use DBCC FREEPROCCACHE to clear the procedure cache. Freeing the procedure cache would cause, for example, an ad-hoc SQL
statement to be recompiled rather than reused from the cache.

Result Sets

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC FREEPROCACHE permissions default to members of the sysadmin and serveradmin fixed server role only, and are not
transferable.

Transact-SQL Reference (SQL Server 2000)

DBCC HELP
Returns syntax information for the specified DBCC statement.

Syntax

DBCC HELP ('dbcc_statement' | @dbcc_statement_var | '?')

Arguments

dbcc_statement | @dbcc_statement_var

Is the name of the DBCC statement for which to receive syntax information. Provide only the portion of the DBCC statement
following the DBCC part of the statement. For example, CHECKDB rather than DBCC CHECKDB.

?

Specifies that Microsoft® SQL Server™ return all DBCC statements (minus the "DBCC" portion of the statement) for which help
information can be obtained.

Result Sets

DBCC HELP returns a result set displaying the syntax for the specified DBCC statement. Syntax varies between the DBCC
statements.

Permissions

DBCC HELP permissions default to members of the sysadmin fixed server role only, and are not transferable.

Examples

A. Use DBCC HELP with a variable

This example returns syntax information for DBCC CHECKDB.

DECLARE @dbcc_stmt sysname
SET @dbcc_stmt = 'CHECKDB'
DBCC HELP (@dbcc_stmt)
GO

B. Use DBCC HELP with the ? option

This example returns all DBCC statements for which help is available.

DBCC HELP ('?')
GO

See Also

DBCC

Transact-SQL Reference (SQL Server 2000)

DBCC INDEXDEFRAG
 Topic last updated -- July 2003

Defragments clustered and secondary indexes of the specified table or view.

Syntax

DBCC INDEXDEFRAG
 ({ database_name | database_id | 0 }
 , { table_name | table_id | 'view_name' | view_id }
 , { index_name | index_id }
) [WITH NO_INFOMSGS]

Arguments

database_name | database_id | 0

Is the database for which to defragment an index. Database names must conform to the rules for identifiers. For more
information, see Using Identifiers. If 0 is specified, then the current database is used.

table_name | table_id | 'view_name' | view_id

Is the table or view for which to defragment an index. Table and view names must conform to the rules for identifiers.

index_name | index_id

Is the index to defragment. Index names must conform to the rules for identifiers.

WITH NO_INFOMSGS

Suppresses all informational messages (with severity levels from 0 through 10).

Remarks

DBCC INDEXDEFRAG can defragment clustered and nonclustered indexes on tables and views. DBCC INDEXDEFRAG defragments
the leaf level of an index so that the physical order of the pages matches the left-to-right logical order of the leaf nodes, thus
improving index-scanning performance.

DBCC INDEXDEFRAG also compacts the pages of an index, taking into account the FILLFACTOR specified when the index was
created. Any empty pages created as a result of this compaction will be removed. For more information about FILLFACTOR, see
CREATE INDEX.

If an index spans more than one file, DBCC INDEXDEFRAG defragments one file at a time. Pages do not migrate between files.

Every five minutes, DBCC INDEXDEFRAG will report to the user an estimated percentage completed. DBCC INDEXDEFRAG can be
terminated at any point in the process, and any completed work is retained.

DBCC INDEXDEFRAG is an online operation. While this operation is running, the underlying table is available to users of the
database. A relatively unfragmented index can be defragmented faster than a new index can be built because the time to
defragment is related to the amount of fragmentation. A very fragmented index might take considerably longer to defragment
than to rebuild. In addition, the defragmentation is always fully logged, regardless of the database recovery model setting (see
ALTER DATABASE). The defragmentation of a very fragmented index can generate more log than even a fully logged index
creation. The defragmentation, however, is performed as a series of short transactions and thus does not require a large log if log
backups are taken frequently or if the recovery model setting is SIMPLE.

Also, DBCC INDEXDEFRAG will not help if two indexes are interleaved on the disk because INDEXDEFRAG shuffles the pages in
place. To improve the clustering of pages, rebuild the index.

DBCC INDEXDEFRAG is not supported for use on system tables.

Result Sets

DBCC INDEXDEFRAG returns this result set unless WITH NO_INFOMSGS is specified (values may vary):

Pages Scanned Pages Moved Pages Removed
------------- ----------- -------------
359 346 8

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC INDEXDEFRAG permissions default to members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed
database role, and the table owner, and are not transferable.

Examples

DBCC INDEXDEFRAG (Northwind, Orders, CustomersOrders)
GO

Transact-SQL Reference (SQL Server 2000)

DBCC INPUTBUFFER
Displays the last statement sent from a client to Microsoft® SQL Server™.

Syntax

DBCC INPUTBUFFER (spid)

Arguments

spid

Is the system process ID (SPID) for the user connection as displayed in the output of the sp_who system stored procedure.

Result Sets

DBCC INPUTBUFFER returns a rowset with the following columns.

Column name Data type Description
EventType nvarchar(30) Event type, for example: RPC, Language, or No

Event.
Parameters Int 0 = text

1- n = parameters
EventInfo nvarchar(255) For an EventType of RPC, EventInfo contains

only the procedure name. For an EventType of
Language or No Event, only the first 255
characters of the event are displayed.

For example, DBCC INPUTBUFFER returns the following result set when the last event in the buffer is DBCC INPUTBUFFER(11).

EventType Parameters EventInfo
-------------- ---------- ---------------------
Language Event 0 DBCC INPUTBUFFER (11)

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Note There are very brief transitional periods between events when no event can be displayed on Windows NT®. On Windows
98, an event is displayed only when active.

Permissions

DBCC INPUTBUFFER permissions default to members of the sysadmin fixed server role only, who can see any SPID. Other users
can see any SPID they own. Permissions are not transferable.

Examples

This example assumes a valid SPID of 10.

DBCC INPUTBUFFER (10)

See Also

DBCC

sp_who

Trace Flags

Transact-SQL Reference (SQL Server 2000)

DBCC NEWALLOC
Checks the allocation of data and index pages for each table within the extent structures of the database.

Important DBCC NEWALLOC is identical to DBCC CHECKALLOC and is included in Microsoft® SQL Server™ 2000 for backward
compatibility only. It is recommended that DBCC CHECKALLOC be used to check the allocation and use of all pages in the
specified database. In a future version of Microsoft SQL Server, DBCC NEWALLOC may not be supported.

See Also

DBCC

DBCC CHECKDB

DBCC CHECKALLOC

sqlmaint Utility

Transact-SQL Reference (SQL Server 2000)

DBCC OPENTRAN
Displays information about the oldest active transaction and the oldest distributed and nondistributed replicated transactions, if
any, within the specified database. Results are displayed only if there is an active transaction or if the database contains replication
information. An informational message is displayed if there are no active transactions.

Syntax

DBCC OPENTRAN
 ({ 'database_name' | database_id})
 [WITH TABLERESULTS
 [, NO_INFOMSGS]
]

Arguments

'database_name'

Is the name of the database for which to display the oldest transaction information. Database names must conform to the rules
for identifiers. For more information, see Using Identifiers.

database_id

Is the database identification (ID) number for which to display the oldest transaction information. Obtain the database ID using
the DB_ID function.

WITH TABLERESULTS

Specifies results in a tabular format that can be loaded into a table. Use this option to create a table of results that can be inserted
into a table for comparisons. When this option is not specified, results are formatted for readability.

NO_INFOMSGS

Suppresses all informational messages.

Remarks

If neither database_name nor database_id is specified, the default is the current database.

Use DBCC OPENTRAN to determine whether an open transaction exists within the log. When using the BACKUP LOG statement,
only the inactive portion of the log can be truncated; an open transaction can cause the log to not truncate completely. In earlier
versions of Microsoft® SQL Server™, either all users had to log off or the server had to be shut down and restarted to clear
uncommitted transactions from the log. With DBCC OPENTRAN, an open transaction can be identified (by obtaining the system
process ID from the sp_who output) and terminated, if necessary.

Result Sets

DBCC OPENTRAN returns this result set when there are no open transactions:

No active open transactions.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC OPENTRAN permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, and
are not transferable.

Examples

This example obtains transaction information for the current database and for the pubs database.

-- Display transaction information only for the current database.
DBCC OPENTRAN
GO
-- Display transaction information for the pubs database.
DBCC OPENTRAN('pubs')
GO

See Also

BEGIN TRANSACTION

COMMIT TRANSACTION

DBCC

DB_ID

ROLLBACK TRANSACTION

Transact-SQL Reference (SQL Server 2000)

DBCC OUTPUTBUFFER
Returns the current output buffer in hexadecimal and ASCII format for the specified system process ID (SPID).

Syntax

DBCC OUTPUTBUFFER (spid)

Arguments

spid

Is the system process ID for the user connection as displayed in the output of the sp_who system stored procedure.

Remarks

When you use DBCC OUTPUTBUFFER, DBCC OUTPUTBUFFER displays the results sent to the specified client (spid). For processes
that do not contain output streams, an error message is returned.

To show the statement executed that returned the results displayed by DBCC OUTPUTBUFFER, execute DBCC INPUTBUFFER.

Result Sets

DBCC OUTPUTBUFFER returns this result set (values may vary):

Output Buffer
--
01fb8028: 04 00 01 5f 00 00 00 00 e3 1b 00 01 06 6d 00 61 ..._.........m.a
01fb8038: 00 73 00 74 00 65 00 72 00 06 6d 00 61 00 73 00 .s.t.e.r..m.a.s.
'...'
01fb8218: 04 17 00 00 00 00 00 d1 04 18 00 00 00 00 00 d1
01fb8228: .

(33 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC OUTPUTBUFFER permissions default only to members of the sysadmin fixed server role, who can see any SPID.
Permissions are not transferable.

Examples

This example returns current output buffer information for an assumed SPID
of 13.

DBCC OUTPUTBUFFER (13)

See Also

DBCC

sp_who

Trace Flags

Transact-SQL Reference (SQL Server 2000)

DBCC PINTABLE
Marks a table to be pinned, which means Microsoft® SQL Server™ does not flush the pages for the table from memory.

Syntax

DBCC PINTABLE (database_id , table_id)

Arguments

database_id

Is the database identification (ID) number of the table to be pinned. To determine the database ID, use the DB_ID function.

table_id

Is the object identification number of the table to be pinned. To determine the table ID, use the OBJECT_ID function.

Remarks

DBCC PINTABLE does not cause the table to be read into memory. As the pages from the table are read into the buffer cache by
normal Transact-SQL statements, they are marked as pinned pages. SQL Server does not flush pinned pages when it needs space
to read in a new page. SQL Server still logs updates to the page and, if necessary, writes the updated page back to disk. SQL
Server does, however, keep a copy of the page available in the buffer cache until the table is unpinned with the DBCC
UNPINTABLE statement.

DBCC PINTABLE is best used to keep small, frequently referenced tables in memory. The pages for the small table are read into
memory one time, then all future references to their data do not require a disk read.

Caution Although DBCC PINTABLE can provide performance improvements, it must be used with care. If a large table is pinned,
it can start using a large portion of the buffer cache and not leave enough cache to service the other tables in the system
adequately. If a table larger than the buffer cache is pinned, it can fill the entire buffer cache. A member of the sysadmin fixed
server role must shut down SQL Server, restart SQL Server, and then unpin the table. Pinning too many tables can cause the same
problems as pinning a table larger than the buffer cache.

Result Sets

Here is the result set:

Warning: Pinning tables should be carefully considered. If a pinned table is larger, or grows larger, than the
available data cache, the server may need to be restarted and the table unpinned.
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC PINTABLE permissions default to members of the sysadmin fixed server role and are not transferable.

Examples

This example pins the authors table in the pubs database.

DECLARE @db_id int, @tbl_id int
USE pubs
SET @db_id = DB_ID('pubs')
SET @tbl_id = OBJECT_ID('pubs..authors')
DBCC PINTABLE (@db_id, @tbl_id)

See Also

DBCC

Memory Architecture

DBCC UNPINTABLE

sp_tableoption

Transact-SQL Reference (SQL Server 2000)

DBCC PROCCACHE
Displays information in a table format about the procedure cache.

Syntax

DBCC PROCCACHE

Remarks

SQL Server Performance Monitor uses DBCC PROCCACHE to obtain information about the procedure cache.

Result Sets

This table describes the columns of the result set.

Column name Description
num proc buffs Number of possible stored procedures that could be

in the procedure cache.
num proc buffs used Number of cache slots holding stored procedures.
num proc buffs active Number of cache slots holding stored procedures that

are currently executing.
proc cache size Total size of the procedure cache.
proc cache used Amount of the procedure cache holding stored

procedures.
proc cache active Amount of the procedure cache holding stored

procedures that are currently executing.

Permissions

DBCC PROCCACHE permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, and
are not transferable.

See Also

DBCC

Memory Architecture

Transact-SQL Reference (SQL Server 2000)

DBCC ROWLOCK
Used for Microsoft® SQL Server™ version 6.5, enabling Insert Row Locking (IRL) operations on tables.

Important Row-level locking is enabled by default in SQL Server. The locking strategy of SQL Server is row locking with possible
promotion to page or table locking. DBCC ROWLOCK does not alter the locking behavior of SQL Server (it has no effect) and is
included in Microsoft SQL Server 2000 for backward compatibility of existing scripts and procedures only. In a future version of
SQL Server, DBCC ROWLOCK may not be supported.

See Also

DBCC

Transact-SQL Reference (SQL Server 2000)

DBCC SHOWCONTIG
Displays fragmentation information for the data and indexes of the specified table.

Syntax

DBCC SHOWCONTIG
 [({ table_name | table_id | view_name | view_id }
 [, index_name | index_id]
)
]
 [WITH { ALL_INDEXES
 | FAST [, ALL_INDEXES]
 | TABLERESULTS [, { ALL_INDEXES }]
 [, { FAST | ALL_LEVELS }]
 }
]

Arguments

table_name | table_id | view_name | view_id

Is the table or view for which to check fragmentation information. If not specified, all tables and indexed views in the current
database are checked. To obtain the table or view ID, use the OBJECT_ID function.

index_name | index_id

Is the index for which to check fragmentation information. If not specified, the statement processes the base index for the
specified table or view. To obtain the index ID, use sysindexes.

WITH

Specifies options for the type of information returned by the DBCC statement.

FAST

Specifies whether to perform a fast scan of the index and output minimal information. A fast scan does not read the leaf or data
level pages of the index.

TABLERESULTS

Displays results as a rowset, with additional information.

ALL_INDEXES

Displays results for all the indexes for the specified tables and views, even if a particular index is specified.

ALL_LEVELS

Can only be used with the TABLERESULTS option. Cannot be used with the FAST option. Specifies whether to produce output for
each level of each index processed. If not specified, only the index leaf level or table data level will be processed.

Remarks

The DBCC SHOWCONTIG statement traverses the page chain at the leaf level of the specified index when index_id is specified. If
only table_id is specified, or if index_id is 0, the data pages of the specified table are scanned.

DBCC SHOWCONTIG determines whether the table is heavily fragmented. Table fragmentation occurs through the process of
data modifications (INSERT, UPDATE, and DELETE statements) made against the table. Because these modifications are not usually
distributed equally among the rows of the table, the fullness of each page can vary over time. For queries that scan part or all of a
table, such table fragmentation can cause additional page reads, which hinders parallel scanning of data.

When an index is heavily fragmented, there are two choices for reducing fragmentation:

Drop and re-create a clustered index.

Re-creating a clustered index reorganizes the data, and results in full data pages. The level of fullness can be configured
using the FILLFACTOR option. The drawbacks of this method are that the index is offline during the drop/re-create cycle and

that the operation is atomic. If the index creation is interrupted, the index is not re-created.

Use DBCC INDEXDEFRAG to reorder the leaf level pages of the index in a logical order.

The DBCC INDEXDEFRAG command is an online operation, so the index is available while the command is running. The
operation is also interruptible without loss of completed work. The drawback of this method is that it does not do as good a
job of reorganizing the data as a clustered index drop/re-create operation.

The Avg. Bytes free per page and Avg. Page density (full) statistic in the result set give an indication of the fullness of index
pages. The Avg. Bytes free per page figure should be low and the Avg. Page density (full) figure should be high. Dropping
and recreating a clustered index, with the FILLFACTOR option specified, can improve these statistics. Also, the DBCC
INDEXDEFRAG command will compact an index, taking into account its FILLFACTOR, which will improve these statistics.

The fragmentation level of an index can be determined in two ways:

Comparing the values of Extent Switches and Extents Scanned.

Note: This method of determining fragmentation does not work if the index spans multiple files. The value of Extent
Switches should be as close as possible to that of Extents Scanned. This ratio is calculated as the Scan Density value,
which should be as high as possible. This can be improved by either method of reducing fragmentation discussed earlier.

Understanding Logical Scan Fragmentation and Extent Scan Fragmentation values.

Logical Scan Fragmentation and, to a lesser extent, Extent Scan Fragmentation values give the best indication of a
table's fragmentation level. Both these values should be as close to zero as possible (although a value from 0% through
10% may be acceptable). It should be noted that the Extent Scan Fragmentation value will be high if the index spans
multiple files. Both methods of reducing fragmentation can be used to reduce these values.

Result Sets

This table describes the information in the result set.

Statistic Description
Pages Scanned Number of pages in the table or index.
Extents Scanned Number of extents in the table or index.
Extent Switches Number of times the DBCC statement moved from

one extent to another while it traversed the pages of
the table or index.

Avg. Pages per Extent Number of pages per extent in the page chain.
Scan Density
[Best Count: Actual Count]

Best count is the ideal number of extent changes if
everything is contiguously linked. Actual count is the
actual number of extent changes. The number in scan
density is 100 if everything is contiguous; if it is less
than 100, some fragmentation exists. Scan density is a
percentage.

Logical Scan Fragmentation Percentage of out-of-order pages returned from
scanning the leaf pages of an index. This number is
not relevant to heaps and text indexes. An out of order
page is one for which the next page indicated in an
IAM is a different page than the page pointed to by the
next page pointer in the leaf page.

Extent Scan Fragmentation Percentage of out-of-order extents in scanning the leaf
pages of an index. This number is not relevant to
heaps. An out-of-order extent is one for which the
extent containing the current page for an index is not
physically the next extent after the extent containing
the previous page for an index.

Avg. Bytes free per page Average number of free bytes on the pages scanned.
The higher the number, the less full the pages are.
Lower numbers are better. This number is also
affected by row size; a large row size can result in a
higher number.

Avg. Page density (full) Average page density (as a percentage). This value
takes into account row size, so it is a more accurate
indication of how full your pages are. The higher the
percentage, the better.

When a table ID and the FAST option are specified, DBCC SHOWCONTIG returns a result set with only the following columns:

Pages Scanned

Extent Switches

Scan Density [Best Count:Actual Count]

Logical Scan Fragmentation

When TABLERESULTS is specified, DBCC SHOWCONTIG returns these eight columns, described in the first table, and the
following additional columns.

ExtentSwitches

AverageFreeBytes

AveragePageDensity

ScanDensity

BestCount

ActualCount

LogicalFragmentation

ExtentFragmentation

Statistic Description
ObjectName Name of the table or view processed.
ObjectId ID of the object name.
IndexName Name of the index processed. IndexName is NULL for a heap.
IndexId ID of the index. IndexId is 0 for a heap.
Level Level of the index. Level 0 is the leaf (or data) level of the

index. The level number increases moving up the tree toward
the index root. Level is 0 for a heap.

Pages Number of pages comprising that level of the index or entire
heap.

Rows Number of data or index records at that level of the index. For
a heap, this is the number of data records in the entire heap.

MinimumRecordSize Minimum record size in that level of the index or entire heap.
MaximumRecordSize Maximum record size in that level of the index or entire heap.
AverageRecordSize Average record size in that level of the index or entire heap.
ForwardedRecords Number of forwarded records in that level of the index or

entire heap.
Extents Number of extents in that level of the index or entire heap.

DBCC SHOWCONTIG returns the following columns when TABLERESULTS and FAST are specified.

ObjectName

ObjectId

IndexName

IndexId

Pages

ExtentSwitchs

ScanDensity

BestCount

ActualCount

LogicalFragmentation

Permissions

DBCC SHOWCONTIG permissions default to members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed
database roles, and the table owner, and are not transferable.

Examples

A. Display fragmentation information for a table

This example displays fragmentation information for the table with the specified table name.

USE Northwind
GO
DBCC SHOWCONTIG (Employees)
GO

B. Use OBJECT_ID to obtain the table ID and sysindexes to obtain the index ID

This example uses OBJECT_ID and sysindexes to obtain the table ID and index ID for the aunmind index of the authors table.

USE pubs
GO
DECLARE @id int, @indid int
SET @id = OBJECT_ID('authors')
SELECT @indid = indid
FROM sysindexes
WHERE id = @id
 AND name = 'aunmind'
DBCC SHOWCONTIG (@id, @indid)
GO

C. Display an abbreviated result set for a table

This example returns an abbreviated result set for the authors table in the pubs database.

USE pubs
DBCC SHOWCONTIG ('authors', 1) WITH FAST

D. Display the fu ll result set for every index on every table in a database

This example returns a full table result set for every index on every table in the pubs database.

USE pubs
DBCC SHOWCONTIG WITH TABLERESULTS, ALL_INDEXES

E. Use DBCC SHOWCON TIG and DBCC IN DEXDEFRAG to defragment the indexes in a database

This example shows a simple way to defragment all indexes in a database that is fragmented above a declared threshold.

/*Perform a 'USE <database name>' to select the database in which to run the script.*/
-- Declare variables
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL

-- Decide on the maximum fragmentation to allow
SELECT @maxfrag = 30.0

-- Declare cursor
DECLARE tables CURSOR FOR
 SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = 'BASE TABLE'

-- Create the table
CREATE TABLE #fraglist (
 ObjectName CHAR (255),
 ObjectId INT,
 IndexName CHAR (255),
 IndexId INT,
 Lvl INT,
 CountPages INT,
 CountRows INT,
 MinRecSize INT,
 MaxRecSize INT,
 AvgRecSize INT,
 ForRecCount INT,
 Extents INT,
 ExtentSwitches INT,
 AvgFreeBytes INT,
 AvgPageDensity INT,
 ScanDensity DECIMAL,
 BestCount INT,
 ActualCount INT,
 LogicalFrag DECIMAL,
 ExtentFrag DECIMAL)

-- Open the cursor
OPEN tables

-- Loop through all the tables in the database
FETCH NEXT
 FROM tables
 INTO @tablename

WHILE @@FETCH_STATUS = 0
BEGIN
-- Do the showcontig of all indexes of the table
 INSERT INTO #fraglist
 EXEC ('DBCC SHOWCONTIG (''' + @tablename + ''')
 WITH FAST, TABLERESULTS, ALL_INDEXES, NO_INFOMSGS')
 FETCH NEXT
 FROM tables
 INTO @tablename
END

-- Close and deallocate the cursor
CLOSE tables
DEALLOCATE tables

-- Declare cursor for list of indexes to be defragged
DECLARE indexes CURSOR FOR
 SELECT ObjectName, ObjectId, IndexId, LogicalFrag
 FROM #fraglist
 WHERE LogicalFrag >= @maxfrag
 AND INDEXPROPERTY (ObjectId, IndexName, 'IndexDepth') > 0

-- Open the cursor
OPEN indexes

-- loop through the indexes
FETCH NEXT
 FROM indexes
 INTO @tablename, @objectid, @indexid, @frag

WHILE @@FETCH_STATUS = 0

BEGIN
 PRINT 'Executing DBCC INDEXDEFRAG (0, ' + RTRIM(@tablename) + ',
 ' + RTRIM(@indexid) + ') - fragmentation currently '
 + RTRIM(CONVERT(varchar(15),@frag)) + '%'
 SELECT @execstr = 'DBCC INDEXDEFRAG (0, ' + RTRIM(@objectid) + ',
 ' + RTRIM(@indexid) + ')'
 EXEC (@execstr)

 FETCH NEXT
 FROM indexes
 INTO @tablename, @objectid, @indexid, @frag
END

-- Close and deallocate the cursor
CLOSE indexes
DEALLOCATE indexes

-- Delete the temporary table
DROP TABLE #fraglist
GO

See Also

CREATE INDEX

DBCC

DBCC DBREINDEX

DBCC INDEXDEFRAG

DROP INDEX

OBJECT_ID

Space Allocation and Reuse

sysindexes

Table and Index Architecture

Transact-SQL Reference (SQL Server 2000)

DBCC SHOW_STATISTICS
Displays the current distribution statistics for the specified target on the specified table.

Syntax

DBCC SHOW_STATISTICS (table , target)

Arguments

table

Is the name of the table for which to display statistics information. Table names must conform to the rules for identifiers. For
more information, see Using Identifiers.

target

Is the name of the object (index name or collection) for which to display statistics information. Target names must conform to the
rules for identifiers. If target is both an index name and a statistics collection name, both index and column statistics are returned.
If no index or statistics collection is found with the specified name, an error is returned.

Remarks

The results returned indicate the selectivity of an index (the lower the density returned, the higher the selectivity) and provide the
basis for determining whether or not an index is useful to the query optimizer. The results returned are based on distribution
steps of the index.

To see the last date the statistics were updated, use STATS_DATE.

Result Sets

This table describes the columns in the result set.

Column name Description
Updated Date and time the statistics were last updated.
Rows Number of rows in the table.
Rows Sampled Number of rows sampled for statistics information.
Steps Number of distribution steps.
Density Selectivity of the first index column prefix (non-frequent).
Average key length Average length of the first index column prefix.
All density Selectivity of a set of index column prefixes (frequent).
Average length Average length of a set of index column prefixes.
Columns Names of index column prefixes for which All density

and Average length are displayed.
RANGE_HI_KEY Upper bound value of a histogram step.
RANGE_ROWS Number of rows from the sample that fall within a

histogram step, excluding the upper bound.
EQ_ROWS Number of rows from the sample that are equal in value

to the upper bound of the histogram step.
DISTINCT_RANGE_ROWS Number of distinct values within a histogram step,

excluding the upper bound.
AVG_RANGE_ROWS Average number of duplicate values within a histogram

step, excluding the upper bound (RANGE_ROWS /
DISTINCT_RANGE_ROWS for DISTINCT_RANGE_ROWS >
0).

Permissions

DBCC SHOW_STATISTICS permissions default to members of the sysadmin fixed server role, the db_owner and db_ddladmin
fixed database role, and the table owner, and are not transferable.

Examples

This example displays statistics information for the UPKCL_auidind index of the authors table.

USE pubs
DBCC SHOW_STATISTICS (authors, UPKCL_auidind)
GO

Here is the result set:

Statistics for INDEX 'UPKCL_auidind'.
Updated Rows Rows Sampled Steps Density
--------------------- ------ -------------- ------- --------------
Mar 1 2000 4:58AM 23 23 23 4.3478262E-2

Average key length

11.0

(1 row(s) affected)

All density Average Length Columns
------------------------ ------------------------ ----------------
4.3478262E-2 11.0 au_id

(1 row(s) affected)

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
------------ ---------- ------- ------------------- --------------
172-32-1176 0.0 1.0 0 0.0
213-46-8915 0.0 1.0 0 0.0
238-95-7766 0.0 1.0 0 0.0
267-41-2394 0.0 1.0 0 0.0
274-80-9391 0.0 1.0 0 0.0
341-22-1782 0.0 1.0 0 0.0
409-56-7008 0.0 1.0 0 0.0
427-17-2319 0.0 1.0 0 0.0
472-27-2349 0.0 1.0 0 0.0
486-29-1786 0.0 1.0 0 0.0
527-72-3246 0.0 1.0 0 0.0
648-92-1872 0.0 1.0 0 0.0
672-71-3249 0.0 1.0 0 0.0
712-45-1867 0.0 1.0 0 0.0
722-51-5454 0.0 1.0 0 0.0
724-08-9931 0.0 1.0 0 0.0
724-80-9391 0.0 1.0 0 0.0
756-30-7391 0.0 1.0 0 0.0
807-91-6654 0.0 1.0 0 0.0
846-92-7186 0.0 1.0 0 0.0
893-72-1158 0.0 1.0 0 0.0
899-46-2035 0.0 1.0 0 0.0
998-72-3567 0.0 1.0 0 0.0

(23 row(s) affected)

See Also

CREATE INDEX

CREATE STATISTICS

DBCC

Distribution Statistics

DROP STATISTICS

sp_autostats

sp_createstats

sp_dboption

STATS_DATE

UPDATE STATISTICS

USE

Transact-SQL Reference (SQL Server 2000)

DBCC SHRINKDATABASE
Shrinks the size of the data files in the specified database.

Syntax

DBCC SHRINKDATABASE
 (database_name [, target_percent]
 [, { NOTRUNCATE | TRUNCATEONLY }]
)

Arguments

database_name

Is the name of the database to be shrunk. Database names must conform to the rules for identifiers. For more information, see
Using Identifiers.

target_percent

Is the desired percentage of free space left in the database file after the database has been shrunk.

NOTRUNCATE

Causes the freed file space to be retained in the database files. If not specified, the freed file space is released to the operating
system.

TRUNCATEONLY

Causes any unused space in the data files to be released to the operating system and shrinks the file to the last allocated extent,
reducing the file size without moving any data. No attempt is made to relocate rows to unallocated pages. target_percent is
ignored when TRUNCATEONLY is used.

Remarks

Microsoft® SQL Server™ can shrink:

All data and log files for a specific database. Execute DBCC SHRINKDATABASE.

One data or log file at a time for a specific database. Execute DBCC SHRINKFILE.

DBCC SHRINKDATABASE shrinks data files on a per-file basis. However, DBCC SHRINKDATABASE shrinks log files as if all the log
files existed in one contiguous log pool.

Assume a database named mydb with two data files and two log files. Both data and log files are 10 MB in size. The first data file
contains 6 MB of data.

For each file, SQL Server calculates a target size, which is the size to which the file is to be shrunk. When DBCC SHRINKDATABASE
is specified with target_percent, SQL Server calculates target size to be the target_percent amount of space free in the file after
shrinking. For example, if you specify a target_percent of 25 for shrinking mydb. SQL Server calculates the target size for this file
to be 8 MB (6 MB of data plus 2 MB of free space). Therefore, SQL Server moves any data from the last 2 MB of the data file to any
free space in the first 8 MB of the data file and then shrinks the file.

Assume the first data file of mydb contains 7 MB of data. Specifying target_percent of 30 allows this data file to be shrunk to the
desired free percentage of 30. However, specifying a target_percent of 40 does not shrink the data file because SQL Server will
not shrink a file to a size smaller than the data currently occupies. You can also think of this issue another way: 40 percent desired
free space + 70 percent full data file (7 MB out of 10 MB) is greater than 100 percent. Because the desired percentage free plus
the current percentage that the data file occupies is over 100 percent (by 10 percent), any target_size greater than 30 will not
shrink the data file.

For log files, SQL Server uses target_percent to calculate the target size for the entire log; therefore, target_percent is the amount
of free space in the log after the shrink operation. Target size for the entire log is then translated to target size for each log file.
DBCC SHRINKDATABASE attempts to shrink each physical log file to its target size immediately. If no part of the logical log resides
in the virtual logs beyond the log file's target size, the file is successfully truncated and DBCC SHRINKDATABASE completes with
no messages. However, if part of the logical log resides in the virtual logs beyond the target size, SQL Server frees as much space
as possible and then issues an informational message. The message tells you what actions you need to perform to move the

logical log out of the virtual logs at the end of the file. After you perform the actions, you can then reissue the DBCC
SHRINKDATABASE command to free the remaining space. For more information about shrinking transaction logs, see Shrinking
the Transaction Log.

Because a log file can only be shrunk to a virtual log file boundary, it may not be possible to shrink a log file to a size smaller than
the size of a virtual log file, even if it is not being used. For example, a database with a log file of 1 GB can have the log file shrunk
to only 128 MB. For more information about truncation, see Truncating the Transaction Log. For more information about
determining virtual log file sizes, see Virtual Log Files.

The target size for data and log files as calculated by DBCC SHRINKDATABASE can never be smaller than the minimum size of a
file. The minimum size of a file is the size specified when the file was originally created, or the last explicit size set with a file size
changing operation such as ALTER DATABASE with the MODIFY FILE option or DBCC SHRINKFILE. For example, if all the data and
log files of mydb were specified to be 10 MB at the time CREATE DATABASE was executed, the minimum size of each file is 10
MB. DBCC SHRINKDATABASE cannot shrink any of the files smaller than 10 MB. If one of the files is explicitly grown to a size of 20
MB by using ALTER DATABASE with the MODIFY FILE option, the new minimum size of the file is 20 MB. To shrink a file to a size
smaller than its minimum size, use DBCC SHRINKFILE and specify the new size. Executing DBCC SHRINKFILE changes the
minimum file size to the new size specified.

When using data files, DBCC SHRINKDATABASE has the NOTRUNCATE and TRUNCATEONLY options. Both options are ignored if
specified for log files. DBCC SHRINKDATABASE with neither option is equivalent to a DBCC SHRINKDATABASE with the
NOTRUNCATE option followed by a DBCC SHRINKDATABASE with the TRUNCATEONLY option.

The NOTRUNCATE option, with or without specifying target_percent, performs the actual data movement operations of DBCC
SHRINKDATABASE including the movement of allocated pages from the end of a file to unallocated pages in the front of the file.
However, the free space at the end of the file is not returned to the operating system and the physical size of the file does not
change. Therefore, data files appear not to shrink when the NOTRUNCATE option is specified. For example, assume you are using
the mydb database again. mydb has two data files and two log files. The second data file and second log file are both 10 MB in
size. When DBCC SHRINKDATABASE mydb NOTRUNCATE is executed, Microsoft SQL Server moves the data from the later pages
to the front pages of the data file. However, the file still remains 10 MB in size.

The TRUNCATEONLY option reclaims all free space at the end of the file to the operating system. However, TRUNCATEONLY does
not perform any page movement inside the file or files. The specified file is shrunk only to the last allocated extent. target_percent
is ignored if specified with the TRUNCATEONLY option.

The database cannot be made smaller than the size of the model database.

The database being shrunk does not have to be in single user mode; other users can be working in the database when it is shrunk.
This includes system databases.

Result Sets

This table describes the columns in the result set.

Column name Description
DbId Database identification number of the file SQL Server

attempted to shrink.
FileId The file identification number of the file SQL Server attempted

to shrink.
CurrentSize The number of 8-KB pages the file currently occupies.
MinimumSize The number of 8-KB pages the file could occupy, at minimum.

This corresponds to the minimum size or originally created
size of a file.

UsedPages The number of 8-KB pages currently used by the file.
EstimatedPages The number of 8-KB pages that SQL Server estimates the file

could be shrunk down to.

Note SQL Server does not display rows for those files not shrunk.

Permissions

DBCC SHRINKDATABASE permissions default to members of the sysadmin fixed server role or the db_owner fixed database
role, and are not transferable.

Examples

This example decreases the size of the files in the UserDB user database to allow 10 percent free space in the files of UserDB.

DBCC SHRINKDATABASE (UserDB, 10)
GO

See Also

ALTER DATABASE

DBCC

Physical Database Files and Filegroups

Transact-SQL Reference (SQL Server 2000)

DBCC SHRINKFILE
Shrinks the size of the specified data file or log file for the related database.

Syntax

DBCC SHRINKFILE
 ({ file_name | file_id }
 { [, target_size]
 | [, { EMPTYFILE | NOTRUNCATE | TRUNCATEONLY }]
 }
)

Arguments

file_name

Is the logical name of the file shrunk. File names must conform to the rules for identifiers. For more information, see Using
Identifiers.

file_id

Is the identification (ID) number of the file to be shrunk. To obtain a file ID, use the FILE_ID function or search sysfiles in the
current database.

target_size

Is the desired size for the file in megabytes, expressed as an integer. If not specified, DBCC SHRINKFILE reduces the size to the
default file size.

If target_size is specified, DBCC SHRINKFILE attempts to shrink the file to the specified size. Used pages in the part of the file to be
freed are relocated to available free space in the part of the file retained. For example, if there is a 10-MB data file, a DBCC
SHRINKFILE with a target_size of 8 causes all used pages in the last 2 MB of the file to be reallocated into any available free slots
in the first 8 MB of the file. DBCC SHRINKFILE does not shrink a file past the size needed to store the data in the file. For example,
if 7 MB of a 10-MB data file is used, a DBCC SHRINKFILE statement with a target_size of 6 shrinks the file to only 7 MB, not 6 MB.

EMPTYFILE

Migrates all data from the specified file to other files in the same filegroup. Microsoft® SQL Server™ no longer allows data to be
placed on the file used with the EMPTYFILE option. This option allows the file to be dropped using the ALTER DATABASE
statement.

NOTRUNCATE

Causes the freed file space to be retained in the files.

When NOTRUNCATE is specified along with target_size, the space freed is not released to the operating system. The only effect of
the DBCC SHRINKFILE is to relocate used pages from above the target_size line to the front of the file. When NOTRUNCATE is not
specified, all freed file space is returned to the operating system.

TRUNCATEONLY

Causes any unused space in the files to be released to the operating system and shrinks the file to the last allocated extent,
reducing the file size without moving any data. No attempt is made to relocate rows to unallocated pages. target_size is ignored
when TRUNCATEONLY is used.

Remarks

DBCC SHRINKFILE applies to the files in the current database. Switch context to the database to issue a DBCC SHRINKFILE
statement referencing a file in that particular database. For more information about changing the current database, see USE.

The database cannot be made smaller than the size of the model database.

Use DBCC SHRINKFILE to reduce the size of a file to smaller than its originally created size. The minimum file size for the file is
then reset to the newly specified size.

To remove any data that may be in a file, execute DBCC SHRINKFILE('file_name', EMPTYFILE) before executing ALTER DATABASE.

The database being shrunk does not have to be in single-user mode; other users can be working in the database when the file is
shrunk. You do not have to run SQL Server in single-user mode to shrink the system databases.

For log files, SQL Server uses target_size to calculate the target size for the entire log; therefore, target_size is the amount of free
space in the log after the shrink operation. Target size for the entire log is then translated to target size for each log file. DBCC
SHRINKFILE attempts to shrink each physical log file to its target size immediately. If no part of the logical log resides in the virtual
logs beyond the log file's target size, the file is successfully truncated and DBCC SHRINKFILE completes with no messages.
However, if part of the logical log resides in the virtual logs beyond the target size, SQL Server frees as much space as possible
and then issues an informational message. The message tells you what actions you need to perform to move the logical log out of
the virtual logs at the end of the file. After you perform the actions, you can then reissue the DBCC SHRINKFILE command to free
the remaining space. For more information about shrinking transaction logs, see Shrinking the Transaction Log.

Because a log file can only be shrunk to a virtual log file boundary, it may not be possible to shrink a log file to a size smaller than
the size of a virtual log file, even if it is not being used. For example, a database with a log file of 1 GB can have the log file shrunk
to only 128 MB. For more information about truncation, see Truncating the Transaction Log. For more information about
determining virtual log file sizes, see Virtual Log Files.

Result Sets

This table describes the columns in the result set.

Column name Description
DbId Database identification number of the file SQL Server

attempted to shrink.
FileId The file identification number of the file SQL Server

attempted to shrink.
CurrentSize The number of 8-KB pages the file currently occupies.
MinimumSize The number of 8-KB pages the file could occupy, at

minimum. This corresponds to the minimum size or
originally created size of a file.

UsedPages The number of 8-KB pages currently used by the file.
EstimatedPages The number of 8-KB pages that SQL Server estimates

the file could be shrunk down to.

Permissions

DBCC SHRINKFILE permissions default to members of the sysadmin fixed server role or the db_owner fixed database role, and
are not transferable.

Examples

This example shrinks the size of a file named DataFil1 in the UserDB user database to 7 MB.

USE UserDB
GO
DBCC SHRINKFILE (DataFil1, 7)
GO

See Also

ALTER DATABASE

DBCC

FILE_ID

Physical Database Files and Filegroups

sysfiles

Transact-SQL Reference (SQL Server 2000)

DBCC SQLPERF
Provides statistics about the use of transaction-log space in all databases.

Syntax

DBCC SQLPERF (LOGSPACE)

Remarks

The transaction log accumulates information about changes to data in each database. The information returned by DBCC
SQLPERF(LOGSPACE) can be used to monitor the amount of space used and indicates when to back up or truncate the
transaction log.

Result Sets

This table describes the columns in the result set.

Column name Definition
Database Name Name of the database for the log statistics displayed.
Log Size (MB) The actual amount of space available for the log. This

amount is smaller than the amount originally allocated for
log space because Microsoft® SQL Server™ reserves a
small amount of disk space for internal header information.

Log Space Used (%) Percentage of the log file currently occupied with
transaction log information.

Status Status of the log file (always contains 0).

Permissions

DBCC SQLPERF permissions default to any user.

Examples

This example displays LOGSPACE information for all databases currently installed.

DBCC SQLPERF(LOGSPACE)
GO

Here is the result set:

Database Name Log Size (MB) Log Space Used (%) Status
------------- ------------- ------------------ -----------
pubs 1.99219 4.26471 0
msdb 3.99219 17.0132 0
tempdb 1.99219 1.64216 0
model 1.0 12.7953 0
master 3.99219 14.3469 0

See Also

DBCC

sp_spaceused

Transact-SQL Reference (SQL Server 2000)

DBCC TRACEOFF
Disables the specified trace flag(s).

Syntax

DBCC TRACEOFF (trace# [,...n])

Arguments

trace#

Is the number of the trace flag to disable.

n

Is a placeholder indicating that multiple trace flags can be specified.

Remarks

Trace flags are used to customize certain characteristics controlling how Microsoft® SQL Server™ operates.

To find out information about the status of trace flags, use DBCC TRACESTATUS. To enable certain trace flags, use DBCC
TRACEON.

Result Sets

DBCC TRACEOFF returns this result set (message):

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC TRACEOFF permissions default to members of the sysadmin fixed server role only, and are not transferable.

Examples

This example disables the effects of trace flag 3205.

DBCC TRACEOFF (3205)
GO

See Also

DBCC

DBCC TRACEON

DBCC TRACESTATUS

Trace Flags

Transact-SQL Reference (SQL Server 2000)

DBCC TRACEON
Turns on (enables) the specified trace flag.

Syntax

DBCC TRACEON (trace# [,...n])

Arguments

trace#

Is the number of the trace flag to turn on.

n

Is a placeholder indicating that multiple trace flags can be specified.

Remarks

Trace flags are used to customize certain characteristics controlling how Microsoft® SQL Server™ operates. Trace flags remain
enabled in the server until disabled by executing a DBCC TRACEOFF statement. New connections into the server do not see any
trace flags until a DBCC TRACEON statement is issued. Then, the connection will see all trace flags currently enabled in the server,
even those enabled by another connection.

For more information about the status of trace flags, see DBCC TRACESTATUS.

Result Sets

DBCC TRACEON returns this result set (message):

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC TRACEON permissions default to members of the sysadmin fixed server role only, and are not transferable.

Examples

This example disables hardware compression for tape drivers.

DBCC TRACEON (3205)
GO

See Also

DBCC

DBCC TRACEOFF

DBCC TRACESTATUS

Trace Flags

Transact-SQL Reference (SQL Server 2000)

DBCC TRACESTATUS
Displays the status of trace flags.

Syntax

DBCC TRACESTATUS (trace# [,...n])

Arguments

trace#

Is the number of the trace flag whose status will be displayed.

n

Is a placeholder that indicates multiple trace flags can be specified.

Result Sets

DBCC TRACESTATUS returns a column for the trace flag number and a column for the status, indicating whether the trace flag is
ON (1) or OFF (0). To get status information for all trace flags currently turned on, specify - 1 for trace#.

Remarks

To enable certain trace flags, use DBCC TRACEON. To disable trace flags, use DBCC TRACEOFF.

Permissions

DBCC TRACESTATUS permissions default to any user.

Examples

A. Display the status of all trace flags currently enabled

This example displays the status of all currently enabled trace flags by specifying a value of -1.

DBCC TRACESTATUS(-1)
GO

B. Display the status of multiple trace flags

This example displays the status of trace flags 2528 and 3205.

DBCC TRACESTATUS (2528, 3205)
GO

See Also

DBCC

DBCC TRACEOFF

DBCC TRACEON

Trace Flags

Transact-SQL Reference (SQL Server 2000)

DBCC UNPINTABLE
Marks a table as unpinned. After a table is marked as unpinned, the table pages in the buffer cache can be flushed.

Syntax

DBCC UNPINTABLE (database_id , table_id)

Arguments

database_id

Is the database identification (ID) number of the database containing the table to be pinned. To obtain the database ID, use DB_ID.

table_id

Is the object ID of the table to be pinned. To determine the object ID, use OBJECT_ID.

Remarks

DBCC UNPINTABLE does not cause the table to be immediately flushed from the data cache. It specifies that all of the pages for
the table in the buffer cache can be flushed if space is needed to read in a new page from disk.

Result Sets

DBCC UNPINTABLE returns this result set (message):

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC UNPINTABLE permissions default to members of the sysadmin fixed server role and are not transferable.

Examples

This example unpins the authors table in the pubs database.

DECLARE @db_id int, @tbl_id int
USE pubs
SET @db_id = DB_ID('pubs')
SET @tbl_id = OBJECT_ID('pubs..authors')
DBCC UNPINTABLE (@db_id, @tbl_id)

See Also

DB_ID

DBCC

DBCC PINTABLE

Memory Architecture

OBJECT_ID

sp_tableoption

Transact-SQL Reference (SQL Server 2000)

DBCC UPDATEUSAGE
Reports and corrects inaccuracies in the sysindexes table, which may result in incorrect space usage reports by the
sp_spaceused system stored procedure.

Syntax

DBCC UPDATEUSAGE
 ({ 'database_name' | 0 }
 [, { 'table_name' | 'view_name' }
 [, { index_id | 'index_name' }]]
)
 [WITH [COUNT_ROWS] [, NO_INFOMSGS]
]

Arguments

'database_name' | 0

Is the name of the database for which to report and correct space usage statistics. Database names must conform to the rules for
identifiers. For more information, see Using Identifiers. If 0 is specified, then the current database is used.

'table_name' | 'view_name'

Is the name of the table or indexed view for which to report and correct space usage statistics. Table and view names must
conform to the rules for identifiers.

index_id | 'index_name'

Is the identification (ID) number or index name of the index to use. If not specified, the statement processes all indexes for the
specified table or view.

COUNT_ROWS

Specifies that the rows column of sysindexes is updated with the current count of the number of rows in the table or view. This
applies only to sysindexes rows that have an indid of 0 or 1. This option can affect performance on large tables and indexed
views.

NO_INFOMSGS

Suppresses all informational messages.

Remarks

DBCC UPDATEUSAGE corrects the rows, used, reserved, and dpages columns of the sysindexes table for tables and clustered
indexes. Size information is not maintained for nonclustered indexes.

If there are no inaccuracies in sysindexes, DBCC UPDATEUSAGE returns no data. If inaccuracies are found and corrected and the
WITH NO_INFOMSGS option is not used, UPDATEUSAGE returns the rows and columns being updated in sysindexes.

Use UPDATEUSAGE to synchronize space-usage counters. DBCC UPDATEUSAGE can take some time to run on large tables or
databases, so it should typically be used only when you suspect incorrect values returned by sp_spaceused. sp_spaceused
accepts an optional parameter to run DBCC UPDATEUSAGE before returning space information for the table or index.

Result Sets

DBCC UPDATEUSAGE returns this result set for the Northwind database (values may vary):

DBCC UPDATEUSAGE: sysindexes row updated for table 'Orders' (index ID 4):
 USED pages: Changed from (2) to (4) pages.
 RSVD pages: Changed from (2) to (4) pages.
DBCC UPDATEUSAGE: sysindexes row updated for table 'Orders' (index ID 5):
 USED pages: Changed from (2) to (4) pages.
 RSVD pages: Changed from (2) to (4) pages.
'...'
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Permissions

DBCC UPDATEUSAGE permissions default to members of the sysadmin fixed server role or the db_owner fixed database role,
and are not transferable.

Examples

A. Update sysindexes by specifying 0 for the current database

This example specifies 0 for the database name and Microsoft® SQL Server™ reports information for the current database.

DBCC UPDATEUSAGE (0)
GO

B. Update sysindexes for pubs, suppressing informational messages

This example specifies pubs as the database name, and suppresses all informational messages.

DBCC UPDATEUSAGE ('pubs') WITH NO_INFOMSGS
GO

C. Update sysindexes for the authors table

This example reports information about the authors table.

DBCC UPDATEUSAGE ('pubs','authors')
GO

D. Update sysindexes for a specified index

This example uses the index name, UPKCL_auidind.

DBCC UPDATEUSAGE ('pubs', 'authors', 'UPKCL_auidind')

See Also

DBCC

sp_spaceused

sysindexes

Table and Index Architecture

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

DBCC USEROPTIONS
Returns the SET options active (set) for the current connection.

Syntax

DBCC USEROPTIONS

Result Sets

DBCC USEROPTIONS returns this result set (values and entries may vary):

Set Option Value
---------------------------- ---
textsize 64512
language us_english
dateformat mdy
datefirst 7
ansi_null_dflt_on SET
ansi_warnings SET
ansi_padding SET
ansi_nulls SET
concat_null_yields_null SET

(9 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC USEROPTIONS returns a column for the name of the SET option and a column for the setting of the option.

Permissions

DBCC USEROPTIONS permissions default to any user.

Examples

This example returns the active SET options for the current connection.

DBCC USEROPTIONS

See Also

DBCC

Customizing Transaction Isolation Level

SET

SET TRANSACTION ISOLATION LEVEL

Transact-SQL Reference (SQL Server 2000)

DEALLOCATE
Removes a cursor reference. When the last cursor reference is deallocated, the data structures comprising the cursor are released
by Microsoft® SQL Server™.

Syntax

DEALLOCATE { { [GLOBAL] cursor_name } | @cursor_variable_name }

Arguments

cursor_name

Is the name of an already declared cursor. If both a global and a local cursor exist with cursor_name as their name, cursor_name
refers to the global cursor if GLOBAL is specified and to the local cursor if GLOBAL is not specified.

@cursor_variable_name

Is the name of a cursor variable. @cursor_variable_name must be of type cursor.

Remarks

Statements that operate on cursors use either a cursor name or a cursor variable to refer to the cursor. DEALLOCATE removes the
association between a cursor and the cursor name or cursor variable. If a name or variable is the last one referencing the cursor,
the cursor is deallocated and any resources used by the cursor are freed. Scroll locks used to protect the isolation of fetches are
freed at DEALLOCATE. Transaction locks used to protect updates, including positioned updates made through the cursor, are held
until the end of the transaction.

The DECLARE CURSOR statement allocates and associates a cursor with a cursor name:

DECLARE abc SCROLL CURSOR FOR
SELECT * FROM authors

After a cursor name is associated with a cursor, the name cannot be used for another cursor of the same scope (GLOBAL or
LOCAL) until this cursor has been deallocated.

A cursor variable is associated with a cursor using one of two methods:

By name using a SET statement that sets a cursor to a cursor variable:

DECLARE @MyCrsrRef CURSOR
SET @MyCrsrRef = abc

A cursor can also be created and associated with a variable without having a cursor name defined:

DECLARE @MyCursor CURSOR
SET @MyCursor = CURSOR LOCAL SCROLL FOR
SELECT * FROM titles

A DEALLOCATE @cursor_variable_name statement removes only the reference of the named variable to the cursor. The variable
is not deallocated until it goes out of scope at the end of the batch, stored procedure, or trigger. After a DEALLOCATE
@cursor_variable_name statement, the variable can be associated with another cursor using the SET statement.

USE pubs
GO
DECLARE @MyCursor CURSOR
SET @MyCursor = CURSOR LOCAL SCROLL FOR
SELECT * FROM titles

DEALLOCATE @MyCursor

SET @MyCursor = CURSOR LOCAL SCROLL FOR
SELECT * FROM sales
GO

A cursor variable does not have to be explicitly deallocated. The variable is implicitly deallocated when it goes out of scope.

Permissions

DEALLOCATE permissions default to any valid user.

Examples

This script shows how cursors persist until the last name or until the variable referencing them has been deallocated.

USE pubs
GO
-- Create and open a global named cursor that
-- is visible outside the batch.
DECLARE abc CURSOR GLOBAL SCROLL FOR
SELECT * FROM authors
OPEN abc
GO
-- Reference the named cursor with a cursor variable.
DECLARE @MyCrsrRef1 CURSOR
SET @MyCrsrRef1 = abc
-- Now deallocate the cursor reference.
DEALLOCATE @MyCrsrRef1
-- Cursor abc still exists.
FETCH NEXT FROM abc
GO
-- Reference the named cursor again.
DECLARE @MyCrsrRef2 CURSOR
SET @MyCrsrRef2 = abc
-- Now deallocate cursor name abc.
DEALLOCATE abc
-- Cursor still exists, referenced by @MyCrsrRef2.
FETCH NEXT FROM @MyCrsrRef2
-- Cursor finally is deallocated when last referencing
-- variable goes out of scope at the end of the batch.
GO
-- Create an unnamed cursor.
DECLARE @MyCursor CURSOR
SET @MyCursor = CURSOR LOCAL SCROLL FOR
SELECT * FROM titles
-- The following statement deallocates the cursor
-- because no other variables reference it.
DEALLOCATE @MyCursor
GO

See Also

CLOSE

Cursors

DECLARE @local_variable

FETCH

OPEN

Transact-SQL Reference (SQL Server 2000)

decimal and numeric
Numeric data types with fixed precision and scale.

decimal[(p[, s])] and numeric[(p[, s])]

Fixed precision and scale numbers. When maximum precision is used, valid values are from - 10^38 +1 through 10^38 - 1. The
SQL-92 synonyms for decimal are dec and dec(p, s).

p (precision)

Specifies the maximum total number of decimal digits that can be stored, both to the left and to the right of the decimal point. The
precision must be a value from 1 through the maximum precision. The maximum precision is 38. The default precision is 18.

s (scale)

Specifies the maximum number of decimal digits that can be stored to the right of the decimal point. Scale must be a value from 0
through p. Scale can be specified only if precision is specified. The default scale is 0; therefore, 0 <= s <= p. Maximum storage
sizes vary, based on the precision.

Precision Storage bytes
1 - 9 5
10-19 9
20-28 13
29-38 17

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

Using Startup Options

UPDATE

Transact-SQL Reference (SQL Server 2000)

DECLARE @local_variable
Variables are declared in the body of a batch or procedure with the DECLARE statement and are assigned values with either a SET
or SELECT statement. Cursor variables can be declared with this statement and used with other cursor-related statements. After
declaration, all variables are initialized as NULL.

Syntax

DECLARE
 {{ @local_variable [AS] data_type }
 | { @cursor_variable_name CURSOR }
 | { table_type_definition }
 } [,...n]

< table_type_definition > ::=
 TABLE ({ < column_definition > | < table_constraint > } [,...]
)

< column_definition > ::=
 column_name scalar_data_type
 [COLLATE collation_name]
 [[DEFAULT constant_expression] | IDENTITY [(seed, increment)]]
 [ROWGUIDCOL]
 [< column_constraint >]

< column_constraint > ::=
 { [NULL | NOT NULL]
 | [PRIMARY KEY | UNIQUE]
 | CHECK (logical_expression)
 }

< table_constraint > ::=
 { { PRIMARY KEY | UNIQUE } (column_name [,...])
 | CHECK (search_condition)
 }

Arguments

@local_variable

Is the name of a variable. Variable names must begin with an at sign (@). Local variable names must conform to the rules for
identifiers. For more information, see Using Identifiers.

data_type

Is any system-supplied or user-defined data type. A variable cannot be of text, ntext, or image data type. For more information
about system data types, see Data Types. For more information about user-defined data types, see sp_addtype.

@cursor_variable_name

Is the name of a cursor variable. Cursor variable names must begin with an at sign (@) and conform to the rules for identifiers.

CURSOR

Specifies that the variable is a local, cursor variable.

table_type_definition

Defines the table data type. The table declaration includes column definitions, names, data types, and constraints. The only
constraint types allowed are PRIMARY KEY, UNIQUE, NULL, and CHECK. A user-defined data type cannot be used as a column
scalar data type.

table_type_definition is a subset of information used to define a table in CREATE TABLE. Elements and essential definitions are
included here; for more information, see CREATE TABLE.

n

Is a placeholder indicating that multiple variables can be specified and assigned values. When declaring table variables, the table
variable must be the only variable being declared in the DECLARE statement.

column_name

Is the name of the column in the table.

scalar_data_type

Specifies that the column is a scalar data type.

[COLLATE collation_name]

Specifies the collation for the column. collation_name can be either a Windows collation name or an SQL collation name, and is
applicable only for columns of the char, varchar, text, nchar, nvarchar, and ntext data types. If not specified, the column is
assigned either the collation of the user-defined data type (if the column is of a user-defined data type), or the default collation of
the database.

For more information about the Windows and SQL collation names, see COLLATE.

DEFAULT

Specifies the value provided for the column when a value is not explicitly supplied during an insert. DEFAULT definitions can be
applied to any columns except those defined as timestamp, or those with the IDENTITY property. DEFAULT definitions are
removed when the table is dropped. Only a constant value, such as a character string; a system function, such as a
SYSTEM_USER(); or NULL can be used as a default. To maintain compatibility with earlier versions of SQL Server, a constraint
name can be assigned to a DEFAULT.

constant_expression

Is a constant, NULL, or a system function used as the default value for the column.

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table, SQL Server provides a unique,
incremental value for the column. Identity columns are commonly used in conjunction with PRIMARY KEY constraints to serve as
the unique row identifier for the table. The IDENTITY property can be assigned to tinyint, smallint, int, decimal(p,0), or
numeric(p,0) columns. Only one identity column can be created per table. Bound defaults and DEFAULT constraints cannot be
used with an identity column. You must specify both the seed and increment, or neither. If neither is specified, the default is (1,1).

seed

Is the value used for the very first row loaded into the table.

increment

Is the incremental value added to the identity value of the previous row that was loaded.

ROWGUIDCOL

Indicates that the new column is a row global unique identifier column. Only one uniqueidentifier column per table can be
designated as the ROWGUIDCOL column. The ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

NULL | NOT NULL

Are keywords that determine whether or not null values are allowed in the column.

PRIMARY KEY

Is a constraint that enforces entity integrity for a given column or columns through a unique index. Only one PRIMARY KEY
constraint can be created per table.

UNIQUE

Is a constraint that provides entity integrity for a given column or columns through a unique index. A table can have multiple
UNIQUE constraints.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be entered into a column or columns.

logical_expression

Is a logical expression that returns TRUE or FALSE.

Remarks

Variables are often used in a batch or procedure as counters for WHILE, LOOP, or for an IF...ELSE block.

Variables can be used only in expressions, not in place of object names or keywords. To construct dynamic SQL statements, use
EXECUTE.

The scope of a local variable is the batch, stored procedure, or statement block in which it is declared. For more information about
using local variables in statement blocks, see Using BEGIN...END.

A cursor variable that currently has a cursor assigned to it can be referenced as a source in a:

CLOSE statement.

DEALLOCATE statement.

FETCH statement.

OPEN statement.

Positioned DELETE or UPDATE statement.

SET CURSOR variable statement (on the right side).

In all these statements, Microsoft® SQL Server™ raises an error if a referenced cursor variable exists but does not have a cursor
currently allocated to it. If a referenced cursor variable does not exist, SQL Server raises the same error raised for an undeclared
variable of another type.

Cursor variable values do not change after a cursor is declared. In SQL Server version 6.5 and earlier, variable values are
refreshed every time a cursor is reopened.

A cursor variable:

Can be the target of either a cursor type or another cursor variable. For more information, see SET @local_variable.

Can be referenced as the target of an output cursor parameter in an EXECUTE statement if the cursor variable does not have
a cursor currently assigned to it.

Should be regarded as a pointer to the cursor. For more information about cursor variables, see Transact-SQL Cursors.

Examples

A. Use DECLARE

This example uses a local variable named @find to retrieve author information for all authors with last names beginning with
Ring.

USE pubs
DECLARE @find varchar(30)
SET @find = 'Ring%'
SELECT au_lname, au_fname, phone
FROM authors
WHERE au_lname LIKE @find

Here is the result set:

au_lname au_fname phone
-------------------------------------- -------------------- ------------
Ringer Anne 801 826-0752
Ringer Albert 801 826-0752

(2 row(s) affected)

B. Use DECLARE with two variables

This example retrieves employee names from employees of Binnet & Hardley (pub_id = 0877) who were hired on or after
January 1, 1993.

USE pubs
SET NOCOUNT ON
GO
DECLARE @pub_id char(4), @hire_date datetime
SET @pub_id = '0877'
SET @hire_date = '1/01/93'
-- Here is the SELECT statement syntax to assign values to two local
-- variables.
-- SELECT @pub_id = '0877', @hire_date = '1/01/93'
SET NOCOUNT OFF
SELECT fname, lname
FROM employee
WHERE pub_id = @pub_id and hire_date >= @hire_date

Here is the result set:

fname lname
-------------------- ------------------------------
Anabela Domingues
Paul Henriot

(2 row(s) affected)

See Also

EXECUTE

Functions

SELECT

table

Transact-SQL Reference (SQL Server 2000)

DECLARE CURSOR
Defines the attributes of a Transact-SQL server cursor, such as its scrolling behavior and the query used to build the result set on
which the cursor operates. DECLARE CURSOR accepts both a syntax based on the SQL-92 standard and a syntax using a set of
Transact-SQL extensions.

SQL-92 Syntax

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR { READ ONLY | UPDATE [OF column_name [,...n]] }]

Transact-SQL Extended Syntax

DECLARE cursor_name CURSOR
[LOCAL | GLOBAL]
[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement
[FOR UPDATE [OF column_name [,...n]]]

SQL-92 Arguments

cursor_name

Is the name of the Transact-SQL server cursor defined. cursor_name must conform to the rules for identifiers. For more
information about rules for identifiers, see Using Identifiers.

INSENSITIVE

Defines a cursor that makes a temporary copy of the data to be used by the cursor. All requests to the cursor are answered from
this temporary table in tempdb; therefore, modifications made to base tables are not reflected in the data returned by fetches
made to this cursor, and this cursor does not allow modifications. When SQL-92 syntax is used, if INSENSITIVE is omitted,
committed deletes and updates made to the underlying tables (by any user) are reflected in subsequent fetches.

SCROLL

Specifies that all fetch options (FIRST, LAST, PRIOR, NEXT, RELATIVE, ABSOLUTE) are available. If SCROLL is not specified in an
SQL-92 DECLARE CURSOR, NEXT is the only fetch option supported. SCROLL cannot be specified if FAST_FORWARD is also
specified.

select_statement

Is a standard SELECT statement that defines the result set of the cursor. The keywords COMPUTE, COMPUTE BY, FOR BROWSE,
and INTO are not allowed within select_statement of a cursor declaration.

Microsoft® SQL Server™ implicitly converts the cursor to another type if clauses in select_statement conflict with the functionality
of the requested cursor type. For more information, see Implicit Cursor Conversions.

READ ONLY

Prevents updates made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an UPDATE or
DELETE statement. This option overrides the default capability of a cursor to be updated.

UPDATE [OF column_name [,...n]]

Defines updatable columns within the cursor. If OF column_name [,...n] is specified, only the columns listed allow modifications. If
UPDATE is specified without a column list, all columns can be updated.

Transact-SQL Extended Arguments

cursor_name

Is the name of the Transact-SQL server cursor defined. cursor_name must conform to the rules for identifiers. For more
information about rules for identifiers, see Using Identifiers.

LOCAL

Specifies that the scope of the cursor is local to the batch, stored procedure, or trigger in which the cursor was created. The cursor
name is only valid within this scope. The cursor can be referenced by local cursor variables in the batch, stored procedure, or
trigger, or a stored procedure OUTPUT parameter. An OUTPUT parameter is used to pass the local cursor back to the calling
batch, stored procedure, or trigger, which can assign the parameter to a cursor variable to reference the cursor after the stored
procedure terminates. The cursor is implicitly deallocated when the batch, stored procedure, or trigger terminates, unless the
cursor was passed back in an OUTPUT parameter. If it is passed back in an OUTPUT parameter, the cursor is deallocated when the
last variable referencing it is deallocated or goes out of scope.

GLOBAL

Specifies that the scope of the cursor is global to the connection. The cursor name can be referenced in any stored procedure or
batch executed by the connection. The cursor is only implicitly deallocated at disconnect.

Note If neither GLOBAL or LOCAL is specified, the default is controlled by the setting of the default to local cursor database
option. In SQL Server version 7.0, this option defaults to FALSE to match earlier versions of SQL Server, in which all cursors were
global. The default of this option may change in future versions of SQL Server. For more information, see Setting Database
Options.

FORWARD_ONLY

Specifies that the cursor can only be scrolled from the first to the last row. FETCH NEXT is the only supported fetch option. If
FORWARD_ONLY is specified without the STATIC, KEYSET, or DYNAMIC keywords, the cursor operates as a DYNAMIC cursor.
When neither FORWARD_ONLY nor SCROLL is specified, FORWARD_ONLY is the default, unless the keywords STATIC, KEYSET, or
DYNAMIC are specified. STATIC, KEYSET, and DYNAMIC cursors default to SCROLL. Unlike database APIs such as ODBC and ADO,
FORWARD_ONLY is supported with STATIC, KEYSET, and DYNAMIC Transact-SQL cursors. FAST_FORWARD and
FORWARD_ONLY are mutually exclusive; if one is specified the other cannot be specified.

STATIC

Defines a cursor that makes a temporary copy of the data to be used by the cursor. All requests to the cursor are answered from
this temporary table in tempdb; therefore, modifications made to base tables are not reflected in the data returned by fetches
made to this cursor, and this cursor does not allow modifications.

KEYSET

Specifies that the membership and order of rows in the cursor are fixed when the cursor is opened. The set of keys that uniquely
identify the rows is built into a table in tempdb known as the keyset. Changes to nonkey values in the base tables, either made
by the cursor owner or committed by other users, are visible as the owner scrolls around the cursor. Inserts made by other users
are not visible (inserts cannot be made through a Transact-SQL server cursor). If a row is deleted, an attempt to fetch the row
returns an @@FETCH_STATUS of -2. Updates of key values from outside the cursor resemble a delete of the old row followed by
an insert of the new row. The row with the new values is not visible, and attempts to fetch the row with the old values return an
@@FETCH_STATUS of -2. The new values are visible if the update is done through the cursor by specifying the WHERE CURRENT
OF clause.

DYNAMIC

Defines a cursor that reflects all data changes made to the rows in its result set as you scroll around the cursor. The data values,
order, and membership of the rows can change on each fetch. The ABSOLUTE fetch option is not supported with dynamic cursors.

FAST_FORWARD

Specifies a FORWARD_ONLY, READ_ONLY cursor with performance optimizations enabled. FAST_FORWARD cannot be specified
if SCROLL or FOR_UPDATE is also specified. FAST_FORWARD and FORWARD_ONLY are mutually exclusive; if one is specified the
other cannot be specified.

READ_ONLY

Prevents updates made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an UPDATE or
DELETE statement. This option overrides the default capability of a cursor to be updated.

SCROLL_LOCKS

Specifies that positioned updates or deletes made through the cursor are guaranteed to succeed. Microsoft® SQL Server™ locks
the rows as they are read into the cursor to ensure their availability for later modifications. SCROLL_LOCKS cannot be specified if
FAST_FORWARD is also specified.

OPTIMISTIC

Specifies that positioned updates or deletes made through the cursor do not succeed if the row has been updated since it was
read into the cursor. SQL Server does not lock rows as they are read into the cursor. It instead uses comparisons of timestamp
column values, or a checksum value if the table has no timestamp column, to determine whether the row was modified after it
was read into the cursor. If the row was modified, the attempted positioned update or delete fails. OPTIMISTIC cannot be specified
if FAST_FORWARD is also specified.

TYPE_WARNING

Specifies that a warning message is sent to the client if the cursor is implicitly converted from the requested type to another.

select_statement

Is a standard SELECT statement that defines the result set of the cursor. The keywords COMPUTE, COMPUTE BY, FOR BROWSE,
and INTO are not allowed within select_statement of a cursor declaration.

SQL Server implicitly converts the cursor to another type if clauses in select_statement conflict with the functionality of the
requested cursor type. For more information, see Implicit Cursor Conversions.

FOR UPDATE [OF column_name [,...n]]

Defines updatable columns within the cursor. If OF column_name [,...n] is supplied, only the columns listed allow modifications. If
UPDATE is specified without a column list, all columns can be updated, unless the READ_ONLY concurrency option was specified.

Remarks

DECLARE CURSOR defines the attributes of a Transact-SQL server cursor, such as its scrolling behavior and the query used to
build the result set on which the cursor operates. The OPEN statement populates the result set, and FETCH returns a row from the
result set. The CLOSE statement releases the current result set associated with the cursor. The DEALLOCATE statement releases
the resources used by the cursor.

The first form of the DECLARE CURSOR statement uses the SQL-92 syntax for declaring cursor behaviors. The second form of
DECLARE CURSOR uses Transact-SQL extensions that allow you to define cursors using the same cursor types used in the
database API cursor functions of ODBC, ADO, and DB-Library.

You cannot mix the two forms. If you specify the SCROLL or INSENSITIVE keywords before the CURSOR keyword, you cannot use
any keywords between the CURSOR and FOR select_statement keywords. If you specify any keywords between the CURSOR and
FOR select_statement keywords, you cannot specify SCROLL or INSENSITIVE before the CURSOR keyword.

If a DECLARE CURSOR using Transact-SQL syntax does not specify READ_ONLY, OPTIMISTIC, or SCROLL_LOCKS, the default is as
follows:

If the SELECT statement does not support updates (insufficient permissions, accessing remote tables that do not support
updates, and so on), the cursor is READ_ONLY.

STATIC and FAST_FORWARD cursors default to READ_ONLY.

DYNAMIC and KEYSET cursors default to OPTIMISTIC.

Cursor names can be referenced only by other Transact-SQL statements. They cannot be referenced by database API functions.
For example, after declaring a cursor, the cursor name cannot be referenced from OLE DB, ODBC, ADO, or DB-Library functions or
methods. The cursor rows cannot be fetched using the fetch functions or methods of the APIs; the rows can be fetched only by
Transact-SQL FETCH statements.

After a cursor has been declared, these system stored procedures can be used to determine the characteristics of the cursor.

System stored procedure Description
sp_cursor_list Returns a list of cursors currently visible on the

connection and their attributes.
sp_describe_cursor Describes the attributes of a cursor, such as

whether it is a forward-only or scrolling cursor.
sp_describe_cursor_columns Describes the attributes of the columns in the

cursor result set.
sp_describe_cursor_tables Describes the base tables accessed by the cursor.

Variables may be used as part of the select_statement that declares a cursor. Cursor variable values do not change after a cursor is
declared. In SQL Server version 6.5 and earlier, variable values are refreshed every time a cursor is reopened.

Permissions

DECLARE CURSOR permissions default to any user that has SELECT permissions on the views, tables, and columns used in the
cursor.

Examples

A. Use simple cursor and syntax

The result set generated at the opening of this cursor includes all rows and all columns in the authors table of the pubs database.
This cursor can be updated, and all updates and deletes are represented in fetches made against this cursor. FETCH NEXT is the
only fetch available because the SCROLL option has not been specified.

DECLARE authors_cursor CURSOR
 FOR SELECT * FROM authors
OPEN authors_cursor
FETCH NEXT FROM authors_cursor

B. Use nested cursors to produce report output

This example shows how cursors can be nested to produce complex reports. The inner cursor is declared for each author.

SET NOCOUNT ON

DECLARE @au_id varchar(11), @au_fname varchar(20), @au_lname varchar(40),
 @message varchar(80), @title varchar(80)

PRINT '-------- Utah Authors report --------'

DECLARE authors_cursor CURSOR FOR
SELECT au_id, au_fname, au_lname
FROM authors
WHERE state = 'UT'
ORDER BY au_id

OPEN authors_cursor

FETCH NEXT FROM authors_cursor
INTO @au_id, @au_fname, @au_lname

WHILE @@FETCH_STATUS = 0
BEGIN
 PRINT ' '
 SELECT @message = '----- Books by Author: ' +
 @au_fname + ' ' + @au_lname

 PRINT @message

 -- Declare an inner cursor based
 -- on au_id from the outer cursor.

 DECLARE titles_cursor CURSOR FOR
 SELECT t.title
 FROM titleauthor ta, titles t
 WHERE ta.title_id = t.title_id AND
 ta.au_id = @au_id -- Variable value from the outer cursor

 OPEN titles_cursor
 FETCH NEXT FROM titles_cursor INTO @title

 IF @@FETCH_STATUS <> 0
 PRINT ' <<No Books>>'

 WHILE @@FETCH_STATUS = 0
 BEGIN

 SELECT @message = ' ' + @title
 PRINT @message
 FETCH NEXT FROM titles_cursor INTO @title

 END

 CLOSE titles_cursor
 DEALLOCATE titles_cursor

 -- Get the next author.
 FETCH NEXT FROM authors_cursor

 INTO @au_id, @au_fname, @au_lname
END

CLOSE authors_cursor
DEALLOCATE authors_cursor
GO

-------- Utah Authors report --------

----- Books by Author: Anne Ringer
 The Gourmet Microwave
 Is Anger the Enemy?

----- Books by Author: Albert Ringer
 Is Anger the Enemy?
 Life Without Fear

See Also

@@FETCH_STATUS

CLOSE

Cursors

DEALLOCATE

FETCH

OPEN

SELECT

sp_configure

Transact-SQL Reference (SQL Server 2000)

DEGREES
Given an angle in radians, returns the corresponding angle in degrees.

Syntax

DEGREES (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Code Values

Returns the same type as numeric_expression.

Examples

This example returns the number of degrees in an angle of PI/2 radians.

SELECT 'The number of degrees in PI/2 radians is: ' +
CONVERT(varchar, DEGREES((PI()/2)))
GO

Here is the result set:

The number of degrees in PI/2 radians is 90

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

DELETE
Removes rows from a table.

Syntax

DELETE
 [FROM]
 { table_name WITH (< table_hint_limited > [...n])
 | view_name
 | rowset_function_limited
 }

 [FROM { < table_source > } [,...n]]

 [WHERE
 { < search_condition >
 | { [CURRENT OF
 { { [GLOBAL] cursor_name }
 | cursor_variable_name
 }
] }
 }
]
 [OPTION (< query_hint > [,...n])]

< table_source > ::=
 table_name [[AS] table_alias] [WITH (< table_hint > [,...n])]
 | view_name [[AS] table_alias]
 | rowset_function [[AS] table_alias]
 | derived_table [AS] table_alias [(column_alias [,...n])]
 | < joined_table >

< joined_table > ::=
 < table_source > < join_type > < table_source > ON < search_condition >
 | < table_source > CROSS JOIN < table_source >
 | < joined_table >

< join_type > ::=
 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }]
 [< join_hint >]
 JOIN

< table_hint_limited > ::=
 { FASTFIRSTROW
 | HOLDLOCK
 | PAGLOCK
 | READCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE
 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 }

< table_hint > ::=
 { INDEX (index_val [,...n])
 | FASTFIRSTROW
 | HOLDLOCK
 | NOLOCK
 | PAGLOCK
 | READCOMMITTED

 | READPAST
 | READUNCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE
 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 }

< query_hint > ::=
 { { HASH | ORDER } GROUP
 | { CONCAT | HASH | MERGE } UNION
 | FAST number_rows
 | FORCE ORDER
 | MAXDOP
 | ROBUST PLAN
 | KEEP PLAN
 }

Arguments

FROM

Is an optional keyword that can be used between the DELETE keyword and the target table_name, view_name, or
rowset_function_limited.

table_name

Is the name of the table from which the rows are to be removed.

A table variable, within its scope, or a four-part table name (or view name) using the OPENDATASOURCE function as the server
name also may be used as a table source in a DELETE statement.

WITH (<table_hint_limited> [...n])

Specifies one or more table hints that are allowed for a target table. The WITH keyword and the parentheses are required.
READPAST, NOLOCK, and READUNCOMMITTED are not allowed. For more information about table hints, see FROM.

view_name

Is the name of a view. The view referenced by view_name must be updatable and reference exactly one base table in the FROM
clause of the view. For more information about updatable views, see CREATE VIEW.

Note If the table or view exists in another database or has an owner other than the current user, use a four-part qualified name
in the format server_name.database.[owner].object_name. For more information, see Transact-SQL Syntax Conventions.

rowset_function_limited

Is either the OPENQUERY or OPENROWSET function, subject to provider capabilities. For more information about capabilities
needed by the provider, see UPDATE and DELETE Requirements for OLE DB Providers. For more information about the rowset
functions, see OPENQUERY and OPENROWSET.

FROM <table_source>

Specifies an additional FROM clause. This Transact-SQL extension to DELETE allows you to specify data from <table_sources> and
delete corresponding rows from the table in the first FROM clause.

This extension, specifying a join, can be used instead of a subquery in the WHERE clause to identify rows to be removed.

table_name [[AS] table_alias]
Is the name of the table to provide criteria values for the delete operation.

view_name [[AS] table_alias]
Is the name of the view to provide criteria values for the delete operation. A view with INSTEAD OF UPDATE trigger cannot be a
target of an UPDATE with a FROM clause.

WITH (<table_hint>
Specifies one or more table hints. For more information about table hints, see FROM.

rowset_function [[AS] table_alias]
Is the name of a rowset function and an optional alias. For more information about a list of rowset functions, see Rowset

Functions.
derived_table [AS] table_alias

Is a subquery that retrieves rows from the database. derived_table is used as input to the outer query.
column_alias

Is an optional alias to replace a column name in the result set. Include one column alias for each column in the select list, and
enclose the entire list of column aliases in parentheses.

<joined_table>

Is a result set that is the product of two or more tables, for example:

SELECT *
FROM tab1 LEFT OUTER JOIN tab2 ON tab1.c3 = tab2.c3
 RIGHT OUTER JOIN tab3 LEFT OUTER JOIN tab4
 ON tab3.c1 = tab4.c1
 ON tab2.c3 = tab4.c3

For multiple CROSS joins, use parentheses to change the natural order of the joins.

<join_type>

Specifies the type of join operation.

INNER
Specifies all matching pairs of rows are returned. Discards unmatched rows from both tables. This is the default if no join type is
specified.

LEFT [OUTER]
Specifies that all rows from the left table not meeting the specified condition are included in the result set, and output columns
from the right table are set to NULL in addition to all rows returned by the inner join.

RIGHT [OUTER]
Specifies that all rows from the right table not meeting the specified condition are included in the result set, and output columns
from the left table are set to NULL in addition to all rows returned by the inner join.

FULL [OUTER]
If a row from either the left or right table does not match the selection criteria, specifies the row be included in the result set,
and output columns that correspond to the other table be set to NULL. This is in addition to all rows usually returned by the
inner join.

JOIN
Is a keyword to indicate that an SQL-92 style join be used in the delete operation.

ON <search_condition>

Specifies the condition on which the join is based. The condition can specify any predicate, although columns and comparison
operators are often used, for example:

FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)

When the condition specifies columns, they need not have the same name or same data type; however, if the data types are not
identical, they must be either compatible or types that Microsoft® SQL Server™ can implicitly convert. If the data types cannot be
implicitly converted, the condition must explicitly convert the data type using the CAST function.

For more information about search conditions and predicates, see Search Condition.

CROSS JOIN

Specifies the cross-product of two tables. Returns the same rows as if no WHERE clause was specified in an old-style, non-SQL-
92-style join.

WHERE

Specifies the conditions used to limit the number of rows that are deleted. If a WHERE clause is not supplied, DELETE removes all
the rows from the table. There are two forms of delete operations based on what is specified in the WHERE clause:

Searched deletes specify a search condition to qualify the rows to delete.

Positioned deletes use the CURRENT OF clause to specify a cursor. The delete operation occurs at the current position of the
cursor. This can be more accurate than a searched DELETE that uses a WHERE search_condition clause to qualify the rows to
be deleted. A searched DELETE deletes multiple rows if the search condition does not uniquely identify a single row.

<search_condition>

Specifies the restricting conditions for the rows to be deleted. There is no limit to the number of predicates that can be included
in a search condition. For more information, see Search Condition.

CURRENT OF
Specifies that the DELETE is done at the current position of the specified cursor.

GLOBAL
Specifies that cursor_name refers to a global cursor.

cursor_name
Is the name of the open cursor from which the fetch is made. If both a global and a local cursor with the name cursor_name
exist, this argument refers to the global cursor if GLOBAL is specified, and to the local cursor otherwise. The cursor must allow
updates.

cursor_variable_name
Is the name of a cursor variable. The cursor variable must reference a cursor that allows updates.

OPTION (<query_hint> [,...n])

Are keywords indicating that optimizer hints are used to customize SQL Server's processing of the statement.

{HASH | ORDER} GROUP
Specifies that the aggregations specified in the GROUP BY or COMPUTE clause of the query should use hashing or ordering.

{MERGE | HASH | CONCAT} UNION
Specifies that all UNION operations should be performed by merging, hashing, or concatenating UNION sets. If more than one
UNION hint is specified, the query optimizer selects the least expensive strategy from those hints specified.

Note If a <joint_hint> is also specified for any particular pair of joined tables in the FROM clause, it takes precedence over any
<join_hint> specified in the OPTION clause.

FAST number_rows
Specifies that the query is optimized for fast retrieval of the first number_rows (a nonnegative integer). After the first
number_rows are returned, the query continues execution and produces its full result set.

FORCE ORDER
Specifies that the join order indicated by the query syntax is preserved during query optimization.

MAXDOP number
Overrides the max degree of parallelism configuration option (of sp_configure) only for the query specifying this option. All
semantic rules used with max degree of parallelism configuration option are applicable when using the MAXDOP query hint.
For more information, see max degree of parallelism Option.

ROBUST PLAN
Forces the query optimizer to attempt a plan that works for the maximum potential row size at the expense of performance. If
such a plan is not possible, the query optimizer returns an error rather than deferring error detection to query execution. Rows
may contain variable-length columns; SQL Server allows rows to be defined that have a maximum potential size beyond the
ability of SQL Server to process them. Usually, despite the maximum potential size, an application stores rows that have actual
sizes within the limits that SQL Server can process. If SQL Server encounters a row that is too long, an execution error is
returned.

KEEP PLAN

Forces the query optimizer to relax the estimated recompile threshold for a query. The estimated recompile threshold is the point
at which a query is automatically recompiled when the estimated number of indexed column changes (update, delete or insert)
have been made to a table. Specifying KEEP PLAN ensures that a query will not be recompiled as frequently when there are
multiple updates to a table.

Remarks

DELETE may be used in the body of a user-defined function if the object modified is a table variable.

A four-part table name (or view name) using the OPENDATASOURCE function as the server name may be used as a table source
in all places a table name can appear.

The DELETE statement may fail if it violates a trigger or attempts to remove a row referenced by data in another table with a
FOREIGN KEY constraint. If the DELETE removes multiple rows, and any one of the removed rows violates a trigger or constraint,
the statement is canceled, an error is returned, and no rows are removed.

When an INSTEAD-OF trigger is defined on DELETE actions against a table or view, the trigger executes instead of the DELETE
statement. Earlier versions of SQL Server only support AFTER triggers on DELETE and other data modification statements.

When a DELETE statement encounters an arithmetic error (overflow, divide by zero, or a domain error) occurring during
expression evaluation, SQL Server handles these errors as if SET ARITHABORT is ON. The remainder of the batch is canceled, and

an error message is returned.

The setting of the SET ROWCOUNT option is ignored for DELETE statements against remote tables and local and remote
partitioned views.

If you want to delete all the rows in a table, TRUNCATE TABLE is faster than DELETE. DELETE physically removes rows one at a
time and records each deleted row in the transaction log. TRUNCATE TABLE deallocates all pages associated with the table. For
this reason, TRUNCATE TABLE is faster and requires less transaction log space than DELETE. TRUNCATE TABLE is functionally
equivalent to DELETE with no WHERE clause, but TRUNCATE TABLE cannot be used with tables referenced by foreign keys. Both
DELETE and TRUNCATE TABLE make the space occupied by the deleted rows available for the storage of new data.

Permissions

DELETE permissions default to members of the sysadmin fixed server role, the db_owner and db_datawriter fixed database
roles, and the table owner. Members of the sysadmin, db_owner, and the db_securityadmin roles, and the table owner can
transfer permissions to other users.

SELECT permissions are also required if the statement contains a WHERE clause.

Examples

A. Use DELETE with no parameters

This example deletes all rows from the authors table.

USE pubs
DELETE authors

B. Use DELETE on a set of rows

Because au_lname may not be unique, this example deletes all rows in which au_lname is McBadden.

USE pubs
DELETE FROM authors
WHERE au_lname = 'McBadden'

C. Use DELETE on the current row of a cursor

This example shows a delete made against a cursor named complex_join_cursor. It affects only the single row currently fetched
from the cursor.

USE pubs
DELETE FROM authors
WHERE CURRENT OF complex_join_cursor

D. Use DELETE based on a subquery or use the Transact-SQL extension

This example shows the Transact-SQL extension used to delete records from a base table that is based on a join or correlated
subquery. The first DELETE shows the SQL-92-compatible subquery solution, and the second DELETE shows the Transact-SQL
extension. Both queries remove rows from the titleauthors table based on the titles stored in the titles table.

/* SQL-92-Standard subquery */
USE pubs
DELETE FROM titleauthor
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE title LIKE '%computers%')

/* Transact-SQL extension */
USE pubs
DELETE titleauthor
FROM titleauthor INNER JOIN titles
 ON titleauthor.title_id = titles.title_id
WHERE titles.title LIKE '%computers%'

E. Use DELETE and a SELECT with the TOP Clause

Because a SELECT statement can be specified in a DELETE statement, the TOP clause can also be used within the SELECT
statement. For example, this example deletes the top 10 authors from the authors table.

DELETE authors
FROM (SELECT TOP 10 * FROM authors) AS t1
WHERE authors.au_id = t1.au_id

See Also

CREATE TABLE

CREATE TRIGGER

Cursors

DROP TABLE

INSERT

SELECT

TRUNCATE TABLE

UPDATE

Transact-SQL Reference (SQL Server 2000)

DENY
 New Information - SQL Server 2000 SP3.

Creates an entry in the security system that denies a permission from a security account in the current database and prevents the
security account from inheriting the permission through its group or role memberships.

Syntax

Statement permissions:

DENY { ALL | statement [,...n] }
TO security_account [,...n]

Object permissions:

DENY
 { ALL [PRIVILEGES] | permission [,...n] }
 {
 [(column [,...n])] ON { table | view }
 | ON { table | view } [(column [,...n])]
 | ON { stored_procedure | extended_procedure }
 | ON { user_defined_function }
 }
TO security_account [,...n]
[CASCADE]

Arguments

ALL

Denies all applicable permissions. For statement permissions, ALL can be used only by members of the sysadmin and
db_securityadmin roles. For object permissions, ALL can be used by members of the sysadmin, db_securityadmin, and
db_owner roles, and by database object owners.

statement

Is the statement for which permission is denied. The statement list can include:

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

BACKUP DATABASE

BACKUP LOG

n

Is a placeholder indicating that the item can be repeated in a comma-separated list.

TO

Specifies the security account list.

security_account

Is the name of the security account in the current database affected by the denied permission. The security account can be a:

Microsoft® SQL Server™ user.

SQL Server role.

Microsoft Windows NT® user.

Windows NT group.

When a permission is denied from a SQL Server user or Windows NT user account, the specified security_account is the only
account affected by the permission. If a permission is denied from a SQL Server role or a Windows NT group, the permission
affects all users in the current database who are members of the group or role, regardless of the permissions that have been
granted to the members of the group or role. If there are permission conflicts between a group or role and its members, the most
restrictive permission (DENY) takes precedence.

Two special security accounts can be used with DENY. Permissions denied from the public role are applied to all users in the
database. Permissions denied from the guest user are used by all users who do not have a user account in the database.

When denying permissions to a Windows NT local or global group, specify the domain or computer name the group is defined
on, followed by a backslash, then the group name. However, to deny permissions to a Windows NT built-in local group, specify
BUILTIN instead of the domain or computer name.

PRIVILEGES

Is an optional keyword that can be included for SQL-92 compliance.

permission

Is a denied object permission. When permissions are denied on a table or a view, the permission list can include one or more of
these statements: SELECT, INSERT, DELETE, or UPDATE.

Object permissions denied on a table can also include REFERENCES, and object permissions denied on a stored procedure or
extended stored procedure can include EXECUTE. When permissions are denied on columns, the permissions list can include
SELECT or UPDATE.

column

Is the name of the column in the current database for which permissions are denied.

table

Is the name of the table in the current database for which permissions are denied.

view

Is the name of the view in the current database for which permissions are denied.

stored_procedure

Is the name of the stored procedure in the current database for which permissions are denied.

extended_procedure

Is the name of an extended stored procedure for which permissions are denied.

user_defined_function

Is the name of the user-defined function for which permissions are being denied.

CASCADE

Specifies that permissions are denied from security_account as well as any other security accounts granted permissions by
security_account. Use CASCADE when denying a grantable permission. If CASCADE is not specified and the specified user is
granted WITH GRANT OPTION permission, an error is returned.

Remarks

If the DENY statement is used to prevent a user from gaining a permission and the user is later added to a group or role with the
permission granted, the user does not gain access to the permission.

If a user activates an application role, the effect of DENY is null for any objects the user accesses using the application role.
Although a user may be denied access to a specific object in the current database, if the application role has access to the object,
the user also has access while the application role is activated.

Use the REVOKE statement to remove a denied permission from a user account. The security account does not gain access to the
permission unless the permission has been granted to a group or role in which the user is a member. Use the GRANT statement
to both remove a denied permission, and explicitly apply the permission to the security account.

Note DENY is a new keyword in SQL Server version 6.x compatibility mode. DENY is needed to specifically deny a permission
from a user account, because in SQL Server version 7.0 REVOKE removes only previously granted or denied permissions. Existing
SQL Server 6.x scripts that use REVOKE may have to be changed to use DENY to maintain behavior.

Permissions

DENY permissions default to members of the sysadmin, db_owner, or db_securityadmin roles, and database object owners.

Examples

A. Deny statement permissions

This example denies multiple statement permissions to multiple users. Users cannot use the CREATE DATABASE or CREATE TABLE
statements unless they are explicitly granted the permission.

DENY CREATE DATABASE, CREATE TABLE
TO Mary, John, [Corporate\BobJ]

B. Deny object permissions with in the permission h ierarchy

This example shows the preferred ordering of permissions. First, SELECT permissions are granted to the public role. After this,
specific permissions are denied for users Mary, John, and Tom. These users then have no permissions to the authors table.

USE pubs
GO

GRANT SELECT
ON authors
TO public
GO

DENY SELECT, INSERT, UPDATE, DELETE
ON authors
TO Mary, John, Tom

C. Deny permissions to a SQL Server role

This example denies CREATE TABLE permissions to all members of the Accounting role. Even if existing users of Accounting
have been explicitly granted CREATE TABLE permission, the DENY overrides that permission.

DENY CREATE TABLE TO Accounting

See Also

Backward Compatibility

GRANT

Denying Permissions

REVOKE

sp_helprotect

Transact-SQL Reference (SQL Server 2000)

DIFFERENCE
 Topic last updated -- July 2003

Returns the difference between the SOUNDEX values of two character expressions as an integer.

Syntax

DIFFERENCE (character_expression , character_expression)

Arguments

character_expression

Is an expression of type char or varchar. character_expression can also be of type text; however, only the first 8,000 bytes are
significant.

Return Types

int

Remarks

The integer returned is the number of characters in the SOUNDEX values that are the same. The return value ranges from 0
through 4: 0 indicates little or no similarity, and 4 indicates strong similarity or identical values.

Examples

In the first part of this example, the SOUNDEX values of two very similar strings are compared, and DIFFERENCE returns a value
of 4. In the second part of this example, the SOUNDEX values for two very different strings are compared, and DIFFERENCE
returns a value of 0.

USE pubs
GO
-- Returns a DIFFERENCE value of 4, the least possible difference.
SELECT SOUNDEX('Green'),
 SOUNDEX('Greene'), DIFFERENCE('Green','Greene')
GO
-- Returns a DIFFERENCE value of 0, the highest possible difference.
SELECT SOUNDEX('Blotchet-Halls'),
 SOUNDEX('Greene'), DIFFERENCE('Blotchet-Halls', 'Greene')
GO

Here is the result set:

----- ----- -----------
G650 G650 4

(1 row(s) affected)

----- ----- -----------
B432 G650 0

(1 row(s) affected)

See Also

SOUNDEX

String Functions

Transact-SQL Reference (SQL Server 2000)

DROP DATABASE
Removes one or more databases from Microsoft® SQL Server™. Removing a database deletes the database and the disk files
used by the database.

Syntax

DROP DATABASE database_name [,...n]

Arguments

database_name

Specifies the name of the database to be removed. Execute sp_helpdb from the master database to see a list of databases.

Remarks

To use DROP DATABASE, the database context of the connection must be in the master database.

DROP DATABASE removes damaged databases marked as suspect and removes the specified database. Before dropping a
database used in replication, first remove replication. Any database published for transactional replication, or published or
subscribed to merge replication cannot be dropped. For more information, see Administering and Monitoring Replication. If a
database is damaged and replication cannot first be removed, in most cases you still can drop the database by marking it as an
offline database.

A dropped database can be re-created only by restoring a backup. You cannot drop a database currently in use (open for reading
or writing by any user). When a database is dropped, the master database should be backed up.

System databases (msdb, master, model, tempdb) cannot be dropped.

A database in read-only mode can be dropped.

Permissions

DROP DATABASE permissions default to the database owner, members of the sysadmin and dbcreator fixed server roles, and
are not transferable.

Examples

A. Drop a single database

This example removes all references for the publishing database from the system tables.

DROP DATABASE publishing

B. Drop multiple databases

This example removes all references for each of the listed databases from the system tables.

DROP DATABASE pubs, newpubs

See Also

ALTER DATABASE

CREATE DATABASE

sp_dropdevice

sp_helpdb

sp_renamedb

USE

Transact-SQL Reference (SQL Server 2000)

DROP DEFAULT
Removes one or more user-defined defaults from the current database.

The DROP DEFAULT statement does not apply to DEFAULT constraints. For more information about dropping DEFAULT
constraints (created by using the DEFAULT option of either the CREATE TABLE or ALTER TABLE statements), see "ALTER TABLE" in
this volume.

Syntax

DROP DEFAULT { default } [,...n]

Arguments

default

Is the name of an existing default. To see a list of defaults that exist, execute sp_help. Defaults must conform to the rules for
identifiers. For more information, see Using Identifiers. Specifying the default owner name is optional.

n

Is a placeholder indicating that multiple defaults can be specified.

Remarks

Before dropping a default, unbind the default by executing sp_unbindefault (if the default is currently bound to a column or a
user-defined data type).

After a default is dropped from a column that allows null values, NULL is inserted in that position when rows are added and no
value is explicitly supplied. After a default is dropped from a NOT NULL column, an error message is returned when rows are
added and no value is explicitly supplied. These rows are added later as part of the normal INSERT statement behavior.

Permissions

DROP DEFAULT permissions default to the owner of the default, and are not transferable. However, members of the db_owner
and db_ddladmin fixed database roles and the sysadmin fixed server role can drop any default object by specifying the owner
in DROP DEFAULT.

Examples

A. Drop a default

If a default has not been bound to a column or to a user-defined data type, it can simply be dropped using DROP DEFAULT. This
example removes the user-created default named datedflt.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'datedflt'
 AND type = 'D')
 DROP DEFAULT datedflt
GO

B. Drop a default that has been bound to a column

This example unbinds the default associated with the phone column of the authors table and then drops the default named
phonedflt.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'phonedflt'
 AND type = 'D')
 BEGIN
 EXEC sp_unbindefault 'authors.phone'
 DROP DEFAULT phonedflt
 END
GO

See Also

CREATE DEFAULT

sp_helptext

sp_help

sp_unbindefault

Transact-SQL Reference (SQL Server 2000)

DROP FUNCTION
Removes one or more user-defined functions from the current database. User-defined functions are created using CREATE
FUNCTION and modified using ALTER FUNCTION.

Syntax

DROP FUNCTION { [owner_name .] function_name } [,...n]

Arguments

function_name

Is the name of the user-defined function or functions to be removed. Specifying the owner name is optional; the server name and
database name cannot be specified.

n

Is a placeholder indicating that multiple user-defined functions can be specified.

Permissions

DROP FUNCTION permissions default to the function owner, and are not transferable. However, members of the sysadmin fixed
server role and the db_owner and db_ddladmin fixed database roles can drop any object by specifying the owner in DROP
FUNCTION.

See Also

ALTER FUNCTION

CREATE FUNCTION

User-defined Functions

Transact-SQL Reference (SQL Server 2000)

DROP INDEX
Removes one or more indexes from the current database.

The DROP INDEX statement does not apply to indexes created by defining PRIMARY KEY or UNIQUE constraints (created by using
the PRIMARY KEY or UNIQUE options of either the CREATE TABLE or ALTER TABLE statements, respectively). For more
information about PRIMARY or UNIQUE KEY constraints, see "CREATE TABLE" or "ALTER TABLE" in this volume.

Syntax

DROP INDEX 'table.index | view.index' [,...n]

Arguments

table | view

Is the table or indexed view in which the indexed column is located. To see a list of indexes that exist on a table or view, use
sp_helpindex and specify the table or view name. Table and view names must conform to the rules for identifiers. For more
information, see Using Identifiers. Specifying the table or view owner name is optional.

index

Is the name of the index to be dropped. Index names must conform to the rules for identifiers.

n

Is a placeholder indicating that multiple indexes can be specified.

Remarks

After DROP INDEX is executed, all the space previously occupied by the index is regained. This space can then be used for any
database object.

DROP INDEX cannot be specified on an index on a system table.

To drop the indexes created to implement PRIMARY KEY or UNIQUE constraints, the constraint must be dropped. For more
information about dropping constraints, see "ALTER TABLE" in this volume.

Nonclustered indexes have different pointers to data rows depending on whether or not a clustered index is defined for the table.
If there is a clustered index the leaf rows of the nonclustered indexes use the clustered index keys to point to the data rows. If the
table is a heap, the leaf rows of nonclustered indexes use row pointers. If you drop a clustered index on a table with nonclustered
indexes, all the nonclustered indexes are rebuilt to replace the clustered index keys with row pointers.

Similarly, when the clustered index of an indexed view is dropped, all nonclustered indexes on the same view are dropped
automatically.

Sometimes indexes are dropped and re-created to reorganize the index, for example to apply a new fillfactor or to reorganize data
after a bulk load. It is more efficient to use CREATE INDEX and the WITH DROP_EXISTING clause for this, especially for clustered
indexes. Dropping a clustered index causes all the nonclustered indexes to be rebuilt. If the clustered index is then re-created, the
nonclustered indexes are rebuilt once again to replace the row pointers with clustered index keys. The WITH DROP_EXISTING
clause of CREATE INDEX has optimizations to prevent this overhead of rebuilding the nonclustered indexes twice. DBCC
DBREINDEX can also be used and has the advantage that it does not require that the structure of the index be known.

Permissions

DROP INDEX permissions default to the table owner, and are not transferable. However, members of the db_owner and
db_ddladmin fixed database role or sysadmin fixed server role can drop any object by specifying the owner in DROP INDEX.

Examples

This example removes the index named au_id_ind in the authors table.

USE pubs
IF EXISTS (SELECT name FROM sysindexes
 WHERE name = 'au_id_ind')
 DROP INDEX authors.au_id_ind
GO

See Also

CREATE INDEX

DBCC DBREINDEX

sp_helpindex

sp_spaceused

Transact-SQL Reference (SQL Server 2000)

DROP PROCEDURE
Removes one or more stored procedures or procedure groups from the current database.

Syntax

DROP PROCEDURE { procedure } [,...n]

Arguments

procedure

Is name of the stored procedure or stored procedure group to be removed. Procedure names must conform to the rules for
identifiers. For more information, see Using Identifiers. Specifying the procedure owner name is optional, and a server name or
database name cannot be specified.

n

Is a placeholder indicating that multiple procedures can be specified.

Remarks

To see a list of procedure names, use sp_help. To display the procedure definition (which is stored in the syscomments system
table), use sp_helptext. When a stored procedure is dropped, information about the procedure is removed from the sysobjects
and syscomments system tables.

Individual procedures in the group cannot be dropped; the entire procedure group is dropped.

User-defined system procedures (prefixed with sp_) are dropped from the master database whether or not it is the current
database. If the system procedure is not found in the current database, Microsoft® SQL Server™ tries to drop it from the master
database.

Permissions

DROP PROCEDURE permissions default to the procedure owner and are not transferable. However, members of the db_owner
and db_ddladmin fixed database roles and the sysadmin fixed server role can drop any object by specifying the owner in DROP
PROCEDURE.

Examples

This example removes the byroyalty stored procedure (in the current database).

DROP PROCEDURE byroyalty
GO

See Also

ALTER PROCEDURE

CREATE PROCEDURE

sp_depends

sp_helptext

sp_rename

syscomments

sysobjects

USE

Transact-SQL Reference (SQL Server 2000)

DROP RULE
Removes one or more user-defined rules from the current database.

Syntax

DROP RULE { rule } [,...n]

Arguments

rule

Is the rule to be removed. Rule names must conform to the rules for identifiers. For more information about rules for identifiers,
see Using Identifiers. Specifying the rule owner name is optional.

n

Is a placeholder indicating that multiple rules can be specified.

Remarks

To drop a rule, first unbind it if the rule is currently bound to a column or to a user-defined data type. Use sp_unbindrule to
unbind the rule. If the rule is bound when attempting to drop it, an error message is displayed and the DROP RULE statement is
canceled.

After a rule is dropped, new data entered into the columns previously governed by the rule is entered without the rule's
constraints. Existing data is not affected in any way.

The DROP RULE statement does not apply to CHECK constraints. For more information about dropping CHECK constraints, see
"ALTER TABLE" in this volume.

Permissions

DROP RULE permissions default to the rule owner and are not transferable. However, members of the db_owner and
db_ddladmin fixed database roles and the sysadmin fixed server role can drop any object by specifying the owner in DROP
RULE.

Examples

This example unbinds and then drops the rule named pub_id_rule.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'pub_id_rule'
 AND type = 'R')
 BEGIN
 EXEC sp_unbindrule 'publishers.pub_id'
 DROP RULE pub_id_rule
 END
GO

See Also

CREATE RULE

sp_bindrule

sp_help

sp_helptext

sp_unbindrule

USE

Transact-SQL Reference (SQL Server 2000)

DROP STATISTICS
Drops statistics for multiple collections within the specified tables (in the current database).

Syntax

DROP STATISTICS table.statistics_name | view.statistics_name [,...n]

Arguments

table | view

Is the name of the target table or indexed view for which statistics should be dropped. Table and view names must conform to the
rules for identifiers. For more information, see Using Identifiers. Specifying the table or view owner name is optional.

statistics_name

Is the name of the statistics group to drop. Statistics names must conform to the rules for identifiers.

n

Is a placeholder indicating that more than one statistics_name group (collection) can be specified.

Remarks

Be careful when dropping statistics because dropping statistics may affect the plan chosen by the query optimizer.

For more information about displaying statistics, see "DBCC SHOW_STATISTICS" in this volume. For more information about
updating statistics, see "UPDATE STATISTICS" and the auto update statistics option of "sp_dboption" in this volume. For more
information about creating statistics, see "CREATE STATISTICS", "CREATE INDEX", and the auto create statistics option of
"sp_dboption" in this volume.

Permissions

DROP STATISTICS permissions default to the table or view owner, and are not transferable. However, members of the db_owner
and db_ddladmin fixed database roles and sysadmin fixed server role can drop any object by specifying the owner in DROP
STATISTICS.

Examples

This example drops the anames statistics group (collection) of the authors table and the tnames statistics (collection) of the
titles table.

-- Create the statistics groups.
CREATE STATISTICS anames
 ON authors (au_lname, au_fname)
 WITH SAMPLE 50 PERCENT
GO
CREATE STATISTICS tnames
 ON titles (title_id)
 WITH FULLSCAN
GO
DROP STATISTICS authors.anames, titles.tnames
GO

See Also

CREATE INDEX

CREATE STATISTICS

DBCC SHOW_STATISTICS

sp_autostats

sp_createstats

sp_dboption

UPDATE STATISTICS

USE

Transact-SQL Reference (SQL Server 2000)

DROP TABLE
Removes a table definition and all data, indexes, triggers, constraints, and permission specifications for that table. Any view or
stored procedure that references the dropped table must be explicitly dropped by using the DROP VIEW or DROP PROCEDURE
statement.

Syntax

DROP TABLE table_name

Arguments

table_name

Is the name of the table to be removed.

Remarks

DROP TABLE cannot be used to drop a table referenced by a FOREIGN KEY constraint. The referencing FOREIGN KEY constraint or
the referencing table must first be dropped.

A table owner can drop a table in any database. When a table is dropped, rules or defaults on it lose their binding, and any
constraints or triggers associated with it are automatically dropped. If you re-create a table, you must rebind the appropriate rules
and defaults, re-create any triggers, and add all necessary constraints.

You cannot use the DROP TABLE statement on system tables.

If you delete all rows in a table (DELETE tablename) or use the TRUNCATE TABLE statement, the table exists until it is dropped.

Permissions

DROP TABLE permissions default to the table owner, and are not transferable. However, members of the sysadmin fixed server
role or the db_owner and db_dlladmin fixed database roles can drop any object by specifying the owner in the DROP TABLE
statement.

Examples

A. Drop a table in the current database

This example removes the titles1 table and its data and indexes from the current database.

DROP TABLE titles1

B. Drop a table in another database

This example drops the authors2 table in the pubs database. It can be executed from any database.

DROP TABLE pubs.dbo.authors2

See Also

ALTER TABLE

CREATE TABLE

DELETE

sp_depends

sp_help

sp_spaceused

TRUNCATE TABLE

Transact-SQL Reference (SQL Server 2000)

DROP TRIGGER
Removes one or more triggers from the current database.

Syntax

DROP TRIGGER { trigger } [,...n]

Arguments

trigger

Is the name of the trigger(s) to remove. Trigger names must conform to the rules for identifiers. For more information about rules
for identifiers, see Using Identifiers. Specifying the trigger owner name is optional. To see a list of currently created triggers, use
sp_helptrigger.

n

Is a placeholder indicating that multiple triggers can be specified.

Remarks

You can remove a trigger by dropping it or by dropping the trigger table. When a table is dropped, all associated triggers are also
dropped. When a trigger is dropped, information about the trigger is removed from the sysobjects and syscomments system
tables.

Use DROP TRIGGER and CREATE TRIGGER to rename a trigger. Use ALTER TRIGGER to change the definition of a trigger.

For more information about determining dependencies for a specific trigger, see "sp_depends" in this volume.

For more information about viewing the text of the trigger, see "sp_helptext" in this volume.

For more information about viewing a list of existing triggers, see "sp_helptrigger" in this volume.

Permissions

DROP TRIGGER permissions default to the trigger table owner, and are not transferable. However, members of the db_owner
and db_dlladmin fixed database role or sysadmin fixed server role can drop any object by explicitly specifying the owner in the
DROP TRIGGER statement.

Examples

This example drops the employee_insupd trigger.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'employee_insupd' AND type = 'TR')
 DROP TRIGGER employee_insupd
GO

See Also

ALTER TRIGGER

CREATE TRIGGER

sp_help

syscomments

sysobjects

Transact-SQL Reference (SQL Server 2000)

DROP VIEW
Removes one or more views from the current database. DROP VIEW can be executed against indexed views.

Syntax

DROP VIEW { view } [,...n]

Arguments

view

Is the name of the view(s) to be removed. View names must conform to the rules for identifiers. For more information, see Using
Identifiers. Specifying the view owner name is optional. To see a list of currently created views, use sp_help.

n

Is a placeholder indicating that multiple views can be specified.

Remarks

When you drop a view, the definition of the view and other information about the view is deleted from the sysobjects,
syscolumns, syscomments, sysdepends, and sysprotects system tables. All permissions for the view are also deleted.

Any view on a dropped table (dropped by using the DROP TABLE statement) must be dropped explicitly by using DROP VIEW.

When executed against an indexed view, DROP VIEW automatically drops all indexes on a view. Use sp_helpindex to display all
indexes on a view.

When querying through a view, Microsoft® SQL Server™ checks to make sure that all the database objects referenced anywhere
in the statement exist, that they are valid in the context of the statement, and that data modification statements do not violate any
data integrity rules. A check that fails returns an error message. A successful check translates the action into an action against the
underlying table(s).

If the underlying table(s) or view(s) have changed since the view was originally created, it may be useful to drop and re-create the
view.

For more information about determining dependencies for a specific view, see sp_depends.

For more information about viewing the text of the view, see sp_helptext.

Permissions

DROP VIEW permissions default to the view owner, and are not transferable. However, members of the db_owner and
db_ddladmin fixed database role and sysadmin fixed server role can drop any object by explicitly specifying the owner in DROP
VIEW.

Examples

This example removes the view titles_view.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'titles_view')
 DROP VIEW titles_view
GO

See Also

ALTER VIEW

CREATE VIEW

syscolumns

syscomments

sysdepends

sysobjects

sysprotects

USE

Transact-SQL Reference (SQL Server 2000)

DUMP
Makes a backup copy of a database (DUMP DATABASE) or makes a copy of the transaction log (DUMP TRANSACTION) in a form
that can be read into Microsoft® SQL Server™ using the BACKUP or LOAD statements.

Important The DUMP statement is included in SQL Server version 2000 for backward compatibility. It is recommended that the
BACKUP statement be used instead of the DUMP statement. In a future version of SQL Server, DUMP will not be supported.

See Also

BACKUP

LOAD

sp_addumpdevice

sp_dropdevice

sp_helpdb

sp_helpdevice

sp_spaceused

Transact-SQL Reference (SQL Server 2000)

ELSE (IF...ELSE)
Imposes conditions on the execution of a Transact-SQL statement. The Transact-SQL statement (sql_statement) following the
Boolean_expression is executed if the Boolean_expression evaluates to TRUE. The optional ELSE keyword is an alternate Transact-
SQL statement that is executed when Boolean_expression evaluates to FALSE or NULL.

Syntax

IF Boolean_expression { sql_statement | statement_block }
[
 ELSE
 { sql_statement | statement_block }]

Arguments

Boolean_expression

Is an expression that returns TRUE or FALSE. If the Boolean expression contains a SELECT statement, the SELECT statement must
be enclosed in parentheses.

{sql_statement | statement_block}

Is any valid Transact-SQL statement or statement grouping as defined with a statement block. To define a statement block (batch),
use the control-of-flow language keywords BEGIN and END. Although all Transact-SQL statements are valid within a BEGIN...END
block, certain Transact-SQL statements should not be grouped together within the same batch (statement block).

Result Types

Boolean

Examples

This example produces a list of traditional cookbooks priced between $10 and $20 when one or more books meet these
conditions. Otherwise, SQL Server prints a message that no books meet the condition and a list of traditional cookbooks that
costs less than $10 is produced.

USE pubs
GO
DECLARE @msg varchar(255)
IF (SELECT COUNT(price)
 FROM titles
 WHERE title_id LIKE 'TC%' AND price BETWEEN 10 AND 20) > 0

 BEGIN
 SET NOCOUNT ON
 SET @msg = 'There are several books that are a good value between $10 and $20. These books are: '
 PRINT @msg
 SELECT title
 FROM titles
 WHERE title_id LIKE 'TC%' AND price BETWEEN 10 AND 20
 END
ELSE
 BEGIN
 SET NOCOUNT ON
 SET @msg = 'There are no books between $10 and $20. You might consider the following books that are under
$10.'
 PRINT @msg
 SELECT title
 FROM titles
 WHERE title_id LIKE 'TC%' AND price < 10
 END

Here is the result set:

There are several books that are a good value between $10 and $20. These books are:
title
--
Fifty Years in Buckingham Palace Kitchens
Sushi, Anyone?

(2 row(s) affected)

See Also

ALTER TRIGGER

Batches

Control-of-Flow Language

CREATE TRIGGER

IF...ELSE

Transact-SQL Reference (SQL Server 2000)

END (BEGIN...END)
Encloses a series of Transact-SQL statements that will execute as a group. BEGIN...END blocks can be nested.

Syntax

BEGIN
 { sql_statement | statement_block }
END

Arguments

{sql_statement | statement_block}

Is any valid Transact-SQL statement or statement grouping as defined with a statement block. To define a statement block (batch),
use the control-of-flow language keywords BEGIN and END. Although all Transact-SQL statements are valid within a BEGIN...END
block, certain Transact-SQL statements should not be grouped together within the same batch (statement block).

Result Types

Boolean

Examples

This example produces a list of business books that are priced less than $20 when one or more books meet these conditions.
Otherwise, SQL Server prints a message that no books meet the conditions and a list of all books that cost less than $20 is
produced.

SET NOCOUNT OFF
GO
USE pubs
GO
SET NOCOUNT ON
GO
DECLARE @msg varchar(255)
IF (SELECT COUNT(price)
 FROM titles
 WHERE title_id LIKE 'BU%' AND price < 20) > 0

 BEGIN
 SET @msg = 'There are several books that are a good value at under $20. These books are: '
 PRINT @msg
 SET NOCOUNT OFF
 SELECT title
 FROM titles
 WHERE price < 20
 END
ELSE
 BEGIN
 SET @msg = 'There are no books under $20. '
 PRINT @msg
 SELECT title
 FROM titles
 WHERE title_id
 LIKE 'BU%'
 AND
 PRICE <10
 END

Here is the result set:

There are several books that are a good value at under $20. These books are:
title
--
The Busy Executive's Database Guide
Cooking with Computers: Surreptitious Balance Sheets
You Can Combat Computer Stress!
Straight Talk About Computers
Silicon Valley Gastronomic Treats
The Gourmet Microwave
Is Anger the Enemy?
Life Without Fear

Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm
Fifty Years in Buckingham Palace Kitchens
Sushi, Anyone?

(12 row(s) affected)

See Also

ALTER TRIGGER

Batches

BEGIN...END

Control-of-Flow Language

CREATE TRIGGER

ELSE (IF...ELSE)

IF...ELSE

WHILE

Transact-SQL Reference (SQL Server 2000)

EXECUTE
 Topic last updated -- July 2003

Executes a scalar-valued, user-defined function, a system procedure, a user-defined stored procedure, or an extended stored
procedure. Also supports the execution of a character string within a Transact-SQL batch.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

To invoke a function, use the syntax described for EXECUTE stored_procedure.

Syntax

Execute a stored procedure:

[[EXEC [UTE]]
 {
 [@return_status =]
 { procedure_name [;number] | @procedure_name_var
 }
 [[@parameter =] { value | @variable [OUTPUT] | [DEFAULT]]
 [,...n]
[WITH RECOMPILE]

Execute a character string:

EXEC [UTE] ({ @string_variable | [N] 'tsql_string' } [+ ...n])

Arguments

@return_status

Is an optional integer variable that stores the return status of a stored procedure. This variable must be declared in the batch,
stored procedure, or function before it is used in an EXECUTE statement.

When used to invoke a scalar-valued user-defined function, the @return_status variable can be of any scalar data type.

procedure_name

Is the fully qualified or nonfully qualified name of the stored procedure to call. Procedure names must conform to the rules for
identifiers. For more information, see Using Identifiers. The names of extended stored procedures are always case-sensitive,
regardless of the code page or sort order of the server.

A procedure that has been created in another database can be executed if the user executing the procedure owns the procedure
or has the appropriate permission to execute it in that database. A procedure can be executed on another server running
Microsoft® SQL Server™ if the user executing the procedure has the appropriate permission to use that server (remote access)
and to execute the procedure in that database. If a server name is specified but no database name is specified, SQL Server looks
for the procedure in the user's default database.

;number

Is an optional integer used to group procedures of the same name so they can be dropped with a single DROP PROCEDURE
statement. This parameter is not used for extended stored procedures.

Procedures used in the same application are often grouped this way. For example, the procedures used with the orders
application may be named orderproc;1, orderproc;2, and so on. The statement DROP PROCEDURE orderproc drops the entire
group. After the procedures have been grouped, individual procedures within the group cannot be dropped. For example, the
statement DROP PROCEDURE orderproc;2 is not allowed. For more information about procedure groups, see CREATE
PROCEDURE.

@procedure_name_var

Is the name of a locally defined variable that represents a stored procedure name.

@parameter

Is the parameter for a procedure, as defined in the CREATE PROCEDURE statement. Parameter names must be preceded by the at

sign (@). When used with the @parameter_name = value form, parameter names and constants do not have to be supplied in
the order in which they are defined in the CREATE PROCEDURE statement. However, if the @parameter_name = value form is
used for any parameter, it must be used for all subsequent parameters.

Parameters are nullable by default. If a NULL parameter value is passed and that parameter is used in a CREATE or ALTER TABLE
statement in which the column referenced does not allow NULLs (for example, inserting into a column that does not allow
NULLs), SQL Server generates an error. To prevent passing a parameter value of NULL to a column that does not allow NULLs,
either add programming logic to the procedure or use a default value (with the DEFAULT keyword of CREATE or ALTER TABLE) for
the column.

value

Is the value of the parameter to the procedure. If parameter names are not specified, parameter values must be supplied in the
order defined in the CREATE PROCEDURE statement.

If the value of a parameter is an object name, character string, or qualified by a database name or owner name, the entire name
must be enclosed in single quotation marks. If the value of a parameter is a keyword, the keyword must be enclosed in double
quotation marks.

If a default is defined in the CREATE PROCEDURE statement, a user can execute the procedure without specifying a parameter. The
default must be a constant and can include the wildcard characters %, _, [], and [^] if the procedure uses the parameter name
with the LIKE keyword.

The default can also be NULL. Usually, the procedure definition specifies the action that should be taken if a parameter value is
NULL.

@variable

Is the variable that stores a parameter or a return parameter.

OUTPUT

Specifies that the stored procedure returns a parameter. The matching parameter in the stored procedure must also have been
created with the keyword OUTPUT. Use this keyword when using cursor variables as parameters.

If OUTPUT parameters are being used and the intent is to use the return values in other statements within the calling batch or
procedure, the value of the parameter must be passed as a variable (that is, @parameter = @variable). You cannot execute a
procedure specifying OUTPUT for a parameter that is not defined as an OUTPUT parameter in the CREATE PROCEDURE
statement. Constants cannot be passed to stored procedures using OUTPUT; the return parameter requires a variable name. The
variable's data type must be declared and a value assigned before executing the procedure. Return parameters can be of any data
type except the text or image data types.

DEFAULT

Supplies the default value of the parameter as defined in the procedure. When the procedure expects a value for a parameter that
does not have a defined default and either a parameter is missing or the DEFAULT keyword is specified, an error occurs.

n

Is a placeholder indicating that the preceding item(s) can be repeated multiple times. For example, EXECUTE can specify one or
more @parameter, value, or @variable items.

WITH RECOMPILE

Forces a new plan to be compiled. Use this option if the parameter you are supplying is atypical or if the data has significantly
changed. The changed plan is used in subsequent executions. This option is not used for extended stored procedures. It is
recommended that you use this option sparingly because it is expensive.

@string_variable

Is the name of a local variable. @string_variable can be of char, varchar, nchar, or nvarchar data type with a maximum value of
the server's available memory. You can use up to 4,000 characters for nchar or nvarchar and 8,000 characters for char or
varchar data type strings. If the string is greater than 4,000 characters, concatenate multiple local variables to use for the
EXECUTE string. For optimum performance, do not use more than 4,000 characters. For more information about system-supplied
SQL Server data types, see Data Types.

[N]'tsql_string'

Is a constant string. tsql_string can be of nvarchar or varchar data type. If the N is included, the string is interpreted as nvarchar
data type with a maximum value of the server's available memory. If the string is greater than 4,000 characters, concatenate
multiple local variables to use for the EXECUTE string.

Remarks

If the first three characters of the procedure name are sp_, SQL Server searches the master database for the procedure. If no
qualified procedure name is provided, SQL Server searches for the procedure as if the owner name is dbo. To resolve the stored
procedure name as a user-defined stored procedure with the same name as a system stored procedure, provide the fully qualified
procedure name.

Parameters can be supplied either by using value or by using @parameter_name = value. A parameter is not part of a
transaction; therefore, if a parameter is changed in a transaction that is later rolled back, the parameter's value does not revert to
its previous value. The value returned to the caller is always the value at the time the procedure returns.

Nesting occurs when one stored procedure calls another. The nesting level is incremented when the called procedure begins
execution, and it is decremented when the called procedure has finished. Exceeding the maximum of 32 nesting levels causes the
entire calling procedure chain to fail. The current nesting level is stored in the @@NESTLEVEL function.

Because remote stored procedures and extended stored procedures are not within the scope of a transaction (unless issued within
a BEGIN DISTRIBUTED TRANSACTION statement or when used with various configuration options), commands executed through
calls to them cannot be rolled back. For more information, see System Stored Procedures and BEGIN DISTRIBUTED
TRANSACTION.

When using cursor variables, if you execute a procedure that passes in a cursor variable with a cursor allocated to it an error
occurs.

You do not have to specify the EXECUTE keyword when executing stored procedures if the statement is the first one in a batch.

Using EXECUTE with a Character String

Use the string concatenation operator (+) to create large strings for dynamic execution. Each string expression can be a mixture of
Unicode and non-Unicode data types.

Although each [N] 'tsql_string' or @string_variable must be less than 8,000 bytes, the concatenation is performed logically in the
SQL Server parser and never materializes in memory. For example, this statement never produces the expected 16,000
concatenated character string:

EXEC('name_of_8000_char_string' + 'another_name_of_8000_char_string')

Statement(s) inside the EXECUTE statement are not compiled until the EXECUTE statement is executed.

Changes in database context last only until the end of the EXECUTE statement. For example, after the EXEC in this example, the
database context is master:

USE master EXEC ("USE pubs") SELECT * FROM authors

Permissions

EXECUTE permissions for a stored procedure default to the owner of the stored procedure, who can transfer them to other users.
Permissions to use the statement(s) within the EXECUTE string are checked at the time EXECUTE is encountered, even if the
EXECUTE statement is included within a stored procedure. When a stored procedure is run that executes a string, permissions are
checked in the context of the user who executes the procedure, not in the context of the user who created the procedure. However,
if a user owns two stored procedures in which the first procedure calls the second, then EXECUTE permission checking is not
performed for the second stored procedure.

Examples

A. Use EXECUTE to pass a single parameter

The showind stored procedure expects one parameter (@tabname), a table name. The following examples execute the showind
stored procedure with titles as its parameter value.

Note The showind stored procedure is shown for illustrative purposes only and does not exist in the pubs database.

EXEC showind titles

The variable can be explicitly named in the execution:

EXEC showind @tabname = titles

If this is the first statement in a batch or an isql script, EXEC is not required:

showind titles

-Or-

showind @tabname = titles

B. Use multiple parameters and an output parameter

This example executes the roy_check stored procedure, which passes three parameters. The third parameter, @pc, is an OUTPUT
parameter. After the procedure has been executed, the return value is available in the variable @percent.

Note The roy_check stored procedure is shown for illustrative purposes only and does not exist in the pubs database.

DECLARE @percent int
EXECUTE roy_check 'BU1032', 1050, @pc = @percent OUTPUT
SET Percent = @percent

C. Use EXECUTE 'tsq l_string ' w ith a variable

This example shows how EXECUTE handles dynamically built strings containing variables. This example creates the tables_cursor
cursor to hold a list of all user-defined tables (type = U).

Note This example is shown for illustrative purposes only.

DECLARE tables_cursor CURSOR
 FOR
 SELECT name FROM sysobjects WHERE type = 'U'
OPEN tables_cursor
DECLARE @tablename sysname
FETCH NEXT FROM tables_cursor INTO @tablename
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 /* A @@FETCH_STATUS of -2 means that the row has been deleted.
 There is no need to test for this because this loop drops all
 user-defined tables. */.
 EXEC ('DROP TABLE ' + @tablename)
 FETCH NEXT FROM tables_cursor INTO @tablename
END
PRINT 'All user-defined tables have been dropped from the database.'
DEALLOCATE tables_cursor

D. Use EXECUTE with a remote stored procedure

This example executes the checkcontract stored procedure on the remote server SQLSERVER1 and stores the return status
indicating success or failure in @retstat.

DECLARE @retstat int
EXECUTE @retstat = SQLSERVER1.pubs.dbo.checkcontract '409-56-4008'

E. Use EXECUTE with an extended stored procedure

This example uses the xp_cmdshell extended stored procedure to list a directory of all files with an .exe file name extension.

USE master
EXECUTE xp_cmdshell 'dir *.exe'

F. Use EXECUTE with a stored procedure variable

This example creates a variable that represents a stored procedure name.

DECLARE @proc_name varchar(30)
SET @proc_name = 'sp_who'
EXEC @proc_name

G. Use EXECUTE with DEFAULT

This example creates a stored procedure with default values for the first and third parameters. When the procedure is run, these
defaults are inserted for the first and third parameters if no value is passed in the call or if the default is specified. Note the
various ways the DEFAULT keyword can be used.

USE pubs
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'proc_calculate_taxes' AND type = 'P')

 DROP PROCEDURE proc_calculate_taxes
GO
-- Create the stored procedure.
CREATE PROCEDURE proc_calculate_taxes (@p1 smallint = 42, @p2 char(1),
 @p3 varchar(8) = 'CAR')
 AS
 SELECT *
 FROM mytable

The proc_calculate_taxes stored procedure can be executed in many combinations:

EXECUTE proc_calculate_taxes @p2 = 'A'
EXECUTE proc_calculate_taxes 69, 'B'
EXECUTE proc_calculate_taxes 69, 'C', 'House'
EXECUTE proc_calculate_taxes @p1 = DEFAULT, @p2 = 'D'
EXECUTE proc_calculate_taxes DEFAULT, @p3 = 'Local', @p2 = 'E'
EXECUTE proc_calculate_taxes 69, 'F', @p3 = DEFAULT
EXECUTE proc_calculate_taxes 95, 'G', DEFAULT
EXECUTE proc_calculate_taxes DEFAULT, 'H', DEFAULT
EXECUTE proc_calculate_taxes DEFAULT, 'I', @p3 = DEFAULT

See Also

+ (String Concatenation)

[] (Wildcard - Character(s) to Match)

@@NESTLEVEL

ALTER PROCEDURE

DECLARE @local_variable

DROP PROCEDURE

Functions

sp_depends

sp_helptext

Transact-SQL Reference (SQL Server 2000)

EXISTS
Specifies a subquery to test for the existence of rows.

Syntax

EXISTS subquery

Arguments

subquery

Is a restricted SELECT statement (the COMPUTE clause, and the INTO keyword are not allowed). For more information, see the
discussion of subqueries in SELECT.

Result Types

Boolean

Result Values

Returns TRUE if a subquery contains any rows.

Examples

A. Use N ULL in subquery to still return a result set

This example returns a result set with NULL specified in the subquery and still evaluates to TRUE by using EXISTS.

USE Northwind
GO
SELECT CategoryName
FROM Categories
WHERE EXISTS (SELECT NULL)
ORDER BY CategoryName ASC
GO

B. Compare queries using EXISTS and IN

This example compares two queries that are semantically equivalent. The first query uses EXISTS and the second query uses IN.
Note that both queries return the same information.

USE pubs
GO
SELECT DISTINCT pub_name
FROM publishers
WHERE EXISTS
 (SELECT *
 FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = 'business')
GO

-- Or, using the IN clause:

USE pubs
GO
SELECT distinct pub_name
FROM publishers
WHERE pub_id IN
 (SELECT pub_id
 FROM titles
 WHERE type = 'business')
GO

Here is the result set for either query:

pub_name
--
Algodata Infosystems
New Moon Books

(2 row(s) affected)

C. Compare queries using EXISTS and = AN Y

This example shows two queries to find authors who live in the same city as a publisher. The first query uses = ANY and the
second uses EXISTS. Note that both queries return the same information.

USE pubs
GO
SELECT au_lname, au_fname
FROM authors
WHERE exists
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)
GO

-- Or, using = ANY

USE pubs
GO
SELECT au_lname, au_fname
FROM authors
WHERE city = ANY
 (SELECT city
 FROM publishers)
GO

Here is the result set for either query:

au_lname au_fname
-- --------------------
Carson Cheryl
Bennet Abraham

(2 row(s) affected)

D. Compare queries using EXISTS and IN

This example shows queries to find titles of books published by any publisher located in a city that begins with the letter B.

USE pubs
GO
SELECT title
FROM titles
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE pub_id = titles.pub_id
 AND city LIKE 'B%')
GO

-- Or, using IN:

USE pubs
GO
SELECT title
FROM titles
WHERE pub_id IN
 (SELECT pub_id
 FROM publishers
 WHERE city LIKE 'B%')
GO

Here is the result set for either query:

title
--
The Busy Executive's Database Guide
Cooking with Computers: Surreptitious Balance Sheets
You Can Combat Computer Stress!
Straight Talk About Computers
But Is It User Friendly?
Secrets of Silicon Valley
Net Etiquette
Is Anger the Enemy?
Life Without Fear

Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm

(11 row(s) affected)

E. Use N OT EXISTS

NOT EXISTS works the opposite as EXISTS. The WHERE clause in NOT EXISTS is satisfied if no rows are returned by the subquery.
This example finds the names of publishers who do not publish business books.

USE pubs
GO
SELECT pub_name
FROM publishers
WHERE NOT EXISTS
 (SELECT *
 FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = 'business')
ORDER BY pub_name
GO

Here is the result set:

pub_name
--
Binnet & Hardley
Five Lakes Publishing
GGG&G
Lucerne Publishing
Ramona Publishers
Scootney Books

(6 row(s) affected)

See Also

Expressions

Functions

WHERE

Transact-SQL Reference (SQL Server 2000)

EXP
Returns the exponential value of the given float expression.

Syntax

EXP (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example declares a variable and returns the exponential value of the given variable (378.615345498) with a text description.

DECLARE @var float
SET @var = 378.615345498
SELECT 'The EXP of the variable is: ' + CONVERT(varchar,EXP(@var))
GO

Here is the result set:

The EXP of the variable is: 2.69498e+164

(1 row(s) affected)

See Also

CAST and CONVERT

float and real

Mathematical Functions

money and smallmoney

Transact-SQL Reference (SQL Server 2000)

Expressions
A combination of symbols and operators that Microsoft® SQL Server™ evaluates to obtain a single data value. Simple
expressions can be a single constant, variable, column, or scalar function. Operators can be used to join two or more simple
expressions into a complex expression.

Syntax

{ constant
 | scalar_function
 | [alias.] column
 | local_variable
 | (expression)
 | (scalar_subquery)
 | { unary_operator } expression
 | expression { binary_operator } expression
}

Arguments

constant

Is a symbol that represents a single, specific data value. constant is one or more alphanumeric characters (letters a-z, A-Z, and
numbers 0-9) or symbols (exclamation point (!), at sign (@), number sign (#), and so on). Character and datetime values are
enclosed in quotation marks, while binary strings and numeric constants are not. For more information, see Constants.

scalar_function

Is a unit of Transact-SQL syntax that provides a specific service and returns a single value. scalar_function can be built-in scalar
functions, such as the SUM, GETDATE, or CAST functions, or scalar user-defined functions.

[alias.]

Is the alias, or correlation name, assigned to a table by the AS keyword in the FROM clause.

column

Is the name of a column. Only the name of the column is allowed in an expression; a four-part name cannot be specified.

local_variable

Is the name of a user-defined variable. For more information, see DECLARE @local_variable.

(expression)

Is any valid SQL Server expression as defined in this topic. The parentheses are grouping operators that ensure that all the
operators in the expression within the parentheses are evaluated before the resulting expression is combined with another.

(scalar_subquery)

Is a subquery that returns one value. For example:

SELECT MAX(UnitPrice)
FROM Products

{unary_operator}

Is an operator that has only one numeric operand:

+ indicates a positive number.

- indicates a negative number.

~ indicates the one's complement operator.

Unary operators can be applied only to expressions that evaluate to any of the data types of the numeric data type category.

{binary_operator}

Is an operator that defines the way two expressions are combined to yield a single result. binary _operator can be an arithmetic
operator, the assignment operator (=), a bitwise operator, a comparison operator, a logical operator, the string concatenation
operator (+), or a unary operator. For more information about operators, see Operators.

Expression Results

For a simple expression built of a single constant, variable, scalar function, or column name, the data type, collation, precision,
scale, and value of the expression is the data type, collation, precision, scale, and value of the referenced element.

When two expressions are combined using comparison or logical operators, the resulting data type is Boolean and the value is
one of three values: TRUE, FALSE, or UNKNOWN. For more information about Boolean data types, see Operators.

When two expressions are combined using arithmetic, bitwise, or string operators, the operator determines the resulting data
type.

Complex expressions made up of many symbols and operators evaluate to a single-valued result. The data type, collation,
precision, and value of the resulting expression is determined by combining the component expressions, two at a time, until a
final result is reached. The sequence in which the expressions are combined is defined by the precedence of the operators in the
expression.

Remarks

Two expressions can be combined by an operator if they both have data types supported by the operator and at least one of these
conditions is TRUE:

The expressions have the same data type.

The data type with the lower precedence can be implicitly converted to the data type with the higher data type precedence.

The CAST function can explicitly convert the data type with the lower precedence to either the data type with the higher
precedence or to an intermediate data type that can be implicitly converted to the data type with the higher precedence.

If there is no supported implicit or explicit conversion, the two expressions cannot be combined.

The collation of any expression that evaluates to a character string is set following the rules of collation precedence. For more
information, see Collation Precedence.

In a programming language such as C or Microsoft Visual Basic®, an expression always evaluates to a single result. Expressions in
a Transact-SQL select list have a variation on this rule: The expression is evaluated individually for each row in the result set. A
single expression may have a different value in each row of the result set, but each row has only one value for the expression. For
example, in this SELECT statement both the reference to ProductID and the term 1+2 in the select list are expressions:

SELECT ProductID, 1+2
FROM Northwind.dbo.Products

The expression 1+2 evaluates to 3 in each row in the result set. Although the expression ProductID generates a unique value in
each result set row, each row only has one value for ProductID.

See Also

CASE

CAST and CONVERT

COALESCE

Data Type Conversion

Data Type Precedence

Data Types

Functions

LIKE

NULLIF

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

FETCH
Retrieves a specific row from a Transact-SQL server cursor.

Syntax

FETCH
 [[NEXT | PRIOR | FIRST | LAST
 | ABSOLUTE { n | @nvar }
 | RELATIVE { n | @nvar }
]
 FROM
]
{ { [GLOBAL] cursor_name } | @cursor_variable_name }
[INTO @variable_name [,...n]]

Arguments

NEXT

Returns the result row immediately following the current row, and increments the current row to the row returned. If FETCH NEXT
is the first fetch against a cursor, it returns the first row in the result set. NEXT is the default cursor fetch option.

PRIOR

Returns the result row immediately preceding the current row, and decrements the current row to the row returned. If FETCH
PRIOR is the first fetch against a cursor, no row is returned and the cursor is left positioned before the first row.

FIRST

Returns the first row in the cursor and makes it the current row.

LAST

Returns the last row in the cursor and makes it the current row.

ABSOLUTE {n | @nvar}

If n or @nvar is positive, returns the row n rows from the front of the cursor and makes the returned row the new current row. If
n or @nvar is negative, returns the row n rows before the end of the cursor and makes the returned row the new current row. If n
or @nvar is 0, no rows are returned. n must be an integer constant and @nvar must be smallint, tinyint, or int.

RELATIVE {n | @nvar}

If n or @nvar is positive, returns the row n rows beyond the current row and makes the returned row the new current row. If n or
@nvar is negative, returns the row n rows prior to the current row and makes the returned row the new current row. If n or
@nvar is 0, returns the current row. If FETCH RELATIVE is specified with n or @nvar set to negative numbers or 0 on the first fetch
done against a cursor, no rows are returned. n must be an integer constant and @nvar must be smallint, tinyint, or int.

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of the open cursor from which the fetch should be made. If both a global and a local cursor exist with cursor_name as
their name, cursor_name to the global cursor if GLOBAL is specified and to the local cursor if GLOBAL is not specified.

@cursor_variable_name

Is the name of a cursor variable referencing the open cursor from which the fetch should be made.

INTO @variable_name[,...n]

Allows data from the columns of a fetch to be placed into local variables. Each variable in the list, from left to right, is associated
with the corresponding column in the cursor result set. The data type of each variable must either match or be a supported
implicit conversion of the data type of the corresponding result set column. The number of variables must match the number of
columns in the cursor select list.

Remarks

If the SCROLL option is not specified in an SQL-92 style DECLARE CURSOR statement, NEXT is the only FETCH option supported.
If SCROLL is specified in an SQL-92 style DECLARE CURSOR, all FETCH options are supported.

When the Transact_SQL DECLARE cursor extensions are used, these rules apply:

If either FORWARD-ONLY or FAST_FORWARD is specified, NEXT is the only FETCH option supported.

If DYNAMIC, FORWARD_ONLY or FAST_FORWARD are not specified, and one of KEYSET, STATIC, or SCROLL are specified,
all FETCH options are supported.

DYNAMIC SCROLL cursors support all the FETCH options except ABSOLUTE.

The @@FETCH_STATUS function reports the status of the last FETCH statement. The same information is recorded in the
fetch_status column in the cursor returned by sp_describe_cursor. This status information should be used to determine the
validity of the data returned by a FETCH statement prior to attempting any operation against that data. For more information, see
@@FETCH_STATUS.

Permissions

FETCH permissions default to any valid user.

Examples

A. Use FETCH in a simple cursor

This example declares a simple cursor for the rows in the authors table with a last name beginning with B, and uses FETCH NEXT
to step through the rows. The FETCH statements return the value for the column specified in the DECLARE CURSOR as a single-
row result set.

USE pubs
GO
DECLARE authors_cursor CURSOR FOR
SELECT au_lname FROM authors
WHERE au_lname LIKE 'B%'
ORDER BY au_lname

OPEN authors_cursor

-- Perform the first fetch.
FETCH NEXT FROM authors_cursor

-- Check @@FETCH_STATUS to see if there are any more rows to fetch.
WHILE @@FETCH_STATUS = 0
BEGIN
 -- This is executed as long as the previous fetch succeeds.
 FETCH NEXT FROM authors_cursor
END

CLOSE authors_cursor
DEALLOCATE authors_cursor
GO

au_lname
--
Bennet
au_lname
--
Blotchet-Halls
au_lname
--

B. Use FETCH to store values in variables

This example is similar to the last example, except the output of the FETCH statements is stored in local variables rather than being
returned directly to the client. The PRINT statement combines the variables into a single string and returns them to the client.

USE pubs
GO

-- Declare the variables to store the values returned by FETCH.

DECLARE @au_lname varchar(40), @au_fname varchar(20)

DECLARE authors_cursor CURSOR FOR
SELECT au_lname, au_fname FROM authors
WHERE au_lname LIKE 'B%'
ORDER BY au_lname, au_fname

OPEN authors_cursor

-- Perform the first fetch and store the values in variables.
-- Note: The variables are in the same order as the columns
-- in the SELECT statement.

FETCH NEXT FROM authors_cursor
INTO @au_lname, @au_fname

-- Check @@FETCH_STATUS to see if there are any more rows to fetch.
WHILE @@FETCH_STATUS = 0
BEGIN

 -- Concatenate and display the current values in the variables.
 PRINT 'Author: ' + @au_fname + ' ' + @au_lname

 -- This is executed as long as the previous fetch succeeds.
 FETCH NEXT FROM authors_cursor
 INTO @au_lname, @au_fname
END

CLOSE authors_cursor
DEALLOCATE authors_cursor
GO

Author: Abraham Bennet
Author: Reginald Blotchet-Halls

C. Declare a SCROLL cursor and use the other FETCH options

This example creates a SCROLL cursor to allow full scrolling capabilities through the LAST, PRIOR, RELATIVE, and ABSOLUTE
options.

USE pubs
GO

-- Execute the SELECT statement alone to show the
-- full result set that is used by the cursor.
SELECT au_lname, au_fname FROM authors
ORDER BY au_lname, au_fname

-- Declare the cursor.
DECLARE authors_cursor SCROLL CURSOR FOR
SELECT au_lname, au_fname FROM authors
ORDER BY au_lname, au_fname

OPEN authors_cursor

-- Fetch the last row in the cursor.
FETCH LAST FROM authors_cursor

-- Fetch the row immediately prior to the current row in the cursor.
FETCH PRIOR FROM authors_cursor

-- Fetch the second row in the cursor.
FETCH ABSOLUTE 2 FROM authors_cursor

-- Fetch the row that is three rows after the current row.
FETCH RELATIVE 3 FROM authors_cursor

-- Fetch the row that is two rows prior to the current row.
FETCH RELATIVE -2 FROM authors_cursor

CLOSE authors_cursor
DEALLOCATE authors_cursor
GO

au_lname au_fname
-- --------------------
Bennet Abraham
Blotchet-Halls Reginald
Carson Cheryl

DeFrance Michel
del Castillo Innes
Dull Ann
Green Marjorie
Greene Morningstar
Gringlesby Burt
Hunter Sheryl
Karsen Livia
Locksley Charlene
MacFeather Stearns
McBadden Heather
O'Leary Michael
Panteley Sylvia
Ringer Albert
Ringer Anne
Smith Meander
Straight Dean
Stringer Dirk
White Johnson
Yokomoto Akiko

au_lname au_fname
-- --------------------
Yokomoto Akiko
au_lname au_fname
-- --------------------
White Johnson
au_lname au_fname
-- --------------------
Blotchet-Halls Reginald
au_lname au_fname
-- --------------------
del Castillo Innes
au_lname au_fname
-- --------------------
Carson Cheryl

See Also

CLOSE

Cursors

DEALLOCATE

DECLARE CURSOR

OPEN

Transact-SQL Reference (SQL Server 2000)

FILE_ID
Returns the file identification (ID) number for the given logical file name in the current database.

Syntax

FILE_ID ('file_name')

Arguments

'file_name'

Is the name of the file for which to return the file ID. file_name is nchar(128).

Return Types

smallint

Remarks

file_name corresponds to the name column in sysfiles.

Examples

This example returns the file ID (1) for the master database.

USE master
SELECT FILE_ID('master')

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FILE_NAME
Returns the logical file name for the given file identification (ID) number.

Syntax

FILE_NAME (file_id)

Arguments

file_id

Is the file identification number for which to return the file name. file_id is smallint.

Return Types

nvarchar(128)

Remarks

file_ID corresponds to the fileid column in sysfiles.

Examples

This example returns the file name for a file_ID of 1 (the master database file).

USE master
SELECT FILE_NAME(1)

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FILEGROUP_ID
Returns the filegroup identification (ID) number for the given filegroup name.

Syntax

FILEGROUP_ID ('filegroup_name')

Arguments

'filegroup_name'

Is the filegroup name for which to return the filegroup ID. filegroup_name is nvarchar(128).

Return Types

smallint

Remarks

filegroup_name corresponds to the groupname column in sysfilegroups.

Examples

This example returns the filegroup ID for the filegroup named default.

USE master
SELECT FILEGROUP_ID('default')

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FILEGROUP_NAME
Returns the filegroup name for the given filegroup identification (ID) number.

Syntax

FILEGROUP_NAME (filegroup_id)

Arguments

filegroup_id

Is the filegroup ID number for which to return the filegroup name. filegroup_id is smallint.

Return Types

nvarchar(128)

Remarks

filegroup_id corresponds to the groupid column in sysfilegroups.

Examples

This example returns the filegroup name for the filegroup ID 1 (the default).

USE master
SELECT FILEGROUP_NAME(1)

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FILEGROUPPROPERTY
Returns the specified filegroup property value when given a filegroup and property name.

Syntax

FILEGROUPPROPERTY (filegroup_name , property)

Arguments

filegroup_name

Is an expression containing the name of the filegroup for which to return the named property information. filegroup_name is
nvarchar(128).

property

Is an expression containing the name of the filegroup property to return. property is varchar(128), and can be one of these
values.

Value Description Value returned
IsReadOnly Filegroup name is read-only. 1 = True

0 = False
NULL = Invalid input

IsUserDefinedFG Filegroup name is a user-defined
filegroup.

1 = True
0 = False
NULL = Invalid input

IsDefault Filegroup name is the default
filegroup.

1 = True
0 = False
NULL = Invalid input

Return Types

int

Examples

This example returns the setting for the IsUserDefinedFG property for the primary filegroup.

USE master
SELECT FILEGROUPPROPERTY('primary', 'IsUserDefinedFG')

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FILEPROPERTY
Returns the specified file name property value when given a file name and property name.

Syntax

FILEPROPERTY (file_name , property)

Arguments

file_name

Is an expression containing the name of the file associated with the current database for which to return property information.
file_name is nchar(128).

property

Is an expression containing the name of the file property to return. property is varchar(128), and can be one of these values.

Value Description Value returned
IsReadOnly File is read-only. 1 = True

0 = False
NULL = Invalid input

IsPrimaryFile File is the primary file. 1 = True
0 = False
NULL = Invalid input

IsLogFile File is a log file. 1 = True
0 = False
NULL = Invalid input

SpaceUsed Amount of space used by the
specified file.

Number of pages
allocated in the file

Return Types

int

Examples

This example returns the setting for the IsPrimaryFile property for the master file name in the master database.

USE master
SELECT FILEPROPERTY('master', 'IsPrimaryFile')

See Also

Control-of-Flow Language

DELETE

INSERT

Metadata Functions

SELECT

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

float and real
Approximate number data types for use with floating point numeric data. Floating point data is approximate; not all values in the
data type range can be precisely represented.

Syntax

float [(n)]

Is a floating point number data with the following valid values: - 1.79E + 308 through -2.23E - 308, 0 and 2.23E -308 through
1.79E + 308. n is the number of bits used to store the mantissa of the float number in scientific notation and thus dictates the
precision and storage size. n must be a value from 1 through 53. The default value of n is 53.

n is Precision Storage size
1-24 7 digits 4 bytes
25-53 15 digits 8 bytes

The Microsoft® SQL Server™ float[(n)] data type conforms to the SQL-92 standard for all values of n from 1 to 53. The synonym
for double precision is float(53).

real

Is a floating point number data with the following valid values: –3.40E + 38 through -1.18E - 38, 0 and 1.18E - 38 through 3.40E +
38. Storage size is 4 bytes. In SQL Server, the synonym for real is float(24).

Note Microsoft® SQL Server™ 2000 treats n as one of two possible values. If 1<=n<=24, n is treated as 24. If 25<=n<=53, n is
treated as 53.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

FLOOR
Returns the largest integer less than or equal to the given numeric expression.

Syntax

FLOOR (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

This example shows positive numeric, negative numeric, and currency values with the FLOOR function.

SELECT FLOOR(123.45), FLOOR(-123.45), FLOOR($123.45)

The result is the integer portion of the calculated value in the same data type as numeric_expression.

--------- --------- -----------
123 -124 123.0000

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

fn_get_sql
 New Information - SQL Server 2000 SP3.

Returns the text of the SQL statement for the specified SQL handle.

Syntax

fn_get_sql ([@SqlHandle =] SqlHandle)

Arguments

[@SqlHandle =] SqlHandle

Is the handle value. SqlHandle is binary(20).

Tables Returned

Column name Data type Description
dbid smallint Database ID. Is NULL for ad hoc SQL statements.
objectid Int ID of the database object. Is NULL for ad hoc SQL

statements.
number smallint The number of the group, if the procedures are

grouped. Is 0 for entries that are not procedures
and NULL for ad hoc SQL statements.

encrypted Bit Indicates whether the object is encrypted.

0 = Not encrypted
1 = Encrypted

text Text Text of the SQL statement. Is NULL for encrypted
objects.

Remarks

You can obtain a valid SQL handle from the sql_handle column of the sysprocesses system table.

If you pass a handle that no longer exists in cache, fn_get_sql returns an empty result set. If you pass a handle that is not valid, the
batch stops, and the following error message is returned:
Server: Msg 569, Level 16, State 1, Procedure fn_get_sql, Line 12 The handle passed to fn_get_sql was invalid.

Microsoft® SQL Server™ cannot cache some Transact-SQL statements, such as bulk copy statements and statements with string
literals larger than 8 KB. Handles to those statements cannot be retrieved using the fn_get_sql function.

The text column of the result set is filtered for text that may contain passwords. For more information about security related
stored procedures that are not monitored, see Limiting Traces.

The information returned by the fn_get_sql function is similar to the DBCC INPUTBUFFER command. Use the fn_get_sql function
when the DBCC INPUTBUFFER cannot be used, for example:

When events have more than 255 characters.

When you have to return the highest current nesting level of a stored procedure. For example, there are two stored
procedures that are named sp_1 and sp_2. If sp_1 calls sp_2 and you get the handle from the sysprocesses system table
while sp_2 is running, the fn_get_sql function returns information about sp_2. Additionally, the fn_get_sql function returns
the complete text of the stored procedure at the highest current nesting level.

Permissions

Only members of the sysadmin fixed server role can run the fn_get_sql function.

Examples

Database administrators can use the fn_get_sql function to help diagnose problem processes. After an administrator identifies a
problem server process ID (SPID), the administrator can retrieve the SQL handle for that SPID, call the fn_get_sql function with the
handle, and use the start and end offsets to determine the SQL text of the problem SPID. For example:

DECLARE @Handle binary(20)
SELECT @Handle = sql_handle FROM sysprocesses WHERE spid = 52
SELECT * FROM ::fn_get_sql(@Handle)

See Also

DBCC INPUTBUFFER

sysprocesses

Limiting Traces

Transact-SQL Reference (SQL Server 2000)

fn_helpcollations
Returns a list of all the collations supported by Microsoft® SQL Server™ 2000.

Syntax

fn_helpcollations ()

Tables Returned

fn_helpcollations returns the following information.

Column name Data type Description
Name sysname Standard collation name
Description nvarchar(1000) Description of the collation

See Also

COLLATE

COLLATIONPROPERTY

Transact-SQL Reference (SQL Server 2000)

fn_listextendedproperty
Returns extended property values of database objects.

Syntax

fn_listextendedproperty (
 { default | [@name =] 'property_name' | NULL }
 , { default | [@level0type =] 'level0_object_type' | NULL }
 , { default | [@level0name =] 'level0_object_name' | NULL }
 , { default | [@level1type =] 'level1_object_type' | NULL }
 , { default | [@level1name =] 'level1_object_name' | NULL }
 , { default | [@level2type =] 'level2_object_type' | NULL }
 , { default | [@level2name =] 'level2_object_name' | NULL }
)

Arguments

{default|[@name =] 'property_name'|NULL}

Is the name of the property. property_name is sysname. Valid inputs are default, NULL, or a property name.

{default|[@level0type =] 'level0_object_type'|NULL}

Is the user or user-defined type. level0_object_type is varchar(128), with a default of NULL. Valid inputs are USER, TYPE, default,
and NULL.

{default|[@level0name =] 'level0_object_name'|NULL}

Is the name of the level 0 object type specified. level0_object_name is sysname with a default of NULL. Valid inputs are default,
NULL, or an object name.

{default|[@level1type =] 'level1_object_type'|NULL}

Is the type of level 1 object. level1_object_type is varchar(128) with a default of NULL. Valid inputs are TABLE, VIEW,
PROCEDURE, FUNCTION, DEFAULT, RULE, default, and NULL.

Note Default maps to NULL and 'default' maps to the object type DEFAULT.

{default|[@level1name =] 'level1_object_name'|NULL}

Is the name of the level 1 object type specified. level1_object_name is sysname with a default of NULL. Valid inputs are default,
NULL, or an object name.

{default|[@level2type =] 'level2_object_type'|NULL}

Is the type of level 2 object. level2_object_type is varchar(128) with a default of NULL. Valid inputs are COLUMN, PARAMETER,
INDEX, CONSTRAINT, TRIGGER, DEFAULT, default (which maps to NULL), and NULL.

{default|[@level2name =] 'level2_object_name'|NULL}

Is the name of the level 2 object type specified. level2_object_name is sysname with a default of NULL. Valid inputs are default,
NULL, or an object name.

Tables Returned

This is the format of the tables returned by fn_listextendedproperty.

Column name Data type
objtype sysname
objname sysname
name sysname
value sql_variant

If the table returned is empty, either the object does not have extended properties or the user does not have permissions to list
the extended properties on the object.

Remarks

Extended properties are not allowed on system objects.

If the value for property_name is NULL or default, fn_listextendedproperty returns all the properties for the object.

When the object type is specified and the value of the corresponding object name is NULL or default, fn_listextendedproperty
returns all extended properties for all objects of the type specified.

The objects are distinguished according to levels, with level 0 as the highest and level 2 the lowest. If a lower level object (level 1
or 2) type and name are specified, the parent object type and name should be given values that are not NULL or default.
Otherwise, the function will return an error.

Permissions to list extended properties of certain level object types vary.

For level 0 objects, a user can list extended properties specifying the type "user" if that person is the user identified in the
level 0 name, or if that user is a member of the db_owner and db_ddladmin fixed database role.

All users can list extended properties using the level 0 object type "type."

For level 1 objects, a user can list extended properties on any of the valid type values if the user is the object owner, or if the
user has any permission on the object.

For level 2 objects, a user can list extended properties on any of valid type values if the current user has any permission on
the parent object (level 1 and 0).

Examples

This example lists all extended properties set on the database object.

SELECT *
FROM ::fn_listextendedproperty(NULL, NULL, NULL, NULL, NULL, NULL, NULL)

-Or-

SELECT *
FROM ::fn_listextendedproperty(default, default, default, default, default, default, default)

This example lists all extended properties for all columns in table 'T1.'

CREATE table T1 (id int , name char (20))

EXEC sp_addextendedproperty 'caption', 'Employee ID', 'user', dbo, 'table', 'T1', 'column', id

EXEC sp_addextendedproperty 'caption', 'Employee Name', 'user', dbo, 'table', 'T1', 'column', name

SELECT *
FROM ::fn_listextendedproperty (NULL, 'user', 'dbo', 'table', 'T1', 'column', default)

Here is the result set:

objtype objname name value
COLUMN id caption Employee ID
COLUMN name caption Employee Name

See Also

Property Management

sp_addextendedproperty

Transact-SQL Reference (SQL Server 2000)

fn_servershareddrives
Returns the names of shared drives used by the clustered server.

Syntax

fn_servershareddrives()

Tables Returned

If the current server instance is not a clustered server, fn_servershareddrives returns an empty rowset.

If the current server is a clustered server, fn_servershareddrives returns the following information:

Name Data type Description
DriveName nchar(1) Name of the shared drive

Remarks

fn_servershareddrives returns a list of shared drives used by this clustered server. These shared drives belong to the same cluster
group as the SQL Server resource. Further, the SQL Server resource is dependent on these drives.

This function is helpful in identifying drives available to users.

Examples

Here is a query on a clustered server instance.

SELECT *
FROM ::fn_servershareddrives()

Here is the result set:

DriveName

m
n

See Also

Failover Clustering

fn_virtualservernodes

Transact-SQL Reference (SQL Server 2000)

fn_trace_geteventinfo
Returns information about the events traced.

Syntax

fn_trace_geteventinfo ([@traceid =] trace_id)

Arguments

[@traceid =] trace_id

Is the ID of the trace. trace_id is int, with no default. The user employs this trace_id value to identify, modify, and control the trace.

Tables Returned

Column name Data type Description
EventID int ID of the traced event
ColumnID int ID numbers of all columns collected for each event

Remarks

fn_trace_geteventinfo is a Microsoft® SQL Server™ 2000 built-in function that performs many of the actions previously executed
by extended stored procedures available in earlier versions of SQL Server. Use fn_trace_geteventinfo instead of:

xp_trace_geteventclassrequired

xp_trace_getqueuecreateinfo

xp_trace_getqueueproperties

To obtain information previously returned by the xp_trace_geteventclassrequired, for example, execute a query in the
following form:

SELECT *
FROM ::fn_trace_geteventinfo(trace_id)
WHERE EventID= 'x'

See Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

Transact-SQL Reference (SQL Server 2000)

fn_trace_getfilterinfo
Returns information about the filters applied to a specified trace.

Syntax

fn_trace_getfilterinfo([@traceid =] trace_id)

Arguments

[@traceid =] trace_id

Is the ID of the trace. trace_id is int, with no default. The user employs this trace_id value to identify, modify, and control the trace.

Tables Returned

This function returns the following information. For more information about the columns, see sp_trace_setfilter.

Column name Data type Description
Column ID int The ID of the column on which the filter is

applied.
Logical Operator int Specifies whether the AND or OR operator is

applied.
Comparison
Operator

int Specifies the type of comparison made (=, <>,
<, >, <=, >=, LIKE, or NOT LIKE).

Value sql_variant Specifies the value on which the filter is applied.

Remarks

fn_trace_getfilterinfo is a Microsoft® SQL Server™ 2000 built-in function that performs many of the actions previously executed
by extended stored procedures available in earlier versions of SQL Server. Use fn_trace_getfilterinfo instead of the
xp_trace_get*filter extended stored procedures. For more information, see Creating and Managing Traces and Templates.

To use fn_trace_getfilterinfo to obtain information about the filters applied or available for certain traces, execute a query that
follows this form:

SELECT *
FROM ::fn_trace_getfilterinfo(trace_id)
WHERE

See Also

sp_trace_setfilter

Transact-SQL Reference (SQL Server 2000)

fn_trace_getinfo
Returns information about a specified trace or existing traces.

Syntax

fn_trace_getinfo([@traceid =] trace_id)

Arguments

[@traceid =] trace_id

Is the ID of the trace, and is an integer. To return information on all traces, specify the default value for this parameter. The
keyword 'default' must be used, as in

SELECT * FROM :: fn_trace_getinfo(default)

When the value of 0 is explicitly supplied, the function will return all traces as if the function was called with the 'default' keyword.
The user employs this trace_id value to identify, modify, and control the trace.

Tables Returned

If a trace_id is specified, fn_trace_getinfo returns a table with information about the specified trace. If no trace_id is specified, this
function returns information about all active traces.

Column name Data type Description
TraceId int The ID of the trace.
Property int The property of the trace as represented by

the following integers:

1 - Trace Options (See @options in
sp_trace_create)
2 - FileName
3 - MaxSize
4 - StopTime
5 - Current Trace status

Value sql_variant The information about the property of the
trace specified.

Remarks

fn_trace_getinfo is a Microsoft® SQL Server™ 2000 built-in function that performs many of the actions previously executed by
extended stored procedures available in earlier versions of SQL Server. Use fn_trace_getinfo instead of:

xp_trace_getqueuecreateinfo

xp_trace_getqueuedestination

xp_trace_getqueueproperties

To obtain information previously returned by the xp_trace_getqueueproperties, for example, execute a query in the following
form:

SELECT *
FROM ::fn_trace_getinfo(trace_id)
WHERE Property=4

See Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL Reference (SQL Server 2000)

fn_trace_gettable
Returns trace file information in a table format. This system function provides a mechanism for querying trace data stored in a file
(trace_filename.trc). fn_trace_gettable can be used in a SELECT...INTO statement to load the data in the file into a SQL Server table.

Syntax

fn_trace_gettable([@filename =] filename , [@numfiles =] number_files)

Arguments

[@filename =] filename

Specifies the initial trace to be read. filename is nvarchar(256), with no default.

[@numfiles =] number_files

Specifies the number of rollover files, including the initial file specified in filename, to be read. number_files is int. Users may
specify the default value "default" to tell SQL Server to read all rollover files until the end of the trace.

SELECT * FROM ::fn_trace_gettable('c:\my_trace.trc', default)
GO

OR

SELECT * FROM ::fn_trace_gettable(('c:\my_trace.trc', -1)
GO

Tables Returned

fn_trace_gettable returns a table with all the valid columns. For information, see sp_trace_setevent.

Examples

A. Use fn_trace_getttable to return a table that can be loaded into SQL Profiler

This example calls the function as part of a SELECT...INTO statement and returns a table that can be loaded into SQL Profiler.

USE pubs
SELECT * INTO temp_trc
FROM ::fn_trace_gettable(c:\my_trace.trc", default)

B. Use fn_trace_gettable to return a table with an IDEN TITY column that can be loaded into a SQL Server table

This example calls the function as part of a SELECT...INTO statement and returns a table with an IDENTITY column that can be
loaded into a SQL Server table (temp_trc).

USE pubs
SELECT IDENTITY(int, 1, 1) AS RowNumber, * INTO temp_trc
FROM ::fn_trace_gettable('c:\my_trace.trc', default)

See Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL Reference (SQL Server 2000)

fn_virtualfilestats
Returns I/O statistics for database files, including log files.

Syntax

fn_virtualfilestats ([@DatabaseID=] database_id
 , [@FileID =] file_id)

Arguments

[@DatabaseID=] database_id

Is the ID of the database. database_id is int, with no default.

[@FileID =] file_id

Is the ID of the file. file_id is int, with no default.

Tables Returned

Column Name Data type Description
DbId smallint Database ID
FileId smallint File ID
TimeStamp int Time at which the data was taken
NumberReads bigint Number of reads issued on the file
NumberWrites bigint Number of writes made on the file
BytesRead bigint Number of bytes read issued on the file
BytesWritten bigint Number of bytes written made on the file
IoStallMS bigint Total amount of time, in milliseconds, that users

waited for the I/Os to complete on the file

Remarks

fn_virtualfilestats is a system table-valued function that gives statistical information, such as the total number of I/Os performed
on a file. The function helps keep track of the length of time users have to wait to read or write to a file. The function also helps
identify the files that encounter large numbers of I/O activity.

Examples

SELECT *
FROM :: fn_virtualfilestats(1, 1)

Transact-SQL Reference (SQL Server 2000)

fn_virtualservernodes
Returns the list of nodes on which the virtual server can run. Such information is useful in failover clustering environments.

Syntax

fn_virtualservernodes()

Tables Returned

If the current server instance is not a clustered server, fn_virtualservernodes returns an empty rowset.

If the current server is a clustered server, fn_virtualservernodes returns the list of nodes on which this virtual server has been
defined.

Examples

Here is a query on a clustered server instance.

SELECT *
FROM ::fn_virtualservernodes()

Here is the result set:

NodeName

ntmachine1
ntmachine2

See Also

Failover Clustering

fn_servershareddrives

Transact-SQL Reference (SQL Server 2000)

FORMATMESSAGE
Constructs a message from an existing message in sysmessages. The functionality of FORMATMESSAGE resembles that of the
RAISERROR statement; however, RAISERROR prints the message immediately, and FORMATMESSAGE returns the edited
message for further processing.

Syntax

FORMATMESSAGE (msg_number , param_value [,...n])

Arguments

msg_number

Is the ID of the message stored in sysmessages. If the message does not exist in sysmessages, NULL is returned.

param_value

Is one or more parameter values for use in the message. The values must be specified in the order in which the placeholder
variables appear in the message. The maximum number of values is 20.

Return Types

nvarchar

Remarks

Like the RAISERROR statement, FORMATMESSAGE edits the message by substituting the supplied parameter values for
placeholder variables in the message. For more information about the placeholders allowed in error messages and the editing
process, see RAISERROR.

FORMATMESSAGE looks up the message in the current language of the user. If there is no localized version of the message, the
U.S. English version is used.

For localized messages, the supplied parameter values must correspond to the parameter placeholders in the U.S. English version.
That is, parameter 1 in the localized version must correspond to parameter 1 in the U.S. English version, parameter 2 must
correspond to parameter 2, and so on.

Examples

This example uses a hypothetical message 50001, stored in sysmessages as "The number of rows in %s is %1d."
FORMATMESSAGE substitutes the values Table1 and 5 for the parameter placeholders. The resulting string, "The number of rows
in Table1 is 5." is stored in the local variable @var1.

DECLARE @var1 VARCHAR(100)
SELECT @var1 = FORMATMESSAGE(50001, 'Table1', 5)

See Also

sp_addmessage

System Functions

Transact-SQL Reference (SQL Server 2000)

FREETEXT
Is a predicate used to search columns containing character-based data types for values that match the meaning and not the exact
wording of the words in the search condition. When FREETEXT is used, the full-text query engine internally "word-breaks" the
freetext_string into a number of search terms and assigns each term a weight and then finds the matches.

Syntax

FREETEXT ({ column | * } , 'freetext_string')

Arguments

column

Is the name of a specific column that has been registered for full-text searching. Columns of the character string data types are
valid columns for full-text searching.

*

Specifies that all columns that have been registered for full-text searching should be used to search for the given freetext_string.

freetext_string

Is text to search for in the specified column. Any text, including words, phrases or sentences, can be entered. There is no concern
about syntax.

Remarks

Full-text queries using FREETEXT are less precise than those full-text queries using CONTAINS. The Microsoft® SQL Server™ full-
text search engine identifies important words and phrases. No special meaning is given to any of the reserved keywords or
wildcard characters that typically have meaning when specified in the <contains_search_condition> parameter of the CONTAINS
predicate.

FREETEXT is not recognized as a keyword if the compatibility level is less than 70. For more information, see sp_dbcmptlevel.

Examples

A. Use FREETEXT to search for words containing specified character values

This example searches for all product categories containing the words related to bread, candy, dry, and meat in the product
description, such as breads, candies, dried, and meats.

USE Northwind
GO
SELECT CategoryName
FROM Categories
WHERE FREETEXT (Description, 'sweetest candy bread and dry meat')
GO

B. Use variables in fu ll-text search

This example uses a variable instead of a specific search term.

USE pubs
GO
DECLARE @SearchWord varchar(30)
SET @SearchWord ='Moon'
SELECT pr_info FROM pub_info WHERE FREETEXT(pr_info, @SearchWord)

See Also

CONTAINS

CONTAINSTABLE

Data Types

FREETEXTTABLE

WHERE

Transact-SQL Reference (SQL Server 2000)

FREETEXTTABLE
Returns a table of zero, one, or more rows for those columns containing character-based data types for values that match the
meaning, but not the exact wording, of the text in the specified freetext_string. FREETEXTTABLE can be referenced in the FROM
clause of a SELECT statement like a regular table name.

Queries using FREETEXTTABLE specify freetext-type full-text queries that return a relevance ranking value (RANK) for each row.

Syntax

FREETEXTTABLE (table , { column | * } , 'freetext_string' [, top_n_by_rank])

Arguments

table

Is the name of the table that has been marked for full-text querying. table can be a one-, two-, or three-part database object name.
For more information, see Transact-SQL Syntax Conventions. table cannot specify a server name and cannot be used in queries
against linked servers.

column

Is the name of the column to search that resides within table. Columns of the character string data types are valid columns for
full-text searching.

*

Specifies that all columns that have been registered for full-text searching should be used to search for the given freetext_string.

freetext_string

Is the text to search for in the specified column.

top_n_by_rank

When an integer value, n, is specified, FREETEXTTABLE returns only the top n matches, ordered by rank.

Remarks

FREETEXTTABLE uses the same search conditions as the FREETEXT predicate.

Like CONTAINSTABLE, the table returned has columns named KEY and RANK, which are referenced within the query to obtain
the appropriate rows and use the row ranking values.

FREETEXTTABLE is not recognized as a keyword if the compatibility level is less than 70. For more information, see
sp_dbcmptlevel.

Permissions

FREETEXTTABLE can be invoked only by users with appropriate SELECT privileges for the specified table or the referenced
columns of the table.

Examples

This example returns the category name and description of all categories that relate to sweet, candy, bread, dry, and meat.

USE Northwind
SELECT FT_TBL.CategoryName,
 FT_TBL.Description,
 KEY_TBL.RANK
FROM Categories AS FT_TBL INNER JOIN
 FREETEXTTABLE(Categories, Description,
 'sweetest candy bread and dry meat') AS KEY_TBL
 ON FT_TBL.CategoryID = KEY_TBL.[KEY]
GO

See Also

CONTAINS

CONTAINSTABLE

FREETEXT

Full-text Querying SQL Server Data

Rowset Functions

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

FROM
Specifies the tables, views, derived tables, and joined tables used in DELETE, SELECT, and UPDATE statements.

Syntax

[FROM { < table_source > } [,...n]]

< table_source > ::=
 table_name [[AS] table_alias] [WITH (< table_hint > [,...n])]
 | view_name [[AS] table_alias] [WITH (< view_hint > [,...n])]
 | rowset_function [[AS] table_alias]
 | user_defined_function [[AS] table_alias]
 | derived_table [AS] table_alias [(column_alias [,...n])]
 | < joined_table >

< joined_table > ::=
 < table_source > < join_type > < table_source > ON < search_condition >
 | < table_source > CROSS JOIN < table_source >
 | [(] < joined_table > [)]

< join_type > ::=
 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }]
 [< join_hint >]
 JOIN

Arguments

<table_source>

Specifies a table or view, both with or without an alias, to use in the Transact-SQL statement. A maximum of 256 tables can be
used in the statement. A table variable may be specified as a table source.

If the table or view exists in another database on the same computer running Microsoft® SQL Server™, use a fully qualified name
in the form database.owner.object_name. If the table or view exists outside the local server on a linked server, use a four-part
name in the form linked_server.catalog.schema.object. A four-part table (or view) name constructed using the
OPENDATASOURCE function as the server part of the name also may be used to specify the table source. For more information
about the function, see OPENDATASOURCE.

table_name

Is the name of a table. The order of the tables and views after the FROM keyword does not affect the result set returned. Errors are
reported when duplicate names appear in the FROM clause.

[AS] table_alias

Is an alias for table_name, view_name, or rowset_function, used either for convenience or to distinguish a table or view in a self-
join or subquery. An alias is often a shortened table name used to refer to specific columns of the tables in a join. If the same
column name exists in more than one table in the join, SQL Server requires that the column name must be qualified by a table
name or alias. (The table name cannot be used if an alias is defined).

WITH (< table_hint >)

Specifies a table scan, one or more indexes to be used by the query optimizer, or a locking method to be used by the query
optimizer with this table and for this statement. For more information, see Table Hints.

view_name

Is the name of a view. A view is a "virtual table", usually created as a subset of columns from one or more tables.

WITH (< view_hint >)

Specifies a scan of the indexed view. By default, the view is expanded before the query optimizer processes the query. View hints
are allowed only in SELECT statements, and cannot be used in UPDATE, DELETE, and INSERT statements.

rowset_function

Specifies one of the rowset functions, which return an object that can be used in place of a table reference. For more information

about a list of rowset functions, see Rowset Functions.

user_defined_function

Specifies a user-defined function that returns a table. If the user-defined function is a built-in user-defined function, it must be
preceded by two colons, as in

FROM ::fn_listextendedproperty

derived_table

Is a subquery that retrieves rows from the database. derived_table is used as input to the outer query.

column_alias

Is an optional alias to replace a column name in the result set. Include one column alias for each column in the select list, and
enclose the entire list of column aliases in parentheses.

< joined_table >

Is a result set that is the product of two or more tables, for example:

SELECT *
FROM tab1 LEFT OUTER JOIN tab2 ON tab1.c3 = tab2.c3
 RIGHT OUTER JOIN tab3 LEFT OUTER JOIN tab4
 ON tab3.c1 = tab4.c1
 ON tab2.c3 = tab4.c3

For multiple CROSS joins, use parentheses to change the natural order of the joins.

< join_type >

Specifies the type of join operation.

INNER

Specifies all matching pairs of rows are returned. Discards unmatched rows from both tables. This is the default if no join type is
specified.

FULL [OUTER]

Specifies that a row from either the left or right table that does not meet the join condition is included in the result set, and output
columns that correspond to the other table are set to NULL. This is in addition to all rows usually returned by the INNER JOIN.

Note It is possible to specify outer joins as specified here or by using the old nonstandard *= and =* operators in the WHERE
clause. The two methods cannot both be used in the same statement.

LEFT [OUTER]

Specifies that all rows from the left table not meeting the join condition are included in the result set, and output columns from
the other table are set to NULL in addition to all rows returned by the inner join.

RIGHT [OUTER]

Specifies all rows from the right table not meeting the join condition are included in the result set, and output columns that
correspond to the other table are set to NULL, in addition to all rows returned by the inner join.

<join_hint>

Specifies that the SQL Server query optimizer use one join hint, or execution algorithm, per join specified in the query FROM
clause. For more information, see Join Hints later in this topic.

JOIN

Indicates that the specified join operation should take place between the given tables or views.

ON <search_condition>

Specifies the condition on which the join is based. The condition can specify any predicate, although columns and comparison
operators are often used, for example:

SELECT ProductID, Suppliers.SupplierID
 FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)

When the condition specifies columns, the columns do not have to have the same name or same data type; however, if the data

types are not identical, they must be either compatible or types that Microsoft® SQL Server™ can implicitly convert. If the data
types cannot be implicitly converted, the condition must explicitly convert the data type using the CAST function.

There may be predicates involving only one of the joined tables in the ON clause. Such predicates also may be in the WHERE
clause in the query. Although the placement of such predicates does not make a difference in the case of INNER joins, they may
cause a different result if OUTER joins are involved. This is because the predicates in the ON clause are applied to the table prior
to the join, while the WHERE clause is semantically applied on the result of the join.

For more information about search conditions and predicates, see Search Condition.

CROSS JOIN

Specifies the cross-product of two tables. Returns the same rows as if no WHERE clause was specified in an old-style, non-SQL-
92-style join.

Table Hints

A table hint specifies a table scan, one or more indexes to be used by the query optimizer, or a locking method to be used by the
query optimizer with this table and for this SELECT. Although this is an option, the query optimizer can usually pick the best
optimization method without hints being specified.

Caution Because the query optimizer of SQL Server usually selects the best execution plan for a query, it is recommended that
<join_hint>, <query_hint>, <table_hint>, and <view_hint> only be used as a last resort by experienced developers and database
administrators.

The table hints are ignored if the table is not accessed by the query plan. This may be a result of the optimizer's choice not to
access the table at all, or because an indexed view is accessed instead. In the latter case, the use of an indexed view may be
prevented by using the OPTION (EXPAND VIEWS) query hint.

The use of commas between table hints is optional but encouraged. Separation of hints by spaces rather than commas is
supported for backward compatibility.

The use of the WITH keyword is encouraged, although it is not currently required. In future releases of SQL Server, WITH may be a
required keyword.

In SQL Server 2000, all lock hints are propagated to all the base tables and views that are referenced in a view. In addition, SQL
Server performs the corresponding lock consistency checks.

If a table (including system tables) contains computed columns and the computed columns are computed by expressions or
functions accessing columns in other tables, the table hints are not used on those tables (the table hints are not propagated). For
example, a NOLOCK table hint is specified on a table in the query. This table has computed columns that are computed by a
combination of expressions and functions (accessing columns in another table). The tables referenced by the expressions and
functions do not use the NOLOCK table hint when accessed.

SQL Server does not allow more than one table hint from each of the following groups for each table in the FROM clause:

Granularity hints: PAGLOCK, NOLOCK, ROWLOCK, TABLOCK, or TABLOCKX.

Isolation level hints: HOLDLOCK, NOLOCK, READCOMMITTED, REPEATABLEREAD, SERIALIZABLE.

The NOLOCK, READUNCOMMITTED, and READPAST table hints are not allowed for tables that are targets of delete, insert, or
update operations.

Syntax

< table_hint > ::=
 { INDEX (index_val [,...n])
 | FASTFIRSTROW
 | HOLDLOCK
 | NOLOCK
 | PAGLOCK
 | READCOMMITTED
 | READPAST
 | READUNCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE

 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 | XLOCK
 }

Arguments

INDEX (index_val [,...n])

Specifies the name or ID of the indexes to be used by SQL Server when processing the statement. Only one index hint per table
can be specified.

If a clustered index exists, INDEX(0) forces a clustered index scan and INDEX(1) forces a clustered index scan or seek. If no
clustered index exists, INDEX(0) forces a table scan and INDEX(1) is interpreted as an error.

The alternative INDEX = syntax (which specifies a single index hint) is supported only for backward compatibility.

If multiple indexes are used in the single hint list, the duplicates are ignored and the rest of the listed indexes are used to retrieve
the rows of the table. The order of the indexes in the index hint is significant. A multiple index hint also enforces index ANDing and
SQL Server applies as many conditions as possible on each index accessed. If the collection of hinted indexes is not covering, a
fetch is performed after retrieving all the indexed columns.

Note If an index hint referring to multiple indexes is used on the fact table in a star join, SQL Server ignores the index hint and
returns a warning message. Also, index ORing is disallowed for a table with an index hint specified.

The maximum number of indexes in the table hint is 250 nonclustered indexes.

FASTFIRSTROW

Equivalent to OPTION (FAST 1). For more information, see FAST in the OPTION clause in SELECT.

HOLDLOCK

Equivalent to SERIALIZABLE. (For more information, see SERIALIZABLE later in this topic.) The HOLDLOCK option applies only to
the table or view for which it is specified and only for the duration of the transaction defined by the statement in which it is used.
HOLDLOCK cannot be used in a SELECT statement that includes the FOR BROWSE option.

NOLOCK

Equivalent to READUNCOMMITTED. For more information, see READUNCOMMITTED later in this topic.

PAGLOCK

Takes shared page locks where a single shared table lock is normally taken.

READCOMMITTED

Specifies that a scan is performed with the same locking semantics as a transaction running at READ COMMITTED isolation level.
For more information about isolation levels, see SET TRANSACTION ISOLATION LEVEL.

READPAST

Specifies that locked rows are skipped (read past). For example, assume table T1 contains a single integer column with the values
of 1, 2, 3, 4, 5. If transaction A changes the value of 3 to 8 but has not yet committed, a SELECT * FROM T1 (READPAST) yields
values 1, 2, 4, 5. READPAST applies only to transactions operating at READ COMMITTED isolation and reads past only row-level
locks. This lock hint is used primarily to implement a work queue on a SQL Server table.

READUNCOMMITTED

Specifies that dirty reads are allowed. This means that no shared locks are issued and no exclusive locks are honored. Allowing
dirty reads can result in higher concurrency, but at the cost of lower consistency. If READUNCOMMITTED is specified, it is possible
to read an uncommitted transaction or to read a set of pages rolled back in the middle of the read; therefore, error messages may
result. For more information about isolation levels, see SET TRANSACTION ISOLATION LEVEL.

Note If you receive the error message 601 when READUNCOMMITTED is specified, resolve it as you would a deadlock error
(1205), and retry your statement.

REPEATABLEREAD

Specifies that a scan is performed with the same locking semantics as a transaction running at REPEATABLE READ isolation level.
For more information about isolation levels, see SET TRANSACTION ISOLATION LEVEL.

ROWLOCK

Specifies that a shared row lock is taken when a single shared page or table lock is normally taken.

SERIALIZABLE

Equivalent to HOLDLOCK. Makes shared locks more restrictive by holding them until the completion of a transaction (instead of
releasing the shared lock as soon as the required table or data page is no longer needed, whether or not the transaction has been
completed). The scan is performed with the same semantics as a transaction running at the SERIALIZABLE isolation level. For
more information about isolation levels, see SET TRANSACTION ISOLATION LEVEL.

TABLOCK

Specifies that a shared lock is taken on the table held until the end-of-statement. If HOLDLOCK is also specified, the shared table
lock is held until the end of the transaction.

TABLOCKX

Specifies that an exclusive lock is taken on the table held until the end-of-statement or end-of-transaction.

UPDLOCK

Specifies that update locks instead of shared locks are taken while reading the table, and that they are held until the end-of-
statement or end-of-transaction.

XLOCK

Specifies that exclusive locks should be taken and held until the end of transaction on all data processed by the statement. If
specified with PAGLOCK or TABLOCK, the exclusive locks apply to the appropriate level of granularity.

View Hints

View hints can be used only for indexed views. (An indexed view is a view with a unique clustered index created on it.) If a query
contains references to columns that are present both in an indexed view and base tables, and Microsoft SQL Server™ query
optimizer determines that using the indexed view provides the best method for executing the query, then the optimizer utilizes
the index on the view. This function is supported only on the Enterprise and Developer Editions of the Microsoft SQL Server 2000.

However, in order for the optimizer to consider indexed views, the following SET options must be set to ON:

ANSI_NULLS ANSI_WARNINGS CONCAT_NULL_YIELDS_NULL
ANSI_PADDING ARITHABORT QUOTED_IDENTIFIERS

In addition, the NUMERIC_ROUNDABORT option must be set to OFF.

To force the optimizer to use an index for an indexed view, specify the NOEXPAND option. This hint may be used only if the view
is also named in the query. SQL Server 2000 does not provide a hint to force a particular indexed view to be used in a query that
does not name the view directly in the FROM clause; however, the query optimizer considers the use of indexed views even if they
are not referenced directly in the query.

View hints are allowed only in SELECT statements; they cannot be used in views that are the table source in INSERT, UPDATE, and
DELETE statements.

Syntax

< view_hint > ::=
{ NOEXPAND [, INDEX (index_val [,...n])] }

Arguments

NOEXPAND

Specifies that the indexed view is not expanded when the query optimizer processes the query. The query optimizer treats the
view like a table with clustered index.

INDEX (index_val [,...n])

Specifies the name or ID of the indexes to be used by SQL Server when it processes the statement. Only one index hint per view
can be specified.

INDEX(0) forces a clustered index scan and INDEX(1) forces a clustered index scan or seek.

If multiple indexes are used in the single hint list, the duplicates are ignored and the rest of the listed indexes are used to retrieve
the rows of the indexed view. The ordering of the indexes in the index hint is significant. A multiple index hint also enforces index
ANDing and SQL Server applies as many conditions as possible on each index accessed. If the collection of hinted indexes does
not contain all columns referenced in the query, a fetch is performed after retrieving all the indexed columns.

Join Hints

Join hints, which are specified in a query's FROM clause, enforce a join strategy between two tables. If a join hint is specified for
any two tables, the query optimizer automatically enforces the join order for all joined tables in the query, based on the position
of the ON keywords. In the case of CROSS JOINS, when the ON clauses are not used, parentheses can be used to indicate the join
order.

Caution Because the SQL Server query optimizer usually selects the best execution plan for a query, it is recommended that
<join_hint>, <query_hint>, and <table_hint> be used only as a last resort by experienced database administrators.

Syntax

< join_hint > ::=
 { LOOP | HASH | MERGE | REMOTE }

Arguments

LOOP | HASH | MERGE

Specifies that the join in the query should use looping, hashing, or merging. Using LOOP | HASH | MERGE JOIN enforces a
particular join between two tables.

REMOTE

Specifies that the join operation is performed on the site of the right table. This is useful when the left table is a local table and the
right table is a remote table. REMOTE should be used only when the left table has fewer rows than the right table.

If the right table is local, the join is performed locally. If both tables are remote but from different data sources, REMOTE causes
the join to be performed on the right table's site. If both tables are remote tables from the same data source, REMOTE is not
necessary.

REMOTE cannot be used when one of the values being compared in the join predicate is cast to a different collation using the
COLLATE clause.

REMOTE can be used only for INNER JOIN operations.

Remarks

The FROM clause supports the SQL-92-SQL syntax for joined tables and derived tables. SQL-92 syntax provides the INNER, LEFT
OUTER, RIGHT OUTER, FULL OUTER, and CROSS join operators.

Although the outer join operators from earlier versions of SQL Server are supported, you cannot use both outer join operators
and SQL-92-style joined tables in the same FROM clause.

UNION and JOIN within a FROM clause are supported within views as well as in derived tables and subqueries.

A self-join is a table that joins upon itself. Inserts or updates that are based on a self-join follow the order in the FROM clause.

Since Microsoft SQL Server™ 2000 considers distribution and cardinality statistics from linked servers that provide column
distribution statistics, the REMOTE join hint is not really necessary to force evaluating a join remotely. The SQL Server query
processor considers remote statistics and determines if a remote-join strategy is appropriate. REMOTE join hint is useful for
providers that do not provide column distribution statistics. For more information, see Distribution Statistics Requirements for
OLE DB Providers.

Permissions

FROM permissions default to the permissions for the DELETE, SELECT, or UPDATE statement.

Examples

A. Use a simple FROM clause

This example retrieves the pub_id and pub_name columns from the publishers table.

USE pubs
SELECT pub_id, pub_name
FROM publishers
ORDER BY pub_id

Here is the result set:

pub_id pub_name
------ ---------------------
0736 New Moon Books
0877 Binnet & Hardley
1389 Algodata Infosystems
1622 Five Lakes Publishing
1756 Ramona Publishers
9901 GGG&G
9952 Scootney Books
9999 Lucerne Publishing

(8 row(s) affected)

B. Use the TABLOCK and HOLDLOCK optimizer h ints

The following partial transaction shows how to place an explicit shared table lock on authors and how to read the index. The lock
is held throughout the entire transaction.

USE pubs
BEGIN TRAN
SELECT COUNT(*)
FROM authors WITH (TABLOCK, HOLDLOCK)

C. Use the SQL-92 CROSS JOIN syntax

This example returns the cross product of the two tables authors and publishers. A list of all possible combinations of au_lname
rows and all pub_name rows are returned.

USE pubs
SELECT au_lname, pub_name
FROM authors CROSS JOIN publishers
ORDER BY au_lname ASC, pub_name ASC

Here is the result set:

au_lname pub_name
-- -------------------------------
Bennet Algodata Infosystems
Bennet Binnet & Hardley
Bennet Five Lakes Publishing
Bennet GGG&G
Bennet Lucerne Publishing
Bennet New Moon Books
Bennet Ramona Publishers
Bennet Scootney Books
Blotchet-Halls Algodata Infosystems
Blotchet-Halls Binnet & Hardley
Blotchet-Halls Five Lakes Publishing
Blotchet-Halls GGG&G
Blotchet-Halls Lucerne Publishing
Blotchet-Halls New Moon Books
Blotchet-Halls Ramona Publishers
Blotchet-Halls Scootney Books
Carson Algodata Infosystems
Carson Binnet & Hardley
Carson Five Lakes Publishing
...
Stringer Scootney Books
White Algodata Infosystems
White Binnet & Hardley
White Five Lakes Publishing
White GGG&G
White Lucerne Publishing
White New Moon Books
White Ramona Publishers
White Scootney Books
Yokomoto Algodata Infosystems
Yokomoto Binnet & Hardley

Yokomoto Five Lakes Publishing
Yokomoto GGG&G
Yokomoto Lucerne Publishing
Yokomoto New Moon Books
Yokomoto Ramona Publishers
Yokomoto Scootney Books

(184 row(s) affected)

D. Use the SQL-92 FULL OUTER JOIN syntax

This example returns the book title and its corresponding publisher in the titles table. It also returns any publishers who have not
published books listed in the titles table, and any book titles with a publisher other than the one listed in the publishers table.

USE pubs
-- The OUTER keyword following the FULL keyword is optional.
SELECT SUBSTRING(titles.title, 1, 10) AS Title,
 publishers.pub_name AS Publisher
FROM publishers FULL OUTER JOIN titles
 ON titles.pub_id = publishers.pub_id
WHERE titles.pub_id IS NULL
 OR publishers.pub_id IS NULL
ORDER BY publishers.pub_name

Here is the result set:

Title Publisher
---------- --
NULL Five Lakes Publishing
NULL GGG&G
NULL Lucerne Publishing
NULL Ramona Publishers
NULL Scootney Books

(5 row(s) affected)

E. Use the SQL-92 LEFT OUTER JOIN syntax

This example joins two tables on au_id and preserves the unmatched rows from the left table. The authors table is matched with
the titleauthor table on the au_id columns in each table. All authors, published and unpublished, appear in the result set.

USE pubs
-- The OUTER keyword following the LEFT keyword is optional.
SELECT SUBSTRING(authors.au_lname, 1, 10) AS Last,
 authors.au_fname AS First, titleauthor.title_id
FROM authors LEFT OUTER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id

Here is the result set:

Last First title_id
---------- -------------------- --------
White Johnson PS3333
Green Marjorie BU1032
Green Marjorie BU2075
Carson Cheryl PC1035
... ...
McBadden Heather NULL
Ringer Anne PS2091
Ringer Albert PS2091
Ringer Albert PS2106

(29 row(s) affected)

F. Use the SQL-92 IN N ER JOIN syntax

This example returns all publisher names with the corresponding book titles each publisher has published.

USE pubs
-- By default, SQL Server performs an INNER JOIN if only the JOIN
-- keyword is specified.
SELECT SUBSTRING(titles.title, 1, 30) AS Title, publishers.pub_name
FROM publishers INNER JOIN titles
 ON titles.pub_id = publishers.pub_id
ORDER BY publishers.pub_name

Here is the result set:

Title pub_name
------------------------------ --
The Busy Executive's Database Algodata Infosystems
Cooking with Computers: Surrep Algodata Infosystems
Straight Talk About Computers Algodata Infosystems
But Is It User Friendly? Algodata Infosystems
Secrets of Silicon Valley Algodata Infosystems
Net Etiquette Algodata Infosystems
Silicon Valley Gastronomic Tre Binnet & Hardley
The Gourmet Microwave Binnet & Hardley
The Psychology of Computer Coo Binnet & Hardley
Computer Phobic AND Non-Phobic Binnet & Hardley
Onions, Leeks, and Garlic: Coo Binnet & Hardley
Fifty Years in Buckingham Pala Binnet & Hardley
Sushi, Anyone? Binnet & Hardley
You Can Combat Computer Stress New Moon Books
Is Anger the Enemy? New Moon Books
Life Without Fear New Moon Books
Prolonged Data Deprivation: Fo New Moon Books
Emotional Security: A New Algo New Moon Books

(18 row(s) affected)

G. Use the SQL-92 RIGHT OUTER JOIN syntax

This example joins two tables on pub_id and preserves the unmatched rows from the right table. The publishers table is
matched with the titles table on the pub_id column in each table. All publishers appear in the result set, whether or not they have
published any books.

USE pubs
SELECT SUBSTRING(titles.title, 1, 30) AS 'Title', publishers.pub_name
FROM titles RIGHT OUTER JOIN publishers
 ON titles.pub_id = publishers.pub_id
ORDER BY publishers.pub_name

Here is the result set:

Title pub_name
------------------------------ --
The Busy Executive's Database Algodata Infosystems
Cooking with Computers: Surrep Algodata Infosystems
Straight Talk About Computers Algodata Infosystems
But Is It User Friendly? Algodata Infosystems
Secrets of Silicon Valley Algodata Infosystems
Net Etiquette Algodata Infosystems
Silicon Valley Gastronomic Tre Binnet & Hardley
The Gourmet Microwave Binnet & Hardley
The Psychology of Computer Coo Binnet & Hardley
Computer Phobic AND Non-Phobic Binnet & Hardley
Onions, Leeks, and Garlic: Coo Binnet & Hardley
Fifty Years in Buckingham Pala Binnet & Hardley
Sushi, Anyone? Binnet & Hardley
NULL Five Lakes Publishing
NULL GGG&G
NULL Lucerne Publishing
You Can Combat Computer Stress New Moon Books
Is Anger the Enemy? New Moon Books
Life Without Fear New Moon Books
Prolonged Data Deprivation: Fo New Moon Books
Emotional Security: A New Algo New Moon Books
NULL Ramona Publishers
NULL Scootney Books

(23 row(s) affected)

H. Use HASH and M ERGE join h ints

This example performs a three-table join among the authors, titleauthors, and titles tables to produce a list of authors and the
books they have written. The query optimizer joins authors and titleauthors (A x TA) using a MERGE join. Next, the results of the
authors and titleauthors MERGE join (A x TA) are HASH joined with the titles table to produce (A x TA) x T.

Important After a join hint is specified, the INNER keyword is no longer optional and must be explicitly stated for an INNER JOIN
to be performed.

USE pubs

SELECT SUBSTRING((RTRIM(a.au_fname) + ' ' + LTRIM(a.au_lname)), 1, 25)
 AS Name, SUBSTRING(t.title, 1, 20) AS Title
FROM authors a INNER MERGE JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER HASH JOIN titles t
 ON t.title_id = ta.title_id
ORDER BY au_lname ASC, au_fname ASC

Here is the result set:

Warning: The join order has been enforced because a local join hint is used.
Name Title
------------------------- --------------------
Abraham Bennet The Busy Executive's
Reginald Blotchet-Halls Fifty Years in Bucki
Cheryl Carson But Is It User Frien
Michel DeFrance The Gourmet Microwav
Innes del Castillo Silicon Valley Gastr
... ...
Johnson White Prolonged Data Depri
Akiko Yokomoto Sushi, Anyone?

(25 row(s) affected)

I. Use a derived table

This example uses a derived table, a SELECT statement after the FROM clause, to return all authors' first and last names and the
book numbers for each title the author has written.

USE pubs
SELECT RTRIM(a.au_fname) + ' ' + LTRIM(a.au_lname) AS Name, d1.title_id
FROM authors a, (SELECT title_id, au_id FROM titleauthor) AS d1
WHERE a.au_id = d1.au_id
ORDER BY a.au_lname, a.au_fname

Here is the result set:

Name title_id
--- --------
Abraham Bennet BU1032
Reginald Blotchet-Halls TC4203
Cheryl Carson PC1035
Michel DeFrance MC3021
Innes del Castillo MC2222
Ann Dull PC8888
Marjorie Green BU1032
Marjorie Green BU2075
Burt Gringlesby TC7777
Sheryl Hunter PC8888
Livia Karsen PS1372
Charlene Locksley PC9999
Charlene Locksley PS7777
Stearns MacFeather BU1111
Stearns MacFeather PS1372
Michael O'Leary BU1111
Michael O'Leary TC7777
Sylvia Panteley TC3218
Albert Ringer PS2091
Albert Ringer PS2106
Anne Ringer MC3021
Anne Ringer PS2091
Dean Straight BU7832
Johnson White PS3333
Akiko Yokomoto TC7777

(25 row(s) affected)

See Also

CONTAINSTABLE

DELETE

FREETEXTTABLE

INSERT

OPENQUERY

OPENROWSET

Operators

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

FULLTEXTCATALOGPROPERTY
Returns information about full-text catalog properties.

Syntax

FULLTEXTCATALOGPROPERTY (catalog_name , property)

Arguments

catalog_name

Is an expression containing the name of the full-text catalog.

property

Is an expression containing the name of the full-text catalog property. The table lists the properties and provides descriptions of
the information returned.

Property Description
PopulateStatus 0 = Idle

1 = Full population in progress
2 = Paused
3 = Throttled
4 = Recovering
5 = Shutdown
6 = Incremental population in progress
7 = Building index
8 = Disk is full. Paused.
9 = Change tracking

ItemCount Number of full-text indexed items currently in the
full-text catalog.

IndexSize Size of the full-text index in megabytes.
UniqueKeyCount Number of unique words (keys) that make up the

full-text index in this catalog. This is an
approximation of the number of nonnoise words
stored in the full-text catalog.

LogSize Size, in bytes, of the combined set of error logs
associated with a Microsoft® Search Service full-
text catalog.

PopulateCompletionAge The difference in seconds between the
completion of the last full-text index population
and 01/01/1990 00:00:00.

Return Types

int

Remarks

It is important that applications do not wait in a tight loop, checking for the PopulateStatus property to become idle (indicating
that population has completed) because this takes CPU cycles away from the database and full-text search processes and causes
time outs.

Examples

This example returns the number of full-text indexed items in the Cat_Desc full-text catalog.

USE Northwind
GO
SELECT fulltextcatalogproperty('Cat_Desc', 'ItemCount')

Here is the result set:

9

See Also

FULLTEXTSERVICEPROPERTY

Metadata Functions

sp_help_fulltext_catalogs

Transact-SQL Reference (SQL Server 2000)

FULLTEXTSERVICEPROPERTY
Returns information about full-text service-level properties.

Syntax

FULLTEXTSERVICEPROPERTY (property)

Arguments

property

Is an expression containing the name of the full-text service-level property. The table lists the properties and provides descriptions
of the information returned.

Property Value
ResourceUsage A value from 1 (background) through 5 (dedicated).
ConnectTimeout The number of seconds that Microsoft Search

Service will wait for all connections to the
Microsoft® SQL Server™ database server for full-
text index population before timing out.

IsFulltextInstalled The full-text component is installed with the current
instance of SQL Server.

1 = Full-text is installed.
0 = Full-text is not installed.
NULL = Invalid input, or error.

DataTimeout The number of seconds that Microsoft Search
Service will wait for data to be returned by Microsoft
SQL Server database server for full-text index
population before timing out.

Return Types

int

Examples

This example verifies that Microsoft® Search Service is installed.

SELECT fulltextserviceproperty('IsFulltextInstalled')

Here is the result set:

1

See Also

FULLTEXTCATALOGPROPERTY

Metadata Functions

sp_fulltext_service

Transact-SQL Reference (SQL Server 2000)

Functions
The Transact-SQL programming language provides three types of functions:

Rowset functions

Can be used like table references in an SQL statement. For more information about a list of these functions, see Rowset
Functions.

Aggregate functions

Operate on a collection of values but return a single, summarizing value. For more information about a list of these
functions, see Aggregate Functions.

Scalar functions

Operate on a single value and then return a single value. Scalar functions can be used wherever an expression is valid. This
table categorizes the scalar functions.

Function category Explanation
Configuration Functions Returns information about the current configuration.
Cursor Functions Returns information about cursors.
Date and Time
Functions

Performs an operation on a date and time input value
and returns either a string, numeric, or date and time
value.

Mathematical Functions Performs a calculation based on input values provided as
parameters to the function, and returns a numeric value.

Metadata Functions Returns information about the database and database
objects.

Security Functions Returns information about users and roles.
String Functions Performs an operation on a string (char or varchar)

input value and returns a string or numeric value.
System Functions Performs operations and returns information about

values, objects, and settings in Microsoft® SQL Server™.
System Statistical
Functions

Returns statistical information about the system.

Text and Image
Functions

Performs an operation on a text or image input values or
column, and returns information about the value.

Function Determinism

SQL Server 2000 built-in functions are either deterministic or nondeterministic. Functions are deterministic when they always
return the same result any time they are called with a specific set of input values. Functions are nondeterministic when they could
return different results each time they are called, even with the same specific set of input values.

The determinism of functions dictate whether they can be used in indexed computed columns and indexed views. Index scans
must always produce consistent results. Thus, only deterministic functions can be used to define computed columns and views
that are to be indexed.

Configuration, cursor, meta data, security, and system statistical functions are nondeterministic. In addition, the following built-in
functions are also always nondeterministic:

@@ERROR FORMATMESSAGE NEWID
@@IDENTITY GETANSINULL PERMISSIONS
@@ROWCOUNT GETDATE SESSION_USER
@@TRANCOUNT HOST_ID STATS_DATE
APP_NAME HOST_NAME SYSTEM_USER
CURRENT_TIMESTAMP IDENT_INCR TEXTPTR
CURRENT_USER IDENT_SEED TEXTVALID
DATENAME IDENTITY USER_NAME

Function Collation

Functions that take a character string input and return a character string output use the collation of the input string for the output.

Functions that take non-character inputs and return a character string use the default collation of the current database for the
output.

Functions that take multiple character string inputs and return a character string use the rules of collation precedence to set the
collation of the output string. For more information, see Collation Precedence.

See Also

CREATE FUNCTION

Deterministic and Nondeterministic Functions

User-defined Functions

Transact-SQL Reference (SQL Server 2000)

Aggregate Functions
Aggregate functions perform a calculation on a set of values and return a single value. With the exception of COUNT, aggregate
functions ignore null values. Aggregate functions are often used with the GROUP BY clause of the SELECT statement.

All aggregate functions are deterministic; they return the same value any time they are called with a given set of input values. For
more information about function determinism, see Deterministic and Nondeterministic Functions.

Aggregate functions are allowed as expressions only in:

The select list of a SELECT statement (either a subquery or an outer query).

A COMPUTE or COMPUTE BY clause.

A HAVING clause.

The Transact-SQL programming language provides these aggregate functions:

AVG MAX
BINARY_CHECKSUM MIN
CHECKSUM SUM
CHECKSUM_AGG STDEV
COUNT STDEVP
COUNT_BIG VAR
GROUPING VARP

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Configuration Functions
These scalar functions return information about current configuration option settings.

@@DATEFIRST @@OPTIONS
@@DBTS @@REMSERVER
@@LANGID @@SERVERNAME
@@LANGUAGE @@SERVICENAME
@@LOCK_TIMEOUT @@SPID
@@MAX_CONNECTIONS @@TEXTSIZE
@@MAX_PRECISION @@VERSION
@@NESTLEVEL

All configuration functions are nondeterministic; they do not always return the same results every time they are called with a
specific set of input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Cursor Functions
These scalar functions return information about cursors.

@@CURSOR_ROWS

CURSOR_STATUS

@@FETCH_STATUS

All cursor functions are nondeterministic; they do not always return the same results every time they are called with a specific set
of input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Date and Time Functions
These scalar functions perform an operation on a date and time input value and return a string, numeric, or date and time value.

This table lists the date and time functions and their determinism property. For more information about function determinism, see
Deterministic and Nondeterministic Functions.

Function Determinism
DATEADD Deterministic
DATEDIFF Deterministic
DATENAME Nondeterministic
DATEPART Deterministic except when used as DATEPART (dw, date).

dw, the weekday datepart, depends on the value set by
SET DATEFIRST, which sets the first day of the week.

DAY Deterministic
GETDATE Nondeterministic
GETUTCDATE Nondeterministic
MONTH Deterministic
YEAR Deterministic

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Mathematical Functions
These scalar functions perform a calculation, usually based on input values provided as arguments, and return a numeric value.

ABS DEGREES RAND
ACOS EXP ROUND
ASIN FLOOR SIGN
ATAN LOG SIN
ATN2 LOG10 SQUARE
CEILING PI SQRT
COS POWER TAN
COT RADIANS

Note Arithmetic functions, such as ABS, CEILING, DEGREES, FLOOR, POWER, RADIANS, and SIGN, return a value having the
same data type as the input value. Trigonometric and other functions, including EXP, LOG, LOG10, SQUARE, and SQRT, cast their
input values to float and return a float value.

All mathematical functions, except for RAND, are deterministic functions; they return the same results each time they are called
with a specific set of input values. RAND is deterministic only when a seed parameter is specified. For more information about
function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Meta Data Functions
These scalar functions return information about the database and database objects.

COL_LENGTH fn_listextendedproperty
COL_NAME FULLTEXTCATALOGPROPERTY
COLUMNPROPERTY FULLTEXTSERVICEPROPERTY
DATABASEPROPERTY INDEX_COL
DATABASEPROPERTYEX INDEXKEY_PROPERTY
DB_ID INDEXPROPERTY
DB_NAME OBJECT_ID
FILE_ID OBJECT_NAME
FILE_NAME OBJECTPROPERTY
FILEGROUP_ID @@PROCID
FILEGROUP_NAME SQL_VARIANT_PROPERTY
FILEGROUPPROPERTY TYPEPROPERTY
FILEPROPERTY

All meta data functions are nondeterministic. They do not always return the same results every time they are called with a specific
set of input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Rowset Functions
These rowset functions return an object that can be used in place of a table reference in a Transact-SQL statement.

CONTAINSTABLE

FREETEXTTABLE

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

All rowset functions are nondeterministic; they do not return the same results every time they are called with a specific set of
input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Security Functions
These scalar functions return information about users and roles.

fn_trace_geteventinfo IS_SRVROLEMEMBER
fn_trace_getfilterinfo SUSER_SID
fn_trace_getinfo SUSER_SNAME
fn_trace_gettable USER_ID
HAS_DBACCESS USER
IS_MEMBER

All security functions are nondeterministic. They do not always return the same results every time they are called with a specific
set of input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

String Functions
These scalar functions perform an operation on a string input value and return a string or numeric value.

ASCII NCHAR SOUNDEX
CHAR PATINDEX SPACE
CHARINDEX REPLACE STR
DIFFERENCE QUOTENAME STUFF
LEFT REPLICATE SUBSTRING
LEN REVERSE UNICODE
LOWER RIGHT UPPER
LTRIM RTRIM

All built-in string functions, except for CHARINDEX and PATINDEX, are deterministic. They return the same value any time they are
called with a given set of input values. For more information about function determinism, see Deterministic and Nondeterministic
Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

System Functions
These scalar functions perform operations on and return information about values, objects, and settings in Microsoft® SQL
Server™.

This table lists the system functions and their determinism property. For more information about function determinism, see
Deterministic and Nondeterministic Functions.

Function Determinism
APP_NAME Nondeterministic
CASE expression Deterministic
CAST and CONVERT Deterministic unless used with datetime,

smalldatetime, or sql_variant.
COALESCE Deterministic
COLLATIONPROPERTY Nondeterministic
CURRENT_TIMESTAMP Nondeterministic
CURRENT_USER Nondeterministic
DATALENGTH Deterministic
@@ERROR Nondeterministic
fn_helpcollations Deterministic
fn_servershareddrives Nondeterministic
fn_virtualfilestats Nondeterministic
FORMATMESSAGE Nondeterministic
GETANSINULL Nondeterministic
HOST_ID Nondeterministic
HOST_NAME Nondeterministic
IDENT_CURRENT Nondeterministic
IDENT_INCR Nondeterministic
IDENT_SEED Nondeterministic
@@IDENTITY Nondeterministic
IDENTITY (Function) Nondeterministic
ISDATE Deterministic only if used with the CONVERT

function, the CONVERT style parameter is specified
and the style parameter is not equal to 0, 100, 9, or
109. Styles 0 and 100 use the default format mon
dd yyyy hh:miAM (or PM). Styles 9 and 109 use the
default format plus milliseconds mon dd yyyy
hh:mi:ss:mmmAM (or PM).

ISNULL Deterministic
ISNUMERIC Deterministic
NEWID Nondeterministic
NULLIF Deterministic
PARSENAME Deterministic
PERMISSIONS Nondeterministic
@@ROWCOUNT Nondeterministic
ROWCOUNT_BIG Nondeterministic
SCOPE_IDENTITY Nondeterministic
SERVERPROPERTY Nondeterministic
SESSIONPROPERTY Nondeterministic
SESSION_USER Nondeterministic
STATS_DATE Nondeterministic
SYSTEM_USER Nondeterministic
@@TRANCOUNT Nondeterministic
USER_NAME Nondeterministic

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

System Statistical Functions
These scalar functions return statistical information about the system.

@@CONNECTIONS @@PACK_RECEIVED
@@CPU_BUSY @@PACK_SENT
fn_virtualfilestats @@TIMETICKS
@@IDLE @@TOTAL_ERRORS
@@IO_BUSY @@TOTAL_READ
@@PACKET_ERRORS @@TOTAL_WRITE

All system statistical functions are nondeterministic; they do not always return the same results every time they are called with a
specific set of input values. For more information about function determinism, see Deterministic and Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

Text and Image Functions
These scalar functions perform an operation on a text or image input value or column and return information about the value.

PATINDEX

TEXTPTR

TEXTVALID

These text and image functions are nondeterministic functions and they may not return the same results each time they are called,
even with the same set of input values. For more information about function determinism, see Deterministic and
Nondeterministic Functions.

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

GETANSINULL
Returns the default nullability for the database for this session.

Syntax

GETANSINULL (['database'])

Arguments

'database'

Is the name of the database for which to return nullability information. database is either char or nchar. If char, database is
implicitly converted to nchar.

Return Types

int

Remarks

When the nullability of the given database allows null values and the column or data type nullability is not explicitly defined,
GETANSINULL returns 1. This is the ANSI NULL default.

To activate the ANSI NULL default behavior, one of these conditions must be set:

sp_dboption 'database_name', 'ANSI null default', true

SET ANSI_NULL_DFLT_ON ON

SET ANSI_NULL_DFLT_OFF OFF

Examples

This example checks the default nullability for the pubs database.

USE pubs
GO
SELECT GETANSINULL('pubs')
GO

Here is the result set:

1

(1 row(s) affected)

See Also

System Functions

Transact-SQL Reference (SQL Server 2000)

GETDATE
Returns the current system date and time in the Microsoft® SQL Server™ standard internal format for datetime values.

Syntax

GETDATE ()

Return Types

datetime

Remarks

Date functions can be used in the SELECT statement select list or in the WHERE clause of a query.

In designing a report, GETDATE can be used to print the current date and time every time the report is produced. GETDATE is also
useful for tracking activity, such as logging the time a transaction occurred on an account.

Examples

A. Use GET DATE to return the current date and time

This example finds the current system date and time.

SELECT GETDATE()
GO

Here is the result set:

July 29 1998 2:50 PM

(1 row(s) affected)

B. Use GETDATE with CREATE TABLE

This example creates the employees table and uses GETDATE for a default value for the employee hire date.

USE pubs
GO
CREATE TABLE employees
(
 emp_id char(11) NOT NULL,
 emp_lname varchar(40) NOT NULL,
 emp_fname varchar(20) NOT NULL,
 emp_hire_date datetime DEFAULT GETDATE(),
 emp_mgr varchar(30)
)
GO

See Also

Date and Time Functions

Transact-SQL Reference (SQL Server 2000)

GETUTCDATE
Returns the datetime value representing the current UTC time (Universal Time Coordinate or Greenwich Mean Time). The current
UTC time is derived from the current local time and the time zone setting in the operating system of the computer on which SQL
Server is running.

Syntax

GETUTCDATE()

Return Types

datetime

Remarks

GETUTCDATE is a nondeterministic function. Views and expressions that reference this column cannot be indexed.

GETUTCDATE cannot be called inside a user-defined function.

Transact-SQL Reference (SQL Server 2000)

GO
Signals the end of a batch of Transact-SQL statements to the Microsoft® SQL Server™ utilities.

Syntax

GO

Remarks

GO is not a Transact-SQL statement; it is a command recognized by the osql and isql utilities and SQL Query Analyzer.

SQL Server utilities interpret GO as a signal that they should send the current batch of Transact-SQL statements to SQL Server.
The current batch of statements is composed of all statements entered since the last GO, or since the start of the ad hoc session or
script if this is the first GO. SQL Query Analyzer and the osql and isql command prompt utilities implement GO differently. For
more information, see osql Utility, isql Utility, and SQL Query Analyzer.

A Transact-SQL statement cannot occupy the same line as a GO command. However, the line can contain comments.

Users must follow the rules for batches. For example, any execution of a stored procedure after the first statement in a batch must
include the EXECUTE keyword. The scope of local (user-defined) variables is limited to a batch, and cannot be referenced after a
GO command.

USE pubs
GO
DECLARE @MyMsg VARCHAR(50)
SELECT @MyMsg = 'Hello, World.'
GO -- @MyMsg is not valid after this GO ends the batch.

-- Yields an error because @MyMsg not declared in this batch.
PRINT @MyMsg
GO

SELECT @@VERSION;
-- Yields an error: Must be EXEC sp_who if not first statement in
-- batch.
sp_who
GO

SQL Server applications can send multiple Transact-SQL statements to SQL Server for execution as a batch. The statements in the
batch are then compiled into a single execution plan. Programmers executing ad hoc statements in the SQL Server utilities, or
building scripts of Transact-SQL statements to run through the SQL Server utilities, use GO to signal the end of a batch.

Applications based on the DB-Library, ODBC, or OLE DB APIs receive a syntax error if they attempt to execute a GO command. The
SQL Server utilities never send a GO command to the server.

Permissions

GO is a utility command that requires no permissions. It can be executed by any user.

Examples

This example creates two batches. The first batch contains only a USE pubs statement to set the database context. The remaining
statements use a local variable, so all local variable declarations must be grouped in a single batch. This is done by not having a
GO command until after the last statement that references the variable.

USE pubs
GO
DECLARE @NmbrAuthors int
SELECT @NmbrAuthors = COUNT(*)
FROM authors
PRINT 'The number of authors as of ' +
 CAST(GETDATE() AS char(20)) + ' is ' +
 CAST(@NmbrAuthors AS char (10))
GO

See Also

Batches

Batch Processing

Writing Readable Code

Transact-SQL Reference (SQL Server 2000)

GOTO
Alters the flow of execution to a label. The Transact-SQL statement(s) following GOTO are skipped and processing continues at
the label. GOTO statements and labels can be used anywhere within a procedure, batch, or statement block. GOTO statements can
be nested.

Syntax

Define the label:

 label :

Alter the execution:

 GOTO label

Arguments

label

Is the point after which processing begins if a GOTO is targeted to that label. Labels must follow the rules for identifiers. A label
can be used as a commenting method whether or not GOTO is used.

Remarks

GOTO can exist within conditional control-of-flow statements, statement blocks, or procedures, but it cannot go to a label outside
of the batch. GOTO branching can go to a label defined before or after GOTO.

Permissions

GOTO permissions default to any valid user.

Examples

This example shows GOTO looping as an alternative to using WHILE.

Note The tnames_cursor cursor is not defined. This example is for illustration only.

USE pubs
GO
DECLARE @tablename sysname
SET @tablename = N'authors'
table_loop:
 IF (@@FETCH_STATUS <> -2)
 BEGIN
 SELECT @tablename = RTRIM(UPPER(@tablename))
 EXEC ("SELECT """ + @tablename + """ = COUNT(*) FROM "
 + @tablename)
 PRINT " "
 END
 FETCH NEXT FROM tnames_cursor INTO @tablename
IF (@@FETCH_STATUS <> -1) GOTO table_loop
GO

See Also

BEGIN...END

BREAK

CONTINUE

Control-of-Flow Language

IF...ELSE

WAITFOR

Using Identifiers

WHILE

Transact-SQL Reference (SQL Server 2000)

GRANT
 New Information - SQL Server 2000 SP3.

Creates an entry in the security system that allows a user in the current database to work with data in the current database or
execute specific Transact-SQL statements.

Syntax

Statement permissions:

GRANT { ALL | statement [,...n] }
TO security_account [,...n]

Object permissions:

GRANT
 { ALL [PRIVILEGES] | permission [,...n] }
 {
 [(column [,...n])] ON { table | view }
 | ON { table | view } [(column [,...n])]
 | ON { stored_procedure | extended_procedure }
 | ON { user_defined_function }
 }
TO security_account [,...n]
[WITH GRANT OPTION]
[AS { group | role }]

Arguments

ALL

Grants all applicable permissions. For statement permissions, ALL can be used only by members of the sysadmin and
db_securityadmin roles. For object permissions, ALL can be used by members of the sysadmin, db_securityadmin, and
db_owner roles, and by database object owners.

statement

Is the statement for which permission is being granted. The statement list can include:

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

BACKUP DATABASE

BACKUP LOG

n

A placeholder indicating that the item can be repeated in a comma-separated list.

TO

Specifies the security account list.

security_account

Is the security account to which the permissions are applied. The security account can be a:

Microsoft® SQL Server™ user.

SQL Server role.

Microsoft Windows NT® user.

Windows NT group.

When a permission is granted to a SQL Server user or Windows NT user account, the specified security_account is the only
account affected by the permission. If a permission is granted to a SQL Server role or a Windows NT group, the permission affects
all users in the current database who are members of the group or role. If there are permission conflicts between a group or role
and its members, the most restrictive permission (DENY) takes precedence. security_account must exist in the current database;
permissions cannot be granted to a user, role, or group in another database, unless the user has already been created or given
access to the current database.

Two special security accounts can be used with GRANT. Permissions granted to the public role are applied to all users in the
database. Permissions granted to the guest user are used by all users who do not have a user account in the database.

When granting permissions to a Windows NT local or global group, specify the domain or computer name the group is defined
on, followed by a backslash, then the group name. However, to grant permissions to a Windows NT built-in local group, specify
BUILTIN instead of the domain or computer name.

PRIVILEGES

Is an optional keyword that can be included for SQL-92 compliance.

permission

Is an object permission that is being granted. When object permissions are granted on a table, table-valued function, or a view,
the permission list can include one or more of these permissions: SELECT, INSERT, DELETE, REFERENCES, or UPDATE. A column-
list can be supplied along with SELECT and UPDATE permissions. If a column-list is not supplied with SELECT and UPDATE
permissions, then the permission applies to all the columns in the table, view, or table-valued function.

Object permissions granted on a stored procedure can include only EXECUTE. Object permissions granted on a scalar-valued
function can include EXECUTE and REFERENCES.

SELECT permission is needed on a column in order to access that column in a SELECT statement. UPDATE permission is needed
on a column in order to update that column using an UPDATE statement.

The REFERENCES permission on a table is needed in order to create a FOREIGN KEY constraint that references that table.

The REFERENCES permission is needed on an object in order to create a FUNCTION or VIEW with the WITH SCHEMABINDING
clause that references that object.

column

Is the name of a column in the current database for which permissions are being granted.

table

Is the name of the table in the current database for which permissions are being granted.

view

Is the name of the view in the current database for which permissions are being granted.

stored_procedure

Is the name of the stored procedure in the current database for which permissions are being granted.

extended_procedure

Is the name of the extended stored procedure for which permissions are being granted.

user_defined_function

Is the name of the user-defined function for which permissions are being granted.

WITH GRANT OPTION

Specifies that the security_account is given the ability to grant the specified object permission to the other security accounts. The
WITH GRANT OPTION clause is valid only with object permissions.

AS {group | role}

Specifies the optional name of the security account in the current database that has the authority to execute the GRANT
statement. AS is used when permissions on an object are granted to a group or role, and the object permissions need to be
further granted to users who are not members of the group or role. Because only a user, rather than a group or role, can execute a
GRANT statement, a specific member of the group or role grants permissions on the object under the authority of the group or
role.

Remarks

Cross-database permissions are not allowed; permissions can be granted only to users in the current database for objects and
statements in the current database. If a user needs permissions to objects in another database, create the user account in the
other database, or grant the user account access to the other database, as well as the current database.

Note System stored procedures are the exception because EXECUTE permissions are already granted to the public role, allowing
everyone to execute them. However, after a system stored procedure is executed, it checks the user's role membership. If the user
is not a member of the appropriate fixed server or database role necessary to run the stored procedure, the stored procedure
does not continue.

The REVOKE statement can be used to remove granted permissions, and the DENY statement can be used to prevent a user from
gaining permissions through a GRANT to their user account.

A granted permission removes the denied or revoked permission at the level granted (user, group, or role). The same permission
denied at another level such as group or role containing the user takes precedence. However, although the same permission
revoked at another level still applies, it does not prevent the user from accessing the object.

If a user activates an application role, the effect of GRANT is null for any objects the user accesses using the application role.
Therefore, although a user may be granted access to a specific object in the current database, if the user uses an application role
that does not have access to the object, the user also does not have access while the application role is activated.

The sp_helprotect system stored procedure reports permissions on a database object or user.

Permissions

GRANT permissions depend on the statement permissions being granted and the object involved in the permissions. The
members of the sysadmin role can grant any permissions in any database. Object owners can grant permissions for the objects
they own. Members of the db_owner or db_securityadmin roles can grant any permissions on any statement or object in their
database.

Statements that require permissions are those that add objects in the database or perform administrative activities with the
database. Each statement that requires permissions has a certain set of roles that automatically have permissions to execute the
statement. For example, the CREATE TABLE permission defaults to members of the sysadmin and db_owner and db_ddladmin
roles. The permissions to execute the SELECT statement for a table default to the sysadmin and db_owner roles, and the owner
of the object.

There are some Transact-SQL statements that cannot be granted as permissions; the ability to execute these statements requires
membership in a fixed role that has implied permissions to execute special statements. For example, to execute the SHUTDOWN
statement, the user must be added as member of the serveradmin role.

Members of the dbcreator, processadmin, securityadmin, and serveradmin fixed server roles have permissions to execute
only these Transact-SQL statements.

Statement dbcreator processadmin securityadmin serveradmin bulkadmin
ALTER
DATABASE

X

CREATE
DATABASE

X

BULK INSERT X
DBCC X (1)
DENY X (2)

GRANT X (2)
KILL X
RECONFIGURE X
RESTORE X
REVOKE X (2)
SHUTDOWN X

(1) For more information, see the DBCC statement.
(2) Applies to the CREATE DATABASE statement only.

Note Members of the diskadmin and setupadmin fixed server roles do not have permissions to execute any Transact-SQL
statements, only certain system stored procedures. Members of the sysadmin fixed server role, however, have permissions to
execute all Transact-SQL statements.

Members of the following fixed database roles have permissions to execute the specified Transact-SQL statements.

Statement db_owner db_datareader db_datawriter db_ddladmin
db_backupoperator db_securityadmin

ALTER
DATABASE

X X

ALTER
FUNCTION

X X

ALTER
PROCEDURE

X X

ALTER TABLE X (1) X
ALTER
TRIGGER

X X

ALTER VIEW X (1) X
BACKUP X X
CHECKPOINT X X
CREATE
DEFAULT

X X

CREATE
FUNCTION

X X

CREATE
INDEX

X (1) X

CREATE
PROCEDURE

X X

CREATE
RULE

X X

CREATE
TABLE

X X

CREATE
TRIGGER

X (1) X

CREATE
VIEW

X X

DBCC X X (2)
DELETE X (1) X
DENY X X
DENY on
object

X

DROP X (1) X
EXECUTE X (1)
GRANT X X
GRANT on
object

X (1)

INSERT X (1) X
READTEXT X (1) X

REFERENCES X (1) X
RESTORE X
REVOKE X X
REVOKE on
object

X (1)

SELECT X (1) X
TRUNCATE
TABLE

X (1) X

UPDATE X (1) X
UPDATE
STATISTICS

X (1)

UPDATETEXT X (1) X
WRITETEXT X (1) X

(1) Permission applies to the object owner as well.
(2) For more information, see the DBCC statement.

Note Members of the db_accessadmin fixed database role do not have permissions to execute any Transact-SQL statements,
only certain system stored procedures.

The Transact-SQL statements that do not require permissions to be executed (automatically granted to public) are:

BEGIN TRANSACTION COMMIT TRANSACTION
PRINT RAISERROR
ROLLBACK TRANSACTION SAVE TRANSACTION
SET

For more information about the permissions required to execute the system stored procedures, see the appropriate system stored
procedure.

Examples

A. Grant statement permissions

This example grants multiple statement permissions to the users Mary and John, and the Corporate\BobJ Windows NT group.

GRANT CREATE DATABASE, CREATE TABLE
TO Mary, John, [Corporate\BobJ]

B. Grant object permissions with in the permission h ierarchy

This example shows the preferred ordering of permissions. First, SELECT permissions are granted to the public role. Then, specific
permissions are granted to users Mary, John, and Tom. These users then have all permissions to the authors table.

USE pubs
GO

GRANT SELECT
ON authors
TO public
GO

GRANT INSERT, UPDATE, DELETE
ON authors
TO Mary, John, Tom
GO

C. Grant permissions to a SQL Server role

This example grants CREATE TABLE permissions to all members of the Accounting role.

GRANT CREATE TABLE TO Accounting

D. Grant permissions using the AS option

The Plan_Data table is owned by the user Jean. Jean grants SELECT permissions, specifying the WITH GRANT OPTION clause, on
Plan_Data to the Accounting role. The user Jill, who is member of Accounting, wants to grant SELECT permissions on the
Plan_Data table to the user Jack, who is not a member of Accounting.

Because the permission to GRANT other users SELECT permissions to the Plan_Data table were granted to the Accounting role
and not Jill explicitly, Jill cannot grant permissions for the table based on the permissions granted through being a member of
the Accounting role. Jill must use the AS clause to assume the grant permissions of the Accounting role.

/* User Jean */
GRANT SELECT ON Plan_Data TO Accounting WITH GRANT OPTION

/* User Jill */
GRANT SELECT ON Plan_Data TO Jack AS Accounting

See Also

Granting Permissions

DENY

REVOKE

sp_addgroup

sp_addlogin

sp_adduser

sp_changegroup

sp_changedbowner

sp_dropgroup

sp_dropuser

sp_helpgroup

sp_helprotect

sp_helpuser

Transact-SQL Reference (SQL Server 2000)

GROUP BY
Divides a table into groups. Groups can consist of column names or results or computed columns. For more information, see
SELECT.

Transact-SQL Reference (SQL Server 2000)

GROUPING
Is an aggregate function that causes an additional column to be output with a value of 1 when the row is added by either the
CUBE or ROLLUP operator, or 0 when the row is not the result of CUBE or ROLLUP.

Grouping is allowed only in the select list associated with a GROUP BY clause that contains either the CUBE or ROLLUP operator.

Syntax

GROUPING (column_name)

Arguments

column_name

Is a column in a GROUP BY clause to check for CUBE or ROLLUP null values.

Return Types

int

Remarks

Grouping is used to distinguish the null values returned by CUBE and ROLLUP from standard null values. The NULL returned as
the result of a CUBE or ROLLUP operation is a special use of NULL. It acts as a column placeholder in the result set and means
"all."

Examples

This example groups royalty and aggregate advance amounts. The GROUPING function is applied to the royalty column.

USE pubs
SELECT royalty, SUM(advance) 'total advance',
 GROUPING(royalty) 'grp'
 FROM titles
 GROUP BY royalty WITH ROLLUP

The result set shows two null values under royalty. The first NULL represents the group of null values from this column in the
table. The second NULL is in the summary row added by the ROLLUP operation. The summary row shows the total advance
amounts for all royalty groups and is indicated by 1 in the grp column.

Here is the result set:

royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

See Also

Aggregate Functions

SELECT

Transact-SQL Reference (SQL Server 2000)

HAS_DBACCESS
Returns information about whether the user has access to the specified database.

Syntax

HAS_DBACCESS ('database_name')

Arguments

database_name

Is the name of the database for which the user wants access information. database_name is sysname.

Return Types

int

Remarks

HAS_DBACCESS returns 1 if the user has access to the database, 0 if the user has no access to the database, and NULL if the
database name is invalid.

Transact-SQL Reference (SQL Server 2000)

HAVING
Specifies a search condition for a group or an aggregate. HAVING can be used only with the SELECT statement. It is usually used
in a GROUP BY clause. When GROUP BY is not used, HAVING behaves like a WHERE clause. For more information, see SELECT.

Transact-SQL Reference (SQL Server 2000)

HOST_ID
Returns the workstation identification number.

Syntax

HOST_ID ()

Return Types

char(8)

Remarks

When the parameter to a system function is optional, the current database, host computer, server user, or database user is
assumed. Built-in functions must always be followed by parentheses.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed.

Examples

This example creates a table that uses HOST_ID() in a DEFAULT definition to record the terminal ID of computers that insert rows
into a table recording orders.

CREATE TABLE Orders
 (OrderID INT PRIMARY KEY,
 CustomerID NCHAR(5) REFERENCES Customers(CustomerID),
 TerminalID CHAR(8) NOT NULL DEFAULT HOST_ID(),
 OrderDate DATETIME NOT NULL,
 ShipDate DATETIME NULL,
 ShipperID INT NULL REFERENCES Shippers(ShipperID))
GO

See Also

Expressions

System Functions

Transact-SQL Reference (SQL Server 2000)

HOST_NAME
Returns the workstation name.

Syntax

HOST_NAME ()

Return Types

nchar

Remarks

When the parameter to a system function is optional, the current database, host computer, server user, or database user is
assumed. Built-in functions must always be followed by parentheses.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed.

Examples

This example creates a table that uses HOST_NAME() in a DEFAULT definition to record the workstation name of computers that
insert rows into a table recording orders.

CREATE TABLE Orders
 (OrderID INT PRIMARY KEY,
 CustomerID NCHAR(5) REFERENCES Customers(CustomerID),
 Workstation NCHAR(30) NOT NULL DEFAULT HOST_NAME(),
 OrderDate DATETIME NOT NULL,
 ShipDate DATETIME NULL,
 ShipperID INT NULL REFERENCES Shippers(ShipperID))

See Also

Expressions

System Functions

Transact-SQL Reference (SQL Server 2000)

IDENT_CURRENT
Returns the last identity value generated for a specified table in any session and any scope.

Syntax

IDENT_CURRENT('table_name')

Arguments

table_name

Is the name of the table whose identity value will be returned. table_name is varchar, with no default.

Return Types

sql_variant

Remarks

IDENT_CURRENT is similar to the Microsoft® SQL Server™ 2000 identity functions SCOPE_IDENTITY and @@IDENTITY. All three
functions return last-generated identity values. However, the scope and session on which 'last' is defined in each of these
functions differ.

IDENT_CURRENT returns the last identity value generated for a specific table in any session and any scope.

@@IDENTITY returns the last identity value generated for any table in the current session, across all scopes.

SCOPE_IDENTITY returns the last identity value generated for any table in the current session and the current scope.

Examples

This example illustrates the different identity values returned by IDENT_CURRENT, @@IDENTITY, and SCOPE_IDENTITY.

USE pubs
DROP TABLE t6
DROP TABLE t7
GO
CREATE TABLE t6(id int IDENTITY)
CREATE TABLE t7(id int IDENTITY(100,1))
GO
CREATE TRIGGER t6ins ON t6 FOR INSERT
AS
BEGIN
 INSERT t7 DEFAULT VALUES
END
GO
--end of trigger definition

SELECT * FROM t6
--id is empty.

SELECT * FROM t7
--id is empty.

--Do the following in Session 1
INSERT t6 DEFAULT VALUES
SELECT @@IDENTITY
/*Returns the value 100, which was inserted by the trigger.*/

SELECT SCOPE_IDENTITY()
/* Returns the value 1, which was inserted by the
INSERT stmt 2 statements before this query.*/

SELECT IDENT_CURRENT('t7')
/* Returns value inserted into t7, i.e. in the trigger.*/

SELECT IDENT_CURRENT('t6')
/* Returns value inserted into t6, which was the INSERT statement 4 stmts before this query.*/

-- Do the following in Session 2
SELECT @@IDENTITY
/* Returns NULL since there has been no INSERT action
so far in this session.*/

SELECT SCOPE_IDENTITY()
/* Returns NULL since there has been no INSERT action
so far in this scope in this session.*/

SELECT IDENT_CURRENT('t7')
/* Returns the last value inserted into t7.*/

See Also

@@IDENTITY

SCOPE_IDENTITY

Transact-SQL Reference (SQL Server 2000)

IDENT_INCR
Returns the increment value (returned as numeric(@@MAXPRECISION,0)) specified during the creation of an identity column in
a table or view that has an identity column.

Syntax

IDENT_INCR ('table_or_view')

Arguments

'table_or_view'

Is an expression specifying the table or view to check for a valid identity increment value. table_or_view can be a character string
constant enclosed in quotation marks, a variable, a function, or a column name. table_or_view is char, nchar, varchar, or
nvarchar.

Return Types

numeric

Examples

This example returns 1 for the jobs table in the pubs database because the jobs table includes an identity column with an
increment value of 1.

USE pubs
SELECT TABLE_NAME, IDENT_INCR(TABLE_NAME) AS IDENT_INCR
FROM INFORMATION_SCHEMA.TABLES
WHERE IDENT_INCR(TABLE_NAME) IS NOT NULL

Here is the result set:

TABLE_NAME IDENT_INCR
-- -----------
jobs 1

(1 row(s) affected)

See Also

Expressions

System Functions

Transact-SQL Reference (SQL Server 2000)

IDENT_SEED
Returns the seed value (returned as numeric(@@MAXPRECISION,0)) specified during the creation of an identity column in a
table or a view that has an identity column.

Syntax

IDENT_SEED ('table_or_view')

Arguments

'table_or_view'

Is an expression specifying the table or view to check for a valid identity seed value. table_or_view can be a character string
constant enclosed in quotation marks, a variable, a function, or a column name. table_or_view is char, nchar, varchar, or
nvarchar.

Return Types

numeric

Examples

This example returns 1 for the jobs table in the pubs database because the jobs table includes an identity column with a seed
value of 1.

USE pubs
SELECT TABLE_NAME, IDENT_SEED(TABLE_NAME) AS IDENT_SEED
FROM INFORMATION_SCHEMA.TABLES
WHERE IDENT_SEED(TABLE_NAME) IS NOT NULL

Here is the result set:

TABLE_NAME IDENT_SEED
-- -----------
jobs 1

(1 row(s) affected)

See Also

Expressions

System Functions

Transact-SQL Reference (SQL Server 2000)

IDENTITY (Property)
Creates an identity column in a table. This property is used with the CREATE TABLE and ALTER TABLE Transact-SQL statements.

Note The IDENTITY property is not the same as the SQL-DMO Identity property that exposes the row identity property of a
column.

Syntax

IDENTITY [(seed , increment)]

Arguments

seed

Is the value that is used for the very first row loaded into the table.

increment

Is the incremental value that is added to the identity value of the previous row that was loaded.

You must specify both the seed and increment or neither. If neither is specified, the default is (1,1).

Remarks

If an identity column exists for a table with frequent deletions, gaps can occur between identity values. If this is a concern, do not
use the IDENTITY property. However, to ensure that no gaps have been created or to fill an existing gap, evaluate the existing
identity values before explicitly entering one with SET IDENTITY_INSERT ON.

If you are reusing a removed identity value, use the sample code in Example B to check for the next available identity value.
Replace tablename, column_type, and max(column_type) - 1 with your table name, identity column data type, and numeric value
of the maximum allowable value (for that data type) -1.

Use DBCC CHECKIDENT to check the current identity value and compare it with the maximum value in the identity column.

When the IDENTITY property is used with CREATE TABLE, Microsoft® SQL Server™ uses the NOT FOR REPLICATION option of
CREATE TABLE to override the automatic incrementing of an identity column. Usually, SQL Server assigns each new row inserted
in a table a value that is some increment greater than the previous highest value. However, if the new rows are replicated from
another data source, the identity values must remain exactly as they were at the data source.

Examples

A. Use the IDEN TITY property with CREATE TABLE

This example creates a new table using the IDENTITY property for an automatically incrementing identification number.

USE pubs
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'new_employees')
 DROP TABLE new_employees
GO
CREATE TABLE new_employees
(
 id_num int IDENTITY(1,1),
 fname varchar (20),
 minit char(1),
 lname varchar(30)
)

INSERT new_employees
 (fname, minit, lname)
VALUES
 ('Karin', 'F', 'Josephs')

INSERT new_employees
 (fname, minit, lname)
VALUES
 ('Pirkko', 'O', 'Koskitalo')

B. Use generic syntax for finding gaps in identity values

This example shows generic syntax for finding gaps in identity values when data is removed.

Note The first part of the following Transact-SQL script is designed for illustration purposes only. You can run the Transact-SQL
script that starts with the comment: - - Create the img table.

-- Here is the generic syntax for finding identity value gaps in data.
-- This is the beginning of the illustrative example.
SET IDENTITY_INSERT tablename ON

DECLARE @minidentval column_type
DECLARE @nextidentval column_type
SELECT @minidentval = MIN(IDENTITYCOL) FROM tablename
IF @minidentval = IDENT_SEED('tablename')
 SELECT @nextidentval = MIN(IDENTITYCOL) + IDENT_INCR('tablename')
 FROM tablename t1
 WHERE IDENTITYCOL BETWEEN IDENT_SEED('tablename') AND
 MAX(column_type) AND
 NOT EXISTS (SELECT * FROM tablename t2
 WHERE t2.IDENTITYCOL = t1.IDENTITYCOL +
 IDENT_INCR('tablename'))
ELSE
 SELECT @nextidentval = IDENT_SEED('tablename')
SET IDENTITY_INSERT tablename OFF
-- Here is an example to find gaps in the actual data.
-- The table is called img and has two columns: the first column
-- called id_num, which is an increasing identification number, and the
-- second column called company_name.
-- This is the end of the illustration example.

-- Create the img table.
-- If the img table already exists, drop it.
-- Create the img table.
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'img')
 DROP TABLE img
GO
CREATE TABLE img (id_num int IDENTITY(1,1), company_name sysname)
INSERT img(company_name) VALUES ('New Moon Books')
INSERT img(company_name) VALUES ('Lucerne Publishing')
-- SET IDENTITY_INSERT ON and use in img table.
SET IDENTITY_INSERT img ON

DECLARE @minidentval smallint
DECLARE @nextidentval smallint
SELECT @minidentval = MIN(IDENTITYCOL) FROM img
 IF @minidentval = IDENT_SEED('img')
 SELECT @nextidentval = MIN(IDENTITYCOL) + IDENT_INCR('img')
 FROM img t1
 WHERE IDENTITYCOL BETWEEN IDENT_SEED('img') AND 32766 AND
 NOT EXISTS (SELECT * FROM img t2
 WHERE t2.IDENTITYCOL = t1.IDENTITYCOL + IDENT_INCR('img'))
 ELSE
 SELECT @nextidentval = IDENT_SEED('img')
SET IDENTITY_INSERT img OFF

See Also

ALTER TABLE

CREATE TABLE

DBCC CHECKIDENT

IDENT_INCR

@@IDENTITY

IDENTITY (Function)

IDENT_SEED

SELECT

SET IDENTITY_INSERT

Transact-SQL Reference (SQL Server 2000)

IDENTITY (Function)
Is used only in a SELECT statement with an INTO table clause to insert an identity column into a new table.

Although similar, the IDENTITY function is not the IDENTITY property that is used with CREATE TABLE and ALTER TABLE.

Syntax

IDENTITY (data_type [, seed , increment]) AS column_name

Arguments

data_type

Is the data type of the identity column. Valid data types for an identity column are any data types of the integer data type category
(except for the bit data type), or decimal data type.

seed

Is the value to be assigned to the first row in the table. Each subsequent row is assigned the next identity value, which is equal to
the last IDENTITY value plus the increment value. If neither seed nor increment is specified, both default to 1.

increment

Is the increment to add to the seed value for successive rows in the table.

column_name

Is the name of the column that is to be inserted into the new table.

Return Types

Returns the same as data_type.

Remarks

Because this function creates a column in a table, a name for the column must be specified in the select list in one of these ways:

--(1)
SELECT IDENTITY(int, 1,1) AS ID_Num
INTO NewTable
FROM OldTable

--(2)
SELECT ID_Num = IDENTITY(int, 1, 1)
INTO NewTable
FROM OldTable

Examples

This example inserts all rows from the employee table from the pubs database into a new table called employees. The IDENTITY
function is used to start identification numbers at 100 instead of 1 in the employees table.

USE pubs
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'employees')
 DROP TABLE employees
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'true'

SELECT emp_id AS emp_num,
 fname AS first,
 minit AS middle,
 lname AS last,
 IDENTITY(smallint, 100, 1) AS job_num,
 job_lvl AS job_level,
 pub_id,
 hire_date
INTO employees
FROM employee
GO
USE pubs

EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'false'

See Also

CREATE TABLE

@@IDENTITY

IDENTITY (Property)

SELECT @local_variable

Using System Functions

Transact-SQL Reference (SQL Server 2000)

IF...ELSE
Imposes conditions on the execution of a Transact-SQL statement. The Transact-SQL statement following an IF keyword and its
condition is executed if the condition is satisfied (when the Boolean expression returns TRUE). The optional ELSE keyword
introduces an alternate Transact-SQL statement that is executed when the IF condition is not satisfied (when the Boolean
expression returns FALSE).

Syntax

IF Boolean_expression
 { sql_statement | statement_block }
[ELSE
 { sql_statement | statement_block }]

Arguments

Boolean_expression

Is an expression that returns TRUE or FALSE. If the Boolean expression contains a SELECT statement, the SELECT statement must
be enclosed in parentheses.

{sql_statement | statement_block}

Is any Transact-SQL statement or statement grouping as defined with a statement block. Unless a statement block is used, the IF
or ELSE condition can affect the performance of only one Transact-SQL statement. To define a statement block, use the control-of-
flow keywords BEGIN and END. CREATE TABLE or SELECT INTO statements must refer to the same table name if the CREATE
TABLE or SELECT INTO statements are used in both the IF and ELSE areas of the IF...ELSE block.

Remarks

IF...ELSE constructs can be used in batches, in stored procedures (in which these constructs are often used to test for the existence
of some parameter), and in ad hoc queries.

IF tests can be nested after another IF or following an ELSE. There is no limit to the number of nested levels.

Examples

A. Use one IF...ELSE block

This example shows an IF condition with a statement block. If the average price of the title is not less than $15, it prints the text:
Average title price is more than $15.

USE pubs

IF (SELECT AVG(price) FROM titles WHERE type = 'mod_cook') < $15
BEGIN
 PRINT 'The following titles are excellent mod_cook books:'
 PRINT ' '
 SELECT SUBSTRING(title, 1, 35) AS Title
 FROM titles
 WHERE type = 'mod_cook'
END
ELSE
 PRINT 'Average title price is more than $15.'

Here is the result set:

The following titles are excellent mod_cook books:

Title

Silicon Valley Gastronomic Treats
The Gourmet Microwave

(2 row(s) affected)

B. Use more than one IF...ELSE block

This example uses two IF blocks. If the average price of the title is not less than $15, it prints the text: Average title price is more
than $15. If the average price of modern cookbooks is more than $15, the statement that the modern cookbooks are expensive is
printed.

USE pubs

IF (SELECT AVG(price) FROM titles WHERE type = 'mod_cook') < $15
BEGIN
 PRINT 'The following titles are excellent mod_cook books:'
 PRINT ' '
 SELECT SUBSTRING(title, 1, 35) AS Title
 FROM titles
 WHERE type = 'mod_cook'
END
ELSE
 IF (SELECT AVG(price) FROM titles WHERE type = 'mod_cook') > $15
BEGIN
 PRINT 'The following titles are expensive mod_cook books:'
 PRINT ' '
 SELECT SUBSTRING(title, 1, 35) AS Title
 FROM titles
 WHERE type = 'mod_cook'
END

See Also

ALTER TRIGGER

BEGIN...END

CREATE TABLE

CREATE TRIGGER

ELSE (IF...ELSE)

END (BEGIN...END)

SELECT

WHILE

Transact-SQL Reference (SQL Server 2000)

image
For more information about the image data type, see ntext, text, and image.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

IN
Determines if a given value matches any value in a subquery or a list.

Syntax

test_expression [NOT] IN
 (
 subquery
 | expression [,...n]
)

Arguments

test_expression

Is any valid Microsoft® SQL Server™ expression.

subquery

Is a subquery that has a result set of one column. This column must have the same data type as test_expression.

expression [,...n]

Is a list of expressions to test for a match. All expressions must be of the same type as test_expression.

Result Types

Boolean

Result Value

If the value of test_expression is equal to any value returned by subquery or is equal to any expression from the comma-separated
list, the result value is TRUE. Otherwise, the result value is FALSE.

Using NOT IN negates the returned value.

Examples

A. Compare OR and IN

This example selects a list of the names and states of all authors who live in California, Indiana, or Maryland.

USE pubs

SELECT au_lname, state
FROM authors
WHERE state = 'CA' OR state = 'IN' OR state = 'MD'

However, you get the same results using IN:

USE pubs

SELECT au_lname, state
FROM authors
WHERE state IN ('CA', 'IN', 'MD')

Here is the result set from either query:

au_lname state
-------- -----
White CA
Green CA
Carson CA
O'Leary CA
Straight CA
Bennet CA
Dull CA
Gringlesby CA
Locksley CA

Yokomoto CA
DeFrance IN
Stringer CA
MacFeather CA
Karsen CA
Panteley MD
Hunter CA
McBadden CA

(17 row(s) affected)

B. Use IN with a subquery

This example finds all au_ids in the titleauthor table for authors who make less than 50 percent of the royalty on any one book,
and then selects from the authors table all author names with au_ids that match the results from the titleauthor query. The
results show that several authors fall into the less-than-50-percent category.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id IN
 (SELECT au_id
 FROM titleauthor
 WHERE royaltyper < 50)

Here is the result set:

au_lname au_fname
-- --------------------
Green Marjorie
O'Leary Michael
Gringlesby Burt
Yokomoto Akiko
MacFeather Stearns
Ringer Anne

(6 row(s) affected)

C. Use N OT IN with a subquery

NOT IN finds the authors who do not match the items in the values list. This example finds the names of authors who do not
make less than 50 percent of the royalties on at least one book.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id NOT IN
 (SELECT au_id
 FROM titleauthor
 WHERE royaltyper < 50)

Here is the result set:

au_lname au_fname
-- --------------------
White Johnson
Carson Cheryl
Straight Dean
Smith Meander
Bennet Abraham
Dull Ann
Locksley Charlene
Greene Morningstar
Blotchet-Halls Reginald
del Castillo Innes
DeFrance Michel
Stringer Dirk
Karsen Livia
Panteley Sylvia
Hunter Sheryl
McBadden Heather
Ringer Albert

(17 row(s) affected)

See Also

CASE

Expressions

Functions

Operators

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

INDEXKEY_PROPERTY
Returns information about the index key.

Syntax

INDEXKEY_PROPERTY (table_ID , index_ID , key_ID , property)

Arguments

table_ID

Is the table identification number. table_ID is int.

index_ID

Is the index identification number. index_ID is int.

key_ID

Is the index column position. key_ID is int.

property

Is the name of the property for which information will be returned. property is a character string and can be one of these values.

Value Description
ColumnId Column ID at the key_ID position of the index.
IsDescending Order in which the index column is stored.

1 = Descending
0 = Ascending

Return Types

int

Examples

SELECT indexkey_property(OBJECT_ID('authors'),2,2,'ColumnId')

SELECT indexkey_property(OBJECT_ID('authors'),2,2,'IsDescending')

Transact-SQL Reference (SQL Server 2000)

INDEXPROPERTY
Returns the named index property value given a table identification number, index name, and property name.

Syntax

INDEXPROPERTY (table_ID , index , property)

Arguments

table_ID

Is an expression containing the identification number of the table or indexed view for which to provide index property
information. table_ID is int.

index

Is an expression containing the name of the index for which to return property information. index is nvarchar(128).

property

Is an expression containing the name of the database property to return. property is varchar(128), and can be one of these
values.

Property Description
IndexDepth Depth of the index.

Returns the number of levels the index has.

IndexFillFactor Index specifies its own fill factor.

Returns the fill factor used when the index was
created or last rebuilt.

IndexID Index ID of the index on a specified table or indexed
view.

IsAutoStatistics Index was generated by the auto create statistics
option of sp_dboption.

1 = True
0 = False
NULL = Invalid input

IsClustered Index is clustered.

1 = True
0 = False
NULL = Invalid input

IsFulltextKey Index is the full-text key for a table.

1 = True
0 = False
NULL = Invalid input

IsHypothetical Index is hypothetical and cannot be used directly as a
data access path. Hypothetical indexes hold column
level statistics.

1 = True
0 = False
NULL = Invalid input

IsPadIndex Index specifies space to leave open on each interior
node.

1 = True
0 = False
NULL = Invalid input

IsPageLockDisallowed 1 = Page locking is disallowed through
sp_indexoption.
0 = Page locking is allowed.
NULL = Invalid input

IsRowLockDisallowed 1 = Row locking is disallowed through
sp_indexoption.
0 = Row locking is allowed.
NULL = Invalid input.

IsStatistics Index was created by the CREATE STATISTICS
statement or by the auto create statistics option of
sp_dboption. Statistics indexes are used as a
placeholder for column-level statistics.

1 = True
0 = False
NULL = Invalid input

IsUnique Index is unique.

1 = True
0 = False
NULL = Invalid input

Return Types

int

Examples

This example returns the setting for the IsPadIndex property for the UPKCL_auidind index of the authors table.

USE pubs
SELECT INDEXPROPERTY(OBJECT_ID('authors'), 'UPKCL_auidind',
 'IsPadIndex')

See Also

Control-of-Flow Language

CREATE INDEX

DELETE

INSERT

Meta data Functions

Operators (Logical Operators)

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

INDEX_COL
Returns the indexed column name.

Syntax

INDEX_COL ('table' , index_id , key_id)

Arguments

'table'

Is the name of the table.

index_id

Is the ID of the index.

key_id

Is the ID of the key.

Return Types

nvarchar (256)

Examples

This example produces a list of indexes in the authors table.

USE pubs

-- Declare variables to use in this example.
DECLARE @id int, @type char(2),@msg varchar(80),
 @indid smallint, @indname sysname, @status int,
 @indkey int, @name varchar(30)
-- Obtain the identification number for the authors table to look up
-- its indexes in the sysindexes table.
SET NOCOUNT ON
SELECT @id = id, @type = type, @name = 'authors'
FROM sysobjects
WHERE name = 'authors' and type = 'U'

-- Start printing the output information.
print 'Index information for the authors table'
print '---------------------------------------'

-- Loop through all indexes in the authors table.
-- Declare a cursor.
DECLARE i cursor
FOR
SELECT indid, name, status
FROM sysindexes
WHERE id = @id

-- Open the cursor and fetch next set of index information.
OPEN i

FETCH NEXT FROM i INTO @indid, @indname, @status

 IF @@FETCH_STATUS = 0
 PRINT ' '

 -- While there are still rows to retrieve from the cursor,
 -- find out index information and print it.
 WHILE @@FETCH_STATUS = 0
 BEGIN

 SET @msg = NULL
 -- Print the index name and the index number.
 SET @msg = ' Index number ' + CONVERT(varchar, @indid)+
 ' is '+@indname

 SET @indkey = 1

 -- @indkey (equivalent to key_id in the syntax diagram of
 -- INDEX_COL) can be from 1 to 16.
 WHILE @indkey <= 16 and INDEX_COL(@name, @indid, @indkey)
 IS NOT NULL

 BEGIN
 -- Print different information if @indkey <> 1.
 IF @indkey = 1
 SET @msg = @msg + ' on '
 + index_col(@name, @indid, @indkey)
 ELSE
 SET @msg = @msg + ', '
 + index_col(@name, @indid, @indkey)

 SET @indkey = @indkey + 1
 END

 PRINT @msg
 SET @msg = NULL
 FETCH NEXT FROM i INTO @indid, @indname, @status

 END
 CLOSE i
 DEALLOCATE i

SET NOCOUNT OFF

Here is the result set:

Index information for the authors table

 Index number 1 is UPKCL_auidind on au_id
 Index number 2 is aunmind on au_lname, au_fname

See Also

Expressions

Metadata Functions

WHERE

Transact-SQL Reference (SQL Server 2000)

Information Schema Views
Microsoft® SQL Server™ 2000 provides two methods for obtaining meta data: system stored procedures or information schema
views.

Note To obtain meta data, use system stored procedures, system functions, or these system-supplied views only. Querying the
system tables directly may not provide accurate information if system tables are changed in future releases.

These views provide an internal, system table-independent view of the SQL Server meta data. Information schema views allow
applications to work properly even though significant changes have been made to the system tables. The information schema
views included in SQL Server conform to the SQL-92 Standard definition for the INFORMATION_SCHEMA.

SQL Server supports a three-part naming convention when referring to the current server. The SQL-92 standard also supports a
three-part naming convention. However, the names used in both naming conventions are different. These views are defined in a
special schema named INFORMATION_SCHEMA, which is contained in each database, but visible only in the master database.
Each INFORMATION_SCHEMA view contains meta data for all data objects stored in that particular database. This table
describes the relationships between the SQL Server names and the SQL-92-standard names.

SQL Server name Maps to this equivalent SQL-92 name
Database catalog
Owner schema
Object object
user-defined data type domain

This naming convention mapping applies to these SQL Server SQL-92-compatible views. These views are defined in a special
schema named INFORMATION_SCHEMA, which is contained in each database. Each INFORMATION_SCHEMA view contains
meta data for all data objects stored in that particular database.

CHECK_CONSTRAINTS

COLUMN_DOMAIN_USAGE

COLUMN_PRIVILEGES

COLUMNS

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE

DOMAIN_CONSTRAINTS

DOMAINS

KEY_COLUMN_USAGE

PARAMETERS

REFERENTIAL_CONSTRAINTS

ROUTINES

ROUTINE_COLUMNS

SCHEMATA

TABLE_CONSTRAINTS

TABLE_PRIVILEGES

TABLES

VIEW_COLUMN_USAGE

VIEW_TABLE_USAGE

VIEWS

In addition, some views contain references to different classes of data such as character data or binary data.

When referencing the information schema views, you must use a qualified name that includes the INFORMATION_SCHEMA
schema name in the position where you usually specify the user name. For example:

SELECT *
FROM Northwind.INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = N'Customers'

See Also

Data Types

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

CHECK_CONSTRAINTS
Contains one row for each CHECK constraint in the current database. This information schema view returns information about the
objects to which the current user has permissions. The INFORMATION_SCHEMA.CHECK_CONSTRAINTS view is based on the
sysobjects and syscomments system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner.
CONSTRAINT_NAME sysname Constraint name.
CHECK_CLAUSE nvarchar(4000) Actual text of the Transact-SQL

definition statement.

See Also

syscomments

sysobjects

Transact-SQL Reference (SQL Server 2000)

COLUMN_DOMAIN_USAGE
Contains one row for each column, in the current database, that has a user-defined data type. This information schema view
returns information about the objects to which the current user has permissions. The
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE view is based on the sysobjects, syscolumns, and systypes system
tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
DOMAIN_CATALOG nvarchar(128) Database in which the user-defined data

type exists.
DOMAIN_SCHEMA nvarchar(128) Username that created the user-defined

data type.
DOMAIN_NAME sysname User-defined data type.
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME sysname Table in which the user-defined data type

is used.
COLUMN_NAME sysname Column using the user-defined data type.

See Also

syscomments

sysobjects

systypes

Transact-SQL Reference (SQL Server 2000)

COLUMN_PRIVILEGES
Contains one row for each column with a privilege either granted to or by the current user in the current database. The
INFORMATION_SCHEMA.COLUMN_PRIVILEGES view is based on the sysprotects, sysobjects, and syscolumns system
tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
GRANTOR nvarchar(128) Privilege grantor.
GRANTEE nvarchar(128) Privilege grantee.
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME sysname Table name.
COLUMN_NAME sysname Column name.
PRIVILEGE_TYPE varchar(10) Type of privilege.
IS_GRANTABLE varchar(3) Specifies whether the grantee has the

ability to grant permissions to others.

See Also

syscomments

sysobjects

sysprotects

Transact-SQL Reference (SQL Server 2000)

COLUMNS
Contains one row for each column accessible to the current user in the current database. The
INFORMATION_SCHEMA.COLUMNS view is based on the sysobjects, spt_data type_info, systypes, syscolumns,
syscomments, sysconfigures, and syscharsets system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME nvarchar(128) Table name.
COLUMN_NAME nvarchar(128) Column name.
ORDINAL_POSITION smallint Column identification

number.
COLUMN_DEFAULT nvarchar(4000) Default value of the column.
IS_NULLABLE varchar(3) Nullability of the column. If

this column allows NULL,
this column returns YES.
Otherwise, No is returned.

DATA_TYPE nvarchar(128) System-supplied data type.
CHARACTER_MAXIMUM_LENGTH smallint Maximum length, in

characters, for binary data,
character data, or text and
image data. Otherwise,
NULL is returned. For more
information, see Data Types.

CHARACTER_OCTET_LENGTH smallint Maximum length, in bytes,
for binary data, character
data, or text and image data.
Otherwise, NULL is returned.

NUMERIC_PRECISION tinyint Precision of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
NULL is returned.

NUMERIC_PRECISION_RADIX smallint Precision radix of
approximate numeric data,
exact numeric data, integer
data, or monetary data.
Otherwise, NULL is returned.

NUMERIC_SCALE int Scale of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
NULL is returned.

DATETIME_PRECISION smallint Subtype code for datetime
and SQL-92 interval data
types. For other data types,
NULL is returned.

CHARACTER_SET_CATALOG nvarchar(128) Returns master, indicating
the database in which the
character set is located, if the
column is character data or
text data type. Otherwise,
NULL is returned.

CHARACTER_SET_SCHEMA nvarchar(128) Returns DBO, indicating the
owner name of the character
set, if the column is
character data or text data
type. Otherwise, NULL is
returned.

CHARACTER_SET_NAME nvarchar(128) Returns the unique name for
the character set if this
column is character data or
text data type. Otherwise,
NULL is returned.

COLLATION_CATALOG nvarchar(128) Returns master, indicating
the database in which the
sort order is defined, if the
column is character data or
text data type. Otherwise,
this column is NULL.

COLLATION_SCHEMA nvarchar(128) Returns DBO, indicating the
owner of the sort order for
character data or text data
type. Otherwise, NULL is
returned.

COLLATION_NAME nvarchar(128) Returns the unique name for
the sort order if the column
is character data or text data
type. Otherwise, NULL is
returned.

DOMAIN_CATALOG nvarchar(128) If the column is a user-
defined data type, this
column is the database
name in which the user-
defined data type was
created. Otherwise, NULL is
returned.

DOMAIN_SCHEMA nvarchar(128) If the column is a user-
defined data type, this
column is the creator of the
user-defined data type.
Otherwise, NULL is returned.

DOMAIN_NAME nvarchar(128) If the column is a user-
defined data type, this
column is the name of the
user-defined data type.
Otherwise, NULL is returned.

See Also

syscharsets

syscolumns

syscomments

sysconfigures

sysobjects

systypes

Transact-SQL Reference (SQL Server 2000)

CONSTRAINT_COLUMN_USAGE
Contains one row for each column, in the current database, that has a constraint defined on it. This information schema view
returns information about the objects to which the current user has permissions. The
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE view is based on the sysobjects, syscolumns, and systypes
system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) Table qualifier
TABLE_SCHEMA nvarchar(128) Table owner
TABLE_NAME nvarchar(128) Table name
COLUMN_NAME nvarchar(128) Column name
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner
CONSTRAINT_NAME nvarchar(128) Constraint name

See Also

syscolumns

sysobjects

systypes

Transact-SQL Reference (SQL Server 2000)

CONSTRAINT_TABLE_USAGE
Contains one row for each table, in the current database, that has a constraint defined on it. This information schema view returns
information about the objects to which the current user has permissions. The
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE view is based on the sysobjects system table.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) Table qualifier
TABLE_SCHEMA nvarchar(128) Table owner
TABLE_NAME sysname Table name
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner
CONSTRAINT_NAME sysname Constraint name

See Also

sysobjects

Transact-SQL Reference (SQL Server 2000)

DOMAIN_CONSTRAINTS
Contains one row for each user-defined data type, accessible to the current user in the current database, with a rule bound to it.
The INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS view is based on the sysobjects and systypes system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CONSTRAINT_CATALOG nvarchar(128) Database in which the rule exists.
CONSTRAINT_SCHEMA nvarchar(128) Rule owner.
CONSTRAINT_NAME sysname Rule name.
DOMAIN_CATALOG nvarchar(128) Database in which the user-

defined data type exists.
DOMAIN_SCHEMA nvarchar(128) User that created the user-defined

data type.
DOMAIN_NAME sysname User-defined data type.
IS_DEFERRABLE varchar(2) Specifies whether constraint

checking is deferrable. Always
returns NO.

INITIALLY_DEFERRED varchar(2) Specifies whether constraint
checking is initially deferred.
Always returns NO.

See Also

sysobjects

systypes

Transact-SQL Reference (SQL Server 2000)

DOMAINS
Contains one row for each user-defined data type accessible to the current user in the current database. The
INFORMATION_SCHEMA.DOMAINS view is based on the spt_data type_info, systypes, syscomments, sysconfigures, and
syscharsets system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
DOMAIN_CATALOG nvarchar(128) Database in which the user-

defined data type exists.
DOMAIN_SCHEMA nvarchar(128) User that created the user-

defined data type.
DOMAIN_NAME sysname User-defined data type.
DATA_TYPE sysname System-supplied data type.
CHARACTER_MAXIMUM_LENGTH smallint Maximum length, in

characters, for binary data,
character data, or text and
image data. Otherwise,
NULL is returned. For more
information, see Data Types.

CHARACTER_OCTET_LENGTH smallint Maximum length, in bytes,
for binary data, character
data, or text and image data.
Otherwise, NULL is returned.

COLLATION_CATALOG varchar(6) Returns master, indicating
the database in which the
sort order is defined, if the
column is character data or
text data type. Otherwise,
this column is NULL.

COLLATION_SCHEMA varchar(3) Returns DBO, indicating the
owner of the sort order for
character data or text data
type. Otherwise, NULL is
returned.

COLLATION_NAME nvarchar(128) Returns the unique name for
the sort order if the column
is character data or text data
type. Otherwise, NULL is
returned.

CHARACTER_SET_CATALOG varchar(6) Returns master, indicating
the database in which the
character set is located, if the
column is character data or
text data type. Otherwise,
NULL is returned.

CHARACTER_SET_SCHEMA varchar(3) Returns DBO, indicating the
owner name of the character
set, if the column is
character data or text data
type. Otherwise, NULL is
returned.

CHARACTER_SET_NAME nvarchar(128) Returns the unique name for
the character set if this
column is character data or
text data type. Otherwise,
NULL is returned.

NUMERIC_PRECISION tinyint Precision of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
NULL is returned.

NUMERIC_PRECISION_RADIX smallint Precision radix of
approximate numeric data,
exact numeric data, integer
data, or monetary data.
Otherwise, NULL is returned.

NUMERIC_SCALE tinyint Scale of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
NULL is returned.

DATETIME_PRECISION smallint Subtype code for datetime
and SQL-92 interval data
type. For other data types,
this column returns a NULL.

DOMAIN_DEFAULT nvarchar(4000) Actual text of the definition
Transact-SQL statement.

See Also

syscharsets

syscomments

sysconfigures

systypes

Transact-SQL Reference (SQL Server 2000)

KEY_COLUMN_USAGE
Contains one row for each column, in the current database, that is constrained as a key. This information schema view returns
information about the objects to which the current user has permissions. The INFORMATION_SCHEMA.KEY_COLUMN_USAGE
view is based on the sysobjects, syscolumns, sysreferences, spt_values, and sysindexes system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner name
CONSTRAINT_NAME nvarchar(128) Constraint name
TABLE_CATALOG nvarchar(128) Table qualifier
TABLE_SCHEMA nvarchar(128) Table owner name
TABLE_NAME nvarchar(128) Table name
COLUMN_NAME nvarchar(128) Column name
ORDINAL_POSITION int Column ordinal position

See Also

syscolumns

sysindexes

sysobjects

sysreferences

Transact-SQL Reference (SQL Server 2000)

PARAMETERS
Contains one row for each parameter of a user-defined function or stored procedure accessible to the current user in the current
database. For functions, this view also returns one row with return value information.

The INFORMATION_SCHEMA.PARAMETERS view is based on the sysobjects and syscolumns system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
SPECIFIC_CATALOG nvarchar(128) Catalog name of the ROUTINE

for which this is a parameter.
SPECIFIC_SCHEMA nvarchar(128) Owner name of the ROUTINE

for which this is a parameter.
SPECIFIC_NAME nvarchar(128) Name of the ROUTINE for

which this is a parameter.
ORDINAL_POSITION smallint Ordinal position of the

parameter starting at 1. For
the return value of a function,
this is a 0.

PARAMETER_MODE nvarchar(10) Returns IN if an input
parameter, OUT if an output
parameter, and INOUT if an
input/output parameter.

IS_RESULT nvarchar(10) Returns YES if indicates result
of the routine that is a
function. Otherwise, returns
NO.

AS_LOCATOR nvarchar(10) Returns YES if declared as
locator. Otherwise, returns
NO.

PARAMETER_NAME nvarchar(128) Name of the parameter. NULL
if this corresponds to the
return value of a function.

DATA_TYPE nvarchar(128) System-supplied data type.
CHARACTER_MAXIMUM_LENGTH int Maximum length in characters

for binary or character data
types. Otherwise, returns
NULL.

CHARACTER_OCTET_LENGTH int Maximum length, in bytes, for
binary or character data types.
Otherwise, returns NULL.

COLLATION_CATALOG nvarchar(128) Catalog name of the collation
of the parameter. If not one of
the character types, returns
NULL.

COLLATION_SCHEMA nvarchar(128) Schema name of the collation
of the parameter. If not one of
the character types, returns
NULL.

COLLATION_NAME nvarchar(128) Name of the collation of the
parameter. If not one of the
character types, returns NULL.

CHARACTER_SET_CATALOG nvarchar(128) Catalog name of the character
set of the parameter. If not one
of the character types, returns
NULL.

CHARACTER_SET_SCHEMA nvarchar(128) Owner name of the character
set of the parameter. If not one
of the character types, returns
NULL.

CHARACTER_SET_NAME nvarchar(128) Name of the character set of
the parameter. If not one of
the character types, returns
NULL.

NUMERIC_PRECISION tinyint Precision of approximate
numeric data, exact numeric
data, integer data, or monetary
data. Otherwise, returns NULL.

NUMERIC_PRECISION_RADIX smallint Precision radix of approximate
numeric data, exact numeric
data, integer data, or monetary
data. Otherwise, returns NULL.

NUMERIC_SCALE tinyint Scale of approximate numeric
data, exact numeric data,
integer data, or monetary data.
Otherwise, returns NULL.

DATETIME_PRECISION smallint Precision in fractional seconds
if the parameter type is
datetime or smalldatetime.
Otherwise, returns NULL.

INTERVAL_TYPE nvarchar(30) NULL. Reserved for future use.
INTERVAL_PRECISION smallint NULL. Reserved for future use.
USER_DEFINED_TYPE_CATALOG nvarchar(128) NULL. Reserved for future use.
USER_DEFINED_TYPE_SCHEMA nvarchar(128) NULL. Reserved for future use.
USER_DEFINED_TYPE_NAME nvarchar(128) NULL. Reserved for future use.
SCOPE_CATALOG nvarchar(128) NULL. Reserved for future use.
SCOPE_SCHEMA nvarchar(128) NULL. Reserved for future use.
SCOPE_NAME nvarchar(128) NULL. Reserved for future use.

See Also

syscolumns

sysobjects

Transact-SQL Reference (SQL Server 2000)

REFERENTIAL_CONSTRAINTS
Contains one row for each foreign constraint in the current database. This information schema view returns information about the
objects to which the current user has permissions. The INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS view is based
on the sysreferences, sysindexes, and sysobjects system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner.
CONSTRAINT_NAME sysname Constraint name.
UNIQUE_CONSTRAINT_CATALOG nvarchar(128) Unique constraint qualifier.
UNIQUE_CONSTRAINT_SCHEMA nvarchar(128) Unique constraint owner.
UNIQUE_CONSTRAINT_NAME sysname Unique constraint.
MATCH_OPTION varchar(7) Referential constraint-

matching conditions. Always
returns NONE, which means
that no match is defined. The
condition is considered a
match if

At least one value in the
foreign key column is
NULL;

Or

All values in the foreign
key column are not
NULL and there is a
row in the primary key
table with exactly the
same key.

UPDATE_RULE varchar(9) The action that is taken if a
Transact-SQL statement
violates referential integrity
defined by this constraint.

Returns either NO ACTION or
CASCADE. If NO ACTION is
specified on ON UPDATE for
this constraint, then the
update of the primary key
referenced in the constraint
will not be propagated to the
foreign key. If such update of
a primary key will cause a
referential integrity violation
because at least one foreign
key contains the same value,
SQL Server will not execute
any change to the parent and
referring tables. SQL Server
also will raise an error.

If CASCADE is specified on
ON UPDATE for this
constraint, then any change
to the primary key value is
automatically propagated to
the foreign key value.

DELETE_RULE varchar(9) The action that is taken if a
Transact-SQL statement
violates referential integrity
defined by this constraint.

Returns either NO ACTION or
CASCADE. If NO ACTION is
specified on ON DELETE for
this constraint, then the
delete on the primary key
referenced in the constraint
will not be propagated to the
foreign key. If such delete of
a primary key will cause a
referential integrity violation
because at least one foreign
key contains the same value,
SQL Server will not execute
any change to the parent and
referring tables. SQL Server
also will raise an error.

If CASCADE is specified on
ON DELETE on this
constraint, then any change
to the primary key value is
automatically propagated to
the foreign key value.

See Also

sysindexes

sysobjects

sysreferences

Transact-SQL Reference (SQL Server 2000)

ROUTINES
Contains one row for each stored procedure and function accessible to the current user in the current database. The columns that
describe the return value apply only to functions. For stored procedures, these columns will be NULL.

The INFORMATION_SCHEMA.ROUTINES view is based on the sysobjects and syscolumns system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Note The ROUTINE_DEFINITION column contains the source statements that created the function, stored procedure, or trigger.
These source statements are likely to contain embedded carriage returns. If you are returning this column to an application that is
displaying the results in a text format, the embedded carriage returns in the ROUTINE_DEFINITION results may affect the
formatting of the overall result set. If you select the ROUTINE_DEFINITION column, you must adjust for the embedded carriage
returns; for example, by returning the result set into a grid or returning ROUTINE_DEFINITION into its own text box.

Column name Data type Description
SPECIFIC_CATALOG nvarchar(128) Specific name of the catalog.

For SQL Server 2000, this
name is the same as
ROUTINE_CATALOG.

SPECIFIC_SCHEMA nvarchar(128) Specific name of the catalog.

For SQL Server 2000, this is
the same as
ROUTINE_SCHEMA.

SPECIFIC_NAME nvarchar(128) Specific name of the catalog.

For SQL Server 2000, this is
the same as ROUTINE_NAME.

ROUTINE_CATALOG nvarchar(128) Catalog name of the function.
ROUTINE_SCHEMA nvarchar(128) Owner name of the function.
ROUTINE_NAME nvarchar(128) Name of the function.
ROUTINE_TYPE nvarchar(20) Returns PROCEDURE for

stored procedures, and
FUNCTION for functions.

MODULE_CATALOG nvarchar(128) NULL. Reserved for future use.
MODULE_SCHEMA nvarchar(128) NULL. Reserved for future use.
MODULE_NAME nvarchar(128) NULL. Reserved for future use.
UDT_CATALOG nvarchar(128) NULL. Reserved for future use.
UDT_SCHEMA nvarchar(128) NULL. Reserved for future use.
UDT_NAME nvarchar(128) NULL. Reserved for future use.
DATA_TYPE nvarchar(128) Data type of the return value

of the function. Returns table
if a table-valued function.

CHARACTER_MAXIMUM_LENGTH int Maximum length in characters,
if the return type is a character
type.

CHARACTER_OCTET_LENGTH int Maximum length in bytes, if
the return type is a character
type.

COLLATION_CATALOG nvarchar(128) In SQL Server 2000 always
returns NULL.

COLLATION_SCHEMA nvarchar(128) In SQL Server 2000 always
returns NULL.

COLLATION_NAME nvarchar(128) Collation name of the return
value. For noncharacter types,
returns NULL.

CHARACTER_SET_CATALOG nvarchar(128) In SQL Server 2000 always
returns NULL.

CHARACTER_SET_SCHEMA nvarchar(128) In SQL Server 2000 always
returns NULL.

CHARACTER_SET_NAME nvarchar(128) Name of the return value's
character set. For noncharacter
types, returns NULL.

NUMERIC_PRECISION smallint Numeric precision of the
return value. For the
nonnumeric types, returns
NULL.

NUMERIC_PRECISION_RADIX smallint Numeric precision radix of the
return value. For nonnumeric
types, returns NULL.

NUMERIC_SCALE smallint Scale of the return value. For
nonnumeric types, returns
NULL.

DATETIME_PRECISION smallint Fractional precision of a
second if return value is of
type datetime. Otherwise,
returns NULL.

INTERVAL_TYPE nvarchar(30) NULL. Reserved for future use.
INTERVAL_PRECISION smallint NULL. Reserved for future use.
TYPE_UDT_CATALOG nvarchar(128) NULL. Reserved for future use.
TYPE_UDT_SCHEMA nvarchar(128) NULL. Reserved for future use.
TYPE_UDT_NAME nvarchar(128) NULL. Reserved for future use.
SCOPE_CATALOG nvarchar(128) NULL. Reserved for future use.
SCOPE_SCHEMA nvarchar(128) NULL. Reserved for future use.
SCOPE_NAME nvarchar(128) NULL. Reserved for future use.
MAXIMUM_CARDINALITY bigint NULL. Reserved for future use.
DTD_IDENTIFIER nvarchar(128) NULL. Reserved for future use.
ROUTINE_BODY nvarchar(30) Returns SQL for a Transact-

SQL function, and EXTERNAL
for an externally written
function.

In SQL Server 2000, functions
will always be SQL.

ROUTINE_DEFINITION nvarchar(4000) Definition text of the function
or stored procedure if the
function or stored procedure is
not encrypted. Otherwise,
returns NULL.

EXTERNAL_NAME nvarchar(128) NULL. Reserved for future use.
EXTERNAL_LANGUAGE nvarchar(30) NULL. Reserved for future use.
PARAMETER_STYLE nvarchar(30) NULL. Reserved for future use.
IS_DETERMINISTIC nvarchar(10) Returns YES if the routine is

deterministic.

Returns NO if the routine is
nondeterministic.

Always returns NO for stored
procedures.

SQL_DATA_ACCESS nvarchar(30) Returns one of the following
four values:

NONE = The function does not
contain SQL.
CONTAINS = The function
possibly contains SQL.
READS = The function possibly
reads SQL data.
MODIFIES = The function
possibly modifies SQL data.

In SQL Server 2000, returns
READS for all functions, and
MODIFIES for all stored
procedures.

IS_NULL_CALL nvarchar(10) Indicates if the routine will be
called if any of its arguments
are NULL.

In SQL Server 2000, always
returns YES.

SQL_PATH nvarchar(128) NULL. Reserved for future use.
SCHEMA_LEVEL_ROUTINE nvarchar(10) Returns YES if schema-level

function, or NO if not a
schema-level function.

In SQL Server 2000, always
returns YES.

MAX_DYNAMIC_RESULT_SETS smallint Maximum number of dynamic
result sets returned by routine.

Returns 0 if functions, and TBD
if stored procedures.

IS_USER_DEFINED_CAST nvarchar(10) Returns YES if user-defined
cast function, and NO if not a
user-defined cast function.

In SQL Server 2000, always
returns NO.

IS_IMPLICITLY_INVOCABLE nvarchar(10) Returns YES if the routine is
implicitly invocable, and NO if
function is not implicitly
invocable.

In SQL Server 2000, always
returns NO.

CREATED datetime Time the routine was created.
LAST_ALTERED datetime The last time the function was

modified.

See Also

syscolumns

sysobjects

Transact-SQL Reference (SQL Server 2000)

ROUTINE_COLUMNS
Contains one row for each column returned by the table-valued functions accessible to the current user in the current database.

The INFORMATION_SCHEMA.ROUTINE_COLUMNS view is based on the sysobjects and syscolumns system tables.

To retrieve information from this view, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) Catalog or database name of

the table-valued function.
TABLE_SCHEMA nvarchar(128) Owner of the table-valued

function.
TABLE_NAME nvarchar(128) Name of the table-valued

function.
COLUMN_NAME nvarchar(128) Column name.
ORDINAL_POSITION smallint Column identification number.
COLUMN_DEFAULT nvarchar(4000) Default value of the column.
IS_NULLABLE varchar(3) If this column allows NULL,

returns YES. Otherwise,
returns NO.

DATA_TYPE nvarchar(128) System-supplied data type.
CHARACTER_MAXIMUM_LENGTH smallint Maximum length, in

characters, for binary data,
character data, or text and
image data. Otherwise,
returns NULL. For more
information, see Data Types.

CHARACTER_OCTET_LENGTH smallint Maximum length, in bytes, for
binary data, character data, or
text and image data.
Otherwise, returns NULL.

NUMERIC_PRECISION tinyint Precision of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
returns NULL.

NUMERIC_PRECISION_RADIX smallint Precision radix of approximate
numeric data, exact numeric
data, integer data, or
monetary data. Otherwise,
returns NULL.

NUMERIC_SCALE tinyint Scale of approximate numeric
data, exact numeric data,
integer data, or monetary
data. Otherwise, returns NULL.

DATETIME_PRECISION smallint Subtype code for datetime
and SQL-92 integer data
types. For other data types,
returns NULL.

CHARACTER_SET_CATALOG varchar(6) Returns master, indicating the
database in which the
character set is located, if the
column is character data or
text data type. Otherwise,
returns NULL.

CHARACTER_SET_SCHEMA varchar(3) Returns DBO, indicating the
owner name of the character
set, if the column is character
data or text data type.
Otherwise, returns NULL.

CHARACTER_SET_NAME nvarchar(128) Returns the unique name for
the character set if this
column is character data or
text data type. Otherwise,
returns NULL.

COLLATION_CATALOG varchar(6) Returns master, indicating the
database in which the sort
order is defined, if the column
is character data or text data
type. Otherwise, returns NULL.

COLLATION_SCHEMA varchar(3) Returns DBO, indicating the
owner of the sort order for
character data or text data
type. Otherwise, returns NULL.

COLLATION_NAME nvarchar(128) Returns the unique name for
the sort order if the column is
character data or text data
type. Otherwise, returns NULL.

DOMAIN_CATALOG nvarchar(128) If the column is a user-defined
data type, this column is the
database name in which the
user-defined data type was
created. Otherwise, returns
NULL.

DOMAIN_SCHEMA nvarchar(128) If the column is a user-defined
data type, this column is the
creator of the user-defined
data type. Otherwise, returns
NULL.

DOMAIN_NAME nvarchar(128) If the column is a user-defined
data type, this column is the
name of the user-defined data
type. Otherwise, returns NULL.

See Also

syscolumns

sysobjects

Transact-SQL Reference (SQL Server 2000)

SCHEMATA
Contains one row for each database that has permissions for the current user. The INFORMATION_SCHEMA.SCHEMATA view is
based on the sysdatabases, sysconfigures, and syscharsets system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CATALOG_NAME sysname Name of the database

where the current user
has permissions.

SCHEMA_NAME nvarchar(128) Returns the name of the
schema owner of object.

SCHEMA_OWNER nvarchar(128) Schema owner name.
DEFAULT_CHARACTER_SET_CATALOG varchar(6) Returns master,

indicating the database
where the default
character set is defined.

DEFAULT_CHARACTER_SET_SCHEMA varchar(3) Returns DBO, indicating
the name of the default
character set owner.

DEFAULT_CHARACTER_SET_NAME sysname Returns the name of the
default character set.

See Also

syscharsets

sysconfigures

sysdatabases

Transact-SQL Reference (SQL Server 2000)

TABLE_CONSTRAINTS
Contains one row for each table constraint in the current database. This information schema view returns information about the
objects to which the current user has permissions. The INFORMATION_SCHEMA.TABLE_CONSTRAINTS view is based on the
sysobjects system table.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier.
CONSTRAINT_SCHEMA nvarchar(128) Constraint owner.
CONSTRAINT_NAME sysname Constraint name.
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME sysname Table name.
CONSTRAINT_TYPE varchar(11) Type of constraint. Can be

CHECK, UNIQUE, PRIMARY KEY,
or FOREIGN KEY.

IS_DEFERRABLE varchar(2) Specifies whether constraint
checking is deferrable. Always
returns NO.

INITIALLY_DEFERRED varchar(2) Specifies whether constraint
checking is initially deferred.
Always returns NO.

See Also

sysobjects

Transact-SQL Reference (SQL Server 2000)

TABLE_PRIVILEGES
Contains one row for each table privilege granted to or by the current user in the current database. The
INFORMATION_SCHEMA.TABLE_PRIVILEGES view is based on the sysprotects and sysobjects system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
GRANTOR nvarchar(128) Privilege grantor.
GRANTEE nvarchar(128) Privilege grantee.
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME sysname Table name.
PRIVILEGE_TYPE varchar(10) Type of privilege.
IS_GRANTABLE varchar(3) Specifies whether the grantee has the

ability to grant permissions to others.

See Also

sysobjects

sysprotects

Transact-SQL Reference (SQL Server 2000)

TABLES
Contains one row for each table in the current database for which the current user has permissions. The
INFORMATION_SCHEMA.TABLES view is based on the sysobjects system table.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Table owner.
TABLE_NAME sysname Table name.
TABLE_TYPE varchar(10) Type of table. Can be VIEW or

BASE TABLE.

See Also

sysobjects

Transact-SQL Reference (SQL Server 2000)

VIEW_COLUMN_USAGE
Contains one row for each column, in the current database, used in a view definition. This information schema view returns
information about the objects to which the current user has permissions. The
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE is based on the sysobjects and sysdepends system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
VIEW_CATALOG nvarchar(128) View qualifier
VIEW_SCHEMA nvarchar(128) View owner
VIEW_NAME sysname View name
TABLE_CATALOG nvarchar(128) Table qualifier
TABLE_SCHEMA nvarchar(128) Table owner
TABLE_NAME sysname Base table
COLUMN_NAME sysname Column name

See Also

sysdepends

sysobjects

Transact-SQL Reference (SQL Server 2000)

VIEW_TABLE_USAGE
Contains one row for each table, in the current database, used in a view. This information schema view returns information about
the objects to which the current user has permissions. The INFORMATION_SCHEMA.VIEW_TABLE_USAGE view is based on the
sysobjects and sysdepends system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
VIEW_CATALOG nvarchar(128) View qualifier.
VIEW_SCHEMA nvarchar(128) View owner.
VIEW_NAME sysname View name.
TABLE_CATALOG nvarchar(128) Table qualifier.
TABLE_SCHEMA nvarchar(128) Base table owner.
TABLE_NAME sysname Base table that the view is based on.

See Also

sysdepends

sysobjects

Transact-SQL Reference (SQL Server 2000)

VIEWS
Contains one row for views accessible to the current user in the current database. The INFORMATION_SCHEMA.VIEWS is based
on the sysobjects and syscomments system tables.

To retrieve information from these views, specify the fully qualified name of INFORMATION_SCHEMA view_name.

Column name Data type Description
TABLE_CATALOG nvarchar(128) View qualifier.
TABLE_SCHEMA nvarchar(128) View owner.
TABLE_NAME nvarchar(128) View name.
VIEW_DEFINITION nvarchar(4000) If the length of definition is greater

than nvarchar(4000), this column is
NULL; otherwise, this column is the
view definition text.

CHECK_OPTION varchar(7) Type of WITH CHECK OPTION. Is
CASCADE if the original view was
created using the WITH CHECK
OPTION. Otherwise, NONE is returned.

IS_UPDATABLE varchar(2) Specifies whether the view is
updatable. Always returns NO.

See Also

syscomments

Transact-SQL Reference (SQL Server 2000)

INSERT
Adds a new row to a table or a view.

Syntax

INSERT [INTO]
 { table_name WITH (< table_hint_limited > [...n])
 | view_name
 | rowset_function_limited
 }

 { [(column_list)]
 { VALUES
 ({ DEFAULT | NULL | expression } [,...n])
 | derived_table
 | execute_statement
 }
 }
 | DEFAULT VALUES

< table_hint_limited > ::=
 { FASTFIRSTROW
 | HOLDLOCK
 | PAGLOCK
 | READCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE
 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 }

Arguments

[INTO]

Is an optional keyword that can be used between INSERT and the target table.

table_name

Is the name of a table or table variable that is to receive the data.

WITH (<table_hint_limited> [...n])

Specifies one or more table hints that are allowed for a target table. The WITH keyword and the parentheses are required.
READPAST, NOLOCK, and READUNCOMMITTED are not allowed. For more information about table hints, see FROM.

view_name

Is the name and optional alias of a view. The view referenced by view_name must be updatable. The modifications made by the
INSERT statement cannot affect more than one of the base tables referenced in the FROM clause of the view. For example, an
INSERT into a multitable view must use a column_list that references only columns from one base table. For more information
about updatable views, see CREATE VIEW.

rowset_function_limited

Is either the OPENQUERY or OPENROWSET function. For more information, see OPENQUERY and OPENROWSET.

(column_list)

Is a list of one or more columns in which to insert data. column_list must be enclosed in parentheses and delimited by commas.

If a column is not in column_list, Microsoft® SQL Server™ must be able to provide a value based on the definition of the column;
otherwise, the row cannot be loaded. SQL Server automatically provides a value for the column if the column:

Has an IDENTITY property. The next incremental identity value is used.

Has a default. The default value for the column is used.

Has a timestamp data type. The current timestamp value is used.

Is nullable. A null value is used.

column_list and VALUES list must be used when inserting explicit values into an identity column, and the SET IDENTITY_INSERT
option must be ON for the table.

VALUES

Introduces the list of data values to be inserted. There must be one data value for each column in column_list (if specified) or in
the table. The values list must be enclosed in parentheses.

If the values in the VALUES list are not in the same order as the columns in the table or do not have a value for each column in the
table, column_list must be used to explicitly specify the column that stores each incoming value.

DEFAULT

Forces SQL Server to load the default value defined for a column. If a default does not exist for the column and the column allows
NULLs, NULL is inserted. For a column defined with the timestamp data type, the next timestamp value is inserted. DEFAULT is
not valid for an identity column.

expression

Is a constant, a variable, or an expression. The expression cannot contain a SELECT or EXECUTE statement.

derived_table

Is any valid SELECT statement that returns rows of data to be loaded into the table.

execute_statement

Is any valid EXECUTE statement that returns data with SELECT or READTEXT statements.

If execute_statement is used with INSERT, each result set must be compatible with the columns in the table or in column_list.
execute_statement can be used to execute stored procedures on the same server or a remote server. The procedure in the remote
server is executed, and the result sets are returned to the local server and loaded into the table in the local server. If
execute_statement returns data with the READTEXT statement, each individual READTEXT statement can return a maximum of 1
MB (1024 KB) of data. execute_statement can also be used with extended procedures, and inserts the data returned by the main
thread of the extended procedure. Output from threads other than the main thread are not inserted.

Note For SQL Server version 7.0, execute_statement cannot contain an extended stored procedure that returns text or image
columns. This behavior is a change from earlier versions of SQL Server.

DEFAULT VALUES

Forces the new row to contain the default values defined for each column.

Remarks

INSERT appends new rows to a table. To replace data in a table, the DELETE or TRUNCATE TABLE statements must be used to clear
existing data before loading new data with INSERT. To modify column values in existing rows, use UPDATE. To create a new table
and load it with data in one step, use the INTO option of the SELECT statement.

A table variable, in its scope, may be accessed like a regular table. Thus, table variable may be used as the table to which rows
are to be added in an INSERT statement. For more information, see table.

A four-part name constructed with the OPENDATASOURCE function as the server-name part may be used as a table source in all
places a table name can appear in INSERT statements.

Columns created with the uniqueidentifier data type store specially formatted 16-byte binary values. Unlike with identity
columns, SQL Server does not automatically generate values for columns with the uniqueidentifier data type. During an insert
operation, variables with a data type of uniqueidentifier and string constants in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
(36 characters including hyphens, where x is a hexadecimal digit in the range 0-9 or a-f) can be used for uniqueidentifier
columns. For example, 6F9619FF-8B86-D011-B42D-00C04FC964FF is a valid value for a uniqueidentifier variable or column.
Use the NEWID() function to obtain a globally unique ID (GUID).

When you insert rows, these rules apply:

If a value is being loaded into columns with a char, varchar, or varbinary data type, the padding or truncation of trailing
blanks (spaces for char and varchar, zeros for varbinary) is determined by the SET ANSI_PADDING setting defined for the
column when the table was created. For more information, see SET ANSI_PADDING.

This table shows the default operation when SET ANSI_PADDING is OFF.

Data type Default operation
Char Pad value with spaces to the defined width of column.
Varchar Remove trailing spaces to the last nonspace character or to a

single space character for strings consisting of only spaces.
Varbinary Remove trailing zeros.

If an empty string (' ') is loaded into a column with a varchar or text data type, the default operation is to load a zero-length
string. If the compatibility level for the database is less than 70, the value is converted to a single space. For more
information, see sp_dbcmptlevel.

If an INSERT statement violates a constraint or rule, or if it has a value incompatible with the data type of the column, the
statement fails and SQL Server displays an error message.

Inserting a null value into a text or image column does not create a valid text pointer, nor does it preallocate an 8-KB text
page. For more information about inserting text and image data, see Using text, ntext, and image Functions.

If INSERT is loading multiple rows with SELECT or EXECUTE, any violation of a rule or constraint that occurs from the values
being loaded causes the entire statement to be terminated, and no rows are loaded.

When inserting values into remote SQL Server tables, and not all values for all columns are specified, the user must identify
the columns to which the specified values are to be inserted.

The setting of the SET ROWCOUNT option is ignored for INSERT statements against local and remote partitioned views. Also, this
option is not supported for INSERT statements against remote tables in SQL Server 2000 when the compatibility level is set to 80.

When an INSTEAD-OF trigger is defined on INSERT actions against a table or view, the trigger executes instead of the INSERT
statement. Previous versions of SQL Server only support AFTER triggers defined on INSERT and other data modification
statements.

When an INSERT statement encounters an arithmetic error (overflow, divide by zero, or a domain error) occurring during
expression evaluation, SQL Server handles these errors as if SET ARITHABORT is ON. The remainder of the batch is halted, and an
error message is returned.

Permissions

INSERT permissions default to members of the sysadmin fixed server role, the db_owner and db_datawriter fixed database
roles, and the table owner. Members of the sysadmin, db_owner, and the db_securityadmin roles, and the table owner can
transfer permissions to other users.

Examples

A. Use a simple IN SERT

This example creates the table T1 and inserts one row.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
CREATE TABLE T1 (column_1 int, column_2 varchar(30))
INSERT T1 VALUES (1, 'Row #1')

B. Insert data that is not in the same order as the columns

This example uses column_list and VALUES list to explicitly specify the values that are inserted into each column.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
CREATE TABLE T1 (column_1 int, column_2 varchar(30))
INSERT T1 (column_2, column_1) VALUES ('Row #1',1)

C. Insert data with fewer values than columns

This example creates a table that has four columns. The INSERT statements insert rows that contain values for some of the
columns, but not all of them.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
CREATE TABLE T1
(column_1 int identity,
 column_2 varchar(30)
 CONSTRAINT default_name DEFAULT ('column default'),
 column_3 int NULL,
 column_4 varchar(40)
)
INSERT INTO T1 (column_4)
 VALUES ('Explicit value')
INSERT INTO T1 (column_2,column_4)
 VALUES ('Explicit value', 'Explicit value')
INSERT INTO T1 (column_2,column_3,column_4)
 VALUES ('Explicit value',-44,'Explicit value')
SELECT *
FROM T1

D. Load data into a table with an identity column

The first two INSERT statements allow identity values to be generated for the new rows. The third INSERT statement overrides the
IDENTITY property for the column with the SET IDENTITY_INSERT statement, and inserts an explicit value into the identity column.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
CREATE TABLE T1 (column_1 int IDENTITY, column_2 varchar(30))
INSERT T1 VALUES ('Row #1')
INSERT T1 (column_2) VALUES ('Row #2')
SET IDENTITY_INSERT T1 ON
INSERT INTO T1 (column_1,column_2)
 VALUES (-99,'Explicit identity value')
SELECT *
FROM T1

E. Load data into a table through a view

The INSERT statement in this example specifies a view name; however, the new row is inserted in the view's underlying table. The
order of VALUES list in the INSERT statement must match the column order of the view.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'V1')
 DROP VIEW V1
GO
CREATE TABLE T1 (column_1 int, column_2 varchar(30))
GO
CREATE VIEW V1 AS SELECT column_2, column_1
FROM T1
GO
INSERT INTO V1
 VALUES ('Row 1',1)
SELECT *
FROM T1

F. Load data using the DEFAULT VALUES option

The CREATE TABLE statement in this example defines each column with a value that can be used when no explicit value for the

column is specified in the INSERT statement. The DEFAULT VALUES option of the INSERT statement is used to add rows without
supplying explicit values.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'T1')
 DROP TABLE T1
GO
CREATE DEFAULT bound_default AS 'Bound default value'
GO
CREATE TABLE T1
(column_1 int identity,
 column_2 varchar(30)
 CONSTRAINT default_name DEFAULT ('column default'),
 column_3 timestamp,
 column_4 varchar(30),
 column_5 int NULL)
GO
USE master
EXEC sp_bindefault 'bound_default','T1.column_4'
INSERT INTO T1 DEFAULT VALUES
SELECT *
FROM T1

G. Load data using the SELECT and EXECUTE options

This example demonstrates three different methods for getting data from one table and loading it into another. Each is based on a
multitable SELECT statement that includes an expression and a literal value in the column list.

The first INSERT statement uses a SELECT statement directly to retrieve data from the source table, authors, and store the result
set in the author_sales table. The second INSERT executes a procedure that contains the SELECT statement, and the third INSERT
executes the SELECT statement as a literal string.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'author_sales')
 DROP TABLE author_sales
GO
IF EXISTS(SELECT name FROM sysobjects
 WHERE name = 'get_author_sales' AND type = 'P')
 DROP PROCEDURE get_author_sales
GO
USE pubs
CREATE TABLE author_sales
(data_source varchar(20),
 au_id varchar(11),
 au_lname varchar(40),
 sales_dollars smallmoney
)
GO
CREATE PROCEDURE get_author_sales
AS
 SELECT 'PROCEDURE', authors.au_id, authors.au_lname,
 SUM(titles.price * sales.qty)
 FROM authors INNER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id INNER JOIN titles
 ON titleauthor.title_id = titles.title_id INNER JOIN sales
 ON titles.title_id = sales.title_id
 WHERE authors.au_id like '8%'
 GROUP BY authors.au_id, authors.au_lname
GO
--INSERT...SELECT example
USE pubs
INSERT author_sales
 SELECT 'SELECT', authors.au_id, authors.au_lname,
 SUM(titles.price * sales.qty)
 FROM authors INNER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id INNER JOIN titles
 ON titleauthor.title_id = titles.title_id INNER JOIN sales
 ON titles.title_id = sales.title_id
 WHERE authors.au_id LIKE '8%'
 GROUP BY authors.au_id, authors.au_lname

--INSERT...EXECUTE procedure example
INSERT author_sales EXECUTE get_author_sales

--INSERT...EXECUTE('string') example
INSERT author_sales
EXECUTE
('
SELECT ''EXEC STRING'', authors.au_id, authors.au_lname,

 SUM(titles.price * sales.qty)
 FROM authors INNER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id INNER JOIN titles
 ON titleauthor.title_id = titles.title_id INNER JOIN sales
 ON titles.title_id = sales.title_id
 WHERE authors.au_id like ''8%''
 GROUP BY authors.au_id, authors.au_lname
')

--Show results.
SELECT * FROM author_sales

H. Insert data using the TOP clause in a SELECT statement

Because a SELECT statement can be specified in an INSERT statement, the TOP clause can also be used within the SELECT
statement. The example inserts the top 10 authors from the authors table into a new table called new_authors.

IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'new_authors')
 DROP TABLE new_authors
GO
USE pubs
CREATE TABLE new_authors
(
 au_id id,
 au_lname varchar(40),
 au_fname varchar(20),
 phone char(12),
 address varchar(40),
 city varchar(20),
 state char(2),
 zip char(5),
 contract bit
)
INSERT INTO new_authors
SELECT TOP 10 *
FROM authors

See Also

CREATE TABLE

EXECUTE

FROM

IDENTITY (Property)

NEWID

SELECT

SET ROWCOUNT

Transact-SQL Reference (SQL Server 2000)

int, bigint, smallint, and tinyint
Exact number data types that use integer data.

bigint

Integer (whole number) data from -2^63 (-9,223,372,036,854,775,808) through 2^63-1 (9,223,372,036,854,775,807). Storage
size is 8 bytes.

int

Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647). Storage size is 4 bytes. The SQL-92
synonym for int is integer.

smallint

Integer data from -2^15 (-32,768) through 2^15 - 1 (32,767). Storage size is 2 bytes.

tinyint

Integer data from 0 through 255. Storage size is 1 byte.

Remarks

The bigint data type is supported where integer values are supported. However, bigint is intended for special cases where the
integer values may exceed the range supported by the int data type. The int data type remains the primary integer data type in
SQL Server.

bigint fits between smallmoney and int in the data type precedence chart.

Functions will return bigint only if the parameter expression is a bigint data type. SQL Server will not automatically promote
other integer data types (tinyint, smallint, and int) to bigint.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

IS_MEMBER
Indicates whether the current user is a member of the specified Microsoft® Windows NT® group or Microsoft SQL Server™ role.

Syntax

IS_MEMBER ({ 'group' | 'role' })

Arguments

'group'

Is the name of the Windows NT group being checked; must be in the format Domain\Group. group is sysname.

'role'

Is the name of the SQL Server role being checked. role is sysname and can include the database fixed roles or user-defined roles
but not server roles.

Return Types

int

Remarks

IS_MEMBER returns these values.

Return value Description
0 Current user is not a member of group or role.
1 Current user is a member of group or role.
NULL Either group or role is not valid.

This function can be useful to programmatically detect whether the current user can perform an activity that depends on the
permissions applied to a group or role.

Examples

This example indicates whether the current user is a member of the db_owner fixed database role.

IF IS_MEMBER ('db_owner') = 1
 print 'Current user is a member of the db_owner role'
ELSE IF IS_MEMBER ('db_owner') = 0
 print 'Current user is NOT a member of the db_owner role'
ELSE IF IS_MEMBER ('db_owner') IS NULL
 print 'ERROR: Invalid group / role specified'

See Also

IS_SRVROLEMEMBER

Security Functions

Transact-SQL Reference (SQL Server 2000)

IS_SRVROLEMEMBER
Indicates whether the current user login is a member of the specified server role.

Syntax

IS_SRVROLEMEMBER ('role' [, 'login'])

Arguments

'role'

Is the name of the server role being checked. role is sysname.

Valid values for role are:

sysadmin

dbcreator

diskadmin

processadmin

serveradmin

setupadmin

securityadmin

'login'

Is the optional name of the login to check. login is sysname, with a default of NULL. If not specified, the login account for the
current user is used.

Return Types

int

Remarks

IS_SRVROLEMEMBER returns these values.

Return value Description
0 login is not a member of role.
1 login is a member of role.
NULL role or login is not valid.

This function can be useful to programmatically detect whether the current user can perform an activity requiring the server role's
permissions.

If a Windows NT® user, such as London\JoeB, is specified for login, IS_SRVROLEMEMBER returns NULL if the user has not
previously been granted or denied direct access to Microsoft SQL Server using sp_grantlogin or sp_denylogin.

Examples

This example indicates whether the current user is a member of the sysadmin fixed server role.

IF IS_SRVROLEMEMBER ('sysadmin') = 1
 print 'Current user''s login is a member of the sysadmin role'
ELSE IF IS_SRVROLEMEMBER ('sysadmin') = 0
 print 'Current user''s login is NOT a member of the sysadmin role'
ELSE IF IS_SRVROLEMEMBER ('sysadmin') IS NULL

 print 'ERROR: Invalid server role specified'

See Also

IS_MEMBER

Security Functions

Transact-SQL Reference (SQL Server 2000)

ISDATE
Determines whether an input expression is a valid date.

Syntax

ISDATE (expression)

Arguments

expression

Is an expression to be validated as a date. expression is any expression that returns a varchar data type.

Return Types

int

Remarks

ISDATE returns 1 if the input expression is a valid date; otherwise, it returns 0. This table shows the return values for a selection of
examples.

Column value (varchar) ISDATE return value
NULL 0
Abc 0
100, -100, 100 a, or 100.00 0
.01 0
-100.1234e-123 0
.231e90 0
$100.12345, - $100.12345, or $-1000.123 0
as100 or 1a00 0
1995-10-1,1/20/95,1995-10-1 12:00pm, Feb 7 1995
11:00pm, or 1995-10-1, or 1/23/95

1

13/43/3425 or 1995-10-1a 0
$1000, $100, or $100 a 0

Examples

A. Use ISDATE to check a variable

This example checks the @datestring local variable for valid date data.

DECLARE @datestring varchar(8)
SET @datestring = '12/21/98'
SELECT ISDATE(@datestring)

Here is the result set:

1

B. Use ISDATE to check a column for dates

This example creates the test_dates table and inserts two values. ISDATE is used to determine whether the values in the columns
are dates.

USE tempdb
CREATE TABLE test_dates (Col_1 varchar(15), Col_2 datetime)
GO
INSERT INTO test_dates VALUES ('abc', 'July 13, 1998')
GO
SELECT ISDATE(Col_1) AS Col_1, ISDATE(Col_2) AS Col_2

 FROM test_dates

Here is the result set:

Col_1 Col_2
----------------- --------------------
0 1

See Also

char and varchar

System Functions

Transact-SQL Reference (SQL Server 2000)

IS [NOT] NULL
Determines whether or not a given expression is NULL.

Syntax

expression IS [NOT] NULL

Arguments

expression

Is any valid Microsoft® SQL Server™ expression.

NOT

Specifies that the Boolean result be negated. The predicate reverses its return values, returning TRUE if the value is not NULL, and
FALSE if the value is NULL.

Result Types

Boolean

Return Code Values

If the value of expression is NULL, IS NULL returns TRUE; otherwise, it returns FALSE.

If the value of expression is NULL, IS NOT NULL returns FALSE; otherwise, it returns TRUE.

Remarks

To determine if an expression is NULL, use IS NULL or IS NOT NULL rather than comparison operators (such as = or !=).
Comparison operators return UNKNOWN if either or both arguments are NULL.

Examples

This example returns the title number and the advance amount for all books in which either the advance amount is less than
$5,000 or the advance is unknown (or NULL). Note that the results shown are those returned after Example C has been executed.

USE pubs
SELECT title_id, advance
FROM titles
WHERE advance < $5000 OR advance IS NULL
ORDER BY title_id

Here is the result set:

title_id advance
-------- --------------------------
MC2222 0.0000
MC3026 NULL
PC9999 NULL
PS2091 2275.0000
PS3333 2000.0000
PS7777 4000.0000
TC4203 4000.0000

(7 row(s) affected)

See Also

CASE

CREATE PROCEDURE

CREATE TABLE

Data Types

Expressions

INSERT

LIKE

Null Values

Operators (Logical Operators)

SELECT

sp_help

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

ISNULL
Replaces NULL with the specified replacement value.

Syntax

ISNULL (check_expression , replacement_value)

Arguments

check_expression

Is the expression to be checked for NULL. check_expression can be of any type.

replacement_value

Is the expression to be returned if check_expression is NULL. replacement_value must have the same type as check_expresssion.

Return Types

Returns the same type as check_expression.

Remarks

The value of check_expression is returned if it is not NULL; otherwise, replacement_value is returned.

Examples

A. Use ISN ULL with AVG

This example finds the average of the prices of all titles, substituting the value $10.00 for all NULL entries in the price column of
the titles table.

USE pubs
GO
SELECT AVG(ISNULL(price, $10.00))
FROM titles
GO

Here is the result set:

14.24

(1 row(s) affected)

B. Use ISN ULL

This example selects the title, type, and price for all books in the titles table. If the price for a given title is NULL, the price shown
in the result set is 0.00.

USE pubs
GO
SELECT SUBSTRING(title, 1, 15) AS Title, type AS Type,
 ISNULL(price, 0.00) AS Price
FROM titles
GO

Here is the result set:

Title Type Price
--------------- ------------ --------------------------
The Busy Execut business 19.99
Cooking with Co business 11.95
You Can Combat business 2.99
Straight Talk A business 19.99
Silicon Valley mod_cook 19.99
The Gourmet Mic mod_cook 2.99
The Psychology UNDECIDED 0.00
But Is It User popular_comp 22.95

Secrets of Sili popular_comp 20.00
Net Etiquette popular_comp 0.00
Computer Phobic psychology 21.59
Is Anger the En psychology 10.95
Life Without Fe psychology 7.00
Prolonged Data psychology 19.99
Emotional Secur psychology 7.99
Onions, Leeks, trad_cook 20.95
Fifty Years in trad_cook 11.95
Sushi, Anyone? trad_cook 14.99

(18 row(s) affected)

See Also

Expressions

IS [NOT] NULL

System Functions

WHERE

Transact-SQL Reference (SQL Server 2000)

ISNUMERIC
Determines whether an expression is a valid numeric type.

Syntax

ISNUMERIC (expression)

Arguments

expression

Is an expression to be evaluated.

Return Types

int

Remarks

ISNUMERIC returns 1 when the input expression evaluates to a valid integer, floating point number, money or decimal type;
otherwise it returns 0. A return value of 1 guarantees that expression can be converted to one of these numeric types.

Examples

A. Use ISN UM ERIC

This example returns 1 because the zip column contains valid numeric values.

USE pubs
SELECT ISNUMERIC(zip)
FROM authors
GO

B. Use ISN UM ERIC and SUBSTRIN G

This example returns 0 for all titles in the titles table because none of the titles are valid numeric values.

USE pubs
GO
-- Because the title column is all character data, expect a result of 0
-- for the ISNUMERIC function.
SELECT SUBSTRING(title, 1, 15) type, price, ISNUMERIC(title)
FROM titles
GO

Here is the result set:

type price
--------------- -------------------------- -----------
The Busy Execut 19.99 0
Cooking with Co 11.95 0
You Can Combat 2.99 0
Straight Talk A 19.99 0
Silicon Valley 19.99 0
The Gourmet Mic 2.99 0
The Psychology (null) 0
But Is It User 22.95 0
Secrets of Sili 20.00 0
Net Etiquette (null) 0
Computer Phobic 21.59 0
Is Anger the En 10.95 0
Life Without Fe 7.00 0
Prolonged Data 19.99 0
Emotional Secur 7.99 0
Onions, Leeks, 20.95 0
Fifty Years in 11.95 0
Sushi, Anyone? 14.99 0

(18 row(s) affected)

See Also

Expressions

System Functions

Transact-SQL Reference (SQL Server 2000)

KILL
Terminates a user process based on the system process ID (SPID) or unit of work (UOW). If the specified SPID or UOW has a lot of
work to undo, the KILL command may take some time to complete, particularly when it involves rolling back a long transaction.

In Microsoft® SQL Server™ 2000, KILL can be used to terminate a normal connection, which internally terminates the
transactions associated with the given SPID. In addition, the command can also be used to terminate all orphaned distributed
transactions when Microsoft Distributed Transaction Coordinator (MS DTC) is in use. A distributed transaction is orphaned when
it is not associated with any current SPID.

Syntax

KILL {spid | UOW} [WITH STATUSONLY]

Arguments

spid

Is the system process ID (SPID) of the process to terminate. The SPID value is a unique integer (smallint) assigned to each user
connection when the connection is made, but the assignment is not permanent.

Use KILL spid to terminate regular non-distributed and distributed transactions associated with a given SPID.

UOW

Identifies the Unit of Work ID (UOW) of the DTC transaction. UOW is a character string that may be obtained from the
syslockinfo table, which gives the UOW for every lock held by a DTC transaction. UOW also may be obtained from the error log
or through the DTC monitor. For more information on monitoring distributed transactions, see the MS DTC user manual.

Use KILL UOW to terminate orphaned DTC transactions, which are not associated with any real SPID and instead are associated
artificially with SPID = '-2'. For more information on SPID = '-2', see the Remarks section later in this topic.

WITH STATUSONLY

Specifies that SQL Server generate a progress report on a given spid or UOW that is being rolled back. The KILL command with
WITH STATUSONLY does not terminate or roll back the spid or UOW. It only displays the current progress report.

For the KILL command with WITH STATUSONLY option to generate a report successfully, the spid or UOW must be currently in
the rollback status. The progress report states the amount of rollback completed (in percent) and the estimated length of time left
(in seconds), in this form:

Spid|UOW <xxx>: Transaction rollback in progress. Estimated rollback completion: yy% Estimated time left: zz
seconds.

If the rollback of the spid or UOW has completed when the KILL command with the WITH STATUSONLY option is executed, or if
no spid or UOW is being rolled back, the KILL with WITH STATUSONLY will return the following error:

Status report cannot be obtained. KILL/ROLLBACK operator for Process ID|UOW <xxx> is not in progress.

The same status report can be obtained by executing twice the KILL spid|UOW command without the WITH STATUSONLY option;
however, this is not recommended. The second execution of the command may terminate a new process that may have been
assigned to the released SPID.

Remarks

KILL is commonly used to terminate a process that is blocking other important processes with locks, or to terminate a process that
is executing a query that is using necessary system resources. System processes and processes running an extended stored
procedure cannot be terminated.

Use KILL very carefully, especially when critical processes are running. You cannot kill your own process. Other processes not to
kill are:

AWAITING COMMAND

CHECKPOINT SLEEP

LAZY WRITER

LOCK MONITOR

SELECT

SIGNAL HANDLER

Execute sp_who to get a report on valid SPID values. If a rollback is in progress for a specific SPID, the cmd column for the
specific the SPID in the sp_who result set will indicate 'KILLED/ROLLBACK'.

Use @@SPID to display the SPID value for the current session.

In SQL Server 2000, the KILL command can be used to resolve SPIDs associated with non-distributed and distributed transactions.
KILL also can be used to resolve orphaned or in-doubt distributed transactions. A distributed transaction is orphaned when it is
not associated with any current SPID.

The SPID value of '-2' is set aside as an indicator of connectionless, or orphaned, transactions. SQL Server assigns this value to all
orphaned distributed transactions, making it easier to identify such transactions in sp_lock (spid column), sp_who (blk column),
syslockinfo, and sysprocesses. This feature is useful when a particular connection has a lock on the database resource and is
blocking the progress of a transaction. The user would be able to identify the SPID that owns the lock, and end the connection.

The KILL command can be used to resolve in-doubt transactions, which are unresolved distributed transactions resulting from
unplanned restarts of the database server or DTC coordinator. For more information on resolving in-doubt transactions, see
Troubleshooting DTC Transactions.

Permissions

KILL permissions default to the members of the sysadmin and processadmin fixed database roles, and are not transferable.

Examples

A. Use KILL to terminate a SPID

This example shows how to terminate SPID 53.

KILL 53

B. Use KILL sp id WITH STATUSON LY to obtain a progress report.

This example generates a status of the rollback process for the specific spid.

KILL 54
KILL 54 WITH STATUSONLY

--This is the progress report.
spid 54: Transaction rollback in progress. Estimated rollback completion: 80% Estimated time left: 10 seconds.

C. Use KILL to terminate an orphan distributed transaction.

This example shows how to terminate an orphan (SPID = -2) transaction with UOW = D5499C66-E398-45CA-BF7E-
DC9C194B48CF.

KILL 'D5499C66-E398-45CA-BF7E-DC9C194B48CF'

See Also

Functions

SHUTDOWN

@@SPID

sp_lock

sp_who

Troubleshooting DTC Transactions

Transact-SQL Reference (SQL Server 2000)

LEFT
Returns the left part of a character string with the specified number of characters.

Syntax

LEFT (character_expression , integer_expression)

Arguments

character_expression

Is an expression of character or binary data. character_expression can be a constant, variable, or column. character_expression can
be of any data type (except text or ntext) that can be implicitly converted to varchar or nvarchar. Otherwise, use the CAST
function to explicitly convert character_expression.

integer_expression

Is a positive integer that specifies how many characters of the character_expression will be returned. If integer_expression is
negative, an error is returned.

Return Types

varchar or nvarchar.

Remarks

Compatibility levels can affect return values. For more information about compatibility levels, see sp_dbcmptlevel.

Examples

A. Use LEFT with a column

This example returns the five leftmost characters of each book title.

USE pubs
GO
SELECT LEFT(title, 5)
FROM titles
ORDER BY title_id
GO

Here is the result set:

The B
Cooki
You C
Strai
Silic
The G
The P
But I
Secre
Net E
Compu
Is An
Life
Prolo
Emoti
Onion
Fifty
Sushi

(18 row(s) affected)

B. Use LEFT with a character string

This example uses LEFT to return the two leftmost characters of the character string abcdefg.

SELECT LEFT('abcdefg',2)
GO

Here is the result set:

--
ab

(1 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

LEN
Returns the number of characters, rather than the number of bytes, of the given string expression, excluding trailing blanks.

Syntax

LEN (string_expression)

Arguments

string_expression

Is the string expression to be evaluated.

Return Types

int

Examples

This example selects the number of characters and the data in CompanyName for companies located in Finland.

USE Northwind
GO
SELECT LEN(CompanyName) AS 'Length', CompanyName
FROM Customers
WHERE Country = 'Finland'

Here is the result set:

Length CompanyName
----------- ------------------------------
14 Wartian Herkku
11 Wilman Kala

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

LIKE
Determines whether or not a given character string matches a specified pattern. A pattern can include regular characters and
wildcard characters. During pattern matching, regular characters must exactly match the characters specified in the character
string. Wildcard characters, however, can be matched with arbitrary fragments of the character string. Using wildcard characters
makes the LIKE operator more flexible than using the = and != string comparison operators. If any of the arguments are not of
character string data type, Microsoft® SQL Server™ converts them to character string data type, if possible.

Syntax

match_expression [NOT] LIKE pattern [ESCAPE escape_character]

Arguments

match_expression

Is any valid SQL Server expression of character string data type.

pattern

Is the pattern to search for in match_expression, and can include these valid SQL Server wildcard characters.

Wildcard
character

Description Example

% Any string of zero or more
characters.

WHERE title LIKE '%computer%'
finds all book titles with the word
'computer' anywhere in the book
title.

_ (underscore) Any single character. WHERE au_fname LIKE '_ean' finds
all four-letter first names that end
with ean (Dean, Sean, and so on).

[] Any single character within
the specified range ([a-f]) or
set ([abcdef]).

WHERE au_lname LIKE '[C-P]arsen'
finds author last names ending with
arsen and beginning with any single
character between C and P, for
example Carsen, Larsen, Karsen, and
so on.

[^] Any single character not
within the specified range
([^a-f]) or set ([^abcdef]).

WHERE au_lname LIKE 'de[^l]%' all
author last names beginning with de
and where the following letter is not
l.

escape_character

Is any valid SQL Server expression of any of the data types of the character string data type category. escape_character has no
default and must consist of only one character.

Result Types

Boolean

Result Value

LIKE returns TRUE if the match_expression matches the specified pattern.

Remarks

When you perform string comparisons with LIKE, all characters in the pattern string are significant, including leading or trailing
spaces. If a comparison in a query is to return all rows with a string LIKE 'abc ' (abc followed by a single space), a row in which the
value of that column is abc (abc without a space) is not returned. However, trailing blanks, in the expression to which the pattern
is matched, are ignored. If a comparison in a query is to return all rows with the string LIKE 'abc' (abc without a space), all rows
that start with abc and have zero or more trailing blanks are returned.

A string comparison using a pattern containing char and varchar data may not pass a LIKE comparison because of how the data
is stored. It is important to understand the storage for each data type and where a LIKE comparison may fail. The following
example passes a local char variable to a stored procedure and then uses pattern matching to find all of the books by a certain
author. In this procedure, the author's last name is passed as a variable.

CREATE PROCEDURE find_books @AU_LNAME char(20)
AS
SELECT @AU_LNAME = RTRIM(@AU_LNAME) + '%'
SELECT t.title_id, t.title
FROM authors a, titleauthor ta, titles t
WHERE a.au_id = ta.au_id AND ta.title_id = t.title_id
 AND a.au_lname LIKE @AU_LNAME

In the find_books procedure, no rows are returned because the char variable (@AU_LNAME) contains trailing blanks whenever
the name contains fewer than 20 characters. Because the au_lname column is varchar, there are no trailing blanks. This
procedure fails because the trailing blanks are significant.

However, this example succeeds because trailing blanks are not added to a varchar variable:

USE pubs
GO
CREATE PROCEDURE find_books2 @au_lname varchar(20)
AS
SELECT t.title_id, t.title
FROM authors a, titleauthor ta, titles t
WHERE a.au_id = ta.au_id AND ta.title_id = t.title_id
 AND a.au_lname LIKE @au_lname + '%'

EXEC find_books2 'ring'

Here is the result set:

title_id title
-------- ---
MC3021 The Gourmet Microwave
PS2091 Is Anger the Enemy?
PS2091 Is Anger the Enemy?
PS2106 Life Without Fear

(4 row(s) affected)

Pattern M atching with LIKE

It is recommended that LIKE be used when you search for datetime values, because datetime entries can contain a variety of
dateparts. For example, if you insert the value 19981231 9:20 into a column named arrival_time, the clause WHERE arrival_time
= 9:20 cannot find an exact match for the 9:20 string because SQL Server converts it to Jan 1, 1900 9:20AM. A match is found,
however, by the clause WHERE arrival_time LIKE '%9:20%'.

LIKE supports ASCII pattern matching and Unicode pattern matching. When all arguments (match_expression, pattern, and
escape_character, if present) are ASCII character data types, ASCII pattern matching is performed. If any of the arguments are of
Unicode data type, all arguments are converted to Unicode and Unicode pattern matching is performed. When you use Unicode
data (nchar or nvarchar data types) with LIKE, trailing blanks are significant; however, for non-Unicode data, trailing blanks are
not significant. Unicode LIKE is compatible with the SQL-92 standard. ASCII LIKE is compatible with earlier versions of SQL Server.

Here is a series of examples that show the differences in rows returned between ASCII and Unicode LIKE pattern matching:

-- ASCII pattern matching with char column
CREATE TABLE t (col1 char(30))
INSERT INTO t VALUES ('Robert King')
SELECT *
FROM t
WHERE col1 LIKE '% King' -- returns 1 row

-- Unicode pattern matching with nchar column
CREATE TABLE t (col1 nchar(30))
INSERT INTO t VALUES ('Robert King')
SELECT *
FROM t
WHERE col1 LIKE '% King' -- no rows returned

-- Unicode pattern matching with nchar column and RTRIM
CREATE TABLE t (col1 nchar (30))
INSERT INTO t VALUES ('Robert King')
SELECT *
FROM t

WHERE RTRIM(col1) LIKE '% King' -- returns 1 row

Note When you perform string comparisons with LIKE, all characters in the pattern string are significant, including every leading
or trailing blank (space).

Using the % Wildcard Character

If the LIKE '5%' symbol is specified, SQL Server searches for the number 5 followed by any string of zero or more characters.

For example, this query shows all system tables in a database, because they all begin with the letters sys:

SELECT TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME LIKE 'sys%'

Note Be aware that system tables can change from version to version. It is recommended that you use the Information Schema
Views or applicable stored procedures to work with SQL Server system tables.

To see all objects that are not system tables, use NOT LIKE 'sys%'. If you have a total of 32 objects and LIKE finds 13 names that
match the pattern, NOT LIKE finds the 19 objects that do not match the LIKE pattern.

You may not always find the same names with a pattern such as LIKE '[^s][^y][^s]%'. Instead of 19 names, you may get only 14,
with all the names that begin with s or have y as the second letter or have s as the third letter eliminated from the results, as well
as the system table names. This is because match strings with negative wildcards are evaluated in steps, one wildcard at a time. If
the match fails at any point in the evaluation, it is eliminated.

Using Wildcard Characters as L iterals

You can use the wildcard pattern matching characters as literal characters. To use a wildcard character as a literal character,
enclose the wildcard character in brackets. The table shows several examples of using the LIKE keyword and the [] wildcard
characters.

Symbol Meaning
LIKE '5[%]' 5%
LIKE '[_]n' _n
LIKE '[a-cdf]' a, b, c, d, or f
LIKE '[-acdf]' -, a, c, d, or f
LIKE '[[]' [
LIKE ']']
LIKE 'abc[_]d%' abc_d and abc_de
LIKE 'abc[def]' abcd, abce, and abcf

Pattern M atching with the ESCAPE Clause

You can search for character strings that include one or more of the special wildcard characters. For example, the discounts table
in the customers database may store discount values that include a percent sign (%). To search for the percent sign as a character
instead of as a wildcard character, the ESCAPE keyword and escape character must be provided. For example, a sample database
contains a column named comment that contains the text 30%. To search for any rows containing the string 30% anywhere in
the comment column, specify a WHERE clause of WHERE comment LIKE '%30!%%' ESCAPE '!'. Unless ESCAPE and the escape
character are specified, SQL Server returns any rows with the string 30.

This example shows how to search for the string "50% off when 100 or more copies are purchased" in the notes column of the
titles table in the pubs database:

USE pubs
GO
SELECT notes
FROM titles
WHERE notes LIKE '50%% off when 100 or more copies are purchased'
 ESCAPE '%'
GO

If there is no character after an escape character in the LIKE pattern, the pattern is not valid and the LIKE returns FALSE. If the
character after an escape character is not a wildcard, the escape character is discarded and the character following the escape is
treated as a regular character in the pattern. This includes the wildcard characters '%', '_', and '[' when they are enclosed in the '[]'
characters. Also, within the '[]' characters, escape characters can be used and the characters '^', '-' and ']' can be escaped.

Examples

A. Use LIKE with the % wildcard character

This example finds all phone numbers that have area code 415 in the authors table.

USE pubs
GO
SELECT phone
FROM authors
WHERE phone LIKE '415%'
ORDER by au_lname
GO

Here is the result set:

phone

415 658-9932
415 548-7723
415 836-7128
415 986-7020
415 836-7128
415 534-9219
415 585-4620
415 354-7128
415 834-2919
415 843-2991
415 935-4228

(11 row(s) affected)

B. Use N OT LIKE with the % wildcard character

This example finds all phone numbers in the authors table that have area codes other than 415.

USE pubs
GO
SELECT phone
FROM authors
WHERE phone NOT LIKE '415%'
ORDER BY au_lname
GO

Here is the result set:

phone

503 745-6402
219 547-9982
615 996-8275
615 297-2723
707 938-6445
707 448-4982
408 286-2428
301 946-8853
801 826-0752
801 826-0752
913 843-0462
408 496-7223

(12 row(s) affected)

C. Use the ESCAPE clause

This example uses the ESCAPE clause and the escape character to find the exact character string 10-15% in column c1 of the
mytbl2 table.

USE pubs
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'mytbl2')
 DROP TABLE mytbl2
GO
USE pubs
GO
CREATE TABLE mytbl2

(
 c1 sysname
)
GO
INSERT mytbl2 VALUES ('Discount is 10-15% off')
INSERT mytbl2 VALUES ('Discount is .10-.15 off')
GO
SELECT c1
FROM mytbl2
WHERE c1 LIKE '%10-15!% off%' ESCAPE '!'
GO

D. Use the [] w ildcard characters

This example finds authors with the first name of Cheryl or Sheryl.

USE pubs
GO
SELECT au_lname, au_fname, phone
FROM authors
WHERE au_fname LIKE '[CS]heryl'
ORDER BY au_lname ASC, au_fname ASC
GO

This example finds the rows for authors with last names of Carson, Carsen, Karson, or Karsen.

USE pubs
GO
SELECT au_lname, au_fname, phone
FROM authors
WHERE au_lname LIKE '[CK]ars[eo]n'
ORDER BY au_lname ASC, au_fname ASC
GO

See Also

Expressions

Functions

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

LOAD
Loads a backup copy of one of the following:

User database (LOAD DATABASE)

Transaction log (LOAD TRANSACTION)

Header information about the dump (LOAD HEADERONLY)

Important The LOAD statement is included in Microsoft® SQL Server™ 2000 for backward compatibility. The LOAD statement is
identical to the RESTORE statement. It is recommended that the RESTORE statement be used instead of the LOAD statement. In a
future version of SQL Server, LOAD will not be supported.

See Also

BACKUP

CREATE DATABASE

RESTORE

sp_helpdevice

Transact-SQL Reference (SQL Server 2000)

LOG
Returns the natural logarithm of the given float expression.

Syntax

LOG (float_expression)

Arguments

float_expression

Is an expression of the float data type.

Return Types

float

Examples

This example calculates the LOG for the given float expression.

DECLARE @var float
SET @var = 5.175643
SELECT 'The LOG of the variable is: ' + CONVERT(varchar,LOG(@var))
GO

Here is the result set:

The LOG of the variable is: 1.64396

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

LOG10
Returns the base-10 logarithm of the given float expression.

Syntax

LOG10 (float_expression)

Arguments

float_expression

Is an expression of the float data type.

Return Types

float

Examples

This example calculates the LOG10 of the given variable.

DECLARE @var float
SET @var = 145.175643
SELECT 'The LOG10 of the variable is: ' + CONVERT(varchar,LOG10(@var))
GO

Here is the result set:

The LOG10 of the variable is: 2.16189

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

LOWER
Returns a character expression after converting uppercase character data to lowercase.

Syntax

LOWER (character_expression)

Arguments

character_expression

Is an expression of character or binary data. character_expression can be a constant, variable, or column. character_expression
must be of a data type that is implicitly convertible to varchar. Otherwise, use CAST to explicitly convert character_expression.

Return Types

varchar

Examples

This example uses the LOWER function, the UPPER function, and nests the UPPER function inside the LOWER function in selecting
book titles that have prices between $11 and $20.

USE pubs
GO
SELECT LOWER(SUBSTRING(title, 1, 20)) AS Lower,
 UPPER(SUBSTRING(title, 1, 20)) AS Upper,
 LOWER(UPPER(SUBSTRING(title, 1, 20))) As LowerUpper
FROM titles
WHERE price between 11.00 and 20.00
GO

Here is the result set:

Lower Upper LowerUpper
-------------------- -------------------- --------------------
the busy executive's THE BUSY EXECUTIVE'S the busy executive's
cooking with compute COOKING WITH COMPUTE cooking with compute
straight talk about STRAIGHT TALK ABOUT straight talk about
silicon valley gastr SILICON VALLEY GASTR silicon valley gastr
secrets of silicon v SECRETS OF SILICON V secrets of silicon v
prolonged data depri PROLONGED DATA DEPRI prolonged data depri
fifty years in bucki FIFTY YEARS IN BUCKI fifty years in bucki
sushi, anyone? SUSHI, ANYONE? sushi, anyone?

(8 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

LTRIM
Returns a character expression after removing leading blanks.

Syntax

LTRIM (character_expression)

Arguments

character_expression

Is an expression of character or binary data. character_expression can be a constant, variable, or column. character_expression
must be of a data type that is implicitly convertible to varchar. Otherwise, use CAST to explicitly convert character_expression.

Return Type

varchar

Remarks

Compatibility levels can affect return values. For more information about compatibility levels, see sp_dbcmptlevel.

Examples

This example uses LTRIM to remove leading spaces from a character variable.

DECLARE @string_to_trim varchar(60)
SET @string_to_trim = ' Five spaces are at the beginning of this
 string.'
SELECT 'Here is the string without the leading spaces: ' +
 LTRIM(@string_to_trim)
GO

Here is the result set:

--
Here is the string without the leading spaces: Five spaces are at the beginning of this string.

(1 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

MAX
Returns the maximum value in the expression.

Syntax

MAX ([ALL | DISTINCT] expression)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that each unique value is considered. DISTINCT is not meaningful with MAX and is available for SQL-92 compatibility
only.

expression

Is a constant, column name, or function, and any combination of arithmetic, bitwise, and string operators. MAX can be used with
numeric, character, and datetime columns, but not with bit columns. Aggregate functions and subqueries are not permitted.

Return Types

Returns a value same as expression.

Important Distinct aggregates, for example AVG(DISTINCT column_name), COUNT(DISTINCT column_name), MAX(DISTINCT
column_name), MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not supported when using CUBE or
ROLLUP. If used, Microsoft® SQL Server™ returns an error message and cancels the query.

Remarks

MAX ignores any null values.

For character columns, MAX finds the highest value in the collating sequence.

Examples

This example returns the book with the highest (maximum) year-to-date sales.

USE pubs
GO
SELECT MAX(ytd_sales)
FROM titles
GO

Here is the result set:

22246

(1 row(s) affected)

Warning, null value eliminated from aggregate.

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

MIN
Returns the minimum value in the expression.

Syntax

MIN ([ALL | DISTINCT] expression)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that each unique value is considered. DISTINCT is not meaningful with MIN and is available for SQL-92 compatibility
only.

expression

Is a constant, column name, or function, and any combination of arithmetic, bitwise, and string operators. MIN can be used with
numeric, char, varchar, or datetime columns, but not with bit columns. Aggregate functions and subqueries are not permitted.

Return Types

Returns a value same as expression.

Important Distinct aggregates, for example AVG(DISTINCT column_name), COUNT(DISTINCT column_name), MAX(DISTINCT
column_name), MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not supported when using CUBE or
ROLLUP. If used, Microsoft® SQL Server™ returns an error message and ends the query.

Remarks

MIN ignores any null values.

With character data columns, MIN finds the value that is lowest in the sort sequence.

Examples

This example returns the book with the lowest (minimum) year-to-date sales.

USE pubs
GO
SELECT min(ytd_sales)
FROM titles
GO

Here is the result set:

111

(1 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

money and smallmoney
Monetary data types for representing monetary or currency values.

money

Monetary data values from -2^63 (-922,337,203,685,477.5808) through
2^63 - 1 (+922,337,203,685,477.5807), with accuracy to a ten-thousandth of a monetary unit. Storage size is 8 bytes.

smallmoney

Monetary data values from - 214,748.3648 through +214,748.3647, with accuracy to a ten-thousandth of a monetary unit.
Storage size is 4 bytes.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

Monetary Data

SET @local_variable

UPDATE

Using Monetary Data

Transact-SQL Reference (SQL Server 2000)

MONTH
Returns an integer that represents the month part of a specified date.

Syntax

MONTH (date)

Arguments

date

Is an expression returning a datetime or smalldatetime value, or a character string in a date format. Use the datetime data
type only for dates after January 1, 1753.

Return Types

int

Remarks

MONTH is equivalent to DATEPART(mm, date).

Always enclose datetime values in quotation marks. For earlier dates, store dates as character data.

Microsoft® SQL Server™ recognizes a variety of date styles. For more information about date and time data, see CAST and
CONVERT.

Examples

This example returns the number of the month from the date 03/12/1998.

SELECT "Month Number" = MONTH('03/12/1998')
GO

Here is the result set:

Month Number

3

This example specifies the date as a number. Notice that SQL Server interprets 0 as January 1, 1900.

SELECT MONTH(0), DAY(0), YEAR(0)

Here is the result set.

----- ------ ------
1 1 1900

See Also

Data Types

Date and Time Functions

datetime and smalldatetime

Transact-SQL Reference (SQL Server 2000)

NCHAR
Returns the Unicode character with the given integer code, as defined by the Unicode standard.

Syntax

NCHAR (integer_expression)

Arguments

integer_expression

Is a positive whole number from 0 through 65535. If a value outside this range is specified, NULL is returned.

Return Types

nchar(1)

Examples

A. Use N CHAR and UN ICODE

This example uses the UNICODE and NCHAR functions to print the UNICODE value and the NCHAR (Unicode character) of the
second character of the København character string, and to print the actual second character, ø.

DECLARE @nstring nchar(8)
SET @nstring = N'København'
SELECT UNICODE(SUBSTRING(@nstring, 2, 1)),
 NCHAR(UNICODE(SUBSTRING(@nstring, 2, 1)))
GO

Here is the result set:

----------- -
248 ø

(1 row(s) affected)

B. Use SUBSTRIN G, UN ICODE, CON VERT, and N CHAR

This example uses the SUBSTRING, UNICODE, CONVERT, and NCHAR functions to print the character number, the Unicode
character, and the UNICODE value of each of the characters in the string København.

-- The @position variable holds the position of the character currently
-- being processed. The @nstring variable is the Unicode character
-- string to process.
DECLARE @position int, @nstring nchar(9)
-- Initialize the current position variable to the first character in
-- the string.
SET @position = 1
-- Initialize the character string variable to the string to process.
-- Notice that there is an N before the start of the string, which
-- indicates that the data following the N is Unicode data.
SET @nstring = N'København'
-- Print the character number of the position of the string you're at,
-- the actual Unicode character you're processing, and the UNICODE value -- for this particular character.
PRINT 'Character #' + ' ' + 'Unicode Character' + ' ' + 'UNICODE Value'
WHILE @position <= DATALENGTH(@nstring)
 BEGIN
 SELECT @position,
 NCHAR(UNICODE(SUBSTRING(@nstring, @position, 1))),
 CONVERT(NCHAR(17), SUBSTRING(@nstring, @position, 1)),
 UNICODE(SUBSTRING(@nstring, @position, 1))
 SELECT @position = @position + 1
 END
GO

Here is the result set:

Character # Unicode Character UNICODE Value

----------- ---- ----------------- -----------
1 K K 75

(1 row(s) affected)

----------- ---- ----------------- -----------
2 ø ø 248

(1 row(s) affected)

----------- ---- ----------------- -----------
3 b b 98

(1 row(s) affected)

----------- ---- ----------------- -----------
4 e e 101

(1 row(s) affected)

----------- ---- ----------------- -----------
5 n n 110

(1 row(s) affected)

----------- ---- ----------------- -----------
6 h h 104

(1 row(s) affected)

----------- ---- ----------------- -----------
7 a a 97

(1 row(s) affected)

----------- ---- ----------------- -----------
8 v v 118

(1 row(s) affected)

----------- ---- ----------------- -----------
9 n n 110

(1 row(s) affected)

----------- ---- ----------------- -----------
10 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
11 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
12 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
13 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
14 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
15 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
16 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
17 NULL NULL

(1 row(s) affected)

----------- ---- ----------------- -----------
18 NULL NULL

(1 row(s) affected)

See Also

Data Types

String Functions

UNICODE

Transact-SQL Reference (SQL Server 2000)

nchar and nvarchar
Character data types that are either fixed-length (nchar) or variable-length (nvarchar) Unicode data and use the UNICODE UCS-2
character set.

nchar(n)

Fixed-length Unicode character data of n characters. n must be a value from 1 through 4,000. Storage size is two times n bytes.
The SQL-92 synonyms for nchar are national char and national character.

nvarchar(n)

Variable-length Unicode character data of n characters. n must be a value from 1 through 4,000. Storage size, in bytes, is two
times the number of characters entered. The data entered can be 0 characters in length. The SQL-92 synonyms for nvarchar are
national char varying and national character varying.

Remarks

When n is not specified in a data definition or variable declaration statement, the default length is 1. When n is not specified with
the CAST function, the default length is 30.

Use nchar when the data entries in a column are expected to be consistently close to the same size.

Use nvarchar when the data entries in a column are expected to vary considerably in size.

Objects using nchar or nvarchar are assigned the default collation of the database, unless a specific collation is assigned using
the COLLATE clause.

SET ANSI_PADDING OFF does not apply to nchar or nvarchar. SET ANSI_PADDING is always ON for nchar and nvarchar.

See Also

ALTER TABLE

CAST and CONVERT

COLLATE

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

LIKE

SET ANSI_PADDING

SET @local_variable

sp_dbcmptlevel

UPDATE

Using Unicode Data

WHERE

Transact-SQL Reference (SQL Server 2000)

NEWID
Creates a unique value of type uniqueidentifier.

Syntax

NEWID ()

Return Types

uniqueidentifier

Examples

A. Use the N EWID function with a variable

This example uses NEWID to assign a value to a variable declared as the uniqueidentifier data type. The value of the
uniqueidentifier data type variable is printed before the value is tested.

-- Creating a local variable with DECLARE/SET syntax.
DECLARE @myid uniqueidentifier
SET @myid = NEWID()
PRINT 'Value of @myid is: '+ CONVERT(varchar(255), @myid)

Here is the result set:

Value of @myid is: 6F9619FF-8B86-D011-B42D-00C04FC964FF

Note The value returned by NEWID is different for each computer. This number is shown only for illustration.

B. Use N EWID in a CREATE TABLE statement

This example creates cust table with a uniqueidentifier data type, and uses NEWID to fill the table with a default value. In
assigning the default value of NEWID(), each new and existing row has a unique value for the cust_id column.

-- Creating a table using NEWID for uniqueidentifier data type.
CREATE TABLE cust
(
 cust_id uniqueidentifier NOT NULL
 DEFAULT newid(),
 company varchar(30) NOT NULL,
 contact_name varchar(60) NOT NULL,
 address varchar(30) NOT NULL,
 city varchar(30) NOT NULL,
 state_province varchar(10) NULL,
 postal_code varchar(10) NOT NULL,
 country varchar(20) NOT NULL,
 telephone varchar(15) NOT NULL,
 fax varchar(15) NULL
)
GO
-- Inserting data into cust table.
INSERT cust
(cust_id, company, contact_name, address, city, state_province,
 postal_code, country, telephone, fax)
VALUES
(newid(), 'Wartian Herkku', 'Pirkko Koskitalo', 'Torikatu 38', 'Oulu', NULL,
 '90110', 'Finland', '981-443655', '981-443655')
INSERT cust
(cust_id, company, contact_name, address, city, state_province,
postal_code, country, telephone, fax)
VALUES
(newid(), 'Wellington Importadora', 'Paula Parente', 'Rua do Mercado, 12', 'Resende', 'SP',
 '08737-363', 'Brazil', '(14) 555-8122', '')
INSERT cust
(cust_id, company, contact_name, address, city, state_province,
 postal_code, country, telephone, fax)
VALUES
(newid(), 'Cactus Comidas para Ilevar', 'Patricio Simpson', 'Cerrito 333', 'Buenos Aires', NULL,
 '1010', 'Argentina', '(1) 135-5555', '(1) 135-4892')
INSERT cust
(cust_id, company, contact_name, address, city, state_province,
 postal_code, country, telephone, fax)

VALUES
(newid(), 'Ernst Handel', 'Roland Mendel', 'Kirchgasse 6', 'Graz', NULL,
 '8010', 'Austria', '7675-3425', '7675-3426')
INSERT cust
(cust_id, company, contact_name, address, city, state_province,
 postal_code, country, telephone, fax)
VALUES
(newid(), 'Maison Dewey', 'Catherine Dewey', 'Rue Joseph-Bens 532', 'Bruxelles', NULL,
 'B-1180', 'Belgium', '(02) 201 24 67', '(02) 201 24 68')
GO

C. Use uniqueidentifier and variable assignment

This example declares a local variable called @myid as a variable of uniqueidentifier data type. Then, the variable is assigned a
value using the SET statement.

DECLARE @myid uniqueidentifier
SET @myid = 'A972C577-DFB0-064E-1189-0154C99310DAAC12'
GO

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Types

Replication Overview

System Functions

uniqueidentifier

Transact-SQL Reference (SQL Server 2000)

Northwind Sample Database
The Northwind Traders sample database contains the sales data for a fictitious company called Northwind Traders, which
imports and exports specialty foods from around the world.

If you have made changes to the Northwind database, you can reinstall it by running a script from the Install directory of your
Microsoft® SQL Server™ 2000 installation:

1. At the command prompt, change to the Mssql\Install directory.

2. Use the osql utility to run the Instnwnd.sql script:

osql/Usa /Psapassword /Sservername /iinstnwnd.sql /oinstnwnd.rpt

3. Check Instnwnd.rpt for reported errors.

The database is created in the Data directory of your SQL Server installation.

Instnwnd.sql is a large file. If you want to view Instnwnd.sql using Notepad, first turn off the Notepad Word Wrap option. If Word
Wrap is on, opening the file and each scrolling operation will take a long time. Even turning Word Wrap off after the file has been
opened takes a long time.

Transact-SQL Reference (SQL Server 2000)

Categories
Column_name Data type Nullable Default Check Key/index

CategoryID int no IDENTITY(1,1) PK clust.
CategoryName nvarchar(15) no Nonclust.
Description ntext yes
Picture image yes

Transact-SQL Reference (SQL Server 2000)

Customers
Column_name Data type Nullable Default Check Key/index

CustomerID nchar(5) no PK clust.
CompanyName nvarchar(40) no Nonclust.
ContactName nvarchar(30) yes
ContactTitle nvarchar(30) yes
Address nvarchar(60) yes
City nvarchar(15) yes Nonclust.
Region nvarchar(15) yes Nonclust.
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes
Phone nvarchar(24) yes
Fax nvarchar(24) yes

Transact-SQL Reference (SQL Server 2000)

CustomerCustomerDemo
Column_name Data

type
Nullable Default Check Key/index

CustomerID nchar(5) no Composite PK nonclust1,
FK Customers(CustomerID)

CustomerTypeID nchar(10) no Composite PK nonclust1,
FK
CustomerDemographics(CustomerTypeID)

1 The composite primary key is defined on CustomerID, CustomerTypeID.

Transact-SQL Reference (SQL Server 2000)

CustomerDemographics
Column_name Data type Nullable Default Check Key/index

CustomerTypeID nchar(10) no PK nonclust.
CustomerDesc ntext yes

Transact-SQL Reference (SQL Server 2000)

Employees
Column_name Data type Nullable Default Check Key/index

EmployeeID int no IDENTITY
(1,1)

PK clust.

LastName nvarchar(20) no Nonclust.
FirstName nvarchar(10) no
Title nvarchar(30) yes
TitleOfCourtesy nvarchar(25) yes
BirthDate datetime yes yes1

HireDate datetime yes
Address nvarchar(60) yes
City nvarchar(15) yes
Region nvarchar(15) yes
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes
HomePhone nvarchar(24) yes
Extension nvarchar(4) yes
Photo image yes
Notes ntext yes
ReportsTo int yes FK

Employees(EmployeeID)
Photopath nvarchar(255) yes

1 The BirthDate CHECK constraint is defined as (BirthDate < GETDATE()).

Note Some entries in the Address column of the Employees table contain newline characters that may affect the format of the
result set columns.

Transact-SQL Reference (SQL Server 2000)

EmployeeTerritories
Column_name Data type Nullable Default Check Key/index

EmployeeID int no Composite PK
nonclust.

TerritoryID nvarchar(20) no Composite PK
nonclust.

Transact-SQL Reference (SQL Server 2000)

Order Details
Column_name Data type Nullable Default Check Key/index
OrderID int no Composite PK, clust1, FK

Orders(OrderID)2
ProductID int no Composite PK, clust1, FK

Products(ProductID)3
UnitPrice money no 0 yes4

Quantity smallint no 1 yes5

Discount real no 0

1 The composite, primary key, clustered index is defined on OrderID and ProductID.
2 There are also two nonclustered indexes on OrderID.
3 There are also two nonclustered indexes on ProductID.
4 The UnitPrice CHECK constraint is defined as (UnitPrice >= 0).
5 The Quantity CHECK constraint is defined as (Quantity > 0).
The table-level CHECK constraint is defined as (Discount >= 0 and Discount < = 1).

Transact-SQL Reference (SQL Server 2000)

Orders
Column_name Data type Nullable Default Check Key/index

OrderID int no IDENTITY
(1,1)

PK, clust.

CustomerID nchar(5) yes FK
Customers(CustomerID)1

EmployeeID int yes FK
Employees(EmployeeID)2

OrderDate datetime yes GETDATE
()

Nonclust.

RequiredDate datetime yes
ShippedDate datetime yes Nonclust.
ShipVia int yes FK Shippers(ShipperID)3
Freight money yes 0
ShipName nvarchar(40) yes
ShipAddress nvarchar(60) yes
ShipCity nvarchar(15) yes
ShipRegion nvarchar(15) yes
ShipPostalCode nvarchar(10) yes Nonclust.
ShipCountry nvarchar(15) yes

1 There are also two nonclustered indexes on CustomerID.
2 There are also two nonclustered indexes on EmployeeID.
3 There is also a nonclustered index on ShipVia.

Transact-SQL Reference (SQL Server 2000)

Products
 Topic last updated -- July 2003

Column_name Data type Nullable Default Check Key/index
ProductID int no IDENTITY

(1,1)
 PK, clust.

ProductName nvarchar(40) no Nonclust.
SupplierID int yes FK

Suppliers(SupplierID),
nonclust.1

CategoryID int yes FK
Categories(CategoryID),
nonclust.2

QuantityPerUnit nvarchar(20) yes
UnitPrice money yes 0 yes3

UnitsInStock smallint yes 0 yes4

UnitsOnOrder smallint yes 0 yes5

ReorderLevel smallint yes 0 yes6

Discontinued bit no 0

1 There are two nonclustered indexes on SupplierID.
2 There are two nonclustered indexes on CategoryID.
3 The UnitPrice CHECK constraint is defined as (UnitPrice >=0).
4 The UnitsInStock CHECK constraint is defined as (UnitsInStock >=0).
5 The UnitsOnOrder CHECK constraint is defined as (UnitsOnOrder >=0).
6 The ReorderLevel CHECK constraint is defined as (ReorderLevel >=0).

Transact-SQL Reference (SQL Server 2000)

Region
Column_name Data type Nullable Default Check Key/index

RegionID int no PK nonclust.
RegionDescription nchar(50) no

Transact-SQL Reference (SQL Server 2000)

Shippers
Column_name Data type Nullable Default Check Key/index

ShipperID int no IDENTITY
(1,1)

PK clust.

CompanyName nvarchar(40) no
Phone nvarchar(24) yes

Transact-SQL Reference (SQL Server 2000)

Suppliers
Column_name Data type Nullable Default Check Key/index

SupplierID int no IDENTITY
(1,1)

PK clust.

CompanyName nvarchar(40) no Nonclust.
ContactName nvarchar(30) yes
ContactTitle nvarchar(30) yes
Address nvarchar(60) yes
City nvarchar(15) yes
Region nvarchar(15) yes
PostalCode nvarchar(10) yes Nonclust.
Country nvarchar(15) yes
Phone nvarchar(24) yes
Fax nvarchar(24) yes
HomePage ntext yes

Transact-SQL Reference (SQL Server 2000)

Territories
Column_name Data type Nullable Default Check Key/index

TerritoryID nvarchar(20) no PK nonclust.
TerritoryDescription nchar(50) no
RegionID int no FK Region

(RegionID)

Transact-SQL Reference (SQL Server 2000)

NOT
Negates a Boolean input.

Syntax

[NOT] boolean_expression

Arguments

boolean_expression

Is any valid Microsoft® SQL Server™ Boolean expression.

Result Types

Boolean

Result Value

NOT reverses the value of any Boolean expression.

Remarks

The use of NOT negates an expression.

This table shows the results of comparing TRUE and FALSE values using the NOT operator.

 NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Examples

This example finds all business and psychology books that do not have an advance over $5,500.

USE pubs
GO
SELECT title_id, type, advance
FROM titles
WHERE (type = 'business' OR type = 'psychology')
 AND NOT advance > $5500
ORDER BY title_id ASC
GO

Here is the result set:

title_id type advance
-------- ------------ ---------------------
BU1032 business 5000.0000
BU1111 business 5000.0000
BU7832 business 5000.0000
PS2091 psychology 2275.0000
PS3333 psychology 2000.0000
PS7777 psychology 4000.0000

(6 row(s) affected)

See Also

Expressions

Functions

Operators (Logical Operators)

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

ntext, text, and image
Fixed and variable-length data types for storing large non-Unicode and Unicode character and binary data. Unicode data uses the
UNICODE UCS-2 character set.

ntext

Variable-length Unicode data with a maximum length of 230 - 1 (1,073,741,823) characters. Storage size, in bytes, is two times the
number of characters entered. The SQL-92 synonym for ntext is national text.

text

Variable-length non-Unicode data in the code page of the server and with a maximum length of 231-1 (2,147,483,647) characters.
When the server code page uses double-byte characters, the storage is still 2,147,483,647 bytes. Depending on the character
string, the storage size may be less than 2,147,483,647 bytes.

image

Variable-length binary data from 0 through 231-1 (2,147,483,647) bytes.

Remarks

These functions and statements can be used with ntext, text, or image data.

Functions Statements
DATALENGTH READTEXT
PATINDEX SET TEXTSIZE
SUBSTRING UPDATETEXT
TEXTPTR WRITETEXT
TEXTVALID

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

LIKE

SET @local_variable

UPDATE

Using Unicode Data

Transact-SQL Reference (SQL Server 2000)

NULLIF
Returns a null value if the two specified expressions are equivalent.

Syntax

NULLIF (expression , expression)

Arguments

expression

Is a constant, column name, function, subquery, or any combination of arithmetic, bitwise, and string operators.

Return Types

Returns the same type as the first expression.

NULLIF returns the first expression if the two expressions are not equivalent. If the expressions are equivalent, NULLIF returns a
null value of the type of the first expression.

Remarks

NULLIF is equivalent to a searched CASE function in which the two expressions are equal and the resulting expression is NULL.

Examples

This example creates a budgets table to show a department (dept) its current budget (current_year) and its previous budget
(previous_year). For the current year, NULL is used for departments with budgets that have not changed from the previous year,
and 0 is used for budgets that have not yet been determined. To find out the average of only those departments that receive a
budget as well as to include the budget value from the previous year (use the previous_year value, where the current_year is 0),
combine the NULLIF and COALESCE functions.

USE pubs
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'budgets')
 DROP TABLE budgets
GO
SET NOCOUNT ON
CREATE TABLE budgets
(
 dept tinyint IDENTITY,
 current_year decimal NULL,
 previous_year decimal NULL
)
INSERT budgets VALUES(100000, 150000)
INSERT budgets VALUES(NULL, 300000)
INSERT budgets VALUES(0, 100000)
INSERT budgets VALUES(NULL, 150000)
INSERT budgets VALUES(300000, 250000)
GO
SET NOCOUNT OFF
SELECT AVG(NULLIF(COALESCE(current_year,
 previous_year), 0.00)) AS 'Average Budget'
FROM budgets
GO

Here is the result set:

Average Budget
--
212500.000000

(1 row(s) affected)

See Also

CASE

decimal and numeric

System Functions

Transact-SQL Reference (SQL Server 2000)

numeric
For more information about the numeric data type, see decimal and numeric.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

OBJECT_ID
Returns the database object identification number.

Syntax

OBJECT_ID ('object')

Arguments

'object'

Is the object to be used. object is either char or nchar. If object is char, it is implicitly converted to nchar.

Return Types

int

Remarks

When the parameter to a system function is optional, the current database, host computer, server user, or database user is
assumed. Built-in functions must always be followed by parentheses.

When specifying a temporary table name, the database name must precede the temporary table name, for example:

SELECT OBJECT_ID('tempdb..#mytemptable')

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed. For more
information, see Expressions and WHERE.

Examples

This example returns the object ID for the authors table in the pubs database.

USE master
SELECT OBJECT_ID('pubs..authors')

Here is the result set:

1977058079

(1 row(s) affected)

See Also

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

OBJECT_NAME
Returns the database object name.

Syntax

OBJECT_NAME (object_id)

Arguments

object_id

Is the ID of the object to be used. object_id is int.

Return Types

nchar

Remarks

When the parameter of a system function is optional, the current database, host computer, server user, or database user is
assumed. Built-in functions must always be followed by parentheses.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed. For more
information, see Expressions and WHERE.

Examples

This example returns the OBJECT_NAME for the authors table in the pubs database.

USE pubs
SELECT TABLE_CATALOG, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = OBJECT_NAME(1977058079)

Here is the result set:

TABLE_CATALOG TABLE_NAME
------------------------------ --------------
pubs authors

(1 row(s) affected)

See Also

Metadata Functions

Transact-SQL Reference (SQL Server 2000)

OBJECTPROPERTY
 Topic last updated -- July 2003

Returns information about objects in the current database.

Syntax

OBJECTPROPERTY (id , property)

Arguments

id

Is an expression containing the ID of the object in the current database. id is int.

property

Is an expression containing the information to be returned for the object specified by id. property can be one of these values.

Note Unless noted otherwise, the value NULL is returned when property is not a valid property name.

Property name Object
type

Description and
values returned

CnstIsClustKey Constraint A primary key with a
clustered index.

1 = True
0 = False

CnstIsColumn Constraint COLUMN constraint.

1 = True
0 = False

CnstIsDeleteCascade Constraint A foreign key constraint
with the ON DELETE
CASCADE option.

CnstIsDisabled Constraint Disabled constraint.

1 = True
0 = False

CnstIsNonclustKey Constraint A primary key with a
nonclustered index.

1 = True
0 = False

CnstIsNotTrusted Constraint Constraint was enabled
without checking
existing rows, so
constraint may not hold
for all rows.

1 = True
0 = False

CnstIsNotRepl Constraint The constraint is
defined with the NOT
FOR REPLICATION
keywords.

CnstIsUpdateCascade Constraint A foreign key constraint
with the ON UPDATE
CASCADE option.

ExecIsAfterTrigger Trigger AFTER trigger.

ExecIsAnsiNullsOn Scalar and
Inline
Table-
valued
Function,
Procedure,
Trigger,
View

The setting of
ANSI_NULLS at
creation time.

1 = True
0 = False

ExecIsDeleteTrigger Trigger DELETE trigger.

1 = True
0 = False

ExecIsFirstDeleteTrigger Trigger The first trigger fired
when a DELETE is
executed against the
table.

ExecIsFirstInsertTrigger Trigger The first trigger fired
when an INSERT is
executed against the
table.

ExecIsFirstUpdateTrigger Trigger The first trigger fired
when an UPDATE is
executed against the
table.

ExecIsInsertTrigger Trigger INSERT trigger.

1 = True
0 = False

ExecIsInsteadOfTrigger Trigger INSTEAD OF trigger.
ExecIsLastDeleteTrigger Trigger The last trigger fired

when a DELETE is
executed against the
table.

ExecIsLastInsertTrigger Trigger The last trigger fired
when an INSERT is
executed against the
table.

ExecIsLastUpdateTrigger Trigger The last trigger fired
when an UPDATE is
executed against the
table.

ExecIsQuotedIdentOn Scalar and
Inline
Table-
valued
Function,
Procedure,
Trigger,
View

The setting of
QUOTED_IDENTIFIER at
creation time.

1 = True
0 = False

ExecIsStartup Procedure Startup procedure.

1 = True
0 = False

ExecIsTriggerDisabled Trigger Disabled trigger.

1 = True
0 = False

ExecIsUpdateTrigger Trigger UPDATE trigger.

1 = True
0 = False

HasAfterTrigger Table, View Table or view has an
AFTER trigger.

1 = True
0 = False

HasDeleteTrigger Table, View Table or view has a
DELETE trigger.

1 = True
0 = False

HasInsertTrigger Table, View Table or view has an
INSERT trigger.

1 = True
0 = False

HasInsteadOfTrigger Table, View Table or view has an
INSTEAD OF trigger.

1 = True
0 = False

HasUpdateTrigger Table, View Table or view has an
UPDATE trigger.

1 = True
0 = False

IsAnsiNullsOn Scalar and
Inline
Table-
valued
Function,
Procedure,
Table,
Trigger,
View

Specifies that the ANSI
NULLS option setting
for the table is ON,
meaning all
comparisons against a
null value evaluate to
UNKNOWN. This
setting applies to all
expressions in the table
definition, including
computed columns and
constraints, for as long
as the table exists.

1 = ON
0 = OFF

IsCheckCnst Any CHECK constraint.

1 = True
0 = False

IsConstraint Any Constraint.

1 = True
0 = False

IsDefault Any Bound default.

1 = True
0 = False

IsDefaultCnst Any DEFAULT constraint.

1 = True
0 = False

IsDeterministic Function,
View

The determinism
property of the function
or view. Applies to
scalar- and table-
valued functions and
views.

1 = Deterministic
0 = Not Deterministic
NULL = Not a function
or view, or invalid
object ID.

IsExecuted Any Specifies the object can
be executed (view,
procedure, function, or
trigger).

1 = True
0 = False

IsExtendedProc Any Extended procedure.

1 = True
0 = False

IsForeignKey Any FOREIGN KEY
constraint.

1 = True
0 = False

IsIndexed Table, View A table or view with an
index.

IsIndexable Table, View A table or view on
which an index may be
created.

IsInlineFunction Function Inline function.

1 = Inline function
0 = Not inline function
NULL = Not a function,
or invalid object ID.

IsMSShipped Any An object created
during installation of
Microsoft® SQL
Server™ 2000.

1 = True
0 = False

IsPrimaryKey Any PRIMARY KEY
constraint.

1 = True
0 = False

IsProcedure Any Procedure.

1 = True
0 = False

IsQuotedIdentOn Scalar and
Inline
Table-
valued
Function,
Procedure,
Table,
Trigger,
View,
CHECK
Constraint,
DEFAULT
Definition

Specifies that the
quoted identifier
setting for the object is
ON, meaning double
quotation marks
delimit identifiers in all
expressions involved in
the object definition.

1 = ON
0 = OFF

IsReplProc Any Replication procedure.

1 = True
0 = False

IsRule Any Bound rule.

1 = True
0 = False

IsScalarFunction Function Scalar-valued function.

1 = Scalar-valued
0 = Table-valued
NULL = Not a function,
or invalid object ID.

IsSchemaBound Function,
View

A schema bound
function or view
created with
SCHEMABINDING.

1 = Schema-bound
0 = Not schema-bound
NULL = Not a function
or a view, or invalid
object ID.

IsSystemTable Table System table.

1 = True
0 = False

IsTable Table Table.

1 = True
0 = False

IsTableFunction Function Table-valued function.

1 = Table-valued
0 = Scalar-valued
NULL = Not a function,
or invalid object ID.

IsTrigger Any Trigger.

1 = True
0 = False

IsUniqueCnst Any UNIQUE constraint.

1 = True
0 = False

IsUserTable Table User-defined table.

1 = True
0 = False

IsView View View.

1 = True
0 = False

OwnerId Any Owner of the object.

Nonnull = The
database user ID of the
object owner.
NULL = Invalid input.

TableDeleteTrigger Table Table has a DELETE
trigger.

>1 = ID of first trigger
with given type.

TableDeleteTriggerCount Table The table has the
specified number of
DELETE triggers.

>0 = The number of
DELETE triggers.
NULL = Invalid input.

TableFullTextBackgroundUpdateIndexOn Table The table has full-text
background update
index enabled.

1 = TRUE
0 = FALSE

TableFulltextCatalogId Table The ID of the full-text
catalog in which the
full-text index data for
the table resides.

Nonzero = Full-text
catalog ID, associated
with the unique index
that identifies the rows
in a full-text indexed
table.
0 = Table is not full-text
indexed.

TableFullTextChangeTrackingOn Table The table has full-text
change-tracking
enabled.

1 = TRUE
0 = FALSE

TableFulltextKeyColumn Table The ID of the column
associated with the
single-column unique
index that is
participating in the full-
text index definition.

0 = Table is not full-text
indexed.

TableFullTextPopulateStatus Table 0 = No population
1 = Full population
2 = Incremental
population

TableHasActiveFulltextIndex Table The table has an active
full-text index.

1 = True
0 = False

TableHasCheckCnst Table The table has a CHECK
constraint.

1 = True
0 = False

TableHasClustIndex Table The table has a
clustered index.

1 = True
0 = False

TableHasDefaultCnst Table The table has a
DEFAULT constraint.

1 = True
0 = False

TableHasDeleteTrigger Table The table has a DELETE
trigger.

1 = True
0 = False

TableHasForeignKey Table The table has a
FOREIGN KEY
constraint.

1 = True
0 = False

TableHasForeignRef Table Table is referenced by a
FOREIGN KEY
constraint.

1 = True
0 = False

TableHasIdentity Table The table has an
identity column.

1 = True
0 = False

TableHasIndex Table The table has an index
of any type.

1 = True
0 = False

TableHasInsertTrigger Table The object has an Insert
trigger.

1 = True
0 = False
NULL = Invalid input.

TableHasNonclustIndex Table The table has a
nonclustered index.

1 = True
0 = False

TableHasPrimaryKey Table The table has a primary
key.

1 = True
0 = False

TableHasRowGuidCol Table The table has a
ROWGUIDCOL for a
uniqueidentifier
column.

1 = True
0 = False

TableHasTextImage Table The table has a text
column.

1 = True
0 = False

TableHasTimestamp Table The table has a
timestamp column.

1 = True
0 = False

TableHasUniqueCnst Table The table has a UNIQUE
constraint.

1 = True
0 = False

TableHasUpdateTrigger Table The object has an
Update trigger.

1 = True
0 = False

TableInsertTrigger Table The table has an
INSERT trigger.

>1 = ID of first trigger
with given type.

TableInsertTriggerCount Table The table has the
specified number of
INSERT triggers.

>0 = The number of
INSERT triggers.
NULL = Invalid input.

TableIsFake Table The table is not real. It
is materialized
internally on demand
by SQL Server.

1 = True
0 = False

TableIsLockedOnBulkLoad Table The table is locked due
to a BCP or BULK
INSERT job.

1 = True
0 = False

TableIsPinned Table The table is pinned to
be held in the data
cache.

1 = True
0 = False

TableTextInRowLimit Table The maximum bytes
allowed for text in
row, or 0 if text in row
option is not set.

TableUpdateTrigger Table The table has an
UPDATE trigger.

>1 = ID of first trigger
with given type.

TableUpdateTriggerCount Table The table has the
specified number of
UPDATE triggers.

>0 = The number of
UPDATE triggers.
NULL = Invalid input.

Return Types

int

Remarks

OBJECTPROPERTY(view_id,'IsIndexable') may consume significant computer resources because evaluation of IsIndexable
property requires the parsing of view definition, normalization, and partial optimization.

OBJECTPROPERTY(table_id, 'TableHasActiveFulltextIndex') will return '1' (True) when at least one column of a table is added for
indexing. Full-text indexing becomes active for population as soon as the first column is added for indexing.

When the last column in an index is dropped, the index becomes inactive.

The actual creation of index still might fail if certain index key requirements are not met. See CREATE INDEX for details.

Examples

A. To find out if authors is a table

This example tests whether authors is a table.

IF OBJECTPROPERTY (object_id('authors'),'ISTABLE') = 1
 print 'Authors is a table'

ELSE IF OBJECTPROPERTY (object_id('authors'),'ISTABLE') = 0
 print 'Authors is not a table'

ELSE IF OBJECTPROPERTY (object_id('authors'),'ISTABLE') IS NULL
 print 'ERROR: Authors is not an object'

B. To determine if text in row is enabled on a table

This example tests whether the text in row option is enabled in the authors table so that text, ntext, or image data can be
stored in its data row.

USE pubs
SELECT OBJECTPROPERTY(OBJECT_ID('authors'),'TableTextInRowLimit')

The result set shows that text in row is not enabled on the table.

0

C. To determine if a scalar-valued user-defined function is deterministic

This example tests whether the user-defined scalar-valued function fn_CubicVolume, which returns a decimal, is deterministic.

CREATE FUNCTION fn_CubicVolume
-- Input dimensions in centimeters.
 (@CubeLength decimal(4,1), @CubeWidth decimal(4,1),
 @CubeHeight decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
WITH SCHEMABINDING
AS
BEGIN
 RETURN (@CubeLength * @CubeWidth * @CubeHeight)
END

--Is it a deterministic function?
SELECT OBJECTPROPERTY(OBJECT_ID('fn_CubicVolume'), 'IsDeterministic')

The result set shows that fn_CubicVolume is a deterministic function.

1

See Also

COLUMNPROPERTY

CREATE INDEX

Metadata Functions

TYPEPROPERTY

Transact-SQL Reference (SQL Server 2000)

OPEN
Opens a Transact-SQL server cursor and populates the cursor by executing the Transact-SQL statement specified on the DECLARE
CURSOR or SET cursor_variable statement.

Syntax

OPEN { { [GLOBAL] cursor_name } | cursor_variable_name }

Arguments

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of a declared cursor. If both a global and a local cursor exist with cursor_name as their name, cursor_name refers to
the global cursor if GLOBAL is specified; otherwise, cursor_name refers to the local cursor.

cursor_variable_name

Is the name of a cursor variable that references a cursor.

Remarks

If the cursor is declared with the INSENSITIVE or STATIC option, OPEN creates a temporary table to hold the result set. OPEN fails
if the size of any row in the result set exceeds the maximum row size for Microsoft® SQL Server™ tables. If the cursor is declared
with the KEYSET option, OPEN creates a temporary table to hold the keyset. The temporary tables are stored in tempdb.

After a cursor has been opened, use the @@CURSOR_ROWS function to receive the number of qualifying rows in the last opened
cursor. Depending on the number of rows expected in the result set, SQL Server may choose to populate a keyset-driven cursor
asynchronously on a separate thread. This allows fetches to proceed immediately, even if the keyset is not fully populated. For
more information, see Asynchronous Population.

To set the threshold at which SQL Server generates keysets asynchronously, set the cursor threshold configuration option. For
more information, see sp_configure.

Examples

This example opens a cursor and fetches all the rows.

DECLARE Employee_Cursor CURSOR FOR
SELECT LastName, FirstName
FROM Northwind.dbo.Employees
WHERE LastName like 'B%'

OPEN Employee_Cursor

FETCH NEXT FROM Employee_Cursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM Employee_Cursor
END

CLOSE Employee_Cursor
DEALLOCATE Employee_Cursor

See Also

CLOSE

@@CURSOR_ROWS

DEALLOCATE

DECLARE CURSOR

FETCH

Transact-SQL Reference (SQL Server 2000)

OPENDATASOURCE
 New Information - SQL Server 2000 SP3.

Provides ad hoc connection information as part of a four-part object name without using a linked server name.

Syntax

OPENDATASOURCE (provider_name, init_string)

Arguments

provider_name

Is the name registered as the PROGID of the OLE DB provider used to access the data source. provider_name is a char data type,
with no default value.

init_string

Is the connection string passed to the IDataInitialize interface of the destination provider. The provider string syntax is based on
keyword-value pairs separated by semicolons, that is, "keyword1=value; keyword2=value."

The basic syntax is defined in the Microsoft® Data Access SDK. Refer to the documentation on the provider for specific keyword-
value pairs supported. This table lists the most commonly used keywords in the init_string argument.

Keyword OLE DB property Valid values and Description
Data Source DBPROP_INIT_DATASOURCE Name of the data source to

connect to. Different providers
interpret this in different ways. For
SQL Server OLE DB provider, this
indicates the name of the server.
For Jet OLE DB provider, this
indicates the full path of the .mdb
file or .xls file.

Location DBPROP_INIT_LOCATION Location of the database to
connect to.

Extended
Properties

DBPROP_INIT_PROVIDERSTRING The provider-specific connect-
string.

Connect
timeout

DBPROP_INIT_TIMEOUT Time-out value after which the
connection attempt fails.

User ID DBPROP_AUTH_USERID User ID to be used for the
connection.

Password DBPROP_AUTH_PASSWORD Password to be used for the
connection.

Catalog DBPROP_INIT_CATALOG The name of the initial or default
catalog when connecting to the
data source.

Remarks

OPENDATASOURCE can be used to access remote data from OLE DB data sources only if the DisallowAdhocAccess registry
option is explicitly set to 0. When this option is not set, the default behavior does not allow ad hoc access.

The OPENDATASOURCE function can be used in the same Transact-SQL syntax locations as a linked server name. Thus,
OPENDATASOURCE can be used as the first part of a four-part name that refers to a table or view name in a SELECT, INSERT,
UPDATE, or DELETE statement, or to a remote stored procedure in an EXECUTE statement. When executing remote stored
procedures, OPENDATASOURCE should refer to another SQL Server. OPENDATASOURCE does not accept variables for its
arguments.

Like the OPENROWSET function, OPENDATASOURCE should only reference OLE DB data sources accessed infrequently. Define a
linked server for any data sources accessed more than a few times. Neither OPENDATASOURCE, nor OPENROWSET provide all
the functionality of linked server definitions, such as security management and the ability to query catalog information. All

connection information, including passwords, must be provided each time OPENDATASOURCE is called.

Examples

This example accesses data from a table on another instance of SQL Server.

SELECT *
FROM OPENDATASOURCE(
 'SQLOLEDB',
 'Data Source=ServerName;User ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

This is an example of a query against an Excel spreadsheet through the OLE DB provider for Jet.

SELECT *
FROM OpenDataSource('Microsoft.Jet.OLEDB.4.0',
 'Data Source="c:\Finance\account.xls";User ID=Admin;Password=;Extended properties=Excel 5.0')...xactions

See Also

Distributed Queries

OPENROWSET

sp_addlinkedserver

Transact-SQL Reference (SQL Server 2000)

OPENQUERY
Executes the specified pass-through query on the given linked server, which is an OLE DB data source. The OPENQUERY function
can be referenced in the FROM clause of a query as though it is a table name. The OPENQUERY function can also be referenced as
the target table of an INSERT, UPDATE, or DELETE statement, subject to the capabilities of the OLE DB provider. Although the
query may return multiple result sets, OPENQUERY returns only the first one.

Syntax

OPENQUERY (linked_server , 'query')

Arguments

linked_server

Is an identifier representing the name of the linked server.

'query'

Is the query string executed in the linked server.

Remarks

OPENQUERY does not accept variables for its arguments.

Examples

This example creates a linked server named OracleSvr against an Oracle database using the Microsoft OLE DB Provider for
Oracle. Then this example uses a pass-through query against this linked server.

Note This example assumes that an Oracle database alias called ORCLDB has been created.

EXEC sp_addlinkedserver 'OracleSvr',
 'Oracle 7.3',
 'MSDAORA',
 'ORCLDB'
GO
SELECT *
FROM OPENQUERY(OracleSvr, 'SELECT name, id FROM joe.titles')
GO

See Also

DELETE

Distributed Queries

FROM

INSERT

OPENDATASOURCE

OPENROWSET

Rowset Functions

SELECT

sp_addlinkedserver

sp_serveroption

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

OPENROWSET
 New Information - SQL Server 2000 SP3.

Includes all connection information necessary to access remote data from an OLE DB data source. This method is an alternative to
accessing tables in a linked server and is a one-time, ad hoc method of connecting and accessing remote data using OLE DB. The
OPENROWSET function can be referenced in the FROM clause of a query as though it is a table name. The OPENROWSET
function can also be referenced as the target table of an INSERT, UPDATE, or DELETE statement, subject to the capabilities of the
OLE DB provider. Although the query may return multiple result sets, OPENROWSET returns only the first one.

Syntax

OPENROWSET ('provider_name'
 , { 'datasource' ; 'user_id' ; 'password'
 | 'provider_string' }
 , { [catalog.] [schema.] object
 | 'query' }
)

Arguments

'provider_name'

Is a character string that represents the friendly name of the OLE DB provider as specified in the registry. provider_name has no
default value.

'datasource'

Is a string constant that corresponds to a particular OLE DB data source. datasource is the DBPROP_INIT_DATASOURCE property
to be passed to the provider's IDBProperties interface to initialize the provider. Typically, this string includes the name of the
database file, the name of a database server, or a name that the provider understands to locate the database(s).

'user_id'

Is a string constant that is the username passed to the specified OLE DB provider. user_id specifies the security context for the
connection and is passed in as the DBPROP_AUTH_USERID property to initialize the provider. user_id cannot be a Microsoft
Windows NT® login name.

'password'

Is a string constant that is the user password to be passed to the OLE DB provider. password is passed in as the
DBPROP_AUTH_PASSWORD property when initializing the provider. password cannot be a Microsoft Windows NT® password.

'provider_string'

Is a provider-specific connection string that is passed in as the DBPROP_INIT_PROVIDERSTRING property to initialize the OLE DB
provider. provider_string typically encapsulates all the connection information needed to initialize the provider.

catalog

Is the name of the catalog or database in which the specified object resides.

schema

Is the name of the schema or object owner for the specified object.

object

Is the object name that uniquely identifies the object to manipulate.

'query'

Is a string constant sent to and executed by the provider. Microsoft® SQL Server™ does not process this query, but processes
query results returned by the provider (a pass-through query). Pass-through queries are useful when used on providers that do
not expose their tabular data through table names, but only through a command language. Pass-through queries are supported
on the remote server, as long as the query provider supports the OLE DB Command object and its mandatory interfaces. For
more information, see SQL Server OLE DB Programmer's Reference.

Remarks

OPENROWSET can be used to access remote data from OLE DB data sources only if the DisallowAdhocAccess registry option is
explicitly set to 0. When this option is not set, the default behavior does not allow ad hoc access.

Catalog and schema names are required if the OLE DB provider supports multiple catalogs and schemas in the specified data
source. Values for catalog and schema can be omitted if the OLE DB provider does not support them.

If the provider supports only schema names, a two-part name of the form schema.object must be specified. If the provider
supports only catalog names, a three-part name of the form catalog.schema.object must be specified.

OPENROWSET does not accept variables for its arguments.

Permissions

OPENROWSET permissions are determined by the permissions of the username being passed to the OLE DB provider.

Examples

A. Use OPEN ROWSET with a SELECT and the M icrosoft OLE DB Provider for SQL Server

This example uses the Microsoft OLE DB Provider for SQL Server to access the authors table in the pubs database on a remote
server named seattle1. The provider is initialized from the datasource, user_id, and password, and a SELECT is used to define the
row set returned.

USE pubs
GO
SELECT a.*
FROM OPENROWSET('SQLOLEDB','seattle1';'manager';'MyPass',
 'SELECT * FROM pubs.dbo.authors ORDER BY au_lname, au_fname') AS a
GO

B. Use OPEN ROWSET with an object and the OLE DB Provider for ODBC

This example uses the OLE DB Provider for ODBC and the SQL Server ODBC driver to access the authors table in the pubs
database on a remote server named seattle1. The provider is initialized with a provider_string specified in the ODBC syntax used
by the ODBC provider, and the catalog.schema.object syntax is used to define the row set returned.

USE pubs
GO
SELECT a.*
FROM OPENROWSET('MSDASQL',
 'DRIVER={SQL Server};SERVER=seattle1;UID=manager;PWD=MyPass',
 pubs.dbo.authors) AS a
ORDER BY a.au_lname, a.au_fname
GO

C. Use the M icrosoft OLE DB Provider for Jet

This example accesses the orders table in the Microsoft Access Northwind database through the Microsoft OLE DB Provider for
Jet.

Note This example assumes that Access is installed.

USE pubs
GO
SELECT a.*
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0',
 'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'mypwd', Orders)
 AS a
GO

D. Use OPEN ROWSET and another table in an IN N ER JOIN

This example selects all data from the customers table from the local SQL Server Northwind database and from the orders
table from the Access Northwind database stored on the same computer.

Note This example assumes that Access is installed.

USE pubs
GO

SELECT c.*, o.*
FROM Northwind.dbo.Customers AS c INNER JOIN
 OPENROWSET('Microsoft.Jet.OLEDB.4.0',
 'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'mypwd', Orders)
 AS o
 ON c.CustomerID = o.CustomerID
GO

See Also

DELETE

Distributed Queries

FROM

INSERT

OPENDATASOURCE

OPENQUERY

Rowset Functions

SELECT

sp_addlinkedserver

sp_serveroption

UPDATE

WHERE

Transact-SQL Reference (SQL Server 2000)

OPENXML
OPENXML provides a rowset view over an XML document. Because OPENXML is a rowset provider, OPENXML can be used in
Transact-SQL statements in which rowset providers such as a table, view, or the OPENROWSET function can appear.

Syntax

OPENXML(idoc int [in],rowpattern nvarchar[in],[flags byte[in]])
[WITH (SchemaDeclaration | TableName)]

Arguments

idoc

Is the document handle of the internal representation of an XML document. The internal representation of an XML document is
created by calling sp_xml_preparedocument.

rowpattern

Is the XPath pattern used to identify the nodes (in the XML document whose handle is passed in the idoc parameter) to be
processed as rows.

flags

Indicates the mapping that should be used between the XML data and the relational rowset, and how the spill-over column should
be filled. flags is an optional input parameter, and can be one of these values.

Byte
Value Description

0 Defaults to attribute-centric mapping.
1 Use the attribute-centric mapping.

Can be combined with XML_ELEMENTS; in which case, attribute-centric
mapping is applied first, and then element-centric mapping is applied for
all columns not yet dealt with.

2 Use the element-centric mapping.
Can be combined with XML_ATTRIBUTES; in which case, attribute-centric
mapping is applied first, and then element-centric mapping is applied for
all columns not yet dealt with.

8 Can be combined (logical OR) with XML_ATTRIBUTES or
XML_ELEMENTS.
In context of retrieval, this flag indicates that the consumed data should
not be copied to the overflow property @mp:xmltext.

SchemaDeclaration

Is the schema definition of the form:
ColName ColType [ColPattern | MetaProperty][, ColName ColType [ColPattern | MetaProperty]...]

ColName
Is the column name in the rowset.

ColType
Is the SQL data type of the column in the rowset. If the column types differ from the underlying XML data type of the attribute,
type coercion occurs. If the column is of type timestamp, the present value in the XML document is disregarded when selecting
from an OPENXML rowset, and the autofill values are returned.

ColPattern
Is an optional, general XPath pattern that describes how the XML nodes should be mapped to the columns. If the ColPattern is
not specified, the default mapping (attribute-centric or element-centric mapping as specified by flags) takes place.

The XPath pattern specified as ColPattern is used to specify the special nature of the mapping (in case of attribute-centric and
element-centric mapping) that overwrites or enhances the default mapping indicated by flags.

The general XPath pattern specified as ColPattern also supports the metaproperties.

MetaProperty

Is one of the metaproperties provided by OPENXML. If the metaproperty is specified, the column contains information provided
by the metaproperty. The metaproperties allow you to extract information (such as relative position, , namespace information)
about XML nodes, which provides more information than is visible in the textual representation.

TableName

Is the table name that can be given (instead of SchemaDeclaration) if a table with the desired schema already exists and no
column patterns are required.

The WITH clause provides a rowset format (and additional mapping information as necessary) using either SchemaDeclaration or
specifying an existing TableName. If the optional WITH clause is not specified, the results are returned in an edge table format.
Edge tables represent the fine-grained XML document structure (e.g. element/attribute names, the document hierarchy, the
namespaces, PIs etc.) in a single table.

This table describes the structure of the edge table.

Column name Data type Description
id bigint Is the unique ID of the document node.

The root element has an ID value 0. The negative ID
values are reserved.

parentid bigint Identifies the parent of the node. The parent identified
by this ID is not necessarily the parent element, but it
depends on the NodeType of the node whose parent
is identified by this ID. For example, if the node is a
text node, the parent of it may be an attribute node.

If the node is at the top level in the XML document, its
ParentID is NULL.

nodetype int Identifies the node type. Is an integer that corresponds
to the XML DOM node type numbering (see DOM for
node information).

The node types are:

1 = Element node
2 = Attribute node
3 = Text node

localname nvarchar Gives the local name of the element or attribute. Is
NULL if the DOM object does not have a name.

prefix nvarchar Is the namespace prefix of the node name.
namespaceuri nvarchar Is the namespace URI of the node. If the value is NULL,

no namespace is present.
datatype nvarchar Is the actual data type of the element or attribute row

and is NULL otherwise. The data type is inferred from
the inline DTD or from the inline schema.

prev bigint Is the XML ID of the previous sibling element. Is NULL
if there is no direct previous sibling.

text ntext Contains the attribute value or the element content in
text form (or is NULL if the edge table entry does not
need a value).

Examples

A. Use a simple SELECT statement with OPEN XM L

This example creates an internal representation of the XML image using sp_xml_preparedocument. A SELECT statement using
an OPENXML rowset provider is then executed against the internal representation of the XML document.

The flag value is set to 1 indicating attribute-centric mapping. Therefore, the XML attributes map to the columns in the rowset. The
rowpattern specified as /ROOT/Customers identifies the <Customers> nodes to be processed.

The optional ColPattern (column pattern) is not specified because the column name matches the XML attribute names.

The OPENXML rowset provider creates a two-column rowset (CustomerID and ContactName) from which the SELECT
statement retrieves the necessary columns (in this case, all the columns).

DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order CustomerID="VINET" EmployeeID="5" OrderDate="1996-07-04T00:00:00">
 <OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order CustomerID="LILAS" EmployeeID="3" OrderDate="1996-08-16T00:00:00">
 <OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement that uses the OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer',1)
 WITH (CustomerID varchar(10),
 ContactName varchar(20))

Here is the result set:

CustomerID ContactName
---------- --------------------
VINET Paul Henriot
LILAS Carlos Gonzlez

If the same SELECT statement is executed with flags set to 2, indicating element-centric mapping, the values of CustomerID and
ContactName for both of the customers in the XML document are returned as NULL, because the <Customers> elements do not
have any subelements.

Here is the result set:

CustomerID ContactName
---------- -----------
NULL NULL
NULL NULL

B. Specify ColPattern for mapping between columns and the XM L attributes

This query returns customer ID, order date, product ID and quantity attributes from the XML document. The rowpattern identifies
the <OrderDetails> elements. ProductID and Quantity are the attributes of the <OrderDetails> element. However, the OrderID,
CustomerID and OrderDate are the attributes of the parent element (<Orders>).

The optional ColPattern is specified, indicating that:

The OrderID, CustomerID and OrderDate in the rowset map to the attributes of the parent of the nodes identified by
rowpattern in the XML document.

The ProdID column in the rowset maps to the ProductID attribute, and the Qty column in the rowset maps to the
Quantity attribute of the nodes identified in rowpattern.

Although the element-centric mapping is specified by the flags parameter, the mapping specified in ColPattern overwrites this
mapping.

declare @idoc int
declare @doc varchar(1000)
set @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order OrderID="10248" CustomerID="VINET" EmployeeID="5"
 OrderDate="1996-07-04T00:00:00">
 <OrderDetail ProductID="11" Quantity="12"/>
 <OrderDetail ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order OrderID="10283" CustomerID="LILAS" EmployeeID="3"

 OrderDate="1996-08-16T00:00:00">
 <OrderDetail ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
--Create an internal representation of the XML document.
exec sp_xml_preparedocument @idoc OUTPUT, @doc
-- SELECT stmt using OPENXML rowset provider
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customer/Order/OrderDetail',2)
 WITH (OrderID int '../@OrderID',
 CustomerID varchar(10) '../@CustomerID',
 OrderDate datetime '../@OrderDate',
 ProdID int '@ProductID',
 Qty int '@Quantity')

This is the result:

OrderID CustomerID OrderDate ProdID Qty

--

10248 VINET 1996-07-04 00:00:00.000 11 12
10248 VINET 1996-07-04 00:00:00.000 42 10
10283 LILAS 1996-08-16 00:00:00.000 72 3

C. Obtain result in an edge table format

In this example, the WITH clause is not specified in the OPENXML statement. As a result, the rowset generated by OPENXML has
an edge table format. The SELECT statement returns all the columns in the edge table.

The sample XML document in the example consists of <Customers>, <Orders>, and <Order_0020_Details> elements.

First sp_xml_preparedocument is called to obtain a document handle. This document handle is passed to OPENXML.

In the OPENXML statement

The rowpattern (/ROOT/Customers) identifies the <Customers> nodes to process.

The WITH clause is not provided. Therefore OPENXML returns the rowset in an edge table format.

Finally the SELECT statement retrieves all the columns in the edge table.

declare @idoc int
declare @doc varchar(1000)
set @doc ='
<ROOT>
<Customers CustomerID="VINET" ContactName="Paul Henriot">
 <Orders CustomerID="VINET" EmployeeID="5" OrderDate=
 "1996-07-04T00:00:00">
 <Order_x0020_Details OrderID="10248" ProductID="11" Quantity="12"/>
 <Order_x0020_Details OrderID="10248" ProductID="42" Quantity="10"/>
 </Orders>
</Customers>
<Customers CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Orders CustomerID="LILAS" EmployeeID="3" OrderDate=
 "1996-08-16T00:00:00">
 <Order_x0020_Details OrderID="10283" ProductID="72" Quantity="3"/>
 </Orders>
</Customers>
</ROOT>'
--Create an internal representation of the XML document.
exec sp_xml_preparedocument @idoc OUTPUT, @doc
-- SELECT statement using OPENXML rowset provider
SELECT *
FROM OPENXML (@idoc, '/ROOT/Customers')
EXEC sp_xml_removedocument @idoc

The result is returned as an edge table.

See Also

Using OPENXML

Transact-SQL Reference (SQL Server 2000)

Operators
An operator is a symbol specifying an action that is performed on one or more expressions. Microsoft® SQL Server™ 2000 uses
these operator categories:

Arithmetic operators

Assignment operator

Bitwise operators

Comparison operators

Logical operators

String concatenation operator

Unary operators

Arithmetic Operators

Arithmetic operators perform mathematical operations on two expressions of any of the data types of the numeric data type
category. For more information about data type categories, see Transact-SQL Syntax Conventions.

Operator Meaning
+ (Add) Addition.
- (Subtract) Subtraction.
* (Multiply) Multiplication.
/ (Divide) Division.
% (Modulo) Returns the integer remainder of a division. For example, 12

% 5 = 2 because the remainder of 12 divided by 5 is 2.

The plus (+) and minus (-) can also be used to perform arithmetic operations on datetime and smalldatetime values.

For more information about the precision and scale of the result of an arithmetic operation, see Precision, Scale, and Length.

Assignment Operator

Transact-SQL has one assignment operator, the equals sign (=). In this example, the @MyCounter variable is created. Then, the
assignment operator sets @MyCounter to a value returned by an expression.

DECLARE @MyCounter INT
SET @MyCounter = 1

The assignment operator can also be used to establish the relationship between a column heading and the expression defining
the values for the column. This example displays two column headings named FirstColumnHeading and
SecondColumnHeading. The string xyz is displayed in the FirstColumnHeading column heading for all rows. Then, each
product ID from the Products table is listed in the SecondColumnHeading column heading.

USE Northwind
GO
SELECT FirstColumnHeading = 'xyz',
 SecondColumnHeading = ProductID
FROM Products
GO

Bitwise Operators

Bitwise operators perform bit manipulations between two expressions of any of the data types of the integer data type category.

Operator Meaning
& (Bitwise AND) Bitwise AND (two operands).

| (Bitwise OR) Bitwise OR (two operands).
^ (Bitwise Exclusive OR) Bitwise exclusive OR (two operands).

The operands for bitwise operators can be any of the data types of the integer or binary string data type categories (except for the
image data type), with the exception that both operands cannot be any of the data types of the binary string data type category.
The table shows the supported operand data types.

Left operand Right operand
binary int, smallint, or tinyint
bit int, smallint, tinyint, or bit
int int, smallint, tinyint, binary, or varbinary
smallint int, smallint, tinyint, binary, or varbinary
tinyint int, smallint, tinyint, binary, or varbinary
varbinary int, smallint, or tinyint

Comparison Operators

Comparison operators test whether or not two expressions are the same. Comparison operators can be used on all expressions
except expressions of the text, ntext, or image data types.

Operator Meaning
= (Equals) Equal to
> (Greater Than) Greater than
< (Less Than) Less than
>= (Greater Than or Equal To) Greater than or equal to
<= (Less Than or Equal To) Less than or equal to
<> (Not Equal To) Not equal to
!= (Not Equal To) Not equal to (not SQL-92 standard)
!< (Not Less Than) Not less than (not SQL-92 standard)
!> (Not Greater Than) Not greater than (not SQL-92 standard)

The result of a comparison operator has the Boolean data type, which has three values: TRUE, FALSE, and UNKNOWN. Expressions
that return a Boolean data type are known as Boolean expressions.

Unlike other SQL Server data types, a Boolean data type cannot be specified as the data type of a table column or variable, and
cannot be returned in a result set.

When SET ANSI_NULLS is ON, an operator that has one or two NULL expressions returns UNKNOWN. When SET ANSI_NULLS is
OFF, the same rules apply, except an equals operator returns TRUE if both expressions are NULL. For example, NULL = NULL
returns TRUE if SET ANSI_NULLS is OFF.

Expressions with Boolean data types are used in the WHERE clause to filter the rows that qualify for the search conditions and in
control-of-flow language statements such as IF and WHILE, for example:

USE Northwind
GO
DECLARE @MyProduct int
SET @MyProduct = 10
IF (@MyProduct <> 0)
 SELECT *
 FROM Products
 WHERE ProductID = @MyProduct
GO

Logical Operators

Logical operators test for the truth of some condition. Logical operators, like comparison operators, return a Boolean data type
with a value of TRUE or FALSE.

Operator Meaning
ALL TRUE if all of a set of comparisons are TRUE.
AND TRUE if both Boolean expressions are TRUE.

ANY TRUE if any one of a set of comparisons are TRUE.
BETWEEN TRUE if the operand is within a range.
EXISTS TRUE if a subquery contains any rows.
IN TRUE if the operand is equal to one of a list of expressions.
LIKE TRUE if the operand matches a pattern.
NOT Reverses the value of any other Boolean operator.
OR TRUE if either Boolean expression is TRUE.
SOME TRUE if some of a set of comparisons are TRUE.

For more information about logical operators, see the specific logical operator topic.

String Concatenation Operator

The string concatenation operator allows string concatenation with the addition sign (+), which is also known as the string
concatenation operator. All other string manipulation is handled through string functions such as SUBSTRING.

By default, an empty string is interpreted as an empty string in INSERT or assignment statements on data of the varchar data
type. In concatenating data of the varchar, char, or text data types, the empty string is interpreted as an empty string. For
example, 'abc' + '' + 'def' is stored as 'abcdef'. However, if the sp_dbcmptlevel compatibility level setting is 65, empty constants
are treated as a single blank character and 'abc' + '' + 'def' is stored as 'abc def'. For more information about the interpretation of
empty strings, see sp_dbcmptlevel.

When two character strings are concatenated, the collation of the result expression is set following the rules of collation
precedence. For more information, see Collation Precedence.

Unary Operators

Unary operators perform an operation on only one expression of any of the data types of the numeric data type category.

Operator Meaning
+ (Positive) Numeric value is positive.
- (Negative) Numeric value is negative.
~ (Bitwise NOT) Returns the ones complement of the number.

The + (Positive) and - (Negative) operators can be used on any expression of any of the data types of the numeric data type
category. The ~ (Bitwise NOT) operator can be used only on expressions of any of the data types of the integer data type category.

Operator Precedence

When a complex expression has multiple operators, operator precedence determines the sequence in which the operations are
performed. The order of execution can significantly affect the resulting value.

Operators have these precedence levels. An operator on higher levels is evaluated before an operator on a lower level:

+ (Positive), - (Negative), ~ (Bitwise NOT)

* (Multiply), / (Division), % (Modulo)

+ (Add), (+ Concatenate), - (Subtract), & (Bitwise AND)

=, >, <, >=, <=, <>, !=, !>, !< (Comparison operators)

^ (Bitwise Exlusive OR), | (Bitwise OR)

NOT

AND

ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

= (Assignment)

When two operators in an expression have the same operator precedence level, they are evaluated left to right based on their
position in the expression. For example, in the expression used in the SET statement of this example, the subtraction operator is
evaluated before the addition operator.

DECLARE @MyNumber int
SET @MyNumber = 4 - 2 + 27
-- Evaluates to 2 + 27 which yields an expression result of 29.
SELECT @MyNumber

Use parentheses to override the defined precedence of the operators in an expression. Everything within the parentheses is
evaluated first to yield a single value before that value can be used by any operator outside of the parentheses.

For example, in the expression used in the SET statement of this example, the multiplication operator has a higher precedence
than the addition operator, so it gets evaluated first; the expression result is 13.

DECLARE @MyNumber int
SET @MyNumber = 2 * 4 + 5
-- Evaluates to 8 + 5 which yields an expression result of 13.
SELECT @MyNumber

In the expression used in the SET statement of this example, the parentheses causes the addition to be performed first; the
expression result is 18.

DECLARE @MyNumber int
SET @MyNumber = 2 * (4 + 5)
-- Evaluates to 2 * 9 which yields an expression result of 18.
SELECT @MyNumber

If an expression has nested parentheses, the most deeply nested expression is evaluated first. This example contains nested
parentheses, with the expression 5 - 3 in the most deeply nested set of parentheses. This expression yields a value of 2. Then, the
addition operator (+) adds this result to 4, which yields a value of 6. Finally, the 6 is multiplied by 2 to yield an expression result of
12.

DECLARE @MyNumber int
SET @MyNumber = 2 * (4 + (5 - 3))
-- Evaluates to 2 * (4 + 2) which further evaluates to 2 * 6, and
-- yields an expression result of 12.
SELECT @MyNumber

See Also

Functions

Transact-SQL Reference (SQL Server 2000)

OR
Combines two conditions. When more than one logical operator is used in a statement, OR operators are evaluated after AND
operators. However, you can change the order of evaluation by using parentheses.

Syntax

boolean_expression OR boolean_expression

Arguments

boolean_expression

Is any valid Microsoft® SQL Server™ expression that returns TRUE, FALSE, or UNKNOWN.

Result Types

Boolean

Result Value

OR returns TRUE when either of the conditions is TRUE.

Remarks

This table shows the result of the OR operator.

 TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Examples

This example retrieves the book titles that carry an advance greater than $5,500 and are either business or psychology books. If
the parentheses are not included, the WHERE clause retrieves all business books or psychology books that have an advance
greater than $5,500.

USE pubs
GO
SELECT SUBSTRING(title, 1, 30) AS Title, type
FROM titles
WHERE (type = 'business' OR type = 'psychology') AND
 advance > $5500
ORDER BY title
GO

Here is the result set:

Title type
------------------------------ ------------
Computer Phobic AND Non-Phobic psychology
Life Without Fear psychology
You Can Combat Computer Stress business

(3 row(s) affected)

See Also

Expressions

Functions

Operators (Logical Operators)

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

ORDER BY
Specifies the sort order used on columns returned in a SELECT statement. For more information, see SELECT.

Transact-SQL Reference (SQL Server 2000)

PARSENAME
Returns the specified part of an object name. Parts of an object that can be retrieved are the object name, owner name, database
name, and server name.

Note The PARSENAME function does not indicate whether or not an object by the specified name exists. It just returns the
specified piece of the given object name.

Syntax

PARSENAME ('object_name' , object_piece)

Arguments

'object_name'

Is the name of the object for which to retrieve the specified object part. object_name is sysname. This parameter is an optionally
qualified object name. If all parts of the object name are qualified, this name can consist of four parts: the server name, the
database name, the owner name, and the object name.

object_piece

Is the object part to return. object_piece is int, and can have these values.

Value Description
1 Object name
2 Owner name
3 Database name
4 Server name

Return Types

nchar

Remarks

PARSENAME returns NULL if any of the following conditions are met:

Either object_name or object_piece is NULL.

A syntax error occurs.

The requested object part has a length of 0 and is an invalid Microsoft® SQL Server™ identifier. A zero-length object name
renders the entire qualified name invalid.

Examples

This example uses PARSENAME to return information about the authors table in the pubs database.

USE pubs
SELECT PARSENAME('pubs..authors', 1) AS 'Object Name'
SELECT PARSENAME('pubs..authors', 2) AS 'Owner Name'
SELECT PARSENAME('pubs..authors', 3) AS 'Database Name'
SELECT PARSENAME('pubs..authors', 4) AS 'Server Name'

Here is the result set:

Object Name

authors

(1 row(s) affected)

Owner Name

(null)

(1 row(s) affected)

Database Name

pubs

(1 row(s) affected)

Server Name

(null)

(1 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

System Functions

Transact-SQL Reference (SQL Server 2000)

PATINDEX
Returns the starting position of the first occurrence of a pattern in a specified expression, or zeros if the pattern is not found, on all
valid text and character data types.

Syntax

PATINDEX ('%pattern%' , expression)

Arguments

pattern

Is a literal string. Wildcard characters can be used; however, the % character must precede and follow pattern (except when
searching for first or last characters). pattern is an expression of the short character data type category.

expression

Is an expression, usually a column that is searched for the specified pattern. expression is of the character string data type
category.

Return Types

int

Remarks

PATINDEX is useful with text data types; it can be used in a WHERE clause in addition to IS NULL, IS NOT NULL, and LIKE (the only
other comparisons that are valid on text in a WHERE clause).

If either pattern or expression is NULL, PATINDEX returns NULL when the database compatibility level is 70. If the database
compatibility level is 65 or earlier, PATINDEX returns NULL only when both pattern and expression are NULL.

Examples

A. Use a pattern with PATIN DEX

This example finds the position at which the pattern "wonderful" begins in a specific row of the notes column in the titles table.

USE pubs
GO
SELECT PATINDEX('%wonderful%', notes)
FROM titles
WHERE title_id = 'TC3218'
GO

Here is the result set:

46

(1 row(s) affected)

If you do not restrict the rows to be searched by using a WHERE clause, the query returns all rows in the table and reports
nonzero values for those rows in which the pattern was found and zero for all rows in which the pattern was not found.

B. Use wildcard characters w ith PATIN DEX

This example uses wildcards to find the position at which the pattern "won_erful" begins in a specific row of the notes column in
the titles table, where the underscore is a wildcard representing any character.

USE pubs
GO
SELECT PATINDEX('%won_erful%', notes)
FROM titles
WHERE title_id = 'TC3218'
GO

Here is the result set:

46

(1 row(s) affected)

If you do not restrict the rows to be searched, the query returns all rows in the table and reports nonzero values for those rows in
which the pattern was found.

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

PERMISSIONS
Returns a value containing a bitmap that indicates the statement, object, or column permissions for the current user.

Syntax

PERMISSIONS ([objectid [, 'column']])

Arguments

objectid

Is the ID of an object. If objectid is not specified, the bitmap value contains statement permissions for the current user; otherwise,
the bitmap contains object permissions on the object ID for the current user. The object specified must be in the current database.
Use the OBJECT_ID function with an object name to determine the objectid value.

'column'

Is the optional name of a column for which permission information is being returned. The column must be a valid column name
in the table specified by objectid.

Return Types

int

Remarks

PERMISSIONS can be used to determine whether the current user has the necessary permissions to execute a statement or to
GRANT a permission on an object to another user.

The permissions information returned is a 32-bit bitmap.

The lower 16 bits reflect permissions granted to the security account for the current user, as well as permissions applied to
Microsoft® Windows NT® groups or Microsoft SQL Server™ roles of which the current user is a member. For example, a
returned value of 66 (hex value 0x42), when no objectid is specified, indicates the current user has permissions to execute the
CREATE TABLE (decimal value 2) and BACKUP DATABASE (decimal value 64) statement permissions.

The upper 16 bits reflect the permissions that the current user can GRANT to other users. The upper 16 bits are interpreted exactly
as those for the lower 16 bits described in the following tables, except they are shifted to the left by 16 bits (multiplied by 65536).
For example, 0x8 (decimal value 8) is the bit indicating INSERT permissions when an objectid is specified. Whereas 0x80000
(decimal value 524288) indicates the ability to GRANT INSERT permissions because 524288 = 8 x 65536. Due to membership in
roles, it is possible to not have a permission to execute a statement, but still be able to grant that permission to someone else.

The table shows the bits used for statement permissions (objectid is not specified).

Bit (dec) Bit (hex) Statement permission
1 0x1 CREATE DATABASE (master database only)
2 0x2 CREATE TABLE
4 0x4 CREATE PROCEDURE
8 0x8 CREATE VIEW
16 0x10 CREATE RULE
32 0x20 CREATE DEFAULT
64 0x40 BACKUP DATABASE
128 0x80 BACKUP LOG
256 0x100 Reserved

The table shows the bits used for object permissions that are returned when only objectid is specified.

Bit (dec) Bit (hex) Statement permission
1 0x1 SELECT ALL
2 0x2 UPDATE ALL
4 0x4 REFERENCES ALL

8 0x8 INSERT
16 0x10 DELETE
32 0x20 EXECUTE (procedures only)
4096 0x1000 SELECT ANY (at least one column)
8192 0x2000 UPDATE ANY
16384 0x4000 REFERENCES ANY

The table shows the bits used for column-level object permissions that are returned when both objectid and column are specified.

Bit (dec) Bit (hex) Statement permission
1 0x1 SELECT
2 0x2 UPDATE
4 0x4 REFERENCES

A NULL is returned if a specified parameter is NULL or invalid (for example, an objectid or column that does not exist). The bit
values for permissions that do not apply (for example EXECUTE permissions, bit 0x20, for a table) are undefined.

Use the bitwise AND (&) operator to determine each bit set in the bitmap returned by the PERMISSIONS function.

The sp_helprotect system stored procedure can also be used to return a list of object permissions for a user in the current
database.

Examples

A. Use PERM ISSION S function with statement permissions

This example determines whether the current user can execute the CREATE TABLE statement.

IF PERMISSIONS()&2=2
 CREATE TABLE test_table (col1 INT)
ELSE
 PRINT 'ERROR: The current user cannot create a table.'

B. Use PERM ISSION S function with object permissions

This example determines whether the current user can insert a row of data into the authors table.

IF PERMISSIONS(OBJECT_ID('authors'))&8=8
 PRINT 'The current user can insert data into authors.'
ELSE
 PRINT 'ERROR: The current user cannot insert data into authors.'

C. Use PERM ISSION S function with grantable permissions

This example determines whether the current user can grant the INSERT permission on the authors table to another user.

IF PERMISSIONS(OBJECT_ID('authors'))&0x80000=0x80000
 PRINT 'INSERT on authors is grantable.'
ELSE
 PRINT 'You may not GRANT INSERT permissions on authors.'

See Also

DENY

GRANT

OBJECT_ID

REVOKE

sp_helprotect

System Functions

Transact-SQL Reference (SQL Server 2000)

PI
Returns the constant value of PI.

Syntax

PI ()

Return Types

float

Examples

This example returns the value of PI.

SELECT PI()
GO

Here is the result set:

3.14159265358979

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

POWER
Returns the value of the given expression to the specified power.

Syntax

POWER (numeric_expression , y)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

y

Is the power to which to raise numeric_expression. y can be an expression of the exact numeric or approximate numeric data type
category, except for the bit data type.

Return Types

Same as numeric_expression.

Examples

A. Use POWER to show results of 0.0

This example shows a floating point underflow that returns a result of 0.0.

SELECT POWER(2.0, -100.0)
GO

Here is the result set:

--
0.0

(1 row(s) affected)

B. Use POWER

This example returns POWER results for 21 to 24.

DECLARE @value int, @counter int
SET @value = 2
SET @counter = 1

WHILE @counter < 5
 BEGIN
 SELECT POWER(@value, @counter)
 SET NOCOUNT ON
 SET @counter = @counter + 1
 SET NOCOUNT OFF
 END
GO

Here is the result set:

2

(1 row(s) affected)

4

(1 row(s) affected)

8

(1 row(s) affected)

16

(1 row(s) affected)

See Also

decimal and numeric

float and real

int, smallint, and tinyint

Mathematical Functions

money and smallmoney

Transact-SQL Reference (SQL Server 2000)

Predicate
Is an expression that evaluates to TRUE, FALSE, or UNKNOWN. Predicates are used in the search condition of WHERE clauses and
HAVING clauses, and the join conditions of FROM clauses.

See Also

BETWEEN

CONTAINS

EXISTS

FREETEXT

IN

IS [NOT] NULL

LIKE

Search Condition

Transact-SQL Reference (SQL Server 2000)

PRINT
Returns a user-defined message to the client.

Syntax

PRINT 'any ASCII text' | @local_variable | @@FUNCTION | string_expr

Arguments

'any ASCII text'

Is a string of text.

@local_variable

Is a variable of any valid character data type. @local_variable must be char or varchar, or be able to be implicitly converted to
those data types.

@@FUNCTION

Is a function that returns string results. @@FUNCTION must be char or varchar, or be able to be implicitly converted to those
data types.

string_expr

Is an expression that returns a string. Can include concatenated literal values and variables. The message string can be up to 8,000
characters long; any characters after 8,000 are truncated.

Remarks

To print a user-defined error message having an error number that can be returned by @@ERROR, use RAISERROR instead of
PRINT.

Examples

A. Conditionally executed print (IF EXISTS)

This example uses the PRINT statement to conditionally return a message.

IF EXISTS (SELECT zip FROM authors WHERE zip = '94705')
 PRINT 'Berkeley author'

B. Build and display a string

This example converts the results of the GETDATE function to a varchar data type and concatenates it with literal text to be
returned by PRINT.

PRINT 'This message was printed on ' +
 RTRIM(CONVERT(varchar(30), GETDATE())) + '.'

See Also

Data Types

DECLARE @local_variable

Functions

RAISERROR

Transact-SQL Reference (SQL Server 2000)

pubs Sample Database
The pubs sample database is modeled after a book publishing company and is used to demonstrate many of the options
available for a Microsoft® SQL Server™ database. The database and its tables are commonly used in the examples presented in
the documentation content.

If you have made changes to the pubs database, you can reinstall it using files located in the Install directory of your SQL Server
installation. The installation process requires two steps:

1. From the command prompt, use the osql utility to run the Instpubs.sql script. This drops the existing pubs database, creates
a new one, and defines all the objects in the database.

2. From the command prompt, run Pubimage.bat. This inserts image values into the pub_info table.

Transact-SQL Reference (SQL Server 2000)

authors
Column_name Data type Nullable Default Check Key/index

au_id id no yes 1 PK, clust.
au_lname varchar(40) no Composite,

nonclust. 3
au_fname varchar(20) no Composite,

nonclust. 3
phone char(12) no 'UNKNOWN'
address varchar(40) yes
city varchar(20) yes
state char(2) yes
zip char(5) yes yes 2
contract bit no

1 The au_id CHECK constraint is defined as (au_id LIKE '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]').
2 The zip CHECK constraint is defined as (zip LIKE '[0-9][0-9][0-9][0-9][0-9]').
3 The composite, nonclustered index is defined on au_lname and au_fname.

These tables show the contents of the authors table. The first column (au_id) is repeated in the second table, along with columns
5 through 9.

au_id (1) au_lname (2) au_fname (3) phone (4)
172-32-1176 White Johnson 408 496-7223
213-46-8915 Green Marjorie 415 986-7020
238-95-7766 Carson Cheryl 415 548-7723
267-41-2394 O'Leary Michael 408 286-2428
274-80-9391 Straight Dean 415 834-2919
341-22-1782 Smith Meander 913 843-0462
409-56-7008 Bennet Abraham 415 658-9932
427-17-2319 Dull Ann 415 836-7128
472-27-2349 Gringlesby Burt 707 938-6445
486-29-1786 Locksley Charlene 415 585-4620
527-72-3246 Greene Morningstar 615 297-2723
648-92-1872 Blotchet-Halls Reginald 503 745-6402
672-71-3249 Yokomoto Akiko 415 935-4228
712-45-1867 del Castillo Innes 615 996-8275
722-51-5454 DeFrance Michel 219 547-9982
724-08-9931 Stringer Dirk 415 843-2991
724-80-9391 MacFeather Stearns 415 354-7128
756-30-7391 Karsen Livia 415 534-9219
807-91-6654 Panteley Sylvia 301 946-8853
846-92-7186 Hunter Sheryl 415 836-7128
893-72-1158 McBadden Heather 707 448-4982
899-46-2035 Ringer Anne 801 826-0752
998-72-3567 Ringer Albert 801 826-0752

au_id (1) address (5) city (6) state
(7)

zip (8) contract
(9)

172-32-1176 10932 Bigge Rd. Menlo Park CA 94025 1
213-46-8915 309 63rd St. #411 Oakland CA 94618 1
238-95-7766 589 Darwin Ln. Berkeley CA 94705 1
267-41-2394 22 Cleveland Av. #14 San Jose CA 95128 1
274-80-9391 5420 College Av. Oakland CA 94609 1
341-22-1782 10 Mississippi Dr. Lawrence KS 66044 0

409-56-7008 6223 Bateman St. Berkeley CA 94705 1
427-17-2319 3410 Blonde St. Palo Alto CA 94301 1
472-27-2349 PO Box 792 Covelo CA 95428 1
486-29-1786 18 Broadway Av. San Francisco CA 94130 1
527-72-3246 22 Graybar House Rd. Nashville TN 37215 0
648-92-1872 55 Hillsdale Bl. Corvallis OR 97330 1
672-71-3249 3 Silver Ct. Walnut Creek CA 94595 1
712-45-1867 2286 Cram Pl. #86 Ann Arbor MI 48105 1
722-51-5454 3 Balding Pl. Gary IN 46403 1
724-08-9931 5420 Telegraph Av. Oakland CA 94609 0
724-80-9391 44 Upland Hts. Oakland CA 94612 1
756-30-7391 5720 McAuley St. Oakland CA 94609 1
807-91-6654 1956 Arlington Pl. Rockville MD 20853 1
846-92-7186 3410 Blonde St. Palo Alto CA 94301 1
893-72-1158 301 Putnam Vacaville CA 95688 0
899-46-2035 67 Seventh Av. Salt Lake City UT 84152 1
998-72-3567 67 Seventh Av. Salt Lake City UT 84152 1

Transact-SQL Reference (SQL Server 2000)

discounts
Column_name Data type Nullable Default Check Key/index

discounttype varchar(40) no
stor_id char(4) yes FK

stores(stor_id)
lowqty smallint yes
highqty smallint yes
discount float no

discounttype stor_id lowqty highqty discount
Initial Customer NULL NULL NULL 10.5
Volume Discount NULL 100 1000 6.7
Customer Discount 8042 NULL NULL 5.0

Transact-SQL Reference (SQL Server 2000)

employee
Column_name Data type Nullable Default Check Key/index
emp_id empid no yes 1 PK, nonclust.
fname varchar(20) no Composite, clust. 2
minit char(1) yes Composite, clust. 2
lname varchar(30) no Composite, clust. 2
job_id smallint no 1 FK jobs(job_id)
job_lvl tinyint no 10
pub_id char(4) no '9952' FK

publishers(pub_id)
hire_date datetime no GETDATE()

1 The CHECK constraint is defined as (emp_id LIKE '[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]') OR
(emp_id LIKE '[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]').
2 The composite, clustered index is defined on lname, fname, and minit.

These tables show the contents of the employee table. The first column (emp_id) is repeated in the second table, along with
columns 6 through 8.

emp_id (1) fname (2) minit (3) lname (4) job_id (5)
PMA42628M Paolo M Accorti 13
PSA89086M Pedro S Alfonso 14
VPA30890F Victoria P Ashworth 6
H-B39728F Helen NULL Bennett 12
L-B31947F Lesley NULL Brown 7
F-C16315M Francisco NULL Chang 4
PTC11962M Philip T Cramer 2
A-C71970F Aria NULL Cruz 10
AMD15433F Ann M Devon 3
ARD36773F Anabela R Domingues 8
PHF38899M Peter H Franken 10
PXH22250M Paul X Henriot 5
CFH28514M Carlos F Hernández 5
PDI47470M Palle D Ibsen 7
KJJ92907F Karla J Jablonski 9
KFJ64308F Karin F Josephs 14
MGK44605M Matti G Karttunen 6
POK93028M Pirkko O Koskitalo 10
JYL26161F Janine Y Labrune 5
M-L67958F Maria NULL Larsson 7
Y-L77953M Yoshi NULL Latimer 12
LAL21447M Laurence A Lebihan 5
ENL44273F Elizabeth N Lincoln 14
PCM98509F Patricia C McKenna 11
R-M53550M Roland NULL Mendel 11
RBM23061F Rita B Müller 5
HAN90777M Helvetius A Nagy 7
TPO55093M Timothy P O'Rourke 13
SKO22412M Sven K Ottlieb 5
MAP77183M Miguel A Paolino 11
PSP68661F Paula S Parente 8
M-P91209M Manuel NULL Pereira 8
MJP25939M Maria J Pontes 5
M-R38834F Martine NULL Rancé 9

DWR65030M Diego W Roel 6
A-R89858F Annette NULL Roulet 6
MMS49649F Mary M Saveley 8
CGS88322F Carine G Schmitt 13
MAS70474F Margaret A Smith 9
HAS54740M Howard A Snyder 12
MFS52347M Martín F Sommer 10
GHT50241M Gary H Thomas 9
DBT39435M Daniel B Tonini 11

emp_id (1) job_lvl (6) pub_id (7) hire_date (8)
PMA42628M 35 0877 Aug 27 1992 12:00AM
PSA89086M 89 1389 Dec 24 1990 12:00AM
VPA30890F 140 0877 Sep 13 1990 12:00AM
H-B39728F 35 0877 Sep 21 1989 12:00AM
L-B31947F 120 0877 Feb 13 1991 12:00AM
F-C16315M 227 9952 Nov 3 1990 12:00AM
PTC11962M 215 9952 Nov 11 1989 12:00AM
A-C71970F 87 1389 Oct 26 1991 12:00AM
AMD15433F 200 9952 Jul 16 1991 12:00AM
ARD36773F 100 0877 Jan 27 1993 12:00AM
PHF38899M 75 0877 May 17 1992 12:00AM
PXH22250M 159 0877 Aug 19 1993 12:00AM
CFH28514M 211 9999 Apr 21 1989 12:00AM
PDI47470M 195 0736 May 9 1993 12:00AM
KJJ92907F 170 9999 Mar 11 1994 12:00AM
KFJ64308F 100 0736 Oct 17 1992 12:00AM
MGK44605M 220 0736 May 1 1994 12:00AM
POK93028M 80 9999 Nov 29 1993 12:00AM
JYL26161F 172 9901 May 26 1991 12:00AM
M-L67958F 135 1389 Mar 27 1992 12:00AM
Y-L77953M 32 1389 Jun 11 1989 12:00AM
LAL21447M 175 0736 Jun 3 1990 12:00AM
ENL44273F 35 0877 Jul 24 1990 12:00AM
PCM98509F 150 9999 Aug 1 1989 12:00AM
R-M53550M 150 0736 Sep 5 1991 12:00AM
RBM23061F 198 1622 Oct 9 1993 12:00AM
HAN90777M 120 9999 Mar 19 1993 12:00AM
TPO55093M 100 0736 Jun 19 1988 12:00AM
SKO22412M 150 1389 Apr 5 1991 12:00AM
MAP77183M 112 1389 Dec 7 1992 12:00AM
PSP68661F 125 1389 Jan 19 1994 12:00AM
M-P91209M 101 9999 Jan 9 1989 12:00AM
MJP25939M 246 1756 Mar 1 1989 12:00AM
M-R38834F 75 0877 Feb 5 1992 12:00AM
DWR65030M 192 1389 Dec 16 1991 12:00AM
A-R89858F 152 9999 Feb 21 1990 12:00AM
MMS49649F 175 0736 Jun 29 1993 12:00AM
CGS88322F 64 1389 Jul 7 1992 12:00AM
MAS70474F 78 1389 Sep 29 1988 12:00AM
HAS54740M 100 0736 Nov 19 1988 12:00AM
MFS52347M 165 0736 Apr 13 1990 12:00AM

GHT50241M 170 0736 Aug 9 1988 12:00AM
DBT39435M 75 0877 Jan 1 1990 12:00AM

Transact-SQL Reference (SQL Server 2000)

jobs
Column_name Data type Nullable Default Check Key/index

job_id smallint no IDENTITY(1,1) PK, clust
stor_id char(4) no yes 1
min_lvl tinyint no yes 2
max_lvl tinyint no yes 3

(1) The DEFAULT constraint is defined as ("New Position - title not formalized yet").
(2) The min_lvl CHECK constraint is defined as (min_lvl >= 10).
(3) The max_lvl CHECK constraint is defined as (max_lvl <= 250).

This table shows the contents of the jobs table.

job_id job_desc min_lvl max_lvl
1 New Hire - Job not specified 10 10
2 Chief Executive Officer 200 250
3 Business Operations Manager 175 225
4 Chief Financial Officer 175 250
5 Publisher 150 250
6 Managing Editor 140 225
7 Marketing Manager 120 200
8 Public Relations Manager 100 175
9 Acquisitions Manager 75 175
10 Productions Manager 75 165
11 Operations Manager 75 150
12 Editor 25 100
13 Sales Representative 25 100
14 Designer 25 100

Transact-SQL Reference (SQL Server 2000)

pub_info
Column_name Data type Nullable Default Check Key/index

pub_id char(4) no PK, clust., FK
publishers(pub_id)

logo image yes
pr_info text yes

This table shows the contents of the pub_info table.

pub_id logo 1 pr_info 2
0736 Newmoon.bmp This is sample text data for New Moon Books, publisher

0736 in the pubs database. New Moon Books is located
in Boston, Massachusetts.

0877 Binnet.bmp This is sample text data for Binnet & Hardley, publisher
0877 in the pubs database. Binnet & Hardley is located in
Washington, D.C.

1389 Algodata.bmp This is sample text data for Algodata Infosystems,
publisher 1389 in the pubs database. Algodata
Infosystems is located in Berkeley, California.

1622 5lakes.bmp This is sample text data for Five Lakes Publishing,
publisher 1622 in the pubs database. Five Lakes
Publishing is located in Chicago, Illinois.

1756 Ramona.bmp This is sample text data for Ramona Publishers, publisher
1756 in the pubs database. Ramona Publishers is located
in Dallas, Texas.

9901 Gggg.bmp This is sample text data for GGG&G, publisher 9901 in the
pubs database. GGG&G is located in München, Germany.

9952 Scootney.bmp This is sample text data for Scootney Books, publisher
9952 in the pubs database. Scootney Books is located in
New York City, New York.

9999 Lucerne.bmp This is sample text data for Lucerne Publishing, publisher
9999 in the pubs database. Lucerne Publishing is located
in Paris, France.

1 The information shown here is not the actual data. It is the file name from which the bitmap (image data) was loaded.
2 The text shown here is incomplete. When displaying text data, the display is limited to a finite number of characters. This table
shows the first 120 characters of the text column.

Transact-SQL Reference (SQL Server 2000)

publishers
Column_name Data type Nullable Default Check Key/index

pub_id char(4) no yes 1 PK, clust.
pub_name varchar(40) yes
city varchar(20) yes
state char(2) yes
country varchar(30) yes 'USA'

1 The pub_id CHECK constraint is defined as (pub_id = '1756' OR (pub_id = '1622' OR (pub_id = '0877' OR (pub_id = '0736'
OR (pub_id = '1389')))) OR (pub_id LIKE '99[0-9][0-0]').

This table shows the contents of the publishers table.

pub_id pub_name city state country
0736 New Moon Books Boston MA USA
0877 Binnet & Hardley Washington DC USA
1389 Algodata Infosystems Berkeley CA USA
1622 Five Lakes Publishing Chicago IL USA
1756 Ramona Publishers Dallas TX USA
9901 GGG&G München NULL Germany
9952 Scootney Books New York NY USA
9999 Lucerne Publishing Paris NULL France

Transact-SQL Reference (SQL Server 2000)

roysched
Column_name Data type Nullable Default Check Key/index

title_id tid no FK titles(title_id)
lorange int yes
hirange int yes
royalty int yes

This table shows the contents of the roysched table.

title_id lorange hirange royalty
BU1032 0 5000 10
BU1032 5001 50000 12
PC1035 0 2000 10
PC1035 2001 3000 12
PC1035 3001 4000 14
PC1035 4001 10000 16
PC1035 10001 50000 18
BU2075 0 1000 10
BU2075 1001 3000 12
BU2075 3001 5000 14
BU2075 5001 7000 16
BU2075 7001 10000 18
BU2075 10001 12000 20
BU2075 12001 14000 22
BU2075 14001 50000 24
PS2091 0 1000 10
PS2091 1001 5000 12
PS2091 5001 10000 14
PS2091 10001 50000 16
PS2106 0 2000 10
PS2106 2001 5000 12
PS2106 5001 10000 14
PS2106 10001 50000 16
MC3021 0 1000 10
MC3021 1001 2000 12
MC3021 2001 4000 14
MC3021 4001 6000 16
MC3021 6001 8000 18
MC3021 8001 10000 20
MC3021 10001 12000 22
MC3021 12001 50000 24
TC3218 0 2000 10
TC3218 2001 4000 12
TC3218 4001 6000 14
TC3218 6001 8000 16
TC3218 8001 10000 18
TC3218 10001 12000 20
TC3218 12001 14000 22
TC3218 14001 50000 24
PC8888 0 5000 10
PC8888 5001 10000 12
PC8888 10001 15000 14
PC8888 15001 50000 16

PS7777 0 5000 10
PS7777 5001 50000 12
PS3333 0 5000 10
PS3333 5001 10000 12
PS3333 10001 15000 14
PS3333 15001 50000 16
BU1111 0 4000 10
BU1111 4001 8000 12
BU1111 8001 10000 14
BU1111 12001 16000 16
BU1111 16001 20000 18
BU1111 20001 24000 20
BU1111 24001 28000 22
BU1111 28001 50000 24
MC2222 0 2000 10
MC2222 2001 4000 12
MC2222 4001 8000 14
MC2222 8001 12000 16
MC2222 12001 20000 18
MC2222 20001 50000 20
TC7777 0 5000 10
TC7777 5001 15000 12
TC7777 15001 50000 14
TC4203 0 2000 10
TC4203 2001 8000 12
TC4203 8001 16000 14
TC4203 16001 24000 16
TC4203 24001 32000 18
TC4203 32001 40000 20
TC4203 40001 50000 22
BU7832 0 5000 10
BU7832 5001 10000 12
BU7832 10001 15000 14
BU7832 15001 20000 16
BU7832 20001 25000 18
BU7832 25001 30000 20
BU7832 30001 35000 22
BU7832 35001 50000 24
PS1372 0 10000 10
PS1372 10001 20000 12
PS1372 20001 30000 14
PS1372 30001 40000 16
PS1372 40001 50000 18

Transact-SQL Reference (SQL Server 2000)

sales
Column_name Data type Nullable Key/index

stor_id char(4) no Composite PK, clust. 1, FK
stores(stor_id)

ord_num varchar(20) no Composite PK, clust. 1
ord_date datetime no
qty smallint no
payterms varchar(12) no
title_id tid no Composite PK, clust. 1, FK

titles(title_id)

1 The composite, primary key, clustered index is defined on stor_id, ord_num, and title_id.

This table shows the contents of the sales table.

stor_id ord_num ord_date qty payterms title_id
6380 6871 Sep 14 1994 12:00AM 5 Net 60 BU1032
6380 722a Sep 13 1994 12:00AM 3 Net 60 PS2091
7066 A2976 May 24 1993 12:00AM 50 Net 30 PC8888
7066 QA7442.3 Sep 13 1994 12:00AM 75 ON invoice PS2091
7067 D4482 Sep 14 1994 12:00AM 10 Net 60 PS2091
7067 P2121 Jun 15 1992 12:00AM 40 Net 30 TC3218
7067 P2121 Jun 15 1992 12:00AM 20 Net 30 TC4203
7067 P2121 Jun 15 1992 12:00AM 20 Net 30 TC7777
7131 N914008 Sep 14 1994 12:00AM 20 Net 30 PS2091
7131 N914014 Sep 14 1994 12:00AM 25 Net 30 MC3021
7131 P3087a May 29 1993 12:00AM 20 Net 60 PS1372
7131 P3087a May 29 1993 12:00AM 25 Net 60 PS2106
7131 P3087a May 29 1993 12:00AM 15 Net 60 PS3333
7131 P3087a May 29 1993 12:00AM 25 Net 60 PS7777
7896 QQ2299 Oct 28 1993 12:00AM 15 Net 60 BU7832
7896 TQ456 Dec 12 1993 12:00AM 10 Net 60 MC2222
7896 X999 Feb 21 1993 12:00AM 35 ON invoice BU2075
8042 423LL922 Sep 14 1994 12:00AM 15 ON invoice MC3021
8042 423LL930 Sep 14 1994 12:00AM 10 ON invoice BU1032
8042 P723 Mar 11 1993 12:00AM 25 Net 30 BU1111
8042 QA879.1 May 22 1993 12:00AM 30 Net 30 PC1035

Transact-SQL Reference (SQL Server 2000)

stores
Column_name Data type Nullable Default Check Key/index

stor_id char(4) no PK, clust.
stor_name varchar(40) yes
stor_address varchar(40) yes
city varchar(20) yes
state char(2) yes
zip char(5) yes

This table shows the contents of the stores table.

stor_id stor_name stor_address city state zip
6380 Eric the Read Books 788 Catamaugus Ave. Seattle WA 98056
7066 Barnum's 567 Pasadena Ave. Tustin CA 92789
7067 News & Brews 577 First St. Los Gatos CA 96745
7131 Doc-U-Mat: Quality

Laundry and Books
24-A Avrogado Way Remulade WA 98014

7896 Fricative Bookshop 89 Madison St. Fremont CA 90019
8042 Bookbeat 679 Carson St. Portland OR 89076

Transact-SQL Reference (SQL Server 2000)

titleauthor
Column_name Data type Nullable Default Check Key/index
au_id id no Composite PK, clust. 1,

FK authors(au_id) 2
title_id tid no Composite PK, clust. 1,

FK titles(title_id) 3
au_ord tinyint yes
royaltyper int yes

1 The composite, primary key, clustered index is defined on au_id and title_id.
2 This foreign key also has a nonclustered index on au_id.
3 This foreign key also has a nonclustered index on title_id.

This table shows the contents of the titleauthor table.

au_id title_id au_ord royaltyper
172-32-1176 PS3333 1 100
213-46-8915 BU1032 2 40
213-46-8915 BU2075 1 100
238-95-7766 PC1035 1 100
267-41-2394 BU1111 2 40
267-41-2394 TC7777 2 30
274-80-9391 BU7832 1 100
409-56-7008 BU1032 1 60
427-17-2319 PC8888 1 50
472-27-2349 TC7777 3 30
486-29-1786 PC9999 1 100
486-29-1786 PS7777 1 100
648-92-1872 TC4203 1 100
672-71-3249 TC7777 1 40
712-45-1867 MC2222 1 100
722-51-5454 MC3021 1 75
724-80-9391 BU1111 1 60
724-80-9391 PS1372 2 25
756-30-7391 PS1372 1 75
807-91-6654 TC3218 1 100
846-92-7186 PC8888 2 50
899-46-2035 MC3021 2 25
899-46-2035 PS2091 2 50
998-72-3567 PS2091 1 50
998-72-3567 PS2106 1 100

Transact-SQL Reference (SQL Server 2000)

titles
Column_name Data type Nullable Default Check Key/index
title_id tid no PK, clust.
title varchar(80) no Nonclust.
type char(12) no 'UNDECIDED'
pub_id char(4) yes FK publishers

(pub_id)
price money yes
advance money yes
royalty int yes
ytd_sales int yes
notes varchar(200) yes
pubdate datetime no GETDATE()

These tables show the contents of the titles table. The first column (title_id) is repeated in the tables that follow, along with
columns 6 through 8, and 9
through 10.

title_id (1) title (2) type (3) pub_id (4) price (5)
BU1032 The Busy Executive's

Database Guide
business 1389 19.99

BU1111 Cooking with Computers:
Surreptitious Balance Sheets

business 1389 11.95

BU2075 You Can Combat Computer
Stress!

business 0736 2.99

BU7832 Straight Talk About
Computers

business 1389 19.99

MC2222 Silicon Valley Gastronomic
Treats

mod_cook 0877 19.99

MC3021 The Gourmet Microwave mod_cook 0877 2.99
MC3026 The Psychology of Computer

Cooking
UNDECIDED 0877 NULL

PC1035 But Is It User Friendly? popular_comp 1389 22.95
PC8888 Secrets of Silicon Valley popular_comp 1389 20.00
PC9999 Net Etiquette popular_comp 1389 NULL
PS1372 Computer Phobic and Non-

Phobic Individuals: Behavior
Variations

psychology 0877 21.59

PS2091 Is Anger the Enemy? psychology 0736 10.95
PS2106 Life Without Fear psychology 0736 7.00
PS3333 Prolonged Data Deprivation:

Four Case Studies
psychology 0736 19.99

PS7777 Emotional Security: A New
Algorithm

psychology 0736 7.99

TC3218 Onions, Leeks, and Garlic:
Cooking Secrets of the
Mediterranean

trad_cook 0877 20.95

TC4203 Fifty Years in Buckingham
Palace Kitchens

trad_cook 0877 11.95

TC7777 Sushi, Anyone? trad_cook 0877 14.99

title_id (1) advance (6) royalty (7) ytd_sales (8)
BU1032 5,000.00 10 4095
BU1111 5,000.00 10 3876
BU2075 10,125.00 24 18722
BU7832 5,000.00 10 4095
MC2222 0.00 12 2032
MC3021 15,000.00 24 22246
MC3026 NULL NULL NULL
PC1035 7,000.00 16 8780
PC8888 8,000.00 10 4095
PC9999 NULL NULL NULL
PS1372 7,000.00 10 375
PS2091 2,275.00 12 2045
PS2106 6,000.00 10 111
PS3333 2,000.00 10 4072
PS7777 4,000.00 10 3336
TC3218 7,000.00 10 375
TC4203 4,000.00 14 15096
TC7777 8,000.00 10 4095

title_id (1) notes (9) pubdate (10)
BU1032 An overview of available database systems with

emphasis on common business applications. Illustrated.
Jun 12 1991
12:00AM

BU1111 Helpful hints on how to use your electronic resources to
the best advantage.

Jun 9 1991
12:00AM

BU2075 The latest medical and psychological techniques for
living with the electronic office. Easy-to-understand
explanations.

Jun 30 1991
12:00AM

BU7832 Annotated analysis of what computers can do for you: a
no-hype guide for the critical user.

Jun 22 1991
12:00AM

MC2222 Favorite recipes for quick, easy, and elegant meals. Jun 9 1991
12:00AM

MC3021 Traditional French gourmet recipes adapted for modern
microwave cooking.

Jun 18 1991
12:00AM

MC3026 NULL Apr 28 1995
10:36AM

PC1035 A survey of software for the naive user, focusing on the
"friendliness" of each.

Jun 30 1991
12:00AM

PC8888 Muckraking reporting on the world's largest computer
hardware and software manufacturers.

Jun 12 1994
12:00AM

PC9999 A must-read for computer conferencing. Apr 28 1995
10:36AM

PS1372 A must for the specialist, examining the difference
between those who hate and fear computers and those
who don't.

Oct 21 1991
12:00AM

PS2091 Carefully researched study of the effects of strong
emotions on the body. Metabolic charts included.

Jun 15 1991
12:00AM

PS2106 New exercise, meditation, and nutritional techniques
that can reduce the shock of daily interactions. Popular
audience. Sample menus included, exercise video
available separately.

Oct 5 1991
12:00AM

PS3333 What happens when the data runs dry? Searching
evaluations of information-shortage effects.

Jun 12 1991
12:00AM

PS7777 Protecting yourself and your loved ones from undue
emotional stress in the modern world. Use of computer
and nutritional aids emphasized.

Jun 12 1991
12:00AM

TC3218 Profusely illustrated in color, this makes a wonderful gift
book for a cuisine-oriented friend.

Oct 21 1991
12:00AM

TC4203 More anecdotes from the Queen's favorite cook
describing life among English royalty. Recipes,
techniques, tender vignettes.

Jun 12 1991
12:00AM

TC7777 Detailed instructions on how to make authentic
Japanese sushi in your spare time.

Jun 12 1991
12:00AM

Transact-SQL Reference (SQL Server 2000)

QUOTENAME
Returns a Unicode string with the delimiters added to make the input string a valid Microsoft® SQL Server™ delimited identifier.

Syntax

QUOTENAME ('character_string' [, 'quote_character'])

Arguments

'character_string'

Is a string of Unicode character data. character_string is sysname.

'quote_character'

Is a one-character string to use as the delimiter. Can be a single quotation mark ('), a left or right bracket ([]), or a double
quotation mark ("). If quote_character is not specified, brackets are used.

Return Types

nvarchar(258)

Examples

This example takes the character string abc[]def and uses the [and] characters to create a valid SQL Server quoted (delimited)
identifier.

SELECT QUOTENAME('abc[]def')

Here is the result set:

[abc[]]def]

(1 row(s) affected)

Notice that the right bracket in the string abc[]def is doubled to indicate an escape character.

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

RADIANS
Returns radians when a numeric expression, in degrees, is entered.

Syntax

RADIANS (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Types

Returns the same type as numeric_expression.

Examples

A. Use RADIAN S to show 0.0

This example returns a result of 0.0 because the numeric expression to convert to radians is too small for the RADIANS function.

SELECT RADIANS(1e-307)
GO

Here is the result set:

0.0
(1 row(s) affected)

B. Use RADIAN S

This example takes a float expression and returns the RADIANS of the given angle.

-- First value is -45.01.
DECLARE @angle float
SET @angle = -45.01
SELECT 'The RADIANS of the angle is: ' +
 CONVERT(varchar, RADIANS(@angle))
GO
-- Next value is -181.01.
DECLARE @angle float
SET @angle = -181.01
SELECT 'The RADIANS of the angle is: ' +
 CONVERT(varchar, RADIANS(@angle))
GO
-- Next value is 0.00.
DECLARE @angle float
SET @angle = 0.00
SELECT 'The RADIANS of the angle is: ' +
 CONVERT(varchar, RADIANS(@angle))
GO
-- Next value is 0.1472738.
DECLARE @angle float
SET @angle = 0.1472738
SELECT 'The RADIANS of the angle is: ' +
 CONVERT(varchar, RADIANS(@angle))
GO
-- Last value is 197.1099392.
DECLARE @angle float
SET @angle = 197.1099392
SELECT 'The RADIANS of the angle is: ' +
 CONVERT(varchar, RADIANS(@angle))
GO

Here is the result set:

The RADIANS of the angle is: -0.785573

(1 row(s) affected)

The RADIANS of the angle is: -3.15922
(1 row(s) affected)

The RADIANS of the angle is: 0
(1 row(s) affected)

The RADIANS of the angle is: 0.00257041
 (1 row(s) affected)

The RADIANS of the angle is: 3.44022
(1 row(s) affected)

See Also

CAST and CONVERT

decimal and numeric

float and real

int, smallint, and tinyint

Mathematical Functions

money and smallmoney

Transact-SQL Reference (SQL Server 2000)

RAISERROR
Returns a user-defined error message and sets a system flag to record that an error has occurred. Using RAISERROR, the client
can either retrieve an entry from the sysmessages table or build a message dynamically with user-specified severity and state
information. After the message is defined it is sent back to the client as a server error message.

Syntax

RAISERROR ({ msg_id | msg_str } { , severity , state }
 [, argument [,...n]])
 [WITH option [,...n]]

Arguments

msg_id

Is a user-defined error message stored in the sysmessages table. Error numbers for user-defined error messages should be
greater than 50,000. Ad hoc messages raise an error of 50,000.

msg_str

Is an ad hoc message with formatting similar to the PRINTF format style used in C. The error message can have up to 400
characters. If the message contains more than 400 characters, only the first 397 will be displayed and an ellipsis will be added to
indicate that the message has been cut. All ad hoc messages have a standard message ID of 50,000.

This format is supported for msg_str:

% [[flag] [width] [precision] [{h | l}]] type

The parameters that can be used in msg_str are:

flag

Is a code that determines the spacing and justification of the user-defined error message.

Code Prefix or justification Description
- (minus) Left-justified Left-justify the result within the

given field width.
+ (plus) + (plus) or - (minus) prefix Preface the output value with a plus

(+) or minus (-) sign if the output
value is of signed type.

0 (zero) Zero padding If width is prefaced with 0, zeros are
added until the minimum width is
reached. When 0 and - appear, 0 is
ignored. When 0 is specified with an
integer format (i, u, x, X, o, d), 0 is
ignored.

(number) 0x prefix for hexadecimal
type of x or X

When used with the o, x, or X format,
the # flag prefaces any nonzero
value with 0, 0x, or 0X, respectively.
When d, i, or u are prefaced by the #
flag, the flag is ignored.

' ' (blank) Space padding Preface the output value with blank
spaces if the value is signed and
positive. This is ignored when
included with the plus sign (+) flag.

width

Is an integer defining the minimum width. An asterisk (*) allows precision to determine the width.

precision

Is the maximum number of characters printed for the output field or the minimum number of digits printed for integer values. An
asterisk (*) allows argument to determine the precision.

{h | l} type

Is used with character types d, i, o, x, X, or u, and creates short int (h) or long int (l) values.

Character type Represents
d or I Signed integer
o Unsigned octal
p Pointer
s String
u Unsigned integer
x or X Unsigned hexadecimal

Note The float, double-, and single character types are not supported.

severity

Is the user-defined severity level associated with this message. Severity levels from 0 through 18 can be used by any user.
Severity levels from 19 through 25 are used only by members of the sysadmin fixed server role. For severity levels from 19
through 25, the WITH LOG option is required.

Caution Severity levels from 20 through 25 are considered fatal. If a fatal severity level is encountered, the client connection is
terminated after receiving the message, and the error is logged in the error log and the application log.

state

Is an arbitrary integer from 1 through 127 that represents information about the invocation state of the error. A negative value for
state defaults to 1.

argument

Is the parameters used in the substitution for variables defined in msg_str or the message corresponding to msg_id. There can be
0 or more substitution parameters; however, the total number of substitution parameters cannot exceed 20. Each substitution
parameter can be a local variable or any of these data types: int1, int2, int4, char, varchar, binary, or varbinary. No other data
types are supported.

option

Is a custom option for the error. option can be one of these values.

Value Description
LOG Logs the error in the server error log and the application

log. Errors logged in the server error log are currently
limited to a maximum of 440 bytes.

NOWAIT Sends messages immediately to the client.
SETERROR Sets @@ERROR value to msg_id or 50000, regardless of

the severity level.

Remarks

If a sysmessages error is used and the message was created using the format shown for msg_str, the supplied arguments
(argument1, argument2, and so on) are passed to the message of the supplied msg_id.

When you use RAISERROR to create and return user-defined error messages, use sp_addmessage to add user-defined error
messages and sp_dropmessage to delete user-defined error messages.

When an error is raised, the error number is placed in the @@ERROR function, which stores the most recently generated error
number. @@ERROR is set to 0 by default for messages with a severity from 1 through 10.

Examples

A. Create an ad hoc message

This example shows two errors that can be raised. The first is a simple error with a static message. The second error is dynamically
built based on the attempted modification.

CREATE TRIGGER employee_insupd
ON employee
FOR INSERT, UPDATE
AS
/* Get the range of level for this job type from the jobs table. */
DECLARE @@MIN_LVL tinyint,
 @@MAX_LVL tinyint,
 @@EMP_LVL tinyint,
 @@JOB_ID smallint
SELECT @@MIN_LVl = min_lvl,
 @@MAX_LV = max_lvl,
 @@ EMP_LVL = i.job_lvl,
 @@JOB_ID = i.job_id
FROM employee e, jobs j, inserted i
WHERE e.emp_id = i.emp_id AND i.job_id = j.job_id
IF (@@JOB_ID = 1) and (@@EMP_lVl <> 10)
BEGIN
 RAISERROR ('Job id 1 expects the default level of 10.', 16, 1)
 ROLLBACK TRANSACTION
END
ELSE
IF NOT @@ EMP_LVL BETWEEN @@MIN_LVL AND @@MAX_LVL)
BEGIN
 RAISERROR ('The level for job_id:%d should be between %d and %d.',
 16, 1, @@JOB_ID, @@MIN_LVL, @@MAX_LVL)
 ROLLBACK TRANSACTION
END

B. Create an ad hoc message in sysmessages

This example shows how to achieve the same results with RAISERROR using parameters passed to a message stored in the
sysmessages table by executing the employee_insupd trigger. The message was added to the sysmessages table with the
sp_addmessage system stored procedure as message number 50005.

Note This example is shown for illustration only.

RAISERROR (50005, 16, 1, @@JOB_ID, @@MIN_LVL, @@MAX_LVL)

See Also

DECLARE @local_variable

Functions

PRINT

sp_addmessage

sp_dropmessage

sysmessages

xp_logevent

Transact-SQL Reference (SQL Server 2000)

RAND
 Topic last updated -- July 2003

Returns a random float value from 0 through 1.

Syntax

RAND ([seed])

Arguments

seed

Is an integer expression (tinyint, smallint, or int) that specifies the seed value. If seed is not specified, Microsoft® SQL Server™
2000 assigns a seed value at random. For a given seed value, the result returned is always the same.

Return Types

float

Remarks

Repetitive calls of RAND() with the same seed value in a single query return the same results.

For a connection, if RAND() is called with a specified seed value, all subsequent calls of RAND() produce results based on the
seeded RAND() call. For example, the following query always returns the same sequence of numbers.

SELECT RAND(100), RAND(), RAND()

Examples

This example produces four different random numbers generated with the RAND function.

DECLARE @counter smallint
SET @counter = 1
WHILE @counter < 5
 BEGIN
 SELECT RAND() Random_Number
 SET NOCOUNT ON
 SET @counter = @counter + 1
 SET NOCOUNT OFF
 END
GO

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

READTEXT
Reads text, ntext, or image values from a text, ntext, or image column, starting from a specified offset and reading the
specified number of bytes.

Syntax

READTEXT { table.column text_ptr offset size } [HOLDLOCK]

Arguments

table.column

Is the name of a table and column from which to read. Table and column names must conform to the rules for identifiers.
Specifying the table and column names is required; however, specifying the database name and owner names is optional.

text_ptr

Is a valid text pointer. text_ptr must be binary(16).

offset

Is the number of bytes (when using the text or image data types) or characters (when using the ntext data type) to skip before
starting to read the text, image, or ntext data. When using ntext data type, offset is the number of characters to skip before
starting to read the data. When using text or image data types, offset is the number of bytes to skip before starting to read the
data.

size

Is the number of bytes (when using the text or image data types) or characters (when using the ntext data type) of data to read.
If size is 0, 4 KB bytes of data are read.

HOLDLOCK

Causes the text value to be locked for reads until the end of the transaction. Other users can read the value, but they cannot
modify it.

Remarks

Use the TEXTPTR function to obtain a valid text_ptr value. TEXTPTR returns a pointer to the text, ntext, or image column in the
specified row or to the text, ntext, or image column in the last row returned by the query if more than one row is returned.
Because TEXTPTR returns a 16-byte binary string, it is best to declare a local variable to hold the text pointer and then use the
variable with READTEXT. For more information about declaring a local variable, see DECLARE @local_variable.

In SQL Server 2000, in row text pointers may exist but be invalid. For more information about the text in row option, see
sp_tableoption. For more information about invalidating text pointers, see sp_invalidate_textptr.

The value of the @@TEXTSIZE function supersedes the size specified for READTEXT if it is less than the specified size for
READTEXT. The @@TEXTSIZE function is the limit on the number of bytes of data to be returned set by the SET TEXTSIZE
statement. For more information about how to set the session setting for TEXTSIZE, see SET TEXTSIZE.

Permissions

READTEXT permissions default to users with SELECT permissions on the specified table. Permissions are transferrable when
SELECT permissions are transferred.

Examples

This example reads the second through twenty-sixth characters of the pr_info column in the pub_info table.

USE pubs
GO
DECLARE @ptrval varbinary(16)
SELECT @ptrval = TEXTPTR(pr_info)
 FROM pub_info pr INNER JOIN publishers p
 ON pr.pub_id = p.pub_id
 AND p.pub_name = 'New Moon Books'
READTEXT pub_info.pr_info @ptrval 1 25

GO

See Also

@@TEXTSIZE

UPDATETEXT

WRITETEXT

Transact-SQL Reference (SQL Server 2000)

real
For more information about the real data type, see float and real.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

RECONFIGURE
Updates the currently configured (the config_value column in the sp_configure result set) value of a configuration option
changed with the sp_configure system stored procedure. Because some configuration options require a server stop and restart
to update the currently running value, RECONFIGURE does not always update the currently running value (the run_value column
in the sp_configure result set) for a changed configuration value.

Syntax

RECONFIGURE [WITH OVERRIDE]

Arguments

RECONFIGURE

Specifies that if the configuration setting does not require a server stop and restart, the currently running value should be
updated. RECONFIGURE also checks the new configuration value for either invalid values (for example, a sort order value that
does not exist in syscharsets) or nonrecommended values (for example, setting allow updates to 1). With those configuration
options not requiring a server stop and restart, the currently running value and the currently configured values for the
configuration option should be the same value after specifying RECONFIGURE.

WITH OVERRIDE

Disables the configuration value checking (for invalid values or for nonrecommended values) for the allow updates, recovery
interval, or time slice advanced configuration options. In addition, RECONFIGURE WITH OVERRIDE forces the reconfiguration
with the specified value. For example, the min server memory configuration option could be configured with a value greater
than the value specified in the max server memory configuration option. However, this is considered a fatal error. Therefore,
specifying RECONFIGURE WITH OVERRIDE would not disable configuration value checking. Any configuration option can be
reconfigured using the WITH OVERRIDE option.

Remarks

sp_configure does not accept new configuration option values out of the documented valid ranges for each configuration option.

Permissions

RECONFIGURE permissions default to members of the sysadmin and serveradmin fixed server roles, and are not transferable.

Examples

This example sets the upper limit for the network packet size configuration option and uses RECONFIGURE WITH OVERRIDE to
install it. Because the WITH OVERRIDE option is specified, Microsoft® SQL Server™ does not check the value specified (8192) to
see if it is a valid value for the network packet size configuration option.

EXEC sp_configure 'network packet size', 8192
RECONFIGURE WITH OVERRIDE
GO

See Also

Setting Configuration Options

sp_configure

Transact-SQL Reference (SQL Server 2000)

REPLACE
Replaces all occurrences of the second given string expression in the first string expression with a third expression.

Syntax

REPLACE ('string_expression1' , 'string_expression2' , 'string_expression3')

Arguments

'string_expression1'

Is the string expression to be searched. string_expression1 can be of character or binary data.

'string_expression2'

Is the string expression to try to find. string_expression2 can be of character or binary data.

'string_expression3'

Is the replacement string expression string_expression3 can be of character or binary data.

Return Types

Returns character data if string_expression (1, 2, or 3) is one of the supported character data types. Returns binary data if
string_expression (1, 2, or 3) is one of the supported binary data types.

Examples

This example replaces the string cde in abcdefghi with xxx.

SELECT REPLACE('abcdefghicde','cde','xxx')
GO

Here is the result set:

abxxxfghixxx
(1 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

REPLICATE
Repeats a character expression for a specified number of times.

Syntax

REPLICATE (character_expression , integer_expression)

Arguments

character_expression

Is an alphanumeric expression of character data. character_expression can be a constant, variable, or column of either character or
binary data.

integer_expression

Is a positive whole number. If integer_expression is negative, a null string is returned.

Return Types

varchar

character_expression must be of a data type that is implicitly convertible to varchar. Otherwise, use the CAST function to convert
explicitly character_expression.

Remarks

Compatibility levels can affect return values. For more information, see sp_dbcmptlevel.

Examples

A. Use REPLICATE

This example replicates each author's first name twice.

USE pubs
SELECT REPLICATE(au_fname, 2)
FROM authors
ORDER BY au_fname

Here is the result set:

AbrahamAbraham
AkikoAkiko
AlbertAlbert
AnnAnn
AnneAnne
BurtBurt
CharleneCharlene
CherylCheryl
DeanDean
DirkDirk
HeatherHeather
InnesInnes
JohnsonJohnson
LiviaLivia
MarjorieMarjorie
MeanderMeander
MichaelMichael
MichelMichel
MorningstarMorningstar
ReginaldReginald
SherylSheryl
StearnsStearns
SylviaSylvia
(23 row(s) affected)

B. Use REPLICATE, SUBSTRIN G, and SPACE

This example uses REPLICATE, SUBSTRING, and SPACE to produce a telephone and fax listing of all authors in the authors table.

-- Replicate phone number twice because the fax number is identical to
-- the author telephone number.
USE pubs
GO
SELECT SUBSTRING((UPPER(au_lname) + ',' + SPACE(1) + au_fname), 1, 35)
 AS Name, phone AS Phone, REPLICATE(phone,1) AS Fax
FROM authors
ORDER BY au_lname, au_fname
GO

Here is the result set:

Name Phone Fax
----------------------------------- ------------ -----------------------
BENNET, Abraham 415 658-9932 415 658-9932
BLOTCHET-HALLS, Reginald 503 745-6402 503 745-6402
CARSON, Cheryl 415 548-7723 415 548-7723
DEFRANCE, Michel 219 547-9982 219 547-9982
DEL CASTILLO, Innes 615 996-8275 615 996-8275
DULL, Ann 415 836-7128 415 836-7128
GREEN, Marjorie 415 986-7020 415 986-7020
GREENE, Morningstar 615 297-2723 615 297-2723
GRINGLESBY, Burt 707 938-6445 707 938-6445
HUNTER, Sheryl 415 836-7128 415 836-7128
KARSEN, Livia 415 534-9219 415 534-9219
LOCKSLEY, Charlene 415 585-4620 415 585-4620
MACFEATHER, Stearns 415 354-7128 415 354-7128
MCBADDEN, Heather 707 448-4982 707 448-4982
O'LEARY, Michael 408 286-2428 408 286-2428
PANTELEY, Sylvia 301 946-8853 301 946-8853
RINGER, Albert 801 826-0752 801 826-0752
RINGER, Anne 801 826-0752 801 826-0752
SMITH, Meander 913 843-0462 913 843-0462
STRAIGHT, Dean 415 834-2919 415 834-2919
STRINGER, Dirk 415 843-2991 415 843-2991
WHITE, Johnson 408 496-7223 408 496-7223
YOKOMOTO, Akiko 415 935-4228 415 935-4228
(23 row(s) affected)

C. Use REPLICATE and DATALEN GTH

This example left pads numbers to a specified length as they are converted from a numeric data type to character or Unicode.

USE Northwind
GO
DROP TABLE t1
GO
CREATE TABLE t1
(
 c1 varchar(3),
 c2 char(3)
)
GO
INSERT INTO t1 VALUES ('2', '2')
INSERT INTO t1 VALUES ('37', '37')
INSERT INTO t1 VALUES ('597', '597')
GO
SELECT REPLICATE('0', 3 - DATALENGTH(c1)) + c1 AS [Varchar Column],
 REPLICATE('0', 3 - DATALENGTH(c2)) + c2 AS [Char Column]
FROM t1
GO

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

Reserved Keywords
Microsoft® SQL Server™ 2000 uses reserved keywords for defining, manipulating, and accessing databases. Reserved keywords
are part of the grammar of the Transact-SQL language used by SQL Server to parse and understand Transact-SQL statements and
batches. Although it is syntactically possible to use SQL Server reserved keywords as identifiers and object names in Transact-SQL
scripts, this can be done only using delimited identifiers.

The following table lists SQL Server reserved keywords.

ADD EXCEPT PERCENT
ALL EXEC PLAN
ALTER EXECUTE PRECISION
AND EXISTS PRIMARY
ANY EXIT PRINT
AS FETCH PROC
ASC FILE PROCEDURE
AUTHORIZATION FILLFACTOR PUBLIC
BACKUP FOR RAISERROR
BEGIN FOREIGN READ
BETWEEN FREETEXT READTEXT
BREAK FREETEXTTABLE RECONFIGURE
BROWSE FROM REFERENCES
BULK FULL REPLICATION
BY FUNCTION RESTORE
CASCADE GOTO RESTRICT
CASE GRANT RETURN
CHECK GROUP REVOKE
CHECKPOINT HAVING RIGHT
CLOSE HOLDLOCK ROLLBACK
CLUSTERED IDENTITY ROWCOUNT
COALESCE IDENTITY_INSERT ROWGUIDCOL
COLLATE IDENTITYCOL RULE
COLUMN IF SAVE
COMMIT IN SCHEMA
COMPUTE INDEX SELECT
CONSTRAINT INNER SESSION_USER
CONTAINS INSERT SET
CONTAINSTABLE INTERSECT SETUSER
CONTINUE INTO SHUTDOWN
CONVERT IS SOME
CREATE JOIN STATISTICS
CROSS KEY SYSTEM_USER
CURRENT KILL TABLE
CURRENT_DATE LEFT TEXTSIZE
CURRENT_TIME LIKE THEN
CURRENT_TIMESTAMP LINENO TO
CURRENT_USER LOAD TOP
CURSOR NATIONAL TRAN
DATABASE NOCHECK TRANSACTION
DBCC NONCLUSTERED TRIGGER
DEALLOCATE NOT TRUNCATE
DECLARE NULL TSEQUAL
DEFAULT NULLIF UNION
DELETE OF UNIQUE
DENY OFF UPDATE

DESC OFFSETS UPDATETEXT
DISK ON USE
DISTINCT OPEN USER
DISTRIBUTED OPENDATASOURCE VALUES
DOUBLE OPENQUERY VARYING
DROP OPENROWSET VIEW
DUMMY OPENXML WAITFOR
DUMP OPTION WHEN
ELSE OR WHERE
END ORDER WHILE
ERRLVL OUTER WITH
ESCAPE OVER WRITETEXT

In addition, the SQL-92 standard defines a list of reserved keywords. Avoid using SQL-92 reserved keywords for object names
and identifiers. The ODBC reserved keyword list (shown below) is the same as the SQL-92 reserved keyword list.

Note The SQL-92 reserved keywords list sometimes can be more restrictive than SQL Server and at other times less restrictive.
For example, the SQL-92 reserved keywords list contains INT, which SQL Server does not need to distinguish as a reserved
keyword.

Transact-SQL reserved keywords can be used as identifiers or names of databases or database objects, such as tables, columns,
views, and so on. Use either quoted identifiers or delimited identifiers. The use of reserved keywords as the names of variables
and stored procedure parameters is not restricted. For more information, see Using Identifiers.

ODBC Reserved Keywords

The following words are reserved for use in ODBC function calls. These words do not constrain the minimum SQL grammar;
however, to ensure compatibility with drivers that support the core SQL grammar, applications should avoid using these
keywords.

This is the current list of ODBC reserved keywords. For more information, see Microsoft ODBC 3.0 Programmer's Reference,
Volume 2, Appendix C.

ABSOLUTE EXEC OVERLAPS
ACTION EXECUTE PAD
ADA EXISTS PARTIAL
ADD EXTERNAL PASCAL
ALL EXTRACT POSITION
ALLOCATE FALSE PRECISION
ALTER FETCH PREPARE
AND FIRST PRESERVE
ANY FLOAT PRIMARY
ARE FOR PRIOR
AS FOREIGN PRIVILEGES
ASC FORTRAN PROCEDURE
ASSERTION FOUND PUBLIC
AT FROM READ
AUTHORIZATION FULL REAL
AVG GET REFERENCES
BEGIN GLOBAL RELATIVE
BETWEEN GO RESTRICT
BIT GOTO REVOKE
BIT_LENGTH GRANT RIGHT
BOTH GROUP ROLLBACK
BY HAVING ROWS
CASCADE HOUR SCHEMA
CASCADED IDENTITY SCROLL
CASE IMMEDIATE SECOND

CAST IN SECTION
CATALOG INCLUDE SELECT
CHAR INDEX SESSION
CHAR_LENGTH INDICATOR SESSION_USER
CHARACTER INITIALLY SET
CHARACTER_LENGTH INNER SIZE
CHECK INPUT SMALLINT
CLOSE INSENSITIVE SOME
COALESCE INSERT SPACE
COLLATE INT SQL
COLLATION INTEGER SQLCA
COLUMN INTERSECT SQLCODE
COMMIT INTERVAL SQLERROR
CONNECT INTO SQLSTATE
CONNECTION IS SQLWARNING
CONSTRAINT ISOLATION SUBSTRING
CONSTRAINTS JOIN SUM
CONTINUE KEY SYSTEM_USER
CONVERT LANGUAGE TABLE
CORRESPONDING LAST TEMPORARY
COUNT LEADING THEN
CREATE LEFT TIME
CROSS LEVEL TIMESTAMP
CURRENT LIKE TIMEZONE_HOUR
CURRENT_DATE LOCAL TIMEZONE_MINUTE
CURRENT_TIME LOWER TO
CURRENT_TIMESTAMP MATCH TRAILING
CURRENT_USER MAX TRANSACTION
CURSOR MIN TRANSLATE
DATE MINUTE TRANSLATION
DAY MODULE TRIM
DEALLOCATE MONTH TRUE
DEC NAMES UNION
DECIMAL NATIONAL UNIQUE
DECLARE NATURAL UNKNOWN
DEFAULT NCHAR UPDATE
DEFERRABLE NEXT UPPER
DEFERRED NO USAGE
DELETE NONE USER
DESC NOT USING
DESCRIBE NULL VALUE
DESCRIPTOR NULLIF VALUES
DIAGNOSTICS NUMERIC VARCHAR
DISCONNECT OCTET_LENGTH VARYING
DISTINCT OF VIEW
DOMAIN ON WHEN
DOUBLE ONLY WHENEVER
DROP OPEN WHERE
ELSE OPTION WITH
END OR WORK
END-EXEC ORDER WRITE
ESCAPE OUTER YEAR
EXCEPT OUTPUT ZONE
EXCEPTION

Future Keywords

The following keywords could be reserved in future releases of SQL Server as new features are implemented. Consider avoiding
the use of these words as identifiers.

ABSOLUTE FOUND PRESERVE
ACTION FREE PRIOR
ADMIN GENERAL PRIVILEGES
AFTER GET READS
AGGREGATE GLOBAL REAL
ALIAS GO RECURSIVE
ALLOCATE GROUPING REF
ARE HOST REFERENCING
ARRAY HOUR RELATIVE
ASSERTION IGNORE RESULT
AT IMMEDIATE RETURNS
BEFORE INDICATOR ROLE
BINARY INITIALIZE ROLLUP
BIT INITIALLY ROUTINE
BLOB INOUT ROW
BOOLEAN INPUT ROWS
BOTH INT SAVEPOINT
BREADTH INTEGER SCROLL
CALL INTERVAL SCOPE
CASCADED ISOLATION SEARCH
CAST ITERATE SECOND
CATALOG LANGUAGE SECTION
CHAR LARGE SEQUENCE
CHARACTER LAST SESSION
CLASS LATERAL SETS
CLOB LEADING SIZE
COLLATION LESS SMALLINT
COMPLETION LEVEL SPACE
CONNECT LIMIT SPECIFIC
CONNECTION LOCAL SPECIFICTYPE
CONSTRAINTS LOCALTIME SQL
CONSTRUCTOR LOCALTIMESTAMP SQLEXCEPTION
CORRESPONDING LOCATOR SQLSTATE
CUBE MAP SQLWARNING
CURRENT_PATH MATCH START
CURRENT_ROLE MINUTE STATE
CYCLE MODIFIES STATEMENT
DATA MODIFY STATIC
DATE MODULE STRUCTURE
DAY MONTH TEMPORARY
DEC NAMES TERMINATE
DECIMAL NATURAL THAN
DEFERRABLE NCHAR TIME
DEFERRED NCLOB TIMESTAMP
DEPTH NEW TIMEZONE_HOUR
DEREF NEXT TIMEZONE_MINUTE
DESCRIBE NO TRAILING
DESCRIPTOR NONE TRANSLATION

DESTROY NUMERIC TREAT
DESTRUCTOR OBJECT TRUE
DETERMINISTIC OLD UNDER
DICTIONARY ONLY UNKNOWN
DIAGNOSTICS OPERATION UNNEST
DISCONNECT ORDINALITY USAGE
DOMAIN OUT USING
DYNAMIC OUTPUT VALUE
EACH PAD VARCHAR
END-EXEC PARAMETER VARIABLE
EQUALS PARAMETERS WHENEVER
EVERY PARTIAL WITHOUT
EXCEPTION PATH WORK
EXTERNAL POSTFIX WRITE
FALSE PREFIX YEAR
FIRST PREORDER ZONE
FLOAT PREPARE

See Also

SET QUOTED_IDENTIFIER

Using Reserved Keywords

Transact-SQL Reference (SQL Server 2000)

RESTORE
Restores backups taken using the BACKUP command. For more information about database back up and restore operations, see
Backing Up and Restoring Databases.

Syntax

Restore an entire database:

RESTORE DATABASE { database_name | @database_name_var }
[FROM < backup_device > [,...n]]
[WITH
 [RESTRICTED_USER]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] KEEP_REPLICATION]
 [[,] { NORECOVERY | RECOVERY | STANDBY = {undo_file_name|@undo_file_name_var} }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]

Restore part of a database:

RESTORE DATABASE { database_name | @database_name_var }
 < file_or_filegroup > [,...n]
[FROM < backup_device > [,...n]]
[WITH
 { PARTIAL }
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] NORECOVERY]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] REPLACE]
 [[,] RESTRICTED_USER]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]

Restore specific files or filegroups:

RESTORE DATABASE { database_name | @database_name_var }
 < file_or_filegroup > [,...n]
[FROM < backup_device > [,...n]]
[WITH
 [RESTRICTED_USER]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]

 [[,] NORECOVERY]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] STATS [= percentage]]
]

Restore a transaction log:

RESTORE LOG { database_name | @database_name_var }
[FROM < backup_device > [,...n]]
[WITH
 [RESTRICTED_USER]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] KEEP_REPLICATION]
 [[,] { NORECOVERY | RECOVERY | STANDBY = {undo_file_name|@undo_file_name_var} }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
 [[,] STOPAT = { date_time | @date_time_var }
 | [,] STOPATMARK = 'mark_name' [AFTER datetime]
 | [,] STOPBEFOREMARK = 'mark_name' [AFTER datetime]
]
]

< backup_device > ::=
 {
 { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

< file_or_filegroup > ::=
 {
 FILE = { logical_file_name | @logical_file_name_var }
 |
 FILEGROUP = { logical_filegroup_name | @logical_filegroup_name_var }
 }

Arguments

DATABASE

Specifies the complete restore of the database from a backup. If a list of files and filegroups is specified, only those files and
filegroups are restored.

{database_name | @database_name_var}

Is the database that the log or complete database is restored into. If supplied as a variable (@database_name_var), this name can
be specified either as a string constant (@database_name_var = database name) or as a variable of character string data type,
except for the ntext or text data types.

FROM

Specifies the backup devices from which to restore the backup. If the FROM clause is not specified, the restore of a backup does
not take place. Instead, the database is recovered. Omitting the FROM clause can be used to attempt recovery of a database that
has been restored with the NORECOVERY option, or to switch over to a standby server. If the FROM clause is omitted,
NORECOVERY, RECOVERY, or STANDBY must be specified.

<backup_device>

Specifies the logical or physical backup devices to use for the restore operation. Can be one or more of the following:

{'logical_backup_device_name' | @logical_backup_device_name_var}
Is the logical name, which must follow the rules for identifiers, of the backup device(s) created by sp_addumpdevice from
which the database is restored. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = logical_backup_device_name) or as a variable of
character string data type, except for the ntext or text data types.

{DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be restored from the named disk or tape device. The device types of disk and tape should be specified with
the actual name (for example, complete path and file name) of the device: DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'. If specified as a variable (@physical_backup_device_name_var),
the device name can be specified either as a string constant (@physical_backup_device_name_var =
'physcial_backup_device_name') or as a variable of character string data type, except for the ntext or text data types.

If using either a network server with a UNC name or a redirected drive letter, specify a device type of disk. The account under
which you are running SQL Server must have READ access to the remote computer or network server in order to perform a
RESTORE operation.

n

Is a placeholder that indicates multiple backup devices and logical backup devices can be specified. The maximum number of
backup devices or logical backup devices is 64.

RESTRICTED_USER

Restricts access for the newly restored database to members of the db_owner, dbcreator, or sysadmin roles. In SQL Server
2000, RESTRICTED_USER replaces the DBO_ONLY option. DBO_ONLY is available only for backward compatibility.

Use with the RECOVERY option.

For more information, see Setting Database Options.

FILE = { file_number | @file_number }

Identifies the backup set to be restored. For example, a file_number of 1 indicates the first backup set on the backup medium and
a file_number of 2 indicates the second backup set.

PASSWORD = { password | @password_variable }

Provides the password for the backup set. PASSWORD is a character string. If a password was provided when the backup set was
created, the password must be supplied to perform any restore operation from the backup set.

For more information about using passwords, see Permissions.

MEDIANAME = {media_name | @media_name_variable}

Specifies the name for the media. If provided, the media name must match the media name on the backup volume(s); otherwise,
the restore operation terminates. If no media name is given in the RESTORE statement, the check for a matching media name on
the backup volume(s) is not performed.

Important Consistently using media names in backup and restore operations provides an extra safety check for the media
selected for the restore operation.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

Supplies the password for the media set. MEDIAPASSWORD is a character string.

If a password was provided when the media set was formatted, that password must be supplied to access any backup set on that
media set.

MOVE 'logical_file_name' TO 'operating_system_file_name'

Specifies that the given logical_file_name should be moved to operating_system_file_name. By default, the logical_file_name is
restored to its original location. If the RESTORE statement is used to copy a database to the same or different server, the MOVE
option may be needed to relocate the database files and to avoid collisions with existing files. Each logical file in the database can
be specified in different MOVE statements.

Note Use RESTORE FILELISTONLY to obtain a list of the logical files from the backup set.

For more information, see Copying Databases.

n

Is a placeholder that indicates more than one logical file can be moved by specifying multiple MOVE statements.

NORECOVERY

Instructs the restore operation to not roll back any uncommitted transactions. Either the NORECOVERY or STANDBY option must
be specified if another transaction log has to be applied. If neither NORECOVERY, RECOVERY, or STANDBY is specified,
RECOVERY is the default.

SQL Server requires that the WITH NORECOVERY option be used on all but the final RESTORE statement when restoring a
database backup and multiple transaction logs, or when multiple RESTORE statements are needed (for example, a full database
backup followed by a differential database backup).

Note When specifying the NORECOVERY option, the database is not usable in this intermediate, nonrecovered state.

When used with a file or filegroup restore operation, NORECOVERY forces the database to remain in the restoring state after the
restore operation. This is useful in either of these situations:

A restore script is being run and the log is always being applied.

A sequence of file restores is used and the database is not intended to be usable between two of the restore operations.

RECOVERY

Instructs the restore operation to roll back any uncommitted transactions. After the recovery process, the database is ready for
use.

If subsequent RESTORE operations (RESTORE LOG, or RESTORE DATABASE from differential) are planned, NORECOVERY or
STANDBY should be specified instead.

If neither NORECOVERY, RECOVERY, or STANDBY is specified, RECOVERY is the default. When restoring backup sets from an
earlier version of SQL Server, a database upgrade may be required. This upgrade is performed automatically when WITH
RECOVERY is specified. For more information, see Transaction Log Backups .

STANDBY = undo_file_name

Specifies the undo file name so the recovery effects can be undone. The size required for the undo file depends on the volume of
undo actions resulting from uncommitted transactions. If neither NORECOVERY, RECOVERY, or STANDBY is specified, RECOVERY
is the default.

STANDBY allows a database to be brought up for read-only access between transaction log restores and can be used with either
warm standby server situations or special recovery situations in which it is useful to inspect the database between log restores.

If the specified undo file name does not exist, SQL Server creates it. If the file does exist, SQL Server overwrites it.

The same undo file can be used for consecutive restores of the same database. For more information, see Using Standby Servers.

Important If free disk space is exhausted on the drive containing the specified undo file name, the restore operation stops.

STANDBY is not allowed when a database upgrade is necessary.

KEEP_REPLICATION

Instructs the restore operation to preserve replication settings when restoring a published database to a server other than that on
which it was created. KEEP_REPLICATION is to be used when setting up replication to work with log shipping. It prevents
replication settings from being removed when a database or log backup is restored on a warm standby server and the database is
recovered. Specifying this option when restoring a backup with the NORECOVERY option is not permitted.

NOUNLOAD

Specifies that the tape is not unloaded automatically from the tape drive after a RESTORE. NOUNLOAD remains set until UNLOAD
is specified. This option is used only for tape devices. If a non-tape device is being used for RESTORE, this option is ignored.

NOREWIND

Specifies that SQL Server will keep the tape open after the backup operation. Keeping the tape open prevents other processes
from accessing the tape. The tape will not be released until a REWIND or UNLOAD statement is issued, or the server is shut down.
A list of currently open tapes can be found by querying the sysopentapes table in the master database.

NOREWIND implies NOUNLOAD. This option is used only for tape devices. If a non-tape device is being used for RESTORE, this
option is ignored.

REWIND

Specifies that SQL Server will release and rewind the tape. If neither NOREWIND nor REWIND is specified, REWIND is the default.
This option is used only for tape devices. If a non-tape device is being used for RESTORE, this option is ignored.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the RESTORE is finished. UNLOAD is set by default when a
new user session is started. It remains set until NOUNLOAD is specified. This option is used only for tape devices. If a non-tape
device is being used for RESTORE, this option is ignored.

REPLACE

Specifies that SQL Server should create the specified database and its related files even if another database already exists with the
same name. In such a case, the existing database is deleted. When the REPLACE option is not specified, a safety check occurs
(which prevents overwriting a different database by accident). The safety check ensures that the RESTORE DATABASE statement
will not restore the database to the current server if:

1. The database named in the RESTORE statement already exists on the current server, and

2. The database name is different from the database name recorded in the backup set.

REPLACE also allows RESTORE to overwrite an existing file which cannot be verified as belonging to the database being restored.
Normally, RESTORE will refuse to overwrite pre-existing files.

RESTART

Specifies that SQL Server should restart a restore operation that has been interrupted. RESTART restarts the restore operation at
the point it was interrupted.

Important This option can only be used for restores directed from tape media and for restores that span multiple tape volumes.

STATS [= percentage]

Displays a message each time another percentage completes and is used to gauge progress. If percentage is omitted, SQL Server
displays a message after every 10 percent completed.

PARTIAL

Specifies a partial restore operation. Application or user errors often affect an isolated portion of the database, such as a table.
Examples of this type of error include an invalid update or a table dropped by mistake. To support recovery from these events,
SQL Server provides a mechanism to restore part of the database to another location so that the damaged or missing data can be
copied back to the original database.

The granularity of the partial restore operation is the database filegroup. The primary file and filegroup are always restored, along
with the files that you specify and their corresponding filegroups. The result is a subset of the database. Filegroups that are not
restored are marked as offline and are not accessible.

For more information, see Partial Database Restore Operations.

<file_or_filegroup>

Specifies the names of the logical files or filegroups to include in the database restore. Multiple files or filegroups can be specified.

FILE = {logical_file_name | @logical_file_name_var}
Names one or more files to include in the database restore.

FILEGROUP = {logical_filegroup_name | @logical_filegroup_name_var}
Names one or more filegroups to include in the database restore.

When this option is used, the transaction log must be applied to the database files after the last file or filegroup restore
operation to roll the files forward to be consistent with the rest of the database. If none of the files being restored have been
modified since they were last backed up, a transaction log does not have to be applied. The RESTORE statement informs the
user of this situation.

n

Is a placeholder indicating that multiple files and filegroups may be specified. There is no maximum number of files or filegroups.

LOG

Specifies that a transaction log backup is to be applied to this database. Transaction logs must be applied in sequential order. SQL
Server checks the backed up transaction log to ensure that the transactions are being loaded into the correct database and in the
correct sequence. To apply multiple transaction logs, use the NORECOVERY option on all restore operations except the last. For
more information, see Transaction Log Backups.

STOPAT = date_time | @date_time_var

Specifies that the database be restored to the state it was in as of the specified date and time. If a variable is used for STOPAT, the
variable must be varchar, char, smalldatetime, or datetime data type. Only transaction log records written before the specified
date and time are applied to the database.

Note If you specify a STOPAT time that is beyond the end of the RESTORE LOG operation, the database is left in an unrecovered
state, just as if RESTORE LOG had been run with NORECOVERY.

STOPATMARK = 'mark_name' [AFTER datetime]

Specifies recovery to the specified mark, including the transaction that contains the mark. If AFTER datetime is omitted, recovery
stops at the first mark with the specified name. If AFTER datetime is specified, recovery stops at the first mark having the specified
name exactly at or after datetime.

STOPBEFOREMARK = 'mark_name' [AFTER datetime]

Specifies recovery to the specified mark but does not include the transaction that contains the mark. If AFTER datetime is omitted,
recovery stops at the first mark with the specified name. If AFTER datetime is specified, recovery stops at the first mark having the
specified name exactly at or after datetime.

Remarks

During the restore, the specified database must not be in use. Any data in the specified database is replaced by the restored data.

For more information about database recovery, see Backing Up and Restoring Databases.

Cross-platform restore operations, even between different processor types, can be performed as long as the collation of the
database is supported by the operating system. For more information, see SQL Server Collation Fundamentals.

Restore Types

Here are the types of restores that SQL Server supports:

Full database restore which restores the entire database.

Full database restore and a differential database restore. Restore a differential backup by using the RESTORE DATABASE
statement.

Transaction log restore.

Individual file and filegroup restores. Files and filegroups can be restored either from a file or filegroup backup operation, or
from a full database backup operation. When restoring files or filegroups, you must apply a transaction log. In addition, file
differential backups can be restored after a full file restore.

For more information, see Transaction Log Backups.

Create and maintain a warm standby server or standby server. For more information about standby servers, see Using
Standby Servers.

To maintain backward compatibility, the following keywords can be used in the RESTORE statement syntax:

LOAD keyword can be used in place of the RESTORE keyword.

TRANSACTION keyword can be used in place of the LOG keyword.

DBO_ONLY keyword can be used in place of the RESTRICTED_USER keyword.

Database Settings and Restoring

When using the RESTORE DATABASE statement, the restorable database options (which are all the settable options of ALTER
DATABASE except offline and the merge publish, published, and subscribed replication options) are reset to the settings in
force at the time the BACKUP operation ended.

Note This behavior differs from earlier versions of Microsoft SQL Server.

Using the WITH RESTRICTED_USER option, however, overrides this behavior for the user access option setting. This setting is
always set following a RESTORE statement, which includes the WITH RESTRICTED_USER option.

For more information, see Backing Up and Restoring Replication Databases.

Restore History Tables

SQL Server includes the following restore history tables, which track the RESTORE activity for each computer system:

restorefile

restorefilegroup

restorehistory

Note When a RESTORE is performed, the backup history tables are modified.

Restoring a damaged master database is performed using a special procedure. For more information, see Restoring the master
Database.

Backups created with Microsoft® SQL Server™ 2000 cannot be restored to an earlier version of SQL Server.

Permissions

If the database being restored does not exist, the user must have CREATE DATABASE permissions to be able to execute RESTORE.
If the database exists, RESTORE permissions default to members of the sysadmin and dbcreator fixed server roles and the
owner (dbo) of the database.

RESTORE permissions are given to roles in which membership information is always readily available to the server. Because fixed
database role membership can be checked only when the database is accessible and undamaged, which is not always the case
when RESTORE is executed, members of the db_owner fixed database role do not have RESTORE permissions.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, RESTORE is not allowed unless the correct media password
and backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password if none is defined.

Examples

Note All examples assume that a full database backup has been performed.

A. Restore a fu ll database

Note The MyNwind database is shown for illustration.

This example restores a full database backup.

RESTORE DATABASE MyNwind
 FROM MyNwind_1

B. Restore a fu ll database and a differential backup

This example restores a full database backup followed by a differential backup. In addition, this example shows restoring the
second backup set on the media. The differential backup was appended to the backup device that contains the full database
backup.

RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH FILE = 2

C. Restore a database using RESTART syntax

This example uses the RESTART option to restart a RESTORE operation interrupted by a server power failure.

-- This database RESTORE halted prematurely due to power failure.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
-- Here is the RESTORE RESTART operation.
RESTORE DATABASE MyNwind
 FROM MyNwind_1 WITH RESTART

D. Restore a database and move files

This example restores a full database and transaction log and moves the restored database into the C:\Program Files\Microsoft
SQL Server\MSSQL\Data directory.

RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY,
 MOVE 'MyNwind' TO 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\NewNwind.mdf',
 MOVE 'MyNwindLog1' TO 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\NewNwind.ldf'
RESTORE LOG MyNwind
 FROM MyNwindLog1
 WITH RECOVERY

E. M ake a copy of a database using BACKUP and RESTORE

This example uses both the BACKUP and RESTORE statements to make a copy of the Northwind database. The MOVE statement
causes the data and log file to be restored to the specified locations. The RESTORE FILELISTONLY statement is used to determine
the number and names of the files in the database being restored. The new copy of the database is named TestDB. For more
information, see RESTORE FILELISTONLY.

BACKUP DATABASE Northwind
 TO DISK = 'c:\Northwind.bak'
RESTORE FILELISTONLY
 FROM DISK = 'c:\Northwind.bak'
RESTORE DATABASE TestDB
 FROM DISK = 'c:\Northwind.bak'
 WITH MOVE 'Northwind' TO 'c:\test\testdb.mdf',
 MOVE 'Northwind_log' TO 'c:\test\testdb.ldf'
GO

F. Restore to a point-in-time using STOPAT syntax and restore with more than one device

This example restores a database to its state as of 12:00 A.M. on April 15, 1998, and shows a restore operation that involves
multiple logs and multiple backup devices.

RESTORE DATABASE MyNwind
 FROM MyNwind_1, MyNwind_2
 WITH NORECOVERY
RESTORE LOG MyNwind
 FROM MyNwindLog1
 WITH NORECOVERY
RESTORE LOG MyNwind
 FROM MyNwindLog2
 WITH RECOVERY, STOPAT = 'Apr 15, 1998 12:00 AM'

G. Restore using TAPE syntax

This example restores a full database backup from a TAPE backup device.

RESTORE DATABASE MyNwind
 FROM TAPE = '\\.\tape0'

H. Restore using FILE and FILEGROUP syntax

This example restores a database with two files, one filegroup, and one transaction log.

RESTORE DATABASE MyNwind
 FILE = 'MyNwind_data_1',
 FILE = 'MyNwind_data_2',
 FILEGROUP = 'new_customers'
 FROM MyNwind_1
 WITH NORECOVERY
-- Restore the log backup.
RESTORE LOG MyNwind
 FROM MyNwindLog1

I. Restore the Transaction Log to the M ark

This example restores the transaction log to the mark named "RoyaltyUpdate."

BEGIN TRANSACTION RoyaltyUpdate
 WITH MARK 'Update royalty values'
GO
USE pubs
GO
UPDATE roysched
 SET royalty = royalty * 1.10
 WHERE title_id LIKE 'PC%'
GO
COMMIT TRANSACTION RoyaltyUpdate
GO
--Time passes. Regular database
--and log backups are taken.
--An error occurs.
USE master
GO

RESTORE DATABASE pubs
FROM Pubs1
WITH FILE = 3, NORECOVERY
GO
RESTORE LOG pubs
 FROM Pubs1
 WITH FILE = 4,
 STOPATMARK = 'RoyaltyUpdate'

See Also

BACKUP

bcp Utility

BEGIN TRANSACTION

Data Types

RESTORE FILELISTONLY

RESTORE HEADERONLY

RESTORE LABELONLY

RESTORE VERIFYONLY

sp_addumpdevice

Understanding Media Sets and Families

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

RESTORE FILELISTONLY
Returns a result set with a list of the database and log files contained in the backup set.

Syntax

RESTORE FILELISTONLY
FROM < backup_device >
[WITH
 [FILE = file_number]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] { NOUNLOAD | UNLOAD }]
]

< backup_device > ::=
 {
 { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

Arguments

<backup_device>

Specifies the logical or physical backup device(s) to use for the restore. Can be one or more of the following:

{'logical_backup_device_name' | @logical_backup_device_name_var}
Is the logical name, which must follow the rules for identifiers, of the backup device created by sp_addumpdevice from which
the database is restored. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = 'logical_backup_device_name') or as a variable of
character string data type, except for the ntext or text data types.

{ DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be restored from the named disk or tape. The device types of disk and tape should be specified with the
actual name (for example, complete path and file name) of the device: DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'. If specified as a variable (@physical_backup_device_name_var),
the device name can be specified either as a string constant (@physical_backup_device_name_var =
'physical_backup_device_name') or as a variable of character string data type, except for the ntext or text data types.

If using either a network server with a UNC name or a redirected drive letter, specify a device type of disk.

FILE = file_number

Identifies the backup set to be processed. For example, a file_number of 1 indicates the first backup set and a file_number of 2
indicates the second backup set. If no file_number is supplied, the first backup set on the specified <backup_device> is assumed.

PASSWORD = { password | @password_variable }

Is the password for the backup set. PASSWORD is a character string. If a password was provided when the backup set was
created, the password must be supplied to perform any restore operation from the backup set.

For more information about using passwords, see Permissions.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable }

Is the password for the media set. MEDIAPASSWORD is a character string.

If a password was provided when the media set was formatted, that password must be supplied to create a backup set on that
media set. In addition, that media password also must be supplied to perform any restore operation from the media set.

NOUNLOAD

Specifies that the tape is not unloaded automatically from the tape drive after a restore. NOUNLOAD remains set until UNLOAD is
specified. This option is used only for tape devices.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the restore is finished. UNLOAD is set by default when a new
user session is started. It remains set until NOUNLOAD is specified. This option is used only for tape devices.

Result Sets

A client can use RESTORE FILELISTONLY to obtain a list of the files contained in a backup set. This information is returned as a
result set containing one row for each file.

Column name Data type Description
LogicalName nvarchar(128) Logical name of the file
PhysicalName nvarchar(260) Physical or operating-system name of the file
Type char(1) Data file (D) or a log file (L)
FileGroupName nvarchar(128) Name of the filegroup that contains the file
Size numeric(20,0) Current size in bytes
MaxSize numeric(20,0) Maximum allowed size in bytes

Permissions

Any user may use RESTORE FILELISTONLY.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, restore is not allowed unless the correct media password and
backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password if none is defined.

See Also

Backing Up and Restoring Databases

BACKUP

Data Types

RESTORE

RESTORE HEADERONLY

RESTORE LABELONLY

RESTORE VERIFYONLY

Understanding Media Sets and Families

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

RESTORE HEADERONLY
Retrieves all the backup header information for all backup sets on a particular backup device. The result from executing RESTORE
HEADERONLY is a result set.

Syntax

RESTORE HEADERONLY
FROM < backup_device >
[WITH { NOUNLOAD | UNLOAD }
 [[,] FILE = file_number]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
]

< backup_device > ::=
 {
 { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

Arguments

<backup_device>

Specifies the logical or physical backup device(s) to use for the restore. Can be one of the following:

{'logical_backup_device_name' | @logical_backup_device_name_var}
Is the logical name, which must follow the rules for identifiers, of the backup device created by sp_addumpdevice from which
the database is restored. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = 'logical_backup_device_name') or as a variable of
character string data type, except for the ntext or text data types.

{DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be restored from the named disk or tape device. The device types of disk and tape should be specified with
the actual name (for example, complete path and file name) of the device: DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'. If specified as a variable (@physical_backup_device_name_var),
the device name can be specified either as a string constant (@physical_backup_device_name_var =
'physical_backup_device_name') or as a variable of character string data type, except for the ntext or text data types.

If using either a network server with a UNC name or a redirected drive letter, specify a device type of disk.

NOUNLOAD

Specifies that the tape is not unloaded automatically from the tape drive after a restore. NOUNLOAD remains set until UNLOAD is
specified. This option is used only for tape devices.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the restore is finished. UNLOAD is set by default when a new
user session is started. It remains set until NOUNLOAD is specified. This option is used only for tape devices.

FILE = file_number

Identifies the backup set to be described. For example, a file_number of 1 indicates the first backup set and a file_number of 2
indicates the second backup set. If not specified, all sets on the device are described.

PASSWORD = { password | @password_variable}

Is the password for the backup set. PASSWORD is a character string. If a password was provided when the backup set was
created, the password must be supplied to perform any restore operation from the backup set.

For more information about using passwords, see Permissions.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable}

Is the password for the media set. MEDIAPASSWORD is a character string.

If a password was provided when the media set was formatted, that password must be supplied to create a backup set on that
media set. In addition, that media password also must be supplied to perform any restore operation from the media set.

Result Sets

For each backup on a given device, the server sends a row of header information with the following columns:

Note Because RESTORE HEADERONLY looks at all backup sets on the media, it can take some time to produce this result set
when using high-capacity tape drives. To get a quick look at the media without getting information about every backup set, use
RESTORE LABELONLY or specify the FILE = file_number.

Due to the nature of Microsoft Tape Format, it is possible for backup sets from other software programs to occupy space on the
same media as Microsoft® SQL Server™ 2000 backup sets. The result set returned by RESTORE HEADERONLY includes a row for
each of these other backup sets.

Column name Data type
Description for

SQL Server
backup sets

Description for
other backup

sets
BackupName nvarchar(128) Backup set name. Data set name
BackupDescription nvarchar(255) Backup set

description.
Data set
description

BackupType smallint Backup type:

1 = Database
2 = Transaction
Log
4 = File
5 = Differential
Database
6 = Differential File

Backup type:

1 = Normal
5 = Differential
16 = Incremental
17 = Daily

ExpirationDate datetime Expiration date for
the backup set.

NULL

Compressed tinyint 0 = No. SQL Server
does not support
software
compression.

Whether the
backup set is
compressed
using software-
based
compression:

1 = Yes
0 = No

Position smallint Position of the
backup set in the
volume (for use
with the FILE =
option).

Position of the
backup set in the
volume

DeviceType tinyint Number
corresponding to
the device used for
the backup
operation:

Disk
2 = Logical
102 = Physical

Tape
5 = Logical
105 = Physical

Pipe
6 = Logical
106 = Physical

Virtual Device
7 = Logical
107 = Physical

All physical device
names and device
numbers can be
found in
sysdevices.

NULL

UserName nvarchar(128) Username that
performed the
backup operation.

Username that
performed the
backup
operation

ServerName nvarchar(128) Name of the server
that wrote the
backup set.

NULL

DatabaseName nvarchar(128) Name of the
database that was
backed up.

NULL

DatabaseVersion int Version of the
database from
which the backup
was created.

NULL

DatabaseCreationDate datetime Date and time the
database was
created.

NULL

BackupSize numeric(20,0) Size of the backup,
in bytes.

NULL

FirstLSN numeric(25,0) Log sequence
number of the first
transaction in the
backup set. NULL
for file backups.

NULL

LastLSN numeric(25,0) Log sequence
number of the last
transaction in the
backup set. NULL
for file backups.

NULL

CheckpointLSN numeric(25,0) Log sequence
number of the
most recent
checkpoint at the
time the backup
was created.

NULL

DatabaseBackupLSN numeric(25,0) Log sequence
number of the
most recent full
database backup.

NULL

BackupStartDate datetime Date and time that
the backup
operation began.

Media Write
Date

BackupFinishDate datetime Date and time that
the backup
operation finished.

Media Write
Date

SortOrder smallint Server sort order.
This column is valid
for database
backups only.
Provided for
backward
compatibility.

NULL

CodePage smallint Server code page
or character set
used by the server.

NULL

UnicodeLocaleId int Server Unicode
locale ID
configuration
option used for
Unicode character
data sorting.
Provided for
backward
compatibility.

NULL

UnicodeComparisonStyle int Server Unicode
comparison style
configuration
option, which
provides additional
control over the
sorting of Unicode
data. Provided for
backward
compatibility.

NULL

CompatibilityLevel tinyint Compatibility level
setting of the
database from
which the backup
was created.

NULL

SoftwareVendorId int Software vendor
identification
number. For SQL
Server, this number
is 4608 (or
hexadecimal
0x1200).

Software vendor
identification
number

SoftwareVersionMajor int Major version
number of the
server that created
the backup set.

Major version
number of the
software that
created the
backup set

SoftwareVersionMinor int Minor version
number of the
server that created
the backup set.

Minor version
number of the
software that
created the
backup set

SoftwareVersionBuild int Build number of
the server that
created the backup
set.

NULL

MachineName nvarchar(128) Name of the
computer that
performed the
backup operation.

Type of the
computer that
performed the
backup
operation

Flags int Bit 0 (X1) indicates
bulk-logged data is
captured in this log
backup.

NULL

BindingID uniqueidentifier Binding ID for the
database.

NULL

RecoveryForkID uniqueidentifier ID for the current
recovery fork for
this backup.

NULL

Collation nvarchar(128) Collation used by
the database.

NULL

Note If passwords are defined for the backup sets, RESTORE HEADERONLY will show complete information for only the backup
set whose password matches the specified PASSWORD option of the command. RESTORE HEADERONLY also will show complete
information for unprotected backup sets. The BackupName column for the other password-protected backup sets on the media
will be set to '***Password Protected***', and all other columns will be NULL.

Permissions

Any user may use RESTORE HEADERONLY.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, restore is not allowed unless the correct media password and
backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password if none is defined.

Remarks

A client can use RESTORE HEADERONLY to retrieve all the backup header information for all backups on a particular backup
device. The header information is sent as a row by the server for each backup on a given backup device in a table.

Important To maintain backward compatibility, the LOAD keyword can be used in place of the RESTORE keyword in the
RESTORE statement syntax.

See Also

Backing Up and Restoring Databases

BACKUP

Data Types

RESTORE

RESTORE FILELISTONLY

RESTORE VERIFYONLY

RESTORE LABELONLY

Understanding Media Sets and Families

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

RESTORE LABELONLY
Returns a result set containing information about the backup media identified by the given backup device.

Syntax

RESTORE LABELONLY
FROM < backup_device >
[WITH { NOUNLOAD | UNLOAD }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]

< backup_device > ::=
 {
 { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

Arguments

<backup_device>

Specifies the logical or physical backup device to use for the restore. Can be one of the following:

{'logical_backup_device__name' | @logical_backup_device_name_var}
Is the logical name, which must follow the rules for identifiers, of the backup device created by sp_addumpdevice from which
the database is restored. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = 'logical_backup_device_name') or as a variable of
character string data type, except for the ntext or text data types.

{DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be restored from the named disk or tape device. The device types of disk and tape should be specified with
the actual name (for example, complete path and file name) of the device: DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'. If specified as a variable (@physical_backup_device_name_var),
the device name can be specified either as a string constant (@physical_backup_device_name_var =
'physical_backup_device_name_var') or as a variable of character string data type, except for the ntext or text data types.

If using either a network server with a UNC name or a redirected drive letter, specify a device type of disk.

NOUNLOAD

Specifies that the tape is not unloaded automatically from the tape drive after a restore. NOUNLOAD remains set until UNLOAD is
specified. This option is used only for tape devices.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the restore is finished. UNLOAD is set by default when a new
user session is started. It remains set until NOUNLOAD is specified. This option is used only for tape devices.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable}

Is the password for the media set. MEDIAPASSWORD is a character string.

If a password was provided when the media set was formatted, that password must be supplied to create a backup set on that
media set. In addition, that media password also must be supplied to perform any restore operation from the media set.

Result Sets

The result set from RESTORE LABELONLY consists of a single row with this information.

Column name Data type Description
MediaName nvarchar(128) Name of the media.

MediaSetId uniqueidentifier Unique identification number of the
media set. This column is NULL if
there is only one media family in the
media set.

FamilyCount int Number of media families in the
media set.

FamilySequenceNumber int Sequence number of this family.
MediaFamilyId uniqueidentifier Unique identification number for the

media family.
MediaSequenceNumber int Sequence number of this media in

the media family.
MediaLabelPresent tinyint Whether the media description

contains:

1 = Microsoft Tape Format media
label
0 = Media description

MediaDescription nvarchar(255) Media description, in free-form text,
or the Microsoft Tape Format media
label.

SoftwareName nvarchar(128) Name of the backup software that
wrote the label.

SoftwareVendorId int Unique vendor identification
number of the software vendor that
wrote the backup.

MediaDate datetime Date and time the label was written.

Note If passwords are defined for the media set, RESTORE LABELONLY will return information only if the correct media
password is specified in the MEDIAPASSWORD option of the command.

Permissions

Any user may use RESTORE LABELONLY.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, restore is not allowed unless the correct media password and
backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password if none is defined.

Remarks

Executing RESTORE LABELONLY is a quick way to find out what the backup media contains. Because RESTORE LABELONLY reads
only the media header, this statement finishes quickly even when using high-capacity tape devices.

See Also

Backing Up and Restoring Databases

BACKUP

Data Types

RESTORE

RESTORE FILELISTONLY

RESTORE VERIFYONLY

Understanding Media Sets and Families

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

RESTORE VERIFYONLY
Verifies the backup but does not restore the backup. Checks to see that the backup set is complete and that all volumes are
readable. However, RESTORE VERIFYONLY does not attempt to verify the structure of the data contained in the backup volumes. If
the backup is valid, Microsoft® SQL Server™ 2000 returns the message: "The backup set is valid."

Syntax

RESTORE VERIFYONLY
FROM < backup_device > [,...n]
[WITH
 [FILE = file_number]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] LOADHISTORY]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]
 [[,] { NOREWIND | REWIND }]
]

< backup_device > ::=
 {
 { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } =
 { 'physical_backup_device_name' | @physical_backup_device_name_var }
 }

Arguments

<backup_device>

Specifies the logical or physical backup device(s) to use for the restore. Can be one or more of the following:

{'logical_backup_device_name' | @logical_backup_device_name_var}
Is the logical name, which must follow the rules for identifiers, of the backup device(s) created by sp_addumpdevice from
which the database is restored. If supplied as a variable (@logical_backup_device_name_var), the backup device name can be
specified either as a string constant (@logical_backup_device_name_var = 'logical_backup_device_name') or as a variable of
character string data type, except for the ntext or text data types.

{DISK | TAPE } =
'physical_backup_device_name' | @physical_backup_device_name_var

Allows backups to be restored from the named disk or tape device. The device types of disk and tape should be specified with
the actual name (for example, complete path and file name) of the device: DISK = 'C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\Mybackup.dat' or TAPE = '\\.\TAPE0'. If specified as a variable (@physical_backup_device_name_var),
the device name can be specified either as a string constant (@physical_backup_device_name_var =
'physical_backup_device_name') or as a variable of character string data type, except for the ntext or text data types.

If using either a network server with a UNC name or a redirected drive letter, specify a device type of disk.

n

Is a placeholder indicating that multiple backup devices and logical backup devices may be specified. The maximum number of
backup devices or logical backup devices in a single RESTORE VERIFYONLY statement is 64.

Note In order to specify multiple backup devices for <backup_device>, all backup devices specified must be part of the same
media set.

FILE = file_number

Identifies the backup set to be restored or processed. For example, a file_number of 1 indicates the first backup set and a
file_number of 2 indicates the second backup set. If no file_number is supplied, the first backup set on the specified
<backup_device> is assumed.

NOUNLOAD

Specifies that the tape is not unloaded automatically from the tape drive after a restore. NOUNLOAD remains set until UNLOAD is
specified. This option is used only for tape devices. If a nontape device is being used for the restore, this option is ignored.

UNLOAD

Specifies that the tape is automatically rewound and unloaded when the RESTORE is finished. UNLOAD is set by default when a
new user session is started. It remains set until NOUNLOAD is specified. This option is used only for tape devices. If a nontape
device is being used for the RESTORE, this option is ignored.

LOADHISTORY

Specifies that the restore operation loads the information into the msdb history tables. The LOADHISTORY option loads
information, for the single backup set being verified, about SQL Server backups stored on the media set to the backup and restore
history tables in the msdb database. No information for non-SQL Server backups is loaded into these history tables. For more
information about history tables, see System Tables.

PASSWORD = { password | @password_variable}

Is the password for the backup set. PASSWORD is a character string. If a password was provided when the backup set was
created, the password must be supplied to perform any restore operation from the backup set.

For more information about using passwords, see Permissions.

MEDIAPASSWORD = { mediapassword | @mediapassword_variable}

Is the password for the media set. MEDIAPASSWORD is a character string data type, with a default of NULL.

If a password was provided when the media set was formatted, that password must be supplied to create a backup set on that
media set. In addition, that media password also must be supplied to perform any restore operation from the media set.

NOREWIND

Specifies that SQL Server will keep the tape open after the backup operation. NOREWIND implies NOUNLOAD.

REWIND

Specifies that SQL Server will release and rewind the tape. If neither NOREWIND nor REWIND is specified, REWIND is the default.

Permissions

Any user may use RESTORE VERIFYONLY.

In addition, the user may specify passwords for a media set, a backup set, or both. When a password is defined on a media set, it
is not enough that a user is a member of appropriate fixed server and database roles to perform a backup. The user also must
supply the media password to perform these operations. Similarly, restore is not allowed unless the correct media password and
backup set password are specified in the restore command.

Defining passwords for backup sets and media sets is an optional feature in the BACKUP statement. The passwords will prevent
unauthorized restore operations and unauthorized appends of backup sets to media using SQL Server 2000 tools, but passwords
do not prevent overwrite of media with the FORMAT option.

Thus, although the use of passwords can help protect the contents of media from unauthorized access using SQL Server tools,
passwords do not protect contents from being destroyed. Passwords do not fully prevent unauthorized access to the contents of
the media because the data in the backup sets is not encrypted and could theoretically be examined by programs specifically
created for this purpose. For situations where security is crucial, it is important to prevent access to the media by unauthorized
individuals.

It is an error to specify a password if none is defined.

See Also

Backing Up and Restoring Databases

BACKUP

Data Types

RESTORE

RESTORE FILELISTONLY

RESTORE HEADERONLY

RESTORE LABELONLY

System Tables

Understanding Media Sets and Families

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

RETURN
Exits unconditionally from a query or procedure. RETURN is immediate and complete and can be used at any point to exit from a
procedure, batch, or statement block. Statements following RETURN are not executed.

Syntax

RETURN [integer_expression]

Arguments

integer_expression

Is the integer value returned. Stored procedures can return an integer value to a calling procedure or an application.

Return Types

Optionally returns int.

Note Unless documented otherwise, all system stored procedures return a value of 0, which indicates success; a nonzero value
indicates failure.

Remarks

When used with a stored procedure, RETURN cannot return a null value. If a procedure attempts to return a null value (for
example, using RETURN @status and @status is NULL), a warning message is generated and a value of 0 is returned.

The return status value can be included in subsequent Transact-SQL statements in the batch or procedure that executed the
current procedure, but it must be entered in the following form:

EXECUTE @return_status = procedure_name

Note Whether Microsoft® SQL Server™ 2000 interprets an empty string (NULL) as either a single space or as a true empty
string is controlled by the compatibility level setting. If the compatibility level is less than or equal to 65, SQL Server interprets
empty strings as single spaces. If the compatibility level is equal to 70, SQL Server interprets empty strings as empty strings. For
more information, see sp_dbcmptlevel.

Examples

A. Return from a procedure

This example shows if no username is given as a parameter when findjobs is executed, RETURN causes the procedure to exit
after a message has been sent to the user's screen. If a username is given, the names of all objects created by this user in the
current database are retrieved from the appropriate system tables.

CREATE PROCEDURE findjobs @nm sysname = NULL
AS
IF @nm IS NULL
 BEGIN
 PRINT 'You must give a username'
 RETURN
 END
ELSE
 BEGIN
 SELECT o.name, o.id, o.uid
 FROM sysobjects o INNER JOIN master..syslogins l
 ON o.uid = l.sid
 WHERE l.name = @nm
 END

B. Return status codes

This example checks the state for the specified author's ID. If the state is California (CA), a status of 1 is returned. Otherwise, 2 is
returned for any other condition (a value other than CA for state or an au_id that did not match a row).

CREATE PROCEDURE checkstate @param varchar(11)
AS
IF (SELECT state FROM authors WHERE au_id = @param) = 'CA'

 RETURN 1
ELSE
 RETURN 2

The following examples show the return status from the execution of checkstate. The first shows an author in California; the
second, an author not in California; and the third, an invalid author. The @return_status local variable must be declared before it
can be used.

DECLARE @return_status int
EXEC @return_status = checkstate '172-32-1176'
SELECT 'Return Status' = @return_status
GO

Here is the result set:

Return Status

1

Execute the query again, specifying a different author number.

DECLARE @return_status int
EXEC @return_status = checkstate '648-92-1872'
SELECT 'Return Status' = @return_status
GO

Here is the result set:

Return Status

2

Execute the query again, specifying another author number.

DECLARE @return_status int
EXEC @return_status = checkstate '12345678901'
SELECT 'Return Status' = @return_status
GO

Here is the result set:

Return Status

2

See Also

ALTER PROCEDURE

CREATE PROCEDURE

DECLARE @local_variable

EXECUTE

SET @local_variable

Transact-SQL Reference (SQL Server 2000)

REVERSE
Returns the reverse of a character expression.

Syntax

REVERSE (character_expression)

Arguments

character_expression

Is an expression of character data. character_expression can be a constant, variable, or column of either character or binary data.

Return Types

varchar

Remarks

character_expression must be of a data type that is implicitly convertible to varchar. Otherwise, use CAST to explicitly convert
character_expression.

Examples

This example returns all author first names with the characters reversed.

USE pubs
GO
SELECT REVERSE(au_fname)
FROM authors
ORDER BY au_fname
GO

Here is the result set:

maharbA
okikA
treblA
nnA
ennA
truB
enelrahC
lyrehC
naeD
kriD
rehtaeH
sennI
nosnhoJ
aiviL
eirojraM
rednaeM
leahciM
lehciM
ratsgninroM
dlanigeR
lyrehS
snraetS
aivlyS
(23 row(s) affected)

See Also

CAST and CONVERT

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

REVOKE
 New Information - SQL Server 2000 SP3.

Removes a previously granted or denied permission from a user in the current database.

Syntax

Statement permissions:

REVOKE { ALL | statement [,...n] }
FROM security_account [,...n]

Object permissions:

REVOKE [GRANT OPTION FOR]
 { ALL [PRIVILEGES] | permission [,...n] }
 {
 [(column [,...n])] ON { table | view }
 | ON { table | view } [(column [,...n])]
 | ON { stored_procedure | extended_procedure }
 | ON { user_defined_function }
 }
{ TO | FROM }
 security_account [,...n]
[CASCADE]
[AS { group | role }]

Arguments

ALL

Revokes all applicable permissions. For statement permissions, ALL can be used only by members of the sysadmin and
db_securityadmin roles. For object permissions, ALL can be used by members of the sysadmin, db_securityadmin, and
db_owner roles, and by database object owners.

statement

Is a granted statement for which permission is being removed. The statement list can include:

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

BACKUP DATABASE

BACKUP LOG

n

Is a placeholder indicating the item can be repeated in a comma-separated list.

FROM

Specifies the security account list.

security_account

Is the security account in the current database from which the permissions are being removed. The security account can be:

Microsoft® SQL Server™ user.

SQL Server role.

Microsoft Windows NT® user.

Windows NT group.

Permissions cannot be revoked from the system roles, such as sysadmin. When permissions are revoked from an SQL
Server or Windows NT user account, the specified security_account is the only account affected by the permissions. If
permissions are revoked from an SQL Server role or a Windows NT group, the permissions affect all users in the current
database who are members of the group or role, unless the user has already been explicitly granted or denied a permission.

There are two special security accounts that can be used with REVOKE. Permissions revoked from the public role are
applied to all users in the database. Permissions revoked from the guest user are used by all users who do not have a user
account in the database.

When revoking permissions to a Windows NT local or global group, specify the domain or computer name the group is
defined on, followed by a backslash, then the group name, for example London\JoeB. However, to revoke permissions to a
Windows NT built-in local group, specify BUILTIN instead of the domain or computer name, for example BUILTIN\Users.

GRANT OPTION FOR

Specifies that WITH GRANT OPTION permissions are being removed. Use the GRANT OPTION FOR keywords with REVOKE to
remove the effects of the WITH GRANT OPTION setting specified in the GRANT statement. The user still has the permissions, but
cannot grant the permissions to other users.

If the permissions being revoked were not originally granted using the WITH GRANT OPTION setting, GRANT OPTION FOR is
ignored if specified, and permissions are revoked as usual.

If the permissions being revoked were originally granted using the WITH GRANT OPTION setting, specify both the CASCADE and
GRANT OPTION FOR clauses; otherwise, an error is returned.

PRIVILEGES

Is an optional keyword that can be included for SQL-92 compliance.

permission

Is an object permission that is being revoked. When permissions are revoked on a table or a view, the permission list can include
one or more of these statements: SELECT, INSERT, DELETE, or UPDATE.

Object permissions revoked on a table can also include REFERENCES, and object permissions revoked on a stored procedure or
extended stored procedure can be EXECUTE. When permissions are revoked on columns, the permissions list can include SELECT
or UPDATE.

column

Is the name of the column in the current database for which permissions are being removed.

table

Is the name of the table in the current database for which permissions are being removed.

view

Is the name of the view in the current database for which permissions are being removed.

stored_procedure

Is the name of the stored procedure in the current database for which permissions are being removed.

extended_procedure

Is the name of an extended stored procedure for which permissions are being removed.

user_defined_function

Is the name of the user-defined function for which permissions are being removed.

TO

Specifies the security account list.

CASCADE

Specifies that permissions are being removed from security_account as well as any other security accounts that were granted
permissions by security_account. Use when revoking a grantable permission.

If the permissions being revoked were originally granted to security_account using the WITH GRANT OPTION setting, specify both
the CASCADE and GRANT OPTION FOR clauses; otherwise, an error is returned. Specifying both the CASCADE and GRANT
OPTION FOR clauses revokes only the permissions granted using the WITH GRANT OPTION setting from security_account, as
well as any other security accounts that were granted permissions by security_account.

AS {group | role}

Specifies the optional name of the security account in the current database under whose authority the REVOKE statement will be
executed. AS is used when permissions on an object are granted to a group or role, and the object permissions need to be
revoked from other users. Because only a user, rather than a group or role, can execute a REVOKE statement, a specific member of
the group or role revokes permissions from the object under the authority of the group or role.

Remarks

Only use REVOKE with permissions in the current database.

A revoked permission removes the granted or denied permission only at the level revoked (user, group, or role). For example,
permission to view the authors table is explicitly granted to the Andrew user account, which is a member of the employees role
only. If the employees role is revoked access to view the authors table, Andrew can still view the table because permission has
been explicitly granted. Andrew is unable to view the authors table only if Andrew is revoked permission as well. If Andrew is
never explicitly granted permissions to view authors, then revoking permission from the employees role prevents Andrew from
viewing the table.

Note REVOKE removes only previously granted or denied permissions. Scripts from Microsoft® SQL Server™ 6.5 or earlier that
use REVOKE may have to be changed to use DENY to maintain behavior.

If a user activates an application role, the effect of REVOKE is null for any objects the user accesses using the application role.
Although a user may be revoked access to a specific object in the current database, if the application role has access to the object,
the user also has access while the application role is activated.

Use sp_helprotect to report the permissions on a database object or user.

Permissions

REVOKE permissions default to members of the sysadmin fixed server role, db_owner and db_securityadmin fixed database
roles, and database object owners.

Examples

A. Revoke statement permissions from a user account

This example revokes the CREATE TABLE permissions that have been granted to the users Joe and Corporate\BobJ. It removes
the permissions that allow Joe and Corporate\BobJ to create a table. However, Joe and Corporate\BobJ can still create tables if
CREATE TABLE permissions have been granted to any roles of which they are members.

REVOKE CREATE TABLE FROM Joe, [Corporate\BobJ]

B. Revoke multiple permissions from multiple user accounts

This example revokes multiple statement permissions from multiple users.

REVOKE CREATE TABLE, CREATE DEFAULT
FROM Mary, John

C. Revoke a denied permission

The user Mary is a member of the Budget role, which has been granted SELECT permissions on the Budget_Data table. The
DENY statement has been used with Mary to prevent access to the Budget_Data table through the permissions granted to the
Budget role.

This example removes the denied permission from Mary and, through the SELECT permissions applied to the Budget role, allows
Mary to use the SELECT statement on the table.

REVOKE SELECT ON Budget_Data TO Mary

See Also

Backward Compatibility

Deactivating Established Access by Revoking Permissions

DENY

GRANT

sp_helprotect

Transact-SQL Reference (SQL Server 2000)

RIGHT
Returns the right part of a character string with the specified number of characters.

Syntax

RIGHT (character_expression , integer_expression)

Arguments

character_expression

Is an expression of character or binary data. character_expression can be a constant, variable, or column. character_expression can
be of any data type (except text or ntext) that can be implicitly converted to varchar or nvarchar. Otherwise, use the CAST
function to explicitly convert character_expression.

integer_expression

Is a positive integer that specifies how many characters of the character_expression will be returned. If integer_expression is
negative, an error is returned.

Return Types

varchar or nvarchar

Remarks

Compatibility levels can affect return values. For more information, see sp_dbcmptlevel.

Examples

This example returns the five rightmost characters of each author's first name.

USE pubs
GO
SELECT RIGHT(au_fname, 5)
FROM authors
ORDER BY au_fname
GO

Here is the result set:

raham
Akiko
lbert
Ann
Anne
Burt
rlene
heryl
Dean
Dirk
ather
Innes
hnson
Livia
jorie
ander
chael
ichel
gstar
inald
heryl
earns
ylvia
(23 row(s) affected)

See Also

CAST and CONVERT

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

ROLLBACK TRANSACTION
Rolls back an explicit or implicit transaction to the beginning of the transaction, or to a savepoint inside a transaction.

Syntax

ROLLBACK [TRAN [SACTION]
 [transaction_name | @tran_name_variable
 | savepoint_name | @savepoint_variable]]

Arguments

transaction_name

Is the name assigned to the transaction on BEGIN TRANSACTION. transaction_name must conform to the rules for identifiers, but
only the first 32 characters of the transaction name are used. When nesting transactions, transaction_name must be the name
from the outermost BEGIN TRANSACTION statement.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name. The variable must be declared with a char, varchar,
nchar, or nvarchar data type.

savepoint_name

Is savepoint_name from a SAVE TRANSACTION statement. savepoint_name must conform to the rules for identifiers. Use
savepoint_name when a conditional rollback should affect only part of the transaction.

@savepoint_variable

Is name of a user-defined variable containing a valid savepoint name. The variable must be declared with a char, varchar, nchar,
or nvarchar data type.

Remarks

ROLLBACK TRANSACTION erases all data modifications made since the start of the transaction or to a savepoint. It also frees
resources held by the transaction.

ROLLBACK TRANSACTION without a savepoint_name or transaction_name rolls back to the beginning of the transaction. When
nesting transactions, this same statement rolls back all inner transactions to the outermost BEGIN TRANSACTION statement. In
both cases, ROLLBACK TRANSACTION decrements the @@TRANCOUNT system function to 0. ROLLBACK TRANSACTION
savepoint_name does not decrement @@TRANCOUNT.

A ROLLBACK TRANSACTION statement specifying a savepoint_name does not free any locks.

ROLLBACK TRANSACTION cannot reference a savepoint_name in distributed transactions started either explicitly with BEGIN
DISTRIBUTED TRANSACTION or escalated from a local transaction.

A transaction cannot be rolled back after a COMMIT TRANSACTION statement is executed.

Within a transaction, duplicate savepoint names are allowed, but a ROLLBACK TRANSACTION using the duplicate savepoint name
rolls back only to the most recent SAVE TRANSACTION using that savepoint name.

In stored procedures, ROLLBACK TRANSACTION statements without a savepoint_name or transaction_name roll back all
statements to the outermost BEGIN TRANSACTION. A ROLLBACK TRANSACTION statement in a stored procedure that causes
@@TRANCOUNT to have a different value when the trigger completes than the @@TRANCOUNT value when the stored
procedure was called produces an informational message. This message does not affect subsequent processing.

If a ROLLBACK TRANSACTION is issued in a trigger:

All data modifications made to that point in the current transaction are rolled back, including any made by the trigger.

The trigger continues executing any remaining statements after the ROLLBACK statement. If any of these statements modify
data, the modifications are not rolled back. No nested triggers are fired by the execution of these remaining statements.

The statements in the batch after the statement that fired the trigger are not executed.

@@TRANCOUNT is incremented by one when entering a trigger, even when in autocommit mode. (The system treats a trigger as
an implied nested transaction.)

ROLLBACK TRANSACTION statements in stored procedures do not affect subsequent statements in the batch that called the
procedure; subsequent statements in the batch are executed. ROLLBACK TRANSACTION statements in triggers terminate the
batch containing the statement that fired the trigger; subsequent statements in the batch are not executed.

A ROLLBACK TRANSACTION statement does not produce any messages to the user. If warnings are needed in stored procedures
or triggers, use the RAISERROR or PRINT statements. RAISERROR is the preferred statement for indicating errors.

The effect of a ROLLBACK on cursors is defined by these three rules:

1. With CURSOR_CLOSE_ON_COMMIT set ON, ROLLBACK closes but does not deallocate all open cursors.

2. With CURSOR_CLOSE_ON_COMMIT set OFF, ROLLBACK does not affect any open synchronous STATIC or INSENSITIVE
cursors or asynchronous STATIC cursors that have been fully populated. Open cursors of any other type are closed but not
deallocated.

3. An error that terminates a batch and generates an internal rollback deallocates all cursors that were declared in the batch
containing the error statement. All cursors are deallocated regardless of their type or the setting of
CURSOR_CLOSE_ON_COMMIT. This includes cursors declared in stored procedures called by the error batch. Cursors
declared in a batch before the error batch are subject to rules 1 and 2. A deadlock error is an example of this type of error. A
ROLLBACK statement issued in a trigger also automatically generates this type of error.

Permissions

ROLLBACK TRANSACTION permissions default to any valid user.

See Also

BEGIN DISTRIBUTED TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT WORK

Cursor Locking

ROLLBACK WORK

SAVE TRANSACTION

Transactions

Transact-SQL Reference (SQL Server 2000)

ROLLBACK WORK
Rolls back a user-specified transaction to the beginning of a transaction.

Syntax

ROLLBACK [WORK]

Remarks

This statement functions identically to ROLLBACK TRANSACTION except that ROLLBACK TRANSACTION accepts a user-defined
transaction name. With or without specifying the optional WORK keyword, this ROLLBACK syntax is SQL-92-compatible.

When nesting transactions, ROLLBACK WORK always rolls back to the outermost BEGIN TRANSACTION statement and
decrements the @@TRANCOUNT system function to 0.

Permissions

ROLLBACK WORK permissions default to any valid user.

See Also

BEGIN DISTRIBUTED TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION

SAVE TRANSACTION

Transactions

Transact-SQL Reference (SQL Server 2000)

ROUND
Returns a numeric expression, rounded to the specified length or precision.

Syntax

ROUND (numeric_expression , length [, function])

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

length

Is the precision to which numeric_expression is to be rounded. length must be tinyint, smallint, or int. When length is a positive
number, numeric_expression is rounded to the number of decimal places specified by length. When length is a negative number,
numeric_expression is rounded on the left side of the decimal point, as specified by length.

function

Is the type of operation to perform. function must be tinyint, smallint, or int. When function is omitted or has a value of 0
(default), numeric_expression is rounded. When a value other than 0 is specified, numeric_expression is truncated.

Return Types

Returns the same type as numeric_expression.

Remarks

ROUND always returns a value. If length is negative and larger than the number of digits before the decimal point, ROUND
returns 0.

Example Result
ROUND(748.58, -4) 0

ROUND returns a rounded numeric_expression, regardless of data type, when length is a negative number.

Examples Result
ROUND(748.58, -1) 750.00
ROUND(748.58, -2) 700.00
ROUND(748.58, -3) 1000.00

Examples

A. Use ROUN D and estimates

This example shows two expressions illustrating that with the ROUND function the last digit is always an estimate.

SELECT ROUND(123.9994, 3), ROUND(123.9995, 3)
GO

Here is the result set:

----------- -----------
123.9990 124.0000

B. Use ROUN D and rounding approximations

This example shows rounding and approximations.

Statement Result

SELECT ROUND(123.4545, 2) 123.4500
SELECT ROUND(123.45, -2) 100.00

C. Use ROUN D to truncate

This example uses two SELECT statements to demonstrate the difference between rounding and truncation. The first statement
rounds the result. The second statement truncates the result.

Statement Result
SELECT ROUND(150.75, 0) 151.00
SELECT ROUND(150.75, 0, 1) 150.00

See Also

CEILING

Data Types

Expressions

FLOOR

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

ROWCOUNT_BIG
Returns the number of rows affected by the last statement executed. This function operates like @@ROWCOUNT, except that the
return type of ROWCOUNT_BIG is bigint.

Syntax

ROWCOUNT_BIG ()

Return Types

bigint

Remarks

Following a SELECT statement, this function returns the number of rows returned by the SELECT statement.

Following INSERT, UPDATE, or DELETE statements, this function returns the number of rows affected by the data modification
statement.

Following statements that do not return rows, such as an IF statement, this function returns zero (0).

See Also

COUNT_BIG

Data Types

Transact-SQL Reference (SQL Server 2000)

RTRIM
Returns a character string after truncating all trailing blanks.

Syntax

RTRIM (character_expression)

Arguments

character_expression

Is an expression of character data. character_expression can be a constant, variable, or column of either character or binary data.

Return Types

varchar

Remarks

character_expression must be of a data type that is implicitly convertible to varchar. Otherwise, use the CAST function to explicitly
convert character_expression.

Note Compatibility levels can affect return values. For more information, see sp_dbcmptlevel.

Examples

This example demonstrates how to use RTRIM to remove trailing spaces from a character variable.

DECLARE @string_to_trim varchar(60)
SET @string_to_trim = 'Four spaces are after the period in this sentence. '
SELECT 'Here is the string without the leading spaces: ' + CHAR(13) +
 RTRIM(@string_to_trim)
GO

Here is the result set:

(1 row(s) affected)
--
Here is the string without the leading spaces: Four spaces are after the period in this sentence.
(1 row(s) affected)

See Also

CAST and CONVERT

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

SAVE TRANSACTION
Sets a savepoint within a transaction.

Syntax

SAVE TRAN [SACTION] { savepoint_name | @savepoint_variable }

Arguments

savepoint_name

Is the name assigned to the savepoint. Savepoint names must conform to the rules for identifiers, but only the first 32 characters
are used.

@savepoint_variable

Is the name of a user-defined variable containing a valid savepoint name. The variable must be declared with a char, varchar,
nchar, or nvarchar data type.

Remarks

A user can set a savepoint, or marker, within a transaction. The savepoint defines a location to which a transaction can return if
part of the transaction is conditionally canceled. If a transaction is rolled back to a savepoint, it must proceed to completion (with
more Transact-SQL statements if needed and a COMMIT TRANSACTION statement), or it must be canceled altogether (by rolling
the transaction back to its beginning). To cancel an entire transaction, use the form ROLLBACK TRANSACTION transaction_name.
All the statements or procedures of the transaction are undone.

SAVE TRANSACTION is not supported in distributed transactions started either explicitly with BEGIN DISTRIBUTED TRANSACTION
or escalated from a local transaction.

Important When a transaction begins, resources used during the transaction are held until the completion of the transaction
(namely locks). When part of a transaction is rolled back to a savepoint, resources continue to be held until the completion of the
transaction (or a rollback of the complete transaction).

Permissions

SAVE TRANSACTION permissions default to any valid user.

Examples

This example changes the royalty split for the two authors of The Gourmet Microwave. Because the database would be
inconsistent between the two updates, they must be grouped into a user-defined transaction.

BEGIN TRANSACTION royaltychange
 UPDATE titleauthor
 SET royaltyper = 65
 FROM titleauthor, titles
 WHERE royaltyper = 75
 AND titleauthor.title_id = titles.title_id
 AND title = 'The Gourmet Microwave'
 UPDATE titleauthor
 SET royaltyper = 35
 FROM titleauthor, titles
 WHERE royaltyper = 25
 AND titleauthor.title_id = titles.title_id
 AND title = 'The Gourmet Microwave'
SAVE TRANSACTION percentchanged

/*
After having updated the royaltyper entries for the two authors, the
user inserts the savepoint percentchanged, and then determines how a
10-percent increase in the book's price would affect the authors' royalty earnings.
*/

UPDATE titles
 SET price = price * 1.1
 WHERE title = 'The Gourmet Microwave'
SELECT (price * royalty * ytd_sales) * royaltyper
 FROM titles, titleauthor

 WHERE title = 'The Gourmet Microwave'
 AND titles.title_id = titleauthor.title_id
/*
The transaction is rolled back to the savepoint
with the ROLLBACK TRANSACTION statement.
*/

ROLLBACK TRANSACTION percentchanged
COMMIT TRANSACTION

/* End of royaltychange. */

See Also

Batches

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT WORK

CREATE PROCEDURE

CREATE TRIGGER

DELETE

INSERT

ROLLBACK TRANSACTION

ROLLBACK WORK

SELECT

Transaction Savepoints

UPDATE

Transact-SQL Reference (SQL Server 2000)

SCOPE_IDENTITY
Returns the last IDENTITY value inserted into an IDENTITY column in the same scope. A scope is a module -- a stored procedure,
trigger, function, or batch. Thus, two statements are in the same scope if they are in the same stored procedure, function, or batch.

Syntax

SCOPE_IDENTITY()

Return Types

sql_variant

Remarks

SCOPE_IDENTITY, IDENT_CURRENT, and @@IDENTITY are similar functions in that they return values inserted into IDENTITY
columns.

IDENT_CURRENT is not limited by scope and session; it is limited to a specified table. IDENT_CURRENT returns the value
generated for a specific table in any session and any scope. For more information, see IDENT_CURRENT.

SCOPE_IDENTITY and @@IDENTITY will return last identity values generated in any table in the current session. However,
SCOPE_IDENTITY returns values inserted only within the current scope; @@IDENTITY is not limited to a specific scope.

For example, you have two tables, T1 and T2, and an INSERT trigger defined on T1. When a row is inserted to T1, the trigger fires
and inserts a row in T2. This scenario illustrates two scopes: the insert on T1, and the insert on T2 as a result of the trigger.

Assuming that both T1 and T2 have IDENTITY columns, @@IDENTITY and SCOPE_IDENTITY will return different values at the end
of an INSERT statement on T1.

@@IDENTITY will return the last IDENTITY column value inserted across any scope in the current session, which is the value
inserted in T2.

SCOPE_IDENTITY() will return the IDENTITY value inserted in T1, which was the last INSERT that occurred in the same scope. The
SCOPE_IDENTITY() function will return the NULL value if the function is invoked before any insert statements into an identity
column occur in the scope.

See Examples for an illustration.

Examples

This example creates two tables, TZ and TY, and an INSERT trigger on TZ. When a row is inserted to table TZ, the trigger (Ztrig)
fires and inserts a row in TY.

USE tempdb
GO
CREATE TABLE TZ (
 Z_id int IDENTITY(1,1)PRIMARY KEY,
 Z_name varchar(20) NOT NULL)

INSERT TZ
 VALUES ('Lisa')
INSERT TZ
 VALUES ('Mike')
INSERT TZ
 VALUES ('Carla')

SELECT * FROM TZ

--Result set: This is how table TZ looks
Z_id Z_name

1 Lisa
2 Mike
3 Carla

CREATE TABLE TY (
 Y_id int IDENTITY(100,5)PRIMARY KEY,
 Y_name varchar(20) NULL)

INSERT TY (Y_name)

 VALUES ('boathouse')
INSERT TY (Y_name)
 VALUES ('rocks')
INSERT TY (Y_name)
 VALUES ('elevator')

SELECT * FROM TY
--Result set: This is how TY looks:
Y_id Y_name

100 boathouse
105 rocks
110 elevator

/*Create the trigger that inserts a row in table TY
when a row is inserted in table TZ*/
CREATE TRIGGER Ztrig
ON TZ
FOR INSERT AS
 BEGIN
 INSERT TY VALUES ('')
 END

/*FIRE the trigger and find out what identity values you get
with the @@IDENTITY and SCOPE_IDENTITY functions*/
INSERT TZ VALUES ('Rosalie')

SELECT SCOPE_IDENTITY() AS [SCOPE_IDENTITY]
GO
SELECT @@IDENTITY AS [@@IDENTITY]
GO

--Here is the result set.
SCOPE_IDENTITY
4
/*SCOPE_IDENTITY returned the last identity value in the same scope, which was the insert on table TZ*/

@@IDENTITY
115
/*@@IDENTITY returned the last identity value inserted to TY by the trigger, which fired due to an earlier
insert on TZ*/

See Also

@@IDENTITY

Transact-SQL Reference (SQL Server 2000)

Search Condition
Is a combination of one or more predicates using the logical operators AND, OR, and NOT.

Syntax

< search_condition > ::=
 { [NOT] < predicate > | (< search_condition >) }
 [{ AND | OR } [NOT] { < predicate > | (< search_condition >) }]
 } [,...n]

< predicate > ::=
 { expression { = | < > | ! = | > | > = | ! > | < | < = | ! < } expression
 | string_expression [NOT] LIKE string_expression
 [ESCAPE 'escape_character']
 | expression [NOT] BETWEEN expression AND expression
 | expression IS [NOT] NULL
 | CONTAINS
 ({ column | * } , '< contains_search_condition >')
 | FREETEXT ({ column | * } , 'freetext_string')
 | expression [NOT] IN (subquery | expression [,...n])
 | expression { = | < > | ! = | > | > = | ! > | < | < = | ! < }
 { ALL | SOME | ANY} (subquery)
 | EXISTS (subquery)
 }

Arguments

< search_condition >

Specifies the conditions for the rows returned in the result set for a SELECT statement, query expression, or subquery. For an
UPDATE statement, specifies the rows to be updated. For a DELETE statement, specifies the rows to be deleted. There is no limit to
the number of predicates that can be included in a Transact-SQL statement search condition.

NOT
Negates the Boolean expression specified by the predicate. For more information, see NOT.

AND
Combines two conditions and evaluates to TRUE when both of the conditions are TRUE. For more information, see AND.

OR
Combines two conditions and evaluates to TRUE when either condition is TRUE. For more information, see OR.

< predicate >

Is an expression that returns TRUE, FALSE, or UNKNOWN.

expression
Is a column name, a constant, a function, a variable, a scalar subquery, or any combination of column names, constants, and
functions connected by an operator(s) or a subquery. The expression can also contain the CASE function.

=
Is the operator used to test the equality between two expressions.

<>
Is the operator used to test the condition of two expressions not being equal to each other.

!=
Is the operator used to test the condition of two expressions not being equal to each other.

>
Is the operator used to test the condition of one expression being greater than the other.

>=
Is the operator used to test the condition of one expression being greater than or equal to the other expression.

!>
Is the operator used to test the condition of one expression not being greater than the other expression.

<
Is the operator used to test the condition of one expression being less than the other.

<=

Is the operator used to test the condition of one expression being less than or equal to the other expression.
!<

Is the operator used to test the condition of one expression not being less than the other expression.
string_expression

Is a string of characters and wildcard characters.
[NOT] LIKE

Indicates that the subsequent character string is to be used with pattern matching. For more information, see LIKE.
ESCAPE 'escape_character'

Allows a wildcard character to be searched for in a character string instead of functioning as a wildcard. escape_character is the
character that is placed in front of the wildcard character to denote this special use.

[NOT] BETWEEN
Specifies an inclusive range of values. Use AND to separate the beginning and ending values. For more information, see
BETWEEN.

IS [NOT] NULL
Specifies a search for null values, or for values that are not null, depending on the keywords used. An expression with a bitwise
or arithmetic operator evaluates to NULL if any of the operands is NULL.

CONTAINS
Searches columns containing character-based data for precise or "fuzzy" (less precise) matches to single words and phrases, the
proximity of words within a certain distance of one another, and weighted matches. Can only be used with SELECT statements.
For more information, see CONTAINS.

FREETEXT
Provides a simple form of natural language query by searching columns containing character-based data for values that match
the meaning rather than the exact words in the predicate. Can only be used with SELECT statements. For more information, see
FREETEXT.

[NOT] IN
Specifies the search for an expression, based on the expression's inclusion in or exclusion from a list. The search expression can
be a constant or a column name, and the list can be a set of constants or, more commonly, a subquery. Enclose the list of values
in parentheses. For more information, see IN.

subquery
Can be considered a restricted SELECT statement and is similar to <query_expresssion> in the SELECT statement. The ORDER
BY clause, the COMPUTE clause, and the INTO keyword are not allowed. For more information, see SELECT.

ALL
Used with a comparison operator and a subquery. Returns TRUE for <predicate> if all values retrieved for the subquery satisfy
the comparison operation, or FALSE if not all values satisfy the comparison or if the subquery returns no rows to the outer
statement. For more information, see ALL.

{ SOME | ANY }
Used with a comparison operator and a subquery. Returns TRUE for <predicate> if any value retrieved for the subquery
satisfies the comparison operation, or FALSE if no values in the subquery satisfy the comparison or if the subquery returns no
rows to the outer statement. Otherwise, the expression is unknown. For more information, see SOME | ANY.

EXISTS
Used with a subquery to test for the existence of rows returned by the subquery. For more information, see EXISTS.

Remarks

The order of precedence for the logical operators is NOT (highest), followed by AND, followed by OR. The order of evaluation at
the same precedence level is from left to right. Parentheses can be used to override this order in a search condition. For more
information about how the logical operators operate on truth values, see AND, OR, and NOT.

Examples

A. Use WHERE with LIKE and ESCAPE syntax

This example assumes a description column exists in finances table. To search for the rows in which the description column
contains the exact characters g_, use the ESCAPE option because _ is a wildcard character. Without specifying the ESCAPE option,
the query would search for any description values containing the letter g followed by any single character other than the _
character.

SELECT *
FROM finances
WHERE description LIKE 'gs_' ESCAPE 's'
GO

B. Use WHERE and LIKE syntax with Unicode data

This example uses the WHERE clause to retrieve the contact name, telephone, and fax numbers for any companies containing the
string snabbköp at the end of the company name.

USE Northwind
SELECT CompanyName, ContactName, Phone, Fax
FROM Customers
WHERE CompanyName LIKE N'%snabbköp'
ORDER BY CompanyName ASC, ContactName ASC

See Also

Aggregate Functions

CASE

CONTAINSTABLE

Cursors

DELETE

Expressions

FREETEXTTABLE

FROM

Full-text Querying SQL Server Data

Operators (Logical)

UPDATE

Transact-SQL Reference (SQL Server 2000)

SELECT @local_variable
Specifies that the given local variable (created using DECLARE @local_variable) should be set to the specified expression.

It is recommended that SET @local_variable be used for variable assignment rather than SELECT @local_variable. For more
information, see SET @local_variable.

Syntax

SELECT { @local_variable = expression } [,...n]

Arguments

@local_variable

Is a declared variable for which a value is to be assigned.

expression

Is any valid Microsoft® SQL Server™ expression, including a scalar subquery.

Remarks

SELECT @local_variable is usually used to return a single value into the variable. It can return multiple values if, for example,
expression is the name of a column. If the SELECT statement returns more than one value, the variable is assigned the last value
returned.

If the SELECT statement returns no rows, the variable retains its present value. If expression is a scalar subquery that returns no
value, the variable is set to NULL.

In the first example, a variable @var1 is assigned Generic Name as its value. The query against the Customers table returns no
rows because the value specified for CustomerID does not exist in the table. The variable retains the Generic Name value.

USE Northwind
DECLARE @var1 nvarchar(30)
SELECT @var1 = 'Generic Name'

SELECT @var1 = CompanyName
FROM Customers
WHERE CustomerID = 'ALFKA'

SELECT @var1 AS 'Company Name'

This is the result:

Company Name
--
Generic Name

In this example, a subquery is used to assign a value to @var1. Because the value requested for CustomerID does not exist, the
subquery returns no value and the variable is set to NULL.

USE Northwind
DECLARE @var1 nvarchar(30)
SELECT @var1 = 'Generic Name'

SELECT @var1 =
 (SELECT CompanyName
 FROM Customers
 WHERE CustomerID = 'ALFKA')

SELECT @var1 AS 'Company Name'

This is the result:

Company Name

NULL

One SELECT statement can initialize multiple local variables.

Note A SELECT statement that contains a variable assignment cannot also be used to perform normal result set retrieval

operations.

See Also

DECLARE @local_variable

Expressions

SELECT

Transact-SQL Reference (SQL Server 2000)

SELECT
Retrieves rows from the database and allows the selection of one or many rows or columns from one or many tables. The full
syntax of the SELECT statement is complex, but the main clauses can be summarized as:

SELECT select_list
[INTO new_table]
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

The UNION operator can be used between queries to combine their results into a single result set.

Syntax

SELECT statement ::=
 < query_expression >
 [ORDER BY { order_by_expression | column_position [ASC | DESC] }
 [,...n]]
 [COMPUTE
 { { AVG | COUNT | MAX | MIN | SUM } (expression) } [,...n]
 [BY expression [,...n]]
]
 [FOR { BROWSE | XML { RAW | AUTO | EXPLICIT }
 [, XMLDATA]
 [, ELEMENTS]
 [, BINARY base64]
 }
]
 [OPTION (< query_hint > [,...n])]

< query expression > ::=
 { < query specification > | (< query expression >) }
 [UNION [ALL] < query specification | (< query expression >) [...n]]

< query specification > ::=
 SELECT [ALL | DISTINCT]
 [{ TOP integer | TOP integer PERCENT } [WITH TIES]]
 < select_list >
 [INTO new_table]
 [FROM { < table_source > } [,...n]]
 [WHERE < search_condition >]
 [GROUP BY [ALL] group_by_expression [,...n]
 [WITH { CUBE | ROLLUP }]
]
 [HAVING < search_condition >]

Because of the complexity of the SELECT statement, detailed syntax elements and arguments are shown by clause:

SELECT Clause
INTO Clause
FROM Clause
WHERE Clause
GROUP BY Clause
HAVING Clause
UNION Operator
ORDER BY Clause
COMPUTE Clause
FOR Clause
OPTION Clause

SELECT Clause

Specifies the columns to be returned by the query.

Syntax

SELECT [ALL | DISTINCT]
 [TOP n [PERCENT] [WITH TIES]]
 < select_list >

< select_list > ::=

 { *
 | { table_name | view_name | table_alias }.*
 | { column_name | expression | IDENTITYCOL | ROWGUIDCOL }
 [[AS] column_alias]
 | column_alias = expression
 } [,...n]

Arguments

ALL

Specifies that duplicate rows can appear in the result set. ALL is the default.

DISTINCT

Specifies that only unique rows can appear in the result set. Null values are considered equal for the purposes of the DISTINCT
keyword.

TOP n [PERCENT]

Specifies that only the first n rows are to be output from the query result set. n is an integer between 0 and 4294967295. If
PERCENT is also specified, only the first n percent of the rows are output from the result set. When specified with PERCENT, n
must be an integer between 0 and 100.

If the query includes an ORDER BY clause, the first n rows (or n percent of rows) ordered by the ORDER BY clause are output. If
the query has no ORDER BY clause, the order of the rows is arbitrary.

WITH TIES

Specifies that additional rows be returned from the base result set with the same value in the ORDER BY columns appearing as
the last of the TOP n (PERCENT) rows. TOP ...WITH TIES can only be specified if an ORDER BY clause is specified.

< select_list >

The columns to be selected for the result set. The select list is a series of expressions separated by commas.

*
Specifies that all columns from all tables and views in the FROM clause should be returned. The columns are returned by table
or view, as specified in the FROM clause, and in the order in which they exist in the table or view.

table_name | view_name | table_alias.*
Limits the scope of the * to the specified table or view.

column_name
Is the name of a column to return. Qualify column_name to prevent an ambiguous reference, such as occurs when two tables in
the FROM clause have columns with duplicate names. For example, the Customers and Orders tables in the Northwind
database both have a column named ColumnID. If the two tables are joined in a query, the customer ID can be specified in the
select list as Customers.CustomerID.

expression
Is a column name, constant, function, any combination of column names, constants, and functions connected by an operator(s),
or a subquery.

IDENTITYCOL
Returns the identity column. For more information, see IDENTITY (Property), ALTER TABLE, and CREATE TABLE.

If the more than one table in the FROM clause has a column with the IDENTITY property, IDENTITYCOL must be qualified with
the specific table name, such as T1.IDENTITYCOL.

ROWGUIDCOL
Returns the row global unique identifier column.

If the more than one table in the FROM clause with the ROWGUIDCOL property, ROWGUIDCOL must be qualified with the
specific table name, such as T1.ROWGUIDCOL.

column_alias
Is an alternative name to replace the column name in the query result set. For example, an alias such as "Quantity", or "Quantity
to Date", or "Qty" can be specified for a column named quantity.

Aliases are used also to specify names for the results of expressions, for example:

USE Northwind
SELECT AVG(UnitPrice) AS 'Average Price'
FROM [Order Details]

column_alias can be used in an ORDER BY clause. However, it cannot be used in a WHERE, GROUP BY, or HAVING clause. If the
query expression is part of a DECLARE CURSOR statement, column_alias cannot be used in the FOR UPDATE clause.

INTO Clause

Creates a new table and inserts the resulting rows from the query into it.

The user executing a SELECT statement with the INTO clause must have CREATE TABLE permission in the destination database.
SELECT...INTO cannot be used with the COMPUTE. For more information, see Transactions and Explicit Transactions.

You can use SELECT...INTO to create an identical table definition (different table name) with no data by having a FALSE condition
in the WHERE clause.

Syntax

[INTO new_table]

Arguments

new_table

Specifies the name of a new table to be created, based on the columns in the select list and the rows chosen by the WHERE clause.
The format of new_table is determined by evaluating the expressions in the select list. The columns in new_table are created in
the order specified by the select list. Each column in new_table has the same name, data type, and value as the corresponding
expression in the select list.

When a computed column is included in the select list, the corresponding column in the new table is not a computed column. The
values in the new column are the values that were computed at the time SELECT...INTO was executed.

In this release of SQL Server, the select into/bulkcopy database option has no effect on whether you can create a permanent
table with SELECT INTO. The amount of logging for certain bulk operations, including SELECT INTO, depends on the recovery
model in effect for the database. For more information, see Using Recovery Models.

In previous releases, creating a permanent table with SELECT INTO was allowed only if select into/bulkcopy was set.

select into/bulkcopy is available for backward compatibility purposes, but may not be supported in future releases. Refer to the
Recovery Models and Backward Compatibility and ALTER DATABASE topics for more information.

FROM Clause

Specifies the table(s) from which to retrieve rows. The FROM clause is required except when the select list contains only constants,
variables, and arithmetic expressions (no column names). For more information, see FROM.

Syntax

[FROM { < table_source > } [,...n]]

< table_source > ::=
 table_name [[AS] table_alias] [WITH (< table_hint > [,...n])]
 | view_name [[AS] table_alias]
 | rowset_function [[AS] table_alias]
 | OPENXML
 | derived_table [AS] table_alias [(column_alias [,...n])]
 | < joined_table >

< joined_table > ::=
 < table_source > < join_type > < table_source > ON < search_condition >
 | < table_source > CROSS JOIN < table_source >
 | < joined_table >

< join_type > ::=
 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }]
 [< join_hint >]
 JOIN

Arguments

< table_source >

Specifies tables, views, derived tables, and joined tables for the SELECT statement.

table_name [[AS] table_alias]
Specifies the name of a table and an optional alias.

view_name [[AS] table_alias]
Specifies the name, a view, and an optional alias.

rowset_function [[AS] table_alias]
Is the name of a rowset function and an optional alias. For more information about a list of rowset functions, see Rowset
Functions.

OPENXML
Provides rowset view over an XML document. For more information see OPENXML

WITH (< table_hint > [,...n])
Specifies one or more table hints. For more information about table hints, see FROM.

derived_table [[AS] table_alias]
Is a nested SELECT statement, retrieving rows from the specified database and table(s).

column_alias
Is an optional alias to replace a column name in the result set.

< joined_table >

Is a result set that is the product of two or more tables. For example:

SELECT *
FROM tab1 LEFT OUTER JOIN tab2 ON tab1.c3 = tab2.c3
 RIGHT OUTER JOIN tab3 LEFT OUTER JOIN tab4
 ON tab3.c1 = tab4.c1
 ON tab2.c3 = tab4.c3

For multiple CROSS joins, use parentheses to change the natural order of the joins.

< join_type >

Specifies the type of join operation.

INNER
Specifies that all matching pairs of rows are returned. Discards unmatched rows from both tables. This is the default if no join
type is specified.

LEFT [OUTER]
Specifies that all rows from the left table not meeting the specified condition are included in the result set in addition to all rows
returned by the inner join. Output columns from the left table are set to NULL.

RIGHT [OUTER]
Specifies that all rows from the right table not meeting the specified condition are included in the result set in addition to all
rows returned by the inner join. Output columns from the right table are set to NULL.

FULL [OUTER]
If a row from either the left or right table does not match the selection criteria, specifies the row be included in the result set,
and output columns that correspond to the other table be set to NULL. This is in addition to all rows usually returned by the
inner join.

< join_hint >
Specifies a join hint or execution algorithm. If <join_hint> is specified, INNER, LEFT, RIGHT, or FULL must also be explicitly
specified. For more information about join hints, see FROM.

JOIN
Indicates that the specified tables or views should be joined.

ON < search_condition >

Specifies the condition on which the join is based. The condition can specify any predicate, although columns and comparison
operators are often used. For example:

SELECT ProductID, Suppliers.SupplierID
 FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)

When the condition specifies columns, the columns do not have to have the same name or same data type. However, if the data
types are not identical, they must be either compatible or types that Microsoft® SQL Server™ can implicitly convert. If the data
types cannot be implicitly converted, the condition must explicitly convert the data type using the CAST function.

For more information about search conditions and predicates, see Search Condition.

CROSS JOIN

Specifies the cross-product of two tables. Returns the same rows as if the tables to be joined were simply listed in the FROM
clause and no WHERE clause was specified. For example, both of these queries return a result set that is a cross join of all the rows
in T1 and T2:

SELECT * FROM T1, T2
SELECT * FROM T1 CROSS JOIN T2

WHERE Clause

Specifies a search condition to restrict the rows returned.

Syntax

[WHERE < search_condition > | < old_outer_join >]

< old_outer_join > ::=
 column_name { * = | = * } column_name

Arguments

< search_condition >

Restricts the rows returned in the result set through the use of predicates. There is no limit to the number of predicates that can
be included in a search condition. For more information about search conditions and predicates, see Search Condition.

< old_outer_join >

Specifies an outer join using the nonstandard product-specific syntax and the WHERE clause. The *= operator is used to specify a
left outer join and the =* operator is used to specify a right outer join.

This example specifies a left outer join in which the rows from Tab1, that do not meet the specified condition, are included in the
result set:

SELECT Tab1.name, Tab2.id
FROM Tab1, Tab2
WHERE Tab1.id *=Tab2.id

Note Using this syntax for outer joins is discouraged because of the potential for ambiguous interpretation and because it is
nonstandard. Instead, specify joins in the FROM clause.

It is possible to specify outer joins by using join operators in the FROM clause or by using the non-standard *= and =* operators
in the WHERE clause. The two methods cannot both be used in the same statement.

GROUP BY Clause

Specifies the groups into which output rows are to be placed and, if aggregate functions are included in the SELECT clause <select
list>, calculates a summary value for each group. When GROUP BY is specified, either each column in any non-aggregate
expression in the select list should be included in the GROUP BY list, or the GROUP BY expression must match exactly the select
list expression.

Note If the ORDER BY clause is not specified, groups returned using the GROUP BY clause are not in any particular order. It is
recommended that you always use the ORDER BY clause to specify a particular ordering of the data.

Syntax

[GROUP BY [ALL] group_by_expression [,...n]
 [WITH { CUBE | ROLLUP }]
]

Arguments

ALL

Includes all groups and result sets, even those that do not have any rows that meet the search condition specified in the WHERE
clause. When ALL is specified, null values are returned for the summary columns of groups that do not meet the search condition.
You cannot specify ALL with the CUBE or ROLLUP operators.

GROUP BY ALL is not supported in queries that access remote tables if there is also a WHERE clause in the query.

group_by_expression

Is an expression on which grouping is performed. group_by_expression is also known as a grouping column. group_by expression
can be a column or a nonaggregate expression that references a column. A column alias that is defined in the select list cannot be
used to specify a grouping column.

Note Columns of type text, ntext, and image cannot be used in group_by_expression.

For GROUP BY clauses that do not contain CUBE or ROLLUP, the number of group_by_expression items is limited by the GROUP
BY column sizes, the aggregated columns, and the aggregate values involved in the query. This limit originates from the limit of
8,060 bytes on the intermediate work table that is needed to hold intermediate query results. A maximum of 10 grouping
expressions is permitted when CUBE or ROLLUP is specified.

CUBE

Specifies that in addition to the usual rows provided by GROUP BY, summary rows are introduced into the result set. A GROUP BY
summary row is returned for every possible combination of group and subgroup in the result set. A GROUP BY summary row is
displayed as NULL in the result, but is used to indicate all values. Use the GROUPING function to determine whether null values in
the result set are GROUP BY summary values.

The number of summary rows in the result set is determined by the number of columns included in the GROUP BY clause. Each
operand (column) in the GROUP BY clause is bound under the grouping NULL and grouping is applied to all other operands
(columns). Because CUBE returns every possible combination of group and subgroup, the number of rows is the same, regardless
of the order in which the grouping columns are specified.

ROLLUP

Specifies that in addition to the usual rows provided by GROUP BY, summary rows are introduced into the result set. Groups are
summarized in a hierarchical order, from the lowest level in the group to the highest. The group hierarchy is determined by the
order in which the grouping columns are specified. Changing the order of the grouping columns can affect the number of rows
produced in the result set.

Important Distinct aggregates, for example, AVG(DISTINCT column_name), COUNT(DISTINCT column_name), and
SUM(DISTINCT column_name), are not supported when using CUBE or ROLLUP. If used, SQL Server returns an error message
and cancels the query.

HAVING Clause

Specifies a search condition for a group or an aggregate. HAVING is usually used with the GROUP BY clause. When GROUP BY is
not used, HAVING behaves like a WHERE clause.

Syntax

[HAVING < search_condition >]

Arguments

< search_condition >

Specifies the search condition for the group or the aggregate to meet. When HAVING is used with GROUP BY ALL, the HAVING
clause overrides ALL. For more information, see Search Condition.

The text, image, and ntext data types cannot be used in a HAVING clause.

Note Using the HAVING clause in the SELECT statement does not affect the way the CUBE operator groups the result set and
returns summary aggregate rows.

UNION Operator

Combines the results of two or more queries into a single result set consisting of all the rows belonging to all queries in the
union. This is different from using joins that combine columns from two tables.

Two basic rules for combining the result sets of two queries with UNION are:

The number and the order of the columns must be identical in all queries.

The data types must be compatible.

Syntax

 { < query specification > | (< query expression >) }
 UNION [ALL]
 < query specification | (< query expression >)
 [UNION [ALL] < query specification | (< query expression >)
 [...n]]

Arguments

< query_specification > | (< query_expression >)

Is a query specification or query expression that returns data to be combined with the data from another query specification or
query expression. The definitions of the columns that are part of a UNION operation do not have to be identical, but they must be
compatible through implicit conversion.

The table shows the rules for comparing the data types and options of corresponding (ith) columns.

Data type of ith column Data type of ith column of results table
Not data type-compatible (data
conversion not handled implicitly by
Microsoft® SQL Server™).

Error returned by SQL Server.

Both fixed-length char with lengths
L1 and L2.

Fixed-length char with length equal to the
greater of L1 and L2.

Both fixed-length binary with
lengths L1 and L2.

Fixed-length binary with length equal to
the greater of L1 and L2.

Either or both variable-length char. Variable-length char with length equal to
the maximum of the lengths specified for
the ith columns.

Either or both variable-length binary. Variable-length binary with length equal to
the maximum of the lengths specified for
the ith columns.

Both numeric data types (for
example, smallint, int, float,
money).

Data type equal to the maximum precision
of the two columns. For example, if the ith
column of table A is of type int and the ith
column of table B is of type float, then the
data type of the ith column of the results
table is float because float is more precise
than int.

Both columns' descriptions specify
NOT NULL.

Specifies NOT NULL.

UNION

Specifies that multiple result sets are to be combined and returned as a single result set.

ALL

Incorporates all rows into the results, including duplicates. If not specified, duplicate rows are removed.

ORDER BY Clause

Specifies the sort for the result set. The ORDER BY clause is invalid in views, inline functions, derived tables, and subqueries,
unless TOP is also specified.

Syntax

[ORDER BY { order_by_expression [ASC | DESC] } [,...n]]

Arguments

order_by_expression

Specifies a column on which to sort. A sort column can be specified as a name or column alias (which can be qualified by the table
or view name), an expression, or a nonnegative integer representing the position of the name, alias, or expression in select list.

Multiple sort columns can be specified. The sequence of the sort columns in the ORDER BY clause defines the organization of the
sorted result set.

The ORDER BY clause can include items not appearing in the select list. However, if SELECT DISTINCT is specified, or if the SELECT
statement contains a UNION operator, the sort columns must appear in the select list.

Furthermore, when the SELECT statement includes a UNION operator, the column names or column aliases must be those
specified in the first select list.

Note ntext, text, or image columns cannot be used in an ORDER BY clause.

ASC

Specifies that the values in the specified column should be sorted in ascending order, from lowest value to highest value.

DESC

Specifies that the values in the specified column should be sorted in descending order, from highest value to lowest value.

Null values are treated as the lowest possible values.

There is no limit to the number of items in the ORDER BY clause. However, there is a limit of 8,060 bytes for the row size of
intermediate worktables needed for sort operations. This limits the total size of columns specified in an ORDER BY clause.

COMPUTE Clause

Generates totals that appear as additional summary columns at the end of the result set. When used with BY, the COMPUTE
clause generates control-breaks and subtotals in the result set. You can specify COMPUTE BY and COMPUTE in the same query.

Syntax

[COMPUTE
 { { AVG | COUNT | MAX | MIN | STDEV | STDEVP
 | VAR | VARP | SUM }
 (expression) } [,...n]
 [BY expression [,...n]]
]

Arguments

AVG | COUNT | MAX | MIN | STDEV | STDEVP | VAR | VARP | SUM

Specifies the aggregation to be performed. These row aggregate functions are used with the COMPUTE clause.

Row aggregate function Result
AVG Average of the values in the numeric expression
COUNT Number of selected rows
MAX Highest value in the expression
MIN Lowest value in the expression

STDEV Statistical standard deviation for all values in the
expression

STDEVP Statistical standard deviation for the population for all
values in the expression

SUM Total of the values in the numeric expression
VAR Statistical variance for all values in the expression
VARP Statistical variance for the population for all values in

the expression

There is no equivalent to COUNT(*). To find the summary information produced by GROUP BY and COUNT(*), use a COMPUTE
clause without BY.

These functions ignore null values.

The DISTINCT keyword is not allowed with row aggregate functions when they are specified with the COMPUTE clause.

When you add or average integer data, SQL Server treats the result as an int value, even if the data type of the column is
smallint or tinyint. For more information about the return types of added or average data, see SUM and AVG.

Note To reduce the possibility of overflow errors in ODBC and DB-Library programs, make all variable declarations for the
results of averages or sums the data type int.

(expression)

An expression, such as the name of a column on which the calculation is performed. expression must appear in the select list and
must be specified exactly the same as one of the expressions in the select list. A column alias specified in the select list cannot be
used within expression.

Note ntext, text, or image data types cannot be specified in a COMPUTE or COMPUTE BY clause.

BY expression

Generates control-breaks and subtotals in the result set. expression is an exact copy of an order_by_expression in the associated
ORDER BY clause. Typically, this is a column name or column alias. Multiple expressions can be specified. Listing multiple
expressions after BY breaks a group into subgroups and applies the aggregate function at each level of grouping.

If you use COMPUTE BY, you must also use an ORDER BY clause. The expressions must be identical to or a subset of those listed
after ORDER BY, and must be in the same sequence. For example, if the ORDER BY clause is:

ORDER BY a, b, c

The COMPUTE clause can be any (or all) of these:

COMPUTE BY a, b, c
COMPUTE BY a, b
COMPUTE BY a

Note In a SELECT statement with a COMPUTE clause, the order of columns in the select list overrides the order of the aggregate
functions in the COMPUTE clause. ODBC and DB-Library programmers must be aware of this order requirement to put the
aggregate function results in the correct place.

You cannot use COMPUTE in a SELECT INTO statement because statements including COMPUTE generate tables and their
summary results are not stored in the database. Therefore, any calculations produced by COMPUTE do not appear in the new
table created with the SELECT INTO statement.

You cannot use the COMPUTE clause when the SELECT statement is part of a DECLARE CURSOR statement.

FOR Clause

FOR clause is used to specify either the BROWSE or the XML option (BROWSE and XML are unrelated options).

Syntax

[FOR { BROWSE | XML { RAW | AUTO | EXPLICIT }
 [, XMLDATA]
 [, ELEMENTS]
 [, BINARY BASE64]
 }

]

Arguments

BROWSE

Specifies that updates be allowed while viewing the data in a DB-Library browse mode cursor. A table can be browsed in an
application if the table includes a time-stamped column (defined with the timestamp data type), the table has a unique index, and
the FOR BROWSE option is at the end of the SELECT statement(s) sent to SQL Server. For more information, see Browse Mode.

Note It is not possible to use the <lock_hint> HOLDLOCK in a SELECT statement that includes the FOR BROWSE option.

The FOR BROWSE option cannot appear in SELECT statements joined by the UNION operator.

XML

Specifies that the results of a query are to be returned as an XML document. One of these XML modes must be specified: RAW,
AUTO, EXPLICIT. For more information about XML data and SQL Server, see Retrieving XML Documents Using FOR XML.

RAW

Takes the query result and transforms each row in the result set into an XML element with a generic identifier <row /> as the
element tag. For more information, see Using RAW Mode.

AUTO

Returns query results in a simple, nested XML tree. Each table in the FROM clause, for which at least one column is listed in the
SELECT clause, is represented as an XML element. The columns listed in the SELECT clause are mapped to the appropriate element
attributes. For more information, see Using AUTO Mode.

EXPLICIT

Specifies that the shape of the resulting XML tree is defined explicitly. Using this mode, queries must be written in a particular way
so that additional information about the desired nesting is specified explicitly. For more information, see Using EXPLICIT Mode.

XMLDATA

Returns the schema, but does not add the root element to the result. If XMLDATA is specified, it is appended to the document.

ELEMENTS

Specifies that the columns are returned as subelements. Otherwise, they are mapped to XML attributes. This option is supported
in AUTO mode only.

BINARY BASE64

Specifies that the query returns the binary data in binary base64-encoded format. In retrieving binary data using RAW and
EXPLICIT mode, this option must be specified. This is the default in AUTO mode.

OPTION Clause

Specifies that the indicated query hint should be used throughout the entire query. Each query hint can be specified only once,
although multiple query hints are permitted. Only one OPTION clause may be specified with the statement. The query hint affects
all operators in the statement. If a UNION is involved in the main query, only the last query involving a UNION operator can have
the OPTION clause. If one or more query hints causes the query optimizer to not generate a valid plan, error 8622 is produced.

Caution Because the query optimizer usually selects the best execution plan for a query, it is recommended that <join_hint>,
<query_hint>, and <table_hint> be used only as a last resort by experienced database administrators.

Syntax

[OPTION (< query_hint > [,...n])]

< query_hint > ::=
 { { HASH | ORDER } GROUP
 | { CONCAT | HASH | MERGE } UNION
 | { LOOP | MERGE | HASH } JOIN
 | FAST number_rows
 | FORCE ORDER
 | MAXDOP number

 | ROBUST PLAN
 | KEEP PLAN
 | KEEPFIXED PLAN
 | EXPAND VIEWS
 }

Arguments

{ HASH | ORDER } GROUP

Specifies that aggregations described in the GROUP BY, DISTINCT, or COMPUTE clause of the query should use hashing or
ordering.

{ MERGE | HASH | CONCAT } UNION

Specifies that all UNION operations are performed by merging, hashing, or concatenating UNION sets. If more than one UNION
hint is specified, the query optimizer selects the least expensive strategy from those hints specified.

{ LOOP | MERGE | HASH } JOIN

Specifies that all join operations are performed by loop join, merge join, or hash join in the whole query. If more than one join
hint is specified, the optimizer selects the least expensive join strategy from the allowed ones.

If, in the same query, a join hint is also specified for a specific pair of tables, this join hint takes precedence in the joining of the
two tables although the query hints still must be honored. Thus, the join hint for the pair of tables may only restrict the selection
of allowed join methods in the query hint. See Hints for details.

FAST number_rows

Specifies that the query is optimized for fast retrieval of the first number_rows (a nonnegative integer). After the first
number_rows are returned, the query continues execution and produces its full result set.

FORCE ORDER

Specifies that the join order indicated by the query syntax is preserved during query optimization.

MAXDOP number

Overrides the max degree of parallelism configuration option (of sp_configure) only for the query specifying this option. All
semantic rules used with max degree of parallelism configuration option are applicable when using the MAXDOP query hint.
For more information, see max degree of parallelism Option.

ROBUST PLAN

Forces the query optimizer to attempt a plan that works for the maximum potential row size, possibly at the expense of
performance. When the query is processed, intermediate tables and operators may need to store and process rows that are wider
than any of the input rows. The rows may be so wide that, in some cases, the particular operator cannot process the row. If this
happens, SQL Server produces an error during query execution. By using ROBUST PLAN, you instruct the query optimizer not to
consider any query plans that may encounter this problem.

KEEP PLAN

Forces the query optimizer to relax the estimated recompile threshold for a query. The estimated recompile threshold is the point
at which a query is automatically recompiled when the estimated number of indexed column changes (update, delete, or insert)
have been made to a table. Specifying KEEP PLAN ensures that a query will not be recompiled as frequently when there are
multiple updates to a table.

KEEPFIXED PLAN

Forces the query optimizer not to recompile a query due to changes in statistics or to the indexed column (update, delete, or
insert). Specifying KEEPFIXED PLAN ensures that a query will be recompiled only if the schema of the underlying tables is changed
or sp_recompile is executed against those tables.

EXPAND VIEWS

Specifies that the indexed views are expanded and the query optimizer will not consider any indexed view as a substitute for any
part of the query. (A view is expanded when the view name is replaced by the view definition in the query text.) This query hint
virtually disallows direct use of indexed views and indexes on indexed views in the query plan.

The indexed view is not expanded only if the view is directly referenced in the SELECT part of the query and WITH (NOEXPAND) or
WITH (NOEXPAND, INDEX(index_val [,...n])) is specified. For more information about the query hint WITH (NOEXPAND), see

FROM.

Only the views in the SELECT portion of statements, including those in INSERT, UPDATE, and DELETE statements are affected by
the hint.

Remarks

The order of the clauses in the SELECT statement is significant. Any of the optional clauses can be omitted, but when used, they
must appear in the appropriate order.

SELECT statements are allowed in user-defined functions only if the select lists of these statements contain expressions that
assign values to variables that are local to the functions.

A table variable, in its scope, may be accessed like a regular table and thus may be used as a table source in a SELECT statement.

A four-part name constructed with the OPENDATASOURCE function as the server-name part may be used as a table source in all
places a table name can appear in SELECT statements.

Some syntax restrictions apply to SELECT statements involving remote tables. For information, see External Data and Transact-
SQL.

The length returned for text or ntext columns included in the select list defaults to the smallest of the actual size of the text, the
default TEXTSIZE session setting, or the hard-coded application limit. To change the length of returned text for the session, use the
SET statement. By default, the limit on the length of text data returned with a SELECT statement is 4,000 bytes.

SQL Server raises exception 511 and rolls back the current executing statement if either of these occur:

The SELECT statement produces a result row or an intermediate work table row exceeding 8,060 bytes.

The DELETE, INSERT, or UPDATE statement attempts action on a row exceeding 8,060 bytes.

In SQL Server, an error occurs if no column name is given to a column created by a SELECT INTO or CREATE VIEW statement.

Selecting Identity Columns

When selecting an existing identity column into a new table, the new column inherits the IDENTITY property, unless one of the
following conditions is true:

The SELECT statement contains a join, GROUP BY clause, or aggregate function.

Multiple SELECT statements are joined with UNION.

The identity column is listed more than once in the select list.

The identity column is part of an expression.

If any of these conditions is true, the column is created NOT NULL instead of inheriting the IDENTITY property. All rules and
restrictions for the identity columns apply to the new table.

Old-Style Outer Joins

Earlier versions of SQL Server supported the definition of outer joins that used the *= and =* operators in the WHERE clause. SQL
Server version 7.0 supports the SQL-92 standard, which provides join operators in the FROM clause. It is recommended that
queries be rewritten to use the SQL-92 syntax.

Processing Order of WHERE, GROUP BY, and HAVIN G Clauses

This list shows the processing order for a SELECT statement with a WHERE clause, a GROUP BY clause, and a HAVING clause:

1. The WHERE clause excludes rows not meeting its search condition.

2. The GROUP BY clause collects the selected rows into one group for each unique value in the GROUP BY clause.

3. Aggregate functions specified in the select list calculate summary values for each group.

4. The HAVING clause further excludes rows not meeting its search condition.

Permissions

SELECT permissions default to members of the sysadmin fixed server role, the db_owner and db_datareader fixed database
roles, and the table owner. Members of the sysadmin, db_owner, and db_securityadmin roles, and the table owner can transfer
permissions to other users.

If the INTO clause is used to create a permanent table, the user must have CREATE TABLE permission in the destination database.

See Also

CONTAINS

CONTAINSTABLE

CREATE TRIGGER

CREATE VIEW

DELETE

EXECUTE

Expressions

FREETEXT

FREETEXTTABLE

Full-text Querying SQL Server Data

INSERT

Join Fundamentals

SET TRANSACTION ISOLATION LEVEL

sp_dboption

Subquery Fundamentals

table

UNION

UPDATE

Using Variables and Parameters

WHERE

Transact-SQL Reference (SQL Server 2000)

SELECT Examples
A. Use SELECT to retrieve rows and columns

This example shows three code examples. This first code example returns all rows (no WHERE clause is specified) and all columns
(using the *) from the authors table in the pubs database.

USE pubs
SELECT *
FROM authors
ORDER BY au_lname ASC, au_fname ASC

-- Alternate way.
USE pubs
SELECT authors.*
FROM customers
ORDER BY au_lname ASC, au_fname ASC

This example returns all rows (no WHERE clause is specified), and only a subset of the columns (au_lname, au_fname, phone,
city, state) from the authors table in the pubs database. In addition, column headings are added.

USE pubs
SELECT au_fname, au_lname, phone AS Telephone, city, state
FROM authors
ORDER BY au_lname ASC, au_fname ASC

This example returns only the rows for authors who live in California and do not have the last name McBadden.

USE pubs
SELECT au_fname, au_lname, phone AS Telephone
FROM authors
WHERE state = 'CA' and au_lname <> 'McBadden'
ORDER BY au_lname ASC, au_fname ASC

B. Use SELECT with column headings and calculations

These examples return all rows from titles. The first example returns total year-to-date sales and the amounts due to each author
and publisher. In the second example, the total revenue is calculated for each book.

USE pubs
SELECT ytd_sales AS Sales,
 authors.au_fname + ' '+ authors.au_lname AS Author,
 ToAuthor = (ytd_sales * royalty) / 100,
 ToPublisher = ytd_sales - (ytd_sales * royalty) / 100
FROM titles INNER JOIN titleauthor
 ON titles.title_id = titleauthor.title_id INNER JOIN authors
 ON titleauthor.au_id = authors.au_id
ORDER BY Sales DESC, Author ASC

Here is the result set:

Sales Author ToAuthor ToPublisher
----------- ------------------------- ----------- -----------
22246 Anne Ringer 5339 16907
22246 Michel DeFrance 5339 16907
18722 Marjorie Green 4493 14229
15096 Reginald Blotchet-Halls 2113 12983
8780 Cheryl Carson 1404 7376
4095 Abraham Bennet 409 3686
4095 Akiko Yokomoto 409 3686
4095 Ann Dull 409 3686
4095 Burt Gringlesby 409 3686
4095 Dean Straight 409 3686
4095 Marjorie Green 409 3686
4095 Michael O'Leary 409 3686
4095 Sheryl Hunter 409 3686
4072 Johnson White 407 3665
3876 Michael O'Leary 387 3489
3876 Stearns MacFeather 387 3489
3336 Charlene Locksley 333 3003
2045 Albert Ringer 245 1800
2045 Anne Ringer 245 1800
2032 Innes del Castillo 243 1789
375 Livia Karsen 37 338
375 Stearns MacFeather 37 338

375 Sylvia Panteley 37 338
111 Albert Ringer 11 100
NULL Charlene Locksley NULL NULL

(25 row(s) affected)

This is the query that calculates the revenue for each book:

USE pubs
SELECT 'Total income is', price * ytd_sales AS Revenue,
'for', title_id AS Book#
FROM titles
ORDER BY Book# ASC

Here is the result set:

Revenue Book#
--------------- --------------------- ---- ------
Total income is 81859.0500 for BU1032
Total income is 46318.2000 for BU1111
Total income is 55978.7800 for BU2075
Total income is 81859.0500 for BU7832
Total income is 40619.6800 for MC2222
Total income is 66515.5400 for MC3021
Total income is NULL for MC3026
Total income is 201501.0000 for PC1035
Total income is 81900.0000 for PC8888
Total income is NULL for PC9999
Total income is 8096.2500 for PS1372
Total income is 22392.7500 for PS2091
Total income is 777.0000 for PS2106
Total income is 81399.2800 for PS3333
Total income is 26654.6400 for PS7777
Total income is 7856.2500 for TC3218
Total income is 180397.2000 for TC4203
Total income is 61384.0500 for TC7777

(18 row(s) affected)

C. Use DISTINCT with SELECT

This example uses DISTINCT to prevent the retrieval of duplicate author ID numbers.

USE pubs
SELECT DISTINCT au_id
FROM authors
ORDER BY au_id

D. Create tables with SELECT INTO

This first example creates a temporary table named #coffeetabletitles in tempdb. To use this table, always refer to it with the
exact name shown, including the number sign (#).

USE pubs
DROP TABLE #coffeetabletitles
GO
SET NOCOUNT ON
SELECT * INTO #coffeetabletitles
FROM titles
WHERE price < $20
SET NOCOUNT OFF
SELECT name
FROM tempdb..sysobjects
WHERE name LIKE '#c%'

Here is the result set:

name
--
#coffeetabletitles__
____000000000028

(1 row(s) affected)

CHECKPOINTing database that was changed.

(12 row(s) affected)

name
--
newtitles

(1 row(s) affected)

CHECKPOINTing database that was changed.

This second example creates a permanent table named newtitles.

USE pubs
IF EXISTS (SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'newtitles')
 DROP TABLE newtitles
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'true'
USE pubs
SELECT * INTO newtitles
FROM titles
WHERE price > $25 OR price < $20
SELECT name FROM sysobjects WHERE name LIKE 'new%'
USE master
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'false'

Here is the result set:

name

newtitles

(1 row(s) affected)

E. Use correlated subqueries

This example shows queries that are semantically equivalent and illustrates the difference between using the EXISTS keyword and
the IN keyword. Both are examples of a valid subquery retrieving one instance of each publisher name for which the book title is a
business book, and the publisher ID numbers match between the titles and publishers tables.

USE pubs
SELECT DISTINCT pub_name
FROM publishers
WHERE EXISTS
 (SELECT *
 FROM titles
 WHERE pub_id = publishers.pub_id
 AND type = 'business')

-- Or
USE pubs
SELECT distinct pub_name
FROM publishers
WHERE pub_id IN
 (SELECT pub_id
 FROM titles
 WHERE type = 'business')

This example uses IN in a correlated (or repeating) subquery, which is a query that depends on the outer query for its values. It is
executed repeatedly, once for each row that may be selected by the outer query. This query retrieves one instance of each author's
first and last name for which the royalty percentage in the titleauthor table is 100 and for which the author identification
numbers match in the authors and titleauthor tables.

USE pubs
SELECT DISTINCT au_lname, au_fname
FROM authors
WHERE 100 IN
 (SELECT royaltyper
 FROM titleauthor
 WHERE titleauthor.au_id = authors.au_id)

The above subquery in this statement cannot be evaluated independently of the outer query. It needs a value for authors.au_id,
but this value changes as Microsoft® SQL Server™ examines different rows in authors.

A correlated subquery can also be used in the HAVING clause of an outer query. This example finds the types of books for which
the maximum advance is more than twice the average for the group.

USE pubs
SELECT t1.type
FROM titles t1
GROUP BY t1.type
HAVING MAX(t1.advance) >= ALL
 (SELECT 2 * AVG(t2.advance)
 FROM titles t2
 WHERE t1.type = t2.type)

This example uses two correlated subqueries to find the names of authors who have participated in writing at least one popular
computing book.

USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id IN
 (SELECT au_id
 FROM titleauthor
 WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'popular_comp'))

F. Use GROUP BY

This example finds the total year-to-date sales of each publisher in the database.

USE pubs
SELECT pub_id, SUM(ytd_sales) AS total
FROM titles
GROUP BY pub_id
ORDER BY pub_id

Here is the result set:

pub_id total
------ -----
0736 28286
0877 44219
1389 24941

(3 row(s) affected)

Because of the GROUP BY clause, only one row containing the sum of all sales is returned for each publisher.

G. Use GROUP BY with multiple groups

This example finds the average price and the sum of year-to-date sales, grouped by type and publisher ID.

USE pubs
SELECT type, pub_id, AVG(price) AS 'avg', sum(ytd_sales) AS 'sum'
FROM titles
GROUP BY type, pub_id
ORDER BY type, pub_id

Here is the result set:

type pub_id avg sum
------------ ------ --------------------- -----------
business 0736 2.9900 18722
business 1389 17.3100 12066
mod_cook 0877 11.4900 24278
popular_comp 1389 21.4750 12875
psychology 0736 11.4825 9564
psychology 0877 21.5900 375
trad_cook 0877 15.9633 19566
UNDECIDED 0877 NULL NULL

(8 row(s) affected)

Warning, null value eliminated from aggregate.

H. Use GROUP BY and WHERE

This example puts the results into groups after retrieving only the rows with advances greater than $5,000.

USE pubs
SELECT type, AVG(price)
FROM titles
WHERE advance > $5000
GROUP BY type
ORDER BY type

Here is the result set:

type
------------ --------------------------
business 2.99
mod_cook 2.99
popular_comp 21.48
psychology 14.30
trad_cook 17.97

(5 row(s) affected)

I. Use GROUP BY with an expression

This example groups by an expression. You can group by an expression if the expression does not include aggregate functions.

USE pubs
SELECT AVG(ytd_sales), ytd_sales * royalty
FROM titles
GROUP BY ytd_sales * royalty
ORDER BY ytd_sales * royalty

Here is the result set:

----------- -----------
NULL NULL
111 1110
375 3750
2032 24384
2045 24540
3336 33360
3876 38760
4072 40720
4095 40950
8780 140480
15096 211344
18722 449328
22246 533904

(13 row(s) affected)

J. Compare GROUP BY and GROUP BY ALL

The first example produces groups only for those books that commanded royalties of 10 percent. Because no modern cookbooks
have a royalty of 10 percent, there is no group in the results for the mod_cook type.

The second example produces groups for all types, including modern cookbooks and UNDECIDED, although the modern
cookbook group does not include any rows that meet the qualification specified in the WHERE clause.

The column that holds the aggregate value (the average price) is NULL for groups that lack qualifying rows.

USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY type
ORDER BY type

Here is the result set:

type
------------ --------------------------
business 17.31
popular_comp 20.00
psychology 14.14
trad_cook 17.97

(4 row(s) affected)

-- Using GROUP BY ALL
USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY all type
ORDER BY type

Here is the result set:

type
------------ --------------------------
business 17.31
mod_cook NULL
popular_comp 20.00
psychology 14.14
trad_cook 17.97
UNDECIDED NULL

(6 row(s) affected)

K. Use GROUP BY with ORDER BY

This example finds the average price of each type of book and orders the results by average price.

USE pubs
SELECT type, AVG(price)
FROM titles
GROUP BY type
ORDER BY AVG(price)

Here is the result set:

type
------------ --------------------------
UNDECIDED NULL
mod_cook 11.49
psychology 13.50
business 13.73
trad_cook 15.96
popular_comp 21.48

(6 row(s) affected)

L. Use the HAVING clause

The first example shows a HAVING clause with an aggregate function. It groups the rows in the titles table by type and eliminates
the groups that include only one book. The second example shows a HAVING clause without aggregate functions. It groups the
rows in the titles table by type and eliminates those types that do not start with the letter p.

USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING COUNT(*) > 1
ORDER BY type

Here is the result set:

type

business
mod_cook
popular_comp
psychology
trad_cook

(5 row(s) affected)

This query uses the LIKE clause in the HAVING clause.

USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING type LIKE 'p%'

ORDER BY type

Here is the result set:

type

popular_comp
psychology

(2 row(s) affected)

M. Use HAVING and GROUP BY

This example shows using GROUP BY, HAVING, WHERE, and ORDER BY clauses in one SELECT statement. It produces groups and
summary values but does so after eliminating the titles with prices under $5. It also organizes the results by pub_id.

USE pubs
SELECT pub_id, SUM(advance), AVG(price)
FROM titles
WHERE price >= $5
GROUP BY pub_id
HAVING SUM(advance) > $15000
 AND AVG(price) < $20
 AND pub_id > '0800'
ORDER BY pub_id

Here is the result set:

pub_id
------ -------------------------- --------------------------
0877 26,000.00 17.89
1389 30,000.00 18.98

(2 row(s) affected)

N. Use HAVING with SUM and AVG

This example groups the titles table by publisher and includes only those groups of publishers who have paid more than $25,000
in total advances and whose books average more than $15 in price.

USE pubs
SELECT pub_id, SUM(advance), AVG(price)
FROM titles
GROUP BY pub_id
HAVING SUM(advance) > $25000
AND AVG(price) > $15

To see the publishers who have had year-to-date sales greater than $40,000, use this query:

USE pubs
SELECT pub_id, total = SUM(ytd_sales)
FROM titles
GROUP BY pub_id
HAVING SUM(ytd_sales) > 40000

If you want to make sure there are at least six books involved in the calculations for each publisher, use HAVING COUNT(*) > 5 to
eliminate the publishers that return totals for fewer than six books. The query looks like this:

USE pubs
SELECT pub_id, SUM(ytd_sales) AS total
FROM titles
GROUP BY pub_id
HAVING COUNT(*) > 5

Here is the result set:

pub_id total
------ -----
0877 44219
1389 24941

(2 row(s) affected)

With this statement, two rows are returned. New Moon Books (0736) is eliminated.

O. Calculate group totals with COMPUTE BY

This example uses two code examples to show the use of COMPUTE BY. The first code example uses one COMPUTE BY with one
aggregate function, and the second code example uses one COMPUTE BY item and two aggregate functions.

This example calculates the sum of the prices (for prices over $10) for each type of cookbook, in order first by type of book and
then by price of book.

USE pubs
SELECT type, price
FROM titles
WHERE price > $10
 AND type LIKE '%cook'
ORDER BY type, price
COMPUTE SUM(price) BY type

Here is the result set:

type price
------------ ---------------------
mod_cook 19.9900

(1 row(s) affected)

sum

19.9900

(1 row(s) affected)

type price
------------ ---------------------
trad_cook 11.9500
trad_cook 14.9900
trad_cook 20.9500

(3 row(s) affected)

sum

47.8900

(1 row(s) affected)

This example retrieves the book type, publisher identification number, and price of all cookbooks. The COMPUTE BY clause uses
two different aggregate functions.

USE pubs
SELECT type, pub_id, price
FROM titles
WHERE type LIKE '%cook'
ORDER BY type, pub_id
COMPUTE SUM(price), MAX(pub_id) BY type

Here is the result set:

type pub_id price
------------ ------ ---------------------
mod_cook 0877 19.9900
mod_cook 0877 2.9900

(2 row(s) affected)

sum max
--------------------- ----
22.9800 0877

(1 row(s) affected)

type pub_id price
------------ ------ ---------------------
trad_cook 0877 20.9500
trad_cook 0877 11.9500
trad_cook 0877 14.9900

(3 row(s) affected)

sum max
--------------------- ----

47.8900 0877

(1 row(s) affected)

P. Calculate grand values using COMPUTE without BY

The COMPUTE keyword can be used without BY to generate grand totals, grand counts, and so on.

This statement finds the grand total of the prices and advances for all types of books over $20.

USE pubs
SELECT type, price, advance
FROM titles
WHERE price > $20
COMPUTE SUM(price), SUM(advance)

You can use COMPUTE BY and COMPUTE without BY in the same query. This query finds the sum of prices and advances by type,
and then computes the grand total of prices and advances for all types of books.

USE pubs
SELECT type, price, advance
FROM titles
WHERE type LIKE '%cook'
ORDER BY type, price
COMPUTE SUM(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)

Here is the result set:

type price advance
------------ --------------------- ---------------------
mod_cook 2.9900 15000.0000
mod_cook 19.9900 .0000

(2 row(s) affected)

sum sum
--------------------- ---------------------
22.9800 15000.0000

(1 row(s) affected)

type price advance
------------ --------------------- ---------------------
trad_cook 11.9500 4000.0000
trad_cook 14.9900 8000.0000
trad_cook 20.9500 7000.0000

(3 row(s) affected)

sum sum
--------------------- ---------------------
47.8900 19000.0000

(1 row(s) affected)

sum sum
--------------------- ---------------------
70.8700 34000.0000

(1 row(s) affected)

Q. Calculate computed sums on all rows

This example shows only three columns in the select list and gives totals based on all prices and all advances at the end of the
results.

USE pubs
SELECT type, price, advance
FROM titles
COMPUTE SUM(price), SUM(advance)

Here is the result set:

type price advance
------------ --------------------- ---------------------
business 19.9900 5000.0000

business 11.9500 5000.0000
business 2.9900 10125.0000
business 19.9900 5000.0000
mod_cook 19.9900 .0000
mod_cook 2.9900 15000.0000
UNDECIDED NULL NULL
popular_comp 22.9500 7000.0000
popular_comp 20.0000 8000.0000
popular_comp NULL NULL
psychology 21.5900 7000.0000
psychology 10.9500 2275.0000
psychology 7.0000 6000.0000
psychology 19.9900 2000.0000
psychology 7.9900 4000.0000
trad_cook 20.9500 7000.0000
trad_cook 11.9500 4000.0000
trad_cook 14.9900 8000.0000

(18 row(s) affected)

sum sum
--------------------- ---------------------
236.2600 95400.0000

(1 row(s) affected)

Warning, null value eliminated from aggregate.

R. Use more than one COMPUTE clause

This example finds the sum of the prices of all psychology books, as well as the sum of the prices of psychology books organized
by publisher. You can use different aggregate functions in the same statement by including more than one COMPUTE BY clause.

USE pubs
SELECT type, pub_id, price
FROM titles
WHERE type = 'psychology'
ORDER BY type, pub_id, price
COMPUTE SUM(price) BY type, pub_id
COMPUTE SUM(price) BY type

Here is the result set:

type pub_id price
------------ ------ ---------------------
psychology 0736 7.0000
psychology 0736 7.9900
psychology 0736 10.9500
psychology 0736 19.9900

(4 row(s) affected)

sum

45.9300

(1 row(s) affected)

type pub_id price
------------ ------ ---------------------
psychology 0877 21.5900

(1 row(s) affected)

sum

21.5900

(1 row(s) affected)

sum

67.5200

(1 row(s) affected)

S. Compare GROUP BY with COMPUTE

The first example uses the COMPUTE clause to calculate the sum for the prices of the different types of cookbooks. The second
example produces the same summary information using only GROUP BY.

USE pubs
-- Using COMPUTE
SELECT type, price
FROM titles
WHERE type like '%cook'
ORDER BY type, price
COMPUTE SUM(price) BY type

Here is the result set:

type price
------------ ---------------------
mod_cook 2.9900
mod_cook 19.9900

(2 row(s) affected)

sum

22.9800

(1 row(s) affected)

type price
------------ ---------------------
trad_cook 11.9500
trad_cook 14.9900
trad_cook 20.9500

(3 row(s) affected)

sum

47.8900

(1 row(s) affected)

This is the second query using GROUP BY:

USE pubs
-- Using GROUP BY
SELECT type, SUM(price)
FROM titles
WHERE type LIKE '%cook'
GROUP BY type
ORDER BY type

Here is the result set:

type
------------ ---------------------
mod_cook 22.9800
trad_cook 47.8900

(2 row(s) affected)

T. Use SELECT with GROUP BY, COMPUTE, and ORDER BY clauses

This example returns only those rows with current year-to-date sales, and then computes the average book cost and total
advances in descending order by type. Four columns of data are returned, including a truncated title. All computed columns
appear within the select list.

USE pubs
SELECT CAST(title AS char(20)) AS title, type, price, advance
FROM titles
WHERE ytd_sales IS NOT NULL
ORDER BY type DESC
COMPUTE AVG(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)

Here is the result set:

title type price advance
-------------------- ------------ --------------------- ----------------
Onions, Leeks, and G trad_cook 20.9500 7000.0000

Fifty Years in Bucki trad_cook 11.9500 4000.0000
Sushi, Anyone? trad_cook 14.9900 8000.0000

(3 row(s) affected)

avg sum
--------------------- ---------------------
15.9633 19000.0000

(1 row(s) affected)

title type price advance
-------------------- ------------ --------------------- ----------------
Computer Phobic AND psychology 21.5900 7000.0000
Is Anger the Enemy? psychology 10.9500 2275.0000
Life Without Fear psychology 7.0000 6000.0000
Prolonged Data Depri psychology 19.9900 2000.0000
Emotional Security: psychology 7.9900 4000.0000

(5 row(s) affected)

avg sum
--------------------- ---------------------
13.5040 21275.0000

(1 row(s) affected)

title type price advance
-------------------- ------------ --------------------- ----------------
But Is It User Frien popular_comp 22.9500 7000.0000
Secrets of Silicon V popular_comp 20.0000 8000.0000

(2 row(s) affected)

avg sum
--------------------- ---------------------
21.4750 15000.0000

(1 row(s) affected)

title type price advance
-------------------- ------------ --------------------- ----------------
Silicon Valley Gastr mod_cook 19.9900 .0000
The Gourmet Microwav mod_cook 2.9900 15000.0000

(2 row(s) affected)

avg sum
--------------------- ---------------------
11.4900 15000.0000

(1 row(s) affected)

title type price advance
-------------------- ------------ --------------------- ----------------
The Busy Executive's business 19.9900 5000.0000
Cooking with Compute business 11.9500 5000.0000
You Can Combat Compu business 2.9900 10125.0000
Straight Talk About business 19.9900 5000.0000

(4 row(s) affected)

avg sum
--------------------- ---------------------
13.7300 25125.0000

(1 row(s) affected)

sum sum
--------------------- ---------------------
236.2600 95400.0000

(1 row(s) affected)

U. Use SELECT statement with CUBE

This example shows two code examples. The first example returns a result set from a SELECT statement using the CUBE operator.
The SELECT statement covers a one-to-many relationship between book titles and the quantity sold of each book. By using the
CUBE operator, the statement returns an extra row.

USE pubs
SELECT SUBSTRING(title, 1, 65) AS title, SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
 ON sales.title_id = titles.title_id
GROUP BY title
WITH CUBE
ORDER BY title

Here is the result set:

title qty
--- ------
NULL 493
But Is It User Friendly? 30
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 20
Cooking with Computers: Surreptitious Balance Sheets 25
...
The Busy Executive's Database Guide 15
The Gourmet Microwave 40
You Can Combat Computer Stress! 35

(17 row(s) affected)

NULL represents all values in the title column. The result set returns values for the quantity sold of each title and the total
quantity sold of all titles. Applying the CUBE operator or ROLLUP operator returns the same result.

This example uses the cube_examples table to show how the CUBE operator affects the result set and uses an aggregate
function (SUM). The cube_examples table contains a product name, a customer name, and the number of orders each customer
has made for a particular product.

USE pubs
CREATE TABLE cube_examples
(product_name varchar(30) NULL,
 customer_name varchar(30) NULL,
 number_of_orders int NULL
)

INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Filo Mix', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Outback Lager', 'Wilman Kala', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Filo Mix', 'Romero y tomillo', 20)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Ikura', 'Wilman Kala', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Ikura', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Outback Lager', 'Wilman Kala', 20)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Filo Mix', 'Wilman Kala', 30)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Filo Mix', 'Eastern Connection', 40)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Outback Lager', 'Eastern Connection', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Ikura', 'Wilman Kala', 40)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Ikura', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Filo Mix', 'Romero y tomillo', 50)

First, issue a typical query with a GROUP BY clause and the result set.

USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
FROM cube_examples
GROUP BY product_name, customer_name
ORDER BY product_name

The GROUP BY causes the result set to form groups within groups. Here is the result set:

product_name customer_name
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Ikura Romero y tomillo 20
Ikura Wilman Kala 50

Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30

(7 row(s) affected)

Next, issue a query with a GROUP BY clause by using the CUBE operator. The result set should include the same information, and
super-aggregate information for each of the GROUP BY columns.

USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
FROM cube_examples
GROUP BY product_name, customer_name
WITH CUBE

The result set for the CUBE operator holds the values from the simple GROUP BY result set above, and adds the super-aggregates
for each column in the GROUP BY clause. NULL represents all values in the set from which the aggregate is computed. Here is the
result set:

product_name customer_name
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Filo Mix NULL 150
Ikura Romero y tomillo 20
Ikura Wilman Kala 50
Ikura NULL 70
Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30
Outback Lager NULL 40
NULL NULL 260
NULL Eastern Connection 50
NULL Romero y tomillo 100
NULL Wilman Kala 110

(14 row(s) affected)

Line 4 of the result set indicates that a total of 150 orders for Filo Mix was placed for all customers.

Line 11 of the result set indicates that the total number of orders placed for all products by all customers is 260.

Lines 12-14 of the result set indicate that the total number of orders for each customer for all products are 100, 110, and 50,
respectively.

V. Use CUBE on a result set with three columns

This example shows two code examples. The first code example produces a CUBE result set with three columns, and the second
example produces a four-column CUBE result set.

The first SELECT statement returns the publication name, title, and quantity of books sold. The GROUP BY clause in this example
includes two columns called pub_name and title. There are also two one-to-many relationships between publishers and titles
and between titles and sales.

By using the CUBE operator, the result set contains more detailed information about the quantities of titles sold by publishers.
NULL represents all values in the title column.

USE pubs
SELECT pub_name, title, SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
 ON sales.title_id = titles.title_id INNER JOIN publishers
 ON publishers.pub_id = titles.pub_id
GROUP BY pub_name, title
WITH CUBE

Here is the result set:

pub_name title qty
-------------------- -- ------
Algodata Infosystems But Is It User Friendly? 30
Algodata Infosystems Cooking with Computers: Surreptitious Ba 25
Algodata Infosystems Secrets of Silicon Valley 50
Algodata Infosystems Straight Talk About Computers 15
Algodata Infosystems The Busy Executive's Database Guide 15
Algodata Infosystems NULL 135
Binnet & Hardley Computer Phobic AND Non-Phobic Individu 20
Binnet & Hardley Fifty Years in Buckingham Palace Kitche 20

... ...
NULL Sushi, Anyone? 20
NULL The Busy Executive's Database Guide 15
NULL The Gourmet Microwave 40
NULL You Can Combat Computer Stress! 35

(36 row(s) affected)

Increasing the number of columns in the GROUP BY clause shows why the CUBE operator is an n-dimensional operator. A
GROUP BY clause with two columns returns three more kinds of groupings when the CUBE operator is used. The number of
groupings can be more than three, depending on the distinct values in the columns.

The result set is grouped by the publisher name and then by the book title. The quantity of each title sold by each publisher is
listed in the right-hand column.

NULL in the title column represents all titles. For more information about how to differentiate specific values and all values in the
result set, see Example H. The CUBE operator returns these groups of information from one SELECT statement:

Quantity of each title that each publisher has sold

Quantity of each title sold

Quantity of titles sold by each publisher

Total number of titles sold by all publishers

Each column referenced in the GROUP BY clause has been cross-referenced with all other columns in the GROUP BY clause and
the SUM aggregate has been reapplied, which produces additional rows in the result set. Information returned in the result set
grows n-dimensionally along with the number of columns in the GROUP BY clause.

Note Ensure that the columns following the GROUP BY clause have meaningful, real-life relationships with each other. For
example, if you use au_fname and au_lname, the CUBE operator returns irrelevant information, such as the number of books
sold by authors with the same first name. Using the CUBE operator on a real-life hierarchy, such as yearly sales and quarterly
sales, produces meaningless rows in the result set. It is more efficient to use the ROLLUP operator.

In this second code example, the GROUP BY clause contains three columns cross-referenced by the CUBE operator. Three one-to-
many relationships exist between publishers and authors, between authors and titles, and between titles and sales.

By using the CUBE operator, more detailed information is returned about the quantities of titles sold by publishers.

USE pubs
SELECT pub_name, au_lname, title, SUM(qty)
FROM authors INNER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id INNER JOIN titles
 ON titles.title_id = titleauthor.title_id INNER JOIN publishers
 ON publishers.pub_id = titles.pub_id INNER JOIN sales
 ON sales.title_id = titles.title_id
GROUP BY pub_name, au_lname, title
WITH CUBE

The CUBE operator returns this information based on the cross-referenced groupings returned with the CUBE operator:

Quantity of each title that each publisher has sold for each author

Quantity of all titles each publisher has sold for each author

Quantity of all titles each publisher has sold

Total quantity of all titles sold by all publishers for all authors

Quantity of each title sold by all publishers for each author

Quantity of all titles sold by all publishers for each author

Quantity of each title sold by each publisher for all authors

Quantity of each title sold by all publishers for each author

Note The super-aggregate for all publishers, all titles, and all authors is greater than the total number of sales, because a number
of books have more than one author.

A pattern emerges as the number of relationships grow. The pattern of values and NULL in the report shows which groups have
been formed for a summary aggregate. Explicit information about the groups is provided by the GROUPING function.

W. Use the GROUPING function with CUBE

This example shows how the SELECT statement uses the SUM aggregate, the GROUP BY clause, and the CUBE operator. It also
uses the GROUPING function on the two columns listed after the GROUP BY clause.

USE pubs
SELECT pub_name, GROUPING(pub_name),title, GROUPING(title),
 SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
 ON sales.title_id = titles.title_id INNER JOIN publishers
 ON publishers.pub_id = titles.pub_id
GROUP BY pub_name, title
WITH CUBE

The result set has two columns containing 0 and 1 values, which are produced by the GROUPING(pub_name) and
GROUPING(title) expressions.

Here is the result set:

pub_name title qty
-------------------- --- ------------------------- --- -----------
Algodata Infosystems 0 But Is It User Friendly? 0 30
Algodata Infosystems 0 Cooking with Computers: S 0 25
Algodata Infosystems 0 Secrets of Silicon Valley 0 50
Algodata Infosystems 0 Straight Talk About Compu 0 15
Algodata Infosystems 0 The Busy Executive's Data 0 15
Algodata Infosystems 0 NULL 1 135
Binnet & Hardley 0 Computer Phobic AND Non-P 0 20
Binnet & Hardley 0 Fifty Years in Buckingham 0 20
... ...
NULL 1 The Busy Executive's Data 0 15
NULL 1 The Gourmet Microwave 0 40
NULL 1 You Can Combat Computer S 0 35

(36 row(s) affected)

X. Use the ROLLUP operator

This example shows two code examples. This first example retrieves the product name, customer name, and the sum of orders
placed and uses the ROLLUP operator.

USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
 AS 'Sum orders'
FROM cube_examples
GROUP BY product_name, customer_name
WITH ROLLUP

Here is the result set:

product_name customer_name Sum orders
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Filo Mix NULL 150
Ikura Romero y tomillo 20
Ikura Wilman Kala 50
Ikura NULL 70
Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30
Outback Lager NULL 40
NULL NULL 260

(11 row(s) affected)

This second example performs a ROLLUP operation on the company and department columns and totals the number of
employees.

The ROLLUP operator produces a summary of aggregates. This is useful when summary information is needed but a full CUBE

provides extraneous data or when you have sets within sets. For example, departments within a company are a set within a set.

USE pubs
CREATE TABLE personnel
(
 company_name varchar(20),
 department varchar(15),
 num_employees int
)

INSERT personnel VALUES ('Du monde entier', 'Finance', 10)
INSERT personnel VALUES ('Du monde entier', 'Engineering', 40)
INSERT personnel VALUES ('Du monde entier', 'Marketing', 40)
INSERT personnel VALUES ('Piccolo und mehr', 'Accounting', 20)
INSERT personnel VALUES ('Piccolo und mehr', 'Personnel', 30)
INSERT personnel VALUES ('Piccolo und mehr', 'Payroll', 40)

In this query, the company name, department, and the sum of all employees for the company become part of the result set, in
addition to the ROLLUP calculations.

SELECT company_name, department, SUM(num_employees)
FROM personnel
GROUP BY company_name, department WITH ROLLUP

Here is the result set:

company_name department
-------------------- --------------- -----------
Du monde entier Engineering 40
Du monde entier Finance 10
Du monde entier Marketing 40
Du monde entier NULL 90
Piccolo und mehr Accounting 20
Piccolo und mehr Payroll 40
Piccolo und mehr Personnel 30
Piccolo und mehr NULL 90
NULL NULL 180

(9 row(s) affected)

Y. Use the GROUPING function

This example adds three new rows to the cube_examples table. Each of the three records NULL in one or more columns to show
only the ROLLUP function produces a value of 1 in the grouping column. In addition, this example modifies the SELECT statement
that was used in the earlier example.

USE pubs
-- Add first row with a NULL customer name and 0 orders.
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES ('Ikura', NULL, 0)

-- Add second row with a NULL product and NULL customer with real value
-- for orders.
INSERT cube_examples (product_name, customer_name, number_of_orders)
 VALUES (NULL, NULL, 50)

-- Add third row with a NULL product, NULL order amount, but a real
-- customer name.
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES (NULL, 'Wilman Kala', NULL)

SELECT product_name AS Prod, customer_name AS Cust,
 SUM(number_of_orders) AS 'Sum Orders',
 GROUPING(product_name) AS 'Grp prod_name',
 GROUPING(customer_name) AS 'Grp cust_name'
FROM cube_examples
GROUP BY product_name, customer_name
WITH ROLLUP

The GROUPING function can be used only with CUBE or ROLLUP. The GROUPING function returns 1 when an expression
evaluates to NULL, because the column value is NULL and represents the set of all values. The GROUPING function returns 0
when the corresponding column (whether it is NULL or not) did not come from either the CUBE or ROLLUP options as a syntax
value. The returned value has a tinyint data type.

Here is the result set:

Prod Cust Sum Orders Grp prod_name Grp cust_name

------------- ------------------ ----------- ------------- -------------
NULL NULL 50 0 0
NULL Wilman Kala NULL 0 0
NULL NULL 50 0 1
Filo Mix Eastern Connection 40 0 0
Filo Mix Romero y tomillo 80 0 0
Filo Mix Wilman Kala 30 0 0
Filo Mix NULL 150 0 1
Ikura NULL 0 0 0
Ikura Romero y tomillo 20 0 0
Ikura Wilman Kala 50 0 0
Ikura NULL 70 0 1
Outback Lager Eastern Connection 10 0 0
Outback Lager Wilman Kala 30 0 0
Outback Lager NULL 40 0 1
NULL NULL 310 1 1

(15 row(s) affected)

Z. Use SELECT with GROUP BY, an aggregate function, and ROLLUP

This example uses a SELECT query that contains an aggregate function and a GROUP BY clause, which lists pub_name,
au_lname, and title, in that order.

USE pubs
SELECT pub_name, au_lname, title, SUM(qty) AS 'SUM'
FROM authors INNER JOIN titleauthor
 ON authors.au_id = titleauthor.au_id INNER JOIN titles
 ON titles.title_id = titleauthor.title_id INNER JOIN publishers
 ON publishers.pub_id = titles.pub_id INNER JOIN sales
 ON sales.title_id = titles.title_id
GROUP BY pub_name, au_lname, title
WITH ROLLUP

By using the ROLLUP operator, these groupings are created by moving right to left along the list of columns.

pub_name au_lname title SUM(qty)
pub_name au_lname NULL SUM(qty)
pub_name NULL NULL SUM(qty)
NULL NULL NULL SUM(qty)

NULL represents all values for that column.

If you use the SELECT statement without the ROLLUP operator, the statement creates a single grouping. The query returns a sum
value for each unique combination of pub_name, au_lname, and title.

pub_name au_lname title SUM(qty)

Compare these examples with the groupings created by using the CUBE operator on the same query.

pub_name au_lname title SUM(qty)
pub_name au_lname NULL SUM(qty)
pub_name NULL NULL SUM(qty)
NULL NULL NULL SUM(qty)
NULL au_lname title SUM(qty)
NULL au_lname NULL SUM(qty)
pub_name NULL title SUM(qty)
NULL NULL title SUM(qty)

The groupings correspond to the information returned in the result set. NULL in the result set represents all values in the column.
The ROLLUP operator returns the following data when the columns (pub_name, au_lname, title) are in the order listed in the
GROUP BY clause:

Quantity of each title that each publisher has sold for each author

Quantity of all titles each publisher has sold for each author

Quantity of all titles each publisher has sold

Total quantity of all titles sold by all publishers for all authors

Here is the result set:

pub_name au_lname title SUM

----------------- ------------ ------------------------------------ ---
Algodata Infosys Bennet The Busy Executive's Database Guide 15
Algodata Infosys Bennet NULL 15
Algodata Infosys Carson NULL 30
Algodata Infosys Dull Secrets of Silicon Valley 50
Algodata Infosys Dull NULL 50
... ...
New Moon Books White Prolonged Data Deprivation: Four 15
New Moon Books White NULL 15
New Moon Books NULL NULL 316
NULL NULL NULL 791

(49 row(s) affected)

The GROUPING function can be used with the ROLLUP operator or with the CUBE operator. You can apply this function to one of
the columns in the select list. The function returns either 1 or 0 depending upon whether the column is grouped by the ROLLUP
operator.

a. Use the INDEX optimizer hint

This example shows two ways to use the INDEX optimizer hint. The first example shows how to force the optimizer to use a
nonclustered index to retrieve rows from a table and the second example forces a table scan by using an index of 0.

-- Use the specifically named INDEX.
USE pubs
SELECT au_lname, au_fname, phone
FROM authors WITH (INDEX(aunmind))
WHERE au_lname = 'Smith'

Here is the result set:

au_lname au_fname phone
-------------------------------------- -------------------- ----------
Smith Meander 913 843-0462

(1 row(s) affected)

-- Force a table scan by using INDEX = 0.
USE pubs
SELECT emp_id, fname, lname, hire_date
FROM employee (index = 0)
WHERE hire_date > '10/1/1994'

b. Use OPTION and the GROUP hints

This example shows how the OPTION (GROUP) clause is used with a GROUP BY clause.

USE pubs
SELECT a.au_fname, a.au_lname, SUBSTRING(t.title, 1, 15)
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON t.title_id = ta.title_id
GROUP BY a.au_lname, a.au_fname, t.title
ORDER BY au_lname ASC, au_fname ASC
OPTION (HASH GROUP, FAST 10)

c. Use the UNION query hint

This example uses the MERGE UNION query hint.

USE pubs
SELECT *
FROM authors a1
OPTION (MERGE UNION)
SELECT *
FROM authors a2

d. Use a simple UNION

The result set in this example includes the contents of the ContactName, CompanyName, City, and Phone columns of both the
Customers and SouthAmericanCustomers tables.

USE Northwind
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME = 'SouthAmericanCustomers')
 DROP TABLE SouthAmericanCustomers
GO
-- Create SouthAmericanCustomers table.
SELECT ContactName, CompanyName, City, Phone
INTO SouthAmericanCustomers
FROM Customers
WHERE Country IN ('USA', 'Canada')
GO
-- Here is the simple union.
USE Northwind
SELECT ContactName, CompanyName, City, Phone
FROM Customers
WHERE Country IN ('USA', 'Canada')
UNION
SELECT ContactName, CompanyName, City, Phone
FROM SouthAmericanCustomers
ORDER BY CompanyName, ContactName ASC
GO

e. Use SELECT INTO with UNION

In this example, the INTO clause in the first SELECT statement specifies that the table named CustomerResults holds the final
result set of the union of the designated columns of the Customers and SouthAmericanCustomers tables.

USE Northwind
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'CustomerResults')
 DROP TABLE CustomerResults
GO
USE Northwind
SELECT ContactName, CompanyName, City, Phone INTO CustomerResults
FROM Customers
WHERE Country IN ('USA', 'Canada')
UNION
SELECT ContactName, CompanyName, City, Phone
FROM SouthAmericanCustomers
ORDER BY CompanyName, ContactName ASC
GO

f. Use UNION of two SELECT statements with ORDER BY

The order of certain parameters used with the UNION clause is important. This example shows the incorrect and correct use of
UNION in two SELECT statements in which a column is to be renamed in the output.

/* INCORRECT */
USE Northwind
GO
SELECT City
FROM Customers
ORDER BY Cities
UNION
SELECT Cities = City
FROM SouthAmericanCustomers
GO

/* CORRECT */
USE Northwind
GO
SELECT Cities = City
FROM Customers
 UNION
SELECT City
FROM SouthAmericanCustomers
ORDER BY Cities
GO

g. Use UNION of three SELECT statements showing the effects of ALL and parentheses

These examples use UNION to combine the results of three tables, in which all have the same 5 rows of data. The first example
uses UNION ALL to show the duplicated records, and returns all 15 rows. The second example uses UNION without ALL to
eliminate the duplicate rows from the combined results of the three SELECT statements, and returns 5 rows.

The final example uses ALL with the first UNION, and parentheses around the second UNION that is not using ALL. The second
UNION is processed first because it is in parentheses, and returns 5 rows because the ALL option is not used and the duplicates
are removed. These 5 rows are combined with the results of the first SELECT through the UNION ALL keywords, which does not

remove the duplicates between the two sets of 5 rows. The final result has 10 rows.

USE Northwind
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'CustomersOne')
 DROP TABLE CustomersOne
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'CustomersTwo')
 DROP TABLE CustomersTwo
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'CustomersThree')
 DROP TABLE CustomersThree
GO
USE Northwind
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersOne
FROM Customers
WHERE Country = 'Mexico'
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersTwo
FROM Customers
WHERE Country = 'Mexico'
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersThree
FROM Customers
WHERE Country = 'Mexico'
GO
-- Union ALL
SELECT ContactName
FROM CustomersOne
 UNION ALL
SELECT ContactName
FROM CustomersTwo
 UNION ALL
SELECT ContactName
FROM CustomersThree
GO

USE Northwind
GO
SELECT ContactName
FROM CustomersOne
 UNION
SELECT ContactName
FROM CustomersTwo
 UNION
SELECT ContactName
FROM CustomersThree
GO

USE Northwind
GO
SELECT ContactName
FROM CustomersOne
 UNION ALL
 (
 SELECT ContactName
 FROM CustomersTwo
 UNION
 SELECT ContactName
 FROM CustomersThree
)
GO

See Also

CREATE TRIGGER

CREATE VIEW

DELETE

Distributed Queries

EXECUTE

Expressions

INSERT

LIKE

sp_dboption

Subquery Fundamentals

UNION

UPDATE

Using Variables and Parameters

WHERE

Transact-SQL Reference (SQL Server 2000)

SERVERPROPERTY
Returns property information about the server instance.

Syntax

SERVERPROPERTY (propertyname)

Arguments

propertyname

Is an expression containing the property information to be returned for the server. propertyname can be one of these values.

Property name Values returned
Collation The name of the default collation for the server.

Returns NULL if invalid input or error.

Base data type: nvarchar

Edition The edition of the Microsoft® SQL Server™ instance
installed on the server.

Returns:

'Desktop Engine'
'Developer Edition'
'Enterprise Edition'
'Enterprise Evaluation Edition'
'Personal Edition'
'Standard Edition'

Base data type: nvarchar(128)

Engine Edition The engine edition of the SQL Server instance
installed on the server.

1 = Personal or Desktop Engine (MSDE 2000)
2 = Standard
3 = Enterprise (returned for Enterprise, Enterprise
Evaluation, and Developer)

Base data type: int

InstanceName The name of the instance to which the user is
connected.

Returns NULL if the instance name is the default
instance, or invalid input or error.

Base data type: nvarchar

IsClustered The server instance is configured in a failover cluster.

1 = Clustered.
0 = Not Clustered.
NULL = Invalid input, or error.

Base data type: int

IsFullTextInstalled The full-text component is installed with the current
instance of SQL Server.

1 = Full-text is installed.
0 = Full-text is not installed.
NULL = Invalid input, or error.

Base data type: int

IsIntegratedSecurityOnly The server is in integrated security mode.

1 = Integrated Security.
0 = Not Integrated Security.
NULL = Invalid input, or error.

Base data type: int

IsSingleUser The server is in single user mode.

1 = Single User.
0 = Not Single User
NULL = Invalid input, or error.

Base data type: int

IsSyncWithBackup The database is either a published database or a
distribution database, and can be restored without
disrupting transactional replication.

1 = True.
0 = False.

Base data type: int

LicenseType Mode of this instance of SQL Server.

PER_SEAT = Per-seat mode
PER_PROCESSOR = Per-processor mode
DISABLED = Licensing is disabled.

Base data type: nvarchar(128)

MachineName Windows NT computer name on which the server
instance is running.

For a clustered instance, an instance of SQL Server
running on a virtual server on Microsoft Cluster
Server, it returns the name of the virtual server.

Returns NULL if invalid input or error.

Base data type: nvarchar

NumLicenses Number of client licenses registered for this instance
of SQL Server, if in per-seat mode.

Number of processors licensed for this instance of
SQL Server, if in per-processor mode.

Returns NULL if the server is none of the above.

Base data type: int

ProcessID Process ID of the SQL Server service. (ProcessID is
useful in identifying which sqlservr.exe belongs to this
instance.)

Returns NULL if invalid input or error.

Base data type: int

ProductVersion The version of the instance of SQL Server, in the form
of 'major.minor.build'.

Base data type: varchar(128)

ProductLevel The level of the version of the SQL Server instance.

Returns:
'RTM' = shipping version.
'SPn' = service pack version
'Bn', = beta version.

Base data type: nvarchar(128).

ServerName Both the Windows NT server and instance
information associated with a specified instance of
SQL Server.

Returns NULL if invalid input or error.

Base data type: nvarchar

Return Types

sql_variant

Remarks

The ServerName property of the SERVERPROPERTY function and @@SERVERNAME return similar information. The
ServerName property provides the Windows NT server and instance name that together make up the unique server instance.
@@SERVERNAME provides the currently configured local server name.

ServerName property and @@SERVERNAME return the same information if the default server name at the time of installation
has not been changed. The local server name can be configured by executing sp_addlinkedserver and sp_droplinkedserver.

If the local server name has been changed from the default server name at install time, then @@SERVERNAME returns the new
name.

Examples

This example used the SERVERPROPERTY function in a SELECT statement to return information about the current server. This
scenario is useful when there are multiple instances of SQL Server installed on a Windows NT server, and the client needs to open
another connection to the same instance used by the current connection.

SELECT CONVERT(char(20), SERVERPROPERTY('servername'))

See Also

@@SERVERNAME

Transact-SQL Reference (SQL Server 2000)

SESSION_USER
Is a niladic function that allows a system-supplied value for the current session's username to be inserted into a table when no
default value is specified. Also allows the username to be used in queries, error messages, and so on.

Syntax

SESSION_USER

Return Types

nchar

Remarks

Use SESSION_USER with DEFAULT constraints in either the CREATE TABLE or ALTER TABLE statements, or use as any standard
function.

Examples

A. Use SESSION _USER to return the session's current username

This example declares a variable as char, assigns the current value of SESSION_USER, and then prints the variable with a text
description.

DECLARE @session_usr char(30)
SET @session_usr = SESSION_USER
SELECT 'This session''s current user is: '+ @session_usr
GO

Here is the result set:

--
This session's current user is: dbo

(1 row(s) affected)

B. Use SESSION _USER with DEFAULT constraints

This example creates a table using the SESSION_USER niladic function as a DEFAULT constraint for the delivery person.

USE pubs
GO
CREATE TABLE deliveries2
(
 order_id int IDENTITY(5000, 1) NOT NULL,
 cust_id int NOT NULL,
 order_date datetime NOT NULL DEFAULT GETDATE(),
 delivery_date datetime NOT NULL DEFAULT DATEADD(dd, 10, GETDATE()),
 delivery_person char(30) NOT NULL DEFAULT SESSION_USER
)
GO
INSERT deliveries2 (cust_id)
VALUES (7510)
INSERT deliveries2 (cust_id)
VALUES (7231)
INSERT deliveries2 (cust_id)
VALUES (7028)
INSERT deliveries2 (cust_id)
VALUES (7392)
INSERT deliveries2 (cust_id)
VALUES (7452)
GO

This query selects all information from the deliveries2 table.

SELECT order_id AS 'Ord#', cust_id AS 'Cust#', order_date,
 delivery_date, delivery_person AS 'Delivery'
FROM deliveries2
ORDER BY order_id
GO

Here is the result set:

Ord# Cust# order_date delivery_date Delivery
---- ------ ------------------ -------------------- ----------------
5000 7510 Mar 4 1998 10:21AM Mar 14 1998 10:21AM dbo
5001 7231 Mar 4 1998 10:21AM Mar 14 1998 10:21AM dbo
5002 7028 Mar 4 1998 10:21AM Mar 14 1998 10:21AM dbo
5003 7392 Mar 4 1998 10:21AM Mar 14 1998 10:21AM dbo
5004 7452 Mar 4 1998 10:21AM Mar 14 1998 10:21AM dbo

(5 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

CURRENT_TIMESTAMP

CURRENT_USER

SYSTEM_USER

System Functions

USER

USER_NAME

Transact-SQL Reference (SQL Server 2000)

SESSIONPROPERTY
Returns the SET options settings of a session.

Syntax

SESSIONPROPERTY (option)

Arguments

option

Is the current option setting for this session. option may be any of the following values.

Option Description
ANSI_NULLS Specifies whether the SQL-92 compliant behavior of

equals (=) and not equal to (<>) against null values
is applied.

1 = ON
0 = OFF

ANSI_PADDING Controls the way the column stores values shorter
than the defined size of the column, and the way the
column stores values that have trailing blanks in
character and binary data.

1 = ON
0 = OFF

ANSI_WARNINGS Specifies whether the SQL-92 standard behavior of
raising error messages or warnings for certain
conditions, including divide-by-zero and arithmetic
overflow, is applied.

1 = ON
0 = OFF

ARITHABORT Determines whether a query is terminated when an
overflow or a divide-by-zero error occurs during
query execution.

1 = ON
0 = OFF

CONCAT_NULL_YIELDS_
NULL

Controls whether concatenation results are treated
as null or empty string values.

1 = ON
0 = OFF

NUMERIC_ROUNDABORT Specifies whether error messages and warnings are
generated when rounding in an expression causes a
loss of precision.

1 = ON
0 = OFF

QUOTED_IDENTIFIER Specifies whether SQL-92 rules regarding the use of
quotation marks to delimit identifiers and literal
strings are to be followed.

1 = ON
0 = OFF

<Any other string> NULL = Invalid input

Return Types

sql_variant

Remarks

SET options are figured by combining server-level, database-level, and user-specified options.

Examples

This example returns the setting for CONCAT_NULL_YIELDS_NULL option.

SELECT SESSIONPROPERTY ('CONCAT_NULL_YIELDS_NULL')

See Also

sql_variant

Transact-SQL Reference (SQL Server 2000)

SET @local_variable
Sets the specified local variable, previously created with the DECLARE @local_variable statement, to the given value.

Syntax

SET { { @local_variable = expression }
 | { @cursor_variable = { @cursor_variable | cursor_name
 | { CURSOR [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
 FOR select_statement
 [FOR { READ ONLY | UPDATE [OF column_name [,...n]] }
]
 }
 } }
 }

Arguments

@local_variable

Is the name of a variable of any type except cursor, text, ntext, or image. Variable names must begin with one at sign (@).
Variable names must conform to the rules for identifiers. For more information, see Using Identifiers.

expression

Is any valid Microsoft® SQL Server™ expression.

cursor_variable

Is the name of a cursor variable. If the target cursor variable previously referenced a different cursor, that previous reference is
removed.

cursor_name

Is the name of a cursor declared using the DECLARE CURSOR statement.

CURSOR

Specifies that the SET statement contains a declaration of a cursor.

SCROLL

Specifies that the cursor supports all fetch options (FIRST, LAST, NEXT, PRIOR, RELATIVE, and ABSOLUTE). SCROLL cannot be
specified if FAST_FORWARD is also specified.

FORWARD_ONLY

Specifies that the cursor supports only the FETCH NEXT option. The cursor can be retrieved only in one direction, from the first to
the last row. If FORWARD_ONLY is specified without the STATIC, KEYSET, or DYNAMIC keywords, the cursor is implemented as
DYNAMIC. When neither FORWARD_ONLY nor SCROLL is specified, FORWARD_ONLY is the default, unless the keywords STATIC,
KEYSET, or DYNAMIC are specified. STATIC, KEYSET, and DYNAMIC cursors default to SCROLL. FAST_FORWARD and
FORWARD_ONLY are mutually exclusive; if one is specified the other cannot be specified.

STATIC

Defines a cursor that makes a temporary copy of the data to be used by the cursor. All requests to the cursor are answered from
this temporary table in tempdb; therefore, modifications made to base tables are not reflected in the data returned by fetches
made to this cursor, and this cursor does not allow modifications.

KEYSET

Specifies that the membership and order of rows in the cursor are fixed when the cursor is opened. The set of keys that uniquely
identify the rows is built into a table in tempdb known as the keyset. Changes to nonkey values in the base tables, either made
by the cursor owner or committed by other users, are visible as the owner scrolls around the cursor. Inserts made by other users
are not visible (inserts cannot be made through a Transact-SQL server cursor). If a row is deleted, an attempt to fetch the row

returns an @@FETCH_STATUS of -2. Updates of key values from outside the cursor resemble a delete of the old row followed by
an insert of the new row. The row with the new values is not visible, and attempts to fetch the row with the old values return an
@@FETCH_STATUS of -2. The new values are visible if the update is done through the cursor by specifying the WHERE CURRENT
OF clause.

DYNAMIC

Defines a cursor that reflects all data changes made to the rows in its result set as you scroll around the cursor. The data values,
order, and membership of the rows can change on each fetch. The absolute and relative fetch options are not supported with
dynamic cursors.

FAST_FORWARD

Specifies a FORWARD_ONLY, READ_ONLY cursor with optimizations enabled. FAST_FORWARD cannot be specified if SCROLL is
also specified. FAST_FORWARD and FORWARD_ONLY are mutually exclusive, if one is specified the other cannot be specified.

READ_ONLY

Prevents updates from being made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an
UPDATE or DELETE statement. This option overrides the default capability of a cursor to be updated.

SCROLL LOCKS

Specifies that positioned updates or deletes made through the cursor are guaranteed to succeed. SQL Server locks the rows as
they are read into the cursor to ensure their availability for later modifications. SCROLL_LOCKS cannot be specified if
FAST_FORWARD is also specified.

OPTIMISTIC

Specifies that positioned updates or deletes made through the cursor do not succeed if the row has been updated since it was
read into the cursor. SQL Server does not lock rows as they are read into the cursor. It instead uses comparisons of timestamp
column values, or a checksum value if the table has no timestamp column, to determine if the row was modified after it was read
into the cursor. If the row was modified, the attempted positioned update or delete fails. OPTIMISTIC cannot be specified if
FAST_FORWARD is also specified.

TYPE_WARNING

Specifies that a warning message is sent to the client if the cursor is implicitly converted from the requested type to another.

FOR select_statement

Is a standard SELECT statement that defines the result set of the cursor. The keywords COMPUTE, COMPUTE BY, FOR BROWSE,
and INTO are not allowed within the select_statement of a cursor declaration.

If DISTINCT, UNION, GROUP BY, or HAVING are used, or an aggregate expression is included in the select_list, the cursor will be
created as STATIC.

If each of the underlying tables does not have a unique index and an SQL-92 SCROLL cursor or a Transact-SQL KEYSET cursor is
requested, it will automatically be a STATIC cursor.

If select_statement contains an ORDER BY in which the columns are not unique row identifiers, a DYNAMIC cursor is converted to
a KEYSET cursor, or to a STATIC cursor if a KEYSET cursor cannot be opened. This also happens for a cursor defined using SQL-92
syntax but without the STATIC keyword.

READ ONLY

Prevents updates from being made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an
UPDATE or DELETE statement. This option overrides the default capability of a cursor to be updated. This keyword varies from the
earlier READ_ONLY by having a space instead of an underscore between READ and ONLY.

UPDATE [OF column_name [,...n]]

Defines updatable columns within the cursor. If OF column_name [,...n] is supplied, only the columns listed will allow
modifications. If no list is supplied, all columns can be updated, unless the cursor has been defined as READ_ONLY.

Remarks

After declaration, all variables are initialized to NULL. Use the SET statement to assign a value that is not NULL to a declared
variable. The SET statement that assigns a value to the variable returns a single value. When initializing multiple variables use a
separate SET statement for each local variable.

Variables can be used only in expressions, not in place of object names or keywords. To construct dynamic SQL statements, use
EXECUTE.

The syntax rules for SET @cursor_variable do not include the LOCAL and GLOBAL keywords. When the SET @cursor_variable =
CURSOR... syntax is used, the cursor is created as GLOBAL or LOCAL, depending on the setting of the default to local cursor
database option.

Cursor variables are always local, even if they reference a global cursor. When a cursor variable references a global cursor, the
cursor has both a global and a local cursor reference. For more information, see Example C.

For more information, see DECLARE CURSOR.

Permissions

SET @local_variable permissions default to all users.

Examples

A. Print the value of a variable in itialized with SET

This example creates the @myvar variable, places a string value into the variable, and prints the value of the @myvar variable.

DECLARE @myvar char(20)
SET @myvar = 'This is a test'
SELECT @myvar
GO

B. Use a local variable assigned a value with SET in a SELECT statement

This example creates a local variable named @state and uses this local variable in a SELECT statement to find all author first and
last names where the author resides in the state of Utah.

USE pubs
GO
DECLARE @state char(2)
SET @state = 'UT'
SELECT RTRIM(au_fname) + ' ' + RTRIM(au_lname) AS Name, state
FROM authors
WHERE state = @state
GO

C. Use SET with a global cursor

This example creates a local variable and then sets the cursor variable to the global cursor name.

DECLARE my_cursor CURSOR GLOBAL FOR SELECT * FROM authors
 DECLARE @my_variable CURSOR
 SET @my_variable = my_cursor
 /* There is a GLOBAL declared
 reference (my_cursor) and a LOCAL variable
 reference (@my_variable) to the my_cursor
 cursor. */
 DEALLOCATE my_cursor /* There is now only a LOCAL variable
 reference (@my_variable) to the my_cursor
 cursor. */

D. Define a cursor w ith SET

This example uses the SET statement to define a cursor.

DECLARE @CursorVar CURSOR

SET @CursorVar = CURSOR SCROLL DYNAMIC
FOR
SELECT LastName, FirstName
FROM Northwind.dbo.Employees
WHERE LastName like 'B%'

OPEN @CursorVar

FETCH NEXT FROM @CursorVar
WHILE @@FETCH_STATUS = 0
BEGIN

 FETCH NEXT FROM @CursorVar
END

CLOSE @CursorVar
DEALLOCATE @CursorVar

E. Assign a value from a query

This example uses a query to assign a value to a variable.

USE Northwind
GO
DECLARE @rows int
SET @rows = (SELECT COUNT(*) FROM Customers)

See Also

DECLARE @local_variable

EXECUTE

Expressions

SELECT

SET

Using Variables and Parameters

Transact-SQL Reference (SQL Server 2000)

SET
The Transact-SQL programming language provides several SET statements that alter the current session handling of specific
information.

The SET statements are grouped into these categories.

Category Alters the current session settings for
Date and time Handling date and time data.
Locking Handling Microsoft® SQL Server™ locking.
Miscellaneous Miscellaneous SQL Server functionality.
Query execution Query execution and processing.
SQL-92 settings Using the SQL-92 default settings.
Statistics Displaying statistics information.
Transactions Handling SQL Server transactions.

Date and Time Statements

SET DATEFIRST

SET DATEFORMAT

Locking Statements

SET DEADLOCK_PRIORITY

SET LOCK_TIMEOUT

Miscellaneous Statements

SET CONCAT_NULL_YIELDS_NULL

SET CURSOR_CLOSE_ON_COMMIT

SET DISABLE_DEF_CNST_CHK

SET FIPS_FLAGGER

SET IDENTITY_INSERT

SET LANGUAGE

SET OFFSETS

SET QUOTED_IDENTIFIER

Query Execution Statements

SET ARITHABORT

SET ARITHIGNORE

SET FMTONLY

SET NOCOUNT

SET NOEXEC

SET NUMERIC_ROUNDABORT

SET PARSEONLY

SET QUERY_GOVERNOR_COST_LIMIT

SET ROWCOUNT

SET TEXTSIZE

SQL-92 Settings Statements

SET ANSI_DEFAULTS

SET ANSI_NULL_DFLT_OFF

SET ANSI_NULL_DFLT_ON

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

Statistics Statements

SET FORCEPLAN

SET SHOWPLAN_ALL

SET SHOWPLAN_TEXT

SET STATISTICS IO

SET STATISTICS PROFILE

SET STATISTICS TIME

Transactions Statements

SET IMPLICIT_TRANSACTIONS

SET REMOTE_PROC_TRANSACTIONS

SET TRANSACTION ISOLATION LEVEL

SET XACT_ABORT

Considerations When Using the SET Statements

Except for SET FIPS_FLAGGER, SET OFFSETS, SET PARSEONLY, and SET QUOTED_IDENTIFIER, all other SET statements are
set at execute or run time. SET FIPS_FLAGGER, SET OFFSETS, SET PARSEONLY, and SET QUOTED_IDENTIFIER are set at parse
time.

If a SET statement is set in a stored procedure, the value of the SET option is restored after control is returned from the
stored procedure. Therefore, a SET statement specified in dynamic SQL does not affect the statements that follow the
dynamic SQL statement.

Stored procedures execute with the SET settings specified at execute time except for SET ANSI_NULLS and SET
QUOTED_IDENTIFIER. Stored procedures specifying SET ANSI_NULLS or SET QUOTED_IDENTIFIER use the setting specified
at stored procedure creation time. If used inside a stored procedure, any SET setting is ignored.

The user options setting of sp_configure allows server-wide settings and works across multiple databases. This setting
also behaves like an explicit SET statement, except that it occurs at login time.

Database settings (set by using sp_dboption) are valid only at the database level and only take effect if explicitly set.
Database settings override server option settings (set using sp_configure).

With any of the SET statements with ON and OFF settings, it is possible to specify either an ON or OFF setting for multiple
SET options. For example,

SET QUOTED_IDENTIFIER, ANSI_NULLS ON

sets both QUOTED_IDENTIFIER and ANSI_NULLS to ON.

SET statement settings override database option settings (set by using sp_dboption). In addition, some connection settings
are set ON automatically when a user connects to a database based on the values put into effect by the prior use of the

sp_configure user options setting, or the values that apply to all ODBC and OLE/DB connections.

When a global or shortcut SET statement (for example, SET ANSI_DEFAULTS) sets a number of settings, issuing the shortcut
SET statement resets the prior settings for all those options affected by the shortcut SET statement. If an individual SET
option (affected by a shortcut SET statement) is explicitly set after the shortcut SET statement is issued, the individual SET
statement overrides the corresponding shortcut settings.

When batches are used, the database context is determined by the batch established with the USE statement. Ad hoc queries
and all other statements that are executed outside of the stored procedure and that are in batches inherit the option settings
of the database and connection established with the USE statement.

When a stored procedure is executed, either from a batch or from another stored procedure, it is executed under the option
values that are currently set in the database that contains the stored procedure. For example, when stored procedure
db1.dbo.sp1 calls stored procedure db2.dbo.sp2, stored procedure sp1 is executed under the current compatibility level
setting of database db1, and stored procedure sp2 is executed under the current compatibility level setting of database db2.

When a Transact-SQL statement refers to objects that reside in multiple databases, the current database context and the
current connection context (the database defined by the USE statement if it is in a batch, or the database that contains the
stored procedure if it is in a stored procedure) applies to that statement.

When creating and manipulating indexes on computed columns or indexed views, the SET options ARITHABORT,
CONCAT_NULL_YIELDS_NULL, QUOTED_IDENTIFIER, ANSI_NULLS, ANSI_PADDING, and ANSI_WARNINGS must be set to
ON. The option NUMERIC_ROUNDABORT must be set to OFF.

If any of these options are not set to the required values, INSERT, UPDATE, and DELETE actions on indexed views or tables
with indexes on computed columns will fail. SQL Server will raise an error listing all the options that are incorrectly set. Also,
SQL Server will process SELECT statements on these tables or indexed views as though the indexes on computed columns
or on the views do not exist.

Transact-SQL Reference (SQL Server 2000)

SET ANSI_DEFAULTS
Controls a group of Microsoft® SQL Server™ settings that collectively specify some SQL-92 standard behavior.

Syntax

SET ANSI_DEFAULTS { ON | OFF }

Remarks

When enabled (ON), this option enables the following SQL-92 settings:

SET ANSI_NULLS SET CURSOR_CLOSE_ON_COMMIT
SET ANSI_NULL_DFLT_ON SET IMPLICIT_TRANSACTIONS
SET ANSI_PADDING SET QUOTED_IDENTIFIER
SET ANSI_WARNINGS

Together, these SQL-92 standard SET options define the query processing environment for the duration of the user's work
session, a running trigger, or a stored procedure. These SET options, however, do not include all of the options required to
conform to the SQL-92 standard.

When dealing with indexes on computed columns and indexed views, four of these defaults (ANSI_NULLS, ANSI_PADDING,
ANSI_WARNINGS, and QUOTED_IDENTIFIER) must be set to ON. These defaults are among seven SET options that must be
assigned required values when creating and manipulating indexes on computed columns and indexed views. The other SET
options are: ARITHABORT (ON), CONCAT_NULL_YIELDS_NULL (ON), and NUMERIC_ROUNDABORT (OFF). For more information
about required SET option settings with indexed views and indexes on computed columns, see Considerations When Using SET
Statements in SET.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set ANSI_DEFAULTS to ON when
connecting. The driver and Provider then set CURSOR_CLOSE_ON_COMMIT and IMPLICIT_TRANSACTIONS to OFF. The OFF
settings for SET CURSOR_CLOSE_ON_COMMIT and SET IMPLICIT_TRANSACTIONS can be configured in ODBC data sources, in
ODBC connection attributes, or in OLE DB connection properties that are set in the application before connecting to SQL Server.
SET ANSI_DEFAULTS defaults to OFF for connections from DB-Library applications.

When SET ANSI_DEFAULTS is issued, SET QUOTED_IDENTIFIER is set at parse time, and these options are set at execute time:

SET ANSI_NULLS SET ANSI_WARNINGS
SET ANSI_NULL_DFLT_ON SET CURSOR_CLOSE_ON_COMMIT
SET ANSI_PADDING SET IMPLICIT_TRANSACTIONS

Permissions

SET ANSI_DEFAULTS permissions default to all users.

Examples

This example sets SET ANSI_DEFAULTS ON and uses the DBCC USEROPTIONS statement to display the settings that are affected.

-- SET ANSI_DEFAULTS ON.
SET ANSI_DEFAULTS ON
GO
-- Display the current settings.
DBCC USEROPTIONS
GO
-- SET ANSI_DEFAULTS OFF.
SET ANSI_DEFAULTS OFF
GO

See Also

DBCC USEROPTIONS

SET

SET ANSI_NULL_DFLT_ON

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

SET CURSOR_CLOSE_ON_COMMIT

SET IMPLICIT_TRANSACTIONS

SET QUOTED_IDENTIFIER

Transact-SQL Reference (SQL Server 2000)

SET ANSI_NULL_DFLT_OFF
Alters the session's behavior to override default nullability of new columns when the ANSI null default option for the database
is true. For more information about setting the value for ANSI null default, see sp_dboption and Setting Database Options.

Syntax

SET ANSI_NULL_DFLT_OFF {ON | OFF}

Remarks

This setting only affects the nullability of new columns when the nullability of the column is not specified in the CREATE TABLE
and ALTER TABLE statements. When SET ANSI_NULL_DFLT_OFF is ON, new columns created with the ALTER TABLE and CREATE
TABLE statements are, by default, NOT NULL if the nullability status of the column is not explicitly specified. SET
ANSI_NULL_DFLT_OFF has no effect on columns created with an explicit NULL or NOT NULL.

Both SET ANSI_NULL_DFLT_OFF and SET ANSI_NULL_DFLT_ON cannot be set ON simultaneously. If one option is set ON, the
other option is set OFF. Therefore, either ANSI_NULL_DFLT_OFF or SET ANSI_NULL_DFLT_ON can be set ON, or both can be set
OFF. If either option is ON, that setting (SET ANSI_NULL_DFLT_OFF or SET ANSI_NULL_DFLT_ON) takes effect. If both options are
set OFF, Microsoft® SQL Server™ uses the value of the ANSI null default option of sp_dboption.

For the most reliable operation of Transact-SQL scripts that may be used in databases with different nullability settings, it is best
to always specify NULL or NOT NULL in CREATE TABLE and ALTER TABLE statements.

The setting of SET ANSI_NULL_DFLT_OFF is set at execute or run time and not at parse time.

Permissions

SET ANSI_NULL_DFLT_OFF permissions default to all users.

Examples

This example shows the effects of SET ANSI_NULL_DFLT_OFF with both settings for the ANSI null default database option.

USE pubs
GO
-- Set the 'ANSI null default' database option to true by executing
-- sp_dboption.
GO
EXEC sp_dboption 'pubs','ANSI null default','true'
GO
-- Create table t1.
CREATE TABLE t1 (a tinyint)
GO
-- NULL INSERT should succeed.
INSERT INTO t1 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_OFF to ON and create table t2.
SET ANSI_NULL_DFLT_OFF ON
GO
CREATE TABLE t2 (a tinyint)
GO
-- NULL INSERT should fail.
INSERT INTO t2 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_OFF to OFF and create table t3.
SET ANSI_NULL_DFLT_OFF off
GO
CREATE TABLE t3 (a tinyint)
GO
-- NULL INSERT should succeed.
INSERT INTO t3 (a) VALUES (null)
GO
-- This illustrates the effect of having both the sp_dboption and SET
-- option disabled.
-- Set the 'ANSI null default' database option to false.
EXEC sp_dboption 'pubs','ANSI null default','false'
GO
-- Create table t4.
CREATE TABLE t4 (a tinyint)
GO
-- NULL INSERT should fail.

INSERT INTO t4 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_OFF to ON and create table t5.
SET ANSI_NULL_DFLT_OFF ON
GO
CREATE TABLE t5 (a tinyint)
GO
-- NULL insert should fail.
INSERT INTO t5 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_OFF to OFF and create table t6.
SET ANSI_NULL_DFLT_OFF OFF
GO
CREATE TABLE t6 (a tinyint)
GO
-- NULL insert should fail.
INSERT INTO t6 (a) VALUES (null)
GO
-- Drop tables t1 through t6.
DROP TABLE t1
DROP TABLE t2
DROP TABLE t3
DROP TABLE t4
DROP TABLE t5
DROP TABLE t6
GO

See Also

ALTER TABLE

CREATE TABLE

SET

SET ANSI_NULL_DFLT_ON

Transact-SQL Reference (SQL Server 2000)

SET ANSI_NULL_DFLT_ON
Alters the session's behavior to override default nullability of new columns when the ANSI null default option for the database
is false. For more information about setting the value for ANSI null default, see sp_dboption and Setting Database Options.

Syntax

SET ANSI_NULL_DFLT_ON {ON | OFF}

Remarks

This setting only affects the nullability of new columns when the nullability of the column is not specified in the CREATE TABLE
and ALTER TABLE statements. When SET ANSI_NULL_DFLT_ON is ON, new columns created with the ALTER TABLE and CREATE
TABLE statements allow null values if the nullability status of the column is not explicitly specified. SET ANSI_NULL_DFLT_ON has
no effect on columns created with an explicit NULL or NOT NULL.

Both SET ANSI_NULL_DFLT_OFF and SET ANSI_NULL_DFLT_ON cannot be set ON simultaneously. If one option is set ON, the
other option is set OFF. Therefore, either ANSI_NULL_DFLT_OFF or ANSI_NULL_DFLT_ON can be set ON, or both can be set OFF.
If either option is ON, that setting (SET ANSI_NULL_DFLT_OFF or SET ANSI_NULL_DFLT_ON) takes effect. If both options are set
OFF, Microsoft® SQL Server™ uses the value of the ANSI null default option of sp_dboption.

For the most reliable operation of Transact-SQL scripts used in databases with different nullability settings, it is best to specify
NULL or NOT NULL in CREATE TABLE and ALTER TABLE statements.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set ANSI_NULL_DFLT_ON to ON when
connecting. SET ANSI_NULL_DFLT_ON defaults to OFF for connections from DB-Library applications.

When SET ANSI_DEFAULTS is ON, SET ANSI_NULL_DFLT_ON is enabled.

The setting of SET ANSI_NULL_DFLT_ON is set at execute or run time and not at parse time.

Permissions

SET ANSI_NULL_DFLT_ON permissions default to all users.

Examples

This example shows the effects of SET ANSI_NULL_DFLT_ON with both settings for the ANSI null default database option.

USE pubs
GO
-- The code from this point on demonstrates that SET ANSI_NULL_DFLT_ON
-- has an effect when the 'ANSI null default' for the database is false.
-- Set the 'ANSI null default' database option to false by executing
-- sp_dboption.
EXEC sp_dboption 'pubs','ANSI null default','false'
GO
-- Create table t1.
CREATE TABLE t1 (a tinyint)
GO
-- NULL INSERT should fail.
INSERT INTO t1 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_ON to ON and create table t2.
SET ANSI_NULL_DFLT_ON ON
GO
CREATE TABLE t2 (a tinyint)
GO
-- NULL insert should succeed.
INSERT INTO t2 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_ON to OFF and create table t3.
SET ANSI_NULL_DFLT_ON OFF
GO
CREATE TABLE t3 (a tinyint)
GO
-- NULL insert should fail.
INSERT INTO t3 (a) VALUES (null)
GO
-- The code from this point on demonstrates that SET ANSI_NULL_DFLT_ON
-- has no effect when the 'ANSI null default' for the database is true.

-- Set the 'ANSI null default' database option to true.
EXEC sp_dboption 'pubs','ANSI null default','true'
GO
-- Create table t4.
CREATE TABLE t4 (a tinyint)
GO
-- NULL INSERT should succeed.
INSERT INTO t4 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_ON to ON and create table t5.
SET ANSI_NULL_DFLT_ON ON
GO
CREATE TABLE t5 (a tinyint)
GO
-- NULL INSERT should succeed.
INSERT INTO t5 (a) VALUES (null)
GO
-- SET ANSI_NULL_DFLT_ON to OFF and create table t6.
SET ANSI_NULL_DFLT_ON OFF
GO
CREATE TABLE t6 (a tinyint)
GO
-- NULL INSERT should succeed.
INSERT INTO t6 (a) VALUES (null)
GO
-- Set the 'ANSI null default' database option to false.
EXEC sp_dboption 'pubs','ANSI null default','false'
GO
-- Drop tables t1 through t6.
DROP TABLE t1
DROP TABLE t2
DROP TABLE t3
DROP TABLE t4
DROP TABLE t5
DROP TABLE t6
GO

See Also

ALTER TABLE

CREATE TABLE

SET

SET ANSI_DEFAULTS

SET ANSI_NULL_DFLT_OFF

Transact-SQL Reference (SQL Server 2000)

SET ANSI_NULLS
Specifies SQL-92 compliant behavior of the Equals (=) and Not Equal to (<>) comparison operators when used with null values.

Syntax

SET ANSI_NULLS {ON | OFF}

Remarks

The SQL-92 standard requires that an equals (=) or not equal to (<>) comparison against a null value evaluates to FALSE. When
SET ANSI_NULLS is ON, a SELECT statement using WHERE column_name = NULL returns zero rows even if there are null values
in column_name. A SELECT statement using WHERE column_name <> NULL returns zero rows even if there are nonnull values in
column_name.

When SET ANSI_NULLS is OFF, the Equals (=) and Not Equal To (<>) comparison operators do not follow the SQL-92 standard. A
SELECT statement using WHERE column_name = NULL returns the rows with null values in column_name. A SELECT statement
using WHERE column_name <> NULL returns the rows with nonnull values in the column. In addition, a SELECT statement using
WHERE column_name <> XYZ_value returns all rows that are not XYZ value and that are not NULL.

Note Whether Microsoft® SQL Server™ interprets an empty string as either a single space or as a true empty string is controlled
by the compatibility level setting of sp_dbcmptlevel. If the compatibility level is less than or equal to 65, SQL Server interprets
empty strings as single spaces. If the compatibility level is equal to 70, SQL Server interprets empty strings as empty strings. For
more information, see sp_dbcmptlevel.

When SET ANSI_NULLS is ON, all comparisons against a null value evaluate to UNKNOWN. When SET ANSI_NULLS is OFF,
comparisons of all data against a null value evaluate to TRUE if the data value is NULL. If not specified, the setting of the ANSI
nulls option of the current database applies. For more information about the ANSI nulls database option, see sp_dboption and
Setting Database Options.

For a script to work as intended, regardless of the ANSI nulls database option or the setting of SET ANSI_NULLS, use IS NULL
and IS NOT NULL in comparisons that may contain null values.

For stored procedures, SQL Server uses the SET ANSI_NULLS setting value from the initial creation time of the stored procedure.
Whenever the stored procedure is subsequently executed, the setting of SET ANSI_NULLS is restored to its originally used value
and takes effect. When invoked inside a stored procedure, the setting of SET ANSI_NULLS is not changed.

SET ANSI_NULLS should be set to ON for executing distributed queries.

SET ANSI_NULLS also must be ON when creating or manipulating indexes on computed columns or indexed views. If SET
ANSI_NULLS is OFF, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed columns or indexed
views will fail. SQL Server will return an error listing all SET options violating the required values. In addition, when executing a
SELECT statement, if SET ANSI_NULLS is OFF, SQL Server will ignore the index values on computed columns or views and resolve
the select as though there were no such indexes on the tables or views.

Note ANSI_NULLS is one of seven SET options that must be set to required values when dealing with indexes on computed
columns or indexed views. The options ANSI_PADDING, ANSI_WARNINGS, ARITHABORT, QUOTED_IDENTIFIER, and
CONCAT_NULL_YIELDS_NULL also must be set to ON, while NUMERIC_ROUNDABORT must be set to OFF.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set ANSI_NULLS to ON when
connecting. This setting can be configured in ODBC data sources, in ODBC connection attributes, or in OLE DB connection
properties that are set in the application before connecting to SQL Server. SET ANSI_NULLS defaults to OFF for connections from
DB-Library applications.

When SET ANSI_DEFAULTS is ON, SET ANSI_NULLS is enabled.

The setting of SET ANSI_NULLS is set at execute or run time and not at parse time.

Permissions

SET ANSI_NULLS permissions default to all users.

Examples

This example uses the Equals (=) and Not Equal To (<>) comparison operators to make comparisons with NULL and nonnull
values in a table. This example also demonstrates that IS NULL is not affected by the SET ANSI_NULLS setting.

-- Create table t1 and insert values.
CREATE TABLE t1 (a int null)
INSERT INTO t1 values (NULL)
INSERT INTO t1 values (0)
INSERT INTO t1 values (1)
GO
-- Print message and perform SELECT statements.
PRINT 'Testing default setting'
DECLARE @varname int
SELECT @varname = NULL
SELECT *
FROM t1
WHERE a = @varname
SELECT *
FROM t1
WHERE a <> @varname
SELECT *
FROM t1
WHERE a IS NULL
GO
-- SET ANSI_NULLS to ON and test.
PRINT 'Testing ANSI_NULLS ON'
SET ANSI_NULLS ON
GO
DECLARE @varname int
SELECT @varname = NULL
SELECT *
FROM t1
WHERE a = @varname
SELECT *
FROM t1
WHERE a <> @varname
SELECT *
FROM t1
WHERE a IS NULL
GO
-- SET ANSI_NULLS to OFF and test.
PRINT 'Testing SET ANSI_NULLS OFF'
SET ANSI_NULLS OFF
GO
DECLARE @varname int
SELECT @varname = NULL
SELECT *
FROM t1
WHERE a = @varname
SELECT *
FROM t1
WHERE a <> @varname
SELECT *
FROM t1
WHERE a IS NULL
GO
-- Drop table t1.
DROP TABLE t1
GO

See Also

= (Equals)

IF...ELSE

<> (Not Equal To)

SET

SET ANSI_DEFAULTS

WHERE

WHILE

Transact-SQL Reference (SQL Server 2000)

SET ANSI_PADDING
Controls the way the column stores values shorter than the defined size of the column, and the way the column stores values that
have trailing blanks in char, varchar, binary, and varbinary data.

Syntax

SET ANSI_PADDING { ON | OFF }

Remarks

Columns defined with char, varchar, binary, and varbinary data types have a defined size.

This setting affects only the definition of new columns. After the column is created, Microsoft® SQL Server™ stores the values
based on the setting when the column was created. Existing columns are not affected by a later change to this setting.

Warning It is recommended that ANSI_PADDING always be set to ON.

This table shows the effects of the SET ANSI_PADDING setting when values are inserted into columns with char, varchar, binary,
and varbinary data types.

Setting
char(n) NOT NULL or
binary(n) NOT NULL

char(n) NULL or
binary(n) NULL

varchar(n) or varbinary(n)

ON Pad original value (with
trailing blanks for char
columns and with
trailing zeros for binary
columns) to the length
of the column.

Follows same rules
as for char(n) or
binary(n) NOT
NULL when SET
ANSI_PADDING is
ON.

Trailing blanks in character
values inserted into varchar
columns are not trimmed.
Trailing zeros in binary
values inserted into
varbinary columns are not
trimmed. Values are not
padded to the length of the
column.

OFF Pad original value (with
trailing blanks for char
columns and with
trailing zeros for binary
columns) to the length
of the column.

Follows same rules
as for varchar or
varbinary when
SET ANSI_PADDING
is OFF.

Trailing blanks in character
values inserted into a
varchar column are
trimmed. Trailing zeros in
binary values inserted into a
varbinary column are
trimmed.

Note When padded, char columns are padded with blanks, and binary columns are padded with zeros. When trimmed, char
columns have the trailing blanks trimmed, and binary columns have the trailing zeros trimmed.

SET ANSI_PADDING must be ON when creating or manipulating indexes on computed columns or indexed views. For more
information about required SET option settings with indexed views and indexes on computed columns, see Considerations When
Using SET Statements in SET.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set ANSI_PADDING to ON when
connecting. This can be configured in ODBC data sources, in ODBC connection attributes, or OLE DB connection properties set in
the application before connecting. SET ANSI_PADDING defaults to OFF for connections from DB-Library applications.

nchar, nvarchar, and ntext columns always display the SET ANSI_PADDING ON behavior, regardless of the current setting of
SET ANSI_PADDING.

When SET ANSI_DEFAULTS is ON, SET ANSI_PADDING is enabled.

The setting of SET ANSI_PADDING is set at execute or run time and not at parse time.

Permissions

SET ANSI_PADDING permissions default to all users.

Examples

This example demonstrates how the setting affects each of these data types.

SET ANSI_PADDING ON
GO
PRINT 'Testing with ANSI_PADDING ON'
GO

CREATE TABLE t1
(charcol char(16) NULL,
varcharcol varchar(16) NULL,
varbinarycol varbinary(8))
GO
INSERT INTO t1 VALUES ('No blanks', 'No blanks', 0x00ee)
INSERT INTO t1 VALUES ('Trailing blank ', 'Trailing blank ', 0x00ee00)

SELECT 'CHAR'='>' + charcol + '<', 'VARCHAR'='>' + varcharcol + '<',
 varbinarycol
FROM t1
GO

SET ANSI_PADDING OFF
GO
PRINT 'Testing with ANSI_PADDING OFF'
GO

CREATE TABLE t2
(charcol char(16) NULL,
varcharcol varchar(16) NULL,
varbinarycol varbinary(8))
GO
INSERT INTO t2 VALUES ('No blanks', 'No blanks', 0x00ee)
INSERT INTO t2 VALUES ('Trailing blank ', 'Trailing blank ', 0x00ee00)

SELECT 'CHAR'='>' + charcol + '<', 'VARCHAR'='>' + varcharcol + '<',
 varbinarycol
FROM t2
GO

DROP TABLE t1
DROP TABLE t2
GO

See Also

CREATE TABLE

INSERT

SET

SET ANSI_DEFAULTS

Transact-SQL Reference (SQL Server 2000)

SET ANSI_WARNINGS
Specifies SQL-92 standard behavior for several error conditions.

Syntax

SET ANSI_WARNINGS { ON | OFF }

Remarks

SET ANSI_WARNINGS affects these conditions:

When ON, if null values appear in aggregate functions (such as SUM, AVG, MAX, MIN, STDEV, STDEVP, VAR, VARP, or
COUNT) a warning message is generated. When OFF, no warning is issued.

When ON, divide-by-zero and arithmetic overflow errors cause the statement to be rolled back and an error message is
generated. When OFF, divide-by-zero and arithmetic overflow errors cause null values to be returned. The behavior in which
a divide-by-zero or arithmetic overflow error causes null values to be returned occurs if an INSERT or UPDATE is attempted
on a character, Unicode, or binary column in which the length of a new value exceeds the maximum size of the column. If
SET ANSI_WARNINGS is ON, the INSERT or UPDATE is canceled as specified by the SQL-92 standard. Trailing blanks are
ignored for character columns and trailing nulls are ignored for binary columns. When OFF, data is truncated to the size of
the column and the statement succeeds.

Note When truncation happens in any conversion to or from binary or varbinary data, no warning or error is issued,
regardless of SET options.

The user options option of sp_configure can be used to set the default setting for ANSI_WARNINGS for all connections to the
server. For more information, see sp_configure or Setting Configuration Options.

SET ANSI_WARNINGS must be ON when creating or manipulating indexes on computed columns or indexed views. If SET
ANSI_WARNINGS is OFF, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed columns or
indexed views will fail. For more information about required SET option settings with indexed views and indexes on computed
columns, see Considerations When Using SET Statements in SET.

Microsoft® SQL Server™ includes the ANSI warnings database option, which is equivalent to SET ANSI_WARNINGS. When SET
ANSI_WARNINGS is ON, errors or warnings are raised in divide-by-zero, string too large for database column, and other similar
errors. When SET ANSI_WARNINGS is OFF, these errors and warnings are not raised. The default value in the model database for
SET ANSI_WARNINGS is OFF. If not specified, the setting of ANSI warnings applies. If SET ANSI_WARNINGS is OFF, SQL Server
uses the ANSI warnings setting of sp_dboption. For more information, see sp_dboption or Setting Database Options.

ANSI_WARNINGS should be set to ON for executing distributed queries.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set ANSI_WARNINGS to ON when
connecting. This can be configured in ODBC data sources, in ODBC connection attributes, or OLE DB connection properties set in
the application before connecting. SET ANSI_WARNINGS defaults to OFF for connections from DB-Library applications.

When SET ANSI_DEFAULTS is ON, SET ANSI_WARNINGS is enabled.

The setting of SET ANSI_WARNINGS is set at execute or run time and not at parse time.

If either SET ARITHABORT or SET ARITHIGNORE is OFF and SET ANSI_WARNINGS is ON, SQL Server still returns an error
message when encountering divide-by-zero or overflow errors.

Permissions

SET ANSI_WARNINGS permissions default to all users.

Examples

This example demonstrates the three situations mentioned above with the SET ANSI_WARNINGS to ON and OFF.

USE pubs
GO
CREATE TABLE T1 (a int, b int NULL, c varchar(20))
GO
SET NOCOUNT ON

GO
INSERT INTO T1 VALUES (1, NULL, '')
INSERT INTO T1 VALUES (1, 0, '')
INSERT INTO T1 VALUES (2, 1, '')
INSERT INTO T1 VALUES (2, 2, '')
GO
SET NOCOUNT OFF
GO

PRINT '**** Setting ANSI_WARNINGS ON'
GO

SET ANSI_WARNINGS ON
GO

PRINT 'Testing NULL in aggregate'
GO
SELECT a, SUM(b) FROM T1 GROUP BY a
GO

PRINT 'Testing String Overflow in INSERT'
GO
INSERT INTO T1 VALUES (3, 3, 'Text string longer than 20 characters')
GO

PRINT 'Testing Divide by zero'
GO
SELECT a/b FROM T1
GO

PRINT '**** Setting ANSI_WARNINGS OFF'
GO
SET ANSI_WARNINGS OFF
GO

PRINT 'Testing NULL in aggregate'
GO
SELECT a, SUM(b) FROM T1 GROUP BY a
GO

PRINT 'Testing String Overflow in INSERT'
GO
INSERT INTO T1 VALUES (4, 4, 'Text string longer than 20 characters')
GO

PRINT 'Testing Divide by zero'
GO
SELECT a/b FROM T1
GO
DROP TABLE T1
GO

See Also

INSERT

SELECT

SET

SET ANSI_DEFAULTS

Transact-SQL Reference (SQL Server 2000)

SET ARITHABORT
Terminates a query when an overflow or divide-by-zero error occurs during query execution.

Syntax

SET ARITHABORT { ON | OFF }

Remarks

If SET ARITHABORT is ON, these error conditions cause the query or batch to terminate. If the errors occur in a transaction, the
transaction is rolled back. If SET ARITHABORT is OFF and one of these errors occurs, a warning message is displayed, and NULL is
assigned to the result of the arithmetic operation.

Note If neither SET ARITHABORT nor SET ARITHIGNORE is set, Microsoft® SQL Server™ returns NULL and returns a warning
message after the query is executed.

When an INSERT, DELETE or UPDATE statement encounters an arithmetic error (overflow, divide-by-zero, or a domain error)
during expression evaluation when SET ARITHABORT is OFF, SQL Server inserts or updates a NULL value. If the target column is
not nullable, the insert or update action fails and the user receives an error.

If either SET ARITHABORT or SET ARITHIGNORE is OFF and SET ANSI_WARNINGS is ON, SQL Server still returns an error
message when encountering divide-by-zero or overflow errors.

The setting of SET ARITHABORT is set at execute or run time and not at parse time.

SET ARITHABORT must be ON when creating or manipulating indexes on computed columns or indexed views. If SET
ARITHABORT is OFF, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed columns or indexed
views will fail. For more information about required SET option settings with indexed views and indexes on computed columns,
see Considerations When Using SET Statements in SET.

Permissions

SET ARITHABORT permissions default to all users.

Examples

This example demonstrates divide-by-zero and overflow errors with both SET ARITHABORT settings.

-- Create tables t1 and t2 and insert data values.
CREATE TABLE t1 (a tinyint, b tinyint)
CREATE TABLE t2 (a tinyint)
GO
INSERT INTO t1 VALUES (1, 0)
INSERT INTO t1 VALUES (255, 1)
GO

PRINT '*** SET ARITHABORT ON'
GO
-- SET ARITHABORT ON and testing.
SET ARITHABORT ON
GO

PRINT '*** Testing divide by zero during SELECT'
GO
SELECT a/b
FROM t1
GO
PRINT '*** Testing divide by zero during INSERT'
GO
INSERT INTO t2
SELECT a/b
FROM t1
GO

PRINT '*** Testing tinyint overflow'
GO
INSERT INTO t2
SELECT a+b
FROM t1
GO

PRINT '*** Resulting data - should be no data'
GO
SELECT *
FROM t2
GO

-- Truncate table t2.
TRUNCATE TABLE t2
GO

-- SET ARITHABORT OFF and testing.
PRINT '*** SET ARITHABORT OFF'
GO
SET ARITHABORT OFF
GO
-- This works properly.
PRINT '*** Testing divide by zero during SELECT'
GO
SELECT a/b
FROM t1
GO
-- This works as if SET ARITHABORT was ON.
PRINT '*** Testing divide by zero during INSERT'
GO
INSERT INTO t2
SELECT a/b
FROM t1
GO
PRINT '*** Testing tinyint overflow'
GO
INSERT INTO t2
SELECT a+b
FROM t1
GO

PRINT '*** Resulting data - should be 0 rows'
GO
SELECT *
FROM t2
GO
-- Drop tables t1 and t2.
DROP TABLE t1
DROP TABLE t2
GO

See Also

SET

SET ARITHIGNORE

Transact-SQL Reference (SQL Server 2000)

SET ARITHIGNORE
Controls whether error messages are returned from overflow or divide-by-zero errors during a query.

Syntax

SET ARITHIGNORE { ON | OFF }

Remarks

The SET ARITHIGNORE setting only controls whether an error message is returned. Microsoft® SQL Server™ returns a NULL in a
calculation involving an overflow or divide-by-zero error, regardless of this setting. The SET ARITHABORT setting can be used to
determine whether or not the query is terminated. This setting has no effect on errors occurring during INSERT, UPDATE, and
DELETE statements.

If either SET ARITHABORT or SET ARITHIGNORE is OFF and SET ANSI_WARNINGS is ON, SQL Server still returns an error
message when encountering divide-by-zero or overflow errors.

The setting of SET ARITHIGNORE is set at execute or run time and not at parse time.

Permissions

SET ARITHIGNORE permissions default to all users.

Examples

This example demonstrates both SET ARITHIGNORE settings with both types of query errors.

PRINT 'Setting ARITHIGNORE ON'
GO
-- SET ARITHIGNORE ON and testing.
SET ARITHIGNORE ON
GO
SELECT 1/0
GO
SELECT CAST(256 AS tinyint)
GO

PRINT 'Setting ARITHIGNORE OFF'
GO
-- SET ARITHIGNORE OFF and testing.
SET ARITHIGNORE OFF
GO
SELECT 1/0
GO
SELECT CAST(256 AS tinyint)
GO

See Also

SET

SET ARITHABORT

Transact-SQL Reference (SQL Server 2000)

SET CONCAT_NULL_YIELDS_NULL
Controls whether or not concatenation results are treated as null or empty string values.

Syntax

SET CONCAT_NULL_YIELDS_NULL { ON | OFF }

Remarks

When SET CONCAT_NULL_YIELDS_NULL is ON, concatenating a null value with a string yields a NULL result. For example, SELECT
'abc' + NULL yields NULL. When SET CONCAT_NULL_YIELDS_NULL is OFF, concatenating a null value with a string yields the
string itself (the null value is treated as an empty string). For example, SELECT 'abc' + NULL yields abc.

If not specified, the setting of the concat null yields null database option applies.

Note SET CONCAT_NULL_YIELDS_NULL is the same setting as the concat null yields null setting of sp_dboption.

The setting of SET CONCAT_NULL_YIELDS_NULL is set at execute or run time and not at parse time.

SET CONCAT_NULL_YIELDS_NULL must be ON when creating or manipulating indexes on computed columns or indexed views. If
SET CONCAT_NULL_YIELDS_NULL is OFF, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed
columns or indexed views will fail. For more information about required SET option settings with indexed views and indexes on
computed columns, see Considerations When Using SET Statements in SET.

See Also

SET

Setting Database Options

sp_dboption

Transact-SQL Reference (SQL Server 2000)

SET CONTEXT_INFO
Associates up to 128 bytes of binary information with the current session or connection.

Syntax

SET CONTEXT_INFO { binary | @binary_var }

Arguments

binary | @binary_var

Specify a binary constant or binary or varbinary variable to associate with the current session or connection.

Remarks

Session context information is stored in the context_info column in the master.dbo.sysprocesses table. This is a
varbinary(128) column.

SET CONTEXT_INFO cannot be specified in a user-defined function. You cannot supply a null value to SET CONTEXT_INFO
because the sysprocesses table does not allow null values.

SET CONTEXT_INFO does not accept expressions other than constants or variable names. To set the context information to the
result of a function call, you must first place the function call result in a binary or varbinary variable.

When you issue SET CONTEXT_INFO in a stored procedure or trigger, unlike in other SET statements, the new value set for the
context information persists after the stored procedure or trigger completes.

Transact-SQL Reference (SQL Server 2000)

SET CURSOR_CLOSE_ON_COMMIT
Controls whether or not a cursor is closed when a transaction is committed.

Syntax

SET CURSOR_CLOSE_ON_COMMIT { ON | OFF }

Remarks

When SET CURSOR_CLOSE_ON_COMMIT is ON, this setting closes any open cursors on commit or rollback in compliance with
SQL-92. When SET CURSOR_CLOSE_ON_COMMIT is OFF, the cursor is not closed when a transaction is committed.

When SET CURSOR_CLOSE_ON_COMMIT is OFF, a ROLLBACK statement closes only open asynchronous cursors that are not
fully populated.STATIC or INSENSITIVE cursors that were opened after modifications were made will no longer reflect the state of
the data if the modifications are rolled back.

SET CURSOR_CLOSE_ON_COMMIT controls the same behavior as the cursor close on commit database option of
sp_dboption. If CURSOR_CLOSE_ON_COMMIT is set to ON or OFF, that setting is used on the connection. If SET
CURSOR_CLOSE_ON_COMMIT has not been specified, the cursor close on commit setting of sp_dboption applies.

The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver both set CURSOR_CLOSE_ON_COMMIT to OFF
when they connect. DB-Library does not automatically set the CURSOR_CLOSE_ON_COMMIT value.

When SET ANSI_DEFAULTS is ON, SET CURSOR_CLOSE_ON_COMMIT is enabled.

The setting of SET CURSOR_CLOSE_ON_COMMIT is set at execute or run time and not at parse time.

Permissions

SET CURSOR_CLOSE_ON_COMMIT permissions default to all users.

Examples

This example defines a cursor in a transaction and attempts to use it after the transaction is committed.

SET NOCOUNT ON

CREATE TABLE t1 (a int)
GO

INSERT INTO t1 values (1)
INSERT INTO t1 values (2)
GO

PRINT '-- SET CURSOR_CLOSE_ON_COMMIT ON'
GO
SET CURSOR_CLOSE_ON_COMMIT ON
GO

PRINT '-- BEGIN TRAN'
BEGIN TRAN

PRINT '-- Declare and open cursor'
DECLARE testcursor CURSOR FOR
SELECT a
FROM t1

OPEN testcursor

PRINT '-- Commit tran'
COMMIT TRAN

PRINT '-- Try to use cursor'

FETCH NEXT FROM testcursor

CLOSE testcursor
DEALLOCATE testcursor
GO

PRINT '-- SET CURSOR_CLOSE_ON_COMMIT OFF'
GO
SET CURSOR_CLOSE_ON_COMMIT OFF
GO

PRINT '-- BEGIN TRAN'
BEGIN TRAN

PRINT '-- Declare and open cursor'
DECLARE testcursor CURSOR FOR
SELECT a
FROM t1

OPEN testcursor

PRINT '-- Commit tran'
COMMIT TRAN

PRINT '-- Try to use cursor'

FETCH NEXT FROM testcursor

CLOSE testcursor
DEALLOCATE testcursor
GO

DROP TABLE t1
GO

See Also

BEGIN TRANSACTION

CLOSE

COMMIT TRANSACTION

ROLLBACK TRANSACTION

SET

SET ANSI_DEFAULTS

Setting Database Options

sp_dboption

Transact-SQL Reference (SQL Server 2000)

SET DATEFIRST
Sets the first day of the week to a number from 1 through 7.

Syntax

SET DATEFIRST { number | @number_var }

Arguments

number | @number_var

Is an integer indicating the first day of the week, and can be one of these values.

Value First day of the week is
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 (default, U.S. English) Sunday

Remarks

Use the @@DATEFIRST function to check the current setting of SET DATEFIRST.

The setting of SET DATEFIRST is set at execute or run time and not at parse time.

Permissions

SET DATEFIRST permissions default to all users.

Examples

This example displays the day of the week for a date value and shows the effects of changing the DATEFIRST setting.

-- SET DATEFIRST to U.S. English default value of 7.
SET DATEFIRST 7
GO
SELECT CAST('1/1/99' AS datetime), DATEPART(dw, '1/1/99')
-- January 1, 1999 is a Friday. Because the U.S. English default
-- specifies Sunday as the first day of the week, DATEPART of 1/1/99
-- (Friday) yields a value of 6, because Friday is the sixth day of the
-- week when starting with Sunday as day 1.
SET DATEFIRST 3
-- Because Wednesday is now considered the first day of the week,
-- DATEPART should now show that 1/1/99 (a Friday) is the third day of the -- week. The following DATEPART
function should return a value of 3.
SELECT CAST('1/1/99' AS datetime), DATEPART(dw, '1/1/99')
GO

See Also

Data Types

@@DATEFIRST

datetime and smalldatetime

SET

Transact-SQL Reference (SQL Server 2000)

SET DATEFORMAT
Sets the order of the dateparts (month/day/year) for entering datetime or smalldatetime data.

Syntax

SET DATEFORMAT { format | @format_var }

Arguments

format | @format_var

Is the order of the dateparts. Can be either Unicode or DBCS converted to Unicode. Valid parameters include mdy, dmy, ymd,
ydm, myd, and dym. The U.S. English default is mdy.

Remarks

This setting is used only in the interpretation of character strings as they are converted to date values. It has no effect on the
display of date values.

The setting of SET DATEFORMAT is set at execute or run time and not at parse time.

Permissions

SET DATEFORMAT permissions default to all users.

Examples

This example uses different date formats to handle date strings in different formats.

SET DATEFORMAT mdy
GO
DECLARE @datevar datetime
SET @datevar = '12/31/98'
SELECT @datevar
GO

SET DATEFORMAT ydm
GO
DECLARE @datevar datetime
SET @datevar = '98/31/12'
SELECT @datevar
GO

SET DATEFORMAT ymd
GO
DECLARE @datevar datetime
SET @datevar = '98/12/31'
SELECT @datevar
GO

See Also

Data Types

datetime and smalldatetime

SET

Transact-SQL Reference (SQL Server 2000)

SET DEADLOCK_PRIORITY
Controls the way the session reacts when in a deadlock situation. Deadlock situations arise when two processes have data locked,
and each process cannot release its lock until other processes have released theirs.

Syntax

SET DEADLOCK_PRIORITY { LOW | NORMAL | @deadlock_var }

Arguments

LOW

Specifies that the current session is the preferred deadlock victim. The deadlock victim's transaction is automatically rolled back
by Microsoft® SQL Server™, and the deadlock error message 1205 is returned to the client application.

NORMAL

Specifies that the session return to the default deadlock-handling method.

@deadlock_var

Is a character variable specifying the deadlock-handling method. @deadlock_var is 3 if LOW is specified, and 6 if NORMAL is
specified.

Remarks

The setting of SET DEADLOCK_PRIORITY is set at execute or run time and not at parse time.

Permissions

SET DEADLOCK_PRIORITY permissions default to all users.

See Also

@@LOCK_TIMEOUT

SET

SET LOCK_TIMEOUT

Transact-SQL Reference (SQL Server 2000)

SET DISABLE_DEF_CNST_CHK
Specified interim deferred violation checking and was used for efficiency purposes in Microsoft® SQL Server™ version 6.x.

Important SET DISABLE_DEF_CNST_CHK is included for backward compatibility only. The functionality of this statement is now
built into Microsoft SQL Server 2000. In a future version of SQL Server, SET DISABLE_DEF_CNST_CHK may not be supported.

Remarks

If the compatibility level is set to 60 or 65, executing this statement does nothing. However, if the compatibility level is set to 70,
executing this statement does nothing, and SQL Server returns a warning message. For more information about setting
compatibility levels, see sp_dbcmptlevel

See Also

CREATE TABLE

DELETE

INSERT

SET

UPDATE

Transact-SQL Reference (SQL Server 2000)

SET FIPS_FLAGGER
Specifies checking for compliance with the FIPS 127-2 standard, which is based on the SQL-92 standard.

Syntax

SET FIPS_FLAGGER level

Arguments

level

Is the level of compliance against the FIPS 127-2 standard for which all database operations are checked. If a database operation
conflicts with the level of SQL-92 standards chosen, Microsoft® SQL Server™ generates a warning.

level must be one of these values.

Value Description
ENTRY Standards checking for SQL-92 entry-level compliance.
FULL Standards checking for SQL-92 full compliance.
INTERMEDIATE Standards checking for SQL-92 intermediate-level

compliance.
OFF No standards checking.

Remarks

The setting of SET FIPS_FLAGGER is set at parse time and not at execute or run time. Setting at parse time means that if the SET
statement is present in the batch or stored procedure, it takes effect, regardless of whether code execution actually reaches that
point; and the SET statement takes effect before any statements are executed. For example, even if the SET statement is in an
IF...ELSE statement block that is never reached during execution, the SET statement still takes effect because the IF...ELSE statement
block is parsed.

If SET FIPS_FLAGGER is set in a stored procedure, the value of SET FIPS_FLAGGER is restored after control is returned from the
stored procedure. Therefore, a SET FIPS_FLAGGER statement specified in dynamic SQL does not have any effect on any
statements following the dynamic SQL statement.

Permissions

SET FIPS_FLAGGER permissions default to all users.

See Also

SET

Transact-SQL Reference (SQL Server 2000)

SET FMTONLY
Returns only meta data to the client.

Syntax

SET FMTONLY { ON | OFF }

Remarks

No rows are processed or sent to the client as a result of the request when SET FMTONLY is turned ON.

The setting of SET FMTONLY is set at execute or run time and not at parse time.

Permissions

SET FMTONLY permissions default to all users.

Examples

This example changes the SET FMTONLY setting to ON and executes a SELECT statement. The setting causes the statement to
return the column information only; no rows of data are returned.

SET FMTONLY ON
GO
USE pubs
GO
SELECT *
FROM pubs.dbo.authors
GO

See Also

SET

Transact-SQL Reference (SQL Server 2000)

SET FORCEPLAN
Makes the Microsoft® SQL Server™ query optimizer process a join in the same order as tables appear in the FROM clause of a
SELECT statement only.

Syntax

SET FORCEPLAN { ON | OFF }

Remarks

SET FORCEPLAN essentially overrides the logic used by the query optimizer to process a Transact-SQL SELECT statement. The
data returned by the SELECT statement is the same regardless of this setting. The only difference is the way SQL Server processes
the tables to satisfy the query.

Query optimizer hints can also be used in queries to affect how SQL Server processes the SELECT statement.

The setting of SET FORCEPLAN is set at execute or run time and not at parse time.

Permissions

SET FORCEPLAN permissions default to all users.

Examples

This example performs a join between three tables. The SHOWPLAN_TEXT setting is enabled so SQL Server returns information
about how it is processing the query differently after the SET FORCE_PLAN setting is enabled.

-- SET SHOWPLAN_TEXT to ON.
SET SHOWPLAN_TEXT ON
GO
USE pubs
GO
-- Inner join.
SELECT a.au_lname, a.au_fname, t.title
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON ta.title_id = t.title_id
GO
-- SET FORCEPLAN to ON.
SET FORCEPLAN ON
GO
-- Reexecute inner join to see the effect of SET FORCEPLAN ON.
SELECT a.au_lname, a.au_fname, t.title
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON ta.title_id = t.title_id
GO
SET SHOWPLAN_TEXT OFF
GO
SET FORCEPLAN OFF
GO

See Also

SELECT

SET

SET SHOWPLAN_ALL

SET SHOWPLAN_TEXT

Transact-SQL Reference (SQL Server 2000)

SET IDENTITY_INSERT
Allows explicit values to be inserted into the identity column of a table.

Syntax

SET IDENTITY_INSERT [database. [owner.]] { table } { ON | OFF }

Arguments

database

Is the name of the database in which the specified table resides.

owner

Is the name of the table owner.

table

Is the name of a table with an identity column.

Remarks

At any time, only one table in a session can have the IDENTITY_INSERT property set to ON. If a table already has this property set
to ON, and a SET IDENTITY_INSERT ON statement is issued for another table, Microsoft® SQL Server™ returns an error message
that states SET IDENTITY_INSERT is already ON and reports the table it is set ON for.

If the value inserted is larger than the current identity value for the table, SQL Server automatically uses the new inserted value as
the current identity value.

The setting of SET IDENTITY_INSERT is set at execute or run time and not at parse time.

Permissions

Execute permissions default to the sysadmin fixed server role, and the db_owner and db_ddladmin fixed database roles, and
the object owner.

Examples

This example creates a table with an identity column and shows how the SET IDENTITY_INSERT setting can be used to fill a gap in
the identity values caused by a DELETE statement.

-- Create products table.
CREATE TABLE products (id int IDENTITY PRIMARY KEY, product varchar(40))
GO
-- Inserting values into products table.
INSERT INTO products (product) VALUES ('screwdriver')
INSERT INTO products (product) VALUES ('hammer')
INSERT INTO products (product) VALUES ('saw')
INSERT INTO products (product) VALUES ('shovel')
GO

-- Create a gap in the identity values.
DELETE products
WHERE product = 'saw'
GO

SELECT *
FROM products
GO

-- Attempt to insert an explicit ID value of 3;
-- should return a warning.
INSERT INTO products (id, product) VALUES(3, 'garden shovel')
GO
-- SET IDENTITY_INSERT to ON.
SET IDENTITY_INSERT products ON
GO

-- Attempt to insert an explicit ID value of 3

INSERT INTO products (id, product) VALUES(3, 'garden shovel').
GO

SELECT *
FROM products
GO
-- Drop products table.
DROP TABLE products
GO

See Also

CREATE TABLE

IDENTITY (Property)

INSERT

SET

Transact-SQL Reference (SQL Server 2000)

SET IMPLICIT_TRANSACTIONS
Sets implicit transaction mode for the connection.

Syntax

SET IMPLICIT_TRANSACTIONS { ON | OFF }

Remarks

When ON, SET IMPLICIT_TRANSACTIONS sets the connection into implicit transaction mode. When OFF, it returns the connection
to autocommit transaction mode.

When a connection is in implicit transaction mode and the connection is not currently in a transaction, executing any of the
following statements starts a transaction:

ALTER TABLE FETCH REVOKE
CREATE GRANT SELECT
DELETE INSERT TRUNCATE TABLE
DROP OPEN UPDATE

If the connection is already in an open transaction, the statements do not start a new transaction.

Transactions that are automatically opened as the result of this setting being ON must be explicitly committed or rolled back by
the user at the end of the transaction. Otherwise, the transaction and all the data changes it contains are rolled back when the user
disconnects. After a transaction is committed, executing one of the statements above starts a new transaction.

Implicit transaction mode remains in effect until the connection executes a SET IMPLICIT_TRANSACTIONS OFF statement, which
returns the connection to autocommit mode. In autocommit mode, all individual statements are committed if they complete
successfully.

The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver automatically set IMPLICIT_TRANSACTIONS to
OFF when connecting. SET IMPLICIT_TRANSACTIONS defaults to OFF for connections from DB-Library applications.

When SET ANSI_DEFAULTS is ON, SET IMPLICIT_TRANSACTIONS is enabled.

The setting of SET IMPLICIT_TRANSACTIONS is set at execute or run time and not at parse time.

Examples

This example demonstrates transactions that are started explicitly and implicitly with the IMPLICIT_TRANSACTIONS set ON. It uses
the @@TRANCOUNT function to demonstrate open and closed transactions.

USE pubs
GO

CREATE table t1 (a int)
GO
INSERT INTO t1 VALUES (1)
GO

PRINT 'Use explicit transaction'
BEGIN TRAN
INSERT INTO t1 VALUES (2)
SELECT 'Tran count in transaction'= @@TRANCOUNT
COMMIT TRAN
SELECT 'Tran count outside transaction'= @@TRANCOUNT
GO

PRINT 'Setting IMPLICIT_TRANSACTIONS ON'
GO
SET IMPLICIT_TRANSACTIONS ON
GO

PRINT 'Use implicit transactions'
GO
-- No BEGIN TRAN needed here.
INSERT INTO t1 VALUES (4)
SELECT 'Tran count in transaction'= @@TRANCOUNT

COMMIT TRAN
SELECT 'Tran count outside transaction'= @@TRANCOUNT
GO

PRINT 'Use explicit transactions with IMPLICIT_TRANSACTIONS ON'
GO
BEGIN TRAN
INSERT INTO t1 VALUES (5)
SELECT 'Tran count in transaction'= @@TRANCOUNT
COMMIT TRAN
SELECT 'Tran count outside transaction'= @@TRANCOUNT
GO

SELECT * FROM t1
GO

-- Need to commit this tran too!
DROP TABLE t1
COMMIT TRAN
GO

See Also

ALTER TABLE

BEGIN TRANSACTION

CREATE TABLE

DELETE

DROP TABLE

FETCH

GRANT

Implicit Transactions

INSERT

OPEN

REVOKE

SELECT

SET

SET ANSI_DEFAULTS

@@TRANCOUNT

Transactions

TRUNCATE TABLE

UPDATE

Transact-SQL Reference (SQL Server 2000)

SET LANGUAGE
Specifies the language environment for the session. The session language determines the datetime formats and system
messages.

Syntax

SET LANGUAGE { [N] 'language' | @language_var }

Arguments

[N]'language' | @language_var

Is the name of the language as stored in syslanguages. This argument can be either Unicode or DBCS converted to Unicode. To
specify a language in Unicode, use N'language'. If specified as a variable, the variable must be sysname.

Remarks

The setting of SET LANGUAGE is set at execute or run time and not at parse time.

Permissions

SET LANGUAGE permissions default to all users.

Examples

This example sets the default language to us_english.

SET LANGUAGE us_english
GO

See Also

Data Types

sp_helplanguage

SET

SQL Server Language Support

syslanguages (master database only)

Transact-SQL Reference (SQL Server 2000)

SET LOCK_TIMEOUT
Specifies the number of milliseconds a statement waits for a lock to be released.

Syntax

SET LOCK_TIMEOUT timeout_period

Arguments

timeout_period

Is the number of milliseconds that will pass before Microsoft® SQL Server™ returns a locking error. A value of -1 (default)
indicates no time-out period (that is, wait forever).

When a wait for a lock exceeds the time-out value, an error is returned. A value of 0 means not to wait at all and return a message
as soon as a lock is encountered.

Remarks

At the beginning of a connection, this setting has a value of -1. After it is changed, the new setting stays in effect for the remainder
of the connection.

The setting of SET LOCK_TIMEOUT is set at execute or run time and not at parse time.

The READPAST locking hint provides an alternative to this SET option.

Permissions

SET LOCK_TIMEOUT permissions default to all users.

Examples

This example sets the lock time-out period to 1,800 milliseconds.

SET LOCK_TIMEOUT 1800
GO

See Also

Locking Hints

@@LOCK_TIMEOUT

SET

Transact-SQL Reference (SQL Server 2000)

SET NOCOUNT
Stops the message indicating the number of rows affected by a Transact-SQL statement from being returned as part of the
results.

Syntax

SET NOCOUNT { ON | OFF }

Remarks

When SET NOCOUNT is ON, the count (indicating the number of rows affected by a Transact-SQL statement) is not returned.
When SET NOCOUNT is OFF, the count is returned.

The @@ROWCOUNT function is updated even when SET NOCOUNT is ON.

SET NOCOUNT ON eliminates the sending of DONE_IN_PROC messages to the client for each statement in a stored procedure.
When using the utilities provided with Microsoft® SQL Server™ to execute queries, the results prevent "nn rows affected" from
being displayed at the end Transact-SQL statements such as SELECT, INSERT, UPDATE, and DELETE.

For stored procedures that contain several statements that do not return much actual data, this can provide a significant
performance boost because network traffic is greatly reduced.

The setting of SET NOCOUNT is set at execute or run time and not at parse time.

Permissions

SET NOCOUNT permissions default to all users.

Examples

This example (when executed in the osql utility or SQL Query Analyzer) prevents the message (about the number of rows
affected) from being displayed.

USE pubs
GO
-- Display the count message.
SELECT au_lname
FROM authors
GO
USE pubs
GO
-- SET NOCOUNT to ON and no longer display the count message.
SET NOCOUNT ON
GO
SELECT au_lname
FROM authors
GO
-- Reset SET NOCOUNT to OFF.
SET NOCOUNT OFF
GO

See Also

@@ROWCOUNT

SET

Transact-SQL Reference (SQL Server 2000)

SET NOEXEC
Compiles each query but does not execute it.

Syntax

SET NOEXEC { ON | OFF }

Remarks

When SET NOEXEC is ON, Microsoft® SQL Server™ compiles each batch of Transact-SQL statements but does not execute them.
When SET NOEXEC is OFF, all batches are executed after compilation.

The execution of statements in SQL Server consists of two phases: compilation and execution. This setting is useful for having SQL
Server validate the syntax and object names in Transact-SQL code when executing. It is also useful for debugging statements that
would usually be part of a larger batch of statements.

The setting of SET NOEXEC is set at execute or run time and not at parse time.

Permissions

SET NOEXEC permissions default to all users.

Examples

This example uses NOEXEC with a valid query, a query with an invalid object name, and a query with incorrect syntax.

USE pubs
GO
PRINT 'Valid query'
GO
-- SET NOEXEC to ON.
SET NOEXEC ON
GO
-- Inner join.
SELECT a.au_lname, a.au_fname, t.title
FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON ta.title_id = t.title_id
GO
-- SET NOEXEC to OFF.
SET NOEXEC OFF
GO
PRINT 'Invalid object name'
GO
-- SET NOEXEC to ON.
SET NOEXEC ON
GO
-- Function name used is a reserved keyword.

USE pubs
GO
CREATE FUNCTION values (@storeid varchar(30))
RETURNS TABLE
AS
RETURN (SELECT title, qty
 FROM sales s, titles t
 WHERE s.stor_id = @storeid and
 t.title_id = s.title_id)
-- SET NOEXEC to OFF.
SET NOEXEC OFF
GO
PRINT 'Invalid syntax'
GO
-- SET NOEXEC to ON.
SET NOEXEC ON
GO
-- Built-in function incorrectly invoked
SELECT *
FROM fn_helpcollations()
-- Reset SET NOEXEC to OFF.
SET NOEXEC OFF
GO

See Also

SET

SET SHOWPLAN_ALL

SET SHOWPLAN_TEXT

Transact-SQL Reference (SQL Server 2000)

SET NUMERIC_ROUNDABORT
Specifies the level of error reporting generated when rounding in an expression causes a loss of precision.

Syntax

SET NUMERIC_ROUNDABORT { ON | OFF }

Remarks

When SET NUMERIC_ROUNDABORT is ON, an error is generated when a loss of precision occurs in an expression. When OFF,
losses of precision do not generate error messages and the result is rounded to the precision of the column or variable storing
the result.

Loss of precision occurs when attempting to store a value with a fixed precision in a column or variable with less precision.

If SET NUMERIC_ROUNDABORT is ON, SET ARITHABORT determines the severity of the generated error. This table shows the
effects of these two settings when a loss of precision occurs.

Setting
SET

NUMERIC_ROUNDABORT
ON

SET
NUMERIC_ROUNDABORT

OFF
SET ARITHABORT ON Error is generated; no result

set returned.
No errors or warnings; result
is rounded.

SET ARITHABORT OFF Warning is returned;
expression returns NULL.

No errors or warnings; result
is rounded.

The setting of SET NUMERIC_ROUNDABORT is set at execute or run time and not at parse time.

SET NUMERIC_ROUNDABORT must be OFF when creating or manipulating indexes on computed columns or indexed views. If
SET NUMERIC_ROUNDABORT is ON, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed
columns or indexed views will fail. For more information about required SET option settings with indexed views and indexes on
computed columns, see Considerations When Using SET Statements in SET.

Permissions

SET NUMERIC_ROUNDABORT permissions default to all users.

Examples

This example shows two values with a precision of four decimal places that are added and stored in a variable with a precision of
two decimal places. The expressions demonstrate the effects of the different SET NUMERIC_ROUNDABORT and SET ARITHABORT
settings.

-- SET NOCOUNT to ON,
-- SET NUMERIC_ROUNDABORT to ON, and SET ARITHABORT to ON.
SET NOCOUNT ON
PRINT 'SET NUMERIC_ROUNDABORT ON'
PRINT 'SET ARITHABORT ON'
SET NUMERIC_ROUNDABORT ON
SET ARITHABORT ON
GO
DECLARE @result decimal(5,2),
@value_1 decimal(5,4), @value_2 decimal(5,4)
SET @value_1 = 1.1234
SET @value_2 = 1.1234
SELECT @result = @value_1 + @value_2
SELECT @result
GO
-- SET NUMERIC_ROUNDABORT to ON and SET ARITHABORT to OFF.
PRINT 'SET NUMERIC_ROUNDABORT ON'
PRINT 'SET ARITHABORT OFF'
SET NUMERIC_ROUNDABORT ON
SET ARITHABORT OFF
GO
DECLARE @result decimal(5,2),
@value_1 decimal(5,4), @value_2 decimal(5,4)
SET @value_1 = 1.1234

SET @value_2 = 1.1234
SELECT @result = @value_1 + @value_2
SELECT @result
GO
-- SET NUMERIC_ROUNDABORT to OFF and SET ARITHABORT to ON.
PRINT 'SET NUMERIC_ROUNDABORT OFF'
PRINT 'SET ARITHABORT ON'
SET NUMERIC_ROUNDABORT OFF
SET ARITHABORT ON
GO
DECLARE @result decimal(5,2),
@value_1 decimal(5,4), @value_2 decimal(5,4)
SET @value_1 = 1.1234
SET @value_2 = 1.1234
SELECT @result = @value_1 + @value_2
SELECT @result
GO
-- SET NUMERIC_ROUNDABORT to OFF and SET ARITHABORT to OFF.
PRINT 'SET NUMERIC_ROUNDABORT OFF'
PRINT 'SET ARITHABORT OFF'
SET NUMERIC_ROUNDABORT OFF
SET ARITHABORT OFF
GO
DECLARE @result decimal(5,2),
@value_1 decimal(5,4), @value_2 decimal(5,4)
SET @value_1 = 1.1234
SET @value_2 = 1.1234
SELECT @result = @value_1 + @value_2
SELECT @result
GO

See Also

Data Types

SET

SET ARITHABORT

Transact-SQL Reference (SQL Server 2000)

SET OFFSETS
Returns the offset (position relative to the start of a statement) of specified keywords in Transact-SQL statements to DB-Library
applications.

Syntax

SET OFFSETS keyword_list

Arguments

keyword_list

Is a comma-separated list of Transact-SQL constructs including SELECT, FROM, ORDER, COMPUTE, TABLE, PROCEDURE,
STATEMENT, PARAM, and EXECUTE.

Remarks

SET OFFSETS is used only in DB-Library applications.

The setting of SET OFFSETS is set at parse time and not at execute time or run time. Setting at parse time means that if the SET
statement is present in the batch or stored procedure, it takes effect, regardless of whether code execution actually reaches that
point; and the SET statement takes effect before any statements are executed. For example, even if the set statement is in an
IF...ELSE statement block that is never reached during execution, the SET statement still takes effect because the IF...ELSE statement
block is parsed.

If SET OFFSETS is set in a stored procedure, the value of SET OFFSETS is restored after control is returned from the stored
procedure. Therefore, a SET OFFSETS statement specified in dynamic SQL does not have any effect on any statements following
the dynamic SQL statement.

Permissions

SET OFFSETS permissions default to all users.

See Also

SET

SET PARSEONLY

Transact-SQL Reference (SQL Server 2000)

SET PARSEONLY
Checks the syntax of each Transact-SQL statement and returns any error messages without compiling or executing the statement.

Syntax

SET PARSEONLY { ON | OFF }

Remarks

When SET PARSEONLY is ON, Microsoft® SQL Server™ only parses the statement. When SET PARSEONLY is OFF, SQL Server
compiles and executes the statement.

The setting of SET PARSEONLY is set at parse time and not at execute or run time.

Do not use PARSEONLY in a stored procedure or a trigger. SET PARSEONLY returns offsets if the OFFSETS option is ON and no
errors occur.

Permissions

SET PARSEONLY permissions default to all users.

See Also

SET

SET OFFSETS

Transact-SQL Reference (SQL Server 2000)

SET QUERY_GOVERNOR_COST_LIMIT
Overrides the currently configured value for the current connection.

Syntax

SET QUERY_GOVERNOR_COST_LIMIT value

Arguments

value

Is a numeric or integer value indicating if all queries are allowed to run (value of 0) or if no queries are allowed to run with an
estimated cost greater than the specified nonzero value. If a numeric value is specified, Microsoft® SQL Server™ truncates it to an
integer.

Remarks

Using SET QUERY_GOVERNOR_COST_LIMIT applies to the current connection only and lasts the duration of the current
connection. Use the query governor cost limit option of sp_configure to change the server-wide query governor cost limit
value. For more information about configuring this option, see sp_configure and Setting Configuration Options.

The setting of SET QUERY_GOVERNOR_COST_LIMIT is set at execute or run time and not at parse time.

Permissions

SET QUERY_GOVERNOR_COST_LIMIT permissions default to members of the sysadmin fixed server role.

See Also

SET

Transact-SQL Reference (SQL Server 2000)

SET QUOTED_IDENTIFIER
Causes Microsoft® SQL Server™ to follow the SQL-92 rules regarding quotation mark delimiting identifiers and literal strings.
Identifiers delimited by double quotation marks can be either Transact-SQL reserved keywords or can contain characters not
usually allowed by the Transact-SQL syntax rules for identifiers.

Syntax

SET QUOTED_IDENTIFIER { ON | OFF }

Remarks

When SET QUOTED_IDENTIFIER is ON (default), identifiers can be delimited by double quotation marks, and literals must be
delimited by single quotation marks. When SET QUOTED_IDENTIFIER is OFF, identifiers cannot be quoted and must follow all
Transact-SQL rules for identifiers. For more information, see Using Identifiers. Literals can be delimited by either single or double
quotation marks.

When SET QUOTED_IDENTIFIER is ON, all strings delimited by double quotation marks are interpreted as object identifiers.
Therefore, quoted identifiers do not have to follow the Transact-SQL rules for identifiers. They can be reserved keywords and can
include characters not usually allowed in Transact-SQL identifiers. Double quotation marks cannot be used to delimit literal string
expressions; single quotation marks must be used to enclose literal strings. If a single quotation mark (') is part of the literal string,
it can be represented by two single quotation marks ("). SET QUOTED_IDENTIFIER must be ON when reserved keywords are used
for object names in the database.

When SET QUOTED_IDENTIFIER is OFF, literal strings in expressions can be delimited by single or double quotation marks. If a
literal string is delimited by double quotation marks, the string can contain embedded single quotation marks, such as
apostrophes.

SET QUOTED_IDENTIFIER must be ON when creating or manipulating indexes on computed columns or indexed views. If SET
QUOTED_IDENTIFIER is OFF, CREATE, UPDATE, INSERT, and DELETE statements on tables with indexes on computed columns or
indexed views will fail. For more information about required SET option settings with indexed views and indexes on computed
columns, see Considerations When Using SET Statements in SET.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set QUOTED_IDENTIFIER to ON when
connecting. This can be configured in ODBC data sources, in ODBC connection attributes, or OLE DB connection properties. SET
QUOTED_IDENTIFIER defaults to OFF for connections from DB-Library applications.

When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the table's meta data even if the option is set to
OFF when the table is created.

When a stored procedure is created, the SET QUOTED_IDENTIFIER and SET ANSI_NULLS settings are captured and used for
subsequent invocations of that stored procedure.

When executed inside a stored procedure, the setting of SET QUOTED_IDENTIFIER is not changed.

When SET ANSI_DEFAULTS is ON, SET QUOTED_IDENTIFIER is enabled.

SET QUOTED_IDENTIFIER also corresponds to the quoted identifier setting of sp_dboption. If SET QUOTED_IDENTIFIER is OFF,
SQL Server uses the quoted identifier setting of sp_dboption. For more information about database settings, see sp_dboption
and Setting Database Options.

SET QUOTED_IDENTIFIER is set at parse time. Setting at parse time means that if the SET statement is present in the batch or
stored procedure, it takes effect, regardless of whether code execution actually reaches that point; and the SET statement takes
effect before any statements are executed.

Permissions

SET QUOTED_IDENTIFIER permissions default to all users.

Examples

A. Use the quoted identifier setting and reserved word object names

This example shows that the SET QUOTED_IDENTIFIER setting must be ON, and the keywords in table names must be in double
quotation marks to create and use objects with reserved keyword names.

SET QUOTED_IDENTIFIER OFF
GO
-- Attempt to create a table with a reserved keyword as a name
-- should fail.
CREATE TABLE "select" ("identity" int IDENTITY, "order" int)
GO

SET QUOTED_IDENTIFIER ON
GO

-- Will succeed.
CREATE TABLE "select" ("identity" int IDENTITY, "order" int)
GO

SELECT "identity","order"
FROM "select"
ORDER BY "order"
GO

DROP TABLE "SELECT"
GO

SET QUOTED_IDENTIFIER OFF
GO

B. Use the quoted identifier setting with single and double quotes

This example shows the way single and double quotation marks are used in string expressions with SET QUOTED_IDENTIFIER set
to ON and OFF.

SET QUOTED_IDENTIFIER OFF
GO
USE pubs
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'Test')
 DROP TABLE Test
GO
USE pubs
CREATE TABLE Test (Id int, String varchar (30))
GO

-- Literal strings can be in single or double quotation marks.
INSERT INTO Test VALUES (1,"'Text in single quotes'")
INSERT INTO Test VALUES (2,'''Text in single quotes''')
INSERT INTO Test VALUES (3,'Text with 2 '''' single quotes')
INSERT INTO Test VALUES (4,'"Text in double quotes"')
INSERT INTO Test VALUES (5,"""Text in double quotes""")
INSERT INTO Test VALUES (6,"Text with 2 """" double quotes")
GO

SET QUOTED_IDENTIFIER ON
GO

-- Strings inside double quotation marks are now treated
-- as object names, so they cannot be used for literals.
INSERT INTO "Test" VALUES (7,'Text with a single '' quote')
GO

-- Object identifiers do not have to be in double quotation marks
-- if they are not reserved keywords.
SELECT *
FROM Test
GO

DROP TABLE Test
GO

SET QUOTED_IDENTIFIER OFF
GO

Here is the result set:

Id String
----------- ------------------------------
1 'Text in single quotes'
2 'Text in single quotes'
3 Text with 2 '' single quotes
4 "Text in double quotes"
5 "Text in double quotes"
6 Text with 2 "" double quotes

7 Text with a single ' quote

See Also

CREATE DATABASE

CREATE DEFAULT

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

Data Types

EXECUTE

SELECT

SET

SET ANSI_DEFAULTS

sp_rename

Transact-SQL Reference (SQL Server 2000)

SET REMOTE_PROC_TRANSACTIONS
Specifies that when a local transaction is active, executing a remote stored procedure starts a Transact-SQL distributed transaction
managed by the Microsoft Distributed Transaction Manager (MS DTC).

Syntax

SET REMOTE_PROC_TRANSACTIONS { ON | OFF }

Arguments

ON | OFF

When ON, a Transact-SQL distributed transaction is started when a remote stored procedure is executed from a local transaction.
When OFF, calling a remote stored procedures from a local transaction does not start a Transact-SQL distributed transaction.

Remarks

When REMOTE_PROC_TRANSACTIONS is ON, calling a remote stored procedure starts a distributed transaction and enlists the
transaction with MS DTC. The server making the remote stored procedure call is the transaction originator and controls the
completion of the transaction. When a subsequent COMMIT TRANSACTION or ROLLBACK TRANSACTION statement is issued for
the connection, the controlling server requests that MS DTC manage the completion of the distributed transaction across the
servers involved.

After a Transact-SQL distributed transaction has been started, remote stored procedure calls can be made to other remote
servers. The remote servers are all enlisted in the Transact-SQL distributed transaction and MS DTC ensures that the transaction is
completed against each server.

REMOTE_PROC_TRANSACTIONS is a connection-level setting that can be used to override the server-level sp_configure remote
proc trans option.

When REMOTE_PROC_TRANSACTIONS is set OFF, remote stored procedure calls are not made part of a local transaction. The
modifications made by the remote stored procedure are committed or rolled back at the time the stored procedure completes.
Subsequent COMMIT TRANSACTION or ROLLBACK TRANSACTION statements issued by the connection that called the remote
stored procedure have no effect on the processing done by the procedure.

The REMOTE_PROC_TRANSACTIONS option is a compatibility option that affects only remote stored procedure calls made to
remote servers defined using sp_addserver. For more information, see Remote Stored Procedure Architecture. The option does
not apply to distributed queries that execute a stored procedure on a linked server defined using sp_addlinkedserver. For more
information, see Distributed Query Architecture.

The setting of SET REMOTE_PROC_TRANSACTIONS is set at execute or run time and not at parse time.

Permissions

SET REMOTE_PROC_TRANSACTIONS permissions default to all users.

See Also

BEGIN DISTRIBUTED TRANSACTION

Distributed Transactions

SET

Transactions

Transact-SQL Reference (SQL Server 2000)

SET ROWCOUNT
Causes Microsoft® SQL Server™ to stop processing the query after the specified number of rows are returned.

Syntax

SET ROWCOUNT { number | @number_var }

Arguments

number | @number_var

Is the number (an integer) of rows to be processed before stopping the given query.

Remarks

It is recommended that DELETE, INSERT, and UPDATE statements currently using SET ROWCOUNT be rewritten to use the TOP
syntax. For more information, see DELETE, INSERT, or UPDATE.

The setting of the SET ROWCOUNT option is ignored for INSERT, UPDATE, and DELETE statements against remote tables and local
and remote partitioned views.

To turn this option off (so that all rows are returned), specify SET ROWCOUNT 0.

Note Setting the SET ROWCOUNT option causes most Transact-SQL statements to stop processing when they have been
affected by the specified number of rows. This includes triggers and data modification statements such as INSERT, UPDATE, and
DELETE. The ROWCOUNT option has no effect on dynamic cursors, but it limits the rowset of keyset and insensitive cursors. This
option should be used with caution and primarily with the SELECT statement.

SET ROWCOUNT overrides the SELECT statement TOP keyword if the rowcount is the smaller value.

The setting of SET ROWCOUNT is set at execute or run time and not at parse time.

Permissions

SET ROWCOUNT permissions default to all users.

Examples

SET ROWCOUNT stops processing after the specified number of rows. In this example, note that x rows meet the criteria of
advances less than or equal to $5,000. However, from the number of rows returned by the update, you can see that not all rows
were processed. ROWCOUNT affects all Transact-SQL statements.

USE pubs
GO
SELECT count(*) AS Cnt
FROM titles
WHERE advance >= 5000
GO

Here is the result set:

Cnt

11

(1 row(s) affected)

Now, set ROWCOUNT to 4 and update all rows with an advance of $5,000 or more.

-- SET ROWCOUNT to 4.
SET ROWCOUNT 4
GO
UPDATE titles
SET advance = 5000
WHERE advance >= 5000
GO

See Also

SET

Transact-SQL Reference (SQL Server 2000)

SET SHOWPLAN_ALL
Causes Microsoft® SQL Server™ not to execute Transact-SQL statements. Instead, SQL Server returns detailed information about
how the statements are executed and provides estimates of the resource requirements for the statements.

Syntax

SET SHOWPLAN_ALL { ON | OFF }

Remarks

The setting of SET SHOWPLAN_ALL is set at execute or run time and not at parse time.

When SET SHOWPLAN_ALL is ON, SQL Server returns execution information for each statement without executing it, and
Transact-SQL statements are not executed. After this option is set ON, information about all subsequent Transact-SQL statements
are returned until the option is set OFF. For example, if a CREATE TABLE statement is executed while SET SHOWPLAN_ALL is ON,
SQL Server returns an error message from a subsequent SELECT statement involving that same table; the specified table does not
exist. Therefore, subsequent references to this table fail. When SET SHOWPLAN_ALL is OFF, SQL Server executes the statements
without generating a report.

SET SHOWPLAN_ALL is intended to be used by applications written to handle its output. Use SET SHOWPLAN_TEXT to return
readable output for Microsoft MS-DOS® applications, such as the osql utility.

SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL cannot be specified inside a stored procedure; they must be the only statements
in a batch.

SET SHOWPLAN_ALL returns information as a set of rows that form a hierarchical tree representing the steps taken by the SQL
Server query processor as it executes each statement. Each statement reflected in the output contains a single row with the text of
the statement, followed by several rows with the details of the execution steps. The table shows the columns that the output
contains.

Column name Description
StmtText For rows that are not of type PLAN_ROW, this column

contains the text of the Transact-SQL statement. For rows of
type PLAN_ROW, this column contains a description of the
operation. This column contains the physical operator and
may optionally also contain the logical operator. This column
may also be followed by a description that is determined by
the physical operator. For more information, see Logical and
Physical Operators.

StmtId Number of the statement in the current batch.
NodeId ID of the node in the current query.
Parent Node ID of the parent step.
PhysicalOp Physical implementation algorithm for the node. For rows of

type PLAN_ROWS only.
LogicalOp Relational algebraic operator this node represents. For rows

of type PLAN_ROWS only.
Argument Provides supplemental information about the operation being

performed. The contents of this column depend on the
physical operator.

DefinedValues Contains a comma-separated list of values introduced by this
operator. These values may be computed expressions which
were present in the current query (for example, in the SELECT
list or WHERE clause), or internal values introduced by the
query processor in order to process this query. These defined
values may then be referenced elsewhere within this query.
For rows of type PLAN_ROWS only.

EstimateRows Estimated number of rows output by this operator. For rows
of type PLAN_ROWS only.

EstimateIO Estimated I/O cost for this operator. For rows of type
PLAN_ROWS only.

EstimateCPU Estimated CPU cost for this operator. For rows of type
PLAN_ROWS only.

AvgRowSize Estimated average row size (in bytes) of the row being passed
through this operator.

TotalSubtreeCost Estimated (cumulative) cost of this operation and all child
operations.

OutputList Contains a comma-separated list of columns being projected
by the current operation.

Warnings Contains a comma-separated list of warning messages
relating to the current operation. Warning messages may
include the string "NO STATS:()" with a list of columns. This
warning message means that the query optimizer attempted
to make a decision based on the statistics for this column, but
none were available. Consequently, the query optimizer had
to make a guess, which may have resulted in the selection of
an inefficient query plan. For more information about creating
or updating column statistics (which help the query optimizer
choose a more efficient query plan), see UPDATE STATISTICS.
This column may optionally include the string "MISSING JOIN
PREDICATE", which means that a join (involving tables) is
taking place without a join predicate. Accidentally dropping a
join predicate may result in a query which takes much longer
to run than expected, and returns a huge result set. If this
warning is present, verify that the absence of a join predicate
is intentional.

Type Node type. For the parent node of each query, this is the
Transact-SQL statement type (for example, SELECT, INSERT,
EXECUTE, and so on). For subnodes representing execution
plans, the type is PLAN_ROW.

Parallel 0 = Operator is not running in parallel.
1 = Operator is running in parallel.

EstimateExecutions Estimated number of times this operator will be executed
while running the current query.

Permissions

SET SHOWPLAN_ALL permissions default to all users.

Examples

The two statements that follow use the SET SHOWPLAN_ALL settings to show the way SQL Server analyzes and optimizes the use
of indexes in queries.

The first query uses the Equals comparison operator (=) in the WHERE clause on an indexed column. This results in the Clustered
Index Seek value in the LogicalOp column and the name of the index in the Argument column.

The second query uses the LIKE operator in the WHERE clause. This forces SQL Server to use a clustered index scan and find the
data meeting the WHERE clause condition. This results in the Clustered Index Scan value in the LogicalOp column with the name
of the index in the Argument column, and the Filter value in the LogicalOp column with the WHERE clause condition in the
Argument column.

The values in the EstimateRows and the TotalSubtreeCost columns are smaller for the first indexed query, indicating that it is
processed much faster and uses less resources than the nonindexed query.

USE pubs
GO
SET SHOWPLAN_ALL ON
GO
-- First query.
SELECT au_id
FROM authors
WHERE au_id = '409-56-7008'
GO
-- Second query.

SELECT city
FROM authors
WHERE city LIKE 'San%'
GO
SET SHOWPLAN_ALL OFF
GO

See Also

SET

SET SHOWPLAN_TEXT

Transact-SQL Reference (SQL Server 2000)

SET SHOWPLAN_TEXT
Causes Microsoft® SQL Server™ not to execute Transact-SQL statements. Instead, SQL Server returns detailed information about
how the statements are executed.

Syntax

SET SHOWPLAN_TEXT { ON | OFF }

Remarks

The setting of SET SHOWPLAN_TEXT is set at execute or run time and not at parse time.

When SET SHOWPLAN_TEXT is ON, SQL Server returns execution information for each Transact-SQL statement without executing
it. After this option is set ON, information about all subsequent Transact-SQL statements is returned until the option is set OFF.
For example, if a CREATE TABLE statement is executed while SET SHOWPLAN_TEXT is ON, SQL Server returns an error message
from a subsequent SELECT statement involving that same table; the specified table does not exist. Therefore, subsequent
references to this table fail. When SET SHOWPLAN_TEXT is OFF, SQL Server executes statements without generating a report.

SET SHOWPLAN_TEXT is intended to return readable output for Microsoft MS-DOS® applications such as the osql utility. SET
SHOWPLAN_ALL returns more detailed output intended to be used with programs designed to handle its output.

SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL cannot be specified in a stored procedure; they must be the only statements in a
batch.

SET SHOWPLAN_TEXT returns information as a set of rows that form a hierarchical tree representing the steps taken by the SQL
Server query processor as it executes each statement. Each statement reflected in the output contains a single row with the text of
the statement, followed by several rows with the details of the execution steps. The table shows the column that the output
contains.

Column name Description
StmtText For rows which are not of type PLAN_ROW, this column contains

the text of the Transact-SQL statement. For rows of type
PLAN_ROW, this column contains a description of the operation.
This column contains the physical operator and may optionally
also contain the logical operator. This column may also be
followed by a description which is determined by the physical
operator. For more information about physical operators, see the
Argument column in SET SHOWPLAN_ALL.

For more information about the physical and logical operators that can be seen in showplan output, see Logical and Physical
Operators.

Permissions

SET SHOWPLAN_TEXT permissions default to all users.

Examples

This example shows how indexes are used by SQL Server as it processes the statements.

This is the query using an index:

SET SHOWPLAN_TEXT ON
GO
USE pubs
SELECT *
FROM roysched
WHERE title_id = 'PS1372'
GO
SET SHOWPLAN_TEXT OFF
GO

Here is the result set:

StmtText

--
USE pubs

SELECT *
FROM roysched
WHERE title_id = 'PS1372'

(2 row(s) affected)

StmtText
--
 |--Bookmark Lookup(BOOKMARK:([Bmk1000]), OBJECT:([pubs].[dbo].[roysched]))
 |--Index Seek(OBJECT:([pubs].[dbo].[roysched].[titleidind]), SEEK:([roysched].[title_id]='PS1372')
ORDERED)

(2 row(s) affected)

Here is the query not using an index:

SET SHOWPLAN_TEXT ON
GO
USE pubs
SELECT *
FROM roysched
WHERE lorange < 5000
GO
SET SHOWPLAN_TEXT OFF
GO

Here is the result set:

StmtText

USE pubs

SELECT *
FROM roysched
WHERE lorange < 5000

(2 row(s) affected)

StmtText
--
 |--Table Scan(OBJECT:([pubs].[dbo].[roysched]), WHERE:([roysched].[lorange]<5000))

(1 row(s) affected)

See Also

Operators

SET

SET SHOWPLAN_ALL

Transact-SQL Reference (SQL Server 2000)

SET STATISTICS IO
Causes Microsoft® SQL Server™ to display information regarding the amount of disk activity generated by Transact-SQL
statements.

Syntax

SET STATISTICS IO { ON | OFF }

Remarks

When STATISTICS IO is ON, statistical information is displayed. When OFF, the information is not displayed.

After this option is set ON, all subsequent Transact-SQL statements return the statistical information until the option is set to OFF.

There are five output items.

Output item Meaning
Table Name of the table.
scan count Number of scans performed.
logical reads Number of pages read from the data cache.
physical reads Number of pages read from disk.
read-ahead reads Number of pages placed into the cache for the query.

The setting of SET STATISTICS IO is set at execute or run time and not at parse time.

Permissions

SET STATISTICS IO permissions default to all users.

See Also

SET

SET SHOWPLAN_ALL

SET STATISTICS TIME

Transact-SQL Reference (SQL Server 2000)

SET STATISTICS PROFILE
Displays the profile information for a statement. STATISTICS PROFILE works for ad hoc queries, views, triggers, and stored
procedures.

Syntax

SET STATISTICS PROFILE { ON | OFF }

Remarks

When STATISTICS PROFILE is ON, each executed query returns its regular result set, followed by an additional result set that
shows a profile of the query execution.

The additional result set contains the SHOWPLAN_ALL columns for the query and these additional columns.

Column name Description
Rows Actual number of rows produced by each operator
Executes Number of times the operator has been executed

Permissions

SET STATISTICS PROFILE permissions default to all users.

See Also

SET

SET SHOWPLAN_ALL

SET STATISTICS TIME

SET STATISTICS IO

Transact-SQL Reference (SQL Server 2000)

SET STATISTICS TIME
Displays the number of milliseconds required to parse, compile, and execute each statement.

Syntax

SET STATISTICS TIME { ON | OFF }

Remarks

When SET STATISTICS TIME is ON, the time statistics for a statement are displayed. When OFF, the time statistics are not
displayed.

The setting of SET STATISTICS TIME is set at execute or run time and not at parse time.

Microsoft® SQL Server™ is unable to provide accurate statistics in fiber mode, which is activated when you enable the
lightweight pooling configuration option.

The cpu column in the sysprocesses table is only updated when a query executes with SET STATISTICS TIME ON. When SET
STATISTICS TIME is OFF, a 0 is returned.

ON and OFF settings also affect the CPU column in the Process Info View for Current Activity in SQL Server Enterprise Manager.

Permissions

SET STATISTICS TIME permissions default to all users.

See Also

SET

SET STATISTICS IO

Transact-SQL Reference (SQL Server 2000)

SET TEXTSIZE
Specifies the size of text and ntext data returned with a SELECT statement.

Syntax

SET TEXTSIZE { number }

Arguments

number

Is the size (an integer) of text data, in bytes. The maximum setting for SET TEXTSIZE is 2 gigabytes (GB), specified in bytes. A
setting of 0 resets the size to the default (4 KB).

Remarks

Setting SET TEXTSIZE affects the @@TEXTSIZE function.

The DB-Library variable DBTEXTLIMIT also limits the size of text data returned with a SELECT statement. If DBTEXTLIMIT is set to a
smaller size than TEXTSIZE, only the amount specified by DBTEXTLIMIT is returned. For more information, see "Programming DB-
Library for C" in SQL Server Books Online.

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server automatically set TEXTSIZE to 2147483647 when
connecting.

The setting of set TEXTSIZE is set at execute or run time and not at parse time.

Permissions

SET TEXTSIZE permissions default to all users.

See Also

Data Types

SET

@@TEXTSIZE

Transact-SQL Reference (SQL Server 2000)

SET TRANSACTION ISOLATION LEVEL
Controls the default transaction locking behavior for all Microsoft® SQL Server™ SELECT statements issued by a connection.

Syntax

SET TRANSACTION ISOLATION LEVEL
 { READ COMMITTED
 | READ UNCOMMITTED
 | REPEATABLE READ
 | SERIALIZABLE
 }

Arguments

READ COMMITTED

Specifies that shared locks are held while the data is being read to avoid dirty reads, but the data can be changed before the end
of the transaction, resulting in nonrepeatable reads or phantom data. This option is the SQL Server default.

READ UNCOMMITTED

Implements dirty read, or isolation level 0 locking, which means that no shared locks are issued and no exclusive locks are
honored. When this option is set, it is possible to read uncommitted or dirty data; values in the data can be changed and rows can
appear or disappear in the data set before the end of the transaction. This option has the same effect as setting NOLOCK on all
tables in all SELECT statements in a transaction. This is the least restrictive of the four isolation levels.

REPEATABLE READ

Locks are placed on all data that is used in a query, preventing other users from updating the data, but new phantom rows can be
inserted into the data set by another user and are included in later reads in the current transaction. Because concurrency is lower
than the default isolation level, use this option only when necessary.

SERIALIZABLE

Places a range lock on the data set, preventing other users from updating or inserting rows into the data set until the transaction
is complete. This is the most restrictive of the four isolation levels. Because concurrency is lower, use this option only when
necessary. This option has the same effect as setting HOLDLOCK on all tables in all SELECT statements in a transaction.

Remarks

Only one of the options can be set at a time, and it remains set for that connection until it is explicitly changed. This becomes the
default behavior unless an optimization option is specified at the table level in the FROM clause of the statement.

The setting of SET TRANSACTION ISOLATION LEVEL is set at execute or run time and not at parse time.

Examples

This example sets the TRANSACTION ISOLATION LEVEL for the session. For each Transact-SQL statement that follows, SQL Server
holds all of the shared locks until the end of the transaction.

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO
BEGIN TRANSACTION
SELECT * FROM publishers
SELECT * FROM authors
...
COMMIT TRANSACTION

See Also

Adjusting Transaction Isolation Levels

DBCC USEROPTIONS

Isolation Levels

SELECT

SET

Transact-SQL Reference (SQL Server 2000)

SET XACT_ABORT
Specifies whether Microsoft® SQL Server™ automatically rolls back the current transaction if a Transact-SQL statement raises a
run-time error.

Syntax

SET XACT_ABORT { ON | OFF }

Remarks

When SET XACT_ABORT is ON, if a Transact-SQL statement raises a run-time error, the entire transaction is terminated and rolled
back. When OFF, only the Transact-SQL statement that raised the error is rolled back and the transaction continues processing.
Compile errors, such as syntax errors, are not affected by SET XACT_ABORT.

It is required that XACT_ABORT be set ON for data modification statements in an implicit or explicit transaction against most OLE
DB providers, including SQL Server. The only case where this option is not required is if the provider supports nested transactions.
For more information, see Distributed Queries and Distributed Transactions.

The setting of SET XACT_ABORT is set at execute or run time and not at parse time.

Examples

This example causes a foreign key violation error in a transaction that has other Transact-SQL statements. In the first set of
statements, the error is generated, but the other statements execute successfully and the transaction is successfully committed. In
the second set of statements, the SET XACT_ABORT setting is turned ON. This causes the statement error to terminate the batch
and the transaction is rolled back.

CREATE TABLE t1 (a int PRIMARY KEY)
CREATE TABLE t2 (a int REFERENCES t1(a))
GO
INSERT INTO t1 VALUES (1)
INSERT INTO t1 VALUES (3)
INSERT INTO t1 VALUES (4)
INSERT INTO t1 VALUES (6)
GO
SET XACT_ABORT OFF
GO
BEGIN TRAN
INSERT INTO t2 VALUES (1)
INSERT INTO t2 VALUES (2) /* Foreign key error */
INSERT INTO t2 VALUES (3)
COMMIT TRAN
GO

SET XACT_ABORT ON
GO

BEGIN TRAN
INSERT INTO t2 VALUES (4)
INSERT INTO t2 VALUES (5) /* Foreign key error */
INSERT INTO t2 VALUES (6)
COMMIT TRAN
GO

/* Select shows only keys 1 and 3 added.
 Key 2 insert failed and was rolled back, but
 XACT_ABORT was OFF and rest of transaction
 succeeded.
 Key 5 insert error with XACT_ABORT ON caused
 all of the second transaction to roll back. */

SELECT *
FROM t2
GO

DROP TABLE t2
DROP TABLE t1
GO

See Also

BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

SET

@@TRANCOUNT

Transact-SQL Reference (SQL Server 2000)

SETUSER
 New Information - SQL Server 2000 SP3.

Allows a member of the sysadmin fixed server role to impersonate another user.

Important SETUSER is included in Microsoft® SQL Server™ 2000 only for backward compatibility, and its usage is not
recommended. SETUSER may not be supported in a future release of SQL Server.

Syntax

SETUSER ['username' [WITH NORESET]]

Arguments

'username'

Is the name of a SQL Server or Microsoft Windows NT® user in the current database that is impersonated. When username is not
specified, the original identity of the system administrator impersonating the user is reestablished.

WITH NORESET

Specifies that subsequent SETUSER statements (with no specified username) do not reset to the system administrator.

Remarks

SETUSER can be used by members of the sysadmin fixed server role to adopt the identity of another user in order to test the
permissions of the other user.

Only use SETUSER with SQL Server users. It is not supported with Windows users. When SETUSER has been used to assume the
identity of another user, any objects that are created are owned by the user being impersonated. For example, if the system
administrator assumes the identity of user Margaret and creates a table called orders, the orders table is owned by Margaret,
not the system administrator.

SETUSER is not required to create an object owned by another user, because the object can be created with a qualified name that
specifies the other user as the owner of the new object. For example, if user Andrew, who is a member of the db_owner
database role, creates a table Margaret.customers, user Margaret owns customers not user Andrew.

SETUSER remains in effect until another SETUSER statement is issued or until the current database is changed with the USE
statement.

Permissions

SETUSER permissions default to members of the sysadmin fixed server role and are not transferable.

Examples

A. Use SETUSER

This example shows how the system administrator can adopt the identity of another user. User mary has created a table called
computer_types. Using SETUSER, the system administrator impersonates mary to grant user joe access to the computer_types
table.

SETUSER 'mary'
go
GRANT SELECT ON computer_types TO joe
go
SETUSER

B. Use the N ORESET option

This example shows how a system administrator must create some objects and then test their usability with minimal permissions.
For simplicity, the system administrator wants to maintain only the permissions granted to mary for the entire session.

SETUSER 'mary' WITH NORESET
go
CREATE TABLE computer_types2

.

.

.
GRANT ...
go
SETUSER /* This statement has no effect. */

Note If SETUSER WITH NORESET is used, the system administrator must log off and then log on again to reestablish his or her
own rights.

See Also

DENY

GRANT

REVOKE

USE

Transact-SQL Reference (SQL Server 2000)

SHUTDOWN
 New Information - SQL Server 2000 SP3.

Immediately stops Microsoft® SQL Server™.

Syntax

SHUTDOWN [WITH NOWAIT]

Arguments

WITH NOWAIT

Shuts down SQL Server immediately, without performing checkpoints in every database. SQL Server exits after attempting to
terminate all user processes, and a rollback operation occurs for each active transaction.

Remarks

Unless members of the sysadmin or serveradmin fixed server roles specify the WITH NOWAIT option, SHUTDOWN tries to shut
down SQL Server in an orderly fashion by:

1. Disabling logins (except for members of the sysadmin or serveradmin fixed server roles). To see a listing of all current
users, execute sp_who.

2. Waiting for currently executing Transact-SQL statements or stored procedures to finish. To see a listing of all active
processes and locks, execute sp_lock and sp_who.

3. Performing a checkpoint in every database.

Using the SHUTDOWN statement minimizes the amount of automatic recovery work needed when members of the sysadmin or
serveradmin fixed server roles restart SQL Server.

These tools and methods can also be used to stop SQL Server. Each of these performs a checkpoint in all databases. All committed
data from data cache is flushed, and then the server is stopped:

By using SQL Server Enterprise Manager.

By using net stop mssqlserver from a command prompt.

By using Services in Control Panel.

By using SQL Server Service Manager.

If sqlservr.exe was started from the command-prompt, pressing CTRL+C shuts down SQL Server. However, pressing CTRL+C
does not perform a checkpoint.

Note The SQL Server Enterprise Manager, net stop, Control Panel, and SQL Server Service Manager methods of stopping SQL
Server produce the identical service control message of SERVICE_CONTROL_STOP to SQL Server.

Permissions

SHUTDOWN permissions default to members of the sysadmin and serveradmin fixed server roles, and are not transferable.

See Also

CHECKPOINT

sp_lock

sp_who

sqlservr Application

Stopping SQL Server

Transact-SQL Reference (SQL Server 2000)

SIGN
Returns the positive (+1), zero (0), or negative (-1) sign of the given expression.

Syntax

SIGN (numeric_expression)

Arguments

numeric_expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type.

Return Types

float

Examples

This example returns the SIGN values of numbers from -1 to 1.

DECLARE @value real
SET @value = -1
WHILE @value < 2
 BEGIN
 SELECT SIGN(@value)
 SET NOCOUNT ON
 SELECT @value = @value + 1
 SET NOCOUNT OFF
 END
SET NOCOUNT OFF
GO

Here is the result set:

(1 row(s) affected)

-1.0

(1 row(s) affected)

0.0

(1 row(s) affected)

1.0

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

SIN
Returns the trigonometric sine of the given angle (in radians) in an approximate numeric (float) expression.

Syntax

SIN (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example calculates the SIN for a given angle.

DECLARE @angle float
SET @angle = 45.175643
SELECT 'The SIN of the angle is: ' + CONVERT(varchar,SIN(@angle))
GO

Here is the result set:

The SIN of the angle is: 0.929607

(1 row(s) affected)

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

smalldatetime
For information about the smalldatetime data type, see datetime and smalldatetime.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

smallint
For information about the smallint data type, see int, bigint, smallint, and tinyint.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

smallmoney
For information about the smallmoney data type, see money and smallmoney.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

SOME | ANY
Compares a scalar value with a single-column set of values.

Syntax

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < }
 { SOME | ANY } (subquery)

Arguments

scalar_expression

Is any valid Microsoft® SQL Server™ expression.

{ = | <> | != | > | >= | !> | < | <= | !< }

Is any valid comparison operator.

SOME | ANY

Specifies that a comparison should be made.

subquery

Is a subquery that has a result set of one column. The data type of the column returned must be the same data type as
scalar_expression.

Result Types

Boolean

Result Value

SOME or ANY returns TRUE when the comparison specified is TRUE for ANY pair (scalar_expression, x) where x is a value in the
single-column set. Otherwise, returns FALSE.

See Also

CASE

Expressions

Functions

Operators (Logical Operators)

SELECT

WHERE

Transact-SQL Reference (SQL Server 2000)

SOUNDEX
Returns a four-character (SOUNDEX) code to evaluate the similarity of two strings.

Syntax

SOUNDEX (character_expression)

Arguments

character_expression

Is an alphanumeric expression of character data. character_expression can be a constant, variable, or column.

Return Types

char

Remarks

SOUNDEX converts an alpha string to a four-character code to find similar-sounding words or names. The first character of the
code is the first character of character_expression and the second through fourth characters of the code are numbers. Vowels in
character_expression are ignored unless they are the first letter of the string. String functions can be nested.

Examples

This example shows the SOUNDEX function and the related DIFFERENCE function. In the first example, the standard SOUNDEX
values are returned for all consonants. Returning the SOUNDEX for Smith and Smythe returns the same SOUNDEX result because
all vowels, the letter y, doubled letters, and the letter h, are not included.

-- Using SOUNDEX
SELECT SOUNDEX ('Smith'), SOUNDEX ('Smythe')

Here is the result set:

----- -----
S530 S530

(1 row(s) affected)

The DIFFERENCE function compares the difference of the SOUNDEX pattern results. The first example shows two strings that
differ only in vowels. The difference returned is 4 (lowest possible difference).

-- Using DIFFERENCE
SELECT DIFFERENCE('Smithers', 'Smythers')
GO

Here is the result set:

4

(1 row(s) affected)

In this example, the strings differ in consonants, so the difference returned is 2 (higher difference).

SELECT DIFFERENCE('Anothers', 'Brothers')
GO

Here is the result set:

2

(1 row(s) affected)

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

SPACE
Returns a string of repeated spaces.

Syntax

SPACE (integer_expression)

Arguments

integer_expression

Is a positive integer that indicates the number of spaces. If integer_expression is negative, a null string is returned.

Return Types

char

Remarks

To include spaces in Unicode data, use REPLICATE instead of SPACE.

Examples

This example trims the authors' last names and concatenates a comma, two spaces, and the authors' first names.

USE pubs
GO
SELECT RTRIM(au_lname) + ',' + SPACE(2) + LTRIM(au_fname)
FROM authors
ORDER BY au_lname, au_fname
GO

Here is the result set:

Name

Bennet, Abraham
Blotchet-Halls, Reginald
Carson, Cheryl
DeFrance, Michel
del Castillo, Innes
Dull, Ann
Green, Marjorie
Greene, Morningstar
Gringlesby, Burt
Hunter, Sheryl
Karsen, Livia
Locksley, Charlene
MacFeather, Stearns
McBadden, Heather
O'Leary, Michael
Panteley, Sylvia
Ringer, Albert
Ringer, Anne
Smith, Meander
Straight, Dean
Stringer, Dirk
White, Olivier
Yokomoto, Akiko

(23 row(s) affected)

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

sql_variant
A data type that stores values of various SQL Server-supported data types, except text, ntext, image, timestamp, and
sql_variant.

sql_variant may be used in columns, parameters, variables, and return values of user-defined functions. sql_variant allows these
database objects to support values of other data types.

Syntax

sql_variant

Remarks

A column of type sql_variant may contain rows of different data types. For example, a column defined as sql_variant can store
int, binary, and char values. The only types of values that cannot be stored using sql_variant are text, ntext, image,
timestamp, and sql_variant.

sql_variant can have a maximum length of 8016 bytes.

An sql_variant data type must first be cast to its base data type value before participating in operations such as addition and
subtraction.

sql_variant may be assigned a default value. This data type also may have NULL as its underlying value, but the NULL values will
not have an associated base type. In addition, sql_variant may not have another sql_variant as its base type.

A UNIQUE, primary, or foreign key may include columns of type sql_variant, but the total length of the data values comprising
the key of a given row should not be greater than the maximum length of an index (currently 900 bytes).

A table may have any number of sql_variant columns.

sql_variant cannot be used in CONTAINSTABLE and FREETEXTTABLE.

ODBC does not fully support sql_variant. Hence, queries of sql_variant columns are returned as binary data when using Microsoft
OLE DB Provider for ODBC (MSDASQL). For example, an sql_variant column containing the character string data 'PS2091' is
returned as 0x505332303931.

Comparing sql_variant values

The sql_variant data type belongs to the top of the data type hierarchy list for conversion. For sql_variant comparisons, the SQL
Server data type hierarchy order is grouped into data type families.

Data Type Hierarchy Data Type Family
sql_variant sql_variant
datetime datetime
smalldatetime datetime
float approximate number
real approximate number
decimal exact number
money exact number
smallmoney exact number
bigint exact number
int exact number
smallint exact number
tinyint exact number
bit exact number
nvarchar Unicode
nchar Unicode
varchar Unicode
char Unicode
varbinary binary
binary binary

uniqueidentifier uniqueidentifier

These rules apply to sql_variant comparisons:

When sql_variant values of different base data types are compared, and the base data types are in different data type
families, the value whose data type family is higher in the hierarchy chart is considered the higher of the two values.

When sql_variant values of different base data types are compared, and the base data types are in the same data type
family, the value whose base data type is lower in the hierarchy chart is implicitly converted to the other data type and the
comparison is then made.

When sql_variant values of the char, varchar, nchar, or varchar data types are compared, they are evaluated based on the
following criteria: LCID, LCID version, comparison flags, and sort ID. Each of these criteria are compared as integer values,
and in the order listed.

See Also

CAST and CONVERT

Using sql_variant_Data

Transact-SQL Reference (SQL Server 2000)

SQL_VARIANT_PROPERTY
Returns the base data type and other information about a sql_variant value.

Syntax

SQL_VARIANT_PROPERTY (expression, property)

Arguments

expression

Is an expression of type sql_variant.

property

Contains the name of the sql_variant property for which information is to be provided. property is varchar(128), and can be any
of the following values.

Value Description Base type of
sql_variant returned

BaseType The SQL Server data type, such as:

char
int
money
nchar
ntext
numeric
nvarchar
real
smalldatetime
smallint
smallmoney
text
timestamp
tinyint
uniqueidentifier
varbinary
varchar

sysname

Invalid input = NULL

Precision The number of digits of the numeric base
data type:

datetime = 23
smalldatetime = 16
float = 53
real = 24
decimal (p,s) and numeric (p,s) = p
money = 19
smallmoney = 10
int = 10
smallint = 5
tinyint = 3
bit = 1
all other types = 0

int

Invalid input = NULL

Scale The number of digits to the right of the
decimal point of the numeric base data
type:

decimal (p,s) and numeric (p,s) = s
money and smallmoney = 4
datetime = 3
all other types = 0

int

Invalid input = NULL

TotalBytes The number of bytes required to hold
both the meta data and data of the value.
This information would be useful in
checking the maximum side of data in a
sql_variant column. If the value is
greater than 900, index creation will fail.

int

Invalid input = NULL

Collation Represents the collation of the particular
sql_variant value.

sysname

Invalid input = NULL

MaxLength The maximum data type length, in bytes.
For example, MaxLength of
nvarchar(50) is 100, MaxLength of int
is 4.

int

Invalid input = NULL

Return Types

sql_variant

Examples

This example retrieves SQL_VARIANT_PROPERTY information on the colA value 46279.1 where colB =1689, given that tableA has
colA that is of type sql_variant and colB.

CREATE TABLE tableA(colA sql_variant, colB int)
INSERT INTO tableA values (cast (46279.1 as decimal(8,2)), 1689)
SELECT SQL_VARIANT_PROPERTY(colA,'BaseType'),
 SQL_VARIANT_PROPERTY(colA,'Precision'),
 SQL_VARIANT_PROPERTY(colA,'Scale')
FROM tableA
WHERE colB = 1689

Here is the result set. (Note that each of these three values is a sql_variant.)

decimal 8 2

See Also

sql_variant

Using sql_variant_Data

Transact-SQL Reference (SQL Server 2000)

SQUARE
Returns the square of the given expression.

Syntax

SQUARE (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example returns the volume of a cylinder having a radius of 1 inch and a height of 5 inches.

DECLARE @h float, @r float
SET @h = 5
SET @r = 1
SELECT PI()* SQUARE(@r)* @h AS 'Cyl Vol'

Here is the result:

Cyl Vol

15.707963267948966

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

SQRT
Returns the square root of the given expression.

Syntax

SQRT (float_expression)

Arguments

float_expression

Is an expression of type float.

Return Types

float

Examples

This example returns the square root of numbers between 1.00 and 10.00.

DECLARE @myvalue float
SET @myvalue = 1.00
WHILE @myvalue < 10.00
 BEGIN
 SELECT SQRT(@myvalue)
 SELECT @myvalue = @myvalue + 1
 END
GO

Here is the result set:

1.0

1.4142135623731

1.73205080756888

2.0

2.23606797749979

2.44948974278318

2.64575131106459

2.82842712474619

3.0

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

STATS_DATE
Returns the date that the statistics for the specified index were last updated.

Syntax

STATS_DATE (table_id , index_id)

Arguments

table_id

Is the ID of the table used.

index_id

Is the ID of the index used.

Return Types

datetime

Remarks

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed.

Examples

This example returns the date of the last time that the statistics were updated for the specified object.

USE pubs
GO
SELECT 'Index Name' = i.name,
 'Statistics Date' = STATS_DATE(i.id, i.indid)
FROM sysobjects o, sysindexes i
WHERE o.name = 'employee' AND o.id = i.id
GO

See Also

System Functions

WHERE

Transact-SQL Reference (SQL Server 2000)

STDEV
Returns the statistical standard deviation of all values in the given expression.

Syntax

STDEV (expression)

Arguments

expression

Is a numeric expression. Aggregate functions and subqueries are not permitted. expression is an expression of the exact numeric
or approximate numeric data type category, except for the bit data type.

Return Types

float

Remarks

If STDEV is used on all items in a SELECT statement, each value in the result set is included in the calculation. STDEV can be used
with numeric columns only. Null values are ignored.

Examples

This example returns the standard deviation for all royalty payments in the titles table.

USE pubs
SELECT STDEV(royalty)
FROM titles

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

STDEVP
Returns the statistical standard deviation for the population for all values in the given expression.

Syntax

STDEVP (expression)

Arguments

expression

Is a numeric expression. Aggregate functions and subqueries are not permitted. expression is an expression of the exact numeric
or approximate numeric data type category, except for the bit data type.

Return Types

float

Remarks

If STDEVP is used on all items in a SELECT statement, each value in the result set is included in the calculation. STDEVP can be
used with numeric columns only. Null values are ignored.

Examples

This example returns the standard deviation for the population for all royalty values in the titles table.

USE pubs
SELECT STDEVP(royalty)
FROM titles

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

STR
Returns character data converted from numeric data.

Syntax

STR (float_expression [, length [, decimal]])

Arguments

float_expression

Is an expression of approximate numeric (float) data type with a decimal point.

length

Is the total length, including decimal point, sign, digits, and spaces. The default is 10.

decimal

Is the number of places to the right of the decimal point.

Return Types

char

Remarks

If supplied, the values for length and decimal parameters to STR should be positive. The number is rounded to an integer by
default or if the decimal parameter is 0. The specified length should be greater than or equal to the part of the number before the
decimal point plus the number's sign (if any). A short float_expression is right-justified in the specified length, and a long
float_expression is truncated to the specified number of decimal places. For example, STR(12,10) yields the result of 12, which is
right-justified in the result set. However, STR(1223, 2) truncates the result set to **. String functions can be nested.

Note To convert to Unicode data, use STR inside a CONVERT or CAST conversion function.

Examples

A. Use STR

This example converts an expression consisting of five digits and a decimal point to a six-position character string. The fractional
part of the number is rounded to one decimal place.

SELECT STR(123.45, 6, 1)
GO

Here is the result set:

 123.5

(1 row(s) affected)

When the expression exceeds the specified length, the string returns ** for the specified length.

SELECT STR(123.45, 2, 2)
GO

Here is the result set:

--
**

(1 row(s) affected)

Even when numeric data is nested within STR, the result is character data with the specified format.

SELECT STR (FLOOR (123.45), 8, 3)
GO

Here is the result set:

 123.000

(1 row(s) affected)

B. Use the STR and CON VERT functions

This example compares the results of STR and CONVERT.

SELECT STR(3.147) AS 'STR',
 STR(3.147, 5, 2) AS '2 decimals',
 STR(3.147, 5, 3) AS '3 decimals'
GO

Here is the result set:

STR 2 decimals 3 decimals
---------- ---------- ----------
 3 3.15 3.147

(1 row(s) affected)

-- Use CONVERT.
SELECT CONVERT(char(1), 3.147) AS 'CHAR(1)',
 CONVERT(char(3), 3.147) AS 'CHAR(3)',
 CONVERT(char(5), 3.147) AS 'CHAR(5)'
GO

Here is the result set:

CHAR(1) CHAR(3) CHAR(5)
------- ------- -------
(null) (null) 3.147

(1 row(s) affected)

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

STUFF
Deletes a specified length of characters and inserts another set of characters at a specified starting point.

Syntax

STUFF (character_expression , start , length , character_expression)

Arguments

character_expression

Is an expression of character data. character_expression can be a constant, variable, or column of either character or binary data.

start

Is an integer value that specifies the location to begin deletion and insertion. If start or length is negative, a null string is returned.
If start is longer than the first character_expression, a null string is returned.

length

Is an integer that specifies the number of characters to delete. If length is longer than the first character_expression, deletion
occurs up to the last character in the last character_expression.

Return Types

Returns character data if character_expression is one of the supported character data types. Returns binary data if
character_expression is one of the supported binary data types.

Remarks

String functions can be nested.

Examples

This example returns a character string created by deleting three characters from the first string (abcdef) starting at position 2 (at
b) and inserting the second string at the deletion point.

SELECT STUFF('abcdef', 2, 3, 'ijklmn')
GO

Here is the result set:

aijklmnef

(1 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

SUBSTRING
Returns part of a character, binary, text, or image expression. For more information about the valid Microsoft® SQL Server™ data
types that can be used with this function, see Data Types.

Syntax

SUBSTRING (expression , start , length)

Arguments

expression

Is a character string, binary string, text, image, a column, or an expression that includes a column. Do not use expressions that
include aggregate functions.

start

Is an integer that specifies where the substring begins.

length

Is a positive integer that specifies how many characters or bytes of the expression will be returned. If length is negative, an error is
returned.

Note Because start and length specify the number of bytes when SUBSTRING is used on text data, DBCS data, such as Kanji, may
result in split characters at the beginning or end of the result. This behavior is consistent with the way in which READTEXT handles
DBCS. However, because of the occasional strange result, it is advisable to use ntext instead of text for DBCS characters.

Return Types

Returns character data if expression is one of the supported character data types. Returns binary data if expression is one of the
supported binary data types.

The returned string is the same type as the given expression with the exceptions shown in the table.

Given expression Return type
text varchar
image varbinary
ntext nvarchar

Remarks

Offsets (start and length) using the ntext, char, or varchar data types must be specified in number of characters. Offsets using
the text, image, binary, or varbinary data types must be specified in number of bytes.

Note Compatibility levels can affect return values. For more information about compatibility levels, see sp_dbcmptlevel.

Examples

A. Use SUBSTRIN G with a character string

This example shows how to return only a portion of a character string. From the authors table, this query returns the last name in
one column with only the first initial in the second column.

USE pubs
SELECT au_lname, SUBSTRING(au_fname, 1, 1)
FROM authors
ORDER BY au_lname

Here is the result set:

au_lname
-- -
Bennet A
Blotchet-Halls R

Carson C
DeFrance M
del Castillo I
...
Yokomoto A

(23 row(s) affected)

Here is how to display the second, third, and fourth characters of the string constant abcdef.

SELECT x = SUBSTRING('abcdef', 2, 3)

Here is the result set:

x

bcd

(1 row(s) affected)

B. Use SUBSTRIN G with text, ntext, and image data

This example shows how to return the first 200 characters from each of a text and image data column in the publishers table of
the pubs database. text data is returned as varchar, and image data is returned as varbinary.

USE pubs
SELECT pub_id, SUBSTRING(logo, 1, 10) AS logo,
 SUBSTRING(pr_info, 1, 10) AS pr_info
FROM pub_info
WHERE pub_id = '1756'

Here is the result set:

pub_id logo pr_info
------ ---------------------- ----------
1756 0x474946383961E3002500 This is sa

(1 row(s) affected)

This example shows the effect of SUBSTRING on both text and ntext data. First, this example creates a new table in the pubs
database named npr_info. Second, the example creates the pr_info column in the npr_info table from the first 80 characters of
the pub_info.pr_info column and adds an ü as the first character. Lastly, an INNER JOIN retrieves all publisher identification
numbers and the SUBSTRING of both the text and ntext publisher information columns.

IF EXISTS (SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'npub_info')
 DROP TABLE npub_info
GO
-- Create npub_info table in pubs database. Borrowed from instpubs.sql.
USE pubs
GO
CREATE TABLE npub_info
(
 pub_id char(4) NOT NULL
 REFERENCES publishers(pub_id)
 CONSTRAINT UPKCL_npubinfo PRIMARY KEY CLUSTERED,
 pr_info ntext NULL
)

GO

-- Fill the pr_info column in npub_info with international data.
RAISERROR('Now at the inserts to pub_info...',0,1)

GO

INSERT npub_info VALUES('0736', N'üThis is sample text data for New Moon Books, publisher 0736 in the pubs
database')
INSERT npub_info values('0877', N'üThis is sample text data for Binnet & Hardley, publisher 0877 in the pubs
databa')
INSERT npub_info values('1389', N'üThis is sample text data for Algodata Infosystems, publisher 1389 in the pubs
da')
INSERT npub_info values('9952', N'üThis is sample text data for Scootney Books, publisher 9952 in the pubs
database')
INSERT npub_info values('1622', N'üThis is sample text data for Five Lakes Publishing, publisher 1622 in the
pubs d')
INSERT npub_info values('1756', N'üThis is sample text data for Ramona Publishers, publisher 1756 in the pubs
datab')

INSERT npub_info values('9901', N'üThis is sample text data for GGG&G, publisher 9901 in the pubs database.
GGG&G i')
INSERT npub_info values('9999', N'üThis is sample text data for Lucerne Publishing, publisher 9999 in the pubs
data')
GO
-- Join between npub_info and pub_info on pub_id.
SELECT pr.pub_id, SUBSTRING(pr.pr_info, 1, 35) AS pr_info,
 SUBSTRING(npr.pr_info, 1, 35) AS npr_info
FROM pub_info pr INNER JOIN npub_info npr
 ON pr.pub_id = npr.pub_id
ORDER BY pr.pub_id ASC

See Also

String Functions

Transact-SQL Reference (SQL Server 2000)

SUM
Returns the sum of all the values, or only the DISTINCT values, in the expression. SUM can be used with numeric columns only.
Null values are ignored.

Syntax

SUM ([ALL | DISTINCT] expression)

Arguments

ALL

Applies the aggregate function to all values. ALL is the default.

DISTINCT

Specifies that SUM return the sum of unique values.

expression

Is a constant, column, or function, and any combination of arithmetic, bitwise, and string operators. expression is an expression of
the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate functions and subqueries
are not permitted.

Return Types

Returns the summation of all expression values in the most precise expression data type.

Expression result Return type
integer category int
decimal category (p, s) decimal(38, s)
money and smallmoney category money
float and real category float

Important Distinct aggregates, for example AVG(DISTINCT column_name), COUNT(DISTINCT column_name), MAX(DISTINCT
column_name), MIN(DISTINCT column_name), and SUM(DISTINCT column_name), are not supported when using CUBE or
ROLLUP. If used, Microsoft® SQL Server™ returns an error message and cancels the query.

Examples

A. Use SUM for aggregates and row aggregates

These examples show the differences between aggregate functions and row aggregate functions. The first shows aggregate
functions giving summary data only, and the second shows row aggregate functions giving detail and summary data.

USE pubs
GO
-- Aggregate functions
SELECT type, SUM(price), SUM(advance)
FROM titles
WHERE type LIKE '%cook'
GROUP BY type
ORDER BY type
GO

Here is the result set:

type
------------ -------------------------- --------------------------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 row(s) affected)

USE pubs

GO
-- Row aggregates
SELECT type, price, advance
FROM titles
WHERE type LIKE '%cook'
ORDER BY type
COMPUTE SUM(price), SUM(advance) BY type

Here is the result set:

type price advance
------------ -------------------------- --------------------------
mod_cook 19.99 0.00
mod_cook 2.99 15,000.00

 sum
 ==========================
 22.98
 sum
 ==========================
 15,000.00

type price advance
------------ -------------------------- --------------------------
trad_cook 20.95 7,000.00
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00

 sum
 ==========================
 47.89
 sum
 ==========================
 19,000.00

(7 row(s) affected)

B. Calculate group totals w ith more than one column

This example calculates the sum of the prices and advances for each type of book.

USE pubs
GO
SELECT type, SUM(price), SUM(advance)
FROM titles
GROUP BY type
ORDER BY type
GO

Here is the result set:

type
------------ -------------------------- --------------------------
business 54.92 25,125.00
mod_cook 22.98 15,000.00
popular_comp 42.95 15,000.00
psychology 67.52 21,275.00
trad_cook 47.89 19,000.00
UNDECIDED (null) (null)

(6 row(s) affected)

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

SUSER_ID
Returns the user's login identification number.

Important SUSER_ID always returns NULL when used in Microsoft® SQL Server™ 2000. This system built-in function is
included only for backward compatibility. Use SUSER_SID instead.

Syntax

SUSER_ID (['login'])

Arguments

'login'

Is the user's login identification name. login, which is optional, is nchar. If login is specified as char, it is implicitly converted to
nchar. login can be any SQL Server login or Microsoft Windows NT® user or group that has permission to connect to SQL
Server. If login is not specified, the login identification number for the current user is returned.

Return Types

int

Remarks

In SQL Server 7.0, the security identification number (SID) replaces the server user identification number (SUID).

SUSER_SID returns a SUID only for a login that has an entry in the syslogins system table.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed, and must always be
followed by parentheses (even if no parameter is specified).

Examples

This example returns the login identification number for the sa login.

SELECT SUSER_ID('sa')

See Also

Managing Security

System Functions

Transact-SQL Reference (SQL Server 2000)

SUSER_NAME
Returns the user's login identification name.

Important SUSER_NAME always returns NULL when used in Microsoft® SQL Server™ 2000. This system built-in function is
included only for backward compatibility. Use SUSER_SNAME instead.

Syntax

SUSER_NAME ([server_user_id])

Arguments

server_user_id

Is the user's login identification number. server_user_id, which is optional, is int. server_user_id can be the login identification
number of any SQL Server login or Microsoft Windows NT® user or group that has permission to connect to SQL Server. If
server_user_id is not specified, the login identification name for the current user is returned.

Return Types

nchar

Remarks

In SQL Server 7.0, the security identification number (SID) replaces the server user identification number (SUID).

SUSER_NAME returns a login name only for a login that has an entry in the syslogins system table.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed, and must always be
followed by parentheses (even if no parameter is specified).

Examples

This example returns the user's login identification name for a login identification number of 1.

SELECT SUSER_NAME(1)

See Also

Managing Security

System Functions

Transact-SQL Reference (SQL Server 2000)

SUSER_SID
Returns the security identification number (SID) for the user's login name.

Syntax

SUSER_SID (['login'])

Arguments

'login'

Is the user's login name. login is sysname. login, which is optional, can be a Microsoft® SQL Server™ login or Microsoft Windows
NT® user or group. If login is not specified, information about the current user is returned.

Return Types

varbinary(85)

Remarks

When specifying a SQL Server login using SQL Server Authentication, the user must be granted permission to connect to SQL
Server. Use sp_addlogin or SQL Server Enterprise Manager to grant this permission. However, when specifying a Windows NT
user or group using Windows Authentication, this user or group does not have to be granted permission to connect to SQL
Server.

SUSER_SID can be used as a DEFAULT constraint in either ALTER TABLE or CREATE TABLE.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed, and must always be
followed by parentheses (even if no parameter is specified).

Examples

A. Use SUSER_SID

This example returns the security identification number for the SQL Server sa login.

SELECT SUSER_SID('sa')

B. Use SUSER_SID with a Windows N T username

This example returns the security identification number for the Windows NT user London\Workstation1.

SELECT SUSER_SID('London\Workstation1')

C. Use SUSER_SID as a DEFAULT constraint

This example uses SUSER_SID as a DEFAULT constraint in a CREATE TABLE statement.

USE pubs
GO
CREATE TABLE sid_example
(
login_sid varbinary(85) DEFAULT SUSER_SID(),
login_name varchar(30) DEFAULT SYSTEM_USER,
login_dept varchar(10) DEFAULT 'SALES',
login_date datetime DEFAULT GETDATE()
)
GO
INSERT sid_example DEFAULT VALUES
GO

See Also

ALTER TABLE

binary and varbinary

CREATE TABLE

Managing Security

sp_addlogin

sp_grantlogin

System Functions

Transact-SQL Reference (SQL Server 2000)

SUSER_SNAME
Returns the login identification name from a user's security identification number (SID).

Syntax

SUSER_SNAME ([server_user_sid])

Arguments

server_user_sid

Is the user security identification number. server_user_sid, which is optional, is varbinary(85). server_user_sid can be the security
identification number of any Microsoft® SQL Server™ login or Microsoft Windows NT® user or group. If server_user_sid is not
specified, information about the current user is returned.

Return Types

nvarchar(256)

Remarks

When specifying a SQL Server login using SQL Server Authentication, the user must be granted permission to connect to SQL
Server. Use sp_addlogin or SQL Server Enterprise Manager to grant this permission. However, when specifying a Windows NT
user or group using Windows Authentication, this user or group does not have to be granted permission to connect to SQL
Server.

SUSER_SNAME can be used as a DEFAULT constraint in either ALTER TABLE or CREATE TABLE.

System functions can be used in the select list, in the WHERE clause, and anywhere an expression is allowed, and must always be
followed by parentheses (even if no parameter is specified).

Examples

A. Use SUSER_SN AM E

This example returns the login name for the security identification number with a value of 0x01.

SELECT SUSER_SNAME(0x01)

B. Use SUSER_SN AM E with a Windows N T user's security identification number

This example returns the login name for the Windows NT user's security identification number, obtained by using SUSER_SID.

SELECT SUSER_SNAME(0x010500000000000515000000a065cf7e784b9b5fe77c87705a2e0000)

C. Use SUSER_SN AM E as a DEFAULT constraint

This example uses SUSER_SNAME as a DEFAULT constraint in a CREATE TABLE statement.

USE pubs
GO
CREATE TABLE sname_example
(
login_sname sysname DEFAULT SUSER_SNAME(),
employee_id uniqueidentifier DEFAULT NEWID(),
login_date datetime DEFAULT GETDATE()
)
GO
INSERT sname_example DEFAULT VALUES
GO

See Also

ALTER TABLE

binary and varbinary

CREATE TABLE

Managing Security

sp_addlogin

sp_grantlogin

System Functions

Transact-SQL Reference (SQL Server 2000)

System Stored Procedures
Many administrative and informational activities in Microsoft® SQL Server™ can be performed through system stored
procedures. The system stored procedures are grouped into these categories.

Category Description
Active Directory Procedures Used to register instances of SQL Server

and SQL Server databases in Microsoft
Windows® 2000 Active Directory™.

Catalog Procedures Implements ODBC data dictionary functions
and isolates ODBC applications from
changes to underlying system tables.

Cursor Procedures Implements cursor variable functionality.
Database Maintenance Plan Procedures Used to set up core maintenance tasks

necessary to ensure database performance.
Distributed Queries Procedures Used to implement and manage Distributed

Queries.
Full-Text Search Procedures Used to implement and query full-text

indexes.
Log Shipping Procedures Used to configure and manage log shipping.
OLE Automation Procedures Allows standard OLE automation objects to

be used within a standard Transact-SQL
batch.

Replication Procedures Used to manage replication.
Security Procedures Used to manage security.
SQL Mail Procedures Used to perform e-mail operations from

within SQL Server.
SQL Profiler Procedures Used by SQL Profiler to monitor

performance and activity.
SQL Server Agent Procedures Used by SQL Server Agent to manage

scheduled and event-driven activities.
System Procedures Used for general maintenance of SQL

Server.
Web Assistant Procedures Used by the Web Assistant.
XML Procedures Used for Extensible Markup Language (XML)

text management.
General Extended Procedures Provides an interface from SQL Server to

external programs for various maintenance
activities.

Note Unless specifically documented otherwise, all system stored procedures return a value of 0, which indicates success. To
indicate failure, a nonzero value is returned.

Active Directory Procedures
sp_ActiveDirectory_Obj sp_ActiveDirectory_SCP

Catalog Procedures
sp_column_privileges sp_special_columns
sp_columns sp_sproc_columns
sp_databases sp_statistics
sp_fkeys sp_stored_procedures
sp_pkeys sp_table_privileges
sp_server_info sp_tables

Cursor Procedures
sp_cursor_list sp_describe_cursor_columns
sp_describe_cursor sp_describe_cursor_tables

Database Maintenance Plan Procedures
sp_add_maintenance_plan sp_delete_maintenance_plan_db
sp_add_maintenance_plan_db sp_delete_maintenance_plan_job
sp_add_maintenance_plan_job sp_help_maintenance_plan
sp_delete_maintenance_plan

Distributed Queries Procedures
sp_addlinkedserver sp_indexes
sp_addlinkedsrvlogin sp_linkedservers
sp_catalogs sp_primarykeys
sp_column_privileges_ex sp_serveroption
sp_columns_ex sp_table_privileges_ex
sp_droplinkedsrvlogin sp_tables_ex
sp_foreignkeys

Full-Text Search Procedures
sp_fulltext_catalog sp_help_fulltext_catalogs_cursor
sp_fulltext_column sp_help_fulltext_columns
sp_fulltext_database sp_help_fulltext_columns_cursor
sp_fulltext_service sp_help_fulltext_tables
sp_fulltext_table sp_help_fulltext_tables_cursor
sp_help_fulltext_catalogs

Log Shipping Procedures
sp_add_log_shipping_database sp_delete_log_shipping_database
sp_add_log_shipping_plan sp_delete_log_shipping_plan
sp_add_log_shipping_plan_database sp_delete_log_shipping_plan_database
sp_add_log_shipping_primary sp_delete_log_shipping_primary
sp_add_log_shipping_secondary sp_delete_log_shipping_secondary
sp_can_tlog_be_applied sp_get_log_shipping_monitor_info
sp_change_monitor_role sp_remove_log_shipping_monitor
sp_change_primary_role sp_resolve_logins
sp_change_secondary_role sp_update_log_shipping_monitor_info
sp_create_log_shipping_monitor_account sp_update_log_shipping_plan
sp_define_log_shipping_monitor sp_update_log_shipping_plan_database

OLE Automation Extended Stored Procedures
sp_OACreate sp_OAMethod
sp_OADestroy sp_OASetProperty
sp_OAGetErrorInfo sp_OAStop
sp_OAGetProperty Object Hierarchy Syntax

Replication Procedures
sp_add_agent_parameter sp_enableagentoffload
sp_add_agent_profile sp_enumcustomresolvers
sp_addarticle sp_enumdsn
sp_adddistpublisher sp_enumfullsubscribers
sp_adddistributiondb sp_expired_subscription_cleanup
sp_adddistributor sp_generatefilters
sp_addmergealternatepublisher sp_getagentoffloadinfo
sp_addmergearticle sp_getmergedeletetype
sp_addmergefilter sp_get_distributor
sp_addmergepublication sp_getqueuedrows

sp_addmergepullsubscription sp_getsubscriptiondtspackagename
sp_addmergepullsubscription_agent sp_grant_publication_access
sp_addmergesubscription sp_help_agent_default
sp_addpublication sp_help_agent_parameter
sp_addpublication_snapshot sp_help_agent_profile
sp_addpublisher70 sp_helparticle
sp_addpullsubscription sp_helparticlecolumns
sp_addpullsubscription_agent sp_helparticledts
sp_addscriptexec sp_helpdistpublisher
sp_addsubscriber sp_helpdistributiondb
sp_addsubscriber_schedule sp_helpdistributor
sp_addsubscription sp_helpmergealternatepublisher
sp_addsynctriggers sp_helpmergearticle
sp_addtabletocontents sp_helpmergearticlecolumn
sp_adjustpublisheridentityrange sp_helpmergearticleconflicts
sp_article_validation sp_helpmergeconflictrows
sp_articlecolumn sp_helpmergedeleteconflictrows
sp_articlefilter sp_helpmergefilter
sp_articlesynctranprocs sp_helpmergepublication
sp_articleview sp_helpmergepullsubscription
sp_attachsubscription sp_helpmergesubscription
sp_browsesnapshotfolder sp_helppublication
sp_browsemergesnapshotfolder sp_help_publication_access
sp_browsereplcmds sp_helppullsubscription
sp_change_agent_parameter sp_helpreplfailovermode
sp_change_agent_profile sp_helpreplicationdboption
sp_changearticle sp_helpreplicationoption
sp_changedistpublisher sp_helpsubscriberinfo
sp_changedistributiondb sp_helpsubscription
sp_changedistributor_password sp_helpsubscription_properties
sp_changedistributor_property sp_ivindexhasnullcols
sp_changemergearticle sp_link_publication
sp_changemergefilter sp_marksubscriptionvalidation
sp_changemergepublication sp_mergearticlecolumn
sp_changemergepullsubscription sp_mergecleanupmetadata
sp_changemergesubscription sp_mergedummyupdate
sp_changepublication sp_mergesubscription_cleanup
sp_changesubscriber sp_publication_validation
sp_changesubscriber_schedule sp_refreshsubscriptions
sp_changesubscriptiondtsinfo sp_reinitmergepullsubscription
sp_changesubstatus sp_reinitmergesubscription
sp_change_subscription_properties sp_reinitpullsubscription
sp_check_for_sync_trigger sp_reinitsubscription
sp_copymergesnapshot sp_removedbreplication
sp_copysnapshot sp_repladdcolumn
sp_copysubscription sp_replcmds
sp_deletemergeconflictrow sp_replcounters
sp_disableagentoffload sp_repldone
sp_drop_agent_parameter sp_repldropcolumn
sp_drop_agent_profile sp_replflush
sp_droparticle sp_replicationdboption
sp_dropanonymouseagent sp_replication_agent_checkup
sp_dropdistpublisher sp_replqueuemonitor

sp_dropdistributiondb sp_replsetoriginator
sp_dropmergealternatepublisher sp_replshowcmds
sp_dropdistributor sp_repltrans
sp_dropmergearticle sp_restoredbreplication
sp_dropmergefilter sp_resyncmergesubscription
 sp_revoke_publication_access
sp_dropmergepublication sp_scriptsubconflicttable
sp_dropmergepullsubscription sp_script_synctran_commands
 sp_setreplfailovermode
sp_dropmergesubscription sp_showrowreplicainfo
sp_droppublication sp_subscription_cleanup
sp_droppullsubscription sp_table_validation
sp_dropsubscriber sp_update_agent_profile
sp_dropsubscription sp_validatemergepublication
sp_dsninfo sp_validatemergesubscription
sp_dumpparamcmd sp_vupgrade_replication

Security Procedures
sp_addalias sp_droprolemember
sp_addapprole sp_dropserver
sp_addgroup sp_dropsrvrolemember
sp_addlinkedsrvlogin sp_dropuser
sp_addlogin sp_grantdbaccess
sp_addremotelogin sp_grantlogin
sp_addrole sp_helpdbfixedrole
sp_addrolemember sp_helpgroup
sp_addserver sp_helplinkedsrvlogin
sp_addsrvrolemember sp_helplogins
sp_adduser sp_helpntgroup
sp_approlepassword sp_helpremotelogin
sp_changedbowner sp_helprole
sp_changegroup sp_helprolemember
sp_changeobjectowner sp_helprotect
sp_change_users_login sp_helpsrvrole
sp_dbfixedrolepermission sp_helpsrvrolemember
sp_defaultdb sp_helpuser
sp_defaultlanguage sp_MShasdbaccess
sp_denylogin sp_password
sp_dropalias sp_remoteoption
sp_dropapprole sp_revokedbaccess
sp_dropgroup sp_revokelogin
sp_droplinkedsrvlogin sp_setapprole
sp_droplogin sp_srvrolepermission
sp_dropremotelogin sp_validatelogins
sp_droprole

SQL Mail Procedures
sp_processmail xp_sendmail
xp_deletemail xp_startmail
xp_findnextmsg xp_stopmail
xp_readmail

SQL Profiler Procedures
sp_trace_create sp_trace_setfilter

sp_trace_generateevent sp_trace_setstatus
sp_trace_setevent

SQL Server Agent Procedures
sp_add_alert sp_help_jobhistory
sp_add_category sp_help_jobschedule
sp_add_job sp_help_jobserver
sp_add_jobschedule sp_help_jobstep
sp_add_jobserver sp_help_notification
sp_add_jobstep sp_help_operator
sp_add_notification sp_help_targetserver
sp_add_operator sp_help_targetservergroup
sp_add_targetservergroup sp_helptask
sp_add_targetsvrgrp_member sp_manage_jobs_by_login
sp_addtask sp_msx_defect
sp_apply_job_to_targets sp_msx_enlist
sp_delete_alert sp_post_msx_operation
sp_delete_category sp_purgehistory
sp_delete_job sp_purge_jobhistory
sp_delete_jobschedule sp_reassigntask
sp_delete_jobserver sp_remove_job_from_targets
sp_delete_jobstep sp_resync_targetserver
sp_delete_notification sp_start_job
sp_delete_operator sp_stop_job
sp_delete_targetserver sp_update_alert
sp_delete_targetservergroup sp_update_category
sp_delete_targetsvrgrp_member sp_update_job
sp_droptask sp_update_jobschedule
sp_help_alert sp_update_jobstep
sp_help_category sp_update_notification
sp_help_downloadlist sp_update_operator
sp_helphistory sp_update_targetservergroup
sp_help_job sp_updatetask
 xp_sqlagent_proxy_account

System Procedures
sp_add_data_file_recover_suspect_db sp_helpconstraint
sp_addextendedproc sp_helpdb
sp_addextendedproperty sp_helpdevice
sp_add_log_file_recover_suspect_db sp_helpextendedproc
sp_addmessage sp_helpfile
sp_addtype sp_helpfilegroup
sp_addumpdevice sp_helpindex
sp_altermessage sp_helplanguage
sp_autostats sp_helpserver
sp_attach_db sp_helpsort
sp_attach_single_file_db sp_helpstats
sp_bindefault sp_helptext
sp_bindrule sp_helptrigger
sp_bindsession sp_indexoption
sp_certify_removable sp_invalidate_textptr
sp_configure sp_lock
sp_create_removable sp_monitor
sp_createstats sp_procoption

sp_cycle_errorlog sp_recompile
sp_datatype_info sp_refreshview
sp_dbcmptlevel sp_releaseapplock
sp_dboption sp_rename
sp_dbremove sp_renamedb
sp_delete_backuphistory sp_resetstatus
sp_depends sp_serveroption
sp_detach_db sp_setnetname
sp_dropdevice sp_settriggerorder
sp_dropextendedproc sp_spaceused
sp_dropextendedproperty sp_tableoption
sp_dropmessage sp_unbindefault
sp_droptype sp_unbindrule
sp_executesql sp_updateextendedproperty
sp_getapplock sp_updatestats
sp_getbindtoken sp_validname
sp_help sp_who

Web Assistant Procedures
sp_dropwebtask sp_makewebtask
sp_enumcodepages sp_runwebtask

XML Procedures
sp_xml_preparedocument sp_xml_removedocument

General Extended Procedures
xp_cmdshell xp_logininfo
xp_enumgroups xp_msver
xp_findnextmsg xp_revokelogin
xp_grantlogin xp_sprintf
xp_logevent xp_sqlmaint
xp_loginconfig xp_sscanf

API System Stored Procedures

Users running SQL Profiler against ADO, OLE DB, ODBC, and DB-Library applications may notice the use of system stored
procedures that are not covered in the Transact-SQL Reference. These stored procedures are used by the Microsoft OLE DB
Provider for SQL Server, the SQL Server ODBC driver, and the DB-Library dynamic-link library (DLL) to implement the
functionality of a database API. These stored procedures are simply the mechanism the provider or drivers use to communicate
user requests to SQL Server. They are intended only for the internal use of the OLE DB Provider for SQL Server, the SQL Server
ODBC driver, and the DB-Library DLL. Calling them explicitly from an SQL Server application is not supported.

The complete functionality from these stored procedures is made available to SQL Server applications through the API functions
they support. For example, the cursor functionality of the sp_cursor system stored procedures is made available to OLE DB
applications through the OLE DB API cursor properties and methods, to ODBC applications through the ODBC cursor attributes
and functions, and to DB-Library applications through the DB-Library Cursor Library.

These system stored procedures support the cursor functionality of ADO, OLE DB, ODBC, and the DB-Library Cursor Library:

sp_cursor sp_cursorclose sp_cursorexecute
sp_cursorfetch sp_cursoropen sp_cursoroption
sp_cursorprepare sp_cursorunprepare

These system stored procedures support the prepare/execute model of executing Transact-SQL statements in ADO, OLE DB, and
ODBC:

sp_execute sp_prepare sp_unprepare

The sp_createorphan and sp_droporphans stored procedures are used for ODBC ntext, text, and image processing.

The sp_reset_connection stored procedure is used by SQL Server to support remote stored procedure calls in a transaction.

The sp_sdidebug stored procedure is used by SQL Server for debugging Transact-SQL statements.

Transact-SQL Reference (SQL Server 2000)

Object Hierarchy Syntax
The propertyname parameter of sp_OAGetProperty and sp_OASetProperty and the methodname of sp_OAMethod support
an object hierarchy syntax similar to Microsoft® Visual Basic®. When this special syntax is used, these parameters have the
general form:

Syntax

'TraversedObject.PropertyOrMethod'

Arguments

TraversedObject

Is an OLE object in the hierarchy under the objecttoken specified in the stored procedure. Use Visual Basic syntax to specify a
series of collections, object properties, and methods that return objects. Each object specifier in the series must be separated by a
period (.).

An item in the series can be the name of a collection. Use this syntax to specify a collection:

Collection("item")

The double quotation marks (") around item are required. The Visual Basic exclamation point (!) syntax for collections is not
supported.

PropertyOrMethod

Is the name of a property or method of the TraversedObject.

To specify all index or method parameters by using sp_OAGetProperty, sp_OASetProperty, or sp_OAMethod parameters
(including support for sp_OAMethod output parameters), use this syntax:

PropertyOrMethod

To specify all index or method parameters inside the parentheses (causing all index or method parameters of sp_OAGetProperty,
sp_OASetProperty, or sp_OAMethod to be ignored) use this syntax:

PropertyOrMethod([ParameterName :=] "parameter" [,...])

The double quotation marks (") around each parameter are required. All named parameters must be specified after all positional
parameters are specified.

Remarks

If TraversedObject is not specified, PropertyOrMethod is required.

If PropertyOrMethod is not specified, the TraversedObject is returned as an object token output parameter from the OLE
Automation stored procedure. If PropertyOrMethod is specified, the property or method of the TraversedObject is called, and the
property value or method return value is returned as an output parameter from the OLE Automation stored procedure.

If any item in the TraversedObject list does not return an OLE object, an error occurs.

For more information about Visual Basic OLE object syntax, see the Visual Basic documentation.

For more information about HRESULT Return Codes, see HRESULT Return Codes in the sp_OACreate section.

Examples

These are examples of object hierarchy syntax using a SQL-DMO SQLServer object.

-- Call the Connect method of the SQLServer object.
EXEC @hr = sp_OAMethod @object,
 'Connect("my_server", "my_login", "my_password")'

-- Get the pubs..authors Table object.
EXEC @hr = sp_OAGetProperty @object,
 'Databases("pubs").Tables("authors")',
 @table OUT

-- Get the Rows property of the pubs..authors table.

EXEC @hr = sp_OAGetProperty @object,
 'Databases("pubs").Tables("authors").Rows',
 @rows OUT

-- Call the CheckTable method of the pubs..authors table.
EXEC @hr = sp_OAMethod @object,
 'Databases("pubs").Tables("authors").CheckTable',
 @checkoutput OUT

See Also

Data Type Conversions Using OLE Automation Stored Procedures

OLE Automation Sample Script

How to create an OLE Automation object (Transact-SQL)

System Stored Procedures (OLE Automation Extended Stored Procedures)

How to debug a custom OLE Automation server (Transact-SQL)

Transact-SQL Reference (SQL Server 2000)

sp_ActiveDirectory_Obj
Controls the registration of a Microsoft® SQL Server™ database in the Microsoft Windows® 2000 Active Directory™.

Syntax

sp_ActiveDirectory_Obj [@Action =] N'action'

 [, [@ObjType =] N'database']

 , [@ObjName =] N'database_name'

Arguments

[@Action =] N'action'

Specifies whether the Active Directory object registering the SQL Server database is to be created, updated, or deleted. action is
nvarchar(20) with a default of N'create'.

Value Description
create Registers the SQL Server database in the Active

Directory by creating an MS-SQL-SQLDatabase object
in the directory. The MS-SQL-SQLDatabase object
records the attributes of the database at the time the
create action is performed. If you specify create and the
database is already registered, an update action is
performed.

update Refreshes the attributes registered for the database in
the Active Directory by updating the attributes recorded
in the MS-SQL-SQLDatabase object in the Active
Directory. If you specify update and the database is not
registered, a create action is performed.

delete Removes the Active Directory registration for the
database by deleting the MS-SQL_SQLDatabase object
from the Active Directory.

[@ObjType =] N'database']

Specifies that sp_ActiveDirectory_Obj perform the requested action on a database object in the Active Directory. N'database' is
nvarchar(15), with a default of N'database'. In SQL Server 2000, N'database' is the only supported value.

[@ObjName =] N'database_name'

Specifies the name of the database for which the registration action is performed. database_name is sysname, and you must
specify a value. database_name must specify the name of a database that exists in the instance of SQL Server in which
sp_ActiveDirectory_Obj is executed. database_name must conform to the rules for identifiers.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The current instance of SQL Server must be registered in the Active Directory before you can register any of the databases in the
instance. If you remove the registration of the instance from the Active Directory, all of the registrations for databases in that
instance are also removed.

In SQL Server 2000, databases are the only entities you can register in the Active Directory using sp_ActiveDirectory_Obj
directly. To control the registration of instances of SQL Server in the Active Directory, use sp_ActiveDirectory_SCP. To control

the registration of replication publications in the Active Directory, use the replication stored procedures: sp_addpublication,
sp_changepublication, sp_addmergepublication, and sp_changemergepublication.

Permissions

Only members of the sysadmin fixed server role and the db_owner fixed database role can execute sp_ActiveDirectory_SCP.

Examples

This example registers the Northwind database from the current instance of SQL Server in the Active Directory.

DECLARE @RetCode INT

EXEC @RetCode = sp_ActiveDirectory_Obj @Action = N'create',
 @ObjType = N'database',
 @ObjName = 'Northwind'

PRINT 'Return code = ' + CAST(@RetCode AS VARCHAR)

See Also

Active Directory Integration

Active Directory Services

sp_ActiveDirectory_SCP

sp_addmergepublication

sp_addpublication

sp_changemergepublication

sp_changepublication

Transact-SQL Reference (SQL Server 2000)

sp_ActiveDirectory_SCP
Controls the registration of an instance of Microsoft® SQL Server™ in the Microsoft Windows® 2000 Active Directory™. The
actions of sp_ActiveDirectory_SCP always apply to the instance of SQL Server to which you are currently connected.

Syntax

sp_ActiveDirectory_SCP [@Action =] N'action'

Arguments

[@Action =] N'action'

Specifies whether the Active Directory object registering the instance of SQL Server is to be created, updated, or deleted. action is
nvarchar(20) with a default of N'create'.

Value Description
create Registers the instance of SQL Server in the Active

Directory by creating an MS-SQL-SQLServer object in
the directory. The MS-SQL-SQLServer object records
the attributes of the instance of SQL Server at the time
the create action is performed. If you specify create and
the instance is already registered, an update action is
performed.

update Refreshes the attributes registered for the current
instance of SQL Server in the Active Directory. Updates
the attributes recorded in the MS-SQL-SQLServer
object in the Active Directory. If you specify update and
the instance is not registered, a create action is
performed.

delete Removes the Active Directory registration for the
current instance of SQL Server. Deletes the MS-
SQL_SQLServer object from the Active Directory. Also
removes the registrations of any databases and
publications in the instance.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

After registering an instance of SQL Server in the Active Directory, you can use sp_ActiveDirectory_Obj to register any of the
databases in the instance, and you can use sp_addpublication or sp_addmergepublication to register publications.

Permissions

Only members of the sysadmin fixed server role can execute sp_ActiveDirectory_SCP.

Examples

This example registers the current instance of SQL Server in the Active Directory.

DECLARE @RetCode INT

EXEC @RetCode = sp_ActiveDirectory_SCP @Action = N'create'

PRINT 'Return code = ' + CAST(@RetCode AS VARCHAR)

See Also

Active Directory Integration_active_directory_integration

Active Directory Services

sp_ActiveDirectory_Obj_sp_activedirectory_obj

sp_addmergepublication

sp_addpublication

Transact-SQL Reference (SQL Server 2000)

sp_add_alert
Creates an alert.

Syntax

sp_add_alert [@name =] 'name'
 [, [@message_id =] message_id]
 [, [@severity =] severity]
 [, [@enabled =] enabled]
 [, [@delay_between_responses =] delay_between_responses]
 [, [@notification_message =] 'notification_message']
 [, [@include_event_description_in =] include_event_description_in]
 [, [@database_name =] 'database']
 [, [@event_description_keyword =] 'event_description_keyword_pattern']
 [, { [@job_id =] job_id | [@job_name =] 'job_name' }]
 [, [@raise_snmp_trap =] raise_snmp_trap]
 [, [@performance_condition =] 'performance_condition']
 [, [@category_name =] 'category']

Arguments

[@name =] 'name'

Is the name of the alert. The name appears in the e-mail or pager message sent in response to the alert. It must be unique and can
contain the percent (%) character. name is sysname, with no default.

[@message_id =] message_id

Is the message error number that defines the alert. (It usually corresponds to an error number in the sysmessages table.)
message_id is int, with a default of 0. If severity is used to define the alert, message_id must be 0 or NULL.

Note Only sysmessages errors written to the Microsoft® Windows NT® application log can cause an alert to be sent.

[@severity =] severity

Is the severity level (from 1 through 25) that defines the alert. Any Microsoft SQL Server™ message stored in the sysmessages
table sent to the Microsoft Windows NT application log with the indicated severity causes the alert to be sent. severity is int, with
a default of 0. If message_id is used to define the alert, severity must be 0.

[@enabled =] enabled

Indicates the current status of the alert. enabled is tinyint, with a default of 1 (enabled). If 0, the alert is not enabled and does not
fire.

[@delay_between_responses =] delay_between_responses

Is the wait period, in seconds, between responses to the alert. delay_between_responses is int, with a default of 0, which means
there is no waiting between responses (each occurrence of the alert generates a response). The response can be in either or both
of these forms:

One or more notifications sent through e-mail or pager.

A job to execute.

By setting this value, it is possible to prevent, for example, unwanted e-mail messages from being sent when an alert
repeatedly occurs in a short period of time.

[@notification_message =] 'notification_message'

Is an optional additional message sent to the operator as part of the e-mail, net send, or pager notification. notification_message
is nvarchar(512), with a default of NULL. Specifying notification_message is useful for adding special notes such as remedial
procedures.

[@include_event_description_in =] include_event_description_in

Is whether the description of the SQL Server error should be included as part of the notification message.

include_event_description_in is tinyint, with a default of 5 (e-mail and net send), and can have one or more of these values
combined with an OR logical operator.

Value Description
0 (default) None
1 E-mail
2 Pager
4 net send

[@database_name =] 'database'

Is the database in which the error must occur for the alert to fire. If database is not supplied, the alert fires regardless of where the
error occurred. database is sysname, with a default of NULL.

[@event_description_keyword =] 'event_description_keyword_pattern'

Is the sequence of characters that the description of the SQL Server error must be like. Transact-SQL LIKE expression pattern-
matching characters can be used. event_description_keyword_pattern is nvarchar(100), with a default of NULL. This parameter is
useful for filtering object names (for example, %customer_table%).

[@job_id =] job_id

Is the job identification number of the job to run in response to this alert. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to be executed in response to this alert. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@raise_snmp_trap =] raise_snmp_trap

Not implemented in SQL Server version 7.0.

[@performance_condition =] 'performance_condition'

Is a value expressed in the format 'item comparator value'. performance_condition is nvarchar(512) with a default of NULL, and
consists of these elements.

Format element Description
Item A performance object, performance counter, or named

instance of the counter
Comparator One of these operators: >, <, or =
Value Numeric value of the counter

Note Performance condition alerts are only available for the first 99 databases. Any databases created after the first 99
databases will not be included in the sysperfinfo system table, and using the sp_add_alert procedure will return an error.

[@category_name =] 'category'

The name of the alert category. category is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_add_alert must be run from the msdb database.

These are the circumstances under which errors/messages generated by SQL Server and SQL Server applications are sent to the
Windows NT application log and can therefore raise alerts:

Severity 19 or higher sysmessages errors

Any RAISERROR statement invoked with WITH LOG syntax

Any sysmessages error modified or created using sp_altermessage

Any event logged using xp_logevent

SQL Server Enterprise Manager provides an easy, graphical way to manage the entire alerting system and is the recommended
way to configure an alert infrastructure.

If an alert is not functioning properly, check whether:

The SQL Server Agent service is running.

The event appeared in the Windows NT application log.

The alert is enabled.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_alert.

Examples

This example adds an alert (Test Alert) that invokes the Back up the Customer Database job when fired.

Note This example assumes that the message 55001 and the Back up the Customer Database job already exist. The example is
shown for illustrative purposes only.

USE msdb
EXEC sp_add_alert @name = 'Test Alert', @message_id = 55001,
 @severity = 0,
 @notification_message = 'Error 55001 has occurred. The database will
 be backed up...',
 @job_name = 'Back up the Customer Database'

See Also

sp_add_notification

sp_addtask

sp_altermessage

sp_delete_alert

sp_help_alert

sp_update_alert

sysperfinfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addalias
Maps a login to a user in a database. sp_addalias is provided for backward compatibility. Microsoft® SQL Server™ version 7.0
provides roles and the ability to grant permissions to roles as an alternative to using aliases.

Syntax

sp_addalias [@loginame =] 'login'
 , [@name_in_db =] 'alias_user'

Arguments

[@loginame =] 'login'

Is the name of the login to be aliased. login is sysname with no default. login must be a valid SQL Server login or Microsoft
Windows NT® user with permission to connect to SQL Server. login cannot already exist or be aliased to an existing user in the
database.

[@name_in_db =] 'alias_user'

Is the name of the user the login is mapped to. alias_user is sysname, with no default. alias_user must be a valid Windows NT or
SQL Server user in the database in which the login is aliased. When specifying Windows NT users, specify the name the Windows
NT user is known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

A login can be mapped to users in any database. Execute sp_addalias only in the database in which the user must be aliased.
When users connect to SQL Server with login, they can perform activities in the database under the permissions applied to
alias_user.

Note The sa login cannot be aliased.

A login can use a database if:

The login has an associated user account in the database.

The login has a user alias in the database, which has been added by the database owner or member of the sysadmin fixed
server role with sp_addalias.

The guest account has been added to the database.

sp_addalias cannot be executed from within a user-defined transaction.

The table shows several system stored procedures used in conjunction with sp_addalias.

Stored procedure Description
sp_helplogins Returns a list of valid login values.
sp_helpuser Returns a list of valid alias_user values in the database

in which the login is used.
sp_dropalias Removes an alias mapping.

Permissions

Only members of the sysadmin fixed server role, and the db_accessadmin and db_owner fixed database roles can execute
sp_addalias.

Examples

This example allows the SQL Server login Victoria, which is not a user in the current database, to use the current database and

alias Victoria to an existing user (Albert) in the current database.

EXEC sp_addalias 'Victoria', 'Albert'

See Also

sp_addlogin

sp_addrole

sp_adduser

sp_dropalias

sp_helplogins

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addapprole
 New Information - SQL Server 2000 SP3.

Adds a special type of role in the current database used for application security.

Syntax

sp_addapprole [@rolename =] 'role'
 , [@password =] 'password'

Arguments

[@rolename =] 'role'

Is the name of the new role. role is sysname, with no default. role must be a valid identifier and cannot already exist in the current
database.

[@password =] 'password'

Is the password required to activate the role. password is sysname, with no default. password is stored in encrypted form.

Return Code Values

0 (success) or 1 (failure)

Remarks

Microsoft® SQL Server™ roles can contain from 1 through 128 characters, including letters, symbols, and numbers. However,
roles cannot:

Contain a backslash (\).

Be NULL or an empty string.

The fundamental differences between standard and application roles are:

Application roles contain no members. Users, Microsoft Windows NT® groups, and roles cannot be added to application
roles; the permissions of the application role are gained when the application role is activated for the user's connection
through a specific application(s). A user's association with an application role results from being able to run an application
that activates the role, rather than being a member of the role.

Application roles are inactive by default. They are activated by using sp_setapprole and require a password.

Security Note When possible, prompt users to enter their credentials at run time. Avoid storing credentials in a file. If you
must persist credentials, you should encrypt them with the Win32 cryptoAPI.

When an application role is activated for a connection by the application, the connection permanently loses all permissions
applied to the login, user account, or other groups or database roles in all databases for the duration of the connection. The
connection gains the permissions associated with the application role for the database in which the application role exists.
Because application roles are applicable only to the database in which they exist, the connection can gain access to another
database only through permissions granted to the guest user account in the other database. Therefore, if the guest user
account does not exist in a database, the connection cannot gain access to that database. If the guest user account does
exist in the database but permissions to access an object are not explicitly granted to guest, the connection cannot access
that object, regardless of who created the object. The permissions the user gained from the application role remain in effect
until the connection logs off from SQL Server.

sp_addapprole cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, and the db_owner and db_securityadmin fixed database roles can execute
sp_addapprole.

http://go.microsoft.com/fwlink/?LinkId=9504

Examples

This example adds the new application role SalesApp to the current database with the password xyz_123.

EXEC sp_addapprole 'SalesApp', 'xyz_123'

See Also

Application Security and Application Roles

Rules for SQL Server Logins, Users, Roles, and Passwords

sp_dropapprole

sp_setapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_data_file_recover_suspect_db
Adds a data file to a filegroup when recovery cannot complete on a database due to an "insufficient space" (1105) error on the
filegroup. After the file is added, this stored procedure turns off the suspect setting and completes the recovery of the database.
The parameters are the same as those for ALTER DATABASE ADD FILE.

Important This stored procedure should be used only as described in the Troubleshooting Recovery section.

Syntax

sp_add_data_file_recover_suspect_db [@dbName =] 'database' ,
 [@filegroup =] 'filegroup_name' ,
 [@name =] 'logical_file_name' ,
 [@filename =] 'os_file_name' ,
 [@size =] 'size' ,
 [@maxsize =] 'max_size' ,
 [@filegrowth =] 'growth_increment'

Arguments

[@dbName =] 'database'

Is the name of the database. database is sysname, with no default.

[@filegroup =] 'filegroup_name'

Is the filegroup in which to add the file. filegroup_name is nvarchar(260), with a default of NULL, which indicates the PRIMARY
file.

[@name =] 'logical_file_name'

Is the name used in Microsoft® SQL Server™ when referencing the file. The name must be unique in the server. logical_file_name
is nvarchar(260), with no default.

[@filename =] 'os_file_name'

Is the path and file name used by the operating system for the file. The file must reside on an instance of SQL Server. os_file_name
is nvarchar(260), with no default.

[@size =] 'size'

Is the initial size of the file. The MB and KB suffixes can be used to specify megabytes or kilobytes. The default is MB. Specify a
whole number; do not include a decimal. The minimum value for size is 512 KB, and the default is 1 MB, if size is not specified. size
is nvarchar(20), with a default of NULL.

[@maxsize =] 'max_size'

Is the maximum size to which the file can grow. The MB and KB suffixes can be used to specify megabytes or kilobytes. The default
is MB. Specify a whole number; do not include a decimal. If max_size is not specified, the file will grow until the disk is full. The
Microsoft Windows NT® application log warns an administrator when a disk is about to become full. max_size is nvarchar(20),
with a default of NULL.

[@filegrowth =] 'growth_increment'

Is the amount of space added to the file each time new space is required. A value of 0 indicates no growth. The value can be
specified in MB, KB, or %. Specify a whole number; do not include a decimal. When % is specified, the growth increment is the
specified percentage of the size of the file at the time the increment occurs. If a number is specified without an MB, KB, or % suffix,
the default is MB. The default value if growth_increment is not specified is 10%, and the minimum value is 64 KB. The size
specified is rounded to the nearest 64 KB. growth_increment is nvarchar(20), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to members of the sysadmin fixed server role. These permissions are not transferable.

Examples

In this example, database db1 was marked suspect during recovery due to insufficient space (error 1105) in filegroup fg1.

sp_add_data_file_recover_suspect_db db1, fg1, file2,
 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\db1_file2.mdf', '1MB'

See Also

ALTER DATABASE

sp_add_log_file_recover_suspect_db

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addextendedproc
Registers the name of a new extended stored procedure to Microsoft® SQL Server™.

Syntax

sp_addextendedproc [@functname =] 'procedure' ,
 [@dllname =] 'dll'

Arguments

[@functname =] 'procedure'

Is the name of the function to call within the dynamic-link library (DLL). procedure is nvarchar(517), with no default. procedure
optionally can include the owner name in the form owner.function.

[@dllname =] 'dll'

Is the name of the DLL containing the function. dll is varchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Programmers using Microsoft Open Data Services can create extended stored procedures. After an extended stored procedure is
created, it must be added to SQL Server using sp_addextendedproc. For more information, see Creating Extended Stored
Procedures.

Only add an extended stored procedure to the master database. To execute an extended stored procedure from a database other
than master, qualify the name of the extended stored procedure with master.

sp_addextendedproc adds entries to the sysobjects table, registering the name of the new extended stored procedure with SQL
Server. It also adds an entry in the syscomments table.

Permissions

Only members of the sysadmin fixed server role can execute sp_addextendedproc.

Examples

This example adds the xp_hello extended stored procedure.

USE master
EXEC sp_addextendedproc xp_hello, 'xp_hello.dll'

See Also

EXECUTE

GRANT

REVOKE

sp_dropextendedproc

sp_helpextendedproc

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addextendedproperty
 Topic last updated -- January 2004

Adds a new extended property to a database object. If the property already exists, the procedure fails.

Syntax

sp_addextendedproperty
 [@name =] { 'property_name' }
 [, [@value =] { 'value' }
 [, [@level0type =] { 'level0_object_type' }
 , [@level0name =] { 'level0_object_name' }
 [, [@level1type =] { 'level1_object_type' }
 , [@level1name =] { 'level1_object_name' }
 [, [@level2type =] { 'level2_object_type' }
 , [@level2name =] { 'level2_object_name' }
]
]
]
]

Arguments

[@name =] { 'property_name' }

Is the name of the property to be added. property_name is sysname and cannot be NULL. Names may also include blank or non-
alphanumeric character strings, and binary values.

[@value =] { 'value' }

Is the value to be associated with the property. value is sql_variant, with a default of NULL. The size of value may not be more
than 7,500 bytes; otherwise, SQL Server raises an error.

[@level0type =] { 'level0_object_type' }

Is the user or user-defined type. level0_object_type is varchar(128), with a default of NULL. Valid inputs are USER, TYPE, and
NULL.

[@level0name =] { 'level0_object_name' }

Is the name of the level 0 object type specified. level0_object_name is sysname with a default of NULL.

[@level1type =] { 'level1_object_type' }

Is the type of level 1 object. level1_object_type is varchar(128), with a default of NULL. Valid inputs are TABLE, VIEW,
PROCEDURE, FUNCTION, DEFAULT, RULE, and NULL.

[@level1name =] { 'level1_object_name' }

Is the name of the level 1 object type specified. level1_object_name is sysname, with a default of NULL.

[@level2type =] { 'level2_object_type' }

Is the type of level 2 object. level2_object_type is varchar(128), with a default of NULL. Valid inputs are COLUMN, PARAMETER,
INDEX, CONSTRAINT, TRIGGER, and NULL.

[@level2name =] { 'level2_object_name' }

Is the name of the level 2 object type specified. level2_object_name is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

Extended properties are not allowed on system objects or on extended stored procedures.

The objects are distinguished according to levels, with level 0 as the highest and level 2 the lowest. When a user adds, updates, or
deletes an extended property, that user must specify all higher level objects. For example, if the user adds an extended property to
a level 1 object, that user must specify all level 0 information. If the user adds an extended property to a level 2 object, all
information about levels 0 and 1 must be supplied.

At each level, object type and object name uniquely identify an object. If one part of the pair is specified, the other part must also
be specified.

Given a valid property_name and value, if all object types and names are null, then the property belongs to the current database.
If an object type and name are specified, then a parent object and type also must be specified. Otherwise, SQL Server raises an
error.

Permissions

Members of the db_owner and db_ddladmin fixed database roles may add extended properties to any object. Users may add
extended properties to objects they own. However, only db_owner may add properties to user names.

Examples

This example adds the property ('caption,' 'Employee ID') to column 'ID' in table 'T1.'

CREATE table T1 (id int , name char (20))
GO
EXEC sp_addextendedproperty 'caption', 'Employee ID', 'user', dbo, 'table', T1, 'column', id

See Also

fn_listextendedproperty

Transact-SQL Reference (SQL Server 2000)

sp_addgroup
Creates a group in the current database. sp_addgroup is included for backward compatibility. Microsoft® SQL Server™ version
7.0 uses roles instead of groups. Use sp_addrole to add a role.

Syntax

sp_addgroup [@grpname =] 'group'

Arguments

[@grpname =] 'group'

Is the name of the group to add. group is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addgroup calls sp_addrole to add the new group.

Permissions

Only members of sysadmin fixed server role, and the db_securityadmin and db_owner fixed database roles can execute
sp_addgroup.

Examples

This example creates the group accounting.

EXEC sp_addgroup 'accounting'

See Also

sp_addrole

sp_changegroup

sp_dropgroup

sp_helpgroup

sp_helprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_category
Adds the specified category of jobs, alerts, or operators to the server.

Syntax

sp_add_category [[@class =] 'class',]
 [[@type =] 'type',]
 { [@name =] 'name' }

Arguments

[@class =] 'class'

Is the class of the category to be added. class is varchar(8) with a default value of JOB, and can be one of these values.

Value Description
JOB Adds a job category.
ALERT Adds an alert category.
OPERATOR Adds an operator category.

[@type =] 'type'

Is the type of category to be added. type is varchar(12), with a default value of LOCAL, and can be one of these values.

Value Description
LOCAL A local job category.
MULTI -SERVER A multiserver job category.
NONE A category for a class other than JOB.

[@name =] 'name'

Is the name of the category to be added. The name must be unique within the specified class. name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_add_category must be executed in the msdb database.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_add_category.

Examples

This example creates a local job category named AdminJobs.

USE msdb
EXEC sp_add_category 'JOB', 'LOCAL', 'AdminJobs'

See Also

sp_delete_category

sp_help_category

sp_update_category

sysjobs

sysjobservers

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_job
Adds a new job executed by the SQLServerAgent service.

Syntax

sp_add_job [@job_name =] 'job_name'
 [, [@enabled =] enabled]
 [, [@description =] 'description']
 [, [@start_step_id =] step_id]
 [, [@category_name =] 'category']
 [, [@category_id =] category_id]
 [, [@owner_login_name =] 'login']
 [, [@notify_level_eventlog =] eventlog_level]
 [, [@notify_level_email =] email_level]
 [, [@notify_level_netsend =] netsend_level]
 [, [@notify_level_page =] page_level]
 [, [@notify_email_operator_name =] 'email_name']
 [, [@notify_netsend_operator_name =] 'netsend_name']
 [, [@notify_page_operator_name =] 'page_name']
 [, [@delete_level =] delete_level]
 [, [@job_id =] job_id OUTPUT]

Arguments

[@job_name =] 'job_name'

Is the name of the job. The name must be unique and cannot contain the percent (%) character. job_name is sysname, with no
default.

[@enabled =] enabled

Indicates the status of the added job. enabled is tinyint, with a default of 1 (enabled). If 0, the job is not enabled and does not run
according to its schedule; however, it can be run manually.

[@description =] 'description'

Is the description of the job. description is nvarchar(512), with a default of NULL. If description is omitted, "No description
available" is used.

[@start_step_id =] step_id

Is the identification number of the first step to execute for the job. step_id is int, with a default of 1.

[@category_name =] 'category'

Is the category for the job. category is sysname, with a default of NULL.

[@category_id =] category_id

Is a language-independent mechanism for specifying a job category. category_id is int, with a default of NULL.

[@owner_login_name =] 'login'

Is the name of the login that owns the job. login is sysname, with a default of NULL, which is interpreted as the current login
name.

[@notify_level_eventlog =] eventlog_level

Is a value indicating when to place an entry in the Microsoft® Windows NT® application log for this job. eventlog_level is int, and
can be one of these values.

Value Description
0 Never
1 On success
2 (default) On failure
3 Always

[@notify_level_email =] email_level

Is a value that indicates when to send an e-mail upon the completion of this job. email_level is int, with a default of 0, which
indicates never. email_level uses the same values as eventlog_level.

[@notify_level_netsend =] netsend_level

Is a value that indicates when to send a network message upon the completion of this job. netsend_level is int, with a default of 0,
which indicates never. netsend_level uses the same values as eventlog_level.

[@notify_level_page =] page_level

Is a value that indicates when to send a page upon the completion of this job. page_level is int, with a default of 0, which indicates
never. page_level uses the same values as eventlog_level.

[@notify_email_operator_name =] 'email_name'

Is the e-mail name of the person to send e-mail to when email_level is reached. email_name is sysname, with a default of NULL.

[@notify_netsend_operator_name =] 'netsend_name'

Is the name of the operator to whom the network message is sent upon completion of this job. netsend_name is sysname, with a
default of NULL.

[@notify_page_operator_name =] 'page_name'

Is the name of the person to page upon completion of this job. page_name is sysname, with a default of NULL.

[@delete_level =] delete_level

Is a value that indicates when to delete the job. delete_value is int, with a default of 0, which means never. delete_level uses the
same values as eventlog_level.

Note When delete_level is 3, the job is executed only once, regardless of any schedules defined for the job. Furthermore, if a job
deletes itself, all history for the job is also deleted.

[@job_id =] job_id OUTPUT

Is the job identification number assigned to the job if created successfully. job_id is an output variable of type uniqueidentifier,
with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

@originating_server exists in sp_add_job, but is not listed under Arguments. @originating_server is reserved for internal use.

After sp_add_job has been executed to add a job, sp_add_jobstep can be used to add steps that perform the activities for the
job. sp_add_jobschedule can be used to create the schedule that SQLServerAgent service uses to execute the job.

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Execute permissions default to the public role.

Examples

A. Add a job

This example adds a new job named NightlyBackups.

USE msdb
EXEC sp_add_job @job_name = 'NightlyBackups'

B. Add a job with pager, e-mail, and net send information

This example creates a job named Ad hoc Sales Data Backup that notifies janetl (by pager, e-mail, or network pop-up message) if
the job fails, and deletes the job upon successful completion.

USE msdb
EXEC sp_add_job @job_name = 'Ad hoc Sales Data Backup',
 @enabled = 1,
 @description = 'Ad hoc backup of sales data',
 @owner_login_name = 'janet1',
 @notify_level_eventlog = 2,
 @notify_level_email = 2,
 @notify_level_netsend = 2,
 @notify_level_page = 2,
 @notify_email_operator_name = 'janet1',
 @notify_netsend_operator_name = 'janet1',
 @notify_page_operator_name = 'janet1',
 @delete_level = 1

See Also

sp_add_jobschedule

sp_add_jobstep

sp_delete_job

sp_help_job

sp_help_jobstep

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_jobschedule
Creates a schedule for a job.

Syntax

sp_add_jobschedule [@job_id =] job_id, | [@job_name =] 'job_name',
 [@name =] 'name'
 [, [@enabled =] enabled]
 [, [@freq_type =] freq_type]
 [, [@freq_interval =] freq_interval]
 [, [@freq_subday_type =] freq_subday_type]
 [, [@freq_subday_interval =] freq_subday_interval]
 [, [@freq_relative_interval =] freq_relative_interval]
 [, [@freq_recurrence_factor =] freq_recurrence_factor]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@active_start_time =] active_start_time]
 [, [@active_end_time =] active_end_time]

Arguments

[@jobid =] job_id

Is the job identification number of the job to which the schedule is added. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to which the schedule is added. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@name =] 'name'

Is the name of the schedule. name is sysname, with no default.

[@enabled =] enabled

Indicates the current status of the schedule. enabled is tinyint, with a default of 1 (enabled). If 0, the schedule is not enabled.
When the schedule is disabled, the job will not be run.

[@freq_type =] freq_type

Is a value indicating when the job is to be executed. freq_type is int, with a default of 0, and can be one of these values.

Value Description
1 Once
4 Daily
8 Weekly
16 Monthly
32 Monthly, relative to freq interval
64 Run when SQLServerAgent service starts
128 Run when the computer is idle

[@freq_interval =] freq_interval

Is the days that the job is executed. freq_interval is int, with a default of 0, and depends on the value of freq_type.

Value of freq_type Effect on freq_interval
1 (once) freq_interval is unused.
4 (daily) Every freq_interval days.

8 (weekly) freq_interval is one or more of the following
(combined with an OR logical operator):

1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

16 (monthly) On the freq_interval day of the month.
32 (monthly relative) freq_interval is one of the following:

1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
8 = Day
9 = Weekday
10 = Weekend day

64 (when SQLServerAgent service
starts)

freq_interval is unused.

128 freq_interval is unused.

[@freq_subday_type =] freq_subday_type

Specifies the units for freq_subday_interval. freq_subday_type is int, with a default of 0, and can be one of these values.

Value Description (unit)
0x1 At the specified time
0x4 Minutes
0x8 Hours

[@freq_subday_interval =] freq_subday_interval

Is the number of freq_subday_type periods to occur between each execution of the job. freq_subday_interval is int, with a default
of 0.

[@freq_relative_interval =] freq_relative_interval

Is the scheduled job's occurrence of freq_interval in each month, if freq_interval is 32 (monthly relative). freq_relative_interval is
int, with a default of 0, and can be one of these values.

Value Description (unit)
1 First
2 Second
4 Third
8 Fourth
16 Last

[@freq_recurrence_factor =] freq_recurrence_factor

Is the number of weeks or months between the scheduled execution of the job. freq_recurrence_factor is used only if freq_type is
8, 16, or 32. freq_recurrence_factor is int, with a default of 0.

[@active_start_date =] active_start_date

Is the date on which execution of the job can begin. active_start_date is int, with a default of NULL, which indicates today's date.

The date is formatted as YYYYMMDD. If active_start_date is not NULL, the date must be greater than or equal to 19900101.

[@active_end_date =] active_end_date

Is the date on which execution of the job can stop. active_end_date is int, with a default of 99991231, which indicates December
31, 9999. Formatted as YYYYMMDD.

[@active_start_time =] active_start_time

Is the time on any day between active_start_date and active_end_date to begin execution of the job. active_start_time is int, with a
default of 000000, which indicates 12:00:00 A.M. on a 24-hour clock, and must be entered using the form HHMMSS.

[@active_end_time =] active_end_time

Is the time on any day between active_start_date and active_end_date to end execution of the job. active_end_time is int, with a
default of 235959, which indicates 11:59:59 P.M. on a 24-hour clock, and must be entered using the form HHMMSS.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Execute permissions default to the public role.

Examples

This example assumes the job NightlyBackup has been created to back up a database. It adds the job to the schedule with the
name ScheduledBackup and executes every day at 1:00 A.M.

USE msdb
EXEC sp_add_jobschedule @job_name = 'NightlyBackup',
 @name = 'ScheduledBackup',
 @freq_type = 4, -- daily
 @freq_interval = 1,
 @active_start_time = 10000

See Also

Modifying and Viewing Jobs

sp_delete_jobschedule

sp_help_jobschedule

sp_update_jobschedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_jobserver
Targets the specified job at the specified server.

Syntax

sp_add_jobserver [@job_id =] job_id | [@job_name =] 'job_name'
 [, [@server_name =] 'server']

Arguments

[@job_id =] job_id

Is the identification number of the job. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@server_name =] 'server'

Is the name of the server at which to target the job. server is nvarchar(30), with a default of N'(LOCAL)'. server can be either
(LOCAL) for a local server, or the name of an existing target server.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

@automatic_post exists in sp_add_jobserver, but is not listed under Arguments. @automatic_post is reserved for internal
use.

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Execute permissions default to the public role for local jobs. Only members of the sysadmin fixed server role can execute
sp_add_jobserver for multiserver jobs.

Examples

This example assigns the SEATTLE2 server to the multiserver job, Weekly Sales Data Backup job.

Note This example assumes that the Weekly Sales Data Backup job already exists.

USE msdb
EXEC sp_add_jobserver @job_name = 'Weekly Sales Data Backup',
 @server_name = 'SEATTLE2'

See Also

sp_apply_job_to_targets

sp_delete_jobserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_jobstep
Adds a step (operation) to a job.

Syntax

sp_add_jobstep [@job_id =] job_id | [@job_name =] 'job_name'
 [, [@step_id =] step_id]
 { , [@step_name =] 'step_name' }
 [, [@subsystem =] 'subsystem']
 [, [@command =] 'command']
 [, [@additional_parameters =] 'parameters']
 [, [@cmdexec_success_code =] code]
 [, [@on_success_action =] success_action]
 [, [@on_success_step_id =] success_step_id]
 [, [@on_fail_action =] fail_action]
 [, [@on_fail_step_id =] fail_step_id]
 [, [@server =] 'server']
 [, [@database_name =] 'database']
 [, [@database_user_name =] 'user']
 [, [@retry_attempts =] retry_attempts]
 [, [@retry_interval =] retry_interval]
 [, [@os_run_priority =] run_priority]
 [, [@output_file_name =] 'file_name']
 [, [@flags =] flags]

Arguments

[@job_id =] job_id

Is the identification number of the job to which to add the step. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to which to add the step. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@step_id =] step_id]

Is the sequence identification number for the job step. Step identification numbers start at 1 and increment without gaps. If a step
is inserted in the existing sequence, the sequence numbers are adjusted automatically. A value is provided if step_id is not
specified. step_id is int, with a default of NULL.

[@step_name =] 'step_name'

Is the name of the step. step_name is sysname, with no default.

[@subsystem =] 'subsystem'

Is the subsystem used by SQL Server Agent service to execute command. subsystem is nvarchar(40), and can be one of these
values.

Value Description
'ACTIVESCRIPTING' Active Script
'CMDEXEC' Operating-system command or executable program
'DISTRIBUTION' Replication Distribution Agent job
'SNAPSHOT' Replication Snapshot Agent job
'LOGREADER' Replication Log Reader Agent job
'MERGE' Replication Merge Agent job
'TSQL' (default) Transact-SQL statement

[@command =] 'command'

Is the command(s) to be executed by SQLServerAgent service through subsystem. command is nvarchar(3200), with a default of
NULL. command can include one or more of the following case-sensitive tokens which are replaced at run time.

Value Description
[A-DBN] Database name. If the job is run by an alert, this token

automatically replaces the version 6.5 [DBN] token
during the conversion process.

[A-SVR] Server name. If the job is run by an alert, this token
automatically replaces the version 6.5 [SVR] token
during the conversion process.

[A-ERR] Error number. If this job is run by an alert, this token
automatically replaces the version 6.5 [ERR] token
during the conversion process.

[A-SEV] Error severity. If the job is run by an alert, this token
automatically replaces the version 6.5 [SEV] token
during the conversion process.

[A-MSG] Message text. If the job is run by an alert, this token
automatically replaces the version 6.5 [MSG] token
during the conversion process.

[DATE] Current date (in YYYYMMDD format).
[JOBID] Job ID.
[MACH] Computer name.
[MSSA] Master SQLServerAgent service name.
[SQLDIR] The directory in which SQL Server is installed. By

default, this value is C:\Program Files\Microsoft SQL
Server\MSSQL.

[STEPCT] A count of the number of times this step has executed
(excluding retires). Can be used by the step command
to force termination of a multistep loop.

[STEPID] Step ID.
[TIME] Current time (in HHMMSS format).
[STRTTM] The time (in HHMMSS format) that the job began

executing.
[STRTDT] The date (in YYYYMMDD format) that the job began

executing.

[@additional_parameters =] 'parameters'

Reserved. parameters is ntext, with a default of NULL.

[@cmdexec_success_code =] code

Is the value returned by a CmdExec subsystem command to indicate that command executed successfully. code is int, with a
default of 0.

[@on_success_action =] success_action

Is the action to perform if the step succeeds. success_action is tinyint, and can be one of these values.

Value Description (action)
1 (default) Quit with success
2 Quit with failure
3 Go to next step
4 Go to step on_success_step_id

[@on_success_step_id =] success_step_id

Is the ID of the step in this job to execute if the step succeeds and success_action is 4. success_step_id is int, with a default of 0.

[@on_fail_action =] fail_action

Is the action to perform if the step fails. fail_action is tinyint, and can be one of these values.

Value Description (action)
1 Quit with success
2 (default) Quit with failure
3 Go to next step
4 Go to step on_fail_step_id

[@on_fail_step_id =] fail_step_id

Is the ID of the step in this job to execute if the step fails and fail_action is 4. fail_step_id is int, with a default of 0.

[@server =] 'server'

Reserved. server is nvarchar(30), with a default of NULL.

[@database_name =] 'database'

Is the name of the database in which to execute a TSQL step. database is sysname, with a default of NULL, in which case the
master database is used.

[@database_user_name =] 'user'

Is the name of the user account to use when executing a TSQL step. user is sysname, with a default of NULL. When user is NULL,
the step runs in the job owner's user context on database.

[@retry_attempts =] retry_attempts

Is the number of retry attempts to use if this step fails. retry_attempts is int, with a default of 0, which indicates no retry attempts.

[@retry_interval =] retry_interval

Is the amount of time in minutes between retry attempts. retry_interval is int, with a default of 0, which indicates a 0-minute
interval.

[@os_run_priority =] run_priority

Reserved.

[@output_file_name =] 'file_name'

Is the name of the file in which the output of this step is saved. file_name is nvarchar(200), with a default of NULL. file_name can
include one or more of the tokens listed under command. This parameter is valid only with commands running on the TSQL or
CmdExec subsystems.

[@flags =] flags

Is an option that controls behavior. flags is int, and can be one of these values.

Value Description
2 Append to output file
4 Overwrite output file
0 (default) No options set

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Execute permissions default to the public role.

Examples

This example creates a job step that changes database access to read-only for a database named sales. In addition, this example
specifies five retry attempts every 5 minutes.

Note This example assumes that the Weekly Sales Data Backup job already exists.

USE msdb
EXEC sp_add_jobstep @job_name = 'Weekly Sales Data Backup',
 @step_name = 'Set database to read only',
 @subsystem = 'TSQL',
 @command = 'exec sp_dboption ''sales'', ''read only'', ''true''',
 @retry_attempts = 5,
 @retry_interval = 5

See Also

Modifying and Viewing Jobs

sp_add_job

sp_add_jobschedule

sp_delete_jobstep

sp_help_job

sp_help_jobstep

sp_update_jobstep

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addlinkedserver
Creates a linked server, which allows access to distributed, heterogeneous queries against OLE DB data sources. After creating a
linked server with sp_addlinkedserver, this server can then execute distributed queries. If the linked server is defined as
Microsoft® SQL Server™, remote stored procedures can be executed.

Syntax

sp_addlinkedserver [@server =] 'server'
 [, [@srvproduct =] 'product_name']
 [, [@provider =] 'provider_name']
 [, [@datasrc =] 'data_source']
 [, [@location =] 'location']
 [, [@provstr =] 'provider_string']
 [, [@catalog =] 'catalog']

Arguments

[@server =] 'server'

Is the local name of the linked server to create. server is sysname, with no default.

With multiple instances of SQL Server, server may be servername\instancename. The linked server then may be referenced as the
data source for

SELECT * FROM [servername\instancename].pubs.dbo.authors

If data_source is not specified, server is the actual name of the instance.

[@srvproduct =] 'product_name'

Is the product name of the OLE DB data source to add as a linked server. product_name is nvarchar(128), with a default of NULL.
If SQL Server, provider_name, data_source, location, provider_string, and catalog do not need to be specified.

[@provider =] 'provider_name'

Is the unique programmatic identifier (PROGID) of the OLE DB provider corresponding to this data source. provider_name must
be unique for the specified OLE DB provider installed on the current computer. provider_name is nvarchar(128), with a default of
NULL. The OLE DB provider is expected to be registered with the given PROGID in the registry.

[@datasrc =] 'data_source'

Is the name of the data source as interpreted by the OLE DB provider. data_source is nvarchar(4000), with a default of NULL.
data_source is passed as the DBPROP_INIT_DATASOURCE property to initialize the OLE DB provider.

When the linked server is created against the SQL Server OLE DB provider, data_source can be specified in the form of
servername\instancename, which can be used to connect to a specific instance of SQL Server running on the specified computer.
servername is the name of the computer on which SQL Server is running, and instancename is the name of the specific SQL
Server instance to which the user will be connected.

[@location =] 'location'

Is the location of the database as interpreted by the OLE DB provider. location is nvarchar(4000), with a default of NULL. location
is passed as the DBPROP_INIT_LOCATION property to initialize the OLE DB provider.

[@provstr =] 'provider_string'

Is the OLE DB provider-specific connection string that identifies a unique data source. provider_string is nvarchar(4000), with a
default of NULL. provstr is passed as the DBPROP_INIT_PROVIDERSTRING property to initialize the OLE DB provider.

When the linked server is created against the SQL Server OLE DB provider, the instance can be specified using the SERVER
keyword as SERVER=servername\instancename to specify a specific instance of SQL Server. servername is the name of the
computer on which SQL Server is running, and instancename is the name of the specific SQL Server instance to which the user
will be connected.

[@catalog =] 'catalog'

Is the catalog to be used when making a connection to the OLE DB provider. catalog is sysname, with a default of NULL. catalog
is passed as the DBPROP_INIT_CATALOG property to initialize the OLE DB provider.

Return Code Values

0 (success) or 1 (failure)

Result Sets

sp_addlinkedserver returns this message if no parameters are specified:

Procedure 'sp_addlinkedserver' expects parameter '@server', which was not supplied.

sp_addlinkedserver used with the appropriate OLE DB provider and parameters returns this message:

Server added.

Remarks

The following table shows the ways that a linked server can be set up for data sources accessible through OLE DB. A linked server
can be set up using more than one way for a given data source; there may be more than one row for a data source type. This table
also shows the sp_addlinkedserver parameter values to be used for setting up the linked server.

Remote
OLE DB

data
source

OLE DB
provider

product_name provider_name data_source
location

provider_string
catalog

SQL Server Microsoft
OLE DB
Provider
for SQL
Server

SQL Server (1)
(default)

- - - - -

SQL Server Microsoft
OLE DB
Provider
for SQL
Server

SQL Server SQLOLEDB Network name of SQL
Server (for default
instance)

- - Database
name
(optional)

SQL Server Microsoft
OLE DB
Provider
for SQL
Server

- SQLOLEDB Servername\instancename
(for specific instance)

- - Database
name
(optional)

Oracle Microsoft
OLE DB
Provider
for
Oracle

Any (2) MSDAORA SQL*Net alias for Oracle
database

- - -

Access/Jet Microsoft
OLE DB
Provider
for Jet

Any Microsoft.Jet.OLEDB.4.0 Full path name of Jet
database file

- - -

ODBC data
source

Microsoft
OLE DB
Provider
for ODBC

Any MSDASQL System DSN of ODBC data
source

- - -

ODBC data
source

Microsoft
OLE DB
Provider
for ODBC

Any MSDASQL - - ODBC
connection
string

-

File system Microsoft
OLE DB
Provider
for
Indexing
Service

Any MSIDXS Indexing Service catalog
name

- - -

Microsoft
Excel
Spreadsheet

Microsoft
OLE DB
Provider
for Jet

Any Microsoft.Jet.OLEDB.4.0 Full path name of Excel file - Excel 5.0 -

IBM DB2
Database

Microsoft
OLE DB
Provider
for DB2

Any DB2OLEDB - - See Microsoft
OLE DB Provider
for DB2
documentation.

Catalog
name of
DB2
database

(1) This way of setting up a linked server forces the name of the linked server to be the same as the network name of the remote
SQL Server. Use server to specify the server.
(2) "Any" indicates that the product name can be anything.

The data_source, location, provider_string, and catalog parameters identify the database(s) the linked server points to. If any of
these parameters are NULL, the corresponding OLE DB initialization property is not set.

Note To use the Microsoft OLE DB Provider for SQL Server 2000 in SQL Server version 6.x, run the \Microsoft SQL
Server\MSSQL\Install\Instcat.sql script against the version 6.x SQL Server. This script is essential for running distributed queries
against an SQL Server 6.x server.

In a clustered environment, when specifying file names to point to OLE DB data sources, use the universal naming convention
name (UNC) or a shared drive to specify the location

Permissions

Execute permissions default to members of the sysadmin and setupadmin fixed server roles.

Examples

A. Use the M icrosoft OLE DB Provider for SQL Server

1. Creating a linked server using OLE DB for SQL Server

This example creates a linked server named SEATTLESales that uses the Microsoft OLE DB Provider for SQL Server.

USE master
GO
EXEC sp_addlinkedserver
 'SEATTLESales',
 N'SQL Server'
GO

2. Creating a linked server on an instance of SQL Server

This example creates a linked server S1_instance1 on an instance of SQL Server, using the OLE DB Provider for SQL Server.

EXEC sp_addlinkedserver @server='S1_instance1', @srvproduct='',
 @provider='SQLOLEDB', @datasrc='S1\instance1'

B. Use the M icrosoft OLE DB Provider for Jet

This example creates a linked server named SEATTLE Mktg.

Note This example assumes that both Microsoft Access and the sample Northwind database are installed and that the
Northwind database resides in C:\Msoffice\Access\Samples.

USE master
GO
-- To use named parameters:
EXEC sp_addlinkedserver
 @server = 'SEATTLE Mktg',
 @provider = 'Microsoft.Jet.OLEDB.4.0',
 @srvproduct = 'OLE DB Provider for Jet',
 @datasrc = 'C:\MSOffice\Access\Samples\Northwind.mdb'
GO
-- OR to use no named parameters:
USE master

GO
EXEC sp_addlinkedserver
 'SEATTLE Mktg',
 'OLE DB Provider for Jet',
 'Microsoft.Jet.OLEDB.4.0',
 'C:\MSOffice\Access\Samples\Northwind.mdb'
GO

C. Use the M icrosoft OLE DB Provider for Oracle

This example creates a linked server named LONDON Mktg that uses the Microsoft OLE DB Provider for Oracle and assumes that
the SQL*Net alias for the Oracle database is MyServer.

USE master
GO
-- To use named parameters:
EXEC sp_addlinkedserver
 @server = 'LONDON Mktg',
 @srvproduct = 'Oracle',
 @provider = 'MSDAORA',
 @datasrc = 'MyServer'
GO
-- OR to use no named parameters:
USE master
GO
EXEC sp_addlinkedserver
 'LONDON Mktg',
 'Oracle',
 'MSDAORA',
 'MyServer'
GO

D. Use the M icrosoft OLE DB Provider for ODBC with the data_source parameter

This example creates a linked server named SEATTLE Payroll that uses the Microsoft OLE DB Provider for ODBC and the
data_source parameter.

Note The specified ODBC data source name must be defined as System DSN in the server before executing sp_addlinkedserver.

USE master
GO
-- To use named parameters:
EXEC sp_addlinkedserver
 @server = 'SEATTLE Payroll',
 @srvproduct = '',
 @provider = 'MSDASQL',
 @datasrc = 'LocalServer'
GO
-- OR to use no named parameters:
USE master
GO
EXEC sp_addlinkedserver
 'SEATTLE Payroll',
 '',
 'MSDASQL',
 'LocalServer'
GO

E. Use the M icrosoft OLE DB Provider for ODBC with the provider_string parameter

This example creates a linked server named LONDON Payroll that uses the Microsoft OLE DB Provider for ODBC and the
provider_string parameter.

Note For more information about ODBC connect strings, see SQLDriverConnect and How to allocate handles and connect to SQL
Server (ODBC).

USE master
GO
-- To use named parameters:
EXEC sp_addlinkedserver
 @server = 'LONDON Payroll',
 @srvproduct = '',
 @provider = 'MSDASQL',
 @provstr = 'DRIVER={SQL Server};SERVER=MyServer;UID=sa;PWD=sapassword;'
GO
-- OR to use no named parameters:
USE master

GO
EXEC sp_addlinkedserver
 'LONDON Payroll',
 '',
 'MSDASQL',
 NULL,
 NULL,
 'DRIVER={SQL Server};SERVER=MyServer;UID=sa;PWD=sapassword;'
GO

F. Use the M icrosoft OLE DB Provider for Jet on an Excel Spreadsheet

To create a linked server definition using the Microsoft OLE DB Provider for Jet to access an Excel spreadsheet, first create a named
range in Excel specifying the columns and rows of the Excel worksheet to select. The name of the range can then be referenced as
a table name in a distributed query.

EXEC sp_addlinkedserver 'ExcelSource',
 'Jet 4.0',
 'Microsoft.Jet.OLEDB.4.0',
 'c:\MyData\DistExcl.xls',
 NULL,
 'Excel 5.0'
GO

In order to access data from an Excel spreadsheet, associate a range of cells with a name. A given named range can be accessed by
using the name of the range as the table name. The following query can be used to access a named range called SalesData using
the linked server set up as above.

SELECT *
FROM ExcelSource...SalesData
GO

G. Use the M icrosoft OLE DB Provider for Indexing Service

This example creates a linked server and uses OPENQUERY to retrieve information from both the linked server and the file system
enabled for Indexing Service.

EXEC sp_addlinkedserver FileSystem,
 'Index Server',
 'MSIDXS',
 'Web'
GO
USE pubs
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'yEmployees')
 DROP TABLE yEmployees
GO
CREATE TABLE yEmployees
 (
 id int NOT NULL,
 lname varchar(30) NOT NULL,
 fname varchar(30) NOT NULL,
 salary money,
 hiredate datetime
)
GO
INSERT yEmployees VALUES
 (
 10,
 'Fuller',
 'Andrew',
 $60000,
 '9/12/98'
)
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = 'DistribFiles')
 DROP VIEW DistribFiles
GO
CREATE VIEW DistribFiles
 AS
 SELECT *
 FROM OPENQUERY(FileSystem,
 'SELECT Directory,
 FileName,
 DocAuthor,

 Size,
 Create,
 Write
 FROM SCOPE('' "c:\My Documents" '')
 WHERE CONTAINS(''Distributed'') > 0
 AND FileName LIKE ''%.doc%'' ')
 WHERE DATEPART(yy, Write) = 1998
GO
SELECT *
FROM DistribFiles
GO
SELECT Directory,
 FileName,
 DocAuthor,
 hiredate
FROM DistribFiles D, yEmployees E
WHERE D.DocAuthor = E.FName + ' ' + E.LName
GO

H. Use the M icrosoft OLE DB Provider for Jet to access a text file

This example creates a linked server for directly accessing text files, without linking the files as tables in an Access .mdb file. The
provider is Microsoft.Jet.OLEDB.4.0 and the provider string is 'Text'.

The data source is the full pathname of the directory that contains the text files. A schema.ini file, which describes the structure of
the text files, must exist in the same directory as the text files. For more information about creating a schema.ini file, refer to Jet
Database Engine documentation.

--Create a linked server
EXEC sp_addlinkedserver txtsrv, 'Jet 4.0',
 'Microsoft.Jet.OLEDB.4.0',
 'c:\data\distqry',
 NULL,
 'Text'
GO

--Set up login mappings
EXEC sp_addlinkedsrvlogin txtsrv, FALSE, Admin, NULL
GO

--List the tables in the linked server
EXEC sp_tables_ex txtsrv
GO

--Query one of the tables: file1#txt
--using a 4-part name
SELECT *
FROM txtsrv...[file1#txt]

I. Use the M icrosoft OLE DB Provider for DB2

This example creates a linked server named DB2 that uses the Microsoft OLE DB Provider for DB2.

EXEC sp_addlinkedserver
 @server='DB2',
 @srvproduct='Microsoft OLE DB Provider for DB2',
 @catalog='DB2',
 @provider='DB2OLEDB',
 @provstr='Initial Catalog=PUBS;Data Source=DB2;HostCCSID=1252;Network Address=XYZ;Network Port=50000;Package
Collection=admin;Default Schema=admin;'

See Also

Configuring Linked Servers

OLE DB Providers Tested with SQL Server

sp_addlinkedsrvlogin

sp_addserver

sp_dropserver

sp_serveroption

sp_setnetname

System Stored Procedures

System Tables

Transact-SQL Reference (SQL Server 2000)

sp_addlinkedsrvlogin
Creates or updates a mapping between logins on the local instance of Microsoft® SQL Server™ and remote logins on the linked
server.

Syntax

sp_addlinkedsrvlogin [@rmtsrvname =] 'rmtsrvname'
 [, [@useself =] 'useself']
 [, [@locallogin =] 'locallogin']
 [, [@rmtuser =] 'rmtuser']
 [, [@rmtpassword =] 'rmtpassword']

Arguments

[@rmtsrvname =] 'rmtsrvname'

Is the name of a linked server that the login mapping applies to. rmtsrvname is sysname, with no default.

[@useself =] 'useself'

Determines the name of the login used to connect to the remote server. useself is varchar(8), with a default of TRUE. A value of
true specifies that SQL Server authenticated logins use their own credentials to connect to rmtsrvname, with the rmtuser and
rmtpassword arguments being ignored. false specifies that the rmtuser and rmtpassword arguments are used to connect to
rmtsrvname for the specified locallogin. If rmtuser and rmtpassword are also set to NULL, no login or password is used to connect
to the linked server. true for useself is invalid for a Windows NT authenticated login unless the Microsoft Windows NT®
environment supports security account delegation and the provider supports Windows Authentication (in which case creating a
mapping with a value of true is no longer required but still valid).

[@locallogin =] 'locallogin'

Is a login on the local server. locallogin is sysname, with a default of NULL. NULL specifies that this entry applies to all local
logins that connect to rmtsrvname. If not NULL, locallogin can be a SQL Server login or a Windows NT user. The Windows NT
user must have been granted access to SQL Server either directly, or through its membership in a Windows NT group granted
access.

[@rmtuser =] 'rmtuser'

Is the username used to connect to rmtsrvname when useself is false. rmtuser is sysname, with a default of NULL.

[@rmtpassword =] 'rmtpassword'

Is the password associated with rmtuser. rmtpassword is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

When a user logs on to the local server and executes a distributed query that accesses a table on the linked server, the local server
must log on to the linked server on behalf of the user to access that table. Use sp_addlinkedsrvlogin to specify the login
credentials that the local server uses to log on to the linked server.

A default mapping between all logins on the local server and remote logins on the linked server is automatically created by
executing sp_addlinkedserver. The default mapping states that SQL Server uses the local login's user credentials when
connecting to the linked server on behalf of the login (equivalent to executing sp_addlinkedsrvlogin with @useself set to true
for the linked server). Use sp_addlinkedsrvlogin only to change the default mapping or to add new mappings for specific local
logins. To delete the default mapping or any other mapping, use sp_droplinkedsrvlogin.

Rather than having to use sp_addlinkedsrvlogin to create a predetermined login mapping, SQL Server can automatically use
the Windows NT security credentials (Windows NT username and password) of a user issuing the query to connect to a linked
server when all these conditions exist:

A user is connected to SQL Server using Windows Authentication Mode.

Security account delegation is available on the client and sending server.

The provider supports Windows Authentication Mode (for example, SQL Server running on Windows NT).

After the authentication has been performed by the linked server using the mappings defined by executing
sp_addlinkedsrvlogin on the local SQL Server, the permissions on individual objects in the remote database are determined by
the linked server, not the local server.

sp_addlinkedsrvlogin cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_addlinkedsrvlogin.

Examples

A. Connect all local logins to the linked server using their own user credentials

This example creates a mapping to ensure that all logins to the local server connect through to the linked server Accounts using
their own user credentials.

EXEC sp_addlinkedsrvlogin 'Accounts'

Or

EXEC sp_addlinkedsrvlogin 'Accounts', 'true'

B. Connect all local logins to the linked server using a specified user and password

This example creates a mapping to ensure that all logins to the local server connect through to the linked server Accounts using
the same login SQLUser and password Password.

EXEC sp_addlinkedsrvlogin 'Accounts', 'false', NULL, 'SQLUser', 'Password'

C. Connects a specific login to the linked server using different user credentials

This example creates a mapping to ensure that only the Windows NT user Domain\Mary connects through to the linked server
Accounts using the login MaryP and password NewPassword.

EXEC sp_addlinkedsrvlogin 'Accounts', 'false', 'Domain\Mary', 'MaryP', 'NewPassword'

D. Connects a specific login to an Excel spreadsheet (the linked server)

This example first creates a linked server named ExcelSource, defined as the Microsoft Excel spreadsheet DistExcl.xls, and then
creates a mapping to allow the SQL Server login sa to connect through to ExcelSource using the Excel login Admin and no
password.

EXEC sp_addlinkedserver 'ExcelSource', 'Jet 4.0',
 'Microsoft.Jet.OLEDB.4.0',
 'c:\MyData\DistExcl.xls',
 NULL,
 'Excel 5.0'
GO
EXEC sp_addlinkedsrvlogin 'ExcelSource', 'false', 'sa', 'Admin', NULL

See Also

Configuring Linked Servers

Security for Linked Servers

sp_addlinkedserver

sp_droplinkedsrvlogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_log_file_recover_suspect_db
Adds a log file to a filegroup when recovery cannot complete on a database due to an "insufficient log space" (9002) error. After
the file is added, this stored procedure turns off the suspect setting and completes the recovery of the database. The parameters
are the same as those for ALTER DATABASE ADD LOG FILE.

Important This stored procedure should be used only as described in the Troubleshooting Recovery section.

Syntax

sp_add_log_file_recover_suspect_db [@dbName =] 'database' ,
 [@name =] 'logical_file_name' ,
 [@filename =] 'os_file_name' ,
 [@size =] 'size' ,
 [@maxsize =] 'max_size' ,
 [@filegrowth =] 'growth_increment'

Arguments

[@dbName =] 'database'

Is the name of the database. database is sysname, with no default.

[@name =] 'logical_file_name'

Is the name used in Microsoft® SQL Server™ when referencing the file. The name must be unique in the server. logical_file_name
is nvarchar(260), with no default.

[@filename =] 'os_file_name'

Is the path and file name used by the operating system for the file. The file must reside in the server in which SQL Server is
installed. os_file_name is nvarchar(260), with no default.

[@size =] 'size'

Is the initial size of the file. The MB and KB suffixes can be used to specify megabytes or kilobytes. The default is MB. Specify a
whole number; do not include a decimal. The minimum value for size is 512 KB, and the default if size is not specified is 1 MB. size
is nvarchar(20), with a default of NULL.

[@maxsize =] 'max_size'

Is the maximum size to which the file can grow. The MB and KB suffixes can be used to specify megabytes or kilobytes. The default
is MB. Specify a whole number; do not include a decimal. If max_size is not specified, the file will grow until the disk is full. The
Microsoft Windows NT® application log warns an administrator when a disk is about to become full. max_size is nvarchar(20),
with a default of NULL.

[@filegrowth =] 'growth_increment'

Is the amount of space added to the file each time new space is needed. A value of 0 indicates no growth. The value can be
specified in MB, KB, or percent (%). Specify a whole number; do not include a decimal. When % is specified, the growth increment
is the specified percentage of the size of the file at the time the increment occurs. If a number is specified without an MB, KB, or %
suffix, the default is MB. The default value if growth_increment is not specified is 10%, and the minimum value is 64 KB. The size
specified is rounded to the nearest 64 KB. growth_increment is nvarchar(20), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to members of the sysadmin fixed server role. These permissions are not transferable.

Examples

In this example database db1 was marked suspect during recovery due to insufficient log space (error 9002).

sp_add_log_file_recover_suspect_db db1, logfile2,
 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\db1_logfile2.ldf',
 '1MB'

See Also

ALTER DATABASE

sp_add_data_file_recover_suspect_db

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addlogin
 New Information - SQL Server 2000 SP3.

Creates a new Microsoft® SQL Server™ login that allows a user to connect to an instance of SQL Server using SQL Server
Authentication.

Security Note When possible, use Windows Authentication.

Syntax

sp_addlogin [@loginame =] 'login'
 [, [@passwd =] 'password']
 [, [@defdb =] 'database']
 [, [@deflanguage =] 'language']
 [, [@sid =] sid]
 [, [@encryptopt =] 'encryption_option']

Arguments

[@loginame =] 'login'

Is the name of the login. login is sysname, with no default.

[@passwd =] 'password'

Is the login password. password is sysname, with a default of NULL. After sp_addlogin has been executed, the password is
encrypted and stored in the system tables.

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

[@defdb =] 'database'

Is the default database of the login (the database the login is connected to after logging in). database is sysname, with a default
of master.

[@deflanguage =] 'language'

Is the default language assigned when a user logs on to SQL Server. language is sysname, with a default of NULL. If language is
not specified, language is set to the server's current default language (defined by the sp_configure configuration variable
default language). Changing the server's default language does not change the default language for existing logins. language
remains the same as the default language used when the login was added.

[@sid =] sid

Is the security identification number (SID). sid is varbinary(16), with a default of NULL. If sid is NULL, the system generates a SID
for the new login. Despite the use of a varbinary data type, values other than NULL must be exactly 16 bytes in length, and must
not already exist. SID is useful, for example, when you are scripting or moving SQL Server logins from one server to another and
you want the logins to have the same SID between servers.

[@encryptopt =] 'encryption_option'

Specifies whether the password is encrypted when stored in the system tables. encryption_option is varchar(20), and can be one
of these values.

Value Description
NULL The password is encrypted. This is the default.
skip_encryption The password is already encrypted. SQL Server should

store the value without re-encrypting it.
skip_encryption_old The supplied password was encrypted by a previous

version of SQL Server. SQL Server should store the
value without re-encrypting it. This option is provided
for upgrade purposes only.

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server logins and passwords can contain from 1 through 128 characters, including letters, symbols, and numbers. However,
logins cannot:

Contain a backslash (\).

Be a reserved login name, for example sa or public, or already exist.

Be NULL or an empty string ('').

If the name of a default database is supplied, you can connect to the specified database without executing the USE statement.
However, you cannot use the default database until given access to that database by the database owner (using sp_adduser or
sp_addrolemember) or sp_addrole.

The SID number is the unique Microsoft Windows NT® user identification number. The SID is guaranteed to unique for each user
in a Windows NT domain. SQL Server automatically uses the Windows NT SID to identify Windows NT users and groups, and
generates a SID for SQL Server logins.

Using skip_encryption to suppress password encryption is useful if the password is already in encrypted form when the login is
added to SQL Server. If the password was encrypted by a previous version of SQL Server, use skip_encryption_old.

sp_addlogin cannot be executed from within a user-defined transaction.

This table shows several stored procedures used in conjunction with sp_addlogin.

Stored procedure Description
sp_grantlogin Adds a Windows NT user or group.
sp_password Changes a user's password.
sp_defaultdb Changes a user's default database.
sp_defaultlanguage Changes a user's default language.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_addlogin.

Examples

A. Create a login ID with master default database

This example creates an SQL Server login for the user Victoria, without specifying a default database.

EXEC sp_addlogin 'Victoria', 'B1r12-36'

B. Create a login ID and default database

This example creates a SQL Server login for the user Albert, with a password of "B1r12-36" and a default database of corporate.

EXEC sp_addlogin 'Albert', 'B1r12-36', 'corporate'

C. Create a login ID with a different default language

This example creates an SQL Server login for the user Claire Picard, with a password of "B1r12-36", a default database of
public_db, and a default language of French.

EXEC sp_addlogin 'Claire Picard', 'B1r12-36', 'public_db', 'french'

D. Create a login ID with a specific SID

This example creates an SQL Server login for the user Michael, with a password of "B1r12-36," a default database of pubs, a
default language of us_english, and an SID of 0x0123456789ABCDEF0123456789ABCDEF.

EXEC sp_addlogin 'Michael', 'B1r12-36', 'pubs', 'us_english', 0x0123456789ABCDEF0123456789ABCDEF

E. Create a login ID and do not encrypt the password

This example creates an SQL Server login for the user Margaret with a password of "B1r12-36" on Server1, extracts the
encrypted password, and then adds the login for the user Margaret to Server2 using the previously encrypted password but
does not further encrypt the password. User Margaret can then log on to Server2 using the password Rose.

-- Server1
EXEC sp_addlogin 'Margaret', 'B1r12-36'

--Results
New login created.

-- Extract encrypted password for Margaret
SELECT CONVERT(VARBINARY(256), password)
 FROM syslogins
 WHERE name = 'Margaret'

--Results
--
0x0100163A5F026DA00F9FBCF3CB2E75B0C84887F3A87E191F8E0B7A2660F064A52B19590B9DE20D94DC0DFF857EDA

(1 row(s) affected)

-- Server2
EXEC sp_addlogin 'Margaret',
0x0100163A5F026DA00F9FBCF3CB2E75B0C84887F3A87E191F8E0B7A2660F064A52B19590B9DE20D94DC0DFF857EDA,
 @encryptopt = 'skip_encryption'

See Also

sp_addrole

sp_addrolemember

sp_adduser

sp_defaultdb

sp_defaultlanguage

sp_droplogin

sp_grantlogin

sp_helpuser

sp_password

sp_revokelogin

xp_logininfo

Transact-SQL Reference (SQL Server 2000)

sp_add_log_shipping_database
Specifies that a database on the primary server is being log shipped.

Syntax

sp_add_log_shipping_database [@db_name =] 'db_name' ,
 [@maintenance_plan_id =] maintenance_plan_id

Arguments

[@db_name =] 'db_name'

The name of the database log shipped. The name must exist in sysdatabases. db_name is sysname.

[@maintenance_plan_id =] maintenance_plan_id

The maintenance plan responsible for backing up the transaction log of this database. maintenance_plan_id is uniqueidentifier,
with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Permissions

Only members of the sysadmin fixed server role can execute sp_add_log_shipping_database.

Examples

EXEC msdb.dbo.sp_add_log_shipping_database N'pubs'

Transact-SQL Reference (SQL Server 2000)

sp_add_log_shipping_plan
Creates a new log shipping plan. Inserts a row in the log_shipping_plans table.

Syntax

sp_add_log_shipping_plan [@plan_name =] 'plan_name' ,
 [@description =] 'description' ,
 [@source_server =] 'source_server' ,
 [@source_dir =] 'source_dir' ,
 [@destination_dir =] 'destination_dir' ,
 [@history_retention_period =] history_retention_period ,
 [@file_retention_period =] file_retention_period ,
 [@copy_frequency =] copy_frequency ,
 [@restore_frequency =] restore_frequency ,
 [@plan_id =] plan_id OUTPUT

Arguments

[@plan_name =] 'plan_name'

Is the name of the plan. The name must be unique and cannot contain the percent (%) character. plan_name is sysname, with no
default.

[@description =] 'description'

Is the description of the plan. description is nvarchar(500), and the default is NULL.

[@source_server =] 'source_server'

Is the name of the source server. source_server is sysname.

[@source_dir =] 'source_dir'

Is the full path to the directory from which the transaction log files will be copied. source_dir is nvarchar(500).

[@destination_dir =] 'destination_dir'

Is the directory in which the transaction log is to be copied. destination_dir is nvarchar(500).

[@history_retention_period =] history_retention_period

Is the length of time in minutes in which the history is retained in the log_shipping_history table before deletion.
history_retention_period is int, with a default of 2,880 minutes (two days).

[@file_retention_period =] file_retention_period

Is the length of time in minutes in which the transaction log files are stored on the secondary server before deletion.
file_retention_period is int, with a default of 2,880 minutes (two days).

[@copy_frequency =] copy_frequency

Is the frequency in minutes in which the plan is copied. copy_frequency is int, with a default of five minutes.

[@restore_frequency =] restore_frequency

Is the frequency in minutes in which the restore job for this plan takes place. restore_frequency is int, with a default of five
minutes.

[@plan_id =] plan_id OUTPUT

Is the plan identification number assigned to the plan that was created successfully. plan_id is an output variable of type
uniqueidentifier, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_log_shipping_plan also can be used to create two jobs to perform the copy and load for this plan.

After sp_add_log_shipping_plan executes successfully, sp_add_log_shipping plan_database can be executed to add
databases to the plan.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_log_shipping_plan.

Examples

EXEC msdb.dbo.sp_add_log_shipping_plan
 @plan_name=N'Pubs database backup'
 @description= N'Log shipping the pubs database',
 @source_server= N'my_source',
 @source_dir= N'\\my_source\pubs_logshipping',
 @destination_dir= N'c:\logshipping\pubs',
 @history_retention_period= 60, -- 1 hour
 @file_retention_period= 1440, -- 1 day
 @copy_frequency= 10, -- copy files every 10 minutes
 @restore_frequency= 30 -- load files every 30 minutes

Transact-SQL Reference (SQL Server 2000)

sp_add_log_shipping_plan_database
Adds a new database to an existing log shipping plan.

Syntax

sp_add_log_shipping_plan_database
 { [@plan_id =] plan_id | [@plan_name =] 'plan_name' }
 { , [@source_database =] 'source_database' }
 { , [@destination_database =] 'destination_database' }
 [, [@load_delay =] load_delay]
 [, [@load_all =] load_all]
 [, [@copy_enabled =] copy_enabled]
 [, [@load_enabled =] load_enabled]

Arguments

[@plan_id =] plan_id

Is the plan identification number to which the database will be added. plan_id is uniqueidentifier, with a default of NULL.

[@plan_name =] 'plan_name'

Is the name of the plan to which the database will be added. plan_name is sysname, with a default of NULL.

Note Either the plan_id or the plan_name must be specified. Both cannot be specified at the same time.

[@source_database =] 'source_database'

Is the name of the database on the source server. source_database is sysname, with no default.

[@destination_database =] 'destination_database'

Is the name of the destination database. destination_database is sysname, with no default. The destination database must be
unique in the log_shipping_plan_database table.

[@load_delay =] load_delay

Is the length of time in minutes to wait before loading the transaction log. load_delay is int, with a default of zero (0).

[@load_all =] load_all

Specifies that all newly copied transaction logs should be loaded when the job is run. If the value is set to zero (0), only one
transaction log will be loaded when the job is run. If the value is one (1), all copied transaction logs will be loaded. load_all is bit,
with a default of one (1).

[@copy_enabled =] copy_enabled

Specifies whether a copy for this database will be executed. copy_enabled is bit. The value of one (1) means a copy should be
performed; zero (0) means no copy is made.

[@load_enabled =] load_enabled

Specifies whether a load of the transaction logs for this database should be performed. load_enabled is bit. The value of one (1)
means a load should be performed; zero (0) means no load is performed.

Return Code Values

0 (success) or 1 failure

Permissions

Only members of the sysadmin fixed server role can execute sp_add_log_shipping_plan_database.

Examples

Note this example assumes that the 'Pubs database backup' plan already exists.

EXECUTE msdb.dbo.sp_add_log_shipping_plan_database
 @plan_name = N'Pubs database backup',
 @source_database = N'Pubs',
 @destination_database = N'pubs_standby',
 @load_delay = 60 –– wait an hour before loading the transaction logs

Transact-SQL Reference (SQL Server 2000)

sp_add_log_shipping_primary
Adds a new primary server to log_shipping_primaries table.

Syntax

sp_add_log_shipping_primary
 { [@primary_server_name =] 'primary_server_name' ,
 { [@primary_database_name =] 'primary_database_name' }
 [, [@maintenance_plan_id =] maintenance_plan_id]
 [, [@backup_threshold =] backup_threshold]
 [, [@threshold_alert =] threshold_alert]
 [, [@threshold_alert_enabled =] threshold_alert_enabled]
 [, [@planned_outage_start_time =] planned_outage_start_time]
 [, [@planned_outage_end_time =] planned_outage_end_time]
 [, [@planned_outage_weekday_mask =] planned_outage_weekday_mask]
 [, [@primary_id =] primary_id OUTPUT]

Arguments

[@primary_server_name =] 'primary_server_name'

Is the name of the primary server. primary_server_name is sysname, with no default.

[@primary_database_name =] 'primary_database_name'

Is the name of the database on the primary server. primary_database_name is sysname, with no default.

[@maintenance_plan_id =] maintenance_plan_id

Is the ID of the maintenance plan that backs up the transaction log. maintenance_plan_id is uniqueidentifier, with a default of
NULL.

[@backup_threshold =] backup_threshold

Is the length of time, in minutes, after the last backup before a threshold_alert error is raised. backup_threshold is int, with a
default of 60 minutes.

[@threshold_alert =] threshold_alert

Is the error raised when the backup threshold is exceeded. threshold_alert is int, with a default of 14,420.

[@threshold_alert_enabled =] threshold_alert_enabled

Specifies whether an alert will be raised when backup_threshold is exceeded. The value of one (1), the default, means that the alert
will be raised. threshold_alert_enabled is bit.

[@planned_outage_start_time =] planned_outage_start_time

Is the time, in HHMMSS format, a planned outage starts. During a planned outage, alerts will not be raised if the backup threshold
is exceeded. planned_outage_start_time is int, with a default of zero (0).

[@planned_outage_end_time =] planned_outage_end_time

Is the time, in HHMMSS format, a planned outage ends. planned_outage_end_time is int, with a default of zero (0).

[@planned_outage_weekday_mask =] planned_outage_weekday_mask

Is the day of the week that a planned outage occurs. planned_outage_weekday_mask is int, with a default of zero (0). It can be
one or more of the following values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday

64 Saturday

[@primary_id =] primary_id OUTPUT

Is the unique ID for the new primary server and database pair. primary_id is uniqueidentifier.

Return Code Values

0 (success) or 1 (failure)

Remarks

To specify that a primary server should be monitored, execute sp_add_log_shipping_primary on the monitor server.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_log_shipping_primary.

Transact-SQL Reference (SQL Server 2000)

sp_add_log_shipping_secondary
Adds a secondary server to log_shipping_secondaries table.

Syntax

sp_add_log_shipping_secondary { [@primary_id =] primary_id }
 { , [@secondary_server_name =] 'secondary_server_name' }
 { , [@secondary_database_name =] 'seconday_database_name' }
 [, [@secondary_plan_id =] secondary_plan_id]
 [, [@copy_enabled =] copy_enabled]
 [, [@load_enabled =] load_enabled]
 [, [@out_of_sync_threshold =] out_of_sync_threshold]
 [, [@threshold_alert =] 'threshold_alert']
 [, [@threshold_alert_enabled =] threshold_alert_enabled]
 [, [@planned_outage_start_time =] planned_outage_start_time]
 [, [@planned_outage_end_time =] planned_outage_end_time]
 [, [@planned_outage_weekday_mask =] planned_outage_weekday_mask]

Arguments

[@primary_id =] primary_id

Is the ID of the primary server. primary_id is int, with no default.

[@secondary_server_name =] 'secondary_server_name'

Is the name of the secondary server. secondary_server_name is sysname, with no default.

[@secondary_database_name =] 'seconday_database_name'

Is the name of the secondary database. secondary_database_name is sysname, with no default.

[@secondary_plan_id =] secondary_plan_id

Is the ID of the log shipping plan on the secondary server. secondary_plan_id is uniqueidentifier, with a default of NULL.

[@copy_enabled =] copy_enabled

Specifies whether the copy for the database is enabled on the secondary server. The default value of one (1) means the copy is
enabled; zero (0) means copy is not enabled. copy_enabled is bit.

[@load_enabled =] load_enabled

Specifies whether the load for the database is enabled on the secondary server. The value of one (1), the default, means the load is
enabled; zero (0) indicates it is not. load_enabled is bit.

[@out_of_sync_threshold =] out_of_sync_threshold

Is the length of time, in minutes, after the last load before an error is raised. out_of_sync_threshold is int, with a default of 60
minutes.

[@threshold_alert =] 'threshold_alert'

Is the error raised when the out-of-sync threshold is exceeded. threshold_alert is int, with a default of 14,421.

[@threshold_alert_enabled =] threshold_alert_enabled

Specifies whether an alert will be raised when an out-of-sync threshold is exceeded. The default value of one (1) means an alert
will be raised; zero (0) means an alert will not be raised. threshold_alert_enabled is bit.

[@planned_outage_start_time =] planned_outage_start_time

Is the time in HHMMSS format that a planned outage begins. During a planned outage, alerts will not be raised if the out-of-sync
threshold is exceeded. planned_outage_start_time is int, with a default of zero (0).

[@planned_outage_end_time =] planned_outage_end_time

Is the time in HHMMSS format that the planned outage ends. planned_outage_end_time is int, with a default of zero (0).

[@planned_outage_weekday_mask =] planned_outage_weekday_mask

Is the day of the week that a planned outage occurs. planned_outage_weekday_mask is int, with a default of zero (0). It can be
one or more of the following values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

Return Code Values

0 (success) or 1 (failure)

Remarks

This procedure is used to add a secondary database to an existing primary database.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_log_shipping_secondary.

Transact-SQL Reference (SQL Server 2000)

sp_add_maintenance_plan
Adds a maintenance plan and returns the plan ID.

Syntax

sp_add_maintenance_plan [@plan_name =] 'plan_name' ,
 @plan_id = 'plan_id' OUTPUT

Arguments

[@plan_name =] 'plan_name'

Specifies the name of the maintenance plan to be added. plan_name is varchar(128).

@plan_id = 'plan_id'

Specifies the ID of the maintenance plan. plan_id is uniqueidentifier.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_maintenance_plan must be run from the msdb database and creates a new, but empty, maintenance plan. To add one
or more databases and associate them with a job or jobs, execute sp_add_maintenance_plan_db and
sp_add_maintenance_plan_job.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_maintenance_plan.

Examples

Create a maintenance plan called Myplan.

DECLARE @myplan_id UNIQUEIDENTIFIER
EXECUTE sp_add_maintenance_plan N'Myplan',@plan_id=@myplan_id OUTPUT
PRINT 'The id for the maintenance plan "Myplan" is:'+convert(varchar(256),@myplan_id)
GO

Success in creating the maintenance plan will return the plan ID.

'The id for the maintenance plan "Myplan" is:' FAD6F2AB-3571-11D3-9D4A-00C04FB925FC

Transact-SQL Reference (SQL Server 2000)

sp_add_maintenance_plan_db
Associates a database with a maintenance plan.

Syntax

sp_add_maintenance_plan_db [@plan_id =] 'plan_id' ,
 [@db_name =] 'database_name'

Arguments

[@plan_id =] 'plan_id'

Specifies the plan ID of the maintenance plan. plan_id is uniqueidentifier, and must be a valid ID.

[@db_name =] 'database_name'

Specifies the name of the database to be added to the maintenance plan. The database must be created or exist prior to its
addition to the plan. database_name is sysname.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_maintenance_plan_db must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_maintenance_plan_db.

Examples

This example adds the Northwind database to the maintenance plan created in sp_add_maintenance_plan.

Execute sp_add_maintenance_plan_db N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC',N'Northwind'

Transact-SQL Reference (SQL Server 2000)

sp_add_maintenance_plan_job
Associates a maintenance plan with an existing job.

Syntax

sp_add_maintenance_plan_job [@plan_id =] 'plan_id'
, [@job_id =] 'job_id'

Arguments

[@plan_id =] 'plan_id'

Specifies the ID of the maintenance plan. plan_id is uniqueidentifier, and must be a valid ID.

[@job_id =] 'job_id'

Specifies the ID of the job to be associated with the maintenance plan. job_id is uniqueidentifier, and must be a valid ID. To
create a job or jobs, execute sp_add_job, or use SQL Server Enterprise Manager.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_maintenance_plan_job must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_maintenance_plan_job.

Examples

This example adds the job "B8FCECB1-E22C-11D2-AA64-00C04F688EAE" to the maintenance plan created with
sp_add_maintenance_plan_job.

EXECUTE sp_add_maintenance_plan_job N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC', N'B8FCECB1-E22C-11D2-AA64-
00C04F688EAE'

Transact-SQL Reference (SQL Server 2000)

sp_addmessage
Adds a new error message to the sysmessages table.

Syntax

sp_addmessage [@msgnum =] msg_id ,
 [@severity =] severity ,
 [@msgtext =] 'msg'
 [, [@lang =] 'language']
 [, [@with_log =] 'with_log']
 [, [@replace =] 'replace']

Arguments

[@msgnum =] msg_id

Is the ID of the message. msg_id is int, with a default of NULL. Acceptable values for user-defined error messages start with
50001. The combination of msg_id and language must be unique; an error is returned if the ID already exists for the specified
language.

[@severity =] severity

Is the severity level of the error. severity is smallint, with a default of NULL. Valid levels are from 1 through 25. Only the system
administrator can add a message with a severity level from 19 through 25.

[@msgtext =] 'msg'

Is the text of the error message. msg is nvarchar(255), with a default of NULL.

[@lang =] 'language'

Is the language for this message. language is sysname, with a default of NULL. Because multiple languages can be installed on
the same server, language specifies the language in which each message is written. When language is omitted, the language is
the default language for the session.

[@with_log =] 'with_log'

Is whether the message is to be written to the Microsoft® Windows NT® application log when it occurs. with_log is varchar(5),
with a default of FALSE. If true, the error is always written to the Windows NT application log. If false, the error is not always
written to the Windows NT application log but can be written, depending on how the error was raised. Only members of the
sysadmin server role can use this option.

Note If a message is written to the Windows NT application log, it is also written to the Microsoft SQL Server™ error log file.

[@replace =] 'replace'

If specified as the string REPLACE, an existing error message is overwritten with new message text and severity level. replace is
varchar(7), with a default of NULL. This option must be specified if msg_id already exists. If you replace a U.S. English message,
the severity level is replaced for all messages in all other languages that have the same msg_id.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

For localization, the U.S. English version of a message must already exist before the message in another language can be added.
The severity of the messages must match.

When localizing messages that contain parameters, use parameter numbers that correspond to the parameters in the original
message. Insert an exclamation point (!) after each parameter number.

Original message Localized message
'Original message param 1: %s,

param 2: %d'

'Localized message param 1: %1!,

param 2: %2!'

Because of language syntax differences, the parameter numbers in the localized message may not occur in the same sequence as
in the original message.

Permissions

Only members of the sysadmin and serveradmin fixed server roles can execute this procedure.

Examples

A. Define a custom message

This example adds a custom message to sysmessages.

USE master
EXEC sp_addmessage 50001, 16,
 N'Percentage expects a value between 20 and 100.
 Please reexecute with a more appropriate value.'

B. Add a message in two languages

This example first adds a message in U.S. English and then adds the same message in French.

USE master
EXEC sp_addmessage @msgnum = 60000, @severity = 16,
 @msgtext = N'The item named %s already exists in %s.',
 @lang = 'us_english'

EXEC sp_addmessage @msgnum = 60000, @severity = 16,
 @msgtext = N'L''élément nommé %1! existe déjà dans %2!',
 @lang = 'French'

See Also

Error Message Severity Levels

RAISERROR

sp_altermessage

sp_dropmessage

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_notification
Sets up a notification for an alert.

Syntax

sp_add_notification [@alert_name =] 'alert' ,
 [@operator_name =] 'operator' ,
 [@notification_method =] notification_method

Arguments

[@alert_name =] 'alert'

Is the alert for this notification. alert is sysname, with no default.

[@operator_name =] 'operator'

Is the operator to be notified when the alert occurs. operator is sysname, with no default.

[@notification_method =] notification_method

Is the method by which the operator is notified. notification_method is tinyint, with no default. notification_method can be one or
more of these values combined with an OR logical operator.

Value Description
1 E-mail
2 Pager
4 net send

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_add_notification must be run from the msdb database.

SQL Server Enterprise Manager provides an easy, graphical way to manage the entire alerting system. Using SQL Server
Enterprise Manager is the recommended way to configure your alert infrastructure.

To send a notification in response to an alert, you must first configure Microsoft® SQL Server™ Agent to send mail. For more
information, see Configuring the SQLServerAgent Service.

If a failure occurs when sending an e-mail message or pager notification, the failure is reported in the SQL Server Agent service
error log.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_notification.

Examples

This example adds an e-mail notification for the specified alert (Test Alert).

Note This example assumes that Test Alert already exists and that stevenb is a valid operator name.

USE msdb
GO
EXEC sp_add_notification 'Test Alert', 'stevenb', 1

See Also

sp_delete_notification

sp_help_notification

sp_update_notification

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_operator
Creates an operator (notification recipient) for use with alerts and jobs.

Syntax

sp_add_operator [@name =] 'name'
 [, [@enabled =] enabled]
 [, [@email_address =] 'email_address']
 [, [@pager_address =] 'pager_address']
 [, [@weekday_pager_start_time =] weekday_pager_start_time]
 [, [@weekday_pager_end_time =] weekday_pager_end_time]
 [, [@saturday_pager_start_time =] saturday_pager_start_time]
 [, [@saturday_pager_end_time =] saturday_pager_end_time]
 [, [@sunday_pager_start_time =] sunday_pager_start_time]
 [, [@sunday_pager_end_time =] sunday_pager_end_time]
 [, [@pager_days =] pager_days]
 [, [@netsend_address =] 'netsend_address']
 [, [@category_name =] 'category']

Arguments

[@name =] 'name'

Is the name of an operator (notification recipient). This name must be unique and cannot contain the percent (%) character. name
is sysname, with no default.

[@enabled =] enabled

Indicates the current status of the operator. enabled is tinyint, with a default of 1 (enabled). If 0, the operator is not enabled and
does not receive notifications.

[@email_address =] 'email_address'

Is the e-mail address of the operator. This string is passed directly to the e-mail system. email_address is nvarchar(100), with a
default of NULL.

Note If email_address or pager_address is a physical address ('SMTP:jdoe@xyz.com') rather than an alias ('jdoe'), the value must
be enclosed in square brackets: '[SMTP:jdoe@xyz.com]'.

[@pager_address =] 'pager_address'

Is the pager address of the operator. This string is passed directly to the e-mail system. pager_addresss is narchar(100), with a
default of NULL.

[@weekday_pager_start_time =] weekday_pager_start_time

Is the time after which Microsoft® SQL Server™ Agent sends pager notification to the specified operator on the weekdays, from
Monday through Friday. weekday_pager_start_time is int, with a default of 090000, which indicates 9:00 A.M. on a 24-hour clock,
and must be entered using the form HHMMSS.

[@weekday_pager_end_time =] weekday_pager_end_time

Is the time after which SQLServerAgent service no longer sends pager notification to the specified operator on the weekdays,
from Monday through Friday. weekday_pager_end_time is int, with a default of 180000, which indicates 6:00 P.M. on a 24-hour
clock, and must be entered using the form HHMMSS.

[@saturday_pager_start_time =] saturday_pager_start_time

Is the time after which SQL Server Agent service sends pager notification to the specified operator on Saturdays.
saturday_pager_start_time is int, with a default of 090000, which indicates 9:00 A.M. on a 24-hour clock, and must be entered
using the form HHMMSS.

[@saturday_pager_end_time =] saturday_pager_end_time

Is the time after which SQLServerAgent service no longer sends pager notification to the specified operator on Saturdays.
saturday_pager_end_time is int, with a default of 180000, which indicates 6:00 P.M. on a 24-hour clock, and must be entered
using the form HHMMSS.

[@sunday_pager_start_time =] sunday_pager_start_time

Is the time after which SQLServerAgent service sends pager notification to the specified operator on Sundays.
sunday_pager_start_time is int, with a default of 090000, which indicates 9:00 A.M. on a 24-hour clock, and must be entered
using the form HHMMSS.

[@sunday_pager_end_time =] sunday_pager_end_time

Is the time after which SQLServerAgent service no longer sends pager notification to the specified operator on Sundays.
sunday_pager_end_time is int, with a default of 180000, which indicates 6:00 P.M. on a 24-hour clock, and must be entered using
the form HHMMSS.

[@pager_days =] pager_days

Is a number that indicates the days that the operator is available for pages (subject to the specified start/end times). pager_days is
tinyint, with a default of 0 indicating the operator is never available to receive a page. Valid values are from 0 through 127.
pager_days is calculated by adding the individual values for the required days. For example, from Monday through Friday is
2+4+8+16+32 = 62.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@netsend_address =] 'netsend_address'

Is the network address of the operator to whom the network message is sent. netsend_address is nvarchar(100), with a default of
NULL.

[@category_name =] 'category'

Is the name of the category for this alert. category is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_add_operator must be run from the msdb database.

Paging is supported by the e-mail system, which must have an e-mail-to-pager capability if you want to use paging.

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_operator.

Examples

This example sets up the operator information for janetl. The operator information is enabled, and she is to be notified by pager
from Monday through Friday from 8 A.M. to 5 P.M.

use msdb
exec sp_add_operator @name = 'Janet Leverling',
 @enabled = 1,

 @email_address ='janetl',
 @pager_address = '5673219@mypagerco.com',
 @weekday_pager_start_time = 080000,
 @weekday_pager_end_time = 170000,
 @pager_days = 62

See Also

sp_delete_operator

sp_help_operator

sp_update_operator

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addremotelogin
Adds a new remote login ID on the local server, allowing remote servers to connect and execute remote procedure calls.

Syntax

sp_addremotelogin [@remoteserver =] 'remoteserver'
 [, [@loginame =] 'login']
 [, [@remotename =] 'remote_name']

Arguments

[@remoteserver =] 'remoteserver'

Is the name of the remote server that the remote login applies to. remoteserver is sysname, with no default. If only remoteserver
is given, all users on remoteserver are mapped to existing logins of the same name on the local server. The server must be known
to the local server (added using sp_addserver). When users on remoteserver connect to the local server running Microsoft® SQL
Server™ to execute a remote stored procedure, they connect as the local login that matches their own login on remoteserver.
remoteserver is the server that initiates the remote procedure call.

[@loginame =] 'login'

Is the login ID of the user on the local SQL Server. login is sysname, with a default of NULL. login must already exist on the local
SQL Server. If login is specified, all users on remoteserver are mapped to that specific local login. When users on remoteserver
connect to the local SQL Server to execute a remote stored procedure, they connect as login.

[@remotename =] 'remote_name'

Is the login ID of the user on the remote server. remote_name is sysname, with a default of NULL. remote_name must exist on
remoteserver. If remote_name is specified, the specific user remote_name is mapped to login on the local server. When
remote_name on remoteserver connects to the local SQL Server to execute a remote stored procedure, it connects as login. The
login ID of remote_name can be different from the login ID on the remote server, login.

Return Code Values

0 (success) or 1 (failure)

Remarks

To execute distributed queries, use sp_addlinkedsrvlogin.

Every remote login entry has a status. The default status is not trusted. When a remote login with not trusted status is received,
SQL Server checks the password. To not have the password checked, use sp_remoteoption to change the status to trusted.

sp_addremotelogin cannot be used inside a user-defined transaction.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_addremotelogin.

Examples

A. M ap one to one

This example maps remote names to local names when the remote server Accounts and local server have the same user logins.

EXEC sp_addremotelogin 'ACCOUNTS'

B. M ap many to one

This example creates an entry that maps all users from the remote server Accounts to the local login ID Albert.

EXEC sp_addremotelogin 'ACCOUNTS', 'Albert'

C. Use explicit one-to-one mapping

This example maps a remote login from the remote user Chris on the remote server Accounts to the local user salesmgr.

EXEC sp_addremotelogin 'ACCOUNTS', 'salesmgr', 'Chris'

See Also

Security for Remote Servers

sp_addlinkedsrvlogin

sp_addlogin

sp_addserver

sp_dropremotelogin

sp_grantlogin

sp_helpremotelogin

sp_helpserver

sp_remoteoption

sp_revokelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addrole
Creates a new Microsoft® SQL Server™ role in the current database.

Syntax

sp_addrole [@rolename =] 'role'
 [, [@ownername =] 'owner']

Arguments

[@rolename =] 'role'

Is the name of the new role. role is sysname, with no default. role must be a valid identifier and must not already exist in the
current database.

[@ownername =] 'owner'

Is the owner of the new role. owner is sysname, with a default of dbo. owner must be a user or role in the current database.
When specifying Microsoft Windows NT® users, specify the name the Windows NT user is known by in the database (added
using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server roles can contain from 1 to 128 characters, including letters, symbols, and numbers. However, roles cannot:

Contain a backslash character (\).

Be NULL, or an empty string ('').

After adding a role, use sp_addrolemember to add security accounts as members of the role. When using the GRANT, DENY, or
REVOKE statements to apply permissions to the role, members of the role inherit the permissions as if the permissions were
applied directly to their accounts.

Note It is not possible to create new fixed server roles. Roles can only be created at the database level.

sp_addrole cannot be used inside a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, and the db_securityadmin and db_owner fixed database roles can execute
sp_addrole.

Examples

This example adds the new role called Managers to the current database.

EXEC sp_addrole 'Managers'

See Also

Creating User-Defined SQL Server Database Roles

sp_addrolemember

sp_droprole

sp_helprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addrolemember
Adds a security account as a member of an existing Microsoft® SQL Server™ database role in the current database.

Syntax

sp_addrolemember [@rolename =] 'role' ,
 [@membername =] 'security_account'

Arguments

[@rolename =] 'role'

Is the name of the SQL Server role in the current database. role is sysname, with no default.

[@membername =] 'security_account'

Is the security account being added to the role. security_account is sysname, with no default. security_account can be any valid
SQL Server user, SQL Server role, or any Microsoft Windows NT® user or group granted access to the current database. When
adding Windows NT users or groups, specify the name that the Windows NT user or group is known by in the database (added
using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

When using sp_addrolemember to add a security account to a role, any permissions applied to the role are inherited by the new
member.

When adding a SQL Server role as a member of another SQL Server role, you cannot create circular roles. For example, MyRole
cannot be added as a member of YourRole if YourRole is already a member of MyRole. Additionally, you cannot add a fixed
database or fixed server role, or dbo to other roles. For example, the db_owner fixed database role cannot be added as a member
of the user-defined role YourRole.

Only use sp_addrolemember to add a member to a SQL Server role. Use sp_addsrvrolemember to add a member to a fixed
server role. Adding a member to a Windows NT® group in SQL Server is not possible.

sp_addrolemember cannot be used inside a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role and the db_owner fixed database role can execute sp_addrolemember to add
a member to fixed database roles. Role owners can execute sp_addrolemember to add a member to any SQL Server role they
own. Members of the db_securityadmin fixed database role can add users to any user-defined role.

Examples

A. Add a Windows N T user

This example adds the Windows NT user Corporate\JeffL to the Sales database as user Jeff. Jeff is then added to the
Sales_Managers role in the Sales database.

Note Because Corporate\JeffL is known as the user Jeff in the Sales database, the username Jeff must be specified using
sp_addrolemember.

USE Sales
GO
EXEC sp_grantdbaccess 'Corporate\JeffL', 'Jeff'
GO
EXEC sp_addrolemember 'Sales_Managers', 'Jeff'

B. Add a SQL Server user

This example adds the SQL Server user Michael to the Engineering role in the current database.

EXEC sp_addrolemember 'Engineering', 'Michael'

See Also

Adding a Member to a SQL Server Database Role

sp_addsrvrolemember

sp_droprolemember

sp_grantdbaccess

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addserver
Defines a remote server or the name of the local Microsoft® SQL Server™. sp_addserver is provided for backward compatibility.
Use sp_addlinkedserver.

Syntax

sp_addserver [@server =] 'server'
 [, [@local =] 'local']
 [, [@duplicate_ok =] 'duplicate_OK']

Arguments

[@server =] 'server'

Is the name of the server. Server names must be unique and follow the rules for Microsoft Windows NT® computer names,
although spaces are not allowed. server is sysname, with no default.

When multiple instances of SQL Server are installed on a computer, an instance operates as if it is on a separate server. Specify a
named instance by referring to server as servername\instancename.

[@local =] 'LOCAL'

Specifies whether the server that is being added is a local or remote server. @local is varchar(10), with a default of NULL.
Specifying @local as LOCAL defines @server as the name of the local server and causes the @@SERVERNAME function to
return server. (The Setup program sets this variable to the computer name during installation. It is recommended that the name
not be changed. By default, the computer name is the way users connect to SQL Server without requiring additional
configuration.) The local definition takes effect only after the server is shut down and restarted. Only one local server can be
defined in each server.

[@duplicate_ok =] 'duplicate_OK'

Specifies whether or not a duplicate server name is allowed. @duplicate_OK is varchar(13), with a default of NULL.
@duplicate_OK can only have the value duplicate_OK or NULL. If duplicate_OK is specified and the server name that is being
added already exists, then no error is raised. @local must be specified if named parameters are not used.

Return Code Values

0 (success) or 1 (failure)

Remarks

To execute a stored procedure on a remote server (remote procedure calls) running an earlier version of SQL Server, add the
remote server using sp_addserver. To execute a stored procedure (or any distributed query) on a remote server running SQL
Server version 7.0, use sp_addlinkedserver to add the server.

To set or clear server options, use sp_serveroption.

sp_addserver cannot be used inside a user-defined transaction.

Permissions

Only members of the setupadmin and sysadmin fixed server roles can execute sp_addserver.

Examples

This example creates an entry for the remote the server ACCOUNTS on the local server.

sp_addserver 'ACCOUNTS'

See Also

sp_addlinkedserver

sp_addremotelogin

sp_dropremotelogin

sp_dropserver

sp_helpremotelogin

sp_helpserver

sp_serveroption

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addsrvrolemember
Adds a login as a member of a fixed server role.

Syntax

sp_addsrvrolemember [@loginame =] 'login'
 , [@rolename =] 'role'

Arguments

[@loginame =] 'login'

Is the name of the login being added to the fixed server role. login is sysname, with no default. login can be a Microsoft® SQL
Server™ login or a Microsoft Windows NT® user account. If the Windows NT login has not already been granted access to SQL
Server, access is granted automatically.

[@rolename =] 'role'

Is the name of the fixed server role in which the login is being added. role is sysname, with a default of NULL, and must be one of
these values:

sysadmin

securityadmin

serveradmin

setupadmin

processadmin

diskadmin

dbcreator

bulkadmin

Return Code Values

0 (success) or 1 (failure)

Remarks

When a login is added to a fixed server role, the login gains the permissions associated with that fixed server role.

The role membership of the sa login cannot be changed.

Use sp_addrolemember to add a member to a fixed database or user-defined role.

sp_addsrvrolemember stored procedure cannot be executed within a user-defined transaction.

Permissions

Members of the sysadmin fixed server role can add members to any fixed server role. Members of a fixed server role can execute
sp_addsrvrolemember to add members only to the same fixed server role.

Examples

This example adds the Windows NT user Corporate\HelenS to the sysadmin fixed server role.

EXEC sp_addsrvrolemember 'Corporate\HelenS', 'sysadmin'

See Also

sp_addrolemember

sp_dropsrvrolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addtask
Creates a scheduled task.

sp_addtask is provided for backward compatibility only. For more information about the replacement procedures for Microsoft®
SQL Server™ version 7.0, see SQL Server Backward Compatibility Details.

Important For more information about syntax used in earlier versions of SQL Server, see the Microsoft SQL Server Transact-SQL
Reference for version 6.x.

Remarks

If you create a task by using sp_addtask, the task can be deleted only by sp_droptask. For task management, use SQL Server
Enterprise Manager.

Permissions

Execute permissions default to the public role.

See Also

sp_droptask

sp_helphistory

sp_helptask

sp_purgehistory

sp_updatetask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addtype
Creates a user-defined data type.

Syntax

sp_addtype [@typename =] type,
 [@phystype =] system_data_type
 [, [@nulltype =] 'null_type']
 [, [@owner =] 'owner_name']

Arguments

[@typename =] type

Is the name of the user-defined data type. Data type names must follow the rules for identifiers and must be unique in each
database. type is sysname, with no default.

[@phystype =] system_data_type

Is the physical, or Microsoft® SQL Server™-supplied, data type (decimal, int, and so on) on which the user-defined data type is
based. system_data_type is sysname, with no default, and can be one of these values:

'binary(n)' int smallint
bit 'nchar(n)' text
'char(n)' ntext tinyint
datetime numeric uniqueidentifier
decimal 'numeric[(p [, s])]' 'varbinary(n)'
'decimal[(p [, s])]' 'nvarchar(n)' 'varchar(n)'
float real
image smalldatetime

Quotation marks are required around all parameters that have embedded blank spaces or punctuation marks. For more
information about available data types, see Data Types.

n
Is a nonnegative integer indicating the length for the chosen data type.

p
Is a nonnegative integer indicating the maximum total number of decimal digits that can be stored, both to the left and to the
right of the decimal point. For more information, see decimal and numeric.

s
Is a nonnegative integer indicating the maximum number of decimal digits that can be stored to the right of the decimal point,
and it must be less than or equal to the precision. For more information, see "decimal and numeric" in this volume.

[@nulltype =] 'null_type'

Indicates the way the user-defined data type handles null values. null_type is varchar(8), with a default of NULL, and must be
enclosed in single quotation marks ('NULL', 'NOT NULL', or 'NONULL'). If null_type is not explicitly defined by sp_addtype, it is
set to the current default nullability. Use the GETANSINULL system function to determine the current default nullability, which can
be adjusted by using the SET statement or sp_dboption. Nullability should be explicitly defined.

Note The null_type parameter only defines the default nullability for this data type. If nullability is explicitly defined when the
user-defined data type is used during table creation, it takes precedence over the defined nullability. For more information, see
ALTER TABLE and CREATE TABLE.

[@owner =] 'owner_name'

Specifies the owner or creator of the new data type. owner_name is sysname. When not specified, owner_name is the current
user.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

A user-defined data type name must be unique in the database, but user-defined data types with different names can have the
same definition.

Executing sp_addtype creates a user-defined data type and adds it to the systypes system table for a specific database, unless
sp_addtype is executed with master as the current database. If the user-defined data type must be available in all new user-
defined databases, add it to model. After a user data type is created, you can use it in CREATE TABLE or ALTER TABLE, as well as
bind defaults and rules to the user-defined data type.

User-defined data types cannot be defined using the SQL Server timestamp or table data types.

Permissions

Execute permissions default to the public role.

Examples

A. Create a user-defined data type that does not allow null values

This example creates a user-defined data type named ssn (social security number) that is based on the SQL Server-supplied
varchar data type. The ssn data type is used for columns holding 11-digit social security numbers (999-99-9999). The column
cannot be NULL.

Notice that varchar(11) is enclosed in single quotation marks because it contains punctuation (parentheses).

USE master
EXEC sp_addtype ssn, 'VARCHAR(11)', 'NOT NULL'

B. Create a user-defined data type that allows null values

This example creates a user-defined data type (based on datetime) named birthday that allows null values.

USE master
EXEC sp_addtype birthday, datetime, 'NULL'

C. Create additional user-defined data types

This example creates two additional user-defined data types, telephone and fax, for both domestic and international telephone
and fax numbers.

USE master
EXEC sp_addtype telephone, 'varchar(24)', 'NOT NULL'
EXEC sp_addtype fax, 'varchar(24)', 'NULL'

See Also

CREATE DEFAULT

CREATE RULE

sp_bindefault

sp_bindrule

sp_droptype

sp_rename

sp_unbindefault

sp_unbindrule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_targetservergroup
Adds the specified server group.

Syntax

sp_add_targetservergroup [@name =] 'name'

Arguments

[@name =] 'name'

Is the name of the server group to create. name is sysname, with no default. name cannot contain commas.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Target server groups provide an easy way to target a job at a collection of target servers. For more information, see
"sp_apply_job_to_targets" in this volume.

Permissions

Only members of the sysadmin fixed server role can execute this procedure.

Examples

This example creates the target server group named Servers Processing Customer Orders.

USE msdb
EXEC sp_add_targetservergroup 'Servers Processing Customer Orders'

See Also

sp_delete_targetservergroup

sp_help_targetservergroup

sp_update_targetservergroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addumpdevice
Adds a backup device to Microsoft® SQL Server™.

Syntax

sp_addumpdevice [@devtype =] 'device_type' ,
 [@logicalname =] 'logical_name' ,
 [@physicalname =] 'physical_name'
 [, { [@cntrltype =] controller_type
 | [@devstatus =] 'device_status'
 }
]

Arguments

[@devtype =] 'device_type',

Is the type of backup device. device_type is varchar(20), with no default, and can be one of these values.

Value Description
disk Hard disk file as a backup device.
pipe Named pipe.
tape Any tape devices supported by Microsoft Windows

NT®. If device is tape, noskip is the default.

[@logicalname =] 'logical_name'

Is the logical name of the backup device used in the BACKUP and RESTORE statements. logical_name is sysname, with no default,
and cannot be NULL.

[@physicalname =] 'physical_name'

Is the physical name of the backup device. Physical names must follow the rules for operating-system file names or universal
naming conventions for network devices, and must include a full path. physical_name is nvarchar(260), with no default value,
and cannot be NULL.

When creating a backup device on a remote network location, be sure that the name under which SQL Server was started has
appropriate write capabilities on the remote computer.

If you are adding a tape device, this parameter must be the physical name assigned to the local tape device by Windows NT®, for
example, \\.\TAPE0 for the first tape device on the computer. The tape device must be attached to the server computer; it cannot
be used remotely. Enclose names containing nonalphanumeric characters in quotation marks.

[@cntrltype =] controller_type

Is not required when creating backup devices. It is acceptable to supply this parameter for scripts, but SQL Server ignores it.
controller_type is smallint, with a default of NULL, and can be one of these values.

Value Description
2 Use when device_type is disk.
5 Use when device_type is tape.
6 Use when device_type is pipe.

[@devstatus =] 'device_status'

Is whether ANSI tape labels are read (noskip) or ignored (skip). device_status is varchar(40), with a default value of noskip.

Note Either specify controller_type or device_status, but not both.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_addumpdevice adds a backup device to the master.dbo.sysdevices table. It can then be referred to logically in BACKUP and
RESTORE statements.

Ownership and permissions problems can interfere with the use of disk or file backup devices. Make sure that appropriate file
permissions are given to the account under which SQL Server was started.

SQL Server supports tape backups to tape devices that are supported by Windows NT. For more information about Windows NT-
supported tape devices, see the hardware compatibility list for Windows NT. To view the tape devices available on the computer,
use SQL Server Enterprise Manager.

Use only the recommended tapes for the specific tape drive (as suggested by the drive manufacturer). If you are using DAT drives,
use computer-grade DAT tapes (Digital Data Storage-DDS).

sp_addumpdevice cannot be executed inside a transaction.

Permissions

Only members of the sysadmin and diskadmin fixed server roles can execute this procedure.

Examples

A. Add a disk dump device

This example adds a disk backup device named MYDISKDUMP, with the physical name C:\Dump\Dump1.bak.

USE master
EXEC sp_addumpdevice 'disk', 'mydiskdump', 'c:\dump\dump1.bak'

B. Add a network disk backup device

This example shows a remote disk backup device. The name under which SQL Server was started must have permissions to that
remote file.

USE master
EXEC sp_addumpdevice 'disk', 'networkdevice',
 '\\servername\sharename\path\filename.ext'

C. Add a tape backup device

This example adds the TAPEDUMP1 device with the physical name \\.\Tape0.

USE master
EXEC sp_addumpdevice 'tape', 'tapedump1',
 '\\.\tape0'

See Also

BACKUP

RESTORE

sp_dropdevice

sp_helpdevice

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_targetsvrgrp_member
Adds the specified target server to the specified target server group.

Syntax

sp_add_targetsvrgrp_member [@group_name =] 'group_name' ,
 [@server_name =] 'server_name'

Arguments

[@group_name =] 'group_name'

Is the name of the group. group_name is sysname, with no default.

[@server_name =] 'server_name'

Is the name of the server that should be added to the specified group. server_name is nvarchar(30), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

A target server can be a member of more than one target server group.

Permissions

Only members of the sysadmin fixed server role can execute this procedure.

Examples

This example adds the group Servers Maintaining Customer Information and adds the LONDON1 server to that group.

USE msdb
EXEC sp_add_targetsvrgrp_member 'Servers Maintaining Customer Information', 'LONDON1'

See Also

sp_delete_targetsvrgrp_member

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_adduser
Adds a security account for a new user in the current database. This procedure is included for backward compatibility. Use
sp_grantdbaccess.

Syntax

sp_adduser [@loginame =] 'login'
 [, [@name_in_db =] 'user']
 [, [@grpname =] 'group']

Arguments

[@loginame =] 'login'

Is the name of the user's login. login is sysname, with no default. login must be an existing Microsoft® SQL Server™ login or
Microsoft Windows NT® user.

[@name_in_db =] 'user'

Is the name for the new user. user is sysname, with a default of NULL. If user is not specified, the name of the user defaults to the
login name. Specifying user gives the new user a name in the database different from the login ID on SQL Server.

[@grpname =] 'group'

Is the group or role that the new user automatically becomes a member of. group is sysname, with a default of NULL. group
must be a valid group or role in the current database. Microsoft SQL Server version 7.0 uses roles instead of groups.

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server usernames can contain from 1 to 128 characters, including letters, symbols, and numbers. However, usernames
cannot:

Contain a backslash character (\).

Be NULL, or an empty string ('').

After a user has been added, use the GRANT, DENY, and REVOKE statements to define the permissions controlling the activities
performed by the user.

Use sp_helplogin to display a list of valid login names.

Use sp_helprole to display a list of the valid role names. When specifying a role, the user automatically gains the permissions
that are defined for the role. If a role is not specified, the user gains the permissions granted to the default public role. To add a
user to a role, a value for username must be supplied (username can be the same as login_id.)

To access a database, a login must be granted access by using sp_adduser or sp_grantdbaccess, or the guest security account
must exist in the database.

sp_adduser cannot be executed inside a user-defined transaction.

Permissions

Only the dbo and members of the sysadmin fixed server role can execute sp_adduser.

Examples

A. Add a user

This example adds the user Victoria to the existing fort_mudge role in the current database, using the existing login Victoria.

EXEC sp_adduser 'Victoria', 'Victoria', 'fort_mudge'

B. Add a username with the same login ID

This example adds the default username Margaret to the current database for the login Margaret, which belongs to the default
public role.

EXEC sp_adduser 'Margaret'

C. Add a user who uses a different username

This example adds the Haroldq login to the current database with a username of Harold, which belongs to the fort_mudge role.

EXEC sp_adduser 'Haroldq', 'Harold', 'fort_mudge'

See Also

sp_addrole

sp_dropuser

sp_grantdbaccess

sp_grantlogin

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_altermessage
Alters the state of a sysmessages error.

Syntax

sp_altermessage [@message_id =] message_number
 , [@parameter =] 'write_to_log'
 , [@parameter_value =] 'value'

Arguments

[@message_id =] message_number

Is the sysmessages error or message number to alter. message_number is int, with no default.

[@parameter =] 'write_to_log'

Indicates that the message is written to the Microsoft® Windows NT® application log. write_to_log is sysname, with no default
value. If write_to_log is WITH_LOG, the message is written to the Microsoft Windows NT log when it occurs.

Note If a message is written to the Windows NT application log, it is also written to the Microsoft SQL Server™ error log file.

[@parameter_value =] 'value'

Is whether the error is written to the Windows NT application log. value is varchar(5), with no default. If true, the error is always
written to the Windows NT application log. If false, the error is not always written to the Windows NT application log but can be
written, depending on how the error was raised.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The effect of sp_altermessage with the WITH_LOG option is similar to that of the RAISERROR WITH LOG parameter, except that
sp_altermessage changes the logging behavior of an existing message. If a message has been altered to be WITH_LOG, it is
always written to the Windows NT application log, regardless of how a user invokes the error. Even if RAISERROR is executed
without the WITH LOG option, the error is written to the Windows NT application log.

System messages (such as 605), as well as user messages added by sp_addmessage, can be modified by using
sp_altermessage.

Permissions

Only members of the sysadmin and serveradmin fixed server roles can execute this procedure.

Examples

This example causes existing message 55001 to be logged to the Windows NT application log.

sp_altermessage 55001, 'WITH_LOG', 'true'

See Also

sp_addmessage

sp_dropmessage

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_apply_job_to_targets
Applies a job to one or more target servers or to the target servers belonging to one or more target server groups.

Syntax

sp_apply_job_to_targets [@job_id =] job_id | [@job_name =] 'job_name'
 [, [@target_server_groups =] 'target_server_groups']
 [, [@target_servers =] 'target_servers']
 [, [@operation =] 'operation']

Arguments

[@job_id =] job_id

Is the job identification number of the job to apply to the specified target servers or target server groups. job_id is
uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to apply to the specified the associated target servers or target server groups. job_name is sysname, with a
default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@target_server_groups =] 'target_server_groups'

Is a comma-separated list of target server groups to which the specified job is to be applied. target_server_groups is
nvarchar(1024), with a default of NULL.

[@target_servers =] 'target_servers'

Is a comma-separated list of target servers to which the specified job is to be applied. target_servers is nvarchar(1024), with a
default of NULL.

[@operation =] 'operation'

Is whether the specified job should be applied to or removed from the specified target servers or target server groups. operation
is varchar(7), with a default of APPLY. Valid operations are APPLY and REMOVE.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_apply_job_to_targets provides an easy way to apply (or remove) a job from multiple target servers, and is an alternative to
calling sp_add_jobserver (or sp_delete_jobserver) once for each target server required.

Permissions

Only members of the sysadmin fixed server role can execute sp_apply_job_to_targets.

Examples

This example applies the previously created Backup Customer Information job to all the target servers in the Servers Maintaining
Customer Information group.

USE msdb
EXEC sp_apply_job_to_targets @job_name = 'Backup Customer Information', @target_server_groups = 'Servers
Maintaining Customer Information',
 @operation = 'APPLY'

See Also

sp_add_jobserver

sp_delete_jobserver

sp_remove_job_from_targets

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_approlepassword
 New Information - SQL Server 2000 SP3.

Changes the password of an application role in the current database.

Syntax

sp_approlepassword [@rolename =] 'role'
 , [@newpwd =] 'password'

Arguments

[@rolename =] 'role'

Is the name of the application role. role is sysname, with no default. role must exist in the current database.

[@newpwd =] 'password'

Is the new password for the application role. password is sysname, with no default. The new password is encrypted when stored
in the Microsoft® SQL Server™ system tables. password cannot be NULL.

Security Note Do not use a NULL password. Use a strong password. For more information, see Security Rules.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_approlepassword cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, and the db_securityadmin and db_owner fixed database roles can execute
sp_approlepassword.

Examples

This example sets the password for the PayrollAppRole application role to "B3r12-36".

EXEC sp_approlepassword 'PayrollAppRole', 'B3r12-36'

See Also

Application Security and Application Roles

sp_addapprole

sp_setapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_attach_db
Attaches a database to a server.

Syntax

sp_attach_db [@dbname =] 'dbname'
 , [@filename1 =] 'filename_n' [,...16]

Arguments

[@dbname =] 'dbname'

Is the name of the database to be attached to the server. The name must be unique. dbname is sysname, with a default of NULL.

[@filename1 =] 'filename_n'

Is the physical name, including path, of a database file. filename_n is nvarchar(260), with a default of NULL. There can be up to
16 file names specified. The parameter names start at @filename1 and increment to @filename16. The file name list must
include at least the primary file, which contains the system tables that point to other files in the database. The list must also
include any files that were moved after the database was detached.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_attach_db should only be executed on databases that were previously detached from the database server using an explicit
sp_detach_db operation. If more than 16 files must be specified, use CREATE DATABASE with the FOR ATTACH clause.

If you attach a database to a server other than the server from which the database was detached, and the detached database was
enabled for replication, you should run sp_removedbreplication to remove replication from the database.

Permissions

Only members of the sysadmin and dbcreator fixed server roles can execute this procedure.

Examples

This example attaches two files from pubs to the current server.

EXEC sp_attach_db @dbname = N'pubs',
 @filename1 = N'c:\Program Files\Microsoft SQL Server\MSSQL\Data\pubs.mdf',
 @filename2 = N'c:\Program Files\Microsoft SQL Server\MSSQL\Data\pubs_log.ldf'

See Also

CREATE DATABASE

sp_attach_single_file_db

sp_detach_db

sp_helpfile

sp_removedbreplication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_attach_single_file_db
Attaches a database having only one data file to the current server.

Syntax

sp_attach_single_file_db [@dbname =] 'dbname'
 , [@physname =] 'physical_name'

Arguments

[@dbname =] 'dbname'

Is the name of the database to be attached to the server. dbname is sysname, with a default of NULL.

[@physname =] 'phsyical_name'

Is the physical name, including path, of the database file. physical_name is nvarchar(260), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

When sp_attach_single_file_db attaches the database to the server, it builds a new log file and performs additional cleanup
work to remove replication from the newly attached database.

Use sp_attach_single_file_db only on databases that were previously detached from the server using an explicit sp_detach_db
operation.

Use sp_attach_single_file_db only on databases that have a single log file. Do not use this stored procedure on databases that
have multiple log files.

Permissions

Only members of the sysadmin and dbcreator fixed server roles can execute this procedure.

Examples

This example detaches pubs and then attaches one file from pubs to the current server.

EXEC sp_detach_db @dbname = 'pubs'
EXEC sp_attach_single_file_db @dbname = 'pubs',
 @physname = 'c:\Program Files\Microsoft SQL Server\MSSQL\Data\pubs.mdf'

See Also

sp_attach_db

sp_detach_db

sp_helpfile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_autostats
Displays or changes the automatic UPDATE STATISTICS setting for a specific index and statistics, or for all indexes and statistics for
a given table or indexed view in the current database.

Note In the context of this stored procedure, the term index refers to statistics on the table or view.

Syntax

sp_autostats [@tblname =] 'table_name'
 [, [@flagc =] 'stats_flag']
 [, [@indname =] 'index_name']

Arguments

[@tblname =] 'table_name'

Is the name of the table or view for which to display the automatic UPDATE STATISTICS setting. table_name is nvarchar(776),
with no default. If index_name is supplied, Microsoft SQL Server enables the automatic UPDATE STATISTICS setting for that index.

[@flagc =] 'stats_flag'

Is whether the automatic UPDATE STATISTICS setting for the specified table, view, or index is enabled (ON) or disabled (OFF).
stats_flag is varchar(10), with a default of NULL.

[@indname =] 'index_name'

Is the name of the index for which to enable or disable the automatic UPDATE STATISTICS setting. index_name is sysname, with a
default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

If stats_flag is specified, this procedure reports the action that was taken but returns no result set.

If stats_flag is not specified, sp_autostats returns this is the result set.

Column name Data type Description
Index Name varchar(60) Name of the index.
AUTOSTATS varchar(3) Current automatic UPDATE STATISTICS

setting: OFF or ON.
Last Updated datetime Date the statistics was last updated.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
execute sp_autostats.

Examples

A. Display the current status of all indexes for a table

This example displays the current statistics status of all indexes on the authors table.

USE pubs
EXEC sp_autostats authors

B. Enable automatic statistics for all indexes of a table

This example enables the automatic statistics setting for all indexes of the authors table.

USE pubs
EXEC sp_autostats authors, 'ON'

C. Disable automatic statistics for a specific index

This example disables the automatic statistics setting for the au_id index of the authors table.

USE pubs
EXEC sp_autostats authors, 'OFF', au_id

See Also

CREATE INDEX

CREATE STATISTICS

DBCC SHOW_STATISTICS

DROP STATISTICS

sp_createstats

sp_dboption

System Stored Procedures

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

sp_bindefault
Binds a default to a column or to a user-defined data type.

Syntax

sp_bindefault [@defname =] 'default' ,
 [@objname =] 'object_name'
 [, [@futureonly =] 'futureonly_flag']

Arguments

[@defname =] 'default'

Is the name of the default created by the CREATE DEFAULT statement. default is nvarchar(776), with no default.

[@objname =] 'object_name'

Is the name of table and column or the user-defined data type to which the default is to be bound. object_name is nvarchar(517),
with no default. If object_name is not of the form table.column, it is assumed to be a user-defined data type. By default, existing
columns of the user-defined data type inherit default unless a default has been bound directly to the column. A default cannot be
bound to a column of timestamp data type, a column with the IDENTITY property, or a column that already has a DEFAULT
constraint.

Note object_name can contain the [and] characters as delimited identifier characters. For more information, see Delimited
Identifiers.

[@futureonly =] 'futureonly_flag'

Is used only when binding a default to a user-defined data type. futureonly_flag is varchar(15), with a default of NULL. This
parameter when set to futureonly prevents existing columns of that data type from inheriting the new default. It is never used
when binding a default to a column. If futureonly_flag is NULL, the new default is bound to any columns of the user-defined data
type that currently have no default or that are using the existing default of the user-defined data type.

Return Code Values

0 (success) or 1 (failure)

Remarks

You can bind a new default to a column (although using the DEFAULT constraint is preferred) or to a user-defined data type with
sp_bindefault without unbinding an existing default. The old default is overridden. You cannot bind a default to a Microsoft®
SQL Server™ data type. If the default is not compatible with the column to which you have bound it, SQL Server returns an error
message when it tries to insert the default value (not when you bind it).

Existing columns of the user-defined data type inherit the new default unless they have a default bound directly to them or unless
futureonly_flag is specified as futureonly. New columns of the user-defined data type always inherit the default.

When you bind a default to a column, related information is added to the syscolumns table. When you bind a default to a user-
defined data type, related information is added to the systypes table.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
execute sp_bindefault.

Examples

A. Bind a default to a column

Assuming that a default named today has been defined in the current database by the CREATE DEFAULT statement, this example
binds the default to the hire date column of the employees table. Whenever a row is added to the employees table and data
for the hire date column is not supplied, the column gets the value of the default today.

USE master
EXEC sp_bindefault 'today', 'employees.[hire date]'

B. Bind a default to a user-defined data type

Assuming that a default named def_ssn and a user-defined data type named ssn exist, this example binds the default def_ssn to
the ssn user-defined data type. The default is inherited by all columns that are assigned the user-defined data type ssn when a
table is created. Existing columns of type ssn also inherit the default def_ssn unless futureonly is specified for futureonly_flag
value, or unless the column has a default bound directly to it. Defaults bound to columns always take precedence over those
bound to data types.

USE master
EXEC sp_bindefault 'def_ssn', 'ssn'

C. Use the futureonly_flag

This example binds the default def_ssn to the user-defined data type ssn. Because futureonly is specified, no existing columns of
type ssn are affected.

USE master
EXEC sp_bindefault 'def_ssn', 'ssn', 'futureonly'

D. Use delimited identifiers

This example shows the use of delimited identifiers in object_name.

USE master
CREATE TABLE [t.1] (c1 int)
-- Notice the period as part of the table name.
EXEC sp_bindefault 'default1', '[t.1].c1'
-- The object contains two periods;
-- the first is part of the table name,
-- and the second distinguishes the table name from the column name.

See Also

CREATE DEFAULT

DROP DEFAULT

sp_unbindefault

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_bindrule
Binds a rule to a column or to a user-defined data type.

Syntax

sp_bindrule [@rulename =] 'rule' ,
 [@objname =] 'object_name'
 [, [@futureonly =] 'futureonly_flag']

Arguments

[@rulename =] 'rule'

Is the name of a rule created by the CREATE RULE statement. rule is nvarchar(776), with no default.

[@objname =] 'object_name'

Is the table and column, or the user-defined data type to which the rule is to be bound. object_name is nvarchar(517), with no
default. If object_name is not of the form table.column, it is assumed to be a user-defined data type. By default, existing columns
of the user-defined data type inherit rule unless a rule has been bound directly to the column.

Note object_name can contain the [and] characters as delimited identifier characters. For more information, see Delimited
Identifiers.

[@futureonly =] 'futureonly_flag'

Is used only when binding a rule to a user-defined data type. future_only_flag is varchar(15), with a default of NULL. This
parameter when set to futureonly prevents existing columns of a user-defined data type from inheriting the new rule. If
futureonly_flag is NULL, the new rule is bound to any columns of the user-defined data type that currently have no rule or that
are using the existing rule of the user-defined data type.

Return Code Values

0 (success) or 1 (failure)

Remarks

You can bind a new rule to a column (although using a CHECK constraint is preferred) or to a user-defined data type with
sp_bindrule without unbinding an existing rule. The old rule is overridden. If a rule is bound to a column with an existing CHECK
constraint, all restrictions are evaluated. You cannot bind a rule to a Microsoft® SQL Server™ data type.

The rule is enforced when an INSERT statement is attempted, not at binding. You can bind a character rule to a column of
numeric data type, although such an INSERT is illegal.

Existing columns of the user-defined data type inherit the new rule unless futureonly_flag is specified as futureonly. New
columns defined with the user-defined data type always inherit the rule. However, if the ALTER COLUMN clause of an ALTER
TABLE statement changes the data type of a column to a user-defined data type bound to a rule, the rule bound to the data type is
not inherited by the column. The rule must be specifically bound to the column using sp_bindrule.

When you bind a rule to a column, related information is added to the syscolumns table. When you bind a rule to a user-defined
data type, related information is added to the systypes table.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
execute sp_bindrule.

Examples

A. Bind a ru le to a column

Assuming that a rule named today has been created in the current database by the CREATE RULE statement, this example binds
the rule to the hire date column of the employees table. When a row is added to employees, the data for the hire date column
is checked against the today rule.

USE master
EXEC sp_bindrule 'today', 'employees.[hire date]'

B. Bind a ru le to a user-defined data type

Assuming the existence of a rule named rule_ssn and a user-defined data type named ssn, this example binds rule_ssn to ssn. In
a CREATE TABLE statement, columns of type ssn inherit the rule_ssn rule. Existing columns of type ssn also inherit the rule_ssn
rule unless futureonly is specified for futureonly_flag, or ssn has a rule bound directly to it. Rules bound to columns always take
precedence over those bound to data types.

USE master
EXEC sp_bindrule 'rule_ssn', 'ssn'

C. Use the futureonly_flag

This example binds the rule_ssn rule to the user-defined data type ssn. Because futureonly is specified, no existing columns of
type ssn are affected.

USE master
EXEC sp_bindrule 'rule_ssn', 'ssn', 'futureonly'

D. Use delimited identifiers

This example shows the use of delimited identifiers in object_name.

USE master
CREATE TABLE [t.2] (c1 int)
-- Notice the period as part of the table name.
EXEC sp_binderule rule1, '[t.2].c1'
-- The object contains two periods;
-- the first is part of the table name
-- and the second distinguishes the table name from the column name.

See Also

CREATE RULE

DROP RULE

sp_unbindrule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_bindsession
Binds or unbinds a connection to other transactions in the same instance of Microsoft SQL Server 2000. A bound connection
allows two or more connections to participate in the same transaction and share the transaction until a ROLLBACK TRANSACTION
or COMMIT TRANSACTION is issued.

For more information about bound connections, see Using Bound Connections.

Syntax

sp_bindsession { 'bind_token' | NULL }

Arguments

'bind_token'

Is the token that identifies the transaction originally obtained by using sp_getbindtoken or the Open Data Services
srv_getbindtoken function. bind_token is varchar(8000).

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_bindsession uses a bind token to bind two or more existing client connections. These client connections must be on the same
instance of SQL Server 2000 from which the binding token was obtained. A connection is a client executing a command. Bound
database connections share a transaction and lock space.

A bind token obtained from one instance of SQL Server 2000 cannot be used for a client connection that is on another instance
even for DTC transactions. A bind token is valid only locally inside each SQL Server and cannot be shared across multiple
instances of SQL Server. For a client connection on another instance of SQL Server, you must obtain a different bind token by
executing sp_getbindtoken.

sp_bindsession will fail with an error if it uses a token that is not active.

Unbind from a session either by omitting bind_token or by passing NULL in bind_token.

sp_bindsession can be executed through ODBC, DB-LIBRARY functions, or the isql utility.

Important Prior to executing sp_bindsession, you must obtain a bind token by running sp_getbindtoken or the Open Data
Services srv_getbindtoken function.

To obtain and pass a bind token, run sp_getbindtoken prior to executing sp_bindsession for sharing the same transaction. If
you obtain a bind token, sp_bindsession runs correctly.

Permissions

Execute permissions default to public role.

Examples

This example binds the specified bind token to the current session.

Note The bind token shown in the example was obtained by executing sp_getbindtoken prior to executing sp_bindsession.

USE master
EXEC sp_bindsession 'BP9---5---->KB?-V'<>1E:H-7U-]ANZ'

See Also

sp_getbindtoken

srv_getbindtoken

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_can_tlog_be_applied
Verify that a transaction log can be applied to a database.

Syntax

sp_can_tlog_be_applied [@backup_file_name =] 'backup_file_name'
 , [@database_name =] 'database_name'
 , [@result =] result OUTPUT

Arguments

[@backup_file_name =] 'backup_file_name'

Is the name of the backup file. backup_file_name is nvarchar(128).

[@database_name =] 'database_name'

Is the name of the database. database_name is sysname.

[@result =] result OUTPUT

Indicates whether the transaction log can be applied to the database. The value one (1) means the log can be applied; zero (0)
means it cannot. result is bit.

Return Code Values

0 (success) or 1 (failure)

Permissions

Only members of the sysadmin fixed server role can execute sp_can_tlog_be_applied.

Transact-SQL Reference (SQL Server 2000)

sp_catalogs
Returns the list of catalogs in the specified linked server, which is equivalent to databases in Microsoft® SQL Server™.

Syntax

sp_catalogs [@server_name =] 'linked_svr'

Arguments

[@server_name =] 'linked_svr'

Is the name of a linked server. linked_svr is sysname, with no default.

Result Sets

Column name Data type Description
catalog_name nvarchar(128) Name of the catalog
Description nvarchar(4000) Description of the catalog

Permissions

Execute permissions default to the public role.

Examples

This example returns catalog information for the linked server named OLE DB ODBC Linked Server #3.

Note For sp_catalogs to provide useful information, the OLE DB ODBC Linked Server #3 must already exist.

USE master
EXEC sp_catalogs 'OLE DB ODBC Linked Server #3'

See Also

sp_addlinkedserver

sp_columns_ex

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_certify_removable
Verifies that a database is configured properly for distribution on removable media and reports any problems to the user.

Syntax

sp_certify_removable [@dbname =] 'dbname'
 [, [@autofix =] 'auto']

Arguments

[@dbname =] 'dbname'

Specifies the database to be verified. dbname is sysname.

[@autofix =] 'auto'

Gives ownership of the database and all database objects to the system administrator, and drops any user-created database users
and nondefault permissions. auto is nvarchar(4), with a default of NULL. auto has the value auto.

Return Code Values

0 (success) or 1 (failure)

Remarks

If the database is configured properly, sp_certify_removable sets the database offline so the files can be copied. It updates
statistics on all tables and reports any ownership or user problems. It also marks the data filegroups as read-only so these files
can be copied to read-only media.

The system administrator must be the owner of the database and all database objects. The system administrator is a known user
that exists on all servers running Microsoft® SQL Server™ and can be counted on to exist when the database is later distributed
and installed.

If you run sp_certify_removable without the auto value and it returns information indicating that the system administrator is
not the database owner, that user-created users exist, that the system administrator does not own all objects in the database, or
that nondefault permissions have been granted, you can correct those conditions in two ways:

Use SQL Server tools and procedures, and then run sp_certify_removable again.

Simply run sp_certify_removable with the auto value.

Note that this stored procedure only checks for users and user permissions. It is permissible to add groups to the database and to
grant permissions to those groups. For more information, see GRANT.

This procedure writes verification information to a text file that has the following file name format:

CertifyR_[dbname].txt

Note The permissions on xp_cmdshell must permit this file write.

Permission

EXECUTE permissions are restricted to members of the sysadmin fixed server role.

Examples

This example certifies that the inventory database is ready to be removed.

sp_certify_removable inventory, AUTO

See Also

sp_attach_db

sp_create_removable

sp_dboption

sp_dbremove

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_change_monitor_role
Performs a role change on the log shipping monitor, setting the current secondary database a primary database.

Syntax

sp_change_monitor_role [@primary_server =] 'primary_server'
 , [@secondary_server =] 'secondary_server'
 , [@database =] 'secondary_database'
 , [@new_source =] 'new_tlog_source_directory'

Arguments

[@primary_server =] 'primary_server'

Is the name of the primary server being replaced. primary_server is sysname, with no default.

[@secondary_server =] 'secondary_server'

Is the name of the secondary server being converted to a primary. secondary_server is sysname, with no default.

[@database =] 'secondary_database'

Is the name of the secondary database being converted to a primary. secondary_database is sysname, with no default.

[@new_source =] 'new_tlog_source_directory'

Is the path to the directory where the new primary server will dump its transaction logs. new_tlog_source_directory is
nvarchar(128), with no default.

Return Code Values

None

Result Sets

None

Remarks

sp_change_monitor_role must be run on the instance of SQL Server marked as the log shipping monitor.

In order to complete a log shipping role change, you must perform several steps in addition to running this procedure. For more
information, see How to set up and perform a log shipping role change (Transact-SQL).

Permissions

Only members of the sysadmin fixed server role can execute sp_change_monitor_role.

Examples

This example shows how to change the monitor to reflect a new primary database. Database 'db2' becomes the new primary
database, and will dump its transaction logs to directory '\\newprisrv1\tlogs\'.

EXEC sp_change_monitor_role @primary_server = 'srv1',
 @secondary_server = 'srv2'
 @database = 'db2',
 @new_source = '\\newprisrv1\tlogs\'

See Also

sp_change_primary_role

sp_change_secondary_role

sp_resolve_logins

Transact-SQL Reference (SQL Server 2000)

sp_change_primary_role
Removes the primary database from a log shipping plan.

Syntax

sp_change_primary_role [@db_name =] 'db_name'
 , [@backup_log =] backup_log
 , [@terminate =] terminate
 , [@final_state =] final_state
 , [@access_level =] access_level

Arguments

[@db_name =] 'db_name'

Specifies the name of the primary database to be removed. db_name is sysname, with no default.

[@backup_log =] backup_log

Backs up the tail end of the primary database transaction log. backup_log is bit, with a default of 1.

[@terminate =] terminate

Specifies that all pending transactions be immediately rolled back, and the primary database placed in single user mode for the
duration of this stored procedure. terminate is bit, with a default of 0.

[@final_state =] final_state

Specifies the recovery state of the database after completion of this stored procedure. final_state is smallint, with a default of 1,
and can be any of these values.

Value Description
1 RECOVERY
2 NO RECOVERY
3 STANDBY

For more information about the meaning of these options, see RESTORE.

[@access_level =] access_level

Specifies the access level of the database after completion of this stored procedure. access_level is smallint, with a default of 1,
and can be any of these values.

Value Description
1 MULTI_USER
2 RESTRICTED_USER
3 SINGLE_USER

For more information about the meaning of these options, see ALTER DATABASE.

Return Code Values

1 (failure) or none (success)

Result Sets

None

Remarks

sp_change_primary_role must be run on the instance of SQL Server marked as the current primary server.

In order to complete a log shipping role change, you must perform several steps in addition to running this procedure. For more

information, see How to set up and perform a log shipping role change (Transact-SQL).

The database transaction logs are backed up before removing it from the log shipping plan.

Permissions

Only members of the sysadmin fixed server role can execute sp_change_primary_role.

Examples

This example shows how to remove the primary database from a log shipping plan.

EXEC sp_change_primary_role @db_name = 'db1',
 @job_id = '6F9619FF-8B86-D011-B42D-00C04FC964FF',

See Also

sp_change_monitor_role

sp_change_secondary_role

sp_resolve_logins

Transact-SQL Reference (SQL Server 2000)

sp_change_secondary_role
Converts the secondary database of a log shipping plan into a primary database.

Syntax

sp_change_secondary_role [@db_name =] 'db_name'
 , [@do_load =] do_load
 , [@force_load =] force_load
 , [@final_state =] final_state
 , [@access_level =] access_level
 , [@terminate =] terminate
 , [@keep_replication =] keep_replication
 , [@stopat =] stop_at_time

Arguments

[@db_name =] db_name

Specifies the name of the secondary database. db_name is sysname, with no default.

[@do_load =] do_load

Specifies that any pending transaction logs be copied and restored before converting db_name to a primary database. do_load is
bit, with a default of 1.

[@force_load =] force_load

Specifies that the –ForceLoad option be used in restoring any pending transaction logs to the secondary database. This option is
ignored unless do_load is set to 1. force_load is bit, with a default of 1.

[@final_state =] final_state

Specifies the recovery state of the database after completion of this stored procedure. final_state is smallint, with a default of 1,
and can be any of these values.

Value Description
1 RECOVERY
2 NO RECOVERY
3 STANDBY

For more information about the meaning of these options, see RESTORE.

[@access_level =] access_level

Specifies the access level of the database after completion of this stored procedure. access_level is smallint, with a default of 1,
and can be any of these values.

Value Description
1 MULTI_USER
2 RESTRICTED_USER
3 SINGLE_USER

For more information about the meaning of these options, see ALTER DATABASE.

[@terminate =] terminate

Specifies that all pending transactions be immediately rolled back, and the secondary database placed in single user mode for the
duration of this stored procedure. terminate is bit, with a default of 1.

[@keep_replication =] keep_replication

Specifies that replication settings be preserved when restoring any pending transaction logs on the secondary database. This
option is ignored unless do_load is set to 1. keep_replication is bit, with a default of 0.

[@stopat =] stop_at_time

Specifies that when applying any pending transaction logs, the secondary database be restored to the state it was in as of the
specified date and time. This option is ignored unless do_load is set to 1. stop_at_time is datetime, with a default of NULL.

Return Code Values

0 (success) or –1 (failure)

Result Sets

None

Remarks

sp_change_secondary_role must be run on the instance of SQL Server marked as the current primary server.

In order to complete a log shipping role change, you must perform several steps in addition to running this procedure. For more
information, see How to set up and perform a log shipping role change (Transact-SQL).

Permissions

Only members of the sysadmin fixed server role can execute sp_change_secondary_role.

Examples

This example shows how to convert the secondary database to a primary database. Previously shipped transaction logs are
applied on the secondary database before it is converted.

EXEC sp_change_secondary_role @db_name = 'db2',
 @do_load = 1,
 @final_state = 1,
 @access_level = 3

See Also

sp_change_monitor_role

sp_change_primary_role

sp_resolve_logins

Transact-SQL Reference (SQL Server 2000)

sp_change_users_login
 New Information - SQL Server 2000 SP3.

Maps an existing user in a database to a Microsoft® SQL Server™ login.

Syntax

sp_change_users_login [@Action =] 'action'
 [, [@UserNamePattern =] 'user']
 [, [@LoginName =] 'login']
 [, [@Password =] 'password']

Arguments

[@Action =] 'action'

Describes the action to be performed by the procedure. action is varchar(10), and can be one of these values.

Value Description
Auto_Fix Links a user entry in the sysusers table in the current database

to a login of the same name in sysxlogins. You should check
the result from the Auto_Fix statement to confirm that the
correct link is in fact made. Avoid using Auto_Fix in security-
sensitive situations.

When using Auto_Fix, you must specify user and password;
login must be NULL. user must be a valid user in the current
database.

Report Lists the users and corresponding security identifiers (SID) in
the current database that are not linked to any login.

user, login, and password must be NULL or not specified.

Update_One Links the specified user in the current database to login. login
must already exist. user and login must be specified. password
must be NULL or not specified.

[@UserNamePattern =] 'user'

Is the name of a SQL Server user in the current database. user is sysname, with a default of NULL.

[@LoginName =] 'login'

Is the name of a SQL Server login. login is sysname, with a default of NULL.

[@Password =] 'password'

Is the password assigned to a new SQL Server login created by Auto_Fix. If a matching login already exists, the user and login are
mapped and password is ignored. If a matching login does not exist, sp_change_users_login creates a new SQL Server login and
assigns password as the password for the new login. password is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
UserName sysname Login name.
UserSID varbinary(85) Login security identifier.

Remarks

Use this procedure to link the security account for a user in the current database with a login. If the login for a user has changed,
use sp_change_users_login to link the user to the new login without losing the user's permissions.

sp_change_users_login can be used only for SQL Server logins; it cannot be used with Windows logins.

login cannot be sa, and user cannot be the dbo, guest, or INFORMATION_SCHEMA users.

sp_change_users_login cannot be executed within a user-defined transaction.

Permissions

Any member of the public role can execute sp_change_users_login with the Report option. Only members of the sysadmin
fixed server role can specify the Auto_Fix option. Only members of the sysadmin or db_owner roles can specify the
Update_One option.

Examples

A. Show a report of the current user to login mappings

This example produces a report of the users in the current database and their security identifiers.

EXEC sp_change_users_login 'Report'

B. Change the login for a user

This example changes the link between user Mary in the pubs database and the existing login, to the new login NewMary
(added with sp_addlogin).

--Add the new login.
USE master
go
EXEC sp_addlogin 'NewMary'
go

--Change the user account to link with the 'NewMary' login.
USE pubs
go
EXEC sp_change_users_login 'Update_One', 'Mary', 'NewMary'

C. Automatically map a user to a login , creating a new login if necessary

This example shows how to use the Auto_Fix option to map an existing user to a login with the same name, or create the SQL
Server login Mary with the password B3r12-36 if the login Mary does not exist.

USE pubs
go
EXEC sp_change_users_login 'Auto_Fix', 'Mary', NULL, 'B3r12-36'
go

See Also

sp_addlogin

sp_adduser

sp_helplogins

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changedbowner
 New Information - SQL Server 2000 SP3.

Changes the owner of the current database.

Syntax

sp_changedbowner [@loginame =] 'login'
 [, [@map =] remap_alias_flag]

Arguments

[@loginame =] 'login'

Is the login ID of the new owner of the current database. login is sysname, with no default. login must be an already existing
Microsoft® SQL Server™ login or Microsoft Windows NT® user. login cannot become the owner of the current database if it
already has access to the database through an existing alias or user security account within the database. To avoid this, drop the
alias or user within the current database first.

[@map =] remap_alias_flag

Is the value true or false, which indicates whether existing aliases to the old database owner (dbo) are mapped to the new owner
of the current database or dropped. remap_alias_flag is varchar(5), with a default of NULL, indicating that any existing aliases to
the old dbo are mapped to the new owner of the current database. false indicates that existing aliases to the old database owner
are dropped.

Return Code Values

0 (success) or 1 (failure)

Remarks

After sp_changedbowner is executed, the new owner is known as the dbo user inside the database. The dbo has implied
permissions to perform all activities in the database.

The owner of the master, model, or tempdb system databases cannot be changed.

To display a list of the valid login values, execute the sp_helplogins stored procedure.

Executing sp_changedbowner with only the login parameter changes database ownership to login and maps the aliases of users
who were previously aliased to dbo to the new database owner.

Permissions

Only members of the sysadmin fixed server role can execute sp_changedbowner.

Examples

This example makes the user Albert the owner of the current database and maps existing aliases to the old database owner to
Albert.

EXEC sp_changedbowner 'Albert'

See Also

CREATE DATABASE

sp_dropalias

sp_dropuser

sp_helpdb

sp_helplogins

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changegroup
Changes the role membership for the security account of a user in the current database. This procedure is provided for backward
compatibility. Microsoft® SQL Server™ version 7.0 uses roles instead of groups. Use sp_addrolemember instead.

Syntax

sp_changegroup [@grpname =] 'role'
 , [@username =] 'user'

Arguments

[@grpname =] 'role'

Is the role to which the user is added. role is sysname, with no default. role must exist in the current database.

[@username =] 'user'

Is the user to add to the role. user is sysname, with no default. The user must already exist in the current database. When
specifying Windows NT users, specify the name the Windows NT user is known by in the database (added using
sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

Roles provide a mechanism for managing the permissions applied to the members of the role. When adding a user to a role, the
user gains the permissions defined for the role.

When sp_changegroup is executed, the security account for user is added as a member of role, and removed from all other
roles. sp_addrolemember and sp_droprolemember can be used to change role membership in a single role without affecting
membership in other roles.

New database users can be added to roles at the same time they are given access to the database with sp_adduser.

Every user is a member of the default role public, if not explicitly added to some other role by sp_addrolemember.

sp_changegroup cannot be executed within a user-defined transaction.

Permissions

Members of the sysadmin fixed server role, and the db_owner and db_securityadmin fixed database roles can execute
sp_changegroup for any role in the database.

Role owners can execute sp_changegroup. The role owner must own both the new role and the current role of the user.

Examples

This example makes the user Albert a member of the developers role.

EXEC sp_changegroup 'developers', 'Albert'

See Also

sp_addrole

sp_addrolemember

sp_adduser

sp_dropgroup

sp_helpgroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changeobjectowner
 New Information - SQL Server 2000 SP3.

Changes the owner of an object in the current database.

Syntax

sp_changeobjectowner [@objname =] 'object' , [@newowner =] 'owner'

Arguments

[@objname =] 'object'

Is the name of an existing table, view, user-defined function, or stored procedure in the current database. object is nvarchar(517),
with no default. object can be qualified with the existing-object owner, in the form existing_owner.object.

[@newowner =] 'owner'

Is the name of the security account that will be the new owner of the object. owner is sysname, with no default. owner must be a
valid Microsoft® SQL Server™ user or role, or Microsoft Windows NT® user or group in the current database. When specifying
Windows NT users or groups, specify the name the Windows NT user or group is known by in the database (added using
sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

The owner of an object (or the members of the group or role owning the object) has special permissions for the object. Object
owners can execute any of the Transact-SQL statements related to the object (for example, INSERT, UPDATE, DELETE, SELECT, or
EXECUTE) and can also manage the permissions for the object.

Use sp_changeobjectowner to change the owner of an object if the security account that owns the object has to be dropped but
the object must be retained. This procedure removes all existing permissions from the object. You will need to reapply any
permissions you want to keep after running sp_changeobjectowner.

For this reason, it is recommended that you script out existing permissions before running sp_changeobjectowner. Once
ownership of the object has been changed, you may use the script to reapply permissions. You will need to modify the object
owner in the permissions script before running. For more information about database scripting, see Documenting and Scripting
Databases.

Use sp_changedbowner to change the owner of a database.

Permissions

Only members of sysadmin fixed server role, the db_owner fixed database role, or a member of both the db_ddladmin and
db_securityadmin fixed database roles can execute sp_changeobjectowner.

Examples

This example changes the owner of the authors table to Corporate\GeorgeW.

EXEC sp_changeobjectowner 'authors', 'Corporate\GeorgeW'

See Also

CREATE TABLE

sp_changedbowner

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_column_privileges
Returns column privilege information for a single table in the current environment.

Syntax

sp_column_privileges [@table_name =] 'table_name'
 [, [@table_owner =] 'table_owner']
 [, [@table_qualifier =] 'table_qualifier']
 [, [@column_name =] 'column']

Arguments

[@table_name =] 'table_name'

Is the table used to return catalog information. table_name is sysname, with no default. Wildcard pattern matching is not
supported.

[@table_owner =] 'table_owner'

Is the owner of the table used to return catalog information. table_owner is sysname, with a default of NULL. Wildcard pattern
matching is not supported. If table_owner is not specified, the default table visibility rules of the underlying database
management system (DBMS) apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, that table's columns are returned. If
table_owner is not specified and the current user does not own a table with the specified table_name, sp_column privileges
looks for a table with the specified table_name owned by the database owner. If one exists, that table's columns are returned.

[@table_qualifier =] 'table_qualifier'

Is the name of the table qualifier. table_qualifier is sysname, with a default of NULL. Various DBMS products support three-part
naming for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it
represents the server name of the table's database environment.

[@column_name =] 'column'

Is a single column used when only one column of catalog information is being obtained. column is nvarchar(384), with a default
of NULL. If column is not specified, all columns are returned. In SQL Server, column represents the column name as listed in the
syscolumns table. column can include wildcard characters using wildcard matching patterns of the underlying DBMS. For
maximum interoperability, the gateway client should assume only SQL-92 standard pattern matching (the % and _ wildcard
characters).

Result Sets

sp_column_privileges is equivalent to SQLColumnPrivileges in ODBC. The results returned are ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME, and PRIVILEGE.

Column name Data type Description
TABLE_QUALIFIER sysname Table qualifier name. This field can be NULL.
TABLE_OWNER sysname Table owner name. This field always returns a

value.
TABLE_NAME sysname Table name. This field always returns a value.
COLUMN_NAME sysname Column name, for each column of the

TABLE_NAME returned. This field always
returns a value.

GRANTOR sysname Database username that has granted
permissions on this COLUMN_NAME to the
listed GRANTEE. In SQL Server, this column is
always the same as the TABLE_OWNER. This
field always returns a value.

The GRANTOR column can be either the
database owner (TABLE_OWNER) or a user
to whom the database owner granted
permissions by using the WITH GRANT
OPTION clause in the GRANT statement.

GRANTEE sysname Database username that has been granted
permissions on this COLUMN_NAME by the
listed GRANTOR. In SQL Server, this column
always includes a database user from the
sysusers table. This field always returns a
value.

PRIVILEGE varchar(32) One of the available column permissions.
Column permissions can be one of the
following values (or other values supported
by the data source when implementation is
defined):

SELECT = GRANTEE can retrieve data for the
columns.

INSERT = GRANTEE can provide data for this
column when new rows are inserted (by the
GRANTEE) into the table.

UPDATE = GRANTEE can modify existing
data in the column.

REFERENCES = GRANTEE can reference a
column in a foreign table in a primary
key/foreign key relationship. Primary
key/foreign key relationships are defined with
table constraints.

IS_GRANTABLE varchar(3) Indicates whether the GRANTEE is permitted
to grant permissions to other users (often
referred to as "grant with grant" permission).
Can be YES, NO, or NULL. An unknown (or
NULL) value refers to a data source for which
"grant with grant" is not applicable.

Remarks

With SQL Server, permissions are given with the GRANT statement and taken away by the REVOKE statement.

Permissions

Execute permission defaults to public role.

Examples

This example returns column privilege information for a table.

EXEC sp_column_privileges Employees

See Also

Distributed Queries

GRANT

REVOKE

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_column_privileges_ex
Returns column privileges for the specified table on the specified linked server.

Syntax

sp_column_privileges_ex [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_catalog']
 [, [@column_name =] 'column_name']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server for which to return information. table_server is sysname, with no default.

[@table_name =] 'table_name'

Is the name of the table that contains the specified column. table_name is sysname, with a default of NULL.

[@table_schema =] 'table_schema'

Is the table schema. table_schema is sysname, with a default of NULL.

[@table_catalog =] 'table_catalog'

Is the name of the database in which the specified table_name resides. table_catalog is sysname, with a default of NULL.

[@column_name =] 'column_name'

Is the name of the column for which to provide privilege information. column_name is sysname, with a default of NULL (all
common).

Result Sets

This table show the result set columns. The results returned are ordered by TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME,
COLUMN_NAME, and PRIVILEGE.

Column name Data type Description
TABLE_CAT sysname Table qualifier name. Various DBMS products

support three-part naming for tables
(qualifier.owner.name). In Microsoft® SQL
Server™, this column represents the database
name. In some products, it represents the server
name of the table's database environment. This
field can be NULL.

TABLE_SCHEM sysname Table owner name. In SQL Server, this column
represents the name of the database user who
created the table. This field always returns a
value.

TABLE_NAME sysname Table name. This field always returns a value.
COLUMN_NAME sysname Column name, for each column of the

TABLE_NAME returned. This field always
returns a value.

GRANTOR sysname Database username that has granted
permissions on this COLUMN_NAME to the
listed GRANTEE. In SQL Server, this column is
always the same as the TABLE_OWNER. This
field always returns a value.

The GRANTOR column can be either the
database owner (TABLE_OWNER) or someone
to whom the database owner granted
permissions by using the WITH GRANT OPTION
clause in the GRANT statement.

GRANTEE sysname Database username who has been granted
permissions on this COLUMN_NAME by the
listed GRANTOR. This field always returns a
value.

PRIVILEGE varchar(32) One of the available column permissions.
Column permissions can be one of the following
values (or other values supported by the data
source when implementation is defined):

SELECT = GRANTEE can retrieve data for the
columns.
INSERT = GRANTEE can provide data for this
column when new rows are inserted (by the
GRANTEE) into the table.
UPDATE = GRANTEE can modify existing data
in the column.
REFERENCES = GRANTEE can reference a
column in a foreign table in a primary
key/foreign key relationship. Primary
key/foreign key relationships are defined with
table constraints.

IS_GRANTABLE varchar(3) Indicates whether the GRANTEE is permitted to
grant permissions to other users (often referred
to as "grant with grant" permission). Can be YES,
NO, or NULL. An unknown (or NULL) value
refers to a data source where "grant with grant"
is not applicable.

Permissions

Execute permission defaults to the public role.

Examples

This example returns column privilege information for a table on the specified linked server.

EXEC sp_column_privileges_ex @table_server = 'Linked_Server',
 @table_name = 'Customers', @table_catalog = 'Northwind'

See Also

sp_table_privileges_ex

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_columns
 Topic last updated -- July 2003

Returns column information for the specified tables or views that can be queried in the current environment.

Syntax

sp_columns [@table_name =] object
 [, [@table_owner =] owner]
 [, [@table_qualifier =] qualifier]
 [, [@column_name =] column]
 [, [@ODBCVer =] ODBCVer]

Arguments

[@table_name =] object

Is the name of the table or view used to return catalog information. object_name is nvarchar(384), with no default. Wildcard
pattern matching is supported.

[@table_owner =] owner

Is the object owner of the table or view used to return catalog information. owner is nvarchar(384), with a default of NULL.
Wildcard pattern matching is supported. If owner is not specified, the default table or view visibility rules of the underlying DBMS
apply.

In Microsoft® SQL Server™, if the current user owns a table or view with the specified name, that table's columns are returned. If
owner is not specified and the current user does not own a table or view with the specified object, sp_columns looks for a table
or view with the specified object owned by the database owner. If one exists, that table's columns are returned.

[@table_qualifier =] qualifier

Is the name of the table or view qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part
naming for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it
represents the server name of the table's database environment.

[@column_name =] column

Is a single column and is used when only one column of catalog information is wanted. column is nvarchar(384), with a default
of NULL. If column is not specified, all columns are returned. In SQL Server, column represents the column name as listed in the
syscolumns table. Wildcard pattern matching is supported. For maximum interoperability, the gateway client should assume only
SQL-92 standard pattern matching (the % and _ wildcard characters).

[@ODBCVer =] ODBCVer

Is the version of ODBC being used. ODBCVer is int, with a default of 2, indicating ODBC Version 2. Valid values are 2 or 3. Refer to
the ODBC SQLColumns specification for the behavior differences between versions 2 and 3.

Return Code Values

None

Result Sets

The sp_columns catalog stored procedure is equivalent to SQLColumns in ODBC. The results returned are ordered by
TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME.

Column name Data type Description
TABLE_QUALIFIER sysname Table or view qualifier name. This field

can be NULL.
TABLE_OWNER sysname Table or view owner name. This field

always returns a value.
TABLE_NAME sysname Table or view name. This field always

returns a value.

COLUMN_NAME sysname Column name, for each column of the
TABLE_NAME returned. This field
always returns a value.

DATA_TYPE smallint Integer code for ODBC data type. If this is
a data type that cannot be mapped to an
ODBC type, it is NULL. The native data
type name is returned in the
TYPE_NAME column.

TYPE_NAME varchar(13) String representing a data type. The
underlying DBMS presents this data type
name.

PRECISION int Number of significant digits. The return
value for the PRECISION column is in
base 10.

LENGTH int Transfer size of the data.1
SCALE smallint Number of digits to the right of the

decimal point.
RADIX smallint Base for numeric datatypes.
NULLABLE smallint Specifies nullability.

1 = NULL is possible.
0 = NOT NULL.

REMARKS varchar(254) This field always returns NULL.
COLUMN_DEF nvarchar(4000) Default value of the column.
SQL_DATA_TYPE smallint Value of the SQL data type as it appears

in the TYPE field of the descriptor. This
column is the same as the DATA_TYPE
column, except for the datetime and
SQL-92 interval data types. This column
always returns a value.

SQL_DATETIME_SUB smallint Subtype code for datetime and SQL-92
interval data types. For other data types,
this column returns NULL.

CHAR_OCTET_LENGTH int Maximum length in bytes of a character
or integer data type column. For all other
data types, this column returns NULL.

ORDINAL_POSITION int Ordinal position of the column in the
table. The first column in the table is 1.
This column always returns a value.

IS_NULLABLE varchar(254) Nullability of the column in the table. ISO
rules are followed to determine
nullability. An ISO SQL-compliant DBMS
cannot return an empty string.

YES = Column can include NULLS.
NO = Column cannot include NULLS.

This column returns a zero-length string
if nullability is unknown.

The value returned for this column is
different from the value returned for the
NULLABLE column.

SS_DATA_TYPE tinyint SQL Server data type, used by extended
stored procedures. For more
information, see Data Types.

1. For more information, see the Microsoft ODBC documentation.

Permissions

Execute permission defaults to the public role.

Examples

This example returns column information for a specified table.

EXEC sp_columns @table_name = 'customers'

See Also

sp_tables

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_columns_ex
Returns the column information, one row per column, for the given linked server table(s). sp_columns_ex returns column
information only for the given column if column is specified.

Syntax

sp_columns_ex [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_catalog']
 [, [@column_name =] 'column']
 [, [@ODBCVer =] 'ODBCVer']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server for which to return column information. table_server is sysname, with no default.

[@table_name =] 'table_name'

Is the name of the table for which to return column information. table_name is sysname, with a default of NULL.

[@table_schema =] 'table_schema'

Is the schema name of the table for which to return column information. table_schema is sysname, with a default of NULL.

[@table_catalog =] 'table_catalog'

Is the catalog name of the table for which to return column information. table_catalog is sysname, with a default of NULL.

[@column_name =] 'column'

Is the name of the database column for which to provide information. column is sysname, with a default of NULL.

[@ODBCVer =] 'ODBCVer'

Is the version of ODBC being used. ODBCVer is int, with a default of 2, indicating ODBC Version 2. Valid values are 2 or 3. Refer to
the ODBC SQLColumns specification for the behavior differences between versions 2 and 3.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_CAT sysname Table or view qualifier name. Various

DBMS products support three-part
naming for tables (qualifier.owner.name).
In Microsoft® SQL Server™, this column
represents the database name. In some
products, it represents the server name of
the table's database environment. This
field can be NULL.

TABLE_SCHEM sysname Table or view owner name. In SQL Server,
this column represents the name of the
database user that created the table. This
field always returns a value.

TABLE_NAME sysname Table or view name. This field always
returns a value.

COLUMN_NAME sysname Column name, for each column of the
TABLE_NAME returned. This field always
returns a value.

DATA_TYPE smallint Integer value corresponding to ODBC
type indicators. If this is a data type that
cannot be mapped to an ODBC type, it is
NULL. The native data type name is
returned in the TYPE_NAME column.

TYPE_NAME varchar(13) String representing a data type. The
underlying DBMS presents this data type
name.

COLUMN_SIZE int Number of significant digits. The return
value for the PRECISION column is in
base 10.

BUFFER_LENGTH int Transfer size of the data.1
DECIMAL_DIGITS smallint Number of digits to the right of the

decimal point.
NUM_PREC_RADIX smallint Is the base for numeric data types.
NULLABLE smallint Specifies nullability.

1 = NULL is possible.
0 = NOT NULL.

REMARKS varchar(254) This field always returns NULL.
COLUMN_DEF varchar(254) Default value of the column.
SQL_DATA_TYPE smallint Value of the SQL data type as it appears

in the TYPE field of the descriptor. This
column is the same as the DATA_TYPE
column, except for the datetime and
SQL-92 interval data types. This column
always returns a value.

SQL_DATETIME_SUB smallint Subtype code for datetime and SQL-92
interval data types. For other data types,
this column returns NULL.

CHAR_OCTET_LENGTH int Maximum length in bytes of a character
or integer data type column. For all other
data types, this column returns NULL.

ORDINAL_POSITION int Ordinal position of the column in the
table. The first column in the table is 1.
This column always returns a value.

IS_NULLABLE varchar(254) Nullability of the column in the table. ISO
rules are followed to determine
nullability. An ISO SQL-compliant DBMS
cannot return an empty string.

YES = Column can include NULLS.
NO = Column cannot include NULLS.

This column returns a zero-length string
if nullability is unknown.

The value returned for this column is
different from the value returned for the
NULLABLE column.

SS_DATA_TYPE tinyint SQL Server data type, used by Open Data
Services extended stored procedures. For
more information see Data Types.

1. For more information, see the Microsoft ODBC documentation.

Remarks

sp_columns_ex is executed by querying the COLUMNS rowset of the IDBSchemaRowset interface of the OLE DB provider

corresponding to table_server. The table_name, table_schema, table_catalog, and column parameters are passed to this
interface to restrict the rows returned.

sp_columns_ex returns an empty result set if the OLE DB provider of the specified linked server does not support the COLUMNS
rowset of the IDBSchemaRowset interface.

Permissions

Execute permission defaults to the public role.

Examples

This example returns the data type of the title_id column of the titles table.

USE master
EXEC sp_columns_ex 'LONDON1', 'titles', 'dbo', 'pubs',
 'title_id'

See Also

sp_catalogs

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_configure
Displays or changes global configuration settings for the current server.

Syntax

sp_configure [[@configname =] 'name'
 [, [@configvalue =] 'value']]

Arguments

[@configname =] 'name'

Is the name of a configuration option. name is varchar(35), with a default of NULL. Microsoft® SQL Server™ understands any
unique string that is part of the configuration name. If not specified, the entire list of options is returned.

[@configvalue =] value

Is the new configuration setting. value is int, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

When executed with no parameters, sp_configure returns a result set with five columns and orders the options in alphabetically
ascending order. The config_value and the run_value do not necessarily have to be equivalent. For example, the system
administrator may have changed an option with sp_configure, but has not executed the RECONFIGURE statement (for dynamic
options) or restarted SQL Server (for nondynamic options).

Column name Data type Description
name nvarchar(70) Name of the configuration option.
minimum int Minimum value of the configuration option.
maximum int Maximum value of the configuration option.
config_value int Value to which the configuration option was

set using sp_configure (value in
sysconfigures.value).

run_value int Value for the configuration option (value in
syscurconfigs.value).

Remarks

Some options supported by sp_configure are designated as Advanced. By default, these options are not available for viewing
and changing; setting the Show Advanced Options configuration option to 1 makes these options available. For more
information about the available configuration options and their settings, see Setting Configuration Options.

When using sp_configure to change a setting, use the RECONFIGURE WITH OVERRIDE statement for the change to take
immediate effect. Otherwise, the change takes effect after SQL Server is restarted.

Note Minimum and maximum memory configurations are dynamic in SQL Server. You can change them without restarting the
server.

Use sp_configure to display or change server-level settings. Use sp_dboption to change database level settings, and the SET
statement to change settings that affect only the current user session.

Note If the specified config_value is too high for an option, the run_value setting reflects the fact that SQL Server defaulted to
dynamic memory, rather than use an invalid setting.

Permissions

Execute permissions on sp_configure with no parameters, or with only the first parameter, default to all users. Execute
permissions for sp_configure with both parameters, used to change a configuration option, default to the sysadmin and

serveradmin fixed server roles. RECONFIGURE permissions default to the sysadmin fixed server role and serveradmin fixed
server role, and are not transferable.

Examples

A. List the advanced configuration options

This example shows how to set and list all configuration options. Advanced configuration options are displayed by first setting the
show advanced option to 1. After this has been changed, executing sp_configure with no parameters displays all configuration
options.

USE master
EXEC sp_configure 'show advanced option', '1'

--Here is the message:
Configuration option 'show advanced options' changed from 0 to 1.
Run the RECONFIGURE command to install.

RECONFIGURE
EXEC sp_configure

B. Change a configuration option

This example sets the system recovery interval to 3 minutes.

USE master
EXEC sp_configure 'recovery interval', '3'
RECONFIGURE WITH OVERRIDE

See Also

RECONFIGURE

SET

sp_dboption

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_create_log_shipping_monitor_account
 New Information - SQL Server 2000 SP3.

Creates the log_shipping_monitor_probe login on the monitor server, and assigns update permissions to
msdb.dbo.log_shipping_primaries and msdb.dbo.log_shipping_secondaries tables.

Syntax

sp_create_log_shipping_monitor_account [@password =] 'password'

Arguments

[@password =] 'password'

Is the password for the log_shipping_monitor_probe account. password is sysname, with a default of NULL.

Security Note NULL passwords are not recommended.

Return Code Values

0 (success) or 1 (failure)

Remarks

The log_shipping_monitor_probe account is used by the primary and secondary servers to update
msdb.dbo.log_shipping_primaries and msdb.dbo.log_shipping_secondaries tables when a transaction log has been backed
up, copied, or restored.

Permissions

Only the members of the sysadmin fixed server role can execute sp_create_log_shipping_monitor_account.

Examples

This example creates a log shipping monitor account with the password Pwrdx!5.

EXEC sp_create_log_shipping_monitor_account @password = N'Pwrdx!5'

Transact-SQL Reference (SQL Server 2000)

sp_create_removable
Creates a removable media database. Creates three or more files (one for the system catalog tables, one for the transaction log,
and one or more for the data tables) and places the database on those files.

Syntax

sp_create_removable [@dbname =] 'dbname'
 , [@syslogical =] 'syslogical'
 , [@sysphysical =] 'sysphysical'
 , [@syssize =] syssize
 , [@loglogical =] 'loglogical'
 , [@logphysical =] 'logphysical'
 , [@logsize =] logsize
 , [@datalogical1 =] 'datalogical1'
 , [@dataphysical1 =] 'dataphysical1'
 , [@datasize1 =] datasize1
 , [@datalogical16 =] 'datalogical16'
 , [@dataphysical16 =] 'dataphysical16'
 , [@datasize16 =] datasize16]

Arguments

[@dbname =] 'dbname'

Is the name of the database to create for use on removable media. dbname is sysname.

[@syslogical =] 'syslogical'

Is the logical name of the file that contains the system catalog tables. syslogical is sysname.

[@sysphysical =] 'sysphysical'

Is the physical name, including a fully qualified path, of the file that holds the system catalog tables. sysphysical is nvarchar(260).

[@syssize =] syssize

Is the size, in megabytes, of the file that holds the system catalog tables. syssize is int. The minimum syssize is 1.

[@loglogical =] 'loglogical'

Is the logical name of the file that contains the transaction log. loglogical is sysname.

[@logphysical =] 'logphysical'

Is the physical name, including a fully qualified path, of the file that contains the transaction log. logphysical is nvarchar(260).

[@logsize =] logsize

Is the size, in megabytes, of the file that contains the transaction log. logsize is int. The minimum logsize is 1.

[@datalogical1 =] 'datalogical'

Is the logical name of a file that contains the data tables. datalogical is sysname.

There must be from 1 through 16 data files. Usually, more than one data file is created when the database is expected to be large
and must be distributed on multiple disks.

[@dataphysical1 =] 'dataphysical'

Is the physical name, including a fully qualified path, of a file that contains data tables. dataphysical is nvarchar(260).

[@datasize1 =] 'datasize'

Is the size, in megabytes, of a file that contains data tables. datasize is int. The minimum datasize is 1.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

If you want to make a copy of your database on removable media (such as a compact disc) and distribute the database to other
users, use this stored procedure.

Permissions

Only members of the sysadmin fixed server role can execute sp_create_removable.

Examples

This example creates the database inventory as a removable database.

sp_create_removable 'inventory',
 'invsys',
 'c:\Program Files\Microsoft SQLServer\MSSQL\Data\invsys.mdf', 2,
 'invlog',
 'c:\Program Files\Microsoft SQLServer\MSSQL\Data\invlog.ldf', 4,
 'invdata',
 'c:\Program Files\Microsoft SQLServer\MSSQL\Data\invdata.ndf', 10

See Also

sp_attach_db

sp_attach_single_file_db

sp_certify_removable

sp_dboption

sp_dbremove

sp_detach_db

sp_helpfile

sp_helpfilegroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_createstats
Creates single-column statistics for all eligible columns for all user tables in the current database. The new statistic has the same
name as the column on which it is created. Computed columns and columns of the ntext, text, or image data types cannot be
specified as statistics columns. Columns already having statistics are not touched (for example, the first column of an index or a
column with explicitly created statistics). A CREATE STATISTICS statement is executed for each column that satisfies the above
restrictions. FULLSCAN is executed if fullscan is specified.

Syntax

sp_createstats [[@indexonly =] 'indexonly']
 [, [@fullscan =] 'fullscan']
 [, [@norecompute =] 'norecompute']

Arguments

[@indexonly =] 'indexonly'

Specifies that only the columns participating in an index should be considered for statistics creation. indexonly is char(9), with a
default of NO.

[@fullscan =] 'fullscan'

Specifies that the FULLSCAN option is used with the CREATE STATISTICS statement. If fullscan is omitted, Microsoft® SQL
Server™ performs a default sample scan. fullscan is char(9), with a default of NO.

[@norecompute =] 'norecompute'

Specifies that automatic recomputation of statistics is disabled for the newly created statistics. norecompute is char(12) with a
default of NO.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Permissions default to members of the sysadmin fixed server role, the db_owner fixed database role, and the owner of the
objects.

Examples

This example creates statistics for all eligible columns for all user tables in the current database.

EXEC sp_createstats

This example creates statistics for only the columns participating in an index.

EXEC sp_createstats 'indexonly'

See Also

CREATE STATISTICS

DBCC SHOW_STATISTICS

DROP STATISTICS

System Stored Procedures

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

sp_cursor_list
Reports the attributes of server cursors currently open for the connection.

Syntax

sp_cursor_list [@cursor_return =] cursor_variable_name OUTPUT
 , [@cursor_scope =] cursor_scope

Arguments

[@cursor_return =] cursor_variable_name OUTPUT

Is the name of a declared cursor variable. cursor_variable_name is cursor, with no default. The cursor is a scrollable, dynamic,
read-only cursor.

[@cursor_scope =] cursor_scope

Specifies the level of cursors to report. cursor_scope is int, with no default, and can be one of these values.

Value Description
1 Report all local cursors.
2 Report all global cursors.
3 Report both local and global cursors.

Return Code Values

None

Cursors Returned

sp_cursor_list returns its report as a Transact-SQL cursor output parameter, not as a result set. This allows Transact-SQL batches,
stored procedures, and triggers to work with the output one row at a time. It also means the procedure cannot be called directly
from database API functions. The cursor output parameter must be bound to a program variable, but the database APIs do not
support binding cursor parameters or variables.

This is the format of the cursor returned by sp_cursor_list. The format of the cursor is the same as the format returned by
sp_describe_cursor.

Column name Data type Description
reference_name sysname Name used to refer to the cursor. If the reference

to the cursor was through the name given on a
DECLARE CURSOR statement, the reference
name is the same as cursor name. If the reference
to the cursor was through a variable, the
reference name is the name of the cursor
variable.

cursor_name sysname Name of the cursor from a DECLARE CURSOR
statement. If the cursor was created by setting a
cursor variable to a cursor, the cursor name is a
system-generated name.

cursor_scope smallint 1 = LOCAL
2 = GLOBAL

status smallint Same values as reported by the
CURSOR_STATUS system function:

1 = The cursor referenced by the cursor name or
variable is open. If the cursor is insensitive, static,
or keyset, it has at least one row. If the cursor is
dynamic, the result set has zero or more rows.
0 = The cursor referenced by the cursor name or
variable is open but has no rows. Dynamic
cursors never return this value.
-1 = The cursor referenced by the cursor name or
variable is closed.
-2 = Applies only to cursor variables. There is no
cursor assigned to the variable. Possibly, an
OUTPUT parameter assigned a cursor to the
variable, but the stored procedure closed the
cursor before returning.
-3 = A cursor or cursor variable with the
specified name does not exist, or the cursor
variable has not had a cursor allocated to it.

model smallint 1 = Insensitive (or static)
2 = Keyset
3 = Dynamic
4 = Fast Forward

concurrency smallint 1 = Read-only
2 = Scroll locks
3 = Optimistic

scrollable smallint 0 = Forward-only
1 = Scrollable

open_status smallint 0 = Closed
1 = Open

cursor_rows int Number of qualifying rows in the result set. For
more information, see @@CURSOR_ROWS.

fetch_status smallint Status of the last fetch on this cursor. For more
information, see @@FETCH_STATUS.

0 = Fetch successful.
-1 = Fetch failed or is beyond the bounds of the
cursor.
-2 = The requested row is missing.
-9 = There has been no fetch on the cursor.

column_count smallint Number of columns in the cursor result set.
row_count smallint Number of rows affected by the last operation on

the cursor. For more information, see
@@ROWCOUNT.

last_operation smallint Last operation performed on the cursor:

0 = No operations have been performed on the
cursor.
1 = OPEN
2 = FETCH
3 = INSERT
4 = UPDATE
5 = DELETE
6 = CLOSE
7 = DEALLOCATE

cursor_handle int A unique value that identifies the cursor within
the scope of the server.

Remarks

sp_cursor_list produces a list of the current server cursors opened by the connection and describes the attributes global to each
cursor, such as the scrollability and updatability of the cursor. The cursors listed by sp_cursor_list include:

Transact-SQL server cursors.

API server cursors opened by an ODBC application that then called SQLSetCursorName to name the cursor.

Use sp_describe_cursor_columns for a description of the attributes of the result set returned by the cursor. Use
sp_describe_cursor_tables for a report of the base tables referenced by the cursor. sp_describe_cursor reports the same
information as sp_cursor_list, but only for a specified cursor.

Permissions

Execute permissions default to the public role.

Examples

This example opens a global cursor and uses sp_cursor_list to report on the attributes of the cursor.

USE Northwind
GO
-- Declare and open a keyset-driven cursor.
DECLARE abc CURSOR KEYSET FOR
SELECT LastName
FROM Employees
WHERE LastName LIKE 'S%'
OPEN abc

-- Declare a cursor variable to hold the cursor output variable
-- from sp_cursor_list.
DECLARE @Report CURSOR

-- Execute sp_cursor_list into the cursor variable.
EXEC master.dbo.sp_cursor_list @cursor_return = @Report OUTPUT,
 @cursor_scope = 2

-- Fetch all the rows from the sp_cursor_list output cursor.
FETCH NEXT from @Report
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT from @Report
END

-- Close and deallocate the cursor from sp_cursor_list.
CLOSE @Report
DEALLOCATE @Report
GO

-- Close and deallocate the original cursor.
CLOSE abc
DEALLOCATE abc
GO

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_cycle_errorlog
Closes the current error log file and cycles the error log extension numbers just like a server restart. The new error log contains
version and copyright information and a line indicating that the new log has been created.

Syntax

sp_cycle_errorlog

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Every time SQL Server is started, the current error log is renamed to errorlog.1; errorlog.1 becomes errorlog.2, errorlog.2
becomes errorlog.3, and so on. sp_cycle_errorlog enables you to cycle the error log files without stopping and starting the
server.

Permissions

Execute permissions for sp_cycle_errorlog are restricted to members of the sysadmin fixed server role.

Examples

EXEC sp_cycle_errorlog

See Also

System Stored Procedures

Viewing the SQL Server Error Log

Transact-SQL Reference (SQL Server 2000)

sp_databases
 Topic last updated -- July 2003

Lists databases that reside in an instance of Microsoft® SQL Server™ or are accessible through a database gateway.

Syntax

sp_databases

Return Code Values

None

Result Sets

Column name Data type Description
DATABASE_NAME sysname Name of the database. In SQL Server, this

column represents the database name as
stored in the sysdatabases system table.

DATABASE_SIZE int Size of database, in kilobytes.
REMARKS varchar(254) For SQL Server, this field always returns

NULL.

Remarks

In SQL Server, sp_databases returns the databases listed in the sysdatabases system table.

Database names that are returned can be used as parameters in the USE statement to change the current database context.

sp_databases has no equivalent in Open Database Connectivity (ODBC).

Permissions

Execute permissions default to the public role.

Transact-SQL Reference (SQL Server 2000)

sp_datatype_info
Returns information about the data types supported by the current environment.

Syntax

sp_datatype_info [[@data_type =] data_type]
 [, [@ODBCVer =] odbc_version]

Arguments

[@data_type =] data_type

Is the code number for the specified data type. To obtain a list of all data types, omit this parameter. data_type is int, with a
default of 0.

[@ODBCVer =] odbc_version

Is the version of ODBC used. odbc_version is tinyint, with a default of 2.

Return Code Values

None

Result Sets

Column name Data type Description
TYPE_NAME sysname DBMS-dependent data type.
DATA_TYPE smallint Code for the ODBC type to which all

columns of this type are mapped.
PRECISION int Maximum precision of the data type on the

data source. NULL is returned for data
types for which precision is not applicable.
The return value for the PRECISION
column is in base 10.

LITERAL_PREFIX varchar(32) Character(s) used before a constant. For
example, a single quotation mark (') for
character types and 0x for binary in
Microsoft® SQL Server™.

LITERAL_SUFFIX varchar(32) Character(s) used to terminate a constant.
For example, a single quotation mark (') for
character types and none for binary.

CREATE_PARAMS varchar(32) Description of the creation parameters for
this data type. For example, decimal is
"precision, scale", float is NULL, and
varchar is "max_length".

NULLABLE smallint Specifies nullability.

1 = Allows null values.
0 = Does not allow null values.

CASE_SENSITIVE smallint Specifies case sensitivity.

1 = All columns of this type are case-
sensitive (for collations).
0 = All columns of this type are case-
insensitive.

SEARCHABLE smallint Column type.

1 = Columns of this type can be used in a
WHERE clause.
0 = Columns of this type cannot be used in
a WHERE clause.

UNSIGNED_ATTRIBUTE smallint Specifies the sign of the data type.

1 = Data type unsigned.
0 = Data type signed.

MONEY smallint Specifies the money data type.
1 = money data type.
0 = Not a money data type.

AUTO_INCREMENT smallint Specifies autoincrementing.

1 = Autoincrementing.
0 = Not autoincrementing.
NULL = Attribute not applicable.

An application can insert values into a
column that has this attribute, but it cannot
update the values in the column.
AUTO_INCREMENT is valid only for
category data types.

LOCAL_TYPE_NAME sysname Localized version of the data source-
dependent name of the data type. For
example, DECIMAL is DECIMALE in French.
NULL is returned if a localized name is not
supported by the data source.

MINIMUM_SCALE smallint Minimum scale of the data type on the data
source. If a data type has a fixed scale, the
MINIMUM_SCALE and
MAXIMUM_SCALE columns both contain
this value. NULL is returned where scale is
not applicable.

MAXIMUM_SCALE smallint Maximum scale of the data type on the
data source. If the maximum scale is not
defined separately on the data source, but
is instead defined to be the same as the
maximum precision, this column contains
the same value as the PRECISION column.

SQL_DATA_TYPE smallint Value of the SQL data type as it appears in
the TYPE field of the descriptor. This
column is the same as the DATA_TYPE
column, except for the datetime and ANSI
interval data types. This field always
returns a value.

SQL_DATETIME_SUB smallint datetime or ANSI interval subcode if the
value of SQL_DATA_TYPE is
SQL_DATETIME or SQL_INTERVAL. For
data types other than datetime and ANSI
interval, this field is NULL.

NUM_PREC_RADIX int Number of bits or digits for calculating the
maximum number that a column can hold.
If the data type is an approximate numeric
data type, this column contains the value 2
to indicate a number of bits. For exact
numeric types, this column contains the
value 10 to indicate a number of decimal
digits. Otherwise, this column is NULL. By
combining the precision with radix, the
application can calculate the maximum
number that the column can hold.

INTERVAL_PRECISION smallint Value of interval leading precision if
data_type is interval; otherwise NULL.

USERTYPE smallint usertype value from the systypes table.

Remarks

sp_datatype_info is equivalent to SQLGetTypeInfo in ODBC. The results returned are ordered by DATA_TYPE and then by how
closely the data type maps to the corresponding ODBC SQL data type.

Permissions

Execute permissions default to the public role.

Examples

This example retrieves information for the sysname and nvarchar data types by specifying the DATA_TYPE value of -9.

USE master
EXEC sp_datatype_info -9

See Also

Data Types

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dbcmptlevel
Sets certain database behaviors to be compatible with the specified earlier version of Microsoft® SQL Server™.

Syntax

sp_dbcmptlevel [[@dbname =] name]
 [, [@new_cmptlevel =] version]

Arguments

[@dbname =] name

Is the name of the database whose compatibility level is to be changed. Database names must conform to the rules for identifiers.
name is sysname, with a default of NULL.

[@new_cmptlevel =] version

Is the version of SQL Server with which the database is to be made compatible. version is tinyint, with a default of NULL. The
value must be 80, 70, 65, or 60.

Note The only difference between levels 70 and 80 is that several reserved keywords introduced in SQL Server 2000 are not
supported in level 70.

Return Code Values

0 (success) or 1 (failure)

Result Sets

sp_dbcmptlevel returns this message if no parameters are specified or if the name parameter is not specified:

Valid values of database compatibility level are 60, 65, 70, or 80.

If name is specified with no version, SQL Server displays a message with the compatibility setting for the named database.

Remarks

In SQL Server 2000, the master database has a compatibility level of 80, which cannot be modified. A database containing an
indexed view cannot be changed to a compatibility level lower than 80.

For installations of all instances of SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 7.0 to
SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 6.5 and SQL Server 6.0 to SQL Server
2000, the existing default compatibility level is retained.

Use sp_dbcmptlevel as an interim migration aid. If existing SQL Server version 6.x applications are affected by the differences in
SQL Server version 7.0 or SQL Server 2000 behaviors that are controlled by the compatibility level setting of sp_dbcmptlevel,
use this procedure to set the earlier version behaviors until the application can be converted to work properly with the SQL Server
2000 compatibility level. sp_dbcmptlevel does not restore full backward compatibility.

sp_dbcmptlevel affects the behaviors in the specified database, not the entire server. The compatibility setting for a database
takes effect when the database is made the current database with the USE statement, or if the database is the default database for
the login. When a stored procedure is executed, the current compatibility level of the database in which the procedure is defined is
used. All stored procedures in the database are recompiled when the compatibility setting is changed in that database.

Setting the compatibility level to 65 or 60 affects these behaviors. For more information about backward compatible behaviors,
see SQL Server Backward Compatibility Details.

Compatibility level setting of either
60 or 65

Compatibility level setting of 70 or 80
(default)

The result sets of SELECT statements
with a GROUP BY clause and no ORDER
BY clause are sorted by the GROUP BY
columns.

A GROUP BY clause does no sorting on its
own. An ORDER BY clause must be explicitly
specified for SQL Server to sort any result
set. For more information, see SELECT.

Columns prefixed with table aliases are
accepted in the SET clause of an UPDATE
statement.

Table aliases are not accepted in the SET
clause of an UPDATE statement. The table or
view specified in the SET clause must match
that specified immediately following the
UPDATE keyword. For more information,
see UPDATE.

bit columns created without an explicit
NULL or NOT NULL option in CREATE
TABLE or ALTER TABLE are created as
NOT NULL.

The nullability of bit columns without
explicit nullability is determined by either
the session setting of SET
ANSI_NULL_DFLT_ON or SET
ANSI_NULL_DFLT_OFF; or the database
setting of SET ANSI NULL DEFAULT. For
more information, see SET.

The ALTER COLUMN clause cannot be
used on ALTER TABLE.

The ALTER COLUMN clause can be used on
ALTER TABLE. For more information, see
ALTER TABLE.

A trigger created for a table replaces any
existing triggers of the same type
(INSERT, UPDATE, DELETE). The WITH
APPEND option of CREATE TRIGGER can
be used to create multiple triggers of the
same type.

Triggers of the same type are appended.
Trigger names must be unique. The WITH
APPEND option is assumed. For more
information, see CREATE TRIGGER.

When a batch or procedure contains
invalid object names, a warning is
returned when the batch is parsed or
compiled, and an error message is
returned when the batch is executed.

No warning is returned when the batch is
parsed or compiled, and an error message
is returned when the batch is executed. For
more information about deferred name
resolution, see CREATE PROCEDURE (Level
4).

Queries of the following form are
properly executed by ignoring table Y
and inserting the SELECT statement
results into table X.

INSERT X
SELECT select_list INTO Y

SQL Server returns a syntax error when this
same query is executed.

The empty string literal (' ') is interpreted
as a single blank.

The empty string literal (' ') is interpreted as
an empty string.

https://msdn.microsoft.com/en-us/library/aa197103(v=sql.80).aspx

DATALENGTH('') returns 1 ('' parsed as a
single space).
DATALENGTH(N'') returns 2 (N'' parsed
as a single Unicode space).
LEFT('123', m) returns NULL when m =
0.
LEFT(N'123', m) returns NULL when
m = 0.
LTRIM(' ') returns NULL.
LTRIM(N' ') returns NULL.
REPLICATE('123', m) returns NULL when
m = 0.
REPLICATE(N'123', m) returns NULL
when m = 0.
RIGHT(N'123', m) returns NULL when
m = 0.
RIGHT('123', m) returns NULL when
m = 0.
RIGHT('123', m) returns NULL when m is
negative.
RIGHT(N'123', m) returns NULL when m
is negative.
RTRIM(' ') returns NULL.
RTRIM(N' ') returns NULL.
SPACE(0) returns NULL.
SUBSTRING('123', m, n) returns NULL
when m < length of the string or when
n = 0.
SUBSTRING(N'123', m, n) returns NULL
when m > length of the string or when
n = 0.
UPDATETEXT table.textcolumn
textpointer > 0 NULL NULL results in a
NULL value.

DATALENGTH('') returns 0.
DATALENGTH(N'') returns 0.
LEFT('123', m) returns an empty string
when m = 0.
LEFT(N'123', m) returns an empty string
when m = 0.
LTRIM(' ') returns an empty string.
LTRIM(N' ') returns an empty string.
REPLICATE('123', m) returns an empty
string when m = 0.
REPLICATE(N'123', m) returns an empty
string when m = 0.
RIGHT('123', m) returns an empty string
when m = 0.
RIGHT(N'123', m) returns an empty string
when m = 0.
RIGHT('123', m) returns error when m is
negative.
RIGHT(N'123', m) returns error when m is
negative.
RTRIM(' ') returns an empty string.
RTRIM(N' ') returns an empty string.
SPACE(0) returns an empty string.
SUBSTRING('123', m, n) returns an empty
string when m < length of the string or
when n = 0.
SUBSTRING(N'123', m, n) returns an empty
string when m > length of the string or
when n = 0.
UPDATETEXT table.textcolumn textpointer >
0 NULL NULL results in empty text.

The CHARINDEX and PATINDEX
functions return null only if both the
pattern and the expression are null.

The CHARINDEX and PATINDEX functions
return NULL when any input parameters
are NULL.

References to text or image columns in
the inserted and deleted tables appear
as NULL.

References to text or image columns in the
inserted and deleted tables are not
allowed.

Allows UPDATETEXT to initialize text
columns to NULL.

UPDATETEXT initializes text columns to an
empty string. WRITETEXT initializes text
columns to NULL.

The concatenation of null yields null
setting of sp_dboption is off (disabled)
which returns an empty string if any
operands in a concatenation operation is
null.

The concatenation of null yields null
setting of sp_dboption is on (enabled),
which returns a NULL if any operands in a
concatenation operation is null.

In an INSERT statement, a SELECT
returning a scalar value is allowed in the
VALUES clause.

The INSERT statement cannot have a
SELECT statement in the VALUES clause as
one of the values to be inserted.

A ROLLBACK statement in a stored
procedure referenced in an INSERT table
EXEC procedure statement causes the
INSERT to be rolled back, but the batch
continues.

A ROLLBACK statement in a stored
procedure referenced by an INSERT...EXEC
statement causes the entire transaction to
be rolled back and the batch stops
executing.

Retrieving text or image columns from
the inserted or deleted tables inside a
trigger returns NULL values for text or
image columns.

Retrieving text or image columns from the
inserted or deleted tables inside a trigger
is not allowed and causes an error.

The compatibility setting also has an effect on reserved keywords. This table shows the words reserved at the specified level, but
valid for use in object names at lower levels. At lower compatibility levels, the language features corresponding to the reserved
keywords in upper levels are not available.

Compatibility level
setting Reserved keywords

80 COLLATE, FUNCTION, OPENXML
70 BACKUP, CONTAINS, CONTAINSTABLE, DENY, FREETEXT,

FREETEXTTABLE, PERCENT, RESTORE, ROWGUIDCOL, TOP
65 AUTHORIZATION, CASCADE, CROSS, DISTRIBUTED, ESCAPE,

FULL, INNER, JOIN, LEFT, OUTER, PRIVILEGES, RESTRICT,
RIGHT, SCHEMA, WORK

The compatibility level setting cannot be changed in the master database, but it can be changed in the model database to take
effect in all new databases. The compatibility level cannot be changed inside a stored procedure or in Transact-SQL strings
executed with the EXEC('string') syntax. The compatibility level should not be changed inside a batch of Transact-SQL statements.

Permissions

Only the DBO, members of the sysadmin fixed server role, and the db_owner fixed database role (if the database whose
compatibility level is to be changed is the current database) can execute this procedure.

Examples

This example creates a procedure named distributed, which is an SQL Server reserved keyword, by setting the compatibility level
setting for the pubs database to 60.

CREATE PROCEDURE "distributed"
AS
PRINT 'This won''t happen'

EXEC sp_dbcmptlevel 'pubs', 60

CREATE PROCEDURE "distributed"
AS
PRINT 'You are in a procedure that could not be defined'
PRINT 'in a version of SQL Server 6.5 or later'
PRINT 'without the compatibility setting.'

EXEC "distributed"

Here is the result set:

Msg 156, Level 15, State 1
Incorrect syntax near the keyword 'distributed'.
DBCC execution completed. If DBCC printed error messages, see your System Administrator.
You are in a procedure that could not be defined
in a version of SQL Server 6.5 or greater
without the compatibility setting.

See Also

EXECUTE

Reserved Keywords

Setting Database Options

sp_dboption

SQL Server Backward Compatibility Details

System Stored Procedures

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

sp_dbfixedrolepermission
Displays the permissions for each fixed database role.

Syntax

sp_dbfixedrolepermission [[@rolename =] 'role']

Arguments

[@rolename =] 'role'

Is the name of a valid Microsoft® SQL Server™ fixed database role. role is sysname, with a default of NULL. If role is not
specified, the permissions for all fixed database roles are displayed.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
DbFixedRole sysname Name of the fixed database role
Permission nvarchar(70) Permissions associated with DbFixedRole

Remarks

To display a list of the fixed database roles, execute sp_helpdbfixedrole. These are the fixed database roles.

Fixed database role Description
db_owner Database owners
db_accessadmin Database access administrators
db_securityadmin Database security administrators
db_ddladmin Database DDL administrators
db_backupoperator Database backup operators
db_datareader Database data readers
db_datawriter Database data writers
db_denydatareader Database deny data readers
db_denydatawriter Database deny data writers

The permissions of the db_owner fixed database role span all of the other fixed database roles. To display the permissions for
fixed server roles, execute sp_srvrolepermission.

The permissions listed in the result set include the Transact-SQL statements that can be executed, as well as other special activities
that can be performed by members of the database role.

Permissions

All users have permissions to execute sp_dbfixedrolepermission.

Examples

This example displays the permissions for all fixed database roles.

EXEC sp_dbfixedrolepermission

See Also

sp_addrolemember

sp_droprolemember

sp_helpdbfixedrole

sp_srvrolepermission

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dboption
 New Information - SQL Server 2000 SP3.

Displays or changes database options. sp_dboption should not be used on either the master or tempdb databases.
sp_dboption is supported for backward compatibility. Use ALTER DATABASE to set database options.

Syntax

sp_dboption [[@dbname =] 'database']
 [, [@optname =] 'option_name']
 [, [@optvalue =] 'value']

Arguments

[@dbname =] 'database'

Is the name of the database in which to set the specified option. database is sysname, with a default of NULL.

[@optname =] 'option_name'

Is the name of the option to set. It is not necessary to enter the complete option name. Microsoft® SQL Server™ recognizes any
part of the name that is unique. Enclose the option name with quotation marks if it includes embedded blanks or is a keyword. If
this parameter is omitted, sp_dboption lists the options that are on. option_name is varchar(35), with a default of NULL.

[@optvalue =] 'value'

Is the new setting for option_name. If this parameter is omitted, sp_dboption returns current setting. value can be true or false
or on or off. value is varchar(10), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

If no parameters are supplied, this is the result set.

Column name Data type Description
Settable database
options

nvarchar(35) All of the settable database options.

If database is the only supplied parameter, this is the result set.

Column name Data type Description
The following options
are set:

nvarchar(35) The options that are set for the
database.

If option_name is supplied, this is the result set.

Column name Data type Description
OptionName nvarchar(35) Name of the option.
CurrentSetting char(3) Whether the option is on or off.

If value is supplied, sp_dboption does not return a result set.

Remarks

These are the options set by sp_dboption. For more information about each option, see Setting Database Options.

Option Description

auto create statistics When true, any missing statistics needed by a query for
optimization are automatically built during optimization.
For more information, see CREATE STATISTICS.

auto update statistics When true, any out-of-date statistics needed by a query
for optimization are automatically built during
optimization. For more information, see UPDATE
STATISTICS.

autoclose When true, the database is shutdown cleanly and its
resources are freed after the last user logs off.

autoshrink When true, the database files are candidates for
automatic periodic shrinking.

ANSI null default When true, CREATE TABLE follows the SQL-92 rules to
determine if a column allows null values.

ANSI nulls When true, all comparisons to a null value evaluate to
UNKNOWN. When false, comparisons of non-UNICODE
values to a null value evaluate to TRUE if both values are
NULL.

ANSI warnings When true, errors or warnings are issued when
conditions such as "divide by zero" occur.

arithabort When true, an overflow or divide-by-zero error causes
the query or batch to terminate. If the error occurs in a
transaction, the transaction is rolled back. When false, a
warning message is displayed, but the query, batch, or
transaction continues as if no error occurred.

concat null yields null When true, if either operand in a concatenation operation
is NULL, the result is NULL.

cursor close on commit When true, any cursors that are open when a transaction
is committed or rolled back are closed. When false, such
cursors remain open when a transaction is committed.
When false, rolling back a transaction closes any cursors
except those defined as INSENSITIVE or STATIC.

db chaining When true, the database can be the source or target of a
cross-database ownership chain. When false, the
database cannot participate in cross-database ownership
chaining. You can change this option for user databases,
but not system databases.

The instance of SQL Server will honor this setting if the
server option Cross DB Ownership Chaining (set with
sp_configure) is 0 (off). If Cross DB Ownership
Chaining is 1 (on), all user databases can participate in
cross-database ownership chains, regardless of the value
of this option.

You must be a member of the sysadmin fixed server role
to change this option.

For more information, see Using Ownership Chains.

dbo use only When true, only the database owner can use the
database.

default to local cursor When true, cursor declarations default to LOCAL.
merge publish When true, the database can be published for a merge

replication.
numeric roundabort When true, an error is generated when loss of precision

occurs in an expression. When false, losses of precision
do not generate error messages and the result is rounded
to the precision of the column or variable storing the
result.

offline When true, the database is offline.
published When true, the database can be published for replication.

quoted identifier When true, double quotation marks can be used to
enclose delimited identifiers.

read only When true, users can only read data in the database.
Users cannot modify the data or database objects,
however, the database itself can be deleted using the
DROP DATABASE statement. The database cannot be in
use when a new value for the read only option is
specified. The master database is the exception, and only
the system administrator can use master while the read
only option is being set.

recursive triggers When true, enables recursive firing of triggers. When
false, prevents direct recursion only. To disable indirect
recursion, set the nested triggers server option to 0
using sp_configure.

select into/bulkcopy When true, the SELECT INTO statement and fast bulk
copies are allowed.

single user When true, only one user at a time can access the
database.

subscribed When true, the database can be subscribed for
publication.

torn page detection When true, incomplete pages can be detected.
trunc. log on chkpt. When true, a checkpoint truncates the inactive part of the

log when the database is in log truncate mode. This is the
only option you can set for the master database.

The database owner or system administrator can set or turn off particular database options for all new databases by executing
sp_dboption on the model database.

After sp_dboption has been executed, a checkpoint executes in the database for which the option was changed. This causes the
change to take effect immediately.

sp_dboption changes settings for a database. Use sp_configure to change server-level settings, and the SET statement to
change settings that affect only the current session.

Permissions

Execute permissions to display the list of possible database options, the list of options currently set in a database, and the current
value of an option in a database (using sp_dboption with 0, 1, or 2 parameters) default to all users.

Execute permissions to change an option (using sp_dboption with all parameters) default to members of the sysadmin and
dbcreator fixed server roles and the db_owner fixed database role. These permissions are not transferable.

Examples

A. Set a database to read-only

This example makes the pubs database read-only.

USE master
EXEC sp_dboption 'pubs', 'read only', 'TRUE'

Here is the result set:

The command(s) completed successfully.

B. Turn off an option

This example makes the pubs database writable again.

USE master
EXEC sp_dboption 'pubs', 'read only', 'FALSE'

Here is the result set:

The command(s) completed successfully.

C. Take a database offline

This example takes the sales database offline if there are no users accessing the database.

USE master
EXEC sp_dboption 'sales', 'offline', 'TRUE'

Here is the result set:

The command(s) completed successfully.

See Also

ALTER DATABASE

SET

sp_configure

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dbremove
Removes a database and all files associated with that database.

Important This procedure is provided for backward compatibility only. For removable media databases, use sp_detach_db to
remove a database from the server.

Syntax

sp_dbremove [@dbname =] 'database'
 [, [@dropdev =] 'dropdev']

Arguments

[@dbname =] 'database'

Is the name of the database to be removed. database is sysname, with a default value of NULL.

[@dropdev =] 'dropdev'

Is a flag provided for backward compatibility only and is currently ignored. dropdev has the value dropdev.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to members of the sysadmin fixed server role for the database for which the drop will be performed.

Examples

This example removes a database named sales and all files associated with it.

sp_dbremove sales

See Also

ALTER DATABASE

CREATE DATABASE

DBCC

sp_detach_db

Transact-SQL Reference (SQL Server 2000)

sp_defaultdb
Changes the default database for a login.

Syntax

sp_defaultdb [@loginame =] 'login' ,
 [@defdb =] 'database'

Arguments

[@loginame =] 'login'

Is the login name. login is sysname, with no default. login can be an existing Microsoft® SQL Server™ login or a Microsoft
Windows NT® user or group. If the Windows NT user or group does not exist in SQL Server, it is automatically added.

[@defdb =] 'database'

Is the name of the new default database. database is sysname, with no default. database must already exist.

Return Code Values

0 (success) or 1 (failure)

Remarks

When a client connects with SQL Server, the default database defined for its login becomes the current database without an
explicit USE statement. The default database can be defined when the login is added with sp_addlogin. When executing
sp_addlogin the master database is the default database if a database is not specified.

After sp_defaultdb is executed, the login is connected to the new database the next time the user logs in. However,
sp_defaultdb does not automatically give the login access to that database. The database owner (dbo) must give database
access to the login through sp_grantdbaccess, or there must be a guest user specified in the database.

It is recommended that sp_defaultdb be used to change the default database for all logins other than members of the sysadmin
fixed server role. This prevents users from inadvertently trying to use or create objects in the master database.

sp_defaultdb cannot be executed within a user-defined transaction.

Permissions

Execute permissions default to the public role for users changing the default database for their own logins. Only members of the
syadmin or securityadmin fixed server roles can execute sp_defaultdb for other logins.

Examples

This example sets pubs as the default database for user Victoria.

EXEC sp_defaultdb 'Victoria', 'pubs'

See Also

sp_addlogin

sp_droplogin

sp_grantdbaccess

System Stored Procedures

USE

Transact-SQL Reference (SQL Server 2000)

sp_defaultlanguage
Changes the default language of a login.

Syntax

sp_defaultlanguage [@loginame =] 'login'
 [, [@language =] 'language']

Arguments

[@loginame =] 'login'

Is the login name. login is sysname, with no default. login can be an existing Microsoft® SQL Server™ login or a Microsoft
Windows NT® user or group. If the Windows NT user or group does not exist in SQL Server, it is automatically added.

[@language =] 'language'

Is the default language of the login. language is sysname, with a default of NULL. language must be a valid language on the
server. If language is not specified, language is set to the server default language; default language is defined by the
sp_configure configuration variable default language. Changing the server default language does not change the default
language for existing logins. language remains the same as the default language used when sp_defaultlanguage was executed.

Return Code Values

0 (success) or 1 (failure)

Remarks

A default language can be set by using either sp_defaultlanguage or sp_addlogin when the login is initially added to SQL
Server. Use sp_helplanguage to display a list of the valid language options.

Any user can use the SET LANGUAGE statement to change the language setting for the duration of the current session. Use the
@@LANGUAGE function to show the current language setting.

If the default language of a login is dropped from the server, the default language of the server is used as the initial language
setting, and a message is displayed.

sp_defaultlanguage cannot be executed within a user-defined transaction.

Permissions

Execute permissions default to the public role for users changing the default language for their login. Only members of the
sysadmin or securityadmin fixed server roles can execute sp_defaultlanguage for other logins.

Examples

This example sets the default language for login Claire to French.

EXEC sp_defaultlanguage 'Claire', 'french'

See Also

@@LANGUAGE

SET

sp_addlogin

sp_helplanguage

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_define_log_shipping_monitor
Sets up the log shipping monitor account on the monitor server.

Syntax

sp_define_log_shipping_monitor [@monitor_name =] 'monitor_name' ,
 [@logon_type =] logon_type
 [, [@password =] 'password']
 [, [@delete_existing =] delete_existing]

Arguments

[@monitor_name =] 'monitor_name'

Is the name of the monitor server. monitor_name is sysname, with no default.

[@logon_type =] logon_type

Is the type of logon that sqlmaint will use to contact the monitor server. logon_type is int. Valid values are 1 (Windows NT) or 2
(SQL Server).

[@password =] 'password'

Is the password for the log_shipping_monitor_probe account. password is nvarchar(63). password is ignored if the logon type is
one (1).

[@delete_existing =] delete_existing

Specifies the deletion of an existing row from the log_shipping_monitor table. The one (1) value means an existing row will be
deleted; zero (0) means an existing row will not be deleted. delete_existing is bit, with a default of zero (0).

Return Code Values

0 (success) or 1 (failure)

Remarks

Only one monitor server can be defined for each primary or secondary server.

Permissions

Only members of the sysadmin fixed server role can execute sp_define_log_shipping_monitor.

Transact-SQL Reference (SQL Server 2000)

sp_delete_alert
Removes an alert.

Syntax

sp_delete_alert [@name =] 'name'

Arguments

[@name =] 'name'

Is the name of the alert. name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Removing an alert also removes any notifications associated with the alert.

sp_delete_alert must be executed in the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_alert.

Examples

This example removes an alert named Test Alert.

sp_delete 'Test Alert'

See Also

sp_add_alert

sp_help_alert

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_backuphistory
Deletes the entries in the backup and restore history tables for backup sets older than oldest_date. Because additional rows are
added to the backup and restore history tables when a backup or restore operation is performed, sp_delete_backuphistory can
be used to reduce the size of the history tables in the msdb database.

Syntax

sp_delete_backuphistory [@oldest_date =] 'oldest_date'

Arguments

[@oldest_date =] 'oldest_date'

Is the oldest date retained in the backup and restore history tables. oldest_date is datetime, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_delete_backuphistory must be run from the msdb database.

Permissions

Execute permissions default to members of the sysadmin fixed server role, but can be granted to other users.

Examples

This example deletes all entries older than August 20, 1998, 12:00 A.M., in the backup and restore history tables.

USE msdb
EXEC sp_delete_backuphistory '08/20/98'

See Also

BACKUP

backupfile

backupmediafamily

backupmediaset

backupset

DUMP

LOAD

RESTORE

restorefile

restorehistory

SQL Server: Buffer Manager Object

SQL Server: Cache Manager Object

Transact-SQL Reference (SQL Server 2000)

sp_delete_category
Removes the specified category of jobs, alerts, or operators from the current server.

Syntax

sp_delete_category [@class =] 'class' ,
 [@name =] 'name'

Arguments

[@class =] 'class'

Is the class of the category. class is varchar(8), with no default, and must have one of these values.

Value Description
JOB Deletes a job category.
ALERT Deletes an alert category.
OPERATOR Deletes an operator category.

[@name =] 'name'

Is the name of the category to be removed. name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_delete_category must be executed in the msdb database.

Deleting a category recategorizes any jobs, alerts, or operators in that category to the default category for the class.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute, or grant permissions to
execute, sp_delete_category in the current database.

Examples

This example deletes the job category named AdminJobs.

USE msdb
EXEC sp_delete_category 'JOB', 'AdminJobs'

See Also

sp_add_category

sp_help_category

sp_update_category

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_database_backuphistory
Deletes information about the specified database from the backup history tables.

Syntax

sp_delete_database_backuphistory [@db_nm =] 'database_name'

Arguments

[@db_nm =] database_name

Specifies the name of the database involved in backup and restore operations. database_name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_delete_database_backuphistory deletes information about the specified database from the backup history tables.

For example, after the removal of a log shipping pair, you may want to remove outdated or irrelevant information about the
backup and restore of the pair's member databases. To do this, run sp_delete_database_backuphistory on both the former
primary and former secondary servers.

Permissions

Only members of the sysadmin fixed server role can execute sp_change_secondary_role.

See Also

How to remove a log shipping pair from the Log Shipping Monitor (Transact-SQL)

Transact-SQL Reference (SQL Server 2000)

sp_delete_job
Deletes a job.

Syntax

sp_delete_job [@job_id =] job_id | [@job_name =] 'job_name'
 [, [@originating_server =] 'server']

Arguments

[@job_id =] job_id

Is the identification number of the job to be deleted. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to be deleted. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified; both cannot be specified.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Two parameters, @delete_history and @originating_server, exist in sp_delete_job, but are reserved for internal use.

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Anyone can delete jobs he owns. Only members of the sysadmin fixed server role can execute sp_delete_job to delete any job.

Examples

This example deletes the job Nightly Backups.

USE msdb
EXEC sp_delete_job @job_name = 'Nightly Backups'

See Also

sp_add_job

sp_help_job

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_jobschedule
Removes a schedule from a job.

Syntax

sp_delete_jobschedule [@job_id =] job_id , | [@job_name =] 'job_name' ,
 [@name =] 'sched_job_name'

Arguments

[@job_id =] job_id

Is the identification number of the job from which to delete the schedule. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job from which to delete the schedule. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified; both cannot be specified.

[@name =] 'sched_job_name'

Is the name of the schedule to delete. sched_job_name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Removing a schedule from a job prevents Microsoft® SQLServerAgent from executing the job according to that schedule.
sp_update_jobschedule can be used to disable a scheduled job without removing it from the schedule.

SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to create and
manage the job infrastructure.

Permissions

Execute permissions default to the public role.

Examples

This example removes the Nightly Backup schedule from the Database Backup job.

USE msdb
EXEC sp_delete_jobschedule @job_name = N'Database Backup',
 @name = N'Nightly Backup'

See Also

Modifying and Viewing Jobs

sp_add_jobschedule

sp_help_jobschedule

sp_update_jobschedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_jobserver
Removes the specified target server.

Syntax

sp_delete_jobserver [@job_id =] job_id , | [@job_name =] 'job_name' ,
 [@server_name =] 'server'

Arguments

[@job_id =] job_id

Is the identification number of the job from which the specified target server will be removed. job_id is uniqueidentifier, with a
default of NULL.

[@job_name =] 'job_name'

Is the name of the job from which the specified target server will be removed. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified; both cannot be specified.

[@server_name =] 'server'

Is the name of the target server to remove from the specified job. server is nvarchar(30), with no default. server can be (LOCAL)
or the name of a remote target server.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to the public role.

Examples

This example removes the server LONDON1 from processing the Backup Customer Information job.

Note This example assumes that the Backup Customer Information job was created earlier.

USE msdb
EXEC sp_delete_jobserver
 @job_name = 'Backup Customer Information',
 @server_name = 'LONDON1'

See Also

sp_add_jobserver

sp_help_jobserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_jobstep
Removes a job step from a job.

Syntax

sp_delete_jobstep [@job_id =] job_id , | [@job_name =] 'job_name' ,
 [@step_id =] step_id

Arguments

[@job_id =] job_id

Is the identification number of the job from which the step will be removed. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job from which the step will be removed. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified; both cannot be specified.

[@step_id =] step_id

Is the identification number of the step being removed. step_id is int, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Removing a job step automatically updates the other job steps that reference the deleted step.

For more information about the steps associated with a particular job, run sp_help_jobstep.

Microsoft SQL Server Enterprise Manager provides an easy, graphical way to manage jobs, and is the recommended way to
create and manage the job infrastructure.

Permissions

Execute permissions default to the public role.

Examples

This example removes job step 1 from the job Nightly Backups.

USE msdb
EXEC sp_delete_jobstep @job_name = 'Nightly Backups',
 @step_id = 1

See Also

Modifying and Viewing Jobs

sp_add_jobstep

sp_update_jobstep

sp_help_jobstep

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_database
Deletes a database from the log_shipping_databases table on the primary server.

Syntax

sp_delete_log_shipping_database [@db_name =] 'db_name'

Arguments

[@db_name =] 'db_name'

Is the name of the database no longer log shipped. db_name is sysname.

Return Code Values

0 (success) or 1 (failure)

Remarks

Execute this stored procedure to indicate that the database is no longer being log shipped. After this action takes place, sqlmaint
will stop updating the monitor server when transaction logs for this database are backed up.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_log_shipping_database.

Examples

This example assumes that the pubs database was previously added by executing the sp_add_log_shipping_database.

EXEC msdb.dbo.sp_delete_log_shipping_database @db_name = N'pubs'

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_monitor_info
Removes a log shipping pair from a log shipping monitor.

Syntax

sp_delete_log_shipping_monitor_info
 [@primary_server_name =] 'primary_server_name' ,
 [@primary_database_name =] 'primary_database_name' ,
 [@secondary_server_name =] 'secondary_server_name' ,
 [@secondary_database_name =] 'secondary_database_name' }

Arguments

[@primary_server_name =] 'primary_server_name'

Is the name of the primary server. primary_server_name is sysname.

[@primary_database_name =] 'primary_database_name'

Is the name of the primary database. primary_database_name is sysname.

[@secondary_server_name =] 'secondary_server_name'

Is the name of the secondary server. primary_server_name is sysname.

[@secondary_database_name =] 'secondary_database_name'

Is the name of the secondary database. primary_database_name is sysname.

Return Code Values

0 (success) or 1 (failure)

Remarks

Run sp_delete_log_shipping_monitor_info to notify the monitor server which log shipping pair will be deleted from the
monitor. This stored procedure must be executed on the instance of Microsoft® SQL Server™ 2000 that is acting as the monitor.

Note that the actual log shipping pair is not deleted. Only the monitor is affected by this operation.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_log_shipping_monitor_info.

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_plan
Deletes a log shipping plan.

Syntax

sp_delete_log_shipping_plan [@plan_id =] plan_id |
 [@plan_name =] 'plan_name'
 [, [@del_plan_db =] del_plan_db]

Arguments

[@plan_id =] plan_id

Is the identification number of the plan to delete. plan_id is uniqueidentifier, with a default of NULL.

[@plan_name =] 'plan_name'

Is the name of the plan to delete. plan_name is sysname, with a default of NULL.

Note Either plan_id or plan_name must be specified; both cannot be specified.

[@del_plan_db =] del_plan_db

Specifies that all rows from log_shipping_databases table that belong to this plan will be deleted. del_plan_db is bit, with a
default of 0.

Return Code Values

0 (success) or 1 (failure)

Remarks

If there are corresponding rows in the log_shipping_databases table, then del_plan_db must be set to one (1) or the stored
procedure will fail.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_log_shipping_plan.

Examples

This example deletes the plan "Pubs database backup" and any databases added to the plan.

EXEC msdb.dbo.sp_delete_log_shipping_plan @plan_name = N'Pubs database backup', @del_plan_db = 1

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_plan_database
Removes a database from a log shipping plan.

Syntax

sp_delete_log_shipping_plan_database [@plan_id =] plan_id ,
 [@plan_name =] 'plan_name' ,
 [@destination_database =] 'destination_database'

Arguments

[@plan_id =] plan_id

Is the identification number of the plan in which the database belongs. plan_id is uniqueidentifier, with a default of NULL.

[@plan_name =] 'plan_name'

Is the name of the plan in which the database belongs. plan_name is sysname, with a default of NULL.

Note Either plan_id or plan_name must be specified; both cannot be specified.

[@destination_database =] 'destination_database'

Is the name of the database to be removed from the plan. destination_database is sysname with a default of NULL. Wildcard
pattern matching is supported.

Return Code Values

0 (success) or 1 (failure)

Remarks

Removes matching databases from log_shipping_plan_databases table.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_log_shipping_plan.

Examples

This example removes "pubs2" from the plan "Pubs database backup."

EXEC msdb.dbo.sp_delete_log_shipping_plan_database @plan_name = N'Pubs database backup', @destination_database
= N'pubs2'

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_primary
Deletes the primary server from the log_shipping_primaries table.

Syntax

sp_delete_log_shipping_primary
 [@primary_server_name =] 'primary_server_name' ,
 [@primary_database_name =] 'primary_database_name' ,
 { [@delete_secondaries =] delete_secondaries }

Arguments

[@primary_server_name =] 'primary_server_name'

Is the name of the primary server. primary_server_name is sysname.

[@primary_database_name =] 'primary_database_name'

Is the name of the secondary server. primary_database_name is sysname.

[@delete_secondaries =] delete_secondaries

Specifies that the delete action is also applied to log_shipping_secondaries table. delete_secondaries is bit, with a default of
zero (0).

Return Code Values

0 (success) or 1 (failure)

Remarks

This stored procedure only removes the primary and secondary server from the monitor. Log shipping still has to be removed
from the primary and secondary servers.

sp_delete_log_shipping_primary deletes a log shipping primary table. If there are corresponding rows in the
log_shipping_databases table, delete_secondaries must be set to one (1) or the stored procedure will fail.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_log_shipping_primaries.

Examples

This example deletes the source database "pubs" from the server "source". There are no corresponding rows in
log_shipping_secondaries table.

EXEC sp_delete_log_shipping_primary @primary_server_name = N'source', @primary_database_name = N'pubs'

Transact-SQL Reference (SQL Server 2000)

sp_delete_log_shipping_secondary
Removes a secondary server from log_shipping_secondaries table.

Syntax

sp_delete_log_shipping_secondary
 [@secondary_server_name =] 'secondary_server_name' ,
 [@secondary_database_name =] 'secondary_database_name'

Arguments

[@secondary_server_name =] 'secondary_server_name'

Is the secondary server name. secondary_server_name is sysname.

[@secondary_database_name =] 'secondary_database_name'

Is the secondary database name. secondary_database_name is sysname.

Return Code Values

0 (success) or 1 (failure)

Remarks

This stored procedure removes matching databases from log_shipping_secondaries table.

Permissions

Only members of the sysadmin fixed server role can execute the sp_delete_log_shipping_secondary.

Transact-SQL Reference (SQL Server 2000)

sp_delete_maintenance_plan
Deletes the specified maintenance plan.

Syntax

sp_delete_maintenance_plan [@plan_id =] 'plan_id'

Arguments

[@plan_id =] 'plan_id'

Specifies the ID of the maintenance plan to be deleted. plan_id is uniqueidentifier, and must be a valid ID.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_delete_maintenance_plan must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_maintenance_plan.

Examples

Deletes the maintenance plan created with sp_add_maintenance_plan.

EXECUTE sp_delete_maintenance_plan 'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC'

Transact-SQL Reference (SQL Server 2000)

sp_delete_maintenance_plan_db
Disassociates the specified maintenance plan from the specified database.

Syntax

sp_delete_maintenance_plan_db [@plan_id =] 'plan_id' ,
 [@db_name =] 'database_name'

Arguments

[@plan_id =] 'plan_id'

Specifies the maintenance plan ID. plan_id is uniqueidentifier.

[@db_name =] 'database_name'

Specifies the database name to be deleted from the maintenance plan. database_name is sysname.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_delete_maintenance_plan_db must be run from the msdb database.

The sp_delete_maintenance_plan_db stored procedure removes the association between the maintenance plan and the
specified database; it does not drop or destroy the database.

When sp_delete_maintenance_plan_db removes the last database from the maintenance plan, the stored procedure also
deletes the maintenance plan.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_maintenance_plan_db.

Examples

Deletes the Northwind database, previously added with sp_add_maintenance_plan_db.

EXECUTE sp_delete_maintenance_plan_db N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC', N'Northwind'

Transact-SQL Reference (SQL Server 2000)

sp_delete_maintenance_plan_job
Disassociates the specified maintenance plan from the specified job.

Syntax

sp_delete_maintenance_plan_job [@plan_id =] 'plan_id' ,
 [@job_id =] 'job_id'

Arguments

[@plan_id =] 'plan_id'

Specifies the ID of the maintenance plan. plan_id is uniqueidentifier, and must be a valid ID.

[@job_id =] 'job_id'

Specifies the ID of the job with which the maintenance plan is associated. job_id is uniqueidentifier, and must be a valid ID.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_delete_maintenance_plan_job must be run from the msdb database.

When all jobs have been removed from the maintenance plan, it is recommended that users execute
sp_delete_maintenance_plan_db to remove the remaining databases from the plan.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_maintenance_plan_job.

Examples

This example deletes the job "B8FCECB1-E22C-11D2-AA64-00C04F688EAE" from the maintenance plan.

EXECUTE sp_delete_maintenance_plan_job N'FAD6F2AB-3571-11D3-9D4A-00C04FB925FC', N'B8FCECB1-E22C-11D2-AA64-
00C04F688EAE'

Transact-SQL Reference (SQL Server 2000)

sp_delete_notification
Removes all notifications sent to a particular operator in response to an alert.

Syntax

sp_delete_notification [@alert_name =] 'alert' ,
 [@operator_name =] 'operator'

Arguments

[@alert_name =] 'alert'

Is the name of the alert. alert is sysname, with no default.

[@operator_name =] 'operator'

Is the name of the operator. operator is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Removing a notification removes only the notification; the alert and the operator are left intact.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_notification.

Examples

This example removes all notifications sent to operator stevenb when alert 'Error 1101' occurs.

USE msdb
EXEC sp_delete_notification 'Error 11001', 'stevenb'

See Also

sp_add_alert

sp_add_notification

sp_add_operator

sp_delete_alert

sp_help_alert

sp_help_notification

sp_help_operator

sp_update_notification

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_operator
Removes an operator.

Syntax

sp_delete_operator [@name =] 'name'
 [, [@reassign_to_operator =] 'reassign_operator']

Arguments

[@name =] 'name'

Is the name of the operator to delete. name is sysname, with no default.

[@reassign_to_operator =] 'reassign_operator'

Is the name of an operator to whom the specified operator's alerts can be reassigned. reassign_operator is sysname, with a
default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

When an operator is removed, all the notifications associated with the operator are also removed.

Permissions

Only members of the sysadmin fixed server role can execute sp_delete_operator.

Examples

This example deletes operator janetl.

USE msdb
EXEC sp_delete_operator 'janetl'

See Also

sp_add_operator

sp_help_operator

sp_update_operator

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_targetserver
Removes the specified server from the list of available target servers.

Syntax

sp_delete_targetserver [@server_name =] 'server'

Arguments

[@server_name =] 'server'

Is name of the server to remove as an available target server. server is nvarchar(30), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The @clear_downloadlist and @post_defection parameters also exist in sp_delete_targetserver, but are reserved for internal
use only.

The normal way to delete a target server is to call sp_msx_defect at the target server. Use sp_delete_targetserver only when a
manual defection is necessary.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_delete_targetserver.

Examples

This example removes the server LONDON1 from the available job servers.

USE msdb
EXEC sp_delete_targetserver 'LONDON1'

See Also

sp_help_targetserver

sp_msx_defect

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_targetservergroup
Deletes the specified target server group.

Syntax

sp_delete_targetservergroup [@name =] 'name'

Arguments

[@name =] 'name'

Is the name of the target server group to remove. name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_delete_targetservergroup.

Examples

This example removes the target server group Servers Maintaining Customer Information.

USE msdb
EXEC sp_delete_targetservergroup
 @name = N'Servers Maintaining Customer Information'

See Also

sp_add_targetservergroup

sp_help_targetservergroup

sp_update_targetservergroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_delete_targetsvrgrp_member
Removes a target server from a target server group.

Syntax

sp_delete_targetsvrgrp_member [@group_name =] 'group_name' ,
 [server_name =] 'server_name'

Arguments

[@group_name =] 'group_name'

Is the name of the group. group_name is sysname, with no default.

[@server_name =] 'server_name'

Is the name of the server to remove from the specified group. server_name is nvarchar(30), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_delete_targetsvrgrp_member.

Examples

This example removes the server LONDON1 from the Servers Maintaining Customer Information group.

USE msdb
EXEC sp_delete_targetsvrgrp_member
 @group_name = N'Servers Maintaining Customer Information',
 @server_name = N'LONDON1'

See Also

sp_add_targetsvrgrp_member

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_denylogin
Prevents a Microsoft® Windows NT® user or group from connecting to Microsoft SQL Server™.

Syntax

sp_denylogin [@loginame =] 'login'

Arguments

[@loginame =] 'login'

Is the name of the Windows NT user or group. login is sysname, with no default. If the Windows NT user or group does not exist
in SQL Server, it is automatically added.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_denylogin can be used only with Windows NT accounts in the form Domain\User, for example London\Joeb. sp_denylogin
cannot be used with SQL Server logins added with sp_addlogin.

Use sp_grantlogin to reverse the effects of sp_denylogin and allow the user to connect.

sp_denylogin cannot be executed within a user-defined transaction.

Permissions

Only members of the securityadmin or sysadmin fixed server roles can execute sp_denylogin.

Examples

This example prevents user Corporate\GeorgeW from logging in to SQL Server.

EXEC sp_denylogin 'Corporate\GeorgeW'

Or

EXEC sp_denylogin [Corporate\GeorgeW]

See Also

Denying Login Access to Windows NT Accounts

sp_grantlogin

sp_revokelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_depends
Displays information about database object dependencies (for example, the views and procedures that depend on a table or view,
and the tables and views that are depended on by the view or procedure). References to objects outside the current database are
not reported.

Syntax

sp_depends [@objname =] 'object'

Arguments

[@objname =] 'object'

The database object to examine for dependencies. The object can be a table, view, stored procedure, or trigger. object is
nvarchar(776), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

sp_depends displays two result sets.

This result set shows the objects on which object depends.

Column name Data type Description
name nvarchar(40) Name of the item for which a dependency exists.
type nvarchar(16) Type of the item.
updated nvarchar(7) Whether the item is updated.
selected nvarchar(8) Whether the item is used in a SELECT statement.
column sysname Column or parameter on which the dependency

exists.

This result set shows the objects that depend on object.

Column name Data type Description
name nvarchar(40) Name of the item for which a dependency exists.
type nvarchar(16) Type of the item.

Remarks

An object that references another object is considered dependent on that object. sp_depends determines the dependencies by
looking at the sysdepends table.

Permissions

Execute permissions default to the public role.

Examples

This example lists the database objects that depend on the Customers table.

USE Northwind
EXEC sp_depends 'Customers'

See Also

CREATE PROCEDURE

CREATE TABLE

CREATE VIEW

EXECUTE

sp_help

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_describe_cursor
Reports the attributes of a server cursor.

Syntax

sp_describe_cursor [@cursor_return =] output_cursor_variable OUTPUT
 { [, [@cursor_source =] N'local'
 , [@cursor_identity =] N'local_cursor_name']
 | [, [@cursor_source =] N'global'
 , [@cursor_identity =] N'global_cursor_name']
 | [, [@cursor_source =] N'variable'
 , [@cursor_identity =] N'input_cursor_variable']
 }

Arguments

[@cursor_return =] output_cursor_variable OUTPUT

Is the name of a declared cursor variable to receive the cursor output. output_cursor_variable is cursor, with no default, and must
not be associated with any cursors at the time sp_describe_cursor is called. The cursor returned is a scrollable, dynamic, read-
only cursor.

[@cursor_source =] { N'local' | N'global' | N'variable' }

Specifies whether the cursor being reported on is specified using the name of a local cursor, a global cursor, or a cursor variable.
The parameter is nvarchar(30).

[@cursor_identity =] N'local_cursor_name']

Is the name of a cursor created by a DECLARE CURSOR statement either having the LOCAL keyword, or that defaulted to LOCAL.
local_cursor_name is nvarchar(128).

[@cursor_identity =] N'global_cursor_name']

Is the name of a cursor created by a DECLARE CURSOR statement either having the GLOBAL keyword, or that defaulted to
GLOBAL. It can also be the name of an API server cursor opened by an ODBC application that then named the cursor by calling
SQLSetCursorName. global_cursor_name is nvarchar(128).

[@cursor_identity =] N'input_cursor_variable']

Is the name of a cursor variable associated with an open cursor. input_cursor_variable is nvarchar(128).

Return Code Values

None

Cursors Returned

sp_describe_cursor encapsulates its result set in a Transact-SQL cursor output parameter. This allows Transact-SQL batches,
stored procedures, and triggers to work with the output one row at a time. It also means that the procedure cannot be called
directly from database API functions. The cursor output parameter must be bound to a program variable, but the database APIs
do not support binding cursor parameters or variables.

This is the format of the cursor returned by sp_describe_cursor. The format of the cursor is the same as the format returned by
sp_cursor_list.

Column name Data type Description
reference_name sysname Name used to refer to the cursor. If the

reference to the cursor was through the name
given on a DECLARE CURSOR statement, the
reference name is the same as cursor name. If
the reference to the cursor was through a
variable, the reference name is the name of the
variable.

cursor_name sysname Name of the cursor from a DECLARE CURSOR
statement. If the cursor was created by setting
a cursor variable to a cursor, the cursor name
is a system-generated name.

cursor_scope tinyint 1 = LOCAL
2 = GLOBAL

status int Same values as reported by the
CURSOR_STATUS system function:

1 = The cursor referenced by the cursor name
or variable is open. If the cursor is insensitive,
static, or keyset, it has at least one row. If the
cursor is dynamic, the result set has zero or
more rows.
0 = The cursor referenced by the cursor name
or variable is open but has no rows. Dynamic
cursors never return this value.
-1 = The cursor referenced by the cursor name
or variable is closed.
-2 = Applies only to cursor variables. There is
no cursor assigned to the variable. Possibly, an
OUTPUT parameter assigned a cursor to the
variable, but the stored procedure closed the
cursor before returning.
-3 = A cursor or cursor variable with the
specified name does not exist, or the cursor
variable has not had a cursor allocated to it.

model tinyint 1 = Insensitive (or static)
2 = Keyset
3 = Dynamic
4 = Fast Forward

concurrency tinyint 1 = Read-only
2 = Scroll locks
3 = Optimistic

scrollable tinyint 0 = Forward-only
1 = Scrollable

open_status tinyint 0 = Closed
1 = Open

cursor_rows decimal(10,0) Number of qualifying rows in the result set.
For more information, see
@@CURSOR_ROWS.

fetch_status smallint Status of the last fetch on this cursor. For more
information, see @@FETCH_STATUS.

0 = Fetch successful.
-1 = Fetch failed or is beyond the bounds of
the cursor.
-2 = The requested row is missing.
-9 = There has been no fetch on the cursor.

column_count smallint Number of columns in the cursor result set.
row_count decimal(10,0) Number of rows affected by the last operation

on the cursor. For more information, see
@@ROWCOUNT.

last_operation tinyint Last operation performed on the cursor:

0 = No operations have been performed on
the cursor.
1 = OPEN
2 = FETCH
3 = INSERT
4 = UPDATE
5 = DELETE
6 = CLOSE
7 = DEALLOCATE

cursor_handle int A unique value for the cursor within the scope
of the server.

Remarks

sp_describe_cursor describes the attributes that are global to a server cursor, such as the ability to scroll and update. Use
sp_describe_cursor_columns for a description of the attributes of the result set returned by the cursor. Use
sp_describe_cursor_tables for a report of the base tables referenced by the cursor. Use sp_cursor_list to get a report of the
Transact-SQL server cursors visible on the connection.

A DECLARE CURSOR statement may request a cursor type that Microsoft® SQL Server™ cannot support with the SELECT
statement contained in the DECLARE CURSOR. SQL Server implicitly converts the cursor to a type it can support with the SELECT
statement. If TYPE_WARNING is specified in the DECLARE CURSOR statement SQL Server sends the application an informational
message that a conversion has been done. sp_describe_cursor can then be called to determine the type of cursor that has been
implemented.

Permissions

Execute permission defaults to the public role.

Examples

This example opens a global cursor and uses sp_describe_cursor to report on the attributes of the cursor.

USE Northwind

GO
-- Declare and open a global cursor.
DECLARE abc CURSOR STATIC FOR
SELECT LastName
FROM Employees

OPEN abc

-- Declare a cursor variable to hold the cursor output variable
-- from sp_describe_cursor.
DECLARE @Report CURSOR

-- Execute sp_describe_cursor into the cursor variable.
EXEC master.dbo.sp_describe_cursor @cursor_return = @Report OUTPUT,
 @cursor_source = N'global', @cursor_identity = N'abc'

-- Fetch all the rows from the sp_describe_cursor output cursor.
FETCH NEXT from @Report
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT from @Report
END

-- Close and deallocate the cursor from sp_describe_cursor.
CLOSE @Report
DEALLOCATE @Report
GO

-- Close and deallocate the original cursor.
CLOSE abc
DEALLOCATE abc
GO

See Also

Cursors

CURSOR_STATUS

DECLARE CURSOR

sp_cursor_list

sp_describe_cursor_columns

sp_describe_cursor_tables

Transact-SQL Reference (SQL Server 2000)

sp_describe_cursor_columns
Reports the attributes of the columns in the result set of a server cursor.

Syntax

sp_describe_cursor_columns
 [@cursor_return =] output_cursor_variable OUTPUT
 { [, [@cursor_source =] N'local'
 , [@cursor_identity =] N'local_cursor_name']
 | [, [@cursor_source =] N'global'
 , [@cursor_identity =] N'global_cursor_name']
 | [, [@cursor_source =] N'variable'
 , [@cursor_identity =] N'input_cursor_variable']
 }

Arguments

[@cursor_return =] output_cursor_variable OUTPUT

Is the name of a declared cursor variable to receive the cursor output. output_cursor_variable is cursor, with no default, and must
not be associated with any cursors at the time sp_describe_cursor_columns is called. The cursor returned is a scrollable,
dynamic, read-only cursor.

[@cursor_source =] { N'local' | N'global' | N'variable' }

Specifies whether the cursor being reported on is specified using the name of a local cursor, a global cursor, or a cursor variable.
The parameter is nvarchar(30).

[@cursor_identity =] N'local_cursor_name'

Is the name of a cursor created by a DECLARE CURSOR statement either having the LOCAL keyword, or that defaulted to LOCAL.
local_cursor_name is nvarchar(128).

[@cursor_identity =] N'global_cursor_name'

Is the name of a cursor created by a DECLARE CURSOR statement either having the GLOBAL keyword, or that defaulted to
GLOBAL. It can also be the name of an API server cursor opened by an ODBC application that then named the cursor by calling
SQLSetCursorName. global_cursor_name is nvarchar(128).

[@cursor_identity =] N'input_cursor_variable'

Is the name of a cursor variable associated with an open cursor. input_cursor_variable is nvarchar(128).

Return Code Values

None

Cursors Returned

sp_describe_cursor_columns encapsulates its report as a Transact-SQL cursor output parameter. This allows Transact-SQL
batches, stored procedures, and triggers to work with the output one row at a time. It also means that the procedure cannot be
called directly from database API functions. The cursor output parameter must be bound to a program variable, but the database
APIs do not support binding cursor parameters or variables.

This is the format of the cursor returned by sp_describe_cursor_columns.

Column name Data type Description
column_name sysname

nullable

Name assigned to the result set
column. The column is NULL if the
column was specified without an
accompanying AS clause.

ordinal_position int Relative position of the column from
the leftmost column in the result set.
The first column is in position 0.

column_characteristics_flags int A bitmask indicating the information
stored in DBCOLUMNFLAGS in OLE
DB. Can be one or a combination of
the following:

1 = Bookmark
2 = Fixed length
4 = Nullable
8 = Row versioning
16 = Updatable column (set for
projected columns of a cursor that has
no FOR UPDATE clause and, if there is
such a column, can be only one per
cursor).

When bit values are combined, the
characteristics of the combined bit
values apply. For example, if the bit
value is 6, the column is a fixed-length
(2), nullable (4) column.

column_size int Maximum possible size for a value in
this column.

data_type_sql smallint Number indicating the SQL Server
data type of the column.

column_precision tinyint Maximum precision of the column as
per the bPrecision value in OLE DB.

column_scale tinyint Number of digits to the right of the
decimal point for the numeric or
decimal data types as per the bScale
value in OLE DB.

order_position int If the column participates in the
ordering of the result set, the position
of the column in the order key relative
to the leftmost column.

order_direction varchar(1),
nullable

A = The column is in the order key and
the ordering is ascending.
D = The column is in the order key
and the ordering is descending.
NULL = The column does not
participate in ordering.

hidden_column smallint If a value of 0, this column appears in
the select list. The value 1 is reserved
for future use.

columnid int Column ID of the base column. If the
result set column was built from an
expression, columnid is -1.

objectid int Object ID of the base table supplying
the column. If the result set column
was built from an expression,
objectid is -1.

dbid int ID of the database containing the base
table supplying the column. If the
result set column was built from an
expression, dbid is -1.

dbname sysname

nullable

Name of the database containing the
base table supplying the column. If the
result set column was built from an
expression, dbname is NULL.

Remarks

sp_describe_cursor_columns describes the attributes of the columns in the result set of a server cursor, such as the name and
data type of each cursor. Use sp_describe_cursor for a description of the global attributes of the server cursor. Use
sp_describe_cursor_tables for a report of the base tables referenced by the cursor. Use sp_cursor_list to get a report of the
Transact-SQL server cursors visible on the connection.

Permissions

Execute permissions default to the public role.

Examples

This example opens a global cursor and uses sp_describe_cursor_columns to report on the columns used in the cursor.

USE Northwind
GO
-- Declare and open a global cursor.
DECLARE abc CURSOR KEYSET FOR
SELECT LastName
FROM Employees
GO
OPEN abc

-- Declare a cursor variable to hold the cursor output variable
-- from sp_describe_cursor_columns.
DECLARE @Report CURSOR

-- Execute sp_describe_cursor_columns into the cursor variable.
EXEC master.dbo.sp_describe_cursor_columns
 @cursor_return = @Report OUTPUT,
 @cursor_source = N'global', @cursor_identity = N'abc'

-- Fetch all the rows from the sp_describe_cursor_columns output cursor.
FETCH NEXT from @Report
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT from @Report
END

-- Close and deallocate the cursor from sp_describe_cursor_columns.
CLOSE @Report
DEALLOCATE @Report
GO
-- Close and deallocate the original cursor.
CLOSE abc
DEALLOCATE abc
GO

See Also

Cursors

CURSOR_STATUS

DECLARE CURSOR

sp_describe_cursor

sp_cursor_list

sp_describe_cursor_tables

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_describe_cursor_tables
Reports the base tables referenced by a server cursor.

Syntax

sp_describe_cursor_tables
 [@cursor_return =] output_cursor_variable OUTPUT
 { [, [@cursor_source =] N'local'
 , [@cursor_identity =] N'local_cursor_name']
 | [, [@cursor_source =] N'global'
 , [@cursor_identity =] N'global_cursor_name']
 | [, [@cursor_source =] N'variable'
 , [@cursor_identity =] N'input_cursor_variable']
 }

Arguments

[@cursor_return =] output_cursor_variable OUTPUT

Is the name of a declared cursor variable to receive the cursor output. output_cursor_variable is cursor, with no default, and must
not be associated with any cursors at the time sp_describe_cursor_tables is called. The cursor returned is a scrollable, dynamic,
read-only cursor.

[@cursor_source =] { N'local' | N'global' | N'variable' }

Specifies whether the cursor being reported on is specified using the name of a local cursor, a global cursor, or a cursor variable.
The parameter is nvarchar(30).

[@cursor_identity =] N'local_cursor_name'

Is the name of a cursor created by a DECLARE CURSOR statement either having the LOCAL keyword, or that defaulted to LOCAL.
local_cursor_name is nvarchar(128).

[@cursor_identity =] N'global_cursor_name'

Is the name of a cursor created by a DECLARE CURSOR statement either having the GLOBAL keyword, or that defaulted to
GLOBAL. It can also be the name of an API server cursor opened by an ODBC application that then named the cursor by calling
SQLSetCursorName.global_cursor_name is nvarchar(128).

[@cursor_identity =] N'input_cursor_variable'

Is the name of a cursor variable associated with an open cursor. input_cursor_variable is nvarchar(128).

Return Code Values

None

Cursors Returned

sp_describe_cursor_tables encapsulates its report as a Transact-SQL cursor output parameter. This allows Transact-SQL
batches, stored procedures, and triggers to work with the output one row at a time. It also means that the procedure cannot be
called directly from database API functions. The cursor output parameter must be bound to a program variable, but the database
APIs do not support bind cursor parameters or variables.

This is the format of the cursor returned by sp_describe_cursor_tables.

Column name Data type Description
table owner sysname User ID of the table owner.
Table_name sysname Name of the base table.

Optimizer_hints smallint Bitmap consisting of one or more of:

1 = Row-level locking (ROWLOCK)
4 = Page-level locking (PAGELOCK)
8 = Table Lock (TABLOCK)
16 = Exclusive table lock (TABLOCKX)
32 = Update lock (UPDLOCK)
64 = No lock (NOLOCK)
128 = Fast first-row option (FASTFIRST)
4096 = Read repeatable semantic when used
with declare cursor (HOLDLOCK)

When multiple options are supplied, the system
uses the most restrictive. However,
sp_describe_cursor_tables shows the flags as
specified in the query.

lock_type smallint Scroll-lock type requested either explicitly or
implicitly for each base table that underlies this
cursor. The value can be:

0 = None
1 = Shared
3 = Update

server_name sysname,
nullable

Name of the linked server the table resides on.
NULL if OPENQUERY or OPENROWSET are
used.

Objectid int Object ID of the table. 0 if OPENQUERY or
OPENROWSET are used.

dbid int ID of the database the table resides in. 0 if
OPENQUERY or OPENROWSET are used.

dbname sysname,
nullable

Name of the database the table resides in.
NULL if OPENQUERY or OPENROWSET are
used.

Remarks

sp_describe_cursor_tables describes the base tables referenced by a server cursor. Use sp_describe_cursor_columns for a
description of the attributes of the result set returned by the cursor. Use sp_describe_cursor for a description of the global
characteristics of the cursor, such as its scrollability and updatability. Use sp_cursor_list to get a report of the Transact-SQL server
cursors visible on the connection.

Permissions

Execute permissions default to the public role.

Examples

This example opens a global cursor and uses sp_describe_cursor_tables to report on the tables referenced by the cursor.

USE Northwind
GO
-- Declare and open a global cursor.
DECLARE abc CURSOR KEYSET FOR
SELECT LastName
FROM Employees
WHERE LastName LIKE 'S%'

OPEN abc
GO
-- Declare a cursor variable to hold the cursor output variable
-- from sp_describe_cursor_tables.
DECLARE @Report CURSOR

-- Execute sp_describe_cursor_tables into the cursor variable.

EXEC master.dbo.sp_describe_cursor_tables
 @cursor_return = @Report OUTPUT,
 @cursor_source = N'global', @cursor_identity = N'abc'

-- Fetch all the rows from the sp_describe_cursor_tables output cursor.
FETCH NEXT from @Report
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 FETCH NEXT from @Report
END

-- Close and deallocate the cursor from sp_describe_cursor_tables.
CLOSE @Report
DEALLOCATE @Report
GO

-- Close and deallocate the original cursor.
CLOSE abc
DEALLOCATE abc
GO

See Also

Cursors

CURSOR_STATUS

DECLARE CURSOR

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_detach_db
 Topic last updated -- July 2003

Detaches a database from a server and, optionally, runs UPDATE STATISTICS on all tables before detaching.

Important For a replicated database to be detached, it must be unpublished.

Syntax

sp_detach_db [@dbname =] 'dbname'
 [, [@skipchecks =] 'skipchecks']

Arguments

[@dbname =] 'dbname'

Is the name of the database to be detached. dbname is sysname, with a default value of NULL.

[@skipchecks =] 'skipchecks'

skipchecks is nvarchar(10), with a default value of NULL. If true, UPDATE STATISTICS is skipped. If false, UPDATE STATISTICS is
run. This option is useful for databases that are to be moved to read-only media.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The detached files remain and can be reattached using sp_attach_db or sp_attach_single_file_db. The files can also be moved
to another server and attached.

Permissions

Only members of the sysadmin fixed server role can execute sp_detach_db.

Examples

This example detaches the pubs database with skipchecks set to true.

EXEC sp_detach_db 'pubs', 'true'

See Also

sp_attach_db

sp_attach_single_file_db

Transact-SQL Reference (SQL Server 2000)

sp_dropalias
Removes an alias to a user in the current database from a login. sp_dropalias is provided for backward compatibility only. Use
roles and the sp_droprolemember stored procedure instead of aliases.

Syntax

sp_dropalias [@loginame =] 'login'

Arguments

[@loginame =] 'login'

Is the name of the Microsoft® SQL Server™ login or Microsoft Windows NT® user or group from which the alias is to be
removed. login is sysname, with no default. login must already exist.

Return Code Values

0 (success) or 1 (failure)

Remarks

Aliases allow logins to assume the identity of a user in a database, thereby gaining the permissions of that user while working in
that database.

When the alias is removed, the login can no longer perform the activities associated with the user to whom they were aliased in
the current database.

sp_dropalias cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_accessadmin and db_owner fixed database roles can execute
sp_dropalias.

Examples

This example removes the alias to user Victoria in the current database.

EXEC sp_dropalias 'Victoria'

See Also

sp_addalias

sp_addrolemember

sp_droprolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropapprole
Removes an application role from the current database.

Syntax

sp_dropapprole [@rolename =] 'role'

Arguments

[@rolename =] 'role'

Is the application role to remove. role is sysname, with no default. role must exist in the current database.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropapprole can only be used to remove application roles. Use sp_droprole to remove a standard Microsoft® SQL Server™
role. An application role cannot be removed if it owns any objects. Either remove the objects before removing the application role,
or use sp_changeobjectowner to change the owner of any objects that must not be removed.

sp_dropapprole cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_securityadmin and db_owner fixed database roles can execute
sp_dropapprole.

Examples

This example removes the SalesApp application role from the current database.

EXEC sp_dropapprole 'SalesApp'

See Also

sp_addapprole

sp_changeobjectowner

sp_setapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropdevice
Drops a database device or backup device from Microsoft® SQL Server™, deleting the entry from master.dbo.sysdevices.

Syntax

sp_dropdevice [@logicalname =] 'device'
 [, [@delfile =] 'delfile']

Arguments

[@logicalname =] 'device'

Is the logical name of the database device or backup device as listed in master.dbo.sysdevices.name. device is sysname, with
no default.

[@delfile =] 'delfile'

Is whether or not the physical backup device file should be deleted. delfile is varchar(7). If specified as DELFILE, the physical
backup device disk file is deleted.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_dropdevice cannot be used inside a transaction.

Permissions

Execute permissions default to members of the sysadmin and diskadmin fixed server roles.

Examples

This example drops the TAPEDUMP1 tape dump device from SQL Server.

sp_dropdevice 'TAPEDUMP1'

See Also

DROP DATABASE

sp_addumpdevice

sp_helpdb

sp_helpdevice

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropextendedproc
Drops an extended stored procedure.

Syntax

sp_dropextendedproc [@functname =] 'procedure'

Arguments

[@functname =] 'procedure'

Is the name of the extended stored procedure to drop. procedure is nvarchar(517), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Executing sp_dropextendedproc drops the extended stored procedure name from the sysobjects table and removes the entry
from the syscomments table.

sp_dropextendedproc cannot be executed inside a transaction.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropextendedproc.

Examples

This example drops the xp_diskfree extended stored procedure.

Note This extended stored procedure must already exist for this example to work without returning an error message.

USE master
EXEC sp_dropextendedproc 'xp_hello'

See Also

sp_addextendedproc

sp_helpextendedproc

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropextendedproperty
Drops an existing extended property.

Syntax

sp_dropextendedproperty
 [@name =] { 'property_name' }
 [, [@level0type =] { 'level0_object_type' }
 , [@level0name =] { 'level0_object_name' }
 [, [@level1type =] { 'level1_object_type' }
 , [@level1name =] { 'level1_object_name' }
 [, [@level2type =] { 'level2_object_type' }
 , [@level2name =] { 'level2_object_name' }
]
]
]

Arguments

[@name =]{'property_name'}

Is the name of the property to be dropped. property_name is sysname and cannot be NULL.

[@level0type =]{'level0_object_type'}

Is the user or user-defined type. level0_object_type is varchar(128), with a default of NULL. Valid inputs are USER, TYPE, and
NULL.

[@level0name =]{'level0_object_name'}

Is the name of the level 1 object type specified. level0_object_name is sysname with a default of NULL.

[@level1type =]{'level1_object_type'}

Is the type of level 1 object. level1_object_type is varchar(128) with a default of NULL. Valid inputs are TABLE, VIEW,
PROCEDURE, FUNCTION, DEFAULT, RULE, and NULL.

[@level1name =]{'level1_object_name'}

Is the name of the level 1 object type specified. level1_object_name is sysname with a default of NULL.

[@level2type =]{'level2_object_type'}

Is the type of level 2 object. level2_object_type is varchar(128) with a default of NULL. Valid inputs are COLUMN, PARAMETER,
INDEX, CONSTRAINT, TRIGGER, and NULL.

[@level2name =]{'level2_object_name'}

Is the name of the level 2 object type specified. level2_object_name is sysname with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

Extended properties are not allowed on system objects.

The objects are distinguished according to levels, with level 0 as the highest and level 2 the lowest. When a user adds, updates, or
deletes an extended property, that user must specify all higher level objects. For example, if the user adds an extended property to
a level 1 object, that user must specify all level 0 information. If the user adds an extended property to a level 2 object, all
information on levels 0 and 1 must be supplied.

At each level, object type and object name uniquely identify an object. If one part of the pair is specified, the other part must also
be specified.

Given a valid property_name, if all object types and names are null and a current database property exists, that database property

is deleted. If an object type and name are specified, then a parent object and type also must be specified. Otherwise, SQL Server
raises an error.

Permissions

Members of the db_owner and db_ddladmin fixed database roles may drop extended properties of any object. Users may drop
extended properties to objects they own. However, only db_owner may drop properties to user names.

Examples

This example removes the property 'caption' from column 'id' in table 'T1,' owned by the dbo.

CREATE table T1 (id int , name char (20))
GO
EXEC sp_addextendedproperty 'caption', 'Employee ID', 'user', dbo, 'table', 'T1', 'column', id
EXEC sp_dropextendedproperty 'caption', 'user', dbo, 'table', 'T1', 'column', id

See Also

fn_listextendedproperty

Transact-SQL Reference (SQL Server 2000)

sp_dropgroup
Removes a role from the current database. sp_dropgroup is provided for backward compatibility. In Microsoft® SQL Server™
version 7.0, groups are implemented as roles.

Syntax

sp_dropgroup [@rolename =] 'role'

Arguments

[@rolename =] 'role'

Is the role to remove from the current database. role is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Name sysname The name of the existing member of the role.

Remarks

sp_dropgroup calls sp_droprole with the role value to remove the role. The public, fixed server, fixed database, or application
roles cannot be removed. Use sp_dropapprole to remove an application role.

A role cannot be removed if it owns any objects. Either remove the objects before removing the role, or use
sp_changeobjectowner to change the owner of any objects that must not be removed.

Additionally, the role cannot be removed if there are any members of the role. Use sp_droprolemember to remove the user
from the role. If any users are still members of the role, sp_dropgroup displays those members.

sp_dropgroup cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_securityadmin or db_owner fixed database roles, or the owner of the
role, can execute sp_dropgroup.

Examples

This example removes the role my_role from the current database.

EXEC sp_dropgroup 'my_role'

See Also

sp_addrole

sp_droprole

sp_dropapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droplinkedsrvlogin
Removes an existing mapping between a login on the local server running Microsoft® SQL Server™ and a login on the linked
server.

Syntax

sp_droplinkedsrvlogin [@rmtsrvname =] 'rmtsrvname' ,
 [@locallogin =] 'locallogin'

Arguments

[@rmtsrvname =] 'rmtsrvname'

Is the name of a linked server that the SQL Server login mapping applies to. rmtsrvname is sysname, with no default.
rmtsrvname must already exist.

[@locallogin =] 'locallogin'

Is the SQL Server login on the local server that has a mapping to the linked server rmtsrvname. locallogin is sysname, with no
default. A mapping for locallogin to rmtsrvname must already exist. If NULL, the default mapping created by
sp_addlinkedserver, which maps all logins on the local server to logins on the linked server, is deleted.

Return Code Values

0 (success) or 1 (failure)

Remarks

When the existing mapping for a login is deleted, the local server uses the default mapping created by sp_addlinkedserver when
connecting to the linked server on behalf of that login. To change the default mapping, use sp_addlinkedsrvlogin.

If the default mapping is also deleted, only logins that have been explicitly given a login mapping to the linked server, using
sp_addlinkedsrvlogin, can access the linked server.

sp_droplinkedsrvlogin cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_droplinkedsrvlogin.

Examples

A. Remove the login mapping for an existing user

This example removes the mapping for the login Mary from the local server to the linked server Accounts; as a result, login
Mary uses the default login mapping.

EXEC sp_droplinkedsrvlogin 'Accounts', 'Mary'

B. Remove the default login mapping

This example removes the default login mapping originally created by executing sp_addlinkedserver on the local server
Accounts.

EXEC sp_droplinkedsrvlogin 'Accounts', NULL

See Also

Security for Linked Servers

sp_addlinkedserver

sp_addlinkedsrvlogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droplogin
Removes a Microsoft® SQL Server™ login, preventing access to SQL Server using that login name.

Syntax

sp_droplogin [@loginame =] 'login'

Arguments

[@loginame =] 'login'

Is the login to be removed. login is sysname, with no default. login must already exist in SQL Server.

Return Code Values

0 (success) or 1 (failure)

Remarks

A login mapped to an existing user in any database cannot be removed. The user must be removed first by using sp_dropuser.
Additionally, these logins cannot be removed:

The system administrator (sa) login.

A login that owns an existing database.

A login that owns jobs in the msdb database.

A login that is currently in use and connected to SQL Server.

Use sp_changedbowner to change the owner of a database.

Removing a login also deletes any remote and linked server logins mapped to the login.

sp_droplogin cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_droplogin.

sp_droplogin must check all databases on the server to determine if any user accounts in those databases are associated with
the login being deleted. Therefore, for each database on the server, one of these must apply:

The user executing sp_droplogin must have permissions to access the database.

The guest user account must exist in the database.

If a database cannot be accessed, the login can still be deleted. However, error message 15622 is generated and any users who
were associated with the deleted login become orphaned in the databases that could not be accessed. To determine the orphaned
users, execute sp_change_users_login REPORT in each database that could not be accessed by sp_droplogin.

Examples

This example removes the login Victoria from SQL Server.

EXEC sp_droplogin 'Victoria'

See Also

sp_addlogin

sp_changedbowner

sp_change_users_login

sp_dropuser

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmessage
Drops a specified error message from the sysmessages system table.

Syntax

sp_dropmessage [@msgnum =] message_number
 [, [@lang =] 'language']

Arguments

[@msgnum =] message_number

Is the message number to drop. message_number must be a user-defined message with a message number greater than 50000.
message_number is int, with a default of NULL.

[@lang =] 'language'

Is the language of the message to drop. If all is specified, all language versions of message_number are dropped. language is
sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Only members of the sysadmin and serveradmin fixed server roles can execute this procedure.

Examples

This example drops the message (number 50001) from sysmessages.

USE master
EXEC sp_dropmessage 50001

Here is the result:

Message dropped.

See Also

CREATE TABLE

RAISERROR

sp_addmessage

sp_altermessage

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropremotelogin
Removes a remote login mapped to a local login used to execute remote stored procedures against the local server running
Microsoft® SQL Server™.

Syntax

sp_dropremotelogin [@remoteserver =] 'remoteserver'
 [, [@loginame =] 'login']
 [, [@remotename =] 'remote_name']

Arguments

[@remoteserver =] 'remoteserver'

Is the name of the remote server mapped to the remote login that is to be removed. remoteserver is sysname, with no default.
remoteserver must already exist.

[@loginame =] 'login'

Is the optional login name on the local server that is associated with the remote server. login is sysname, with a default of NULL.
login must already exist if specified.

[@remotename =] 'remote_name'

Is the optional name of the remote login that is mapped to login when logging in from the remote server. remote_name is
sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

If only remoteserver is specified, all remote logins for that remote server are removed from the local server. If login is additionally
specified, all remote logins from remoteserver mapped to that specific local login are removed from the local server. If
remote_name is also specified, only the remote login for that remote user from remoteserver is removed from the local server.

To add local server users, use sp_addlogin. To remove local server users, use sp_droplogin.

Remote logins are only required when using earlier versions of SQL Server. SQL Server version 7.0 uses linked server logins
instead. Use sp_addlinkedsrvlogin and sp_droplinkedsrvlogin to add and remove linked server logins.

sp_dropremotelogin cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin or securityadmin fixed server roles can execute sp_dropremotelogin.

Examples

A. Drop all remote logins for a remote server

This example removes the entry for the remote server ACCOUNTS, thereby removing all mappings between logins on the local
server and remote logins on the remote server.

EXEC sp_dropremotelogin 'ACCOUNTS'

B. Drop a login mapping

This example removes the entry for mapping remote logins from the remote server ACCOUNTS to the local login Albert.

EXEC sp_dropremotelogin 'ACCOUNTS', 'Albert'

C. Drop a remote user

This example removes the login for the remote login Chris on the remote server ACCOUNTS that was mapped to the local login
salesmgr.

EXEC sp_dropremotelogin 'ACCOUNTS', 'salesmgr', 'Chris'

See Also

sp_addlinkedsrvlogin

sp_addlogin

sp_addremotelogin

sp_addserver

sp_droplinkedsrvlogin

sp_droplogin

sp_helpremotelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droprole
Removes a Microsoft® SQL Server™ role from the current database.

Syntax

sp_droprole [@rolename =] 'role'

Arguments

[@rolename =] 'role'

Is the name of the role to remove from the current database. role is sysname, with no default. role must already exist in the
current database.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Name sysname The name of the existing member of the role.

Remarks

Only standard user roles can be removed using sp_droprole. To remove an application role, use sp_dropapprole.

A role with existing members cannot be removed. All members of the role must first be removed from the role before the role can
be removed. To remove users from a role, use sp_droprolemember. If any users are still members of the role, sp_droprole
displays those members.

Fixed roles and the public role cannot be removed.

A role cannot be removed if it owns any objects. Either remove the objects before removing the role, or use
sp_changeobjectowner to change the owner of any objects that must not be removed.

sp_droprole cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_securityadmin fixed database roles, or the owner of
the role, can execute sp_droprole.

Examples

This example removes the SQL Server role Sales.

EXEC sp_droprole 'Sales'

See Also

sp_addrole

sp_dropapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droprolemember
Removes a security account from a Microsoft® SQL Server™ role in the current database.

Syntax

sp_droprolemember [@rolename =] 'role' ,
 [@membername =] 'security_account'

Arguments

'role'

Is the name of the role that the member is being removed from. role is sysname, with no default. role must exist in the current
database.

'security_account'

Is the name of the security account being removed from the role. security_account is sysname, with no default. security_account
can be a SQL Server user or another SQL Server role, or a Microsoft Windows NT® user or group. security_account must exist in
the current database. When specifying a Windows NT user or group, specify the name that the Windows NT user or group is
known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_droprolemember removes a role member by deleting a row from the sysmembers table. When removing a member from a
role, the permissions applied to the role are no longer applied to the former member of the role.

sp_droprolemember cannot be used to remove a Windows NT user from a Windows NT group; this must be done in the
Windows NT security system. To remove a user from a fixed server role, use sp_dropsrvrolemember. Users cannot be removed
from the public role, and dbo cannot be removed from any role.

Use sp_helpuser to see the members of a SQL Server role, and use sp_addrolemember to add a member to a role.

sp_droprolemember cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_securityadmin fixed database roles can execute
sp_droprolemember. Only a member of the db_owner fixed database role can remove users from a fixed database role.

Examples

This example removes the user JonB from the role Sales.

EXEC sp_droprolemember 'Sales', 'Jonb'

See Also

sp_addrolemember

sp_droprole

sp_dropsrvrolemember

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropserver
Removes a server from the list of known remote and linked servers on the local Microsoft® SQL Server™.

Syntax

sp_dropserver [@server =] 'server'
 [, [@droplogins =] { 'droplogins' | NULL}]

Arguments

[@server =] 'server'

Is the server to be removed. server is sysname, with no default. server must exist.

[@droplogins =] 'droplogins' | NULL

Indicates that related remote and linked server logins for server must also be removed if droplogins is specified. @droplogins is
char(10), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

Running sp_dropserver on a server that has associated remote and linked server login entries results in an error message stating
that logins must be removed before removing the remote or linked server. To remove all remote and linked server logins for a
server when removing the server, use the droplogins argument.

sp_dropserver cannot be executed inside a user-defined transaction.

Permissions

Only members of the sysadmin or setupadmin fixed server roles can execute sp_dropserver.

Examples

This example removes the remote server ACCOUNTS and all associated remote logins from the local SQL Server.

sp_dropserver 'ACCOUNTS', 'droplogins'

See Also

sp_addserver

sp_dropremotelogin

sp_helpremotelogin

sp_helpserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropsrvrolemember
Removes a Microsoft® SQL Server™ login or a Microsoft Windows NT® user or group from a fixed server role.

Syntax

sp_dropsrvrolemember [@loginame =] 'login' , [@rolename =] 'role'

Arguments

[@loginame =] 'login'

Is the name of a login to remove from the fixed server role. login is sysname, with no default. login must exist.

[@rolename =] 'role'

Is the name of a server role. role is sysname, with a default of NULL. role must be a valid fixed server role, and must be one of
these values:

sysadmin

securityadmin

serveradmin

setupadmin

processadmin

diskadmin

dbcreator

bulkadmin

Return Code Values

0 (success) or 1 (failure)

Remarks

Only sp_dropsrvrolemember can be used to remove a login from a server role. Use sp_droprolemember to remove a member
from a standard SQL Server role.

When a login has been removed from a server role, that login can no longer perform activities based on the permissions
associated with the server role.

The sa login cannot be removed from any fixed server role.

sp_dropsrvrolemember cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropsrvrolemember to remove any login from a fixed server
role. Members of a fixed server role can remove other members of the same fixed server role.

Examples

This example removes the login JackO from the sysadmin fixed server role.

EXEC sp_dropsrvrolemember 'JackO', 'sysadmin'

See Also

sp_addsrvrolemember

sp_droprolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droptask
sp_droptask is provided for backward compatibility only. For information about the Microsoft SQL® Server™ version 7.0
replacement procedures, see SQL Server Backward Compatibility Details.

Removes a scheduled task.

Important For information about syntax used in earlier versions of SQL Server, see the Microsoft SQL Server Transact-SQL
Reference for version 6.x.

Remarks

If you create a task by using sp_addtask, that task must be deleted only by using sp_droptask. For task management, use SQL
Server Enterprise Manager.

Permissions

Execute permissions default to the public role.

See Also

sp_addtask

sp_helptask

sp_purgehistory

sp_updatetask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droptype
Deletes a user-defined data type from systypes.

Syntax

sp_droptype [@typename =] 'type'

Arguments

[@typename =] 'type'

Is the name of a user-defined data type that you own. type is sysname, with no default.

Return Code Type

0 (success) or 1 (failure)

Result Sets

None

Remarks

The type user-defined data type cannot be dropped if tables or other database objects reference it.

Note A user-defined data type cannot be dropped if the user-defined data type is used within a table definition or if a rule or
default is bound to it.

Permissions

Execute permissions default to members of sysadmin fixed server role, and the db_ddladmin and db_owner fixed database
roles, and the data type owner.

Examples

This example drops the user-defined data type birthday.

Note This user-defined data type must already exist or this example returns an error message.

USE master
EXEC sp_droptype 'birthday'

See Also

sp_addtype

sp_rename

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropuser
Removes a Microsoft® SQL Server™ user or Microsoft Windows NT® user from the current database. sp_dropuser is provided
for backward compatibility. Use sp_revokedbaccess to remove a user.

Syntax

sp_dropuser [@name_in_db =] 'user'

Arguments

[@name_in_db =] 'user'

Is the name of the user to remove. user is sysname, with no default. user must exist in the current database. When specifying a
Windows NT user, specify the name that the Windows NT user is known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropuser executes sp_revokedbaccess to remove the user from the current database.

Use sp_helpuser to display a list of the usernames that can be removed from the current database.

When the security account for a user is removed, any aliases to that user are also removed. A user cannot be removed if the user
owns any objects in the database. Ownership of the objects must be changed to another user using sp_changeobjectowner.
Removing a user automatically removes the permissions associated with the user and removes them from any roles of which the
user is a member.

sp_dropuser cannot be used to remove the dbo or INFORMATION_SCHEMA users, nor the guest user from the master or
tempdb databases.

sp_dropuser cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_owner or db_accessadmin fixed database roles can execute
sp_dropuser.

Examples

This example removes the user Albert from the current database.

EXEC sp_dropuser 'Albert'

See Also

sp_grantdbaccess

sp_revokedbaccess

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropwebtask
Deletes a previously defined Web task.

Note All Web tasks or jobs are categorized as Web Assistant in the Job Categories dialog box in SQL Server Enterprise
Manager. For more information, see Defining Jobs.

Syntax

sp_dropwebtask { [@procname =] 'procname' | [, @outputfile =] 'outputfile' }

Arguments

[@procname =] 'procname'

Is the name of the procedure that defines the query for the task. procname is nvarchar(128), with a default of NULL.

[@outputfile =] 'outputfile'

Is the name of the HTML output file to be deleted. putputfile is nvarchar(255), with a default of NULL.

Return Code Values

0 (success) or a nonzero (failure)

Important The return code values have changed from earlier versions of Microsoft® SQL Server™.

Result Sets

None

Remarks

sp_dropwebtask accepts either or both parameters. If outputfile is specified without procname, a placeholder value of NULL can
be specified for procname, or the parameter name @procname can be used. These examples are equivalent:

sp_dropwebtask NULL,'filename.htm'
sp_dropwebtask @procname = 'filename.htm'

sp_dropwebtask must be executed in the database specified in the dbname parameter of sp_makewebtask.

Running sp_dropwebtask on a database of a version earlier than Microsoft SQL Server version 7.0 returns an error.

Permissions

Only the owner of the specified procedure can execute sp_dropwebtask to delete the Web task.

Examples

This example deletes a Web task with the output file C:\Web\Myfile.html and a procedure named MYHTML.

sp_dropwebtask 'MYHTML', 'C:\WEB\MYFILE.HTML'

See Also

sp_makewebtask

sp_runwebtask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_enumcodepages
Returns a list of the code pages and character sets supported by sp_makewebtask.

Syntax

sp_enumcodepages

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Code Page integer Code page supporting the character set.
Character Set varchar(50) Character set alias code recognized by

Microsoft® Internet Explorer and other
browsers.

Description varchar(255) Description of the character set.

Remarks

The appropriate .nls files must be installed by the operating system and made available so that sp_makewebtask can create the
.htm file from the proper code page.

Permissions

Execute permissions default to the public role.

Examples

This example returns a list of supported code pages and character sets supported by sp_makewebtask.

EXEC sp_enumcodepages

See Also

sp_makewebtask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_executesql
Executes a Transact-SQL statement or batch that can be reused many times, or that has been built dynamically. The Transact-SQL
statement or batch can contain embedded parameters.

Syntax

sp_executesql [@stmt =] stmt
[
 {, [@params =] N'@parameter_name data_type [,...n]' }
 {, [@param1 =] 'value1' [,...n] }
]

Arguments

[@stmt =] stmt

Is a Unicode string containing a Transact-SQL statement or batch. stmt must be either a Unicode constant or a variable that can be
implicitly converted to ntext. More complex Unicode expressions (such as concatenating two strings with the + operator) are not
allowed. Character constants are not allowed. If a constant is specified, it must be prefixed with an N. For example, the Unicode
constant N'sp_who' is legal, but the character constant 'sp_who' is not. The size of the string is limited only by available database
server memory.

stmt can contain parameters having the same form as a variable name, for example:

N'SELECT * FROM Employees WHERE EmployeeID = @IDParameter'

Each parameter included in stmt must have a corresponding entry in both the @params parameter definition list and the
parameter values list.

[@params =] N'@parameter_name data_type [,...n]'

Is one string that contains the definitions of all parameters that have been embedded in stmt. The string must be either a Unicode
constant or a variable that can be implicitly converted to ntext. Each parameter definition consists of a parameter name and a
data type. n is a placeholder indicating additional parameter definitions. Every parameter specified in stmt must be defined in
@params. If the Transact-SQL statement or batch in stmt does not contain parameters, @params is not needed. The default
value for this parameter is NULL.

[@param1 =] 'value1'

Is a value for the first parameter defined in the parameter string. The value can be a constant or a variable. There must be a
parameter value supplied for every parameter included in stmt. The values are not needed if the Transact-SQL statement or batch
in stmt has no parameters.

n

Is a placeholder for the values of additional parameters. Values can be only constants or variables. Values cannot be more
complex expressions such as functions, or expressions built using operators.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Returns the result sets from all the SQL statements built into the SQL string.

Remarks

sp_executesql has the same behavior as EXECUTE with regard to batches, the scope of names, and database context. The
Transact-SQL statement or batch in the sp_executesql stmt parameter is not compiled until the sp_executesql statement is
executed. The contents of stmt are then compiled and executed as an execution plan separate from the execution plan of the batch
that called sp_executesql. The sp_executesql batch cannot reference variables declared in the batch calling sp_executesql.
Local cursors or variables in the sp_executesql batch are not visible to the batch calling sp_executesql. Changes in database
context last only to the end of the sp_executesql statement.

sp_executesql can be used instead of stored procedures to execute a Transact-SQL statement a number of times when the
change in parameter values to the statement is the only variation. Because the Transact-SQL statement itself remains constant
and only the parameter values change, the Microsoft® SQL Server™ query optimizer is likely to reuse the execution plan it
generates for the first execution.

Note If object names in the statement string are not fully qualified, the execution plan is not reused.

sp_executesql supports the setting of parameter values separately from the Transact-SQL string:

DECLARE @IntVariable INT
DECLARE @SQLString NVARCHAR(500)
DECLARE @ParmDefinition NVARCHAR(500)

/* Build the SQL string once.*/
SET @SQLString =
 N'SELECT * FROM pubs.dbo.employee WHERE job_lvl = @level'
SET @ParmDefinition = N'@level tinyint'
/* Execute the string with the first parameter value. */
SET @IntVariable = 35
EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @level = @IntVariable
/* Execute the same string with the second parameter value. */
SET @IntVariable = 32
EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @level = @IntVariable

Being able to substitute parameters in sp_executesql offers these advantages to using the EXECUTE statement to execute a
string:

Because the actual text of the Transact-SQL statement in the sp_executesql string does not change between executions, the
query optimizer will probably match the Transact-SQL statement in the second execution with the execution plan generated
for the first execution. Therefore, SQL Server does not have to compile the second statement.

The Transact-SQL string is built only once.

The integer parameter is specified in its native format. Casting to Unicode is not required.

Permissions

Execute permissions default to the public role.

Examples

A. Execute a simple SELECT statement

This example creates and executes a simple SELECT statement that contains an embedded parameter named @level.

execute sp_executesql
 N'select * from pubs.dbo.employee where job_lvl = @level',
 N'@level tinyint',
 @level = 35

B. Execute a dynamically built string

This example shows using sp_executesql to execute a dynamically built string. The example stored procedure is used to insert
data into a set of tables used to partition sales data for a year. There is one table for each month of the year with the following
format:

CREATE TABLE May1998Sales
 (OrderID INT PRIMARY KEY,
 CustomerID INT NOT NULL,
 OrderDate DATETIME NULL
 CHECK (DATEPART(yy, OrderDate) = 1998),
 OrderMonth INT
 CHECK (OrderMonth = 5),
 DeliveryDate DATETIME NULL,
 CHECK (DATEPART(mm, OrderDate) = OrderMonth)
)

For more information about retrieving data from these partitioned tables, see Using Views with Partitioned Data.

The name of each table consists of the first three letters of the month name, the four digits of the year, and the constant Sales. The
name can be built dynamically from an order date:

/* Get the first three characters of the month name. */
SUBSTRING(DATENAME(mm, @PrmOrderDate), 1, 3) +
/* Concatenate the four-digit year; cast as character. */
CAST(DATEPART(yy, @PrmOrderDate) AS CHAR(4)) +
/* Concatenate the constant 'Sales'. */
'Sales'

This sample stored procedure dynamically builds and executes an INSERT statement to insert new orders into the correct table. It
uses the order date to build the name of the table that should contain the data, then incorporates that name into an INSERT
statement. (This is a simple example for sp_executesql. It does not contain error checking and does not include checks for
business rules, such as ensuring that order numbers are not duplicated between tables.)

CREATE PROCEDURE InsertSales @PrmOrderID INT, @PrmCustomerID INT,
 @PrmOrderDate DATETIME, @PrmDeliveryDate DATETIME
AS
DECLARE @InsertString NVARCHAR(500)
DECLARE @OrderMonth INT

-- Build the INSERT statement.
SET @InsertString = 'INSERT INTO ' +
 /* Build the name of the table. */
 SUBSTRING(DATENAME(mm, @PrmOrderDate), 1, 3) +
 CAST(DATEPART(yy, @PrmOrderDate) AS CHAR(4)) +
 'Sales' +
 /* Build a VALUES clause. */
 ' VALUES (@InsOrderID, @InsCustID, @InsOrdDate,' +
 ' @InsOrdMonth, @InsDelDate)'

/* Set the value to use for the order month because
 functions are not allowed in the sp_executesql parameter
 list. */
SET @OrderMonth = DATEPART(mm, @PrmOrderDate)

EXEC sp_executesql @InsertString,
 N'@InsOrderID INT, @InsCustID INT, @InsOrdDate DATETIME,
 @InsOrdMonth INT, @InsDelDate DATETIME',
 @PrmOrderID, @PrmCustomerID, @PrmOrderDate,
 @OrderMonth, @PrmDeliveryDate

GO

Using sp_executesql in this procedure is more efficient than using EXECUTE to execute a string. When sp_executesql is used,
there are only 12 versions of the INSERT string generated, 1 for each monthly table. With EXECUTE, each INSERT string is unique
because the parameter values are different. Although both methods generate the same number of batches, the similarity of the
INSERT strings generated by sp_executesql makes it more likely that the query optimizer will reuse execution plans.

See Also

Batches

EXECUTE

Building Statements at Run Time

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fkeys
Returns logical foreign key information for the current environment. This procedure shows foreign key relationships including
disabled foreign keys.

Syntax

sp_fkeys [@pktable_name =] 'pktable_name'
 [, [@pktable_owner =] 'pktable_owner']
 [, [@pktable_qualifier =] 'pktable_qualifier']
 { , [@fktable_name =] 'fktable_name' }
 [, [@fktable_owner =] 'fktable_owner']
 [, [@fktable_qualifier =] 'fktable_qualifier']

Arguments

[@pktable_name =] 'pktable_name'

Is the name of the table (with the primary key) used to return catalog information. pktable_name is sysname, with a default of
NULL. Wildcard pattern matching is not supported. This parameter or the fktable_name parameter, or both, must be supplied.

[@pktable_owner =] 'pktable_owner'

Is the name of the owner of the table (with the primary key) used to return catalog information. pktable_owner is sysname, with
a default of NULL. Wildcard pattern matching is not supported. If pktable_owner is not specified, the default table visibility rules of
the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, that table's columns are returned. If
pktable_owner is not specified and the current user does not own a table with the specified pktable_name, the procedure looks
for a table with the specified pktable_name owned by the database owner. If one exists, that table's columns are returned.

[@pktable_qualifier =] 'pktable_qualifier'

Is the name of the table (with the primary key) qualifier. pktable_qualifier is sysname, with a default of NULL. Various DBMS
products support three-part naming for tables (qualifier.owner.name). In SQL Server, the qualifier represents the database name.
In some products, it represents the server name of the table's database environment.

[@fktable_name =] 'fktable_name'

Is the name of the table (with a foreign key) used to return catalog information. fktable_name is sysname, with a default of NULL.
Wildcard pattern matching is not supported. This parameter or the pktable_name parameter, or both, must be supplied.

[@fktable_owner =] 'fktable_owner'

Is the name of the owner of the table (with a foreign key) used to return catalog information. fktable_owner is sysname, with a
default of NULL. Wildcard pattern matching is not supported. If fktable_owner is not specified, the default table visibility rules of
the underlying DBMS apply.

In SQL Server, if the current user owns a table with the specified name, that table's columns are returned. If fktable_owner is not
specified and the current user does not own a table with the specified fktable_name, the procedure looks for a table with the
specified fktable_name owned by the database owner. If one exists, that table's columns are returned.

[@fktable_qualifier =] 'fktable_qualifier'

Is the name of the table (with a foreign key) qualifier. fktable_qualifier is sysname, with a default of NULL. In SQL Server, the
qualifier represents the database name. In some products, it represents the server name of the table's database environment.

Return Code Values

None

Result Sets

Column name Data type Description
PKTABLE_QUALIFIER sysname Name of the table (with the primary key)

qualifier. This field can be NULL.

PKTABLE_OWNER sysname Name of the table (with the primary key)
owner. This field always returns a value.

PKTABLE_NAME sysname Name of the table (with the primary key).
This field always returns a value.

PKCOLUMN_NAME sysname Name of the primary key column(s), for
each column of the TABLE_NAME returned.
This field always returns a value.

FKTABLE_QUALIFIER sysname Name of the table (with a foreign key)
qualifier. This field can be NULL.

FKTABLE_OWNER sysname Name of the table (with a foreign key)
owner. This field always returns a value.

FKTABLE_NAME sysname Name of the table (with a foreign key). This
field always returns a value.

FKCOLUMN_NAME varchar(32) Name of the foreign key column(s), for each
column of the TABLE_NAME returned. This
field always returns a value.

KEY_SEQ smallint Sequence number of the column in a
multicolumn primary key. This field always
returns a value.

UPDATE_RULE smallint Action applied to the foreign key when the
SQL operation is an update. SQL Server
returns 0 or 1 for these columns. Open Data
Services gateways can return values of 0, 1,
or 2:

0=CASCADE changes to foreign key.
1=NO ACTION changes if foreign key is
present.
2=SET_NULL; set foreign key to NULL.

DELETE_RULE smallint Action applied to the foreign key when the
SQL operation is a deletion. SQL Server
returns 0 or 1 for these columns. Open Data
Services gateways can return values of 0, 1,
or 2:

0=CASCADE changes to foreign key.
1=NO ACTION changes if foreign key is
present.
2=SET_NULL; set foreign key to NULL.

FK_NAME sysname Foreign key identifier. It is NULL if not
applicable to the data source. SQL Server
returns the FOREIGN KEY constraint name.

PK_NAME sysname Primary key identifier. It is NULL if not
applicable to the data source. SQL Server
returns the PRIMARY KEY constraint name.

The results returned are ordered by FKTABLE_QUALIFIER, FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ.

Remarks

Application coding that includes tables with disabled foreign keys can be implemented by:

Temporarily disabling constraint checking (ALTER TABLE NOCHECK or CREATE TABLE NOT FOR REPLICATION) while
working with the tables, and enabling it again later.

Using triggers or application code to enforce relationships.

If the primary key table name is supplied and the foreign key table name is NULL, sp_fkeys returns all tables that include a
foreign key to the given table. If the foreign key table name is supplied and the primary key table name is NULL, sp_fkeys returns

all tables related by a primary key/foreign key relationship to foreign keys in the foreign key table.

The sp_fkeys stored procedure is equivalent to SQLForeignKeys in ODBC.

Permissions

Execute permissions default to the public role.

Examples

This example retrieves a list of foreign keys for the Customers table in the Northwind database.

USE Northwind
EXEC sp_fkeys @pktable_name = N'Customers'

See Also

sp_pkeys

Transact-SQL Reference (SQL Server 2000)

sp_foreignkeys
Returns the foreign keys that reference primary keys on the table in the linked server.

Syntax

sp_foreignkeys [@table_server =] 'table_server'
 [, [@pktab_name =] 'pktab_name']
 [, [@pktab_schema =] 'pktab_schema']
 [, [@pktab_catalog =] 'pktab_catalog']
 [, [@fktab_name =] 'fktab_name']
 [, [@fktab_schema =] 'fktab_schema']
 [, [@fktab_catalog =] 'fktab_catalog']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server for which to return table information. table_server is sysname, with no default.

[@pktab_name =] 'pktab_name'

Is the name of the table with a primary key. pktab_name is sysname, with a default of NULL.

[@pktab_schema =] 'pktab_schema'

Is the name of the schema with a primary key. pktab_schema is sysname, with a default of NULL. In Microsoft® SQL Server™,
this contains the owner name.

[@pktab_catalog =] 'pktab_catalog'

Is the name of the catalog with a primary key. pktab_catalog is sysname, with a default of NULL. In SQL Server, this contains the
database name.

[@fktab_name =] 'fktab_name'

Is the name of the table with a foreign key. fktab_name is sysname, with a default of NULL.

[@fktab_schema =] 'fktab_schema'

Is the name of the schema with a foreign key. fktab_schema is sysname, with a default of NULL.

[@fktab_catalog =] 'fktab_catalog'

Is the name of the catalog with a foreign key. fktab_catalog is sysname, with a default of NULL.

Return Code Values

None

Result Sets

Various DBMS products support three-part naming for tables (catalog.schema.table), which is represented in the result set.

Column name Data type Description
PKTABLE_CAT sysname Catalog for the table in which the primary key

resides.
PKTABLE_SCHEM sysname Schema for the table in which the primary key

resides.
PKTABLE_NAME sysname Name of the table (with the primary key). This

field always returns a value.
PKCOLUMN_NAME sysname Name of the primary key column(s), for each

column of the TABLE_NAME returned. This
field always returns a value.

FKTABLE_CAT sysname Catalog for the table in which the foreign key
resides.

FKTABLE_SCHEM sysname Schema for the table in which the foreign key
resides.

FKTABLE_NAME sysname Name of the table (with a foreign key). This field
always returns a value.

FKCOLUMN_NAME sysname Name of the foreign key column(s), for each
column of the TABLE_NAME returned. This field
always returns a value.

KEY_SEQ smallint Sequence number of the column in a
multicolumn primary key. This field always
returns a value.

UPDATE_RULE smallint Action applied to the foreign key when the SQL
operation is an update. SQL Server returns 0 or
1 for these columns. Open Data Services
gateways can return values of 0, 1, or 2:

0=CASCADE changes to foreign key.
1=NO ACTION changes if foreign key is
present.
2=SET_NULL; set foreign key to NULL.

DELETE_RULE smallint Action applied to the foreign key when the SQL
operation is a deletion. SQL Server returns 0 or
1 for these columns. Open Data Services
gateways can return values of 0, 1, or 2:

0=CASCADE changes to foreign key.
1=NO ACTION changes if foreign key is
present.
2=SET_NULL; set foreign key to NULL.

FK_NAME sysname Foreign key identifier. It is NULL if not
applicable to the data source. SQL Server
returns the FOREIGN KEY constraint name.

PK_NAME sysname Primary key identifier. It is NULL if not
applicable to the data source. SQL Server
returns the PRIMARY KEY constraint name.

DEFERRABILITY smallint Indicates whether constraint checking is
deferrable.

In the result set, the FK_NAME and PK_NAME columns always return NULL.

Remarks

sp_foreignkeys queries the FOREIGN_KEYS rowset of the IDBSchemaRowset interface of the OLE DB provider that corresponds
to table_server. The table_name, table_schema, table_catalog, and column parameters are passed to this interface to restrict the
rows returned.

Examples

This example returns foreign key information about the Customers table in the Northwind database.

USE master
EXEC sp_foreignkeys @table_server = N'LONDON1',
 @pktab_name = N'Customers',
 @pktab_catalog = N'Northwind'

See Also

sp_catalogs

sp_column_privileges

sp_indexes

sp_linkedservers

sp_primarykeys

sp_tables_ex

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fulltext_catalog
Creates and drops a full-text catalog, and starts and stops the indexing action for a catalog. Multiple full-text catalogs can be
created for each database.

Syntax

sp_fulltext_catalog [@ftcat =] 'fulltext_catalog_name' ,
 [@action =] 'action'
 [, [@path =] 'root_directory']

Arguments

[@ftcat =] 'fulltext_catalog_name'

Is the name of the full-text catalog. Catalog names must be unique for each database. fulltext_catalog_name is sysname.

[@action =] 'action'

Is the action to be performed. action is varchar(20), and can be one of these values.

Note Full-text catalogs can be created, dropped, and modified as needed; however, avoid making schema changes on multiple
catalogs at the same time. These actions can be performed using the sp_fulltext_table stored procedure, which is the
recommended way.

Value Description
Create Creates an empty, new full-text catalog in the file system

and adds an associated row in sysfulltextcatalogs with
the fulltext_catalog_name and root_directory (if present)
values. fulltext_catalog_name must be unique within the
database.

Drop Drops fulltext_catalog_name by removing it from the file
system and deleting the associated row in
sysfulltextcatalogs. This action fails if this catalog
contains indexes for one or more tables. sp_fulltext_table
'table_name', 'drop' should be executed to drop the tables
from the catalog.

An error is displayed if the catalog does not exist.

start_incremental Starts an incremental population for fulltext_catalog_name.
An error is displayed if the catalog does not exist. If a full-
text index population is already active, a warning is
displayed but no population action occurs. With
incremental population, only changed rows are retrieved
for full-text indexing, provided there is a timestamp
column present in the table being full-text indexed.

start_full Starts a full population for fulltext_catalog_name. Every
row of every table associated with this full-text catalog is
retrieved for full-text indexing, even if indexed.

Stop Stops an index population for fulltext_catalog_name. An
error is displayed if the catalog does not exist. No warning
is displayed if population is already stopped.

Rebuild Rebuilds fulltext_catalog_name by deleting the existing full-
text catalog from the file system, re-creating the full-text
catalog, and reassociating the full-text catalog with all the
tables that have full-text indexing references.

Rebuilding does not change any full-text metadata in the
database system tables, nor does it cause the repopulation
of the newly created full-text catalog. To repopulate,
sp_fulltext_catalog must be executed with the start_full
or start_incremental action.

[@path =] 'root_directory'

Is the root directory (not the complete physical path) for a create action. root_directory is nvarchar(100) and has a default value
of NULL, which indicates the use of the default location specified at setup. This is the Ftdata subdirectory in the Mssql directory;
for example, C:\Program Files\Microsoft SQL Server\Mssql\Ftdata. The specified root directory must reside on a drive on the
same computer, consist of more than just the drive letter, and cannot be a relative path. Network drives, removable drives, floppy
disks, and UNC paths are not supported. Full-text catalogs must be created on a local hard drive associated with an instance of
Microsoft® SQL Server™.

@path is valid only when action is create. For actions other than create (stop, rebuild, and so on), @path must be NULL or
omitted.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The start_full action is used to create a complete snapshot of the full-text data in fulltext_catalog_name. The start_incremental
action is used to reindex only the changed rows in the database. For an incremental index, a timestamp column is required in
one column of the table.

Full-text catalog and index data is stored in files created in a full-text catalog directory. The full-text catalog directory is created as
a sub-directory of the directory specified in @path, or in the server default full-text catalog directory if @path is not specified.
The name of the full-text catalog directory is built in a way that guarantees it will be unique on the server. Therefore, all full-text
catalog directories on a server can share the same path.

Permissions

Only members of the sysadmin fixed server role and the db_owner (or higher) fixed database roles can execute
sp_fulltext_catalog.

Examples

A. Create a fu ll-text catalog

This example creates an empty full-text catalog, Cat_Desc, in the Northwind database.

USE Northwind
EXEC sp_fulltext_catalog 'Cat_Desc', 'create'

B. To rebuild a fu ll-text catalog

This example rebuilds an existing full-text catalog, Cat_Desc, in the Northwind database.

USE Northwind
EXEC sp_fulltext_catalog 'Cat_Desc', 'rebuild'

C. Start the population of a fu ll-text catalog

This example begins a full population of the Cat_Desc catalog.

USE Northwind
EXEC sp_fulltext_catalog 'Cat_Desc', 'start_full'

D. Stop the population of a fu ll-text catalog

This example stops the population of the Cat_Desc catalog.

USE Northwind
EXEC sp_fulltext_catalog 'Cat_Desc', 'stop'

E. To remove a fu ll-text catalog

This example removes the Cat_Desc catalog.

USE Northwind
EXEC sp_fulltext_catalog 'Cat_Desc', 'drop'

See Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_database

sp_help_fulltext_catalogs

sp_help_fulltext_catalogs_cursor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fulltext_column
Specifies whether or not a particular column of a table participates in full-text indexing.

Syntax

sp_fulltext_column [@tabname =] 'qualified_table_name' ,
 [@colname =] 'column_name' ,
 [@action =] 'action'
 [, [@language =] 'language']
 [, [@type_colname =] 'type_column_name']

Arguments

[@tabname =] 'qualified_table_name'

Is a one- or two-part table name. The table must exist in the current database. The table must have a full-text index.
qualified_table_name is nvarchar(517), with no default value.

[@colname =] 'column_name'

Is the name of a column in qualified_table_name. The column must be either a character or an image column and cannot be a
computed column. column_name is sysname, with no default.

Note SQL Server can create full-text indexes of text data stored in columns that are of image data type. Images or pictures are
not indexed.

[@action =] 'action'

Is the action to be performed. action is varchar(20), with no default value, and can be one of these values.

Value Description
add Adds the column_name of the qualified_table_name to the

table's inactive full-text index. This action enables the column for
full-text indexing.

drop Removes column_name of qualified_table_name from the table's
inactive full-text index.

[@language =] 'language'

Is the language of the data stored in the column. The following table lists languages included in SQL Server.

Note Use 'Neutral' when a column contains data in multiple languages or in an unsupported language. The default is specified
by the configuration option 'default full-text language'.

Locale Locale ID
Neutral 0
Chinese_Simplified 0x0804
Chinese_Traditional 0x0404
Dutch 0x0413
English_UK 0x0809
English_US 0x0409
French 0x040c
German 0x0407
Italian 0x0410
Japanese 0x0411
Korean 0x0412
Spanish_Modern 0x0c0a
Swedish_Default 0x041d

[@type_colname =] 'type_column_name'

Is the name of a column in qualified_table_name that holds the document type of column_name. This column must be char,
nchar, varchar, or nvarchar. It is only used when the data type of column_name is an image. type_column_name is sysname,
with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

If the full-text index is active, any ongoing population is stopped. Furthermore, if a table with an active full-text index has change
tracking enabled, SQL server ensures that the index is current. For example, SQL Server stops any current population on the table,
drops the existing index, and starts a new population.

If change tracking is on and columns need to be added or dropped from the full-text index while preserving the index, the table
should be deactivated, and the required columns should be added or dropped. These actions freeze the index. The table can be
activated later when starting a population is practical.

Permissions

Only members of the sysadmin fixed server role, db_owner and db_ddladmin fixed database roles, and the object owner can
execute sp_fulltext_column.

Examples

Adding a column to a fu ll-text index

1. This example adds the Description column from the Categories table to the table's full-text index.

USE Northwind
EXEC sp_fulltext_column Categories, Description, 'add'

2. This example assumes you created a full-text index on spanishTbl table. To add the spanishCol column:

sp_fulltext_column 'spanishTbl', 'spanishCol', 'add', 0xC0A

When you run this query:

SELECT *
FROM spanishTbl
WHERE CONTAINS(spanishCol, 'formsof(inflectional, trabajar)')

Your result set would include rows with different forms of trabajar(to work), such as trabajo, trabajamos, and trabajan.

Note All columns listed in a single full-text query function clause must use the same language.

See Also

OBJECTPROPERTY

sp_help_fulltext_columns

sp_help_fulltext_columns_cursor

sp_help_fulltext_tables

sp_help_fulltext_tables_cursor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fulltext_database
Initializes full-text indexing or removes all full-text catalogs from the current database.

Syntax

sp_fulltext_database [@action =] 'action'

Arguments

[@action =] 'action'

Is the action to be performed. action is varchar(20), and can be one of these values.

Value Description
enable Enables full-text indexing within the current database.

Important Use carefully. If full-text catalogs already exist, this
procedure drops all full-text catalogs, re-creates any full-text
indexing indicated in the system tables, and marks the database
as full-text enabled.

This action does not cause index population to begin; an explicit
start_full or start_incremental on each catalog must be issued
using sp_fulltext_catalog to populate or repopulate the full-text
index.

disable Removes all full-text catalogs in the file system for the current
database and marks the database as being disabled for full-text
indexing. This action does not change any full-text index metadata
at the full-text catalog or table level.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Disabling full-text indexing does not remove rows from sysfulltextcatalogs and does not indicate that full-text enabled tables
are no longer marked for full-text indexing. All the full-text metadata definitions are still in the system tables. It does indicate that
full-text indexing is turned off for the database and no full-text indexing activity can occur.

Permissions

Only members of the sysadmin fixed server role and db_owner fixed database role can execute sp_fulltext_database.

Examples

A. To enable a database for fu ll-text indexing

This example enables full-text indexing for the Northwind database.

USE Northwind
EXEC sp_fulltext_database 'enable'

B. To remove all catalogs from a database

This example disables full-text indexing for the Northwind database.

USE Northwind
EXEC sp_fulltext_database 'disable'

See Also

DATABASEPROPERTY

FULLTEXTSERVICEPROPERTY

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fulltext_service
Changes Microsoft® Search Service (Full-text Search) properties.

Syntax

sp_fulltext_service [@action =] 'action'
 [, [@value =] 'value']

Arguments

[@action =] 'action'

Is the property to be changed or reset. action is varchar(20), with no default, and can be one of these values.

Value Description
resource_usage Specifies the amount of resources to be used for the

Microsoft Search Service.
clean_up Searches for and removes the full-text catalog resources in

the file system that do not have corresponding entries in
sysfulltextcatalogs.

connect_timeout Is the number of seconds that Microsoft Search Service
will wait for connections to Microsoft® SQL Server™ for
full-text populations before timing out.

If a time-out occurs before SQL Server responds to a
database request, the population fails to complete.

data_timeout Is the number of seconds that Microsoft Search Service
will wait for data to be returned by the SQL Server
database server for full-text index population before
timing out. If a time-out occurs before SQL Server
responds to a database request, the index population will
not complete.

[@value =] 'value'

Is the value of the specified property. value is int, with a default value of NULL. This table shows the required values for the
properties.

Property Value
resource_usage From 1 (background) through 5 (dedicated), with a default

of 3
clean_up NULL
connect_timeout From 1 through 32767
data_timeout From 1 through 32767

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

There may be times when the metadata for a full-text catalog is changed (for example, when the full-text catalog is dropped or the
database is dropped) while the Microsoft Search Service (MSSearch) is not running. The drop action changes the metadata related
to the full-text catalogs but is unable to complete execution because the Microsoft Search Service is not running. This leads to
inconsistency between the full-text metadata in SQL Server and the associated physical full-text catalog in the file system. This

inconsistency can be corrected by using the clean_up action of sp_fulltext_service. Microsoft Search Service must be running.

Permissions

Only members of the serveradmin fixed server role or the system administrator can execute sp_fulltext_service.

Examples

This example performs a cleanup operation on the full-text catalogs.

EXEC sp_fulltext_service 'clean_up'

See Also

FULLTEXTSERVICEPROPERTY

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_fulltext_table
Marks or unmarks a table for full-text indexing.

Syntax

sp_fulltext_table [@tabname =] 'qualified_table_name'
 , [@action =] 'action'
 [, [@ftcat =] 'fulltext_catalog_name'
 , [@keyname =] 'unique_index_name']

Arguments

[@tabname =] 'qualified_table_name'

Is a one- or two-part table name. The table must exist in the current database. qualified_table_name is nvarchar(517), with no
default.

[@action =] 'action'

Is the action to be performed. action is varchar(20), with no default, and can be one of these values.

Value Description
Create Creates the metadata for a full-text index for

the table referenced by qualified_table_name
and specifies that the full-text index data for
this table should reside in
fulltext_catalog_name. This action also
designates the use of unique_index_name as
the full-text key column. This unique index
must already be present and must be defined
on one column of the table.

A full-text search cannot be performed against
this table until the full-text catalog is populated.

Drop Drops the metadata on the full-text index for
qualified_table_name. If the full-text index is
active, it is automatically deactivated before
being dropped. It is not necessary to remove
columns before dropping the full-text index.

Activate Activates the ability for full-text index data to
be gathered for qualified_table_name, after it
has been deactivated. There must be at least
one column participating in the full-text index
before it can be activated.

A full-text index is automatically made active
(for population) as soon as the first column is
added for indexing. If the last column is
dropped from the index, the index becomes
inactive. If change tracking is on, activating an
inactive index starts a new population.

Note that this does not actually populate the
full-text index, but simply registers the table in
the full-text catalog in the file system so that
rows from qualified_table_name can be
retrieved during the next full-text index
population.

Deactivate Deactivates the full-text index for
qualified_table_name so that full-text index
data can no longer be gathered for the
qualified_table_name. The full-text index
metadata remains and the table can be
reactivated.

If change tracking is on, deactivating an active
index freezes the state of the index: any
ongoing population is stopped, and no more
changes are propagated to the index.

start_change_tracking Start an incremental population of the full-text
index. If the table does not have a timestamp,
start a full population of the full-text index.
Start tracking changes to the table.

Full-text change tracking does not track any
WRITETEXT or UPDATETEXT operations
performed on full-text indexed columns that
are of type image, text, or ntext.

stop_change_tracking Stop tracking changes to the table.
update_index Propagate the current set of tracked changes to

the full-text index.
start_background_updateindex Start propagating tracked changes to the full-

text index as they occur.
stop_background_updateindex Stop propagating tracked changes to the full-

text index as they occur.
start_full Start a full population of the full-text index for

the table.
start_incremental Start an incremental population of the full-text

index for the table.
Stop Stop a full or incremental population.

[@ftcat =] 'fulltext_catalog_name'

Is a valid, existing full-text catalog name for a create action. For all other actions, this parameter must be NULL.
fulltext_catalog_name is sysname, with a default of NULL.

[@keyname =] 'unique_index_name'

Is a valid single-key-column, unique nonnullable index on qualified_table_name for a create action. For all other actions, this
parameter must be NULL. unique_index_name is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

After a full-text index is deactivated for a particular table, the existing full-text index remains in place until the next full population;
however, this index is not used because Microsoft® SQL Server™ blocks queries on deactivated tables.

If the table is reactivated and the index is not repopulated, the old index is still available for queries against any remaining, but not
new, full-text enabled columns. Data from deleted columns are matched in queries that specify an all-full-text column (*) search.

After a table has been defined for full-text indexing, switching the full-text unique key column from one data type to another,
either by changing the data type of that column or changing the full-text unique key from one column to another, without a full

repopulation may cause a failure to occur during a subsequent query and returning the error message: "Conversion to type
data_type failed for full-text search key value key_value." To prevent this, drop the full-text definition for this table using the drop
action of sp_fulltext_table and redefine it using sp_fulltext_table and sp_fulltext_column.

If the full-text unique key column is a character or Unicode character column, it must be defined to be 450 bytes or less.

Permissions

Only members of the sysadmin fixed server role, db_owner and db_ddladmin fixed database roles, and the object owner can
execute sp_fulltext_table.

Examples

A. To enable a table for fu ll-text indexing

This example creates full-text index metadata for the Categories table of the Northwind database. Cat_Desc is a full-text catalog.
PK_Categories is a unique, single-column index on Categories.

USE Northwind
EXEC sp_fulltext_table 'Categories', 'create', 'Cat_Desc', 'PK_Categories'
.. Add some columns
EXEC sp_fulltext_column 'Categories','Description','add'
.. Activate the index
EXEC sp_fulltext_table 'Categories','activate'

B. To activate and propagate track changes
This example activates and starts propagating tracked changes to the full-text index as they occur.

USE Northwind
GO
EXEC sp_fulltext_table Categories, 'Start_change_tracking'
EXEC sp_fulltext_table Categories, 'Start_background_updateindex'

C. To remove a fu ll-text index

This example removes the full-text index metadata for the Categories table of the Northwind database.

USE Northwind

EXEC sp_fulltext_table 'Categories', 'drop'

See Also

INDEXPROPERTY

OBJECTPROPERTY

sp_help_fulltext_tables

sp_help_fulltext_tables_cursor

sp_helpindex

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_getapplock
Places a lock on an application resource.

Syntax

sp_getapplock [@Resource =] 'resource_name',
 [@LockMode =] 'lock_mode'
 [, [@LockOwner =] 'lock_owner']
 [, [@LockTimeout =] 'value']

Arguments

[@Resource =] 'resource_name'

Is a lock resource name specified by the client application. The application must ensure the resource is unique. The specified name
is hashed internally into a value that can be stored in the SQL Server lock manager. resource name is nvarchar(255), with no
default.

[@LockMode =] 'lock_mode'

Is a lock mode. lock_mode is nvarchar(32), with no default, and can be one of these values: Shared, Update, Exclusive,
IntentExclusive, IntentShared.

[@LockOwner =] 'lock_owner'

Is the lock owner. lock_owner is nvarchar(32) and can be Transaction (the default), or Session. When the lock_owner value is
the default, or when Transaction is specified explicitly, sp_getapplock must be executed from within a transaction.

[@LockTimeout =] 'value'

Is a lock time-out value, in milliseconds. The default value is the same as the value returned by @@LOCK_TIMEOUT. To indicate
that lock requests that cannot be granted immediately should return an error rather than wait for the lock, specify 0.

Return Code Values

>= 0 (success) or < 0 (failure)

Value Result
0 Lock was successfully granted synchronously.
1 Lock was granted successfully after waiting for other

incompatible locks to be released.
-1 Lock request timed out.
-2 Lock request was cancelled.
-3 Lock request was chosen as a deadlock victim.
-999 Parameter validation or other call error.

Remarks

Locks placed on a resource are associated with either the current transaction or the current session. Locks associated with the
current transaction are released when the transaction commits or rolls back. Locks associated with the session are released when
the session is logged out. When the server shuts down for any reason, the locks are released.

Locks can be explicitly released with sp_releaseapplock. If an application calls sp_getapplock multiple times for the same lock
resource, sp_releaseapplock must be called the same number of times to release the lock.

If sp_getapplock is called multiple times for the same lock resource, but specifies different lock modes, the effect on the resource
is a union of the two lock modes. In most cases, this means the lock mode is promoted to the stronger of the existing mode and
the newly requested mode. This stronger lock mode is held until the lock is ultimately released, even if lock release calls have
occurred. For example, in the following sequence of calls, the resource is held in Exclusive rather than Shared mode.

USE Northwind
GO
BEGIN TRAN

DECLARE @result int
EXEC @result = sp_getapplock @Resource = 'Form1',
 @LockMode = 'Shared'
EXEC @result = sp_getapplock @Resource = 'Form1',
 @LockMode = 'Exclusive'
EXEC @result = sp_releaseapplock @Resource = 'Form1'
COMMIT TRAN

A deadlock with an application lock does not roll back the transaction that requested the application lock. Any rollback that
potentially may be required as a result of the return value must be done manually. Consequently, it is recommended that error
checking be included in the code such that if certain values are returned (for example, -3), a ROLLBACK TRANSACTION, or
alternative action, is initiated.

Here is an example:

USE Northwind
GO
BEGIN TRAN
DECLARE @result int
EXEC @result = sp_getapplock @Resource = 'Form1',
 @LockMode = 'Exclusive'
IF @result = '-3'
BEGIN
 ROLLBACK TRAN
END
ELSE
BEGIN
 EXEC @result = sp_releaseapplock @Resource = 'Form1'
 COMMIT TRAN
END

SQL Server uses the current database ID to qualify the resource. Therefore, if sp_getapplock is executed, even with identical
parameter values, on different databases, the result is separate locks on separate resources.

Use sp_lock to examine lock information or the SQL Profiler to monitor locks.

Permissions

Execute permissions default to the public role.

Examples

This example places a shared lock, associated with the current transaction, on the resource 'Form1' in the Northwind database.

USE Northwind
GO
BEGIN TRAN
DECLARE @result int
EXEC @result = sp_getapplock @Resource = 'Form1',
 @LockMode = 'Shared'
COMMIT TRAN

See Also

sp_releaseapplock

Transact-SQL Reference (SQL Server 2000)

sp_getbindtoken
Returns a unique identifier for the transaction. This unique identifier is referred to as a bind token. sp_getbindtoken returns a
string representation to be used to share transactions between clients.

Syntax

sp_getbindtoken [@out_token =] 'return_value' OUTPUT [, @for_xp_flag]

Arguments

[@out_token =] 'return_value'

Is the token to use to share a transaction. return_value is varchar(255), with no default.

@for_xp_flag

Is a constant. If equal to 1, a bind token is created that can be passed to an extended stored procedure to call back into the server.

Return Code Values

None

Result Sets

None

Remarks

In Microsoft SQL Server 2000, sp_getbindtoken will return a valid token only when the stored procedure is executed inside an
active transaction. Otherwise, SQL Server will return an error message. For example:

Note In SQL Server 7.0, sp_getbindtoken returns a valid token even if the stored procedure is executed outside an active
transaction. The example works in SQL Server 7.0.

/*open a database*/
USE MYDB
GO
/*declare bind token; no active transaction*/
DECLARE @bind_token varchar(255)
/*return bind token*/
EXECUTE sp_getbindtoken @bind_token OUTPUT
/*get an error message*/
Server: Msg 3921, Level 16, State 1, Procedure sp_getbindtoken, Line 4
Cannot get a transaction token if there is no transaction active.
Reissue the statement after a transaction has been started.

When sp_getbindtoken is used to enlist a distributed transaction connection inside an open transaction, SQL Server 2000
returns the same token. For example:

USE MYDB
 DECLARE @bind_token varchar(255)
 BEGIN TRAN
 EXECUTE sp_getbindtoken @bind_token OUTPUT
 SELECT @bind_token AS Token
 BEGIN DISTRIBUTED TRAN
 EXECUTE sp_getbindtoken @bind_token OUTPUT
 SELECT @bind_token AS Token
/*returns the same token*/
Token

PKb'gN5<9aGEedk_16>8U=5---/5G=--
(1 row(s_) affected)

Token

PKb'gN5<9aGEedk_16>8U=5---/5G=--
(1 row(s_) affected)

The bind token can be used with sp_bindsession to bind new sessions to the same transaction. The bind token is only valid
locally inside each SQL Server and cannot be shared across multiple instances of SQL Server.

To obtain and pass a bind token, you must run sp_getbindtoken prior to executing sp_bindsession for sharing the same lock
space. If you obtain a bind token, sp_bindsession runs correctly.

Note It is recommended that you use the srv_getbindtoken Open Data Services API to obtain a bind token to be used from an
extended stored procedure.

Permissions

Execute permissions default to the public role.

Examples

A. Obtain a bind token

This example obtains a bind token and displays the bind token name.

DECLARE @bind_token varchar(255)
BEGIN TRAN
EXECUTE sp_getbindtoken @bind_token OUTPUT
SELECT @bind_token AS Token

This is the result set:

Token
--
\0]---5^PJK51bP<1F<-7U-]ANZ

B. Use the @ for_xp_flag parameter

This example specifies a constant to use for calling back to the server.

DECLARE @bind_token varchar(255)
BEGIN TRAN
EXECUTE sp_getbindtoken @bind_token OUTPUT, 1
SELECT @bind_token AS Token

If a constant is not used for @for_xp_flag, this error message is returned:

Msg 214, Level 16, State 1, Server <server_name>, Procedure <procedure_name>, Line 5
Cannot convert parameter @for_xp_flag to type constant expected by procedure.

See Also

sp_bindsession

System Stored Procedures

srv_getbindtoken

Transact-SQL Reference (SQL Server 2000)

sp_get_log_shipping_monitor_info
Returns status information about a "Log Shipping Pair." A log shipping pair is a set of primary server-primary database and
secondary server-secondary database.

Syntax

sp_get_log_shipping_monitor_info
 [@primary_server_name =] 'primary_server_name',
 [@primary_database_name =] 'primary_database_name',
 [@secondary_server_name =] 'secondary_server_name',
 [@secondary_database_name =] 'secondary_database_name'

Arguments

[@primary_server_name =] 'primary_server_name'

Is the name or pattern of the primary server. primary_server_name is sysname, with a default of '%'.

[@primary_database_name =] 'primary_database_name'

Is the name or pattern of the primary database. primary_database_name is sysname, with a default of '%'.

[@secondary_server_name =] 'secondary_server_name'

Is the name or pattern of the secondary server. secondary_server_name is sysname, with a default of '%'.

[@secondary_database_name =] 'secondary_database_name'

Is the name or pattern of the secondary database. secondary_database_name is sysname, with a default of '%'.

Result Sets

This table shows the information contained in the result set.

Column name Data type Description
primary_server_name sysname Primary server name.
primary_database_name sysname Primary database name.
secondary_server_name sysname Secondary server name.
secondary_database_name sysname Secondary database name.
backup_threshold int The length of time in minutes

after the last backup before
raising a threshold alert error.

backup_threshold_alert int The error that will be raised
when the threshold backup
has been exceeded.

backup_threshold_alert_enabled bit Specifies whether an alert will
be raised when the threshold
backup has been exceeded.

1=Alert.
0=No alert.

last_backup_filename nvarchar(500) The name of the last file that
was backed up.

last_backup_last_updated datetime The date-time when the last
file was backed up.

backup_outage_start_time int The time in HHMMSS that a
planned outage begins on the
primary server. During a
planned outage, alerts will
not be raised if the backup
threshold is exceeded.

backup_outage_end_time int The time in HHMMSS that a
planned outage ends on the
primary server. During a
planned outage, alerts will
not be raised if the backup
threshold is exceeded.

backup_outage_weekday_mask int The day of the week that a
planned outage will occur.

backup_in_sync int Indicates whether the last
backup occurred within the
backup sync threshold.

1=Occurred within the
backup sync threshold.
-1=Occurred in an outage
window.

last_copied_filename nvarchar(500) The name of the last file
copied.

last_copied_last_updated datetime The date and time the last file
was backed up.

last_loaded_filename nvarchar(500) The name of the last file that
was loaded.

last_loaded_last_updated datetime The date and time that the
last file was loaded.

copy_enabled bit Indicates whether copy is
enabled for the secondary
database.

1=Enabled.
0=Not enabled.

load_enabled bit Indicates whether load is
enabled for the secondary
database.

1=Enabled.
0=Not enabled.

out_of_sync_threshold int The length of time in minutes
after the last load before an
error is raised.

load_threshold_alert int The error to be raised when
the out-of-sync threshold has
been exceeded.

load_threshold_alert_enabled bit Indicates whether an alert will
be raised when the out-of-
sync threshold has been
exceeded.

1=Alert.
0=No alert.

load_outage_start_time int The start time in HHMMSS
that a planned outage begins.
During a planned outage,
alerts will not be raised if the
out-of-sync threshold is
exceeded.

load_outage_end_time int The end time in HHMMSS
that the planned outage
begins. During a planned
outage, alerts will not be
raised if the out-of-sync
threshold is exceeded.

load_outage_weekday_mask int The day of the week that a
planned outage will occur.

load_in_sync int Indicates whether the last
backup occurred within the
backup sync threshold.

1=Occurred within threshold.
-1=Occurred in the outage
window.

maintenance_plan_id uniqueidentifier The ID of the maintenance
plan on the primary server.
maintenance_plan_id may be
NULL.

secondary_plan_id uniqueidentifier The ID of the log shipping
plan on the secondary server.

allow_role_change bit Indicates whether the role of
the secondary server can be
changed.

1=Role can be changed.
0=Role cannot be changed.

Permissions

Only members of the sysadmin fixed server role can execute sp_get_log_shipping_monitor_info.

Examples

This example returns information about all log shipping pairs with a destination database that starts with "pubs."

EXEC sp_get_log_shipping_monitor_info @secondary_database_name = 'pubs%'

Transact-SQL Reference (SQL Server 2000)

sp_grantdbaccess
Adds a security account in the current database for a Microsoft® SQL Server™ login or Microsoft Windows NT® user or group,
and enables it to be granted permissions to perform activities in the database.

Syntax

sp_grantdbaccess [@loginame =] 'login'
 [,[@name_in_db =] 'name_in_db' [OUTPUT]]

Arguments

[@loginame =] 'login'

Is the name of the login for the new security account in the current database. Windows NT groups and users must be qualified
with a Windows NT domain name in the form Domain\User, for example LONDON\Joeb. The login cannot already be aliased to
an account in the database. login is sysname, with no default.

[@name_in_db =] 'name_in_db' [OUTPUT]

Is the name for the account in the database. name_in_db is an OUTPUT variable with a data type of sysname, and a default of
NULL. If not specified, login is used. If specified as an OUTPUT variable with a value of NULL, @name_in_db is set to login.
name_in_db must not already exist in the current database.

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server usernames can contain from 1 to 128 characters, including letters, symbols, and numbers. However, usernames
cannot:

Contain a backslash character (\).

Be NULL, or an empty string ('').

Note The value for 'login' can include a backslash character to separate the domain name from the user name, but it cannot be
used as part of the user name itself.

The security account must be granted access to the current database before it can use the database. Only accounts in the current
database can be managed using sp_grantdbaccess. To remove an account from a database, use sp_revokedbaccess.

A security account for guest can be added if it does not already exist in the current database, and the login is also guest.

The sa login cannot be added to a database.

sp_grantdbaccess cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, the db_accessadmin and db_owner fixed database roles can execute
sp_grantdbaccess.

Examples

This example adds an account for the Windows NT user Corporate\GeorgeW to the current database and gives it the name
Georgie.

EXEC sp_grantdbaccess 'Corporate\GeorgeW', 'Georgie'

See Also

sp_revokedbaccess

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_grantlogin
Allows a Microsoft® Windows NT® user or group account to connect to Microsoft SQL Server™ using Windows Authentication.

Syntax

sp_grantlogin [@loginame =] 'login'

Arguments

[@loginame =] 'login'

Is the name of the Windows NT user or group to be added. The Windows NT user or group must be qualified with a Windows NT
domain name in the form Domain\User, for example London\Joeb. login is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

Use sp_grantlogin to reverse the effects of a previous sp_denylogin that has been executed for a Windows NT user.

Use sp_addlogin to allow a SQL Server login to connect to SQL Server.

Although a login can connect to SQL Server after sp_grantlogin has been executed, access to user databases is denied until a
user account for the login is created in each database that the login must access. Use sp_grantdbaccess to create a user account
in each user database.

sp_grantlogin cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin or securityadmin fixed server roles can execute sp_grantlogin.

Examples

This example allows the Windows NT user Corporate\BobJ to connect to SQL Server.

EXEC sp_grantlogin 'Corporate\BobJ'

Or

EXEC sp_grantlogin [Corporate\BobJ]

See Also

sp_addlogin

sp_revokelogin

sp_denylogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help
Reports information about a database object (any object listed in the sysobjects table), a user-defined data type, or a data type
supplied by Microsoft® SQL Server™.

Syntax

sp_help [[@objname =] name]

Arguments

[@objname =] name

Is the name of any object, in sysobjects or any user-defined data type in the systypes table. name is nvarchar(776), with a
default of NULL. Database names are not acceptable.

Return Code Values

0 (success) or 1 (failure)

Result Sets

The result sets returned depend on whether name is specified, and when specified, what database object it is.

1. If sp_help is executed with no arguments, summary information of objects of all types that exist in the current database is
returned.

Column name Data type Description
Name nvarchar(128) Object name
Owner nvarchar(128) Object owner
Object_type nvarchar(31) Object type

2. If name is a SQL Server data type or user-defined data type, sp_help returns this result set.
Column name Data type Description

Type_name nvarchar(128) Data type name.
Storage_type nvarchar(128) SQL Server type name.
Length smallint Physical length of the data type (in

bytes).
Prec int Precision (total number of digits).
Scale int Number of digits to the right of the

decimal.
Nullable varchar(35) Indicates whether NULL values are

allowed: Yes or No.
Default_name nvarchar(128) Name of a default bound to this type.

NULL, if no default is bound.
Rule_name nvarchar(128) Name of a rule bound to this type.

NULL, if no default is bound.
Collation sysname Collation of the data type. NULL for

non-character data types.

3. If name is any database object (other than a data type), sp_help returns this result set, as well as additional result sets based
on the type of object specified.

Column name Data type Description
Name nvarchar(128) Table name
Owner nvarchar(128) Table owner
Type nvarchar(31) Table type
Created_datetime datetime Date table created

Depending on the database object specified, sp_help returns additional result sets.

If name is a system table, user table, or view, sp_help returns these result sets (except the result set describing where the
data file is located on a file group is not returned for a view).

Additional result set returned on column objects:
Column name Data type Description

Column_name nvarchar(128) Column name.
Type nvarchar(128) Column data type.
Computed varchar(35) Indicates whether the values in the

column are computed: (Yes or No).
Length int Column length in bytes.
Prec char(5) Column precision.
Scale char(5) Column scale.
Nullable varchar(35) Indicates whether NULL values are

allowed in the column: Yes or No.
TrimTrailingBlanks varchar(35) Trim the trailing blanks (yes or no).
FixedLenNullInSource varchar(35) For backward compatibility only.
Collation sysname Collation of the column. NULL for

non-character data types.

Additional result set returned on identity columns:
Column name Data type Description

Identity nvarchar(128) Column name whose data type is
declared as identity.

Seed numeric Starting value for the identity column.
Increment numeric Increment to use for values in this

column.
Not For
Replication

int IDENTITY property is not enforced
when a replication login, such as
sqlrepl, inserts data into the table:
1 = True
0 = False

Additional result set returned on columns:
Column name Data type Description

RowGuidCol sysname Name of the global unique identifier
column.

Additional result set returned on filegroups:
Column name Data type Description

Data_located_on_filegroup nvarchar(128) The filegroup in which the
data is located (Primary,
Secondary, or Transaction
Log).

Additional result set returned on index:
Column name Data type Description

index_name sysname Index name.
Index_description varchar(210) Description of the index.
index_keys nvarchar(2078) Column name(s) on which the index is

built.

Additional result set returned on constraints:
Column name Data type Description

constraint_type nvarchar(146) Type of constraint.
constraint_name nvarchar(128) Name of the constraint.

delete_action nvarchar(9) Indicates whether the DELETE
action is: No Action, CASCADE, or
N/A.

(Only applicable to FOREIGN KEY
constraints.)

update_action nvarchar(9) Indicates whether the UPDATE
action is: No Action, Cascade, or
N/A.

(Only applicable to FOREIGN KEY
constraints.)

status_enabled varchar(8) Indicates whether the constraint is
enabled: Enabled, Disabled or N/A.
(Only applicable to CHECK and
FOREIGN KEY constraints.

status_for_replication varchar(19) Indicates whether the constraint is
for replication. (Only applicable to
CHECK and FOREIGN KEY
constraints.)

constraint_keys nvarchar(2078) Names of the columns that make
up the constraint or, in the case for
defaults and rules, the text that
defines the default or rule.

Additional result set returned on referencing objects:
Column name Data type Description

Table is referenced
by

nvarchar(516) Identifies other database objects that
reference the table.

4. If name is a system stored procedure or an extended stored procedure, sp_help returns this result set.
Column name Data type Description

Parameter_name nvarchar(128) Stored procedure parameter name.
Type nvarchar(128) Data type of the stored procedure

parameter.
Length smallint Maximum physical storage length (in

bytes).
Prec int Precision (total number of digits).
Scale int Number of digits to the right of the

decimal point.
Param_order smallint Order of the parameter.

Remarks

The sp_help procedure looks for an object in the current database only.

When name is not specified, sp_help lists object names, owners, and object types for all objects in the current database.
sp_helptrigger provides information about triggers.

Permissions

Execute permissions default to the public role.

Examples

A. Return information about all objects

This example lists information about each object in sysobjects.

USE master
EXEC sp_help

B. Return information about a single object

This example displays information about the publishers table.

USE pubs
EXEC sp_help publishers

See Also

sp_helpgroup

sp_helpindex

sp_helprotect

sp_helpserver

sp_helptrigger

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_alert
Reports information about the alerts defined for the server.

Syntax

sp_help_alert [[@alert_name =] 'alert_name']
 [, [@order_by =] 'order_by']
 [, [@alert_id =] alert_id]
 [, [@category_name =] 'category']

Arguments

[@alert_name =] 'alert_name'

Is the alert name. alert_name is nvarchar(128). If alert_name is not specified, information about all alerts is returned .

[@order_by =] 'order_by'

Is the sorting order to use for producing the results. order_by is sysname, with a default of N 'name'.

[@alert_id =] alert_id]

Is the identification number of the alert to report information about. alert_id is int, with a default of NULL.

[@category_name =] 'category'

Is the category for the alert. category is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
id int System-assigned unique integer

identifier.
name sysname Alert name (for example, Demo:

Full msdb log).
event_source nvarchar(100) Source of the event. It will always

be MSSQLServer for Microsoft®
SQL Server™ version 7.0

event_category_id int Reserved.
event_id int Reserved.
message_id int Message error number that defines

the alert. (Usually corresponds to
an error number in the
sysmessages table). If severity is
used to define the alert,
message_id is 0 or NULL.

severity int Severity level (from 9 through 25,
110, 120, 130, or 140) that defines
the alert.

enabled tinyint Status of whether the alert is
currently enabled (1) or not (0). A
nonenabled alert is not sent.

delay_between_responses int Wait period, in seconds, between
responses to the alert.

last_occurrence_date int Data the alert last occurred.
last_occurrence_time int Time the alert last occurred.

last_response_date int Date the alert was last responded
to by the SQLServerAgent service.

last_response_time int Time the alert was last responded
to by the SQLServerAgent service.

notification_message nvarchar(512) Optional additional message sent
to the operator as part of the e-
mail or pager notification.

include_event_description tinyint Is whether the description of the
SQL Server error from the
Microsoft Windows NT®
application log should be included
as part of the notification message.

database_name sysname Database in which the error must
occur for the alert to fire. If the
database name is NULL, the alert
fires regardless of where the error
occurred.

event_description_keyword nvarchar(100) Description of the SQL Server error
in the Windows NT application log
that must be like the supplied
sequence of characters.

occurrence_count int Number of times the alert
occurred.

count_reset_date int Date the occurrence_count was
last reset.

count_reset_time int Time the occurrence_count was
last reset.

job_id uniqueidentifier Job identification number.
job_name sysname An on-demand job to be executed

in response to an alert.
has_notification int Nonzero if one or more operators

are notified for this alert. The value
is one or more of the following
values (ORed together):

1=has e-mail notification
2=has pager notification
4=has netsend noticication.

Flags int Reserved.
performance_condition nvarchar(512) If type is 2, this column shows the

definition of the performance
condition; otherwise, the column is
NULL.

category_name sysname Reserved. Will always be
'[Uncategorized]' for SQL Server
7.0.

type int 1 = SQL Server event alert
2 = SQL Server performance alert

Remarks

sp_help_alert must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_help_alert .

Examples

This example reports information about the Demo: Sev. 25 Errors alert.

EXEC sp_help_alert 'Demo: Sev. 25 Errors'

See Also

sp_add_alert

sp_update_alert

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_category
Provides information about the specified classes of jobs, alerts, or operators.

Syntax

sp_help_category [[@class =] 'class']
 [, [@type =] 'type']
 [, [@name =] 'name']
 [, [@suffix =] suffix]

Arguments

[@class =] 'class'

Is the class about which information is requested. class is varchar(8), with a default value of JOB. class can be one of these values.

Value Description
JOB Provides information about a job category.
ALERT Provides information about an alert category.
OPERATOR Provides information about an operator category.

[@type =] 'type'

Is the type of category for which information is requested. type is varchar(12), with a default of NULL, and can be one of these
values.

Value Description
LOCAL Local job category.
MULTI -SERVER Multiserver job category.
NONE Category for a class other than JOB.

[@name =] 'name'

Is the name of the category for which information is requested. name is sysname, with a default of NULL.

[@suffix =] suffix

Specifies whether the category_type column in the result set is an ID or a name. suffix is bit, with a default of 0. 1 shows the
category_type as a name, and 0 shows it as an ID.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
category_id int Category ID
category_type tinyint Type of category:

1 = Local
2 = Multiserver
3 = None

name sysname Category name

Remarks

sp_help_category must be executed in the msdb database.

If no parameters are specified, the result set provides information about all of the job categories.

Permissions

Execute permissions default to the public role. Anyone who can execute this procedure can also create, delete, or update a job,
job step, job category, job schedule, job server, task, or job history information.

Examples

A. Return local job information

This example returns information about jobs that are administered locally.

USE msdb
EXEC sp_help_category @type = 'LOCAL'

B. Return alert information

This example returns information about the Replication alert category.

USE msdb
EXEC sp_help_category @class = 'ALERT', @name = 'Replication'

See Also

sp_add_category

sp_delete_category

sp_update_category

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpconstraint
Returns a list of all constraint types, their user-defined or system-supplied name, the columns on which they have been defined,
and the expression that defines the constraint (for DEFAULT and CHECK constraints only).

Syntax

sp_helpconstraint [@objname =] 'table'
 [, [@nomsg =] 'no_message']

Arguments

[@objname =] 'table'

Is the table about which constraint information is returned. The table specified must be local to the current database. table is
nvarchar(776), with no default.

[@nomsg =] 'no_message'

Is an optional parameter that prints the table name. no_message is varchar(5), with a default of msg. nomsg suppresses the
printing.

Return Code Values

0 (success) or 1 (failure)

Result Sets

sp_helpconstraint displays a descending indexed column if it participated in primary keys. The descending indexed column will
be listed in the result set with a minus sign (-) following its name. The default, an ascending indexed column, will be listed by its
name alone.

Remarks

Executing sp_help table reports all information about the specified table. To see only the constraint information, use
sp_helpconstraint.

Permissions

Execute permissions default to the public role.

Examples

This example shows all constraints for the authors table.

USE pubs
EXEC sp_helpconstraint authors

See Also

ALTER TABLE

CREATE TABLE

sp_help

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpdb
Reports information about a specified database or all databases.

Syntax

sp_helpdb [[@dbname=] 'name']

Arguments

[@dbname=] 'name'

Is the name of the database for which to provide information. name is sysname, with no default. If name is not specified,
sp_helpdb reports on all databases in master.dbo.sysdatabases.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
name nvarchar(24) Database name.
db_size nvarchar(13) Total size of the database.
owner nvarchar(24) Database owner (such as sa).
dbid smallint Numeric database ID.
created char(11) Date the database was created.
status varchar(340) Comma-separated list of values of

database options that are currently set on
the database.

Boolean-valued options are listed only if
they are enabled. Nonboolean options are
listed with their corresponding values in
the form of option_name=value.

See ALTER DATABASE for more
information.

compatibility_level tinyint Database compatibility level (60, 65, 70,
and 80)

If name is specified, there is an additional result set that shows the file allocation for the specified database.

Column name Data type Description
name nchar(128) Logical file name.
fileid smallint Numeric file identifier.
file name nchar(260) Operating-system file name (physical file

name).
filegroup nvarchar(128) Group in which the file belongs. Database

files can be grouped in file groups for
allocation and administration purposes.
Log files are never a part of a filegroup.

size nvarchar(18) File size.
maxsize nvarchar(18) Maximum size to which the file can grow.

UNLIMITED value in this field indicate that
the file grows until the disk is full.

growth nvarchar(18) Growth increment of the file. This
indicates the amount of space added to
the file each time new space is needed.

usage varchar(9) Usage of the file. For data file, the usage is
data only and for the log file the usage is
log only.

Remarks

The status column in the result set reports which bits have been turned on in the status column of sysdatabases. Information
from the status2 column of sysdatabases is not reported.

Permissions

Execute permissions default to the public role.

sp_helpdb must access the database(s) on the server to determine the information to be displayed about the database. Therefore,
for each database on the server, one of these must apply:

The user executing sp_helpdb must have permissions to access the database.

The guest user account must exist in the database.

If a database cannot be accessed, sp_helpdb displays error message 15622 and as much information about the database as it
can.

Examples

A. Return information about a single database

This example displays information about the pubs database.

exec sp_helpdb pubs

B. Return information about all databases

This example displays information about all databases on the server running Microsoft® SQL Server™.

exec sp_helpdb

See Also

ALTER DATABASE

CREATE DATABASE

sp_configure

sp_dboption

sp_renamedb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpdbfixedrole
Returns a list of the fixed database roles.

Syntax

sp_helpdbfixedrole [[@rolename =] 'role']

Arguments

[@rolename =] 'role'

Is the name of a fixed database role. role is sysname, with a default of NULL. If role is specified, only information about that role is
returned; otherwise, a list and description of all fixed database roles is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
DbFixedRole sysname Name of the fixed database role.
Description nvarchar(70) Description of DbFixedRole.

Remarks

Fixed database roles are defined at the database level and have permissions to perform specific database-level administrative
activities. Fixed database roles cannot be added, removed, or changed.

Fixed database role Description
db_owner Database owners
db_accessadmin Database access administrators
db_securityadmin Database security administrators
db_ddladmin Database DDL administrators
db_backupoperator Database backup operators
db_datareader Database data readers
db_datawriter Database data writers
db_denydatareader Database deny data readers
db_denydatawriter Database deny data writers

The table shows stored procedures used for modifying database roles.

Stored procedure Action
sp_addrolemember Adds a login account to a fixed database role.
sp_helprole Displays a list of the members of a fixed database role.
sp_droprolemember Removes a member from a fixed database role.

Permissions

Execute permissions default to the public role.

Examples

This example shows a list of all fixed database roles.

EXEC sp_helpdbfixedrole

See Also

sp_addrolemember

sp_dbfixedrolepermission

sp_droprolemember

sp_helprole

sp_helprolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpdevice
Reports information about Microsoft® SQL Server™ database files. sp_helpdevice is used for backward compatibility with
earlier versions of SQL Server that used the term device for a database file.

Syntax

sp_helpdevice [[@devname=] 'name']

Arguments

[@devname=] 'name'

Is the name of the device for which to provide information. name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
device_name sysname Device name (or file name).
physical_name nvarchar(46) Physical file name.
description nvarchar(255) Description of the device.
status int A number that corresponds to the status

description in the description column.
cntrltype smallint Controller number of the device:

2 = Hard disk device
3 or 4 = Disk dump device
5 = Tape device
0 = Database device

size int Device size in 2 kb pages.

Remarks

If name is specified, sp_helpdevice displays information about the specified database device or dump device. If name is not
specified, sp_helpdevice displays information about all database devices and dump devices in master.dbo.sysdevices.

Old style database devices are added to the system with the DISK INIT statement. Dump devices are added to the system by
sp_addumpdevice.

The device_number column is 0 for dump devices, 0 for the MASTER database device, and a value from 1 through 255 for other
database devices.

Permissions

Execute permissions default to the public role.

Examples

This example reports information about all database devices and dump devices on SQL Server.

sp_helpdevice

See Also

sp_dropdevice

sp_helpdb

Transact-SQL Reference (SQL Server 2000)

sp_help_downloadlist
Lists all rows in the sysdownloadlist system table for the supplied job, or all rows if no job is specified.

Syntax

sp_help_downloadlist [[@job_id =] job_id | [@job_name =] 'job_name']
 [, [@operation =] 'operation']
 [, [@object_type =] 'object_type']
 [, [@object_name =] 'object_name']
 [, [@target_server =] 'target_server']
 [, [@has_error =] has_error]
 [, [@status =] status]
 [, [@date_posted =] date_posted]

Arguments

[@job_id =] job_id

Is the job identification number for which to return information. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default of NULL.

[@operation =] 'operation'

Is the valid operation for the specified job. operation is varchar(64), with a default of NULL, and can be one of these values.

Value Description
DEFECT Server operation that requests the target server to defect

from the Master SQLServerAgent service.
DELETE Job operation that removes an entire job.
INSERT Job operation that inserts an entire job or refreshes an

existing job. This operation includes all job steps and
schedules, if applicable.

RE-ENLIST Server operation that causes the target server to resend its
enlistment information, including the polling interval and
time zone to the multiserver domain. The target server
also redownloads the MSXOperator details.

SET-POLL Server operation that sets the interval, in seconds, for
target servers to poll the multiserver domain. If specified,
value is interpreted as the required interval value, and can
be a value from 10 to 28,800.

START Job operation that requests the start of job execution.
STOP Job operation that requests the stop of job execution.
SYNC-TIME Server operation that causes the target server to

synchronize its system clock with the multiserver domain.
Because this is a costly operation, perform this operation
on a limited, infrequent basis.

UPDATE Job operation that updates only the sysjobs information
for a job, not the job steps or schedules. Is automatically
called by sp_update_job.

[@object_type =] 'object_type'

Is the type of object for the specified job. object_type is varchar(64), with a default of NULL. object_type can be either JOB or
SERVER. For more information about valid object_type values, see sp_add_category.

[@object_name =] 'object_name'

Is the name of the object. object_name is sysname, with a default of NULL. If object_type is JOB, object_name is the job name. If
object_type is SERVER, object_name is the server name.

[@target_server =] 'target_server'

Is the name of the target server. target_server is varchar(30), with a default of NULL.

[@has_error =] has_error

Is whether the job should acknowledge errors. has_error is tinyint, with a default of NULL, which indicates no errors should be
acknowledged. 1 indicates that all errors should be acknowledged.

[@status =] status

Is the status for the job. status is tinyint, with a default value of NULL.

[@date_posted =] date_posted

Is the date and time for which all entries made on or after the specified date and time should be included in the result set.
date_posted is datetime, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
instance_id int Unique integer identification number of the

instruction.
source_server nvarchar(30) Computer name of the server the instruction

came from. In Microsoft® SQL Server™ 7.0,
this is always the computer name of the
master (MSX) server.

operation_code nvarchar(4000) Operation code for the instruction.
object_name sysname Object affected by the instruction.
object_id uniqueidentifier Identification number of the object affected

by the instruction (job_id for a job object, or
0x00 for a server object) or a data value
specific to the operation_code.

target_server nvarchar(30) Target server that this instruction is to be
downloaded by.

error_message nvarchar(1024) Error message (if any) from the target server
if it encountered a problem while processing
this instruction. NOTE: Any error message
blocks all further downloads by the target
server.

date_posted datetime Date the instruction was posted to the table.
date_downloaded datetime Date the instruction was downloaded by the

target server.
Status tinyint Status of the job:

0 = Not yet downloaded
1 = Successfully downloaded.

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role or the db_owner fixed database role, who can
grant permissions to other users.

Examples

This example lists rows in the sysdownloadlist for the Weekly Sales Data Backup job.

USE msdb
EXEC sp_help_downloadlist @job_name='Weekly Sales Data Backup', @operation='UPDATE',

 @object_type='JOB',
 @object_name='Weekly Sales Backup',
 @target_server='SEATTLE2',
 @has_error=1,
 @status=NULL,
 @date_posted=NULL

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpextendedproc
Displays the currently defined extended stored procedures and the name of the dynamic-link library to which the procedure
(function) belongs.

Syntax

sp_helpextendedproc [[@funcname =] 'procedure']

Arguments

[@funcname =] 'procedure'

Is the name of the extended stored procedure for which to display information. procedure is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data Type Description
name sysname Name of the extended stored procedure.
dll nvarchar(255) Name of the dynamic link library.

Remarks

When procedure is specified, sp_helpextendedproc reports on the specified extended stored procedure. When not supplied,
sp_helpextendedproc returns all extended stored procedure names and the DLL names to which each extended stored
procedure belongs.

Permissions

Execute permissions default to the public role.

Examples

A. Report help on all extended stored procedures

This example reports on all extended stored procedures.

USE master
EXEC sp_helpextendedproc

B. Report help on a single extended stored procedure

This example reports on the xp_cmdshell extended stored procedure.

USE master
EXEC sp_helpextendedproc xp_cmdshell

See Also

sp_addextendedproc

sp_dropextendedproc

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpfile
Returns the physical names and attributes of files associated with the current database. Use this stored procedure to determine
the names of files to attach to or detach from the server.

Syntax

sp_helpfile [[@filename =] 'name']

Arguments

[@filename =] 'name'

Is the logical name of any file in the current database. name is sysname, with a default of NULL. If name is not specified, the
attributes of all files in the current database are returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
name sysname Logical file name.
fileid smallint Numeric identifier of the file.
filename nchar(260) Physical file name.
filegroup sysname Group to which the file belongs. Database files

can be grouped in file groups for allocation and
administration purposes. Log files are never a part
of a file group.

size nvarchar(18) File size.
maxsize nvarchar(18) Maximum size to which the file can grow.

UNLIMITED value in this field indicate that the file
grows until the disk is full.

growth nvarchar(18) Growth increment of the file. This indicates the
amount of space added to the file each time new
space is needed.

usage varchar(9) Usage of the file. For a data file, the usage is data
only and for the log file the usage is log only.

Permissions

Execute permission defaults to the public role.

Examples

This example returns information about the files in pubs.

USE pubs
EXEC sp_helpfile

See Also

sp_attach_db

sp_attach_single_file_db

sp_detach_db

sp_helpfilegroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpfilegroup
Returns the names and attributes of filegroups associated with the current database.

Syntax

sp_helpfilegroup [[@filegroupname =] 'name']

Arguments

[@filegroupname =] 'name'

Is the logical name of any filegroup in the current database. name is sysname, with a default of NULL. If name is not specified, the
attributes of all filegroups in the current database are listed.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
groupname sysname Name of the file group.
groupid smallint Numeric group identifier.
filecount integer Number of files in the file group.

Permissions

Execute permission defaults to the public role.

Examples

This example returns information about the filegroups in pubs.

USE pubs
EXEC sp_helpfilegroup

See Also

sp_attach_db

sp_attach_single_file_db

sp_detach_db

sp_helpfile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_catalogs
Returns the ID, name, root directory, status, and number of full-text indexed tables for the specified full-text catalog.

Syntax

sp_help_fulltext_catalogs [@fulltext_catalog_name =] 'fulltext_catalog_name'

Arguments

[@fulltext_catalog_name =] 'fulltext_catalog_name'

Is the name of the full-text catalog. fulltext_catalog_name is sysname. If this parameter is omitted or has the value NULL,
information about all full-text catalogs associated with the current database is returned.

Return Code Values

0 (success) or (1) failure

Result Sets

This table shows the result set, which is ordered by ftcatid.

Column name Data type Description
ftcatid smallint Full-text catalog identifier.
NAME sysname Name of the full-text catalog.
PATH nvarchar(260) Physical location of the full-text

catalog root directory. NULL
indicates the default directory
determined during installation.
(This is the Ftdata subdirectory
under the Microsoft® SQL Server™
directory; for example,
C:\Mssql\Ftdata.)

STATUS integer Full-text index population status of
the catalog:

0 = Idle
1 = Full population in progress
2 = Paused
3 = Throttled
4 = Recovering
5 = Shutdown
6 = Incremental population in
progress
7 = Building index
8 = Disk is full. Paused
9 = Change tracking

NUMBER_FULLTEXT_TABLES integer Number of full-text indexed tables
associated with the catalog.

Permissions

Execute permissions default to members of the public role.

Examples

This example returns information about the Cat_Desc full-text catalog.

USE Northwind
EXEC sp_help_fulltext_catalogs 'Cat_Desc'

See Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_catalog

sp_help_fulltext_catalogs_cursor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_catalogs_cursor
Uses a cursor to return the ID, name, root directory, status, and number of full-text indexed tables for the specified full-text
catalog.

Syntax

sp_help_fulltext_catalogs [@cursor_return =] @cursor_variable OUTPUT ,
 [@fulltext_catalog_name =] 'fulltext_catalog_name'

Arguments

[@cursor_return =] @cursor_variable OUTPUT

Is the output variable of type cursor. The cursor is a read-only, scrollable, dynamic cursor.

[@fulltext_catalog_name =] 'fulltext_catalog_name'

Is the name of the full-text catalog. fulltext_catalog_name is sysname. If this parameter is omitted or is NULL, information about
all full-text catalogs associated with the current database is returned.

Return Code Values

0 (success) or (1) failure

Result Sets

Column name Data type Description
ftcatid smallint Full-text catalog identifier.
NAME sysname Name of the full-text catalog.
PATH nvarchar(260) Physical location of the full-text

catalog root directory. NULL
indicates the default directory
determined during installation. (This
is the Ftdata subdirectory under the
Microsoft® SQL Server™ directory;
for example, C:\Mssql\Ftdata.)

STATUS integer Full-text index population status of
the catalog:

0 = Idle
1 = Full population in progress
2 = Paused
3 = Throttled
4 = Recovering
5 = Shutdown
6 = Incremental population in
progress
7 = Building index
8 = Disk is full. Paused
9 = Change tracking

NUMBER_FULLTEXT_TABLES integer Number of full-text indexed tables
associated with the catalog.

Permissions

Execute permissions default to the public role.

Examples

This example returns information about the Cat_Desc full-text catalog.

USE Northwind
GO
DECLARE @mycursor CURSOR
EXEC sp_help_fulltext_catalogs_cursor @mycursor OUTPUT, 'Cat_Desc'
FETCH NEXT FROM @mycursor
WHILE (@@FETCH_STATUS <> -1)
 BEGIN
 FETCH NEXT FROM @mycursor
 END
CLOSE @mycursor
DEALLOCATE @mycursor
GO

See Also

FULLTEXTCATALOGPROPERTY

sp_fulltext_catalog

sp_help_fulltext_catalogs

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_columns
Returns the columns designated for full-text indexing.

Syntax

sp_help_fulltext_columns [[@table_name =] 'table_name']]
 [, [@column_name =] 'column_name']

Arguments

[@table_name =] 'table_name'

Is the one- or two-part table name for which full-text index information is requested. table_name is nvarchar(517), with a default
value of NULL. If table_name is omitted, full-text index column information is retrieved for every full-text indexed table.

[@column_name =] 'column_name'

Is the name of the column for which full-text index metadata is requested. column_name is sysname, with a default value of
NULL. If column_name is omitted or is NULL, full-text column information is returned for every full-text indexed column for
table_name. If table_name is also omitted or is NULL, full-text index column information is returned for every full-text indexed
column for all tables in the database.

Return Code Values

0 (success) or (1) failure

Result Sets

Column name Data type Description
TABLE_OWNER sysname Table owner. This is the name of the

database user that created the table.
TABLE_ID integer ID of the table.
TABLE_NAME sysname Name of the table.
FULLTEXT_COLID integer Column ID of the full-text indexed

column.
FULLTEXT_COLUMN_NAME sysname Column in a full-text indexed table

that is designated for indexing.
FULLTEXT_BLOBTP_COLNAME sysname Column in a full-text indexed table

that specifies the document type of
the full-text indexed column. This
value is only applicable when the full-
text indexed column is an image
column.

FULLTEXT_BLOBTP_COLID integer Column ID of the document type
column. This value is only applicable
when the full-text indexed column is
an image column.

FULLTEXT_LANGUAGE sysname Language used for the full-text search
of the column.

Permissions

Execute permissions default to members of the public role.

Examples

This example returns information about the columns that have been designated for full-text indexing in the Categories table.

USE Northwind
EXEC sp_help_fulltext_columns Categories

Here is the result set:

TABLE_OWNER TABLE_NAME FULLTEXT_COLID FULLTEXT_COLUMN_NAME
----------- ----------- -------------- --------------------
dbo Categories 3 Description

See Also

COLUMNPROPERTY

sp_fulltext_column

sp_help_fulltext_columns_cursor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_columns_cursor
Uses a cursor to return the columns designated for full-text indexing.

Syntax

sp_help_fulltext_columns_cursor [@cursor_return =] @cursor_variable OUTPUT
 [, [@table_name =] 'table_name']
 [, [@column_name =] 'column_name']

Arguments

[@cursor_return =] @cursor_variable OUTPUT

Is the output variable of type cursor. The resulting cursor is a read-only, scrollable, dynamic cursor.

[@table_name =] 'table_name'

Is the one- or two-part table name for which full-text index information is requested. table_name is nvarchar(517), with a default
value of NULL. If table_name is omitted, full-text index column information is retrieved for every full-text indexed table.

[@column_name =] 'column_name'

Is the name of the column for which full-text index metadata is desired. column_name is sysname with a default value of NULL. If
column_name is omitted or is NULL, full-text column information is returned for every full-text indexed column for table_name. If
table_name is also omitted or is NULL, full-text index column information is returned for every full-text indexed column for all
tables in the database.

Return Code Values

0 (success) or (1) failure

Result Sets

Column name Data type Description
TABLE_OWNER sysname Table owner. This is the name of the

database user that created the table.
TABLE_ID integer ID of the table.
TABLE_NAME sysname Table name.
FULLTEXT_COLID integer Column ID of the full-text indexed

column.
FULLTEXT_COLUMN_NAME sysname Column in a full-text indexed table

that is designated for indexing.
FULLTEXT_BLOBTP_COLNAME sysname Column in a full-text indexed table

that specifies the document type of
the full-text indexed column. This
value is only applicable when the full-
text indexed column is an image
column.

FULLTEXT_BLOBTP_COLID integer Column ID of the document type
column. This value is only applicable
when the full-text indexed column is
an image column.

FULLTEXT_LANGUAGE sysname Language used for the full-text
search of the column.

Permissions

Execute permissions default to members of the public role.

Examples

This example returns information about the columns that have been designated for full-text indexing in all of the tables in the
database.

USE Northwind
GO
DECLARE @mycursor CURSOR
EXEC sp_help_fulltext_columns_cursor @mycursor OUTPUT
FETCH NEXT FROM @mycursor
WHILE (@@FETCH_STATUS <> -1)
 BEGIN
 FETCH NEXT FROM @mycursor
 END
CLOSE @mycursor
DEALLOCATE @mycursor
GO

See Also

COLUMNPROPERTY

sp_fulltext_column

sp_help_fulltext_columns

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_tables
Returns a list of tables that are registered for full-text indexing.

Syntax

sp_help_fulltext_tables [[@fulltext_catalog_name =] 'fulltext_catalog_name']
 [, [@table_name =] 'table_name']

Arguments

[@fulltext_catalog_name =] 'fulltext_catalog_name'

Is the name of the full-text catalog. fulltext_catalog_name is sysname, with a default of NULL. If fulltext_catalog_name is omitted
or is NULL, all full-text indexed tables associated with the database are returned. If fulltext_catalog_name is specified, but
table_name is omitted or is NULL, the full-text index information is retrieved for every full-text indexed table associated with this
catalog. If both fulltext_catalog_name and table_name are specified, a row is returned if table_name is associated with
fulltext_catalog_name; otherwise, an error is raised.

[@table_name =] 'table_name'

Is the one- or two-part table name for which the full-text metadata is requested. table_name is nvarchar(517), with a default
value of NULL. If only table_name is specified, only the row relevant to table_name is returned.

Return Code Values

0 (success) or (1) failure

Result Sets

Column name Data type Description
TABLE_OWNER sysname Table owner. This is the name of the

database user that created the table.
TABLE_NAME sysname Table name.
FULLTEXT_KEY_INDEX_NAME sysname Index imposing the UNIQUE constraint

on the column designated as the
unique key column.

FULLTEXT_KEY_COLID integer Column ID of the unique index
identified by FULLTEXT_KEY_NAME.

FULLTEXT_INDEX_ACTIVE integer Specifies whether columns marked for
full-text indexing in this table are
eligible for queries:

0 = Inactive
1 = Active

FULLTEXT_CATALOG_NAME sysname Full-text catalog in which the full-text
index data resides.

Permissions

Execute permissions default to members of the public role.

Examples

This example returns the names of the full-text indexed tables associated with the Cat_Desc full-text catalog.

USE Northwind
EXEC sp_help_fulltext_tables 'Cat_Desc'

See Also

INDEXPROPERTY

OBJECTPROPERTY

sp_fulltext_table

sp_help_fulltext_tables_cursor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_fulltext_tables_cursor
Uses a cursor to return a list of tables that are registered for full-text indexing.

Syntax

sp_help_fulltext_tables_cursor [@cursor_return =] @cursor_variable OUTPUT
 [, [@fulltext_catalog_name =] 'fulltext_catalog_name']
 [, [@table_name =] 'table_name']

Arguments

[@cursor_return =] @cursor_variable OUTPUT

Is the output variable of type cursor. The cursor is a read-only, scrollable, dynamic cursor.

[@fulltext_catalog_name =] 'fulltext_catalog_name'

Is the name of the full-text catalog. fulltext_catalog_name is sysname, with a default of NULL. If fulltext_catalog_name is omitted
or is NULL, all full-text indexed tables associated with the database are returned. If fulltext_catalog_name is specified, but
table_name is omitted or is NULL, the full-text index information is retrieved for every full-text indexed table associated with this
catalog. If both fulltext_catalog_name and table_name are specified, a row is returned if table_name is associated with
fulltext_catalog_name; otherwise, an error is raised.

[@table_name =] 'table_name'

Is the one- or two-part table name for which the full-text metadata is requested. table_name is nvarchar(517), with a default
value of NULL. If only table_name is specified, only the row relevant to table_name is returned.

Return Code Values

0 (success) or (1) failure

Result Sets

Column name Data type Description
TABLE_OWNER sysname Table owner. This is the name of the

database user that created the table.
TABLE_NAME sysname Table name.
FULLTEXT_KEY_INDEX_NAME sysname Index imposing the UNIQUE constraint

on the column designated as the unique
key column.

FULLTEXT_KEY_COLID integer Column ID of the unique index
identified by FULLTEXT_KEY_NAME.

FULLTEXT_INDEX_ACTIVE integer Specifies whether columns marked for
full-text indexing in this table are
eligible for queries:

0 = Inactive
1 = Active

FULLTEXT_CATALOG_NAME sysname Full-text catalog in which the full-text
index data resides.

Permissions

Execute permissions default to members of the public role.

Examples

This example returns the names of the full-text indexed tables associated with the Cat_Desc full-text catalog.

USE Northwind

GO
DECLARE @mycursor CURSOR
EXEC sp_help_fulltext_tables_cursor @mycursor OUTPUT, 'Cat_Desc'
FETCH NEXT FROM @mycursor
WHILE (@@FETCH_STATUS <> -1)
 BEGIN
 FETCH NEXT FROM @mycursor
 END
CLOSE @mycursor
DEALLOCATE @mycursor
GO

See Also

INDEXPROPERTY

OBJECTPROPERTY

sp_fulltext_table

sp_help_fulltext_tables

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpgroup
Reports information about a role, or all roles, in the current database. This procedure is included for backward compatibility.
Microsoft® SQL Server™ version 7.0 uses roles instead of groups. Use sp_helprole.

Syntax

sp_helpgroup [[@grpname =] 'role']

Arguments

[@grpname =] 'role'

Is the name of a role. role must exist in the current database. role is sysname, with a default of NULL. If role is specified,
information about the name of the role and the members of the role is returned; otherwise, information about all the roles in the
current database is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

role is not specified.

Column name Data type Description
Group_name sysname Name of the role in the current database.
Group_id smallint Role ID for the role in the current database.

role is specified.

Column name Data type Description
Group_name sysname Name of the role in the current database.
Group_id smallint Role ID for the role in the current database.
Users_in_group sysname Member of the role in the current database.
Userid smallint User ID for the member of the role.

Remarks

To view the permissions associated with the role, use sp_helprotect.

Permissions

Execute permissions default to the public role.

Examples

A. Return information about a single role

This example returns information about the hackers role.

EXEC sp_helpgroup 'hackers'

B. Return information about all roles

This example returns information about all roles in the current database.

EXEC sp_helpgroup

See Also

sp_helprotect

sp_helprole

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helphistory
sp_helphistory is provided for backward compatibility. For more information about the replacement procedures for Microsoft®
SQL Server™ 2000, see SQL Server SQL Server Backward Compatibility Details.

Remarks

The results of sp_helphistory are determined by a match on all specified parameters.

Permissions

Execute permissions default to the public role. Anyone who can execute this procedure can also create, delete, or update a job,
job step, job category, job schedule, job server, task, or job history information.

See Also

sp_addtask

sp_purgehistory

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_job
Returns information about jobs that are used by SQLServerAgent service to perform automated activities in Microsoft® SQL
Server™.

Syntax

sp_help_job [[@job_id =] job_id]
 [, [@job_name =] 'job_name']
 [, [@job_aspect =] 'job_aspect']
 [, [@job_type =] 'job_type']
 [, [@owner_login_name =] 'login_name']
 [, [@subsystem =] 'subsystem']
 [, [@category_name =] 'category']
 [, [@enabled =] enabled]
 [, [@execution_status =] status]
 [, [@date_comparator =] 'date_comparison']
 [, [@date_created =] date_created]
 [, [@date_last_modified =] date_modified]
 [, [@description =] 'description_pattern']

Arguments

[@job_id =] job_id

Is the job identification number. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@job_aspect =] 'job_aspect'

Is the job attribute to display. job_aspect is varchar(9), with a default of NULL, and can be one of these values.

Value Description
ALL Job aspect information
JOB Job information
SCHEDULES Schedule information
STEPS Job step information
TARGETS Target information

[@job_type =] 'job_type'

Is the type of jobs to include in the report. job_type is varchar(12), with a default of NULL. job_type can be LOCAL or MULTI-
SERVER.

[@owner_login_name =] 'login_name'

Is the login name of the owner of the job. login_name is sysname, with a default of NULL.

[@subsystem =] 'subsystem'

Is the name of the subsystem. subsystem is nvarchar(60), with a default of NULL.

[@category_name =] 'category'

Is the name of the category. category is sysname, with a default of NULL.

[@enabled =] enabled

Is a number indicating whether information is shown for enabled jobs or disabled jobs. enabled is tinyint, with a default of NULL.
1 indicates enabled jobs, and 0 indicates disabled jobs.

[@execution_status =] status

Is the execution status for the jobs. status is int, with a default of NULL, and can be one of these values.

Value Description
0 Returns only those jobs that are not idle or suspended.
1 Executing.
2 Waiting for thread.
3 Between retries.
4 Idle.
5 Suspended.
7 Performing completion actions.

[@date_comparator =] 'date_comparison'

Is the comparison operator to use in comparisons of date_created and date_modified. date_comparison is char(1), and can be =,
<, or >.

[@date_created =] date_created

Is the date the job was created. date_created is datetime, with a default of NULL.

[@date_last_modified =] date_modified

Is the date the job was last modified. date_modified is datetime, with a default of NULL.

[@description =] 'description_pattern'

Is the description of the job. description_pattern is nvarchar(512), with a default of NULL. description_pattern can include the
SQL Server wildcard characters for pattern matching.

Return Code Values

0 (success) or 1 (failure)

Result Sets

If no arguments are specified, sp_help_job returns this result set.

Column name Data type Description
job_id uniqueidentifier Unique ID of the job.
originating_server nvarchar(30) Name of the server from which the

job came.
name sysname Name of the job.
enabled tinyint Indicates whether the job is enabled

to be executed.
description nvarchar(512) Description for the job.
start_step_id int ID of the step in the job where

execution should begin.
category sysname Job category.
owner sysname Job owner.
notify_level_eventlog int Bitmask indicating under what

circumstances a notification event
should be logged to the Microsoft
Windows NT® application log. Can
be one of these values:

0 = Never
1 = When a job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless of the job outcome)

notify_level_email int Bitmask indicating under what
circumstances a notification e-mail
should be sent when a job
completes. Possible values are the
same as for notify_level_eventlog.

notify_level_netsend int Bitmask indicating under what
circumstances a network message
should be sent when a job
completes. Possible values are the
same as for notify_level_eventlog.

notify_level_page int Bitmask indicating under what
circumstances a page should be
sent when a job completes. Possible
values are the same as for
notify_level_eventlog.

notify_email_operator sysname E-mail name of the operator to
notify.

notify_netsend_operator sysname Name of the computer or user used
when sending network messages.

notify_page_operator sysname Name of the computer or user used
when sending a page.

delete_level int Bitmask indicating under what
circumstances the job should be
deleted when a job completes.
Possible values are the same as for
notify_level_eventlog.

date_created datetime Date the job was created.
date_modified datetime Date the job was last modified.
version_number int Version of the job (automatically

updated each time the job is
modified).

last_run_date int Date the job last started execution.
last_run_time int Time the job last started execution.
last_run_outcome int Outcome of the job the last time it

ran:

0 = Failed
1 = Succeeded
3 = Canceled
5 = Unknown

next_run_date int Date the job is scheduled to run
next.

next_run_time int Time the job is scheduled to run
next.

next_run_schedule_id int Identification number of the next
run schedule.

current_execution_status int Current execution status.
current_execution_step sysname Current execution step in the job.
current_retry_attempt int If the job is running and the step has

been retried, this is the current retry
attempt.

has_step int Number of job steps the job has.
has_schedule int Number of job schedules the job

has.
has_target int Number of target servers the job

has.

Type int 1 = Local job.
2 = Multiserver job.
0 = Job has no target servers.

If job_id or job_name is specified, sp_help_job returns these additional result sets for job steps, job schedules, and job target
servers.

This is the result set for job steps.

Column name Data type Description
step_id int Unique (for this job) identifier for the

step.
step_name sysname Name of the step.
Subsystem nvarchar(40) Subsystem in which to execute the

step command.
Command nvarchar(3200) Command to execute.
Flags nvarchar(4000) Bitmask of values that control step

behavior.
cmdexec_success_code int For a CmdExec step, this is the process

exit code of a successful command.
on_success_action nvarchar(4000) What to do if the step succeeds:

1 = Quit with success.
2 = Quit with failure.
3 = Go to next step.
4 = Go to step.

on_success_step_id int If on_success_action is 4, this
indicates the next step to execute.

on_fail_action nvarchar(4000) Action to take if the step fails. Values
are the same as for
on_success_action.

on_fail_step_id int If on_fail_action is 4, this indicates
the next step to execute.

Server sysname Reserved.
database_name sysname For a Transact=SQL step, this is the

database in which the command will
executes.

database_user_name sysname For a Transact=SQL step, this is the
database user context in which the
command executes.

retry_attempts int Maximum number of times the
command should be retried (if it is
unsuccessful) before the step is
deemed to have failed.

retry_interval int Interval (in minutes) between any
retry attempts.

os_run_priority varchar(4000) Reserved.
output_file_name varchar(200) File to which command output should

be written (Transact=SQL and
CmdExec steps only).

last_run_outcome int Outcome of the step the last time it
ran:

0 = Failed
1 = Succeeded
3 = Canceled
5 = Unknown

last_run_duration int Duration (in seconds) of the step the
last time it ran.

last_run_retries int Number of times the command was
retried the last time the step ran.

last_run_date int Date the step last started execution.
last_run_time int Time the step last started execution.

This is the result set for job schedules.

Column name Data type Description
schedule_id int Identifier of the schedule (unique

across all jobs).
schedule_name sysname Name of the schedule (unique for this

job only).
Enabled int Whether the schedule is active (1) or

not (0).
freq_type int Value indicating when the job is to be

executed:

1 = Once
4 = Daily
8 = Weekly
16 = Monthly
32 = Monthly, relative to the
freq_interval
64 = Run when SQLServerAgent
service starts.

freq_interval int Days when the job is executed. The
value depends on the value of
freq_type. For more information, see
sp_add_jobschedule.

freq_subday_type int Units for freq_subday_interval. For
more information, see
sp_add_jobschedule.

freq_subday_interval int Number of freq_subday_type
periods to occur between each
execution of the job. For more
information, see sp_add_jobschedule.

freq_relative_interval int Scheduled job's occurrence of the
freq_interval in each month. For
more information, see
sp_add_jobschedule.

freq_recurrence_factor int Number of months between the
scheduled execution of the job.

active_start_date int Date to begin execution of the job.
active_end_date int Date to end execution of the job.
active_start_time int Time to begin the execution of the job

on active_start_date.
active_end_time int Time to end execution of the job on

active_end_date.
date_created datetime Date the schedule is created.
schedule_description nvarchar(4000) An English description of the schedule

(if requested).
next_run_date int Date the schedule will next cause the

job to run.
next_run_time int Time the schedule will next cause the

job to run.

This is the result set for job target servers.

Column name Data type Description
server_id int Identifier of the target server.
server_name nvarchar(30) Computer name of the target server.
enlist_date datetime Date the target server enlisted into the

master server (MSX).
last_poll_date datetime Date the target server last polled the

MSX.
last_run_date int Date the job last started execution on

this target server.
last_run_time int Time the job last started execution on

this target server.
last_run_duration int Duration of the job the last time it ran

on this target server.
last_run_outcome tinyint Outcome of the job the last time it ran

on this server:

0 = Failed
1 = Succeeded
3 = Canceled
5 = Unknown

last_outcome_message nvarchar(1024) Outcome message from the job the
last time it ran on this target server.

Permissions

Execute permissions default to the public role in the msdb database. A user who can execute this procedure and is a member of
the sysadmin fixed role can also create, delete, or update a job, job step, job category, job schedule, job server, task, or job history
information. A user who is not a member of the sysadmin fixed role can use sp_help_job to view only the jobs he/she owns.

When sp_help_job is invoked by a user who is a member of the sysadmin fixed server role, sp_help_job will be executed under
the security context in which the SQL Server service is running. When the user is not a member of the sysadmin group,
sp_help_job will impersonate the SQL Server Agent proxy account, which is specified using xp_sqlagent_proxy_account. If the
proxy account is not available, sp_help_job will fail. This is true only for Microsoft® Windows NT® 4.0 and Windows 2000. On
Windows 9.x, there is no impersonation and sp_help_job is always executed under the security context of the Windows 9.x user
who started SQL Server.

Examples

A. List information for all jobs

This example executes the sp_help_job procedure with no parameters to return the information for all of the jobs currently
defined in the msdb database.

USE msdb
EXEC sp_help_job

B. List information for a specific job

This example lists all job aspect information for the multiserver job named Archive Tables, in which the job is enabled and has
been modified since its creation.

USE msdb
EXEC sp_help_job NULL, 'Archive Tables', 'ALL', 'MULTI-SERVER', 'janetl',
 NULL, NULL, 1, 1, '<', '12/01/97', '6/25/98', NULL

See Also

sp_add_job

sp_delete_job

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_jobhistory
Provides information about the jobs for servers in the multiserver administration domain.

Syntax

sp_help_jobhistory [[@job_id =] job_id]
 [, [@job_name =] 'job_name']
 [, [@step_id =] step_id]
 [, [@sql_message_id =] sql_message_id]
 [, [@sql_severity =] sql_severity]
 [, [@start_run_date =] start_run_date]
 [, [@end_run_date =] end_run_date]
 [, [@start_run_time =] start_run_time]
 [, [@end_run_time =] end_run_time]
 [, [@minimum_run_duration =] minimum_run_duration]
 [, [@run_status =] run_status]
 [, [@minimum_retries =] minimum_retries]
 [, [@oldest_first =] oldest_first]
 [, [@server =] 'server']
 [, [@mode =] 'mode']

Arguments

[@job_id =] job_id

Is the job identification number. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default of NULL.

[@step_id =] step_id

Is the step identification number. step_id is int, with a default of NULL.

[@sql_message_id =] sql_message_id

Is the identification number of the error message returned by Microsoft® SQL Server™ when executing the job. sql_message_id is
int, with a default of NULL.

[@sql_severity =] sql_severity

Is the severity level of the error message returned by SQL Server when executing the job. sql_severity is int, with a default of
NULL.

[@start_run_date =] start_run_date

Is the date the job was started. start_run_date is int, with a default of NULL. start_run_date must be entered in the form
YYYYMMDD, where YYYY is a four-character year, MM is a two-character month name, and DD is a two-character day name.

[@end_run_date =] end_run_date

Is the date the job was completed. end_run_date is int, with a default of NULL. end_run_date must be entered in the form
YYYYMMDD, where YYYY is a four-character year, MM is a two-character month name, and DD is a two-character day name.

[@start_run_time =] start_run_time

Is the time the job was started. start_run_time is int, with a default of NULL. start_run_time must be entered in the form HHMMSS,
where HH is a two-character hour of the day, MM is a two-character minute of the day, and SS is a two-character second of the
day.

[@end_run_time =] end_run_time

Is the time the job completed its execution. end_run_time is int, with a default of NULL. end_run_time must be entered in the form
HHMMSS, where HH is a two-character hour of the day, MM is a two-character minute of the day, and SS is a two-character
second of the day.

[@minimum_run_duration =] minimum_run_duration

Is the minimum length of time for the completion of the job. minimum_run_duration is int, with a default of NULL.
minimum_run_duration must be entered in the form HHMMSS, where HH is a two-character hour of the day, MM is a two-
character minute of the day, and SS is a two-character second of the day.

[@run_status =] run_status

Is the execution status of the job. run_status is int, with a default of NULL, and can be one of these values.

Value Description
0 Failed
1 Succeeded
2 Retry (step only)
3 Canceled
4 In-progress message
5 Unknown

[@minimum_retries =] minimum_retries

Is the minimum number of times a job should retry running. minimum_retries is int, with a default of NULL.

[@oldest_first =] oldest_first

Is whether to present the output with the oldest jobs first. oldest_first is int, with a default of 0, which presents the newest jobs
first. 1 presents the oldest jobs first.

[@server =] 'server'

Is the name of the server on which the job was performed. server is nvarchar(30), with a default of NULL.

[@mode =] 'mode'

Is whether SQL Server prints all columns in the result set (FULL) or a summary of the columns. mode is varchar(7), with a default
of SUMMARY.

Return Code Values

0 (success) or 1 (failure)

Result Sets

The actual column list depends on the value of mode. The most comprehensive set of columns is shown below and is returned
when mode is FULL.

Column name Data type Description
instance_id int History entry identification number.
job_id uniqueidentifier Job identification number.
job_name sysname Job name.
step_id int Step identification number (will be 0 for

a job history).
step_name sysname Step name (will be NULL for a job

history).
sql_message_id int For Transact-SQL step, the most recent

Transact-SQL error number encountered
while running the command.

sql_severity int For a Transact-SQL step, the highest
Transact-SQL error severity encountered
while running the command.

message nvarchar(1024) Job or step history message.
run_status int Outcome of the job or step.
run_date int Date the job or step began executing.
run_time int Time the job or step began executing.
run_duration int Elapsed time in the execution of the job

or step in HHMMSS format.

operator_emailed nvarchar(20) Operator who was e-mailed regarding
this job (is NULL for step history).

operator_netsent nvarchar(20) Operator who was sent a network
message regarding this job (is NULL for
step history).

operator_paged nvarchar(20) Operator who was paged regarding this
job (is NULL for step history).

retries_attempted int Number of times the step was retried
(always 0 for a job history).

server nvarchar(30) Server the step or job executes on. Is
always (local).

Remarks

sp_help_jobhistory returns a report with the history of the specified scheduled jobs. If no parameters are specified, the report
contains the history for all scheduled jobs.

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role or the db-owner fixed database role, who can
grant permissions to other users.

Example

This example prints all columns and all job information for any failed jobs and failed job steps with an error message of 50100 (a
user-defined error message), a severity of 20, and a start date of June 1, 1998, on the LONDON2 server.

USE msdb
EXEC sp_help_jobhistory NULL, NULL, NULL, 50100, 20, 19980601, NULL,
 NULL, NULL, NULL, 0, NULL, 1, 'LONDON2', 'FULL'

See Also

sp_purge_jobhistory

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_jobschedule
Returns information about the scheduling of jobs used by SQL Server Enterprise Manager to perform automated activities.

Syntax

sp_help_jobschedule
 [@job_id =] job_id |
 [@job_name =] 'job_name'
 [, [@schedule_name =] 'schedule_name'] |
 [, [@schedule_id =] schedule_id]

Arguments

[@job_id =] job_id

Is the job identification number. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is varchar(100), with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@schedule_name =] 'schedule_name'

Is the name of the schedule item for the job. schedule_name is varchar(100), with a default of NULL.

{[@schedule_id =] schedule_id

Is the identification number of the schedule item for the job. schedule_id is int, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
schedule_id int Schedule identifier number.
schedule_name sysname Name of the schedule.
enabled int Whether the schedule enabled (1) or

not enabled (0).
freq_type int Value indicating when the job is to be

executed.

1 = Once
4 = Daily
8 = Weekly
16 = Monthly
32 = Monthly, relative to the freq_
interval
64 = Run when SQLServerAgent service
starts.

freq_interval int Days when the job is executed. The
value depends on the value of
freq_type. For more information, see
sp_add_jobschedule.

freq_subday_type int Units for freq_subday_interval. For
more information, see
sp_add_jobschedule.

freq_subday_interval int Number of freq_subday_type periods
to occur between each execution of the
job. For more information, see
sp_add_jobschedule.

freq_relative_interval int Scheduled job's occurrence of the
freq_interval in each month. For more
information, see sp_add_jobschedule.

freq_recurrence_factor int Number of months between the
scheduled execution of the job.

active_start_date int Date the schedule is activated.
active_end_date int End date of the schedule.
active_start_time int Time of the day the schedule starts.
active_end_time int Time of the day schedule ends.
date_created datetime Date the schedule is created.
schedule_description nvarchar(4000) An English description of the schedule

(if scheduled).
next_run_date int Date the schedule will next cause the

job to run.
next_run_time int Time the schedule will next cause the

job to run.

Remarks

The parameters of sp_help_jobschedule can be used only in certain combinations. If schedule_id is specified, neither job_id nor
job_name can be specified. Otherwise, the job_id or job_name parameters can be used with schedule_name.

Permissions

Execute permissions default to the public role. Anyone who can execute this procedure can also create, delete, or update a job,
job step, job category, job schedule, job server, task, or job history information.

Examples

A. Return the job schedule for a specific job

This example returns the scheduling information for a job named Archive Tables.

USE msdb
EXEC sp_help_jobhistory @job_name = 'Archive Tables'

B. Return the job schedule for a named item in the schedule

This example returns the history for a job named Archive Tables and for its schedule item Weekly Archive.

USE msdb
EXEC sp_help_jobhistory @job_name = 'Archive Tables',
 @schedule_name = 'Weekly Archive'

See Also

sp_add_jobschedule

sp_delete_jobschedule

sp_update_jobschedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_jobserver
Returns information about the server for a given job.

Syntax

sp_help_jobserver [@job_id =] job_id |
 [@job_name =] 'job_name'
 [, [@show_last_run_details =] show_last_run_details]

Arguments

[@job_id =] job_id

Is the job identification number for which to return information. job_id is uniqueidentifier, with a default of NULL.

[@show_last_run_detail =] 'job_name'

Is the job name for which to return information. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@show_last_run_details =] show_last_run_details

Is whether the last-run execution information is part of the result set. show_last_run_details is tinyint, with a default of 0. 0 does
not include last-run information, and 1 does.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
server_id int Identification number of the target

server.
server_name nvarchar(30) Computer name of the target server.
enlist_date datetime Date the target server enlisted into the

master server (MSX).
last_poll_date datetime Date the target server last polled the

MSX.

If sp_help_jobserver is executed with show_last_run_details set to 1, the result set has these additional columns.

Column name Data type Description
last_run_date Int Date the job last started execution on

this target server.
last_run_time Int Time the job last started execution on

this server.
last_run_duration Int Duration of the job the last time it ran

on this target server (in seconds).
last_outcome_message nvarchar(1024) Outcome of the job the last time it ran

on this server:

0 = Failed
1 = Succeeded
3 = Canceled
5 = Unknown

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role or the db_owner fixed data base role, who can
grant permissions to other users.

Examples

This example returns information, including last-run information, about the Archive Tables job.

USE msdb
EXEC sp_help_jobserver @job_name = 'Archive Tables',
 @show_last_run_details = 1

See Also

sp_add_jobserver

sp_delete_jobserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_jobstep
Returns information for the steps in a job used by SQLServerAgent service to perform automated activities.

Syntax

sp_help_jobstep [@job_id =] 'job_id' |
 [@job_name =] 'job_name'
 [, [@step_id =] step_id]
 [, [@step_name =] 'step_name']
 [, [@suffix =] suffix]

Arguments

[@job_id =] 'job_id'

Is the job identification number for which to return job information. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default NULL.

Note Either job_id or job_name must be specified, but both cannot be specified.

[@step_id =] step_id

Is the identification number of the step in the job. If not included, all steps in the job are included. step_id is int, with a default of
NULL.

[@step_name =] 'step_name'

Is the name of the step in the job. step_name is sysname, with a default of NULL.

[@suffix =] suffix

Is a flag indicating whether a text description is appended to the flags column in the output. suffix is bit, with the default of 0. If
suffix is 1, a description is appended.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
step_id Int Unique identifier for the step.
step_name sysname Name of the step in the job.
subsystem nvarchar(40) Subsystem in which to execute the step

command.
command nvarchar(3200) Command executed in the step.
flags Int A bitmask of values that control step

behavior.
cmdexec_success_code Int For a CmdExec step, this is the process

exit code of a successful command.
on_success_action timyint Action to take if the step succeeds:

1 = Quit the job reporting success.
2 = Quit the job reporting failure.
3 = Go to the next step.
4 = Go to step.

on_success_step_id Int If on_success_action is 4, this
indicates the next step to execute.

on_fail_action Tinyint What to do if the step fails. Values are
same as on_success_action.

on_fail_step_id Int If on_fail_action is 4, this indicates the
next step to execute.

server sysname Reserved.
database_name sysname For a Transact-SQL step, this is the

database in which the command
executes.

database_user_name sysname For a Transact-SQL step, this is the
database user context in which the
command executes.

retry_attempts Int Maximum number of times the
command should be retried (if it is
unsuccessful).

retry_interval Int Interval (in minutes) for any retry
attempts.

os_run_priority Int Reserved.
output_file_name nvarchar(200) File to which command output should

be written (Transact-SQL and CmdExec
steps only).

last_run_outcome Int Outcome of the step the last time it ran:

0 = Failed
1 = Succeeded
2 = Retry
3 = Canceled
5 = Unknown

last_run_duration Int Duration (in seconds) of the step the
last time it ran.

last_run_retries Int Number of times the command was
retried the last time the step ran.

last_run_date Int Date the step last started execution.
last_run_time Int Time the step last started execution.

Permissions

Execute permissions default to the public role. Anyone who can execute this procedure can also create, delete, or update a job,
job step, job category, job schedule, job server, task, or job history information.

Examples

A. Return information for all steps in a specific job

This example returns all the job steps for a job named Backup Files.

USE msdb
EXEC sp_help_jobstep @job_name = 'Backup Files'

B. Return information about a specific job step

This example returns information about the first job step for the job named Backup Files.

USE msdb
EXEC sp_help_jobstep @job_name = 'Backup Files', @step_id = 1

See Also

sp_add_jobstep

sp_delete_jobstep

sp_help_job

sp_update_jobstep

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpindex
Reports information about the indexes on a table or view.

Syntax

sp_helpindex [@objname =] 'name'

Arguments

[@objname =] 'name'

Is the name of a table or view in the current database. name is nvarchar(776), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
index_name sysname Index name.
index_description varchar(210) Index description.
index_keys nvarchar(2078) Table or view column(s) upon

which the index is built.

A descending indexed column will be listed in the result set with a minus sign (-) following its name; an ascending indexed
column, the default, will be listed by its name alone.

Remarks

If indexes have been set with the NORECOMPUTE option of UPDATE STATISTICS, that information is shown in the result set of
sp_helpindex.

Permissions

Execute permissions default to the public role.

Examples

This example reports on the types of indexes on the sysobjects table.

sp_helpindex sysobjects

See Also

CREATE INDEX

DROP INDEX

DROP STATISTICS

sp_help

sp_statistics

System Stored Procedures

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

sp_helplanguage
Reports information about a particular alternate language or about all languages.

Syntax

sp_helplanguage [[@language =] 'language']

Arguments

[@language =] 'language'

Is the name of the alternate language for which to display information. language is sysname, with a default of NULL. If language
is specified, information about the specified language is returned. If language is not specified, information about all languages in
the syslanguages system table is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
langid smallint Language identification number.
dateformat nchar(3) Format of the date.
datefirst tinyint First day of the week: 1 for Monday, 2 for

Tuesday, and so on through 7 for Sunday.
upgrade int Microsoft® SQL Server™ version of the last

upgrade for this language.
name sysname Language name.
alias sysname Alternate name of the language.
months nvarchar(372) Month names.
shortmonths nvarchar(132) Short month names.
days nvarchar(217) Day names.
lcid int Microsoft Windows NT® locale ID for the

language.
msglangid smallint SQL Server message group ID.

Permissions

Execute permissions default to the public role.

Examples

A. Return information about a single language

This example displays information about the alternate language French.

sp_helplanguage french

B. Return information about all languages

This example displays information about all installed alternate languages.

sp_helplanguage

See Also

@@LANGUAGE

SET LANGUAGE

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helplinkedsrvlogin
Provides information about login mappings defined against a specific linked server used for distributed queries and remote
stored procedures.

Syntax

sp_helplinkedsrvlogin [[@rmtsrvname =] 'rmtsrvname']
 [, [@locallogin =] 'locallogin']

Arguments

[@rmtsrvname =] 'rmtsrvname'

Is the name of the linked server that the login mapping applies to. rmtsrvname is sysname, with a default of NULL. If NULL, all
login mappings defined against all the linked servers defined in the local computer running Microsoft® SQL Server™ are
returned.

[@locallogin =] 'locallogin'

Is the SQL Server login on the local server that has a mapping to the linked server rmtsrvname. locallogin is sysname, with a
default of NULL. NULL specifies that all login mappings defined on rmtsrvname are returned. If not NULL, a mapping for
locallogin to rmtsrvname must already exist. locallogin can be an SQL Server login or a Microsoft Windows NT® user. The
Windows NT user must have been granted access to SQL Server either directly or through its membership in a Windows NT
group that has been granted access.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Linked Server sysname Linked server name.
Local Login sysname Local login for which the mapping applies.
Is Self Mapping smallint 0 = Local Login is mapped to Remote Login

when connecting to Linked Server.
1 = Local Login is mapped to the same login and
password when connecting to Linked Server.

Remote Login sysname Login name on Linked Server that is mapped to
Local Login when Is Self Mapping is 0. If Is Self
Mapping is 1, Remote Login is NULL.

Remarks

Before deleting login mappings, use sp_helplinkedsrvlogin to determine the linked servers that are involved.

Permissions

Execution permissions default to the public role.

Examples

A. Display all login mappings for all linked servers

This example displays all login mappings for all linked servers defined on the local computer running SQL Server.

EXEC sp_helplinkedsrvlogin
go

Linked Server Local Login Is Self Mapping Remote Login
---------------- ------------- --------------- --------------
Accounts NULL 1 NULL

Sales NULL 1 NULL
Sales Mary 0 sa
Marketing NULL 1 NULL

(4 row(s) affected)

B. Display all login mappings for a linked server

This example displays all locally defined login mappings for the Sales linked server.

EXEC sp_helplinkedsrvlogin 'Sales'
go

Linked Server Local Login Is Self Mapping Remote Login
---------------- ------------- --------------- --------------
Sales NULL 1 NULL
Sales Mary 0 sa

(2 row(s) affected)

C. Display all login mappings for a local login

This example displays all locally defined login mappings for the login Mary.

EXEC sp_helplinkedsrvlogin NULL, 'Mary'
go

Linked Server Local Login Is Self Mapping Remote Login
---------------- ------------- --------------- --------------
Sales NULL 1 NULL
Sales Mary 0 sa

(2 row(s) affected)

See Also

Establishing Security for Linked Servers

sp_addlinkedserver

sp_droplinkedsrvlogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helplogins
Provides information about logins and the associated users in each database.

Syntax

sp_helplogins [[@LoginNamePattern =] 'login']

Arguments

[@LoginNamePattern =] 'login'

Is a login name. login is sysname, with a default of NULL. login must exist if specified. If login is not specified, information about
all logins is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

The first report contains information about each login specified.

Column name Data type Description
LoginName sysname Login name.
SID varbinary(85) Login security identifier.
DefDBName sysname Default database that LoginName uses when

connecting to Microsoft® SQL Server™.
DefLangName sysname Default language used by LoginName.
Auser char(5) Yes = LoginName has an associated user

name in a database.
No = LoginName does not have an
associated user name.

ARemote char(7) Yes = LoginName has an associated remote
login.
No = LoginName does not have an
associated login.

The second report contains information about users and aliases associated with each login.

Column name Data type Description
LoginName sysname Login name.
DBName sysname Default database that LoginName uses when

connecting to SQL Server.
UserName sysname User account that LoginName is mapped to

in DBName, and the roles that LoginName
is a member of in DBName.

UserOrAlias char(8) MemberOf = UserName is a role.
User = UserName is a user account.

Remarks

Before removing logins, use sp_helplogins to determine the user accounts the login maps to.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_helplogins.

sp_helplogins must check all databases on the server to determine the user accounts in those databases associated with the
logins. Therefore, for each database on the server, one of these must apply:

The user executing sp_helplogins must have permissions to access the database.

The guest user account must exist in the database.

If a database cannot be accessed, sp_helplogins displays error message 15622 and as much information as it can for logins
associated with user accounts in those databases.

Examples

This example reports information about the login John.

EXEC sp_helplogins 'John'
go

LoginName SID DefDBName DefLangName AUser ARemote
--------- -------------------------- --------- ----------- ----- -------
John 0x23B348613497D11190C100C master us_english yes no

(1 row(s) affected)

LoginName DBName UserName UserOrAlias
--------- ------ -------- -----------
John pubs John User

(1 row(s) affected)

See Also

sp_helpuser

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_maintenance_plan
Returns information about the specified maintenance plan. If a plan is not specified, this stored procedure returns information
about all maintenance plans.

Syntax

sp_help_maintenance_plan [[@plan_id =] 'plan_id']

Arguments

[@plan_id =] 'plan_id'

Specifies the plan ID of the maintenance plan. plan_id is UNIQUEIDENTIFIER. The default is NULL.

Return Code Values

None

Result Sets

If plan_id is specified, sp_help_maintenance_plan will return three tables: Plan, Database, and Job.

Plan Table

Column name Data type Description
plan_id uniqueidentifier Maintenance plan ID.
plan_name sysname Maintenance plan name.
date_created datetime Date the maintenance plan was

created.
owner sysname Owner of the maintenance plan.
max_history_rows int Maximum number of rows

allotted for recording the
history of the maintenance plan
in the system table.

remote_history_server int The name of the remote server
to which the history report
could be written.

max_remote_history_rows int Maximum number of rows
allotted in the system table on a
remote server to which the
history report could be written.

user_defined_1 int Default is NULL.
user_defined_2 nvarchar(100) Default is NULL.
user_defined_3 datetime Default is NULL.
user_defined_4 uniqueidentifier Default is NULL.

Database Table

Column name Description
database_name Name of all databases associated with the maintenance

plan. database_name is sysname.

Job Table

Column name Description
job_id ID of all jobs associated with the maintenance plan. job_id

is uniqueidentifier.

If no plan ID is specified, or is NULL, sp_help_maintenance_plan will return information about all existing maintenance plans.

Column name Data type Description
plan_id uniqueidentifier Maintenance plan ID.
plan_name sysname Maintenance plan name.
date_created datetime Date the maintenance plan was

created.
owner sysname Maintenance plan owner.
max_history_rows int Maximum number of rows

allotted for recording the
history of the maintenance plan
in the system table.

remote_history_server int Name of the remote server to
which the history report could
be written.

max_remote_history_rows int Maximum number of rows
allotted in the system table on a
remote server to which the
history report could be written.

user_defined_1 int Default is NULL.
user_defined_2 nvarchar(100) Default is NULL.
user_defined_3 datetime Default is NULL.
user_defined_4 uniqueidentifier Default is NULL.

Permissions

Only members of the sysadmin fixed server role can execute sp_help_maintenance_plan.

Transact-SQL Reference (SQL Server 2000)

sp_help_notification
Reports a list of alerts for a given operator or a list of operators for a given alert.

Syntax

sp_help_notification [@object_type =] 'object_type' ,
 [@name =] 'name' ,
 [@enum_type =] 'enum_type' ,
 [@notification_method =] notification_method
 [, [@target_name =] 'target_name']

Arguments

[@object_type =] 'object_type'

Is the type of information to be returned. object_type is char(9), with no default. object_type can be ALERTS, which lists the alerts
assigned to the supplied operator name, or OPERATORS, which lists the operators responsible for the supplied alert name.

[@name =] 'name'

Is either an alert name (if object_type is ALERTS) or an operator name (if object_type is OPERATORS). name is sysname, with no
default.

[@enum_type =] 'enum_type'

Is the object_type information that is returned. enum_type is ACTUAL in most cases. enum_type is char(10), with no default, and
can be one of these values.

Value Description
ACTUAL Lists only the object_types associated with name.
ALL Lists all the object_types including those that are not

associated with name.
TARGET Lists only the object_types matching the supplied

target_name, regardless of association with name.

[@notification_method =] notification_method

Is a numeric value that determines the notification method columns to return. notification_method is tinyint, and can be one of
the following values.

Value Description
1 E-mail: returns only the use_email column.
2 Pager: returns only the use_pager column.
4 NetSend: returns only the use_netsend column.
7 All: returns all columns.

[@target_name =] 'target_name'

Is an alert name to search for (if object_type is ALERTS) or an operator name to search for (if object_type is OPERATORS).
target_name is needed only if enum_type is TARGET. target_name is sysname, with a default of NULL.

Return Code Valves

0 (success) or 1 (failure)

Result Sets

If object_type is ALERTS, the result set lists all the alerts for a given operator.

Column name Data type Description
alert_id int Alert identifier number.

alert_name sysname Alert name.
use_email int E-mail is used to notify the operator:

1 = Yes
0 = No

use_pager int Pager is used to notify operator:

1 = Yes
0 = No

use_netsend int Network pop-up is used to notify the
operator:

1 = Yes
0 = No

has_email int Number of e-mail notifications sent for this
alert.

has_pager int Number of pager notifications sent for this
alert.

has_netsend int Number of netsend notifications sent for
this alert.

If object_type is OPERATORS, the result set lists all the operators for a given alert.

Column name Data type Description
operator_id int Operator identification number.
operator_name sysname Operator name.
use_email int E-mail is used to send notification of the

operator:

1 = Yes
0 = No

use_pager int Pager is used to send notification of the
operator:

1 = Yes
0 = No

use_netsend int Is a network pop-up used to notify the
operator:

1 = Yes
0 = No

has_email int Operator has an e-mail address:

1 = Yes
0 = No

has_pager int Operator has a pager address:

1 = Yes
0 = No

Remarks

This stored procedure must be run from the msdb database.

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role and the db_owner fixed database role, who can

grant permissions to other users.

Examples

A. List alerts for a specific operator

This example returns all alerts for which the operator John Doe receives any kind of notification.

USE msdb
EXEC sp_help_notification 'ALERTS', 'John Doe', 'ACTUAL', 7

B. List operators for a specific alert

This example returns all operators who receive any kind of notification for the Test Alert alert.

USE msdb
EXEC sp_help_notification 'OPERATORS', 'Test Alert', 'ACTUAL', 7

See Also

sp_add_notification

sp_delete_notification

sp_update_notification

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpntgroup
Reports information about Microsoft® Windows NT® groups with accounts in the current database.

Syntax

sp_helpntgroup [[@ntname =] 'name']

Arguments

[@ntname =] 'name'

Is the name of the Windows NT group. name is sysname, with a default of NULL. name must be a valid Windows NT group in the
current database. If name is not specified, all Windows NT groups in the current database are included in the output. Specify the
name that the Windows NT group is known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
NTGroupName sysname Name of the Windows NT group.
NTGroupId smallint Group ID.
SID varbinary(85) Security identifier of NTGroupName.
HasDbAccess int 1 = Windows NT group has permission

access to the database.

Remarks

To see a list of the Microsoft SQL Server™ roles in the current database, use sp_helprole.

Permissions

Execute permissions default to the public role.

Examples

This example prints a list of the Windows NT groups in the current database.

EXEC sp_helpntgroup

See Also

sp_grantdbaccess

sp_helprole

sp_revokedbaccess

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_operator
Reports information about the operators defined for the server.

Syntax

sp_help_operator [[@operator_name =] 'operator_name']
 [, [@operator_id =] operator_id]

Arguments

[@operator_name =] 'operator_name'

Is the operator name. operator_name is sysname. If operator_name is not specified, information about all operators is returned.

[@operator_id =] operator_id

Is the identification number of the operator for which information is requested. operator_id is int, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
id int Operator identification number.
name sysname Operator Name.
enabled tinyint Operator is available to receive any

notifications:

1 = Yes
0 = No

email_address nvarchar(100) Operator e-mail address.
last_email_date int Date the operator was last notified by

e-mail.
last_email_time int Time the operator was last notified by

e-mail.
pager_address nvarchar(100) Operator pager address.
last_pager_date int Date the operator was last notified by

pager.
last_pager_time int Time the operator was last notified by

pager.
weekday_pager_start_time int The start of the time period during

which the operator is available to
receive pager notifications on a
weekday.

weekday_pager_end_time int The end of the time period during
which the operator is available to
receive pager notifications on a
weekday.

Saturday_pager_start_time int The start of the time period during
which the operator is available to
receive pager notifications on
Saturdays.

Saturday_pager_end_time int The end of the time period during
which the operator is available to
receive pager notifications on
Saturdays.

Sunday_pager_start_time int The start of the time period during
which the operator is available to
receive pager notifications on
Sundays.

Sunday_pager_end_time int The end of the time period during
which the operator is available to
receive pager notifications on
Sundays.

pager_days tinyint A bitmask (1 = Sunday, 64 =
Saturday) of days-of-the week
indicating when the operator is
available to receive pager
notifications.

netsend_address nvarchar(100) Operator address for network pop-up
notifications.

last_netsend_date int Date the operator was last notified by
network pop-up.

last_netsend_time int Time the operator was last notified by
network pop-up.

category_name sysname Name of the operator category to
which this operator belongs.

Remarks

sp_help_operator must be run from the msdb database.

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role and the db_owner fixed database role, who can
grant permissions to other users.

Examples

This example reports information about operator andrewf.

USE msdb
EXEC sp_help_operator 'andrewf'

See Also

sp_add_operator

sp_delete_operator

sp_update_operator

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpremotelogin
Reports information about remote logins for a particular remote server, or for all remote servers, defined on the local server.

Syntax

sp_helpremotelogin [[@remoteserver =] 'remoteserver']
 [, [@remotename =] 'remote_name']

Arguments

[@remoteserver =] 'remoteserver'

Is the remote server about which the remote login information is returned. remoteserver is sysname, with a default of NULL. If
remoteserver is not specified, information about all remote servers defined on the local server is returned.

[@remotename =] 'remote_name'

Is a specific remote login on the remote server. remote_name is sysname, with a default of NULL. If remote_name is not
specified, information about all remote users defined for remoteserver is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
server sysname Name of a remote server defined on the local

server.
local_user_name sysname Login on the local server that remote logins

from server map to.
remote_user_name sysname Login on the remote server that maps to

local_user_name.
options sysname Trusted = The remote login does not need to

supply a password when connecting to the
local server from the remote server.

Untrusted (or blank) = The remote login is
prompted for a password when connecting to
the local server from the remote server.

Remarks

Use sp_helpserver to list the names of remote servers defined on the local server.

Permissions

Execute permissions default to the public role.

Examples

A. Report help on a single server

This example displays information about all remote users on the remote server Accounts.

EXEC sp_helpremotelogin 'Accounts'

B. Report help on all remote users

This example displays information about all remote users on all remote servers known to the local server.

EXEC sp_helpremotelogin

See Also

sp_addremotelogin

sp_dropremotelogin

sp_helpserver

sp_remoteoption

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helprole
Returns information about the roles in the current database.

Syntax

sp_helprole [[@rolename =] 'role']

Arguments

[@rolename =] 'role'

Is the name of a role in the current database. role is sysname, with a default of NULL. role must exist in the current database. If
role is not specified, information about all roles in the current database is returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
RoleName sysname Name of the role in the current database.
RoleId smallint ID of RoleName.
IsAppRole int 0 = RoleName is not an application role.

1 = RoleName is an application role.

Remarks

To view the permissions associated with the role, use sp_helprotect.

To view the members of a database role, use sp_helprolemember.

Permissions

Execute permissions default to the public role.

Examples

This example displays all the roles in the current database.

EXEC sp_helprole

See Also

sp_addapprole

sp_addrole

sp_droprole

sp_helprolemember

sp_helpsrvrolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helprolemember
Returns information about the members of a role in the current database.

Syntax

sp_helprolemember [[@rolename =] 'role']

Arguments

[@rolename =] 'role'

Is the name of a role in the current database. role is sysname, with a default of NULL. role must exist in the current database. If
role is not specified, then all roles that contain at least one member from the current database are returned.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
DbRole sysname Name of the role in the current database.
MemberName sysname Name of a member of DbRole.
MemberSID varbinary(85) Security identifier of MemberName.

Remarks

If a subrole is a member of the specified role, use sp_helprolemember with the name of the subrole to see the members of the
subrole.

Use sp_helpsrvrolemember to display the members of a fixed server role.

Permissions

Execute permissions default to the public role.

Examples

This example displays the members of the Sales role.

EXEC sp_helprolemember 'Sales'

See Also

sp_addrolemember

sp_droprolemember

sp_helprole

sp_helpsrvrolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helprotect
Returns a report with information about user permissions for an object, or statement permissions, in the current database.

Syntax

sp_helprotect [[@name =] 'object_statement']
 [, [@username =] 'security_account']
 [, [@grantorname =] 'grantor']
 [, [@permissionarea =] 'type']

Arguments

[@name =] 'object_statement'

Is the name of the object in the current database, or a statement, with the permissions to report. object_statement is
nvarchar(776), with a default of NULL, which returns all object and statement permissions. If the value is an object (table, view,
stored procedure, or extended stored procedure), it must be a valid object in the current database. The object name can include an
owner qualifier in the form owner.object.

If object_statement is a statement, it can be:

CREATE DATABASE

CREATE DEFAULT

CREATE FUNCTION

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE VIEW

BACKUP DATABASE

BACKUP LOG

[@username =] 'security_account'

Is the name of the security account for which permissions are returned. security_account is sysname, with a default of NULL,
which returns all security accounts in the current database. security_account must be a valid security account in the current
database. When specifying a Microsoft® Windows NT® user, specify the name the Windows NT user is known by in the database
(added using sp_grantdbaccess).

[@grantorname =] 'grantor'

Is the name of the security account that has granted permissions. grantor is sysname, with a default of NULL, which returns all
information for permissions granted by any security account in the database. When specifying a Windows NT user, specify the
name that the Windows NT user is known by in the database (added using sp_grantdbaccess).

[@permissionarea =] 'type'

Is a character string indicating whether to display object permissions (character string o), statement permissions (character string
s), or both (o s). type is varchar(10), with a default of o s. type may be any combination of o and s, with or without commas or
spaces between o and s.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Owner sysname Name of the object owner.
Object sysname Name of the object.
Grantee sysname Name of the person granted permissions.
Grantor sysname Name of the person who granted permissions

to the specified grantee.
ProtectType char(10) Name of the type of protection:

GRANT
REVOKE

Action varchar(20) Name of the permission:

REFERENCES
SELECT
INSERT
DELETE
UPDATE
CREATE TABLE
CREATE DATABASE
CREATE FUNCTION
CREATE RULE
CREATE VIEW
CREATE PROCEDURE
EXECUTE
BACKUP DATABASE
CREATE DEFAULT
BACKUP LOG

Column sysname Type of permission:

All = Permission covers all current columns of
the object.
New = Permission covers any new columns
that might be altered (by using the ALTER
statement) on the object in the future.
All+New = Combination of All and New.

Remarks

All of the parameters of this procedure are optional. If executed with no parameters, sp_helprotect displays all of the permissions
that have been granted or denied in the current database.

If some, but not all of the parameters are specified, use named parameters to identify the particular parameter, or NULL as a
placeholder. For example, to report all permissions for the grantor dbo, execute:

EXEC sp_helprotect NULL, NULL, dbo

Or

EXEC sp_helprotect @grantorname = 'dbo'

The output report is sorted by permission category, owner, object, grantee, grantor, protection type category, protection type,
action, and column sequential ID.

Permissions

Execute permissions default to the public role.

Examples

A. List the permissions for a table

This example lists the permissions for the titles table.

EXEC sp_helprotect 'titles'

B. List the permissions for a user

This example lists all permissions that user Judy has in the current database.

EXEC sp_helprotect NULL, 'Judy'

C. List the permissions granted by a specific user

This example lists all permissions that were granted by user Judy in the current database, using a NULL as a placeholder for the
missing parameters.

EXEC sp_helprotect NULL, NULL, 'Judy'

D. List the statement permissions only

This example lists all the statement permissions in the current database, using NULL as a placeholder for the missing parameters.

EXEC sp_helprotect NULL, NULL, NULL, 's'

See Also

DENY

GRANT

REVOKE

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpserver
Reports information about a particular remote or replication server, or about all servers of both types. Provides the server name,
the server's network name, the server's replication status, the server's identification number, collation name, and time-out values
for connecting to, or queries against, linked servers.

Syntax

sp_helpserver [[@server =] 'server']
 [, [@optname =] 'option']
 [, [@show_topology =] 'show_topology']

Arguments

[@server =] 'server'

Is the server about which information is reported. When no server is supplied, reports about all servers in
master.dbo.sysservers. server is sysname, with a default of NULL.

[@optname =] 'option'

Is the option describing the server. option is varchar(35), with a default of NULL, and must be one of these values.

Value Description
collation compatible Affects the Distributed Query execution against

linked servers. If this option is set to true,
Microsoft® SQL Server™ assumes that all
characters in the linked server are compatible with
the local server, with regard to character set and
collation sequence (or sort order).

data access Enables and disables a linked server for distributed
query access.

dist Distributor.
dpub Remote Publisher to this Distributor.
lazy schema validation Skips schema checking of remote tables at the

beginning of the query.
pub Publisher.
rpc Enables RPC from the given server.
rpc out Enables RPC to the given server.
sub Subscriber.
system For internal use only.
use remote collation Uses the collation of a remote column rather than

that of the local server.

[@show_topology =] 'show_topology'

Is the relationship of the given server to other servers. show_topology is varchar(1), with a default of NULL. If show_topology is
not equal to t or is NULL, sp_helpserver returns columns listed in the Result Sets section. If show_topology is equal to t, in
addition to the columns listed in the Result Sets, sp_helpserver also returns topx and topy information.

Return Code Values

0 (success) or 1 (failure).

Result Sets

Column name Data type Description
name sysname Server name.
network_name sysname Server's network name.
status varchar(70) Server status.

id char(4) Server's identification number.
collation_name sysname Server's collation.
connect_timeout int Time-out value for connecting to linked server.
query_timeout int Time-out value for queries against linked

server.

Remarks

A server can have more than one status.

Permissions

Execute permissions default to the public role.

Examples

A. Display information about all servers

This example displays information about all servers (sp_helpserver with no parameters).

USE master
EXEC sp_helpserver

B. Display information about a specific server

This example displays all information about the SEATTLE2 server.

USE master
EXEC sp_helpserver 'SEATTLE2'

See Also

sp_adddistpublisher

sp_addserver

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_dropserver

sp_dropsubscriber

sp_helpdistributor

sp_helpremotelogin

sp_helpsubscriberinfo

sp_serveroption

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpsort
Displays the Microsoft® SQL Server™ sort order and character set.

Syntax

sp_helpsort

Return Code Values

0 (success) or 1 (failure)

Result Sets

Returns server default collation.

Remarks

If SQL Server 2000 is installed with a collation specified to be compatible with an earlier installation of SQL Server, sp_helpsort
will return blank results. In this case, the collation can be determined by querying the SERVERPROPERTY object and specifying
'Collation' as the propertyname. For example,

SELECT SERVERPROPERTY ('Collation')

Permissions

Execute permissions default to the public role.Examples

This example displays the name of the server's default sort order, its character set, and a table of its primary sort values.

sp_helpsort
go

This is the result set.

Server default collation

Latin1-General, case-sensitive, accent-sensitive, kanatype-insensitive, width-insensitive for Unicode Data, SQL
Server Sort Order 51 on Code Page 1252 for non-Unicode Data.

See Also

COLLATE

Collations

fn_helpcollations

SERVERPROPERTY

Transact-SQL Reference (SQL Server 2000)

sp_helpsrvrole
Returns a list of the Microsoft® SQL Server™ fixed server roles.

Syntax

sp_helpsrvrole [[@srvrolename =] 'role']

Arguments

[@srvrolename =] 'role'

Is the name of the fixed server role. role is sysname, with a default of NULL, and can be any of these values.

Fixed server role Description
sysadmin System administrators
securityadmin Security administrators
serveradmin Server administrators
setupadmin Setup administrators
processadmin Process administrators
diskadmin Disk administrators
dbcreator Database creators
bulkadmin Can execute BULK INSERT statements

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
ServerRole sysname Name of the server role
Description sysname Description of ServerRole

Remarks

Fixed server roles are defined at the server level and have permissions to perform specific server-level administrative activities.
Fixed server roles cannot be added, removed, or changed.

The table shows stored procedures that can be used to modify server roles.

Stored procedure Action
sp_addsrvrolemember Adds a login account to a fixed server role.
sp_helpsrvrolemember Displays a list of the members of a fixed server role.
sp_dropsrvrolemember Removes a member of a server role.

Permissions

Execute permissions default to the public role.

Examples

This example shows the list of available fixed server roles.

EXEC sp_helpsrvrole

See Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helpsrvrolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpsrvrolemember
Returns information about the members of a Microsoft® SQL Server™ fixed server role.

Syntax

sp_helpsrvrolemember [[@srvrolename =] 'role']

Arguments

[@srvrolename =] 'role'

Is the name of a fixed server role about whose members information is returned. role is sysname, with a default of NULL. If role is
not specified, the result set includes information regarding all fixed server roles.

role can be any of these values.

Fixed server role Description
sysadmin System administrators
securityadmin Security administrators
serveradmin Server administrators
setupadmin Setup administrators
processadmin Process administrators
diskadmin Disk administrators
dbcreator Database creators
bulkadmin Can execute BULK INSERT statements

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
ServerRole sysname Name of the server role
MemberName sysname Name of a member of ServerRole
MemberSID varbinary(85) Security identifier of MemberName

Remarks

Use sp_helprolemember to display the members of a database role.

Permissions

Execute permissions default to the public role.

Examples

This example lists the members of the sysadmin fixed server role.

EXEC sp_helpsrvrolemember 'sysadmin'

See Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helprole

sp_helprolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpstats
Returns statistics information about columns and indexes on the specified table.

Syntax

sp_helpstats[@objname =] 'object_name'
 [, [@results =] 'value']

Arguments

[@objname =] 'object_name'

Specifies the table on which to provide statistics information. object_name is nvarchar(520) and cannot be null.

[@results =] 'value'

Specifies the extent of information to provide. Valid entries are ALL and STATS. ALL lists statistics for all indexes as well as
columns that have statistics created on them; STATS only lists statistics not associated with an index. value is nvarchar(5) with a
default of STATS.

Return Code Values

0 (success) or 1 (failure)

Result Sets

This table describes the columns in the result set.

Column name Description
statistics_name The name of the statistics. Returns sysname and

cannot be null.
statistics_keys The keys on which statistics are based. Returns

nvarchar(2078) and cannot be null.

Remarks

Use DBCC SHOW_STATISTICS to display detailed statistics information about any particular index or statistics. In SQL Server 7.0
Books Online, see DBCC SHOW_STATISTICS and sp_helpindex for related information.

Permissions

Execute permissions default to the public role.

Examples

Create single-column statistics for all eligible columns for all user tables in the Northwind database by executing sp_createstats.
To find out the resultant statistics created on the Customers table, execute sp_helpstats.

This table lists the contents of the result set.

statistics_name statistics_keys
PK_Customers CustomerID
City City
CompanyName CompanyName
PostalCode PostalCode
Region Region
ContactName ContactName
ContactTitle ContactTitle
Address Address
Country Country

Phone Phone
Fax Fax

Transact-SQL Reference (SQL Server 2000)

sp_help_targetserver
Lists all target servers.

Syntax

sp_help_targetserver [[@server_name =] 'server_name']

Argument

[@server_name =] 'server_name'

Is the name of the server for which to return information. server_name is nvarchar(30), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

If server_name is not specified, sp_help_targetserver returns this result set.

Column name Data type Description
server_id int Server identification number.
server_name nvarchar(30) Server name.
location nvarchar(200) Location of the specified server.
time_zone_adjustment int Time zone adjustment, in hours, from

Greenwich mean time (GMT).
enlist_date datetime Date of the specified server's

enlistment.
last_poll_date datetime Date the server was last polled for

jobs.
status int Status of the specified server.
unread_instructions int Whether the server has unread

instructions. (If all rows have been
downloaded, this column is 0.)

local_time datetime Local date and time on the target
server, which is based on the local
time on the target server as of the
last poll of the master server.

Enlisted_by_nt_user nvarchar(100) Microsoft® Windows NT® user that
enlisted the target server.

poll_interval int Frequency with which the target
server polls the Master
SQLServerAgent service in order to
download jobs and upload job status.

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role and the db_owner fixed database role, who can
grant permissions to other users.

Examples

This example lists information for all servers, and then only for the LONDON1 target server.

USE msdb
EXEC sp_help_targetserver
EXEC sp_help_targetserver 'LONDON1'

See Also

sp_add_targetservergroup

sp_delete_targetserver

sp_delete_targetservergroup

sp_update_targetservergroup

sysdownloadlist

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_targetservergroup
Lists all target servers in the specified group. If no group is specified, Microsoft® SQL Server™ returns information about all
target server groups.

Syntax

sp_help_targetservergroup [[@name =] 'name']

Argument

[@name =] 'name'

Is the name of the target server group for which to return information. name is varchar(100), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
servergroup_id int Identification number of the server group
name sysname Name of the server group

Permissions

Permissions to execute this procedure default to the sysadmin fixed server role and the db_owner fixed database role, who can
grant permissions to other users.

Examples

This example lists all target server groups first, followed by all other target servers in the Servers Maintaining Customer
Information target server group.

USE msdb
EXEC sp_help_targetservergroup
EXEC sp_help_targetservergroup 'Servers Maintaining Customer Information'

See Also

sp_add_targetservergroup

sp_delete_targetservergroup

sp_update_targetservergroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helptask
sp_helptask is provided for backward compatibility only. For more information about the procedures used in Microsoft® SQL
Server™ version 7.0, see SQL Server Backward Compatibility Details.

Provides information about one or more tasks that the user owns. sp_helptask prevents sensitive information stored in the
systasks table from being returned to all users.

Important For more information about syntax used in earlier versions of SQL Server, see the Microsoft SQL Server Transact-SQL
Reference for version 6.x.

Permissions

Execute permissions default to the public role. Anyone who can execute this procedure can also create, delete, or update a job,
job step, job category, job schedule, job server, task, or job history information.

See Also

sp_addtask

sp_droptask

sp_purgehistory

sp_updatetask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helptext
 Topic last updated -- July 2003

Prints the text of a rule, a default, or an unencrypted stored procedure, user-defined function, trigger, computed column, or view.

Syntax

sp_helptext [@objname =] name
 [, [@columnname =] computed_column_name]

Arguments

[@objname =] name

Is the name of the object for which to display definition information. The object must be in the current database. name is
nvarchar(776), with no default.

[@columnname =] computed_column_name

Is the name of the computed column for which to display definition information. The table that contains the column must be
specified as objname and must be in the current database. computed_column_name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Text nvarchar(255) Object definition text

Remarks

sp_helptext prints out the text used to create an object in multiple rows, each with 255 characters of the Transact-SQL definition.
The definition resides in the text in the syscomments table of the current database only.

Permissions

Execute permissions default to the public role.

Examples

A. Display the defin ition of a trigger.

This example displays the text of the employee_insupd trigger, which is in the pubs database.

USE pubs
EXEC sp_helptext employee_insupd

B. Display the defin ition of a computed column.

This example creates the computed column discountamount on the titles table in the pubs database and displays the definition
of that computed column.

USE pubs
ALTER TABLE titles ADD discountamount AS price * .15
GO
sp_helptext @objname = titles, @columnname = discountamount
GO

Here is the result set:

Text
([price] * 0.15)

See Also

CREATE PROCEDURE

CREATE TRIGGER

CREATE VIEW

sp_help

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helptrigger
Returns the type or types of triggers defined on the specified table for the current database.

Syntax

sp_helptrigger [@tabname =] 'table'
 [, [@triggertype =] 'type']

Arguments

[@tabname =] 'table'

Is the name of the table in the current database for which to return trigger information. table is nvarchar(776), with no default.

[@triggertype =] 'type'

Is the type of trigger to return information about. type is char(6), with a default of NULL, and can be one of these values.

Value Description
DELETE Returns DELETE trigger information.
INSERT Returns INSERT trigger information.
UPDATE Returns UPDATE trigger information.

Return Code Values

0 (success) or 1 (failure)

Result Sets

This table shows the information contained in the result set.

Column name Data type Description
trigger_name sysname Name of the trigger.
trigger_owner sysname Name of the trigger owner.
isupdate int 1=UPDATE trigger

0=Not an UPDATE trigger
isdelete int 1=DELETE trigger

0=Not a DELETE trigger
isinsert int 1=INSERT trigger

0=Not an INSERT trigger
isafter int 1=AFTER trigger

0=Not an AFTER trigger
isinsteadof int 1=INSTEAD OF trigger

0=Not an INSTEAD OF trigger

Permissions

Execute permissions default to the public role.

Examples

This example creates a trigger named sales_warn that raises error 50010 when the amount of books sold is 10. Then,
sp_helptrigger is executed to produce information about the trigger(s) on the sales table.

USE pubs
CREATE TRIGGER sales_warn
ON sales
FOR INSERT, UPDATE
AS RAISERROR (50010, 16, 10)

EXEC sp_helptrigger sales

Here is the result set:

trigger_name trigger_owner isupdate isdelete isinsert
------------- ----------------------- ----------- ----------- ---------
sales_warn dbo 1 0 1

(1 row(s) affected)

See Also

ALTER TRIGGER

CREATE TRIGGER

DROP TRIGGER

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpuser
Reports information about Microsoft® SQL Server™ users, Microsoft Windows NT® users, and database roles in the current
database.

Syntax

sp_helpuser [[@name_in_db =] 'security_account']

Arguments

[@name_in_db =] 'security_account'

Is the name of a SQL Server user, Windows NT user, or database role in the current database. security_account must exist in the
current database. security_account is sysname, with a default of NULL. If security_account is not specified, the system procedure
reports on all users, Windows NT users, and roles in the current database. When specifying a Windows NT user, specify the name
that the Windows NT user is known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Result Sets

Neither a user account nor an SQL Server or Windows NT user is specified for security_account.

Column name Data type Description
UserName sysname Users and Windows NT users in the current

database.
GroupName sysname Roles to which UserName belongs.
LoginName sysname Login of UserName.
DefDBName sysname Default database of UserName.
UserID smallint ID of UserName in the current database.
SID smallint User's security identification number (SID).

No user account is specified and aliases exist in the current database.

Column name Data type Description
LoginName sysname Logins aliased to users in the current database.
UserNameAliasedTo sysname User name in the current database that the

login is aliased to.

A role is specified for security_account.

Column name Data type Description
Group_name sysname Name of the role in the current database.
Group_id smallint Role ID for the role in the current database.
Users_in_group sysname Member of the role in the current database.
Userid smallint User ID for the member of the role.

Remarks

Use sp_helpsrvrole and sp_helpsrvrolemember to return information about fixed server roles.

Executing sp_helpuser for a database role is equivalent to executing sp_helpgroup for that database role.

Permissions

Execute permissions default to the public role.

Examples

A. List all users

This example lists all users in the current database.

EXEC sp_helpuser

B. List information for a single user

This example lists information about the user dbo.

EXEC sp_helpuser 'dbo'

C. List information for a database role

This example lists information about the db_securityadmin fixed database role.

EXEC sp_helpuser 'db_securityadmin'

See Also

sp_adduser

sp_dropuser

sp_helpgroup

sp_helprole

sp_helpsrvrole

sp_helpsrvrolemember

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_indexes
Returns index information for the specified remote table.

Syntax

sp_indexes [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_db']
 [, [@index_name =] 'index_name']
 [, [@is_unique =] 'is_unique']

Arguments

[@table_server =] 'table_server'

Is the name of a linked server running Microsoft® SQL Server™ for which table information is being requested. table_server is
sysname, with no default.

[@table_name =] 'table_name'

Is the name of the remote table for which to provide index information. table_name is sysname, with a default of NULL. If NULL,
all tables in the specified database are returned.

[@table_schema =] 'table_schema'

Specifies the table schema. In the Microsoft SQL Server environment, this corresponds to the table owner. table_schema is
sysname, with a default of NULL.

[@table_catalog =] 'table_db'

Is the name of the database in which table_name resides. table_db is sysname, with a default of NULL. If NULL, table_db defaults
to master.

[@index_name =] 'index_name'

Is the name of the index for which information is being requested. index is sysname, with a default of NULL.

[@is_unique =] 'is_unique'

Is the type of index for which to return information. is_unique is bit, with a default of NULL, and can be one of these values.

Value Description
1 Returns information about unique indexes.
0 Returns information about indexes that are not unique.
NULL Returns information about all indexes.

Result Sets

Column name Data type Description
TABLE_CAT sysname Name of the database in which the

specified table resides.
TABLE_SCHEM sysname Schema for the table.
TABLE_NAME sysname Name of the remote table.
NON_UNIQUE smallint Whether the index is unique or not

unique:

0 = Unique
1 = Not unique

INDEX_QUALIFER sysname Name of the index owner. Some
DBMS products allow users other than
the table owner to create indexes. In
SQL Server, this column is always the
same as TABLE_NAME.

INDEX_NAME sysname Name of the index.
TYPE smallint Type of index:

0 = Statistics for a table
1 = Clustered
2 = Hashed
3 = Other

ORDINAL_POSITION int Ordinal position of the column in the
table. The first column in the table is 1.
This column always returns a value.

COLUMN_NAME sysname Is the corresponding name of the
column for each column of the
TABLE_NAME returned.

ASC_OR_DESC varchar Is the order used in collation:

A = Ascending
D = Descending
NULL = Not applicable

SQL Server always returns A.

CARDINALITY int Is the number of rows in the table or
unique values in the index.

PAGES int Is the number of pages to store the
index or table.

FILTER_CONDITION nvarchar(4000) SQL Server does not return a value.

Permissions

Execute permissions default to the public role.

Examples

This example returns all index information from the Employees table of the Northwind database on the LONDON1 database
server.

EXEC sp_indexes @table_server = 'LONDON1',
 @table_name = 'Employees',
 @table_catalog = 'Northwind',
 @is_unique = 0

See Also

sp_catalogs

sp_column_privileges

sp_foreignkeys

sp_linkedservers

sp_tables_ex

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_indexoption
 Topic last updated -- July 2003

Sets option values for user-defined indexes.

Note Microsoft® SQL Server™ automatically makes choices of page-, row-, or table-level locking. It is not necessary to set these
options manually. sp_indexoption is provided for expert users who know with certainty that a particular type of lock is always
appropriate.

Syntax

sp_indexoption [@IndexNamePattern =] 'index_name'
 , [@OptionName =] 'option_name'
 , [@OptionValue =] 'value'

Arguments

[@IndexNamePattern =] 'index_name'

Is the qualified or nonqualified name of a user-defined database table or index. Quotation marks are not necessary if a single
index or table name is specified. Even if a fully qualified table name, including a database name, is provided, the database name
must be the name of the current database. If a table name is given with no index, the specified option value is set for all indexes
on that table. index_pattern is nvarchar(1035), with no default.

[@OptionName =] 'option_name'

Is an index option name. option_name is varchar(35), with no default. option_name can have these values.

Value Description
AllowRowLocks When FALSE, row locks are not used. Access to the

specified indexes is obtained using page- and
table-level locks.

AllowPageLocks When FALSE, page locks are not used. Access to the
specified indexes is obtained using row- and table-
level locks.

DisAllowRowLocks When TRUE, row locks are not used. Access to the
specified indexes is obtained using page- and
table-level locks.

DisAllowPageLocks When TRUE, page locks are not used. Access to the
specified indexes is obtained using row- and table-
level locks.

[@OptionValue =] 'value'

Specifies whether the option_name setting is enabled (TRUE, on, yes, or 1) or disabled (FALSE, off, no, or 0). value is
varchar(12), with no default.

Return Code Values

0 (success) or greater than 0 (failure)

Remarks

sp_indexoption can be used only to set option values for user-defined indexes. To display index properties, use
INDEXPROPERTY.

Permissions

Members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
modify the AllowRowLocks/DisAllowRowLocks and AllowPageLocks/DisAllowPageLocks options for any user-defined
indexes.

Other users can modify options only for tables they own.

Examples

This example disallows page locks on the City index on the Customers table.

USE Northwind
GO
EXEC sp_indexoption 'Customers.City',
 'disallowpagelocks',
 TRUE

See Also

INDEXPROPERTY

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_invalidate_textptr
Makes the specified in-row text pointer, or all in-row text pointers, in the transaction invalid. sp_invalidate_textptr can be used
only on in-row text pointers, which are from tables with the text in row option enabled.

Syntax

sp_invalidate_textptr [[@TextPtrValue =] textptr_value]

Arguments

[@TextPtrValue =] textptr_value

Is the in-row text pointer that will be invalidated. textptr_value is varbinary(16), with a default of NULL. If NULL,
sp_invalidate_textptr will invalidate all in-row text pointers in the transaction.

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server allows a maximum of 1024 active valid in-row text pointers per transaction per database; however, a transaction
spanning more than one database can have 1024 in-row text pointers in each database. sp_invalidate_textptr can be used to
invalidate in-row text pointers and thus free up space for additional in-row text pointers.

For more information about the text in row option, see sp_tableoption.

Permissions

Execute permissions for sp_invalidate_textptr default to all users.

See Also

Managing ntext, text, and image Data

sp_tableoption

TEXTPTR

TEXTVALID

Transact-SQL Reference (SQL Server 2000)

sp_linkedservers
Returns the list of linked servers defined in the local server.

Syntax

sp_linkedservers

Return Code Values

0 (success) or a nonzero number (failure)

Result Sets

Column name Data type Description
SRV_NAME sysname Name of the linked server.
SRV_PROVIDERNAME nvarchar(128) Friendly name of the OLE DB

provider managing access to the
specified linked server.

SRV_PRODUCT nvarchar(128) Product name of the linked server.
SRV_DATASOURCE nvarchar(4000) OLE DB data source property

corresponding to the specified
linked server.

SRV_PROVIDERSTRING nvarchar(4000) OLE DB provider string property
corresponding to the linked server.

SRV_LOCATION nvarchar(4000) OLE DB location property
corresponding to the specified
linked server.

SRV_CAT sysname OLE DB catalog property
corresponding to the specified
linked server.

See Also

sp_catalogs

sp_column_privileges

sp_columns_ex

sp_foreignkeys

sp_indexes

sp_primarykeys

sp_table_privileges

sp_tables_ex

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_lock
Reports information about locks.

Syntax

sp_lock [[@spid1 =] 'spid1'] [,[@spid2 =] 'spid2']

Arguments

[@spid1 =] 'spid1'

Is the Microsoft® SQL Server™ process ID number from master.dbo.sysprocesses. spid1 is int, with a default of NULL. Execute
sp_who to obtain process information about the lock. If spid1 is not specified, information about all locks is displayed.

[@spid2 =] 'spid2'

Is another SQL Server process ID number to check for lock information. spid2 is int, with a default of NULL. spid2 is another spid
that may have a lock at the same time as spid1, and on which the user also wants information.

Note sp_who can have zero, one, or two parameters. These parameters determine whether the stored procedure displays
locking information on all, one, or two spid processes.

Return Code Values

0 (success)

Result Sets

Column name Data type Description
spid smallint The SQL Server process ID number.
dbid smallint The database identification number requesting a

lock.
ObjId int The object identification number of the object

requesting a lock.
IndId smallint The index identification number.
Type nchar(4) The lock type:

DB = Database
FIL = File
IDX = Index
PG = PAGE
KEY = Key
TAB = Table
EXT = Extent
RID = Row identifier

Resource nchar(16) The lock resource that corresponds to the value
in syslockinfo.restext.

Mode nvarchar(8) The lock requester's lock mode. This lock mode
represents the granted mode, the convert mode,
or the waiting mode.

Status int The lock request status:

GRANT
WAIT
CNVRT

Remarks

Users can control locking by adding an optimizer hint to the FROM clause of a SELECT statement, or by setting the SET

TRANSACTION ISOLATION LEVEL option. For syntax and restrictions, see SELECT and SET TRANSACTION ISOLATION LEVEL.

In general, read operations, acquire shared locks, and write operations acquire exclusive locks. Update locks are acquired during
the initial portion of an update operation when the data is being read. Update locks are compatible with shared locks. Later, if the
data is changed, the update locks are promoted to exclusive locks. There are times when changing data that an update lock is
briefly acquired prior to an exclusive lock. This update lock will then be automatically promoted to an exclusive lock.

Different levels of data can be locked including an entire table, one or more pages of the table, and one or more rows of a table.
Intent locks at a higher level of granularity mean locks are either being acquired or intending to be acquired at a lower level of
lock granularity. For example, a table intent lock indicates the intention to acquire a shared or exclusive page level lock. An intent
lock prevents another transaction from acquiring a table lock for that table.

An extent lock is held on a group of eight database pages while they are being allocated or freed. Extent locks are set while a
CREATE or DROP statement is running or while an INSERT or UPDATE statement that requires new data or index pages is running.

When reading sp_lock information, use the OBJECT_NAME() function to get the name of a table from its ID number, for example:

SELECT object_name(16003088)

All distributed transactions not associated with a SPID value are orphaned transactions. SQL Server 2000 assigns all orphaned
distributed transactions the SPID value of '-2', making it easier for a user to identify blocking distributed transactions. For more
information, see KILL.

For more information about using the Windows NT Performance Monitor to view information about a specific process ID, see
DBCC.

Permissions

Execute permissions default to the public role.

Examples

A. List all locks

This example displays information about all locks currently held in SQL Server.

USE master
EXEC sp_lock

B. List a lock from a single-server process

This example displays information, including locks, on process ID 53.

USE master
EXEC sp_lock 53

See Also

Functions

KILL

Locking

sp_who

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_makewebtask
Creates a task that produces an HTML document containing data returned by executed queries.

Note All Web jobs are categorized as Web Assistant in the Job Categories dialog box in SQL Server Enterprise Manager. For
more information, see Defining Jobs.

Syntax

sp_makewebtask [@outputfile =] 'outputfile', [@query =] 'query'
 [, [@fixedfont =] fixedfont]
 [, [@bold =] bold]
 [, [@italic =] italic]
 [, [@colheaders =] colheaders]
 [, [@lastupdated =] lastupdated]
 [, [@HTMLheader =] HTMLheader]
 [, [@username =] username]
 [, [@dbname =] dbname]
 [, [@templatefile =] 'templatefile']
 [, [@webpagetitle =] 'webpagetitle']
 [, [@resultstitle =] 'resultstitle']
 [
 [, [@URL =] 'URL', [@reftext =] 'reftext']
 | [, [@table_urls =] table_urls, [@url_query =] 'url_query']
]
 [, [@whentype =] whentype]
 [, [@targetdate =] targetdate]
 [, [@targettime =] targettime]
 [, [@dayflags =] dayflags]
 [, [@numunits =] numunits]
 [, [@unittype =] unittype]
 [, [@procname =] procname]
 [, [@maketask =] maketask]
 [, [@rowcnt =] rowcnt]
 [, [@tabborder =] tabborder]
 [, [@singlerow =] singlerow]
 [, [@blobfmt =] blobfmt]
 [, [@nrowsperpage =] n]
 [, [@datachg =] table_column_list]
 [, [@charset =] characterset]
 [, [@codepage =] codepage]

Arguments

[@outputfile =] 'outputfile'

Is the location of the generated HTML file on an instance of Microsoft® SQL Server™. It can be a UNC name if the file is to be
created on a remote computer. outputfile is nvarchar(255), with no default.

[@query =] 'query'

Is the query to be run. query is ntext, with no default. Query results are displayed in the HTML document in a table format when
the task is run with sp_runwebtask. Multiple SELECT queries can be specified and result in multiple tables being displayed in
outputfile.

[@fixedfont =] fixedfont

Specifies that the query results be displayed in a fixed font (1) or a proportional font (0). fixedfont is tinyint, with a default of 1.

[@bold =] bold

Specifies that the query results be displayed in a bold font (1) or nonbold font (0). bold is tinyint, with a default of 0.

[@italic =] italic

Specifies that the query results be displayed in an italic font (1) or nonitalic font (0). italic is tinyint, with a default of 0.

[@colheaders =] colheaders

Specifies that the query results be displayed with column headers (1) or no column headers (0). colheaders is tinyint, with a
default of 1.

[@lastupdated =] lastupdated

Specifies whether the generated HTML document displays a "Last updated:" timestamp indicating the last updated date and time
(1) or no timestamp (0). The timestamp appears one line before the query results in the HTML document. lastupdated is tinyint,
with a default of 1.

[@HTMLheader =] HTMLheader

Specifies the HTML formatting code for displaying the text contained in resultstitle. HTMLheader is tinyint, and can be one of
these values.

Value HTML formatting code
1 H1
2 H2
3 H3
4 H4
5 H5
6 H6

[@username =] username

Is the username for executing the query. username is nvarchar(128), with a default of the current user. The system administrator
or database owner can specify another username.

[@dbname =] dbname

Is the database name to run the query on. dbname is nvarchar(128), with a default of the current database.

[@templatefile =] 'templatefile'

Is the path of the template file used to generate the HTML document. The template file contains information on the formatting
characteristics of HTML documents and contains the tag <%insert_data_here%>, which indicates the position to which the query
results will be added in an HTML table. templatefile is nvarchar(255).

There are two ways to specify the location of the results of a query in a template file:

Specify a general table format by including the <%insert_data_here%> marker, which indicates the position to add the
query results in an HTML table. There are no spaces in the tag. When <%insert_data_here%> is used, the fixedfont, bold,
italic, colheaders, and tabborders values are applied to the query results.

Specify a complete row format to produce a more precise layout. Use the <%begindetail%> and <%enddetail%> markers
and define a complete row format between them with <TR>, </TR>, <TD>, and </TD> HTML tags. For each column to be
displayed in the result set, insert the <%insert_data_here%> marker. When the complete row format is used, these
sp_makewebtask parameters are ignored:
Bold lastupdated table_urls
Colheaders reftext URL
Fixedfont resultstitle url_query
HTMLheader singlerow webpagetitle
Italic tabborder

The extended procedure that is called by sp_makewebtask can read both Unicode and non-Unicode template files. If a
Unicode file contains a signature header, the header is removed when the HTML file is generated.

[@webpagetitle =] 'webpagetitle'

Is the title of the HTML document. webpagetitle is nvarchar(255), with a default of SQL Server Web Assistant. For a blank title,
specify two space characters for the title, or edit the HTML source to remove the <TITLE> and </TITLE> tags and the text of the
title between the tags.

[@resultstitle =] 'resultstitle'

Is the title displayed above the query results in the HTML document. resultstitle is nvarchar(255), with a default of Query Results.

[@URL =] 'URL'

Is a hyperlink to another HTML document. The hyperlink is placed after the query results and at the end of the HTML document.
URL is nvarchar(255). If URL is specified, reftext must also be specified, and table_urls and url_query cannot be specified.

[@reftext =] 'reftext'

Is the hyperlink that describes to which HTML document the hyperlink should take the user. reftext is nvarchar(255). The
hyperlink text describes the destination and the hyperlink address comes from URL.

[@table_urls =] table_urls

Is whether hyperlinks are included on the HTML document and come from a SELECT statement executed on SQL Server.
table_urls is tinyint, with a default of 0, which indicates that no query will generate hyperlinks. A value of 1 indicates that a list of
hyperlinks will be created by using url_query.

Important If table_urls is 1, url_query must be included to specify the query to be executed for retrieving hyperlink information,
and URL and reftext cannot be specified.

[@url_query =] 'url_query'

Is the SELECT statement to create the URL and its hyperlink text. URLs and hyperlink text come from a SQL Server table. With this
parameter, multiple URLs with associated hyperlinks can be generated. Use url_query with table_urls. url_query is nvarchar(255).
url_query must return a result set containing two columns: the first column is the address of a hyperlink; the second column
describes the hyperlink. The number of hyperlinks inserted into the HTML document equals the number of rows returned by
executing url_query.

[@whentype =] whentype

Specifies when to run the task that creates the HTML document. whentype is tinyint, and can have these values.

Value Description
1 (default) Create page now. The Web job is created, executed immediately,

and deleted immediately after execution.
2 Create page later. The stored procedure for creating the HTML

document is created immediately, but execution of the Web job is
deferred until the date and time specified by targetdate and
targettime (optional). If targettime is not specified, the Web job is
executed at 12:00 A.M. targetdate is required when whentype is
2. This Web job is deleted automatically after the targeted date
and time have passed.

3 Create page every n day(s) of the week. The HTML document is
created on day(s) specified in dayflags and at the time specified
by targettime (optional), beginning with the date in targetdate. If
targettime is omitted, the default is 12:00 A.M. targetdate is
required when whentype is 3. The day(s) of the week are
specified in dayflags, and more than one day of the week can be
specified. Web jobs created with whentype is 3 are not deleted
automatically and continue to run on the specified day(s) of the
week until the user deletes them with sp_dropwebtask.

4 Create page every n minutes, hours, days, or weeks. The HTML
document is created every n time period beginning with the date
and time specified in targetdate and targettime. If targettime is
not specified, the Web job is executed at 12:00 A.M. targetdate is
required in this case. The job runs automatically every n minutes,
hours, days, or weeks as specified by numunits and unittype, and
continues to run until the user deletes them with
sp_dropwebtask.

5 Create page upon request. The procedure is created without
automatic scheduling. The user creates a HTML document by
running sp_runwebtask and deletes it only with
sp_dropwebtask.

6 Create page now and later. The HTML document is created
immediately and re-created, as when whentype is 2.

7 Create page now and every n day(s) of the week. The HTML
document is created immediately and re-created, as when
whentype is 3, except targetdate is not required.

8 Create page now and periodically thereafter. The HTML
document is created immediately and re-created, as when
whentype is 4, except targetdate is not required.

9 Create page now and upon request. The HTML document is
created immediately and re-created, as when whentype is 5. The
task must be deleted manually.

10 Create page now and when data changes. Creates the page
immediately and later when table data changes. datachg is
required with this value.

Important SQL Server Agent must be running when a job is scheduled to run periodically; otherwise, the HTML page is not
generated.

[@targetdate =] targetdate

Specifies the date the page should be built. The format is YYYYMMDD. When targetdate is omitted, the current date is used. If
whentype is 2 (later), 3 (dayofweek), 4 (periodic), or 6 (now and later), targetdate is required. targetdate is int, with a default of 0.

[@targettime =] targettime

Specifies the time the HTML document should be created. targettime is int, with a default of 12:00 A.M. The format is HHMMSS.

[@dayflags =] dayflags

Specifies the day of the week to update the HTML document. dayflags is required when whentype is 3 (dayofweek) or 7 (now and
dayofweek). dayflags is tinyint, and can be one of these values.

Value Day of the week
1 (default) Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

To specify multiple days, add the values. For example, to specify Monday and Thursday, set dayflags to 18.

[@numunits =] numunits

Specifies how often to update the HTML document. numunits is used only when whentype is 4 (periodic) or 8 (now and
periodically thereafter). For example, if whentype is 4, numunits is 6, and unittype is 1 (hours), the specified HTML document is
updated every six hours. numunits is tinyint, with a default of 1. Values can range from 1 through 255.

[@unittype =] unittype

Specifies how often the HTML document should be updated when numunits is 4 (periodic) or whentype is 8 (now and later).
unittype is tinyint, and can be one of these values.

Value Description
1 (default) Hours
2 Days
3 Weeks
4 Minutes

[@procname =] procname

Is the procedure or task name for the HTML document. If procname is not specified, the procedure name generated by

sp_makewebtask is in the form of Web_YYMMDDHHMMSS<spid>. If procname is user-specified, the procedure name must
meet the conditions for valid procedure names, and must be unique. procname is nvarchar(128). If procname is longer, it is
truncated.

[@maketask =] maketask

Specifies whether a task should be created to execute an internal stored procedure that generates an HTML document. maketask
is int, and can be one of these values.

Value Description
0 Generates an unencrypted stored procedure but does not

create the task.
1 Generates an encrypted stored procedure and generates the

task.
2 (default) Generates an unencrypted stored procedure and generates

the task.

[@rowcnt =] rowcnt

Specifies the maximum number of rows to display in the generated HTML document. rowcnt is int, with a default of 0, which
specifies that all rows satisfying the given query be displayed in the HTML document.

[@tabborder =] tabborder

Specifies whether a border should be drawn around the results table. tabborder is tinyint. If tabborder is 1 (the default), a border
is drawn. If 0, no border is drawn.

[@singlerow =] singlerow

Specifies whether the results are to be displayed as one row per page. singlerow is tinyint. If singlerow is 0 (the default), all
results appear on the same page and in the same table. If singlerow is 1, a new HTML page is generated for every qualifying row
in the result set. Successive HTML pages are generated with a number appended to the specified output_filename. For example, if
Web.html is specified as the output file name, pages are called Web1.html, Web2.html, and so on.

[@blobfmt =] blobfmt

Specifies whether all columns of ntext or image data types should be embedded in the same results page (NULL, the default), or
whether these columns should be saved in another page and linked to the main HTML document by a URL. blobfmt is ntext or
image.

To place the ntext or image data in a separate HTML page, use this format to specify a value for blobfmt:

"%n% FILE=output_filename TPLT=template_filename URL=url_link_name..."

where

n
Is the column number in the result list corresponding to a text field, and n+1 is the URL hyperlink text to the separate ntext or
image HTML file.

Note Do not add spaces before or after the equal sign (=) and do not put file names in quotation marks (').

Output file names end with a number that indicates successive rows, similar to singlerow. output_filename is required, but
template_filename and url_link_name are optional. The FILE = output_filename is the full path to the output file location. If
provided, url_link_name is the http:// link to the file that is accessible through the World Wide Web. If url_link_name is not
provided, the full physical file name preceded by the file:/// tag is used as the url_link_name. The same syntax in blobfmt (%n%
FILE=...) can be repeated for multiple text or image columns.

If template_filename is provided, use the <%insert_data_here%> method to indicate the data insertion point.

The URL text is part of the result set and is always the column after the original ntext or image column. This URL text column is
not displayed as a separate column in the result set.

[@nrowsperpage =] n

Specifies that the result set should be displayed in multiple pages of n rows in each page, and the successive pages are linked with
NEXT and PREVIOUS URLs. n is int, with a default of 0, which means all results are to be displayed in a single page. If singlerow is
specified, this parameter cannot be used.

[@datachg =] table_column_list

Is the list of table and optional column names that triggers the new page creation when the data changes. table_columns_list is
ntext. The format of this value is:

{TABLE=name[COLUMN=name]}[,...]

This parameter is required when whentype is 10. With this option, three triggers (UPDATE, INSERT, and DELETE) are created on
the specified table and columns, executing the Web task when these triggers are fired. If there are preexisting triggers on the
table, sp_runwebtask is added to the end of the trigger, provided that the trigger is not created with WITH ENCRYPTION, and the
COLUMN field specification in this parameter is ignored. If there is an existing trigger on the table created with the WITH
ENCRYPTION option, sp_makewebtask fails.

[@charset =] characterset

Is a character set alias code that is recognized by Microsoft Internet Explorer or compatible browsers. characterset is
nvarchar(25) with a default value of N'utf-8'. characterset is used to specify a value for the META element charset tag in the .htm
file.

[@codepage =] codepage

Is a numeric value corresponding to the character set. For example, code page 65001 corresponds to character set UTF-8.
codepage is int with a default of 65001. For a complete list of supported code pages, use sp_enumcodepages.

Return Code Values

0 (success) or nonzero (failure)

Important The return code values have changed from earlier versions of Microsoft SQL Server.

Result Sets

None

Remarks

For scheduled tasks, all errors are reported in the Microsoft Windows NT® application log on an instance of SQL Server, and have
a source of xpsqlweb.

Important The sp_dropwebtask, sp_makewebtask, and sp_runwebtask stored procedures can be run only on SQL Server
versions 6.5 and later.

The SQL Server Web Assistant provides an interface for using the sp_makewebtask stored procedure. For more information
about creating Web pages with the Web Assistant, see Using the Web Assistant Wizard.

Fonts available for HTML documents depend upon the capabilities of your Web browser software. For more information about
font availability and HTML formatting, see the browser software documentation.

Important All Microsoft Windows® 98 Web Assistant users must have user accounts in the database being used. Use
sp_adduser to add accounts to each database a user may access. When running the Windows 98 operating system, an on-
demand task can only be run by the task owner or the system administrator.

Permissions

The user must have SELECT permissions to run the specified query and CREATE PROCEDURE permissions in the database in
which the query will run. The SQL Server account must have permissions to write the generated HTML document to the specified
location. Only the members of the sysadmin fixed server role can impersonate other users.

Examples

A. Create multiple queries by using a template file

This example creates an HTML document, and upon request, retrieves five book titles and prices, five publisher names, and five
authors first and last names. In this document, the placement of data is specified by the <%insert_data_here%> marker.

This section shows the template file named C:\Web\Multiple.tpl.

Note For this example to work properly, the template file code presented here must be saved in a file named C:\Web\Multiple.tpl.

You must also create the C:\Web directory before saving the template in the C:\Web directory.

<HTML>

<HEAD>

<TITLE>SQL Server Multiple Queries with Template Web Sample</TITLE>

<BODY>

<H1>Books For Sale</H1>
<HR>

<P>
<TABLE BORDER>
<TR> <TH><I>Title</I></TH> <TH>Price</TH> </TR>
<%begindetail%>
<TR> <TD><I> <%insert_data_here%> </I> </TD>
 <TD ALIGN=RIGHT> $<%insert_data_here%></TD> </TR>
<%enddetail%>
</TABLE>
<P>

<HR>

<%insert_data_here%>

<P>

<TABLE BORDER>
<TR> <TH ALIGN=CENTER>ID</TH> <TH ALIGN=LEFT><I>Publisher's Name</I></TH> </TR>
<%begindetail%>
<TR> <TD> <%insert_data_here%> </TD>
 <TD ALIGN=LEFT><I> <%insert_data_here%></I></TD> </TR>
<%enddetail%>
</TABLE>

<HR>

<%insert_data_here%>

<P>

Microsoft<P>
MSDN<P>

</BODY>

</HTML>

This section of the example shows using sp_makewebtask to execute the query.

USE pubs
GO
EXECUTE sp_makewebtask @outputfile = 'C:\WEB\MULTIPLE.HTM',
@query = 'SELECT title, price FROM titles SELECT au_lname, au_fname
FROM authors SELECT pub_id, pub_name FROM publishers SELECT au_lname,
au_fname FROM authors', @templatefile = 'C:\WEB\MULTIPLE.TPL',
@dbname = 'pubs', @rowcnt = 5, @whentype = 9
GO

Here is the result set:

<HTML>

<HEAD>

<TITLE>SQL Server Multiple Queries with Template Web Sample</TITLE>

<BODY>

<H1>Books For Sale</H1>
<HR>

<P>
<TABLE BORDER>
<TR> <TH><I>Title</I></TH> <TH>Price</TH> </TR>

<TR> <TD><I> The Busy Executive's Database Guide </I> </TD>
 <TD ALIGN=RIGHT> $19.9900</TD> </TR>

<TR> <TD><I> Cooking with Computers: Surreptitious Balance Sheets </I> </TD>
 <TD ALIGN=RIGHT> $11.9500</TD> </TR>

<TR> <TD><I> You Can Combat Computer Stress! </I> </TD>
 <TD ALIGN=RIGHT> $2.9900</TD> </TR>

<TR> <TD><I> Straight Talk About Computers </I> </TD>
 <TD ALIGN=RIGHT> $19.9900</TD> </TR>

<TR> <TD><I> Silicon Valley Gastronomic Treats </I> </TD>
 <TD ALIGN=RIGHT> $19.9900</TD> </TR>

</TABLE>
<P>

<HR>

<P>
<P><TABLE BORDER=1>
<TR><TH ALIGN=LEFT>au_lname</TH><TH ALIGN=LEFT>au_fname</TH></TR>
<TR><TD><TT>Bennet</TT></TD><TD><TT>Abraham</TT></TD></TR>
<TR><TD><TT>Blotchet-Halls</TT></TD><TD><TT>Reginald</TT></TD></TR>
<TR><TD><TT>Carson</TT></TD><TD><TT>Cheryl</TT></TD></TR>
<TR><TD><TT>DeFrance</TT></TD><TD><TT>Michel</TT></TD></TR>
<TR><TD><TT>del Castillo</TT></TD><TD><TT>Innes</TT></TD></TR>
</TABLE>
<HR>

<P>

<TABLE BORDER>
<TR> <TH ALIGN=CENTER>ID</TH> <TH ALIGN=LEFT><I>Publisher's Name</I></TH> </TR>

<TR> <TD> 0736 </TD>
 <TD ALIGN=LEFT><I> New Moon Books</I></TD> </TR>

<TR> <TD> 0877 </TD>
 <TD ALIGN=LEFT><I> Binnet & Hardley</I></TD> </TR>

<TR> <TD> 1389 </TD>
 <TD ALIGN=LEFT><I> Algodata Infosystems</I></TD> </TR>

<TR> <TD> 1622 </TD>
 <TD ALIGN=LEFT><I> Five Lakes Publishing</I></TD> </TR>

<TR> <TD> 1756 </TD>
 <TD ALIGN=LEFT><I> Ramona Publishers</I></TD> </TR>

</TABLE>

<HR>

<P>
<P><TABLE BORDER=1>
<TR><TH ALIGN=LEFT>au_lname</TH><TH ALIGN=LEFT>au_fname</TH></TR>
<TR><TD><TT>Bennet</TT></TD><TD><TT>Abraham</TT></TD></TR>
<TR><TD><TT>Blotchet-Halls</TT></TD><TD><TT>Reginald</TT></TD></TR>
<TR><TD><TT>Carson</TT></TD><TD><TT>Cheryl</TT></TD></TR>
<TR><TD><TT>DeFrance</TT></TD><TD><TT>Michel</TT></TD></TR>
<TR><TD><TT>del Castillo</TT></TD><TD><TT>Innes</TT></TD></TR>
</TABLE>
<HR>

<P>

Microsoft<P>
MSDN<P>

</BODY>

</HTML>

B. Create hyperlinks

This example creates a two-column table called my_favorite_sites. The first column url_def is the URL to a specific Web location,
and the second column display_text is the hyperlink text for the corresponding URL. After creating the table and filling it with
values, the HTML document is created.

USE pubs
GO
CREATE TABLE my_favorite_web_sites(url_def varchar(255), display_text varchar(255) NULL)
GO
INSERT my_favorite_web_sites(url_def, display_text)
VALUES ('http://www.microsoft.com', 'Microsoft Home Page')
INSERT my_favorite_web_sites(url_def) VALUES ('http://www.widgets.microsoft.com')
GO
EXECUTE sp_makewebtask @outputfile = 'C:\WEB\URL.HTM',
@query='SELECT title, price FROM titles ORDER BY price desc',
@table_urls = 1, @tabborder = 0, @lastupdated=0, @colheaders = 0,
@url_query= 'SELECT url_def, display_text FROM
my_favorite_web_sites', @whentype = 9
GO

Here is the result set:

<HTML>

<HEAD>

<TITLE>Microsoft SQL Server Web Assistant</TITLE>

</HEAD>

<BODY>

<H1>Query Results</H1>
<HR>

<P>
<P><TABLE BORDER=0>
<TR><TD><TT>But Is It User Friendly?</TT></TD><TD><TT>22.9500</TT></TD></TR>
<TR><TD><TT>Computer Phobic AND Non-Phobic Individuals: Behavior Variations</TT></TD><TD><TT>21.5900</TT></TD>
</TR>
<TR><TD><TT>Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean</TT></TD><TD><TT>20.9500</TT></TD>
</TR>
<TR><TD><TT>Secrets of Silicon Valley</TT></TD><TD><TT>20.0000</TT></TD></TR>
<TR><TD><TT>The Busy Executive's Database Guide</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Straight Talk About Computers</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Silicon Valley Gastronomic Treats</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Prolonged Data Deprivation: Four Case Studies</TT></TD><TD><TT>19.9900</TT></TD></TR>
<TR><TD><TT>Sushi, Anyone?</TT></TD><TD><TT>14.9900</TT></TD></TR>
<TR><TD><TT>Cooking with Computers: Surreptitious Balance Sheets</TT></TD><TD><TT>11.9500</TT></TD></TR>
<TR><TD><TT>Fifty Years in Buckingham Palace Kitchens</TT></TD><TD><TT>11.9500</TT></TD></TR>
<TR><TD><TT>Is Anger the Enemy?</TT></TD><TD><TT>10.9500</TT></TD></TR>
<TR><TD><TT>Emotional Security: A New Algorithm</TT></TD><TD><TT>7.9900</TT></TD></TR>
<TR><TD><TT>Life Without Fear</TT></TD><TD><TT>7.0000</TT></TD></TR>
<TR><TD><TT>You Can Combat Computer Stress!</TT></TD><TD><TT>2.9900</TT></TD></TR>
<TR><TD><TT>The Gourmet Microwave</TT></TD><TD><TT>2.9900</TT></TD></TR>
<TR><TD><TT>The Psychology of Computer Cooking</TT></TD><TD>n/a</TD></TR>
<TR><TD><TT>Net Etiquette</TT></TD><TD>n/a</TD></TR>
</TABLE>
<HR>
Microsoft Home Page<P>
http://www.widgets.microsoft.com<P>

</BODY>

</HTML>

C. Execute multiple queries w ith single-row mode

This example creates eight HTML documents from multiple queries and uses the single-row mode.

Here is the query:

USE pubs
GO
EXECUTE sp_makewebtask @outputfile = 'C:\WEB\SROW.HTM',
@query = 'SELECT title, price FROM titles ORDER BY price desc
SELECT au_lname, au_fname FROM authors WHERE state = ''CA'' ',
@fixedfont = 0, @webpagetitle = 'Single row SQL Web Assistant',
@resultstitle = 'One row per page results', @singlerow = 1,
@rowcnt = 4,@URL = "http://www.microsoft.com",
@reftext = 'Microsoft Home Page'
GO

Here is the first file of the result set called C:\Web\Srow1.htm:

<HTML>

<HEAD>

<TITLE>Single row SQL Web Assistant</TITLE>

</HEAD>

<BODY>

<H1>One row per page results</H1>
<HR>

<PRE>Last updated: Jun 17 1997 9:14AM</PRE>

<P>
<P><TABLE BORDER=1>
<TR><TH ALIGN=LEFT>title</TH><TH ALIGN=LEFT>price</TH></TR>
<TR><TD>But Is It User Friendly?</TD><TD>22.9500</TD></TR>
</TABLE>
<HR>
Microsoft Home Page<P>
<TABLE BORDER=0 CELLPADDING=6>
<TR><TD>More results can be found in:</TD>
<TD>Next</TD>
</TR></TABLE>

</BODY>

</HTML>

Here is the second file of the result set called C:\Web\Srow2.htm:

<HTML>

<HEAD>

<TITLE>Single row SQL Web Assistant</TITLE>

</HEAD>

<BODY>

<H1>One row per page results</H1>
<HR>

<PRE>Last updated: Jun 17 1997 9:14AM</PRE>

<P>
<P><TABLE BORDER=1>
<TR><TH ALIGN=LEFT>title</TH><TH ALIGN=LEFT>price</TH></TR>
<TR><TD>Computer Phobic AND Non-Phobic Individuals: Behavior Variations</TD><TD>21.5900</TD></TR>
</TABLE>
<HR>
Microsoft Home Page<P>
<TABLE BORDER=0 CELLPADDING=6>
<TR><TD>More results can be found in:</TD>
<TD>First</TD>
<TD>Previous</TD>
<TD>Next</TD>
</TR></TABLE>

</BODY>

</HTML>

D. Execute multiple queries using data insert markers and a template

This example creates two HTML documents from multiple queries by using a template that places each book title and price in
separate HTML files.

This is the template file named C:\Web\Datains.tpl:

<HTML>

<HEAD>

<TITLE>SQL Server Multiple Queries, Data Insert Markers, & Template Web Sample</TITLE>

<BODY>

<H1>Books For Sale</H1>
<HR>

<P>
<TABLE BORDER>
<TR> <TH><I>Title</I></TH> <TH>Price</TH> </TR>
<%begindetail%>
<TR> <TD><I> <%insert_data_here%> </I> </TD>
 <TD ALIGN=RIGHT> $<%insert_data_here%></TD> </TR>
<%enddetail%>
</TABLE>
<P>

<HR>

Microsoft<P>
MSDN<P>

</BODY>

</HTML>

Here is the query:

USE pubs
GO
EXECUTE sp_makewebtask @outputfile = 'C:\WEB\DATAINS.HTM',
@query = 'SELECT title, price FROM titles',
@templatefile = 'C:\WEB\DATAINS.TPL', @dbname = 'pubs',
@rowcnt = 2, @whentype = 9, @singlerow = 1
GO

Here is the first file of the result set called C:\Web\Datains1.htm:

<HTML>

<HEAD>

<TITLE>SQL Server Multiple Queries, Data Insert Markers, & Template Web Sample</TITLE>

<BODY>

<H1>Books For Sale</H1>
<HR>

<P>
<TABLE BORDER>
<TR> <TH><I>Title</I></TH> <TH>Price</TH> </TR>

<TR> <TD><I> The Busy Executive's Database Guide </I> </TD>
 <TD ALIGN=RIGHT> $19.9900</TD> </TR>

</TABLE>
<P>

<HR>

Microsoft<P>
MSDN<P>

<TABLE BORDER=0 CELLPADDING=6>

<TR><TD>More results can be found in:</TD>
<TD>Next</TD>
</TR></TABLE></BODY>

</HTML>

Here is the second file of the result set called C:\Web\Datains2.htm:

<HTML>

<HEAD>

<TITLE>SQL Server Multiple Queries, Data Insert Markers, & Template Web Sample</TITLE>

<BODY>

<H1>Books For Sale</H1>
<HR>

<P>
<TABLE BORDER>
<TR> <TH><I>Title</I></TH> <TH>Price</TH> </TR>

<TR> <TD><I> Cooking with Computers: Surreptitious Balance Sheets </I> </TD>
 <TD ALIGN=RIGHT> $11.9500</TD> </TR>

</TABLE>
<P>

<HR>

Microsoft<P>
MSDN<P>

<TABLE BORDER=0 CELLPADDING=6>
<TR><TD>More results can be found in:</TD>
<TD>First</TD>
<TD>Previous</TD>
</TR></TABLE></BODY>

</HTML>

E. Execute query using @ blobfmt

This example executes a single query and places the information in HTML documents. The publishers table is linked with the
pub_info table to provide company logos in the HTML documents.

This is the template file called C:\Web\Blobsmp.tpl:

<HTML>

<HEAD>

<TITLE>Publishers PR Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

<%insert_data_here%>

</PRE>

</BODY>

</HTML>

This is the query:

USE pubs

GO
EXECUTE sp_makewebtask @outputfile = 'C:\WEB\BLOBSMP.HTM',
@query = 'SELECT pr_info, pub_name, city, state, country, logo,
pub_info.pub_id FROM pub_info, publishers
WHERE pub_info.pub_id = publishers.pub_id',
@webpagetitle = 'Publishers Home Page',
@resultstitle = 'Premier Publishers and Their Home Page Links',
@whentype = 9, @blobfmt='%1% FILE=C:\WEB\BLOBSMP.HTM
TPLT=C:\WEB\BLOBSMP.TPL %6% FILE=C:\WEB\PUBLOGO.GIF', @rowcnt = 2
GO

This is the main HTML document Blobsmp.htm, which contains hyperlinks to the logo bitmaps and to the Publisher's Home Web
pages:

<HTML>

<HEAD>

<TITLE>Publishers Home Page</TITLE>

<BODY>

<H1>Premier Publishers and Their Home Page Links</H1>
<HR>

<PRE><TT>Last updated: Jun 28 1996 3:15PM</TT></PRE>

<P>
<P><TABLE BORDER=1>
<TR><TH ALIGN=LEFT>pr_info</TH><TH ALIGN=LEFT>city</TH><TH ALIGN=LEFT>state</TH><TH ALIGN=LEFT>country</TH><TH
ALIGN=LEFT>logo</TH></TR>
<TR><TD NOWRAP>New Moon Books</TD><TD NOWRAP><TT>Boston</TT></TD><TD
NOWRAP><TT>MA</TT></TD><TD NOWRAP><TT>USA</TT></TD><TD NOWRAP>0736
</TD></TR>
<TR><TD NOWRAP>Binnet & Hardley</TD><TD NOWRAP><TT>Washington</TT>
</TD><TD NOWRAP><TT>DC</TT></TD><TD NOWRAP><TT>USA</TT></TD><TD NOWRAP><A HREF =
"file:///c:\web\publogo2.gif">0877</TD></TR>
</TABLE>
<HR>

</BODY>

</HTML>

Here are the first few lines of the first file of the result set called C:\Web\Blobsmp1.htm:

Note Not all output lines are shown here. Complete output appears in C:\Web\Blobsmp1.htm.

<HTML>

<HEAD>

<TITLE>Publishers PR Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

This is sample text data for New Moon Books, publisher 0736 in the pubs database. New Moon Books is located in
Boston, Massachusetts.

...

This is sample text data for New Moon Books, publisher 0736 in the pubs database. New Moon Books is located in
Boston, Massachusetts.

</PRE>

</BODY>

</HTML>

Here is the second file of the result set called C:\Web\Blobsmp2.htm:

<HTML>

<HEAD>

<TITLE>Publishers PR Info</TITLE>

</HEAD>

<BODY>

<HR>

<PRE>

This is sample text data for Binnet & Hardley, publisher 0877 in the pubs database. Binnet & Hardley is located
in Washington, D.C.

...

This is sample text data for Binnet & Hardley, publisher 0877 in the pubs database. Binnet & Hardley is located
in Washington, D.C.

</PRE>

</BODY>

</HTML>

See Also

sp_enumcodepages

sp_runwebtask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_manage_jobs_by_login
Deletes or reassigns jobs that belongs to the specified login.

Syntax

sp_manage_jobs_by_login [@action =] 'action'
 [, [@current_owner_login_name =] 'current_owner_login_name']
 [, [@new_owner_login_name =] 'new_owner_login_name']

Arguments

[@action =] 'action'

Is the action to take for the specified login. action is varchar(10), with no default. When action is DELETE,
sp_manage_jobs_by_login deletes all jobs owned by current_owner_login_name. When action is REASSIGN, all jobs are
assigned to new_owner_login_name.

[@current_owner_login_name =] 'current_owner_login_name'

Is the login name of the current job owner. current_owner_login_name is sysname, with no default.

[@new_owner_login_name =] 'new_owner_login_name'

Is the login name of the new job owner. Use this parameter only if action is REASSIGN. new_owner_login_name is sysname, with
a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Only members of the sysadmin fixed server role can execute sp_manage_jobs_by_login.

Examples

This example reassigns all jobs from janetl to stevenb.

USE msdb
EXEC sp_manage_jobs_by_login 'REASSIGN', 'janetl', 'stevenb'

See Also

sp_delete_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_monitor
Displays statistics about Microsoft® SQL Server™.

Syntax

sp_monitor

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Description
last_run Time sp_monitor was last run.
current_run Time sp_monitor is being run.
seconds Number of elapsed seconds since sp_monitor was run.
cpu_busy Number of seconds that the server computer's CPU has been

doing SQL Server work.
io_busy Number of seconds that SQL Server has spent doing input

and output operations.
idle Number of seconds that SQL Server has been idle.
packets_received Number of input packets read by SQL Server.
packets_sent Number of output packets written by SQL Server.
packet_errors Number of errors encountered by SQL Server while reading

and writing packets.
total_read Number of reads by SQL Server.
total_write Number of writes by SQL Server.
total_errors Number of errors encountered by SQL Server while reading

and writing.
connections Number of logins or attempted logins to SQL Server.

Remarks

SQL Server keeps track, through a series of functions, of how much work it has done. Executing sp_monitor displays the current
values returned by these functions and shows how much they have changed since the last time the procedure was run.

For each column, the statistic is printed in the form number(number)-number% or number(number). The first number refers to
the number of seconds (for cpu_busy, io_busy, and idle) or the total number (for the other variables) since SQL Server was
restarted. The number in parentheses refers to the number of seconds or total number since the last time sp_monitor was run.
The percentage is the percentage of time since sp_monitor was last run. For example, if the report shows cpu_busy as
4250(215)-68%, the CPU has been busy 4250 seconds since SQL Server was last started up, 215 seconds since sp_monitor was
last run, and 68 percent of the total time since sp_monitor was last run.

Permissions

Execute permissions default to members of the sysadmin fixed server role.

Examples

This example reports information about how busy SQL Server has been.

USE master
EXEC sp_monitor

Here is the result set:
last_run current_run Seconds
------------------ -------------------- -------------

Mar 29 1998 11:55AM Apr 4 1993 2:22 PM 561

cpu_busy io_busy idle
----------------- --------------- -------------
190(0)-0% 187(0)-0% 148(556)-99%

packets_received packets_sent packet_errors
----------------- ----------------- -------------
16(1) 20(2) 0(0)

total_read total_write total_errors connections
----------------- ----------------- ------------- ------------
141(0) 54920(127) 0(0) 4(0)

See Also

sp_who

System Stored Procedures

Using Variables and Parameters

Transact-SQL Reference (SQL Server 2000)

sp_MShasdbaccess
Lists the name and owner of all the databases to which the user has access.

Syntax

sp_MShasdbaccess

Return Code Values

0 (success) or 1 (failure)

Permissions

Execute permission defaults to the public role.

Transact-SQL Reference (SQL Server 2000)

sp_msx_defect
Removes the current server from multiserver operations.

Caution sp_msx_defect edits the registry. Manual editing of the registry is not recommended because inappropriate or
incorrect changes can cause serious configuration problems for your system. Therefore, only experienced users should use the
Registry Editor program to edit the registry. For more information, see the Microsoft® Windows NT® or Microsoft Windows® 95
documentation.

Syntax

sp_msx_defect [@forced_defection =] forced_defection

Arguments

[@forced_defection =] forced_defection

Is whether or not to force the defection to occur if the Master SQLServerAgent has been permanently lost due to an irreversibly
corrupt msdb database, or no msdb database backup. forced_defection is bit, with a default of 0, which indicates that no forced
defection should occur. A value of 1 forces defection.

After forcing a defection by executing sp_msx_defect, a member of the sysadmin fixed server role at the Master
SQLServerAgent must run the following command to complete the defection:

EXECUTE msdb.dbo.sp_delete_targetserver @server_name = 'tsx-server', @post_defection = 0

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

When sp_msx_defect properly completes, a message is returned:

Server defected from MSX ''. n Job(s) deleted.

Permissions

Only members of the sysadmin fixed server role can execute sp_msx_defect.

See Also

sp_msx_enlist

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_msx_enlist
Adds the current server to the list of target servers available for multiserver operations. Only a Microsoft® SQL Server™ version
7.0 database server running on Windows NT® can be enlisted.

Caution sp_msx_enlist edits the registry. Manual editing of the registry is not recommended because inappropriate or incorrect
changes can cause serious configuration problems for your system. Therefore, only experienced users should use the Registry
Editor program to edit the registry. For more information, see the Microsoft® Windows NT® or Microsoft Windows® 95
documentation.

Syntax

sp_msx_enlist [@msx_server_name =] 'msx_server'
 [, [@location =] 'location']

Arguments

[@msx_server_name =] 'msx_server'

Is the name of the multiserver administration server (master server) to add. msx_server is nvarchar(30), with no default.

[@location =] 'location'

Is the location of the target server that is enlisting. location is nvarchar(100), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Only members of the sysadmin fixed server role can execute sp_msx_enlist.

Examples

This example enlists the current server into the LONDON2 master server.

USE msdb
EXEC sp_msx_enlist 'LONDON2',
 'Paris Subsidiary, Bldg 21, Room 309, Rack 5'

See Also

sp_msx_defect

System Stored Procedures

xp_cmdshell

Transact-SQL Reference (SQL Server 2000)

sp_OACreate
Creates an instance of the OLE object on an instance of Microsoft® SQL Server™.

Syntax

sp_OACreate progid, | clsid,
 objecttoken OUTPUT
 [, context]

Arguments

progid

Is the programmatic identifier (ProgID) of the OLE object to create. This character string describes the class of the OLE object and
has the form:

'OLEComponent.Object'

OLEComponent is the component name of the OLE Automation server, and Object is the name of the OLE object. The specified
OLE object must be valid and must support the IDispatch interface.

For example, SQLDMO.SQLServer is the ProgID of the SQL-DMO SQLServer object. SQL-DMO has a component name of
SQLDMO, the SQLServer object is valid, and (like all SQL-DMO objects) the SQLServer object supports IDispatch.

clsid

Is the class identifier (CLSID) of the OLE object to create. This character string describes the class of the OLE object and has the
form:

'{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}'

The specified OLE object must be valid and must support the IDispatch interface.

For example, {00026BA1-0000-0000-C000-000000000046} is the CLSID of the SQL-DMO SQLServer object.

objecttoken OUTPUT

Is the returned object token, and must be a local variable of data type int. This object token identifies the created OLE object and is
used in calls to the other OLE Automation stored procedures.

context

Specifies the execution context in which the newly created OLE object runs. If specified, this value must be one of the following:

1 = In-process (.dll) OLE server only
4 = Local (.exe) OLE server only
5 = Both in-process and local OLE server allowed

If not specified, the default value is 5. This value is passed as the dwClsContext parameter of the call to CoCreateInstance.

If an in-process OLE server is allowed (by using a context value of 1 or 5 or by not specifying a context value), it has access to
memory and other resources owned by SQL Server. An in-process OLE server may damage SQL Server memory or resources and
cause unpredictable results, such as a SQL Server access violation.

When you specify a context value of 4, a local OLE server does not have access to any SQL Server resources, and it cannot
damage SQL Server memory or resources.

Note The parameters for this stored procedure are specified by position, not by name.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Remarks

The created OLE object is automatically destroyed at the end of the Transact-SQL statement batch.

Permissions

Only members of the sysadmin fixed server role can execute sp_OACreate.

Examples

A. Use Prog ID

This example creates a SQL-DMO SQLServer object by using its ProgID.

DECLARE @object int
DECLARE @hr int
DECLARE @src varchar(255), @desc varchar(255)
EXEC @hr = sp_OACreate 'SQLDMO.SQLServer', @object OUT
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object, @src OUT, @desc OUT
 SELECT hr=convert(varbinary(4),@hr), Source=@src, Description=@desc
 RETURN
END

B. Use CLSID

This example creates a SQL-DMO SQLServer object by using its CLSID.

DECLARE @object int
DECLARE @hr int
DECLARE @src varchar(255), @desc varchar(255)
EXEC @hr = sp_OACreate '{00026BA1-0000-0000-C000-000000000046}',
 @object OUT
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object, @src OUT, @desc OUT
 SELECT hr=convert(varbinary(4),@hr), Source=@src, Description=@desc
 RETURN
END

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OADestroy
Destroys a created OLE object.

Syntax

sp_OADestroy objecttoken

Arguments

objecttoken

Is the object token of an OLE object previously created by sp_OACreate.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Remarks

If sp_OADestroy is not called, the created OLE object is automatically destroyed at the end of the batch.

Permissions

Only members of the sysadmin fixed server role can execute sp_OADestroy.

Examples

This example destroys the previously created SQLServer object.

EXEC @hr = sp_OADestroy @object
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OAGetErrorInfo
Obtains OLE Automation error information.

Syntax

sp_OAGetErrorInfo [objecttoken]
 [, source OUTPUT]
 [, description OUTPUT]
 [, helpfile OUTPUT]
 [, helpid OUTPUT]

Arguments

objecttoken

Is either the object token of an OLE object previously created by sp_OACreate or it is NULL. If objecttoken is specified, error
information for that object is returned. If NULL is specified, the error information for the entire batch is returned.

source OUTPUT

Is the source of the error information. If specified, it must be a local char, nchar, varchar, or nvarchar variable. The return value
is truncated to fit the local variable if necessary.

description OUTPUT

Is the description of the error. If specified, it must be a local char, nchar, varchar, or nvarchar variable. The return value is
truncated to fit the local variable if necessary.

helpfile OUTPUT

Is the Help file for the OLE object. If specified, it must be a local char, nchar, varchar, or nvarchar variable. The return value is
truncated to fit the local variable if necessary.

helpid OUTPUT

Is the Help file context ID. If specified, it must be a local int variable.

Note The parameters for this stored procedure are specified by position, not name.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Result Sets

If no output parameters are specified, the error information is returned to the client as a result set.

Column names Data type Description
Error binary(4) Binary representation of the error number.
Source nvarchar(nn) Source of the error.
Description nvarchar(nn) Description of the error.
Helpfile nvarchar(nn) Help file for the source.
HelpID Int Help context ID in the Help source file.

Remarks

Each call to an OLE Automation stored procedure (except sp_OAGetErrorInfo) resets the error information; therefore,
sp_OAGetErrorInfo obtains error information only for the most recent OLE Automation stored procedure call. Note that because
sp_OAGetErrorInfo does not reset the error information, it can be called multiple times to get the same error information.

This table lists OLE Automation errors and their common causes.

Error and HRESULT Common cause
Bad variable type
(0x80020008)

Data type of a Transact-SQL value passed as a method
parameter did not match the Microsoft® Visual Basic®
data type of the method parameter, or a NULL value
was passed as a method parameter.

Unknown name
(0x8002006)

Specified property or method name was not found for
the specified object.

Invalid class string
(0x800401f3)

Specified ProgID or CLSID is not registered as an OLE
object on an instance of Microsoft® SQL Server™.
Custom OLE automation servers need to be registered
before they can be instantiated using sp_OACreate.
This can be done using the regsvr32.exe utility for
inprocess (.dll) servers, or the /REGSERVER command-
line switch for local (.exe) servers.

Server execution failed
(0x80080005)

Specified OLE object is registered as a local OLE server
(.exe file) but the .exe file could not be found or started.

The specified module
could not be found
(0x8007007e)

Specified OLE object is registered as an in-process OLE
server (.dll file), but the .dll file could not be found or
loaded.

Type mismatch
(0x80020005)

Data type of a Transact-SQL local variable used to store
a returned property value or a method return value did
not match the Visual Basic data type of the property or
method return value. Or, the return value of a property
or a method was requested, but it does not return a
value.

Datatype or value of the
'context' parameter of
sp_OACreate is invalid.
(0x8004275B)

The value of the context parameter should be one of 1,
4, or 5.

For more information about processing HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Permissions

Only members of the sysadmin fixed server role can execute sp_OAGetErrorInfo.

Examples

This example displays OLE Automation error information.

DECLARE @output varchar(255)
DECLARE @hr int
DECLARE @source varchar(255)
DECLARE @description varchar(255)
PRINT 'OLE Automation Error Information'
EXEC @hr = sp_OAGetErrorInfo @object, @source OUT, @description OUT
IF @hr = 0
BEGIN
 SELECT @output = ' Source: ' + @source
 PRINT @output
 SELECT @output = ' Description: ' + @description
 PRINT @output
END
ELSE
BEGIN
 PRINT ' sp_OAGetErrorInfo failed.'
 RETURN
END

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OAGetProperty
Gets a property value of an OLE object.

Syntax

sp_OAGetProperty objecttoken,
 propertyname
 [, propertyvalue OUTPUT]
 [, index...]

Arguments

objecttoken

Is the object token of an OLE object previously created by sp_OACreate.

propertyname

Is the property name of the OLE object to return.

propertyvalue OUTPUT

Is the returned property value. If specified, it must be a local variable of the appropriate data type.

If the property returns an OLE object, propertyvalue must be a local variable of data type int. An object token is stored in the local
variable, and this object token can be used with other OLE Automation stored procedures.

If the property returns a single value, either specify a local variable for propertyvalue, which returns the property value in the local
variable, or do not specify propertyvalue, which returns the property value to the client as a single-column, single-row result set.

When the property returns an array, if propertyvalue is specified, it is set to NULL.

If propertyvalue is specified, but the property does not return a value, an error occurs. If the property returns an array with more
than two dimensions, an error occurs.

index

Is an index parameter. If specified, it must be a value of the appropriate data type.

Some properties have parameters. These properties are called indexed properties, and the parameters are called index
parameters. A property can have multiple index parameters.

Note The parameters for this stored procedure are specified by position, not name.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Result Sets

If the property returns an array with one or two dimensions, the array is returned to the client as a result set:

A one-dimensional array is returned to the client as a single-row result set with as many columns as there are elements in
the array. In other words, the array is returned as columns.

A two-dimensional array is returned to the client as a result set with as many columns as there are elements in the first
dimension of the array and with as many rows as there are elements in the second dimension of the array. In other words,
the array is returned as (columns, rows).

When a property return value or method return value is an array, sp_OAGetProperty or sp_OAMethod returns a result set to
the client. (Method output parameters cannot be arrays.) These procedures scan all the data values in the array to determine the
appropriate Microsoft® SQL Server™ data types and data lengths to use for each column in the result set. For a particular column,
these procedures use the data type and length required to represent all data values in that column.

When all data values in a column share the same data type, that data type is used for the whole column. When data values in a

column use different data types, the data type of the whole column is chosen based on the following chart.

 int float money datetime varchar nvarchar
int int float money varchar varchar nvarchar
float float float money varchar varchar nvarchar
money money money money varchar varchar nvarchar
datetime varchar varchar varchar datetime varchar nvarchar
varchar varchar varchar varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar

Remarks

You can also use sp_OAMethod to get a property value.

Permissions

Only members of the sysadmin fixed server role can execute sp_OAGetProperty.

Examples

A. Use local variable

This example gets the HostName property (of the previously created SQLServer object) and stores it in a local variable.

DECLARE @property varchar(255)
EXEC @hr = sp_OAGetProperty @object, 'HostName', @property OUT
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END
PRINT @property

B. Use result set

This example gets the HostName property (of the previously created SQLServer object) and returns it to the client as a result set.

EXEC @hr = sp_OAGetProperty @object, 'HostName'
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OAMethod
Calls a method of an OLE object.

Syntax

sp_OAMethod objecttoken,
 methodname
 [, returnvalue OUTPUT]
 [, [@parametername =] parameter [OUTPUT]
 [...n]]

Arguments

objecttoken

Is the object token of an OLE object previously created by sp_OACreate.

methodname

Is the method name of the OLE object to call.

returnvalue OUTPUT

Is the return value of the method of the OLE object. If specified, it must be a local variable of the appropriate data type.

If the method returns a single value, either specify a local variable for returnvalue, which returns the method return value in the
local variable, or do not specify returnvalue, which returns the method return value to the client as a single-column, single-row
result set.

If the method return value is an OLE object, returnvalue must be a local variable of data type int. An object token is stored in the
local variable, and this object token can be used with other OLE Automation stored procedures.

When the method return value is an array, if returnvalue is specified, it is set to NULL.

An error occurs when:

returnvalue is specified, but the method does not return a value.

The method returns an array with more than two dimensions.

The method returns an array as an output parameter.

[@parametername =] parameter [OUTPUT]

Is a method parameter. If specified, parameter must be a value of the appropriate data type.

To obtain the return value of an output parameter, parameter must be a local variable of the appropriate data type, and OUTPUT
must be specified. If a constant parameter is specified, or if OUTPUT is not specified, any return value from an output parameter
is ignored.

If specified, parametername must be the name of the Microsoft® Visual Basic® named parameter. Note that @parametername
is not a Transact-SQL local variable. The at sign (@) is removed, and parametername is passed to the OLE object as the parameter
name. All named parameters must be specified after all positional parameters are specified.

n

Is a placeholder indicating that multiple parameters can be specified.

Note @parametername can be a named parameter because it is part of the specified method and is passed through to the
object. The other parameters for this stored procedure are specified by position, not name.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, OLE Automation Return Codes and Error Information.

Result Sets

If the method return value is an array with one or two dimensions, the array is returned to the client as a result set:

A one-dimensional array is returned to the client as a single-row result set with as many columns as there are elements in
the array. In other words, the array is returned as (columns).

A two-dimensional array is returned to the client as a result set with as many columns as there are elements in the first
dimension of the array and with as many rows as there are elements in the second dimension of the array. In other words,
the array is returned as (columns, rows).

When a property return value or method return value is an array, sp_OAGetProperty or sp_OAMethod returns a result set to
the client. (Method output parameters cannot be arrays.) These procedures scan all the data values in the array to determine the
appropriate Microsoft SQL Server™ data types and data lengths to use for each column in the result set. For a particular column,
these procedures use the data type and length required to represent all data values in that column.

When all data values in a column share the same data type, that data type is used for the whole column. When data values in a
column use different data types, the data type of the whole column is chosen based on the following chart.

 int float Money datetime varchar nvarchar
int int float Money varchar varchar nvarchar
float float float Money varchar varchar nvarchar
money money money Money varchar varchar nvarchar
datetime varchar varchar Varchar datetime varchar nvarchar
varchar varchar varchar Varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar Nvarchar nvarchar nvarchar nvarchar

Remarks

You can also use sp_OAMethod to get a property value.

Permissions

Only members of the sysadmin fixed server role can execute sp_OAMethod.

Examples

A. Call a method

This example calls the Connect method of the previously created SQLServer object.

EXEC @hr = sp_OAMethod @object, 'Connect', NULL, 'my_server',
 'my_login', 'my_password'
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END

B. Get a property

This example gets the HostName property (of the previously created SQLServer object) and stores it in a local variable.

DECLARE @property varchar(255)
EXEC @hr = sp_OAMethod @object, 'HostName', @property OUT
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END
PRINT @property

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OASetProperty
Sets a property of an OLE object to a new value.

Syntax

sp_OASetProperty objecttoken,
 propertyname,
 newvalue
 [, index...]

Arguments

objecttoken

Is the object token of an OLE object previously created by sp_OACreate.

propertyname

Is the property name of the OLE object to set to a new value.

newvalue

Is the new value of the property, and must be a value of the appropriate data type.

index

Is an index parameter. If specified, it must be a value of the appropriate data type.

Some properties have parameters. These properties are called indexed properties, and the parameters are called index
parameters. A property can have multiple index parameters.

Note The parameters for this stored procedure are specified by position, not name.

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Permissions

Only members of the sysadmin fixed server role can execute sp_OASetProperty.

Examples

This example sets the HostName property (of the previously created SQLServer object) to a new value.

EXEC @hr = sp_OASetProperty @object, 'HostName', 'Gizmo'
IF @hr <> 0
BEGIN
 EXEC sp_OAGetErrorInfo @object
 RETURN
END

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_OAStop
Stops the server-wide OLE Automation stored procedure execution environment.

Syntax

sp_OAStop

Return Code Values

0 (success) or a nonzero number (failure) that is the integer value of the HRESULT returned by the OLE Automation object.

For more information about HRESULT Return Codes, see OLE Automation Return Codes and Error Information.

Remarks

After Microsoft® SQL Server™ is started, the shared OLE Automation stored procedure execution environment is automatically
started when sp_OACreate is first called by a client. A single execution environment is shared by all clients using the OLE
Automation stored procedures.

It is not necessary to call sp_OAStop. If sp_OAStop is not called, the execution environment is automatically stopped when SQL
Server is shut down. After the execution environment has been stopped, any call to sp_OACreate restarts the execution
environment.

Note If one client calls sp_OAStop to stop the execution environment, any client currently executing a statement batch that uses
the OLE Automation stored procedures receives an error message when any OLE Automation stored procedure (except
sp_OACreate) is called.

Permissions

Only members of the sysadmin fixed server role can execute sp_OAStop.

Examples

This example stops the shared OLE Automation execution environment.

EXEC sp_OAStop

See Also

Data Type Conversions Using OLE Automation Stored Procedures

How to create an OLE Automation object (Transact-SQL)

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

Transact-SQL Reference (SQL Server 2000)

sp_password
 New Information - SQL Server 2000 SP3.

Adds or changes a password for a Microsoft® SQL Server™ login.

Syntax

sp_password [[@old =] 'old_password' ,]
 { [@new =] 'new_password' }
 [, [@loginame =] 'login']

Arguments

[@old =] 'old_password'

Is the old password. old_password is sysname, with a default of NULL.

[@new =] 'new_password'

Is the new password. new_password is sysname, with no default. old_password must be specified if named parameters are not
used.

Security Note Do not use a NULL password. Use a strong password. For more information, see Security Rules.

[@loginame =] 'login'

Is the name of the login affected by the password change. login is sysname, with a default of NULL. login must already exist and
can only be specified by members of the sysadmin or securityadmin fixed server roles.

Return Code Values

0 (success) or 1 (failure)

Remarks

SQL Server passwords can contain from 1 to 128 characters, including any letters, symbols, and numbers.

The new password is updated and stored in an encrypted form so that no user, not even system administrators, can view the
password.

When members of the sysadmin or securityadmin fixed server role reset their own password using sp_password with all three
arguments, the audit record will reflect that they are changing someone else's password.

sp_password cannot be used with Microsoft Windows NT® security accounts. Users connecting to SQL Server through their
Windows NT network account are authenticated by Windows NT; therefore their passwords can be changed only in Windows NT.

sp_password cannot be executed within a user-defined transaction.

Permissions

Execute permissions default to the public role for a user changing the password for his or her own login. Members of the
securityadmin and sysadmin fixed server roles can change the password for another user's login.

Examples

A. Change the password of a login without a former password

This example changes the password for the login Victoria from a NULL password to "B3r12-36".

EXEC sp_password NULL, 'B3r12-36', 'Victoria'

B. Change a password

This example changes the password for the login Victoria from "B3r12-36" to "Xj7-IpSca".

EXEC sp_password 'B3r12-36', 'Xj7-IpSca'

See Also

sp_addlogin

sp_adduser

sp_grantlogin

sp_revokelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_pkeys
Returns primary key information for a single table in the current environment.

Syntax

sp_pkeys [@table_name =] 'name'
 [, [@table_owner =] 'owner']
 [, [@table_qualifier =] 'qualifier']

Arguments

[@table_name =] 'name'

Is the table for which to return information. name is sysname, with no default. Wildcard pattern matching is not supported.

[@table_owner =] 'owner'

Specifies the table owner of the specified table. owner is sysname, with a default of NULL. Wildcard pattern matching is not
supported. If owner is not specified, the default table visibility rules of the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, the columns of that table are returned. If the
owner is not specified and the current user does not own a table with the specified name, this procedure looks for a table with the
specified name owned by the database owner. If one exists, the columns of that table are returned.

[@table_qualifier =] 'qualifier'

Is the table qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part naming for tables
(qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it represents the server name
of the database environment of the table.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_QUALIFIER sysname Name of the table qualifier. This field can be

NULL.
TABLE_OWNER sysname Name of the table owner. This field always

returns a value.
TABLE_NAME sysname Name of the table. In SQL Server, this column

represents the table name as listed in the
sysobjects table. This field always returns a
value.

COLUMN_NAME sysname Name of the column, for each column of the
TABLE_NAME returned. In SQL Server, this
column represents the column name as listed
in the syscolumns table. This field always
returns a value.

KEY_SEQ smallint Sequence number of the column in a
multicolumn primary key.

PK_NAME sysname Primary key identifier. Returns NULL if not
applicable to the data source.

Remarks

sp_pkeys returns information about columns explicitly defined with a PRIMARY KEY constraint. Because not all systems support
explicitly named primary keys, the gateway implementer determines what constitutes a primary key. Note that the term primary
key refers to a logical primary key for a table. It is expected that every key listed as being a logical primary key has a unique index
defined on it. This unique index is also returned in sp_statistics.

The sp_pkeys stored procedure is equivalent to SQLPrimaryKeys in ODBC. The results returned are ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and KEY_SEQ.

Permissions

Execute permissions default to the public role.

Transact-SQL Reference (SQL Server 2000)

sp_primarykeys
Returns the primary key columns, one row per key column, for the specified remote table.

Syntax

sp_primarykeys [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_catalog']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server from which to return primary key information. table_server is sysname, with no default.

[@table_name =] 'table_name'

Is the name of the table for which to provide primary key information. table_name is sysname, with a default of NULL.

[@table_schema =] 'table_schema'

Is the table schema. table_schema is sysname, with a default of NULL. In the Microsoft® SQL Server™ environment, this
corresponds to the table owner.

[@table_catalog =] 'table_catalog'

Is the name of the catalog in which the specified table_name resides. In the Microsoft SQL Server environment, this corresponds
to the database name. table_catalog is sysname, with a default of NULL.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_CAT sysname Table catalog.
TABLE_SCHEM sysname Table schema.
TABLE_NAME sysname Name of the table.
COLUMN_NAME sysname Name of the column.
KEY_SEQ int Sequence number of the column in a

multicolumn primary key.
PK_NAME sysname Primary key identifier. Returns NULL if

not applicable to the data source.

Remarks

sp_primarykeys is executed by querying the PRIMARY_KEYS rowset of the IDBSchemaRowset interface of the OLE DB provider
corresponding to table_server. The table_name, table_schema, table_catalog, and column parameters are passed to this interface
to restrict the rows returned.

sp_primarykeys returns an empty result set if the OLE DB provider of the specified linked server does not support the
PRIMARY_KEYS rowset of the IDBSchemaRowset interface.

Permissions

Execute permissions default to the public role.

Examples

This example returns primary key columns from the LONDON1 server for the Customers table in the Northwind database.

USE master
EXEC sp_primarykeys @table_server = N'LONDON1',
 @table_name = N'Customers',
 @table_catalog = N'Northwind',
 @table_schema = N'dbo'

See Also

sp_catalogs

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_tables_ex

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_post_msx_operation
Inserts operations (rows) into the sysdownloadlist system table for target servers to download and execute.

Syntax

sp_post_msx_operation [@operation =] 'operation'
 [, [@object_type =] 'object']
 { , [@job_id =] job_id }
 [, [@specific_target_server =] 'target_server']
 [, [@value =] value]

Arguments

[@operation =] 'operation'

Is the type of operation for the posted operation. operation is varchar(64), with no default. Valid operations depend upon
object_type.

Object type Operation
JOB INSERT

UPDATE
DELETE
START
STOP

SERVER RE-ENLIST
DEFECT
SYNC-TIME
SET-POLL

[@object_type =] 'object'

Is the type of object for which to post an operation. Valid types are JOB and SERVER. object is varchar(64), with a default of JOB.

[@job_id =] job_id

Is the job identification number of the job to which the operation applies. job_id is uniqueidentifier, with no default. 0x00
indicates ALL jobs. If object is SERVER, then job_id is not required.

[@specific_target_server =] 'target_server'

Is the name of the target server for which the specified operation applies. If job_id is specified, but target_server is not specified,
the operations are posted for all job servers of the job. target_server is nvarchar(30), with a default of NULL.

[@value =] value

Is the polling interval, in seconds. value is int, with a default of NULL. Specify this parameter only if operation is SET-POLL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_post_msx_operation must be run from the msdb database.

sp_post_msx_operation can always be called safely because it first determines if the current server is a multiserver SQL Server
Agent and, if so, whether object is a multiserver job.

After an operation has been posted, it appears in the sysdownloadlist table. After a job has been created and posted, subsequent
changes to that job must also be communicated to the target servers (TSX). This is also accomplished using the download list.

It is highly recommended that the download list be managed by using the SQL Server Enterprise Manager. For more information,
see Modifying and Viewing Jobs.

Permissions

Anyone can execute this procedure, but the procedure will only have an effect if it is executed by a member of the sysadmin fixed
server role.

See Also

sp_add_jobserver

sp_delete_job

sp_delete_jobserver

sp_delete_targetserver

sp_resync_targetserver

sp_start_job

sp_stop_job

sp_update_job

sp_update_operator

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_processmail
 New Information - SQL Server 2000 SP3.

Uses extended stored procedures (xp_findnextmsg, xp_readmail, and xp_deletemail) to process incoming mail messages
(expected to be only a single query) from the inbox for Microsoft® SQL Server™. It uses the xp_sendmail extended stored
procedure to return the result set to the message sender.

Syntax

sp_processmail [[@subject =] 'subject']
 [, [@filetype =] 'filetype']
 [, [@separator =] 'separator']
 [, [@set_user =] 'user']
 [, [@dbuse =] 'dbname']

Arguments

[@subject =] 'subject'

Is the subject line of mail messages to interpret as queries for SQL Server. subject is varchar(255), with a default of NULL. When
specified, sp_processmail processes only messages that have this subject. By default, SQL Server processes all mail messages as
though they were queries.

[@filetype =] 'filetype'

Is the file extension to be used when sending the result set file back to the message sender. filetype is varchar(3), with a default
of txt.

[@separator =] 'separator'

Is the column separator (field terminator) for each column of the result set. This information is passed to the xp_sendmail
extended stored procedure to return the result set to the message sender. separator is varchar(3), with a default of tab, which is a
special case for the tab character to be used between columns.

[@set_user =] 'user'

Is the security context in which the query should be run. user is sysname. If user is not specified, the security context defaults to
that of the user executing xp_sendmail.

[@dbuse =] 'dbname'

Is the database context in which the query should be run. dbname is sysname, with a default of master.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Incoming e-mail is expected to have a single valid SQL Server query as the message text. The results of the query are returned to
the message sender and copied to any e-mail users on the CC: list of the original message. After messages are processed, they are
deleted from the inbox. If e-mail is often sent to the server, sp_processmail should be run frequently. To set up regular e-mail
processing, you can use SQL Server Agent to schedule an sp_processmail job. This processes mail at the specified frequency and
records an informational message with the number of queries processed in the job history.

Results are sent as an attached file. The complete file name sent consists of Sql followed by a random string of numbers and then
the specified extension (file type), for example, Sql356.txt.

Important To attach an appropriate icon to the mail message, make sure the file type is associated properly. To create a file
association, double-click My Computer on your desktop and select Options from the View menu. On the File Types tab, in the
Options dialog box, specify the application to use to open the file.

Errors received when the query is processed are returned to the message sender through the message text. When the result set is
returned to the client, xp_sendmail is called with the @echo_error parameter set to true. The messages sent also include a
rowcount (number of rows affected) by the query.

Different sp_processmail jobs can be set up for queries in different databases. For example, you could adopt the convention that
queries to the pubs database must have a subject of SQL:pubs. Then, you could run sp_processmail with subject = SQL:pubs
and dbname = pubs. Different database queries and groupings can have other formatting structures. For example, distribution
tasks can have subject = SQL:distribution and dbname = distribution. Any of these can be scheduled jobs with the SQL Server
Agent.

The sp_processmail system stored procedure can also be customized in many ways by retrieving the text of the procedure with
the sp_helptext system stored procedure and then modifying the Transact-SQL code. Possible changes include:

Process only certain custom message types using the @type parameter with the xp_readmail extended stored procedure.

Mark the message as read but do not delete the message after processing (execute xp_readmail a second time with peek
set to false).

Send the query results in the body of the e-mail message by calling xp_sendmail with attach_result set to false.

Set the security context to run the query in a user context based on the message sender. If the e-mail usernames are the
same as your SQL Server usernames, this is as simple as changing the call to xp_sendmail to use set_user = @originator.
If your mail usernames are not valid SQL Server usernames (for example, if they contain embedded blanks), you could do a
table lookup or character substitution to get the appropriate SQL Server username to pass to xp_sendmail.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute this procedure. However, for
security reasons, you should limit permissions for this stored procedure to members of the sysadmin fixed server role.

Examples

This example processes all messages in the pubs database with result sets returned to the client in CSV (comma separated
values) format.

sp_processmail @filetype = 'CSV', @separator = ',', @dbuse = 'pubs'

See Also

sp_addtask

System Stored Procedures

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

Transact-SQL Reference (SQL Server 2000)

sp_procoption
Sets procedure options.

Syntax

sp_procoption [@ProcName =] 'procedure'
 , [@OptionName =] 'option'
 , [@OptionValue =] 'value'

Arguments

[@ProcName =] 'procedure'

Is the name of the procedure for which to set an option. procedure is nvarchar(776), with no default.

[@OptionName =] 'option'

Is the name of the option to set. The only value for option is startup, which sets stored procedure for autoexecution. A stored
procedure that is set to autoexection runs every time Microsoft® SQL Server™ is started.

[@OptionValue =] 'value'

Is whether to set the option on (true or on) or off (false or off). value is varchar(12), with no default.

Return Code Values

0 (success) or error number (failure)

Permissions

Execute permissions default to members of the sysadmin fixed server roles. Startup procedures must be owned by the database
owner in the master database.

See Also

OBJECTPROPERTY

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_purgehistory
sp_purgehistory is provided for backward compatibility only. For more information about the replacement procedures for
Microsoft® SQL Server™ 2000, see SQL Server Backward Compatibility Details.

Removes information from the history log.

Important For more information about syntax used in earlier versions of SQL Server, see the Microsoft SQL Server Transact-SQL
Reference for version 6.x.

Remarks

For task management, use SQL Server Enterprise Manager.

Permissions

Execute permissions default to the public role.

See Also

sp_addtask

sp_helphistory

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_purge_jobhistory
Removes the history records for a job.

Syntax

sp_purge_jobhistory [@job_name =] 'job_name' | [@job_id =] job_id

Arguments

[@job_name =] 'job_name'

Is the name of the job for which to delete the history records. job_name is sysname, with a default of NULL. Either job_id or
job_name must be specified, but both cannot be specified.

[@job_id =] job_id

Is the job identification number of the job for the records to be deleted. job_id is uniqueidentifier, with a default of NULL. Either
job_id or job_name must be specified, but both cannot be specified.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to the public role. If no parameters are supplied, all history records are removed; however, only
members of the sysadmin fixed server role have permission to do this.

Examples

A. Remove h istory for a specific job

This example removes the history for a job named Table Archives.

USE msdb
EXEC sp_purge_jobhistory @job_name = 'Table Archives'

B. Remove h istory for all jobs

This example executes the procedure with no parameters to remove all history records.

USE msdb
EXEC sp_purge_jobhistory

See Also

sp_help_job

sp_help_jobhistory

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_reassigntask
This procedure is provided for backward compatibility only. For more information about the replacement procedures for
Microsoft® SQL Server™ version 7.0, see SQL Server Backward Compatibility Details.

sp_reassigntask changes the owner of a job (formerly referred to as a task), or all jobs owned by a specified login. If a job was
created by using sp_addtask, the job must be deleted by using sp_droptask.

Important For syntax information used in earlier versions of SQL Server, see the Microsoft® SQL Server™ version 6.x Transact-
SQL Reference. For task management, use SQL Server Enterprise Manager.

See Also

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_recompile
Causes stored procedures and triggers to be recompiled the next time they are run.

Syntax

sp_recompile [@objname =] 'object'

Arguments

[@objname =] 'object'

Is the qualified or unqualified name of a stored procedure, trigger, table, or view in the current database. object is nvarchar(776),
with no default. If object is the name of a stored procedure or trigger, the stored procedure or trigger will be recompiled the next
time it is run. If object is the name of a table or view, all the stored procedures that reference the table or view will be recompiled
the next time they are run.

Return Code Values

0 (success) or a nonzero number (failure)

Remarks

sp_recompile looks for an object in the current database only.

The queries used by stored procedures and triggers are optimized only when they are compiled. As indexes or other changes that
affect statistics are made to the database, compiled stored procedures and triggers may lose efficiency. By recompiling stored
procedures and triggers that act on a table, you can reoptimize the queries.

Note Microsoft® SQL Server™ automatically recompiles stored procedures and triggers when it is advantageous to do so.

Permissions

Execute permissions default to the public role. Users that are not members of the sysadmin fixed server role or the db_owner
fixed database role can affect only their own tables.

Examples

This example causes the triggers and stored procedures that uses the titles table to be recompiled the next time they are run.

EXEC sp_recompile titles

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_refreshview
Refreshes the metadata for the specified view. Persistent metadata for a view can become outdated because of changes to the
underlying objects upon which the view depends.

Syntax

sp_refreshview [@viewname =] 'viewname'

Arguments

[@viewname =] 'viewname'

Is the name of the view. viewname, which can be a multipart identifier, is nvarchar, with no default.

Return Code Values

0 (success) or a nonzero number (failure)

Permissions

Members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the view owner can
execute sp_refreshview on a view.

Examples

This example refreshes the metadata for the view titleview.

exec sp_refreshview titleview

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_releaseapplock
Releases a lock on an application resource.

Syntax

sp_releaseapplock [@Resource =] 'resource_name'
 [, [@LockOwner =] 'lock_owner']

Arguments

[@Resource =] 'resource_name'

Is the lock resource name specified by the client application when the lock was requested. resource name is nvarchar(255), with
no default.

[@LockOwner =] 'lock_owner'

Is the lock owner and must match the lock_owner value specified when the lock was requested. lock_owner is nvarchar(32), and
can be Transaction (the default) or Session.

Return Code Values

>= 0 (success) or < 0 (failure)

Value Result
0 Lock was successfully released.
-999 Parameter validation or other call error.

Remarks

If an application calls sp_getapplock multiple times on the same lock resource, sp_releaseapplock must be called the same
number of times to release the lock.

When the server shuts down for any reason, the locks are released.

Permissions

Execute permissions default to the public role.

Examples

This example releases the lock associated with the current transaction on the resource Form1 in the Northwind database.

USE Northwind
EXEC sp_releaseapplock @Resource = 'Form1'

See Also

sp_getapplock

Transact-SQL Reference (SQL Server 2000)

sp_remoteoption
Displays or changes options for a remote login defined on the local server running Microsoft® SQL Server™.

Syntax

sp_remoteoption [[@remoteserver =] 'remoteserver']
 [, [@loginame =] 'loginame']
 [, [@remotename =] 'remotename']
 [, [@optname =] 'optname']
 [, [@optvalue =] 'optvalue']

Arguments

[@remoteserver =] 'remoteserver'

Is the name of the remote server that the remote login applies to. remoteserver is sysname, with a default of NULL. The server
must be known to the local server (added using sp_addserver). remoteserver is the server that initiates remote procedure calls to
the local server.

[@loginame =] 'loginame'

Is the login ID of the user on the local SQL Server. login is sysname, with a default of NULL. login must already exist on the local
SQL Server.

[@remotename =] 'remotename'

Is the login ID of the user on remoteserver. remote_name is sysname, with a default of NULL. remotename must exist on
remoteserver.

[@optname =] 'optname'

Is the option to set or turn off. optname is varchar(35), with a default of NULL. trusted is the only option. When the option is set,
the local server accepts remote logins from remote servers without verifying user access for the particular remote login. The
default server behavior is untrusted (trusted set to FALSE), resulting in password verification of the remote login when
connecting to the local SQL Server from the remote server.

[@optvalue =] 'optvalue'

Is the value for optname. optvalue is varchar(10), with a default of NULL. Set to TRUE to set optname, FALSE to turn it off.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
remotelogin_option sysname Remote login option. Only trusted is valid.

Remarks

To display a list of the remote login options, execute sp_remoteoption with no parameters.

sp_remoteoption cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin and securityadmin fixed server roles can execute sp_remoteoption with parameters. All users
can execute sp_remoteoption (no parameters) to display the list of remote login options.

Examples

A. List options

This example lists the remote login options.

EXEC sp_remoteoption
go

Settable remotelogin options.
remotelogin_option
--
trusted

B. Accept trusted logins

This example defines a remote login chris, mapped to the local login salesmgr, from the remote server ACCOUNTS to be
trusted (the password is not checked).

EXEC sp_remoteoption 'ACCOUNTS', 'salesmgr', 'chris', 'trusted', 'TRUE'

C. Verify untrusted logins

This example defines a remote login chris, mapped to the local login salesmgr, from the remote server ACCOUNTS to be
untrusted (the password is checked).

EXEC sp_remoteoption 'ACCOUNTS', 'salesmgr', 'chris', 'trusted', 'FALSE'

See Also

Configuring Remote Servers

sp_addremotelogin

sp_helpremotelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_remove_job_from_targets
Removes the specified job from the given target servers or target server groups.

Syntax

sp_remove_job_from_targets [@job_id =] job_id
 | [@job_name =] 'job_name'
 [, [@target_server_groups =] 'target_server_groups']
 [, [@target_servers =] 'target_servers']

Arguments

[@job_id =] job_id

Is the job identification number of the job from which to remove the specified target servers or target server groups. Either job_id
or job_name must be specified, but both cannot be specified. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job from which to remove the specified target servers or target server groups. Either job_id or job_name must
be specified, but both cannot be specified. job_name is sysname, with a default of NULL.

[@target_server_groups =] 'target_server_groups'

Is a comma-separated list of target server groups to be removed from the specified job. target_server_groups is nvarchar(1024),
with a default of NULL.

[@target_servers =] 'target_servers'

Is a comma-separated list of target servers to be removed from the specified job. target_servers is nvarchar(1024), with a default
of NULL.

Return Code Values

0 (success) or 1 (failure)

Permissions

Only members of the sysadmin fixed server role can execute sp_remove_job_from_targets.

Examples

This example removes the previously created Weekly Sales Data Backup job from the Sales Server target server group, and from
the SEATTLE1 and SEATTLE2 servers.

USE msdb
EXEC sp_remove_job_from_targets @job_name = 'Weekly Sales Data Backup',
 @target_servers = 'Sales Servers',
 @target_server_groups = 'SEATTLE2,SEATTLE1'

See Also

sp_apply_job_to_targets

sp_delete_jobserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_remove_log_shipping_monitor
Deletes the log shipping monitor information from the log_shipping_monitor table.

Syntax

sp_remove_log_shipping_monitor

Return Code Values

0 (success) or 1 (failure)

Remarks

This stored procedure removes the monitor from either the primary or secondary server. sp_remove_log_shipping_monitor
should be executed after all rows from the log_shipping_databases and log_shipping_plans have been removed. Otherwise, this
stored procedure will fail.

Permissions

Only members of the sysadmin fixed server role can execute sp_remove_log_shipping_monitor.

Examples

EXEC msdb.dbo.sp_remove_log_shipping_monitor

Transact-SQL Reference (SQL Server 2000)

sp_rename
Changes the name of a user-created object (for example, table, column, or user-defined data type) in the current database.

Syntax

sp_rename [@objname =] 'object_name' ,
 [@newname =] 'new_name'
 [, [@objtype =] 'object_type']

Arguments

[@objname =] 'object_name'

Is the current name of the user object (table, view, column, stored procedure, trigger, default, database, object, or rule) or data
type. If the object to be renamed is a column in a table, object_name must be in the form table.column. If the object to be
renamed is an index, object_name must be in the form table.index. object_name is nvarchar(776), with no default.

[@newname =] 'new_name'

Is the new name for the specified object. new_name must be a one-part name and must follow the rules for identifiers. newname
is sysname, with no default.

[@objtype =] 'object_type'

Is the type of object being renamed. object_type is varchar(13), with a default of NULL, and can be one of these values.

Value Description
COLUMN A column to be renamed.
DATABASE A user-defined database. This option is required when

renaming a database.
INDEX A user-defined index.
OBJECT An item of a type tracked in sysobjects. For example,

OBJECT could be used to rename objects including
constraints (CHECK, FOREIGN KEY, PRIMARY/UNIQUE KEY),
user tables, views, stored procedures, triggers, and rules.

USERDATATYPE A user-defined data type added by executing sp_addtype.

Return Code Values

0 (success) or a nonzero number (failure)

Remarks

You can change the name of an object or data type in the current database only. The names of most system data types and
system objects cannot be changed.

When you rename a view, information about the view is updated in the sysobjects table. When you rename a stored procedure,
information about the procedure is changed in the sysobjects table.

sp_rename automatically renames the associated index whenever a PRIMARY KEY or UNIQUE constraint is renamed. If a
renamed index is tied to a PRIMARY KEY constraint, the primary key is also automatically renamed by sp_rename.

Important After renaming stored procedures and views, flush the procedure cache to ensure all dependent stored procedures
and views are recompiled.

Renaming a stored procedure, view or trigger will not change the name of the corresponding object name in the syscomments
table. This may result in problems generating a script for the object as the old name will be inserted from the syscomments table
into the CREATE statement. For best results, do not rename these object types. Instead, drop and re-create the object by its new
name.

Permissions

Members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, or the owner of the object

can execute sp_rename. Only members of the sysadmin and dbcreator fixed server roles can execute sp_rename with
'database' as the object_type.

Examples

A. Rename a table

This example renames the customers table to custs.

EXEC sp_rename 'customers', 'custs'

B. Rename a column

This example renames the contact title column in the customers table to title.

EXEC sp_rename 'customers.[contact title]', 'title', 'COLUMN'

See Also

ALTER TABLE

CREATE DEFAULT

CREATE PROCEDURE

CREATE RULE

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

Data Types

SETUSER

sp_addtype

sp_depends

sp_renamedb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_renamedb
Changes the name of a database.

Syntax

sp_renamedb [@dbname =] 'old_name' ,
 [@newname =] 'new_name'

Arguments

[@dbname =] 'old_name'

Is the current name of the database. old_name is sysname, with no default.

[@newname =] 'new_name'

Is the new name of the database. new_name must follow the rules for identifiers. new_name is sysname, with no default.

Return Code Values

0 (success) or a nonzero number (failure)

Permissions

Only members of the sysadmin and dbcreator fixed server roles can execute sp_renamedb.

Examples

This example changes the name of the accounting database to financial.

EXEC sp_renamedb 'accounting', 'financial'

See Also

CREATE DATABASE

sp_changedbowner

sp_dboption

sp_depends

sp_helpdb

sp_rename

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_resetstatus
Resets the status of a suspect database.

Syntax

sp_resetstatus [@DBName =] 'database'

Arguments

[@DBName =] 'database'

Is the name of the database to reset. database is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_resetstatus turns off the suspect flag on a database. This procedure updates the mode and status columns of the named
database in sysdatabases. The SQL Server error log should be consulted and all problems resolved before running this
procedure. Stop and restart SQL Server after executing sp_resetstatus.

A database can become suspect for several reasons. Possible causes include denial of access to a database resource by the
operating system, and the unavailability or corruption of one or more database files.

Permissions

Only members of the sysadmin fixed server role can execute sp_resetstatus.

Examples

This example resets the status of the PUBS database.

EXEC sp_resetstatus 'PUBS'

See Also

Insufficient Disk Space

Resetting the Suspect Status

Troubleshooting Recovery

Transact-SQL Reference (SQL Server 2000)

sp_resolve_logins
Resolves logins on the new primary server against logins from the former primary server.

Syntax

sp_resolve_logins [@dest_db =] 'dest_db'
 , [@dest_path =] 'dest_path'
 , [@filename =] 'filename'

Arguments

[@dest_db =] 'dest_db'

Is the name of the new primary database. dest_db is sysname, with no default.

[@dest_path =] dest_path

Is the path to the directory where filename is stored. dest_path is nvarchar(255), with no default.

[@filename =] filename

Is the name of the file containing a bulk copy of the syslogins table from the former primary database. filename is nvarchar(255),
with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_resolve_logins must be run on the instance of SQL Server marked as the new primary server (former secondary server). You
must run this stored procedure from the target database.

In order to complete a log shipping role change, you must perform several steps in addition to running this procedure. For more
information, see How to set up and perform a log shipping role change (Transact-SQL).

Permissions

Only members of the sysadmin fixed server role can execute sp_resolve_logins.

Examples

This example shows how to resolve logins on the new primary server against logins from the former primary server. 'db2' is the
name of the new primary database. 'syslogins.dat' contains a bulk copy of the syslogins table from the former primary database
and is stored in directory 'c:\bulkoutput\'.

EXEC sp_resolve_logins @dest_db = 'db2',
 @dest_path = 'c:\bulkoutput\',
 @dest_filename = 'syslogins.dat'

See Also

sp_change_monitor_role

sp_change_primary_role

sp_change_secondary_role

Transact-SQL Reference (SQL Server 2000)

sp_resync_targetserver
Resynchronizes all multiserver jobs in the specified target server.

Syntax

sp_resync_targetserver [@server_name =] 'server'

Arguments

[@server_name =] 'server'

Is the name of the server to resynchronize. server is nvarchar(30), with no default. If ALL is specified, all target servers are
resynchronized.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Reports the result of sp_post_msx_operation actions.

Remarks

sp_resync_targetserver deletes the current set of instructions for the target server and posts a new set for the target server to
download. The new set consists of an instruction to delete all multiserver jobs, followed by an insert for each job currently
targeted at the server.

Permissions

Only members of the sysadmin fixed server role can execute sp_resync_targetserver.

Examples

This example resynchronizes the LONDON1 target server.

USE msdb
EXEC sp_resync_targetserver 'LONDON1'

See Also

sp_help_downloadlist

sp_post_msx_operation

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_revokedbaccess
Removes a security account from the current database.

Syntax

sp_revokedbaccess [@name_in_db =] 'name'

Arguments

[@name_in_db =] 'name'

Is the name of the account to be removed. name is sysname with no default. name can be the name of a Microsoft® SQL
Server™ user, or Microsoft Windows NT® user or group, and must exist in the current database. When specifying a Windows NT
user or group, specify the name the Windows NT user or group is known by in the database (added using sp_grantdbaccess).

Return Code Values

0 (success) or 1 (failure)

Remarks

When the account is removed, the permissions and aliases that depend on the account are automatically removed.

You can only remove accounts in the current database using sp_revokedbaccess. To add an account in the database, use
sp_grantdbaccess. To remove a SQL Server role, use sp_droprole. When removing an account that owns objects in the current
database, you must either remove the object, or change the owner of the object using sp_changeobjectowner, before executing
sp_revokedbaccess.

The sp_revokedbaccess stored procedure cannot remove:

The public role, or dbo or INFORMATION_SCHEMA users.

The fixed roles in the database.

The guest user account in the master and tempdb databases.

A Windows NT user from a Windows NT group.

sp_revokedbaccess cannot be executed from within a user-defined transaction.

Permissions

Only members of the sysadmin fixed server role, and the db_accessadmin and db_owner fixed database roles can execute
sp_revokedbaccess.

Examples

This example removes the account Corporate\GeorgeW from the current database.

EXEC sp_revokedbaccess 'Corporate\GeorgeW'

See Also

sp_changeobjectowner

sp_droprole

sp_grantdbaccess

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_revokelogin
Removes the login entries from Microsoft® SQL Server™ for a Microsoft Windows NT® user or group created with
sp_grantlogin or sp_denylogin.

Syntax

sp_revokelogin [@loginame =] 'login'

Arguments

[@loginame =] 'login'

Is the name of the Windows NT user or group. login is sysname, with no default. login can be any existing Windows NT
username or group in the form Domain\User.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_revokelogin does not explicitly prevent Windows NT users from connecting to SQL Server, but prevents Windows NT users
from doing so through their Windows NT user accounts. However, Windows NT users can still connect if they are members of a
Windows NT group that has been granted access to SQL Server using the sp_grantlogin stored procedure. For example, if
Windows NT user REDMOND\john is a member of the Windows NT group REDMOND\Admins, and REDMOND\john is
revoked access using:

sp_revokelogin [REDMOND\john]

REDMOND\john can still connect if REDMOND\Admins is granted access. Similarly, if REDMOND\Admins is revoked access
but REDMOND\john is granted access, REDMOND\john can still connect.

Use sp_denylogin to explicitly prevent users from connecting with SQL Server, regardless of their Windows NT group
memberships.

Use sp_droplogin to remove a SQL Server login added with sp_addlogin.

sp_revokelogin cannot be executed within a user-defined transaction.

Permissions

Only members of the sysadmin or securityadmin fixed server roles can execute sp_revokelogin.

Examples

This example removes the login entries for the Windows NT user Corporate\MollyA.

EXEC sp_revokelogin 'Corporate\MollyA'

Or

EXEC sp_revokelogin [Corporate\MollyA]

See Also

sp_denylogin

sp_droplogin

sp_grantlogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_runwebtask
Executes a previously defined Web job and generates the HTML document. The task to run is identified by the output file name, by
the procedure name, or by both parameters.

Note All Web jobs are categorized as Web Assistant in the Job Categories dialog box in SQL Server Enterprise Manager. For
more information, see Defining Jobs.

Syntax

sp_runwebtask [[@procname =] 'procname']
 [, [@outputfile =] 'outputfile'

Arguments

[@procname =] 'procname'

Is the name of the Web job procedure to run. The named procedure defines the query for the Web job. procname is
nvarchar(128), with no default.

[@outputfile =] 'outputfile'

Is the name of the output file for the specified Web job. outputfile is nvarchar(255), with no default.

Return Code Values

0 (success) or a nonzero number (failure)

Remarks

sp_runwebtask must be executed in the same database specified in dbname of sp_makewebtask.

System administrators should not use SETUSER to test sp_runwebtask. The extended procedure does not honor the security
context of the new user. To test for proper security authentication, create a temporary user ID and password. Use this temporary
account to log in and test sp_runwebtask. Remove the temporary account after testing is completed.

Output produced by sp_runwebtask is the actual HTML source. You can view the source document with most word processing
application.

Important sp_dropwebtask, sp_makewebtask, and sp_runwebtask can be run only on Microsoft® SQL Server™ version 6.5
and later databases. Running these procedures on a database of an earlier version will return errors.

The SQL Server Agent must be running when a job is scheduled to run periodically. Otherwise, generation of the .htm page will
not occur.

All Microsoft Windows® 98 Web Assistant users must have user accounts in the database being used. Use sp_adduser to add
accounts to each database a user may access. When running the Windows 98 operating system, an on-demand task can be run
only by the job owner or the system administrator.

Permissions

The user must have SELECT permissions to run the specified query used by the Web job.

Examples

This example runs a Web job by using the @outputfile of C:\Web\Myfile.html and an @procname of MYHTML.

sp_runwebtask @procname = 'MYHTML', @outputfile = 'C:\WEB\MYFILE.HTML'

See Also

sp_dropwebtask

sp_makewebtask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_server_info
Returns a list of attribute names and matching values for Microsoft® SQL Server™, the database gateway, or the underlying data
source.

Syntax

sp_server_info [[@attribute_id =] 'attribute_id']

Arguments

[@attribute_id =] 'attribute_id'

Is the integer ID of the attribute. attribute_id is int, with a default of NULL.

Return Code Values

None

Result Sets

Column name Data type Description
ATTRIBUTE_ID int ID number of the attribute.
ATTRIBUTE_NAME varchar(60) Attribute name.
ATTRIBUTE_VALUE varchar(255) Current setting of the attribute.

These are the attributes. Microsoft DB-Library and ODBC client libraries currently use attributes 1, 2, 18, 22, and 500 at connection
time.

ATTRIBUTE_ID ATTRIBUTE_NAME Description ATTRIBUTE_VALUE
1 DBMS_NAME Microsoft SQL Server
2 DBMS_VER Microsoft SQL Server 2000 -

8.00.xxx (Intel X86)
May 31 2000 00:54:06
Copyright (c) 1988-2000
Microsoft Corporation

10 OWNER_TERM owner
11 TABLE_TERM table
12 MAX_OWNER_NAME_LENGTH 128
13 TABLE_LENGTH

Specifies the maximum number of
characters for a table name.

128

14 MAX_QUAL_LENGTH

Specifies the maximum length of
the name for a table qualifier (the
first part of a three-part table
name).

128

15 COLUMN_LENGTH

Specifies the maximum number of
characters for a column name.

128

16 IDENTIFIER_CASE

Specifies the user-defined names
(table names, column names,
stored procedure names) in the
database (the case of the objects in
the system catalogs).

SENSITIVE

17 TX_ISOLATION

Specifies the initial transaction
isolation level the server assumes,
which corresponds to an isolation
level defined in SQL-92.

2

18 COLLATION_SEQ

Specifies the ordering of the
character set for this server.

charset=iso_1
sort_order=dictionary_iso
charset_num=1
sort_order_num=51

19 SAVEPOINT_SUPPORT

Specifies whether the underlying
DBMS supports named savepoints.

Y

20 MULTI_RESULT_SETS

Specifies whether the underlying
database or the gateway itself
supports multiple result sets
(multiple statements can be sent
through the gateway with multiple
result sets returned to the client).

Y

22 ACCESSIBLE_TABLES

Specifies whether in sp_tables, the
gateway returns only tables, views,
and so on, accessible by the current
user (that is, the user who has at
least SELECT permissions for the
table).

Y

100 USERID_LENGTH

Specifies the maximum number of
characters for a username.

128

101 QUALIFIER_TERM

Specifies the DBMS vendor term
for a table qualifier (the first part of
a three-part name).

database

102 NAMED_TRANSACTIONS

Specifies whether the underlying
DBMS supports named
transactions.

Y

103 SPROC_AS_LANGUAGE

Specifies whether stored
procedures can be executed as
language events.

Y

104 ACCESSIBLE_SPROC

Specifies whether in
sp_stored_procedures, the
gateway returns only stored
procedures that are executable by
the current user.

Y

105 MAX_INDEX_COLS

Specifies the maximum number of
columns in an index for the DBMS.

16

106 RENAME_TABLE

Specifies whether tables can be
renamed.

Y

107 RENAME_COLUMN

Specifies whether columns can be
renamed.

Y

108 DROP_COLUMN

Specifies whether columns can be
dropped.

Returns Y, if SQL Server 2000
is running and N, for earlier
releases.

109 INCREASE_COLUMN_LENGTH

Specifies whether column size can
be increased.

Returns Y, if SQL Server 2000
is running and N, for earlier
releases.

110 DDL_IN_TRANSACTION

Specifies whether DDL statements
can appear in transactions.

Returns Y, if SQL Server
version 6.5 or later is running
and N, for earlier releases.

111 DESCENDING_INDEXES

Specifies whether descending
indexes are supported.

Returns Y, if SQL Server 2000
is running and N, for earlier
releases.

112 SP_RENAME

Specifies whether a stored
procedure can be renamed.

Y

113 REMOTE_SPROC

Specifies whether stored
procedures can be executed
through the remote stored
procedure functions in DB-Library.

Y

500 SYS_SPROC_VERSION

Specifies the version of the catalog
stored procedures currently
implemented.

Current version number

Remarks

sp_server_info returns a subset of the information provided by SQLGetInfo in ODBC.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_serveroption
Sets server options for remote servers and linked servers.

In this release, sp_serveroption has been enhanced with two new options, use remote collation and collation name, that
support collations in linked servers.

Syntax

sp_serveroption [@server =] 'server'
 ,[@optname =] 'option_name'
 ,[@optvalue =] 'option_value'

Arguments

[@server =] 'server'

Is the name of the server for which to set the option. server is sysname, with no default.

[@optname =] 'option_name'

Is the option to set for the specified server. option_name is varchar(35), with no default. option_name can be any of the following
values.

Value Description
collation compatible Affects Distributed Query execution against linked

servers. If this option is set to true, Microsoft® SQL
Server™ assumes that all characters in the linked
server are compatible with the local server, with
regard to character set and collation sequence (or sort
order). This enables SQL Server to send comparisons
on character columns to the provider. If this option is
not set, SQL Server always evaluates comparisons on
character columns locally.

This option should be set only if it is certain that the
data source corresponding to the linked server has the
same character set and sort order as the local server.

collation name Specifies the name of the collation used by the remote
data source if use remote collation is true and the
data source is not a SQL Server data source. The name
must be one of the collations supported by SQL
Server.

Use this option when accessing an OLE DB data source
other than SQL Server, but whose collation matches
one of the SQL Server collations.

The linked server must support a single collation to be
used for all columns in that server. Do not set this
option if the linked server supports multiple collations
within a single data source, or if the linked server's
collation cannot be determined to match one of the
SQL Server collations.

connect timeout Time-out value for connecting to a linked server.

If 0, use the sp_configure default.

data access Enables and disables a linked server for distributed
query access. Can be used only for sysserver entries
added through sp_addlinkedserver.

dist Distributor.
dpub Remote Publisher to this Distributor.

lazy schema validation Determines whether the schema of remote tables will
be checked.

If true, skip schema checking of remote tables at the
beginning of the query.

pub Publisher.
query timeout Time-out value for queries against a linked server.

If 0, use the sp_configure default.

rpc Enables RPC from the given server.
rpc out Enables RPC to the given server.
sub Subscriber.
system For internal use only.
use remote collation Determines whether the collation of a remote column

or of a local server will be used.

If true, the collation of remote columns is used for
SQL Server data sources, and the collation specified in
collation name is used for non-SQL Server data
sources.

If false, distributed queries will always use the default
collation of the local server, while collation name
and the collation of remote columns are ignored. The
default is false. (The false value is compatible with the
collation semantics used in SQL Server 7.0.)

[@optvalue =] 'option_value'

Specifies whether or not the option_name should be enabled (TRUE or on) or disabled (FALSE or off). option_value is
varchar(10), with no default.

option_value may be a nonnegative integer for the connect timeout and query timeout options. For the collation name
option, option_value may be a collation name or NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

If the collation compatible option is set to TRUE, collation name automatically will be set to NULL. If collation name is set to
a non NULL value, collation compatible automatically will be set to FALSE.

Permissions

Only members of the sysadmin and setupadmin fixed server role can execute sp_serveroption.

Examples

A. Enable a Publisher/Subscriber server

This example sets the server as a combination Publisher/Subscriber server.

USE master
EXEC sp_serveroption 'ACCOUNTS', 'dpub', 'TRUE'

B. Disable a distribution server

This example turns off the dist option for the SEATTLE2 server.

USE master

EXEC sp_serveroption 'SEATTLE2', 'dist', 'off'

C. Enable a linked server to be collation compatible w ith a local SQL Server

This example configures a linked server corresponding to another SQL Server, SEATTLE3, to be collation compatible with the
local SQL Server.

USE master
EXEC sp_serveroption 'SEATTLE3', 'collation compatible', 'true'

See Also

sp_adddistpublisher

sp_addlinkedserver

sp_dropdistpublisher

sp_helpserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_setapprole
Activates the permissions associated with an application role in the current database.

Syntax

sp_setapprole [@rolename =] 'role' ,
 [@password =] {Encrypt N 'password'} | 'password'
 [,[@encrypt =] 'encrypt_style']

Arguments

[@rolename =] 'role'

Is the name of the application role defined in the current database. role is sysname, with no default. role must exist in the current
database.

[@password =] {Encrypt N 'password'} | 'password'

Is the password required to activate the application role. password is sysname, with no default. password can be encrypted using
the ODBC canonical Encrypt function. When using the Encrypt function, the password must be converted to a Unicode string by
preceding the password with N.

[@encrypt =] 'encrypt_style'

Specifies the encryption style used by password. encrypt_style is varchar(10), and can be one of these values.

Value Description
None The password is not encrypted and is passed to Microsoft® SQL

Server™ as plaintext. This is the default.
Odbc The password is encrypted using the ODBC canonical Encrypt

function before being sent to SQL Server. This can only be specified
when using either an ODBC client or the OLE DB Provider for SQL
Server. DB-Library clients cannot use this option.

Return Code Values

0 (success) and 1 (failure)

Remarks

Application roles do not have members; therefore, the user does not have to be added to the application role. When an
application role is not activated, sp_setapprole has no effect on a user's membership in other roles or groups in the current
database.

When an application role is activated, the permissions usually associated with the user's connection that activated the application
role are ignored. The user's connection gains the permissions associated with the application role for the database in which the
application role is defined. The user's connection can gain access to another database only through permissions granted to the
guest user account in that database. Therefore, if the guest user account does not exist in a database, the connection cannot gain
access to that database.

After an application role is activated with sp_setapprole, the role cannot be deactivated in the current database until the user
disconnects from SQL Server.

To protect your application role password, encrypt the password using the ODBC Encrypt function and specify odbc as the
encryption method.

The sp_setapprole stored procedure can be executed only by direct Transact-SQL statements; it cannot be executed within
another stored procedure or from within a user-defined transaction.

Permissions

Any user can execute sp_setapprole by providing the correct password for the role.

Examples

A. Activate an application role w ithout encrypting the password

This example activates an application role named SalesAppRole, with the plaintext password AsDeFXX, created with permissions
specifically designed for the application used by the current user.

EXEC sp_setapprole 'SalesApprole', 'AsDeFXX'

B. Activate an application role and encrypt the password

This example activates the Test application role with the password pswd, but encrypts the password before sending it to SQL
Server.

EXEC sp_setapprole 'Test', {Encrypt N 'pswd'}, 'odbc'

See Also

Establishing Application Security and Application Roles

sp_addapprole

sp_dropapprole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_setnetname
Sets the network names in sysservers to their actual network computer names for remote instances of Microsoft® SQL Server™.
This procedure can be used to enable execution of remote stored procedure calls to computers that have network names
containing invalid SQL Server identifiers.

Syntax

sp_setnetname @server = 'server',
 @netname = 'network_name'

Arguments

@server = 'server'

Is the name of the remote server as referenced in user-coded remote stored procedure call syntax. Exactly one row in sysservers
must already exist to use this server. server is sysname, with no default.

@netname = 'network_name'

Is the network name of the computer to which remote stored procedure calls are made. network_name is sysname, with no
default.

This name must match the Microsoft Windows NT® computer name, and it can include characters that are not allowed in SQL
Server identifiers.

If a DB-Library alias matching the network_name is defined on the SQL Server computer, the connection string information in
that alias is used to connect to the remote SQL Server.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

Some remote stored procedure calls to Windows NT computers can encounter problems if the computer name contains invalid
identifiers. Use this procedure to differentiate the values in sysservers.srvname versus sysservers.srvnetname.

Because linked servers and remote servers reside in the same namespace, they cannot have the same name. It is possible,
however, to define both a linked server and a remote server against a given server by assigning different names and using
sp_setnetname to set the network name of one of them to the underlying server's network name.

--Assume sqlserv2 is actual name of SQL Server
--database server
EXEC sp_addlinkedserver 'sqlserv2'
GO
EXEC sp_addserver 'rpcserv2'
GO
EXEC sp_setnetname 'rpcserv2', 'sqlserv2'

Note Using sp_setnetname to point a linked server back to the local server is not supported. Servers referenced in this manner
cannot participate in a distributed transaction.

Permissions

Only members of the sysadmin and setupadmin fixed server roles can execute this procedure.

Examples

This example shows a typical administrative sequence used on SQL Server to issue the remote stored procedure call.

USE master
EXEC sp_addserver 'Win_NT1'

EXEC sp_setnetname 'Win_NT1','Win-NT1'
EXEC Win_NT1.master.dbo.sp_who

See Also

sp_addlinkedserver

sp_addserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_settriggerorder
Specifies which AFTER triggers associated with a table will be fired first or last. The AFTER triggers that will be fired between the
first and last triggers will be executed in undefined order.

Syntax

sp_settriggerorder[@triggername =] 'triggername'
 , [@order =] 'value'
 , [@stmttype =] 'statement_type'

Argument

[@triggername =] 'triggername'

Is the name of the trigger whose order will be set or changed. triggername is sysname. If the name does not correspond to a
trigger or if the name corresponds to an INSTEAD OF trigger, the procedure will return an error.

[@order =] 'value'

Is the setting for the new trigger order. value is varchar(10) and it can be any of the following values.

Important The First and Last triggers must be two different triggers.

Value Description
First Trigger will be fired first.
Last Trigger will be fired last.
None Trigger will be fired in undefined order.

[@stmttype =] 'statement_type'

Specifies which SQL statement fires the trigger. statement_type is varchar(10) and can be INSERT, UPDATE, or DELETE. A trigger
can be designated as the First or Last trigger for a statement type only after that trigger has been defined as a trigger for that
statement type. For example, trigger TR1 can be designated First for INSERT on table T1 if TR1 is defined as an INSERT trigger.
SQL Server will return an error if TR1, which has been defined only as an INSERT trigger, is set as a First (or Last) trigger for an
UPDATE statement. For more information, see the Remarks section.

Return Code Values

0 (success) and 1 (failure)

Remarks

There can be only one First and one Last trigger for each of INSERT, UPDATE, or DELETE statement on a single table.

If a First trigger is already defined on the table, you cannot designate a new trigger as First for the same table for the same
operation (INSERT, UPDATE, or DELETE). This restriction also applies Last triggers.

As part of SQL Server replication, a First trigger can be designated on a published table; however, if a conflict with the user-
defined trigger exists, the designation of the user-defined trigger must be changed to None before the table can be published.

If an ALTER TRIGGER statement changes a first or last trigger, the First or Last attribute originally set on the trigger is dropped,
and the value is replaced by None. The order value must be reset with sp_settriggerorder.

If the same trigger has to be designated as the first or last order for more than one statement type, sp_settriggerorder must be
executed for each statement type. Also, the trigger must be first defined for a statement type before it can be designated as the
First or Last trigger to fire for the statement type.

Permissions

The owner of the trigger and the table on which the trigger is defined has execute permissions for sp_settriggerorder. Members
of db_owner and db_ddladmin roles in the current database, as well as the sysadmin server role can execute this stored
procedure.

Examples

sp_settriggerorder @triggername= 'MyTrigger', @order='first', @stmttype = 'UPDATE'

Transact-SQL Reference (SQL Server 2000)

sp_spaceused
 Topic last updated -- January 2004

Displays the number of rows, disk space reserved, and disk space used by a table in the current database, or displays the disk
space reserved and used by the entire database.

Syntax

sp_spaceused [[@objname =] 'objname']
 [,[@updateusage =] 'updateusage']

Arguments

[@objname =] 'objname'

Is the name of the table for which space usage information is requested. objname is nvarchar(776), with a default of NULL.

[@updateusage =] 'updateusage'

Indicates whether or not DBCC UPDATEUSAGE should be run within the database (when no objname is specified) or on a specific
object (when objname is specified). Values can be true or false. updateusage is varchar(5), with a default of FALSE.

Return Code Values

0 (success) or 1 (failure)

Result Sets

If objname is omitted, two result sets are returned for the current database.

Column name Data type Description
database_name varchar(128) Name of the current database.
database_size varchar(18) Size of the current database.
unallocated space varchar(18) Space in the database that has not been

reserved for any database objects.

Column name Data type Description
reserved varchar(18) Total amount of reserved space.
data varchar(18) Total amount of space used by data.
index_size varchar(18) Total amount of space used by indexes.
unused varchar(18) Total amount of space reserved for

objects in the database, but not yet used.

If objname is specified, this is the result set for the specified table.

Column name Data type Description
name nvarchar(128) Name of the table for which space usage

information was requested.
rows char(11) Number of rows existing in the objname

table.
reserved varchar(18) Total amount of reserved space for

objname.
data varchar(18) Total amount of space used by data in

objname.
index_size varchar(18) Total amount of space used by indexes in

objname.
unused varchar(18) Total amount of space reserved for

objname but no yet used.

Remarks

sp_spaceused computes the amount of disk space used for data and indexes, and the disk space used by a table in the current
database. If objname is not given, sp_spaceused reports on the space used by the entire current database.

When updateusage is specified, Microsoft® SQL Server™ scans the data pages in the database and makes any necessary
corrections to the sysindexes table regarding the storage space used by each table. There are some situations, for example, after
an index is dropped, when the sysindexes information for the table may not be current. This process can take some time to run
on large tables or databases. Use it only when you suspect incorrect values are being returned and when the process will not have
an adverse effect on other users or processes in the database. If preferred, DBCC UPDATEUSAGE can be run separately.

Permissions

Execute permissions default to the public role. Only members of the sysadmin fixed server role or the db_owner fixed database
role can specify the @updateusage parameter.

Examples

A. Space information about a table

This example reports the amount of space allocated (reserved) for the titles table, the amount used for data, the amount used for
index(es), and the unused space reserved by database objects.

USE pubs
EXEC sp_spaceused 'titles'

B. Updated space information about a complete database

This example summarizes space used in the current database and uses the optional parameter @updateusage.

USE pubs
sp_spaceused @updateusage = 'TRUE'

See Also

CREATE INDEX

CREATE TABLE

DBCC SQLPERF

DROP INDEX

DROP TABLE

sp_help

sp_helpindex

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_special_columns
Returns the optimal set of columns that uniquely identify a row in the table. Also returns columns automatically updated when
any value in the row is updated by a transaction.

Syntax

sp_special_columns [@name =] 'name'
 [,[owner =] 'owner']
 [,[@qualifier =] 'qualifier']
 [,[@col_type =] 'col_type']
 [,[@scope =] 'scope']
 [,[@nullable =] 'nullable']
 [,[@ODBCVer =] 'ODBCVer']

Arguments

[@name =] 'name'

Is the name of the table used to return catalog information. name is sysname, with no default. Wildcard pattern matching is not
supported.

[owner =] 'owner'

Is the table owner of the table used to return catalog information. owner is sysname, with a default of NULL. Wildcard pattern
matching is not supported. If owner is not specified, the default table visibility rules of the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, the columns of that table are returned. If
owner is not specified and the current user does not own a table of the specified name, this procedure looks for a table of the
specified name owned by the database owner. If the table exists, its columns are returned.

[@qualifier =] 'qualifier'

Is the name of the table qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part naming
for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it represents the
server name of the database environment of the table.

[@col_type =] 'col_type'

Is the column type. col_type is char(1), with a default of R. Type R returns the optimal column or set of columns that, by retrieving
values from the column or columns, allows any row in the specified table to be uniquely identified. A column can be either a
pseudocolumn specifically designed for this purpose, or the column or columns of any unique index for the table. Type V returns
the column or columns in the specified table, if any, that are automatically updated by the data source when any value in the row
is updated by any transaction.

[@scope =] 'scope'

Is the minimum required scope of the ROWID. scope is char(1), with a default of T. Scope C specifies that the ROWID is valid only
when positioned on that row. Scope T specifies that the ROWID is valid for the transaction.

[@nullable =] 'nullable'

Is whether or not the special columns can accept a null value. nullable is char(1), with a default of U. O specifies special columns
that do not allow null values. U specifies columns that are partially nullable.

[@ODBCVer =] 'ODBCVer'

Is the ODBC version being used. ODBCVer is int(4), with a default of 2, which indicates ODBC version 2.0. For more information
about the difference between ODBC version 2.0 and ODBC version 3.0, see the ODBC SQLSpecialColumns specification for
ODBC version 3.0.

Return Code Values

None

Result Sets

Column name Data type Description
SCOPE smallint Actual scope of the row ID. Can be 0, 1, or 2. SQL

Server always returns 0. This field always returns
a value.

0 = SQL_SCOPE_CURROW. The row ID is
guaranteed to be valid only while positioned on
that row. A later reselect using the row ID may
not return a row if the row was updated or
deleted by another transaction.

1 = SQL_SCOPE_TRANSACTION. The row ID is
guaranteed to be valid for the duration of the
current transaction.

2 = SQL_SCOPE_SESSION. The row ID is
guaranteed to be valid for the duration of the
session (across transaction boundaries).

COLUMN_NAME sysname Column name for each column of the table
returned. This field always returns a value.

DATA_TYPE smallint ODBC SQL data type.
TYPE_NAME sysname Data source-dependent data type name; for

example, char, varchar, money, or text.
PRECISION Int Precision of the column on the data source. This

field always returns a value.
LENGTH Int Length, in bytes, required for the data type in its

binary form in the data source, for example, 10
for char(10), 4 for integer, and 2 for smallint.

SCALE smallint Scale of the column on the data source. NULL is
returned for data types for which scale is not
applicable.

PSEUDO_COLUMN smallint Indicates whether the column is a pseudocolumn.
SQL Server always returns 2:
0 = SQL_PC_UNKNOWN
1 = SQL_PC_PSEUDO
2 = SQL_PC_NOT_PSEUDO

Remarks

sp_special_columns is equivalent to SQLSpecialColumns in ODBC. The results returned are ordered by SCOPE.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_sproc_columns
 Topic last updated -- July 2003

Returns column information for a single stored procedure or user-defined function in the current environment.

Syntax

sp_sproc_columns [[@procedure_name =] 'name']
 [,[@procedure_owner =] 'owner']
 [,[@procedure_qualifier =] 'qualifier']
 [,[@column_name =] 'column_name']
 [,[@ODBCVer =] 'ODBCVer']

Arguments

[@procedure_name =] 'name'

Is the name of the procedure used to return catalog information. name is nvarchar(390), with a default of %, which means all
tables in the current database. Wildcard pattern matching is supported.

[@procedure_owner =] 'owner'

Is the name of the owner of the procedure. owner is nvarchar(384), with a default of NULL. Wildcard pattern matching is
supported. If owner is not specified, the default procedure visibility rules of the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a procedure with the specified name, information about that procedure is
returned. If owner is not specified and the current user does not own a procedure with the specified name, sp_sproc_columns
looks for a procedure with the specified name that is owned by the database owner. If the procedure exists, information about its
columns is returned.

[@procedure_qualifier =] 'qualifier'

Is the name of the procedure qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part
naming for tables (qualifier.owner.name). In SQL Server, this parameter represents the database name. In some products, it
represents the server name of the table's database environment.

[@column_name =] 'column_name'

Is a single column and is used when only one column of catalog information is desired. column_name is nvarchar(384), with a
default of NULL. If column_name is omitted, all columns are returned. Wildcard pattern matching is supported. For maximum
interoperability, the gateway client should assume only SQL-92-standard pattern matching (the % and _ wildcard characters).

[@ODBCVer =] 'ODBCVer'

Is the version of ODBC being used. ODBCVer is int, with a default of 2, which indicates ODBC version 2.0. For more information
about the difference between ODBC version 2.0 and ODBC version 3.0, refer to the ODBC SQLProcedureColumns specification
for ODBC version 3.0

Return Code Values

None

Result Sets

Column name Data type Description
PROCEDURE_QUALIFIER sysname Procedure qualifier name. This

column can be NULL.
PROCEDURE_OWNER sysname Procedure owner name. This column

always returns a value.
PROCEDURE_NAME nvarchar(134) Procedure name. This column always

returns a value.
COLUMN_NAME sysname Column name for each column of the

TABLE_NAME returned. This column
always returns a value.

COLUMN_TYPE smallint This field always returns a value:

0 = SQL_PARAM_TYPE_UNKNOWN
1 = SQL_PARAM_TYPE_INPUT
2 = SQL_PARAM_TYPE_OUTPUT
3 = SQL_RESULT_COL
4 = SQL_PARAM_OUTPUT
5 = SQL_RETURN_VALUE

DATA_TYPE smallint Integer code for an ODBC data type.
If this data type cannot be mapped to
an SQL-92 type, the value is NULL.
The native data type name is
returned in the TYPE_NAME
column.

TYPE_NAME sysname String representation of the data
type. This is the data type name as
presented by the underlying DBMS.

PRECISION int Number of significant digits. The
return value for the PRECISION
column is in base 10.

LENGTH int Transfer size of the data.
SCALE smallint Number of digits to the right of the

decimal point.
RADIX smallint Is the base for numeric types.
NULLABLE smallint Specifies nullability:

1 = Data type can be created
allowing null values
0 = Null values are not allowed

REMARKS varchar(254) Description of the procedure column.
SQL Server does not return a value
for this column.

COLUMN_DEF nvarchar(4000) Default value of the column.
SQL_DATA_TYPE smallint Value of the SQL data type as it

appears in the TYPE field of the
descriptor. This column is the same
as the DATA_TYPE column, except
for the datetime and SQL-92
interval data types. This column
always returns a value.

SQL_DATETIME_SUB smallint The datetime SQL-92 interval
subcode if the value of
SQL_DATA_TYPE is SQL_DATETIME
or SQL_INTERVAL. For data types
other than datetime and SQL-92
interval, this field is NULL.

CHAR_OCTET_LENGTH int Maximum length in bytes of a
character or binary data type
column. For all other data types, this
column returns a NULL.

ORDINAL_POSITION int Ordinal position of the column in the
table. The first column in the table is
1. This column always returns a
value.

IS_NULLABLE varchar(254) Nullability of the column in the table.
ISO rules are followed to determine
nullability. An ISO SQL-compliant
DBMS cannot return an empty string.

Displays YES if the column can
include NULLS and NO if the column
cannot include NULLS.

This column returns a zero-length
string if nullability is unknown.

The value returned for this column is
different from the value returned for
the NULLABLE column.

SS_DATA_TYPE tinyint SQL Server data type used by
extended stored procedures. For
more information, see Data Types.

Remarks

The returned columns belong to the parameters or result set of a stored procedure. If the SP_NUM_PARAMETERS and
SP_NUM_RESULT_SETS columns returned by sp_stored_procedures for a particular stored procedure are -1 (indeterminate),
sp_sproc_columns returns no rows for that stored procedure. In SQL Server, only the column information about input and
output parameters for the stored procedure are returned.

sp_sproc_columns is equivalent to SQLProcedureColumns in ODBC. The results returned are ordered by
PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME, and the order that the parameters appear in the
procedure definition.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_srvrolepermission
Returns the permissions applied to a fixed server role.

Syntax

sp_srvrolepermission [[@srvrolename =] 'role']

Arguments

[@srvrolename =] 'role'

Is the name of the fixed server role for which permissions are returned. role is sysname, with a default of NULL. If not specified,
the permissions for all fixed server roles are returned. role can be one of these values.

Value Description
Sysadmin System administrators
Securityadmin Security administrators
Serveradmin Server administrators
Setupadmin Setup administrators
Processadmin Process administrators
Diskadmin Disk administrators
Dbcreator Database creators
Bulkadmin Can execute BULK INSERT statements

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
ServerRole sysname Name of a fixed server role
Permission sysname Permission associated with ServerRole

Remarks

The permissions applied to members of fixed server roles are managed internally and are not part of the security system used to
manage the permissions for the other types of security accounts.

The permissions listed include the Transact-SQL statements that can be executed, as well as other special activities performed by
members of the fixed server role. To display a list of the fixed server roles, execute sp_helpsrvrole.

The sysadmin fixed server role has the permissions of all the other fixed server roles.

Permissions

Execute permissions default to the public role.

Examples

This example displays the permissions associated with the sysadmin fixed server role.

EXEC sp_srvrolepermission 'sysadmin'

See Also

sp_addsrvrolemember

sp_dropsrvrolemember

sp_helpsrvrole

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_start_job
Instructs SQL Server Agent to execute a job immediately.

Syntax

sp_start_job [@job_name =] 'job_name' | [@job_id =] job_id
 [,[@error_flag =] error_flag]
 [,[@server_name =] 'server_name']
 [,[@step_name =] 'step_name']
 [,[@output_flag =] output_flag]

Arguments

[@job_name =] 'job_name'

Is the name of the job to start. Either job_id or job_name must be specified, but both cannot be specified. job_name is sysname,
with a default of NULL.

[@job_id =] job_id

Is the identification number of the job to start. Either job_id or job_name must be specified, but both cannot be specified. job_id is
uniqueidentifier, with a default of NULL.

[@error_flag =] error_flag

Reserved.

[@server_name =] 'server_name'

Is the target server on which to start the job. server_name is nvarchar(30), with a default of NULL. server_name must be one of
the target servers to which the job is currently targeted.

[@step_name =] 'step_name'

Is the name of the step at which to begin execution of the job. Applies only to local jobs. step_name is sysname, with a default of
NULL

[@output_flag =] output_flag

Reserved.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Permissions

Execute permissions default to the public role in the msdb database. A user who can execute this procedure and is a member of
the sysadmin fixed role can start any job. A user who is not a member of the sysadmin role can use sp_start_job to start only
the jobs he/she owns.

When sp_start_job is invoked by a user who is a member of the sysadmin fixed server role, sp_start_job will be executed under
the security context in which the SQL Server service is running. When the user is not a member of the sysadmin fixed server role,
sp_start_job will impersonate the SQL Server Agent proxy account, which is specified using xp_sqlagent_proxy_account. If the
proxy account is not available, sp_start_job will fail. This is only true for Microsoft® Windows NT® 4.0 and Windows 2000. On
Windows 9.x, there is no impersonation and sp_start_job is always executed under the security context of the Windows 9.x user
who started SQL Server.

Examples

This example starts a job named Nightly Backup.

USE msdb
EXEC sp_start_job @job_name = 'Nightly Backup'

See Also

sp_delete_job

sp_help_job

sp_stop_job

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_statistics
Returns a list of all indexes and statistics on a specified table or indexed view.

Syntax

sp_statistics [@table_name =] 'table_name'
 [,[@table_owner =] 'owner']
 [,[@table_qualifier =] 'qualifier']
 [,[@index_name =] 'index_name']
 [,[@is_unique =] 'is_unique']
 [,[@accuracy =] 'accuracy']

Arguments

[@table_name =] 'name'

Specifies the table used to return catalog information. table_name is sysname, with no default. Wildcard pattern matching is not
supported.

[@table_owner =] 'owner'

Is the name of the table owner of the table used to return catalog information. table_owner is sysname, with a default of NULL.
Wildcard pattern matching is not supported. If owner is not specified, the default table visibility rules of the underlying DBMS
apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, the indexes of that table are returned. If
owner is not specified and the current user does not own a table with the specified name, this procedure looks for a table with the
specified name owned by the database owner. If one exists, the indexes of that table are returned.

[@table_qualifier =] 'qualifier'

Is the name of the table qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part naming
for tables (qualifier.owner.name). In SQL Server, this parameter represents the database name. In some products, it represents
the server name of the table's database environment.

[@index_name =] 'index_name'

Is the index name. index_name is sysname, with a default of %. Wildcard pattern matching is supported.

[@is_unique =] 'is_unique'

Is whether only unique indexes (if Y) are to be returned. is_unique is char(1), with a default of N.

[@accuracy =] 'accuracy'

Is the level of cardinality and page accuracy for statistics. accuracy is char(1), with a default of Q. Specify E to ensure that statistics
are updated so that cardinality and pages are accurate.

Result Sets

Column name Data type Description
TABLE_QUALIFIER sysname Table qualifier name. This field can be

NULL.
TABLE_OWNER sysname Table owner name. This field always

returns a value.
TABLE_NAME sysname Table name. This field always returns a

value.
NON_UNIQUE smallint NOT NULL.

0 = Unique
1 = Not unique

INDEX_QUALIFIER sysname Index owner name. Some DBMS products
allow users other than the table owner to
create indexes. In SQL Server, this column
is always the same as TABLE_NAME.

INDEX_NAME sysname Is the name of the index. This field always
returns a value.

TYPE smallint This field always returns a value. SQL
Server returns 0, 1, 2, or 3:
0 = Statistics for a table
1 = Clustered
2 = Hashed
3 = Other

SEQ_IN_INDEX smallint Position of the column within the index.
COLUMN_NAME sysname Column name for each column of the

TABLE_NAME returned. This field always
returns a value.

COLLATION char(1) Order used in collation. SQL Server
always returns A. Can be:
A = Ascending
D = Descending
NULL = Not applicable

CARDINALITY int Number of rows in the table or unique
values in the index.

PAGES int Number of pages to store the index or
table.

FILTER_CONDITION varchar(128) SQL Server does not return a value.

Return Code Values

None

Remarks

The indexes in the result set appear in ascending order by the columns NON_UNIQUE, TYPE, INDEX_NAME, and
SEQ_IN_INDEX.

The index type clustered refers to an index in which table data is stored in the order of the index. This corresponds to SQL Server
clustered indexes.

The index type hashed accepts exact match or range searches, but pattern matching searches do not use the index.

sp_statistics is equivalent to SQLStatistics in ODBC. The results returned are ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME, and SEQ_IN_INDEX.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_stop_job
Instructs SQLServerAgent to stop the execution of a job.

Syntax

sp_stop_job [@job_name =] 'job_name'
 | [@job_id =] job_id
 | [@originating_server =] 'master_server'
 | [@server_name =] 'target_server'

Arguments

[@job_name =] 'job_name'

Is the name of the job to stop. job_name is sysname, with a default of NULL.

[@job_id =] job_id

Is the identification number of the job to stop. job_id is uniqueidentifier, with a default of NULL.

[@originating_server =] 'master_server'

Is the name of the master server. If specified, all multiserver jobs are stopped. master_server is nvarchar(30), with a default of
NULL. Specify this parameter only when calling sp_stop_job at a target server.

Note Only one of the first three parameters can be specified.

[@server_name =] 'target_server'

Is the name of the specific target server on which to stop a multiserver job. target_server is nvarchar(30), with a default of NULL.
Specify this parameter only when calling sp_stop_job at a master server for a multiserver job.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

If a job is currently executing a step of type CmdExec, the process being run (for example, MyProgram.exe) is forced to end
prematurely. Premature ending can result in unpredictable behavior such as files in use by the process being held open.
Consequently, sp_stop_job should be used only in extreme circumstances if the job contains steps of type CmdExec.

Permissions

Execute permissions default to the public role in the msdb database. A user who can execute this procedure and is a member of
the sysadmin fixed role can stop any job. A user who is not a member of the sysadmin role can use sp_stop_job to stop only
the jobs he/she owns.

When sp_stop_job is invoked by a user who is a member of the sysadmin fixed server role, sp_stop_job will be executed under
the security context in which the SQL Server service is running. When the user is not a member of the sysadmin group,
sp_stop_job will impersonate the SQL Server Agent proxy account, which is specified using xp_sqlagent_proxy_account. If the
proxy account is not available, sp_stop_job will fail. This is only true for Microsoft® Windows® NT 4.0 and Windows 2000. On
Windows 9.x, there is no impersonation and sp_stop_job is always executed under the security context of the Windows 9.x user
who started SQL Server.

Examples

This example stops a job named Archive Tables.

USE msdb
EXEC sp_stop_job @job_name = 'Archive Tables'

See Also

sp_delete_job

sp_help_job

sp_start_job

sp_update_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_stored_procedures
Returns a list of stored procedures in the current environment.

Syntax

sp_stored_procedures [[@sp_name =] 'name']
 [,[@sp_owner =] 'owner']
 [,[@sp_qualifier =] 'qualifier']

Arguments

[@sp_name =] 'name'

Is the name of the procedure used to return catalog information. name is nvarchar(390), with a default of NULL. Wildcard
pattern matching is supported.

[@sp_owner =] 'owner'

Is the name of the owner of the procedure. owner is nvarchar(384), with a default of NULL. Wildcard pattern matching is
supported. If owner is not specified, the default procedure visibility rules of the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a procedure with the specified name, that procedure is returned. If owner is
not specified and the current user does not own a procedure with the specified name, this procedure looks for a procedure with
the specified name owned by the database owner. If one exists, that procedure is returned.

[@qualifier =] 'qualifier'

Is the name of the procedure qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part
naming for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it
represents the server name of the table's database environment.

Return Code Values

None

Result Sets

Column name Data type Description
PROCEDURE_QUALIFIER sysname Procedure qualifier name. This field

can be NULL.
PROCEDURE_OWNER sysname Procedure owner name. This field

always returns a value.
PROCEDURE_NAME nvarchar(134) Procedure name. This field always

returns a value.
NUM_INPUT_PARAMS int Reserved for future use.
NUM_OUTPUT_PARAMS int Reserved for future use.
NUM_RESULT_SETS int Reserved for future use.
REMARKS varchar(254) Description of the procedure. SQL

Server does not return a value for
this column.

PROCEDURE_TYPE smallint Procedure type. SQL Server always
returns 2.0. Can be:

0 = SQL_PT_UNKNOWN
1 = SQL_PT_PROCEDURE
2 = SQL_PT_FUNCTION

Remarks

For maximum interoperability, the gateway client should assume only SQL-92-standard pattern matching (the % and _ wildcards).

The privilege information about the current user's execute access to a specific stored procedure is not necessarily checked, so
access is not guaranteed. Note that only three-part naming is used, so that only local stored procedures, not remote stored
procedures (which need four-part naming), are returned when implemented against SQL Server. If the server attribute
ACCESSIBLE_SPROC is Y in the result set for sp_server_info, only stored procedures that can be executed by the current user are
returned.

sp_stored_procedures is equivalent to SQLProcedures in ODBC. The results returned are ordered by PROCEDURE_QUALIFIER,
PROCEDURE_OWNER, and PROCEDURE_NAME.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_tableoption
Sets option values for user-defined tables. sp_tableoption may be used to turn on the text in row feature on tables with text,
ntext, or image columns.

Syntax

sp_tableoption [@TableNamePattern =] 'table'
 , [@OptionName =] 'option_name'
 , [@OptionValue =] 'value'

Arguments

[@TableNamePattern =] 'table'

Is the qualified or nonqualified name of a user-defined database table. If a fully qualified table name, including a database name,
is provided, the database name must be the name of the current database. Table options for multiple tables can not be set at the
same time. table_pattern is nvarchar(776), with no default.

[@OptionName =] 'option_name'

Is a table option name. option_name is varchar(35), with no default of NULL. option_name can have these values.

Value Description
pintable When disabled (the default), it marks the table as no

longer RAM-resident. When enabled, marks the table
as RAM-resident.

table lock on bulk load When disabled (the default), it causes the bulk load
process on user-defined tables to obtain row locks.
When enabled, it causes the bulk load processes on
user-defined tables to obtain a bulk update lock.

insert row lock Not supported in Microsoft® SQL Server™ 2000.

For SQL Server version 6.5, enabled or disabled Insert
Row Locking (IRL) operations on the specified table.
Row-level locking is enabled by default in SQL Server
version 7.0. The locking strategy of SQL Server is row
locking with possible promotion to page or table
locking. This option does not alter the locking
behavior of SQL Server (it has no effect) and is
included only for compatibility of existing scripts and
procedures.

text in row When OFF or 0 (disabled, the default), it does not
change current behavior, and there is no BLOB in row.

When specified and @OptionValue is ON (enabled)
or an integer value from 24 through 7000, new text,
ntext, or image strings are stored directly in the data
row. All existing BLOB (text, ntext, or image data)
will be changed to text in row format when the BLOB
value is updated. See Remarks section for more
information.

[@OptionValue =] 'value'

Is whether the option_name is enabled (true, on, or 1) or disabled (false, off, or 0). value is varchar(12), with no default. value is
case insensitive.

For the text in row option, valid option values are 0, on, off, or an integer from 24 through 7000. When value is on, the limit
defaults to 256 bytes.

Return Code Values

0 (success) or error number (failure)

Remarks

sp_tableoption can be used only to set option values for user-defined tables. To display table properties, use OBJECTPROPERTY.

The text in row option in sp_tableoption may be enabled or disabled only on tables that contain text columns. If the table does
not have a text column, SQL Server raises an error.

When the text in row option is enabled, the @OptionValue parameter allows users to specify the maximum size to be stored in
a row for a BLOB (binary large objects: text, ntext, or image data). The default is 256 bytes, but values may range from 24
through 7000 bytes.

text, ntext, or image strings are stored in the data row if the following conditions apply:

text in row is enabled.

The length of the string is shorter than the limit specified in @OptionValue

There is enough space available in the data row.

When BLOB strings are stored in the data row, reading and writing the text, ntext, or image strings can be as fast as reading or
writing character and binary strings. SQL Server does not have to access separate pages to read or write the BLOB string.

If a text, ntext, or image string is larger than the specified limit or the available space in the row, pointers are stored in the row
instead. The conditions for storing the BLOB strings in the row still apply though: There must be enough space in the data row to
hold the pointers.

BLOB strings and pointers stored in the row of a table are treated similarly to variable-length strings. SQL Server uses only the
number of bytes needed to store the string or the pointer.

Existing BLOB strings are not converted immediately when text in row is first enabled. The strings are converted only when they
are updated. Likewise, when the text in row option limit is increased, the text, ntext, or image strings already in the data row
will not be converted to adhere to the new limit until the time they are updated.

Note Disabling the text in row option or reducing the option's limit will require the conversion of all BLOBs, so the process can
be long, depending on the number of BLOB strings that must be converted. The table is locked during the conversion process.

A table variable, including a function that returns a table variable, automatically has the text in row option enabled with a
default inline limit of 256. This option cannot be changed.

text in row supports the TEXTPTR, WRITETEXT, UPDATETEXT, and READTEXT functions. Users can read parts of a BLOB with
the SUBSTRING() function, but must keep in mind that in-row text pointers have different duration and number limits than other
text pointers. For more information, see Managing ntext, text, and image Data.

Permissions

Only members of the sysadmin fixed server role can modify the pintable table option.

Members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
modify the table lock on bulk load, and text in row options for any user-defined table. Other users can modify options only for
tables they own.

Examples

A. Enable the 'text in row' option for table 'orders' in the N orthwind database.

EXEC sp_tableoption 'orders', 'text in row', 'ON'

B. Enable the 'text in row' option for table 'orders' in the N orthwind database, and set the in line limit to 1000.

EXEC sp_tableoption 'orders', 'text in row', '1000'

C. Enable the 'text in row' option for table 'orders' in the N orthwind database, and set the in line limit to 23, which is beyond the allowable range.

sp_tableoption 'orders', 'text in row', '23'

You will get an error saying the parameter is out of range.

D. Disable the 'text in row' option for table 'orders' in the N orthwind database.

EXEC sp_tableoption 'orders', 'text in row', 'off'

-or-

EXEC sp_tableoption 'orders', 'text in row', '0'

See Also

DBCC PINTABLE

DBCC UNPINTABLE

OBJECTPROPERTY

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_table_privileges
Returns a list of table permissions (such as INSERT, DELETE, UPDATE, SELECT, REFERENCES) for the specified table(s).

Syntax

sp_table_privileges [@table_name_pattern =] 'table_name_pattern'
 [, [@table_owner_pattern =] 'table_owner_pattern']
 [, [@table_qualifier =] 'table_qualifier']

Arguments

[@table_name_pattern =] 'table_name_pattern'

Is the table used to return catalog information. table_name_pattern is nvarchar(384), with no default. Wildcard pattern matching
is supported.

[@table_owner_pattern =] 'table_owner_pattern'

Is the table owner of the table used to return catalog information. table_owner_pattern is nvarchar(384), with a default of NULL.
Wildcard pattern matching is supported. If the owner is not specified, the default table visibility rules of the underlying DBMS
apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, the columns of that table are returned. If
owner is not specified and the current user does not own a table with the specified name, this procedure looks for a table with the
specified table_name_pattern owned by the database owner. If one exists, the columns of that table are returned.

[@table_qualifier =] 'table_qualifier'

Is the name of the table qualifier. table_qualifier is sysname, with a default of NULL. Various DBMS products support three-part
naming for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it
represents the server name of the table's database environment.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_QUALIFIER sysname Table qualifier name. In SQL Server, this column

represents the database name. This field can be
NULL.

TABLE_OWNER sysname Table owner name. This field always returns a
value.

TABLE_NAME sysname Table name. This field always returns a value.
GRANTOR sysname Database username that has granted

permissions on this TABLE_NAME to the listed
GRANTEE. In SQL Server, this column is always
the same as the TABLE_OWNER. This field
always returns a value. Also, the GRANTOR
column may be either the database owner
(TABLE_OWNER) or a user to whom the
database owner granted permission by using
the WITH GRANT OPTION clause in the GRANT
statement.

GRANTEE sysname Database username that has been granted
permissions on this TABLE_NAME by the listed
GRANTOR. In SQL Server, this column always
includes a database user from the sysusers
table. This field always returns a value.

PRIVILEGE sysname One of the available table permissions. Table
permissions can be one of the following values
(or other values supported by the data source
when implementation is defined): SELECT =
GRANTEE can retrieve data for one or more of
the columns.
INSERT = GRANTEE can provide data for new
rows for one or more of the columns.
UPDATE = GRANTEE can modify existing data
for one or more of the columns.
DELETE = GRANTEE can remove rows from the
table.
REFERENCES = GRANTEE can reference a
column in a foreign table in a primary
key/foreign key relationship. In SQL Server,
primary key/foreign key relationships are
defined with table constraints.

The scope of action given to the GRANTEE by a
given table privilege is data source-dependent.
For example, the UPDATE privilege may permit
the GRANTEE to update all columns in a table
on one data source and only those columns for
which the GRANTOR has UPDATE privilege on
another data source.

IS_GRANTABLE sysname Indicates whether or not the GRANTEE is
permitted to grant permissions to other users
(often referred to as "grant with grant"
permission). Can be YES, NO, or NULL. An
unknown (or NULL) value refers to a data source
for which "grant with grant" is not applicable.

Remarks

The sp_table_privileges stored procedure is equivalent to SQLTablePrivileges in ODBC. The results returned are ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and PRIVILEGE.

Permissions

Execute permission default to public role.

Examples

This example returns privilege information about all tables with names beginning with the word sales, owned by a user with an
owner name beginning with janet, from all servers with names beginning with the word LONDON.

USE master
EXEC sp_table_privileges 'LONDON%', 'janet%', 'sales%'

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_table_privileges_ex
Returns privilege information about the specified table from the specified linked server.

Syntax

sp_table_privileges_ex [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_catalog']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server for which to return information. table_server is sysname, with no default.

[@table_name =] 'table_name']

Is the name of the table for which to provide table privilege information. table_name is sysname, with a default of NULL.

[@table_schema =] 'table_schema'

Is the table schema, which in some DBMS environments is the table owner. table_schema is sysname, with a default of NULL.

[@table_catalog =] 'table_catalog'

Is the name of the database in which the specified table_name resides. table_catalog is sysname, with a default of NULL.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_CAT sysname Table qualifier name. Various DBMS products

support three-part naming for tables
(qualifier.owner.name). In SQL Server, this
column represents the database name. In some
products, it represents the server name of the
table's database environment. This field can be
NULL.

TABLE_SCHEM sysname Table owner name. In SQL Server, this column
represents the name of the database user who
created the table. This field always returns a value.

TABLE_NAME sysname Table name. This field always returns a value.
GRANTOR sysname Database username that has granted permissions

on this TABLE_NAME to the listed GRANTEE. In
SQL Server, this column is always the same as the
TABLE_OWNER. This field always returns a value.
Also, the GRANTOR column may be either the
database owner (TABLE_OWNER) or a user to
whom the database owner granted permission by
using the WITH GRANT OPTION clause in the
GRANT statement.

GRANTEE sysname Database username that has been granted
permissions on this TABLE_NAME by the listed
GRANTOR. This field always returns a value.

PRIVILEGE varchar(32) One of the available table permissions. Table
permissions can be one of the following values (or
other values supported by the data source when
implementation is defined):
SELECT = GRANTEE can retrieve data for one or
more of the columns.
INSERT = GRANTEE can provide data for new
rows for one or more of the columns.
UPDATE = GRANTEE can modify existing data for
one or more of the columns.
DELETE = GRANTEE can remove rows from the
table.
REFERENCES = GRANTEE can reference a column
in a foreign table in a primary key/foreign key
relationship. In SQL Server, primary key/foreign
key relationships are defined with table
constraints.

The scope of action given to the GRANTEE by a
given table privilege is data source-dependent.
For example, the UPDATE privilege may permit
the GRANTEE to update all columns in a table on
one data source and only those columns for which
the GRANTOR has UPDATE privilege on another
data source.

IS_GRANTABLE varchar(3) Indicates whether or not the GRANTEE is
permitted to grant permissions to other users
(often referred to as "grant with grant"
permission). Can be YES, NO, or NULL. An
unknown (or NULL) value refers to a data source
in which "grant with grant" is not applicable.

Remarks

The results returned are ordered by TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and PRIVILEGE.

Permissions

Execute permission default to public role.

Examples

This example returns privilege information about the Customers table, owned by the dbo, in the Northwind database from the
specified linked server (SQL Server is assumed as the linked server).

EXEC sp_table_privileges_ex London1, Customers, dbo, Northwind

See Also

sp_column_privileges_ex

Transact-SQL Reference (SQL Server 2000)

sp_tables
Returns a list of objects that can be queried in the current environment (any object that can appear in a FROM clause).

Syntax

sp_tables [[@table_name =] 'name']
 [, [@table_owner =] 'owner']
 [, [@table_qualifier =] 'qualifier']
 [, [@table_type =] "type"]

Arguments

[@table_name =] 'name'

Is the table used to return catalog information. name is nvarchar(384), with a default of NULL. Wildcard pattern matching is
supported.

[@table_owner =] 'owner'

Is the table owner of the table used to return catalog information. owner is nvarchar(384), with a default of NULL. Wildcard
pattern matching is supported. If the owner is not specified, the default table visibility rules of the underlying DBMS apply.

In Microsoft® SQL Server™, if the current user owns a table with the specified name, the columns of that table are returned. If the
owner is not specified and the current user does not own a table with the specified name, this procedure looks for a table with the
specified name owned by the database owner. If one exists, the columns of that table are returned.

[@table_qualifier =] 'qualifier'

Is the name of the table qualifier. qualifier is sysname, with a default of NULL. Various DBMS products support three-part naming
for tables (qualifier.owner.name). In SQL Server, this column represents the database name. In some products, it represents the
server name of the table's database environment.

[,[@table_type =] "'type'"]

Is a list of values, separated by commas, that gives information about all tables of the table type(s) specified, including TABLE,
SYSTEM TABLE, and VIEW. type is varchar(100), with a default of NULL.

Note Single quotation marks must surround each table type, and double quotation marks must enclose the entire parameter.
Table types must be uppercase. If SET QUOTED_IDENTIFIER is ON, each single quotation mark must be doubled and the entire
parameter must be surrounded by single quotation marks.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_QUALIFIER sysname Table qualifier name. In SQL Server, this

column represents the database name. This
field can be NULL.

TABLE_OWNER sysname Table owner name. In SQL Server, this column
represents the name of the database user
who created the table. This field always
returns a value.

TABLE_NAME sysname Table name. This field always returns a value.
TABLE_TYPE varchar(32) Table, system table, or view.
REMARKS varchar(254) SQL Server does not return a value for this

column.

Remarks

For maximum interoperability, the gateway client should assume only SQL-92-standard SQL pattern matching (the % and _
wildcards).

Privilege information about the current user's read or write access to a specific table is not always checked, so access is not
guaranteed. This result set includes not only tables and views, but also synonyms and aliases for gateways to DBMS products that
support those types. If the server attribute ACCESSIBLE_TABLES is Y in the result set for sp_server_info, only tables that are
accessible by the current user are returned.

sp_tables is equivalent to SQLTables in ODBC. The results returned are ordered by TABLE_TYPE, TABLE_QUALIFIER,
TABLE_OWNER, and TABLE_NAME.

Permissions

Execute permission default to public role.

Examples

A. Return a list of objects that can be queried in the current environment

EXEC sp_tables

B. Return information about the syscolumns table in the Company database

EXEC sp_tables syscolumns, dbo, Company, "'SYSTEM TABLE'"

Transact-SQL Reference (SQL Server 2000)

sp_tables_ex
Returns table information about the tables from the specified linked server.

Syntax

sp_tables_ex [@table_server =] 'table_server'
 [, [@table_name =] 'table_name']
 [, [@table_schema =] 'table_schema']
 [, [@table_catalog =] 'table_catalog']
 [, [@table_type =] 'table_type']

Arguments

[@table_server =] 'table_server'

Is the name of the linked server for which to return table information. table_server is sysname, with no default.

[,[@table_name =] 'table_name']

Is the name of the table for which to return data type information. table_name is sysname, with a default of NULL.

[@table_schema =] 'table_schema']

Is the table schema. table_schema is sysname, with a default of NULL.

[@table_catalog =] 'table_catalog'

Is the name of the database in which the specified table_name resides. table_catalog is sysname, with a default of NULL.

[@table_type =] 'table_type'

Is the type of the table to return. table_type is sysname, with a default of NULL, and can have one of these values.

Value Description
ALIAS Name of an alias.
GLOBAL TEMPORARY Name of a temporary table available system wide.
LOCAL TEMPORARY Name of a temporary table available only to the

current job.
SYNONYM Name of a synonym.
SYSTEM TABLE Name of a system table.
TABLE Name of a user table.
VIEW Name of a view.

Return Code Values

None

Result Sets

Column name Data type Description
TABLE_CAT sysname Table qualifier name. Various DBMS products

support three-part naming for tables
(qualifier.owner.name). In SQL Server, this
column represents the database name. In some
products, it represents the server name of the
table's database environment. This field can be
NULL.

TABLE_SCHEM sysname Table owner name. In SQL Server, this column
represents the name of the database user who
created the table. This field always returns a
value.

TABLE_NAME sysname Table name. This field always returns a value.

TABLE_TYPE varchar(32) Table, system table, or view.
REMARKS varchar(254) SQL Server does not return a value for this

column.

Remarks

sp_tables_ex is executed by querying the TABLES rowset of the IDBSchemaRowset interface of the OLE DB provider
corresponding to table_server. The table_name, table_schema, table_catalog, and column parameters are passed to this interface
to restrict the rows returned.

sp_tables_ex returns an empty result set if the OLE DB provider of the specified linked server does not support the TABLES
rowset of the IDBSchemaRowset interface.

Permissions

Execute permission default to the public role.

Examples

This example returns table information about the titles table in the pubs database, on the LONDON2 linked server.

USE master
EXEC sp_tables_ex 'LONDON2', 'titles', 'dbo', 'pubs', NULL

See Also

sp_catalogs

sp_columns_ex

sp_column_privileges

sp_foreignkeys

sp_indexes

sp_linkedservers

sp_table_privileges

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_trace_create
Creates a trace definition. The new trace will be in a stopped state.

Syntax

sp_trace_create [@traceid =] trace_id OUTPUT
 , [@options =] option_value
 , [@tracefile =] 'trace_file'
 [, [@maxfilesize =] max_file_size]
 [, [@stoptime =] 'stop_time']

Arguments

[@traceid =] trace_id

Is the number assigned by Microsoft® SQL Server™ 2000 to the new trace. Any user-provided input will be ignored. trace_id is
int, with a default of NULL. The user employs the trace_id value to identify, modify, and control the trace defined by this stored
procedure.

[@options =] option_value

Specifies the options set for the trace. option_value is int, with no default. Users may choose a combination of these options by
specifying the sum value of options picked. For example, to turn on both the options TRACE_FILE_ROLLOVER and
SHUTDOWN_ON_ERROR, specify 6 for option_value.

This table lists the options, descriptions, and their values.

Option name Option
value

Description

TRACE_FILE_ROLLOVER 2 Specifies that when the max_file_size
is reached, the current trace file is
closed and a new file is created. All
new records will be written to the
new file. The new file will have the
same name as the previous file, but
an integer will be appended to
indicate its sequence. For example, if
the original trace file is named
filename.trc, the next trace file is
named filename_1.trc, the following
trace file is filename_2.trc, and so on.

As more rollover trace files are
created, the integer value appended
to the file name increases
sequentially.

SQL Server uses the default value of
max_file_size (5 MB) if this option is
specified without specifying a value
for max_file_size.

SHUTDOWN_ON_ERROR 4 Specifies that if the trace cannot be
written to the file for whatever
reason, SQL Server shuts down. This
option is useful when performing
security audit traces.

TRACE_PRODUCE_BLACKBOX 8 Specifies that a record of the last 5
MB of trace information produced by
the server will be saved by the server.
TRACE_PRODUCE_BLACKBOX is
incompatible with all other options.

[@tracefile =] 'trace_file'

Specifies the location and file name to which the trace will be written. trace_file is nvarchar (245) with no default. trace_file can
be either a local directory (such as N 'C:\MSSQL\Trace\trace.trc') or a UNC to a share or path
(N'\\Servername\Sharename\Directory\trace.trc').

SQL Server will append a .trc extension to all trace file names. If the TRACE_FILE_ROLLOVER option and a max_file_size are
specified, SQL Server creates a new trace file when the original trace file grows to its maximum size. The new file has the same
name as the original file, but _n is appended to indicate its sequence, starting with 1. For example, if the first trace file is named
filename.trc, the second trace file is named filename_1.trc.

trace_file cannot be specified when the TRACE_PRODUCE_BLACKBOX option is used.

[@maxfilesize =] max_file_size

Specifies the maximum size in megabytes (MB) a trace file can grow. max_file_size is bigint, with a default value of 5.

If this parameter is specified without the TRACE_FILE_ROLLOVER option, the trace stops recording to the file when the disk space
used exceeds the amount specified by max_file_size.

[@stoptime =] 'stop_time'

Specifies the date and time the trace will be stopped. stop_time is datetime, with a default of NULL. If NULL, the trace will run
until it is manually stopped or until the server shuts down.

If both stop_time and max_file_size are specified, and TRACE_FILE_ROLLOVER is not specified, the trace will stop when either the
specified stop time or maximum file size is reached. If stop_time, max_file_size, and TRACE_FILE_ROLLOVER are specified, the
trace will stop at the specified stop time, assuming the trace does not fill up the drive.

Return Code Values

This table describes the code values that users may get following completion of the stored procedure.

Return code Description
0 No error.
1 Unknown error.
10 Invalid options. Returned when options specified

are incompatible.
12 File not created.
13 Out of memory. Returned when there is not

enough memory to perform the specified action.
14 Invalid stop time. Returned when the stop time

specified has already happened.
15 Invalid parameters. Returned when the user

supplied incompatible parameters.

Remarks

sp_trace_create is a Microsoft SQL Server 2000 stored procedure that performs many of the actions previously executed by
xp_trace_* extended stored procedures available in earlier versions of SQL Server. Use sp_trace_create instead of:

xp_trace_addnewqueue

xp_trace_setqueuecreateinfo

xp_trace_setqueuedestination

sp_trace_create only creates a trace definition. This stored procedure cannot be used to start or change a trace.

Parameters of all SQL Trace stored procedures (sp_trace_xx) are strictly typed. If these parameters are not called with the correct
input parameter data types, as specified in the argument description, the stored procedure will return an error.

Permissions

Only members of the sysadmin fixed server role can execute sp_trace_create.

Examples

See Also

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

sp_trace_setstatus

Transact-SQL Reference (SQL Server 2000)

sp_trace_generateevent
Creates a user-defined event.

Syntax

sp_trace_generateevent [@eventid =] event_id
 [, [@userinfo =] 'user_info']
 [, [@userdata =] user_data]

Arguments

[@eventid =] event_id

Is the ID of the event to turn on. event_id is int, with no default. The ID must be one of the event numbers from 82 through 91,
which represent user-defined events as set with sp_trace_setevent.

[@userinfo =] 'user_info'

Is the optional user-defined string identifying the reason for the event. user_info is nvarchar(128), with a default of NULL.

[@userdata =] user_data

Is the optional user-specified data for the event. user_data is varbinary(8000), with a default of NULL.

Return Code Values

This table describes the code values that users may get following completion of the stored procedure.

Return code Description
0 No error.
1 Unknown error.
3 The specified Event is not valid. The Event may not exist or it is

not an appropriate one for the store procedure.
13 Out of memory. Returned when there is not enough memory

to perform the specified action.

Remarks

sp_trace_generateevent is a Microsoft SQL Server 2000 stored procedure that performs many of the actions previously
executed by xp_trace_* extended stored procedures available in earlier versions of SQL Server. Use sp_trace_generateevent
instead of xp_trace_generate_event.

Only ID numbers of user-defined events may be used with sp_trace_generateevent. SQL Server will raise an error if other event
ID numbers are used.

Parameters of all SQL Trace stored procedures (sp_trace_xx) are strictly typed. If these parameters are not called with the correct
input parameter data types, as specified in the argument description, the stored procedure will return an error.

Permissions

Only members of the sysadmin fixed server role can execute sp_trace_generateevent.

Examples

This example creates a user-configurable event on a sample table.

--Create a sample table.
CREATE TABLE user_config_test(col1 int, col2 char(10))

--DROP the trigger if it already exists.
IF EXISTS
 (SELECT * FROM sysobjects WHERE name = 'userconfig_trg')
 DROP TRIGGER userconfig_trg

--Create an ON INSERT trigger on the sample table.
CREATE TRIGGER userconfig_trg
 ON user_config_test FOR INSERT
AS
EXEC master..sp_trace_generateevent
 @event_class = 82, @userinfo = N'Inserted row into user_config_test'

--When an insert action happens, the user-configurable event fires. If you were capturing the event id=82, you
will see it in the Profiler output.
INSERT INTO user_config_test VALUES(1, 'abc')

See Also

fn_trace_geteventinfo

sp_trace_setevent

Transact-SQL Reference (SQL Server 2000)

sp_trace_setevent
Adds or removes an event or event column to a trace. sp_trace_setevent may be executed only on existing traces that are
stopped (status is 0). Microsoft® SQL Server™ 2000 will return an error if this stored procedure is executed on a trace that does
not exist or whose status is not 0.

Syntax

sp_trace_setevent [@traceid =] trace_id
 , [@eventid =] event_id
 , [@columnid =] column_id
 , [@on =] on

Arguments

[@traceid =] trace_id

Is the ID of the trace to be modified. trace_id is int, with no default. The user employs this trace_id value to identify, modify, and
control the trace.

[@eventid =] event_id

Is the ID of the event to turn on. event_id is int, with no default.

This table lists the events that can be added to or removed from a trace.

Event
number Event name Description
0-9 Reserved
10 RPC:Completed Occurs when a remote procedure call

(RPC) has completed.
11 RPC:Starting Occurs when an RPC has started.
12 SQL:BatchCompleted Occurs when a Transact-SQL batch

has completed.
13 SQL:BatchStarting Occurs when a Transact-SQL batch

has started.
14 Login Occurs when a user successfully logs

in to SQL Server.
15 Logout Occurs when a user logs out of SQL

Server.
16 Attention Occurs when attention events, such as

client-interrupt requests or broken
client connections, happen.

17 ExistingConnection Detects all activity by users connected
to SQL Server before the trace started.

18 ServiceControl Occurs when the SQL Server service
state is modified.

19 DTCTransaction Tracks Microsoft Distributed
Transaction Coordinator (MS DTC)
coordinated transactions between two
or more databases.

20 Login Failed Indicates that a login attempt to SQL
Server from a client failed.

21 EventLog Indicates that events have been
logged in the Microsoft Windows
NT® application log.

22 ErrorLog Indicates that error events have been
logged in the SQL Server error log.

23 Lock:Released Indicates that a lock on a resource,
such as a page, has been released.

24 Lock:Acquired Indicates acquisition of a lock on a
resource, such as a data page.

25 Lock:Deadlock Indicates that two concurrent
transactions have deadlocked each
other by trying to obtain incompatible
locks on resources the other
transaction owns.

26 Lock:Cancel Indicates that the acquisition of a lock
on a resource has been canceled (for
example, due to a deadlock).

27 Lock:Timeout Indicates that a request for a lock on a
resource, such as a page, has timed
out due to another transaction
holding a blocking lock on the
required resource. Time-out is
determined by the
@@LOCK_TIMEOUT function, and can
be set with the SET LOCK_TIMEOUT
statement.

28 DOP Event Occurs before a SELECT, INSERT, or
UPDATE statement is executed.

29-31 Reserved Use Event 28 instead.
32 Reserved
33 Exception Indicates that an exception has

occurred in SQL Server.
34 SP:CacheMiss Indicates when a stored procedure is

not found in the procedure cache.
35 SP:CacheInsert Indicates when an item is inserted

into the procedure cache.
36 SP:CacheRemove Indicates when an item is removed

from the procedure cache.
37 SP:Recompile Indicates that a stored procedure was

recompiled.
38 SP:CacheHit Indicates when a stored procedure is

found in the procedure cache.
39 SP:ExecContextHit Indicates when the execution version

of a stored procedure has been found
in the procedure cache.

40 SQL:StmtStarting Occurs when the Transact-SQL
statement has started.

41 SQL:StmtCompleted Occurs when the Transact-SQL
statement has completed.

42 SP:Starting Indicates when the stored procedure
has started.

43 SP:Completed Indicates when the stored procedure
has completed.

44 Reserved Use Event 40 instead.
45 Reserved Use Event 41 instead.
46 Object:Created Indicates that an object has been

created, such as for CREATE INDEX,
CREATE TABLE, and CREATE
DATABASE statements.

47 Object:Deleted Indicates that an object has been
deleted, such as in DROP INDEX and
DROP TABLE statements.

48 Reserved
49 Reserved

50 SQL Transaction Tracks Transact-SQL BEGIN, COMMIT,
SAVE, and ROLLBACK TRANSACTION
statements.

51 Scan:Started Indicates when a table or index scan
has started.

52 Scan:Stopped Indicates when a table or index scan
has stopped.

53 CursorOpen Indicates when a cursor is opened on
a Transact-SQL statement by ODBC,
OLE DB, or DB-Library.

54 Transaction Log Tracks when transactions are written
to the transaction log.

55 Hash Warning Indicates that a hashing operation (for
example, hash join, hash aggregate,
hash union, and hash distinct) that is
not processing on a buffer partition
has reverted to an alternate plan. This
can occur because of recursion depth,
data skew, trace flags, or bit counting.

56-57 Reserved
58 Auto Update Stats Indicates an automatic updating of

index statistics has occurred.
59 Lock:Deadlock Chain Produced for each of the events

leading up to the deadlock.
60 Lock:Escalation Indicates that a finer-grained lock has

been converted to a coarser-grained
lock (for example, a row lock
escalated or converted to a page lock).

61 OLE DB Errors Indicates that an OLE DB error has
occurred.

62-66 Reserved
67 Execution Warnings Indicates any warnings that occurred

during the execution of a SQL Server
statement or stored procedure.

68 Execution Plan Displays the plan tree of the Transact-
SQL statement executed.

69 Sort Warnings Indicates sort operations that do not
fit into memory. Does not include sort
operations involving the creating of
indexes; only sort operations within a
query (such as an ORDER BY clause
used in a SELECT statement).

70 CursorPrepare Indicates when a cursor on a
Transact-SQL statement is prepared
for use by ODBC, OLE DB, or DB-
Library.

71 Prepare SQL ODBC, OLE DB, or DB-Library has
prepared a Transact-SQL statement or
statements for use.

72 Exec Prepared SQL ODBC, OLE DB, or DB-Library has
executed a prepared Transact-SQL
statement or statements.

73 Unprepare SQL ODBC, OLE DB, or DB-Library has
unprepared (deleted) a prepared
Transact-SQL statement or
statements.

74 CursorExecute A cursor previously prepared on a
Transact-SQL statement by ODBC,
OLE DB, or DB-Library is executed.

75 CursorRecompile A cursor opened on a Transact-SQL
statement by ODBC or DB-Library has
been recompiled either directly or due
to a schema change.

Triggered for ANSI and non-ANSI
cursors.

76 CursorImplicitConversion A cursor on a Transact-SQL statement
is converted by SQL Server from one
type to another.

Triggered for ANSI and non-ANSI
cursors.

77 CursorUnprepare A prepared cursor on a Transact-SQL
statement is unprepared (deleted) by
ODBC, OLE DB, or DB-Library.

78 CursorClose A cursor previously opened on a
Transact-SQL statement by ODBC,
OLE DB, or DB-Library is closed.

79 Missing Column Statistics Column statistics that could have
been useful for the optimizer are not
available.

80 Missing Join Predicate Query that has no join predicate is
being executed. This could result in a
long-running query.

81 Server Memory Change Microsoft SQL Server memory usage
has increased or decreased by either
1 megabyte (MB) or 5 percent of the
maximum server memory, whichever
is greater.

82-91 User Configurable (0-9) Event data defined by the user.
92 Data File Auto Grow Indicates that a data file was extended

automatically by the server.
93 Log File Auto Grow Indicates that a data file was extended

automatically by the server.
94 Data File Auto Shrink Indicates that a data file was shrunk

automatically by the server.
95 Log File Auto Shrink Indicates that a log file was shrunk

automatically by the server.
96 Show Plan Text Displays the query plan tree of the

SQL statement from the query
optimizer.

97 Show Plan ALL Displays the query plan with full
compile-time details of the SQL
statement executed.

98 Show Plan Statistics Displays the query plan with full run-
time details of the SQL statement
executed.

99 Reserved
100 RPC Output Parameter Produces output values of the

parameters for every RPC.
101 Reserved
102 Audit Statement GDR Occurs every time a GRANT, DENY,

REVOKE for a statement permission is
issued by any user in SQL Server.

103 Audit Object GDR Occurs every time a GRANT, DENY,
REVOKE for an object permission is
issued by any user in SQL Server.

104 Audit Add/Drop Login Occurs when a SQL Server login is
added or removed; for sp_addlogin
and sp_droplogin.

105 Audit Login GDR Occurs when a Microsoft Windows®
login right is added or removed; for
sp_grantlogin, sp_revokelogin, and
sp_denylogin.

106 Audit Login Change Property Occurs when a property of a login,
except passwords, is modified; for
sp_defaultdb and
sp_defaultlanguage.

107 Audit Login Change Password Occurs when a SQL Server login
password is changed.

Passwords are not recorded.

108 Audit Add Login to Server Role Occurs when a login is added or
removed from a fixed server role; for
sp_addsrvrolemember, and
sp_dropsrvrolemember.

109 Audit Add DB User Occurs when a login is added or
removed as a database user
(Windows or SQL Server) to a
database; for sp_grantdbaccess,
sp_revokedbaccess, sp_adduser,
and sp_dropuser.

110 Audit Add Member to DB Occurs when a login is added or
removed as a database user (fixed or
user-defined) to a database; for
sp_addrolemember,
sp_droprolemember, and
sp_changegroup.

111 Audit Add/Drop Role Occurs when a login is added or
removed as a database user to a
database; for sp_addrole and
sp_droprole.

112 App Role Pass Change Occurs when a password of an
application role is changed.

113 Audit Statement Permission Occurs when a statement permission
(such as CREATE TABLE) is used.

114 Audit Object Permission Occurs when an object permission
(such as SELECT) is used, both
successfully or unsuccessfully.

115 Audit Backup/Restore Occurs when a BACKUP or RESTORE
command is issued.

116 Audit DBCC Occurs when DBCC commands are
issued.

117 Audit Change Audit Occurs when audit trace
modifications are made.

118 Audit Object Derived Permission Occurs when a CREATE, ALTER, and
DROP object commands are issued.

[@columnid =] column_id

Is the ID of the column to be added for the event. column_id is int, with no default.

This table lists the columns that can be added for an event.

Column
number

Column name Description

1 TextData Text value dependent on the event
class that is captured in the trace.

2 BinaryData Binary value dependent on the event
class captured in the trace.

3 DatabaseID ID of the database specified by the
USE database statement, or the
default database if no USE database
statement is issued for a given
connection.

The value for a database can be
determined by using the DB_ID
function.

4 TransactionID System-assigned ID of the
transaction.

5 Reserved
6 NTUserName Microsoft Windows NT® user name.
7 NTDomainName Windows NT domain to which the

user belongs.
8 ClientHostName Name of the client computer that

originated the request.
9 ClientProcessID ID assigned by the client computer to

the process in which the client
application is running.

10 ApplicationName Name of the client application that
created the connection to an instance
of SQL Server. This column is
populated with the values passed by
the application rather than the
displayed name of the program.

11 SQLSecurityLoginName SQL Server login name of the client.
12 SPID Server Process ID assigned by SQL

Server to the process associated with
the client.

13 Duration Amount of elapsed time (in
milliseconds) taken by the event. This
data column is not populated by the
Hash Warning event.

14 StartTime Time at which the event started, when
available.

15 EndTime Time at which the event ended. This
column is not populated for starting
event classes, such as
SQL:BatchStarting or SP:Starting. It
is also not populated by the Hash
Warning event.

16 Reads Number of logical disk reads
performed by the server on behalf of
the event. This column is not
populated by the Lock:Released
event.

17 Writes Number of physical disk writes
performed by the server on behalf of
the event.

18 CPU Amount of CPU time (in milliseconds)
used by the event.

19 Permissions Represents the bitmap of
permissions; used by Security
Auditing.

20 Severity Severity level of an exception.
21 EventSubClass Type of event subclass. This data

column is not populated for all event
classes.

22 ObjectID System-assigned ID of the object.
23 Success Success of the permissions usage

attempt; used for auditing.

1 = success
0 = failure

24 IndexID ID for the index on the object affected
by the event. To determine the index
ID for an object, use the indid column
of the sysindexes system table.

25 IntegerData Integer value dependent on the event
class captured in the trace.

26 ServerName Name of the instance of SQL Server
(either servername or
servername\instancename) being
traced.

27 EventClass Type of event class being recorded.
28 ObjectType Type of object (such as table, function,

or stored procedure).
29 NestLevel The nesting level at which this stored

procedure is executing. See
@@NESTLEVEL.

30 State Server state, in case of an error.
31 Error Error number.
32 Mode Lock mode of the lock acquired. This

column is not populated by the
Lock:Released event.

33 Handle Handle of the object referenced in the
event.

34 ObjectName Name of object accessed.
35 DatabaseName Name of the database specified in the

USE database statement.
36 Filename Logical name of the file name

modified.
37 ObjectOwner Owner ID of the object referenced.
38 TargetRoleName Name of the database or server-wide

role targeted by a statement.
39 TargetUserName User name of the target of some

action.
40 DatabaseUserName SQL Server database username of the

client.
41 LoginSID Security identification number (SID)

of the logged-in user.
42 TargetLoginName Login name of the target of some

action.
43 TargetLoginSID SID of the login that is the target of

some action.
44 ColumnPermissionsSet Column-level permissions status;

used by Security Auditing.

[@on =] on

Specifies whether to turn the event ON (1) or OFF (0). @on is bit, with no default.

If on is set to 1, and column_id is NULL, then the Event is set to ON and all columns are cleared. If column_id is not null, then the
Column is set to ON for that event.

If on is set to 0, and column_id is NULL, then the Event is turned OFF and all columns are cleared. If column_id is not null, then the
Column is turned OFF.

This table illustrates the interaction between @on and @columnid.

@on @columnid Result
ON (1) NULL Event is turned ON.

All Columns are cleared.

 NOT NULL Column is turned ON for the specified Event.
OFF (0) NULL Event is turned OFF.

All Columns are cleared.

 NOT NULL Column is turned OFF for the specified Event.

Return Code Values

This table describes the code values that users may get following completion of the stored procedure.

Return code Description
0 No error.
1 Unknown error.
2 The trace is currently running. Changing the trace at this time

will result in an error.
3 The specified Event is not valid. The Event may not exist or it is

not an appropriate one for the store procedure.
4 The specified Column is not valid.
9 The specified Trace Handle is not valid.
11 The specified Column is used internally and cannot be removed.
13 Out of memory. Returned when there is not enough memory to

perform the specified action.
16 The function is not valid for this trace.

Remarks

sp_trace_setevent is a Microsoft SQL Server 2000 stored procedure that performs many of the actions previously executed by
extended stored procedures available in earlier versions of SQL Server. Use sp_trace_setevent instead of:

xp_trace_addnewqueue

xp_trace_eventclassrequired

xp_trace_seteventclassrequired

Users must execute sp_trace_setevent for each column added for each event. During each execution, if @on is set to 1,
sp_trace_setevent adds the specified event to the list of events of the trace. If @on is set to 0, sp_trace_setevent removes the
specified event from the list.

Parameters of all SQL Trace stored procedures (sp_trace_xx) are strictly typed. If these parameters are not called with the correct
input parameter data types, as specified in the argument description, the stored procedure will return an error.

Permissions

Only members of the sysadmin fixed server role can execute sp_trace_setevent.

See Also

fn_trace_geteventinfo

fn_trace_getinfo

sp_trace_generateevent

Transact-SQL Reference (SQL Server 2000)

sp_trace_setfilter
Applies a filter to a trace. sp_trace_setfilter may be executed only on existing traces that are stopped (status is 0). SQL Server
2000 will return an error if this stored procedure is executed on a trace that does not exist or whose status is not 0.

Syntax

sp_trace_setfilter [@traceid =] trace_id
 , [@columnid =] column_id
 , [@logical_operator =] logical_operator
 , [@comparison_operator =] comparison_operator
 , [@value =] value

Arguments

[@traceid =] trace_id

Is the ID of the trace to which the filter will be set. trace_id is int, with no default. The user employs this trace_id value to identify,
modify, and control the trace.

[@columnid =] column_id

Is the ID of the column on which the filter will be applied. column_id is int, with no default. If column_id is NULL, SQL Server
clears all filters for the specified trace.

[@logical_operator =] logical_operator

Specifies whether the AND (0) or OR (1) operator will be applied. logical_operator is int, with no default.

[@comparison_operator =] comparison_operator

Specifies the type of comparison to be made. comparison_operator is int, with no default. The table contains the comparison
operators and their representative values.

Value Comparison operator
0 = (Equal)
1 <> (Not Equal)
2 > (Greater Than)
3 < (Less Than)
4 >= (Greater Than Or Equal)
5 <= (Less Than Or Equal)
6 LIKE
7 NOT LIKE

[@value =] value

Specifies the value on which to filter. The data type of value must match the data type of the column to be filtered. Thus, if the
filter is set on an Object ID column that is an int data type, value must be int. NULL values and empty strings are not allowed;
when a column value is null for an event, SQL Server will pass any filter defined on that column. If value is nvarchar or
varbinary, it can have a maximum length of 8000.

When the comparison operator is LIKE or NOT LIKE, the logical operator can include "%" or other filter appropriate for the LIKE
operation.

To apply the filter between a range of column values, sp_trace_setfilter must be executed twice -- once with a '>=' comparison
operator, and another time with a '<=' operator.

Return Code Values

This table describes the code values that users may get following completion of the stored procedure.

Return code Description
0 No error.
1 Unknown error.

2 The trace is currently running. Changing the
trace at this time will result in an error.

4 The specified Column is not valid.
5 The specified Column is not allowed for

filtering. This value is returned only from
sp_trace_setfilter.

6 The specified Comparison Operator is not valid.
7 The specified Logical Operator is not valid.
9 The specified Trace Handle is not valid.
13 Out of memory. Returned when there is not

enough memory to perform the specified
action.

16 The function is not valid for this trace.

Remarks

sp_trace_setfilter is a Microsoft® SQL Server™ 2000 stored procedure that performs many of the actions previously executed
by extended stored procedures available in earlier versions of SQL Server. Use sp_trace_setfilter instead of the
xp_trace_set*filter extended stored procedures to create, apply, remove, or manipulate filters on traces. For more information,
see Creating and Managing Templates.

All filters for a particular column must be enabled together in one execution of sp_trace_setfilter. For example, if a user intends
to apply two filters on the application name column and one filter on the username column, the user must specify the filters on
application name in sequence. SQL Server will return an error if the user attempts to specify a filter on application name in one
stored procedure call, followed by a filter on username, then another filter on application name.

Parameters of all SQL Trace stored procedures (sp_trace_xx) are strictly typed. If these parameters are not called with the correct
input parameter data types, as specified in the argument description, the stored procedure will return an error.

Permissions

Only members of the sysadmin fixed server role can execute sp_trace_setfilter.

Examples

This example sets three filters on Trace 1. The filters N'SQLT%' and N'MS%' operate on one column (AppName, value 10) using
the "LIKE" comparison operator. The filter N'joe' operates on a different column (UserName, value 11) using the "EQUAL"
comparison operator.

sp_trace_setfilter 1, 10, 0, 6, N'SQLT%'
sp_trace_setfilter 1, 10, 0, 6, N'MS%'
sp_trace_setfilter 1, 11, 0, 0, N'joe'

See Also

fn_trace_getfilterinfo

fn_trace_getinfo

Transact-SQL Reference (SQL Server 2000)

sp_trace_setstatus
Modifies the current state of the specified trace.

Syntax

sp_trace_setstatus [@traceid =] trace_id
 , [@status =] status

Arguments

[@traceid =] trace_id

Is the ID of the trace to be modified. trace_id is int, with no default. The user employs this trace_id value to identify, modify, and
control the trace.

[@status =] status

Specifies the action to implement on the trace. status is int, with no default.

This table lists the status that may be specified.

Status Description
0 Stops the specified trace.
1 Starts the specified trace.
2 Closes the specified trace and deletes its definition

from the server.

Note A trace must be stopped first before it can be closed.

Return Code Values

This table describes the code values that users may get following completion of the stored procedure.

Return code Description
0 No error.
1 Unknown error.
8 The specified Status is not valid.
9 The specified Trace Handle is not valid.
13 Out of memory. Returned when there is not

enough memory to perform the specified action.

If the trace is already in the state specified, SQL Server will return 0.

Remarks

sp_trace_setstatus is a Microsoft SQL Server 2000 stored procedure that performs many of the actions previously executed by
xp_trace_* extended stored procedures available in earlier versions of SQL Server. Use sp_trace_setstatus instead of:

xp_trace_destroyqueue

xp_trace_pausequeue

xp_trace_restartqueue

xp_trace_startconsumer

Parameters of all SQL Trace stored procedures (sp_trace_xx) are strictly typed. If these parameters are not called with the correct
input parameter data types, as specified in the argument description, the stored procedure will return an error.

Permissions

Only members of the sysadmin fixed server role can execute sp_trace_setstatus.

Examples

See Also

fn_trace_geteventinfo

fn_trace_getfilterinfo

fn_trace_getinfo

sp_trace_generateevent

sp_trace_setevent

sp_trace_setfilter

Transact-SQL Reference (SQL Server 2000)

sp_unbindefault
Unbinds (removes) a default from a column or from a user-defined data type in the current database.

Syntax

sp_unbindefault [@objname =] 'object_name'
 [, [@futureonly =] 'futureonly_flag']

Arguments

[@objname =] 'object_name'

Is the name of the table and column or the user-defined data type from which the default is to be unbound. object_name is
nvarchar(776), with no default. If the parameter is not of the form table.column, object_name is assumed to be a user-defined
data type. When unbinding a default from a user-defined data type, any columns of that data type that have the same default are
also unbound. Columns of that data type with defaults bound directly to them are unaffected.

Note object_name can contain the [and] characters as delimited identifier characters. For more information, see Delimited
Identifiers.

[@futureonly =] 'futureonly_flag'

Is used only when unbinding a default from a user-defined data type. futureonly_flag is varchar(15), with a default of NULL.
When futureonly_flag is futureonly, existing columns of the data type do not lose the specified default.

Return Code Values

0 (success) or 1 (failure)

Remarks

To display the text of a default, execute sp_helptext with the name of the default as the parameter.

When a default is bound to a column, the information about binding is removed from the syscolumns table. When a default is
bound to a user-defined data type, the information is removed from the systypes table.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
execute sp_unbindefault.

Examples

A. Unbind a default from a column

This example unbinds the default from the hiredate column of an employees table.

EXEC sp_unbindefault 'employees.hiredate'

B. Unbind a default from a user-defined data type

This example unbinds the default from the user-defined data type ssn. It unbinds existing and future columns of that type.

EXEC sp_unbindefault 'ssn'

C. Use the futureonly_flag

This example unbinds future uses of the user-defined data type ssn without affecting existing ssn columns.

EXEC sp_unbindefault 'ssn', 'futureonly'

D. Use delimited identifiers

This example shows the use of delimited identifiers in object_name.

CREATE TABLE [t.3] (c1 int) -- Notice the period as part of the table
-- name.
CREATE DEFAULT default2 AS 0
GO
EXEC sp_bindefault 'default2', '[t.3].c1'
-- The object contains two periods;
-- the first is part of the table name and the second
-- distinguishes the table name from the column name.
EXEC sp_unbindefault '[t.3].c1'

See Also

CREATE DEFAULT

DROP DEFAULT

sp_bindefault

sp_helptext

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_unbindrule
Unbinds a rule from a column or a user-defined data type in the current database.

Syntax

sp_unbindrule [@objname =] 'object_name'
 [, [@futureonly =] 'futureonly_flag']

Arguments

[@objname =] 'object_name'

Is the name of the table and column or the user-defined data type from which the rule is unbound. object_name is
nvarchar(776), with no default. If the parameter is not of the form table.column, object_name is assumed to be a user-defined
data type. When unbinding a rule from a user-defined data type, any columns of the data type that have the same rule are also
unbound. Columns of that data type with rules bound directly to them are unaffected.

Note object_name can contain the [and] characters as delimited identifier characters. For more information, see Delimited
Identifiers.

[@futureonly =] 'futureonly_flag'

Is used only when unbinding a rule from a user-defined data type. futureonly_flag is varchar(15), with a default of NULL. When
futureonly_flag is futureonly, existing columns of that data type do not lose the specified rule.

Return Code Values

0 (success) or 1 (failure)

Remarks

To display the text of a rule, execute sp_helptext with the rule name as the parameter.

When a rule is unbound, the information about the binding is removed from the syscolumns table if the rule was bound to a
column, and from the systypes table if the rule was bound to a user-defined data type.

When a rule is unbound from a user-defined data type, it is also unbound from any columns having that user-defined data type.
The rule may also still be bound to columns whose data types were later changed by the ALTER COLUMN clause of an ALTER
TABLE statement, you must specifically unbind the rule from these columns using sp_unbindrule and specifying the column
name.

Permissions

Only members of the sysadmin fixed server role, the db_owner and db_ddladmin fixed database roles, and the table owner can
execute sp_unbindrule.

Examples

A. Unbind a ru le from a column

This example unbinds the rule from the startdate column of an employees table.

EXEC sp_unbindrule 'employees.startdate'

B. Unbind a ru le from a user-defined data type

This example unbinds the rule from the user-defined data type ssn. It unbinds the rule from existing and future columns of that
type.

EXEC sp_unbindrule ssn

C. Use futureonly_flag

This example unbinds the rule from the user-defined data type ssn without affecting existing ssn columns.

EXEC sp_unbindrule 'ssn', 'futureonly'

D. Use delimited identifiers

This example shows the use of delimited identifiers in the object_name.

CREATE TABLE [t.4] (c1 int) -- Notice the period as part of the table
-- name.
GO
CREATE RULE rule2 AS @value > 100
GO
EXEC sp_bindrule rule2, '[t.4].c1' -- The object contains two
-- periods; the first is part of the table name and the second
-- distinguishes the table name from the column name.
GO
EXEC sp_unbindrule '[t.4].c1'

See Also

CREATE RULE

DROP RULE

sp_bindrule

sp_helptext

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_alert
Updates the settings of an existing alert.

Syntax

sp_updatealert [@name =] 'name'
 [, [@new_name =] 'new_name']
 [, [@enabled =] enabled]
 [, [@message_id =] message_id]
 [, [@severity =] severity]
 [, [@delay_between_responses =] delay_between_responses]
 [, [@notification_message =] 'notification_message']
 [, [@include_event_description_in =] include_event_description_in]
 [, [@database_name =] 'database_name']
 [, [@event_description_keyword =] 'event_description_keyword']
 [, [@job_id =] job_id | [@job_name =] 'job_name']
 [, [@occurrence_count =] occurrence_count]
 [, [@count_reset_date =] count_reset_date]
 [, [@count_reset_time =] count_reset_time]
 [, [@last_occurrence_date =] last_occurrence_date]
 [, [@last_occurrence_time =] last_occurrence_time]
 [, [@last_response_date =] last_response_date]
 [, [@last_response_time =] last_response _time]
 [, [@raise_snmp_trap =] raise_snmp_trap]
 [, [@performance_condition =] 'performance_condition']
 [, [@category_name =] 'category']

Arguments

[@name =] 'name'

Is the name of the alert that is to be updated. name is sysname, with no default.

[@new_name =] 'new_name'

Is a new name for the alert. The name must be unique. new_name is sysname, with a default of NULL.

[@enabled =] enabled

Specifies whether the alert is enabled (1) or not enabled (0). enabled is tinyint, with a default of NULL. An alert must be enabled
to fire.

[@message_id =] message_id

Is a new message or error number for the alert definition. Typically, message_id corresponds to an error number in the
sysmessages table. message_id is int, with a default of NULL. A message ID can be used only if the severity level setting for the
alert is 0.

[@severity =] severity

Is a new severity level (from 1 through 25) for the alert definition. Any Microsoft® SQL Server™ message sent to the Windows
NT® application log with the specified severity will activate the alert. severity is int, with a default of NULL. A severity level can be
used only if the message ID setting for the alert is 0.

[@delay_between_responses =] delay_between_responses

Is the new waiting period, in seconds, between responses to the alert. delay_between_responses is int, with a default of NULL.

[@notification_message =] 'notification_message'

Is the revised text of an additional message sent to the operator as part of the e-mail, net send, or pager notification.
notification_message is nvarchar(512), with a default of NULL.

[@include_event_description_in =] include_event_description_in

Is whether the description of the SQL Server error from the Windows NT application log should be included in the notification

message. include_event_description_in is tinyint, with a default of NULL, and can be one or more of these values.

Value Description
0 None
1 E-mail
2 Pager
4 net send

[@database_name =] 'database_name'

Is the name of the database in which the error must occur for the alert to fire. database_name is sysname, with a default of NULL.

[@event_description_keyword =] 'event_description_keyword'

Is a sequence of characters that must be found in the description of the error in the error message log. Transact-SQL LIKE
expression pattern-matching characters can be used. event_description_keyword is nvarchar(100), with a default of NULL. This
parameter is useful for filtering object names (for example, %customer_table%).

[@job_id =] job_id

Is the job identification number. job_id is uniqueidentifier, with a default of NULL. If job_id is specified, job_name must be
omitted.

[@job_name =] 'job_name'

Is the name of the job that executes in response to this alert. job_name is sysname, with a default of NULL. If job_name is
specified, job_id must be omitted.

[@occurrence_count =] occurrence_count

Resets the number of times the alert has occurred. occurrence_count is int, with a default of NULL, and can be set only to 0.

[@count_reset_date =] count_reset_date

Resets the date the occurrence count was last reset. count_reset_date is int, with a default of NULL.

[@count_reset_time =] count_reset_time

Resets the time the occurrence count was last reset. count_reset_time is int, with a default of NULL.

[@last_occurrence_date =] last_occurrence_date

Resets the date the alert last occurred. last_occurrence_date is int, with a default of NULL, and can be set only to 0.

[@last_occurrence_time =] last_occurrence_time

Resets the time the alert last occurred. last_occurrence_time is int, with a default of NULL, and can be set only to 0.

[@last_response_date =] last_response_date

Resets the date the alert was last responded to by the SQLServerAgent service. last_response_date is int, with a default of NULL,
and can be set only to 0.

[@last_response_time =] last_response_time

Resets the time the alert was last responded to by the SQLServerAgent service. last_response_time is int, with a default of NULL,
and can be set only to 0.

[@raise_snmp_trap =] raise_snmp_trap

Reserved.

[@performance_condition =] 'performance_condition'

Is a value expressed in the format 'item comparator value'. performance_condition is nvarchar(512), with a default of NULL, and
consists of these elements.

Format element Description
Item A performance object, performance counter, or named

instance of the counter
Comparator One of these operators: >, <, =

Value Numeric value of the counter

[@category_name =] 'category'

The name of the alert category. category is sysname with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_alert must be run from the msdb database.

Only sysmessages written to the Microsoft® Windows NT® application log can fire an alert.

sp_update_alert changes only those alert settings for which parameter values are supplied. If a parameter is omitted, the current
setting is retained.

Permissions

Only members of the sysadmin fixed server role can execute sp_update_alert.

Examples

This example changes the enabled setting of Test Alert to 0.

sp_updatealert @name = 'Test Alert', @enabled = 0

See Also

sp_add_alert

sp_help_alert

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_category
Changes the name of a category.

Syntax

sp_update_category [@class =] 'class',
 [@name =] 'old_name',
 [@new_name =] 'new_name'

Arguments

[@class =] 'class'

Is the class of the category to update. class is varchar(8), with no default, and can be one of these values.

Value Description
ALERT Updates an alert category.
JOB Updates a job category.
OPERATOR Updates an operator category.

[@name =] 'old_name'

Is the current name of the category. old_name is sysname, with no default.

[@new_name =] 'new_name'

Is the new name for the category. new_name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_category must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_update_category.

Examples

This example renames a job category from Table Archixes to Table Archives.

USE msdb
EXEC sp_update_category 'JOB', 'Table Archixes', 'Table Archives'

See Also

sp_add_category

sp_delete_category

sp_help_category

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_updateextendedproperty
Updates the value of an existing extended property.

Syntax

sp_updateextendedproperty
 [@name =]{'property_name'}
 [, [@value =]{'value'}
 [, [@level0type =]{'level0_object_type'}
 , [@level0name =]{'level0_object_name'}
 [, [@level1type =]{'level1_object_type'}
 , [@level1name =]{'level1_object_name'}
 [, [@level2type =]{'level2_object_type'}
 , [@level2name =]{'level2_object_name'}
]
]
]
]

Arguments

[@name =]{'property_name'}

Is the name of the property to be updated. property_name is sysname, and cannot be NULL.

[@value =]{'value'}

Is the value associated with the property. value is sql_variant, with a default of NULL. The size of value may not be more than
7,500 bytes; otherwise, SQL Server™ raises an error.

[@level0type =]{'level0_object_type'}

Is the user or user-defined type. level0_object_type is varchar(128), with a default of NULL. Valid inputs are USER, TYPE, and
NULL.

[@level0name =]{'level0_object_name'}

Is the name of the level 1 object type specified. level0_object_name is sysname, with a default of NULL.

[@level1type =]{'level1_object_type'}

Is the type of level 1 object. level1_object_type is varchar(128), with a default of NULL. Valid inputs are TABLE, VIEW,
PROCEDURE, FUNCTION, DEFAULT, RULE, and NULL.

[@level1name =]{'level1_object_name'}

Is the name of the level 1 object type specified. level1_object_name is sysname, with a default of NULL.

[@level2type =]{'level2_object_type'}

Is the type of level 2 object. level2_object_type is varchar(128) with a default of NULL. Valid inputs are COLUMN, PARAMETER,
INDEX, CONSTRAINT, TRIGGER, and NULL.

[@level2name =]{'level2_object_name'}

Is the name of the level 2 object type specified. level2_object_name is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

Extended properties are not allowed on system objects.

The objects are distinguished according to levels, with level 0 as the highest and level 2 the lowest. When a user adds, updates, or
deletes an extended property, that user must specify all higher level objects. For example, if the user adds an extended property to

a level 1 object, that user must specify all level 0 information. If the user adds an extended property to a level 2 object, all
information on levels 0 and 1 must be supplied.

At each level, object type and object name uniquely identify an object. If one part of the pair is specified, the other part must also
be specified.

Given a valid property_name and value, if all object types and names are null, the property updated belongs to the current
database. If an object type and name are specified, then a parent object and type also must be specified. Otherwise, SQL Server
raises an error.

Permissions

Members of the db_owner and db_ddladmin fixed database roles may update the extended properties of any object. Users may
update extended properties to objects they own. However, only db_owner may update properties to user names.

Examples

This example updates the property ('caption,' 'Employee 1 ID') to column 'ID' in table 'T1'.

CREATE table T1 (id int , name char (20))
EXEC sp_addextendedproperty 'caption', 'Employee ID', 'user', dbo, 'table', 'T1', 'column', id
EXEC sp_updateextendedproperty 'caption', 'Employee 1 ID', 'user', dbo, 'table', 'T1', 'column', id

See Also

fn_listextendedproperty

Property Management

Transact-SQL Reference (SQL Server 2000)

sp_update_job
Changes the attributes of a job.

Syntax

sp_update_job [@job_id =] job_id | [@job_name =] 'job_name'
 [, [@new_name =] 'new_name']
 [, [@enabled =] enabled]
 [, [@description =] 'description']
 [, [@start_step_id =] step_id]
 [, [@category_name =] 'category']
 [, [@owner_login_name =] 'login']
 [, [@notify_level_eventlog =] eventlog_level]
 [, [@notify_level_email =] email_level]
 [, [@notify_level_netsend =] netsend_level]
 [, [@notify_level_page =] page_level]
 [, [@notify_email_operator_name =] 'email_name']
 [, [@notify_netsend_operator_name =] 'netsend_operator']
 [, [@notify_page_operator_name =] 'page_operator']
 [, [@delete_level =] delete_level]
 [, [@automatic_post =] automatic_post]

Arguments

[@job_id =] job_id

Is the identification number of the job to be updated. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified but both cannot be specified.

[@new_name =] 'new_name'

Is the new name for the job. new_name is sysname, with a default of NULL.

[@enabled =] enabled

Specifies whether the job is enabled (1) or not abled (0). enabled is tinyint, with a default of NULL.

[@description =] 'description'

Is the description of the job. description is nvarchar(512), with a default of NULL.

[@start_step_id =] step_id

Is the identification number of the first step to execute for the job. step_id is int, with a default of NULL.

[@category_name =] 'category'

Is the category of the job. category is sysname, with a default of NULL.

[@owner_login_name =] 'login'

Is the name of the login that owns the job. login is sysname, with a default of NULL. Only members of the sysadmin fixed server
role can change job ownership.

[@notify_level_eventlog =] eventlog_level

Specifies when to place an entry in the Microsoft® Windows NT® application log for this job. eventlog_level is int, with a default
of NULL, and can be one of these values.

Value Description (action)
0 Never
1 On success

2 On failure
3 Always

[@notify_level_email =] email_level

Specifies when to send an e-mail upon the completion of this job. email_level is int, with a default of NULL. email_level uses the
same values as eventlog_level.

[@notify_level_netsend =] netsend_level

Specifies when to send a network message upon the completion of this job. netsend_level is int, with a default of NULL.
netsend_level uses the same values as eventlog_level.

[@notify_level_page =] page_level

Specifies when to send a page upon the completion of this job. page_level is int, with a default of NULL. page_level uses the same
values as eventlog_level.

[@notify_email_operator_name =] 'email_name'

Is the e-mail name of the person to whom the e-mail is sent when email_level is reached. email_name is sysname, with a default
of NULL.

[@notify_netsend_operator_name =] 'netsend_operator'

Is the name of the operator to whom the network message is sent. netsend_operator is sysname, with a default of NULL.

[@notify_page_operator_name =] 'page_operator'

Is the name of the operator to whom a page is sent. page_operator is sysname, with a default of NULL.

[@delete_level =] delete_level

Specifies when to delete the job. delete_value is int, with a default of NULL. delete_level uses the same values as eventlog_level.

[@automatic_post =] automatic_post

Reserved.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_job must be run from the msdb database.

sp_update_job changes only those settings for which parameter values are supplied. If a parameter is omitted, the current
setting is retained.

Permissions

Execute permissions default to the public role.

Examples

This example changes the name and description, and disables the job Archive Tables.

USE msdb
EXEC sp_update_job @job_name = 'Archive Tables',
 @new_name = 'Archive Tables - Disabled',
 @description = 'Job disabled until end of project',
 @enabled = 0

See Also

sp_add_job

sp_delete_job

sp_help_job

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_jobschedule
Changes the schedule settings for the specified job.

Syntax

sp_update_jobschedule [@job_id =] job_id, | [@job_name =] 'job_name',
 [@name =] 'name'
 [, [@new_name =] 'new_name']
 [, [@enabled =] enabled]
 [, [@freq_type =] freq_type]
 [, [@freq_interval =] freq_interval]
 [, [@freq_subday_type =] freq_subday_type]
 [, [@freq_subday_interval =] freq_subday_interval]
 [, [@freq_relative_interval =] freq_relative_interval]
 [, [@freq_recurrence_factor =] freq_recurrence_factor]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@active_start_time =] active_start_time]
 [, [@active_end_time =] active_end_time]

Arguments

[@job_id =] job_id

Is the identification number of the job to which the schedule belongs. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to which the schedule belongs. Each job name must be unique. job_name is sysname, with a default of
NULL.

Note Either job_id or job_name must be specified but both cannot be specified.

[@name =] 'name'

Is the name of the schedule to modify. name is sysname, with no default.

[@new_name =] 'new_name'

Is a new name for the schedule. new_name is sysname, with a default of NULL.

[@enabled =] enabled

Specifies whether the schedule is enabled (1) or not enabled (0). enabled is tinyint, with a default of NULL.

[@freq_type =] freq_type

Specifies how often the job is run. freq_type is int, with a default of NULL, and can be one of these values.

Value Description
1 Once.
4 Daily.
8 Weekly.
16 Monthly.
32 Monthly, relative to the freq_interval.
64 Run when SQL Server Agent starts.
128 Run when the computer is idle.

[@freq_interval =] freq_interval

Specifies the days that the job is run. freq_interval is int, with a default of NULL. The value of freq_interval depends on the value
of freq_type.

Value of freq_type Effect on freq_interval

1 (once) freq_interval is unused.
4 (daily) Every freq_interval days.
8 (weekly) freq_interval is one or more of the following

(ORed together):

1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

16 (monthly) On the freq_interval day of the month.
32 (monthly relative) freq_interval can be one of these values:

1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
8 = Day
9 = Weekday
10 = Weekend day

64 (when SQL Server Agent starts) freq_interval is unused.

[@freq_subday_type =] freq_subday_type

Specifies the units for freq_subday_interval. freq_subday_type is int, with a default of NULL, and can be one of these values.

Value Description (unit)
0x1 At the specified time.
0x4 Minutes.
0x8 Hours.

[@freq_subday_interval =] freq_subday_interval

Specifies the number of freq_subday_type periods to occur between each execution of the job. freq_subday_interval is int, with a
default of NULL.

[@freq_relative_interval =] freq_relative_interval

Specifies the scheduled job's occurrence of the freq_interval in each month, if freq_interval is 32 (monthly relative).
freq_relative_interval is int, with a default of NULL, and can be one of these values.

Value Description (unit)
1 First
2 Second
4 Third
8 Fourth
16 Last

[@freq_recurrence_factor =] freq_recurrence_factor

Specifies the number of months between the scheduled execution of the job. freq_recurrence_factor is used only if freq_type is 8,
16, or 32. freq_recurrence_factor is int, with a default of NULL.

[@active_start_date =] active_start_date

Is the date on which execution of the job can begin. active_start_date is int, with a default of NULL. Values must be formatted as

YYYYMMDD. If active_start_date is not NULL, the date must be greater than or equal to 19900101.

[@active_end_date =] active_end_date

Is the date on which execution of the job can stop. active_end_date is int, with a default of NULL. Values must be formatted as
YYYYMMDD.

[@active_start_time =] active_start_time

Is the time on any day between active_start_date and active_end_date to begin execution of the job. active_start_time is int, with a
default of NULL. Values must be entered using the form HHMMSS.

[@active_end_time =] active_end_time

Is the time on any day between active_start_date and active_end_date to end execution of the job. active_end_time is int, with a
default of NULL. Values must be entered using the form HHMMSS.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_jobschedule must be run from the msdb database.

Updating a job schedule increments the job version number.

Permissions

Execute permissions default to the public role.

Examples

This example disables and changes the name of the Monday Archive schedule of the Archive Tables job.

USE msdb
EXEC sp_update_jobschedule @job_name = 'Archive Tables',
 @name = 'Monday Archive',
 @new_name = 'Monday Archive - DEACTIVATED',
 @enabled = 0

See Also

Modifying and Viewing Jobs

sp_add_jobschedule

sp_delete_jobschedule

sp_help_jobschedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_jobstep
Changes the setting for a step in a job that is used to perform automated activities.

Syntax

sp_update_jobstep [@job_id =] job_id, | [@job_name =] 'job_name',
 [@step_id =] step_id
 [, [@step_name =] 'step_name']
 [, [@subsystem =] 'subsystem']
 [, [@command =] 'command']
 [, [@additional_parameters =] 'parameters']
 [, [@cmdexec_success_code =] success_code]
 [, [@on_success_action =] success_action]
 [, [@on_success_step_id =] success_step_id]
 [, [@on_fail_action =] fail_action]
 [, [@on_fail_step_id =] fail_step_id]
 [, [@server =] 'server']
 [, [@database_name =] 'database']
 [, [@database_user_name =] 'user']
 [, [@retry_attempts =] retry_attempts]
 [, [@retry_interval =] retry_interval]
 [, [@os_run_priority =] run_priority]
 [, [@output_file_name =] 'file_name']
 [, [@flags =] flags]

Arguments

[@job_id =] job_id

Is the identification number of the job to which the step belongs. job_id is uniqueidentifier, with a default of NULL.

[@job_name =] 'job_name'

Is the name of the job to which the step belongs. job_name is sysname, with a default of NULL.

Note Either job_id or job_name must be specified but both cannot be specified.

[@step_id =] step_id

Is the identification number for the job step to be modified. This number cannot be changed. step_id is int, with no default.

[@step_name =] 'step_name'

Is a new name for the step. step_name is sysname, with a default of NULL.

[@subsystem =] 'subsystem'

Is the subsystem used by SQL Server Agent to execute command. subsystem is nvarchar(40), with a default of NULL.

[@command =] 'command'

Is the command(s) to be executed through subsystem. command is nvarchar(3200), with a default of NULL.

[@additional_parameters =] 'parameters'

Reserved.

[@cmdexec_success_code =] success_code

Is the value returned by a CmdExec subsystem command to indicate that command executed successfully. success_code is int,
with a default of NULL.

[@on_success_action =] success_action

Is the action to perform if the step succeeds. success_action is tinyint, with a default of NULL, and can be one of these values.

Value Description (action)
1 Quit with success

2 Quit with failure
3 Go to next step
4 Go to step success_step_id

[@on_success_step_id =] success_step_id

Is the identification number of the step in this job to execute if step succeeds and success_action is 4. success_step_id is int, with a
default of NULL.

[@on_fail_action =] fail_action

Is the action to perform if the step fails. fail_action is tinyint, with a default of NULL and can have one of these values.

Value Description (action)
1 Quit with success.
2 Quit with failure.
3 Go to next step.
4 Go to step fail_step_id.

[@on_fail_step_id =] fail_step_id

Is the identification number of the step in this job to execute if the step fails and fail_action is 4. fail_step_id is int, with a default of
NULL.

[@server =] 'server'

Reserved. server is nvarchar(30), with a default of NULL.

[@database_name =] 'database'

Is the name of the database in which to execute a TSQL step. database is sysname, with a default of NULL.

[@database_user_name =] 'user'

Is the name of the user account to use when executing a TSQL step. user is sysname, with a default of NULL.

[@retry_attempts =] retry_attempts

Is the number of retry attempts to use if this step fails. retry_attempts is int, with a default of NULL.

[@retry_interval =] retry_interval

Is the amount of time in minutes between retry attempts. retry_interval is int, with a default of NULL.

[@os_run_priority =] run_priority

Reserved.

[@output_file_name =] 'file_name'

Is the name of the file in which the output of this step is saved. file_name is nvarchar(200), with a default of NULL. This
parameter is only valid with commands running in TSQL or CmdExec subsystems.

[@flags =] flag

Is an option that controls behavior. flags is int, and can be one of these values.

Value Description
2 Append to output file.
4 Overwrite output file.
0 (default) No options set.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_jobstep must be run from the msdb database.

Updating a job step increments the job version number.

Permissions

Execute permissions default to the public role.

Examples

This example changes the name of step 4 of the Archive Tables job to Sales Detail.

USE msdb
EXEC sp_update_jobstep @job_name = 'Archive Tables', @step_id = 4,
 @step_name = 'Sales Detail'

See Also

Modifying and Viewing Jobs

sp_delete_jobstep

sp_help_jobstep

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_log_shipping_monitor_info
Updates the monitoring information about a log shipping pair.

Syntax

sp_update_log_shipping_monitor_info
 [@primary_server_name =] 'primary_server_name',
 [@primary_database_name =] 'primary_database_name',
 [@secondary_server_name =] 'secondary_server_name',
 [@secondary_database_name =] 'secondary_database_name'
 [,[@backup_threshold =] backup_threshold]
 [,[@backup_threshold_alert =] backup_threshold_alert]
 [,[@backup_threshold_alert_enabled =] backup_threshold_alert_enabled]
 [,[@backup_outage_start_time =] backup_outage_start_time]
 [,[@backup_outage_end_time =] backup_outage_end_time]
 [,[@backup_outage_weekday_mask =] backup_outage_weekday_mask]
 [,[@copy_enabled =] copy_enabled]
 [,[@load_enabled =] load_enabled]
 [,[@out_of_sync_threshold =] out_of_sync_threshold]
 [,[@out_of_sync_threshold_alert =] out_of_sync_threshold_alert]
 [,[@out_of_sync_threshold_alert_enabled =] out_of_sync_threshold_alert_enabled]
 [,[@out_of_sync_outage_start_time =]out_of_sync_outage_start_time]
 [,[@out_of_sync_outage_end_time =] out_of_sync_outage_end_time]
 [,[@out_of_sync_outage_weekday_mask =] out_of_sync_outage_weekday_mask]

Arguments

[@primary_server_name =] 'primary_server_name'

Is the name of the primary server. primary_server_name is sysname, with no default.

[@primary_database_name =] 'primary_database_name'

Is the name of the database on the primary server. primary_database_name is sysname, with no default.

[@secondary_server_name =] 'secondary_server_name'

Is the name of the secondary server. secondary_server_name is sysname, with no default.

[@secondary_database_name =] 'secondary_database_name'

Is the name of the database on the secondary server. secondary_database_name is sysname, with no default.

[@backup_threshold =] backup_threshold

Is the length of time in minutes after the last backup before a threshold alert error is raised. backup_threshold is int, with a default
of NULL.

[@backup_threshold_alert =] backup_threshold_alert

Is the error raised when the backup threshold has been exceeded. backup_threshold_alert is int, with a default of NULL.

[@backup_threshold_alert_enabled =] backup_threshold_alert_enabled

Specifies whether an alert will be raised when backup_threshold has been exceeded. The one (1) indicates an alert will be raised.
backup_threshold_alert_enabled is bit, with a default of NULL.

[@backup_outage_start_time =] backup_outage_start_time

Is the time in HHMMSS that a planned outage begins. During a planned outage, alerts will not be raised if the backup threshold is
exceeded. backup_outage_start_time is int, with a default of NULL.

[@backup_outage_end_time =] backup_outage_end_time

Is the time in HHMMSS that a planned outage ends. backup_outage_end_time is int, with a default of NULL.

[@backup_outage_weekday_mask =] backup_outage_weekday_mask

Is the day of the week that a planned outage occurs. backup_outage_weekday_mask is int, with a default of NULL. It can be one
or more of the following values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@copy_enabled =] copy_enabled

Specifies whether the copy for the database is enabled on the secondary server. The one (1) value means that copy is enabled.
copy_enabled is bit, with a default of NULL.

[@load_enabled =] load_enabled

Specifies whether the load for the database is enabled on the secondary server. load_enabled is bit, with a default of NULL.

[@out_of_sync_threshold =] out_of_sync_threshold

The length of time in minutes after the last load before an error is raised. out_of_sync_threshold is int, with a default of NULL.

[@out_of_sync_threshold_alert =] out_of_sync_threshold_alert

Is the error raised when the out-of-sync threshold has been exceeded. out_of_sync_threshold_alert is int, with a default of NULL.

[@out_of_sync_threshold_alert_enabled =] out_of_sync_threshold_alert_enabled

Specifies whether an alert will be raised when the out-of-sync threshold has been exceeded. The one (1) value means an alert will
be raised. out_of_sync_threshold_alert_enabled is bit, with a default of NULL.

[@out_of_sync_outage_start_time =] out_of_sync_outage_start_time

Is the time in HHMMSS that a planned outage begins. During a planned outage, alerts will not be raised if the out-of-sync
threshold is exceeded. out_of_sync_outage_start_time is int, with a default of NULL.

[@out_of_sync_outage_end_time =] out_of_sync_outage_end_time

Is the time in HHMMSS that a planned outage ends. out_of_sync_outage_end_time is int, with a default of NULL.

[@out_of_sync_outage_weekday_mask =] out_of_sync_outage_weekday_mask

Is the day of the week that a planned outage occurs. out_of_sync_outage_weekday_mask is int, with a default of NULL. It can be
one or more of the following values.

Value Day
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

Return Code Values

0 (success) or 1 (failure)

Remarks

This stored procedure updates both the primary server in log_shipping_primaries table and the secondary server in
log_shipping_secondaries table.

Permissions

Only members of the sysadmin fixed server role can execute the sp_update_log_shipping_monitor_info.

Transact-SQL Reference (SQL Server 2000)

sp_update_log_shipping_plan
Updates information about an existing log shipping plan.

Syntax

sp_update_log_shipping_plan [@plan_id =] plan_id,
 [@plan_name =] 'plan_name',
 [@description =] 'description',
 [@source_server =] 'source_server',
 [@source_dir =] 'source_dir',
 [@destination_dir =] 'destination_dir',
 [@copy_job_id =] copy_job_id,
 [@load_job_id =] load_job_id,
 [@history_retention_period =] history_retention_period,
 [@file_retention_period =] file_retention_period

Arguments

[@plan_id =] plan_id

Is the identification number of the plan to which the database belongs. plan_id is uniqueidentifier, with a default of NULL.

[@plan_name =] 'plan_name'

Is the name of the plan to which the database belongs. plan_name is sysname, with a default of null.

Note Either plan_id or plan_name must be specified, not both.

[@description =] 'description'

Is the description of the plan. description is nvarchar(500), with a default of NULL.

[@source_server =] 'source_server'

Is the name of the source server. source_server is sysname, with a default of NULL.

[@source_dir =] 'source_dir'

Is the full path to the directory from where the transaction log files will be copied. source_dir is nvarchar(500), with a default of
NULL.

[@destination_dir =] 'destination_dir'

Is the directory to which the transaction log files will be copied. destination_dir is nvarchar(500), with a default of NULL.

[@copy_job_id =] copy_job_id

Is the job ID of the copy job. copy_job_id is uniqueidentifier, with a default of NULL.

[@load_job_id =] load_job_id

Is the job ID of the load job. load_job_id is uniqueidentifier, with a default of NULL.

[@history_retention_period =] history_retention_period

Is the length of time in minutes in which the history will be retained. history_retention_period is int, with a default of NULL.

[@file_retention_period =] file_retention_period

Is the length of time the transaction log files will be retained after they are copied. file_retention_period is int, with a default of
NULL.

Return Code Values

0 (success) or 1 (failure)

Permissions

Only members of the sysadmin fixed server role can execute sp_update_log_shipping_plan.

Examples

This example updates the plan "Pubs database backup" with a new destination directory and file retention period.

EXEC msdb.dbo.sp_update_log_shipping_plan
 @plan_name = N'Pubs database backup',
 @destination_dir = N'e:\log shipping',
 @history_retention_period = 4320

Transact-SQL Reference (SQL Server 2000)

sp_update_log_shipping_plan_database
Updates an existing database that is part of a log shipping plan.

Syntax

sp_update_log_shipping_plan_database
 [@destination_database =] 'destination_database',
 [@load_delay =] load_delay,
 [@load_all =] load_all,
 [@file_retention_period =] file_retention_period,
 [@copy_enabled =] copy_enabled,
 [@load_enabled =] load_enabled
 [@recover_db =] recover_db
 [@terminate_users =] terminate_users

Arguments

[@destination_database =] 'destination_database'

Is the name of the secondary database. destination_database is sysname and must be supplied.

[@load_delay =] load_delay

Is the length of time, in minutes, before the transaction log is loaded. load_delay is int, with a default of zero (0).

[@load_all =] load_all

Specifies whether all newly copied transaction logs are loaded when the job is run. A value of zero (0) means that only one
transaction log will be loaded. load_all is bit, with a default of one (1).

[@file_retention_period =] file_retention_period

Is the length of time in minutes in which the transaction log files are stored on the secondary server before deletion.
file_retention_period is int, with a default of 2,880 minutes (two days).

[@copy_enabled =] copy_enabled

Specifies whether a copy should be performed. The value of one (1) means that a copy should be performed; zero (0) means no
copy is made. copy_enabled is bit.

[@load_enabled =] load_enabled

Specifies whether a load should be performed. The value of one (1) means that a load should be performed; zero (0) means no
load is made. load_enabled is bit.

[@recover_db =] recover_db

Specifies the state of the database. The value of one (1) means restore logs with STANDBY; zero (0) means restore logs with
NORECOVERY. recover_db is bit.

[@terminate_users =] terminate_users

Specifies whether the secondary server should terminate users. The value of one (1) means that users should be terminated; zero
(0) means users should not be terminated. terminate_users is bit.

Return Code Values

0 (success) or 1 (failure)

Remarks

This stored procedure should be executed on the secondary server, which is the destination database.

Permissions

Only members of the sysadmin fixed server role can execute sp_update_log_shipping_plan_database.

Examples

This example removes the load delay from the database "pubs_standby."

EXEC msdb.dbo.sp_update_log_shipping_plan_database
 @destination_database = N'pubs_standby',
 @load_delay = 0

Transact-SQL Reference (SQL Server 2000)

sp_update_notification
Updates the notification method of an alert notification.

Syntax

sp_update_notification [@alert_name =] 'alert',
 [@operator_name =] 'operator',
 [@notification_method =] notification

Arguments

[@alert_name =] 'alert'

Is the name of the alert associated with this notification. alert is sysname, with no default.

[@operator_name =] 'operator'

Is the operator who will be notified when the alert occurs. operator is sysname, with no default.

[@notification_method =] notification

Is the method by which the operator is notified. notification is tinyint, with no default, and can be one or more of these values.

Value Description
1 E-mail
2 Pager
4 net send
7 All methods

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_notification must be run from the msdb database.

You can update a notification for an operator who does not have the necessary address information using the specified
notification_method. If a failure occurs when sending an e-mail message or pager notification, the failure is reported in the SQL
Server Agent error log.

Permissions

Only members of the sysadmin fixed server role can execute sp_update_notification.

Examples

This example modifies the notification method for notifications sent to stevenb for the alert Test Alert.

USE msdb
EXEC sp_update_notification 'Test Alert', 'stevenb', 7

See Also

sp_add_notification

sp_delete_notification

sp_help_notification

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_operator
Updates information about an operator (notification recipient) for use with alerts and jobs.

Syntax

sp_update_operator [@name =] 'name'
 [, [@new_name =] 'new_name']
 [, [@enabled =] enabled]
 [, [@email_address =] 'email_address']
 [, [@pager_address =] 'pager_number']
 [, [@weekday_pager_start_time =] weekday_pager_start_time]
 [, [@weekday_pager_end_time =] weekday_pager_end_time]
 [, [@saturday_pager_start_time =] saturday_pager_start_time]
 [, [@saturday_pager_end_time =] saturday_pager_end_time]
 [, [@sunday_pager_start_time =] sunday_pager_start_time]
 [, [@sunday_pager_end_time =] sunday_pager_end_time]
 [, [@pager_days =] pager_days]
 [, [@netsend_address =] 'netsend_address']
 [, [@category_name =] 'category']

Arguments

[@name =] 'name'

Is the name of the operator to modify. name is sysname, with no default.

[@new_name =] 'new_name'

Is the new name for the operator. This name must be unique. new_name is sysname, with a default of NULL.

[@enabled =] enabled

Is a number indicating the operator's current status (1 if currently enabled, 0 if not). enabled is tinyint, with a default of NULL. If
not enabled, an operator will not receive alert notifications.

[@email_address =] 'email_address'

Is the e-mail address of the operator. This string is passed directly to the e-mail system. email_address is nvarchar(100), with a
default of NULL.

[@pager_address =] 'pager_number'

Is the pager address of the operator. This string is passed directly to the e-mail system. pager_number is nvarchar(100), with a
default of NULL.

[@weekday_pager_start_time =] weekday_pager_start_time

Specifies the time after which a pager notification can be sent to this operator, from Monday through Friday.
weekday_pager_start_time is int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@weekday_pager_end_time =] weekday_pager_end_time

Specifies the time after which a pager notification cannot be sent to the specified operator, from Monday through Friday.
weekday_pager_end_time is int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@saturday_pager_start_time =] saturday_pager_start_time

Specifies the time after which a pager notification can be sent to the specified operator on Saturdays. saturday_pager_start_time
is int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@saturday_pager_end_time =] saturday_pager_end_time

Specifies the time after which a pager notification cannot be sent to the specified operator on Saturdays.
saturday_pager_end_time is int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@sunday_pager_start_time =] sunday_pager_start_time

Specifies the time after which a pager notification can be sent to the specified operator on Sundays. sunday_pager_start_time is

int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@sunday_pager_end_time =] sunday_pager_end_time

Specifies the time after which a pager notification cannot be sent to the specified operator on Sundays. sunday_pager_end_time is
int, with a default of NULL, and must be entered in the form HHMMSS for use with a 24-hour clock.

[@pager_days =] pager_days

Specifies the days that the operator is available to receive pages (subject to the specified start/end times). pager_days is tinyint,
with a default of NULL, and must be a value from 0 through 127. pager_days is calculated by adding the individual values for the
required days. For example, from Monday through Friday is 2+4+8+16+32 = 62.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

[@netsend_address =] 'netsend_address'

Is the network address of the operator to whom the network message is sent. netsend_address is nvarchar(100), with a default of
NULL.

[@category_name =] 'category'

Is the name of the category for this alert. category is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_operator must be run from the msdb database.

Permissions

Only members of the sysadmin fixed server role can execute sp_update_operator.

Examples

This example updates the operator status to enabled, and sets the days (from Monday through Friday, from 8 A.M. through 5
P.M.) when he can be paged.

USE msdb
EXEC sp_update_operator @name = 'Steven Buchanan', @enabled = 1,
 @email_address = 'stevenb',
 @pager_address = '5673218@mypagerco.com',
 @weekday_pager_start_time = 080000,
 @weekday_pager_end_time = 170000,
 @pager_days = 62

See Also

sp_add_operator

sp_delete_operator

sp_help_operator

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_updatestats
Runs UPDATE STATISTICS against all user-defined tables in the current database.

Syntax

sp_updatestats [[@resample =] 'resample']

Return Code Values

0 (success) or 1 (failure)

Arguments

[@resample=] 'resample'

Specifies that sp_updatestats will use the RESAMPLE option of the UPDATE STATISTICS command. New statistics will inherit the
sampling ratio from the old statistics. If 'resample' is not specified, sp_updatestats updates statistics using the default sampling.
This parameter is varchar(8) with a default value of 'NO'.

Remarks

sp_updatestats displays messages indicating its progress. When the update is completed, it reports that statistics have been
updated for all tables.

Permissions

Only the DBO and members of the sysadmin fixed server role can execute this procedure.

Examples

This example updates the statistics for tables in the pubs database.

USE pubs
EXEC sp_updatestats

See Also

CREATE INDEX

CREATE STATISTICS

DBCC SHOW_STATISTICS

DROP STATISTICS

sp_autostats

sp_createstats

sp_dboption

System Stored Procedures

UPDATE STATISTICS

Transact-SQL Reference (SQL Server 2000)

sp_update_targetservergroup
Changes the name of the specified target server group.

Syntax

sp_update_targetservergroup [@name =] 'current_name'
 [, [@new_name =] 'new_name']

Arguments

[@name =] 'current_name'

Is the name of the target server group. current_name is sysname, with no default.

[@new_name =] 'new_name'

Is the new name for the target server group. new_name is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Permissions

Only members of the sysadmin fixed server role can execute sp_update_targetservergroup.

Remarks

sp_update_targetservergroup must be run from the msdb database.

Examples

This example updates the target server group of Weekly Bakups to Weekly Backups.

USE msdb
EXEC sp_update_targetservergroup 'Weekly Bakups', 'Weekly Backups'

See Also

sp_add_targetservergroup

sp_delete_targetservergroup

sp_help_targetservergroup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_updatetask
sp_updatetask is provided for backward compatibility only. For more information about the replacement procedures for
Microsoft® SQL Server™ version 7.0, see SQL Server Backward Compatibility Details.

Updates information about a task.

Important For more information about syntax used in earlier versions of SQL Server, see the Microsoft SQL Server Transact-SQL
Reference for version 6.x.

Remarks

For task management, use SQL Server Enterprise Manager.

Permissions

Execute permissions default to the public role.

See Also

sp_addtask

sp_droptask

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_validname
Checks for valid Microsoft® SQL Server™ identifier names. All nonbinary and nonzero data, including Unicode data that can be
stored by using the nchar, nvarchar, or ntext data types, are accepted as valid characters for identifier names.

Syntax

sp_validname [@name =] 'name'
 [, [@raise_error =] raise_error]

Arguments

[@name =] 'name'

Is the name of the identifier for which to check validity. name is sysname, with no default. name cannot be NULL, cannot be an
empty string, and cannot contain a binary-zero character.

[@raise_error =] raise_error

Specifies whether to raise an error. raise_error is bit, with a default of 1, which means that errors should appear. 0 causes no error
messages to appear.

Return Code Values

0 (success) or 1 (failure)

Permissions

Execute permissions default to the public role.

See Also

Data Types

NCHAR

nchar and nvarchar

ntext, text, and image

System Stored Procedures

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

sp_validatelogins
Reports information about orphaned Microsoft® Windows NT® users and groups that no longer exist in the Windows NT
environment but still have entries in the Microsoft SQL Server™ system tables.

Syntax

sp_validatelogins

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
SID varbinary(85) Windows NT security identifier of the

Windows NT user or group.
NT Login sysname Name of the Windows NT user or group.

Remarks

The entries in the system tables for the orphaned Windows NT users and groups can only be removed by using sp_revokelogin.
If the Windows NT user or group has a user account in a database, the user account can be removed using sp_revokedbaccess.
The user account in the database must be removed before the login can be revoked access to connect to SQL Server.

If the Windows NT user or group owns objects in a database, these objects must be removed, or their ownership must be given to
another user using sp_changeobjectowner.

Permissions

Only members of the sysadmin or securityadmin fixed server roles can execute sp_validatelogins.

Examples

This example displays the Windows NT users and groups that no longer exist but are still granted access to connect to SQL Server.

EXEC sp_validatelogins
GO

SID NT Login
-- -----------
0x0105000000000005150000007961275C521FE65395177650FC030000 dom\andrew
0x0105000000000005150000007961275C521FE65395177650FA030000 dom\joe
0x0105000000000005150000007961275C521FE65395177650FB030000 dom\margaret
0x0105000000000005150000007961275C521FE65395177650F3030000 dom\mike

See Also

sp_changeobjectowner

sp_revokedbaccess

sp_revokelogin

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_who
Provides information about current Microsoft® SQL Server™ users and processes. The information returned can be filtered to
return only those processes that are not idle.

Syntax

sp_who [[@login_name =] 'login']

Arguments

[@login_name =] 'login'

Is a user login name on SQL Server. login is sysname, with a default of NULL. If no name is specified, the procedure reports all
active users of SQL Server. login can also be a specific process identification number (SPID). To return information on active
processes, specify ACTIVE. ACTIVE excludes from the report processes that are waiting for the next command from the user.

Return Code Values

0 (success) or 1 (failure)

Result Sets

sp_who returns a result set with the following information.

Column Data type Description
spid smallint The system process ID.
ecid smallint The execution context ID of a given thread

associated with a specific SPID.

ECID = {0, 1, 2, 3, ...n}, where 0 always represents
the main or parent thread, and {1, 2, 3, ...n}
represent the sub-threads.

status nchar(30) The process status.
loginame nchar(128) The login name associated with the particular

process.
hostname nchar(128) The host or computer name for each process.
blk char(5) The system process ID for the blocking process, if

one exists. Otherwise, this column is zero.

When a transaction associated with a given spid is
blocked by an orphan distributed transaction, this
column will return a '-2' for the blocking orphan
transaction.

dbname nchar(128) The database used by the process.
cmd nchar(16) The SQL Server command (Transact-SQL statement,

SQL Server internal engine process, and so on)
executing for the process.

The sp_who result set will be sorted in ascending order according to the spid values. In case of parallel processing, sub-threads
are created for the specific spid. The main thread is indicated as spid =xxx and ecid =0. The other sub-threads have the same
spid = xxx, but with ecid > 0. Thus, multiple rows for that spid number will be returned -- grouped together within that spid's
placement in the overall list. The sub-threads will be listed in random order, except for the parent thread (ecid = 0), which will be
listed first for that spid.

Remarks

A blocking process (which may have an exclusive lock) is one that is holding resources that another process needs.

In SQL Server 2000, all orphaned DTC transactions are assigned the SPID value of '-2'. Orphaned DTC transactions are distributed

transactions that are not associated with any SPID. Thus, when an orphaned transaction is blocking another process, this
orphaned distributed transaction can be identified by its distinctive '-2' SPID value. For more information, see KILL.

SQL Server 2000 reserves SPID values from 1 through 50 for internal use, while SPID values 51 or higher represent user sessions.

Permissions

Execute permissions default to the public role.

Examples

A. List all current processes

This example uses sp_who without parameters to report all current users.

USE master
EXEC sp_who

Here is the result set:

spid ecid status loginame hostname blk dbname cmd
---- ---- ------ ------------ -------- --- ------ -----
1 0 background sa 0 pubs LAZY WRITER
2 0 sleeping sa 0 pubs LOG WRITER
3 0 background sa 0 master SIGNAL HANDLER
4 0 background sa 0 pubs RA MANAGER
5 0 background sa 0 master TASK MANAGER
6 0 sleeping sa 0 pubs CHECKPOINT SLEEP
7 0 background sa 0 master TASK MANAGER
8 0 background sa 0 master TASK MANAGER
9 0 background sa 0 master TASK MANAGER
10 0 background sa 0 master TASK MANAGER
11 0 background sa 0 master TASK MANAGER
51 0 runnable DOMAIN\loginX serverX 0 Nwind BACKUP DATABASE
51 2 runnable DOMAIN\loginX serverX 0 Nwind BACKUP DATABASE
51 1 runnable DOMAIN\loginX serverX 0 Nwind BACKUP DATABASE
52 0 sleeping DOMAIN\loginX serverX 0 master AWAITING COMMAND
53 0 runnable DOMAIN\loginX serverX 0 pubs SELECT
(16 row(s) affected)

B. List a specific user's process

This example shows how to view information about a single current user by login name.

USE master
EXEC sp_who 'janetl'

C. Display all active processes

USE master
EXEC sp_who 'active'

D. Display a specific process w ith process ID

USE master
EXEC sp_who '10' --specifies the process_id

See Also

KILL

sp_lock

sysprocesses

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_xml_preparedocument
Reads the Extensible Markup Language (XML) text provided as input, then parses the text using the MSXML parser (Msxml2.dll),
and provides the parsed document in a state ready for consumption. This parsed document is a tree representation of the various
nodes (elements, attributes, text, comments, and so on) in the XML document.

sp_xml_preparedocument returns a handle that can be used to access the newly created internal representation of the XML
document. This handle is valid for the duration of the connection to Microsoft® SQL Server™ 2000, until the connection is reset,
or until the handle is invalidated by executing sp_xml_removedocument.

Note A parsed document is stored in the internal cache of SQL Server 2000. The MSXML parser uses one-eighth the total
memory available for SQL Server. To avoid running out of memory, run sp_xml_removedocument to free up the memory.

Syntax

sp_xml_preparedocument hdoc OUTPUT
[, xmltext]
[, xpath_namespaces]

Arguments

hdoc

Is the handle to the newly created document. hdoc is an integer.

[xmltext]

Is the original XML document. The MSXML parser parses this XML document. xmltext is a text (char, nchar, varchar, nvarchar,
text, or ntext) parameter. The default value is NULL, in which case an internal representation of an empty XML document is
created.

[xpath_namespaces]

Specifies the namespace declarations that are used in row and column XPath expressions in OPENXML. The default value is <root
xmlns:mp="urn:schemas-microsoft-com:xml-metaprop">.
xpath_namespaces provides the namespace URIs for the prefixes used in the XPath expressions in OPENXML by means of a well-
formed XML document. xpath_namespaces declares the prefix that must be used to refer to the namespace urn:schemas-
microsoft-com:xml-metaprop, which provides meta data about the parsed XML elements. Although you can redefine the
namespace prefix for the metaproperty namespace using this technique, this namespace is not lost. The prefix mp is still valid for
urn:schemas-microsoft-com:xml-metaprop even if xpath_namespaces contains no such declaration. xpath_namespaces is a
text (char, nchar, varchar, nvarchar, text, or ntext) parameter.

Return Code Values

0 (success) or >0 (failure)

Permissions

Execute permissions default to the public role.

Examples

A. Prepare an internal representation for a well-formed XM L document

This example returns a handle to the newly created internal representation of the XML document that is provided as input. In the
call to sp_xml_preparedocument, a default namespace prefix mapping is used.

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order CustomerID="VINET" EmployeeID="5" OrderDate="1996-07-04T00:00:00">
 <OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>
 </Order>
</Customer>

<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order CustomerID="LILAS" EmployeeID="3" OrderDate="1996-08-16T00:00:00">
 <OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc
-- Remove the internal representation.
exec sp_xml_removedocument @hdoc

B. Prepare an internal representation for a well-formed XM L document with a DTD

This example returns a handle to the newly created internal representation of the XML document that is provided as input. The
stored procedure validates the document loaded against the DTD included in the document. In the call to
sp_xml_preparedocument, a default namespace prefix mapping is used.

DECLARE @hdoc int
DECLARE @doc varchar(2000)
SET @doc = '
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE root
[<!ELEMENT root (Customers)*>
<!ELEMENT Customers EMPTY>
<!ATTLIST Customers CustomerID CDATA #IMPLIED ContactName CDATA #IMPLIED>]>
<root>
<Customers CustomerID="ALFKI" ContactName="Maria Anders"/>
</root>'

EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

C. Specify a namespace URI

This example returns a handle to the newly created internal representation of the XML document that is provided as input. The call
to sp_xml_preparedocument preserves the mp prefix to the metaproperty namespace mapping and adds the xyz mapping
prefix to the namespace urn:MyNamespace.

DECLARE @hdoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order CustomerID="VINET" EmployeeID="5"
 OrderDate="1996-07-04T00:00:00">
 <OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos Gonzlez">
 <Order CustomerID="LILAS" EmployeeID="3"
 OrderDate="1996-08-16T00:00:00">
 <OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</ROOT>'
--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc, '<root xmlns:xyz="run:MyNamespace"/>'

See Also

sp_xml_removedocument

Transact-SQL Reference (SQL Server 2000)

sp_xml_removedocument
Removes the internal representation of the XML document specified by the document handle and invalidates the document
handle.

Note A parsed document is stored in the internal cache of Microsoft® SQL Server™ 2000. The MSXML parser uses one-eighth
the total memory available for SQL Server. To avoid running out of memory, run sp_xml_removedocument to free up the
memory.

Syntax

sp_xml_removedocument hdoc

Arguments

hdoc

Is the handle to the newly created document. An invalid handle returns an error. hdoc is an integer.

Return Code Values

0 (success) or >0 (failure)

Permissions

Execute permissions default to the public role.

Examples

A. Remove an XM L document

This example removes the internal representation of an XML document. The handle to the document is provided as input.

EXEC sp_xml_removedocument @hdoc

See Also

sp_xml_preparedocument

Transact-SQL Reference (SQL Server 2000)

Replication Stored Procedures
Replication system stored procedures are documented and available as a method for implementing replication in special
circumstances or for use in batch files and scripts. However, in most cases, you are better served by using the programming
interfaces provided by SQL-DMO and the replication ActiveX® controls for programming replication rather than writing direct
calls to the system stored procedures.

An advantage to using scripts based on system stored procedures is that you can implement replication, create publications and
subscriptions on a server, generate the script automatically through SQL Server Enterprise Manager, and then use that script at
other servers to implement replication components, often with only minor modifications. Executing a script can be faster and
more efficient than performing the same steps repeatedly using SQL Server Enterprise Manager.

For more information, see Scripting Replication.

Transact-SQL Reference (SQL Server 2000)

sp_add_agent_parameter
Adds a new parameter and its value to an agent profile. This stored procedure is executed at the Distributor where the agent is
running, on any database.

Syntax

sp_add_agent_parameter [@profile_id =] profile_id
 , [@parameter_name =] 'parameter_name'
 , [@parameter_value =] 'parameter_value'

Arguments

[@profile_id =] profile_id

Is the ID of the configuration from the MSagent_profiles table in the msdb database. profile_id is int, with no default.

[@parameter_name =] 'parameter_name'

Is the name of the parameter. parameter_name is sysname, with no default. For system profiles, the parameters that can be
changed depend on the type of agent. To find out what agent type this profile_id represents, find the profile_id in the
Msagent_profiles table, and note the agent_type field value. For a Snapshot Agent, which has a value of 1 in the agent_type field,
the following properties can be changed:

bcpbatchsize

historyverboselevel

logintimeout

maxbcpthreads

querytimeout

For a Log Reader Agent, which has a value of 2 in the agent_type field, the following properties can be changed:

historyverboselevel

logintimeout

pollinginterval

querytimeout

readbatchsize

readbatchthreshold

For a Distribution Agent, which has a value of 3 in the agent_type field, the following properties can be changed:

bcpbatchsize

commitbatchsize

commitbatchthreshold

historyverboselevel

logintimeout

maxbcpthreads

maxdeliveredtransactions

pollinginterval

querytimeout

transactionsperhistory

skiperrors

For a Merge Agent, which has a value of 4 in the agent_type field, the following properties can be changed:

pollinginterval

validateinterval

logintimeout

querytimeout

maxuploadchanges

maxdownloadchanges

uploadgenerationsperbatch

downloadgenerationsperbatch

uploadreadchangesperbatch

downloadreadchangesperbatch

uploadwritechangesperbatch

downloadwritechangesperbatch

validate

fastrowcount

historyverboselevel

changesperhistory

bcpbatchsize

numdeadlockretries

For custom profiles, the parameters that can be changed depend on the parameters defined. To see what parameters have
been defined, run sp_help_agent_profile to see the profile_name associated with the profile_id. With the appropriate
profile_id, next run sp_help_agent_parameters using that profile_id to see the parameters associated with the profile.

[@parameter_value =] 'parameter_value'

Is the value to be assigned to the parameter. parameter_value is nvarchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_agent_parameter is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_agent_parameter.

See Also

Distribution Agent Profile

Log Reader Agent Profile

Merge Agent Profile

Snapshot Agent Profile

sp_add_agent_profile

sp_change_agent_profile

sp_drop_agent_parameter

sp_help_agent_parameter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_add_agent_profile
Creates a new profile for a replication agent. This stored procedure is executed at the Distributor on any database.

Syntax

sp_add_agent_profile [[@profile_id =] profile_id OUTPUT]
 { , [@profile_name =] 'profile_name' [, [@agent_type =] 'agent_type'] }
 [, [@profile_type =] profile_type]
 , [@description =] 'description'
 [, [@default =] default]

Arguments

[@profile_id =] profile_id

Is the ID associated with the newly inserted profile. profile_id is int and is an optional OUTPUT parameter. If specified, the value is
set to the new profile ID.

[@profile_name =] 'profile_name'

Is the name of the profile. profile_name is sysname, with no default.

[@agent_type =] 'agent_type'

Is the type of replication agent. agent_type is int, with no default, and can be one of these values.

Value Description
1 Snapshot Agent
2 Log Reader Agent
3 Distribution Agent
4 Merge Agent
9 Queue Reader Agent

[@profile_type =] profile_type

Is the type of profile. profile_type is int, with a default of 1. 0 indicates a system profile. 1 indicates a custom profile. Only custom
profiles can be created using this stored procedure. Only SQL Server creates system profiles.

[@description =] 'description'

Is a description of the profile. description is nvarchar(3000), with no default.

[@default =] default

Indicates whether the profile is the default for agent_type. default is bit, with a default of 0. 0 indicates that the profile is not a
default. 1 indicates that the profile being added will become the new default profile for the agent specified by the @agent_type
parameter.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_add_agent_profile is used in snapshot replication, transactional replication, and merge replication.

A row is added for the configuration in the MSagent_profiles table.

Permissions

Only members of the sysadmin fixed server role can execute sp_add_agent_profile.

See Also

sp_add_agent_parameter

sp_change_agent_parameter

sp_change_agent_profile

sp_drop_agent_parameter

sp_drop_agent_profile

sp_help_agent_parameter

sp_help_agent_profile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addarticle
Creates an article and adds it to a publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_addarticle [@publication =] 'publication'
 , [@article =] 'article'
 , [@source_table =] 'source_table'
 [, [@destination_table =] 'destination_table']
 [, [@vertical_partition =] 'vertical_partition']
 [, [@type =] 'type']
 [, [@filter =] 'filter']
 [, [@sync_object =] 'sync_object']
 [, [@ins_cmd =] 'ins_cmd']
 [, [@del_cmd =] 'del_cmd']
 [, [@upd_cmd =] 'upd_cmd']
 [, [@creation_script =] 'creation_script']
 [, [@description =] 'description']
 [, [@pre_creation_cmd =] 'pre_creation_cmd']
 [, [@filter_clause =] 'filter_clause']
 [, [@schema_option =] schema_option]
 [, [@destination_owner =] 'destination_owner']
 [, [@status =] status]
 [, [@source_owner =] 'source_owner']
 [, [@sync_object_owner =] 'sync_object_owner']
 [, [@filter_owner =] 'filter_owner']
 [, [@source_object =] 'source_object']
 [, [@artid =] article_ID OUTPUT]
 [, [@auto_identity_range =] 'auto_identity_range']
 [, [@pub_identity_range =] pub_identity_range]
 [, [@identity_range =] identity_range]
 [, [@threshold =] threshold]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. The name must be unique in the database. publication is sysname, with no
default.

[@article =] 'article'

Is the name of the article. The name must be unique within the publication. article is sysname, with no default.

[@source_table =] 'source_table'

Is the name of the underlying table represented by the article or stored procedure. source_table is nvarchar(386), which must be
on the local SQL Server computer, conform to the rules for identifiers, and be a table (not a view or another database object).
source_table is supported for backward compatibility only; use source_object instead.

[@destination_table =] 'destination_table'

Is the name of the destination (subscription) table, if different from source_table or the stored procedure. destination_table is
sysname, with a default of NULL, which means that source_table equals destination_table.

[@vertical_partition =] 'vertical_partition'

Enables and disables column filtering on a table article. vertical_partition is nchar(5), with a default of FALSE. false indicates
there is no vertical filtering and publishes all columns. true clears all columns except the declared primary key. Columns are
added using sp_articlecolumn.

[@type =] 'type'

Is the type of article. type is sysname, and can be one of these values.

Value Description
logbased Log-based article.
logbased manualfilter Log-based article with manual filter.
logbased manualview Log-based article with manual view.
logbased manualboth Log-based article with manual filter and manual view.
proc exec Replicates the execution of the stored procedure to all

Subscribers of the article.
serializable proc exec Replicates the execution of the stored procedure only

if it is executed within the context of a serializable
transaction.

NULL (default)

[@filter =] 'filter'

Is the stored procedure (created with FOR REPLICATION) used to filter the table horizontally. filter is nvarchar(386), with a
default of NULL. sp_articleview and sp_articlefilter must be executed manually to create the view and filter stored procedure. If
not NULL, the filter procedure is not created (assumes the stored procedure is created manually).

[@sync_object =] 'sync_object'

Is the name of the table or view used for producing the data file used to represent the snapshot for this article. sync_object is
nvarchar(386), with a default of NULL. If NULL, sp_articleview is called to automatically create the view used to generate the
output file. This occurs after adding any columns with sp_articlecolumn. If not NULL, a view is not created (assumes the view is
manually created).

[@ins_cmd =] 'ins_cmd'

Is the replication command type used when replicating inserts for this article. ins_cmd is nvarchar(255), and can be one of these
values.

Value Description
NONE No action is taken.
CALL sp_MSins_article

-or-

CALL
custom_stored_procedure_name

(default)

Calls a stored procedure to be executed at
the Subscriber. To use this method of
replication, use @schema_option to specify
automatic creation of the stored procedure,
or create the specified stored procedure in
the destination database of each Subscriber
of the article. custom_stored_procedure is
the name of a user-created stored
procedure. sp_Msins_article contains the
name of the article in place of the _article
part of the parameter. For example, for the
Categories table, the parameter would be
CALL sp_Msins_Categories.

SQL or NULL Replicates an INSERT statement. The INSERT
statement is provided values for all columns
published in the article. This command is
replicated on inserts:

INSERT INTO <table name> VALUES
(c1value, c2value, c3value, ...,
cnvalue)

[@del_cmd =] 'del_cmd'

Is the replication command type used when replicating deletes for this article. del_cmd is nvarchar(255), and can be one of these
values.

Value Description
NONE No action is taken.

CALL sp_MSdel_article -or-

CALL
custom_stored_procedure_name

(default)

Calls a stored procedure to be executed at
the Subscriber. To use this method of
replication, use @schema_option to specify
automatic creation of the stored procedure,
or create the specified stored procedure in
the destination database of each Subscriber
of the article. custom_stored_procedure is
the name of a user-created stored
procedure. sp_Msins_article contains the
name of the article in place of the _article
part of the parameter. For example, for the
Categories table, the parameter would be
CALL sp_Msins_Categories.

XCALL sp_MSdel_article Calls a stored procedure taking XCALL style
parameters. To use this method of
replication, use @schema_option to specify
automatic creation of the stored procedure,
or create the specified stored procedure in
the destination database of each Subscriber
of the article.

SQL or NULL Replicates a DELETE statement. The DELETE
statement is provided all primary key
column values. This command is replicated
on deletes:

DELETE FROM <table name> WHERE pkc1 =
pkc1value AND pkc2 = pkc2value AND
pkcn = pkcnvalue

[@upd_cmd =] 'upd_cmd'

Is the replication command type used when replicating updates for this article. upd_cmd is nvarchar(255), and can be one of
these values.

Value Description
NONE No action is taken.
CALL sp_MSupd_article Calls a stored procedure to be executed at the

Subscriber. To use this method of replication, use
@schema_option to specify automatic creation of
the stored procedure, or create the specified stored
procedure in the destination database of each
Subscriber of the article.

MCALL
sp_MSupd_article
(default)

Calls a stored procedure taking MCALL style
parameters. To use this method of replication, use
@schema_option to specify automatic creation of
the stored procedure, or create the specified stored
procedure in the destination database of each
Subscriber of the article. custom_stored_procedure is
the name of a user-created stored procedure.
sp_Msins_article contains the name of the article in
place of the _article part of the parameter. For
example, for the Categories table, the parameter
would be CALL sp_Msins_Categories.

XCALL
sp_MSupd_article

Calls a stored procedure taking XCALL style
parameters. To use this method of replication, use
@schema_option to specify automatic creation of
the stored procedure, or create the specified stored
procedure in the destination database of each
Subscriber of the article.

SQL or NULL Replicates an UPDATE statement. The UPDATE
statement is provided on all column values and the
primary key column values. This command is
replicated on updates:

UPDATE <table name> SET c1 = c1value, SET c2 =
c2value, SET cn = cnvalue WHERE pkc1 =
pkc1value AND pkc2 = pkc2value AND pkcn =
pkcnvalue

Note The CALL, MCALL, and XCALL syntax vary the amount of data propagated to the subscriber. The CALL syntax passes all
values for all inserted and deleted columns. The MCALL syntax passes values only for affected columns. The XCALL syntax passes
values for all columns, whether changed or not, including the previous value of the column. For more information, see Using
Custom Stored Procedures in Articles.

[@creation_script =] 'creation_script'

Is the path and name of an article schema script used to create target table. creation_script is nvarchar(127), with a default of
NULL.

[@description =] 'description'

Is a descriptive entry for the article. description is nvarchar(255), with a default of NULL.

[@pre_creation_cmd =] 'pre_creation_cmd'

Specifies what the system should do if it detects an existing object of the same name at the subscriber when applying the
snapshot for this article. pre_creation_cmd is nvarchar(10), and can be one of these values.

Value Description
none Does not use a command.
delete Deletes the destination table.
drop (default) Drops the destination table.
truncate Truncates the destination table. Is not valid for ODBC

or OLE DB Subscribers.

[@filter_clause =] 'filter_clause'

Is a restriction (WHERE) clause that defines a horizontal filter. When entering the restriction clause, omit the keyword WHERE.
filter_clause is ntext, with a default of NULL. For more information, see Generate Filters Automatically.

[@schema_option =] schema_option

Is a bitmask of the schema generation option for the given article. It specifies the automatic creation of the stored procedure in
the destination database for all CALL/MCALL/XCALL. schema_option is binary(8), and can be a combination of these values. If
this value is NULL, the system will auto-generate a valid schema option for the article. The table given in the Remarks shows the
value that will be chosen based upon the combination of the article type and the replication type.

Value Description
0x00 Disables scripting by the Snapshot Agent and uses

creation_script.
0x01 Generates the object creation (CREATE TABLE, CREATE

PROCEDURE, and so on). This value is the default for
stored procedure articles.

0x02 Generates custom stored procedures for the article, if
defined.

0x10 Generates a corresponding clustered index.
0x20 Converts user-defined data types to base data types.
0x40 Generates corresponding nonclustered index(es).
0x80 Includes declared referential integrity on the primary

keys.
0x100 Replicates user triggers on a table article, if defined.

0x200 Replicates foreign key constraints. If the referenced
table is not part of a publication, all foreign key
constraints on a published table will not be replicated.

0x400 Replicates check constraints.
0x800 Replicates defaults.
0x1000 Replicates column-level collation.
0x2000 Replicates extended properties associated with the

published article source object.
0x4000 Replicates unique keys if defined on a table article.
0x8000 Replicates primary key and unique keys on a table

article as constraints using ALTER TABLE statements.
NULL

Not all @schema_option values are valid for every type of replication and article type. The Valid Schema Option table given in the
Remarks shows the valid schema options that can be chosen based upon the combination of the article type and the replication
type.

[@destination_owner =] 'destination_owner'

Is the name of the owner of the destination object. destination_owner is sysname, with a default of NULL. If ODBC Subscribers
can subscribe to the publication, destination_owner must be NULL.

[@status =] status

Is the bitmask of the article options. status is tinyint, and can be one of these values.

Value Description
0 No additional properties.
8 Includes the column name in INSERT statements.
16 (default) Uses parameterized statements.
24 Includes the column name in INSERT statements and

uses parameterized statements.

[@source_owner =] 'source_owner'

Is the owner of the source object. source_owner is sysname, with a default of NULL.

[@sync_object_owner =] 'sync_object_owner'

Is the owner of the synchronization object. sync_object_owner is sysname, with a default of NULL.

[@filter_owner =] 'filter_owner'

Is the owner of the filter. filter_owner is sysname, with a default of NULL.

[@source_object =] 'source_object'

Is the table, stored procedure, user defined function, view or index view object to be published. source_object is sysname, with a
default of NULL. If source_table is NULL, source_object cannot be NULL. source_object should be used instead of source_table.
source_table is provided for backward compatibility with SQL Server 6.x Publishers.

[@artid =] article_ID OUTPUT

Is the article ID of the new article. article_ID is int with a default of NULL, and it is an OUTPUT parameter.

[@auto_identity_range =] 'auto_identity_range'

Enables and disables automatic identity range handling on a publication at the time it is created. auto_identity_range is
nvarchar(5), with a default of FALSE. true enables automatic identity range handling; false disables it. Note that identity range
management only pertains to snapshot or transactional publications that allow immediate updating or queued updating. For
more information, see Managing Identity Values.

[@pub_identity_range =] pub_identity_range

Controls the range size at the Publisher if the article has auto_identity_range set to true. pub_identity_range is bigint, with a
default of NULL.

[@identity_range =] identity_range

Controls the range size at the Subscriber if the article has auto_identity_range set to true. identity_range is bigint, with a default
of NULL. Used when auto_identity_range is set to true.

[@threshold =] threshold

Is the percentage value that controls when the Distribution Agent assigns a new identity range. When the percentage of values
specified in threshold is used, the Distribution Agent creates a new identity range. threshold is bigint, with a default of NULL.
Used when auto_identity_range is set to true.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that adding an article will not cause the snapshot to be invalid. If the stored procedure detects
that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that adding an article
may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives permission
for the existing snapshot to be marked as obsolete and a new snapshot to be generated.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addarticle is used in snapshot replication or transactional replication.

If vertical_partition is set to true, sp_addarticle defers the creation of the view until sp_articleview is called (after the last
sp_articlecolumn is added).

If the publication allows immediate-updating subscriptions and the published table does not have a uniqueidentifier column,
sp_addarticle adds a uniqueidentifier column to the table automatically.

The table describes the default @schema_option value that will be chosen for the stored procedure if a NULL value is passed in by
the user. The default value is based upon the replication type shown across the top, and the article type shown down the first
column. Empty cells are article and replication type pairs that are not valid combinations, and therefore, have no default.

Article Type Replication Type
 Transactional Snapshot
logbased 0xF3 0x71
logbased manualfilter 0xF3 0x71
logbased manualview 0xF3 0x71
indexed view logbased 0xF3 0x71
indexed view logbased
manualfilter

0xF3 0x71

indexed view logbased
manualview

0xF3 0x71

indexed view logbase
manualboth

0xF3 0x71

proc exec 0x01 0x01
serialized proc exec 0x01 0x01
proc schema only 0x01 0x01
view schema only 0x01 0x01
func schema only 0x01 0x01
indexed view schema only 0x01 0x01
table

Note If a publication is enabled for queued updating, the @schema_option values of 0x8000 and 0x0080 will be added to the
default value shown in the table.

Valid Schema Option Table

Article Type Replication Type
 Transactional Snapshot

logbased All options All options but 0x02
logbased manualfilter All options All options but 0x02
logbased manualview All options All options but 0x02
indexed view logbased All options All options but 0x02
indexed view logbased
manualfilter

All options All options but 0x02

indexed view logbased
manualview

All options All options but 0x02

indexed view logbase
manualboth

All options All options but 0x02

proc exec 0x01 and 0x2000 0x01 and 0x2000
serialized proc exec 0x01 and 0x2000 0x01 and 0x2000
proc schema only 0x01 and 0x2000 0x01 and 0x2000
view schema only 0x01, 0x0100, and 0x2000 0x01, 0x0100, and 0x2000
func schema only 0x01 and 0x2000 0x01 and 0x2000
indexed view schema only 0x01, 0x10, 0x040, 0x0100,

and 0x2000
0x01, 0x10, 0x040, 0x0100,
and 0x2000

table

Note For queued updating publications, the @schema_option values of 0x8000 and 0x80 must be enabled.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addarticle.

See Also

Enhancing Transactional Replication Performance

sp_addpublication

sp_articlecolumn

sp_articlefilter

sp_articleview

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_adddistpublisher
 New Information - SQL Server 2000 SP3.

Configures a Publisher to use a specified distribution database. This stored procedure is executed at the Distributor on any
database. Note that the stored procedures sp_adddistributor and sp_adddistributiondb must have been run prior to using this
stored procedure.

Syntax

sp_adddistpublisher [@publisher =] 'publisher'
 [, @distribution_db =] 'distribution_db'
 [, [@security_mode =] security_mode]
 [, [@login =] 'login']
 [, [@password =] 'password']
 { , [@working_directory =] 'working_directory' }
 [, [@trusted =] 'trusted']
 [, [@encrypted_password =] encrypted_password]
 [, [@thirdparty_flag =] thirdparty_flag]

Arguments

[@publisher =] 'publisher'

Is the Publisher name. publisher is sysname, with no default.

[@distribution_db =] 'distribution_db'

Is the name of the distribution database. distributor_db is sysname, with no default. This parameter is used by replication agents
to connect to the Publisher.

[@security_mode =] security_mode

Is the implemented security mode. This parameter is used by replication agents to connect to the Publisher. security_mode is int,
and can be one of these values.

Value Description
0 Replication agents at the Distributor use SQL Server

Authentication to connect to the Publisher.
1 Replication agents at the Distributor use Windows Authentication

to connect to the Publisher.
NULL
(default)

System will change the value to 0 if the server (Distributor) is
running on the Windows® 98 operating system. System will
change the value to 1 if the server (Distributor) is on a Windows
NT® 4.0 or Windows 2000 operating system.

[@login =] 'login'

Is the login. This parameter is required if security_mode is 0. login is sysname, with a default of sa. This parameter is used by
replication agents to connect to the Publisher.

[@password =] 'password']

Is the password. password is sysname, with a default of NULL. This parameter is used by replication agents to connect to the
Publisher.

[@working_directory =] 'working_directory'

Is the name of the working directory used to store data and schema files for the publication. working_directory is nvarchar(255).
The name should be specified in UNC format.

[@trusted =] 'trusted'

Is when the remote Publisher uses the same password as the local Distributor. trusted is nvarchar(5), and can be one of these
values.

Value Description
True One trusted login mapping is added: sa to distributor_admin.

Because the mapping is trusted, no password is needed at the
remote Publisher to connect to the Distributor.

False (default) One nontrusted mapping is added: distributor_admin to
distributor_admin. A password is needed at the remote
Publisher to make a connection.

[@encrypted_password =] encrypted_password

Specifies whether or not the supplied password should be encrypted. encrypted_password is bit, and can be one of these values.

Value Description
0 (default) Use when the value passed into the @password parameter is not

already encrypted. Since this value has not been encrypted, the
stored procedure takes the extra step of encrypting the password
value.

1 Use when the value passed into the @password parameter has
already been encrypted. Since this value has already been
encrypted, the stored procedure does not execute any additional
encryption processing.

Security Note You should always encrypt persisted passwords. If you supply an unencrypted password for the @password
parameter, you should set @encrypt_password to 0.

[@thirdparty_flag =] thirdparty_flag

Is when the Publisher is Microsoft® SQL Server™. thirdparty_flag is bit, and can be one of these values.

Value Description
0 (default) Microsoft SQL Server database.
1 Database other than SQL Server.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_adddistpublisher is used by snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_adddistpublisher.

See Also

sp_changedistpublisher

sp_dropdistpublisher

sp_helpdistpublisher

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_adddistributiondb
 New Information - SQL Server 2000 SP3.

Creates a new distribution database and installs the Distributor schema. The distribution database stores procedures, schema, and
meta data used in replication. This stored procedure is executed at the Distributor on the master database in order to create the
distribution database, and install the necessary tables and stored procedures required to enable the replication distribution.

Syntax

sp_adddistributiondb [@database =] 'database'
 [, [@data_folder =] 'data_folder']
 [, [@data_file =] 'data_file']
 [, [@data_file_size =] data_file_size]
 [, [@log_folder =] 'log_folder']
 [, [@log_file =] 'log_file']
 [, [@log_file_size =] log_file_size]
 [, [@min_distretention =] min_distretention]
 [, [@max_distretention =] max_distretention]
 [, [@history_retention =] history_retention]
 [, [@security_mode =] security_mode]
 [, [@login =] 'login']
 [, [@password =] 'password']
 [, [@createmode =] createmode]

Arguments

[@database =] 'database'

Is the name of the distribution database to be created. database is sysname, with no default.

[@data_folder =] 'data_folder'

Is the name of the directory used to store the distribution database data file. data_folder is nvarchar(255), with a default of NULL.
If NULL, the data directory for that instance of Microsoft® SQL Server™ is used, for example, 'C:\Program Files\Microsoft SQL
Server\Mssql\Data'.

[@data_file =] 'data_file'

Is the name of the database file. data_file is nvarchar(255), with a default of database. If NULL, the stored procedure constructs
a file name using the database name.

[@data_file_size =] data_file_size

Is the initial data file size in megabytes (MB). data_file_size is int, with a default of 2 MB.

[@log_folder =] 'log_folder'

Is the name of the directory for the database log file. log_folder is nvarchar(255), with a default of NULL. If NULL, the data
directory for that instance of SQL Server is used (for example, 'C:\Program Files\Microsoft SQL Server\Mssql\Data').

[@log_file =] 'log_file'

Is the name of the log file. log_file is nvarchar(255), with a default of NULL. If NULL, the stored procedure constructs a file name
using the database name.

[@log_file_size =] log_file_size

Is the initial log file size in megabytes (MB). log_file_size is int, with a default of 0 MB, which means the file size is created using
the smallest log file size allowed by SQL Server.

[@min_distretention =] min_distretention

Is the minimum retention period, in hours, before transactions are deleted from the distribution database. min_distretention is int,
with a default of 0 hours.

[@max_distretention =] max_distretention

Is the maximum retention period, in hours, before transactions are deleted. max_distretention is int, with a default of 72 hours.
Subscriptions that have not received replicated commands that are older than the maximum distribution retention period are
marked as inactive and need to be reinitialized. RAISERROR 21011 is issued for each inactive subscription.

[@history_retention =] history_retention

Is the number of hours to retain history. history_retention is int, with a default of 48 hours.

[@security_mode =] security_mode

Is the security mode to use when creating the distribution database objects. security_mode is int, with a default of 0. 0 specifies
SQL Server Authentication; 1 specifies Windows Authentication. Note that if the Distributor is running on Microsoft® Windows
NT® 4.0 or Windows® 2000, Windows Authentication is always used, regardless of the setting used for @security_mode.

[@login =] 'login'

Is the login name used when connecting to the Distributor to create the distribution database objects when running instdist.sql.
This is required if security_mode is set to 0. login is sysname, with a default of sa.

[@password =] 'password'

Is the password used when connecting to the Distributor to run instdist.sql. This is required if security_mode is set to 0. password
is sysname, with a default of NULL.

Security Note NULL passwords are not recommended.

[@createmode =] createmode

createmode is int, with a default of 0, and can be one of these values.

Value Description
0 (default) CREATE DATABASE by attaching the distribution

database using a copy of the distribution database
model files (distmdl.mdf)

1 CREATE DATABASE or use existing database and
then apply instdist.sql file to create replication
objects in the distribution database.

2 For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_adddistributiondb is used in all types of replication. However, this stored procedure only runs at a distributor.

Run sp_adddistributor prior to running sp_adddistributiondb.

Permissions

Only members of the sysadmin fixed server role can execute sp_adddistributiondb.

See Also

sp_changedistributiondb

sp_dropdistributiondb

sp_helpdistributiondb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_adddistributor
 New Information - SQL Server 2000 SP3.

Creates an entry in the sysservers table (if there is not one), marks the server entry as a Distributor, and stores property
information. This stored procedure is executed at the Distributor on the master database to register and mark the server as a
distributor. In the case of a remote distributor, it is also executed at the Publisher from the master database to register the remote
distributor.

Syntax

sp_adddistributor [@distributor =] 'distributor'
 [, [@heartbeat_interval =] heartbeat_interval]
 [, [@password =] 'password']
 [, [@from_scripting =] from_scripting]

Arguments

[@distributor =] 'distributor'

Is the distribution server name. distributor is sysname, with no default. This parameter is only used if setting up a remote
Distributor. It adds entries for the Distributor properties in the msdb..MSdistributor table.

[@heartbeat_interval =] heartbeat_interval

Is the maximum number of minutes that an agent can go without logging a progress message. heartbeat_interval is int, with a
default of 10 minutes. A SQL Agent Job is created that wakes up on this interval to check the status of the replication agents that
are running.

[@password =] 'password']

Is the password of the distributor_admin login. password is sysname, with a default of NULL. If NULL or N, password is reset to
a random value. The password must be configured when the first remote distributor that is not trusted is added.
distributor_admin login and password are stored for linked server entry used for a distributor RPC connection, including local
connections. If distributor is local, the password for distributor_admin is set to a new value.

Security Note NULL passwords are not recommended.

[@from_scripting =] from_scripting

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_adddistributor is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_adddistributor.

See Also

sp_changedistributor_property

sp_dropdistributor

sp_helpdistributor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addmergealternatepublisher
Adds the ability for a Subscriber to use an alternate synchronization partner. The publication properties must specify that
Subscribers can synchronize with other Publishers. This stored procedure is executed at the Subscriber on the subscription
database.

Syntax

sp_addmergealternatepublisher [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@alternate_publisher =] 'alternate_synchronization_partner'
 , [@alternate_publisher_db =] 'alternate_publisher_db'
 , [@alternate_publication =] 'alternate_synchronization_partner'
 , [@alternate_distributor =] 'alternate_distributor'
 [, [@friendly_name =] 'friendly_name']
 [, [@reserved=] 'reserved']

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the publication database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@alternate_publisher =] 'alternate_synchronization_partner'

Is the name of the alternate Publisher. alternate_synchronization_partner is sysname, with no default.

[@alternate_publisher_db =] 'alternate_publisher_db'

Is the name of the publication database on the alternate publisher. alternate_publisher_db is sysname, with no default.

[@alternate_publication =] 'alternate_synchronization_partner'

Is the name of the publication on the alternate synchronization partner. alternate_synchronization_partner is sysname, with no
default.

[@alternate_distributor =] 'alternate_distributor'

Is the name of the Distributor for the alternate synchronization partner. alternate_distributor is sysname, with no default.

[@friendly_name =] 'friendly_name'

Is a display name by which the association of Publisher, publication, and Distributor that makes up an alternate synchronization
partner can be identified. friendly_name is nvarchar(255), with a default of NULL.

[@reserved =] 'reserved'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergealternatepublisher is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_addmergealternatepublisher.

See Also

Alternate Synchronization Partners

Transact-SQL Reference (SQL Server 2000)

sp_addmergearticle
 New Information - SQL Server 2000 SP3.

Adds an article to an existing merge publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_addmergearticle [@publication =] 'publication'
 , [@article =] 'article'
 , [@source_object =] 'source_object'
 [, [@type =] 'type']
 [, [@description =] 'description']
 [, [@column_tracking =] 'column_tracking']
 [, [@status =] 'status']
 [, [@pre_creation_cmd =] 'pre_creation_cmd']
 [, [@creation_script =] 'creation_script']
 [, [@schema_option =] schema_option]
 [, [@subset_filterclause =] 'subset_filterclause']
 [, [@article_resolver =] 'article_resolver']
 [, [@resolver_info =] 'resolver_info']
 [, [@source_owner =] 'source_owner']
 [, [@destination_owner =] 'destination_owner']
 [, [@vertical_partition=] 'vertical_partition']
 [, [@auto_identity_range =] 'auto_identity_range']
 [, [@pub_identity_range =] pub_identity_range]
 [, [@identity_range =] identity_range]
 [, [@threshold =] threshold]
 [, [@verify_resolver_signature =] verify_resolver_signature]
 [, [@destination_object =] 'destination_object']
 [, [@allow_interactive_resolver =] 'allow_interactive_resolver']
 [, [@fast_multicol_updateproc =] 'fast_multicol_updateproc']
 [, [@check_permissions =] check_permissions]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@published_in_tran_pub=] published_in_tran_pub]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default. article must be on the local SQL Server computer, and must
conform to the rules for identifiers.

[@source_object =] 'source_object'

Is the name of the source object from which to add the article. source_object is sysname, with no default.

[@type =] 'type'

Is the type of article. type is sysname, with a default of table, and can be one of these values.

Value Description
table (default) Article monitors a table to determine replicated data.
indexed view schema
only

Article monitors an indexed view and schema to
determine source data.

view schema only Article monitors a view and schema to determine
source data.

proc schema only Article uses stored procedure execution and schema
to determine source data.

func schema only Article uses user-defined function execution and
schema to determine source data.

NULL (default)

[@description =] 'description'

Is a description of the article. description is nvarchar(255), with a default of NULL.

[@column_tracking =] 'column_tracking'

Is the setting for column-level tracking. column_tracking is nvarchar(10), with a default of FALSE. true turns on column tracking.
false turns off column tracking and leaves conflict detection at the row level. If the table is already published in other merge
publications, you must use the same column tracking value used by existing articles based on this table. This parameter is specific
to table articles only.

[@status =] 'status'

Is the status of the article. status is nvarchar(10), with a default of unsynced. If active, the initial processing script to publish the
table is run. If unsynced, the initial processing script to publish the table is run at the next time the Snapshot Agent runs.

[@pre_creation_cmd =] 'pre_creation_cmd'

Specifies what the system is to do if the table exists at the subscriber when applying the snapshot. pre_creation_cmd is
nvarchar(10), and can be one of these values.

Value Description
None If the table already exists at the Subscriber, no action is taken.
Delete Issues a delete based on the WHERE clause in the subset filter.
drop (default) Drops the table before re-creating it.
Truncate Same as delete, but deletes pages instead of rows. Does not

accept a WHERE clause.

[@creation_script =] 'creation_script'

Is the optional schema precreation script for the article. creation_script is nvarchar(255), with a default of NULL.

[@schema_option =] schema_option

Is a bitmap of the schema generation option for the given article. schema_option is binary(8), and can be one of these values. If
this value is NULL, the system will auto-generate a valid schema option for the article. The table given in the Remarks shows the
value that will be chosen based upon the combination of the article type and the replication type. Also, not all @schema_option
values are valid for every type of replication and article type. The Valid Schema Option table given in the Remarks shows the valid
schema options that can be chosen based upon the combination of the article type and the replication type.

Value Description
0x00 Disables scripting by the Snapshot Agent and uses

the provided CreationScript.
0x01 Generates the object creation (CREATE TABLE, CREATE

PROCEDURE, and so on). This is the default value for
stored procedure articles.

0x10 Generates a corresponding clustered index.
0x20 Converts user-defined data types to base data types.
0x40 Generates corresponding nonclustered index(es).
0x80 Includes declared referential integrity on the primary

keys.
0x100 Replicates user triggers on a table article, if defined.
0x200 Replicates foreign key constraints. If the referenced

table is not part of a publication, all foreign key
constraints on a published table will not be replicated.

0x400 Replicates check constraints.
0x800 Replicates defaults.
0x1000 Replicates column-level collation.

0x2000 Replicates extended properties associated with the
published article source object.

0x4000 Replicates unique keys if defined on a table article.
0x8000 Replicates a primary key and unique keys on a table

article as constraints using ALTER TABLE statements.

[@subset_filterclause =] 'subset_filterclause'

Is a WHERE clause specifying the horizontal filtering of a table article without the word WHERE included. subset_filterclause is of
nvarchar(1000), with a default of an empty string. For more information, see Generate Filters Automatically.

[@article_resolver =] 'article_resolver'

Is the resolver used to resolve conflicts on the table article. article_resolver is varchar(255), with a default of NULL. Available
values for this parameter are listed in Microsoft Resolver Descriptions. If the value provided is not one of the Microsoft Resolvers,
SQL Server uses the specified resolver instead of the system-supplied resolver. Use sp_enumcustomresolvers to enumerate the
list of available custom resolvers.

[@resolver_info =] 'resolver_info'

Is used to specify additional information required by a custom resolver. Some of the Microsoft Resolvers require a column
provided as input to the resolver. resolver_info is nvarchar(255), with a default of NULL. For more information, see Microsoft
Resolver Descriptions.

[@source_owner =] 'source_owner'

Is the name of the owner of the source_object. source_owner is sysname, with a default of NULL. If NULL, the current user is
assumed to be the owner.

[@destination_owner =] 'destination_owner'

Is the owner of the object in the subscription database, if not 'dbo'. destination_owner is sysname, with a default of NULL. If
NULL, 'dbo' is assumed to be the owner.

[@vertical_partition =] 'column_filter'

Enables and disables column filtering on a table article. vertical_partition is nvarchar(5) with a default of FALSE. false indicates
there is no vertical filtering and publishes all columns. true clears all columns except the declared primary key and ROWGUID
columns. Columns are added using sp_mergearticlecolumn.

[@auto_identity_range =] 'automatic_identity_range'

Enables and disables automatic identity range handling for this table article on a publication at the time it is created.
auto_identity_range is nvarchar(5), with a default of FALSE. true enables automatic identity range handling, while false disables
it. For more information, see Managing Identity Values.

[@pub_identity_range =] pub_identity_range

Controls the range size at the Publisher if the article has auto_identity_range set to true. auto_identity_range is bigint, with a
default of NULL.

[@identity_range =] identity_range

Controls the range size at the Subscriber if the article has auto_identity_range set to true. identity_range is bigint, with a default
of NULL.

[@threshold =] threshold

Percentage value that controls when the Merge Agent assigns a new identity range. When the percentage of values specified in
threshold is used, the Merge Agent creates a new identity range. threshold is int, with a default of NULL. Used when
auto_identity_range is set to true.

[@verify_resolver_signature =] verify_resolver_signature

Specifies if a digital signature is verified before using a resolver in merge replication. verify_resolver_signature is int, with a
default of 0. 0 specifies that the signature will not be verified. 1 specifies that the signature will be verified to see if it is from a
trusted source. For more information, see Replication Signature Verification Constants(SQLDMO_VERIFYSIGNATURE_TYPE).

[@destination_object =] 'destination_object'

Is the name of the object in the subscription database. destination_object is sysname, with a default value of what is in

@source_object. This parameter can be specified only if the article is a schema-only article, such as stored procedures, views, and
UDFs. If the article specified is a table article, the value in @source_object will override the value in destination_object.

[@allow_interactive_resolver =] 'allow_interactive_resolver'

Enables or disables the use of the Interactive Resolver on an article. allow_interactive_resolver is nvarchar(5), with a default of
FALSE. true enables the use of the Interactive Resolver on the article; false disables it.

[@fast_multicol_updateproc =] 'fast_multicol_updateproc'

Enables or disables the Merge Agent to apply changes to multiple columns in the same row in one UPDATE statement.
fast_multicol_updateproc is nvarchar(5), with a default of TRUE. true updates multiple columns in one statement. false issues a
separate UPDATE for each column changed. For performance reasons, it is desirable to set the value to true if two or more
columns are being updated. However, the option should be set to false if there is a user trigger on the table that raises an error
on updates to a specific column, detected via the IF UPDATE(col). Even if that column is not updated to a new value, the IF
UPDATE(col) will detect a column update and raise the error. This is because with the option set to true, all columns (except
special columns like ones involved in filters) are set in one UPDATE statement. If the value of a particular column didn't change, it
is set to the old value.

[@check_permissions =] check_permissions

Is a bitmap of the table-level permissions that will be verified when the Merge Agent applies changes to the Publisher. If the
Publisher login/user account used by the merge process does not have the correct table permissions, the invalid changes will be
logged as conflicts. check_permissions is int, and can have one of these values.

Value Description
0x00 (default) Permissions will not be checked.
0x10 Checks permissions at the Publisher before INSERTs made at a

Subscriber can be uploaded.
0x20 Checks permissions at the Publisher before UPDATEs made at a

Subscriber can be uploaded.
0x40 Checks permissions at the Publisher before DELETEs made at a

Subscriber can be uploaded.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that adding an article will not cause the snapshot to be invalid. If the stored procedure detects
that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that adding an article
may cause the snapshot to be invalid, and if there are existing subscriptions that require a new snapshot, gives permission for the
existing snapshot to be marked as obsolete and a new snapshot generated.

[@published_in_tran_pub=] published_in_tran_pub

Indicates that an article in a merge publication is also published in a transactional publication. published_in_tran_pub is
nvarchar(5), with a default of FALSE. true specifies that the article is also published in a transactional publication.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergearticle is used in merge replication.

The table describes the default @schema_option value that will be chosen for the stored procedure if a NULL value is passed in by
the user. The default value is based upon the replication type shown across the top, and the article type shown down the first
column. Empty cells are article and replication type pairs that are not valid combinations, and therefore, have no default.

Article Type Replication Type
 Merge
logbased
logbased manualfilter
logbased manualview
indexed view logbased

indexed view logbased
manualfilter

indexed view logbased
manualview

indexed view logbase
manualboth

proc exec
serialized proc exec
proc schema only 0x01
view schema only 0x01
func schema only 0x01
indexed view schema only 0x01
table 0xccf1

Valid Schema Option Table

Article Type Replication Type
 Merge
logbased
logbased manualfilter
logbased manualview
indexed view logbased
indexed view logbased
manualfilter

indexed view logbased
manualview

indexed view logbase
manualboth

proc exec 0x01 and 0x2000
serialized proc exec 0x01 and 0x2000
proc schema only 0x01 and 0x2000
view schema only 0x01, 0x0100, and 0x2000
func schema only 0x01 and 0x2000
indexed view schema only 0x01, 0x10, 0x040, 0x0100,

and 0x2000
table All options but 0x02 and

0x8000

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergearticle.

See Also

Managing Identity Values

Row-Level Tracking and Column-Level Tracking

sp_changemergearticle

sp_dropmergearticle

sp_helpmergearticle

System Stored Procedures

Specifying a Custom Resolver

Transact-SQL Reference (SQL Server 2000)

sp_addmergefilter
Adds a new merge filter to create a partition based on a join with another table. This stored procedure is executed at the Publisher
on the publication database.

Syntax

sp_addmergefilter [@publication =] 'publication'
 , [@article =] 'article'
 , [@filtername =] 'filtername'
 , [@join_articlename =] 'join_articlename'
 , [@join_filterclause =] join_filterclause
 [, [@join_unique_key =] join_unique_key]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@filtername =] 'filtername'

Is the name of the filter. filtername is a required parameter. filtername is sysname, with no default.

[@join_articlename =] 'join_articlename'

Is the article name of the join table. join_articlename is sysname, with no default. The article must be in the publication given by
publication.

[@join_filterclause =] join_filterclause

Is the filter clause qualifying the join. join_ filterclause is nvarchar(2000). join_filterclause defines only Boolean filters in this
stored procedure.

[@join_unique_key =] join_unique_key

Specifies if the join is on a unique key in the table specified in @article. join_unique_key is int, with a default of 0. 0 indicates a
nonunique key. 1 indicates a unique key in @join_articlename.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default 0. 0 specifies that changes to the merge article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, and error will occur and no changes will be made. 1 specifies that changes
to the merge article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new
snapshot, gives permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit, with a default of 0. 0 specifies that changes to the merge article will not cause the subscription to
be reinitialized. If the stored procedure detects that the change would require subscriptions to be reinitialized, an error will occur
and no changes will be made. 1 specifies that changes to the merge article will cause existing subscriptions to be reinitialized, and
gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergefilter is used in merge replication.

Typically, this option is used for an article that has a foreign key reference to a published primary key table, and the primary key
table has a filter defined in its article. The subset of primary key rows is used to determine the foreign key rows that are replicated
to the Subscriber.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_ addmergefilter.

See Also

sp_changemergefilter

sp_dropmergefilter

sp_helpmergefilter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addmergepublication
 New Information - SQL Server 2000 SP3.

Creates a new merge publication. This stored procedure is executed at the Publisher on any database.

Syntax

sp_addmergepublication [@publication =] 'publication'
 [, [@description =] 'description'
 [, [@retention =] retention]
 [, [@sync_mode =] 'sync_mode']
 [, [@allow_push =] 'allow_push']
 [, [@allow_pull =] 'allow_pull']
 [, [@allow_anonymous =] 'allow_anonymous']
 [, [@enabled_for_internet =] 'enabled_for_internet']
 [, [@centralized_conflicts =] 'centralized_conflicts']
 [, [@dynamic_filters =] 'dynamic_filters']
 [, [@snapshot_in_defaultfolder =] 'snapshot_in_default_folder']
 [, [@alt_snapshot_folder =] 'alternate_snapshot_folder']
 [, [@pre_snapshot_script =] 'pre_snapshot_script']
 [, [@post_snapshot_script =] 'post_snapshot_script']
 [, [@compress_snapshot =] 'compress_snapshot']
 [, [@ftp_address =] 'ftp_address']
 [, [@ftp_port=] ftp_port]
 [, [@ftp_subdirectory =] 'ftp_subdirectory']
 [, [@ftp_login =] 'ftp_login']
 [, [@ftp_password =] 'ftp_password']
 [, [@conflict_retention =] conflict_retention]
 [, [@keep_partition_changes =] 'keep_partition_changes']
 [, [@allow_subscription_copy =] 'allow_subscription_copy']
 [, [@allow_synctoalternate =] 'allow_synctoalternate']
 [, [@validate_subscriber_info =] 'validate_subscriber_info']
 [, [@add_to_active_directory =] 'add_to_active_directory']
 [, [@max_concurrent_merge =] maximum_concurrent_merge]
 [, [@max_concurrent_dynamic_snapshots =] max_concurrent_dynamic_snapshots]
Arguments

[@publication =] 'publication'

Is the name of the merge publication to create. publication is sysname, with no default, and must not be the keyword ALL. The
name of the publication must be unique within the database.

[@description =] 'description'

Is the publication description. description is nvarchar(255), with a default of NULL.

[@retention =] retention

Is the number of days for which to save changes for the given publication. retention is int, with a default of 14 days. If the
subscription does not merge within the retention period, the subscription expires and is removed.

[@sync_mode =] 'sync_mode'

Is the mode of the initial synchronization of subscribers to the publication. sync_mode is nvarchar(10), with a default of native. If
native, native-mode bulk copy program output of all tables is produced. If character, character-mode bulk copy program output
of all tables is produced. Non-SQL Server subscribers require the use of character.

[@allow_push =] 'allow_push'

Specifies if push subscriptions can be created for the given publication. allow_push is nvarchar(5), with a default of TRUE, which
allows push subscriptions on the publication.

[@allow_pull =] 'allow_pull'

Specifies if pull subscriptions can be created for the given publication. allow_pull is nvarchar(5), with a default of TRUE, which

allows pull subscriptions on the publication.

[@allow_anonymous =] 'allow_anonymous'

Specifies if anonymous subscriptions can be created for the given publication. allow_anonymous is nvarchar(5), with a default of
FALSE, which does not allow anonymous subscriptions on the publication.

[@enabled_for_internet =] 'enabled_for_internet'

Specifies if the publication is enabled for the Internet, and determines if FTP can be used to transfer the snapshot files to a
subscriber. enabled_for_internet is nvarchar(5), with a default of FALSE. If true, the synchronization files for the publication are
put into the C:\Program Files\Microsoft SQL Server\MSSQL\Repldata\Ftp directory. The user must create the Ftp directory. If
false, the publication is not enabled for Internet access.

[@centralized_conflicts =] 'centralized_conflicts'

Specifies if conflict records are stored on the Publisher. centralized_conflicts is nvarchar(5), with a default of TRUE. If true, all
conflict records are stored at the Publisher. If false, conflict records are stored only at the database that owned the losing record.

[@dynamic_filters =] 'dynamic_filters'

Enables the merge publication to allow dynamic filters. dynamic_filter is nvarchar(5), with a default of FALSE.

[@snapshot_in_defaultfolder =] 'snapshot_in_default_folder'

Specifies if the snapshot files are stored in the default folder. snapshot_in_default_folder is nvarchar(5), with a default of TRUE. If
true, snapshot files can be found in the default folder. If false, snapshot files will be stored in the alternate location specified by
alternate_snapshot_folder. Alternate locations can be on another server, on a network drive, or on a removable media (such as
CD-ROM or removable disks). You can also save the snapshot files to a File Transfer Protocol (FTP) site, for retrieval by the
Subscriber at a later time. Note that this parameter can be true and still have a location in the @alt_snapshot_folder parameter.
This combination specifies that the snapshot files will be stored in both the default and alternate locations.

[@alt_snapshot_folder =] 'alternate_snapshot_folder'

Specifies the location of the alternate folder for the snapshot. alternate_snapshot_folder is nvarchar(255), with a default of NULL.

[@pre_snapshot_script =] 'pre_snapshot_script'

Specifies a pointer to an .sql file location. pre_snapshot_script is nvarchar(255), with a default of NULL. The Merge Agent will run
the pre-snapshot script before any of the replicated object scripts when applying the snapshot at a Subscriber.

[@post_snapshot_script =] 'post_snapshot_script'

Specifies a pointer to an .sql file location. post_snapshot_script is nvarchar(255), with a default of NULL. The Distribution Agent
or Merge Agent will run the post-snapshot script after all the other replicated object scripts and data have been applied during an
initial synchronization.

[@compress_snapshot =] 'compress_snapshot'

Specifies that the snapshot written to the @alt_snapshot_folder location is to be compressed into the Microsoft® CAB format.
compress_snapshot is nvarchar(5), with a default of FALSE. false specifies that the snapshot will not be compressed; true
specifies that the snapshot is to be compressed. The snapshot in the default folder cannot be compressed.

[@ftp_address =] 'ftp_address'

Is the network address of the FTP service for the Distributor. ftp_address is sysname, with a default of NULL. Specifies where
publication snapshot files are located for the Distribution Agent or Merge Agent of a subscriber to pick up. Since this property is
stored for each publication, each publication can have a different ftp_address. The publication must support propagating
snapshots using FTP. For more information, see Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP.

[@ftp_port=] ftp_port

Is the port number of the FTP service for the Distributor. ftp_port is int, with a default of 21. Specifies where the publication
snapshot files are located for the Distribution Agent or Merge Agent of a subscriber to pick up. Since this property is stored for
each publication, each publication can have its own ftp_port.

[@ftp_subdirectory =] 'ftp_subdirectory'

Specifies where the snapshot files will be available for the Merge Agent of the subscriber to pick up if the publication supports
propagating snapshots using FTP. ftp_subdirectory is nvarchar(255), with a default of NULL. Since this property is stored for each
publication, each publication can have its own ftp_subdirctory or choose to have no subdirectory, indicated with a NULL value.

[@ftp_login =] 'ftp_login'

Is the username used to connect to the FTP service. ftp_login is sysname, with a default of 'anonymous'.

[@ftp_password =] 'ftp_password'

Is the user password used to connect to the FTP service. ftp_password is sysname, with a default of NULL.

Security Note NULL passwords are not recommended.

[@conflict_retention =] conflict_retention

Specifies the retention period, in days, for which conflicts are retained. conflict_retention is int, with a default of 14 days before
the conflict row is purged from the conflict table.

[@keep_partition_changes =] 'keep_partition_changes'

Specifies whether synchronization optimization should occur. keep_partition_changes is nvarchar(5), with a default of FALSE.
false means that synchronization is not optimized, and the partitions sent to all Subscribers will be verified when data changes in
a partition. true means that synchronization is optimized, and only Subscribers having rows in the changed partition(s) are
affected. For more information, see Optimizing Synchronization.

[@allow_subscription_copy =] 'allow_subscription_copy'

Enables or disables the ability to copy the subscription databases that subscribe to this publication. allow_subscription_copy is
nvarchar(5), with a default of FALSE.

[@allow_synctoalternate =] 'allow_synctoalternate'

Enables an alternate synchronization partner to synchronize with this Publisher. allow_synctoalternate is nvarchar(5), with a
default of FALSE.

[@validate_subscriber_info =] 'validate_subscriber_info'

Lists the functions that are being used to retrieve Subscriber information, and validates the dynamic filtering criteria being used
for the Subscriber to verify that the information is partitioned consistently with each merge. validate_subscriber_info is
nvarchar(500), with a default of NULL. For example, if SUSER_SNAME() is used in the dynamic filter, the parameter should be
@validate_subscriber_info=N'SUSER_SNAME()'. For more information, see Validate Subscriber Information.

[@add_to_active_directory =] 'add_to_active_directory'

Specifies if the publication information is published to the Microsoft Active Directory™. add_to_active_directory is nvarchar(5),
with a default of FALSE. This feature is available only for servers running on the Windows® 2000 operating system. A value of
true will add the publication information to the Microsoft Active Directory.

[@max_concurrent_merge =] maximum_concurrent_merge

The maximum number of concurrent merge processes. A value of 0 for this property means that there is no limit to the number of
concurrent merge processes running at any given time. This property sets a limit on the number of concurrent merge processes
that can be run against a merge publication at one time. If there are more snapshot processes scheduled at the same time than
the value allows to run, then the excess jobs will be put into a queue and wait until a currently-running merge process finishes.

[@max_concurrent_dynamic_snapshots =] max_concurrent_dynamic_snapshots

The maximum number of concurrent dynamic snapshot sessions that can be running against the merge publication. If 0, there is
no limit to the maximum number of concurrent dynamic snapshot sessions that can run simultaneously against the publication at
any given time. This property sets a limit on the number of concurrent snapshot processes that can be run against a merge
publication at one time. If there are more snapshot processes scheduled at the same time than the value allows to run, then the
excess jobs will be put into a queue and wait until a currently-running merge process finishes.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergepublication is used in merge replication.

To list publication objects to the Active Directory using the @add_to_active_directory parameter, the SQL Server object must
already be created in the Active Directory. For more information, see Active Directory Services.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergepublication.

See Also

Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP

Executing Scripts Before and After the Snapshot is Applied

sp_changemergepublication

sp_dropmergepublication

sp_helpmergepublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addmergepullsubscription
Adds a pull subscription to a merge publication. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_addmergepullsubscription [@publication =] 'publication'
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@subscriber_type =] 'subscriber_type']
 [, [@subscription_priority =] subscription_priority]
 [, [@sync_type =] 'sync_type']
 [, [@description =] 'description']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of the local server name. The Publisher must be a valid server.

[@publisher_db =] 'publisher_db

Is the name of the Publisher database. publisher_db is sysname, with a default of NULL.

[@subscriber_type =] 'subscriber_type'

Is the type of Subscriber. subscriber_type is nvarchar(15), and can be global, local or anonymous.

[@subscription_priority =] subscription_priority

Is the subscription priority. subscription_priority is real, with a default of NULL. For local and anonymous subscriptions, the
priority is 0.0. The priority is used by the default resolver to pick a winner when conflicts are detected. For global subscribers, the
subscription priority must be less than 100, which is the priority of the publisher.

[@sync_type =] 'sync_type'

Is the subscription synchronization type. sync_type is nvarchar(15), with a default of automatic. Can be automatic or none. If
automatic, the schema and initial data for published tables are transferred to the Subscriber first. If none, it is assumed the
Subscriber already has the schema and initial data for published tables. System tables and data are always transferred.

[@description =] 'description'

Is a brief description of this pull subscription. description is nvarchar(255), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergepullsubscription is used for merge replication.

sp_addmergepullsubscription implements similar functionality to sp_addmergesubscription regarding pull subscriptions,
except that it does not create an agent for this subscription. The current server name and current database name are assumed to
be subscriber and subscriber_db, and do not appear in the parameter list.

If creating a global subscription, the sp_addmergesubscription and sp_addsubscriber stored procedures must be run at the
Publisher in addition to running sp_addmergepullsubscription at the Subscriber.

If using SQL Agent to synchronize the subscription, the sp_addmergepullsubscription_agent stored procedure must be run at
the Subscriber to create an agent and job to synchronize with the Publication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergepullsubscription.

See Also

sp_changemergepullsubscription

sp_dropmergepullsubscription

sp_helpmergepullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addmergepullsubscription_agent
 New Information - SQL Server 2000 SP3.

Adds an agent for a pull subscription to a merge publication. This stored procedure is executed at the Subscriber on the
subscription database.

Syntax

sp_addmergepullsubscription_agent [[@name =] 'name']
 , [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 [, [@publisher_security_mode =] publisher_security_mode]
 [, [@publisher_login =] 'publisher_login']
 [, [@publisher_password =] 'publisher_password']
 [, [@publisher_encrypted_password =] publisher_encrypted_password]
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']
 [, [@subscriber_security_mode =] subscriber_security_mode]
 [, [@subscriber_login =] 'subscriber_login']
 [, [@subscriber_password =] 'subscriber_password']
 [, [@distributor =] 'distributor']
 [, [@distributor_security_mode =] distributor_security_mode]
 [, [@distributor_login =] 'distributor_login']
 [, [@distributor_password =] 'distributor_password']
 [, [@encrypted_password =] encrypted_password]
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@optional_command_line =] 'optional_command_line']
 [, [@merge_jobid =] merge_jobid]
 [, [@enabled_for_syncmgr =] 'enabled_for_syncmgr']
 [, [@ftp_address =] 'ftp_address']
 [, [@ftp_port =] ftp_port]
 [, [@ftp_login =] 'ftp_login']
 [, [@ftp_password =] 'ftp_password']
 [, [@alt_snapshot_folder =] 'alternate_snapshot_folder']
 [, [@working_directory =] 'working_directory']
 [, [@use_ftp=] 'use_ftp']
 [, [@reserved=] 'reserved']
 [, [@use_interactive_resolver =] 'use_interactive_resolver']
 [, [@offloadagent =] 'remote_agent_activation']
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@job_name=] 'job_name']
 [, [@dynamic_snapshot_location=] 'dynamic_snapshot_location']

Arguments

[@name =] 'name'

Is the name of the agent. name is sysname, with a default of NULL.

[@publisher =] 'publisher'

Is the name of the Publisher server. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@publisher_security_mode =] publisher_security_mode

Is the security mode to use when connecting to a Publisher when synchronizing. publisher_security_mode is int, with a default of
1. If 0, specifies SQL Server Authentication. If 1, specifies Windows Authentication.

[@publisher_login =] 'publisher_login'

Is the login to use when connecting to a Publisher when synchronizing. publisher_login is sysname, with a default of NULL.

[@publisher_password =] 'publisher_password'

Is the password used when connecting to the Publisher. publisher_password is sysname, with a default of NULL.

[@publisher_encrypted_password =] publisher_encrypted_password

Specifies if the password is stored in encrypted format. publisher_encrypted_password is bit, with a default of 0.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

[@subscriber_security_mode =] subscriber_security_mode

Is the security mode to use when connecting to a Subscriber when synchronizing. subscriber_security_mode is int, with a default
of NULL. If 0, specifies SQL Server Authentication. If 1, specifies Windows Authentication.

[@subscriber_login =] 'subscriber_login'

Is the Subscriber login to use when connecting to a Subscriber when synchronizing. subscriber_login is required if
subscriber_security_mode is set to 0. subscriber_login is sysname, with a default of NULL.

[@subscriber_password =] 'subscriber_password'

Is the Subscriber password. subscriber_password is required if subscriber_security_mode is set to 0. subscriber_password is
sysname, with a default of NULL. If a subscriber password is used, it is automatically encrypted.

Security Note NULL passwords are not recommended.

[@distributor =] 'distributor'

Is the name of the Distributor. distributor is sysname, with a default of publisher; that is, the Publisher is also the Distributor.

[@distributor_security_mode =] distributor_security_mode

Is the security mode to use when connecting to a Distributor when synchronizing. distributor_security_mode is int, with a default
of 0. 0 specifies SQL Server Authentication. 1 specifies Windows Authentication.

[@distributor_login =] 'distributor_login'

Is the Distributor login to use when connecting to a Distributor when synchronizing. distributor_login is required if
distributor_security_mode is set to 0. distributor_login is sysname, with a default of NULL.

[@distributor_password =] 'distributor_password'

Is the Distributor password. distributor_password is required if distributor_security_mode is set to 0. distributor_password is
sysname, with a default of NULL.

Security Note NULL passwords are not recommended.

[@encrypted_password =] encrypted_password

Specifies if the Distributor password is encrypted. encrypted_password is bit, with a default of 0. This is used in generating

replication scripts.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the Merge Agent. frequency_type is int, and can be one of these values.

Value Description
1 One time
2 On demand
4 Daily
8 Weekly
16 Monthly
32 Monthly relative
64 Autostart
124 Recurring
NULL (default)

[@frequency_interval =] frequency_interval

The days that the Merge Agent runs. frequency_interval is int, and can be one of these values.

Value Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
8 Day
9 Weekdays
10 Weekend days
NULL (default)

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the Merge Agent. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL (default)

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of NULL.

[@frequency_subday =] frequency_subday

Is how often to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 Minute
8 Hour

NULL (default)

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of NULL.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Merge Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a default
of NULL.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Merge Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with a
default of NULL.

[@active_start_date =] active_start_date

Is the date when the Merge Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of NULL.

[@active_end_date =] active_end_date

Is the date when the Merge Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
NULL.

[@optional_command_line =] 'optional_command_line'

Is an optional command prompt that is supplied to the Merge Agent. For example, -DefinitionFile C:\Distdef.txt or -
CommitBatchSize 10. optional_command_line is nvarchar(255), with a default of ''.

[@merge_jobid =] merge_jobid

Is the output parameter for the job ID. merge_jobid is binary(16), with a default of NULL.

[@enabled_for_syncmgr =] 'enabled_for_syncmgr'

Specifies if the subscription can be synchronized through Windows Synchronization Manager. enabled_for_syncmgr is
nvarchar(5), with a default of FALSE. If false, the subscription is not registered with Synchronization Manager. If true, the
subscription is registered with Synchronization Manager and can be synchronized without starting SQL Server Enterprise
Manager.

[@ftp_address =] 'ftp_address'

For backward compatibility only.

[@ftp_port =] ftp_port

For backward compatibility only.

[@ftp_login =] 'ftp_login'

For backward compatibility only.

[@ftp_password =] 'ftp_password'

For backward compatibility only.

[@alt_snapshot_folder =] 'alternate_snapshot_folder'

Specifies the location from which to pick up the snapshot files. alternate_snapshot_folder is nvarchar(255), with a default of
NULL. If NULL, the snapshot files will be picked up from the default location specified by the Publisher.

[@working_directory =] 'working_directory'

Is the name of the working directory used to temporarily store data and schema files for the publication when FTP is used to
transfer snapshot files. working_directory is nvarchar(255), with a default of NULL.

[@use_ftp =] 'use_ftp'

Specifies the use of FTP instead of the typical protocol to retrieve snapshots. use_ftp is nvarchar(5), with a default of FALSE.

[@reserved =] 'reserved'

For internal use only.

[@use_interactive_resolver =] 'use_interactive_resolver']

Uses interactive resolver to resolve conflicts for all articles that allow interactive resolution. use_interactive_resolver is
nvarchar(5), with a default of FALSE.

[@offloadagent =] 'remote_agent_activation'

Specifies that the agent can be activated remotely. remote_agent_activation is nvarchar(5), with a default of FALSE. false
specifies the agent cannot be activated remotely. true specifies the agent will be activated remotely, and on the remote computer
specified by remote_agent_server_name.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote agent activation. remote_agent_server_name is sysname, with a
default of NULL.

[@job_name =] 'job_name']

For internal use only.

[@dynamic_snapshot_location =] 'dynamic_snapshot_location']

The path to the folder where the snapshot files will be read from if a dynamic snapshot is to be used. dynamic_snapshot_location
is nvarchar(260), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergepullsubscription_agent is used in merge replication and uses functionality similar to
sp_addpullsubscription_agent.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_addmergepullsubscription_agent.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addmergesubscription
Creates a push or pull merge subscription. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_addmergesubscription [@publication =] 'publication'
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']
 [, [@subscription_type =] 'subscription_type']
 [, [@subscriber_type =] 'subscriber_type']
 [, [@subscription_priority =] subscription_priority]
 [, [@sync_type =] 'sync_type']
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@optional_command_line =] 'optional_command_line']
 [, [@description =] 'description']
 [, [@enabled_for_syncmgr =] 'enabled_for_syncmgr']
 [, [@offloadagent =] remote_agent_activation]
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@use_interactive_resolver =] 'use_interactive_resolver']
 [, [@merge_job_name =] 'merge_job_name']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default. The publication must already exist.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

[@subscription_type =] 'subscription_type'

Is the type of subscription. subscription_type is nvarchar(15), with a default of PUSH. If push, a push subscription is added and
the Merge Agent is added at the Distributor. If pull, a pull subscription is added without adding a Merge Agent at the Distributor.

Note Anonymous subscriptions do not need to use this stored procedure.

[@subscriber_type =] 'subscriber_type'

Is the type of Subscriber. subscriber_type is nvarchar(15), and can be one of these values.

Value Description
local (default) Subscriber known only to the Publisher.
global Subscriber known to all servers.

[@subscription_priority =] subscription_priority

Is a number indicating the priority for the subscription. subscription_priority is real, with a default of NULL. For local and
anonymous subscriptions, the priority is 0.0. For global subscriptions, the priority must be less than 100.0. For more information,
see Subscriber Types and Conflicts.

[@sync_type =] 'sync_type'

Is the subscription synchronization type. sync_type is nvarchar(15), with a default of automatic. Can be automatic or none. If
automatic, the schema and initial data for published tables are transferred to the Subscriber first. If none, it is assumed the
Subscriber already has the schema and initial data for published tables. System tables and data are always transferred.

[@frequency_type =] frequency_type

Is a value indicating when the Merge Agent will run. frequency_type is int, and can be one of these values.

Value Description
1 Once
4 Daily
8 Weekly
10 Monthly
20 Monthly, relative to the frequency interval
40 When SQL Server Agent starts
NULL (default)

[@frequency_interval =] frequency_interval

The days that the Merge Agent runs. frequency_interval is int, and can be one of these values.

Value Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
8 Day
9 Weekdays
10 Weekend days
NULL (default)

[@frequency_relative_interval =] frequency_relative_interval

Is the scheduled merge occurrence of the frequency interval in each month. frequency_relative_interval is int, and can be one of
these values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL (default)

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of NULL.

[@frequency_subday =] frequency_subday

Is the units for freq_subday_interval. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 Minute

8 Hour
NULL (default)

[@frequency_subday_interval =] frequency_subday_interval

Is the frequency for frequency_subday to occur between each merge. frequency_subday_interval is int, with a default of NULL.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Merge Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a default
of NULL.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Merge Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with a
default of NULL.

[@active_start_date =] active_start_date

Is the date when the Merge Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of NULL.

[@active_end_date =] active_end_date

Is the date when the Merge Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
NULL.

[@optional_command_line =] 'optional_command_line'

Is the optional command prompt to execute. optional_command_line is nvarchar(4000), with a default of NULL. This parameter
is used to add a command that captures the output and saves it to a file or to specify a configuration file or attribute.

[@description =] 'description'

Is a brief description of this merge subscription. description is nvarchar(255), with a default of NULL.

[@enabled_for_syncmgr =] 'enabled_for_syncmgr'

Specifies if the subscription can be synchronized through Microsoft Windows Synchronization Manager. enabled_for_syncmgr is
nvarchar(5), with a default of FALSE. If false, the subscription is not registered with Synchronization Manager. If true, the
subscription is registered with Synchronization Manager and can be synchronized without starting SQL Server Enterprise
Manager.

[@offloadagent =] remote_agent_activation

Specifies that the agent can be activated remotely. remote_agent_activationis bit with a default of 0. 0 specifies the agent cannot
be activated remotely. 1 specifies the agent will be activated remotely, and on the remote computer specified by
remote_agent_server_name.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote agent activation. remote_agent_server_name is sysname, with a
default of NULL.

[@use_interactive_resolver =] 'use_interactive_resolver'

Allows conflicts to be resolved interactively for all articles that allow interactive resolution. use_interactive_resolver is
nvarchar(5), with a default of FALSE.

[@merge_job_name =] 'merge_job_name'

For internal only use.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addmergesubscription is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergesubscription.

See Also

Interactive Resolver

sp_changemergesubscription

sp_dropmergesubscription

sp_helpmergesubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addpublication
 New Information - SQL Server 2000 SP3.

Creates a snapshot or transactional publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_addpublication [@publication =] 'publication'
 [, [@taskid =] tasked]
 [, [@restricted =] 'restricted']
 [, [@sync_method =] 'sync_method']
 [, [@repl_freq =] 'repl_freq']
 [, [@description =] 'description']
 [, [@status =] 'status']
 [, [@independent_agent =] 'independent_agent']
 [, [@immediate_sync =] 'immediate_sync']
 [, [@enabled_for_internet =] 'enabled_for_internet']
 [, [@allow_push =] 'allow_push'
 [, [@allow_pull =] 'allow_pull']
 [, [@allow_anonymous =] 'allow_anonymous']
 [, [@allow_sync_tran =] 'allow_sync_tran']
 [, [@autogen_sync_procs =] 'autogen_sync_procs']
 [, [@retention =] retention]
 [, [@allow_queued_tran=] 'allow_queued_updating']
 [, [@snapshot_in_defaultfolder=] 'snapshot_in_default_folder']
 [, [@alt_snapshot_folder=] 'alternate_snapshot_folder']
 [, [@pre_snapshot_script=] 'pre_snapshot_script']
 [, [@post_snapshot_script=] 'post_snapshot_script']
 [, [@compress_snapshot=] 'compress_snapshot']
 [, [@ftp_address =] 'ftp_address']
 [, [@ftp_port=] ftp_port]
 [, [@ftp_subdirectory =] 'ftp_subdirectory']
 [, [@ftp_login =] 'ftp_login']
 [, [@ftp_password =] 'ftp_password']
 [, [@allow_dts =] 'allow_transformable_subscriptions']
 [, [@allow_subscription_copy =] 'allow_subscription_copy']
 [, [@conflict_policy =] 'conflict_policy']
 [, [@centralized_conflicts =] 'centralized_conflicts']
 [, [@conflict_retention =] conflict_retention]
 [, [@queue_type =] 'queue_type']
 [, [@add_to_active_directory =] 'add_to_active_directory']
 [, [@logreader_job_name =] 'logreader_agent_name']
 [, [@qreader_job_name =] 'queue_reader_agent_name']

Arguments

[@publication =] 'publication'

Is the name of the publication to create. publication is sysname, with no default. The name must be unique within the database.

[@taskid =] taskid

Supported for backward compatibility only; use sp_addpublication_snapshot.

[@restricted =] 'restricted'

Supported for backward compatibility only; use default_access.

[@sync_method =] 'sync_method'

Is the synchronization mode. sync_method is nvarchar(13), and can be one of these values.

Value Description

native (default) Produces native-mode bulk copy program output of all tables.
character Produces character-mode bulk copy program output of all

tables.
concurrent Produces native-mode bulk copy program output of all tables

but does not lock tables during the snapshot.
concurrent_c Produces character-mode bulk copy program output of all

tables but does not lock tables during the snapshot.

Note The values concurrent and concurrent_c are available for transactional and merge replication, but not snapshot
replication.

[@repl_freq =] 'repl_freq'

Is the type of replication frequency. replication_frequency is nvarchar(10), with a default of continuous. If continuous, the
Publisher provides output of all log-based transactions. If Snapshot, the Publisher produces only scheduled synchronization
events.

[@description =] 'description'

Is an optional description for the publication. description is nvarchar(255), with a default of NULL.

[@status =] 'status'

Specifies if publication data is available. status is nvarchar(8), and can be one of these values.

Value Description
active Publication data is available for Subscribers immediately.
inactive
(default)

Publication data is not available for Subscribers when the
publication is first created (they can subscribe, but the
subscriptions are not processed).

[@independent_agent =] 'independent_agent'

Specifies if there is a stand-alone Distribution Agent for this publication. independent_agent is nvarchar(5), with a default of
FALSE. If true, there is a stand-alone Distribution Agent for this publication. If false, the publication uses a shared Distribution
Agent, and each Publisher database/Subscriber database pair has a single, shared Agent.

[@immediate_sync =] 'immediate_synchronization'

Specifies if the synchronization files for the publication are created each time the Snapshot Agent runs.
immediate_synchronization is nvarchar(5), with a default of FALSE. If true, the synchronization files are created or re-created
each time the Snapshot Agent runs. Subscribers are able to get the synchronization files immediately if the Snapshot Agent has
completed before the subscription is created. New subscriptions get the newest synchronization files generated by the most
recent execution of the Snapshot Agent. independent_agent must be true for immediate_synchronization to be true. If false, the
synchronization files are created only if there are new subscriptions. Subscribers cannot receive the synchronization files after the
subscription until the Snapshot Agents are started and completed.

[@enabled_for_internet =] 'enabled_for_internet'

Specifies if the publication is enabled for the Internet, and determines if FTP can be use to transfer the snapshot files to a
subscriber. enabled_for_internet is nvarchar(5), with a default of FALSE. If true, the synchronization files for the publication are
put into the C:\Program Files\Microsoft SQL Server\MSSQL\Repldata\Ftp directory. The user must create the Ftp directory.

[@allow_push =] 'allow_push'

Specifies if push subscriptions can be created for the given publication. allow_push is nvarchar(5), with a default of TRUE, which
allows push subscriptions on the publication.

[@allow_pull =] 'allow_pull'

Specifies if pull subscriptions can be created for the given publication. allow_pull is nvarchar(5), with a default of FALSE. If false,
pull subscriptions are not allowed on the publication.

[@allow_anonymous =] 'allow_anonymous'

Specifies if anonymous subscriptions can be created for the given publication. allow_anonymous is nvarchar(5), with a default of
FALSE. If true, immediate_synchronization must also be set to true. If false, anonymous subscriptions are not allowed on the

publication.

[@allow_sync_tran =] 'allow_sync_tran'

Specifies if immediate-updating subscriptions are allowed on the publication. allow_sync_tran is nvarchar(5), with a default of
FALSE.

[@autogen_sync_procs =] 'autogen_sync_procs'

Specifies if the synchronizing stored procedure for immediate-updating subscriptions is generated at the Publisher.
autogen_sync_procs is nvarchar(5), with a default of TRUE.

[@retention =] retention]

Is the retention period in hours for subscription activity. retention is int, with a default of 336 hours. If a subscription is not active
within the retention period, it expires and is removed. The value can be greater than the maximum retention period of the
distribution database used by the Publisher. If 0, well-known subscriptions to the publication will never expire and be removed by
the Expired Subscription Cleanup Agent. For more information, see Subscription Deactivation and Expiration.

[@allow_queued_tran =] 'allow_queued_updating'

Enables or disables queuing of changes at the Subscriber until they can be applied at the Publisher. allow_queued_updating is
nvarchar(5) with a default of FALSE. If false, changes at the Subscriber are not queued.

[@snapshot_in_defaultfolder =] 'snapshot_in_default_folder'

Specifies if snapshot files are stored in the default folder. snapshot_in_default_folder is nvarchar(5) with a default of TRUE. If
true, snapshot files can be found in the default folder. If false, snapshot files have been stored in the alternate location specified
by alternate_snapshot_folder. Alternate locations can be on another server, on a network drive, or on removable media (such as
CD-ROM or removable disks). You can also save the snapshot files to a File Transfer Protocol (FTP) site, for retrieval by the
Subscriber at a later time. Note that this parameter can be true and still have a location in the @alt_snapshot_folder parameter.
This combination specifies that the snapshot files will be stored in both the default and alternate locations.

[@alt_snapshot_folder =] 'alternate_snapshot_folder'

Specifies the location of the alternate folder for the snapshot. alternate_snapshot_folder is nvarchar(255) with a default of NULL.

[@pre_snapshot_script =] 'pre_snapshot_script'

Specifies a pointer to an .sql file location. pre_snapshot_script is nvarchar(255), with a default of NULL. The Distribution Agent
will run the pre-snapshot script before running any of the replicated object scripts when applying a snapshot at a Subscriber.

[@post_snapshot_script =] 'post_snapshot_script'

Specifies a pointer to an .sql file location. post_snapshot_script isnvarchar(255), with a default of NULL. The Distribution Agent
will run the post-snapshot script after all the other replicated object scripts and data have been applied during an initial
synchronization.

[@compress_snapshot =] 'compress_snapshot'

Specifies that the snapshot that is written to the @alt_snapshot_folder location is to be compressed into the Microsoft® CAB
format. compress_snapshot is nvarchar(5), with a default of FALSE. false specifies that the snapshot will not be compressed; true
specifies that the snapshot will be compressed. The snapshot in the default folder cannot be compressed.

[@ftp_address =] 'ftp_address'

Is the network address of the FTP service for the Distributor. ftp_address is sysname, with a default of NULL. Specifies where
publication snapshot files are located for the Distribution Agent or Merge Agent of a subscriber to pick up. Since this property is
stored for each publication, each publication can have a different ftp_address. The publication must support propagating
snapshots using FTP. For more information, see Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP.

[@ftp_port =] ftp_port

Is the port number of the FTP service for the Distributor. ftp_port is int, with a default of 21. Specifies where the publication
snapshot files are located for the Distribution Agent or Merge Agent of a subscriber to pick up. Since this property is stored for
each publication, each publication can have its own ftp_port.

[@ftp_subdirectory =] 'ftp_subdirectory'

Specifies where the snapshot files will be available for the Distribution Agent or Merge Agent of subscriber to pick up if the
publication supports propagating snapshots using FTP. ftp_subdirectory is nvarchar(255), with a default of NULL. Since this
property is stored for each publication, each publication can have its own ftp_subdirctory or choose to have no subdirectory,

indicated with a NULL value.

[@ftp_login =] 'ftp_login'

Is the username used to connect to the FTP service. ftp_login is sysname, with a default of ANONYMOUS.

[@ftp_password =] 'ftp_password'

Is the user password used to connect to the FTP service. ftp_password is sysname, with a default of NULL.

Security Note NULL passwords are not recommended.

[@allow_dts =] 'allow_transformable_subscriptions'

Specifies that the publication allows data transformations. You can specify a DTS package when creating a subscription.
allow_transformable_subscriptions is nvarchar(5) with a default of FALSE, which does not allow DTS transformations.

[@allow_subscription_copy =] 'allow_subscription_copy'

Enables or disables the ability to copy the subscription databases that subscribe to this publication. allow_subscription_copy is
nvarchar(5), with a default of FALSE.

[@conflict_policy =] 'conflict_policy'

Specifies the conflict resolution policy followed when the queued updating subscriber option is used. conflict_policy is
nvarchar(100) with a default of NULL, and can be one of these values.

Value Description
pub wins Publisher wins the conflict.
sub reinit Reinitialize the subscription.
sub wins Subscriber wins the conflict.
NULL (default) If NULL, and the publication is a snapshot publication, the default

policy becomes sub reinit. If NULL and the publication is not a
snapshot publication, the default becomes pub wins.

[@centralized_conflicts =] 'centralized_conflicts'

Specifies if conflict records are stored on the Publisher. centralized_conflicts is nvarchar(5), with a default of TRUE. If true, conflict
records are stored at the Publisher. If false, conflict records are stored at both the publisher and at the subscriber that caused the
conflict.

[@conflict_retention =] conflict_retention

Specifies the conflict retention period, in days. conflict_retention is int, with a default of 14.

[@queue_type =] 'queue_type'

Specifies which type of queue is used. queue_type is nvarchar(10), with a default of NULL, and can be one of these values.

Value Description
msmq Use Microsoft Message Queuing to store

transactions.
sql Use SQL Server to store transactions.
NULL (default) Defaults to sql, which specifies to use SQL

Server to store transactions.

[@add_to_active_directory =] 'add_to_active_directory'

Specifies if the publication information is published to the Microsoft Active Directory™. add_to_active_directory is nvarchar(10),
with a default of FALSE. This feature is available only for servers running the Microsoft Windows® 2000 operating system.

[@logreader_job_name =] 'logreader_agent_name'

For internal use only.

[@qreader_job_name =] 'queue_reader_agent_name'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addpublication is used in snapshot replication and transactional replication.

To list publication objects to the Active Directory using the @add_to_active_directory parameter, the SQL Server object must
already be created in the Active Directory. For more information, see Active Directory Services.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addpublication.

See Also

sp_addarticle

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addpublication_snapshot
Creates the Snapshot Agent for the specified publication. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_addpublication_snapshot [@publication =] 'publication'
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@snapshot_job_name =] 'snapshot_agent_name']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@frequency_type =] frequency_type

Is the frequency with which the Snapshot Agent is executed. frequency_type is int, and can be one of these values.

Value Description
1 Once.
4 (default) Daily.
8 Weekly.
10 Monthly.
20 Monthly, relative to the frequency interval.
40 When SQL Server Agent starts.

[@frequency_interval =] frequency_interval

Is the value to apply to the frequency set by frequency_type. frequency_interval is int, with a default of 1, which means daily.

[@frequency_subday =] frequency_subday

Is the units for freq_subday_interval. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 (default) Minute
8 Hour

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of 5, which means every 5 minutes.

[@frequency_relative_interval =] frequency_relative_interval

Is the date the Snapshot Agent runs. frequency_relative_interval is int, with a default of 1.

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of 0.

[@active_start_date =] active_start_date

Is the date when the Snapshot Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of 0.

[@active_end_date =] active_end_date

Is the date when the Snapshot Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
99991231, which means December 31, 9999.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Snapshot Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of 0.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Snapshot Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with a
default of 235959, which means 11:59:59 P.M. as measured on a 24-hour clock.

[@snapshot_job_name =] 'snapshot_agent_name'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addpublication_snapshot is used in snapshot replication and transactional replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addpublication_snapshot.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addpublisher70
Adds a Microsoft® SQL Server™ version 7.0 or SQL Server 2000 Publisher at a SQL Server version 6.5 Subscriber. This stored
procedure is executed at the SQL Server 6.5 Subscriber on any database.

Syntax

sp_addpublisher70 [@publisher =] 'publisher' ,
 [@dist_account =] 'dist_account'

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is varchar(30), with no default.

[@dist_account =] 'dist_account'

Is the Microsoft Windows® account used by the Distribution Agent at the Distributor. In most cases, it is the Windows account of
the SQL Server Agent at the Distributor. dist_account is varchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addpublisher70 is used in snapshot replication and transactional replication.

To add a SQL Server 7.0 Publisher or SQL Server 2000 Publisher at a SQL Server 6.5 Subscriber, apply a script to the SQL Server
version 6.5 server that creates the sp_addpublisher70 stored procedure. The script is in the file Replp70.sql located in the
\Mssql7\Install directory.

Permissions

On servers running SQL Server 6.5, execute permission defaults to the system administrator.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addpullsubscription
Adds a pull or anonymous subscription to a snapshot or transactional publication. This stored procedure is executed at the
Subscriber on the database where the pull subscription is to be created.

Syntax

sp_addpullsubscription [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 [, [@independent_agent =] 'independent_agent']
 [, [@subscription_type =] 'subscription_type']
 [, [@description =] 'description']
 [, [@update_mode =] 'update_mode']
 [, [@immediate_sync =] immediate_sync]

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@independent_agent =] 'independent_agent'

Specifies if there is a stand-alone Distribution Agent for this publication. independent_agent is nvarchar(5), with a default of
TRUE. If true, there is a stand-alone Distribution Agent for this publication. If false, there is one Distribution Agent for each
Publisher database/Subscriber database pair. independent_agent is a property of the publication and must have the same value
here as it has at the Publisher.

[@subscription_type =] 'subscription_type'

Is the subscription type of the publication. subscription_type is nvarchar(9), and can be one of these values.

Value Description
pull Pull subscription
anonymous (default) Anonymous subscription

[@description =] 'description'

Is the description of the publication. description is nvarchar(100), with a default of NULL.

[@update_mode =] 'update_mode'

Is the type of update. update_mode is nvarchar(15), and can be one of these values.

Value Description
read-only (default) The subscription is read-only. The changes at the

Subscriber will not be sent back to the Publisher.
synctran Enables support for immediate updating

subscriptions.
queued tran Enables the subscription for queued updating. Data

modifications can be made at the Subscriber, stored
in a queue, and then propagated to the Publisher.

failover Enables the subscription for immediate updating with
queued updating as a failover. Data modifications can
be made at the Subscriber and propagated to the
Publisher immediately. If the Publisher and
Subscriber are not connected, data modifications
made at the Subscriber can be stored in a queue until
the Subscriber and Publisher are reconnected.

[@immediate_sync =] immediate_sync

Is whether the synchronization files are created or re-created each time the Snapshot Agent runs. immediate_sync is bit with a
default of 1, and must be set to the same value as immediate_sync in sp_addpublication. immediate_sync is a property of the
publication and must have the same value here as it has at the Publisher.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addpullsubscription is used in snapshot replication and transactional replication.

If the MSreplication_subscriptions table does not exist at the Subscriber, sp_addpullsubscription creates it. It also adds a row
to the MSreplication_subscriptions table. For pull subscriptions, sp_addsubscription should be called at the Publisher first.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addpullsubscription.

See Also

sp_droppullsubscription

sp_helppullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addpullsubscription_agent
 New Information - SQL Server 2000 SP3.

Adds a new agent to the Subscriber database. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_addpullsubscription_agent [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']
 [, [@subscriber_security_mode =] subscriber_security_mode]
 [, [@subscriber_login =] 'subscriber_login']
 [, [@subscriber_password =] 'subscriber_password']
 [, [@distributor =] 'distributor']
 [, [@distribution_db =] 'distribution_db']
 [, [@distributor_security_mode =] distributor_security_mode]
 [, [@distributor_login =] 'distributor_login']
 [, [@distributor_password =] 'distributor_password']
 [, [@optional_command_line =] 'optional_command_line']
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@distribution_jobid =] distribution_jobid OUTPUT]
 [, [@encrypted_distributor_password =] encrypted_distributor_password]
 [, [@enabled_for_syncmgr =] 'enabled_for_syncmgr']
 [, [@ftp_address =] 'ftp_address']
 [, [@ftp_port =] ftp_port]
 [, [@ftp_login =] 'ftp_login']
 [, [@ftp_password =] 'ftp_password']
 [, [@alt_snapshot_folder =] 'alternate_snapshot_folder']
 [, [@working_directory =] 'working_directory']
 [, [@use_ftp =] 'use_ftp']
 [, [@publication_type=] publication_type]
 [, [@dts_package_name =] 'dts_package_name']
 [, [@dts_package_password =] 'dts_package_password']
 [, [@dts_package_location =] 'dts_package_location']
 [, [@reserved =] 'reserved']
 [, [@offloadagent =] 'remote_agent_activation']
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@job_name =] 'job_name']

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

[@subscriber_security_mode =] subscriber_security_mode

Is the security mode to use when connecting to a Subscriber when synchronizing. subscriber_security_mode is int, with a default
of NULL. 0 specifies Microsoft SQL Server Authentication. 1 specifies Microsoft Windows Authentication.

[@subscriber_login =] 'subscriber_login'

Is the Subscriber login to use when connecting to a Subscriber when synchronizing. subscriber_login is sysname, with a default of
NULL.

[@subscriber_password =] 'subscriber_password'

Is the Subscriber password. subscriber_password is required if subscriber_security_mode is set to 0. subscriber_password is
sysname, with a default of NULL. If a subscriber password is used, it is automatically encrypted.

Security Note NULL passwords are not recommended.

[@distributor =] 'distributor'

Is the name of the Distributor. distributor is sysname, with a default of the value specified by publisher.

[@distribution_db =] 'distribution_db'

Is the name of the Distributor. distribution_db is sysname, with no default.

[@distributor_security_mode =] distributor_security_mode

Is the security mode to use when connecting to a Distributor when synchronizing. distributor_security_mode is int, with a default
of 0. 0 specifies Microsoft SQL Server Authentication. 1 specifies Microsoft Windows Authentication.

[@distributor_login =] 'distributor_login'

Is the Distributor login to use when connecting to a Distributor when synchronizing. distributor_login is required if
distributor_security_mode is set to 0. distributor_login is sysname, with a default of sa.

[@distributor_password =] 'distributor_password'

Is the Distributor password. distributor_password is required if distributor_security_mode is set to 0. distributor_password is
sysname, with a default of NULL.

[@optional_command_line =] 'optional_command_line'

Is an optional command prompt supplied to the Distribution Agent. For example, -DefinitionFile C:\Distdef.txt or -
CommitBatchSize 10. optional_command_line is nvarchar(4000), with a default of empty string.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the Distribution Agent. frequency_type is int, and can be one of these values.

Value Description
1 One time
2 (default) On demand
4 Daily
8 Weekly
16 Monthly
32 Monthly relative
64 Autostart
124 Recurring

[@frequency_interval =] frequency_interval

Is the value to apply to the frequency set by frequency_type. frequency_interval is int, with a default of 1.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the Distribution Agent. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 (default) First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of 1.

[@frequency_subday =] frequency_subday

Is how often to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 (default) Once
2 Second
4 Minute
8 Hour

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of 1.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Distribution Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of 0.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Distribution Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with
a default of 0.

[@active_start_date =] active_start_date

Is the date when the Distribution Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of 0.

[@active_end_date =] active_end_date

Is the date when the Distribution Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
0.

[@distribution_jobid =] distribution_jobid OUTPUT

Is the ID of the Distribution Agent for this job. distribution_jobid is binary(16), with a default of NULL, and it is an OUTPUT
parameter.

[@encrypted_distributor_password =] encrypted_distributor_password

For internal use only.

[@enabled_for_syncmgr =] 'enabled_for_syncmgr'

Is whether the subscription can be synchronized through Microsoft Synchronization Manager. enabled_for_syncmgr is
nvarchar(5), with a default of FALSE. If false, the subscription is not registered with Synchronization Manager. If true, the
subscription is registered with Synchronization Manager and can be synchronized without starting SQL Server Enterprise
Manager.

[@ftp_address =] 'ftp_address'

For backward compatibility only.

[@ftp_port =] ftp_port

For backward compatibility only.

[@ftp_login =] 'ftp_login'

For backward compatibility only.

[@ftp_password =] 'ftp_password'

For backward compatibility only.

[@alt_snapshot_folder =] 'alternate_snapshot_folder'

Specifies the location of the alternate folder for the snapshot. alternate_snapshot_folder is nvarchar(255), with a default of NULL.

[@working_directory =] 'working_director'

Is the name of the working directory used to store data and schema files for the publication. working_directory is nvarchar(255),
with a default of NULL. The name should be specified in UNC format.

[@use_ftp =] 'use_ftp'

Specifies the use of FTP instead of the regular protocol to retrieve snapshots. use_ftp is nvarchar(5), with a default of FALSE.

[@publication_type =] publication_type

Specifies the replication type of the publication. publication_type is a tinyint with a default of 0. If 0, publication is a transaction
type. If 1, publication is a snapshot type. If 2, publication is a merge type.

[@dts_package_name =] 'dts_package_name'

Specifies the name of the DTS package. dts_package_name is a sysname with a default of NULL. For example, to specify a
package of DTSPub_Package, the parameter would be @dts_package_name = N'DTSPub_Package'.

[@dts_package_password =] 'dts_package_password'

Specifies the password on the package, if there is one. dts_package_password is sysname with a default of NULL, which means a
password is not on the package.

[@dts_package_location =] 'dts_package_location'

Specifies the package location. dts_package_location is a nvarchar(12), with a default of SUBSCRIBER. The location of the
package can be distributor or subscriber.

[@reserved =] 'reserved'

For internal use only.

[@offloadagent =] 'remote_agent_activation'

Specifies that the agent can be activated remotely. remote_agent_activation is bit, with a default of 0. 0 specifies the agent cannot
be activated remotely. 1 specifies the agent will be activated remotely, and on the remote computer specified by
remote_agent_server_name.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote activation. remote_agent_server_name is sysname, with a default of
NULL.

[@job_name =] 'job_name'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addpullsubscription_agent is used in snapshot replication and transactional replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addpullsubscription_agent.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addqueued_artinfo
Important The sp_script_synctran_commands procedure should be used instead of sp_addqueued_artinfo.
sp_script_synctran_commands generates a script that contains the sp_addqueued_artinfo and sp_addsynctrigger calls.

Creates the MSsubscription_articles table at the Subscriber that is used to track article subscription information (Queued
Updating and Immediate Updating with Queued Updating as Failover). This stored procedure is executed at the Subscriber on the
subscription database.

Syntax

sp_addqueued_artinfo [@artid=] 'artid'
 , [@article=] 'article'
 , [@publisher =] 'publisher' ,
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@dest_table=] 'dest_table'
 , [@owner =] 'owner'
 , [@cft_table=] 'cft_table'
 , [@columns =] 'columns'

Arguments

[@artid=] 'artid'

Is the name of the article id. artid is init, with no default.

[@article =] 'article'

Is the name of the article to be scripted. article is sysname, with no default

[@publisher =] 'publisher'

Is the name of the Publisher server. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication to be scripted. publication is sysname, with no default.

[@dest_table=] 'dest_table'

Is the name of the destination table. dest_table is sysname, with no default.

[@owner =] 'owner'

Is the owner of the subscription. owner is sysname, with no default.

[@cft_table=] 'cft_table'

Name of the queued updating conflict table for this article. cft_table is sysname, with no default.

[@columns =] 'columns'

Bitmap of the replicated columns of the publication table. columns is binary(32) with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addqueued_artinfo is used by the Distribution Agent as part of subscription initialization. This stored procedure is not
commonly run by users, but may be useful if the user needs to manually set up a subscription.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addqueued_artinfo.

See Also

Queued Updating Considerations

sp_script_synctran_commands

MSsubscription_articles

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addscriptexec
Posts a SQL script (.sql file) to all subscribers of a publication. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_addscriptexec [@publication =] publication
 [, [@scriptfile =] 'scriptfile']
 [, [@skiperror =] 'skiperror']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@scriptfile =] 'scriptfile'

Is the full path to the SQL script file. scriptfile is nvarchar(4000), with no default.

[@skiperror =] 'skiperror'

Inicates whether the Distribution Agent or Merge Agent should stop when an error is encountered during script processing.
SkipError is bit, with a default of 0. If 0, the Distribution Agent or Merge Agent stops. If 1, the Distribution Agent or Merge Agent
continues the script and ignores the error.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addscriptexec is used in transactional replication and merge replication.

sp_addscriptexec is not used for snapshot replication.

sp_addscriptexec is useful in applying scripts to subscribers, and uses osql.exe to apply the contents of the script to the
Subscriber. However, because Subscriber configurations can vary, scripts tested prior to posting to the Publisher may still cause
errors on a Subscriber. The SkipError bit gives the user the ability to have the Distribution Agent or Merge Agent ignore errors
and continue on. Use osql.exe to test scripts prior to running sp_addscriptexec.

Note that skipped errors will continue to be logged in the Agent history for reference. For more information, see Viewing Agent
History.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addscriptexec.

See Also

Agents and Monitors

How to monitor replication agent history (Enterprise Manager)

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addsubscriber
Adds a new Subscriber to a Publisher, enabling it to receive publications. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_addsubscriber [@subscriber =] 'subscriber'
 [, [@type =] type]
 [, [@login =] 'login']
 [, [@password =] 'password']
 [, [@commit_batch_size =] commit_batch_size]
 [, [@status_batch_size =] status_batch_size]
 [, [@flush_frequency =] flush_frequency]
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@description =] 'description']
 [, [@security_mode =] security_mode]
 [, [@encrypted_password =] encrypted_password]

Arguments

[@subscriber =] 'subscriber'

Is the name of the server to be added as a valid Subscriber to the publications on this server. subscriber is sysname, with no
default.

[@type =] type

Is the type of Subscriber. type is tinyint, and can be one of these values.

Value Description
0 (default) Microsoft® SQL Server™ Subscriber
1 ODBC data source server
2 Microsoft Jet database
3 OLE DB provider

[@login =] 'login'

Is the login ID for SQL Server Authentication. login is sysname, with a default of sa.

[@password =] 'password

Is the password for SQL Server Authentication. password is sysname, with a default of NULL.

[@commit_batch_size =] commit_batch_size

Supported for backward compatibility only.

[@status_batch_size =] status_batch_size

Supported for backward compatibility only.

[@flush_frequency =] flush_frequency

Supported for backward compatibility only.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the Distribution Agent. frequency_type is int, and can be one of these values.

Value Description
1 One time
2 On demand
4 Daily
8 Weekly
16 Monthly
32 Monthly relative
64 (default) Autostart
124 Recurring

[@frequency_interval =] frequency_interval

Is the value applied to the frequency set by frequency_type. frequency_interval is int, with a default of 1.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the Distribution Agent. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 (default) First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of 0.

[@frequency_subday =] frequency_subday

Is how often to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 (default) Minute
8 Hour

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of 5.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Distribution Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of 0.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Distribution Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with
a default of 235959, which means 11:59:59 P.M. as measured on a 24-hour clock.

[@active_start_date =] active_start_date

Is the date when the Distribution Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of 0.

[@active_end_date =] active_end_date

Is the date when the Distribution Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
99991231, which means December 31, 9999.

[@description =] 'description'

Is a text description of the Subscriber. description is nvarchar(255), with a default of NULL.

[@security_mode =] security_mode

Is the implemented security mode. security_mode is int, with a default of 1. 0 specifies SQL Server Authentication. 1 specifies
Windows Authentication.

[@encrypted_password =] encrypted_password

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addsubscriber is used in snapshot replication, transactional replication, and merge replication.

sp_addsubscriber writes to the MSsubscriber_info table in the distribution database.

Permissions

Only members of the sysadmin fixed server role can execute sp_addsubscriber.

See Also

sp_addremotelogin

sp_addserver

sp_changesubscriber

sp_dboption

sp_dropsubscriber

sp_helpdistributor

sp_helpserver

sp_helpsubscriberinfo

sp_remoteoption

sp_serveroption

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addsubscriber_schedule
Adds a schedule for the Distribution Agent and Merge Agent. This stored procedure is executed at the Publisher on any database.

Syntax

sp_addsubscriber_schedule [@subscriber =] 'subscriber'
 [, [@agent_type =] agent_type]
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]

Arguments

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname. The name of the Subscriber must be unique in the database, must not
already exist, and cannot be NULL.

[@agent_type =] agent_type

Is the type of agent. agent_type is smallint, and can be one of these values.

Value Description
0 (default) Distribution Agent
1 Merge Agent

[@frequency_type =] frequency_type

Is the frequency with which to schedule the Distribution Agent. frequency_type is int, and can be one of these values.

Value Description
1 One time
2 On demand
4 Daily
8 Weekly
16 Monthly
32 Monthly relative
64 (default) Autostart
124 Recurring

[@frequency_interval =] frequency_interval

Is the value to apply to the frequency set by frequency_type. frequency_interval is int, with a default of 1.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the Distribution Agent. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 (default) First
2 Second
4 Third

8 Fourth
16 Last

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of 0.

[@frequency_subday =] frequency_subday

Is how often to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 (default) Minute
8 Hour

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of 5.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Distribution Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of 0.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Distribution Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with
a default of 235959, which means 11:59:59 P.M. as measured on a 24-hour clock.

[@active_start_date =] active_start_date

Is the date when the Distribution Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of 0.

[@active_end_date =] active_end_date

Is the date when the Distribution Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
99991231, which means December 31, 9999.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addsubscriber_schedule is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_addsubscriber_schedule.

See Also

sp_changesubscriber_schedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addsubscription
 New Information - SQL Server 2000 SP3.

Adds a subscription to a publication and sets the Subscriber status. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_addsubscription [@publication =] 'publication'
 [, [@article =] 'article']
 [, [@subscriber =] 'subscriber']
 [, [@destination_db =] 'destination_db']
 [, [@sync_type =] 'sync_type']
 [, [@status =] 'status'
 [, [@subscription_type =] 'subscription_type']
 [, [@update_mode =] 'update_mode']
 [, [@loopback_detection =] 'loopback_detection']
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@optional_command_line =] 'optional_command_line']
 [, [@reserved =] 'reserved']
 [, [@enabled_for_syncmgr =] 'enabled_for_syncmgr']
 [, [@offloadagent =] remote_agent_activation]
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@dts_package_name =] 'dts_package_name']
 [, [@dts_package_password =] 'dts_package_password']
 [, [@dts_package_location =] 'dts_package_location']
 [, [@distribution_job_name =] 'distribution_job_name']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the article to which the publication is subscribed. article is sysname, with a default of all. The article name must be unique
within the publication. If all or not supplied, a subscription is added to all articles in that publication.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@destination_db =] 'destination_db'

Is the name of the destination database in which to place replicated data. destination_db is sysname, with a default of the current
database name, which is the publishing name.

[@sync_type =] 'sync_type'

Is the subscription synchronization type. sync_type is nvarchar(15), with a default of automatic. Can be automatic or none. If
automatic, the schema and initial data for published tables are transferred to the Subscriber first. If none, it is assumed the
Subscriber already has the schema and initial data for published tables. System tables and data are always transferred.

[@status =] 'status'

Is the subscription status. status is sysname, and can be one of these values.

Value Description
Active If sync_type is none, the default for status is active. To

enable a Subscriber to see articles in a restricted
publication article, a placeholder subscription must be
created with inactive status. If sync_type is automatic,
status cannot be set to active.

Subscribed If sync_type is other than none, the default for status is
subscribed.

NULL (default)

[@subscription_type =] 'subscription_type'

Is the type of subscription. subscription_type is nvarchar(4), with a default of push. Can be push or pull. The Distribution Agents
of push subscriptions reside at the Distributor, and the Distribution Agents of pull subscriptions reside at the Subscriber.
subscription_type can be pull to create a named pull subscription that is known to the Publisher. For more information, see
Subscribing to Publications.

Note Anonymous subscriptions do not need to use this stored procedure.

[@update_mode =] 'update_mode'

Is the type of update. update_mode is nvarchar(30), and can be one of these values.

Value Description
read only (default) The subscription is read-only. The changes at the

Subscriber will not be sent to the Publisher.
sync tran Enables support for immediate updating subscriptions.
queued tran Enables the subscription for queued updating. Data

modifications can be made at the Subscriber, stored in a
queue, and then propagated to the Publisher.

failover Enables the subscription for immediate updating with
queued updating as a failover. Data modifications can be
made at the Subscriber and propagated to the Publisher
immediately. If the Publisher and Subscriber are not
connected, data modifications made at the Subscriber can
be stored in a queue until the Subscriber and Publisher
are reconnected.

Note that the values synctran and queued tran are not allowed if the publication being subscribed to allows DTS.

[@loopback_detection =] 'loopback_detection'

Specifies if the Distribution Agent sends transactions that originated at the Subscriber back to the Subscriber. loopback_detection
is nvarchar(5), and can be one of these values.

Value Description
true Distribution Agent does not send transactions originated

at the Subscriber back to the Subscriber.
false Distribution Agent sends transactions that originated at

the Subscriber back to the Subscriber.
NULL (default)

[@frequency_type =] frequency_type

Is the frequency with which to schedule the Distribution Agent. frequency_type is int, with a default of NULL. If no value is
specified, sp_addsubscription uses the value specified in sp_addsubscriber.

[@frequency_interval =] frequency_interval

Is the value to apply to the frequency set by frequency_type. frequency_interval is int, with a default of NULL.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the Distribution Agent. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL (default)

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of NULL.

[@frequency_subday =] frequency_subday

Is how often, in minutes, to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 Minute
8 Hour
NULL

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of NULL.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the Distribution Agent is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of NULL.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the Distribution Agent stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with
a default of NULL.

[@active_start_date =] active_start_date

Is the date when the Distribution Agent is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of
NULL.

[@active_end_date =] active_end_date

Is the date when the Distribution Agent stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
NULL.

[@optional_command_line =] 'optional_command_line'

Is the optional command prompt to execute. optional_command_line is nvarchar(4000), with a default of NULL.

[@reserved =] 'reserved'

For internal use only.

[@enabled_for_syncmgr =] 'enabled_for_syncmgr'

Is whether the subscription can be synchronized through Microsoft Windows Synchronization Manager. enabled_for_syncmgr is
nvarchar(5), with a default of FALSE. If false, the subscription is not registered with Windows Synchronization Manager. If true,
the subscription is registered with Windows Synchronization Manager and can be synchronized without starting SQL Server
Enterprise Manager.

[@offloadagent =] 'remote_agent_activation'

Specifies that the agent can be activated remotely. remote_agent_activation is bit with a default of 0. 0 specifies the agent cannot

be activated remotely. 1 specifies the agent can be activated remotely.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote activation. remote_agent_server_name is sysname, with a default of
NULL.

[@dts_package_name =] 'dts_package_name'

Specifies the name of the DTS package. dts_package_name is a sysname with a default of NULL. For example, to specify a
package of DTSPub_Package, the parameter would be @dts_package_name = N'DTSPub_Package'. This parameter is available for
push subscriptions. To add DTS package information to a pull subscription, use sp_addpullsubscription_agent.

[@dts_package_password =] 'dts_package_password'

Specifies the password on the package, if there is one. dts_package_password is sysname with a default of NULL, which means a
password in not on the package.

[@dts_package_location =] 'dts_package_location'

Specifies the package location. dts_package_location is a nvarchar(12), with a default of DISTRIBUTOR. The location of the
package can be distributor or subscriber.

[@distribution_job_name =] 'distribution_job_name'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addsubscription is used in snapshot replication and transactional replication.

sp_addsubscription prevents ODBC and OLE DB Subscribers access to publications that:

Were created with the native @sync_method in the call to sp_addpublication.

Contain articles that were added to the publication with an sp_addarticle stored procedure that had a pre_creation_cmd
parameter value of 3 (truncate).

Attempt to set @update_mode to synchtran.

Have an article configured to use parameterized statements.

In addition, if a publication has the allow_queued_tran option set to true (which enables queuing of changes at the Subscriber
until they can be applied at the Publisher), the timestamp column in an article will be scripted out as timestamp, and changes on
that column will be sent to the Subscriber. The Subscriber will generate and update the timestamp column value. For an
ODBC/OLE DB Subscriber, sp_addsubscription will fail if an attempt is made to subscribe to a publication that has
allow_queued_tran set to true and articles with timestamp columns in it.

If a subscription does not use a DTS package, it cannot subscribe to a publication that is set to allow_transformable_subscriptions.
If the table from the publication needs to be replicated to both a DTS subscription and non-DTS subscription, two separate
publications will have to be created: one for each type of subscription.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addsubscription. For pull
subscriptions, users with logins in the publication access list can execute sp_addsubscription.

See Also

sp_changesubstatus

sp_dropsubscription

sp_helpsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addsynctriggers
 New Information - SQL Server 2000 SP3.

Important The sp_script_synctran_commands procedure should be used instead of sp_addsynctrigger.
sp_script_synctran_commands generates a script that contains the sp_addsynctrigger calls.

Creates triggers at the Subscriber used with all types of updatable subscriptions (Immediate, Queued, and Immediate Updating
with Queued Updating as Failover). This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_addsynctriggers [@sub_table =] 'sub_table'
 , [@sub_table_owner =] 'sub_table_owner'
 , [@publisher =] 'publisher' ,
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@ins_proc =] 'ins_proc'
 , [@upd_proc =] 'upd_proc'
 , [@del_proc =] 'del_proc'
 , [@cftproc =] 'cftproc'
 , [@proc_owner =] 'proc_owner'
 , [, [@identity_col =] 'identity_col']
 , [, [@ts_col =] 'timestamp_col']
 , [, [@filter_clause =] 'filter_clause'] ,
 , [@primary_key_bitmap =] 'primary_key_bitmap' ,
 [, [@identity_support =] identity_support]
 [, [@independent_agent =] independent_agent]
 , [@distributor =] 'distributor'
 [, [@pubversion =] 'pubversion']

Arguments

[@sub_table =] 'sub_table'

Is the name of the Subscriber table. sub_table is sysname, with no default.

[@sub_table_owner =] 'sub_table_owner'

Is the name of the owner of the Subscriber table. sub_table_owner is sysname, with no default.

[@publisher =] 'publisher'

Is the name of the Publisher server. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default. If NULL, the current database is used.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@ins_proc =] 'ins_proc'

Is the name of the stored procedure that supports synchronous transaction inserts at the Publisher. ins_proc is sysname, with no
default.

[@upd_proc =] 'upd_proc'

Is the name of the stored procedure that supports synchronous transaction updates at the Publisher. ins_proc is sysname, with no
default.

[@del_proc =] 'del_proc'

Is the name of the stored procedure that supports synchronous transaction deletes at the Publisher. ins_proc is sysname, with no
default.

[@cftproc =] 'cftproc'

Is the name of the auto-generated procedure used by publications that allow queued updating. cftproc is sysname, with no
default. For publications that allow immediate updating, this value is NULL. This parameter applies to publications that allow
queued updating (Queued Updating and Immediate Updating with Queued Updating as Failover).

[@proc_owner =] 'proc_owner'

Specifies the user account in the Publisher under which all the auto-generated stored procedures for updating publication
(queued and/or immediate) were created. proc_owner is sysname with no default.

[@identity_col =] 'identity_col'

Is the name of the identity column at the Publisher. identity_col is sysname, with a default of NULL.

[@ts_col =] 'timestamp_col'

Is the name of the timestamp column at the Publisher. timestamp_col is sysname, with a default of NULL.

[@filter_clause =] 'filter_clause'

Is a restriction (WHERE) clause that defines a horizontal filter. When entering the restriction clause, omit the keyword WHERE.
filter_clause is nvarchar(4000), with a default of NULL.

[@primary_key_bitmap =] 'primary_key_bitmap'

Is a bit map of the primary key columns in the table. primary_key_bitmap is varbinary(4000), with no default.

[@identity_support =] identity_support

Enables and disables automatic identity range handling when queued updating is used. identity_support is a bit, with a default of
0. 0 means that there is no identity range support, 1 enables automatic identity range handling.

[@independent_agent =] independent_agent

Indicates whether there is a single Distribution Agent (an independent agent) for this publication, or one Distribution Agent per
publication database and subscription database pair (a shared agent). This value reflects the value of the independent_agent
property of the publication defined at the Publisher. independent_agent is a bit with a default of 0. If 0, the agent is a Shared
Agent. If 1, the agent is an independent agent.

[@distributor =] 'distributor'

Is the name of the Distributor. distributor is sysname, with no default.

[@pubversion =] 'pubversion'

Indicates the version of the Publisher. pubversion is int, with a default of 1. 1 means that the Publisher version is SQL Server 2000
SP2 or earlier, 2 means that the Publisher is SQL Server 2000 SP3 or later. pubversion must be explicitly set to 2 when the
Publisher version is SQL Server 2000 SP3 or later.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addsynctriggers is used by the Distribution Agent as part of subscription initialization. This stored procedure is not
commonly run by users, but may be useful if the user needs to manually set up a nosync subscription.

Important The sp_script_synctran_commands procedure should be used instead of sp_addsynctrigger.
sp_script_synctran_commands generates a script that contains the sp_addsynctrigger calls.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addsynctriggers.

See Also

Immediate Updating with Queued Updating as a Failover

Planning for Replication Options

sp_script_synctran_commands

sp_articlesynctranprocs

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_addtabletocontents
Inserts references into the merge tracking tables for any rows in a source table that are not currently included in the tracking
tables. Use this option if you have bulk-loaded a large amount of data using bcp, which will not file merge tracking triggers. This
stored procedure is executed at the Publisher on the publication database.

Syntax

sp_addtabletocontents [@table_name =] 'table_name'
 [, [@owner_name =] 'owner_name']

Arguments

[@table_name =] 'table_name'

Is the name of the table. table_name is sysname, with no default.

[@owner_name =] 'owner_name'

Is the name of the owner of the table. owner_name is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_addtabletocontents is used only in merge replication.

The rows in the table_name are referred to by their rowguidcol and the references are added to the merge tracking tables.
sp_addtabletocontents should be used after bulk copying data into a table that is published using merge replication. The stored
procedure initiates tracking of the rows that were copied and ensures that the new rows will be included in the next
synchronization.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addtabletocontents.

See Also

Adding Rows Using Bulk Copy Operations

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_adjustpublisheridentityrange
Adjusts the identity range on a publication and reallocates new ranges based on the threshold value on the publication. This
stored procedure is executed at the Publisher on the publication database.

Syntax

sp_adjustpublisheridentityrange [@publication =] 'publication'
 [@table_name =] 'table_name'
 [@table_owner=] 'table_owner'

Arguments

[@publication =] 'publication'

Is the name of the publication in which the article exists. publication is sysname, with a default of NULL.

[@table_name =] 'table_name'

Is the name of the table. table_name is sysname, with a default of NULL.

[@table_owner =] 'table_owner'

Is the name of the owner of the Subscriber table. table_owner is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_adjustpublisheridentityrange is used in all types of replication.

For a publication which has the auto identity range enabled, the Distribution Agent or Merge Agent is responsible for
automatically adjusting the identity range in a publication based on its threshold value. However, if for some reason the
Distribution Agent or Merge Agent has not been run for a period of time, and identity range resource have been consumed
heavily to the point of threshold, users can call sp_adjustpublisheridentityrange to allocate a new range of values for a
Publisher.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_adjustpublisheridentityrange.

See Also

Managing Identity Values

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_article_validation
 New Information - SQL Server 2000 SP3.

Initiates a data validation request for the specified article. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_article_validation [@publication =] 'publication'
 [, [@article =] 'article']
 [, [@rowcount_only =] type_of_check_requested]
 [, [@full_or_fast =] full_or_fast]
 [, [@shutdown_agent =] shutdown_agent]
 [, [@subscription_level =] subscription_level]
 [, [@reserved =] reserved]

Arguments

[@publication =] 'publication'

Is the name of the publication in which the article exists. publication is sysname, with no default.

[@article =]'article'

Is the name of the article to change. article is sysname, with no default.

[@rowcount_only =] type_of_check_requested

Specifies if only the rowcount for the table is returned. . type_of_check_requested is smallint, with a default of 1. If 0, perform a
SQL Server 7.0 compatible checksum. If 1, perform a rowcount check only. If 2, perform a rowcount and checksum.

[@full_or_fast =] full_or_fast

Is the method used to calculate the rowcount. full_or_fast is tinyint, and can be one of these values.

Value Description
0 Performs full count using COUNT(*).
1 Performs fast count from sysindexes.rows. Counting rows in

sysindexes is faster than counting rows in the actual table.
However, sysindexes is updated lazily, and the rowcount may
not be accurate.

2 (default) Performs conditional fast counting by first trying the fast
method. If fast method shows differences, reverts to full
method. If expected_rowcount is NULL and the stored
procedure is being used to get the value, a full COUNT(*) is
always used.

[@shutdown_agent =] shutdown_agent

Specifies if the Distribution agent should shut down immediately upon completion of the validation. shutdown_agent is bit, with a
default of 0. If 0, the Distribution Agent does not shut down. If 1, the Distribution Agent shuts down after the article is validated.

[@subscription_level =] subscription_level

Specifies whether or not the validation is picked up by a set of subscribers. subscription_level is bit, with a default of 0. If 0,
validation will be applied to all Subscribers. If 1, validation will only be applied to a subset of the Subscribers specified by calls to
sp_marksubscriptionvalidation in the current open transaction.

[@reserved =] reserved

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_article_validation is used in snapshot replication and transactional replication.

sp_article_validation causes validation information to be gathered on the specified article and posts a validation request to the
transaction log. When the Distribution Agent receives this request, the Distribution Agent compares the validation information in
the request to the Subscriber table. The results of the validation are displayed in the Replication Monitor and in SQL Server Agent
alerts.

Permissions

Only members of the sysadmin fixed server role, members of the db_owner fixed database role, or users with SELECT ALL
permissions on the article can execute sp_article_validation.

See Also

sp_marksubscriptionvalidation

sp_publication_validation

sp_table_validation

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_articlecolumn
Specifies columns used in an article. Use sp_articlecolumn to filter the data in a table vertically. This stored procedure is
executed at the Publisher on the publication database.

Syntax

sp_articlecolumn [@publication =] 'publication'
 , [@article =] 'article'
 [, [@column =] 'column']
 [, [@operation =] 'operation']
 [, [@refresh_synctran_procs =] refresh_synctran_procs]
 [, [@ignore_distributor =] ignore_distributor]
 [, [@change_active =] change_actve]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains this article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@column =] 'column'

Is the name of the column to be added or dropped. column is sysname, with a default of NULL. If NULL, all columns are
published.

[@operation =] 'operation'

Is the replication status. operation is nvarchar(4), with a default of add. add marks the column for replication. drop unmarks the
column.

[@refresh_synctran_procs =] refresh_synctran_procs

Specifies whether to add or drop columns in an article. refresh_synctran_procs is bit, with a default of 1. If 1, the stored
procedures supporting synchronous transactions are regenerated to match the number of columns replicated.

[@ignore_distributor =] ignore_distributor

Indicates if this stored procedure executes without connecting to the Distributor. ignore_distributor is bit, with a default of 0. If 0,
the database must be enabled for publishing, and the article cache should be refreshed to reflect the new columns replicated by
the article. If 1, allows article columns to be dropped for articles that reside in an unpublished database; should be used only in
recovery situations.

[@change_active =] change_active

Allows modifying the columns in publications that have subscriptions. change_active is an int with a default of 0. If 0, columns
will not be modified. If 1, columns can be added or dropped from active articles that have subscriptions.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changes to
the article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives
permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit, with a default of 0. 0 specifies that changes to the article will not cause the subscription to be
reinitialized. If the stored procedure detects that the change would require subscriptions to be reinitialized, an error will occur and
no changes will be made. 1 specifies that changes to the article will cause existing subscriptions to be reinitialized, and gives

permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_articlecolumn is used in snapshot replication and transactional replication.

sp_articlecolumn sets a bit in sysarticles. Only an unsubscribed article can be filtered using sp_articlecolumn.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_articlecolumn.

See Also

sp_addarticle

sp_addpublication

sp_articleview

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_articlefilter
Filters data that will be published based on a table article. Only articles without subscriptions can be modified by this stored
procedure. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_articlefilter [@publication =] 'publication'
 , [@article =] 'article'
 [, [@filter_name =] 'filter_name']
 [, [@filter_clause =] 'filter_clause']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@filter_name =] 'filter_name'

Is the name of the filter stored procedure to be created from the filter_name. filter_name is nvarchar(386), with a default of
NULL.

[@filter_clause =] 'filter_clause'

Is a restriction (WHERE) clause that defines a horizontal filter. When entering the restriction clause, omit the keyword WHERE.
filter_clause is ntext, with a default of NULL.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changes to
the article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives
permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit, with a default of 0. 0 specifies that changes to the article will not cause a need for subscriptions
to be reinitialized. If the stored procedure detects that the change would require subscriptions to be reinitialized, an error will
occur and no changes will be made. 1 specifies that changes to the article will cause existing subscriptions to be reinitialized, and
gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_article_filter is used in snapshot replication and transactional replication.

sp_articlefilter creates the filter, inserts the ID of the filter stored procedure in the filter column of the sysarticles table, and
then inserts the text of the restriction clause in the filter_clause column.

To create an article with a horizontal filter, execute sp_addarticle with no filter parameter. Execute sp_articlefilter, providing all
parameters including filter_clause, and then execute sp_articleview, providing all parameters including the identical filter_clause.
If the filter already exists and if the type in sysarticles is 1 (log-based article), the previous filter is deleted and a new filter is
created.

If filter_name and filter_clause are not provided, the previous filter is deleted and the filter ID is set to 0.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_articlefilter.

See Also

sp_addarticle

sp_articlecolumn

sp_articleview

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_articlesynctranprocs
Generates procedures at the Publisher that are called by updating (Immediate, Queued, Immediate with Queued Failover)
subscriber triggers. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_articlesynctranprocs [@publication =] 'publication'
 , [@article =] 'article'
 , [@ins_proc =] 'ins_proc'
 , [@upd_proc =] 'upd_proc'
 , [@del_proc =] 'del_proc'
 [, [@autogen =] 'autogen']
 , [@upd_trig =] 'update_trigger']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@ins_proc =] 'ins_proc'

Is the name of the stored procedure that supports immediate updating Subscriber inserts associated with this article. ins_proc is
sysname, with no default.

[@upd_proc =] 'upd_proc'

Is the name of the stored procedure that supports immediate updating Subscriber updates associated with this article. upd_proc is
sysname, with no default.

[@del_proc =] 'del_proc'

Is the name of the stored procedure that supports immediate updating Subscriber deletes associated with this article. del_proc is
sysname, with no default.

[@autogen =] 'autogen'

Specifies if stored procedures are generated automatically. autogen is nvarchar(5), with a default of TRUE.

[@upd_trig =] 'update_trigger'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_articlesynctranprocs is used in snapshot replication and transactional replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_articlesynctranprocs.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_articleview
Creates the synchronization object for an article when a table is filtered vertically or horizontally. This synchronization object is a
view that is used as the filtered source of the schema and data for the destination tables. Only unsubscribed articles can be
modified by this stored procedure. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_articleview [@publication =] 'publication'
 , [@article =] 'article'
 [, [@view_name =] 'view_name']
 [, [@filter_clause =] 'filter_clause']
 [, [@change_active =] change_active]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@view_name =] 'view_name'

Is the name of the synchronization object. view_name is nvarchar(386), with a default of NULL.

[@filter_clause =] 'filter_clause'

Is a restriction (WHERE) clause that defines a horizontal filter. When entering the restriction clause, omit the WHERE keyword.
filter_clause is ntext, with a default of NULL.

[@change_active =] change_active

Allows modifying the columns in publications that have subscriptions. change_active is an int, with a default of 0. If 0, columns
will not be change. If 1, views can be created or re-created on active articles that have subscriptions.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changes to
the article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives
permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit with a default of 0. 0 specifies that changes to the article will not cause the subscription to be
reinitialized. If the stored procedure detects that the change would require subscriptions to be reinitialized, an error will occur and
no changes will be made. 1 specifies that changes to the article will cause existing subscription to be reinitialized, and gives
permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_articleview creates the view and inserts the ID of the synchronization object (the view) in the sync_objid column of the
sysarticles table, and inserts the text of the restriction clause in the filter_clause column. If all columns are replicated and there is
no filter_clause, the sync_objid in the sysarticles table is set to the ID of the base table, and the use of sp_articleview is not
required.

To publish a vertically filtered table (that is, to filter columns) first run sp_addarticle with no sync_object parameter, run
sp_articlecolumn once for each column to be replicated (defining the vertical filter), and then run sp_articleview to create the
synchronization object.

To publish a horizontally filtered table (that is, to filter rows), run sp_addarticle with no filter parameter. Run sp_articlefilter,
providing all parameters including filter_clause. Then run sp_articleview, providing all parameters including the identical
filter_clause.

To publish a vertically and horizontally filtered table, run sp_addarticle with no sync_object or filter parameters. Run
sp_articlecolumn once for each column to be replicated, and then run sp_articlefilter and sp_articleview.

If the article already has a synchronization object (a view), sp_articleview drops the existing view and creates a new one
automatically. If the view was created manually (type in sysarticles is 5), the existing view is not dropped.

If you create a custom filter stored procedure and a synchronization object manually, do not run sp_articleview. Instead, provide
these as the filter and sync_object parameters to sp_addarticle, along with the appropriate type value.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_articleview.

See Also

sp_addarticle

sp_articlecolumn

sp_articlefilter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_attachsubscription
 New Information - SQL Server 2000 SP3.

Attaches an existing subscription database to any Subscriber. This stored procedure is executed at the new Subscriber on the
master database.

Syntax

sp_attachsubscription [@dbname =] 'dbname'
 , [@filename =] 'filename'
 [, [@subscriber_security_mode =] 'subscriber_security_mode']
 [, [@subscriber_login =] 'subscriber_login']
 [, [@subscriber_password =] 'subscriber_password']

Arguments

[@dbname =] 'dbname'

Is the string that specifies the destination subscription database by name. dbname is sysname, with no default.

[@filename =] 'filename'

Is the name and physical location of the primary MDF (master data file). file name is nvarchar(260), with no default.

[@subscriber_security_mode =] 'subscriber_security_mode'

Is the security mode of the Subscriber to use when connecting to a Subscriber when synchronizing. subscriber_security_mode is
int, with a default of NULL. If 0, the security mode is SQL Server Authentication. If 1, the security mode is Windows
Authentication.

[@subscriber_login =] 'subscriber_login'

Is the Subscriber login name to use when connecting to a Subscriber when synchronizing. subscriber_login is sysname, with a
default of NULL. If subscriber_security_mode is 0, this parameter must be specified.

[@subscriber_password =] 'subscriber_password'

Is the Subscriber password. subscriber_password is sysname, with a default of NULL. If SubscriberSecurityMode is 0, this
parameter must be specified. If a subscriber password is used, it is automatically encrypted.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_attachsubscription is used in snapshot replication, transactional replication, and merge replication.

A subscription cannot be attached to the publication if the publication retention period has expired. If a subscription with an
elapsed retention period is specified, an error will occur either when the subscription is attached or when it is first synchronized.
Publications with a publication retention period of 0 (never expire) are ignored.

Permissions

Only members of the sysadmin fixed server role or db_creator fixed database role can execute sp_attachsubscription.

See Also

Attachable Subscription Databases

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_browsesnapshotfolder
 New Information - SQL Server 2000 SP3.

Returns the complete path for the latest snapshot generated for a publication. This stored procedure is executed at the Publisher
on the publication database.

Syntax

sp_browsesnapshotfolder [@publication =] 'publication'
 { [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db'] }

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db=] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

Result Sets

Column name Data type Description
snapshot_folder nvarchar(512) Full path to the snapshot directory.

Remarks

sp_browsesnapshotfolder is used in snapshot replication and transactional replication.

If the subscriber and subscriber_db fields are left NULL, the stored procedure will return the snapshot folder of the most recent
snapshot it can find for the publication. If the subscriber and subscriber_db fields are specified, the stored procedure will return the
snapshot folder for the specified subscription. If a snapshot has not been generated for the publication, an empty result set will be
returned.

If the publication is set up to generate snapshot files in both the Publisher working directory and Publisher snapshot folder, the
result set will contain two rows:; . the first row will contain the publication snapshot folder and the second row will contain the
publisher working directory.sp_browsesnapshotfolder is useful for determining the directory where snapshot files are
generated.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_browsesnapshotfolder.

See Also

Exploring Snapshots

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_browsemergesnapshotfolder
 New Information - SQL Server 2000 SP3.

Returns the complete path for the latest snapshot generated for a merge publication. This stored procedure is executed at the
Publisher on the publication database.

Syntax

sp_browsesnapshotfolder [@publication =] 'publication'

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

Result Sets

Column name Data type Description
snapshot_folder nvarchar(2000) Full path to the snapshot directory.

Remarks

sp_browsemergesnapshotfolder is used in merge replication.

If the publication is set up to generate snapshot files in both the Publisher working directory and Publisher snapshot folder, the
result set will contain two rows: the first row will contain the publication snapshot folder and the second row will contain the
publisher working directory.

sp_browsemergesnapshotfolder is useful for determining the directory where the merge snapshot files are generated. This
folder/path and its contents can then be copied to removable media, and the snapshot used to synchronize a subscription from an
alternate snapshot location.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_browsesnapshotfolder.

See Also

Exploring Snapshots

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_browsereplcmds
Returns a result set in a readable version of the replicated commands stored in the distribution database. This stored procedure is
executed at the Distributor on the distribution database.

Syntax

sp_browsereplcmds [[@xact_seqno_start =] 'xact_seqno_start']
 [, [@xact_seqno_end =] 'xact_seqno_end']
 [, [@originator_id =] 'originator_id']
 [, [@publisher_database_id =] 'publisher_database_id']
 [, [@article_id =] 'article_id']
 [, [@command_id =] command_id]
 [, [@results_table =] 'results_table']

Arguments

[@xact_seqno_start =] 'xact_seqno_start'

Specifies the lowest valued exact sequence number to return. xact_seqno_start is nchar(22), with a default of
0x00000000000000000000.

[@xact_seqno_end =] 'xact_seqno_end'

Specifies the highest exact sequence number to return. xact_seqno_end is nchar(22), with a default of 0xFFFFFFFFFFFFFFFFFFFF.

[@originator_id =] 'originator_id'

Specifies if commands with the specified originator_id are returned. originator_id is int, with a default of NULL.

[@publisher_database_id =] 'publisher_database_id'

Specifies if commands with the specified publisher_database_id are returned. publisher_database_id is int, with a default of NULL.

[@article_id =] 'article_id'

Specifies if commands with the specified article_id are returned. article_id is int, with a default of NULL.

[@command_id =] command_id

Is the location of the command in MSrepl_commands to be decoded. command_id is int, with a default of NULL. If specified, all
other parameters must be specified also, and xact_seqno_start must be identical to xact_seqno_end.

[@results_table =] 'results_table'

Specifies that a table by this name will be created, and the result set should be saved to this table instead of being returned to the
client. results_table is sysname with a default of NULL. The table can then be used in additional queries, such as sorting the result
set in a different order or manipulating it further.

Result Sets

sp_browsereplcmds is a diagnostic utility used to examine replicated commands stored in the distribution database.
sp_browsereplcmds returns this result set.

Column name Data type Description
xact_seqno varbinary(16) Sequence number of the command.
originator_id int ID of the command originator.
publisher_database_id int ID of the Publisher database.
article_id int ID of the article.
type int Type of command.
command nvarchar(1024) Transact-SQL command.

Long commands can be split across several rows in the result sets.

Remarks

sp_browsereplcmds is used in transactional replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_browsereplcmds.

See Also

sp_dumpparamcmd

sp_replcmds

sp_replshowcmds

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_change_agent_parameter
Changes a parameter of a replication agent profile stored in MSagent_parameters. This stored procedure is executed at the
Distributor where the agent is running, on any database.

Syntax

sp_change_agent_parameter [@profile_id =] profile_id
 , [@parameter_name =] 'parameter_name'
 , [@parameter_value =] 'parameter_value'

Arguments

[@profile_id =] profile_id,

Is the ID of the profile. profile_id is int, with no default.

[@parameter_name =] 'parameter_name'

Is the name of the parameter. parameter_name is sysname, with no default. For system profiles, the parameters that can be
changed depend on the type of agent. To find out what type of agent this profile_id represents, find the profile_id in the
Msagent_profiles table, and note the agent_type field value. For a Snapshot Agent, which has a value of 1 in the agent_type field,
the following properties can be changed:

bcpbatchsize

historyverboselevel

logintimeout

maxbcpthreads

querytimeout

For a Log Reader Agent, which has a value of 2 in the agent_type field, the following properties can be changed:

historyverboselevel

logintimeout

pollinginterval

querytimeout

readbatchsize

readbatchthreshold

For a Distribution Agent, which has a value of 3 in the agent_type field, the following properties can be changed:

bcpbatchsize

commitbatchsize

commitbatchthreshold

historyverboselevel

logintimeout

maxbcpthreads

maxdeliveredtransactions

pollinginterval

querytimeout

transactionsperhistory

skiperrors

For a Merge Agent, which has a value of 4 in the agent_type field, the following properties can be changed:

pollinginterval

validateinterval

logintimeout

querytimeout

maxuploadchanges

maxdownloadchanges

uploadgenerationsperbatch

downloadgenerationsperbatch

uploadreadchangesperbatch

downloadreadchangesperbatch

uploadwritechangesperbatch

downloadwritechangesperbatch

validate

fastrowcount

historyverboselevel

changesperhistory

bcpbatchsize

numdeadlockretries

For custom profiles, the parameters that can be changed depend on the parameters defined. To see what parameters have
been defined, run sp_help_agent_profile to see the profile_name associated with the profile_id. With the appropriate
profile_id, next run sp_help_agent_parameters using that profile_id to see the parameters associated with the profile.

[@parameter_value =] 'parameter_value'

Is the new value of the parameter. parameter_value is nvarchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_change_agent_parameter is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_change_agent_parameter.

See Also

Distribution Agent Profile

Log Reader Agent Profile

Merge Agent Profile

Snapshot Agent Profile

sp_add_agent_parameter

sp_drop_agent_parameter

sp_help_agent_parameter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_change_agent_profile
Changes a parameter of a replication agent profile stored in MSagent_profiles. This stored procedure is executed at the
Distributor on any database.

Syntax

sp_change_agent_profile [@profile_id =] profile_id
 , [@property =] 'property'
 , [@value =] 'value'

Arguments

[@profile_id =] profile_id

Is the ID of the profile. profile_id is int, with no default.

[@property =] 'property'

Is the name of the property. property is sysname, with no default.

[@value =] 'value'

Is the new value of the property. value is nvarchar(3000), with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_change_agent_profile is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_change_agent_profile.

See Also

sp_add_agent_profile

sp_drop_agent_profile

sp_help_agent_profile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changearticle
Changes the properties of an article in a transactional or snapshot publication. This stored procedure is executed at the Publisher
on the publication database.

Syntax

sp_changearticle [[@publication =] 'publication']
 [, [@article =] 'article']
 [, [@property =] 'property']
 [, [@value =] 'value']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with a default of NULL.

[@article =] 'article'

Is the name of the article whose property is to be changed. article is sysname, with a default of NULL.

[@property =] 'property'

Is an article property to change. property is nvarchar(20).

[@value =] 'value'

Is the new value of the article property. value is nvarchar(255).

This table describes the properties of articles and the values for those properties.

Property Values Description
description New descriptive entry for the

publication job.
sync_object Name of the table or view used to

produce a synchronization output
file. The default is NULL.

type logbased (default) =
Log-based article.
logbased
manualfilter = Log-
based article with
manual filter.
logbased
manualview= Log-
based article with
manual view.
logbased
manualboth = Log-
based article with
both manual filter
and manual view.

Article type.

ins_cmd INSERT statement to execute;
otherwise, it is constructed from the
log.

del_cmd DELETE statement to execute;
otherwise, it is constructed from the
log.

upd_cmd UPDATE statement to execute;
otherwise, it is constructed from the
log.

filter New stored procedure to be used to
filter the table (horizontal filtering).
The default is NULL.

dest_table New destination table.
dest_object Provided for backward compatibility.

Use dest_table.
creation_script Path and name of an article schema

script used to create target tables.
The default is NULL.

pre_creation_cmd Precreation command that can drop,
delete, or truncate the destination
table before synchronization is
applied.

none Does not use a command.
drop Drops the destination table.
delete Deletes the destination table.
truncate Truncates the destination table.

status Specifies the new status of the
property.

include column
names

Allows column names in the
replicated INSERT statement.

no column names Allows no column names in the
replicated INSERT statement.

owner qualified Allows owner-qualified table names.
not owner qualified Allows table names that are not

owner-qualified.
string literals |
parameters

Specifies whether the logreader-
generated commands use the
standard string_literal command
format or the new parameterized
command format.

schema_option Specifies the bitmap of the schema
generation option for the given
article. schema_option is binary(8). If
this value is NULL, the system will
auto-generate a valid schema option
for the article. The table given in the
Remarks shows the value that will be
chosen based upon the combination
of the article type and the replication
type. Also, not all schema_option
values are valid for every type of
replication and article type. The Valid
Schema Option table given in the
Remarks shows the valid schema
options that can be chosen, based
upon the combination of the article
type and the replication type.

0x00 Disables scripting by InitialSync and
uses the provided CreationScript.

0x01 Generates the object creation
(CREATE TABLE, CREATE
PROCEDURE, and so on).

0x10 Generates a corresponding clustered
index.

0x20 Converts user-defined data types to
base data types.

0x40 Generates corresponding
nonclustered index(es).

0x80 Includes declared referential integrity
on the primary keys.

 0x100 Replicates user triggers on a table
article, if defined.

 0x200 Replicates foreign key constraints. If
the referenced table is not part of a
publication, all foreign key
constraints on a published table will
not be replicated.

 0x400 Replicates check constraints.
 0x800 Replicates defaults.
 0x1000 Replicates column-level collation.
 0x2000 Replicates extended properties

associated with the published article
source object.

 0x4000 Replicates unique keys if defined on
a table article.

 0x8000 Replicates primary key and unique
keys on a table article as constraints
using ALTER TABLE statements.

destination_owner destination_owner Name of the owner of the destination
object.

NULL NULL

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changes to
the article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives
permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit with a default of 0. 0 specifies that changes to the article will not cause the subscription to be
reinitialized. If the stored procedure detects that the change would require existing subscriptions to be reinitialized, an error will
occur and no changes will be made. 1 specifies that changes to the article will cause existing subscriptions to be reinitialized, and
gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changearticle is used in snapshot replication and transactional replication.

Within an existing publication, you can use sp_changearticle to change an article without having to drop and re-create the entire
publication.

The table describes the default @schema_option value that will be chosen for the stored procedure if a NULL value is passed in by
the user. The default value is based upon the replication type shown across the top, and the article type shown down the first
column. Empty cells are article type and replication types that are not valid pairs, and therefore, would have no default.

Article Type Replication Type
 Transactional Snapshot
logbased 0xF3 0x71
logbased manualfilter 0xF3 0x71
logbased manualview 0xF3 0x71
indexed view logbased 0xF3 0x71

indexed view logbased
manualfilter

0xF3 0x71

indexed view logbased
manualview

0xF3 0x71

indexed view logbase
manualboth

0xF3 0x71

proc exec 0x01 0x01
serialized proc exec 0x01 0x01
proc schema only 0x01 0x01
view schema only 0x01 0x01
func schema only 0x01 0x01
indexed view schema only 0x01 0x01
table

Note If a publication is enabled for queued updating, the @schema_option values of 0x8000 and 0x0080 will be added to the
default value shown in the table.

Valid Schema Option Table

Article Type Replication Type
 Transactional Snapshot
logbased All options All options but 0x02
logbased manualfilter All options All options but 0x02
logbased manualview All options All options but 0x02
indexed view logbased All options All options but 0x02
indexed view logbased
manualfilter

All options All options but 0x02

indexed view logbased
manualview

All options All options but 0x02

indexed view logbase
manualboth

All options All options but 0x02

proc exec 0x01 and 0x2000 0x01 and 0x2000
serialized proc exec 0x01 and 0x2000 0x01 and 0x2000
proc schema only 0x01 and 0x2000 0x01 and 0x2000
view schema only 0x01, 0x0100, and 0x2000 0x01, 0x0100, and 0x2000
func schema only 0x01 and 0x2000 0x01 and 0x2000
indexed view schema only 0x01, 0x10, 0x040, 0x0100,

and 0x2000
0x01, 0x10, 0x040, 0x0100,
and 0x2000

table

Note For queued updating publications, the @schema_option values of 0x8000 and 0x80 must be enabled.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changearticle.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changedistpublisher
Changes the properties of the distribution Publisher. This stored procedure is executed at the Distributor on any database.

Syntax

sp_changedistpublisher [@publisher =] 'publisher'
 [, [@property =] 'property']
 [, [@value =] 'value']

Arguments

[@publisher =] 'publisher'

Is the Publisher name. publisher is sysname, with no default.

[@property =] 'property'

Is a property to change for the given Publisher. property is sysname and can be one of these values.

Value Description
active Active status value.
distribution_db Distribution database status value.
login Login status value.
password Password status value.
security_mode Security mode status value.
working_directory Working directory status value.
NULL (default) All available property options are printed.

[@value =] 'value'

Is the value for the given property. value is nvarchar(255), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changedistpublisher is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changedistpublisher.

See Also

sp_adddistpublisher

sp_dropdistpublisher

sp_helpdistpublisher

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changedistributiondb
Changes the properties of the distribution database. This stored procedure is executed at the Distributor on the distribution
database.

Syntax

sp_changedistributiondb [@database =] 'database'
 [, [@property =] 'property']
 [, [@value =] 'value']

Arguments

[@database =] 'database'

Is the name of the database. database is sysname, with no default.

[@property =] 'property'

Is the property to change for the given database. property is sysname, and can be one of these values.

Value Description
history_retention History table retention period.
max_distretention Maximum distribution retention period. This value

must be greater than or equal to the retention period of
all transactional publications in the distribution
database.

min_distretention Minimum distribution retention period.
NULL (default) All available property values are printed.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(255), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changedistributiondb is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changedistributiondb.

See Also

sp_adddistributiondb

sp_dropdistributiondb

sp_helpdistributiondb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changedistributor_password
 New Information - SQL Server 2000 SP3.

Changes the password for a Distributor. This stored procedure is executed at the Publisher on the distribution database.

Syntax

sp_changedistributor_password [@password =] 'password'

Arguments

[@password =] 'password'

Is the new password. password is sysname, with no default. If the Distributor is local, the password of the distributor_admin
system login is changed.

Security Note NULL passwords are not recommended.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changedistributor_password is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changedistributor_password.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changedistributor_property
Changes the properties of the Distributor. This stored procedure is executed at the Distributor on the distribution database.

Syntax

sp_changedistributor_property [[@property =] 'property']
 [, [@value =] 'value']

Arguments

[@property =] 'property'

Is the property for a given Distributor. property is sysname, and can be one of these values.

Value Description
heartbeat_interval Maximum number of minutes that an agent can run

without logging a progress message.
NULL (default) All available property values are printed.

[@value =] 'value'

Is the value for the given Distributor property. value is varchar(255), with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changedistributor_property is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changedistributor_property.

See Also

sp_adddistributor

sp_dropdistributor

sp_helpdistributor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changemergearticle
 New Information - SQL Server 2000 SP3.

Changes the properties of a merge article. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changemergearticle [@publication =] 'publication'
 , [@article =] 'article'
 [, [@property =] 'property']
 [, [@value =] 'value']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication in which the article exists. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article to change. article is sysname, with no default.

[@property =] 'property'

Is the property to change for the given article and publication. property is nvarchar(30), and can be one of the values listed in the
table.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(1000), and can be one of the values listed in the table.

This table describes the properties of articles and the values for those properties.

Property Values Description
description Descriptive entry for the

article.
pre_creation_command none: If the table already

exists at the Subscriber, no
action is taken.

drop:Issues a delete based
on the WHERE clause in
the subset filter.

delete:Drops the table
before re-creating it.

truncate: Same as delete,
but deletes pages instead
of rows. Does not accept a
WHERE clause.

Specifies what the system
is to do if the tables exists
at the subscriber when
applying the snapshot.

creation_script Path and name of an
optional article schema
script used to create target
table.

column_tracking true or false Setting for column level
tracking. true turns on
column level tracking. false
turns off column level
tracking and leaves conflict
detection at the row level. If
the table is already
published inother merge
publications, the column
tracking must be the same
as the value being used by
existing articles based on
this table. This parameter is
specific to table articles
only.

article_resolver Custom resolver for the
article.

resolver_info Name of the stored
procedure used as a
custom resolver.

status active or unsynced, or Status of the article. If
active, the intial
processing script to publish
the table is run. If
unsynced, the intial
processing script to publish
the table is run at the next
time the Snapshot Agent
runs.

subset_filterclause WHERE clause specifying
the horizontal filtering.

schema_option 0x00: Disables scripting by
the Snapshot Agent and
uses the script provided in
creation_script.

0x01: Generates the object
creation (CREATE TABLE,
CREATE PROCEDURE, and
so on).

0x10: Generates a
corresponding clustered
index.

0x20:Converts user-
defined data types to base
data types.

0x40: Generates
corresponding
nonclustered index(es).

0x80: Includes declared
referential integrity on the
primary keys.

0x100: Replicates user
triggers on a table article,
if defined.

0x200:Replicates foreign
key constraints. If the
referenced table is not part
of a publication, all foreign
key constraints on a
published table will not be
replicated.

0x400: Replicates check
constraints.

0x800: Replicates defaults.

0x1000: Replicates
column-level collation.

0x2000: Replicates
extended properties
associated with the
published article source
object.

0x4000:Replicates unique
keys if defined on a table
article.

0x8000: Replicates
primary key and unique
keys on a table article as
constraints using ALTER
TABLE statements.

Bitmap of the schema
generation option for the
given article. If this value is
NULL, the system will auto-
generate a valid schema
option for the article. The
table given in the Remarks
shows the value that will be
chosen based upon the
combination of the article
type and the replication
type. Also, not all
@schema_option values
are valid for every type of
replication and article type.
The Valid Schema Option
table given in the Remarks
shows the valid schema
options that can be chosen
based upon the
combination of the article
type and the replication
type.

destination_owner Name of the owner of the
object in the subscription
database, if not 'dbo'.

destination_object New name of the
destination object, '', or
NULL. If NULL or '', the
value will be reset to be
equivalent to the current
value in the source_object
property for the article.

Valid for merge stored
procedures, views, and UDF
schema articles only.
Modifying the
destination_object of a
merge table article will
result in an error.

pub_identity_range Range size at the Publisher
if the article has
auto_identity_range set to
true. Applies to a table
article only.

identity_range The range size at the
Subscriber if the article has
auto_identity_range set to
true. Applies to a table
article only.

threshold Percentage value that
controls when the merge
agent assigns a new
identity range. When the
percentage of values
specified in threshold is
used, the Merge Agent
creates a new identity
range. Used when the
auto_identity_range is set
to true. Applies to a table
article only.

verify_resolver_signature 0 or 1 A bit value that specifies if
a digital signature is
verified before using a
resolver in merge
replication. A value of 0
specifies that the signature
will not be verified. A value
of 1 specifies that the
signature will be verified to
see if it is from a trusted
source.

allow_interactive_resolver true or false A bit value that enables or
disables the use of the
Interactive Resolver on an
article. A value of true
enables the use of the
Interactive Resolver on the
article; a value of false
disables it.

check_permissions A value of 0x00 specifies
that permissions will not
be checked.

A value of 0x10 specifies
that permissions will be
checked at the Publisher
before INSERTs, which
have been made at a
Subscriber, can be
uploaded.

A value of 0x20 specifies
that permissions will be
checked at the Publisher
before UPDATEs, which
have been made at a
Subscriber, can be
uploaded.

A value of 0x40 specifies
that permissions will be
checked at the Publisher
before DELETEs, which
have been made at a
Subscriber, can be
uploaded.

Bitmap of the table-level
permissions that will be
verified when the Merge
Agent applies changes to
the Publisher. If the
Publisher login/user
account used by the merge
process does not have the
correct table permissions,
the invalid changes will be
logged as conflicts.
check_permissions is int.

published_in_tran_pub true or false Indicates that an article in a
merge publication is also
published in a transactional
publication. true specifies
that the article is also
published in a transactional
publication.

NULL (default)

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the merge article will not cause the snapshot to be invalid. If the stored
procedure detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 means that
changes to the merge article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a
new snapshot, gives permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit, with a default of 0. 0 specifies that changes to the merge article will not cause the subscription to
be reinitialized.If the stored procedure detects that the change would require existing subscriptions to be reinitialized, an error will
occur and no changes will be made. 1 means that changes to the merge article will cause existing subscriptions to be reinitialized,
and gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changemergearticle is used in merge replication.

The table describes the default @schema_option value that will be chosen for the stored procedure if a NULL value is passed in by
the user. The default value is based upon the replication type shown across the top, and the article type shown down the first
column. Empty cells are article and replication type pairs that are not valid combinations, and therefore, have no default.

Article Type Replication Type
 Merge
logbased
logbased manualfilter
logbased manualview
indexed view logbased
indexed view logbased manualfilter
indexed view logbased manualview
indexed view logbase manualboth
proc exec
serialized proc exec
proc schema only 0x01
view schema only 0x01
func schema only 0x01
indexed view schema only 0x01
table 0xCFF1

Valid Schema Option Table

Article Type Replication Type
 Merge
logbased
logbased manualfilter
logbased manualview
indexed view logbased
indexed view logbased manualfilter
indexed view logbased manualview
indexed view logbase manualboth
proc exec 0x01 and 0x2000
serialized proc exec 0x01 and 0x2000
proc schema only 0x01 and 0x2000
view schema only 0x01, 0x0100, and 0x2000
func schema only 0x01 and 0x2000
indexed view schema only 0x01, 0x10, 0x040, 0x0100, and 0x2000
table All options but 0x02 and 0x8000

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changemergearticle.

See Also

sp_addmergearticle

sp_dropmergearticle

sp_helpmergearticle

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changemergefilter
Changes some merge filter properties. The merge filter properties that can be changed include filtername and join_filterclause.
This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changemergefilter [@publication =] 'publication'
 , [@article =] 'article'
 , [@filtername =] 'filtername'
 , [@property =] 'property'
 , [@value =] 'value'
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =]'article'

Is the name of the article. article is sysname, with no default.

[@filtername =] 'filtername'

Is the current name of the filter. filtername is sysname, with no default.

[@property =] 'property'

Is the name of the property to change. property is sysname, with no default, and can be one of these values.

Value Description
filtername Name of the filter.
join_filterclause Filter clause.
join_articlename Name of the join article.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(2000), with no default.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default 0. 0 specifies that changes to the merge article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 means that changes to
the merge article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot,
gives permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit with a default of 0. 0 specifies that changes to the merge article will not cause the subscription to
be reinitialized. If the stored procedure detects that the change would require existing subscriptions to be reinitialized, an error
will occur and no changes will be made. 1 means that changes to the merge article will cause existing subscriptions to be
reinitialized, and gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changemergefilter is used in merge replication.

Changing the filter on a merge article requires the snapshot, if one exists, to be redone. This is performed by setting the
@force_invalidate_snapshot to 1. Also, if there are subscriptions to this article, the subscription need to be reinitialized. This is
done by setting the @force_reinit_subscription to 1.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changemergefilter.

See Also

sp_addmergefilter

sp_dropmergefilter

sp_helpmergefilter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changemergepublication
Changes the properties of a merge publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changemergepublication [@publication =] 'publication'
 [, [@property =] 'property']
 [, [@value =] 'value']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@property =] 'property'

Is the property to change for the given publication. property is sysname, and can be one of the values listed in the table.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(255), and can be one of the values listed in the table.

This table describes the properties of the publication that can be changed and restrictions on the values for those properties.

Property Values Description
description Description of the publication.
status active or

unsynced
Status of the publication.

retention Number of days for which to save changes for
the given publication.

sync_mode native or
character

Mode of the intial synchronization of
subscribers to the publication. If native, native-
mode bulk copy program output of all tables is
produced. If character, character-mode bulk
copy program output of all tables is produced.
Non-SQL Server subscribers require the use of
character mode.

Allow_push true or
false

Push subscriptions are allowed for the given
publication.

Allow_pull true or
false

Pull subscriptions are allowed for the given
publication.

allow_anonymous true or
false

Anonymous subscriptions are allowed for the
given publication.

enabled_for_internet true or
false

Publication is enabled for the Internet, and
specifies if FTP can be use to transfer the
snapshot files to a subscriber. If true, the
synchronization files for the publication are put
into the C:\Program Files\Microsoft SQL
Server\MSSQL\Repldata\ftp directory.

centalized_conflicts true or
false

Conflict records are stored on the given
Publisher if true. If false, conflict records are
stored at the server where the conflict was
detected, which could be at the Publisher or the
Subscriber.

snapshot_ready true or
false

Snapshot for the publication is available.

snapshot_in_defaultfolder true or
false

Specifies if the snapshot is stored in the default
folder. If true, snapshot files can be found in the
default folder. If false, snapshot files will be
stored in the alternate location specified by the
alt_snapshot_folder. Note that this parameter
can be true and have a location specified in the
alt_snapshot_folder parameter. This
combination specifies that the snapshot files
will be stored in both the default and alternate
locations.

alt_snapshot_folder Specifies the location of the alternate folder for
the snapshot.

pre_snapshot_script Specifies a pointer to an .sql file location.
pre_snapshot_script is nvarchar(255), with a
default of NULL. The Merge Agent will run the
pre-snapshot script before any of the replicated
object scripts when applying a snapshot at a
Subscriber.

post_snapshot_script Specifies a pointer to an .sql file location. The
Distribution Agent or Merge Agent will run the
post-snapshot script after all the other
replicated object scripts and data have been
applied during an initial synchronization.

compress_snapshot true or
false

Specifies that the snapshot that is written to the
@alt_snapshot_folder location is to be
compressed into a Microsoft® CAB format.
compress_snapshot is nvarchar(5), with a
default of FALSE. false specifies that the
snapshot will not be compressed, while true
specifies that the snapshot is to be compressed.
The snapshot in the default folder cannot be
compressed.

ftp_address Is the network address of the FTP service for the
Distributor. Specifies where publication
snapshot files are stored.

ftp_port Is the port number of the FTP service for the
Distributor. Specifies the TCP port number of
the FTP site where the publication snapshot files
are stored.

ftp_subdirectory Specifies where the snapshot files are created if
the publication supports propagating snapshots
using FTP.

ftp_login Is the username used to connect to the FTP
service.

ftp_password Is the user password used to connect to the FTP
service.

conflict_retention Specifies the retention period, in days, for which
conflicts are retained. Setting
conflict_retention to 0 means no conflict
cleanup is needed.

allow_subscription_copy true or
false

Enables or disables the ability to copy the
subscription databases that subscribe to this
publication.

allow_synctoalternate true or
false

Enables an alternate synchronization partner to
synchronize with this Publisher.

validate_subscriber_info Lists the functions that are being used to
retrieve Subscriber information, and validates
the dynamic filtering criteria being used for the
Subscriber to verify that the information is
partitioned consistently. For example, if
SUSER_SNAME() is used in the dynamic filter,
this parameter should be specified as
@validate_subscriber_info=N'SUSER_SNAME()'.
For more information, see Validate Subscriber
Information.

publish_to_activedirectory Specifies whether the publication information is
published to the Microsoft Active Directory™.
This feature is available only for servers running
the Microsoft Windows® 2000 operating
system. A value of true will add the publication
information to the Microsoft Active Directory.

dynamic_filters true or
false

Specifies whether the publication is filtered on a
dynamic clause.

max_concurrent_merge The maximum number of concurrent merge
processes. A value of 0 for this property means
that there is no limit to the number of
concurrent merge processes running at any
given time. This property sets a limit on the
number of concurrent merge processes that can
be run against a merge publication at one time.
If there are more snapshot processes scheduled
at the same time than the value allows to run,
then the excess jobs will be put into a queue
and wait until a currently-running merge
process finishes.

max_concurrent_dynamic_snapshots The maximum number of concurrent dynamic
snapshot sessions that can be running against
the merge publication. If 0, there is no limit to
the maximum number of concurrent dynamic
snapshot sessions that can run simultaneously
against the publication at any given time. This
property sets a limit on the number of
concurrent snapshot processes that can be run
against a merge publication at one time. If there
are more snapshot processes scheduled at the
same time than the value allows to run, then the
excess jobs will be put into a queue and wait
until a currently-running merge process
finishes.

NULL (default)

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changing the publication will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changing
the publication may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot,
gives permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit with a default of 0. 0 specifies that changing the publication will not cause a need for
subscriptions to be reinitialized. If the stored procedure detects that the change would require existing subscriptions to be
reinitialized, an error will occur and no changes will be made. 1 specifies that changing the publication will cause existing
subscriptions to be reinitialized, and gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changemergepublication is used in merge replication.

To list publication objects to the Active Directory using the @publish_to_active_directory parameter, the SQL Server object
must already be created in the Active Directory. For more information, see Active Directory Services.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changemergepublication.

See Also

sp_addmergepublication

sp_dropmergepublication

sp_helpmergepublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changemergepullsubscription
Changes the properties of the merge pull subscription. This stored procedure is executed at the Subscriber on the subscription
database.

Syntax

sp_changemergepullsubscription [[@publication =] 'publication']
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@property =] 'property']
 [, [@value =] 'value']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of %.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of %.

[@property =] 'property'

Is the name of the property to change. property is sysname, and can be one of the values in the table.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(255), and can be one of the values in the table.

Property Value Description
sync_type automatic or

none
Is the subscription synchronization
type. sync_type is nvarchar(15),
with a default of automatic. Can be
automatic or none. If automatic,
the schema and initial data for
published tables are transferred to
the Subscriber first. If none, it is
assumed the Subscriber already has
the schema and initial data for
published tables. System tables and
data are always transferred.

priority Available for backward compatibility
only; run
sp_changemergesubscription at
the Publisher instead to modify the
priority of a subscription.

description Description of this merge pull
subscription.

publisher_login Login ID used at the Publisher for
SQL Server Authentication.

publisher_password Password (encrypted) used at the
Publisher for SQL Server
Authentication.

publisher_security_mode 0 = SQL Server
Authentication
1 = Windows
Authentication
2 = The
synchronization
triggers use a
static
sysservers
entry to do
RPC, and the
Publisher must
be defined in
the sysservers
table as a
remote server
or linked server

Security mode implemented at the
Publisher.

distributor Name of the Distributor.
distributor_login Login ID used at the Distributor for

SQL Server Authentication
distributor_password Password (encrypted) used at the

Distributor for SQL Server
Authentication.

distributor_security_mode 0 = SQL Server
Authentication
1 = Windows
Authentication

Security mode implemented at the
Distributor.

ftp_address Available for backward compatibility
only. Is the network address of the
FTP service for the Distributor.

ftp_port Available for backward compatibility
only. Is the port number of the FTP
service for the Distributor.

ftp_login Available for backward compatibility
only. Is the username used to
connect to the FTP service.

ftp_password Available for backward compatibility
only. Is the user password used to
connect to the FTP service.

alt_snapshot_folder Location where the snapshot folder
is stored if the location is other than
or in addition to the default location.

working_directory Fully qualified path to the directory
where snapshot files are transferred
using FTP when that option is
specified.

use_ftp Subscription is subscribing to
Publication over the Internet and FTP
addressing properties are
configured. If 0, Subscription is not
using FTP. If 1, subscription is using
FTP.

use_interactive_resolver 0 or 1 Determines whether or not the
interactive resolver is used during
reconciliation. If 0, the interactive
resolver is not used.

offload_agent 0 or 1 bit Specifies if the agent can be
activated and run remotely. If 0, the
agent cannot be remotely activated.

offload_server Name of the server used for remote
activation.

dynamic_snapshot_location Path to the folder where the
snapshot files are saved.

NULL (default)

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changemergepullsubscription is used in merge replication.

The current server and current database are assumed to be the Subscriber and Subscriber database.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_changemergepullsubscription.

See Also

sp_addmergepullsubscription

sp_dropmergepullsubscription

sp_helpmergepullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changemergesubscription
Changes a merge push or pull subscription. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changemergesubscription [[@publication =] 'publication']
 [, [@subscriber =] 'subscriber'
 [, [@subscriber_db =] 'subscriber_db']
 [, [@property =] 'property']
 [, [@value =] 'value']

Arguments

[@publication =] 'publication'

Is the name of the publication to change. publication is sysname, with a default of NULL. The publication must already exist and
must conform to the rules for identifiers.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

[@property =] 'property'

Is the property to change for the given publication. property is sysname, and can be one of the values in the table.

[@value =] 'value'

Is the new value for the specified property. value is nvarchar(255), and can be one of the values in the table.

Property Value Description
sync_type automatic or

none
Is the subscription synchronization type.
sync_type is nvarchar(15), with a default of
automatic. Can be automatic or none. If
automatic, the schema and initial data for
published tables are transferred to the
Subscriber first. If none, it is assumed the
Subscriber already has the schema and initial
data for published tables. System tables and
data are always transferred.

priority Is the subscription priority. The priority is used
by the default resolver to pick a winner when
conflicts are detected.

description Description of this merge subscription.
NULL (default) NULL (default)

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changemergesubscription is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changemergesubscription.

See Also

sp_addmergesubscription

sp_dropmergesubscription

sp_helpmergesubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changepublication
Changes the properties of a publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changepublication [[@publication =] 'publication']
 [, [@property =] 'property']
 [, [@value =] 'value']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of NULL.

[@property =] 'property'

Is the publication property to change. property is nvarchar(20), and can be one of these values.

Value Description
taskid Unique scheduler task ID created using sp_addtask.

For backward compatibility only.
sync_method Synchronization method. Can be:

native = produces native-mode bulk copy output of all
tables
character = produces a character-mode bulk copy
output of all tables
concurrent = produces native-mode bulk copy
program output of all tables but does not lock tables
during the snapshot
concurrent_c = produces character-mode bulk copy
program output of all tables but does not lock tables
during the snapshot.
Note that the values concurrent and concurrent_c are
available for transactional and merge replication, but
not snapshot replication.

repl_freq Frequency of replication. Can be continuous (provides
output of all log-based transactions) or snapshot
(produces only scheduled synchronization events).

description Optional entry describing the publication.
status Publication status. Can be inactive (publication data

will not be available for Subscribers when the
publication is first created) or active (publication data
is available immediately for Subscribers).

independent_agent Specifies if there is a stand-alone Distribution Agent for
this publication. If true, there is a stand-alone
Distribution Agent for this publication. If false, the
publication uses a shared Distribution Agent, and each
Publisher database/Subscriber database pair has a
shared agent.

immediate_sync Specifies if the synchronization files for the publication
are created each time the Snapshot Agent runs. If true,
the synchronization files are created or re-created each
time the Snapshot Agent runs. Subscribers are able to
receive the synchronization files immediately after the
subscription if the Snapshot Agent has been completed
once before the subscription. New subscriptions get the
newest synchronization files generated by the most
recent execution of the Snapshot Agent.
independent_agent must be true for immediate_sync
to be true. If false, the synchronization files are created
only if there are new subscriptions. Subscribers cannot
receive the synchronization files after the subscription
until the Snapshot Agent is started and completes.

enabled_for_internet Specifies if the publication is enabled for the Internet. If
true, the synchronization files for the publication are
put into the \Repldata\Ftp directory.

allow_push Specifies if push subscriptions can be created for the
given publication. If true, push subscriptions are
allowed on the publication.

allow_pull Specifies if pull subscriptions can be created for the
given publication. If true, pull subscriptions are allowed
on the publication.

allow_anonymous Specifies if anonymous subscriptions can be created for
the given publication. If true, immediate_sync must
also be set to true. If true, anonymous subscriptions
are allowed on the publication.

retention Retention period in hours for subscription activity. If a
subscription is not active within the retention period, it
is removed.

snapshot_in_
defaultfolder

Specifies if snapshot files are stored in the default
folder. snapshot_in_defaultfolder is nvarchar(5). If
true, snapshot files can be found in the default folder. If
false, snapshot files have been stored in the alternate
location specified by alt_snapshot_folder. Alternate
locations can be on another server, on a network drive,
or on removable media (such as CD-ROM or
removable disks). You can also save the snapshot files
to a File Transfer Protocol (FTP) site, for retrieval by the
Subscriber at a later time. Note that this parameter can
be true and still have a location in the
@alt_snapshot_folder parameter. This combination
specifies that the snapshot files will be stored in both
the default and alternate locations.

alt_snapshot_folder Specifies the location of the alternate folder for the
snapshot. alternate_snapshot_folder is nvarchar(255).

pre_snapshot_script Specifies a pointer to an .sql file location.
pre_snapshot_script is nvarchar(255). The Distribution
Agent will run the pre-snapshot script before running
any of the replicated object scripts when applying a
snapshot at a Subscriber.

post_snapshot_script Specifies a pointer to an .sql file location.
post_snapshot_script isnvarchar(255). The Distribution
Agent will run the post-snapshot script after all the
other replicated object scripts and data have been
applied during an initial synchronization.

compress_snapshot Specifies that the snapshot that is written to the
@alt_snapshot_folder location is to be compressed
into the Microsoft® CAB format. compress_snapshot is
nvarchar(5). false specifies that the snapshot will not
be compressed; true specifies that the snapshot will be
compressed. The snapshot in the default folder cannot
be compressed.

ftp_address Is the network address of the FTP service for the
Distributor. ftp_address is sysname. Specifies where
publication snapshot files are located for the
Distribution Agent or Merge Agent of a subscriber to
pick up. Because this property is stored for each
publication, each publication can have a different
ftp_address. The publication must support propagating
snapshots using FTP. For more information, see
Configuring a Publication to Allow Subscribers to
Retrieve Snapshots Using FTP.

ftp_port Is the port number of the FTP service for the
Distributor. ftp_port is int. The default is 21. Specifies
where the publication snapshot files are located for the
Distribution Agent or Merge Agent of a subscriber to
pick up. Because this property is stored for each
publication, each publication can have its own ftp_port.

ftp_subdirectory Specifies where the snapshot files will be available for
the Distribution Agent or Merge Agent of the
Subscriber to pick up if the publication supports
propagating snapshots using FTP. ftp_subdirectory is
nvarchar(255). Because this property is stored for
each publication, each publication can have its own
ftp_subdirctory or choose to have no subdirectory,
indicated with a NULL value.

ftp_login Is the user name used to connect to the FTP service.
ftp_login is sysname. The value ANONYMOUS is
allowed.

ftp_password Is the user password used to connect to the FTP service.
ftp_password is sysname.

conflict_policy Specifies the conflict resolution policy followed when
the queued updating subscriber option is used.
conflict_policy is nvarchar(100), and can be one of
these values:

pub wins = Publisher wins the conflict.
sub reinit = Reinitialize the subscription.
sub wins = Subscriber wins the conflict.
NULL = If NULL, and the publication is a snapshot
publication, the default policy becomes sub reinit. If
NULL and the publication is not a snapshot publication,
the default becomes sub wins.

This property can be changed only if there are no active
subscriptions.

centralized_conflicts Specifies if conflict records are stored on the Publisher.
centralized_conflicts is nvarchar(5). If true, conflict
records are stored at the Publisher. If false, conflict
records are stored at both the publisher and at the
subscriber that caused the conflict.

This property can be changed only if there are no active
subscriptions.

conflict_retention Specifies the conflict retention period, in days.
conflict_retention is int. The default retention is usually
14 days.

queue_type Specifies which type of queue is used. queue_type is
nvarchar(10), and can be one of these values:

msmq = Use Microsoft Message Queuing to store
transactions.
sql = Use SQL Server to store transactions.
NULL = Defaults to sql, which specifies to use SQL
Server to store transactions.

This property can be changed only if there are no active
subscriptions.

publish_to_
ActiveDirectory

Specifies if the publication information is published to
the Microsoft Active Directory™.
add_to_active_directory is nvarchar(10) This feature is
available only for servers running the Microsoft
Windows® 2000 operating system. Valid values are:

true = publication information is published.
false = publication information is not published.

NULL (default)

[@value =] 'value'

Is the new property value. value is nvarchar(255), with a default of NULL.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Acknowledges that the action taken by this stored procedure may invalidate an existing snapshot. force_invalidate_snapshot is a
bit, with a default of 0. 0 specifies that changes to the article will not cause the snapshot to be invalid. If the stored procedure
detects that the change does require a new snapshot, an error will occur and no changes will be made. 1 specifies that changes to
the article may cause the snapshot to be invalid, and if there are existing subscriptions that would require a new snapshot, gives
permission for the existing snapshot to be marked as obsolete and a new snapshot generated.

[@force_reinit_subscription =] force_reinit_subscription

Acknowledges that the action taken by this stored procedure may require existing subscriptions to be reinitialized.
force_reinit_subscription is a bit with a default of 0. 0 specifies that changes to the article will not cause the subscription to be
reinitialized. If the stored procedure detects that the change would require existing subscriptions to be reinitialized, an error will
occur and no changes will be made. 1 specifies that changes to the article will cause the existing subscription to be reinitialized,
and gives permission for the subscription reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changepublication is used in snapshot replication and transactional replication.

To list publication objects in the Active Directory using the @publish_to_Active_Directory parameter, the SQL Server object
must already be created in the Active Directory. For more information, see Active Directory Services.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_changepublication.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changesubscriber
Changes the options for a Subscriber. Any distribution task for the Subscribers to this Publisher is updated. This stored procedure
writes to the MSsubscriber_info table in the distribution database. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_changesubscriber [@subscriber =] 'subscriber'
 [, [@type =] type]
 [, [@login =] 'login']
 [, [@password =] 'password']
 [, [@commit_batch_size =] commit_batch_size]
 [, [@status_batch_size =] status_batch_size]
 [, [@flush_frequency =] flush_frequency]
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@description =] 'description']
 [, [@security_mode =] security_mode]

Arguments

[@subscriber =] 'subscriber'

Is the name of the Subscriber on which to change the options. subscriber is sysname, with no default.

[@type =] type

Is the Subscriber type. type is tinyint, with a default of NULL. 0 indicates a Microsoft® SQL Server™ Subscriber. 1 specifies a non-
SQL Server or other ODBC data source server Subscriber.

[@login =] 'login'

Is the SQL Server Authentication login ID. login is sysname, with a default of NULL.

[@password =] 'password'

Is the SQL Server Authentication password. password is sysname, with a default of %. % indicates there is no change to the
password property.

[@commit_batch_size =] commit_batch_size

Supported for backward compatibility only.

[@status_batch_size =] status_batch_size

Supported for backward compatibility only.

[@flush_frequency =] flush_frequency

Supported for backward compatibility only.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the distribution task. frequency_type is int, and can be one of these values.

Value Description
1 One time
2 On demand

4 Daily
8 Weekly
16 Monthly
32 Monthly relative
64 Autostart
128 Recurring
NULL (default)

[@frequency_interval =] frequency_interval

Is the interval for frequency_type. frequency_interval is int, with a default of NULL.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the distribution task. This parameter is used when frequency_type is set to 32 (monthly relative).
frequency_relative_interval is int, and can be one of these values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL (default)

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is how often the distribution task should recur during the defined frequency_type. frequency_recurrence_factor is int, with a
default of NULL.

[@frequency_subday =] frequency_subday

Is how often to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 (default) Once
2 Second
4 Minute
8 Hour

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequence_subday. frequency_subday_interval is int, with a default of NULL.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the distribution task is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of NULL.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the distribution task stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with a
default of NULL.

[@active_start_date =] active_start_date

Is the date when the distribution task is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of NULL.

[@active_end_date =] active_end_date

Is the date when the distribution task stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
NULL.

[@description =] 'description'

Is an optional text description. description is nvarchar(255), with a default of NULL.

[@security_mode =] security_mode

Is the implemented security mode. security_mode is int, and can be one of these values.

Value Description
0 SQL Server Authentication
1 Windows Authentication
NULL (default)

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changesubscriber is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changesubscriber.

See Also

sp_addsubscriber

sp_dropsubscriber

sp_helpdistributiondb

sp_helpserver

sp_helpsubscriberinfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changesubscriber_schedule
Changes the Distribution Agent or Merge Agent schedule for a subscriber. This stored procedure is executed at the Publisher on
any database.

Syntax

sp_changesubscriber_schedule [@subscriber =] 'subscriber'
 , [@agent_type =] type
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]

Arguments

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname. The name of the Subscriber must be unique in the database, must not
already exist, and cannot be NULL.

[@agent_type =] type

Is the type of agent. agent_type is smallint, with a default of 0. 0 indicates a Distribution Agent. 1 indicates a Merge Agent.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the distribution task. frequency_type is int, with a default of 64. There are 10 schedule
columns.

[@frequency_interval =] frequency_interval

Is the value applied to the frequency set by frequency_type. frequency_interval is int, with a default of 1.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the distribution task. frequency_relative_interval is int, with a default of 1.

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of 0.

[@frequency_subday =] frequency_subday

Is how often, in minutes, to reschedule during the defined period. frequency_subday is int, with a default of 4.

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of 5.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the distribution task is first scheduled. active_start_time_of_day is int, with a default of 0.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the distribution task stops being scheduled. active_end_time_of_day is int, with a default of 235959,
which means 11:59:59 P.M. on a 24-hour clock.

[@active_start_date =] active_start_date

Is the date when the distribution task is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of 0.

[@active_end_date =] active_end_date

Is the date when the distribution task stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
99991231, which means December 31, 9999.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changesubscriber_schedule is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_changesubscriber_schedule.

See Also

sp_addsubscriber_schedule

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_changesubscriptiondtsinfo
Changes the DTS package properties of a subscription. This stored procedure is executed at the Subscriber on the subscription
database.

Syntax

sp_changesubscriptiondtsinfo [[@job_id =] job_id]
 [, [@dts_package_name =] 'dts_package_name']
 [, [@dts_package_password =] 'dts_package_password']
 [, [@dts_package_location =] 'dts_package_location']

Arguments

[@job_id =] job_id

Is the job ID of the Distribution Agent for the push subscription. job_id is varbinary(16), with no default. To find the Distribution
Job ID, run sp_helpsubscription or sp_helppullsubscription.

[@dts_package_name =] 'dts_package_name'

Specifies the name of the DTS package. dts_package_name is a sysname, with a default of NULL. For example, to specify a
package of DTSPub_Package, the parameter would be @dts_package_name = N'DTSPub_Package'.

[@dts_package_password =] 'dts_package_password'

Specifies the password on the package, if there is one. dts_package_password is sysname with a default of NULL, which specifies
that the password property is to be left unchanged. If an empty string is put in the parameter, this specifies that the DTS package
is to have no password.

[@dts_package_location =] 'dts_package_location'

Specifies the package location. dts_package_location is a nvarchar(12), with a default of NULL, which specifies that the package
location is to be left unchanged. The location of the package can be changed to distributor or subscriber.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changesubscriptiondtsinfo is used for snapshot replication and transactional replication that are push subscriptions only.

Permissions

Only members of the sysadmin fixed server role can execute sp_changesubscriptiondtsinfo.

Transact-SQL Reference (SQL Server 2000)

sp_changesubstatus
Changes the status of an existing Subscriber. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_changesubstatus [[@publication =] 'publication']
 [, [@article =] 'article']
 [, [@subscriber =] 'subscriber']
 , [@status =] 'status'
 [, [@previous_status =] 'previous_status']
 [, [@destination_db =] 'destination_db']
 [, [@frequency_type =] frequency_type]
 [, [@frequency_interval =] frequency_interval]
 [, [@frequency_relative_interval =] frequency_relative_interval]
 [, [@frequency_recurrence_factor =] frequency_recurrence_factor]
 [, [@frequency_subday =] frequency_subday]
 [, [@frequency_subday_interval =] frequency_subday_interval]
 [, [@active_start_time_of_day =] active_start_time_of_day]
 [, [@active_end_time_of_day =] active_end_time_of_day]
 [, [@active_start_date =] active_start_date]
 [, [@active_end_date =] active_end_date]
 [, [@optional_command_line =] 'optional_command_line']
 [, [@distribution_jobid =] distribution_jobid]
 [, [@from_auto_sync =] from_auto_sync]
 [, [@ignore_distributor =] ignore_distributor]
 [, [@offloadagent =] remote_agent_activation]
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@dts_package_name =] 'dts_package_name']
 [, [@dts_package_password =] 'dts_package_password']
 [, [@dts_package_location =] dts_package_location]
 [, [@schemastabilityonly =] schema_stability_only]
 [, [@distribution_job_name =] 'distribution_job_name']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. If publication is not specified, all publications are
affected.

[@article =] 'article'

Is the name of the article. It must be unique to the publication. article is sysname, with a default of %. If article is not specified, all
articles are affected.

[@subscriber =] 'subscriber'

Is the name of the Subscriber to change the status of .subscriber is sysname, with a default of %. If subscriber is not specified,
status is changed for all Subscribers to the specified article.

[@status =] 'status'

Is the subscription status in the syssubscriptions table. status is sysname, with no default, and can be one of these values.

Value Description
active Subscriber is synchronized and is receiving data.
inactive Subscriber entry exists without a subscription.
subscribed Subscriber is requesting data, but is not yet synchronized.

[@previous_status =] 'previous_status'

Is the previous status for the subscription. previous_status is sysname, with a default of NULL. This parameter allows you to
change any subscriptions that currently have that status, thus allowing group functions on a specific set of subscriptions (for

example, setting all active subscriptions back to subscribed).

[@destination_db =] 'destination_db'

Is the name of the destination database. destination_db is sysname, with a default of %.

[@frequency_type =] frequency_type

Is the frequency with which to schedule the distribution task. frequency_type is int, with a default of NULL. If no value is provided
for frequency_type, sp_changesubstatus uses the frequency_type value used by sp_addsubscriber.

[@frequency_interval =] frequency_interval

Is the value to apply to the frequency set by frequency_type. frequency_interval is int, with a default of NULL.

[@frequency_relative_interval =] frequency_relative_interval

Is the date of the distribution task. This parameter is used when frequency_type is set to 32 (monthly relative). frequency_relative
interval is int, and can be one of these values.

Value Description
1 First
2 Second
4 Third
8 Fourth
16 Last
NULL (default)

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the recurrence factor used by frequency_type. frequency_recurrence_factor is int, with a default of NULL.

[@frequency_subday =] frequency_subday

Is how often, in minutes, to reschedule during the defined period. frequency_subday is int, and can be one of these values.

Value Description
1 Once
2 Second
4 Minute
8 Hour
NULL (default)

[@frequency_subday_interval =] frequency_subday_interval

Is the interval for frequency_subday. frequency_subday_interval is int, with a default of NULL.

[@active_start_time_of_day =] active_start_time_of_day

Is the time of day when the distribution task is first scheduled, formatted as HHMMSS. active_start_time_of_day is int, with a
default of NULL.

[@active_end_time_of_day =] active_end_time_of_day

Is the time of day when the distribution task stops being scheduled, formatted as HHMMSS. active_end_time_of_day is int, with a
default of NULL.

[@active_start_date =] active_start_date

Is the date when the distribution task is first scheduled, formatted as YYYYMMDD. active_start_date is int, with a default of NULL.

[@active_end_date =] active_end_date

Is the date when the distribution task stops being scheduled, formatted as YYYYMMDD. active_end_date is int, with a default of
NULL.

[@optional_command_line =] 'optional_command_line'

Is an optional command prompt. optional_command_line is nvarchar(4000), with a default of NULL.

[@distribution_jobid =] distribution_jobid

Is the job ID of the Distribution Agent at the Distributor for the subscription when changing the subscription status from inactive
to active. In other cases, it is not defined. If more than one Distribution Agent is involved in a single call to this stored procedure,
the result is not defined. distribution_jobid is binary(16), with a default of NULL.

[@from_auto_sync =] from_auto_sync

For internal use only.

[@ignore_distributor =] ignore_distributor

For internal use only.

[@offloadagent =] remote_agent_activation

Specifies that the agent can be activated remotely. remote_agent_activationt is bit, with a default of 0. 0 specifies the agent
cannot be activated remotely. 1 specifies the agent can be activated remotely, and on the remote computer specified by
remote_agent_server_name.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote activation. remote_agent_server_name is sysname, with a default of
NULL.

[@dts_package_name =] 'dts_package_name'

Specifies the name of the DTS package. dts_package_name is a sysname, with a default of NULL. For example, to specify a
package of DTSPub_Package, the parameter would be @dts_package_name = N'DTSPub_Package'.

[@dts_package_password =] 'dts_package_password'

Specifies the password on the package, if there is one. dts_package_password is sysname, with a default of NULL, which means
that there is not a password on the package.

[@dts_package_location =] dts_package_location

Specifies the package location. dts_package_location is an int, with a default of 0. If 0, the package location is at the Distributor. If
1, the package location is at the Subscriber. The location of the package can be distributor or subscriber.

[@schemastabilityonly =] schema_stability_only

For internal use only.

[@distribution_job_name =] 'distribution_job_name'

Is the name of the distribution job. distribution_job_name is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_changesubstatus is used in snapshot replication and transactional replication.

sp_changesubstatus changes the status of the Subscriber in the syssubscriptions table with the changed status. If required, it
updates the article status in the sysarticles table to indicate active or inactive. If required, it sets the replication flag on or off in
the sysobjects table for the replicated table.

Permissions

Only members of the sysadmin fixed server role, db_owner fixed database role, or the creator of the subscription can execute
sp_changesubstatus.

See Also

sp_addsubscription

sp_dropsubscription

sp_helpdistributor

sp_helpsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_change_subscription_properties
 New Information - SQL Server 2000 SP3.

Updates the security information in the MSsubscription_properties table. This stored procedure is executed at the Subscriber on
the subscription database.

Syntax

sp_change_subscription_properties [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@property =] 'property'
 , [@value =] 'value'
 [, [@publication_type =] publication_type]

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@property =] 'property'

Is the property to be changed. property is sysname, and can be one of these values.

Value Description
publisher_login Publisher login.
publisher_password Publisher password.
publisher_security_mode Security mode implemented at the Publisher.

Can be:

0 = SQL Server Authentication
1 = Windows Authentication

distributor_login Distributor login.
distributor_password Distributor password.
distributor_security_mode Security mode implemented at the

Distributor. Can be:

0 = SQL Server Authentication
1 = Windows Authentication

encrypted_distributor_password For internal use only.
ftp_address For backward compatibility only.
ftp_port For backward compatibility only.
ftp_login For backward compatibility only.
ftp_password For backward compatibility only.
alt_snapshot_folder Specifies the location of the alternate folder

for the snapshot. alt_snapshot_folder is
nvarchar(255). If set to NULL, the snapshot
files will be picked up from the default
location specified by the Publisher.

working_directory Name of the working directory used to
temporarily store data and schema files for
the publication when FTP is used to transfer
snapshot files. working_directory is
nvarchar(255).

use_ftp Specifies the use of FTP instead of the
regular protocol to retrieve snapshots. If 1,
FTP is used. use_ftp is a bit field.

ofload_agent Specifies if the agent can be activated
remotely. If 0, the agent cannot be activated
remotely. offload_agent is a bit field.

offload_server Specifies the network name of the server
used for remote activation.

dts_package_name Specifies the name of the DTS package. This
value can be specified only if the publication
is transactional or snapshot.

dts_package_password Specifies the password on the package, if
there is one. A value of NULL means that the
package has no password. This value can be
specified only if the publication is
transactional or snapshot.

dts_package_location Location where the DTS package is stored.
This value can be specified only if the
publication is transactional or snapshot.

dynamic_snapshot_location Specifies the path to the folder where the
snapshot files are saved. This value can be
specified only if the publication is a merge
publication.

[@value =] 'value'

Is the new value of the property. value is nvarchar(1000), with no default.

[@publication_type =] publication_type

Specifies the replication type of the publication. publication_type is int, with a default of NULL. If NULL, specifies an unknown
publication type and the stored procecure looks at all transaction tables to find out the publication type. Because the stored proc
must look through multiple tables, this option will be slower than when the exact publication type of 0, 1, or 2 is specified. If 0,
publication is a transaction type. If 1, publication is a snapshot type. If 2, publication is a merge type.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_change_subscription_properties is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_change_subscription_properties.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_check_for_sync_trigger
Determines if a user-defined trigger or stored procedure is being called in the context of an updatable subscription. This stored
procedure is executed at the Publisher on the publication database.

Syntax

sp_check_for_sync_trigger [@tabid =] 'tabid'
 [, [@trigger_op =] 'trigger_output_parameters' OUTPUT]

Arguments

[@tabid =] 'tabid'

Is the object ID of the table being checked for immediate-updating triggers. tabid is int, with no default.

[@trigger_op =] 'trigger_output_parameters' OUTPUT

Specifies if the output parameter is to return the type of trigger it is being called from. trigger_output_parameters is char(10),
and can be one of these values.

Value Description
Ins INSERT trigger
Upd UPDATE trigger
Del DELETE trigger
NULL (default)

Return Code Values

0 indicates that the stored procedure is not being called within the context of an immediate-updating trigger. 1 indicates that it is
being called within the context of an immediate-updating trigger and is the type of trigger being returned in @trigger_op.

Remarks

sp_check_for_sync_trigger is used in snapshot replication and transactional replication.

Permissions

Members of the public role can execute sp_check_for_sync_trigger.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_copymergesnapshot
 New Information - SQL Server 2000 SP3.

Copies the snapshot folder of the specified publication to the folder listed in the @destination_folder. This stored procedure is
executed at the Publisher on the publication database.

Syntax

sp_copymergesnapshot [@publication =] 'publication'
 , [@destination_folder =] 'destination_folder'

Arguments

[@publication =] 'publication'

Is the name of the publication whose snapshot contents are to be copied. publication is sysname, with no default.

[@destination_folder =] 'destination_folder'

Is the name of the folder where the contents of the publication snapshot is to be copied. destination_folder is nvarchar(255), with
no default. The destination_folder can be an alternate location such as on another server, on a network drive, or on removable
media (such as CD-ROMs or removable disks).

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_copymergesnapshot is used in merge replication. Subscribers running Microsoft® SQL Server™ version 7.0 and earlier
cannot use the alternate snapshot location.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_copymergesnapshot.

See Also

Alternate Snapshot Locations

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_copysnapshot
 New Information - SQL Server 2000 SP3.

Copies the snapshot folder of the specified publication to the folder listed in the @destination_folder. This stored procedure is
executed at the Publisher on the publication database. This stored procedure is useful for copying a snapshot to removable media,
such as CD-ROM.

Syntax

sp_copysnapshot [@publication =] 'publication'
 , [@destination_folder =] 'destination_folder']
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']

Arguments

[@publication =] 'publication'

Is the name of the publication whose snapshot contents are to be copied. publication is sysname, with no default.

[@destination_folder =] 'destination_folder'

Is the name of the folder where the contents of the publication snapshot are to be copied. destination_folder is nvarchar(255),
with no default. The destination_folder can be an alternate location such as on another server, on a network drive, or on
removable media (such as CD-ROMs or removable disks).

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_copysnapshot is used in all types of replication. Subscribers running Microsoft® SQL Server™ version 7.0 and earlier cannot
use the alternate snapshot location.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_copysnapshot.

See Also

Alternate Snapshot Locations

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_copysubscription
Copies a subscription database that has pull subscriptions, but no push subscriptions. Only single file databases can be copied.
This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_copysubscription [@filename =] 'file name'
 [, [@temp_dir =] 'temp_dir']
 [, [@overwrite_existing_file =] overwrite_existing_file]

Arguments

[@filename =] 'file name'

Is the string that specifies the complete path, including file name, to which a copy of the data file (.mdf) is saved. file name is
nvarchar(260), with no default.

[@temp_dir =] 'temp_dir'

Is the name of the directory that contains the temp files. temp_dir is nvarchar(260), with a default of NULL. If NULL, the SQL
Server default data directory will be used. The directory should have enough space to hold a file the size of all the subscriber
database files combined.

[@overwrite_existing_file =] 'overwrite_existing_file'

Is an optional Boolean flag that specifies whether or not to overwrite an existing file of the same name specified in @filename.
overwrite_existing_file is bit, with a default of 0. If 1, it overwrites the file specified by @filename, if it exists. If 0,the stored
procedure fails if the file exists, and the file is not overwritten.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_copysubscription is used in all types of replication to copy a subscription database to a file as an alternative to applying a
snapshot at the Subscriber. The database must be configured to support only pull subscriptions. Users having appropriate
permissions can make copies of the subscription database and then e-mail, copy, or transport the subscription file (.msf) to
another Subscriber, where it can then be attached as a subscription.

This technique is useful for copying highly customized databases that contain user-defined objects, such as triggers, stored
procedures, views, UDFs, and objects such as defaults and rules, which are not otherwise delivered through replication.

Permissions

Members of the public role can execute sp_copysubscription.

See Also

Alternate Snapshot Locations

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_createmergepalrole
 New Information - SQL Server 2000 SP3.

Creates a new SQL Server role used in merge replication. Although this new role should be automatically created when SQL
Server 2000 Service Pack 3 is applied, you can execute sp_createmergepalrole to recreate the role if you ever lose it. This stored
procedure is executed at the Publisher on the publication database to recreate the role.

Syntax

sp_createmergepalrole [@publication =] 'publication'

Arguments

[@publication =] 'publication'

Is the publication name. publication is sysname, with no default. This parameter is used to select the publication to use when
recreating a role used by merge replication.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_createmergepalrole is used in merge replication.

Executing sp_createmergepalrole adds a new rowto the sysusers table for the new role. The name of this new role is based on
the value of the pubid column in the sysmergepublications table for the given publication. The prefix of the role name is
'MSMerge_' and the pubid value is appended (without the hyphens) to the role name.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_createmergepalrole.

See Also

sysmergepublications

sysusers

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_deletemergeconflictrow
Deletes rows from a conflict table or the MSmerge_delete_conflicts table. This stored procedure is executed at the computer
where the conflict table is stored, in any database.

Syntax

sp_deletemergeconflictrow [[@conflict_table =] 'conflict_table']
 [, [@source_object =] 'source_object']
 { , [@rowguid =] 'rowguid'
 , [@origin_datasource =] 'origin_datasource'] }
 [, [@drop_table_if_empty =] 'drop_table_if_empty']

Arguments

[@conflict_table =] 'conflict_table'

Is the name of the conflict table. conflict_table is sysname, with a default of %. If the conflict_table is specified as NULL or %, the
conflict is assumed to be a delete conflict and the row matching rowguid and origin_datasource and source_object is deleted from
the MSmerge_delete_conflicts table.

[@source_object =] 'source_object'

Is the name of the source table. source_object is nvarchar(386), with a default of NULL.

[@rowguid =] 'rowguid'

Is the row identifier for the delete conflict. rowguid is uniqueidentifier, with no default.

[@origin_datasource =] 'origin_datasource'

Is the origin of the conflict. origin_datasource is varchar(255), with no default.

[@drop_table_if_empty =] 'drop_table_if_empty'

Is a flag indicating that the conflict_table is to be dropped if is empty. drop_table_if_empty is varchar(10), with a default of FALSE.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_deletemergeconflictrow is used in merge replication.

MSmerge_delete_conflicts is a system table and is not deleted from the database, even if it is empty.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_deletemergeconflictrow.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_disableagentoffload
Disables remote push agent activation of the replication push agent that is identified by the @job_id parameter. This stored
procedure is executed at the Publisher on the publication database.

Syntax

sp_disableagentoffload [@job_id =] job_id
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@agent_type =] 'agent_type']

Arguments

[@job_id =] 'job_id'

Specifies the SQL Server Agent job identifier of the replication agent to be disabled from remote activation. job_id is
varbinary(16), with no default.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be used for remote agent activation. remote_agent_server_name is sysname, with a
default of NULL. If NULL, then the current offload_server in the MSDistribution_agents table is used.

[@agent_type =] 'agent_type'

Is the type of agent. agent_type is sysname, with a default of NULL, which specifies that the system will determine if the agent
type is distribution or merge. Valid values are distribution or merge, or NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_disableagentoffload is used to remove the ability to run the Distribution Agent or Merge Agent processing on another
server.

Upon successful completion of sp_disableagentoffload, the –Offload offloadserver parameter will be removed from the
replication agent command line. Also, the offload_enabled field for the agent in MSDistribution_agents will be set to 0, and the
offload-server field will be updated with the new value specified in the 'remote_agent_server_name', if provided.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role or the subscription owner of the specified
agent can execute sp_disableagentoffload.

See Also

DTS Package Details

MSmerge_delete_conflicts

Remote Agent Activation

sp_enableagentoffload

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_drop_agent_parameter
Drops one or all parameters from a profile in the MSagent_parameters table. This stored procedure is executed at the
Distributor where the agent is running, on any database.

Syntax

sp_drop_agent_parameter [@profile_id =] profile_id
 [, [@parameter_name =] 'parameter_name']

Arguments

[@profile_id =] profile_id

Is the ID of the profile for which a parameter is to be dropped. profile_id is int, with no default.

[@parameter_name =] 'parameter_name'

Is the name of the parameter to be dropped. parameter_name is sysname, with a default of %. If %, all parameters for the
specified profile are dropped.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_drop_agent_parameter is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_drop_agent_parameter.

See Also

sp_add_agent_parameter

sp_help_agent_parameter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_drop_agent_profile
Drops a profile from the MSagent_profiles table. This stored procedure is executed at the Distributor on any database.

Syntax

sp_drop_agent_profile [@profile_id =] profile_id

Arguments

[@profile_id =] profile_id

Is the ID of the profile to be dropped. profile_id is int, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_drop_agent_profile is used in all types of replication.

The parameters of the given profile are also dropped from the MSagent_parameters table.

Permissions

Only members of the sysadmin fixed server role can execute sp_drop_agent_profile.

See Also

sp_add_agent_profile

sp_change_agent_profile

sp_help_agent_profile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropanonymousagent
 New Information - SQL Server 2000 SP3.

Drops an anonymous agent for replication monitoring at the distributor from the Publisher. This stored procedure is executed at
the Publisher on any database.

Syntax

sp_dropanonymousagent [@subid =] sub_id
 , [@type =] type

Arguments

[@subid =] sub_id

Is the global identifier for an anonymous subscription. sub_id is uniqueidentifier, with no default. This identifier can be retrieved
at the Subscriber using sp_helppullsubscription. The value in the subid field of the returned result set is this global identifier.

[@type =] type

Is the type of subscription. type is int, with no default. Valid values are 1 or 2. Specify 1, if snapshot replication or transactional
replication using the Distribution Agent. Specify 2, if merge replication using the Merge Agent.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropanonymousagent is used in all types of replication.

This stored procedure is used to drop anonymous subscription agents only and cannot be used to drop well-known subscriptions.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role or the login of the user that initiated the first
run of the agent can execute sp_dropanonymousagent.

Transact-SQL Reference (SQL Server 2000)

sp_droparticle
Drops an article from a snapshot or transactional publication. An article cannot be removed if one or more subscriptions to it
exist. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_droparticle [@publication =] 'publication'
 , [@article =] 'article'
 [, [@ignore_distributor =] ignore_distributor]
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article to be dropped. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article to be dropped. article is sysname, with no default.

[@ignore_distributor =] ignore_distributor

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_droparticle is used in all types of replication.

For horizontally filtered articles, sp_droparticle checks the type column of the article in the sysarticles table to determine
whether a view or filter should also be dropped. If a view or filter was autogenerated, it is dropped with the article. If it was
manually created, it is not dropped.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_droparticle.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropdistpublisher
Drops a distribution Publisher. This stored procedure is executed at the Distributor on any database.

Syntax

sp_dropdistpublisher [@publisher =] 'publisher'
 [, [@no_checks =] no_checks]

Arguments

[@publisher =] 'publisher'

Is the Publisher to drop. publisher is sysname, with no default.

[@no_checks =] no_checks

Specifies whether sp_dropdistpublisher checks that the Publisher has uninstalled the server as the Distributor. no_checks is bit,
with a default of 0. If 0 and the distribution publisher is remote, the stored procedure verifies that the remote publisher has
uninstalled the local server as the distributor. If 0 and the distribution Publisher is local, the stored procedure verifies that there
are no publication or distribution objects remaining on the local server. If 1, all the replication objects associated with the
distribution Publisher are dropped. After doing this, the remote Publisher must uninstall replication using sp_dropdistributor
with @ignore_distributor = 1.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropdistpublisher is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropdistpublisher.

See Also

sp_adddistpublisher

sp_changedistpublisher

sp_helpdistpublisher

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropdistributiondb
Drops a distribution database. Drops the physical files used by the database if they are not used by another database. This stored
procedure is executed at the Distributor on any database.

Syntax

sp_dropdistributiondb [@database =] 'database'

Arguments

[@database =] 'database'

Is the database to drop. database is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropdistributiondb is used in all types of replication.

This stored procedure must be executed before dropping the Distributor by executing sp_dropdistributor.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropdistributiondb.

See Also

sp_adddistributiondb

sp_changedistributiondb

sp_helpdistributiondb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropdistributor
Uninstalls the Distributor. This stored procedure is executed at the Distributor on any database.

Syntax

sp_dropdistributor [[@no_checks =] no_checks]
 [, [@ignore_distributor =] ignore_distributor]

Arguments

[@no_checks =] no_checks

Indicates whether to check for dependent objects before dropping the Distributor. no_checks is bit, with a default of 0. If 0,
sp_dropdistributor checks to make sure that all publishing and distribution objects in addition to the Distributor have been
dropped. If 1, sp_dropdistributor drops all the publishing and distribution objects without checking.

[@ignore_distributor =] ignore_distributor

Indicates whether this stored procedure is executed without connecting to the Distributor. ignore_distributor is bit, with a default
of 0. If 0, sp_dropdistributor connects to the Distributor and removes all replication objects. If sp_dropdistributor is unable to
connect to the Distributor, the stored procedure fails. If 1, no connection is made to the Distributor and the replication objects are
not removed. This is used if the Distributor is being uninstalled or is permanently offline. The objects for this Publisher at the
Distributor will not be removed until the Distributor is reinstalled at some future time.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropdistributor is used in all types of replication.

If other Publisher or distribution objects exist on the server, sp_dropdistributor fails unless @no_checks is set to 1.

This stored procedure must be executed after dropping the distribution database by executing sp_dropdistributiondb.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropdistributor.

See Also

sp_adddistributor

sp_changedistributor_property

sp_helpdistributor

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmergealternatepublisher
Removes an alternate Publisher from a merge publication. This stored procedure is executed at the Subscriber on the subscription
database.

Syntax

sp_dropmergealaternatepublisher [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@alternate_publisher =] 'alternate_publisher'
 , [@alternate_publisher_db =] 'alternate_publisher_db'
 , [@alternate_publication =] 'alternate_publication'

Arguments

[@publisher =] 'publisher'

Is the name of the current Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the current publication database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the current publication. publication is sysname, with no default.

[@alternate_publisher =] 'alternate_publisher'

Is the name of the alternate Publisher to drop as the alternate synchronization partner. alternate_publisher is sysname, with no
default.

[@alternate_publisher_db =] 'alternate_publisher_db'

Is the name of the publication database to drop as the alternate synchronization partner publication database.
alternate_publisher_db is sysname, with no default.

[@alternate_publication =] 'alternate_publication'

Is the name of the publication to drop as the alternate synchronization partner publication. alternate_publication is sysname,
with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergealternatepublisher is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_dropmergelternatepublisher.

Transact-SQL Reference (SQL Server 2000)

sp_dropmergearticle
Removes an article from a merge publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_dropmergearticle [@publication =] 'publication'
 , [@article =] 'article'
 [, [@ignore_distributor =] ignore_distributor
 [, [@reserved =] reserved
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]

Arguments

[@publication =] 'publication'

Is the name of the publication from which to drop an article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article to drop from the given publication. article is sysname, with no default. If all, all existing articles in the
specified merge publication are removed. Even if article is all, the publication still must be dropped separately from the article.

[@ignore_distributor =] ignore_distributor

Indicates whether this stored procedure is executed without connecting to the Distributor. ignore_distributor is bit, with a default
of 0.

[@reserved =] reserved

Is reserved for future use. reserved is nvarchar(20), with a default of NULL.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Enables or disables the ability to have a snapshot invalidated. force_invalidate_snapshot is a bit, with a default 0. 0 specifies that
changes to the merge article will not cause the snapshot to be invalid. 1 means that changes to the merge article may cause the
snapshot to be invalid, and if that is the case, a value of 1 gives permission for the new snapshot to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergearticle is used in merge replication. sp_dropmergearticle is allowed only when there is no active subscription
for the current publication. If there is an existing subscription, dropping an article or articles is not allowed.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_dropmergearticle.

See Also

sp_addmergearticle

sp_changemergearticle

sp_helpmergearticle

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmergefilter
Drops a merge filter. sp_dropmergefilter drops all the merge filter columns defined on the merge filter that is to be dropped.
This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_dropmergefilter [@publication =] 'publication'
 , [@article =] 'article'
 , [@filtername =] 'filtername'
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with no default.

[@filtername =] 'filtername'

Is the name of the filter to be dropped. filtername is sysname, with no default.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Enables or disables the ability to have a snapshot invalidated. force_invalidate_snapshot is a bit, with a default 0. 0 specifies that
changes to the merge article will not cause the snapshot to be invalid. 1 means that changes to the merge article may cause the
snapshot to be invalid, and if that is the case, a value of 1 gives permission for the new snapshot to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergefilter is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_dropmergefilter.

See Also

sp_addmergefilter

sp_changemergefilter

sp_helpmergefilter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmergepublication
 New Information - SQL Server 2000 SP3.

Drops a merge publication and its associated Snapshot Agent. All subscriptions must be dropped before dropping merge
publications. The articles in the publication are dropped automatically. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_dropmergepublication [@publication =] 'publication'
 [, [@ignore_distributor =] ignore_distributor]
 [, [@reserved =] reserved]

Arguments

[@publication =] 'publication'

Is the name of the publication to drop. publication is sysname, with no default. If all, all existing merge publications are removed
as well as the snapshot associated with them. If other values are specified, the Snapshot Agent associated with that publication is
dropped.

[@ignore_distributor =] ignore_distributor

ignore_distributor is bit, with a default of 0. This parameter can be used to drop a publication without doing cleanup tasks at the
Distributor. It is also useful if you had to reinstall the Distributor.

[@reserved =] reserved

Is reserved for future use. reserved is bit, with a default of 0.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergepublication is used in merge replication.

sp_dropmergepublication cannot be executed from within a transaction.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_dropmergepublication.

See Also

sp_addmergepublication

sp_changemergepublication

sp_helpmergepublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmergepullsubscription
Drops a merge pull subscription. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_dropmergepullsubscription [[@publication =] 'publication']
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@reserved =] 'reserved']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of NULL.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of NULL.

[@reserved =] reserved

Is reserved for future use. reserved is bit, with a default of 0.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergepullsubscription is used in merge replication.

sp_dropmergepullsubscription drops the Merge Agent for this merge pull subscription, although the Merge Agent is not
created in sp_addmergepullsubscription. Also note that the local server and current database are assumed to be the subscriber
and subscriber_db.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_dropmergepullsubscription.

See Also

sp_addmergepullsubscription

sp_changemergepullsubscription

sp_helpmergepullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropmergesubscription
Drops a subscription to a merge publication and its associated Merge Agent. This stored procedure is executed at the Publisher on
the publication database .

Syntax

sp_dropmergesubscription [[@publication =] 'publication']
 [, [@subscriber =] 'subscriber'
 [, [@subscriber_db =] 'subscriber_db']
 [, [@subscription_type =] 'subscription_type']
 [, [@ignore_distributor =] ignore_distributor]
 [, [@reserved =] reserved]

Arguments

[@publication =] 'publication'

Is the publication name. publication is sysname, with a default of NULL. The publication must already exist and conform to the
rules for identifiers.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscription_database is sysname, with a default of NULL.

[@subscription_type =] 'subscription_type'

Is the type of subscription. subscription_type is nvarchar(15), and can be one of these values.

Value Description
push Push subscription.
pull Pull subscription.
both (default) Both a push and pull subscription.

[@ignore_distributor =] ignore_distributor

Indicates whether this stored procedure is executed without connecting to the Distributor. ignore_distributor is bit, with a default
of 0. This parameter can be used to drop a subscription without doing cleanup tasks at the Distributor. It is also useful if you had
to reinstall the Distributor.

[@reserved =] reserved

Is reserved for future use. reserved is bit, with a default of 0.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropmergesubscription is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_dropmergesubscription.

See Also

sp_addmergesubscription

sp_changemergesubscription

sp_helpmergesubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droppublication
Drops a publication and its associated articles. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_droppublication [@publication =] 'publication'
 [, [@ignore_distributor =] ignore_distributor]

Arguments

[@publication =] 'publication'

Is the name of the publication to be dropped. publication is sysname, with no default. If all is specified, all publications are
dropped from the publication database, except for those with subscriptions.

[@ignore_distributor =] ignore_distributor

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_droppublication is used in snapshot replication and transactional replication.

sp_droppublication recursively drops all articles associated with a publication and then drops the publication itself. A
publication cannot be removed if it has one or more subscriptions to it. The associated sync task is also dropped.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_droppublication.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_droppullsubscription
Drops a subscription at the current database of the Subscriber. This stored procedure is executed at the Subscriber on the pull
subscription database.

Syntax

sp_droppullsubscription [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 [, [@reserved =] reserved]

Arguments

[@publisher =] 'publisher'

Is the remote server name. publisher is sysname, with no default. If all, the subscription is dropped at all the Publishers.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default. all means all the Publisher databases.

[@publication =] 'publication'

Is the publication name. publication is sysname, with no default. If all, the subscription is dropped to all the publications.

[@reserved =] reserved

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_droppullsubscription is used in snapshot replication and transactional replication.

sp_droppullsubscription deletes the corresponding row in the MSreplication_subscriptions table and the corresponding
Distributor Agent at the Subscriber. If no rows are left in Msreplication_subscriptions, it drops the table.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_droppullsubscription.

See Also

sp_addpullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropsubscriber
Removes the Subscriber designation from a registered server. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_dropsubscriber [@subscriber =] 'subscriber'
 [, [@reserved =] 'reserved']
 [, [@ignore_distributor =] ignore_distributor]

Arguments

[@subscriber =] 'subscriber'

Is the name of the Subscriber to be dropped. subscriber is sysname, with no default.

[@reserved =] 'reserved'

For internal use only.

[@ignore_distributor =] ignore_distributor

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropsubscriber is used in all types of replication.

This stored procedure removes the server sub option and removes the remote login mapping of system administrator to
repl_subscriber.

Permissions

Only members of the sysadmin fixed server role can execute sp_dropsubscriber.

See Also

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_helpdistributor

sp_helpserver

sp_helpsubscriberinfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dropsubscription
Drops subscriptions to a particular article, publication, or set of subscriptions on the Publisher. This stored procedure is executed
at the Publisher on the publication database.

Syntax

sp_dropsubscription [[@publication =] 'publication']
 [, [@article =] 'article']
 [@subscriber =] 'subscriber'
 [, [@destination_db =] 'destination_db']
 [, [@ignore_distributor =] ignore_distributor]
 [, [@reserved =] 'reserved']

Arguments

[@publication =] 'publication'

Is the name of the associated publication. publication is sysname, with a default of NULL. If all, all subscriptions for all
publications for the specified Subscriber are canceled.

[@article =] 'article'

Is the name of the article. article is sysname, with a default of NULL. If all, subscriptions to all articles for each specified
publication and Subscriber are dropped. If article is not supplied, subscriptions are dropped for all articles in the publication. Use
all for publications that allow immediate updating.

[@subscriber =] 'subscriber'

Is the name of the Subscriber that will have its subscriptions dropped. subscriber is sysname, with no default. If all, all
subscriptions for all Subscribers are dropped.

[@destination_db =] 'destination_db'

Is the name of the destination database. destination_db is sysname, with a default of NULL. If NULL, all the subscriptions from
that Subscriber are dropped.

[@ignore_distributor =] ignore_distributor

For internal use only.

[@reserved =] 'reserved'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_dropsubscription is used in snapshot and transactional replication.

If you drop the subscription on an article in an immediate-sync publication, you cannot add it back unless you drop the
subscriptions on all the articles in the publication and add them all back at once.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_dropsubscription. A remote
connection from the Subscriber can drop a subscription to an existing publication or article.

See Also

sp_addsubscription

sp_changesubstatus

sp_helpsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dsninfo
Returns ODBC or OLE DB data source information from the Distributor associated with the current server. This stored procedure
is executed at the Distributor on any database.

Syntax

sp_dsninfo [@dsn =] 'dsn'
 [, [@infotype =] 'info_type']
 [, [@login =] 'login']
 [, [@password =] 'password']
 [, [@dso_type =] dso_type]

Arguments

[@dsn =] 'dsn'

Is the name of the ODBC DSN or OLE DB linked server. dsn is varchar(128), with no default.

[@infotype =] 'info_type'

Is the type of information to return. If info_type is not specified or if NULL is specified, all information types are returned.
info_type is varchar(128), with a default of NULL, and can be one of these values.

Value Description
DBMS_NAME Specifies the data source vendor name.
DBMS_VERSION Specifies the data source version.
DATABASE_NAME Specifies the database name.
SQL_SUBSCRIBER Specifies the data source can be a Subscriber.

[@login =] 'login'

Is the login for the data source. If the data source includes a login, specify NULL or omit the parameter. login is varchar(128),
with a default of NULL.

[@password =] 'password'

Is the password for the login. If the data source includes a login, specify NULL or omit the parameter. password is varchar(128),
with a default of NULL.

[@dso_type =] dso_type

Is the data source type. dso_type is int, and can be one of these values.

Value Description
1 (default) ODBC data source
3 OLE DB data source

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Information Type nvarchar(64) Information types such as DBMS_NAME,

DBMS_VERSION, DATABASE_NAME,
SQL_SUBSCRIBER.

Value nvarchar(512) Value of the associated information type.

Remarks

sp_dsninfo is used in all types of replication.

sp_dsninfo retrieves ODBC or OLE DB data source information that shows whether the database can be used for replication or
querying.

Permissions

Only members of the sysadmin fixed server role can execute sp_dsninfo.

See Also

sp_enumdsn

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_dumpparamcmd
Returns detailed information for a parameterized command that has been stored in the distribution database. This stored
procedure is executed at the Distributor on the distribution database.

Syntax

sp_dumpparamcmd [@originator_id =] 'originator_id'
 , [@publisher_database_id =] 'publisher_database_id'
 , [@article_id =] 'article_id'
 , [@xact_seqno =] 'xact_seqno'

Arguments

[@originator_id =] 'originator_id'

Is the originator_id for which to return parameterized commands. originator_id is int, with no default.

[@publisher_database_id =] 'publisher_database_id'

Is the publisher_database_id for which to return parameterized commands. publisher_database_id is int, with no default.

[@article_id =] 'article_id'

Is the article_id for which to return parameterized commands. article_id is int, with no default.

[@xact_seqno =] 'xact_seqno'

Is the exact sequence number for which to display parameterized commands. xact_seqno is nchar(22), with no default.

Result Sets

sp_dumpparamcmd is a diagnostic procedure used to retrieve detailed information on parameterized commands within a single
transaction. sp_dumpparamcmd returns two result sets for each parameterized command within the transaction.

Column name Data type Description
bytes int Number of bytes of Transact-SQL.
params smallint Number of parameters in the statement.
command nvarchar(1024) Transact-SQL command.

Note Long commands may be split across several rows in the result set. Long values may also be split across several rows in the
result set.

The second result set contains one or more rows for each parameter.

Column name Data type Description
paramid smallint ID of the parameter.
offset int Byte offset within the data stream.
repltype nvarchar(20) Type information.
storage nvarchar(20) Storage information.
align int Alignment of data.
ctype nvarchar(20) ODBC C type information.
sqltype nvarchar(20) ODBC SQL type information.
prec int Precision of the value.
scale smallint Scale of the value.
token_fragment nvarchar(1024) Displays the value stored in this token in

a text format.

Remarks

sp_dumpparamcmd is used in transactional replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_ dumpparamcmd.

See Also

sp_browsereplcmds

sp_replcmds

sp_replshowcmds

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_enableagentoffload
Enables remote agent activation of the replication push agent that is identified by the @job_id parameter. This stored procedure
is run at the computer that is currently the remote agent server. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_enableagentoffload [@job_id =] job_id
 [, [@offloadserver =] 'remote_agent_server_name']
 [, [@agent_type =] 'agent_type']

Arguments

[@job_id =] 'job_id'

Specifies the SQL Server Agent job identifier of the replication agent to be enabled for remote activation. job_id is varbinary(16),
with no default.

[@offloadserver =] 'remote_agent_server_name'

Specifies the network name of server to be enabled for remote agent activation. remote_agent_server_name is sysname, with a
default of NULL. If NULL, then the current offload_server in the MSDistribution_agents table is used.

[@agent_type =] 'agent_type'

Is the type of agent. agent_type is sysname, with a default of NULL, which specifies that the system will determine if the agent
type is distribution or merge. Valid values are distribution or merge, or NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_enableagentoffload is used to enable the running of the Distribution Agent or Merge Agent processing to another server.

Upon successful completion of sp_enableagentoffload, the –Offload offloadserver parameter will be appended to the
replication agent command line, or updated with the new remote_agent_server_name if the –Offload offloadserver parameter
already exists in the command line.

Also, the offload_enabled field for the agent in MSDistribution_agents will be set to 1, and the offload-server field will be
updated with the new value specified in the 'remote_agent_server_name', if provided.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role or the subscription owner of the specified
agent can execute sp_enableagentoffload.

See Also

DTS Package Details

Remote Agent Activation

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_enumcustomresolvers
 New Information - SQL Server 2000 SP3.

Returns a list of all available custom resolvers. This stored procedure is executed at the Publisher on any database.

Syntax

sp_enumcustomresolvers [[@distributor =] 'distributor']

Arguments

[@distributor =] 'distributor'

Is the name of the Distributor where the custom resolver is located. distributor is sysname, with a default of NULL.

Result Sets

Column name Data type Description
value ntext Name of the custom resolver.
data ntext Class ID of the custom resolver.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_enumcustomresolvers is used in merge replication.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_enumdsn
Returns a list of all defined ODBC and OLE DB data source names for a server running under a specific Microsoft® Windows®
user account. This stored procedure is executed at the Publisher on any database.

Syntax

sp_enumdsn

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
Data Source Name sysname Name of the data source.
Description varchar(255) Description of the data source.
Type int Type of data source:

1 = ODBC DSN
3 = OLE DB data source

Provider Name varchar(255) Name of the OLE DB provider.
Value is NULL for ODBC DSN.

Remarks

Every Microsoft SQL Server™ service has a user context. A user context is a set of Registry entries that includes the definitions of
the ODBC data sources for the user. The user context is provided by the username under which the SQL Server is running.

For example, if the server is running under the system account user context, the DSNs that are returned will all be system DSNs
that are associated with the system account. If the server is running under a private user account, only the DSNs defined for that
private account of that user is returned.

Permissions

Only members of the sysadmin fixed server role can execute sp_enumdsn.

See Also

sp_dsninfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_enumfullsubscribers
Returns a list of Subscribers who have subscribed to all articles in a specified publication. This stored procedure is executed at the
Publisher on the publication database.

Syntax

sp_enumfullsubscribers [[@publication =] 'publication']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. If publication is not specified, all publications are
returned.

Return Code Values

0 (success) or 1 (failure)

Result Set

Column name Data type Description
subscriber sysname Name of the subscribing server

Remarks

sp_enumfullsubscribers is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_enumfullsubscribers.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_helparticle

sp_helparticlecolumns

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_expired_subscription_cleanup
Periodically checks the status of all the subscriptions of every publication and identifies those that have expired. This stored
procedure is executed at the Publisher on any database.

Syntax

sp_expired_subscription_cleanup

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_expired_subscription_cleanup is used in all types of replication.

sp_expired_subscription_cleanup checks the status of all subscriptions every 24 hours. If any of the subscriptions are out-of-
date, that is, have lost contact with the Publisher for too long a period, the publication is declared expired and the traces of the
subscription are cleaned up at the Publisher.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_expired_subscription_cleanup.

See Also

sp_mergesubscription_cleanup

sp_subscription_cleanup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_generatefilters
Creates filters on foreign key tables when a specified table is replicated. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_generatefilters [@publication =] 'publication'

Arguments

[@publication =] 'publication'

Is the name of the publication to be filtered. publication is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_generatefilters is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_generatefilters.

See Also

sp_bindsession

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_getagentoffloadinfo
Retrieves information about the offloading status of an agent from the Distributor. This stored procedure is executed at the
Publisher on the publication database.

Syntax

sp_getagentoffloadinfo [@job_id =] job_id

Arguments

[@job_id =] job_id

Is the replication agent Job ID. job_id is varbinary(16), with no default.

Result Sets

Column name Data type Description
offload_enabled int Specifies if offload execution of

a replication agent has been set
to run at the Subscriber. If 0,
agent is run at the Publisher. If
1, agent is run at the Subscriber.

offload_server sysname Name of the server where the
agent is running.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_getagentoffloadinfo is used for all types of replication, but on push subscriptions only.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_getagentoffloadinfo.

Transact-SQL Reference (SQL Server 2000)

sp_getmergedeletetype
Returns the type of merge delete. This stored procedure is executed at the Publisher on the publication database or at the
Subscriber on the subscription database.

Syntax

sp_getmergedeletetype [@source_object =] 'source_object'
 , [@rowguid =] 'rowguid'
 , [@delete_type =] delete_type OUTPUT

Arguments

[@source_object =] 'source_object'

Is the name of the source object. source_object is nvarchar(386), with no default.

[@rowguid =] 'rowguid'

Is the row identifier for the delete type. rowguid is uniqueidentifier, with no default.

[@delete_type =] delete_type OUTPUT

Is the code indicating the type of delete. delete_type is int, with no default. delete_type is also an OUTPUT parameter, and can be
one of these values.

Value Description
1 User delete
5 Partial delete
6 System delete

Remarks

sp_getmergedeletetype is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_getmergedeletetype.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_get_distributor
Determines whether a Distributor is installed on a server. This stored procedure is executed at the computer where the Distributor
is being looked for, on any database.

Syntax

sp_get_distributor

Result Sets

Column name Data type Description
installed int 0 = No

1 = Yes
distribution server sysname Name of the Distributor server
distribution db installed int 0 = No

1 = Yes
is distribution publisher int 0 = No

1 = Yes
has remote distribution
publisher

int 0 = No
1 = Yes

Remarks

sp_get_distributor is used primarily by the Microsoft SQL Server Enterprise Manager in snapshot, transactional, and merge
replication.

Permissions

Members of the public role can execute sp_get_distributor.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_getqueuedrows
Retrieves rows at the Subscriber that have updates pending in the queue. This stored procedure is executed at the Subscriber on
the subscription database.

Syntax

sp_getqueuedrows [@tablename =] 'tablename'
 [, [@owner =] 'owner'
 [, [@tranid =] 'transaction_id']

Arguments

[@tablename =] 'tablename'

Is the name of the table. tablename is sysname, with no default. The table must be a part of a queued subscription.

[@owner =] 'owner'

Is the subscription owner. owner is sysname, with a default of NULL.

[@tranid =] 'transaction_id'

Allows the output to be filtered by the transaction ID. transaction_id is nvarchar(70), with a default of NULL. If specified, the
transaction ID associated with the queued command is displayed. If NULL, all the commands in the queue are displayed.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Shows all rows that currently have at least one queued transaction for the subscribed table.

Column name Data type Description
Action nvarchar(10) Type of action to be taken

when synchronization occurs.
INS= insert
DEL = delete
UPD = update

Tranid nvarchar(70) Transaction ID that the
command was executed
under.

table column1...n The value for each column of
the table specified in
tablename.

msrepl_tran_version uniqueidentifier This column is used for
tracking changes to replicated
data and to perform conflict
detection at the Publisher. This
column is added to the table
automatically.

Remarks

sp_getqueuedrows is used at Subscribers participating in queued updating.

sp_getqueuedrows finds rows of a given table on a subscription database that have participated in a queued update, yet
currently have not been resolved by the queue reader agent.

Permissions

Members of the public role can execute sp_getqueuedrows.

See Also

Queued Updating

Queued Updating Considerations

Queued Updating Conflict Detection and Resolution

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_getsubscriptiondtspackagename
Returns the name of the DTS package used to transform data before they are sent to a Subscriber. This stored procedure is
executed at the Publisher on any database.

Syntax

sp_getsubscriptiondtspackagename [@publication =] 'publication'
 [, [@subscriber =] 'subscriber']

Arguments

[@publication =] 'publication'

Is the name of the publication. 'publication' is sysname, with no default.

[@subscriber=] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
new_package_name sysname The name of the DTS package.

Remarks

sp_getsubscriptiondtspackagename is used in snapshot replication and transactional replication.

Permissions

Members of the public role can execute sp_getsubscriptiondtspackagename.

See Also

How Transformable Subscriptions Works

System Stored Procedures

Transforming Published Data

Transact-SQL Reference (SQL Server 2000)

sp_grant_publication_access
 New Information - SQL Server 2000 SP3.

Adds a login to the access list of the publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_grant_publication_access [@publication =] 'publication'
 , [@login =] 'login'
 [, [@reserved =] 'reserved']

Arguments

[@publication =] 'publication'

Is the name of the publication to access. 'publication' is sysname, with no default.

[@login =] 'login'

Is the login ID. 'login' is sysname, with no default.

[@reserved =] 'reserved'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_grant_publication_access is used in snapshot, transactional, and merge replication.

sp_grant_publication_access cannot be executed from within a transaction.

This stored procedure can be called repeatedly.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_grant_publication_access.

See Also

sp_help_publication_access

sp_revoke_publication_access

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_agent_default
Retrieves the ID of the default configuration for the agent type passed as parameter. This stored procedure is executed at
Distributor on any database.

Syntax

sp_help_agent_default [@profile_id =] profile_id OUTPUT
 , [@agent_type =] agent_type

Arguments

[@profile_id =] profile_id OUTPUT

Is the ID of the default configuration for the type of agent. profile_id is int, with no default. profile_id is also an OUTPUT parameter
and returns the ID of the default configuration for the type of agent.

[@agent_type =] 'agent_type'

Is the type of agent. agent_type is int, with no default, and can be one of these values.

Value Description
1 Snapshot Agent.
2 Log Reader Agent.
3 Distribution Agent.
4 Merge Agent.

Remarks

sp_help_agent_default is used in all types of replication.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_agent_parameter
Returns all the parameters of a profile from the MSagent_parameters system table. This stored procedure is executed at the
Distributor where the agent is running, on any database.

Syntax

sp_help_agent_parameter [[@profile_id =] profile_id]

Arguments

[@profile_id =] profile_id

Is the ID of the profile from the MSagent_profiles table. profile_id is int, with a default of -1, which returns all parameters.

Result Sets

Column name Data type Description
profile_id int ID of the agent profile.
parameter_name sysname Name of the parameter.
value nvarchar(255) Value of the parameter.

Remarks

sp_help_agent_parameter is used in all types of replication.

Permissions

Execute permissions default to the public role.

See Also

sp_add_agent_parameter

sp_drop_agent_parameter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_agent_profile
Displays the profile of a specified agent. This stored procedure is executed at the Distributor on any database.

Syntax

sp_help_agent_profile [[@agent_type =] agent_type]
 [, [@profile_id =] profile_id]

Arguments

[@agent_type =] agent_type

Is the type of agent. agent_type is int, with a default of 0, and can be one of these values.

Value Description
1 Snapshot Agent
2 Log Reader Agent
3 Distribution Agent
4 Merge Agent

[@profile_id =] profile_id

Is the ID of the profile to be displayed. profile_id is int, with a default of -1, which returns all the profiles in the MSagent_profiles
table.

Result Sets

Column name Data type Description
profile_id int ID of the profile.
profile_name sysname Unique for agent type.
agent_type int 1 = Snapshot Agent

2 = Log Reader Agent
3 = Distribution Agent
4 = Merge Agent

Type Int 0 = System
1 = Custom

description varchar(3000) Description of the profile.
def_profile Bit Specifies whether this profile is the default

for this agent type.

Remarks

sp_help_agent_profile is used in all types of replication.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helparticle
 New Information - SQL Server 2000 SP3.

Displays information about an article. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helparticle [@publication =] 'publication'
 [, [@article =] 'article']
 [, [@returnfilter =] returnfilter]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of an article in the publication. article is sysname, with a default of %. If article is not supplied, information on all
articles for the specified publication is returned.

[@returnfilter =] returnfilter

Specifies whether the filter clause should be returned. returnfilter is bit, with a default of 1, which returns the filter clause.

Result Sets

Column name Data type Description
article id Int ID of the article.
article name sysname Name of the article.
base object nvarchar(257) Name of the underlying table

represented by the article or stored
procedure.

destination object sysname Name of the destination
(subscription) table, if different from
source_table or the stored procedure.

synchronization object nvarchar(257) Name of the table or view used for
producing a synchronization output
file.

type Tinyint Type of article.
status Tinyint Bitmask of the article name:

0 = For internal use only.
1 = Active.
8 = Include the column name in
insert statements.
16 = Use parameterized statements.
24 = Include the column name in
INSERT statements and use
parameterized statements.

filter nvarchar(257) Stored procedure (created with FOR
REPLICATION) used to filter the table
(horizontal filtering).

description nvarchar(255) Descriptive entry for the article.
insert_command nvarchar(255) Call to the stored procedure to

execute upon insert.
update_command nvarchar(255) Call to the stored procedure to

execute upon update.

delete_command nvarchar(255) Call to the stored procedure to
execute upon delete.

creation script path nvarchar(255) Path and name of an article schema
script used to create target tables.

vertical partition Bit Columns to replicate.
pre_creation_cmd Tinyint Precreation command for DROP

TABLE, DELETE TABLE, or TRUNCATE
TABLE.

filter_clause Ntext WHERE clause specifying the
horizontal filtering.

schema_option binary(8) Bitmap of the schema generation
option for the given article.

dest_owner sysname Name of the owner of the
destination object.

source_owner sysname Owner of the source object.
unqualified_source_object sysname Name of the source object, without

the owner name.
sync_object_owner sysname Owner of the synchronization object.
unqualified_sync_object sysname Name of the synchronization object,

without the owner name.
filter_owner sysname Owner of the filter.
unqualified_filter sysname Name of the filter, without the owner

name.
auto_identity_range Int Flag indicating if automatic identity

range handling was turned on at the
publication at the time it was created.
1 means that automatic identity
range is enabled; 0 means it is
disabled. Note that identity range
management only pertains to
snapshot or transactional
publications that allow immediate
updating or queued updating

publisher_identity_range Int Range size of the identity range at
the Publisher if the article has
auto_identity_range set to true.

identity_range Bigint Range size of the identity range at
the Subscriber if the article has
auto_identity_range set to true.

threshold Bigint Percentage value indicating when the
Distribution Agent assigns a new
identity range.

Remarks

sp_helparticle is used in snapshot replication and transactional replication.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for the current
publication can execute sp_helparticle.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helparticlecolumns
 New Information - SQL Server 2000 SP3.

Returns all columns in the underlying table. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helparticlecolumns [@publication =] 'publication'
 , [@article =] 'article'

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article that has its columns returned. article is sysname, with no default.

Return Code Values

0 (columns that are not published) or 1 (columns that are published)

Result Sets

Column name Data type Description
column id int Object ID of the table to which this column belongs.
column sysname Name of the column.
published bit Whether column is published:

0 = No
1 = Yes

Remarks

sp_helparticlecolumns is used in snapshot and transactional replication.

sp_helparticlecolumns is useful in checking a vertical partition.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for the current
publication can execute sp_helparticlecolumns.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changearticle

sp_changepublication

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helppublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helparticledts
Used to get information on the correct custom task names to use when creating a transformation subscription using Visual
Basic®. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helparticledts [@publication =] 'publication'
 , [@article =] 'article'

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of an article in the publication. article is sysname, with no default.

Result Sets

Column name Data type Description
pre_script_ignore_error_task_name sysname Task name for the

programming task that
occurs before the snapshot
data is copied, and program
execution should continue if
a script error is encountered.

pre_script_task_name sysname Task name for the
programming task that
occurs before the snapshot
data is copied. Program
execution halts on error.

transformation_task_name sysname Task name for the
programming task when
using a Data Driven Query
task.

post_script_ignore_error_task_name sysname Task name for the
programming task that
occurs after the snapshot
data is copied, and program
execution should continue if
a script error is encountered.

post_script_task_name sysname Task name for the
programming task that
occurs after the snapshot
data is copied. Program
execution halts on error.

Remarks

sp_helparticledts is used in snapshot replication and transactional replication.

There are naming conventions, required by the replication agents, which must be followed when naming tasks in a replication
DTS program. For custom tasks, such as an Execute SQL task, the name is a concatenated string consisting of the article name, a
prefix, and an optional part. When writing the code, if you are unsure what the task names should be, the result set gives the task
names that should be used. For more information, see Creating a Transformable Subscription Using Visual Basic.

Permissions

Execute permissions default to the public role.

See Also

Creating a Transformable Subscription Using Visual Basic

How Transformable Subscriptions Works

System Stored Procedures

Transforming Published Data

Transact-SQL Reference (SQL Server 2000)

sp_helpdistpublisher
 New Information - SQL Server 2000 SP3.

Returns properties of a Publisher that serves as its own Distributor. This stored procedure is executed at the Distributor on any
database.

Syntax

sp_helpdistpublisher [[@publisher =] 'publisher']
 [, [@check_user =] check_user

Arguments

[@publisher =] 'publisher'

Is the Publisher for which properties are returned. publisher is sysname, with a default of %.

[@check_user =] check_user

For internal use only.

Result Sets

Column name Data type Description
name sysname Name of Publisher.
distribution_db sysname Distribution database for the specified

Publisher.
security_mode int Security mode used by the replication agent in

a push subscription to connect to the
Publisher.

login sysname Login name used by the replication agent in a
push subscription to connect to the Publisher.
Login name is returned as NULL for users
other than sysadmin.

password sysname Password returned (in simple encrypted form).
Password is returned as NULL for users other
than sysadmin.

active bit Whether a remote Publisher is using the local
server as a Distributor:

0 = No
1 = Yes

working_directory nvarchar(255) Name of the working directory.
trusted bit Security mode implemented at the Distributor:

0 = SQL Server Authentication
1 = Windows Authentication

thirdparty_flag bit Whether the publication is a Microsoft® SQL
Server™ database:

0 = Microsoft SQL Server
1 = Data source other than Microsoft SQL
Server

Remarks

sp_helpdistpublisher is used in all types of replication.

sp_helpdistpublisher will not display the publisher login or password in the result set for non-sysadmin logins.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the replmonitor role in the distribution
database can execute sp_helpdistpublisher.

See Also

Replication Monitor

sp_adddistpublisher

sp_changedistpublisher

sp_dropdistpublisher

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpdistributiondb
Returns properties of the specified distribution database(s). This stored procedure is executed at the Distributor on the
distribution database.

Syntax

sp_helpdistributiondb [[@database =] 'database_name']

Arguments

[@database =] 'database_name'

Is the database name for which properties are returned. database_name is sysname, with a default of % for all databases.

Result Sets

Column name Data type Description
distribution_database sysname Name of the database.
min_distretention int Minimum retention period, in hours,

before transactions are deleted.
max_distretention int Maximum retention period, in hours,

before transactions are deleted.
history retention int Number of hours to retain history.
history_cleanup_agent sysname Name of the History Cleanup Agent.
distribution_cleanup_agent sysname Name of the Distribution Cleanup

Agent.
status int Not supported.
data_folder nvarchar(255) Name of the directory used to store

the database files.
data_file nvarchar(255) Name of the database file.
data_file_size int Initial data file size in megabytes.
log_folder nvarchar(255) Name of the directory for the

database log file.
log_file nvarchar(255) Name of the log file.
log_file_size int Initial log file size in megabytes.

Remarks

sp_helpdistributiondb is used in all types of replication.

Permissions

Execute permissions default to the public role.

See Also

sp_adddistributiondb

sp_changedistributiondb

sp_dropdistributiondb

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpdistributor
Lists information about the Distributor, distribution database, working directory, and SQL Server Agent user account. This stored
procedure is executed at the Distributor on any database.

Syntax

sp_helpdistributor [[@distributor =] 'distributor' OUTPUT]
 [, [@distribdb =] 'distribdb' OUTPUT]
 [, [@directory =] 'directory' OUTPUT]
 [, [@account =] 'account' OUTPUT]
 [, [@min_distretention =] min_distretention OUTPUT]
 [, [@max_distretention =] max_distretention OUTPUT]
 [, [@history_retention =] history_retention OUTPUT]
 [, [@history_cleanupagent =] 'history_cleanupagent' OUTPUT]
 [, [@distrib_cleanupagent =] 'distrib_cleanupagent' OUTPUT]
 [, [@publisher =] 'publisher']
 [, [@local =] 'local']
 [, [@rpcsrvname =] 'rpcsrvname' OUTPUT]

Arguments

[@distributor =] 'distributor' OUTPUT

Is the name of the Distributor. Distributor is sysname, with a default of %, which is the only value that returns a result set.

[@distribdb =] 'distribdb' OUTPUT

Is the name of the distribution database. distribdb is sysname, with a default of %, which is the only value that returns a result set.

[@directory =] 'directory' OUTPUT

Is the working directory. directory is nvarchar(255), with a default of %, which is the only value that returns a result set.

[@account =] 'account' OUTPUT

Is the Windows® user account. account is nvarchar(255), with a default of %, which is the only value that returns a result set.

[@min_distretention =] min_distretention OUTPUT

Is the minimum distribution retention period, in hours. min_distretention is int, with a default of -1.

[@max_distretention =] max_distretention OUTPUT

Is the maximum distribution retention period, in hours. max_distretention is int, with a default of -1.

[@history_retention =] history_retention OUTPUT

Is the history retention period, in hours. history_retention is int, with a default of -1.

[@history_cleanupagent =] 'history_cleanupagent' OUTPUT

Is the name of the history cleanup agent. history_cleanupagent is nvarchar(100), with a default of %, which is the only value that
returns a result set.

[@distrib_cleanupagent =] 'distrib_cleanupagent' OUTPUT

Is the name of the history cleanup agent. distrib_cleanupagent is nvarchar(100), with a default of %, which is the only value that
returns a result set.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL.

[@local =] 'local'

Is whether Microsoft® SQL Server™ should get local server values. local is nvarchar(5), with a default of NULL.

[@rpcsrvname =] 'rpcsrvname' OUTPUT

Is the name of the server that issues remote procedure calls. rpcsrvname is sysname, with a default of %, which is the only value

that returns a result set.

Result Sets

Column name Data type Description
Distributor sysname Name of the Distributor.
distribution database sysname Name of the distribution database.
Directory nvarchar(255) Name of the working directory.
Account nvarchar(255) Name of the Windows user account.
min distrib retention int Minimum distribution retention period.
max distrib retention int Maximum distribution retention period.
history retention int History retention period.
history cleanup agent nvarchar(100) Name of the History Cleanup Agent.
distribution cleanup
agent

nvarchar(100) Name of the Distribution Cleanup
Agent.

rpc server name sysname Name of the remote or local
Distributor.

rpc login name sysname Login used for remote procedure calls
to the remote Distributor.

If the distribution database is not installed, a NULL value is returned.

Remarks

sp_helpdistributor is used in all types of replication.

Permissions

Execute permissions default to the public role.

See Also

sp_adddistpublisher

sp_addsubscriber

sp_changesubscriber

sp_changesubstatus

sp_dboption

sp_dropsubscriber

sp_helpserver

sp_helpsubscriberinfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergealternatepublisher
Returns a list of all servers enabled as alternate Publishers for merge publications. This stored procedure is executed at the
Subscriber on the subscription database.

Syntax

sp_helpmergealternatepublisher [[@publisher =] 'publisher']
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'

Arguments

[@publisher =] 'publisher'

Is the name of the alternate publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the publication database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

Result Sets

Column name Data type Description
alternate publisher sysname Name of the alternate Publisher.
alternate publisher db sysname Name of the publication database.
alternate publication sysname Name of the publication.
alternate distributor sysname Name of the distributor.
friendly name nvarchar(255) Description of the alternate Publisher.
enabled bit Specifies if the server is an alternate

Publisher. 1 specifies that the Publisher
is enabled as an alternate Publisher. 0
specifies that it is not enabled.

Remarks

sp_helpmergealternatepublisher is used in merge replication.

During every merge session, the system queries both the Publisher and Subscriber for each one's list of alternate publishers. The
list of alternate publishers on both the Publisher and Subscriber has entries added or dropped as appropriate.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergearticle
 New Information - SQL Server 2000 SP3.

Returns information about an article. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helpmergearticle [[@publication =] 'publication']
 [, [@article =] 'article']

Arguments

[@publication =] 'publication'

Is the name of the publication about which to retrieve information. publication is sysname, with a default of %, which returns
information about all merge articles contained in all publications in the current database.

[@article =] 'article'

Is the name of the article for which to return information. article is sysname, with a default of %, which returns information about
all merge articles in the given publication.

Result Set

Column name Data type Description
name sysname Name of the article.
source_object_owner sysname Name of the owner of the source object.
source_object sysname Name of the source object from which

to add the article.
sync_object_owner sysname Name of the owner of the

synchronization object.
sync_object sysname Name of the custom object used to

establish the initial data for the partition.
description nvarchar(255) Description of the article.
status tinyint Status of the article.
creation_script nvarchar(127) Optional precreation script for the

article.
conflict_table nvarchar(258) Name of the table storing the insert or

update conflicts.
pre_creation_command tinyint Precreation method.
schema_option binary(8) Bitmap of the schema generation option

for the article.
type tinyint Type of article.
column_tracking int Setting for column-level tracking.
article_resolver nvarchar(255) Custom resolver for the article.
subset_filterclause nvarchar(2000) WHERE clause specifying the horizontal

filtering.
resolver_info sysname Name of the article resolver.
destination_object sysname Name of the destination object.

Applicable to merge stored procedures,
views, and UDF schema articles only.

Remarks

sp_helpmergearticle is used in merge replication.

Permissions

Only members of the db_owner fixed database role, the replmonitor role in the distribution database, or the publication access
list for the current publication can execute sp_helpmergearticle.

See Also

sp_addmergearticle

sp_changemergearticle

sp_dropmergearticle

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergearticlecolumn
 New Information - SQL Server 2000 SP3.

Returns the list of columns in the specified table or view article for a merge publication. Because stored procedures do not have
columns, this stored procedure returns an error if a stored procedure is specified as the article. This stored procedure is executed
at the Publisher on the publication database.

Syntax

sp_helpmergearticlecolumn [@publication =] 'publication']
 , [@article =] 'article']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of a table or view that is the article to retrieve information on. article is sysname, with no default.

Result Sets

Column name Data type Description
column_id sysname Is the identification number of the

column.
column_name sysname Is the name of the column for a table or

view.
published bit Specifies if the column name is

published. 1 specifies that the column is
being published. 0 specifies that it is not
published.

Remarks

sp_helpmergearticlecolumn is used in merge replication.

Permissions

Only members of the replmonitor role in the distribution database or the publication access list for the current publication can
execute sp_helpmergearticlecolumn.

See Also

Replication Monitor

Publication Access Lists

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergearticleconflicts
 New Information - SQL Server 2000 SP3.

Returns the articles in the publication that have conflicts. This stored procedure is executed at the Publisher on the publication
database, or at the Subscriber on the merge subscription database.

Syntax

sp_helpmergearticleconflicts [[@publication =] 'publication']
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publsher_db']

Arguments

[@publication =] 'publication'

Is the name of the merge publication. publication is sysname, with a default of %, which returns all articles in the database that
have conflicts.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL.

[@publisher_db =] 'publisher_db'

Is the name of the publisher database. publisher_db is sysname, with a default of NULL.

Result Sets

Column name Data type Description
article sysname Name of the article.
source_object nvarchar(386) Name of the source object.
conflict_table nvarchar(258) Name of the table storing the insert or

update conflicts.
guidcolname sysname Name of the RowGuidCol for the source

object.
centralized_conflicts int Whether conflict records are stored on

the given Publisher.

If the article has only delete conflicts and no conflict_table rows, the name of the conflict_table in the result set is NULL.

Remarks

sp_helpmergearticleconflicts is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_helpmergearticleconflicts.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergeconflictrows
 New Information - SQL Server 2000 SP3.

Returns the rows in the specified conflict table. This stored procedure is run on the computer where the conflict table is stored.

Syntax

sp_helpmergeconflictrows [[@publication =] 'publication']
 , [@conflict_table =] 'conflict_table'
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publsher_db']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. If the publication is specified, all conflicts qualified by
the publication are returned. For example, if the Conflict_Customers table has conflict rows for the WA and the CA publications,
passing in a publication name CA retrieves conflicts that pertain to the CA publication.

[@conflict_table =] 'conflict_table'

Is the name of the conflict table. conflict_table is sysname, with no default.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL.

[@publisher_db =] 'publisher_db'

Is the name of the publisher database. publisher_db is sysname, with a default of NULL.

Result Sets

sp_helpmergeconflictrows returns a result set consisting of the base table structure and these additional columns.

Column name Data type Description
origin_datasource varchar(255) Origin of the conflict.

conflict_type int Code indicating the type of conflict:

1 = UpdateConflict: Conflict is detected
at the row level.
2 = ColumnUpdateConflict: Conflict
detected at the column level.
3 = UpdateDeleteWinsConflict: Delete
wins the conflict.
4 = UpdateWinsDeleteConflict: The
deleted rowguid that loses the conflict is
recorded in this table.
5 = UploadInsertFailed: Insert from
Subscriber could not be applied at the
Publisher.
6 = DownloadInsertFailed: Insert from
Publisher could not be applied at the
Subscriber.
7 = UploadDeleteFailed: Delete at
Subscriber could not be uploaded to the
Publisher.
8 = DownloadDeleteFailed: Delete at
Publisher could not be downloaded to
the Subscriber.
9 = UploadUpdateFailed: Update at
Subscriber could not be applied at the
Publisher.
10 = DownloadUpdateFailed: Update at
Publisher could not be applied to the
Subscriber.

reason_code int Error code that can be context-sensitive.
reason_text varchar(720) Error description that can be context-

sensitive.
Pubid uniqueidentifier Publication identifier.

Remarks

sp_helpmergeconflictrows is used in merge replication.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for the current
publication can execute sp_helpmergeconflictrows.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergedeleteconflictrows
 New Information - SQL Server 2000 SP3.

Returns the rows in the specified msmerge_delete_conflicts table. This stored procedure is executed at the Publisher on the
merge publication database.

Syntax

sp_helpmergedeleteconflictrows [[@publication =] 'publication']
 [, [@source_object =] 'source_object']
 [, [@publisher =] 'publisher'
 [, [@publisher_db =] 'publsher_db'

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. If the publication is specified, all conflicts qualified by
the publication are returned. For example, if the msmerge_delete_conflicts table has conflict rows for the WA and the CA
publications, passing in a publication name CA retrieves conflicts that pertain to the CA publication only.

[@source_object =] 'source_object'

Is the name of the source object. source_object is nvarchar(386), with a default of NULL.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL.

[@publisher_db =] 'publisher_db'

Is the name of the publisher database. publisher_db is sysname, with a default of NULL.

Result Sets

Column name Data type Description
source_object nvarchar(386) Source object for the delete conflict.
rowguid uniqueidentifier Row identifier for the delete conflict.

conflict_type Int Code indicating type of conflict:

1 = UpdateConflict: Conflict is detected
at the row level.
2 = ColumnUpdateConflict: Conflict
detected at the column level.
3 = UpdateDeleteWinsConflict: Delete
wins the conflict.
4 = UpdateWinsDeleteConflict: The
deleted rowguid that loses the conflict is
recorded in this table.
5 = UploadInsertFailed: Insert from
Subscriber could not be applied at the
Publisher.
6 = DownloadInsertFailed: Insert from
Publisher could not be applied at the
Subscriber.
7 = UploadDeleteFailed: Delete at
Subscriber could not be uploaded to the
Publisher.
8 = DownloadDeleteFailed: Delete at
Publisher could not be downloaded to
the Subscriber.
9 = UploadUpdateFailed: Update at
Subscriber could not be applied at the
Publisher.
10 = DownloadUpdateFailed: Update at
Publisher could not be applied to the
Subscriber.

reason_code Int Error code that can be context-sensitive.
reason_text varchar(720) Error description that can be context-

sensitive.
origin_datasource varchar(255) Origin of the conflict.
pubid uniqueidentifier Publication identifier.

Remarks

sp_helpmergedeleteconflictrows is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute
sp_helpmergedeleteconflictrows.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergefilter
Returns information about merge filter(s). This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helpmergefilter [@publication =] 'publication'
 [, [@article =] 'article']
 [, [@filtername =] 'filtername']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article. article is sysname, with a default of %, which returns the names of all articles.

[@filtername =] 'filtername'

Is the name of the filter about which to return information. filtername is sysname, with a default of %, which returns information
about all the filters defined on the article or publication.

Result Sets

Column name Data type Description
join_filterid int ID of the join filter.
filtername sysname Name of the filter.
join article name sysname Name of the join article.
join_filterclause nvarchar(2000) Filter clause qualifying the join.
join_unique_key int Whether the join is on a unique key.
base table owner sysname Name of the owner of the base table.
base table name sysname Name of the base table.
join table owner sysname Name of the owner of the table being

joined to the base table.
join table name sysname Name of the table being joined to the

base table.
article name sysname Name of the article.

Remarks

sp_helpmergefilter is used in merge replication.

Permissions

Execute permissions default to the public role.

See Also

sp_addmergefilter

sp_changemergefilter

sp_dropmergefilter

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergepublication
 New Information - SQL Server 2000 SP3.

Returns information about a merge publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helpmergepublication [[@publication =] 'publication']
 [, [@found =] 'found'OUTPUT]
 [, [@publication_id =] 'publication_id' OUTPUT]
 [, [@reserved =] 'reserved']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %, which returns information about all merge
publications in the current database.

[@found =] 'found' OUTPUT

Is a flag to indicate returning rows. found is int and an OUTPUT parameter, with a default of NULL. 1 indicates the publication is
found. 0 indicates the publication is not found.

[@publication_id =] 'publication_id' OUTPUT

Is the publication identification number. publication_id is uniqueidentifier and an OUTPUT parameter, with a default of NULL.

[@reserved =] 'reserved'

Is reserved for future use. reserved is nvarchar(20), with a default of NULL.

Result Sets

Column name Data type Description
id int Sequential order of the

publication in the list.
name sysname Name of the publication.
description nvarchar(255) Description of the

publication.
status tinyint When publication data will

be available.
retention int Amount of change, in days,

to save for the given
publication.

sync_mode tinyint Synchronization mode of
this publication:

0 = Native bulk copy
program (bcp utility)
1 = Character bulk copy

allow_push int Whether push subscriptions
can be created for the given
publication. 0 means that a
push subscription is not
allowed.

allow_pull int Whether pull subscriptions
can be created for the given
publication. 0 means that a
pull subscription is not
allowed.

allow_anonymous int Whether anonymous
subscriptions can be created
for the given publication. 0
means that an anonymous
subscription is not allowed.

centralized_conflicts int Whether conflict records are
stored on the given
Publisher:

0 = conflict records are
stored at both the publisher
and at the subscriber that
caused the conflict.
1 = all conflict records are
stored at the Publisher.

priority float(8) Priority of the loop-back
subscription.

snapshot_ready tinyint Whether the snapshot of
this publication is ready:

0 = Snapshot is ready for
use.
1 = Snapshot is not ready
for use.

publication_type int Type of publication:

0 = Snapshot.
1 = Transactional.
2 = Merge.

pubid uniqueidentifier Unique identifier of this
publication.

snapshot_jobid binary(16) Job ID of the Snapshot
Agent.

enabled_for_internet int Whether the publication is
enabled for the Internet. If 1,
the synchronization files for
the publication are put into
the C:\Program
Files\Microsoft SQL
Server\MSSQL\Repldata\Ftp
directory. The user must
create the Ftp directory. If 0,
the publication is not
enabled for Internet access.

dynamic_filter int Whether a dynamic filter is
used. 0 means a dynamic
filter is not used.

has_subscription bit Whether the publication has
any subscriptions. 0 means
there are currently no
subscriptions to this
publication.

snapshot_in_default_folder Bit Specifies if the snapshot
files are stored in the default
folder. If 0, snapshot files
can be found in the default
folder. If 1, snapshot files
will be stored in the
alternate location specified
by alt_snapshot_folder.
Alternate locations can be
on another server, on a
network drive, or on a
removable media (such as
CD-ROM or removable
disks). You can also save the
snapshot files to a File
Transfer Protocol (FTP) site,
for retrieval by the
Subscriber at a later time.
Note that this parameter can
be true and still have a
location in the
@alt_snapshot_folder
parameter. That
combination specifies that
the snapshot files will be
stored in both the default
and alternate locations.

alt_snapshot_folder nvarchar(255) Specifies the location of the
alternate folder for the
snapshot.

pre_snapshot_script nvarchar(255) Specifies a pointer to an .sql
file that the Merge Agent
runs before any of the
replicated object scripts
when applying the snapshot
at a Subscriber.

post_snapshot_script nvarchar(255) Specifies a pointer to an .sql
file that the Merge Agent
will run after all the other
replicated object scripts and
data have been applied
during an initial
synchronization.

compress_snapshot Bit Specifies that the snapshot
that is written to the
@alt_snapshot_folder
location is compressed into
the Microsoft® CAB format.

ftp_address sysname Is the network address of
the FTP service for the
Distributor. Specifies where
publication snapshot files
are located for the Merge
Agent to pick up.

ftp_port int Is the port number of the
FTP service for the
Distributor. ftp_port has a
default of 21. Specifies
where the publication
snapshot files are located
for the Merge Agent to pick
up.

ftp_subdirectory nvarchar(255) Specifies where the
snapshot files will be
available for the Merge
Agent to pick up.

ftp_login sysname Is the username used to
connect to the FTP service.

conflict_retention int Specifies the retention
period, in days, for which
conflicts are retained. After
the specified number of
days has passed, the conflict
row is purged from the
conflict table.

keep_partition_changes int Specifies whether
synchronization
optimization is occurring for
this publication .
keep_partition_changes has
a default of 0. 0 means that
synchronization is not
optimized, and the partitions
sent to all Subscribers will
be verified when data
changes in a partition. 1
means that synchronization
is optimized, and only
Subscribers having rows in
the changed partition are
affected. For more
information, see Optimizing
Synchronization.

allow_subscription_copy int Specifies whether the ability
to copy the subscription
databases that subscribe to
this publication has been
enabled. 0 means copying is
not allowed.

allow_synctoalternate int Specifies whether an
alternate synchronization
partner is allowed to
synchronize with this
Publisher. 0 means a
synchronization partner is
not allowed.

validate_subscriber_info nvarchar(500) Lists the functions that are
being used to retrieve
Subscriber information and
validate the dynamic
filtering criteria on the
Subscriber. Assists in
verifying that the
information is partitioned
consistently with each
merge.

backward_comp_level int Database compatibility level
(60, 65, 70, and 80).

publish_to_activedirectory bit Specifies if the publication
information is published to
the Microsoft Active
Directory™. 0 means the
publication information is
not available from the
Microsoft Active Directory.

max_concurrent_merge int The number of concurrent
merge processes. A value of
0 for this property means
that there is no limit to the
number of concurrent
merge processes running at
any given time.

max_concurrent_dynamic_snapshots int The maximum number of
concurrent dynamic
snapshot sessions that can
be running against the
merge publication. If 0, there
is no limit to the maximum
number of concurrent
dynamic snapshot sessions
that can run simultaneously
against the publication at
any given time.

Remarks

sp_helpmergepublication is used in merge replication.

Permissions

Members of the db_owner fixed database role or the replmonitor role in the distribution database can execute
sp_helpmergepublication. Members with entries in one or more publication access lists can also execute
sp_helpmergepublication, however, they will only receive information on publications where they are listed in the publication
access list.

See Also

sp_addmergepublication

sp_changemergepublication

sp_dropmergepublication

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergepullsubscription
 New Information - SQL Server 2000 SP3.

Returns information about the pull subscription. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_helpmergepullsubscription [[@publication =] 'publication']
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@subscription_type =] 'subscription_type']

Argument

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. If publication is %, information about all merge
publications and subscriptions in the current database is returned.

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of %.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of %.

[@subscription_type =] 'subscription_type'

Is whether to show pull subscriptions. subscription_type is nvarchar(10), with a default of 'pull'. Valid values are 'push', 'pull',
or 'both'.

Result Sets

Column name Data type Description
subscription_name nvarchar(1000) Name of the subscription.
publication sysname Name of the publication.
publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
subscriber sysname Name of the Subscriber.
subscription_db sysname Name of the subscription

database.
status Int Subscription status:

0 = All jobs are waiting to start
1 = One or more jobs are starting
2 = All jobs have successfully
executed
3 = At least one job is executing
4 = All jobs are scheduled and idle
5 = At least one job is attempting
to execute after a previous failure
6 = At least one job has failed to
execute successfully

subscriber_type int Type of Subscriber:

1 = Global
2 = Local
3 = Anonymous

subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

priority float(8) Subscription priority. The value
must be less than 100.00.

sync_type tinyint Subscription synchronization type:

1 = Automatic
2 = Nosync

description nvarchar(255) Brief description of this pull
subscription.

merge_jobid binary(16) Job ID of the Merge Agent.
enabled_for_synmgr int Whether the subscription can be

synchronized through the
Microsoft Synchronization
Manager.

last_updated nvarchar(26) Date publication was last updated.
publisher_login sysname The Publisher login name.
publisher_password sysname The Publisher password.
publisher_security_mode int Specifies the security mode of the

Publisher:

0 = SQL Server Authentication
1 = Windows Authentication

distributor sysname Name of the Distributor.
distributor_login sysname The Distributor login name.
distributor_password sysname The Distributor password.
distributor_security_mode int Specifies the security mode of the

Distributor:

0 = SQL Server Authentication
1 = Windows Authentication

ftp_address sysname Available for backward
compatibility only. Is the network
address of the FTP service for the
Distributor.

ftp_port int Available for backward
compatibility only. Is the port
number of the FTP service for the
Distributor.

ftp_login sysname Available for backward
compatibility only. Is the
username used to connect to the
FTP service.

ftp_password sysname Available for backward
compatibility only. Is the user
password used to connect to the
FTP service.

alt_snapshot_folder nvarchar(255) Location where snapshot folder is
stored if the location is other than
or in addition to the default
location.

working_directory nvarchar(255) Fully qualified path to the
directory where snapshot files are
transferred using FTP when that
option is specified.

use_ftp bit Subscription is subscribing to
Publication over the Internet and
FTP addressing properties are
configured. If 0, Subscription is not
using FTP. If 1, subscription is
using FTP.

offload_agent bit Specifies if the agent can be
activated and run remotely. If 0,
the agent cannot be remotely
activated.

offload_server sysname Name of the server used for
remote activation.

use_interactive_resolver Returns whether or not the
interactive resolver is used during
reconciliation. If 0, the interactive
resolver is not used.

subid uniqueidentifier ID of the Subscriber.
dynamic_snapshot_location nvarchar(255) The path to the folder where the

snapshot files are saved.
last_sync_status int Subscription status:

0 = All jobs are waiting to start
1 = One or more jobs are starting
2 = All jobs have executed
successfully
3 = At least one job is executing
4 = All jobs are scheduled and idle
5 = At least one job is attempting
to execute after a previous failure
6 = At least one job has failed to
execute successfully

last_sync_summary sysname Description of last synchronization
results.

Remarks

sp_helpmergepullsubscription is used in merge replication. In the result set, the date returned in last_updated is formatted as
YYYYMMDD hh:mm:ss.fff.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_helpmergepullsubscription.

See Also

sp_addmergepullsubscription

sp_changemergepullsubscription

sp_dropmergepullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpmergesubscription
 New Information - SQL Server 2000 SP3.

Returns information about a push subscription. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helpmergesubscription [[@publication =] 'publication']
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']
 [, [@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@subscription_type =] 'subscription_type']
 [, [@found =] 'found' OUTPUT]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %. The publication must already exist and conform to the
rules for identifiers. If NULL or %, information about all merge publications and subscriptions in the current database is returned.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of %. If NULL or %, information about all subscriptions to the
given publication is returned.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with a default of %, which returns information about all
subscription databases.

[@publisher =] 'publisher'

Is the name of the Publisher. The Publisher must be a valid server. publisher is sysname, with a default of %, which returns
information about all Publishers.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of %, which returns information about all
Publisher databases.

[@subscription_type =] 'subscription_type'

Is the type of subscription. subscription_type is nvarchar(15), and can be one of these values.

Value Description
push (default) Push subscription.
Pull Pull subscription.
Both Both a push and pull subscription.

[@found =] 'found' OUTPUT

Is a flag to indicate returning rows. found is int and an OUTPUT parameter, with a default of NULL. 1 indicates the publication is
found. 0 indicates the publication is not found.

Result Sets

Column name Data type Description
subscription_name Name of the subscription.
Publication sysname Name of the publication.
Publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
Subscriber sysname Name of the Subscriber.

subscriber_db sysname Name of the subscription database.
Status int Status of the subscription:

0 = All jobs are waiting to start

1 = One or more jobs are starting

2 = All jobs have executed successfully

3 = At least one job is executing

4 = All jobs are scheduled and idle

5 = At least one job is attempting to
execute after a previous failure

6 = At least one job has failed to
execute successfully

subscriber_type int Type of Subscriber.
subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Both

Priority float(8) Number indicating the priority for the
subscription.

sync_type tinyint Subscription sync type.
description nvarchar(255) Brief description of this merge

subscription.
merge_jobid binary(16) Job ID of the Merge Agent.
full_publication tinyint Whether the subscription is to a full or

filtered publication.
offload_enabled Specifies if offload execution of a

replication agent has been set to run at
the Subscriber. If NULL, execution is run
at the Publisher.

offload_server Name of the server to where the agent
is running.

use_interactive_resolver Returns whether or not the interactive
resolver is used during reconciliation. If
0, the interactive resolver not is used.

Remarks

sp_helpmergesubscription is used in merge replication.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for the current
publication can execute sp_helpmergesubscription.

See Also

Publication Access Lists

sp_addmergesubscription

sp_changemergesubscription

sp_dropmergesubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helppublication
 New Information - SQL Server 2000 SP3.

Returns information about a publication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_helppublication [[@publication =] 'publication']
 [, [@found =] found OUTPUT]

Arguments

[@publication =] 'publication'

Is the name of the publication to be viewed. publication is sysname, with a default of %, which returns information about all
publications.

[@found =] 'found' OUTPUT

Is a flag to indicate returning rows. found is int and an OUTPUT parameter, with a default of 23456. 1 indicates the publication is
found. 0 indicates the publication is not found.

Result Sets

Column name Data type Description
pubid int ID for the publication.
name sysname Name of the publication.
restricted int Not used, set to 0.
status tinyint When publication data will be available.
task Used for backward compatibility.
replication frequency tinyint Type of replication frequency:

0 = Transaction based
1 = Scheduled table refresh

synchronization
method

tinyint Synchronization mode:

0 = Native bulk copy program (bcp
utility)
1 = Character bulk copy
3 = Concurrent, which means that native
bulk copy (bcp utility) is used but tables
are not locked during the snapshot
4 = Concurrent_c, which means that
character bulk copy is used but tables are
not locked during the snapshot

description nvarchar(255) Optional description for the publication.
immediate_sync bit Whether the synchronization files are

created or re-created each time the
Snapshot Agent runs.

enabled_for_internet bit Whether the synchronization files for the
publication are exposed to the Internet,
through FTP and other services.

allow_push bit Whether push subscriptions are allowed
on the publication.

allow_pull bit Whether pull subscriptions are allowed
on the publication.

allow_anonymous bit Whether anonymous subscriptions are
allowed on the publication.

independent_agent bit Whether there is a stand-alone
Distribution Agent for this publication.

immediate_sync_ready bit Whether or not the Snapshot Agent
generated a snapshot that is ready to be
used by new subscriptions. This
parameter is defined only if the
publication is set to always have a
snapshot available for new or
reinitialized subscriptions.

allow_sync_tran bit Whether immediate-updating
subscriptions are allowed on the
publication.

autogen_sync_procs bit Whether to automatically generate
stored procedures to support
immediate-updating subscriptions.

snapshot_jobid binary(16) Scheduled task ID.
retention int Amount of change, in hours, to save for

the given publication.

Remarks

sp_helppublication is used in snapshot and transactional replication.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for the current
publication can execute sp_helppublication.

See Also

sp_addarticle

sp_addpublication

sp_articlecolumn

sp_changepublication

sp_changearticle

sp_droparticle

sp_droppublication

sp_enumfullsubscribers

sp_helparticle

sp_helparticlecolumns

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_help_publication_access
 New Information - SQL Server 2000 SP3.

Returns a list of all granted logins for a publication. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_help_publication_access [@publication =] 'publication'
 [, [@return_granted =] 'return_granted']
 [, [@login =] 'login']
 [, [@initial_list =] initial_list]

Arguments

[@publication =] 'publication'

Is the name of the publication to access. publication is sysname, with no default.

[@return_granted =] 'return_granted'

Is the login ID. return_granted is bit, with a default of 1. If 0 is specified and SQL Server Authentication is used, the available
logins that appear at the Publisher but not at the Distributor are returned. If 0 is specified and Windows Authentication is used,
the logins not specifically denied access at either the Publisher or Distributor are returned.

[@login =] 'login'

Is the standard security login ID. login is sysname, with a default of %.

[@initial_list =] initial_list

Specifies whether to obtain the initial publication access list for the new publication. initial_list is bit, with a default of 0. If 1,
returns the publication access list, which includes all the members of the sysadmin that have valid logins at the Distributor and
the current login.

Result Sets

Column name Data type Description
Loginname nvarchar(256) Actual login name.
Isntname int 0 = Login is a Microsoft SQL Server login.

1 = Login is a Windows® user or group.
Isntgroup int 0 = Login is a Microsoft SQL Server login.

1 = Login is a Windows user or group.

Remarks

sp_help_publication_access is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_help_publication_access.

See Also

sp_grant_publication_access

sp_revoke_publication_access

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helppullsubscription
 New Information - SQL Server 2000 SP3.

Displays information about one or more subscriptions at the Subscriber. This stored procedure is executed at the Subscriber on
the subscription database.

Syntax

sp_helppullsubscription [[@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@show_push =] 'show_push']

Arguments

[@publisher =] 'publisher'

Is the name of the remote server. publisher is sysname, with a default of %, which returns all the Publishers.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of %, which returns all the Publisher databases.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %, which returns all the publications. If this parameter
equals to ALL, only pull subscriptions with independent_agent = 0 are returned.

[@show_push =] 'show_push'

Is whether all push subscriptions are to be returned. show_push is nvarchar(5), with a default of FALSE, which does not return all
push subscriptions.

Result Sets

Column name Data type Description
publisher sysname Name of the Publisher.
publisher database sysname Name of the Publisher database.
publication sysname Name of the publication.
independent_agent bit Indicates whether there is a stand-

alone Distribution Agent for this
publication.

subscription type int Subscription type to the publication.
distribution agent nvarchar(100) Distribution Agent handling the

subscription.
publication description nvarchar(255) Description of the publication.
last updating time date Time the subscription information

was updated. This is a UNICODE
string of ISO date (114) + ODBC time
(121). The format is yyyymmdd
hh:mi:sss.mmm where 'yyyy' is year,
'mm' is month, 'dd' is day, 'hh' is
hour, 'mi' is minute, 'sss' is seconds,
'mmm' is milliseconds.

subscription name varchar(386) Name of the subscription.
last transaction
timestamp

varbinary(16) Timestamp of the last replicated
transaction.

update mode tinyint Type of updates allowed.
distribution agent job_id int Job ID of the Distribution Agent.

enabled_for_synmgr int Whether the subscription can be
synchronized through the
Microsoft® Synchronization
Manager.

subscription guid binary(16) Global identifier for the version of the
subscription on the publication.

subid binary(16) Global identifier for an anonymous
subscription.

immediate_sync bit Whether the synchronization files are
created or re-created each time the
Snapshot Agent runs.

publisher login sysname Login ID used at the Publisher for
SQL Server Authentication.

publisher password nvarchar(524) Password (encrypted) used at the
Publisher for SQL Server
Authentication.

publisher security_mode int Security mode implemented at the
Publisher:

0 = SQL Server Authentication
1 = Windows Authentication
2 = The synchronization triggers use
a static sysservers entry to do RPC,
and publisher must be defined in the
sysservers table as a remote server
or linked server.

distributor sysname Name of the Distributor.
distributor_login sysname Login ID used at the Distributor for

SQL Server Authentication.
distributor_password nvarchar(524) Password (encrypted) used at the

Distributor for SQL Server
Authentication.

distributor_security_mode int Security mode implemented at the
Distributor:

0 = SQL Server Authentication
1 = Windows Authentication

ftp_address sysname For backward compatibility only.
ftp_port int For backward compatibility only.
ftp_login sysname For backward compatibility only.
ftp_password nvarchar(524) For backward compatibility only.
alt_snapshot_folder nvarchar(255) Location where snapshot folder is

stored if the location is other than or
in addition to the default location.

working_directory nvarchar(255) Fully qualified path to the directory
where snapshot files are transferred
using FTP when that option is
specified.

use_ftp bit Subscription is subscribing to
Publication over the Internet and FTP
addressing properties are configured.
If 0, Subscription is not using FTP. If
1, subscription is using FTP.

publication_type int Specifies the replication type of the
publication:

0 = Transactional replication
1 = Snapshot replication
2 = Merge replication

dts_package_name sysname Specifies the name of the DTS
package.

dts_package_location int Location where the DTS package is
stored:

0 = Distributor
1 = Subscriber

offload_agent bit Specifies if the agent can be activated
remotely. If 0, the agent cannot be
activated remotely.

offload_server sysname Specifies the network name of the
server used for remote activation.

last_sync_status int Subscription status:

0 = All jobs are waiting to start
1 = One or more jobs are starting
2 = All jobs have executed
successfully
3 = At least one job is executing
4 = All jobs are scheduled and idle
5 = At least one job is attempting to
execute after a previous failure
6 = At least one job has failed to
execute successfully

last_sync_summary sysname Description of last synchronization
results.

last_sync_time datetime Time the subscription information
was updated. This is a UNICODE
string of ISO date (114) + ODBC time
(121). The format is yyyymmdd
hh:mi:sss.mmm where 'yyyy' is year,
'mm' is month, 'dd' is day, 'hh' is
hour, 'mi' is minute, 'sss' is seconds,
'mmm' is milliseconds.

Remarks

sp_helppullsubscription is used in snapshot and transactional replication.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_helppullsubscription.

See Also

sp_addpullsubscription

sp_droppullsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpreplfailovermode
 New Information - SQL Server 2000 SP3.

Displays the current failover mode of a subscription for immediate updating with queued updating as a standby in case of a
failure. This stored procedure is executed at the Subscriber on any database.

Syntax

sp_helpreplfailovermode [@publisher =] 'publisher'
 [, [@publisher_db =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@failover_mode_id =] 'failover_mode_id'OUTPUT]
 [, [@failover_mode =] 'failover_mode'OUTPUT]

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher that is participating in the update of this Subscriber. publisher is sysname, with no default. The
Publisher must already be configured for publishing.

[@publisher_db =] 'publisher_db'

Is the name of the publication database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication that is participating in the update of this Subscriber. publication is sysname, with no default.

[@failover_mode_id =] 'failover_mode_id' OUTPUT

Returns the integer value of the failover mode and is an OUTPUT parameter. failover_mode_id is a tinyint with a default of 0. It
returns 0 for immediate updating and 1 for queued updating.

[@failover_mode =] 'failover_mode' OUTPUT

Returns the mode in which data modifications are made at the Subscriber. failover_mode is a nvarchar(10) with a default of
NULL. Is an OUTPUT parameter.

Value Description
immediate Immediate updating: updates made at the Subscriber are

immediately propagated to the Publisher using two-phase
commit protocol (2PC).

queued Queued updating: updates made at the Subscriber are
stored in a queue.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_helpreplfailovermode is used in snapshot replication or transactional replication for which subscriptions are enabled for
immediate updating with queued updating as failover in case of failure.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_helpreplfailovermode.

See Also

sp_setreplfailovermode

Transact-SQL Reference (SQL Server 2000)

sp_helpreplicationdboption
Shows the databases that have the replication option enabled. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_helpreplicationdboption [[@dbname =] 'dbname']
 [, [@type =] 'type']

Arguments

[@dbname =] 'dbname'

Is the name of the database. dbname is sysname, with a default of %. If %, then the result set will contain all databases on the
machine where the stored procedure was run.

[@type =] 'type'

Is whether replication is allowed. type is sysname, and can be one of the following values.

Value Description
publish Transactional replication allowed.
merge publish Merge replication allowed.
replication allowed (default) Either transactional or merge replication allowed.

Result Sets

Column name Data type Description
name sysname Name of the database.
id sysname ID of the database.

Remarks

sp_helpreplicationdboption is used in snapshot, transactional, and merge replication.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpreplicationoption
Shows the types of replication options enabled for a server. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_helpreplicationoption [[@optname =] 'option_name']

Arguments

[@optname =] 'option_name'

Is the name of the replication option to query for. option_name is sysname, with a default of NULL. If NULL, then the result set
will contain all types of replication options activated on that database. If transactional, the result set will contain information only
about the transactional publication. If merge, the result set will contain information about the merge publication only.

Result Sets

Column name Data type Description
optname sysname Name of the replication option type.
value bit For internal use only.
major_version int For internal use only.
minor_version int For internal use only.
revision int For internal use only.
install_failures int For internal use only.

Remarks

sp_helpreplicationoption is used to get information on transactional replication and merge replication on a particular server.
To get information on a particular database, use sp_helpreplicationdboption.

Permissions

Execute permissions default to the public role.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpsubscriberinfo
Displays information about a Subscriber. This stored procedure is executed at the Publisher on any database.

Syntax

sp_helpsubscriberinfo [[@subscriber =] 'subscriber']

Arguments

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of %, which returns all information.

Result Sets

Column name Data type Description
publisher sysname Name of the Publisher.
subscriber sysname Name of the Subscriber.
type tinyint Type of Subscriber:

0 = Microsoft® SQL Server™
database
1 = ODBC data source

login sysname Login ID for SQL Server
Authentication.

password sysname Password for SQL Server
Authentication.

commit_batch_size int Not supported.
status_batch_size int Not supported.
flush_frequency int Not supported.
frequency_type int Frequency with which the

Distribution Agent is run:

1 = One time
2 = On demand
4 = Daily
8 = Weekly
16 = Monthly
32 = Monthly relative
64 = Autostart
124 = Recurring

frequency_interval int Value applied to the frequency set
by frequency_type.

frequency_relative_interval int Date of the Distribution Agent
Used when frequency_type is set
to 32 (monthly relative):

1 = First
2 = Second
4 = Third
8 = Fourth
16 = Last

frequency_recurrence_factor int Recurrence factor used by
frequency_type.

frequency_subday int How often to reschedule during
the defined period:

1 = Once
2 = Second
4 = Minute
8 = Hour

frequency_subday_interval int Interval for frequency_subday.
active_start_time_of_day int Time of day when the Distribution

Agent is first scheduled, formatted
as HHMMSS.

active_end_time_of_day int Time of day when the Distribution
Agent stops being scheduled,
formatted as HHMMSS.

active_start_date int Date when the Distribution Agent
is first scheduled, formatted as
YYYYMMDD.

active_end_date int Date when the Distribution Agent
stops being scheduled, formatted
as YYYYMMDD.

retryattempt int Not supported.
retrydelay int Not supported.
description nvarchar(255) Text description of the Subscriber.
security_mode int Implemented security mode:

0 = SQL Server Authentication
1 = Windows Authentication

Remarks

sp_helpsubscriberinfo is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_helpsubscriberinfo.

See Also

sp_adddistpublisher

sp_addsubscriber

sp_changesubscriber

sp_dboption

sp_dropsubscriber

sp_helpdistributor

sp_helpserver

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpsubscription
Lists subscription information associated with a particular publication, article, Subscriber, or set of subscriptions. This stored
procedure is executed at a Publisher on the publication database.

Syntax

sp_helpsubscription [[@publication =] 'publication']
 [, [@article =] 'article']
 [, [@subscriber =] 'subscriber']
 [, [@destination_db =] 'destination_db']
 [, [@found =] found OUTPUT]

Arguments

[@publication =] 'publication'

Is the name of the associated publication. publication is sysname, with a default of %, which returns all subscription information
for this server.

[@article =] 'article'

Is the name of the article. article is sysname, with a default of %, which returns all subscription information for the selected
publications and Subscribers. If all, only one entry is returned for the full subscription on a publication.

[@subscriber =] 'subscriber'

Is the name of the Subscriber on which to obtain subscription information. subscriber is sysname, with a default of %, which
returns all subscription information for the selected publications and articles.

[@destination_db =] 'destination_db'

Is the name of the destination database. destination_db is sysname, with a default of %.

[@found =] 'found' OUTPUT

Is a flag to indicate returning rows. found is int and an OUTPUT parameter, with a default of 23456. 1 indicates the publication is
found. 0 indicates the publication is not found.

Result Sets

Column name Data type Description
subscriber sysname Name of the Subscriber.
publication sysname Name of the publication.
article sysname Name of the article.
destination database sysname Name of the destination database in

which replicated data is placed.
subscription status tinyint Subscription status:

0 = Inactive
1 = Subscribed
2 = Active

synchronization type tinyint Subscription synchronization type:

1 = Automatic
2 = None

subscription type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

Full subscription bit Whether subscription is to all articles
in the publication:

0 = No
1 = Yes

subscription name nvarchar(255) Name of the subscription.
update mode int 0 = Read-only

1 = Immediate-updating subscription
distribution job id binary(16) Job ID of the Distribution Agent.
loopback_detection bit 0 = No

1 = Yes
offload_enabled bit Specifies whether offload execution of

a replication agent has been set to run
at the Subscriber. If 0, agent is run at
the Publisher. If 1, agent is run at the
Subscriber.

offload_server sysname Name of the server enabled for
remote agent activation. If NULL, then
the current offload_server listed in
MSDistribution_agents table is used.

Dts_package_name sysname Specifies the name of the DTS
package.

Dts_package_location int Location of the DTS package, if one is
assigned to the subscription. If there is
a package, a value of 0 specifies the
package location at the distributor. A
value of 1 specifies the subscriber.

Remarks

sp_helpsubscription is used in snapshot, transactional, and merge replication.

Permissions

Execute permissions default to the public role. However, sysadmin fixed server role or db_owner fixed database role can see all
subscriptions, while the other users get a result set listing only their own subscriptions.

See Also

sp_addsubscription

sp_changesubstatus

sp_dropsubscription

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_helpsubscription_properties
 New Information - SQL Server 2000 SP3.

Retrieves security information from the MSsubscription_properties table. This stored procedure is executed at the machine
where the DTS package is stored.

Syntax

sp_helpsubscription_properties [[@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@publication_type =] publication_type]

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of %, which returns information on all Publishers.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of %, which returns information on all Publisher
databases.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %, which returns information on all publications.

[@publication_type =] publication_type

Is the type of publication. publication_type is int, with a default of NULL.

Result Sets

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
publication_type int Type of publication:

0 = Transactional
1 = Snapshot
2 = Merge

publisher_login sysname Login ID used at the Publisher for
SQL Server Authentication.

publisher_password sysname Password used at the Publisher for
SQL Server Authentication
(encrypted).

publisher_security_mode int Security mode used at the Publisher:

0 = SQL Server Authentication
1 = Windows Authentication

distributor sysname Name of the Distributor.
distributor_login sysname Distributor login.
distributor_password sysname Distributor password (encrypted).
distributor_security_mode int Security mode used at the

Distributor:

0 = SQL Server Authentication
1 = Windows Authentication

ftp_address sysname For backward compatibility only.
Network address of the FTP service
for the Distributor.

ftp_port int For backward compatibility only. Port
number of the FTP service for the
Distributor.

ftp_login sysname For backward compatibility only.
User name used to connect to the
FTP service.

ftp_password sysname For backward compatibility only.
User password used to connect to
the FTP service.

Alt_snapshot_folder nvarchar(255) Specifies the location of the alternate
folder for the snapshot.

working_directory nvarchar(255) Name of the working directory used
to store data and schema files.

Use_ftp bit Specifies the use of FTP instead of
the regular protocol to retrieve
snapshots. If 1, FTP is used.

Dts_package_name sysame Specifies the name of the DTS
package.

Dts_package_password nvarchar(524) Specifies the password on the
package, if there is one. A value of
NULL means that the package has no
password.

Dts_package_location int Location where the DTS package is
stored. If 0, the package location is at
the Distributor. If 1, the package
location is at the Subscriber.

offload_agent bit Specifies if the agent can be activated
remotely. If 0, the agent cannot be
activated remotely.

offload_server sysname Specifies the network name of the
server used for remote activation.

dynamic_snapshot_location nvarchar(255) Specifies the path to the folder where
the snapshot files are saved.

Remarks

sp_helpsubscription_properties is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_helpsubscription_properties.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_ivindexhasnullcols
Validates that the clustered index of the indexed view is unique and does not contain any column that can be null when the
indexed view is going to be used to create a transactional publication. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_ivindexhasnullcols [@viewname =] 'view_name'
 , [@fhasnullcols=] field_has_null_columns OUTPUT

Arguments

[@viewname =] 'view_name'

Is the name of the view to verify. view_name is sysname, with no default.

[@fhasnullcols =] field_has_null_columns OUTPUT

Is the flag indicating whether the view index has columns that allow NULL. view_name is sysname, with no default. Returns a
value of 1 if the view index has columns that allow NULL. Returns a value of 0 if the view does not contain columns that allow
NULLS. Note that if the stored procedure itself returns a return code of 1, meaning the stored procedure execution had a failure,
this value will be 0 and should be ignored.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_ivindexhasnullcols is used by transactional replication.

By default, indexed view articles in a publication are created as tables at the Subscribers. However, when the indexed column
allows NULL values, the indexed view is created as an indexed view at the Subscriber instead of a table. By executing this stored
procedure, it can alert the user to whether or not this problem exists with the current indexed view.

Permissions

Members of the public role can execute sp_ivindexhasnullcols.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_link_publication
Sets the configuration and security information used by synchronization triggers of all updatable subscriptions when connecting
to the Publisher. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_link_publication [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'
 , [@security_mode =] security_mode
 [, [@login =] 'login']
 [, [@password =] 'password']
 [, [@distributor =] 'distributor']

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher to link to. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database to link to. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication to link to. publication is sysname, with no default.

[@security_mode =] security_mode

Is the security mode used when linking to the Publisher. security_mode is int, with no default. If 0, the synchronization triggers
use a dynamic RPC connection to the Publisher. If 2, the synchronization triggers use a static sysservers entry to do RPC, and
publisher must be defined in the sysservers table as a remote server or linked server.

[@login =] 'login'

Is the login. login is sysname, with a default of NULL.

[@password =] 'password'

Is the password. password is sysname, with a default of NULL.

[@distributor =] 'distributor'

Is the name of the Distributor. distributor is sysname, with a default of NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_link_publication is used by all updatable subscriptions in snapshot replication and transactional replication.

sp_link_publication can be used for both push and pull subscriptions. It can be called before or after the subscription is created.
An entry is inserted or updated in the MSsubscription_properties system table. Use sp_helpsubscription_properties to view
the values (publisher_security_mode, publisher_login, publisher_password) being set.

For push subscriptions, the entry can be cleaned up by sp_subscription_cleanup. For pull subscriptions, the entry can be cleaned
up by sp_droppullsubscription or sp_subscription_cleanup. You can also call sp_link_publisher with a NULL password to
clear the entry in the MSsubscription_properties system table for security concerns.

The default mode used by an immediate updating Subscriber when it connects to the Publisher does not allow a connection using
Windows Authentication. To connect with a mode of Windows Authentication, a linked server will have to be set up to the
Publisher, and the immediate updating Subscriber should use this connection when updating the Subscriber. This requires the
sp_link_publication to be run with security_mode = 2.

Permissions

Only members of the sysadmin fixed server role can execute sp_link_publication.

See Also

sp_droppullsubscription

sp_helpsubscription_properties

sp_subscription_cleanup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_marksubscriptionvalidation
Marks the current open transaction to be a subscription level validation transaction for the specified subscriber. It must be used
together with sp_article_validation having @subscription_level equal to 1. It can be used with other calls to
sp_marksubscriptionvalidation to mark the current open transaction for other subscribers. This stored procedure is executed at
the Publisher on the publication database.

Syntax

sp_marksubscriptionvalidation [@publication =] 'publication'
 , [@subscriber =] 'subscriber'
 , [@destination_db =] 'destination_db'

Arguments

[@publication =] 'publication'

Is the name of the publication. Publication is sysname, with no default.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with no default.

[@destination_db =] 'destination_db'

Is the name of the destination database. destination_db is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_marksubscriptionvalidation

Is used in all types of replication. This stored procedure does not support heterogeneous Subscribers.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_marksubscriptionvalidation.

Examples

The following query can be applied to the publishing database to post subscription-level validation commands. These commands
are picked up by the Distribution Agents of specified Subscribers.

BEGIN TRAN

exec sp_marksubscriptionvalidation @publication = 'pub1',
 @subscriber = 'Sub', @destination_db = 'SubDB'

EXEC sp_marksubscriptionvalidation @publication = 'pub1',
 @subscriber = 'Sub2', @destination_db = 'SubDB'

EXEC sp_article_validation @publication = 'pub1', @article = 'art1',
 @rowcount_only = 0, @full_or_fast = 0, @shutdown_agent = 0,
 @subscription_level = 1

COMMIT TRAN

BEGIN TRAN

EXEC sp_marksubscriptionvalidation @publication = 'pub1',
 @subscriber = 'Sub', @destination_db = 'SubDB'

EXEC sp_marksubscriptionvalidation @publication = 'pub1',
 @subscriber = 'Sub2', @destination_db = 'SubDB'

EXEC sp_article_validation @publication = 'pub1', @article = 'art2',
 @rowcount_only = 0, @full_or_fast = 0, @shutdown_agent = 0,

 @subscription_level = 1

COMMIT TRAN

Note that the first transaction validates article 'art1', while the second transaction validates 'art2'. Also note that the calls to
sp_marksubscriptionvalidation and sp_articlevalidation have been encapsulated in a transaction. It is advised that there is
only one call to sp_articlevalidation per transaction. This is because sp_article_validation holds a shared table lock on the
source table for the duration of the transaction. You should keep the transaction short to maximize concurrency.

See Also

System Stored Procedures

Validating Replicated Data

Transact-SQL Reference (SQL Server 2000)

sp_mergearticlecolumn
Partitions a merge publication vertically. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_mergearticlecolumn [@publication =] 'publication'
 , [@article =] 'article'
 [, [@column =] 'column'
 [, [@operation =] 'operation'
 [, [@schema_replication =] 'schema_replication']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@publication =] 'publication'

Is the name of the publication. Publication is sysname, with no default.

[@article =] 'article'

Is the name of the article in the publication. article is sysname, with no default.

[@column =] 'column'

Identifies the columns on which to create the vertical partition. column is sysname, with a default of NULL. If NULL, all columns in
a table referenced by the article are replicated by default.

[@operation =] 'operation'

Is the replication status. operation is nvarchar(4), with a default of ADD. add marks the column for replication. drop unmarks the
column.

[@schema_replication=] 'schema_replication'

Specifies that a schema change will be propagated when the Distribution Agent or Merge Agent runs. schema_replication is
nvarchar(5), with a default of FALSE. If false, a schema change will not be propagated.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Enables or disables the ability to have a snapshot invalidated. force_invalidate_snapshot is a bit, with a default of 0. 0 specifies
that changes to the merge article will not cause the snapshot to be invalid. 1 specifies that changes to the merge article may cause
the snapshot to be invalid, and if that is the case, a value of 1 gives permission for the new snapshot to occur.

[@force_reinit_subscription =] force_reinit_subscription

Enables or disables the ability to have the subscription reinitializated. force_reinit_subscription is a bit with a default of 0. 0
specifies that changes to the merge article will not cause the subscription to be reinitialized. 1 specifies that changes to the merge
article may cause the subscription to be reinitialized, and if that is the case, a value of 1 gives permission for the subscription
reinitialization to occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_mergearticlecolumn is used in merge replication.

If an application sets a new vertical partition after the initial snapshot is created, a new snapshot must be generated and reapplied
to each subscription. Snapshots are applied when the next scheduled snapshot and distribution or merge agent run.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_mergearticlecolumn.

See Also

How Merge Replication Works

How to filter publications vertically using the Create Publication Wizard (Enterprise Manager)

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_mergecleanupmetadata
Should be used only in replication topologies that include servers running versions of SQL Server prior to SQL Server 2000
Service Pack 1. sp_mergecleanupmetadata allows administrators to clean up meta data in the MSmerge_genhistory,
MSmerge_contents and MSmerge_tombstone system tables. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_mergecleanupmetadata [[@publication =] 'publication']
 [, [@reinitialize_subscriber =] 'reinitialize_subscriber']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of %, which cleans up metadata for all publications. The
publication must already exist if explicitly specified.

[@reinitialize_subscriber =] 'subscriber'

Specifies whether to reinitialize the Subscriber. subscriber is nvarchar(5), can be TRUE or FALSE, with a default of TRUE. If TRUE,
subscriptions are marked for reinitialization. If FALSE, the subscriptions are not marked for reinitialization.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_mergecleanupmetadata should be used only in replication topologies that include servers running versions of SQL Server
prior to SQL Server 2000 Service Pack 1. Topologies that include only SQL Server 2000 Service Pack 1 or later should use
automatic retention based meta data cleanup. See Merge Meta Data Cleanup in How Merge Replication Works for more
information on meta data cleanup. When running this stored procedure, be aware of the necessary and potentially large growth
of the log file on the computer on which the stored procedure is running.

Caution After sp_mergecleanupmetadata is executed, by default, all subscriptions at the Subscribers of publications that have
meta data stored in MSmerge_genhistory, MSmerge_contents and MSmerge_tombstone are marked for reinitialization, any
pending changes at the Subscriber are lost, and the current snapshot is marked obsolete.

If there are multiple publications on a database, and any one of those publications uses an infinite publication retention period
(@retention=0), running sp_mergecleanupmetadata will not clean up the merge replication change tracking meta data for the
database. For this reason, use infinite publication retention with caution.

When executing this stored procedure, you can choose whether to reinitialize Subscribers by setting the
@reinitialize_subscriber parameter to TRUE (the default) or FALSE. If sp_mergecleanupmetadata is executed with the
@reinitialize_subscriber parameter set to TRUE, a snapshot will be reapplied at the Subscriber even if the subscription was
created without an initial snapshot (for example, if the snapshot data and schema were manually applied or already existed at the
Subscriber). Setting the parameter to FALSE should be used with caution because if the publication is not reinitialized, you must
ensure that data at the Publisher and Subscriber is synchronized.

Regardless of the value of @reinitialize_subscriber, sp_mergecleanupmetadata fails if there are ongoing merge processes
that are attempting to upload changes to a Publisher or a republishing Subscriber at the time the stored procedure is invoked.

Executing sp_mergecleanupmetadata with @ reinitialize_subscriber = TRUE:

1. It is recommended, but not required, that you stop all updates to the publication and subscription databases. If updates
continue, any updates made at a Subscriber since the last merge will be lost when the publication is reinitialized, but data
convergence will be maintained.

2. Execute a merge by running the Merge Agent. It is recommended you use the
–Validate agent command line option at each Subscriber when you run the Merge Agent. If you are running continuous
mode merges, see Special Considerations for Continuous Mode Merges later in this section.

3. After all merges have completed, execute sp_mergecleanupmetadata.

4. Execute sp_reinitmergepullsubscription on all subscribers using named or anonymous pull subscription to ensure data
convergence.

5. If you are running continuous mode merges, see Special Considerations for Continuous Mode Merges later in this section.

6. Regenerate snapshot files for all merge publications involved at all levels. If you try to merge without regenerating the
snapshot first, you will receive a prompt to regenerate the snapshot.

7. Backup the publication database. Failure to do so can cause a merge failure after a restore of the publication database.

Executing sp_mergecleanupmetadata with @ reinitialize_subscriber = FALSE:

1. Stop all updates to the publication and subscription databases.

2. Execute a merge by running the Merge Agent. It is recommended you use the
–Validate agent command line option at each Subscriber when you run the Merge Agent. If you are running continuous
mode merges, see Special Considerations for Continuous Mode Merges later in this section.

3. After all merges have completed, execute sp_mergecleanupmetadata.

4. If you are running continuous mode merges, see Special Considerations for Continuous Mode Merges later in this section.

5. Regenerate snapshot files for all merge publications involved at all levels. If you try to merge without regenerating the
snapshot first, you will receive a prompt to regenerate the snapshot.

6. Backup the publication database. Failure to do so can cause a merge failure after a restore of the publication database

Special Considerations for Continuous M ode M erges

If you are running continuous-mode merges, you must either:

Stop the Merge Agent, and then perform another merge without the
-Continuous parameter specified,

Or deactivate the publication with sp_changemergepublication to ensure that any continuous-mode merges that are
polling for the publication status fail:

EXEC central..sp_changemergepublication @publication = 'dynpart_pubn', @property = 'status', @value =
'inactive'

When you have completed step 3 of running sp_mergecleanupmetadata, resume continuous mode merges
based on how you stopped them. Either:

Add the –Continuous parameter back for the Merge Agent,

Or reactivate the publication with sp_changemergepublication:

EXEC central..sp_changemergepublication @publication = 'dynpart_pubn', @property = 'status', @value =
'active'

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_mergecleanupmetadata.

To use this stored procedure, the Publisher must be running Microsoft® SQL Server™ 2000. The Subscribers must be running
either Microsoft SQL Server 2000 or Microsoft SQL Server 7.0, Service Pack 2.

See Also

How Merge Replication Works

MSmerge_genhistory

MSmerge_contents

MSmerge_tombstone

Transact-SQL Reference (SQL Server 2000)

sp_mergedummyupdate
Does a dummy update on the given row so that it will be sent again during the next merge. This stored procedure can be executed
at the Publisher, on the publication database, or at the Subscriber, on the subscription database.

Syntax

sp_mergedummyupdate [@source_object =] 'source_object'
 , [@rowguid =] 'rowguid'

Arguments

[@source_object =] 'source_object'

Is the name of the source object. source_object is nvarchar(386), with no default.

[@rowguid =] 'rowguid'

Is the row identifier. rowguid is uniqueidentifier, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_mergedummyupdate is used in merge replication.

sp_mergedummyupdate is useful if you write your own alternative to the Replication Conflict Viewer (Wzcnflct.exe).

Permissions

Only members of the db_owner fixed database role can execute sp_mergedummyupdate.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_mergemetadataretentioncleanup
 New Information - SQL Server 2000 SP3.

Requires Service Pack 1 or later. Performs a manual cleanup of meta data in the MSmerge_genhistory, MSmerge_contents
and MSmerge_tombstone system tables. This stored procedure is executed at each Publisher and Subscriber in the topology.

Syntax

sp_mergemetadataretentioncleanup

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_mergemetadataretentioncleanup requires SQL Server 2000 Service Pack 1 or later. See Merge Meta Data Cleanup in How
Merge Replication Works for more information on meta data cleanup.

Important If there are multiple publications on a database, and any one of those publications uses an infinite publication
retention period (@retention=0), running sp_mergemetadataretentioncleanup will not clean up the merge replication change
tracking meta data for the database. For this reason, use infinite publication retention with caution.

Permissions

Only members of the sysadmin fixed server role, the db_owner fixed database role, or the publication access list for at least one
publication can execute sp_mergemetadataretentioncleanup.

See Also

How Merge Replication Works

MSmerge_genhistory

MSmerge_contents

MSmerge_tombstone

Transact-SQL Reference (SQL Server 2000)

sp_mergesubscription_cleanup
Removes meta data such as triggers and entries in sysmergesubscriptions and sysmergearticles when the specified merge
subscription is removed at the Publisher.

Syntax

sp_mergesubscription_cleanup [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_mergesubscription_cleanup is used in merge replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_mergesubscription_cleanup.

See Also

sp_expired_subscription_cleanup

sp_subscription_cleanup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_publication_validation
 New Information - SQL Server 2000 SP3.

Initiates an article validation request for each article in the specified publication. This stored procedure is executed at the Publisher
on the publication database.

Syntax

sp_publication_validation [@publication =] 'publication'
 [, [@rowcount_only =] type_of_check_requested]
 [, [@full_or_fast =] full_or_fast]
 [, [@shutdown_agent =] shutdown_agent]

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@rowcount_only =] type_of_check_requested

Is whether to return only the rowcount for the table. rowcount_only is smallint, with a default of 1. type_of_check_requested is
smallint, with a default of 1. If 0, perform a SQL Server 7.0 compatible checksum. If 1, perform a rowcount check only. If 2,
perform a rowcount and checksum.

[@full_or_fast =] full_or_fast

Is the method used to calculate the rowcount. full_or_fast is tinyint, with a default of 2, and can be one of these values.

Value Description
0 Does full count using COUNT(*).
1 Does fast count from sysindexes.rows. Counting rows in

sysindexes is much faster than counting rows in the actual
table. However, because sysindexes is lazily updated, the
rowcount may not be accurate.

2 (default) Does conditional fast counting by first trying the fast method.
If fast method shows differences, reverts to full method. If
expected_rowcount is NULL and the stored procedure is being
used to get the value, a full COUNT(*) is always used.

[@shutdown_agent =] shutdown_agent

Is whether the Distribution Agent should shut down immediately upon completion of the validation. shutdown_agent is bit, with a
default of 0. If 0, the replication agent does not shut down. If 1, the replication agent shuts down after the last article is validated.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_publication_validation is used in snapshot and transactional replication.

sp_publication_validation can be called at any time after the articles associated with the publication have been activated. The
procedure can be run manually (one time) or as part of a regularly scheduled job that validates the data.

If your application has immediate-updating Subscribers, sp_publication_validation may detect spurious errors.
sp_publication_validation first calculates the rowcount or checksum at the Publisher and then at the Subscriber. Because the
immediate-updating trigger could propagate an update from the Subscriber to the Publisher after the rowcount or checksum is
completed at the Publisher, but before the rowcount or checksum is completed at the Subscriber, the values could not change. To
ensure that the values at the Subscriber and Publisher do not change while validating a publication, stop the MSDTC service at the
Publisher during validation.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_publication_validation.

See Also

sp_article_validation

sp_table_validation

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_refreshsubscriptions
Add subscriptions to new articles in a pull subscription for all the existing Subscribers to the publication. This stored procedure is
executed at the Publisher on the publication database.

Syntax

sp_refreshsubscriptions [@publication =] 'publication'

Arguments

[@publication =] 'publication'

Is the publication to refresh subscriptions for. publication is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

sp_refreshsubscriptions is used in snapshot, transactional, and merge replication.

sp_refreshsubscriptions is called by sp_addarticle for an immediate-updating publication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_refreshsubscriptions.

See Also

sp_addarticle

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_reinitmergepullsubscription
Marks a merge pull subscription for reinitialization the next time the Merge Agent runs. This stored procedure is executed at the
Subscriber in the subscription database.

Syntax

sp_reinitmergepullsubscription [[@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@upload_first =] 'upload_first'

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of ALL.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with a default of ALL.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of ALL.

[@upload_first =] 'upload_first'

Is the name of the Subscriber database. upload_first is nvarchar(5), with a default of FALSE. If true, changes are uploaded before
the subscription is reinitialized. If false, changes are not uploaded.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_reinitmergepullsubscription is used in merge replication.

sp_reinitmergepullsubscription can be called from the Subscriber.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_reinitmergepullsubscription.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_reinitmergesubscription
Marks a merge subscription for reinitialization the next time the Merge Agent runs. This stored procedure is executed at the
Publisher in the publication database.

Syntax

sp_reinitmergesubscription [[@publication =] 'publication'
 [, [@subscriber =] 'subscriber'
 [, [@subscriber_db =] 'subscriber_db'
 [, [@upload_first =] 'upload_first'

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of all.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of all.

[@subscriber_db =] 'subscriber_db'

Is the name of the Subscriber database. subscriber_db is sysname, with a default of all.

[@upload_first =] 'upload_first'

Is the name of the Subscriber database. upload_first is nvarchar(5), with a default of FALSE. If true, changes are uploaded before
the subscription is reinitialized. If false, changes are not uploaded.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_reinitmergesubscription is used in merge replication.

sp_reinitmergesubscription can be called from the Publisher to reinitialize merge subscriptions. It is advisable to rerun the
Snapshot Agent as well.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_reinitmergesubscription.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_reinitpullsubscription
Marks a transactional pull or anonymous subscription for reinitialization the next time the Distribution Agent runs. This stored
procedure is executed at the Subscriber on the pull subscription database.

Syntax

sp_reinitpullsubscription [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 , [@publication =] 'publication'

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of all, which marks all subscriptions for reinitialization.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_reinitpullsubscription is used in transactional replication.

sp_reinitpullsubscription can be called from the Subscriber to reinitialize the subscription, during the next run of the
Distribution Agent. Note that the subscriptions of non_immediate_sync type publications cannot be reinitialized from the
Subscriber.

You can reinitialize a pull subscription by either executing sp_reinitpullsubscription at the Subscriber or sp_reinitsubscription
at the Publisher.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_reinitpullsubscription.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_reinitsubscription
Marks the subscription for reinitialization. This stored procedure is executed at the Publisher for push subscriptions.

Syntax

sp_reinitsubscription [[@publication =] 'publication']
 [, [@article =] 'article']
 , [@subscriber =] 'subscriber'
 [, [@destination_db =] 'destination_db']
 [, [@for_schema_change =] 'for_schema_change']

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of all.

[@article =] 'article'

Is the name of the article. article is sysname, with a default of all. For an immediate-updating publication, article must be all;
otherwise, the stored procedure skips the publication and reports an error.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with no default.

[@destination_db =] 'destination_db'

Is the name of the destination database. destination_db is sysname, with a default of all.

[@for_schema_change =] 'for_schema_change'

Indicates whether reinitialization occurs as a result of a schema change at the publication database. for_schema_change is bit,
with a default of 0. If 0, active subscriptions for publications that allow immediate updating will be reactived as long as the whole
publication, and not just some of its articles, are reinitialized. This means that the reinitialization is being called as a result of
schema changes. If 1, active subscriptions will not be reactivated until the Snapshot Agent runs.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_reinitsubscription is used in transactional replication.

For subscriptions where the initial snapshot is applied automatically and where the publication does not allow updatable
subscriptions, the Snapshot Agent must be run after this stored procedure is executed so that schema and bulk copy program
files are prepared and the Distribution Agents will then be able to resynchronize the subscriptions.

For subscriptions where the initial snapshot is applied automatically and the publication allows updatable subscriptions, the
Distribution Agent resynchronizes the subscription using the most recent schema and bulk copy program files previously created
by the Snapshot Agent. The Distribution Agent resynchronizes the subscription immediately after the user executes
sp_reinitsubscription, if the Distribution Agent is not busy; otherwise, synchronization may occur after the message interval
(specified by Distribution Agent command-prompt parameter: MessageInterval).

For subscriptions where the initial snapshot is applied manually, it is up to the user to make sure that the tables at the Subscriber
are in synchronization with those at the Publisher and that there are no undelivered replication commands for the Subscriber
pending before executing this stored procedure.

To resynchronize anonymous subscriptions to a publication, pass in all or NULL as subscriber.

Transactional replication supports subscription reinitialization at the article level. The snapshot of the article will be reapplied at
the Subscriber during the next synchronization after the article is marked for reinitialization. However, if there are dependent
articles that are also subscribed to by the same Subscriber, reapplying the snapshot on the article might fail unless dependent
articles in the publication are also automatically reinitialized under certain circumstances:

If the precreation command on the article is 'drop', articles for schema-bound views and schema-bound stored procedures
on the base object of that article will be marked for reinitialization as well.

If the schema option on the article includes scripting of declared referential integrity on the primary keys, articles that have
base tables with foreign key relationships to base tables of the reinitialized article will be marked for reinitialization as well.

Permissions

Only members of the sysadmin fixed server role, members of the db_owner fixed database role, or the creator of the
subscription can execute sp_reinitsubscription.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_removedbreplication
Removes all replication objects from a database without updating data at the Distributor. This stored procedure is executed at the
Publisher on the publication database or at the Subscriber, on the subscription database.

Syntax

sp_removedbreplication [@dbname =] 'dbname'

Arguments

[@dbname =] 'dbname'

Is the name of the database. dbname is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_removedbreplication is used in all types of replication.

sp_removedbreplication is useful when restoring a replicated database that has no replication objects needing to be restored.

Permissions

Only members of the sysadmin fixed server role can execute sp_removedbreplication.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_repladdcolumn
 New Information - SQL Server 2000 SP3.

Adds a column to an existing table article that has been published. Allows the new column to be added to all publishers that
publish this table, or just add the column to a specific publication that publishes the table. This stored procedure is executed at the
Publisher on the publication database.

Syntax

sp_repladdcolumn [@source_object =] 'source_object'
 , [@column =] 'column']
 [, [@typetext =] 'typetext']
 [, [@publication_to_add =] 'publication_to_add']
 [, [@schema_change_script =] 'schema_change_script']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@source_object =] 'source_object'

Is the name of the table article that contains the new column to add. source_object is nvarchar(358), with no default.

[@column =] 'column'

Is the name of the column in the table to be added for replication. column is sysname, with no default.

[@typetext =] 'typetext'

Is the definition of the column being added. typetext is nvarchar(3000), with no default. For example, if the column order_filled
is being added, and it is a single character field, not NULL, and has a default value of N, order_filled would be the column
parameter, while the definition of the column, "char(1) NOT NULL DEFAULT 'N'" would be the typetext parameter value.

[@publication_to_add =] 'publication_to_add'

Is the name of the publication to which the new column is added. publication_to_add is nvarchar(4000), with a default of ALL. If
all, then all publications containing this table will be affected. If publication_to_add is specified, then only this publication will
have the new column added.

[@schema_change_script =] 'schema_change_script'

Is the path to the SQL script. schema_change_script is nvarchar(4000), with a default of NULL.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Enables or disables the ability to have a snapshot invalidated. force_invalidate_snapshot is a bit, with a default of 1. 1 specifies
that changes to the article may cause the snapshot to be invalid, and if that is the case, a value of 1 gives permission for the new
snapshot to occur. 0 specifies that changes to the article will not cause the snapshot to be invalid.

[@force_reinit_subscription =] force_reinit_subscription

Enables or disables the ability to have the subscription reinitializated. force_reinit_subscription is a bit with a default of 0. 0
specifies that changes to the article will not cause the subscription to be reinitialized. 1 specifies that changes to the article may
cause the subscription to be reinitialized, and if that is the case, a value of 1 gives permission for the subscription reinitialization to
occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_repladdcolumn is used for all types of replication.

When using sp_repladdcolumn, if a schema change is made to an article that belongs to a publication that uses a DTS package,
the schema change is not propagated to the Subscriber, and the custom procedures for INSERT/UPDATE/DELETE are not

regenerated on the Subscribers. The user will need to regenerate the DTS package manually, and make the corresponding schema
change at the Subscribers. If the schema update is not applied, the Distribution Agent may fail to apply subsequent modifications.
Before making a schema change, make sure there are no pending transactions to be delivered. For more information, see How
Transforming Published Data Works.

When typetext is assigned a default value that is a nondeterministic function (for example, 'datetime not null default
getdate()'), non-convergence can occur after adding the new column because the function will be executed at the subscriber in
order to load a default value into the column.

Timestamp and computed columns will be filtered out for character mode publications. If adding a timestamp or computed
column using sp_repladdcolumn, subscriptions of such publications will not receive this new column.

Important A backup of the publication database should be performed after sp_repladdcolumn has been executed. Failure to do
so can cause a merge failure after a restore of the publication database.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_repladdcolumn.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replcmds
Treats the first client that runs sp_replcmds within a given database as the log reader. Returns the commands for transactions
marked for replication. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_replcmds [@maxtrans =] maxtrans

Arguments

[@maxtrans =] maxtrans

Is the number of transactions to return information about. maxtrans is int, with a default of 1, which specifies the next transaction
waiting for distribution.

Result Sets

sp_replcmds is used by the log reader process. It returns information about the publication database from which it is executed. It
allows you to view transactions that currently are not distributed (those transactions remaining in the transaction log that have
not been sent to the Distributor) with their commands, and it returns article ID, partial_command (true or false), the command,
page, row, and timestamp.

Remarks

sp_replcmds is used in transactional replication.

This procedure can generate commands for owner-qualified tables or not qualify the table name (the default). Adding qualified
table names allows replication of data from tables owned by a specific user in one database to tables owned by the same user in
another database.

Note Because the table name in the source database is qualified by the owner name, the owner of the table in the target
database must be the same owner name.

Clients who attempt to run sp_replcmds within the same database receive error 18752 until the first client disconnects. After the
first client disconnects, another client can run sp_replcmds, and becomes the new log reader.

Note The sp_replcmds procedure should be run only to troubleshoot problems with replication.

A warning message number 18759 is added to both the Microsoft® SQL Server™ error log and the Microsoft Windows®
application log if sp_replcmds is unable to replicate a text command because the text pointer was not retrieved in the same
transaction.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_replcmds.

See Also

Error Messages

sp_repldone

sp_replflush

sp_repltrans

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replcounters
Returns replication statistics about latency, throughput, and transaction count for each published database. This stored procedure
is executed at the Publisher on any database.

Syntax

sp_replcounters

Result Sets

Column name Data type Description
Database sysname Name of the database.
Replicated transactions int Number of transactions in the log awaiting

delivery to the distribution database.
Replication rate
trans/sec

float Average number of transactions per second
delivered to the distribution database.

Replication latency float Average time, in seconds, that transactions
were in the log before being distributed.

Replbeginlsn binary(10) Log sequence number of the current
truncation point in the log.

Replendlsn binary(10) Log sequence number of the next commit
record awaiting delivery to the distribution
database.

Remarks

sp_replcounters is used in transactional replication.

Permissions

Members of the public role can execute sp_replcounters.

See Also

sp_replcmds

sp_repldone

sp_replflush

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_repldone
Updates the record that identifies the last distributed transaction of the server. This stored procedure is executed at the Publisher
on the publication database.

Syntax

sp_repldone [@xactid =] xactid
 , [@xact_seqno =] xact_seqno
 [, [@numtrans =] numtrans]
 [, [@time =] time
 [, [@reset =] reset]

Arguments

[@xactid =] xactid

Is the log sequence number (LSN) of the first record for the last distributed transaction of the server. xactid is binary(10), with no
default.

[@xact_seqno =] xact_seqno

Is the LSN of the last record for the last distributed transaction of the server. xact_seqno is binary(10), with no default.

[@numtrans =] numtrans

Is the number of transactions distributed. numtrans is int, with no default.

[@time =] time

Is the number of milliseconds, if provided, needed to distribute the last batch of transactions. time is int, with no default.

[@reset =] reset

Is the reset status. reset is int, with no default. If 1, all replicated transactions in the log are marked as distributed. If 0, the
transaction log is reset to the first replicated transaction and no replicated transactions are marked as distributed. reset is valid
only when both xactid and xact_seqno are NULL.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_repldone is used in transactional replication.

sp_repldone is used by the log reader process to track which transactions have been distributed.

Caution If you execute sp_repldone manually, you can invalidate the order and consistency of delivered transactions.

With sp_repldone, you can manually tell the server that a transaction has been replicated (sent to the Distributor). It also allows
you to change the transaction marked as the next one awaiting replication. You can move forward or backward in the list of
replicated transactions. (All transactions less than or equal to that transaction are marked as distributed.)

The required parameters xactid and xact_seqno can be obtained by using sp_repltrans or sp_replcmds.

Permissions

Members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_repldone.

Examples

When xactid is NULL, xact_seqno is NULL, and reset is 1, all replicated transactions in the log are marked as distributed. This is
useful when there are replicated transactions in the transaction log that are no longer valid and you want to truncate the log, for
example:

EXEC sp_repldone @xactid = NULL, @xact_segno = NULL, @numtrans = 0, @time = 0, @reset = 1

Caution This procedure can be used in emergency situations to allow truncation of the transaction log when transactions
pending replication are present. Using this procedure prevents Microsoft® SQL Server™ 2000 from replicating the database until
the database is unpublished and republished.

See Also

sp_replcmds

sp_replflush

sp_repltrans

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_repldropcolumn
 New Information - SQL Server 2000 SP3.

Drops a column from an existing table article that has been published. This stored procedure is executed at the Publisher on the
publication database.

Syntax

sp_repldropcolumn [@source_object =] 'source_object'
 , [@column =] 'column'
 [, [@schema_change_script =] 'schema_change_script']
 [, [@force_invalidate_snapshot =] force_invalidate_snapshot]
 [, [@force_reinit_subscription =] force_reinit_subscription]

Arguments

[@source_object =] 'source_object'

Is the name of the table article that contains the column to drop. source_object is nvarchar(258), with no default.

[@column =] 'column'

Is the name of the column in the table to be dropped. column is sysname, with no default.

[@schema_change_script =] 'schema_change_script'

Is the path to the SQL script. schema_change_script is nvarchar(4000), with a default of NULL.

[@force_invalidate_snapshot =] force_invalidate_snapshot

Enables or disables the ability to have a snapshot invalidated. force_invalidate_snapshot is a bit, with a default of 1. 1 specifies
that changes to the article may cause the snapshot to be invalid, and if that is the case, a value of 1 gives permission for the new
snapshot to occur. 0 specifies that changes to the article will not cause the snapshot to be invalid.

[@force_reinit_subscription =] force_reinit_subscription

Enables or disables the ability to have the subscription reinitializated. force_reinit_subscription is a bit with a default of 0. 0
specifies that changes to the article will not cause the subscription to be reinitialized. 1 specifies that changes to the article may
cause the subscription to be reinitialized, and if that is the case, a value of 1 gives permission for the subscription reinitialization to
occur.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_repldropcolumn is used for all types of replication.

When using sp_repldropcolumn, if a schema change is made to an article that belongs to a publication that uses a DTS package,
the schema change is not propagated to the Subscriber, and the custom procedures for INSERT/UPDATE/DELETE are not
regenerated on the Subscribers. The user will need to regenerate the DTS package manually, and make the corresponding schema
change at the Subscribers. If the schema update is not applied, the Distribution Agent may fail to apply subsequent modifications.
Before making a schema change, make sure there are no pending transactions to be delivered. For more information, see How
Transforming Published Data Works.

Important A backup of the publication database should be performed after sp_repldropcolumn has been executed. Failure to
do so can cause a merge failure after a restore of the publication database.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_repldropcolumn.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replflush
Flushes the article cache. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_replflush

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_replflush is used in transactional replication.

Article definitions are stored in the cache for efficiency. sp_seplflush is used by other replication stored procedures whenever an
article definition is modified or dropped.

Only one client connection can have log reader access to a given database. If a client has log reader access to a database,
executing sp_replflush causes the client to release its access. Other clients can then scan the transaction log using sp_replcmds
or sp_replshowcmds.

You should not have to execute this procedure manually.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_replflush.

See Also

sp_replcmds

sp_repldone

sp_repltrans

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replicationdboption
Sets a replication database option for the current database. This stored procedure is executed at the Publisher on any database.

Syntax

sp_replicationdboption [@dbname =] 'db_name' ,
 [@optname =] 'optname' ,
 [@value =] 'value'
 [, [@ignore_distributor =] ignore_distributor]
 [, [@from_scripting =] from_scripting]

Arguments

[@dbname =] 'dbname'

Is the database to drop. db_name is sysname, with no default.

[@optname =] 'optname'

Is the option to create or drop. optname is sysname, and can be one of these values.

Value Description
merge publish Database can be used for merge publications.
publish Database can be used for other types of publications.

[@value =] 'value'

Is whether to create or drop the given replication database option. value is sysname, and can be true or false. false also drops
the merge subscriptions.

[@ignore_distributor =] ignore_distributor

Indicates whether this stored procedure is executed without connecting to the Distributor. ignore_distributor is bit, with a default
of 0, meaning the Distributor should be connected to and updated with the new status of the publishing database. The value 1
should be specified only if the Distributor is inaccessible and sp_replicationdboption is being used to disable publishing.

[@from_scripting =] from_scripting

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_replicationdboption is used in snapshot replication, transactional replication, and merge replication.

This procedure creates or drops specific replication system tables, security accounts, and so on, depending on the options given.
Sets the corresponding category bit in the master.sysdatabases system table and creates the necessary system tables.

Permissions

Only members of the sysadmin fixed server role can execute sp_replicationdboption.

See Also

sysdatabases

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replication_agent_checkup
Checks each distribution database for replication agents that are running but have not logged history within the specified
heartbeat interval. This stored procedure is executed at the Distributor on any database.

Syntax

sp_replication_agent_checkup [[@heartbeat_interval =] heartbeat_interval]

Arguments

[@heartbeat_interval =] 'heartbeat_interval'

Is the maximum number of minutes that an agent can go without logging a progress message. heartbeat_interval is int, with a
default of 10 minutes.

Return Code Values

sp_replication_agent_checkup raises error 14151 for each agent it detects as suspect. It also logs a failure history message
about the agents.

Remarks

sp_replication_agent_checkup is used in snapshot replication, transactional replication, and merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_replication_agent_checkup.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replqueuemonitor
 New Information - SQL Server 2000 SP3.

Lists the queue messages from a SQL Server queue or Message Queuing for queued updating subscriptions to a specified
publication. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_replqueuemonitor [@publisher =] 'publisher'
 [, [@publisherdb =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@tranid =] 'tranid']
 [, [@queuetype =] 'queuetype']

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL. The server must be configured for publishing. NULL
for all Publishers.

[@publisherdb =] 'publisher_db']

Is the name of the publication database. publisher_db is sysname, with a default of NULL. NULL for all publication databases.

[@publication =] 'publication']

Is the name of the publication. publication is sysname, with a default of NULL. NULL for all publications.

[@tranid =] 'tranid']

Is the transaction ID. tranid is sysname, with a default of NULL. NULL for all transactions.

[@queuetype =] 'queuetype']

Is the type of queue that stores transactions. queuetype is tinyint with a default of 0, and can be one of these values.

Value Description
0 All types of queues
1 Message Queuing
2 SQL Server queue

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_replqueuemonitor is used in snapshot replication or transactional replication with queued updating subscriptions. The
queue messages that do not contain SQL commands or are part of a spanning SQL command are not displayed.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergesubscription.

See Also

System Stored Procedures

Queued Updating Components

Queued Updating

Transact-SQL Reference (SQL Server 2000)

sp_replsetoriginator
 New Information - SQL Server 2000 SP3.

Used to invoke loopback detection and handling in transactional replication. This stored procedure is executed at the Publisher on
the publication database.

Syntax

sp_replsetoriginator [@server_name =] 'server_name'
 [@database_name =] 'database_name'

Arguments

[@server_name =] 'server_name'

Is the name of the server where the transaction is being applied. originating_server is sysname, with no default.

[@database_name =] 'database_name'

Is the name of the database where the transaction is being applied. originating_db is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_replsetoriginator is executed by the Distribution Agent to record the source of transactions applied by replication. This
information is used to invoke loopback detection for transactional subscriptions that have the loopback property set. Immediate-
updating subscriptions and bi-directional transactional replication are used to set the loopback detection property for a
subscription.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_replsetoriginator.

See Also

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_replshowcmds
Returns the commands for transactions marked for replication in readable format. sp_replshowcmds can be run only when
client connections (including the current connection) are not reading replicated transactions from the log. This stored procedure is
executed at the Publisher on the publication database.

Syntax

sp_replshowcmds [@maxtrans =] maxtrans

Arguments

[@maxtrans =] maxtrans

Is the number of transactions about which to return information. maxtrans is int, with a default of 1, which specifies the
maximum number of transactions pending replication for which sp_replshowcmds will return information.

Result Sets

sp_replshowcmds is a diagnostic procedure that returns information about the publication database from which it is executed.

Column name Data type Description
xact_seqno binary(10) Sequence number of the command.
originator_id int ID of the command originator, always 0.
publisher_database_id int ID of the Publisher database, always 0.
article_id int ID of the article.
type int Type of command.
command nvarchar(1024) Transact-SQL command.

Remarks

sp_replshowcmds is used in transactional replication.

Using sp_replshowcmds, you can view transactions that currently are not distributed (those transactions remaining in the
transaction log that have not been sent to the Distributor).

Clients that run sp_replshowcmds and sp_replcmds within the same database receive error 18752.

To avoid this error, the first client must disconnect or the role of the client as log reader must be released by executing
sp_replflush. After all clients have disconnected from the log reader, sp_replshowcmds can be run successfully.

Note sp_replshowcmds should be run only to troubleshoot problems with replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_replshowcmds.

See Also

Error Messages

sp_replcmds

sp_repldone

sp_replflush

sp_repltrans

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_repltrans
Returns a result set of all the transactions in the publication database transaction log that are marked for replication but have not
been marked as distributed. This stored procedure is executed at the Publisher on a publication database.

Syntax

sp_repltrans

Result Sets

sp_repltrans returns information about the publication database from which it is executed, allowing you to view transactions
currently not distributed (those transactions remaining in the transaction log that have not been sent to the Distributor). The
result set displays the log sequence numbers of the first and last records for each transaction. sp_repltrans is similar to
sp_replcmds but does not return the commands for the transactions.

Remarks

sp_repltrans is used in transactional replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_repltrans.

See Also

sp_replcmds

sp_repldone

sp_replflush

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_restoredbreplication
Removes replication settings if restoring a database to the non-originating server, database, or system that is otherwise not
capable of running replication processes. When restoring a replicated database to a server or database other than the one where
the backup was taken, replication settings cannot be preserved. On the restore, the server calls sp_restoredbreplication directly
to automatically remove replication meta data from the restored database.

Syntax

sp_restoredbreplication [@srv_orig =] 'original_server_name'
 , [@db_orig =] 'original_database_name'
 [, [@keep_replication =] keep_replication]

Arguments

[@srv_orig =] 'original_server_name'

The name of the server where the back up was created. original_server_name is sysname, with no default.

[@db_orig =] 'original_database_name'

The name of the database that was backed up . original_database_name is sysname, with no default.

[@keep_replication =] keep_replication

For internal use only.

Remarks

sp_restoredbreplication is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_restoredbreplication.

Transact-SQL Reference (SQL Server 2000)

sp_resyncmergesubscription
Resynchronizes a merge subscription to a known validation state that you specify. This allows you to force convergence or
synchronize the subscription database to a specific point in time, such as the last time there was a successful validation, or to a
specified date. The snapshot is not reapplied when resynchronizing a subscription using this method. This stored procedure is not
used for snapshot replication subscriptions or transactional replication subscriptions. This stored procedure is executed at the
Publisher, on the publication database, or at the Subscriber, on the subscription database.

Syntax

sp_resyncmergesubscription [[@publisher =] 'publisher']
 [, [@publisher_db =] 'publisher_db']
 , [@publication =] 'publication'
 [, [@subscriber =] 'subscriber']
 [, [@subscriber_db =] 'subscriber_db']
 [, [@resync_type =] resync_type]
 [, [@resync_date_str =] resync_date_string]

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with a default of NULL. A value of NULL is valid if the stored procedure is run
at the Publisher. If the stored procedure is run at the Subscriber, a Publisher must be specified.

[@publisher_db =] 'publisher_db'

Is the name of the publication database. publisher_db is sysname, with a default of NULL. A value of NULL is valid if the stored
procedure is run at the Publisher in the publication database. If the stored procedure is run at the Subscriber, a Publisher must be
specified.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with a default of NULL. A value of NULL is valid if the stored procedure is
run at the Subscriber. If the stored procedure is run at the Publisher, a Subscriber must be specified.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscription_db is sysname, with a default of NULL. A value of NULL is valid if the
stored procedure is run at the Subscriber in the subscription database. If the stored procedure is run at the Publisher, a Subscriber
must be specified.

[@resync_type =] resync_type

Defines when the resynchronization should start at. resync_type is int, and can be one of these values:

Value Description
0 Synchronization starts from after the initial snapshot. This is

the most resource-intensive option, since all changes since
the initial snapshot are re-applied to the Subscriber.

1 Synchronization starts since last successful validation. All new
or incomplete generations originating since the last successful
validation will be reapplied to the Subscriber.

2 Synchronization starts from the date given in resync_date_str.
All new or incomplete generations originating after the date
will be reapplied to the Subscriber

[@resync_date_str =] resync_date_string

Defines the date when the resynchronization should start at. resync_type is nvarchar(30), with a default of NULL. This parameter
is used when the resync_type is a value of 2. The date given will be converted to its equivalent datetime value.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_resyncmergesubscription is used in merge replication.

A value of 0 for the resync_type parameter, which reapplies all changes since the initial snapshot, may be resource-intensive, but
possibly a lot less than a full reinitialization. For example, if the initial snapshot was delivered one month ago, this value would
cause data from the past month to be reapplied. If the initial snapshot contained 1 GB of data, but the amount of changes from
the past month consisted of 2 MBs of changed data, it would be more efficient to reapply the data than to reapply the full 1 GB
snapshot.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_resyncmergesubscription.

See Also

datetime and smalldatetime

System Stored Procedures

Validating Replicated Data

Transact-SQL Reference (SQL Server 2000)

sp_revoke_publication_access
 New Information - SQL Server 2000 SP3.

Removes the login from a publications access list. This stored procedure is executed at the Publisher on the publication database.

Syntax

sp_revoke_publication_access [@publication =] 'publication'
 , [@login =] 'login'

Arguments

[@publication =] 'publication'

Is the name of the publication to access. publication is sysname, with no default.

[@login =] 'login'

Is the login ID. login is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_revoke_publication_access is used in snapshot, transactional, and merge replication.

sp_revoke_publication_access cannot be executed from within a transaction.

sp_revoke_publication_access can be called repeatedly.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute
sp_revoke_publication_access.

See Also

sp_grant_publication_access

sp_help_publication_access

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_scriptdynamicupdproc
 New Information - SQL Server 2000 SP3.

Requires Service Pack 1 or later. Generates the CREATE PROCEDURE statement that creates a dynamic update stored procedure.
The UPDATE statement within the custom stored procedure is built dynamically based on the MCALL syntax that indicates which
columns to change. Use this stored procedure if the number of indexes on the subscribing table is growing and the number of
columns being changed is small. This stored procedure is run at the Publisher on the publication database.

Syntax

sp_scriptdynamicupdproc [@artid =] artid

Arguments

[@artid =] artid

Is the article ID. artid is int, with no default.

Result Sets

Returns a result set that consists of a single nvarchar(4000) column. The result set forms the complete CREATE PROCEDURE
statement used to create the custom stored procedure.

Remarks

sp_scriptdynamicupdproc is used in transactional replication for SQL Server 2000 Service Pack 1 and later. The default MCALL
scripting logic includes all columns within the UPDATE statement and uses a bitmap to determine the columns that have changed.
If a column did not change, the column is set back to itself, which usually causes no problems. If the column is indexed, extra
processing occurs. The dynamic approach includes only the columns that have changed, which provides an optimal UPDATE
string. However, extra processing is incurred at runtime when the dynamic UPDATE statement is built. It is recommended that you
test the dynamic and static approaches and choose the optimal solution.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_scriptdynamicupdproc.

Examples

This example creates an article (with artid set to 1) on the authors table in the pubs database and specifies that the UPDATE
statement is the custom procedure to execute:

'MCALL sp_mupd_authors'

Generate the custom stored procedures to be executed by the Distribution Agent at the Subscriber by running the following
stored procedure at the Publisher:

EXEC sp_scriptdynamicupdproc @artid = '1'

The statement returns:

CREATE PROCEDURE [sp_mupd_authors]
 @c1 varchar(11),@c2 varchar(40),@c3 varchar(20),@c4 char(12),@c5 varchar(40),@c6 varchar(20),
 @c7 char(2),@c8 char(5),@c9 bit,@pkc1 varchar(11),@bitmap binary(2)
as

DECLARE @stmt nvarchar(4000), @spacer nvarchar(1)
SELECT @spacer =N''
SELECT @stmt = N'UPDATE [authors] SET '

IF SUBSTRING(@bitmap,1,1) & 2 = 2
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[au_lname]' + N'=@2'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 4 = 4
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[au_fname]' + N'=@3'

 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 8 = 8
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[phone]' + N'=@4'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 16 = 16
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[address]' + N'=@5'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 32 = 32
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[city]' + N'=@6'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 64 = 64
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[state]' + N'=@7'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,1,1) & 128 = 128
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[zip]' + N'=@8'
 SELECT @spacer = N','
END
IF SUBSTRING(@bitmap,2,1) & 1 = 1
BEGIN
 SELECT @stmt = @stmt + @spacer + N'[contract]' + N'=@9'
 SELECT @spacer = N','
END
SELECT @stmt = @stmt + N' WHERE [au_id] = @1'
EXEC sp_executesql @stmt, N' @1 varchar(11),@2 varchar(40),@3 varchar(20),@4 char(12),@5 varchar(40),
 @6 varchar(20),@7 char(2),@8 char(5),@9 bit',@pkc1,@c2,@c3,@c4,@c5,@c6,@c7,@c8,@c9

IF @@rowcount = 0
 IF @@microsoftversion>0x07320000
 EXEC sp_MSreplraiserror 20598

After running this stored procedure, you can use the resulting script to manually create the stored procedure at the Subscribers.

Transact-SQL Reference (SQL Server 2000)

sp_scriptpublicationcustomprocs
Requires Service Pack 1 or later. Scripts the custom INSERT, UPDATE, and DELETE procedures for all table articles in a publication
in which the auto-generate custom procedure schema option is enabled. sp_scriptpublicationcustomprocs is particularly
useful for setting up subscriptions for which the snapshot is applied manually.

Syntax

sp_scriptpublicationcustomprocs [@publication]= 'publication_name'

Arguments

[@publication] = 'publication_name

Is the name of the publication. publication_name is sysname with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Returns a result set that consists of a single nvarchar(4000) column. The result set forms the complete CREATE PROCEDURE
statement necessary to create the custom stored procedure.

Remarks

Custom procedures are not scripted for articles without the auto-generate custom procedure (0x2) schema option.

Permissions

Execute permission is granted to public; a procedural security check is performed inside this stored procedure to restrict access
to members of the sysadmin fixed server role and db_owner fixed database role in current database.

Examples

This example generates a script of the custom stored procedures in a publication named Northwind.

EXEC Northwind.dbo.sp_scriptpublicationcustomprocs
@publication = N'Northwind'

Transact-SQL Reference (SQL Server 2000)

sp_scriptsubconflicttable
Generates script for creating a conflict table on the Subscriber for a given queued subscription article. The script that is generated
is executed at the Subscriber on the subscription database. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_scriptsubconflicttable [@publication =] 'publication'
 , [@article =] 'article'

Arguments

[@publication =] 'publication'

Is the name of the publication that contains the article. The name must be unique in the database. publication is sysname, with no
default.

[@article =] 'article'

Is the name of the subscription article. article is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
cmdtext nvarchar(4000) Returns the Transact-SQL script for creating the

conflict table on the Subscriber for the queued
subscription article. This script is executed on
the Subscriber in the subscription database.

Remarks

sp_scriptsubconflicttable is used for Subscribers that have subscriptions where the initial snapshot is applied manually. The
conflict table is an optional table at the Subscriber.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_scriptsubconflicttable.

See Also

How Queued Updating Works

System Stored Procedures

Queued Updating Conflict Detection and Resolution

Transact-SQL Reference (SQL Server 2000)

sp_script_synctran_commands
 New Information - SQL Server 2000 SP3.

Generates a script that contains the sp_addsynctrigger calls to be applied at Subscribers for updatable subscriptions. There is
one sp_addsynctrigger call for each article in the publication. The generated script also contains the sp_addqueued_artinfo
calls that create the MSsubsciption_articles table that is needed to process queued publications. This stored procedure is
executed at the Publisher on the publication database.

Syntax

sp_script_synctran_commands [@publication =] 'publication'
 [, [@article =] 'article']

Arguments

[@publication =] 'publication'

Is the name of the publication to be scripted. publication is sysname, with no default.

[@article =] 'article'

Is the name of the article to be scripted. article is sysname, with a default of all, which specifies all articles are scripted.

Return Code Values

0 (success) or 1 (failure)

Results Set

sp_script_synctran_commands returns a result set that consists of a single nvarchar(4000) column. The result set forms the
complete scripts necessary to create both the sp_addsynctrigger and sp_addqueued_artinfo calls to be applied at Subscribers.

Remarks

sp_script_synctran_commands is used in snapshot and transactional replication.

sp_addqueued_artinfo is used for queued updatable subscriptions.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_script_synctran_commands.

See Also

sp_addsynctriggers

sp_addqueued_artinfo

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_setreplfailovermode
Allows you to set the failover operation mode for subscriptions enabled for immediate updating with queued updating as failover.
This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_setreplfailovermode [@publisher =] 'publisher'
 [, [@publisherdb =] 'publisher_db']
 [, [@publication =] 'publication']
 [, [@failover_mode =] 'failover_mode']

Arguments

[@publisher =] 'publisher'

Is the name of the publication. publication is sysname, with no default. The publication must already exist.

[@publisher_db =] 'publisher_db'

Is the name of the publication database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@failover_mode =] 'failover_mode'

Is the failover mode for the subscription. failover_mode is nvarchar(20) and can be one of these values:

Value Description
immediate Data modifications made at the Subscriber will be bulk copied

to the Publisher as they occur.
queued Data modifications will be stored in either a SQL Server queue

or Message Queuing.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_setreplfailovermode is used in snapshot replication or transactional replication for which subscriptions are enabled for
immediate updating with queued updating as a standby in case of failure.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_addmergesubscription.

Transact-SQL Reference (SQL Server 2000)

sp_showrowreplicainfo
 New Information - SQL Server 2000 SP3.

Displays information about a row in a table that is being used as an article in merge replication. This stored procedure is executed
at the computer and in the database where the table is stored.

Syntax

sp_showrowreplicainfo [[@ownername =] 'ownername']
 [, [@tablename =] 'tablename']
 , [@rowguid =] rowguid
 [, [@show =] 'show']

Arguments

[@ownername =] 'ownername'

Is the name of the table owner. ownername is sysname, with a default of NULL. This parameter is useful to differentiate tables if
a database contains multiple tables with the same name, but each table has a different owner.

[@tablename =] 'tablename'

Is the name of the table that contains the row for which to information is returned. tablename is sysname, with no default.

[@rowguid =] rowguid

Is the unique identifier of the row. rowguid is uniqueidentifier, with no default.

[@show =] 'show'

Determines the amount of information to return in the result set. show is nvarchar(20) with a default of BOTH. If row, only row
version information will be returned. If columns, only column version information will be returned. If both, both row and column
information will be returned.

Result Sets for Row Information

Column name Data type Description
server_name Name of the server hosting the

database that made the row version
entry.

db_name Name of the database that made this
entry.

db_nickname Nickname of the database that made
this entry.

version Version of the entry.
rowversion_table Indicates whether the row versions

are stored in the MSmerge_contents
table or the MSmerge_tombstone
table.

comment Additional information about this row
version entry. Usually, this field is
empty.

Result Sets for Column Information

Column name Data type Description
server_name Name of the server hosting the

database that made the column
version entry.

db_name Name of the database that made this
entry.

db_nickname Nickname of the database that made
this entry.

version Version of the entry.
colname Name of the article column that the

column version entry represents.
comment Additional information about this

column version entry. Usually, this
field is empty.

Result Set for both

If the value both is chosen for @show, then both the row and column result sets will be returned.

Remarks

sp_showrowreplicainfo is used in merge replication.

Permissions

Only members of the db_owner fixed database role or the publication access list for the current publication can execute
sp_showrowreplicainfo.

See Also

Publication Access Lists

Merge Replication Conflict Detection and Resolution

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_subscription_cleanup
Removes meta data when a subscription is dropped at a Subscriber. For a normal subscription, the meta data includes an entry in
the system table MSreplication_subscriptions. For a synchronizing transaction subscription, it also includes immediate-
updating triggers. This stored procedure is executed at the Subscriber on the subscription database.

Syntax

sp_subscription_cleanup [@publisher =] 'publisher'
 , [@publisher_db =] 'publisher_db'
 [, [@publication =] 'publication']
 [, [@reserved =] 'reserved']

Arguments

[@publisher =] 'publisher'

Is the name of the Publisher. publisher is sysname, with no default.

[@publisher_db =] 'publisher_db'

Is the name of the Publisher database. publisher_db is sysname, with no default.

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with a default of NULL. If NULL, subscriptions using a shared agent
publication in the publishing database will be deleted.

[@reserved =] 'reserved'

For internal use only.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_subscription_cleanup is used in transactional and snapshot replication.

Permissions

Only members of the sysadmin fixed server role or the db_owner fixed database role can execute sp_subscription_cleanup.

See Also

sp_expired_subscription_cleanup

sp_mergesubscription_cleanup

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_table_validation
Either returns rowcount or checksum information on a table or indexed view, or compares the provided rowcount or checksum
information with the specified table or indexed view. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_table_validation [@table =] 'table'
 [, [@expected_rowcount =] type_of_check_requested OUTPUT]
 [, [@expected_checksum =] expected_checksum OUTPUT]
 [, [@rowcount_only =] rowcount_only]
 [, [@owner =] 'owner']
 [, [@full_or_fast =] full_or_fast]
 [, [@shutdown_agent =] shutdown_agent]
 [, [@table_name =] table_name]
 [, [@column_list =] 'column_list']

Arguments

[@table =] 'table'

Is the name of the table. table is sysname, with no default.

[@expected_rowcount =] expected_rowcount OUTPUT

Specifies whether to return the expected number of rows in the table. expected_rowcount is int, with a default of NULL. If NULL,
the actual rowcount is returned as an output parameter. If a value is provided, that value is checked against the actual rowcount to
identify any differences.

[@expected_checksum =] expected_checksum OUTPUT

Specifies whether to return the expected checksum for the table. expected_checksum is numeric, with a default of NULL. If NULL,
the actual checksum is returned as an output parameter. If a value is provided, that value is checked against the actual checksum
to identify any differences.

[@rowcount_only =] type_of_check_requested

Specifies what type of checksum or rowcount to perform. type_of_check_requested is smallint, with a default of 1. If 0, perform a
SQL Server 7.0 compatible checksum. If 1, perform a rowcount check only. If 2, perform a rowcount and checksum.

[@owner =] 'owner'

Is the name of the owner of the table. owner is sysname, with a default of NULL.

[@full_or_fast =] full_or_fast

Is the method used to calculate the rowcount. full_or_fast is tinyint, with a default of 2, and can be one of these values.

Value Description
0 Does full count using COUNT(*).
1 Does fast count from sysindexes.rows. Counting rows in

sysindexes is much faster than counting rows in the actual
table. However, because sysindexes is lazily updated, the
rowcount may not be accurate.

2 (default) Does conditional fast counting by first trying the fast method.
If fast method shows differences, reverts to full method. If
expected_rowcount is NULL and the stored procedure is being
used to get the value, a full COUNT(*) is always used.

[@shutdown_agent =] shutdown_agent

If the Distribution Agent is executing sp_table_validation, specifies whether the Distribution Agent should shut down
immediately upon completion of the validation. shutdown_agent is bit, with a default of 0. If 0, the replication agent does not shut
down. If 1, error 20578 is raised and the replication agent is signalled to shut down.

[@table_name =] table_name

Is the table name of the view used for output messages. table_name is sysname, with a default of @table.

[@column_list =] 'column_list'

Is the list of columns that should be used in the binary_checksum function. column_list is nvarchar(4000), with a default of NULL.
Enables validation of merge articles to specify a column list that excludes computed and timestamp columns.

Return Code Values

If performing a checksum validation and the expected checksum equals the checksum in the table, sp_table_validation returns a
message that the table passed checksum validation. Otherwise, it returns a message that the table may be out of synchronization
and reports the difference between the expected and the actual number of rows.

If performing a rowcount validation and the expected number of rows equals the number in the table, sp_table_validation
returns a message that the table passed rowcount validation. Otherwise, it returns a message that the table may be out of
synchronization and reports the difference between the expected and the actual number of rows.

Remarks

sp_table_validation is used in all types of replication

Checksum computes a 32-bit cyclic redundancy check (CRC) on the entire row image on the page. It does not selectively check
columns and cannot operate on a view or vertical partition of the table. Also, the checksum skips the contents of text and image
columns (by design).

When doing a checksum, the structure of the table must be identical between the two servers; that is, the tables must have the
same columns existing in the same order, same data types and lengths, and same NULL/NOT NULL conditions. For example, if the
Publisher did a CREATE TABLE, then an ALTER TABLE to add columns, but the script applied at the Publisher is a simple CREATE
table, the structure is NOT the same. If you are not certain that the structure of the two tables is identical, look at syscolumns and
confirm that the offset in each table is the same.

Floating point values are likely to generate checksum differences if character-mode bcp was used, which is the case if the
publication has heterogeneous subscribers. These are due to minor and unavoidable differences in precision when doing
conversion to and from character mode.

Permissions

Only members of the sysadmin fixed server role or db_owner fixed database role can execute sp_table_validation.

See Also

sp_article_validation

sp_publication_validation

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_update_agent_profile
Updates the profile for a type of replication agent. This stored procedure is executed at the Distributor on the distribution
database.

Syntax

sp_update_agent_profile [@agent_type =] agent_type
 , [@agent_id =] agent_id
 , [@profile_id =] profile_id

Arguments

[@agent_type =] 'agent_type'

Is the type of agent. agent_type is int, with no default, and can be one of these values.

Value Description
1 Snapshot Agent.
2 Log Reader Agent.
3 Distribution Agent.
4 Merge Agent.
9 Queue Reader Agent.

[@agent_id =] agent_id

Is the ID of the agent. agent_id is int, with no default.

[@profile_id =] profile_id

Is the ID of the default configuration for the type of agent. profile_id is int, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_update_agent_profile is used in all types of replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_update_agent_profile.

See Also

sp_add_agent_profile

sp_change_agent_profile

sp_drop_agent_profile

sp_help_agent_profile

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

sp_validatemergepublication
Performs a publication-wide validation for which all subscriptions (push, pull, and anonymous) will be validated once. This stored
procedure is executed at the Publisher on the publication database.

Syntax

sp_validatemergepublication [@publication =] 'publication'
 , [@level =] level

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@level =] level

Is the type of validation to perform. level is tinyint, with no default. Level can be one of these values:

Level value Description
1 Rowcount-only validation.
2 Rowcount and checksum validation.
3 Rowcount and binary checksum validation.

A validation level of 3 is valid only when Subscribers are running Microsoft® SQL Server™ 2000.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_validatemergepublication is used in merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_validatemergepublication.

See Also

System Stored Procedures

Validating Replicated Data

Transact-SQL Reference (SQL Server 2000)

sp_validatemergesubscription
Performs a validation for the specified subscription. This stored procedure is executed at the Publisher on the publication
database.

Syntax

sp_validatemergesubscription [@publication =] 'publication'
 , [@subscriber =] 'subscriber'
 , [@subscriber_db =] 'subscriber_db'
 , [@level =] level

Arguments

[@publication =] 'publication'

Is the name of the publication. publication is sysname, with no default.

[@subscriber =] 'subscriber'

Is the name of the Subscriber. subscriber is sysname, with no default.

[@subscriber_db =] 'subscriber_db'

Is the name of the subscription database. subscriber_db is sysname, with no default.

[@level =] level

Is the type of validation to perform. level is tinyint, with no default. Level can be one of these values:

Level value Description
1 Rowcount-only validation.
2 Rowcount and checksum validation.
3 Rowcount and binary checksum validation.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_validatemergesubscription is used in merge replication.

Permissions

Only members of the sysadmin fixed server role can execute sp_validatemergesubscription.

See Also

System Stored Procedures

Validating Replicated Data

Validate Subscriber Information

Transact-SQL Reference (SQL Server 2000)

sp_vupgrade_replication
 New Information - SQL Server 2000 SP3.

Activated by setup when upgrading a replication server from SQL Server 7.0 or later. Upgrades schema and system data as
needed to support replication at the current product level. Creates new replication system objects in system and user databases.
This stored procedure is executed at the machine where the replication upgrade is to occur.

Syntax

sp_vupgrade_replication [[@login =] 'login']
 [, [@password =] 'password']
 [, [@ver_old =] 'old_version']
 [, [@force_remove =] 'force_removal']
 [, [@security_mode =] security_mode]

Arguments

[@login =] 'login'

Is the system administrator login to use when creating new system objects in the Distribution database. login is sysname, with a
default of SA. This parameter is not required if security_mode is set to 1, which is NT Authentication.

[@password =] 'password'

Is the system administrator password to use when creating new system objects in the Distribution database. password is
sysname, with a default of '' (empty string). This parameter is not required if security_mode is set to 1, which is NT
Authentication.

Security Note Blank passwords are not recommended.

[@ver_old =] 'old_version'

For internal use only.

[@force_remove =] 'force_removal'

For internal use only.

[@security_mode =] 'security_mode'

Is the login security mode to use when creating new system objects in the Distribution database. security_mode is bit with a
default value of 0. If 0, SQL Server Authentication will be used. If 1, NT Authentication will be used.

Return Code Values

0 (success) or 1 (failure)

Remarks

sp_vupgrade_replication is not used when upgrading from SQL Server 6.5.

Permissions

Only members of the sysadmin fixed server role can execute sp_vupgrade_replication.

See Also

Overview of Installing SQL Server 2000

Replication Overview

System Stored Procedures

Help with Replication

Upgrading from SQL Server 7.0 to SQL Server 2000

Validating Replicated Data

Validate Subscriber Information

Transact-SQL Reference (SQL Server 2000)

xp_cmdshell
Executes a given command string as an operating-system command shell and returns any output as rows of text. Grants
nonadministrative users permissions to execute xp_cmdshell.

Note When executing xp_cmdshell with the Microsoft® Windows® 98 operating systems, the return code from xp_cmdshell
will not be set to the process exit code of the invoked executable. The return code will always be 0.

Syntax

xp_cmdshell {'command_string'} [, no_output]

Arguments

'command_string'

Is the command string to execute at the operating-system command shell. command_string is varchar(8000) or
nvarchar(4000), with no default. command_string cannot contain more than one set of double quotation marks. A single pair of
quotation marks is necessary if any spaces are present in the file paths or program names referenced by command_string. If you
have trouble with embedded spaces, consider using FAT 8.3 file names as a workaround.

no_output

Is an optional parameter executing the given command_string, and does not return any output to the client.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Executing this xp_cmdshell statement returns a directory listing of the current directory.

xp_cmdshell 'dir *.exe'

The rows are returned in an nvarchar(255) column.

Executing this xp_cmdshell statement returns the following result set:

xp_cmdshell 'dir *.exe', NO_OUTPUT

Here is the result:

The command(s) completed successfully.

Remarks

xp_cmdshell operates synchronously. Control is not returned until the command shell command completes.

When you grant execute permissions to users, the users can execute any operating-system command at the Microsoft Windows
NT® command shell that the account running Microsoft SQL Server™ has the needed privileges to execute.

By default, only members of the sysadmin fixed server role can execute this extended stored procedure. You may, however, grant
other users permission to execute this stored procedure.

When xp_cmdshell is invoked by a user who is a member of the sysadmin fixed server role, xp_cmdshell will be executed
under the security context in which the SQL Server service is running. When the user is not a member of the sysadmin group,
xp_cmdshell will impersonate the SQL Server Agent proxy account, which is specified using xp_sqlagent_proxy_account. If the
proxy account is not available, xp_cmdshell will fail. This is true only for Microsoft® Windows NT® 4.0 and Windows 2000. On
Windows 9.x, there is no impersonation and xp_cmdshell is always executed under the security context of the Windows 9.x user
who started SQL Server.

Note In earlier versions, a user who was granted execute permissions for xp_cmdshell ran the command in the context of the
MSSQLServer service's user account. SQL Server could be configured (through a configuration option) so that users who did not
have sa access to SQL Server could run xp_cmdshell in the context of the SQLExecutiveCmdExec Windows NT account. In SQL
Server 7.0, the account is called SQLAgentCmdExec. Users who are not members of the sysadmin fixed server role now run
commands in the context of this account without specifying a configuration change.

Permissions

Execute permissions for xp_cmdshell default to members of the sysadmin fixed server role, but can be granted to other users.

Important If you choose to use a Windows NT account that is not a member of the local administrator's group for the
MSSQLServer service, users who are not members of the sysadmin fixed server role cannot execute xp_cmdshell.

Examples

A. Return a list of executable files

This example shows the xp_cmdshell extended stored procedure executing a directory command.

EXEC master..xp_cmdshell 'dir *.exe'

B. Use Windows N T net commands

This example shows the use of xp_cmdshell in a stored procedure. This example notifies users (with net send) that SQL Server is
about to be shut down, pauses the server (with net pause), and then shuts the server down (with net stop).

CREATE PROC shutdown10
AS
EXEC xp_cmdshell 'net send /domain:SQL_USERS ''SQL Server shutting down
 in 10 minutes. No more connections allowed.', no_output
EXEC xp_cmdshell 'net pause sqlserver'
WAITFOR DELAY '00:05:00'
EXEC xp_cmdshell 'net send /domain: SQL_USERS ''SQL Server shutting down
 in 5 minutes.', no_output
WAITFOR DELAY '00:04:00'
EXEC xp_cmdshell 'net send /domain:SQL_USERS ''SQL Server shutting down
 in 1 minute. Log off now.', no_output
WAITFOR DELAY '00:01:00'
EXEC xp_cmdshell 'net stop sqlserver', no_output

C. Return no output

This example uses xp_cmdshell to execute a command string without returning the output to the client.

USE master
EXEC xp_cmdshell 'copy c:\sqldumps\pubs.dmp \\server2\backups\sqldumps',
 NO_OUTPUT

D. Use return status

In this example, the xp_cmdshell extended stored procedure also suggests return status. The return code value is stored in the
variable @result.

DECLARE @result int
EXEC @result = xp_cmdshell 'dir *.exe'
IF (@result = 0)
 PRINT 'Success'
ELSE
 PRINT 'Failure'

E. Write variable contents to a file

This example writes the contents of the @var variable to a file named var_out.txt in the current server directory.

DECLARE @cmd sysname, @var sysname
SET @var = 'Hello world'
SET @cmd = 'echo ' + @var + ' > var_out.txt'
EXEC master..xp_cmdshell @cmd

F. Capture the result of a command to file

This example writes the contents of the current directory to a file named dir_out.txt in the current server directory.

DECLARE @cmd sysname, @var sysname
SET @var = 'dir/p'
SET @cmd = @var + ' > dir_out.txt'
EXEC master..xp_cmdshell @cmd

See Also

CREATE PROCEDURE

EXECUTE

Creating Security Accounts

System Stored Procedures (General Extended Procedures)

Transact-SQL Reference (SQL Server 2000)

xp_deletemail
 New Information - SQL Server 2000 SP3.

Deletes a message from the Microsoft® SQL Server™ inbox. xp_deletemail is used by sp_processmail to process mail in the
SQL Server inbox.

Syntax

xp_deletemail {'message_number'}

Arguments

'message_number'

Is the number (assigned by xp_findnextmsg) of the mail message in the inbox that should be deleted. message_number is
varchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_deletemail returns this result set when passed a valid message ID.

The command(s) completed successfully.

Remarks

Any failure except an invalid parameter is logged to the Microsoft Windows NT® application log.

xp_deletemail deletes message, but does not delete any attachments. You must delete attachments manually. You can suppress
the generation of attachments by setting the suppress_attach parameter for xp_readmail to TRUE. For more information about
security issues with attachments, see xp_readmail.

xp_deletemail does not keep a log of deleted messages or users who deleted the messages. This may cause auditing problems
in an environment where several users have permission to execute xp_deletemail. To minimize this problem, limit permissions
for xp_deletemail to members of the sysadmin fixed server role.

Permissions

Execute permissions for xp_deletemail default to members of the sysadmin fixed server role but can granted to other users.
However, for security reasons, you should limit permissions for this stored procedure to members of the sysadmin fixed server
role.

Examples

This example deletes the message ID supplied from xp_findnextmsg. The value from xp_findnextmsg is placed in the local
variable @message_id.

DECLARE @message_id varchar(255)
SET @message_id = 'XA17' -- Setting to a value would go here.
USE master
EXEC xp_deletemail @message_id

See Also

sp_processmail

System Stored Procedures (SQL Mail Extended Procedures)

xp_findnextmsg

xp_readmail

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL Reference (SQL Server 2000)

xp_enumgroups
Provides a list of local Microsoft® Windows NT® groups or a list of global groups defined in a specified Windows NT domain.

Syntax

xp_enumgroups ['domain_name']

Arguments

'domain_name'

Is the name of the Windows NT domain for which to enumerate a list of global groups. domain_name is sysname, with a default
of NULL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
group sysname Name of the Windows NT group
comment sysname Description of the Windows NT group

provided by Windows NT

Remarks

If domain_name is the name of the Windows NT-based computer that Microsoft SQL Server™ is running on, or no domain name
is specified, xp_enumgroups enumerates the local groups from the computer running SQL Server.

xp_enumgroups cannot be used when SQL Server is running on Windows® 98.

Permissions

Execute permissions for xp_enumgroups default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users.

Examples

This example lists the groups in the sales domain.

EXEC xp_enumgroups 'sales'

See Also

sp_grantlogin

sp_revokelogin

System Stored Procedures (General Extended Procedures)

xp_loginconfig

xp_logininfo

Transact-SQL Reference (SQL Server 2000)

xp_findnextmsg
 New Information - SQL Server 2000 SP3.

Accepts a message ID for input and returns the message ID for output. xp_findnextmsg is used with sp_processmail in order to
process mail in the Microsoft® SQL Server™ inbox.

Syntax

xp_findnextmsg [[@type =] type]
 [,[@unread_only =] 'unread_value']
 [,[@msg_id =] 'message_number' [OUTPUT]]

Arguments

[@type =] type

Is the input message type based on the MAPI mail definition:

IP[M | C].Vendorname.subclass

If type is NULL, message types beginning with IPM appear in the inbox of the mail client and are found or read by
xp_findnextmsg. Message types beginning with IPC do not appear in the inbox of the mail client and must be found or read by
setting the type parameter. The default is NULL.

[@unread_only =] 'unread_value'

Is whether only unread (true) messages are considered. The default is FALSE, which means all messages are considered.

[@msg_id =] 'message_number'

Is an input and output parameter that specifies the string of the message on input and the string of the next message on output.

OUTPUT

When specified, message_number is placed in the output parameter. When not specified, message_number is returned as a
single-column, single-row result set.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_findnextmsg returns this result set when passed a valid message ID:

The command(s) completed successfully.

Remarks

Any failure except an invalid parameter is logged to the Microsoft Windows NT® application log.

Permissions

Execute permissions for xp_findnextmsg default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users. However, for security reasons, you should limit
permissions for this stored procedure to members of the sysadmin fixed server role.

Examples

This example retrieves the status when searching for the next message ID (for only unread messages). The value from
xp_findnextmsg is placed in the local variable @message_id.

DECLARE @status int, @message_id varchar(255)
-- SET @status = value would be here.
-- SET @message_id = value would be here.
EXEC @status = xp_findnextmsg @msg_id = @message_id OUTPUT

See Also

sp_processmail

System Stored Procedures (SQL Mail Extended Procedures)

xp_deletemail

xp_readmail

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL Reference (SQL Server 2000)

xp_grantlogin
Grants a Microsoft® Windows NT® group or user access to Microsoft SQL Server™. xp_grantlogin is provided for backward
compatibility. Use sp_grantlogin.

Syntax

xp_grantlogin {[@loginame =] 'login'} [,[@logintype =] 'logintype']

Arguments

[@loginame =] 'login'

Is the name of the Windows NT user or group to be added. The Windows NT user or group must be qualified with a Windows NT
domain name in the form Domain\User. login is sysname, with no default.

[@logintype =] 'logintype'

Is the security level of the login being granted access. logintype is varchar(5), with a default of NULL. Only admin can be
specified. If admin is specified, login is granted access to SQL Server, and added as a member of the sysadmin fixed server role.

Return Code Values

0 (success) or 1 (failure)

Remarks

xp_grantlogin is now a system stored procedure rather than an extended stored procedure and calls sp_grantlogin to grant a
Windows NT-based group or user access to SQL Server.

See Also

sp_denylogin

sp_grantlogin

System Stored Procedures (General Extended Procedures)

xp_enumgroups

xp_loginconfig

xp_logininfo

sp_revokelogin

Transact-SQL Reference (SQL Server 2000)

xp_logevent
Logs a user-defined message in the Microsoft® SQL Server™ log file and in the Microsoft Windows NT® Event Viewer.
xp_logevent can be used to send an alert without sending a message to the client.

Syntax

xp_logevent {error_number, 'message'} [, 'severity']

Arguments

error_number

Is a user-defined error number greater than 50,000. The maximum value is 1073741823 (230 - 1).

'message'

Is a character string with a maximum of 255 characters.

'severity'

Is one of three character strings: INFORMATIONAL, WARNING, or ERROR. severity is optional, with a default of
INFORMATIONAL.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_logevent returns this error message for the included code example:

The command(s) completed successfully.

Remarks

When sending messages from Transact-SQL procedures, triggers, batches, and so on, use the RAISERROR statement instead of
xp_logevent. xp_logevent does not call a client's message handler or set @@ERROR. To write messages to the Windows NT
Event Viewer and to the SQL Server error log file within SQL Server, execute the RAISERROR statement.

Permissions

Execute permissions for xp_logevent default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users.

Examples

This example logs the message (with variables passed to the message) in the Windows NT Event Viewer.

DECLARE @@TABNAME varchar(30)
DECLARE @@USERNAME varchar(30)
DECLARE @@MESSAGE varchar(255)
SET @@TABNAME = 'customers'
SET @@USERNAME = USER_NAME()
SELECT @@MESSAGE = 'The table ' + @@TABNAME + ' is not owned by the user
 ' + @@USERNAME + '.'

USE master
EXEC xp_logevent 60000, @@MESSAGE, informational

See Also

PRINT

RAISERROR

System Stored Procedures (General Extended Procedures)

Transact-SQL Reference (SQL Server 2000)

xp_loginconfig
Reports the login security configuration of Microsoft® SQL Server™ when running on Microsoft Windows 2000 or Microsoft
Windows NT® 4.0.

Syntax

xp_loginconfig ['config_name']

Arguments

'config_name'

Is the configuration value to be displayed. If config_name is not specified, all configuration values are reported. config_name is
sysname, with a default of NULL, and can be one of these values.

Value Description
login mode Login security mode. Possible values are Mixed and

Windows Authentication.
default login Name of the default SQL Server login ID for authorized users

of trusted connections (for users without matching login
name). The default login is guest. Provided for backward
compatibility.

default domain Name of the default Windows NT domain for network users
of trusted connections. The default domain is the domain that
the Windows NT computer running SQL Server is a member
of. Provided for backward compatibility.

audit level Audit level. Possible values are none, success, failure, and
all. Audits are written to the error log and to the Windows NT
Event Viewer.

set hostname Indicates whether the hostname from the client login record is
replaced with the Windows NT network username. Possible
values are true or false. If this is set, the network username
appears in output from sp_who.

map _ Reports what special Windows NT characters are mapped to
the valid SQL Server character _ (underscore). Possible values
are domain separator (default), space, null, or any single
character. Provided for backward compatibility.

map $ Reports what special Windows NT characters are mapped to
the valid SQL Server character $ (dollar sign). Possible values
are domain separator, space, null, or any single character.
The default is space. Provided for backward compatibility.

map # Reports what special Windows NT characters are mapped to
the valid SQL Server character # (number sign). Possible
values are domain separator, space, null, or any single
character. Default is the hyphen. Provided for backward
compatibility.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
name sysname Configuration value
config value sysname Configuration value setting

Remarks

xp_loginconfig cannot be used to set configuration values.

Use SQL Server Enterprise Manager to set the login mode and audit level.

Permissions

Execute permissions for xp_loginconfig default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users.

Examples

A. Report all configuration values

This example shows all of the currently configured settings.

EXEC xp_loginconfig

name config_value
---------------- -------------------------
login mode mixed
default login guest
default domain REDMOND
audit level none
Set hostname false
Map _ domain separator
Map $ space
Map # -

B. Report login mode configuration value

This example shows the setting for only the login mode.

EXEC xp_loginconfig 'login mode'

name config_value
---------------- -------------------------
login mode mixed

See Also

sp_denylogin

sp_grantlogin

System Stored Procedures (General Extended Procedures)

sp_revokelogin

xp_logininfo

Transact-SQL Reference (SQL Server 2000)

xp_logininfo
Reports the account, the type of account, the privilege level of the account, the mapped login name of the account, and the
permission path by which an account has access to Microsoft® SQL Server™.

Syntax

xp_logininfo [[@acctname =] 'account_name'] [,[@option =] 'all' | 'members']
 [,[@privelege =] variable_name OUTPUT]

Arguments

[@acctname =] 'account_name'

Is the name of a Microsoft Windows NT® user or group granted access to SQL Server. account_name is sysname, with a default
of NULL. If account_name is not given, all groups and users that have been explicitly granted login permission are reported. The
Windows NT user or group must be qualified by the Windows NT domain or computer name to which the account belongs.

'all' | 'members'

Specifies whether to report information about all permission paths for the account, or to report information about the members
of the Windows NT group. @option is varchar(10), with a default of NULL. Unless all is specified, only the first permission path
is displayed.

[@privelege =] variable_name

Is an output parameter that returns the privilege level of the specified Windows NT account. variable_name is varchar(10), with a
default of 'Not wanted'. The privilege level returned is user, admin, or null.

OUTPUT

When specified, places variable_name in the output parameter.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column name Data type Description
account name nchar(128) Fully qualified Windows NT account name.
type char(8) Type of Windows NT account. Valid values

are user or group.
privilege char(9) Access privilege for SQL Server. Valid values

are admin, user, or null.
mapped login name nchar(128) For user accounts with user privilege,

mapped login name shows the mapped
login name that SQL Server tries to use
when logging in with this account, using the
mapped rules with the domain name added
before it.

permission path nchar(128) Group membership that allowed the account
access.

Remarks

If account_name is specified as the first parameter, xp_logininfo reports the highest privilege level access for that account. If a
user has access as a system administrator and as a user, only the system administrator level (highest privilege) entry is reported.
If the user is a member of multiple groups that have the same privilege level, only the first group that matches is reported (the
order of the groups is the order that the groups were granted access to SQL Server), and a maximum of one result row is
returned.

If account_name is a valid Windows NT account but that account does not have permission to access SQL Server, an empty result

set is returned. If account_name cannot be identified as a valid Windows NT account, an error message is returned.

If account_name and all are specified, all permission paths for that account are listed. If account_name is a member of multiple
groups, all of which have been granted access to SQL Server, multiple rows are returned. The admin privilege rows are reported
before the user privilege rows, and within a privilege level the row order is the order in which the accounts were granted access
to SQL Server. account_name applies to both individual users and groups.

If account_name and members is specified, a list of the next-level members of the group is returned. If account_name is a local
group, the listing can include local users, domain users, and global groups. If account_name is a global account, the list consists of
domain users. If account_name is a user account, an error message is returned.

Permissions

Execute permissions for xp_logininfo default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users.

Examples

This example displays information about the BUILTIN\Administrators Windows NT group.

EXEC xp_logininfo 'BUILTIN\Administrators'

See Also

sp_denylogin

sp_grantlogin

sp_revokelogin

System Stored Procedures (General Extended Procedures)

xp_loginconfig

Transact-SQL Reference (SQL Server 2000)

xp_msver
Returns and allows to be queried Microsoft® SQL Server™ version information. In addition to version information regarding the
actual build number of the server, various environment information is also returned. This information can be used within
Transact-SQL statements, batches, stored procedures, and so on, to enhance logic for platform-independent code.

Syntax

xp_msver [optname]

Arguments

optname

Is the name of an option, and can be one of the following.

Option/Column name Description
ProductName Product name; for example, Microsoft SQL Server.
ProductVersion Product version; for example, 7.00.419 where 7.00 is

the version and 419 is the Microsoft internal build
number.

Language The language version of SQL Server.
Platform Operating-system name, manufacturer name, and chip

family name for the computer running SQL Server. For
example, NT INTEL X86 indicates Microsoft Windows
NT® as the operating system, Intel as the chip
manufacturer, and a 486 or higher processor.

Comments Miscellaneous information about SQL Server.
CompanyName Company name that produces SQL Server; for example,

Microsoft Corporation.
FileDescription The operating system.
FileVersion Version of the SQL Server executable. For example,

1998.02.01 indicates a file version of February 1, 1998,
on the Sqlservr.exe file.

InternalName Microsoft internal name for SQL Server; for example,
SQLSERVR.

LegalCopyright Legal copyright information required for SQL Server;
for example, Copyright© Microsoft Corp. 1998.

LegalTrademarks Legal trademark information required for SQL Server.
For example, Microsoft® is a registered trademark of
Microsoft Corporation.

OriginalFilename File name executed at SQL Server startup; for example,
Sqlservr.exe.

PrivateBuild Reserved.
SpecialBuild Reserved.
WindowsVersion Microsoft Windows version installed on the computer

running SQL Server. For example, 4.0 indicates version
4.0 of Microsoft Windows NT, and 1381 indicates the
internal build number.

ProcessorCount The number of processors in the computer running
SQL Server.

ProcessorActiveMask Indicates what processors installed in the computer
running SQL Server are activated and usable by
Microsoft Windows NT.

ProcessorType Processor type. Similar to Platform.
PhysicalMemory Amount in megabytes (MB) of RAM installed on the

computer running SQL Server. For example, 32
indicates 32 MB of RAM.

Product ID Product ID (PID) number, which is specified during
installation. This number is located on a sticker on the
original SQL Server compact disc case.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_msver, without any parameters, returns this four-column result set (values may vary):

Index Name Internal_Value Character_Value
------ ------------------------ -------------- ----------------
1 ProductName NULL Microsoft SQL
 Server
2 ProductVersion 458752 7.00.498
3 Language 1033 English (United
 States)
4 Platform NULL NT INTEL X86
5 Comments NULL NT INTEL X86
6 CompanyName NULL Microsoft
 Corporation
7 FileDescription NULL SQL Server
 Windows NT
8 FileVersion NULL 1998.05.25
9 InternalName NULL SQLSERVR
10 LegalCopyright NULL Copyright ©
 Microsoft Corp. 1998
11 LegalTrademarks NULL Microsoft® is a
 registered trademark of Microsoft
Corporation. Windows(TM) is a
trademark of Microsoft Corporation
12 OriginalFilename NULL SQLSERVR.EXE
13 PrivateBuild NULL NULL
14 SpecialBuild 262242 NULL
15 WindowsVersion 90505220 4.0 (1381)
16 ProcessorCount 1 1
17 ProcessorActiveMask 1 00000001
18 ProcessorType 586 PROCESSOR_INTEL_PENTIUM
19 PhysicalMemory 63 63 (66510848)
20 Product ID NULL NULL

(20 row(s) affected)

xp_msver, for any option, returns the four-column headings with values for that option. For example, this result set is returned
when xp_msver is executed with the FileDescription option.

xp_msver FileDescription

Index Name Internal_Value Character_Value
------ ------------------------- -------------- ------------------------
7 FileDescription NULL SQL Server Windows NT

(1 row(s) affected)

Permissions

Execute permissions default to the public role.

See Also

System Functions

System Stored Procedures (General Extended Procedures)

@@VERSION

Transact-SQL Reference (SQL Server 2000)

xp_readmail
 New Information - SQL Server 2000 SP3.

Reads a mail message from the Microsoft® SQL Server™ mail inbox. This procedure is used by sp_processmail to process all
mail in the SQL Server inbox.

Syntax

xp_readmail [[@msg_id =] 'message_number']
 [, [@type =] 'type' [OUTPUT]]
 [,[@peek =] 'peek']
 [,[@suppress_attach =] 'suppress_attach']
 [,[@originator =] 'sender' OUTPUT]
 [,[@subject =] 'subject' OUTPUT]
 [,[@message =] 'message' OUTPUT]
 [,[@recipients =] 'recipients [;...n]' OUTPUT]
 [,[@cc_list =] 'copy_recipients [;...n]' OUTPUT]
 [,[@bcc_list =] 'blind_copy_recipients [;...n]' OUTPUT]
 [,[@date_received =] 'date' OUTPUT]
 [,[@unread =] 'unread_value' OUTPUT]
 [,[@attachments =] 'attachments [;...n]' OUTPUT])
 [,[@skip_bytes =] bytes_to_skip OUTPUT]
 [,[@msg_length =] length_in_bytes OUTPUT]
 [,[@originator_address =] 'sender_address' OUTPUT]]

Arguments

[@msg_id =] 'message_number'

Is the number of the message to read. message_number is varchar(255), with no default.

'type'

Is the message type to return based on the MAPI mail definition:

IP[M | C].Vendorname.subclass

If used on input, this must define the type for a specific message; type is ignored on input if the message_number is NULL. type is
varchar(255), with a default of NULL.

OUTPUT

When specified, places the value of the specified parameter in the output parameter.

[@peek =] 'peek'

Is whether SQL Server returns the message of the mail without changing the mail status to read. peek is varchar(5), with a
default of FALSE. If set to false, the mail is treated as though it has been read. If set to true, the mail is treated as though it has not
been read.

[@suppress_attach =] 'suppress_attach'

Is whether mail attachments are suppressed. suppress_attach is varchar(255), with a default of FALSE. If set to true, SQL Server
prevents the creation of temporary files when xp_readmail reads a message with attachments. If set to false, there is no
prevention of temporary files when messages with attachments are read.

[@originator =] 'sender'

Is the returned mail address of the sender. sender is varchar(255), with no default.

[@subject =] 'subject'

Is the returned the subject of the mail message. subject is varchar(255), with no default.

[@message =] 'message'

Is the returned body or the actual text of the mail message. message is text, with no default.

[@recipients =] 'recipients [;...n]'

Is the semicolon-separated list of the recipients for the mail message to be returned. Recipients' names are separated by a
semicolon (;). recipient_list is varchar(255), with no default.

[@cc_list =] 'copy_recipients [;...n]'

Is the semicolon-separated list of the copied recipients (cc:'ed) for the mail message to be returned. Recipients' names are
separated by a semicolon (;). cc_list is varchar(255), with no default.

[@bcc_list =] 'blind_copy_recipients [;...n]'

Is the semicolon-separated list for the blind copy recipients (bcc:'ed) of the mail message to be returned. Recipients' names are
separated by a semicolon (;). bcc_list is varchar(255), with no default.

[@date_received =] 'date'

Is the returned date of the mail message. date is varchar(255), with no default.

[@unread =] 'unread_value'

Is whether a message has been previously unread (true) or not (false). unread_value is varchar(5), with a default of TRUE.

[@attachments =] 'attachments [;...n]'

Is the semicolon-separated list of returned temporary paths of the mail attachments for the message. Temporary paths are
separated by a semicolon (;). attachments is varchar(255), with no default.

[@skip_bytes =] bytes_to_skip OUTPUT

If a value other than 0 is passed for input, this parameter specifies the number of bytes to skip before reading the next 255 bytes
(max) of the message into the body of message output parameter. When bytes_to_skip is used, body_of_message includes the
next portion of the message and bytes_to_skip returns with the next starting point within the message (the previous bytes_to_skip
plus the length of message). bytes_to_skip is int, with a default of 0.

[@msg_length =] length_in_bytes OUTPUT

Is the total length of the message, in bytes. When used with bytes_to_skip in a stored procedure, this parameter allows messages
to be read in chunks of 255 bytes. length_in_bytes is int, with a default of 255 (bytes).

[@originator_address =] 'sender_address'

Is the resolved mail address of the originator of the mail message. sender_address is varchar(255), with no default.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_readmail returns a result set with these columns (older messages appear first).

Column name Description
Originator Sender of e-mail message
Date Received Date the e-mail message was received
Recipients The people to whom the message was sent
CC List The people on the CC'd line of the e-mail message
BCC List The people on the BCC'd line of the e-mail message
Subject Subject line of the e-mail message
Message Message body (text)
Unread Whether this message is unread
Attachments Any attachments for the message
Message ID Message ID
Type Message type

Remarks

Any failure except an invalid parameter is logged to the Microsoft Windows NT® application log.

There are two ways to use xp_readmail:

Return the contents of the inbox as a result set to the client.

Read a single message from the inbox.

To return the contents of the inbox as a result set to the client either set message_number to NULL or do not include
message_number. In this situation, type can be used to read specific messages. You can specify peek and suppress_attach as input
parameters to control the way the message is read.

To read a single message from the inbox, supply a valid message_number returned by xp_findnextmsg as an input parameter to
xp_readmail. You can specify peek and suppress_attach as input parameters to control the way the message is read. When using
peek and suppress_attach with this method, all other parameters are optional output parameters containing specific information
from the message to be read.

You can view an example of using xp_findnextmsg as an input parameter to xp_readmail by executing the following command:

sp_helptext 'sp_processmail'

When used to read a single message, xp_readmail can read message text of longer than 255 bytes in sections. Use
length_in_bytes and length_in_bytes to read message text of longer than 255 bytes in sections. Using length_in_bytes as both an
input and output parameter allows coding of a loop to process the entire message text. The following code shows an example of
such a loop, assuming message_number is set to a valid message identifier returned by xp_findnextmsg.

USE master
WHILE (1 = 1)
BEGIN
EXEC @status = xp_readmail @msg_id = @msg_id,
 @message = @message OUTPUT,
 @skip_bytes = @skip_bytes OUTPUT,
 @msg_length = @msg_length OUTPUT

IF @status <> 0 BREAK
SELECT 'msg_id' = @msg_id, 'msg_part' = @message
IF @skip_bytes = @msg_length BREAK
END

Failure to change the default for the suppress_attach parameter to TRUE raises two potential security issues concerning
attachments.

First, if two users share the same temporary directory and log on to the same computer, they will be able to view each other's
attachments. You can determine where attachments are stored and whether two users share the same temporary directory by
reviewing the attachments output variable.

Second, xp_deletemail does not delete these attachments, so you must delete them manually.

Permissions

Execute permissions for xp_readmail default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users. However, for security reasons, it is recommended
that you limit permissions for this stored procedure to members of the sysadmin fixed server role.

Examples

This example returns the status when reading a message. In this example, the value of a message ID from xp_findnextmsg is
placed in the local variable @message_id and passed to xp_readmail.

USE master
EXEC @status = xp_readmail @msg_id = @message_id,
 @originator = @originator OUTPUT,
 @cc_list = @cc_list OUTPUT,
 @subject = @msgsubject OUTPUT,
 @message = @query OUTPUT,
 @peek = 'TRUE',
 @suppress_attach = 'TRUE'

See Also

sp_processmail

System Stored Procedures (SQL Mail Extended Procedures)

xp_deletemail

xp_findnextmsg

xp_sendmail

xp_startmail

xp_stopmail

Transact-SQL Reference (SQL Server 2000)

xp_revokelogin
Revokes access from a Microsoft® Windows NT® group or user to Microsoft SQL Server™. xp_revokelogin is provided for
backward compatibility. Use sp_revokelogin.

Syntax

xp_revokelogin {[@loginame =] 'login'}

Arguments

[@loginame =] 'login'

Is the name of the Windows NT user or group to be revoked access. The Windows NT user or group must be qualified with a
Windows NT domain name. login is sysname, with no default.

Return Code Values

0 (success) or 1 (failure)

Remarks

xp_revokelogin is now a system stored procedure rather than an extended stored procedure and calls sp_revokelogin to
revoke access to SQL Server for a Windows NT group or user.

See Also

sp_denylogin

sp_grantlogin

sp_revokelogin

System Stored Procedures (General Extended Procedures)

xp_loginconfig

xp_logininfo

Transact-SQL Reference (SQL Server 2000)

xp_sendmail
 New Information - SQL Server 2000 SP3.

Sends a message and a query result set attachment to the specified recipients.

Syntax

xp_sendmail {[@recipients =] 'recipients [;...n]'}
 [,[@message =] 'message']
 [,[@query =] 'query']
 [,[@attachments =] 'attachments [;...n]']
 [,[@copy_recipients =] 'copy_recipients [;...n]'
 [,[@blind_copy_recipients =] 'blind_copy_recipients [;...n]'
 [,[@subject =] 'subject']
 [,[@type =] 'type']
 [,[@attach_results =] 'attach_value']
 [,[@no_output =] 'output_value']
 [,[@no_header =] 'header_value']
 [,[@width =] width]
 [,[@separator =] 'separator']
 [,[@echo_error =] 'echo_value']
 [,[@set_user =] 'user']
 [,[@dbuse =] 'database']

Arguments

[@recipients =] 'recipients [;...n]'

Is the semicolon-separated list of the recipients of the mail.

n

Is a placeholder indicating that more than one recipient, copy_recipient, or blind_copy_recipient can be specified.

[@message =] 'message'

Is the message to be sent. message can be up to 8,000 bytes.

[@query =] 'query'

Is a valid Microsoft® SQL Server™ query, the result of which is sent in mail. xp_sendmail uses a bound connection for the query
parameter. The query connection made by SQL Mail is not blocked by locks held by the client that issues the xp_sendmail
request. This makes xp_sendmail easier to use from within triggers. The query statement, however, cannot refer to the logical
inserted and deleted tables that are only available within a trigger. query can be up to 8,000 bytes.

[@attachments =] 'attachments [;...n]'

Is a semicolon-separated list of files to attach to the mail message.

[@copy_recipients =] 'copy_recipients [;...n]'

Is the semicolon-separated list identifying the recipients of a copy of the mail (cc:'ing).

[@blind_copy_recipients =] 'blind_copy_recipients [;...n]'

Is an optional semicolon-separated list identifying recipients of a blind copy of the mail (bcc:'ing).

[@subject =] 'subject'

Is an optional parameter specifying the subject of the mail. If subject is not specified, SQL Server Message is the default.

[@type =] 'type'

Is the input message type based on the MAPI mail definition:

IP[M | C].Vendorname.subclass

If type is NULL, message types beginning with IPM appear in the inbox of the mail client and are found or read by

xp_findnextmsg. Message types beginning with IPC do not appear in the inbox of the mail client and must be found or read by
setting the type parameter. The default is NULL.

For more information about using custom message types, see the Microsoft Windows NT Resource Kit or the Microsoft Mail
Technical Reference, available separately.

[@attach_results =] 'attach_value'

Is an optional parameter specifying the result set of a query should be sent in mail as an attached file instead of being appended
to the mail. If attachments is not NULL and attach_results is true, the first file name in attachments is used as the file name for the
results. If attachments is NULL, a file name is generated with a .txt extension. The default is FALSE, which means that the result set
is appended to the message.

[@no_output =] 'output_value'

Is an optional parameter that sends the mail but does not return any output to the client session that sent the mail. The default is
FALSE, which means that the client session of SQL Server receives output.

[@no_header =] 'header_value'

Is an optional parameter that sends the query results in mail but does not send column header information with the query results.
The default is FALSE, which means that column header information is sent with the query results.

[@width =] width

Is an optional parameter setting the line width of the output text for a query. This parameter is identical to the /w parameter in the
isql utility. For queries producing long output rows, use width with attach_results to send the output without line breaks in the
middle of output lines. The default width is 80 characters.

[@separator =] 'separator'

Is the column-separator string for each column of the result set. By default, the column-separator is a blank space. Use of a
column-separator allows easier accessibility of the result set from spreadsheets and other applications. For example, use
separator with attach_results to send files with comma-separated values.

[@echo_error =] 'echo_value'

When true, causes SQL Mail to capture any server messages or DB-Library errors encountered while running the query and
append them to the mail message rather than writing them to the error log. Also, a count of rows returned/rows affected is
appended to the mail message.

Note When echo_error is true, xp_sendmail returns a status of 0 (success) if the mail is successfully sent, even if DB-Library
errors or messages are encountered or the query returns no results.

[@set_user =] 'user'

Is the security context in which the query should be run. If user is not specified, the security context defaults to that of the user
executing xp_sendmail.

[@dbuse =] 'database'

Is the database context in which the query should be run. The default is NULL, which means the user is placed in the default
database.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_sendmail returns this message:

Mail sent.

Remarks

The SQL Mail session must be started prior to executing xp_sendmail. Sessions can be started either automatically or with
xp_startmail. For more information about setting up a SQL Mail session automatically, see Configuring Mail Profiles. One SQL
Mail session supports all users on the SQL Server, but only one user at a time can send a message. Other users sending mail
messages automatically wait their turns until the first user's message is sent.

If query is specified, xp_sendmail logs in to SQL Server as a client and executes the specified query. SQL Mail makes a separate
connection to SQL Server; it does not share the same connection as the original client connection issuing xp_sendmail.

Note query can be blocked by a lock held by the client connection issued xp_sendmail. For example, if you are updating a table
within a transaction and you create a trigger for update that attempts to select the same updated row information as the query
parameter, the SQL Mail connection is blocked by the exclusive lock held on row by the initial client connection.

xp_sendmail runs in SQL Server's security context, which is a local administrator account by default. A valid user of
xp_sendmail can access files for attachment to a mail message in an administrator's security context. If nonsystem administrator
users must access xp_sendmail and you want to guard against unsecured access to attachment files, the system administrator
can create a stored procedure that calls xp_sendmail and provides the needed functionality but does not expose the attachments
parameter. This stored procedure must be defined in the master database. The system administrator then grants execute
permission on the stored procedure to the necessary users without granting permission to the underlying xp_sendmail
procedure.

xp_sendmail sends a message and a query result set or an attachment to specified recipients, and uses a bound connection for
the query parameter. The query connection made by SQL Mail is not blocked by locks held by the client that issues the
xp_sendmail request. This makes xp_sendmail easier to use from within triggers. The query statement, however, cannot refer to
the logical inserted and deleted tables that are only available within a trigger.

Note An access violation can result from an attempt to execute xp_sendmail when the post office and address book are on a file
share that the MSSQLServer service cannot access due to inadequate permissions.

For more information about using a stored procedure for calling xp_sendmail, see How to use SQL Mail (Transact-SQL).

Permissions

Execute permissions for xp_sendmail default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users. However, for security reasons, you should limit
permissions for this stored procedure to members of the sysadmin fixed server role.

Examples

A. Use xp_sendmail w ith no variables

This example sends a message to user Robert King (e-mail is robertk) that the master database is full.

EXEC xp_sendmail 'robertk', 'The master database is full.'

B. Use xp_sendmail w ith variables

This example sends the message to users Robert King and Laura Callahan (e-mail is laurac), with copies sent to Anne Dodsworth
(e-mail is anned) and Michael Suyama (e-mail is michaels). It also specifies a subject line for the message.

EXEC xp_sendmail @recipients = 'robertk;laurac',
 @message = 'The master database is full.',
 @copy_recipients = 'anned;michaels',
 @subject = 'Master Database Status'

C. Send results

This example sends the results of the sp_configure to Robert King.

EXEC xp_sendmail 'robertk', @query = 'sp_configure'

D. Send results as an attached file

This example sends the results of the query SELECT * FROM INFORMATION_SCHEMA.TABLES as a text file attachment to Robert
King. It includes a subject line for the mail and a message that will appear before the attachment. The @width parameter is used
to prevent line breaks in the output lines.

EXEC xp_sendmail @recipients = 'robertk',
 @query = 'SELECT * FROM INFORMATION_SCHEMA.TABLES',
 @subject = 'SQL Server Report',
 @message = 'The contents of INFORMATION_SCHEMA.TABLES:',
 @attach_results = 'TRUE', @width = 250

E. Send messages longer than 7,990 characters

This example shows how to send a message longer than 7,990 characters. Because message is limited to the length of a varchar
(less row overhead, as are all stored procedure parameters), this example writes the long message into a global temporary table
consisting of a single text column. The contents of this temporary table are then sent in mail using the @query parameter.

CREATE TABLE ##texttab (c1 text)
INSERT ##texttab values ('Put your long message here.')
DECLARE @cmd varchar(56)
SET @cmd = 'SELECT c1 FROM ##texttab'
EXEC master.dbo.xp_sendmail 'robertk',
 @query = @cmd, @no_header= 'TRUE'
DROP TABLE ##texttab

See Also

sp_processmail

System Stored Procedures (SQL Mail Extended Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_startmail

xp_stopmail

Transact-SQL Reference (SQL Server 2000)

xp_sprintf
Formats and stores a series of characters and values in the string output parameter. Each format argument is replaced with the
corresponding argument.

Syntax

xp_sprintf {string OUTPUT, format}
 [, argument [,...n]]

Arguments

string

Is a varchar variable that receives the output.

OUTPUT

When specified, places the value of the variable in the output parameter.

format

Is a format character string with placeholders for argument values, similar to that supported by the C-language sprintf function.
Currently, only the %s format argument is supported.

argument

Is a character string representing the value of the corresponding format argument.

n

Is a placeholder indicating that a maximum of 50 arguments can be specified.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_sprintf returns this message:

The command(s) completed successfully.

Permissions

Execute permissions default to the public role.

Examples

This example uses parameter to create an INSERT statement.

DECLARE @ret_string varchar (255)
EXEC Master.DBO.xp_sprintf @ret_string OUTPUT, 'INSERT INTO %s VALUES (%s, %s)', 'table1', '1', '2'
PRINT @ret_string

Here is the result set:

INSERT INTO table1 VALUES (1, 2)

See Also

System Stored Procedures (General Extended Procedures)

xp_sscanf

Transact-SQL Reference (SQL Server 2000)

xp_sqlagent_msx_account
 New Information - SQL Server 2000 SP3.

Sets or retrieves the SQL Server Agent MSX account user name and password to or from the local security authority(LSA) secrets
on the TSX server. Execute permissions of this extended stored procedure are restricted to the securityadmin fixed server role.

SQL Server Agent must be running to execute this extended stored procedure. In addition, if the account specified is a SQL Server
login, SQL ServerAgent must have local Windows administrator rights because SQL Server Agent stores the user name and
password as an LSA secret, and access is restricted to local Windows administrators.

Syntax

xp_sqlagent_msx_account

 {N'GET' | N'SET' | N'DEL,

 N'MSX_domain_name', N'MSX_username', N'MSX_password'

 }

Arguments

N'GET'

Retrieves the current SQL Server Agent MSX account. N'GET' is nvarchar with no default. The password is not reported for
security reasons.

N'SET'

Sets the account to be used as the SQL Server Agent MSX account. Use the MSX_username, and MSX_password parameters to
specify the account to use as the SQL Server Agent MSX account. N'SET' is nvarchar with no default.

N'DEL'

Deletes the SQL Server Agent MSX account.

'MSX_domain_name'

Reserved for future use.

'MSX_username'

The name of the Windows account to be used as the SQL Server Agent MSX account. Specify an empty string for this parameter
to select Windows security. In this case, the SQL Server Agent service account credentials are used to log on to the MSX server.
MSX_username is nvarchar with no default.

'MSX_password'

The password for the SQL Server account specified in MSX_username. Specify an empty string for this parameter to select
Windows security. In this case, the SQL Server Agent service account credentials are used to log into the MSX server.
MSX_password is nvarchar with no default.

Note: Parameters for xp_sqlagent_msx_account must be specified in order. Named parameters cannot be used.

Return Code Values

0 (success) or 1 (failure)

When xp_sqlagent_msx_account fails and returns 1, SQL Server generates an error message with information about the error.

Result Sets

If a SQL Server Agent MSX account has been set, xp_sqlagent_msx_account returns a result set with the following information
when you specify N'GET'.

Column Data type Description
Domain sysname N/A. Reserved for future

use.

Username sysname Account used as the SQL
Server Agent MSX account.

If a SQL Server Agent MSX account has not been set, or if N'SET' is specified, no result set is returned.

Permissions

Execute permissions for xp_sqlagent_msx_account default to members of the securityadmin fixed server role.

Examples

1. Retrieve the currently assigned SQL Server Agent MSX account

This example retrieves the account currently assigned for use as the SQL Server Agent MSX account.

EXEC master.dbo.xp_sqlagent_msx_account N'GET'

2. Set the SQL Server Agent MSX account to use Windows Authentication

This example sets the SQL Server Agent MSX account to Windows Authentication.

EXEC master.dbo.xp_sqlagent_msx_account N''SET'',
 N'', -- Reserved for future use
 N'', -- MSX_username
 N'' -- MSX_password

C. Set the SQL Server Agent M SX account to SQL Server Authentication

This example sets the SQL Server Agent MSX account to Ralph and specifies a password.

EXEC master.dbo.xp_sqlagent_msx_account N'SET',
 N'', -- Reserved for future use
 N'Ralph', -- MSX_username
 N'lI(3x5$9' -- MSX_password

D. Delete the SQL Server Agent M SX account

This example deletes the SQL Server Agent MSX account. SQL Server Agent then defaults to Windows Authentication.

EXEC master.dbo.xp_sqlagent_msx_account N'DEL'

See Also

SQL Server Agent Properties (Job System Tab)

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

xp_sqlagent_proxy_account
 New Information - SQL Server 2000 SP3.

Sets or retrieves the proxy account information used by SQL Server Agent and the xp_cmdshell extended stored procedure
when executing jobs or commands for users who are not members of the sysadmin fixed server role. The proxy account is a
Microsoft® Windows® account in whose security context the jobs or command prompt commands are run.

Syntax

xp_sqlagent_proxy_account

 {N'GET' | N'SET' | N'DEL ,

 N'agent_domain_name', N'agent_username', N'agent_password'

 }

Arguments

N'GET'

Retrieves the name of the current SQL Server Agent proxy account. N'GET' is nvarchar with no default.

N'SET'

Sets the Windows account to be used as the SQL Server Agent proxy account. Use the agent_domain_name, agent_username,
and agent_password parameters to specify the Windows account to use as the proxy account. If you do not specify valid Windows
account information, such as not specifying the correct password, sp_sqlagent_proxy_account will receive an error. N'SET' is
nvarchar with no default.

N'DEL'

Deletes the SQL Server Agent proxy account.

'agent_domain_name'

Is the name of the Windows domain containing the Windows user account specified in agent_username. agent_domain_name is
nvarchar with no default.

'agent_username'

Is the name of the Windows account to be used as the SQL Server Agent proxy account. agent_username is nvarchar with no
default.

'agent_password'

Is the password for the Windows account specified in agent_username. agent_password is nvarchar with no default.

Note Parameters for xp_sqlagent_proxy_account must be specified in order. Named parameters cannot be used.

Return Code Values

0 (success) or 1 (failure)

When the execution of xp_sqlagent_proxy_account fails, SQL Server generates an error message with information about the
error.

Result Sets

If a SQL Server Agent proxy account has been set, xp_sqlagent_proxy_account returns a result set with the following
information when you specify N'GET'.

Column Data type Description
domain sysname Domain containing the

Windows account used as
the SQL Server Agent proxy
account.

username sysname Windows account used as
the SQL Server Agent proxy
account.

If a SQL Server Agent proxy account has not been set, or if N'SET' is specified, no result set is returned.

Remarks

SQL Server Agent proxy accounts allow SQL Server users who do not belong to the sysadmin fixed server role to execute
xp_cmdshell and own SQL Server Agent jobs. The administrators can assign appropriate security permissions to the proxy
account to control the ability of these jobs to access resources in the network.

When a SQL Server user executes a command prompt command using xp_cmdshell, the command must execute in the security
context of a Windows account. If the SQL Server user is a member of the sysadmin fixed server role, SQL Server executes the
command prompt command using the Windows account under which the SQL Server service is running. If the SQL Server user
executing xp_cmdshell is not a member of the sysadmin fixed server role, SQL Server executes the command using the
Windows account specified as the SQL Server Agent proxy account. If no SQL Server Agent proxy account has been set, the user
gets an error. SQL Server Agent jobs also must execute in the security context of a Windows account. If the job is owned by a
member of the sysadmin fixed server role, the job executes using the Windows account under which the SQL Server service is
running. If the job owner is not in sysadmin, the job executes using the SQL Server Agent proxy account, and an error is raised if
no proxy account has been set.

xp_sqlagent_proxy_account sets or retrieves the proxy account for the instance on which it is executed. The SQL Server service
for that instance must be running under a Windows administrator account to read or set the SQL Server Agent proxy account.

Permissions

Execute permissions for xp_sqlagent_proxy_account default to members of the sysadmin fixed server role.

Examples

A. Retrieve the currently assigned SQL Server Agent proxy account

This example retrieves the account currently assigned for use as the SQL Server Agent proxy account.

EXEC master.dbo.xp_sqlagent_proxy_account N'GET'

This is the result set.

Domain Username

NETDOMAIN john

B. Set the SQL Server Agent proxy account without a password

This example sets the SQL Server Agent proxy account to LONDON\ralph without specifying a password. This example will
receive an error that the extended stored procedure cannot log in if the LONDON/ralph account actually has a password.

EXEC master.dbo.xp_sqlagent_proxy_account N'SET',
 N'NETDOMAIN', -- agent_domain_name
 N'ralph', -- agent_username
 N'' – agent password

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

C. Set the SQL Server Agent proxy account with a password

This example sets the SQL Server agent proxy account to LONDON\Ralph and specifies a password.

EXEC master.dbo.xp_sqlagent_proxy_account N'SET',
 N'NETDOMAIN', -- agent_domain_name
 N'ralph', -- agent_username
 N'Oxi&#lW8I', – agent password

See Also

SQL Server Agent Properties (Job System Tab)

System Stored Procedures

xp_cmdshell

Transact-SQL Reference (SQL Server 2000)

xp_sqlmaint
 New Information - SQL Server 2000 SP3.

Calls the sqlmaint utility with a string containing sqlmaint switches. The sqlmaint utility performs a set of maintenance
operations on one or more databases.

Syntax

xp_sqlmaint 'switch_string'

Arguments

'switch_string'

Is a string containing the sqlmaint utility switches. The switches and their values must be separated by a space.

The -? switch is not valid for xp_sqlmaint.

Return Code Values

None. Returns an error if the sqlmaint utility fails.

Remarks

If this procedure is called by a user logged on with SQL Server Authentication, the -U "login_id" and -P "password" switches are
prepended to switch_string before execution. If the user is logged on with Windows Authentication, switch_string is passed
without change to sqlmaint.

Permissions

Execute permissions for xp_sqlmaint default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users.

Examples

In this example, xp_sqlmaint calls sqlmaint to perform integrity checks, create a report file, and update
msdb.dbo.sysdbmaintplan_history.

EXEC xp_sqlmaint '-D pubs -PlanID 02A52657-D546-11D1-9D8A-00A0C9054212
 -Rpt "C:\Program Files\Microsoft SQL Server\MSSQL\LOG\DBMaintPlan2.txt" -WriteHistory -CkDB -CkAl'

Here is the result:

The command(s) executed successfully.

See Also

sqlmaint Utility

System Stored Procedures

Transact-SQL Reference (SQL Server 2000)

xp_sscanf
Reads data from the string into the argument locations given by each format argument.

Syntax

xp_sscanf {string OUTPUT, format}
 [, argument [,...n]]

Arguments

string

Is the character string to read the argument values from.

OUTPUT

When specified, places the value of argument in the output parameter.

format

Is a formatted character string similar to what is supported by the C-language sscanf function. Currently only the %s format
argument is supported.

argument

Is a varchar variable set to the value of the corresponding format argument.

n

Is a placeholder indicating that a maximum of 50 arguments can be specified.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_sscanf returns this message:

The command(s) completed successfully.

Permissions

Execute permissions default to the public role.

Examples

This example uses xp_sscanf to extract two values from a source string based on their positions in the format of the source
string.

DECLARE @filename varchar (20), @message varchar (20)
EXEC xp_sscanf 'sync -b -fauthors10.tmp -rrandom', 'sync -b -f%s -r%s',
 @filename OUTPUT, @message OUTPUT
SELECT @filename, @message

Here is the result set:

-------------------- --------------------
authors10.tmp random

See Also

System Stored Procedures (General Extended Procedures)

xp_sprintf

Transact-SQL Reference (SQL Server 2000)

xp_startmail
 New Information - SQL Server 2000 SP3.

Starts a SQL Mail client session.

Syntax

xp_startmail [[@user =] 'mapi_profile_name']
 [,[@password =] 'mapi_profile_password']

Arguments

[@user =] 'mapi_profile_name'

Is an optional parameter specifying a mail user name. mapi_profile_name is sysname, with no default.

[@password =] 'mapi_profile_password'

Is the mail password for the specified mapi_profile_name. mapi_profile_password is sysname, with no default. A value of NULL is
allowed when the mail client is started (on the same computer) before running xp_startmail.

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_startmail returns this message:

SQL mail session started.

Remarks

If mapi_profile_name and mapi_profile_password are provided, Microsoft® SQL Server™ attempts to log on to Windows NT Mail
(or other MAPI provider) using that user name and password. If mapi_profile_name and mapi_profile_password are provided but
are incorrect, an error message is returned. If mapi_profile_name and mapi_profile_password are not provided, SQL Server uses
the user name and password specified in the SQL Server Properties dialog box. If no user name or password is explicitly
provided, SQL Server will attempt to log in to the MAPI provider using the default MAPI profile. Some MAPI providers may be
configured to use Windows Authentication, in which a case, the MAPI password is ignored.

Note If you use xp_startmail to start your mail sessions, you can optionally supply your login name and password so that you
do not have to type it at the command prompt. However, SQL Mail will not piggyback an existing client session of Windows NT
Mail if one is running. This behavior differs from SQL Server version 7.0 and earlier.

If there is an existing mail session, xp_startmail does not start a new one. If mail is being used on the same computer on which
SQL Server is also running, the mail client must be started either before xp_startmail is executed, or before SQL Server is started
if SQL Mail is configured to automatically start when SQL Server starts.

Permissions

Execute permissions for xp_startmail default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users. However, for security reasons, you should limit
permissions for this stored procedure to members of the sysadmin fixed server role.

Examples

A. Use no variables w ith xp_startmail

This example starts mail using the username and password specified in SQL Server Setup.

USE master
EXEC xp_startmail

B. Use variables w ith xp_startmail

This example starts mail using the username janetl and the password abc12345.

USE master
EXEC xp_startmail 'janetl', 'abc12345'

See Also

sp_processmail

Configuring Mail Profiles

System Stored Procedures (SQL Mail Extended Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

xp_stopmail

Transact-SQL Reference (SQL Server 2000)

xp_stopmail
 New Information - SQL Server 2000 SP3.

Stops a Microsoft® SQL Server™ mail client session.

Syntax

xp_stopmail

Return Code Values

0 (success) or 1 (failure)

Result Sets

xp_stopmail returns this message:

Stopped SQL mail session.

Remarks

If there is no existing SQL Server mail session to stop, a message is returned.

Permissions

Execute permissions for xp_stopmail default to members of the db_owner fixed database role in the master database and
members of the sysadmin fixed server role, but can be granted to other users. However, for security reasons, you should limit
permissions for this stored procedure to members of the sysadmin fixed server role.

See Also

sp_processmail

System Stored Procedures (SQL Mail Extended Procedures)

xp_deletemail

xp_findnextmsg

xp_readmail

xp_sendmail

xp_startmail

Transact-SQL Reference (SQL Server 2000)

System Tables
The information used by Microsoft® SQL Server™ 2000 and its components is stored in special tables known as system tables.

System tables should not be altered directly by any user. For example, do not attempt to modify system tables with DELETE,
UPDATE, or INSERT statements, or user-defined triggers.

Reference of documented columns in system tables is permissible. However, many of the columns in system tables are not
documented. Applications should not be written to query undocumented columns directly. Applications should instead use any of
these components to retrieve information stored in the system tables:

Information schema views

System stored procedures

Transact-SQL statements and functions

SQL-DMO

Database application programming interfaces (API) catalog functions

These components constitute a published API for obtaining system information from SQL Server. Microsoft maintains the
compatibility of these components from release to release. The format of the system tables is dependent upon the internal
architecture of SQL Server and may change from release to release. Therefore, applications that directly access the undocumented
columns of system tables may have to be changed before they can access a later version of SQL Server.

System Tables in the master Database Only

These tables store server-level system information.

sysaltfiles syslockinfo
syscacheobjects syslogins
syscharsets sysmessages
sysconfigures sysoledbusers
syscurconfigs sysperfinfo
sysdatabases sysprocesses
sysdevices sysremotelogins
syslanguages sysservers

System Tables in Every Database

These tables store database-level system information for each database.

syscolumns sysindexkeys
syscomments sysmembers
sysconstraints sysobjects
sysdepends syspermissions
sysfilegroups sysprotects
sysfiles sysreferences
sysforeignkeys systypes
sysfulltextcatalogs sysusers
sysindexes

SQL Server Agent Tables in the msdb Database

These tables store information used by SQL Server Agent.

sysalerts sysjobsteps

syscategories sysnotifications
sysdownloadlist sysoperators
sysjobhistory systargetservergroupmembers
sysjobs systargetservergroups
sysjobschedules systargetservers
sysjobservers systaskids

Tables in the msdb Database

These tables store information used by database backup and restore operations.

backupfile restorefile
backupmediafamily restorefilegroup
backupmediaset restorehistory
backupset

Tables Used to Store Replication Information

These tables are used by replication and stored in the master database.

sysdatabases sysservers

These tables are used by replication and stored in the msdb database.

sysreplicationalerts

These tables are used by replication and stored in the distribution database.

MSagent_parameters Mspublisher_databases
MSagent_profiles MSreplication_objects
MSarticles MSreplication_subscriptions
MSdistpublishers MSrepl_commands
MSdistributiondbs MSrepl_errors
MSdistribution_agents MSrepl_originators
MSdistribution_history MSrepl_transactions
MSdistributor MSrepl_version
MSlogreader_agents MSsnapshot_agents
MSlogreader_history MSsnapshot_history
MSmerge_agents MSsubscriber_info
MSmerge_history MSsubscriber_schedule
MSmerge_subscriptions MSsubscriptions
MSpublication_access MSsubscription_properties
Mspublications

These tables are used by replication and stored in the publication database.

MSmerge_contents sysmergearticles
MSmerge_delete_conflicts sysmergepublications
MSmerge_genhistory sysmergeschemachange
MSmerge_replinfo sysmergesubscriptions
MSmerge_tombstone sysmergesubsetfilters
sysarticles syspublications
sysarticleupdates syssubscriptions

Transact-SQL Reference (SQL Server 2000)

backupfile
Contains one row for each data or log file that is backed up. This table is stored in the msdb database.

Column name Data type Description
backup_set_id int NOT NULL

REFERENCES
backupset(backup_
set_id)

Unique identification number of
the file containing the backup set.

first_family_number tinyint NULL Family number of the first media
containing this backup file.

first_media_number smallint NULL Media number of the first media
containing this backup file.

filegroup_name nvarchar(128) NULL Name of the filegroup containing
the database (data or log) file
backed up.

page_size int NULL Size of the page, in bytes.
file_number numeric(10,0) NOT

NULL
Unique file identification number
(FILE_ID).

backed_up_page_count numeric(10,0) NULL Number of pages backed up.
file_type char(1) NULL File backed up. Can be either D

for data or L for log.
source_file_block_size numeric(10,0) NULL Device that the original data or

log file resided on when it was
backed up.

file_size numeric(20,0) NULL Length of the file that is backed
up, in bytes.

logical_name nvarchar(128) NULL Logical name of the file that is
backed up.

physical_drive varchar(260) NULL Physical drive or partition name.
physical_name varchar(260) NULL Remainder of the physical

(operating system) file name.

Transact-SQL Reference (SQL Server 2000)

backupmediafamily
Contains one row for each media family. This table is stored in the msdb database.

Column name Data type Description
media_set_id int NOT NULL

REFERENCES
backupmediaset
(media_set_id)

Unique identification number
that identifies the media set of
which this family is a member.

family_sequence_
number

tinyint NOT NULL Position of this media family in
the media set.

media_family_id uniqueidentifier
NULL

Unique identification number
that identifies the media family.

media_count int NULL Number of media in the media
family.

logical_device_name nvarchar(128) NULL Name of the backup device in
sysdevices.
logical_device_name is NULL if
this is a temporary backup device
(as opposed to a permanent
backup device that exists in
sysdevices).

physical_device_name nvarchar(260) NULL Physical name of the backup
device.

device_type tinyint NULL Type of backup device:

Disk
2 = Temporary.
102 = Permanent.

Tape
5 = Temporary.
105 = Permanent.

Pipe
6 = Temporary.
106 = Permanent.

All permanent device names and
device numbers can be found in
sysdevices.

physical_block_size int NULL Physical block size used to write
the media family.

Transact-SQL Reference (SQL Server 2000)

backupmediaset
Contains one row for each backup media set. This table is stored in the msdb database.

Column name Data type Description
media_set_id int IDENTITY PRIMARY

KEY
Unique media set identification
number.

media_uuid uniqueidentifier
NULL

Number of media in the media
set. If only one media family in
the backup set, then this column
is NULL (media_family_count
is 1).

media_family_count tinyint NULL Number of media families in the
media set.

name nvarchar(128) NULL Name of the media set. For more
information, see MEDIANAME
and MEDIADESCRIPTION in
BACKUP.

description nvarchar(255) NULL Textual description of the media
set. For more information, see
MEDIANAME and
MEDIADESCRIPTION in BACKUP.

software_name nvarchar(128) NULL Name of the backup software
that wrote the media label.

software_vendor_id int NULL Identification number of the
software vendor that wrote the
backup media label. The
Microsoft® SQL Server™ value
for this column is hexadecimal
0x1200.

MTF_major_version tinyint NULL Major version number of
Microsoft Tape Format used to
generate this media set.

Transact-SQL Reference (SQL Server 2000)

backupset
Contains a row for each backup set. This table is stored in the msdb database.

Column name Data type Description
backup_set_id int NOT NULL

IDENTITY PRIMARY KEY
Unique backup set identification
number that identifies the
backup set.

backup_set_uuid uniqueidentifier
NOT NULL

Unique backup set identification
number that identifies the
backup set on the media.

media_set_id int NOT NULL
REFERENCES
backupmediaset
(media_set_id)

Unique media set identification
number that identifies the media
set containing the backup set.

first_family_number tinyint NULL Family number of the media
where the backup set starts.

first_media_number smallint NULL Media number of the media
where the backup set starts.

last_family_number tinyint NULL Family number of the media
where the backup set ends.

last_media_number smallint NULL Media number of the media
where the backup set ends.

catalog_family_
number

tinyint NULL Family number of the media
containing the start of the
backup set directory.

catalog_media_number smallint NULL Media number of the media
containing the start of the
backup set directory.

position int NULL Backup set position used in the
restore operation to locate the
appropriate backup set and files.
For more information, see FILE in
BACKUP.

expiration_date datetime NULL Date and time the backup set
expires.

software_vendor_id int NULL Identification number of the
software vendor writing the
backup media header.

name nvarchar(128) NULL Name of the backup set.
description nvarchar(255) NULL Description of the backup set.
user_name nvarchar(128) NULL Name of the user performing the

backup operation.
software_major_version tinyint NULL Microsoft® SQL Server™ major

version number.
software_minor_
version

tinyint NULL SQL Server minor version
number.

software_build_version smallint NULL SQL Server build number.
time_zone smallint NULL Difference between local time

(where the backup operation is
taking place) and Universal
Coordinated Time (UCT) in 15-
minute intervals. Values can be -
48 through +48, inclusive. A
value of 127 indicates unknown.
For example, -20 is Eastern
Standard Time (EST) or 5 hours
after UCT.

mtf_minor_version tinyint NULL Microsoft Tape Format minor
version number.

first_lsn numeric(25,0) NULL Log sequence number of the first
or oldest log record in the
backup set.

last_lsn numeric(25,0) NULL Log sequence number of the last
or newest log record in the
backup set.

checkpoint_lsn numeric(25,0) NULL Log sequence number of the log
record where recovery must
start.

database_backup_lsn numeric(25,0) NULL Log sequence number of the
most recent full database backup.

database_creation_date datetime NULL Date and time the database was
originally created.

backup_start_date datetime NULL Date and time the backup
operation started.

backup_finish_date datetime NULL Date and time the backup
operation finished.

type char(1) NULL Backup type. Can be:

D = Database.
I = Database Differential.
L = Log.
F = File or Filegroup.

sort_order smallint NULL Sort order of the server
performing the backup
operation. For more information
about sort orders and collations,
see Collations.

code_page smallint NULL Code page of the server
performing the backup
operation. For more information
about code pages, see Collations.

compatibility_level tinyint NULL Compatibility level setting for the
database. Can be:

60 = SQL Server version 6.0.
65 = SQL Server 6.5.
70 = SQL Server 7.0.

For more information about
compatibility levels, see
sp_dbcmptlevel.

database_version int NULL Database version number.
backup_size numeric(20,0) NULL Size of the backup set, in bytes.
database_name nvarchar(128) NULL Name of the database involved

in the backup operation.
server_name nvarchar(128) NULL Name of the server running the

SQL Server backup operation.
machine_name nvarchar(128) NULL Name of the computer running

SQL Server.

flags int NULL Flag bits:

1 = Backup contains minimally
logged data.
2 = WITH SNAPSHOT was used.
4 = Database was read-only at
time of backup.
8 = Database was in single-user
mode at time of backup.

unicode_locale int NULL Unicode locale.
unicode_compare_style int NULL Unicode compare style.
collation_name nvarchar(128) NULL Collation name.

Transact-SQL Reference (SQL Server 2000)

logmarkhistory
Contains one row for each marked transaction that has been committed. This table is stored in the msdb database.

Column name Data type Description
database_name nvarchar(128) NOT

NULL
Local database where marked
transaction occurred.

mark_name nvarchar(128) NOT
NULL

User-provided name for marked
transaction.

description nvarchar(255) NULL User-provided description of the
marked transaction.

user_name nvarchar(128) NULL Database user name that performed
marked transaction.

lsn numeric(25,0) NOT
NULL

Log sequence number of transaction
record where mark occurred.

mark_time datetime NOT NULL Commit time of marked transaction
(local time).

Transact-SQL Reference (SQL Server 2000)

log_shipping_databases
This table is stored in the msdb database.

Column name Data type Description
database_name sysname Name of the database being log

shipped.
maintenance_plan
_id

uniqueidentifier Maintenance plan ID.

Transact-SQL Reference (SQL Server 2000)

log_shipping_monitor
This table is stored in the msdb database.

Column name Data type Description
monitor_server_name sysname Name of the log shipping monitor

server.
logon_type int Authentication method:

1 = Windows authentication.
2 = SQL Server authentication.

logon_data varbinary(256) Login name and password.

Transact-SQL Reference (SQL Server 2000)

log_shipping_plan_databases
This table is stored in the msdb database.

Column name Data type Description
plan_id uniqueidentifier The plan ID for the maintenance

plan that exists on the Secondary.
source_database sysname Primary database of a log shipping

pair.
destination_database sysname Secondary database of a log

shipping pair.
load_delay int Delay (in seconds) before restoring

a transaction log after it is
transferred to the secondary server.

load_all bit 1 = Load all copied transaction
logs.

last_file_copied nvarchar(500) File name of last transaction log
copied.

date_last_copied datetime Date that last transaction log was
copied.

last_file_loaded nvarchar(500) File name of last transaction log
loaded.

date_last_loaded datetime Date that last transaction log was
loaded.

copy_enabled bit Allow copying of transaction logs.

0 = Disable copying.
1 = Enable copying.

load_enabled bit Allow loading of transaction logs.

0 = Disable loading.
1 = Enable loading.

recover_db bit Roll back all uncompleted
transactions after restore.

0 = FALSE
1 = TRUE

terminate_users bit 1 = Terminate database users.

Transact-SQL Reference (SQL Server 2000)

log_shipping_plan_history
This table is stored in the msdb database.

Column name Data type Description
sequence_id int The sequence in which rows were

inserted.
plan_id uniqueidentifier Log shipping plan ID.
source_database sysname Name of primary database in log

shipping pair.
destination_
database

sysname Name of secondary database in log
shipping pair.

activity bit The action performed.

0 = Copy.
1 = Load.

succeeded bit Roll back all uncompleted
transactions after restore.

0 = FALSE
1 = TRUE

num_files int Number of transaction logs shipped
to secondary server.

last_file nvarchar(256) Name of the last file on which this
action was performed.

end_time datetime Time and date when which action
completed.

duration int Amount of time (in seconds) taken to
complete the action.

error_number int Last error number encountered by
the action.

message nvarchar(500) Last error message encountered by
the action.

Transact-SQL Reference (SQL Server 2000)

log_shipping_plans
This table is stored in the msdb database.

Column name Data type Description
plan_id uniqueidentifier Log shipping plan ID.
plan_name sysname Log shipping plan name.
description nvarchar(500) User provided description of log

shipping plan.
source_server sysname Primary server of log shipping pair.
source_dir nvarchar(500) Transaction log source directory on

primary server.
destination_dir nvarchar(500) Transaction log destination directory

on secondary server.
copy_job_id uniqueidentifier Copy job ID.
load_job_id uniqueidentifier Load job ID.
history_retention
_period

int Length of time to retain history rows
for this plan.

file_retention_
period

int Length of time to retain copied
transaction log files.

maintenance_plan
_id

uniqueidentifier Maintenance plan ID.

backup_job_id uniqueidentifier Backup job ID.
share_name nvarchar(500) Share name.

Transact-SQL Reference (SQL Server 2000)

log_shipping_primaries
This table is stored in the msdb database.

Column name Data type Description
primary_id int (IDENTITY) Artificial unique key.
primary_server_
name

sysname Name of primary server in log
shipping pair.

primary_database
name

sysname Name of primary database in log
shipping pair.

maintenance_plan
_id

uniqueidentifier Maintenance plan ID.

backup_threshold Int Number of minutes without a
backup occurring, before raising an
error.

threshold_alert int Error to raise if transaction log
backups stop occurring.

threshold_alert_
enabled

bit Status of threshold alert.

1 = Enabled.
0 = Disabled.

last_backup_
filename

nvarchar(500) File name of the most recent
transaction log backup.

last_updated datetime Date (on the monitor server) that the
primary last updated the
last_backup_filename column.

planned_outage_
start_time

int Start time of the window during
which threshold alerts will not be
raised (in HHMMSS format).

planned_outage_
end_time

int End time of the window during
which threshold alerts will not be
raised (in HHMMSS format).

planned_outage_
weekday_mask

int 1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

source_directory nvarchar(500) Source directory.

Transact-SQL Reference (SQL Server 2000)

log_shipping_secondaries
This table is stored in the msdb database.

Column name Data type Description
primary_id int Foreign key to

log_shipping_primaries.
secondary_server_name sysname Name of secondary server in log

shipping pair.
secondary_
database_name

sysname Name of secondary database in
log shipping pair.

last_copied_
filename

nvarchar(500) File name of last transaction log
copied to secondary server.

last_loaded_
filename

nvarchar(500) File name of last transaction log
loaded by secondary server.

last_copied_last_
updated

datetime Modification time of last
transaction log file copied to
secondary server.

last_loaded_last_
updated

datetime Modification time of last
transaction log file loaded by
secondary server.

secondary_plan_
id

uniqueidentifier Plan ID of the log shipping plan
on the secondary server.

copy_enabled bit Allow copying of transaction logs.

0 = Disable copying.
1 = Enable copying.

load_enabled bit Allow loading of transaction logs.

0 = Disable loading.
1 = Enable loading.

out_of_sync_
threshold

int Latency between
last_loaded_filename and
last_backup_file, after which the
threshold alert will be raised.

threshold_alert int Error to be raised if the
out_of_sync_threshold is
exceeded.

threshold_alert_
enabled

bit Status of threshold alert.

1 = Enabled.
0 = Disabled.

planned_outage_
start_time

int Start time of the window during
which threshold alerts will not be
raised (in HHMMSS format).

planned_outage_
end_time

int End time of the window during
which threshold alerts will not be
raised (in HHMMSS format).

planned_outage_
weekday_mask

int 1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

allow_role_
change

bit 1 = Role change allowed.

Transact-SQL Reference (SQL Server 2000)

MSagent_parameters
The MSagent_parameters table contains parameters associated with an agent profile. The parameter names are the same as
those supported by the agent. This table is stored in the msdb database.

Column name Data type Description
profile_id int Profile ID from the MSagent_profiles table.
parameter_name sysname Name of the parameter.
value nvarchar(255) Value of the parameter.

Transact-SQL Reference (SQL Server 2000)

MSagent_profiles
The MSagent_profiles table contains one row for each defined replication agent profile. This table is stored in the msdb
database.

Column name Data type Description
profile_id int Profile ID.
profile_name sysname Unique profile name for agent type.
agent_type int Type of agent:

1 = Snapshot Agent
2 = Log Reader Agent
3 = Distribution Agent
4 = Merge Agent
9 = Queue Reader Agent

type int Type of profile:

0 = System
1 = Custom

description nvarchar(3000) Description of the profile.
def_profile bit Specifies whether this profile is the default for

this agent type.

Transact-SQL Reference (SQL Server 2000)

MSarticles
The MSarticles table contains one row for each article being replicated by a Publisher. This table is stored in the distribution
database.

Column name Data type Description
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication_id int ID of the publication.
article sysname Name of the article.
article_id int ID of the article.
destination_object sysname Name of the table created at the

Subscriber.
source_owner sysname Name of the owner of the source table at

the Publisher.
source_object sysname Name of the source object from which to

add the article.
description nvarchar(255) Description of the article.

Transact-SQL Reference (SQL Server 2000)

MSdistpublishers
The MSdistpublishers table contains one row for each remote Publisher supported by the local Distributor. This table is stored in
the msdb database.

Column name Data type Description
name sysname Name of the Publisher Distributor.
distribution_db sysname Name of the distribution database.
working_directory nvarchar(255) Name of the working directory used to

store data and schema files for the
publication.

security_mode int Security mode implemented at the
Distributor:

0 = SQL Server Authentication.
1 = Windows Authentication.

login sysname Login ID for SQL Server Authentication.
password nvarchar(524) Password for SQL Server Authentication.
active bit Indicates whether the local Distributor is

in use by the remote Publisher.
trusted bit Whether the remote Publisher uses the

same password as the local Distributor:

0 = A password is needed at the remote
Publisher to connect to the Distributor.
1 = No password is needed.

third_party bit Whether the Publisher is an installation of
Microsoft® SQL Server™:

0 = SQL Server installation.
1 = Heterogeneous data source.

Transact-SQL Reference (SQL Server 2000)

MSdistribution_agents
The MSdistribution_agents table contains one row for each Distribution Agent running at the local Distributor. This table is
stored in the distribution database.

Column name Data type Description
id int ID of the Distribution Agent.
name nvarchar(100) Name of the Distribution Agent.
publisher_database_id int ID of the Publisher database.
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
subscriber_id smallint ID of the Subscriber, used by well-

known agents only. For anonymous
agents, this column is reserved.

subscriber_db sysname Name of the subscription database.
subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

local_job bit Indicates whether there is a SQL
Server Agent job on the local
Distributor.

job_id binary(16) Job identification number.
subscription_guid binary(16) ID of the subscriptions of this agent.
profile_id int Configuration ID from the

MSagent_profiles table.
anonymous_subid uniqueidentifier ID of an anonymous agent.
subscriber_name sysname Name of the Subscriber, used by

anonymous agents only.
virtual_agent_id int For internal use only.
anonymous_agent_id int For internal use only.
creation_date datetime Datetime when the Distribution or

Merge Agent was created.
queue_id sysname Identifier to locate the queue for

queued updating subscriptions. For
non-queued subscriptions, the value is
NULL. For Microsoft Message
Queuing-based publications, the value
is a GUID that uniquely identifies the
queue to be used for the subscription.
For SQL Server-based queue
publications, the column contains the
value SQL.

queue_status int For internal use only.
offload_enabled bit Indicates whether the agent can be

activated remotely. 0 specifies the
agent cannot be activated remotely. 1
specifies the agent will be activated
remotely, and on the remote computer
specified in the offload_server
property.

offload_server sysname Network name of server to be used for
remote agent activation.

dts_package_name sysname Name of the DTS package. For
example, to specify a package of
DTSPub_Package, the parameter
would be @dts_package_name =
N'DTSPub_Package'.

dts_package_password nvarchar(524) Password on the package, if there is
one. If NULL, means a password is not
on the package.

dts_package_location int Package location. The location of the
package can be distributor or
subscriber.

sid varbinary(85) Security identification number (SID)
for the Distribution Agent or Merge
Agent during its first execution.

Transact-SQL Reference (SQL Server 2000)

MSdistribution_history
The MSdistribution_history table contains history rows for the Distribution Agents associated with the local Distributor. This
table is stored in the distribution database.

Column name Data type Description
agent_id int ID of the Distribution Agent.
runstatus int Running status:

1 = Start
2 = Succeed
3 = In progress
4 = Idle
5 = Retry
6 = Fail

start_time datetime Time to begin execution of the job.
time datetime Time the message is logged.
duration int Duration, in seconds, of the message

session.
comments nvarchar(255) Message text.
xact_seqno varbinary(16) Last processed transaction sequence

number.
current_delivery_rate float Average number of commands

delivered per second since the last
history entry.

current_delivery_latency int Latency between the command
entering the distribution database
and being applied to the Subscriber
since the last history entry.

delivered_transactions int Total number of transactions
delivered in the session.

delivered_commands int Total number of commands
delivered in the session.

average_commands int Average number of commands
delivered in the session.

delivery_rate float Average delivered commands per
second.

delivery_latency int Latency between the command
entering the distribution database
and being applied to the Subscriber.

total_delivered_commands int Total number of commands
delivered since the subscription was
created.

error_id int ID of the error in the MSrepl_error
system table.

updateable_row bit Set if the history row can be
overwritten.

timestamp timestamp Timestamp column of this table.

Transact-SQL Reference (SQL Server 2000)

MSdistributiondbs
The MSdistributiondbs table contains one row for each distribution database defined on the local Distributor. This table is stored
in the msdb database.

Column name Data type Description
name sysname Name of the distribution database.
min_distretention int Minimum retention period, in hours,

before transactions are deleted.
max_distretention int Maximum retention period, in hours,

before transactions are deleted.
history_retention int Number of hours to retain history.

Transact-SQL Reference (SQL Server 2000)

MSdistributor
The MSdistributor table contains the Distributor properties. This table is stored in the msdb database.

Column name Data type Description
property sysname Name of the property
value nvarchar(3000) Value of the property

Transact-SQL Reference (SQL Server 2000)

MSdynamicsnapshotjobs
The MSdynamicsnapshotjobs table tracks the dynamic filter information applied to a dynamic snapshot. This table is stored in
the publication and subscription databases.

Column name Data type Description
id int ID for the dynamic snapshot job.
name sysname Name of the dynamic snapshot

job.
pubid uniqueidentifier Unique identification number for

this publication.
job_id uniqueidentifier ID of the SQL Server Agent job at

the Distributor.
dynamic_filter_login sysname Value used for evaluating the

SUSER_SNAME() function in
dynamic filters defined for the
publication.

dynamic_filter_hostname sysname Value used for evaluating the
HOSTNAME() function in dynamic
filters defined for the publication.

dynamic_snapshot_location nvarchar(255) Path to the folder where the
snapshot files will be read from if a
dynamic snapshot is to be used.

Transact-SQL Reference (SQL Server 2000)

MSdynamicsnapshotviews
The MSdynamicsnapshotviews table tracks all the temporary dynamic snapshot views created by the snapshot agent, and is
used by the system for cleaning up views in the case of an abnormal shutdown of SQL Server Agent or the Snapshot Agent. This
table is stored in the publication and subscription databases.

Column name Data type Description
dynamic_snapshot_view_name sysname Name of the temporary dynamic

snapshot view.

Transact-SQL Reference (SQL Server 2000)

MSlogreader_agents
The MSlogreader_agents table contains one row for each Log Reader Agent running at the local Distributor. This table is stored
in the distribution database.

Column name Data type Description
id int ID of the Log Reader Agent.
name nvarchar(100) Name of the Log Reader Agent.
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
local_job bit Indicates whether there is a SQL Server

Agent job on the local Distributor.
job_id binary(16) Job identification number.
profile_id int Configuration ID from the

MSagent_profiles table.

Transact-SQL Reference (SQL Server 2000)

MSlogreader_history
The MSlogreader_history table contains history rows for the Log Reader Agents associated with the local Distributor. This table
is stored in the distribution database.

Column name Data type Description
agent_id int ID of the Log Reader Agent.
runstatus int Running status:

1 = Start
2 = Succeed
3 = In progress
4 = Idle
5 = Retry
6 = Fail

start_time datetime Time to begin execution of the job.
time datetime Time the message is logged.
duration int Duration, in seconds, of the message

session.
comments nvarchar(255) Message text.
xact_seqno varbinary(16) Last processed transaction sequence

number.
delivery_time int Time first transaction is delivered.
delivered_transactions int Total number of transactions delivered

in the session.
delivered_commands int Total number of commands delivered in

the session.
average_commands int Average number of commands

delivered in the session.
delivery_rate float Average delivered commands per

second.
delivery_latency int Latency between the command entering

the published database and being
entered into the distribution database.

error_id int ID of the error in the MSrepl_error
system table.

timestamp timestamp Timestamp column of this table.

Transact-SQL Reference (SQL Server 2000)

MSmerge_agents
The MSmerge_agents table contains one row for each Merge Agent running at the Subscriber. This table is stored in the
distribution database.

Column name Data type Description
id int ID of the Merge Agent.
name nvarchar(100) Name of the Merge Agent.
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
subscriber_id smallint ID of the Subscriber.
subscriber_db sysname Name of the subscription database.
local_job bit Indicates whether there is a SQL Server

Agent job on the local Distributor.
job_id binary(16) Job identification number.
profile_id int Configuration ID from the

MSagent_profiles table.
anonymous_subid uniqueidentifier ID of an anonymous agent.
subscriber_name sysname Name of the Subscriber.
creation_date datetime Date and time the Distribution or Merge

Agent was created.
offload_enabled bit Specifies that the agent can be activated

remotely. 0 specifies the agent cannot be
activated remotely. 1 specifies the agent
will be activated remotely, and on the
remote computer specified in the
offload_server property.

offload_server sysname Specifies the network name of server to
be used for remote agent activation.

sid varbinary(85) The security identification number (SID)
for the Distribution Agent or Merge Agent
during its first execution.

Transact-SQL Reference (SQL Server 2000)

MSmerge_altsyncpartners
The MSmerge_altsyncpartners table tracks the association of who the current synchronization partners are for a Publisher. This
table is stored in the publication and subscription databases.

Column name Data type Description
subid uniqueidentifier Identifier for the original Publisher.
alternate_subid uniqueidentifier Identifier for the Subscriber who is the

alternate synchronization partner.
description nvarchar(255) Description of the alternate

synchronization partner.

Transact-SQL Reference (SQL Server 2000)

MSmerge_contents
The MSmerge_contents table contains one row for each row modified in the current database since it was published. This table
is used by the merge process to determine the rows that have changed. This table is stored in the publication and subscription
databases.

Column name Data type Description
tablenick int Nickname of the published table.
rowguid uniqueidentifier Row identifier for the given row.
generation int Generation of the row identified by the

tablenick and rowguid.
partchangegen int The generation associated with the last

data change that could have changed
whether the row belongs in a filtered
publication.

joinchangegen int The generation associated with the last
data change to this row that would have
changed whether related rows belong in a
filtered publication.

lineage varbinary(249) Subscriber nickname, version number
pairs that are used to maintain a history of
changes to this row.

colvl varbinary(2048) Column version information.

Transact-SQL Reference (SQL Server 2000)

MSmerge_delete_conflicts
The MSmerge_delete_conflicts table contains information for rows that were deleted because either they conflicted with an
update and lost the conflict or the delete was undone to achieve data convergence. This table is stored in the database used for
conflict logging, usually the publication database but can be the subscription database if there is decentralized conflict logging.

Column name Data type Description
tablenick int Nickname of the table.
rowguid uniqueidentifier Row identifier for the deleted row.
origin_datasource varchar(255) Subscription for which the delete of the

row was undone or the delete lost the
conflict.

conflict_type int Type of conflict:

1 = UpdateConflict: Conflict is detected
at the row level.
2 = ColumnUpdateConflict: Conflict
detected at the column level.
3 = UpdateDeleteWinsConflict: Delete
wins the conflict.
4 = UpdateWinsDeleteConflict: The
deleted rowguid that loses the conflict
is recorded in this table.
5 = UploadInsertFailed: Insert from
Subscriber could not be applied at the
Publisher.
6 = DownloadInsertFailed: Insert from
Publisher could not be applied at the
Subscriber.
7 = UploadDeleteFailed: Delete at
Subscriber could not be uploaded to
the Publisher.
8 = DownloadDeleteFailed: Delete at
Publisher could not be downloaded to
the Subscriber..
9 = UploadUpdateFailed: Update at
Subscriber could not be applied at the
Publisher
10 = DownloadUpdateFailed: Update at
Publisher could not be applied to the
Subscriber.

reason_code int Error code. May be context-sensitive-
based on conflict_type.

reason_text nvarchar(720) Description of the error code.
pubid uniqueidentifier Publication identifier.
create_time datetime The datetime value when the current

conflict row was logged.

Transact-SQL Reference (SQL Server 2000)

MSmerge_errorlineage
The MSmerge_errorlineage table contains rows that have been deleted at the Subscriber, but whose delete is not propagated to
the Publisher. This table is stored in the publication and subscription databases.

Column name Data type Description
tablenick int Integer value assigned to the table that is

published for merge replication.
Corresponds to the nickname field in the
sysmergearticles table.

rowguid uniqueidentifier Row identifier.
lineage varbinary(255) Stores a history list of which Subscribers

and Publishers have made updates to a
row. Used to detect and resolve conflict
situations.

Transact-SQL Reference (SQL Server 2000)

MSmerge_genhistory
The MSmerge_genhistory table contains one row for each generation that a Subscriber knows about (within the retention
period). It is used to avoid sending common generations during exchanges and to resynchronize Subscribers that are restored
from backups. This table is stored in the publication and subscription databases.

Column name Data type Description
guidsrc uniqueidentifier Global identifier of the changes identified

by generation at the Subscriber.
guidlocal uniqueidentifier Local identifier of the changes identified

by generation at the Subscriber.
pubid uniqueidentifier Publication identifier.
generation int Generation value.
art_nick int Nickname for the article.
nicknames varbinary(1000) A list of nicknames of other Subscribers

that are known to already have this
generation. Used to avoid sending a
generation to a Subscriber that has
already seen those changes. Nicknames
in the nicknames list are maintained in
sorted order to make searches more
efficient. If there are more nicknames
than can fit in this field, they will not
benefit from this optimization.

coldate datetime Date when current generation is added to
the table.

Transact-SQL Reference (SQL Server 2000)

MSmerge_history
The MSmerge_history table contains history rows for previous updates to Subscriber. This table is stored in the distribution
database.

Column name Data type Description
agent_id int ID of the agent.
runstatus int Running status:

1 = Start
2 = Succeed
3 = In progress
4 = Idle
5 = Retry
6 = Fail

start_time datetime Time execution of the job began.
time datetime Time of this history entry.
duration int Cumulative duration, in seconds, of

this session.
comments nvarchar(255) Message text.
delivery_time int Number of seconds it took to apply a

batch of changes.
delivery_rate float Average delivered commands per

second.
publisher_insertcount int Number of inserts at the Publisher.
publisher_updatecount int Number of updates at the Publisher.
publisher_deletecount int Number of deletes at the Publisher.
publisher_conflictcount int Number of conflicts at the Publisher.
subscriber_insertcount int Number of inserts at the Subscriber.
subscriber_updatecount int Number of updates at the Subscriber.
subscriber_deletecount int Number of deletes at the Subscriber.
subscriber_conflictcount int Number of conflicts at the Subscriber.
error_id int ID of an error in the MSrepl_error

system table.
timestamp timestamp Timestamp column of this table.
updateable_row bit Set if the history row can be

overwritten.

Transact-SQL Reference (SQL Server 2000)

MSmerge_replinfo
The MSmerge_replinfo table contains one row for each subscription. This table tracks internal information about the sent and
received generation. This table is stored in the publication and subscription databases.

Column name Data type Description
repid uniqueidentifier Unique ID for the replica.
replnickname int Compressed nickname for the replica.
recgen int Number of the last generation received.
recguid uniqueidentifier Unique ID of the last generation received.
sentgen int Number of the last generation sent.
sentguid uniqueidentifier Unique ID of the last generation sent.
schemaversion int Number of the last schema received.
schemaguid uniqueidentifier Unique ID of the last schema received.
merge_jobid binary(16) Merge job ID for this subscription.
snapshot_jobid binary(16) Snapshot job ID servicing this publication.

Transact-SQL Reference (SQL Server 2000)

MSmerge_subscriptions
The MSmerge_subscriptions table contains one row for each subscription serviced by the Merge Agent at the Subscriber. This
table is stored in the distribution database.

Column name Data type Description
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication_id int ID of the publication.
subscriber_id smallint ID of the Subscriber.
subscriber_db sysname Name of the subscription database.
subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

sync_type tinyint Type of synchronization:

1 = Automatic
2 = No sync

status tinyint Status of the subscription.
subscription_time datetime Time the subscription was added.

Transact-SQL Reference (SQL Server 2000)

MSmerge_tombstone
The MSmerge_tombstone table contains information on deleted rows and allows deletes to be propagated to other Subscribers.
This table is stored in the publication and subscription databases.

Column name Data type Description
rowguid uniqueidentifier Row identifier.
tablenick int Nickname of the table.
type tinyint Type of delete:

1 = User delete
5 = Row no longer belongs to the filtered
partition
6 = System delete

lineage varbinary(249) Indicates the version of the record that was
deleted, and which updates were known when
it was deleted. Allows rules for consistent
resolution of a conflict when one Subscriber
updates a row while it is being deleted at
another Subscriber.

generation int Is assigned when a row is deleted. If a
Subscriber requests generation N, only
tombstones with generation >= N are sent.

reason nvarchar(255) Text field containing the reason that
tombstone was created.

Transact-SQL Reference (SQL Server 2000)

MSpub_identity_range
The MSpub_identity_range table provides identity range management support. This table is stored in the publication and
subscription database.

Column name Data type Description
objid int ID of the table that has the identity column

being managed by replication.
range bigint Controls the range size of the consecutive

identity values that would be assigned at the
subscription in an adjustment.

pub_range bigint Controls the range size of the consecutive
identity values that would be assigned at the
publication in an adjustment.

current_pub_range bigint Current range being used by the publication.
It can be different than pub_range if viewed
after being changed by sp_changearticle
and before the next range adjustment.

threshold int Percentage value that controls when the
Distribution Agent assigns a new identity
range. When the percentage of values
specified in threshold is used, the Distribution
Agent creates a new identity range.

last_seed bigint Lower bound of the current range.

Transact-SQL Reference (SQL Server 2000)

MSpublication_access
The MSpublication_access table contains a row for each Microsoft® SQL Server™ login that has access to the specific
publication or Publisher. This table is stored in the distribution database.

Column name Data type Description
publication_id int ID of the publication
login sysname Microsoft Windows accounts that exist at

both Publisher and Distributor side

Transact-SQL Reference (SQL Server 2000)

MSpublications
The MSpublications table contains one row for each publication that is replicated by a Publisher. This table is stored in the
distribution database.

Column name Data type Description
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
publication_id int ID of the publication.
publication_type int Type of publication:

0 = Transactional
1 = Snapshot
2 = Merge

thirdparty_flag bit Indicates whether a publication is a
Microsoft® SQL Server™ database:

0 = SQL Server
1 = Data source other than SQL Server

independent_agent bit Indicates whether there is a stand-
alone Distribution Agent for this
publication.

immediate_sync bit Indicates whether synchronization files
are created or re-created each time the
Snapshot Agent runs.

allow_push bit Indicates whether push subscriptions
can be created for the given
publication.

allow_pull bit Indicates whether pull subscriptions
can be created for the given
publication.

allow_anonymous bit Indicates whether anonymous
subscriptions can be created for the
given publication.

description nvarchar(255) Description of the publication.
vendor_name nvarchar(100) Name of the vendor if Publisher is not

a SQL Server database.
retention int Retention period of the publication, in

hours.

sync_method int Synchronization method:

0 = native (produces native-mode
bulk copy output of all tables)
1 = character (produces a character-
mode bulk copy output of all tables)
3 = concurrent (produces native-
mode bulk copy output of all tables
but does not lock the table during the
snapshot)
4 = concurrent_c (produces a
character-mode bulk copy output of
all tables but does not lock the table
during the snapshot)

The values concurrent and
concurrent_c are available for
transactional replication and merge
replication, but not for snapshot
replication.

allow_subscription_copy bit Enables or disables the ability to copy
the subscription databases that
subscribe to this publication. 0 means
that copying is disabled, and 1 means
it is enabled.

thirdparty_options int Specifies whether the display of a
publication in the Replication folder in
SQL Server Enterprise Manager is
suppressed:

0 = display a heterogeneous
publication in the Replication folder in
SQL Server Enterprise Manager

1 = suppress the display a
heterogeneous publication in the
Replication folder in SQL Server
Enterprise Manager

allow_queued_tran bit Specifies whether publication allows
queued updating:

0 = publication is non-queued
1 = publication is queued

Transact-SQL Reference (SQL Server 2000)

MSpublisher_databases
The MSpublisher_databases table contains one row for each Publisher/Publisher database pair serviced by the local Distributor.
This table is stored in the distribution database.

Column name Data type Description
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
id int ID of the row.

Transact-SQL Reference (SQL Server 2000)

MSqreader_agents
The MSqreader_agents table contains one row for each Queue Reader Agent running at the local Distributor. This table is stored
in the distribution database.

Column name Data type Description
id int ID of the Queue Reader Agent.
name nvarchar(100) Name of the Queue Reader Agent.
job_id binary(16) Unique job ID number from sysjobs table.
profile_id int Profile ID from the MSagent_profiles table.

Transact-SQL Reference (SQL Server 2000)

MSqreader_history
The MSqreader_history table contains history rows for the Queue Reader Agents associated with the local Distributor. This table
is stored in the distribution database.

Column name Data type Description
agent_id int ID of the Queue Reader Agent.
publication_id int ID of the publication.
runstatus int Running state of the agent:

1 = Start
2 = Succeed
3 = In progress
4 = Idle
5 = Retry
6 = Fail

start_time datetime Date and time at which agent session
started.

time datetime Date and time of last logged message.
duration int Elapsed time of the logged session

activity, in seconds.
comments nvarchar(255) Descriptive text.
transaction_id nvarchar(40) Transaction ID stored with the

message, if applicable.
transaction_status int Status of the transaction.
transactions_processed int Cumulative number of transactions

processed in the session.
commands_processed int Cumulative number of commands

processed in the session.
delivery_rate float(8) Average number of commands

delivered per second.
transaction_rate float(8) Rate of transactions processed.
subscriber sysname Name of the Subscriber.
subscriberdb sysname Name of the subscription database.
error_id int If not zero, the number represents a

Microsoft SQL Server error message.
timestamp timestamp Timestamp column for the table.

Transact-SQL Reference (SQL Server 2000)

MSrepl_backup_lsns
The MSrepl_backup_lsns table contains transaction log sequence numbers (lsn) for supporting the 'sync with backup' option of
the Distribution database. This table is stored in the distribution database.

Column name Data type Description
publisher_database_id int ID of the Publisher database.
valid_xact_id varbinary(16) ID of the transaction to be sent to the

Publisher to mark the log truncation
point. Used only if the Distribution
database is in 'sync with backup' mode.
Contains the ID of the latest replicated
transaction in the Distribution database
that has been backed up. It will be sent
to the Publisher to mark the log
truncation point by the Log Reader.

valid_xact_seqno varbinary(16) Sequence number of the transaction to
be sent to the Publisher to mark the log
truncation point. Used only if the
Distribution database is in 'sync with
backup' mode. It is the log sequence
number of the latest replication
transaction in the Distribution database
that has been backed up. It will be sent
to the Publisher to mark the log
truncation point by the Log Reader.

next_xact_id varbinary(16) Temporary log sequence number used
by backup operations.

nextx_xact_seqno varbinary(16) Temporary log sequence number used
by backup operations.

Transact-SQL Reference (SQL Server 2000)

MSrepl_commands
The MSrepl_commands table contains rows of replicated commands. This table is stored in the distribution database.

Column name Data type Description
publisher_database_id int ID of the Publisher database.
xact_seqno varbinary(16) Transaction sequence number.
type int Command type.
article_id int ID of the article.
originator_id int ID of the originator.
command_id int ID of the command.
partial_command bit Indicates whether this is a partial

command.
command varbinary(1024) Command value.

Transact-SQL Reference (SQL Server 2000)

MSrepl_errors
The MSrepl_errors table contains rows with extended Distribution Agent and Merge Agent failure information. This table is
stored in the distribution database.

Column name Data type Description
id int ID of the error.
time datetime Time the error occurred.
error_type_id int Reserved for future use.
source_type_id int Error source type ID.
source_name nvarchar(100) Name of the error source.
error_code sysname Error code.
error_text ntext Error message.
xact_seqno varbinary(16) Starting tranaction log sequence number

of the failed execution batch. Used only
by the Distribution Agents, this is the
transaction log sequence number of the
first transaction in the failed execution
batch.

command_id int Command ID of the failed execution
batch. Used only by the Distribution
Agents, this is the command ID of the
first command in the failed execution
batch.

Transact-SQL Reference (SQL Server 2000)

MSrepl_identity_range
The MSrepl_identity_range table provides identity range management support. This table is stored in the publication,
distribution and subscription databases

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the publication database.
tablename sysname Name of the table.
identity_support int Specifies if automatic identity range

handling is enabled. 0 specifies that
automatic identity range handling is not
enabled.

next_seed bigint If automatic identity range is enabled,
indicates the starting point of the next
range.

pub_range bigint Publisher identity range size.
range bigint The size of the consecutive identity values

that would be assigned to subscribers in
an adjustment.

max_identity bigint Maximum boundary of the identity range.
threshold int Identity range threshold percentage.
current_max bigint Current max that can be assigned but not

necessarily be assigned.

Transact-SQL Reference (SQL Server 2000)

MSrepl_originators
The MSrepl_originators table contains one row for each updatable Subscriber from which the transaction originated. This table
is stored in the distribution database.

Column name Data type Description
id int ID of the updating Subscriber.
publisher_database_id int ID of the Publisher database.
srvname sysname Name of the updating server.
dbname sysname Name of the updating database.

Transact-SQL Reference (SQL Server 2000)

MSrepl_transactions
The MSrepl_transactions table contains one row for each replicated transaction. This table is stored in the distribution
database.

Column name Data type Description
publisher_database_id int ID of the Publisher database.
xact_id varbinary(16) ID of the transaction.
xact_seqno varbinary(16) Sequence number of the transaction.
entry_time datetime Time the transaction entered the

distribution database.

Transact-SQL Reference (SQL Server 2000)

MSrepl_version
The MSrepl_version table contains one row with the current version of replication installed. This table is stored in the
distribution database.

Column name Data type Description
major_version int Major version number of the distribution database.
minor_version int Minor version number of the distribution database.
revision int Revision number.
db_existed bit Indicates whether the distribution database exists

before sp_adddistributiondb is called.

Transact-SQL Reference (SQL Server 2000)

MSreplication_objects
The MSreplication_objects table contains one row for each object that is associated with replication in the Subscriber database.
This table is stored in the subscription database.

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
object_name sysname Name of the object.
object_type char(2) Object type:

u = Table
t = Trigger

Transact-SQL Reference (SQL Server 2000)

MSreplication_options
The MSreplication_options table stores the type of replication that is installed. This table is stored in the master database.

Column name Data type Description
optname sysname Type of replication. Values are

transactional and merge.
value bit Internal status information.
major_version int Reserved for future use.
minor_version int Reserved for future use.
revision int Reserved for future use.
install_failures int Reserved for future use.

Transact-SQL Reference (SQL Server 2000)

MSreplication_queue
The MSreplication_queue table is used by the replication process to store the queued commands issued by all the queued
updating subscriptions that are using SQL-based queued. . This table is stored in the subscription database.

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the publication database.
publication sysname Name of the publication.
tranid sysname Transaction ID under which the queued

command was executed.
data varbinary(8000) Packed bytestream that stored

information about the queued command.
datalen int Length of data, in bytes.
commandtype int Type of command being queued:

1 = user command in transaction
2 = subscription synchronization
command.

insertdate datetime Date of insertion.
orderkey bigint Identity column that increases

monotonically.
cmdstate bit Command state:

0 = complete
1 = partial

Transact-SQL Reference (SQL Server 2000)

MSreplication_subscriptions
The MSreplication_subscriptions table contains one row of replication information for each Distribution Agent servicing the
local Subscriber database. This table is stored in the subscription database.

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
independent_agent bit Indicates whether there is a stand-

alone Distribution Agent for this
publication.

subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

distribution_agent sysname Name of the Distribution Agent.
time smalldatetime Time of the last update by Distribution

Agent.
description nvarchar(255) Description of the subscription.
transaction_timestamp varbinary(16) Synctran.
update_mode tinyint Type of update.
agent_id binary(16) ID of the agent.
subscription_guid binary(16) Global identifier for the version of the

subscription on the publication.
subid binary(16) Global identifier for an anonymous

subscription.
immediate_sync bit Indicates whether synchronization files

are created or re-created each time the
Snapshot Agent runs.

Transact-SQL Reference (SQL Server 2000)

MSsnapshot_agents
The MSsnapshot_agents table contains one row for each Snapshot Agent associated with the local Distributor. This table is
stored in the distribution database.

Column name Data type Description
id int ID of the Snapshot Agent.
name nvarchar(100) Name of the Snapshot Agent.
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
publication_type int Type of publication:

0 = Transactional
1 = Snapshot
2 = Merge

local_job bit Indicates whether there is a SQL Server
Agent job on the local Distributor.

job_id binary(16) Job identification number.
profile_id int Configuration ID from the

MSagent_profiles table.

Transact-SQL Reference (SQL Server 2000)

MSsnapshot_history
The MSsnapshot_history table contains history rows for the Snapshot Agents associated with the local Distributor. This table is
stored in the distribution database.

Column name Data type Description
agent_id int ID of the Snapshot Agent.
runstatus int Running status:

1 = Start
2 = Succeed
3 = In progress
4 = Idle
5 = Retry
6 = Fail

start_time datetime Time to begin execution of the job.
time datetime Time the message is logged.
duration int Duration, in seconds, of the message

session.
comments nvarchar(255) Message text.
delivered_transactions int Total number of transactions delivered

in the session.
delivered_commands int Number of delivered commands per

second.
delivery_rate float Average delivered commands per

second.
error_id int ID of the error in the MSrepl_error

system table.
timestamp timestamp Timestamp column of this table.

Transact-SQL Reference (SQL Server 2000)

MSsubscriber_info
The MSsubscriber_info table contains one row for each Publisher/Subscriber pair that is being pushed subscriptions from the
local Distributor. This table is stored in the distribution database.

Column name Data type Description
publisher sysname Name of the Publisher.
subscriber sysname Name of the Subscriber.
type tinyint Subscriber type:

0 = Microsoft® SQL Server™ Subscriber
1 = ODBC data source

login sysname Login for SQL Server Authentication.
Stored in encrypted format if Subscriber
is added with SQL Server Authentication
mode.

password nvarchar(524) Password for SQL Server Authentication.
Stored in encrypted format if Subscriber
is added with SQL Server Authentication
mode.

description nvarchar(255) Description of the Subscriber.
security_mode int Implemented security mode:

0 = SQL Server Authentication
1 = Windows Authentication

Transact-SQL Reference (SQL Server 2000)

MSsubscriber_schedule
The MSsubscriber_schedule table contains default merge and transactional synchronization schedules for each
Publisher/Subscriber pair. This table is stored in the distribution database.

Column name Data type Description
publisher sysname Name of the Publisher.
subscriber sysname Name of the Subscriber.
agent_type smallint Type of agent:

0 = Distribution Agent
1 = Merge Agent

frequency_type int Frequency with which to schedule the
Distribution Agent:

1 = One time
2 = On demand
4 = Daily
8 = Weekly
16 = Monthly
32 = Monthly relative
64 = Autostart (default)
124 = Recurring

frequency_interval int Value to apply to the frequency set by
frequency_type.

frequency_relative_interval int Date of the Distribution Agent:

1 = First (default)
2 = Second
4 = Third
8 = Fourth
16 = Last

frequency_recurrence_factor int Recurrence factor used by
frequency_type.

frequency_subday int How often to reschedule during the
defined period:

1 = Once
2 = Second
4 = Minute (default)
8 = Hour

frequency_subday_interval int Interval for frequency_subday.
active_start_time_of_day int Time of day when the Distribution

Agent will first be scheduled,
formatted as HHMMSS.

active_end_time_of_day int Time of day when the Distribution
Agent will stop being scheduled,
formatted as HHMMSS.

active_start_date int Date when the Distribution Agent will
first be scheduled, formatted as
YYYYMMDD.

active_end_date int Date when the Distribution Agent will
stop being scheduled, formatted as
YYYYMMDD.

Transact-SQL Reference (SQL Server 2000)

MSsubscription_agents
The MSsubscription_agents table is used by Distribution Agent and triggers of updateable subscriptions to track subscription
properties. This table is stored in the subscription database.

Column name Data type Description
id int ID of the row.
publisher sysname Name of the Publisher.
publisher_db sysname Name of the publication database.
publication sysname Name of the publication.
subscription_type int Subscription type:

0 = push
1 = pull
2 = pull anonymous

queue_id sysname ID of the Microsoft Message Queue at the
Publisher. queue_id is set to SQL for SQL-
based queued updating.

update_mode tinyint Type of updating:

0 = read only
1 = immediate update
2 = queued update using MSMQ queue
3 = immediate update with queued
update as failover using MSMQ queue
4 = queued update using SQL Server
queue
5 = immediate update with queued
update failover, using SQL Server queue

failover_mode bit If a failover type of updating was select,
the type of failover chosen:

0 = immediate update is being used.
Failover is not enabled.
1 = queued update is being used. Failover
is enabled. The queue being used for
failover is specified in the update_mode
value.

spid int System process ID for the connection used
by the Distribution Agent that is currently
running or has just run.

login_time datetime Date and time of the Distribution Agent
connection that is currently running or has
just run.

allow_subscription_copy bit Specifies whether or not the ability to
copy the subscription database is allowed.

attach_state int For internal use only.
attach_version binary(16) Unique identifier representing the version

of an attached subscription.

last_sync_status int Last run status of the Distribution Agent
that is currently running or has just run.
Status can be:

1 = Started
2 = Succeeded
3 = In progress
4 = Idle
5 = Retry
6 = Fail

last_sync_summary sysname Last message of the Distribution Agent
that is currently running or has just run.
Status can be:

Started
Succeeded
In progress
Idle
Retry
Fail

last_sync_time datetime datetime when the last_sync_summary
and last_sync_status columns were
updated. Pull or anonymous distribution
agents running as SqlServer Agent Service
jobs will not update these columns. The
history information will instead be logged
to the job history table in that case.

Transact-SQL Reference (SQL Server 2000)

MSsubscription_articles
The MSsubscription_articles table contains information regarding the articles in a queued subscription. This table is populated
only for the replication types of queued updating and immediate updating with queued updating as a failover.

Column name Data type Description
agent_id int ID of the agent that services this article
artid int Article ID from the sysarticles table.
article sysname Name of the article from the sysarticles table.
dest_table sysname Name of the destination table from the

sysarticles table.
owner sysname Owner of the subscription.
cft_table sysname Name of the conflict table for this article, for

queued updating replication type.
columns binary(32) Bitmap of the replicated columns of the

publication table from the sysarticles table.

Transact-SQL Reference (SQL Server 2000)

MSsubscription_properties
The MSsubscription_properties table contains rows for the parameter information for pull Distribution Agents. This table is
stored in the subscription database.

Column name Data type Description
publisher sysname Name of the Publisher.
publisher_db sysname Name of the Publisher database.
publication sysname Name of the publication.
publication_type int Type of publication:

0 = Transactional
2 = Merge

publisher_login sysname Login ID used at the Publisher for
SQL Server Authentication.

publisher_password sysname Password (encrypted) used at the
Publisher for SQL Server
Authentication.

publisher_security_mode int Security mode implemented at the
Publisher:

0 = SQL Server Authentication
1 = Windows Authentication
2 = The synchronization triggers use
a static sysservers entry to do RPC,
and publisher must be defined in the
sysservers table as a remote server
or linked server.

distributor sysname Name of the Distributor.
distributor_login sysname Login ID used at the Distributor for

SQL Server Authentication.
distributor_password sysname Password (encrypted) used at the

Distributor for SQL Server
Authentication.

distributor_security_mode int Security mode implemented at the
Distributor:

0 = SQL Server Authentication
1 = Windows Authentication

ftp_address sysname Network address of the FTP service
for the Distributor.

ftp_port int Port number of the FTP service for
the Distributor.

ftp_login sysname Username used to connect to the FTP
service.

ftp_password sysname User password used to connect to the
FTP service.

alt_snapshot_folder nvarchar(255) Specifies the location of the alternate
folder for the snapshot.

working_directory nvarchar(255) Name of the working directory used
to store data and schema files.

use_ftp bit Specifies the use of FTP instead of the
regular protocol to retrieve
snapshots. If 1, FTP is used.

dts_package_name sysname Specifies the name of the DTS
package.

dts_package_password nvarchar(524) Specifies the password on the
package, if there is one. A value of
NULL means that the package has no
password.

dts_package_location int Location where the DTS package is
stored.

enabled_for_syncmgr bit Specifies whether the subscription
can be synchronized through the
Microsoft Synchronization Manager.
If 0, subscription is not registered
with Synchronization Manager. If 1,
subscription is registered with
Synchronization Manager and can be
synchronized without starting SQL
Server Enterprise Manager.

offload_agent bit Specifies if the agent can be activated
remotely. If 0, the agent cannot be
activated remotely.

offload_server sysname Specifies the network name of the
server used for remote activation.

dynamic_snapshot_location nvarchar(255) Specifies the path to the folder where
the snapshot files are saved.

Transact-SQL Reference (SQL Server 2000)

MSsubscriptions
The MSsubscriptions table contains one row for each subscription serviced by the local Distributor. This table is stored in the
distribution database.

Column name Data type Description
publisher_database_id int ID of the Publisher database.
publisher_id smallint ID of the Publisher.
publisher_db sysname Name of the Publisher database.
publication_id int ID of the publication.
article_id int ID of the article.
subscriber_id smallint ID of the Subscriber.
subscriber_db sysname Name of the subscription database.
subscription_type int Type of subscription:

0 = Push
1 = Pull
2 = Anonymous

sync_type tinyint Type of synchronization:

1 = Automatic
2 = No sync

status tinyint Status of the subscription:

0 = Inactive
1 = Subscribed
2 = Active

subscription_seqno varbinary(16) Snapshot transaction sequence number.
snapshot_seqno_flag bit 1 = subscription_seqno is the

snapshot sequence number.
independent_agent bit Indicates whether there is a stand-alone

Distribution Agent for this publication.
subscription_time datetime --
loopback_detection bit Whether the Distribution Agent sends

transactions originated at the
Subscriber back to the Subscriber:

1 = Does not send back.
0 = Sends back.

agent_id int ID of the agent.
update_mode tinyint Type of update.
publisher_seqno varbinary(16) Sequence number of the transaction at

the Publisher for this subscription.
ss_cplt_seqno varbinary(16) Sequence number used to signify the

completion of the concurrent snapshot
processing.

Transact-SQL Reference (SQL Server 2000)

MSsub_identity_range
The MSsub_identity_range table provides identity range management support for subscriptions. This table is stored in the
subscription databases.

Column name Data type Description
objid int ID of the table that has the identity column

being managed by replication.
range bigint Controls the range size of the consecutive

identity values that would be assigned at the
Subscriber in an adjustment.

last_seed bigint Lower bound of the current range.
threshold int Percentage value that controls when the

Distribution Agent assigns a new identity
range. When the percentage of values
specified in threshold is used, the Distribution
Agent creates a new identity range.

Transact-SQL Reference (SQL Server 2000)

MSsync_states
The MSsync_states table tracks which publication is still in concurrent snapshot mode. This table is stored in the distribution
database.

Column name Data type Description
publisher_id smallint ID of the publisher.
publisher_db sysname Name of the publication database.
publication_id int ID of the publication.

Transact-SQL Reference (SQL Server 2000)

restorefile
The restorefile table contains one row for each restored file, including files restored indirectly by filegroup name. This table is
stored in the msdb database.

Column name Data type Description
restore_history_id int NOT NULL REFERENCES

restorehistory(restore_history_id)
Unique identification
number identifying
the corresponding
restore operation.

file_number numeric(10,0) NULL File identification
number of the
restored file. This
number must be
unique within each
database.

destination_phys_drive varchar(260) NULL Drive or partition to
which the file was
restored.

destination_phys_name varchar(260) NULL Name of the file,
without the drive or
partition
information, where
the file was restored.

Transact-SQL Reference (SQL Server 2000)

restorefilegroup
The restorefilegroup table contains one row for each restored filegroup. This table is stored in the msdb database.

Column name Data type Description
restore_history_id int NOT NULL REFERENCES

restorehistory(restore_history_id)
Unique identification
number identifying the
corresponding restore
operation

filegroup_name nvarchar(128) NULL Name of the filegroup
being restored

Transact-SQL Reference (SQL Server 2000)

restorehistory
The restorehistory table contains one row for each restore operation. This table is stored in the msdb database.

Column name Data type Description
restore_history_id int NOT NULL IDENTITY

PRIMARY KEY
Unique identification
number identifying
each restore operation.

restore_date datetime NULL Date and time of the
restore operation.

destination_database_name nvarchar(128) NULL Name of the destination
database for the restore
operation.

user_name nvarchar(128) NULL Name of the user who
performed the restore
operation.

backup_set_id int NOT NULL REFERENCES
backupset(backup_set_id)

Unique identification
number identifying the
backup set being
restored.

restore_type char(1) NULL Type of restore
operation:

D = Database
F = File
G = Filegroup
L = Log
V = Verifyonly

replace bit NULL Indicates whether the
restore operation
specified the REPLACE
option:

1 = Specified
0 = Not specified

recovery bit NULL Indicates whether the
restore operation
specified the
RECOVERY or
NORECOVERY option:

1 = RECOVERY
0 = NORECOVERY

restart bit NULL Indicates whether the
restore operation
specified the RESTART
option:

1 = Specified
0 = Not specified

stop_at datetime NULL Point in time to which
the database was
recovered.

device_count tinyint NULL Number of devices
involved in the restore
operation. This number
can be less than the
number of media
families for the backup.

stop_at_mark_name nvarchar(128) NULL Indicates recovery to
the transaction
containing the named
mark.

stop_before bit NULL Indicates whether the
transaction containing
the named mark was
included in the
recovery:

0 = Recovery halted
before marked
transaction.
1 = Recovery included
marked transaction.

Transact-SQL Reference (SQL Server 2000)

sysalerts
Contains one row for each alert. An alert is a message sent in response to an event. An alert can forward messages beyond the
Microsoft® SQL Server™ environment, and an alert can be an e-mail or pager message. An alert also can generate a task.

Column name Data type Description
id int Alert ID.
name sysname Alert name.
event_source nvarchar(100) Source of the event: SQL Server.
event_category_id int Reserved for future use.
event_id int Reserved for future use.
message_id int User-defined message ID or

reference to sysmessages
message that triggers this alert.

severity int Severity that triggers this alert.
enabled tinyint Status of the alert:

0 = Disabled.
1 = Enabled.

delay_between_
responses

int Wait period, in seconds, between
notifications for this alert.

last_occurrence_date int Last occurrence (date) of the alert.
last_occurrence_time int Last occurrence (time of day) of the

alert.
last_response_date int Last notification (date) of the alert.
last_response_time int Last notification (time of day) of

the alert.
notification_message nvarchar(512) Additional information sent with

the alert.
include_event_
description

tinyint Bitmask representing whether the
event description is sent by either
or both:

1 = E-mail.
2 = Pager.

database_name sysname Database in which this alert must
occur to trigger this alert.

event_description_keyword nvarchar(100) Pattern the error must match in
order for the alert to trigger.

occurrence_count int Number of occurrences for this
alert.

count_reset_date int Day (date) count will be reset to 0.
count_reset_time int Time of day count will be reset to

0.
job_id uniqueidentifier ID of the task executed when this

alert occurs.
has_notification int Number of operators who receive

e-mail notification when alert
occurs.

flags int Reserved.
performance_condition nvarchar(512) Reserved.
category_id int Reserved.

Transact-SQL Reference (SQL Server 2000)

sysaltfiles
Under special circumstances, contains rows corresponding to the files in a database. This table is stored in the master database.

Column name Data type Description
fileid smallint File identification number which is

unique for each database.
groupid smallint Filegroup identification number.
size int File size, in 8-KB pages.
maxsize int Maximum file size (in 8-KB pages). A

value of 0 indicates no growth, and a
value of -1 indicates that the file
should grow until the disk is full.

growth int Growth size of the database. A value of
0 indicates no growth. Can be either
the number of pages or the percentage
of file size, depending on the value of
status. If status is 0x100000, then
growth is the percentage of file size;
otherwise, it is the number of pages.

status int For internal use only.
perf int Reserved.
dbid smallint Database identification number of the

database to which this file belongs.
name nchar(128) Logical name of the file.
filename nchar(260) Name of the physical device, including

the full path of the file.

Transact-SQL Reference (SQL Server 2000)

sysarticles
Contains a row for each article defined in the local database. This table is stored in the published database.

Column name Data type Description
artid int Identity column that provides a unique

ID number for the article.
columns varbinary(32) Columns in the tables that are being

published.
creation_script nvarchar(255) Schema script for the article.
del_cmd nvarchar(255) Command to execute upon DELETE;

otherwise, construct from the log.
description nvarchar(255) Descriptive entry for the article.
dest_table sysname Name of the destination table.
filter int Stored procedure ID, used for

horizontal partitioning.
filter_clause ntext WHERE clause of the article, used for

horizontal filtering.
ins_cmd nvarchar(255) Command to execute upon INSERT;

otherwise, construct from the log.
name sysname Name associated with the article,

unique within the publication.
objid int Published table object ID.
pubid int ID of the publication to which the

article belongs.
pre_creation_cmd tinyint Pre creation command for DROP

TABLE, DELETE TABLE, or TRUNCATE:

0 = None .
1 = DROP.
2 = DELETE.
3 = TRUNCATE.

status tinyint Bitmask of the article options. status is
tinyint, and can be one of these
values:

0 = No additional properties.
8 = Include the column name in
INSERT statements.
16 (default) = Use parameterized
statements.
24 = Both include the column name in
INSERT statements and use
parameterized statements.

sync_objid int ID of the table or view that represents
the article definition.

type tinyint Type of article:

1 = Log-based article.
3 = Log-based article with manual
filter.
5 = Log-based article with manual
view.
7 = Log-based article with manual
filter and manual view.

upd_cmd nvarchar(255) Command to execute upon UPDATE;
otherwise, construct from the log.

schema_option binary(8) Indicates what is to be scripted out.

dest_owner sysname Owner of the table at the destination
database.

Transact-SQL Reference (SQL Server 2000)

sysarticleupdates
Contains one row for each article that supports immediate-updating subscriptions. This table is stored in the replicated database.

Column name Data type Description
artid int Identity column providing a unique

ID number for the article.
pubid int ID of the publication to which the

article belongs.
sync_ins_proc int ID of the stored procedure handling

Insert Sync Transactions.
sync_upd_proc int ID of the stored procedure handling

Update Sync Transactions.
sync_del_proc int ID of the stored procedure handling

Delete Sync Transactions.
autogen bit Indicates that stored procedures are

automatically generated:

0 = False, not automatic.
1 = True, automatic.

sync_upd_trig int ID of the automatic versioning trigger
on the article table.

conflict_tableid int ID for the conflict table.
ins_conflict_proc int ID of the procedure used to write the

conflict to the conflict_table.
identity_support bit Specifies whether disables automatic

identity range handling is enabled
when queued updating is used. 0
means that there is no identity range
support.

Transact-SQL Reference (SQL Server 2000)

syscacheobjects
Contains information about how the cache is used. syscacheobjects belongs to the master database. The following table shows
cache lookup keys.

Column name Data type Description
bucketid int Bucket ID. Value indicates a range from 0

through (directory size - 1). Directory size is the
size of the hash table.

cacheobjtype nvarchar(34) Type of object in the cache:

Compiled Plan
Executable Plan
Parse Tree
Cursor Parse Tree
Extended Stored Procedure

objtype nvarchar(16) Type of object:

Stored Procedure
Prepared statement
Ad hoc query (Transact-SQL submitted as
language events from isql or osql, as opposed
to remote procedure calls)
ReplProc (replication procedure)
Trigger
View
Default
User table
System table
Check
Rule

objid int One of the main keys used for looking up an
object in the cache. This is the object ID stored
in sysobjects for database objects (procedures,
views, triggers, and so on). For cache objects
such as ad hoc or prepared SQL, objid is an
internally generated value.

dbid smallint Database ID in which the cache object was
compiled.

uid smallint Indicates the creator of the plan for ad hoc
query plans and prepared plans. -2 indicates
the batch submitted does not depend on
implicit name resolution and can be shared
among different users. This is the preferred
method. Any other value represents the user ID
of the user submitting the query in the
database.

refcounts int Number of other cache objects referencing this
cache object. A count of 1 is the base.

usecounts int Number of times this cache object has been
used since inception.

pagesused int Number of memory pages consumed by the
cache object.

setopts int SET option settings that affect a compiled plan.
These are part of the cache key. Changes to
values in this column indicate users have
modified SET options. These options include:

ANSI_PADDING
FORCEPLAN
CONCAT_NULL_YIELDS_NULL
ANSI_WARNINGS
ANSI_NULLS
QUOTED_IDENTIFIER
ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF

langid smallint Language ID. ID of the language of the
connection that created the cache object.

dateformat smallint Date format of the connection that created the
cache object.

status int Indicates whether the cache object is a cursor
plan. Currently, only the least significant bit is
used.

sqlbytes int Length of name or batch submitted. Can be
used to distinguish two names or submitted
batches if the first 128 characters are the same.

sql nvarchar(256) Procedure name or first 128 characters of the
batch submitted.

Transact-SQL Reference (SQL Server 2000)

syscategories
Contains the categories used by SQL Server Enterprise Manager to organize jobs, alerts, and operators. This table is stored in the
msdb database.

Column name Data type Description
category_id int ID of the category
category_class int Type of item in the category:

1 = Job
2 = Alert
3 = Operator

category_type tinyint Type of category:

1 = Local
2 = Multiserver
3 = None

name sysname Name of the category

Transact-SQL Reference (SQL Server 2000)

syscharsets
Contains one row for each character set and sort order defined for use by Microsoft® SQL Server™. One of the sort orders is
marked in sysconfigures as the default sort order, which is the only one actually in use.

Column name Data type Description
type smallint Type of entity this row represents. 1001 is a

character set; 2001 is a sort order.
id tinyint Unique ID for the character set or sort order.

Note sort orders and character sets cannot
share the same ID number. The ID range of 1
through 240 is reserved for SQL Server use.

csid tinyint If the row represents a character set, this field is
unused. If the row represents a sort order, this
field is the ID of the character set that the sort
order is built on. It is assumed a character set
row with this ID exists in this table.

status smallint Internal system status information bits.
name sysname Unique name for the character set or sort order.

This field must contain only the letters A-Z or a-
z, numbers 0 - 9, and underscores(_). It must
begin with a letter.

description nvarchar(255) Optional description of the features of the
character set or sort order.

binarydefinition varbinary(255) For internal use only.
definition image Internal definition of the character set or sort

order. The structure of the data in this field
depends on the type.

Transact-SQL Reference (SQL Server 2000)

syscolumns
Contains one row for every column in every table and view, and a row for each parameter in a stored procedure. This table is in
each database.

Column name Data type Description
name sysname Name of the column or procedure parameter.
id int Object ID of the table to which this column

belongs, or the ID of the stored procedure with
which this parameter is associated.

xtype tinyint Physical storage type from systypes.
typestat tinyint For internal use only.
xusertype smallint ID of extended user-defined data type.
length smallint Maximum physical storage length from

systypes.
xprec tinyint For internal use only.
xscale tinyint For internal use only.
colid smallint Column or parameter ID.
xoffset smallint For internal use only.
bitpos tinyint For internal use only.
reserved tinyint For internal use only.
colstat smallint For internal use only.
cdefault int ID of the default for this column.
domain int ID of the rule or CHECK constraint for this

column.
number smallint Subprocedure number when the procedure is

grouped (0 for nonprocedure entries).
colorder smallint For internal use only.
autoval varbinary(255) For internal use only.
offset smallint Offset into the row in which this column

appears; if negative, variable-length row.
status tinyint Bitmap used to describe a property of the

column or the parameter:

0x08 = Column allows null values.
0x10 = ANSI padding was in effect when
varchar or varbinary columns were added.
Trailing blanks are preserved for varchar and
trailing zeros are preserved for varbinary
columns.
0x40 = Parameter is an OUTPUT parameter.
0x80 = Column is an identity column.

type tinyint Physical storage type from systypes.
usertype smallint ID of user-defined data type from systypes.
printfmt varchar(255) For internal use only.
prec smallint Level of precision for this column.
scale int Scale for this column.
iscomputed int Flag indicating whether the column is

computed:

0 = Noncomputed.
1 = Computed.

isoutparam int Indicates whether the procedure parameter is
an output parameter:

1 = True.
0 = False.

isnullable int Indicates whether the column allows null
values:

1 = True.
0 = False.

Transact-SQL Reference (SQL Server 2000)

syscomments
 Topic last updated -- June 2007

Contains entries for each view, rule, default, trigger, CHECK constraint, DEFAULT constraint, and stored procedure. The text
column contains the original SQL definition statements, which are limited to a maximum size of 4 MB. This table is stored in each
database.

Important None of the entries in syscomments should be deleted. If an entry in syscomments is manually removed or
modified, the corresponding stored procedure will not function properly. To obfuscate stored procedure definitions, use CREATE
PROCEDURE with the ENCRYPTION keyword.

Column name Data type Description
id int Object ID to which this text applies.
number smallint Number within procedure grouping, if

grouped. 0 for entries that are not procedures.
colid smallint Row sequence number for object definitions

longer than 4,000 characters.
status smallint For internal use only.
ctext varbinary(8000) Actual text of the SQL definition statement.
texttype smallint 0 = User-supplied comment.

1 = System-supplied comment.
4 = Encrypted comment.

language smallint For internal use only.
encrypted bit Indicates whether the procedure is obfuscated.

0 = Not obfuscated.
1 = Obfuscated.

compressed bit Indicates whether or not the procedure is
compressed.

0 = Not compressed
1 = Compressed

text nvarchar(4000) Actual text of the SQL definition statement.

Transact-SQL Reference (SQL Server 2000)

sysconfigures
Contains one row for each configuration option set by a user. sysconfigures contains the configuration options defined before
the most recent Microsoft® SQL Server™ startup, plus any dynamic configuration options set since then. This table is only in the
master database.

Column name Data type Description
value int User-modifiable value for the variable (being

used by SQL Server only if RECONFIGURE has
been executed).

config smallint Configuration variable number.
comment nvarchar(255) Explanation of the configuration option.
status smallint Bitmap indicating the status for the option.

Possible values include:

0 = Static (The setting takes effect when the
server is restarted.).
1 = Dynamic (The variable takes effect when
the RECONFIGURE statement is executed.).
2 = Advanced (The variable is displayed only
when the show advanced option is set.).
3 = Dynamic and advanced.

Transact-SQL Reference (SQL Server 2000)

sysconstraints
Contains mappings of constraints to the objects that own the constraints. This system catalog is stored in each database.

Column name Data type Description
constid int Constraint number.
id int ID of the table that owns the constraint.
colid smallint ID of the column on which the constraint is

defined, 0 if a table constraint.
spare1 tinyint Reserved.
status int Pseudo-bit-mask indicating the status. Possible

values include:

1 = PRIMARY KEY constraint.
2 = UNIQUE KEY constraint.
3 = FOREIGN KEY constraint.
4 = CHECK constraint.
5 = DEFAULT constraint.
16 = Column-level constraint.
32 = Table-level constraint.

actions int Reserved.
error int Reserved.

Transact-SQL Reference (SQL Server 2000)

syscurconfigs
Contains an entry for each of the current configuration options. In addition, this table contains four entries that describe the
configuration structure. syscurconfigs is built dynamically when queried by a user. For more information, see sysconfigures.

Column name Data type Description
value int User-modifiable value for the variable (being

used by Microsoft® SQL Server™ only if
RECONFIGURE has been executed).

config smallint Configuration variable number.
comment nvarchar(255) Explanation of the configuration option.
status smallint Bitmap indicating the status for the option.

Possible values include:

0 = Static (The setting takes effect when the
server is restarted.).
1 = Dynamic (The variable takes effect when the
RECONFIGURE statement is executed.).
2 = Advanced (The variable is displayed only
when the show advanced option is set.).
3 = Dynamic and advanced.

Transact-SQL Reference (SQL Server 2000)

sysdatabases
 Topic last updated -- July 2003

Contains one row for each database on Microsoft® SQL Server™. When SQL Server is initially installed, sysdatabases contains
entries for the master, model, msdb, mssqlweb, and tempdb databases. This table is stored only in the master database.

Column name Data type Description
name sysname Name of the database.
dbid smallint Database ID.
sid varbinary(85) System ID of the database creator.
mode smallint Used internally for locking a database while it is

being created.
status int Status bits, some of which can be set by the user

with ALTER DATABASE (read only, offline,
single user, and so on):

1 = autoclose; set with ALTER DATABASE.
4 = select into/bulkcopy; set with ALTER
DATABASE RECOVERY.
8 = trunc. log on chkpt; set with ALTER
DATABASE RECOVERY.
16 = torn page detection, set with ALTER
DATABASE.
32 = loading.
64 = pre recovery.
128 = recovering.
256 = not recovered.
512 = offline; set with ALTER DATABASE.
1024 = read only; set with ALTER DATABASE.
2048 = dbo use only; set with ALTER
DATABASE RESTRICTED_USER.
4096 = single user; set with ALTER DATABASE.
32768 = emergency mode.
4194304 = autoshrink , set with ALTER
DATABASE.
1073741824 = cleanly shutdown.

Multiple bits can be on at the same time.

status2 int 16384 = ANSI null default; set with ALTER
DATABASE.
65536 = concat null yields null , set with
ALTER DATABASE.
131072 = recursive triggers, set with ALTER
DATABASE.
1048576 = default to local cursor, set with
ALTER DATABASE.
8388608 = quoted identifier, set with ALTER
DATABASE.
33554432 = cursor close on commit, set with
ALTER DATABASE.
67108864 = ANSI nulls, set with ALTER
DATABASE.
268435456 = ANSI warnings, set with ALTER
DATABASE.
536870912 = full text enabled, set with
sp_fulltext_database.

crdate datetime Creation date.
reserved datetime Reserved for future use.

category int Contains a bitmap of information used for
replication:

1 = Published.
2 = Subscribed.
4 = Merge Published.
8 = Merge Subscribed.

cmptlevel tinyint Compatibility level for the database. For more
information, see sp_dbcmptlevel.

filename nvarchar(260) Operating-system path and name for the
database's primary file.

version smallint Internal version number of the SQL Server code
with which the database was created. For
internal use only by SQL Server tools and in
upgrade processing.

Transact-SQL Reference (SQL Server 2000)

sysdbmaintplan_databases
Contains one row for each database that has an associated maintenance plan. This table is stored in the msdb database.

Column name Data type Description
plan_id uniqueidentifier Maintenance plan ID.
database_name sysname Name of the database associated with

the maintenance plan.

Transact-SQL Reference (SQL Server 2000)

sysdbmaintplan_history
Contains one row for each maintenance plan action performed. This table is stored in the msdb database.

Column name Data type Description
sequence_id int Sequence of history performed by

maintenance plans.
plan_id uniqueidentifier Maintenance plan ID.
plan_name sysname Maintenance plan name.
database_name sysname Name of the database associated with

the maintenance plan.
server_name sysname System name.
activity nvarchar(128) Activity performed by the maintenance

plan (for example, Backup transaction
log, and so on.).

succeeded bit 0 = Success
1 = Failure

end_time datetime Time at which action completed.
duration int Length of time required to complete

maintenance plan action.
start_time datetime Time at which action began.
error_number int Error number reported on failure.
message nvarchar(512) Message generated by sqlmaint.

Transact-SQL Reference (SQL Server 2000)

sysdbmaintplan_jobs
Contains one row for each maintenance plan job. This table is stored in the msdb database.

Column name Data type Description
plan_id uniqueidentifier Maintenance plan ID.
job_id uniqueidentifier ID of a job associated with the

maintenance plan.

Transact-SQL Reference (SQL Server 2000)

sysdbmaintplans
Contains one row for each database maintenance plan. This table is stored in the msdb database.

Column name Data type Description
plan_id uniqueidentifier Maintenance plan ID.
plan_name sysname Maintenance plan name.
date_created datetime Date the maintenance plan was

created.
owner sysname Owner of the maintenance plan.
max_history_rows int Maximum number of rows allotted

for recording the history of the
maintenance plan in the system
table.

remote_history_server sysname Name of the remote server to which
the history report could be written.

max_remote_history_rows int Maximum number of rows allotted
in the system table on a remote
server to which the history report
could be written.

user_defined_1 int Default is NULL.
user_defined_2 nvarchar(100) Default is NULL.
user_defined_3 datetime Default is NULL.
user_defined_4 uniqueidentifier Default is NULL.
log_shipping bit Log shipping status:

0 = Disabled
1 = Enabled

Transact-SQL Reference (SQL Server 2000)

sysdepends
Contains dependency information between objects (views, procedures, and triggers), and the objects (tables, views, and
procedures) contained in their definition. This table is stored in each database.

Column name Data type Description
id int Object ID.
depid int Dependent object ID.
number smallint Procedure number.
depnumber smallint Dependent procedure number.
status smallint Internal status information.
depdbid smallint Reserved.
depsiteid smallint Reserved.
selall bit On, if the object is used in a SELECT *

statement.
resultobj bit On, if the object is being updated.
readobj bit On, if the object is being read.

Transact-SQL Reference (SQL Server 2000)

sysdevices
Contains one row for each disk backup file, tape backup file, and database file. This table is stored only in the master database.

Important This system table provides backward compatibility information. In earlier versions of Microsoft® SQL Server™, this
table contained a list of all database files. For SQL Server version 7.0, a list of database files is stored in the sysfiles system table
of each database.

Column name Data type Description
name sysname Logical name of the backup file or

database file.
size int Size of the file in 2 kilobyte (KB) pages.
low int Maintained for backward compatibility

only.
high int Maintained for backward compatibility

only.
status smallint Bitmap indicating the type of device:

1 = Default disk
2 = Physical disk
4 = Logical disk
8 = Skip header
16 = Backup file
32 = Serial writes
4096 = Read-only

cntrltype smallint Controller type:

0 = Non-CD-ROM database file
2 = Disk backup file
3 - 4 = Diskette backup file
5 = Tape backup file
6 = Named-pipe file

phyname nvarchar(260) Name of the physical file.

Transact-SQL Reference (SQL Server 2000)

sysdownloadlist
Holds the queue of download instructions for all target servers.

Column name Data type Description
instance_id int Identity column that provides the natural

insertion sequence of rows.
source_server nvarchar(30) Name of the source server.
operation_code tinyint Operation code for the job:

1 = INS (INSERT)
2 = UPD (UPDATE)
3 = DEL (DELETE)
4 = START
5 = STOP

object_type tinyint Object type code. For Microsoft® SQL
Server™ version 7.0, this value can be 1,
which corresponds to JOB.

object_id1 uniqueidentifier Object identification number.
target_server nvarchar(30) Name of the target server.
error_message nvarchar(1024) Error message if the target server

encounters an error when processing the
particular row.

date_posted datetime Date and time the job was posted to the
target server.

date_downloaded datetime Date and time job was last downloaded.
status tinyint Status of the job:

0 = Not yet downloaded
1 = Successfully downloaded

deleted_object_name sysname Name of deleted object.

1. The object_id column can be a value of -1, which corresponds to a value of ALL if the operation_code column is a value of
DELETE.

Transact-SQL Reference (SQL Server 2000)

sysfiles
Contains one row for each file in a database. This system table is a virtual table; it cannot be updated or modified directly.

Column name Data type Description
fileid smallint File identification number unique for each

database.
groupid smallint Filegroup identification number.
size int Size of the file (in 8-KB pages).
maxsize int Maximum file size (in 8-KB pages). A value of 0

indicates no growth, and a value of -1 indicates
that the file should grow until the disk is full.

growth int Growth size of the database. A value of 0
indicates no growth. Can be either the number of
pages or the percentage of file size, depending
on value of status. If status contains 0x100000,
then growth is the percentage of file size;
otherwise, it is the number of pages.

status int Status bits for the growth value in either
megabytes (MB) or kilobytes (K).

0x1 = Default device.
0x2 = Disk file.
0x40 = Log device.
0x80 = File has been written to since last backup.
0x4000 = Device created implicitly by the
CREATE DATABASE statement.
0x8000 = Device created during database
creation.
0x100000 = Growth is in percentage, not pages.

perf int Reserved.
name nchar(128) Logical name of the file.
filename nchar(260) Name of the physical device, including the full

path of the file.

Transact-SQL Reference (SQL Server 2000)

sysfilegroups
Contains one row for each filegroup in a database. This table is stored in each database. There is at least one entry in this table
that is for the primary filegroup.

Column name Data type Description
groupid smallint Group identification number unique for each

database.
allocpolicy smallint Reserved.
status int 0x8 = READ ONLY

0x10 = DEFAULT
groupname sysname Name of the filegroup.

Transact-SQL Reference (SQL Server 2000)

sysforeignkeys
Contains information regarding the FOREIGN KEY constraints that are in table definitions. This table is stored in each database.

Column name Data type Description
constid int ID of the FOREIGN KEY constraint.
fkeyid int Object ID of the table with the FOREIGN KEY

constraint.
rkeyid int Object ID of the table referenced in the FOREIGN

KEY constraint.
fkey smallint ID of the referencing column.
rkey smallint ID of the referenced column.
keyno smallint Position of the column in the reference column

list.

Transact-SQL Reference (SQL Server 2000)

sysfulltextcatalogs
Lists the set of full-text catalogs.

Column name Data type Description
ftcatid smallint Identifier of the full-text catalog.
name sysname Full-text catalog name given by the user.
status smallint Reserved; internal use only.
path nvarchar(260) Root path given by the user. A value of NULL

means a path was not given and the default
(installation) path was used.

Transact-SQL Reference (SQL Server 2000)

sysindexes
Contains one row for each index and table in the database. This table is stored in each database.

Column name Data type Description
id int ID of table (for indid = 0 or 255). Otherwise, ID

of table to which the index belongs.
status int Internal system-status information.
first binary(6) Pointer to the first or root page.
indid smallint ID of index:

1 = Clustered index
>1 = Nonclustered
255 = Entry for tables that have text or image
data

root binary(6) For indid >= 1 and < 255, root is the pointer to
the root page. For indid = 0 or indid = 255,
root is the pointer to the last page.

minlen smallint Minimum size of a row.
keycnt smallint Number of keys.
groupid smallint Filegroup ID on which the object was created.
dpages int For indid = 0 or indid = 1, dpages is the count

of data pages used. For indid=255, it is set to 0.
Otherwise, it is the count of index pages used.

reserved int For indid = 0 or indid = 1, reserved is the
count of pages allocated for all indexes and table
data. For indid = 255, reserved is a count of the
pages allocated for text or image data.
Otherwise, it is the count of pages allocated for
the index.

used int For indid = 0 or indid = 1, used is the count of
the total pages used for all index and table data.
For indid = 255, used is a count of the pages
used for text or image data. Otherwise, it is the
count of pages used for the index.

rowcnt bigint Data-level rowcount based on indid = 0 and
indid = 1. For indid = 255, rowcnt is set to 0.

rowmodctr int Counts the total number of inserted, deleted, or
updated rows since the last time statistics were
updated for the table.

xmaxlen smallint Maximum size of a row.
maxirow smallint Maximum size of a nonleaf index row.
OrigFillFactor tinyint Original fillfactor value used when the index was

created. This value is not maintained; however, it
can be helpful if you need to re-create an index
and do not remember what fillfactor was used.

reserved1 tinyint Reserved.
reserved2 int Reserved.
FirstIAM binary(6) Reserved.
impid smallint Reserved. Index implementation flag.
lockflags smallint Used to constrain the considered lock

granularities for an index. For example, a lookup
table that is essentially read-only could be set up
to do only table level locking to minimize
locking cost.

pgmodctr int Reserved.
keys varbinary(816) List of the column IDs of the columns that make

up the index key.

name sysname Name of table (for indid = 0 or 255). Otherwise,
name of index.

statblob image Statistics BLOB.
maxlen int Reserved.
rows int Data-level rowcount based on indid = 0 and

indid = 1, and the value is repeated for indid
>1. For indid = 255, rows is set to 0. Provided
for backward compatibility.

Transact-SQL Reference (SQL Server 2000)

sysindexkeys
Contains information for the keys or columns in an index. This table is stored in each database.

Column name Data type Description
id int ID of the table
indid smallint ID of the index
colid smallint ID of the column
keyno smallint Position of the column in the index

Transact-SQL Reference (SQL Server 2000)

sysjobhistory
Contains information about the execution of scheduled jobs by SQL Server Agent. This table is stored in the msdb database.

Column name Data type Description
instance_id int Unique identifier for the row.
job_id uniqueidentifier Job ID.
step_id int ID of the step in the job.
step_name sysname Name of the step.
sql_message_id int ID of any Microsoft® SQL Server™

error message returned if the job failed.
sql_severity int Severity of any SQL Server error.
message nvarchar(1024) Text, if any, of a SQL Server error.
run_status int Status of the job execution:

0 = Failed
1 = Succeeded
2 = Retry
3 = Canceled
4 = In progress

run_date int Date the job or step started execution.
For an In Progress history, this is the
date/time the history was written.

run_time int Time the job or step completed.
run_duration int Elapsed time in the execution of the job

or step in HHMMSS format.
operator_id_emailed int ID of the operator notified when the job

completed.
operator_id_netsent int ID of the operator notified by a message

when the job completed.
operator_id_paged int ID of the operator notified by pager

when the job completed.
retries_attempted int Number of retry attempts for the job or

step.
server nvarchar(30) Name of the server where the job was

executed.

Transact-SQL Reference (SQL Server 2000)

sysjobschedules
Contains schedule information for jobs to be executed by SQL Server Agent. This table is stored in the msdb database.

Column name Data type Description
schedule_id int ID of the schedule.
job_id uniqueidentifier ID of the job.
name sysname Name of the schedule.
enabled int Enabled status of the schedule.
freq_type int Frequency of the schedule execution:

1 = Once
4 = Daily
8 = Weekly
16 = Monthly
32 = Monthly relative
64 = When SQL Server
Agent starts

freq_interval int Value indicating on which days the
schedule runs.

If freq_type is 4 (daily), the value is
every freq_interval days.

If freq_type is 8 (weekly), the value is a
bitmask indicating the days in which
weekly schedules are run. The
freq_interval values are:

1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

If freq_type is 16 (monthly), the value
is freq_interval day of the month.

If freq_type is 32 (monthly relative),
freq_interval can be one of these
values:

1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
8 = Day
9 = Weekday
10 = Weekend day

freq_subday_type int Units for the freq_subday_interval:

1 = At the specified time
2 = Seconds
4 = Minutes
8 = Hours

freq_subday_interval int Number of freq_subday_type periods
to occur between each scheduled
execution of the job.

freq_relative_
interval

int Scheduled job's occurrence of the
freq_interval in each month when
freq_type is 32 (monthly relative):
1 = First
2 = Second
4 = Third
8 = Fourth
16 = Last

freq_recurrence_
factor

int Number of weeks or months between
the scheduled execution of the job.

active_start_date int Date to begin executing the job.
active_end_date int Date to stop executing the job.
active_start_time int Time to start executing the job.
active_end_time int Time to stop executing the job.
next_run_date int Date that the job will next execute.
next_run_time int Time that the job will next execute.
date_created datetime Date the scheduled job entry was

created.

Transact-SQL Reference (SQL Server 2000)

sysjobs
Stores the information for each scheduled job to be executed by SQL Server Agent. This table is stored in the msdb database.

Column name Data type Description
job_id uniqueidentifier Unique ID of the job.
originating_server nvarchar(30) Name of the server from which the job

came.
name sysname Name of the job.
enabled tinyint Indicates whether the job is enabled to

be executed.
description nvarchar(512) Description for the job.
start_step_id int ID of the step in the job where

execution should begin.
category_id int ID of the job category.
owner_sid varbinary(85) System identification number (SID) of

the job owner.
notify_level_
eventlog

int Bitmask indicating under what
circumstances a notification event
should be logged to the Microsoft®
Windows NT® application log:

0 = Never
1 = When the job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless
of the job outcome)

notify_level_email int Bitmask indicating under what
circumstances a notification e-mail
should be sent when a job completes:

0 = Never
1 = When the job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless of the job outcome)

notify_level_netsend int Bitmask indicating under what
circumstances a network message
should be sent when a job completes:

0 = Never
1 = When the job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless of the job outcome)

notify_level_page int Bitmask indicating under what
circumstances a page should be sent
when a job completes:

0 = Never
1 = When the job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless of the job outcome)

notify_email_
operator_id

int E-mail name of the operator to notify.

notify_netsend_
operator_id

int ID of the computer or user used when
sending network messages.

notify_page_
operator_id

int ID of the computer or user used when
sending a page.

delete_level int Bitmask indicating under what
circumstances the job should be
deleted when a job completes:

0 = Never
1 = When the job succeeds
2 = When the job fails
3 = Whenever the job completes
(regardless of the job outcome)

date_created datetime Date the job was created.
date_modified datetime Date the job was last modified.
version_number int Version of the job.

Transact-SQL Reference (SQL Server 2000)

sysjobservers
Stores the association or relationship of a particular job with one or more target servers.

Column name Data type Description
job_id uniqueidentifier Job identification number.
server_id int Server identification number.
last_run_outcome tinyint Outcome for the job's last run:

0 = Fail
1 = Succeed
3 = Cancel

last_outcome_
message

nvarchar(1024) Associated message, if any, with the
last_run_outcome column.

last_run_date int Date the job was last run.
last_run_time int Time the job was last run.
last_run_duration int Duration of the job's run, in seconds.

Transact-SQL Reference (SQL Server 2000)

sysjobsteps
Contains the information for each step in a job to be executed by SQL Server Agent. This table is stored in the msdb database.

Column name Data type Description
job_id uniqueidentifier ID of the job.
step_id int ID of the step in the job.
step_name sysname Name of the job step.
subsystem nvarchar(40) Name of the subsystem used by SQL

Server Agent to execute the job step.
command nvarchar(3200) Command to be executed by

subsystem.
flags int Reserved.
additional_
parameters

ntext Reserved.

cmdexec_success_
code

int Error-level value returned by CmdExec
subsystem steps to indicate success.

on_success_action tinyint Action to be performed when a step is
executed successfully.

on_success_step_id int ID of the next step to execute when a
step is executed successfully.

on_fail_action tinyint Action to be performed when a step is
not executed successfully.

on_fail_step_id int ID of the next step to execute when a
step is not executed successfully.

server sysname Reserved.
database_name sysname Name of the database in which

command is executed if subsystem is
TSQL.

database_user_name sysname Name of the database user whose
account will be used when executing the
step.

retry_attempts int Number of retry attempts made if the
step fails.

retry_interval int Amount of time to wait between retry
attempts.

os_run_priority int Reserved.
output_file_name nvarchar(200) Name of the file in which the step's

output is saved when subsystem is
TSQL or CmdExec.

last_run_outcome int Outcome of the previous execution of
the job step.

last_run_duration int Amount of time incurred in the previous
execution of the job.

last_run_retries int Number of retry attempts in the last
execution of the job step.

last_run_date int Date of the job step's previous
execution.

last_run_time int Time of the job step's previous
execution.

Transact-SQL Reference (SQL Server 2000)

syslanguages
 Topic last updated -- July 2003

Contains one row for each language present in Microsoft® SQL Server™. Although U.S. English is not in syslanguages, it is
always available to SQL Server. This table is stored only in the master database.

Column name Data type Description
langid smallint Unique language ID.
dateformat nchar(3) Date order (for example, DMY).
datefirst tinyint First day of the week: 1 for Monday, 2 for

Tuesday, and so on through 7 for Sunday.
upgrade int Reserved for system use.
name sysname Official language name (for example,

français).
alias sysname Alternate language name (for example,

French).
months nvarchar(372) Comma-separated list of full-length month

names in order from January through
December, with each name containing as
many as 20 characters.

shortmonths varchar(132) Comma-separated list of short-month names
in order from January through December,
with each name containing as many as 9
characters.

days nvarchar(217) Comma-separated list of day names in order
from Monday through Sunday, with each
name containing as many as 30 characters.

lcid int Microsoft Windows NT® locale ID for the
language.

mslangid smallint SQL Server message group ID.

Thirty-three SQL Server provided languages are installed. Here is a list of the languages.

Name in English NT LCID SQL Server Message Group ID
English 1033 1033
German 1031 1031
French 1036 1036
Japanese 1041 1041
Danish 1030 1030
Spanish 3082 3082
Italian 1040 1040
Dutch 1043 1043
Norwegian 2068 2068
Portuguese 2070 2070
Finnish 1035 1035
Swedish 1053 1053
Czech 1029 1029
Hungarian 1038 1038
Polish 1045 1045
Romanian 1048 1048
Croatian 1050 1050
Slovak 1051 1051
Slovenian 1060 1060
Greek 1032 1032
Bulgarian 1026 1026

Russian 1049 1049
Turkish 1055 1055
British English 2057 1033
Estonian 1061 1061
Latvian 1062 1062
Lithuanian 1063 1063
Brazilian 1046 1046
Traditional
Chinese

1028 1028

Korean 1042 1042
Simplified Chinese 2052 2052
Arabic 1025 1025
Thai 1054 1054

Transact-SQL Reference (SQL Server 2000)

syslockinfo
Contains information on all granted, converting, and waiting lock requests. This table is a denormalized tabular view of internal
data structures of the lock manager, and is stored only in the master database.

Column name Data type Description
rsc_text nchar(32) Textual description of a lock resource.

Contains a portion of the resource name.
rsc_bin binary(16) Binary lock resource. Contains the actual

lock resource that is contained in the lock
manager. This column is included for
tools that are aware of the lock resource
format for generating their own
formatted lock resource, and for
performing self joins on syslockinfo.

rsc_valblk binary(16) Lock value block. Some resource types
may include additional data in the lock
resource that is not hashed by the lock
manager to determine ownership of a
particular lock resource. For example,
page locks are not owned by a particular
object ID. For lock escalation and other
purposes, however, the object ID of a
page lock may be placed in the lock value
block.

rsc_dbid smallint Database ID associated with the resource.
rsc_indid smallint Index ID associated with the resource, if

appropriate.
rsc_objid int Object ID associated with the resource, if

appropriate.
rsc_type tinyint Resource type. Can be:

1 = NULL Resource (not used).
2 = Database.
3 = File.
4 = Index.
5 = Table.
6 = Page.
7 = Key.
8 = Extent.
9 = RID (Row ID).
10 = Application.

rsc_flag tinyint Internal resource flags.
req_mode tinyint Lock request mode. This column is the

lock mode of the requester and
represents either the granted mode, or
the convert or waiting mode. Can be:

0 = NULL. No access is granted to the
resource. Serves as a placeholder.
1 = Sch-S (Schema stability). Ensures that
a schema element, such as a table or
index, is not dropped while any session
holds a schema stability lock on the
schema element.
2 = Sch-M (Schema modification). Must
be held by any session that wants to
change the schema of the specified
resource. Ensures that no other sessions
are referencing the indicated object.

3 = S (Shared). The holding session is
granted shared access to the resource.
4 = U (Update). Indicates an update lock
acquired on resources that may
eventually be updated. It is used to
prevent a common form of deadlock that
occurs when multiple sessions lock
resources for potential update at a later
time.
5= X (Exclusive). The holding session is
granted exclusive access to the resource.
6 = IS (Intent Shared). Indicates the
intention to place S locks on some
subordinate resource in the lock
hierarchy.
7= IU (Intent Update). Indicates the
intention to place U locks on some
subordinate resource in the lock
hierarchy.
8= IX (Intent Exclusive). Indicates the
intention to place X locks on some
subordinate resource in the lock
hierarchy.
9 = SIU (Shared Intent Update). Indicates
shared access to a resource with the
intent of acquiring update locks on
subordinate resources in the lock
hierarchy.
10 = SIX (Shared Intent Exclusive).
Indicates shared access to a resource with
the intent of acquiring exclusive locks on
subordinate resources in the lock
hierarchy.
11 = UIX (Update Intent Exclusive).
Indicates an update lock hold on a
resource with the intent of acquiring
exclusive locks on subordinate resources
in the lock hierarchy.
12 = BU. Used by bulk operations.
13 = RangeS_S (Shared Key-Range and
Shared Resource lock). Indicates
serializable range scan.
14 = RangeS_U (Shared Key-Range and
Update Resource lock). Indicates
serializable update scan.
15 = RangeI_N (Insert Key-Range and
Null Resource lock). Used to test ranges
before inserting a new key into an index.
16 = RangeI_S. Key-Range Conversion
lock, created by an overlap of RangeI_N
and S locks.
17 = RangeI_U. Key-Range Conversion
lock, created by an overlap of RangeI_N
and U locks.
18 = RangeI_X. Key-Range Conversion
lock, created by an overlap of RangeI_N
and X locks.
19 = RangeX_S. Key-Range Conversion
lock, created by an overlap of RangeI_N
and RangeS_S. locks.
20 = RangeX_U. Key-Range Conversion
lock, created by an overlap of RangeI_N

and RangeS_U locks.
21 = RangeX_X (Exclusive Key-Range and
Exclusive Resource lock). This is a
conversion lock used when updating a
key in a range.

req_status tinyint Status of the lock request. Can be:

1 = Granted.
2 = Converting.
3 = Waiting.

req_refcnt smallint Lock reference count. Each time a
transaction asks for a lock on a particular
resource, a reference count is
incremented. The lock cannot be released
until the reference count equals 0.

req_cryrefcnt smallint Reserved for future used. Always set to 0.
req_lifetime int Lock lifetime bitmap. During certain

query processing strategies, locks must
be maintained on resources until the
query processor has completed a
particular phase of the query. The lock
lifetime bitmap is used by the query
processor and transaction manager to
denote groups of locks that can be
released when a certain phase of a query
is completed. Certain bits in the bitmap
are used to denote locks that are held
until the end of a transaction, even if their
reference count equals 0.

req_spid int Internal Microsoft® SQL Server™ process
ID of the session requesting the lock.

req_ecid int Execution context ID (ECID). Used to
denote which thread in a parallel
operation owns a particular lock.

req_ownertype smallint Type of object associated with the lock.
Can be one of the following:

1 = Transaction.
2 = Cursor.
3 = Session.
4 = ExSession.

Note that 3 and 4 represent a special
version of session locks, tracking
database and filegroup locks respectively.

req_transactionID bigint Unique transaction ID used in syslockinfo
and in profiler event

req_transactionUOW uniqueidentifier Identifies the Unit of Work ID (UOW) of
the DTC transaction. For non MS DTC
transactions, UOW is set to 0.

Transact-SQL Reference (SQL Server 2000)

syslogins
Contains one row for each login account.

Column name Data type Description
sid varbinary(85) Security identifier.
status smallint For internal use only.
createdate datetime Date the login was added.
updatedate datetime Date the login was updated.
accdate datetime For internal use only.
totcpu int For internal use only.
totio int For internal use only.
spacelimit int For internal use only.
timelimit int For internal use only.
resultlimit int For internal use only.
name nvarchar(128) Login ID of the user.
dbname nvarchar(128) Name of the user's default database when

connection is established.
password nvarchar(128) Encrypted password of the user (may be

NULL).
language nvarchar(128) User's default language.
denylogin int 1, if login is a Microsoft® Windows NT®

user or group and has been denied access.
hasaccess int 1, if login has been granted access to the

server.
isntname int 1 if login is a Windows NT user or group; 0 if

the login is a Microsoft SQL Server™ login.
isntgroup int 1, if login is a Windows NT group.
isntuser int 1, if login is a Windows NT user.
sysadmin int 1, if login is a member of the sysadmin

server role.
securityadmin int 1, if login is a member of the securityadmin

server role.
serveradmin int 1, if login is a member of the serveradmin

fixed server role.
setupadmin int 1, if login is a member of the setupadmin

fixed server role.
processadmin int 1, if login is a member of the processadmin

fixed server role.
diskadmin int 1, if login is a member of the diskadmin

fixed server role.
dbcreator int 1, if login is a member of the dbcreator fixed

server role.
loginname nvarchar(128) Actual name of the login, which may be

different from the login name used by SQL
Server.

Transact-SQL Reference (SQL Server 2000)

sysmembers
Contains a row for each member of a database role. This table is stored in each database.

Column name Data type Description
memberuid smallint User ID for the role member.
groupuid smallint User ID for the role.

Transact-SQL Reference (SQL Server 2000)

sysmergearticles
Contains one row for each merge article defined in the local database. This table is stored in the publication database.

Column name Data type Description
name sysname Name of the article.
type tinyint Article type.
objid int Object identifier.
sync_objid int Object ID of the view representing

the synchronized data set.
view_type tinyint Type of view:

0 = Not a view; use all of base
object.
1 = Permanent view.
2 = Temporary view.

artid uniqueidentifier Identity column used to provide a
unique identification number for
the given article. artid is derived
from sysobjects.srcid.

description nvarchar(255) Brief description of the article.
pre_creation_
command

nvarchar(10) Default action to take when the
article is created in the subscription
database:

None = If the table already exists at
the Subscriber, no action is taken.
Delete = Issues a delete based on
the WHERE clause in the subset
filter.
Drop (default) = Drops the table
before re-creating it.
Truncate = Same as delete, but
deletes pages instead of rows.
However, does not take a WHERE
clause.

pubid uniqueidentifier ID of the publication to which the
current article belongs.

nickname int Nickname mapping for article
identification.

column_tracking int Indicates whether column tracking
is implemented for the article.

status tinyint Bitmap used to indicate the status
of the article.

conflict_table sysname Name of the local table that
contains the conflicting records for
the current article. This table is
supplied for information only, and
its contents may be modified or
deleted by custom conflict
resolution routines or directly by
the administrator.

creation_script nvarchar(255) Creation script for this article.
conflict_script nvarchar(255) Conflict script for this article.
article_resolver nvarchar(255) Custom row-level conflict resolver

for this article.
ins_conflict_proc sysname Procedure used to write conflict to

conflict_table.

insert_proc sysname Procedure used by the default
conflict resolver to insert rows
during synchronization.

update_proc sysname Procedure used by the default
conflict resolver to update rows
during synchronization.

select_proc sysname Name of an automatically
generated stored procedure that the
Merge Agent uses to accomplish
locking, and finding columns and
rows for an article.

schema_option binary(8) Indicates what is to be scripted out.
destination_
object

sysname Name of the table created at the
Subscriber.

destination_owner sysname Name of the owner of the
destination object.

resolver_clsid nvarchar(1000) ID of the custom conflict resolver.
subset_
filterclause

nvarchar(2000) Filter clause for this article.

missing_col_
count

int Number of missing columns.

missing_cols varbinary(128) Bitmap of missing columns.
excluded_cols varbinary(128) Bitmap of the columns excluded

from the article when it is sent to
the Subscriber.

excluded_col_count int Number of columns excluded.
columns varbinary(128) Reserved for future use.
resolver_info sysname Storage for additional information

required by custom conflict
resolvers.

view_sel_proc nvarchar(290) The name of a stored procedure
that the Merge Agent uses for doing
the initial population of an article in
a dynamically filtered publication,
and for enumerating changed rows
in any filtered publication.

gen_cur int Generate number for local changes
to the base table of an article.

vertical_partition int Specifies whether column filtering
is enabled on a table article. 0
indicates there is no vertical filtering
and publishes all columns.

identity_support int Specifies whether automatic
identity range handling is enabled
when queued updating is used. 0
means that there is no identity
range support.

before_image_objid int Tracking table object ID. The
tracking table contains certain key
column values when a publication is
created with
@keep_partition_changes = true.

before_view_objid int Object ID of a view table. The view
is on a table that tracks whether a
row belonged at a particular
Subscriber before it was deleted or
updated. Applies only when a
publication is created with
@keep_partition_changes = true.

verify_resolver_signature int Specifies whether a digital signature
is verified before using a resolver in
merge replication:

0 = Signature will not be verified.
1 = Signature will be verified to see
whether it is from a trusted source.

allow_interactive_resolver bit Specifies whether the use of the
Interactive Resolver on an article is
enabled. 1 specifies that the
Interactive Resolver will be used on
the article.

fast_multicol_updateproc bit Specifies whether the Merge Agent
has been enabled to apply changes
to multiple columns in the same
row in one UPDATE statement.

0 = Issues a separate UPDATE for
each column changed.
1 = Issued on UPDATE statement
which causes updates to occur to
multiple columns in one statement.

check_permissions int Bitmap of the table-level
permissions that will be verified
when the Merge Agent applies
changes to the Publisher.
check_permissions can have one of
these values:

0x00 = Permissions will not be
checked.
0x10 = Checks permissions at the
Publisher before INSERTs made at a
Subscriber can be uploaded.
0x20 = Checks permissions at the
Publisher before UPDATEs made at
a Subscriber can be uploaded.
0x40 = Checks permissions at the
Publisher before DELETEs made at a
Subscriber can be uploaded.

Transact-SQL Reference (SQL Server 2000)

sysmergepublications
Contains one row for each merge publication defined in the database. This table is stored in the publication and subscription
databases.

Column name Data type Description
publisher sysname Name of the default

server.
publisher_db sysname Name of the default

Publisher database.
name sysname Name of the publication.
description nvarchar(255) Brief description of the

publication.
retention int Retention period,

expressed in days, for
the entire publication
set.

publication_type tinyint Indicates the publication
is filtered:

0 = Not filtered.
1 = Filtered.

pubid uniqueidentifier Unique identification
number for this
publication; generated
when the publication is
added.

designmasterid uniqueidentifier Reserved for future use.
parentid uniqueidentifier Indicates the parent

publication from which
the current peer or
subset publication was
created (used for
hierarchical publishing
topologies).

sync_mode tinyint Synchronization mode
of this publication:

0 = Native.
1 = Character.

allow_push int Indicates whether the
publication allows push
subscriptions.

allow_pull int Indicates whether the
publication allows pull
subscriptions.

allow_anonymous int Indicates whether the
publication allows
anonymous
subscriptions.

centralized_
conflicts

int Indicates whether the
conflict records are
stored at the Publisher:

0 = Conflict records are
stored at both the
Publisher and at the
Subscriber that caused
the conflict.
1 = All conflict records
are stored at the
Publisher.

status tinyint Reserved for future use.
snapshot_ready tinyint Indicates the snapshot of

the publication is ready:

0 = Snapshot is ready
for use.
1 = Snapshot is not
ready for use.

enabled_for_
internet

bit Indicates whether the
synchronization files for
the publication are
exposed to the Internet,
through FTP and other
services.

dynamic_filters bit Indicates whether the
publication is filtered on
a dynamic property.

snapshot_in_defaultfolder bit Specifies whether
snapshot files are stored
in the default folder:

0 = Snapshot files are in
default folder.
1 = Snapshot files are
stored in the location
specified by
alt_snapshot_folder.

alt_snapshot_folder nvarchar(255) Location of the alternate
folder for the snapshot.

pre_snapshot_script nvarchar(255) Pointer to an .sql file
that the Merge Agent
will run before any of
the replication object
scripts when applying
the snapshot at the
Subscriber.

post_snapshot_script nvarchar(255) Pointer to an .sql file
that the Merge Agent
will run after all the
other replication object
scripts and data have
been applied during an
initial synchronization.

compress_snapshot bit Specifies whether the
snapshot written to the
alt_snapshot_folder
location is compressed
into the Microsoft® CAB
format. 0 specifies that
the file is not
compressed.

ftp_address sysname Network address of the
FTP service for the
Distributor. Specifies
where publication
snapshot files are
located for the Merge
Agent to pick up, if FTP
is enabled.

ftp_port int Port number of the FTP
service for the
Distributor.

ftp_subdirectory nvarchar(255) Subdirectory of where
the snapshot files will be
available for the Merge
Agent to pick up.

ftp_login sysname Username used to
connect to the FTP
service.

ftp_password nvarchar(524) User password used to
connect to the FTP
service.

conflict_retention int Specifies the retention
period, in days, for
which conflicts are
retained. A default of 14
days is assigned before
the conflict row is
purged from the conflict
table.

keep_before_values int Specifies whether
synchronization
optimization is occurring
for this publication:

0 = Synchronization is
not optimized, and the
partitions sent to all
Subscribers will be
verified when data
changes in a partition.
1 = Synchronization is
optimized, and only
Subscribers having rows
in the changed partition
are affected.

allow_subscription_copy bit Specifies whether the
ability to copy the
subscription database
has been enabled. 0
means copying is not
allowed.

allow_synctoalternate bit Specifies whether an
alternate
synchronization partner
is allowed to
synchronize with this
Publisher. 0 means that
a synchronization
partner is not allowed.

validate_subscriber_info nvarchar(500) List the functions that
are being used to
retrieve Subscriber
information and validate
the dynamic filtering
criteria on the
Subscriber.

ad_guidname sysname Specifies whether the
publication is published
in the Microsoft® Active
Directory™. A valid GUID
specifies that the
publication is published
in the Microsoft Active
Directory, and the GUID
is the corresponding
Active Directory
publication object
objectGUID. If NULL,
the publication is not
published in Microsoft
Active Directory.

backward_comp_level int Database compatibility
level (60, 65, 70, and 80).

max_concurrent_merge int Maximum number of
concurrent merge
processes. A value of 0
for this property means
that there is no limit to
the number of
concurrent merge
processes running at
any given time. This
property sets a limit as
to the number of
concurrent merge
processes that can be
run against a merge
publication at one time.
If there are more
snapshot processes
scheduled at the same
time than the value
allows to run, then the
excess jobs will be put
into a queue and wait
until a currently-running
merge process finishes.

max_concurrent_dynamic_snapshots int Maximum number of
concurrent dynamic
snapshot sessions that
can be running against
the merge publication. If
0, there is no limit to the
maximum number of
concurrent dynamic
snapshot sessions that
can run simultaneously
against the publication
at any given time. This
property sets a limit as
to the number of
concurrent snapshot
processes that can be
run against a merge
publication at one time.
If there are more
snapshot processes
scheduled at the same
time than the value
allows to run, then the
excess jobs will be put
into a queue and wait
until a currently-running
merge process finishes.

Transact-SQL Reference (SQL Server 2000)

sysmergeschemaarticles
Tracks schema-only articles for merge replication. This table is stored in the publication and subscription databases.

Column name Data type Description
name sysname Name of the schema-only article in the

merge publication
type tinyint Value indicating the type of schema-

only article:

0x20 = Stored procedure schema-only
article.
0x40 = View schema-only article or
indexed view schema-only article.

objid int Object identifier of the article base
object. Can be the object identifier of a
procedure, view, indexed, view, or UDF.

artid uniqueidentifier Article ID.
description nvarchar(255) Description of the article.
pre_creation_command tinyint Specifies what the system is to do if

the table exists at the subscriber when
applying the snapshot.

None = If the table already exists at
the Subscriber, no action is taken.
Delete = Issues a delete based on the
WHERE clause in the subset filter.
Drop (default) = Drops the table
before re-creating it.
Truncate = Same as delete, but
deletes pages instead of rows. Does
not take a WHERE clause.

pubid uniqueidentifier Unique identifier of the publication.
status tinyint Bitmap used to indicate the status of

the article.
creation_script nvarchar(255) Path and name of an optional article

schema pre-creation script used to
create target table.

schema_option binary(8) Indicates what is to be scripted out.
This is a bitmask of the schema
generation option for the given article.
It specifies the automatic creation of
the stored procedure in the destination
database for all CALL/MCALL/XCALL.

destination_object sysname Name of the destination object in the
subscription database. This value
applies only to schema-only articles,
such as stored procedures, views, and
UDFs.

destination_owner sysname Owner of the object in the subscription
database, if not dbo.

Transact-SQL Reference (SQL Server 2000)

sysmergeschemachange
Contains information about the published articles generated by the Snapshot Agent. This table is stored in the publication and
subscription databases.

Column name Data type Description
pubid uniqueidentifier ID of the publication
artid uniqueidentifier ID of the article
schemaversion int Number of the last schema change
schemaguid uniqueidentifier Unique ID of the last schema
schematype int Type of schema:

1 = Schema
2 = System schema
3 = Trigger script

schematext nvarchar(255) Name of the script file, or a command
which includes a file name

Transact-SQL Reference (SQL Server 2000)

sysmergesubscriptions
Contains one row for each known Subscriber and is a local table at the Publisher. This table is stored in the publication and
subscription databases.

Column name Data type Description
subid uniqueidentifier Unique identification number for

Subscription.
partnerid uniqueidentifier ID of the partner to which it

subscribes.
datasource_type int Type of data source:

0 = Microsoft SQL Server.
2 = Jet OLE DB.

datasource_path nvarchar(255) If a Jet datasource, path to the .mdb
file.

srvid int Contains the sysservers.srvguid and,
with db_name, allows for the
subscription to be identified in the
local server.

db_name sysname Name of the subscribing database.
pubid uniqueidentifier ID of the publication from which the

current subscription was created.
status tinyint Status of the subscription:

0 = Inactive.
1 = Active.
2 = Deleted.

subscriber_type int Type of Subscriber:

1 = Global.
2 = Local.
3 = Anonymous.

subscription_type int Type of subscription:

0 = Push.
1 = Pull.
2 = Anonymous.

priority real Specifies the subscription priority and
allows the implementation of priority-
based conflict resolution. 0.00 for all
local or anonymous subscriptions.

sync_type tinyint Type of synchronization:

1 = Automatic.
2 = No synchronization.

description nvarchar(255) Brief description of the subscription.
login_name sysname Name of the user who created the

subscription.
last_validated datetime Time of the last successful validation

of Subscriber data.
subscriber_server sysname ID of the server. Used to map the srvid

field to the server-specific value when
migrating a copy of the subscription
database to a different server.

use_interactive_resolver bit Specifies whether the interactive
resolver is used during reconciliation.
If 0, the interactive resolver is not
used.

publication sysname Name of the publication.
distributor sysname Name of the computer hosting the

Distribution Agent.
validation_level int Type of validation to perform on the

subscription. The validation level
specified can be one of these values:

0 = No validation.
1 = Rowcount-only validation.
2 = Rowcount and checksum
validation.
3 = Rowcount and binary checksum
validation.

resync_gen int Generation number that will be used
for resynchronization of the
subscription. A value of –1 indicates
that the subscription is not marked for
resynchronization.

attempted_validate datetime Last datetime that validation was
attempted on the subscription.

last_sync_date datetime datetime of the synchronization.
last_sync_status int Subscription status:

0 = All jobs are waiting to start.
1 = One or more jobs are starting.
2 = All jobs have executed
successfully.
3 = At least one job is executing.
4 = All jobs are scheduled and idle.
5 = At least one job is attempting to
execute after a previous failure.
6 = At least one job has failed to
execute successfully.

last_sync_summary sysname Description of last synchronization
results.

Transact-SQL Reference (SQL Server 2000)

sysmergesubsetfilters
Contains join filter information for partitioned articles. This table is stored in the publication and subscription databases.

Column name Data type Description
filtername sysname Name of the filter used to create the article.
join_filterid int ID of the object representing the join filter.
pubid uniqueidentifier ID of the publication.
artid uniqueidentifier ID of the article.
art_nickname int Nickname of the article.
join_articlename sysname Name of the table to join to determine

whether the row belongs.
join_nickname int Nickname of the table to join to determine

whether the row belongs.
join_unique_key int Indicates a join on a unique key of

join_tablename:

0 = Not a unique key.
1 = A unique key.

expand_proc sysname Name of the stored procedure used by the
Merge Agent to identify the rows that need
to be sent or removed from a Subscriber.

join_filterclause nvarchar(1000) Filter clause used for the join.

Transact-SQL Reference (SQL Server 2000)

sysmessages
Contains one row for each system error or warning that can be returned by Microsoft® SQL Server™. SQL Server displays the
error description on the user's screen.

Column name Data type Description
error int Unique error number.
severity smallint Severity level of the error.
dlevel smallint For internal use only.
description nvarchar(255) Explanation of the error with placeholders

for parameters.
mslangid smallint System message group ID.

Transact-SQL Reference (SQL Server 2000)

sysnotifications
Contains one row for each notification.

Column name Data type Description
alert_id int ID of the alert.
operator_id int Operator ID to whom this notification should

be sent.
notification_method tinyint Method of notification:

1 = E-mail
2 = Pager
4 = netsend
7 = All

Transact-SQL Reference (SQL Server 2000)

sysobjects
Contains one row for each object (constraint, default, log, rule, stored procedure, and so on) created within a database. In tempdb
only, this table includes a row for each temporary object.

Column name Data type Description
name sysname Object name.
Id int Object identification number.
xtype char(2) Object type. Can be one of these object types:

C = CHECK constraint
D = Default or DEFAULT constraint
F = FOREIGN KEY constraint
L = Log
FN = Scalar function
IF = Inlined table-function
P = Stored procedure
PK = PRIMARY KEY constraint (type is K)
RF = Replication filter stored procedure
S = System table
TF = Table function
TR = Trigger
U = User table
UQ = UNIQUE constraint (type is K)
V = View
X = Extended stored procedure

uid smallint User ID of owner object.
info smallint Reserved. For internal use only.
status int Reserved. For internal use only.
base_schema_
ver

int Reserved. For internal use only.

replinfo int Reserved. For use by replication.
parent_obj int Object identification number of parent object

(for example, the table ID if a trigger or
constraint).

crdate datetime Date the object was created.
ftcatid smallint Identifier of the full-text catalog for all user

tables registered for full-text indexing, and 0
for all user tables not registered.

schema_ver int Version number that is incremented every
time the schema for a table changes.

stats_schema_
ver

int Reserved. For internal use only.

type char(2) Object type. Can be one of these values:

C = CHECK constraint
D = Default or DEFAULT constraint
F = FOREIGN KEY constraint
FN = Scalar function
IF = Inlined table-function
K = PRIMARY KEY or UNIQUE constraint
L = Log
P = Stored procedure
R = Rule
RF = Replication filter stored procedure
S = System table
TF = Table function
TR = Trigger
U = User table
V = View
X = Extended stored procedure

userstat smallint Reserved.
sysstat smallint Internal status information.
indexdel smallint Reserved.
refdate datetime Reserved for future use.
version int Reserved for future use.
deltrig int Reserved.
instrig int Reserved.
updtrig int Reserved.
seltrig int Reserved.
category int Used for publication, constraints, and

identity.
cache smallint Reserved.

Transact-SQL Reference (SQL Server 2000)

sysoledbusers
Contains one row for each user and password mapping for the specified linked server. This table is stored in the master database.

Column name Data type Description
rmtsrvid smallint SID (security identification number) of the

server.
rmtloginame nvarchar(128) Name of the remote login that loginsid

maps to for linked rmtservid.
rmtpassword nvarchar(128) Encrypted password for the specified remote

login in linked rmtsrvid.
loginsid varbinary(85) SID of the local login to be mapped.
status smallint If this value is 1, the mapping should use the

user's own credentials.
changedate datetime Date mapping information was last changed.

Transact-SQL Reference (SQL Server 2000)

sysopentapes
Contains one row for each currently open tape device. This view is stored in the master database.

Column name Data type Description
openTape nvarchar(64)

NOT NULL
Physical file name of open tape device. For
more information about opening and
releasing tape devices, see BACKUP and
RESTORE.

Transact-SQL Reference (SQL Server 2000)

sysoperators
Contains one row for each operator.

Column name Data type Description
id int ID of the operator.
name sysname Name of the operator.
enabled tinyint Status of alert notifications (Boolean). If 1,

this operator can receive notifications when
an alert occurs.

email_address nvarchar(100) E-mail address for this operator.
last_email_date int Date this operator last received an e-mail

alert notification.
last_email_time int Time of day this operator last received an e-

mail alert notification.
pager_address nvarchar(100) Pager address for this operator.
last_pager_date int Date this operator last received a pager alert

notification.
last_pager_time int Time of day this operator last received a

pager alert notification.
weekday_pager_
start_time

int Time of day on a weekday (Monday through
Friday) after which this operator is available
to receive a pager alert notification.

weekday_pager_
end_time

int Time of day on a weekday (Monday through
Friday) after which this operator is not
available to receive a pager alert notification.

saturday_pager_
start_time

int Time of day on Saturday after which this
operator is available to receive a pager alert
notification.

saturday_pager_
end_time

int Time of day on Saturday after which this
operator is not available to receive a pager
alert notification.

sunday_pager_
start_time

int Time of day on Sunday after which this
operator is available to receive a pager alert
notification.

sunday_pager_
end_time

int Time of day on Sunday after which this
operator is not available to receive a pager
alert notification.

pager_days tinyint Bitmask representing the days of the week
during which this operator is available to
receive a pager alert notification.

netsend_address nvarchar(100) Reserved.
last_netsend_
date

int Date that the most recent network message
was last sent to the specified operator ID.

last_netsend_
time

int Time that the most recent network message
was last sent to the specified operator ID.

category_id int Reserved.

Transact-SQL Reference (SQL Server 2000)

sysperfinfo
Contains a Microsoft® SQL Server™ representation of the internal performance counters that can be displayed through the
Windows NT Performance Monitor.

Note The Windows NT Performance Monitor is available only when using Microsoft Windows NT® 4.0 as the operating system.

Performance condition alerts are only available for the first 99 databases. Any databases created after the first 99 databases will
not be included in the sysperfinfo system table, and using the sp_add_alert procedure will return an error.

Column name Data type Description
object_name nchar(128) Performance object name, such as SQL

Server: Lock Manager or SQL Server: Buffer
Manager.

counter_name nchar(128) Name of the performance counter within
the object, such as Page Requests or Locks
Requested.

instance_name nchar(128) Named instance of the counter. For
example, there are counters maintained for
each type of lock, such as Table, Page, Key,
and so on. The instance name distinguishes
between similar counters.

cntr_value int Actual counter value. In most cases, this will
be a level or monotonically increasing
counter that counts occurrences of the
instance event.

cntr_type int Type of counter as defined by the Windows
NT 4.0 performance architecture.

Transact-SQL Reference (SQL Server 2000)

syspermissions
Contains information about permissions granted and denied to users, groups, and roles in the database. This table is stored in
each database.

Column name Data type Description
id int ID of the object for object permissions; 0

for statement permissions.
grantee smallint ID of the user, group, or role affected by the

permission.
grantor smallint ID of the user, group, or role that granted

or revoked the permission.
actadd smallint For internal use only.
actmod smallint For internal use only.
seladd varbinary(4000) For internal use only.
selmod varbinary(4000) For internal use only.
updadd varbinary(4000) For internal use only.
updmod varbinary(4000) For internal use only.
refadd varbinary(4000) For internal use only.
refmod varbinary(4000) For internal use only.

Transact-SQL Reference (SQL Server 2000)

sysprocesses
 New Information - SQL Server 2000 SP3.

The sysprocesses table holds information about processes running on Microsoft® SQL Server™. These processes can be client
processes or system processes. sysprocesses is stored only in the master database.

Column name Data type Description
spid smallint SQL Server process ID.
kpid smallint Microsoft Windows NT 4.0® thread ID.
blocked smallint Process ID (spid) of a blocking process.
waittype binary(2) Reserved.
waittime int Current wait time in milliseconds. Is 0 when

the process is not waiting.
lastwaittype nchar(32) A string indicating the name of the last or

current wait type.
waitresource nchar(32) Textual representation of a lock resource.
dbid smallint ID of the database currently being used by

the process.
uid smallint ID of the user who executed the command.
cpu int Cumulative CPU time for the process. The

entry is updated for all processes,
regardless of whether the SET STATISTICS
TIME ON option is ON or OFF.

physical_io int Cumulative disk reads and writes for the
process.

memusage int Number of pages in the procedure cache
that are currently allocated to this process.
A negative number indicates that the
process is freeing memory allocated by
another process.

login_time datetime Time at which a client process logged into
the server. For system processes, the time
at which SQL Server startup occurred is
stored.

last_batch datetime Last time a client process executed a
remote stored procedure call or an
EXECUTE statement. For system processes,
the time at which SQL Server startup
occurred is stored.

ecid smallint Execution context ID used to uniquely
identify the subthreads operating on behalf
of a single process.

open_tran smallint Number of open transactions for the
process.

status nchar(30) Process ID status (for example, running,
sleeping, and so on).

sid binary(85) Globally unique identifier (GUID) for the
user.

hostname nchar(128) Name of the workstation.
program_name nchar(128) Name of the application program.
hostprocess nchar(8) Workstation process ID number.
cmd nchar(16) Command currently being executed.
nt_domain nchar(128) Windows NT 4.0 domain for the client (if

using Windows Authentication) or a trusted
connection.

nt_username nchar(128) Windows NT 4.0 user name for the process
(if using Windows Authentication) or a
trusted connection.

net_address nchar(12) Assigned unique identifier for the network
interface card on each user's workstation.
When the user logs in, this identifier is
inserted in the net_address column.

net_library nchar(12) Column in which the client's network
library is stored. Every client process comes
in on a network connection. Network
connections have a network library
associated with them that allows them to
make the connection. For more
information, see Client and Server Net-
Libraries.

loginame nchar(128) Login name.
sql_handle binary(20) Represents the currently executing batch or

object.
stmt_start int Starting offset of the current SQL

statement for the specified sql_handle.
stmt_end int Ending offset of the current SQL statement

for the specified sql_handle.

-1 indicates that the current statement runs
to the end of the results returned by the
fn_get_sql function for the specified
sql_handle.

Transact-SQL Reference (SQL Server 2000)

sysprotects
Contains information about permissions that have been applied to security accounts with the GRANT and DENY statements. This
table is stored in each database.

Column name Data type Description
id int ID of object to which these permissions

apply.
uid smallint ID of user or group to which these

permissions apply.
action tinyint Can have one of these permissions:

26 = REFERENCES
178 = CREATE FUNCTION
193 = SELECT
195 = INSERT
196 = DELETE
197 = UPDATE
198 = CREATE TABLE
203 = CREATE DATABASE
207 = CREATE VIEW
222 = CREATE PROCEDURE
224 = EXECUTE
228 = BACKUP DATABASE
233 = CREATE DEFAULT
235 = BACKUP LOG
236 = CREATE RULE

protecttype tinyint Can have these values:

204 = GRANT_W_GRANT
205 = GRANT
206 = DENY

columns varbinary(4000) Bitmap of columns to which these SELECT
or UPDATE permissions apply. Bit 0
indicates all columns; bit 1 means
permissions apply to that column and
NULL means no information.

grantor smallint User ID of the user who issued the GRANT
or REVOKE permissions.

Transact-SQL Reference (SQL Server 2000)

syspublications
Contains one row for each publication defined in the database. This table is stored in the publication database.

Column name Data type Description
description nvarchar(255) Descriptive entry for the publication.
name sysname Unique name associated with the

publication.
pubid int Identity column providing a unique

ID for the publication.
repl_freq tinyint Replication frequency:

0 = Transaction based.
1 = Scheduled table refresh.

status tinyint Status:

0 = Inactive.
1 = Active.

sync_method tinyint Synchronization method:

0 = Native bulk copy program (bcp
utility).
1 = Character bulk copy.
3 = Concurrent, which means that
native bulk copy (bcp utility) is used
but tables are not locked during the
snapshot.
4 = Concurrent_c, which means that
character bulk copy is used but
tables are not locked during the
snapshot.

snapshot_jobid binary(16) Scheduled task ID.
independent_
agent

bit Specifies whether there is a stand-
alone Distribution Agent for this
publication.

0 = The publication uses a shared
Distribution Agent, and each
Publisher database/Subscriber
database pair has a single, shared
Agent.
1 = There is a stand-alone
Distribution Agent for this
publication.

immediate_sync bit Indicates whether the
synchronization files are created or
re-created each time the Snapshot
Agent runs.

enabled_for_
internet

bit Indicates whether the
synchronization files for the
publication are exposed to the
Internet through FTP and other
services.

allow_push bit Indicates whether push subscriptions
are allowed on the publication.

allow_pull bit Indicates whether pull subscriptions
are allowed on the publication.

allow_anonymous bit Indicates whether anonymous
subscriptions are allowed on the
publication.

immediate_sync_
ready

bit Indicates whether the snapshot has
been generated by the Snapshot
Agent and is ready for use by new
subscriptions. It is only meaningful
for immediate updating publications.
0 indicates that there is no snapshot
ready.

allow_sync_tran bit Specifies whether immediate-
updating subscriptions are allowed
on the publication. 0 means that
immediate-updating subscriptions
are not allowed.

autogen_sync_
procs

bit Specifies whether the synchronizing
stored procedure for immediate-
updating subscriptions is generated
at the Publisher. 1 means that it is
generated at the Publisher.

retention int Amount of change, in hours, to save
for the given publication.

allowed_queued_tran bit Specifies whether disables queuing
of changes at the Subscriber until
they can be applied at the Publisher
has been enabled. If 0, changes at the
Subscriber are not queued.

snapshot_in_defaultfolder bit Specifies whether snapshot files are
stored in the default folder. If 0,
snapshot files have been stored in
the alternate location specified by
alternate_snapshot_folder. If 1,
snapshot files can be found in the
default folder.

alt_snapshot_folder nvarchar(255) Specifies the location of the alternate
folder for the snapshot.

pre_snapshot_script nvarchar(255) Specifies a pointer to an .sql file
location. The Distribution Agent will
run the pre-snapshot script before
running any of the replicated object
scripts when applying a snapshot at
a Subscriber.

post_snapshot_script nvarchar(255) Specifies a pointer to an .sql file
location. The Distribution Agent will
run the post-snapshot script after all
the other replicated object scripts
and data have been applied during
an initial synchronization.

compress_snapshot bit Specifies that the snapshot that is
written to the @alt_snapshot_folder
location is to be compressed into the
Microsoft® CAB format. 0 specifies
that the snapshot will not be
compressed.

ftp_address sysname The network address of the FTP
service for the Distributor. Specifies
where publication snapshot files are
located for the Distribution Agent or
Merge Agent of a subscriber to pick
up.

ftp_port int The port number of the FTP service
for the Distributor. Specifies where
the publication snapshot files are
located for the Distribution Agent or
Merge Agent of a subscriber to pick
up

ftp_subdirectory nvarchar(255) Specifies where the snapshot files
will be available for the Distribution
Agent or Merge Agent of subscriber
to pick up if the publication supports
propagating snapshots using FTP.

ftp_login sysname The username used to connect to the
FTP service.

ftp_password nvarchar(524) The user password used to connect
to the FTP service.

allow_dts bit Specifies that the publication allows
data transformations. 0 specifies that
DTS transformations are not allowed.

allow_subscription_copy bit Specifies whether the ability to copy
the subscription databases that
subscribe to this publication has
been enabled. 0 means that copying
is not allowed.

centralized_conflicts bit Specifies whether conflict records
are stored on the Publisher:

0 = Conflict records are stored at
both the publisher and at the
subscriber that caused the conflict.
1 = Conflict records are stored at the
Publisher.

conflict_retention int Specifies the conflict retention
period, in days.

conflict_policy int Specifies the conflict resolution
policy followed when the queued
updating subscriber option is used.
Can be one of these values:

1 = Publisher wins the conflict.
2 = Subscriber wins the conflict.
3 = Subscription is reinitialized.

queue_type int Specifies which type of queue is
used. Can be one of these values:

msmq = Use Microsoft Message
Queuing to store transactions.
sql = Use SQL Server to store
transactions.
NULL = defaults to sql, which
specifies to use SQL Server to store
transactions.

ad_guidname sysname Specifies whether the publication is
published in the Microsoft Active
Directory™. A valid globally unique
identifier (GUID) specifies that the
publication is published in the
Microsoft Active Directory, and the
GUID is the corresponding Active
Directory publication object
objectGUID. If NULL, the publication
is not published in Microsoft Active
Directory.

backward_comp_level int Database compatibility level (60, 65,
70, and 80).

Transact-SQL Reference (SQL Server 2000)

sysreferences
Contains mappings of FOREIGN KEY constraint definitions to the referenced columns. This table is stored in each database.

Column name Data type Description
constid int ID of the FOREIGN KEY constraint
fkeyid int ID of the referencing table
rkeyid int ID of the referenced table
rkeyindid smallint Index ID of the unique index on the

referenced table covering the referenced
key-columns

keycnt smallint Number of columns in the key
forkeys varbinary(32) For internal use only
refkeys varbinary(32) For internal use only
fkeydbid smallint Reserved
rkeydbid smallint Reserved
fkey1 smallint Column ID of the referencing column
fkey2 smallint Column ID of the referencing column
fkey3 smallint Column ID of the referencing column
fkey4 smallint Column ID of the referencing column
fkey5 smallint Column ID of the referencing column
fkey6 smallint Column ID of the referencing column
fkey7 smallint Column ID of the referencing column
fkey8 smallint Column ID of the referencing column
fkey9 smallint Column ID of the referencing column
fkey10 smallint Column ID of the referencing column
fkey11 smallint Column ID of the referencing column
fkey12 smallint Column ID of the referencing column
fkey13 smallint Column ID of the referencing column
fkey14 smallint Column ID of the referencing column
fkey15 smallint Column ID of the referencing column
fkey16 smallint Column ID of the referencing column
rkey1 smallint Column ID of the referenced column
rkey2 smallint Column ID of the referenced column
rkey3 smallint Column ID of the referenced column
rkey4 smallint Column ID of the referenced column
rkey5 smallint Column ID of the referenced column
rkey6 smallint Column ID of the referenced column
rkey7 smallint Column ID of the referenced column
rkey8 smallint Column ID of the referenced column
rkey9 smallint Column ID of the referenced column
rkey10 smallint Column ID of the referenced column
rkey11 smallint Column ID of the referenced column
rkey12 smallint Column ID of the referenced column
rkey13 smallint Column ID of the referenced column
rkey14 smallint Column ID of the referenced column
rkey15 smallint Column ID of the referenced column
rkey16 smallint Column ID of the referenced column

Transact-SQL Reference (SQL Server 2000)

sysremotelogins
Contains one row for each remote user allowed to call remote stored procedures on Microsoft® SQL Server™.

Column name Data type Description
remoteserverid smallint Remote server identification.
remoteusername nvarchar(128) User's login name on a remote server.
status smallint Bitmap of options.
sid varbinary(85) Microsoft Windows NT® user security ID.
changedate datetime Date and time the remote user was added.

Transact-SQL Reference (SQL Server 2000)

sysreplicationalerts
Contains information about the conditions causing a replication alert to fire. This table is stored in the msdb database.

Column name Data type Description
alert_id int ID of the alert.
status int User-defined value:

0 = Unserviced
1 = Serviced

agent_type int Type of agent:

1 = Snapshot Agent
2 = Log Reader Agent
3 = Distribution Agent
4 = Merge Agent

agent_id int Agent ID from the tables
MSsnapshot_agents,
MSlogreader_agents,
MSdistribution_agents, or
MSmerge_agents.

error_id int ID of the error stored in MSrepl_errors.
alert_error_code int Message ID of the alert raised when logging

this record.
time datetime Time the record was inserted.
publisher sysname Name of the Publisher associated with the

agent that fired this alert.
publisher_db sysname Publisher database associated with the

agent that fired this alert.
publication sysname Publication associated with the agent that

fired this alert.
publication_type int Type of publication:

0 = Snapshot
1 = Transactional
2 = Merge

subscriber sysname Name of the Subscriber associated with the
agent that fired this alert.

subscriber_db sysname Name of the Subscriber database associated
with the agent that fired this alert.

article sysname Name of the article associated with the
agent that fired this alert.

destination_
object

sysname Name of the subscription table associated
with the alert.

source_object sysname Name of the published table associated with
the alert.

alert_error_text ntext Text of the alert.

Transact-SQL Reference (SQL Server 2000)

sysschemaarticles
Tracks schema-only articles for transactional and snapshot publications. This table is stored in the publication database.

Column name Data type Description
artid int Article ID.
creation_script nvarchar(255) Path and name of an article schema

script used to create the target table.
description nvarchar(255) Descriptive entry for the article.
dest_object sysname Name of the object in the subscription

database if the article is a schema-only
article, such as stored procedure, view,
or UDF.

name sysname Name of the schema-only article in a
publication.

objid int Object identifier of the article base
object. Can be the object identifier of a
procedure, view, indexed, view, or UDF.

pubid int ID for the publication.
pre_creation_cmd tinyint Specifies what the system should do if it

detects an existing object of the same
name at the Subscriber when applying
the snapshot for this article:

0 = Nothing.
1 = Delete destination table.
2 = Drop destination table.
3 = Truncate destination table.

status int Bitmap used to indicate the status of the
article.

type tinyint Value indicating the type of schema-
only article:

0x20 = Stored procedure schema-only
article.
0x40 = View schema-only article or.
indexed view schema-only article.

schema_option binary(8) Bitmask of the schema generation
option for the given article. It specifies
the automatic creation of the stored
procedure in the destination database
for all CALL/MCALL/XCALL. It can be
one of these values:

0x00 = Disables scripting by the
Snapshot Agent and uses
creation_script.
0x01 = Generates the object creation
(CREATE TABLE, CREATE PROCEDURE,
and so on). This value is the default for
stored procedure articles.
0x02 = Generates custom stored
procedures for the article, if defined.
0x10 = Generates a corresponding
clustered index.
0x20 = Converts user-defined data
types to base data types.
0x40= Generates corresponding
nonclustered index(es).
0x80= Includes declared referential
integrity on the primary keys.
0x73 = Generates the CREATE TABLE
statement, creates clustered and
nonclustered indexes, converts user-
defined data types to base data types,
and generates custom stored procedure
scripts to be applied at the Subscriber.
This value is the default for all articles
except stored procedure articles.
0x100= Replicates user triggers on a
table article, if defined.
0x200= Replicates foreign key
constraints. If the referenced table is not
part of a publication, all foreign key
constraints on a published table will not
be replicated.
0x400= Replicates check constraints.
0x800= Replicates defaults.
0x1000= Replicates column-level
collation.
0x2000= Replicates extended
properties associated with the
published article source object.
0x4000= Replicates unique keys if
defined on a table article.
0x8000= Replicates primary key and
unique keys on a table article as
constraints using ALTER TABLE
statements.

dest_owner sysname Owner of the table at the destination
database.

Transact-SQL Reference (SQL Server 2000)

sysservers
Contains one row for each server that Microsoft® SQL Server™ can access as an OLE DB data source.

Column name Data type Description
srvid smallint ID (for local use only) of the remote

server.
srvstatus smallint For internal use only.
srvname sysname Name of the server.
srvproduct nvarchar(128) Product name for the remote server.
providername nvarchar(128) OLE DB provider name for access to this

server.
datasource nvarchar(4000) OLE DB data source value.
location nvarchar(4000) OLE DB location value.
providerstring nvarchar(4000) OLE DB provider string value.
schemadate datetime Date this row was last updated.
topologyx int Used by the SQL Server Enterprise

Manager server topology diagram.
topologyy int Used by the SQL Server Enterprise

Manager server topology diagram.
catalog sysname Catalog that is used when making a

connection to an OLE DB provider.
connecttimeout int Timeout setting for server-connection.
querytimeout int Timeout setting for queries against

server.
srvnetname char(30) Reserved (currently the same as the

srvname).
isremote bit 1 if server is a remote server, else 0 if

server is a linked server.
rpc bit 1/0 for sp_serveroption rpc set to

true/false.
pub bit 1/0 for sp_serveroption pub set to

true/false.
sub bit 1/0 for sp_serveroption sub set to

true/false.
dist bit 1/0 for sp_serveroption dist set to

true/false.
dpub bit 1/0 for sp_serveroption dpub set to

true/false.
rpcout bit 1/0 for sp_serveroption rpc out set to

true/false.
dataaccess bit 1/0 for sp_serveroption data access set

to true/false.
collationcompatible bit 1/0 for sp_serveroption collation

compatible set to true/false.
system bit 1/0 for sp_serveroption system set to

true/false.
useremotecollation bit 1/0 for sp_serveroption use remote

collation set to true/false.
lazyschemavalidation bit 1/0 for sp_serveroption lazy schema

validation set to true/false.
collation sysname Server collation as set by

sp_serveroption collation name.

Transact-SQL Reference (SQL Server 2000)

syssubscriptions
Contains one row for each subscription in the database. This table is stored in the publication database.

Column name Data type Description
artid int Unique ID of an article
srvid smallint Server ID of the Subscriber
dest_db sysname Name of the destination database
status tinyint Status:

0 = Inactive
1 = Subscribed
2 = Active

sync_type tinyint Type of synchronization:

1 = Automatic
2 = None

login_name sysname Login name used when adding the
subscription

subscription_type int Type of subscription:

0 = Push
1 = Pull

distribution_jobid binary(16) Job ID of the Distribution Agent
timestamp timestamp Timestamp
update_mode tinyint Update mode:

0 = Read only
1 = Immediate-updating

loopback_detection bit Whether the Distribution Agent sends
transactions originated at the
Subscriber back to the Subscriber:

True = Does not send back
False = Sends back

queued_reinit bit Specifies whether the article is marked
for initialization or reinitialization. A
value of 1 specifies that the subscribed
article is marked for initialization or re-
initialization.

Transact-SQL Reference (SQL Server 2000)

systargetservergroupmembers
Records which target servers are currently enlisted in this multiserver group.

Column name Data type Description
servergroup_id int Server group ID
server_id int Server ID

Transact-SQL Reference (SQL Server 2000)

systargetservergroups
Records which target server groups are currently enlisted in this multiserver environment.

Column name Data type Description
servergroup_id int Server group ID
name sysname Server group name

Transact-SQL Reference (SQL Server 2000)

systargetservers
Records which target servers are currently enlisted in this multiserver operation domain.

Column name Data type Description
server_id int Server ID.
server_name nvarchar(30) Server name.
location nvarchar(200) Location of the specified target server.
time_zone_
adjustment

int Time adjustment interval, in hours, from
Greenwich mean time (GMT).

enlist_date datetime Date and time that the specified target
server was enlisted.

last_poll_date datetime Date and time that the specified target
server last polled the multiserver's
sysdownloadlist system table for jobs to
run.

status int Status of the target server:

1 = Normal
2 = Re-sync Pending
4 = Suspected Offline

local_time_at_
last_poll

datetime Date and time the target server was last
polled for job operations.

enlisted_by_nt_
user

nvarchar(100) Username of the person executing
sp_msx_enlist on the target server.

poll_internal int Number of seconds to elapse before the
target server polls the master server for
new download instructions.

Transact-SQL Reference (SQL Server 2000)

systaskids
Contains a mapping of tasks created in earlier versions of Microsoft® SQL Server™ to SQL Server Enterprise Manager jobs in the
current version. This table is stored in the msdb database.

Column name Data type Description
task_id int ID of the task
job_id uniqueidentifier ID of the job to which the task is mapped

Transact-SQL Reference (SQL Server 2000)

systypes
Contains one row for each system-supplied and each user-defined data type. This table is stored in each database.

These are the system-supplied data types and their ID numbers.

Column name Data type Description
name sysname Data type name.
xtype tinyint Physical storage type.
status tinyint For internal use only.
xusertype smallint Extended user type.
length smallint Physical length of data type.
xprec tinyint Internal precision, as used by server. (Not

to be used in queries.)
xscale tinyint Internal scale, as used by server. (Not to

be used in queries.)
tdefault int ID of stored procedure that contains

integrity checks for this data type.
domain int ID of stored procedure that contains

integrity checks for this data type.
uid smallint User ID of data type creator.
reserved smallint For internal use only.
usertype smallint User type ID.
variable bit Variable-length data type is 1; otherwise,

0.
allownulls bit Indicates the default nullability for this

data type. If nullability is specified with
CREATE or ALTER TABLE, then that value
overrides the default nullability for this
data type.

type tinyint Physical storage data type.
printfmt varchar(255) Reserved.
prec smallint Level of precision for this data type.
scale tinyint Scale for this data type (based on

precision).

Transact-SQL Reference (SQL Server 2000)

sysusers
Contains one row for each Microsoft® Windows user, Windows group, Microsoft SQL Server™ user, or SQL Server role in the
database.

Column name Data type Description
uid smallint User ID, unique in this database. 1 is the

database owner.
status smallint For internal use only.
name sysname Username or group name, unique in this

database.
sid varbinary(85) Security identifier for this entry.
roles varbinary(2048) For internal use only.
createdate datetime Date the account was added.
updatedate datetime Date the account was last changed.
altuid smallint For internal use only.
password varbinary(256) For internal use only.
gid smallint Group ID to which this user belongs. If uid

= gid, this entry defines a group.
environ varchar(255) Reserved.
hasdbaccess int 1, if the account has database access.
islogin int 1, if the account is a Windows group,

Windows user, or SQL Server user with a
login account.

isntname int 1, if the account is a Windows group or
Windows user.

isntgroup int 1, if the account is a Windows group.
isntuser int 1, if the account is a Windows user.
issqluser int 1, if the account is a SQL Server user.
isaliased int 1, if the account is aliased to another user.
issqlrole int 1, if the account is a SQL Server role.
isapprole int 1, if the account is an application role.

Transact-SQL Reference (SQL Server 2000)

SYSTEM_USER
Allows a system-supplied value for the current system username to be inserted into a table when no default value is specified.

Syntax

SYSTEM_USER

Remarks

Use the SYSTEM_USER niladic function with DEFAULT constraints in either the CREATE TABLE or ALTER TABLE statements, or use
as any standard function.

If the current user is logged in to Microsoft® SQL Server™ using Windows Authentication, SYSTEM_USER returns the Windows
2000 or Windows NT 4.0 login identification name, for example, DOMAIN\user_login_name. However, if the current user is
logged in to SQL Server using SQL Server Authentication, SYSTEM_USER returns the SQL Server login identification name, for
example, sa for a user logged in as sa.

Examples

A. Use SYSTEM _USER to return the current system username

This example declares a char variable, puts the current value of SYSTEM_USER into the variable, and then prints the variable.

DECLARE @sys_usr char(30)
SET @sys_usr = SYSTEM_USER
SELECT 'The current system user is: '+ @sys_usr
GO

Here is the result set:

--
The current system user is: sa

(1 row(s) affected)

B. Use SYSTEM _USER with DEFAULT constraints

This example creates a table using SYSTEM_USER as a DEFAULT constraint for the receptionist for a patient row.

USE pubs
GO
CREATE TABLE appointments2
(
 patient_id int IDENTITY(2000, 1) NOT NULL,
 doctor_id int NOT NULL,
 appt_date datetime NOT NULL DEFAULT GETDATE(),
 receptionist varchar(30) NOT NULL DEFAULT SYSTEM_USER
)
GO
INSERT appointments2 (doctor_id)
VALUES (151)
INSERT appointments2 (doctor_id, appt_date)
VALUES (293, '5/15/98')
INSERT appointments2 (doctor_id, appt_date)
VALUES (27882, '6/20/98')
INSERT appointments2 (doctor_id)
VALUES (21392)
INSERT appointments2 (doctor_id, appt_date)
VALUES (24283, '11/03/98')
GO

This is the query to select all the information from the appointments2 table:

SELECT *
FROM appointments2
ORDER BY doctor_id
GO

Here is the result set:

patient_id doctor_id appt_date receptionist

----------- ----------- ------------------------ ---------------
2000 151 Mar 4 1998 10:36AM sa
2001 293 May 15 1998 12:00AM sa
2003 21392 Mar 4 1998 10:36AM sa
2004 24283 Nov 3 1998 12:00AM sa
2002 27882 Jun 20 1998 12:00AM sa

(5 row(s) affected)

See Also

Allowing Null Values

ALTER TABLE

CREATE TABLE

CURRENT_TIMESTAMP

CURRENT_USER

Managing Security

SESSION_USER

System Functions

USER

Using Constraints, Defaults, and Null Values

Transact-SQL Reference (SQL Server 2000)

table
A special data type that can be used to store a result set for later processing. Its primary use is for temporary storage of a set of
rows, which are to be returned as the result set of a table-valued function.

Syntax

Note Use DECLARE @local_variable to declare variables of type table.

table_type_definition ::=
 TABLE ({ column_definition | table_constraint } [,...n])

column_definition ::=
 column_name scalar_data_type
 [COLLATE collation_definition]
 [[DEFAULT constant_expression] | IDENTITY [(seed , increment)]]
 [ROWGUIDCOL]
 [column_constraint] [...n]

column_constraint ::=
 { [NULL | NOT NULL]
 | [PRIMARY KEY | UNIQUE]
 | CHECK (logical_expression)
 }

table_constraint ::=
 { { PRIMARY KEY | UNIQUE } (column_name [,...n])
 | CHECK (search_condition)
 }

Arguments

table_type_definition

Is the same subset of information used to define a table in CREATE TABLE. The table declaration includes column definitions,
names, data types, and constraints. The only constraint types allowed are PRIMARY KEY, UNIQUE KEY, and NULL. A user-defined
data type cannot be used as a column scalar data type.

For more information about the syntax, see CREATE TABLE, CREATE FUNCTION, and DECLARE @local_variable.

collation_definition

Is the collation of the column consisting of a Microsoft® Windows™ locale and a comparison style, a Windows locale and the
binary notation, or a Microsoft SQL Server™ collation.

Remarks

Functions and variables can be declared to be of type table. table variables can be used in functions, stored procedures, and
batches.

Use table variables instead of temporary tables, whenever possible. table variables provide the following benefits:

A table variable behaves like a local variable. It has a well-defined scope, which is the function, stored procedure, or batch in
which it is declared.

Within its scope, a table variable may be used like a regular table. It may be applied anywhere a table or table expression is
used in SELECT, INSERT, UPDATE, and DELETE statements. However, table may not be used in the following statements:

INSERT INTO table_variable EXEC stored_procedure

SELECT select_list INTO table_variable statements.

table variables are cleaned up automatically at the end of the function, stored procedure, or batch in which they are defined.

CHECK constraints, DEFAULT values and computed columns in the table type declaration cannot call user-defined functions.

table variables used in stored procedures result in fewer recompilations of the stored procedures than when temporary
tables are used.

Transactions involving table variables last only for the duration of an update on the table variable. Thus, table variables
require less locking and logging resources.

Assignment operation between table variables is not supported. In addition, because table variables have limited scope and are
not part of the persistent database, they are not impacted by transaction rollbacks.

See Also

COLLATE

CREATE FUNCTION

CREATE TABLE

DECLARE @local_variable

User-Defined Functions That Return a table Data Type

Transact-SQL Reference (SQL Server 2000)

TAN
Returns the tangent of the input expression.

Syntax

TAN (float_expression)

Arguments

float_expression

Is an expression of type float or real, interpreted as number of radians.

Return Types

float

Examples

This example returns the tangent of PI()/2.

SELECT TAN(PI()/2)

Here is the result set:

1.6331778728383844E+16

See Also

Mathematical Functions

Transact-SQL Reference (SQL Server 2000)

text
For information about the text data type, see ntext, text, and image.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

TEXTPTR
Returns the text-pointer value that corresponds to a text, ntext, or image column in varbinary format. The retrieved text pointer
value can be used in READTEXT, WRITETEXT, and UPDATETEXT statements.

Syntax

TEXTPTR (column)

Arguments

column

Is the text, ntext, or image column to be used.

Return Types

varbinary

Remarks

In Microsoft SQL Server™ 2000, for tables with in row text, TEXTPTR returns a handle for the text to be processed. You can obtain
a valid text pointer even if the text value is null.

If the table does not have in row text, and if a text, ntext, or image column has not been initialized by an UPDATETEXT statement,
TEXTPTR returns a null pointer.

Use TEXTVALID to check whether a text pointer exists. You cannot use UPDATETEXT, WRITETEXT, or READTEXT without a valid text
pointer.

These functions and statements are also useful with text, ntext, and image data.

Function or statement Description
PATINDEX('%pattern%',
expression)

Returns the character position of a given character
string in text or ntext columns.

DATALENGTH(expression) Returns the length of data in text, ntext, and
image columns.

SET TEXTSIZE Returns the limit, in bytes, of the text, ntext, or
image data to be returned with a SELECT
statement.

SUBSTRING(text_column, start,
length)

Returns a varchar string specified by the given
start offset and length. The length should be less
than 8 KB.

Examples

A. Use TEXTPTR

This example uses the TEXTPTR function to locate the image column logo associated with New Moon Books in the pub_info
table of the pubs database. The text pointer is put into a local variable @ptrval.

USE pubs
GO
DECLARE @ptrval varbinary(16)
SELECT @ptrval = TEXTPTR(logo)
FROM pub_info pr, publishers p
WHERE p.pub_id = pr.pub_id
 AND p.pub_name = 'New Moon Books'
GO

B. Use TEXTPTR with in row text

In SQL Server 2000, the in row text pointer must be used inside a transaction. Here is an example.

CREATE TABLE t1 (c1 int, c2 text)
EXEC sp_tableoption 't1', 'text in row', 'on'
INSERT t1 VALUES ('1', 'This is text.')
GO
BEGIN TRAN
 DECLARE @ptrval VARBINARY(16)
 SELECT @ptrval = TEXTPTR(c2)
 FROM t1
 WHERE c1 = 1
 READTEXT t1.c2 @ptrval 0 1
COMMIT

C. Return text data

This example selects the pub_id column and the 16-byte text pointer of the pr_info column from the pub_info table.

USE pubs
GO
SELECT pub_id, TEXTPTR(pr_info)
FROM pub_info
ORDER BY pub_id
GO

Here is the result set:

pub_id
------ ----------------------------------
0736 0x6c0000000000feffb801000001000100
0877 0x6d0000000000feffb801000001000300
1389 0x6e0000000000feffb801000001000500
1622 0x700000000000feffb801000001000900
1756 0x710000000000feffb801000001000b00
9901 0x720000000000feffb801000001000d00
9952 0x6f0000000000feffb801000001000700
9999 0x730000000000feffb801000001000f00

(8 row(s) affected)

This example shows how to return the first 8,000 bytes of text without using TEXTPTR.

USE pubs
GO
SET TEXTSIZE 8000
SELECT pub_id, pr_info
FROM pub_info
ORDER BY pub_id
GO

Here is the result set:

pub_id pr_info
------ ---
0736 New Moon Books (NMB) has just released another top ten publication. With the latest publication this
makes NMB the hottest new publisher of the year!
0877 This is sample text data for Binnet & Hardley, publisher 0877 in the pubs database. Binnet & Hardley is
located in Washington, D.C.

This is sample text data for Binnet & Hardley, publisher 0877 in the pubs database. Binnet & Hardley is located
in Washi
1389 This is sample text data for Algodata Infosystems, publisher 1389 in the pubs database. Algodata
Infosystems is located in Berkeley, California.

9999 This is sample text data for Lucerne Publishing, publisher 9999 in the pubs database. Lucerne publishing
is located in Paris, France.

This is sample text data for Lucerne Publishing, publisher 9999 in the pubs database. Lucerne publishing is
located in

(8 row(s) affected)

D. Return specific text data

This example locates the text column (pr_info) associated with pub_id 0736 in the pub_info table of the pubs database. It first
declares the local variable @val. The text pointer (a long binary string) is then put into @val and supplied as a parameter to the
READTEXT statement, which returns 10 bytes starting at the fifth byte (offset of 4).

USE pubs

GO
DECLARE @val varbinary(16)
SELECT @val = TEXTPTR(pr_info)
FROM pub_info
WHERE pub_id = '0736'
READTEXT pub_info.pr_info @val 4 10
GO

Here is the result set:

(1 row(s) affected)

pr_info
--
 is sample

See Also

DATALENGTH

PATINDEX

READTEXT

SET TEXTSIZE

Text and Image Functions

UPDATETEXT

WRITETEXT

Transact-SQL Reference (SQL Server 2000)

TEXTVALID
A text, ntext, or image function that checks whether a given text pointer is valid.

Syntax

TEXTVALID ('table.column' , text_ ptr)

Arguments

table

Is the name of the table to be used.

column

Is the name of the column to be used.

text_ptr

Is the text pointer to be checked.

Return Types

int

Remarks

Returns 1 if the pointer is valid and 0 if the pointer is invalid. Note that the identifier for the text column must include the table
name. You cannot use UPDATETEXT, WRITETEXT, or READTEXT without a valid text pointer.

These functions and statements are also useful with text, ntext, and image data.

Function or statement Description
PATINDEX('%pattern%',
expression)

Returns the character position of a given character
string in text and ntext columns.

DATALENGTH(expression) Returns the length of data in text, ntext, and image
columns.

SET TEXTSIZE Returns the limit, in bytes, of the text, ntext, or
image data to be returned with a SELECT statement.

Examples

This example reports whether a valid text pointer exists for each value in the logo column of the pub_info table.

USE pubs
GO
SELECT pub_id, 'Valid (if 1) Text data'
 = TEXTVALID ('pub_info.logo', TEXTPTR(logo))
FROM pub_info
ORDER BY pub_id
GO

Here is the result set:

pub_id Valid (if 1) Text data
------ ----------------------
0736 1
0877 1
1389 1
1622 1
1756 1
9901 1
9952 1
9999 1

(8 row(s) affected)

See Also

DATALENGTH

PATINDEX

SET TEXTSIZE

Text and Image Functions

TEXTPTR

Transact-SQL Reference (SQL Server 2000)

timestamp
timestamp is a data type that exposes automatically generated binary numbers, which are guaranteed to be unique within a
database. timestamp is used typically as a mechanism for version-stamping table rows. The storage size is 8 bytes.

Remarks

The Transact-SQL timestamp data type is not the same as the timestamp data type defined in the SQL-92 standard. The SQL-92
timestamp data type is equivalent to the Transact-SQL datetime data type.

A future release of Microsoft® SQL Server™ may modify the behavior of the Transact-SQL timestamp data type to align it with
the behavior defined in the standard. At that time, the current timestamp data type will be replaced with a rowversion data type.

Microsoft® SQL Server™ 2000 introduces a rowversion synonym for the timestamp data type. Use rowversion instead of
timestamp wherever possible in DDL statements. rowversion is subject to the behaviors of data type synonyms. For more
information, see Data Type Synonyms.

In a CREATE TABLE or ALTER TABLE statement, you do not have to supply a column name for the timestamp data type:

CREATE TABLE ExampleTable (PriKey int PRIMARY KEY, timestamp)

If you do not supply a column name, SQL Server generates a column name of timestamp. The rowversion data type synonym
does not follow this behavior. You must supply a column name when you specify rowversion.

A table can have only one timestamp column. The value in the timestamp column is updated every time a row containing a
timestamp column is inserted or updated. This property makes a timestamp column a poor candidate for keys, especially
primary keys. Any update made to the row changes the timestamp value, thereby changing the key value. If the column is in a
primary key, the old key value is no longer valid, and foreign keys referencing the old value are no longer valid. If the table is
referenced in a dynamic cursor, all updates change the position of the rows in the cursor. If the column is in an index key, all
updates to the data row also generate updates of the index.

A nonnullable timestamp column is semantically equivalent to a binary(8) column. A nullable timestamp column is
semantically equivalent to a varbinary(8) column.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

tinyint
For information about the tinyint data type, see int, bigint, smallint, and tinyint.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

Trace Flags
 New Information - SQL Server 2000 SP3.

Trace flags are used to temporarily set specific server characteristics or to switch off a particular behavior. For example, if trace
flag 3205 is set when Microsoft® SQL Server™ starts, hardware compression for tape drivers is disabled. Trace flags are often
used to diagnose performance issues or to debug stored procedures or complex computer systems.

These trace flags are available in SQL Server.

Note Trace flag behaviors may or may not be supported in future releases.

Trace flag Description
260 Prints versioning information about extended stored procedure

dynamic-link libraries (DLLs). For more information about
__GetXpVersion(), see Creating Extended Stored Procedures.

1204 Returns the type of locks participating in the deadlock and the
current command affected. The deadlock information is
automatically sent to the error log.

2528 Disables parallel checking of objects by DBCC CHECKDB, DBCC
CHECKFILEGROUP, and DBCC CHECKTABLE. By default, the degree of
parallelism is determined automatically by the query processor. The
maximum degree of parallelism is configured in the same manner as
that of parallel queries. For more information, see max degree of
parallelism Option.

Parallel DBCC should typically be left enabled. In the case of DBCC
CHECKDB, the query processor re-evaluates and automatically
adjusts parallelism with each table or batch of tables checked. In
some cases, checking may commence while the server is virtually
idle. An administrator who knows that the load will increase before
checking is complete may want to manually decrease or disable
parallelism.

However, disabling parallel checking can cause a decrease in overall
database performance. Decreasing the degree of parallelism
increases the amount of transaction log that must be scanned. This in
turn increases the demand for tempdb space and results in a non-
linear increase in the time required for dbcc to complete its checks. If
DBCC is run with the TABLOCK feature enabled and parallelism
turned off, tables may be locked for longer periods of time.

3205 By default, if a tape drive supports hardware compression, either the
DUMP or BACKUP statement uses it. With this trace flag, you can
disable hardware compression for tape drivers. This is useful when
you want to exchange tapes with other sites or tape drives that do
not support compression.

Examples

A. Set trace flags using DBCC TRACEON

This example turns on trace flag 3205 by using DBCC TRACEON.

DBCC TRACEON (3205)

B. Set trace flags at the command prompt

This example turns on trace flag 3205 at the command prompt.

sqlservr –d"C:\Program Files\Microsoft SQL Server\MSSQL\Data\master.mdf" –T3205

See Also

Data Types

DBCC INPUTBUFFER

DBCC OUTPUTBUFFER

DBCC TRACEOFF

DBCC TRACEON

EXECUTE

SELECT

SET NOCOUNT

sp_dboption

SQL Server Backward Compatibility Details

sqlservr Application

Transact-SQL Reference (SQL Server 2000)

Transactions
A transaction is a single unit of work. If a transaction is successful, all of the data modifications made during the transaction are
committed and become a permanent part of the database. If a transaction encounters errors and must be canceled or rolled back,
then all of the data modifications are erased.

Microsoft® SQL Server™ operates in three transaction modes:

Autocommit transactions

Each individual statement is a transaction.

Explicit transactions

Each transaction is explicitly started with the BEGIN TRANSACTION statement and explicitly ended with a COMMIT or ROLLBACK
statement.

Implicit transactions

A new transaction is implicitly started when the prior transaction completes, but each transaction is explicitly completed with a
COMMIT or ROLLBACK statement.

For more information, see Transactions.

See Also

BEGIN DISTRIBUTED TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION

SET IMPLICIT_TRANSACTIONS

@@TRANCOUNT

Transact-SQL Reference (SQL Server 2000)

TRIGGER_NESTLEVEL
Returns the number of triggers executed for the UPDATE, INSERT, or DELETE statement that fired the trigger.
TRIGGER_NESTLEVEL is used in triggers to determine the current level of nesting.

Syntax

TRIGGER_NESTLEVEL ([object_id])

Arguments

object_id

Is the object ID of a trigger. If object_id is specified, the number of times the specified trigger has been executed for the statement
is returned. If object_id is not specified, the number of times all triggers have been executed for the statement is returned.

When object_id is omitted (this is different from a null value), TRIGGER_NESTLEVEL returns the number of triggers on the call
stack, including itself. Omission of object_id can occur when a trigger executes commands causing another trigger to be fired or
creates a succession of firing triggers.

Remarks

TRIGGER_NESTLEVEL returns 0 if it is executed outside of a trigger and object_id is not NULL.

TRIGGER_NESTLEVEL optionally receives an object ID as its argument. When object_id is explicitly specified as NULL or an invalid
object id is referenced, a value of NULL is returned regardless of whether TRIGGER_NESTLEVEL was used within or external to a
trigger.

Examples

A. Test nesting level of a specific trigger

IF ((SELECT trigger_nestlevel(object_ID('xyz'))) > 5)
 RAISERROR('Trigger xyz nested more than 5 levels.',16,-1)

B. Test nesting level of all triggers executed

IF ((SELECT trigger_nestlevel()) > 5)
 RAISERROR
 ('This statement nested over 5 levels of triggers.',16,-1)

See Also

CREATE TRIGGER

Transact-SQL Reference (SQL Server 2000)

TRUNCATE TABLE
Removes all rows from a table without logging the individual row deletes.

Syntax

TRUNCATE TABLE name

Arguments

name

Is the name of the table to truncate or from which all rows are removed.

Remarks

TRUNCATE TABLE is functionally identical to DELETE statement with no WHERE clause: both remove all rows in the table. But
TRUNCATE TABLE is faster and uses fewer system and transaction log resources than DELETE.

The DELETE statement removes rows one at a time and records an entry in the transaction log for each deleted row. TRUNCATE
TABLE removes the data by deallocating the data pages used to store the table's data, and only the page deallocations are
recorded in the transaction log.

TRUNCATE TABLE removes all rows from a table, but the table structure and its columns, constraints, indexes and so on remain.
The counter used by an identity for new rows is reset to the seed for the column. If you want to retain the identity counter, use
DELETE instead. If you want to remove table definition and its data, use the DROP TABLE statement.

You cannot use TRUNCATE TABLE on a table referenced by a FOREIGN KEY constraint; instead, use DELETE statement without a
WHERE clause. Because TRUNCATE TABLE is not logged, it cannot activate a trigger.

TRUNCATE TABLE may not be used on tables participating in an indexed view.

Examples

This example removes all data from the authors table.

TRUNCATE TABLE authors

Permissions

TRUNCATE TABLE permissions default to the table owner, members of the sysadmin fixed server role, and the db_owner and
db_ddladmin fixed database roles, and are not transferable.

See Also

DELETE

DROP TABLE

Transact-SQL Reference (SQL Server 2000)

TYPEPROPERTY
Returns information about a data type.

Syntax

TYPEPROPERTY (type , property)

Arguments

type

Is the name of the data type.

property

Is the type of information to be returned for the data type. property can be one of these values.

Property Description Value returned
Precision Precision for the data

type.
The number of digits or characters.

NULL = Data type not found.

Scale Scale for the data type. The number of decimal places for
the data type.

NULL = Data type is not numeric or
not found.

AllowsNull Data type allows null
values.

1 = True
0 = False
NULL = Data type not found.

UsesAnsiTrim ANSI padding setting
was ON when the data
type was created.

1 = True
0 = False
NULL = Data type not found, or it is
not a binary or string data type.

Return Types

int

Examples

This example returns the precision or number of digits for the integer data type.

SELECT TYPEPROPERTY('tinyint', 'PRECISION')

See Also

COLUMNPROPERTY

Metadata Functions

OBJECTPROPERTY

Transact-SQL Reference (SQL Server 2000)

UNICODE
Returns the integer value, as defined by the Unicode standard, for the first character of the input expression.

Syntax

UNICODE ('ncharacter_expression')

Arguments

'ncharacter_expression'

Is an nchar or nvarchar expression.

Return Types

int

Examples

A. Use UN ICODE and N CHAR

This example uses the UNICODE and NCHAR functions to print the UNICODE value of the first character of the Åkergatan 24-
character string, and to print the actual first character, Å.

DECLARE @nstring nchar(12)
SET @nstring = N'Åkergatan 24'
SELECT UNICODE(@nstring), NCHAR(UNICODE(@nstring))

Here is the result set:

----------- -
197 Å

B. Use SUBSTRIN G, UN ICODE, and CON VERT

This example uses the SUBSTRING, UNICODE, and CONVERT functions to print the character number, the Unicode character, and
the UNICODE value of each of the characters in the string Åkergatan 24.

-- The @position variable holds the position of the character currently
-- being processed. The @nstring variable is the Unicode character
-- string to process.
DECLARE @position int, @nstring nchar(12)
-- Initialize the current position variable to the first character in
-- the string.
SET @position = 1
-- Initialize the character string variable to the string to process.
-- Notice that there is an N before the start of the string, which
-- indicates that the data following the N is Unicode data.
SET @nstring = N'Åkergatan 24'
-- Print the character number of the position of the string you are at,
-- the actual Unicode character you are processing, and the UNICODE
-- value for this particular character.
PRINT 'Character #' + ' ' + 'Unicode Character' + ' ' + 'UNICODE Value'
WHILE @position <= DATALENGTH(@nstring)
-- While these are still characters in the character string,
 BEGIN
 SELECT @position,
 CONVERT(char(17), SUBSTRING(@nstring, @position, 1)),
 UNICODE(SUBSTRING(@nstring, @position, 1))
 SELECT @position = @position + 1
 END

Here is the result set:

Character # Unicode Character UNICODE Value

----------- ----------------- -----------
1 Å 197

----------- ----------------- -----------

2 k 107

----------- ----------------- -----------
3 e 101

----------- ----------------- -----------
4 r 114

----------- ----------------- -----------
5 g 103

----------- ----------------- -----------
6 a 97

----------- ----------------- -----------
7 t 116

----------- ----------------- -----------
8 a 97

----------- ----------------- -----------
9 n 110

----------- ----------------- -----------
10 32

----------- ----------------- -----------
11 2 50

----------- ----------------- -----------
12 4 52

See Also

Data Types

NCHAR

String Functions

Using Unicode Data

Transact-SQL Reference (SQL Server 2000)

UNION
Combines the results of two or more queries into a single result set consisting of all the rows belonging to all queries in the
union. For more information, see SELECT.

Transact-SQL Reference (SQL Server 2000)

uniqueidentifier
A globally unique identifier (GUID).

Remarks

A column or local variable of uniqueidentifier data type can be initialized to a value in two ways:

Using the NEWID function.

Converting from a string constant in the following form (xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, in which each x is a
hexadecimal digit in the range 0-9 or a-f). For example, 6F9619FF-8B86-D011-B42D-00C04FC964FF is a valid
uniqueidentifier value.

Comparison operators can be used with uniqueidentifier values. However, ordering is not implemented by comparing the bit
patterns of the two values. The only operations that are allowed against a uniqueidentifier value are comparisons (=, <>, <, >,
<=, >=) and checking for NULL (IS NULL and IS NOT NULL). No other arithmetic operators are allowed. All column constraints
and properties except IDENTITY are allowed on the uniqueidentifier data type.

See Also

ALTER TABLE

CAST and CONVERT

CREATE TABLE

Data Type Conversion

Data Types

DECLARE @local_variable

DELETE

INSERT

NEWID

Replication Overview

SET @local_variable

UPDATE

Transact-SQL Reference (SQL Server 2000)

UPDATE
Changes existing data in a table.

Syntax

UPDATE
 {
 table_name WITH (< table_hint_limited > [...n])
 | view_name
 | rowset_function_limited
 }
 SET
 { column_name = { expression | DEFAULT | NULL }
 | @variable = expression
 | @variable = column = expression } [,...n]

 { { [FROM { < table_source > } [,...n]]

 [WHERE
 < search_condition >] }
 |
 [WHERE CURRENT OF
 { { [GLOBAL] cursor_name } | cursor_variable_name }
] }
 [OPTION (< query_hint > [,...n])]

< table_source > ::=
 table_name [[AS] table_alias] [WITH (< table_hint > [,...n])]
 | view_name [[AS] table_alias]
 | rowset_function [[AS] table_alias]
 | derived_table [AS] table_alias [(column_alias [,...n])]
 | < joined_table >

< joined_table > ::=
 < table_source > < join_type > < table_source > ON < search_condition >
 | < table_source > CROSS JOIN < table_source >
 | < joined_table >

< join_type > ::=
 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }]
 [< join_hint >]
 JOIN

< table_hint_limited > ::=
 { FASTFIRSTROW
 | HOLDLOCK
 | PAGLOCK
 | READCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE
 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 }

< table_hint > ::=
 { INDEX (index_val [,...n])
 | FASTFIRSTROW
 | HOLDLOCK
 | NOLOCK
 | PAGLOCK

 | READCOMMITTED
 | READPAST
 | READUNCOMMITTED
 | REPEATABLEREAD
 | ROWLOCK
 | SERIALIZABLE
 | TABLOCK
 | TABLOCKX
 | UPDLOCK
 }

< query_hint > ::=
 { { HASH | ORDER } GROUP
 | { CONCAT | HASH | MERGE } UNION
 | {LOOP | MERGE | HASH } JOIN
 | FAST number_rows
 | FORCE ORDER
 | MAXDOP
 | ROBUST PLAN
 | KEEP PLAN
 }

Arguments

table_name

Is the name of the table to update. The name can be qualified with the linked server, database, and owner name if the table is not
in the current server or database, or is not owned by the current user.

WITH (< table_hint_limited > [...n])

Specifies one or more table hints that are allowed for a target table. The WITH keyword and the parentheses are required.
READPAST, NOLOCK, and READUNCOMMITTED are not allowed. For information about table hints, see FROM.

view_name

Is the name of the view to update. The view referenced by view_name must be updatable. The modifications made by the UPDATE
statement cannot affect more than one of the base tables referenced in the FROM clause of the view. For more information on
updatable views, see CREATE VIEW.

rowset_function_limited

Is either the OPENQUERY or OPENROWSET function, subject to provider capabilities. For more information about capabilities
needed by the provider, see UPDATE and DELETE Requirements for OLE DB Providers. For more information about the rowset
functions, see OPENQUERY and OPENROWSET.

SET

Specifies the list of column or variable names to be updated.

column_name

Is a column that contains the data to be changed. column_name must reside in the table or view specified in the UPDATE clause.
Identity columns cannot be updated.

If a qualified column name is specified, the qualifier must match the table or view name in the UPDATE clause. For example, this is
valid:

UPDATE authors
 SET authors.au_fname = 'Annie'
 WHERE au_fname = 'Anne'

A table alias specified in a FROM clause cannot be used as a qualifier in SET column_name. For example, this is not valid:

UPDATE titles
 SET t.ytd_sales = t.ytd_sales + s.qty
 FROM titles t, sales s
 WHERE t.title_id = s.title_id
 AND s.ord_date = (SELECT MAX(sales.ord_date) FROM sales)

To make the example work, remove the t. alias from the column name.

UPDATE titles
 SET ytd_sales = t.ytd_sales + s.qty
 FROM titles t, sales s
 WHERE t.title_id = s.title_id
 AND s.ord_date = (SELECT MAX(sales.ord_date) FROM sales)

expression

Is a variable, literal value, expression, or a parenthesized subSELECT statement that returns a single value. The value returned by
expression replaces the existing value in column_name or @variable.

DEFAULT

Specifies that the default value defined for the column is to replace the existing value in the column. This can also be used to
change the column to NULL if the column has no default and is defined to allow null values.

@variable

Is a declared variable that is set to the value returned by expression.

SET @variable = column = expression sets the variable to the same value as the column. This differs from SET @variable =
column, column = expression, which sets the variable to the pre-update value of the column.

FROM < table_source >

Specifies that a table is used to provide the criteria for the update operation. For more information, see FROM.

table_name [[AS] table_alias]
Is the name of a table to provide criteria for the update operation.

If the table being updated is the same as the table in the FROM clause, and there is only one reference to the table in the FROM
clause, table_alias may or may not be specified. If the table being updated appears more than one time in the FROM clause, one
(and only one) reference to the table must not specify a table alias. All other references to the table in the FROM clause must
include a table alias.

view_name [[AS] table_alias]
Is the name of a view to provide criteria for the update operation. A view with an INSTEAD OF UPDATE trigger cannot be a
target of an UPDATE with a FROM clause.

WITH (< table_hint > [...n])
Specifies one or more table hints for a source table. For information about table hints, see "FROM" in this volume.

rowset_function [[AS] table_alias]
Is the name of any rowset function and an optional alias. For information about a list of rowset functions, see Rowset Functions.

derived_table
Is a subquery that retrieves rows from the database. derived_table is used as input to the outer query.

column_alias
Is an optional alias to replace a column name in the result set. Include one column alias for each column in the select list, and
enclose the entire list of column aliases in parentheses.

< joined_table >

Is a result set that is the product of two or more tables, for example:

SELECT *
FROM tab1 LEFT OUTER JOIN tab2 ON tab1.c3 = tab2.c3
 RIGHT OUTER JOIN tab3 LEFT OUTER JOIN tab4
 ON tab3.c1 = tab4.c1
 ON tab2.c3 = tab4.c3

For multiple CROSS joins, use parentheses to change the natural order of the joins.

< join_type >

Specifies the type of join operation.

INNER
Specifies that all matching pairs of rows are returned. Discards unmatched rows from both tables. This is the default if no join
type is specified.

LEFT [OUTER]
Specifies that all rows from the left table not meeting the specified condition are included in the result set in addition to all rows
returned by the inner join. Output columns from the left table are set to NULL.

RIGHT [OUTER]
Specifies that all rows from the right table not meeting the specified condition are included in the result set in addition to all
rows returned by the inner join. Output columns from the right table are set to NULL.

FULL [OUTER]
If a row from either the left or right table does not match the selection criteria, specifies the row be included in the result set,
and output columns that correspond to the other table be set to NULL. This is in addition to all rows usually returned by the
inner join.

< join_hint >
Specifies a join hint or execution algorithm. If <join_hint> is specified, INNER, LEFT, RIGHT, or FULL must also be explicitly
specified. For more information about joint hints, see FROM.

JOIN
Indicates that the specified tables or views should be joined.

ON < search_condition >

Specifies the condition on which the join is based. The condition can specify any predicate, although columns and comparison
operators are often used, for example:

FROM Suppliers JOIN Products
 ON (Suppliers.SupplierID = Products.SupplierID)

When the condition specifies columns, the columns do not have to have the same name or same data type; however, if the data
types are not identical, they must be either compatible or types that Microsoft® SQL Server™ can implicitly convert. If the data
types cannot be implicitly converted, the condition must explicitly convert the data type using the CAST function.

For more information about search conditions and predicates, see Search Condition.

CROSS JOIN

Specifies the cross-product of two tables. Returns the same rows as if the tables to be joined were simply listed in the FROM
clause and no WHERE clause was specified.

WHERE

Specifies the conditions that limit the rows that are updated. There are two forms of update based on which form of the WHERE
clause is used:

Searched updates specify a search condition to qualify the rows to delete.

Positioned updates use the CURRENT OF clause to specify a cursor. The update operation occurs at the current position of
the cursor.

< search_condition >

Specifies the condition to be met for the rows to be updated. The search condition can also be the condition upon which a join is
based. There is no limit to the number of predicates that can be included in a search condition. For more information about
predicates and search conditions, see Search Condition.

CURRENT OF

Specifies that the update is performed at the current position of the specified cursor.

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of the open cursor from which the fetch should be made. If both a global and a local cursor exist with cursor_name as
their name, cursor_name refers to the global cursor if GLOBAL is specified. If GLOBAL is not specified, cursor_name refers to the
local cursor. The cursor must allow updates.

cursor_variable_name

Is the name of a cursor variable. cursor_variable_name must reference a cursor that allows updates.

OPTION (< query_hint > [,...n])

Specifies that optimizer hints are used to customize SQL Server's processing of the statement.

{ HASH | ORDER } GROUP

Specifies that the aggregations specified in the GROUP BY or COMPUTE clause of the query should use hashing or ordering.
{ LOOP | MERGE | HASH |} JOIN

Specifies that all join operations are performed by loop join, merge join, or hash join in the whole query. If more than one join
hint is specified, the query optimizer selects the least expensive join strategy for the allowed ones. If, in the same query, a join
hint is also specified for a specific pair of tables, it takes precedence in the joining of the two tables.

{ MERGE | HASH | CONCAT } UNION
Specifies that all UNION operations should be performed by merging, hashing, or concatenating UNION sets. If more than one
UNION hint is specified, the query optimizer selects the least expensive strategy from those hints specified.

Note If a join hint is also specified for any particular pair of joined tables in the FROM clause, it takes precedence over any join
hint specified in the OPTION clause.

FAST number_rows
Specifies that the query is optimized for fast retrieval of the first number_rows (a nonnegative integer). After the first
number_rows are returned, the query continues execution and produces its full result set.

FORCE ORDER
Specifies that the join order indicated by the query syntax should be preserved during query optimization.

MAXDOP number
Overrides the max degree of parallelism configuration option (of sp_configure) only for the query specifying this option. All
semantic rules used with max degree of parallelism configuration option are applicable when using the MAXDOP query hint.
For more information, see max degree of parallelism Option.

ROBUST PLAN
Forces the query optimizer to attempt a plan that works for the maximum potential row size at the expense of performance. If
no such plan is possible, the query optimizer returns an error rather than deferring error detection to query execution. Rows
may contain variable-length columns; SQL Server allows rows to be defined whose maximum potential size is beyond the
ability of SQL Server to process. Usually, despite the maximum potential size, an application stores rows that have actual sizes
within the limits that SQL Server can process. If SQL Server encounters a row that is too long, an execution error is returned.

KEEP PLAN

Forces the query optimizer to relax the estimated recompile threshold for a query. The estimated recompile threshold is the point
at which a query is automatically recompiled when the estimated number of indexed column changes (update, delete or insert)
have been made to a table. Specifying KEEP PLAN ensures that a query will be recompiled less frequently when there are multiple
updates to a table.

Remarks

UPDATE statements are allowed in the body of user-defined functions only if the table being modified is a table variable.

A table variable, in its scope, may be accessed like a regular table. Thus, a table variable may be used as the table in which data is
updated in an UPDATE statement.

A four-part name constructed with the OPENDATASOURCE function as the server-name part may be used as a table source in all
places a table name can appear in UPDATE statements.

If an update to a row violates a constraint or rule, if it violates the NULL setting for the column, or if the new value is an
incompatible data type, the statement is canceled, an error is returned, and no records are updated.

When an UPDATE statement encounters an arithmetic error (overflow, divide by zero, or a domain error) during expression
evaluation, the update is not performed. The remainder of the batch is not executed, and an error message is returned.

If an update to a column or columns participating in a clustered index causes the size of the clustered index and the row to exceed
8,060 bytes, the update fails and an error message is returned.

When an INSTEAD-OF trigger is defined on UPDATE actions against a table, the trigger executes instead of the UPDATE statement.
Previous versions of SQL Server only support AFTER triggers defined on UPDATE and other data modification statements.

If an update query could alter more than one row while updating both the clustering key and one or more text, image, or
Unicode columns, the update operation fails and SQL Server returns an error message.

Modifying a text, ntext, or image column with UPDATE initializes the column, assigns a valid text pointer to it, and allocates at
least one data page unless updating the column with NULL.

Note The UPDATE statement is logged. If you are replacing or modifying large blocks of text, ntext, or image data, use the
WRITETEXT or UPDATETEXT statement instead of the UPDATE statement. The WRITETEXT and UPDATETEXT statements (by
default) are not logged.

All char and nchar columns are right-padded to the defined length.

The setting of the SET ROWCOUNT option is ignored for UPDATE statements against remote tables and local and remote
partitioned views.

If ANSI_PADDING is set OFF, all trailing spaces are removed from data inserted into varchar and nvarchar columns, except in
strings containing only spaces. These strings are truncated to an empty string. If ANSI_PADDING is set ON, trailing spaces are
inserted. The Microsoft SQL Server ODBC driver and OLE DB Provider for SQL Server automatically set ANSI_PADDING ON for
each connection. This can be configured in ODBC data sources or by setting connection attributes or properties.

A positioned update using a WHERE CURRENT OF clause updates the single row at the current position of the cursor. This can be
more accurate than a searched update that uses a WHERE <search_condition> clause to qualify the rows to be updated. A
searched update modifies multiple rows when the search condition does not uniquely identify a single row.

The results of an UPDATE statement are undefined if the statement includes a FROM clause that is not specified in such a way that
only one value is available for each column occurrence that is updated (in other words, if the UPDATE statement is not
deterministic). For example, given the UPDATE statement in the following script, both rows in table s meet the qualifications of the
FROM clause in the UPDATE statement, but it is undefined which row from s is used to update the row in table t.

CREATE TABLE s (ColA INT, ColB DECIMAL(10,3))
GO
CREATE TABLE t (ColA INT PRIMARY KEY, ColB DECIMAL(10,3))
GO
INSERT INTO s VALUES(1, 10.0)
INSERT INTO s VALUES(1, 20.0)
INSERT INTO t VALUES(1, 0.0)
GO
UPDATE t
SET t.ColB = t.ColB + s.ColB
FROM t INNER JOIN s ON (t.ColA = s.ColA)
GO

The same problem can occur when combining the FROM and WHERE CURRENT OF clauses. In this example, both rows in table t2
meet the qualifications of the FROM clause in the UPDATE statement. It is undefined which row from t2 is to be used to update
the row in table t1.

CREATE TABLE t1(c1 INT PRIMARY KEY, c2 INT)
GO
CREATE TABLE t2(d1 INT PRIMARY KEY, d2 INT)
GO
INSERT INTO t1 VALUES (1, 10)
INSERT INTO t2 VALUES (1, 20)
INSERT INTO t2 VALUES (2, 30)
go

DECLARE abc CURSOR LOCAL FOR
SELECT * FROM t1

OPEN abc

FETCH abc

UPDATE t1 SET c2 = c2 + d2
FROM t2
WHERE CURRENT OF abc
GO

Setting Variables and Columns

Variable names can be used in UPDATE statements to show the old and new values affected. This should only be used when the
UPDATE statement affects a single record; if the UPDATE statement affects multiple records, the variables only contain the values
for one of the updated rows.

Permissions

UPDATE permissions default to members of the sysadmin fixed server role, the db_owner and db_datawriter fixed database
roles, and the table owner. Members of the sysadmin, db_owner, and db_securityadmin roles, and the table owner can transfer
permissions to other users.

SELECT permissions are also required for the table being updated if the UPDATE statement contains a WHERE clause, or if
expression in the SET clause uses a column in the table.

Examples

A. Use a simple UPDATE

These examples show how all rows can be affected if a WHERE clause is eliminated from an UPDATE statement.

If all the publishing houses in the publishers table move their head offices to Atlanta, Georgia, this example shows how the
publishers table can be updated.

UPDATE publishers
SET city = 'Atlanta', state = 'GA'

This example changes the names of all the publishers to NULL.

UPDATE publishers
SET pub_name = NULL

You can also use computed values in an update. This example doubles all prices in the titles table.

UPDATE titles
SET price = price * 2

B. Use the UPDATE statement with a WHERE clause

The WHERE clause specifies the rows to update. For example, consider the unlikely event that northern California is renamed
Pacifica (abbreviated PC) and the people of Oakland vote to change the name of their city to Bay City. This example shows how to
update the authors table for all former Oakland residents whose addresses are now out of date.

UPDATE authors
 SET state = 'PC', city = 'Bay City'
 WHERE state = 'CA' AND city = 'Oakland'

You must write another statement to change the name of the state for residents of other northern California cities.

C. Use the UPDATE statement using information from another table

This example modifies the ytd_sales column in the titles table to reflect the most recent sales recorded in the sales table.

UPDATE titles
 SET ytd_sales = titles.ytd_sales + sales.qty
 FROM titles, sales
 WHERE titles.title_id = sales.title_id
 AND sales.ord_date = (SELECT MAX(sales.ord_date) FROM sales)

This example assumes that only one set of sales is recorded for a given title on a given date and that updates are current. If this is
not the case (if more than one sale for a given title can be recorded on the same day), the example shown here does not work
correctly. It executes without error, but each title is updated with only one sale, regardless of how many sales actually occurred on
that day. This is because a single UPDATE statement never updates the same row twice.

In the situation in which more than one sale for a given title can occur on the same day, all the sales for each title must be
aggregated together within the UPDATE statement, as shown in this example:

UPDATE titles
 SET ytd_sales =
 (SELECT SUM(qty)
 FROM sales
 WHERE sales.title_id = titles.title_id
 AND sales.ord_date IN (SELECT MAX(ord_date) FROM sales))
 FROM titles, sales

D. Use UPDATE with the TOP clause in a SELECT statement

This example updates the state column for the first 10 authors from the authors table.

UPDATE authors
SET state = 'ZZ'
FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1
WHERE authors.au_id = t1.au_id

See Also

CREATE INDEX

CREATE TABLE

CREATE TRIGGER

Cursors

DELETE

INSERT

SET ROWCOUNT

Text and Image Functions

Transact-SQL Reference (SQL Server 2000)

UPDATE STATISTICS
Updates information about the distribution of key values for one or more statistics groups (collections) in the specified table or
indexed view. To create statistics on columns, see CREATE STATISTICS.

Syntax

UPDATE STATISTICS table | view
 [
 index
 | (statistics_name [,...n])
]
 [WITH
 [
 [FULLSCAN]
 | SAMPLE number { PERCENT | ROWS }]
 | RESAMPLE
]
 [[,] [ALL | COLUMNS | INDEX]
 [[,] NORECOMPUTE]
]

Arguments

table | view

Is the name of the table or indexed view for which to update statistics. Table or view names must conform to the rules for
identifiers. For more information, see Using Identifiers. Because index names are not unique within each database, table or view
must be specified. Specifying the database, table, or view owner is optional. Indexed views are supported only on Microsoft® SQL
Server™ 2000, Enterprise Edition.

index

Is the index for which statistics are being updated. Index names must conform to the rules for identifiers. If index is not specified,
the distribution statistics for all indexes in the specified table or indexed view are updated. To see a list of index names and
descriptions, execute sp_helpindex with the table or view name.

statistics_name

Is the name of the statistics group (collection) to update. Statistics names must conform to the rules for identifiers. For more
information about creating statistics groups, see CREATE STATISTICS.

n

Is a placeholder indicating that multiple statistics_name groups can be specified.

FULLSCAN

Specifies that all rows in table or view should be read to gather the statistics. FULLSCAN provides the same behavior as SAMPLE
100 PERCENT. FULLSCAN cannot be used with the SAMPLE option.

SAMPLE number { PERCENT | ROWS }

Specifies the percentage of the table or indexed view, or the number of rows to sample when collecting statistics for larger tables
or views. Only integers are allowed for number whether it is PERCENT or ROWS. To use the default sampling behavior for larger
tables or views, use SAMPLE number with PERCENT or ROWS. Microsoft SQL Server ensures a minimum number of values are
sampled to ensure useful statistics. If the PERCENT, ROWS, or number option results in too few rows being sampled, SQL Server
automatically corrects the sampling based on the number of existing rows in the table or view.

Note The default behavior is to perform a sample scan on the target table or indexed view. SQL Server automatically computes
the required sample size.

RESAMPLE

Specifies that statistics will be gathered using an inherited sampling ratio for all existing statistics including indexes. If the
sampling ratio results in too few rows being sampled, SQL Server automatically corrects the sampling based on the number of
existing rows in the table or view.

ALL | COLUMNS | INDEX

Specifies whether the UPDATE STATISTICS statement affects column statistics, index statistics, or all existing statistics. If no option
is specified, the UPDATE STATISTICS statement affects all statistics. Only one type (ALL, COLUMNS, or INDEX) can be specified per
UPDATE STATISTICS statement.

NORECOMPUTE

Specifies that statistics that become out of date are not automatically recomputed. Statistics become out of date depending on the
number of INSERT, UPDATE, and DELETE operations performed on indexed columns. When specified, this option causes SQL
Server to disable automatic statistics rebuilding. To restore automatic statistics recomputation, reissue UPDATE STATISTICS
without the NORECOMPUTE option or execute sp_autostats.

Important Disabling automatic statistics recomputation can cause the SQL Server query optimizer to choose a less optimal
strategy for queries that involve the specified table.

Remarks

SQL Server keeps statistics about the distribution of the key values in each index and uses these statistics to determine which
index(es) to use in query processing. Users can create statistics on nonindexed columns by using the CREATE STATISTICS
statement. Query optimization depends on the accuracy of the distribution steps:

If there is significant change in the key values in the index, rerun UPDATE STATISTICS on that index.

If a large amount of data in an indexed column has been added, changed, or removed (that is, if the distribution of key
values has changed), or the table has been truncated using the TRUNCATE TABLE statement and then repopulated, use
UPDATE STATISTICS.

To see when the statistics were last updated, use the STATS_DATE function.

Statistics can be created or updated on tables with computed columns only if the conditions are such that an index can be created
on these columns. For more information about the requirements and restrictions on creating indexes on computed columns, see
CREATE INDEX.

If you disable automatic statistics recomputation, you must manually update the statistical information.

Note The UPDATE STATISTICS statement reenables automatic statistical updating unless the NORECOMPUTE clause is specified.

Permissions

UPDATE STATISTICS permissions default to the table or view owner, and are not transferable.

Examples

A. Update all statistics for a single table

This example updates the distribution statistics for all indexes on the authors table.

UPDATE STATISTICS authors

B. Update only the statistics for a single index

This example updates only the distribution information for the au_id_ind index of the authors table.

UPDATE STATISTICS authors au_id_ind

C. Update statistics for specific statistics groups (collections) using 50 percent sampling

This example creates and then updates the statistics group for the au_lname and au_fname columns in the authors table.

CREATE STATISTICS anames
 ON authors (au_lname, au_fname)
 WITH SAMPLE 50 PERCENT
GO
-- Time passes. The UPDATE STATISTICS statement is then executed.
UPDATE STATISTICS authors(anames)
 WITH SAMPLE 50 PERCENT
GO

D. Update statistics for a specific statistics groups (collections) using FULLSCAN and N ORECOM PUTE

This example updates the anames statistics group (collection) in the authors table, forces a full scan of all rows in the authors
table, and turns off automatic statistics updating for the statistics group (collection).

UPDATE STATISTICS authors(anames)
 WITH FULLSCAN, NORECOMPUTE
GO

See Also

CREATE INDEX

CREATE STATISTICS

Cursors

DBCC SHOW_STATISTICS

DROP STATISTICS

EXECUTE

Functions

sp_autostats

sp_createstats

sp_dboption

sp_helpindex

sp_updatestats

STATS_DATE

Transact-SQL Reference (SQL Server 2000)

UPDATETEXT
 Topic last updated -- July 2003

Updates an existing text, ntext, or image field. Use UPDATETEXT to change only a portion of a text, ntext, or image column in
place. Use WRITETEXT to update and replace an entire text, ntext, or image field.

Syntax

UPDATETEXT { table_name.dest_column_name dest_text_ptr }
 { NULL | insert_offset }
 { NULL | delete_length }
 [WITH LOG]
 [inserted_data
 | { table_name.src_column_name src_text_ptr }]

Arguments

table_name.dest_column_name

Is the name of the table and text, ntext, or image column to be updated. Table names and column names must conform to the
rules for identifiers. For more information, see Using Identifiers. Specifying the database name and owner names is optional.

dest_text_ptr

Is a text pointer value (returned by the TEXTPTR function) that points to the text, ntext, or image data to be updated.
dest_text_ptr must be binary(16).

insert_offset

Is the zero-based starting position for the update. For text or image columns, insert_offset is the number of bytes to skip from
the start of the existing column before inserting new data. For ntext columns, insert_offset is the number of characters (each
ntext character uses 2 bytes). The existing text, ntext, or image data beginning at this zero-based starting position is shifted to
the right to make room for the new data. A value of 0 inserts the new data at the beginning of the existing data. A value of NULL
appends the new data to the existing data value.

delete_length

Is the length of data to delete from the existing text, ntext, or image column, starting at the insert_offset position. The
delete_length value is specified in bytes for text and image columns and in characters for ntext columns. Each ntext character
uses 2 bytes. A value of 0 deletes no data. A value of NULL deletes all data from the insert_offset position to the end of the existing
text or image column.

WITH LOG

Ignored in Microsoft® SQL Server™ 2000. In this release, logging is determined by the recovery model in effect for the database.

inserted_data

Is the data to be inserted into the existing text, ntext, or image column at the insert_offset location. This is a single char, nchar,
varchar, nvarchar, binary, varbinary, text, ntext, or image value. inserted_data can be a literal or a variable.

table_name.src_column_name

Is the name of the table and text, ntext, or image column used as the source of the inserted data. Table names and column
names must conform to the rules for identifiers.

src_text_ptr

Is a text pointer value (returned by the TEXTPTR function) that points to a text, ntext, or image column used as the source of the
inserted data.

Remarks

Newly inserted data can be a single inserted_data constant, table name, column name, or text pointer.

Update action UPDATETEXT parameters

To replace existing data Specify a nonnull insert_offset value, a nonzero
delete_length value, and the new data to be inserted.

To delete existing data Specify a nonnull insert_offset value and a nonzero
delete_length. Do not specify new data to be inserted.

To insert new data Specify the insert_offset value, a delete_length of 0,
and the new data to be inserted.

In SQL Server 2000, in row text pointers to text, ntext, or image data may exist but be invalid. For information about the text in
row option, see sp_tableoption. For information about invalidating text pointers, see sp_invalidate_textptr.

To initialize text columns to NULL, use UPDATETEXT when the compatibility level is equal to 65. If the compatibility level is equal
to 70, use WRITETEXT to initialize text columns to NULL; otherwise, UPDATETEXT initializes text columns to an empty string. For
information about setting the compatibility level, see sp_dbcmptlevel.

Permissions

UPDATETEXT permissions default to those users with UPDATE permissions on the specified table. Permissions are transferable
when UPDATE permissions are transferred.

Examples

This example puts the text pointer into the local variable @ptrval, and then uses UPDATETEXT to update a spelling error.

USE pubs
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'true'
GO
DECLARE @ptrval binary(16)
SELECT @ptrval = TEXTPTR(pr_info)
 FROM pub_info pr, publishers p
 WHERE p.pub_id = pr.pub_id
 AND p.pub_name = 'New Moon Books'
UPDATETEXT pub_info.pr_info @ptrval 88 1 'b'
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'false'
GO

See Also

READTEXT

TEXTPTR

WRITETEXT

Transact-SQL Reference (SQL Server 2000)

UPPER
Returns a character expression with lowercase character data converted to uppercase.

Syntax

UPPER (character_expression)

Arguments

character_expression

Is an expression of character data. character_expression can be a constant, variable, or column of either character or binary data.

Return Types

varchar

Remarks

character_expression must be of a data type that is implicitly convertible to varchar. Otherwise, use the CAST function to explicitly
convert character_expression.

Examples

This example uses the UPPER and RTRIM functions to return the trimmed, uppercase author's last name concatenated with the
author's first name.

USE pubs
GO
SELECT UPPER(RTRIM(au_lname)) + ', ' + au_fname AS Name
FROM authors
ORDER BY au_lname
GO

Here is the result set:

Name
--
BENNET, Abraham
BLOTCHET-HALLS, Reginald
CARSON, Cheryl
DEFRANCE, Michel
DEL CASTILLO, Innes
DULL, Ann
GREEN, Marjorie
GREENE, Morningstar
GRINGLESBY, Burt
HUNTER, Sheryl
KARSEN, Livia
LOCKSLEY, Charlene
MACFEATHER, Stearns
MCBADDEN, Heather
O'LEARY, Michael
PANTELEY, Sylvia
RINGER, Albert
RINGER, Anne
SMITH, Meander
STRAIGHT, Dean
STRINGER, Dirk
WHITE, Johnson
YOKOMOTO, Akiko

(23 row(s) affected)

See Also

Data Types

String Functions

Transact-SQL Reference (SQL Server 2000)

USE
Changes the database context to the specified database.

Syntax

USE { database }

Arguments

database

Is the name of the database to which the user context is switched. Database names must conform to the rules for identifiers.

Remarks

USE executes at both compile and execution time and takes effect immediately. Therefore, statements that appear in a batch after
the USE statement are executed in the specified database.

When logging in to Microsoft® SQL Server™, users are usually connected to the master database automatically. Unless a default
database has been set up for each user's login ID, each user must execute the USE statement to change from master to another
database.

To change context to a different database, a user must have a security account for that database. The database owner provides the
security accounts for the database.

Permissions

USE permissions default to those users who are assigned permissions by the dbo and sysadmin fixed server roles executing
sp_adduser, or by the sysadmin fixed server role and the db_accessadmin and db_owner fixed database roles executing
sp_grantdbaccess. Users without a security account in the destination database can still be allowed access if a guest user exists
in that database.

See Also

CREATE DATABASE

DROP DATABASE

EXECUTE

sp_addalias

sp_adduser

sp_defaultdb

Using Identifiers

Transact-SQL Reference (SQL Server 2000)

USER
Allows a system-supplied value for the current user's database username to be inserted into a table when no default value is
specified.

Syntax

USER

Return Types

char

Remarks

USER provides the same functionality as the USER_NAME system function.

Use USER with DEFAULT constraints in either the CREATE TABLE or ALTER TABLE statements, or use as any standard function.

Examples

A. Use USER to return the current user's database username

This example declares a variable as char, assigns the current value of USER to it, and then prints the variable with a text
description.

DECLARE @usr char(30)
SET @usr = user
SELECT 'The current user''s database username is: '+ @usr
GO

Here is the result set:

The current user's database username is: dbo

(1 row(s) affected)

B. Use USER with DEFAULT constraints

This example creates a table using USER as a DEFAULT constraint for the salesperson of a sales row.

USE pubs
GO
CREATE TABLE inventory2
(
 part_id int IDENTITY(100, 1) NOT NULL,
 description varchar(30) NOT NULL,
 entry_person varchar(30) NOT NULL DEFAULT USER
)
GO
INSERT inventory2 (description)
VALUES ('Red pencil')
INSERT inventory2 (description)
VALUES ('Blue pencil')
INSERT inventory2 (description)
VALUES ('Green pencil')
INSERT inventory2 (description)
VALUES ('Black pencil')
INSERT inventory2 (description)
VALUES ('Yellow pencil')
GO

This is the query to select all information from the inventory2 table:

SELECT *
FROM inventory2
ORDER BY part_id
GO

Here is the result set (note the entry-person value):

part_id description entry_person
----------- ------------------------------ -----------------------------
100 Red pencil dbo
101 Blue pencil dbo
102 Green pencil dbo
103 Black pencil dbo
104 Yellow pencil dbo

(5 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

Creating and Modifying PRIMARY KEY Constraints

CURRENT_TIMESTAMP

CURRENT_USER

Modifying Column Properties

Security Functions

SESSION_USER

SYSTEM_USER

USER_NAME

Transact-SQL Reference (SQL Server 2000)

USER_ID
Returns a user's database identification number.

Syntax

USER_ID (['user'])

Arguments

'user'

Is the username to be used. user is nchar. If a char value is specified, it is implicitly converted to nchar.

Return Types

smallint

Remarks

When user is omitted, the current user is assumed. Parentheses are required.

USER_ID can be used in the select list, in the WHERE clause, and anywhere an expression is allowed. For more information, see
Expressions.

Examples

This example returns the identification number for user Harold.

SELECT USER_ID('Harold')

See Also

Security Functions

Transact-SQL Reference (SQL Server 2000)

USER_NAME
Returns a user database username from a given identification number.

Syntax

USER_NAME ([id])

Arguments

id

Is the identification number used to return a user's name. id is int.

Return Types

nvarchar(256)

Remarks

When id is omitted, the current user is assumed. Parentheses are required.

Examples

A. Use USER_N AM E

This example returns the username for user number 13.

SELECT USER_NAME(13)
GO

B. Use USER_N AM E without an ID

This example finds the name of the current user without specifying an ID.

SELECT user_name()
GO

Here is the result set (for a user who is a member of the sysadmin fixed server role):

dbo

(1 row(s) affected)

C. Use USER_N AM E in the WHERE clause

This example finds the row in sysusers in which the name is equal to the result of applying the system function USER_NAME to
user identification number 1.

SELECT name
FROM sysusers
WHERE name = USER_NAME(1)
GO

Here is the result set:

name

dbo

(1 row(s) affected)

See Also

ALTER TABLE

CREATE TABLE

CURRENT_TIMESTAMP

CURRENT_USER

Modifying Column Properties

SESSION_USER

System Functions

SYSTEM_USER

Transact-SQL Reference (SQL Server 2000)

VAR
Returns the statistical variance of all values in the given expression.

Syntax

VAR (expression)

Arguments

expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate
functions and subqueries are not permitted.

Return Types

float

Remarks

If VAR is used on all items in a SELECT statement, each value in the result set is included in the calculation. VAR can be used with
numeric columns only. Null values are ignored.

Examples

This example returns the variance for all royalty values in the titles table.

USE pubs
SELECT VAR(royalty)
FROM titles

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

varbinary
For information about the varbinary data type, see binary and varbinary.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

varchar
For information about the varchar data type, see char and varchar.

See Also

Data Type Conversion

Data Types

Transact-SQL Reference (SQL Server 2000)

VARP
Returns the statistical variance for the population for all values in the given expression.

Syntax

VARP (expression)

Arguments

expression

Is an expression of the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate
functions and subqueries are not permitted.

Return Types

float

Remarks

If VARP is used on all items in a SELECT statement, each value in the result set is included in the calculation. VARP can be used
with numeric columns only. Null values are ignored.

Examples

This example returns the variance for the population for all royalty values in the titles table.

USE pubs
SELECT VARP(royalty)
FROM titles

See Also

Aggregate Functions

Transact-SQL Reference (SQL Server 2000)

WAITFOR
Specifies a time, time interval, or event that triggers the execution of a statement block, stored procedure, or transaction.

Syntax

WAITFOR { DELAY 'time' | TIME 'time' }

Arguments

DELAY

Instructs Microsoft® SQL Server™ to wait until the specified amount of time has passed, up to a maximum of 24 hours.

'time'

Is the amount of time to wait. time can be specified in one of the acceptable formats for datetime data, or it can be specified as a
local variable. Dates cannot be specified; therefore, the date portion of the datetime value is not allowed.

TIME

Instructs SQL Server to wait until the specified time.

Remarks

After executing the WAITFOR statement, you cannot use your connection to SQL Server until the time or event that you specified
occurs.

To see the active and waiting processes, use sp_who.

Examples

A. Use WAITFOR TIM E

This example executes the stored procedure update_all_stats at 10:20 P.M.

BEGIN
 WAITFOR TIME '22:20'
 EXECUTE update_all_stats
END

For more information about using this procedure to update all statistics for a database, see the examples in UPDATE STATISTICS.

B. Use WAITFOR DELAY

This example shows how a local variable can be used with the WAITFOR DELAY option. A stored procedure is created to wait for a
variable amount of time and then returns information to the user as to the number of hours, minutes, and seconds that have
elapsed.

CREATE PROCEDURE time_delay @@DELAYLENGTH char(9)
AS
DECLARE @@RETURNINFO varchar(255)
BEGIN
 WAITFOR DELAY @@DELAYLENGTH
 SELECT @@RETURNINFO = 'A total time of ' +
 SUBSTRING(@@DELAYLENGTH, 1, 3) +
 ' hours, ' +
 SUBSTRING(@@DELAYLENGTH, 5, 2) +
 ' minutes, and ' +
 SUBSTRING(@@DELAYLENGTH, 8, 2) +
 ' seconds, ' +
 'has elapsed! Your time is up.'
 PRINT @@RETURNINFO
END
GO
-- This next statement executes the time_delay procedure.
EXEC time_delay '000:00:10'
GO

Here is the result set:

A total time of 000 hours, 00 minutes, and 10 seconds, has elapsed! Your time is up.

See Also

Control-of-Flow Language

datetime and smalldatetime

sp_who

Transact-SQL Reference (SQL Server 2000)

WHERE
Specifies the condition for the rows returned by a query.

Syntax

WHERE < search_condition >

Arguments

<search_condition>

Defines the condition to be met for the rows to be returned. There is no limit to the number of predicates in <search_condition>.

See Also

DELETE

Predicate

Search Condition

SELECT

UPDATE

Transact-SQL Reference (SQL Server 2000)

WHILE
Sets a condition for the repeated execution of an SQL statement or statement block. The statements are executed repeatedly as
long as the specified condition is true. The execution of statements in the WHILE loop can be controlled from inside the loop with
the BREAK and CONTINUE keywords.

Syntax

WHILE Boolean_expression
 { sql_statement | statement_block }
 [BREAK]
 { sql_statement | statement_block }
 [CONTINUE]

Arguments

Boolean_expression

Is an expression that returns TRUE or FALSE. If the Boolean expression contains a SELECT statement, the SELECT statement must
be enclosed in parentheses.

{sql_statement | statement_block}

Is any Transact-SQL statement or statement grouping as defined with a statement block. To define a statement block, use the
control-of-flow keywords BEGIN and END.

BREAK

Causes an exit from the innermost WHILE loop. Any statements appearing after the END keyword, marking the end of the loop,
are executed.

CONTINUE

Causes the WHILE loop to restart, ignoring any statements after the CONTINUE keyword.

Remarks

If two or more WHILE loops are nested, the inner BREAK exits to the next outermost loop. First, all the statements after the end of
the inner loop run, and then the next outermost loop restarts.

Examples

A. Use BREAK and CON TIN UE with nested IF...ELSE and WHILE

In this example, if the average price is less than $30, the WHILE loop doubles the prices and then selects the maximum price. If the
maximum price is less than or equal to $50, the WHILE loop restarts and doubles the prices again. This loop continues doubling
the prices until the maximum price is greater than $50, and then exits the WHILE loop and prints a message.

USE pubs
GO
WHILE (SELECT AVG(price) FROM titles) < $30
BEGIN
 UPDATE titles
 SET price = price * 2
 SELECT MAX(price) FROM titles
 IF (SELECT MAX(price) FROM titles) > $50
 BREAK
 ELSE
 CONTINUE
END
PRINT 'Too much for the market to bear'

B. Using WHILE with in a procedure with cursors

The following WHILE construct is a section of a procedure named count_all_rows. For this example, this WHILE construct tests
the return value of @@FETCH_STATUS, a function used with cursors. Because @@FETCH_STATUS may return -2, -1, or 0, all three
cases must be tested. If a row is deleted from the cursor results since the time this stored procedure was executed, that row is
skipped. A successful fetch (0) causes the SELECT within the BEGIN...END loop to execute.

USE pubs
DECLARE tnames_cursor CURSOR
FOR
 SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
OPEN tnames_cursor
DECLARE @tablename sysname
--SET @tablename = 'authors'
FETCH NEXT FROM tnames_cursor INTO @tablename
WHILE (@@FETCH_STATUS <> -1)
BEGIN
 IF (@@FETCH_STATUS <> -2)
 BEGIN
 SELECT @tablename = RTRIM(@tablename)
 EXEC ('SELECT ''' + @tablename + ''' = count(*) FROM '
 + @tablename)
 PRINT ' '
 END
 FETCH NEXT FROM tnames_cursor INTO @tablename
END
CLOSE tnames_cursor
DEALLOCATE tnames_cursor

See Also

ALTER TRIGGER

Control-of-Flow Language

CREATE TRIGGER

Cursors

SELECT

Transact-SQL Reference (SQL Server 2000)

WRITETEXT
Permits nonlogged, interactive updating of an existing text, ntext, or image column. This statement completely overwrites any
existing data in the column it affects. WRITETEXT cannot be used on text, ntext, and image columns in views.

Syntax

WRITETEXT { table.column text_ptr }
 [WITH LOG] { data }

Arguments

table.column

Is the name of the table and text, ntext, or image column to update. Table and column names must conform to the rules for
identifiers. For more information, see Using Identifiers. Specifying the database name and owner names is optional.

text_ptr

Is a value that stores the pointer to the text, ntext or image data. text_ptr must be binary(16). To create a text pointer, execute
an INSERT or UPDATE statement with data that is not NULL for the text, ntext, or image column. For more information about
creating a text pointer, see either INSERT or UPDATE.

WITH LOG

Ignored in Microsoft® SQL Server™ 2000. Logging is determined by the recovery model in effect for the database.

data

Is the actual text, ntext or image data to store. data can be a literal or a variable. The maximum length of text that can be
inserted interactively with WRITETEXT is approximately 120 KB for text, ntext, and image data.

Remarks

Use WRITETEXT to replace text, ntext, and image data and UPDATETEXT to modify text, ntext, and image data. UPDATETEXT is
more flexible because it changes only a portion of a text, ntext, or image column rather than the entire column.

If the database recovery model is simple or bulk-logged, WRITETEXT is a nonlogged operation. This means text, ntext, or image
data is not logged when it is written to the database; therefore, the transaction log does not fill up with the large amounts of data
that often make up these data types.

For WRITETEXT to work properly, the column must already contain a valid text pointer.

If the table does not have in row text, SQL Server saves space by not initializing text columns when explicit or implicit null values
are placed in text columns with INSERT, and no text pointer can be obtained for such nulls. To initialize text columns to NULL,
use the UPDATE statement. If the table has in row text, there is no need to initialize the text column for nulls and you can always
get a text pointer.

The DB-Library dbwritetext and dbmoretext functions and the ODBC SQLPutData function are faster and use less dynamic
memory than WRITETEXT. These functions can insert up to 2 gigabytes of text, ntext, or image data.

In SQL Server 2000, in row text pointers to text, ntext, or image data may exist but be invalid. For information about the text in
row option, see sp_tableoption. For information about invalidating text pointers, see sp_invalidate_textptr.

Permissions

WRITETEXT permissions default to those users with SELECT permissions on the specified table. Permissions are transferable when
SELECT permissions are transferred.

Examples

This example puts the text pointer into the local variable @ptrval, and then WRITETEXT places the new text string into the row
pointed to by @ptrval.

USE pubs
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'true'

GO
DECLARE @ptrval binary(16)
SELECT @ptrval = TEXTPTR(pr_info)
FROM pub_info pr, publishers p
WHERE p.pub_id = pr.pub_id
 AND p.pub_name = 'New Moon Books'
WRITETEXT pub_info.pr_info @ptrval 'New Moon Books (NMB) has just released another top ten publication. With the
latest publication this makes NMB the hottest new publisher of the year!'
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'false'
GO

See Also

Data Types

DECLARE @local_variable

DELETE

SELECT

SET

UPDATETEXT

Transact-SQL Reference (SQL Server 2000)

YEAR
Returns an integer that represents the year part of a specified date.

Syntax

YEAR (date)

Arguments

date

An expression of type datetime or smalldatetime.

Return Types

int

Remarks

This function is equivalent to DATEPART(yy, date).

Examples

This example returns the number of the year from the date 03/12/1998.

SELECT "Year Number" = YEAR('03/12/1998')
GO

Here is the result set:

Year Number

1998

This example specifies the date as a number. Notice that Microsoft® SQL Server™ database interprets 0 as January 1, 1900.

SELECT MONTH(0), DAY(0), YEAR(0)

Here is the result set:

----- ------ ------

1 1 1900

See Also

Date and Time Functions

Optimizing Database Performance (SQL Server 2000)

Optimizing Database Performance Overview
The goal of performance tuning is to minimize the response time for each query and to maximize the throughput of the entire
database server by reducing network traffic, disk I/O, and CPU time. This goal is achieved through understanding application
requirements, the logical and physical structure of the data, and tradeoffs between conflicting uses of the database, such as online
transaction processing (OLTP) versus decision support.

Performance issues should be considered throughout the development cycle, not at the end when the system is implemented.
Many performance issues that result in significant improvements are achieved by careful design from the outset. To most
effectively optimize the performance of Microsoft® SQL Server™ 2000, you must identify the areas that will yield the largest
performance increases over the widest variety of situations and focus analysis on those areas.

Although other system-level performance issues, such as memory, hardware, and so on, are certainly candidates for study,
experience shows that the performance gain from these areas is often incremental. Generally, SQL Server automatically manages
available hardware resources, reducing the need (and thus, the benefit) for extensive system-level manual tuning.

Topic Description
Designing Federated
Database Servers

Describes how to achieve high levels of performance, such as
those required by large Web sites, by balancing the processing
load across multiple servers.

Database Design Describes how database design is the most effective way to
improve overall performance. Database design includes the
logical database schema (such as tables and constraints) and
the physical attributes such as disk systems, object placement,
and indexes.

Query_Tuning Describes how the correct design of the queries used by an
application can significantly improve performance.

Application Design Describes how the correct design of the user application can
significantly improve performance. Application design includes
transaction boundaries, locking, and the use of batches.

Optimizing Utility and
Tool Performance

Describes how some of the options available with the utilities
and tools supplied with Microsoft SQL Server 2000 can
highlight ways in which the performance of these tools can be
improved, as well as the effect of running these tools and your
application at the same time.

Optimizing Server
Performance

Describes how settings in the operating system (Microsoft
Windows NT®, Microsoft Windows® 98, or Microsoft
Windows 2000) and SQL Server can be changed to improve
overall performance.

Optimizing Database Performance (SQL Server 2000)

Designing Federated Database Servers
To achieve the high levels of performance required by the largest Web sites, a multitier system typically balances the processing
load for each tier across multiple servers. Microsoft® SQL Server™ 2000 shares the database processing load across a group of
servers by horizontally partitioning the SQL Server data. These servers are managed independently, but cooperate to process the
database requests from the applications; such a cooperative group of servers is called a federation.

A federated database tier can achieve extremely high levels of performance only if the application sends each SQL statement to
the member server that has most of the data required by the statement. This is called collocating the SQL statement with the data
required by the statement. Collocating SQL statements with the required data is not a requirement unique to federated servers. It
is also required in clustered systems.

Although a federation of servers presents the same image to the applications as a single database server, there are internal
differences in how the database services tier is implemented.

Single server tier Federated server tier
There is one instance of SQL Server on
the production server.

There is one instance of SQL Server on each
member server.

The production data is stored in one
database.

Each member server has a member
database. The data is spread through the
member databases.

Each table is typically a single entity. The tables from the original database are
horizontally partitioned into member tables.
There is one member table per member
database, and distributed partitioned views
are used to make it appear as if there was a
full copy of the original table on each
member server.

All connections are made to the single
server, and all SQL statements are
processed by the same instance of SQL
Server.

The application layer must be able to
collocate SQL statements on the member
server containing most of the data
referenced by the statement.

While the goal is to design a federation of database servers to handle a complete workload, you do this by designing a set of
distributed partitioned views that spread the data across the different servers.

See Also

Federated SQL Server 2000 Servers

Creating a Partitioned View

Optimizing Database Performance (SQL Server 2000)

Designing Partitions
Partitioning works well if the tables in the database are naturally divisible into similar partitions where most of the rows accessed
by any SQL statement can be placed on the same member server. Tables are clustered in related units. For example, suppose the
entry of an order references the Orders, Customers, and Parts tables, along with all tables that record the relationships between
customers, orders, and parts. Partitions work best if all the rows in a logical cluster can be placed on the same member server.

Symmetric Partitions

Partitioning is most effective if the tables in a database can be partitioned symmetrically:

Related data is placed on the same member server, so that most SQL statements routed to the correct member server will
have minimal, if any, requirements for data on other member servers. A distributed partitioned view design goal can be
stated as an 80/20 rule: Design partitions so that most SQL statements can be routed to a member server, where at least 80
percent of the data is on that server, and distributed queries are needed for 20 percent or less of the data. A good test of
whether this can be achieved is to see whether the partition allows all rows to be placed on the same member server as all
of their referencing foreign key rows. Database designs that support this goal are good candidates for partitioning.

The data is partitioned uniformly across the member servers.

For example, suppose a company has divided North America into regions. Each employee works in one region, and
customers make most of their purchases in the state or province where they live. The region and employee tables are
partitioned along regions. Customers are partitioned between regions by their state or province. While some queries
require data from multiple regions, the data needed for most queries is on the server for one region. Applications route SQL
statements to the member server containing the region inferred from the context of the user input.

Asymmetric Partitions

Although symmetric partitions are the ideal goal, most applications have complex data access patterns that prevent symmetrical
partitioning. Asymmetric partitions result in some member servers assuming larger roles than others. For example, only some of
the tables in a database may be partitioned, with the tables that have not been partitioned remaining on the original server.
Asymmetric partitions can provide much of the performance of a symmetric partition, with these important benefits:

Dramatically improving the performance of a database that cannot be symmetrically partitioned by asymmetrically
partitioning some of its tables.

Successfully partitioning a large existing system by making a series of iterative, asymmetric improvements. The tables
chosen for partitioning in each step are usually those that will give the highest performance gain at that time.

In an asymmetric approach, the original server usually retains some tables that did not fit the partitioning scheme. The
performance of these remaining tables is usually faster than in the original system because the member tables move to member
servers, reducing the load on the original server.

Many databases can be partitioned in more than one way. The specific partitions chosen for implementation must be those that
best meet the requirements of the typical range of SQL statements executed by the business services tier.

Distributed Partitioned Views

You should also design the partitioning in a way that produces routing rules that applications can use to determine which
member server can most effectively process each SQL statement. The business services tier must be able to match a piece of user
data against the routing rules to find which member server processes the SQL statement.

There are four areas to consider when designing a set of distributed partitioned views to implement a federation of database
servers:

Determine the pattern of SQL statements executed by the application.

Develop a list of the SQL statements executed by the application during typical processing periods. Divide the list into
SELECT, UPDATE, INSERT, and DELETE categories, and order the list in each category by frequency of execution. If the SQL
statements reference stored procedures, use the base SELECT, INSERT, UPDATE, and DELETE statements from the stored
procedure. If you are partitioning an existing Microsoft® SQL Server™ 2000 database, you can use SQL Profiler to get such
a list.

The recommendation for using the frequency of SQL statements is a reasonable approximation in the typical online
transaction processing (OLTP) or Web site database in which distributed partitioned views work best. These systems are
characterized by having individual SQL statements that retrieve relatively small amounts of data when compared to the
types of queries in a decision support, or OLAP, system. When each SQL statement references a small amount of data,
simply studying the frequency of each statement yields a reasonable approximation of the data traffic in the system. Many
systems, however, have some group of SQL statements that reference large amounts of data. You may want to take the
extra step of weighting these queries to reflect their larger data requirements.

Determine how the tables are related to each other.

The intent is to find clusters of tables that can be partitioned along the same dimension (for example, part number or
department number) so that all the rows related to individual occurrences of that dimension will end up on the same
member server. For example, you may determine that one way to partition your database is by region. To support this, even
tables that do not have a region number in their key must be capable of being partitioned in some manner related to a
region. In such a database, even when the Customer table does not have a region number column, if regions are defined as
collections of whole states or provinces, then the Customer.StateProvince column can be used to partition the customers
in a manner related to region.

Because they define the relationships between tables, explicit and implicit foreign keys are the prime elements to review in
looking for ways to partition data. Study the explicit foreign key definitions to determine how queries would usually use
rows in one table to find rows in another table. Also study implicit foreign keys, or ways that SQL statements use values in
the rows of one table to reference rows from another table in join operations, even when there is no specific foreign key
definition. Because implicit foreign keys are not explicitly defined as part of the database schema, you must review the SQL
statements generated by the application to understand whether there are statements that join tables using nonkey columns.
These implicit foreign keys are typically indexed to improve join performance, so you should also review the indexes defined
in the database.

Match the frequency of SQL statements against the partitions defined from analyzing the foreign keys.

Select the partitioning that will best support the mix of SQL statements in your application. If some sets of tables can be
partitioned in more than one way, use the frequency of SQL statements to determine which of the partitions satisfies the
largest number of SQL statements. The tables most frequently referenced by SQL statements are the ones you want to
partition first. Prioritize the sequence in which you partition the tables based on the frequency in which the tables are
referenced.

The pattern of SQL statements also influences the decision on whether a table should be partitioned:

Partition a table if more than 5 percent of the statements referencing a table are INSERT, UDATE, or DELETE
statements, and the table can be partitioned along the dimension you have chosen.

Maintain complete copies of tables on each member server if less than 5 percent of the statements referencing the
table are INSERT, UPDATE, or DELETE statements. You will also need to define how updates will be made so that all
the copies of the table are updated. If high transactional integrity is required, you can code triggers that perform
distributed updates of all the copies within the context of a distributed transaction. If you do not need high
transactional integrity, you can use one of the SQL Server replication mechanisms to propagate updates from one
copy of the table to all other copies.

Do not partition or copy a table if more than 5 percent of the statements referencing a table are INSERT, UDATE, or
DELETE statements, and the table cannot be partitioned along the dimension you have chosen.

Define the SQL statement routing rules. The routing rules must be able to define which member server can most effectively
process each SQL statement. They must establish a relationship between the context of the input of the user and the
member server that contains the bulk of the data required to complete the statement. The applications must be able to take
a piece of data entered by the user, and match it against the routing rules to determine which member server should
process the SQL statement.

See Also

Federated SQL Server 2000 Servers

Creating a Partitioned View

Designing Applications to Use Federated Database Servers

Optimizing Database Performance (SQL Server 2000)

Designing Federated Database Servers for High Availability
The data for a large Web site or internal online transaction processing (OLTP) system must be highly reliable. The data must be
available 24 hours a day, 7 days a week, 52 weeks a year. In a clustered application tier, the loss of one server may degrade
system performance, but it will not stop the entire system. The remaining servers in the cluster rebalance the load until a
replacement server can be plugged into the cluster.

Although Microsoft® SQL Server™ 2000 does not support this type of load-balanced clustering, it does support Microsoft Cluster
Services failover clustering. Failover clustering supports one to four servers per cluster depending on the operating system. The
cluster appears to applications as a single virtual server. If the primary server node fails, another node detects the loss of the
primary and automatically starts servicing all requests sent to the virtual server. The cluster remains running under the alternative
node until the primary server is repaired or replaced. Failover clustering helps provide high availability, but it does not perform
any load balancing.

See Also

Failover Clustering

Optimizing Database Performance (SQL Server 2000)

Backing Up and Restoring Federated Database Servers
In a federated-database-server tier, built using distributed partitioned views, the member servers form one logical unit; and you
must coordinate the recovery of the member databases to ensure that they remain synchronized properly.

Microsoft® SQL Server™ 2000 does not require that you coordinate backups across member servers. Backups can be taken from
each database independently, without regard for the state of the other member databases. Because the backups do not have to be
synchronized, there is no processing overhead for synchronization and no blockage of running tasks.

The most important aspect of recovering a set of member databases is the same as recovering any other database: plan and test
the recovery procedures before putting the databases into production. You must set up processes to restore all the databases to
the same logical point in time. SQL Server includes features to support the recovery of all member databases to the same point in
time.

See Also

Backing Up and Restoring Databases

Optimizing Database Performance (SQL Server 2000)

Database Design
There are two components to designing a database: logical and physical. Logical database design involves modeling your
business requirements and data using database components, such as tables and constraints, without regard for how or where the
data will be physically stored. Physical database design involves mapping the logical design onto physical media, taking
advantage of the hardware and software features available, which allows the data to be physically accessed and maintained as
quickly as possible, and indexing.

It is important to correctly design the database to model your business requirements, and to take advantage of hardware and
software features early in the development cycle of a database application, because it is difficult to make changes to these
components later.

Optimizing Database Performance (SQL Server 2000)

Logical Database Design
Using Microsoft® SQL Server™ 2000 effectively begins with normalized database design. Normalization is the process of
removing redundancies from the data. For example, when you convert from an indexed sequence access method (ISAM) style
application, normalization often involves breaking data in a single file into two or more logical tables in a relational database.
Transact-SQL queries then recombine the table data by using relational join operations. By avoiding the need to update the same
data in multiple places, normalization improves the efficiency of an application and reduces the opportunities for introducing
errors due to inconsistent data.

However, there are tradeoffs to normalization. A database that is used primarily for decision support (as opposed to update-
intensive transaction processing) may not have redundant updates and may be more understandable and efficient for queries if
the design is not fully normalized. Nevertheless, data that is not normalized is a more common design problem in database
applications than over-normalized data. Starting with a normalized design, and then selectively denormalizing tables for specific
reasons, is a good strategy.

For more information, see Normalization.

Whatever the database design, you should take advantage of these features in SQL Server to automatically maintain the integrity
of your data:

CHECK constraints ensure that column values are valid.

DEFAULT and NOT NULL constraints avoid the complexities (and opportunities for hidden application bugs) caused by
missing column values.

PRIMARY KEY and UNIQUE constraints enforce the uniqueness of rows (and implicitly create an index to do so).

FOREIGN KEY constraints ensure that rows in dependent tables always have a matching master record.

IDENTITY columns efficiently generate unique row identifiers.

timestamp columns ensure efficient concurrency checking between multiple-user updates.

User-defined data types ensure consistency of column definitions across the database.

By taking advantage of these features, you can make the data rules visible to all users of the database, rather than hiding them in
application logic. These server-enforced rules help avoid errors in the data that can arise from incomplete enforcement of
integrity rules by the application itself. Using these facilities also ensures that data integrity is enforced as efficiently as possible.

See Also

Data Integrity

Optimizing Database Performance (SQL Server 2000)

Database Design Considerations: Data Types
SQL Server 2000 treats any fixed-length column that allows null values as fixed-length. Therefore, a char column that allows null
values is treated as a fixed-length char column. As a result, the same data takes more disk space to store and can require more
I/O and other processing operations in SQL Server 2000 compared to earlier versions of SQL Server. To resolve this issue , use
variable-length columns rather than fixed-length columns. For example, use a varchar data type instead of a char data type.
However, if all the values in a column are the same length or the lengths of the values do not vary by much, it is more efficient to
use a fixed-length column.

Text Data Types

Character strings up to 8,000 bytes in length can be stored in columns defined with the char and varchar data types. Using a
char or varchar data type allows the system-defined character string functions, such as SUBSTRING, to be used on character
strings up to 8,000 bytes in length.

See Also

Specifying a Column Data Type

Optimizing Database Performance (SQL Server 2000)

Physical Database Design
The I/O subsystem (storage engine) is a key component of any relational database. A successful database implementation usually
requires careful planning at the early stages of your project. The storage engine of a relational database requires much of this
planning, which includes determining:

What type of disk hardware to use, such as RAID (redundant array of independent disks) devices. For more information, see
RAID.

How to place your data onto the disks. For more information, see Data Placement Using Filegroups.

Which index design to use to improve query performance in accessing data. For more information, see Index Tuning
Recommendations.

How to set all configuration parameters appropriately for the database to perform well. For more information, see
Optimizing Server Performance.

Optimizing Database Performance (SQL Server 2000)

RAID
RAID (redundant array of independent disks) is a disk system that comprises multiple disk drives (an array) to provide higher
performance, reliability, storage capacity, and lower cost. Fault-tolerant arrays are categorized in six RAID levels, 0 through 5. Each
level uses a different algorithm to implement fault tolerance.

Although RAID is not a part of Microsoft® SQL Server™ 2000, its implementation can directly affect the way SQL Server
performs. RAID levels 0, 1, and 5 are typically used with SQL Server.

Note RAID is available only on Microsoft Windows NT 4.0 and Microsoft Windows 2000.

A hardware disk array improves I/O performance because I/O functions, such as striping and mirroring, are handled efficiently in
firmware. Conversely, an operating system–based RAID offers lower cost but consumes processor cycles. When cost is a
consideration and redundancy and high performance are required, Microsoft Windows® NT® stripe sets with parity or Windows
2000 RAID-5 volumes are a good solution.

Data striping (RAID 0) is the RAID configuration with the highest performance, but if one disk fails, all the data on the stripe set
becomes inaccessible. A common installation technique for relational database management systems is to configure the database
on a RAID 0 drive and then place the transaction log on a mirrored drive (RAID 1). You can get the best disk I/O performance for
the database and maintain data recoverability (assuming you perform regular database backups) through a mirrored transaction
log.

If data must be quickly recoverable, consider mirroring the transaction log and placing the database on a RAID 5 disk. RAID 5
provides redundancy of all data on the array, allowing a single disk to fail and be replaced in most cases without system
downtime. RAID 5 offers lower performance than RAID 0 or RAID 1 but higher reliability and faster recovery.

Optimizing Database Performance (SQL Server 2000)

Developing a Drive Performance Strategy
Developing a Drive Performance Strategy

By managing the placement of data on drives, you can both improve performance and implement fault tolerance. In the context of
managing drive storage for a Microsoft® SQL Server™ 2000 installation, performance refers in part to the speed of read and
write operations, and fault tolerance refers to the ability of the system to continue functioning without data loss when part of the
system fails.

You can use the following methods to manage the placement of data on disk drives:

Hardware-based RAID (redundant array of independent disks) above level 0 can protect against data loss in the event of
media failure, and can improve performance. For more information, see the documentation provided by the vendor.

Both Microsoft Windows NT® and Microsoft Windows® 2000-based disk striping, and striping with parity, can improve
performance. Disk striping with parity also protects against data loss in the event of media failure.

Windows NT and Windows 2000-based disk mirroring and duplexing are both fault-tolerance mechanisms that protect
against data loss in the event of media failure. They can also improve read performance.

Important These fault-tolerance methods do not replace proper backup strategies. You must perform periodic backups to
protect your databases and data against catastrophic loss.

For more information about Windows NT and Windows 2000 disk striping, mirroring, and duplexing, see the Windows NT or
Windows 2000 documentation.

See Also

Backing Up and Restoring Databases

Optimizing Database Performance (SQL Server 2000)

RAID Levels and SQL Server
RAID Levels and SQL Server

RAID (redundant array of independent disks) levels 0, 1, and 5 are typically implemented with Microsoft® SQL Server™ 2000.

Note RAID levels greater than 10 (1 + 0) offer additional fault tolerance or performance enhancements. These tend to be
proprietary systems. For more information about these types of RAID systems, contact the hardware vendor.

Level 0

This level is also known as disk striping because of its use of a disk file system called a stripe set. Data is divided into blocks and
spread in a fixed order among all disks in an array. RAID 0 improves read/write performance by spreading operations across
multiple disks, so that operations can be performed independently and simultaneously.

RAID 0 is similar to RAID 5, but RAID 5 also provides fault tolerance.

Level 1

This level is also known as disk mirroring because of its use of a disk file system called a mirror set. Disk mirroring provides a
redundant, identical copy of a selected disk. All data written to the primary disk is written to the mirror disk. RAID 1 provides fault
tolerance and generally improves read performance (but may degrade write performance).

Level 2

This level adds redundancy by using an error correction method that spreads parity across all disks. It also employs a disk-striping
strategy that breaks a file into bytes and spreads it across multiple disks. This strategy offers only a marginal improvement in disk
utilization and read/write performance over mirroring (RAID 1). RAID 2 is not as efficient as other RAID levels and is not generally
used.

Level 3

This level uses the same striping method as RAID 2, but the error correction method requires only one disk for parity data. Use of
disk space varies with the number of data disks. RAID 3 provides some read/write performance improvement.

Level 4

This level employs striped data in much larger blocks or segments than RAID 2 or RAID 3. Like RAID 3, the error correction
method requires only one disk for parity data. It keeps user data separate from error-correction data. RAID 4 is not as efficient as
other RAID levels and is not generally used.

Level 5

Also known as striping with parity, this level is the most popular strategy for new designs. It is similar to RAID 4 in that it stripes
the data in large blocks across the disks in an array. It differs in that it writes the parity across all the disks. Data redundancy is
provided by the parity information. The data and parity information are arranged on the disk array so that the two are always on
different disks. Striping with parity offers better performance than disk mirroring (RAID 1). However, when a stripe member is
missing, read performance degrades (for example, when a disk fails).

Level 10 (1+0)

This level is also known as mirroring with striping. This level uses a striped array of disks, which are then mirrored to another
identical set of striped disks. For example, a striped array can be created using five disks. The striped array of disks is then
mirrored using another set of five striped disks. RAID 10 provides the performance benefits of disk striping with the disk
redundancy of mirroring. RAID 10 provides the highest read/write performance of any of the RAID levels at the expense of using
twice as many disks.

Optimizing Database Performance (SQL Server 2000)

Comparing Different Implementations of RAID Levels
Comparing Different Implementations of RAID Levels

There are advantages and disadvantages to using the various implementations of RAID (redundant array of independent disks).

RAID implementation Advantage Disadvantage
Microsoft®
WindowsNT®-based
striping or Windows 2000
RAID-5 volumes

No added hardware cost. Uses system
processing resources.

Hardware-based striping Does not compete for processor
cycles. Best performance of all
RAID implementations.

Additional cost of
specialized hardware.

RAID solutions typically used with Microsoft SQL Server™ 2000 provide varying levels of redundancy and fault tolerance.

RAID implementation Advantage Disadvantage
Hardware-based RAID 3, 5,
or 10

Excellent performance. Does not
compete for processor cycles.

Cost.

Hardware-based RAID 1 Excellent redundancy. Does not
compete for processor cycles.

Additional cost due to
more hardware.

Hardware-based RAID 10 Excellent performance. Excellent
redundancy.

Additional cost due to
more hardware.

Windows NT–based RAID
1 or Windows 2000
mirrored volumes

Good redundancy. Low cost. Uses system
processing resources.

Windows NT– or Windows
2000-based RAID 5

Excellent read performance. Low
cost.

Uses system
processing resources.

Optimizing Database Performance (SQL Server 2000)

About Hardware-Based Solutions
About Hardware-Based Solutions

RAID (redundant array of independent disks) levels 0, 1, 3, and 5 are the levels typically implemented in hardware-based
solutions.

Hardware-based RAID uses an intelligent drive controller and a redundant array of disk drives to protect against data loss in the
event of media failure and to improve the performance of read/write operations. A disk array is an effective disk-storage solution
for computers running Microsoft® SQL Server™2000.

Hardware-based RAID levels 1 through 5 automate redundancy and fault tolerance at the hardware level. All levels (0 through 5)
incur no overhead on the system processor. Individual data files are typically spread across more than one disk. It is possible to
implement a hardware-based RAID solution that provides your system with seamless, nonstop recovery from media failure.

In general, hardware-based RAID offers performance advantages over Microsoft Windows NT® or Windows® 2000 software-
based RAID. For example, you can improve data throughput significantly by implementing RAID 5 through hardware that does
not use system software resources. This is accomplished by using more disks at a given capacity than in conventional storage
solution. Read/write performance and total storage size can be further improved by using multiple controllers.

Depending on the configuration, hardware-based RAID generally provides good performance. It also makes it much easier to
manage multiple disks, allowing you to treat an array of disks as one disk. You may even be able to replace a failed drive without
shutting down the system. The disadvantages of a hardware-based solution are cost, and it may lock you into a single vendor.

For more information about implementing hardware-based RAID, contact the hardware vendor.

Optimizing Database Performance (SQL Server 2000)

About Windows NT and Windows 2000-Based Disk Striping
and Striping with Parity
About Windows NT– and Windows 2000-Based Disk Striping and Striping with Parity

Microsoft® Windows NT®–based disk striping and striping with parity and Windows® 2000 RAID-5 volumes implement RAID
features in software, using any hardware compatible with the operating system. Because these are software-based solutions
provided with the operating system, they offer a cost advantage.

Disk striping writes data in stripes across a volume (created from areas of free space). For more information about volumes,
see the Windows NT or Windows 2000 documentation.

These areas are all the same size and are spread over an array of disks (up to 32 disks). Striping writes files across all disks,
so data is added to all partitions in the set at the same rate.

Windows NT-based disk striping and Windows 2000 volume sets implement RAID 0. Disk striping provides the best
performance of all Windows NT Server disk-management strategies, but does not provide any fault-tolerance protection.

Disk striping with parity is similar to disk striping. Disk striping with parity adds a parity-information stripe to each disk
partition in the volume. This provides fault-tolerance protection equivalent to that of disk mirroring, but requires much less
space for the redundant data. Windows NT-based disk striping with parity and Windows 2000 RAID-5 volumes implement
RAID 5.

When a member of a stripe set with parity or RAID-5 volume fails in a severe manner (for example, from a loss of power or a
complete head crash), you can regenerate the data for that member of the stripe set from the remaining members.

Stripe sets with parity and RAID-5 volumes are a good solution for data redundancy in a computing environment in which most
activity consists of reading data. Disk stripe sets with parity and RAID-5 volumes also improve write performance, but not as
much as striping alone. Creating a disk stripe set with parity or a RAID-5 volume requires at least three physical disks on the
server.

Disk striping is available on Windows NT Server, Windows NT Workstation and Windows 2000. However, disk striping with parity
is supported only for Windows NT Server and Windows 2000. On a dual-boot computer, stripe sets, including those with parity,
are not accessible when running the Microsoft MS-DOS® operating system.

Disk striping with parity or Windows 2000 RAID-5 volumes are recommended over mirroring for applications that require
redundancy and are read-oriented, although disk striping with parity and RAID-5 volumes require more system memory.

Disk striping and disk striping with parity are set up and managed using the Windows NT Disk Administrator application, which
can be started from the Administrative Tools program group. RAID-5 volumes are set up and managed using the Windows
2000 Disk Management application, which can be started from the Computer Management program.

For more information about setting up disk striping or disk striping with parity, see the Windows NT Server or Windows 2000
documentation.

Optimizing Database Performance (SQL Server 2000)

About Windows NTBased Disk Mirroring and Duplexing
About Windows NT- and Windows 2000-Based Disk Mirroring and Duplexing

Microsoft® Windows NT® and Windows® 2000-based disk mirroring and duplexing implement RAID (redundant array of
independent disks) features in software using any hardware compatible with the operating system. Because these are software-
based solutions provided with the operating system, they offer a cost advantage.

Disk mirroring protects against media failure by maintaining a fully redundant copy of a partition on another disk. This
provides protection from the downtime and expense involved in recovering lost data and restoring data from a backup
storage facility. In a sense, mirroring is continual backup. Mirroring also provides some performance benefits when reading
data from disks under heavy I/O loads. Windows NT–based disk mirroring and Windows 2000 mirrored volume implement
RAID 1.

Disk duplexing is a form of mirroring that provides protection against controller failures (in addition to protecting against
media failures) by using a different disk controller on the mirror disk.

Disk mirroring and duplexing are features of Windows NT Server. They are not supported for Windows NT Workstation. Mirrored
volume is a feature of Windows 2000. On a dual-boot computer, they are not accessible when running the Microsoft MS-DOS®
operating system.

Windows NT–based disk mirroring, or duplexing, and Windows 2000 mirrored volumes offer better write performance than
Windows NT–based disk striping with parity and Windows 2000 RAID-5 volumes. They also require less system memory and do
not show performance degradation during a failure.

The entry cost of Windows NT and Windows 2000-based disk mirroring or duplexing is lower because they require only two or
more disks (compared to disk striping with parity and RAID-5 volume, which require three or more disks). However, mirroring
provides less usable disk space (compared to disk striping with parity or RAID-5 volume), so the cost per megabyte is higher.

Disk mirroring and duplexing are implemented by using the Windows NT Disk Administrator application, which can be started
from the Administrative Tools program group. Mirrored volumes are set up and managed using the Windows 2000 Disk
Management application, which can be started from the Computer Management program.

For more information about setting up disk mirroring or duplexing, see the Windows NT Server documentation.

Note The term mirroring is frequently used in Windows NT Server documentation to describe both disk mirroring and
duplexing.

Optimizing Database Performance (SQL Server 2000)

Partitioning
Partitioning a database improves performance and simplifies maintenance. By splitting a large table into smaller, individual tables,
queries accessing only a fraction of the data can run faster because there is less data to scan. Maintenance tasks, such as
rebuilding indexes or backing up a table, can execute more quickly.

Partitioning can be achieved without splitting tables by physically placing them on individual disk drives. Placing a table on one
physical drive and related tables on a separate drive, for example, can improve query performance because when queries
involving joins between the tables are executed, multiple disk heads read data at the same time. Microsoft® SQL Server™ 2000
filegroups can be used to specify on which disks to place the tables.

Hardware Partitioning

Hardware partitioning designs the database to take advantage of the available hardware architecture. Examples of hardware
partitioning include:

Multiprocessors that allow multiple threads of execution, permitting many queries to execute at the same time. Alternatively,
a single query may be able to run faster on multiple processors by allowing components of the query to be executed
simultaneously. For example, each table referenced in the query can be scanned at the same time by a different thread.

RAID (redundant array of independent disks) devices that allow data to be striped across multiple disk drives, permitting
faster access to the data because more read/write heads read data at the same time. A table striped across multiple drives
can typically be scanned faster than the same table stored on one drive. Alternatively, storing tables on separate drives from
related tables can significantly improve the performance of queries joining those tables.

Horizontal Partitioning

Horizontal partitioning segments a table into multiple tables, each containing the same number of columns but fewer rows. For
example, a table containing 1 billion rows could be partitioned horizontally into 12 tables, with each smaller table representing
one month of data for a given year. Any queries requiring a specific month's data reference the appropriate table only.

Determining how to partition the tables horizontally depends on how data is analyzed. Partition the tables so that queries
reference as few tables as possible. Otherwise, excessive UNION queries, used to merge the tables logically at query time, can
impair performance. For more information about querying horizontally partitioned tables, see Scenarios for Using Views.

Partitioning data horizontally based on age/use is common. For example, a table may contain data for the last five years, but only
data from the current year is regularly accessed. In this case, you may consider partitioning the data into five tables, with each
table containing data from only one year.

Vertical Partitioning

Vertical partitioning segments a table into multiple tables containing fewer columns. The two types of vertical partitioning are
normalization and row splitting.

Normalization is the standard database process of removing redundant columns from a table and placing them in secondary
tables linked to the primary table by primary key and foreign key relationships.

Row splitting divides the original table vertically into tables with fewer columns. Each logical row in a split table matches the same
logical row in the others. For example, joining the tenth row from each split table re-creates the original row.

Like horizontal partitioning, vertical partitioning allows queries to scan less data, hence increasing query performance. For
example, a table containing seven columns, of which only the first four are commonly referenced, may benefit from splitting the
last three columns into a separate table.

Vertical partitioning should be considered carefully because analyzing data from multiple partitions requires queries joining the
tables, possibly affecting performance if partitions are very large.

See Also

Using Views with Partitioned Data

Optimizing Database Performance (SQL Server 2000)

Data Placement Using Filegroups
Microsoft® SQL Server™ 2000 allows you to create tables or indexes on a specific filegroup within your database, rather than
across all filegroups in a database. By creating a filegroup on a specific disk or RAID (redundant array of independent disks)
device, you can control where tables and indexes in your database are physically located. Reasons for placing tables and indexes
on specific disks include:

Improved query performance.

Parallel queries.

See Also

Files and Filegroups

Optimizing Database Performance (SQL Server 2000)

Placing Tables on Filegroups
Placing Tables on Filegroups

A table can be created on a specific filegroup rather than the default filegroup. If the filegroup comprises multiple files spread
across various physical disks, each with its own disk controller, then queries for data from the table will be spread across the
disks, thereby improving performance. The same effect can be accomplished by creating a single file on a RAID (redundant array
of independent disks) level 0, 1, or 5 device.

If the computer has multiple processors, Microsoft® SQL Server™ 2000 can perform parallel scans of the data. Multiple parallel
scans can be executed for a single table regardless of the number of files that are in its filegroup. Additionally, any text, ntext, or
image columns within a table can be created on a filegroup other than the one that contains the base table.

Eventually, there is a saturation point when there are too many outstanding I/O's causing bottlenecks in the disk I/O subsystem.
These bottlenecks can be identified by using Windows NT® Performance Monitor to monitor the PhysicalDisk object and Disk
Queue Length counter. If the Disk Queue Length counter is greater than three, consider spreading the file across more disk
drives. For more information, see Monitoring Disk Activity.

It is advantageous to get as much data spread across as many physical drives as possible in order to improve throughput through
parallel data access. To spread data evenly across all disks, you can place a single file across striped disks or maintain each disk
separately and place a file on each disk.

To create a new table on a specific filegroup

Transact-SQL

Enterprise Manager

SQL-DMO

To place an existing table on a different filegroup

Enterprise Manager

Enterprise Manager

See Also

Files and Filegroups

Placing Indexes on Filegroups

Using File Backups

https://msdn.microsoft.com/en-us/library/aa275820(v=sql.80).aspx

Optimizing Database Performance (SQL Server 2000)

Placing Indexes on Filegroups
Placing Indexes on Filegroups

By default, indexes are created on the same filegroup as the base table on which the index is created. However, it is possible to
create nonclustered indexes on a filegroup other than the filegroup of the base table. By creating the index on a different
filegroup, you can realize performance gains if the filegroups make use of different physical drives with their own controllers.
Data and index information can then be read in parallel by multiple disk heads. For example if Table_A on filegroup f1 and
Index_A on filegroup f2 are both being used by the same query, performance gains can be achieved because both filegroups are
being fully used with no contention. However, if Table_A is scanned by the query but Index_A is not referenced, only filegroup f1
is used, resulting in no performance gain.

Because you cannot predict what type of access will take place and when it will take place, it could be a safer decision to spread
your tables and indexes across all filegroups. This would guarantee that all disks are being accessed since all data and indexes are
spread evenly across all disks, no matter which way the data is accessed. This is also a simpler approach for system
administrators.

If there is a clustered index on a table, the data and the clustered index always reside in the same filegroup. Therefore, you can
move a table from one filegroup to another by creating a clustered index on the base table that specifies a different filegroup on
which to create the index (the index can then be dropped, leaving the base table in the new filegroup).

If the indexes of a table span multiple filegroups, all filegroups containing the table and its indexes must be backed up together,
after which a transaction log backup must be created. Otherwise, only some of the indexes may be backed up, preventing the
index from being recovered if the backup is restored later. For more information, see Using File Backups.

Note An individual table or index can belong to only one filegroup; it cannot span filegroups.

To create a new index on a specific filegroup

Transact-SQL

Enterprise Manager

SQL-DMO

To place an existing index on a different filegroup

Enterprise Manager

Enterprise Manager

See Also

Files and Filegroups

https://msdn.microsoft.com/en-us/library/aa275837(v=sql.80).aspx

Optimizing Database Performance (SQL Server 2000)

Index Tuning Recommendations
Indexes can be dropped, added, and changed without affecting the database schema or application design. Efficient index design
is paramount to achieving good performance. For these reasons, you should not hesitate to experiment with different indexes. The
Index Tuning Wizard can be used to analyze your queries and suggest the indexes that should be created. For more information,
see Index Tuning Wizard.

The query optimizer in Microsoft® SQL Server™ 2000 reliably chooses the most effective index in the majority of cases. The
overall index design strategy should provide a good selection of indexes to the query optimizer and trust it to make the right
decision. This reduces analysis time and results in good performance over a wide variety of situations.

Do not always equate index usage with good performance, and vice-versa. If using an index always produced the best
performance, the job of the query optimizer would be simple. In reality, incorrect choice of indexed retrieval can result in less than
optimal performance. Therefore, the task of the query optimizer is to select indexed retrieval only when it will improve
performance and to avoid indexed retrieval when it will affect performance.

Recommendations for creating indexes include:

Write queries that update as many rows as possible in a single statement, rather than using multiple queries to update the
same rows. By using only one statement, optimized index maintenance can be exploited.

Use the Index Tuning Wizard to analyze your queries and make index recommendations. For more information, see Index
Tuning Wizard.

Use integer keys for clustered indexes. Additionally, clustered indexes benefit from being created on unique, nonnull, or
IDENTITY columns. For more information, see Using Clustered Indexes.

Create nonclustered indexes on all columns frequently used in queries. This can maximize the use of covered queries. For
more information, see Using Nonclustered Indexes.

The time taken to physically create an index is largely dependent on the disk subsystem. Important factors to consider are:
RAID (redundant array of independent disks) level used to store the database and transaction log files.

Number of disks in the disk array (if RAID was used).

Size of each data row and the number of rows per page. This determines the number of data pages that must be
read from disk to create the index.

The columns in the index and the data types used. This determines the number of index pages that have to be
written to disk.

Examine column uniqueness. For more information, see Using Unique Indexes.

Examine data distribution in indexed columns. Often, a long-running query is caused by indexing a column with few unique
values, or by performing a join on such a column. This is a fundamental problem with the data and query, and usually
cannot be resolved without identifying this situation. For example, a physical telephone directory sorted alphabetically on
last name will not expedite locating a person if all people in the city are named Smith or Jones.

See Also

Statistical Information

Optimizing Database Performance (SQL Server 2000)

Optimizing Transaction Log Performance
General recommendations for creating transaction log files include:

Create the transaction log on a physically separate disk or RAID (redundant array of independent disks) device. The
transaction log file is written serially; therefore, using a separate, dedicated disk allows the disk heads to stay in place for the
next write operation.

Set the original size of the transaction log file to a reasonable size to prevent the file from automatically expanding as more
transaction log space is needed. As the transaction log expands, a new virtual log file is created, and write operations to the
transaction log wait while the transaction log is expanded. If the transaction log expands too frequently, performance can be
affected.

Set the file growth increment percentage to a reasonable size to prevent the file from growing by too small a value. If the
file growth is too small compared to the number of log records being written to the transaction log, then the transaction log
may need to expand constantly, affecting performance.

Manually shrink the transaction log files rather than allowing Microsoft® SQL Server™ 2000 to shrink the files
automatically. Shrinking the transaction log can affect performance on a busy system due to the movement and locking of
data pages.

See Also

Transaction Logs

Virtual Log Files

Optimizing Database Performance (SQL Server 2000)

Optimizing tempdb Performance
General recommendations for the physical placement and database options set for the tempdb database include:

Allow the tempdb database to automatically expand as needed. This ensures that queries that generate larger than
expected intermediate result sets stored in the tempdb database are not terminated before execution is complete.

Set the original size of the tempdb database files to a reasonable size to avoid the files from automatically expanding as
more space is needed. If the tempdb database expands too frequently, performance can be affected.

Set the file growth increment percentage to a reasonable size to avoid the tempdb database files from growing by too
small a value. If the file growth is too small compared to the amount of data being written to the tempdb database, then
tempdb may need to constantly expand, thereby affecting performance.

Place the tempdb database on a fast I/O subsystem to ensure good performance. Stripe the tempdb database across
multiple disks for better performance. Place the tempdb database on disks different from those used by user databases. For
more information, see Expanding a Database.

See Also

Expanding a Database

Optimizing Database Performance (SQL Server 2000)

File Systems
Server performance is not affected by the file system used (FAT or NTFS). Your choice of file system should be determined by
factors other than performance.

The File Allocation Table (FAT) file system allows dual booting with computers running Microsoft® MS-DOS®, Microsoft
Windows® 95, or Microsoft Windows 98.

The Microsoft Windows NT® file system (NTFS) has security and recovery advantages.

If you do not need to dual-boot Windows NT or Windows 2000 with MS-DOS, Windows 95, or Windows 98, NTFS is
recommended.

Warning Microsoft SQL Server™ 2000 data and transaction log files must not be placed on compressed file systems.

For more information about choosing the appropriate file system, see the operating system documentation.

Note When running on Windows NT, SQL Server performance can be improved further if the databases are created on disks
formatted using NTFS and, specifically, 64-KB extent sizes. In Windows 2000, setting the file system cluster size to 64-KB extent
size using the /A format option will also improve performance. For more information about formatting an NTFS disk, see the
Windows NT or Windows 2000 documentation.

Optimizing Database Performance (SQL Server 2000)

Query Tuning
It may be tempting to address a performance problem solely by system-level server performance tuning; for example, memory
size, type of file system, number and type of processors, and so forth. Experience has shown that most performance problems
cannot be resolved this way. They must be addressed by analyzing the application, queries, and updates that the application is
submitting to the database, and how these queries and updates interact with the database schema.

Unexpected long-lasting queries and updates can be caused by:

Slow network communication.

Inadequate memory in the server computer, or not enough memory available for Microsoft® SQL Server™ 2000.

Lack of useful statistics.

Out-of-date statistics.

Lack of useful indexes.

Lack of useful data striping.

When a query or update takes longer than expected, use the following checklist to improve performance.

Note It is recommended that this checklist be consulted prior to contacting your technical support provider.

1. Is the performance problem related to a component other than queries? For example, is the problem slow network
performance? Are there any other components that might be causing or contributing to performance degradation?
Windows NT Performance Monitor can be used to monitor the performance of SQL Server and non-SQL Server related
components. For more information, see Monitoring with System Monitor.

2. If the performance issue is related to queries, which query or set of queries is involved? Use SQL Profiler to help identify the
slow query or queries. For more information, see Monitoring with SQL Profiler.

The performance of a database query can be determined by using the SET statement to enable the SHOWPLAN, STATISTICS
IO, STATISTICS TIME, and STATISTICS PROFILE options.

SHOWPLAN describes the method chosen by the SQL Server query optimizer to retrieve data. For more information,
see SET SHOWPLAN_ALL.

STATISTICS IO reports information about the number of scans, logical reads (pages accessed in cache), and physical
reads (number of times the disk was accessed) for each table referenced in the statement. For more information, see
SET STATISTICS IO.

STATISTICS TIME displays the amount of time (in milliseconds) required to parse, compile, and execute a query. For
more information, see SET STATISTICS TIME.

STATISTICS PROFILE displays a result set after each executed query representing a profile of the execution of the
query. For more information, see SET STATISTICS PROFILE.

In SQL Query Analyzer, you can also turn on the graphical execution plan option to view a graphical representation of
how SQL Server retrieves data.

The information gathered by these tools allows you to determine how a query is executed by the SQL Server query
optimizer and which indexes are being used. Using this information, you can determine if performance improvements can
be made by rewriting the query, changing the indexes on the tables, or perhaps modifying the database design. For more
information, see Analyzing a Query.

3. Was the query optimized with useful statistics?

Statistics on the distribution of values in a column are automatically created on indexed columns by SQL Server. They can
also be created on nonindexed columns either manually, using SQL Query Analyzer or the CREATE STATISTICS statement, or

automatically, if the auto create statistics database option is set to true. These statistics can be used by the query
processor to determine the optimal strategy for evaluating a query. Maintaining additional statistics on nonindexed columns
involved in join operations can improve query performance. For more information, see Statistical Information.

Monitor the query using SQL Profiler or the graphical execution plan in SQL Query Analyzer to determine if the query has
enough statistics. For more information, see Error and Warning Event Category.

4. Are the query statistics up-to-date? Are the statistics automatically updated?

SQL Server automatically creates and updates query statistics on indexed columns (as long as automatic query statistic
updating is not disabled). Additionally, statistics can be updated on nonindexed columns either manually, using SQL Query
Analyzer or the UPDATE STATISTICS statement, or automatically, if the auto update statistics database option is set to
true. Up-to-date statistics are not dependent upon date or time data. If no UPDATE operations have taken place, then the
query statistics are still up-to-date.

If statistics are not set to update automatically, then set them to do so. For more information, see Statistical Information.

5. Are suitable indexes available? Would adding one or more indexes improve query performance? For more information, see
Index Tuning Recommendations.

6. Are there any data or index hot spots? Consider using disk striping. For more information, see Data Placement Using
Filegroups and RAID.

7. Is the query optimizer provided with the best opportunity to optimize a complex query? For more information, see Query
Tuning Recommendations.

See Also

Advanced Query Concepts

Query Processor Architecture

Monitoring with SQL Server Enterprise Manager

SET

Parallel Query Processing

Optimizing Database Performance (SQL Server 2000)

Analyzing a Query
Microsoft® SQL Server™ 2000 offers these ways to present information on how it navigates tables and uses indexes to access the
data for a query:

Graphically display the execution plan using SQL Query Analyzer

In SQL Query Analyzer, click Query and select Display Execution Plan. After executing a query, you can select the
Execution Plan tab to see a graphical representation of execution plan output. For more information, see Graphically
Displaying the Execution Plan Using SQL Query Analyzer.

SET SHOWPLAN_TEXT ON

After this statement is executed, SQL Server returns the execution plan information for each query. For more information,
see SET SHOWPLAN_TEXT.

SET SHOWPLAN_ALL ON

This statement is similar to SET SHOWPLAN_TEXT, except that the output is in a concise format. For more information, see
SET SHOWPLAN_ALL.

When you display the execution plan, the statements you submit to the server are not executed; instead, SQL Server analyzes the
query and displays how the statements would have been executed as a series of operators.

Note Because statements are not executed when the execution plan is displayed, Transact-SQL operations such as creating a
table do not cause the table to be created. Therefore, subsequent operations involving the table return errors because the table
does not exist.

The best execution plan used by the query engine for individual data manipulation language (DML) and Transact-SQL statements
is displayed, and reveals compile-time information about stored procedures, triggers invoked by a batch, and called stored
procedures and triggers invoked to an arbitrary number of calling levels. For example, executing a SELECT statement can show
that SQL Server uses a table scan to obtain the data. Alternatively, an index scan may have been used instead if the index was
determined to be a faster method of retrieving the data from the table.

The results returned by the SHOWPLAN_TEXT and SHOWPLAN_ALL statements are a tabular representation (rows and columns)
of a tree structure. The execution plan tree structure uses one row in the result set for each node in the tree, each node
representing a logical or physical operator used to manipulate the data to produce expected results. SQL Query Analyzer instead
graphically displays each logical and physical operator as an icon. For more information, see Logical and Physical Operators.

Optimizing Database Performance (SQL Server 2000)

Graphically Displaying the Execution Plan Using SQL Query
Analyzer
SQL Query Analyzer is an interactive, graphical tool that enables a database administrator or developer to write queries, execute
multiple queries simultaneously, view results, analyze the query plan, and receive assistance to improve the query performance.
The Execution Plan options graphically display the data retrieval methods chosen by the Microsoft® SQL Server™ 2000 query
optimizer. The graphical execution plan uses icons to represent the execution of specific statements and queries in SQL Server
rather than the tabular representation produced by the SET SHOWPLAN_ALL or SET SHOWPLAN_TEXT statements. This is very
useful for understanding the performance characteristics of a query. Additionally, SQL Query Analyzer shows suggestions for
additional indexes and statistics on nonindexed columns that would improve the ability of the query optimizer to process a query
efficiently. In particular, SQL Query Analyzer shows which statistics are missing, thereby forcing the query optimizer to make
estimates about predicate selectivity, and then permits those missing statistics to be easily created.

The following icons displayed in the graphical execution plan represent the physical operators used by SQL Server to execute
statements. For more information, see Logical and Physical Operators.

Icon Physical operator
Assert

Bookmark Lookup

Clustered Index Delete

Clustered Index Insert

Clustered Index Scan

Clustered Index Seek

Clustered Index Update

Collapse

Compute Scalar

Concatenation

Constant Scan

Deleted Scan

Filter (clsColumn)

Hash Match

Hash Match Root

Hash Match Team

Index Delete

Index Insert

Index Scan

Index Seek

Index Spool

Index Update

Inserted Scan

Log Row Scan

Merge Join

Nested Loops

Parallelism

Parameter Table Scan

Remote Delete

Remote Insert

Remote Query

Remote Scan

Remote Update

Row Count Spool

Sequence

Sort

Stream Aggregate

Table Delete

Table Insert

Table Scan

Table Spool

Table Update

Top

The following icons displayed in the graphical execution plan represent the cursor physical operators used by SQL Server to
execute statements.

Icon Cursor physical operator
Dynamic

Fetch Query

Keyset

Population Query

Refresh Query

Snapshot

Reading the Graphical Execution Plan Output

The graphical execution plan output in SQL Query Analyzer is read from right to left and from top to bottom. Each query in the
batch that is analyzed is displayed, including the cost of each query as a percentage of the total cost of the batch.

Each node in the tree structure is represented as an icon that specifies the logical and physical operator used to execute part
of the query or statement.

Each node is related to a parent node. All nodes with the same parent are drawn in the same column. Rules with arrowheads
connect each node to its parent.

Recursive operations are shown with an iteration symbol.

Operators are shown as symbols related to a specific parent.

When the query contains multiple statements, multiple query execution plans are drawn.

The parts of the tree structures are determined by the type of statement executed.

Type of statement Tree structure element
Transact-SQL and stored
procedures

If the statement is a stored procedure or Transact-SQL
statement, it becomes the root of the graphical
execution plan tree structure. The stored procedure can
have multiple children that represent statements called
by the stored procedure. Each child is a node or branch
of the tree.

Data manipulation language
(DML)

If the statement analyzed by the SQL Server query
optimizer is a DML statement, such as SELECT, INSERT,
DELETE, or UPDATE, the DML statement is the root of
the tree. DML statements can have up to two children.
The first child is the execution plan for the DML
statement. The second child represents a trigger, if
used in or by the statement.

Conditional The graphical execution plan divides conditional
statements such as IF...ELSE statements (if condition
exists, then do the following, else do this statement
instead) into three children. The IF...ELSE statement is
the root of the tree. The if condition becomes a subtree
node. The then and else conditions are represented as
statement blocks. WHILE and DO-UNTIL statements are
represented using a similar plan.

Relational operators Operations performed by the query engine, such as
table scans, joins, and aggregations, are represented as
nodes on the tree.

DECLARE CURSOR The DECLARE CURSOR statement is the root of the
graphical execution plan tree, with its related statement
as a child or node.

Each node displays ToolTip information when the cursor is pointed at it. The ToolTip information can include:

The physical operator (Physical Operation) used, such as Hash Join or Nested Loops. Physical operators displayed in red
indicate that the query optimizer has issued a warning, such as missing column statistics or missing join predicates. This can
cause the query optimizer to choose a less-efficient query plan than otherwise expected. For more information about
column statistics, see Statistical Information. The graphical execution plan suggests remedial action, such as creating or
updating statistics, or creating an index. The missing column statistics and indexes can be immediately created or updated
using the context menus of SQL Query Analyzer.

The logical operator (Logical Operation) that matches the physical operator, such as the Join operator. The logical
operator, if different from the physical operator, is listed after the physical operator at the top of the ToolTip and separated
by a forward slash (/).

The number of rows (Row Count) output by the operator.

The estimated size of the row (Estimated Row Size) output by the operator.

The estimated cost (I/O Cost) of all I/O activity for the operation. This value should be as low as possible.

The estimated cost for all CPU activity (CPU Cost) for the operation.

The number of times the operation was executed (Number of executes) during the query.

The cost to the query optimizer (Cost) in executing this operation, including cost of this operation as a percentage of the
total cost of the query. Because the query engine selects the most efficient operation to perform the query or execute the

statement, this value should be as low as possible.

The total cost to the query optimizer (Subtree cost) in executing this operation and all operations preceding it in the same
subtree.

The predicates and parameters (Argument) used by the query.

To create statistics

Query Analyzer

Query Analyzer

To update statistics

Query Analyzer

Query Analyzer

To delete statistics

Query Analyzer

Query Analyzer

To create a new index

Query Analyzer

Query Analyzer

To modify an index

Query Analyzer

Query Analyzer

To delete an index

Query Analyzer

Query Analyzer

See Also

SET SHOWPLAN_ALL

SET SHOWPLAN_TEXT

Optimizing Database Performance (SQL Server 2000)

Logical and Physical Operators
The logical and physical operators describe how a query or update was executed. The physical operators describe the physical
implementation algorithm used to process a statement, for example, scanning a clustered index. Each step in the execution of a
query or update statement involves a physical operator. The logical operators describe the relational algebraic operation used to
process a statement, for example, performing an aggregation. Not all steps used to process a query or update involve logical
operations.

Optimizing Database Performance (SQL Server 2000)

Assert
Assert

The Assert logical and physical operator verifies a condition. For example, it validates referential integrity or check constraints, or
ensures that a scalar subquery returns one row. For each input row, the Assert operator evaluates the expression in the
Argument column. If this expression evaluates to NULL, the row is passed through the Assert operator. If this expression
evaluates to a nonnull value, the appropriate error will be raised.

Optimizing Database Performance (SQL Server 2000)

Aggregate
Aggregate

The Aggregate logical operator groups the input by a set of columns and calculates aggregate expressions (MIN, MAX, SUM, and
so on).

See Also

Aggregate Functions

Optimizing Database Performance (SQL Server 2000)

Bookmark Lookup
Bookmark Lookup

The Bookmark Lookup logical and physical operator uses a bookmark (row ID or clustering key) to look up the corresponding row
in the table or clustered index. The Argument column contains the bookmark label used to look up the row in the table or
clustered index. The Argument column also contains the name of the table or clustered index in which the row is looked up. If the
WITH PREFETCH clause appears in the Argument column, then the query processor has determined that it is optimal to use
asynchronous prefetching (read-ahead) when looking up bookmarks in the table or clustered index.

Optimizing Database Performance (SQL Server 2000)

Clustered Index Delete
Clustered Index Delete

The Clustered Index Delete physical operator deletes rows from the clustered index specified in the Argument column. If a
WHERE:() predicate is present in the Argument column, then only those rows that satisfy the predicate are deleted.

See Also

Using Clustered Indexes

Optimizing Database Performance (SQL Server 2000)

Clustered Index Insert
Clustered Index Insert

The Clustered Index Insert physical operator inserts rows from its input into the clustered index specified in the Argument
column. The Argument column will also contain a SET:() predicate, which indicates the value to which each column is set.

See Also

Using Clustered Indexes

Optimizing Database Performance (SQL Server 2000)

Clustered Index Update
Clustered Index Update

The Clustered Index Update physical operator updates input rows in the clustered index specified in the Argument column.

If a WHERE:() predicate is present, only those rows that satisfy this predicate are updated. If a SET:() predicate is present, it
indicates the value to which each updated column is set. If a DEFINE:() predicate is present, this lists the values that this operator
defines. These values may be referenced in the SET clause or elsewhere within this operator and elsewhere within this query.

See Also

Using Clustered Indexes

Optimizing Database Performance (SQL Server 2000)

Clustered Index Scan
Clustered Index Scan

The Clustered Index Scan logical and physical operator scans the clustered index specified in the Argument column. When an
optional WHERE:() predicate is present, only those rows that satisfy the predicate are returned. If the Argument column contains
the ORDERED clause, the query processor has requested that the rows' output be returned in the order in which the clustered
index has sorted them. If the ORDERED clause is not present, the storage engine will scan the index in the optimal way (not
guaranteeing the output to be sorted).

See Also

Using Clustered Indexes

Optimizing Database Performance (SQL Server 2000)

Clustered Index Seek
Clustered Index Seek

The Clustered Index Seek logical and physical operator uses the seeking ability of indexes to retrieve rows from a clustered index.

The Argument column contains the name of the clustered index being used and the SEEK:() predicate. The storage engine uses
the index to process only those rows that satisfy this SEEK:() predicate. It optionally can include a WHERE:() predicate, which the
storage engine evaluates against all rows satisfying the SEEK:() predicate (it does not use indexes to do this).

If the Argument column contains the ORDERED clause, the query processor has determined that the rows must be returned in
the order in which the clustered index has sorted them. If the ORDERED clause is not present, the storage engine searches the
index in the optimal way (not guaranteeing the output to be sorted). Allowing the output to retain its ordering can be less efficient
than producing nonsorted output.

See Also

Using Clustered Indexes

Optimizing Database Performance (SQL Server 2000)

Collapse
Collapse

The Collapse logical and physical operator optimizes update processing. When an update is performed, it can be split (using the
Split operator) into a delete and an insert. If the Argument column contains a GROUP BY:() predicate and a list of key columns
being grouped, the query processor groups by the set of key columns to optimize these update operations by removing any
temporary, unnecessary intermediate changes to each row.

See Also

Split

Optimizing Database Performance (SQL Server 2000)

Compute Scalar
Compute Scalar

The Compute Scalar logical and physical operator evaluates an expression to produce a computed scalar value, which may be
returned to the user and/or referenced elsewhere in the query, for example, in a filter predicate or join predicate.

See Also

Functions

Optimizing Database Performance (SQL Server 2000)

Concatenation
Concatenation

The Concatenation logical and physical operator scans multiple inputs, returning each row scanned.

Optimizing Database Performance (SQL Server 2000)

Constant Scan
Constant Scan

The Constant Scan logical and physical operator introduces a constant row into a query. It will return either zero or one row,
which usually contains no columns. A Compute Scalar operator is often used to add columns to the row produced by a Constant
Scan.

See Also

Compute Scalar

Optimizing Database Performance (SQL Server 2000)

Cross Join
Cross Join

The Cross Join logical operator joins each row from the first (top) input with each row from the second (bottom) input.

See Also

Using Cross Joins

Optimizing Database Performance (SQL Server 2000)

Delete
Delete

The Delete logical operator deletes from an object rows that satisfy the optional predicate in the Argument column.

See Also

DELETE

Optimizing Database Performance (SQL Server 2000)

Deleted Scan
Deleted Scan

The Deleted Scan logical and physical operator scans the deleted table within a trigger.

See Also

Using the inserted and deleted Tables

Optimizing Database Performance (SQL Server 2000)

Distinct
Distinct

The Distinct logical operator scans the input, removing duplicates.

See Also

Eliminating Duplicates with DISTINCT

Optimizing Database Performance (SQL Server 2000)

Distinct Sort
Distinct Sort

The Distinct Sort logical operator scans the input, removing duplicates and sorting by the columns specified in the DISTINCT
ORDER BY:() predicate of the Argument column.

See Also

Distinct

Eliminating Duplicates with DISTINCT

Optimizing Database Performance (SQL Server 2000)

Distribute Streams
Distribute Streams

The Distribute Streams logical operator is used only in parallel query plans. The Distribute Streams operator consumes a single
input stream of records and produces multiple output streams. The record contents and format are not changed. Each record
from the input stream appears in one of the output streams. This operator automatically preserves the relative order of the input
records in the output streams. Usually, hashing is used to decide to which output stream a particular input record belongs.

If the output is partitioned, then the Argument column contains a PARTITION COLUMNS:() predicate and the partitioning
columns.

See Also

Gather Streams

Parallel Query Processing

Parallelism

Repartition Streams

Optimizing Database Performance (SQL Server 2000)

Eager Spool
Eager Spool

The Eager Spool logical operator will consume the entire input, storing each row in a hidden temporary object stored in the
tempdb database. If the operator is rewound (for example, by a Nested Loops operator) but no rebinding is needed, the spooled
data is used instead of rescanning the input. If rebinding is needed, the spooled data is discarded and the spool object is rebuilt by
rescanning the (rebound) input.

The Eager Spool operator will build its spool file eagerly. When the spool's parent operator asks for the first row, the spool
operator will consume all rows from its input operator and store them in the spool.

Note An alternative way of building a spool file is with the Lazy Spool operator.

Optimizing Database Performance (SQL Server 2000)

Filter
Filter

The Filter logical and physical operator scans the input, returning only those rows that satisfy the filter expression (predicate) that
appears in the Argument column.

Optimizing Database Performance (SQL Server 2000)

Flow Distinct
Flow Distinct

The Flow Distinct logical operator scans the input, removing duplicates. Whereas the Distinct operator consumes all input before
producing any output, the Flow Distinct operator returns each row as it is obtained from the input (unless that row is a duplicate,
in which case it is discarded).

See Also

Distinct

Eliminating Duplicates with DISTINCT

Optimizing Database Performance (SQL Server 2000)

Full Outer Join
Full Outer Join

The Full Outer Join logical operator returns each row satisfying the join predicate from the first (top) input joined with each row
from the second (bottom) input. It also returns rows from:

The first input that had no matches in the second input.

The second input that had no matches in the first input.

The input that does not contain the matching values is returned as a null value.

See Also

Using Outer Joins

Optimizing Database Performance (SQL Server 2000)

Gather Streams
Gather Streams

The Gather Streams logical operator is only used in parallel query plans. The Gather Streams operator consumes several input
streams and produces a single output stream of records by combining the input streams. The record contents and format are not
changed. If this operator is order-preserving, then all input streams must be ordered.

If the output is ordered, then the Argument column contains an ORDER BY:() predicate and the names of columns being ordered.

See Also

Distribute Streams

Parallel Query Processing

Parallelism

Repartition Streams

Optimizing Database Performance (SQL Server 2000)

Hash Match
Hash Match

The Hash Match physical operator builds a hash table by computing a hash value for each row from its build input. A HASH:()
predicate with a list of columns used to create a hash value appears in the Argument column. Then, for each probe row (as
applicable), it computes a hash value (using the same hash function) and looks in the hash table for matches. If a residual
predicate is present (identified by RESIDUAL:() in the Argument column), that predicate must also be satisfied for rows to be
considered a match. Behavior is slightly different based on the logical operation being performed:

For any joins, use the first (top) input to build the hash table and the second (bottom) input to probe the hash table. Output
matches (or nonmatches) as dictated by the join type. If multiple joins use the same join column, these operations are
grouped into a hash team.

For the distinct or aggregate operators, use the input to build the hash table (removing duplicates and computing any
aggregate expressions). When the hash table is built, scan the table and output all entries.

For the union operator, use the first input to build the hash table (removing duplicates). Use the second input (which must
have no duplicates) to probe the hash table, returning all rows that have no matches, then scan the hash table and return all
entries.

See Also

Distinct

Understanding Hash Joins

Hash Match Team

Union

Optimizing Database Performance (SQL Server 2000)

Hash Match Root
Hash Match Root

The Hash Match Root physical operator coordinates the operation of all Hash Match Team operators directly below it. The Hash
Match Root operator and all Hash Match Team operators directly below it share a common hash function and partitioning
strategy. The Hash Match Root operator always returns output to an operator that is not a member of its team.

See Also

Hash Match Team

Understanding Hash Joins

Optimizing Database Performance (SQL Server 2000)

Hash Match Team
Hash Match Team

The Hash Match Team physical operator is part of a team of connected hash operators sharing a common hash function and
partitioning strategy.

See Also

Hash Match Root

Understanding Hash Joins

Optimizing Database Performance (SQL Server 2000)

Index Delete
Index Delete

The Index Delete physical operator will delete input rows from the nonclustered index specified in the Argument column. If a
WHERE:() predicate is present, only those rows that satisfy this predicate will be deleted.

See Also

DELETE

Using Nonclustered Indexes

Optimizing Database Performance (SQL Server 2000)

Index Insert
Index Insert

The Index Insert physical operator inserts rows from its input into the nonclustered index specified in the Argument column. The
Argument column will also contain a SET:() predicate, which indicates the value to which each column is set.

See Also

INSERT

Using Nonclustered Indexes

Optimizing Database Performance (SQL Server 2000)

Index Scan
Index Scan

The Index Scan logical and physical operator retrieves all rows from the nonclustered index specified in the Argument column. If
an optional WHERE:() predicate appears in the Argument column, only those rows that satisfy the predicate are returned.

If the Argument column must contain the ORDERED clause, the query processor has determined that the rows be returned in the
order in which the nonclustered index has sorted them. If the ORDERED clause is not present, the storage engine will search the
index in the optimal way (which does not guarantee that the output will be sorted).

See Also

SELECT

Using Nonclustered Indexes

Optimizing Database Performance (SQL Server 2000)

Index Seek
Index Seek

The Index Seek logical and physical operator uses the seeking ability of indexes to retrieve rows from a nonclustered index.

The Argument column contains the name of the nonclustered index being used. It also contains the SEEK:() predicate. The storage
engine uses the index to process only those rows that satisfy the SEEK:() predicate. It optionally may include a WHERE:() predicate,
which the storage engine will evaluate against all rows that satisfy the SEEK:() predicate (it does not use the indexes to do this).

If the Argument column contains the ORDERED clause, the query processor has determined that the rows must be returned in
the order in which the nonclustered index has sorted them. If the ORDERED clause is not present, the storage engine searches the
index in the optimal way (which does not guarantee that the output will be sorted). Allowing the output to retain its ordering may
be less efficient than producing nonsorted output.

See Also

SELECT

Using Nonclustered Indexes

Optimizing Database Performance (SQL Server 2000)

Index Spool
Index Spool

The Index Spool physical operator contains a SEEK:() predicate in the Argument column. The Index Spool operator scans its input
rows, placing a copy of each row in a hidden spool file (stored in the tempdb database and existing only for the lifetime of the
query), and builds an index on the rows. This allows you to use the seeking capability of indexes to output only those rows that
satisfy the SEEK:() predicate.

If the operator is rewound (for example, by a Nested Loops operator) but no rebinding is needed, the spooled data is used instead
of rescanning the input.

See Also

Creating an Index

Optimizing Database Performance (SQL Server 2000)

Index Update
Index Update

The Index Update physical operator updates rows from its input in the nonclustered index specified in the Argument column.

If a WHERE:() predicate is present, only those rows that satisfy this predicate are updated. If a SET:() predicate is present, it
indicates the value to which each updated column is set. If a DEFINE:() predicate is present, it lists the values that this operator
defines. These values may be referenced in the SET clause, or elsewhere within this operator and elsewhere within this query.

See Also

UPDATE

Using Nonclustered Indexes

Optimizing Database Performance (SQL Server 2000)

Inner Join
Inner Join

The Inner Join logical operator returns each row that satisfies the join of the first (top) input with the second (bottom) input.

See Also

Using Inner Joins

Optimizing Database Performance (SQL Server 2000)

Insert
Insert

The Insert logical operator inserts each row from its input into the object specified in the Argument column. The physical
operator will be either the Table Insert, Index Insert, or Clustered Index Insert operator.

See Also

Clustered Index Insert

Table Insert

Index Insert

Optimizing Database Performance (SQL Server 2000)

Inserted Scan
Inserted Scan

The Inserted Scan logical and physical operator scans the inserted table within a trigger.

See Also

Using the inserted and deleted Tables

Optimizing Database Performance (SQL Server 2000)

Lazy Spool
Lazy Spool

The Lazy Spool logical operator stores each row from its input in a hidden temporary object stored in the tempdb database. If the
operator is rewound (for example, by a Nested Loops operator) but no rebinding is needed, the spooled data is used instead of
rescanning the input. If rebinding is needed, the spooled data is discarded and the spool object is rebuilt by rescanning the
(rebound) input.

The Lazy Spool operator will build its spool file in a lazy (noneager) manner. Each time the spool's parent operator asks for a row,
the spool operator gets a row from its input operator and stores it in the spool.

See Also

Eager Spool

Optimizing Database Performance (SQL Server 2000)

Left Anti Semi Join
Left Anti Semi Join

The Left Anti Semi Join logical operator returns each row from the first (top) input when there is no matching row in the second
(bottom) input. If no join predicate exists in the Argument column, each row is a matching row.

See Also

Using Joins

Optimizing Database Performance (SQL Server 2000)

Left Outer Join
Left Outer Join

The Left Outer Join logical operator returns each row that satisfies the join of the first (top) input with the second (bottom) input.
It also returns any rows from the first input that had no matching rows in the second input. The nonmatching rows in the second
input are returned as null values. If no join predicate exists in the Argument column, each row is a matching row.

See Also

Using Outer Joins

Optimizing Database Performance (SQL Server 2000)

Left Semi Join
Left Semi Join

The Left Semi Join logical operator returns each row from the first (top) input when there is a matching row in the second
(bottom) input. If no join predicate exists in the Argument column, each row is a matching row.

See Also

Using Joins

Optimizing Database Performance (SQL Server 2000)

Log Row Scan
Log Row Scan

The Log Row Scan logical and physical operator scans the transaction log.

See Also

Transaction Logs

Optimizing Database Performance (SQL Server 2000)

Merge Interval
Merge Interval

The Merge Interval logical and physical operator merges multiple (potentially overlapping) intervals to produce minimal,
nonoverlapping intervals that are then used to seek index entries. This operator typically appears above one or more Compute
Scalar operators over Constant Scan operators, which construct the intervals (represented as columns in a row) that this operator
merges.

See Also

Compute Scalar

Constant Scan

Optimizing Database Performance (SQL Server 2000)

Merge Join
Merge Join

The Merge Join physical operator performs the Inner Join, Left Outer Join, Left Semi Join, Left Anti Semi Join, Right Outer Join,
Right Semi Join, Right Anti Semi Join, and Union logical operations.

In the Argument column, the Merge Join operator contains a MERGE:() predicate if the operation is performing a one-to-many
join, or a MANY-TO-MANY MERGE:() predicate if the operation is performing a many-to-many join. The Argument column also
includes a comma-separated list of columns used to perform the operation. The Merge Join operator requires two inputs sorted
on their respective columns, possibly by inserting explicit sort operations into the query plan. Merge join is particularly effective if
explicit sorting is not required, for example, if there is a suitable B-tree index in the database or if the sort order can be exploited
for multiple operations, such as a merge join and grouping with roll up.

See Also

Understanding Merge Joins

Optimizing Database Performance (SQL Server 2000)

Nested Loops
Nested Loops

The Nested Loops physical operator performs the Inner Join, Left Outer Join, Left Semi Join, and Left Anti Semi Join logical
operations.

Nested loops joins perform a search on the inner table for each row of the outer table, typically using an index. Microsoft® SQL
Server™ 2000 decides, based on anticipated costs, whether to sort the outer input in order to improve locality of the searches on
the index over the inner input.

Any rows that satisfy the (optional) predicate in the Argument column are returned (as applicable based on the logical operation
being performed).

See Also

Understanding Nested Loops Joins

Optimizing Database Performance (SQL Server 2000)

Parallelism
Parallelism

The Parallelism physical operator performs the Distribute Streams, Gather Streams, and Repartition Streams logical operations.
The Argument columns can contain a PARTITION COLUMNS:() predicate with a comma-separated list of the columns being
partitioned. The Argument columns can also contain an ORDER BY:() predicate with a list of the columns for which the sort order
is preserved during partitioning.

See Also

Distribute Streams

Repartition Streams

Gather Streams

Optimizing Database Performance (SQL Server 2000)

Parameter Table Scan
Parameter Table Scan

The Parameter Table Scan logical and physical operator scans a table that is acting as a parameter in the current query. Typically,
this is used for INSERT queries within a stored procedure.

See Also

INSERT

Optimizing Database Performance (SQL Server 2000)

Remote Delete
Remote Delete

The Remote Delete logical and physical operator deletes the input rows from a remote object.

Optimizing Database Performance (SQL Server 2000)

Remote Insert
Remote Insert

The Remote Insert logical and physical operator inserts the input rows into a remote object.

Optimizing Database Performance (SQL Server 2000)

Remote Query
Remote Query

The Remote Query logical and physical operator submits a query to a remote source. The text of the query sent to the remote
server appears in the Argument column.

See Also

Optimizing Distributed Queries

Optimizing Database Performance (SQL Server 2000)

Remote Scan
Remote Scan

The Remote Scan logical and physical operator will scan a remote object. The name of the remote object appears in the
Argument column.

Optimizing Database Performance (SQL Server 2000)

Remote Update
Remote Update

The Remote Update logical and physical operator updates the input rows in a remote object.

Optimizing Database Performance (SQL Server 2000)

Repartition Streams
Repartition Streams

The Repartition Streams logical operator is used only in parallel query plans. The Repartition Streams operator consumes multiple
streams and produces multiple streams of records. The record contents and format are not changed. Each record from an input
stream is placed into one output stream. If this operator is order-preserving, then all input streams must be ordered and merged
into several ordered output streams.

If the output is partitioned, then the Argument column contains a PARTITION COLUMNS:() predicate and the partitioning
columns.

If the output is ordered, then the Argument column contains an ORDER BY:() predicate and the columns being ordered.

See Also

Distribute Streams

Parallel Query Processing

Gather Streams

Optimizing Database Performance (SQL Server 2000)

Right Anti Semi Join
Right Anti Semi Join

The Right Anti Semi Join logical operator will output each row from the second (bottom) input when a matching row in the first
(top) input does not exist. A matching row is defined as a row that satisfies the predicate in the Argument column (if no predicate
exists, each row is a matching row).

See Also

Using Joins

Optimizing Database Performance (SQL Server 2000)

Right Outer Join
Right Outer Join

The Right Outer Join logical operator returns each row that satisfies the join of the second (bottom) input with each matching row
from the first (top) input. It will also return any rows from the second input that had no matching rows in the first input, joined
with NULL. If no join predicate exists in the Argument column, each row is a matching row.

See Also

Using Outer Joins

Optimizing Database Performance (SQL Server 2000)

Right Semi Join
Right Semi Join

The Right Semi Join logical operator returns each row from the second (bottom) input when there is a matching row in the first
(top) input. If no join predicate exists in the Argument column, each row is a matching row.

See Also

Using Joins

Optimizing Database Performance (SQL Server 2000)

Row Count Spool
Row Count Spool

The Row Count Spool physical operator scans the input, counting how many rows are present and returning that many rows
without any data in them. This operator is used when it is important to check for the existence of rows rather than the data
contained in the rows. For example, if a Nested Loops operator performs a left semi join operation and the join predicate applies
to inner input, a row count spool may be placed at the top of the inner input of the Nested Loops operator. Then the Nested Loops
operator can look at how many rows are output by the row count spool (because the actual data from the inner side is not
needed) to determine whether to return the outer row.

See Also

Left Semi Join

Nested Loops

Optimizing Database Performance (SQL Server 2000)

Sequence
Sequence

The Sequence logical and physical operator drives wide update plans. Functionally, it executes each input in sequence (top to
bottom). Each input is usually an update of a different object. It returns only those rows that come from its last (bottom) input.

Optimizing Database Performance (SQL Server 2000)

Sort
Sort

The Sort logical and physical operator sorts all incoming rows. The Argument column contains a DISTINCT ORDER BY:()
predicate if duplicates are removed by this operation or an ORDER BY:() predicate with a comma-separated list of the columns
being sorted. The columns are prefixed with the value ASC if the columns are sorted in ascending order, or the value DESC if the
columns are sorted in descending order.

See Also

SELECT

Optimizing Database Performance (SQL Server 2000)

Split
Split

The Split logical and physical operator is used to optimize update processing. It splits each update operation into a delete and an
insert operation.

See Also

Collapse

Optimizing Database Performance (SQL Server 2000)

Stream Aggregate
Stream Aggregate

The Stream Aggregate physical operator optionally groups by a set of columns and calculates one or more aggregate expressions
returned by the query and/or referenced elsewhere within the query. This operator requires that input is ordered by the columns
within its groups.

If the Stream Aggregate operator groups by columns, a GROUP BY:() predicate and the list of columns appear in the Argument
column. If the Stream Aggregate operator computes any aggregate expressions, a list of them will appear in the Defined Values
column of the output from the SHOWPLAN_ALL statement or the Argument column of the graphical execution plan.

See Also

Aggregate Functions

Optimizing Database Performance (SQL Server 2000)

Table Delete
Table Delete

The Table Delete physical operator deletes rows from the table specified in the argument column. If a WHERE:() predicate is
present in the Argument column, only those rows that satisfy the predicate will be deleted.

See Also

DELETE

Optimizing Database Performance (SQL Server 2000)

Table Insert
Table Insert

The Table Insert physical operator inserts rows from its input into the table specified in the Argument column. The Argument
column also contains a SET:() predicate, which indicates the value to which each column is set.

See Also

INSERT

Optimizing Database Performance (SQL Server 2000)

Table Scan
Table Scan

The Table Scan logical and physical operator retrieves all rows from the table specified in the Argument column. If a WHERE:()
predicate appears in the Argument column, only those rows that satisfy the predicate are returned.

See Also

SELECT

Optimizing Database Performance (SQL Server 2000)

Table Spool
Table Spool

The Table Spool physical operator scans the input and places a copy of each row in a hidden spool table (stored in the tempdb
database and existing only for the lifetime of the query). If the operator is rewound (for example, by a Nested Loops operator) but
no rebinding is needed, the spooled data is used instead of rescanning the input.

Optimizing Database Performance (SQL Server 2000)

Table Update
Table Update

The Table Update physical operator updates input rows in the table specified in the Argument column. If a WHERE:() predicate is
present, only those rows that satisfy this predicate are updated. If a SET:() predicate is present, it indicates the value to which each
updated column is set. If a DEFINE:() predicate is present, this lists the values that this operator defines. These values may be
referenced in the SET clause or elsewhere within this operator and elsewhere within this query.

See Also

UPDATE

Optimizing Database Performance (SQL Server 2000)

Top
Top

The Top logical and physical operator will scan the input, returning only the first specified number or percent of rows. The
Argument column can optionally contain a list of the columns that are being checked for ties. In update plans, the Top operator is
used to enforce row count limits.

See Also

Limiting Result Sets Using TOP and PERCENT

SET ROWCOUNT

Optimizing Database Performance (SQL Server 2000)

Union
Union

The Union logical operator scans multiple inputs, outputting each row scanned and removing duplicates.

See Also

UNION

Optimizing Database Performance (SQL Server 2000)

Update
Update

The Update logical operator updates each row from its input in the object specified in the Argument column. The physical
operator is Table Update, Index Update, or Clustered Index Update.

See Also

UPDATE

Optimizing Database Performance (SQL Server 2000)

Cursor Logical and Physical Operators
Cursor Logical and Physical Operators

The Cursor logical and physical operators are used to describe how a query, or update involving cursor operations, is executed.
The physical operators describe the physical implementation algorithm used to process the cursor; for example, using a keyset-
driven cursor. Each step in the execution of a cursor involves a physical operator. The logical operators describe a property of the
cursor, such as the cursor is read only.

Logical Operators

The Cursor logical operators include:

Asynchronous

The cursor table is populated asynchronously. For more information, see Asynchronous Population.

Optimistic

This cursor uses the optimistic mode of concurrency. For more information, see Cursor Concurrency.

Primary

This is the primary fetch query for this cursor.

Read Only

This cursor uses read-only semantics for concurrency. This cursor can only read data, not insert, update, or delete it. For more
information, see Cursor Concurrency.

Scroll Locks

This cursor uses scroll locks for concurrency. For more information, see Cursor Concurrency.

Secondary

This is the secondary fetch query (used if the primary fetch query fails).

Synchronous

The cursor table is populated synchronously.

Physical Operators

The Cursor physical operators include:

Dynamic

This cursor can see all changes made by others. For more information, see Dynamic Cursors.

Fetch Query

This query retrieves rows when a fetch is issued against a cursor.

Keyset

This cursor can see updates made by others, but not inserts. For more information, see Keyset-driven Cursors.

Population Query

This query populates a cursor's work table when the cursor is opened.

Refresh Query

This query fetches current data for rows in the cursor fetch buffer.

Snapshot

This cursor does not see changes made by others. For more information, see Static Cursors.

See Also

Cursors

Optimizing Database Performance (SQL Server 2000)

Query Tuning Recommendations
Some queries are inherently resource intensive. This is related to fundamental database and index issues. These queries are not
inefficient, because the query optimizer will implement the queries in the most efficient fashion possible. However, they are
resource intensive, and the set-oriented nature of Transact-SQL can make them appear inefficient. No degree of query optimizer
intelligence can eliminate the inherent resource cost of these constructs. They are intrinsically costly when compared to a less
complex query. Although Microsoft® SQL Server™ 2000 uses the most optimal access plan, this is limited by what is
fundamentally possible. For example, the following types of queries can be resource intensive:

Queries returning large result sets

Highly nonunique WHERE clauses

However, recommendations for tuning queries and improving query performance include:

Add more memory (especially if the server runs many complex queries and several of the queries execute slowly).

Run SQL Server on a computer with more than one processor. Multiple processors allow SQL Server to make use of parallel
queries. For more information, see Parallel Query Processing.

Consider rewriting the query.
If the query uses cursors, determine if the cursor query could be written more efficiently using either a more
efficient cursor type, such as fast forward-only, or a single query. Single queries typically outperform cursor
operations. Because a set of cursor statements is typically an outer loop operation, in which each row in the outer
loop is processed once using an inner statement, consider using either a GROUP BY or CASE statement or a
subquery instead.

If an application uses a loop, consider putting the loop inside the query. Often an application will contain a loop that
contains a parameterized query, which is executed many times and requires a network round trip between the
computer running the application and SQL Server. Instead, create a single, more complex query using a temporary
table. Only one network round trip is necessary, and the query optimizer can better optimize the single query.

Do not use multiple aliases for a single table in the same query to simulate index intersection. This is no longer
necessary because SQL Server automatically considers index intersection and can make use of multiple indexes on
the same table in the same query. For example, given the sample query:

SELECT * FROM lineitem
WHERE partkey BETWEEN 17000 AND 17100 AND
 shipdate BETWEEN '1/1/1994' AND '1/31/1994"

SQL Server can exploit indexes on both the partkey and shipdate columns, and then perform a hash match
between the two subsets to obtain the index intersection.

Make use of query hints only if necessary. Queries using hints executed against earlier versions of SQL Server
should be tested without the hints specified. The hints can prevent the query optimizer from choosing a better
execution plan. For more information, see SELECT.

Make use of the query governor configuration option and setting. The query governor configuration option can be used
to prevent long-running queries from executing, thus preventing system resources from being consumed. By default, the
query governor configuration option allows all queries to execute, no matter how long they take. However, the query
governor can be set to the maximum number of seconds that all queries for all connections, or just the queries for a specific
connection, are allowed to execute. Because the query governor is based on estimated query cost, rather than actual elapsed
time, it does not have any run-time overhead. It also stops long-running queries before they start, rather than running them
until some predefined limit is hit. For more information, see query governor cost limit Option and SET
QUERY_GOVERNOR_COST_LIMIT.

See Also

CASE

Subquery Fundamentals

GROUP BY Components

Optimizing Database Performance (SQL Server 2000)

Advanced Query Tuning Concepts
Microsoft® SQL Server™ 2000 performs sort, intersect, union, and difference operations using in-memory sorting and hash join
technology. Using this type of query plan, SQL Server supports vertical table partitioning, sometimes called columnar storage.

SQL Server employs three types of join operations:

Nested loops joins

Merge joins

Hash joins

If one join input is quite small (such as fewer than 10 rows) and the other join input is fairly large and indexed on its join columns,
index nested loops are the fastest join operation because they require the least I/O and the fewest comparisons. For more
information about nested loops, see Understanding Nested Loops Joins.

If the two join inputs are not small but are sorted on their join column (for example, if they were obtained by scanning sorted
indexes), merge join is the fastest join operation. If both join inputs are large and the two inputs are of similar sizes, merge join
with prior sorting and hash join offer similar performance. However, hash join operations are often much faster if the two input
sizes differ significantly from each other. For more information, see Understanding Merge Joins.

Hash joins can process large, unsorted, nonindexed inputs efficiently. They are useful for intermediate results in complex queries
because:

Intermediate results are not indexed (unless explicitly saved to disk and then indexed) and often are not produced suitably
sorted for the next operation in the query plan.

Query optimizers estimate only intermediate result sizes. Because estimates can be an order of magnitude wrong in
complex queries, algorithms to process intermediate results not only must be efficient but also must degrade gracefully if
an intermediate result turns out to be much larger than anticipated.

The hash join allows reductions in the use of denormalization to occur. Denormalization is typically used to achieve better
performance by reducing join operations, in spite of the dangers of redundancy, such as inconsistent updates. Hash joins reduce
the need to denormalize. Hash joins allow vertical partitioning (representing groups of columns from a single table in separate
files or indexes) to become a viable option for physical database design. For more information, see Understanding Hash Joins.

Optimizing Database Performance (SQL Server 2000)

Understanding Nested Loops Joins
The nested loops join, also called nested iteration, uses one join input as the outer input table (shown as the top input in the
graphical execution plan) and one as the inner (bottom) input table. The outer loop consumes the outer input table row by row.
The inner loop, executed for each outer row, searches for matching rows in the inner input table. In the simplest case, the search
scans an entire table or index; this is called a naive nested loops join. If the search exploits an index, it is called an index nested
loops join. If the index is built as part of the query plan (and destroyed upon completion of the query), it is called a temporary
index nested loops join. All these variants are considered by the query optimizer. A nested loops join is particularly effective if the
outer input is quite small and the inner input is preindexed and quite large. In many small transactions, such as those affecting
only a small set of rows, index nested loops joins are far superior to both merge joins and hash joins. In large queries, however,
nested loops joins are often not the optimal choice.

Optimizing Database Performance (SQL Server 2000)

Understanding Merge Joins
The merge join requires that both inputs be sorted on the merge columns, which are defined by the equality (WHERE) clauses of
the join predicate. The query optimizer typically scans an index, if one exists on the proper set of columns, or places a sort
operator below the merge join. In rare cases, there may be multiple equality clauses, but the merge columns are taken from only
some of the available equality clauses.

Because each input is sorted, the Merge Join operator gets a row from each input and compares them. For example, for inner join
operations, the rows are returned if they are equal. If they are not equal, whichever row has the lower value is discarded and
another row is obtained from that input. This process repeats until all rows have been processed.

The merge join operation may be either a regular or a many-to-many operation. A many-to-many merge join uses a temporary
table to store rows. If there are duplicate values from each input, one of the inputs will have to rewind to the start of the duplicates
as each duplicate from the other input is processed.

If a residual predicate is present, all rows that satisfy the merge predicate will evaluate the residual predicate, and only those rows
that satisfy it will be returned.

Merge join itself is very fast, but it can be an expensive choice if sort operations are required. However, if the data volume is large
and the desired data can be obtained presorted from existing B-tree indexes, merge join is often the fastest available join
algorithm.

Optimizing Database Performance (SQL Server 2000)

Understanding Hash Joins
The hash join has two inputs: the build input and probe input. The query optimizer assigns these roles so that the smaller of the
two inputs is the build input.

Hash joins are used for many types of set-matching operations: inner join; left, right, and full outer join; left and right semi-join;
intersection; union; and difference. Moreover, a variant of the hash join can do duplicate removal and grouping (such as
SUM(salary) GROUP BY department). These modifications use only one input for both the build and probe roles.

Similar to a merge join, a hash join can be used only if there is at least one equality (WHERE) clause in the join predicate. However,
because joins are typically used to reassemble relationships, expressed with an equality predicate between a primary key and a
foreign key, most joins have at least one equality clause. The set of columns in the equality predicate is called the hash key,
because these are the columns that contribute to the hash function. Additional predicates are possible and are evaluated as
residual predicates separate from the comparison of hash values. The hash key can be an expression, as long as it can be
computed exclusively from columns in a single row. In grouping operations, the columns of the group by list are the hash key. In
set operations such as intersection, as well as in the removal of duplicates, the hash key consists of all columns.

In-Memory Hash Join

The hash join first scans or computes the entire build input and then builds a hash table in memory. Each row is inserted into a
hash bucket depending on the hash value computed for the hash key. If the entire build input is smaller than the available
memory, all rows can be inserted into the hash table. This build phase is followed by the probe phase. The entire probe input is
scanned or computed one row at a time, and for each probe row, the hash key's value is computed, the corresponding hash
bucket is scanned, and the matches are produced.

Grace Hash Join

If the build input does not fit in memory, a hash join proceeds in several steps. Each step has a build phase and probe phase.
Initially, the entire build and probe inputs are consumed and partitioned (using a hash function on the hash keys) into multiple
files. The number of such files is called the partitioning fan-out. Using the hash function on the hash keys guarantees that any two
joining records must be in the same pair of files. Therefore, the task of joining two large inputs has been reduced to multiple, but
smaller, instances of the same tasks. The hash join is then applied to each pair of partitioned files.

Recursive Hash Join

If the build input is so large that inputs for a standard external merge sorts would require multiple merge levels, multiple
partitioning steps and multiple partitioning levels are required. If only some of the partitions are large, additional partitioning
steps are used for only those specific partitions. In order to make all partitioning steps as fast as possible, large, asynchronous I/O
operations are used so that a single thread can keep multiple disk drives busy.

Note If the build input is larger but not a lot larger than the available memory, elements of in-memory hash join and grace hash
join are combined in a single step, producing a hybrid hash join.

It is not always possible during optimization to determine which hash join will be used. Therefore, Microsoft® SQL Server™ 2000
starts using an in-memory hash join and gradually transitions to grace hash join, and recursive hash join, depending on the size
of the build input.

If the optimizer anticipates wrongly which of the two inputs is smaller and, therefore, should have been the build input, the build
and probe roles are reversed dynamically. The hash join makes sure that it uses the smaller overflow file as build input. This
technique is called role reversal.

Optimizing Database Performance (SQL Server 2000)

Application Design
Application design plays a pivotal role in determining the performance of a system using Microsoft® SQL Server™ 2000.
Consider the client the controlling entity rather than the database server. The client determines the type of queries, when they are
submitted, and how the results are processed. This in turn has a major effect on the type and duration of locks, amount of I/O, and
processing (CPU) load on the server, and hence on whether performance is generally good or bad.

For this reason, it is important to make the correct decisions during the application design phase. However, even if a performance
problem occurs using a turn-key application, where changes to the client application seem impossible, this does not change the
fundamental factors that affect performance: The client plays a dominant role and many performance problems cannot be
resolved without making client changes. A well-designed application allows SQL Server to support thousands of concurrent users.
Conversely, a poorly designed application prevents even the most powerful server platform from handling more than a few users.

Guidelines for client-application design include:

Eliminate excessive network traffic.

Network roundtrips between the client and SQL Server are usually the main reason for poor performance in a database
application, an even greater factor than the amount of data transferred between server and client. Network roundtrips
describe the conversational traffic sent between the client application and SQL Server for every batch and result set. By
making use of stored procedures, you can minimize network roundtrips. For example, if your application takes different
actions based on data values received from SQL Server, make those decisions directly in the stored procedure whenever
possible, thus eliminating network traffic.

If a stored procedure has multiple statements, then by default SQL Server sends a message to the client application at the
completion of each statement and details the number of rows affected for each statement. Most applications do not need
these messages. If you are confident that your applications do not need them, you can disable these messages, which can
improve performance on a slow network. Use the SET NOCOUNT session setting to disable these messages for the
application. For more information, see SET NOCOUNT.

Use small result sets.

Retrieving needlessly large result sets (for example, thousands of rows) for browsing on the client adds CPU and network
I/O load, makes the application less capable of remote use, and limits multiuser scalability. It is better to design the
application to prompt the user for sufficient input so queries are submitted that generate modest result sets. For more
information, see Optimizing Application Performance Using Efficient Data Retrieval.

Application design techniques that facilitate this include exercising control over wildcards when building queries, mandating
certain input fields, not allowing ad hoc queries, and using the TOP, PERCENT, or SET ROWCOUNT Transact-SQL statements
to limit the number of rows returned by a query. For more information, see Limiting Result Sets Using TOP and PERCENT
and SET ROWCOUNT.

Allow cancellation of a query in progress when the user needs to regain control of the application.

An application should never force the user to restart the client computer to cancel a query. Ignoring this can lead to
irresolvable performance problems. When a query is canceled by an application, for example, using the open database
connectivity (ODBC) sqlcancel function, proper care should be exercised regarding transaction level. Canceling a query, for
example, does not commit or roll back a user-defined transaction. All locks acquired within the transaction are retained after
the query is canceled. Therefore, after canceling a query, always either commit or roll back the transaction. The same issues
apply to DB-Library and other application programming interfaces (APIs) that can be used to cancel queries.

Always implement a query or lock time-out.

Do not allow queries to run indefinitely. Make the appropriate API call to set a query time-out. For example, use the ODBC
SQLSetStmtOption function.

For more information about setting a query time-out, see the ODBC API documentation.

For more information about setting a lock time-out, see Customizing the Lock Time-out.

Do not use application development tools that do not allow explicit control over the SQL statements sent to SQL Server.

Do not use a tool that transparently generates Transact-SQL statements based on higher-level objects if it does not provide
crucial features such as query cancellation, query time-out, and complete transactional control. It is often not possible to
maintain good performance or to resolve a performance problem if the application generates transparent SQL statements,
because this does not allow explicit control over transactional and locking issues, which are critical to the performance

picture.

Do not intermix decision support and online transaction processing (OLTP) queries. For more information, see Online
Transaction Processing vs. Decision Support.

Do not use cursors more than necessary.

Cursors are a useful tool in relational databases; however, it is almost always more expensive to use a cursor than to use a
set-oriented SQL statement to accomplish a task.

In set-oriented SQL statements, the client application tells the server to update the set of records that meet specified criteria.
The server figures out how to accomplish the update as a single unit of work. When updating through a cursor, the client
application requires the server to maintain row locks or version information for every row, just in case the client asks to
update the row after it has been fetched.

Also, using a cursor implies that the server is maintaining client state information, such as the user's current rowset at the
server, usually in temporary storage. Maintaining this state for a large number of clients is an expensive use of server
resources. A better strategy with a relational database is for the client application to get in and out quickly, maintaining no
client state at the server between calls. Set-oriented SQL statements support this strategy.

However, if the query uses cursors, determine if the cursor query could be written more efficiently either by using a more-
efficient cursor type, such as fast forward-only, or a single query. For more information, see Optimizing Application
Performance Using Efficient Data Retrieval.

Keep transactions as short as possible. For more information, see Effects of Transactions and Batches on Application
Performance.

Use stored procedures. For more information, see Effects of Stored Procedures on Application Performance.

Use prepared execution to execute a parameterized SQL statement. For more information, see Prepared Execution (ODBC).

Always process all results to completion.

Do not design an application or use an application that stops processing result rows without canceling the query. Doing so
will usually lead to blocking and slow performance. For more information, see Understanding and Avoiding Blocking.

Ensure that your application is designed to avoid deadlocks. For more information, see Minimizing Deadlocks.

Ensure that all the appropriate options for optimizing the performance of distributed queries have been set. For more
information, see Optimizing Distributed Queries.

See Also

Deadlocking

Locking

Dynamic Locking

Transactions

Optimizing Database Performance (SQL Server 2000)

Networking and Performance
One key characteristic of client/server databases is the limited amount of network traffic involved. Many applications using
Microsoft® SQL Server™ 2000 allow the user to log in over a modem link and still use the application effectively. Although
network I/O performance is reduced by a factor of 1,000 compared to a local area network (LAN), you often see little performance
degradation. However, if large amounts of data are transferred between the client and the server, network performance can be
affected.

It is a good idea to monitor the traffic between your client applications and the server. An application designed and tuned for slow
networks works great on a fast network, but the opposite is not true. If you use a higher-level development tool that generates
Transact-SQL statements and issues queries and updates on your behalf, it is especially important to keep on eye on what is
going across the network.

Optimizing Database Performance (SQL Server 2000)

Named Pipes vs. TCP/IP Sockets
In a fast local area network (LAN) environment, Transmission Control Protocol/Internet Protocol (TCP/IP) Sockets and Named
Pipes clients are comparable in terms of performance. However, the performance difference between the TCP/IP Sockets and
Named Pipes clients becomes apparent with slower networks, such as across wide area networks (WANs) or dial-up networks.
This is because of the different ways the interprocess communication (IPC) mechanisms communicate between peers.

For named pipes, network communications are typically more interactive. A peer does not send data until another peer asks for it
using a read command. A network read typically involves a series of peek named pipes messages before it begins to read the
data. These can be very costly in a slow network and cause excessive network traffic, which in turn affects other network clients.

It is also important to clarify if you are talking about local pipes or network pipes. If the server application is running locally on the
computer running an instance of Microsoft® SQL Server™ 2000, the local Named Pipes protocol is an option. Local named pipes
runs in kernel mode and is extremely fast.

For TCP/IP Sockets, data transmissions are more streamlined and have less overhead. Data transmissions can also take advantage
of TCP/IP Sockets performance enhancement mechanisms such as windowing, delayed acknowledgements, and so on, which can
be very beneficial in a slow network. Depending on the type of applications, such performance differences can be significant.

TCP/IP Sockets also support a backlog queue, which can provide a limited smoothing effect compared to named pipes that may
lead to pipe busy errors when you are attempting to connect to SQL Server.

In general, sockets are preferred in a slow LAN, WAN, or dial-up network, whereas named pipes can be a better choice when
network speed is not the issue, as it offers more functionality, ease of use, and configuration options.

For more information about TCP/IP, see the Microsoft Windows NT® documentation.

See Also

Client Net-Libraries and Network Protocols

Optimizing Database Performance (SQL Server 2000)

Optimizing Application Performance Using Efficient Data
Retrieval
One of the capabilities of the SQL language is its ability to filter data at the server so that only the minimum data required is
returned to the client. Using these facilities minimizes expensive network traffic between the server and client. This means that
WHERE clauses must be restrictive enough to retrieve only the data that is required by the application.

It is always more efficient to filter data at the server than to send it to the client and filter it in the application. This also applies to
columns requested from the server. An application that issues a SELECT * FROM... statement requires the server to return all
column data to the client, whether or not the client application has bound these columns for use in program variables. Selecting
only the necessary columns by name avoids unnecessary network traffic. This also makes your application more robust in the
event of table definition changes, because newly added columns are not returned to the client application.

Performance also depends on how your application requests a result set from the server. In an application using Open Database
Connectivity (ODBC), statement options set prior to executing a query determine how the application requests a result set from
the server. When you leave the statement options at default values, Microsoft® SQL Server™ 2000 sends the result set the most
efficient way.

SQL Server assumes that your application will fetch all the rows from a default result set immediately. Therefore, your application
must buffer any rows that are not used immediately but may be needed later. This buffering requirement makes it especially
important for you to specify (by using Transact-SQL) only the data you need.

It may seem economical to request a default result set and fetch rows only as your application logic or your application user
needs them, but this is false economy. Unfetched rows from a default result set can tie up your connection to the server, blocking
other work in the same transaction. Additionally, unfetched rows from a default result set can cause SQL Server to hold locks at
the server, possibly preventing other users from updating. This concurrency problem may not show up in small-scale testing, but
it can appear later when the application is deployed. Therefore, immediately fetch all rows from a default result set. For more
information, see Understanding and Avoiding Blocking.

Some applications cannot buffer all the data they request from the server. For example, an application that queries a large table
and allows the user to specify the selection criteria may return no rows or millions of rows. The user is unlikely to want to see
millions of rows. Instead, the user is more likely to reexecute the query with narrower selection criteria. In this case, fetching and
buffering millions of rows only to have them thrown away by the user wastes time and resources.

For these applications, SQL Server offers server cursors that allow an application to fetch a small subset or block of rows from an
arbitrarily large result set. If the user wants to see other records from the same result set, a server cursor allows the application to
fetch any other block of rows from the result set, including the next n rows, the previous n rows, or n rows starting at a certain
row number in the result set. SQL Server does the work to fulfill each block fetch request only as needed, and SQL Server does
not normally hold locks between block fetches on server cursors.

Server cursors also allow an application to do a positioned update or delete of a fetched row without having to figure out the
source table and primary key of the row. If the row data changes between the time it is fetched and the time the update is
requested, SQL Server detects the problem and prevents a lost update.

However, the features of server cursors come at a cost. If all the results from a given query are going to be used in your
application, a server cursor is always going to be more expensive than a default result set. A default result set always requires only
one roundtrip between client and server, whereas each call to fetch a block of rows from a server cursor results in a roundtrip.
Moreover, server cursors consume resources on the server, and there are restrictions on the SELECT statements that can be used
with some types of cursor. For example, KEYSET cursors are restricted to using tables with unique indexes only, while KEYSET and
STATIC cursors make heavy use of temporary storage at the server. For these reasons, only use server cursors when your
application needs their features. If a particular task requests a single row by primary key, use a default result set. If another task
requires an unpredictably large or updatable result set, use a server cursor and fetch rows in reasonably sized blocks (for
example, one screen of rows at a time). Additionally, where possible, make use of Fast Forward-only cursors with auto-fetch.
These cursors can be used to retrieve small result sets with only one roundtrip between the client and server, similar to a default
result set. For more information, see Fast Forward-only Cursors.

See Also

Cursors

SELECT

Optimizing Database Performance (SQL Server 2000)

Effects of Transactions and Batches on Application
Performance
A primary goal of using Transact-SQL appropriately is to reduce the amount of data transferred between server and client.
Reducing the amount of data transferred will usually reduce the time it takes to accomplish a logical task or transaction. Long-
running transactions can be fine for a single user, but they scale poorly to multiple users. To support transactional consistency, the
database must hold locks on shared resources from the time they are first acquired within the transaction until the transaction
commits. If other users need access to the same resources, they must wait. As individual transactions get longer, the queue and
other users waiting for locks gets longer and system throughput decreases. Long transactions also increase the chances of a
deadlock, which occurs when two or more users are simultaneously waiting on locks held by each other. For more information,
see Deadlocking.

Techniques you can use to reduce transaction duration include:

Committing transactional changes as soon as possible within the requirements of the application.

Applications often perform large batch jobs, such as month-end summary calculations, as a single unit of work (and thus
one transaction). With many of these applications, individual steps of the job can be committed without compromising
database consistency. Committing changes as quickly as possible means that locks are released as quickly as possible.

Taking advantage of Microsoft® SQL Server™ 2000 statement batches.

Statement batches are a way of sending multiple Transact-SQL statements from the client to SQL Server at one time,
thereby reducing the number of network roundtrips to the server. If the statement batch contains multiple SELECT
statements, the server will return multiple result sets to the client in a single data stream.

Using parameter arrays for repeated operations.

For example, the Open Database Connectivity (ODBC) SQLParamOptions function allows multiple parameter sets for a
single Transact-SQL statement to be sent to the server in a batch, again reducing the number of roundtrips.

SQL Profiler can be used to monitor, filter, and capture all calls sent from client applications to SQL Server. It will often reveal
unexpected application overhead due to unnecessary calls to the server. SQL Profiler can also reveal opportunities for placing
statements that are currently being sent separately to the server in batches. For more information, see Monitoring with SQL
Profiler.

See Also

Batches

Coding Efficient Transactions

Optimizing Database Performance (SQL Server 2000)

Effects of Stored Procedures on Application Performance
All well-designed Microsoft® SQL Server™ 2000 applications should use stored procedures. This is true whether or not the
business logic of the application is written into stored procedures. Even standard Transact-SQL statements with no business logic
component gain a performance advantage when packaged as stored procedures with parameters. Transact-SQL statements
compiled into stored procedures can save a significant amount of processing at execution time. For more information, see Stored
Procedures.

Another advantage of stored procedures is that client execution requests use the network more efficiently than equivalent
Transact-SQL statements sent to the server. For example, suppose an application needs to insert a large binary value into an
image data column. To send the data in an INSERT statement, the application must convert the binary value to a character string
(doubling its size), and then send it to the server. The server then converts the value back into a binary format for storage in the
image column. In contrast, the application can create a stored procedure of the form:

CREATE PROCEDURE P(@p1 image) AS INSERT T VALUES (@p1)

When the client application requests an execution of procedure P, the image parameter value will stay in binary format all the
way to the server, thereby saving processing time and network traffic.

SQL Server stored procedures can provide even greater performance gains when they include business services logic because it
moves the processing to the data, rather than moving the data to the processing.

Optimizing Database Performance (SQL Server 2000)

Understanding and Avoiding Blocking
Blocking happens when one connection from an application holds a lock and a second connection requires a conflicting lock type.
This forces the second connection to wait, blocked on the first. One connection can block another connection, regardless of
whether they emanate from the same application or separate applications on different client computers.

Note Some of the actions needing locking protection may not be obvious, for example, locks on system catalog tables and
indexes.

Most blocking problems happen because a single process holds locks for an extended period of time, causing a chain of blocked
processes, all waiting on other processes for locks.

Common blocking scenarios include:

Submitting queries with long execution times.

A long-running query can block other queries. For example, a DELETE or UPDATE operation that affects many rows can
acquire many locks that, whether or not they escalate to a table lock, block other queries. For this reason, you generally do
not want to intermix long-running decision support queries and online transaction processing (OLTP) queries on the same
database. The solution is to look for ways to optimize the query, by changing indexes, breaking a large, complex query into
simpler queries, or running the query during off hours or on a separate computer.

One reason queries can be long-running, and hence cause blocking, is if they inappropriately use cursors. Cursors can be a
convenient method for navigating through a result set, but using them may be slower than set-oriented queries.

Canceling queries that were not committed or rolled back.

This can happen if the application cancels a query; for example, using the Open Database Connectivity (ODBC) sqlcancel
function without also issuing the required number of ROLLBACK and COMMIT statements. Canceling the query does not
automatically roll back or commit the transaction. All locks acquired within the transaction are retained after the query is
canceled. Applications must properly manage transaction nesting levels by committing or rolling back canceled
transactions.

Applications that are not processing all results to completion.

After sending a query to the server, all applications must immediately fetch all result rows to completion. If an application
does not fetch all result rows, locks may be left on the tables, blocking other users. If you are using an application that
transparently submits Transact-SQL statements to the server, the application must fetch all result rows. If it does not (and if
it cannot be configured to do so), you may be unable to resolve the blocking problem. To avoid the problem, you can restrict
these applications to a reporting or decision-support database.

Distributed client/server deadlocks.

Unlike a conventional deadlock, a distributed deadlock cannot be automatically detected by Microsoft® SQL Server™ 2000.
A distributed client/server deadlock may occur if the application opens more than one connection to SQL Server and
submits a query asynchronously.

For example, a single client application thread has two open connections. It asynchronously starts a transaction and issues a
query on the first connection. The application then starts another transaction, issues a query on another connection, and
waits for the results. When SQL Server returns results for one of the connections, the application starts to process them. The
application processes the results until no more results are available because the query generating the results is blocked by
the query executed on the other connection. At this point, the first connection is blocked, waiting indefinitely for more
results to process. The second connection is not blocked on a lock, but tries to return results to the application. However,
because the application is blocked, waiting for results on the first connection, the results for the second connection are not
processed.

To avoid this problem, use either:

A query time-out for each query.

A lock time-out for each query. For more information, see Customizing the Lock Time-out.

A bound connection. For more information, see Using Bound Connections.

SQL Server is essentially a puppet of the client application. The client application has almost total control over (and responsibility

for) the locks acquired on the server. Although the SQL Server lock manager automatically uses locks to protect transactions, this
is directly instigated by the query type sent from the client application and the way the results are processed. Therefore, resolution
of most blocking problems involves inspecting the client application.

A blocking problem frequently requires both the inspection of the exact SQL statements submitted by the application and the
exact behavior of the application regarding connection management, processing of all result rows, and so on. If the development
tool does not allow explicit control over connection management, query time-out, processing of results, and so on, blocking
problems may not be resolvable.

Guidelines for designing applications to avoid blocking include:

Do not use or design an application that allows users to fill in edit boxes that generate a long-running query. For example,
do not use or design an application that prompts the user for inputs but rather allows certain fields to be left blank or a
wildcard to be entered. This may cause the application to submit a query with an excessive running time, thereby causing a
blocking problem.

Do not use or design an application that allows user input within a transaction.

Allow for query cancellation.

Use a query or lock time out to prevent a runaway query and avoid distributed deadlocks.

Immediately fetch all result rows to completion.

Keep transactions as short as possible.

Explicitly control connection management.

Stress test the application at the full projected concurrent user load.

See Also

Deadlocking

Locking

Optimizing Database Performance (SQL Server 2000)

Optimizing Distributed Queries
Microsoft® SQL Server™ 2000 distributed queries allow users to reference remote tables and rowsets as though they are local
tables by using SELECT, INSERT, UPDATE, and DELETE statements. Distributed queries cause data to be retrieved across the
network when data sources are located on remote computers. Therefore, SQL Server performs two types of optimization specific
to distributed queries to improve performance:

Remote query execution used with OLE DB SQL Command Providers.

Indexed access used with OLE DB Index Providers.

An OLE DB provider is considered to be a SQL Command Provider if the OLE DB provider meets the following minimum
requirements:

Supports the Command object and all of its mandatory interfaces.

Supports DBPROPVAL SQL SUBMINIMUM Syntax, or SQL-92 at Entry level or higher, or ODBC at Core level or higher. The
provider should expose this dialect level through the DBPROP_SQLSUPPORT OLE DB property.

An OLE DB Provider is considered to be an Index Provider if the OLE DB provider meets the following minimum requirements:

Supports the IDBSchemaRowset interface with the TABLES, COLUMNS and INDEXES schema rowsets.

Supports opening a rowset on an index using IOpenRowset by specifying the index name and the corresponding base
table name.

The Index object should support all its mandatory interfaces: IRowset, IRowsetIndex, IAccessor, IColumnsInfo,
IRowsetInfo, and IConvertTypes.

Rowsets opened against the indexed base table (using IOpenRowset) should support the IRowsetLocate interface for
positioning on a row based off a bookmark retrieved from the index.

Remote Query Execution

SQL Server attempts to delegate as much of the evaluation of a distributed query to the SQL Command Provider as possible. An
SQL query that accesses only the remote tables stored in the provider's data source is extracted from the original distributed
query and executed against the provider. This reduces the number of rows returned from the provider and allows the provider to
use its indexes in evaluating the query.

Considerations that affect how much of the original distributed query gets delegated to the SQL Command Provider include:

The dialect level supported by the SQL Command Provider

SQL Server delegates operations only if they are supported by the specific dialect level. The dialect levels from highest to
lowest are: SQL Server, SQL-92 Entry level, ODBC core, and Jet. The higher the dialect level, the more operations SQL Server
can delegate to the provider.

Note The SQL Server dialect level is used when the provider corresponds to a SQL Server linked server.

Each dialect level is a superset of the lower levels. Therefore, if an operation is delegated to a particular level, then it is also
delegated to all higher levels.

Queries involving the following are never delegated to a provider and are always evaluated locally:

bit

uniqueidentifier

The following operations/syntactic elements are delegated to the dialect level indicated (and all higher levels):

SQL Server: Outer join, CUBE, ROLLUP, modulo operator (%), bit-wise operators, string functions, and arithmetic
system functions.

SQL-92 Entry Level: UNION, and UNION ALL.

ODBC Core: Aggregation functions with DISTINCT, and string constants.

Jet: Aggregate functions without DISTINCT, sorting (ORDER BY), inner joins, predicates, subquery operators (EXISTS,
ALL, SOME, IN), DISTINCT, arithmetic operators not mentioned in higher levels, constants not mentioned in higher
levels, and all logical operators.

For example, all operations except those involving CUBE, ROLLUP, outer join, modulo operator (%), bit-wise operators,
string functions, and arithmetic system functions are delegated to a SQL-92 Entry level provider that is not also SQL Server.

Collation compatibility

For a distributed query, the comparison semantics for all character data is defined by the character set and sort order of the
local SQL Server. Microsoft SQL Server 2000 supports multiple collations, which can be different for each column; each
character value has an associated collation property. SQL Server 2000 interprets the collation property of character data
from a remote data source and treats it accordingly. For more information on the collation of remote columns, see
Collations in Distributed Queries.

SQL Server can delegate comparisons and ORDER BY operations on character columns to a provider only if it can determine
that:

The underlying data source uses the collation sequence and character set of the column.

The character comparison semantics follow the SQL-92 (and SQL Server) standard.
Following the table in the Collations in Distributed Queries topic, SQL Server will determine a collation for each column. If
the remote data source supports that collation, then the provider is considered collation compatible.

Other SQL support considerations

The following SQL syntax elements are not dictated by the SQL dialect levels:

Nested query support

If the provider supports nested queries (subqueries), then SQL Server can delegate these operations to the provider.
Because nested query support cannot be automatically determined from OLE DB properties, the system
administrator should set the NestedQueries provider option to indicate to SQL Server that the provider supports
nested queries.

Parameter marker support

If the provider supports parameterized query execution by using the ? parameter marker in a query, then SQL
Server can delegate parameterized query execution to the provider. Because parameter marker support cannot be
automatically determined from OLE DB properties, the system administrator should set the DynamicParameters
provider option to indicate to SQL Server that the provider supports parameter markers.

Indexed Access

SQL Server can use execution strategies that involve using the indexes of the Index provider to evaluate predicates and perform
sorting operations against remote tables. Set the IndexAsAccessPath provider option to enable indexed access against a
provider.

Additionally, when using indexes involving character columns, set the collation compatible linked server configuration option
to true for the corresponding linked server. For more information, see sp_serveroption.

Note Graphically display the execution plan using SQL Query Analyzer to determine the execution plan for a given distributed
query. When remote query execution is employed in the execution plan, it is represented using the Remote Query logical and
physical operator. The argument of this operator shows the remotely executed query.

See Also

Configuring OLE DB Providers for Distributed Queries

Subquery Fundamentals

Optimizing Database Performance (SQL Server 2000)

Optimizing Utility and Tool Performance
Three operations performed on a production database that can benefit from optimal performance include:

Backup and restore operations.

Bulk copying data into a table.

Performing database console command (DBCC) operations.

Generally, these operations do not need to be optimized. However, in situations where performance is critical, techniques can be
used to fine-tune performance.

Optimizing Database Performance (SQL Server 2000)

Optimizing Backup and Restore Performance
Microsoft® SQL Server™ 2000 offers several methods for increasing the speed of backup and restore operations:

Using multiple backup devices allows backups to be written to all devices in parallel. Similarly, the backup can be restored
from multiple devices in parallel. Backup device speed is one potential bottleneck in backup throughput. Using multiple
devices can increase throughput in proportion to the number of devices used. For more information, see Using Multiple
Media or Devices.

Using a combination of database, differential database, and transaction log backups to minimize the time necessary to
recover from a failure. Differential database backups reduce the amount of transaction log that must be applied to recover
the database. This is normally faster than creating a full database backup. For more information, see Logged and Minimally
Logged Bulk Copy Operations.

Logged and Minimally Logged Bulk Copy Operations

Optimizing Database, Differential Database, and File Backup Performance

Creating a database backup comprises two steps:

Copying the data from the database files to the backup devices.

Copying the portion of the transaction log needed to roll forward the database to a consistent state to the same backup
devices.

Creating a differential database backup comprises the same two steps as creating a database backup, except only the data that
has changed is copied (although all database pages need to be read to determine this).

Backing up a database file consists of one step: Copying the data from the database file to the backup devices.

The database files used to store the database are sorted by a disk device, and a reader thread is assigned to each device. The
reader thread reads the data from the database files. A writer thread is assigned to each backup device. The writer thread writes
data to the backup device. Parallel read operations can be increased by spreading the database files among more logical drives.
Similarly, parallel write operations can be increased by using more backup devices.

Generally, the bottleneck will be either the database files or the backup devices. If the total read throughput is greater than the
total backup device throughput, then the bottleneck is on the backup device side. Adding more backup devices (and SCSI
controllers, as necessary) can improve performance. However, if the total backup throughput is greater than the total read
throughput, then increase the read throughput by adding, for example, more database files on devices or by using more disks in
the RAID (redundant array of independent disks) device.

Optimizing Transaction Log Backup Performance

Creating a transaction log backup comprises only a single step: copying the portion of the log not yet backed up to the backup
devices. Even though there may be multiple transaction log files, the transaction log is logically one stream read sequentially by
one thread.

A reader/writer thread is assigned to each backup device. Higher performance is achieved by adding more backup devices.

The bottleneck can be either the disk device containing the transaction log files or the backup device, depending on their relative
speed and the number of backup devices used. Adding more backup devices will scale linearly until the capacity of the disk device
containing the transaction log files is reached, whereupon no further gains are possible without increasing the speed of the disk
devices containing the transaction log, for example, by using disk striping.

Optimizing Restore Performance

Restoring a database or differential database backup comprises four steps:

Creating the database and transaction log files if they do not already exist.

Copying the data from the backup devices to the database files.

Copying the transaction log from the transaction log files.

Rolling forward the transaction log, and then restarting recovery if necessary.

Applying a transaction log backup comprises two steps:

Copying data from the backup devices to the transaction log file.

Rolling forward the transaction log.

Restoring a database file comprises two steps:

Creating any missing database files.

Copying the data from the backup devices to the database files.

If the database and transaction log files do not already exist, they must be created before data can be restored to them. The
database and transaction log files are created and the file contents initialized to zero. Separate worker threads create and initialize
the files in parallel. The database and transaction log files are sorted by disk device, and a separate worker thread is assigned to
each disk device. Because creating files and initializing them requires very high throughput, spreading the files evenly across the
available logical drives yields the highest performance.

Copying the data and transaction log from the backup devices to the database and transaction log files is performed by
reader/writer threads; one thread is assigned to each backup device. Performance is limited by either the ability of the backup
devices to deliver the data or the ability of the database and transaction log files to accept the data. Therefore, performance
increases linearly with the number of backup devices added, until the ability of the database or transaction log files to accept the
data is reached.

The performance of rolling forward a transaction log is fixed and cannot be further optimized apart from using a faster computer.

Optimizing Tape Backup Device Performance

There are four variables that affect tape backup device performance and that allow SQL Server backup and restore performance
operations to roughly scale linearly as more tape devices are added:

Software data block size

Number of tape devices that share a small computer system interface (SCSI) bus

Tape device type

The software data block size is computed for optimal performance by SQL Server and should not be altered.

Many high-speed tape drives perform better if they have a dedicated SCSI bus for each tape drive used. Drives whose native
transfer rate exceeds 50 percent of the SCSI bus speed must be on a dedicated SCSI bus.

For more information about settings that affect tape drive performance, see the tape drive vendor's documentation.

Important Never place a tape drive on the same SCSI bus as disks or a CD-ROM drive. The error-handling actions for these
devices are mutually incompatible.

Optimizing Disk Backup Device Performance

Raw I/O speed of the disk backup device affects disk backup device performance and allows SQL Server backup and restore
performance operations to roughly scale linearly as multiple disk devices are added.

The use of RAID (redundant array of independent disks) for a disk backup device needs to be carefully considered. For example,
RAID 5 has low write performance, approximately the same speed as for a single disk (due to having to maintain parity
information). Additionally, the raw speed of appending data to a file is significantly slower than the raw device write speed.

If the backup device is heavily striped, such that the maximum write speed to the backup device greatly exceeds the speed at
which it can append data to a file, then it can be appropriate to place several logical backup devices on the same stripe set. In
other words, backup performance can be increased by placing several backup media families on the same logical drive. However,
an empirical approach is required to determine if this is a gain or a loss for each environment. Usually, it is better to place each
backup device on a separate disk device.

Generally, on a SCSI bus, only a few disks can be operated at maximum speed, although Ultra-wide and Ultra-2 buses can handle
more. However, careful configuration of the hardware is likely to be needed to obtain optimal performance.

For more information about settings that affect disk performance, see the disk vendor's documentation.

Data Compression

Modern tape drives have built-in hardware data compression that can significantly increase the effective transfer rate of data to
the drive. Data compression increases the effective transfer rate to the tape drives over what can be achieved with hardware
compression disabled. The compressibility of the real data in the database depends both on the data itself and on the tape drives
used. Typical data compression ratios range from 1.2:1 to 2:1 for a wide range of databases. This compression ratio is typical of
data in a wide variety of business applications, although some databases can have higher or lower compression ratios. For
example, a database consisting largely of images that are already compressed will not be compressed further by the tape drives.
For more information about data compression, see the tape-drive vendor's documentation.

By default, SQL Server supports hardware compression, although this procedure can be disabled by using the 3205 trace flag.
Disabling hardware compression can, in rare circumstances, improve backup performance. For example, if the data is already fully
compressed, disabling hardware compression prevents the tape device from wasting time trying to compress the data further.

For more information about trace flags, see Trace Flags.

Amount of Data Transferred to Tape

Creating a database backup captures only the portion of the database containing real data; unused space is not backed up. The
result is faster backup operations.

Although SQL Server 2000 databases can be configured to grow automatically as needed, you can continue to reserve space
within the database to guarantee that this space is available. Reserving space within the database does not adversely affect
backup throughput or the overall time needed to back up the database.

See Also

Handling Large Mission-Critical Environments

SQL Server: Backup Device Object

SQL Server: Databases Object

Optimizing Database Performance (SQL Server 2000)

Optimizing Bulk Copy Performance
 Topic last updated -- January 2004

To bulk copy data as fast as possible, several options are available to specify how data should be bulk copied into Microsoft® SQL
Server™ 2000 using the bcp utility or BULK INSERT statement, including:

Minimizing logging by using either the Simple or Bulk-Logged recovery model.

Using the bcp utility for parallel data loading.

Controlling the locking behavior.

Using batches.

Ordering data files.

For more information, see Bulk Copy Performance Considerations.

Note If possible, use the BULK INSERT statement rather than the bcp utility to bulk copy data into SQL Server. The BULK INSERT
statement is faster than the bcp utility.

Two factors determine which of these options can or should be used to increase the performance of bulk-copy operations:

Amount of existing data in the table compared to the amount of data to be copied into the table.

Number and type of indexes on the table.

Additionally, these factors depend on whether data is bulk copied into a table from a single client or in parallel from multiple
clients.

Loading Data into an Empty Table from a Single Client

When you are loading data into an empty table from a single client, it is recommended that you specify:

The TABLOCK hint. This causes a table-level lock to be taken for the duration of the bulk-copy operation.

A large, batch size, using the ROWS_PER_BATCH hint. A single batch representing the size of the entire file is
recommended.

Minimize logging. For more information, see Logged and Minimally Logged Bulk Copy Operations and Switching Recovery
Models.

Additionally, if your table has a clustered index and the data in the data file is ordered to match the clustered index key columns,
bulk copy the data into the table with the clustered index already in place and specify the ORDER hint. This is significantly faster
than creating the clustered index after the data is copied into the table.

If nonclustered indexes are also present on the table, drop these before copying data into the table. It is generally faster to bulk
copy data into a table without nonclustered indexes, and then to re-create the nonclustered indexes, rather than bulk copy data
into a table with the nonclustered indexes in place.

Loading Data into a Nonempty Table from a Single Client

When you are copying data into a table that has existing data, the recommendation to perform the bulk copy operation with the
indexes in place depends on the amount of data to be copied into the table compared to the amount of existing data already in
the table. As the percentage of data to be copied into the table increases (based on the amount of existing data in the table), the
faster it is to drop all indexes on the table, perform the bulk copy operation, and then re-create the indexes after the data is
loaded.

As a general guide, the following table shows suggested figures for the amount of data to be added to a table for various types of
indexes. If you exceed these percentages, you may find it faster to drop and re-create the indexes.

Indexes Amount of data added

Clustered index only 30%
Clustered and one nonclustered index 25%
Clustered and two nonclustered indexes 25%
Single nonclustered index only 100%
Two nonclustered indexes 60%

Loading Data in Parallel from Multiple Clients

If SQL Server is running on a computer with more than one processor and the data to be bulk copied into the table can be
partitioned into separate data files, then it is recommended that data be loaded into the same table from multiple clients in
parallel, thereby improving the performance of the bulk-copy operation. For example, when bulk copy loading from eight clients
into one table, each client must have one input data file containing a portion of the partitioned data. To achieve maximum
performance, the batch size specified for each client should be the same as the size of the client data file.

When copying data into a table from multiple clients, consider that:

All indexes on the table must be dropped first, and then re-created on the table. Consider re-creating the secondary indexes
in parallel by creating each secondary index from a separate client at the same time.

Using ordered data and the ORDER hint will not affect performance because the clustered index is not present during the
load.

The data must be partitioned into multiple input files, one file per client.

As with bulk-copy operations from a single client, specify:

The TABLOCK hint. This causes a table-level lock to be taken for the duration of the bulk-copy operation.

A large, batch size, using the ROWS_PER_BATCH hint. A single batch representing the size of the entire client file is
recommended for each client.

Minimize logging. For more information, see Logged and Minimally Logged Bulk Copy Operations and Switching Recovery
Models.

Copying Data Between Computers Running SQL Server

If data is being copied from one computer running an instance of SQL Server to another, perform all bulk-copy operations using
either native or Unicode native format. For more information, see Using Native, Character, and Unicode Formats.

If the source table has a clustered index or if you intend to bulk copy the data into a table with a clustered index:

1. Bulk copy the data out of the source table specifying a SELECT statement and an appropriate ORDER BY clause to create an
ordered data file.

2. Use the ORDER hint when bulk copying the data into SQL Server. For more information, see Ordered Data Files.

See Also

Using bcp and BULK INSERT

SQL Server: Databases Object

Optimizing Database Performance (SQL Server 2000)

Optimizing DBCC Performance
The database console command (DBCC) tends to be both CPU and disk intensive because DBCC must read each data page that
requires checking from disk into memory (unless the data page is already cached in memory). Running DBCC when there is a lot
of activity on the system, such as intensive query processing, impairs DBCC performance because less memory is available and
Microsoft® SQL Server™ 2000 is forced to spool data pages to the tempdb database. Therefore, DBCC statements execute faster
if more memory is made available for DBCC processing because more of the database can be cached.

Because the tempdb database resides on disk, the bottleneck from I/O operations as data is written to and from disk impairs
performance. Regardless of system activity, running DBCC against large databases (relative to the size of available memory)
causes spooling to the tempdb database. Therefore, it is recommended that the tempdb database be placed on a separate fast
disk or disks, such as a RAID (redundant array of independent disks) device, from user databases. For more information, see
ALTER DATABASE and RAID.

Note Executing DBCC CHECKDB automatically executes DBCC CHECKTABLE for each table in the database and DBCC
CHECKALLOC, eliminating the need to run them separately.

See Also

DBCC

SQL Server: Databases Object

Optimizing Database Performance (SQL Server 2000)

Optimizing Server Performance
Microsoft® SQL Server™ 2000 automatically tunes many of the server configuration options, therefore requiring little, if any,
tuning by a system administrator. Although these configuration options can be modified by the system administrator, it is
generally recommended that these options be left at their default values, allowing SQL Server to automatically tune itself based
on run-time conditions.

However, if necessary, the following components can be configured to optimize server performance:

SQL Server Memory

I/O subsystem

Microsoft Windows NT® options

Optimizing Database Performance (SQL Server 2000)

Optimizing Server Performance Using Memory Configuration
Options
The memory manager component of Microsoft® SQL Server™ 2000 eliminates the need for manual management of the memory
available to SQL Server. When SQL Server starts, it dynamically determines how much memory to allocate based on how much
memory the operating system and other applications are currently using. As the load on the computer and SQL Server changes,
so does the memory allocated. For more information, see Memory Architecture.

The following server configuration options can be used to configure memory usage and affect server performance:

min server memory

max server memory

max worker threads

index create memory

min memory per query

The min server memory server configuration option can be used to ensure that SQL Server does not release memory below the
min server memory value after that value has been reached. This configuration option can be set to a specific value based on the
size and activity of your SQL Server. If you choose to set this option, you must leave enough memory for the operating system
and other programs. If the operating system does not have enough memory it will request memory from SQL Server, affecting
SQL Server performance.

The max server memory server configuration option can be used to specify the maximum amount of memory SQL Server can
allocate when it starts and while it runs. This configuration option can be set to a specific value if you know there are multiple
applications running at the same time as SQL Server and you want to guarantee that these applications have sufficient memory to
run. If these other applications, such as Web or e-mail servers, request memory only as needed, then do not set the max server
memory server configuration option, because SQL Server will release memory to them as needed. However, applications often
use whatever memory is available when they start and do not request more if needed. If an application that behaves in this
manner runs on the same computer at the same time as SQL Server, set the max server memory server configuration option to
a value that guarantees that the memory required by the application is not allocated by SQL Server.

Do not set min server memory and max server memory server configuration options to the same value, thereby fixing the
amount of memory allocated to SQL Server. Dynamic memory allocation will give you the best overall performance over time.
For more information, see Server Memory Options.

The max worker threads server configuration option can be used to specify the number of threads used to support the users
connected to SQL Server. The default setting of 255 can be slightly too high for some configurations, depending on the number of
concurrent users. Because each worker thread is allocated, even if it is not being used (because there are fewer concurrent
connections than allocated worker threads), memory resources that can be better utilized by other operations, such as the buffer
cache, can be unused. Generally, this configuration value should be set to the number of concurrent connections, but cannot
exceed 32727. Concurrent connections are not the same as user login connections. The pool of worker threads for an instance of
SQL server only needs to be large enough to service the number of user connections that are actively executing batches at the
same time in that instance. Increasing the number of worker threads beyond the default value may result in negative server
performance. For more information, see max worker threads Option.

Note The max worker threads server configuration option has no effect when SQL Server is running on Microsoft Windows® 98.

The index create memory server configuration option controls the amount of memory used by sort operations during index
creation. Creating an index on a production system is usually an infrequently performed task, often scheduled as a job to execute
during off-peak time. Therefore, when creating indexes infrequently and during off-peak time, increasing this number can
improve the performance of index creation. Keep the min memory per query configuration option at a lower number, however,
so the index creation job will still start even if all the requested memory is not available. For more information, see index create
memory Option.

The min memory per query server configuration option can be used to specify the minimum amount of memory that will be
allocated for the execution of a query. When there are many queries executing concurrently in a system, increasing the value of
the min memory per query can help improve the performance of memory-intensive queries, such as substantial sort and hash
operations. However, do not set the min memory per query server configuration option too high, especially on very busy

systems, because the query will have to wait until it can secure the minimum memory requested or until the value specified in the
query wait server configuration option is exceeded. If more memory is available than the specified minimum value required to
execute the query, the query is allowed to make use of the additional memory, provided that the memory can be used effectively
by the query. For more information, see min memory per query Option and query wait Option.

See Also

Monitoring Memory Usage

Optimizing Database Performance (SQL Server 2000)

Optimizing Server Performance Using I/O Configuration
Options
The following server configuration option can be used to configure I/O usage and affect server performance:

recovery interval

The recovery interval server configuration option controls when Microsoft® SQL Server™ 2000 issues a checkpoint in each
database. By default, SQL Server determines the best time to perform checkpoint operations. However, to determine if this is the
appropriate setting, monitor disk write activity on the database files using Windows NT Performance Monitor. Spikes of activity
that cause disk utilization to reach 100 percent can affect performance. Changing this parameter to cause the checkpoint process
to occur less often can improve overall performance in this situation. However, continue to monitor performance to determine if
the new value has had a positive effect on performance. For more information, see recovery interval Option.

See Also

Monitoring Disk Activity

Optimizing Database Performance (SQL Server 2000)

Optimizing Server Performance Using Windows NT Options
You can set Microsoft® Windows NT® or Windows® 2000 options on the server to:

Maximize throughput.

Configure server tasking.

Configure virtual memory.

Optimizing Database Performance (SQL Server 2000)

Maximizing Throughput
Maximizing Throughput

SQL Server Setup automatically configures Microsoft® Windows NT® to maximize throughput for network applications. This
enables the server to accommodate more connections. Although maximizing throughput for network applications is
recommended for Microsoft SQL Server™ 2000, you can change this setting.

If the Full-Text Search feature is installed, the Windows NT Server or Windows 2000 configuration must be set for maximizing
throughout for network applications and must not be changed.

Note The Windows NT Server configuration setting does not apply to computers running Windows NT Workstation. For more
information, see the Windows NT or Windows 2000 documentation.

Optimizing Database Performance (SQL Server 2000)

Configuring Server Tasking
Configuring Server Tasking

If you plan to connect to Microsoft® SQL Server™ 2000 from a local client (a client running on the same computer as the server),
you can improve processing time by setting up the server to run foreground and background applications with equal priority.
SQL Server, which runs as a background application, then runs at equal priority to other applications running in the foreground.
For more information, see the Windows NT® or Windows 2000 documentation.

Note When you run SQL Server Setup, server tasking is set to none in Microsoft Windows NT 4.0 and background services in
Microsoft Windows 2000 (the SQL Server default), which gives foreground and background programs equal processor time. You
can set the server tasking setting to maximum (the Microsoft Windows NT default) or applications (the Microsoft Windows
2000 default), which gives foreground applications the most processor time.

Optimizing Database Performance (SQL Server 2000)

Configuring Virtual Memory
Configuring Virtual Memory

Microsoft® Windows NT® or Windows 2000 virtual memory size should be configured based on the services concurrently
running on the computer. When you are running Microsoft SQL Server™ 2000, consider setting the virtual memory size to 1.5
times the physical memory installed in the computer.

If you have additionally installed the Full-Text Search feature and plan to run the Microsoft Search service so that you can do full-
text indexing and querying, consider configuring:

The virtual memory size to at least 3 times the physical memory installed in the computer.

The SQL Server max server memory server configuration option to 1.5 times the physical memory (half the virtual
memory size setting).

If the virtual memory setting is configured too low, then the following Windows NT error can occur:

Your system is running low on virtual memory. Please close some applications. You can then start the System
option in the Control Panel and choose the Virtual Memory button to create an additional paging file or increase
the size of your current paging file.

Note For more information, see the Windows NT or Windows 2000 documentation.

Replication (SQL Server 2000)

Replication Overview
Microsoft® SQL Server™ 2000 replication is a set of solutions that allow you to copy, distribute, and potentially modify data
across your enterprise. SQL Server 2000 includes several methods and options for replication design, implementation,
monitoring, and administration to give you the functionality and flexibility needed for distributing data and maintaining data
consistency.

Topic Description
Introducing Replication Describes how replication can be used in various

business environments. Explains the SQL Server 2000
replication model, the types of replication, and how
replication works.

Planning for Replication Provides the information needed to make critical
decisions when creating a replication plan, including:
business considerations, enterprise data needs, network
considerations, and designing a replication topology.

Types of Replication Details the types of replication (snapshot replication,
transactional replication, and merge replication).
Discusses the components of each type, how each type
works, the architecture, and the benefits and strengths
of each type.

Replication Tools Describes the primary methods used to implement
replication, including using the replication wizards,
using system stored procedures, programming a
replication application with Microsoft ActiveX® controls,
and using tools such as Windows Synchronization
Manager.

Implementing Replication Describes the steps for implementing replication using
the replication tools. Includes configuring Publishers
and Distributors, creating publications, creating different
types of subscriptions, replicating between instances of
SQL Server 2000 and instances of SQL Server version
7.0 and earlier.

Replication Options Explains the options available with each type of
replication, including filtering published data, publishing
database objects, immediate updating, queued
updating, and transforming published data.

Replication Data
Considerations

Includes handling identity columns, timestamp data,
uniqueidentifiers and data types.

Administering and
Monitoring Replication

Details the agents used during replication, replication
alerts, validating data at the Subscriber, strategies for
monitoring replication, and remote agent activation.

Replication and
Heterogeneous Data
Sources

Describes how you can replicate data between
heterogeneous data sources (such as DB2, Oracle,
Microsoft Access, or Microsoft Exchange), how to
publish to heterogeneous Subscribers, and how to
subscribe to heterogeneous Publishers.

Replication Security Discusses security access layers and replication, Internet
security issues, snapshot folder security, agent login
security, role requirements, and security for updatable
subscriptions.

Enhancing Replication
Performance

Provides techniques for optimizing replication
performance including enhancement techniques for
each type of replication, effective data partitioning, and
Distributor options.

Backing Up and Restoring
Replication Databases

Describes strategies for backing up replication
databases, how to restore each type of replication, and
restoring backups of replicated databases.

Getting Started with
Replication Programming

Discusses programming replication including using
ActiveX controls, SQL-DMO, and the Replication
Distributor Interface.

Replication (SQL Server 2000)

Introducing Replication
Microsoft® SQL Server™ 2000 replication is a set of technologies for copying and distributing data and database objects from
one database to another and then synchronizing between databases for consistency.

Using replication, you can distribute data to different locations, to remote or mobile users over a local area network, using a dial-
up connection, and over the Internet. Replication also allows you to enhance application performance, physically separate data
based on how it is used (for example, to separate online transaction processing (OLTP) and decision support systems), or
distribute database processing across multiple servers.

Benefits of Replication

Replication offers various benefits depending on the type of replication and the options you choose, but the common benefit of
SQL Server 2000 replication is the availability of data when and where it is needed.

Other benefits include:

Allowing multiple sites to keep copies of the same data. This is useful when multiple sites need to read the same data or
need separate servers for reporting applications.

Separating OLTP applications from read-intensive applications such as online analytical processing (OLAP) databases, data
marts, or data warehouses.

Allowing greater autonomy. Users can work with copies of data while disconnected and then propagate changes they make
to other databases when they are connected.

Scale out of data to be browsed, such as browsing data using Web-based applications.

Increasing aggregate read performance.

Bringing data closer to individuals or groups. This helps to reduce conflicts based on multiple user data modifications and
queries because data can be distributed throughout the network, and you can partition data based on the needs of different
business units or users.

Using replication as part of a customized standby server strategy. Replication is one choice for standby server strategy.
Other choices in SQL Server 2000 include log shipping and failover clustering, which provide copies of data in case of
server failure.

When to Use Replication

With organizations supporting diverse hardware and software applications in distributed environments, it becomes necessary to
store data redundantly. Moreover, different applications have different needs for autonomy and data consistency.

Replication is a solution for a distributed data environment when you need to:

Copy and distribute data to one or more sites.

Distribute copies of data on a scheduled basis.

Distribute data changes to other servers.

Allow multiple users and sites to make changes then merge the data modifications together, potentially identifying and
resolving conflicts.

Build data applications that need to be used in online and offline environments.

Build Web applications where users can browse large volumes of data.

Optionally make changes at subscribing sites that are transparently under transactional control of the Publisher.

Replication (SQL Server 2000)

Replication Model
Microsoft® SQL Server™ 2000 replication uses a publishing industry metaphor to represent the components and processes in a
replication topology. The model is composed of the following: Publisher, Distributor, Subscribers, Publications, articles, and
subscriptions.

There are also several replication processes that are responsible for copying and moving data between the Publisher and
Subscriber. These are the Snapshot Agent, Distribution Agent, Log Reader Agent, Queue Reader Agent, and Merge Agent. For
more information about the agent processes, see Agents and Monitors.

Publisher

The Publisher is a server that makes data available for replication to other servers. The Publisher can have one or more
publications, each representing a logically related set of data. In addition to being the server where you specify which data is to be
replicated, the Publisher also detects which data has changed during transactional replication and maintains information about all
publications at that site.

Distributor

The Distributor is a server that hosts the distribution database and stores history data, and/or transactions and meta data. The role
of the Distributor varies depending on which type of replication you implement. For more information, see Types of Replication.

A remote Distributor is a server that is separate from the Publisher and is configured as a Distributor of replication. A local
Distributor is a server that is configured to be both a Publisher and a Distributor of replication.

Subscribers

Subscribers are servers that receive replicated data. Subscribers subscribe to publications, not to individual articles within a
publication, and they subscribe only to the publications that they need, not all of the publications available on a Publisher.
Depending on the type of replication and replication options you choose, the Subscriber could also propagate data changes back
to the Publisher or republish the data to other Subscribers.

Publication

A publication is a collection of one or more articles from one database. This grouping of multiple articles makes it easier to specify
a logically related set of data and database objects that you want to replicate together.

Article

An article is a table of data, a partition of data, or a database object that is specified for replication. An article can be an entire
table, certain columns (using a vertical filter), certain rows (using a horizontal filter), a stored procedure or view definition, the
execution of a stored procedure, a view, an indexed view, or a user-defined function.

Subscription

A subscription is a request for a copy of data or database objects to be replicated. A subscription defines what publication will be
received, where, and when. Synchronization or data distribution of a subscription can be requested either by the Publisher (a
push subscription) or by the Subscriber (a pull subscription). A publication can support a mixture of push and pull subscriptions.

See Also

Implementing Replication

Publishers, Distributors, and Subscribers

Subscribing to Publications

Replication (SQL Server 2000)

Introducing the Types of Replication
There are three types of replication available with Microsoft® SQL Server™ 2000: snapshot replication, transactional replication
and merge replication.

Snapshot Replication

Snapshot replication is the process of copying and distributing data and database objects exactly as they appear at a moment in
time. Snapshot replication does not require continuous monitoring of changes because changes made to published data are not
propagated to the Subscriber incrementally. Subscribers are updated with a complete refresh of the data set and not individual
transactions. Because snapshot replication replicates an entire data set at one time, it may take longer to propagate data
modifications to Subscribers. Snapshot publications are typically replicated less frequently than other types of publications.

Options available with snapshot replication allow you to filter published data, allow Subscribers to make modifications to
replicated data and propagate those changes to the Publisher and then to other Subscribers, and allow you to transform data as it
is published.

Snapshot replication can be helpful in situations when:

Data is mostly static and does not change often.

It is acceptable to have copies of data that are out of date for a period of time.

Replicating small volumes of data.

Sites are often disconnected and high latency (the amount of time between when data is updated at one site and when it is
updated at another) is acceptable.

Transactional Replication

With transactional replication, an initial snapshot of data is propagated to Subscribers, and then when data modifications are
made at the Publisher, the individual transactions are captured and propagated to Subscribers.

SQL Server 2000 monitors INSERT, UPDATE, and DELETE statements, and changes to stored procedure executions and indexed
views. SQL Server 2000 stores the transactions affecting replicated objects and then it propagates those changes to Subscribers
continuously or at scheduled intervals. Transaction boundaries are preserved. If, for example, 100 rows are updated in a
transaction, either the entire transaction with all 100 data modifications are accepted and propagated to Subscribers or none of
them are. When all changes are propagated, all Subscribers will have the same values as the Publisher.

Options available with transactional replication allow you to filter published data, allow users at the Subscriber to make
modifications to replicated data and propagate those changes to the Publisher and to other Subscribers, and allow you to
transform data as it is published.

Transactional replication is typically used when:

You want data modifications to be propagated to Subscribers, often within seconds of when they occur.

You need transactions to be atomic (either all or none applied at the Subscriber).

Subscribers are mostly connected to the Publisher.

Your application will not tolerate high latency for Subscribers receiving changes.

Merge Replication

Merge replication allows various sites to work autonomously (online or offline) and merge data modifications made at multiple
sites into a single, uniform result at a later time. The initial snapshot is applied to Subscribers and then SQL Server 2000 tracks
changes to published data at the Publisher and at the Subscribers. The data is synchronized between servers either at a scheduled
time or on demand. Updates are made independently (no commit protocol) at more than one server, so the same data may have
been updated by the Publisher or by more than one Subscriber. Therefore, conflicts can occur when data modifications are
merged.

Merge replication includes default and custom choices for conflict resolution that you can define when you configure a merge
publication. When a conflict occurs, a resolver is invoked by the Merge Agent to determine which data will be accepted and
propagated to other sites.

Options available with merge replication include filtering published data horizontally and vertically, including join filters and
dynamic filters, using alternate synchronization partners, optimizing synchronization to improve merge performance, validating
replicated data to ensure synchronization, and using attachable subscription databases.

Merge replication is helpful when:

Multiple Subscribers need to update data at various times and propagate those changes to the Publisher and to other
Subscribers.

Subscribers need to receive data, make changes offline, and synchronize changes later with the Publisher and other
Subscribers.

The application latency requirement is either high or low.

Site autonomy is critical.

See Also

Designing a Replication Topology

Planning for Replication

Replication Options

Types of Replication

Validating Replicated Data

Replication (SQL Server 2000)

Introducing Replication Options
Options available with the types of replication allow you more replication solutions and greater flexibility and control in your
applications. Replication options are:

Filtering published data

Publishing database objects

Publishing schema objects

Updatable subscriptions

Transforming published data

Alternate synchronization partners

Filtering Published Data

Filtering data during replication allows you to publish only the data or partitions of data that are needed at the Subscriber. You
can filter data to create partitions that include only the columns and/or only the rows that you specify for replication.

With all types of replication, you can choose to copy and distribute complete tables, or data filtered horizontally or vertically with
static filters. Merge replication is especially strong in filtering options, and you can use dynamic filters to customize the filter
based on a property of the Subscriber receiving the data.

Filtering data horizontally allows you to publish only the data that is needed, partition data to different sites, avoid conflicts
(because Subscribers will be viewing and updating different subsets of data), and manage publications based on user needs or
applications.

Additionally, you have the option of employing user-defined functions in your static and dynamic filters and leveraging the power
of customized functions.

Merge replication provides the added functionality of join filters and dynamic filters. Join filters enable you to extend filters
created on one table to another. For example, if you are publishing customer data based on the state where the customer resides,
you may want to extend that filter to the related orders and order details of the customers in a particular state. Dynamic filters
allow you to create a merge publication and then filter data from the publishing table.. The filter value can be the user ID or login
retrieved based on a Transact-SQL function, such as SUSER_SNAME() or HOSTNAME().

Publishing Database Objects

You can publish database objects including views, indexed views, user-defined functions, stored procedure definitions, and the
execution of stored procedures. You can include data and database objects in the same publication or in different publications.
Publishing database objects is available with all types of replication (snapshot replication, transactional replication, and merge
replication).

Publishing Schema Objects

In addition to database objects, you can also specify if you want schema objects to be published such as declared referential
integrity (primary key constraints, reference constraints, unique constraints), clustered indexes, nonclustered indexes, user
triggers, extended properties, and collation. You can also change destination table owner names and data formats to optimize for
SQL Server 2000 or heterogeneous Subscribers.

Updatable Subscriptions

Data at the Subscriber can be modified if you use merge replication or if you use snapshot replication or transactional replication
with an updatable subscription option.

Updatable subscription options available with snapshot replication and transactional replication allow you to make changes to
replicated data at the Subscriber and propagate those changes to the Publisher and to other Subscribers. Updatable subscription
options include immediate updating, queued updating, and immediate updating with queued updating as a failover.

Immediate updating allows Subscribers to update data only if the Publisher will accept them immediately. If the changes are

accepted at the Publisher, they are propagated to other Subscribers. The Subscriber must be continuously and reliably connected
to the Publisher to make changes at the Subscriber.

Queued updating allows Subscribers to modify data and store those data modifications in a queue while disconnected from the
Publisher for a period of time. When the Subscriber reconnects to the Publisher, the changes are propagated to the Publisher. If
the Publisher accepts the changes, normal replication processes occur and the changes are propagated to other Subscribers from
the Publisher. You can store data modifications in a SQL Server 2000 queue or use Microsoft Message Queuing.

Immediate updating with the queued updating option allows you to use immediate updating and switch to queued updating if a
connection cannot be maintained between the Publisher and Subscribers. After switching to queued updating, reconnecting to the
Publisher, and emptying the queue, you can switch back to immediate updating mode.

When using merge replication, data at the Subscriber is automatically updatable.

Transforming Published Data

With snapshot replication or transactional replication, you can leverage the transformation mapping and scripting capabilities of
Data Transformation Services (DTS) when building a replication topology. Replication integrated with DTS allows you to
customize and distribute data based on the requirements of individual Subscribers. For example, a Subscriber might need to have
different table names, column names, or compatible data types.

By transforming published data, you can filter data and simulate dynamic partitions of data so that data from one snapshot or
transactional publication can be distributed to Subscribers that require different partitions of data. With static partitions, you need
to create and filter separate publications for each Subscriber based on the needs of the Subscriber.

Alternate Synchronization Partners

Subscribers to merge publications can synchronize with servers other than the Publisher at which the subscription originated.
Synchronizing with alternate partners allows Subscribers to synchronize data even if the primary Publisher is unavailable. This
feature is also useful when mobile Subscribers have access to a faster or more reliable network connection with an alternate
Publisher.

See Also

Alternate Synchronization Partners

Filtering Published Data

Merge Replication or Updatable Subscriptions

Publishing Data and Database Objects

Replication (SQL Server 2000)

Typical Uses of Replication
Microsoft® SQL Server™ 2000 replication supports the distributed environment of increasingly global and mobile corporate
operations. Replication allows you to share information across heterogeneous platforms and databases and then modify and
reconcile that information. Replication ensures that correct data will be available when and where it is needed.

Replication is used for a variety of applications:

Reporting, decision support, and data warehousing applications.

Online and offline applications.

Web-based applications with many users browsing data.

Keeping data close to users (providing more site autonomy and efficient network usage).

Replication (SQL Server 2000)

Reporting, Decision Support, and Data Warehousing
Applications
A data warehouse is a database that contains enterprise data representing the business history of an organization. It is used to
consolidate information stored in various business systems and heterogeneous platforms. Data in a data warehouse is often
structured and optimized for decision support.

Replication becomes an integral part of the data warehousing and decision support environment when it is used during data
staging and as a data warehousing management and deployment tool. You can use replication to update data marts and data
warehouses, distribute data to read-only databases used for queries and analyses, distribute data to an online analytical
processing (OLAP) database, and consolidate data so it can be transformed and moved into the data warehousing environment.

Replication can also be used to partition data that has been consolidated in a data warehousing environment and distribute the
data to data marts or databases inside or outside of the data warehousing environment.

Although Microsoft® SQL Server™ does not replicate SQL Server 2000 Analysis Services objects (for example, dimensions or
cubes), it can help you distribute data from OLTP databases to data staging databases or databases that will be used for reporting,
decision support or analysis purposes, and if needed, you can use the capabilities of Data Transformation Services (DTS) during
replication.

Providing consistent data to data warehousing and decision support systems is critical to the success of those operations. Within
a reporting, decision support query, or OLAP environment, different user groups have different requirements for the data, and
replication provides several options for distributing, updating, and synchronizing data.

Because data used in decision support is predominantly read-only (used for queries and analysis), snapshot replication or
transactional replication are often the types of replication used. With snapshot replication, data and database objects are copied
and distributed exactly as they appear at a specific moment in time. If data transformations are needed for data that is replicated
into a data mart or data warehouse, you can use Data Transformation Services (DTS) as part of the replication process when using
snapshot replication or transactional replication.

Example

Using the Northwind Traders example introduced in Replication and Data Distribution, suppose Northwind Traders wanted to
store historical data in a data warehouse and then optimize the warehouse for OLAP analysis. They may need to gather data from
different operational data stores across the enterprise and consolidate that data and prepare it for transformation and storage in
the data warehouse. Additionally, if they decide to create a specific OLAP database or a business data mart, they can replicate data
from the data warehouse and use it for read-only queries and analysis.

See Also

Snapshot Replication

Transactional Replication

Transforming Published Data

Replication (SQL Server 2000)

Online/Offline Applications
Microsoft® SQL Server™ 2000 replication offers a solution to the problem of data accessibility while traveling and at
disconnected locations. Business users often need to use laptops or handheld computers when traveling and need a way to access
data, often on demand, when using a modem to dial into corporate networks or connect to an intranet or the Internet.

Working online, using replication, mobile users can receive data from the central server (which would typically be the Publisher)
when they connect to the corporate wide area network (WAN) or local area network (LAN), or over the Internet. They can then
make changes to data immediately, or they can modify data offline and propagate those changes to the originating database and
to other locations when they reconnect to the network.

Because data modifications made at Subscribers are performed asynchronously at the original server and then sent to other
servers, transactional replication using the queued updating option, or merge replication are often the types of replication used
for mobile or disconnected users.

Note When planning for an online/offline application that uses replication, plan for occasional maintenance in the deployment of
the application and a way to transfer new datasets to the disconnected Subscribers.

Example

Northwind Traders has sales representatives in various regions who need to take current customer and order information with
them and update it as they travel. The Northwind corporate office decides to publish data from the CUSTOMERS, ORDERS and
ORDER DETAILS tables stored in a central online transactional processing (OLTP) database and filter the data based on the region
where the sales representative works. The laptop or handheld computers used by the sales representatives will be the Subscribers
to the data, and the sales representatives will be able to update the data as necessary when away from the office and offline.

Because the sales representatives make frequent data modifications and are often disconnected, Northwind administrators decide
to use merge replication. When the sales representatives reconnect to the network, they can synchronize their data changes with
changes made at other locations.

See Also

Merge Replication

Merge Replication or Updatable Subscriptions

Planning for Merge Replication

Replication (SQL Server 2000)

Web-Based Applications
Replicating data over the Internet allows remote, disconnected, and anonymous users to access data when they need it using a
connection to the Internet. For example, if a Web site allows users to browse items for sale, users will need to browse high
volumes of data. Using replication, administrators can make that data available for read purposes on multiple Web servers.
Browsing can take place at any server and the site can then handle more traffic.

Another use of replication and Web-based applications is allowing individual Subscribers to download or upload data changes
using an application that uses an Internet browser, or by using a connection to the corporate network or share where the data
resides. Ways for users to connect to replicated data over the Internet using Microsoft® SQL Server™ 2000 include:

Using Virtual Private Networks (VPNs), such as those based on the Microsoft Windows NT® Server version 4.0 operating
system, the Microsoft Windows® 2000 Server operating system, or a third party provider.

Integrating replication with Microsoft Proxy Server.

Using TCP/IP and File Transfer Protocol (FTP) to transfer the initial snapshot of data over the Internet.

VPNs allow users who are not connected directly to a corporate network to access the corporate network remotely through the
Internet. A VPN connects the components of one network over another network. This is achieved by allowing the user to tunnel
through the Internet or another public network (using a protocol such as Microsoft Point-to-Point Tunneling Protocol (PPTP)). This
process provides the same security and features previously available only in a private network.

Using VPNs is the most secure method for replicating data over the Internet. You can use Windows Authentication as though you
were on a local area network (LAN).

Integrating Microsoft SQL Server 2000 replication with Microsoft Proxy Server allows for replication over the Internet with
security configured on Windows NT version 4.0, Windows 2000 Server, Proxy Server, and SQL Server 2000.

SQL Server 2000 can use the TCP/IP Sockets or the Multiprotocol Net-Libraries over TCP/IP to establish an ODBC or OLE DB
connection between the Publisher or Distributor and the Subscriber. You can then configure the publication and pull subscriptions
or anonymous subscriptions to access the FTP site to apply the initial snapshot files (incremental changes are propagated using
ODBC or OLE DB on TCP/IP).

For more information, see Implementing Replication Over the Internet.

Replication (SQL Server 2000)

Keeping Data Close to Users
Data distribution is the process of ensuring that data is available to people when they need it. Here are examples of using
replication to give data to the users who need it. Publish data:

From a central site, partitioning it, and distributing it to various regional offices.

To a read-only database so that users can execute queries and analyses without interrupting transaction processing on a
production database.

From multiple databases into a central database, which could be a data mart or data warehouse.

To a backup database as part of a standby solution.

To support mobile, disconnected users.

Over the Internet, so it can be available on-demand with anonymous subscriptions.

Example

Suppose the company Northwind Traders (originators of the Northwind sample database) has regional offices around the world.
Some regional offices will only be reading the data, while other offices are responsible for keeping up-to-date information on the
customers and orders in that particular region.

Using replication, Northwind Traders can replicate partitions of the central orders online transaction processing (OLTP) database
to each region, and filter the data based on the city, region, or user who is accessing the data.

If the regional office only needs to read the data and not make changes, the central office can filter the data to create the
appropriate partitions based on region or other criteria and then publish that data to Subscribers. Depending on how often and
the how much data is modified at the publishing site, this type of application could use snapshot replication or transactional
replication.

If a regional office will make changes to the data and needs autonomy, the data can be filtered, replicated to the region, and the
regional office can make changes to its data as needed. When the changes need to be propagated to the corporate office or to
other regions, the regional office can synchronize with the corporate office and those changes will be propagated automatically to
the other regions when they synchronize with, and are accepted by, the corporate office. If the regional office needs to distribute
the corporate data to its sales force within the region, it can republish the data to the necessary sites.

There are several options for scheduling distribution of the data and modifying the data at the different regional offices. If the
regional offices are continuously and reliably connected, multiple offices can update the data and propagate changes to the
corporate office immediately. The data is then propagated to other regions within seconds (immediate updating), or if a site is
disconnected for a limited amount of time, data modifications can be stored in a queue until the connection with the corporate
office is reestablished (queued updating).

Replication (SQL Server 2000)

How Replication Works
There are several ways to implement and monitor replication, and the process of replication is different depending on the type of
replication and the options you choose. In general, replication is composed of the following stages: configuring replication,
generating and applying the initial snapshot, modifying replicated data, and synchronizing and propagating data.

Configuring Replication

Replication deployment begins when you configure a Publisher and Distributor. The Distributor can be a separate server from the
Publisher, or it can be the same server. In general, replication is composed of the following stages: configuring replication,
generating and applying the initial snapshot, modifying replicated data, and synchronizing and propagating data. The Distributor
is a primary component during snapshot replication and transactional replication; however, the role of the Distributor is limited
during merge replication. The Distributor is used only for agent history reporting and monitoring purposes. During merge
replication, the Publisher and Distributor are usually the same server. This is called using a local Distributor.

After the Publisher and Distributor are configured, you can create publications based on data, subsets of data, and/or database
objects. When you create the publication, you determine what type of replication you want to use, the type of databases that will
be Subscribers to the publication, the data and database objects that will be published, where the snapshot files will be stored,
when the initial snapshot synchronization will occur, and options that will be used with the publication.

After you create a publication, you can create push and/or pull subscriptions at either the Publisher or the Subscriber and
configure your replication schedule and options.

Generating and Applying the Initial Snapshot

Whether you choose snapshot replication, transactional replication, or merge replication, SQL Server 2000 creates an initial
snapshot of schema and data and saves it to the snapshot folder and location you chose when creating the publication. The two
exceptions to this process are with dynamic filters in merge replication and subscriptions for which the snapshot will be applied
manually. After the subscription is created, when the initial snapshot is applied is based on the schedule you indicated when
creating the publication, or you can apply the snapshot manually.

The Snapshot Agent prepares snapshot files containing schema, data, and database objects, stores the files in the snapshot folder,
and records synchronization jobs in the distribution database on the Distributor for snapshot replication or transactional
replication, and in the publication database for merge replication. The Snapshot Agent does not prepare these files when the
merge publication uses dynamic filters and does not use dynamic snapshots when the subscription specifies that the snapshot
will be applied manually.

With snapshot replication and transactional replication, the Distribution Agent moves the snapshot from the distribution database
to the destination tables at the Subscribers and applies the scripts, schema, and data necessary for replication. With merge
replication, the Merge Agent moves the snapshot to Subscribers when it is run for the first time or when the subscription is set for
reinitialization. It then applies the scripts, schema, and data necessary for replication.

Modifying Replicated Data

Depending on the type of replication and the options you chose when configuring the publication, the Subscriber may be able to
modify data after the initial snapshot has been replicated and propagate changes to the Publisher, which can then propagate the
changes to other Subscribers.

The following replication types and options allow Subscribers to modify replicated data:

Merge replication

Snapshot replication or transactional replication with immediate updating

Snapshot replication or transactional replication with queued updating

Any type of replication in which data is filtered so partitions of data can be modified at individual sites autonomously and
without conflicts occurring between sites

Synchronizing and Propagating Data Changes

How data is synchronized and data modifications propagated to Publishers and other Subscribers depends on the type of
replication and options you choose. Synchronizing data refers to the process of data being propagated between Publisher and

Subscribers after the initial snapshot has been applied at the Subscriber.

For snapshot replication, synchronize means to reapply the snapshot at the Subscriber so that schema and data at the
subscription database is consistent with the publication database. For transactional replication, synchronizing data means that
data INSERTs, UPDATEs, and DELETEs, and other data modifications, are distributed between Publisher and Subscribers. For
merge replication, synchronization means that data modifications made at multiple sites are merged, conflicts (if any) are
detected and resolved, and data eventually converges to the same data values at all sites.

See Also

Applying the Initial Snapshot

Generating the Initial Snapshot

Implementing Replication

Replication Options

Synchronizing Data

Types of Replication

Replication (SQL Server 2000)

Methods of Implementation
Methods for implementing replication, developing replication applications, and maintaining replication are: replication wizards
and properties, replication programming interfaces, scripting of system stored procedures, and Windows Synchronization
Manager.

Replication Wizards and Properties

SQL Server Enterprise Manager includes several wizards and properties dialog boxes you can use to simplify the installation and
maintenance of replication. SQL Server Enterprise Manager allows you to view and modify the properties of replication, and
provides graphical navigational tools. It also provides the replication folder and Replication Monitor, which help you monitor and
troubleshoot replication activity.

The following replication wizards and properties dialog boxes provide a guided approach to implementing replication:

The Configure Publishing and Distribution Wizard helps you specify a server to use as a Distributor and, optionally, specify
other replication components. After the Publisher and Distributor are configured initially, changes can be made in the
Publisher and Distributor Properties dialog box.

The Create Publication Wizard guides you through the process of choosing the type of replication and replication options,
specifying the data or database objects that you want to replicate, the types of Subscribers that will access the publication,
as well as other properties of the publication. After the publication is created using the Create Publication Wizard, changes
can be made in the Publication Properties dialog box.

The Push Subscription Wizard helps you create a subscription to a publication that will be distributed to a specified
Subscriber. You can view the options selected for a push subscription in the Subscription Properties dialog box.

The Pull Subscription Wizard helps you create a subscription to a publication requested by a Subscriber. After the
subscription is created, you can view the options in the Pull Subscription Properties dialog box.

The Disable Publishing and Distribution Wizard helps you disable publishing, distribution, or both, on a server.

After replication is configured using wizards, you can script different configuration processes of replication. For example, after
creating a standard subscription to a publication for one Subscriber, you can script the set up of the subscription, run it at various
Subscribers, and substitute the correct Subscriber name in the script as necessary. For more information, see Scripting
Replication.

Replication Programming Interfaces

Another method of replication implementation and administration is by using one of, or a combination of, the replication
programming interfaces:

SQL-DMO

Microsoft® ActiveX® controls for replication

Replication Distributor Interface

SQL-DMO has more options available than the replication wizards (which are based on SQL-DMO), and you can create custom
applications using Microsoft Visual Basic® or Microsoft Visual C++® that allow you to configure or maintain a replication
topology. SQL-DMO can be used to program replication administration such as configuring distribution, creating subscriptions,
and so on.

ActiveX controls for replication enable you to control Snapshot Agent, Merge Agent, and Distribution Agent activity
programmatically. This allows users to program replication into their applications. The controls also offer some lightweight
administration options to create, delete, and reinitialize subscriptions, and to control, monitor, and troubleshoot replication
agents. These controls can be used to program activity needed to operate replication. For example, for an application that
provides online and offline capabilities, you may want to expose a Synchronize button. That button can be associated with the
merge ActiveX control, and whenever the users click the button, the Merge Agent connects to the Publisher, and data is
synchronized for the specified publication.

The Replication Distributor Interface provides the capability to replicate data from heterogeneous data sources such as Microsoft
Access or Oracle. The Replication Distributor Interface is used primarily by independent service vendors, or others who need to
develop a custom replication application based on proprietary data sources.

Essentially, this interface allows a custom solution while employing the replication distribution system, but developers assume the
data modification detection capabilities that would typically be conducted by the Log Reader Agent.

Replication System Stored Procedures

Replication system stored procedures are documented and available as a method for implementing replication in special
circumstances or for use in batch files and scripts. In most cases, however, you are better served by using the programming
interfaces SQL-DMO and replication ActiveX controls for programming replication. SQL-DMO provides an easier method and
higher-level solution than direct use of stored procedures.

The stored procedures are typically used if you use the scripting features from SQL Server Enterprise Manager. When you script
replication, SQL Server generates Transact-SQL batches that re-create the replication environment (configuring publishing and
distribution, creating publications and subscriptions, and so on). After the scripts are generated, you can edit them as needed
using SQL Query Analyzer.

Windows Synchronization Manager

Windows Synchronization Manager is a utility available with the Microsoft Windows® 2000 operating system and anywhere
Microsoft Internet Explorer version 5.0 or later is installed. It allows you to synchronize data between instances of Microsoft SQL
Server™. You can use SQL Server Enterprise Manager to enable pull subscriptions for use in Windows Synchronization Manager,
or you can enable subscriptions programmatically for use in Windows Synchronization Manager by using ActiveX controls for
replication.

Using Windows Synchronization Manager, you can schedule synchronizations or instruct Windows to synchronize selected items
automatically when you log on to the computer or when the computer is idle for a specified length of time. Windows
Synchronization Manager is located under the Accessories folder on the Windows Start menu.

See Also

Developing SQL-DMO Applications

Getting Started with Replication Programming

Replication Tools

Replication (SQL Server 2000)

Agents and Monitors
Agents used with Microsoft® SQL Server™ 2000 replication carry out the tasks associated with copying and distributing data.
SQL Server 2000 replication uses SQL Server Agent as well as agents that are specific to replication.

SQL Server Agent

SQL Server Agent hosts and schedules the agents used in replication, and provides an easy way to run replication agents. SQL
Server Agent also controls and monitors several other operations outside of replication, including monitoring the SQL Server
Agent service, maintaining error logs, running jobs, and starting other processes.

Snapshot Agent

The Snapshot Agent is used with all types of replication. It prepares schema and initial data files of published tables and stored
procedures, stores the snapshot files, and records information about synchronization in the distribution database. The Snapshot
Agent typically runs under SQL Server Agent at the Distributor and can be administered using SQL Server Enterprise Manager.

Log Reader Agent

The Log Reader Agent is used with transactional replication. It moves transactions marked for replication from the transaction log
on the Publisher to the distribution database. Each database published using transactional replication has its own Log Reader
Agent that runs on the Distributor and connects to the Publisher.

Distribution Agent

The Distribution Agent is used with snapshot replication and transactional replication. It moves the snapshot jobs and transactions
held in the distribution database to Subscribers. The Distribution Agent typically runs at either the Distributor for push
subscriptions or at the Subscriber for pull subscriptions.

Merge Agent

The Merge Agent is used with merge replication. It applies the initial snapshot to the Subscriber, and moves and reconciles
incremental data changes that occur. Each merge subscription has its own Merge Agent that connects to both the Publisher and
the Subscriber and updates both. The Merge Agent typically runs at either the Distributor for push subscriptions or the Subscriber
for pull subscriptions. The Merge Agent typically uploads changes from the Subscriber to the Publisher and then downloads
changes from the Publisher to the Subscriber during a typical bidirectional merge. Changes can also be moved in one direction by
configuring the exchange type of the agent.

Queue Reader Agent

The Queue Reader Agent is used with snapshot replication or transactional replication with the queued updating option, or if the
immediate updating with queued updating as a failover option is enabled.

The Queue Reader Agent is a multithreaded agent that runs on the Distributor. It is responsible for taking messages from a queue
and applying them to the appropriate publication.

Unlike the Distribution Agent and the Merge Agent, only one instance of the Queue Reader Agent exists to service all Publishers
and publications for a given Distributor.

Miscellaneous Agents

Clean up agents listed under the Miscellaneous Agents folder in Replication Monitor complete scheduled and on-demand
maintenance of replication.

Clean up agent Description Default schedule
Agent History Clean Up:
Distribution

Removes replication agent
history from the distribution
database.

Runs every 10 minutes

Distribution Clean Up:
Distribution

Removes replicated
transactions from the
distribution database.

Runs every 10 minutes

Expired Subscription Clean
Up

Detects and removes expired
subscriptions from publication
databases.

Runs every day at 1:00
A.M.

Reinitialize Subscriptions
Having Data Validation
Failures

Reinitializes all subscriptions
that have data validation
failures.

No default schedule
(not enabled by default).

Replication Agents Checkup Detects replication agents that
are not actively logging history.

Runs every 10 minutes

Replication Monitor

Through Replication Monitor in SQL Server Enterprise Manager, you can view and manage replication agents responsible for
various replication tasks. For example, you can set up transactional replication so that the log on the Publisher is read
continuously, transactions are distributed to Subscribers every ten minutes (although this is often also continuously), and initial
snapshots are generated every night at midnight. You can also execute replication agents on demand.

Replication Monitor provides a way to set alerts on replication events. When the event occurs, Replication Monitor responds
automatically, either by executing a task that you have defined or by sending an e-mail or a pager message to a specified
individual.

See Also

Administering and Monitoring Replication

Replication Agents

Types of Replication

Replication (SQL Server 2000)

Planning for Replication
Careful planning before replication deployment can maximize data consistency, minimize demands on network resources, and
prevent troubleshooting later.

Consider these areas when planning for replication:

Whether replicated data needs to be updated, and by whom.

Your data distribution needs regarding consistency, autonomy, and latency.

The replication environment, including business users, technical infrastructure, network and security, and data
characteristics.

Types of replication and replication options.

Replication topologies and how they align with the types of replication.

Replication (SQL Server 2000)

Distributed Update Factors
If distributed data does not need to be updated at more than one site, data can easily maintain the ACID properties of
transactions. However, when you need to update data at multiple sites, you should consider how the ACID properties of
transactions and site autonomy are going to be affected.

ACID Properties

To qualify as a transaction, a single unit of work must adhere to the ACID properties of atomicity, consistency, isolation, and
durability.

Atomic. For a transaction to be atomic, all of its data modifications are performed or none of them are performed.

Consistent. To be consistent, a completed transaction must leave all data in a consistent, logically correct state.

Isolation. To meet the isolation property, a transaction reads data in the state it was in before another concurrent transaction
modified it (without yet committing the transaction). Concurrent modifications that are in progress do not affect the
transaction.

Durable. To meet the durability property, the modifications of a transaction will persist (for example, remain in the database,
even if there is a system failure). After a commit is acknowledged, the system must guarantee that the transaction persists.

Your needs for strict adherence to ACID properties are significant when planning for replication because when data modifications
are made at multiple Subscribers independently, conflicts can occur. If conflicts are allowed, strict ACID characteristics cannot be
guaranteed even with conflict detection and resolution. If you are considering merge replication or transactional replication with
the queued updating option, you need to prepare for how to handle transactions that do not meet these properties.

Two-phase commit protocol (2PC) is required to guarantee ACID properties in a distributed, multiple-update environment.
However, this means that the sites are dependent on one another for completion of an update, and they will give up site
autonomy.

For more information about ACID properties, see Transactions.

Questions relating to ACID properties include:

Do multiple Subscribers need to make updates? If replicated data is going to be read-only, ACID properties will not be
affected.

If updates need to be made at multiple sites, can you allow conflicts? Is the data filtered into different partitions for different
sites? If you need to preserve transaction isolation and durability, you must avoid conflicts.

Is it acceptable for a committed transaction to be undone to resolve a conflict?

Is it acceptable that subsequent transactions are changed based on the value of a transaction that was undone due to a
conflict?

If ACID properties must be preserved, you can use 2PC so that the Publisher accepts any changes before a conflict could exist,
execute all updates at one site, or filter data so sites can update unique subsets of data and avoid conflicts with other sites.

ACID Properties and Replication

When designing replication, determine whether ACID properties need to be maintained and how much autonomy is required by
your application.

When thinking about ACID properties in regards to replication, consider whether data at any participating site must be the same
data that would have resulted had all transactions been performed at only one site. If you made all data modifications at one site,
your transactions would typically be consistent, isolated, and durable. Consider if you also have those needs in your distributed
environment.

Latency refers to the period of time between when data is updated at one site (the Publisher) and when those changes appear at
another site (the Subscriber). The latency can vary from a few seconds to hours, days, or longer.

Questions relating to ACID properties in your replication application include:

Does data need to be updated at Subscribers?

How much latency is acceptable?

To maintain strict ACID properties, you will often have to give up site autonomy because servers must be continuously and
reliably connected. That is the only way to guarantee you avoid conflicts. If you allow conflicts, some transactions must be altered
or undone to resolve the conflict. Therefore, at least some transactions were not durable, and perhaps other transactions that read
the values of the non-durable transaction were not isolated.

Autonomy

Autonomy is the degree of dependence one site has on another. Complete autonomy occurs when one site does not depend on
any other site to complete its work, and it is independent of the operations at any other site.

2PC is an example of a nonautonomous process because every data change is dependent on every other participating site being
able to accept the transaction successfully and immediately. But in replication, 2PC is optimized to be dependent on only two
servers in the replication topology: the Publisher and the Subscriber making the update, with the Publisher as the arbiter.

Merge replication or transactional replication with queued updating is often used when sites need to modify data autonomously
and then later merge changes with changes made at the Publisher and at other Subscribers.

With merge replication, data converges and all sites end up with the same values; however, because conflicts can occur and are
resolved, the values are not necessarily the ones that would have resulted had all the work been done at only one site. All sites
may work offline and when all sites have synchronized data, all sites will eventually have the same data. However, because the
same data is being changed at multiple locations, conflicts can occur and some transactions from one site will be committed while
others will be rejected and resolved. Those transactions by definition are not durable.

Example

Northwind Traders has a Publisher with local Distributor at the corporate headquarters that publishes customer and orders
information using merge replication to four regional sales offices. Data is not filtered and published in partitions, so data
modifications to the same rows can occur at multiple sites.

A sales representative in the Northwest office changes the customer information for the company named White Clover Markets
by changing the value of the customer phone number to (206) 554-2341. A sales representative in the Southwest office uses
replicated data at that site and changes the fax number for White Clover Markets to (206) 555-8314. Another sales representative
at the publishing site in the corporate headquarters changes the phone number of White Clover Markets to (206) 554-2241.
When the Subscribers merge with the Publisher, the conflicts will be detected and depending on the conflict resolution policy, it
will be resolved. It is possible that White Clover Markets ends up with the new phone number that was entered at the corporate
office, (206) 554-2241, and that the new fax number entered at the Southwest office is rolled back and the original fax number is
maintained in the database.

If sites are autonomous, ACID properties cannot be assured. For example, merge replication allows sites to be autonomous and to
update replicated data whether online or offline. It does not, however, guarantee durability. If conflicts are to be resolved, then a
committed transaction must be altered in order to resolve the conflict. Instead, it focuses on data convergence, the merging of
changes made at various sites into a new result set.

Questions relating to autonomy include:

How independent do the various sites need to be?

Are sites continuously and reliably connected, or are they disconnected for periods of time?

Is preserving ACID properties more important than autonomy?

Replication (SQL Server 2000)

Evaluating the Replication Environment
The replication environment is composed of the business units, people, technical structure, and applications that will either host or
use replication. At this stage of replication planning, you should talk to the people who will be affected by replication as well as
gather information about the technical infrastructure including how and what data is stored, where, how, and when the data
needs to be replicated, and how replication will be administered and maintained.

Replication (SQL Server 2000)

Business Objectives and Requirements
Asking questions in the areas of data distribution and data modification helps you determine how to distribute data, what type of
replication to use, what replication options to use, what the business needs are for replication, and who will be affected by
replication.

Data Distribution

Answering questions about the objective of distributing data ensures that replication is the correct solution for the problem you
need to solve or goal you hope to attain. Answering questions about the needs of the organization regarding data distribution
helps you plan where replication is needed and how often, and determine the type of replication to use. These questions include:

What is the core problem or objective that replication might help solve? For example, do you want to distribute data for
reporting servers, do you have applications that need to be updated online and offline, or do you want a standby solution?

How will data distribution affect existing technology, administrative resources, people who currently access the data, and
costs of data administration?

What data is needed and where is it needed?

How often is the data needed?

Are entire refreshes of the data required or just incremental updates?

Are entire tables needed, or can you filter the data according to site or data usage? Do you want to replicate database
objects such as stored procedure definitions or execution, views, triggers, or user-defined functions?

Where will data be published and what Subscribers need to receive the data?

How many Subscribers need the data?

Are data transformations necessary during replication?

Data Modification

Answering questions about modifying data helps you determine what types of replication to use, what replication options to use,
and when to schedule updates.

Do Subscribers need to update the data?

If multiple Subscribers update the same sets of data, are conflicts allowed?

Do transactions have dependencies? Will dependent transactions be affected if a transaction has dependencies and that
transaction is undone due to a conflict?

If data modifications are made at Subscribers, what is the rate of data modification?

Will Subscribers have continuous, reliable connections to the publication database or will they be disconnected for periods
of time?

Can data be partitioned logically so that various sites can modify their own subsets of data without the possibility of
updates causing conflicts with updates made at other sites?

If multiple sites are updating the same data independently, how will conflicts be handled?

How quickly must changes be replicated to other sites?

How quickly must the initial snapshot and data be applied at the Subscriber?

How often will Subscribers synchronize data or propagate changes?

How many updates are you sending?

Replication (SQL Server 2000)

Network Considerations
The following replication issues affect the performance of your networks:

The volume and typical size of data flowing over the network.

The number of Subscribers to a particular Publisher.

The speed and reliability of the line.

The processing power of the Publisher, Distributor, and Subscribers.

If you are replicating over a slow link, the profiles for the agents involved in replication can be customized. For example, you can
configure behavior such as the batch size, the polling interval, the timeout period, and the number of buffers available. The
configuration options vary with the particular agent whose profile is being configured.

Network speed is often the most important issue when applying the initial snapshot. The volume of incremental data changes
may be low, but the volume of data initially distributed may be high. Transferring the snapshot using a CD-ROM or tape device is
one solution to this situation. Compressing the snapshot files can also help preserve network speed.

Knowing the processing power of the servers in your replication topology helps you decide whether to use remote agent
activation. If you are using push subscriptions and there is greater processing power at the Subscriber, you may want to use
remote agent activation so that the Distribution Agent or Merge Agent runs at the Subscriber rather than at the Distributor. If you
are using pull subscriptions and there is greater processing power at the Distributor, you may want to use remote agent
activation so that the Distribution Agent or Merge Agent runs at the Distributor rather than at the Subscriber.

You may also want to perform transformations on published data specific to individual Subscribers that discard some data at the
Distributor. The transformation could discard the data before placing it on the network, and this could be a significant benefit for
replication performance, especially if the network bandwidth is low.

See Also

Agent Profiles

Generating the Initial Snapshot

Remote Agent Activation

Transferring Snapshots

Transforming Published Data

Replication (SQL Server 2000)

Security Considerations
 New Information - SQL Server 2000 SP3.

When considering security in Microsoft® SQL Server™ 2000, replication is similar to other applications in SQL Server 2000: you
must achieve a balance between the security and accessibility of data.

Additional security issues need to be considered in the following areas:

SQL Server Agent.

Location of snapshot files.

Testing agent connectivity.

Security mode of the Publisher.

SQL Server Agent

The SQL Server Agent service (SQLServerAgent) at the client should not use the LocalSystem account. It needs to use a standard
domain account. The SQLAgent account is the security context under which the Snapshot Agent, Merge Agent, and Distribution
Agent are running by default.

The account used by the SQL Server Agent is defined at the time SQL Server 2000 is installed and can be changed at any time.

On the Microsoft Windows® 98 operating system, SQL Server Agent and the replication agents run under the security account of
the user logging on to the Windows operating system. On Microsoft Windows NT® version 4.0 and Microsoft Windows 2000
operating systems, the replication agents run under the login or security context of the SQLServerAgent service. Neither the
SQLServerAgent service nor the SQL Server service needs to run under a Windows 2000 Administrator account.

Each agent connects to one or more servers (Publisher, Distributor, or Subscribers depending on the agent) and must have a valid
login to that instance of SQL Server to complete the connection. For more information, see Agent Login Security.

Location of Snapshot Files

The folder in which the snapshots are stored must be available to all Subscribers on the network. To ensure secure access to the
initial snapshot files of your replicated data, it is recommended you use an explicit share instead of an administration share (for
example, C$) for which you cannot grant specific permissions. The administrative share is used as a default only because it will
always exist on Windows NT 4.0 and Windows 2000 (but it cannot be accessed except by an administrator account).

When configuring distribution, you can define the default location for all snapshot files. After creating a publication, you can
define the location of the snapshot files using the publication properties dialog box.

Testing Agent Connectivity

When implementing replication, make sure that the replication agents can communicate with all servers involved in the
replication topology. One way to test agent connectivity is to log in to the required server and database using SQL Query Analyzer
or osql using the same login that the replication agent will be using (or typically the login that SQL Server Agent is using).

You must be a SQL Server 2000 system administrator to enable the server for replication. After replication is enabled, you do not
need to be a SQL Server 2000 system administrator to set up publications and subscriptions, or to invoke or schedule the
replication agents. You must be in the db_owner role to create publications. Anyone who is added to the publication access list
(PAL) can create pull subscriptions to that publication (but only to that publication).

Security Mode of the Publisher

Connections to a server (Publisher, Distributor, or Subscribers) can use Windows Authentication or SQL Server security.
Connections to Windows 98 servers must use SQL Server security because Windows Authentication is a feature only on Windows
NT 4.0 and Windows 2000.

It is recommended that the Subscriber connection have dbo permissions in the subscription database.

See Also

Generating the Initial Snapshot

Managing Security

Replication Security

Transferring Snapshots

Replication (SQL Server 2000)

Data Needs and Characteristics
While examining the data that you are replicating, consider the following:

Collation (defines code page or character set and data sorting)

Data types

Character Sets

If replication is implemented between servers using different character sets, Microsoft® SQL Server™ 2000 does not convert any
of the replicated data and may mistranslate the data as it is replicated because it is impossible to map all characters between
character sets.

If you can guarantee that all characters you use will have identical codes on all code pages, replication would be successful, but it
would not be guaranteed. Similarly, the comparison style specified by the collation you select can affect the accuracy of replicated
transactions. To guarantee successful data replication, servers are best when configured using the same code pages and
comparison styles.

Generally, if you have an environment where you have different character sets, you should consider using Unicode data types for
which no conversion is necessary.

Data Types

When determining data to replicate, consider the data type. You should understand the following:

timestamp columns. For merge replication or transactional replication with the queued updating option, when articles
contain a timestamp column, the timestamp column is replicated, but the literal timestamp values are not. The
timestamp values are regenerated when applying the initial snapshot rows at the Subscriber. This allows timestamp to
continue using optimistic concurrency control (a frequent usage). For snapshot and transactional publications, and
publications that allow immediate updating, the literal values for a timestamp column are replicated, but the data type for
the replicated values is changed to binary (8) on the Subscriber. For more information, see Replication Data Considerations.

uniqueidentifier columns. If you are using merge replication, or if you are using snapshot replication or transactional
replication with queued updating and the table that is being replicated does not have a uniqueidentifier column, SQL
Server 2000 will add one when you create a publication. In merge replication, this occurs when the initial snapshot is
generated. In snapshot replication or transactional replication using the queued updating option, this occurs when the
publication is created. In the case of queued updating, a predefined uniqueidentifier column will be added for row
versioning irrespective of the presence of a globally uniqueidentifier (GUID) column in the table. The use of the
uniqueidentifier in queued updating is conceptually like a global timestamp. To ensure that merge replication will reuse an
existing uniqueidentifier column to uniquely identify replicated rows, make sure that your uniqueidentifier column is
created with the column property ROWGUIDCOL. The use of the GUID in merge replication is conceptually like the use of a
global primary key.

Columns with text or image data types. These columns can take longer to replicate because they can be very large. When
using snapshot replication or transactional replication with the immediate updating or queued updating options, updates
made at the Subscriber to replicated data with text or image data types are not supported. However, replication and
updating of these columns is fully supported when not using updatable subscriptions. Publishing text and image data
types is also supported in merge replication.

Case sensitivity. Generally, you should choose the same collation scheme (as the most common setting is case sensitivity) at
the Publisher and at the Subscriber. For more information, see Specifying Collations.

For example, suppose you are publishing data about customers and you do not choose the same collation scheme at the
Publisher that is at the Subscriber. Data is then filtered based on state="Ca" for a particular Subscriber. The data that is published
to the Subscriber may not be the data that you intended because of differences in collation. Choosing the same collation scheme
is not required, and depending on your application requirements, you may want to choose a different collation scheme (for
example, a Publisher might have data that is case-sensitive, but a Subscriber that is a reporting server may have data that is case-
insensitive).

Triggers. Consider triggers that reside on the publishing table. By default, the triggers will be published with data from that

table. If you do not want triggers on the publishing table to be published with data, you can change an option in the
properties for a specific publication. For more information, see Publishing Data and Database Objects and Using NOT FOR
REPLICATION.

Row size. Is the row size greater than the maximum of 6,000 characters for merge replication and 8,000 characters for
transactional replication? (Size limits exclude columns with text and image data types.)

Data type mapping. Do you need to support Subscribers running on an instance of SQL Server 7.0 or earlier, or Subscribers
that are not running on a version of SQL Server? SQL Server 2000 has new data types that servers running earlier versions
of SQL Server cannot replicate. If so, you should know how the data types map between the different databases. For more
information, see Data Type Mapping.

Column-level or database collations. Depending on which collation you use, retrieving the data may be different at different
Subscribers.

Replication (SQL Server 2000)

Planning for Application Development
When planning replication applications, consider the following:

Design your application to minimize conflicts. If the Subscribers need to read data and do not need to update data, conflicts
will be avoided. Partitioning data logically according to geographic locations or business uses can also prevent users from
updating the same data values, thus avoiding conflicts.

For online/offline applications where you expect conflicts can and will occur, merge replication is usually the best choice for
your application. Merge replication allows for a variety of conflict detection and resolution policies, evaluates updates row
by row, and results in data convergence.

Snapshot replication or transactional replication with the immediate updating or queued updating option is recommended
for applications that are mostly read with occasional updates. Immediate updating uses two-phase commit (2PC). Queued
updating provides policies for conflict resolution and evaluates updates and conflicts on a transaction basis.

When using merge replication, or when using snapshot replication or transactional replication with the queued updating
option, determine the conflict resolution policy before implementing replication.

Research how disconnecting from the database will affect mobile or disconnected users. What happens if users do not
immediately see the updates they make at the Subscriber?

How fast is data synchronization? How long does it take to apply the initial snapshot and how long does it take for periodic
updates? Test the initial snapshot by applying it over the actual network that will be used. Consider applying the initial
snapshot manually using a CD-ROM or removable media device if transferring it over the network takes too long.

Manage identity values by using identity ranges when using merge replication or when using snapshot replication or
transactional replication and allowing queued updating subscriptions. If you create data partitions and assign different
identity ranges to the partitions, conflicts will be avoided because different sites will be working with different subsets of
data.

Ensure that your applications use column names in INSERT statements before enabling merge replication or transactional
replication with immediate updating or queued updating options, because these types of replication may add columns to
your publishing table. If you do not list the column names in INSERT statements for these types of replication, an error will
occur.

If you are using transactional replication with the immediate updating or queued updating option, Subscribers will not be
able to update values with the text or image data types. The publication can contain text or image columns, but those
columns may be updated only at the Publisher.

Be aware of maximum column and row sizes. A table used in snapshot replication or transactional replication can have a
maximum of 255 columns and a maximum row size of 8,000 bytes. A table used in a merge publication can have a
maximum of 246 columns and a maximum row size of 6,000 bytes. The reason the restriction for merge replication is
stricter than the restriction for transactional replication is because conflict tables have the same structure with additional
columns that store information about the origin of the conflict and the specific reason for the conflict. Because additional
space is needed to record this conflict information, the maximum row size is less than the maximum row size for
transactional replication.

If you will have a high volume of transactions, always design your application to use stored procedures to modify data at
the Publisher and publish the execution of stored procedures.

See Also

Filtering Published Data

Merge Replication Conflict Detection and Resolution

Merge Replication or Updatable Subscriptions

Queued Updating Conflict Detection and Resolution

Replication (SQL Server 2000)

Planning for Each Type of Replication
Each type of replication (snapshot replication, transactional replication, and merge replication) has specific requirements and
issues that you should consider before implementation.

Because an initial snapshot must be applied for all types of replication, you should be familiar with the planning considerations
for snapshot replication even if you choose to implement transactional replication or merge replication.

When considering transactional replication, allocate adequate disk space in the distribution database to handle the number of
transactions that will be stored there.

When considering merge replication, Microsoft® SQL Server™ 2000 uses a globally unique identifier (GUID) column to identify
each row during the merge replication process. If the table that is replicated does not have a uniqueidentifier column with the
ROWGUIDCOL property and a unique index, SQL Server 2000 will add one to the table, and you will need to account for the
additional data that is stored there. If the table already has a uniqueidentifier column, you can add the ROWGUIDCOL property
to signal that it can be used during merge replication. You must also add a unique index on this column or make it the primary
key for the table. Distributed applications can benefit greatly from using the uniqueidentifier column because it guarantees that
no two sites will generate the same key value.

See Also

Planning for Snapshot Replication

Types of Replication

Replication (SQL Server 2000)

Planning for Snapshot Replication
Snapshot replication requires planning in the following areas:

Transferring and storing snapshot files.

Scheduling snapshots.

Transferring and Storing Snapshot Files

You have the option of storing snapshot files in a location other than or in addition to the default location, which is often located
on the Distributor. Alternate locations can be on another server, on a network drive, or on removable media (such as CD-ROM or
removable disks). You can also save the snapshot files to a File Transfer Protocol (FTP) site for retrieval by the Subscriber at a later
time.

Additionally, you can compress the snapshot files to improve network performance by writing data in the Microsoft® CAB file
format. For more information, see Compressed Snapshot Files.

When planning to transfer and store snapshot files, estimate the disk space required at the snapshot file location and at the
Subscriber that will receive the snapshot files.

The amount of space required for one snapshot can be affected by several factors including the size and number of articles
published. You can create snapshot files in the default snapshot folder on the Distributor and in an alternate location.
Compressing the snapshot files in the alternate location can reduce the overall space required.

When snapshot files are created in both the default folder and in an alternate location on the same drive, each file is created
initially in the default folder and then copied to the alternate location. If you are using compressed snapshot files, the files are
copied and compressed before they are placed in the alternate snapshot location. The total space required for all snapshot files in
this situation is the size of the original snapshot files in the default location plus the size of the compressed snapshot files in the
alternate location.

If the alternate storage location is on a different drive than the default location, the space required at the default location is the
size of the snapshot files. The space required at the alternate location is the total size of the compressed snapshot files.

For more information, see Transferring Snapshots.

Scheduling Snapshots

Concurrent snapshot processing is provided for transactional replication, and an optimized merge snapshot generation is
provided for merge replication. Concurrent snapshot processing is conceptually similar to how a database backup can be
performed while updates on the database continue.

With concurrent snapshot processing and transactional replication, at the time the Snapshot Agent runs, it places temporary
shared locks on the publication tables that are released quickly so that data modifications at the database can continue. The data
modifications made at this time are included as part of the initial snapshot. The snapshot is applied at the Subscriber, and the
Distribution Agent reconciles each captured transaction to see if it has already been delivered to the Subscriber. During this
reconciliation, the tables on the Subscriber are also temporarily locked.

To minimize the user from being temporarily unable to add to or update the table:

Choose the concurrent snapshot processing with transactional replication when possible. Shared locks on the Publisher are
only held for seconds.

Identify times when the least amount of updates to data are needed and schedule the agent accordingly. Like a backup, the
generation of the snapshot can be quite resource-intensive and that overhead will reduce the rest of the system
performance during that time.

To plan the optimum schedule for running the Snapshot Agent, estimate the length of time it takes the Snapshot Agent to
complete the snapshot. Because the snapshot is created using bcp, perform a test bulk copy of your data set and time how long it
takes to complete. If your data set is very large, perform the bulk copy on a sample of the data set and extrapolate the lapse time
to the entire data set.

Not applying a snapshot is another option if you are concerned about interrupting activity on your database. You can set up a
Subscriber manually such as from a database dump. This is known as manually applying the initial snapshot.

See Also

Copying Data Between Different Collations

Replication (SQL Server 2000)

Planning for Transactional Replication
Transactional replication requires planning in the following areas:

Transaction log space.

Disk space for the distribution database.

Primary keys for each table to be published.

Immediate updating and queued updating.

Transforming replicated data.

text and image data types in transactional replication.

Identity ranges.

Constraints and NOT FOR REPLICATION.

Transaction Log Space

For each database that will be published in transactional replication, ensure that the transaction log has enough space allocated.
The transaction log of a published database may require more space than the log of an identical, unpublished database. This is
because the log records may not be purged until they have been moved to the distribution database.

If the distribution database is unavailable, or if the Log Reader Agent is not running, the transaction log of a publication database
continues to grow. The log cannot be truncated past the oldest published transaction that has not been passed into the
distribution database (unless replication is turned off completely for that database). It is recommended that you set the
transaction log file to autogrow so that the log can accommodate these circumstances.

Disk Space for the Distribution Database

If you plan to create transactional publications and make the snapshot files available to Subscribers immediately, allow enough
disk space for the distribution database to store all of the transactions after the last snapshot. Although making the snapshot
available to Subscribers immediately improves the speed with which new Subscribers have access to the publication, the option
does require a larger disk storage area for the distribution database. It also means that a new snapshot will be generated each
time the Snapshot Agent runs. If the option is not used, and if anonymous subscriptions are not allowed, a new snapshot needs to
be generated only if there is a new subscription.

The distribution database begins collecting transactions immediately and continues to store them until the second time the
Snapshot Agent is run (either scheduled or run manually). After the second time the Snapshot Agent is run, the cleanup task
begins to clean up and reduce the size of the distribution database by deleting the rows from the first snapshot. Thus, if you use
the default schedule of once a day for running the Snapshot Agent, you must have enough disk space to store all the transactions
that occur in one day.

Similarly, if you plan to create transactional publications and allow anonymous subscriptions to a publication, you must allow
enough disk space for the distribution database to store all of the transactions since the last snapshot. Allowing anonymous
subscriptions also means that a new snapshot will be generated every time the Snapshot Agent runs.

An alternative to allocating more disk space in both of these situations is to run the Snapshot Agent more frequently than once a
day (the default) so fewer commands must be retained in the distribution database. However, generating a snapshot can be
resource-intensive and can affect performance temporarily. Reducing the distribution retention period (in Publisher and
Distributor Properties) can also help maintain fewer commands because the Distribution Clean Up Agent is controlled by the
distribution retention period and will remove replicated transactions from the distribution database.

Primary Keys

All published tables in transactional replication must contain a declared primary key. Existing tables can be prepared for
publishing by adding a declared primary key using the Transact-SQL statement ALTER TABLE.

text and image Data Types in Transactional Replication

The process of replicating text and image data types in a transactional publication is subject to the following considerations:

INSERT, UPDATE, and DELETE statements at the Publisher on text and image columns are supported with no special
considerations. However, these columns cannot be updated by Subscribers that use snapshot replication or transactional
replication and immediate updating or queued updating subscriptions.

Logged text operations can be replicated by using WRITETEXT and UPDATETEXT with the WITH LOG option on tables that
are published for replication. A text or image column that is published for replication using WRITETEXT and UPDATETEXT
operations with the WITH NO_LOG option is not supported because replication reads the transaction log.

UPDATETEXT operations can be performed only if all Subscribers are running Microsoft® SQL Server™ version 6.0 or later
Subscribers. WRITETEXT operations are replicated as UPDATE statements, enabling replication of WRITETEXT to ODBC
Subscribers as well as to SQL Server. (UPDATETEXT operations are replicated as only UPDATETEXT.)

Custom procedures are not used if multiple text columns are being modified because the other text column values are not
logged. Instead, a standard UPDATE statement is generated.

A configurable parameter, max text repl size, controls the maximum size (in bytes) of text and image data that can be
replicated. This permits support of ODBC drivers and instances of SQL Server that cannot handle large text and image
values, and Distributors that have system resource (virtual memory) constraints. When a text or image column is
published and an INSERT, UPDATE, WRITETEXT, or UPDATETEXT operation is run that exceeds the configured limit, the
operation fails.

Using the sp_configure system stored procedure sets the max text repl size parameter.

When publishing text and image columns, the text pointer should be retrieved within the same transaction as the
UPDATETEXT or WRITETEXT operation (and with read repeatability). For example, do not retrieve the text pointer in one
transaction and then use it in another. It may have moved and become invalid.

In addition, when the text pointer has been obtained, you should not perform any operations that can alter the location of
the text pointed to by the text pointer (such as updating the primary key), before executing the UPDATETEXT or WRITETEXT
statement.

This is the recommended way of using UPDATETEXT and WRITETEXT operations with data to be replicated:

1. Begin the transaction.

2. Obtain the text pointer with read repeatable isolation.

3. Use the text pointer in the UPDATETEXT or WRITETEXT operation.

4. Commit the transaction.

Note If you do not obtain the text pointer in the same transaction, modifications are allowed at the Publisher, but changes
are not published to Subscribers.

An important consideration when sizing Subscriber databases is that the text pointer for replicated text and image columns must
be initialized on Subscriber tables, even when they are not initialized on the Publisher. Consequently, each text and image
column added to the Subscriber table by the distribution task will consume at least 43 bytes of database storage even if the
contents are empty.

Replication (SQL Server 2000)

Planning for Merge Replication
Merge replication requires planning in the following areas:

timestamp columns.

Identity ranges.

Data integrity.

Primary keys.

Synchronizing with alternate synchronization partners.

Row-level tracking and column-level tracking.

Triggers and business rules.

text and image data types in merge replication.

Conflict resolution.

Occassional maintenance for online/offline applications

timestamp Columns

Merge replication supports timestamp columns. The timestamp column is replicated, but the literal timestamp values are not.
The timestamp values are regenerated when the initial snapshot rows are applied at the Subscriber. This allows timestamp
values to be used by client applications at the Subscriber for functions such as optimistic concurrency control. In those cases, the
ODBC driver, OLE DB provider, DB-Library cursor, or server cursor used to implement optimistic concurrency control compares
the timestamp value of the row being updated with the current local value of the original row. If the timestamp values are
different, indicating a row has changed, the application can take appropriate action (such as rolling back the transaction or
rereading the data). Because the timestamp values are regenerated at the Subscriber, timestamp columns are filtered out when
performing article validation.

Data Integrity

Because merge replication propagates changes made at the Subscriber, you must ensure that the application integrity is
preserved at each Subscriber. All controls used to validate data changes at the Publisher should also be present at the Subscriber.

There are options to ensure that the login used by the Merge Agent to connect to the Publisher can also be used to verify that
data changes made at the Subscriber are propagated to the Publisher by authenticated users only.

Foreign Keys

When creating a merge publication, specify the tables that are included as articles in that publication. If you include tables that
contain foreign keys, the referenced table should also be included in the publication. If an attempt is made to add new rows to an
article referencing a primary key in a missing table, the insert fails because SQL Server 2000 cannot find the required primary key.
If an attempt is made to update data in an existing row(s) of the article, the update succeeds because SQL Server 2000 does not
have to add a new row(s) and key(s).

After they are created, merge publications can be modified to include additional articles. You can add any missing, referenced
tables to a publication if you discover that an article must be updated with additional rows and not just with modifications to
existing rows. Use the publication properties dialog box to add the missing table.

Synchronizing with Alternate Synchronization Partners

Subscribers to merge publications can synchronize with servers other than the Publisher where the subscription originated.
Synchronizing with alternate synchronization partners provides the ability for a Subscriber to synchronize data even if the
primary Publisher is unavailable, or if you can connect to another synchronization partner because of physical location (for

example, if you are visiting a remote office and can connect to an alternate synchronization partner there).

Determine whether it will be necessary for merge replication Subscribers to have alternate synchronization partners, and then
prepare those alternate servers for the synchronization.

For more information, see Alternate Synchronization Partners.

Conflict Detection and Resolution

When determining merge replication conflict detection and resolution, you can specify whether you want the conflicts recognized
at the row level or at the column level.

Whether to use row-level or column-level tracking should be decided based upon whether you want to consider any change
within a row as a conflict (row-level tracking) or if different users will be allowed to update the same row simultaneously, but not
the same column between synchronizations (column-level tracking).

The choice to use row-level versus column-level tracking should be based on your application and whether you want to consider
any change to the same row in a table as a conflict or whether it is okay for different users to simultaneously update the same
row, but not the same column, between synchronizations. For example, it might be considered acceptable in some applications
that changes to different columns can be merged by using column-tracking. This means that if the Publisher changes column 1
and the Subscriber changes column 2, the merge process accepts the change to column 1 from the Publisher and change to
column 2 from the Subscriber. Or some applications might require that changes to the same row at multiple sites (even if the
values are in different columns) should be considered conflicts, detected and resolved at the row level.

For more information, see Merge Replication Conflict Detection and Resolution.

Triggers and Business Rules

You should be aware of all triggers and constraints on a table that is replicated. Without planning, the triggers and constraints can
be replicated along with the table and can cause recurring conflicts during merge replication. For more information, see
Publishing Data and Database Objects and Using NOT FOR REPLICATION.

text and image Data Types in Merge Replication

Merge replication supports the replication of text, ntext, and image columns only if they have been updated explicitly by an
UPDATE statement because it causes a trigger to fire that updates meta data ensuring that the transaction gets propagated to
other Subscribers.

Using only the WRITETEXT and UPDATETEXT operations will not propagate the change to other sites. If your application uses
WRITETEXT and UPDATETEXT to update the text or ntext columns, explicitly add a dummy UPDATE statement after the
WRITETEXT or UPDATETEXT operations, within the same transaction, to fire the trigger and thereby guarantee that the change will
be propagated to other sites.

Example

Using the Northwind database and updating the Notes column (with data type ntext) of the Employees table:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRAN
DECLARE @mytextptr varbinary(16)
SELECT @mytextptr = textptr(Notes)
FROM Employees
WHERE EmployeeID = '7'
 IF @mytextptr IS NOT NULL
BEGIN
UPDATETEXT Employees.Notes @mytextptr 0 NULL 'Terrific job this review period.'
-- Dummy update to fire trigger that will update meta data and ensure the update gets propagated to other
Subscribers.
UPDATE Employees
-- Set value equal to itself.
SET Notes = Notes
WHERE EmployeeID = '7'
END
COMMIT TRAN
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Occasional Maintenance for Online/Offline Applications

When planning for an online/offline application that uses replication, plan for occasional maintenance in the deployment of the
application and for a way to transfer new datasets to the disconnected Subscribers.

Although SQL Server 2000 replication allows for rich data access for occasionally connected Subscribers, or for Subscribers using
a slow link, there will still be a need to plan for occasional maintenance of the application and possibly for reapplying a snapshot
at the Subscriber.

Replication (SQL Server 2000)

Planning for Replication Options
The replication options of immediate updating, queued updating, immediate updating with queued updating as a failover, and
transforming replicated data require additional considerations during replication planning. If users do not need to update data at
the Subscriber, consider using snapshot replication or transactional replication without immediate updating or queued updating
options, and then replication will be easier to configure and administer.

Considerations for Immediate Updating or Queued Updating Subscriptions

Here are planning considerations for immediate updating or queued updating subscriptions:

INSERT statements used to add rows of data to a table must include a column list.

Subscribers using immediate updating or queued updating options cannot republish replicated data at the Subscriber.

The Subscriber cannot update or insert text or image values. For more information, see Updatable Subscriptions.

After a publication is enabled for either immediate updating subscriptions or queued updating subscriptions, the option
cannot be disabled for the publication (although subscriptions do not need to use it); to delete the option, the publication
must be deleted and a new one created.

Snapshot replication does not require the use of primary keys in a table. However, transactional replication by itself or
snapshot replication with any updatable subscriptions does require the use of primary keys.

If you enable immediate updating and/or queued updating on a publication, you cannot also use transformable
subscriptions. The Transform Published Data page will not show in the Create Publication Wizard if you have already chosen
to use immediate updating and/or queued updating.

Additional Considerations for Immediate Updating Subscriptions

Immediate updating allows snapshot replication and transactional replication Subscribers to update the replicated data at the
Subscriber and propagate those changes to the Publisher, which then propagates to all other Subscribers.

Consider the following when planning to use snapshot replication or transactional replication with immediate updating:

A uniqueidentifier column is used to track updates. The uniqueidentifier column is added automatically to any tables
used in the publication. The addition of this column requires INSERT statements to have column lists. If you used immediate
updating in Microsoft® SQL Server™ version 7.0 and are upgrading to SQL Server 2000, you will need to subscribe to the
publication again. For more information, see Replication and Upgrading.

Using this option, the update is distributed and performed at both the Publisher and Subscriber using two-phase commit
protocol (2PC): one locally at the Subscriber and one at the Publisher. This requires that the Publisher and the Subscriber
making the change be available and connected.

The immediate updating subscription connection to the Publisher (controlled by sp_link_publication) can use security
mode 0 for SQL Server Authentication or 2 for linked server definition to create login mappings. The publication access list
(PAL) must include at least one SQL Server Authentication account unless you use security mode 2 and configure delegation
(it is possible to set up Windows Authentication in mode 2 by configuring delegation). You can make connections to the
Publisher under Windows user accounts invoking the INSERT, UPDATE, and DELETE triggers at the Subscriber using
delegation. To set up delegation, see sp_addlinkedsrvlogin.

Additional Considerations for Queued Updating Subscriptions

Queued updating allows snapshot replication and transactional replication Subscribers to modify published data without
requiring a continuous connection to the Publisher.

When you create a publication with the queued updating option enabled and a Subscriber that is enabled for queued updating
performs inserts, updates, or deletes on published data, the changes are stored in a queue. The queued transactions are applied
asynchronously at the Publisher when network connectivity is restored.

Consider the following when planning to use snapshot replication or transactional replication with queued updating:

Because the updates are propagated asynchronously to the Publisher, the same data may have been updated by the
Publisher or by another Subscriber and conflicts can occur when applying the updates. You will need to choose an
appropriate conflict resolution policy when creating the publication.

For snapshot replication, tables should have, at least, a unique index and preferably a primary key. For transactional
replication, tables must have a primary key.

If the Subscriber database is partitioned horizontally and there are rows in the partition that exist at the Subscriber, but not
at the Publisher, the Subscriber cannot update the preexisting rows. Attempting to update these rows returns an error. The
rows should be deleted from the table and then added again.

Manage identity values with identity ranges to ensure that different Subscribers have different identity values. For more
information, see Replication Data Considerations.

Considerations for Transforming Published Data

You can transform data during the replication process by leveraging the capabilities of Data Transformation Services (DTS).
Examples of transforming published data are creating custom horizontal and vertical data partitions and creating data
transformations such as data type mappings, column manipulations, and string manipulations.

Consider the following when planning to transform replicated data:

Snapshot data for a transformable subscription is limited to character mode only; native format (which is usually faster to
apply) cannot be used with DTS.

After a publication is enabled for transformable subscriptions, the option cannot be disabled; the existing publication must
be deleted and a new one created, but if the option is enabled, subscriptions do not need to use it.

You cannot use immediate updating or queued updating options with transformable subscriptions (transformations are
mapped in one direction, from Publisher to Subscriber).

Although using the Transform Published Data Wizard creates a DTS package, this type of DTS package is not available for
execution outside of replication (from DTS Designer or at the command prompt). However, you can use a package created
with DTS tools during replication of snapshot and transactional publications that allow transforming of published data.

Introducing DTS transformations into replication adds overhead and reduces the distribution performance. The amount
depends on the complexity of the transformation. It does not affect Log Reader Agent performance.

See Also

Filtering Published Data

Immediate Updating

Queued Updating

Transforming Published Data

Replication (SQL Server 2000)

Merge Replication or Updatable Subscriptions
When replicated data needs to be updated at the Subscribers, you can use snapshot replication or transactional replication with
updatable subscription options or you can use merge replication. The method you choose depends on your replication topology
and the needs of your application and its users.

Use merge replication when . . . Use snapshot replication or transactional
replication with immediate updating or

queued updating when . . .
Replicated data is read and
updated at the Subscriber.

Subscriber and Publisher are
only occasionally connected.

Conflicts caused by multiple
updates to the same data are
handled and resolved.

You need updates to be
propagated on a row-by-row
basis, and conflicts to be
evaluated and resolved at the
row level.

Replicated data is mostly read-only at the
Subscriber.

Subscriber, Distributor, and Publisher are
connected most of the time, but this is not
necessary for queued updating
subscriptions.

Conflicts caused by multiple updates to the
same data are infrequent.

You need updates to be propagated on a
transaction basis, and conflicts to be
evaluated and resolved on a transaction
basis (the entire transaction is either
committed or rolled back).

See Also

Merge Replication

Planning for Merge Replication

Planning for Replication Options

Updatable Subscriptions

Replication (SQL Server 2000)

Designing a Replication Topology
A replication topology defines the relationship between servers and the copies of data, along with the logic that determines how
synchronization occurs between copies. Designing a replication topology helps you determine how long it takes for changes to
get from a Publisher to a Subscriber, whether the failure of one update prevents other Subscribers from being updated, and the
order in which updated information arrives at a Subscriber, which can affect analysis and reporting.

To determine your replication topology:

Select the physical replication model (central Publisher, central Publisher with remote Distributor, publishing Subscriber, or
central Subscriber).

Determine where snapshot files will be located and how Publishers and Subscribers will synchronize initially.

Determine whether the Distributor will be local or remote, and determine whether the distribution database will be shared.

Determine if multiple Publishers will share a Distributor, each use its own distribution database on the Publisher, or share a
distribution database.

Determine the type of replication and options to use.

Determine whether replication is initiated at the Publisher (using push subscriptions) or at the Subscriber (using pull
subscriptions).

The replication topology is not limited to the physical connections between servers because it also includes data paths between
copies of the data. A Subscriber can receive multiple copies of data from different Publishers, and all of those data copies can exist
on one server, incorporating a complicated topology.

See Also

Synchronizing Data

Transferring Snapshots

Types of Replication

Replication (SQL Server 2000)

Physical Replication Models
The physical replication model is the map for how data will be distributed across your enterprise and for how you will configure
your servers during replication implementation. Based on all the factors and considerations outlined in Distributed Data Factors,
Evaluating the Replication Environment, and Planning for Each Type of Replication, you should be able to determine the best
solution for your replication model.

The following are examples of replication models:

Central Publisher.

Central Publisher with remote Distributor.

Republisher.

Central Subscriber.

Replication (SQL Server 2000)

Central Publisher
Central Publisher

The simplest Microsoft® SQL Server™ 2000 replication topology model places one Publisher and one Distributor on the same
server and one Subscriber on a separate server.

The scenario becomes more complex as you add Subscribers to the Publisher and Distributor. The Publisher owns the data being
published and becomes a central Publisher for all the Subscribers. For example, this scenario might be used to distribute master
data, lists, or reports from a central Publisher to any number of Subscribers.

The roles of Publisher and Subscriber are not exclusive; servers can perform both simultaneously. For example, suppose Server A
publishes Publication 1, and Server B publishes Publication 2. In this case, Server A could act both as a Publisher of Publication 1
and a Subscriber to Publication 2. This is an example of filtering data and publishing partitions.

Replication (SQL Server 2000)

Central Publisher with Remote Distributor
Central Publisher with Remote Distributor

As the level of replication activity increases or as server or network resources become constrained, there may be performance
reasons to place the Publisher and Distributor on separate servers. This may be appropriate when a busy online transaction
processing (OLTP) server is configured as a Publisher. Using a separate Distributor reduces local processing and disk usage on the
Publisher, although it increases overall network traffic.

This scenario is similar to the central Publisher scenario, except that separate computers perform the publishing and distribution
tasks. This is useful when the Publisher (for example, a heavily used OLTP server) should be freed from the distribution tasks
because of performance and storage space considerations. The Publisher should be connected to the Distributor by a reliable,
high-speed communications link.

See Also

Central Publisher

Replication (SQL Server 2000)

Republisher
Republisher

The republisher model uses two servers to publish the same data. The Publisher sends data to a Subscriber, which then
republishes the data to any number of Subscribers. This is useful when a Publisher must send data to Subscribers over a slow or
expensive communications link. If there are a number of Subscribers on the far side of that link, using a republisher shifts the bulk
of the distribution load to that side of the link.

In this diagram, both the Publisher and the republisher (publishing Subscriber) are acting as their own local Distributors. If each
were set up to use a remote Distributor, each Distributor would need to be on the same side of the slow or expensive
communications link as its Publisher. Publishers must be connected to remote Distributors by reliable, high-speed
communications links.

Any server can act as both Publisher and Subscriber. For example, consider the publication of a table that exists in New York and
needs to be distributed to four different cities in Europe: London, Oslo, Paris, and Lisbon. The server in London is chosen to
subscribe to the published table originating in New York, because the London site meets these conditions:

The network link back to New York is relatively reliable.

The New York-to-London communication costs are acceptable.

There are good network communications lines from London to all other European Subscriber sites.

Replication (SQL Server 2000)

Central Subscriber
Central Subscriber

In a central Subscriber model, a number of Publishers replicate information to a common destination table at a Subscriber. The
destination table is partitioned horizontally and contains a location-specific column as part of the primary key. Each Publisher
replicates rows containing location-specific data.

For example, this replication configuration may be useful for rolling up inventory data from a number of servers at local
warehouses into a central Subscriber at corporate headquarters. It could also be used to roll up information from autonomous
business divisions within a company, or to consolidate order processing from dispersed locations.

Replication (SQL Server 2000)

Nonpartitioned, Bidirectional, Transactional Replication
Merge replication and transactional replication with immediate or queued updating are key technologies supporting multisite
update replication. If you require transactional consistency, and immediate or queued updating is not appropriate, you may want
to extend transactional replication programmatically to support nonpartitioned, bidirectional topologies. Microsoft® SQL Server™
replication provides features that allow nonpartitioned, bidirectional replication, but substantial customization and programming
is usually required.

To develop a transactional, nonpartitioned, bidirectional solution, use the following replication features:

Reciprocal publications

Custom stored procedures

Cycle detection

For more information about how these features can be combined programmatically to build a nonpartitioned, bidirectional
solution, see Implementing Nonpartitioned, Bidirectional, Transactional Replication.

Replication (SQL Server 2000)

Types of Replication
Microsoft® SQL Server™ 2000 provides the following types of replication that you can use in your distributed applications:

Snapshot replication

Transactional replication

Merge replication

Each type provides different capabilities depending on your application, and different levels of ACID properties (atomicity,
consistency, isolation, durability) of transactions and site autonomy. For example, merge replication allows users to work and
update data autonomously, although ACID properties are not assured. Instead, when servers are reconnected, all sites in the
replication topology converge to the same data values. Transactional replication maintains transactional consistency, but
Subscriber sites are not as autonomous as they are in merge replication because Publishers and Subscribers generally should be
connected continuously for updates to be propagated to Subscribers.

It is possible for the same application to use multiple replication types and options. Some of the data in the application may not
require any updates at Subscribers, some sets of data may require updates infrequently, with updates made at only one or a few
servers, while other sets of data may need to be updated daily at multiple servers.

Which type of replication you choose for your application depends on your requirements based on distributed data factors,
whether or not data will need to be updated at the Subscriber, your replication environment, and the needs and requirements of
the data that will be replicated. For more information, see Planning for Replication.

Each type of replication begins with generating and applying the snapshot at the Subscriber, so it is important to understand
snapshot replication in addition to any other type of replication and options you choose.

Replication (SQL Server 2000)

Snapshot Replication
Snapshot replication distributes data exactly as it appears at a specific moment in time and does not monitor for updates to the
data. Snapshot replication is best used as a method for replicating data that changes infrequently or where the most up-to-date
values (low latency) are not a requirement. When synchronization occurs, the entire snapshot is generated and sent to
Subscribers.

Snapshot replication would be preferable over transactional replication when data changes are substantial but infrequent. For
example, if a sales organization maintains a product price list and the prices are all updated at the same time once or twice each
year, replicating the entire snapshot of data after it has changed is recommended. Creating new snapshots nightly is also an
option if you are publishing relatively small tables that are updated only at the Publisher.

Snapshot replication is often used when needing to browse data such as price lists, online catalogs, or data for decision support,
where the most current data is not essential and the data is used as read-only. These Subscribers can be disconnected if they are
not updating the data.

Snapshot replication is helpful when:

Data is mostly static and does not change often. When it does change, it makes more sense to publish an entirely new copy
to Subscribers.

It is acceptable to have copies of data that are out of date for a period of time.

Replicating small volumes of data in which an entire refresh of the data is reasonable.

Snapshot replication is mostly appropriate when you need to distribute a read-only copy of data, but it also provides the option to
update data at the Subscriber. When Subscribers only read data, transactional consistency is maintained between the Publisher
and Subscribers. When Subscribers to a snapshot publication must update data, transactional consistency can be maintained
between the Publisher and Subscriber because the data is propagated using two-phase commit protocol (2PC),a feature of the
immediate updating option. Snapshot replication requires less constant processor overhead than transactional replication
because it does not require continuous monitoring of data changes on source servers. If the data set being replicated is very large,
it can require substantial network resources to transmit. In deciding if snapshot replication is appropriate, you must consider the
size of the entire data set and the frequency of changes to the data.

Replication (SQL Server 2000)

How Snapshot Replication Works
Snapshot replication is implemented by the Snapshot Agent and the Distribution Agent. The Snapshot Agent prepares snapshot
files containing schema and data of published tables and database objects, stores the files in the snapshot folder, and records
synchronization jobs in the distribution database on the Distributor. By default, the snapshot folder is located on the Distributor,
but you can specify an alternate location instead of or in addition to the default. For more information, see Alternate Snapshot
Locations.

The Distribution Agent moves the snapshot held in the distribution database tables to the destination tables at the Subscribers.
The distribution database is used only by replication and does not contain any user tables.

Snapshot Agent

Each time the Snapshot Agent runs, it checks to see if any new subscriptions have been added. If there are no new subscriptions,
no new scripts or data files are created. If the publication is created with the option to create the first snapshot immediately
enabled, new schema and data files are created each time the Snapshot Agent runs. All schema and data files are stored in the
snapshot folder and then either the Distribution Agent or Merge Agent transfers them to Subscriber or you can transfer them
manually. The Snapshot Agent performs the following steps:

1. Establishes a connection from the Distributor to the Publisher and sets a share-lock on all tables included in the publication.
The share-lock ensures a consistent snapshot of data. Because the locks prevent all other users from updating the tables, the
Snapshot Agent should be scheduled to execute during off-peak database activity.

2. Establishes a connection from the Publisher to the Distributor and writes a copy of the table schema for each article to an
.sch file. If you request that indexes and declarative referential integrity be included, the agent scripts out the selected
indexes to an .idx file. Other database objects, such as stored procedures, views, user-defined functions, and others, can also
be published as part of replication.

3. Copies the data in the published table on the Publisher and writes the data to the snapshot folder. If all Subscribers are
instances of Microsoft® SQL Server™ 2000, the snapshot is stored as a native bulk copy program file. If one or more
Subscribers is a heterogeneous data source, the snapshot is stored as a character mode file. The files are the
synchronization set that represents the table at one point in time. There is a synchronization set for each article within a
publication.

4. Appends rows to the MSrepl_commands and MSrepl_transactions tables in the distribution database. The entries in the
MSrepl_commands tables are commands indicating the location of the synchronization set (.sch and .bcp files) and
references to any specified pre-creation scripts. The entries in the MSrepl_transactions table are commands referencing
the Subscriber synchronization task.

5. Releases the share-locks on each published table and finishes writing the log history tables.

After the snapshot files are generated, you can view them in the Snapshot Folder using the Snapshot Explorer. In SQL Server
Enterprise Manager, expand the Replication and Publications folders, right-click a publication, and then click Explore the Latest
Snapshot Folder. For more information, see Exploring Snapshots.

Distribution Agent

Each time the Distribution Agent runs for a snapshot publication, it moves the schema and data to Subscribers. The Distribution
Agent performs the following steps:

1. Establishes a connection from the server where the agent is located to the Distributor. For push subscriptions, the
Distribution Agent is usually run on the Distributor, and for pull subscriptions, the Distribution Agent is usually run on the
Subscriber.

2. Examines the MSrepl_commands and MSrepl_transactions tables in the distribution database on the Distributor. The
agent reads the location of the synchronization set from the first table and the Subscriber synchronization commands from
both tables.

3. Applies the schema and commands to the subscription database. If the Subscriber is not an instance of Microsoft SQL
Server 2000, the agent converts the data types as necessary. All articles of a publication are synchronized, preserving
transactional and referential integrity between the underlying tables (presuming the subscription database, if not SQL
Server, has the transactional capabilities to do so).

When handling a large number of Subscribers, running the Distribution Agent at the Subscriber, either by using pull subscriptions
or by using remote agent activation, can save processing resources on the Distributor. With remote agent activation, you can
choose to run the Distribution Agent at the Subscriber for push subscriptions or at the Distributor for pull subscriptions. For more
information, see Remote Agent Activation.

Snapshots can be applied either when the subscription is created or according to a schedule set at the time the publication is
created.

Note For agents running at the Distributor, scheduled synchronization is based on the date and time at the Distributor (not the
date and time at the Subscribers). Otherwise, the schedule is based on the date and time at the Subscriber.

Because automatic synchronization of databases or individual tables requires increased system overhead, a benefit of scheduling
automatic synchronization for less frequent intervals is that it allows the initial snapshot to be scheduled for a period of low
activity on the Publisher.

The Snapshot Agent is usually run by SQL Server Agent and can be administered directly by using SQL Server Enterprise
Manager. The Snapshot Agent and Distribution Agent can also be embedded into applications by using Microsoft ActiveX®
controls. The Snapshot Agent executes on the Distributor. The Distribution Agent usually executes on the Distributor for push
subscriptions, or on Subscribers for pull subscriptions, but remote agent activation can be used to offload Distribution Agent
processing to another server.

Cleaning Up Snapshot Replication

When the distribution database is created, SQL Server 2000 adds the following tasks at the Distributor:

Agent checkup

Transaction cleanup

History cleanup

These tasks help replication to function effectively in a long-running environment. After the snapshot is applied at all Subscribers,
replication cleanup deletes the associated .bcp file for the initial snapshots automatically.

If the publication is enabled for anonymous subscriptions or with the option to create the first snapshot immediately, at least one
copy of the snapshot files are kept in the snapshot location. This ensures that if a Subscriber with an anonymous subscription to a
snapshot publication synchronizes with the Publisher, the most recent snapshot will be available.

See Also

Planning for Snapshot Replication

Replication Options

Replication (SQL Server 2000)

Transactional Replication
With transactional replication, an initial snapshot of data is applied at Subscribers, and then when data modifications are made at
the Publisher, the individual transactions are captured and propagated to Subscribers.

Transactional replication is helpful when:

You want incremental changes to be propagated to Subscribers as they occur.

You need transactions to adhere to ACID properties.

Subscribers are reliably and/or frequently connected to the Publisher.

Transactional replication uses the transaction log to capture incremental changes that were made to data in a published table.
Microsoft® SQL Server™ 2000 monitors INSERT, UPDATE, and DELETE statements, or other modifications made to the data, and
stores those changes in the distribution database, which acts as a reliable queue. Changes are then propagated to Subscribers and
applied in the same order as they occurred.

With transactional replication, incremental changes made at the Publisher flow according to the Distribution Agent schedule. This
schedule can be set to continuously for minimal latency, or set at scheduled intervals to Subscribers. Because changes to the data
must be made at the Publisher (when transactional replication is used without immediate updating or queued updating options),
update conflicts are avoided. This guarantees ACID properties of transactions will be maintained. Ultimately, all Subscribers will
achieve the same values as the Publisher. If immediate updating or queued updating options are used with transactional
replication, updates can be made at the Subscriber, and with queued updating, conflicts might occur.

If Subscribers need to receive data changes in near real-time, they need a network connection to the Publisher. Transactional
replication can provide very low latency to Subscribers. Subscribers receiving data using a push subscription usually receive
changes from the Publisher within one minute or sooner, provided that the network link and adequate processing resources are
available (latency of a few seconds can often be achieved).

However, Subscribers can also pull changes down as needed. A traveling sales representative can be a Subscriber and request
incremental changes to a price list, which is only modified at the corporate office, once each evening. The use of transactional
replication for disconnected users can be very effective for read-only data.

Replication (SQL Server 2000)

How Transactional Replication Works
Transactional replication is implemented by the Snapshot Agent, Log Reader Agent, and Distribution Agent. The Snapshot Agent
prepares snapshot files containing schema and data of published tables and database objects, stores the files in the snapshot
folder, and records synchronization jobs in the distribution database on the Distributor.

The Log Reader Agent monitors the transaction log of each database configured for transactional replication and copies the
transactions marked for replication from the transaction log into the distribution database. The Distribution Agent moves the
initial snapshot jobs and the transactions held in the distribution database tables to Subscribers.

Initial Snapshot

Before a new transactional replication Subscriber can receive incremental changes from a Publisher, the Subscriber must contain
tables with the same schema and data as the tables at the Publisher. Copying the complete current publication from the Publisher
to the Subscriber is called applying the initial snapshot. Microsoft® SQL Server™ 2000 will create and apply the snapshot for you,
or you can choose to apply the snapshot manually. For more information, see Applying the Initial Snapshot.

When snapshots are distributed and applied to Subscribers, only those Subscribers waiting for initial snapshots are affected.
Other Subscribers to that publication (those that are already receiving inserts, updates, deletes, or other modifications to the
published data) are unaffected.

Concurrent Snapshot Processing

Typically with snapshot generation, SQL Server will place shared locks on all tables published as part of replication for the
duration of snapshot generation. This can prevent updates from being made on the publishing tables. Concurrent snapshot
processing, available only with transactional replication, does not hold the share locks in place during the entire snapshot
generation, therefore, it allows users to continue working uninterrupted while SQL Server 2000 creates initial snapshot files.

When you create a new publication using transactional replication and indicate that all Subscribers will be instances of SQL Server
7.0 or SQL Server 2000, concurrent snapshot processing is available.

After replication begins, the Snapshot Agent places shared locks on the publication tables. The locks prevent changes until a
record indicating the start of the snapshot is entered in the log file. After the transaction is received, the shared locks are released
and data modifications at the database can continue. The duration for holding the locks is very brief (a few seconds) even if a
large amount of data is being copied.

At this point, the Snapshot Agent starts to build the snapshot files. When the snapshot is complete, a second record indicating the
end of the snapshot process is written to the log. Any transactions that affect the tables while the snapshot is being generated are
captured between these beginning and ending tokens and forwarded to the distribution database by the Log Reader Agent.

When the snapshot is applied at the Subscriber, the Distribution Agent first applies the snapshot files (schema and .bcp files). It
then reconciles each captured transaction to see if it has already been delivered to the Subscriber. During this reconciliation
process, the tables on the Subscriber are locked. Depending on the number of transactions captured at the Publisher while the

snapshot was created, you should expect an increase in the amount of time required to apply the snapshot at the Subscriber.
Conceptually, this is similar to the process of recovery that SQL Server uses when it is restarted.

UPDATETEXT statements cannot be performed on data marked for replication while it is being extracted during concurrent
snapshot processing. If you initiate an UPDATETEXT statement, you will get an error indicating that the operation is not allowed
because of concurrent snapshot processing. After the snapshot is complete, UPDATETEXT statements can be performed again.

As mentioned earlier, use caution when concurrent snapshot processing occurs on systems where business logic is indicated
through triggers or constraints on the subscription database. Concurrent snapshot processing uses bulk inserts of tables followed
by a series of special INSERT and DELETE statements that bring the table to a consistent state. These operations are performed as
one transaction so that database users do not see the data in an inconsistent state; however, constraints at the Subscriber will be
executed within the transaction and may evaluate changes that are not based on a consistent set of data. To prevent this, it is
generally recommended that you specify the NOT FOR REPLICATION option on all constraints and columns with the IDENTITY
property on the Subscriber database. Business logic implemented using custom stored procedures will not be affected because
custom stored procedures are not used during concurrent snapshot processing until the Subscriber tables are in a consistent
state.

Foreign key constraints, check constraints, and triggers at the Subscriber do not require the NOT FOR REPLICATION option
because they will be disabled during the concurrent snapshot generation and will be enabled after the snapshot is generated.

Important The Log Reader Agent must run after the snapshot is generated with concurrent processing. If the Log Reader Agent
does not run, the Distribution Agent will continue to return an error stating that the snapshot is not available and will not apply it
to Subscribers. The Log Reader Agent needs to propagate all changes that occurred during snapshot generation to the
distribution database before the Distribution Agent can apply the snapshot to Subscribers. Usually the Log Reader Agent runs in
continuous mode, so it will run automatically soon after the snapshot is generated, but this is not a concern. If you choose not to
run the Log Reader Agent in continuous mode, you must run it manually.

Although concurrent snapshot processing allows updates to continue on publishing tables, the performance will be lowered due
to the overhead of the snapshot itself. It is recommended that you generate the snapshot during periods of lowest general activity
whenever possible (similar to when you would choose to do a database backup).

Important For SQL Server 2000 prior to Service Pack 1: If the publishing table has a primary key or unique constraint not
contained within the clustered index, replication could fail if data modifications occur on the clustering key during concurrent
snapshot processing. It is recommended that you enable concurrent snapshot processing only when unique and primary key
constraints are contained within the clustered index or you ensure that data modifications are not made to the columns of the
clustering index while the snapshot is generated. Beginning with SQL Server 2000 Service Pack 1 there are no longer any
restrictions on using concurrent snapshot processing.

Concurrent snapshot processing is available only with transactional replication and for Subscribers running instances of SQL
Server 7.0 or later on the Microsoft Windows® 98, Microsoft Windows NT® 4.0 and Microsoft Windows 2000 operating systems.

If you are publishing to Subscribers running SQL Server 7.0, the Distributor must be running SQL Server 2000, and you must use
push subscriptions to use concurrent snapshot processing. The Distribution Agent runs at the Distributor, and is able to execute
the concurrent snapshot processing. If you used a pull subscription, the Distribution Agent would run at the Subscriber on SQL
Server 7.0 where concurrent snapshot processing is not available. If you use pull subscriptions with Subscribers running SQL
Server 7.0, concurrent snapshot processing must be disabled.

Because of these restrictions, the Create Publication Wizard does not make concurrent snapshot processing the default when you
create a transactional publication; however, if your application meets these criteria, it is recommended that you enable this option.
To enable concurrent snapshot processing, change the snapshot generation mode. Open Publication Properties, click the
Snapshot tab, and then select the Concurrent access during snapshot generation checkbox.

Snapshot Agent

The procedures by which the Snapshot Agent implements the initial snapshot in transactional replication are the same procedures
used in snapshot replication (except as outlined earlier with regard to concurrent snapshot processing). After the snapshot files
have been generated, you can view them in the Snapshot Folder using the Snapshot Explorer. In SQL Server Enterprise Manager,
expand the Replication and Publications folders, right click a publication, and then click Explore the Latest Snapshot Folder. For
more information, see Exploring Snapshots.

Modifying Data and the Log Reader Agent

The Log Reader Agent runs either continuously or according to a schedule you establish at the time the publication is created.
When executing, the Log Reader Agent first reads the publication transaction log (the same database log used for transaction
tracking and recovery during regular SQL Server 2000 operations) and identifies any INSERT, UPDATE, and DELETE statements, or
other modifications made to the data transactions that have been marked for replication. Next, the agent batch copies those

transactions to the distribution database at the Distributor. The Log Reader Agent uses the internal stored procedure
sp_replcmds to get the next set of commands marked for replication from the log. The distribution database then becomes the
store-and-forward queue from which changes are sent to Subscribers. Only committed transactions are sent to the distribution
database.

There is a one-to-one correspondence between transactions on the Publisher and replication transactions in the distribution
database. One transaction stored in MSrepl_transactions can consist of one or more commands and each command can be
broken up along a 500-Unicode-character boundary in the MSrepl_commands table. After the entire batch of transactions has
been written successfully to the distribution database, it is committed. Following the commit of each batch of commands to the
Distributor, the Log Reader Agent calls sp_repldone to mark where replication was last completed. Finally, the agent marks the
rows in the transaction log that are ready to be truncated. Rows still waiting to be replicated are not truncated. The transaction log
on the Publisher can be dumped without interfering with replication, because only transactions not marked for replication are
purged.

Data modifications made at the Subscriber will always be propagated as a series of single row statements, provided they do not
modify a uniquely constrained column. If an UPDATE does modify a uniquely constrained column, the UPDATE will be propagated
as a series of DELETE statements followed by a series of INSERT statements. A uniquely constrained column is any column
participating in a unique index or clustered index, even if the clustered index is not declared as unique. UPDATES made to indexed
views or base tables that indexed views are based on will be propagated as DELETE/INSERT pairs.

The Log Reader Agent usually runs under SQL Server Agent at the Distributor and can be administered directly by accessing it in
SQL Server Enterprise Manager under Replication Monitor and the Agents folder.

Distribution Agent

Transaction commands are stored in the distribution database until the Distribution Agent propagates them to all Subscribers or a
Distribution Agent at the Subscriber pulls the changes. The distribution database is used only by replication and does not contain
any user tables. You should never create other objects in the distribution database. Subscribers will receive transactions in the
same order in which they were applied at the Publisher.

The Distribution Agent is a component of SQL Server Agent and can be administered directly by using SQL Server Enterprise
Manager. The Snapshot Agent and Distribution Agent can also be embedded into applications by using Microsoft ActiveX®
controls. The Snapshot Agent executes on the Distributor. The Distribution Agent usually executes on the Distributor for push
subscriptions, or on Subscribers for pull subscriptions, but remote agent activation can be used to offload agent processing to
another server. For more information, see Remote Agent Activation.

SQL Server can validate the data being updated at the Subscriber as the replication process is occurring so that you can ensure
that data is the same at the Publisher and at the Subscribers. For more information, see Validating Replicated Data.

Skipping Errors in Transactional Replication

The -skiperrors agent command line parameter for transactional replication allows you to specify errors that can be skipped
during the distribution process. Typically, when the Log Reader Agent and Distribution Agent are running in continuous mode
and one of them encounters an error, the agent, and the distribution process, stops. By specifying expected errors or errors that
you do not want to interfere with replication, with the -skiperrors parameter, the Distribution Agent will log the error information
and then continue running. For more information, see Handling Agent Errors.

Cleaning Up Transactional Replication

When the distribution database is created, SQL Server adds the following tasks to SQL Server Agent at the Distributor to purge
the data no longer required:

Agent checkup

Agent history cleanup

Transaction cleanup

Distribution cleanup

History cleanup

Expired subscription cleanup

After all Subscribers have received transactions, the Distribution Cleanup Agent removes delivered transactions in the distribution
database. Delivered transactions are kept in the distribution database for a defined period known as the retention period. Setting
a retention period while scheduling backups can ensure that information required to recover a destination database automatically
is available within the distribution database.

For example, if a Subscriber has scheduled a transaction log dump of a destination database every 24 hours, you could set the
retention period to 48 hours. Even if the Subscriber experiences a failure immediately before a scheduled backup, all transactions
necessary to restore the replicated tables automatically will still be available to the distribution process of the Distributor.

See Also

Planning for Transactional Replication

Replication Options

Replication (SQL Server 2000)

Merge Replication
Merge replication is the process of distributing data from Publisher to Subscribers, allowing the Publisher and Subscribers to
make updates while connected or disconnected, and then merging the updates between sites when they are connected.

Merge replication allows various sites to work autonomously and at a later time merge updates into a single, uniform result. The
initial snapshot is applied to Subscribers, and then Microsoft® SQL Server™ 2000 tracks changes to published data at the
Publisher and at the Subscribers. The data is synchronized between servers continuously, at a scheduled time, or on demand.
Because updates are made at more than one server, the same data may have been updated by the Publisher or by more than one
Subscriber. Therefore, conflicts can occur when updates are merged.

Merge replication includes default and custom choices for conflict resolution that you can define as you configure a merge
publication. When a conflict occurs, a resolver is invoked by the Merge Agent and determines which data will be accepted and
propagated to other sites.

Merge Replication is helpful when:

Multiple Subscribers need to update data at various times and propagate those changes to the Publisher and to other
Subscribers.

Subscribers need to receive data, make changes offline, and later synchronize changes with the Publisher and other
Subscribers.

You do not expect many conflicts when data is updated at multiple sites (because the data is filtered into partitions and then
published to different Subscribers or because of the uses of your application). However, if conflicts do occur, violations of
ACID properties are acceptable.

Both queued updating and merge replication allow updates at the Publisher and at Subscribers while offline; however, there are
significant differences between the two methods. For more information, see Merge Replication or Updatable Subscriptions.

Replication (SQL Server 2000)

How Merge Replication Works
Merge replication is implemented by the Snapshot Agent and Merge Agent. The Snapshot Agent prepares snapshot files
containing schema and data of published tables, stores the files in the snapshot folder, and inserts synchronization jobs in the
publication database. The Snapshot Agent also creates replication-specific stored procedures, triggers, and system tables.

The Merge Agent applies the initial snapshot jobs held in the publication database tables to the Subscriber. It also merges
incremental data changes that occurred at the Publisher or Subscribers after the initial snapshot was created, and reconciles
conflicts according to rules you configure or a custom resolver you create.

The role of the Distributor is very limited in merge replication, so implementing the Distributor locally (on the same server as the
Publisher) is very common. The Distribution Agent is not used at all during merge replication, and the distribution database on
the Distributor stores history and miscellaneous information about merge replication.

UNIQUEIDENTIFIER Column

Microsoft® SQL Server™ 2000 identifies a unique column for each row in the table being replicated. This allows the row to be
identified uniquely across multiple copies of the table. If the table already contains a column with the ROWGUIDCOL property that
has a unique index or primary key constraint, SQL Server will use that column automatically as the row identifier for the
publishing table.

Otherwise, SQL Server adds a uniqueidentifier column, titled rowguid, which has the ROWGUIDCOL property and an index, to
the publishing table. Adding the rowguid column increases the size of the publishing table. The rowguid column and the index
are added to the publishing table the first time the Snapshot Agent executes for the publication.

Triggers

SQL Server then installs triggers that track changes to the data in each row or each column. The triggers capture changes made to
the publishing table and record the changes in merge system tables. Tracking triggers on the publishing tables are created while
the Snapshot Agent for the publication runs for the first time. Triggers are created at the Subscriber when the snapshot is applied
at the Subscriber.

Different triggers are generated for articles that track changes at the row level or the column level. Because SQL Server supports
multiple triggers of the same type on the publishing table, merge replication triggers do not interfere with application-defined
triggers.

Stored Procedures

The Snapshot Agent also creates custom stored procedures that update the subscription database. There is one custom stored
procedure for INSERT statements, one for UPDATE statements, and one for DELETE statements. When data is updated and the
new records need to be entered in the subscription database, the custom stored procedures are used rather than individual
INSERT, UPDATE, and DELETE statements. For more information, see Using Custom Stored Procedures in Articles.

System Tables

SQL Server then adds several system tables to the database to support data tracking, efficient synchronization, and conflict
detection, resolution and reporting. For every changed or created row, the table MSmerge_contents contains the generation in
which the most recent modification occurred. It also contains the version of the row as a whole and every attribute of the row.
MSmerge_tombstone stores DELETEs to the data within a publication. These tables use the rowguid column to join to the
publishing table.

The generation column in these tables acts as a logical clock indicating when a row was last updated at a given site. Actual
datetime values are not used for marking when changes occur, or deciding conflicts, and there is no dependence on
synchronized clocks between sites. This makes the conflict detection and resolution algorithms more resilient to time zone
differences and differences between physical clocks on multiple servers. At a given site, the generation numbers correspond to
the order in which changes were performed by the Merge Agent or by a user at that site.

MSmerge_genhistory and MSmerge_replinfo allow SQL Server to determine the generations that need to be sent with each
merge.

There are several tracking columns added to a merge publication table. If your publishing table has column names reserved for
merge processing, you will not be able to generate an initial snapshot because of duplicate column names. Reserved column
names are:

reason_code

source_object

reason_text

Pubid

conflict_type

origin_datasource

tablenick

create_time

Initial Snapshot and the Snapshot Agent

Before a new Subscriber can receive incremental changes from a Publisher, the Subscriber must contain tables with the same
schema and data as the tables at the Publisher. Copying the complete current publication from the Publisher to the Subscriber is
called applying the initial snapshot. SQL Server will create and apply the snapshot for you, or you can choose to apply the
snapshot manually. For more information, see Applying the Initial Snapshot.

Even when creating a subscription for which the snapshot is not applied automatically (sometimes referred to as a nosync
subscription), portions of the snapshot are still applied. The necessary tracking triggers and tables are created at the Subscriber,
which means that you still need to create and apply a snapshot even when subscriptions specify that the snapshot will not be
applied automatically.

Replication of changed data occurs only after merge replication ensures that the Subscriber has the most recent snapshot of the
table schema and data that has been generated. When snapshots are distributed and applied to Subscribers, only those
Subscribers needing initial snapshots are affected. Subscribers that are already receiving INSERTs, UPDATEs, DELETEs, or other
modifications to the published data are unaffected unless the subscription is marked for reinitialization or the publication is
marked for a reintialization, in which case all subscriptions corresponding to a given publication are reintialized during the next
merge process.

A subscription table can subscribe only to one merge publication at a time. For example, suppose you publish the Customers
table in two publications, and then you subscribe to both publications from one Subscriber, indicating the same subscription
database will receive data from both publications. One of the Merge Agents will fail during the initial synchronization.

The initial snapshot can be an attached subscription database in snapshot replication, transactional replication, and merge
replication. If you use an attachable subscription database, a subscription database and its subscriptions will be copied and you
can apply them at another Subscriber. For more information, see Attachable Subscription Databases.

The Snapshot Agent implements the initial snapshot in merge replication using similar steps to the Snapshot Agent in snapshot
replication. For more information, see Snapshot Replication .

After the snapshot files have been generated, you can view them in the Snapshot Folder using the Snapshot Explorer. In SQL
Server Enterprise Manager, expand the Replication and Publications folders, right-click a publication, and then click Explore the
Latest Snapshot Folder. For more information, see Exploring Snapshots.

Dynamic Snapshots

Dynamic snapshots provide a performance advantage when applying the snapshot of a merge publication with dynamic filters. By
using SQL Server 2000 bulk copy programming files to apply data to a specific Subscriber instead of a series of INSERT
statements, you will improve the performance of applying the initial snapshot for dynamically filtered merge publications.

For more information, see Dynamic Snapshots.

Merge Agent

After the initial snapshot has been applied to a Subscriber, SQL Server triggers will begin tracking INSERT, UPDATE and DELETE
statements made at the Publisher and at Subscribers.

Every table that participates in merge replication is assigned a generation slot in the MSmerge_articles table. When a row is
updated in a merge publication at the Publisher or at Subscribers, even if they are not connected, a trigger updates the
generation column in the MSmerge_contents system table for that row to the appropriate generations slot for the given base
table. When the Publisher and Subscriber are reconnected and the Merge Agent runs, the Merge Agent collects all the undelivered
row changes (with new generation values) into one or more groups and assigns generation values that are higher than all
previous generations. This allows the Merge Agent to batch changes to different tables in separate generations and process these
batches to achieve efficiency over slow networks.

The Merge Agent at each site keeps track of the highest generation it has sent to each of the other sites, and the highest
generation that each of the other sites has sent to it. These provide starting points, so that each table can be examined without
looking at data already shared with the other site. The generations stored in a given row can differ between sites because the
numbers at a site reflect the order in which changes were processed at that site.

You can limit the number of merge processes running simultaneously by setting the @max_concurrent_merge parameter of
sp_addmergepublication or sp_changemergepublication. If the maximum number of merge processes is already running,
any new merge processes will wait in a queue. You can set –StartQueueTimeout on the Merge Agent command line to specify
how long the agent should wait for the other merge processes to complete. If the –StartQueueTimeout period is exceeded, and
the new merge process is still waiting, it will stop and exit.

Synchronization

Synchronization occurs when Publishers and Subscribers in a merge replication topology reconnect and changes are propagated
between sites, and if necessary, conflicts detected and resolved. At the time of synchronization, the Merge Agent sends all
changed data to the Subscriber. Data flows from the originator of the change to the site that needs to be updated or synchronized.

The direction of the exchange controls whether the Merge Agent uploads changes from the Subscriber (-ExchangeType='Upload'),
downloads changes to the Publisher (-ExchangeType='Download') or executes an upload followed by a download (-
ExchangeType='Bidirectional'). If the number of changes applied must be controlled, the Merge Agent command line parameters
–MaxUploadChanges and –MaxDownloadChanges can be configured. In this case, the data at the Publisher and Subscribers
converges only when all changes are propagated.

At the destination database, updates propagated from other sites are merged with existing values according to conflict detection
and resolution rules. A Merge Agent evaluates the arriving and current data values, and any conflicts between new and old values
are resolved automatically based on the default resolver, a resolver you specified when creating the publication or a custom
resolver. Merge replication in SQL Server 2000 offers many out-of-the-box custom resolvers that will help you implement the
business logic.

Changed data values are replicated to other sites and converged with changes made at those sites only when synchronization
occurs. Synchronizations can occur minutes, days, or even weeks apart and are defined in the Merge Agent schedule. Data is
converged and all sites ultimately end up with the same data values, but for this to happen, you would have to stop all updates
and merge between sites a couple of times.

The retention period for subscriptions specified for each publication controls how often the Publisher and Subscribers should
synchronize. If subscriptions do not synchronize with the Publisher within the retention period, they are marked as 'expired' and
will need to be reinitialized. This is to prevent old Subscriber data from synchronizing and uploading these changes to the
Publisher. The default retention period for a publication is 14 days. Because the Merge Agent cleans up the publication and

subscription databases based on this value, care must be taken to configure this value appropriate to the application.

Note The merge process requires an entry for the Publisher in the sysservers table on the Subscriber. If the entry does not exist,
SQL Server will attempt to add this entry. If the login used by the Merge Agent does not have access to add the entry (such as
db_owner of the subscription database), an error will be returned.

Reinitializing Subscriptions

Merge replication Subscribers update data based on the original snapshot provided to them unless you mark the subscription for
reinitialization. When you mark the subscription for reinitialization, the next time the Merge Agent runs, it will apply a new
snapshot to the Subscriber. Optionally, changes made at the Subscriber can be uploaded to the Publisher before the snapshot is
reapplied. This ensures that any data changes at the Subscriber are not lost when the subscription is reinitialized.

If you created a subscription and indicated no initial snapshot was to be applied at the Subscriber (the @sync_type parameter set
to nosync in sp_addmergesubscription system stored procedure), and you reinitialize the subscription, the snapshot will be
reapplied to the Subscriber. This functionality ensures that Subscribers have data and schema identical to data and schema at the
Publisher.

If you reinitialize all subscriptions to a merge publication, the subscriptions specified with no initial snapshot synchronization will
be reinitialized the same way the subscriptions with synchronization type of 'automatic' are reinitialized. To prevent the
reapplication of the snapshot to the Subscriber, drop the subscription specified with no initial snapshot synchronization, and then
recreate it after reinitialization.

For more information about synchronization, see Synchronizing Data.

The Merge Agent is a component of SQL Server Agent and can be administered directly by using SQL Server Enterprise Manager.
The Snapshot Agent and Merge Agent can also be embedded into applications by using Microsoft ActiveX® controls. The
Snapshot Agent executes on the Distributor. The Merge Agent usually executes on the Distributor for push subscriptions and on
Subscribers for pull subscriptions. Remote agent activation can be used to offload agent processing to another server. For more
information, see Remote Agent Activation.

SQL Server can validate the data at the Subscriber as the replication process is occurring so that you can ensure that data updates
applied at the Publisher are applied at Subscribers. For more information, see Validating Replicated Data.

Validating Permissions for a Subscriber

SQL Server 2000 provides the option to validate permissions for a Subscriber to upload data changes to a Publisher. This verifies
that the Merge Agent login has the permissions to perform INSERT, UPDATE, and DELETE commands on the publication database.
Validating permissions requires that the Merge Agent login be a valid user with the appropriate permissions in the publication
database.

This permissions validation is in addition to the verification that the logins used at the Subscriber are in the publication access list
(PAL).

Validating permissions for a Subscriber can be set using the @check_permissions property in sp_addmergearticle or by using
the CheckPermissions Property in SQL-DMO. For more information, see CheckPermissions Property. You can specify one or more
of the following values for the @check_permissions parameter in sp_addmergearticle.

Value Description
0 (Default) Permissions will not be checked.
1 Check permissions at the Publisher before INSERTs made at a

Subscriber can be uploaded.
2 Check permissions at the Publisher before UPDATEs made at a

Subscriber can be uploaded.
4 Check permissions at the Publisher before DELETEs made at a

Subscriber can be uploaded.

Note If you set the @check_permissions parameter after the initial snapshot has been generated, a new snapshot must be
generated and reapplied at the Subscriber in order for permissions to be validated when data changes are merged.

Cleaning Up Merge Replication

When the distribution database is created, SQL Server adds the following tasks automatically to SQL Server Agent to purge the
data no longer needed:

Subscription cleanup at the Publisher

History cleanup at the Distributor

These tasks help replication to function effectively in a long-running environment; therefore, administrators should plan for this
periodic maintenance. The cleanup tasks delete the initial snapshot for each publication and remove history information in the
Msmerge_history table.

Merge Meta Data Cleanup

When there is a large amount of merge meta data in the system tables, cleaning up the meta data improves the performance of
merge replication. Prior to SQL Server 2000 Service Pack 1 (SP1), meta data could be cleaned up only by running
sp_mergecleanupmetadata. However, SQL Server 2000 SP1 and later includes retention-based meta data cleanup, which
means that meta data can be automatically deleted from the following system tables:

MSmerge_contents

MSmerge_tombstone

MSmerge_genhistory

Before image tables, if they are present (They are present if the @keep_partition_changes synchronization optimization
option is enabled on the publication)

Retention-based meta data cleanup occurs as follows:

If the –MetadataRetentionCleanup Merge Agent parameter is set to 1, as it is by default, the Merge Agent cleans up the
Subscriber and the Publisher that are involved in the merge.

Note: The -MetadataRetentionCleanup 1 parameter is now part of all Merge Agent profiles that ship with SQL Server 2000
SP1 and later.

If the -MetadataRetentionCleanup parameter is set to 0, automatic cleanup does not occur. In this case, manually initiate
retention-based meta data cleanup by executing sp_mergemetadataretentioncleanup. This stored procedure must be
executed at every Publisher and Subscriber that should be cleaned up. It is recommended, but not required, that the
Publisher and Subscribers be cleaned up at similar points in time (See later section Preventing False Conflicts).

The default retention period for publications is 14 days. If an article belongs to several publications, there might be different
retention periods. In that situation, the longest retention period is used to determine the earliest possible time that cleanup can
occur.

Important If there are multiple publications on a database, and any one of those publications uses an infinite publication
retention period (@retention=0), merge meta data for the database will not automatically be cleaned up. For this reason, use
infinite publication retention with caution.

M eta Data Cleanup in Topologies w ith Different Versions of SQL Server

For automatic retention-based cleanup to occur in a database involved in merge replication, the database and the Merge Agent
must both be on servers running SQL Server 2000 SP1 or later. For example:

A SQL Server 7.0 pull Subscriber will not run cleanup at a SQL Server 2000 SP1 Publisher.

A SQL Server 2000 SP1 push Merge Agent will not run cleanup in a SQL Server 2000 (without SP1) Subscriber database.

A SQL Server 2000 SP1 push Merge Agent will run cleanup in a Server 2000 SP1 Publisher database even if it has
subscribers that are SQL Server 2000 or earlier.

Automatic cleanup on some servers and not on others will at most cause false conflicts, and those should be rare. For topologies
that include versions of SQL Server prior to SQL Server 2000 SP1, you may see performance benefits by running
sp_mergemetadatacleanup on all servers that aren't cleaned up automatically.

Preventing False Conflicts

Retention-based meta data cleanup prevents non-convergence and silent overwrites of changes at other nodes. However, false
conflicts can occur if:

The meta data is cleaned up at one node and not another in the topology, and

A subsequent update at the cleaned-up node occurs on a row whose meta data was deleted.

For example, if meta data is cleaned up at the Publisher but not at the Subscriber, and an update is made at the Publisher, a
conflict will occur even though data appears to be synchronized.

To prevent this conflict, make sure meta data is cleaned up at related nodes at about the same time. If -
MetadataRetentionCleanup 1 is used, both the Publisher and Subscriber are cleaned up automatically before the merge
starts, thereby ensuring that the nodes are cleaned up at the same time.

If a conflict occurs, use the merge replication conflict viewer to review the conflict and change the outcome if necessary.

If an article belongs to several publications or is in a republishing scenario, it is possible that the retention periods for a given row
at the Publisher and Subscriber are different. To reduce the chance of cleaning up meta data on one side but not the other, it is
recommended that those different publications have similar retention periods.

Note If there is a large amount of meta data in the system tables that must be cleaned up, the merge process may take longer to
run. Clean up the meta data on a regular basis to prevent this issue.

See Also

Planning for Merge Replication

Replication Options

Replication (SQL Server 2000)

Merge Replication Conflict Detection and Resolution
When Publisher and Subscribers are reconnected and synchronization occurs, the Merge Agent detects conflicts and then
determines which data will be accepted and propagated to other sites based on a resolver specified when the merge publication
was implemented.

In merge replication, a conflict exists when:

Changes are made to the same column(s) in the same row (using INSERT, UPDATE or DELETE statements) in more than one
copy, with column-level conflict tracking in effect.

Changes are made to a row in both replicas, and row-level tracking is in effect (the columns affected in the corresponding
rows need not be the same).

Note Although a Subscriber is merging with the Publisher, a conflict typically occurs between updates made at different
Subscribers and not necessarily updates made at a Subscriber and at the Publisher.

Conflict Detection

The Merge Agent detects conflicts through lineage values in the MSmerge_contents tables for the database of the article. Each
entry in MSmerge_contents contains information about a row that has been updated. The lineage column in
MSmerge_contents represents the history of changes in an updated row; its value is updated automatically by the Merge Agent
whenever the row is synchronized.

When the Merge Agent is merging changes, it examines the lineage values of the version of the row at each site. The agent
compares the lineage value for the updated row between MSmerge_contents tables (MSmerge_contents Publisher table,
MSmerge_contents Subscriber table) to determine whether the row has been updated in multiple locations. If the row has not
been updated in multiple locations, there is no conflict and the updated value is merged. If the row has been updated in multiple
locations, a conflict has occurred, and the conflict resolution process is invoked.

If column-level tracking is enabled, the Merge Agent also needs to compare the COLV values in the MSmerge_contents table
with the updated rows.

Resolving Conflicts

After a conflict is detected, the Merge Agent launches the selected conflict resolver. The winner of the conflict is chosen according
to a user-specified priority scheme, a first wins solution (with the first to synchronize winning the conflict), or a custom resolver
consisting of a COM object or stored procedure. Unless the interactive conflict resolver is used, conflicts are resolved immediately
after the resolver executes. The losing row is written to a conflict table named
conflict_<PublicationName>_<ArticleName>_usertablename (the winning row is applied at the Publisher and Subscriber).

Conflict Resolvers

Microsoft® SQL Server™ 2000 allows you to choose how to resolve merge conflicts. Options available include:

The default priority-based conflict resolver supplied with SQL Server 2000. When using this resolver, you can assign priority
values to individual Subscribers (global subscriptions), or use the default priority assignments (local subscriptions), where
the Publisher takes ownership of the changes upon data synchronization. These changes then have priority over changes
made at other local Subscribers on a first-merge basis.

A custom resolver, which implements specific data or business-decision rules to resolve the conflict. Custom resolvers can
be built either as stored procedures or as COM objects written in languages such as Microsoft Visual C++® or Microsoft
Visual Basic®. A set of out-of-the-box custom conflict resolvers and examples of custom conflict resolvers are supplied with
SQL Server 2000.

Other Microsoft Resolvers including additive, averaging, DATETIME, maximum, merge text, minimum, and Subscriber
Always Wins resolvers.

In addition, SQL Server 2000 supplies an Interactive Resolver that you can use in conjunction with either the priority-based
resolver or a custom resolver. When performing an on-demand synchronization, the Interactive Resolver displays conflict data at
run-time, and lets you choose which data to use to resolve the conflict. You can also use the Conflict Viewer, which has a similar
user interface to the Interactive Resolver, to view the results of conflicts that have been resolved. This means that a user must be

available to respond to the Interactive Resolver when a merge occurs. This would therefore not be appropriate for an application
independent of human interaction.

In merge replication, conflict resolution takes place at the article level (property of an article) for a single row of data at a time. For
publications composed of several articles, you can have different conflict resolvers serving different articles, or the same conflict
resolver serving one article, several articles, or all the articles comprising a publication.

If you plan to use the default priority-based conflict resolver, you do not have to set the resolver property of an article. If you want
to use a custom resolver instead of the default resolver, you must set the resolver property (by selecting an available custom
resolver on the Publisher) for the article that will use it. Any specific information that needs to be passed to the custom resolver
can also be specified in the resolver information property.

Viewing Conflicts

Replication creates several tables that can be used to review information on conflicts and their resolution. In addition, the Conflict
Viewer displays conflicting rows and can be used as a conflict reviewing tool.

SQL Server 2000 creates a conflict table for each table in a merge article. For example, if there is a table named Customers that is
published as an article named "Customer-Article" in the "Northwind-Customers" publication, the conflict table named
conflict_Northwind-Customers_Customers-Article will be generated.

Conflict tables have the same structure as the tables on which they are based. A row in one of these tables consists of a losing
version of a conflict row (the winning version of the row residing in the actual user table). The sysmergearticles table identifies
which user tables have conflict tables, and provides information about the conflict tables. SQL Server also provides stored
procedures that allow the conflict tables to be queried.

Another conflict table generated during merge replication setup is MSmerge_delete_conflicts. The table is a log for deleted
conflicts. It contains information for deleted rows that conflicted with an update and lost the conflict, or because a delete was
undone to achieve data convergence.

Concepts necessary for understanding merge conflict resolution include:

Row-level tracking versus column-level tracking, which specifies whether the Merge Agent identifies changes to any values
in corresponding rows, or changes to the same columns in corresponding rows as a conflict.

Subscriber type, which describes whether a user assigns a priority value to a Subscriber (global), or whether the Subscriber
uses the priority value of the Publisher when the changes are synchronized (local).

Replication (SQL Server 2000)

Row-Level Tracking and Column-Level Tracking
Row-Level Tracking and Column-Level Tracking

Several options are available for specifying how the Merge Agent recognizes a conflict. One option is specifying whether conflicts
are recognized at the row level or at the column level.

When conflicts are recognized at the row level, changes made to corresponding rows are judged a conflict, whether or not the
changes are made to the same column. For example, suppose one change is made to the address column of a Publisher row, and
a second change is made to the phone number column (in the same table) of the corresponding Subscriber row. With row-level
tracking, a conflict is detected, because changes were made to both rows. With column-level tracking, no conflict is detected,
because changes were made to different columns in the rows.

Resolution of the conflict is the same, regardless of which tracking option is used; the entire row of data is overwritten by data
from the conflict winner. In the earlier example, suppose the phone number is changed at both the Publisher and Subscriber, and
the address is changed only in the Subscriber row. If the Publisher wins the conflict, the entire Publisher row overwrites the
Subscriber row for both row-level tracking and column-level tracking; thus, the original value for phone number in the Publisher
overwrites the changed value in the Subscriber. If you are using column-level tracking, and one user changes the address for a
particular row, and another user changes the phone number for the same row, there is no conflict and both changes will be
accepted.

The application semantics usually determine which tracking option to use. For example, if you are updating customer data that is
generally entered at the same time, such as an address and phone number, row-level tracking should be chosen. If column-level
tracking were chosen in this situation, changes to the customer address in one location and to the customer phone number in
another location would not be detected as a conflict: the data would be merged on synchronization and the error would be
missed. In other situations, updating individual columns from different sites may be the most logical choice. For example, two
sites may have access to different types of statistical information on a customer, such as income level and total dollar amount of
credit card purchases. Selecting column-level tracking ensures that both sites can enter the statistical data for different columns
without generating unnecessary conflicts.

Row-level tracking involves less tracking overhead. Column-level tracking may result in fewer conflicts being detected by the
Merge Agent, but can be more resource intensive in terms of the storage needed to track changes. Column-level tracking may
generate less network traffic during synchronization because only the changed columns are transferred to the partner database
(the publication database or the subscription database).

To set row- or column-level tracking for an article

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

Replication (SQL Server 2000)

Subscriber Types and Conflicts
Subscriber Types and Conflicts

When you create a subscription, you can either assign it a priority value or use the priority value of the Publisher.

A subscription with an assigned priority value is called a global subscription; a subscription using the priority value of the
Publisher is called a local subscription. This table summarizes the main differences and uses of each type.

Type Priority Value Used
Global Assigned by user When you want different Subscribers

to have different priorities.
Local (includes
anonymous)

0.00, but change assumes
priority value of Publisher
after synchronization

When you want all Subscribers to have
the same priority, and the first
Subscriber to merge with the Publisher
to win the conflict.

Anonymous subscriptions are helpful
when you expect to have a large
number of Subscribers and you do not
want to keep track of them at the
Publisher/Distributor.

When you change a row in a global subscription, the subscription priority is stored in the meta data for the change. This priority
value travels with the changed row as it merges with changes at other Subscribers. This assures that a change made by a higher
priority subscription does not lose to a change made by a subscription with a lower priority.

If a row is changed in a local subscription, no priority is assigned to the change until the row merges with the other changes at a
Publisher. During the merge process at the Publisher, the changes from the Subscriber are assigned the priority of the Publisher
and travel with that priority as it merges with changes at other Publishers and Subscribers. In a sense, the Publisher assumes
authorship of the change.

Global subscriptions provide a greater number of options and allow for greater sophistication to a conflict resolution scheme than
local subscriptions. Using global subscriptions ensures that priority values are preserved throughout the enterprise.

Local subscriptions are also appropriate (and usually required) in a topology with several levels, where Subscribers are leaf nodes.
In these topologies, any nodes that republish data must be global Subscribers; local Subscribers can be used only at the leaf
nodes.

Example of Merge Conflict Resolution Based on Subscriber Type and Assigned Priorities

To understand how conflicts resolve according to assigned priority values and whether a subscription is global or local, consider
the following example, which describes a series of updates to a row over several merge synchronizations.

Here are the initial priority values for four sites in a basic merge replication topology (one Publisher, two global Subscribers, and
one local Subscriber).

Site Type Priority Value
A Publisher 100.00
B Global Subscriber 75.00 (assigned)
C Global Subscriber 50.00 (assigned)
D Local Subscriber 0.00 (default)

Phase 1: In itial Values

Initially, Site A (the Publisher) creates version one of the row containing value='Nebraska', which is replicated to Sites B, C, and D
during the next merge synchronization. After synchronization, here are the values for the row.

Site Priority Value Row Value
A (Publisher) 100.00 Nebraska
B (Global Subscriber) 75.00 Nebraska

C (Global Subscriber) 50.00 Nebraska
D (Local Subscriber) 0.00 Nebraska

Phase 2: Publisher and Global Subscriber Both Update Row

Site A updates the row value to Texas and site B updates the row value to New Jersey. When the next merge synchronization
occurs, there is a conflict between sites A and B. Site A wins the conflict (the Publisher always wins an update conflict, even if the
priority values are the same by default, but there is also the option that Subscriber wins the conflict). The conflict winner value
from site A is propagated to sites B, C, and D.

Site Priority Value Row Value
A (Publisher) 100.00 Texas
B (Global Subscriber) 75.00 Texas
C (Global Subscriber) 50.00 Texas
D (Local Subscriber) 0.00 Texas

Phase 3: M ultiple Changes M ade to the Same Row

Suppose site C updates the row (changes it to North Carolina) and synchronizes with the Publisher. This is not a conflict because
C already successfully merged the last update from A (with the row value='Texas' successfully merged). Then suppose Site B
updates the row (changes it to Idaho).

Site Priority Value Row Value
A (Publisher) 100.00 North Carolina
B (Global Subscriber) 75.00 Idaho
C (Global Subscriber) 50.00 North Carolina
D (Local Subscriber) 0.00 Texas

When site B synchronizes with the Publisher, there is an update conflict. Because both B and C are global subscriptions and the
priority of B is greater than that of C, site B wins the conflict. After the other two sites are also merged, the value of B is
propagated to the other Subscribers.

Site Priority Value Row Value
A (Publisher) 100.00 Idaho
B (Global Subscriber) 75.00 Idaho
C (Global Subscriber) 50.00 Idaho
D (Local Subscriber) 0.00 Idaho

Phase 4: Local and Global Subscribers Both Update Row

Suppose site D updates the row (changes it to New Mexico) and synchronizes with the Publisher. Then suppose Site B updates the
row (changes it to California).

Site Priority Value Row Value
A (Publisher) 100.00 New Mexico
B (Global Subscriber) 75.00 California
C (Global Subscriber) 50.00 Idaho
D (Local Subscriber) 0.00 New Mexico

When site B synchronizes with the Publisher, there is an update conflict. Unlike the previous example, because D is a local
Subscriber, it assumes the priority value of the Publisher (site A) upon synchronization. Because the priority of A is greater than B,
B loses the conflict; the value initially entered into D wins. (Had the global Subscriber B synchronized with A before the local
Subscriber D did, site B would have won the conflict.) Site D winning the conflict relies on the Publisher not having made a change
or received another change since the version of the row updated at Site D was last synchronized. If any global Subscriber or any
other local Subscriber synchronizes first, the rule of highest priority or first in to the Publisher wins is followed.)

The final values after all the sites are synchronized are shown here.

Site Priority Value Row Value
A (Publisher) 100.00 New Mexico
B (Global Subscriber) 75.00 New Mexico
C (Global Subscriber) 50.00 New Mexico
D (Local Subscriber) 0.00 New Mexico

Synchronization order and priority value determine the outcome of conflicts when mixing global and local Subscribers at the
same level in your topology. This last set of updates illustrates why caution must be exercised. Although the local Subscriber had
the lowest priority value of the three Subscribers, it won the conflict because it synchronized with the Publisher (thus assuming
the Publisher priority value of 100.00) first. Had site C (global Subscriber with a priority value of 50.00) entered New Mexico
instead of site D, site B (global Subscriber with a priority value of 75.00) would have won the conflict, and the result would have
been California.

Replication (SQL Server 2000)

Default Resolver and Custom Resolvers
Default Resolver and Custom Resolvers

When you create a merge publication, the conflict resolver is set to the default resolver for all articles in the publication (if you do
not plan on using a custom resolver with an article, you do not need to choose a resolver). For each article, you can use the default
merge resolver or select an available custom resolver. After an article in a publication is assigned a resolver, that association must
be maintained across all publications (for when the same table is in multiple publications). You cannot assign different resolvers
to the same article across different publications.

Default Resolver

When you create a push or pull subscription, you specify the behavior of the default resolver by choosing to make the
subscription global or local.

By default, SQL Server defines a subscription as local, with a priority value of 0.00. On the Set Subscription Priority page in the
Push Subscription Wizard or Pull Subscription Wizard, this selection corresponds to the option for using the priority value of the
Publisher when a conflict occurs. If this is retained for all Subscribers, the result is that the Publisher updates win the conflict and
between Subscribers that have conflicts, the first Subscriber to synchronize, wins the conflict. For the default merge resolver, the
Publisher always wins a conflict; however, a custom resolver can override this rule.

You can also assign a specific priority value to a subscription. On the Set Subscription Priority page in either the Push
Subscription Wizard or the Pull Subscription Wizard, this selection corresponds to the option for assigning a specific priority value
from 0.00 through 99.99 to the Subscriber. When you make this selection and specify a priority greater than 0.0, you define a
global subscription.

If both global and local Subscribers are connected to the Publisher, and changes from a global Subscriber with a priority value
greater than 0.00 are synchronized first, subsequent conflicting changes from local Subscribers are rejected. The priority value for
the global Subscriber is greater than the priority value of any local Subscriber (which would be 0 prior to merge synchronization).
If a local Subscriber synchronizes with the Publisher first, subsequent conflicting changes from global Subscribers or other local
Subscribers will be rejected. The priority value for the local Subscriber that was first synchronized with the Publisher assumes the
priority value of the Publisher, which always wins a conflict; however, a custom merge resolver can override these rules.

Custom Resolvers

Merge replication allows you to use a variety of custom resolvers to deal with conflict situations. Custom resolvers are always
executed where the Merge Agent runs. You can select from a number of out-of-the-box custom resolvers supplied with SQL
Server, write a custom stored procedure resolver, or write a COM object resolver in a language such as Microsoft Visual C++® or
Microsoft Visual Basic®. If you plan to use a COM object resolver, make sure the DLL is registered at the computer where the
Merge Agent runs. For a push subscription, this is the Distributor, and for a pull subscription, it is the Subscriber. For applications
that use the Merge ActiveX® Control, the resolver should be registered at the computer where the application executes.

Custom resolvers can be loaded in one of the following ways:

By selecting the custom resolver you want in the Create Publication Wizard. This option is found on the Resolver tab, in the
Properties dialog box.

If you are using stored procedures to set up and configure merge replication, the @resolver_info parameter of the
sp_addmergearticle system stored procedure contains the name of the custom conflict resolver to use with the article.

To choose a resolver

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

Replication (SQL Server 2000)

COM Custom Resolvers
COM Custom Resolvers

A COM custom conflict resolver is a dynamic-link library (DLL) that implements the ICustomResolver interface, its methods and
properties, and other supporting interfaces and type definitions designed specially for conflict resolution.

These interfaces and type definitions are defined in Microsoft® Visual C++® header files (Sqlres.h and Sqlresid.h), supplied with
the merge conflict resolver samples in \Microsoft SQL Server\Tools\DevTools\Samples\Sqlrepl (available through a custom
installation of Microsoft SQL Server™ 2000). If you are a Visual C++ developer, you can view these samples to get an idea of how
to build a custom COM resolver in Visual C++.

Because the conflict resolver interfaces are COM-based and therefore language-neutral, it is possible to create custom COM
resolvers in other languages than C++. To build a custom COM resolver in Visual Basic®, you can use the type library that is
provided in the replrec.dll.

Before writing a custom COM resolver, you need to decide:

The types of row changes you want to resolve, such as updates, inserts, and deletes, and for the upload of merge changes,
the download, or both. You can specify one type of change, all changes, or any combination. The default merge conflict
resolver handles any conflicts not covered by a custom resolver.

Whether to use column tracking when resolving the conflict. No column tracking means that changes are tracked at the row
level. Changes to any columns in both rows are flagged as a conflict. To resolve the conflict, the priority winner overwrites
the entire row of data.

When column-level tracking is on, only data in those columns where a conflict exists are flagged as a conflict, otherwise the data
is merged. However, conflicts are resolved in the same way as row-level tracking: the priority winner overwrites the entire row of
data (but the data can be a mix of values from the Publisher, Subscribers, or some altered values that were from neither Publisher
nor Subscribers).

When using a custom COM resolver with merge replication on a cluster, you must register the custom resolver on both nodes of
the cluster regardless of whether the configuration is active-active or active-passive. This is required to ensure that the custom
resolver will be able to properly load the reconcile following a failover.

Replication (SQL Server 2000)

Specifying a Custom Resolver
Specifying a Custom Resolver

A custom resolver can be specified from the Create Publication Wizard or with replication stored procedures.

Using the Create Publication Wizard

When a merge replication is created with the Create Publication Wizard, custom resolvers can be specified on the Specify Articles
page. When a table is selected for publication, a properties (...) button is presented, which when clicked, displays the Properties
dialog box for the article (table).

On the General tab, select whether changes to the same row or to the same column are regarded as conflicts. When changes to
the same column are conflicts, changes to different columns in the same row are merged.

On the Resolver tab, select whether to use the default resolver, or a custom resolver, and then select one in the list. If the resolver
references a specific column, enter its name in the Information for the custom resolver dialog box.

Using Replication Stored Procedures

When a merge replication is created with replication stored procedures, custom resolvers are specified from
sp_addmergearticle or sp_changemergearticle.

In sp_addmergearticle, if a custom resolver is to be used, the resolver name from the table in the Microsoft Resolver
Descriptions topic is entered with the @article_resolver parameter. The name must be typed exactly as it appears in the table. If a
column name is required, it is entered with the @resolver_info parameter.

This example specifies that the Microsoft SQL Server Averaging Conflict Resolver be used with article ProductsArticle in
publication ProductsPublication for source table Products to calculate the average of the UnitPrice column when conflicts
occur.

exec @ret = sp_addmergearticle @publication='ProductsCatalog',
 @article='ProductsArticle', @source_object='Products',
 @article_resolver='Averaging Conflict Resolver',
 @resolver_info='UnitPrice'

sp_changemergearticle is used to change one property of an existing merge article. The @property parameter specifies the
property to be changed, the @value parameter specifies the new value for the property.

This example changes the article ProductsArticle in publication ProductsPublication to use the Microsoft SQL Server Additive
Conflict Resolver to calculate the sum of the UnitsOnOrder column when conflicts occur.

exec @ret = sp_changemergearticle @publication='ProductsCatalog',
 @article='ProductsArticle', @property='article_resolver',
 @value='Additive Conflict Resolver'
exec @ret = sp_changemergearticle
 @publication='ProductsCatalog', @article='ProductsArticle',
 @property='resolver_info', @value='UnitsOnOrder'

See Also

Microsoft Resolver Descriptions

Replication (SQL Server 2000)

Interactive Resolver
Interactive Resolver

Microsoft SQL Server replication provides an interactive resolver, which allows you to resolve conflicts manually during on-
demand synchronization. Activated at run-time, the Interactive Resolver displays data for each conflicting row, and provides
options for viewing and editing the conflict data, and resolving each conflict individually.

Interactive Resolver and the Conflict Viewer

The Interactive Resolver resembles the Conflict Viewer. However, the Conflict Viewer displays the results of conflicts that are
already resolved after merge synchronization, and the Interactive Resolver displays each conflict prior to resolution, allowing you
to determine the outcome of each conflict during merge synchronization. Someone must be available to monitor the Interactive
Resolver when a conflict occurs.

Article Resolvers and the Interactive Resolver

Conflict resolvers (either the Microsoft® SQL Server™ 2000 default resolver or a custom resolver) are assigned to specific articles
when a publication is created, and use a set of predetermined rules to determine which set of data should be used when
conflicting row data is entered.

The Interactive Resolver is not a separate conflict resolver with rules for determining conflict winners and losers, but a tool used in
conjunction with the default and custom merge resolvers. The article resolver still determines the winning and losing row, but the
Interactive Resolver allows user intervention to accept, reject, or modify the results. Use the Interactive Resolver to review
individual conflicts occurring during synchronization, edit the conflict data, or make individual determinations of conflict winners
and losers. In other words, an Interactive Resolver can be used in conjunction with the default or custom resolvers.

The option to allow the Interactive Resolver to be used on a subscription is enabled as a publication property. However, invoking
the Interactive Resolver when a conflict is detected requires setting this option as a subscription property (in the Create Pull
Subscription Wizard, using replication stored procedures, or using ActiveX® controls). After these properties are set for both the
publication and subscription, the Interactive Resolver is used when a conflict is detected during merge synchronization.

Note Because user intervention is required, the Interactive Resolver should be used only during an on-demand synchronization,
never during a scheduled synchronization.

To enable activation of the Interactive Resolver

Enterprise Manager

Enterprise Manager

Activating the Interactive Resolver

You can activate the Interactive Resolver when using Windows Synchronization Manager to synchronize a subscription.

To activate the Interactive Resolver during a merge synchronization (Windows Synchronization Manager)

Windows

Windows NT

Using the Interactive Resolver

The Interactive Resolver allows you to view, compare, edit, and select the outcome data. Data that cannot be edited in the
Interactive Resolver (for example, rowguid data) is displayed read-only with the box shaded. Information describing why the
conflict occurred (for example, the same row was updated at both the Publisher and the Subscriber) is displayed in the Reason
for conflict box.

The conflict data is displayed in two corresponding columns (Show and Show or edit for resolution), with the Subscriber data
displayed in the left column beneath Show, and the suggested resolution data displayed in the right column beneath Show or
edit for resolution. The Resolve With This Data button always refers to the data displayed in the right column.

If the conflict is between updated and deleted data, there may be no data to show for the deleted side of the conflict. In this case,
the Interactive Resolver displays a message in one of the columns, indicating the row was deleted at one location and updated at
another, and indicating the suggested resolution (conflict winner).

The Interactive Resolver allows you to:

Display all columns for the conflicting row or display only those columns with conflicting data.

View different sets of conflict data by selecting Publisher Data, Subscriber Data, or Suggested Resolution in the two
lists.

Log the results of your Interactive Resolver session.

Take one of the following conflict resolution actions:
Accept the suggested outcome (as chosen by the underlying conflict resolver) by clicking Resolve With This Data
with Suggested Resolution selected for Show or edit for resolution. You can modify any editable suggested
resolution data, under Show or edit for resolution, before resolving the conflict.

Accept the original Publisher Data or original Subscriber Data by selecting one of those options from the Show
or edit for resolution list and clicking Resolve With This Data. You can modify any editable Publisher or
Subscriber data under this option, under Show or edit for resolution, before resolving the conflict.

Re-evaluate the conflict with the article resolver, and determine the outcome automatically. To do this, click Resolve
Conflict Automatically.

Evaluate all conflicts with the article resolver, and determine the outcome for all conflicts automatically. When you take this
action, you are terminating use of the Interactive Resolver for the current synchronization. To do this, click Resolve All
Conflicts Automatically.

Replication (SQL Server 2000)

Custom Stored Procedure Conflict Resolver
Custom Stored Procedure Conflict Resolver

You can create custom resolvers consisting of special queries and code to examine conflicts and override the default way in which
conflicts are resolved by Microsoft® SQL Server™ 2000. You can override the default conflict resolver by substituting your own
program with the same name. For example, suppose multiple sites participate in monitoring a chemical process and each records
the low and high temperatures achieved in a test. Rather than use a priority or first wins solution, such an application might want
to accept the lowest low and the highest high value.

You can use Transact-SQL to build your custom conflict resolver as a stored procedure at each Publisher. Custom conflict
resolvers are always executed at the Publisher. The stored procedure should accept the following required parameters.

Parameter Data Type Description
@tableowner Sysname Name of the owner of the table for which

a conflict is being resolved - this is the
owner for the table in the publication
database.

@tablename sysname Name of the table for which a conflict is
being resolved.

@rowguid uniqueidentifier Unique identifier for the row having the
conflict.

@subscriber sysname Name of the server from where a
conflicting change is being propagated.

@subscriber_db sysname Name of the database from where
conflicting change is being propagated.

@log_conflict
OUTPUT

int Whether the merge process should log a
conflict for later resolution:

0 = Do not log the conflict
1 = Subscriber is the conflict loser
2 = Publisher is the conflict loser

@conflict_message
OUTPUT

nvarchar(512) Message to be given about the resolution
if the conflict is logged.

The stored procedure uses these parameters to examine the values contained in the row at both the Publisher and Subscriber. The
stored procedure can also examine any additional information you specify and manipulate the values to determine what column
values the resolved row should have. The stored procedure then returns a single row result set that is identical in structure to the
base table and contains the data values for the winning version of the row. The stored procedure can potentially use distributed
queries or other mechanisms to query the value from the remote database.

The stored procedure must be located either in the published database at the Publisher or in the master database and marked as
a system object. Execute permission should be granted to public or to a list of all Subscribers.

Note SQL Server stored procedure resolvers will be invoked only to handle update conflicts. They cannot be used to handle
other types of conflicts such as insert failures due to PRIMARY KEY violations or unique index constraint violations.

After the stored procedure is created, you must configure an article to use that stored procedure as its custom resolver. You can
specify a custom resolver for an article by executing sp_addmergearticle to associate the stored procedure with the article. You
must set the @article_resolver parameter to Microsoft SQLServer Stored Procedure and set the @resolver_info parameter
to the name of stored procedure.

For more information, see Developing Replication Merge Conflict Resolvers Through a Custom Resolver.

Replication (SQL Server 2000)

Other Microsoft Resolvers
Other Microsoft Resolvers

When conflicts occur during the merge process, a conflict resolver must determine how the conflict is resolved. Microsoft® SQL
Server™ 2000 includes several custom COM-component resolvers that can be used for this purpose, in addition to the default
priority-based resolver and the stored procedure resolver:

Microsoft SQL Server Additive Conflict Resolver

Microsoft SQL Server Averaging Conflict Resolver

Microsoft SQL Server DATETIME (Earlier Wins) Conflict Resolver

Microsoft SQL Server DATETIME (Later Wins) Conflict Resolver

Microsoft SQL Server Maximum Conflict Resolver

Microsoft SQL Server Merge Text Conflict Resolver

Microsoft SQL Server Minimum Conflict Resolver

Microsoft SQL Server Subscriber Always Wins Conflict Resolver

The resolvers are installed during the installation process for SQL Server 2000. The sp_enumcustomresolvers stored procedure
can be used to view all the conflict resolvers registered on that computer. In SQL Query Analyzer, run:

exec sp_enumcustomresolvers

This displays the description and globally unique identifier (GUID) for each resolver in a separate result set.

The resolver must be registered on the computer from which the Merge Agent is invoked. For push subscriptions, the resolver is
registered at the Distributor. For pull subscriptions, the resolver should be registered at the Subscriber.

Replication (SQL Server 2000)

Microsoft Resolver Descriptions
Microsoft Resolver Descriptions

All of the resolvers in Microsoft® SQL Server™ 2000 handle update conflicts, and where indicated, they also handle insert and
delete conflicts. They all handle column tracking; most also handle row tracking. These and all other custom conflict resolvers
declare the types of conflict they can handle, and the merge replication agent uses the default resolver for all other conflict types.

The following table describes the attributes of the specific resolvers. For information about how to specify the required input, see
Specifying a Custom Resolver.

Name Required Input Description Comments
Microsoft SQL
Server Additive
Conflict Resolver

Name of the column
to be summed. It
must have an
arithmetic data type
(such as int,
smallint, numeric,
and do on.).

Conflict winner determined
from priority value. Specified
column values set to sum of
source and destination
column values. If one is set to
NULL, they are set to the value
of the other column.

Supports
update
conflicts,
column
tracking only.

Microsoft SQL
Server Averaging
Conflict Resolver

Name of the column
to be averaged. It
must have an
arithmetic data type
(such as int,
smallint, numeric,
and so on.).

Conflict winner determined
from priority value. Resulting
column values set to average
of source and destination
column values. If one is set to
NULL, they are set to the value
of the other column.

Supports
update
conflicts,
column
tracking only.

Microsoft SQL
Server DATETIME
(Earlier Wins)
Conflict Resolver

Name of the column
to be used to
determine the
conflict winner. It
must have a
DATETIME data type.

Column with the earlier
datetime value determines
the conflict winner. If one is
set to NULL, the row
containing the other is the
winner.

Supports
update
conflicts, row,
and column
tracking. The
column values
are compared
directly and an
adjustment is
not made for
different time
zones.

Microsoft SQL
Server DATETIME
(Later Wins)
Conflict Resolver

Name of the column
to be used to
determine the
conflict winner. It
must have
DATETIME data type.

Column with the later
datetime value determines
the conflict winner. If one is
set to NULL, the row
containing the other is the
winner.

Supports
update
conflicts, row,
and column
tracking.

Microsoft SQL
Server Maximum
Conflict Resolver

Name of the column
to be used to
determine the
conflict winner. It
must have an
arithmetic data type
(such as int,
smallint, numeric,
and so on.).

Column with the larger
numeric value determines the
conflict winner. If one is set to
NULL, the row containing the
other is the winner.

Supports row
and column
tracking.

Microsoft SQL
Server Merge
Text Conflict
Resolver

No inputs. Text
columns in conflict
are merged.

Conflict winner determined
from priority value. Text
columns in conflict are set to
merged value consisting of
common prefix followed by
unique part of source, newline
character (linefeed), and then
unique part of destination.

Supports
update
conflicts,
column
tracking only.

Microsoft SQL
Server Minimum
Conflict Resolver

Name of the column
to be used to
determine the
conflict winner. It
must have a
arithmetic data type
(such as int,
smallint, numeric,
and so on.).

Column with the smaller
numeric value determines the
conflict winner. If one is set to
NULL, the row containing the
other is the winner.

Supports
update
conflicts, row,
and column
tracking.

Microsoft SQL
Server
Subscriber
Always Wins
Conflict Resolver

No inputs. No data
type restrictions.

Subscriber, regardless of
whether it is the source or
destination, is the winner.

Supports all
conflict types.

Replication (SQL Server 2000)

Choosing a Resolver
Choosing a Resolver

When choosing a resolver, you need to consider the importance of conflict resolution in your replication application and whether
you will need to build a custom resolver.

If your data is partitioned without multiple users writing to the same partitions, and your replication topology is relatively basic
(one Publisher and a few Subscribers), conflicts should be rare or nonexistent. In these environments, you may not need a
complex conflict resolution strategy. A strategy using the default settings for conflict resolution, using local Subscribers and a first
change in wins policy, is recommended.

Another factor is determining whether to build a custom resolver or use the default merge conflict resolver. Using a custom
resolver is the recommended option if your business needs require a more finely tuned solution than is available with the default
resolver, and the table associated with the custom resolver is relatively stable, or updating the custom resolver is not an issue.

Choosing whether to use the default resolver, or a custom resolver and the logic used in a custom resolver, should be based on
the data. For example, suppose the employees entering customer-ranking data into a set of nonpartitioned replicas span various
job categories (branch managers, line managers, sales staff), and job category determines whose data should be given priority. In
this case, a custom resolver can be built that uses job category data from the article to determine the priority winner when a
conflict occurs.

Custom resolvers are usually specific to a particular table; if the table used in the article is modified (for example, renaming the
column name that is used in conflict resolution), the custom resolver may have to be modified and recompiled.

If conflicts are likely to occur with some frequency, here are the most important decisions you will need to consider when
implementing a conflict resolution strategy.

Conflict Resolution Issue Recommendation
Different categories of users require
different priority values.

Use the default merge resolver and create
global Subscribers with different priority
values.

Or

Use a custom resolver that recognizes an
authority value column in the article to
help resolve a conflict.

First change in wins conflict solution
wanted.

Use the default merge resolver and create local
Subscribers.

Multiple users changing the same
data row acceptable, as long as no
conflicting changes made to the
same column.

Use either the default merge resolver or a
custom resolver with column-level tracking
enabled.

Flag multiple changes to any value
in a row as a conflict.

Use either the default merge resolver or a
custom resolver with row-level tracking.

Conflict outcome data needs to be
different from original conflict data.

Use a custom resolver that calculates new
values. Alternatively, optionally use the stored
procedure resolver and write a custom
procedure that returns a result set that contains
the new data.

Replication (SQL Server 2000)

Replication Tools
Microsoft® SQL Server™ 2000 provides several methods for implementing and administering replication, including SQL Server
Enterprise Manager, programming interfaces, and other Microsoft Windows® components.

SQL Server Enterprise Manager includes a graphical organization of replication objects, several wizards, and dialog boxes you can
use to simplify the configuration and administration of replication. SQL Server Enterprise Manager allows you to view and modify
the properties of replication configuration, and monitor and troubleshoot replication activity.

You can also implement, monitor, and maintain replication using programming interfaces such as Microsoft ActiveX® controls for
replication, SQL-DMO, and scripting of Transact-SQL system stored procedures.

Components such as Windows Synchronization Manager and Active Directory™ Services enable you to synchronize data,
subscribe to publications, and organize and access replication objects from within Windows applications.

Replication (SQL Server 2000)

Replication and SQL Server Enterprise Manager
You can use SQL Server Enterprise Manager to implement, administer, and monitor a complete replication environment across
your enterprise.

SQL Server Enterprise Manager provides the Replication folder as a central location to organize and administer your publications
and subscriptions. If you have heterogeneous publishing services from Microsoft or other companies installed, the
Heterogeneous Replication folder will appear under the Replication folder as a location to manage publications and subscriptions
based on heterogeneous data sources.

Replication Monitor

Through Replication Monitor, you can view and manage replication agents responsible for various replication tasks. Replication
Monitor appears as a node below the Replication folder in SQL Server Enterprise Manager on the Distributor after you have
configured publishing and distribution.

For example, using Replication Monitor, you can set up replication so that the Publisher log is read continuously, transactions are
distributed to Subscribers every ten minutes, and initial snapshots are generated every night at midnight. You can also execute
replication agents on demand.

Replication Monitor provides a way to set alerts on replication events. When the event occurs, Replication Monitor responds
automatically, either by executing a task that you have defined or by sending an e-mail or a pager message to a specified
individual.

Events in the task history can also be written to the Microsoft Windows NT® 4.0 or Windows 2000 application log if the task is set
to use Windows NT logging, and can be viewed by using Event Viewer. For information about using Event Viewer, see Windows
NT 4.0 or Windows 2000 Help.

SQL Server Agent is an internal SQL Server 2000 tool that hosts and schedules the agents used in replication, and provides an
easy way to run replication agents. SQL Server Agent also controls and monitors several other operations outside of replication
including monitoring the SQLServerAgent service, maintaining error logs, running jobs, and starting other processes.

Another tool accessible through SQL Server Enterprise Manager is the replication Conflict Viewer. The Conflict Viewer helps you
view and resolve conflicts that occurred during the merge replication or queued updating process.

See Also

Administering and Monitoring Replication

Merge Replication Conflict Detection and Resolution

Queued Updating Conflict Detection and Resolution

Replication (SQL Server 2000)

Replication Wizards
Microsoft® SQL Server™ includes replication wizards to simplify configuring and implementing replication. The replication
wizards can be accessed in SQL Server Enterprise Manager. On the Tools menu, point to Replication, and then click the
appropriate wizard.

Configure Publishing and Distribution Wizard

Through the Configure Publishing and Distribution Wizard, you can:

Specify the server that you want to configure as the Distributor.

Configure SQLServerAgent service to start manually or automatically when the computer is started.

Customize the distribution database properties, enable Publishers, enable Subscribers, and set publishing settings.

Create Publication Wizard

Using the Create Publication Wizard, you can specify:

The existing publication to be used as a template for the new publication.

The type of publication to create (snapshot, transactional, or merge).

The data and database objects (articles) to include in the publication.

A name and description for the publication.

Horizontal and vertical data filters, and for merge publications, dynamic and join filters.

Whether to allow anonymous Subscribers.

The Snapshot Agent schedule and whether you want the Snapshot Agent to run immediately.

If you select the Show advanced options in this wizard check box on the Welcome page of the wizard, and you create a
snapshot or transactional publication, you can specify the following:

Enabling updatable subscriptions including immediate updating and/or queued updating.

Enabling transforming published data so data can be transformed before it is distributed to Subscribers.

Create Pull Subscription Wizard

The Create Pull Subscription Wizard allows you to initiate a subscription at a Subscriber and request data to be replicated from a
Publisher. Through the Create Pull Subscription Wizard, you can:

Select the Publisher and publication to which you want to subscribe.

Select the Subscriber (destination) database that will receive the published data.

Specify initialization of the subscription so that a snapshot of schema and data is applied at the Subscriber.

Specify the location of the snapshot files and how to access them at the time the subscription is initialized.

Set agent schedules for how frequently updates are propagated to the Subscriber.

Specify whether to transform the data before it is distributed (for snapshot or transactional publications that allow
transforming published data).

Specify if you want required services to start automatically after the subscription is created or if you want to start required
services manually.

Create Push Subscription Wizard

The Create Push Subscription Wizard allows you to specify at the Publisher what data you want replicated to specified
Subscribers. Through the Create Push Subscription Wizard, you can:

Select one or more Subscribers or groups of Subscribers to receive published data.

Specify the database on the Subscriber where data will be published.

Specify where you want the Distribution Agent to run (for snapshot replication or transactional replication).

Set agent schedules for how frequently updates are propagated to the Subscriber.

Specify initialization of the subscription so that a snapshot of schema and data is applied at the Subscriber.

Specify whether to transform the data before it is distributed (for snapshot or transactional publications that allow
transforming published data).

Set the priority value of the subscription to determine the winner if conflicts are detected (for a merge publication).

Specify whether you want required services to start automatically after the subscription is created or if you want to start
required services manually.

Define Transformation of Published Data

The Define Transformation of Published Data Wizard is available after you have configured a publication to allow transformation
of published data. This wizard allows you to create a Data Transformation Services (DTS) package that defines data
transformations. You can specify:

The Subscriber that will use the package and what authentication that Subscriber uses.

Column mappings and data transformations that occur as the data is published, including those using Microsoft ActiveX®
or JScript.

The location of the DTS package at the server where the Distribution Agent runs.

The name, description, and security for the package.

Note DTS packages created in the Define Transformation of Published Data Wizard cannot be used outside of replication.
However, DTS packages created independently of replication using DTS tools can be used to transform published data during
replication.

Create Dynamic Snapshot Job Wizard

The Create Dynamic Snapshot Job Wizard guides you through creating a dynamic snapshot for dynamically filtered merge
publications. In this wizard you can:

Specify the filter criteria page, including any system or user-defined functions used in the dynamic filters of the publication
and the value of the login for the Publisher.

Specify the snapshot file location where you want snapshot files saved.

Set the dynamic Snapshot Agent schedule.

Specify the agent name for this dynamic Snapshot Agent.

Note You must generate a regular snapshot to the dynamically filtered merge publication before creating a dynamic snapshot.

Disable Publishing and Distribution Wizard

The Disable Publishing and Distribution Wizard allows you to disable publishing, distribution, or both on a server. You can also:

Specify whether to disable publishing on the server where the wizard is run.

Confirm the publications that will be dropped.

See Also

Configuring Replication

Disabling Publishing and Distribution

Dynamic Snapshots

Publishing Data and Database Objects

Subscribing to Publications

Transforming Published Data

Replication (SQL Server 2000)

Replication Properties
After you configure replication, you can view and modify options by using the properties dialog boxes for replication. Properties
are available for the Publisher, its Subscribers, and the Distributor, publications, push subscriptions, pull subscriptions, and
replication agents.

Publisher and Distributor Properties

After you have configured a Publisher and Distributor using the Configure Publishing and Distribution Wizard, you can view and
modify those options using the Publisher and Distributor properties. The Publisher and Distributor properties include the
following tabs and information.

Tab Information
Distributor The distributor name, distribution databases, properties

for the distribution database, buttons to create or delete a
distribution database, a button to see the agent profiles for
all replication agents, and the administrative link password
for Publishers to connect to the Distributor.

Publishers A list of Publishers that have been enabled to use this
Distributor during replication, and buttons to enable,
disable, or specify new Publishers.

Publication Databases A list of databases that are enabled for transactional
replication (includes snapshot replication) and/or merge
replication, and buttons to enable or disable the databases
for transactional replication and/or merge replication.

Subscribers A list of Subscribers configured to receive data from this
Distributor, and buttons to enable, disable, or specify new
Subscribers.

To open Publisher and Distributor properties

Enterprise Manager

Enterprise Manager

Publication Properties

After you have created a publication using the Create Publication Wizard, you can view and modify most options using
publication properties. Some options can be specified only when the publication is created, and some options cannot be changed
if there are active subscriptions for the publication. The publication properties include the following tabs and information.

Tab Information
General The publication name, publishing database, description,

type of publication, and subscription expiration.
Articles The data and database objects that will be published as

part of the publication. You can show and add objects that
are not currently being published and set the properties
for articles.

Filter Columns Allows you to choose the columns you want to publish
from within a table article. You can also add a column to
the table and to the publication. If you specified not to
filter any articles when creating your publication, the Filter
Columns tab will not appear in the publication properties.

Filter Rows Shows any row filters on table articles. Click the table
article properties (...) button and you can add row filters. If
you specified not to filter any articles when creating your
publication, the Filter Rows tab will not appear in the
publication properties.

Subscriptions Shows push subscriptions. This tab also provides buttons
to create, delete, reinitialize, reinitialize all, and view the
properties for subscriptions.

Subscription Options Provides subscription options such as allowing
anonymous pull subscriptions, allowing snapshot files to
be available to initialize new subscriptions immediately,
allowing pull subscriptions, allowing attachable
subscription databases, and allowing transformation of
published data.

Snapshot Lists the snapshot format (native Microsoft® SQL Server™
format or character mode format), whether concurrent
snapshot processing is enabled (for transactional
replication only), and paths to scripts that will be applied
before and after the snapshot is applied at the Subscriber.

Snapshot Location Provides options for generating the snapshot in its default
location, an alternate location, compressing the snapshot
files, and specifying Subscriber access to the snapshot
folder using File Transfer Protocol (FTP).

Publication Access List Lists the logins that must be used by pull subscriptions
and immediate updating subscriptions when accessing
this publication.

Sync Partners (merge
publications)

Provides an option to allow Subscribers to synchronize
with servers other than the Publisher at which the
subscription was created. You can select the co-Publishers
and Subscribers that can serve as alternate
synchronization partners for Subscribers to the
publication.

Updatable (snapshot or
transactional
publications)

Provides options such as allowing immediate updating
subscriptions, queued updating subscriptions, where data
conflicts are reported, the conflict resolution policy for
updatable subscriptions, where to queue changes if
queued updating subscriptions are allowed (in a SQL
Server 2000 database or using Microsoft Message
Queuing).

Status Shows Snapshot Agent status, when the agent last ran,
when it is scheduled to run next, buttons to run the agent
now, show agent properties, explore the snapshot folder.
SQLServerAgent service and MSDTC service status and
buttons to start or refresh the services.

To open publication properties

Enterprise Manager

Enterprise Manager

Push Subscription Properties

The push subscription properties dialog box includes the following tabs and information.

Tab Information
General The Subscriber name, Subscriber database, type of

subscription, status, priority when resolving conflicts (for
merge publications), immediate updating subscription or
queued updating subscription (for snapshot replication or
transactional replication).

Synchronization Specifies where the Merge Agent (for merge replication) or
the Distribution Agent (for snapshot replication or
transactional replication) runs.

To open push subscription properties

Enterprise Manager

Enterprise Manager

Pull Subscription Properties

The pull subscription properties dialog box includes the following tabs and information.

Tab Information
General The Subscriber name, Subscriber database, type of

subscription, status, priority when resolving conflicts (for
merge publications), immediate updating subscription or
queued updating subscription (for snapshot replication or
transactional replication).

Synchronization Specifies when the subscription was last synchronized,
Distribution Agent properties, the option to synchronize this
subscription using Windows Synchronization Manager,
where the Distribution Agent (snapshot replication or
transactional replication) or the merge agent (merge
replication) runs, and if it is an updatable subscription,
whether immediate updating or queued updating is being
used.

Security The Distributor login and Publisher login information.
Snapshot Delivery The Snapshot location information.

To open pull subscription properties

Enterprise Manager

Enterprise Manager

Agent Properties

Properties are available for all agents. The agent properties dialog box includes the following tabs and information. SQL Server
Agent is hosting the agents, so SQL Server Agent controls the agent schedule and several agent processes automatically.

Tab Information
General The agent name, when created, last modified, owner, and

description.
Steps The ID, step name, type of step, the action if the step

succeeds, the action if the step fails, and buttons to create,
insert, edit, and delete steps. SQL Server Agent completes
these steps, so you should not need to change them.

Schedules The name of the schedule or alert, the enabled status of the
schedule or alert, the description, and buttons to create, edit,
or delete schedules and alerts.

Notifications Actions to perform when the job completes, including send
e-mail, send a page, net send, write to the Microsoft
Windows NT® 4.0 or Windows 2000 application event log,
and delete the job automatically. You can choose to initiate
these actions when the job fails, succeeds, or whenever the
job is completed.

To open agent properties

Enterprise Manager

Enterprise Manager

See Also

Administering and Monitoring Replication

Configuring Replication

Publishing Data and Database Objects

Subscribing to Publications

Replication (SQL Server 2000)

Replication Icons
SQL Server Enterprise Manager uses several icons to represent replication objects, operations, and results.

Icon Description
Publisher

Publisher error

Publisher retrying synchronization

Snapshot publication

Snapshot publication error

Snapshot publication retry

Transactional publication

Transactional publication error

Transactional publication retry

Merge publication

Merge publication error

Merge publication retry

Subscription

Subscription error

Subscription retrying synchronization

Subscription to a merge publication

Subscription (agent not running)

Subscription (agent running)

Database is enabled for publishing

Replication Monitor
Replication Monitor error

Replication Monitor retry

Snapshot Agent running
Snapshot Agent not running
Snapshot Agent retrying
Snapshot Agent error
Log Reader Agent running

Log Reader Agent not running

Log Reader Agent retrying

Log Reader Agent error

Queue Reader Agent running

Queue Reader Agent not running

Queue Reader Agent retrying

Queue Reader Agent error

Miscellaneous agents running

Miscellaneous agents error

Miscellaneous agents retrying

Column is a primary key
No primary key in the table
This table includes a timestamp column and cannot be
published by Publishers running SQL Server 7.0 or to
Subscribers running SQL Server 7.0.

Replication (SQL Server 2000)

Replication Programming Interfaces
As an alternative to using SQL Server Enterprise Manager, you can use the following programming interfaces to implement,
administer, and monitor replication:

Microsoft® ActiveX® controls used within custom applications using Microsoft Visual Basic® or Microsoft Visual C++®,
provide programmable controls to administer and control the Snapshot Agent, the Distribution Agent, and the Merge Agent.
These controls can be used to program activity needed to operate replication. For example, for an application that provides
online and offline capabilities, you may want to display a Synchronize button. That button can be associated with the merge
ActiveX control, and whenever users click the button, they connect to the Publisher, and the Merge Agent for the specified
publication merges and synchronizes data.

SQL-DMO allows you to create custom applications, using Visual Basic or C++, which allow you to configure, implement, or
maintain your replication topology. SQL-DMO can be used to program replication administration such as configuring
distribution, creating subscriptions, and so on.

The Replication Distributor Interface provides the capability to replicate data from heterogeneous data sources such as
Microsoft Access or Oracle. The Replication Distributor Interface is primarily used by independent service vendors, or others
who need to develop a custom replication application based on proprietary data sources.

Scripting replication using Transact-SQL system stored procedures enables you to automate some replication tasks,
configure replication, and implement subscriptions on multiple servers. Stored procedures are frequently used in scripts
that can be run when configuring replication on multiple servers (for example, creating subscriptions to a publication on
multiple Subscribers).

Replication (SQL Server 2000)

Programming Replication with ActiveX Controls
Microsoft® ActiveX® controls allow custom applications to invoke replication agent functionality. The controls support all types
of subscriptions and can be monitored using SQL Server Enterprise Manager at the Distributor.

Programmers can use ActiveX controls for replication, similar to any standard built-in control. The controls provided are the SQL
Snapshot control, the SQL Distribution control, and the SQL Merge control.

The following list describes the benefits of using ActiveX controls for replication:

Replication can be part of your application intrinsically. For example, you can place a Synchronize Now command on a
menu that controls when a specified agent associated with the type of replication you are using runs.

An application can use a progress bar to provide feedback on the progress of the replication control.

An application can determine how to obtain login information (for example, hard-coded or interactive).

Replication controls can be embedded in applications, providing a way to distribute mobile applications without the
complexity of Subscriber setup.

Controls can be programmed to add or drop subscriptions and create or attach databases at the Subscriber.

An application can be programmed to register the synchronization of a subscription in Windows Synchronization Manager.

The client has no dependency on SQL Server Agent, which is responsible for executing jobs in addition to replication.

If you start a replication agent using SQL Server Agent, other jobs can also run. If you are replicating to heterogeneous
Subscribers using pull or anonymous subscriptions, SQL Server Agent is not available at the Subscriber.

ActiveX replication controls can be invoked from many programming environments, including Microsoft Visual Basic®,
Visual Basic Scripting Edition, Java, and Microsoft Visual C++®.

If a subscription is registered in Windows Synchronization Manager, there is often no need to embed the controls in the
application. All synchronization can then be controlled by this central application, if that meets the needs of your application.

For more information, see Developing Replication Applications Using ActiveX Controls.

Replication (SQL Server 2000)

Programming Replication with SQL-DMO
SQL Distributed Management Objects (SQL-DMO) allows you to control replication components for implementation,
administration, and monitoring. SQL-DMO encapsulates Microsoft® SQL Server™ 2000 components as objects. Using
programming languages, such as Microsoft Visual C++® or Microsoft Visual Basic®, you can write SQL-DMO applications based
on these objects and the properties and methods associated with the objects.

For example, a replication component can be a Distributor, and using SQL-DMO, you can program the SQL-DMO Distributor
Object to install a local distributor or configure remote distribution for a Publisher. You can then use the DistributionDatabase
Object to create a new distribution database or change the properties of a distribution database.

After distribution is configured, you can use the DistributorAvailable property to find out the state of a Distributor or the
Distribution Database property to identify the distribution database used at the Distributor.

For more information, see Developing SQL-DMO Applications.

Replication (SQL Server 2000)

Programming Replication with the Replication Distributor
Interface
The Replication Distributor Interface is an OLE DB service provider that allows heterogeneous data sources to publish data to
Microsoft® SQL Server™ Subscribers using snapshot replication or transactional replication. Often used as a component in third-
party tools, the Replication Distributor Interface allows heterogeneous Publishers to inherit the features of SQL Server replication
such as heterogeneous Subscribers, anonymous subscriptions, monitoring and troubleshooting tools in SQL Server Enterprise
Manager, alerts and notifications, and others.

You can program C++ applications to use the Replication Distributor Interface and store transactions published from databases
other than SQL Server. You can program the Distribution Agent and forward those transactions to Subscribers.

See Also

Replication and Heterogeneous Data Sources

Programming Replication from Heterogeneous Data Sources

Replication (SQL Server 2000)

Transact-SQL System Stored Procedures
Replication system stored procedures and replication agent executable files are documented and available as a method for
implementing replication in special circumstances or for use in batch files and scripts. In most cases, however, you are better
served by using the programming interfaces SQL-DMO and replication Microsoft® ActiveX® controls for programming
replication rather than writing direct calls to the system stored procedures.

An advantage to using scripts based on system stored procedures is that you can implement replication, create publications and
subscriptions on a server, generate the script automatically through SQL Server Enterprise Manager, and then use that script at
other servers to implement replication components. Executing a script can be faster and more efficient than manually performing
the same steps repeatedly using SQL Server Enterprise Manager.

For more information, see Scripting Replication.

Replication (SQL Server 2000)

Windows Synchronization Manager
Windows Synchronization Manager is a utility available with Microsoft® Windows® 2000 and anywhere Microsoft Internet
Explorer version 5.0 is installed. It allows you to synchronize or distribute data between instances of Microsoft SQL Server™ 2000
when using snapshot replication, transactional replication, or merge replication.

Windows Synchronization Manager is also a central location for synchronizing other applications including e-mail and offline
Web pages. You can use Windows Synchronization Manager to schedule synchronizations or instruct Windows to synchronize
selected items automatically when you log on or log off a computer, or when you undock a portable computer.

Windows Synchronization Manager allows you to:

Choose an alternate synchronization partner.

Add a new subscription.

Remove a subscription from Windows Synchronization Manager only.

Delete a subscription.

Reinitialize a subscription.

Reinitialize a subscription preceded by an upload of changes.

Change the update mode of an updatable subscription.

Attach a subscription database.

You can also use SQL Server Enterprise Manager to enable pull subscriptions for use in Windows Synchronization Manager, or
you can programmatically enable subscriptions for use in Windows Synchronization Manager by using replication Microsoft
ActiveX® Controls, SQL-DMO, or Transact-SQL system stored procedures.

For more information about Windows Synchronization Manager, see the Windows 2000 documentation.

Example

Northwind Traders is using merge replication so that the remote sales force can view and update customer and orders
information for their specific territories. In the Create Pull Subscription Wizard, the replication administrator could specify that the
Merge Agent updates the subscription only on demand. When sales representatives are working offline, they can view their data
and update customer and order information. When they reconnect to the Publisher, they can open Windows Synchronization
Manager, and click the Synchronize button to synchronize their updates with updates made at the Publisher and at other
Subscribers.

To open Windows Synchronization Manager

Windows

Windows NT

See Also

Synchronizing Data

Replication (SQL Server 2000)

Active Directory Services
Replication publications can be accessed using Active Directory™ Services on the Microsoft® Windows® 2000 operating system.
Through Active Directory, you can view replication objects, such as a publication, and, if allowed, subscribe to that publication.

Typically, if a user wants to subscribe to a publication, they must know the name of the instance of Microsoft SQL Server™ and the
database where the publication is published. Having publication information available in Active Directory allows users to browse
based on publication properties and, if allowed, to subscribe to publications using pull subscriptions. Users do not need to know
the server name and database where the publication is located.

Active Directory is a central component of the Windows 2000 operating system and provides a place to store information about
network-based entities, such as applications, files, printers, and people.

The properties listed in the Active Directory may not always be exactly the same as they are in SQL Server. If there is discrepancy
between the publication and attributes in the Active Directory and publication properties in SQL Server, the publication properties
in SQL Server are the correct settings to use. This also applies to database and server listings in the Active Directory.

Adding or Removing a Server Object to the Active Directory

Adding an instance of SQL Server object to the Active Directory requires a login with local administrator privileges on the server.
If the login used to register the instance of SQL Server does not have sufficient permissions, and the server is a local server, the
Connect to SQL Server dialog box is displayed requesting a login with the required permissions. If the login does not have
sufficient permissions, and the server is a remote server, an error message is displayed.

To add a SQL Server object to the Active Directory

1. On the SQL Server Properties dialog box, Active Directory tab, click Add.

2. After the SQL Server object is added, click Refresh to update the attributes of the instance of SQL Server object in the Active
Directory. (Clicking Refresh does not add new objects to the Active Directory; it only refreshes the attributes of the server
object).

To remove a SQL Server object from the Active Directory

On the SQL Server Properties dialog box, Active Directory tab, click Remove. Removing this SQL Server object from the
Active Directory also removes its databases and publications from the Active Directory.

To add or remove a SQL Server object from the Active Directory using Transact-SQL

Execute sp_ActiveDirectory_SCP and set @action='CREATE' to add to Active Direcotry or set @action='DELETE' to
remove from Active Directory.

Adding Publications as Active Directory Objects

After the SQL Server object is enabled for the Active Directory, you can add publications as Active Directory objects. To add
publications the SQL Server service account must have at least Power User privileges.

In Microsoft SQL Server 2000, only members of the sysadmin fixed server role can register databases or publications in Active
Directory; members of the dbowner fixed database role cannot.

To add a publication to the Active Directory

1. Right-click the publication, and then click Publication Properties.

2. On the General tab, select List this publication in the Active Directory. Or when you are creating a publication using the
Create Publication Wizard, on the Select Publication Name and Description page, select List this publication in the
Active Directory. If a Subscriber has access to the publication, you can subscribe to the publication using Active Directory.

To add a publication to Active Directory using Transact-SQL

For new publications, execute sp_addpublication or sp_addmergepublication and set
@add_to_active_directory='TRUE'.

For existing publications, execute sp_changepublication or sp_changemergepublication and set

@property=publish_to_ActiveDirectory, @value='TRUE'.

Browsing or Subscribing to Publications in Active Directory

You can browse publications in Active Directory and, if allowed, subscribe to publications using the Pull Subscription Wizard or
Windows Synchronization Manager.

Browsing or Subscribing to Publications in Active Directory Using the Pull Subscription Wizard

1. At the Subscriber, start the Pull Subscription Wizard, and then on the Look for Publication page, select Look at
publications in the Active Directory or specify publication information.

2. On the Specify Publication page, click the browse button (...) to browse for publications in Active Directory.

Browsing or Subscribing to Publications in Active Directory Using Windows Synchronization Manager

3. In Windows Synchronization Manager, double-click To create a subscription, and then select By browsing Active
Directory for publications.

4. On the Create Anonymous Subscription (Browse the Active Directory) dialog box, view the publication listed in Active
Directory or click the browse (...) button to browse for publications in Active Directory.

For more information, see the Windows 2000 Server documentation.

Replication (SQL Server 2000)

Implementing Replication
The following stages will help you implement replication, whether you are using snapshot replication, transactional replication, or
merge replication.

Stage Tasks
Configuring Replication Identify the Publisher, Distributor, and Subscribers in

your topology. Use SQL Server Enterprise Manager,
SQL-DMO, or Transact-SQL system stored procedures
and scripts to configure the Publisher, create a
distribution database, and enable Subscribers.

Publishing Data and Database
Objects

Create the publication and define the data and
database object articles in the publication, and apply
any necessary filters to data that will be published.

Subscribing to Publications Create push, pull, or anonymous subscriptions to
indicate what publications need to be propagated to
individual Subscribers and when.

Generating the Initial
Snapshot

Indicate where to save snapshot files, whether they are
compressed, and scripts to run before or after
applying the initial snapshot.

Specify to have the Snapshot Agent generate the
snapshot one time, or on a recurring schedule.

Applying the Initial Snapshot Apply the snapshot automatically by synchronizing
the subscription using the Distribution Agent or the
Merge Agent. The snapshot can be applied from the
default snapshot folder or from removable media that
can be transported manually to the Subscriber before
application of the snapshot.

Synchronizing Data Synchronizing data occurs when the Snapshot Agent,
Distribution Agent, or Merge Agent runs and updates
are propagated between Publisher and Subscribers.

For snapshot replication, the snapshot will be
reapplied at the Subscriber.

For transactional replication, the Log Reader Agent
will store updates in the distribution database and
updates will be propagated to Subscribers by the
Distribution Agent.

If using updatable subscriptions with either snapshot
replication or transactional replication, data will be
propagated from the Subscriber to the Publisher and
to other Subscribers.

For merge replication, data is synchronized during the
merge process when data changes at all servers are
converged and conflicts, if any, are detected and
resolved.

Replication (SQL Server 2000)

Configuring Replication
Configuring replication is the process of identifying Publishers, Distributors, and Subscribers across your enterprise, configuring
them for replication using Microsoft® SQL Server™ 2000 tools, and then later modifying or disabling replication if necessary.

The steps for configuring replication are:

1. Identifying a Distributor.

2. Creating a distribution database on the Distributor.

3. Enabling Publishers that will use the Distributor.

4. Enabling publication databases.

5. Enabling Subscribers that will receive published data.

For ease of implementation, you can use the Configure Distribution and Publishing Wizard, script configuration of distribution
and publishing using Transact-SQL system stored procedures, or SQL-DMO. After replication is configured, you can use the
Publisher and Distributor properties dialog box, Transact-SQL system stored procedures or SQL-DMO to modify the settings.

Replication (SQL Server 2000)

Publishers, Distributors, and Subscribers
Before you configure publishing and distribution, consider the roles and requirements of the servers in your replication topology.

Publisher

The Publisher is a server that makes data available for replication to other servers. In addition to being the server where you
specify which data is to be replicated, the Publisher also detects which data has changed and maintains information about all
publications at that site. Usually, any data element that is replicated has a single Publisher, even if it may be updated by several
Subscribers or republished by a Subscriber.

The publication database is the database on the Publisher that is the source of data and database objects to be replicated. Each
database used in replication must be enabled as a publication database either through the Configure Publishing and Distribution
Wizard, the Publisher and Distributor properties, by using the sp_replicationdboption system stored procedure, or by creating a
publication on that database using the Create Publication Wizard.

Distributor

The Distributor is a server that contains the distribution database and stores meta data, history data, and/or transactions. The
Distributor can be a separate server from the Publisher (remote Distributor), or it can be the same server as the Publisher (local
Distributor). The role of the Distributor varies depending on which type of replication you implement, and in general, its role is
much greater for snapshot replication and transactional replication than it is for merge replication.

Type of Replication Distributor role
Snapshot Replication or
Transactional Replication

Stores replicated transactions temporarily for
transactional replication.

Hosts most of the replication agents unless remote
agent activation or pull subscriptions are used.

Stores meta data and history data.

Merge Replication Stores meta data and synchronization history.

Hosts the snapshot agent and merge agent for
push subscriptions.

A Distributor may require additional resources to:

Store the snapshot files for a publication. The default snapshot folder location is on the Distributor; however, you can
change the default location or choose an alternate snapshot location. For more information, see Alternate Snapshot
Locations.

Host one or more distribution databases.

Host processing for most replication agents (for pull subscriptions, the Merge Agent or Distribution Agent runs at the
Subscriber). You can however, choose to offload agent processing. For more information, see Remote Agent Activation.

Remote Distributors

A remote Distributor is a computer that is physically separate from the Publisher and is configured as a Distributor of replication.
A local Distributor is a computer that is configured to be both a Publisher and a Distributor of replication.

When you create a publication, the default snapshot folder location is on the Distributor. If you use this default location, and you
use a remote Distributor, make sure the Snapshot Agent at the Publisher can access the snapshot folder. Without access, the
Snapshot Agent cannot write the snapshot files to the Distributor.

Similarly, if pull subscriptions access data on a remote Distributor, make sure the Distribution Agent or Merge Agent that runs on
the Subscriber has read permission on the snapshot folder if it is located on the Distributor.

Typically, you would choose to use a remote Distributor when you want to offload processing to another computer, when you
want minimal impact from replication on the Publisher (for example, if the Publisher is an OLTP server), or if you want a
centralized Distributor for multiple Publishers.

The Distributor could be configured as a separate instance of SQL Server and could therefore run as a remote Distributor on the
same computer as the Publisher, but this is not advised.

Subscribers

Subscribers are servers that receive replicated data. Subscribers subscribe to publications, not to individual articles within a
publication, and they subscribe only to the publications that they need, not necessarily all of the publications available on a
Publisher.

If you have applications using transactional replication built with Microsoft® SQL Server™ version 6.5 or later, and those
applications subscribe directly to articles instead of to publications, the applications will continue to work in SQL Server 2000.
However, you should begin to migrate your subscriptions to the publication level where each publication is composed of one or
more articles.

To configure publishing and distribution

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

To modify Publisher and Distributor properties

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

To add, modify or disable a Subscriber

Enterprise Manager

Enterprise Manager

SQL-DMO

Replication (SQL Server 2000)

Disabling Publishing and Distribution
Disabling publishing and distribution includes disabling the Distributor and Publishers, deleting the distribution database, and
deleting publications and subscriptions.

By using the Disable Publishing and Distribution Wizard, SQL-DMO, or scripts with Transact-SQL system stored procedures on
the Distributor, you can:

Delete all distribution databases on the Distributor.

Disable all Publishers that use the Distributor and delete all publications on those Publishers.

Delete all subscriptions to the publications. Subscription information at the Subscriber will not be deleted, and you should
delete it manually. Data in the publication and subscription databases will not be deleted; however, it loses its
synchronization relationship to any publication databases. If you want the data at the Subscriber to be deleted, you need to
delete it manually.

To disable publishing and distribution

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

Replication (SQL Server 2000)

Publishing Data and Database Objects
When creating a publication, you can choose the tables, filtered partitions of data, and database objects that you want to publish.

A table used in a snapshot or transactional publication can have a maximum of 255 columns and a maximum row size of 8,000
bytes. A table used in a merge publication can have a maximum of 246 columns and should have a maximum row size of 6,000
bytes, because conflict-tracking columns may consume up to 2,000 bytes. If row size exceeds 6,000 bytes in a merge publication,
conflict-tracking meta data may be truncated.

Horizontal, vertical, dynamic, and join filters enable you to create partitions of data to be published. By filtering published data,
you can:

Minimize the amount of data sent over the network.

Reduce the amount of storage space required at the Subscriber.

Achieve better security; the Subscriber sees only data that that they need to see.

Customize publications and applications based on individual Subscriber requirements.

Avoid conflicts because the different data partitions can be sent to different Subscribers (limiting the number of Subscribers
likely to be updating the same data values).

Restrict visibility of sensitive data to Subscribers. For example, the Employees table might be vertically filtered to exclude
the employee salary or review information because that is sensitive and might be information that is not necessary at the
Subscriber.

Horizontal (row) filters and vertical (column) filters are available for snapshot replication, transactional replication, and merge
replication. Dynamic and join filters are available for merge replication. However, by using transformable subscriptions, you can
create custom partitions for snapshot replication and transactional replication that are similar to dynamic partitions. For
information about creating filtered partitions of data, see Filtering Published Data. For information about dynamic partitions in
snapshot or transactional replication, see Using Transformable Subscriptions to Create Custom Data Partitions.

For information about the specific data types, see Data Needs and Characteristics and Planning for Each Type of Replication.

Note When you create a publication using an existing publication as the template, the Publication Access List (PAL) of the
original publication will not be copied to the second publication. You must re-create any PAL settings manually using publication
properties and the Publication Access List tab after the publication is created.

Publishing Database Objects

The following database objects can be published with Microsoft® SQL Server™ 2000 replication.

Database Object
Snapshot Replication or

Transactional Replication Merge Replication
Tables X X
Stored Procedures – Definition X X
Stored Procedures – Execution X
Views X X
Indexed Views X X
Indexed Views as Tables X
User-Defined Functions X X

When you publish these objects, their definitions are copied to Subscribers. When you add or drop columns to a publication
database, those changes to the definitions of the objects will be propagated to Subscribers. Changes to the definition of other
types of objects may not be copied to Subscribers automatically.

When you change data in a published table, or run a stored procedure published for execution, the data changes that are made
will be propagated to Subscribers.

If you are publishing a database object that references other database objects, you must publish all objects referenced by the

object. For example, the Products Above Average Price view on the Northwind database retrieves data from the PRODUCTS
tables. If you publish this view, you must also publish the PRODUCTS tables as part of the publication.

A publication containing a stored procedure definition might be replicated even if you do not publish the database objects that
the stored procedure references; however, when trying to execute that stored procedure at the Subscriber, you will get an error.
This occurs because of deferred name resolution, where object dependencies are checked when the stored procedure is executed
rather than when the stored procedure is created.

Publish ing Views, User-Defined Functions, Stored Procedure Defin itions, and Triggers

After you create views, user-defined functions, and stored procedure definitions in a database, they will appear as objects in the
Create Publication Wizard in the Specify Articles dialog box.

When you replicate these objects, the definitions are replicated as part of the initial snapshot applied at the Subscriber.
Subsequent changes to the definition of these objects are not copied automatically to Subscribers. However, replicating the
definition of these objects can provide a convenient mechanism for deploying these components of your application to
Subscribers.

When publishing indexed views that are not schema-only articles for snapshot replication or transactional replication, you do not
have to replicate the view as a table. When the view is published to the Subscriber, a table is created on the Subscriber that
contains the data the view is based upon. Indexing a view as a table at a Subscriber can be a convenient way of replicating the
contents of a view without requiring that each of the tables that comprise the view definition are replicated as well. An indexed
view published as a table article cannot be partitioned vertically using column filters.

Triggers are defined as part of a table and are published as a schema option when that table is replicated as part of a publication.
To publish triggers for a table article that is being published:

1. Right click a publication, and then click Properties.

2. On the Articles tab, click the properties button (...) for a specific table article.

3. In the Table Articles Properties dialog box, on the Snapshot tab, select the User triggers check box under Copy objects
to destination.

Note If you are publishing to a Subscriber running an earlier version of SQL Server, you are limited to the functionality of that
version. For example, you will not be able to publish views, user-defined functions, triggers and schema objects to Subscribers
running SQL Server 7.0.

Schema Objects

In addition to the database objects listed in the table earlier, you can also specify if you want schema objects to be copied, such as
declared referential integrity (primary key constraints, reference constraints, unique constraints), clustered indexes, nonclustered
indexes, user triggers, extended properties, and collation.

Encrypted Database Objects

Stored procedures, views, triggers, and user-defined functions that are marked with ENCRYPTION or WITH ENCRYPTION cannot
be published as part of SQL Server replication.

To create publications and define articles

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

SQL-DMO

SQL-DMO

To modify publications and articles

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

SQL-DMO

SQL-DMO

To delete publications and articles

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Publishing Stored Procedure Execution
If you include one or more stored procedures as articles in a snapshot or transactional publication, SQL Server 2000 can replicate
the execution of the stored procedures rather than the data changes caused by the execution of those stored procedures. This is
useful in replicating the results of maintenance-oriented stored procedures that may affect large amounts of data.

If replicated as a series of data manipulation language (DML) SQL statements, these procedures can require significant amounts
of network resources, distribution database space, and server processing time. Replicating the changes as one stored procedure
statement can greatly increase the efficiency of your application, but this feature should be used with care.

There are two different ways in which the execution of a stored procedure can be published:

Procedure execution article. Replicates the procedure execution to all Subscribers of the article. This occurs regardless of
whether individual statements in the stored procedure were successful. Furthermore, because changes made to data by the
stored procedure can occur within multiple transactions, data at the Subscribers cannot be guaranteed to be consistent with
data at the Publisher.

Serializable procedure execution article. Replicates the procedure execution only if the procedure is executed within the
context of a serializable transaction. If the stored procedure is executed from outside a serializable transaction, changes to
data in published tables are replicated as a series of DML statements. This behavior contributes to making data at the
Subscriber consistent with data at the Publisher. This is especially useful for batch operations, such as large cleanup
operations.

Procedure Execution Articles

If a stored procedure execution is replicated, no new data changes or procedure executions from the current connection are
replicated until that stored procedure finishes executing. For example, if a stored procedure that modifies data in a published table
is executed, and the procedure execution is replicated, the individual DML changes to the published table are not replicated.

Similarly, if a stored procedure that executes another published stored procedure is executed, and the execution is replicated, the
EXEC statement of the stored procedure called by the first procedure is not replicated. However, if a published stored procedure
modifies data within another database and the underlying table is replicated, those data changes are replicated as DML
statements.

By default, the stored procedure definition at the Publisher is propagated to each Subscriber. However, you can also define the
stored procedure logic to be different at a Subscriber. This is useful if you want different logic to be executed at the Publisher and
Subscriber. For example, consider sp_big_delete, a stored procedure at the Publisher that has two functions: it deletes 1,000,000
rows from the replicated table big_table1 and updates the nonreplicated table big_table2. To reduce the demand on network
resources, you should propagate the 1 million row delete as a stored procedure by publishing sp_big_delete and creating
subscriptions at the Subscribers. At the Subscriber, you can define sp_big_delete to delete only the 1 million rows and not
perform the subsequent update to big_table2.

Each time a published stored procedure is executed at the Publisher, the execution and the parameters passed to it for execution
are forwarded to each Subscriber to the publication.

For example, if you execute a stored procedure that contains actions on several different tables, only the execution of that
procedure (along with its parameters) is forwarded to each Subscriber. If you publish the underlying tables instead of the stored
procedure, each data modification (insert, update, or delete) generated by the procedure is marked for replication and forwarded
to each Subscriber. During the execution of a published stored procedure, SQL Server 2000 temporarily suspends marking
transactions or commands for replication within that procedure to avoid duplication of effort.

Stored procedure replication both reduces the volume of commands requiring forwarding to Subscribers and increases the
performance of your application by executing fewer dynamic SQL statements at each Subscriber.

For example, assume you created a stored procedure:

CREATE PROC give_raise AS
UPDATE EMPLOYEES SET salary = salary * 1.10

This procedure gives each of the 10,000 employees in your company a 10 percent pay increase. When you execute this stored
procedure at the Publisher, it updates the salary for each employee. Without stored procedure replication, the update is sent to
Subscribers as a large, multistep transaction:

BEGIN TRAN
UPDATE EMPLOYEES SET salary = salary * 1.10 WHERE PK = 'emp 1'
UPDATE EMPLOYEES SET salary = salary * 1.10 WHERE PK = 'emp 2'

And so on for 10,000 updates.

With stored procedure replication, SQL Server 2000 sends only the execution of the stored procedure:

EXEC give_raise

Important Stored procedure replication is not appropriate to all applications. If an article is filtered horizontally, so that there are
different sets of rows at the Publisher than at the Subscriber, executing the same stored procedure at both returns different
results. Similarly, if an update is based on a subquery of another, nonreplicated table that has different values at both the
Publisher and Subscriber, executing the same stored procedure at both returns different results.

To ensure that the same results are achieved at both the Publisher and Subscriber, the default behavior of SQL Server 2000 is to
send the resultant data changes as a series of singleton statements in a transaction.

Serializable Procedure Execution Articles

The following example illustrates why it is recommended that you set up replication of procedures as serializable procedure
articles.

BEGIN TRANSACTION T1
SELECT @var = max(col1) FROM tableA
UPDATE tableA SET col2 = <value>
 WHERE col1 = @var

BEGIN TRANSACTION T2
INSERT tableA VALUES
COMMIT TRANSACTION T2

In the previous example, it is assumed that the SELECT in transaction T1 happens before the INSERT in transaction T2.

If the procedure is not executed within a serializable transaction (for example, with isolation level set to SERIALIZABLE),
transaction T2 will be allowed to insert a new row within the range of the SELECT statement in T1 and it will commit before T1.
This also means that it will be applied at the Subscriber before T1. When T1 is applied at the Subscriber, the SELECT can
potentially return a different value than at the Publisher and can result in a different outcome from the UPDATE.

If the procedure is executed within a serializable transaction, transaction T2 will not be allowed to insert within the range covered
by the SELECT statement in T2. It will be blocked until T1 commits ensuring the same results at the Subscriber.

Locks will be held longer when you execute the procedure within a serializable transaction and may result in reduced
concurrency.

To replicate a stored procedure when it is executed inside a serializable transaction, in the article properties for the stored
procedure to be published, click the Other tab, and then select Only when it is executed inside a serializable transaction.

Using Transact-SQL system stored procedures, you can indicate that the stored procedure is to be replicated when it is executed
inside a serializable transaction by setting the @type parameter of sp_addarticle to a value of serializable proc exec.

Replication (SQL Server 2000)

Using Custom Stored Procedures in Articles
When the Log Reader Agent encounters an INSERT, UPDATE, or DELETE statement marked for replication in the transaction log of
a publication database, it usually reconstructs one row Transact-SQL statement from the recorded data changes. The Distribution
Agent then sends that reconstructed Transact-SQL statement to each Subscriber and applies the statement to the destination
table in each destination database. This is the default data replication mechanism used by Microsoft® SQL Server™ 2000 when
there are one or more heterogeneous Subscribers.

If all Subscribers are instances of SQL Server 2000, SQL Server 2000 can override the INSERT, UPDATE, and DELETE statements
from the transaction log with custom stored procedures at each Subscriber. For each published table, there are three ways you
can handle each type of statement (INSERT, UPDATE, or DELETE) detected by the Log Reader Agent. You can:

Leave the default replication mechanism in place.

Specify that no action will be taken at any Subscriber. Transactions of that type are not replicated. For example, if you select
Replace DELETE statements with this stored procedure and enter NONE, DELETE statements are not replicated for that
article.

Specify that a custom procedure be called at all Subscribers. When the Log Reader Agent encounters a statement of the
specified type (INSERT, UPDATE, or DELETE) in a transaction marked for replication, it constructs a stored procedure call
based on this syntax and passes column values to the referenced stored procedure. This is the default behavior for SQL
Server 2000 Subscribers.

About Custom Stored Procedures

Depending on the requirements of the application, the parameters of the stored procedures can be specified using:

CALL syntax

XCALL syntax

MCALL syntax

Each method differs in the amount of data that is propagated to the Subscriber. For example, MCALL will pass in values only for
the columns that are actually affected by the update, and a bitmask representing the changed columns and XCALL will pass in all
columns (whether affected by an update or not) and all the old data values for each column. This allows flexibility to application
developers with diverse requirements. When using XCALL, the before image values for text and image columns are expected to
be NULL.

To implement custom stored procedure–based replication for a published table, stored procedures must be created either by
replication or by the user. These custom stored procedures expect to receive and process these parameters:

call Syntax

INSERT stored procedures

Stored procedures handling INSERT statements will be passed the inserted values for all columns:

c1, c2, c3,... cn

UPDATE stored procedures

Stored procedures handling UPDATE statements will be passed the updated values for all columns defined in the article, followed
by the original values for the primary key columns:

c1, c2, c3,... cn, pkc1, pkc2,... pkcn

Note No attempt is made to determine which columns were changed.

DELETE stored procedures

Stored procedures handling DELETE statements will be passed values for the primary key columns:

pkc1, pkc2,... pkcn

mcall Syntax

UPDATE stored procedures

Stored procedures handling UPDATE statements will be passed the updated values for all columns defined in the article, followed
by the original values for the primary key columns, followed by a bitmask (binary(n)) parameter that indicates the changed
columns:

c1, c2, c3,... cn, pkc1, pkc2,... pkcn, bitmask

xcall Syntax

UPDATE stored procedures

Stored procedures handling UPDATE statements will be passed the original (the before image) values for all columns defined in
the article, followed by the update (the after image) values for all columns defined in the article.

old-c1, old-c2, old-c3,... old-cn, c1, c2, c3,... cn,

DELETE stored procedures

Stored procedures handling UPDATE statements will be passed the original (the before image) values for all columns defined in
the article.

old-c1, old-c2, old-c3,... old-cn

If you want your INSERT, UPDATE, or DELETE stored procedure to return an error when a failure status is encountered, you must
add a RAISERROR statement so that the Distributor will capture the failure status coming back. If the severity is greater than 12,
the Distributor stops the distribution process to that Subscriber. If this procedure definition is distributed as part of the article
schema definition file, it will be sent using ODBC. In this case, only single quotation marks (') can be used to define the
RAISERROR message string. The use of double quotation marks (") generates an error.

You can also program a custom stored procedure to skip specified errors. For more information, see Handling Agent Errors.

Indicate whether you want to use single quotation marks or double quotation marks when you specify article properties in the
Create Publication Wizard. You can also make this choice in the Properties dialog box for the article.

Replication (SQL Server 2000)

Subscribing to Publications
A subscription is the request for data or database objects to be published to a specific Subscriber. A Subscriber can have several
subscriptions to different publications.

A subscription defines what publication will be replicated, where and when. A subscription can be created either at the Publisher
(a push subscription) or at the Subscriber (a pull subscription). Push subscriptions are then created and synchronized at the
Publisher/Distributor and the synchronizing agent (Distribution Agent or Merge Agent) is typically run at the Distributor. Pull
subscriptions and anonymous subscriptions are created and synchronized at the Subscriber and the synchronizing agent is
typically run at the Subscriber.

When planning for subscriptions, consider where you want administration of the subscription to take place and where you want
agent processing to occur. The type of subscription you choose controls where the agent runs, but in some circumstances, using
remote agent activation, you can offload the synchronization agent processing to another server.

Additionally, be aware of publication and distribution database properties for subscription deactivation and expiration. For more
information, see Subscription Deactivation and Expiration.

Subscription Characteristics Use When
Push Subscription With a push subscription, the

Publisher propagates
changes to a Subscriber
without a request from the
Subscriber. Changes can be
pushed to Subscribers on
demand, continuously, or on
a scheduled basis. By default,
the Distribution Agent or
Merge Agent runs at the
Distributor.

Because a Subscriber must
explicitly be enabled at the
Publisher to receive a push
subscription, push
subscriptions are known as
named subscriptions.

Data will typically be
synchronized on demand or
on a frequently recurring
schedule.

Publications require near real-
time movement of data
without polling.

The higher processor
overhead at a Publisher using
a local Distributor does not
affect performance.

You need easier
administration from a
centralized location (the
Distributor).

The centralized Distributor will
establish the schedule on
which connections will be
made with remote,
occasionally connected
Subscribers.

Pull Subscription With a pull subscription, the
Subscriber requests changes
made at the Publisher. Pull
subscriptions allow the user
to determine when the data
changes are synchronized. By
default, the Distribution
Agent or the Merge Agent
runs at the Subscriber.

Because a Subscriber must
explicitly be enabled at the
Publisher to receive a push
subscription, pull
subscriptions are known as
named subscriptions.

Administration of the
subscription will take place at
the Subscriber.

The publication has a large
number of Subscribers (for
example, Subscribers using
the Internet), and when it
would be too resource-
intensive to run all the agents
at one site or all at the
Distributor.

Subscribers are autonomous,
disconnected, and/or mobile.
Subscribers will determine
when they will connect to the
Publisher/Distributor and
synchronize changes.

Data will typically be
synchronized on demand or
on a schedule rather than
continuously.

Anonymous
Subscription

An anonymous subscription
is a type of pull subscription.
Detailed information about
the subscription and the
Subscriber is not stored at
the Publisher when using an
anonymous subscription.

Instead, the Subscriber keeps
information about the
subscription and what the
data was when the
subscription was last
synchronized. This
information is then passed
on to the Distributor when
the next synchronization
occurs.

The Subscriber does not need
to be explicitly named at the
Publisher when using
anonymous subscriptions.

All of the rules for pull
subscriptions apply to
anonymous subscriptions.

Applications have a large
number of Subscribers.

You do not want the overhead
of maintaining extra
information at the Publisher
or Distributor.

If Subscribers use the Internet
to access publications.

Replication (SQL Server 2000)

Push Subscriptions
Push subscriptions can simplify and centralize subscription administration because you do not need to administer each
Subscriber individually. The Distribution Agent or Merge Agent runs at the Distributor when synchronizing a push subscription.
Push subscriptions are created at the Publisher, and the replication agents propagate data and updates to a Subscriber without a
request from the Subscriber. Changes can also be pushed to Subscribers on a scheduled basis.

Use push subscriptions when:

Data will typically be synchronized on demand or on a frequently recurring schedule.

Publications require near real-time movement of data without polling.

The higher processor overhead at a Publisher using a local Distributor does not affect performance.

You need easier administration from a centralized location (the Distributor).

The centralized Distributor will establish the schedule on which connections will be made with remote, occasionally connected
Subscribers. With push subscriptions, the Distribution Agent (for snapshot and transactional publications) or the Merge Agent (for
merge publications) runs at the Distributor. However, if you need to offload agent processing from the Distributor but retain
some of the benefits of easier administration, you can run the agent at the Subscriber. For more information, see Remote Agent
Activation.

Because remote agent activation is available, the determining factors to consider when setting up subscriptions is what type you
will need (push, pull, or anonymous) and where the replication agent will run.

Users who are members of the sysadmin or db_owner roles at that Subscriber can set up a push subscription. However, for a
member of the db_owner role to set up a push subscription, a member of the sysadmin role must register the Subscribers.

For a subscription to be created, you must have a publication at the Publisher and a subscription database at the Subscriber. You
can create the subscription database before creating the subscription, or specify a new subscription database in the Create Push
Subscription Wizard. You can create a push subscription for any Subscribers that are enabled in the Publisher and Distributor
properties.

Push subscriptions and pull subscriptions are known as named subscriptions because information about the subscription and the
Subscriber is stored at the Publisher, and performance information about the Subscriber is stored at the Distributor. This is in
contrast to anonymous subscriptions (which are a type of pull subscription) for which little or no information about the
subscription and the Subscriber is stored.

When you create a push subscription, you specify:

The name of the Subscriber.

The name of the subscription database.

Whether the Distribution Agent or Merge Agent runs at the Distributor (default) or at the Subscriber using remote agent
activation.

Whether the Distribution Agent or Merge Agent runs continuously, on a scheduled basis or on demand only.

If the Snapshot Agent should create an updated initial snapshot for the subscription and if the Distribution Agent or Merge
Agent should apply that snapshot at the Subscriber.

For snapshot or transactional publications that allow immediate updating or queued updating, the options that this
subscription will use (available if you enable advanced options in the Push Subscription Wizard).

For merge replication, the priority value for the changes made in the subscription database to be used during conflict
detection and resolution.

For snapshot replication and transactional replication, specify that the subscription will use immediate updating, queued
updating, or transform published data options (these must first be enabled when creating the publication).

Services that will be started to create the subscription.

To create a push subscription

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

To modify a push subscription

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

To delete a push subscription

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Pull Subscriptions
Pull subscriptions are created at the Subscriber, and the Subscriber requests data and updates made at the Publisher. Pull
subscriptions allow the user at the Subscriber to determine when the data changes are synchronized, which can be on demand or
scheduled.

Use pull subscriptions when:

Administration of the subscription will take place at the Subscriber.

The publication has a large number of Subscribers (for example, Subscribers using the Internet), and when it would be too
resource-intensive to run all the agents at one site or all at the Distributor.

Subscribers are autonomous, disconnected, and/or mobile. Subscribers will determine when they will connect to the
Publisher/Distributor and synchronize changes.

Data will typically be synchronized on demand or on a schedule rather than continuously. One feature of pull subscriptions is that
the Distribution Agent for snapshot and transactional publications and the Merge Agent for merge publications all run at the
Subscriber. This can result in a reduction of the amount of processing overhead on the Distributor. However, if you need the
Distribution Agent or Merge Agent to run at the Distributor, you can offload agent processing from the Subscriber.

For example, you might use this option if the Subscriber will determine when it is connected to the network and ready to
synchronize, but you want to run the agent at the Distributor to make use of better processing power at the Distributor. For more
information, see Remote Agent Activation.

Another feature of pull subscriptions is that members of the sysadmin or db_owner roles at the Subscriber decide which
publications are received and when. Each Subscriber can have subscriptions to multiple publications at different Publishers.

For a subscription to be created, you must have a publication at the Publisher and a subscription database at the Subscriber. You
can create the subscription database before creating the subscription, or specify a new subscription database in the Create Pull
Subscription Wizard. You can create a pull subscription to any publication that has been enabled for pull subscriptions on a
registered Publisher.

When you create a pull subscription, you specify:

The name of the subscription database.

Whether the Snapshot Agent should create an initial snapshot and the Distribution Agent or Merge Agent should apply that
snapshot at the Subscriber.

The location of the snapshot files to apply when initializing the subscription.

The priority of the subscription for merge.

For snapshot replication and transactional replication, specify that the subscription will use immediate updating, queued
updating, or transform published data options (these must first be enabled when creating the publication).

Whether the Distribution Agent or Merge Agent runs continuously, on demand, or on a scheduled basis.

Services that will be started to create the subscription.

Push subscriptions and pull subscriptions are known as named subscriptions because information about the subscription and the
Subscriber is stored at the Publisher and performance information about the Subscriber is stored at the Distributor. This is in
contrast to anonymous subscriptions (which are a type of pull subscription) for which information about the subscription and the
Subscriber is not stored.

When you create a pull subscription and a push subscription for the publication already exists for the Subscriber, an error
message informs you that the push subscription already exists and that you should drop any push subscriptions before
proceeding. When you create a pull subscription, and another pull subscription to the same publication already exists, you will be
required to drop the existing subscription before adding the new one unless the first subscription has expired.

To create a pull or anonymous subscription

Enterprise Manager

Enterprise Manager

SQL-DMO

SQL-DMO

To view or modify pull or anonymous subscriptions

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

To delete a pull subscription

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Anonymous Subscriptions
All the rules for pull subscriptions apply to anonymous subscriptions. An anonymous subscription is a type of pull subscription
for which detailed information about the subscription and the Subscriber is not stored. Initiated at the Subscriber, the Subscriber
is responsible for keeping an anonymous subscription synchronized.

Use anonymous subscriptions when:

Applications have a very large number of Subscribers.

You do not want the overhead of maintaining extra information at the Publisher or Distributor.

If Subscribers use the Internet to access publications.

A defining factor for deciding to use anonymous subscriptions with snapshot replication and transactional replication is the clean
up of the distribution database. The distribution database is cleaned up by the Distribution Clean Up Agent, which by default is
scheduled to run every 10 minutes. The Distribution Clean Up Agent removes replicated transactions from the distribution
database; however, if you are using anonymous subscriptions, the transactions are kept for the retention period of the
subscription to given anonymous subscriptions time to synchronize.

With merge, the significant factor affecting scale relates to whether or not Subscribers know about other Subscribers. Meta data is
stored for all global subscriptions in the Sysmergesubscriptions system table. Information can be viewed about all Subscribers,
the Publisher, and any global subscriptions to publications to which they are subscribed.

If you enable anonymous subscriptions for the publication, the user creating the pull subscription can specify that the subscription
should be anonymous in the Create Pull Subscription Wizard, by using Windows Synchronization Manager or in the stored
procedure.

To create a pull or anonymous subscription

Enterprise Manager

Enterprise Manager

Windows

Windows NT

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

To view or modify pull or anonymous subscriptions

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

To delete an anonymous subscription

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Applying the Initial Snapshot
After a publication and subscription have been created, you need to create and transfer an initial snapshot to the Subscriber. The
snapshot transfers schema and data to the Subscriber, as well as constraints, extended properties, indexes, triggers and system
tables necessary for replication.

The snapshot consists of different files depending on the type of replication and the articles in your publication. The files can be
viewed using the Snapshot Explorer. For more information, see Exploring Snapshots.

Type of Replication Common Snapshot Files
Snapshot Replication or
Transactional
Replication

schema (.sch); data (.bcp); constraints and indexes (.dri);
constraints (.idx).

Merge Replication schema (.sch); data (.bcp); constraints and indexes (.dri);
triggers (.trg); system table data (.sys); conflict tables (.cft)

Applying the initial snapshot can take additional time if you are transferring a large amount of data over the network, or if you
have a slow link. In that case, you may want to consider saving the snapshot to removable media and transferring it to
Subscribers manually.

Additionally, SQL Server 2000 has improved performance of applying the initial snapshots with: the ability to compress
snapshots; concurrent snapshot processing for transactional replication; and dynamic snapshot for merge publications that use
dynamic filters. For more information, see Improving Performance While Generating and Applying Snapshots.

Replication (SQL Server 2000)

Generating the Initial Snapshot
Snapshots can be created:

Manually by running the Snapshot Agent after creating the publication.

Automatically when the publication is created by selecting Create the first snapshot immediately on the Set Snapshot
Agent Schedule page in the Create Publication Wizard.

At a scheduled time, as specified by the Snapshot Agent Schedule page in the Create Publication Wizard.

By default, snapshots are saved in the default snapshot folder located on the Distributor. On a Distributor running Microsoft®
Windows NT® version 4.0 or Windows 2000, the snapshot folder defaults to using the <drive>$ share and a path of \\
<computer>\<drive>$\Program Files\Microsoft SQL Server\Mssql\Repldata.

On a Distributor running the Microsoft Windows 98 operating system, the snapshot folder defaults to using the <drive> without
a share and a path of \\<computer>\<drive>\Program Files\MicrosoftSQL Server\Mssql\Repldata. If your application requires
the ability to create pull subscriptions on a server running the Windows 98 operating system, you must change the snapshot
folder to a network path accessible by replication agents running at the Publisher and Subscribers. You can change the local path
to a network path by sharing the folder.

Important The <drive>$ share is a special administration-only share, and you will not be able to grant rights to it; only
administrators on the computer can access it. It is recommended that you change the default snapshot location to a network
location or shared folder that the Subscriber can access. This also applies if you are going to allow pull or anonymous
subscriptions because remote Subscribers or Subscribers over the Internet will rarely be administrators. You can test the
Subscriber connection to the snapshot folder by mapping a network drive in Windows Explorer at the Subscriber.

You can also save snapshot files on removable media such as removable disks, CD-ROMs, or in locations other than in the default
snapshot folder on the Distributor, such as File Transfer Protocol (FTP) servers. Additionally, you can view and transfer the
snapshot files using the Snapshot Explorer, compress the files so that they are easier to store and transfer, and execute scripts
before or after snapshot synchronization.

To view or modify the default snapshot folder location

Enterprise Manager

Enterprise Manager

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Alternate Snapshot Locations
Alternate snapshot locations enable you to store snapshot files in a location other than, or in addition to, the default location,
which is often located on the Distributor. Alternate locations can be on another server, on a network drive, or on removable media
such as CD-ROMs or removable disks.

Saving snapshot files in an alternate location can alleviate disk overhead on the Distributor, offers an administrative advantage,
and allows you to transfer files using removable media.

Alternate snapshot locations are stored as a property of the publication. You can view this information in the publication
properties on the Snapshot Location tab. Because the alternate snapshot location is a publication property, the Distribution
Agent and the Merge Agent are able to locate the proper snapshot as part of the synchronization process. However, if you change
the alternate location after creating the initial snapshot, the Distribution Agent and the Merge Agent may not be able to find the
alternate location and you may have to reinitialize the snapshot.

Subscribers running earlier versions of Microsoft® SQL Server™ cannot use the alternate snapshot location. Therefore, continue
to use the default snapshot location to store snapshot files for those Subscribers.

If you want to specify an alternate snapshot folder location or if you want to compress snapshot files, create the publication
without creating the initial snapshot immediately, set the publication properties for the snapshot location, and then run the
Snapshot Agent for that publication.

Note Do not specify an alternate location in publication properties that is the same as the default snapshot folder location. You
will receive an error message, and should specify a different alternate location or use the default location.

You can also increase the availability of replication when using failover clustering by saving the snapshot files to a share on a
server running Microsoft Cluster Server. For more information, see Failover Clustering .

To specify alternate snapshot locations

Enterprise Manager

Enterprise Manager

SQL-DMO

Replication (SQL Server 2000)

Compressed Snapshot Files
When snapshot files are too large to fit on removable media or require transmission over slow networks, compressing the
snapshot files is an option. Compressing snapshot files can reduce network traffic but it increases the time to generate and apply
the snapshot.

Compression writes data in the Microsoft® CAB file format. You can compress snapshot files when you are saving them to an
alternate location or when Subscribers are accessing them using FTP. Snapshot files written to the default snapshot folder on the
Distributor cannot be compressed.

Disk Space Requirements

The amount of space required for a single snapshot can be affected by several factors including the size and number of articles
published. You can create snapshot files in the default snapshot folder on the Distributor and in an alternate location.
Compressing the snapshot files in the alternate location can reduce the overall space required.

When snapshot files are created in both the default directory and in an alternate location on the same drive, each file is created
initially in the default directory and then copied to the alternate location. If you are using compressed snapshot files, the files are
copied and compressed before they are placed in the alternate snapshot location. The total space required for all snapshot files in
this situation is the size of the original snapshot files in the default location, plus the size of the compressed snapshot files in the
alternate location.

If the alternate storage location is on a different drive than the default location, the space required at the default location is the
size of the snapshot files. The space required at the alternate location is the total size of the compressed snapshot files.

When using only the alternate snapshot location, the Snapshot Agent writes files directly to that location. After the Snapshot
Agent generates the files, the files are compressed by the CAB utility and become part of the compressed snapshot file with the
extension .cab. After each file is compressed successfully and included in the compressed snapshot (.cab) file, the original,
noncompressed file is deleted. The space required in the alternate location is the size of the last file in the default snapshot
location (usually a .bcp file) plus the size of the compressed snapshot (.cab) file.

When the Subscriber receives a compressed snapshot file, the file is written initially to a temporary location. The default client
working directory can be used, or an alternate location can be specified in the subscription properties. After the compressed
snapshot file is copied to the Subscriber, the file is decompressed, in order, one file at a time by the CAB utility.

The uncompressed files are read by either the Merge Agent or the Distribution Agent and then executed or applied to the
Subscriber. As each file is applied successfully, it is deleted and the next file in the snapshot directory is decompressed. Space
required at the Subscriber is the size of the compressed snapshot file plus the largest uncompressed file.

To compress and deliver snapshot files

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Exploring Snapshots
Exploring snapshots allows you to use Windows Explorer to review or customize current snapshot files or copy them to another
location. After the Snapshot Agent has created the snapshot files containing the schema and data of published tables, the files are
stored in the snapshot folder on the Distributor or an alternate location. You can then use the Windows Explorer to view and
transfer these snapshot files.

Note You may not see a snapshot for named Subscribers that have received synchronization objects. In this case, the Distribution
Cleanup Agent may have removed all the contents of the directory. When viewing snapshots for Subscribers with named
subscriptions, you may not see a current snapshot if snapshot processing has not completed or the Snapshot Agent has not
generated a new snapshot file for that Subscriber.

To browse and copy snapshot files

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

Replication (SQL Server 2000)

Transferring Snapshots
Before a new Subscriber can receive incremental changes from a Publisher, it must contain tables with the same schema and data
as the tables at the Publisher. After the snapshot is created at the Publisher and stored, you need to transfer the snapshot to the
Subscriber, either using Microsoft® SQL Server™ 2000 replication agents or manually.

SQL Server Applies the Initial Snapshot

When SQL Server 2000 applies the snapshot to Subscribers, either the Distribution Agent (for snapshot replication and
transactional replication) or the Merge Agent (for merge replication) applies the schema and data files to the subscription
database on the Subscriber.

Unless you are using transactional replication with concurrent snapshot processing, share locks are held while the snapshot is
generated so a full, logical, and consistent set of data is produced. This means that while the data can be queried, it cannot be
updated during the time it takes to generate the snapshot. To minimize any inconvenience to your operations, always plan to
generate a snapshot when updates are minimal. If you are using transactional replication, concurrent snapshot processing allows
you to continue data modifications while the snapshot is generated. For more information, see Improving Performance While
Generating and Applying Snapshots.

For merge replication, the process is similar to concurrent snapshot processing for transactional replication because locks are in
place only for the duration of the copy of the merge contents table. The tables are not locked when the snapshot is being bulk
copied and updates at the publication database are not prevented for the duration of the entire snapshot.

When snapshots are distributed and applied to Subscribers, only those Subscribers waiting for initial or new snapshots are
affected. Other Subscribers to that publication (those that are already receiving inserts, updates, deletes, or other modifications to
the published data) are unaffected.

You can specify that SQL Server 2000 should initialize the schema and data on the Initialize Subscription page in the Create Push
Subscription or Create Pull Subscription Wizard.

When the first synchronization occurs (which you specify to occur immediately in the subscription wizards), the Distribution
Agent or Merge Agent applies the initial snapshot and then proceeds to propagate updates and other data modifications.

Applying the Snapshot M anually

If the publication is large, it may be more efficient to load the snapshot from a compact disc, or other storage device.

For example, if you have a 20 GB database, it may be easier and faster to dump the database to removable media, express courier
it to the Subscriber location, and reload the database instead of sending the file over a slow network. If you decide to load the
snapshot this way, SQL Server 2000 will not synchronize the published articles with the destination tables.

For this example to work effectively in merge replication, you must have pre-created and populated the ROWGUIDCOL column
or have already run the Snapshot Agent at the Publisher. Applying the snapshot is still required so that system tracking data and
objects necessary for merge replication are at the Subscriber.

It is recommended that you use attachable subscription databases when you need to apply a large snapshot rather than using a
combination of standard and dynamic snapshots and alternate snapshot locations with compression. For more information, see
Attachable Subscription Databases.

With SQL Server 2000, you can store snapshots in a location other than or in addition to the default location, and you can browse
snapshot folders, so it is easier to view, copy and move snapshot files.

To apply the snapshot manually, you can:

Save the snapshot files to removable media such as a compact disc, tape device, or removable disk and then send the media
to the Subscriber location.

Base the initial snapshot off a database dump.

You can specify that the Subscriber already have the schema and data on the Initialize Subscription page in the Create Push
Subscription or Create Pull Subscription Wizard.

The Distribution Agent or Merge Agent then assumes that the Publisher and Subscriber are already synchronized, and starts
sending inserts, updates, deletes, or other modifications to the published data immediately.

If a current snapshot is not already waiting, SQL Server will wait until the next time the Snapshot Agent runs according to its

schedule (by default, that is once a day at 1 A.M.) before applying the snapshot to the new Subscriber.

If you create a publication and enable it for anonymous subscriptions or if you specify that the snapshot should be retained in the
snapshot location (both of these are options in the Create Publication Wizard), the snapshot will run at its scheduled time and it
will be retained in the snapshot location. If you do not choose one of these options, the snapshot will not be retained, therefore,
when a new Subscriber attempts to synchronize for the first time, it will have to wait until the next time a snapshot is generated to
have the snapshot applied.

Replication (SQL Server 2000)

Attachable Subscription Databases
The attachable subscription databases feature allows you to transfer a database with published data and subscriptions from one
Subscriber to another. After the database is attached to the new Subscriber, the database at the new Subscriber will automatically
receive its own pull subscriptions to the publications at those Publishers.

Attachable subscription databases requires the following steps:

1. Configuring a publication to allow copying.

2. Copying the subscription database.

3. Transferring and attaching the subscription database to a new Subscriber.

Subscription databases copied and attached to other Subscribers can contain multiple pull subscriptions for multiple publications
using snapshot replication, transactional replication, or merge replication. Attachable Subscription databases are not compatible
with heterogeneous databases or instances of Microsoft® SQL Server™ version 6.5. This feature is not available with push
subscriptions.

Replication (SQL Server 2000)

Configuring a Publication to Allow Copying
Configuring a Publication to Allow Copying

To use attachable subscription databases, you must first configure subscription options for each publication that propagates data
to a Subscription database that will be copied. These options allow new subscriptions to be created after the subscription
database is attached to a different Subscriber.

Important After you create a subscription to the publication, you cannot change the subscription options. If you want to use
attachable subscription databases, configure the subscription options for the publication before creating subscriptions.

To configure a publication to allow copying of subscription databases

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Copying a Subscription Database
Copying a Subscription Database

After you have configured the subscription options in the publication, created, and synchronized a pull subscription to a
subscription database, you can copy the subscription database.

The copy of the subscription database includes data, views, stored procedures, user-defined functions, schema, and all objects that
are not replicated that comprise the database. Only subscription databases that are contained in one, primary file group can be
copied. You must synchronize at least one subscription to the subscription database before copying.

During the copy process, a compressed Microsoft Subscription File (.msf) is created. The .msf file contains subscription
information up to the last synchronization of the subscription database.

When creating the .msf file, save the file to a location. The file can then be picked up and transferred over the network, transferred
using removable media, or attached to an e-mail message.

To copy a subscription database

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Attaching a Subscription Database
Attaching a Subscription Database

After copying the subscription database and saving it as an .msf file, you can transfer and attach it to any Subscriber. When you
attach it to the new Subscriber, the file is decompressed and then attached. You must have database owner permissions to attach
a subscription database to a new Subscriber.

Merge replication .msf files are valid only for the retention period set for those publications, and transactional replication .msf files
are valid only for the maximum retention period of the distribution database. If a subscription expires, new snapshot files must be
generated and the subscription reinitialized.

If the subscription database has subscriptions to publications that allow queued updating with auto identity range articles, you
will need to run the distribution agents to obtain new identity ranges on the Subscriber after attaching the subscription database.
If the subscription database has subscriptions to merge publications, you will need to run the merge agents on the Subscriber
after attaching the subscription database to prevent conflicts.

Note Detaching a database created with SQL Server 7.0 with subscriptions to transactional replication and attaching it on a
server running SQL Server 2000 is not recommended. If this is required, run sp_vupgrade_subscription_databases, a system
stored procedure in the master database, to upgrade the replication schema after attaching the database.

The procedures for attaching a subscription database are different depending on whether you are using anonymous or named
subscriptions.

Replication (SQL Server 2000)

Attaching Databases with Named Subscriptions
Attaching Databases with Named Subscriptions

For subscriptions that are not anonymous, you must enable the Subscriber so it can receive data from the Publisher, attach the
subscription database, and add the subscription at the Publisher using SQL-DMO or stored procedures. You can add the
subscription at the Publisher before or after attaching the database.

To enable a Subscriber to receive published data

Enterprise Manager

Enterprise Manager

To attach a subscription database with named subscriptions

Enterprise Manager

Enterprise Manager

See Also

AttachSubscriptionDatabase Method

Replication (SQL Server 2000)

Attaching Databases with Anonymous Subscriptions
Attaching Databases with Anonymous Subscriptions

After the subscription database is attached to the new Subscriber, the subscriptions to the original publications will be generated
automatically. This allows the synchronization process to begin immediately for anonymous subscriptions. If you are using
anonymous subscriptions, you do not need to enable the Subscriber.

To attach a subscription database with anonymous subscriptions

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Improving Performance While Generating and Applying
Snapshots
Depending on the amount of data in your publication and your network connection and resources, applying the initial snapshot to
Subscribers can be time- and resource-consuming. Concurrent snapshot processing for transactional replication, dynamic
snapshots (merge replication) and the –UseInprocLoader property have been added to Microsoft® SQL Server™ 2000 to
improve performance while generating the initial snapshot and applying it at Subscribers.

Concurrent Snapshot processing for Transactional Replication

Typically, with snapshot generation, SQL Server places shared locks on all tables published as part of replication for the duration
of snapshot generation. This can prevent updates from being made on the publishing tables. Concurrent snapshot processing,
available only with transactional replication, does not hold the share locks in place during the entire snapshot generation, thus
allowing users to continue working uninterrupted while SQL Server 2000 creates initial snapshot files.

When you create a new publication using transactional replication and indicate that all Subscribers will be instances of SQL Server
7.0 or SQL Server 2000, concurrent snapshot processing is enabled automatically.

For more information, see How Transactional Replication Works.

Snapshot Processing for Merge Replication

For merge replication, the process is similar to concurrent snapshot processing for transactional replication because locks are in
place only for the duration of the copy of the merge contents table. The tables are not locked when the snapshot is being bulk
copied and updates at the publication database are not prevented for the duration of the entire snapshot.

Dynamic Snapshots

Dynamic snapshots provide a performance advantage when applying the snapshot of a merge publication with dynamic filters. By
using SQL Server 2000 bulk copy programming files to apply data to a specific Subscriber instead of a series of INSERT
statements, you will improve the performance of applying the initial snapshot for dynamically filtered merge publications.

For more information, see Dynamic Snapshots.

Add a ROWGUIDCOL to M erge Publications

By planning ahead and creating a column that can be used to help track changes during merge replication, you will avoid the
sometimes significant time (and disk and log) decrease in performance that could occur from waiting for the Snapshot Agent to
alter the tables for you.

Merge replication requires that each published table have a ROWGUID column. If a ROWGUID column does not exist in the table
before the Snapshot Agent creates the initial snapshot files, the agent must first add and populate the ROWGUID column. To gain
a performance advantage when generating and applying snapshots during merge replication, create the ROWGUID column on
each table published during merge replication. When creating the column, specify:

The column title as ROWGUID.

The data type as UNIQUEIDENTIFIER.

The default as NEWID().

The ROWGUIDCOL property.

An index on the column.

The ROWGUID column is used frequently for relating to merge tracking data during tracking and synchronization of changes
made at the Publisher and at Subscribers.

-UseInProcLoader

The –UseInprocLoader agent property improves performance of the initial snapshot for snapshot replication, transactional

replication, and merge replication.

When you apply this property to either the Distribution Agent (for snapshot replication or transactional replication) or the Merge
Agent (for merge replication), the agent will use the in-process BULK INSERT command when applying snapshot files to the
Subscriber.

The –UseInprocLoader property cannot be used with character mode bcp, and it cannot be used by OLE DB or ODBC
Subscribers.

Important When using the –UseInprocLoader property, the SQL Server 2000 account under which the Subscriber is running
must have read permissions on the directory where the snapshot .bcp data files are located. When the –UseInprocLoader
property is not used, the agent (for heterogeneous Subscribers) or the ODBC driver loaded by the agent (for SQL Server 2000
Subscribers) reads from the files, so the security context of the Subscriber SQL Server 2000 account is not used.

To set the –UseInprocLoader property

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Executing Scripts Before and After the Snapshot is Applied
You can specify scripts to execute necessary procedures at the Subscriber before or after snapshot synchronization. Possible uses
of executing scripts before or after synchronization could be to create logins at each Subscriber, to create user-defined data types
at the Subscriber so that data with those data types can be replicated, or to update statistics after snapshot synchronization.

When a file location and script name entry is specified, the Snapshot Agent copies the script files to the current snapshot folder
each time snapshot processing occurs. The Distribution Agent or Merge Agent will run the pre-snapshot script before any of the
replicated object scripts when applying an initial synchronization. The Distribution Agent or Merge Agent will run the post-
snapshot script after all the other replicated object scripts and data have been applied during an initial synchronization. The script
is run by launching the osql utility. Test your script by running it with osql to be sure it executes as expected. It is recommended
that you make sure that the contents of scripts that are executed before and after the snapshot is applied are repeatable and can
be executed more than once. If you need to reinitialize a subscription for which the script has already been applied, the script will
be applied again when the new snapshot is applied during reinitialization.

If you are compressing the snapshot file (by putting it in CAB file format), the scripts are also compressed and placed in the CAB
file. After the compressed snapshot file is transferred to the Subscriber and decompressed to a working directory on the
Subscriber, any scripts indicated as a pre-snapshot script will be executed. Likewise, any post-snapshot script will be
decompressed and executed at the Subscriber as the last step in applying the snapshot. After initial synchronization is complete
and script files run successfully, the script files are removed from the working directory on the Subscriber.

Important You can execute scripts when applying the snapshot to Subscribers running SQL Server 7.0 if you use push
subscriptions and the Distributor is running SQL Server 2000. You cannot execute scripts when applying the snapshot to
Subscribers running SQL Server 7.0 if you use pull subscriptions or anonymous subscriptions. With pull subscriptions, the agent
is created and run on the Subscriber. Agents in SQL Server 7.0 do not have the capability of running scripts while applying the
snapshot. However, if you use push subscriptions, the agent is run at the Distributor by default. If the Distributor is running SQL
Server 2000, the agent running there will be able to execute the scripts before and after applying the snapshot.

To execute scripts before and after the snapshot is applied

Enterprise Manager

Enterprise Manager

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Reinitializing Subscriptions
When a subscription is marked for reinitialization, the snapshot schema and data are applied at the Subscriber after the next time
the Snapshot Agent prepares a snapshot and Distribution Agent (for snapshot replication or transactional replication) applies it or
the Merge Agent (for merge replication) runs.

For example, merge replication Subscribers update data based on the original snapshot provided to them unless you mark the
subscription for reinitialization. When you mark the subscription for reinitialization, the next time the Merge Agent runs, it will
apply the most recent snapshot to the Subscriber.

By default, a new snapshot is applied at the Subscriber as the first step on the next synchronization after it is marked for
reinitialization. This means that any changes made at the Subscriber, but not yet synchronized with the Publisher, will be
overwritten by the application of the new snapshot. Merge replication provides an option that can preserve the changes made at a
Subscriber for which subscriptions are being reinitialized.

If you have a subscription to a merge publication, you can choose to have all the data changes uploaded from the Subscriber
before the snapshot is reapplied. Any updates that have been made at the Subscriber since the last synchronization will be
propagated to the Publisher before the snapshot is reapplied.

If you created a subscription and indicated no initial snapshot was to be applied to the Subscriber (specifying in the Create Push
Subscription or Create Pull Subscription Wizard that the Subscriber already has the schema and data), and you reinitialize the
subscription, the most recent snapshot will be applied to the Subscriber.

This functionality ensures that Subscribers have data and schema identical to data and schema at the Publisher. To prevent the
reapplication of the snapshot to the Subscriber, drop the subscription specified with no initial snapshot synchronization and then
re-create it after the reinitialization of any other Subscribers.

Reinitialization of push subscriptions is administered at the Publisher, while reinitialization of pull subscriptions is administered at
the Subscriber.

Note At this stage, it is easy to confuse reinitialize with synchronize. Reinitialize marks the subscription. The next time the
subscription is synchronized (the Distribution Agent or Merge Agent runs), the snapshot will be reapplied at the Subscriber.

To reinitialize a subscription

Enterprise Manager

Enterprise Manager

SQL-DMO

Replication (SQL Server 2000)

Synchronizing Data
Synchronizing data refers to the process of data being propagated between Publisher and Subscribers after the initial snapshot
has been applied at the Subscriber. When a subscription is synchronized, different processes occur depending on the type of
replication you are using and whether the subscription has been marked for reinitialization.

For snapshot replication, synchronize means to reapply the snapshot at the Subscriber so that schema and data at the
subscription database is consistent with the publication database. For transactional replication, synchronizing data means that
data updates, inserts, deletes, and other modifications are distributed between Publisher and Subscribers. For merge replication,
synchronization means that data updates made at multiple sites are merged, conflicts (if any) are detected and resolved, and data
eventually converges to the same values.

The Distribution Agent and the Merge Agent move changes to data that occur at the Publisher or at Subscribers. For consistency,
Microsoft® SQL Server™ 2000 replication uses the term synchronize to refer to when one of these replication agent runs.

Snapshot Replication Synchronization

When a subscription to a snapshot publication is synchronized, the Distribution Agent (using distrib.exe or the Distribution
ActiveX® Control) runs and the most recent snapshot will be applied at the Subscriber. If modifications to data have been made, a
new snapshot will need to be generated before the new data can be applied to the Subscriber.

Transactional Replication Synchronization

When a subscription to a transactional publication is synchronized, the Distribution Agent (using distrib.exe or the Distribution
ActiveX Control) runs and UPDATE, INSERT and DELETE statements that have been logged at the Distributor are propagated to the
Subscriber.

If the subscription has been marked for reinitialization, the Snapshot Agent and Distribution Agent must run so that a new
snapshot is generated and propagated to Subscribers.

Merge Replication Synchronization

Synchronization occurs when Publishers and Subscribers in a merge replication topology reconnect using the Merge Agent
(replmerg.exe or the Merge ActiveX Control) and updates are propagated between sites, and if necessary, conflicts detected and
resolved. At the time of synchronization, the Merge Agent sends all changed data to the other sites. Data flows from the originator
of the change to the sites that need to be updated or synchronized.

At the destination database, updates propagated from other sites are merged with existing values according to extensible and
flexible conflict detection and resolution. A Merge Agent evaluates the arriving and current data values, and any conflicts between
new and old values are resolved automatically based on the default resolver (a resolver you specified when creating the
publication or a custom resolver).

Changed data values are replicated to other sites and converged with changes made at those sites only when synchronization
occurs. Synchronizations can occur minutes, days, or even weeks apart. Data is converged and all sites eventually end up with the
same data values. However, if conflicts were detected and resolved, it means that work that was committed by some users was
altered or undone to resolve the conflict according to your defined policies.

Synchronizing Schema Changes

Microsoft® SQL Server™ 2000 supports limited schema changes to an existing publication database. You can add columns to and
drop columns from a published table without dropping and re-creating the publications and subscriptions referencing that table.

Replication of schema changes is supported for snapshot replication, transactional replication, and merge replication. Column
additions and deletions are implemented at the table level and propagated to all Subscribers that receive data from that table.

For more information, see Schema Changes on Publication Databases.

On Demand Script Execution

On demand script execution allows you to post a SQL script, and then during the distribution or merge process, the script can be
executed at all Subscribers to a specific publication.

On demand script execution is available for snapshot replication, transactional replication, and merge replication.

To specify a script to run for all Subscribers to a snapshot, transactional or merge publication, execute sp_addscriptexec. The

next time the Distribution Agent or Merge Agent runs, the script will execute at each Subscriber.

The following parameters need to be specified when executing sp_addscriptexec.

Parameter Data Type Description
@publication sysname Specifies a valid publication. Required. No

default.
@scriptfile nvarchar(8000) Specifies the UNC path where the SQL script is

located. Required. No default.

On demand script execution copies the script to the replication working directory and then uses osql.exe to apply the script at the
Subscriber. If there is a failure when applying the script for snapshot or transactional publications, the Distribution Agent will stop.
The sp_addscriptexec system stored procedure has an additional parameter, @SkipError, to specify whether the Distribution
Agent should stop if an error is encountered (@SkipError = 0) or if the error should be logged and the Distribution Agent should
continue (@SkipError = 1).

To synchronize a push or pull subscription

Enterprise Manager

Enterprise Manager

To synchronize an anonymous subscription

Windows

Windows

To view and resolve merge synchronization conflicts

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Scripting Replication
You can script commonly performed replication functions such as configuring publishing and distribution, and creating or
deleting publications and subscriptions. After you configure or create a replication component, you can automate the creation of a
script by using SQL Server Enterprise Manager.

The script contains the Transact-SQL system stored procedures necessary to implement the replication component. Composed
primarily of a series of stored procedures, you can view, execute, and/or modify and run the script using SQL Query Analyzer or
osql.

You can choose to script creation or deletion of one or a combination of the following:

Distributor properties

Publications and push subscriptions

Pull subscriptions

If you need to delete multiple push subscriptions or a mix of push and pull subscriptions, you can automate the process by
creating a script to delete the publication. All subscriptions to the publication will be deleted with the publication. If you are
deleting pull subscriptions, you can generate a script that deletes one or more pull subscriptions without deleting the publication.

Example

Northwind Traders decides to implement merge replication to distribute data to its remote sales force. A sales representative will
be able to download all the data that pertains to the customers in their territory when they need it by using pull subscriptions.
When working offline, they can update data and enter new customers and orders. When they reconnect and synchronize with the
Publisher, their updates will be propagated to the Publisher and other Subscribers, and conflicts (if any) will be detected and
resolved.

Because Northwind Traders has more than 50 sales representatives in different territories, it would be time-consuming to create
the different subscriptions needed at each Subscriber. Instead, the replication administrator can set up the necessary merge
publications (with static or dynamic partitions based on the sales representative or their territory), and then create a pull
subscription, generate a script based on that pull subscription, and then run that script at multiple Subscribers to generate the
necessary pull subscriptions.

To script replication

Enterprise Manager

Enterprise Manager

SQL-DMO

Replication (SQL Server 2000)

Schema Changes on Publication Databases
Microsoft® SQL Server™ 2000 supports common schema changes to an existing publication database. You can add columns to,
and drop columns from, a published table without dropping and recreating the publications and subscriptions referencing that
table.

Schema changes can be replicated during snapshot replication, transactional replication, and merge replication. Column additions
and deletions are implemented at the table level and propagated to all Subscribers that receive data from that table. For snapshot
replication, the schema change is propagated when a new snapshot is reapplied at the Subscriber. For transactional replication
and merge replication, the schema change is propagated incrementally when the Distribution Agent or Merge Agent runs.

Important Schema changes to a published table must be made only through the replication publication properties dialog box in
SQL Server Enterprise Manager or through replication stored procedures. Do not make schema changes to published tables using
the SQL ALTER TABLE statements in a tool such as SQL Query Analyzer or by using SQL Server Enterprise Manager visual
database tools. Changes made to the schema of a published table using these tools will not be propagated to Subscribers.

It is recommended that you back up the publication database after making schema changes or using
sp_mergecleanupmetadata. This will ensure that you can recover the publication database in its correct state if there is a failure
of the Publisher.

Adding Columns

You can add a column:

To an article in one or more publications.

Here, you add a column and apply the schema change immediately to one or more existing publications; the change is
propagated to the Subscribers of those publications.

To the underlying table, without including it in the published article.

You may want to make a schema change to the underlying table but not to the published article. For example, if you want to
add a column that includes sensitive or proprietary data, this choice allows you to make a schema change without
propagating the information to Subscribers. This option also lets you defer inclusion of a new column in a published article
until a later date.

To a published article, using a column that exists in an underlying table.

Whenever you add a column to a transactional publication, the appropriate ALTER TABLE statement (or sp_repladdcolumn or
sp_repldropcolumn if the table is republished at the Subscriber) will be propagated and run at the Subscribers to complete the
schema changes at the subscription databases.

Reinitialization of the subscription is necessary only when you add an existing column to a published article. When creating a new
column and immediately adding it to a published article, a reinitialization is not required. This is because the Merge Agent re-
executes the sp_repladdcolumn stored procedure (or sp_repldropcolumn for the dropping of a column), including all of its
original syntax, at each affected Subscriber at the time of the next synchronization. The Distribution Agent re-executes the ALTER
TABLE statement if the destination table is not republished at the Subscriber, otherwise, it re-executes the sp_repladdcolumn or
sp_repldropcolumn, including all the original syntax, at each affected Subscriber at the time of the next synchronization.

When you add a column to the publishing table, but do not include the column in a publication, no further action is required.
However, if you add the column to a publication later, subscriptions to the publication will need to be reinitialized for all types of
publications. To avoid reinitializing subscriptions, add the column to the published article immediately, instead of waiting to add it
to an existing article.

Additional Considerations

When defining the new column through the replication user interface or through replication stored procedures, you must do one
of the following:

Allow NULL values for the new column.

Specify a default value for the column.

Adding Articles to a M erge Publication

When you add articles to a merge publication, a reinitialization of existing subscriptions is not required for the new article schema
and data to be propagated to Subscribers. When adding an article to a merge publication for which there are active subscriptions,
you must run the Snapshot Agent after adding the article before any Subscribers can synchronize. If the publication already has
subscriptions, Subscribers will receive the schema and data for the new article based on this snapshot the next time they
synchronize. The Merge Agent will then synchronize any data changes for the subscription.

When adding an article to a publication that has active subscriptions, you can filter the article using a subset filter clause without
requiring that subscriptions be reinitialized. However, you cannot add any join filter clauses to a publication that has active
subscriptions without also reinitializing all subscriptions to the publication.

When adding the article using Publication Properties in SQL Server Enterprise Manager, you will receive a message indicating
that subscriptions will be prevented from synchronizing until a new snapshot has been generated for the publication. When you
apply the changes, you will be advised to run the Snapshot Agent immediately.

If you are using stored procedures to add articles, you must authorize the addition of the article to a publication by setting
@force_invalidate_snapshot=1 in sp_addmergearticle. You should then run the Snapshot Agent for the publication
immediately.

Whether you use Publication Properties in SQL Server Enterprise Manager or stored procedures, you can defer running the
Snapshot Agent, but you must run it before any existing subscriptions to the changed publication can synchronize and receive the
new schema and data.

Dropping Columns

When dropping a column from a published article, take into consideration any constraints or properties of the column that could
affect the database.

You cannot drop columns with primary key or unique constraints, and you cannot drop UNIQUEIDENTIFIER (or
ROWGUIDCOL) columns, which are used by the replication agents.

The column to be dropped cannot be used in the filter clauses of any article of any publication in the database.

Other types of constraints, such as foreign key and check constraints, will not prevent you from dropping a column.
However, for most constraints, you are prompted with a warning message identifying the constraints on a column and
requesting validation before you can drop the column. After you confirm the action, SQL Server 2000 drops all constraints
on the column, and then drops the column.

Note Replication does not warn you of every possible dependency related to a column that is being dropped. If a column you are
considering dropping is referenced by a constraint on another column, SQL Server 2000 does not inform you of the dependency
and you are allowed to drop the column. Therefore, you should have a thorough understanding of the underlying database
schema and use caution before dropping a published column.

How Schema Changes are Applied

After adding or dropping a column on the publishing table in merge replication, the schema change will be propagated to
Subscribers the next time the subscription is synchronized. In transactional replication, the schema change will be propagated to
Subscribers the next time the Log Reader Agent and the Distribution Agent run. When adding a new article or reinitializing an
existing article to a transactional publication using concurrent snapshot processing, when the Snapshot Agent starts, the
Distribution Agent stops to wait for the synchronization process including the time it takes for the Snapshot Agent and Log
Reader Agent to run. When the synchronization is complete, the Distribution Agent will resume.

By default, in transactional replication, the custom stored procedures will be re-created at the Subscriber automatically. The
current snapshot with old schema information is invalidated by default for all types of replication.

If you do not want the custom stored procedures to be re-created at the Subscriber after a schema change to a transactional
publication, you should specify that when creating the publication.

Note When columns are added to or dropped from a publication that allows transformations on published data, the DTS
packages will need to be regenerated.

To disable automatic creation of custom stored procedures during initial synchronization (transactional replication):

1. In the Create Publication Wizard, on the Specify Articles page, select the articles you want to publish, and for a specific table
article, click the properties (...) button associated with that table article.

2. On the Commands tab, clear the Create the stored procedures during initial synchronization of subscriptions check
box.

To change default properties for forcing reinitialization and invalidation of the current snapshot (transactional
replication):

Execute sp_repladdcolumn or sp_repldropcolumn with a value of 1 for the @force_reinit_subscription parameter. When
set equal to 1, schema changes commands will not be propagated to Subscribers. All subscriptions affected by the schema
change will be reinitialized except for nosync subscriptions, for which no action is taken.

Execute sp_repladdcolumn or sp_repldropcolumn with a value of 0 for the @force_invalidate_snapshot parameter.
When set equal to 0, current snapshot with previous schema information is still available in case it is needed. This parameter
affects only publications created with the immediate_sync option.

Applying Schema Changes to Specific Publications

Usually, schema changes flow to all Subscribers and republishers when included in an article. You can optionally select the
publications on which to add a column, and the schema change will be propagated only to Subscribers of those
publications.

When dropping a column, all publications and Subscribers are affected; you cannot selectively implement the change on a
specific publication.

To apply schema changes on publication databases

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Implementing Replication Over the Internet
Replicating data over the Internet allows remote, disconnected, and anonymous users to access data when they need it using a
connection to the Internet. Ways to replicate data over the Internet using Microsoft® SQL Server™ 2000 include:

Using a Virtual Private Network (VPN) included with the Microsoft Windows NT® Server version 4.0 operating system or
the Microsoft Windows® 2000 Server operating system, as well as offered by several third parties.

Integrating replication with Microsoft Proxy Server.

Using TCP/IP and File Transfer Protocol (FTP) to access data live on the Internet (if there is no firewall or proxy server used).

Replication (SQL Server 2000)

Publishing Data Over the Internet Using VPN
Virtual Private Networking (VPN) technology allows users working at home, branch offices, remote clients, and other companies
to connect to a corporate network over the Internet, while maintaining secure communications. Using VPNs is the most secure
method for publishing data over the Internet. Users can use Windows Authentication as though they were on a Local Area
Network (LAN).

VPNs include client software so that computers connect over the Internet (or in special cases, even an intranet) to software in a
dedicated computer or a server. Optionally, encryption at both ends as well as user authentication methods keep data safe. The
VPN connection over the Internet logically operates as a Wide Area Network (WAN) link between the sites.

A VPN connects the components of one network over another network. This is achieved by allowing the user to tunnel through
the Internet or another public network (using a protocol such as Microsoft Point-to-Point Tunneling Protocol (PPTP) available with
the Microsoft® Windows NT® version 4.0 or Microsoft Windows® 2000 operating system, or Layer Two Tunneling Protocol
(L2TP) available with Windows 2000). This process provides the same security and features previously available only in a private
network.

For the user, the intermediate routing infrastructure of the Internet is not visible, and it appears as though the data is being sent
over a dedicated private link. As far as users are concerned, the VPN is a point-to-point connection between the user computer
and a corporate server.

After you have your remote client configured to connect using a VPN, and the client has Internet access and is logged in to the
corporate LAN, you can configure replication as though the remote client is connected directly on the LAN. For security reasons, it
is possible to have different network resources available to users connected over VPN and to those connected directly on the LAN.

For more information about setting up VPN, see Virtual Private Networks in the Windows 2000 documentation.

Replication (SQL Server 2000)

Publishing Data Over the Internet Using Microsoft Proxy Server
Integrating Microsoft® SQL Server™ 2000 replication with Microsoft Proxy Server allows for replication over the Internet with
security configured on the Microsoft Windows NT® version 4.0 or Microsoft Windows® 2000 Server operating systems, Proxy
Server, and SQL Server 2000.

Using this approach, Proxy Server provides a connection between the Internet and the server where data is stored in SQL Server
2000. The Subscriber connects to Proxy Server over the Internet and uses a pull subscription to receive the data. Proxy Server is
configured so that unauthorized Internet users cannot gain access to internal network resources, and the Subscriber must connect
to a port on the Proxy Server that limits Subscriber access only to the services where permission is been granted.

For information about how to configure Microsoft Proxy Server for replication, search for the white paper titled Configuring Proxy
Server for SQL Server Replication at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&o1=red

Replication (SQL Server 2000)

Publishing Data Over the Internet Using TCP/IP and FTP
Microsoft® SQL Server™ 2000 can use the TCP/IP Sockets or the Multiprotocol Net-Libraries over TCP/IP to establish an ODBC
connection between the Publisher or Distributor and the Subscriber. You can then configure the publication and pull subscriptions
or anonymous subscriptions to access the FTP site where the data will be replicated.

Configuring your application for Internet publishing requires:

Configuring a Publisher or Distributor to listen on TCP/IP.

Configuring a publication to allow Subscribers to retrieve snapshots using FTP.

Creating a subscription to use FTP for retrieving snapshots.

Configuring a subscription agent to use TCP/IP.

Replication (SQL Server 2000)

Configuring a Publisher or Distributor to Listen on TCP/IP
Configuring a Publisher or Distributor to Listen on TCP/IP

Before you can publish articles over the Internet, the servers where the Publisher and Distributor are located must be enabled to
listen on either TCP/IP or Multiprotocol network protocol. Microsoft® SQL Server™ 2000 uses the TCP/IP Sockets or the
Multiprotocol Net-Libraries over TCP/IP to establish an ODBC connection between the Publisher or Distributor on one side of the
Internet and the Subscriber on the other. In pull or anonymous subscriptions to transactional publications, the Distribution Agent
executes at the Subscriber and connects through the Internet to the Distributor to synchronize. In pull or anonymous
subscriptions to merge publications, the Merge Agent executes at the Subscriber and connects through the Internet to the
Publisher and Distributor to synchronize.

The TCP/IP Sockets Net-Library is enabled by default during the typical SQL Server 2000 Setup, but may not have been enabled if
you performed a custom installation. You can specify the FTP paths and ports as the snapshot folder location under Publication
Properties so that a server already configured as an FTP site is used as the snapshot folder location. Or you can set the snapshot
folder to be the FTP home directory (by default, \Microsoft SQL Server\Mssql\Repldata\Ftp) and configure the FTP home directory
as an FTP site.

To specify FTP information

Enterprise Manager

Enterprise Manager

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Configuring a Publication to Allow Subscribers to Retrieve
Snapshots Using FTP
Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP

After you have completed configuring your servers to listen on the TCP/IP or Multiprotocol connection, you are ready to configure
your publications for publishing over the Internet. Any publication you create can be enabled for Internet publishing by setting the
@enabled_for_internet property on the publication. Setting @enabled_for_internet to TRUE tells the Snapshot Agent to place
the files associated with the initial snapshot into the FTP location specified in Publication Properties.

The Distribution Agent or Merge Agent uses FTP to download the snapshot of the schema and data to the Subscriber. The image
of the entire publication flows to the destination database where it is re-created as an exact duplicate. After the snapshot files
arrive at the Subscriber, the agent applies the files to the appropriate tables at the Subscriber. The agent moves through each
table taking out exclusive locks on a set of rows, copying in the new rows, releasing the locks on the rows, and then repeating the
process on the next blocks of rows. Because the agent locks only a small number of rows at one time, other users should be able
to continue using the tables with minimal disruption.

You can configure a publication through SQL Server Enterprise Manager by selecting Allow snapshots to be downloaded
using FTP on the Subscriptions Option tab of the publication Properties dialog box. You can also set the
@enabled_for_internet property programmatically through the replication stored procedures that support replication over the
Internet:

sp_addpublication

sp_addmergepublication

sp_changemergepublication

sp_helpmergepublication

To publish data over the Internet

Transact-SQL

Transact-SQL

SQL-DMO

SQL-DMO

Replication (SQL Server 2000)

Configuring a Subscription to Use FTP to Retrieve a Snapshot
Configuring a Subscription to Use FTP to Retrieve a Snapshot

After a publication has been enabled for publishing on the Internet, you must create a pull or anonymous subscription to the
publication. Subscriptions using the Internet are created the same way as other subscriptions. The only difference in subscribing
to a Publication over the Internet is that you must also configure the FTP addressing properties (FtpAddress, FtpPassword,
FtpPort, and FtpUserName) for the Distribution Agent or Merge Agent to use.

You can configure the FTP addressing through SQL Server Enterprise Manager on the Snapshot Location tab in Publication
Properties.

Replication (SQL Server 2000)

Replication Between Different Versions of SQL Server
Because you can upgrade servers running instances of Microsoft® SQL Server™ 2000 one at a time, you may have circumstances
where servers in your replication topology are running different versions of SQL Server. You can replicate between different
versions of SQL Server, but you are often limited to the functionality of the earliest version used.

For example, if you upgrade a Distributor to an instance of SQL Server 2000, but you have a Publisher running an instance of SQL
Server version 7.0, and a Subscriber running an instance of SQL Server version 6.5, you are limited to the replication functionality
of SQL Server 6.5 and unable to use features introduced in SQL Server 7.0 or SQL Server 2000. To use the new functionality,
upgrade all servers used for replication to SQL Server 2000.

Features available in SQL Server 2000 are not supported with Subscribers running earlier versions of SQL Server. For example, if
a merge publication contains features valid only in SQL Server 2000, and you use a push subscription to a Subscriber running
SQL Server 7.0, backward compatibility is checked, and the Merge Agent will fail and display an error message indicating that the
Subscriber does not meet the compatibility level. If a transactional publication contains features valid only in SQL Server 2000,
and you use a push subscription to a Subscriber running SQL Server 7.0, backward compatibility is not checked, and the
Distribution Agent may fail with an error message not related to backward compatibility, or the Distribution Agent may succeed,
but transactional processing will fail at another point..

If a publication has active subscriptions to Subscribers running earlier versions of SQL Server, and you add a feature to the
publication that is valid only for SQL Server 2000, the Merge Agents or Distribution Agents for the SQL Server 7.0 subscriptions
will fail. Even if the SQL Server 2000 feature is installed, the agents will not run successfully. You must delete the subscription and
re-create the publication and subscription.

Following are the different combinations of SQL Server versions you can have in a replication topology. When using SQL Server
6.5, you must have SQL Server Service Pack 4 or later installed, and when using SQL Server 7.0, you must have SQL Server
Service Pack 1 or later installed. SQL Server version 6.0 can be used as an ODBC Subscriber in snapshot replication or
transactional replication, but it cannot be a Publisher.

This table lists the combinations for snapshot replication and transactional replication.

 Combination 1 Combination 2 Combination 3
Publisher SQL Server 6.5 SQL Server 7.0 SQL Server 2000
Distributor SQL Server 6.5 or SQL

Server 7.0
SQL Server 7.0 or SQL
Server 2000

SQL Server 2000

Subscriber SQL Server 6.0, SQL
Server 6.5, SQL Server
7.0, or SQL Server
2000

SQL Server 6.0, SQL
Server 6.5, SQL Server
7.0, or SQL Server
2000

SQL Server 6.0, SQL
Server 6.5, SQL
Server 7.0, or SQL
Server 2000

This table lists the combinations for merge replication.

 Combination 1 Combination 2 Combination 3
Publisher SQL Server 7.0 SQL Server 2000 SQL Server 2000
Distributor SQL Server 2000 SQL Server 2000 SQL Server 2000
Subscriber SQL Server 7.0 SQL Server 7.0 SQL Server 2000

See Also

Replication and Upgrading

Replication (SQL Server 2000)

SQL Server 7.0 Publisher/Distributor to SQL Server 6.5
Subscriber
You can implement replication from a Microsoft® SQL Server™ version 7.0 Publisher/Distributor to a SQL Server 6.5 Subscriber
using either SQL Server Enterprise Manager or stored procedures. Both creating the publication and creating the subscription are
subject to certain restrictions.

Creating a Publication

When you create a SQL Server 7.0 publication that has SQL Server 6.5 subscriptions, the following restrictions apply:

Replicated tables cannot contain any Unicode or uniqueidentifier data types.

Replicated tables cannot have names longer than 30 characters.

The name of the custom stored procedure cannot be longer than 21 characters. When creating a transactional publication
that has only SQL Server 6.5 Subscribers, the Create Publication Wizard defaults to using custom stored procedures to
apply transactions at the Subscriber. This configuration is applied to each article in a publication. The name of the
insert/update/delete stored procedures to be created and called at the Subscriber defaults to the table name, with a prefix of
sp_Msins_, sp_Msupd_, or sp_Msdel_. If a published table name is longer than 21 characters, this prefix causes the custom
stored procedure name to be too long to be created on a SQL Server 6.5 Subscriber. The work around is to change the
default custom stored procedure names so that they are 30 characters or less. This is done by going to the Commands tab
on the property page for each article in the publication and changing the name of the custom stored procedure.
Alternatively, you can choose not to use custom stored procedures at the Subscriber, or set up subscriptions using stored
procedures (sp_addarticle), where it is more efficient to override the defaults.

Creating a Subscription

Before creating a subscription from a SQL Server 7.0 Publisher to a SQL Server 6.5 Subscriber, you must run Replp70.sql at the
Subscriber, and then execute sp_addpublisher70 at the Subscriber. sp_addpublisher70 registers the SQL Server 7.0 Publisher
at the SQL Server 6.5 Subscriber (a necessary step for SQL 6.x replication). Replp70.sql is located in the \Microsoft SQL
Server\Mssql\Install directory. sp_addpublisher70 takes two parameters: @publisher and @dist_account. @publisher is the
name of the SQL Server 7.0 Publisher. @dist_account is the domain account name that SQL Server Agent runs under at the SQL
Server 7.0 Distributor. For example, the syntax may look as follows:

EXEC sp_addpublisher70 'PUBSERV', 'REDMOND\repladmin'

It is also necessary to enable a SQL Server 6.5 subscribing database for replication. This can be done through the SQL Server
Enterprise Manager in SQL Server 6.5, or by executing:

EXEC sp_dboption <dbname>, 'subscribed', true

SQL Server 7.0 replication supports push subscriptions to SQL Server 6.5 servers, but does not support pull subscriptions from
SQL Server Enterprise Manager 6.5. To configure a push subscription to a SQL Server 6.5 Subscriber, you must first register the
Subscriber at the Publisher. You can do this using the SQL Server Enterprise Manager in SQL Server 7.0, or executing
sp_addsubscriber.

Note Subscribers running SQL Server 6.5 do not support nullable bit columns, so NULL values in bit columns published by a
Publisher running SQL Server 7.0 or SQL Server 2000 cannot be represented at the Subscriber. If you have Subscribers running
SQL Server 6.5 and you need to use nullable bit columns, use custom stored procedures to change incoming NULL values to 0.

Replication (SQL Server 2000)

SQL Server 7.0 Publisher/Distributor to SQL Server 6.0
Subscriber
Replication from a Microsoft® SQL Server™ version 7.0 Publisher/Distributor to a SQL Server 6.0 Subscriber is implemented in
much the same way as to a SQL Server 6.5 Subscriber. The only difference is that the SQL Server 6.0 Subscriber must be
configured as an ODBC data source rather than as a native SQL Server Subscriber.

Replication (SQL Server 2000)

SQL 6.5 Publisher/Distributor to SQL Server 7.0 Subscriber
Microsoft® SQL Server™ version 7.0 can act as a Subscriber to a SQL Server 6.5 Publisher. You must add the SQL Server 7.0
Server as a Subscriber at the SQL Server 6.5 publishing server.

This action will also add an entry in the console tree of SQL Server Enterprise Manager. This is for replication purposes only, and
you cannot administer this server using SQL Server Enterprise Manager in SQL Server 6.5. If you click this server in the console
tree, the following warning message will be returned (and can be ignored for replication purposes):

A connection cannot be established to <SERVER> - (SQL Server)
You must upgrade your SQL enterprise Manager and SQL-DMO (SQLOLE)
to version 7.0 (SQLDMO) to connect to this server

You cannot use the replication topology or pull subscription features of SQL Server Enterprise Manager in SQL Server 6.5 to
manage the SQL Server 7.0 Subscriber.

If you did not upgrade the ODBC driver at the Distributor (thus using the SQL Server 6.5 ODBC driver), you may encounter a login
failure when the Distribution Agent connects to the SQL Server 7.0 Subscriber. You should upgrade the ODBC driver to
successfully start the SQL Server 7.0 Subscriber.

When pushing a subscription from a SQL Server 6.5 Publisher to a SQL Server 7.0 or SQL Server 2000 Subscriber, the Subscriber
login and password should be specified in the Distribution Agent parameters.

Replication (SQL Server 2000)

SQL Server 6.5 Publisher to SQL Server 7.0 Distributor
It is possible to configure a Microsoft® SQL Server™ version 6.5 Publisher to use a SQL Server 7.0 installation as a remote
Distributor. This topology provides a way to stagger the upgrade of SQL Server installations participating in a replication
application. In addition, when using a SQL Server 7.0 Distributor to service a SQL Server 6.5 Publisher, you can use the
monitoring capability of SQL Server 7.0 replication.

You can configure a SQL Server 6.5 Publisher to use a SQL Server 7.0 Distributor by registering the SQL Server 6.5 Server in SQL
Server Enterprise Manager 7.0 and configuring it as a Publisher.

Replication (SQL Server 2000)

Replication with SQL Server 2000 Windows CE Edition
Using Microsoft® SQL Server™ 2000 and merge replication, you can publish data to mobile devices running SQL Server 2000
Windows CE Edition (SQL Server CE). Merge replication is suited for replication with mobile, disconnected Subscribers because it
allows updates to be made at the Subscriber while the Subscriber is disconnected from the network and the Publisher. Later,
when the device is reconnected, the changes made at the Subscriber can be merged with other changes made at the Publisher
and at other Subscribers.

Replication with SQL Server CE is possible with merge publications using anonymous subscriptions. Administration of the
subscription is conducted at the Subscriber, and information about the Subscriber running SQL Server CE and the subscription is
not stored at the Publisher.

How Replication to SQL Server CE Works

Publishing to Subscribers running SQL Server CE is similar to publishing to other types of Subscribers using anonymous
subscriptions.

Create a merge publication, and on the Specify Subscriber Types page of the Create Publication Wizard, select Servers running
SQL Server CE as a type of Subscriber that can subscribe to this publication. If you select this option, anonymous subscriptions
will be enabled for the publication automatically.

A SQL Server CE application can subscribe to the publication using the SQL Server CE Replication Object. When the subscription
is created, the initial snapshot is applied to create the subscription database on the device running SQL Server CE.

Users can modify data in the subscription database online or offline. When reconnected, the data modifications made at the
Subscriber are sent to the Publisher and merged with changes made at the Publisher and at other Subscribers. Changes made at
the Publisher or propagated to the Publisher since the last synchronization are sent to the Subscriber.

The SQL Server CE Replication Object, within SQL Server CE, controls the execution of the SQL Server Merge Agent to complete
synchronization. If conflicts occur because of changes to the same data, it will resolve the conflicts using the conflict resolvers you
chose when creating the publication.

For more information, see the SQL Server CE documentation.

See Also

Anonymous Subscriptions

Merge Replication

Replication (SQL Server 2000)

Replication with SQL Server 2000 Desktop Engine (MSDE 2000)
Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) is a redistributable version of the SQL Server 2000 relational
database engine. MSDE 2000 supports replication, but has a number of limitations. This topic describes those limitations. For
information on managing replication with MSDE 2000, see Managing Replication with MSDE 2000.

Limitations for replicating data with MSDE 2000

The following limitations are specific to replication:

MSDE 2000 can act as a Subscriber for all types of replication, and can act as a Publisher and Distributor for merge
replication and snapshot replication. It cannot act as a Publisher or Distributor for transactional replication.

You cannot use remote Distributors with MSDE 2000. An MSDE 2000 Publisher must use the same server as the Distributor.

In all editions of SQL Server other than MSDE 2000, the folder "Repldata" is created at MSSQL or MSSQL$InstanceName.
Replication uses this folder as the default snapshot location. The folder is not created during MSDE 2000 Setup. If you
attempt to set up a publication that uses the default snapshot location, you get an error. To use the default snapshot
location, create a Repldata folder under the MSSQL or MSSQL$InstanceName folder, and then create the publication.

The following limitations are MSDE 2000 limitations that can impact replication:

MSDE 2000 limits the size of the database to 2 gigabytes (GB). If MSDE 2000 is part of the replication topology, the size of
the replicated database is limited to 2 GB. If MSDE 2000 is the Subscriber, replication agents fail after the database exceeds
2 GB. At that point, consider upgrading the Subscriber to SQL Server Standard Edition.

MSDE 2000 includes a workload governor, which starts slowing down the database engine when more than eight
operations are actively running at the same time. The workload governor can affect replication performance. In an active
replication environment where there are a large number of Subscribers, Microsoft recommends that you use either SQL
Server Standard Edition or Enterprise Edition as the Publisher or Distributor instead of MSDE 2000.

MSDE 2000 Licensing

MSDE 2000 does not require any licensing when used in a stand-alone mode. If you use it as part of a replication topology
involving other SQL Server editions that use the Per Seat mode of licensing rather than Per Processor mode, each MSDE 2000
Subscriber must have a Client Access License (CAL). For more information on licensing, see this Web page.

See Also

Understanding SQL Server 2000 Desktop Engine (MSDE 2000)

The SQL Server 2000 Workload Governor

http://go.microsoft.com/fwlink/?LinkId=20023

Replication (SQL Server 2000)

Managing Replication with SQL Server 2000 Desktop Engine
(MSDE 2000)
In other editions of Microsoft® SQL Server™, replication is typically managed with SQL Server Enterprise Manager. You can only
use SQL Server Enterprise Manager with MSDE if you acquired MSDE through SQL Server 2000 (Developer Edition, Standard
Edition, or Enterprise Edition), and if you are using MSDE in conjunction with a properly licensed copy of SQL Server 2000. If you
do not have or cannot use SQL Server Enterprise Manager, you must configure and maintain replication using other methods.
This topic describes how to use these methods to create a subscription; you can use similar methods to create a publication.

How to create a subscription with MSDE 2000

There are a several ways to create a subscription for an MSDE 2000 Subscriber.

Using the osql command-line utility to add replication jobs

Managing replication by using SQL-DMO replication objects

Replication ActiveX® controls

Windows Synchronization Manager

The osql Utility

osql is a command-line utility included with MSDE 2000. osql allows you to connect to SQL Server to run queries and scripts.
You can create pull subscriptions to SQL Server publications by executing stored procedures through osql. The following example
demonstrates creating an anonymous subscription to a merge publication:

1. From the MSDE 2000 Subscriber, use osql to connect to the subscribing database.

2. Add the anonymous subscription by using the sp_addmergepullsubscription stored procedure.

3. Add the merge agent job by using the sp_addmergepullsubscription_agent stored procedure.

4. Start the job by using the sp_start_job stored procedure.

The code for steps 2-4 will look similar to the following:

sp_addmergepullsubscription @publication = 'pubs'
,@publisher = 'MyDistPub' ,@publisher_db = 'Northwind'
,@subscriber_type = 'anonymous'

sp_addmergepullsubscription_agent @name = 'MySubAgent'
,@publisher = 'MyDistPub' ,@publisher_db = 'pubs'
,@publication = 'MyPublication' ,@publisher_security_mode = 1
,@subscriber = 'MySub' ,@subscriber_db = 'sub' ,@subscriber_security_mode = 1
,@distributor = 'MyDistPub' ,@distributor_security_mode = 1

sp_start_job @job_name ='MySubAgent'

Note This code does not include any parameters for controlling the job schedule. Additionally, there is no procedure setup to
determine the status of the job. If you want to have the job status written to the event log, modify the job by using the
sp_update_job stored procedure, and then set the @notify_level_eventlog parameter.

SQL-DM O Replication Objects

SQL Distributed Management Objects (SQL-DMO) is a collection of objects that encapsulate SQL Server database and replication
management. You can create an application by using Microsoft Visual C++® or Visual Basic, and then use SQL-DMO objects to
set up and to manage replication.

For more information about SQL-DMO and developing applications by using SQL-DMO, see Developing SQL-DMO Applications.

Replication ActiveX Controls

In most cases, MSDE 2000 is used for applications that are deployed on user computers. In such cases where replication is
required, you can use replication ActiveX controls in the application to manage replication to that MSDE 2000 Subscriber.

The application that you are distributing can use the replication ActiveX objects to create subscriptions to a merge, transactional,
or snapshot publication. Additionally, you can use the methods and properties of these objects to manage these subscriptions. For
example, if you are deploying a Microsoft Visual Basic® application, and you want to replicate data from the database on the
user's computer to the main server that is running SQL Server, you can include a piece of code in the application that creates the
subscription, and then performs the synchronization.

To view sample applications that demonstrate how to use the replication ActiveX controls to create and to manage subscriptions,
see Developing Replication Applications Using ActiveX Controls.

Windows Synchronization M anager

Windows Synchronization Manager is a utility that is available with Microsoft Windows® 2000 and on any computer that is
running Microsoft Internet Explorer 5.0. You can use it to synchronize or to distribute data between instances of SQL Server 2000
when you are using snapshot replication, transactional replication, or merge replication. For more information, see the Windows
Synchronization Manager.

Note When you use Windows Synchronization Manager, you can only create an anonymous pull subscription.

To create a subscription:

1. Open Windows Synchronization Manager: Click Start, select Programs, select Accessories, and then click Synchronize.

2. In the Items to Synchronize dialog box, select the node in the tree labeled To create a subscription: select this, then
click Properties.

3. In the Create New Subscription dialog box, you have the following options:

Browse the active directory.

Attach a SQL Server subscription database.

Manually specify the publication and subscription information.

To manually add a subscription, select the third option.

4. In the Create Anonymous Subscription window, enter the subscription and publication information.

5. Click OK, and the subscription appears under Microsoft SQL Server 2000 the next time you open Windows Synchronization
Manager.

6. To synchronize the subscription, click the subscription that you want to synchronize, and then click Synchronize.

Note If the publication is listed in Active Directory, or you can create attachable subscriptions for the publication, use one of the
first two options. For more information about Active Directory publication and attachable subscriptions, see the topics Active
Directory Services and Attachable Subscription Databases.

After creating the subscription, you can manage it from Windows Synchronization Manager by clicking Properties. By doing so,
you can re-initialize the subscription, drop the subscription, and perform other changes.

See Also

Replication with SQL Server 2000 Desktop Engine (MSDE 2000)

Understanding SQL Server 2000 Desktop Engine (MSDE 2000)

Running the osql Utility

sp_addmergepullsubscription

sp_addmergepullsubscription_agent

sp_start_job

sp_update_job

Replication (SQL Server 2000)

Replication Options
Replication options allow you to configure replication in a manner best suited to your application and environment.

Option
Type of

Replication Benefits
Filtering
Published Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters allow you to create vertical and/or
horizontal partitions of data that can be published
as part of replication. By distributing partitions of
data to different Subscribers, you can:

Minimize the amount of data sent over the
network.

Reduce the amount of storage space
required at the Subscriber.

Customize publications and applications
based on individual Subscriber
requirements.

Reduce conflicts because the different data
partitions can be sent to different
Subscribers.

Updatable
Subscriptions
(Immediate
Updating,
Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate updating and queued updating
options allow users to update data at the
Subscriber and either propagate those updates to
the Publisher immediately or store the updates in
a queue.

Updatable subscriptions are best for replication
topologies where replicated data is mostly read,
and occasionally updated at the Subscriber when
Publisher, Distributor, and Subscriber are
connected most of the time and when conflicts
caused by multiple users updating the same data
are infrequent.

Updatable
Subscriptions
(Merge
Replication)

Merge
Replication

Merge replication allows users to update data at
the Subscriber or Publisher and synchronize
changes continuously, on-demand, or at
scheduled intervals.

Merge replication is well suited for topologies
where replicated data is frequently updated at the
Subscriber even when the Subscriber is
disconnected from the Publisher. Conflicts caused
by multiple users updating the same data should
be infrequent, but merge replication provides a
rich set of options for handling conflicts that do
occur. For more information, see Merge
Replication.

Transforming
Published Data

Snapshot
Replication

Transactional
Replication

You can leverage the data movement,
transformation mapping and filtering capabilities
of Data Transformation Services (DTS) during
replication. With transformable subscriptions, you
can:

Create custom partitions for snapshot and
transactional publications.

Transform the data as it is being published
with data type mappings (for example,
integer to real data type), column
manipulations (for example, concatenating
first name and last name columns into one),
string manipulations, and functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate synchronization partners allow merge
Subscribers to synchronize data with servers
other than the Publisher at which the subscription
originated. This allows the Subscriber to
synchronize data when the original Publisher is
unavailable, and is also useful for mobile
Subscribers that may have access to a faster or
more reliable network connection with an
alternate server.

Optimizing
Synchronization

Merge
Replication

By optimizing synchronization during merge
replication, you can store more information at the
Publisher instead of transferring that information
over the network to the Subscriber. This improves
synchronization performance over a slow network
connection, but requires additional storage at the
Publisher.

Replication (SQL Server 2000)

Filtering Published Data
Horizontal, vertical, dynamic, and join filters enable you to create partitions of data to be published. By filtering published data,
you can:

Minimize the amount of data sent over the network.

Reduce the amount of storage space required at the Subscriber.

Customize publications and applications based on individual Subscriber requirements.

Avoid or reduce conflicts because the different data partitions can be sent to different Subscribers (no two Subscribers will
be updating the same data values).

Row and column filters can be used with snapshot, transactional, and merge publications. Row filters use the WHERE clause of an
SQL statement and restrict the rows included in a publication based on specific criteria. Column filters restrict the columns that
are included in a publication.

Dynamic and join filters extend the capabilities of merge replication. Dynamic filters are row filters that use a function to retrieve a
value from the Subscriber and filter data based on that value. The filter is defined once for a publication, but the qualifying result
set can be different for each Subscriber and allows the user at a Subscriber to receive only the subset of data customized for their
needs.

Join filters extend a row filter from one published table to another. A join filter defines a relationship between two tables that will
be enforced during the merge process; it is similar to specifying a join between two tables.

Replication (SQL Server 2000)

Row Filters
Using row filters, you can specify a subset of rows from a table to be published. Row filters can be used when only specific rows
need to be propagated to Subscribers, to eliminate rows that users do not need to see (such as rows that contain sensitive or
confidential information), or to create different partitions of data that are sent to different Subscribers. For those applications that
can, publishing different partitions of data to different Subscribers can also help avoid conflicts that would otherwise be caused by
multiple Subscribers updating the same data values.

Row filtering is convenient because it can be applied to existing applications where a site-specific attribute is present to filter on
either in the table to be published or in one of its related tables.

In this diagram, the published table is filtered so that only rows 2, 3, and 6 are included in the publication sent to the Subscriber.

Row filters are available with snapshot replication, transactional replication, and merge replication. Row filters in transactional
publications may add significant overhead because the article filter clause is evaluated for each log row written for a published
table to determine whether it should be marked for replication. Row filters in transactional publications should be avoided where
each site can support the full data load, the overall data set is reasonably small, and the number of insert, update, and delete
transactions per day is low.

Row filters in snapshot replication and transactional replication are static and the WHERE clause criteria you set in the Create
Publication Wizard or the publication properties dialog box stays the same until you modify it. If you had two Subscribers that
require different rows of data from the publishing table, you would need two different publications each with a different row filter
to retrieve the correct rows for each Subscriber.

Although you can put a subquery into a row filter, it is not a join filter. If you update a row in a table referenced by a subquery, the
query will not be re-evaluated and the row will not be propagated as part of replication. Replication join filters exist only for
merge replication. For more information, see Join Filters.

An alternative to creating multiple publications is to use a dynamic filter for merge replication or create a transformable
subscription with a custom filter for snapshot replication or transactional replication that dynamically creates data partitions
based on information from individual Subscribers. For more information, see Dynamic Filters and Transforming Published Data.

Example

Northwind Traders, Inc. needs to publish customer and orders information to its sales staff. The sales representatives are assigned
to service customers based on the region where the customer is located, and Northwind wants the sales representatives to have
access only to the data for their specified region.

Because the sales representatives need to update the data frequently and make updates while connected and while disconnected
from the Publisher, the replication administrator at Northwind decides to use merge replication and create different publications
with row filters based on region. The publication would include data from the customers, orders, and order details table. For
example, one of the publications would be restricted for the Northwest region of the United States. In the Specify Filter dialog
box in the Create Publication Wizard, the WHERE clause would read:

SELECT <published_columns> FROM [dbo].[Customers] WHERE Region = 'WA'

Because data partitions based on region will be sent to Subscribers that have exclusive, logical ownership of each region, conflicts
that could occur when multiple Subscribers update the same data will be avoided. However, conflicts may still occur if the

Publisher and Subscriber update the same data. For more information, see Merge Replication and Merge Replication Conflict
Detection and Resolution.

An alternate, often preferable approach to this type of situation is to use a dynamic filter for a merge publication or a
transformable subscription for a snapshot or transactional publication. For more information, see Dynamic Filters and
Transforming Published Data.

To filter publications horizontally

Enterprise Manager

Enterprise Manager

SQL-DMO

To filter publications horizontally using publication properties

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Column Filters
Column filters restrict the columns to be included as part of a snapshot, transactional, or merge publication. Column filters can
reduce the time it takes to propagate data updates to Subscribers, reduce the storage space needed at the Subscriber, and limit
the data in a publication to data that is needed by individual Subscribers.

This illustration shows a publication that has a column filter to restrict all columns except columns A, B, and D.

You can also use row and column filtering together, as illustrated here.

When you add a column to a vertical partition, the table structure changes and any INSERT statements on the publishing table will
require column lists.

Columns that cannot be vertically filtered from a publication are:

Columns with primary key constraints.

Non-null columns without a default.

Columns included in a unique index.

The ROWGUID column for merge publications and the ROWGUID column for snapshot or transactional publications that
allow immediate updating subscriptions.

For snapshot replication and transactional replication, you can use transformable subscriptions to create custom filters that
produce different vertical partitions for different Subscribers using one publication. For more information, see Using
Transformable Subscriptions to Create Custom Data Partitions.

Note If the snapshot or transactional publication allows updatable subscriptions and the publication has a column filter, you
cannot filter non-nullable columns without defaults from the publication.

Example

Northwind Traders is using merge replication to publish customer and orders information to its mobile, occasionally connected
sales representatives. The central office decides to track the commission that each sales representative made on an order, and a
column named COMMISSION is added to the ORDER DETAILS table.

Currently, the sales information is distributed to all sales representatives, but Northwind managers do not want the sales
representatives to see the commission amounts paid. The replication administrator can use a column filter to exclude the
COMMISSION column from the publication.

To filter publications vertically

Enterprise Manager

Enterprise Manager

SQL-DMO

To filter publications vertically using publication properties

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Dynamic Filters
Dynamic filters allow you to create a merge publication and then filter data from the publishing table providing different
partitions of data to different Subscribers. Benefits of using dynamic filters in merge publications are:

Fewer publications stored at the Publisher. This reduces the overhead of administering multiple publications.

Employing user-defined functions in the dynamic filter enables you to filter criteria.

The Subscriber receives only the information needed because data is filtered based on the connection properties of the
Merge Agent for the subscription.

In the dynamic filter, you specify a Microsoft® SQL Server™ 2000 function or a user-defined function that is evaluated differently
for each Subscriber based on the connection properties of the Merge Agent when the merge process is replicating data between
the Subscriber and Publisher. The most common system functions used for this purpose are SUSER_SNAME() and
HOST_NAME(). You can use a user-defined function in a dynamic filter, but unless the user-defined function definition includes
SUSER_SNAME(), HOST_NAME(), or the user-defined function evaluates one of these system functions in the filter criteria (such
as MyUDF(SUSER_SNAME()), the user-defined function will be static.

Dynamic filters are row filters (restricting rows of data) and are created on a single table basis (they do not cross or join tables).
You can, however, use both dynamic filters and join filters in the same publication and on the same published tables.

Dynamic filters are available only with merge replication, so when using them, you should consider employing a dynamic
snapshot as well. By default, dynamic filtered publications rely on INSERTs from the Publisher to apply data to the Subscriber as
part of the initial snapshot. Dynamic snapshots provide the performance advantage of using SQL bulk copy program (bcp) files to
apply data to a specific Subscriber when applying the initial snapshot while using dynamic filters. For more information, see
Dynamic Snapshots.

If you are using snapshot replication or transactional replication, you can create custom filters using transformable subscriptions,
which will filter data based on individual Subscriber requirements. For more information, see Transforming Published Data.

Example

Northwind Traders is using merge replication to publish customer and orders information to its mobile, occasionally connected
sales representatives. Northwind wants to ensure that each sales representative receives and is able to update only the data for
their customers.

Instead of creating a separate publication for each sales representative, Northwind will use the SUSER_SNAME() function in the
dynamic filter on the CUSTOMERS table article to return the user ID of the sales representative assigned to each customer and
filter published data based on it. The SALES_REP column could be added to the CUSTOMERS table to identify the sales
representative responsible for servicing each customer.

The CUSTOMERS table at the Publisher.

CustomerID CompanyName SALES_REP
GREAL Great Lakes Food Market WestRegion\Robert King
RATTC Rattlesnake Canyon Grocery Janet Leverling

The row filter for the CUSTOMERS article in the Northwind merge publication is:

WHERE SALES_REP = SUSER_SNAME()

If the merge process is initiated using the WestRegion\Robert King integrated security account, the SUSER_SNAME() function
evaluates to this account in the dynamic filter only when the Merge Agent is run by the user WestRegion\Robert King. As a result,
Robert King receives only data regarding the customers for which he is assigned as a sales representative.

The CUSTOMERS table at the Subscriber after using the dynamic filter when publishing data.

CUST_ID CUSTNAME SALES_REP
GREAL Great Lakes Food Market West Region\Robert King

The behavior of dynamic filters is different depending on whether you use Windows Authentication or SQL Server Authentication.
With SQL Server Authentication, the –PublisherLogin parameter specified in the Merge Agent command line (or PublisherLogin
property in the SQL Merge ActiveX® Control) is the key property returned when using SUSER_SNAME() in a dynamic filter.

With Windows Authentication, SQL Server Agent initiates the merge process and the SUSER_SNAME() function in SQL Server
2000 returns the account under which the SQLServerAgent service is running. This may be different from the Microsoft Windows
NT® security account of the user. If the merge process is initiated using the Microsoft ActiveX control or by calling Replmerge.exe
independently of SQL Server Agent, the SUSER_SNAME() function in SQL Server 2000 returns the login account of the user.

When using dynamic filters, the filtering logic expression is evaluated within the context of the merge connection to the Publisher,
not the connection to the Subscriber. If the merge process uses the SQL Server 2000 login Janet Leverling to connect to the
Publisher, and the sa login to connect to the Subscriber, the SUSER_SNAME() function will evaluate to Janet Leverling in the
filtering logic.

The CUSTOMERS table at the Subscriber (using the dynamic filter).

CUST_ID CUSTNAME SALES_REP
RATTC Rattlesnake Canyon Grocery Janet Leverling

Replication (SQL Server 2000)

Dynamic Snapshots
Dynamic Snapshots

 New Information - SQL Server 2000 SP3.

Dynamic snapshots provide a performance advantage when applying the snapshot of a merge publication with dynamic filters.
Performance is improved by using Microsoft® SQL Server™ 2000 bulk copy files to apply data to a specific Subscriber instead of
a series of INSERT statements.

Generating a dynamic snapshot for a subscription also allows the flexibility of saving and transferring the snapshot on removable
media (such as a CD-ROM) and applying the snapshot at the Subscriber from the media rather than applying the initial snapshot
over a slow network connection.

How Dynamic Snapshots Work

When dynamic filters are used in merge publications, data is filtered from the publishing table based on the connection properties
of the Merge Agent for the publication during the merge process. By default, dynamically filtered publications rely on INSERTs
from the Publisher to apply data to the Subscriber as part of the initial snapshot. This can be a lengthy and resource-intensive
process because the Merge Agent will have to determine row-by-row which data to include in the snapshot based upon the
dynamic filter criteria.

Dynamic snapshots provide the performance advantage of using SQL bulk copy program (bcp) files to apply data to a specific
Subscriber when applying the initial snapshot while using dynamic filters. When you create a dynamic snapshot, you pre-
generate a snapshot that will be customized to a specified Subscriber. Because the data values are already copied and extracted,
applying the snapshot will be just as fast as applying snapshots without dynamic filters. There is, however, additional time and
space required when generating and storing the dynamic snapshot.

Although it takes longer to prepare a dynamic snapshot (you will need to generate two snapshots), the process of applying the
snapshot at Subscribers is faster than applying a standard snapshot for a dynamically filtered merge publication. You will need to
generate a standard snapshot first, before the dynamic snapshot is created by filtering the standard snapshot.

Dynamic snapshots can be implemented using SQL Server Enterprise Manager and the Create Publication and Create Dynamic
Snapshot Job wizards, Transact-SQL system stored procedures and scripts, Microsoft ActiveX® controls or SQL-DMO.

Dynamic Snapshot Considerations

When planning for dynamically filtered merge publications and dynamic snapshots, consider:

Dynamic snapshots can be used with all types of subscriptions. You can generate the dynamic snapshot using the Create
Dynamic Snapshot Job Wizard and/or running the Snapshot Agent with the appropriate parameters. Applying a dynamic
snapshot is done using the Merge Agent or Merge ActiveX Control and setting the DynamicSnapshotLocation properties.

You can use the –DynamicSnapshotLocation command line parameter for the Merge Agent or the
DynamicSnapshotLocation property in the Merge ActiveX Control to apply a pre-generated dynamic snapshot.

Dynamic filters and dynamic snapshot are available only with merge replication.

To generate a dynamic snapshot, the publication must be enabled for dynamic filters and a standard snapshot must be
generated.

Dynamic snapshot files will also be compressed if the standard snapshot is compressed. To compress a standard snapshot,
and therefore the dynamic snapshot, open publication properties, and on the Snapshot Location tab, select Generate
snapshots in the following location, specify a snapshot location in the text box, and then select Compress snapshot
files in this location.

The login specified as the value of the Publisher login must be in the Publication Access List (PAL). This login can be
specified in the Create Dynamic Snapshot Job Wizard or by using the -DynamicFilterLogin parameter of the Snapshot
Agent.

Because SQL Server adds and drops temporary logins in the Snapshot Agent, the Publisher login of the Snapshot Agent

must be a member of the db_owner group on the publication database to be able to generate dynamic snapshots.

Dynamic filter logins specified for dynamic snapshot generation must be members of the corresponding publication access
list (PAL).

SQL Server on the Publisher must be running under mixed security mode.

Changing publication properties without regenerating a standard snapshot for a dynamically filtered publication will
invalidate all subsequent dynamic snapshots that are generated.

For example, if you have a sales representative who receives customer management information based on a SalesPersonLogin,
which is really the integrated login used at the Subscriber to connect to the Publisher. In this example, there are two users,
DOMAIN\JohnSmith and DOMAIN\BobJohnson. The administrator of the Publication can specify the -DynamicFilterLogin
property of the Snapshot Agent to be DOMAIN\JohnSmith and generate a dynamic snapshot for the user named John Smith.
Similarly, they can specify the –DynamicFilterLogin property to be DOMAIN\BobJohnson and generate the snapshot for the
user named Bob Johnson. However, the dynamic filter must be expressed using the SUSER_SNAME() function for this to occur.

If the dynamic filter used previously was SalesPersonLogin = SUSER_SNAME(), the dynamic filter must now be SalesPersonLogin
= SUSER_SNAME() to use the dynamic snapshot functionality.

Do not use parameters in the SUSER_SNAME() system function used with dynamic snapshots, such as
'SUSER_SNAME(SID)'.

Functions that implicitly rely on SUSER_SNAME() or the current user, such as USER_NAME(), CURRENT_USER(),
SYSTEM_USER(), USER_ID(), or SUSER_SID() will not work as expected and should not be used with dynamic snapshots
(use SUSER_SNAME() or HOST_NAME() instead).

You can use user-defined functions in a dynamic filter; however, if the user-defined filter evaluates to the same value for all
Subscribers, it is a type of static filter, and there is no need to use dynamic snapshots because all Subscribers would receive
the same snapshot of data.

You can use the SUSER_SNAME() system function nested in a user-defined function in the filter criteria for a dynamic filter,
and you can use a dynamic snapshot (for example, MyUDF(SUSER_SNAME()) where the MyUDF user-defined function
evaluates the SUSER_SNAME() system function). The system function must be visible in the dynamic filter criteria. If the
system function exists in the definition of the user-defined function, and you enter only the user-defined function in the
dynamic filter, you will not be able to use a dynamic snapshot.

To create a dynamic snapshot

Enterprise Manager

Enterprise Manager

SQL-DMO

To generate and apply a dynamic snapshot manually

1. Run the Snapshot Agent to generate the standard snapshot schema and other files. Use standard properties (for -Publisher,
-PublisherDB, -Publication, and so on) when running the Snapshot Agent.

2. Run the Snapshot Agent to generate bulk copy (.bcp) files once for each Subscriber partition defined. Use the standard
properties and the following properties:

-DynamicFilterHostName

-DynamicFilter Login

-DynamicSnapshotLocation

3. Run the Merge Agent for each subscription to apply the initial dynamic snapshot at the Subscribers. Use the standard
properties and add the following properties:

-Hostname

-DynamicSnapshotLocation

See Also

DynamicSnapshotLocation Property

MergeDynamicSnapshotJob Object

SQLSnapshot Object

Replication (SQL Server 2000)

Validate Subscriber Information
Validate Subscriber Information

With merge replication dynamic filters, you use a function that references Subscriber information. Microsoft® SQL Server™ 2000
validates Subscriber information based on that function before each merge. This ensures that information is partitioned
consistently with each merge.

For example, when a publication is dynamically filtered using the function SUSER_SNAME(), the Merge Agent applies the initial
snapshot to each Subscriber based on data that is valid for the SUSER_SNAME() expression.

When the Subscriber reconnects to the Publisher for the next synchronization, the Merge Agent validates the information at the
Subscriber and ensures that the same partitions are synchronized as was originally sent as part of the initial snapshot. If the
Merge Agent detects that the filtering expression returns a different value, the merge fails. Because the value of the function used
in the dynamic filter has changed, the subscription at the Subscriber may need to be reinitialized or the original login or
host_name value must be used before synchronization will be permitted. This will prevent problems that may arise if the merge
settings of a Subscriber are changed.

You can choose to create the dynamic filter and then validate Subscriber information while creating a publication using the Create
Publication Wizard or after the publication is created and enabled for dynamic filters by using the publication properties.

Example

Northwind Traders publishes customer and orders information to its mobile, occasionally-connected sales representatives using a
merge publication with a dynamic filter. Based on the SUSER_SNAME() system function that accesses the Subscriber user ID, the
publication is filtered to data based on the user ID retrieved by SUSER_SNAME().

If a laptop used by Northwind sales representative Bob Jones is the Subscriber to the merge publication with the dynamic filter,
each time Bob Jones logs in and synchronizes data with the Publisher, he will receive data based only on the user ID he enters
when logging on to his laptop. Because he is a sales representative receiving customer and orders information, he receives data
only for the customers he services.

To validate Subscriber information using the Create Publication Wizard

Enterprise Manager

Enterprise Manager

To validate Subscriber information

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Join Filters
Join filters allow cross table relationships to be used in merge replication filters when the filter of one table is based on another
table in the publication. A join filter defines a relationship between two tables that will be enforced during the merge process; it is
similar to specifying a join between two tables. The join filter names two articles, and specifies the join condition to represent the
relationship between the two tables in the articles. The join condition is usually in the form:

ARTICLE1_TABLE.COLUMN = ARTICLE2_TABLE.COLUMN

Join filters are typically used in conjunction with row filters and allow the merge process to maintain the referential integrity
between the two tables. If a table published with a row filter is referenced by a foreign key in another published table, the foreign
key table's article must have a join filter to represent the referential dependency on the primary key table article.

SQL Server Enterprise Manager uses this rule when creating a publication to suggest the join filter logic automatically for the
foreign key table based in the foreign key reference. For this reason and also for ease of use, it is recommended that you declare
the proper primary key to foreign key relationships and then let the join filters be generated automatically when you create a
publication using the Create Publication Wizard.

Note The syntax for creating FOREIGN KEY constraints with CREATE TABLE or ALTER TABLE allows the NOT FOR REPLICATION
option. When this option is set, Microsoft® SQL Server™ 2000 assumes that the reference was validated when the user made the
data change; therefore, SQL Server 2000 does not perform the extra processing steps to verify the reference when the merge
process synchronizes the data. If this option is used, a merge filter must be defined to avoid invalid foreign key rows at the
subscriber.

Join filters are not limited strictly to primary key/foreign key relationships. The join filter can be based on any comparison logic
that associates the data in the two article tables, but the logic should use indexed columns if possible for best performance.

The merge process has special performance optimizations depending on whether the join condition is based on a unique column,
as is the case when the join filter represents a foreign key relationship. If the join condition is based on a unique column, the
join_unique_key property should be set for the article for best performance.

Although you can put a subquery into a row filter, it is not a join filter. If you update a row in a table referenced by a subquery, the
query will not be re-evaluated and the row will not be propagated as part of replication. Replication join filters exist only for
merge replication.

Warning Join filters with several tables (such as dozens or hundreds of tables) will seriously impact performance during merge
processing. It is recommended that if you are generating join filters of five or more tables that you consider other solutions.
Another strategy might be to not filter tables which are primarily lookup tables, smaller tables, and tables that are not subject to
change. Make those tables part of the publication in their entirety. It is recommended that you use join filters only between tables
for which it is important they carefully partition among Subscribers.

Example

The Northwind Traders database contains a CUSTOMERS table and an ORDERS table. The CUSTOMERS table has a CustomerID
primary key, and the ORDERS table has a CustomerID column with a foreign key constraint that relates to the CustomerID column
in the CUSTOMERS table. You can also add a new column to the CUSTOMERS table titled Status to show whether the customer is
active or inactive.

The CUSTOMERS table

CustomerID CustomerName Status
ALFKI Alfreds Futterkiste Active
ANATR Ana Trujillo Emparedados. . . Inactive
ANTON Antonio Moreno Taqueria Active

The ORDERS table

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077 RATTC 1998-05-06
10926 ANATR 1998-03-04
11000 RATTC 1998-04-06
11010 REGGC 1998-04-09
10569 RATTC 1997-06-16

The join filter for these tables would be defined for the ORDERS article. The join article would be the CUSTOMERS article, and the
join filter clause would be:

CUSTOMERS.CUSTOMERID=ORDERS.CUSTOMERID

If the CUSTOMERS table article in the publication has a row filter clause of Status = 'Active', the merge process publishes only
the Alfreds Futterkiste and Antonio Moreno Taqueria customer data to the Subscriber.

If no join filter is present to restrict the ORDERS table data to the filtered customers, the merge process fails with a primary key
violation for the CustomerID column in the ORDERS table. This is because the process attempts to insert the inactive customers'
transaction rows that have no valid CustomerID in the CUSTOMERS table at the Subscriber.

The ORDERS table data with no join filter applied to the Subscriber.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077* RATTC 1998-05-06
10926 ANATR 1998-03-04
11000* RATTC 1998-04-06
11010* REGGC 1998-04-09
10569* RATTC 1997-06-16

*These rows violate the foreign key on the CustomerID column at the Subscriber.

To avoid this problem, add a join filter to the ORDERS table that represents the referential dependence on the CUSTOMERS table.
The merge process replicates only the ORDERS data for the active customers.

The CUSTOMERS table at the Publisher.

CustomerID CustomerName Status
ALFKI Alfreds Futterkiste Active
ANATR Ana Trujillo Emparedados. . . Inactive
ANTON Antonio Moreno Taqueria Active

The ORDERS table at the Publisher.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
11077 RATTC 1998-05-06
10926 ANATR 1998-03-04
11000 RATTC 1998-04-06
11010 REGGC 1998-04-09
10569 RATTC 1997-06-16

The CUSTOMERS table at the Subscriber with a row filter clause for Active customers.

CustomerID CustomerName Status
ALFKI Alfreds Futterkiste Active
ANTON Antonio Moreno Taqueria Active

The ORDERS table at the Subscriber with a join filter to Active customers.

OrderID CustomerID OrderDate
10643 ALFKI 1997-08-25
10926 ANTON 1998-03-04

Replication (SQL Server 2000)

User-Defined Functions and Static Filters
User-defined functions are subroutines composed of encapsulated sets of Transact-SQL logic. You can use them in row static or
dynamic filters.

By accessing user-defined functions, you increase your filtering capability because you can create filters based on frequently
performed logic, table-driven business rules, or any set of complex instructions that returns a value.

You can specify user-defined functions that return a scalar value (such as int, char, or decimal) when filtering horizontally (row
filtering replicates a subset of the rows in a table) in snapshot replication, transactional replication, or merge replication.

To create a user-defined function for use as a publication filter, use the CREATE FUNCTION command on the database
containing the data you want to publish, and build a function with Transact-SQL. You can then use the function in a filter when
you create a new publication using the Create Publication Wizard or when configuring an existing publication using the
publication properties dialog box. If the publication has subscribers, you must drop all subscriptions to the publication before you
can create or modify row filters. You do not have to replicate the function to use it as part of a filter in a publication.

Example

This statement creates a function that returns the week number of any date that is indicated in the parameter:

CREATE FUNCTION fn_wknum(@Parm datetime)
RETURNS int
AS
BEGIN
 DECLARE @ReturnVar int
 SELECT @ReturnVar = CAST((DATEPART(dy,@Parm) + DATEPART(dw,@Parm-DATEPART(dy, @Parm)-1))/7+1 AS int)
 RETURN @ReturnVar
END

To implement the fn_wknum example in a publication based on the Northwind database, create the function on that database.
Start the Create Publication Wizard, select Define Data Filters, and then in the Filter Table Rows dialog box, click the properties
button (...) for the Orders article.

In the Specify Filter dialog box, you can complete the WHERE clause to filter for the first 12 weeks of any year based on the
orderdate column:

SELECT * FROM [dbo].[Orders] WHERE dbo.fn_wknum(orderdate) between 1 and 12

To filter with a user-defined function using the Create Publication Wizard

Enterprise Manager

Enterprise Manager

To filter with a user-defined function using the publication properties dialog box

Enterprise Manager

Enterprise Manager

To drop all subscriptions to a publication

Enterprise Manager

Enterprise Manager

See Also

CREATE FUNCTION

User-defined Functions and Dynamic Filters

Replication (SQL Server 2000)

User-Defined Functions and Dynamic Filters
You can gain greater flexibility when filtering merge publications and improve dynamic filtering performance by invoking user-
defined functions to determine the different partitions of data. Dynamic filters allow you to define different partitions of one
publication replicated to different Subscribers.

Dynamic filters can use an intrinsic function (such as SUSER_SNAME()) that is evaluated based on each Subscriber to a
publication. Different partitions of data are replicated to different Subscribers based on the value returned by the function.

User-defined functions expand on this capability by allowing you to define the function used in the dynamic filter. This
enhancement allows you to define business rules, scalar, or table values to use when partitioning published data based in a
dynamic filter.

For example, in a sales environment, each customer is assigned a region code representing the region where they are located.
Sales representatives in the Northwest need to see orders only for the customers in their region. To publish only the orders
placed in the Northwest to the Subscribers in that region, you could write a user-defined function that retrieved the region code
from the Subscriber and then use that code to partition the data dynamically depending on which Subscriber is receiving the data.

For more information, see Dynamic Filters.

See Also

CREATE FUNCTION

User-Defined Functions and Static Filters

Replication (SQL Server 2000)

Updatable Subscriptions
With snapshot replication or transactional replication, replicated data is by default read only; however, you have the ability to
modify replicated data at the Subscriber by using updatable subscriptions. If you need to modify data at the Subscriber using
snapshot or transactional replication, you can choose one of the following options depending on your requirements.

Updatable Subscription Requirements
Immediate Updating Publisher and Subscriber must be connected to

update data at the Subscriber.
Queued Updating Publisher and Subscriber do not have to be

connected to update data at the Subscriber.
Updates can be made while offline.

Immediate Updating with Queued
Updating as a Failover

Publisher and Subscriber are connected most of
the time, but you may occasionally need to
make updates offline.

Replication (SQL Server 2000)

Immediate Updating
Immediate updating allows snapshot replication and transactional replication Subscribers to update the replicated data at the
Subscriber and send those changes back to the Publisher and to other Subscribers. Immediate updating benefits applications in
which snapshot or transactional publications are preferred but occasional updates need to be made at the Subscriber. If using
immediate updating, the Publisher and Subscribers must be available and connected.

The immediate-updating option:

Ensures that there are no conflicts. A Subscriber can perform inserts, updates, and deletes on replicated data only if it can
perform a two-phase commit protocol (2PC) transaction with the Publisher. The Publisher must accept every update before
it is made at the Subscriber. Conflicts do not occur because they are detected before a transaction is committed.

Initiates two-phase commit (2PC) automatically.

Replicates the committed update down to all other Subscribers through the standard snapshot replication or transactional
replication mechanism.

Lets the Subscriber continue working without waiting for the successful update to propagate to other Subscribers.

Forestalls the requirement for the updating Subscriber to have a distribution database or log reader and get involved in the
administrative issues of replication publishing.

Has fewer failure points with every site than with full 2PC involving every Subscriber, and it is also more scalable.

Because there are no conflicts, there is no loss of ACID properties.

Registers a uniqueidentifier column in the publishing table named MSrepl_tran_version. This column is used for tracking
changes to replicated data and to perform conflict detection at the Publisher. Adding this uniqueidentifier column will
cause INSERT statements without column lists to fail and increase the size of the publishing table.

If you were using the immediate updating option with Microsoft® SQL Server™ version 7.0 and are upgrading to SQL Server
2000, there are additional upgrade requirements. For more information, see Replication and Upgrading.

Replication (SQL Server 2000)

How Immediate Updating Works
How Immediate Updating Works

When a publication is enabled to support immediate updating, a Subscriber can modify replicated data if the transaction can be
performed by using the two-phase commit protocol (2PC) with the Publisher. The 2PC transaction back to the Publisher is
completed automatically, so an application can be written as though it is updating just one site.

This approach does not have the large availability limitations of using 2PC with all participating sites because only the Publisher
needs to be available. After the change is made at the Publisher under 2PC, it will eventually be published to all other Subscribers
to the publication.

2PC is managed by Microsoft Distributed Transaction Coordinator (MS DTC). If the update can be performed using 2PC, the
Publisher propagates those changes to all other Subscribers according to the Distribution Agent schedule (or at the time of the
next snapshot refresh, if it is a snapshot publication). Because the Subscriber making the update already has the data changes
reflected locally, the user can continue working with the updated data secure in the guarantee that data at the Publisher also
reflects the change. There is no loss of ACID properties.

An application using immediate updating should be able to deal with a failure in the transaction, just as it would in a non-
replication environment for issues such as a uniqueness violation. The most common failure is that data has been changed at the
Publisher, and Subscribers need to refresh their copies. In many cases, the preferred choice might be to retry the update after a
few seconds. If the transaction is successful, the Subscriber can work with the changed values immediately, and know that the
update has been accepted at the Publisher without conflict and will eventually be propagated to every Subscriber of the
publication. A Subscriber performing updates does not have full autonomy; however, because the Publisher must be available at
the time of the update. Autonomy is higher than the full 2PC case where every site must be available for any site to perform
changes.

Instead of using a timestamp column to track updates (as in SQL Server 7.0), a uniqueidentifier column, added automatically
to any tables used in the publication, is used to track updates. The addition of this column requires INSERT statements to have
column lists.

The uniqueidentifier column MSrepl_tran_version is used in place of timestamps to provide a reliable method of detecting
conflicts even when an update is made offline (such as in the case of queued updating). Any server in the enterprise can assign a
uniqueidentifier and it will not be duplicated. If an update occurs and the uniqueidentifier columns do not match, a conflict is
detected. If the uniqueidentifier columns match, the update is completed.

Replication (SQL Server 2000)

Immediate Updating Components
Immediate Updating Components

Immediate updating is supported using:

Triggers

Stored procedures

Microsoft Distributed Transaction Coordinator (MS DTC)

Conflict detection

Loopback detection

Triggers

An update trigger at the Publisher updates the MSrepl_tran_version column for the updated rows when needed.

Triggers at the Subscriber capture transactions and submit them to the Publisher using a remote stored procedure call within a
2PC that is controlled by MS DTC. The triggers are created using the NOT FOR REPLICATION parameter of the CREATE TRIGGER
statement so that changes applied by the Distribution Agent do not themselves cause the trigger to fire. The logic of the INSERT,
UPDATE, and DELETE triggers is:

Extract values from inserted or deleted tables at the Subscriber.

Call the BEGIN DISTRIBUTED TRANSACTION statement.

Execute a remote procedure to call the relevant stored procedure at the Publisher, passing values from inserted or deleted
tables.

Manage identity and timestamp values at the Subscriber. In the case of immediate updating subscriptions, the new values
generated at the Publisher for these types of columns are propagated to the Subscriber as part of the 2PC transaction.

If the remote stored procedure call succeeds, commit the transaction, reflecting exactly the same changes at both the
Subscriber and the Publisher.

The Publisher then ensures that the changes are propagated to all other Subscribers. Otherwise, roll back the transaction
and return an error to the user.

If you subscribe to a transactional publication and use the immediate updating option, but choose not to initialize the
subscription, the immediate updating triggers are not automatically applied to the Subscriber. Instead, you must create the
triggers manually at the Subscriber using sp_addsynctrigger. You can use sp_script_synctran_commands to script out
the immediate-updating trigger commands at the Publisher and then use those commands when running
sp_addsynctrigger at the Subscriber.

When creating synchronization triggers for immediate updating or queued updating subscriptions, additional calls to the
sp_settriggerorder system stored procedure are made to specify the firing order for the INSERT, UPDATE, and DELETE
triggers so that these triggers fire first during synchronization. If there is already a trigger set to fire first, an error will be
returned and the subscription will be marked inactive. If you receive this error, you should either remove the existing trigger
or set the firing order to none. Restart the Distribution Agent so that the initial snapshot and triggers are applied at the
Subscriber.

Stored Procedures

Stored procedures at the Publisher apply transactions only if they do not conflict with changes made at the Publisher after the
Subscriber last received its copy of the changes. If a conflict is detected, the transaction is rejected and rolled back at both sites.
INSERT, UPDATE, and DELETE procedures are created for each article. The logic of the immediate updating subscription stored
procedure at the Publisher is:

Insert procedure

Attempt to insert rows. Check @@ROWCOUNT and @@ERROR, and return success or failure to calling trigger. May also
return an identity value to the Subscriber if required.

Delete procedure

Attempt to delete rows, with a WHERE clause that qualifies the current row with values from deleted table. Check
@@ROWCOUNT and @@ERROR, and return success or failure to the calling trigger.

Update procedure. Attempt to update row, with a WHERE clause that qualifies the unique index and uniqueidentifier
column in current row, with unique index and uniqueidentifier value from deleted table. Check @@ROWCOUNT and
@@ERROR, and return success or failure to the calling trigger. May also return an identity value to the Subscriber if
required.

Note A transaction that affects multiple rows must have all rows reflected at both sites to succeed.

Microsoft Distributed Transaction Coordinator

Microsoft Distributed Transaction Coordinator (MS DTC) manages the two-phase commit operation between a Subscriber and
Publisher inside a Microsoft® SQL Server™ 2000 remote stored procedure call using the BEGIN DISTRIBUTED TRANSACTION
statement in Transact-SQL.

Conflict Detection

The Publisher stored procedure uses the uniqueidentifier column to detect whether a row has changed after it was replicated to
the Subscriber. When the Subscriber requests an immediate-update transaction, it passes the uniqueidentifier value (generated
at the Subscriber) to the Publisher, along with all other columns in the row. Within the Publisher's stored procedure, this value is
compared to the current uniqueidentifier value for the row in question. If the values are the same, the row has not been
modified after it was replicated to the Subscriber, and so the transaction is accepted. If a conflict is detected, the transaction is
rejected, and the application should treat it like any transaction rollback. This usually means that the Subscriber needs to
synchronize with the latest data changes at the Publisher before attempting to update the same data locally.

Loopback Detection

If a transaction is applied successfully to a Subscriber and Publisher, it is unnecessary to propagate the change back to the
originating Subscriber using the standard asynchronous transaction replication mechanisms. SQL Server 2000 replication has a
loopback detection mechanism to handle this situation.

The information used to perform loopback detection is stored on a transaction-by-transaction basis. Consequently, tables that
reside in different databases at the Subscriber with immediate updating subscriptions or tables that reside in different databases
across Subscribers with immediate updating subscriptions should not be updated in the same transaction.

Warning Using the same transaction to update tables that reside in different databases at the Subscriber or to update tables that
reside in different databases across Subscribers that have immediate updating subscriptions will delete the information necessary
to control loopback detection and may cause replication to fail. Loopback detection is tracked at the transaction level. If the
transaction involves more than one subscription database, SQL Server will attempt to mark the transaction with the Subscriber
server name and database name multiple times. The last entry will overwrite all previous entries.

Replication (SQL Server 2000)

Immediate Updating Considerations
Immediate Updating Considerations

 New Information - SQL Server 2000 SP3.

Immediate updating can be enabled using SQL Server Enterprise Manager, or programmatically by using Transact-SQL system
stored procedures or SQL-DMO.

Immediate Updating Restrictions

The following restrictions exist with immediate updating:

Published tables must have a uniqueidentifier column. The uniqueidentifier column MSrepl_tran_version is added to the
publishing table automatically. If the MSrepl_tran_version column already exists on the publishing table, it will be used.

INSERT statements used to add rows of data to a table must include a column list.

If you create two or more articles on the same table in a publication database and then create subscriptions to those articles
in the same subscription database, the following additional restrictions apply:

If multiple articles based on the same table are in one publication enabled for immediate updating, you cannot
create an immediate updating subscription to this publication. Warning message 21293 will be issued.

If multiple articles based on the same table are in different publications and you want to create subscriptions to all
publications in the same subscription database, only one of the subscriptions can be immediate-updating.

The immediate updating subscription connection to the Publisher (controlled by sp_link_publication) can use security
mode 0 for SQL Server Authentication or 2 for linked server definition to create login mappings. The publication access list
(PAL) must include at least one SQL Server Authentication account unless you use security mode 2 and configure delegation
(it is possible to set up Windows Authentication in mode 2 by configuring delegation). You can make connections to the
Publisher under Windows user accounts invoking the INSERT, UPDATE, and DELETE triggers at the Subscriber using
delegation. To set up delegation, see sp_addlinkedsrvlogin.

If the snapshot or transactional publication allows immediate updating subscriptions and the publication has a column filter,
you cannot filter non-nullable columns without defaults from the publication.

Subscribers using immediate updating subscriptions cannot republish data to other Subscribers.

Data Modifications at Subscribers

When modifying data at Subscriber sites using the immediate-updating Subscribers option, consider the following issues:

The Subscriber should not update timestamp or identity values directly. Those values are generated by the Publisher as
part of the 2PC transaction between the Publisher and Subscriber. Default constraints are applied to these columns at the
Subscriber.

The Subscriber cannot update or insert text or image values because they cannot be read from the inserted or deleted
tables inside the trigger. Similarly, the Subscriber cannot update or insert text or image values using WRITETEXT or
UPDATETEXT because the data is overwritten by the Publisher. Instead, you could partition the text and image columns into
a separate table and modify the two tables within a transaction. You could use merge replication to synchronize these
values if updates to text or image columns are needed at the Subscriber. You can be assured there are no conflicts if all
updates follow this guideline because the update of the text or image table cannot occur unless the main table was
updated, which is protected by 2PC.

When loopback detection is in effect, modified rows are not sent back to the originating Subscriber (thereby reducing
overhead).

It is recommended that Subscriber tables have at least a unique index and preferably a primary key for snapshot replication.
This is required for transactional replication.

Although snapshot replication without immediate updating does not require the use of primary keys in a table, snapshot
replication with immediate updating or transactional replication with immediate updating requires you to use primary keys
on publishing tables. (Transactional replication always requires the use of primary keys on publishing tables).

If the subscription database is horizontally filtered and there are rows in the partition that existed at the Subscriber separate
from the data propagated to the Subscriber by the Publisher, and that partition is not at the Publisher, the Subscriber cannot
update the pre-existing rows. Attempting to update these rows returns an error. The rows should be deleted from the table
and added again.

Configuration Modes

The immediate updating option supports either dynamic RPC mode or static RPC mode for the 2PC connection from the
synchronization triggers back to the Publisher. In dynamic RPC mode, synchronization triggers connect dynamically to the
Publisher, using a supplied server name, login, and password. This mode is easier to use when setting up push subscriptions
because the Publisher does not have to be predefined at the Subscriber. In static RPC mode, synchronization triggers connect to
the Publisher over a statically defined server name defined as a linked server or remote server in the sysservers table. This entry
is added by an administrator at the Subscriber server.

The configuration mode is set automatically when creating push or pull subscriptions:

When setting up a push subscription using the Push Subscription Wizard in SQL Server Enterprise Manager or the
sp_addsubscription stored procedure, the default configuration uses dynamic RPC at the Subscriber. Prior to making
updates at the Subscriber, the RPC login and password must be configured at the Subscriber using sp_link_publication.

When setting up a pull subscription using the Pull Subscription Wizard in SQL Server Enterprise Manager, the user chooses
the desired configuration mode. If you choose static RPC, the Publisher must be configured as a linked server or remote
server at the Subscriber. If you choose dynamic RPC, you must supply a login and password that the synchronization
triggers will use to connect to the Publisher.

When setting up a pull subscription using stored procedures, you need to explicitly call sp_link_publication after calling
sp_addpullsubscription at the Subscriber.

User-Defined Triggers

If you are adding user-defined, cascading triggers to tables that are published and allow immediate updating, you can place the
triggers at either the Publisher or Subscriber. Adding the triggers at the Publisher requires no special programming
considerations. For example, you may have two tables, customer and orders, where customerid is a primary key in the
customers table and a foreign key in the orders table. You can use a user-defined trigger on the customers table to cascade
changes to the customerid in the orders table. Updating the customerid in the customers table at the Subscriber causes the
immediate updating trigger to propagate the update to the Publisher. When the update is applied to the Publisher, the user-
defined trigger fires at the Publisher, and cascades the update to the orders table at the Publisher. When the Distribution Agent
runs, the update to the orders table is propagated down to the Subscriber. The cascaded changes are reflected accurately at the
Subscriber, but with some latency because the orders table is not immediately up to date.

If your application requires that the cascaded table at the Subscriber immediately reflect the change in the cascading table (that is,
avoid the latency of the round-trip to the Publisher), you also can add the cascading triggers at the Subscriber. However, when
you add user-defined triggers at both the Publisher and the Subscriber, both sets of triggers must be created using the NOT FOR
REPLICATION option. With the NOT FOR REPLICATION option active, an update to one of the tables at the Subscriber is cascaded
to the other table by the user-defined trigger and then propagated to the Publisher by the immediate-updating triggers on each
table. Because the user-defined cascading triggers at the Publisher are marked NOT FOR REPLICATION, these triggers do not fire.

Note SQL Server 2000 replication supports the automatic transferring of triggers from the table at the Publisher to the table at
the Subscriber; however, they will not be marked automatically as NOT FOR REPLICATION on the Subscriber, which has to be
done manually. The triggers will be marked as NOT FOR REPLICATION if that is how they are defined on the Publisher.

You can also add user-defined triggers to update columns in the row currently being modified. Programming insert and update
triggers is challenging because the immediate updating triggers may also need to update the same row. For example, an
immediate updating trigger must insert the new timestamp or identity value received from the Publisher as part of a two-
phase-commit transaction.

If both the user-defined trigger and the immediate updating trigger apply an update to the same row and you have not included a
subroutine for special case handling, the transaction could terminate. Without special handling, the update process continues in a

loop with each trigger update firing the other trigger until the maximum nesting level (32) is reached and the transaction
terminates.

To avoid this situation, you must allow immediate updating insert and update triggers to fire before any user-defined triggers.
The user-defined trigger should determine if it is being fired in the context of an immediate updating trigger and, if so, terminate
without firing. Add the following lines of code to the beginning of the trigger:

DECLARE @retcode int, @trigger_op char(10)
EXEC @retcode = sp_check_for_sync_trigger @table_id, @tablename sysname, @trigger_op OUTPUT
IF @retcode = 1 RETURN

Replication (SQL Server 2000)

Queued Updating
Queued updating allows snapshot replication and transactional replication Subscribers to modify published data without
requiring an active network connection to the Publisher.

When you create a publication with the queued updating option enabled and a Subscriber performs INSERT, UPDATE, or DELETE
statements on published data, the changes are stored in a queue. The queued transactions are applied asynchronously at the
Publisher when network connectivity is restored.

Because the updates are propagated asynchronously to the Publisher, the same data may have been updated by the Publisher or
by another Subscriber and conflicts can occur when applying the updates.

Conflicts are detected and resolved according to a conflict resolution policy that is set when creating the publication. The
transaction is then propagated to other Subscribers using typical replication mechanisms (loopback detection avoids sending the
update to the Subscriber that originated the transaction).

Queued updating is most appropriate for applications where users mostly read data and only occasionally update data.
Subscribers should be connected most of the time, but if they are offline, updates can continue without interruption.

Both queued updating and merge replication allow updates while offline; however, there are significant differences between the
two features. For more information, see Merge Replication or Updatable Subscriptions.

Replication (SQL Server 2000)

How Queued Updating Works
How Queued Updating Works

When you create a publication and enable it for queued updating, data modifications can be made at the Subscriber and then held
in a queue until they can be applied to the Publisher and then propagated to other Subscribers. The queue is implemented as a
Microsoft® SQL Server™ 2000 table but on Microsoft Windows® 2000, it can optionally be implemented using Microsoft
Message Queuing. For more information, see Queued Updating Components.

The following illustration shows how triggers, queues, and the Queue Reader Agent work together to complete this process.

1. Updates made at the Subscriber are captured by triggers on the subscribing tables. The triggers store these updates in a
queue, which by default is a SQL Server queue. The triggers are created automatically when the subscription is created.

2. If you are using SQL Server queues, updates will be stored in a table designated as the queue (called
MSreplication_queue), which is created automatically when the subscription is configured. If you are using Message
Queuing version 2.0, the updates will be stored in a message queue at the Distributor. If the Subscriber is disconnected from
the network, it can continue to generate messages destined for other computers. Message Queuing stores the messages
locally, and automatically sends them to the queue at the Distributor when network connection is restored.

3. The Queue Reader Agent applies queued transactions to the appropriate publication. When using SQL Server 2000 queues,
the queued transactions are read directly from the queue stored on the Subscriber. When using Message Queuing, the
queued transactions are read from a queue stored at the Distributor.

4. While applying the queued transactions, conflicts (if any) are detected and resolved according to a conflict resolution policy
that is set when the publication is created. As a result, compensating commands may be generated to rollback a transaction
to a Subscriber using the standard transactional replication distribution process, but they are sent only to the Subscriber
that caused the conflict.

5. Any changes made at the Publisher are propagated to all other Subscribers according to the Distribution Agent schedule.

Replication (SQL Server 2000)

Queued Updating Components
Queued Updating Components

 New Information - SQL Server 2000 SP3.

Triggers, stored procedures, queues, and the Queue Reader Agent are the components used with queued updating.

Triggers

When immediate updating, queued updating, or immediate updating with queued updating as a failover is enabled, triggers are
attached to the replicated table at the Subscriber. With queued updating, the triggers capture transactions initiated at the
Subscriber, and then package the transactions into messages and place them in a queue. This occurs within the same transaction
to ensure that the update to the local database and the queuing of the update is atomic.

The triggers are created using the NOT FOR REPLICATION modifier of the CREATE TRIGGER statement so that the changes
applied by the Distribution Agent do not cause the trigger to fire.

If you subscribe to a transactional publication and use the queued updating option but do not initialize the subscription; the
queued updating triggers are not applied to the Subscriber automatically. Instead, you must create the triggers manually at the
Subscriber using sp_addsynctrigger.Manual initial synchronization of a queued updating subscription is discussed later in this
topic.

When creating synchronization triggers for immediate updating or queued updating subscriptions, additional calls to the
sp_settriggerorder system stored procedure are made to specify the firing order for the INSERT, UPDATE, and DELETE triggers
so that these triggers fire first during synchronization. If there is already a trigger set to fire first, an error will be returned and the
subscription will be marked inactive. If you receive this error, you should either remove the existing trigger or set the firing order
to none. Restart the Distribution Agent so that the initial snapshot and triggers are applied at the Subscriber.

Stored Procedures

When you create a publication and enable it for queued updating by default, stored procedures to insert, update, and delete data
in the published table are created automatically on the publication database.

The stored procedures are called by the Queue Reader Agent to apply transactions at the Publisher, detect conflicts, and if needed,
generate compensating commands, which are posted to the distribution database and then delivered to the Subscriber. INSERT,
UPDATE, and DELETE stored procedures are created for each article.

A stored procedure for logging conflict information at the Publisher, and optionally sending conflict information to relevant
Subscribers, is also created at the Publisher. This is invoked by the Queue Reader Agent if a conflict is detected.

Storing Messages in a Queue

Subscribers with the queued updating option can use either a Microsoft® SQL Server™ 2000 queue or Microsoft Message
Queuing version 2.0 on Microsoft Windows® 2000 Server as the queuing mechanism. When selecting queued updating, the
default is a SQL Server 2000 queue, which is available to all instances of SQL Server.

To see which rows have changes that are pending in a queue, execute sp_getqueuedrows in the subscription database at the
Subscriber.

SQL Server Queue

When using SQL Server 2000 queue, each Subscriber has its own queue in the form of a SQL Server 2000 table
(MSreplication_queue) in the subscription database. The triggers store all messages in the SQL Server 2000 queue until the
Subscriber reconnects to the network after updating published data. The Subscriber and the Publisher must be connected and
available for the updates to occur.

The Subscriber is dependent on the Queue Reader Agent to read and empty the queue. The Queue Reader Agent reads messages
on a Subscriber, finds modifications, and propagates the changes to the Publisher. It then repeats this process at each Subscriber.

Using SQL Server 2000 queues requires that all three servers (Subscriber, Distributor, and Publisher) are connected and available
when queued updates need to be applied at the Publisher. Updates made at the Subscriber can be queued without the Subscriber,
Distributor and Publisher being connected. SQL Server 2000 queues at the Subscriber can be monitored using the
sp_replqueuemonitor stored procedure.

SQL Server queues:

Work with all SQL Server platforms (Windows 98, Windows NT® 4.0, and Windows 2000).

Do not have any additional components that need to be installed.

Are faster for updates made at the Subscriber to queue.

The sp_getqueuedrows stored procedure returns a result set consisting of rows in the user table that have pending updates in
the queue not yet picked up by the Queue Reader Agent. This procedure can be used to identify the rows that can be considered
tentative.

M icrosoft M essage Queuing

Microsoft recommends using SQL Server 2000 queues, but if you are running Windows 2000 Server on the Distributor and
Subscriber and you are on a network that is secured from malicious users, you can use Microsoft Message Queuing as the
queuing mechanism at the Subscriber.

If Message Queuing is used, replication creates a queue on the Distributor. The login under which the SQL Server service runs on
the Distributor is given read and write permissions for the queue; all other logins are restricted. The login under which the Queue
Reader Agent runs on the Distributor requires read permissions for the queue, and the logins under which the SQL Server service
runs on each Subscriber require write permissions for the queue. Permissions can be handled in one of two ways:

Use the same login for the SQL Server Service at the Distributor and all Subscribers, and the SQL Agent service on the
Distributor.

Use different logins, and give to each login the appropriate permissions for the queue.

If you use different logins, the required permissions for the Queue Reader Agent are "Peek Message" and "Receive Message"; the
required permission for each Subscriber is "Send Message". For more information on setting permissions for Message Queuing,
see the topic "Access control for Message Queuing" in the Windows 2000 documentation.

You will need to install Message Queuing on each Subscriber and the Distributor. Queued updating works with Message Queuing
installed in workgroup mode on Windows 2000. This eliminates the need to install Message Queuing on a Windows 2000
domain controller; it is the preferred installation method unless you have other Message Queuing requirements that preclude
using workgroup mode (for example, Message Queuing in workgroup mode does not allow public queues and cannot use
Message Queuing authentication or encryption).

To install Message Queuing on the Distributor and Subscribers

Windows

Windows NT

Queue Reader Agent

The Queue Reader Agent is a multithreaded agent that runs on the Distributor. It is responsible for taking messages from a queue
and applying them to the appropriate publication.

The Queue Reader Agent reads messages from the SQL Server 2000 queue on each Subscriber and applies the transactions to
the publication. When using Message Queuing, the Queue Reader Agent reads the messages stored in a centralized queue
created at the Distributor.

The Queue Reader Agent uses the security context of SQL Server Agent by default. When configured manually, the agent supports
integrated and standard login to the Publisher and Distributor. Unlike the Distribution Agent and the Merge Agent, only one
instance of the Queue Reader Agent exists to service all Publishers and publications for a given Distributor.

See Also

sp_replqueuemonitor

Replication (SQL Server 2000)

Queued Updating Considerations
Queued Updating Considerations

 New Information - SQL Server 2000 SP3.

When using queued updating, consider the following:

Queued updating is supported only with Subscribers running SQL Server 2000.

If you choose the "Publisher wins" conflict resolution option (with or without reinitialization), foreign key constraints cannot
be used on the Subscriber. If you choose the "Subscriber wins" option, foreign key constraints cannot be used on the
Publisher or the Subscriber.

When using filtering with queued updating subscriptions, the application at the Subscriber must ensure that inserts or
updates at the Subscriber do not result in rows that fall outside the partition of the Subscriber. Replication does not enforce
partition membership for changes made at the Subscriber.

If you create two or more articles on the same table, and then create subscriptions to those articles in the same Subscriber
database, the following restrictions apply:

If multiple articles based on the same table are in a single publication enabled for queued updating, you cannot
create a queued updating subscription to this publication.

If multiple articles based on the same table are in different publications and you want to create subscriptions to all
publications in the same database, only one of the subscriptions can be queued updating.

The publication access list (PAL) must include at least one SQL Server Authentication account.

Subscribers using immediate updating or queued updating cannot republish replicated data at the Subscriber.

If a transaction at the Subscriber involves multiple databases, compensating commands are generated only for the updates
affecting the subscription database in case of a conflict.

Tables included in a merge publication cannot also be published as part of a snapshot or transactional publication that
allows queued updating subscriptions.

Modifying Data at the Subscriber

When modifying published data at the Subscriber, consider the following:

The Subscriber cannot update or insert text or image values because they cannot be read from the inserted or deleted
tables inside the trigger. Similarly, the Subscriber cannot update or insert text or image values using WRITETEXT or
UPDATETEXT because the data is overwritten by the Publisher. Instead, you could partition the text and image columns into
a separate table and modify the two tables within a transaction. Use merge replication to synchronize these values. You
cannot be assured there are no conflicts because the update of the text or image table can occur if the data is not well
partitioned.

INSERT statements used to add rows of data to a table must include a column list.

It is recommended that Subscriber tables have at least a unique index and preferably a primary key for snapshot replication.
This is required for transactional replication.

Although snapshot replication without immediate updating does not require the use of primary keys in a table, snapshot
replication or transactional replication with an immediate updating subscription requires you to use primary keys on
publishing tables. Although snapshot replication does not require the use of primary keys in a table, queued updating does
require the use of primary keys.

Updates made to primary key columns are not recommended when using queued updating because the primary key is

used as a record locator for all queries. When the conflict resolution policy is set to Subscriber Wins, updates to primary
keys should be made with caution. If updates to the primary key are made at both the Publisher and at the Subscriber, the
result will be two rows with different primary keys.

For example, if a row has a value of 'Bill' in the primary key column, and that value is updated to be 'William' at the
Publisher and to 'Will' at the Subscriber, both the publication database and the subscription database will end up with two
rows (one with the primary key 'William', and the other with the primary key of 'Will'). It is recommended to restrict primary
key updates to a single site (for example, you could restrict primary key updates by adding an update trigger at the
Subscriber that prevents updates to columns participating in the primary key. The trigger could be added to any necessary
Subscribers by using script execution before or after applying the initial snapshot).

Updates to unique keys (including primary keys) that generate duplicates (for example, an update of the form UPDATE
<column> SET <column> =<column>+1) are not allowed and will be rejected because of a uniqueness violation. This is
because set updates made at the Subscriber are propagated by replication as individual UPDATE statements for each row
affected.

If the Subscriber database is partitioned horizontally and there are rows in the partition that exist at the Subscriber but not
at the Publisher, the Subscriber cannot update the pre-existing rows. Attempting to update these rows returns an error. The
rows should be deleted from the table and added again.

Manual Initial Synchronization of a Queued Updating Subscription

If you subscribe to a transactional publication that allows queued updating subscriptions, but you do not have the subscription
initialized automatically by SQL Server, all of the objects (custom stored procedures, change tracking triggers, and conflict table)
will not be created. You will need to create them manually with the following steps:

1. Script the creation of the table at the Publisher, and using that script, create the table in the subscription database. If you
create the script manually, include the primary key constraint.

2. In the publication database, execute the following stored procedures:

sp_scriptinsproc (specify the @article_id parameter).

sp_scriptxupdproc (specify the @article_id parameter).

sp_scriptxdelproc (specify the @article_id parameter).

These will generate scripts for custom stored procedures to be applied to the subscription database. Execute these scripts in the
subscription database. The article ID value can be obtained by executing sp_helparticle.

3. In the publication database, execute the following system stored procedure:

sp_scriptsubconflicttable (specify the @publication and @article parameters).

This stored procedure returns 0 if successful and 1 if not successful. This generates a script for the conflict table for the given
article. Execute this script in the subscription database.

For more information, see sp_scriptsubconflicttable

4. In the publication database, execute the following system stored procedure:

sp_script_synctran_commands (specify the @publication and @article parameters).

This stored procedure returns 0 if successful and 1 if not successful. This generates scripts for creating triggers and the
MSsubsciption_articles table at the subscriber. Execute these scripts in the subscription database.

For more information, see sp_script_synctran_commands

Note Although the use of sp_script_synctran_commands is preferred, step four may be accomplished by executing both
sp_addsynctriggers and sp_addqueued_artinfo.

Replication (SQL Server 2000)

Queued Updating Conflict Detection and Resolution
Queued Updating Conflict Detection and Resolution

 New Information - SQL Server 2000 SP3.

Because queued updating allows modifications to the same data at multiple locations, there may be conflicts when data is
synchronized at the Publisher. Conflict detection and resolution is handled differently with queued updating than it is with merge
replication. With queued updating, conflict detection and resolution is based on maintaining atomicity of the transaction. Because
of this requirement, the number of conflict resolution policies that can be defined by the user is limited as compared with merge
replication, which provides a more flexible framework for conflict resolution, but merge replication handles conflicts at the row
level, not at the transaction level.

Microsoft® SQL Server™ 2000 detects the conflict when changes are synchronized with the Publisher. It then follows the
resolution policy you selected when creating the publication.

Conflict detection and resolution can be a time-consuming and resource-intensive process, and it is best to minimize conflicts in
the application by creating data partitions so that different Subscribers are modifying different subsets of data, and to prevent a
user's work from being uncommitted if a conflict occurs.

Detecting Conflicts

When creating a publication and enabling queued updating, SQL Server 2000 adds a uniqueidentifier column
(MSrepl_tran_version) with the default of newid() to the underlying table. When published data is changed at either the
Publisher or the Subscriber, the row receives a new globally unique identifier (GUID) to indicate that a new row version exists. The
Queue Reader Agent uses this column during synchronization to determine if a conflict exists.

A transaction in a queue maintains the old and new row version values. When the transaction is applied at the Publisher, the
GUIDs from the transaction and the GUID in the publication are compared. If the old GUID stored in the transaction matches the
GUID in the publication, the publication is updated and the row is assigned the new GUID that was generated by the Subscriber.
By updating the publication with the GUID from the transaction, you have matching row versions in the publication and in the
transaction.

If the old GUID stored in the transaction does not match the GUID in the publication, a conflict is detected. The new GUID in the
publication indicates that two different row versions exist: one in the transaction being submitted by the Subscriber and a newer
one that exists on the Publisher. In this case, another Subscriber or the Publisher updated the same row in the publication before
this Subscriber transaction was synchronized.

Unlike merge replication, the use of a GUID column is not used to identify the row itself, but is used to check if the row has
changed.

Resolving Conflicts

When you create a publication using queued updating, a conflict resolver instructs the Queue Reader Agent how it should handle
different versions of the same row encountered during synchronization. By default, the Publisher wins conflict resolver is set. You
can change the conflict resolution policy after the publication is created as long as there are no subscriptions to the publication.

The conflict resolver choices are:

Publisher wins and the subscription is reinitialized

Publisher wins

Subscriber wins

Important If you choose the "Publisher wins" conflict resolution option (with or without reinitialization), foreign key
constraints cannot be used on the Subscriber. If you choose the "Subscriber wins" option, foreign key constraints cannot be
used on the Publisher or the Subscriber.

These conflict resolvers maintain transactional consistency at the Subscriber to varying degrees. Reinitializing the Subscriber
provides the highest degree of transactional consistency, and Subscriber wins provides the lowest degree of transactional
consistency.

Conflicts are recorded and can be viewed using the Conflict Viewer. When using queued updating with snapshot replication, the

conflict resolution policy is restricted to reinitializing the Subscriber or Subscriber wins. The Subscriber wins conflict resolution
policy is not available.

Reinitialize Subscriber

Reinitializing Subscriber to resolve conflicts maintains strict transactional consistency at the Subscriber, but it can be time
consuming if the publication contains large amounts of data.

When the Queue Reader Agent detects a conflict, all remaining transactions in the queue (including the transaction in conflict) are
rejected, and the Subscriber is marked for reinitialization. The next snapshot generated for the publication will be applied by the
Distribution Agent to the Subscriber.

Publisher Wins

When the conflict resolution is set to Publisher wins, transactional consistency is maintained based on the data at the Publisher.
The conflicting transaction is rolled back at the Subscriber that initiated it.

The Queue Reader Agent detects a conflict and compensating commands are generated and propagated to the Subscriber by
posting them in the distribution database. The Distribution Agent then applies the compensating commands to the Subscriber
that originated the conflicting transaction. The compensating actions update the rows on the Subscriber to match the row on the
Publisher.

Until the compensating commands are applied, it is possible to read the results of a transaction that will eventually be rolled back
to the Subscriber. This is equivalent to a dirty read (read uncommitted isolation level). There is no compensation for the
subsequent dependent transactions that can occur. However, transaction boundaries are honored and all the actions within a
transaction are either committed, or in the case of a conflict, rolled back.

Subscriber Wins

Conflict detection under the Subscriber wins policy means the last Subscriber transaction to update the Publisher wins. In this
case, when a conflict is detected, the transaction sent by the Subscriber is still used and the Publisher is updated. This policy is
suitable for applications where such changes do not compromise data integrity.

To set the queued updating conflict resolution policy

Enterprise Manager

Enterprise Manager

Viewing Conflicts

All conflicts are logged at the Publisher in a conflict table. The conflicts can also be propagated to and viewed at the Subscriber
that submitted the conflicting transaction. This can be done by selecting the publication property that allows decentralized conflict
reporting. Decentralized conflict reporting is not available when using queued updating with snapshot replication, so viewing
conflicts will only be available at the Publisher.

The Conflict Viewer available with queued updating allows you to view conflicts on either the Publisher or the Subscriber, but
unlike merge replication, it does not allow you to resubmit a row.

To allow decentralized conflict reporting

Enterprise Manager

Enterprise Manager

To view conflicts

Enterprise Manager

Enterprise Manager

See Also

Merge Replication Conflict Detection and Resolution

Replication (SQL Server 2000)

Queued Updating and Identity Ranges
Queued Updating and Identity Ranges

Normally with snapshot replication and transactional replication (read only or using immediate updating), if the publishing table
contains a column with the identity data type, the identity property is not propagated to the Subscriber.

The identity property is used to provide next number values for data automatically (for example, for columns such as Customer
ID or Order ID). When using immediate updating, the Publisher determines this value, and as part of the 2PC transaction initiated
by the Subscriber, it is synchronized between Publisher and Subscriber.

With queued updating and immediate updating with queued updating as a failover, identity values must be assigned at the
Subscriber because the Subscriber may be offline and updates at the Subscriber may be sent to a queue. In this case, the
Publisher will not be able to assign identity values immediately. Therefore, when the initial snapshot is applied at the Subscriber,
the identity property is propagated as well.

To avoid different Subscribers assigning the same identity values, you can define identity ranges for each Subscriber. When you
define identity ranges, a Subscriber is allowed to assign values only from a specific range.

You can manage identity values using automatic identity ranges (SQL Server 2000 replication handles assigning identity ranges
for you) or you can set identity ranges manually using a check constraint and the NOT FOR REPLICATION option on the IDENTITY
property of a Transact-SQL CREATE TABLE statement.

For more information about handling identity values in replication, see Replication Data Considerations.

If you are using the attachable subscription database feature and the subscription database has subscriptions to publications that
allow queued updating with auto identity range articles, you will need to run the distribution agents to obtain new identity ranges
on the Subscriber after attaching the subscription database. For more information, see Attachable Subscription Databases.

See Also

Identity Ranges with Immediate Updating and Queued Updating

Replication (SQL Server 2000)

Immediate Updating with Queued Updating as a Failover
Immediate updating with queued updating as a failover can be used when you expect the Publisher and Subscribers to be
connected, but you do not want to lose the ability to make updates at the Subscriber if a system failure results in the loss of
network connectivity. Immediate updating with queued updating as a failover allows you to use immediate updating and switch
to queued updating when needed.

In this case, 2PC is used to propagate updates made at the Subscriber to the Publisher until you enable the queued updating
failover. After the queued updating failover is enabled, transactions from the Subscriber are packaged into messages and sent to a
queue. The transactions are recorded asynchronously and are applied to the Publisher when a connection is re-established.

You can invoke queued updating failover at any time, but after you do, you cannot failback to immediate updating until the
Subscriber and Publisher (or Distributor and Publisher in the case of Message Queuing) are connected and the Queue Reader
Agent has applied all pending messages in the queue to the Publisher. Queued updating is not invoked automatically because it
may be easy to fix the problem that is preventing immediate updating (for example, hardware that is disconnected). You may not
need or want to allocate resources to switch from queued updating back to immediate updating (which requires emptying the
queue).

Pull subscriptions created using on-demand synchronization are added to Windows Synchronization Manager automatically. You
can add pull subscriptions that are not using on-demand synchronization to Windows Synchronization Manager by opening the
subscription properties, and then on the Synchronization tab, selecting Enable this subscription to be synchronized using
the Windows Synchronization Manager.

To enable immediate updating with queued updating as a failover

Enterprise Manager

Enterprise Manager

To switch from immediate updating to queued updating

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

Windows

Windows

See Also

Identity Ranges with Immediate Updating and Queued Updating

sp_helpreplfailovermode

sp_setreplfailovermode

Replication (SQL Server 2000)

Transforming Published Data
Transformable subscriptions (available with snapshot replication or transactional replication) leverages the data movement,
transformation mapping, and filtering capabilities of Data Transformation Services (DTS). Using transformable subscriptions in
your replication topology allows you to customize and send published data based on the requirements of individual Subscribers.

Examples of how you can use transformable subscriptions include:

Creating column and horizontal partitions of published data on a per Subscriber basis (custom data partitions).

Creating data transformations such as data type mappings (for example, integer to real data type), column manipulations
(for example, concatenating first name and last name columns), string manipulations, and use of functions.

The option to allow transformations is set at the time you create a publication. After the option is set, and a replication DTS
package is built, Subscribers to the publication can attach a DTS package and incorporate it as part of the replication data flow.
This functionality is supported for Microsoft® SQL Server™ 2000 and OLE DB Subscribers (ODBC Subscribers are not supported).

You create a DTS package for replication either using the replication wizards or programmatically, such as using Microsoft Visual
Basic®. You can also customize a DTS package for use with a Subscriber by using DTS Designer.

The transformable subscriptions topics assume you are familiar with DTS. For information about DTS concepts, DTS
programming, and using DTS as a part of your data warehousing strategy, see DTS Basics

Replication (SQL Server 2000)

How Transforming Published Data Works
How Transforming Published Data Works

When a publication is configured to allow DTS transformations, the Subscriber is allowed to specify a DTS package as part of
setting up a subscription. The following diagram illustrates how snapshots and subsequent incremental changes are transformed
before the data is applied to the Subscriber.

Snapshots

During the process of applying the snapshot, the Distribution Agent loads the replication DTS package from the msdb database
(or loads a saved .dts file, in the case of OLE DB pull Subscribers). The SQL Server replication OLE DB Provider for DTS converts
snapshot data into an OLE DB rowset that is used to drive a DTS Data Driven Query task, which performs any specified
transformations or filtering operations before applying the data to the Subscriber. This is a special purpose OLE DB provider
intended for use only by replication and not a general purpose OLE DB provider.

The following events and processes occur when a DTS package is included in the replication data flow:

A DTS package is created with the snapshot .bcp (bulk copy) file as the source input to the package.

The Subscriber table is created from the script in the DTS package Execute SQL task.

The Data Driven Query task, used in a replication DTS package, moves data using Transact-SQL INSERT statements. When
snapshots are applied or reinitialized, the equivalent of an INSERT statement for each row of data is executed by the DTS
package.

For publications allowing DTS transformations, the snapshot .bcp data files are generated as character-mode because native

format .bcp files cannot be used with DTS.

Heterogeneous Subscribers can subscribe to publications for which the snapshot is created in character-mode, as long as the
publication allows transformations of published data.

Incremental Changes

As incremental changes occur at the Publisher, the Distribution Agent retrieves transactions that need to be replicated from the
distribution database, and processes them in the same way described for applying a snapshot. In this case, however, the data
source is the MSrepl_commands table rather than a .bcp character-mode data file. For incremental changes, the Data Driven
Query task handles UPDATES and DELETES in addition to INSERTS, and applies the incremental changes for individual statements
within a transaction according to the type of incremental change and its specified transaction mappings (for example, if the
change is mapped to a transaction with INSERT, UPDATE or DELETE statements).

Note When columns are added to or dropped from a publication that allows transformations on published data, the DTS
packages will need to be regenerated.

Replication (SQL Server 2000)

Creating a Transformable Subscription Using Replication
Wizards
Creating a Transformable Subscription Using Replication Wizards

Creating a transformable subscription using the replication wizards requires the following steps:

1. Create a new snapshot publication or transactional publication and enable the publication for transformable subscriptions
using the Create Publication Wizard.

2. Build the replication DTS package (define the columns and rows in the partition, and map the transformations) using the
Transform Published Data Wizard (available by right-clicking the publication that allows data transformations and selecting
Define Transformation of Published Data).

3. Create a subscription that incorporates an existing replication DTS package to transform published data, using either the
Push Subscription Wizard or the Pull Subscription Wizard (the DTS package must exist at the time a subscription is created).
When creating a transformable subscription, you select from the existing DTS packages marked for replication.

After the replication DTS package is created, advanced users can edit the DTS package in DTS Designer to customize it for an
individual Subscriber.

Note You must enable a subscription to use a DTS package when you create the publication; you cannot modify an existing
publication to use DTS packages.

To create a transformable subscription

Enterprise Manager

Enterprise Manager

Replication (SQL Server 2000)

Using Transformable Subscriptions to Create Custom Data
Partitions
Using Transformable Subscriptions to Create Custom Data Partitions

In earlier versions of Microsoft® SQL Server™, if you needed to create different partitions of data for different Subscribers that
subscribe to snapshot or transactional publications, you would have to create a different publication for each Subscriber. With
SQL Server 2000, you can use transformable subscriptions to create custom data partitions for a single publication that provide
different data based on requirements of individual Subscribers. You can create partitions of column and row data on a per
Subscriber basis, with one publication supporting multiple subscriptions.

One method of creating custom data partitions with transformable subscriptions is with the Transform Published Data Wizard.
After you create a publication and enable it for transformable subscriptions, you create the data partitions in the Transform
Published Data Wizard as part of the process of building a replication DTS package. Most of the work required to build data
partitions is done on the Column Mappings and Transformations page of that wizard.

Replication (SQL Server 2000)

Defining a Vertical Partition
Defining a Vertical Partition

The Define Transformations page of the Transform Published Data Wizard lists the published tables. To filter published data
vertically, select a table in that page by clicking its transform (...) button, and then on the Column Mappings and Transformations
page, click the Column Mappings tab and clear any columns you want to exclude from the partition.

Replication (SQL Server 2000)

Defining a Horizontal Partition
Defining a Horizontal Partition

Using transformable subscriptions, you can exclude certain rows on a per Subscriber basis. To partition data horizontally for a
transformable subscription, you must:

Enable the publication to use horizontal DTS partitions by selecting the Provide support for horizontal DTS
transformation scripts option in the properties for each article for which you want a horizontal DTS partition.

Use the Transform Published Data Wizard to build the DTS package. The Define Transformations page of the Transform
Published Data Wizard lists the published tables. To partition published data horizontally, select a table in that page by
clicking its transform (...) button. On the subsequent Column Mappings and Transformations page, click the
Transformations tab. The Transformations tab contains an edit box you use to write the Microsoft® ActiveX® scripts that
define the horizontal partition.

Include Microsoft ActiveX scripts written to the DTS object model with the DTS package. The ActiveX script needs to specify
the filter criterion and be able to check if:

1. A newly inserted row needs to be propagated to the Subscriber.

2. Rows updated at the Publisher no longer meet the partitioning criterion and need to be deleted at the Subscriber.

3. Rows updated at the Publisher meet the filter criteria and need to be inserted at the Subscriber.

Supporting steps 2 and 3 is possible by using XCALL syntax for UPDATE, which ensures before and after values for the row after
an update. This allows the ActiveX script to determine if the row is moving into or out of the partition.

The ActiveX scripts you use to define the horizontal partition need to follow guidelines that are explained in the following
example. You would only need to provide the two functions IsInPartition() and Transform(). You do not need to change the
Main() function.

You can also use the system stored procedures sp_addarticle and sp_changearticle to specify horizontal partitions for snapshot
or transactional publications that allow data transformations.

If a publication allows transformable subscriptions, you can set @status parameter for sp_addarticle to a value of 64 to indicate
that the article supports DTS horizontal partitions. If the parameter is not set, it is not possible to insert or delete rows at the
Subscriber when rows move into or out of the partition resulting from an update at the Publisher. If the status is set, the before
image of an updated row will be sent to the distribution database by the Log Reader Agent and then to the DTS package inside
the Distribution Agent. This will increase network traffic, and should be used with caution.

If the publication allows data transformations, sp_changearticle accepts the values of 'dts horizontal partitions' and 'no dts
horizontal partitions' for the status article property. Changes to this property are not allowed when there are active subscriptions
(snapshots have been generated for the subscriptions). If the publication allows immediate updating, the Snapshot Agent needs to
be run after this property is changed. Snapshots generated previously will be obsolete.

Validation of Custom Data Partitions

Using transformable subscriptions to exclude rows or columns and create horizontal and vertical partitions means that data at the
Subscriber will be different than data at the Publisher. ROWCOUNT and CHECKSUM validation will report discrepancies. Typically,
you would not want to run validation for those Subscribers.

Dynamic filters available with merge replication do not have this limitation because the validation is compared with the SQL
Server view that defines the partition.

Example

To include only customers whose last names begin with the letters A through D, you could use the following Microsoft Visual
Basic® Scripting Edition code:

Dim OldRowInPartition
Function Main()
 ' If the current source data is the old values of the row before an update, verify if the old row is in the
partition or not.

 ' ReplicationChangeType values:
 ' 1 = Insert. Source data is from a row that was inserted at the source.
 ' 2 = Update. Source data is from a row that was updated at the source. The data are values after the
update.
 ' 3 = Delete. Source data is from a row that was deleted at the source.
 ' 4 = Before Update. Source data is from a row that was updated at the source. The data are values before
the update.

 If DTSGlobalVariables("ReplicationChangeType").Value = 4 Then
 OldRowInPartition = IsInPartition()
 Main = DTSTransformStat_SkipRow
 Else 'Error check to prevent users from forgetting to enable the article for DTS horizontal partition.
 If DTSGlobalVariables("RelicationChangeType").Value=2 and IsEmpty(OldRowInPartition)=True Then
 Err.Raise 1, "Replication DTS ActiveX Script", "The article does not support DTS horizontal partitions."
 End If
If IsInPartition() Then
 'Set default return status, which means using the query type set by the replication process.
 Main = DTSTransformStat_OK
 Transform

 ' If it is an update, test to see if the row has just moved into the partition. If so, overwrite the query
type to insert from update.
 If DTSGlobalVariables("ReplicationChangeType").Value = 2 And _
 Not OldRowInPartition Then
 Main = DTSTransformStat_InsertQuery
 End If
 Else

 ' If it is an update, test to see if the row has just moved out of the partition.
 ' If so, overwrite the query type to insert from update.
 If DTSGlobalVariables("ReplicationChangeType").Value = 2 And _
 OldRowInPartition Then
 Transform
 Main = DTSTransformStat_DeleteQuery
 Else
 Main = DTSTransformStat_SkipRow
 End If
 "
 End If
 End If
 End Function

Function Transform()
 DTSDestination("CustID") = DTSSource("CustID")
 DTSDestination("LName") = DTSSource("LName")
 DTSDestination("FName") = DTSSource("FName")
 DTSDestination("Item") = DTSSource("Item")
 DTSDestination("SaleAmt") = DTSSource("SaleAmt")
End Function
 Function IsInPartition()
 ' In partition if the first char is uppercase and begins with A, B, C or D.
 If Left(DTSSource("LName"), 1) <= "D" Then
 IsInPartition = True
 Else
 IsInPartition = False
 End If
 End Function

Replication (SQL Server 2000)

Using Distributed Agents to Create Efficient Custom Partitions
Using Distributed Agents to Create Efficient Custom Partitions

It is recommended that you use push subscriptions when creating data partitions using transformable subscriptions. If you intend
to use transformable pull subscriptions instead, you can decrease the amount of data sent over the network by running the
Distribution Agent on the Distributor using DCOM instead of on the Subscriber.

The advantage of this functionality is that the filtering takes place at the Distributor, and only the data included in a partition is
sent over the network. If the Distribution Agents were located at each Subscriber, all the published data would travel over the
network before being filtered at the Subscriber. Remote agent activation works best on Microsoft® Windows® 2000 and
requires additional configuration when using Windows 98 and Windows NT® 4.0. For information about configuring replication
for distributed pull agents, see Remote Agent Activation.

Replication (SQL Server 2000)

Using Transformable Subscriptions with Data Transformations
Using Transformable Subscriptions with Data Transformations

You can use transformable subscriptions for basic data transformations and column manipulations between a Publisher and
Subscriber, including:

Changing data types (except for primary key columns).

Renaming a column.

Concatenating columns.

Extracting a substring from, or adding characters to, a column.

Applying functions to column values.

You map transformations in the Transform Published Data Wizard, on the Column Mappings and Transformations page, on the
Transformations tab, using Microsoft® ActiveX® scripts written to the DTS object model (the same as when defining partitions).
Using scripting code, specify the transformation in the ActiveX script edit box. For example, to concatenate the first name and last
name columns of published data to a one name column in the Subscriber, you could use the following Microsoft Visual Basic®
Scripting Edition code (the second line of the function shows the column concatenation):

Function Main()
 DTSDestination("CustID") = DTSSource("CustID")
 DTSDestination("Name") = DTSSource("LName") & " " & DTSSource("FName")
 DTSDestination("Item") = DTSSource("Item")
 Main = DTSTransformStat_OK
End Function

Replication (SQL Server 2000)

DTS Package Details
DTS Package Details

 New Information - SQL Server 2000 SP3.

A Data Transformation Services (DTS) package containing a specific configuration of DTS custom tasks, connection settings, and
workflow is used to create a transformable subscription.

Connections

To connect to the distribution database and provide published data to the DTS package (source connection), a special OLE
DB provider, the Microsoft SQL Server Replication OLE DB Provider for DTS is used. When you create a transformable
subscription, this provider is installed automatically on the DTS package, and cannot be changed. This provider can be used
only with transformable subscriptions.

The connection from the DTS package to the Subscriber (destination connection) does not use the Microsoft SQL Server
Replication OLE DB Provider for DTS; it uses whatever OLE DB provider is required to connect to the Subscriber. For
example, you would use the Microsoft OLE DB Provider for SQL Server to send transformed data to a Microsoft® SQL
Server™ 2000 Subscriber.

Only SQL Server (the Microsoft OLE DB Provider for SQL Server) Subscribers and other OLE DB Subscribers can use
transformable subscriptions; ODBC Subscribers will not work with transformable subscriptions.

Package Storage

A DTS package created through replication is saved by default as a DTS SQL Server package (a DTS save option where the
package is saved to local SQL Server tables in the msdb database); however, packages can also be saved as a DTS structured
storage (.dts) file. Packages used with transformable subscriptions cannot be saved in the other available DTS save formats
(repository, Microsoft Visual Basic® Script file, Visual Basic .bas file).

Package Security

The DTS package can be read or overwritten only by a user operating under the sysadmin role, or by the package owner. Thus,
Distribution Agents need to be run under the sysadmin account or the package owner account at the Distributor or Subscriber
site. If the package is stored at the Distributor, all the publication access list (PAL) users will have access to the package passwords
defined for subscriptions on the publication. If the package is stored on the Subscriber, members of db_owner for the Subscriber
database have access.

Package Components

A DTS package used for transformable subscriptions consists of several DTS objects:

Connections for the Subscriber (multiple Subscribers share the same connection) and the Publisher. The Publisher
connection is always a Microsoft SQL Server Replication OLE DB Provider for DTS data source. A different Publisher
connection is necessary for each article.

One or more Execute SQL tasks. These include, at minimum, create table scripts, per article, for each published article.

Data Driven Query task. This task is able to match different types of replication change request (INSERT, DELETE, UPDATE)
with the data movement operations required to implement the request on the Subscriber correctly. Each article requires a
different Data Driven Query task in the DTS package. For the data movement to work, the destination column values must
bind to parameters in the INSERT, DELETE, and UPDATE statements. The Data Driven Query task handles all data movement
from the distribution database to the Subscriber through its underlying data pump. For the snapshot, the InsertQuery
property is used.

If a replication DTS package is customized later in DTS Designer by adding a Microsoft ActiveX® script transformation, the
return status specified in the script must be changed to:

Main = DTSTransformStat_OK

A global variable, ReplicationChangeType, is set by the Distribution Agent to signify the change type of a particular row, and
can be accessed programmatically. Here are the available change types.

Change Type Value Action
INSERT 1 Source data is from a row that was inserted at the

source.
UPDATE 2 Source data is from a row that was updated at the

source. The data are values after the update.
DELETE 3 Source data is from a row that was deleted at the

source.
BEFORE UPDATE 4 Source data is from a row that was updated at the

source. The data are values before the update. This
is used with horizontal partitions.

Declaring the global variable is optional. When used, its value is set by the Distribution Agent. The global variable can be
used with an ActiveX script or other transformation servers to determine the change type associated with the current row.
Following is sample Microsoft Visual Basic code you might use to declare and use this global variable:

Dim oConnProperty As DTS.OLEDBProperty
Dim gVar As Integer
Dim oGlobal As DTS.GlobalVariable
Set oGlobal = goPackage.GlobalVariables.New("ReplicationChangeType")
oGlobal.Name = "ReplicationChangeType"
oglobal.Value = 0
goPackage.GlobalVariables.Add oGlobal
Set oGlobal = Nothing

Debugging ActiveX Scripts in DTS Packages

You can debug ActiveX scripts in transformable subscription DTS packages. To debug your scripts:

Turn on debugging in the Data Transformation Services Package Properties dialog.

Run the Distribution Agent from the command line or ActiveX control. Do not run it under the SQL Server Agent NT service.

For more information about how to debug scripts, see Debugging ActiveX Scripts.

To turn on just-in-time debugging

Enterprise Manager

Enterprise Manager
.

Replication (SQL Server 2000)

Limitations and Considerations
Limitations and Considerations

Limitations to using transformable subscriptions and considerations to take into account include the following:

Snapshot data for a transformable subscription is limited to character mode only; native format (which is usually faster to
apply) cannot be used with Data Transformation Services (DTS).

After a publication is enabled for transformable subscriptions, the option cannot be disabled; the existing publication must
be deleted and a new one created.

You cannot use the updatable transactional Subscriber (two-way transactional updates) or queued updating Subscriber
feature with transformable subscriptions (transformations are mapped in one direction, from Publisher to Subscriber).

If an existing DTS package is changed, and Distribution Agent is running in continuous mode, the Distribution Agent must
be shut down and restarted for the package changes to take effect.

Although creating a transformable subscription creates a DTS package, this type of DTS package is not available for
execution outside of replication (from DTS Designer or at the command prompt).

You must have the proper access permissions for executing the DTS package to use a transformable subscription.

Introducing DTS transformations into the replication data flow may affect performance. Performance will usually be
somewhat slower than sending data to a Subscriber without a DTS package.

If you add or drop columns from a published table by using Add Column or Drop Column on the Filter Columns tab of
the publications properties dialog box, or by using sp_repladdcolumn or sp_repldropcolumn, you will also need to drop
and recreate the DTS package to reflect changes to the meta data.

WRITETEXT and UPDATETEXT statements cannot be used to update columns with text, ntext, or image data types.

Replication (SQL Server 2000)

Alternate Synchronization Partners
 New Information - SQL Server 2000 SP3.

Subscribers to merge publications can synchronize with servers other than the Publisher at which the subscription originated.
Synchronizing with alternate partners provides the ability for a Subscriber to synchronize data even if the primary Publisher is
unavailable. This feature is also useful when mobile Subscribers have access to a faster or more reliable network connection with
an alternate synchronization partner.

The following are requirements when using alternate synchronization partners:

The feature is available only with merge replication.

When using automatic identity range handling, a Subscriber must synchronize with its primary Publisher to receive a new
identity range.

To avoid subscription expiration, a Subscriber must synchronize with its primary Publisher within the retention period of the
publication. For example, if the publication retention period is 14 days (the default), a Subscriber must synchronize with its
primary Publisher at least every 14 days; all other synchronizations can be performed with an alternate synchronization
partner.

The alternate synchronization partner must have the data and schema required by the subscription.

It is recommended that the publication created on the alternate server be a clone of the publication created on the original
Publisher.

The publication properties must specify that Subscribers can synchronize with other Publishers.

For named subscriptions (subscriptions that are not anonymous to the Publisher), the Subscriber must be enabled at the
alternate synchronization partner so that the Subscriber can synchronize data with that Publisher. If this is not done, the
merge Agent will add the subscription entry at the Publisher automatically.

For named subscriptions, a subscription with the same attributes as the subscription at the primary Publisher will be added
automatically at the alternate synchronization partner.

Replication (SQL Server 2000)

How Alternate Synchronization Partners Works
To enable alternate synchronization partners, create a publication and then modify its properties to allow Subscribers to
synchronize with alternate partners or create a publication with the property enabled using SQL-DMO or Transact-SQL system
stored procedures. Next, create a pull subscription with the synchronize on demand option.

When you need to synchronize data using an alternate partner, you can use Windows Synchronization Manager, SQL Server
Enterprise Manager, or the SQL Server merge replication ActiveX® control and select from a list of available alternate
synchronization partners. When synchronizing published data, the Publisher where the subscription originated is the default
Publisher; however, you can choose to specify a different synchronization partner as the default in Windows Synchronization
Manager.

If you are using named Subscriptions, you must enable the Subscriber at the alternate synchronization partner and create a
subscription identical to the original subscription at the alternate synchronization partner.

When the Subscriber merges its published data with data at an alternate synchronization partner, checks occur verifying that the
Subscriber login exists in the publication access list (PAL) and ensuring that the Subscriber is enabled at the alternate
synchronization partner (for named subscriptions).

When a Subscriber using an anonymous subscription synchronizes with an alternate synchronization partner for the first time,
this subscription is recorded in the subscription database. The subscription will have the same attributes as the subscription at the
primary Publisher.

To enable Subscribers to synchronize with alternate synchronization partners

Enterprise Manager

Enterprise Manager

To enable a Subscriber at an alternate synchronization partner (for named subscriptions)

Enterprise Manager

Enterprise Manager

To synchronize push subscriptions with alternate synchronization partners

Enterprise Manager

Enterprise Manager

To synchronize pull subscriptions with alternate synchronization partners

Enterprise Manager

Enterprise Manager

Windows

Windows NT

For information about synchronizing with alternate synchronization partners using the SQL Server merge replication ActiveX
control, see SyncToAlternate Property.

Replication (SQL Server 2000)

Optimizing Synchronization
Optimizing synchronization during merge replication allows you to minimize network traffic when determining if recent changes
have caused a row to move into or out of a partition for a Subscriber. In merge replication, an option is provided that stores more
information at the Publisher instead of transferring that information over the network to the Subscriber. While this option may
result in a larger database at the Publisher, it can improve synchronization performance over a slow link. However, more
information will be stored at the Publisher and additional storage space will be necessary.

If the optimize synchronization setting is not used, changes in one partition will cause the merge process to verify the partition
content of data sent to all Subscribers again, even if the change affects only one or a few Subscribers.

For example, if sales data is filtered based on the state where a customer resides, and a customer moves from Washington to
California, that row needs to be removed from the data partition sent to Washington Subscribers and added to the data partition
sent to California Subscribers.

If optimize synchronization is not used, the merge process will also check partitions sent to other Subscribers (those in Idaho,
Oregon, and so on) for the state value that changed. The merge process cannot know what the California value was before it was
changed. Enabling synchronization optimization will allow the merge process to accurately know what partitions were affected
and what Subscribers need to be cleaned up.

By storing additional information at the Publisher, Microsoft® SQL Server™ 2000 can more quickly determine the filtered data
that should be sent to a particular Subscriber. When synchronization is optimized, SQL Server 2000 creates before image tables at
the Publisher that contain additional information about changes to columns used in horizontal or join filters. These before images
from an UPDATE or DELETE to such a column permit the Merge Agent to determine quickly and accurately which Subscriber may
need to have rows added to or removed from a specific data partition.

For example, if a sales organization partitions and distributes data based on sales territories, and the publication is enabled to
optimize synchronization, the information about how data is partitioned would be stored in before image tables at the Publisher.
If sales territories shift and data needs to be repartitioned to multiple Subscribers, it will be a faster process to update and
redistribute the data because the information about how data is currently partitioned is already at the Publisher.

This optimization may be useful if your application allows for the values used in row filters to change frequently for a given row.
For example, if you frequently shift or realign sales territory assignments, you may gain a significant performance improvement
during synchronization through this optimization.

The amount of information stored at Publisher is based on columns used to define the partition. For example, if the columns in a
partition total 20 bytes and there are 10 million rows, approximately an extra 200 MB will be stored at the Publisher. If there are
only 10,000 rows, 200 KB will be stored at the Publisher.

Caution Choosing to maintain this additional information at the Publisher results in an increase in the storage requirements for
the merge replication tracking system tables in the publication database; however, if UPDATES to columns included in partitions
are not atypical, the performance gains are usually worth maintaining the additional information.

To minimize the amount of data sent over the network

Transact-SQL

Enterprise Manager

To minimize the amount of data sent over the network using SQL Server Enterprise Manager

While creating a merge publication in the Create Publication Wizard, select Yes, minimize the amount of data on the
Optimize Synchronization page.

For an existing merge publication, you can view the optimize synchronization option in Publication Properties on the
Subscription Options tab. You cannot change this option after a publication is created,

Replication (SQL Server 2000)

Replication Data Considerations
Special considerations should be taken when publishing certain data types and properties. This section identifies those data types
and properties, and it describes solutions for managing them, including:

Identity range management. Specifying identity range management can help you control how data modifications are made
at different Subscribers during merge replication or during snapshot or transactional replication with updatable
subscriptions.

Data types with specific uses. Different data types such as uniqueidentifier and timestamp have specific uses during
replication processing, including conflict resolution when changes to the same data are made at multiple servers.

NOT FOR REPLICATION. Using the NOT FOR REPLICATION option allows you to implement ranges of identity values in a
partitioned environment. .

Replication (SQL Server 2000)

Using IDENTITY Values with Replication
When you assign an IDENTITY property to a column, the system automatically generates sequential incrementing numbers for
new rows inserted into a table. Because identity values are usually unique, an identity column is frequently defined as a primary
key.

In replication topologies, where a publication contains an identity column and new rows can be inserted at Subscribers, additional
configuration may be necessary to ensure that no duplicate identity values or constraint violations occur.

To illustrate managing identity values with replicas, suppose three rows of data from Publisher A, containing the identity values 1,
2, and 3,

 are replicated to Subscriber A and Subscriber A allows inserts. If two new rows in the same article are inserted, one at Publisher A
and one at Subscriber A, and no additional measures are taken by the replication agents, both rows are assigned an identity value
of 4. An attempt is made by the replication agents to copy the new rows between the Subscriber and Publisher. If successful, two
different rows with an identity value of 4 will exist on each replica. As a result, each published article will contain multiple rows
with the same identity values. If the identity column was defined as a primary key, or with a unique constraint, the data will not
replicate.

Replication provides several options to ensure the same identity values are not assigned to rows inserted at different replicas, or
that a primary key constraint violation does not occur.

Replication (SQL Server 2000)

Managing Identity Values
You can manage identity values by:

Allowing Microsoft® SQL Server™ 2000 replication to automatically manage identity columns by dynamically allocating
ranges of identity values to the Publisher and all the Subscribers.

Using the Transact-SQL NOT FOR REPLICATION option when defining the identity column.

Using a primary key other than the identity column (for example, a composite key or a rowguid column), if an identity
column is not necessary. This strategy eliminates the overhead of managing identity columns on the replicated data.

Automatic Identity Range Handling

The simplest way of handling identity ranges across replicas is to allow SQL Server 2000 to manage identity range handling for
you. To use automatic identity range handling, you must first enable the feature at the time the publication is created, assign a set
of initial Publisher and Subscriber identity range values, and then assign a threshold value that determines when a new identity
range is created.

For example, assigning an identity range from 1000 through 2000 to a Publisher, and a range from 2001 through 3000 to an
initial Subscriber, works as follows when combined with a threshold value of 80 percent:

Newly inserted Publisher rows are assigned identity values from 1000 through 2000. Newly inserted rows on the initial
Subscriber will sequence from 2001 through 3000.

When 80 percent of either the Publisher identity values or the Subscriber identity values are used, a new identity range is
created for forthcoming inserts. In this example, if rows from 1001 through 1800 are used on the Publisher, the threshold
has been reached. A new identity range, from 3001 through 4000, is created on the Publisher, and the next inserted row at
the Publisher is assigned an identity value of 3001. After the Subscriber reaches the threshold (assuming the Subscriber
reached threshold after the Publisher), a new identity range is created on the Subscriber, from 4001 through 5000, and the
next inserted row at the Subscriber is assigned an identity value of 4001. The process is repeated as identity ranges are
used.

As each Subscriber is added, an identity range that is the same size as the initial Subscriber range is added, using the next
available starting point.

The threshold setting avoids situations where the Subscribers run out of identity values and become unable to insert new rows
until the Distribution Agent or Merge Agent synchronizes with the Subscriber. However, setting the threshold value too low can
generate large numbers of unused identity values. The threshold value should be set carefully by evaluating the update frequency
at the Subscriber and the synchronization schedule.

For transactional articles enabled for identity range management, the identity ranges at both the Publisher and Subscriber need to
be checked and adjusted periodically. The Log Reader Agent does this at the Publisher and the Distribution Agent does this at the
Subscriber.

If a Log Reader Agent or Distribution Agent is not running in continuous mode, the check and possible adjustment will be done
after all the commands have been processed. When one of the agents is in continuous mode, the check and possible adjustment
will be done in a time interval of 10 times the polling interval of the agent after all the commands have been processed. After the
agent is started, the first check will be done as soon as the commands have been processed.

Run the Log Reader Agent or the Distribution Agent to adjust the Publisher or Subscriber when the server is out of its identity
range. If the agent is running in continuous mode, you may need to restart it for the identity range to be adjusted immediately.

You can also execute sp_adjustpublisheridentityrange to explicitly adjust the identity range at the Publisher based on
threshold value for either transactional or merge publications.

You enable automatic identity range handling:

In SQL Server Enterprise Manager, in the Publication Properties dialog box.

By setting the following options in the sp_addmergearticle stored procedure.

Parameter Values Description

@auto_identity_range TRUE or FALSE Enable (TRUE) or disable
(FALSE) automatic identity
range handling.

@pub_identity_range Integer values of range (for
example, from 1001 through
2000)

Identity range for the
Publisher.

@identity_range Integer values of range (for
example, from 2001 through
3000)

Identity range for the initial
Subscriber; length of range
used for additional
Subscribers.

@threshold Integer value for percent
threshold (for example, 90 is
equivalent to 90 percent)

Percent of total identity
values used on replica that
trigger creation of new
identity range.

Manual Identity Range Handling

You can also manage identity values using a check constraint and the NOT FOR REPLICATION option on the IDENTITY property of
a Transact-SQL CREATE TABLE statement. Use the NOT FOR REPLICATION option to specify identity ranges programmatically, or
if you are upgrading an existing instance of SQL Server where identity ranges are already being managed through Transact-SQL
statements.

Using the NOT FOR REPLICATION statement informs SQL Server 2000 that the replication process gets a waiver when supplying
an explicit value and that the local identity value should not be reseeded. Each Publisher using this option receives a reseeding
waiver.

The following code example illustrates how to implement identities with different ranges at each Publisher:

At Publisher A, start at 1 and increment by 1.

CREATE TABLE authors (COL1 INT IDENTITY (1, 1) NOT FOR REPLICATION PRIMARY KEY)

At Publisher B, start at 1001 and increment by 1.

CREATE TABLE authors (COL1 INT IDENTITY (1001, 1) NOT FOR REPLICATION PRIMARY KEY)

After activating the NOT FOR REPLICATION option, connections from replication agents to Publisher A insert rows with values
such as 1, 2, 3, 4. These are replicated to Publisher B without being changed (that is, 1, 2, 3, 4). Connections from replication
agents at Publisher B receive values 1001, 1002, 1003, and 1004. Those are replicated to A without being changed. When all data
is distributed or merged, both Publishers have values 1, 2, 3, 4, 1001, 1002, 1003, and 1004. The next locally inserted value at
Publisher A is 5. The next locally inserted value at Publisher B is 1005.

It is recommended that you always use the NOT FOR REPLICATION option along with the CHECK constraint to ensure that the
identity values being assigned are within the allowed range. For example:
CREATE TABLE sales
(sale_id INT IDENTITY(100001,1)
NOT FOR REPLICATION
CHECK NOT FOR REPLICATION (sale_id <= 200000),
sales_region CHAR(2),
CONSTRAINT id_pk PRIMARY KEY (sale_id)
)

Even if someone used SET IDENTITY INSERT, all values inserted locally must obey the range. However, a replication process is still
exempt from the check.

Using Other Columns as Primary Keys

If using an identity column is not a requirement, you can eliminate the overhead of managing the uniqueness of identity values in
replicated data by using another column as the primary key, or using combinations of columns as the primary key.

For example, you can define a primary key, consisting of an identity column whose values are not unique and a second column,

that when combined with the identity column guarantees uniqueness (for example, a site ID column, pk_id_plus_site). In this
example, the composite key pk_id_plus_site is a combination of the identity and site columns. In replication, duplicate identity
values can be created only at different sites; therefore, each primary key value in this case will always be unique.

ROWGUIDCOL is a property you can assign to a column with uniqueidentifier values, a SQL Server 2000 data type that defines
a 128-bit integer guaranteed to be unique. As such, using a rowguid column as a primary key is a safe alternative to using an
identity column to guarantee uniqueness.

Replication (SQL Server 2000)

Identity Ranges with Immediate Updating and Queued
Updating
For publications that allow immediate updating but not queued updating (in snapshot replication and transactional replication),
the Publisher controls identity values. You cannot assign identity ranges with this type of replication because the replication
agents do not assign an IDENTITY property to the column on the Subscriber. Create the IDENTITY property at the Publisher only,
and have the Subscriber use the base numeric data type (for example, int) with a default value of 0. These actions are taken
automatically if the Distribution Agent initializes the schema and data (that is, if the synchronization type of the subscription is set
to automatic). The next identity value is always generated at the Publisher and assigned to the row inserted at the Subscriber.

With queued updating, identity values must be assigned by the Subscriber because newly inserted rows at the Subscriber may be
sent to a queue rather than directly to the Publisher. Because the data is sent asynchronously, there is no mechanism for the
Publisher to assign an identity value immediately to a newly inserted row at the Subscriber, as there is for the immediate
updating case.

For publications that allow immediate updating with queued updating as a failover option, assign identity ranges to Subscribers
either automatically or manually. Inserted rows at a Subscriber will generate identity values from the assigned local identity
range. The new Subscriber row will be sent to the queue, where it will be picked up by the Queue Reader Agent and applied to the
Publisher with the correct (not reseeded) identity value.

Replication (SQL Server 2000)

Managing Replicated timestamp Data
Microsoft® SQL Server™ 2000 timestamp data refers to database-specific incrementing binary numbers that indicate the
relative sequence in which data modifications take place in a database; timestamp data is unrelated to both chronological time
and calendar date.

A uniqueidentifier data type column is used to detect conflicts for this replication type; timestamp data is no longer used for
conflict detection. For information about upgrade issues associated with this change, see Replication and Upgrading.

The literal values for a timestamp column are replicated, but the data type for the replicated values is changed to binary (8) on
the Subscriber.

For merge replication and queued updating Subscriber (including immediate updating with queued updating as a failover)
articles containing a timestamp column, the timestamp column is replicated, but the literal timestamp values are not. The
timestamp values are regenerated at initial synchronization time when the rows are applied at the Subscriber. This allows
timestamps to be used by client applications at the Subscriber for functions such as optimistic locking. In those cases, the ODBC
driver, OLE DB provider, DB-Library cursor, or server cursor used by the application to implement optimistic locking compares the
timestamp value of the row being updated with the current value of the original row. If the timestamp values are different,
indicating the row has changed, the application can take appropriate action (rolling back the transaction, rereading the data, and
so on).

The processing of timestamp data has implications for the detection of conflicts. For a conflict to occur with row-level tracking,
the same row must be updated at both replicas. For a conflict to occur with column-level tracking, the same column within the
same row must be updated at both replicas. Because timestamp values change whenever a row is updated, the distinction
between row-level and column-level tracking would disappear with the presence of a timestamp column, unless special
measures were taken. With column tracking turned on, every time updates were made at both locations, even to different
columns within the rows, both timestamp values would change, and a column-level conflict would be flagged. Effectively,
column-level tracking would always work the same as row-level tracking, and no merging of data updated in different columns
could take place.

Merge replication tracking resolves this problem by ignoring timestamp values The queued updating Subscribers option for
transactional replication uses only row-level tracking to detect conflicts, so this is not an issue. For example, suppose a merge
replication table contains four columns: a uniqueidentifier column, an integer column, a character column, and a timestamp
column. The value for the integer column of row 1 on the Publisher is updated, and the value for the character column of row 1
is changed on the Subscriber. When column-level tracking is turned on, the data merges without a conflict. If the Merge Agent did
not ignore the timestamp values with column level tracking turned on (with row-level tracking, a conflict would have been
detected in any case), this non-conflicting update would have been flagged as a conflict, and the data would not have been
merged correctly. Therefore, the Merge Agent does not compare the timestamp columns and does not take any action if their
values changed.

Replication (SQL Server 2000)

Using NOT FOR REPLICATION
The NOT FOR REPLICATION option is used by Microsoft® SQL Server™ 2000 replication to implement ranges of identity values
in a partitioned environment. The NOT FOR REPLICATION option is especially useful in transactional or merge replication when a
published table is partitioned with rows from various sites.

When a replication agent connects to a table with any login, all of the NOT FOR REPLICATION options on the table are activated.
When the option is set, SQL Server 2000 maintains the original identity values on rows added by the replication agent but
continues to increment the identity value on rows added by other users. When a user adds a new row to the table, the identity
value is incremented in the normal way. When a replication agent replicates that row to a Subscriber, the identity value is not
changed when the row is inserted in the Subscriber table.

For example, consider a table that contains rows inserted from two sources: Publisher A and Publisher B. The rows inserted at
Publisher A are identified by increasing values from 1 through 1000, and those rows at Publisher B are identified by values from
1001 through 2000. If a process at Publisher A inserts a row locally into the table, SQL Server assigns the first row a value of 1,
the next row a value of 2, and so forth, in automatically increasing increments. Similarly, if a process at Publisher B inserts a row
locally into the table, the first row is assigned a value of 1001, the next row a value of 1002, and so forth. When rows at Publisher
A are replicated to B, the identity values remain 1, 2, and so forth, but local seed values at B are not reset.

Regardless of its role in replication, the IDENTITY property does not enforce uniqueness by itself, but merely inserts the next value.
Although you can provide an explicit value using SET IDENTITY INSERT, that function is not appropriate for replication because it
also reseeds the value. The NOT FOR REPLICATION option was created specifically for applications using replication. For example,
without this option, as soon as the first row from Publisher B (with value 1001) is propagated to Publisher A, Publisher A's next
value would be 1002. The NOT FOR REPLICATION option is a way of telling SQL Server 2000 that the replication process gets a
waiver when supplying an explicit value and that the local value should not be reseeded. Each Publisher using this option gets the
same reseeding waiver.

Custom stored procedures that use INSERT, UPDATE, and DELETE statements with full column lists are required before replication
will work with identity properties. If full column lists are not used, an error will be returned.

The following code example illustrates how to implement identities with different ranges at each Publisher:

At Publisher A, start at 1 and increment by 1.

CREATE TABLE authors (COL1 INT IDENTITY (1, 1) NOT FOR REPLICATION PRIMARY KEY)

At Publisher B, start at 1001 and increment by 1.

CREATE TABLE authors (COL1 INT IDENTITY (1001, 1) NOT FOR REPLICATION PRIMARY KEY)

After activating the NOT FOR REPLICATION option, connections from replication agents to Publisher A insert rows with values
such as 1, 2, 3, 4. These are replicated to Publisher B without being changed (that is, 1, 2, 3, 4). Connections from replication
agents at Publisher B get values 1001, 1002, 1003, 1004. Those are replicated to A without being changed. When all data is
distributed or merged, both Publishers have values 1, 2, 3, 4, 1001, 1002, 1003, 1004. The next locally inserted value at Publisher
A is 5. The next locally inserted value at Publisher B is 1005.

It is advisable to always use the NOT FOR REPLICATION option along with the CHECK constraint to ensure that the identity values
being assigned are within the allowed range. For example:

CREATE TABLE sales
(sale_id INT IDENTITY(100001,1)
 NOT FOR REPLICATION
 CHECK NOT FOR REPLICATION (sale_id <= 200000),
sales_region CHAR(2),
CONSTRAINT id_pk PRIMARY KEY (sale_id)
)

Even if someone used SET IDENTITY INSERT, all values inserted locally must obey the range. However, a replication process is still
exempt from the check.

Note If you are using transactional replication with the immediate-updating Subscribers option, do not use the IDENTITY NOT
FOR REPLICATION design. Instead, create the IDENTITY property at the Publisher only, and have the Subscriber use just the base
data type (for example, int). Then, the next identity value is always generated at the Publisher.

Replication (SQL Server 2000)

Administering and Monitoring Replication
Microsoft® SQL Server™ 2000 replication provides tools to administer and monitor replication agents, replication alerts, and
replication processes, ensuring that replication meets the needs of your organization.

Monitoring replication helps you:

Set the agent profiles, schedules, properties, and notifications for replication agents.

View and troubleshoot agent activity, including verifying when agents last ran, monitoring agent activity, and analyzing
replication performance.

Receive notification through a replication alert when an event occurs on a replication agent.

Validate subscriptions to ensure that data values are the same at the Publisher and at Subscribers.

Reinitialize one or all subscriptions to a publication as needed.

Manage replication agents from a central location.

Replication (SQL Server 2000)

Tools for Administering and Monitoring Replication
To administer and monitor agents, you can use Replication Monitor in SQL Server Enterprise Manager, command prompt utilities,
Transact-SQL system stored procedures, or you can use Microsoft® ActiveX® controls for replication or SQL-DMO objects that
are programmable in languages such as Microsoft Visual Basic® and Microsoft Visual C++®. Windows NT Performance Monitor
or Windows 2000 System Monitor can be used to monitor the rate at which various replication processes occur.

Replication (SQL Server 2000)

Replication Monitor
Replication Monitor is a component of SQL Server Enterprise Manager designed for viewing the status of replication agents and
troubleshooting potential problems at the Distributor. Replication Monitor shows up as a node in SQL Server Enterprise Manager
under the server that is enabled as a Distributor when the user is a member of the sysadmin fixed server role. Replication
Monitor Group can also appear as a top-level node in Enterprise Manager for a central location where you can monitor and
administer multiple Distributors.

Additionally, users that are not members of the sysadmin fixed server role can monitor replication if they are defined with the
replmonitor role in the distribution database. A system administrator can add any user to the replmonitor role, which allows
that user to view replication activity with the Replication Monitor node in SQL Server Enterprise Manager; however, the user will
not be able to administer replication.

Users may only be part of the replmonitor role in only one distribution database. They will only be able to view agents in the
distribution database in which they are part of the replmonitor role. However, the status shown on the Replication Monitor node
reflects all agents. So there may be times when the user sees an error status (red X on the Replication Monitor node, Publishers or
Agents folders), but none of the agents they can view show an error status. This indicates that an agent this user is not able to see
is showing an error status.

For example, a user added as part of the replmonitor role can view agent history, errors, and analyze error details, but they
would not be able to change agent profiles, agent schedules, and so on. Although this user would be able to view a list of
publications, the user would only be able to view properties for the publications that include the user in the Publication Access List
(PAL).

You can use Replication Monitor to:

View a list of Publishers, publications, and subscriptions to the publications that are supported by the Distributor.

View scheduled replication agents, and to monitor real-time status and history for each agent.

Set up and monitor alerts related to replication events.

Administer agents and subscriptions including starting and stopping agents and reinitializing subscriptions.

After replication has been configured, you can also use the Microsoft Windows NT® or Windows 2000 Event Viewer to view SQL
Server™ messages. For information about Event Viewer, see Microsoft Windows NT 4.0 Help or Windows® 2000 Help.

To Enable Replication Monitor Group

1. In Enterprise Manager, right-click on a SQL Server, and click Properties.

2. On the Replication tab, select Show Replication Monitor Group. Optionally, you can also select to add this server as a
Distributor in the Replication Monitor Group.

Replication (SQL Server 2000)

Replication Agent Utilities
You can use the replication command prompt utilities to configure and start replication agent activity. Command prompt utilities
are installed automatically with Microsoft® SQL Server™ 2000. The replication agent files are located under \Microsoft SQL
Server\80\Com. This table lists the replication utility names and file names.

Command Prompt Utility File Name
Replication Snapshot Agent Utility snapshot.exe
Replication Distribution Agent Utility distrib.exe
Replication Log Reader Agent Utility logread.exe
Replication Queue Reader Agent Utility qrdrsvc.exe
Replication Merge Agent Utility replmerg.exe

Note You can modify agent settings by changing the command line available for each agent when administering replication
agents through Replication Monitor. To access that command line, right-click a specific agent, click Agent Properties, click the
Steps tab, and then double-click the Run Agent step.

For more information, see Getting Started with Command Prompt Utilities.

Replication (SQL Server 2000)

ActiveX Controls for Replication
Microsoft® ActiveX® controls allow custom applications to configure and invoke replication agent functionality. The controls
support all types of subscriptions and can be monitored using SQL Server Enterprise Manager at the Distributor.

Programmers can use ActiveX controls for replication, similar to any standard built-in control. The controls provided are the SQL
Snapshot control, the SQL Distribution control, and the SQL Merge control.

Benefits of using ActiveX controls for replication are:

The client has no dependency on SQL Server Agent, which is responsible for executing jobs in addition to replication.

If you start a replication agent using SQL Server Agent, other jobs can also run.

If you are replicating to heterogeneous Subscribers using pull or anonymous subscriptions, SQL Server Agent is not
available at the Subscriber.

ActiveX replication controls can be invoked from many programming environments, including Microsoft Visual Basic®,
Visual Basic Scripting Edition, and Microsoft Visual C++®.

The application can control when replication should take place. For example, you can program a command on a menu or a
Web page that uses the replication ActiveX controls.

An application can use the ActiveX Controls status callback handlers to place a progress bar to provide feedback on the
progress of the replication control.

An application can determine how to obtain login information for running the replication agents automatically (for example,
hard-coded or interactive).

Embedding replication controls in applications provides a way to distribute mobile applications without the complexity of
Subscriber setup.

Controls can be programmed to add, drop, reinitialize, or validate subscriptions, and create or attach databases at the
Subscriber.

An application can be programmed to register the synchronization of a subscription in Microsoft Synchronization Manager.

If a subscription is registered in Microsoft Windows Synchronization Manager, there is no need to embed the controls in the
application. All synchronization is then controlled by this central application. Windows Synchronization Manager does not,
however, allow you to specify some of the custom properties of a subscription, such as its hostname override and subscription
agent settings including FTP. ActiveX Controls are useful for these administrative activities.

For more information, see Developing Replication Applications Using ActiveX Controls.

Replication (SQL Server 2000)

Windows NT Performance Monitor and Windows 2000 System
Monitor
Windows 2000 System Monitor and Windows NT Performance Monitor can be used to monitor the rate at which various
replication processes are running. Using Performance Monitor or System Monitor, you can use charts and reports to gauge the
efficiency of your computer, identify and troubleshoot possible problems (such as unbalanced resource use, insufficient hardware,
or poor program design), and plan for additional hardware needs. You can optimize replication performance by using the relevant
replication counters.

For more information, see Performance Monitor and System Monitor documentation included with Windows NT and Windows
2000.

Replication (SQL Server 2000)

Setting Agent Parameters
Each replication agent supports a set of run-time parameters that you can use to control how the agent runs. For information
about parameters available for each agent, see the documentation for replication command prompt utilities.

For example, a parameter that can be helpful when troubleshooting replication agent activity is the –output parameter. This
parameter writes all actions that occur and error messages for a particular agent to a text file.

The parameters can be set through:

The command line of the agent job step titled 'Run agent'.

The properties of a Microsoft® ActiveX® component.

A centralized agent profile.

The agent command prompt utility.

See Also

Replication Distribution Agent Utility

Replication Log Reader Agent Utility

Replication Merge Agent Utility

Replication Queue Reader Agent Utility

Replication Snapshot Agent Utility

Replication (SQL Server 2000)

Agent Profiles
When a replication agent is created, it is associated with an agent profile that is maintained at the Distributor. The agent profile
contains a set of parameters to be used each time the agent runs. During the startup process, each agent logs in to the Distributor
and queries for the parameters in its profile.

The agent profile allows you to change key parameters easily for all agents associated with that profile. For example, if you have
20 Snapshot Agents and need to change the query time-out value, you can update the profile used by the Snapshot Agents and
all agents of that type will begin using the new value automatically the next time they are run. You also may have different
profiles for different instances of an agent. For example, a Distribution Agent that uses Remote Access Service (RAS) to connect to
the Distributor could use a set of parameters that are better suited to the slower communications link.

A set of default and predefined profiles for each agent type is installed when a server is configured as a Distributor. If a specific
profile is not associated with an agent, SQL Server Agent uses the default profile for that type of agent.

Note The values set in the agent profile are overridden by any values set for the same parameter in the agent command prompt
utility.

To create a replication agent profile

Enterprise Manager

How to create a replication agent profile (Enterprise Manager)

Transact-SQL

How to create a replication agent profile (Transact-SQL)

Replication (SQL Server 2000)

Replication Agents
The replication agents carry out many of the tasks associated with replication including creating copies of schema and data,
detecting updates at the Publisher or Subscriber, and propagating changes between servers. Each replication agent has an agent
profile associated with it, agent properties that you can set, an agent schedule, and an agent history.

Replication Monitor provides the capability to administer replication agent activity graphically. You can view a list of all the
Snapshot, Log Reader, Distribution, Queue Reader, or Merge Agents supported by a Distributor. You can select a Distributor and
click Replication Monitor to display a list of agents. When you click the folder for a specific type of agent, all the agents of that
type on the Distributor are displayed. You can then view the detailed activity of a specific agent.

Independent and Shared Agents

An independent agent is an agent that services one subscription. Latency is reduced when using independent agents because it is
ready whenever the subscription needs to synchronize.

A shared agent services multiple subscriptions, and is the default for snapshot replication or transactional replication. When
multiple subscriptions using the same shared agent need to synchronize, they wait in a queue, and the shared agent services
them one at a time.

All of the agents used during merge replication are independent agents. When using independent agents with snapshot
replication or transactional replication, you must take care to prevent transactions that have interdependencies from being
delivered out of sequence.

Replication (SQL Server 2000)

SQL Server Agent
 New Information - SQL Server 2000 SP3.

SQL Server Agent hosts and schedules the agents used in replication, and provides an easy way to run replication agents. When
choosing to make a trusted connection, the replication agents run under the security context of the SQL Server Agent startup
account. SQL Server Agent also controls and monitors several other operations outside of replication including monitoring the
SQLServerAgent service, maintaining error logs, running jobs, and starting other processes.

Important In SQL Server 2000 Service Pack 3 and later, the SQL Server Agent proxy account must be configured with a login
and password if a publication or subscription is created by a user who is not a member of the sysadmin fixed server role. For
more information, see xp_sqlagent_proxy_account.

Replication (SQL Server 2000)

Snapshot Agents
The Snapshot Agent is used with all types of replication. It prepares schema and initial data files of published tables and stored
procedures, stores the snapshot files, and inserts information about initial synchronization in the distribution database. The
Snapshot Agent typically runs under SQL Server Agent at the Distributor and can be administered using SQL Server Enterprise
Manager or the ActiveX® Snapshot Control. There is one Snapshot Agent per publication.

Replication (SQL Server 2000)

Snapshot Agent Profile
Snapshot Agent Profile

A default profile for the Snapshot Agent is installed when a server is configured as a Distributor. The default profile contains the
following parameters and values.

Parameter
Default
Value Description

-BcpBatchSize 100000 When performing a bcp in operation, the batch size
is the number of rows to send to the server as one
transaction and is also the number of rows that
must be sent before the Distribution Agent logs a
bcp progress message. When performing a bcp
out operation, a fixed batch size of 100,000 is used.
A value of 0 indicates no message logging.

-
HistoryVerboseLevel

2 The amount of history logged during a snapshot
operation can be:

1 = Always update a previous history message of
the same status (startup, progress, success, and so
forth). If no previous record with the same status
exists, insert a new record.
2 = Insert new history records. If the record is for
items such as idle messages or long-running job
messages, update the previous records.
3 = Always insert new records, unless it is for idle
messages.

You can minimize the performance effect of history
logging by specifying 1.

-LoginTimeOut 15 The number of seconds before the login attempted
by the agent times out.

-MaxBcpThreads 1 The number of bulk copy operations that can be
performed in parallel. The maximum number of
threads and ODBC connections that exist
simultaneously is the lesser of MaxBcpThreads or
the number of bulk copy requests that appear in the
synchronization transaction in the distribution
database. MaxBcpThreads must be greater than
zero, and has no hard-coded upper limit.

-QueryTimeOut 300 The number of seconds before the queries issued
by the agent time out.

Replication (SQL Server 2000)

Distribution Agents
The Distribution Agent is used with snapshot replication and transactional replication. It moves the snapshot files and incremental
changes held in the distribution database to Subscribers. The Distribution Agent typically runs under SQL Server Agent at the
Distributor for push subscriptions or at the Subscriber for pull subscriptions. It can be administered using SQL Server Enterprise
Manager or the ActiveX® Distribution Control. There will either be one Distribution Agent per subscription (an independent
agent) or one Distribution Agent per publication database and subscription database pair (a shared agent).

Replication (SQL Server 2000)

Distribution Agent Profile
Distribution Agent Profile

A default profile for the Distribution Agent is installed when a server is configured as a Distributor. The default profile contains the
following parameters and values.

Parameter
Default
Value Description

-BcpBatchSize 100000 The number of rows to send in a bulk copy
operation. When performing a bcp in
operation, the batch size is the number of rows
to send to the server as one transaction, and is
also the number of rows that must be sent
before the Distribution Agent logs a bcp
progress message. When performing a bcp
out operation, a fixed batch size of 1000 is
used. A value of 0 indicates no message
logging.

-CommitBatchSize 100 The number of transactions to be issued to the
Subscriber before a COMMIT statement is
issued.

-CommitBatchThreshold 1000 The number of replication commands to be
issued to the Subscriber before a COMMIT
statement is issued.

-HistoryVerboseLevel 1 The amount of history logged during a
distribution operation can be:

1 = Always update a previous history message
of the same status (startup, progress, success,
and so forth). If no previous record with the
same status exists, insert a new record.
2 = Insert new history records unless the
record is for such things as idle messages or
long-running job messages, in which case
update the previous records.
3 = Always insert new records, unless it is for
idle messages.

You can minimize the performance effect of
history logging by selecting 1.

-LoginTimeOut 15 The number of seconds before the login
attempted by the agent times out.

-MaxBcpThreads 1 The number of bulk copy operations that can
be performed in parallel. The maximum
number of threads and ODBC connections that
exist simultaneously is the lesser of
MaxBcpThreads or the number of bulk copy
requests that appear in the synchronization
transaction in the distribution database.
MaxBcpThreads must have a value greater
than zero, and has no hard-coded upper limit.

-MaxDeliveredTransactions 0 The maximum number of push or pull
transactions applied to Subscribers in one
synchronization. A value of 0 indicates that the
maximum is an infinite number of
transactions. Other values can be used by
Subscribers to shorten the duration of a
synchronization being pulled from a Publisher.

-PollingInterval 10 Number of seconds the distribution database
is queried for replicated transactions.

-SkipErrors The error number(s) that will be skipped. The
Distribution Agent will ignore the error
number(s) indicated and continue processing
according to its schedule.

-SkipFailureLevel 1 The Distribution Agent is enabled to skip
errors. A value of 0 indicates that the
Distribution Agent will not ignore any errors.

-QueryTimeOut 300 The number of seconds before the queries
issued by the agent time out.

-TransactionsPerHistory 100 The transaction interval for history logging. If
the number of committed transactions after
the last instance of history logging is greater
than this option, a history message is logged.
A value of 0 indicates infinite
TransactionsPerHistory.

Replication (SQL Server 2000)

Log Reader Agents
The Log Reader Agent is used with transactional replication. It moves transactions marked for replication from the transaction log
on the Publisher to the distribution database. Each database that is marked for transactional replication will have one Log Reader
Agent that runs on the Distributor and connects to the Publisher.

Replication (SQL Server 2000)

Log Reader Agent Profile
Log Reader Agent Profile

A default profile for the Log Reader Agent is installed when a server is configured as a Distributor. The default profile contains the
following parameters and values.

Parameter
Default
Value Description

-HistoryVerboseLevel 1 The amount of history logged during a log
reader operation can be:

1 = Always update a previous history message
of the same status (startup, progress, success,
and so forth). If no previous record with the
same status exists, insert a new record.
2 = Insert new history records unless the record
is for such things as idle messages or long-
running job messages, in which case update the
previous records.

You can minimize the performance effect of
history logging by selecting 1.

-LoginTimeOut 15 The number of seconds before the login
attempted by the agent times out.

-PollingInterval 10 The number of seconds the log is queried for
replicated transactions.

-QueryTimeOut 300 The number of seconds before the queries
issued by the agent times out.

-ReadBatchSize 500 The maximum number of transactions read out
of the source. For the Log Reader Agent, the
source is the transaction log of the publishing
database.

Replication (SQL Server 2000)

Queue Reader Agents
The Queue Reader Agent is used with snapshot replication or transactional replication with the queued updating option, or if the
immediate updating with queued updating as a failover option is enabled.

The Queue Reader Agent is a multithreaded agent that runs on the Distributor. It is responsible for taking messages from a queue
and applying them to the appropriate publication.

The Queue Reader Agent reads messages from the Microsoft® SQL Server™ 2000 queue on each Subscriber and applies the
transactions to the publication. This agent uses the security context of SQL Server Agent by default. Unlike the Distribution Agent
and the Merge Agent, only one instance of the Queue Reader Agent exists to service all Publishers and publications for a given
Distributor.

Replication (SQL Server 2000)

Queue Reader Agent Profile
Queue Reader Agent Profile

A default profile for the Queue Reader Agent is installed when a server is configured as a Distributor and the replication topology
includes queued updating or immediate updating with queued updating as a failover. The default profile contains the following
parameters and values.

Parameter
Default
Value Description

-HistoryVerboseLevel 1 The amount of history logged during a queue
reader operation can be:

1 = Always update a previous history message
of the same status (startup, progress, success,
and so forth). If no previous record with the
same status exists, insert a new record.
2 = Insert new history records unless the record
is for such things as idle messages or long-
running job messages, in which case update the
previous records.

You can minimize the performance effect of
history logging by selecting 1.

-LoginTimeOut 15 The number of seconds before the login
attempted by the agent times out.

-PollingInterval 10 Is relevant only for updating subscriptions that
use SQL based queues. Specifies how often, in
seconds, the SQL queue is polled for pending
queued transactions.

-QueryTimeOut 300 The number of seconds before the queries
issued by the agent time out.

Replication (SQL Server 2000)

Merge Agents
The Merge Agent is used with merge replication. It applies the initial snapshot at the Subscriber, and moves and reconciles
incremental data changes that occurred after the initial snapshot was created. Each merge subscription has its own Merge Agent
that connects to and updates both the Publisher and the Subscriber. The Merge Agent typically runs under SQL Server Agent at
the Distributor for push subscriptions or at the Subscriber for pull subscriptions. It can be administered using SQL Server
Enterprise Manager or the ActiveX® Merge Control.

Replication (SQL Server 2000)

Merge Agent Profile
Merge Agent Profile

A default profile for the Merge Agent is installed when a server is configured as a Distributor. The default profile contains the
following parameters and values.

Parameter
Default
Value Description

-BcpBatchSize 100000 The number of rows to send a bulk
copy operation. When performing a
bcp in an operation while applying
the schema changes, the Merge
Agent uses the batch size to
determine when to log a progress
message. A value of 0 indicates no
message logging.

-ChangesPerHistory 100 The threshold beyond which upload
and download messages are logged.

-DownloadGenerationsPerBatch 100 The number of generations to be
processed in one batch while
downloading changes from the
Publisher to the Subscriber. A
generation is defined as a logical
group of changes per article. The
default for an unreliable
communication link is 10.

In all cases, however, the actual
number of generations processed
per batch will be equal to the
greater of the
UploadGenerationsPerBatch setting
or the number of articles published
plus 1.

-
DownloadReadChangesPerBatch

100 The number of changes to be read
in one batch while downloading
changes from the Publisher to the
Subscriber.

-
DownloadWriteChangesPerBatch

100 The number of changes to be
applied in one batch while
downloading changes from the
Publisher to the Subscriber.

-FastRowCount 1 Specifies what type of rowcount
calculation method should be used
for rowcount validation. A value of 1
(default) indicates the fast method. A
value of 0 indicates the full
rowcount method.

-HistoryVerboseLevel 1 The amount of history logged
during a merge operation can be:

1 = Always update a previous
history message of the same status
(startup, progress, success, and so
forth). If no previous record with the
same status exists, insert a new
record. This level logs the minimum
number of messages.
2 = Insert new history records
unless the record is for such things
as idle messages or long-running
job messages, in which case update
the previous records. This level logs
level 1 messages plus additional in-
progress messages.
3 = Always insert new records,
unless it is for idle messages.

You can minimize the performance
effect of history logging by setting
the ChangesPerHistory parameter.

-KeepAliveMessageInterval 300 The number of seconds before
history thread checks if any of the
existing connections is waiting for a
response from the server. This value
can be increased to avoid getting
the agent marked as suspect by the
checkup agent when executing a
long-running batch.

-LoginTimeOut 15 The number of seconds before the
login attempted by the agent times
out.

-MaxDownloadChanges 0 The maximum number of changes
you want to download during a
specific merge session. Because
complete generations are processed,
the number of rows downloaded
may go over the specified
maximum.

-MaxUploadChanges 0 The maximum number of changes
you want to upload during a specific
merge session. Because complete
generations are processed, the
number of rows uploaded may go
over the specified maximum.

-NumDeadlockRetries 5 The number of times the merge
process attempts to retry an internal
operation when it encounters a
deadlock error. Can be any value
between 1 and 100.

-PollingInterval 60 The number of seconds the
Publisher or Subscriber is queried
for data changes when in
continuous mode.

-QueryTimeOut 300 The number of seconds before the
queries issued by the agent times
out.

-StartQueueTimeout 0 If the number of merge processes
running is at the limit, this indicates
the maximum number of seconds
that the Merge Agent waits. If the
maximum number of seconds is
reached and the Merge Agent is still
waiting, it will exit. A value of '0'
means that the agent waits
indefinitely, although it can be
cancelled.

-UploadGenerationsPerBatch 100 The number of generations to be
processed in one batch while
uploading changes from the
Subscriber to the Publisher. A
generation is defined as a logical
group of changes per article. The
default for an unreliable
communication link is 1.

In all cases, however, the actual
number of generations processed
per batch will be equal to the
greater of the
UploadGenerationsPerBatch setting
or the number of articles published
plus 1.

-UploadReadChangesPerBatch 100 The number of changes to be read
in one batch while uploading
changes from the Subscriber to the
Publisher.

-UploadWriteChangesPerBatch 100 The number of changes to be
applied in one batch while
uploading changes from the
Subscriber to the Publisher.

-Validate 0 Specifies if validation should be
done at the end of the merge
session, and, if so, what type of
validation. A value of 0 (default)
indicates no validation. A value of 1
indicates rowcount-only validation.
A value of 2 indicates rowcount and
checksum validation. A value of 3
indicates binary checksum
validation (available only with SQL
Server 2000).

-ValidateInterval 60 The number of minutes the
subscription is validated when set to
continuous mode.

Replication (SQL Server 2000)

Miscellaneous Agents
The Miscellaneous Agents folder in Replication Monitor lists the agents needed to clean up and monitor different replication
processes.

Agent History Clean Up Agent

The Agent History Clean Up Agent removes replication agent history from the distribution database. This agent runs every 10
minutes by default. Running this agent is helpful in managing the size of the distribution database.

Distribution Clean Up Agent

The Distribution Clean Up Agent removed replicated transactions from the distribution database. This agent runs for snapshot
and transactional publications every 72 hours by default. The Distribution Clean Up Agent may deactivate a subscription if the
subscription has not been synchronized within the maximum distribution retention period. For more information, see
Subscription Deactivation and Expiration.

Expired Subscription Clean Up Agent

Detects and removes expired subscriptions from the published databases. If a subscription is deactivated, the subscription will be
removed by the Expired Subscription Clean Up Agent, which runs once a day by default. A subscription is marked as expired
either during the cleanup process or when the replication agent runs after the publication retention period has been exceeded. For
more information, see Subscription Deactivation and Expiration.

Reinitialize Subscriptions Having Data Validation Failures Agent

Reinitializes all subscriptions that have data validation failures. This agent is not set on a schedule by default. Run this agent to
automatically detect the subscriptions that failed validation and mark them for reinitialization. After the subscriptions are marked
for reinitialization, the next time the Merge Agent or Distribution Agent runs, a new snapshot will be applied at the Subscribers.

Replication Agents Checkup Agent

Detects replication agents that are not actively logging history. This agent runs every 10 minutes by default, and it writes to the
Windows event log if the job step fails.

See Also

Anonymous Subscriptions

Planning for Transactional Replication

Subscription Deactivation and Expiration

Replication (SQL Server 2000)

Viewing Agent History
The Replication Monitor Agent History dialog box displays a summary of the sessions of a selected agent. This is helpful when
you need to examine recent agent activity, gauge performance quickly, or detect error trends. The amount of history information
stored for a replication agent is determined by the distribution retention period and how often the History Clean Up Agent runs.

Agent history also includes several predefined filters on (or views of) session history, such as:

All sessions.

Sessions in the last 24 hours.

Sessions in the last two days.

Sessions in the last seven days.

Sessions with errors.

The following history columns are displayed in the Agent History dialog box.

Column Values
Status Success icon; Error icon; In Progress icon (only one

session can be in progress at a given time).
#Actions Number of actions in each session.
Action Message If the session ended in an error, the highest level error

reported.
Start Time Time this session was started.
End Time Time this session ended.
Duration Duration of the agent session.
Delivery Rate Ratio of delivered commands to the duration of the agent.

If the agent is still running, this value reflects a cumulative
count from the beginning of the session.

Latency Latency between when an action occurs at the Publisher
and is propagated to the Subscriber. If the agent is still
running, this value reflects a cumulative count from the
beginning of the session. Not available for Snapshot Agent
or Merge Agent.

Trans Total number of transactions delivered during the agent
session. Not available for Merge Agent.

Cmds Total number of commands delivered during the agent
session. Not available for Merge Agent.

Publisher_Inserts Number of inserts that occurred on the Publisher.
Available only for Merge Agent.

Publisher_Updates Number of updates that occurred on the Publisher.
Available only for Merge Agent.

Publisher_Deletes Number of deletes that occurred on the Publisher.
Available only for Merge Agent.

Publisher_Conflicts Number of conflicts that occurred on the Publisher.
Available only for Merge Agent.

Subscriber_Inserts Number of inserts that occurred on Subscribers. Available
only for Merge Agent.

Subscriber_Updates Number of updates that occurred on Subscribers.
Available only for Merge Agent.

Subscriber_Deletes Number of deletes that occurred on Subscribers. Available
only for Merge Agent.

Subscriber_Conflicts Number of conflicts that occurred on Subscribers.
Available only for Merge Agent.

Replication (SQL Server 2000)

Handling Agent Errors
You can monitor details about the current activity and the task history of each replication agent in Replication Monitor. As an
agent operates, it writes details of its activity and messages to the history table in the Distributor.

You can display errors if the agent has encountered any during an agent session. The error details are displayed in the Error
Detail dialog box. You can also display error information in the Session Details dialog box, or right-click an agent and then click
Error Details.

The replication agent error status is represented in SQL Server Enterprise Manager as an icon at each agent and each node under
Replication Monitor. To have the icon correctly reflecting the status of the replication agents, you must refresh the node manually
or enable automatic refreshing.

You can use the Refresh Rate and Settings dialog box to:

Enable or disable automatic refreshing for the console tree or details pane.

Specify the refresh period in seconds for the console tree or details pane.

Specify the inactivity threshold for restarting replication agents.

Specify the Windows NT Performance Monitor or Windows 2000 System Monitor file setting for replication performance.

You can also customize the columns displayed in the details pane when the selection is on a publication or an agent view. Use the
Select Columns dialog box to select which columns to display.

You can use the Select Columns dialog box to select columns to display when the focus is on any of these nodes:

A transactional, snapshot, or merge publication

Snapshot Agent

Log Reader Agent

Distribution Agent

Merge Agent

Skipping Errors in Transactional Replication

During transactional replication, you can specify errors that can be skipped during the distribution process. Typically, when the
Distribution Agent is running in continuous mode and it encounters an error, the agent, and the distribution process, stops. By
specifying expected errors or errors that you do not want to interfere with replication, the agent will log the error information and
then continue running.

The most typical way to skip errors is using the Distribution Agent profile titled Continue On Data Consistency Errors. To use this
profile, right-click on the Distribution Agent, click Profiles, and then select this profile. The Distribution Agent will then skip errors
2601, 2627, and 20598. You can also create your own agent profile and specify the –SkipErrors parameter with the errors you
want skipped. For more information on creating profiles, see Agent Profiles.

Caution Under typical replication processing, you should not experience any errors that need to be skipped. The ability to skip
errors during transactional replication is available for the unique circumstances where you expect errors and do not want them to
affect replication (for example, when failing over to a secondary Publisher during log shipping). Skipping errors should only be
used with caution and with the understanding of what the error is, why it is occurring, and why it needs to be skipped rather than
solved.

You can specify the errors that should be skipped using the SQL Distribution ActiveX® Control, in an agent profile (with the –
SkipErrors parameter on the Distribution Agent profile), or by using the –SkipErrors parameter in the command line for the
Distribution Agent.

For example, if the Distribution Agent returns a duplicate key violation error, but you would want the distribution process to
continue and log only the error information, you can specify the –SkipErrors command line parameter with the number of the
error that should be skipped.

Typically, the Distribution Agent is a shared agent servicing multiple publications and multiple articles. If you specify –SkipErrors
on the agent, all publications that use that Distribution Agent will be affected. If you want to skip an error on one specified
publication, set up the publication with an independent agent and then specify the –SkipErrors command line parameter for that
agent.

To specify the –SkipErrors parameter on the agent command line

1. At the Distributor, expand Replication Monitor, click the Distribution Agents folder, right-click an agent, and then click
Agent Properties.

2. On the Steps tab, double click the Run agent step.

3. In the command text box, type –SkipErrors and specify the error numbers that you want skipped if this agent encounters
them (errors are delimited; list them with colons between each error number).

To change replication monitor refresh rate and settings

Enterprise Manager

Enterprise Manager

See Also

SkipErrors Property

Replication (SQL Server 2000)

Remote Agent Activation
Remote agent activation allows you to reduce the amount of processing on the Distributor or Subscriber by running the
Distribution Agent or Merge Agent on another computer and then activating that agent remotely using Distributed Component
Object Model (DCOM).

You can implement remote agent activation on either push or pull subscriptions. With each type of subscription, you need to:

Indicate where the agent will run in the Push Subscription or Pull Subscription Wizard.

Configure DCOM to activate an agent remotely.

Configure or create the subscription indicating where the agent should run.

It is recommended that you set up regular push or pull subscriptions before configuring remote agent activation. You are not able
to configure remote agent activation on a local computer (for example, when the Subscriber and Distributor reside on the same
computer).

Remote agent activation is supported on Microsoft® SQL Server™ 2000 running on Microsoft Windows NT® 4.0 or Windows®
2000, but it is not supported on Windows 98.

Remote Agent Activation and Push Subscriptions

When Distributor and Subscriber servers have a reliable, continuous connection, push subscriptions allow centralized subscription
management. Push subscriptions offer an advantage for organizations that want to control who is allowed to subscribe to
publications and when. Push subscriptions are also helpful for circumstances in which the Subscriber needs updates sent to them
as soon as they occur.

For push subscriptions, the Distribution Agent (used in snapshot replication or transactional replication) or the Merge Agent (used
in merge replication) runs on the Distributor; however, the Distributor can become overloaded as the number of push
subscriptions increases.

Remote agent activation allows you to offload agent activity to the Subscriber, which reduces the amount of processing on the
Distributor. Using DCOM, you can activate the agent remotely and increase the number of push subscriptions the Distributor can
handle.

Using DCOM for remote agent activation with push subscriptions, the Distributor first establishes a connection to the Subscriber.
After the connection is made, SQL Server Agent on the Distributor uses DCOM to activate the Distribution Agent or the Merge
Agent on the Subscriber.

Remote Agent Activation and Pull Subscriptions

Pull subscriptions offer the ability to manage subscription synchronization locally. This is important for:

Anyone who travels and needs to connect and synchronize data on demand.

Remote offices that need to manage subscription synchronization because they do not have a reliable, continuous
connection to the Publisher or Distributor.

For pull subscriptions, the Distribution Agent or the Merge Agent runs on the Subscriber. You can reduce processing at the
Subscriber by offloading the Distribution Agent or the Merge Agent activity to the Distributor and using DCOM to activate the
agent.

Using DCOM for remote agent activation with pull subscriptions, the Subscriber first establishes a connection to the Distributor.
After the connection is made, SQL Server Agent on the Subscriber uses DCOM to activate either the Distribution Agent or the
Merge Agent on the Distributor.

Subscription Security Requirements

When you create a subscription, the Distribution Agent or the Merge Agent runs under the security context of SQL Server Agent.
Using the security context of SQL Server Agent, the Distribution Agent establishes a connection to the Subscriber and to the
Distributor, and when required, to the snapshot folder. The Merge Agent establishes a connection to the Subscriber, the
Distributor, the Publisher, and when required, to the snapshot folder. You can view the security requirements for a subscription as
if SQL Server Agent were making all of the connections.

After an agent is activated on a remote computer, the agent will be run under the security context as configured through DCOM.
When you configure DCOM for remote agent activation, you need to enter a user account that will be used to activate either the
Distribution Agent or the Merge Agent. It is recommended that you provide a custom account that is the same as the SQL Server
Agent account on the original activating computer.

Enabling Remote Agent Activation When Creating Subscriptions

When creating a push subscription or a pull subscription, you enable remote agent activation by specifying where the agent will
run. If the Subscriber is the same server as the Distributor, you will not see the option to run the agent at another server in the
Push Subscription or Pull Subscription wizards.

Important After you specify where the agent should run when creating the subscription, synchronization may fail if you
specified that the subscription should be synchronized automatically and you have not configured DCOM for the remote agent
activation.

Configuring DCOM for Remote Agent Activation

DCOM handles low-level details of network protocols by extending the Component Object Model (COM) to support
communication among objects on different computers, a LAN, a WAN, or the Internet. When configuring DCOM, consider the
security that is already in place for SQL Server Agent as well as the type of subscriptions that will be used.

For push subscriptions:

DCOM must be configured on the Subscriber before you change an existing push subscription or create a new push
subscription using remote agent activation.

You must have administrative privileges on the Subscriber.

The SQL Server Agent on the Distributor must be allowed to use DCOM on the Subscriber.

An account or security context needs to be specified through DCOM that will allow the Distribution Agent or the Merge
Agent to be run on the Subscriber.

For pull subscriptions:

DCOM must be configured on the Distributor before you change an existing pull subscription or create a new pull
subscription using remote agent activation.

You must have administrative privileges on the Distributor.

The SQL Server Agent on the Subscriber must be allowed to use DCOM on the Distributor.

An account or security context needs to be specified through DCOM that will allow the Distribution Agent or the Merge
Agent to be run on the Distributor.

To configure DCOM to run the Distribution Agent remotely

Windows

Enterprise Manager

To configure DCOM to run the Merge Agent remotely

Windows

Enterprise Manager

Configuring a Subscription for Remote Agent Activation

After DCOM is configured on either the Subscriber or the Distributor, you can change an existing subscription or create a new one
so it can use remote agent activation. When you are creating a new subscription, you can verify that DCOM is configured
correctly.

Important Configuration of subscriptions should be performed at the Distributor for push subscriptions and at the Subscriber
for pull subscriptions. If you configure a subscription at the incorrect computer, the configuration will fail if the security context

does not have sufficient permissions to start the Distribution Agent or the Merge Agent at the remote location.

To enable a push subscription to use remote agent activation

Enterprise Manager

Enterprise Manager

SQL-DMO

To enable a pull subscription to use remote agent activation

Enterprise Manager

Enterprise Manager

SQL-DMO

To configure an existing subscription to use remote agent activation

Enterprise Manager

Enterprise Manager

SQL-DMO

Replication (SQL Server 2000)

Replication Alerts
SQL Server Enterprise Manager and SQL Server Agent provide a way to monitor events, such as replication agent errors, using
alerts. SQL Server Agent monitors the Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 application log, watching for
an event that qualifies as one of the defined alerts. If such an event occurs, SQL Server Agent can respond automatically, either by
executing a task that you have defined or by sending e-mail or a pager message to a specified operator.

You can select a Distributor and use Replication Monitor to display a list of all of the replication-related alerts on the server.

Microsoft SQL Server™ 2000 includes a set of predefined alerts for replication. You can configure these alerts to notify operators
about the state of replication. Operators can then intervene in the replication process manually or configure an automated
response job. Alerts that support an automated response job enter additional information into the msdb..sysreplicationalerts
system table. The information in sysreplicationalerts can be used by a custom Transact-SQL job when responding to the alert.

The following alerts are installed when a computer is configured as a Distributor.

Message
ID Predefined Alert

Condition Causing the
Alert to Fire

Enters Additional
Information in

sysreplicationalerts
14150 Replication: Agent

success
Agent shuts down
successfully.

Yes

14151 Replication: Agent
failure

Agent shuts down with an
error.

Yes

14152 Replication: Agent
retry

Agent shuts down after
unsuccessfully retrying an
operation (agent
encounters an error such
as server not available,
deadlock, connection
failure, or time-out failure).

Yes

14157 Replication:
Subscription
cleaned up.

Inactive subscription was
deleted.

No

20574 Replication:
Subscriber has
failed data
validation

Distribution or Merge
Agent fails data validation.

Yes

20575 Replication:
Subscriber has
passed data
validation

Distribution or Merge
Agent passes data
validation.

Yes

20572 Replication:
Subscription
reinitialized after
validation failure

Response job 'Reinitialize
subscriptions on data
validation failure'
reinitializes a subscription
successfully.

No

Viewing the Application Log

To view the Microsoft® Windows NT® 4.0 or Windows® 2000 application log, use the Windows NT 4.0 or Windows 2000 Event
Viewer. If you are part of the Windows NT Administrators group, you can also view remote application logs. The application log
contains SQL Server error messages as well as messages for all activities on the computer.

When you use the Windows NT application log, each SQL Server session writes new events to an existing application log; you can
filter the log for specific events. Unlike the SQL Server error log, a new application log is not created each time you start SQL
Server; however, you can specify how long logged events will be retained.

Replication (SQL Server 2000)

Automating a Response to an Alert
Usually, when an alert occurs, the only information you have to help you understand what caused the alert and the appropriate
action to take is contained in the alert message itself. Creating jobs to respond to the alert is time-consuming because you must
first parse and analyze the information in the message and then insert the relevant information into Transact-SQL commands.
Microsoft® SQL Server™ 2000 replication makes automating response jobs easier by providing additional information about the
alert. This information is stored in the sysreplicationalerts system table. In addition to providing detailed information,
sysreplicationalerts provides that information already parsed in a form easily used by customized programs.

For example, if the pubs data at Subscriber A fails the validation check, SQL Server triggers alert message 20574 notifying you of
that failure. The message you receive may be:

"Subscriber 'A', subscription to article 'authors' in publication 'pubs' failed data validation."

If you create a response job based on the alert message, you must manually parse the Subscriber name, article name, publication
name, and error from the message. However, because the Distribution Agent writes that same information in
sysreplicationalerts, along with details such as the type of agent, time of the alert, publication database, Subscriber database,
and type of publication, the response job can directly query the relevant information from the table. Although the exact row
cannot be associated with a specific instance of the alert, the table has a status column, which can be used to keep track of
serviced entries. The entries in this table are maintained for the history retention period.

For example, if you were to create a response job in Transact-SQL that services alert message 20574, you might use the following
logic:

declare hc cursor local for select publisher, publisher_db, publication, publication_type, article, subscriber,
 subscriber_db, alert_id from
 msdb..sysreplicationalerts where
 alert_error_code = 20574 and status = 0
 for read only
open hc
fetch hc into @publisher, @publisher_db, @publication, @publication_type, @article, @subscriber, subscriber_db,
@alert_id
while (@@fetch_status <> -1)
begin
/* Do custom work */
/* Update status to 1, which means the alert has been serviced. This prevents subsequent runs of this job from
doing this again */
update msdb..sysreplicationalerts set status = 1 where alert_id = @alert_id
 fetch hc into @publisher, @publisher_db, @publication, @publication_type, @article, @subscriber,
@subscriber_db, @alert_id
end
close hc
deallocate hc

Replication (SQL Server 2000)

Predefined Response Jobs
Whenever a computer is configured as a Distributor, the following predefined alert response jobs are installed.

Predefined
Response Job Responds to Alert Action

Reinitialize
subscriptions on
data validation
failure.

Replication:
Subscriber has failed
data validation.

Reinitializes all subscriptions that have
logged a sysreplicationalerts record
with alert_error_code = 20574.

If a transactional publication, only articles
that failed are reinitialized. If a merge
publication, the whole publication is
reinitialized.

Note The response jobs included in Microsoft® SQL Server™ 2000 are provided only for the most well known responses and as
examples you can use for writing your own response jobs. The provided response jobs are not associated with an alert after they
have been installed. You must configure an alert manually to call the appropriate response job.

See Also

SQLServerAgent Service

Validating Replicated Data

Replication (SQL Server 2000)

Subscription Deactivation and Expiration
Subscriptions can be deactivated or can expire if they are not synchronized within a specified period of time. The action that
occurs depends on the type of replication and the retention period that is exceeded.

Snapshot and Transactional Replication Subscriptions

If a subscription is not synchronized within a specified period of time, there is a possibility the subscription may get deleted or it
may be automatically marked deactivated and require reinitialization. Whether it expires and is deleted or gets marked
deactivated and requires initialization depends upon whether it exceeds the subscription expiration property of the publication or
the maximum transaction retention property of the distribution database as well as whether or not it is an anonymous
subscription.

Subscription Deactivation

When a subscription is not synchronized (for example, the Distribution Agent for it has not run or cannot connect to the
Subscriber) within the maximum transaction retention period of the distribution database and there are changes in the
distribution database waiting to be picked up, the subscription will be marked deactivated by the Distribution Cleanup Agent that
runs on the Distributor. The default for maximum transaction retention period is 72 hours for transactional replication and the
Distribution Cleanup Agent runs every 10 minutes by default.

If there is no activity at the Publisher, subscriptions will not be deactivated even if they have not been synchronized within the
distribution retention period. After a subscription is marked inactive, the Distribution Agent will fail with an error message that
informs the user that the subscription has been deactivated and that it needs to be reinitialized. The subscription will then need to
be reinitialized and a new snapshot applied at the Subscriber before replication continues for that subscription.

In addition to deactivating subscriptions that have not synchronized within the maximum transaction retention period of the
distribution database, the Distribution Cleanup Agent is also responsible for cleaning up transactions in the distribution database
that have been delivered to Subscribers with named subscriptions.

If anonymous subscriptions are used, this agent will clean up only transactions in the distribution database that have exceeded the
maximum transaction retention period. The Distribution Cleanup Agent will not clean up transactions in the distribution database
before the end of the retention period when anonymous subscriptions are used because it cannot be sure that the Subscribers
using anonymous subscriptions have received the transactions stored in the distribution database. If you set the retention period
to a high value, the distribution database will grow larger if you are using anonymous subscriptions because of this.

To modify a Distributor or add or modify a distribution database

Enterprise Manager

Enterprise Manager

Subscription Expiration

When a subscription does not synchronize (the Distribution Agent for it is not run or cannot connect to the Subscriber) within the
subscription expiration period of the publication, the subscription will expire and be dropped by the Expired Subscription Cleanup
Agent that runs on the Publisher.

For push subscriptions, the Expired Subscription Cleanup Agent (which runs at the Publisher) will remove the subscriptions at the
Publisher and it will remove the Distribution Agent associated with the expired subscriptions. This event is logged as a history
message for the Expired Subscription Cleanup Agent. The subscription will need to be re-created for the Subscriber to continue to
receive changes from the Publisher.

For pull subscriptions, the Distribution Agent and subscriptions at the Subscriber cannot be removed. The next time the
Distribution Agent is run, it will fail, and an error will be returned indicating the subscription associated with the agent has expired
and been deleted. There are, however, different messages and actions that need to be taken to continue to receive data at the
Subscriber. If you are using named subscriptions, a message will be displayed at the Subscriber stating that the subscription
associated with the agent has been removed and needs to be recreated.

The named subscriptions will need to be deleted at the Subscriber as well and re-created. If you are using anonymous
subscriptions, a message will be displayed at the Subscriber that the subscription associated with the agent has been removed,
and the subscription needs to be reinitialized at the Subscriber after the subsequent agent failure so that a new snapshot is
applied at the Subscriber.

The publication retention period for subscriptions is specified on the General tab of the Publication Properties. The default for a

transactional publication is 336 hours.

Setting publication retention to "0" means that subscriptions will never expire and be removed.

Important The Distribution Clean Up Agent may still deactivate the subscription if the subscription has not been synchronized
within the maximum distribution retention period.

If you do not want subscriptions to expire, set the publication retention to "0", or disable the Expired Subscription Cleanup Agent.
If you do not want subscriptions to be deactivated, set the maximum distribution retention period to a higher value than the
default of 72 hours taking into consideration the effect it may have on the size of the distribution database.

Merge Replication Subscriptions

The publication retention value is used to determine when subscriptions that have not synchronized within the retention period
should expire. The retention period is set to 14 days by default. If the time period between synchronizations is a longer period,
you can specify:

A longer retention period.

That subscriptions never expire.

If you set the retention period to a high value, Microsoft® SQL Server™ 2000 will not be able to clean up meta data in the
publication and subscription databases until the retention period is reached.

Important If, after a clean up, the publication retention period is increased and a subscription tries to merge with the Publisher
(which has already deleted the meta data), the subscription will not expire because of the increased retention value. Furthermore,
the Publisher does not have enough meta data to download changes to the Subscriber, which leads to non-convergence.

Setting the retention period to a lower value for merge replication can help reduce the growth of the merge tracking tables. It is
recommended that you use a lower setting if you can reliably predict that all Subscribers will synchronize regularly more
frequently than that time period.

The retention period for any republisher must be set to a value equal to or less than the retention period set at the original
Publisher. You should also use the same publication retention values for all Publishers and their alternate synchronization
partners. Using different values may lead to non-convergence. If you need to change the publication retention value, manually
reinitialize the Subscriber to avoid the non-convergence of data.

Subscription Deactivation

If a subscription is deactivated, the subscription will be removed by the Expired Subscription Clean Up Agent, which runs once a
day by default. A subscription is marked as expired either during the cleanup process or when the Merge Agent runs after the
retention period has been exceeded.

The Expired Subscription Clean Up Agent will look for all named and anonymous subscriptions for which the Merge Agent has
not run within the publication retention period, remove those subscriptions, and log a history message indicating the
subscriptions expired and were removed.

For push subscriptions, the Expired Subscription Cleanup Agent (which runs at the Publisher and Distributor) will remove the
subscriptions at the Publisher and the Distribution Agent associated with the expired subscriptions. For pull subscriptions, the
Merge Agent and subscriptions at the Subscriber cannot be removed. The Merge Agent will fail, and an error will be returned
indicating the subscription associated with the agent has expired. You can reinitialize anonymous subscriptions at the Subscriber
after the agent failure so that a new snapshot is applied at the Subscriber. However, named subscriptions will need to be dropped
and re-created.

Even if the Expired Subscription Cleanup Agent has not run and subscriptions have not been cleaned up, the Merge Agent will still
fail if the last synchronization was before the publication retention period.

Setting publication retention to "0" means that subscriptions will never expire and be removed.

Replication (SQL Server 2000)

Validating Replicated Data
Problems encountered during replication often occur because data at the Subscriber is not in synchronization with data at the
Publisher. Microsoft® SQL Server™ 2000 replication can validate the replicated data at a Subscriber as the replication process is
occurring to ensure that data at the Subscriber matches data at the Publisher.

You do not need to stop updates to the Publisher and wait for the Subscriber to become fully synchronized before testing that
data has been received and applied correctly. You can validate the data in snapshot replication, transactional replication, or merge
replication. Validation can be performed for specific subscriptions or for all subscriptions to a publication.

How Inline Data Validation Works

SQL Server validates data by calculating a rowcount and/or a checksum at the Publisher and then comparing those values to the
rowcount and/or checksum calculated at the Subscriber. One value is calculated for the entire publication table and one value is
calculated for the entire subscription table, but data in text or image columns is not included in the calculations.

While the calculations are performed, shared locks are placed temporarily on tables for which rowcounts or checksums are being
run, but the calculations are completed quickly and the shared locks removed, usually in a matter of seconds.

When validating replicated data, consider the following:

Is the fact that validation failed really a problem? Some validation failures are explainable, and you may not want to
reinitialize.

If the validation failure is an issue, consider the different options for synchronizing the data, including a full reinitialization, a
partial reinitialization a previous state, or manually updating the data so that it is synchronized.

Validating Replicated Data for Transactional Replication

Validation can be performed on transactional replication, subscriptions that use immediate updating or queued updating, and on
horizontal and vertical partitions of data.

You can choose any of the following methods for validation:

Rowcount only.

Rowcount and checksum.

Rowcount and binary checksum (this is available only for Subscribers running Microsoft SQL Server 2000).

You can configure validation using SQL Server Enterprise Manager or Transact-SQL system stored procedures. Regardless of
which you use, when you run validation, stored procedures are executed at the Publisher. The stored procedure
sp_publication_validation calls sp_article_validation for each article that is being validated, and sp_article_validation calls
sp_table_validation for each table, which then generates the rowcount or checksum calculations. The sp_table_validation
command is posted as a replication command to the Subscriber using the Log Reader Agent and Distribution Agent, and the
calculations are then made at the Subscriber.

Note Subscribers running SQL Server 6.5 can use rowcount only validation, but not checksum validation. You can validate based
on a binary checksum calculation if Subscribers are running SQL Server 2000.

You can validate replicated data on a schedule by creating a Transact-SQL job that calls sp_publication_validation or
sp_article_validation.

Unless you are a member of the sysadmin or db_owner roles, you must have SELECT permissions on all columns of the base
table used in the article (even if the article is vertically partitioned) in order to execute sp_publication_validation.

Validation with Checksums

When checksums are used, 32-bit redundancy check (CRC) occurs on a column-by-column basis rather than a CRC on the
physical row on the data page. This allows the columns with the table to be in any order physically on the data page, but still
compute to the same CRC for the row. Checksum validation can be used when there are row (horizontal) or column (vertical)
filters on the publication. Because checksums can require large amounts of processor resources when validating a large data set,
you may want to schedule validation to occur when there is the least activity on the servers used in replication.

Subscribers running SQL Server 7.0 use the checksum routines released in SQL Server 7.0, which generate CRC values that are
different than those generated with SQL Server 2000. The checksum routines released in SQL Server 7.0 cannot validate vertical
partitions, or logical table structures where column offsets differ (due to ALTER TABLE statements that DROP and ADD columns).

Setting the Rowcount_only Parameter

The @rowcount_only parameter is a smallint and accepts the following values.

Value Description
0 Execute checksum functionality released with SQL Server 7.0.
1 (Default) Execute a rowcount check only.
2 Execute checksum functionality released with SQL Server 2000.

Because Subscribers running SQL Server 7.0 will use this parameter as a bit data type, not a smallint, SQL Server will interpret
the parameter as 'ON'. Setting the parameter to a value of 2 with a Subscriber running SQL Server 7.0 will result in a rowcount
only validation at the Subscriber. If you need to run a checksum validation for a Subscriber running SQL Server 7.0, use the value
of 0 for this parameter. Subscribers running SQL Server 2000 could use the same value (0), but the checksum functionality would
have the SQL Server 7.0 limitations.

To validate transactional data using SQL Server Enterprise Manager

1. At the Distributor, expand Replication Monitor, expand Publishers, and then expand a specific Publisher.

2. Right-click a transactional publication, and then click Validate subscriptions.

3. Choose whether you want to validate all subscriptions or just specific subscriptions, and if you want to validate specific
subscriptions, select those in the text box.

4. To choose the type of validation, click Validation Options.

5. Choose whether you want to compute a fast rowcount based on cached table information, compute an actual row count by
querying the tables directly, or compute a fast row count and if differences are found, compute an actual row count.

6. You can also choose to enable Compare checksums to validate data, a binary checksum (if the Subscriber is running SQL
Server 2000), and you can choose to stop the Distribution Agent after the validation has completed.

To validate transactional data using Transact-SQL system stored procedures

To validate all articles in a publication and specify rowcount only (the default) or checksum validation, execute
sp_publication_validation. This will call sp_article_validation for each article in the publication.

To validate specific articles and specify rowcount only or checksum validation, execute sp_article_validation.

Validation and Immediate Updating

When using inline publication validation (sp_publication_validation) on immediate updating subscriptions, there is a period of
time when a change on the Subscriber will cause the publication validation to fail. This occurs when a data change is made on the
Subscriber after a publication validation has been run on the Publisher, but before the publication validation can be performed on
the Subscriber.

With transactional replication (without updatable subscriptions), changes can be made only at the Publisher, so changes made to
the Publisher after sp_publication_validation has been executed will be applied at the Subscriber after the validation is run on
the Subscriber.

However, when using immediate updating subscriptions, data modifications can be made at the Subscriber. Any changes made at
the Subscriber after validation was run on the Publisher are reflected immediately at the Subscriber. Validation will fail because
the checksum and rowcount calculations were based on data in the publication table before changes were made at the Subscriber.
To avoid this, stop all data modifications at the Subscriber during the validation process.

Considerations when Validating Replicated Data for Transactional Replication

The following are validation restrictions when using validation for transactional replication:

Checksum validations are not supported for transformable subscriptions because values are likely to be transformed
between Publisher and Subscriber and checksum values would not be the same.

Rowcount validation is not supported for an article that is configured as a DTS horizontal partition because the filter criteria
is saved as part of a DTS package, not in a view at the Publisher like replication filters.

Validation for replicated data to heterogeneous Subscribers is not supported.

Validation Failure and Alerts

If validation between data at the Publisher and data at the Subscriber fails, you can configure replication alerts to notify you of the
failure (with a message sent through e-mail or to a pager) and you can have the subscriptions reinitialized automatically.

To configure automatic reinitialization of subscriptions that fail validation

1. At the Distributor, expand Replication Monitor, click Replication Alerts, right-click the Replication: Subscription has
failed data validation alert, and then click Properties.

2. On the General tab, select the Enabled check box.

3. On the Response tab, select Execute job, and then in the drop down box, click Reinitialize subscriptions having data
validation failures.

4. To send a reinitialize confirmation message to the event log, right-click the Replication: Subscription reinitialized after
validation failure alert, and click Properties.

5. On the General tab, select the Enabled check box.

Validating Replicated Data for Merge Replication

Using SQL Server Enterprise Manager, you can choose to validate all subscriptions to a merge publication. Using Transact-SQL
system stored procedures, you can validate all subscriptions to a merge publication or specified subscriptions.

You can choose any of the following methods for validation:

Rowcount only

Checksum

To request validation of replicated data at a merge Subscriber, you can use:

SQL Server Enterprise Manager, which allows you to validate all subscriptions to a publication.

The Merge Agent command line or the Merge Agent Command Prompt Utility specifying the –Validate parameter. If the
Merge Agent is running in continuous mode, the –Validate parameter run at an agent command prompt will conduct
validation until the -ValidationInterval value is reached. Validation will occur after the merge process is complete.

The sp_validatemergepublication Transact-SQL system stored procedure. This will conduct a publication-wide validation
for which all subscriptions (push, pull, and anonymous) will be validated once each.

The sp_validatemergesubscription Transact-SQL system stored procedure, which runs validation once on the Merge
Agent for the specified subscription.

Running the Merge Agent with the -Validate parameter causes SQL Server to temporarily lock the Subscriber tables to
prevent further changes. SQL Server then computes either a rowcount or checksum of each replicated table at the
Subscriber and at the Publisher. If there is a difference, SQL Server locks the discrepant table at the Publisher and any new
data changes are downloaded to the Subscriber. After downloading is complete, SQL Server recalculates the rowcount or
checksum at the Subscriber and Publisher and compares them again. After validation is complete, SQL Server removes all
locks on Subscriber and Publisher tables.

You can validate your data on a regular schedule by adding -Validate to the Merge Agent profile at a specified time.

Because inline validation may be time-consuming or may result in undesirable contention between the Publisher and
Subscriber, you should schedule validation for a time when Publisher and Subscriber activity is at a minimum.

In case of merge validation failure, you can respond to the failure by using SQL Server Enterprise Manager to configure the
replication alert named Replication: Subscriber has failed data validation so that you are notified of the failure or you
can reinitialize the subscription to ensure that data at the Subscriber is in synchronization with data at the Publisher.
Reinitializing the subscription should be performed with caution because it can be a resource-intensive process for the
Publisher, Distributor and Subscribers, and users may not be able to update data while the initial snapshot is reapplied at
Subscribers.

When validating merge replication, another option is to validate data, and if data is not converged, to conduct a partial
reinitialization of the subscription. This partial reinitialization will return the Subscriber back to a previous state when data was in
synchronization. Using the Validate and Resynchronize Subscription option in SQL Server Enterprise Manager or
sp_resyncmergesubscription, you can resynchronize a merge subscription to a known validation state that you specify. This
allows you to force convergence or synchronize the subscription database to a specific point in time, such as the last time there
was a successful validation, or to a specified date. When resynchronizing a subscription using this method, the snapshot is not
reapplied.

To validate merge data using SQL Server Enterprise Manager

1. At the Distributor, expand Replication Monitor, expand Publishers, and then expand a specific Publisher.

2. Right-click a merge publication, and then click Validate all subscriptions.

3. Choose whether you want to validate replicated data using rowcounts only, rowcounts and checksums, or rowcounts and
comparing binary checksums (all Subscribers must be running SQL Server 2000 to use this option). Validation will occur the
next time the Merge Agent runs with results displayed in Replication Monitor.

To validate and resynchronize subscriptions

Expand Replication Monitor, expand the Publishers folder, and then expand a registered Publisher. Right-click a
publication, and then click Validate and Resynchronize Subscriptions.

Execute sp_resyncmergesubscription at the Publisher on the publication database or at the Subscriber on the subscription
database.

To validate merge data using Transact-SQL system stored procedures

To mark all named and anonymous subscriptions for validation the next time the Merge Agent runs, execute
sp_validatemergepublication.

To mark specific subscriptions for validation, execute sp_validatemergesubscription or
sp_validatemergepullsubscription.

To validate merge data using a Merge Agent command line parameter

1. At the Distributor, expand Replication Monitor, click the Merge Agents folder, right-click an agent, and then click Agent
Properties.

2. On the Steps tab, double click the Run agent step.

3. In the command text box, type –validate and specify 1 for rowcount-only validation, 2 for rowcount and checksum
validation. Validation will occur the next time the Merge Agent runs and success or failure messages are logged in the
Merge Agent History.

4. If you want to schedule validation, set the –ValidateInterval parameter on the Merge Agent command line to the number
of minutes when you want the validation to occur (the default is to validate every 60 minutes).

Replication (SQL Server 2000)

Replication and Heterogeneous Data Sources
Microsoft® SQL Server™ 2000 offers the ability to replicate data to any heterogeneous data source that provides a 32-bit ODBC
or OLE DB driver on Microsoft Windows® 2000, Microsoft Windows NT® Server 4.0, or Windows 98 operating systems.
Additionally, SQL Server 2000 can receive copies of data replicated from Microsoft Access, Microsoft Exchange, Oracle, DB2
Universal, DB2/MVS, and DB2 AS400.

Heterogeneous Subscribers

Publishing to heterogeneous data sources allows corporations that have acquired different databases to continue providing SQL
Server 2000 to individuals or offices using those databases.

The simplest way to publish data to a heterogeneous data source is by using OLE DB or ODBC and creating a push subscription
from the Publisher to the OLE DB or ODBC Subscriber.

SQL Server 2000 supports replication between different versions of SQL Server and it supports replication to Subscribers running
Microsoft SQL Server 2000 Windows CE Edition (SQL Server CE). For more information, see Replication Between Different
Versions of SQL Server and Replication with SQL Server for Windows CE.

Heterogeneous Publishers

SQL Server 2000 can subscribe to snapshot or transactional data replicated from Oracle, DB2, Access, and other data sources. This
allows companies that are planning to deploy large databases or a data warehouse with SQL Server, or Internet and intranet
applications, to gain access to various sources of data. That data can then be consolidated in SQL Server 2000 using replication,
and placed into a data mart, data warehouse, or multidimensional database designed for SQL Server Analysis Services.

To implement snapshot or transactional replication published by heterogeneous data sources to your SQL Server 2000
applications, configure SQL Server with third-party software or using applications built with SQL-DMO and the Replication
Distributor Interface.

For more information, see Programming Replication from Heterogeneous Data Sources.

Replication (SQL Server 2000)

Heterogeneous Subscribers
Microsoft® SQL Server™ 2000 supports publishing to heterogeneous data sources that provide 32-bit ODBC or OLE DB drivers
on Microsoft Windows® 2000, Microsoft Windows NT® 4.0 and Microsoft Windows 98. Heterogeneous Subscribers to SQL
Server include:

Microsoft Access databases.

Oracle databases.

Other databases on heterogeneous Subscribers that comply with SQL Server ODBC or OLE DB Subscriber requirements.

The simplest way to publish data to a heterogeneous Subscriber is by using ODBC and creating a push subscription from the
Publisher to the ODBC Subscriber. As an alternative, you can create a publication and then create an application with an
embedded distribution control. The embedded control implements the pull subscription from the Subscriber to the Publisher. For
ODBC Subscribers, the subscribing database has no administrative capabilities regarding the replication being performed.

ODBC/OLE DB Driver Support

ODBC drivers and OLE DB providers for various heterogeneous data sources are included on the SQL Server 2000 compact disc.

Stored Procedures That Support Replication to Heterogeneous Subscribers

SQL Server 2000 provides the following stored procedures and extended stored procedures to support replication to ODBC
Subscribers.

Procedure Description
sp_enumdsn Reports all defined ODBC DSNs for a server running under a

specific Windows NT 4.0 or Windows 2000 user account.
sp_dsninfo Retrieves ODBC DSN information from the replication

Distributor associated with the current server, if replication is
installed.

Note SQL Server Enterprise Manager (the recommended tool) uses these stored procedures automatically to set up replication
to ODBC Subscribers. Use these stored procedures directly only if you are not using SQL Server Enterprise Manager.

Replication Restrictions for Heterogeneous Subscribers

The following restrictions apply to replication to heterogeneous Subscribers:

Tables replicated to heterogeneous Subscribers will adopt the table naming conventions of the heterogeneous data source.

Schema files that create tables at the Subscriber do not include quotation marks around table names, and the new table
name is dependent on the behavior of the heterogeneous Subscriber on which they are created. For example, if you have a
Subscriber running Oracle, and a table is created on Oracle without quotation marks around the table name, it will default to
an uppercase table name on the Oracle server. If you specify the name Shipper in the article properties, it will become
SHIPPER on the Oracle Subscriber.

Transactions applied to the heterogeneous Subscriber using the Distribution Agent do have quotation marks around table
names.

Batched statements to ODBC Subscribers are not supported (because the distribution task commit batch size option is
ignored).

The ODBC DSN must conform to SQL Server 2000 naming conventions (because the DSN is stored in the sysservers table).

The publication option to truncate before synchronization is not supported if the ODBC DSN is not a SQL Server DSN. ODBC
Subscribers are not allowed to subscribe to publications that have this option selected.

The quoted identifier character on the target server (as reported by the ODBC driver) is used.

The character format bulk copy method must be selected for synchronization (using the Create Publication Wizard on the
publication property dialog box). ODBC Subscribers cannot subscribe to publications that have selected the native format
bulk copy method for synchronization.

Only NULL, NOT NULL, IDENTITY, and the constraint PRIMARY KEY for CREATE TABLE are supported for all heterogeneous
Subscribers. Therefore, SQL Server 2000 does not support adding articles to a publication after a subscription has been
created for a heterogeneous Subscriber. Each time an article is added or deleted from the publication, the subscription must
be reinitialized.

Replication (SQL Server 2000)

Access Subscribers
Microsoft® SQL Server™ 2000 includes an ODBC driver and OLE DB provider that supports Microsoft Access 97 or Microsoft
Access 2000 subscriptions to SQL Server publications. SQL Server 2000 Setup installs the driver and provider automatically.

To replicate to Access Subscribers, you must assign the MSSQLServer service the same domain user account assigned by SQL
Server Agent, for the service to have the necessary permissions to connect to an .mdb file over the network. Use the Services
application in Control Panel to do this.

Note When you register a Access DSN on a remote server, supply a UNC path (not a redirected drive letter).

Important If you do not enable heterogeneous Subscribers and you create the subscription database in the Create Publication
Wizard, the schema will be published to the Subscriber, but the data will not be, and you will not receive an error. To enable
heterogeneous Subscribers, on the Specify Subscriber Types page of the Create Publication Wizard, select Heterogeneous data
sources, such as Oracle or Microsoft Access; devices running SQL Server CE; or servers running earlier versions of SQL
Server.

Data Type Mapping to Jet-SQL 3.51 (Access 8) for Transactional Replication

The following table maps data types for transactional replication to Access Subscribers When you replicate to ODBC Subscribers,
the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

SQL Server 2000 data type Access Jet-SQL 3.51 data type
binary(n) LONGBINARY
bit BIT
char(n) LONGTEXT
datetime CHAR (23)
decimal CHAR (30)
float DOUBLE
image LONGBINARY
int LONG
int LONG
money CHAR (25)
nchar(n) LONGTEXT
ntext LONGTEXT
numeric CHAR (30)
nvarchar(n) LONGTEXT
real SINGLE
smalldatetime DATETIME
smallint SHORT
smallmoney DOUBLE
text LONGTEXT
timestamp BINARY (8)
tinyint BYTE
uniqueidentifier CHAR (36)
varbinary(n) LONGBINARY
varchar(n) LONGTEXT

Data Type Mapping to Jet-SQL 4.0 for Transactional Replication

The following table maps data types for transactional replication to Access Subscribers. When you replicate to ODBC Subscribers,
the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

Note The data type mapping from SQL Server to Jet-SQL 4.0 is the same for snapshot replication, transactional replication, and
merge replication.

SQL Server 2000 data type Microsoft Jet-SQL 4.0 data type
binary(n) BINARY (n)

Bit BIT
char(n) CHAR (n)
datetime DATETIME
decimal DECIMAL
float FLOAT
image IMAGE
int INT
money CURRENCY
nchar(n) NCHAR (n)
numeric NUMERIC
nvarchar(n) NCHAR VARYING (n)
real REAL
smalldatetime DATETIME
smallint SMALLINT
smallmoney CURRENCY
text LONGTEXT
timestamp BINARY
tinyint BYTE
uniqueidentifier GUID
varbinary(n) VARBINARY (n)
varchar(n) VARCHAR (n)

Replication (SQL Server 2000)

Oracle Subscribers
Microsoft® SQL Server™ 2000 includes an ODBC driver and OLE DB provider that support Oracle subscriptions to SQL Server
publications on Intel computers. SQL Server 2000 Setup installs the driver automatically.

Note To replicate to Oracle ODBC and OLE DB Subscribers, you must also obtain the appropriate Oracle SQL*Net driver from
Oracle or from your software vendor. You must then install the driver on the Publisher and the Distributor.

Replication Restrictions for Oracle Subscribers

The following restrictions apply when replicating to an Oracle ODBC Subscriber:

Replication of tables that have names with spaces will not be created on the Oracle subscriber. Replication will fail with
Oracle error ORA-00903: invalid table name.

The date data type is a small datetime (the range is 4712 B.C. to 4712 A.D.).

If you are replicating to Oracle, verify that SQL Server datetime entries in a replicated column are within this range.

A replicated table can have only one column of either text or image data type, which is mapped to long raw.

The datetime data type is mapped to char4.

The SQL Server 2000 ranges for float and real data types are different from the Oracle ranges.

The following table maps data types for replication to Oracle Subscribers.

SQL Server 2000 data type Oracle data type
bigint NUMBER
binary LONG RAW NOT NULL
bit NUMBER (1, 0)
char VARCHAR2 (900) NOT NULL
datetime DATE
decimal NUMBER (255, 3) NOT NULL
float FLOAT NOT NULL
image LONG RAW
int NUMBER (255, 3) NOT NULL
money NUMBER (255, 3) NOT NULL
nchar VARCHAR2 (2000) NOT NULL
ntext LONG
numeric NUMBER (255, 3) NOT NULL
nvarchar VARCHAR2 (2000) NOT NULL
real FLOAT NOT NULL
smallint NUMBER (255, 3) NOT NULL
smalldatetime DATE NOT NULL
smallmoney NUMBER (255, 3) NOT NULL
sql_variant LONG
sysname CHAR(255)
text LONG
timestamp RAW (255)
tinyint NUMBER (255, 3) NOT NULL

Oracle Data Type Definitions

The following table lists the Oracle data type definitions.

Oracle data type Definition
CHAR <=2000

DATE Jan 1, 4712 B.C. to Dec 31, 4712 A.D.
DECIMAL Same as Number
FLOAT Same as Number
INTEGER Same as Number
LONG <=2GB
LONG RAW Raw data; Same as Long
LONG VARCHAR Same as Long
NUMBER 1.0E-130 to 9.99..E125
SMALLINT Same as Number
RAW Raw Binary Data <=255 bytes
ROWID Unique Value
VARCHAR2 <=4000 bytes
VARCHAR Same as Varchar2
BLOB Binary Large Object <=4GB
COB Char Large Object <=4GB
NCLOB Same as Clob (for multibyte)
BFILE Pointer to binary operating file

Replication (SQL Server 2000)

IBM DB2/AS400 Subscribers
IBM DB2/AS400 subscriptions to Microsoft® SQL Server™ 2000 publications are supported through the OLE DB provider and
ODBC driver that are included with Microsoft Host Integration Server 2000.

The following table maps SQL Server 2000 data types to IBM DB2/AS400 data types. When you replicate to OLE DB or ODBC
Subscribers, the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

SQL Server 2000 data type DB2/AS400 data type
binary(n) CHAR(8000) FOR BIT DATA
bit SMALLINT
char(n) CHAR (8000)
datetime TIMESTAMP
decimal DECIMAL
double precision DOUBLE
float FLOAT
image VARCHAR(32739) FOR BIT DATA
int INTEGER NOT NULL
money DECIMAL (19, 4)
numeric NUMERIC
real REAL
smalldatetime TIMESTAMP NOT NULL
smallint SMALLINT
smallmoney DECIMAL (10, 4) NOT NULL,
text VARCHAR (32739)
timestamp CHAR(8) FOR BIT DATA)
tinyint SMALLINT NOT NULL
uniqueidentifier CHAR (36)
varbinary(n) VARCHAR(8000) FOR BIT DATA NOT NULL
varchar(n) VARCHAR (8000) NOT NULL

Replication (SQL Server 2000)

IBM DB2/AS400 Data Type Definitions
IBM DB2/AS400 Data Type Definitions

The following table lists the IBM DB2/AS400 data type definitions.

DB2/AS400 data type Definition
INT 9
SMALLINT 4
FLOAT <=53
NUMERIC 1 - 31 digits
DECIMAL 1 - 31 digits
CHAR <=32766
VARCHAR <=32740
LONG VARCHAR Determined by space available in row
TIMESTAMP Gregorian
GRAPHIC <=16383
VARGRAPHIC <=16370
LONG VARGRAPHIC Determined by space available in row
REAL 8,7
DOUBLE 17,16

Replication (SQL Server 2000)

IBM DB2/MVS Subscribers
IBM DB2/MVS subscriptions to Microsoft® SQL Server™ 2000 publications are supported through the OLE DB provider and
ODBC driver that are included with Microsoft Host Integration Server 2000.

The following table maps SQL Server 2000 data types to IBM DB2/MVS data types. When you replicate to OLE DB or ODBC
Subscribers, the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

SQL Server 2000 data type DB2/MVS data type
binary(n) CHAR(254) FOR BIT DATA NOT NULL
bit SMALLINT
char(n) CHAR (254) NOT NULL
datetime TIMESTAMP NOT NULL
decimal DECIMAL (31, 3) NOT NULL
double precision DOUBLE
float FLOAT NOT NULL
image VARCHAR(4045) FOR BIT DATA
int INTEGER NOT NULL
money DECIMAL (19, 4) NOT NULL
nchar(n) VARCHAR (900) NOT NULL
numeric NUMERIC (31, 3) NOT NULL
real REAL NOT NULL
smalldatetime TIMESTAMP NOT NULL
smallint SMALLINT NOT NULL
smallmoney DECIMAL (10, 4) NOT NULL
text VARCHAR (4045)
timestamp CHAR(8) FOR BIT DATA
tinyint SMALLINT NOT NULL
uniqueidentifier CHAR (38)
varbinary(n) VARCHAR(4045) FOR BIT DATA NOT NULL
varchar(n) VARCHAR (4045) NOT NULL

Replication (SQL Server 2000)

Other Heterogeneous Subscribers
This section includes the data type mappings for Subscribers running DB2/NT or DB2/6000 as well as the driver types needed for
ODBC Subscribers.

IBM DB2/NT

IBM DB2/NT subscriptions to Microsoft® SQL Server™ 2000 publications are supported through the OLE DB provider and ODBC
driver that are included with Microsoft Host Integration Server 2000.

The following table maps SQL Server 2000 data types to IBM DB2/NT data types. When you replicate to OLE DB or ODBC
Subscribers, the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

SQL Server 2000 data type IBM DB2/NT data type
binary(n) CHAR(254) FOR BIT DATA NOT NULL
bit SMALLINT
char(n) CHAR (254) NOT NULL
datetime TIMESTAMP
decimal DECIMAL
double precision DOUBLE
float FLOAT
image VARCHAR(4000) FOR BIT DATA
int INTEGER NOT NULL
money DECIMAL(19, 4)
numeric NUMERIC
real REAL
smalldatetime TIMESTAMP NOT NULL
smallmoney DECIMAL(10, 4)
text VARCHAR (4000)
timestamp CHAR(8) FOR BIT DATA)
tinyint SMALLINT NOT NULL
uniqueidentifier CHAR (38)
varbinary(n) VARCHAR(4000) FOR BIT DATA NOT NULL
varchar(n) VARCHAR (4000) NOT NULL

IBM DB2/6000

IBM DB2/6000 subscriptions to MSQL Server 2000 publications are supported through the OLE DB provider and ODBC driver
that are included with Microsoft Host Integration Server 2000.

The following table maps SQL Server 2000 data types to IBM DB2/6000 data types. When you replicate to OLE DB or ODBC
Subscribers, the distribution task maps SQL Server 2000 data types to the closest data type on the target database.

SQL Server 2000 data type IBM DB2/6000 data type
binary(n) CHAR(254) FOR BIT DATA NOT NULL
Bit SMALLINT
char(n) CHAR (254) NOT NULL
Datetime TIMESTAMP
Decimal NUMERIC (28, 14) NOT NULL
Float INTEGER NOT NULL
Image VARCHAR(4000) FOR BIT DATA
Int INTEGER(10) NOT NULL
Money DECIMAL(19, 4)
Numeric NUMERIC
Real REAL
Smalldatetime TIMESTAMP NOT NULL
Smallint SMALLINT

Smallmoney DECIMAL (10, 4) NOT NULL,
Text VARCHAR (4000)
Timestamp CHAR(8) FOR BIT DATA
Tinyint SMALLINT NOT NULL
Uniqueidentifier CHAR (38)
varbinary(n) VARCHAR(4000) FOR BIT DATA NOT NULL
varchar(n) VARCHAR (4000) NOT NULL

ODBC Driver and OLE DB Provider Support

ODBC drivers and OLE DB providers for various heterogeneous data sources are included on the SQL Server 2000 compact disc.

Drivers for other ODBC Subscriber types must conform to the SQL Server 2000 replication requirements for generic ODBC
Subscribers. The ODBC driver:

Must be ODBC level-1 compliant.

Must be 32-bit, thread-safe, and for the processor architecture (Intel or Alpha) on which the distribution process run.

Must be transaction capable.

Must support the Data Definition Language (DDL).

Cannot be read-only.

Must support long table names such as MSreplication_subscriptions.

Replicating Using OLE DB Interfaces

SQL Server 2000 replication can use OLE DB interfaces to execute SQL statements at Subscribers using the ICommand interface.
OLE DB providers must support these objects for transactional replication:

DataSource object

Session object

Command object

Rowset object

Error object

DataSource Object Interfaces

The following interfaces are required to connect to a data source:

IDBInitialize

IDBCreateSession

IDBProperties

If the provider supports the IDBInfo interface, SQL Server 2000 uses the interface to retrieve information such as the quoted
identifier character, maximum SQL statement length, and maximum number of characters in table and column names.

Session Object Interfaces

The following interfaces are required:

IDBCreateCommand

ITransaction

ITransactionLocal

IDBSchemaRowset

Command Object Interfaces

The following interfaces are required:

ICommand

ICommandProperties

ICommandText

ICommandPrepare

IColumnsInfo

IAccessor

ICommandWithParameters

IAccessor is necessary to create parameter accessors. If the provider supports IColumnRowset, SQL Server 2000 uses that
interface to determine whether a column is an identity column.

Rowset Object Interfaces

The following interfaces are required:

IRowset

IAccessor

IColumnsInfo

An application should open a rowset on a replicated table that is created in the subscribing database. IColumnsInfo and
IAccessor are needed to access data in the rowset.

Error Object Interfaces

Use the following interfaces to manage errors:

IErrorRecords

IErrorInfo

Use ISQLErrorInfo if it is supported by the OLE DB provider.

For more information about the OLE DB provider, see the documentation supplied with your OLE DB provider.

Note The primary source of information regarding the use of OLE DB is the OLE DB Programmer's Reference Version 2.0
available with the OLE DB Software Development Kit (SDK).

Replication (SQL Server 2000)

Implementing Merge Replication to Access Subscribers
When using releases of Microsoft® Access later than Access 8, you have a choice between using the SQL Server 2000 Desktop
Engine (MSDE 2000) or Microsoft Jet as the database engine and data storage for your Access database. Desktop Engine is a data
store based on Microsoft SQL Server™ 2000 technology, but it is designed and optimized for use on smaller computer systems,
such as a one computer or small workgroup server. Because Desktop Engine is based on the same database engine as SQL
Server, most Access projects or client/server applications run on either Desktop Engine or SQL Server Standard or Enterprise
Edition unchanged. However, unlike other editions of SQL Server, Desktop Engine has a 2-gigabyte database size limit, and it
cannot be a Publisher for a transactional publication (although it can be a Subscriber to transactional publications).

If you select Desktop Engine or SQL Server as the database engine for your application, there are no further steps required to
replicate between a SQL Server Publisher and an Access Subscriber. The computer running Access appears in SQL Server
Enterprise Manager as simply another server.

If you select Microsoft Jet as the database engine for your Access application, you must enable the Jet version 4.0 database as a
Subscriber. To do so, you must configure SQL Server to use an OLE DB connection to the database for each Jet Subscriber. The
easiest way to do this is through SQL Server Enterprise Manager; however, you can also add a Jet database as a linked server
programmatically by executing sp_addlinkedserver.

Replication to Access Subscribers is subject to the following restrictions:

Microsoft Jet 4.0 does not support case-sensitive sort orders. Do not use an instance of SQL Server with a case-sensitive
sort order installed to create publications for Jet 4.0 Subscribers.

Microsoft Jet 4.0 does not support push subscriptions from Publishers running on DEC Alpha servers to Jet 4.0 Subscribers
running on other platforms. Instead of creating a push subscription at the DEC Alpha Publisher, create a pull subscription at
the Jet 4.0 Subscriber.

SQL Server does not support known pull subscriptions but does support anonymous pull subscriptions from Jet 4.0
Subscribers. This functionality is implemented using the Microsoft ActiveX® replication controls.

You cannot replicate both merge and transactional publications from the same publication database to a Jet Subscriber.

When running the Merge Agent with the –validate parameter, only rowcount validation is supported. You cannot use
checksum validation when validating replicated data to a Jet Subscriber.

Column names cannot be the same names as those columns used during Jet replication. Reserved column names include:
s_Generation, s_GUID, s_Lineage and s_ColLineage.

Replication (SQL Server 2000)

Data Type Mapping to Jet-SQL 4.0 for Merge Replication
Data Type Mapping to Jet-SQL 4.0 for Merge Replication

The following table maps data types for merge replication to Microsoft® Access Subscribers. When you replicate to ODBC
Subscribers, the distribution task maps Microsoft SQL Server™ 2000 data types to the closest data type on the target database.

Note The data type mapping from SQL Server 2000 to Jet-SQL 4.0 is the same for snapshot replication, transactional replication,
and merge replication.

SQL Server 2000 data type Microsoft Jet-SQL 4.0 data type
bigint DECIMAL
binary(n) BINARY (n)
bit BIT
char(n) CHAR (n)
datetime DATETIME
decimal DECIMAL
float FLOAT
image IMAGE
int INT
money CURRENCY
nchar(n) NCHAR (n)
ntext LONGTEXT
numeric DECIMAL
nvarchar(n) NCHAR VARYING (n)
real REAL
smalldatetime DATETIME
smallint SMALLINT
smallmoney CURRENCY
text LONGTEXT
timestamp BINARY
tinyint BYTE
uniqueidentifier GUID
varbinary(n) VARBINARY (n)
varchar(n) VARCHAR (n)

Replication (SQL Server 2000)

Heterogeneous Publishers
Microsoft® SQL Server™ 2000 can subscribe to snapshot or transactional data published from Oracle, DB2, Access, and other
data sources. This allows organizations that are planning to deploy large databases or a data warehouse with SQL Server, or
Internet and intranet applications, to gain access to various sources of data. That data can then be consolidated in SQL Server
2000 using replication, and then placed into a data mart, data warehouse, or multidimensional database, or the data can then be
replicated to other data sources.

Methods for implementing replication published by heterogeneous data sources to your SQL Server 2000 applications include:

Building applications with SQL-DMO and the Replication Distributor Interface

Using third-party tools

Microsoft SQL Server 2000 provides a programming framework that enables heterogeneous data sources to become Publishers
of snapshot and transactional publications within the SQL Server 2000 replication framework. You can use the Replication
Distributor Interface with programmable SQL-DMO objects and third-party tools to publish data incrementally from
heterogeneous Publishers.

Using third-party tools, you can configure Oracle, DB2, and other data sources as a merge or incremental Publisher for SQL
Server Subscribers, which can then propagate data to other SQL Server or heterogeneous data sources.

By integrating with SQL Server 2000 replication, heterogeneous applications can inherit a full set of replication features, such as:

Remote store-and-forward databases and Distribution Agents.

Heterogeneous Subscribers, including Microsoft Access, Oracle, and DB2.

Pull subscriptions.

Anonymous subscriptions.

Internet subscriptions.

Subscriptions on computers running Microsoft Windows® 98.

Stand-alone and embeddable Distribution Agents.

Monitoring and troubleshooting tools using SQL Server Enterprise Manager.

Replication agent scheduling using SQL Server Agent.

Alerts and notifications.

Performance monitoring.

The programming framework for transactional and snapshot replication from heterogeneous data sources includes:

Programmable SQL-DMO replication objects for administering and monitoring replication.

The Replication Distributor Interface for storing replicated transactions from a heterogeneous Publisher.

A Distribution Agent to forward the transactions to Subscribers.

SQL Server Enterprise Manager to administer and monitor replication graphically.

Using Data Transformation Services (DTS), heterogeneous data sources can be used to create snapshot replication publications.

See Also

Programming Replication from Heterogeneous Data Sources

Replication (SQL Server 2000)

Replication Security
Microsoft® SQL Server™ 2000 replication uses a combination of security methods to protect the data and business logic in your
application.

Security Description
Role Requirements By mapping user logins to specific SQL Server 2000 roles, SQL

Server 2000 allows users to perform only those replication and
database activities authorized for that role. Replication grants
certain permission to the sysadmin fixed server role, the
db_owner fixed database role, the current login, and the
public role.

Connecting to the
Distributor

SQL Server 2000 provides a secure administrative link
between the Distributor and Publisher. Publishers can be
treated as trusted or nontrusted.

Snapshot Folder
Security

With alternate snapshot locations, you can save your snapshot
files to a location other than at the Distributor (for example, a
network share, an FTP site, or removable media). When saving
snapshots, ensure that replication agents have proper
permission to write and read the snapshot files.

Publication Access
Lists

Publication access lists (PALs) allow you to determine which
logins have access to publications. SQL Server 2000 creates
the PAL with default logins, but you can add or delete logins
from the list.

Agent Login Security SQL Server 2000 requires each user to supply a valid login
account to connect to the server. Replication agents are
required to use valid logins when connecting to Publishers,
Distributors, and Subscribers. However, agents can also use
different logins and security modes when connecting to
different servers simultaneously.

Password Encryption Passwords used in SQL Server 2000 replication are encrypted
automatically for greater security.

Security and
Replication Options

Filtering replicated data can be used to increase data security,
and there are additional security considerations when using
dynamic snapshots, immediate updating, and queued
updating.

Security and
Replication Over the
Internet

Different types of replication over the Internet have different
security levels. Additionally, when transferring replication files
using FTP sites, precautions must be taken to secure the site
and still make it accessible to replication agents.

Replication (SQL Server 2000)

Role Requirements
Microsoft® SQL Server™ 2000 replication restricts the specific actions that a user can perform based on the role mapped to the
user's login. Replication has granted certain permissions to the sysadmin server role, the db_owner database role, and the
logins in the publication access list (PAL).

These tables summarize the requirements for common replication actions.

Replication administration Membership requirement
Enable, modify or drop a Distributor. sysadmin server role.
Enable, modify, or drop a Publisher. sysadmin server role.
Enable, modify, or drop a Subscriber. sysadmin server role.
Enable a database for replication. sysadmin server role.
Create or drop a publication. sysadmin server role or db_owner

database role.
Modify publication properties. sysadmin server role or db_owner

database role. If the login is in the PAL, a
user can view the publication properties as
read-only even if the user is not a member
of the sysadmin or db_owner roles.

Create or delete a push subscription. sysadmin server role or db_owner
database role.

Create a pull subscription. sysadmin server role or db_owner
database role or any login in the PAL.

Delete a pull subscription. sysadmin or db_owner database role, or
the creating login of a pull subscription.

Update a PAL. sysadmin server role or db_owner
database role.

Enable snapshots for FTP downloading
using the Internet.

sysadmin server role or db_owner
database role.

View replication activity, errors and
history using Replication Monitor. A user
cannot modify agent profiles, schedules,
and so on, unless the user is a member
of the sysadmin server role.

replmonitor role.

Replication agents Membership requirement
Configure agent profile. sysadmin server role.
Monitor replication agents. sysadmin server role.
At the Publisher, logins for Snapshot
Agents, Log Reader Agents, and Merge
Agents.

For pull subscriptions, login must be in the
publication access list of the referenced
publication. For push subscriptions, login
must be member of db_owner (includes
sysadmin) in the publication database.

At the Distributor, logins for Snapshot
Agents, Log Reader Agents, Distribution
Agents, and Merge Agents.

For pull subscriptions, login must be in the
publication access list of the referenced
publication or db_owner database role on
the distribution database. For push
subscriptions, login must be member of
db_owner (includes sysadmin) in the
distribution database.

Distribution Agents and Merge Agents
logging into the Subscriber.

For both push and pull subscriptions, the
login must be a member of db_owner
(includes sysadmin) in the subscription
database.

Replication agents Membership requirement
Configure agent profile. sysadmin server role.

Replication tasks Membership requirement
Cleanup. sysadmin server role or db_owner

database role on the distribution database.
Schedule jobs. sysadmin server role or db_owner

database role on the msdb database.
Merge data during merge replication. The merge process requires an entry for the

Publisher in the sysservers table on the
Subscriber. If the entry does not exist, SQL
Server will attempt to add this entry. If the
login used by the Merge Agent does not
have access to add the entry (such as
db_owner of the subscription database), an
error will be returned.

Replication (SQL Server 2000)

Connecting to the Distributor
The Distributor can be the same server as the Publisher (local Distributor), or it can be a separate server from the Publisher
(remote Distributor). When using remote Distributors, you can configure the security necessary when the Publisher and
Distributor connect.

The connection between a Publisher and a remote Distributor is a hybrid of a linked server and remote server. The connection
uses the login distributor_admin. At the remote Distributor, the Publisher can be configured to be either trusted (no password is
required for the distributor_admin login) or non-trusted (a password is required).

It is recommended that you use a non-trusted connection for the Publisher connection to the Distributor, requiring a
distributor_admin password. This increases security at the Distributor by restricting access. Members of the sysadmin or
db_owner roles who want to use a Distributor must know the administrative link password. An incorrect distributor_admin
password at the Publisher causes the configuration of replication at the Publisher to fail.

Warning Do not change the password for the distributor_admin manually. Always use either
sp_changedistributor_password or the Distributor tab of the Publisher and Distributor Properties in SQL Server Enterprise
Manager because password changes are then applied to local publications automatically. Changing the distributor_admin
password manually causes publications using a local Distributor to fail.

To add or change a password on a Distributor

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

See Also

sp_adddistributor

sp_changedistributor_password

Replication (SQL Server 2000)

Snapshot Folder Security
 New Information - SQL Server 2000 SP3.

Alternate snapshot locations enable you to store snapshot files in a location other than or in addition to the default location, which
is often located on the Distributor. Alternate locations can be on another server, on a network share, or on removable media (such
as CD-ROMs or removable disks).

When specifying the snapshot location on a network share, it is recommended that you dedicate the share for snapshot storage
and files that have the same security standards. Next, give the replication agents Write permission on the share and in the
snapshot location and appropriate folders so they can write the snapshot files there.

Subscribers that need to access the snapshot files will need Read permission to the snapshot location and appropriate folders. If
the snapshot folder is not shared for the appropriate Subscribers, the replication agents cannot access the folder and replication
fails.

By default, snapshots are saved in the default snapshot folder located on the Distributor. On a Distributor running Microsoft®
Windows NT® version 4.0 or Windows 2000, the snapshot folder defaults to using the <drive>$ share and a path of \\
<computer>\<drive>$\Program Files\Microsoft SQL Server\Mssql\Repldata.

On a Distributor running the Microsoft Windows 98 operating system, the snapshot folder defaults to using the <drive> without
a share and a path of \\<computer>\<drive>\Program Files\MicrosoftSQL Server\Mssql\Repldata. If your application requires
the ability to create pull subscriptions on a server running the Windows 98 operating system, you must change the snapshot
folder to a network path accessible by replication agents running at the Publisher and Subscribers. You can change the local path
to a network path by sharing the folder.

Important The <drive>$ share is a special administration-only share, and you will not be able to grant rights to it; only
administrators on the computer can access it. It is recommended that you change the default snapshot location to a network
location or shared folder that the Subscriber can access. This also applies if you are going to allow pull or anonymous
subscriptions because remote Subscribers or Subscribers over the Internet will rarely be administrators. You can test the
Subscriber connection to the snapshot folder by mapping a network drive in Windows Explorer at the Subscriber.

See Also

Alternate Snapshot Locations

Security and Replication Over the Internet

Replication (SQL Server 2000)

Publication Access Lists
 New Information - SQL Server 2000 SP3.

When you create a publication, Microsoft® SQL Server™ 2000 creates a publication access list (PAL) for the publication. The PAL
contains a list of logins that are granted access to the publication. The logins included in the PAL are members in the sysadmin
fixed server role and the current login.

Note A new role is created in SQL Server 2000 Service Pack 3 for use by merge replication. The name of the new role is in the
form MSmerge <publication ID>. The role is created on the Publisher for each merge replication publication and acts as the PAL
to control access to merge publications on the Publisher. For information on creating this role if it has been removed from the
Publisher, see sp_createmergepalrole.

The PAL functions similarly to a Microsoft Windows® 2000 access control list. When a user or replication agent attempts to log in
to a Publisher, SQL Server 2000 first checks to see if the login is in the PAL. If you must further expand or restrict access to a
publication, you can add or delete logins in the PAL using SQL Server Enterprise Manager or the sp_grant_publication_access
and sp_revoke_publication_access stored procedures.

A snapshot, transactional, or merge publication may be secured with a PAL through SQL Server Enterprise Manager or
programmatically.

Note A replication agent login for the Publisher and Distributor must exist in the PAL before it can access the publication. The
user login must also exist in the publication database or the database must allow guest users. If you are using a remote
Distributor, the logins must exist at both the Publisher and the Distributor before it can be added to the PAL. Because the
replication agents run under SQL Server Agent, the account under which SQL Server Agent runs on a Windows platform must be
in the PAL.

If you have a large number of user logins to add to the PAL, consider making them all members of a single Windows 2000 group
and then adding the Windows 2000 group to the PAL.

To grant or revoke access to a publication

Enterprise Manager

Enterprise Manager

Transact-SQL

Transact-SQL

Replication (SQL Server 2000)

Agent Login Security
 New Information - SQL Server 2000 SP3.

Replication implements login security by requiring a user to have a valid login account and password to connect to a Publisher,
Distributor, or Subscriber. Replication agents run under SQL Server Agent and use the associated logins and passwords to
connect to the various replication objects and to perform their roles in the synchronization process.

Important In SQL Server 2000 Service Pack 3 and later, the SQL Server Agent proxy account must be configured with a login
and password if a publication or subscription is created by a user who is not a member of the sysadmin fixed server role. For
more information, see xp_sqlagent_proxy_account.

On the Microsoft® Windows® 98 operating system, SQL Server Agent and the replication agents run under the security account
of the user logging on to Windows. On the Microsoft Windows NT® 4.0 and Windows 2000 operating system, replication agents
run under the login or security context of the SQLServerAgent service. Each agent connects to one or more servers and must have
a valid login to complete the connection.

Applying a Snapshot

When applying a snapshot, the agents must have the following capabilities:

The Snapshot Agent connects to the publication database on the Publisher and to the distribution database on the
Distributor. The Snapshot Agent also writes to the snapshot folder when storing the snapshot files.

Transactional Replication

The agents used in transactional replication must have the following capabilities:

The Log Reader Agent connects to the publication database at the Publisher and to the distribution database at the
Distributor.

With a push subscription, the Distribution Agent is, by default, located on the Distributor and connects first to the
distribution database on the Distributor. While connected to the Distributor, the Distribution Agent connects to the
subscription database at the Subscriber. The Distribution Agent also reads from the snapshot folder when applying the
snapshot files.

With a pull subscription, the Distribution Agent is, by default, located on the Subscriber and connects first to the
subscription database on the Subscriber. While connected to the Subscriber, the Distribution Agent connects to the
distribution database at the Distributor. The Distribution Agent also reads from the snapshot folder when applying the
snapshot files.

Merge Replication

The agents used in merge replication must have the following capabilities:

With a push subscription, the Merge Agent is located on the Distributor and connects first to the distribution database on
the Distributor. While connected to the Distributor, the Merge Agent connects to the subscription database at the Subscriber
and then to the publication database at the Publisher. The Merge Agent also reads from the snapshot folder when applying
the snapshot files.

With a pull subscription, the Merge Agent is located on the Subscriber and connects first to the subscription database on the
Subscriber. While connected to the Subscriber, the Merge Agent connects to the distribution database at the Distributor and
then to the publication database at the Publisher. The Merge Agent also reads from the snapshot folder when applying the
snapshot files.

Merge replication requires an entry for the Publisher in the sysservers table at the Subscriber. If the entry does not exist,
either SQL Server will attempt to add the entry when you create a merge publication or the Merge Agent will attempt to add
the entry. If the login used does not have sufficient access to add the entry in sysservers, an error will be returned.

Note For an agent that holds simultaneous connections, Microsoft SQL Server™ allows you to configure the login for each
connection independently. For example, if the Snapshot Agent connects to the Publisher and to the Distributor, each

connection can use a different login.

Replication (SQL Server 2000)

Security and Replication Options
 New Information - SQL Server 2000 SP3.

Filtering Published Data

Filtering published data allows you to restrict access to data and allows you to specify the data that is available at the Subscriber.
You can filter data horizontally or vertically with any type of replication so partitions based on user requirements and needs can
be published to Subscribers.

Additionally, dynamic filters can be used with merge replication and custom data partitions can be created with transactional
replication to filter rows based on values retrieved from the Subscriber. For example, using the SUSER_SNAME function in a
merge replication dynamic filter, you can propagate just the rows that relate to the value at the Subscriber retrieved by
SUSER_SNAME.

For more information, see Filtering Published Data.

Dynamic Snapshots

Dynamic snapshots provide a performance advantage when applying the snapshot of a merge publication with dynamic filters. By
using Microsoft® SQL Server™ 2000 bulk copy files to apply data to a specific Subscriber instead of a series of INSERT
statements, you will improve the performance when applying the initial snapshot for dynamically filtered merge publications.

The following security considerations must be met to use dynamic snapshots:

SQL Server on the Publisher must be running under mixed security mode.

The login specified as the value of the Publisher login must be in the publication access list (PAL). This login can be specified
in the Create Dynamic Snapshot Job Wizard or by using the -DynamicFilterLogin parameter of the Snapshot Agent.

Because SQL Server adds and drops temporary logins in the Snapshot Agent, the Publisher login of the Snapshot Agent
must be a member of the db_owner group on the publication database to generate dynamic snapshots.

Dynamic filter logins specified for dynamic snapshot generation must be members of the corresponding PAL.

For more information, see Dynamic Snapshots.

Immediate Updating and Queued Updating

The immediate updating option supports either dynamic remote procedure call (RPC) mode or static RPC mode for the two-phase
commit protocol (2PC) connection from the synchronization triggers back to the Publisher.

In dynamic RPC mode, synchronization triggers connect dynamically to the Publisher, using a supplied server name, login, and
password. This mode is easier to use when setting up push subscriptions because the Publisher does not have to be predefined at
the Subscriber.

In static RPC mode, synchronization triggers connect to the Publisher over a statically defined server name defined as a linked
server or remote server in the sysservers table. This entry is added by an administrator at the Subscriber. The configuration mode
is set automatically when creating push or pull subscriptions.

The immediate updating subscription connection to the Publisher (controlled by sp_link_publication) can use security
mode 0 for SQL Server Authentication or 2 for linked server definition to create login mappings. The publication access list
(PAL) must include at least one SQL Server Authentication account unless you use security mode 2 and configure delegation
(it is possible to set up Windows Authentication in mode 2 by configuring delegation). You can make connections to the
Publisher under Windows user accounts invoking the INSERT, UPDATE, and DELETE triggers at the Subscriber using
delegation. To set up delegation, see sp_addlinkedsrvlogin.

When setting up a push subscription using the Push Subscription Wizard in SQL Server Enterprise Manager or the
sp_addsubscription stored procedure, the default configuration uses dynamic RPC at the Subscriber. Prior to making
updates at the Subscriber, the RPC login and password must be configured at the Subscriber using sp_link_publication.

When setting up a pull subscription using the Pull Subscription Wizard in SQL Server Enterprise Manager, you choose the

desired configuration mode. If you choose static RPC, the server name must already exist. If you choose dynamic RPC, you
must supply a login and password that the synchronization triggers will use to connect to the Publisher.

When setting up a pull subscription using stored procedures, you must explicitly call sp_link_publication after calling
sp_addpullsubscription at the Subscriber.

When using dynamic RPCs, Microsoft® SQL Server™ 2000 handles login and password forwarding by adding a replication
command to the distribution database to call sp_addsynctriggers at the Subscriber. When executed at the Subscriber,
sp_addsynctriggers creates immediate updating triggers and configures the linked server connection.

When executed, the immediate updating stored procedures at the Subscriber check the PAL at the Publisher to ensure that the
user account executing the RPC has permissions to update the data in the publication.

Replication (SQL Server 2000)

Security and Replication Over the Internet
Different types of replication over the Internet have different security levels. Additionally, when transferring replication files using
FTP sites, precautions must be taken to secure the site and still make it accessible to replication agents.

Virtual Private Network

Using a Virtual Private Network (VPN) is the most secure option for implementing replication over the Internet. VPNs include
client software so that computers connect over the Internet (or in special cases, even an intranet) to software in a dedicated
computer or a server. Optionally, encryption at both ends as well as user authentication methods keep data safe. The VPN
connection over the Internet logically operates as a Wide Area Network (WAN) link between the sites.

A VPN connects the components of one network over another network. This is achieved by allowing the user to tunnel through
the Internet or another public network (using a protocol such as Microsoft Point-to-Point Tunneling Protocol (PPTP) available with
the Microsoft® Windows NT® version 4.0 or Microsoft Windows® 2000 operating system, or Layer Two Tunneling Protocol
(L2TP) available with the Windows 2000 operating system). This process provides the same security and features previously
available only in a private network.

For more information, see Virtual Private Networks in the Windows 2000 documentation or Publishing Data Over the Internet
Using VPN.

Microsoft Proxy Server

Integrating Microsoft SQL Server™ 2000 replication with Microsoft Proxy Server allows for replication over the Internet with
security configured on the Microsoft Windows NT version 4.0 or Microsoft Windows 2000 Server operating systems, Proxy
Server, and SQL Server 2000.

For replicating data over the Internet when a firewall is present, configuring replication with Microsoft Proxy Server provides
security so that so that unauthorized Internet users cannot gain access to internal network resources, and the Subscriber can
connect to a port on the Proxy Server that limits Subscriber access only to the services where permission is been granted.

For more information, search for the "Configuring Proxy Server for SQL Server Replication" white paper at Microsoft Web site.

TCP/IP and File Transfer Protocol

For replication over the Internet where a firewall is not a concern, or for transferring snapshot files, you can use TCP/IP and File
Transfer Protocol (FTP).

If you use FTP to download the snapshot files, define the FTP site without Write access. Although this is the default setting for
many services, confirm that the setting has not been changed after installation.

Caution When a Subscriber applies the initial snapshot files from an FTP site, the files transmitted using FTP are left on the
Subscriber disk. The files are visible to at least all other logins that can access the computer. The files are accessible to any users
logged into the same computer. To prevent this, set the cache retention settings low and/or purge Microsoft Internet Explorer
cache after applying snapshots.

For more information, see Publishing Data Over the Internet Using TCP/IP and FTP.

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Replication (SQL Server 2000)

Enhancing Replication Performance
You can enhance the general performance for all types of replication in your application and on your network by:

Setting a minimum amount of memory allocated to Microsoft® SQL Server™ 2000.

Using a separate disk drive for the transaction log for all databases involved in replication.

Consider adding memory to servers used in replication.

Using multiprocessor computers.

Setting a fixed size for the distribution database.

Publishing only the amount of data required.

Running the Snapshot Agent only when necessary and at off-peak times.

Placing the snapshot folder on a drive not used to store database or log files.

Using a single snapshot folder per publication.

Consider using compressed snapshot files.

Reducing the distribution frequency when replicating to numerous Subscribers.

Consider use of pull or anonymous subscriptions.

Reduce the verbose level of replication agents to '0' except during initial testing, monitoring, or debugging.

Run agents continuously instead of on very frequent schedules.

Consider using the –UseInprocLoader agent property.

Set a Minimum Amount of Memory Allocated to SQL Server

By default, SQL Server 2000 changes its memory requirements dynamically based on available system resources. To avoid low
memory availability during replication activities, use the min server memory option to set the minimum available memory. If the
server is a remote Distributor or a combined Publisher and Distributor, you must assign it at least 16 megabytes (MB) of memory.
For more information, see Server Memory Options.

Use a Separate Disk Drive for All Databases Involved in Replication

This applies to the publication database, the distribution database, and the subscription database. You can decrease the time it
takes to write transactions by storing the log files on a disk drive different than the one used to store the database. You can mirror
that drive, using a Redundant Array of Inexpensive Disks (RAID)-1, if you require fault tolerance. Use RAID 0 or 0+1 (depending
on your need for fault tolerance) for other database files. This is a good practice regardless of whether or not replication is being
used. For more information, see RAID Levels and SQL Server.

Consider Adding Memory to Servers Used in Replication

If you need to improve replication performance, consider adding memory to the servers used in replication. For example, if the
computer is configured with 64 megabytes (MB) of memory, consider increasing the memory to 128 MB or more. You can use
the sp_configure stored procedure to assign additional memory to Microsoft® SQL Server™ 2000.

Use Multiprocessor Computers

SQL Server 2000 replication agents can take advantage of additional processors on the server. If you are running at high CPU

usage, consider installing a faster CPU or multiple CPUs (symmetric multiprocessing).

Publish Only the Amount of Data Required

Because replication is easy to set up, there is a tendency to publish more data than is actually required. This can consume
additional resources within the distribution databases and snapshot files, and can lower the throughput for required data. Avoid
publishing unnecessary tables and consider updating publications less frequently.

Run the Snapshot Agent Only When Necessary and at Off-Peak Times

The Snapshot Agent bulk copies data from the published table on the Publisher to a file in the snapshot folder on the Distributor.
In SQL Server 2000, the process of generating a snapshot for transactional replication no longer holds table locks on the
published tables. Similarly, for merge replication in SQL Server 2000, concurrency is improved and lock duration is reduced when
a snapshot is being generated. Although this reduces the impact on concurrently connected users, generating a snapshot is still a
resource intensive process and is best scheduled during off-peak times.

Place the Snapshot Folder on a Drive that Does Not Store Database or Log Files

Similarly, the Snapshot Agent will perform a sequential write of data to the snapshot folder when generating the snapshot for any
publication type. Because the snapshot agent always copies a complete copy of the data in the publication to disk when
replicating changes, placing the snapshot folder on a separate drive from any database or log files reduces contention among the
disks and helps the snapshot process complete faster.

Using a Single Snapshot Folder Per Publication

When specifying the publication properties related to snapshot location, you can choose to generate snapshot files to the default
snapshot folder, to an alternate snapshot folder, or to both. Generating snapshot files in both locations requires additional
processing when the Snapshot Agent runs. This takes more time than generating the snapshot files to a single location for the
publication.

For more information, see Alternate Snapshot Locations.

Consider Using Compressed Snapshots

Compressing snapshot files in the alternate snapshot folder can reduce snapshot disk storage requirements and, in some cases,
improve the performance of transferring snapshot files across the network when they are used for replication over the Internet.
However, compressing the snapshot requires additional processing by the Snapshot Agent when generating the snapshot files,
and by the merge agent when applying the snapshot files. This may slow down snapshot generation and increase the time it takes
to apply a snapshot in some cases. Consider these tradeoffs carefully when using compressed snapshots.

For more information, see Compressed Snapshot Files.

Reduce the Distribution Frequency When Replicating to Numerous Subscribers

A single Distributor can distribute transactions to a larger number of Subscribers if the Distribution and Merge Agents associated
with each Subscriber are scheduled to run less frequently. Stagger when the Distribution Agents or Merge Agents are initially run
so they do not all attempt to start simultaneously the first time they are started. If the agents are running on a scheduled basis, the
schedules are set by default so that the agents are not running at the same time for regular synchronizations.

Consider Pull or Anonymous Subscriptions

The Distribution or Merge Agent runs on the Distributor for push subscriptions, and on Subscribers for pull or anonymous
subscriptions. Using pull or anonymous subscriptions can increase performance by moving Distribution or Merge Agent
processing from the Distributor to Subscribers.

You can also offload agent processing by using Remote Agent Activation. Agent processing can be moved to the Subscriber for
push subscriptions and to the Distributor for pull subscriptions. Administration of the agent still takes place at the Distributor for
push subscriptions and at the Subscriber for pull subscriptions. For more information, see Remote Agent Activation.

Anonymous subscriptions, which are especially useful for Internet applications, do not require that information about the
Subscriber be stored in the distribution database at the Distributor for transactional replication and reduces the storage of
information about the Subscriber in the publishing database for merge replication. This reduces the resource demands on the
Publisher and Distributor because they do not have to maintain information about anonymous Subscribers.

Anonymous subscriptions are a special category of pull subscriptions. In regular pull subscriptions, the Distribution or Merge

Agent runs at the Subscriber (thereby reducing the resource demands on the Distributor), but still stores information at the
Publisher. When a publication supports anonymous subscriptions, the publication is configured to always have a snapshot ready
for new Subscribers.

For transactional replication, this means that every time the Snapshot Agent runs, a new snapshot will be generated. Typically, a
snapshot is not generated if there are no new Subscribers waiting for a snapshot or no Subscriber needs to be reinitialized at the
time the Snapshot Agent is run. So while anonymous Subscribers can reduce the resource demands at the Distributor, the
tradeoff is that a snapshot is generated more often. With merge replication, a new snapshot is always generated when the
Snapshot Agent runs regardless of the type of subscriptions supported by the publication.

Additional Indexes at the Subscriber

If a subscription database needs to be used for decision support analysis and you add a lot of indexes to support these queries,
you should note that these additional indexes may significantly reduce the throughput with which changes can be applied to the
Subscriber by the Distribution Agent or Merge Agent. In some cases, where you are mostly aggregating the data at the
Subscriber, it may be more efficient to create an indexed view at the Publisher and publish it as a table to the Subscriber using
transactional replication. For more information, see Indexed Views.

Application Logic in Triggers at the Subscriber

Similarly, additional business logic in user defined triggers at the Subscriber may also slow down the replication of changes to the
Subscriber. For transactional replication, it can be more efficient to include this logic in custom stored procedures used to apply
the replicated commands. For more information, see Using Custom Stored Procedures in Articles.

Use Horizontal Partitioning Judiciously

When a transactional publication is set up with an article(s) that is horizontally partitioned, the log reader has to apply the filter to
each row affected by an update to the table as it scans the transactions log. The throughput of the log reader will therefore be
affected. If achieving maximum throughput is key, you should consider using DTS custom partitions to do custom horizontal
partitions . That allows the log reader agent to move transactions out of the published database's log as quickly as possible.
Instead of affecting all Subscribers with the overhead of filtering the data, only the subscriber that chooses to use a DTS package
to filter the data is affected.

Similarly, merge replication must evaluate changed or deleted rows to determine every time you synchronize changes to
determine which Subscribers should receive those rows. When horizontal partitioning is employed to reduce the subset of data
required at a Subscriber, this processing is more complex and can be slower than when you publish all rows in a table. Consider
carefully the tradeoff between reduced storage requirements at each subscriber and the need for achieving maximum
throughput.

Use a Fast Network

The propagation of changes to the Subscriber can be significantly enhanced by using a very fast network of 100 Mbps or faster.

Reduce the Verbose Level of Replication Agents

Reduce the –HistoryVerboseLevel parameter and/or the –OutputVerboseLevel parameter of the Distribution Agents or Merge
Agents to the lowest value. This will reduce the amount of new rows inserted to track agent history and output. Instead, previous
history messages with the same status will be updated to the new history information. Changing this agent parameter can yield a
significant performance gain of up to or over 10 to 15 percent.

However, you should increase the –HistoryVerboseLevel for testing, monitoring, and debugging so that you have as much history
information about agent activity as possible.

Run Agents Continuously Instead of on Very Frequent Schedules

Setting the agents to run continuously rather than creating frequent schedules (such as every minute) will improve replication
performance. When you set the Distribution Agent or Merge Agent to run continuously, whenever changes occur, they will be
immediately propagated to the other servers that are connected in the topology. Because the agent is continuously running, it
does not have to start and stop which causes more work for the server where the agent is running.

Consider Using the –UseInprocLoader Agent Property

The –UseInprocLoader agent property improves performance of the initial snapshot for snapshot replication, transactional
replication, and merge replication.

https://msdn.microsoft.com/en-us/library/aa225906(v=sql.80).aspx

When you apply this property to either the Distribution Agent (for snapshot replication or transactional replication) or the Merge
Agent (for merge replication), the agent will use the in-process BULK INSERT command when applying snapshot files to the
Subscriber.

The –UseInprocLoader property cannot be used with character mode bcp, and it cannot be used by OLE DB or ODBC
Subscribers.

Important When using the –UseInprocLoader property, the SQL Server 2000 account under which the Subscriber is running
must have read permissions on the directory where the snapshot .bcp data files are located. When the –UseInprocLoader
property is not used, the agent (for heterogeneous Subscribers) or the ODBC driver loaded by the agent (for SQL Server 2000
Subscribers) reads from the files, so the security context of the Subscriber SQL Server 2000 account is not used.

Replication (SQL Server 2000)

Enhancing Snapshot Replication Performance
You can enhance the performance of snapshot replication in your application and on your network by:

Using a quality disk subsystem.

Using a single snapshot folder per publication.

Using compressed snapshots.

Using native bcp.

Use a Quality Disk Subsystem

Because snapshot replication bulk copies a complete copy of the publication, it writes the entire publication to the snapshot folder.
The faster the disk subsystem can read and write data to the disk(s), the faster the snapshot is completed.

Using a Single Snapshot Folder Per Publication

When specifying the publication properties related to snapshot location, you can choose to generate snapshot files to the default
snapshot folder, an alternate snapshot folder, or both. Generating snapshot files in both locations requires additional processing
when the Snapshot Agent runs. This takes more time than generating the snapshot files to a single location for the publication.

For more information, see Alternate Snapshot Locations.

Consider Using Compressed Snapshots

Compressing snapshot files in the alternate snapshot folder can reduce snapshot disk storage requirements and, in some cases,
improve the performance of transferring snapshot files across the network when they are used for replication over the Internet.
However, compressing the snapshot requires additional processing by the Snapshot Agent when generating the snapshot files
and by the merge agent when applying the snapshot files. This may slow down snapshot generation and increase the time it takes
to apply a snapshot in some cases. Consider these tradeoffs carefully when using compressed snapshots.

For more information, see Compressed Snapshot Files.

Consider Using Native bcp

When you are not using ODBC or OLE DB Subscriber or using transformable subscriptions and you have a large volume of data,
consider using native bcp mode to apply snapshot files to Subscribers. Storing information in native format is useful when
information must be copied from one instance of Microsoft® SQL Server™ to another.

Replication (SQL Server 2000)

Enhancing Snapshot and Transactional Replication
Performance
You can enhance the performance of snapshot or transactional replication in your application and on your network by:

Configuring the Distributor on a dedicated server.

Increasing memory on the Distributor.

Subscribing to all articles in a publication.

Using stored procedure replication when a large number of rows are affected.

Minimizing the retention period for transactions and history.

Configure the Distributor on a Dedicated Server

You can reduce processing overhead on the publishing server by configuring a computer dedicated to the distribution process.
This may result in performance gains for both the Publisher and the Distributor.

Increase Memory on the Distributor

In addition to the benefits of maintaining a dedicated Distributor, you can realize additional performance gains by increasing the
amount of memory on the Distributor. This is especially true if the Distributor is supporting replication to a large number of
Subscribers. For example, if the computer is configured with 64 megabytes (MB) of memory, consider increasing the memory to
128 MB or more. You can use the sp_configure stored procedure to assign additional memory to Microsoft® SQL Server™
2000.

Subscribe to All Articles in a Publication

By default, a subscription includes all the articles in a publication. By not having to exclude any articles from a publication, the
Distribution Agent can use an optimal query during synchronization.

Use Stored Procedure Replication When a Large Number of Rows are Affected

If a single set update/delete at the Publisher affects a very large number of rows, the change to each row affected by the update is
logged individually in the transaction log of the database. The log reader will propagate these as individual updates (within a
single transaction) and when the Distribution Agent applies the changes it can take much longer than the original update at the
Publisher.

If you have batch updates that occasionally affect a large number of rows at the Subscriber, you should consider updating the
published table using a stored procedure and publish the execution of the stored procedure. Instead on a sending an
update/delete for every row affected by the update/delete, the Distribution Agent will execute the same procedure at the
subscriber with the same parameter values. This is faster by a large magnitude compared to sending the update/delete as
individual row changes. For more information see Publishing Stored Procedure Execution.

Use Custom Stored Procedures to Update Subscribers

By default when a Subscriber is set up for transactional replication, the process of applying a snapshot to a Subscriber, in addition
to creating the table(s) and populating them, will also create a set of stored procedures at the Subscriber (for INSERT, UPDATE and
DELETE).

Subsequently when changes are made to a published table, the log reader will construct a stored procedure call instead of SQL
statements representing the change. The distribution agent then executes this while applying changes to a Subscriber. This is
much more efficient than SQL statements over which it provides significant performance gains.

These stored procedures can be further customized, which is generally better than adding Subscriber-specific logic in triggers (for
actions such as maintaining aggregate tables).

 For more information, see Using Custom Stored Procedures in Articles.

Minimize the Retention Period for Transactions and History

You can reduce the amount of disk space used on the Distributor by minimizing the amount of time that replicated transactions
and history are stored in the distribution database after they have been delivered to Subscribers.

Reduce Unnecessary Reinitialization or Expiration of Subscriptions

If a Subscriber does not synchronize for a long time there is a possibility the subscription may get dropped or it may be
automatically marked deactivated and require reinitialization. Whether it expires and is dropped or gets marked deactivated and
requires initialization depends upon whether it exceeds the Subscription Expiration property of the publication or the Maximum
Transaction Retention property of the distribution database as well as whether or not it is an Anonymous subscriber.

If you do not want your subscriptions to expire, you should set the publication retention to "0". If you do not want your
subscriptions to be deactivated you should set the Maximum Distribution Retention period to a higher value than the default of
72 hours taking into consideration the effect it may have on the size of the distribution database. For more information, see
Subscription Deactivation and Expiration.

Use a Quality Disk Subsystem

Because snapshot replication copies a complete copy of data in the publication, it writes data for the entire publication to the
snapshot folder. The faster the disk subsystem can read and write data to the disk(s), the faster the snapshot is completed.

Replication (SQL Server 2000)

Enhancing Transactional Replication Performance
You can enhance the performance of transactional replication in your application and on your network by:

Increasing the Log Reader Agent read batch size.

Minimizing the log history and retention period.

Optimizing your database design to include replication considerations.

Using custom stored procedures for inserts, updates, and deletes at Subscribers.

Avoiding horizontal filtering.

Increase the Log Reader Agent Read Batch Size

The Log Reader Agent and Distribution Agents support batch sizes for transaction read and commit operations. Batch sizes
default to 500 transactions. When a large number of transactions are written to a publishing database but only a small subset of
those are marked for replication, you should use the -ReadBatchSize parameter to increase the read batch size of the log reader.
The Log Reader Agent reads the specific number of transactions from the log, whether or not they are marked for replication. For
more information, see Replication Log Reader Agent Utility.

Minimize the Log History and Retention Period

You can reduce the amount of disk space used on the Distributor by minimizing the amount of time for log history and
transaction retention. For more information, see Transactional Replication.

Optimize Your Database Design to Include Replication Considerations

Horizontal partitions can inhibit replication performance. Consider database design options that reduce the need to filter rows
when defining articles in a publication. Alternatively, consider using custom stored procedures that can delete unnecessary rows
at the Subscriber or using custom data partitions with transformable subscriptions (for more information, see Using
Transformable Subscriptions to Create Custom Data Partitions).

Use Custom Stored Procedures for Inserts, Updates, and Deletes at Subscribers

When Microsoft® SQL Server™ 2000 applies transactions at a Subscriber, by default it overrides the INSERT, UPDATE, and
DELETE statements from the transaction log with custom stored procedures. For example, instead of applying the INSERT
statement read from the transaction log, the Distribution Agent can run a stored procedure at the Subscriber to perform the same
action. These stored procedures can be further customized, which is generally better than adding Subscriber-specific logic in
triggers (for actions such as maintaining aggregate tables).

Avoid Horizontal Filtering

The criteria set for a horizontal filter are evaluated one time for each row marked for replication in the publication database log.
This determines whether the row should be moved to the distribution database. For applications that require maximum data
throughput, horizontal filtering of articles may not be the best choice for minimizing the rows delivered to each Subscriber.
Instead, developing natural partitions of the table may be a better choice using custom data partitions with transformable
subscriptions (for more information, see Using Transformable Subscriptions to Create Custom Data Partitions).

Replication (SQL Server 2000)

Enhancing Merge Replication Performance
You can enhance the performance of merge replication in your application and on your network by:

Using indexes on columns used in subset and join filters.

Creating a ROWGUIDCOL column prior to generating the initial snapshot.

Using native mode bcp whenever possible.

Increasing the batch sizes processed by the Merge Agent.

Using pull and anonymous subscriptions when there are a large number of Subscribers.

Limiting the use of text and image columns.

Considering over-normalization of tables containing text and image columns.

Using static rather than dynamic partitions when possible.

Using dynamic snapshots for dynamically filtered publications.

Limiting complexity of subset filter clauses.

Reducing publication retention settings.

Selecting column-level tracking when bandwidth is limited.

Optimizing synchronization when partitioning data.

Controlling article processing order if using triggers for referential integrity.

Using global subscriptions.

Occasionally re-indexing merge replication system tables.

Not overusing join filters.

Modifying database design.

Limiting or controlling simultaneous agent processing.

Considering Reinitialization of the subscription.

Using Indexes on Columns Used in Subset and Join Filters

When you use a filter on a published article, create an index on each of the columns that is used in the filter's WHERE clause.
Without an index, Microsoft® SQL Server™ 2000 has to read each row in the table to determine whether the row should be
included in the article (that is, in the horizontal partition of the table). With an index, SQL Server 2000 can quickly locate which
rows should be included. The fastest processing takes place if SQL Server 2000 can fully resolve the WHERE clause of the filter
from just the index.

Indexing all the columns used in JOIN filters is also important. Each time the Merge Agent runs, it searches the base table to
determine which rows in the base table and which rows in related tables are included in the article. Creating an index on the JOIN
columns saves SQL Server 2000 from having to read each row in the table every time the Merge Agent runs.

For more information, see Filtering Published Data.

Create a ROWGUIDCOL Column Prior to Generating the Initial Snapshot

By creating a column that can be used to help track changes during merge replication, you will avoid the sometimes significant
time (and disk and log) decrease in performance that occurs from waiting for the Snapshot Agent to alter the tables for you.

Merge replication requires that each published table have a ROWGUIDCOL column. If a ROWGUIDCOL column does not exist in
the table before the Snapshot Agent creates the initial snapshot files, the agent must first add and populate the ROWGUIDCOL
column. To gain a performance advantage when generating snapshots during merge replication, create the ROWGUIDCOL
column on each table before publishing using merge replication. The column can have any name (rowguid is used by the
Snapshot Agent by default), but must contain the following data type characteristics:

The data type as UNIQUEIDENTIFIER.

The default as NEWID().

The ROWGUIDCOL property.

A unique index on the column.

The ROWGUIDCOL column is used frequently in merge replication during tracking and synchronization of changes made at the
Publisher and at Subscribers.

Increase the Batch Sizes Processed by the Merge Agent

By default, the Merge Agent processes 100 generations in each batch uploaded and downloaded between the Publisher and
Subscriber. If you make frequent updates to a single table and update a large number of rows in a single transaction, consider
increasing the number of generations in each batch. You can set the -DownloadGenerationsPerBatch and -
UploadGenerationsPerBatch parameters in the Merge Agent profile.

Use Pull and Anonymous Subscriptions When There Are a Large Number of Subscribers

A pull subscription moves the Distribution Agent from the Distributor to the Subscriber. Relocating the Distribution Agent reduces
the amount of processing the Distributor must do for each pull subscription and shifts the processing overhead to the Subscriber.
By creating pull subscriptions instead of push subscriptions, you free up more processing capacity at the Distributor for
performing other replication or application tasks. By creating anonymous subscriptions, you can further reduce the resource
demands on the Distributor because no meta data has to be stored about the Subscriber.

Use Native Mode bcp Whenever Possible

When you create a publication, you have the choice of specifying that one or more Subscribers will be Microsoft Jet 4.0 (Microsoft
Access) or SQL Server for Windows® CE databases. Enabling support for these types of Subscribers causes the Snapshot Agent to
store the snapshot files in character format instead of native SQL Server 2000 format. Because it takes additional processing time
and storage space for SQL Server 2000 to process and store character format files, do not enable SQL Server for Windows CE or
Access Subscribers unless you are sure that you will actually have such Subscribers.

Limit the Use of text and image Columns

text and image columns require more storage space and processing than other column data types. Do not include text and
image columns in articles unless absolutely necessary for your application.

Consider Over-normalizing Tables Containing text and image Columns

When synchronization occurs, the Merge Agent may need to read and transfer the entire data row from a Publisher or Subscriber.
If the row contains text and image columns this process can require additional memory allocation and negatively impact
performance even though these columns may not have been updated. To reduce the likelihood that this performance impact will
occur, consider putting text and image columns in a separate table using a one-to-one relationship to the rest of the row data.

Reducing Use of Horizontal Filtering

When subset filters or join filters are used to filter the data in a publication, the Merge Agent must determine if rows need to be
added to or removed from a subscription database. While this can decrease the amount of data that must be transferred to each
Subscriber, it can increase the amount of processing required at the Publisher during each synchronization. If data is not
horizontally filtered, all data changes must be sent to each Subscriber and the Merge Agent will begin sending data to Subscribers

quickly without having to first evaluate the filter criteria for the publication.

Publish unrelated tables in separate publications if some tables receive a lot of activity and others do not.

Use Static Rather Than Dynamic Partitions When Possible

Dynamic filters and partitions are a powerful feature of SQL Server 2000 replication. However, even with indexes on the filtered
columns, SQL Server 2000 must still read each row in the dynamic partition and compare it to the filtered value. Using static
filters and partitions reduces the processing time required to complete the merge process.

Using Dynamic Snapshots for Dynamic Filtered Publications

When dynamic filters are used to partition a publication, the Snapshot Agent cannot pre-determine the data required for a
Subscriber. As such, the Merge Agent must request inserts for all data specific to its partition after it applies the schema files from
the snapshot folder. Processing the initial snapshot for a large volume of data using inserts can be significantly slower than
processing the same data using the SQL Server bulk copy utility.

With SQL Server 2000, the Snapshot Agent can be instructed to generate bcp files specific to each subscriber by creating a
dynamic snapshot job. Dynamic snapshots will generate bcp files as though a static filter had been applied to the publication.
While this requires running the Snapshot Agent in a special mode once for each partition of data to be generated for Subscribers,
it can dramatically improve the time it takes the Merge Agent to apply the data when processing the snapshot files.

For more information, see Dynamic Snapshots.

Limiting Complexity of Subset Filter Clauses

When using subset filter clauses to horizontally partition data in a publication, limit the complexity of the filter criteria. The subset
filter clause will be evaluated frequently to determine which changed rows of published data should be synchronized with each
Subscriber. Limiting the complexity of the filtering criteria will help improve performance when the merge agent is evaluating row
changes to send to Subscribers. Avoid using sub-selects within merge subset filter clauses. Instead, consider using join filters,
which are generally more efficient when used to partition data in one table based on the subset filter clause in another table.

Note Do not overuse join filters. Join filters with dozens or more tables will impact performance.

For more information, see Filtering Published Data.

Reducing Publication Retention Settings

Publication retention determines how long a Subscriber can go without synchronizing incremental changes before that
Subscriber is considered to be out of synchronization and requires a new snapshot from the Publisher.

This setting also controls how long some merge tracking meta data is maintained in the publication and subscription databases.
You can control the growth of merge tracking meta data and, in some cases, see improved performance while synchronizing
changes, if you reduce the publication retention period setting. Select a publication retention setting that is adequate to support
Subscribers working offline for extended periods of time.

Selecting Column-level Tracking When Bandwidth is Limited

While business application needs generally drive the choice selection of row- or column-level tracking for merge publications,
there can be a performance benefit to selecting column-level tracking when bandwidth availability is low. Column-level tracking
of data changes allows the Merge Agent to send only the changed columns and rowguidcol property across the network for
changed rows. Conversely, the Merge Agent will always send the entire row when row-level tracking is used. Sending only the
changed columns can provide better performance across a network with limited bandwidth when an application frequently
changes only a few columns in a table that has many columns.

Optimizing Synchronization When Partitioning Data

Selecting the @keep_partition_changes option when adding an article to a merge publication can significantly reduce the amount
of time it takes the Merge Agent to determine whether recently changed rows should be sent to a Subscriber.

In cases where an application updates a column used in a subset filter or join filter, the Merge Agent must do additional work to
determine if that row change requires that rows be added to or removed from the partition for each Subscriber as they
synchronize. By maintaining some additional data about the changed rows in the publication database, the Merge Agent can more
quickly determine which partition-related row changes are relevant to each Subscriber.

Caution Choosing to maintain this additional information at the Publisher will result in an increase in the storage requirements

for the merge replication tracking system tables in the publication database. However, if UPDATES to columns included in
partitions are not atypical, the performance gains are usually worth maintaining the additional information.

For more information, see Optimizing Synchronization.

Controlling Article Processing Order If Using Triggers for Referential Integrity

When publishing tables related to one another via declared foreign key constraints or constraints enforced via triggers, the Merge
Agent will need to apply changes to related rows in the correct order to propagate all changes. If you are using declared
referential integrity, SQL Server will process articles in order based on the relationships. By processing articles in the optimal
order based on the action being performed (for example, inserting parent rows before related child rows), the Merge Agent can
avoid additional retry operations when processing articles during synchronizing.

If declared referential integrity is not used, the Merge Agent will, by default, process articles in the order they are added to a
publication via stored procedures or SQLDMO – article order cannot be controlled through SQL Server Enterprise Manager.

If triggers are used to enforce referential integrity, the Merge Agent will not recognize this as declared referential integrity, and
you need to be aware of the processing order of the articles.

Using Global Subscriptions

When synchronizing changes for a local or anonymous merge Subscriber, the Publisher must also synchronize additional system
tracking data that would otherwise be unnecessary with global subscriptions. Using global subscriptions may improve
synchronization performance in cases where subscribers make frequent updates.

Occasionally Re-index Merge Replication System Tables.

As part of maintenance for merge replication, occasionally check the growth of the system tables associated with merge
replication: MSmerge_contents, MSmerge_genhistory, and MSmerge_tombstone. Periodically re-index these tables by running
DBCC Transact-SQL commands. To re-index these system tables, execute the following commands on the publication database:

DBCC DBREINDEX ('MSmerge_contents')

DBCC DBREINDEX ('MSmerge_genhistory')

DBCC DBREINDEX ('MSmerge_tombstone')

Additionally, you should minimize the size of the merge system tables (specifically MSmerge_history) by using
sp_mergecleanupmetadata. For more information, see How Merge Replication Works.

Not Overusing Join Filters

Join filters with several tables (such as dozens or hundreds of tables) will seriously impact performance during merge processing.
It is recommended that if you are generating join filters of five or more tables that you consider other solutions. Another strategy
might be to avoid filtering tables that are primarily lookup tables, smaller tables, and tables that are not subject to change. Make
those tables part of the publication in their entirety. It is recommended that you use join filters only between tables for which it is
important they carefully partition among Subscribers.

Modify Database Design

The design of the database ultimately determines the complexity and processing resource requirements of the queries used by
merge replication, which affects merge performance. A poor database design or a database design that does fit with the
publication (or filtering) needs of a merge publication may require some structural changes to the database to improve merge
performance. Specifically, adding columns or tables to support dynamic partitioning logic more efficiently, and making sure that
the columns used in the filtering expressions can take advantage of indexes. Generic 'optimizing queries for index usage' rules
apply. If you generically mention to use indexes on all filtering columns, this may actually be counter-productive in terms of index
maintenance if the index is not used by the query optimizer, because the data is not very unique or the expression cannot use
indexes. Sometimes changing the filtering expressions will allow an existing index to be used where it was not before.

Limit or Control Simultaneous Agent Processing

Limit or control the number of multiple simultaneous Snapshot Agent or Merge Agent processes, especially with large data sets,
complex partitioning logic, and large volumes of merged changes. The @max_concurrent_merge and
@max_concurrent_dynamic_snapshots parameters for sp_addmergepublication can help with this.

Consider Reinitializing the Subscription

When large amounts of changes need to be sent to subscribers, reinitializing them with a new snapshot may be faster than using
merge to move the individual changes.

See Also

Agent Profiles

Creating an Index

Creating and Modifying Identifier Columns

Data Types and Table Structures

Dynamic Filters

Planning for Replication

Replication (SQL Server 2000)

Backing Up and Restoring Replication Databases
In addition to the regular backup and restore guidelines and procedures for Microsoft® SQL Server™ 2000, additional
considerations for backing up and restoring the databases are involved in replication.

The considerations for backing up databases used in snapshot replication, transactional replication, or merge replication vary
according to the role the server performs in replication and where the failure occurs in the replication topology.

To restore replication, back up some or all of the following regularly:

Publisher

Distributor

Subscriber(s)

Your backup strategy will depend on your needs for restoring a replicated environment quickly, and on the degree of complexity
you can tolerate in your backup plan. You only need to back up all databases if you want to restore any replica immediately from
backup while minimizing the likelihood of data loss.

Maintaining a regular backup of the Publisher databases, and leveraging the SQL Server replication built-in ability to reinitialize
one or more subscriptions on-demand provides a simple recovery strategy. This strategy can be used to support a large
enterprise of mobile, occasionally connected Subscribers that otherwise would not typically participate in regular backup
management at each node in the topology. You could further limit regular backups to your publication databases and rely on SQL
Server replication scripting to provide a method for reestablishing replication if you need to restore the entire replication
environment.

Another strategy includes backing up only the Publisher and the Distributor as long as the Publisher and Distributor are
synchronized. This strategy allows you to restore a replication environment completely. Backing up a Subscriber is optional but
can reduce the time it takes to recover from a failure of the Subscriber.

Basic backup plans can result in a longer time to restore the replication environment. If your application requires that you restore
replication immediately, you may want to consider more complex backup and recovery strategies described later in this section.

In most situations, the publications and distribution databases should be backed up after adding or changing replication objects
such as articles and subscriptions, or after a schema change is made that affects replication. If the distribution database is restored
to a version that is before such a change, the publication database will have to be restored to a version before that change as well.

As part of any backup strategy, always keep a current script of your replication settings in a safe location. This should be done in
addition to regular backups of the Publisher, Distributor and the Subscribers. In the event of a total server failure or the need to
set up a test environment, you can modify the script by changing the server name references and using the script to help recover
replication with the previous settings.

 You should also script the enabling and disabling of replication. These scripts are part of the backup of the Publisher or
Distributor.

For more information about generating SQL scripts for setting up or disabling replication, see Scripting Replication.

Backing Up the Publisher

Publication databases are the primary, or central source, of data in a replication topology; therefore, even the most basic recovery
plan should include regular backups at the Publisher. Backing up the Publisher requires you to back up the publication database
regularly on the server where the Publisher is located. Back up the publication database and then make transaction log backups
and/or differential database backups. You can also back up the master and msdb system databases to protect against total loss
of the system and not just the publication database. If you are shipping transaction logs to a warm standby server, back up the
msdb system database regularly (which is required if log shipping is used).

Backing Up the Distributor

Backing up the Distributor involves backing up the distribution database, the msdb database, and the master system database.
This allows you to recover from almost any type of failure without having to re-create publications or reconfigure replication.

Backing up the Distributor preserves the snapshot of the publication as well as the history, error, and replication agent
information for your application. It allows you to recover faster in the event of a Publisher or Distributor failure because there is
no need to re-establish replication. Particularly for transactional replication, this strategy requires coordination between backing

up the publication database and the distribution database. SQL Server 2000 handles this coordination automatically. Back up the
distribution database, and then make transaction log backups and differential database backups.

For more information, see Strategies for Backing Up and Restoring Transactional Replication.

Backing Up the Subscriber

A comprehensive backup recovery strategy may rely on reinitialization of subscriptions in the event that recovery is required, or
may include regular backups of each subscription database and relevant system databases at the Subscriber. Backing up the
Subscriber involves backing up the subscription database and, optionally, the msdb and master system databases. The msdb
and master databases need to be backed up only if it is a Subscriber that uses pull subscriptions and only if there is a need to be
able to restore after a total system loss.

Backup the subscriptions database and then make transaction log backups and incremental database backups.

Note Backing up each Subscriber is not required to reestablish replication after a failure. Under most circumstances, backing up
the Publisher and Distributor regularly should be sufficient. If the cost of reinitializing a Subscriber is significantly greater than the
cost of restoring it from a backup, and the complexity of managing backups among the replicas within the enterprise is
manageable, you should consider backing up the Subscriber.

See Also

Validating Replicated Data

Replication (SQL Server 2000)

Strategies for Backing Up and Restoring Snapshot Replication
Snapshot replication is best used as a method for replicating data that changes infrequently or where the most up-to-date values
(low latency) are not a requirement. When synchronization occurs, the entire snapshot is generated and sent to Subscribers.

Because snapshot replication propagates changes by generating and delivering a complete snapshot for the publication, it is not
necessary to back up the publication database as frequently as it is backed up in transactional replication or merge replication.
The publication database needs to be backed up when changes are made to existing publication properties or when new
publications are added.

When you back up the Publisher, also back up the Distributor. While the backups are in progress, no new snapshot publications or
subscriptions should be added. This ensures that when the Publisher and Distributor are restored, they both will both contain the
same information.

Backing Up and Restoring the Publication Database

The Log Reader Agent is less important in back up and restoration than it is in transactional replication. The publication database
needs to be backed up only when changes are made to existing publications (such as an article added or deleted, or schema
changes on the publication database that affect the publication), or new publications are added.

Backing Up and Restoring the Distribution Database

Before backing up the distribution database, it is recommended that you run the Distribution Cleanup Task to make sure any
unnecessary information is cleaned up and does not add to the time it takes to back up the distribution database.

The distribution database should be backed up at the same time as the publication database. During the back up, do not add new
snapshot publications or subscriptions.

Backing Up and Restoring the msdb Database

The msdb database contains the job definitions for replication agents that are run under the control of SQL Server Agent. To
provide additional security against a total system failure, the msdb database on the Publisher, Distributor, and Subscribers (that
use pull subscriptions) must be backed up periodically whenever a subscription is dropped, whenever a change is made to a
replication agent, or when a new Publisher is added to the Distributor.

Backing Up and Restoring the master Database

When a new Subscriber is added, an entry for the Subscriber is added to the sysservers table in the master database on the
Publisher. When a new Publisher is added to a Distributor, an entry for the Publisher is added to the sysservers table in the
master database on the Distributor.

To restore replication after the loss of the Publisher or Distributor, back up the master database on the Publisher and Distributor
each time a new Subscriber or Publisher is added (respectively).

Replication (SQL Server 2000)

Strategies for Backing Up and Restoring Transactional
Replication
Microsoft® SQL Server™ 2000 allows you to restore transactional replication databases without reinitializing subscriptions or
disabling and reconfiguring publishing and distribution. You can set up replication to work with log shipping, enabling you to use
a warm standby server without reconfiguring replication.

Recovering transactional replication from a loss of the publication database or distribution database, without having to reinitialize
subscriptions or reconfigure replication, requires the publication database and the distribution database be restored to a
consistent point in time. In SQL Server version 7.0 and earlier, this had to be ensured manually by backing up the publication
database and distribution database simultaneously, and at the same time ensuring no changes were being made to the databases
while the backup was in progress. SQL Server 2000 automatically handles the coordination of the backups of the two databases.

To ensure that you can restore the Publisher or Distributor at any time, SQL Server 2000 requires the replication database option
sync with backup be set to true on the publication database and on the distribution database. If you use this option, you will
need to back up the publication database and distribution databases (usually you would back up the transaction log or make
differential backups) frequently because the frequency of backups determines the latency with which replication delivers changes
to Subscribers.

Important Only SQL Server 2000 Publishers support this option. If the distribution database is set to sync with backup,
Publishers running SQL Server 7.0 and earlier and using that distribution database will be treated as if the option is not set.

Backing Up and Restoring the Publication Database

Usually the Log Reader Agent runs in continuous mode, monitoring the log for data changes, which it immediately propagates to
the distribution database (typically within a few seconds). In addition, because backups of the publication database usually occur
on a scheduled basis, the Log Reader Agent may be transferring transactions faster than they are being backed up. If the Publisher
fails and is restored, the distribution database may already have transactions that will not exist in the restored publication
database because those transactions were not backed up.

Setting the sync with backup option on the publication database ensures that the Log Reader Agent will not propagate any
transactions to the distribution database that have not been backed up at the Publisher. This ensures that the last backup can be
restored without any possibility of the distribution database having transactions that the restored publication database does not
have.

Synchronizing the Log Reader Agent with backing up the publication database means that replication latency (the time it takes for
changes at the Publisher to be delivered to the Subscriber), which can often be as low as a few seconds, is now constrained to be
equal to the frequency of backups at the Publisher. For example, if you are backing up the transaction log of the publication
database every five minutes, replication latency could be as much as five minutes plus the time it takes to complete the backup.
On the average, it will be less than five minutes, but more than typical transactional replication latency, which can be tens of
seconds. If you synchronize the Log Reader Agent with the backup, it is recommended that you back up the publication database
(database backup followed by log and/or differential database backups) as frequently as possible to reduce the time it takes for
changes to appear at Subscribers.

To synchronize the publication database to a backup

Execute sp_replicationdboption '<publicationdatabasename>', 'sync with backup', 'true'.

Note If you change the sync with backup option to false, the truncation point of the publication database will be updated after
the Log Reader Agent runs, or after an interval if the Log Reader Agent is running continuously. The maximum interval is
controlled by the –MessageInterval agent parameter with a default of 30 seconds.

To determine if the sync with backup option has been set on a publication database, use the IsSyncWithBackup property of
the DatabasePropertyex() intrinsic function. You can also run the system stored procedure sp_helpdb to check if this option has
been set.

If the increase in replication latency is not acceptable, do not to set the sync with backup option on the publication database. If
the publication database fails, it will be possible for the distribution database to have transactions that the restored publication
database does not have, and it is not guaranteed that the Subscriber will be in synchronization with the Publisher.

Restoring the Publication Database When the sync with backup Option is False

If you do not set the sync with backup option and allow the distribution database to have transactions that the restored
publication database does not have, it is possible to restore a publication database from backup and for replication to continue,

but the Subscriber and Publisher may no longer be in synchronization. To accomplish this:

1. Restore the publication database. At this point, you will get an error from the Log Reader Agent because it will detect that
the Distributor is ahead of the Publisher.

2. Run sp_replrestart in the publication database with no parameters. This forces replication to continue even if the
Distributor and some Subscribers may now have data that the Publisher no longer has.

3. Ensure that that the Distribution Agents, which could now deliver duplicate rows to Subscribers, can continue despite these
failures. Choose the –SkipError Distribution Agent profile, or you can manually add the –SkipError parameter to the
runtime parameters of the Distribution Agents and supply the errors you want the Distribution Agents to ignore. For more
information, see Distribution Agent Profile.

Caution This method can lead to inconsistencies between data at the Publisher and data at the Subscribers.

Backing Up and Restoring the Distribution Database

The distribution database can be restored to the last backup without reconfiguring replication or reinitializing subscriptions.
Usually, the Log Reader Agent connects to the publication database, scans the log, retrieves the next set of N transactions that
need to be replicated, propagates them to the distribution database, and then indicates to the publication database that the
transactions have been successfully committed at the distribution database.

At this point, the publication database can truncate the part of the log that contains these transactions (provided they have been
backed up). If the distribution database fails at this point and is restored to a previous backup, it will not be possible for the Log
Reader Agent to deliver the missing transactions because the part of the log containing them may have been truncated.

Setting the sync with backup option on the distribution database ensures that the log of the publication database will not be
truncated beyond the point up to which all transactions have been propagated to the distribution database. It also ensures that
the distribution database with the new transactions has been backed up. The distribution database can be restored to the last
backup and the Log Reader Agent will be able to deliver transactions that the restored distribution database is now missing.
Replication will continue unaffected.

Important To backup the distribution database more frequently by backing up the transaction logs and setting the sync with
backup option, you must set the trunc. log on chkpt. option of sp_dboption to false on the distribution database.

Unlike the publication database, setting the sync with backup option on the distribution database has no effect on replication
latency, but it will delay the truncation of the log on the publication database until the corresponding transactions in the
distribution database have been backed up.The sync with backup option is available only if the Publisher and Distributor are
running SQL Server 2000.

To synchronize the distribution database to a backup

Execute sp_replicationdboption '<distributiondatabasename>', 'sync with backup', 'true'

To determine if the sync with backup option has been set on a distribution database, use the IsSyncWithBackup property of
the databaseproperty() intrinsic function. You can also run the system stored procedure sp_helpdb to check if this option has
been set.

Backing Up and Restoring a Subscription Database

To restore the Subscriber to the last backup without any need to reinitialize the subscriptions, ensure that the minimum
transaction retention period at the Distributor is greater than the frequency of the backup interval at the Subscriber. This
guarantees that when you restore a Subscriber, all the transactions necessary for the Subscriber to catch up will still be available
in the distribution database. When you restore a Subscriber, the Distribution Agent delivers any transactions the Subscriber is
missing. By default, the minimum transaction retention period is set to 0, and under most circumstances a transaction that has
been delivered to all Subscribers will be deleted.

To set the minimum transaction retention period of the Distributor

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing, Subscribers, and Distribution.

2. To modify the distribution database, click the Properties button for the distribution database to change the transaction
retention period.

Note It is not necessary to back up the Subscribers to restore transactional replication; however, it is essential that you back up
the Publisher and Distributor. If the cost of generating a snapshot and reinitializing the subscription is less than the time it would
take to restore the subscription database from a backup, there is no need to back up the subscription database.

Backing Up and Restoring the msdb Database

The msdb database contains the job definitions for replication agents that are run under the control of SQL Server Agent. To
provide additional security against a system failure, the msdb database on the Distributor and Subscribers that use pull
subscriptions must be backed up periodically, whenever a subscription is dropped or a new one added, or whenever a change is
made to a replication agent.

The msdb database may also contain Data Transformation Services (DTS) package definitions used in replication if transformable
subscriptions are used with any transactional or snapshot publications. To provide assurance against system failure, the msdb
database on the Distributor and on the Subscribers that use transformable subscriptions must be backed up periodically as well.
These operations should be performed any time the DTS package associated with a publication is modified or each time a
subscription is dropped or a new one is added. This ensures that the most up-to-date definitions can be recovered.Backing up and
restoring the msdb database allows you to restore replication after a complete loss of the Distributor or Subscriber.

Backing Up and Restoring the master Database

When a new Subscriber is added, an entry for the Subscriber is added to the sysservers table in the master database on the
Publisher. Back up the master database at the Publisher and after a Subscriber is added or after an entry for the Publisher is
added to the sysservers table in the master database on the Distributor.

To restore replication after loss of the Publisher or Distributor, back up the master database on the Publisher and Distributor each
time a new Subscriber or Publisher is added (respectively).

Replication (SQL Server 2000)

Transactional Replication and Log Shipping
Microsoft® SQL Server™ 2000 transactional replication can be configured to work with log shipping to provide a warm standby
server recovery option if the Publisher fails.

You must be running Microsoft SQL Server 2000 Enterprise Edition to use log shipping. There are two modes for replication and
log shipping working together: synchronous and semi-synchronous.

Synchronous M ode

In synchronous mode, the sync with backup option is set on the publication database. This causes the Log Reader Agent to
synchronize with the publication database backup. In this mode, the Log Reader Agent does not propagate any transactions from
the Publisher to the distribution database if they have not been backed up. This ensures that no Subscriber will get ahead of the
Distributor; however, this also means that replication latency (the time it takes changes made at the Publisher to appear at the
Subscriber), which can usually be as low as a few seconds, is now constrained to be greater than or equal to the log shipping
interval. Typically, this is between two and ten minutes.

The advantage of using synchronous mode is that after failing over to the new Publisher, all replication servers are in
synchronization.

To configure replication to work with log shipping in synchronous mode

1. On the publication database, execute sp_replicationdboption '<publicationdatabasename>', 'sync with backup', 'true'.

When this option is set, the Log Reader Agent will not process the transaction until it is backed up through either database
backup or log backup.

2. Set up log shipping for the publication database.

3. When the Publisher fails, restore the last log of the database using the KEEP_REPLICATION option with RESTORE LOG. This
will keep all the replication settings.

4. Rename the warm standby server to the name of the original Publisher. Replication will continue to distribute data changes
to Subscribers.

Semi-Synchronous M ode

If the increased latency that occurs in synchronous mode is unacceptable, and the possibility that the warm standby Publisher and
the Subscribers are not synchronized is acceptable, use semi-synchronous mode.

The warm standby Publisher and the Subscribers may not be synchronized because the performance of the Log Reader Agent
and the backups are not synchronized. This allows transactions that may not have been backed up on the Publisher and shipped
to the warm standby to be propagated to the Distributor and then to Subscribers. Although the Publisher and the Subscribers are
now out of synchronization, you can restart replication.

To configure replication to work with log shipping in semi-synchronous mode

1. Set up log shipping for the publication database.

2. When the Publisher fails, restore the last log of the database using the KEEP_REPLICATION option with RESTORE LOG. This
will keep all replication settings.

3. Rename the warm standby server to the name of the original Publisher. You may receive an error message from the Log
Reader Agent that the publication database and the distribution database are not synchronized.

4. Execute sp_replrestart. This stored procedure can be used to force the Log Reader Agent to ignore all the previous
replicated transactions in the publication database log. Transactions applied after the completion of the stored procedure
will be processed by the Log Reader Agent. You can restart the Log Reader Agent after the stored procedure executes
successfully.

Important The sp_replrestart system stored procedure should be used only with log shipping. It can also be used under
controlled circumstances if you need to restore the publication database are you are not using the sync with backup
option. This option should be used only when the Log Reader fails to process replicated transactions in the publication
database log and there are no other ways to resolve the problem.

5. Set the profile of the Distribution Agent to the Skip Error profile because lost transactions (some of which have already been
replicated to the Subscribers) may be reapplied at the Publisher.

Replication (SQL Server 2000)

Strategies for Backing Up and Restoring Merge Replication
Microsoft® SQL Server™ 2000 allows you to restore replicated databases without reinitializing subscriptions or disabling and
reconfiguring Publishers or Subscribers. With merge replication, you can use the latest data stored at other sites to resynchronize
a server with changes that may not have been preserved in a recent backup. You can also configure replication to work with log
shipping, enabling you to use a warm standby server without reconfiguring replication.

Because merge replication stores change tracking meta data directly in your publication and subscription databases, there is no
general requirement that you restore the publication database and distribution database to a consistent point in time. When you
back up or restore a publication or subscription database, you also back up or restore the system meta data used to track
replicated changes to a point in time consistent with your replicated data.

Merge replication ensures data convergence among all replicas in your topology. When it is necessary to restore a backup of a
database, there are generally multiple options for recovery depending on the role of the database requiring a restore.

As part of any recovery strategy, always keep a current script of your replication settings in a safe location. In the event of server
failure or the need to set up a test environment, you can modify the script by changing server name references, and it can be used
to help recreate your replication settings. In addition to scripting your current replication settings, you should script the enabling
and disabling of replication.

Backing Up and Restoring the Publication Database

When restoring a publication database, you may want to reinitialize all subscriptions to any restored publications. You may also
want to synchronize immediately with a Subscriber that has the latest data. Reinitializing all subscriptions provides a convenient
mechanism to reset all replicas of the publication database to a state consistent with the restored publication database.
Alternatively, you may want to synchronize your publication database immediately with a subscription database that has the
latest data, and attempt to recover any changes synchronized with that replica but not included in the most recent publication
database backup or publication database transaction log backup.

For example, suppose a publication database is backed up, changes are made in the publication database, a subscription database
is synchronized with the publication database, and then the publication database is restored from backup. There are two choices
for restoring the database:

Synchronize the publication database with the subscription database and all changes made previously in the publication
database, but not represented in the restored backup, will be uploaded from the subscription database to the publication
database.

Reinitialize all subscriptions to the publications in the publication database.

You may want to reinitialize all subscriptions if you are restoring a publication database to an earlier point in time as a
mechanism to recover from an erroneously performed batch data operation, or if you are recovering your publication database to
an earlier state. Reinitializing all subscriptions extends the recovery to an earlier state to all replicas within the enterprise. If you
choose this option, it is recommended that you generate a new snapshot for delivery to reinitialized Subscribers immediately
after restoring your publication database.

Caution If you synchronize with a subscription database, you must synchronize with one that has a global subscription (that is, a
subscription having an assigned priority value) to guarantee correct convergence behavior. Do not synchronize the publication
database with a subscription database that has an anonymous subscription. Because anonymous subscriptions do not have
enough meta data to apply changes to the publication database, such synchronization could lead to the non-convergence of data.

Performing replication configuration or maintenance activities in the publication database, synchronizing those changes with
subscription databases, and then restoring the publication database to a state prior to the configuration changes may require a
reinitialization of all subscriptions to affected publications in the restored publication database. Subscription databases are
expected to have the same publication definition represented in the corresponding publication database whenever
synchronization occurs.

It is recommended that you back up the publication database (either incremental or full backup) whenever changes are made to a
replicated object's schema (for example, adding or dropping a column) or to a publication property, even though you may have
regularly scheduled database and log backups to be performed on a regular schedule. A description of some common actions
affecting replication configuration or replicated object schema are described later in this topic.

Backing Up and Restoring the Distribution Database

When restoring a publication database that contains only merge publications, it is not always necessary to restore the

corresponding distribution database to a consistent point in time. The distribution database has a limited role in merge replication
as the common store for synchronization history and error tracking information. It does not store any data used in change
tracking and it does not provide temporary storage of merge replication changes to be forwarded to subscription databases. In
most cases, it is not necessary to restore a distribution database when restoring a publication database backup for merge
publications. The exception is when any database maintenance activity has been performed in the publication database or
distribution database that affects replication configuration or replicated object schema.

Backing Up and Restoring a Subscription Database

It is strongly recommended that a Subscriber synchronize with the Publisher before you perform a backup. Otherwise, the system
might not converge correctly if the Subscriber is restored from this backup. Although the backup file itself might be very new, the
last synchronization with a Publisher could be almost as old as the retention period. For example, assume a publication with a
retention period of 10 days. The last synchronization was 8 days ago, and now the backup is performed. If the backup is applied 4
days later, the last synchronization will have occurred 12 days ago, which is past the retention period. If the Subscriber had
synchronized right before the backup, the subscription database would be within the retention period.

Similar to a publication database, when a subscription database is restored, you are restoring replication change tracking data to a
state consistent with the replicated data. Synchronizing the subscription database with each of its publications following a restore
results in the Merge Agent downloading any changes that the subscription database backup has not yet received from the various
publication databases for which it has Subscribers. A reinitialization of the subscription database is generally not required, and
only the data changes since the backup was taken are synchronized between the publication database and the subscription
database.

To restore a subscription database without any need to reinitialize its subscriptions, ensure that the restored database backup
represents the subscription database in a state in which it has synchronized all subscriptions within the defined publication
retention period. The backup should be no older than the shortest retention period of all publications to which the Subscriber
subscribes. For example, if a Subscriber subscribes to three publications with retention periods of 10, 20, and 30 days,
respectively, the backup used to restore the database should not be more than 10 days old.

Restoring a database (and transaction logs) to a point in time prior to the retention period of the publication will require that the
subscriptions in the subscription database be reinitialized. For more information about retention periods, see Subscription
Deactivation and Expiration.

Backing Up and Restoring a Republishing Database

When a database subscribes to data from a Publisher and in turn publishes that same data to other subscription databases, it is
referred to as a republishing database. When restoring a republishing database, follow the guidelines described in the Backing Up
and Restoring a Publication Database and Backing Up and Restoring a Subscription Database sections in this topic.

Backing Up and Restoring the msdb System Database

The msdb database at the Publisher contains the job definitions for replication agents that are run under the control of SQL
Server Agent. The msdb database at the Distributor contains the job schedule, steps, alerts, and other job components for all
Snapshot Agents, agents used with push subscriptions, and miscellaneous replication agents. The msdb database at each
Subscriber contains similar job information for all pull subscription agents. The msdb database at the Distributor also contains
the agent profile information for all replication agents.

To provide improved recovery options if you need to restore one or more replicated databases, the msdb database should be
backed up periodically. In additionensure that an accurate backup of the msdb database is taken whenever any database
maintenance activity has been performed in the publication database, distribution database, or subscription database that affects
replication configuration (especially agent profiles or agent properties) .Backing up the msdb database is necessary in the event
you want to restore replication after the loss a Distributor or Subscriber.

Backing Up and Restoring the master Database

It is not generally necessary to back up the master database on a regular basis; however, similar to backing up the msdb
database, the master database is involved in storing limited configuration information regarding the replicated databases on any
instance of SQL Server. For example, when a server is enabled as a Distributor, Publisher, or Subscriber, the sysservers table in
the master database on the Distributor is updated. To restore replication after the loss of a master database on a Publisher or
Distributor, back up the master database on the Publisher and Distributor. It is recommended that you back up the master
database periodically and when any database maintenance activity has been performed in the publication database, distribution
database, or subscription database that effects replication configuration (especially changes to enabled Publishers or Subscribers).

Merge Replication, Log Shipping, and Alternate Synchronization Partners

Microsoft® SQL Server™ 2000 merge replication can be configured to work with log shipping to provide a warm standby server
recovery option if the Publisher fails. Merge replication also allows Subscribers to synchronize with an alternate Publisher in the
event the Publisher at which their subscriptions originated is unavailable.

Alternate synchronization partners can be used with any edition of SQL Server 2000 that supports merge replication; however,
you must be running Microsoft SQL Server 2000 Enterprise Edition to use log shipping. Because merge replication tracks changes
directly in the publication database, merge replication works with log shipping in a semi-synchronous mode only.

Semi-Synchronous M ode

In semi-synchronous mode, there is a possibility that the warm standby Publisher and its Subscribers may not be synchronized at
the point of failover if any changes synchronized between the primary Publisher and its Subscribers have not yet been transferred
using log shipping to the warm standby Publisher at the point of failover.When restoring a publication database from backup, you
may want to reinitialize all subscriptions to publications following a failover, or you may elect to synchronize immediately with a
Subscriber that has the latest data. Typically, you can synchronize immediately, and use log shipping to help provide continuous
synchronization of updatable replicas if the primary Publication server fails.

Alternate Synchronization Partners

Similar to log shipping, using alternate synchronization partners during merge replication is an option that supports continuous
synchronization in the event of a failure of the primary Publisher. Log shipping can be used to send all changes, including schema
changes, user modifications, and database maintenance activities, to a warm standby Publisher. Specifying an alternate
synchronization partner for publications defined at a Publisher provides a method to synchronize data changes to replicated
tables with servers other than the Publisher at which a subscription originated. Synchronizing with alternate synchronization
partners provides the ability for a Subscriber to synchronize data even if the primary Publisher is unavailable. For more
information, see Alternate Synchronization Partners.

Common Actions Requiring an Updated Backup

In addition to regularly scheduled backups, it is recommended that you update backups of the publication, distribution,
subscription, msdb, and master databases after making modifications to your replication schema or topology.

Backup the publication database after:

Creating new publications.

Altering any publication property including filtering.

Adding articles to an existing publication.

Performing a Publication-wide reinitialization of subscriptions.

Altering any published table using a replication schema change.

Performing on-demand script replication.

Cleaning up merge meta data (running sp_mergecleanupmetadata).

Changing any article property including changing the selected article resolver.

Dropping any publications.

Dropping any articles.

Disabling replication.

Backup the distribution database after:

Creating or modifying replication agent profiles.

Modifying replication agent profile parameters.

Changing the replication agent properties (including schedules) for any push subscriptions.

Backup the subscription database after:

Changing any subscription property.

Changing the priority for a subscription at the Publisher.

Dropping any subscriptions.

Disabling replication.

Backup the msdb system database after:

Enabling or disabling replication.

Adding or dropping a distribution database (at the Distributor).

Enabling or disabling a database for publishing (at the Publisher).

Creating or modifying replication agent profiles (at the Distributor).

Modifying any replication agent profile parameters (at the Distributor).

Changing the replication agent properties (including schedules) for any push subscriptions (at the Distributor).

Changing the replication agent properties (including schedules) for any pull subscriptions (at the Subscriber).

Backup the master system database after:

Enabling or disabling replication.

Adding or dropping a distribution database (at the Distributor).

Enabling or disabling a database for publishing (at the Publisher).

Adding the first or dropping the last publication in any database (at the Publisher).

Adding the first or dropping the last subscription in any database (at the Subscriber).

Enabling or disabling a Publisher at a Distribution Publisher (at the Publisher and Distributor).

Enabling or disabling a Subscriber at a Distribution Publisher (at the Subscriber and Distributor).

Replication (SQL Server 2000)

Restoring Backups of Replicated Databases to the Same Server
and Database
When you create a backup of a database, Microsoft® SQL Server™ 2000 makes a copy of all user tables and system tables
(including sysobjects) in the current database. It also makes a complete copy of the log file(s) for the current database, including
everything past the last log read transaction.

When you restore a database to the same server and database from which it was backed up, SQL Server 2000 does a full restore
of the database and log. SQL Server then reads the master.dbo.sysdatabases.category column for the restored database to
determine if any replication settings stored in the target database should be preserved.

Publication Databases

For both transactional and merge publication databases, replication is preserved if the sysdatabases.category column is set to
indicate the database is enabled for publishing. For transactional and snapshot publishing databases, the category bit is set to 1.
For merge publishing databases, the category bit is set to 4.

In most cases, restoring a backup to the same server and database from which it was created will preserve your replication
settings. If the failure you are recovering from required you to completely re-create the database you are restoring into, run
sp_replicationdboption or enable the database for transactional and merge publishing before restoring your backup.

Caution If you do not run sp_replicationdboption, your replication settings will be lost during the restore operation.

Distribution Databases

A single Distributor can store many distribution databases: up to one per Publisher served by the Distributor. It is important that
when a publishing database is backed up, a coordinated backup of its associated distribution database is created. A coordinated
restore of both databases is often required to preserve transactional integrity in your replication scenario. You may want to
consider including a coordinated backup and restore of your replication working directory associated with the publishing
database. This can reduce the amount of time required to resynchronize Subscribers in snapshot and transactional replication
scenarios.

Similar to publishing databases, distribution databases cannot be restored to any location. Because of several database and server
name dependencies among replication Publishers, Distributors, and Subscribers, you must restore to the same server and
database you created the backup from to ensure proper resumption of replicated data flow. You should restore a distribution
database only when you are restoring a publishing database, and always to the same server and database. After restoring the
distribution database, review the replication agent profiles to confirm they are set as required by the application.

Subscription Databases

For transactional replication, subscription databases contain the table MSreplication_subscriptions, which stores data indicating
the last transaction received at the Subscriber. This table is included automatically when a subscribing database is backed up.

After a restore or attach of a transactional subscription database, you should run sp_vupgrade_subscription_tables to ensure
that all required objects are created and are the correct version. If you do not run sp_vupgrade_subscription_tables, objects
necessary for replication may not exist in the subscription database.

Merge subscription databases are internally tracked as a type of publishing database as well. For this reason, the same
considerations taken when planning for backup and restore of merge publishing databases should also be applied when working
with merge subscribing databases.

See Also

MSreplication_subscriptions

sp_replicationdboption

sysdatabases

sysobjects

Replication (SQL Server 2000)

Restoring Backups of Replicated Databases to a Different
Server or Database
Restoring a backup to the same server and database, running the same version as the server from which the backup was created,
will preserve your replication settings. When you restore a backup of a replicated database to a server or database other than the
one on which it was created, your replication settings cannot be preserved. For publishing databases and merge subscribing
databases, a full restore of the database and logs is followed by an automatic removal of replication meta data from the database
when the database or server you restore to differs from the one on which the backup was created. If necessary, you can use this
approach to recover your data to another server or database and then set up a new replication topology including the restored
database.

If you are restoring a replicated database to a version of SQL Server that is different from the version used to back up the
database, consider the following issues:

If you are restoring to SQL Server 2000 Service Pack 1 or later from a backup created with an earlier release of SQL Server
2000 and want to preserve replication settings, you must run sp_vupgrade_replication. Running
sp_vupgrade_replication ensures that the replication meta data has been upgraded. If you do not run
sp_vupgrade_replication, the replication meta data may be left in an unpredictable state.

If you are restoring to SQL Server 2000 from a backup created with SQL Server 7.0 (Release Version, Service Pack 1, Service
Pack 2, and Service Pack 3) and want to preserve replication settings, you must recreate the backup before installing service
packs. It is possible to directly restore to SQL Server 2000 SP1 or later from a backup of a replicated database created in
SQL Server 7.0, but replication settings will not be maintained.

Data Transformation Services (SQL Server 2000)

DTS Overview
Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) is a set of graphical tools and programmable objects that lets
you extract, transform, and consolidate data from disparate sources into single or multiple destinations.

The following sections provide essential information on DTS concepts, tools, and features.

Topic Description
DTS Basics Describes the capabilities of DTS and

summarizes the business problems it
addresses.

DTS Tools Describes the graphical tools supplied with SQL
Server 2000 that are used to build DTS
packages.

DTS Package Elements Describes the main components of a package,
such as connections, DTS tasks, and DTS
transformations.

Managing a DTS Package Explains the basics of package management,
including creating, editing, saving, deleting, and
executing packages.

Adding Functionality to a DTS
Package

Explains how to build complex packages by
using Microsoft ActiveX® scripts to customize a
package. Describes how to join package steps
to a transaction and expose package data to
external sources.

Sharing Meta Data Explains how to use SQL Server 2000 Meta
Data Services with DTS to track package data in
a data mart or data warehouse.

Usage Considerations in DTS Describes specific data conversion and data
transformation issues that can arise when using
DTS.

For more information about programming with the DTS object model, see Programming DTS Applications.

Data Transformation Services (SQL Server 2000)

DTS Basics
Many organizations need to centralize data to improve corporate decision-making. However, their data may be stored in a variety
of formats and in different locations. Data Transformation Services (DTS) addresses this vital business need by providing a set of
tools that lets you extract, transform, and consolidate data from disparate sources into single or multiple destinations supported
by DTS connectivity. By using DTS tools to graphically build DTS packages or by programming a package with the DTS object
model, you can create custom data movement solutions tailored to the specialized business needs of your organization.

DTS Packages

A DTS package is an organized collection of connections, DTS tasks, DTS transformations, and workflow constraints assembled
either with a DTS tool or programmatically and saved to Microsoft® SQL Server™, SQL Server 2000 Meta Data Services, a
structured storage file, or a Microsoft Visual Basic® file.

Each package contains one or more steps that are executed sequentially or in parallel when the package is run. When executed,
the package connects to the correct data sources, copies data and database objects, transforms data, and notifies other users or
processes of events. Packages can be edited, password protected, scheduled for execution, and retrieved by version.

For more information, see Creating a DTS Package.

DTS Tasks

A DTS task is a discrete set of functionality, executed as a single step in a package. Each task defines a work item to be performed
as part of the data movement and data transformation process, or as a job to be executed.

DTS supplies a number of tasks that are part of the DTS object model and can be accessed graphically, through DTS Designer, or
programmatically. These tasks, which can be configured individually, cover a wide variety of data copying, data transformation,
and notification situations. For example:

Importing and exporting data.

DTS can import data from a text file or an OLE DB data source (for example, a Microsoft Access 2000 database) into SQL
Server. Alternatively, data can be exported from SQL Server to an OLE DB data destination (for example, a Microsoft Excel
2000 spreadsheet). DTS also allows high-speed data loading from text files into SQL Server tables.

Transforming data.

DTS Designer includes a Transform Data task that allows you to select data from a data source connection, map the columns
of data to a set of transformations, and send the transformed data to a destination connection. DTS Designer also includes a
Data Driven Query task that allows you to map data to parameterized queries.

Copying database objects.

With DTS, you can transfer indexes, views, logins, stored procedures, triggers, rules, defaults, constraints, and user-defined
data types in addition to the data. In addition, you can generate the scripts to copy the database objects.

Note There are restrictions on this capability. For more information, see Copy SQL Server Objects Task.

Sending and receiving messages to and from other users and packages.

DTS includes a Send Mail task that allows you to send an e-mail if a package step succeeds or fails. DTS also includes an
Execute Package task that allows one package to run another as a package step, and a Message Queue task that allows you
to use Message Queuing to send and receive messages between packages.

Executing a set of Transact-SQL statements or Microsoft ActiveX® scripts against a data source.

The Execute SQL and ActiveX Script tasks allow you to write your own SQL statements and scripting code and execute them
as a step in a package workflow.

Because DTS is based on an extensible COM model, you can create your own custom tasks. You can integrate custom tasks into
the user interface of DTS Designer and save them as part of the DTS object model.

For more information, see DTS Tasks.

DTS Transformations

A DTS transformation is one or more functions or operations applied against a piece of data before the data arrives at the

destination. The source data is not changed. For example, you can extract a substring from a column of source data and copy it to
a destination table. The particular substring function is the transformation mapped onto the source column. You also can search
for rows with certain characteristics (for example, specific data values in columns) and apply functions only against the data in
those rows. Transformations make it easy to implement complex data validation, data scrubbing, and conversions during the
import and export process. Against column data, you can:

Manipulate column data.

For example, you can change the type, size, scale, precision, or nullability of a column.

Apply functions written as ActiveX scripts.

These functions can apply specialized transformations or include conditional logic. For example, you can write a function in
a scripting language that examines the data in a column for values over 1000. Whenever such a value is found, a value of -1
is substituted in the destination table. For rows with column values under 1000, the value is copied to the destination table.

Choose from among a number of transformations supplied with DTS.

An example would be a function that reformats input data using string and date formatting, various string conversion
functions, and a function that copies the contents of a file specified by a source column to a destination column.

Write your own transformations as COM objects and apply those transformations against column data.

For more information, see DTS Transformations.

DTS Package Workflow

You can define the sequence of step execution in a package with:

Precedence constraints that allow you to link two tasks together based on whether the first task executes, executes
successfully, or executes unsuccessfully. You can use precedence constraints to build conditional branches in a workflow.
Steps without constraints are executed immediately, and several steps can execute in parallel.

ActiveX scripts that modify workflow. For more information, see Using ActiveX Scripts in DTS.

For more information, see DTS Package Workflow.

Connectivity

DTS is based on an OLE DB architecture that allows you to copy and transform data from a variety of data sources. For example:

SQL Server and Oracle directly, using native OLE DB providers.

ODBC sources, using the Microsoft OLE DB Provider for ODBC.

Access 2000, Excel 2000, Microsoft Visual FoxPro®, dBase, Paradox, HTML, and additional file data sources.

Text files, using the built-in DTS flat file OLE DB provider.

Microsoft Exchange Server, Microsoft Active Directory™ and other nonrelational data sources.

Other data sources provided by third-party vendors.

DTS functionality may be limited by the capabilities of specific databases, ODBC drivers, or OLE DB providers. For more
information, see Data Conversion and Transformation Considerations.

For more information, see DTS Connections.

DTS Tools

DTS includes several tools that simplify package creation, execution, and management:

The DTS Import/Export Wizard, which is used to build packages to import, export, and transform data, or to copy database
objects.

DTS Designer, a graphical application that lets you construct packages containing complex workflows, multiple connections
to heterogeneous data sources, and event-driven logic.

The Data Transformation Services node in the SQL Server Enterprise Manager console tree, which is used to view, create,
load, and execute DTS packages, to control DTS Designer settings, and to manage execution logs.

Package execution utilities:
The dtswiz utility starts the DTS Import/Export Wizard by using command prompt options.

The dtsrun utility runs a package from a command prompt.

The DTS Run utility (dtsrunui) allows you to run a package using dialog boxes.
DTS Query Designer, a visual database tool that makes it easy to build queries in DTS Designer.

For more information, see DTS Tools.

Meta Data

DTS includes features for saving package meta data and data lineage information to Meta Data Services and linking those types of
information. You can store catalog meta data for databases referenced in a package and accounting information about the history
of a particular row of data for your data mart or data warehouse.

For more information, see Sharing Meta Data.

See Also

Programming DTS Applications

Data Transformation Services (SQL Server 2000)

DTS Tools
Data Transformation Services (DTS) includes the following set of tools for creating, scheduling, and executing DTS packages.

Tool Description
DTS Import/Export Wizard Wizard used to copy data to and from an instance of

Microsoft® SQL Server™ and to map transformations
on the data.

DTS Designer Graphical tool used to build complex packages with
workflows and event-driven logic. You also can use DTS
Designer to edit and customize packages created with
the DTS Import/Export Wizard.

DTS and SQL Server
Enterprise Manager

Options available for manipulating packages and
accessing package information from SQL Server
Enterprise Manager.

DTS Package Execution
Utilities

Includes the following:

The DTS Run utility, a set of dialog boxes used to
schedule and run packages.

The dtsrun utility, a command prompt utility used
to run packages. For more information, see dtsrun
Utility.

DTS Query Designer A graphical tool used to build queries in DTS.

Data Transformation Services (SQL Server 2000)

DTS Import/Export Wizard
Of all the Data Transformation Services (DTS) tools, the DTS Import/Export Wizard provides the simplest method of copying data
between OLE DB data sources.

After connecting to the source and destination, you can select the data to import or export and apply transformations to the data
being copied (for example, by selecting columns or using Microsoft® ActiveX® scripts). In many cases, you can automatically
copy primary and foreign key constraints along with the source data.

Note You can copy data that results from an SQL query. SQL queries can include joins of multiple tables from the same database
or distributed queries. As part of the process, the DTS Import/Export Wizard creates the destination table for you automatically if
none exists.

Available Data Sources

With the DTS Import/Export Wizard, you can connect to the following data sources:

Most OLE DB and ODBC data sources, as well as user-specified OLE DB data sources.

Text files.

Other connections to one or more instances of Microsoft SQL Server™.

Oracle and Informix databases.

You must have the Oracle or Informix client software installed.

Microsoft Excel spreadsheets.

Microsoft Access and Microsoft FoxPro® databases.

dBase or Paradox databases.

For more information, see DTS Connections.

Transforming Data

In addition to copying data, you can transform column-level data with an ActiveX scripting language such as Microsoft Visual
Basic® Scripting Edition (VBScript) or Microsoft JScript®. For more information, see DTS Transformations, Transform Data Task,
and Using ActiveX Scripts in DTS.

Copying Database Objects

With the DTS Import/Export Wizard, you can transfer database objects such as indexes, views, roles, stored procedures, and
referential integrity constraints. For more information, see Copy SQL Server Objects Task.

Saving DTS Packages

After you complete the DTS Import/Export Wizard, you can save the connections, transformations, and scheduling information as
a DTS package. The package can be saved:

To the SQL Server msdb database.

To SQL Server 2000 Meta Data Services.

As a structured storage file (.dts file).

As a Visual Basic file.

You can run the package immediately or schedule it for later execution.

For more information, see Saving a DTS Package and Scheduling a DTS Package for Execution.

Editing Packages

If you create a package with the DTS Import/Export Wizard and then save it, you can edit it in DTS Designer. Using DTS Designer,
you can customize the basic package you created in the DTS Import/Export Wizard, adding steps, tasks, transformations, event-
driven logic, and configuring workflow. For more information, see DTS Designer.

See Also

dtswiz Utility

Data Transformation Services (SQL Server 2000)

Creating a DTS Package with the DTS Import/Export Wizard
The Data Transformation Services (DTS) Import/Export Wizard offers the simplest method of building a DTS package, interactively
guiding you through the process of copying and transforming data. Following are the basic steps for creating a package with the
DTS Import/Export Wizard:

1. Specify whether you are importing or exporting data.

You need to specify whether you are exporting data from an instance of Microsoft® SQL Server™ to another data source
(for example, a second instance of SQL Server 2000) or importing data from another data source to an instance of SQL
Server. Both choices are available in SQL Server Enterprise Manager, through the Data Transformation Services node of
the console tree, and as command switches through the dtswiz command prompt utility.

When accessing the DTS Import/Export Wizard from the Start menu or the command prompt, you do not need to specify
whether you are importing or exporting data.

2. Choose a data source and data destination.

You can select from a list of OLE DB data sources, which includes providers for both databases and nondatabase sources
(for example, text files). You also must specify any required login, security, or file location information. If you are importing
data from a text file, you must specify the format and delimiters of the text file.

When you import data, the active server connection is specified as the default destination server. When you export data, the
active server connection is specified as the default source server.

3. Choose whether to copy a table or view, copy query results, or transfer objects and data.

If you choose to copy data, you need to decide which columns or views to copy and whether to transform the data. If
your source data is a view, the DTS Import/Export Wizard automatically converts the view to a table in the destination.

If you choose to query the source data and copy the results, you need to construct an SQL query, which also can be a
heterogeneous or distributed query. You can enter the SQL query manually or graphically. After you have completed
the query, you can decide whether to add transformations to the query results. For more information about
graphically entering an SQL query, see DTS Query Designer.

If you choose to transfer database objects between instances of SQL Server, you need to: select which objects to
transfer (for example, views, stored procedures, indexes, and rules); choose whether to drop existing database objects
first; replace or append existing data; and include dependent objects.

For more information, see Copy SQL Server Objects Task.

4. Optionally select columns, add transformations, or copy constraints.

If you copy the data or the results of a query, you can customize the data being copied to the destination. You can:

Select which source or destination columns to copy.

Select which source or destination columns to ignore.

Change the data type where valid.

Define how the data is to be converted between source and destination.

Map transformations onto column or row data using Microsoft ActiveX® scripts.

5. Save, run, or schedule a package.

After you have created the package, you need to decide:

The format in which to save the DTS package.

You can save the package to the SQL Server msdb database, to SQL Server 2000 Meta Data Services, as a structured
storage file (.dts file), or as a Microsoft Visual Basic® file.

When you want to run the package.

You can run the package after the DTS Import/Export Wizard completes, or you can schedule the package to execute
on a regular basis using SQL Server Agent.

You can use the Create Publication Wizard to publish the data. For more information, see Replication Wizards.

Important Do not open a Microsoft Excel file that is being used as a source or destination during the wizard creation
or execution, because a "file in use" error will occur.

To create a DTS package using the DTS Import/Export Wizard

Wizard

Wizard

To execute a DTS package from the DTS Import/Export Wizard

Wizard

Wizard

See Also

Managing a DTS Package

Data Transformation Services (SQL Server 2000)

DTS Designer
Data Transformation Services (DTS) Designer is a tool you can use to import, export, and transform heterogeneous data between
one or more databases and an instance of Microsoft® SQL Server™. DTS Designer graphically implements the DTS object model,
allowing you to create DTS packages with a wide range of functionality. You can use DTS Designer to:

Create a simple package (for example, a package that copies data between databases).

Create a package that includes complex workflows (for example, a package that contains branches, multiple steps, multiple
connections, complicated logic, and event-driven code).

Edit an existing package (for example, a package you have created with the DTS Import/Export Wizard).

Accessing DTS Designer

You access DTS Designer through SQL Server Enterprise Manager, through the Data Transformation Services node of the
console tree.

DTS Designer User Interface

The DTS Designer graphical user interface allows you to build and configure packages by using drag-and-drop methods and by
completing property sheets on the various DTS objects composing the package. The user interface includes:

The DTS Designer main panel, which consists of the following parts:
A design sheet upon which you create workflows by dragging graphical objects that represent DTS tasks, DTS
transformations, and precedence constraints.

A menu bar containing selections for package operations, edit operations, data sources, tasks, and workflow items.

A toolbar containing buttons for: creating, saving, and executing a package; printing a workflow; cutting, copying,
and pasting graphical objects in a workflow; annotating a workflow; and changing both the workflow layout and the
size of a workflow on the design sheet.

A Connection toolbar containing connections for data sources.

A Task toolbar containing DTS tasks.

You can dock and undock the Connection and Task toolbars by using their shortcut menus.

Shortcut menus for configuring and editing package components and workflow (for example, connections, tasks, and
workflow objects).

Data Transformation Services (SQL Server 2000)

Creating a Package with DTS Designer
The following example shows you how to build, configure, execute, and save a Data Transformation Services (DTS) package.

To create a DTS package using DTS Designer

Enterprise Manager

Enterprise Manager

To configure and execute a DTS package

1. Choose a source.

Drag an object from the Connection toolbar to the DTS Designer design sheet, and then configure the data source in the
Connection Properties dialog box.

2. Choose a destination.

Drag an object from the Connection toolbar to the design sheet and then configure the data source in the Connection
Properties dialog box.

3. Draw a line between the source and destination.

Click the data source icon, press CTRL, and then click the destination icon. Right-click the destination icon, and then click
Transform Data Task. At this point, a line appears to show the data flow from the source to the destination.

4. Specify what data to move and how you want it to be transformed.

Double-click on the line connecting the source to the destination. In the Transform Data Task Properties dialog box, on the
Source tab, you can choose a source table or build a query with the DTS Query Designer. On the Destination tab, you can
choose an existing table or create a new table. On the Transform tab, you can copy or transform the data.

For more information, see DTS Query Designer.

5. Save the package to SQL Server 2000 Meta Data Services, SQL Server, a structured storage file, or a Microsoft Visual Basic®
file.

If your package is saved to Meta Data Services, you can use the data lineage feature to determine where your data came from on
a row-by-row basis.

6. Execute the package.

In the toolbar, click Execute.

Note When you attempt to close the DTS Designer without first saving the changes to a package, an alert appears that gives you
the option of saving or not saving the changes. Either action closes the DTS Designer. There is no option to cancel and remain in
the DTS Designer.

See Also

DTS Designer Example: A Completed DTS Package

Data Transformation Services (SQL Server 2000)

DTS Designer Example: A Completed DTS Package
DTS Designer Example: A Completed DTS Package

 New Information - SQL Server 2000 SP3.

The following diagram shows a completed Data Transformation Services (DTS) package on the DTS Designer design sheet. The
graphical objects on the design sheet represent connections, tasks, and precedence constraints.

The following is a description of the graphical objects:

A connection to a text file containing source data (the Text File (Source) icon) and a second connection to a destination, the
Northwind database (the Northwind icon).

Security Note When possible, use Windows Authentication.

A Transform Data task (the gray arrow) that defines the data being copied and transformed.

Two precedence constraints (striped arrows) that further designate workflow:
If the package is run and the data is copied successfully from the text file to an instance of Microsoft® SQL Server™,
an index is created on the table to which the data is copied (the striped arrow from the Northwind icon to the
Create Index icon).

If the package is run and the data copy fails, an e-mail is sent to a database administrator (the striped arrow from
the Northwind data icon to the Send Mail task icon).

A text annotation (the label "Customer Update, Chicago").

Data Transformation Services (SQL Server 2000)

DTS Designer Example: Copying Northwind Data
DTS Designer Example: Copying Northwind Data

This example demonstrates how to use Data Transformation Services (DTS) Designer to copy a Northwind database table from
the source to the destination. The basic steps are:

1. Make two connections, one to the source and a second to the destination.

2. Add a Transform Data task that defines a source and destination table and the copying operation to be performed.

3. Add an Execute SQL task that checks for the existence of the destination table prior to copying the data. If the table does not
exist, it is created. If the table exists, it is dropped and re-created.

4. Configure the workflow so the DTS package steps execute in the correct sequence.

5. Run the package.

6. Save the package so that it can be reused.

Connecting to the Source

Begin by creating a connection to the Northwind database on your local server.

To create a connection to Northwind in DTS Designer

Enterprise Manager

Enterprise Manager

Connecting to the Destination

Usually, the source and destination databases are different, but for this example, you create a second connection to the
Northwind database.

To create a second connection to the Northwind database using DTS Designer

Enterprise Manager

Enterprise Manager

Copying the Northwind Categories Table

In DTS Designer, you usually use the Transform Data task to move the data from a source to a destination and to map
transformations on the data. However, in this simple example, you copy data from a Northwind table to a second table.

To copy data from a Northwind table using DTS Designer

Enterprise Manager

Enterprise Manager

Dropping and Re-Creating the Northwind Categories Table

Usually, you want to reuse a package. When you create and populate a destination table with new data, as in this example, you
want to include a step where the package drops and re-creates the destination table prior to its being populated.

The easiest way to accomplish this is:

Add an Execute SQL task to the package, with the SQL statements necessary to drop and re-create the destination table.

Use a precedence constraint to place the completed Execute SQL task correctly in the workflow.

To configure an Execute SQL task to drop and re-create a destination table

Enterprise Manager

Enterprise Manager

Configuring the Workflow

Next, you want to use a precedence constraint to place the completed Execute SQL task correctly in the workflow. In this package,
the Execute SQL task is the first workflow step.

To configure workflow in the Execute SQL task

Enterprise Manager

Enterprise Manager

Executing the Package

You have created a package consisting of two steps (the Execute SQL task and the Transform Data task). You now run the
package, which will:

1. Make two connections to the Northwind database on the local server.

2. Check for the existence of the destination table. If the destination table does not exist, it is created. If it exists, it will be
dropped and re-created.

3. Copy data from a table in the Northwind database to a second table.

To execute the package

On the toolbar, click Execute.

The Executing DTS Package dialog box appears, providing step and status information for the two steps. The Package
Execution Results dialog box then appears.

If the package did not execute successfully, click on the failed step in the Executing DTS Package dialog box for error
information, and then check the properties of the objects you created to make sure the information entered is correct.

Saving the Package

Lastly, you want to save the package before exiting DTS Designer so it is available for reuse. You can select from several save
options.

To save the DTS package to a SQL Server msdb table

Enterprise Manager

Enterprise Manager

Summary

This example showed you how to build and run a simple package in DTS Designer. Now that you are familiar with the basics of
DTS Designer, you can add DTS transformations, DTS tasks, and precedence constraints to a workflow. For more information, see
DTS Package Elements.

Data Transformation Services (SQL Server 2000)

DTS Package Templates
Data Transformation Services (DTS) package templates are partially configured packages built around typical usage situations.
Each template contains tasks and workflow items geared toward a specific task or set of tasks (for example, copying data between
instances of Microsoft® SQL Server™ 2000). Copy and complete these templates to configure tasks, connections, and workflow
easily and quickly.

After you configure the template, save a copy as a package to a new location. Then, you can reuse the template, customize copies,
and save the information in any DTS format. Because DTS templates are read-only files (with a .dtt extension), you cannot
accidentally overwrite a template.

By default, package templates are saved in the \\Tools\Templates\DTS folder. However, you can save and use package templates
from any location.

Creating a Template

To create a package template, build a package and use Disconnected Edit to stub out the properties you want template users to
configure. For example, instead of entering a specific user name in the Connection Properties dialog box, use Disconnected Edit
to assign text such as "Enter your login name here" to the property for user name. You also can add instructions and labels to the
package template. After you build the package template, save it as a structured storage file with a .dtt extension.

To create and save a package template

Enterprise Manager

Enterprise Manager

To access a package template

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

DTS and SQL Server Enterprise Manager
The Data Transformation Services (DTS) node of the SQL Server Enterprise Manager console tree provides facilities for accessing
DTS tools, manipulating DTS packages, and accessing package information. You can use these facilities to:

Open a new package in the DTS Import/Export Wizard or DTS Designer. In DTS Designer, you can select and edit an existing
package saved to SQL Server, SQL Server 2000 Meta Data Services, or to a structured storage file.

For more information, see Creating a DTS Package and Editing a DTS Package.

Connect to and import meta data from a data source, and display the meta data in the Meta Data node of SQL Server
Enterprise Manager.

For more information, see Viewing Meta Data in DTS.

Open a package template in DTS Designer.

For more information, see DTS Package Templates.

Display the version history of a package, edit a specific package version in DTS Designer, and delete package versions.

For more information, see Saving a DTS Package to Meta Data Services.

Display and manipulate package log information.

For more information, see Using DTS Package Logs.

Set the properties of DTS Designer by right-clicking the Data Transformation Services node and clicking Properties.

Execute a package.

For more information, see Executing a DTS Package.

Schedule a package.

For more information, see Scheduling a DTS Package for Execution.

Data Transformation Services (SQL Server 2000)

DTS Package Execution Utilities
 New Information - SQL Server 2000 SP3.

Data Transformation Services (DTS) packages can be run from either of two package execution utilities included with Microsoft®
SQL Server™ 2000: the DTS Run utility and the dtsrun command prompt utility. By using these utilities, you do not need to open
a package to run it.

The DTS Run utility allows you to create a command prompt and run a package or schedule a package outside of the Microsoft
Management Console (MMC). With dtsrun, you can run a package from the command prompt or a batch file.

DTS Run Utility

With the DTS Run utility, you can execute an existing package from a set of dialog boxes that you call from the command prompt.

Using the DTS Run utility, you can set:

Connection settings.

You can specify the server name or file name, identify how the package was saved, and provide login information.

Scheduling options.

You can specify regular package execution through SQL Server Agent.

Logging options.

You can identify and enable an event log.

Global variable settings.

You can add new global variables and change the properties of existing global variables. Modifications to package global
variables are in effect only for the duration of a DTS Run utility session. When the session is closed, changes to package
global variables are not saved.

Encryption options.

You can encrypt the command prompt options to be executed by the DTS Run utility, allowing you to create an encrypted
dtsrun command for later use.

Security Note Encrypt the command statement when you plan to copy the statement and save it in a text file.

You also can use the DTS Run utility to generate the text of a command prompt for dtsrun, with or without encrypted arguments.
You can save this text, copy it to a file, and reuse it later to execute the same operation from a command prompt.

You access the DTS Run utility by executing dtsrunui from a command prompt without any command switches.

To execute a DTS package using the DTS Run utility

Enterprise Manager

Enterprise Manager

dtsrun Command Prompt Utility

With the dtsrun command prompt utility, you can execute an existing package from the command prompt. You access the utility
by executing dtsrun from a command prompt, along with any command switches.

To execute a DTS package using dtsrun

Command Prompt

Command Prompt

For more information, see dtsrun Utility.

See Also

Executing a DTS Package

Scheduling a DTS Package for Execution

Data Transformation Services (SQL Server 2000)

DTS Query Designer
Data Transformation Services (DTS) Query Designer uses a graphical user interface for creating SQL queries. Use DTS Query
Designer to:

Work visually or with SQL commands.

DTS Query Designer includes graphical panes that display your query visually and a text pane that displays the SQL text of
your query. You can work in either the graphical or text panes. DTS Query Designer synchronizes the views so they are
always current.

Join related tables.

If you add more than one table to your query, DTS Query Designer automatically determines how the tables are related and
constructs the appropriate join command.

Query or update databases.

You can use DTS Query Designer to return data using Transact-SQL SELECT statements and to create queries that update,
add, or delete records in a database.

View and edit results immediately.

You can execute your query and work with a record set in a grid that allows you to scroll through and edit records in the
database.

See Also

Data Transformation Services Query Designer

Diagram Pane

Grid Pane

Navigating in the Query Designer

Results Pane

SQL Pane

https://msdn.microsoft.com/en-us/library/aa292917(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292919(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259157(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292931(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292937(v=sql.80).aspx

Data Transformation Services (SQL Server 2000)

DTS Package Elements
This section describes the main elements of a Data Transformation Services (DTS) package.

Topic Description
DTS Tasks Describes the DTS tasks and their typical uses.
DTS Transformations Describes the column-level transformations available

through the DTS tasks that transform data.
DTS Connections Explains the different types of connections available in a

DTS package.
DTS Package Workflow Discusses how workflow is ordered in a package and

how package steps execute.

Data Transformation Services (SQL Server 2000)

DTS Tasks
Usually, a Data Transformation Services (DTS) package includes one or more DTS tasks. Each task defines a work item to be
performed as part of the data movement and data transformation process.

Microsoft® SQL Server™ 2000 supplies several DTS tasks that are part of the DTS object model. These tasks can be accessed
through DTS Designer (except for the Parallel Data Pump task, which can only be accessed programmatically). You can use them
to:

Transform data. For example, you can use the Transform Data task to copy data, map a wide variety of transformations onto
the data, and customize the transformations with a Microsoft ActiveX® script.

For more information, see Data Driven Query Task, Transform Data Task, and ParallelDataPump Task Object.

Copy and manage data. For example, you can drop a table, re-create and repopulate the table, and execute a series of
queries against the table. Also, you can generate a disconnected Microsoft ActiveX Data Objects (ADO) recordset, which you
can then manipulate and access from other steps in the package.

For more information, see Copy SQL Server Objects Task, Execute SQL Task, Bulk Insert Task, and Transfer Database Objects
Tasks.

Run tasks as jobs from within a package. For example, you can use an Execute Process task to run a custom Microsoft Visual
Basic® application that collects and aggregates data on a daily basis. Then, you can use an Execute Package task to run a
second package that imports and transforms the data generated by the Visual Basic application. You also can use the Send
Mail task to send an e-mail to a system administrator if a package step succeeds or fails.

For more information, see ActiveX Script Task, Dynamic Properties Task, Execute Package Task, File Transfer Protocol Task,
Execute Process Task, and Send Mail Task.

Additionally, you can build your own custom task in a programming language that supports COM (for example, Visual Basic). You
can create a user interface for the custom task, including its own icon, if you want to access the custom task in DTS Designer. For
more information, see DTS Custom Task.

Adding and Configuring Tasks

A DTS package can contain a single task (for example, an ActiveX Script task that displays a message box when the package is
run). However, a package often contains several tasks, connections, and workflow constraints, with each task set to run in the
context of an ordered package workflow. You can include multiple tasks of the same type in a package (for example, six Execute
SQL tasks), with each task configured differently.

You can add tasks to a package and set their properties in the following ways:

Graphically, using DTS Designer.

Programmatically, using the DTS object model to build a package in Visual Basic or Microsoft Visual C++®. For more
information, see Programming DTS Applications.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Tasks That Transform Data
In Data Transformation Services (DTS), tasks that transform data are based on an architectural component called the DTS data
pump.

The following DTS tasks implement the DTS data pump.

Task Description
Transform Data Task Allows point-to-point copying and transforming of

data between a broad range of OLE DB-compliant
data sources.

Data Driven Query Task Allows you to perform flexible, Transact-SQL based
operations on data, including stored procedures
and INSERT, UPDATE or DELETE statements.

ParallelDataPump Task Object Allows copying and transforming of data
containing OLE DB hierarchical rowsets. This task is
only accessible programmatically, through the DTS
object model.

The DTS data pump, an OLE DB service provider, is a COM object that provides a set of data movement interfaces.

The data pump architecture supports:

High-speed batch copying of transformed or non-transformed data.

Use of scripting code to define transformations.

A variety of supplied transformations for converting string data.

Custom transformations, written in Microsoft® Visual C++® and compiled as COM objects, that you can access
programmatically or through the DTS Designer user interface.

The DTS data pump also allows users to add programs or Microsoft ActiveX® script functions that can access specific phases of a
data pump operation. For example, you can add a function that instructs the data pump to write header information to a file
before the source data is copied and transformed. For more information, see Multiphase Data Pump Functionality.

Configuring a Task that Transforms Data

To configure a task that transforms data, follow these steps:

1. Establish a connection. You need to connect, at minimum, to the source and destination data sources.

Before configuring these tasks in DTS Designer, you must create two live connections to data sources. If you define
additional connections in an ActiveX Script transformation, those connections can be made at package run time.

For more information, see DTS Connections and Configuring a Simple Lookup Query.

2. Perform any required data type conversions and transformations onto the data copied from the source connection.

If you intend to transform the data, you need to map column-level transformations. You can use one of the following DTS
tools:

The DTS Import/Export Wizard. By default, the wizard creates one or more transformation tasks (depending on the
number of source tables selected for copying). To transform column or row data in the wizard, you must write a
transformation script using ActiveX scripting code. To edit the transformation script, you must open the package in
DTS Designer, open the properties dialog box for the task, and edit the script.

For more information, see Using ActiveX Scripts in DTS.

DTS Designer. You can graphically map source columns to destination columns, select a transformation type, and
apply one to a mapping. Alternatively, you can map transformations using selection boxes.

Note For most situations, you will only map columns with the Transform Data task. It is not recommended you

change the default column mappings for a Data Driven Query task unless you are an advanced user. For more
information, see Building a Data Driven Query.

Detecting Row-Level Errors

Tasks that transform data use exception files to record information about failed rows. Exception files can contain:

Package information, such as package name, description, and version.

Step execution information, including the name of the package step associated with the data pump operation and step
execution times.

Error information, including the source of the error (for example, the data pump or a connection) and a description of the
error (for example, an insert error that occurred on EmployeeData column, row 2007).

The tasks that transform data are able to detect row-level errors before the row is submitted to the database. For example,
suppose an input row contains missing or incorrectly formatted data. When these tasks encounter such a row, they fail the row
and do not pass it to the destination. This error counts as one failure toward the maximum error count.

Some errors, such as duplicate keys or referential integrity violations, cannot be detected at row level by these tasks. Such rows
fail only after being passed to the destination. The failure is noted in the exception file, but the actual rows that failed are not
logged. Thus, complete error information is not always available in the exception logs.

If you configure an exception log for a task that transforms data, step execution information is appended to the exception file you
specify each time the package is run. If you specify an exception file that does not currently exist, the file will be created at package
execution time. If the step associated with the task does not run, no exception file data is generated.

You also can create additional log files to capture source and destination rows that failed when a task that transforms data is
executing by using the Microsoft SQL Server™ 2000 exception file options. You can use these files to examine failed rows and
troubleshoot problems with the data. The source row and destination row log files have the same name as the exception file, but
with the extensions ".Source" and ".Destination", respectively, appended to the name. These files are only created if source row
errors or destination row errors occur during execution of the transformation task.

To configure the data pump exception files

Enterprise Manager

Enterprise Manager

See Also

DTS Transformations

Data Transformation Services (SQL Server 2000)

Transform Data Task
Transform Data Task

You use the Transform Data task to copy data between a source and destination and to optionally apply column-level
transformations to the data. The Transform Data task is the most basic implementation of the data pump engine in Data
Transformation Services (DTS).

The Transform Data task is optimized for insert-based copying and transforming of column-level data between commercial
databases, spreadsheets, and text files. You can use the task to copy and transform data between any supported OLE DB
connections. Because the task handles such a wide variety of data sources and transformation scenarios, you will frequently use
one or more instances of it when creating packages that consolidate data from disparate sources.

Note If you need to bulk insert text files into Microsoft® SQL Server™ and are concerned with performance, use the Bulk Insert
task. However, you cannot transform data with the Bulk Insert task. For more information, see Bulk Insert Task.

Batching Data

If the destination connection for a Transform Data task is the Microsoft OLE DB Provider for SQL Server, you can use the fast load
option, which is available through the OLE DB IRowsetFastLoad interface. The fast load option supports high-performance bulk-
copy processing. When the fast load option is enabled, the data pump can accept batches of transformed data.

When you batch data, the data pump writes the transformed rows to a destination buffer but does not submit them to SQL Server
until either the specified batch size or the end of the source data is reached.

You can customize batch processing in a Transform Data task by writing your own functions. For more information, see
Multiphase Data Pump Functionality.

You cannot use fast load with a Data Driven Query task.

Important Also, when using the fast load option in a Transform Data task with a lookup connection, make sure your lookup
connection is not the same as the source or destination connections.

Applying Transformations to Batches

Transformations are applied prior to the bulk copying process. Therefore, you can use the same column-level transformations
with the fast load option that you can use without the option (for example, a Microsoft ActiveX® Script transformation).

Handling Errors and Batched Data

If a row contains errors and the Transform Data task does not detect them, the row causes the entire batch to fail on submission.
Valid rows in such a batch are neither inserted nor noted as an error in the data pump exception files. The failure of an entire
batch counts as only one failure toward the maximum error count.

You can control both the size of a batch and the way the data will be committed if a failure occurs. Before setting the batch size,
consider the following:

Error descriptions that occur in a batch will be recorded in a log file, but the error rows may not be available by the time the
batch rolls back. As a result, the error rows may not be logged.

By default, the batch size is set to 0, which means that all the rows copied from the source are placed in a single batch
before being submitted to SQL Server.

For example, if your source contains a million rows of data, and the batch size is set to the default, the data will not commit
until the one-millionth row is processed. In cases such as these, you may want to commit the data in batches of one
thousand, or ten thousand, rather than in a single batch of one million.

A batch size of one means that each row of data processed is treated as a batch.

Input rows containing errors detected by the Transform Data task are neither added to the current batch nor counted as
rows in the batch. For example, a batch size of 10 might be filled from source rows 1 thru 12, where rows 3 and 4 contain
incorrectly formatted dates and are not copied to the destination. You cannot in this case assume that the third batch of data
contains source rows 21 thru 30.

Before configuring the error options for batching data, consider the following:

When you enter a maximum error count value for a Transform Data task, you specify the sum of row-level errors detected
by the Transform Data task and batch failures. When the Max error count value is exceeded, task execution is terminated.

Because rows containing errors detected by the Transform Data task are discarded before batch submission, these errors do
not trigger nor count as batch failures. Errors caught at the destination will fail the batch and add one to the error count
regardless of how many rows are in the batch.

You can set an option that will trigger the submission of the current batch when the maximum error count value is
exceeded. This option is useful when the only types of errors you anticipate are row-level errors that will be detected by the
Transform Data task.

Batches and Package Transactions

Batches succeed and fail independently of the package transaction. For more information, see Configuring Properties for DTS
Transactions.

If the Transform Data task takes part in the package transaction, any successfully added batches are submitted only after the
package transaction is committed.

Configuring a Transform Data Task

In DTS Designer, configure a Transform Data task by following these steps:

1. Configure connections. You must first establish a source and destination connection.

To configure the connections for a Transform Data task

Enterprise Manager

Enterprise Manager

For more information, see DTS Connections.

2. Add the task. You select the connections you want in the order of the data flow (from source to destination) and then add
the task.

To create a Transform Data task

Enterprise Manager

Enterprise Manager

For more information, see DTS Designer Example: Copying Northwind Data.

3. Configure the column-level transformations.

If you do not use the default transformation mappings, you need to select the source and destination columns for a
transformation, select the transformation type, and set the properties of the transformation (as required by the
transformation type). You repeat this process for each transformation you want to configure.

To configure a new transformation for a Transform Data task

Enterprise Manager

Enterprise Manager

For more information, see Mapping Column Transformations and Transformation Types.

4. Optionally configure any lookup connections to be used in a transformation.

For more information, see Lookup Queries.

5. Optionally customize the fast load options and the batch options, if your destination connection is a Microsoft OLE DB
Provider for SQL Server.

To enable the Transform Data Task fast load options

Enterprise Manager

Enterprise Manager

To configure the fast load batch options

Enterprise Manager

Enterprise Manager
6. Optionally select and customize a data pump exception file that you can use to troubleshoot the processing of row data.

To configure the data pump exception file

Enterprise Manager

Enterprise Manager

See Also

Data Driven Query Task

Multiphase Data Pump Functionality

ParallelDataPump Task Object

Bulk-Copy Rowsets

Optimizing Bulk Copy Performance

Data Transformation Services (SQL Server 2000)

Data Driven Query Task
Data Driven Query Task

The Data Driven Query task allows you to perform flexible, Transact-SQL based operations on data, including stored procedures
and INSERT, UPDATE or DELETE statements. For each row in a source rowset, the Data Driven Query task selects, customizes, and
executes one of several SQL statements. You select which statement to execute via a constant return value set in a Microsoft®
ActiveX® script transformation. Based on the return constant you use in the script, one of four different parameterized SQL
statements that you create may be executed for each source row.

When designing a Data Driven Query task, you need to decide whether the task should include a single query or multiple queries.
For example, if you only want the task to delete data, you use a single query (a Delete query). If you want to update some rows
and delete others, you need to use two queries (an Update and Delete query). If you use multiple queries, you need to provide
scripting code that supplies conditional logic. That logic determines when each query type is applied to the data.

Using the Data Driven Query task, you can:

Run any large collection of updates that are not necessarily inserts. For example, you can purge expired historical data from
a database, given a list of keys generated by another database.

Perform traditional file maintenance. For example, you can optionally insert or update records depending on their previous
existence or some other external factor.

Customize Microsoft SQL Server™ transformable subscriptions, which are used to distribute and transform incremental
changes during replication. For example, you can tailor the response of each subscriber to insert, delete, or update requests.

Use the Data Driven Query task when, for each of many source rows, you must either:

Choose among more than one edit operation.

-or-

Perform a non-insert edit (for example, perform an update or delete operation, or execute a stored procedure).

The Transform Data task and the Bulk Insert task are optimized for insert operations. Choose the Data Driven Query task for
insert operations only if these tasks do not meet the requirements of your application.

You can use either DTS Designer or the DTS object model to create and manage Data Driven Query tasks. For more information
about programming for the Data Driven Query task, see DataDrivenQueryTask2 Object and Creating a Transformable
Subscription Using Visual Basic.

See Also

Transform Data Task

Using ActiveX Scripts in DTS

Using Parameterized Queries in DTS

Data Transformation Services (SQL Server 2000)

Data Flow in a Data Driven Query Task
Data Flow in a Data Driven Query Task

When you use a Data Driven Query task, the data flows as follows:

1. Rows are selected from the source.

2. Each row is transformed by the Microsoft® ActiveX® script (and possibly additional transformations). The return value of
the ActiveX script determines which query will be selected later.

3. The results of the transformation are mapped to the binding table. Nothing is written to the destination at this time. The
binding table is used to determine the attributes of the columns (for example, data type, scale, precision) that will be used by
the parameterized queries in the next step.

4. For each row, the values in the binding table are mapped into the selected query, and the query is executed.

5. The query execution writes the row to the destination.

See Also

Using ActiveX Scripts in DTS

Using Parameterized Queries in DTS

Using Return Codes in DTS

Data Transformation Services (SQL Server 2000)

Building a Data Driven Query
Building a Data Driven Query

Although you can use Data Driven Query tasks to build data driven queries that vary in complexity, you follow the same basic
steps for building a data driven query in all cases.

The following examples show how to build data driven queries, one simple and one complex, using the Data Driven Query task in
Data Transformation Services (DTS) Designer. In the first example, every source row leads to the update of a destination row. Only
one query type, an Update query, is used. In the second example, multiple query types, both an Update and a Delete query, are
used.

To update a destination row using a single query type

1. Define the source data.

The data can be a table or the results of a SELECT statement, parameterized SELECT statement, or stored procedure. You
choose the data source on the Source tab of the Data Driven Query Task Properties dialog box.

2. Define a binding table.

This binding table allows you to transform source data before it appears in your SQL statements. The Data Driven Query
task makes no actual changes to the destination unless you specifically request them in your queries. The binding table
must be an existing table. This table is used to define the schema for binding the parameters. The columns of this binding
table must match those of the parameterized queries that will be written against it (Step 5) in type. You declare the binding
table on the Bindings tab of the Data Driven Query Task Properties dialog box.

3. Provide the decision-making logic by using a Microsoft® ActiveX® script.

You create ActiveX script code in the text box of the ActiveX Script Transformation Properties dialog box to determine
which query will be executed. You display that dialog box by double-clicking the column mapping line for the
transformation in the Transformations tab of the Data Driven Query Task Properties dialog box.

Note By default, the Data Driven Query task maps all source columns to all columns in the binding table as a single
transformation. The mapping is displayed on the Transformations tab of the Data Driven Query Task Properties dialog
box. It is recommended you do not use more then one ActiveX script for a Data Driven Query task, for that would reduce
performance. For more information, see Enhancing Performance of DTS Packages.

4. Edit the ActiveX script so that the return code matches DTSTransformStat_UpdateQuery.

The default return code for any query type is DTSTransformStat_InsertQuery. However, the query type labels are
suggestions only. Although you can use the default Insert query to perform an Update query, for readability, you may want
to change the return code to the appropriate one for an update.

The ActiveX script contains references to the DTSDestination columns collection, which refers to the binding table (Step 2).
The parameters of the SQL operation will be applied to this table.

5. Create the Update query.

Click Update from the Query type list on the Queries tab of the Data Driven Query Task Properties dialog box. Build
the parameterized query, either by typing the query into the edit box or by using DTS Query Designer. Use a question mark
(?) as the placeholder for the parameters that will be filled in by the processed data.

The attributes of a binding table column must match that of any parameter it is assigned to.

On the Queries tab, a grid displays one row for every parameter (?) entered in the selected query (Update). By default these
rows will map to binding table columns ordinally, from the transformation previously defined. For more information, see
Using Parameterized Queries in DTS.

To update or delete a destination row using multiple query types

1. Define the source data and binding table as you did in the previous example (Steps 1 and 2).

2. Provide the decision logic to apply to each query type.

Your script, based on the conditional logic you provide, returns one of four return codes. The return code tells DTS which

query to execute for the current source row. You edit the default ActiveX script in the text box of the ActiveX Script
Transformation Properties dialog box to include the logic and the return code.

The decision logic you use to determine the query type typically consists of branching statements (IF-THEN-ELSE or CASE).

In this example, the following two return codes are used:

DTSTransformStat_UpdateQuery

DTSTransformStat_DeleteQuery

For more information, see Using ActiveX Scripts in DTS and Using Return Codes in DTS.

3. Create the queries.

For each query, select a query type from the Query type list on the Queries tab of the Data Driven Query Task
Properties dialog box. Build the parameterized query, either by typing the query into the text edit box or by using DTS
Query Designer.

The queries do not have to have the same number of parameters or map to the same columns in the binding table. The
queries and the mappings are edited separately.

See Also

Using ActiveX Scripts in DTS

Using Return Codes in DTS

Data Transformation Services (SQL Server 2000)

Data Driven Query Example: Changing Customer Accounts
Data Driven Query Example: Changing Customer Accounts

The following example details an appropriate situation in which to use a Data Driven Query task: A source row triggers one of
three different edits, two of which are not insert operations.

You have an Account table, with columns for CustomerID and CompanyName. CustomerID serves as a key:

CREATE TABLE Account (
 CustomerID nchar (5) NOT NULL,
 CompanyName nvarchar (40) NOT NULL)

Required Account table changes accumulate in the AccountChange table. It contains CustomerID and CompanyName
columns, as well as a ChangeCode column:

CREATE TABLE AccountChange (
 CustomerID nchar (5) NOT NULL,
 ChangeCode nchar (10) NOT NULL,
 CompanyName nvarchar (40) NULL)

Different values of ChangeCode are used to request different Account table modifications.

ChangeCode Required Action
New Add a new customer to the Account table.
Change Change the CompanyName for an existing customer.
Delete Remove a customer row from the Account table.

The AccountChange table serves as the source. Each AccountChange row triggers one of three actions. These actions will be
represented by INSERT, UPDATE, and DELETE queries.

Note In this example, all the changes were made to a single table. However, that is not a requirement of the Data Driven Query
task. It requires only that the affected data all reside on the same connection.

Specifying Query Statements

After identifying an appropriate problem for the Data Driven Query task, you first specify up to four parameterized SQL
statements to carry out required edit operations.

Each action requires an SQL query or a stored procedure invocation. These statements are parameterized by replacing, with a
question mark, any expressions that vary from source row to source row. For example, two change actions might trigger the
following commands:

UPDATE Account SET CompanyName = 'Big Pizza' WHERE CustomerID = 'MARS'
UPDATE Account SET CompanyName = 'Tasty Gyro' WHERE CustomerID = 'ZEUS'

Parameterized, the UPDATE query reads:

UPDATE Account SET CompanyName = ? WHERE CustomerID = ?

At run time, the question marks will be replaced by values drawn from, or based on, source column data.

Stored procedure calls are parameterized like queries, with question marks replacing arguments:

sp_updatebalance ?, 'Credit', ?

Parameterized queries for the new and delete actions are as follows:

INSERT INTO Account (CustomerID, CompanyName) VALUES (?, ?)
DELETE FROM Account WHERE (CustomerID = ?)

Assigning Query Types to Statements

In order to refer to your SQL statements, you assign each statement a name, called a query type. A query type, returned by your
Microsoft® ActiveX® script code, is used to select one of your SQL statements to execute. Data Transformation Services (DTS)
provides the following four names:

Insert

Update

Delete

User

These query types should be viewed only as unique identifiers assigned to each statement. It is in fact possible to perform any
SQL operation supported by the connection. It would be possible for example, to perform four different updates, four different
inserts or any mix of these or stored procedures.

The example is one of those applications in which the available query types match the parameterized SQL statements. Therefore,
the assignments are as follows.

Query type Parameterized Query
Insert INSERT INTO Account (CustomerID, CompanyName) VALUES (?, ?)
Update UPDATE Account SET CompanyName = ? WHERE CustomerID = ?
Delete DELETE FROM Account WHERE (CustomerID = ?)

Specifying the Binding Table

After you assign query types to your SQL statements, you need to specify a binding table whose columns match the parameters
in your parameterized query. This binding table allows you to transform source data before it appears in your SQL statements.
For example:

A customer name can be uppercase characters.

An address line can be constructed by concatenating several fields.

City information can be looked up, given a postal code in the source data.

The Data Driven Query task makes no actual changes to the destination unless you specifically request them in your queries.

To specify the binding table, list all the parameters required by your queries. Then, review your existing tables to see if any contain
all the columns in your list. If you find such a table, it can serve as the binding table. If no existing table contains all of the required
parameters, create a new table that does.

Note The Data Driven Query task requires that the source table and binding table use different connections.

For example, the preceding queries use two parameters:

CustomerID

CompanyName

A review of the database yields two tables that contain both columns: Account and AccountChange. Because AccountChange
is likely to serve as the source, Account is the better choice for the binding table. No new table is necessary.

In this example, the binding table is the same table that the queries update. This frequently happens but is not required by the
Data Driven Query task, as the binding table exists only to map meta data (size, scale, precision, and nullability) for the queries. It
is not actually written to. Only the query operation affects the data

Specifying the Source Rowset

After specifying the binding table, you either must choose an existing table as a source or specify a new source rowset. Each
source row must contain enough information to:

Determine the appropriate query to execute.

Fill any parameters required by the chosen query.

If this information is available in a single table, it can serve as the source. If not, you can create an SQL query to collect required
information in a single source rowset.

If necessary, custom ActiveX script code, perhaps referencing DTS lookup queries, can be used to help determine the proper query
to execute. Source data can be copied immediately into binding column parameters, or the data may undergo intermediate
processing through ActiveX code or DTS custom transformations.

In the example, the AccountChange table will serve as the source. It fulfills both requirements:

The ChangeCode column determines the choice of query.

The CustomerID and CompanyName columns are sufficient to fill all required parameters.

Specifying the ActiveX Transformation

To choose which query to execute, you must code a single ActiveX transformation. This script returns one of four values, which is
then used to select the query to execute. Additionally, you may choose to include ActiveX code to populate destination
parameters.

The return values and their associated query types are as follows.

Return value Executes Query Type
DTSTransformstat_InsertQuery Insert
DTSTransformstat_UpdateQuery Update
DTSTransformstat_DeleteQuery Delete
DTSTransformstat_UserQuery User

These query types should be viewed only as identifiers for one of your queries. You can assign, for example, the Insert type to a
DELETE query. If your script returns DTSTransformstat_InsertQuery, the DELETE query will be triggered.

Usually your code takes the form of a nested IF or SELECT CASE structure. For example, to choose among three queries based on
the value of ChangeCode, use the following code:

Select Case Trim(DTSSource("ChangeCode"))
 Case "New"
 Main = DTSTransformStat_InsertQuery
 Case "Change"
 Main = DTSTransformStat_UpdateQuery
 Case "Delete"
 Main = DTSTransformStat_DeleteQuery
 Case Else
 Main = DTSTransformStat_SkipRow
End Select

The above code responds to erroneous ChangeCode values by returning DTSTransformStat_SkipRow. No query is triggered
for the source row.

You can use a Copy Column transformation or other column-level transformations to populate binding table columns, or you can
fill them through additional code in your ActiveX transformation:

DTSDestination("CustomerID") = DTSSource("CustomerID")
DTSDestination("CompanyName") = DTSSource("CompanyName")

You are not required to fill every destination column, only those required by the chosen query.

See Also

Lookup Queries

DTS Transformations

Data Driven Query Task

Data Transformation Services (SQL Server 2000)

Data Driven Query Example: File Maintenance
Data Driven Query Example: File Maintenance

The following example presents a file maintenance problem and then examines the steps necessary to prepare a Data Driven
Query task solution.

For more information about the basics of the Data Driven Query task, see Data Driven Query Task.

Identifying a Data Driven Query Problem

You have an Account table, with columns for CustomerID and CompanyName. CustomerID serves as a key:

CREATE TABLE Account (
 CustomerID nchar (5) NOT NULL,
 CompanyName nvarchar (40) NOT NULL)

You also have an AccountJournal table. One row is written to this table each time there is a change in the customer balance:

CREATE TABLE AccountJournal (
 UpdateID int NOT NULL,
 CustomerID char (5) NOT NULL,
 JournalAmount money NOT NULL)

You want to use the AccountUpdate table as a source table:

CREATE TABLE AccountUpdate (
 UpdateID int IDENTITY (1, 1) NOT NULL,
 UpdateCode char (10) NOT NULL,
 CustomerID char (5) NOT NULL,
 CompanyName char (30) NULL,
 UpdateAmount money NULL)

Different values of UpdateCode are used to request different Account and AccountJournal modifications.

UpdateCode Required Action
Purchase Write a new AccountJournal row with JournalAmount set equal to

UpdateAmount.
Payment Write a new AccountJournal row with JournalAmount set equal to

UpdateAmount * -1.
New If a customer does not exist, add one. If the customer exists, change

the old CompanyName to the new one.

A Data Driven Query task is appropriate for this problem. Each entry in the AccountUpdate table triggers one of three different
queries.

Specifying Query Statements

Three parameterized SQL statements are required to solve this problem:

INSERT AccountJournal (UpdateID, CustomerID, JournalAmount)
 VALUES (?, ?, ?)
INSERT INTO Account (CustomerID, CompanyName) VALUES (?, ?)
UPDATE Account SET CompanyName = ? WHERE CustomerID = ?

The first query adds a row to the AccountJournal table in the case of a "Purchase" or a "Payment"; the second query adds a new
account if the customer was not previously on file; and the last updates the CompanyName for an existing customer.

Assigning Query Types to Statements

There are two INSERT queries and one UPDATE query. This means that query types are not going to match the actual query
content.

Query type Parameterized Query

Insert INSERT AccountJournal (UpdateID, CustomerID, JournalAmount)

 VALUES (?, ?, ?)

Update UPDATE Account SET CompanyName = ? WHERE CustomerID = ?
User INSERT INTO Account (CustomerID, CompanyName) VALUES (?, ?)

The second INSERT query is assigned arbitrarily to the User query type. The Delete type would work just as well.

Specifying the Binding Table

The binding table provides names and data types for your SQL parameters. Your queries use the following parameters:

UpdateID

CustomerID

JournalAmount

CompanyName

There is no table in your database that contains all four of these columns. Therefore, you must create a new binding table:

CREATE TABLE AccountDestination (
 UpdateID int NOT NULL,
 CustomerID char (5) NOT NULL,
 CompanyName char (30) NULL,
 JournalAmount money NULL)

No rows will ever be written to this table. Its only function is to provide an empty row to serve as a staging area for the SQL
statement parameters.

Specifying the Source Rowset

The AccountUpdate table is not ready to serve as a source table:

An UpdateCode of "New" triggers an UPDATE or an INSERT, depending on whether the customer is on file or not.
However, customer-on-file status is not present in the AccountUpdate table.

JournalAmount, a binding column, is not found in AccountUpdate. For purchases, it is equal to UpdateAmount, but for
payments, it must be calculated by multiplying UpdateAmount by –1.

Incorporating the customer-on-file status into the source rowset, by using a SELECT statement, solves the first of these two
problems. The new source SQL statement initializes OnFile with a subquery:

SELECT UpdateID, UpdateCode, CustomerID, CompanyName, UpdateAmount,
 OnFile = (SELECT COUNT(*)FROM Account
 WHERE CustomerID = AccountUpdate.CustomerID)
 FROM AccountUpdate

The second problem is solved with Microsoft® ActiveX® code.

Specifying the ActiveX Transformation

In this example, Data Transformation Services (DTS) transformations perform the following three jobs:

Correctly choose the query to execute.

Compute the right value for JournalAmount.

Populate the required binding table columns.

A single ActiveX Script transformation is sufficient to carry out these requirements:

Function Main()
 DTSDestination("UpdateID") = DTSSource("UpdateID")
 DTSDestination("CustomerID") = DTSSource("CustomerID")
 DTSDestination("CompanyName") = DTSSource("CompanyName")
 Select Case Trim(DTSSource("UpdateCode"))
 Case "Purchase"
 DTSDestination("JournalAmount") = DTSSource("UpdateAmount")
 Main = DTSTransformstat_InsertQuery
 Case "Payment"
 DTSDestination("JournalAmount") = -1 * DTSSource("UpdateAmount")
 Main = DTSTransformstat_InsertQuery
 Case "New"
 If DTSSource("OnFile") = 1 Then
 Main = DTSTransformstat_UpdateQuery
 Else
 Main = DTSTransformstat_UserQuery
 End If
 End Select
End Function

The script first initializes three binding table columns, and then, in a SELECT CASE statement, fills the remaining parameter and
sets the return value. Both the "Purchase" and "Payment" cases result in a newly inserted AccountJournal record. The two cases
differ only in how the JournalAmount parameter is calculated. In the "New" case, the source OnFile value is used to determine
whether to update an existing customer or insert a new customer. Neither of the two possible queries requires JournalAmount,
so it is not initialized.

Data Transformation Services (SQL Server 2000)

Multiphase Data Pump Functionality
Multiphase Data Pump Functionality

Data Transformation Services (DTS) provides advanced users the capability to add programs that customize the data pump at
various phases of its operation. By customizing the operation of the data pump, you can add a wide range of functionality to a
package. For example:

Row-level restartability, or the ability to restart the data pump without having to reload large numbers of rows that were
already processed. You can add functions to save processed row data, batches, or partial batches, writing that data back to
the source or a status table for later use.

Individual handling of types of insert or transformation errors. For example, you could add special error handlers to
customize problems handling NULL data or constraint violations.

Customizing data pump initialization or termination steps. For example, on data pump initialization you could write out a
schema header to a file prior to writing XML (Extensible Markup Language) data to the file.

Data Pump Process

The multiphase data pump option allows you to access the data pump at several points during its operation and add functionality.
When copying a row of data from source to a destination, the data pump follows this basic process:

Fetches a row of source data.

Optionally applies transformations to the row.

Attempts to insert the row of data to the destination buffer.

Processes exceptions.

Stores the results in a batch, if a batch is specified.

Repeats the previous steps until the batch is filled, then commits the data stored in the buffer and starts the next batch, or
rolls back the batch.

After the data pump processes the last row of data, the task is finished and the data pump operation terminates.

Data Pump Phases

The following figure shows the data pump phases and how they map to the data flow.

In the figure, the data flow (detailed in the expanded, gray area of the figure):

Originates in the Row Transform phase, where a row of data is copied from the source and any transformations are applied.

If the transformation is successful, the data for the row moves to the next phase. If the transformation is unsuccessful, a
Transform Failure occurs, and the next row of data is fetched.

Moves to the Post Row phase, where an attempt is made to copy the row to the destination buffer. There are two possible
outcomes for this operation: Insert Success or Insert Failure.

Ends in the Batch Complete phase, where the row data is stored in a batch and eventually inserted or not committed,
depending on whether a batch was configured for the task, and the size of the batch.

Three additional data pump phases not directly tied to the processing of row data are shown in the figure: Pre Source, Post
Source, and Pump Complete. Each of these phases covers events prior to or after the row-by-row copying of data, transformation,
and commit (or rollback) process. For example, the Pre Source phase occurs before the first row of data is fetched. The Post
Source phase occurs after the last row of data is processed, and the Pump Complete phase occurs at the end of the
transformation task.

Accessing Data Pump Phases

To display the multiphase data pump options in DTS Designer, you must select an option in SQL Server Enterprise Manager. After
you have selected the multiphase data pump option, the feature will remain accessible to any packages opened in DTS Designer,
for any future sessions. By default, this option is not selected.

To activate the multiphase data pump feature

Enterprise Manager

Enterprise Manager

Configuring Data Pump Phases

By default, the data pump is set to operate so that only its Row Transform phase is available. That phase is what you configure
when mapping column-level transformations in the Transform Data task, Data Driven Query task, and Parallel Data Pump task,
without selecting a phase. Advanced users who want to add functionality to a package so that it supports any data pump phase
can do so by:

Writing a Microsoft® ActiveX® script phase function for each data pump phase to be customized. If you use ActiveX script
functions to customize data pump phases, no additional code outside of the package is required.

For more information, see DTSTransformScriptProperties2 Object and Phased Transformation Samples.

To add a multiphase data pump transformation function using an ActiveX script

Enterprise Manager

Enterprise Manager
Creating a COM object in Microsoft Visual C++® to customize selected data pump phases. You develop this program
external to the package, and the program is called for each selected phase of the transformation. Unlike the ActiveX script
method of accessing data pump phases, which uses a different function and entry point for each selected phase, this
method provides a single entry point that is called by multiple data pump phases, while the data pump task executes.

Note You cannot create a COM object in Microsoft Visual Basic® to customize data pump phases.

To call a COM object that customizes one or more data pump phases

Enterprise Manager

Enterprise Manager

Data Pump Phases

The following sections provide information on the data pump phases you can customize, either through ActiveX scripts or
through a custom COM object.

Note When writing multiple functions that access the same data pump phase, the return value from the last function is the one
used. To preserve a return value from a prior phase function, you must return the value from the subsequent phase function.

Pre Source Phase

The pre source phase is executed before the first fetch of source data. The phase is executed one time for the entire data pump
operation unless you use the DTSTransformStat_SkipFetch return code in your phase function, which creates a loop.

You can add a pre-source data pump function for a transformation to write header rows containing meta data information to a
file, and initialize objects, connections, and memory for use in later data pump phases.

Row Transform Phase

This is the default data pump phase available through the Transformations mapping tab of the Transform Data task or the Data
Driven Query task. The Main function placeholder supplied on the ActiveX Script Transformation Properties dialog box is the
default entry point for adding custom scripting code for this phase. The Row Transform phase allows read access to source data
and meta data and write access to destination data.

Post Row Transform Phase

The Post Row transform phase is executed after the row transform phase of the data pump and consists of the Transform Failure,
Insert Success, and Insert Failure subphases. Of the subphases, listed below, Insert Success and Insert Failure are mutually
exclusive; only one of those subphases can occur for a given row:

On Transform Failure. This subphase signifies the failure of the usual transform phase (when the row transformation
returns DTSTransformStat_Error or DTSTransformStat_ExceptionRow). You can access this subphase in order to handle
transformation errors (for example, type mismatches), thus overriding the value returned by the transformation and
continuing with execution. After a transform failure occurs, processing for that row may or may not continue. If processing
continues, only one of the following subphases can occur.

On Insert Success. This subphase signifies the success of an Insert operation (or Insert query if the transformation is part of
a Data Driven Query task). You cannot specify any destination operations in the returned status.

On Insert Failure. This subphase signifies the failure of an Insert operation (or Insert query if the transformation is part of a
Data Driven Query task). You cannot specify any destination operations in the returned status.

On Batch Complete

You can call this data pump phase on success or failure of a batch or rows, as defined by the value specified in Insert batch size
in the Options tab of the Transform Data task. Setting a batch size for a Data Driven Query task or parallel data pump task can

only be done programmatically; if you want to write an On batch complete function for either of those tasks, you must do so
programmatically.

On Pump Complete

You can customize this phase at the end of the transformation task (after all rows have been processed). Use functions written to
On pump complete to free up resources and commit data held in global variables throughout the lifetime of data pump. You
cannot access the data through an On pump complete function.

Post Source Data

Access this phase to process the destination data after completion of the task. Unlike On pump complete functions, functions
written to this phase allow you to access the destination data. Common uses of a post source data function include writing footer
rows to a file, freeing up resources, and committing data held in global variables.

Data Transformation Services (SQL Server 2000)

Tasks that Copy and Manage Data
Data Transformation Services (DTS) includes several tasks designed to copy and manage data and meta data.

Task Description
Bulk Insert Task Copies large amounts of data from a text file into a

Microsoft® SQL Server™ table or view.
Execute SQL Task Runs SQL statements during package execution and

saves data that is the result of a query.
Copy SQL Server Objects
Task

Copies or creates SQL Server objects such as tables,
views, indexes, and constraints from one instance of
SQL Server to another.

Transfer Database Objects
Tasks

Copies entire databases, jobs, error messages, logins,
and master database stored procedures.

Data Transformation Services (SQL Server 2000)

Bulk Insert Task
Bulk Insert Task

The Bulk Insert task provides the quickest way to copy large amounts of data into a Microsoft® SQL Server™ table or view. To
ensure high-speed data movement, transformations cannot be performed on the data while it is moved from the source file to the
table or view.

For example, suppose your company keeps your million-row product list on a mainframe system. Your e-commerce system uses
SQL Server 2000 to populate Web pages. You need to update the product table nightly with the master product list from the
mainframe. To do this, you save the product list in a tab-delimited format and use the Bulk Insert task to copy the data directly
into the SQL Server table. The table is now refreshed with the updated product data.

Configuring the Bulk Insert Task

The Bulk Insert task encapsulates a Transact-SQL BULK INSERT statement that is run during task execution. In Data
Transformation Services (DTS) Designer, you can set parameters for the BULK INSERT statement in the Bulk Insert Properties
dialog box. Any BULK INSERT parameters not available graphically are set to their defaults. If you need to set parameters that are
not available graphically, you can use the BulkInsertTask object or the bcp utility to set them programmatically.

Using the Bulk Insert Task with Transactions

If a batch size is not set, then an entire bulk copy operation is considered one transaction. If a batch size is set, then each batch
constitutes a transaction that is committed when the batch finishes.

The behavior of the Bulk Insert task depends on whether the task is joined into the package transaction. If the Bulk Insert task does
not join the package transaction, each error-free batch is committed, as a unit, before the next batch is attempted. If the Bulk Insert
task joins the package transaction, error-free batches remain in the transaction at the conclusion of the task. These batches are
subject to the commit or rollback operation of the step or package.

A failure in the Bulk Insert task does not automatically roll back successfully loaded batches; task success does not automatically
commit them. Commit and rollback operations happen only in response to package and workflow property settings. For more
information, see DTS Transaction Fundamentals.

Usage Considerations

Before using the Bulk Insert task, consider the following:

The Bulk Insert task can transfer data only from a text file into a SQL Server table or view. To transfer data from a database
management system (DBMS), you need to export the data from the source program to a data file and then import the data
from the data file into a SQL Server table or view.

The data destination must be a table or view created by SQL Server. If the destination table or view contains data already,
the new data will be appended when the Bulk Insert task runs.

You can use a format file in the Bulk Insert task object. If you have a format file created by the bcp utility, you can specify its
path in the Bulk Insert task. The path given must be with respect to the server. For more information about format files, see
Using Format Files.

Specifying the Source and Destination

When specifying the path of the text source file, consider the following:

When running the Bulk Insert task, only members of the sysadmin fixed server role can execute the package.

Regardless of the location of the file, the server must have permissions to both the file and the destination database.

The server will be running the Bulk Insert task. Therefore, the path given must be with respect to the server.

Optimizing Performance

To optimize performance, consider the following:

If the text file is located on the same computer running the instance of SQL Server, the copy operation occurs at an even
faster rate because the data is not moved across the network.

The Bulk Insert task does not log error-causing rows. If you need to capture this information, another task, the Transform
Data task, can capture error-causing rows to an exception file. However, writing errors to the log will slow down the data
transfer. If speed is your priority, use the Bulk Insert task. If capturing errors is more important, use the Transform Data task.

To add the Bulk Insert task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

BULK INSERT

BulkInsertTask Object

Data Transformation Services (SQL Server 2000)

Execute SQL Task
Execute SQL Task

With the Execute SQL task, you can run SQL statements during package execution. The Execute SQL task also can save data that is
the result of a query. Using the Execute SQL task, you can:

Populate multiple global variables.

Save the complete rowset returned from the query into one global variable.

Drop a table.

Re-create fact and dimension tables before loading them.

Run stored procedures.

The task can contain either a single SQL statement or multiple SQL statements that execute sequentially. SQL statements can
range from being a SELECT command to running a stored procedure.

The SQL statements must be written in the dialect of the source database management system (DBMS).

Sending Multiple Statements in a Batch for Execution

If multiple statements are contained in the task, they can be grouped and executed a batch at a time. To signal the end of a batch,
use the GO command. All the SQL statements from one GO command to the next are sent in a batch to the OLE DB provider for
execution.

Note There are restrictions on the kinds of SQL statements that can be grouped together in a batch. For more information, see
Batches.

For example, suppose you have three tables: a table containing customer orders; a table containing a daily order summary; and a
table of year-to-date orders. After the customer order table is updated, you can use the Execute SQL task to run two stored
procedures, one to create the new daily sales summary and the other to update the year-to-date order summary. The following
code example shows you how to execute the two stored procedures:

Execute sp_UpdateDailySales
GO
Execute sp_UpdateYTDSales
GO

Running Parameterized Queries

The Execute SQL task can use global variables to populate input parameters in SQL commands, including queries and stored
procedures when the source data provider supports parameters. You can write a parameterized query where the value in the SQL
statement is filled in at run time by using a question mark as a parameter placeholder. Then, you can map a global variable to the
parameter placeholder to specify which global variable will be used at run time in place of the question mark.

To execute a stored procedure with an input parameter

Enterprise Manager

Enterprise Manager

Populating Multiple Global Variables

The Execute SQL task can save data that is the result of a query. For example, you can run a SELECT statement that retrieved data
from a table. Then, by assigning a global variable as an output parameter in the task, you can save the first row returned from the
query, populating multiple global variables with the value of each column returned.

The following code example shows you how to put the results of a SELECT statement, run in the Execute SQL task, into multiple
global variables. To see the columns that were returned from the query that are stored in the global variables, you can write script
in a Microsoft® ActiveX® Script task. The second sample will retrieve and display the four columns returned from the SELECT
statement.

To save row values into global variables

Enterprise Manager

Enterprise Manager

To retrieve the row value data

Enterprise Manager

Enterprise Manager

Populating a Single Global Variable with an Entire Rowset

The Execute SQL task can save an entire rowset returned from a SELECT statement and assign it to a single global variable, which
can be saved with the package. You can treat such a global variable as a disconnected Microsoft ActiveX Data Objects (ADO)
recordset. You can navigate through the recordset, query the recordset, and manipulate data returned from the recordset. You
have access to the entire range of ADO methods and properties to use on the recordset. Because you do not have to reconnect to
the source table, accessing the rowset stored in the global variable is faster than accessing the original table that the data came
from. However, you must consider how frequently the source data is updated when using disconnected recordsets because the
data processed by the package may be obsolete.

Note Storing large rowsets into a global variable has the potential to slow package execution and use large amounts of memory.
It takes time to fill the global variable with the data, and when you use the global variable as a lookup table in other tasks, large
rowsets will take time to loop through, again having performance consequences.

The following code example shows you how to put the entire result set of a SELECT statement, run in the Execute SQL task, into
one global variable. To see the data returned from the query that is stored in the global variable, you can write script in an ActiveX
Script task. The second sample will retrieve and display the data returned from the query.

To save an entire rowset into a global variable

Enterprise Manager

Enterprise Manager

To retrieve rowset data stored in a global variable

Enterprise Manager

Enterprise Manager

To add the Execute SQL task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

ExecuteSQLTask Object

Using Global Variables with DTS Packages

GO

Using Parameterized Queries in DTS

Using Statement Parameters

Data Transformation Services (SQL Server 2000)

Copy SQL Server Objects Task
Copy SQL Server Objects Task

With the Copy SQL Server Objects task, you can copy Microsoft® SQL Server™ objects from one instance of SQL Server to
another. You can transfer objects such as data and tables, as well as the definitions of objects such as views and stored
procedures. Additional objects include referential integrity constraints and indexes.

If you select a table, the Copy SQL Server Objects task will automatically copy any associated table and views that have a foreign
key constraint on the selected table. For example, if you transfer the employee table from the pubs database, the jobs and
publishers tables also will be transferred. The jobs table will be transferred because of the foreign key relationship between the
employee table and the jobs table on the jobs_id field. The publishers table will be transferred because of the foreign key
relationship between the employee table and the publishers table on the pub_id field.

If either the destination table or the view exists and contains data, you can specify whether to overwrite or append the incoming
data or drop and re-create the table.

You can transfer objects only from:

One instance of SQL Server version 7.0 to another.

An instance of SQL Server 7.0 to an instance of SQL Server 2000.

One instance of SQL Server 2000 to another.

When configuring the Copy SQL Server Objects task, you are not required to create separate source and destination connections.
You set source and destination properties in the Copy SQL Server Objects properties dialog box.

Note DTS packages containing Copy SQL Server Objects tasks, where the source and destination are both SQL Server 7.0
databases, may fail if the source server is upgraded to SQL Server 2000 and the package is executed. If the source server was
upgraded, you need to refresh each Copy SQL Server Objects task by opening the package in SQL Server 2000, opening each
Copy SQL Server Objects task with the above configuration, and clicking the Destination tab and then clicking OK for each of the
tasks.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

Transfer Object

Transfer2 Object

TransferObjectsTask Object

TransferObjectsTask2 Object

Data Transformation Services (SQL Server 2000)

Transfer Database Objects Tasks
Transfer Database Objects Tasks

Usually, you use the Copy SQL Server Objects task to copy database objects from one database to another. However, you can use
Transfer Database Objects tasks to copy server-wide information not necessarily found in individual databases. These tasks cover
situations not addressed by the Copy SQL Server Objects task.

Note The Transfer Database Objects tasks are custom tasks used by the Copy Database Wizard. For more information, see Using
the Copy Database Wizard.

Transfer Database Task

Use this task to move or copy a Microsoft® SQL Server™ database from an instance of SQL Server version 7.0 or SQL Server
2000 to an instance of SQL Server 2000. When configuring this task, specify each database, indicate whether each database is to
be moved or copied, and specify the location of the resulting data and log files.

Transfer Error Messages Task

Use this task to copy user-specified error messages, created by the sp_addmessage system stored procedure, from an instance
of SQL Server 7.0 or SQL Server 2000 to an instance of SQL Server 2000. When configuring this task, specify the source and
destination servers and the error messages to be transferred.

Transfer Logins Task

Use this task to copy logins from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL Server 2000. When
configuring this task, specify the source and destination servers, the database to be moved or copied, and the logins to be
transferred.

Transfer Jobs Task

Use this task to copy jobs from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL Server 2000. When
configuring this task, specify the source and destination servers and the jobs to be copied.

Transfer Master Stored Procedures Task

Use this task to copy stored procedures from a master database on an instance of SQL Server 7.0 or SQL Server 2000 to the
master database on an instance of SQL Server 2000. When configuring this task, specify the source and destination servers and
the stored procedures to be copied.

Note If you unregister a Transfer Database Objects task and want to re-register the task, do the following: from the Task menu,
click Register Custom Task, click the browse (...) button, and then open Cdwtasks.dll.

See Also

Copy SQL Server Objects Task

sp_addmessage

Data Transformation Services (SQL Server 2000)

Tasks That Function as Jobs
Data Transformation Services (DTS) includes a number of tasks that function as jobs, performing operations external to the
packages containing the tasks.

Task Description
ActiveX Script Task Uses scripting code to perform functions that are not

available in the other tasks in DTS Designer.
Dynamic Properties Task Retrieves values from sources outside a DTS package

at package run time and assigns those values to
selected package properties.

Execute Package Task Runs other DTS packages as part of a workflow.
Execute Process Task Runs an executable program or batch file as part of a

package.
File Transfer Protocol Task Downloads data files from a remote server or an

Internet location as part of a package workflow.
Message Queue Task Uses Message Queuing to send and receive

messages between DTS packages.
Send Mail Task Sends an e-mail message as a task.

Data Transformation Services (SQL Server 2000)

ActiveX Script Task
ActiveX Script Task

 New Information - SQL Server 2000 SP3.

With the Microsoft® ActiveX® Script task, you can write code to perform functions that are not available in the other tasks in
Data Transformation Services (DTS) Designer. For example:

As a package executes, you can replace a two-digit state code in the source data with the legal abbreviation of the state in
the destination data.

If the destination data is a table from which mailing labels are created, you can set the "title" column to "Mr.", "Mrs.", or a
default of spaces.

You can validate important columns in the source data and skip records that contain invalid data to prevent them from
being copied to the destination.

For more information, see Using ActiveX Scripts in DTS.

To execute a ActiveX script, you must have the scripting language library installed on the computers that will be running the
package (for example, both the development and production computers). The languages that can be used to write your script
include Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript®.

Important An ActiveX script can affect the execution speed of a DTS package as it executes on each row of the source data.
Therefore, if performance is a priority, use scripting carefully when building a package. For more information, see Enhancing
Performance of DTS Packages.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

ActiveXScript Property (DTS)

Using Global Variables with DTS Packages

Data Transformation Services (SQL Server 2000)

Dynamic Properties Task
Dynamic Properties Task

The Dynamic Properties task works by retrieving values from sources outside a Data Transformation Services (DTS) package at
package run time and assigning those values to selected package properties. Typically, the external values assigned by the task
are unknown until package run time. Therefore, a package may need to:

Get data from a backup file, where the file name changes according to the date.

Connect to an available server, where the name of the server is not known until package run time.

Run a scheduled query on a set of data for a particular date range. The package must update the date range for each
execution and change the source SQL statement accordingly.

Available Source Types

The Dynamic Properties task can assign external data or information to a package property from one of the following sources:

An initialization (*.ini) file, such as Win.ini, or any initialization file that you want to create. This selection only supports
property values a single line in length.

A data file containing a property value that can be read and assigned. Unlike the initialization file selection, the data file
selection supports property values greater than one line in length.

A query. When you assign the results of a query to a DTS package property, the Dynamic Properties task uses only the
results of the first column of the first row. For this reason, consider designing your queries so they generate a single result
(for example, a COUNT, SUM or SELECT statement for a particular name).

A DTS package global variable. For more information, see Using Global Variables with DTS Packages.

An environment variable, which can encompass any available user or system variable (for example, COMPUTERNAME,
LOGONSERVER, and so on).

A constant, commonly used to assign a default value to a property in the event a previous assignment fails.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

DynamicPropertiesTask Object

Data Transformation Services (SQL Server 2000)

Execute Package Task
Execute Package Task

The Execute Package task extends the enterprise capabilities of Data Transformation Services (DTS) by letting you run other DTS
packages as part of a workflow. This capability is useful when:

Package workflow is complex and can be broken down into two or more modular packages. For example, if you are loading
a star schema, you can build a set of packages so that different packages are associated with filling each dimension table
and the fact table. Such a strategy increases package readability and simplifies debugging because the individual packages
are smaller and each package workflow is more focused. It also provides a higher level of security because authors may not
require access to all packages.

Units of work can be encapsulated into separate packages and joined as transactional components to the workflow of a
master package. The master package runs the accessory packages and, based on the success or failure of the accessory
packages, either commits or rolls back the transaction.

Parts of a package workflow can be reused by other packages. For example, you can build a data extraction module that can
be called from different packages. Each of the packages calling the extraction module performs different data scrubbing,
filtering, or aggregation operations.

Global Variables and the Execute Package Task

You can use the Execute Package task to dynamically assign the values of global variables from a parent package to a child
package. The child can process the global variable data passed to it in any Microsoft® ActiveX® script in its executable workflow.

Using global variables to pass information from one package to another is useful when parts of a larger workflow are assigned to
different packages. For example, one package could download data on a nightly basis, summarize the data, assign summary data
values to global variables, and pass the values to another package for further processing of the data.

Global variable values passed to the child package are handled according to their scope definitions described in the child package.
Global variables defined as static in the child package retain their last assigned values, and global variables not defined as static
return to their initial values after the script runs.

Transactions and the Execute Package Task

Joining Execute Package tasks to package transactions lets you join the execution of entire packages and other workflow steps
into units of work that can be committed or rolled back. Before joining an Execute Package task to a transaction, consider the
following:

Only one transaction can be run at a time from a package.

The Microsoft Distributed Transaction Coordinator (MS DTC) must be operational and running on the server in order for
transactions to work. Also, the MS DTC client must be running on each computer on which a package runs for transaction
joining to work.

The transactional context within which an Execute Package task runs can range from the execution context of the entire master
package to specific parts of the workflow, and to the Execute Package task itself, if the task is not joined to any transactions.

When joining the Execute Package task to a transaction in DTS Designer, use:

The Advanced tab in the DTS Package Properties dialog box to enable the use of transactions in a package and set
general transaction characteristics, such as isolation level.

The Options tab in the Workflow Properties dialog box to join the step associated with the Execute Package task to a
transaction.

The Insert Commit Size check box in the Advanced tab of the Data Transformation Properties dialog box to control the
number of rows of data moved prior to committing a transaction. This option is available only when the Use fast load
check box is selected).

Caution Creating workflows or ActiveX scripts in which an Execute Package task is used to call its own package can generate a
stack overflow and cause Microsoft Management Console (MMC) to shut down. Generally, recursive operations are not
recommended with the Execute Package task. If you need to use the Execute Package task recursively, make sure you set a global
variable in an ActiveX script to monitor the nesting depth (for example, in a step ActiveX script or in an ActiveX Script task that
determines precedence), and terminate the recursion in the script code before a specified depth is reached. The global variable
must be passed to the subpackage through its GlobalVariable collection.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

Designing DTS Transactions

ExecutePackageTask Object

Inherited Transactions

Data Transformation Services (SQL Server 2000)

Execute Process Task
Execute Process Task

With the Execute Process task, you can run an executable program or batch file as part of a Data Transformation Services (DTS)
package. Although you can use the Execute Process task to open any standard application such as Microsoft® Excel or Microsoft
Word, more often you use it to run business applications or batch files that work against a data source.

For example, you can use the Execute Process task to run a custom Microsoft Visual Basic® application that generates a daily
sales total report. Other steps or tasks in the package can use the sales total report. Then, you can attach the report to a Send Mail
task and forward the report to a management distribution list.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

CreateProcessTask Object (DTS)

CreateProcessTask2 Object (DTS)

Data Transformation Services (SQL Server 2000)

File Transfer Protocol Task
File Transfer Protocol Task

The File Transfer Protocol (FTP) task lets you download data files from a remote server or an Internet location as part of a Data
Transformation Services (DTS) package workflow. Files are transferred in binary mode only.

By including an FTP task, your DTS package can:

Copy directories and data files from one server directory location to another, before or after performing data movement
and transformations.

Log in to a source FTP location and copy files or packages to a destination directory. The transformed data or package
becomes available on an FTP site for download over the Internet, as part of the process of shipping the information to a data
warehouse.

Schedule the download of different files on a regular basis. By using the FTP task in conjunction with a Dynamic Properties
task, you can change the names of files to be downloaded, according to properties you specify (for example, a date or the
value of a run-time global or environment variable).

Note If you experience a problem using the FTP task, use ftp.exe in a command prompt to help identify the problem, as both the
FTP task and ftp.exe use the same connection method.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

DTSFTPTask Object

Data Transformation Services (SQL Server 2000)

Message Queue Task
Message Queue Task

The Message Queue task allows you to use Message Queuing to send and receive messages between Data Transformation
Services (DTS) packages. These messages can take the form of simple text, files, or global variables and their values. Messages can
be sent when the destination is unavailable or busy, for example, from or to the laptop of a sales representative. The Message
Queue task therefore offers you the ability to asynchronously coordinate operations throughout your enterprise. You can:

Delay task execution until other packages have checked in. For example, at each of your retail sites, after nightly
maintenance, a message queue task sends a message to your corporate computer. A package running on this computer
contains message queue tasks, each waiting for the message from one retail site. When the message arrives, a task is
triggered to upload site data. Only after all sites have checked in does the package proceed to compute summary totals.

Send data files to the computer responsible for processing them. For example, restaurant cash register output can be sent in
a data file message to the corporate payroll system, for waiter tip data extraction.

Distribute files throughout your enterprise. For example, one package can use a Message Queue task to send a package file
to another computer. A package running on the destination computer can then use a message queue task to retrieve and
save the package locally.

Split a large job into component parts and parcel them out to several computers, using string or global variable messages
to coordinate operations. For example, you can send a global variables message containing the name of a package. On
another computer a package uses a Message Queue task, a Dynamic Properties task, and an Execute Package task to execute
the requested package.

Transactions and the Message Queue Task

In Microsoft® SQL Server™ 2000, a Message Queue task cannot take part in the package transaction.

There are two types of message queues: transactional and non-transactional. The transactional queue gives you the assurance
that each message is delivered exactly once. This feature makes the transactional queue more likely to satisfy current and long-
term requirements than the non-transactional queue when you use the Message Queue task. The transactional status of a queue
is set at the time the table is created and cannot be changed.

Data Transformation Services (SQL Server 2000)

Installing and Configuring Message Queuing
Installing and Configuring Message Queuing

To use the Message Queue task, you must:

Install Message Queuing server software on your network.

Install Message Queuing client software on your computer.

Configure a queue for your messages.

Two versions of Message Queuing are supported:

MSMQ. This version is provided in the Microsoft® Windows NT® 4.0 Option Pack.

Message Queuing for Windows® 2000.

You can install Message Queuing server software on a Windows 2000 domain controller running Active Directory™, the
directory service included in Windows 2000, as well as on queues on a local computer.

Message Queuing client software cannot be installed unless Message Queuing server software is installed on a domain
controller in your organization. Message Queuing client software is not installed as part of Windows 2000 Setup.

For more information about Message Queuing, see the Windows 2000 Server documentation.

Note Installation and configuration of MSMQ and Message Queuing differ significantly.

Data Transformation Services (SQL Server 2000)

Message Types
Message Types

A Message Queue task sends and receives the following types of messages:

String message

Data file message

Global variables message

String Messages

A string message contains a text string. To send a string message, you must specify the message text.

When you configure a Message Queue task to receive a string message, you can specify filtering criteria. You can accept any
string message, or you can type a compare string and proceed only if a queued message:

Matches the compare string exactly.

Matches the compare string (ignoring case).

Contains the compare string.

Data File Messages

A data file message contains a Data Transformation Services (DTS) package ID, a version ID, and the name and contents of a data
file. To send a data file message, you must specify the path of the file to be sent.

When you configure a Message Queue task to receive a data file message, you must answer the following questions:

Is the file to be saved under its original name or with a name you specify?

Do you want the Message Queue task to overwrite an existing file?

Will you accept files from any source or limit them to only those sent from a particular package or package version?

Global Variables Messages

A global variables message contains a DTS package ID, a version ID, and the name, type, and value of one or more variables. To
send a global variables message, you must add the variables to your package, and then specify them when you configure the
Message Queue task.

When you configure a Message Queue task to receive a global variables message, you can specify filtering criteria. You can accept
any global variables message, or you can proceed only if a queued message comes from a particular package or package version.

Data Transformation Services (SQL Server 2000)

Sending Messages with the Message Queue Task
Sending Messages with the Message Queue Task

Use the Message Queue task to place one or more messages on a queue for later delivery to DTS packages running on this or
other computers.

The Message Queue task will fail at run time if:

The queue name is entered incorrectly or the named queue is not on your network.

A data file message references an unavailable or nonexistent data file.

A message contains more than 4 megabytes (MB).

Data files and variables must use slightly less than 4 megabytes in order to accommodate any included package or version
IDs, file names, or variable names and types.

Important A Message Queue task is not allowed to take part in the package transaction. As a result, your package will fail at run
time if, in the Workflow Properties dialog box for a Message Queue task, you select the Join transaction if present check box.

To send a message with the Message Queue Task

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Receiving Messages with the Message Queue Task
Receiving Messages with the Message Queue Task

Use the Message Queue task to retrieve and process a single message after it has been delivered to a queue.

When executed, the Message Queue task scans the queue for the first message that meets the specified filter criteria. If such a
message is found, the Message Queue task terminates successfully after processing the message. If no such message is found, the
task waits for the first of the following events:

An acceptable message arrives.

An optionally specified timeout interval expires.

Package execution is canceled manually.

If the wait yields an acceptable message, the Message Queue task terminates successfully after processing the message. If not, it
fails.

Messages can be removed from the queue on receipt.

Important If a message, once read, is not removed from the queue, the next time the task executes, the same message will be
returned. Any other acceptable messages on the queue remain inaccessible until the first message is removed. If you do not
remove a message on receipt, then you must elsewhere create another Message Queue task that does.

Important A Message Queue task is not allowed to take part in the package transaction. As a result, your package will fail at run
time if, in the Workflow Properties dialog box for a Message Queue task, you select the Join transaction if present check box.

Data Transformation Services (SQL Server 2000)

Receiving String Messages
Receiving String Messages

Use string messages to respond to notifications of external events. You can proceed on receipt of any string message, or you can
use filter criteria to narrow the range of acceptable messages.

To receive a string message with the Message Queue Task

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Receiving Data File Messages
Receiving Data File Messages

Use data file messages to transfer data files from computer to computer. A data file message contains a Data Transformation
Services (DTS) package ID, a version ID, and the name and contents of a data file.

On receipt of an acceptable message, the transmitted data file is saved and the Message Queue task terminates successfully. If no
acceptable message is initially on the queue, the Message Queue task waits until one arrives. If the specified timeout interval
expires first, the task fails.

You can save the transmitted data file to a file or a directory location. If the save path specifies an existing file, you need to
overwrite the file or the step fails.

Important Any change in the package sending the data file message will result in a new version ID. If you click Filter by version
on the Message Queue Task Properties dialog box, messages from the modified package are ignored.

To receive a data file message with the Message Queue Task

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Receiving Global Variables Messages
Receiving Global Variables Messages

Use global variables messages to transfer variables and their values from one package to another. A global variables message
contains the name, type, and value of zero or more variables.

On successful receipt, transmitted variables, with their values, are added to the DTSGLobalVariables collection and the Message
Queue task terminates successfully. Previously existing variables with the same name are replaced. You can access newly
transmitted variables from Microsoft® Visual Basic® Scripting Edition (VBScript) with DTSGlobalVariables("variable name").

If no acceptable message is initially on the queue, the Message Queue task either waits until one arrives, or fails after the specified
timeout interval has passed.

Important Any change in the package sending the global variables message will result in a new version ID. If you click Filter by
version in the Message Queue Task Properties dialog box, messages from the modified package are ignored.

To receive a global variables message with the Message Queue task

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Message Queue Task Examples
Message Queue Task Examples

The following package examples illustrate the use of the Message Queue task with each message type:

The Prepare Facts and Update Warehouse packages use string messages to coordinate operations on two computers.

The Add New Employees package uses global variable messages to retrieve new employee information from a queue and
save it in a database.

The Load Expenses package uses data file messages to take Microsoft® Excel worksheets from a queue, extract expense
data, and save it in a database.

Data Transformation Services (SQL Server 2000)

Using String Messages to Trigger Tasks
Using String Messages to Trigger Tasks

You can use string messages to trigger a task on another computer or to wait for a signal from that computer before proceeding.

For example, you have an online transaction processing system running on one computer (OLTP). Your data warehouse resides
on another computer (Warehouse). Every night, shipment facts are summarized on OLTP and transferred to Warehouse. Before
the transfer can take place though, Warehouse dimension tables must be updated.

Two packages are used to manage this process: Update Warehouse and Prepare Facts.

Update Warehouse runs on the Warehouse computer. When Update Warehouse starts, the Ask for Facts task sends a string
message telling the OLTP computer to start summarizing shipment data. While shipment data is being summarized on the OLTP
computer, the Update Dimensions task updates Warehouse dimension data. When this task is complete, the Wait for Facts task
waits for a string message from the OLTP computer that says shipment data is ready. Only after this message is received does a
Transform Data task move the shipment data to the Warehouse computer.

Prepare Facts runs on the OLTP computer. The Wait For Trigger task initially waits for the string message from the Ask for Facts
task. On receipt, the Shipment Summary task prepares the data for transfer. When the data is ready, the Alert Warehouse task
sends the message which, when received by the Wait For Facts task, tells Update Warehouse to start the transfer.

Ask For Facts and Wait For Trigger form a matched pair of Message Queue tasks. Ask For Facts sends the message and Wait For
Trigger receives it. Alert Warehouse and Wait For Facts form another such matched pair. Their configuration differs from the first
only in the text of the message.

Configuring the Ask For Facts Task

Ask For Facts sends the message "Summarize shipments" to a queue, where it can later be read by the Wait For Trigger task.

To configure the Ask For Facts task

Enterprise Manager

Enterprise Manager

Configuring the Wait For Trigger Task

When run, Wait For Trigger checks a queue for a message that reads, "Summarize shipments". If such a message exists, Wait For
Trigger deletes the message and terminates successfully. If not, the task waits until such a message arrives or the package is
canceled, whichever comes first.

To configure the Wait For Trigger task

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Using Global Variable Messages to Queue Database Updates
Using Global Variable Messages to Queue Database Updates

The Add New Employees package uses global variable messages to take an employee ID and name from a queue and add the
employee to the corporate database. It continues to add employees until the queue is emptied, at which point it stops.

Follow these instructions to create and run this package.

Creating and Configuring the Add New Employees Package

The new package must be created and named. In addition, package properties must be set so that a single failure does not
prevent the rest of the new employees from being added.

To create and configure the Add New Employees package

Enterprise Manager

Enterprise Manager

Configuring the New Employee Task

New Employee is a Message Queue task. When run, the New Employee task checks for a global variable message. If one is on the
queue, two global variables, ID and Name, are brought into the context of this package and a Transform Data task is triggered.

To configure the New Employee task

Enterprise Manager

Enterprise Manager

Creating Two Database Connections

This example works with a database named Corporate containing a table named Employee. The Employee table has two
columns: EmployeeID and EmployeeName. EmployeeID serves as the primary key.

After a message has been received, a Transform Data task is used to load the new employee into the Employee table. The
Transform Data task requires two connections. In this case, because data comes from global variables instead of a database table,
the first connection will not be used.

Place two database connections on the Data Transformation Services (DTS) Designer workspace. Assign both to the Corporate
database. Name the first connection Not Used and name the second connection Corporate.

Note This operation can also be accomplished using an Execute SQL task containing one INSERT statement with two input
parameters filled by the global variable values. In that case, you need one connection and an Execute SQL task, rather than two
connections and a Transform Data task. For more information, see Execute SQL Task.

Configuring the Transform Data Task

The Transform Data task is triggered after receipt of a global variables message. Its job is to insert a single row in the Employee
table. You need to:

Fill destination columns from global variables.

Ensure that exactly one destination row is written.

To configure the Transform Data task for global variable messages

Enterprise Manager

Enterprise Manager

Configuring the Log Bad Update Task

Log Bad Update is a Message Queue task. It is triggered on a failure in the database update. When executed, it sends the failing ID
and Name to another queue for later review.

To configure the Log Bad Update task

Enterprise Manager

Enterprise Manager

Creating and Configuring Two Loop Tasks

Two Loop tasks must be created. (If a single task were set up to follow both Log Bad Update and Transform Data Task, it
would never run because at no time would both precedents be satisfied.) You cause the package to loop by accessing the first step
with a Dynamic Properties task and changing its status to waiting. The only difference between the two loop tasks is the identity
of the precedent task.

To configure one Loop task

Enterprise Manager

Enterprise Manager

Running the Package

Build another package that sends ID/Name pairs to your queue. (Use the Log Bad Update task as a model.) Execute this package.
Run the Add New Employees package. As New Employee receives the message, the Transform Data task inserts the new
employee, and the Loop task returns control to the first step., At this time the package terminates. If a previously existing
employee is sent to the queue, you should see the duplicate key fail the insert, and trigger the Log Bad Update task.

Data Transformation Services (SQL Server 2000)

Using Data File Messages to Collect Data
Using Data File Messages to Collect Data

The Load Expenses package uses a data file message to take a spreadsheet from a queue, extract expense data, and load it into a
database.

Your traveling sales force uses a standard Microsoft® Excel template to enter expenses on their laptops. Every week, a Data
Transformation Services (DTS) package on the laptop sends the completed worksheet in a data file message addressed to a queue
at corporate. When the laptop synchs with the network, the message is delivered. The Load Expenses package processes these
messages on arrival.

Follow these steps to create this package on your computer.

Creating and Configuring the Load Expenses Package

The new package must be created and named. In addition, package properties must be set so that a single failure does not shut
down the service.

To create and configure the Load Expenses package

Enterprise Manager

Enterprise Manager

Creating Three Connections

As one expense report is processed, information passes through three stages.

On arrival, expenses are saved in a Microsoft Excel worksheet named C:\Temp\Expense.xls. This worksheet includes a range
named Expenses. The first row of that range contains column headings: EmployeeID, ExpenseDate, Expense, Code, and
Amount. Succeeding rows contain data for individual expenditures. Some rows may be empty. On the sheet, the Expense
Report connection refers to this worksheet.

Expenses are first loaded into a table in the Corporate database named RawExpense. This table also contains
EmployeeID, ExpenseDate, Expense, Code, and Amount columns. No constraints are placed on these entries. On the
design sheet, the Raw Data connection is used to refer to the RawExpense table.

Raw data is then filtered and loaded into the Expense table in the Corporate database. This table has an identity column
named ExpenseID in addition to those columns that appear in RawExpense. It also has constraints. In particular, no nulls
are allowed in any of the fields. On the design sheet, the Corporate connection is used to refer to the Expense table.

Create these data sources and place connections. Create an additional copy of the spreadsheet to serve as input for this package.

Configuring the Spreadsheet Wait Task

Spreadsheet Wait is a Message Queue task that waits indefinitely for an incoming data file message. When the message arrives,
the contents are saved on disk as a Microsoft Excel worksheet and the next task is triggered.

To configure the Spreadsheet Wait task

Enterprise Manager

Enterprise Manager

Configuring the Delete Raw Data Task

Before a new spreadsheet is processed, the residue of the last one is removed. The Delete Raw Data task is an Execute SQL task
that removes all the rows from the RawExpense table.

To configure the Delete Raw Data task

Enterprise Manager

Enterprise Manager

Configuring the Load Raw Data Task

After successful receipt of a worksheet, a Transform Data task extracts the rows from the spreadsheet and loads them into the
RawExpense table. If the task fails, the spreadsheet is forwarded to another queue for later review. If the task succeeds, another
Transform Data task is triggered to perform the final load. Configuration of the Load Raw Data task is relatively straightforward.

To configure the Load Raw Data task

Enterprise Manager

Enterprise Manager

Configuring the Load Filtered Data Task

After the raw data is loaded, another Transform Data task, Load Filtered Data, takes rows from RawExpense and loads them into
the Expense table. If not caught, any constraint violations will fail the Load Filtered Data task, with no update having taken place.
If this happens, the spreadsheet is forwarded to another queue for later review. If the load is successful, the transaction is
committed.

To configure the Load Filtered Data task

Enterprise Manager

Enterprise Manager

Configuring the Failed Expense Load Task

When a load fails, the package must continue to process other worksheets without interruption. Failed XLS Load and Failed
Expense Load are two Message Queue tasks. When a spreadsheet load fails, one of these two tasks is triggered to forward the
offending spreadsheet to another queue where it can be reviewed by another package. Both tasks commit the package
transaction. Configuration of the two tasks is identical except for their descriptions and precedent tasks.

To configure the Failed Expense Load (or Failed XLS Load) task

Enterprise Manager

Enterprise Manager

Creating and Configuring Three Loop Tasks

Three Loop tasks must be created. You cause the package to loop by accessing the first step with a Dynamic Properties task and
changing its status to waiting. The only difference between the three loop tasks is the identity of the precedent task.

To create and configure three Loop tasks

Enterprise Manager

Enterprise Manager

Running the Package

Build another package that sends a copy of the Expense worksheet to your queue. (Use the Failed Expense Load task as a model.)
Execute this package and then run Load Expenses. You should be able to observe as the worksheet is received, data is loaded, and
control is returned to the first step, where it waits for another worksheet. If expense data fails constraint checks, perhaps because
of null entries, you should see the spreadsheet sent on to the error queue. If you send worksheets from another computer, you
can watch Load Expenses wake up and process them. Load Expenses continues to run until manually canceled or an error is
encountered deleting raw data or processing messages.

Data Transformation Services (SQL Server 2000)

Send Mail Task
Send Mail Task

With the Send Mail task, you can send an e-mail message as a task. For example, if you want to notify a database administrator
about the success or failure of a backup operation, you can link a Send Mail task to the preceding backup task. To use a Send Mail
task, you need to install MAPI with a valid user profile on the instance of Microsoft® SQL Server™ you are running.

A Send Mail task can include attached data files. You can point to a location for an attached file and send a dynamically updated
file, rather than a static copy of the file fixed when you create the task. This feature is useful for sending attachments such as log
files and exception files.

Note If an attachment file does not exist when the package is run, you will receive the message: "Error sending mail: Internal
MAPI error: the address book has no directories that contain names." This message indicates that either the file is not available at
the specified location or that access permissions are not granted for the file.

To add a DTS task to a DTS package

Enterprise Manager

Enterprise Manager

See Also

SendMailTask Object (DTS)

Data Transformation Services (SQL Server 2000)

DTS Transformations
This section describes the types of column-level transformations available with Data Transformation Services (DTS) and explains
how they work.

Before you use a DTS transformation, you need to know:

How to map a column transformation. For more information, see Mapping Column Transformations.

How to use the transformation type you want. For more information, see Transformation Types.

DTS also allows you to write custom transformations written as COM objects with DTS Designer. For more information, see
Building a DTS Custom Transformation.

Data Transformation Services (SQL Server 2000)

Mapping Column Transformations
In Data Transformation Services (DTS), you can transfer data from a source rowset to a destination table by using one of the
available DTS transformation types or by supplying a custom transformation. For some transformation types, the data is copied.
In other cases, data is modified as transformations are applied or copied according to the rules of the transformation type. You
can perform a column transformation in the following ways:

Graphically, in DTS Designer, with the Transform Data task and the Data Driven Query task. Each Transform Data task or
Data Driven Query task you add to a package contains one or more column transformations.

To configure the transformations, use the Transformations tab of the Transform Data Task Properties and Data Driven
Query Properties dialog boxes. This tab graphically displays all the column mappings between the source and destination
that are used in the task. You use this tab as a starting point for configuring the relationships between source and
destination columns and the specific transformations to use.

By using the default Copy Column transformation or by writing a Microsoft® ActiveX® script in the DTS Import/Export
Wizard. The DTS Import/Export Wizard is limited to these two types of transformation. For more information, see Using
ActiveX Scripts in DTS.

To modify a transformation script written and saved to a package created in the DTS Import/Export Wizard, you need to
open the package in DTS Designer and edit the task associated with the script.

Programmatically, using a Transform Data task, a Data Driven Query task, or a Parallel Data Pump task.

For more information, see DTS Transformations in Visual Basic and DTS Column Objects in Visual Basic.

Mapping a Transformation in DTS Designer

You map a transformation in DTS Designer to establish the relationship between the source and destination columns. Mapping
configurations can be of several types:

One-to-one mappings, which contain a single source column and a single destination column.

N-to-N mappings, which contain an equal number of multiple source and destination columns.

Mappings with unequal numbers of source and destination columns.

DTS allows you to create your own custom transformations, with their own column requirements, by programming objects that
implement the IDTSDataPumpTransform interface. The mappings for these transformations can fall in one of the above
categories or can have different requirements.

For more information, see Building a DTS Custom Transformation and IDTSDataPumpTransform (DTS).

One-to-One Column Mappings

You use one-to-one column mappings when the transformation requires one source and one destination column. By default, DTS
Designer maps each source and destination column in a Transform Data task in this configuration, attempting to match each
source and destination column by name (for example, CategoryName in the source would be mapped to CategoryName in the
destination, and so forth). These are the types of transformations you use with one-to-one column mappings:

Copy Column transformation

Trim String transformation

Date Time String transformation

Middle of String transformation

Read File transformation

ActiveX Script transformation

Transformations that use one-to-one column mappings are displayed with a single connecting arrow indicating the flow of data.
The following diagram, from the Transformations tab of the Transform Data Task Properties dialog box, shows four such
transformations (the bold arrow indicates that one of the transformations is selected).

N-to-N Column Mappings

Transformations using N-to-N column mappings require a matching number of multiple source and destination columns. You
use this mapping in situations where each source column must have a corresponding destination column, and it is more efficient
to configure all the transformations together (as a single data pump operation) rather than as separate transformations called
individually for each row. By default, the Data Driven Query task uses this type of mapping configuration.

N-to-N column mappings include the following types of transformations:

Copy Column transformation

Uppercase String transformation

Lowercase String transformation

ActiveX Script transformation

N-to-N column mappings are shown with a single arrow connecting an equal number of branches at each end. The following
diagram shows a mapping for this transformation that connects four source and four destination columns:

If you edit a Copy Column transformation so that the same source column is copied to multiple destination columns, the mapping
will change to indicate the data flow, and the number of mapping lines touching the source and destination tables will be unequal.
This type of mapping indicates a single source column is being copied to multiple destination columns.

Note A single many-to-many Copy Column transformation is faster then many one-to-one Copy Column transformations. For
more information, see Enhancing Performance of DTS Packages.

Mappings with Unequal Numbers of Source and Destination Columns

A transformation mapping can include an unequal number of source and destination columns. For example:

More source columns than destination columns

More destination columns than source columns

No source or destination columns

Following are several examples of these types of mappings.

One or M ore Source Columns and N o Destination Columns

You can have an ActiveX Script transformation where only the values from a source table are processed. In the following example,
written in Microsoft Visual Basic® Scripting Edition (VBScript), each row of the CategoryName column (from the Categories
table of the Northwind sample database) is checked for the presence of a NULL value or a null string. If neither of those values is
found for the row, a package global variable is assigned the value of CategoryName.

Following is the sample ActiveX transformation script for this type of mapping:

Function Main()
 If Not IsNull (DTSSource("CategoryName")) Then
 If LEN(DTSSource("CategoryName")) > 0 Then
 DTSGlobalVariables("gv2") = DTSSource("CategoryName")
 End If
 End If
 Main = DTSTransformStat_OK
End Function

Although this example uses only one source column, you also can create ActiveX Script transformations using multiple source
columns and no destination columns.

Two Source Columns and N o Destination Column

The Write File column transformation is an example of a transformation with a specialized mapping requirement. The
transformation takes data from one source column and writes it to a file, the name of which it finds in a second source column. As
a result, it requires two source columns (one column containing the data to be copied and a second column containing a list of file
names) and zero destination columns.

In the following diagram, Write File column transformations originate from the source table and do not touch any destination
columns.

One or M ore Destination Columns and N o Source Columns

You can have an ActiveX Script transformation where only the values from a destination table are processed. In the example
below, an incrementing counter value is appended to the value of two global variables, and the concatenated strings are assigned
to the CategoryName and Description columns of the Categories table.

Following is the sample ActiveX transformation script for this type of mapping:

Dim N

Function Main()

 If IsEmpty(N) Then
 N = 0
 End If

 DTSDestination("CategoryName") = DTSGlobalVariables("gv1") & (N)
 DTSDestination("Description") = DTSGlobalVariables("gv2") & (N)
 N = N + 1
Main = DTSTransformStat_OK

End Function

N o Destination Columns and N o Source Columns

There may be cases where the ActiveX Script transformation does not reference any source or destination columns. For example,
the script may only involve the processing of global variables or lookup queries, or an action such as a notification.

Following is an example of a simple ActiveX transformation script for this type of mapping. In the following script, the value of a
global variable is incremented for each row of data in the source:

Dim counter

Function Main()
 Counter = counter + 1
 DTSGlobalVariables("gv1").Value = DTSGlobalVariables("gv1") + 1
 Main = DTSTransformStat_SkipInsert
End Function

The following script could be used to skip further inserts after the required items have been loaded in a transformation:

Function Main()
 If DTSGlobalVariables("LoadComplete").Value = True Then
 Main = DTSTransformStat_SkipRow
 Else
 Main = DTSTransformStat_OK
 End if
End Function

See Also

Data Driven Query Task

ParallelDataPump Task Object

Transform Data Task

Using Global Variables With DTS Packages

Data Transformation Services (SQL Server 2000)

Transformation Types
This section describes the individual column-level transformations available in Data Transformation Services (DTS).

Topic Description
Copy Column Transformation Describes the transformation used to copy

source data to the destination.
ActiveX Script Transformation Explains how to use Microsoft ActiveX® scripts

to define column-level transformations.
Date Time String Transformation Describes the transformation used to convert a

source date into a new destination format.
Uppercase String Transformation Describes the transformation used to convert a

string into uppercase characters.
Lowercase String Transformation Describes the transformation used to convert a

string into lowercase characters.
Middle of String Transformation Describes the transformation used to extract a

substring from a source and optionally change
its case or trim white space before placing the
result in the destination.

Trim String Transformation Describes the transformation used to remove
leading, trailing, or embedded white space from
a source string and place the (optionally case-
shifted) result in the destination.

Read File Transformation Describes the transformation used to copy the
contents of a file specified by a source column to
a destination column.

Write File Transformation Describes the transformation that creates a new
data file for each file named in a source column
and initializes the contents of each file from data
in a second source column.

Data Transformation Services (SQL Server 2000)

Copy Column Transformation
Copy Column Transformation

A Copy Column transformation copies data directly from source to destination columns, without Microsoft® ActiveX® scripts or
any other transformations applied to the data. When copying data in this manner, you should consider the following:

Specify columns. You can specify a Copy Column transformation from a single source column to a single destination
column, or from multiple source columns to multiple destinations columns.

Make conversions. You can use transformation flags to enforce the stringency with which data type conversions are
allowed. These transformation flags are available when creating or editing a transformation in Data Transformation Services
(DTS) Designer, or programmatically. By default, DTS allows all possible conversions between source and destination
columns.

For more information, see DTSTransformFlags.

Truncation issues. The copy column transformation truncates text without error or notification. Although you can set
transformation flags to prevent the possibility of truncation, there is no way to have the transformation fail on the first row
for which truncation is necessary.

Change the columns in the copy. When using the Copy Column transformation to copy multiple source and destination
columns, it is possible to copy the same column to multiple destination columns.

See Also

DataPumpTransformCopy Object (DTS)

Data Transformation Services (SQL Server 2000)

ActiveX Script Transformation
ActiveX Script Transformation

 New Information - SQL Server 2000 SP3.

You can use a Microsoft® ActiveX® script to modify data as it is moved from its source to its destination. You can code a
transformation between one or more source and destination columns.

You can write ActiveX transformation scripts in several places in the Data Transformation Services (DTS) user interface. However,
an ActiveX Script transformation applies to tasks that work on source data on a row-by-row basis. Use it with:

The DTS Import/Export Wizard.

A Data Driven Query task.

A Transform Data task.

For these items, the transformation scripts are executed for each row of data coming in from the source.

Note Because ActiveX Script transformations are executed for each row of data, place the code for opening and closing
connections in such a way that a new connection is not opened and closed each time a row of data is processed.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

For more information about using ActiveX scripts or code examples, see Using ActiveX Scripts in DTS.

See Also

ActiveX Script Task

Transform Data Task

Data Driven Query Task

Data Transformation Services (SQL Server 2000)

Date Time String Transformation
Date Time String Transformation

The Date Time String transformation converts a date or time in a source column to a different format in the destination column.

The transformation is carried out in two steps:

1. Each entry is converted in the source column to an OLE DB DBTYPE_TIMESTAMP data type. If the source column is a string
type, a source date format string guides the conversion.

2. The OLE DB DBTYPE_TIMESTAMP data type is converted to the destination column format. If the destination column is a
string type, the destination date format string is used to format the resulting text.

If the source or destination column is not a string type, the corresponding format string is ignored.

The following standard date format strings are available:

dd MMM yy

dd MMMM yy HHmm

dd MMMM yy HHmmss.ff

dddd MM/dd/yy hh:mm tt

dddd, MMMM dd,yyyy hh:mm:ss.ffff tt

hh:mmtt

If yours is not among the standard formats, create your own date format string using any of the following tokens.

Value Token(s)
Year yyyy, yy
Month MMMM, MMM, MM, M
Day dddd, ddd, dd, d
12 hour hh, h
24 hour HH, H
Minute mm, m
Second ss, s
Fraction f (may be repeated)
AM/PM Tt

Additionally, you may specify:

Long and short names for months.

Long and short names for days of the week.

The language in which dates appear.

Note All conversions use regional settings current on the instance of Microsoft® SQL Server™ running the package.

If the formatted result is too large to fit in a string type destination column, it is truncated.

The Date Time String transformation fails if:

The source or destination column is not a string or date type.

An invalid date format string is specified, for example, "mm/dd/mm."

A source string does not match the source date format string.

To convert the format of a Date Time String transformation

Enterprise Manager

Enterprise Manager

See Also

DataPumpTransformDateTimeString Object

Date Time String Transformation Properties

DTS Transformations

Data Transformation Services (SQL Server 2000)

Lowercase String Transformation
Lowercase String Transformation

The Lowercase String transformation converts a source column to lowercase characters and, if necessary, to the destination data
type. Both the source and destination columns must be a string data type. Multiple source columns may be processed in a single
transformation.

If the source data is too large to fit in the destination column, it is truncated. For more information, see Copy Column
Transformation.

The Lowercase String transformation is an example of an N-to-N transformation mapping. Any number of source columns may
be selected, as long as each is provided a matching destination column. For more information, see Mapping Column
Transformations.

To convert a string to lowercase characters

Enterprise Manager

Enterprise Manager

See Also

Column Order

DataPumpTransformLowerString Object

DTS Transformations

Data Transformation Services (SQL Server 2000)

Uppercase String Transformation
Uppercase String Transformation

The Uppercase String transformation converts a source column to all uppercase characters and, if necessary, to the destination
data type. Both the source and destination columns must be a string data type. Multiple source columns may be processed in a
single transformation.

If the source data is too large to fit in the destination column, it is truncated.

The Uppercase String transformation is an example of an N-to-N transformation mapping. Any number of source columns can be
selected, as long as each is matched to a destination column. For more information, see Mapping Column Transformations.

To convert a string to uppercase characters

Enterprise Manager

Enterprise Manager

See Also

Column Order

DTS Transformations

DataPumpTransformUpperString Object

Data Transformation Services (SQL Server 2000)

Middle of String Transformation
Middle of String Transformation

The Middle of String transformation extracts a substring from the source column, transforms it, and copies the result to the
destination column.

You specify the substring by providing a start position and a maximum number of characters to include. Consider the following:

The first character in the string occupies position 1.

If you specify no maximum number of characters, all characters that occupy positions greater than or equal to the start
position are included in the substring.

If the start position falls beyond the end of the string, an empty string results.

You can further process the resulting substring by using:

Trimming options, which include deleting leading, trailing, or embedded white spaces.

White space consists of the following characters: tab, line feed, vertical tab, form feed, carriage return, and space (0x09 –
0x0D, 0x20), as well as their Unicode equivalents.

Case options, which include converting the substring to either uppercase or lowercase characters.

If the final result is too large to fit in the destination column, it is truncated.

The Middle of String transformation fails if the source or destination columns are not of a string data type.

To perform a Middle of String transformation

Enterprise Manager

Enterprise Manager

See Also

DataPumpTransformMidString Object

Middle of String Transformation Properties

DTS Transformations

Data Transformation Services (SQL Server 2000)

Trim String Transformation
Trim String Transformation

The Trim String transformation removes leading, trailing, and embedded white space from a string in the source column and
copies the result to the destination column.

White space consists of the following characters: tab, line feed, vertical tab, form feed, carriage return, and space (0x09 – 0x0D,
0x20), as well as their Unicode equivalents.

You may optionally convert the trimmed string to either uppercase or lowercase characters.

If the trimmed source data is too large to fit in the destination column, it is truncated.

The Trim String transformation fails if the source or destination columns are not of a string data type.

To perform a Trim String transformation

Enterprise Manager

Enterprise Manager

See Also

DTS Transformations

DataPumpTransformTrimString Object

Trim String Transformation Properties

Data Transformation Services (SQL Server 2000)

Read File Transformation
Read File Transformation

The Read File transformation locates and opens the contents of a file, whose name is specified in a source column, and copies the
contents into a destination column.

When you configure the transformation, you define the path containing the files listed in the source column. All the files must be
in the same directory path.

Note The directory name can start with a disk drive or a Universal Naming Convention (UNC).

If a file is not found in the path, you can either:

Null the destination column.

Or

Fail the task.

A Read File transformation fails if:

The Error if file not found check box is selected and the path matches no existing file.

The source column is not a string type.

The destination column is not a string or binary type.

The process does not have permission to read the file.

Invalid file name characters appear in the source column.

The read path specifies a location in a nonexistent folder.

Translating File Content

If the destination column is a string type, file contents are interpreted according to their file type (for example, ANSI, OEM, or
Unicode). Translation is performed on the instance of Microsoft® SQL Server™ running the package, using current code pages. If
the destination column is of binary or image type, no translation occurs.

To perform a Read File transformation

Enterprise Manager

Enterprise Manager

See Also

DataPumpTransformReadFile Object

Read File Transformation Properties

DTS Transformations

Data Transformation Services (SQL Server 2000)

Write File Transformation
Write File Transformation

The Write File transformation copies the contents of a source column (data column) to a file whose path is specified by a second
source column (file name column).

When you configure the transformation, you define the path containing the files listed in the file name column. All the files must
be in the same directory path. If the file is not found in the path, one is created and initialized with the contents of the data
column.

Note The directory name can start with a disk drive or a Universal Naming Convention (UNC).

If a file with the same name already exists, the transformation does one of the following:

Replaces the existing file.

Appends the contents of the data column to the existing file.

Fails step execution.

Before configuring a Write File transformation, consider the following:

A destination connection must be specified, although the content may or may not be copied to a destination.

If the contents of the data column are Null, the transformation deletes the file specified by the save path. However, if you
select the Append if file exists check box, the file is not deleted.

The Write File transformation fails if:

The save path matches an existing file and you do not select the Overwrite if file exists check box.

The value in the File name column check box is not a string type.

The data column is not a string or binary type.

The process does not have permission to write to the specified directory or overwrite an existing file.

The contents of the File name column check box are NULL or zero-length.

Invalid file name characters appear in the File name column check box.

The save path specifies a location in a nonexistent folder.

To perform a Write File transformation

Enterprise Manager

Enterprise Manager

See Also

DTS Transformations

DataPumpTransformWriteFile Object

Write File Transformation Properties

Data Transformation Services (SQL Server 2000)

DTS Connections
To successfully execute Data Transformation Services (DTS) tasks that copy and transform data, a DTS package must establish
valid connections to its source and destination data and to any additional data sources (for example, lookup tables).

Because of its OLE DB architecture, DTS allows connections to data stored in a wide variety of OLE DB-compliant formats. In
addition, DTS packages usually can connect to data in custom or nonstandard formats if OLE DB providers are available for those
data sources and if you use Microsoft® Data Link files to configure those connections.

DTS allows the following varieties of connections:

A data source connection.

These are connections to: standard databases such as Microsoft SQL Server™ 2000, Microsoft Access 2000, Oracle, dBase,
Paradox; OLE DB connections to ODBC data sources; Microsoft Excel 2000 spreadsheet data; HTML sources; and other OLE
DB providers.

A file connection.

DTS provides additional support for text files. When specifying a text file connection, you specify the format of the file. For
example:

Whether a text file is in delimited or fixed field format.

Whether the text file is in a Unicode or an ANSI format.

The row delimiter and column delimiter if the text file is in fixed field format.

The text qualifier.

Whether the first row contains column names.
A data link connection.

These are connections in which an intermediate file outside of SQL Server stores the connection string.

Configuring a Connection

When creating a package in the DTS Import/Export Wizard, in DTS Designer, or programmatically, you configure connections by
selecting a connection type from a list of available OLE DB providers. The properties you configure for each connection vary
depending on the individual provider for the data source.

You can configure a new connection or use an existing one. You can use the same connection multiple times in a package.

Before configuring a connection, consider the following:

Each connection can be used by only one DTS task at a time because the connections are single-threaded. When designing a
package that requires multiple task connections, consider opening up several connections and balancing the load to
improve performance.

If two tasks use the same connection, they are compelled to execute serially, rather than in parallel. If two tasks use different
connections, they may execute in parallel. If two tasks use separate connections that refer to the same instance of SQL
Server, they will execute in parallel. If both of these tasks have joined the package transaction, the package fails.

For more information, see DTS Transaction Fundamentals.

If you plan to run a package on different servers, you may need to edit the direct connections made in a package (for
example, if the original data sources will be unavailable, or you will be connecting to different data sources). To simplify
editing, consider using a data link file, where the connection string is saved in a separate text file. Alternately, consider using
the Dynamic Properties task to change the connection information at run time.

When scheduling a package, consider the security information you have provided. If you used Windows Authentication
when configuring a connection, the SQL Server Agent authorization information is used to make the connection rather than
the account information you used when designing the package. For more information, see Handling Package Security in

DTS.

To create a connection

Enterprise Manager

Enterprise Manager

Editing a Connection

You can edit existing connections in an existing package only in DTS Designer or programmatically.

If you edit a package in DTS Designer and change the connection properties, DTS Designer attempts to connect to the server you
specify. If that server is currently unavailable, DTS Designer does not allow you to change the connection properties through the
Connection Properties dialog box. However, there may be reasons you want to circumvent this safety mechanism (for example,
if you are configuring or editing a package to be run on a different instance of SQL Server). For those cases, use the Disconnected
Edit feature to edit package properties directly. For more information, see Editing DTS Package Properties with Disconnected Edit.

When a package is executing, DTS only makes a connection when the connection is used. DTS does not pre-validate the
connections. By default, connections remain open after being used, in case they require reuse. Because connections are not
checked, you can set the connection properties dynamically with a Microsoft ActiveX® script (for example, by selecting a server)
before making the actual connections.

If there are transformations defined between two connections and you want to change either the source or destination
connection, your transformations may no longer be valid. Therefore, DTS Designer prompts you as to whether you want to reset
the transformation properties to their defaults. If you decide to reset the transformation, the properties of every transformation
associated with the connection are deleted. However, lookups will not be affected.

See Also

DTS Connections in Visual Basic

Data Transformation Services (SQL Server 2000)

Data Link Connection
In Microsoft® SQL Server™ 2000, Data Transformation Services (DTS) packages can use Microsoft Data Link (.udl) files to create
OLE DB connections and resolve the connections at run time. This feature lets you encapsulate the connection properties from a
DTS package into a separate file. In situations where connection information such as the server name, login, or even the OLE DB
provider may change, you can edit the connection string in a data link file instead of the connection properties in a DTS package.

In Microsoft SQL Server version 7.0, you can use a data link file, but the connections are not resolved at run time and can be
modified only by editing the DTS package. This choice is useful in situations where an OLE DB provider has special connection
requirements that can be addressed only through the data link dialog boxes.

If you are specifying a data link connection, you first must specify whether to load an existing data link file or create a data link to
save with DTS Designer.

If you want to use a data link file rather than saving the data link with DTS Designer, you can create one either from Windows
Explorer or during the data link configuration process in DTS Designer.

To create a data link file with run-time resolution

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

DTS Package Workflow
Data Transformation Services (DTS) steps and precedence constraints order work items in a DTS package. You can design DTS
package workflow graphically, through DTS Designer, or programmatically. For more information, see Creating DTS Package
Workflow and Tasks.

You also can use a Microsoft® ActiveX® script to customize step execution. For more information, see Using ActiveX Scripts in a
DTS Workflow.

DTS Package Steps

Steps control the order in which tasks are executed in a DTS package. Steps represent the execution units in the DTS object model,
and they define which tasks execute in what sequence when the package is run.

In DTS Designer, you do not manipulate steps directly. Instead, you manipulate tasks on the DTS Designer design sheet and use
precedence constraints to control the sequence in which the tasks execute. When you place a task on the design sheet, a step is
automatically added to the package, for a step references a task.

When creating a package programmatically, you can control the relationship between a step and a task more precisely. You can
create multiple steps for different package operations and associate the execution of those steps with a single task. For example,
suppose you write a package in Microsoft Visual Basic® and specify in several parts of the package that errors can be generated.
By linking the steps associated with those errors, you can make the different types of errors execute the same Send Mail task. That
Send Mail task can send an e-mail notifying the database administrator (DBA) that the package failed.

DTS Designer allows you to execute an individual package step. This action is useful for testing and troubleshooting individual
steps without having to run the entire package.

To execute a single package step in DTS Designer

Enterprise Manager

Enterprise Manager

Precedence Constraints

Precedence constraints sequentially link tasks in a package. In DTS, you can use three types of precedence constraints, which can
be accessed either through DTS Designer or programmatically:

Unconditional.

If you want Task 2 to wait until Task 1 completes, regardless of the outcome, link Task 1 to Task 2 with an unconditional
precedence constraint.

On Success.

If you want Task 2 to wait until Task 1 has successfully completed, link Task 1 to Task 2 with an On Success precedence
constraint.

On Failure.

If you want Task 2 to begin execution only if Task 1 fails to execute successfully, link Task 1 to Task 2 with an On Failure
precedence constraint. If you want to run an alternative branch of the workflow when an error is encountered, use this
constraint.

The following diagram illustrates the relationship between steps and tasks in DTS Designer and shows how precedence
constraints determine step execution.

Step 1, Step 2, and Step 3 indicate where the package steps occur. After the package is opened and all connections are made, the
flow of execution is as follows:

Step 1: An Execute SQL task drops and re-creates the destination table.

Step 2: If the destination table is successfully dropped and re-created, data is copied from a table in a Microsoft Access
database to a table in a Microsoft SQL Server™ database. The On Success precedence constraint, shown by a green striped
arrow pointing from the Execute SQL task toward the transformation, establishes the relationship between those two steps.
The Transform Data task is shown by the dark gray arrow pointing from the Microsoft Access database to the SQL Server
database.

Because connections are placed at both ends of the Transform Data task arrow on the design sheet, the two precedence
constraints actually touch the connection icons rather than the Transform Data task itself. In Step 2, the icons represent
connections, not tasks. The Transform Data task, represented by the dark gray line, is the only task that DTS Designer
represents by a line rather than an icon. For all other tasks in DTS Designer, you connect precedence constraints to the task
icon itself, rather than to a connection icon.

Step 3: If the data copying task fails, a notification e-mail is sent to a DBA. The On Failure precedence constraint pointing
from the transformation to the Send Mail task establishes the relationship between those two steps.

Using Multiple Precedence Constraints

You can issue multiple precedence constraints on a task. For example, in the following illustration, Task C could have both an On
Success constraint from Task A and an On Failure constraint from Task B. In these situations, DTS assumes a logical "And"
relationship. Therefore, Task A must successfully execute and Task B must fail for Task C to begin execution.

Data Transformation Services (SQL Server 2000)

Using ActiveX Scripts in a DTS Workflow
 New Information - SQL Server 2000 SP3.

You can use Microsoft® ActiveX® scripts to customize the execution of steps in a Data Transformation Services (DTS) package.
Because the code is run before the steps executes, you can use an ActiveX script in a workflow to:

Restart a workflow.

Turn off a step under certain conditions.

Initiate retries of connections and other operations.

Implement loop conditions.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user
knowledge or intervention and may contain security credentials in plain text. Review the script for security issues before use.
For more information, see Security and Scripting.

You can also use a step ActiveX script to initialize or reference global variables. For more information, see Using Global Variables
with DTS Packages.

To add ActiveX workflow scripts in DTS Designer

Enterprise Manager

Enterprise Manager

The following examples show how to implement ActiveX workflow scripts in DTS Designer. You can also add workflow ActiveX
scripts programmatically. For more information, see Adding DTS ActiveX Scripts.

Turning a Step On and Off

The following example, written in Microsoft Visual Basic® Scripting Edition (VBScript), uses an ActiveX script to turn a step on or
off based on the existence of a file:

Function Main()

 Dim fso 'File system object
 Set fso = CreateObject("Scripting.FileSystemObject")
 IF (fso.FileExists("C:\temp\download.tmp")) THEN
 Main = DTSStepScriptResult_ExecuteTask
 ELSE
 Main = DTSStepScriptResult_DontExecuteTask
 END IF

End Function

Retries

The following example, written in VBScript, checks for the presence of a file five times before terminating the step. The global
variable retries stores the number of attempted file checks:

Function Main()

 Dim fso
 Set fso = CreateObject("Scripting.FileSystemObject")
 IF NOT(fso.FileExists("C:\MyFile.txt")) THEN
 DTSGlobalVariables("retries").Value =
 DTSGlobalVariables("retries").Value + 1
 IF DTSGlobalVariables("retries").Value > 5 THEN
 Main = DTSStepScriptResult_DontExecuteTask
 ELSE
 MsgBox "Retry #" & DTSGlobalVariables("retries").Value
 Main = DTSStepScriptResult_RetryLater
 END IF
 ELSE
 Main = DTSStepScriptResult_ExecuteTask
 END IF

End Function

Implementing Loop Conditions

The following example of ActiveX script step code, written in VBScript, is assigned to the second step in a two-step workflow
connected with a precedence constraint (Step 1 -> On Completion precedence constraint -> Step 2).

The ActiveX script associated with Step 2 serves as a loop. The script operates as follows:

1. Creates the global variable counter (initialized to 0 by default), which is incremented each time Step 2 is executed.

2. For the first four times Step 2 is executed, a message box with the value of counter is displayed, and the execution status of
the previous step is set to waiting, which causes the task associated with Step 1 to restart. The task associated with Step 2 is
not executed.

3. When the value of counter reaches five, the task associated with Step 2 is run, and the package completes execution.

Function Main()

 Dim oPkg
 DTSGlobalVariables("counter").Value = _
 DTSGlobalVariables("counter").Value + 1

 If DTSGlobalVariables("counter").Value < 5 THEN
 Msgbox DTSGlobalVariables("counter").Value
 Set oPkg = DTSGlobalVariables.Parent

 'Set previous step status to waiting.
 oPkg.Steps("DTSStep_DTSActiveScriptTask_1").ExecutionStatus = _
 DTSStepExecStat_Waiting

 'Do not execute task 2, step 1 will restart.
 Main = DTSStepScriptResult_DontExecuteTask

 Else
 'Execute task 2, do not restart step 1.
 Main = DTSStepScriptResult_ExecuteTask
 END IF

End Function

See Also

DTSStepScriptResult

Using ActiveX Scripts in DTS

Data Transformation Services (SQL Server 2000)

Managing a DTS Package
You can manage Data Transformation Services (DTS) packages from SQL Server Enterprise Manager and from within DTS tools.
The following topics describe the various aspects of package management.

Topic Description
Creating a DTS Package Explains different ways to create a DTS package.
Editing a DTS Package Describes how to modify an existing package.
Deleting a DTS Package Describes different ways to delete a package and

package versions.
Executing a DTS Package Explains different ways to run a package.
Saving a DTS Package Describes the different formats in which you can save

a package.
Using DTS Package Logs Describes the information contained in a package log.
Managing DTS Package
Properties

Describes different ways to view, configure, and edit
package properties.

Handling Package Security in
DTS

Discusses security issues surrounding packages and
ways to increase package security.

You also can save and execute packages programmatically. For more information, see Managing DTS Package Programs in Visual
Basic.

Data Transformation Services (SQL Server 2000)

Creating a DTS Package
You create Data Transformation Services (DTS) packages either by using tools provided with Microsoft® SQL Server™ 2000 or by
programming the DTS object model.

Package
Construction

Method Description Recommended Usage
DTS Import/Export
Wizard

An easy-to-use tool that guides
you, a step at a time, through
the process of creating a DTS
package.

For simple data transformation or
data movement solutions (for
example, importing tabular data
into a SQL Server 2000 database).

DTS Designer An application that uses
graphical objects to help you
build packages containing
complex workflows.

DTS Designer includes a set of
model DTS Package Templates,
each designed for a specific
solution that you can copy and
customize for your own
installation.

For sophisticated data
transformation solutions requiring
multiple connections, complex
workflows, and event-driven logic.

DTS package templates are geared
toward new users who are
learning about DTS Designer or
more experienced users who want
assistance setting up specific DTS
functionalities (for example, data
driven queries).

Programming DTS
Applications

Programming applications that
you can use to write and
compile a DTS package either in
Microsoft Visual Basic® or
Microsoft Visual C++®.

For developers who want to access
the DTS object model directly and
exert a fine degree of control over
package operations.

Packages created
programmatically can be opened
and further customized in DTS
Designer. In addition, packages
created in the DTS Import/Export
Wizard or DTS Designer can be
saved as a Visual Basic program
and then opened and further
customized in a development
environment such as Microsoft
Visual Studio®.

DTS packages created on an instance of SQL Server 2000 cannot be loaded or run on an instance of SQL Server version 7.0 or
earlier. For more information, see SQL Server Backward Compatibility Details.

To create a DTS package using the DTS Import/Export Wizard

Wizard

Wizard

To create a DTS package using DTS Designer

Enterprise Manager

Enterprise Manager

To access a DTS package template

Enterprise Manager

Enterprise Manager

See Also

Creating a Package with DTS Designer

Creating a Package with the DTS Import/Export Wizard

Creating DTS Packages in Visual Basic

Data Transformation Services (SQL Server 2000)

Editing a DTS Package
When you edit a Data Transformation Services (DTS) package, you modify or further customize a previously saved package. For
example, you can create a package that copies data from an Oracle server to an instance of Microsoft® SQL Server™ 2000, and
later you can add a task that sends an e-mail notification when the copy operation completes.

You edit a package by:

Using DTS Designer.

Note You cannot use the DTS Import/Export Wizard to edit a package.

Using the Microsoft Visual Basic® development environment, if a package has been created with DTS Designer or the DTS
Import/Export Wizard and saved as a Visual Basic file.

Using the Microsoft Visual Studio® development environment, if a package has been created in Microsoft Visual Basic or
Microsoft Visual C++® modules and saved as a Visual Basic or Visual C++ project. In most cases, you can open these types
of packages for editing in DTS Designer after saving them.

To edit a package, you must have authorization to open the package. If a package is saved with an owner password and you do
not have access to that password, you cannot edit the package. If a user password is set, and you have access to that password,
you can execute but not edit the package.

You cannot set DTS package password protection if you save a package to SQL Server 2000 Meta Data Services. In that case, you
need to handle security through Windows Authentication or SQL Server Authentication. For more information, see Handling
Package Security in DTS.

To edit a DTS package saved to a structured storage file

Enterprise Manager

Enterprise Manager

To edit a DTS package saved to SQL Server or Meta Data Services

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Deleting a DTS Package
You can delete any Data Transformation Services (DTS) package. The method you use depends on the format in which you saved
the package. For example:

If the package was saved to Microsoft® SQL Server™ or SQL Server 2000 Meta Data Services, delete the package through
SQL Server Enterprise Manager.

You can only delete a package saved to SQL Server or Meta Data Services if you are the package creator or a member of the
sysadmin fixed server role. If the package was saved to a structured storage file or to a Microsoft Visual Basic® file, delete
the package through a file manager.

Deleting Package Versions

To delete package versions, you need to consider the format in which you saved the package. For example:

If you save a package to SQL Server, you can delete any package version.

If you save a package to Meta Data Services, you can delete only the most recent package version.

If you save a package to a structured storage file, you must delete the entire file. You cannot delete individual packages or
package versions saved to the file.

Packages saved to a Visual Basic file do not contain version information.

To delete a DTS package

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Executing a DTS Package
When you run a Data Transformation Services (DTS) package, all of its connections, tasks, transformations, and scripting code are
executed in the sequence described by the package workflow.

You can execute a package from:

Within a DTS tool.

SQL Server Enterprise Manager.

Package execution utilities.

Executing a Package from a DTS Tool

You can execute a package in DTS Designer after creating or editing a package or in the DTS Import/Export Wizard after creating a
package.

When you run a package in DTS Designer or the DTS Import/Export Wizard, a summary status of the execution progress and
execution status of all the steps in the package is displayed. You can check the status of each step and gather information on steps
that failed to execute successfully.

Note You also can view the status of step execution when you use the DTS Run utility.

To execute a DTS package from DTS Designer

Enterprise Manager

Enterprise Manager

To execute a DTS package from the DTS Import/Export Wizard

Enterprise Manager

Enterprise Manager

Executing a Package from Enterprise Manager

You can execute a package from the Data Transformation Services node of the SQL Server Enterprise Manager console tree.
You do not have to open the package to execute it.

To execute a DTS package from SQL Server Enterprise Manager

Enterprise Manager

Enterprise Manager

Executing a Package from Other Tools

You also can run packages by:

Issuing dtsrun command prompt utility from the command prompt. This utility includes a variety of command switches you
can use for customizing the execution of a package.

Using the DTS Run utility. This utility, presented through a set of dialog boxes, offers a subset of the most common
execution options available with dtsrun.

To execute a DTS package using the DTS Run utility

Enterprise Manager

Enterprise Manager

To execute a DTS package using dtsrun

Enterprise Manager

Enterprise Manager

See Also

DTS Package Execution Utilities

dtsrun Utility

Executing DTS Packages in Visual Basic

Scheduling a DTS Package for Execution

Data Transformation Services (SQL Server 2000)

Scheduling a DTS Package for Execution
You can schedule a saved Data Transformation Services (DTS) package to execute at specific times, either once or at recurring
intervals. For example:

Daily at 12:00 midnight.

Weekly on Sunday at 6:00 A.M.

The first or last day of the month.

A scheduled DTS package is executed by SQL Server Agent as a job. Because SQL Server Agent controls the underlying
automation for scheduling, it must be running for any scheduled packages to execute. To schedule a DTS package for execution,
do one of the following:

In SQL Server Enterprise Manager, right-click a DTS package, and then click Schedule package.

This option is the easiest way to schedule packages created in the DTS Designer for execution. However, the package needs
to have been saved to either the Microsoft® SQL Server™ msdb database or SQL Server 2000 Meta Data Services and
needs to exist on the local server.

To schedule a DTS package using the Schedule Package option

Enterprise Manager

Enterprise Manager
Use SQL Server Agent to schedule any package created in DTS Designer, with the DTS Import/Export Wizard, or as an
external program.

To schedule a DTS package using SQL Server Agent

Enterprise Manager

Enterprise Manager

Use the schedule option in the DTS Run utility (dtsrunui). Use this option if you need to schedule a package saved as a
structured storage file.

If you want to schedule a package for execution on a server other than the local server, register that server first, before using
the DTS Run utility scheduling option.

See Also

Configuring the SQLServerAgent Service

DTS Package Execution Utilities

dtsrun Utility

Data Transformation Services (SQL Server 2000)

Saving a DTS Package
When you save a Data Transformation Services (DTS) package, you save all DTS connections, DTS tasks, DTS transformations, and
workflow steps and preserve the graphical layout of these objects on the DTS Designer design sheet.

You can save a package to:

Microsoft® SQL Server™.

With this default save option, you can store a package as a SQL Server msdb table, allowing you to: store packages on any
instances of SQL Server on your network; keep a convenient inventory of saved packages in SQL Server Enterprise
Manager; and create, delete, and branch multiple package versions during the package development process.

To save a DTS package to SQL Server

Enterprise Manager

Enterprise Manager
SQL Server 2000 Meta Data Services.

With this save option, you can maintain historical information about the data manipulated by the package. However, Meta
Data Services and the repository database must be installed and operational on your server. You can track the columns and
tables that are used by the package as a source or destination. You also can use the data lineage feature to track which
version of a package created a particular row. You can use these types of information for decision-support applications. For
more information, see Sharing Meta Data.

To save a DTS package to Meta Data Services

Enterprise Manager

Enterprise Manager
A structured storage file.

With this save option, you can copy, move, and send a package across the network without having to store the file in a SQL
Server database. The structured storage format allows you to maintain multiple packages and multiple package versions in
a single file.

To save a DTS package to a structured storage file

Enterprise Manager

Enterprise Manager
A Microsoft Visual Basic® file.

With this save option, you can programmatically customize a package created in DTS Designer or the DTS Import/Export
Wizard. The option scripts out the package as Visual Basic code, and you can later open the Visual Basic file and modify the
package definition in your development environment. For more information, see Managing DTS Package Programs.

To save a DTS package to a Visual Basic file

Enterprise Manager

Enterprise Manager

When you save a package to SQL Server or to a structured storage file, you can secure the package with one or more passwords.
When you save a package to Meta Data Services or as a Visual Basic file, the DTS package security options are not available.
However:

You can keep packages saved to Visual Basic files secure through a source code control system such as Microsoft Visual
SourceSafe™.

Meta Data Services contains its own security, which can be used to secure DTS packages.

For more information, see Handling Package Security in DTS.

Data Transformation Services (SQL Server 2000)

Saving a DTS Package to SQL Server
Save your Data Transformation Services (DTS) package to Microsoft® SQL Server™ if you want to store packages on any instance
of SQL Server on your network, keep a convenient inventory of those packages, and add and delete package versions during the
package development process. This option saves a DTS package in the sysdtspackages table in the SQL Server msdb database
as BLOB (binary large object) data.

You can save and delete versions of a SQL Server package. If a package has multiple versions, you can display a version history in
SQL Server Enterprise Manager and open the version you want. Otherwise, the latest package version is opened.

To save a DTS package to SQL Server

Enterprise Manager

Enterprise Manager

To access a DTS package saved to SQL Server

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Saving a DTS Package to Meta Data Services
Save your Data Transformation Services (DTS) package to Microsoft® SQL Server™ 2000 Meta Data Services if you plan to track
package version, meta data, and data lineage information.

You can save versions of a package to Meta Data Services. If a package has multiple versions, you can display a version history in
SQL Server Enterprise Manager and open the version you want. Otherwise, the latest package version is opened. You can also
view version information for packages saved to Meta Data Services with Meta Data Services viewing tools supplied with SQL
Server Enterprise Manager.

When you save a package to Meta Data Services, the DTS package protection options are not available. If package security is
important, consider saving the package to SQL Server or as a structured storage file instead.

If you create a package outside of DTS Designer (for example, in Microsoft Visual Basic®), you can specify the repository database
to which you want to save the package data (for example, Microsoft Access).

Versioning

DTS Designer maintains version information about each saved package, and this information can be stored in Meta Data Services.
Version information for each package includes:

A package GUID, a globally unique identifier (GUID) that identifies the package.

A version GUID, a GUID that identifies the package version.

When a package is first created, the package GUID and version GUID are the same, and there is only one version. If changes made
to a package are saved, the package is versioned, and the new version is assigned a different version GUID than that of the
previously saved version. Rather than the last version overwriting the previous one (as in a typical save operation), each package
version is preserved.

When you save a package to Meta Data Services, version information can be linked to saved meta data by using the scanning
options. In addition, data lineage information can be saved for a package. These features let you track:

Changes to the package meta data, such as changes to table columns and keys (displayed in the Meta Data Browser in
SQL Server Enterprise Manager) across package versions.

Which package version produced a particular set of transformations. To do this, use the data lineage lookup feature in SQL
Server Enterprise Manager.

To save a DTS package to Meta Data Services

Enterprise Manager

Enterprise Manager

To open a DTS package saved to Meta Data Services

Enterprise Manager

Enterprise Manager

See Also

Sharing Meta Data

Viewing Meta Data in DTS

Data Transformation Services (SQL Server 2000)

Saving a DTS Package to a Structured Storage File
Save a Data Transformation Services (DTS) package to a structured storage file if you want to copy, move, and send a package
across the network without having to store the package in a Microsoft® SQL Server™ database.

With the structured storage format, you can maintain multiple packages and multiple package versions in a single file. If you want
to save multiple packages to the same structured storage file, use different package names but the same file name when saving.
However, every package and package version you save under the structured storage file name persists for the lifetime of that file.
Although you can edit individual packages or package versions saved to a structured storage file, you cannot delete them.
Therefore, you need to manage package versions differently when saving to structured storage files than when saving to SQL
Server.

When saving a package to SQL Server, you can delete any package version you want. With a structured storage file, you can
delete only the entire file. If you want to retain or branch a specific package version saved in a structured storage file, save the
package version under a new file name. It is recommended that you do this infrequently, because saving multiple packages with
multiple versions can generate a sizeable number of large files.

Note When you save a DTS package to a structured storage file, you create a file with the extension .dts.

To save a DTS package to a structured storage file

Enterprise Manager

Enterprise Manager

To open a DTS package saved to a structured storage file

Enterprise Manager

Enterprise Manager

See Also

Recording Data Lineage in DTS

Data Transformation Services (SQL Server 2000)

Saving a DTS Package to a Visual Basic File
You can save a Data Transformation Services (DTS) package that has been created by DTS Designer or the DTS Import/Export
Wizard to a Microsoft® Visual Basic® file. Packages saved in this way can be incorporated into Visual Basic programs or can be
used as prototypes by Visual Basic developers who need to reference the components of the DTS object model.

To save a DTS package to a Visual Basic file

Enterprise Manager

Enterprise Manager

See Also

Saving DTS Packages in Visual Basic

Data Transformation Services (SQL Server 2000)

Using DTS Package Logs
Use the Data Transformation Services (DTS) package log to troubleshoot problems that occurred during the execution of a DTS
package. The DTS package log, unlike the Microsoft® SQL Server™ error log and the DTS exception log, contains information
about the success or failure of each step in a package and can help determine the step at which a package failure occurred. Each
time a package executes, execution information is appended to the package log, which is stored in msdb tables in SQL Server or
in SQL Server Meta Data Services. You can save package logs on any server running an instance of SQL Server 2000. If a package
log does not exist, the log will be created when a package is run.

You must enable package logging on a package-by-package basis. If package logging is enabled, the executing package writes
information to the package log about all steps in the package, whether or not an individual step runs. If a step runs, it will retain
start and end times, and the step execution time. For steps that do not run, the log lists the steps and notes that the step was not
executed.

Package logging is only available on servers running an instance of SQL Server 2000.

Along with DTS package logs, DTS exception files provide helpful troubleshooting information. The Data Driven Query task and
Transform Data task use exception files to save error information about rows of data that were not copied to the destination and
to store the actual source and destination rows that failed. For more information, see Tasks That Transform Data.

To enable package logging

Enterprise Manager

Enterprise Manager

To view DTS package logs

Enterprise Manager

Enterprise Manager

Data Transformation Services (SQL Server 2000)

Managing DTS Package Properties
In Data Transformation Services (DTS), you can retrieve or set package properties graphically, with DTS Designer, or
programmatically. For more information on managing package properties programmatically, see Creating DTS Packages with the
DTS Object Model.

With DTS Designer, you can view or monitor properties associated with:

Package identification.

Errors.

Microsoft Windows® events.

Global variables.

Transactions.

To view or modify DTS package properties

Enterprise Manager

Enterprise Manager

DTS Designer also includes a feature called Disconnected Edit that lets you view or modify any property in a package. Use this
feature when you need to reconfigure package connections so a package configured for one environment can be run in another.
However, use Disconnected Edit to manage package properties only when other methods of modifying package properties are
unavailable. For more information, see Editing DTS Package Properties with Disconnected Edit.

Data Transformation Services (SQL Server 2000)

Viewing and Modifying DTS Package Properties
In Data Transformation Services (DTS) Designer, you can view or modify properties associated with:

Package identification.

Most of these properties are read-only. The information includes package name, package and version globally unique
identifiers (GUID), creator name, creation date, computer name, and a text description for the package.

Error information.

You can specify information about the log file, which contains package run-time errors. You also can specify whether
package execution is terminated after the first error, which reflects a step failure.

Microsoft® Windows® events.

You can specify whether the package execution status is written to the Windows event log. You also can define the process
priority for Windows events and the maximum number of tasks that can execute concurrently with the package.

Package global variables.

You can view information about global variables, which can be referenced by any Microsoft ActiveX® script in the package.
You can create new global variables or edit existing global variables.

Data lineage.

You can track the source of any piece of data and the transformations applied to that data when saving it to Microsoft SQL
Server™ 2000 Meta Data Services.

Meta Data Services scanning.

You can relate objects referenced by the DTS package to catalog meta data in Meta Data Services.

Transactions.

You can assign steps in a workflow to a transaction, and commit and roll back individual steps based on the success or
failure of the transactional unit. For transactions to work, the Microsoft Distributed Transaction Coordinator (MS DTC) must
be running on the computer executing the package.

To view or modify DTS package properties

Enterprise Manager

Enterprise Manager

See Also

Incorporating Transactions in a DTS Package

Recording Data Lineage in DTS

Using DTS Package Logs

Using Global Variables with DTS Packages

Data Transformation Services (SQL Server 2000)

Editing DTS Package Properties with Disconnected Edit
Data Transformation Services (DTS) Designer includes a Disconnected Edit feature that allows you to view or modify the value of
any property associated with a package. For example:

General package properties (for example, package name, description, creator name, package priority class).

Connection properties (for example, server name, user name, and password).

Task properties (for example, custom tasks, tasks that transform data, and data driven queries).

Step properties, including precedence constraints.

Global variables.

Use the Disconnected Edit feature to:

Modify a package when the source or destination connection is unavailable. Usually, when you build a DTS package,
connectivity is required as a precaution against setting properties or including components that do not work. Disconnected
Edit allows you to edit a package without establishing a live connection. For example, you can modify a package created on
a test system so that it works on a production system at a different site. You can use Disconnected Edit to change the
connection properties of the source and destination to those of the production system, without having to actually connect to
the production system.

View and modify properties that are not exposed through the DTS Designer user interface, such as task names, step names,
and connection names.

When changing a task name with Disconnected Edit, change the TaskName property of the step associated with the task.

Caution Because Disconnected Edit does not validate changes to property values, entering invalid data can result in package
failure and unwanted effects on your system. Disconnected Edit is similar to Registry Editor. Both are powerful tools for editing
properties directly, and it is recommended that both be used only by advanced users when there are no alternative methods of
modifying values.

To use Disconnected Edit to modify DTS package properties

Enterprise Manager

Enterprise Manager

See Also

Dynamic Properties Task

Data Transformation Services (SQL Server 2000)

Handling Package Security in DTS
To view, edit, protect, schedule, and run Data Transformation Services (DTS) packages on your network, you need to understand
issues that affect package access, permissions, and connections.

DTS Package Passwords

When you save a package to Microsoft® SQL Server™ or as a structured storage file, you can use DTS package passwords. You
use DTS passwords in addition to the Windows Authentication or SQL Server Authentication passwords you use to connect to an
instance of SQL Server. The following types of DTS package passwords are available:

If you set an owner password, the package user needs the password to edit or run the package.

If you set a user password, you also must set an owner password. Package users with access only to the user password can
run the package. However, they can neither open nor edit the package unless they have access to the owner password.

It is strongly recommended you use DTS package passwords for all packages to ensure both package and database security. At a
minimum, always use DTS package passwords when connection information to a data source is saved and Windows
Authentication is not used.

To set a DTS package password

Enterprise Manager

Enterprise Manager

Package Scheduling and Security Issues

Usually, a package run from DTS Designer, the DTS Import/Export Wizard, the DTS Run utility, or from the command prompt
executes under the security context of the user who is currently logged in. However, a package scheduled for execution runs
under the security context of the SQL Server Agent job that runs the package. The owner of that job may or may not be the same
as the user currently logged in. Consider the following types of ownership:

For packages created under a Microsoft Windows NT® 4.0 or Microsoft Windows® 2000 account, the job runs under the
security context of the account that started SQL Server Agent.

If the job is owned by a login belonging to the sysadmin fixed server role, the security context of the package defaults to
the account used to start the local SQL Server Agent. If the server is registered using Windows Authentication, the owner of
the job is the account of the SQL Server Agent. If the server is registered using SQL Server Authentication, the owner of the
job is that SQL Server login.

If the job is owned by a login that is not a member of the sysadmin fixed server role, the package runs under the context of
the job step proxy account, with the rights and permissions of that account.

Ownership conflicts can generate the following types of problems:

File paths specified in the package may not be visible in a different security context. That is, a different user executing the
package may not have access to the same share points as the package creator (for example, the user may not have the drive
letters of the package creator mapped). To guard against this problem, use Universal Naming Convention (UNC) names
rather than file paths when specifying external files.

The owner of the SQL Server Agent job that runs the package does not have permission to access the paths pointed to or
connections made in the package. For example, the owner of the job may only have local server access. If this problem
arises, view the security context of the job in SQL Server Enterprise Manager and log out of that instance of SQL Server.
Then log back in to that same instance of SQL Server using the security context of the job and attempt to run the package.

For packages that call COM components in Microsoft ActiveX® scripts, the called components must exist on the same
workstation on which the package is running. Also, the SQL Server Agent job account must have permission to run the job.

For all of the above situations, copying external files used by the package onto the same server as the executing package may
preempt package failures caused by ownership problems. In cases where COM components are used by a scheduled package, the
called components must be loaded onto the same computer on which the instance of SQL Server is installed, and SQL Server

Agent must have permission to use the objects. Otherwise, the package will not execute successfully.

Important If you schedule a DTS package with a user password instead of an owner password, the scheduled job will not report
a failure unless the package is set to fail on the first failed step. This is because the user does not have permission to read the
package status after the package is run. This behavior will not occur if the package is scheduled using the owner password.

Data Link Files and Security

Microsoft Data Link (.udl) files are unencrypted text files you can use to encapsulate a connection string in a package. It is strongly
recommend you do not include password information in a data link file because the information would be visible to anyone
viewing the text file. If you intend to use data link files to store a connection string, consider the following:

Use Windows Authentication for the connection. Windows Authentication does not require login information to be placed in
the data link file. It only requires a flag indicating that a trusted connection will be used. This connection method is secure
for data link files.

Do not use SQL Server Authentication for the connection. SQL Server Authentication requires you to place login and
password information in the data link file. This information would not be secure.

Saving Package Security Information

By default, the Windows Authentication or SQL Server Authentication information used to connect to a data source is saved along
with the package. To control the persisting of the authentication information, use the Persist Security Info option in the
Advanced Connection Properties dialog box in DTS Designer. This option only exists for SQL Server connections.

There may be reasons for disabling the persisting of the Windows Authentication or SQL Server Authentication information in a
package. For example, suppose you want to create a package that will be tested in a different environment from the one in which
the package was created. In that case, you may not want the security information from the connections saved along with the
package because that information cannot be used to reconnect in the new environment. Make package connections with data
links that resolve their settings from a data link file and use Windows Authentication for the connections. This increases package
portability and maintains package security.

To modify the persisting of authentication information

Enterprise Manager

Enterprise Manager

See Also

Configuring the SQLServerAgent Service

Connecting to SQL Server

Data Link Connection

Scheduling a DTS Package for Execution

Data Transformation Services (SQL Server 2000)

Adding Functionality to a DTS Package
Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) includes capabilities for extending the functionality of a DTS
package. The following sections provide information on these capabilities and explains how to use them.

Topic Description
Using ActiveX Scripts in DTS Explains how to write scripting code that

executes as a task, workflow step, or
transformation.

Incorporating Transactions in a DTS
Package

Describes how to bind multiple package steps,
including disparate operations on multiple
platforms, into a single transactional unit.

Lookup Queries Explains how to use lookup queries, which allow
you to run queries and stored procedures
against other connections besides the source
and destination.

Using Global Variables with DTS
Packages

Explains how to use global variables to pass
data between different package steps and tasks,
and dynamically assign values.

Using Parameterized Queries in DTS Describes how parameterized queries can be
used with several DTS tasks.

Querying a DTS Package from
External Sources

Explains how to make DTS package data
available to an external source, such as SQL
Query Analyzer, and how to join package data in
a distributed query.

Data Transformation Services (SQL Server 2000)

Using ActiveX Scripts in DTS
 New Information - SQL Server 2000 SP3.

In Data Transformation Services (DTS), you can extend the capabilities of your DTS package by using Microsoft® ActiveX® scripts
that implement the objects, properties, methods, and collections of the DTS object model. Using ActiveX scripts, you can:

Format and transform the data as it is copied from its source to its destination.

Write functions that use conditional logic to manage package workflow or that process data on a row-by-row basis.

Create, use, and modify the values stored in DTS global variables.

Manipulate COM objects built for data access and utility functions.

Create and use Microsoft ActiveX Data Objects (ADO) connections, commands, recordsets, and other objects to access and
manipulate data.

Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript® are available with an installation of Microsoft SQL
Server™. If you plan to write ActiveX scripts in a language other than VBScript and JScript, be sure the language library for the
scripting language you use is installed. For more information, search on "VBScript" and "JScript" in the MSDN® Library at
Microsoft Web site.

Note To use Microsoft ActiveX scripting in Microsoft SQL Server 2000 after uninstalling SQL Server 7.0, you must re-register the
ActiveX scripting library (Axscphst.dll). Use the Regsvr32.exe registration utility and execute the following command (substituting
your own drive letter) from the command prompt or the Windows Run command:

regsvr32.exe C:\Program Files\Microsoft SQL Server\80\Tools\Binnaxscphst.dll

If the registration is successful, a message box appears indicating that Axscphst.dll is registered properly.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

Writing ActiveX Scripts in DTS

In DTS, you can write the following types of scripts:

Transformation scripts that are applied to data on a row-by-row basis. The script executes each time a row of data is read
from the source.

You add these scripts only to DTS tasks that transform data: the Transform Data task; the Data Driven Query task; and the
Parallel Data Pump task (available only programmatically). These tasks use the data pump to transform the data.

ActiveX scripts that function as tasks. The script is run once each time the task is called by the package.

You can use an ActiveX script task to perform functions that are not available in the other tasks in DTS Designer. For more
information, see ActiveX Script Task.

Workflow scripts that are applied to a package step prior to step execution. The script is run once each time the task is called
by the package.

You can use an ActiveX workflow step script to customize step execution. For example, you can use certain return codes in
an ActiveX workflow step script to prevent other tasks in a package from executing, or you can allow a task to execute or
mark the task as waiting to be run. For more information about writing scripts that control workflow, see DTS Package
Workflow.

Generally, you do not use an ActiveX script task or ActiveX workflow script to operate on data on a row-by-row basis because it is
less efficient than using a transformation script. However, it is possible to do so. For example, you could use an ActiveX Script task
to create one or more ADO connections and populate a set of text files with data from an ADO recordset.

Important An ActiveX script in a transformation can affect the execution speed of a DTS package. Therefore, if performance is a
priority, use scripting carefully when building a package. For more information, see Enhancing Performance of DTS Packages.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Adding ActiveX Scripts to a DTS Package

You can add scripts to a package in DTS Designer, in the DTS Import/Export Wizard, or programmatically. For more information
about adding scripts programmatically, see Adding DTS ActiveX Scripts.

To add transformation scripts:

In DTS Designer, add transformation scripts in the ActiveX Script Transformation Properties dialog box to define an
ActiveX Script transformation for a Transform Data task or a Data Driven Query task.

In the DTS Import/Export Wizard, add transformation scripts in the Transformation tab of the Column Mappings and
Transformations dialog box. For more information, see Creating a DTS Package with the DTS Import/Export Wizard.

To add ActiveX Script Tasks:

In DTS Designer, drag an ActiveX Script Task onto the design sheet and add the script when configuring the task.

To add ActiveX workflow scripts:

In DTS Designer, access the Workflow Properties dialog box associated with a package step.

Scripting Capabilities

The range of functionality you can access from ActiveX scripts covers:

The SQL Server environment. You can use Transact-SQL statements in your scripts and access SQL Server tables.

Data access interfaces. SQL Server installations include familiar data access interfaces such as ADO, Data Access Objects
(DAO), and Remote Data Objects (RDO), which you can use in your scripts to make connections, create recordsets, and
execute SQL commands.

Custom COM objects. You can access custom COM objects you develop in your scripts, if the objects are available on the
server running the package.

The scripting language. You can use any function of the scripting language you code with, provided the scripting engine for
the language is installed on your server. Most scripting languages allow you to:

Use looping and conditional logic.

Write functions that control row selection, determine workflow, control the success or failure of an operation, or
throw exceptions. These determinations are made by specialized return code constants specified by the DTS object
model.

For example, a scripting language such as VBScript allows you to use intrinsic functions supplied by the language, such as
Trim, Len, and CInt, and validate data in a field with functions such as IsNumeric or IsDate. If you require functionality
beyond what can be achieved using a scripting language, you may want to program your own DTS applications or custom
tasks. For more information, see Creating DTS Packages in Visual Basic.

Scripting Examples

The following DTS ActiveX script examples show:

ActiveX Script transformations that transform date data, concatenate columns, and validate data.

ActiveX Script tasks that connect and use ADO objects, and populate global variables.

Simple Column Transformation

You have a daily sales table sent to your Accounting department. However, your accounting month is not based on a calendar
month. Sales before the 15th day of the month are considered sales for that month. Any sales that take place on the 15th or after
are considered sales for the following accounting month.

The following ActiveX Script transformation, written in VBScript, copies all the columns from the source to destination table, for
each row of source data, except for the AccountingMonth column. For that column, the Sale_Date is checked to see if the sale

took place before or after the 15th, and the AccountingMonth adjusted accordingly.

Function Main()
 DTSDestination("DeptName") = DTSSource("DeptName")
 DTSDestination("Sales") = DTSSource("Sales")
 DTSDestination("Sale_Date") = DTSSource("Sale_Date")

' break the day out of the Sale_Date
 theDay = Day(DTSSource("Sale_Date"))

' if the day field is before the 15th, the Accounting Month is the same as
' the current Sale_Date month
 If theDay < 15 then
 DTSDestination("AccountingMonth") = DTSSource("AccountingMonth")
 Else
' if the day is the 15th or later, the sales dollars belong in the next
' Accounting Month
 theMonth = DTSSource("AccountingMonth") + 1
 ' check if we were in December when we added 1 to the month, and ' roll it to January
 If theMonth > 12 then
 theMonth = 1
 End if
 DTSDestination("AccountingMonth") = theMonth
 End If

 Main = DTSTransformStat_OK

End Function

Concatenating Columns

In the following example, an ActiveX Script transformation, written in VBScript, consolidates the Sales_Month, Sales_Day, and
Sales_Year columns from the source table into a single Sales_Date column in the destination table. This script is run on each row
in the source data, and can be used in those tasks that operate on a row-by-row basis.

Function Main()
 DTSDestination("CustomerID") = DTSSource("CustomerID")
 DTSDestination("Sales_Date") = Trim(DTSSource("Sales_Month")) _
 + "/" + Trim(DTSSource("Sales_Day")) + "/" + _
 Trim(DTSSource("Sales_Year"))
 Main = DTSTransformStat_OK
End Function

Transforming Date Data

When importing data from a file to an OLE DB destination table, you can use the VBScript CDate function to convert date data if
the date format is in a text or character field and is not in the format required by OLE DB, which is yyyy-mm-dd hh:mm:ss:sss.
CDate is useful when the source data is in more than one format. If the source data is in a single format, then consider using the
Date Time transformation, which is faster.

Function Main()

 DTSDestination("Total Sales") = DTSSource("Total Sales ")
 DTSDestination("DestColumnDate") = CDATE(DTSSource("SourceColumnDate"))

 Main = DTSTransformStat_OK

End Function

Reading Values from a Text File Using FileSystemObject

In the following VBScript example, the input text file, Start_End_Dates.txt, contains the start and end dates to be read into global
variables. The text file is stored on the C:\ drive. The start date is the first line of text and contains "01/01/00" and the second line
contains the end date, which is "01/31/00". After the package executes and the script runs, two message boxes are displayed. The
first message box shows "The Start Date is: 01/01/00", and the second message box shows "The End Date is: 01/31/00".

' Read start and end dates from a flat file and
' store the values in dynamically generated global variables
'Function Main()

 dim oFSO
 dim x

' instantiate the Scripting Object
 set oFSO = CreateObject("Scripting.FileSystemObject")

' Open the file
 set x = oFSO.OpenTextFile("C:\Start_End_Dates.txt")

' store the first line, which is the Start Date, in a global variable
 DTSGlobalVariables("StartDate").value = x.Readline
 MsgBox "The Start Date is: " & DTSGlobalVariables("StartDate").value

' store the second line, which is the End Date, in a global variable
 DTSGlobalVariables("EndDate").value = x.Readline
 MsgBox "The End Date is: " & DTSGlobalVariables("EndDate").value

 x.Close

 Main = DTSTaskExecResult_Success

End Function

Using an ADO Connection and Recordset to Check Records

The following ActiveX script creates a connection to the Northwind database and the employee table and counts the number of
employee records. If employee records are found in the table, the script displays the number of employees and sends a success
flag back to the package. Otherwise, the script sends a failure flag. Those flags can be used to trigger other tasks. For example, the
success flag can signal that the table has records and then execute a Bulk Insert task. You can use the failure flag to execute a Send
Mail task informing a database administrator (DBA) that a potential problem exists.

dim myConn
dim myRecordset
dim iRowCount

' instantiate the ADO objects
set myConn = CreateObject("ADODB.Connection")
set myRecordset = CreateObject("ADODB.Recordset")

' set the connection properties to point to the Northwind database,
' using the Customers table
myConn.Open = "Provider=SQLOLEDB.1;Data Source=(local); _
 Initial Catalog=Northwind;user id = 'sa';password='sapassword'"

mySQLCmdText = "Select 'rowcount' = Count(*) from Customers"

myRecordset.Open mySQLCmdText, myConn

set Flds = myRecordset.Fields
set iRowCount = Flds("rowcount")

If iRowCount.Value = 0 then
 Main = DTSTaskExecResult_Failure
Else
 MsgBox "The number of customers is: " & iRowCount.Value
 Main = DTSTaskExecResult_Success
End If

Inserting Rows into a Table using an ADO Recordset

The following example contains an ActiveX script written in VBScript that shows how to connect to a source using ADO and how
to insert the rows into the destination table. The example uses tables from the Northwind database, and one that you must
create, a NewEmployeeTerritory table that contains the EmployeeID and the new TerritoryID that the employee is assigned
to. These new territory assignments need to be entered into the EmployeeTerritory table.

To run this example, do the following:

1. Create a table named NewEmployeeTerritory in the Northwind database that has a schema identical to the
EmployeeTerritory table.

2. Insert the following four records into the NewEmployeeTerritory table:

EmployeeID TerritoryID

1 03801
1 07960
3 40222
9 11747

3. Create a new DTS package in DTS Designer.

4. Drag an ActiveX Script task onto the design sheet.

5. In the ActiveX script box, place the following code between the FUNCTION MAIN() and END FUNCTION statements:

' These values were copied from the ADOVBS.INC file.
'---- CursorTypeEnum Values ----
Const adOpenForwardOnly = 0
Const adOpenKeyset = 1
Const adOpenDynamic = 2
Const adOpenStatic = 3

'---- CommandTypeEnum Values ----
Const adCmdUnknown = &H0008
Const adCmdText = &H0001
Const adCmdTable = &H0002
Const adCmdStoredProc = &H0004

dim countr

' Instantiate the ADO objects.
set mySourceConn = CreateObject("ADODB.Connection")
set mySourceRecordset = CreateObject("ADODB.Recordset")

'Set the connection properties to point to Northwind.
'Use the NewEmployeeTerritories table.
mySourceConn.Open = "Provider=SQLOLEDB.1;Data Source=(local); _
 Initial Catalog=Northwind;user id = 'sa';password='sapassword'"

mySQLCmdText = "Select * from NewEmployeeTerritories"

'Execute the mySQLCmdText, and put the data into the myRecordset object.
mySourceRecordset.Open mySQLCmdText, mySourceConn, adOpenKeyset

If mySourceRecordset.RecordCount < 1 Then
 MsgBox " There are no records found. Return a Failure code"
 Main = DTSTaskExecResult_Failure
Else
' Since we have records to insert into the EmployeeTerritory table, create
' a Connection object and do the INSERT.
 dim EmpID, TerrID, myDestSQL
 set myDestConn = CreateObject("ADODB.Connection")
 myDestConn.Open = "Provider=SQLOLEDB.1;Data Source=(local); _
 Initial Catalog=Northwind;user id = 'sa';password = 'sapassword'"

 for countr = 1 to mySourceRecordset.RecordCount
 EmpID = mySourceRecordset.Fields("EmployeeID").value
 TerrID = mySourceRecordset.Fields("TerritoryID").value
 ' Put single quotes around the TerrID since it is a varchar and 'needs to have the single
quotes when it is in the VALUES list.
 TerrID = "'" & Terrid & "'"

 myDestSQL = "INSERT INTO EmployeeTerritories _
 VALUES (" & EmpID & "," & Terrid & ")"
 myDestConn.Execute myDestSQL

 mySourceRecordset.MoveNext
 Next

 Main = DTSTaskExecResult_Success

End If

Validating Data

The following ActiveX script, written in VBScript, modifies data on a row-by-row basis. Using the Customers table of the
Northwind database as a source, the script moves the data into a new destination table in Northwind. The script validates
several columns in the source data and transforms some column data before the row is inserted into the destination. The
transformations change the Company Name to uppercase characters, trim leading and trailing spaces from the first name and
last name, and fill the Region field with the string "unknown" if it is empty.

' Verify that there is a CompanyName. If there is, process the record. If
' there is not, skip the record.
If DTSSource("CompanyName") <> "" Then
 DTSDestination("CustomerID") = DTSSource("CustomerID")
 ' Uppercase the Company Name
 DTSDestination("CompanyName") = Ucase(DTSSource("CompanyName"))
 ' Trim leading and trailing spaces from the Name
 DTSDestination("ContactName") = Trim(DTSSource("ContactName"))
 DTSDestination("ContactTitle") = DTSSource("ContactTitle")
 DTSDestination("Address") = DTSSource("Address")
 DTSDestination("City") = DTSSource("City")

 ' Check to see if the region is empty. If it is, fill it with string
 ' of "unknown".
 If IsNull(DTSSource("Region").value then
 DTSDestination("Region") = "unknown"
 Else
 DTSDestination("Region") = DTSSource("Region")
 End if

 DTSDestination("PostalCode") = DTSSource("PostalCode")
 DTSDestination("Country") = DTSSource("Country")
 DTSDestination("Phone") = DTSSource("Phone")
 DTSDestination("Fax") = DTSSource("Fax")

 ' This was a successful row. Send an OK status back for this row.
 Main = DTSTransformStat_OK
Else
 ' This row contained data that could not be processed.
 ' Skip it and get another row.
 Main = DTSTransformStat_SkipRow
End If

Using a Global Variable that Contains Columns of Data

This example uses an Execute SQL task to select data from a table, and populate global variables with the data from the first row
returned. Each column is stored in its own global variable. The second half of this sample uses ActiveX script to display the data
stored in the global variables.

To save row values into global variables

Enterprise Manager

Enterprise Manager

To retrieve row value data

Enterprise Manager

Enterprise Manager

Using a Global Variable that Contains a Rowset

This sample uses an Execute SQL task to retrieve multiple rows from a table, and stores this rowset into a global variable. The
second part of the example uses ActiveX scripting to display the rows stored in the global variable.

To save an entire rowset into a global variable

Enterprise Manager

Enterprise Manager

To retrieve the rowset data stored in a global variable

Enterprise Manager

Enterprise Manager

See Also

ActiveX Script Task

Data Driven Query Task

DTS Package Workflow

Transform Data Task

Using Global Variables with DTS Packages

Data Transformation Services (SQL Server 2000)

Using Return Codes in DTS
In Data Transformation Services (DTS), you can use Microsoft® ActiveX® script return codes to:

Process row data in a transformation, including the handling of inserts, errors, and exceptions.

Set up conditions in a transformation script for skipping rows, reusing rows, choosing whether to write the row to the
destination, and terminating row processing based on an error.

Control package workflow or step execution.

Execute the correct query type for a data driven query.

DTS provides a number of return code constants. Depending on where you use the ActiveX script, these return codes have
different effects on the package or rows:

Return codes used inside an ActiveX Script task are sent to the package, where they control the flow of steps through the
use of precedence constraints. The success or failure of one task activates any On Success or On Failure precedence
constraints on any tasks that follow it.

Return codes used in a transformation script or a script that operates on a row-by-row basis apply to the row being
processed.

Note Use the return code constants rather than the decimal or hexadecimal values of the transformation return code in the
script.

A return code in a Data Driven Query task defines which SQL query to execute on each row processed.

Using Multiple Return Codes

Some situations require multiple return codes. For example, if you want to transform a row multiple times but do not want to
insert it into the destination multiple times, you can use DTSTransformStat_SkipFetch to transform the row again. Or, you can
use DTSTransformStat_SkipInsert to prevent it from being put into the destination. However, no return code can do both. In
that situation, you can use an OR operator to combine actions. For example, Main = DTSTransformStat_SkipFetch OR
DTSTransformStat_SkipInsert causes both actions to occur. DTSTransformStat_SkipFetch prevents another row from coming
into the transformation, and DTSTransformStat_SkipInsert keeps the row from being inserted into the destination.

See Also

DTSTransformStatus

Data Transformation Services (SQL Server 2000)

Debugging ActiveX Scripts
If you have Microsoft® Windows® 2000, Microsoft Visual InterDev® 6.0 or the Microsoft Windows NT® 4.0 Option Pack
installed, you can use the script debugger supplied with those products to troubleshoot your Microsoft ActiveX® scripts. Three
types of events cause errors:

A forced break in the script execution.

Incorrect script syntax or object.

Objects that contain incorrect references.

Your ability to debug these errors depends on whether or not you have selected the Turn on just-in-time debugging check
box.

To select the Turn on just-in-time debugging option

Enterprise Manager

Enterprise Manager

Important If you select the Turn on just-in-time debugging check box, save your script or Data Transformation Services (DTS)
package prior to running it or you will lose your changes. When you close the debugger window, the script and the launching
application are also closed.

Forcing the execution to break using code

To force the script code to stop, insert a STOP statement into your Microsoft Visual Basic® Scripting Edition (VBScript), or a
Debugger statement into your Microsoft JScript® code.

If the Turn on just-in-time debugging check box is not selected, then the script will show no indication of an error and
will return a successful completion.

If the Turn on just-in-time debugging check box is selected, an unhandled run-time error will occur and you will be given
the option to debug. At this point:

If you click No, the response will be the same as if the debug option was not selected: the script will show no other
indication of the error and will return a successful completion.

If you click Yes, a debugging window will open and you can use the debugger to step through the code.

Script syntax or object required errors

Scripting errors, such as a syntax error or "Object required" errors, can also occur:

If the Turn on just-in-time debugging check box is not selected, then the script will report that an error occurred in the
status column of the Executing DTS Package dialog box. By double-clicking the failed step, you can see the error source,
description, and the line number in the code causing the error.

If the Turn on just-in-time debugging check box is selected, the debugging environment opens immediately upon hitting
the error.

Execution suspends due to an error raised from an object

These are errors raised by objects such as an Microsoft ActiveX Data Object (ADO) object. For example, the ADO object calls a
nonexistent property on a COM object. An error of this type opens up the debugger using the same method as when execution is
suspended because of a script error or object required error. Unlike script or object required errors, error information from the
object itself is displayed.

Data Transformation Services (SQL Server 2000)

Incorporating Transactions in a DTS Package
 New Information - SQL Server 2000 SP3.

You use database transactions to bind multiple updates into a single atomic unit. In this way, you help to ensure that your data
remains in a consistent state. Distributed transactions carry this concept a step further, allowing you to bind disparate operations
on multiple platforms into a single transaction.

Data Transformation Services (DTS) uses functions offered by the Microsoft® Distributed Transaction Coordinator (MS DTC) to
extend the benefits of distributed transactions to the DTS package developer. For transactions to work, MS DTC must be running
on the computer executing the package. Use the SQL Server Service Manager to start MS DTC or to verify that it is running.

With DTS transactions, you can:

Gather the results of several tasks into a single transaction and so ensure consistent updates. For example, orders and line
items can be uploaded by two tasks, which succeed or fail together.

Perform consistent updates on multiple database servers. For example, a customer address can be changed in two different
online transaction processing (OLTP) systems, all in the context of one transaction.

Carry out multiple transactions under the control of a single package. For example, using Execute Package tasks, you can
simultaneously run an end-of-day sequence of transactions on each of three different servers. For more information, see
Execute Package Task.

You can use DTS Designer to manage package transactions, or you can access the same functionality programmatically. For more
information, see DTS Designer and DTS Programming Reference.

Data Transformation Services (SQL Server 2000)

Configuring Properties for DTS Transactions
Several Data Transformation Services (DTS) package properties and workflow step properties are used to control transaction
initiation, step participation in the transaction, and the final commit or rollback operation. These properties can be set from within
DTS Designer or programmatically, through the package and step objects of the DTS object model.

DTS transaction settings fall into two groups. Package properties are global settings that affect transaction behavior across the
entire package. Step properties operate at the level of the individual task. In the following list of DTS transaction settings, package
properties are listed before step properties. For each transaction option, the corresponding DTS object model property is listed.

In the DTS Package Properties dialog box, on the General tab, you can find:

Fail package on first error.

If this check box is selected, the first step failure triggers package failure, terminating all tasks. If cleared, the package
continues to run after the first and subsequent step failures, always completing successfully, no matter how many errors
occur.

In the DTS object model, set the FailOnError property of the package object. For more information, see FailOnError
Property.

In the DTS Package Properties dialog box, on the Advanced tab, you can find:

Use transactions.

If this check box is selected, transactions are enabled. If cleared, no package transaction is created, and requests by steps to
join the transaction are ignored.

In the DTS object model, set the UseTransaction property of the package object. For more information, see UseTransaction
(DTSMQMessage) Property.

Commit on successful package completion.

If this check box is selected, updates pending in an open package transaction are committed when a package finishes
executing and one or both of the following is true:

No steps failed.

The Fail package on first error check box is cleared.

If the Commit on successful package completion check box is cleared, an open transaction is rolled back on package
completion and pending updates are lost.

In the DTS object model, set the AutoCommitTransaction property of the package object. For more information, see
AutoCommitTransaction Property (DTS).

Transaction isolation level.

In this check box, you can select the level of locking used within transactions to protect the user from dirty reads,
nonrepeatable reads, and phantom data. In order of increasing protection, available isolation levels are: Chaos, Read
uncommitted, Read committed, Repeatable read, and Serializable. For more information, see Isolation Levels.

In the Workflow Properties dialog box of a step, on the Options tab, you can find:

Join transaction if present.

If this check box is selected (and transactions are enabled), the step joins the package transaction. Updates accumulate until
commit or rollback. If cleared, updates are carried out one at a time, as they are requested.

In the DTS object model, set the JoinTransactionIfPresent property of the step object. For more information, see
JoinTransactionIfPresent Property (DTS).

Rollback transaction on failure.

If this check box is selected, step failure triggers a rollback of the package transaction. Pending updates are discarded. If
cleared, any updates remain in the transaction until a later commit or rollback.

In the DTS object model, set the RollbackFailure property of the step object. For more information, see RollbackFailure

Property (DTS).

Commit transaction on successful completion of this step.

If this check box is selected, successful step completion triggers a transaction commit. Pending updates are made
permanent. If cleared, any updates remain in the transaction until a later commit or rollback.

In the DTS object model, set the CommitSuccess property of the step object. For more information, see CommitSuccess
Property (DTS).

See Also

Package Object (DTS)

Package2 Object (DTS)

Step Object (DTS)

Data Transformation Services (SQL Server 2000)

DTS Transaction Fundamentals
Over the course of the execution of a single package, transactions are initiated, joined, and then committed or rolled back. After a
commit or rollback operation, the cycle may repeat.

If the Data Transformation Services (DTS) package includes Execute Package tasks, transaction behavior can differ from that
described in this topic. For more information about transactions and the Execute Package task, see Inherited Transactions.

Initiating a New Package Transaction

No package transaction exists until a step attempts to join it. At this point, a new transaction is created for the package, and the
step proceeds with its attempt. If other steps attempt to join the package transaction before the first transaction has committed or
rolled back, they are enlisted in the first transaction. Although a package may initiate several transactions, only one package
transaction can be active at a time.

Joining the Package Transaction

The attempt to join the package transaction takes place only after any workflow script has been processed. If a step joins the
package transaction, any updates made by the step accumulate in the package transaction. If a step does not join the package
transaction, database changes are committed in autocommit mode: one at a time, as they are requested.

In order to join a transaction successfully, the package step must:

Be one of several supported task types. For example, the Execute SQL task is supported, but the Send Mail task is not.

Use supported connection types on outputs. For example, an instance of Microsoft® SQL Server™ 2000 is supported, but a
connection to a Microsoft Excel 2000 worksheet is not.

If the preceding conditions are not met, the attempt to join the package transaction fails, and the package halts at runtime. For
more information about supported task and connection types, see Supported Task Types and Supported Connection Types.

In DTS Designer, a step attempts to join the package transaction if you:

Select the Use transactions check box in the DTS Package Properties dialog box.

Select the Join transaction if present check box in the Workflow Properties dialog box of a step.

Note When a step joins the package transaction, each connection used by the step is enlisted in the distributed transaction.
All updates for such a connection accumulate in the package transaction, even if they originate in a step that did not
explicitly join the package transaction. Therefore, to make transactional and non-transactional updates to the same database
from one package, you must use two connections.

Committing and Rolling Back Package Transactions

When a package transaction is committed, any accumulated updates are made permanent. When a package transaction is rolled
back, any accumulated updates are reversed.

A package transaction is committed when either of the following events occurs:

A step completes successfully and the Commit transaction on successful completion of this step check box is selected.

The package completes successfully and the Commit on successful package completion check box is selected.

The current package transaction is rolled back when any of the following events occur:

The package fails.

The package finishes and the Commit on successful package completion check box is cleared for the package.

A step fails and the Rollback transaction on failure check box is selected for the step.

Note Some operations can leave the current transaction in an invalid state (for example, failure during a commit or
rollback or a rollback in a subpackage). Attempts to join or commit an invalid transaction fail the package. To terminate the

invalid transaction and so allow a new package transaction to start, trigger a rollback in the controlling package.

Data Transformation Services (SQL Server 2000)

Inherited Transactions
Inherited Transactions

The Execute Package task allows you to execute a Data Transformation Services (DTS) package as one step of a parent package.
This subpackage may create its own package transactions, or it may inherit the parent package transaction.

A package inherits the parent package transaction if both of the following are true:

The package is invoked by an Execute Package task.

The Execute Package task that invoked the package also joined the parent package transaction.

In the following diagram, there are six packages that all use transactions. Each package contains numerous tasks. Only the Execute
Package tasks are shown. Package A executes packages B and C, which in turn execute packages D, E, and F. The Execute Package
tasks that join the package transactions are indicated with an underline.

Packages A, B, and D execute in one package transaction. Packages C and F execute in a second transaction. Package E gets its own
separate package transaction.

Packages A, C, and E control their own transactions. Packages B, D, and F inherit their transactions.

If a package runs with an inherited transaction, transaction behavior differs considerably:

No new package transaction is initiated. Steps join the inherited parent transaction.

No commit takes place. In particular:
If the Commit transaction on successful completion of this step check box is selected, it is ignored.

If the Commit on successful package completion check box is selected, it is ignored.
No rollback takes place on package completion, even if the package fails. However, individual steps may roll back the parent
package transaction if you select the Rollback transaction on failure check box in the Workflow Properties dialog box.

Note If a subpackage fails, its parent Execute Package task fails. If a subpackage completes successfully, its parent Execute
Package task completes successfully. If a subpackage experiences many errors or rolls back the package transaction, but its
Fail package on first error property is cleared, it will complete successfully. Its parent Execute Package task also will
complete successfully.

See Also

Execute Package Task

ExecutePackageTask Object

Data Transformation Services (SQL Server 2000)

Supported Connection Types
Supported Connection Types

In order to take part in a Data Transformation Services (DTS) package transaction, the data source of a connection must support
distributed transactions. A step that attempts to join the package transaction with an unsupported connection, (for example, a
Microsoft® Access 2000 table) fails at runtime. The following connection types, available in DTS Designer, can provide this
support:

Microsoft OLE DB Provider for SQL Server

ODBC data source

The ODBC driver must support the connection attribute SQL_ATT_ENLIST_IN_DTC and this attribute must be set. For more
information, see the ODBC documentation.

Microsoft Data Link

Microsoft Data Link is used to access any installed OLE DB provider. An OLE DB provider must implement the
ITransactionJoin interface if it is to join a distributed transaction. For more information, see the OLE DB documentation.

If your application requires tasks that access an unsupported connection, those tasks cannot join the DTS package transaction.
However, failure in such a task still can be used to roll back an open transaction.

Data Transformation Services (SQL Server 2000)

Supported Task Types
Supported Task Types

 New Information - SQL Server 2000 SP3.

There are differences in how the custom tasks available through Data Transformation Services (DTS) participate in transactions.
For example:

Some tasks perform operations that cannot take part in a transaction. For example, the File Transfer Protocol (FTP) task
writes files directly to disk. No rollback is possible. Other such tasks are:

The Dynamic Properties task.

The Send Mail task.

The Copy SQL Server Objects task.
Some tasks allow the user to create their own scripts or programs and run them from DTS. Although these tasks can create
and independently manage their own local or distributed transactions, they have no access to the DTS package transaction.
These tasks are:

The Microsoft® ActiveX® Script task.

The Execute Process task.
Some supported tasks can join the package transaction if the right connections are supported. These tasks are:

The Bulk Insert task.

The Data Driven Query task.

The Transform Data task.

The Execute Package task.

The Execute SQL task.

All of the above three groups of tasks may commit or roll back the current transaction.

See Also

Bulk Insert Task

Data Driven Query Task

Execute SQL Task

Inherited Transactions

Transform Data Task

Data Transformation Services (SQL Server 2000)

Designing DTS Transactions
It is strongly recommended that you follow a few general design principles when you design Data Transformation Services (DTS)
transactions to greatly reduce the chance of anomalous results:

If possible, organize tasks sequentially.

When steps execute in parallel, use DTS package failure to roll back the transaction.

Use checkpoint tasks to commit intermediate results within a package.

Use the Execute Package task and package failure to branch on transaction failure.

Data Transformation Services (SQL Server 2000)

Sequential Execution
Sequential Execution

For the simplest Data Transformation Services (DTS) package transaction configuration, organize steps sequentially. If you do this,
you can roll back transactions at the step level.

The following diagram shows a sequential ABC package.

Three Execute SQL tasks are arranged in order with precedence relationships. Only on the success of one step is the following task
started. If any one of the tasks fails, no more steps execute. The sequential organization of the package allows you to roll back the
transaction immediately on failure.

All three tasks join the package transaction. If any task fails, the transaction rolls back, and the package halts. If task C completes
successfully, the entire transaction is committed.

To run all three tasks as part of a single package transaction, do the following:

Select the Use transactions check box for the package.

Select the Join transaction if present check box for each step.

Select the Rollback transaction on failure check box for each step.

Select the Commit transaction on successful completion of this step check box for task C.

Data Transformation Services (SQL Server 2000)

Parallel Execution
Parallel Execution

Time or resource constraints may require that Data Transformation Services (DTS) tasks execute in parallel. As a result, transaction
configuration becomes more complex. To avoid anomalous results, use DTS package failure to roll back the transaction when
steps execute in parallel.

The following diagram shows a parallel ABC package.

All three tasks still join the same transaction, but now, tasks A and C are supposed to start simultaneously. In this situation, DTS
behavior differs, depending on the connections used by these tasks:

If tasks A, B, and C all use the same connection, DTS will serialize their execution in spite of the parallel construction.
Precedence relationships are enforced, but otherwise, order of execution is undefined.

If tasks A and B use Connection 1 and task C uses Connection 2, then:
If Connection 1 and Connection 2 are on the same instance of Microsoft® SQL Server™ 2000, the package fails
when the second task attempts to join the transaction.

Therefore, you must use precedence relationships or the Execute on main package thread workflow property to
ensure that no two tasks execute simultaneously as part of the package transaction.

If Connection 1 and Connection 2 are not on the same instance of SQL Server 2000, tasks A and C execute in
parallel, as expected.

Rollback and the Package Transaction

If you do not attend carefully to package configuration, your package may produce unanticipated results. For example, in the
preceding diagram, you want all three tasks to join the same transaction. However, incorrect settings for transaction properties
could result in tasks A and C rolling back, while changes made by task B are committed. For example, consider what happens if
tasks A and C start simultaneously and then task C fails and rolls back before A completes:

Task A is not canceled in mid-execution but continues to its normal conclusion.

Any changes made by task A or C are rolled back after task A completes.

The rollback has no effect on the success or failure status of task A. If task A encounters no problems, it completes
successfully as usual.

If the package is not configured to fail on the first error, task B will commence as usual on the successful completion of task
A. Because there is no active transaction when task B starts, a new package transaction is created. If the Commit on
successful package completion check box is selected, changes made by task B will be committed in spite of the earlier
failed transaction.

Enforcing a Single Package Transaction

If a transaction includes several tasks executing in parallel, when one task fails, any changes must roll back and execution must
stop. New tasks must not commence. To enforce a single package transaction when multiple tasks may be active, fail the package
and then roll back the transaction on package failure.

Configure the Parallel ABC package as follows:

Select the Fail package on first error check box for the package.

Select the Use transactions check box for the package.

Select the Commit on successful package completion check box for the package.

Select the Join transaction if present check box for each step.

Clear the Commit transaction on successful completion of this step check box for each step.

Clear the Rollback transaction on failure check box for each step.

Selecting the Fail package on first error check box triggers an unsuccessful package completion as of the first step failure. As a
consequence, no more tasks are started, and any updates in the existing package transaction are rolled back.

Data Transformation Services (SQL Server 2000)

Checkpointing Package Transactions
Checkpointing Package Transactions

Sometimes, work naturally falls into two or more transactions. You can use checkpoint tasks to commit intermediate results
within a Data Transformation Services (DTS) package.

In the following diagram of a package, Checkpoint is a Microsoft® ActiveX® Script task. It functions as a placeholder, ensuring
only that the package transactions operate properly. It is necessary in this case because there is no other place to commit the
transaction without introducing potential problems. If there were a job that followed tasks B and C and took part in the same
transaction, that task could carry out the checkpoint function.

Tasks A, B, and C execute as part of a single transaction. If no tasks fail, the Checkpoint task commits the new updates after both
task B and task C finish. Tasks D and E then join a second package transaction, to be committed on successful package completion.

Configure Checkpoint workflow properties as follows:

Clear the Join transaction if present check box.

Select the Commit transaction on successful completion of this step check box.

For more information about configuring the package and the remaining tasks, see Parallel Execution.

Data Transformation Services (SQL Server 2000)

Branching on Transaction Failure
Branching on Transaction Failure

When tasks execute in parallel, you often have to fail the Data Transformation Services (DTS) package in order to prevent
anomalous results. This poses a problem if you require an action on failure (for example, the dispatch of an e-mail message).
Within a package, you cannot simultaneously fail the package and run extra steps.

Use the Execute Package task and package failure to conditionally run extra steps after transaction failure.

The following diagram shows a package executing the Run Parallel ABC package. Depending on the outcome, the package either
continues processing or sends an error message. Although the Run Parallel ABC task appears in this example, the same procedure
can be used to branch on the failure of any package, even those that do not use transactions.

The first step in the package executes the Parallel ABC package as a subpackage. The failure of step A, B, or C triggers subpackage
failure, which in turn fails the Run Parallel ABC step. On failure of this step, Error Alert sends the e-mail message. If the
subpackage completes successfully, however, Run Parallel ABC succeeds and More Work is commenced.

For the example, configure package properties as follows:

Select the Use transactions check box.

Clear the Fail package on first error check box.

Configure More Work workflow properties as follows:

Select the Join transaction if present check box.

Select the Commit transaction on successful completion of this step check box.

Select the Rollback transaction on failure check box.

If Run Parallel ABC and More Work are to join the same transaction, configure Run Parallel ABC workflow properties as follows:

Select the Join transaction if present check box.

Clear the Commit transaction on successful completion of this step check box.

Select the Rollback transaction on failure check box.

If Run Parallel ABC and More Work are to run in separate transactions, with changes committed after the first, you can delegate
transaction processing to the subtask. To do this, configure Run Parallel ABC workflow properties as follows:

Clear the Join transaction if present check box.

Clear the Commit transaction on successful completion of this step check box.

Clear the Rollback transaction on failure check box.

Data Transformation Services (SQL Server 2000)

Lookup Queries
A feature of the Transform Data and Data Driven Query tasks, lookup queries allow you to run queries and stored procedures
against other connections besides the source and destination. For example, by using a lookup query, you can make a separate
connection during a query and include data from that connection in the destination table.

Lookup queries allow you to customize and execute an SQL statement from within a Microsoft® ActiveX® script transformation.
The statement may be a stored procedure invocation, or a SELECT, INSERT, UPDATE, or DELETE statement. You customize these
statements for each source row through the use of parameters, blanks left in the statement to be filled in before execution. When
you execute a lookup query, your script provides values to be substituted for each parameter. Your results can be loaded into
destination columns or can serve as input for further script processing.

You can use lookup queries to:

Look up tabular information.

Perform parallel updates on two database systems.

Validate input data before loading it.

Invoke stored procedures in response to input conditions.

Use global variable values as query parameters.

You can use either Data Transformation Services (DTS) Designer or the DTS object model to create and manage lookup queries.
For more information about programming with lookup queries, see Adding DTS Lookups and Global Variables and Lookup
Object (DTS).

See Also

Data Driven Query Task

Transform Data Task

Data Transformation Services (SQL Server 2000)

Configuring a Simple Lookup Query
To configure a simple lookup query, complete the following steps:

1. Create a new connection.

Although a lookup query can share a connection with the source or destination under certain conditions, the best
performance occurs when it is given its own connection.

2. Create and name your parameterized query.

The parameterized query can be a stored procedure invocation or a SELECT, INSERT, DELETE, or UPDATE statement. Mark
parameters by including question marks in place of expressions that will be set at runtime. Parameter values typically come
from source data but may be supplied by global variables or any other terms accessible to Microsoft® ActiveX® script code.

3. Create an ActiveX Script transformation with code to execute your query.

The query is executed with the following statement:

return value = DTSLookups("query name").Execute(argument list)

where return value is a variant that receives the result of the query, query name is the name you provided the query in step
two, and argument list is a comma-separated list of parameter values, one for each question mark in the query.

Before you configure a lookup query, consider the following:

Tasks that avoid lookup queries run much more quickly than those that use them. For example:
A task that joins two tables in a source SQL query runs faster than one that looks up the information from the
second table.

Two separate Transform Data tasks usually can be run in less time than one that inserts data in a second table with a
lookup query.

In general you should use a lookup query only in situations where there is no alternative. For example:
A source join is impossible because data resides in non-SQL Server™ databases, or the volume of data generated by
a source join would exceed system capacity.

A stored procedure must be called, or a DELETE or UPDATE query must be run.

The need for clarity outweighs any performance issues.

Lookup Query Example

In this example, you have source data that includes a postal code but no city. A Mail Codes table contains a row for each postal
code and a column for city name. The procedure for including this city name in your destination rows is as follows:

1. Create and name a connection to the database containing the Mail Codes table.

2. Write your query statement, leaving a question mark in place of the postal code value:

SELECT City FROM MailCodes WHERE PostalCode = ?

When you configure the lookup query, you are required to provide a connection name and a query name. Use the
connection you created in step one, and name your query GetCity.

3. In an ActiveX Script transformation, include the following code to execute your query and place the resulting city name in
the destination row:

DTSDestination("City") = DTSLookups("GetCity").Execute(DTSSource("PostalCode"))

The postal code is drawn from the source row. Its value replaces the question mark each time the query is executed.

Using More Than One Argument

Sometimes a lookup query takes more than one argument. For example, when:

Required information has a multiple column key.

An INSERT or UPDATE statement must fill multiple columns.

To configure a lookup query with multiple arguments, you must:

Include multiple parameters in your query statement.

Provide values for each parameter when you execute the query.

In this example, you need to retrieve a city name, given the postal code and country/region. The GetInternationalCity query has
two parameters:

SELECT City FROM MailCodes WHERE PostalCode = ? AND Country = ?

In your ActiveX script, values are provided for the postal code and the country/region:

DTSDestination(City) = DTSLookups("GetInternationalCity").Execute _
 (DTSSource("PostalCode"), DTSSource("Country"))

Looking Up More Than One Value

Sometimes you want to retrieve multiple values with a single lookup (for example, when you have a customer account number
and need a name and address).

Data Transformation Services (DTS) handles multiple columns in query results by returning an array of variants. Each entry in the
array holds one result value. The index of the first value is 0.

In this example, you need to retrieve a city and a region, given the postal code. The GetCityAndRegion query selects both required
columns:

SELECT City, Region FROM MailCodes WHERE PostalCode = ?

The returned values are accessed through the following ActiveX script code:

dim varArray
varArray = DTSLookups("GetCityAndRegion").Execute(DTSSource("PostalCode"))
DTSDestination("City") = varArray(0)
DTSDestination("Region") = varArray(1)

See Also

Data Driven Query Task

DTS Connections

Transform Data Task

Using ActiveX Scripts in DTS

Using Parameterized Queries in DTS

Data Transformation Services (SQL Server 2000)

Managing Zero or Multiple Result Rows in Lookup Queries
When you run a lookup query, Data Transformation Services (DTS) always returns the first row in the result set. Although you are
not given access to succeeding rows, you can find out how many rows were returned. This can be useful when a query returns
zero or multiple rows.

Result Sets With Zero Rows

Lookup queries sometimes fail to return any rows. For example, if you are tracking the number of vacation days your employees
have taken, you might find that some have not taken any vacation days.

When a lookup query retrieves zero rows, DTS returns an empty variant. In Microsoft® ActiveX® code, you can test for this
condition with the IsEmpty() function.

For example, the VacationDays query returns zero rows if the given employee has taken zero vacation days:

SELECT EmployeeID FROM VacationDay WHERE EmployeeID = ?

Using this query, you can skip over employees who have not taken any vacation days by using the following ActiveX script code:

Dim LookupResults
LookupResults = DTSLookups("VacationDays").Execute(DTSSource("EmployeeID"))
If IsEmpty(LookupResults) Then
 Main = DTSTransformStat_SkipRow
Else
 Main = DTSTransformStat_OK
End If

Note If all data resides on a computer running an instance of Microsoft SQL Server™, performance can be improved by using a
source query, instead of a lookup query, to filter out unwanted rows.

Result Sets With Multiple Rows

Lookup queries sometimes return many rows. For example, an employee may have taken many vacation days.

When a lookup query retrieves multiple rows, DTS discards all but the first row. If this is acceptable, you can use the ORDER BY
phrase in your query to bring the most important row to the top of the results. In any case, the number of rows returned is
accessible through the LastRowCount property of the lookup query.

For example, suppose you want to prepare a vacation day summary. The RecentVacationDays query lists vacation days for one
employee with the most recent vacation day in the first row:

SELECT VacationDate FROM VacationDay WHERE EmployeeID = ?
 ORDER BY VacationDate DESC

Then, the most recent vacation day date and the total number of vacation days per employee are accessed with the following
ActiveX script code:

DTSDestination("LastVacationDate") = DTSLookups("RecentVacationDays").Execute(DTSSource("EmployeeID"))
DTSDestination("NumberOfVacationDays") = DTSLookups("RecentVacationDays").LastRowCount

If an employee has taken zero vacation days, the above code nulls the LastVacationDate and sets NumberOfVacationDays to zero.

See Also

Using ActiveX Scripts in DTS

Data Transformation Services (SQL Server 2000)

Using Lookup Queries to Modify Data
Lookup queries are not limited solely to SELECT statements. INSERT, DELETE, and UPDATE statements, as well as stored procedure
invocations, all can appear in lookup queries.

The UpdateEmployee query updates a value in the Employee table when you provide it an EmployeeID:

UPDATE Employee SET HasTakenVacation = 0 WHERE EmployeeID = ?

Execute this query for every row in the source rowset with the following Microsoft® ActiveX® script code:

DTSLookups("UpdateEmployee").Execute(DTSSource("EmployeeID"))

Note An INSERT query can be used in conjunction with a Transform Data task to split a source rowset, sending rows to two
different tables. However, when both tables reside in Microsoft SQL Server™ databases, this practice results in longer execution
times than sequentially running two Transform Data tasks with fast load enabled.

See Also

Using ActiveX Scripts in DTS

Data Transformation Services (SQL Server 2000)

Using Multiple Lookup Queries
Data Transformation Services (DTS) places no limitations on the number of lookup queries that can appear in a single Microsoft®
ActiveX® Script transformation. Therefore, you can use multiple lookup queries to:

Add, change, or delete an account, depending on values in a source transaction table.

Carry out an update only after a query returns successfully.

Look up dimension table keys, given corresponding values from an online transaction processing (OLTP) system.

Carrying Out an Update

Two queries, VacationDays and UpdateEmployee, can be combined to update only those employees who have taken no vacation
days:

Dim LookupResults
LookupResults = DTSLookups("VacationDays").Execute(DTSSource("EmployeeID"))
If Not IsEmpty(LookupResults) Then
 DTSLookups("UpdateEmployee").Execute(DTSSource("EmployeeID"))
End If

Looking Up Dimension Table Keys

Data warehouse dimension tables are often keyed with identity fields. These fields do not necessarily occur in the OLTP system
that provides facts for the data warehouse. For example, in an OLTP system, the product might be keyed by the SKU field,
whereas in the data warehouse, it is keyed by the automatically generated ProductID. Before a new SalesFact can be inserted,
the SKU field must be used to look up the corresponding value of ProductID in the data warehouse.

In the following example code, the GetProductID query retrieves a ProductID, given an SKU passed in as a parameter:

SELECT ProductID FROM Product WHERE SKU = ?

In the same way, a CustomerID can be retrieved given an account number. Here is the GetCustomerID query:

SELECT CustomerID FROM Customer WHERE AccountNumber = ?

Fill the ProductID and CustomerID columns in the SalesFact table with the following ActiveX script code:

DTSDestination("ProductID") =
 DTSLookups("GetProductID").Execute(DTSSource("SKU"))
DTSDestination("CustomerID") =
 DTSLookups("GetCustomerID").Execute(DTSSource("AccountNumber"))

To look up additional values, (for example, the StoreID), add another query and another line of script code.

For more information about queries that appear in this example, see Managing Zero or Multiple Result Rows in Lookup Queries
or Using Lookup Queries to Modify Data.

Data Transformation Services (SQL Server 2000)

Using Global Variables with DTS Packages
When you execute a Data Transformation Services (DTS) package, you can save data or a value from a DTS step to pass on to
subsequent steps. For example, you can use the saved data to change the way a subsequent step executes or to dynamically
modify a SELECT statement.

When you use global variables with DTS tasks, you can:

Set a global variable to the accounting month-end date, according to the fiscal calendar of the accounting department. You
can do this by using a Microsoft ActiveX® Script task to retrieve the values or by setting the global variable to the
accounting month-end dates during design time and referencing during package execution. A step inside the package can
use that date to determine the existence of a file with that date in its name. If it exists, the step inserts the records from that
file into a table.

Alternatively, the global variable can be used in a WHERE clause to determine the specific records to be loaded (for example, only
loading up records that were modified on that month-end date).

You can populate multiple global variables with data in one pass with the Execute SQL task. Entire rowsets also can be saved
in a single global variable and accessed as a disconnected ActiveX Data Objects (ADO) recordset. For more information, see
Execute SQL Task.

You can then use the global variable as an in-memory lookup table. With the Execute SQL task, issue a SELECT statement
against a state table and store the results in a global variable. Then, with the Transform Data task, for each source row, call a
"StateLookup" function that iterates through the global variable recordset and matches the state code in the source field
with the state code in the table. When there is a match, store the full name of the state in the destination column. For more
information, see Lookup Queries.

Creating Global Variables

You can create global variables in DTS and assign them values in the following ways:

During design time by using:
The DTS Package Properties dialog box in DTS Designer.

The Execute SQL Properties dialog box. For more information, see Execute SQL Task Properties.
Dynamically during package execution by:

Using an ActiveX script.

Issuing a dtsrun command prompt utility from the command prompt and using the /A command switch to allocate
and initialize global variables.

Scope of Global Variables

Scope refers to the lifetime of the variable reference in memory. The scope depends on where the variables are declared or
initialized. Whether a global variable is still accessible after a package has executed depends on how the global variable was
created.

A global variable created during design time retains the value it had when the package finished execution, if the package is saved.
For example, suppose you create the global variable, "city," and set it to the value of "Boston." During package execution, an
ActiveX script changes the value of "Boston" to "Philadelphia." The next time you execute the package, the global variable will
contain "Philadelphia," not "Boston." This is useful if you want to query the value of a package global variable after execution.

However, global variables created dynamically in an ActiveX script have two scopes. If they are created above the Function Main(),
they are available to all functions in the script. This is the equivalent to module-level scope. If they are declared within a function,
they are available only inside that function. This is equivalent to procedure-level scope.

Examples of Using Global Variables in DTS Packages

The following examples show you how to create, set, retrieve, and use the values of global variables in a DTS package by using an
ActiveX script.

Creating a Global Variable Dynamically from an ActiveX Script

If a global variable does not exist when the package is run, you can create one dynamically by using an ActiveX script. To create a
new global variable called "city" and assign it a value of "Boston", use the following Microsoft Visual Basic® Scripting Edition
(VBScript) code:

 DTSGlobalVariables("city").value = "Boston"

You can dynamically create a COM object and store it in a global variable from within an ActiveX script. In the following example,
VBScript code is used to create an ADO connection, which can be used by scripts in the package to execute SQL commands and
examine ADO recordsets. In this example, a year-to-date sales table containing a Totals field in the pubs database is created:

Function Main()
 dim conn
 set DTSGlobalVariables("MyConn").value = CreateObject("ADODB.Connection")

 set conn = DTSGlobalVariables("MyConn").value
 conn.provider="sqloledb"
 conn.open "(local)", "sa", "sapassword"
 conn.DefaultDatabase = "pubs"
 conn.execute("Create Table YTDSales (Totals int)")
 Main = DTSTaskExecResult_Success
End Function

The following code example shows you how to create the year-to-date sales table using Microsoft JScript®:

function Main()
{
DTSGlobalVariables("MyConn").value = CreateObject("ADODB.Connection");
conn = DTSGlobalVariables("MyConn").value;

conn.open = ("provider = sqloledb; data source = (local);user id = sa;password = sapassword");
conn.DefaultDatabase = "pubs";
conn.execute("Create Table YTDSales (Totals int)");

 return(DTSTaskExecResult_Success)
}

Setting the Value of a Global Variable Dynamically from an ActiveX Script

The following ActiveX script code, written in VBScript, sets the value of a global variable named count to 200:

 DTSGlobalVariables("count").value = 200

Getting a Global Variable Dynamically from an ActiveX Script

The following ActiveX script code, written in VBScript, gets the value of a global variable named count and saves the value in a
variable named globalCount:

 globalCount = DTSGlobalVariables("count").value

Using a Global Variable Dynamically from an ActiveX Script

The following code concatenates the value of a column containing a file name with a global variable containing the Julian date,
and stores the new results in the filename column in a destination table:

 DTSDestination("FileName") = DTSSource("FileName") & DTSGlobalVariable("julianDate").value

See Also

Adding DTS Lookups and Global Variables

dtsrun Utility

Data Transformation Services (SQL Server 2000)

Using Parameterized Queries in DTS
Parameterized queries are SQL queries written for reusability. They contain parameter markers as placeholders for data that will
change from execution to execution. In the Data Transformation Services (DTS) tasks that use parameterized queries, the
placeholder syntax is a question mark. The following is an example of a parameterized query:

INSERT INTO Account (CustomerID, CompanyName) VALUES (?, ?)

The following DTS tasks make use of parameterized queries:

Execute SQL task

Data Driven Query task

Transform Data task

Lookup queries, which you can include in Microsoft® ActiveX® script transformations in a Data Driven Query or Transform Data
task, make use of parameters to retrieve information from an additional connection. For more information, see Lookup Queries.

Input Parameters to DTS Tasks

All the tasks above can execute SQL queries written with parameters if the source that the query is running against supports it.
You can map variables into the SQL parameters. The Data Driven Query task can bring in data from a text file, global variable, or
the source data as input to its parameter set. The Transform Data task can use only global variables as input to source data
queries. Lookup queries can use data from a text file, global variable, or other source data fields as input. However, the Execute
SQL task can use only global variables as input to its parameterized queries. For more information, see Data Driven Query Task,
Transform Data Task, and Lookup Queries.

Output Parameters to DTS Tasks

The Execute SQL task can save the results of a query to a global variable. You can use the task to save the data in several formats.
For more information about these formats, see Execute SQL Task.

The Transform Data and Data Driven Query tasks can save query results into a table destination column, or a variable. You can
also save data to an array when using a Lookup query.

Data Transformation Services (SQL Server 2000)

Querying a DTS Package from External Sources
Data Transformation Services (DTS) package data can be made available to an external source, such as SQL Query Analyzer, by:

Querying a package step associated with a transformation with the Transact-SQL OPENROWSET statement.

Defining the package as a linked server and joining package data in a distributed query.

When querying package rowset data, the following conditions apply:

The package supplying the data must be launched by the application getting the package data. You do not execute the
package to send the data to the requesting application or process.

You can only query a package step associated with a Transform Data task.

The package must have destination columns to bind to; the destination cannot be a text file.

In DTS Designer, you make package data available by selecting the DSO rowset provider check box (on the Options tab of the
Workflow Properties dialog box) for a package step associated with a Transform Data task. The data from that task then
becomes available to an external data consumer.

Enable the DSO rowset provider check box only for packages that you intend to query. After the option is set, the package step
where you set the option does not complete execution when the package is run normally. While the flag is set that pump task can
only be accessed through OPENROWSET.

Note These methods are used typically to query packages from an external source; however, you can also query other packages
from within a package by issuing OPENROWSET queries and distributed queries in an Execute SQL task or as the source for
another Transform Data task.

See Also

OPENROWSET

Transform Data Task

Using SQL Query Analyzer

Data Transformation Services (SQL Server 2000)

Querying a Package with OPENROWSET
You can run queries against a Data Transformation Services (DTS) package by using a Transact-SQL OPENROWSET statement.

To prepare a package to serve as a data source, select the DSO rowset provider check box (on the Options tab of the Workflow
Properties dialog box) for a package step.

Before querying a package with OPENROWSET, consider the following:

DTS uses its own OLE DB provider, DTSPackageDSO. When you use OPENROWSET, you only specify its provider_name,
provider_string, and query arguments:

Use 'DTSPackageDSO' for the provider_name argument.

Use any combination of dtsrun command switches necessary to describe the package for the provider_string
argument. For more information about the dtsrun command switches, see dtsrun Utility.

Use either 'SELECT *', 'SELECT * FROM <package name>', or 'SELECT * FROM <package step name>' for the query
argument.

If you select the DSO rowset provider option for more than one step in a package, you need to specify the package step
name in the OPENROWSET query argument. The package step name can be copied from the Options tab of the Workflow
Properties dialog box for the step whose data you want to query.

If you saved multiple versions of the package, you can specify the package version using the dtsrun command switch
/vpackage_version_guid_string. If you do not specify a package version, the last-saved version is used.

For more information about using the Transact-SQL OPENROWSET statement, see OPENROWSET.

Querying a Package Saved to a File

Suppose you want to use SQL Query Analyzer to query a package saved to the package Dso.dts on your local server. Use the
following query statement:

SELECT * FROM OPENROWSET('DTSPackageDSO', '/FC:\Dts\Dso.dts', 'Select *')

In the OPENROWSET statement:

The provider_name argument is always DTSPackageDSO, an entry in the registry that functions as the package OLE DB
provider.

The provider_string argument contains the structured storage file name, preceded by the /F dtsrun command switch.

The query argument is a SELECT * statement used to pass through the rowset data.

If you selected the DSO rowset provider check box for more than one Transform Data task in the above package, you can use
the following code to query the second package step in Dso.dts:

SELECT * FROM OPENROWSET('DTSPackageDSO', '/FC:\Dts\Dso.dts',
 'SELECT * FROM DTSStep_DTSDataPumpTask_2')

Querying a Package Saved to SQL Server

In the following example, the package, Sqlpackage, is saved to an instance of Microsoft® SQL Server™ running on your local
server. To query the package using SQL Query Analyzer, use the following query statement:

SELECT * FROM OPENROWSET('DTSPackageDSO', '/Usa /Psapassword /S /NSqlpackage', 'Select *')

In the OPENROWSET statement:

The provider_name argument is always DTSPackageDSO.

The provider_string argument contains the following dtsrun command switches: /U for the user ID, /P for the password, /S
for the network name of the server (if the server is local, server_name can be omitted, as shown here), /N for the name of
the SQL Server package.

The query argument is a SELECT * statement used to pass through the rowset data.

If you save multiple versions of this package and want to reference a specific version, you need to include the version globally
unique identifier (GUID) string after the /V dtsrun command switch. The version GUID can be obtained from the General tab of
the DTS Package Properties dialog box. Use the following code to querying a version of the package described above:

SELECT * FROM OPENROWSET('DTSPackageDSO',
 '/Usa /Psapassword /S /Nsqlpackage /V{3C904BA2-4E83-11D2-BB38-00C04FA35397}',
 'Select *')

Data Transformation Services (SQL Server 2000)

Issuing Distributed Queries Against Package Data
You can register a Data Transformation Services (DTS) package as a linked server and issue a distributed query against the
package. This capability allows you to consolidate data from diverse sources (for example, from Oracle and DB2 data sources) in a
single package, transform that data, and expose the results of the transformed distributed query to any outside data consumer.

To issue a distributed query against package data, you need to define the package as a linked server through the
sp_addlinkedserver stored procedure. The following example code illustrates how to use sp_addlinkedserver against a DTS
package:

sp_addlinkedserver 'DTSOLEDBPkg', 'PackageName', 'DTSPackageDSO', '/FC:\Dts\Dts01.dts')

In the sp_addlinkedserver command:

DTSOLEDBPkg is the name of the linked server you want to create.

PackageName is the product name of the OLE DB data source; in this context, you can provide any name or a null string.

DTSPackageDSO is the name of the DTS package OLE DB Provider.

The last argument specifies the location of the file, DTS01.dts.

After you have defined the package as a linked server, you can execute distributed queries that include the package as a data
source. Following is an example of a distributed query. It performs a join operation on the Orders table in the Northwind
database with a package that gets data from a Customer table on an Oracle server. The query assumes the Orders and
Customers tables have a common key, which is CustomerID.

SELECT a.OrderID, a.CustomerID, a.OrderDate, b.Companyname, b.Region
FROM Orders AS a, dtsLink...packageNameOracle AS b
WHERE a.CustomerID = b.CustomerID

In the above query, packageNameOracle is the DTS package name. However, you can use a package step name when multiple
steps in a package serve as data sources.

See Also

Configuring Linked Servers

Configuring OLE DB Providers for Distributed Queries

sp_addlinkedserver

Data Transformation Services (SQL Server 2000)

Sharing Meta Data
Data Transformation Services (DTS) Designer provides features for saving package meta data and data lineage information to
Microsoft® SQL Server™ 2000 Meta Data Services. You can store catalog meta data for databases referenced in a package and
accounting information about the package version history of a particular row of data for your data mart or data warehouse.

DTS Designer uses its own information model, the DTS Information Model, for structuring package meta data and data lineage
information and saving it to Meta Data Services.

To browse the data lineage and meta data information generated by DTS Designer, use the DTS Browser found in SQL Server
Enterprise Manager (available through the console tree, under Data Transformation Services, in the Meta Data node). This tool
allows you to explore the meta data and version history of a package and to look up the specific package version that generated a
row of data.

For more information, search under Meta Data Services at Microsoft Web site.

See Also

Saving a DTS Package to Meta Data Services

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Data Transformation Services (SQL Server 2000)

DTS Information Model
 New Information - SQL Server 2000 SP3.

Data Transformation Services (DTS) uses the DTS Information Model to persist data transformation meta data in Microsoft® SQL
Server™ 2000 Meta Data Services. The DTS Information Model is based on the Transformations package of the Open Information
Model (OIM).

The DTS Information Model describes:

The data transformations and how they are grouped into larger execution units.

The types of data accessed.

Specifically, the DTS Information Model allows:

The storage of data transformation meta data in one well-defined location. Storing this information in Meta Data Services
allows existing transformations to be reused when a data warehouse or data mart is being rebuilt.

The sharing of data transformation information across multiple tools. This allows the use of tools from different vendors
during the building and maintenance of data warehouses.

For more information, search under Meta Data Services at Microsoft Web site.

Upgrading Meta Data Services Information Models

When you upgrade to SQL Server 2000, you must also upgrade the Meta Data Services Information Models in order to save and
retrieve DTS package versions to and from Meta Data Services. Otherwise, you will receive an error when you save to Meta Data
Services.

Upgrading the information models modifies the Meta Data Services table structure to support additional functionality and
features provided by SQL Server 2000 Meta Data Services. In an upgrade, existing repository data is preserved in the new table
structure.

Before you upgrade the information models, install SQL Server 2000. SQL Server 2000 contains the most recent DLL and EXE
versions of Insrepim, the model installation program.

To upgrade information models, you need the following:

The SQL Server 2000 CD or an equivalent installation directory that contains the information models required by DTS. To
locate the information models, search for *.rdm files on the SQL Server 2000 CD.

Insrepim.exe, the model installation program that creates or updates the Meta Data Services tables and installs information
models. When you upgrade to SQL Server 2000, this program is installed on your computer.

A batch file to install the models. This file must reside in the directory that contains the insrepim.exe file. After you create the
batch file, run it from a command prompt.

Security Note Secure the folder in which the batch file is stored to prevent unauthorized access.

Creating an Installation Batch File

Replace the <placeholder> values in the following batch file text with real values that apply to your system. For example:

<path> must be the path to the CD or to the installation directory.

<servername> must the name of the SQL Server.

<sa> must be the SQL Server system administrator login. If you are using Windows Authentication, do not specify this
parameter.

<password> must be the SQL Server system administrator password. If you are using Windows Authentication, do not
specify this parameter.

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Security Note When possible, use Windows Authentication.

Information models must be installed in the exact order shown below. The lines headed with REM are comments:

REM Usage: InsRepIM.exe
REM Syntax: /f[Model File] /r[Repository connect string] /u[User] /p[Password]
REM
insrepim.exe /f<path>\uml.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\umx.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\gen.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\dtm.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\dbm.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\tfm.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\dts.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\sql.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\db2.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\ocl.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\ifx.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\olp.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\mds.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>
insrepim.exe /f<path>\sim.rdm /rserver=<servername>;database=msdb /u<sa> /p<password>

See Also

OIM in Meta Data Services

Data Transformation Services (SQL Server 2000)

Recording Data Lineage in DTS
Design a plan before implementing and using data lineage information. Base your plan on factors such as auditing needs, the
amount of lineage data that can be managed, performance considerations, and whether you need to track row- or column-level
lineage, or both.

If you save a Data Transformation Services (DTS) package to Microsoft® SQL Server™ 2000 Meta Data Services, you can record
and track two types of data lineage:

Row-level data lineage, which reveals the source of any piece of data and the transformations applied to that data. This data
lineage can be tracked at the package and row levels of a table and provides a complete audit trail of data transformation
and DTS package execution information. In Meta Data Services, an object associated with this type of lineage contains
lineage values (package execution globally unique identifiers), the user name and server name for package execution, and
the time of execution.

Column-level data lineage, which provides information about a package version and the database tables and columns the
package uses as a source or destination (if any). You can browse packages and package versions that use a specific column
as a source or destination, and check to see whether a specific column is used as a source or destination in any package
saved to Meta Data Services.

Use the DTS Browser to display data lineage information. For more information, see Viewing Meta Data in DTS.

Implementing Row-Level Data Lineage

These are the steps for implementing row-level data lineage:

1. Connect to and import meta data from the database whose tables will be used by the package as a source or destination.

To import the meta data, use either the DTS Browser or right-click Import Meta Data on either the Meta Data Services
Packages or Meta Data nodes in SQL Server Enterprise Manager.

2. Create the table columns in your data warehouse for receiving row-level data lineage information. DTS maintains the
following lineage identifiers for each package execution:

A short (integer) value, which is the package version checksum.

A long (uniqueidentifier) value, which is the globally unique identifier (GUID) of the package version.

The short lineage value occupies less space in the destination table but is potentially less unique. Either one or both of these
values need to be written to columns in your data mart or data warehouse.

3. Select the data lineage options in DTS Designer.

These options can be found on the Advanced tab of the DTS Package Properties dialog box. After you have turned on the
data lineage options in a package, the two lineage values (GUIDs) are available when you configure a Transform Data task
and Data Driven Query task.

4. Map the data lineage source columns to destination columns in DTS Designer.

You configure the lineage columns on the Transformations tab for these tasks and on the tabs of the Transformation
Options dialog box.

5. Save the package containing the data lineage information to Meta Data Services.

6. Execute the package.

Implementing Column-Level Data Lineage

These are the steps for implementing column-level data lineage:

1. Create a DTS package containing at least one transformation task.

2. Save the package to Meta Data Services.

3. Scan the meta data. During the save operation, click Scanning, and in the Scanning Options dialog box, click Resolve
package references to scanned catalog metadata to save the meta data, and link the package meta data to a repository
database.

For more information, see Importing and Saving Meta Data in DTS.

Data Transformation Services (SQL Server 2000)

Importing and Saving Meta Data in DTS
You can import meta data to Microsoft® SQL Server™ 2000 Meta Data Services through SQL Server Enterprise Manager or by
using the Data Transformation Services (DTS) scanning options. When you import meta data using SQL Server Enterprise
Manager, you read the meta data from only one database. You can read the meta data from all referenced databases in a package
by selecting the Scan all referenced catalogs check box in the Scanning Options dialog box.

Note For the import of meta data to work, the data provider specified must support OLE DB schema rowsets.

The OLE DB scanner for Meta Data Services is a utility that imports database schema from an OLE DB data source. The scanner is
passed an OLE DB provider, examines the schema, and creates a set of corresponding instance objects in Meta Data Services.

If you save package information to Meta Data Services, you can save meta data about the databases referenced in the package,
such as:

Primary and foreign keys.

Column type, size, precision, scale, and nullability information.

Indexes.

You can view meta data information saved to Meta Data Services through the DTS Browser. For more information, see Viewing
Meta Data in DTS.

See Also

Using OLE DB Scanner

Data Transformation Services (SQL Server 2000)

Viewing Meta Data in DTS
Data Transformation Services (DTS) allows you to view meta data in SQL Server Enterprise Manager (through the console tree,
under Data Transformation Services, in the Meta Data node). You can:

Generate a hierarchical display of the meta data for any databases scanned to Microsoft® SQL Server™ 2000 Meta Data
Services, and jump to information on the DTS packages that reference the meta data. If you regularly scan changes to
catalog meta data, this display provides useful historical information on changes to the meta data. You can display the
properties of a package version associated with any item of meta data, and a version history of those packages.

Retrieve the specific version and date of a package that populated a row of data. If you are tracking data lineage for a
package, the DTS Browser lets you enter the lineage tracking number for a row of data to identify the package that created
the row. For more information, see Recording Data Lineage in DTS.

Browse through package versions saved to Meta Data Services and update packages. You can display a version history of
each package, view the properties of a selected package version, and open and update a package version.

Data Transformation Services (SQL Server 2000)

Usage Considerations in DTS
This section describes specific data conversion and data transformation issues that may arise when using Data Transformation
Services (DTS) and supplies additional DTS error information.

Topic Description
Enhancing Performance of DTS
Packages

Describes ways to enhance the performance of
DTS packages.

Data Conversion and
Transformation Considerations

Details the interactions between individual
providers and DTS.

DTS Driver Support for
Heterogeneous Data Types

Lists the ODBC drivers and OLE DB providers
supplied by SQL Server to perform distributed
operations against heterogeneous data sources.

Enhancing Data Driven Queries in
DTS

Describes error handling issues, and issues
regarding the use of transactions, lookups, and
connections with a Data Driven Query task.

Enhancing Lookup Queries in DTS Lists issues and implementation details you
should consider when using lookup queries in a
DTS package.

Data Transformation Services (SQL Server 2000)

Enhancing Performance of DTS Packages
There are a number of factors that can affect the performance of Data Transformation Services (DTS) packages.

Using ActiveX Scripts

Depending on the type of transformation and your choice of scripting language, data pump operations that use Microsoft®
ActiveX® transformation scripts can be up to two to four times slower than copy operations.

Using ordinal values to refer to columns in ActiveX transformations can be much faster then referring to columns by name. For
example, use:

DTSSource(1)

instead of:

DTSSource("CustomerID").

This speed improvement is not significant when the number of columns is less then 20, but can become significant when the
transformation contains many columns. For fewer columns, ignore this optimization to make the script easier to read.

In addition, scripts written in Microsoft Visual Basic® Scripting Edition (VBScript) run approximately 10 percent faster than scripts
written in Microsoft JScript®, which in turn run approximately 10 percent faster than scripts written in PerlScript.

Enhancing Data Pump Performance

The data pump is the transformation component of the Transform Data task and the Data Driven Query task. When you use these
tasks to transform data, you may be able to enhance performance when:

There are large amounts of data.

The transformations are numerous.

The scripting code is complex.

To improve performance in these situations, use many-to-many mappings whenever possible. That way, you avoid mapping a
separate transformation function for each column. The script engine is not invoked for each transformation. As a result,
performance is faster. For more information about the column mappings used with transformations, see Mapping Column
Transformations.

The DTS Import/Export Wizard creates packages with many-to-many column mappings. However, by default, the DTS Designer
assigns one-to-one column mappings to transformations in order to improve readability. Therefore, when using DTS Designer,
consider remapping as many transformations as possible to a many-to-many configuration. As with the use of ordinals in scripts,
this optimization becomes more noticeable as the number of transformations increases. In general, if you have more than 20
transformations, you can see a noticeable performance decrease.

Data Driven Query Task vs. Transform Data Task

When Microsoft SQL Server™ is a data destination of the Transform Data task, transformations, by default, use the
IRowsetFastLoad interface. When SQL Server is not the destination, the Transform Data task uses the IRowsetChange interface
(typically, sending INSERT statements).

Transformations in the Data Driven Query task use the ICommand interface on the destination using prepared insert operations.
This might be faster than the IRowsetChange interface that transformations in the Transform Data task use, depending on how
your destination OLE DB provider implements the interfaces. However, transformations using the ICommand interface or the
IRowsetChange interface will not show better performance than transformations using the IRowsetFastLoad interface.

Using Bulk Insert and bcp

The Bulk Insert task creates and executes the Transact-SQL BULK INSERT statement. BULK INSERT, supported by the Microsoft
OLE DB Provider for SQL Server, is significantly faster than bcp or the data pump for performing text file import operations.
Therefore, if transformations are not used, use the Bulk Insert task and achieve faster throughput.

The BULK INSERT statement is limited to file import operations.

When importing data, bcp and DTS copy operations are approximately the same speed. However, when exporting data, bcp
operations can be approximately three to six times faster. Native bcp, which only applies to SQL Server data, is faster than the
DTS data pump. BULK INSERT and native bcp are comparable in speed.

Using Connections

Use the ExecuteOnMainThread property only when necessary (for example, with drivers that are not thread-safe). Always avoid
using ExecuteOnMainThread in ActiveX scripts to achieve concurrency unless the package or package step includes:

Precedence constraints, which may affect the order of operation of a DTS package.

Scripts that call COM objects written in Visual Basic. For more information, see Building a DTS Custom Task.

Custom tasks that are not free threaded.

For safety, only one task can use a connection at a time. To achieve parallel execution, you must set up different connections for
each task. For example, a source (A) might connect to two destinations (C) and (D), but the operation occurs serially. The same
source (A) could also be configured as (B), and parallelism could be achieved by (A) connecting to (C) and (B) connecting to (D).

However, if two tasks join the package transaction and then access the same instance of SQL Server in parallel, the package will
fail. For more information, see Incorporating Transactions in a DTS Package.

By default, the maximum number of concurrent steps is four. Use the MaxConcurrentSteps property to modify this setting.

Using Other SQL Server Solutions

A Transact-SQL query is the fastest method to move data without transformations or validations between tables. For multiple
sources, consider running a distributed query such as a SELECT INTO statement.

In an environment using multiple packages, each DTS package must be run as a separate process using dtsrun in either a batch
operation or using SQL Server Agent. This makes DTS a client process. If you must run a large number of packages (for example,
1,000 or more) as a server process, consider using SQL Server 2000 replication, which provides snapshot, transactional, and
merge capabilities. Also, consider using SQL Server 2000 replication if your primary task is copying just the SQL Server data that
has changed.

Improving Query Performance on Large DTS Packages Stored in a Repository

When you query a large DTS package that is stored in a SQL Server 2000 Meta Data Services repository, you can achieve better
results if you increase the query time-out value. This ensures that your query has time to complete the roundtrip from the
repository database, even if the DTS package is very large. By default, the query time-out value is 10 seconds. Adjust the query
time-out value by creating the following registry key:
HKEY_LOCALMACHINE\SOFTWARE\Microsoft\Repository\Engine\ODBCQueryTimeout. For this key, set a value that is larger than
the default (for example, 60 seconds or greater). The unit measurement is in seconds.

Data Transformation Services (SQL Server 2000)

Data Conversion and Transformation Considerations
Before using Data Transformation Services (DTS) to convert or transform data between heterogeneous data and destinations,
consider these variations in the way different programs, providers, and drivers support data types and SQL statements.

When using Microsoft® SQL Server™ as a data source, consider the following:

Transforming the real data type into the int data type may not return the exact value because SQL Server 2000 supports
only six digits of precision for the real data type. For example, the real number 2147480000 may result in an int value of
2147480065.

When transforming a string (DBTYPE_WSTR) into a date (DBTYPE_DATE) or time (DBTYPE_TIME) column from a text file,
only one date or time format (yyyy-mm-dd hh:mm:ss.fffffffff) is accepted by the OLE DB data conversion service component.
Use the Date Time String transformation, or code a Microsoft ActiveX® script transform using the CDate function to
transform dates correctly.

SQL Server 2000 does not support OLE DB types DBTYPE_DATE or DBTYPE_TIME. SQL Server 2000 only supports
DBTYPE_DATETIME.

To access data across multiple steps, avoid using a temp table during transformations. Instead, use a global temp table or
create a permanent table in tempdb.

Stored procedures that return rows from temp tables cannot be used as the source of a transformation. You can use stored
procedures that return rows from a global temp table or table.

When using temporary tables in the Transform Data task, the Data Driven Query task, or the Execute SQL task in DTS
Designer, be aware that you cannot use a Transact-SQL statement or stored procedure that calls a temp table as your
source.

This limitation does not apply outside of DTS Designer. You can use source statements or stored procedures that access SQL
Server temp tables programmatically.

DTS Import/Export Wizard and DTS Designer

When using the DTS Import/Export Wizard and DTS Designer to create packages, consider the following:

The DTS user interface allows sharing existing connections among tasks but the same connection cannot be used for both
the source and destination of a transformation.

Using DTS Designer or the DTS Import/Export Wizard, it is possible to specify read-only or in-use status for some providers
(for example, Microsoft Access and ODBC DSNs) that are to serve as data sources only. Click the Advanced tab in the
Connection Properties dialog box, and in the Advanced Connection Properties dialog box, set the value of the mode
property to 1.

When creating a table using the DTS Import/Export Wizard or DTS Designer, the owner of a table created at the destination
is the current user (generally the dbo), regardless of who the owner is at the source. This can result in a situation where the
dbo attempts to create a table at the destination and the table name already exists, thus causing the attempt to fail.

When defining a data-driven query using DTS Designer, a data destination must be able to support the OLE DB ICommand
interface. Due to this restriction, destinations such as text files are not supported.

The Copy SQL Server Objects task of DTS truncates fields of type text, ntext, and image if they exceed 8388602 bytes in
length. No error messages are displayed by either DTS Designer or the DTS Import/Export Wizard. These both indicate the
task completed successfully.

The only indication of failure is a log message written to a log file named <server>.<database>.log, in the Script File
Directory specified on the Copy tab of the Copy SQL Server Objects Task Properties dialog box. The log message
specifies the table and column, but not the row, where the truncation occurred. No error records are written to the DTS error
file or to the SQL Server log.

Microsoft SNA Server

When using Microsoft SNA Server as a data source, consider the following:

The Microsoft OLE DB provider for AS/400 and VSAM does not support SQL statements that the DTS Import/Export Wizard
uses to create or truncate a table.

Microsoft Access

When working with Access, consider the following:

When exporting data from SQL Server 2000 to Microsoft Access 97 or earlier, the Microsoft OLE DB Provider for Access
buffers all inserts in memory and only commits them when the DTS Import/Export Wizard completes operation. As a result,
you can face a low memory situation when you export large tables. However, you can resolve this issue by constructing
SELECT statements that send smaller numbers of rows in multiple passes.

Microsoft Visual FoxPro

Microsoft Visual FoxPro® supports only a precision of (15,9) for numeric data types. Data exported to Visual FoxPro that exceeds
this precision is truncated and rounded.

Visual FoxPro does not support the SELECT INTO statement.

The DTS Query Designer supports the Visual FoxPro INSERT VALUE statement, but not the INSERT statement using a
SELECT statement.

The Microsoft OLE DB driver for ODBC is unable to write BLOBs to Visual FoxPro using the FoxPro ODBC driver because
Visual FoxPro does not support dynamic cursors.

ODBC

When connecting to an ODBC data source, consider the following:

The Microsoft OLE DB Provider for ODBC requires a unique key on all destination tables with a BLOB data column when
performing export operations.

When using the Microsoft OLE DB provider for ODBC with the SQL Server ODBC driver, all BLOB columns should be
arranged after columns with other data types in a source rowset. You can use a SELECT statement to rearrange the BLOB
columns to the end of the source rowset. The DTS Import/Export Wizard performs this operation automatically.

Important When using the Microsoft OLE DB Provider for ODBC with the SQL Server ODBC driver, attempts to preview
stored procedures fail with a connection busy error. This problem does not occur if you use the Microsoft OLE DB Provider
for SQL Server.

If a Microsoft ODBC Driver for SQL Server connection is being shared by multiple threads, the connection may fail,
returning the error message "Connection is busy with results for another hstmt". In some cases, this affects packages built
with the DTS Import/Export wizard. Use one of the following approaches to address this problem:

Set the MaxConcurrentSteps property to 1 to eliminate contending threads.

Create additional ODBC connections to eliminate connection sharing.

Use the Microsoft OLE DB Provider for SQL Server (SQLOLEDB) to connect to the database. If you need to connect to
a SQL Server 6.5 database, run Instcatl.sql to enable access with the Microsoft OLE DB Provider for SQL Server.

Oracle

When using Oracle as a data source, consider the following:

The Microsoft ODBC and OLEDB drivers for Oracle support the Oracle 7.3 BLOB data types, not Oracle 8.0 data types. For
example, BLOB, CLOB, NCLOB, and BFILE are not supported.

The Microsoft ODBC driver for Oracle does not support sending Unicode strings into an Oracle server. Oracle requires

prefixing Unicode strings with the letter N.

The Microsoft ODBC driver for Oracle does not support negative scaling for the Oracle number data type.

The Microsoft ODBC driver for Oracle reports that an Oracle number data type without a specified precision has a size of
20 digits. When importing from Oracle (regardless of the destination), if there are more than 20 digits, you may have to
manually increase the precision if the destination table does not already exist.

Oracle supports only one LONG (BLOB) data column in a table.

You cannot import or export Oracle columns that have mixed or lower case names. You also cannot transform or copy data
using Oracle column names that contain spaces using the DTS Import/Export Wizard. Oracle requires case-sensitive column
names to be precisely specified and quoted.

To perform distributed transactions between SQL Server 2000 and Oracle, you must use Oracle version 8.0.4.1 or later. For
more information, see Distributed Transactions.

Because the Microsoft OLE DB Provider for Oracle does not support ICommandWithParameters, it cannot be used as the
destination of a Data Driven Query task. When using this provider in DTS Designer, the Parameters buttons on a Transform
Data task, Data Driven Query task, and Execute SQL task will be disabled.

DB2 on the IBM AS/400

When connecting to a DB2 data source, consider the following:

There is no Unicode or BLOB support on the AS/400 system.

You cannot transform any table with a NULL column value to an AS/400 server because the AS/400 does not support NULL
syntax in its CREATE TABLE statement. However, you can send NULL values if you edit the CREATE TABLE syntax to remove
the references to NULL. The AS/400 does not support NOT NULL; NULL is assumed if not specified.

Using the Sybase ODBC Driver

When connecting to a Sybase ODBC data source, consider the following:

When transforming data from SQL Server into Sybase version 11 using the DTS Import/Export Wizard:
The SQL Server numeric (3,0) data type maps to the Sybase smallmoney data type by default. Change this setting
to avoid data loss.

The SQL Server numeric (18,x or 19,x) data type maps to the Sybase money data type by default. Change this
setting to avoid data loss.

When moving data into a new Sybase table, if you click OK in the Column Mappings and Transformations dialog
box, the wizard returns a "Table already exists" error message. You should ignore this message.

You cannot drop and re-create a Sybase table using the DTS Import/Export Wizard. You must perform this action
without using a wizard.

The DTS Query Designer does not support the Sybase SQLAnywhere CREATE TABLE statement.

The DTS Import/Export Wizard can only move one table at a time to a SQLAnywhere database due to a limitation in the
SQLAnywhere driver. You can overcome this limitation using DTS Designer. However, you must set the
ExecuteInMainThread property of the Step object to True for each table, as the SQLAnywhere driver is not thread safe.

You cannot copy a table to a Sybase destination if it contains a BLOB column.

If you programmatically copy a table containing an image data type from Sybase, changing the default BLOB settings can
result in failure.

dBase and Paradox

When connecting to dBase and Paradox data sources, consider the following:

Table names in dBase and Paradox are limited to eight characters. Column names in dBase are limited to 10 characters.

File Import or Export

When importing or exporting data from text files, consider the following:

If you import into or export from char or varchar columns, some extended characters may not be copied correctly if your
client OEM code page is different from the code page on the server. When you import into or export from nchar or
nvarchar columns, all characters copy correctly.

If you export BLOB (including SQL Server data types text and ntext) columns to a fixed length text field, the default length
is set equal to the maximum BLOB field length (approximately two gigabytes). Prevent disk overflow by choosing a smaller
but still adequate field length, or use a delimited format if possible.

The OLE DB provider for text files used in DTS cannot process columns with BLOB data greater than two megabytes (MB).

Code Pages, Collation, and Non-Unicode Data Issues

When using DTS to copy data between SQL Server databases with different code pages and collations, data may be lost or
incorrectly translated.

To avoid translation issues, store international data in Unicode. Once converted to Unicode, you can easily transfer data in any
collation or code page without loss or incorrect translation to any Microsoft SQL Server 2000 or Microsoft SQL Server 7.0
database.

In Microsoft SQL Server 2000, collations are associated with particular code pages and are assigned to individual columns.
(Microsoft SQL Server 7.0 uses a single default code page, and does not support column-level collations). If the code page used
for a source and destination column match, no data loss will occur in non-Unicode columns. When data is copied between non-
Unicode columns, and the source and destination code pages do not match, loss of data can result. In some cases, DTS will
perform a best fit mapping, with data loss if the source contains characters that do not occur in the destination code page. In other
cases, DTS will perform a copy without any intervening translation, resulting in the loss of any data not represented by the same
binary value in both code pages. Following are problems and guidelines for using the Copy SQL Server Objects task and when
copying data with the Copy Column transformation using different collations or code pages.

Copy SQL Server Objects Task

The following refers to how the Copy SQL Server Objects task handles non-Unicode data:

When copying data from one instance of SQL Server 2000 to another instance of SQL Server 2000 there is no loss of data
provided you set the UseCollation property of the Copy SQL Server Objects task.

When copying data from an instance of SQL Server 2000 to SQL Server 7.0, a best fit mapping is used for columns that
have collations that match the database default collation code page. Data stored in a column with a different code page is
interpreted as being encoded in the default code page, with attendant losses on translation.

When copying data from SQL Server 7.0 to an instance of SQL Server 2000, the UseCollation property is not available
because SQL Server 7.0 is unable to determine which of several collations its default code page maps to. No collations are
supported during Copy SQL Server Objects task execution, thus, non-Unicode destination columns will be assigned the
default collation for the destination database. If the code page associated with the collation does not match that of the
source database, DTS will perform a best fit mapping

When copying data from SQL Server 7.0 to SQL Server 7.0, if the source and destination databases use different default
code pages, DTS will perform a best fit mapping.

If you want to ensure that there is no data loss when copying non-Unicode data, you can use the SQL Server bulk copy feature to
export data in Unicode format, then use bulk copy or DTS to import it.

To disable the default scripting of collations, add code or use Disconnected Edit or the Dynamic Properties Task to add the value
of SQLDMOScript2_70Only to the ScriptOptionEx property of the Copy SQL Server Objects Task.

Copy Column Transformation

The following refers to how the Copy Column Transformation handles non-Unicode data between different code pages:

If the source column is Unicode and the destination column in non-Unicode, a best fit mapping is done, and an attempt is
made to translate the data between source and destination.

If the source column is non-Unicode and the destination column is Unicode, DTS interprets the source column as belonging
to code page 1252 regardless of the actual code page used.

If both the source and destination columns are non-Unicode, raw data will be copied without translation, and some loss of
data will occur.

Data Transformation Services (SQL Server 2000)

DTS Driver Support for Heterogeneous Data Types
Data Transformation Services (DTS) uses the ODBC drivers and OLE DB providers supplied by Microsoft® SQL Server™ 2000 to
perform distributed operations against heterogeneous data sources.

The following table summarizes, for each of the major data sources, those supplied drivers or providers. Microsoft Product
Support Services will help you resolve problems that you encounter when using these drivers and providers to perform
distributed operations. If you are using another driver or provider, contact the vendor of that ODBC driver or OLE DB provider for
support.

Data source Driver or provider Supported
Oracle 8 Microsoft ODBC for Oracle version 2.573.3401.00 Yes
Oracle 8 Microsoft OLE DB Provider for Oracle version

2.0010.3401.000
Yes

Microsoft Jet
version 4.0

Microsoft OLE DB Provider for Jet version
4.0000.2115.0004

Yes

Microsoft Excel
spreadsheet

Microsoft OLE DB Provider for Jet version
4.00.2115.15

Yes

Microsoft Jet
version 3.51

Microsoft Access Driver version 4.00.3401.00 No

IBM DB2/MVS StarSQL 32 version 2.52.0501 Yes
IBM DB2/AS400 StarSQL 32 version 2.40.0805 Yes

DTS and Informix

The Informix ODBC driver is not supported for use with DTS.

The Merant Informix OLE DB provider is supported for DTS imports from Informix, but not DTS exports to Informix. This
driver also cannot be used to import meta data.

The Intersolv Informix ODBC driver is supported, but with the following restrictions:
BLOBs cannot be exported to Informix.

When creating new tables on Informix, the DTS Import/Export Wizard will incorrectly map the SQL Server 2000
datetime columns to the Informix 'Datetime year to fraction' data type. Manually change this to the Informix Date
type.

The DTS meta data import will not import Informix catalog or table information.

Data Transformation Services (SQL Server 2000)

Enhancing Data Driven Queries in DTS
By changing properties in Data Transformation Services (DTS) Designer or via the DTS object model, you can configure the Data
Driven Query task to:

Fail on the first error, or continue, perhaps logging errors, until a maximum error count is reached.

Commit modifications immediately, or join the package transaction to make all edits succeed or fail together.

Use lookup queries to help populate destination columns or determine which query to execute.

Error Handling and the Data Driven Query Task

The Data Driven Query task offers a number of features to support error handling and restarts:

To adjust the response of the Data Driven Query task to failures, you can either change the Maximum errors property in
the Data Driven Queries dialog box or adjust the MaximumErrorCount property in the DTS object model.

When the number of failures exceeds this maximum value, the task halts and the step fails.

You can log errors to a file you name, with formatting you provide.

In order to support restarts, you can configure the Data Driven Query task to operate only on a numbered subrange of the
source rowset.

Transactions and the Data Driven Query Task

The Data Driven Query task can join the package transaction. Before using the Data Driven Query task in transactions, consider
the following:

If the Data Driven Query task does not join the package transaction, updates are made one at a time, as they are requested.

If the Data Driven Query task does join the package transaction, successfully run queries remain in the transaction at the
conclusion of the task. These results are subject to commit or rollback in the current or following steps, or at package
completion.

In order to join the package transaction, the binding table connection must support transactions.

Data Driven Query task failure does not automatically roll back successfully run queries; task success does not
automatically commit them. Commit and rollback happen only in response to user package and workflow settings.
For more information, see Configuring Properties for DTS Transactions.

Lookup Queries and the Data Driven Query Task

The Data Driven Query task can include lookup queries, which are additional parameterized queries that can be used to look up or
modify data on local or distant connections.

Before adding lookup queries to the Data Driven Query task, consider the following:

If the Data Driven Query task joins the package transaction, and the lookup connection supports transactions, any updates
made by lookup queries also take part in the package transaction. For more information, see Lookup Queries.

If the Data Driven Query task does not join the package transaction, or Maximum errors is not equal to zero, the possibility
exists that a lookup might successfully execute before the corresponding data driven query fails. If the lookup modifies data,
inconsistent updates might result.

Other Usage Considerations

Before using the Data Driven Query task, you also should consider the following:

The data driven query task binding table must be able to support the OLE DB ICommand interface. Due to this restriction,
binding tables such as text files are not supported.

You should use unique connections for the source, binding table, and any lookup queries.

See Also

Data Driven Query Task

Data Transformation Services (SQL Server 2000)

Enhancing Lookup Queries in DTS
When implementing Data Transformation Services (DTS) lookup queries, consider the following:

DTS lookups are best used when the input to the lookup is an external value (for example, a global variable).

Lookups can be invoked from within a transformation function, allowing you to associate a query and a connection with the
lookup. In a transformation function, you can then execute the query and have one or more values returned. You can
achieve similar functionality using COM objects, VARIANTs, and the DTS GlobalVariables collection. However, the Lookup
object uses an established connection and is optimized for quick data retrieval using caching.

If the transformation function can use an SQL statement instead of a lookup (for example, a SELECT statement with a join
clause), performance can be greatly improved.

You can configure a lookup query to cache results by specifying a cache size. If the cache size is larger than zero, then the
results of the query are cached along with parameter values. If you provide the same parameter values to the query again,
the results are returned from the cache with no additional database access. When the cache fills up, rows are removed in
least recently used order.

The lookup query connection must be able to support the OLE DB ICommand interface in order to accept SQL statements
directly. Due to this restriction, connections such as text files cannot be used for lookups.

If a task joins the package transaction and the lookup connection supports transactions, any updates made by lookup
queries also take part in the package transaction. If the task joins the package transaction and the lookup connection does
not support transactions, on rollback, updates made by lookups will remain on file.

A lookup query may fail (for example, if it attempts to insert a row with a duplicate key). If a lookup fails, no further processing
takes place for the source row. Lookup failure counts as one error against the maximum errors property of the containing task.

See Also

Lookup Queries

Analysis Services (SQL Server 2000)

Analysis Services Overview
Microsoft® SQL Server™ 2000 Analysis Services includes online analytical processing (OLAP) and data mining. Use this table to
acquaint yourself with this release of Analysis Services documentation.

Section Description
What's New in Analysis Services Describes the enhancements and new features in

Analysis Services with links to information in the
documentation.

Installing Analysis Services Provides instructions for installing Analysis
Services.

Analysis Services Architecture Describes the features of Analysis Services, the
server and client architecture, the object
architecture, and security.

Data Warehousing and OLAP Describes the use of OLAP in data warehouses.
Administering Analysis Services Describes the tools and tasks used in

administering Analysis Services.
Administrator's Reference Provides reference information for Analysis

Services, including specifications and limits, the
use of SQL in Analysis Services, the help topics
for the user interface, and the compliance of
Analysis Services with the OLAP and data mining
specifications of OLE DB.

MDX Provides introductory material, reference
information, and examples that detail the use of
Multidimensional Expressions (MDX) in Analysis
Services.

Analysis Services Troubleshooting Provides information to assist in resolving
problems that may occur in Analysis Services.

Programming Analysis Services
Applications

Describes the programming information and
reference material provided for developing
Analysis Services administrative and client
applications.

How To Provides the administrative procedures for
Analysis Services.

Analysis Services (SQL Server 2000)

What's New in Analysis Services
Microsoft® SQL Server™ 2000 extends and renames the former OLAP Services component, now called Analysis Services. Many
new and improved features significantly enhance the analysis capabilities of the acclaimed OLAP Services introduced in SQL
Server version 7.0. In this release, Analysis Services introduces data mining, which can be used to discover information in OLAP
cubes and relational databases.

The What's New topics contain brief overviews of the new Analysis Services features with links to the conceptual topics that
discuss each feature in more detail and provide further links into the documentation.

Topic Description
Cube Enhancements New cube types and enhanced cube functionality

substantially extend the scalability and functionality of
Analysis Services.

Dimension Enhancements New dimension and hierarchy types, features, and
improvements extend the analysis capabilities of cubes.

Data Mining Enhancements New in this release, data mining is integrated into online
analysis and can be used to discover information in
OLAP cubes and relational databases.

Security Enhancements Security enhancements include using roles on cube cells
and dimension members, additional authentication
methods, and improved enforcement.

Client Connectivity
Enhancements in PivotTable
Service

Client applications can use many new features and
enhancements such as data mining, HTTP or HTTPS
connections, additional dimension types, and cell
allocation for writeback.

Other Enhancements Other enhancements provide a variety of new features
including multiuser administration, MDX Builder,
additional Multidimensional Expressions (MDX)
functions, Virtual Cube Editor, support for Active
Directory™, and more.

Analysis Services (SQL Server 2000)

Cube Enhancements
Microsoft® SQL Server™ 2000 Analysis Services substantially extends the scalability and functionality of OLAP cubes. You can
distribute cube data across multiple servers to provide more storage capacity, create linked cubes to distribute end-user access to
information without duplicating cube data, create cubes that are updated in real time as data changes, and use a number of other
new features to create cubes that address your specific business needs.

Distributed Partitioned Cubes

You can create distributed partitioned cubes by using remote partitions that distribute a cube's data among multiple Analysis
servers. A distributed partitioned cube is administered on a central Analysis server. For more information, see Remote Partitions.

Analysis Services (SQL Server 2000)

Dimension Enhancements
This release of Microsoft® SQL Server™ 2000 Analysis Services adds significant functionality to OLAP analysis with a number of
new dimension types, features, and improvements.

Parent-Child Dimensions

A new parent-child dimension type supports hierarchies based on parent-child links between members in columns in a source
table. Such hierarchies represent structures that include organization charts and part assemblies. Data members can be used to
provide data for nonleaf members, such as the direct commission amount for a sales department manager or the individual
salaries for all members in an organizational chart. For more information, see Parent-Child Dimensions.

Analysis Services (SQL Server 2000)

Data Mining Enhancements
Data mining technology analyzes data in relational databases and OLAP cubes to discover information of interest. The data
mining features of Microsoft® SQL Server™ 2000 Analysis Services are incorporated in an open and extensible implementation
of the new OLE DB for Data Mining specification. SQL Server 2000 includes data mining algorithms developed by Microsoft
Research.

Relational and OLAP Data Mining

Analysis Services has incorporated data mining technology so that you can use it to discover information in relational databases
and in OLAP cubes in Analysis Services. You can use the results of data mining to create a dimension that you can add to a cube
to further analyze your data. For more information, see Data Mining Models.

Analysis Services (SQL Server 2000)

Security Enhancements
This release of Microsoft® SQL Server™ 2000 Analysis Services includes features that provide more flexibility in controlling
access to cube data, additional methods for authentication of users, and enhanced enforcement of roles.

Dimension Security

You can use roles to control end-user access to dimensions. For each role, you can limit access to individual dimensions, levels,
and members, and you can set various read and read/write permissions. For more information, see Dimension Security.

Analysis Services (SQL Server 2000)

Client Connectivity Enhancements in PivotTable Service
Enhancements to PivotTable® Service provide new connection options and support new cube and security features introduced in
this release of Microsoft® SQL Server™ 2000 Analysis Services. Additional new functionality in PivotTable Service can be used by
client applications when connected to an Analysis server or when working offline. For more information, see What's New in
PivotTable Service.

Connecting to the Analysis Server

Client applications can communicate with the Analysis server through Microsoft Internet Information Services (IIS) using HTTP or
HTTPS. Third-party security providers can also be used.

Analysis Services (SQL Server 2000)

Other Enhancements
This release of Microsoft® SQL Server™ 2000 Analysis Services incorporates various enhancements to improve usability,
processing performance, and MDX functionality.

Multiuser Administration

Multiple users can administer an Analysis server using Analysis Manager. Locking is applied only to the objects being edited and
their dependent objects. For more information, see Analysis Manager.

Analysis Services (SQL Server 2000)

Installing Analysis Services
This section contains information about installing Microsoft® SQL Server™ 2000 Analysis Services only. It does not contain
information about installing other components of SQL Server 2000. For more information about installing other components,
such as English Query, see Getting Started with SQL Server Books Online.

This section contains the following topics.

Topic Description
Hardware and Software Requirements
for Installing Analysis Services

Provides the hardware and software
requirements for installing and running
Analysis Services.

Running Setup Provides step-by-step instructions to install
Analysis Services.

Setup Parameters and Silent Installation Describes the parameters for the Analysis
Services Setup program (Setup.exe).

Reinstalling Analysis Services Describes how to reinstall Analysis Services.
Removing Analysis Services Describes how to remove Analysis Services.
Upgrading from SQL Server 7.0 OLAP
Services

Describes how to upgrade from SQL Server
7.0 OLAP Services.

Backward Compatibility Provides information about compatibility
with OLAP Services (the previous name for
the current Analysis Services).

Related Documents

The Readme.html file in the root directory of the SQL Server 2000 CD-ROM contains information about Analysis Services. You
can also view the release notes by clicking Read the Release Notes on the SQL Server 2000 Setup program (Autorun.exe) menu.

Analysis Services (SQL Server 2000)

Hardware and Software Requirements for Installing Analysis
Services
Before you can install Microsoft® SQL Server 2000™ Analysis Services, your computer must meet the following requirements.

Hardware/software Requirements
Computer Intel® or compatible (Pentium 133 MHz or higher, Pentium

PRO, Pentium II, or Pentium III)
Memory (RAM) 32 megabytes (MB) minimum (64 MB recommended)(4)

Disk drive CD-ROM drive
Hard disk space (1) 50 – 90 MB (130 MB for all components including common

files and samples), 12 MB for the client only
Operating system Microsoft Windows® 2000 Server (3)

-or-

Microsoft Windows NT® Server 4.0 with Service Pack 5 or
later (3)

For client components on client computers only, the
following systems also qualify:

Windows 2000 Professional
Windows NT Workstation 4.0 with Service Pack 5
Windows 98
Windows 95 + DCOM95
Windows 95 OSR2 + DCOM95

Network software Windows 2000, Windows NT 4.0, Windows 98, or Windows
95 built-in network software; and TCP/IP (included with
Windows).

Online product
documentation viewer

Microsoft Internet Explorer version 5.0 or later (2). You must
install Windows NT 4.0 Service Pack 5 or later before you
install Internet Explorer version 5.0.

Access permissions To install the services for Analysis server, you must be
logged on to the server with Administrator permissions.

1 Setup installs a number of components that can be shared by other applications and may already exist on the computer.
2 Internet Explorer is required for Microsoft Management Console (MMC) and HTML Help. A minimal installation is sufficient,
and Internet Explorer does not need to be your default browser. Internet Explorer is not required for the client-only installation.
3 Analysis Services should not be installed on a domain controller; this installation configuration is not supported.
4 Analysis Services does not support Address Windowing Extensions (AWE).

For more information about supported hardware, see the Microsoft Windows Hardware Compatibility List at the Microsoft Web
site. For more information about Windows 2000-compatible hardware, use the Microsoft Windows 2000 compatible hardware
devices search tool at the Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?prd=Hardware Compatibility List&Pver=1.0&AR=/hwtest/hcl/
http://go.microsoft.com/fwlink/?LinkId=10256

Analysis Services (SQL Server 2000)

Running Setup
This topic describes how to install Microsoft® SQL Server™ 2000 Analysis Services.

If you are upgrading from SQL Server 7.0 OLAP Services, you should take certain steps before performing the following
procedure. For more information, see Upgrading from SQL Server 7.0 OLAP Services.

If you are reinstalling Analysis Services, you should take certain steps before and after performing the following procedure. For
more information, see Reinstalling Analysis Services.

Although Analysis Services can connect to multiple instances of SQL Server running on a single computer, you cannot install
multiple instances of Analysis Services on a single computer.

To install Analysis Services, use the Analysis Services Setup program or the SQL Server 2000 Setup program.

To install Analysis Services

1. Exit all Microsoft Windows® applications.

2. Insert the SQL Server 2000 CD into the CD-ROM drive. This starts the SQL Server 2000 Setup program. If the Setup
program does not start automatically, run the Autorun.exe program in the root directory of the CD-ROM.

3. Click Install SQL Server 2000 Components.

4. Click Analysis Services to start the Analysis Services Setup program.

5. In the Welcome step, click Next.

6. In the Software License Agreement step, read the license agreement, and then do one of the following:

To accept the license agreement, click Yes. You must select this option to install Analysis Services.

To reject the license agreement, click No. If you select this option, the program will ask you to confirm exiting. If you
select Exit Setup, the program closes and the installation is canceled. To continue Setup, click Resume.

7. The Setup program prompts you to enter the CD key. Type the 10-digit CD key for the product, and then click OK.

8. The Setup program displays the complete product ID, which you can record for future reference. After you record the
product ID, click OK.

9. In the Select Components step, select the components you want to install. All of the options are selected by default. You
cannot clear the check box of any component on which another selected component depends.

Unless you are installing the client components on a client computer, installing all components is recommended. The
following components are available for installation.

Component Description
Analysis server Binary executables and other server-related files

required for an installation of an Analysis server.
Includes the FoodMart 2000 sample database
used by the tutorial. Requires the client
components.

Analysis Manager Binary executables and other files that support the
user interface for administering the Analysis server.
Includes the MDXSample executable file. Requires
Decision Support Objects (DSO) and the client
components.

Decision Support Objects The object model for administering the Analysis
server and managing meta data. Requires the client
components.

Client components Binary executables and related files for the Analysis
Services client. Client components include
PivotTable® Service.

Sample applications Sample applications include the MDXSample
source files, the FoodMart 2000 database, and
programming samples. Requires the client
components.

Books Online The entire documentation set for SQL Server 2000,
including Analysis Services. This file is
approximately 30 megabytes (MB). If space is at a
premium, you can choose not to install Books
Online. However, product documentation will not
be available in the user interface until it is
reinstalled.

To change the destination drive or folder, click Browse. Although remote network drives are listed in these dialog boxes,
installation to locations on remote network drives is not supported.

Space Required and Space Available indicate disk drive space and help you determine what components to install. If
your current disk drive does not have enough space available, you can click Disk Space to determine which disks on your
computer have enough space to install Analysis Services.

After you select the components to install, click Next. The steps that follow may change depending on which components
you selected to install.

10. In the Data Folder Location step, you can change the location of the Data folder, which is the data storage location of the
Analysis server.

The default location for the Data folder is C:\Program Files\Microsoft Analysis Services\Data (unless you specified another
location for Analysis Services in the previous step). You can specify a different location by clicking Browse. If you change the
default folder or drive, be sure to enter a fully qualified path. To specify a data storage location other than the computer on
which the server is installed, you must have full control access permissions on that computer.

Important The Data folder stores security files that control end users' access to objects on the Analysis server. For this
reason, the Data folder must be secured against unauthorized access.

After you select the location of the Data folder, click Next.

11. In the Select Program Folder step, accept the default program folder name or enter a new one. This determines the
location of the Analysis Services menu items on the Start menu. Click Next.

12. Analysis Services installation begins. After Setup notifies you that the installation is complete, click Finish.

13. If you are prompted to restart your computer, do one of the following:

Click Yes, I want to restart my computer now, and then click Finish.

Click No, I will restart my computer later, and then click Finish. If you select this option, the installation is not
complete until after you restart the computer.

14. If you are finished installing SQL Server 2000 components, click Exit in the SQL Server 2000 Setup program.

If in Step 10 you specified a data storage location other than the computer on which the server is installed, you must configure
your Analysis server service (MSSQLServerOLAPService) to log on as your user account, instead of the default, which is to log on
as the system account. To do this, use the Services application, which is in Control Panel in Windows NT® 4.0 or the
Administrative Tools folder in Control Panel in Windows 2000.

Analysis Services (SQL Server 2000)

Setup Parameters and Silent Installation
You can start the Analysis Services Setup program (\Msolap\Install\Setup.exe on the SQL Server CD-ROM) with the following
optional command line parameters:

-r

This option causes Setup.exe to automatically generate a silent response file (.iss), which is a record of the installation input, in the
systemroot folder (typically C:\WinNT).

-s

This option performs a silent (unattended) installation.

-f1<path\ResponseFile>

This option allows you to specify the alternate location and name of the response file (.iss file). If the -f1 switch is not used when
you run silent installation, Setup searches for the response file Setup.iss in the same folder as Setup.exe.

-f2<path\LogFile>

This option allows you to specify an alternate location and name of the log file. By default, the Setup.log log file is created and
stored in the systemroot folder (typically C:\Winnt).

If you use the -r option you can create a record of any installation scenario. You can use this record to perform a silent
(unattended) installation. For example, the following command initiates a silent installation of the components specified in the
Setup.iss response file previously recorded when you used the -r option:

Setup.exe -s -f1C:\temp\setup.iss

-z

Prevents Setup.exe from checking the available memory during initialization. This switch is necessary when running Setup on a
computer with more than 256 megabytes (MB) of memory. If it is not used, Setup.exe reports insufficient memory and exits.

Analysis Services (SQL Server 2000)

Reinstalling Analysis Services
To reinstall Microsoft® SQL Server™ 2000 Analysis Services, follow these steps:

1. If you have made changes to the FoodMart 2000 sample database and want to preserve changes, back up
FoodMart2000.mdb, which is installed by default to: C:\Program Files\Microsoft Analysis Services\Samples. Otherwise, this
file is overwritten during the installation process.

2. Install Analysis Services. For more information, see Running Setup.

Note Reinstalling Analysis Services does not delete the Analysis Services repository (Msmdrep.mdb), which contains Analysis
Services meta data. However, you must process all cubes in the repository after reinstallation. If you have backed up the
FoodMart 2000 sample database before reinstallation, restore FoodMart2000.mdb to recover your changes to the file.

Analysis Services (SQL Server 2000)

Stopping or Removing Analysis Services
To stop Microsoft® SQL Server™ 2000 Analysis Services, follow these steps:

1. Open Control Panel.

2. If your computer's operating system is Windows® 2000, open the Administrative Tools folder, and then double-click
Services.

If your computer's operating system is Windows NT® 4.0, double-click Services.

3. Select MSSQLServerOLAPService, and then on the Action menu click Stop.

4. Wait until the application notifies you that the service has stopped.

To remove Analysis Services, use the Add/Remove Programs application in Control Panel. Removing Analysis Services does not
delete the Analysis Services repository (Msmdrep.mdb), which contains Analysis Services meta data, or the query log
(Msmdqlog.mdb). If you want to fully remove Analysis Services, you must delete these files manually.

Analysis Services (SQL Server 2000)

Upgrading from SQL Server 7.0 OLAP Services
To upgrade from Microsoft® SQL Server™ 7.0 OLAP Services, perform the following actions:

Back up the Analysis Services repository and query log.

Before you install Analysis Services, as a precaution against data loss, back up the Analysis Services repository
(Msmdrep.mdb), which contains Analysis Services meta data, and the query log (Msmdqlog.mdb). These files are located in
the Bin folder in the Analysis Services folder.Run Setup.

Install Analysis Services by running the Analysis Services Setup program. For more information, see Running Setup.

When you upgrade, Setup does not delete or replace the Analysis Services repository or the query log.

Note The default location for Analysis Services has changed from C:\Program Files\OLAP Services in SQL Server 7.0 OLAP
Services to C:\Program Files\Microsoft Analysis Services in SQL Server 2000 Analysis Services.

Analysis Services (SQL Server 2000)

Backward Compatibility
Microsoft® SQL Server™ 2000 Analysis Services is compatible with SQL Server version 7.0 OLAP Services. Cubes that were
created in SQL Server 7.0 OLAP Services need to be migrated to the updated meta data repository format and reprocessed.
Otherwise, the existing structures for cubes, roles, shared dimensions, and so on do not need to be changed. For more
information about migrating the SQL Server 7.0 OLAP Services repository to SQL Server 2000 Meta Data Services, see Migrating
Analysis Services Repositories.

The following sections concern backward compatibility with SQL Server 7.0 OLAP Services.

Administration of Analysis Services

Analysis Manager is backward compatible with SQL Server 7.0 OLAP Services. It is capable of administering both OLAP servers
(the server that ships with SQL Server 7.0 OLAP Services), and Analysis servers (the server that ships with SQL Server 2000
Analysis Services) concurrently. When administering an OLAP server, the OLAP Services portion of SQL Server 7.0 Service Pack 2
code is used to assure complete backward compatibility. The add-in programs in Service Pack 2 are now integrated with Analysis
Manager and do not need to be installed to administer OLAP servers.

Client and Local Cube Support

Some features in SQL Server 2000 Analysis Services are not supported by the SQL Server 7.0 OLAP Services client components
or in a local cube. For more information, including a list of features, see 7.0 Analysis Services Client and Local Cube Support.

Decision Support Objects

Analysis Services now includes an updated version of Decision Support Objects (DSO), which is automatically installed during
Setup. Programs must use this updated version of DSO when administering an Analysis server (the server that ships with SQL
Server 2000 Analysis Services). No other change to these programs is necessary. Programs that use the updated version of DSO
are compatible with and can administer OLAP servers (the server that ships with SQL Server 7.0 OLAP Services); however, new
features will not be available on the OLAP server.

PivotTable Service

SQL Server 2000 Analysis Services includes an updated version of PivotTable® Service. Client applications that use PivotTable
Service do not need to use this new version when connecting to an Analysis server unless you need access to objects that include
new features. The objects that use these new features (such as data mining models and cubes that include parent-child
dimensions) are not seen by the client applications that use the earlier version of PivotTable Service. Client applications that use
the updated version of PivotTable Service can connect to any server, regardless of its version. Client applications that use the
updated version of PivotTable Service can configure their compatibility settings using the following properties:

MDX Compatibility property

MDX Unique Name Style property

Secured Cell Value property

Visual Mode property

Custom Add-in Programs

Custom add-in programs that were developed for use with SQL Server 7.0 OLAP Services will continue to work with SQL Server
2000 Analysis Services. No changes are necessary to use them.

Archiving, Restoring, and Migrating Data

Analysis Services supports some but not all permutations of archiving and restoring databases and migrating repositories
between versions of the product. For information about supported migration paths, see Supported Migration Paths for Analysis
Services Repositories. For information about archiving and restoring data between versions of the product, see Archiving and
Restoring Databases Between Versions of Analysis Services.

Analysis Services (SQL Server 2000)

7.0 Analysis Services Client and Local Cube Support
This table shows support for new server features by the Microsoft® SQL Server™ 7.0 OLAP Services client components and in a
SQL Server 2000 Analysis Services local cube. When a feature may cause data to be translated incorrectly by a 7.0 client
application, the server prevents the cube from being visible and prevents the client connection to the cube. If the absence of a
feature in a local cube might change data values presented to the user, then a local cube using the feature cannot be created.

For each feature listed here, the table shows whether a cube containing a feature is visible on a 7.0 client application and if the
cube is visible whether the feature itself is available on the 7.0 client application. For each feature, the table also shows whether a
local cube can be created using the feature and whether the feature itself is supported in a local cube.

Feature

Cube is
visible on
7.0 client

Feature
available on

7.0 client

Can create
local cube

using feature

Supported in
a local cube

Actions Yes No Yes No
Additional
authentication methods

Yes Yes Yes (2)

Calculated cells No No No No
Changing dimensions Yes No Yes No
Custom member
formulas

No No No No

Custom rollup formulas No No No No
Default members No No Yes Yes
Dimension security No No No No
DistinctCount No No No No
Drillthrough Yes No Yes No
Enhanced cell Security Yes Yes Yes No
Enhanced virtual
dimensions(1)

Yes Yes Yes Not applicable

Exceeding 7.0 Limits(3) No No Yes Yes
Linked cubes Yes Not applicable Yes No
Member groups Yes Yes Yes Yes
Members with data Yes Yes Yes Yes
New MDX functions Yes No Yes (4)

Parent-child dimensions No No Yes Yes
Ragged dimensions Yes Yes Yes Yes
ROLAP dimensions Yes Not applicable Yes No
Siblings with same
names

No No Yes Yes

Write-enabled
dimensions

Yes No Yes No

1 The earlier limit of 760 members in a virtual dimension does not apply.
2 Cell security is not supported on local cubes.
3 Exceeding 127 measures in a cube, 63 dimensions in a cube, or 128 levels in a cube. For information about SQL Server 2000
Analysis Services limits, see Specifications and Limits.
4 For the SQL Server 7.0 OLAP Services client, new Multidimensional Expressions (MDX) functions are not supported. For local
cubes, new MDX functions are available, except for LookUpCube. Calculated members using LookUpCube in local cubes are not
created.

Analysis Services (SQL Server 2000)

Supported Migration Paths for Analysis Services Repositories
 New Information - SQL Server 2000 SP3.

You can migrate a Microsoft® SQL Server™ 2000 Analysis Services repository from the default Microsoft Access (Microsoft Jet
3.5 or 4.0) database to a SQL Server database on the same or a different computer. You cannot migrate a SQL Server repository
to a Microsoft Access repository. You can change the format from Analysis Services native format to SQL Server 2000 Meta Data
Services format when you migrate a database. To migrate a SQL Server database repository between Analysis Services native
format and Meta Data Services format, you must migrate it from one SQL Server database to another. The following table shows
supported migration paths for repository databases.

 To native To MDS
 Jet 3.5/4.0 SQL Server

7.0/2000 SQL Server 2000
From native Jet 3.5/4.0 No Yes Yes
 SQL Server

7.0/2000
No Yes(2) Yes(2)

From MDS(1) SQL Server
2000

No Yes(2) Yes(2)

1 MDS represents the Meta Data Services (previously named Microsoft Repository) format supported by SQL Server 2000.
2 Source and destination must be different databases.

Analysis Services native format is recommended. If the SQL Server 2000 database engine is available to the Analysis server, either
on the same computer or another computer, migrating the repository to a SQL Server 2000 database provides enterprise-level
scalability, support, and security for the Analysis Services repository.

See Also

Migrating Analysis Services Repositories

OLE DB Provider for Jet

Analysis Services (SQL Server 2000)

Archiving and Restoring Databases Between Versions of
Analysis Services
On an Analysis server (the server that ships with Microsoft® SQL Server™ 2000 Analysis Services), you can restore databases that
were archived using an OLAP server (the server that ships with SQL Server 7.0 OLAP Services) or an Analysis server. The
following table shows all the restoration paths supported for databases archived while in SQL Server 7.0 OLAP Services or SQL
Server 2000 Analysis Services using native or SQL Server 2000 Meta Data Services formats with SQL Server or the Microsoft Jet
3.5 or 4.0 OLE DB provider.

 To native To MDS
 Jet 3.5/4.0 SQL Server SQL

Server
 7.0 2000 7.0 2000 2000
From
native(1)

Jet 3.5/4.0 7.0 Yes Yes Yes Yes Yes

 2000 No(3) Yes No(3) Yes Yes
 SQL Server 7.0 Yes Yes Yes Yes Yes
 2000 No(3) Yes No(3) Yes Yes
From
MDS(2)

SQL Server 2000 No(3) Yes No(3) Yes Yes

1 From specifies the repository format, database engine, and version of OLAP Services or Analysis Services that archives a
database; To specifies the repository format, database engine, and version of OLAP Services or Analysis Services that restores a
database.
2 MDS represents the Meta Data Services (previously named Microsoft Repository) format supported by SQL Server 2000.
3 OLAP servers do not support restoration of Analysis Services databases.

See Also

Archiving and Restoring Databases

OLE DB Provider for Jet

Analysis Services (SQL Server 2000)

Analysis Services Architecture
The following topics contain information about the architecture of Microsoft® SQL Server™ 2000 Analysis Services.

Topic Description
Analysis Services Features Contains an overview of Analysis Services and its main

features.
Server and Client
Architecture

Describes the interaction between the Analysis server and
client applications.

Object Architecture Contains information about the objects you work with in
Analysis Services and how they are connected.

Security and
Authentication

Describes security in Analysis Services, which bases roles
on Windows NT® 4.0 and Windows® 2000 users and
groups to provide security settings that you can set
anywhere from the database level to the individual cell
level.

Analysis Services (SQL Server 2000)

Analysis Services Features
Microsoft® SQL Server™ 2000 Analysis Services is a middle-tier server for online analytical processing (OLAP) and data mining.
The Analysis Services system includes a server that manages multidimensional cubes of data for analysis and provides rapid
client access to cube information. Analysis Services organizes data from a data warehouse into cubes with precalculated
aggregation data to provide rapid answers to complex analytical queries. Analysis Services also allows you to create data mining
models from both multidimensional (OLAP) and relational data sources. You can apply data mining models to both types of data.
PivotTable® Service, the included OLE DB compliant provider, is used by Microsoft Excel and applications from other vendors to
retrieve data from the server and present it to the user, or create local data cubes for offline analysis.

Certain features are available only if you install Analysis Services for certain editions of SQL Server 2000. For more information
about which editions support which features, see Features Supported by the Editions of SQL Server 2000.

The following table describes the key features of Analysis Services.

Topic Description
Ease of Use An extensive user interface with wizards
Flexible Data Model A flexible, robust data model for cube definition and storage
Scalability Scalable architecture that provides a variety of storage

scenarios and an automated solution to the data explosion
syndrome that plagues traditional OLAP technologies

Integration Integration of administration tools, security, data sources,
and client/server caching

Widely Supported APIs
and Open Architecture

Support for custom applications

Analysis Services (SQL Server 2000)

Ease of Use
To make online analytical processing (OLAP) and data mining technology easier to use, Microsoft® SQL Server™ 2000 Analysis
Services provides wizards, editors, tools, and information within Analysis Manager. This console application provides a user
interface for accessing Analysis servers and their meta data repositories.

Tutorial and Overview Material

You can use the online tutorial to master Analysis Manager in a few hours. Designed for both beginners and experienced OLAP
users, the tutorial walks you through the steps for creating a basic cube, as well as more advanced operations, such as creating
partitions, virtual cubes, security roles, writable dimensions, actions, and data mining models. The tutorial is an excellent tool for
learning about OLAP, data mining, and the operation and features of Analysis Manager.

You can also find information about OLAP and Analysis Services in the HTML pane (the right pane) of Analysis Manager.

Meta Data and Data View

In the right pane of Analysis Manager, you can view object properties and meta data and browse data for cubes and data mining
models as you traverse the tree pane.

Cube Wizard

With this easy-to-use wizard, you can build all the structures necessary to create an OLAP cube. The wizard walks you through the
entire cube design and implementation process, from mapping data sources and creating dimensions to defining measures.

Cube Editor

Using simple drag-and-drop operations, you can edit existing cube structures and create new ones. Cube Editor complements the
Cube Wizard. Using Cube Editor, you can revise cubes you created with the wizard or quickly create new ones.

Dimension Wizard

Using the Dimension Wizard, you can quickly and easily create a shared dimension, which can be used by any cube, or a private
dimension, which can be used in a single cube. You can map database dimension table columns to dimension levels or use the
built-in time dimension generator to create a variety of time dimensions based on a date-time column in the database. You can
use the Dimension Wizard to create dimensions based on star or snowflake data warehouse schemas. In addition, you can also
create parent-child, virtual, and data mining dimensions.

Dimension Editor

Using simple drag-and-drop operations, you can edit existing shared dimension structures and create new ones. Dimension
Editor complements the Dimension Wizard, enabling you to revise dimensions you created with the wizard or to quickly create
new ones. You can also preview dimension data in the editor.

Incremental Update Wizard

You can use this wizard to guide you through the process of incorporating new data into your cube. An incremental update adds
new data to a cube without the necessity of rebuilding aggregations and reloading all data.

Partition Wizard

This wizard helps you create a new partition to contain a portion of the data in your cube. Partitions enable you to distribute and
optimize a cube's data into discrete segments on a single server or across multiple servers.

Note You can create multiple partitions in a cube only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Storage Design Wizard

You can use this wizard to specify the storage mode for cube data and to help you design aggregations appropriate to the
intended use of your cube. The options available in this wizard enable you to optimize the tradeoff between response time and
storage requirements according to the needs of your application and users.

Usage Analysis Wizard

By displaying logged query information such as date, user, query response time, and frequency in tabular and graphical format,
the Usage Analysis Wizard helps you understand how a cube is being used.

Usage-Based Optimization Wizard

The Usage-Based Optimization Wizard helps you tune cube performance based on users' actual usage of the cube. You can direct
the wizard to create aggregations to improve performance based on any combination of users, the number of times a query was
executed, query response time, the mode of storage where the data resides, or a date range.

Calculated Cells Wizard

This wizard helps you create calculated cells, by allowing you to define a subsection of a cube, referred to as a subcube, whose
value is determined by a Multidimensional Expressions (MDX) formula. The functionality of calculated cells is similar to that of
custom members, except that calculated cells can affect specific cells, even a single cell, within a cube, allowing finer control for
financial and statistical calculations.

Action Wizard

You can use this wizard to create an action associated with a cube or a portion of a cube. An action allows users to trigger an
operation on a selected cube or a part of a cube and automatically pass the selected item as a parameter to the operation. For
example, a user can select an action on a dimension member that automatically opens his or her Internet browser so he or she
can access a page about the member.

Virtual Cube Wizard

You can use this wizard to join cubes and to select dimensions and measures from them to create a virtual cube. A virtual cube
enables a single query to be routed to multiple cubes, including cubes running on different servers. A virtual cube appears to
users as a regular cube, but it does not require additional storage space; it is similar to a view that joins tables in a relational
database.

Virtual Cube Editor

Using simple drag-and-drop operations, you can edit existing virtual cube structures. Virtual Cube Editor complements the Virtual
Cube Wizard, enabling you to revise virtual cubes you created with the wizard.

Mining Model Wizard

You can use this wizard to create data mining models from both OLAP and relational data sources. You can also specify different
data mining techniques to build your model. If you are creating a mining model based on OLAP data, you have the option to
create a dimension and virtual cube to help you analyze the mining model results.

Mining Model Editors

In these two editors, one for OLAP data mining models and the other for relational data mining models, you can edit existing
mining models using drag-and-drop techniques and browse the results of your mining models.

Data Views

You can view data for cubes, dimensions, and data mining models without leaving Analysis Manager. You do not need to switch
to another application to check your designs.

OLE DB Data Source Locator Integration

Analysis Services uses the Microsoft Data Source Locator component for selecting OLE DB or ODBC data sources.

Role Managers

Using Database Role Manager and Cube Role Manager, you can create and maintain roles to control users' access to cubes and
their component parts.

Analysis Services (SQL Server 2000)

Flexible Data Model
By supporting various data and storage models, Microsoft® SQL Server™ 2000 Analysis Services helps you create and maintain a
system that meets your organization's needs.

Multiple Data Storage Options

Analysis Services offers three storage modes for dimensions, partitions, and cubes:

Multidimensional OLAP (MOLAP)

The underlying data for a cube is stored along with aggregation data in a high-performance multidimensional structure.
MOLAP storage provides excellent performance and data compression.

Relational OLAP (ROLAP)

The underlying data for a cube is stored along with the aggregation data in a relational database. ROLAP storage enables
you to take advantage of your investment in relational technology and enterprise data management tools.

Hybrid OLAP (HOLAP)

The underlying data for a cube is stored in a relational database and the aggregation data is stored in a high-performance
multidimensional structure. HOLAP storage offers the benefits of MOLAP for aggregations without necessitating duplication
of the underlying detail data.

Note Dimensions with more than 10 million members must use the ROLAP storage mode. This feature is available only if you
install Analysis Services for SQL Server 2000 Enterprise Edition.

Partitioned Cube Storage

You can partition a cube into separate physical sections. Each partition can be stored in a different mode, in a different physical
location, and with a level of aggregations appropriate to the data in the partition. The result is that you can fine-tune the
performance and data management characteristics of your system.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Partition Merging

You can combine a cube's multiple partitions back into a single physical partition. For example, you can use partition merging to
consolidate portions of cube data, such as data for a just completed quarter into a single partition for the year.

Write-Enabled Cubes

You can enable a cube for write access by multiple simultaneous users. User-initiated changes to the cube data are logged to a
special, physically separated partition table associated with the cube and applied automatically as cube data is viewed. To the user
it appears as if the data in the cube has changed. The changes can be discarded or made read-only at the discretion of the
database administrator (DBA).

Balanced, Unbalanced, and Ragged Hierarchies

You can create dimensions with balanced or unbalanced hierarchies. Dimensions with balanced hierarchies have all branches of
the hierarchy end at the same level while branches of unbalanced hierarchies terminate at different levels.

Ragged hierarchies are also supported. This allows dimensions in which at least one member does not have its logical parent in
the level immediately above the member to accommodate levels where no values exist; the logical parent of a member in a
ragged hierarchy can be two levels above the member.

Parent-Child Dimensions

You can create a dimension based on two dimension table columns that together define parent-child relationships between rows
in the dimension table. Parent-child dimensions support balanced, unbalanced, and ragged hierarchies; complex hierarchical
relationships can be easily created using parent-child dimensions.

Write-Enabled Dimensions

You can enable a dimension for write access by multiple simultaneous users. User-initiated changes to the dimension data are
recorded in the dimension table. Users can manipulate the dimension data to see the immediate effect on the cube data.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Virtual Cubes

You can join cubes into virtual cubes, much like tables can be joined with views in a relational database. A virtual cube provides
access to data in the combined cubes without necessitating the construction of a new cube, while it allows you to maintain the
best design for each individual cube.

Calculated Members

You can create calculated measures and calculated dimension members by combining Multidimensional Expressions (MDX),
mathematical formulas, and user-defined functions. This facility enables you to define new measures and dimension members
based on a rich yet easy-to-use expression syntax. You can register additional libraries of user-defined functions to use in
calculated member definitions.

Custom Unary Operators

Custom unary operators use simple math operators, called unary operators, stored in a column to determine how the value of a
level member affects the value of the parent. Custom rollup operators are unique per level member.

Custom Rollup Formulas and Custom Member Formulas

Custom rollup formulas and custom member formulas are MDX expressions that determine cube cell values associated with
members. Custom rollup formulas apply to all members of a level, whereas custom member formulas apply to individual level
members.

Calculated Cells

Similar to custom member formulas, calculated cells are MDX statements that determine cube cell values associated with a
specified group of cells. Calculated cells apply only to specified cells in a cube, whereas custom member formulas must apply to
all of the cells for a given member.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Member Properties

You can define properties for dimension members and use data for these properties within a cube. For example, if the members
of a Product dimension are SKUs, there are likely to be several properties associated with SKUs, such as size, color, fabric, and so
on. You can specify such properties as member properties and use them in analytical queries.

Virtual Dimensions

A virtual dimension can be created from member properties or levels of another dimension. A virtual dimension can be used to
evaluate the properties of a dimension's members against the members themselves. For example, measures can be evaluated for
SKUs against size, color, fabric, and so on. Virtual dimensions and member properties are evaluated as necessary for queries and
require no physical cube storage.

Analysis Services (SQL Server 2000)

Scalability
Microsoft® SQL Server™ 2000 Analysis Services provides a scalable architecture to address a variety of data warehousing
scenarios.

Customized Aggregation Options

Using the Storage Design Wizard, you can optimize the tradeoff between system performance and the disk space allocated to
storing aggregations. Analysis Services uses a sophisticated algorithm to determine the optimum set of aggregations from which
other aggregations can be derived. As a result, you can focus on application design issues and leave the complex management of
aggregation design up to the system.

Usage-Based Optimization

You can tune the performance of a cube to provide quick response to the queries most often executed by directing the Usage-
Based Optimization Wizard to design aggregations appropriate to those queries while maintaining reasonable storage
requirements. Thus, you can quickly build a system with a minimum number of aggregations and then later optimize
performance according to the actual usage of the system.

Data Compression and Storage Optimization

In multidimensional OLAP (MOLAP) and hybrid OLAP (HOLAP) storage modes, Analysis Services stores all or some of the cube
information in multidimensional structures. In these structures, storage is not used for empty cells, and a sophisticated data
compression algorithm is applied to data that is stored. When combined with the flexible options for the design and optimization
of precalculated aggregations, these techniques help to minimize the impact of the data explosion syndrome inherent in OLAP
technology.

Distributed Calculation

PivotTable® Service incorporates functionality from the server so that calculations can often be performed on the client instead of
the server. Because this distributes the computational load between the server and the client, it increases the capacity of the
server, reduces network traffic, and improves performance for the clients.

Partitions

You can spread a cube over multiple servers by dividing it into partitions. Analysis Services can then retrieve data in parallel to
answer queries. Partitioning enables you to manage your storage strategy, increase scale with multiple servers, and increase
performance.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Linked Cubes

A cube can be stored on a single server and referenced as a linked cube on other servers. Users connected to any of these servers
can then access the cube. This approach avoids the more costly alternative of storing and maintaining copies of a cube on
multiple servers. Linked cubes make it possible for you to create, store, and maintain a cube on one Analysis server while
providing access to the cube from multiple Analysis servers. Linked cubes facilitate cube security and reduce storage and
maintenance requirements.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Distributed Partitioned Cubes

Creating distributed partitioned cubes by using remote partitions enables you to manage your storage strategy by storing a
cube's data across multiple servers. Benefits include centralized administration, greater scalability, and enhanced performance
through parallel processing of queries.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Incremental Updates

A cube can be updated by processing only the data that has been added rather than the entire cube; you can incrementally update
OLAP cubes while they are in use.

LAN, WAN, Internet, and Mobile Scenarios

Intelligent cache management integrates the Analysis server with the PivotTable Service client, minimizing traffic over LAN and
WAN connections. PivotTable Service contains an efficient multidimensional calculation engine to further minimize network traffic
and to enable analysis of local multidimensional data when the client is not connected to the server.

Microsoft ActiveX® controls, Active Server Pages (ASP) scripting, and ActiveX Data Objects (ADO) APIs provide a variety of
solutions for querying OLAP data over the Web.

To support mobile scenarios, you can create local cubes, which can be used without a connection to an Analysis server. Depending
on their storage mode, some local cubes can be used without a connection to an Analysis server and without a connection to the
cube's data source.

HTTP Authentication of Connections

HTTP or secure HTTP (HTTPS) authentication can be used in conjunction with Microsoft Internet Information Services (IIS) to
establish connections to an Analysis server.

Note This feature is available only if you install Analysis Services for SQL Server 2000 Enterprise Edition.

Client Support for Windows 95 and Windows 98

PivotTable Service runs on Microsoft Windows® 95 and Windows 98, supporting client applications available for these platforms
as well as for Microsoft Windows NT® 4.0 and Windows 2000.

Analysis Services (SQL Server 2000)

Integration
Microsoft® SQL Server™ 2000 Analysis Services works with other components and programs to ensure enterprise-level
robustness.

Integrated Management Console

Analysis Services includes Analysis Manager, a graphical administration tool. This is a snap-in to Microsoft Management Console
(MMC). It provides a common framework and user interface for defining, accessing, and managing Analysis servers and
databases. You can use multiple snap-in components in MMC; for example, you can install SQL Server Enterprise Manager and
other snap-in components along with Analysis Manager.

Integrated Security

Cube and data mining model access is based on Microsoft Windows NT® 4.0 or Windows® 2000 security, providing integration
with SQL Server 2000 or earlier by way of operating system-level user account and group definitions.

OLE DB and ODBC Data Sources

A variety of OLE DB and ODBC data sources can be used, such as Oracle versions 7.3 and 8.0. You can use multiple sources at the
same time.

Data Transformation Services

Using the Data Transformation Services (DTS) portion of SQL Server Enterprise Manager, you can create packages that process
cubes and data mining models and run prediction queries based on mining models. These packages can be scheduled to execute
automatically.

Meta Data Services

You can use SQL Server 2000 Meta Data Services to store Analysis Services meta data. Meta Data Services provides a store for
object definitions and a platform for deploying meta data.

Functions from Excel and Visual Basic for Applications

In Multidimensional Expressions (MDX), you can include many functions in the Microsoft Excel worksheet library, which is
automatically registered if installed on the computer with Analysis Services. You can also include many functions in the Microsoft
Visual Basic® for Applications Expression Services library, which is included with Analysis Services and automatically registered.

Server-Side Cache

User queries, meta data, and data are stored in the Analysis server cache. Cached query definitions and meta data make it possible
to answer new queries by calculating answers from cached data rather than retrieving data from the disk.

Client-Side Cache

Client applications connect to the Analysis server through the client-based PivotTable® Service component. Because PivotTable
Service receives meta data with data from the server in response to a query, it can often use data in the client cache to calculate
the answer to subsequent queries without sending a new query to the server. For example, if the client cache contains values for
the four quarters of a specific year and the user asks for the total for the same year, PivotTable Service calculates the answer from
the cached data.

PivotTable Service shares much of the same functionality as the server, enabling it to bring the server's multidimensional
calculation engine, caching features, and query management directly to the client computer. This client/server data management
model optimizes performance and minimizes network traffic.

Analysis Services (SQL Server 2000)

Widely Supported APIs and Open Architecture
Microsoft® SQL Server™ 2000 Analysis Services provides various tools you can use to programmatically extend its functionality.

OLE DB

Analysis Services is designed to meet the OLAP-specific requirements of the OLE DB 2.0 and later specification, which was
developed with the input of over 40 OLAP client and server vendors and is a widely supported standard for multidimensional
data access.

Analysis Services is also designed to meet the requirements of the OLE DB for Data Mining specification, which addresses data
mining-specific provisions.

ADO

Analysis Services is compatible with Microsoft ActiveX® Data Objects (ADO) and its extension for multidimensional objects, ADO
(Multidimensional) (ADO MD).

User-Defined Functions

You can extend the list of built-in functions by creating libraries of functions using Component Object Model (COM) automation
languages, such as Microsoft Visual Basic® or Microsoft Visual C++®. You can register these libraries and use your functions in
calculated member definitions and other expressions written in Multidimensional Expressions (MDX). This architecture enables
you to add customized analysis tools.

Decision Support Objects

You can use the server object model, Decision Support Objects (DSO), to create applications that define and manage cubes, data
mining models, and other objects. This object model can be used to extend the functionality of Analysis Manager or to automate
the ongoing maintenance of your system.

Add-in Support

You can use the Analysis Services Add-in Manager interface to create applications that extend the functionality of the Analysis
Manager user interface. Using the Analysis Services Add-in Manager interface and DSO, you can create custom extensions, dialog
boxes, wizards, and other applications that integrate with Analysis Manager.

Analysis Services (SQL Server 2000)

Server and Client Architecture
Rapid access to data warehouse data is provided by Microsoft® SQL Server™ 2000 Analysis Services. Data from the data
warehouse is extracted, summarized, organized, and stored in multidimensional structures for rapid response to end user queries.

Analysis Services also provides an architecture for access to data mining data. This data can be sent to the client in either a
multidimensional or relational form.

Analysis Services and PivotTable® Service provide the capability to design, create, and manage cubes and data mining models
from data warehouses and to provide client access to OLAP data and data mining data. The Analysis server manages the data;
PivotTable Service works with the server to provide client access to the data.

Analysis Services (SQL Server 2000)

Server Architecture
Microsoft® SQL Server™ 2000 Analysis Services provides server capabilities to create and manage OLAP cubes and data mining
models, and to provide this data to clients through PivotTable® Service. Server operations include:

Creating and processing cubes from relational databases, usually in data warehouses.

Storing cube data in multidimensional structures, in relational databases, or in combinations of both.

Creating data mining models from cubes or from relational databases, usually in data warehouses.

Storing data for data mining models in multidimensional structures, relational databases, or in Predictive Model Markup
Language (PMML), which is a standardized XML format.

Meta data, the information used to define cubes, data mining models, and other objects on the server, is stored by Meta Data
Services in a relational database.

A user interface is provided by the Analysis Manager add-in that runs under a snap-in to Microsoft Management Console (MMC).
In addition, the Data Transformation Services (DTS) portion of SQL Server Enterprise Manager, which also snaps into MMC,
provides a user interface with the server. Programming interfaces are provided to enable custom applications to interact with the
object model that controls the server, as well as with Analysis Manager.

For more information about creating custom programs, see Programming Analysis Services Applications.

Analysis Services (SQL Server 2000)

Client Architecture
PivotTable® Service communicates with the Analysis server and provides interfaces that client applications can use to access
OLAP data and data mining data on the server. Client applications connect to PivotTable Service using OLE DB interfaces for C++
or the Microsoft® ActiveX® Data Objects (ADO) object model for Component Object Model (COM) automation languages such
as Microsoft Visual Basic®.

PivotTable Service can also create local cube files that contain data from a cube on the server or from OLE DB relational
databases. Local cubes can be stored as multidimensional cube files on the client computer. Local cubes can be used offline with
PivotTable Service for portable analysis. That is, to query local cubes, a connection to the Analysis server is not required;
connection to the local cubes' data sources is not required if the local cubes have a multidimensional OLAP (MOLAP) storage
mode.

PivotTable Service can also create local data mining model files that contain models processed from cubes or tables on the server
or from OLE DB relational databases. Local data mining models can be stored on the client computer. Local data mining models
can be used offline with PivotTable Service for portable analysis. That is, to use local data mining models, a connection to the
Analysis server is not required.

For more information about programming the client, see PivotTable Service.

See Also

Key Concepts in PivotTable Service

Analysis Services (SQL Server 2000)

Object Architecture
The following table summarizes the objects used to administer Microsoft® SQL Server™ 2000 Analysis Services.

Topic Description
Analysis Server The server component of Analysis Services,

designed specifically to create and
maintain multidimensional data structures
and to provide multidimensional data in
response to client queries.

Databases Databases serve as containers for related
data sources, cubes, dimensions, data
mining models, and the objects they share.

Data Sources Data sources store the specification of the
information necessary to access source
data for an object such as a cube.

Dimensions Dimensions serve as a structural attribute
of a cube. A dimension is an organized
hierarchy of categories (levels) that
describe data in the fact table. These
categories describe similar sets of
members upon which the user wants to
base an analysis.

Levels and Members Levels are used as elements of a dimension
hierarchy. Levels describe the hierarchy
from the highest (most summarized) level
to the lowest (most detailed) level of data.

Measures Measures are, in a cube, a set of values that
are based on a column in the cube's fact
table and are usually numeric. In a cube,
measures are the central values that are
analyzed.

Cubes Cubes contain a set of data that is usually
constructed from a subset of a data
warehouse and is organized and
summarized into a multidimensional
structure defined by a set of dimensions
and measures.

Partitions Partitions are the storage containers for
data and aggregations of a cube.

Aggregations Aggregations are defined as a table or
structure containing precalculated data for
a cube.

Roles Roles contain a set of Microsoft®
Windows NT® 4.0 or Windows® 2000
user accounts and groups with the same
access to Analysis Services data.

Commands Commands are used to hold an
administrator-defined command that is
automatically executed when a client
accesses a database, cube, or role.
Commands include calculated members,
named sets, and actions.

Member Properties Member properties contain information
about the members of a dimension level in
addition to that contained in the
dimension.

Data Mining Models Data mining models contain a virtual
structure that represents the grouping and
predictive analysis of relational or online
analytical processing (OLAP) data.

Data Mining Columns Data mining columns contain a structure
that is used to define the content of a data
mining model. A column can contain data
or nested columns.

Analysis Services (SQL Server 2000)

Object Architecture Overview
Microsoft® SQL Server™ 2000 Analysis Services provides a variety of objects to help you implement an online analytical
processing (OLAP) or data mining solution with a data warehouse. This topic includes descriptions of the available objects.

The main object of OLAP is the cube, which contains the current analytical data of interest to end users. To support the questions
that end users ask, cubes organize data into dimensions and measures in a multidimensional structure. For example, consider the
question, "What was our total sales of hardware in the northwest region in the first quarter of this year?" A cube of data that can
answer this question includes three dimensions and one measure:

The Product dimension, which contains a hardware category

The Geography dimension, which contains the northwest region

The Time dimension, which contains the first quarter of this year

The Sales measure, which contains quantitative numerical data that can be summarized

Whereas OLAP allows you to perform aggregation analysis on current or past data, data mining actually allows prediction
analysis to be performed based on current or past data. Instead of considering the question posed earlier in this topic using OLAP,
the question, "What will our projected total sales of hardware in the northwest region be for the first quarter of next year?" can be
asked and answered with data mining. The main object of data mining, the data mining model, provides a framework to store
learned knowledge from your data, such as probability and distribution information, created from existing data to predict the
behavior of new data. This, in turn, can be given new data for analysis, to predict expected values for a given case based on
patterns and rules discovered in past data.

Object Hierarchy Diagram

The objects used to support OLAP and data mining are represented by a object hierarchy, used to maintain the complex
relationships between the various objects, such as cubes, dimensions, and data mining models, that define Analysis Services.

The following diagram shows the positions of the objects within the Analysis Services object hierarchy. Some objects appear in
multiple places within the hierarchy.

This topic describes the administrator's view of the object model. The programmer's view is somewhat broader and more
complex. For more information, see Decision Support Objects.

Analysis Services (SQL Server 2000)

Analysis Server
The Analysis server is the server component of Microsoft® SQL Server™ 2000 Analysis Services. It is specifically designed to
create and maintain multidimensional data structures and provide multidimensional data in response to client queries.

When you run Setup to install Analysis Services, you can choose to install the Analysis server component. The name of the
Analysis server matches the computer name on the network. To connect to the Analysis server, client applications must specify
this name in the connection string. End users typically supply a name to indicate the Analysis server they want to connect to.

Installing the Analysis server also creates the Analysis server object.

The Analysis server is the root object in the object hierarchy. As the root object, the Analysis server is the first object to be created
and the object to which all other Analysis Services objects are subordinate. After an Analysis server is created, the next objects to
be created are databases.

The principal tool for administering the Analysis server and its subordinate objects is Analysis Manager, which provides an
extensive user interface. For more information, see Analysis Manager.

In Analysis Manager, a connected Analysis server is identified by the following icon.

Each Analysis server has a repository called the Analysis Services repository. This repository stores the meta data (that is,
definitions) of the objects defined on the Analysis server. By default, the Analysis Services repository is Msmdrep.mdb on the
computer running the Analysis server. However, the Analysis Services repository can be migrated to a SQL Server database. For
more information, see Migrating Analysis Services Repositories.

Each Analysis server has an associated Data folder, which stores multidimensional structures for the objects defined on the
Analysis server. These structures are contained in files that are created when the objects are processed. These structures are
referenced to resolve queries sent to the Analysis server. Some of these structures contain aggregations.

Important The Data folder also contains security files that control end users' access to objects on the Analysis server. For this
reason, the Data folder must be secured against unauthorized access.

The location of the Data folder is specified during installation and can be changed. You can read and change the location of the
Data folder in the Properties dialog box. You can also set other properties of the Analysis server in the Properties dialog box.

The service associated with the Analysis server is MSSQLServerOLAPService. By default, this service starts automatically and logs
on as the system account. You can maintain the MSSQLServerOLAPService service in the Services application, which is either in
Control Panel in Microsoft Windows NT® 4.0 or in the Administrative Tools folder in Windows® 2000.

If you are programming with Decision Support Objects (DSO), the class type associated with the Analysis server is clsServer.

See Also

Aggregations

clsServer

Configuring Analysis Servers

Databases

Dimension Processing

Operational Considerations

Processing Cubes

General Tab (Properties Dialog Box)

Running Setup

Server Security and Authentication

Analysis Services (SQL Server 2000)

Databases
A database is a container for related cubes and the objects they share. These objects include data sources, shared dimensions, and
database roles. If these objects are to be shared among multiple cubes, the objects and cubes must be within the same database.

Databases are immediately subordinate to the Analysis server in the object hierarchy. Thus, after an Analysis server is installed,
databases are the first objects to be created. Databases are created in the Database dialog box. For more information, see
Creating Databases.

After databases are created, data sources are usually the next objects that are created. For more information, see Data Sources.

Databases can be archived and restored by using either Analysis Manager or the msmdarch command. For more information,
see Archiving and Restoring Databases.

In Analysis Manager, a database is represented by the following icon:

If you are programming with Decision Support Objects (DSO), the class type associated with the database is clsDatabase.

In some cases, particularly when you are programming with PivotTable® Service, the database is referred to as the catalog. A
noteworthy example is the connection string to an Analysis server in which a database name is specified in the Initial Catalog
property.

See Also

clsDatabase

Database Security

Analysis Services (SQL Server 2000)

Data Sources
A data source contains the information necessary to access source data for an object such as a cube. Although the term data
source is sometimes used to refer to the source data itself, in this topic it refers to the data source object, which is used by
Microsoft® SQL Server™ 2000 Analysis Services to establish connections to the source data.

A data source specifies an OLE DB provider and settings for the other properties in the connection string used to access the
source data. The property set varies according to the selected provider. Typically, many of the properties are optional, so the
creation of a data source can be accomplished quickly.

Data sources are created in the Data Link Properties dialog box. For more information, see Specifying Data Sources.

Analysis Services supports many data sources, including SQL Server 2000 databases and databases created by other products.
For more information, including a list of the database products whose databases can be selected when you create a data source,
see Specifications and Limits.

When defining a new data source in the Data Link Properties dialog box, you can select a database that is accessed through an
ODBC driver as the source of data if you specify an OLE DB provider that supports ODBC drivers. One such provider is Microsoft
OLE DB Provider for ODBC Drivers, which is supplied with Analysis Services. If you use this provider, you must create a system
data source name (DSN) before you create the data source. To create a system DSN, use the ODBC Data Source Administrator in
Control Panel.

Data sources are immediately subordinate to the following objects in the object hierarchy:

Database

A database can contain multiple data sources, which are shared among the cubes, partitions, and dimensions in the
database.

Cube

A cube can have only one data source. When a cube is created, its data source is selected from the database's data sources,
or a new data source can be created. The cube's partitions can have different data sources than the cube's data source.

A data source for a linked cube must specify Microsoft OLE DB Provider for Analysis Services or another provider that is
compliant with the OLAP section of the OLE DB specification dated March 1999 (2.6).

Partition

A partition can have only one data source. It is selected from the database's data sources or created when the partition is
created. Each partition in a cube can have a different data source; however, all the data sources must reference sources of
data that contain:

A fact table with the same structure and columns.

The same set of dimension tables that is used in the cube's schema. Among the sources of data, the dimension
tables must have the same structure and columns.

In addition, each dimension has a data source. A dimension can be included in a cube only if they have the same data source.

After data sources are created, shared dimensions are typically the next objects that are created. For more information, see
Dimensions.

Data sources are also used in incremental updates of cubes and partitions. Before you perform an incremental update, you must
create a data source for the source data that will be incorporated into the cube or partition by the incremental update. For more
information about incremental updates, see Updating and Refreshing Cube Data.

In Analysis Manager, a data source is identified by the following icon:

If you are programming with Decision Support Objects (DSO), the class type associated with the data source is clsDataSource.
For more information, see clsDataSource.

See Also

Operational Considerations

Processing Tab (Properties Dialog Box)

Specifying Data Sources

Analysis Services (SQL Server 2000)

Dimensions
A dimension is an organized hierarchy of categories, known as levels, that describes data in data warehouse fact tables.
Dimensions typically describe a similar set of members upon which the user wants to base an analysis, and they are a
fundamental component of cubes. The following topics provide a basic conceptual overview of dimensions.

Topic Description
Introduction to Dimensions Provides an overview of the basic concepts of

dimensions
Dimension Structure Describes structural elements of dimensions
Dimension Storage Modes Describes the differences in how dimensions are

stored and settings to determine the dimension
storage mode

Dimension Processing Provides information about the methods
available for processing dimensions

Dimension Hierarchies Provides information about the different ways
dimension members can be positioned relative
to each other

Ragged Dimension Support Contains information about how Microsoft®
SQL Server™ 2000 Analysis Services can handle
missing members in relation to dimension
hierarchies

Dimension Characteristics Describes different dimension characteristics and
the dimension varieties that support them

Shared and Private Dimensions Describes the basic differences between shared
and private dimensions and their uses

Changing Dimensions Describes changing dimensions, their uses, and
requirements

Dependent Dimensions Describes the creation of dependent dimensions
and identifies their advantages and restrictions

Write-Enabled Dimensions Describes the creation of write-enabled
dimensions and identifies their advantages and
restrictions

Balanced and Unbalanced
Hierarchies

Describes and depicts differences between
balanced and unbalanced hierarchies

Ragged Hierarchies Details ragged hierarchies, their uses, and
supported dimension varieties

Dimension Varieties Describes and depicts differences between
dimension varieties

Regular Dimensions Provides information about regular dimensions
and their variations

Virtual Dimensions Describes the creation of virtual dimensions and
their advantages and restrictions

Virtual Dimensions Created in
Version 7.0

Identifies compatibility issues between virtual
dimensions created in SQL Server version 7.0
OLAP Services and SQL Server 2000 Analysis
Services

Parent-Child Dimensions Describes the creation of parent-child
dimensions and identifies their advantages and
restrictions

Data Mining Dimensions Describes the creation of data mining
dimensions and identifies advantages and
restrictions to their use

Analysis Services (SQL Server 2000)

Introduction to Dimensions
Introduction to Dimensions

Dimensions are a structural attribute of cubes. They are organized hierarchies of categories and (levels) that describe data in the
fact table. These categories and levels describe similar sets of members upon which the user wants to base an analysis.

Dimensions can also be based on OLAP data mining models. They can be used to store the results of a mining model analysis and
can be browsed within the context of a virtual cube.

All dimensions are based directly or indirectly on tables, even dimensions based on OLAP mining models. When you create a
dimension from a table, you select the columns that define it. The order in which the columns are selected is significant because it
affects the placement of members within the dimension's hierarchy. However, the order of members of a dimension created
through a mining model analysis is determined by the analysis. This is because the dimension represents the content of the
model.

Dimensions are hierarchical, and in most cases their members are arranged in a pyramid-like configuration. The horizontal
placement results from column values with the same level in the hierarchy of the dimension, and the vertical placement results
from column values having different levels in the hierarchy of the dimension.

For example, the Factory Location dimension has the following members.

This dimension is defined by selecting the Region column and then the State column from the following table.

Note The All Factory Locations member is generated by Microsoft® SQL Server™ 2000 Analysis Services. Generation of an All
member is optional. For more information, see (All) Level and All Member.

The primary key of each dimension table joins to a foreign key in a cube's fact table or another dimension table. (An exception is
when a virtual cube's dimension uses custom rollup formulas or custom member formulas to determine the values of all of its
members.) In the preceding example, the State_ID column joins to a foreign key column in the cube's fact table. Key columns are
not required in the dimension definition. For more information about the relationships between dimension tables and fact tables,
see Cube Structure.

Dimensions categorize the numeric data (that is, measures) in a cube for analysis. For example, if a cube's measure is Production
Count, and its dimensions are Product, Time, and Factory Location, end users who access the cube can separate Production Count
into various categories of Product, Time, and Factory Location.

The smaller alphanumeric values around the cube are the members of the dimensions. The numeric values within the cube
represent the measure, Production Count. These values exist for all cells in the cube but are shown only for those in the
foreground.

The total, aggregated value of this cube is the sum of Production Counts for all Products, all Time, and all Factory Locations. This
value is the sum of the Production Counts in all 64 of the cube's cells.

The Dimension Wizard enables you to create dimensions quickly and easily. You can use it by itself to create shared dimensions,
or, while you are creating a cube with the Cube Wizard, you can invoke the Dimension Wizard to create private or shared
dimensions. After a shared dimension is created, you can maintain it in Dimension Editor. After a private dimension is created, you
can maintain it in Cube Editor. However, dimensions created by mining model analysis cannot be edited.

After a dimension is created, you must process the dimension. After a dimension is changed or its table is updated, usually you
must process the dimension. However, dimension processing can disrupt end users' access to the cubes that include the
dimension.

Queries Against Dimension Data

End users can issue queries to analyze either the whole cube or selected portions of it at varying levels of detail. This is
accomplished by specifying criteria for each dimension. You can perform these types of operations in Cube Browser. For more
information, see Viewing Cube Data.

For example, if the end user chooses to limit the query to Production Counts for hammers, only the front fourth of the cube is
retrieved. The Production Counts for pliers, saws, and drills are ignored. This type of operation is called slicing.

The other type of operation that end users perform with dimensions is the combination of drilldown and drillup. This operation
determines the level of detail to which the retrieved measure values are separated. For example, if the end user does not drill
down at all, the following dataset is returned.

 All Time
All Factory Locations 49005

Notice that no part of the Product dimension appears in the dataset's column headings or row headings. This is because the end
user sliced on one of the members of the Product dimension, hammer. A dimension can be used either to slice or to drill down or
up, not both.

If the end user drills down into All Factory Locations, a new query is issued, and the following dataset is returned.

 All Time
All Factory Locations 49005
 East 16915
 West 32090

If the end user drills down into the East member, a new query is issued, and the following dataset is returned.

 All Time
All Factory Locations 49005
 East 16915
 Maine 8883
 Ohio 8032
 West 32090

If the end user drills down into All Time, a new query is issued, and the following dataset is returned.

 All Time 1st half 2nd half
All Factory Locations 49005 24981 24024
 East 16915 8962 7953
 Maine 8883 4814 4069
 Ohio 8032 4148 3884
 West 32090 16019 16071

If the end user drills up the East member, a new query is issued, and the following dataset is returned.

 All Time 1st half 2nd half
All Factory Locations 49005 24981 24024
 East 16915 8962 7953
 West 32090 16019 16071

The end user can continue to issue queries by slicing on members in some dimensions and drilling down and up on members in
other dimensions.

Object Hierarchy

In the object hierarchy, dimensions are immediately subordinate to the following objects:

Database

These dimensions are shared among the cubes in the database.

Cube

These dimensions are included in the cube. They may be derived from the shared dimensions in the database or they may
be private (that is, unshared).

In the object hierarchy, levels are immediately subordinate to dimensions. The levels of a dimension are created when the
dimension is created. Levels are based on the columns in the dimension's definition.

If you are programming with Decision Support Objects (DSO), the class types associated with the dimension are:

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

See Also

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Mining Models

Dimension Security

Levels

Mining Model Wizard

Analysis Services (SQL Server 2000)

Dimension Structure
Dimension Structure

The structure of the dimension you create determines the variety of the dimension. You create dimensions based on dimension
table columns, member properties, or from the structure of OLAP data mining models. When you define a dimension, there are a
number of possible approaches. Each approach produces a different dimension variety. You can:

Select one or more columns from a dimension table or joined dimension tables. If you select multiple columns, all columns
should be interrelated such that their values can be organized into a hierarchy. To define the hierarchy, sort the columns
from most general to most specific. For example, a Time dimension is created from the columns Year, Quarter, Month, and
Day. This approach produces a regular dimension (that is, a dimension that is neither a parent-child dimension nor a virtual
dimension).

Select two columns from a single dimension table. One column identifies each component of the dimension's hierarchy, and
the other identifies each component's parent. For each row in the table, these two columns identify a parent-child linkage.
All the linkages are combined to determine the dimension's hierarchy. For example, a Genealogy dimension is created from
the columns Person and Parent. This approach produces a parent-child dimension.

Select one or more member properties in another dimension. Each member property is based on a column in the other
dimension's table. This column contains values that are attributes of another column's values. For example, the Store Type
dimension (included in Microsoft® SQL Server™ 2000 Analysis Services) is created from the Store Type member property,
which is in the Store dimension and is an attribute of the store_id column. This approach produces a virtual dimension.

An alternative approach to defining a virtual dimension is to directly select columns in another dimension's table. With this
approach, member properties are not required.

Choose to create a dimension when creating an OLAP mining model in the Mining Model Wizard. You can create a
dimension from the results of the mining model analysis and can also create a virtual cube that contains the dimension and
the mining model's source cube.

The columns or member properties in a dimension definition contribute levels to the dimension. Levels are usually ordered by
specificity and organized in a hierarchy that allows logical avenues for drilldown. For example, a Time dimension can enable end
users to drill down from Year to Quarter, Quarter to Month, and Month to Day. Each drilldown provides greater specificity.

The relationship between the number of columns or member properties in a dimension's definition and the number of levels in
the dimension depends on the variety of the dimension. In a regular dimension, each column in the definition of the dimension
contributes a level. In a parent-child dimension, the two columns in the definition of the dimension contribute a number of levels
that depends on the data in the columns. In a virtual dimension, each member property or column in the definition of the
dimension contributes a level.

Each level contains members. Members are the values in the columns or member properties that define the levels. For example,
the Quarter level might contain four members: Quarter 1, Quarter 2, Quarter 3, and Quarter 4. However, if data in the table spans
more than one year, the Quarter level contains more than four members. For example, if the Year level contains three different
members, 1996, 1997, and 1998, the Quarter level contains twelve members.

The relationship between the levels and members in a Time dimension for a single year is shown in the following illustration.
(Arrows pointing down indicate members that are not shown. Day members exist for each month, but are shown only for January
due to space limitations.)

Using Tabular Browsers

In tabular browsers, members provide the column headings, row headings, and subheadings by which measures are separated

and displayed to end users. (In graphical browsers, they provide other types of descriptive labels but serve the same function as in
tabular browsers.) For example, in a Time dimension for three years, measures are separated under three headings: 1996, 1997,
and 1998. If the end user drills down beneath the Year level, the members of the Quarter level are displayed as subheadings, and
the measures are separated further by quarter. If the end user drills down beneath the Quarter level, the members of the Month
level are displayed as subheadings beneath the Quarter level headings, and the measures are separated further by month.

See Also

Creating and Maintaining Private Dimensions

Creating Shared Dimensions

Data Mining Models

Dimension Varieties

Levels and Members

Mining Model Wizard

Analysis Services (SQL Server 2000)

Dimension Storage Modes
Dimension Storage Modes

A dimension can have one of two storage modes: multidimensional OLAP (MOLAP) or relational OLAP (ROLAP). MOLAP is the
default storage mode of a dimension.

The storage mode determines the location and form of a dimension's data. A MOLAP dimension's data is stored in a
multidimensional structure on the OLAP server. This structure is created when the dimension is processed. A ROLAP dimension's
data is the dimension's table or tables.

MOLAP dimensions provide better query performance than ROLAP dimensions. However, huge dimensions, which are
dimensions that have 10 million members or more, cannot support a MOLAP storage mode. If such a dimension's storage mode
is MOLAP, processing it produces an error. It is recommended that only huge dimensions have a storage mode of ROLAP.

Note You can create ROLAP dimensions only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise
Edition. Very large dimensions, which are generally dimensions that have 5 to 10 million members, can have a MOLAP storage
mode.

A dimension's storage mode is set in the Storage Mode property in the properties pane of Dimension Editor (if the dimension is
shared) or Cube Editor (if the dimension is private).

Before you set a dimension's Storage Mode property to ROLAP, ensure that it meets these requirements:

The lowest level's Member Keys Unique property is set to True.

The dimension does not contain member groups.

If the dimension is a private dimension, its Aggregation Usage property is set to Standard if currently set to Custom.

If the dimension is a shared dimension, in all cubes that include the dimension, its Aggregation Usage property is set to
one of the following values:

Standard.

Top Level Only. This value is valid only if the dimension's All Level property is set to Yes.

Bottom Level Only.

Top and Bottom Levels. This value is valid only if the dimension's All Level property is set to Yes.

Important If a dimension's Storage Mode is ROLAP, any changes to its source table must be followed by immediate processing
of the dimension. Failure to do so may result in inconsistent results to queries of the cubes that include the dimension. To ensure
correct processing, include the update of the source table and the processing of the dimension in the same transaction. If you
have installed SQL Server 7.0 or later, you can use Data Transformation Services (DTS) to perform the table update and
dimension processing as successive tasks connected by a success precedence constraint. For more information, see Processing
Objects Using Data Transformation Services. If the dimension is shared, process it with the Incremental update option. If the
dimension is private, process its cube with the Refresh data option.

Virtual and parent-child dimensions always have a MOLAP storage mode.

All regular dimensions that use ROLAP for storage are also changing dimensions. That is, their Changing property is set to True.
When you set the Storage Mode property for a regular dimension to ROLAP, its Changing property is automatically set to True.
This value cannot be changed if the Storage Mode is ROLAP. For more information, see Changing Dimensions.

ROLAP dimensions do not support slicing in partitions.

Analysis Services (SQL Server 2000)

Dimension Processing
Dimension Processing

Two methods are available for processing dimensions: rebuilding the structure of a dimension, and incrementally updating a
dimension. These two choices are offered in the Process a Dimension dialog box, which appears when you right-click a shared
dimension in the Analysis Manager tree pane and then click Process.

Rebuilding the Structure of a Dimension

The Rebuild the dimension structure option re-creates and loads the dimension. This processing option is required after:

The structure of the dimension is changed. For example, after you add or remove a level in the hierarchy.

Relationships between members in the dimension hierarchy are changed. For example, after you redefine sales regions so
that cities are now in different regions.

Caution If a shared dimension's structure is edited and saved but not processed, it will be processed automatically when any
cube that includes the dimension is processed. At that time, any other cubes that include the dimension immediately become
unavailable to users and must be processed before they can be used again.

Depending on the type of structure or relationship change, changing dimensions may not require processing with this option. For
more information about changing dimensions, see Changing Dimensions.

Important When a shared dimension is processed with the Rebuild the dimension structure option, all cubes that include the
shared dimension immediately become unavailable to users and must be processed before they can be used again.

Incrementally Updating a Dimension

The Incremental update processing option updates a dimension when changes have been made to the underlying tables of a
dimension, but no structural changes have been made to the dimension itself. Such nonstructural changes can include adding
new members and changing member properties or custom member options of existing members. For example, you add new
customer records to the customer dimension table. A cube that includes a shared dimension remains available to users while the
dimension is incrementally updated, and the added dimension members are available in the cube after the update is complete.
Because almost any property of a member can be changed by changing the appropriate field in the underlying dimension table, it
is possible to have changed member names after the dimension is incrementally updated.

See Also

Updating and Rebuilding Dimensions

Analysis Services (SQL Server 2000)

Dimension Hierarchies
Dimension Hierarchies

A hierarchy is the set of members in a dimension and their positions relative to one another. For a dimension created from a data
mining model, the hierarchy represents the node structure of the mining model.

Hierarchies are sometimes represented as pyramidal structures. The only exceptions are hierarchies in which all members are at
the same level. An example is the hierarchy of the Measures dimension.

From the top of a pyramidal hierarchy to the bottom, the members are progressively more detailed. For example, in a Geography
dimension defined with the levels Continent, Country, and City, in that order, the member Europe appears in the top level of the
hierarchy, the member France appears in the middle level, and the member Paris appears in the bottom level. France is more
specific than Europe, and Paris is more specific than France.

The lower the level of a pyramidal hierarchy, the more members it usually contains. In the preceding example, there are more
members in the Country level than in the Continent level and more members in the City level than in the Country level.

Microsoft® SQL Server™ 2000 Analysis Services supports several types of hierarchies: balanced, unbalanced, and ragged.

Balanced and Unbalanced Hierarchies

In a balanced hierarchy, all branches of the hierarchy descend to the same level, and each member's logical parent is the level
immediately above the member. In an unbalanced hierarchy, branches of the hierarchy descend to different levels.

For more information about balanced and unbalanced hierarchies, see Balanced and Unbalanced Hierarchies.

Ragged Hierarchies

In a ragged hierarchy, at least one member's logical parent is not in the level immediately above the member. This can cause
branches of the hierarchy to descend to different levels.

For more information about ragged hierarchies, see Ragged Hierarchies.

Dimensions with Multiple Hierarchies

Analysis Services supports dimensions with multiple hierarchies. These dimensions provide similar yet alternate views of cube
data. For example, a Time dimension with two hierarchies can have a regular calendar hierarchy and a fiscal calendar hierarchy. In
Analysis Services, a dimension with multiple hierarchies is defined as two or more dimensions with names that share the same
prefix followed by a period but have different suffixes (for example, dimensions with names of Time.Calendar and Time.Fiscal).
The suffix should not equal any current or future level name or member name in the dimension because queries using the
dimension may be ambiguous.

See Also

Creating Dimensions with Multiple Hierarchies

Data Mining Models

Dependent Dimensions

Parent-Child Dimensions

Ragged Hierarchies

Ragged Dimension Support

Regular Dimensions

Virtual Dimensions

Analysis Services (SQL Server 2000)

Ragged Dimension Support
Ragged Dimension Support

A ragged dimension is a dimension with at least one member whose logical parent is not in the level immediately above the
member. For example, a Geography dimension consists of the levels Country, Province, and City. The logical parent of the Vatican
City member in the City level is the Vatican City member in the Country level, because Vatican City is not divided into provinces.
Because of the missing information for the Province level, the Geography dimension becomes a ragged dimension.

In a ragged dimension's table, the logically missing members, such as the province containing the Vatican City member in the City
level in the preceding example, can be represented in different ways. The table cells can contain nulls or empty strings, or they can
contain the same value as their parent to serve as a placeholder. For example, in the column for the Province level, in rows that
contain members in the City level for the Vatican City member in the Country level, the placeholder member is also named
Vatican City to match the name of the Country member. The nonexistent Vatican City province of Vatican City is stored as a
placeholder member in the Province level because its parent at the Country level is the Vatican City member.

The representation of placeholders is determined by the placeholder status of child members and the MDXCompatibilityValue
registry setting (or MDX Compatibility connection string property) for PivotTable® Service. If a placeholder has child members
that contain data, then its visibility to client applications is dependent on the MDXCompatibilityValue registry setting. If a
placeholder has no child members, or if all child members of a placeholder are also placeholders with no child members, the
placeholder is always skipped, regardless of the MDXCompatibilityValue registry setting.

See Also

Dimension Hierarchies

Ragged Hierarchies

MDX Compatibility Property

Using the MDX Compatibility Property

Analysis Services (SQL Server 2000)

Dimension Characteristics
Dimension Characteristics

In addition to supporting several varieties of dimensions, other characteristics can be applied to provide increased functionality,
such as ragged hierarchies, to these basic dimension varieties.

The following table displays which dimension characteristics (shown as columns) are supported by the dimension varieties
(shown as rows).

 Shared Private Changing Dependent Write-
enabled

Balanced
hierarchies

Unbalanced
hierarchies

Ragged
hierarchies

Regular Yes Yes Yes* Yes No Yes No Yes
Virtual Yes Yes Yes** Yes No Yes No No
Parent-
Child

Yes Yes Yes** Yes Yes No Yes Yes

Data
Mining

Yes No Yes** No No Yes No No

*Required for regular dimensions using relational OLAP (ROLAP).
**Required.

Analysis Services (SQL Server 2000)

Shared and Private Dimensions
Shared and Private Dimensions

A dimension can be created for use in an individual cube or multiple cubes. A private dimension is a dimension created for an
individual cube. In Analysis Manager, private dimensions are found in the Cube Editor tree pane. A shared dimension is a
dimension that can be used by multiple cubes. In the Analysis Manager tree pane, shared dimensions appear in the Shared
Dimensions folder under the database in which they are created. They also appear in the Cube Editor tree pane after they are
included in the edited cube.

In the tree panes, a shared dimension is identified by the following icon.

A private dimension is identified by the following icon.

The only exceptions to this rule are virtual dimensions. A shared or private virtual dimension is always identified by the virtual
dimension icon. For more information about virtual dimensions, see Virtual Dimensions.

Shared dimensions that share the same data source can be included in any cube or virtual cube in the database. By creating
shared dimensions and using them in multiple cubes, you avoid the time-consuming alternative of creating duplicate private
dimensions within each of the cubes.

Shared dimensions also enable the standardization of business metrics among cubes. For example, standardized shared
dimensions for time and geographic location ensure that data analyzed from different cubes will be similarly organized. This
becomes very important when integrating data from different aspects of a business for analysis.

See Also

Creating and Maintaining Private Dimensions

Creating Shared Dimensions

Analysis Services (SQL Server 2000)

Changing Dimensions
Changing Dimensions

A changing dimension is a dimension that is optimized for frequent changes. A changing dimension permits more types of
changes without the subsequent necessity of fully processing the dimension or the cubes that contain it. Full dimension
processing interrupts access by end users to any cube including the dimension. Full cube processing also interrupts end users'
access to cubes if the cube processing includes full dimension processing. Thus, a changing dimension has the potential
advantage of less frequent interruptions of end users' access.

Making a regular dimension into a changing dimension can be beneficial if its table is updated frequently, at unpredictable times,
or while end users are connected to cubes that include the dimension. However, making the dimension a changing dimension is
advisable only if end users must see these updates soon after they are made. If there is no pressing need to incorporate the
dimension table updates in cubes, it is generally better to leave the dimension a non-changing dimension and to process it and
the cubes that use it while end users are not connected to the Analysis server.

The following varieties of dimensions are always changing dimensions:

Virtual

Parent-child

Regular dimensions using relational OLAP (ROLAP) storage.

Although changing dimensions can provide greater accessibility than non-changing dimensions, queries that use changing
dimensions are somewhat slower.

In a changing dimension, levels below the top level and above the bottom level can be added, moved, renamed, and deleted, and
there is no subsequent processing requirement. (The relevant dimension and cube data is updated automatically when the
dimension is saved.) An exception is the addition of a level that contains member groups. For more information, see Creating
Member Groups.

Processing Requirements

The processing requirements for member updates vary depending on whether the changing dimension is shared or private.

Shared

In a changing shared dimension, members below the top level and above the bottom level can be added, moved, changed,
and deleted. (If the dimension has an (All) level, it is the top level. In a parent-child dimension, a leaf member is considered a
member of the bottom level for the purpose of determining this processing requirement.) Except for deleted members, the
only subsequent processing requirement is to process the dimension with the Incremental update option. If members are
deleted, the cube must be fully reprocessed. When the incremental update is complete, cubes that include the dimension are
refreshed automatically. Neither the incremental update of the dimension nor the automatic refresh of the cubes interrupts
end users' access. When the refresh is complete, end users see the new versions of the cubes.

Private

In a changing private dimension, members below the top level and above the bottom level can be added, moved, changed,
and deleted; the only subsequent processing requirement is to process the cube that contains the dimension with the
Refresh data option. (If the dimension has an (All) level, it is the top level. In a parent-child dimension, a leaf member is
considered a member of the bottom level for the purpose of determining this processing requirement.) The refresh of the
cube does not interrupt end users' access. When the refresh is complete, end users see the new version of the cube.

Write-enabled dimensions whose members are updated in Analysis Manager or through client applications are exceptions; these
dimensions and the cubes that contain them do not require subsequent processing.

Creation Requirements

Before you make a changing dimension, unless the dimension is a virtual dimension or a parent-child dimension, be sure that it
meets the following requirements:

The Member Keys Unique property of the lowest level must be set to True.

If the dimension is a private dimension, its Aggregation Usage property is set to Standard if currently set to Custom.

If the dimension is a shared dimension, in all cubes that include the dimension, its Aggregation Usage property must be
set to one of the following values:

Standard.

Top Level Only. This value is valid only if the dimension's All Level property is set to Yes.

Bottom Level Only.

Top and Bottom Levels. This value is valid only if the dimension's All Level property is set to Yes.

To make a dimension a changing dimension, set its Changing property to True in the properties pane of Dimension Editor (if the
dimension is shared) or Cube Editor (if the dimension is private).

Analysis Services (SQL Server 2000)

Dependent Dimensions
Dependent Dimensions

A dependent dimension is a dimension that has members that are determined by the members of another dimension. Regular,
virtual, and parent-child dimensions can support this dimension characteristic.

Making one dimension dependent on another is advantageous when the cross product of the members of the two dimensions
results in a significant percentage of combinations that cannot coexist. For example, a Customer Gender dimension is dependent
on a Customers dimension. Fifty percent of the combinations that result from the cross product of the dimensions' lowest-level
members cannot coexist because a customer can have only one gender.

To make a dimension dependent on a second dimension, edit the first dimension in Dimension Editor (if the first dimension is
shared) or Cube Editor (if the first dimension is private) and select the second dimension in the Depends on Dimension
property in the properties pane. It is not necessary to specify dependency in both dimensions. For example, if in Dimension A you
specify that Depends on Dimension is Dimension B, it is not necessary to also specify in Dimension B that Depends on
Dimension is Dimension A.

All virtual dimensions are dependent dimensions. However, because aggregations do not apply to virtual dimensions, the
Depends on Dimension property has a different use in virtual dimensions than it does in regular and parent-child dimensions.
A virtual dimension's Depends on Dimension property identifies the dimension that contains the member properties or
columns on which the virtual dimension is based.

In a Microsoft® SQL Server™ 2000 Analysis Services database, multiple dimensions can have the same value for their Depends
on Dimension property.

Dependent Dimensions and Aggregation Design

For certain dimension varieties, if a dimension is set as a dependent dimension, its aggregation design characteristics may be
affected. If a regular or parent-child dimension is a dependent dimension, the design of aggregations for partitions that include
the dimension is optimized according to the dimension on which the regular or parent-child dimension is dependent.

When aggregations are designed for partitions that include dependent dimensions, aggregations for the nonexistent member
combinations are excluded from the estimated storage size. For example, if Pat Coleman is a male, the estimated storage size
excludes aggregations for the intersections of the Pat Coleman member and the Female member. Because aggregations for these
intersections are not created when the partition is processed (regardless of whether the dimensions are dependent), the actual
storage size is closer to the estimated storage size if the dimensions are dependent.

Note If you stop the aggregation design process before the aggregations for the nonexistent member combinations are reached,
the reduction in the estimated storage size does not occur.

In Analysis Manager, aggregation design is performed in the Set aggregation options step in the Storage Design Wizard and
the Usage-Based Optimization Wizard.

See Also

Dimension Hierarchies

Virtual Dimensions

Analysis Services (SQL Server 2000)

Write-Enabled Dimensions
Write-Enabled Dimensions

A write-enabled dimension allows end users to modify the contents of the dimension and see the immediate impact on the cube.
This ability provides added analytical options to end users. For example, in an Employee dimension, an end user can move the
employee members beneath different managers to assess the changes on measures such as Budget and Staffing Level. Only
parent-child dimensions support this dimension characteristic.

Note This feature is available only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise Edition.

End users can update a write-enabled dimension by using client applications. Administrators can update members of a write-
enabled dimension by using Analysis Manager. In a write-enabled dimension, end users and administrators can change, move,
add, and delete members. They can also update member property values. In Analysis Services, these updates are referred to
collectively as dimension writeback.

Note Unlike updates to a write-enabled cube, which are stored in a writeback table separate from the cube's source tables,
updates to a write-enabled dimension are recorded directly in the dimension's table. Also, if the write-enabled dimension is
included in a cube with multiple partitions where some or all of their data sources have copies of the dimension table, only the
original dimension table is updated during a writeback process.

Write-enabled dimensions and write-enabled cubes have different but complementary features. A write-enabled dimension gives
end users the ability to update members, whereas a write-enabled cube gives them the ability to update cube cells. Using these
two features in combination is optional. For example, a write-enabled dimension can be included in a cube that is not write-
enabled. Different procedures are used to write-enable dimensions and cubes and to maintain their security. The only kind of
dimension that can be write-enabled is a parent-child dimension.

The only end users who can update a write-enabled dimension are those in cube roles granted read/write access to the
dimension. For each role, you can control which members can and cannot be updated. In order for end users to update write-
enabled dimensions, their client application must support this capability.

For shared write-enabled dimensions, an administrator can update the members and associated member property values of a
write-enabled dimension in the dimension members pane of Dimension Editor or in Dimension Browser. For private write-
enabled dimensions, Dimension Browser can be opened from Cube Editor to update the members and associated member
property values of a write-enabled dimension. These actions require the write-enabled dimension to be included in a cube that
was processed since the dimension last changed.

Dimension writeback is not supported in distributed partitioned cubes. You cannot write-enable a dimension that is included in a
distributed partitioned cube, and you cannot add a write-enabled dimension to a distributed partitioned cube. For more
information about distributed partitioned cubes, see Distributed Partitioned Cubes.

To write-enable a dimension, set its Write-enabled property to True in the properties pane of Dimension Editor (if the
dimension is shared) or Cube Editor (if the dimension is private).

All write-enabled dimensions are also changing dimensions. That is, their Changing property is set to True. This value cannot be
changed. Write-enabled dimensions have the same processing requirements as changing dimensions except that dimension
writeback does not require subsequent processing.

See Also

Changing Dimensions

Cube Role Manager

Cube Editor (Schema View)

Dimension Editor (Schema View)

Linked Cubes

Remote Partitions

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Balanced and Unbalanced Hierarchies
Balanced and Unbalanced Hierarchies

In a balanced hierarchy, all branches of the hierarchy descend to the same level, and each member's logical parent is the level
immediately above the member. The Product dimension in the FoodMart 2000 sample database is a good example of a balanced
hierarchy. Each member in the Product Name level has a parent member in the Brand Name level, which in turn has a parent
member in the Product Subcategory level, and so on. Also, every branch in the hierarchy can be traced, from highest to lowest
level, to a member in the Product Name level.

In an unbalanced hierarchy, branches of the hierarchy descend to different levels. For example, an Organization dimension
contains a member for each employee in a company. The CEO is the top member in the hierarchy, and the division managers and
executive secretary are immediately beneath the CEO. The division managers have subordinate members but the executive
secretary does not. The Employees dimension in the FoodMart 2000 sample database is a good example of an unbalanced
hierarchy.

In Analysis Services, balanced hierarchies are supported in regular and virtual dimensions. Unbalanced hierarchies are supported
only in parent-child dimensions.

It may be impossible for end users to distinguish between unbalanced and ragged hierarchies. However, you can employ different
techniques and properties to support these two types of hierarchies.

See Also

Dimension Hierarchies

Ragged Dimension Support

Ragged Hierarchies

MDX Compatibility Property

Analysis Services (SQL Server 2000)

Ragged Hierarchies
Ragged Hierarchies

In Microsoft® SQL Server™ 2000 Analysis Services, ragged hierarchies are supported in regular and parent-child dimensions. A
ragged hierarchy is unbalanced if the hierarchy is in a parent-child dimension.

In a ragged hierarchy, the logical parent member of at least one member is not in the level immediately above the member. This
can cause branches of the hierarchy to descend to different levels.

For example, in a Geography dimension defined with the levels Continent, Country, and City, in that order, the member Europe
appears in the top level of the hierarchy, the member France appears in the middle level, and the member Paris appears in the
bottom level. France is more specific than Europe, and Paris is more specific than France. To this regular hierarchy, the following
changes are made:

The Vatican City member is added to the Country level.

Members are added to the City level and associated with the Vatican City member in the Country level.

A level, named Province, is added between the Country and City levels.

The Province level is populated with members associated with other members in the Country level, and members in the City
level are associated with their corresponding members in the Province level. However, because the Vatican City member in
the Country level has no associated members in the Province level, members must be associated from the City level directly
to the Vatican City member in the Country level.

Because of the alterations, the hierarchy of the dimension is now ragged. The parent of the city Vatican City is the country Vatican
City, which is not in the level immediately above the Vatican City member in the City level.

To make a hierarchy ragged, various methods can be selected in the Hide Member If property of a level in the properties pane of
Dimension Editor (if the dimension is shared) or Cube Editor (if the dimension is private).

Alternatively, if the ragged dimension is a parent-child dimension, the Skipped Levels Column property of the level is used to
support the ragged structure. If you use this property, ensure that the dimension table contains a column that stores the number
of intervening levels between each member and its parent.

Both properties can cause the logically missing members to be hidden from end users as they browse cubes. Neither property is
supported in virtual dimensions.

Ragged hierarchies can appear ragged to end users only if certain criteria are met. That is, only if the criteria are met can
members whose logical parents are not in the level immediately above them nevertheless appear immediately beneath their
logical parents. These criteria are:

The property that supports ragged hierarchies is correctly set. In a regular dimension, the level's Hide Member If property
must be set to a value other than Never hidden. The selected value must be appropriate for the contents of the
dimension's table. In a parent-child dimension, the level's Skipped Levels Column property must be set to a column
containing integer values that indicate the number of intervening levels between members and their parents. These
properties are set in Dimension Editor if the dimension is shared or Cube Editor if the dimension is private.

The client application supports the display of ragged hierarchies.

The MDX Compatibility property in the connection string from the client application to the Analysis server is set to 2, or
the MDXCompatibilityValue registry setting for PivotTable® Service is set to 2.

See Also

Dimension Hierarchies

Ragged Dimension Support

Balanced and Unbalanced Hierarchies

MDX Compatibility Property

Analysis Services (SQL Server 2000)

Dimension Varieties
Dimension Varieties

Microsoft® SQL Server™ 2000 Analysis Services includes several varieties of dimensions. The most general distinctions are
among regular, virtual, parent-child, and data mining dimensions. All dimensions are regular, virtual, parent-child, or data mining;
each of these varieties can have other dimension characteristics that are determined by property settings for the dimension.

For more information about the various dimension characteristics available for dimension varieties, see Dimension
Characteristics.

Analysis Services (SQL Server 2000)

Regular Dimensions
Regular Dimensions

A regular dimension is a dimension that is not a virtual dimension, parent-child dimension, or data mining dimension. Unlike
virtual dimensions, regular dimensions have associated aggregation data in the cubes in which they are used. Unlike parent-child
dimensions, whose hierarchies are unbalanced, the hierarchies in regular dimensions are either balanced or ragged. (All
dimensions are regular, virtual, parent-child, or data mining.)

A regular dimension contains a number of levels equal to the number of columns selected during its definition. These levels are
usually sorted from most general to least general. Virtual dimensions are similar in this respect, but parent-child dimensions
always contain a single meta data level that usually produces multiple levels in the end users' view.

Unlike a parent-child dimension, which is always based on a single table, a regular dimension can be based on multiple, joined
tables. If a regular dimension is based on multiple tables, adding the dimension to a cube causes it to adopt a snowflake schema if
it does not already have one. (If the cube already has a snowflake schema, it retains a snowflake schema.) If a regular dimension is
based on a single table, and the dimension is added to a cube with a star schema, the cube retains a star schema.

Regular dimensions can be either shared or private. For more information about shared and private dimensions, see Shared and
Private Dimensions.

You can create regular dimensions by using either the Dimension Wizard or Dimension Editor for shared regular dimensions, or
Cube Editor to create private regular dimensions. For more information about the Dimension Wizard and Dimension Editor, see
Dimension Wizard and Dimension Editor - Schema View.

To create a shared dimension using the Dimension Wizard

Analysis Manager

Analysis Manager

To create a shared dimension using Dimension Editor

Analysis Manager

Analysis Manager

In the Analysis Manager tree pane and the Cube Editor tree pane, a shared regular dimension is identified by the following icon.

In the Cube Editor tree pane, a private regular dimension is identified by the following icon.

By default, a regular dimension is not a changing dimension, but you can specify that a regular dimension is also a changing
dimension. In contrast, virtual dimensions and parent-child dimensions are always changing dimensions.

Unlike virtual dimensions and parent-child dimensions, regular dimensions can have a storage mode of relational OLAP (ROLAP).
This storage mode supports very large dimensions and huge dimensions, depending upon system capabilities. Regular
dimensions that use ROLAP as their storage mode are always changing dimensions.

See Also

Dimension Storage Modes

Changing Dimensions

Creating and Maintaining Private Dimensions

Creating Shared Dimensions

Parent-Child Dimensions

Virtual Dimensions

Analysis Services (SQL Server 2000)

Virtual Dimensions
Virtual Dimensions

A virtual dimension is a logical dimension based on the columns from a physical dimension. These contents can be either:

Member properties in the physical dimension. Member properties must be created before the virtual dimension. For more
information, see Member Properties.

-or-

Columns in the tables of the physical dimension.

For example, the Store Name level of the Store dimension has a member property Store Sqft that identifies the area of the store
in square feet. Using the Store Sqft member property, you can create a virtual dimension named Store Size in SqFt. This virtual
dimension can be added to any cube that also contains the Store dimension.

Note You can add a virtual dimension to a cube only if the dimension that supplies the member properties or columns on which
the virtual dimension is based is also included in the cube.

End users can use a virtual dimension like any other dimension. If a virtual dimension is based on member properties, the virtual
dimension can enable end users to analyze cube data based on the member properties. Furthermore, the depth of the virtual
dimension in terms of the number of levels it has depends on the number of member properties that are used to define it.

Adding a virtual dimension to a cube does not increase the cube's size because a virtual dimension, unlike a regular or parent-
child dimension, does not have aggregation data. Virtual dimensions do not affect cube processing time because they are
calculated in memory when needed. However, queries that use virtual dimensions can be slower than queries that use regular or
parent-child dimensions.

Microsoft® SQL Server™ 2000 Analysis Services provides the Dimension Wizard for easy creation of virtual dimensions based on
member properties.

To create a virtual dimension based on member properties

Analysis Manager

Analysis Manager

In Analysis Manager, a virtual dimension is identified by the following icon.

In Dimension Editor and Cube Editor, the Virtual property of a virtual dimension is always True. Its Depends On Dimension
property indicates the dimension that contains the member properties or columns on which it is based.

When a dimension's Virtual property is set to True, an (All) level is created if one does not already exist.

All virtual dimensions are also changing dimensions. That is, their Changing property is True. This value cannot be changed
while the Virtual property of the dimension is set to True.

The storage mode of a virtual dimension is always multidimensional OLAP (MOLAP).

See Also

Changing Dimensions

Creating Virtual Dimensions

Analysis Services (SQL Server 2000)

Virtual Dimensions Created in Version 7.0
Virtual Dimensions Created in Version 7.0

Virtual dimensions created in Microsoft® SQL Server™ 2000 Analysis Services are significantly different from virtual dimensions
created in SQL Server version 7.0 OLAP Services. Other topics in this documentation describe virtual dimensions created in SQL
Server 2000 Analysis Services, unless otherwise noted. This topic describes how virtual dimensions created in SQL Server 2000
Analysis Services are different from those created in version 7.0.

In SQL Server 2000 Analysis Services, you can continue to use virtual dimensions created in version 7.0. However, some
limitations apply to version 7.0 virtual dimensions. (These limitations apply to all virtual dimensions in version 7.0.) Also, virtual
dimensions created in SQL Server 2000 Analysis Services generally provide better query performance. If you want to overcome
these limitations or to gain the performance improvement of SQL Server 2000 Analysis Services, re-create your version 7.0
virtual dimensions in SQL Server 2000 Analysis Services. For more information, see Creating Virtual Dimensions.

The following table summarizes the limitations of virtual dimensions created in version 7.0.

A virtual dimension
Created in SQL Server
2000 Analysis Services Created in version 7.0

Has a maximum limit of
759 members

No Yes

Can have multiple levels
(excluding the (All) level)

Yes No

Must be based on member
properties

No Yes

Can be edited in Dimension
Editor

Yes No

Can be defined as private
using Analysis Manager

Yes No

Can be changed to a
regular dimension

Yes No

Can contain member
properties

Yes No

Supports the following
functions in
Multidimensional
Expressions (MDX): Cousin,
ClosingPeriod,
LastPeriods,
OpeningPeriod,
ParallelPeriod,
PeriodsToDate, WTD,
MTD, QTD, YTD

Yes No

Can be used to define an
OLAP data mining model

Yes No

Analysis Services (SQL Server 2000)

Parent-Child Dimensions
Parent-Child Dimensions

A parent-child dimension is based on two dimension table columns that together define the lineage relationships among the
members of the dimension. One column, called the member key column, identifies each member; the other column, called the
parent key column, identifies the parent of each member. This information is used to create parent-child links, which are then
combined into a single member hierarchy that represents a single meta data level.

For example, in the following Employee table, the column that identifies each member is Employee_Number. The column that
identifies the parent of each member is Manager_Employee_Number. (This column stores the employee number of each
employee's manager.)

These columns can be used to define a parent-child dimension that contains the following member hierarchy. (The hierarchy
mirrors an organization chart of the employees in the Employee table.)

Both columns must have the same data type. Both columns must be in the same table.

Note By default, any member whose parent key equals its own member key, null, 0 (zero), or a value absent from the column for
member keys is assumed to be a member of the top level (excluding the (All) level).

By default, a top-level member (ignoring the (All) level) is identified by its parent key, which equals its own member key, null, 0
(zero), or a value not contained in the column for member keys. For example, in the preceding illustration, the only top-level
member is Paul West. Both the Manager_Employee_Number value and Employee_Number value for Paul West are 3. These
values are equal because Paul West is specified as the manager of Paul West. By default, Paul West would also be a top-level
member if the Manager_Employee_Number value for Paul West were null, 0 (zero), or a value not contained in the
Employee_Number column.

You can set the criteria for identifying top-level members by using the level's Root Member If property in the properties pane of
Dimension Editor (if the dimension is shared), or Cube Editor (if the dimension is private).

When you define a parent-child dimension, you can also select a third column to provide member names, which are displayed to
end users as they browse cubes. This third column, the member name column, defaults to the member key column. If you want to
display an alternate value, a different column can be chosen. In the preceding illustration, the employee names would be
displayed only if the member name column was set to:
"Employee"."Employee_Name"

The depth of a parent-child dimension can vary among its hierarchy's branches. For example, in the preceding illustration, the
James Smith branch has lower-level members, but the Amy Jones and Jill Kelley branches do not. Therefore, the hierarchies of
parent-child dimensions are usually unbalanced.

Unlike regular and virtual dimensions, which are defined with a number of levels that determines the number of levels seen by
end users, a parent-child dimension is defined with a single level of a special type that usually produces multiple levels seen by
end users. The number of displayed levels depends on the contents of the columns that store the member keys and the parent
keys. This number can change when the dimension table is updated and the cubes using the dimension are subsequently
processed.

You can use the Dimension Wizard to create parent-child dimensions. You cannot use Dimension Editor. You can use Cube Editor

to create parent-child dimensions only if you start the Dimension Wizard from within Cube Editor. In the second step of the
Dimension Wizard, select Parent-Child Dimension: Two related columns in a single dimension table.

After you create a parent-child dimension, you can edit it in Dimension Editor (if the dimension is shared) or Cube Editor (if the
dimension is private). In Dimension Editor or Cube Editor, you can access the Level Naming Template dialog box, in which you
can specify the level names to be displayed to end users.

A parent-child dimension's table is graphically represented with a join between the column containing the members' keys and the
column containing the keys of the members' parents. This join is visible in the Dimension Wizard and the Schema tab of
Dimension Editor and Cube Editor.

Important If a parent-child dimension is included in a cube with a fact table that has rows associated with the dimension's
nonleaf members, you must set the dimension's Members With Data property to Nonleaf data visible or Nonleaf data
hidden. Otherwise, processing the cube fails.

The Members With Data property indicates whether nonleaf members of a parent-child dimension are allowed to have
associated fact table data. By default, nonleaf members are not allowed to have associated fact table data, so the property is
initially set to Leaf members only. The related Data Member Caption Template property controls the names of data members
when the Members With Data property is set to Nonleaf data visible. For more information about these properties, see
Properties Pane (Cube Editor Data View) and Properties Pane (Dimension Editor Data View).

Parent-child dimensions are the only kind of dimension that you can write-enable. All parent-child dimensions are also changing
dimensions. That is, their Changing property is set to True. You cannot change this value.

The storage mode of a parent-child dimension is always multidimensional OLAP (MOLAP).

See Also

Changing Dimensions

Dimension Wizard

Write-Enabled Dimensions

Analysis Services (SQL Server 2000)

Data Mining Dimensions
Data Mining Dimensions

Although data mining dimensions are shared dimensions, they differ from other types of shared dimensions in several ways.
Unlike other types of shared dimensions, data mining dimensions cannot be created in Dimension Editor, and they must be based
on OLAP data mining models. Furthermore, they cannot be edited after they have been created, they do not support dimension
security through database or cube roles, and they can be included only in virtual cubes.

Data mining dimensions can be created in either the Dimension Wizard or the Mining Model Wizard. If you use the Dimension
Wizard to create your data mining dimension, you can use an existing OLAP mining model. If you use the Mining Model Wizard to
create a data mining dimension, you can create the new dimension at the same time that you create the new OLAP mining model
it is based on. When creating a dimension with the Mining Model Wizard, you also have the option of creating a virtual cube to
contain the new data mining dimension and the source cube of the mining model. If you choose not to create a virtual cube to
contain the data mining dimension while you are in the Mining Model Wizard, you can use the Virtual Cube Wizard later to add it
to an existing or new virtual cube.

To view the members of a data mining dimension, use Dimension Browser. Excluding the top node of a mining model that is
based on either the Microsoft® Decision Trees or the Microsoft Clustering algorithm, each level member of the dimension
represents the rule corresponding to a node in the mining model. You can view the Multidimensional Expressions (MDX)
statement used to generate the rule in the custom member formulas pane of Dimension Browser.

Important Data mining dimensions can contain custom rollup formulas and custom members; therefore, data mining
dimensions cannot be used with regular cubes containing distinct count measures. This limitation does not apply to virtual cubes.

See Also

Introduction to Data Mining Models

Creating OLAP Data Mining Models

Mining Model Wizard

Create a Dimension and Virtual Cube (Mining Model Wizard)

Dimension Browser

Virtual Cubes

Virtual Cube Wizard

Viewing Data Mining Models

Custom Rollup Formulas and Custom Member Formulas

Data Mining Algorithms

Analysis Services (SQL Server 2000)

Levels and Members
A level is an element of a dimension hierarchy. Levels describe the hierarchy from the highest (most summarized) level to the
lowest (most detailed) level of data.

Levels exist only within dimensions. They are based on columns in a dimension table or member properties in a dimension.

Levels are defined within a dimension to specify the contents and structure of the dimension's hierarchy. That is, the level
definitions determine the members that are included in the hierarchy and their positions relative to one another within the
hierarchy.

Levels are created when you create a dimension in the Dimension Wizard, Dimension Editor, or Cube Editor. After you create a
dimension, you can maintain its levels in Dimension Editor (if the dimension is shared) or Cube Editor (if the dimension is private).
In the editors you can set the properties of the levels.

After shared dimensions and their levels are created, measures are typically the next objects to be created. However, they are
created in the process of creating the cubes that contain them.

For example, a Calendar dimension contains the levels Year, Quarter, and Month. The relationship between the levels and
members of the Calendar dimension (a regular dimension) is shown in the following diagram.

For example, a Calendar dimension contains the levels Year, Quarter, and Month.

Year Quarter Month
1999 Quarter 1 Jan
1999 Quarter 1 Feb
1999 Quarter 1 Mar
1999 Quarter 2 Apr
1999 Quarter 2 May
1999 Quarter 2 Jun
1999 Quarter 3 Jul
1999 Quarter 3 Aug
1999 Quarter 3 Sep
1999 Quarter 4 Oct
1999 Quarter 4 Nov
1999 Quarter 4 Dec

You can define a level in one of three ways, depending on the variety of dimension in which the level is defined. For regular
dimensions, select a column from the dimension table; this column supplies the members, or components, of the level.

When working with parent-child dimensions, it is important to distinguish between the level object and a level in the hierarchy. A
parent-child dimension always contains only one level object, but the hierarchy of the dimension usually contains multiple levels.
For a parent-child dimension, select two columns from the dimension table. One column identifies the members of the
dimension, and the other column identifies the parents of the members. For each row in the table, the two columns identify a
parent-child linkage. All the linkages are combined to determine the hierarchy of the dimension. The column that contains the
member identifiers is the column that supplies all of the members of the dimension.

For a virtual dimension, select a member property in another dimension or in a column in the table of another dimension. This
member property or column supplies the members of the level.

The identification of members to be included in a level is controlled by its Member Key Column property. This is the same
column that supplies the level's members as described earlier in this topic. (The initial value of this property is set when you
create a dimension with the Dimension Wizard.)

In a regular or virtual dimension, the vertical positions of members within the dimension's hierarchy are controlled by the order
of the levels in the dimension's definition. Each level in the definition produces a level in the hierarchy. The levels' vertical order in

the definition matches the levels' order in the hierarchy. The horizontal position of a member is determined by the level in which
it is included.

In parent-child dimensions, the vertical positions of members are determined differently. In a parent-child dimension, only a
single level can be defined (besides the optional (All) level), but it usually produces multiple levels in the hierarchy. Members'
vertical positions are determined by the level's Parent Key Column and Root Member If properties. Members' horizontal
positions within a level are determined by the level's Order By property.

The (All) level is a special kind of level. Except in virtual dimensions, the (All) level is optional. If defined, it is the highest level in the
dimension. It contains a single member whose value is the aggregation of the values of the members in the immediately
subordinate level.

Levels are immediately subordinate to the following objects in the object hierarchy:

Dimension immediately beneath a database (shared dimension)

These levels are in dimensions that are shared among the cubes in the database.

Dimension immediately beneath a cube (shared or private dimension)

These levels are in dimensions that are included in the cube. These dimensions may be derived from the shared dimensions
in the database or they may be private (that is, unshared).

Member properties are immediately subordinate to levels. Member properties are optional objects that provide end users with
additional information about members.

In Analysis Manager, levels are identified by icons containing very small squares. The number of squares indicates the level's
position in the dimension's definition. Except for the (All) level, the highest level's icon has one square, the second level's icon has
two squares, and so on. For example, the following three icons represent the top three levels in a dimension.

The icon for the (All) level is not displayed in Dimension Editor or Cube Editor but is displayed in some dialog boxes. The icon for
the (All) level looks like this.

If you are programming with Decision Support Objects (DSO), the class types associated with the level are clsAggregationLevel,
clsDatabaseLevel,clsCubeLevel, and clsPartitionLevel.

See Also

(All) Level and All Member

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Analysis Services (SQL Server 2000)

(All) Level and All Member
(All) Level and All Member

The (All) level is a special kind of level. Its name is always (All). If a dimension contains an (All) level, the (All) level is the highest
level. It contains only one member whose value is the aggregation of the values of all members in the immediately subordinate
level. Because the member in the (All) level is at the top of the dimension's hierarchy, the member's value is the consolidated
aggregation of the values of all members in the hierarchy.

By default all dimensions contain an (All) level. However, you can remove the (All) level except from virtual dimensions in which it
is required.

The single member of the (All) level is called the All member. The All member is a system-generated member that is not contained
in the dimension table. You can change the name of the All member. By default, its name is the word All followed by a space and
the name of the dimension.

To add or remove the (All) level from a dimension or to change the name of the All member, use the properties pane of
Dimension Editor (if the dimension is shared) or Cube Editor (if the dimension is private). Inclusion of the (All) level is controlled
by the dimension's All Level property. The name of the All member is set in the dimension's All Caption property.

Whether a dimension contains an (All) level can affect queries on cubes that contain the dimension. When a query neither slices
explicitly on a particular dimension nor projects that dimension on an axis, by default the query slices on the dimension's default
member. If a dimension contains an (All) level, by default the default member is the All member. Slicing by the All member does
not limit the retrieved data, so the query retrieves a dataset that is complete for the dimension in question. However, if the
dimension does not contain an (All) level, or if a default member other than the All member is specified, the query retrieves a
dataset that is incomplete for the dimension in question. (An exception is when the dimension does not contain an (All) level, but
the dimension's top level contains only one member that serves as the default member. This member functions similarly to an All
member insofar as it does not limit the retrieved data.) The fact that the dataset is incomplete may not be obvious to the end user
who issues the query. For this reason, it is usually a good practice to retain the (All) level within a dimension especially when no
default member is selected.

The default member of a dimension is specified in the Default Member property in the properties pane of Dimension Editor (if
the dimension is shared) or Cube Editor (if the dimension is private). Within a dimension, a different default member can be
selected for each role. For more information, see Custom Rules in Dimension Security.

Analysis Services (SQL Server 2000)

Data Members
Data Members

In Analysis Services, an assumption is usually made about the content of members. Leaf members contain data derived from
underlying data sources;nonleaf members contain data derived from aggregations performed on child members.

In a parent-child dimension, however, some nonleaf members may also have data derived from underlying data sources, in
addition to data aggregated from child members. For these nonleaf members in a parent-child dimension, special system-
generated child members can be created that contain the underlying fact table data. Referred to as data members, they contain a
value directly associated with a nonleaf member that is independent of the summary value calculated from the descendants of the
nonleaf member.

Data members are available only to parent-child dimensions, and only if the parent-child dimension allows nonleaf members with
data. This feature can be enabled with Dimension Editor by setting the Members with Data property to Nonleaf data visible or
Nonleaf data hidden, or with the Decision Support Objects (DSO) library by using the MembersWithData property of a
Dimension object with a SubClassType of sbclsParentChild. If the parent-child dimension has data in fact tables associated
with nonleaf members and the Members with Data property is set to Leaf members only, a processing error will occur.

Setting the Members with Data property in Dimension Editor to Nonleaf data hidden allows nonleaf members to have data,
but this setting overrides the normal aggregation behavior for nonleaf members. This can cause confusion, because the values for
nonleaf members are not derived from the aggregation of child members but from underlying fact table data for the nonleaf
member.

Setting the Members with Data property in Dimension Editor to Nonleaf data visible also allows nonleaf members to have
data, but this setting creates an additional system-generated child member that contains the underlying fact table data for the
nonleaf member. This setting does not override the normal aggregation behavior for nonleaf members; the data member is
treated as a child member for the purposes of aggregation. Although a custom rollup formula can be used to override this
behavior, the Multidimensional Expressions (MDX) DataMember function gives you the ability to access the value of the
associated data member regardless of the aggregation behavior.

The benefit of this functionality is not readily apparent for most client applications. However, in certain specific situations data
members are indeed very beneficial. For example, the following diagram shows a dimension, representing gross sales volume of
products, with three levels. The first level shows the gross sales volume for all salespersons. The second level contains the gross
sales volume for all sales staff by sales manager, and the third level contains the gross sales volume for all sales staff by
salesperson.

In the case of the Sales Manager 1 member, aggregating the values of the Salesperson 1 and Salesperson 2 members would
ordinarily derive the value of the member. However, because Sales Manager 1 also can sell products, that member may also
contain data derived from the fact table because there may be gross sales associated with Sales Manager 1.

The individual commissions for each sales staff member can vary. For sales managers, two different scales are used to compute
commissions for their individual gross sales, as opposed to the total of gross sales generated by their salespersons. In this case,
the ability to access the underlying fact table data for nonleaf members becomes important. The MDX DataMember function can
be used to retrieve the individual gross sales volume of the Sales Manager 1 member, while a custom rollup expression can be
used to exclude the data member from the aggregated value of the Sales Manager 1 member, providing the gross sales volume
of the salespersons associated with that member.

See Also

Parent-Child Dimensions

Dimension Editor - Schema View

Dimension Interface

MembersWithData

Analysis Services (SQL Server 2000)

Member Names and Member Keys
Member Names and Member Keys

The member names of a level can be derived from a column different from the keys of the members. Thus, a level can be derived
from two columns.

Member names are displayed to end users when they browse cubes that contain the dimension. The column that supplies the
member names of a level is selected in the Member Name Column property of the level.

In Microsoft® SQL Server™ 2000 Analysis Services, member keys identify members within a level. The column that supplies the
member keys of a level is selected in the Member Key Column property of the level.

When you create a dimension, the column that you select to define a level is recorded in both the Member Name Column
property and the Member Key Column property. (If you create a virtual dimension based on member properties, the column is
selected indirectly. The source column of the member property is used for the value of both properties.) You can later change one
of these properties so that they reference different columns. Both of these properties can be set when you create a dimension
with Dimension Wizard. Later, the values of these properties can be changed in the properties pane of Dimension Editor (if the
dimension is shared) or Cube Editor (if the dimension is private).

Analysis Services (SQL Server 2000)

Custom Rollup Operators
Custom Rollup Operators

Custom rollup operators provide a simple way to control how level member values are rolled up to their parent's values. When
custom rollup operators are assigned a column, either when creating them as an optional feature of new parent-child dimensions
in Dimension Wizard or adding them to existing dimensions in Dimension Editor or Cube Editor, the contents of that column are
used as the custom rollup operator for each member. This custom rollup operator is applied to the member when evaluating the
value of the member's parents.

In Dimension Editor, custom rollup operators are enabled by setting the Unary Operators property of the level to True. Values
for the custom rollup operators are stored in the column listed by the Define Unary Operator Column dialog box and are
applied to each member.

Custom rollup operators provide similar but simplified functionality of custom member formulas. In comparison to custom
member formulas, which use Multidimensional Expressions (MDX) expressions to determine how members are rolled up, the
custom rollup operator uses simple math operators to determine how the value of a member affects the parent. Like custom
member formulas, the value of the custom rollup operator is unique for each level member.

In terms of precedence, a level's custom rollup operators override the custom rollup expression of the previous level. However,
the custom member formulas of the preceding level override the custom rollup operators of a level.

Custom rollup operators can be enabled for both shared and private dimensions. To enable custom rollup operators in a level for
a dimension, use its Unary Operators property in the properties pane of Dimension Editor (if the dimension is shared) or Cube
Editor (if the dimension is private). Clicking the edit (...) button beside this property's value displays the Define Unary Operator
Column dialog box in which you select or create a column to store the formulas. After you close this dialog box, if the shared
dimension is a write-enabled, parent-child dimension, you can select values for the UNARY_OPERATOR member property in the
custom member formula pane of Dimension Editor or Dimension Browser. (To perform this action, make sure that the write-
enabled dimension is included in a cube that was processed since the dimension last changed and process the cube after changes
have been made.) If the dimension is not write-enabled, you must use a tool other than Analysis Manager to insert the formulas
into the column.

Note If a cube has a measure with its Aggregate Function property set to Distinct Count, adding a custom rollup operator or
expression to a level will cause the structure of the cube to become invalid.

See Also

Custom Rollup Formulas and Custom Member Formulas

Properties Pane (Cube Editor Data View)

Using Custom Rollup Operators

Analysis Services (SQL Server 2000)

Custom Rollup Formulas and Custom Member Formulas
Custom Rollup Formulas and Custom Member Formulas

Custom rollup formulas and custom member formulas are expressions, written in Multidimensional Expressions (MDX), that
determine the cube cell values associated with members. A custom rollup formula applies to all the members (except calculated
members) in a level. A custom member formula applies to a single member.

Custom rollup formulas and custom member formulas are different from calculated members. Custom rollup formulas and
custom member formulas apply to members that exist in dimension tables. In contrast, calculated members are not stored in
dimension tables. Calculated members provide members in addition to those in the tables.

Custom rollup formulas and custom member formulas use similar kinds of MDX expressions.

Both custom rollup formulas and custom member formulas override the aggregate functions associated with measures. For
example, before a custom rollup formula is specified, a measure using the Sum aggregate function has the following values for
the following members of the Time dimension:

1997: 2100
Quarter 1: 700

Quarter 2: 500

Quarter 3: 100

Quarter 4: 800
1998: 1500

Quarter 1: 600

Quarter 2: 200

Quarter 3: 300

Quarter 4: 400

For the Year level, the following custom rollup formula is specified:

Time.CurrentMember.LastChild

This custom rollup formula overrides the Sum aggregate function and produces the following new values for the Year members:

1997: 800

1998: 400

The values for the Quarter members are unchanged.

Custom member formulas operate in a similar manner, but each affects only a single member. The value of the custom member
is supplied by the custom member formula. For example, the following custom member formula can be used to supply the value
for the Quarter 4 child member of the 1998 member in the Time dimension.

Time.[Quarter 3] * 1.5

Custom member formulas are stored in a column of the dimension table. When you enable custom member formulas, a dialog
box appears in which you select or create this column. This procedure is summarized later in this topic.

To apply a custom rollup formula to only some members of a level, use the IIf and RollupChildren functions. The
RollupChildren function can roll up the children of a specified member, using unary operators specified in the function. For
example, to apply the custom rollup formula Sales * 0.10 to only the children of SalesPersons, type the following custom rollup
formula:

IIf(Employees.CurrentMember.Parent.Name = "SalesPersons", Sales * 0.10,
 RollupChildren(Employees.CurrentMember,
 Employees.CurrentMember.Properties("UNARY_OPERATOR"))

For more information about these functions, see IIf and RollupChildren.

In terms of the order of evaluation, if a level has both a custom rollup formula and custom member formulas, the custom
member formulas override the custom rollup formula. Calculated members are resolved before custom rollup formulas and
custom member formulas are resolved. If a cube contains multiple dimensions with custom rollup formulas or custom member
formulas, the formulas are resolved in the order that the dimensions were added to the cube. You can view and change this order
in the Cube Editor tree pane. For more information about the order of evaluation for various formulas, see Understanding Pass
Order and Solve Order.

To specify a custom rollup formula in any level except an (All) level, use the Custom Rollup Formula property of the level. To
specify a custom rollup formula in an (All) level, use the All Member Formula property of the dimension. You can access these
properties in the properties pane of Cube Editor. Clicking the edit (...) button beside the values of these properties displays MDX
Builder, in which you can construct the custom rollup formula.

A custom rollup formula can be specified in either a shared or private dimension. If it is specified in both, the custom rollup
formula in a cube's private dimension takes precedence.

To enable custom member formulas in a level, use its Custom Members property in the properties pane of Dimension Editor (if
the dimension is shared) or Cube Editor (if the dimension is private). Clicking the edit (...) button beside this property's value
displays the Define Custom Member Column dialog box in which you select or create a column to store the formulas. After you
close this dialog box, if the dimension is write-enabled, you can create the formulas in the custom member formula pane of
Dimension Editor (if the dimension is shared) or Dimension Browser. (To perform this action, make sure that the write-enabled
dimension is included in a cube that was processed since the dimension last changed.) If the dimension is not write-enabled, you
must use a tool other than Analysis Manager to insert the formulas into the column.

Note If a cube has a measure with its Aggregate Function property set to Distinct Count, adding a custom rollup operator or
expression to a level will cause the cube's structure to become invalid.

See Also

Creating Custom Member Formulas

Properties Pane (Cube Editor Data View)

Using Custom Rollup Operators

Analysis Services (SQL Server 2000)

Member Groups
Member Groups

A member group is a system-generated parent of a collection of consecutive dimension members. Member groups are created in
a level that is added immediately above the level that contains the member groups' children. When end users browse a level that
contains member groups, they see the names and cell values of the member groups. To end users, member groups look like
ordinary members.

A level can contain either member groups or members. It cannot contain both.

Member groups rely on the Order By property of the next lower level. This property specifies the sort order of displayed
members. Within this sort order, children of a member group are consecutive.

Member group names are created automatically. A member group name consists of the name of the first child of the member
group followed by a hyphen (-) and the name of the last child of the member group.

There are two common uses of member groups. They can be used to provide an intermediate level for drilldown between a level
with few members and one with numerous members. To do this, create a copy of the level that contains numerous members
immediately above the original, and then create member groups in the new level. You can also use member groups to satisfy the
maximum limit of 64,000 members under a single parent member. To do this, create a copy of the level that contains the excess
members immediately above the original, and then create member groups in the new level. Each member group contains fewer
than 64,000 children. For example, a Client dimension contains only an (All) level and a Client Name level containing 500,000
members. A copy of the Client Name level is created immediately above it and named Client Group. In the Client Group level,
member groups are created. Each Client Name member now has a new parent in the Client Group level. If you want to hide the
Client Group level, set its Visible property to False.

You can create member groups only in changing dimensions. You cannot create member groups in a dimension's top or bottom
level. If this need arises, you can add a level such that the level in which you want to create member groups is no longer the top or
bottom level. You can hide the added level by setting its Visible property to False. You cannot create member groups in two
consecutive levels of a dimension.

Member groups are not supported for ROLAP dimensions.

To create member groups in a level, set its Grouping property to Automatic in the properties pane of Dimension Editor (if the
dimension is shared) or Cube Editor (if the dimension is private).

When you change a level's Grouping property to Automatic, the following properties of the level are affected:

Member Keys Unique: set to True for lowest level

Member Names Unique: set to False and read-only

Order By: set to Name and read-only

Member Key Column: set to an empty string and read-only

Member Name Column: set to an empty string and read-only

Also, if the dimension containing the level is a private dimension and its Aggregation Usage property is set to Custom, the
Aggregation Usage property of the private dimension is set to Standard.

If the dimension table of a dimension that contains member groups is updated, and the dimension is subsequently processed, a
new set of member groups is generated. The names and children of the new member groups are different from the old member
groups.

See Also

Changing Dimensions

Creating Member Groups

Analysis Services (SQL Server 2000)

Measures
In a cube, a measure is a set of values that are based on a column in the cube's fact table and are usually numeric. In addition,
measures are the central values of a cube that are analyzed. That is, measures are the numeric data of primary interest to end
users browsing a cube. The measures you select depend on the types of information end users request. Some common measures
are sales, cost, expenditures, and production count.

For each measure in a cube, the cube contains a value for every cell in the cube excluding the cells for the other measures. So, no
matter which combination of members is used in a query, a measure value can be retrieved. The value may be retrieved from the
cube's aggregations, its source data, a copy of it on the server, client cache, or a combination of these sources depending in part
on the storage settings of the cube.

Measures are summarized by Microsoft® SQL Server™ 2000 Analysis Services, and the resulting aggregations are stored for
quick retrieval by end users querying cubes. For more information, see Aggregations.

Consider a cube with the following schema and a single measure, Sales, based on the Sales_Amount column in the Sales fact
table.

Assume a dimension for each of the other tables with a member for each customer, retail store, and product. If a query requests
Sales for each customer, each retail store, and product A, each cell in the returned dataset contains a Sales value aggregated from
the appropriate Sales_Amount values. For example, the Sales value in the cell for customer A, retail store A, and product A is
produced by evaluating only the Sales table rows that contain the key values for all these members.

In the object hierarchy, measures are immediately subordinate to the cube. The measures of a cube are created when the cube is
created. You select the measures for a regular cube when you build it with the Cube Wizard or Cube Editor. You also select
measures when you build a virtual cube with the Virtual Cube Wizard. After a regular cube is built, you can maintain its measures
in Cube Editor. After a virtual cube is built, you can maintain its measures in Virtual Cube Editor.

Each measure is derived from a column in a fact table. Because a regular cube can have only one fact table in its schema, all of the
cube's measures must be contained within it.

After measures and their cube are created, partitions or aggregations are usually the next objects to be created. Partitions are
created only if a cube is to contain multiple partitions; a single partition is created automatically for a cube when the cube is
created. For more information, see Partitions and Aggregations.

In Analysis Manager, a measure is identified by the following icon.

Each measure specifies an aggregate function that determines how values in the measure's source column are aggregated. This
function also determines how measure values for sibling members are aggregated to produce a value for their parent. The most
commonly used aggregate function is Sum, but Min, Max, Count, and Distinct Count are also available. For more information,
see Aggregate Functions.

Analysis Services supports measures based on both additive and nonadditive columns. Additive columns can be summed. For
example, a monetary column is additive. Additive columns are suitable as measures in a cube regardless of the aggregate function
that is used. Nonadditive columns cannot be summed meaningfully. For example, a numeric column containing an identifier such
as Account Number is nonadditive. Nonadditive columns are also suitable as measures in a cube, but in order to be meaningful
they must be summarized by the Count or Distinct Count aggregate function.

Note Using the Distinct Count aggregate function imposes restrictions on some cube functionality. For more information, see
Using Aggregate Functions.

A measure can be derived from multiple columns combined in an expression. For example, the Profit measure is the difference of
two numeric columns: Sales and Cost. For information about adding this type of measure to a cube, see Adding a Multiple-
Column Measure to a Cube.

Calculated members can be used as measures. Calculated member values are created from formulas when the cube is browsed,
but the values are not stored. Thus, calculated members save storage. For more information, see Calculated Members.

A cube contains a special type of dimension that contains a member for each measure. This dimension is called the Measures
dimension. When end users browse the cube, they can slice by a member in the Measures dimension to display values for only a
single measure, or they can place the Measures dimension on an axis so that they can see values for all the cube's measures. The
Measures dimension is different from other dimensions insofar as it:

Is created automatically when a cube is created.

Cannot be displayed or edited in Dimension Editor. (Use Cube Editor or Virtual Cube Editor to maintain measures.)

Is always flat (that is, always contains only one level).

For any dimension, including the Measures dimension, you can create a custom rule for dimension security to restrict end users'
access to individual members. Because the Measures dimension is flat, many of the complexities of these custom rules regarding
ancestors and descendants do not apply to the Measures dimension. For more information, see Custom Rules in Dimension
Security.

Another method of restricting access to measures is to use cell security. For more information, see Cell Security.

If you are programming with Decision Support Objects (DSO), the class types associated with the measure are:

clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

How Measures Appear to End Users

Measures form the core of cube information presented to end users. Presentation may be tabular or graphical, depending on the
client application with which end users browse cubes, but measures are the information end users focus on.

In tabular presentations, measures are displayed in rows and columns. Whereas a cube's dimensions determine the column and
row headings, the measures are the data in the rows and columns. However, if you specify multiple measures in a cube, they too
provide multiple headings to separate the measures.

In graphical presentations, measures may be displayed in a variety of ways, including lines, shapes, colors, shades, and shadows.
Nevertheless, as in tabular presentations, the measures occupy the central, focal portion of the presentation while the dimensions
provide peripheral labels.

See Also

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Cube Editor - Schema View

Cube Wizard

Dimensions

Virtual Cube Editor

Virtual Cube Wizard

Analysis Services (SQL Server 2000)

Aggregate Functions
Aggregate Functions

Microsoft® SQL Server™ 2000 Analysis Services provides the following aggregate functions for use in measures.

Aggregate function Returned value
Sum The sum of the input values.
Min The lowest of the input values.
Max The highest of the input values.
Count The number of input values.
Distinct Count The number of unique input values.

A function is selected in the Aggregate Function property of a measure. This property is accessed in the properties pane of Cube
Editor. For more information about how you can use these functions in real-world scenarios, see Using Aggregate Functions.

See Also

MDX Function List

Analysis Services (SQL Server 2000)

Using Aggregate Functions
Using Aggregate Functions

This topic contains examples for using the aggregate functions (Sum, Min, Max, Count, and Distinct Count) in measures. The
examples for the query are based on the same cube cells as the following examples so that you can see the effects of changing the
function.

The cube that these examples use has a single measure, Sales, based on the Sales_Amount column in the Sales fact table. The
cube has three dimensions:

Customers, based on the table Customers and containing these levels from highest to lowest:
(All)

Customer with Customer_Name as the member name column and Customer_ID as the member key column
Retail Stores, based on the table Retail_Stores and containing these levels from highest to lowest:

(All)

Retail Store with Retail_Store_Name as the member name column and Retail_Store_ID as the member key
column

Products, based on the table Products and containing these levels from highest to lowest:
(All)

Product Category with Product_Category as the member name column and the member key column

Product with Product_Name as the member name column and Product_ID as the member key column

For more information about dimensions and levels, see Dimensions and Levels.

The cube's schema is shown here.

The cube's fact table, Sales, is shown here.

Transaction_ID Customer_ID Product_ID Retail_Store_ID
Sales_

Amount
1 1 1 1 300
2 1 1 1 250
3 1 1 1 250
4 1 2 1 100
5 1 4 1 700
6 2 1 2 290
7 2 2 2 90
8 2 3 3 510
9 3 1 4 350
10 3 2 3 110

11 4 3 4 550
12 4 4 4 750

One of the cube's dimension tables, Customers, is shown here.

Customer_ID Customer_Name
Customer_Address_

Line_1
Customer_Address_

Line_2
1 A 1 A Street Aville, AA 55555
2 B 2 B Street Bville, BB 55555
3 C 3 C Street Cville, CC 55555
4 D 4 D Street Dville, DD 55555

Another of the cube's dimension tables, Retail_Stores, is shown here.

Retail_
Store_ID

Retail_Store_
Name

Retail_Store_
Address_Line_1

Retail_Store_
Address_Line_2

1 A 1 A Avenue Atown, AA 55555
2 B 2 B Avenue Btown, BB 55555
3 C 3 C Avenue Ctown, CC 55555
4 D 4 D Avenue Dtown, DD 55555

The cube's final dimension table, Products, is shown here.

Product_ID Product_Name Product_Description Product_Category
1 A aaaa aaaa aaaa AB
2 B bbbb bbbb bbbb AB
3 C cccc cccc cccc CD
4 D dddd dddd dddd CD

Sum

If a measure's Aggregate Function property value is Sum, the measure value for a cube cell is calculated by adding the values in
the measure's source column from only the rows for the combination of members that defines the cell and the descendants of
those members.

Examples

The following examples return values that represent accumulated Sales.

A: Querying One Atomic Cube Cell

A query on the Sales measure for customer A, retail store A, and product A returns 800.

B: Querying One N onatomic Cube Cell

A query on the Sales measure for customer A, retail store A, and product category AB returns 900.

C: Querying M ultiple Cube Cells

A query on the Sales measure places each retail store on the x-axis, nests products under product categories on the y-axis, and
slices by All Customers. It returns the following dataset.

 All Retail Stores A B C D
All Products 4250 1600 380 620 1650
 AB 1740 900 380 110 350
 A 1440 800 290 350
 B 300 100 90 110
 CD 2510 700 510 1300

 C 1060 510 550
 D 1450 700 750

Analysis Services (SQL Server 2000)

Display Formats
Display Formats

You can select the format in which measure values are displayed to end users by using the Display Format property of the
measure. This property is accessed in the properties pane of Cube Editor.

Although the properties pane provides a dropdown list for the Display Format property, you can specify many additional
formats that are not in the list. You can specify named or user-defined formats that are valid in Microsoft® Visual Basic®. The
following table contains some examples. They assume the regional setting in Control Panel on the client computer is English
(United States).

Source data type
Named/user-

defined format
Display Format

value Example output
Numeric Named General Number 123456789
 0
 Fixed 123456789.00
 0.00
 User-defined $#,#.00 $123,456,789.00
 $.00
 #,#0.0000 123,456,789.0000
 0.0000
Date/time Named Medium Date 31-Dec-99
 Long Date Friday, December 31, 1999
 User-defined mm/dd/yyyy 12/31/1999
 mmm-dd-yyyy Dec-31-1999
Boolean Named Yes/No Yes
 True/False True

For more information about valid named and user-defined formats, search on "format expression" in the Visual Basic section in
the MSDN® Library at the Microsoft Web site.

Note In client applications, some display formats do not translate appropriately for all locales. If you are supporting multiple
locales or a locale different than that of the Analysis server, you should test the display formats in client applications on
computers set to those locales.

See Also

Cube Editor - Schema View

Using Cell Properties

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services (SQL Server 2000)

Cells
The cell is the atomic element of a cube, or the unique logical intersection of one member from every dimension associated with
the cube. Essentially, a cube is composed of cells organized by measures, levels, and dimensions.

For example, the cube described by the following diagram has a single shaded cell.

The shaded cell is the intersection of the following members and dimensions:

The air member of the Source dimension.

The Africa member of the Route dimension.

The 4th quarter member of the Time dimension.

The Packages member of the Measures dimension.

The value in the cell can be obtained from a number of sources. In the preceding example, the value in the cell is derived from the
fact table of the cube, as all of the specified members are leaf members; a leaf member, hierarchically speaking, has no members
below it.

However, a cell can be specified with nonleaf members; in this case, the value of the cell is derived from the aggregation of
members associated with a nonleaf member.

For example, the intersection of the following members and dimensions refers to a cell whose value is supplied by aggregation:

The air member of the Source dimension.

The Africa member of the Route dimension.

The 2nd half member of the Time dimension.

The Packages member of the Measures dimension.

The 2nd half member of the Time dimension is a nonleaf member, so all of the members associated to it must be selected and
aggregated, as shown in the following diagram.

Assuming the aggregations for the 3rd quarter and 4th quarter members are summations, the value of the specified cell is the
total of all of the cells shaded in the preceding diagram.

Some nonleaf members, called data members, can have intrinsic data associated with them, as well as data derived from the
aggregation of members below the nonleaf member. For more information about data members, see Data Members.

The cell values derived for members employed by custom members, custom rollups, and member groups are handled in a similar
fashion. Cell values derived for calculated members, however, are based entirely on the Multidimensional Expressions (MDX)
expression used to define the calculated member; there may be no actual cell data involved.

Additionally, the value of a cell can be derived by a formula executed for a specific set of cells, through the use of calculated cells.
Calculated cells provide a great deal of flexibility in performing speculative analysis by supplying the ability to selectively apply
formulas to specific cells in a section of the cube, or subcube, based on a condition the cells in the subcube must first fulfill.

Empty Cells

Not every cell in a cube must contain a value; there can be intersections in a cube that have no data. These intersections, called
empty cells, occur frequently in cubes, because not every intersection of dimensions can contain a corresponding record in a fact
table. The ratio of empty cells in a cube to the total number of cells in a cube is often referred to as the sparsity of a cube.

For example, the cube shown in the following diagram is similar to examples in this topic.

However, in this example, there were no air shipments to Africa for the third quarter or to Australia for the fourth quarter.
Therefore, there is no data in the fact table to support the intersections of those dimensions and measures, so the cells at those
intersections are empty.

In Microsoft® SQL Server™ 2000 Analysis Services, an empty cell is a cell with special qualities. Because empty cells can skew the
results of crossjoins, counts, and so on, many MDX functions supply the ability to ignore empty cells for the purposes of the result
generation.

For more information about empty cells, see Working with Empty Cells.

See Also

Calculated Cells

Measures

Dimensions

Levels

Custom Rollup Formulas and Custom Member Formulas

Member Groups

Analysis Services (SQL Server 2000)

Cell Properties
Cell Properties

A cell can have additional information that determines the content, font, and format of the data associated with it. This
information can be used by client applications to present cell data.

The following table contains a list of supported cell properties with descriptions.

Property Description
BACK_COLOR The background color for displaying the VALUE or

FORMATTED_VALUE property. For more information,
see FORE_COLOR and BACK_COLOR Contents.

CELL_EVALUATION_LIST A semicolon-delimited list of evaluated formulas
applicable to the cell, in order from lowest to highest.

CELL_ORDINAL The ordinal number of the cell in the dataset.
FORE_COLOR The foreground color for displaying the VALUE or

FORMATTED_VALUE property. For more information,
see FORE_COLOR and BACK_COLOR Contents.

FONT_NAME The font to be used to display the VALUE or
FORMATTED_VALUE property.

FONT_SIZE Font size to be used to display the VALUE or
FORMATTED_VALUE property.

FONT_FLAGS The bitmask detailing effects on the font. It can be the
result of a bitwise OR operation of one or more of the
following:

MDFF_BOLD

MDFF_ITALIC

MDFF_UNDERLINE

MDFF_STRIKEOUT

FORMAT_STRING The format string used to create the
FORMATTED_VALUE property value.

For more information, see FORMAT_STRING Contents.

FORMATTED_VALUE The character string that represents a formatted display
of the VALUE property.

VALUE The unformatted value of the cell.

In addition to the properties listed in the table, other providers may support provider-specific cell properties. The
MDSCHEMA_PROPERTIES schema rowset contains information on supported cell properties, including data types and provider
support.

For more information on supported cell properties and their usage, see Using Cell Properties.

See Also

MDSCHEMA_PROPERTIES

Analysis Services (SQL Server 2000)

Calculated Cells
Calculated Cells

Calculated cells are cells whose value is calculated at run time using a Multidimensional Expressions (MDX) expression that you
specify when you define the calculated cells. Additionally, the expression can be conditionally applied to specific cells, based on an
MDX logical expression also specified when you define the calculated cells.

Calculated cells enable you to apply the functionality previously reserved for calculated members, custom members, and custom
rollup formulas to a specific range of cells, or even to a single cell, allowing you to finely tune the performance of your cube or
query.

Calculated cells consist of a multidimensional section of cells, defined by an MDX set expression, to which an MDX value
expression is selectively applied depending upon a condition described by an MDX logical expression.

Calculated cells are constructed from three elements:

Calculation subcube

The MDX set expression used to define the slice of the cube upon which the calculated cells feature will work. The calculation
subcube is defined by a list of single dimension sets, with each set containing one of the following:

All members of a dimension (including the Measures dimension).

Note This option typically excludes calculated members. To include calculated members, use an MDX expression that
employs the AllMembers MDX function.

A single specified member of a dimension (including the Measures dimension).

All the members at a specified level in a dimension.

Note This option typically excludes calculated members. To include calculated members, use an MDX expression that
employs the AllMembers MDX function.

All the descendants of a specified member in a dimension.

All the descendants of a specified member at a specified level in a dimension.

An MDX expression that resolves into a set containing one of the above sets.

The combination of this list of sets and every other member of all other dimensions not specified in the list of sets defines
the calculation subcube.

Calculation condition

The MDX logical expression that further restricts the application of the calculated cells feature. The calculated cells condition
expression is compared to each cell in the calculation subcube. If the logical expression evaluates to True for the cell, the
calculated cells formula is applied and the cell returns the calculated value. If it evaluates to False, then the cell returns the original
cell value.
The combination of the calculation subcube and the calculated cells condition is referred to as the calculation scope.

Calculation formula

The MDX value expression used to calculate the value of the cells contained in the calculation subcube.

This functionality sounds in many ways similar to calculated members, custom members, and custom rollup formulas, and indeed
can be used in place of these features. But, calculated cells are much more than that.

For example, the following diagram depicts a cube in which there are three dimensions (not counting the Measures dimension).

Now, after reviewing this cube, you want to perform some speculation as to the quantity of packages shipped by air on the fourth
quarter for the Western Hemisphere routes. You want to compute these cells as equivalent to 125% of the quantity of packages
shipped by air on the third quarter for the same routes, but only if the quantity for the 4th quarter is less than 125% of the
quantity of the third quarter.

You could create a custom member for the Air member of the Source dimension, but it would affect all of the cells for that
member, including those intersecting all other members, as shown in the following diagram.

This custom member would, of course, affect all of the other routes and times. Another approach would be to create a custom
member for the 4th quarter member of the Time dimension, but this would affect all of the other routes and sources, as shown in
the following diagram.

You could also create custom members for each of the Western Hemisphere routes, but that would affect all of the sources and
times, as shown in the next diagram.

Finally, you could combine all of the preceding examples, creating multiple custom members to cover all possible intersections, as
shown in the following diagram, providing a complex MDX formula for each member to derive calculated values for just two cells.

None of these workarounds really provides the flexibility needed to work with only a specific slice of a cube, as all of these affect a
complete member, not a specific range of cells. With calculated cells, you can define a specific range of cells, supply a condition for
applying a formula, and apply a formula for that specific range of cells.

For the example detailed earlier in this topic, using this feature, you would first define the calculation subcube as shown in the
following diagram.

Then you would create a calculation condition that would check each applicable cell to determine if it was less than 125% of the
cell in the previous quarter. This would eliminate one of the cells, as shown in the following diagram.

The calculation formula would then be applied to the applicable cell, returning the value for the appropriate cells as shown in the
following diagram.

To create calculated cells, use the Calculated Cells Wizard or Cube Editor. For more information about the Calculated Cells Wizard

and Cube Editor, see Calculated Cells Wizard and Cube Editor - Schema View.

In Analysis Manager, the following icon identifies a calculated cells definition.

Calculated cells can be created with a global scope using the Calculated Cell Wizard or Cube Editor, available to all users who
browse the cube in which the calculated cells are defined. However, calculated cells can also be created with a session scope,
available only to MDX queries executed within the session in which the calculated cells are created. This feature allows greater
flexibility for client applications.

See Also

Creating Calculated Cells

CREATE CELL CALCULATION Statement

Using WITH to Create Calculated Cells

Analysis Services (SQL Server 2000)

Cubes
A cube is a multidimensional structure that contains dimensions and measures. Dimensions define the structure of the cube, while
measures provide the numerical values of interest to the end user. Cell positions in the cube are defined by the intersection of
dimension members, and the measure values are aggregated to provide the values in the cells.

The following topics provide a basic conceptual overview of cubes.

Topic Description
Introduction to Cubes Introduces the concepts and behavior of cubes,

including discussions on the structure, storage, and
processing of cubes.

Cube Structure Details the components of a cube, such as measures
and dimensions, and discusses the importance of the
cube schema.

Cube Storage Describes the various techniques and storage
modes, including the various uses of partitions,
linked cubes, distributed partitioned cubes, and real-
time cubes.

Cube Processing Describes the nuances of processing cubes,
including information on real-time OLAP.

Cube Varieties Provides a brief overview of the varieties of cubes
available in Microsoft® SQL Server™ 2000 Analysis
Services.

Regular Cubes Discusses regular cubes, which are based on tables.
Regular cubes have their own aggregations, which
utilize storage space. Regular cubes are distinct from
linked cubes, virtual cubes, and local cubes.

Linked Cubes Discusses linked cubes, which are based on regular
cubes defined and stored on another Analysis server.
A linked cube uses the aggregations of the cube on
which it is based; therefore, it requires no storage
space for aggregations.

Distributed Partitioned Cubes Discusses distributed partitioned cubes, which are
regular cubes with partitions stored on another
Analysis server. A distributed partitioned cube uses
aggregations that can be based on both local and
remote Analysis servers, and thus can distribute
processing across multiple Analysis servers.

Virtual Cubes Discusses virtual cubes, which are logical cubes
based on one or more regular cubes or linked cubes.
Virtual cubes use the aggregations of their
component regular cubes and the cubes on which
their component linked cubes are based. Thus,
virtual cubes require no storage space for
aggregations.

Local Cubes Discusses local cubes, which are contained in
portable files and can be browsed without a
connection to an Analysis server. Local cubes are
based on tables. They do not have aggregations.

Real-Time Cubes Discusses real-time cubes, which are regular cubes
with dimensions and/or partitions enabled for real-
time OLAP. The dimensions and/or partitions
enabled for real-time OLAP and used by real-time
cubes require no storage space for aggregations.

Write-Enabled Cubes Discusses write-enabled cubes, in which authorized
end users can update the cube's cell values.

Analysis Services (SQL Server 2000)

Introduction to Cubes
Introduction to Cubes

Cubes are the main objects in online analytic processing (OLAP), a technology that provides fast access to data in a data
warehouse. A cube is a set of data that is usually constructed from a subset of a data warehouse and is organized and
summarized into a multidimensional structure defined by a set of dimensions and measures.

A cube provides an easy-to-use mechanism for querying data with quick and uniform response times. End users use client
applications to connect to an Analysis server and query the cubes on the server. In most client applications, end users issue a
query on a cube by manipulating the user interface controls, which determine the contents of the query. This spares end users
from writing language-based queries. Precalculated summary data called aggregations provides the mechanism for rapid and
uniform response times to queries. Aggregations are created for a cube before end users access it. The results of a query are
retrieved from the aggregations, the cube's source data in the data warehouse, a copy of this data on the Analysis server, the
client cache, or a combination of these sources. An Analysis server can support many different cubes, such as a cube for sales, a
cube for inventory, a cube for customers, and so on.

Every cube has a schema, which is the set of joined tables in the data warehouse from which the cube draws its source data. The
central table in the schema is the fact table, the source of the cube's measures. The other tables are dimension tables, the sources
of the cube's dimensions. For more information about schemas, see Cube Structure.

A cube is defined by the measures and dimensions that it contains. For example, a cube for sales analysis includes the measures
Item_Sale_Price and Item_Cost and the dimensions Store_Location, Product_Line, and Fiscal_Year. This cube enables end users to
separate Item_Sale_Price and Item_Cost into various categories by Store_Location, Product_Line, and Fiscal_Year.

Each cube dimension can contain a hierarchy of levels to specify the categorical breakdown available to end users. For example,
the Store_Location dimension includes the level hierarchy: Continent, Country, State_Province, City, Store_Number. Each level in a
dimension is of finer granularity than its parent. For example, continents contain countries or regions, and states or provinces
contain cities. Similarly, the hierarchy of the Fiscal_Year dimension includes the levels Year, Quarter, Month, and Day.

Dimension levels are a powerful data modeling tool because they allow end users to ask questions at a high level and then
expand a dimension hierarchy to reveal more detail. For example, an end user starts by asking to see Item_Cost values of products
for the past three fiscal years. The end user may notice that 1998 Item_Cost values are higher than those in other years.
Expanding the Fiscal_Year dimension to the Month level, the end user sees that Item_Cost values were especially high in the
months January and August. The end user may then explore levels of the Store_Location dimension to see if a particular region
contributed significantly to the high Item_Cost values, or may expand into the Product_Line dimension to see if Item_Cost values
were high for a particular product group or product. This type of exploration, known as drilldown, is common in client
applications.

For more information about dimensions, levels, and measures, see Dimensions, Levels, and Measures.

For example, consider the following Imports cube, which contains two measures, Packages and Last, and three dimensions, Route,
Source, and Time.

The smaller alphanumeric values around the cube are the members of the dimensions. Example members are ground, Africa, and
1st quarter.

The values within the cube represent the measures. Example measures are Packages: 190 and Last: Feb-17-99. These values exist
for all cells in the cube but are shown only for those in the foreground. (In a real cube, the words Packages and Last would not
appear in the cube cells, but they are shown here to distinguish the measures. In a real cube, measures are separated within a
special dimension called the Measures dimension.)

The Packages measure represents the number of imported packages, and it aggregates by the Sum function. The Last measure
represents the date of receipt, and it aggregates by the Max function. The Route dimension represents the means by which the
imports reach their destination. The Source dimension represents the locations where the imports are produced. The Time
dimension represents the quarters and halves of a single year.

End users of a cube can determine its measures' values for each member of every dimension. This is possible because measure
values are aggregated by the members. For example, the measure values shown in the preceding illustration aggregate within the
Time dimension as follows.

In addition to aggregating within a single dimension, measures aggregate for all combinations of members from different
dimensions. This allows end users to evaluate measures by members in multiple dimensions simultaneously. For example, if an
end user wants to analyze quarterly imports that arrived by air from the Eastern Hemisphere and Western Hemisphere, the end
user can issue the appropriate query on the cube to retrieve the following dataset.

 Packages Last
 All

Sources
Eastern

Hemisphere
Western

Hemisphere
All

Sources
Eastern

Hemisphere
Western

Hemisphere
All
Time

 25110 6547 18563 Dec-29-
99

Dec-22-99 Dec-29-99

 1st
half

 11173 2977 8196 Jun-28-
99

Jun-20-99 Jun-28-99

 1st
quarter

5108 1452 3656 Mar-30-
99

Mar-19-99 Mar-30-99

 2nd
quarter

6065 1525 4540 Jun-28-
99

Jun-20-99 Jun-28-99

 2nd
half

 13937 3570 10367 Dec-29-
99

Dec-22-99 Dec-29-99

 3rd
quarter

6119 1444 4675 Sep-30-
99

Sep-18-99 Sep-30-99

 4th
quarter

7818 2126 5692 Dec-29-
99

Dec-22-99 Dec-29-99

A cube can contain up to 128 dimensions, each with thousands or millions of members, and up to 1,024 measures. A cube with a
modest number of dimensions and measures usually satisfies the requirements of end users.

There are several varieties of cubes in Microsoft® SQL Server™ 2000 Analysis Services. Although regular cubes possess the
characteristics of cubes described in this topic and its subtopics, other varieties of cubes do not share all of these characteristics.
For more information about cube varieties, see Cube Varieties.

Cubes are immediately subordinate to the database in the object hierarchy. A database is a container for related cubes and the
objects they share. You must create a database before you create a cube. For more information, see Databases.

In the object hierarchy, the following objects are immediately subordinate to the cube:

Data sources

A cube has a single data source. It can be selected from the data sources in the database or created during cube creation. A
cube's dimensions must have the same data source as the cube, but its partitions can have different data sources.

Measures

A cube's measures are not shared with other cubes. The measures are created when the cube is created. A cube can have up
to 1,024 measures.

Dimensions

A cube's dimensions are either shared with other cubes in the database or private to the cube. Shared dimensions can be
created before or during cube creation. Private dimensions are created when the cube is created. Although the term cube
suggests three dimensions, a cube can have up to 128 dimensions.

Partitions

A single partition is automatically created for a cube when the cube is created. If you have installed Analysis Services for
SQL Server 2000 Enterprise Edition, after creating a cube, you can create additional partitions in the cube.

Cube roles

Every cube must have at least one cube role in order to provide access to end users. Cube roles are derived from database
roles, which can be created before or after cube creation. Cube roles are created after cube creation.

Commands

Commands are optional. Commands are created after cube creation.

After cubes are created, partitions or aggregations are usually the next objects to be created. For more information, see Partitions
and Aggregations.

Creating a cube involves three steps:

Definition

The definition of a cube is based on the analytical requirements of end users. To define a cube, select a fact table and identify
measures within the fact table. Then select or create dimensions, each composed of one or more columns from another table. The
Cube Wizard provides an easy way to define cubes. Cube Editor offers additional flexibility for defining and modifying cube
structures. For more information, see Building Cubes.

Aggregation design

After you define a new cube, you can design its aggregations using the Storage Design Wizard. Designing the aggregations
specifies the summarization strategy. For more information, see Designing Storage Options and Aggregations.

Processing

After you design the aggregations of a new cube, process the cube with the Full process option. This action creates the
aggregations. For more information about processing cubes with the Full process option, see Processing Cubes.

After you create a cube, use Cube Editor to maintain it.

If, after you process a cube, you change it, or its source data changes, it is usually necessary to process the cube again. Different
processing options are appropriate in different circumstances. For more information about the processing options available for
cubes, see Processing Cubes.

For information about the security options for cubes, see Cube Security.

If you are programming with Decision Support Objects (DSO), the class type associated with the cube is clsCube. For more
information, see clsCube.

See Also

Cube Editor - Schema View

Measures

Dimensions

Levels and Members

Data Sources

Partitions

Roles

Commands

Analysis Services (SQL Server 2000)

Cube Structure
Cube Structure

A cube's structure is defined by its measures and dimensions. They are derived from tables in the cube's data source. The set of
tables from which a cube's measures and dimensions are derived is called the cube's schema. Every cube schema consists of a
single fact table and one or more dimension tables. The cube's measures are derived from columns in the fact table. The cube's
dimensions are derived from columns in the dimension tables.

For example, a cube has the following schema.

The cube's measures and dimension levels are derived from the following columns.

Measure or
level Members Source table

Source column Sample
column value

Packages
measure

Not applicable Imports_
Fact_Table

Packages 12

Last measure Not applicable Imports_
Fact_Table

Last May-03-99

Route Category
level in Route
dimension

nonground,
ground

Route_
Dimension_
Table

Route_
Category

nonground

Route level in
Route
dimension

air,
sea,
road,
rail

Route_
Dimension_
Table

Route sea

Hemisphere
level in Source
dimension

Eastern
Hemisphere,
Western
Hemisphere

Source_
Dimension_
Table

Hemisphere Eastern
Hemisphere

Continent level
in Source
dimension

Africa,
Asia,
Australia
Europe,
N. America,
S. America

Source_
Dimension_
Table

Continent Europe

Half level in
Time dimension

1st half,
2nd half

Time_
Dimension_
Table

Half 2nd half

Quarter level in
Time dimension

1st quarter,
2nd quarter,
3rd quarter,
4th quarter

Time_
Dimension_
Table

Quarter 3rd quarter

A single cube cell is usually derived from multiple rows in the fact table. For example, the cell in the Imports cube for the air
member, the Africa member, and the 1st quarter member is derived from the following rows in the Imports_Fact_Table.

Import_
Receipt_ID Route_ID Source_ID Time_ID Packages Last

3516987 1 6 1 15 Jan-10-99
3554790 1 6 1 40 Jan-19-99
3572673 1 6 1 34 Jan-27-99
3600974 1 6 1 45 Feb-02-99
3645541 1 6 1 20 Feb-09-99
3674906 1 6 1 36 Feb-17-99

In the preceding table, the fact that each row has the same values for Route_ID, Source_ID, and Time_ID indicates that these
rows contribute to the same cube cell.

There are two common types of cube schemas: star and snowflake. In a star schema, each dimension table joins to the fact table.
The Imports cube schema shown earlier in this topic is a star schema. In a snowflake schema, one or more dimension tables join
to another dimension table rather than to the fact table. The dimension tables that do not join to the fact table are for dimensions
with multiple dimension tables. For example, the administrator of the Imports cube wants to expand the cube to multiple years. To
accomplish this, the administrator adds a Year_ID column to the Time_Dimension_Table, the Time_Dimension_Table_2 to the
cube's schema, and a Year level to the Time dimension. (The Year level is based on the Time_Dimension_Table_2.Year column.)
After these changes are made, the Time dimension is based on two dimension tables, and the cube's schema is snowflake, as
shown in the following illustration.

After you change a cube's structure, usually you must process the cube with the Full process option so that changes can be seen
by end users. For more information, see Processing Cubes.

See Also

Dimensions

Measures

Analysis Services (SQL Server 2000)

Cube Storage
Cube Storage

Cube data and aggregations can be stored with different techniques and in a variety of modes.

Cubes can require substantial storage to contain the data and aggregations in multidimensional structures. One factor that affects
storage requirements is sparsity. For example, if one dimension contains sales representatives and another dimension contains
regions, cells at the intersection of the Northeast sales representative and the Southwest region will probably be empty.

Microsoft® SQL Server™ 2000 Analysis Services uses several techniques for minimizing cube storage requirements:

Storage is not allocated for empty cells, which compensates for performance issues that can be caused by sparsity.

Data compression is employed.

A sophisticated algorithm designs efficient summary aggregations to minimize storage without sacrificing speed.

Storage options enable you to create an OLAP storage strategy tailored to your needs by selecting appropriate storage modes
and locations for cube data.

For more information, see Partition Storage and Aggregations.

Partitions

Cubes can be divided into partitions, and each partition can be stored using a different storage mode. For example, you can create
a cube containing data for several years of transactions and partition it at year boundaries. You can store the partition for the
current year in a multidimensional OLAP (MOLAP) structure with a high percentage of aggregations for quick response to users.
You can use hybrid OLAP (HOLAP) to store the partition for the previous year, providing good response to summary queries with
reduced storage needs. You can store data for years prior to the previous year in one or more relational OLAP (ROLAP) partitions
with a smaller percentage of aggregations, saving on storage space with a tradeoff in query response.

Caution Partitioning cubes and merging partitions are advanced techniques. It is possible to create partitioned cubes that
contain incorrect data. For more information about specific precautions, see Fact Table Considerations When Merging Partitions
and Merging Partitions That Have Data Slices.

The partitions of a cube are not visible to the end user. In the preceding example, any query valid for the entire cube will execute,
but queries that return older data will take more time than those that request newer information.

Analysis Services provides the Partition Wizard to assist in creating partitions. However, it is important that partitions be defined
to contain mutually exclusive data. A cube may return incorrect results for some queries if a portion of the cube's data is included
in more than one of its partitions.

Partitions can be stored on different Analysis servers, providing a clustered approach to cube storage and distributing workload
across Analysis servers. For more information, see Distributed Partitioned Cubes and Remote Partitions.

Two partitions of a cube can be merged into a single partition, which can then be merged into another partition, and so on until
only a single partition remains. For example, four partitions, each containing data for a quarter, can be merged into a single
partition that contains the data for the entire year. There are precautions that need to be considered when merging partitions to
ensure the resulting partition contains correct data.

Linked Cubes

The storage requirements of multiple copies of a cube on different Analysis servers can be greatly reduced by replacing the copies
with linked cubes. A linked cube is based on a cube on another Analysis server, referred to as the source cube. A linked cube uses
the aggregations of its source cube and has no data storage requirements of its own. Therefore, by maintaining a single source
cube on one Analysis server and creating linked cubes on the other Analysis servers that require the cube, you can save a large
amount of storage resources. For more information, see Linked Cubes.

Real-Time Cubes

Real-time cubes offer the opportunity of using relational OLAP (ROLAP) dimensions and partitions enabled for real-time OLAP. A
ROLAP partition can be used to handle rapidly changing fact table data, eliminating the need for frequent reprocessing of a cube
and the resulting inconvenience and unavailability. In this case, a ROLAP partition enabled for real-time OLAP requires no

additional storage space, because all aggregations are performed as needed. Unlike ROLAP dimensions, ROLAP partitions must
meet special requirements if they are to be used with real-time OLAP. ROLAP partitions must either have no stored aggregations
or be based on an indexed view. For more information about these requirements, see Real-Time Cubes.

See Also

Merging Partitions

Remote Partitions

Analysis Services (SQL Server 2000)

Cube Processing
Cube Processing

After making structural changes to a cube, you must process the cube before attempting to browse its data. Process your cube
after completing any of the following:

Building the cube and designing its storage options and aggregations

Changing the cube's structure (measures, dimensions, and so on) and saving the changes to the cube

Changing the structure of a shared dimension used in the cube

Also, if data in the cube's data warehouse has been added or changed, processing is recommended in order to ensure accurate
results when browsing the cube.

When you process a cube, the aggregations designed for the cube are calculated and the cube is loaded with the calculated
aggregations and data. Processing a cube involves reading the dimension tables to populate the levels with members from the
actual data, reading the fact table, calculating specified aggregations, and storing the results in the cube. After a cube is processed,
users can query it.

There are three ways to process a cube. If you are modifying the structure of the cube, you may be required to process the cube
with the Full Process option. If you are adding new data to the cube, you can process the cube with the Incremental update
option. To clear out and replace a cube's source data, you can use the Refresh data processing option.

In addition to these three mutually exclusive options, a fourth option can be selected in conjunction with any of these options. This
option allows you to incrementally update the cube's dimensions as part of the cube processing. This option is called
incrementally update the dimensions of this cube.

These options are available in the Process a Cube dialog box, which is displayed when you right-click a cube in the Analysis
Manager tree pane and then click Process.

Real-Time OLAP

Processing a cube can take a great deal of time, especially for complex cubes with dimensions containing millions of members.
Frequently processing cubes based on rapidly changing data, such as data found in online transaction processing (OLTP)
databases, can be a difficult task. Very often such cubes contain stale data, with aggregations based on a view of the data that is
no longer valid.

Real-time OLAP provides a way to automatically process the relational OLAP (ROLAP) dimensions and/or partitions based on
Microsoft® SQL Server™ 2000 relational tables when changes to the underlying dimension or fact tables occur. This allows real-
time cubes based on rapidly changing data to be automatically updated and always available to end users. For more information
about real-time cubes, see Real-Time Cubes.

See Also

Processing Cubes

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

Cube Varieties
Cube Varieties

Analysis Services provides several varieties of cubes. All cubes, with the exception of local cubes, are based in part on a regular
cube. A local cube can be based on a regular cube, but does not require a regular cube in order to be created.

The following table displays the features supported among the cube varieties.

 Regular Virtual Linked Offline Write-
enabled

Distributed
Partitioned

Real-
time

Regular ---- N N N Y Y Y
Virtual Y** N Y** N N N Y*
Linked Y*** Y*** N N N N Y
Offline N N N ---- N N N
Write-
enabled

Y N N N ---- Y Y

Distributed
Partitioned

Y N N N Y ---- Y

Real-time Y Y* Y N Y Y ----

* Only if based on a source real-time cube; virtual cubes do not directly support real-time updates.
** Virtual cubes can be based only on regular or linked source cubes.
*** Linked cubes can be based only on regular or virtual source cubes.

Analysis Services (SQL Server 2000)

Regular Cubes
Regular Cubes

A regular cube is a cube that is not a linked cube, virtual cube, or local cube. (Every cube is regular, linked, virtual, or local.)

A regular cube is based on tables in the databases specified in the data sources of the cube's partitions. In contrast, linked cubes
and virtual cubes are based on other cubes.

A regular cube must contain at least one partition. A regular cube can contain multiple partitions provided that you have installed
Analysis Services for Microsoft® SQL Server™ 2000 Enterprise Edition. Linked cubes, virtual cubes, and local cubes do not contain
partitions.

Regular cubes have aggregations and require storage space to store them. In contrast, linked, virtual, and local cubes do not have
aggregations. Linked and virtual cubes use the aggregations of the cubes on which they are based. Aggregation data for a regular
cube is stored in subfolders of the Data folder of the Analysis server on which the cube is defined, or in subfolders of the Data
folder of another Analysis server, or in the databases specified in the data sources of the cube's partitions, or in a combination of
these locations, depending on the storage modes and types of the cube's partitions. For more information, see Partition Storage
and Remote Partitions.

If a regular cube contains partitions with a storage mode of multidimensional OLAP (MOLAP), the cube also requires storage
space for the copies of the source data for those partitions. In contrast, linked and virtual cubes do not require storage space for
this purpose. However, a local cube with a storage mode of MOLAP contains a compressed copy of the local cube's fact table data.

A regular cube is the only variety of cube that can be write-enabled. For more information, see Write-Enabled Cubes.

In Analysis Manager, a regular cube is identified by the following icon.

See Also

Aggregations

Introduction to Cubes

Linked Cubes

Local Cubes

Partitions

Virtual Cubes

Analysis Services (SQL Server 2000)

Linked Cubes
Linked Cubes

 New Information - SQL Server 2000 SP3.

A linked cube is based on another cube that is defined and stored on another Analysis server. To end users, linked cubes appear
and function like regular cubes. By using linked cubes, you can create, store, and maintain a cube on one Analysis server while the
cube is also available as linked cubes on multiple Analysis servers. This arrangement can provide many benefits, including:

Less overall storage and maintenance is required, compared to storing and maintaining multiple copies of a cube on
multiple Analysis servers.

One organizational unit can maintain ownership of a cube and exclusive update rights but make the cube available to other
units as linked cubes.

Sensitive information can be stored in data sources and cubes on secured server computers but made available through
other server computers as linked cubes.

Note You can create linked cubes only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise Edition.

Certain terms are associated specifically with linked cubes. The cube on which a linked cube is based is the source cube. The
Analysis server that stores the source cube is the publishing server. An Analysis server that stores a linked cube is a
subscribing server.

The source cube of a linked cube can be a regular or virtual cube.

When you create a linked cube, do not allow the publishing server and subscribing server to be the same server.

A linked cube always has a ROLAP storage mode and has no aggregations. A linked cube uses the aggregations of its source cube.

The following security requirements apply to linked cubes:

To create a linked cube, you must have access to the source cube. This access can be provided by including your username
in either of the following on the publishing server: the OLAP Administrators group or a cube role for the source cube. If the
account does not have access to the source cube, processing the linked cube fails.

If a linked cube is defined on an Analysis server and Microsoft Windows NT® Integrated Security is used for user
authentication, the Analysis server service (MSSQLServerOLAPService) logon account can be either a domain user account
or a system account having access to the source cube. However, if a system account is used to create a linked cube, you can
still create the linked cube but you will receive a warning if you are not using HTTP or secure HTTP (HTTPS) authentication
and the Security Support Provider Interface (SSPI) property in the data source connection string is empty.

Security Note Running MSSQLServerOLAPService under the local system account provides elevated privileges, which can
create a security vulnerability.

You can also use a data source administered by a Security Support Provider Interface (SSPI) provider such as Negotiate,
Kerberos, or NTLM to create a linked cube as long as the account credentials are recognized by the publishing server.

Data sources using HTTP or secure HTTP authentication are also supported in relation to creating linked cubes.

If cell security is enforced on a publishing server for a cube, defining a link to this cube is not possible.

In Analysis Manager, a linked cube is identified by the following icon.

In some cases, the dimensions in a linked cube might not be suitable for its end users, but there are features, such as member
properties of a dimension, that you can use to resolve this problem. For example, the source cube contains dimensions created for
English speakers, but the linked cube is used by French speakers. Or, for example, the source cube contains a Calendar dimension
created for universities with four quarters per year, but the linked cube is used by end users at universities with two semesters per
year. In cases of different languages among the publishing server and the subscribing servers, you can create member properties
on the subscribing server that replace member captions based on the locale ID of the end user's computer. By adding these
member properties to a dimension and columns to its table, the dimension can support multiple languages. For more

information, see Multiple Language Implementation Using Member Properties.

Before designing linked cubes, consider the following:

Writeback is not supported in linked cubes.

Linked cubes cannot be created from source cubes that include shared or private ROLAP dimensions.

If structural changes, such as adding or deleting measures or dimensions, have been made to a source cube, the linked cube
must be reprocessed so that the changes are visible to end users.

DLLs that contain user-defined functions registered on a publishing server and referenced by the source cube must also be
registered on subscribing servers; otherwise they cannot be referenced by the linked cube. Due to maintenance issues, it is
not recommended for published cubes to use user-defined functions.

If a source cube has members with custom member formulas or custom rollup formulas that reference other cubes on the
publishing server, then the cube that is referenced on the publishing server must be referenced on the subscribing server.
You can make the reference on the subscribing server by creating another linked cube that is based on the cube being
referenced in the formulas. This linked cube must have the same name on the subscribing server as the source cube on the
publishing server.

See Also

Building a Linked Cube

Managing Linked Cubes

Analysis Services (SQL Server 2000)

Distributed Partitioned Cubes
Distributed Partitioned Cubes

Distributed partitioned cubes are regular cubes that employ partitions on multiple Analysis servers. Partitions stored on Analysis
servers other than the Analysis server which stores the meta data for the partition are referred to as remote partitions and are
very useful when dealing with complex cubes based on dimensions having millions of members.

Distributed partitioned cubes enable the processing of queries to be distributed across multiple Analysis servers, because the
processing for each partition is performed on the Analysis server storing the partition data. In this way, performance can be
increased when querying and processing distributed partitioned cubes. However, the performance increase can be impacted by
network speed because information is passed from the remote Analysis server to the Analysis server processing the distributed
partitioned cube.

As with other cubes, a distributed partitioned cube must be processed before client applications can browse it. Processing a
distributed partitioned cube establishes the links to the remote Analysis servers containing the data for the remote partitions. The
meta data for a remote partition can be viewed and updated only on the Analysis server where the partition and its parent
distributed partitioned cube are defined. It cannot be viewed or updated on the remote Analysis server. Thus, a cube that contains
remote partitions can be administered along with its partitions on a single Analysis server.

See Also

Remote Partitions

Partition Wizard

Analysis Services (SQL Server 2000)

Virtual Cubes
Virtual Cubes

A virtual cube is a combination of multiple cubes in one logical cube, somewhat like a relational database view that combines
other views and tables. When you create a virtual cube, you select measures and dimensions from the consolidated set of
dimensions and measures in the underlying component cubes. End users see the virtual cube as a single cube.

A virtual cube can also be based on a single cube to expose only selected subsets of its measures and dimensions.

A virtual cube can include normal or linked cubes as component cubes.

Because virtual cubes store only their definitions and not the data of their component cubes, they require virtually no physical
storage space. You can use virtual cubes to create combinations and variants of existing cubes without using significant additional
storage.

A virtual cube can provide a valuable security function by limiting the access of some users when viewing the underlying cubes. If
some of a cube's information is sensitive and not suitable for all users, you can create a virtual cube from the existing cube and
omit the sensitive information. Then create two security roles: the first containing the users permitted to see the sensitive
information, and the second containing the other users. Finally, grant the first role access to the cube and the second role access
to the virtual cube.

Virtual cubes also are useful in relation to working with OLAP data mining models. For example, when creating an OLAP mining
model, you can also create a dimension to store the results of the mining model analysis and a virtual cube that contains this
dimension and the mining model's source cube.

In Analysis Manager, a virtual cube is identified by the following icon.

After you create a virtual cube, you must process it before client applications can browse it. Processing a virtual cube establishes
the internal links to the specified dimensions and measures in its underlying cube or cubes. This linking operation is performed
quickly. However, processing a virtual cube automatically triggers processing of all underlying cubes that need to be processed,
which can add significant time.

See Also

Building a Virtual Cube

Data Mining Models

Mining Model Wizard

Analysis Services (SQL Server 2000)

Local Cubes
Local Cubes

Local cubes are appropriate in situations in which an Analysis server is unavailable. A local cube is stored in a single, portable file
that can be stored on both server and nonserver computers. End users can browse local cubes without a connection to an
Analysis server. Local cubes are the only variety of cube that provides this capability.

Local cubes are based on tables. Local cubes do not have aggregations or contain partitions.

The storage mode of a local cube can be either multidimensional OLAP (MOLAP) or relational OLAP (ROLAP). If the storage mode
is MOLAP, end users can browse the local cube without a connection to its source data.

Unlike other varieties of cubes, a local cube is not an object in the object hierarchy shown in the Analysis Manager tree pane.

After a local cube is created, if its source data changes, the local cube can be refreshed to incorporate the new version of the
source data.

You can use Microsoft® Excel 2000 to create, refresh, and browse local cubes. In Excel, local cube files are called offline cube files.
For more information, see the Excel documentation.

By default the file extension associated with local cube files is .cub.

See Also

Building Local Cubes

Object Architecture Overview

PivotTable Service

Analysis Services (SQL Server 2000)

Real-Time Cubes
Real-Time Cubes

A real-time cube is a regular cube that employs relational OLAP (ROLAP) partitions or dimensions that support the real-time
OLAP feature of Microsoft® SQL Server™ 2000 Analysis Services.

With regular cubes, each time the data supporting the dimensions or partitions of a cube changes, the cube must be reprocessed
to recreate its aggregations. This can lock the cube for long periods of time, preventing users from querying the cube. For fact
table data that changes often, this approach is impractical. Often, workarounds to allow rapid cube updates are employed, such as
designing a cube with zero aggregations and writing applications employing Decision Support Objects (DSO) code to suspend
and resume the cube whenever underlying fact table data changes. However, these workarounds are not efficient or practical.

Real-time OLAP resolves this issue by enabling ROLAP dimensions and partitions to automatically refresh themselves when data
in their underlying dimension or fact tables changes. When working in concert with SQL Server 2000 as the relational data
source, Analysis Services can periodically poll the data source for notifications about updates to dimension or fact tables
associated with specific ROLAP dimensions or partitions enabled for real-time updates. If the Analysis server finds that a change
to a dimension or fact table has occurred, it can respond to the notifications by flushing the Analysis server cache and
automatically reprocessing the associated ROLAP dimensions or partitions.

The Analysis server maintains a "listener" thread that supports the notification process for all ROLAP dimensions and ROLAP
partitions using a SQL Server 2000 data source, for each distinct SQL Server 2000 server. The Analysis server monitors the tables
specified in the FROM clause of the ROLAP dimension or partition, and reprocesses the dimension or partition whenever a
notification about one of the monitored tables is received from SQL Server 2000.

The effect of real-time OLAP on client applications is to allow a real-time view of OLAP data, instead of having to reprocess a cube
every time data in the dimension or fact tables associated with the dimensions or partitions of a cube changes, as with regular
cubes. Real-time OLAP expands the ability of Analysis Services to construct cubes based on rapidly changing data, including the
ability to support real-time cubes directly based on OLTP data, without the maintenance and administrative difficulties such cubes
would have caused in earlier releases of Analysis Services.

While ROLAP dimensions can easily support real-time updates, ROLAP partitions must meet certain qualifications in order to
support this new functionality. They must either have zero aggregations or be based on SQL Server 2000 indexed views, and they
cannot be remote partitions. For more information on the requirements of indexed views for ROLAP partitions, see Indexed Views
for ROLAP Partitions.

Real-time OLAP can be enabled by using either Dimension Editor or the Dimension Wizard to enable real-time updates on ROLAP
dimensions, or by using the Storage Design Wizard to enable real-time updates on ROLAP partitions that meet the qualifications
discussed earlier in this topic.

See Also

Dimension Editor - Schema View

Dimension Wizard

Storage Design Wizard

Analysis Services (SQL Server 2000)

Write-Enabled Cubes
Write-Enabled Cubes

If you write-enable a cube, client applications can record changes to the cube's data. These changes, known as writeback data, are
stored in a table separate from the cube and its underlying data, but they are incorporated into query results as if they are part of
the cube data. Write-enabled cubes allow end users to explore scenarios by changing cell values and analyzing the effects of the
changes on cube data.

An end user's change is stored in the writeback table as a difference from the currently displayed value. For example, if an end
user changes a cell value from 90 to 100, the value +10 is stored in the writeback table, along with the time of the change and
information about the end user who made it. The net effect of accumulated changes is displayed to client applications. The
original value in the cube is preserved, and an audit trail of changes is recorded in the writeback table.

Changes to atomic and nonatomic cube cells are handled differently. (An atomic cell represents a lowest-level member of every
dimension in the cube. The value of an atomic cell cannot be reduced by drilling down or slicing.) If a cube is write-enabled,
changes can be made to an atomic cell. Changes can be made to a nonatomic cell only if the client application provides a means
of distributing the changes among the atomic cells that make up the nonatomic cell. Programmers of client applications can use
the UPDATE CUBE statement to distribute changes made to nonatomic cells. For more information, see UPDATE CUBE Statement.

Regardless of whether a client application distributes changes made to nonatomic cells, when queries are evaluated, changes in
the writeback table are applied to nonatomic as well as atomic cell values so end users can view the effects of the changes
throughout the cube.

End user changes are kept in a separate writeback table that you can:

Convert to a partition to permanently incorporate changes into the cube. This action makes the cube read-only. You can
specify a filter expression to select the changes you want to convert.

Note Converting to a partition is available only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise
Edition.

Discard to return the cube to its original state. This action makes the cube read-only.

For more information about write-enabling a cube, converting writeback tables to partitions, and deleting writeback data, see
Maintaining Write-Enabled Cubes and Writeback Data.

An end user is permitted to record changes in a cube's writeback table only if the end user belongs to a cube role with read/write
access to the cube's cells. For each cube role, you can control which cube cells can and cannot be updated. For more information,
see Cell Security.

Write-enabled cubes and write-enabled dimensions are different but complementary features. A write-enabled cube gives users
the ability to update cube cells, whereas a write-enabled dimension gives users the ability to update members. Using these two
features in combination is optional. For example, a write-enabled cube does not have to include any write-enabled dimensions.
Different procedures are used to write-enable cubes and dimensions and to maintain their security. For more information about
write-enabled dimensions, see Write-Enabled Dimensions.

If you want to write-enable a cube with a Microsoft Access database as a data source, do not use Microsoft OLE DB Provider for
ODBC Drivers in the data source definitions for the cube, its partitions, or its dimensions. Instead, you can use Microsoft Jet 4.0 (or
later) OLE DB Provider.

A cube can be write-enabled only if all of its measures use the Sum aggregate function.

Note You cannot use Microsoft SQL Server 2000 Analysis Services to process a write-enabled cube created in Microsoft SQL
Server 7.0 OLAP Services if any of the measures of the write-enabled cube use an aggregate function other than Sum.

Linked cubes and local cubes cannot be write-enabled. A virtual cube cannot be write-enabled; however, if one or more of its
component cubes is write-enabled, virtual cube cells derived solely from the write-enabled cubes can be updated.

Analysis Services (SQL Server 2000)

Partitions
Partitions are used to store and manage precalculated aggregations and, sometimes, source data. They also offer flexibility in
storing such data in multiple locations and in optimizing its access; they are also useful in managing the growth of cubes over
time.

The following topics describe structural considerations for partitions.

Topic Description
Introduction to Partitions Describes basic characteristics of partitions and

provides an example of a multiple-partition cube
Partition Structure Identifies requirements pertaining to the structure of

partitions
Partition Storage Describes differences between the three storage modes
Indexed Views for ROLAP
Partitions

Identifies conditions necessary for Microsoft® SQL
Server™ 2000 Analysis Services to create indexed views
for aggregations

Remote Partitions Describes remote partitions and their restrictions
Incremental Updates and
Partitions

Identifies considerations relative to updating partitions
incrementally

Analysis Services (SQL Server 2000)

Introduction to Partitions
Introduction to Partitions

Partitions allow the source data and aggregate data of a cube to be distributed among multiple server computers. Each partition
in a cube can have a different data source. These data sources can reference relational databases on various computers. In
addition, aggregate data of each partition can be stored on the Analysis server computer where the partition is defined, on
another Analysis server computer, or in the same database as the partition's source data.

Every cube has at least one partition, which contains the cube's data; a single partition is automatically created for a cube when
the cube is defined. When you create a new partition for a cube, the new partition is added to the set of partitions that already
exist for the cube. The cube reflects the combined data contained in all of its partitions. The division of a cube into partitions is not
visible to end users of the cube. You can use the Partition Wizard to create or edit a partition.

Note You can create multiple partitions in a cube only if you install Analysis Services for Microsoft® SQL Server™ 2000
Enterprise Edition.

Partitions are a powerful and flexible means of managing cubes, especially large cubes. For example, a cube containing sales
information can contain a partition for the data of each past year and also partitions for each quarter of the current year. At the
end of the year the four quarterly partitions can be merged into a single partition for the year.

Partitions can be stored using combinations of options for source data location, aggregation data location, storage mode, and
aggregation design. This flexibility enables you to design cube storage strategies appropriate to your needs.

Data Sources and Storage

Each partition has a data source, which can be the same as or different from the data source of the partition's cube. If the same
data source is used, the partition and the cube do not need to have the same fact table. If a different data source is used, it must
reference a database that contains a set of tables that are essentially the same as those in the cube's schema. Some minor
variations, such as the fact table name, are permitted.

Each partition can store its aggregate data on the Analysis server computer where the partition is defined; this is the default.
Partition aggregate data can also be stored on another Analysis server computer; this partition is a remote partition.

Each partition has a storage mode, which determines whether the partition's aggregate data is stored on an Analysis server
computer or in the database specified in the partition's data source. The storage mode also determines whether a copy of the
partition's source data is stored on the Analysis server computer.

Each partition can have a different aggregation design, which determines the number and contents of the aggregations created
for the partition. With the Storage Design Wizard, you can tailor a partition's aggregation design by specifying constraints for
storage utilization or increase in query performance. With the Usage-Based Optimization Wizard, you can perform these same
actions, and you can also optimize the aggregation design based on queries previously sent to the partition's cube. You can select
the queries by which to optimize.

The aggregate data is designed by using the Storage Design Wizard and the Usage-Based Optimization Wizard, but it is created
when the partition or its cube is processed.

Object Hierarchy

Partitions are immediately subordinate to the cube. The data of a cube is the combination of all of the data of the cube's partitions.
If a partition is added or deleted, and the cube is then processed, the data of the cube changes. Changes to a partition and
subsequent processing can also cause the data of its cube to change.

In the object hierarchy, the following objects are immediately subordinate to the partition:

Data sources

A partition has a single data source. By default, this is the data source of the partition's cube. A different data source can be
selected from the data sources in the database or created during partition creation.

Aggregations

A partition's aggregations apply to only that partition.

Caution When a cube contains multiple partitions, if the partitions are defined or handled incorrectly, it is possible for the cube
to contain incorrect data. It is essential that you understand the considerations that apply to multiple-partition cubes before you

create one.

Working with Partitions

You can use the Partition Wizard to create or edit a partition.

In Analysis Manager a local partition is identified by the following icon.

A remote partition is identified by the following icon.

After partitions are created, aggregations are usually the next objects to be created.

Structural changes to a cube, such as changes to its source data, fact table, or filter, require that you recreate the aggregations of
all partitions in the cube.

You can merge two partitions that are in the same cube. The partitions to be merged must have the same storage mode and
identical aggregation designs. The Partition Wizard provides options for copying the aggregation design of an existing partition.

If you are programming with Decision Support Objects (DSO), the class type associated with the partition is clsPartition.

Example: Four-Partition Cube

The following diagram shows how a four-partition cube can distribute its source data and aggregation data among five server
computers. The activities of definition, storage design, processing, and querying are performed during four distinct time periods.

Cube 1996-1999 and its four partitions are defined on Analysis Server 1. The data sources of the partitions specify the locations
of the source data of the partitions:

The source data for Partition 1996 is stored on SQL Server 1, which is installed on the same computer as Analysis Server 1.

The source data for Partition 1997 is stored on SQL Server 2.

The source data for Partition 1998 is stored on SQL Server 3.

The source data for Partition 1999 is stored on SQL Server 4.

Unlike partitions 1996, 1997, and 1998, Partition 1999 is defined as a remote partition. Its aggregate data is stored on a different

Analysis server computer, Analysis Server 2. (Aggregate data is stored on the Analysis server computer only if the partition's
storage mode is multidimensional OLAP (MOLAP) or hybrid OLAP (HOLAP); otherwise, data is stored in the same database as the
partition's source data.)

Note Source data can be stored in databases of relational database products other than SQL Server. For more information, see
Specifications and Limits.

Storage Design and Processing

For each partition in Cube 1996-1999, a storage mode is selected and aggregations are designed. The storage mode determines
whether aggregate data will be stored on an Analysis server computer (that is, the storage mode is MOLAP or HOLAP) or with the
source data of the partition (that is, the storage mode is relational OLAP (ROLAP)). The aggregation design determines the
number of aggregations that are created.

When cube 1996-1999 is processed, aggregate data for its partitions is created. For partitions 1996, 1997, and 1998, aggregation
data is stored on Analysis Server 1 or in the same databases as the source data of the partitions. For partition 1999, aggregation
data is stored on Analysis Server 2 or in the same database as the partition's source data.

Queries

When a client that is connected to Analysis Server 1 issues a query to Cube 1996-1999, one or more of the following sources may
be referenced to resolve the query:

Client cache

Whenever the value of a requested cell can be found in or derived from the results of a prior query that are stored in client
cache, the value is retrieved from the client cache.

Aggregation data

If the value of a requested cell can be found in or derived from the aggregation data, the value is retrieved from the
aggregation data.

Source data

If the value of a requested cell cannot be found in or derived from the aggregation data, the value is retrieved from the
source data, provided that the partition has a storage mode of HOLAP or ROLAP.

Copy of source data stored on the Analysis server computer

If the value of a requested cell cannot be found in or derived from the aggregation data, the value is retrieved from a copy
of the source data stored on the Analysis server computer, provided that the partition has a storage mode of MOLAP.

A single query can request data from multiple partitions.

Analysis Services (SQL Server 2000)

Partition Structure
Partition Structure

The structure of a partition must match the structure of its cube. The set of dimensions and measures that defines a cube's
structure must also be present in the partition. For this reason, when a partition is created, it automatically inherits this set of
measures and dimensions from its cube; it is not possible to edit this set within Analysis Manager.

However, it is possible for a partition and its cube to have different fact tables and/or data sources. Different partitions in a cube
can have different fact tables and/or data sources. In these cases, a high degree of similarity among the fact tables and data
sources of the partitions and the cube is required to ensure that the matching structures of the partitions and their cube are not
undermined.

A cube and all of its partitions must have fact tables with the same structure. All columns used in the cube's measure definitions
must be present and must be named the same in all of the fact tables. Extra columns can be present in some fact tables but absent
in others. The fact tables can have different names.

All of the data sources of a cube and its partitions must reference databases that contain a schema identical to the schema in the
definition of the cube. (You can display this schema in the Cube Editor Schema tab.) All dimension tables in the schema of the
cube must be present and must be named the same in all of the databases. A fact table meeting the requirements described
earlier in this topic must be present in each of the databases. All columns that join tables in the cube's schema must be present
and must be named the same in all of the databases. The dimension tables must have the same structure in all of the databases.
All columns used in the level definitions and member property definitions of the cubes must be present and must be named the
same in all of the databases. Extra columns can be present in some databases but absent in others. Extra tables outside the
required schema can be present in some databases but absent in others.

See Also

Cube Structure

Analysis Services (SQL Server 2000)

Partition Storage
Partition Storage

Physical storage options affect the performance, storage requirements, and storage locations of partitions and their parent cubes.
One of these options is the storage mode of the partition. A partition can have one of three storage modes:

Multidimensional OLAP (MOLAP)

Relational OLAP (ROLAP)

Hybrid OLAP (HOLAP)

Microsoft® SQL Server™ 2000 Analysis Services supports all three storage modes. With the Storage Design Wizard you can
choose the storage mode most appropriate for your partition. Alternatively, you can use the Usage-Based Optimization Wizard to
select a storage mode and optimize aggregation design based on queries that have been sent to the cube. Also, you can use an
explicitly defined filter to restrict the source data that is read into the partition when using any of the three storage modes.

The MOLAP and ROLAP storage modes have somewhat different meanings when applied to dimensions and local cubes rather
than partitions. The HOLAP storage mode does not apply to dimensions or local cubes.

MOLAP

The MOLAP storage mode causes the aggregations of the partition and a copy of its source data to be stored in a
multidimensional structure on an Analysis server computer. This computer can be the Analysis server computer where the
partition is defined or another Analysis server computer, depending on whether the partition is defined as local or remote. The
multidimensional structure that stores the partition's data is located in a subfolder of the Data folder of the Analysis server. For
more information about the Data folder, see Analysis Server.

Because a copy of the source data resides on the Analysis server computer, queries can be resolved without accessing the
partition's source data even when the results cannot be obtained from the partition's aggregations. The MOLAP storage mode
provides the potential for the most rapid query response times, depending on the percentage and design of the partition's
aggregations. In general, MOLAP is more appropriate for partitions in cubes with frequent use and the necessity for rapid query
response.

ROLAP

The ROLAP storage mode causes the aggregations of the partition to be stored in tables in the relational database specified in the
partition's data source. However, you can use the ROLAP storage mode for the partition's data without creating aggregations in
the relational database. For more information, see Set Aggregation Options (Storage Design Wizard) or Set Aggregation Options
(Usage-Based Optimization Wizard).

Also, indexed views are created instead of tables if the partition's source data is stored in SQL Server 2000 and if certain criteria
are met. For more information, see Indexed Views for ROLAP Partitions.

Unlike the MOLAP storage mode, ROLAP does not cause a copy of the source data to be stored; the partition's fact table is
accessed to answer queries when the results cannot be derived from the aggregations or client cache. With the ROLAP storage
mode, query response is generally slower than that available with the other two storage modes. ROLAP is typically used for large
datasets that are infrequently queried, such as historical data from less recent previous years.

Note Aggregations cannot be created for a partition with ROLAP storage if the data source is Analysis Services (that is, if the
provider is the Microsoft OLE DB Provider for Analysis Services).

HOLAP

The HOLAP storage mode combines attributes of both MOLAP and ROLAP. Like MOLAP, HOLAP causes the aggregations of the
partition to be stored in a multidimensional structure on an Analysis server computer. HOLAP does not cause a copy of the source
data to be stored. For queries that access only summary data contained in the aggregations of a partition, HOLAP is the equivalent
of MOLAP. Queries that access source data, such as a drilldown to an atomic cube cell for which there is no aggregation data,
must retrieve data from the relational database and will not be as fast as if the source data were stored in the MOLAP structure.

Partitions stored as HOLAP are smaller than equivalent MOLAP partitions and respond faster than ROLAP partitions for queries
involving summary data. HOLAP storage mode is generally suitable for partitions in cubes that require rapid query response for

summaries based on a large amount of source data.

See Also

Aggregations

Designing Storage Options and Aggregations

Optimizing Performance Based on Usage

Dimension Storage Modes

Analysis Services (SQL Server 2000)

Indexed Views for ROLAP Partitions
Indexed Views for ROLAP Partitions

If the storage mode of a partition is relational OLAP (ROLAP) and its source data is stored in Microsoft® SQL Server™ 2000, SQL
Server 2000 Analysis Services attempts to create indexed views to contain aggregations of the partition. If Analysis Services
cannot create indexed views, it automatically generates and uses aggregation tables instead of indexed views. While Analysis
Services handles the session requirements for creating indexed views on SQL Server 2000, the creation and use of indexed views
for aggregations requires the following conditions to be met by the ROLAP partition and the tables in its schema:

The partition cannot contain measures that use the aggregate functions Min, Max, or Distinct Count.

Each table in the schema of the ROLAP partition must be used only once. For example, the schema cannot contain
"dbo"."address" AS "Customer Address" and "dbo"."address" AS "SalesRep Address".

Each table must be a table, not a view.

All table names in the partition's schema must be qualified with the owner name, for example, "dbo"."customer".

All tables in the partition's schema must have the same owner; for example, you cannot have a FromClause like :
"tk"."customer", "john"."store", or "dave"."sales_fact_1999".

The source columns of the partition's measures must not be nullable.

All tables used in the view must have been created with the following options set to ON:
ANSI_NULLS

QUOTED_IDENTIFIER
The total size of the index key, in SQL Server 2000, cannot exceed 900 bytes. SQL Server 2000 will assert this condition
based on the fixed length key columns when the CREATE INDEX statement is processed. However, if there are variable
length columns in the index key, SQL Server 2000 will also assert this condition for every update to the base tables. Because
different aggregations have different view definitions, ROLAP processing using indexed views can succeed or fail depending
on the aggregation design.

The session creating the indexed view must have the following options on: ARITHABORT, CONCAT_NULL_YEILDS_NULL,
QUOTED_IDENTIFIER, ANSI_NULLS, ANSI_PADDING, and ANSI_WARNING. This setting can be made in SQL Server
Enterprise Manager.

The session creating the indexed view must have the following option off: NUMERIC_ROUNDABORT. This setting can be
made in SQL Server Enterprise Manager.

For more information about the requirements of indexed views on SQL Server 2000, see Creating Indexed Views.

See Also

Real-Time Cubes

Remote Partitions

https://msdn.microsoft.com/en-us/library/aa292944(v=sql.80).aspx

Analysis Services (SQL Server 2000)

Remote Partitions
Remote Partitions

The data of a remote partition is stored on an Analysis server computer other than the one that contains the definitions (that is,
meta data) of the partition and its parent cube. A remote partition is administered on the same Analysis server where the partition
and its parent cube are defined.

When a remote partition is created, the Analysis server computer that stores its data is specified. This Analysis server computer is
called the remote Analysis server of the remote partition.

Note The remote server computer must have Microsoft® SQL Server™ 2000 Analysis Services installed if the administering
server computer runs SQL Server 2000 Analysis Services. Remote partitions on a server computer running SQL Server 7.0 OLAP
Services are not supported.

Depending on the storage mode of a remote partition, the following data is stored on its remote Analysis server.

Storage type Stores
MOLAP The partition's aggregations and a copy of the partition's

source data
HOLAP The partition's aggregations
ROLAP No partition data

Thus, if a cube contains multiple, remote multidimensional OLAP (MOLAP) or hybrid OLAP (HOLAP) partitions stored on multiple
remote Analysis servers, the cube distributes its data among those Analysis servers.

When remote partitions are included in a cube, the memory and CPU utilization of a cube is also distributed. For example, when a
remote partition is processed (alone or as part of its parent cube's processing), a majority of the memory and CPU utilization
occurs on the remote Analysis server.

The meta data for a remote partition can be viewed and updated only on the Analysis server where the partition and its parent
cube are defined. It cannot be viewed or updated on the remote Analysis server. Thus, a cube that contains remote partitions can
be administered along with its partitions on a single Analysis server.

In Analysis Manager, a remote partition is identified by its unique icon.

To create a remote partition, use the Partition Wizard. In the Specify the partition type step, click Remote, and then select a
remote Analysis server. For more information, see Creating Partitions.

To create or maintain a remote partition, your user name must be included in the OLAP Administrators group on both the
Analysis server where the partition is defined and its remote Analysis server.

Remote partitions can be merged only with other remote partitions with the same remote Analysis server.

Data in remote partitions is not archived or restored with a database. After you restore a database that has a remote partition, you
must process the remote partition. For more information about archiving and restoring databases, see Archiving and Restoring
Databases. To process a partition, see How to process a partition.

If a remote partition is defined on an Analysis server, the logon account for the Analysis server service
(MSSQLServerOLAPService) must be a domain user account. Otherwise, processing the remote partition will fail. If the account
changes, you must either reprocess the remote partition or resave the partition. The remote partition can be resaved by either
editing the partition in Analysis Manager using the Partition Wizard and finishing the wizard without changes, or by using a client
application employing Decision Support Objects (DSO) to update the partition without changes. Either action will resynchronize
the remote partition defined on the Analysis server.

Note Parallel processing of remote partitions is not supported.

A cube that contains a remote partition cannot contain a write-enabled dimension. For more information about write-enabled
dimensions, see Write-Enabled Dimensions.

See Also

Partition Wizard

Analysis Services (SQL Server 2000)

Incremental Updates and Partitions
Incremental Updates and Partitions

When you create and manage partitions in multiple-partition cubes, you must take special precautions to ensure accurate cube
data. Although these precautions do not usually apply to single-partition cubes, they do apply when you incrementally update
them.

When you incrementally update any cube, a temporary partition is created and merged with an existing partition. When you run
the Incremental Update Wizard, you specify the data source and fact table of the temporary partition. You can also specify a filter
to limit the contents of the temporary partition. If the cube contains multiple partitions, you must specify the partition into which
the temporary partition is merged. If the cube contains only one partition, the temporary partition is merged into that partition.

To ensure accurate cube data, before you perform an incremental update on any cube, be sure you understand the special
precautions related to data integrity that apply to multiple-partition cubes. For more information, see Managing Partitions.

See Also

Processing Cubes

Analysis Services (SQL Server 2000)

Aggregations
Aggregations are precalculated summaries of data that improve query response time by having the answers ready before the
questions are asked. For example, when a data warehouse fact table contains hundreds of thousands of rows, a query requesting
the weekly sales totals for a particular product line can take a long time to answer if the fact table has to be scanned to compute
the answer. However, the response can be almost immediate if the summarization data to answer this query has been
precalculated. Precalculation of summary data is the foundation for the rapid response times of OLAP technology.

Cubes are the way OLAP technology organizes summary data into multidimensional structures. Dimensions and their hierarchical
levels reflect the queries that can be asked of the cube. Aggregations are stored in the multidimensional structure in cells at
coordinates specified by the dimensions. For example, the question "What were the sales of product X in 1998 for the Northwest
region?" involves three dimensions (product, time, and geography) and one measure (sales). The value in the sales cell within the
cube at the coordinates (product X, 1998, Northwest) is the answer, a single numerical value.

Other questions may return multiple values, such as "What were the sales of hardware products by quarter by region for 1998?"
Such queries return sets of cells from the coordinates that satisfy the specified conditions. The number of cells returned by the
query depends on the number of items in the hardware level of the product dimension, the four quarters in 1998, and the
number of regions in the geography dimension. If all summary data has been precalculated into aggregations, the response time
of queries like this will depend only on the time needed to extract the specified cells. No calculation or reading of data from the
fact table is necessary.

Precalculation of all possible aggregations in a cube results in the fastest possible response time for all queries. However, the
storage and processing time required for the aggregations can be substantial. Storage requirements depend not only on the
number of dimensions and measures, but also on the number of levels in the dimensions and the number of members of each
level.

There is a tradeoff between storage requirements and the percentage of possible aggregations that are precalculated. If no
aggregations are precalculated (0%), little storage space is required beyond that necessary to store the base data. In this case,
however, query response time will vary and may be quite slow because all answers will have to be calculated from the base data
for each query. Returning the single number that answers the first query ("What were the sales of product X in 1998 for the
Northwest region") might require reading thousands of rows of data, extracting the sale value from each, and calculating the sum.

Microsoft® SQL Server™ 2000 Analysis Services incorporates a sophisticated algorithm to select aggregations for precalculation
so that other aggregations can be quickly computed from precalculated values. For example, if the aggregations are precalculated
for the month level of a time dimension, the calculation for a quarter requires only the summarization of three numbers, which
can be quickly computed on the fly. This technique saves storage with little effect on query response time.

The Storage Design Wizard provides options for you to specify storage and percentage constraints to the algorithm to achieve a
satisfactory tradeoff between query response time and storage requirements. For more information about using the Storage
Design Wizard, see Designing Storage Options and Aggregations. The Usage-Based Optimization Wizard enables you to adjust
the aggregation design for a cube by analyzing the queries that have been submitted by client applications. You can tune a cube's
aggregation design to provide rapid response to frequent queries and less rapid response to infrequent queries without
substantially affecting the storage needed for the cube. For more information about using the Usage-Based Optimization Wizard,
see Optimizing Performance Based on Usage.

Aggregations are designed in the preceding wizards but are created when the cube or partition for which the aggregations are
designed is processed. After aggregation creation, if the structure of a cube changes, or if data is added to or changed in a cube's
source tables, it is usually necessary to design the cube's aggregations again and process the cube again. For more information,
see Processing Cubes.

In the object hierarchy shown in Object Architecture Overview, aggregations are immediately subordinate to the partition.
Aggregations are always subordinate to a specific partition, but if a cube contains only one partition, its aggregations can be
considered subordinate to the cube. For this reason, if the preceding wizards are run on a cube, selection of a partition is
requested only if the cube contains multiple partitions.

Aggregations for a partition are stored in one of three locations, depending on the storage mode and type of the partition.

Storage mode Type Location of aggregations
Multidimensional OLAP
(MOLAP) or hybrid OLAP
(HOLAP)

Local Subfolder of the Data folder of the
Analysis server on which the partition is
defined

Multidimensional OLAP
(MOLAP) or hybrid OLAP
(HOLAP)

Remote Subfolder of the Data folder of the remote
Analysis server specified when partition
was created

Relational OLAP (ROLAP) Local or
remote

Dedicated tables or indexed views in the
database specified in the data source of
the partition

Note You can use the ROLAP storage mode for the data of a partition without creating aggregations in the relational database.
For more information, see Set Aggregation Options (Storage Design Wizard) or Set Aggregation Options (Usage-Based
Optimization Wizard).

For more information about the Data folder, see Analysis Server.

After aggregations are created, roles are usually the next objects to be created. For more information, see Roles.

If you are programming with Decision Support Objects (DSO), the class type associated with the aggregation is clsAggregation.
For more information, see clsAggregation.

See Also

Partitions

Remote Partitions

Partition Storage

Analysis Services (SQL Server 2000)

Roles
Roles are used to control end users' access to cube data or data mining models while they are connected to the Analysis server
with client applications. Each role definition includes a list of Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 user
accounts and groups and specifies the types and scope of access they are allowed.

Microsoft SQL Server™ 2000 Analysis Services includes three types of roles:

Database roles

Defined at the Analysis Services database level, a database role can be assigned to multiple cubes in the database, thereby
granting the role's users access to these cubes. Such an assignment creates a cube role with the same name as the database
role. A database role provides defaults for cube roles of the same name. For more information, see Database Roles.

Cube roles

Created at the cube level when a database role is assigned to a cube, a cube role applies to only that cube. Defaults in a cube
role are derived from the database role of the same name, but some of these defaults can be overridden in the cube role. A
cube role contains additional options such as cell security that are not contained in a database role. For more information,
see Cube Roles.

You can exercise great flexibility in granting both read and read/write access to portions of cubes. You can specify which
dimension members and cube cells a role can view and update. For more information, see Dimension Security and Cell
Security.

Mining model roles

Similar to cube roles, mining model roles are created at the mining model level when a database role is assigned to a
mining model; a mining model role applies to only that model. Defaults in a mining model role are derived from the
database role of the same name, but role membership can be overridden in the mining model role. For more information,
see Mining Model Roles.

See Also

Creating Security Roles

Database, Cube, and Mining Model Roles

Security and Authentication

Analysis Services (SQL Server 2000)

Database Roles
Database Roles

A database role applies to a single database, and it includes a list of Windows NT® 4.0 or Windows® 2000 user accounts and
groups. The specifications in a database role apply to end users' access to objects on an Analysis server while they are connected
to it from a client application. Database roles are not used to grant or deny administrative access to objects.

Usually, database roles are created and then assigned to cubes or data mining models. Each assignment grants access to the cube
or mining model and creates a cube or mining model role with the same name as the database role. The database role provides
defaults for the cube or mining model role. The cube role can then be tailored to accommodate different permissions for various
elements of the cube; however, customization of mining model roles is limited to changing role membership for access to the
model.

In a database role, you can control access to the dimensions in the database. You can specify which levels and members of a
dimension the role can view. If a dimension is write-enabled, you can specify which levels and members the role can update.

Database roles are immediately subordinate to the database. The database roles in a database apply to only that database and the
objects within that database.

In the object hierarchy, commands are immediately subordinate to database roles. These commands are role commands. A role
command is executed only for a specific database role. For example, a calculated member is created as a role command so that it
is displayed only to end users in a particular database role. You must create and maintain role commands programmatically by
using clsRoleCommand.

In Analysis Manager, database roles are identified by the following icon.

In Analysis Manager, database roles are created and maintained in Database Role Manager and the Database Role dialog box.
Database roles are assigned to cubes in the Cubes tab of the Database Role dialog box or in Cube Role Manager.

If you are programming with Decision Support Objects (DSO), the class type associated with the database role is
clsDatabaseRole.

See Also

Administrator Security

clsDatabaseRole

clsRoleCommand

Creating Database Roles

Cube Roles

Database, Cube, and Mining Model Roles

Data Mining Models

Database Role Manager

Database Security

Dimension Security

Mining Model Roles

Analysis Services (SQL Server 2000)

Cube Roles
Cube Roles

A cube role applies to a single cube, includes a list of Windows NT® 4.0 or Windows® 2000 user accounts and groups, and
indicates the objects in the cube they can access and the kind of access they have to those objects.

The specifications in a cube role apply to end users' access to a cube on an Analysis server while they are connected to it with a
client application. Cube roles are not used to grant or deny administrative access to objects. For information about administrative
access, see Administrator Security.

Usually, database roles are created and then assigned to cubes. Each assignment grants access to the cube and creates a cube role
with the same name as the database role. The database role provides defaults for the cube role. The cube role can then be tailored
for the cube.

In a cube role, you can control access to the dimensions in the cube. You can specify which levels and members of a dimension
the role can view. If a dimension is write-enabled, you can specify which levels and members the role can update. For more
information, see Dimension Security.

In a cube role, you can also control access to the cells in the cube. You can specify which cells the role can view. If a cube is write-
enabled, you can specify which cells the role can update. For more information, see Cell Security.

In a cube role, you can also indicate whether the role can drill through to a cell's source data. To use this capability, you must also
enable drillthrough for the cube or at least one of its partitions. For more information, see Specifying Drillthrough Options.

Cube roles are immediately subordinate to the cube. The cube roles in a cube apply to only that cube and the objects within that
cube. However, changes to some specifications in a cube role propagate to the database role and all cube roles with the same
name as the changed cube role. These specifications include the list of user accounts and groups and read/write permissions for
dimensions.

In the object hierarchy, commands are immediately subordinate to cube roles. These commands are role commands. A role
command is executed only for a specific cube role. For example, a calculated member is created as a role command so that it is
displayed only to end users in a particular cube role. You must create and maintain role commands programmatically by using
clsRoleCommand.

In Analysis Manager, cube roles are identified by the following icon.

In Analysis Manager, cube roles are created and maintained in Cube Role Manager and the Cube Role dialog box. Database roles
are assigned to cubes in the Cubes tab of the Database Role dialog box or in Cube Role Manager.

Cube roles are usually the last objects created in order to deploy a cube.

If you are programming with Decision Support Objects (DSO), the class type associated with the cube role is clsCubeRole.

See Also

clsCubeRole

clsRoleCommand

Creating Cube Roles

Cube Role Manager

Cube Role Dialog Box

Cube Security

Database Roles

Database, Cube, and Mining Model Roles

Mining Model Roles

Object Architecture Overview

Analysis Services (SQL Server 2000)

Mining Model Roles
Mining Model Roles

A mining model role applies to a single mining model and includes a list of Microsoft® Windows NT® 4.0 or Microsoft
Windows® 2000 user accounts and groups that have access to the model.

The specifications in a mining model role apply to end users' access to a mining model on an Analysis server while they are
connected to it with a client application. Mining model roles are not used to grant or deny administrative access to models.

Usually, database roles are created and then assigned to mining models. Each assignment grants access to the model and creates
a mining model role with the same name as the database role. The database role provides default membership for the mining
model role, but users can be added or deleted from the default membership of the mining model role.

Mining model roles are immediately subordinate to the mining model. The mining model roles in a mining model apply to only
that model. However, changes to role membership in a mining model role propagate to the database role and all mining model
roles with the same name as the changed mining model role.

In Analysis Manager, mining model roles are created and maintained in Mining Model Role Manager and the Mining Model
Role dialog box. Database roles are assigned to mining models in the Mining Models tab of the Database Role dialog box or in
Mining Model Role Manager.

Mining model roles are usually the last objects created in order to deploy a mining model.

If you are programming with Decision Support Objects (DSO), the class type associated with the cube role is
clsMiningModelRole.

See Also

Administrator Security

Data Mining Models

Mining Model Security

Analysis Services (SQL Server 2000)

Commands
A command is administrator-defined and is automatically executed when a client accesses a database, cube, or role. Although the
term command is frequently used in a general sense, in this topic it refers to the command object, which is used in Analysis
Services for specific purposes.

Commands are optional, but they are commonly used to enhance cubes.

You can create commands that enable end users to perform additional operations on cubes or to enrich or customize their
experience in a client application. For example, you can create a type of command called an action, which allows end users to
select a part of a cube and initiate an operation on it. For example, they can open their Internet browsers to display information
about a particular member. Or you can create another type of command called a calculated member, which adds to a cube a
customized member derived from an expression.

Commands can be defined for databases, cubes, database roles, and cube roles. Commands are immediately subordinate to these
four objects. Commands defined for databases are called database commands. You must create and maintain database
commands programmatically by using Decision Support Objects (DSO). Commands defined for cubes are called cube commands.
You can create and maintain cube commands in Analysis Manager. You can also create and maintain cube commands
programmatically by using DSO. Commands defined for database roles or cube roles are called role commands. They offer the
flexibility of limiting commands to specific roles. You must create and maintain role commands programmatically by using the
DSO.

A command is executed when an end user accesses a database, cube, database role, or cube role using a client application. Any of
these actions trigger database commands defined for the database. Access to a cube occurs when any end user browses the cube
or accesses its meta data. This action triggers various cube commands defined for the cube. Access to a database role occurs
when an end user belonging to the database role accesses the database associated with the database role. This action triggers role
commands defined for the database role. Access to a cube role occurs when an end user in the cube role browses the cube
associated with the cube role. This action triggers role commands defined for the cube role.

You can create several types of commands, which are described in the following table. All of these types can be created as cube
commands by using either Cube Editor for regular cubes or Virtual Cube Editor for virtual cubes.

Note Within a cube, commands such as actions, calculated members, or named sets cannot share the same name. Each
command must have a unique name.

Command type Description
For more

information, see
Action An end user-initiated operation upon a

selected cube or portion of a cube. The
operation can open an application with
the selected item as a parameter or
retrieve information about the selected
item.

Actions

Calculated member A dimension member whose value is
calculated at run time using an
expression that you specify when you
define the calculated member.

Calculated Members

Named set A set of dimension members or a set
expression that is created for reuse, for
example, in Multidimensional
Expressions (MDX) queries.

Named Sets

Library registration A registration of a file containing one or
more functions for use in MDX.

Library Registrations

See Also

Decision Support Objects

Object Architecture Overview

Retrieving Schema Information

Analysis Services (SQL Server 2000)

Actions
Actions

An action is an end user-initiated operation upon a selected cube or portion of a cube. The operation can start an application with
the selected item as a parameter or retrieve information about the selected item.

Actions enable end users to act upon the outcomes of their analyses. By using actions, end users can go beyond traditional
analysis and initiate solutions to discovered problems and deficiencies. Actions have the potential of transforming client
applications from sophisticated data rendering tools to integral parts of the enterprise's operational system. Actions provide an
easy way for end users to step from focusing on specific data to sending that data as input to operational applications.

For example, an end user browsing an Inventory cube notices that the current stock of white shoes is low. The end user selects the
Order action on the white shoes member. This action initiates a new order for more white shoes in the order entry system.

You can exercise flexibility when you create actions. There are several types of actions for launching different kinds of applications
and retrieving different kinds of information. Moreover, you can create actions that are triggered from various portions of cubes,
including dimensions, levels, members, and cells. You can create multiple actions for the same portion of a cube. You can also
pass string parameters to the launched applications and specify the action captions displayed to end users.

You can use the Action Wizard to create actions. For more information, see Creating Actions.

In order for an end user to use actions, his or her client application must support actions.

Although a command object is automatically executed when an end user accesses the object for which the command object is
defined, if the command object is an action, the action itself is not automatically executed. The execution of the command creates
the action and thereby makes it available to the end user. The action is executed when the end user performs the client-specific
operation that initiates the action.

Actions created in the Action Wizard are saved so they can be used when browsing a cube that contains the actions. Actions can
also be created that are in effect only for the duration of a session and are not saved. To create an action for the duration of a
session, use the CREATE ACTION statement. This statement is also used in the Statement property when you create actions
programmatically with Decision Support Objects (DSO). For more information, see CREATE ACTION Statement.

In Analysis Manager, an action is identified by the following icon.

Analysis Services (SQL Server 2000)

Calculated Members
Calculated Members

A calculated member is a dimension member whose value is calculated at run time using an expression that you specify when
you define the calculated member. Calculated members can also be defined as measures. Only the definitions for calculated
members are stored; values are calculated in memory when needed to answer a query.

Calculated members enable you to add members and measures to a cube without increasing its size. Although calculated
members must be based on data (such as members) that already exists in the cube, you can create complex expressions by
combining this data with arithmetic operators, numbers, and a variety of functions. Analysis Services includes a library of over
100 functions and allows you to register and use other function libraries.

For example, suppose executives in a shipping company want to determine which types of cargo are more profitable to carry,
based on profit per unit of volume. They use a Shipments cube that contains the dimensions Cargo, Fleet, and Time and the
measures Price_to_Ship, Cost_to_Ship, and Volume_in_Cubic_Meters; however, the cube does not contain a measure for
profitability. You can create a calculated member as a measure named Profit_per_Cubic_Meter in the cube using the existing
measures in the expression:

([Measures].[Price_to_Ship] - [Measures].[Cost_to_Ship]) /
[Measures].[Volume_in_Cubic_Meters]

The next time the Shipments cube is browsed, Profit_per_Cubic_Meter appears along with the other measures.

To create calculated members, use Calculated Member Builder. For more information, see Creating Calculated Members and
Calculated Member Builder.

In Analysis Manager, a calculated member is identified by the following icon.

Calculated members have a Format String property that controls the format of cell values displayed to end users. This property
is accessed in the properties pane of Cube Editor or Virtual Cube Editor. The Format String property accepts the same values as
the Display Format property of measures.

Although calculated members created in Calculated Member Builder are saved so that they can be used when their cube is
browsed, calculated members can also be created but not saved. To create a calculated member for the duration of a session, use
the CREATE MEMBER statement. This statement is also used in the Statement property when you create calculated members
programmatically with Decision Support Objects (DSO). To create a calculated member for the duration of a single query, use the
WITH clause of the SELECT statement.

See Also

CREATE MEMBER Statement

Display Formats

Using WITH to Create Calculated Members

Analysis Services (SQL Server 2000)

Named Sets
Named Sets

A named set is a set of dimension members or a set expression that is created to be used again. For example, a cube contains a
Salesperson dimension. An end user of the cube wants an easy way to display the 10 salespersons with the highest sales and the
10 salespersons with the lowest sales. You can create two named sets, one for each group of salespersons. Then, in the client
application, the end user can place the named sets on an axis in a manner similar to a dimension.

To create the named set for the 10 salespersons with the highest sales, use the following expression, written in Multidimensional
Expressions (MDX), in the named set definition:

TopCount([Salesperson].[Salesperson Name].Members,10,[Measures].[Sales])

To create the named set for the 10 salespersons with the lowest sales, use the following MDX expression in the named set
definition:

BottomCount([Salesperson].[Salesperson Name].Members,10,[Measures].[Sales])

A named set can contain a constant set of members, or it can contain an expression that resolves to a set. If it contains an
expression, as in the preceding examples, the set of members in the named set is subject to change.

To create named sets, use Named Set Builder.

In order for an end user to use named sets, his or her client application must support named sets.

Named sets created in the Named Set Builder are saved so they can be used when browsing a cube that contains the named sets.
Named sets can also be created that are in effect only for the duration of a session and are not saved. To create a named set for
the duration of a session, use the CREATE SET statement. This statement is also used in the Statement property when you create
named sets programmatically with Decision Support Objects (DSO). To create a named set for the duration of a single query, use
the WITH clause of the SELECT statement.

In Analysis Manager, a named set is identified by the following icon.

See Also

Creating Named Sets

CREATE SET Statement

Named Set Builder

Using WITH to Create Named Sets

Analysis Services (SQL Server 2000)

Library Registrations
Library Registrations

You can register files that contain functions to be used in Multidimensional Expressions (MDX). This is accomplished in Analysis
Manager by using the Register Function Libraries dialog box. This dialog box is displayed by clicking Register in any of the
following tools:

MDX Builder

Calculated Member Builder

Named Set Builder

A command for a library registration includes the USE LIBRARY statement, which is created automatically if you register the
library in the Register Function Libraries dialog box.

Note It is not necessary to register the Analysis Services function library, Microsoft® Excel worksheet function library, or
Microsoft Visual Basic® for Applications Expression Services function library. These function libraries are registered automatically.
However, the Microsoft Excel worksheet function library must be installed separately from Analysis Services to be registered.

See Also

Register Function Libraries Dialog Box

User-Defined Functions with MDX Syntax

Analysis Services (SQL Server 2000)

Member Properties
A member property is an attribute of a dimension member. It provides end users with additional information about the member.
For more information about dimension members, see Dimension Structure.

The term member property sometimes refers to any of the properties of a member, including the standard set of properties
associated with all members. However, in this topic, member property refers to the member property object in Microsoft® SQL
Server™ 2000 Analysis Services. These objects are member properties you create in addition to the standard set.

Member properties are optional, but they are commonly used to enhance dimensions.

In some client applications, member properties can be easily viewed. The method of displaying member properties varies from
application to application; for example, an end user might right-click a member to view its member properties. This presentation
makes useful information available about members without cluttering the default view.

Member properties have a variety of uses. In addition to providing information about a member, member properties can be used
in queries to provide end users with more options when analyzing cube data. Member properties can also be the basis of levels in
virtual dimensions. For more information, see Virtual Dimensions.

Member properties are immediately subordinate to the level. A member property is created in the level that contains the
members to which the member property applies.

You can create a member property in Dimension Editor by associating the column that contains values for the member property
with the level that contains the members. For example, to create the member property Store Type for members of the Store Name
level, ensure that the Store Type column is in the same table as the Store Name column, and then insert Store Type as a
member property in the Store Name level.

You can create member properties in shared dimensions by using Dimension Editor. In Analysis Manager, a member property is
identified by the following icon.

If you are programming with Decision Support Objects (DSO), the class type associated with the member property is
clsMemberProperty.

See Also

clsMemberProperty

Creating Member Properties

Dimension Editor - Data View

Analysis Services (SQL Server 2000)

Multiple Language Implementation Using Member Properties
Multiple Language Implementation Using Member Properties

You can use the Member Caption property of a member property to display member captions and member property values in
client locale-specific languages. For example, if an end user in France accesses a cube from a workstation with a French locale
setting, the end user sees the member captions and member property values in French. However, if an end user in Germany
accesses the same cube from a workstation with a German locale setting, the end user sees the captions names and member
property values in German. Implementing multiple-language support for member captions is separate from yet similar to
implementing multiple-language support for member property values. You can implement one without the other.

To implement multiple language support for member captions, the dimension table that contains the members must contain a
column for each supported language. Each of these columns must contain the values for the member captions for one of the
supported languages. It is best to dedicate one column for the default language. This column supplies member captions to end
users when the locale settings of their workstations do not correspond to any of the specifically supported languages. When no
member property of type Caption is defined, member names are used as member captions.

Note To implement multiple language support for member captions, the client application must use the MEMBER_CAPTION
column of the members schema rowset and axis schema rowset to supply displayed member names.

To implement multiple language support for member property values, the dimension table that contains the members must
contain a column for each supported language. The column must contain the member property values for one of the supported
languages. It is best to dedicate one column for the default language. This column supplies member property values to end users
when the locale settings of their workstations do not correspond to any of the specifically supported languages.

Background for Examples

An Inventory cube for a chain of coffee shops contains an Item dimension that contains members for the items the shops keep in
supply. These members are in the Item Name level. A member property called Rotation Interval is planned for this level. After
columns are added to support member captions and member property values in French, German, and English, the default
language, the Item dimension table (named Item) looks like this.

Item ID

French
Item

Name

German
Item

Name

English
Item

Name

French
Rotation
Interval

German
Rotation
Interval

English
Rotation
Interval

1 Café Kaffee Coffee Mensuellement Monatlich Monthly
2 Sucre Zucker Sugar Annuellement Jahrlich Yearly
3 Crème Kreme Cream Par semaine Wochentlich Weekly
4 Lait Milch Milk Par semaine Wochentlich Weekly

Example for Member Names

To support member names displayed in French on French workstations, German on German workstations, and English on all
other workstations, in the Item Name level, create the following three member properties with the following properties. You can
set the properties in Dimension Editor.

Member property for French
Name property value is Member Name in French

Source Column property value is "Item"."French Item Name"

Language property value is French

Type property value is Caption

Caption property value is MEMBER_CAPTION
Member property for German

Name property value is Member Name in German

Source Column property value is "Item"."German Item Name"

Language property value is German

Type property value is Caption

Caption property value is MEMBER_CAPTION
Member property for English, the default language

Name property value is Member Name in English

Source Column property value is "Item"."English Item Name"

Language property value is (All)

Type property value is Caption

Caption property value is MEMBER_CAPTION

The Name property values can vary.

The Language property value (All) for the English member property indicates that English is the default language.

These member properties do not appear as member properties in the client application.

Example for Member Property Values

To support Rotation Interval member property values displayed in French on French workstations, German on German
workstations, and English on all other workstations, in the Item Name level, create the following three member properties with
the following properties. You can set the properties in Dimension Editor.

Member property for French
Name property value is Rotation Interval in French

Source Column property value is "Item"."French Rotation Interval"

Language property value is French

Type property value is Regular

Caption property value is Rotation Interval
Member property for German

Name property value is Rotation Interval in German

Source Column property value is "Item"."German Rotation Interval"

Language property value is German

Type property value is Regular

Caption property value is Rotation Interval
Member property for English, the default language

Name property value is Rotation Interval

Source Column property value is "Item"."English Rotation Interval"

Language property value is (All)

Type property value is Regular

Caption property value is Rotation Interval

The Name property values can vary, but each should be in the user's language.

The Language property value (All) for the English member property indicates that English is the default language.

The Caption property values can be different from Rotation Interval but must be the same for all languages.

See Also

Dimension Editor - Data View

Analysis Services (SQL Server 2000)

Data Mining Models
In this release, Microsoft® SQL Server™ 2000 Analysis Services introduces data mining, a new feature that integrates significant
data analysis and prediction capabilities into Analysis Services. In addition to extensions to Analysis Manager, extensions to
Decision Support Objects (DSO) and PivotTable® Service have also been made to support this powerful new feature.

Analysis Services supports data mining from both relational and multidimensional data sources. The Analysis Services
algorithms can train data mining models with data from any relational data source that supports OLE DB access, as well as
from multidimensional cubes created with Analysis Services.

Extensibility allows Analysis Services to be used with third-party tools such as mining model viewer components, providing
flexibility and enhancement.

OLE DB support has been enhanced with the OLE DB for Data Mining specification.

Analysis Manager has been upgraded with the addition of new wizards and tools to help design, create, train, and browse
data mining models. Dimensions and virtual cubes can also be created based on OLAP data mining models.

DSO has been extended with the addition of the MiningModel object and other ancillary support objects.

Data mining is integrated into PivotTable Service following the same pattern that was used in Analysis Services. In general, a
data mining model is treated like a cube by PivotTable Service: You can create local data mining models, retrieve
information from server cubes, and so on.

Analysis Services (SQL Server 2000)

Introduction to Data Mining Models
Introduction to Data Mining Models

A data mining model is the central object in data mining, one of the new features of Microsoft® SQL Server™ 2000 Analysis
Services. A data mining model is a virtual structure that represents the grouping and predictive analysis of relational or
multidimensional data. In many aspects, the structure of a data mining model resembles the structure of a database table.
However, while a database table represents a collection of records, or a record set, a data mining model represents an
interpretation of records as rules and patterns, composed of statistical information, referred to as cases. The structure of the data
mining model represents the case set that defines the data mining model, while the data stored represents the rules and patterns
learned from processing case data.

To understand what makes up cases and case sets, take for example a database designed to track customer orders. The database
may contain a table for customer data, a table for order data, and a table for order items, shown here.

Each piece of information in a given table is a record. For each customer record, there may be one or more order records, each
with one or more order item records. The relationship between order records and order item records implies that, for each
customer, there may be many records in such a relationship. This collection of related records for a single customer is referred to
as a case, and the same collection of related records for a group of customers is referred to as a case set. The order item
information is treated as attributes of the customer case.

The case set is simply a way of viewing the physical data; in fact, different case sets can be constructed from the same physical
data. The customer case set example is based upon the premise that you want to mine order item information with the customer
as the focus. The focus could easily be changed to mining data about the customer with the order item as the focus. The physical
data would not change, but a separate data mining model could easily be constructed to reflect the change in focus, with the
customer information becoming attributes of the order item case.

Because of the innately hierarchical nature of such information, the data mining model stores the representation of a case set as a
collection of data mining columns. Each data mining column can contain a group of data mining columns instead of a single data
item such as a string or integer; each data mining column can contain single data items or another group of columns, and so on.
In the customer case example, for each customer case, one row describes the customer. This row contains the customer ID and
customer information columns, and a column named Order Items. The Order Items column contains a set of rows. Each row
describes an order item that relates to the customer specified in the customer row. The following diagram illustrates the structure
of such a case set.

In this example, some attributes of the customer, such as age and gender, might be used to further classify and predict the
behavior of future customers. One of the most important tasks in data mining is to determine the impact of each of these
attributes on classification and prediction.

Training a Data Mining Model

To determine the relative importance of each attribute in a data mining model, the model goes through a process known as
mining model training. During training, data is supplied to the model for analysis. The data mining algorithms used by the model
then examine the training data set in a variety of ways, to test it so that it can draw some conclusions about classification and
prediction of the data.

For example, a decision tree mining model uses a process known as recursive partitioning to split the data up into partitions,
based on the attributes supplied by the case set. Then, it splits up these newly created partitions into more partitions, and so on

until no more useful splits can be performed. The algorithm itself determines what defines a useful split; this varies from
technique to technique.

During this process of recursive partitioning, information is gathered from the attributes used to determine the split. If the Age
column is used, for example, the model first divides the age values into two groups: those equal to or greater than a certain age,
and those less than a certain age. By analyzing the number of records in the training set that fit one of the categories, a probability
can be established for that category. As the splits grow, or increase in depth, more and more probability information can be
gathered about the training data. When a decision tree can no longer split a given category usefully, that level of the tree is
referred to as a leaf node. The leaf node contains information about the training data that fit that particular path through the
decision tree. The information about the training in the leaf node is referred to as a distribution, and it is saved as part of the data
mining model.

So, based on the training data set provided, the decision tree mining model establishes certain probabilities about the attributes in
the customer case set. Applying those probabilities to other customer data, you can make predictions about customer behavior
based upon the distribution information, or content, of the data mining model.

For more information about the data mining algorithms used, see Data Mining Algorithms.

Two objects are used to represent the structure of a case set in the Decision Support Objects (DSO) library. The MiningModel
object holds the information about the data mining algorithms, queries and so on needed to describe and analyze the case set, as
well as a collection of data mining column objects. In addition to containing information about its data type, each data mining
column object holds attributes that describe its use within the data mining model, such as its relation to other data mining
columns, whether it is used as a predictable column, whether it holds other columns, whether it is used as input for the data
mining process, and so on. These data mining columns are represented by a collection of Column objects in the MiningModel
object.

The data mining model is an abstract object; that is, the training data used to construct the case set is not saved. Rather, the
abstraction of the model itself is saved, along with the results of the training data analysis, so that the same data mining model
can be used with other data fitting its case set to provide predictive analysis.

For more information about the MiningModel object, see clsMiningModel.

For more information about the Column object, see clsColumn.

Integration with OLAP and Relational Data Sources

Data mining models can be trained using data from either an OLAP cube or a relational database. For relational databases, the
only requirement is that the provider supports OLE DB. After a mining model has been created and trained, a connection to the
original data source for the model is not required. For example, consider the following scenario:

A large telephone company plans to roll out high-speed Internet access in a new market area. From experience in other market
areas, the company has determined that persons who purchase high-speed Internet access fit a certain profile. The data that
describes this profile is stored in a centrally managed relational database. A mining model is created that includes all of the
elements (that is, characteristics) as columns. This model is then trained using the information from the previously existing market
areas. This model can then be distributed to the new market areas for batch processing of the customers in that market.
Additionally, the same model can be incorporated into the new service call center for the company, where the high-speed Internet
service can be marketed to new customers that match that specific profile. In either situation, the original data from the previously
existing markets is not needed to make a prediction of the Internet needs of the customer. The model contains within itself all of
the information that is needed to make a prediction.

Analysis Services (SQL Server 2000)

Data Mining Model Structure
Data Mining Model Structure

The structure of a data mining model is defined primarily by a set of data mining columns and a data mining algorithm. The data
mining model content, created by the training process, is stored as data mining model nodes.

Each data mining column can contain one of several different content types, depending upon its use within the data mining
model. Each column type has its own properties and behaviors. For more information, see Data Mining Columns.

The data mining algorithm uses the data mining column definitions to generate a predictive model by running the algorithm on
training data submitted to the data mining model. The data mining model then stores the results obtained from analyzing the
training data. Even though large amounts of training data may be inserted into a data mining model, the training data itself is not
stored. Only the analysis information gained by processing that data and the distinct column values used as part of the analysis
are stored as data mining model content.

Data Mining Model Nodes

Data mining model nodes represent the content of a data mining model. Each node contains information about the attributes
needed to define the node, the relevant rules and other information needed to process a case against the node, and the analysis
gained from training the node. Each node can also be related to other nodes, to support the complexities of decision tree and
clustering algorithms in a common structure. The data mining model nodes can be browsed to further understand the decisions
or aggregations made by the algorithm employed, and they can be modified to further adjust the data mining model.

See Also

Data Mining Columns

Data Mining Algorithms

Data Mining Model Nodes

Analysis Services (SQL Server 2000)

Data Mining Algorithms
Data Mining Algorithms

Central to the data mining process, data mining algorithms determine how the cases for a data mining model are analyzed. Data
mining model algorithms provide the decision-making capabilities needed to classify, segment, associate and analyze data for the
processing of data mining columns that provide predictive, variance, or probability information about the case set.

Many data mining algorithms are goal-oriented; given a case set, a data mining algorithm will predict something about the case,
usually an attribute of the case itself. Most algorithms require a training set of cases where the attributes to be predicted are
already known, at which point the algorithm constructs a data mining model capable of predicting these attributes for cases in
which the attributes are unknown. For more information about training data mining models, see Introduction to Data Mining
Models.

Each data mining algorithm is supported by a data mining algorithm provider, which is an OLE DB provider that supports the OLE
DB for Data Mining specification. Because the needs and functions of each data mining algorithm provider are different, it may be
necessary for a client application to first determine the capabilities of a data mining algorithm provider.

Not all data mining algorithm providers support all data mining options. Some providers may work with certain data mining
column data or content types, and other providers may not support certain options for source data queries. To determine the
capabilities of a data mining algorithm provider, the MINING_SERVICES schema rowset details data mining support options for
each provider. Also, as each provider is an OLE DB provider, the standard OLE DB provider schema rowsets, such as the
PROVIDER_TYPES schema rowset, can be used to give additional information.

Data Mining Algorithm Providers

Data mining algorithms fall into three general categories. This is not a comprehensive list of the various data mining algorithms
that might be used; other data mining algorithm providers may be constructed based on, for example, back propagation neural
network or genetic algorithms.

Decision Trees

A decision tree is a form of classification shown in a tree structure, in which a node in the tree structure represents each question
used to further classify data. The various methods used to create decision trees have been used widely for decades, and there is a
large body of work describing these statistical techniques. For more information about the decision trees technique and the
Microsoft® Decision Trees algorithm, see Microsoft Decision Trees.

Clustering

Like decision trees, clustering is a well-documented data mining technique. Clustering is the classification of data into groups
based on specific criteria. The topic discussing the Microsoft Clustering algorithm goes into greater detail regarding the details of
clustering as a data mining technique. For more information about the clustering technique and the Microsoft Clustering
algorithm, see Microsoft Clustering.

Analysis Services (SQL Server 2000)

Microsoft Decision Trees
Microsoft Decision Trees

The Microsoft® Decision Trees algorithm is based upon the notion of classification. The algorithm builds a tree that will predict
the value of a column based upon the remaining columns in the training set. Therefore, each node in the tree represents a
particular case for a column. The decision on where to place this node is made by the algorithm, and a node at a different depth
than its siblings may represent different cases of each column. For instance, consider the following training table.

Shares files Uses scanner Infected before Risk
Yes Yes No High
Yes No No High
No No Yes Medium
Yes Yes Yes Low
Yes Yes No High
No Yes No Low
Yes No Yes High

For this training data, the following decision tree may be produced.

Notice that for users that share files, the most important factor (that is to say, training column) for determining their risk of
computer virus infect is Infected Before. For users who don't share files, the most important factor is Uses Scanner. This
demonstrates on of the key concepts behind the decision tree algorithm: A column may be used at more than one location in the
tree, and its importance in the prediction may therefore change.

Mining Parameters

The Microsoft Decision Trees algorithm provider currently supports two mining parameters, which can be used to change the
behavior of the algorithm when creating a model with the CREATE MINING MODEL command. The parameters are defined in the
MINING_PARAMETERS schema rowset; a description of each parameter is provided in the following table.

Parameter Description

COMPLEXITY_PENALTY A floating point number with a range between 0 and 1.
Used to inhibit the growth of the decision tree, the value is
subtracted from 1 and used as a factor in determining the
likelihood of a split. The deeper the branch of a decision
tree, the less likely a split becomes; the complexity penalty
influences that likelihood. A low complexity penalty
increases the likelihood of a split, while a high complexity
penalty decreases the likelihood of a split. The effect of this
mining parameter is dependent on the mining model itself;
some experimentation and observation may be required to
accurately tune the data mining model.

The default value is based on the number of attributes for a
given model:

For 1 to 9 attributes, the value is 0.5.

For 10 to 99 attributes, the value is 0.9.

For 100 or more attributes, the value is 0.99.

MINIMUM_LEAF_CASES A non-negative integer with a range of 0 to 2,147,483,647.
Determines the minimum number of leaf cases required to
generate a split in the decision tree. A low value causes
more splits in the decision tree, but can increase the
likelihood of overfitting. A high value reduces the number
of splits in the decision tree, but can inhibit the growth of
the decision tree. The default value is 10.

See Also

MINING_SERVICE_PARAMETERS

CREATE MINING MODEL Statement

Analysis Services (SQL Server 2000)

Microsoft Clustering
Microsoft Clustering

The Microsoft® Clustering algorithm is an expectation method that uses iterative refinement techniques to group records into
neighborhoods (clusters) that exhibit similar, predictable characteristics. Often, these characteristics may be hidden or
nonintuitive. For example, suppose that a travel firm wants to determine age demographics for marketing vacation packages.
From their data warehouse they have the following training data.

Customer age Country traveled to
23 Mexico
45 Canada
32 Canada
47 Canada
46 Canada
34 Canada
51 Canada
28 Mexico
49 Canada
29 Mexico
26 Mexico
31 Canada

When this information is plotted on a graph with two dimensions, you can see that there are three main groups in the data:
People between the ages of 23 and 29 seem to travel to Mexico. People between the ages of 30 and 51 seem to travel to Canada.
The clustering algorithm also presents an interesting fact that might not be apparent from observing the data directly: People
between the ages of 35 and 44 did not seem to travel at all. Another way of saying this is that the grouping of people who travel
to Canada falls into two main clusters: People between the ages of 30 and 34, and people between the ages of 45 and 51.

The clusters of data in this example are readily observed. For data with higher dimensions, plotting the data in this manner may
not be convenient, or the dimensions may not be amenable to plotting at all. The clustering algorithms automatically find such
groupings in data with higher numbers of dimensions.

Mining Parameters

The Microsoft Clustering algorithm provider does not currently support any additional mining parameters.

Analysis Services (SQL Server 2000)

Data Mining Model Nodes
Data Mining Model Nodes

When a data mining model is built and trained, the resulting data mining model content is stored as data mining model nodes. A
node stores the attributes, description, probabilities, and distribution information for the model element it represents, as well as
any cardinality information the node may possess in relation to other nodes.

Node Types

Each node has an associated node type that aids in representing a data mining model. The node types are used primarily for
navigation, not as a way of defining functionality for the node. For example, although each node of a decision tree model may
have a distribution associated with it, not all nodes in a decision tree model will be classified as distribution nodes. There are six
types of currently supported nodes.

Model

A model node is the topmost node in any data mining model, regardless of the actual structure of the model. All models start with
a model node.

Tree

For all tree-based models, this node serves as the root node of the tree. A data mining model may have many trees that make up
the whole, but there is only one tree node from which all other nodes are related for each tree. A decision tree based model
always has one model node and at least one tree node.

Interior

An interior node represents a generic interior node of a model. For example, in a decision tree, this node usually represents a split
in the tree.

Distribution

A distribution node is guaranteed to have a valid link to a nested distribution table. A distribution node describes the distribution
of values for one or more attributes according to the data represented by this node. A good example of a distribution node is the
leaf node of a decision tree.

Cluster

A cluster node stores the attributes and data for the abstraction of a specific cluster. In other words, it stores the set of
distributions that constitute a cluster of cases for the data mining model. A clustering based model always has one model node
and at least one cluster node.

Unknown

The unknown node type is used when a node does not fit any of the other node types provided and the algorithm cannot resolve
the node type.

The following diagram illustrates the differences between various node types and the algorithms that support them.

Browsing Data Mining Model Nodes

The nodes of a trained data mining model can provide valuable insight into the data. Nodes define the patterns and rules created
by the analysis of the training data, and they can provide more information about new data predictions. The ability to browse a
data mining model allows for refinement of the model with fine detail. Depending on the specific data mining algorithm used in
the creation of the data mining model, the content type may vary on a model by model basis.

Data mining model content can be browsed in several ways.

Analysis Services

Analysis Manager provides Data Mining Model Browser, a useful tool for graphically exploring a data mining model and its
content. For more information, see Data Mining Model Browser.

Rowset

Querying the model directly returns the data mining model content in the form of a single rowset.

SELECT * FROM <mining model>.CONTENT

The attributes and results for the nodes are stored in MINING_MODEL_CONTENT, a special schema rowset which allows for
browsing of the data mining model content.

For more information about the storage schema, see Data Mining Model Storage.

XM L

Another way to browse the content of a data mining model is as an Extensible Markup Language (XML) document. The XML
information, however, is best viewed by a client application capable of parsing this complex data.

For more information about the document type definition (DTD) of the XML document, see the OLE DB for Data Mining
specification.

Analysis Services (SQL Server 2000)

Data Mining Model Storage
Data Mining Model Storage

The data mining model meta data can be obtained by a client application using the MINING_MODELS schema rowset, while the
schema of the data mining columns for a data mining model is stored in the MINING_COLUMNS schema rowset.

Content for the data mining model is stored in the MINING_MODEL_CONTENT schema rowset. Statistical distribution information
for the attributes corresponding to a data mining model node stored in MINING_MODEL_CONTENT is represented as a nested
table in the DISTRIBUTION column (represented in OLE DB as a chapter column) using the DISTRIBUTION structure.

See Also

MINING_MODELS

MINING_MODEL_CONTENT

MINING_COLUMNS

Distribution (clsColumn)

Analysis Services (SQL Server 2000)

Data Mining Columns
Data mining columns are used to define the inputs and outputs used by a data mining model. The data mining column also
provides a standard structure against which familiar SQL syntax, such as INSERT for training data and SELECT for predictive
analysis, can be used.

The structure and behavior of data mining columns can be viewed and changed by using Relational Mining Model Editor or OLAP
Mining Model Editor. In both editors, the structure pane contains the data mining columns used to define the data mining model;
the properties for each data mining column, such as data type and content type, can be viewed in the properties pane.

Data mining columns are added to the data mining model at different steps in the Mining Model Wizard, depending on the type
of data mining model. For relational data mining models, the Select the key column and Select input and predictable
columns steps add the key, input, and predictable data mining columns to the data mining model. For OLAP data mining models,
however, three steps are used. The Select case step selects the case dimension and level used to create key data mining columns,
the Select the predicted entity step creates the predictable data mining columns, and the Select training data step creates the
input data mining columns.

Data Mining Column Structure

A data mining column is defined primarily by its data type and content type settings. These settings are detailed in other topics.
Because of the diversity of possible data mining algorithm providers, the data mining column definitions are designed to be
flexible and extensible.

See Also

Relational Mining Model Editor

OLAP Mining Model Editor

Data Mining Models

Data Mining Column Data Types

Data Mining Column Content Types

clsMiningModel

clsColumn

Analysis Services (SQL Server 2000)

Data Mining Column Data Types
Data Mining Column Data Types

The data mining column data type is used as a tool to help the data mining algorithm provider handle input from training data
and format output data for analysis.

You should not confuse the column data type with the column content type. For example, a column with a data type of TEXT can
be used as a key, attribute, or relation column with equal ease. The column data type serves the data mining algorithm provider as
a guideline for converting and processing the training data for the data mining column.

Supported data types are listed in Appendix A of the OLE DB 2.6 specification of March 1999 (version 2.6).

Note Not all data mining algorithm providers support all data types. For more information about supported column data types,
see the data mining algorithm provider documentation.

Analysis Services (SQL Server 2000)

Data Mining Column Content Types
Data Mining Column Content Types

There are five basic column content types, each of which is described later in this topic. Do not confuse column content type with
column data type; a column content type provides the role that a column fulfills for a data mining model. A key column, for
example, can have a column data type of LONG or TEXT and still serve the role of key column. Attribute and table columns, two
column types discussed later in this topic, can also be used as prediction columns.

The column types and their associated properties allow the data mining algorithm provider to make some sense of the training
data provided to it during the training process.

The following case diagram is used later in the topic to explain column types.

For more information about cases, see Introduction to Data Mining Models.

Key Columns

A key column (or columns) uniquely identifies a row. For example, the CustomerID and OrderItemID columns in the case
diagram represent key columns. A case may be uniquely identified by one or more key columns.

Attribute Columns

Attribute columns provide information about direct attributes of the case. In the case diagram, the Age and Gender columns both
represent attribute columns. An attribute column is further defined by a domain and handling hints.

Domains

A domain, or the set of possible values that can appear in the attribute column, further defines attribute columns. Domains are
classified into a few simple groups, detailed in the following list.

DISCRETE

The values for the attribute column are discrete; this is the simplest form of attribute column. The Gender column in the case
diagram represents a typical discrete attribute column, in that the data represents a finite, counted number of gender categories.
The values in a discrete attribute column do not imply ordered data, even if numeric; the values are clearly separated, with no
possibility of fractional values. Telephone area codes are a good example of numeric discrete data.

ORDERED

The values for the attribute column define an ordered set. Although there is an ordered set, no distance or magnitude information
is implied. For example, if an ordered attribute column supplying information about a ranking of skill levels ranging from one to
five is defined, there is no relative value between skill levels; a skill level of five is not necessarily five times better than a skill level
of one. Ordered attribute columns are also considered to be discrete in terms of content type.

CYCLICAL

The values for the attribute column define a cyclical ordered set. An example of a cyclical ordered set is the numbered days of the
week, as day number one follows day number seven.

Cyclical attribute columns are considered both ordered and discrete in terms of content type.

CONTINUOUS

The values for the attribute column define a continuous curve set. The values in the continuous curve are naturally ordered and
have implicit distance and magnitude semantics. Unlike a discrete column, which represents finite, counted data, a continuous
column represents measurement data with possibly infinite fractions of values. The Age column in the case diagram is an
example of a continuous attribute column; the values in this column represent a measurement, in years, that could be represented
by an infinite number of fractional values, such as 21.1, 21.003, and so on.

DISCRETIZED

The values for the attribute column define an ordered set transformed and modeled from continuous data supplied to the model.
Some data mining algorithm providers cannot accept continuous attribute columns as input, or they may not be able to predict
continuous values. For these cases, columns that have continuous domains can be employed as discretized attribute columns, in
which the continuous values are grouped into discrete categories, so that the continuous data can be treated as discrete data for
the purpose of analysis. For some data mining algorithm providers, discretized columns can take arguments to override default
discretization behavior. The following list details currently supported discretization behavior flags.

AUTOMATIC
The data mining algorithm provider selects its default discretization method.

EQUAL_AREAS
The data mining algorithm provider attempts to divide the data into groups containing an equal number of continuous values.
This method is best used for normal distribution curves, but will not work well for a high count of values in a narrow group in
the continuous data. For example, if half of the order items specified in the case diagram are free, or have a Cost value of zero,
then half the data is under a single point in the curve. For such a distribution, this method attempts to break such data up as
part of establishing equal area discretization into multiple areas, producing undesirable results.

THRESHOLDS
The data mining algorithm provider attempts to divide the data into groups by reviewing the curve of the continuous data and
searching for inflection points; this works well for continuous data that does not conform to a normal distribution, as the
inflection points of such data can suggest reasonable boundaries for discretization.

CLUSTERS
The data mining algorithm provider attempts to divide the data into groups by sampling the training data, initializing to a
number of random points, and running several iterations of the Expectation-Maximization (EM) clustering algorithm. This
method is beneficial in that it will work on any distribution curve, but is more expensive in terms of processing time.

SEQUENCE_TIME

The values for the attribute column represent time measurement units. A time column does not have to contain a data type of any
particular format; for example, a number representing periods or quarters is acceptable. The sequence time attribute column is
typically used to associate a sequence time with individual attribute values such as purchase time.

Distributions

The domain of an attribute column classified as Continuous can also have a distribution associated with it. This is information
given to the data mining algorithm provider describing the expected distribution of the column values that will be inserted into
the model when trained. Specific values may be known to have typical distributions. For some algorithms, it is particularly
beneficial to know the distribution ahead of time. If the distribution is not known or is not given, the provider may assume
whatever distribution it finds convenient. Examples and diagrams of some distribution flags are included in the following table.

Diagram Distribution
NORMAL

The values for the continuous attribute column form a
histogram with a normal Gaussian distribution. For
example, income values may form such a distribution
curve.

LOG_NORMAL

The values for the continuous attribute column form a
Gaussian distribution histogram with all values greater
than zero, where the curve possesses an elongated upper
tail and a skew toward the low end of the curve. The
quantity associated with the number of order items
purchased would follow this curve if a value of zero is not
explicitly recorded and most consumers tend to buy
smaller numbers of the order item.

UNIFORM

The values for the continuous attribute column form a flat
curve, in which all values are equally likely.

Other supported distribution flags include:

BINOMIAL

MULTINOMIAL

POISSON

T-DISTRIBUTION

Hints

Other information can be given to the data mining algorithm provider to help it build good models of the training data. These
modeling flags are provider-specific, but supported examples include the following.

MODEL_EXISTENCE_ONLY

The values for the attribute column are less important than the presence of the attribute. For example, the case diagram displays a
list of order items associated with a given customer, including the ID, cost and product type of the order item. For modeling
purposes, the fact that the customer purchased a given order item may be more important than the cost of the order item itself. In
this case, the Cost column should be marked as Model Existence Only.

NOT NULL

The values for the attribute column should never contain a null value, and an error will result if a null value is encountered for this
attribute column during the training process.

IGNORE NULL

The values for the attribute column can contain a null value, and the null value should not be considered informative by the data
mining model. Null values will be ignored if encountered for this attribute column during the training process.

NULL INFORMATIVE

The values for the attribute column can contain a null value, and the null value should be considered informative by the data
mining model. Null values will be modeled as a missing state if encountered for this attribute column during the training process.

Qualifier Columns

A qualifier column is a special type of attribute column that provides information about another attribute column to the data
mining algorithm provider. The following list details currently supported qualifier column types, but third-party providers can add
additional qualifier column types.

PROBABILITY

The value in this attribute column is the probability, as a number between zero and one, of the associated value.

VARIANCE

The value in this attribute column is the variance of the associated value.

STDEV

The value in this attribute column is the standard deviation of the associated value.

SUPPORT

The value in this attribute column is the weight (case replication factor) of the associated value.

PROBABILITY_VARIANCE

The value in this attribute column is the variance of the probability for the associated value.

PROBABILITY_STDEV

The value in this attribute column is the standard deviation of the probability for the associated value.

ORDER

The value in this attribute column is the ordering of the associated value.

Relation Columns

A relation column is a column used in a case to further classify another attribute, relation or key column, by pointing out a
hierarchical relationship between attribute columns within the case set. For example, the ProductType column further classifies
the ProductID column in the case diagram presented earlier in this topic; it provides a classification into which certain products
fit. In effect, it establishes a hierarchy in that all products belong to a product type. A given relation value must always be
consistent for all of the instance values of the other column that it describes. If a product is associated with a given product type, it
must always be associated in the data with that product type.

Table Columns

A table column is a column that represents a set of data mining columns, also known as nested columns; it is described by a set of
columns that are contained within the definition of a named table column. The OrderItems column in the case diagram
represents a table column.

Prediction Columns

Attribute or table columns can be used as input columns, output columns, or both. The data mining algorithm provider will build a
data mining model capable of predicting or explaining output column values based on the values of the input columns.

Prediction columns, besides serving as output columns, can also be used as input columns for other prediction columns within a
case, allowing for complex predictive analysis. Not all data mining algorithm providers support all content types for prediction
purposes; the capabilities of each data mining algorithm provider can be checked in the MINING_SERVICES schema rowset.

For more information about the MINING_SERVICES schema rowset, see MINING_SERVICES.

Predictions can convey not only simple information like the estimated age of a customer, but they can also convey additional
statistical information, such as the confidence level and standard deviation. Further, the prediction may actually be a collection of
predictions, such as the set of order items a customer is likely to buy based on a specific customer case. Each of the predictions in
the collection may also include a set of statistics accompanying it, expressed as a histogram. A histogram provides multiple
possible prediction values, each accompanied by a probability and other statistics. In this case, each prediction (which by itself can
be part of a collection of predictions) may have a collection of possible values that constitutes a histogram.

Because the prediction information can be very detailed and complex, it is often necessary to extract only a portion of the
prediction. For example, you may want to examine a specific prediction value or a range of values. Not every provider and every
data mining model can support all of the possible requests. Therefore, it is necessary for the output column to indicate what kind
of information may be extracted out of it, using transformation functions.

A set of standard transformation functions has been defined as part of the OLE DB for Data Mining specification.

For more information about the OLE DB for Data Mining specification, see the Microsoft OLE DB Web page at the Microsoft Web
site.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services (SQL Server 2000)

Nested Data Mining Columns
Nested Data Mining Columns

One of the more advanced features of the data mining column structure is the ability to nest data mining columns. Data mining
models use this nested column structure for both input and output data, as the syntax used to populate a data mining model with
training data allows nested columns to be represented as subqueries. Data mining cases may not be easily described by using
typical relational tables; a single case may depend on several groups of supporting information to perform predictive analysis. To
illustrate this point, consider the case of a telephone company customer: A customer may have multiple telephone lines and
multiple ISP accounts.

To retrieve all of the customer information, all of the telephone lines for each customer, and all of the ISP accounts for each
customer, several approaches could be used:

Employ three queries, iterating through the customer query and issuing the same two queries for retrieving telephone lines
and ISP accounts over and over again for each row in the customer query.

Employ two queries, joining the Customers table with the Telephone Lines table for one query and joining the Customers
table with the ISP Accounts table for the second query.

Employ one query with a UNION to join the two subqueries used in the previous approach, constructing empty columns in
each subquery to represent the return values of the other subquery.

All three of these approaches are ungainly, involve repetitive data and action, and are highly inefficient.

However, if a single column could hold a group of columns, you could construct a single query that would return one row per
customer in the Customers table containing all of the columns in the Customers table, an additional column containing all of the
Telephone Lines rows for a given customer, and an additional column containing all of the ISP Accounts rows for a given
customer, as shown in the following diagram.

As the diagram shows, there is no redundant data for the customer in the returned rowset; one row per customer is all that is
needed, and the nested columns of the rowset contain the data pertinent to that customer. Rowsets constructed in this fashion,
referred to as hierarchical rowsets, are fully supported by OLE DB.

Case information for a data mining model may not reside in a single case table, but may have supporting tables supplying
additional information to define the case. In the diagram, the Telephone Lines and ISP Accounts tables serve as supporting

tables for the Customers case table. They provide additional information about the case, such as the number and type of ISP
accounts the customer may possess, or the number of telephone lines used by the customer. The data mining model can take
advantage of nested data mining columns to process this supporting information and create additional rules and patterns for the
customer based on the data in the supporting tables.

Analysis Services (SQL Server 2000)

Data Mining Column Storage
Data Mining Column Storage

The schema information for data mining columns is accessed by client applications by the use of the MINING_COLUMNS schema
rowset, which contains not only the data and content representation of the column, but also information on its relationships
within the data mining model, the scalar and table functions that the column supports, and so on. For more information, see
MINING_COLUMNS.

Analysis Services (SQL Server 2000)

Security and Authentication
You can restrict access to data managed by Microsoft® SQL Server™ 2000 Analysis Services. You can limit the administrators that
are permitted to access Analysis Services data through Analysis Manager and perform administrative functions. You can also
restrict end users who access data on the Analysis server through client applications. You can specify which end users can access
data and the types of operations they can perform. In addition, you can control end-user access at various levels of Analysis
Services data, including the cube, dimension, and cube cell.

Administrator security is controlled using the Microsoft Windows NT® 4.0, Windows® 2000, or Windows XP group named OLAP
Administrators.

End-user security is controlled using:

Authentication during connection to the Analysis server.

Database, cube, and mining model roles defined in Analysis Manager.

Each role defines a set of users and the access they all share. A role is defined at the Analysis Services database level and then
assigned to cubes that the users in the role are permitted to access. After assignment some changes are permitted to the role at
the cube level. These changes do not affect the role at the database level. (An exception is a change to the users and groups in the
cube role.) Thus, a role can have a different definition for each cube to which it is assigned.

Analysis Services supports Windows integrated security system.

The following topics describe security in more detail.

Topic Description
Administrator Security Provides information on administrative security roles
End-User Security Identifies issues related to implementing end-user

security
User Accounts and Groups Provides information about establishing user

accounts necessary for Analysis Manager roles
Database, Cube, and Mining
Model Roles

Describes the three types of security roles used in
Analysis Services

Levels of End-User Security Identifies the Analysis Services objects that security
roles can be applied to

Server Security and
Authentication

Provides information about how server security is
applied in Analysis Services using authentication

Database Security Describes how database security roles are used in
relation to database security

Cube Security Describes how cube security roles are used in relation
to cube security

Dimension Security Describes how dimension security specifications are
used in relation to cube security

Cell Security Describes how cell security specifications are used in
relation to cube security

Operational Considerations Provides information about Analysis server
procedures that should be followed to ensure system
security

Mining Model Security Provides information about how mining model roles
are used for mining model security

Analysis Services (SQL Server 2000)

Administrator Security
Administrator security concerns users' access to Microsoft® SQL Server™ 2000 Analysis Services data through Analysis Manager
and their ability to perform administrative functions. Administrator security is granted through membership in the OLAP
Administrators group.

During initial installation, Analysis Services establishes a Microsoft NT® 4.0, Windows® 2000, or Windows XP group named
OLAP Administrators. The user account, which must have Machine Administrator rights in order to successfully install Analysis
Services, is then added to the OLAP Administrators group. The OLAP Administrators group is a local group on the computer
where Analysis Services is installed. Only members of this group can:

Access the Analysis server through Analysis Manager and perform administrative functions.

Perform administrative functions on the Analysis server programmatically with Decision Support Objects (DSO).

Administrative functions include maintaining security roles and processing Analysis Services objects.

You can use User Manager in Windows NT 4.0 or Computer Management in Windows 2000 or Windows XP to manage the OLAP
Administrators group.

There are not multiple degrees or levels of administrator security. A user either is or is not an administrator, depending on
whether he or she is included in the OLAP Administrators group.

When connected to an Analysis server through client applications, members of the OLAP Administrators group have full read
access to all cubes and dimensions on the server. They also have full read/write access to all write-enabled cubes and write-
enabled dimensions. This access is granted regardless of role definitions on the Analysis server.

See Also

Operational Considerations

Analysis Services (SQL Server 2000)

End-User Security
End-user security is concerned with users' access to data on the Analysis server through client applications such as Microsoft®
Excel. It affects the ability of users to connect to the Analysis server, which data they can access, and whether they have read or
read/write access.

End-user security relies on the definition of user accounts and groups in Microsoft Windows NT® 4.0, Windows® 2000, or
Windows XP and on the creation of Microsoft SQL Server™ Analysis Services security roles, each specifying a set of users and
groups. The process of implementing end-user security is summarized in the following table.

Phase Description For more information
1 Review and revise Windows NT 4.0, Windows

2000, or Windows XP user accounts and
groups in accordance with the various access
requirements of your end users.

User Accounts and Groups

2 Create security roles and assign each role to
the cubes or data mining models that the
users in the role are permitted to access.

Database, Cube, and Mining
Model Roles and Creating
Security Roles

3 Define each role assigned to a cube or mining
model. Each role's definition can vary for each
cube or mining model to which it is assigned.

Levels of End-User Security
and Creating Security Roles

Analysis Services (SQL Server 2000)

User Accounts and Groups
User Accounts and Groups

Before you create roles in Microsoft® SQL Server™ 2000 Analysis Services, you must create user accounts and groups in User
Manager in Microsoft Windows NT® 4.0 (or Computer Management in Windows® 2000 or Windows XP). To be created, a role
must contain at least one user account or group. A user account or group cannot be added to a role until after it is created in
Windows NT 4.0, Windows 2000, or Windows XP.

It is usually best to finalize and implement a design for the memberships of groups before you create roles in Analysis Services.
This approach can reduce the amount of required role maintenance.

If you are using NTLM Security Support Provider as your authentication method, all user accounts and groups that are to be
granted access to cubes on an Analysis server must be in the same domain as the user account under which the Analysis server
was installed or in a trusted domain. User accounts and groups in other domains cannot connect to the Analysis server.

Analysis Services (SQL Server 2000)

Database, Cube, and Mining Model Roles
Database, Cube, and Mining Model Roles

A role (also called a security role) defines a set of Microsoft® Windows NT® 4.0, Windows® 2000, or Windows XP user accounts
and groups with the same access to Microsoft SQL Server™ 2000 Analysis Services data. Roles are used to implement end user
security by controlling access to data on the Analysis server by users connected with client applications. Analysis Services includes
three types of roles: database role, cube role, and mining model role.

A database role can be assigned to multiple cubes or mining models in the database, thereby granting users of the role access to
these cubes or mining models. Such an assignment creates a cube role or a mining model role with the same name as the
database role. A database role provides defaults for cube or mining model roles of the same name. Although in a database role
you can specify the type and scope of access to dimension members for cubes, this access is not actually granted until the
database role is assigned to a cube. Database roles are defined at the Analysis Services database level, and are maintained in
Database Role Manager.

By default, a database role specifies only read access and does not limit the dimension members or cube cells visible to end users.
After such a database role is assigned to a cube, users in the role can view the entire cube. However, in both database roles and
cube roles, you can specify read/write access and limit the dimension members that are visible and updatable. In cube roles you
can limit the cube cells that are visible and updatable. On the other hand, mining model roles provide read-only access to model
content.

A cube role applies to a single cube. Defaults in a cube role are derived from the database role of the same name, but some of
these defaults can be overridden in the cube role. A cube role contains additional options, such as cell security, that are not
contained in a database role. Cube roles are created at the cube level when a database role is assigned to a cube, and they are
maintained in Cube Role Manager.

In cube roles, you can indicate whether end users in the role can drill through to a cell's source data. This capability also requires
that drillthrough is enabled for the cube or at least one of its partitions. For more information, see Specifying Drillthrough
Options.

A mining model role applies to a single mining model. Default memberships in a mining model role are derived from the
database role of the same name, but the default membership can be overridden in the mining model role. Mining model roles are
created at the model level when a database role is assigned to a model, and they are maintained in Mining Model Role Manager.

An end user may be included in multiple roles on an Analysis server. In this case, the user has the combined access specified in
these roles. If any one of the roles provides the user access to an object, the user has access to it. Exceptions are custom rules in
dimension security. Not all combinations of custom rules from multiple roles can be resolved. For more information, see Multiple
Dimension Custom Rules Applied to an End User.

The security enforcement provided by roles must be preceded by successful authentication of an end user as he or she connects
to the Analysis server with a client application. If authentication is not successful, the user will not be able to access data on the
Analysis server regardless of his or her membership in roles on that server and the definitions of those roles. For more
information, see Server Security and Authentication.

See Also

Creating Security Roles

Cube Role Manager

Database Role Manager

Mining Model Role Manager

Analysis Services (SQL Server 2000)

Levels of End-User Security
Levels of End-User Security

End-user security can be enforced at several levels of detail. These levels are summarized in the following table, sorted from least
detailed to most detailed.

Level
Optional/
required Description

For more
information

Server Required Controls whether an end user can
connect to an Analysis server with a
client application.

Server Security and
Authentication

Database Required Determines which Microsoft® SQL
Server™ 2000 Analysis Services
databases a connected end user can
view.

Database Security

Cube/Mining
Model

Required Determines which cubes or mining
models a connected end user can
view.

Cube Security

Dimension
member

Optional Limits the dimension members that a
connected end user can view. It can
provide read/write access to write-
enabled dimensions and limit the
members that an end user can update.

Dimension Security

Cell Optional Limits the cube cells that a connected
end user can view. It can provide
read/write access to write-enabled
cubes and limit the cells that an end
user can update.

Cell Security

Analysis Services (SQL Server 2000)

Server Security and Authentication
Server Security and Authentication

End-user security at the Analysis server level is controlled by authentication. To successfully connect to an Analysis server, an end
user must be successfully authenticated on that Analysis server. Only after successful authentication are the roles on the Analysis
server evaluated to determine the types and scope of access the end user has to objects on the Analysis server.

Authentication can be accomplished by various methods. The available methods depend in part on the way the end user attempts
to connect to the Analysis server. If the end user tries to connect directly to the Analysis server, one set of authentication methods
is available. If the end user tries to connect to the Analysis server through Internet Information Services (IIS), another set of
authentication methods is available. For more information, see Authentication of Direct Connections and Authentication of
Connections.

Analysis Services (SQL Server 2000)

Authentication Methods
Authentication Methods

Microsoft® SQL Server™ 2000 Analysis Services supports three authentication providers:

NTLM protocol (Microsoft Windows® authentication)

Kerberos

Negotiate

To connect to Analysis Services using one of these security providers, use the Security Support Provider Interface (SSPI) property.
For more information, see SSPI Property.

For more information, see your Windows Security documentation.

Analysis Services (SQL Server 2000)

Authentication of Direct Connections
Authentication of Direct Connections

The Analysis server authenticates end users when they attempt to connect directly to the server. These connections are
characterized by:

Connection strings containing a Data Source property value equivalent to an Analysis server name.

Use of Transport Control Protocol/Internet Protocol (TCP/IP).

When an end user attempts to connect directly to an Analysis server, Microsoft® SQL Server™ 2000 Analysis Services attempts to
authenticate the end user based on the credentials the end user was granted in the operating system when the end user logged
on to the domain. Analysis Services automatically detects a connecting end user's credentials. If, in the connection string, the end
user specifies a user name and password that is different from his or her logon user name and password, the specified user name
and password are ignored. If the end user's credentials allow the end user to access the Analysis server computer from the
network, authentication on the Analysis server is successful, and the end user is allowed to connect to the Analysis server. If the
end user's credentials do not allow the end user to access the Analysis server computer from the network, authentication on the
Analysis server is unsuccessful, and the end user is not allowed to connect to the Analysis server.

For authentication, Analysis Services uses Security Support Provider Interface (SSPI) as the interface to Microsoft Windows NT®
4.0, Windows® 2000, or Windows XP security. Analysis Services supports Kerberos, NTLM Security Support Provider, and other
providers that use SSPI. You can select the provider by setting the SSPI property in the connection string. For more information,
see SSPI Property.

If the provider is NTLM Security Support Provider, access to an Analysis server requires an end user to be a member of the same
domain as the user account under which the Analysis server was installed, or to be a member of a trusted domain. An end user is
denied access if the end user's account cannot be authenticated against one of these domains.

Another type of connection, which is through Internet Information Services (IIS), can also be attempted. For more information, see
Authentication of Connections.

See Also

Registering Servers

Connected to Analysis Services

Analysis Services (SQL Server 2000)

Authentication of Connections
Authentication of Connections

The Analysis server authenticates end users when they attempt to connect to an Analysis server through Microsoft® Internet
Information Services (IIS). These connections are characterized by:

Connection strings containing a Data Source property value equivalent to a URL.

Use of Hypertext Transfer Protocol (HTTP).

Note Connections through HTTP and IIS from Analysis Manager or from client applications connecting through
PivotTable® Service are available only if you install Analysis Services for Microsoft SQL Server™ 2000 Enterprise Edition.

Direct connections can also be attempted. For more information, see Authentication of Direct Connections.

When an end user attempts to connect to an Analysis server through IIS, Analysis Services relies on the authentication on IIS. If
authentication on IIS is successful, authentication on the Analysis server is successful, and the end user is allowed to connect to
the Analysis server. If authentication on IIS is unsuccessful, authentication on the Analysis server is unsuccessful, and the end user
is not allowed to connect to the Analysis server.

IIS provides several authentication methods. For example, a user logon and password can be used for Basic authentication for
HTTP or secure HTTP connections. Other methods can be integrated with roles in Analysis Services. For more information, see the
IIS documentation.

See Also

Registering Servers

Connected to Analysis Services

Connecting Using HTTP

Analysis Services (SQL Server 2000)

Database Security
Database Security

Database security is controlled using database roles. After an end user successfully connects to an Analysis server, database roles
on that server are searched for the end user's user name.

If the user name is found in a database role, the end user can view that database's name and a list of cubes (including virtual and
linked cubes) in that database. However, the end user can access only those cubes to which the database role has been assigned.

If the user name is not found in the database roles, the end user cannot view or access any objects on the server.

Before you grant end users access to cubes in a database, you must grant them database access by including them in a database
role.

See Also

Creating Database Roles

Cube Security

Database, Cube, and Mining Model Roles

Database Role Manager

Analysis Services (SQL Server 2000)

Cube Security
Cube Security

The type and scope of access to a cube by end users in a cube role is determined by the settings in the cube role. An end user can
access only those cubes that are assigned a role containing that end user's user name.

A database role provides defaults for the cube roles of the same name, but some of these defaults can be overridden in the cube
roles. After a database role is created, it can be assigned to any cube (including virtual and linked cubes) in the database. This
action grants the end users in the database role access to the cube and creates a cube role with the same name as the database
role. Database roles are assigned to cubes in the Cubes tab of the Database Role dialog box or in Cube Role Manager.

If a cube role does not specify restrictions on dimension members, end users in the cube role can view all members in the
associated cube. If a dimension has been write-enabled, and the cube role has been granted read/write access to the dimension,
the end users can also update members in the dimension. However, a database role or cube role can specify that some members
can be viewed and updated and others cannot. For more information, see Dimension Security.

Similarly, by default, end users in a cube role can view all cells in the associated cube. If the cube has been write-enabled, and the
cube role has been granted read/write access to the cube, the end users can also update cube cells. However, a cube role can
specify that some cells can be viewed and updated and others cannot. For more information, see Cell Security.

By default, end users in a cube role cannot drill through to any of the cube cells' source data. However, in a cube role you can
grant this ability. If you grant this ability, you must enable drillthrough for the cube or for at least one of its partitions.

See Also

Creating Security Roles

Database, Cube, and Mining Model Roles

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

Dimension Security
Dimension Security

In a database role or cube role, you can implement dimension security to specify the dimension members that end users in the
role can view as they browse cubes. You can also grant read/write access to a write-enabled dimension and specify the members
that end users in the role can update.

Dimension security is optional. If you do not specify dimension security, end users see all dimension members in the cubes they
are authorized to access. If a dimension is write-enabled, they cannot update members.

You can specify dimension security at both the database and cube levels. In a database role, for a shared dimension you can
define specifications that apply to all of the database's cubes that include that dimension. These specifications provide defaults for
the cube roles with the same name as the database role. In a cube role, you can override these specifications for a specific cube.

Note Unlike updates to cube cells, updates to dimension members are recorded directly in the source table. These updates can
include additions, deletions, renames, and moves.

In a database role, dimension security is defined in the Dimensions tab of the Database Role dialog box. In a cube role, it is
defined in the Dimensions tab of the Cube Role dialog box.

Permissions and Rules

You can set permissions and rules for groups you define in Microsoft® Windows NT® 4.0, Windows® 2000, or Windows XP to
manage dimension security. In addition, you can specify individual members and groups of members that can be updated and
that cannot be updated. For more information, see Custom Rules in Dimension Security.

When you specify dimension security within a role, you can define permissions for each dimension.

Permission Description
Read Determines which members are viewable. This permission affects

the size of the visible cube because it limits the members that are
displayed.

Read/write Determines which members are updatable. You can define and
grant this permission only if the dimension has been write-
enabled. If you grant this permission and the dimension is later
write-disabled, this permission is disabled, and end users cannot
update the dimension's members.

Members specified in the read/write permission are also viewable. Therefore, if the read/write permission includes members that
are not in the read permission, the read/write permission also affects the size of the visible cube.

For the read permission, you can select one of the following rules.

Rule Description
Unrestricted End users can view all members. This rule is the default.
Fully Restricted End users cannot view members. When they browse a cube that

includes the dimension, they do not see it.
Custom This rule provides the most flexibility. Specify Top level, which

indicates the topmost level that can be viewed.

For the read/write permission, you can select one of the following rules.

Rule Description
Unrestricted End users can update all members. This rule is available only if

the read permission's rule is Unrestricted.
Fully Restricted End users cannot update members. This rule is the default. This

rule is available only if the read permission's rule is Unrestricted
or Fully Restricted.

Custom This rule provides the most flexibility. This rule is available only if
the read permission's rule is Unrestricted or Custom. Specify Top
level, which indicates the topmost dimension level that can be
updated, or Bottom level, which indicates the bottommost
dimension level that can be updated.

See Also

Creating Security Roles

Custom Rules in Dimension Security

Write-Enabled Dimensions

Analysis Services (SQL Server 2000)

Custom Rules in Dimension Security
Custom Rules in Dimension Security

In a database role or cube role, by defining a custom rule for a dimension, you can specify which dimension members can be
accessed by end users in the role. To do this, you can select the accessible levels, or specify the accessible members, or use these
methods in combination. You can also specify options for visual totals and select a default member.

Level Selections

For each dimension you can specify a range of dimension levels that can be accessed by selecting one or both of the following:

Top level

Indicates the topmost level that can be accessed. Levels above the top level cannot be accessed. By default, top level is the
dimension's highest level.

Bottom level

Indicates the bottommost level that can be accessed. Levels below the bottom level cannot be accessed. By default, bottom
level is the dimension's lowest level.

Examples 1, 2, and 3 illustrate this concept.

Note Although members above the selected top level cannot be accessed, if a client application reveals the names of
members' ancestors above the top level (for example, displays fully-qualified member names), end users might deduce cell
values for members above the top level.

Member Specifications

You can specify the members that can be accessed by allowing access to some members and denying access to others.

You can combine top level and bottom level selections with member specifications. However, you cannot allow access to
members above the top level or below the bottom level.

Descendants of a specified member share the same access. For example, if you explicitly allow access to Iceland, you also
implicitly allow access to Reykjavik, Borgarnes, and Iceland's other descendants. However, there are three exceptions:

Access to a member is allowed, but a bottom level is selected. Descendants below the bottom level cannot be accessed.

Access to a member is allowed, but access to a descendant is denied. For example, you allow access to Iceland but deny
access to Borgarnes. In this case, Iceland's descendants, except Borgarnes and its descendants, can be accessed.

Access to a member is denied, but access to a descendant is allowed. In this case, the member you allowed access to and its
ancestors up to and including the denied member can be accessed. The descendants of the allowed member can also be
accessed. However, no other descendants of the denied member can be accessed. For example, you deny access to Europe
but allow access to Reykjavik. Reykjavik, Iceland, and Europe can be accessed, Reykjavik's descendants can be accessed, but
other descendants of Europe cannot be accessed.

Ancestors of an explicitly allowed member can also be accessed unless they are above the top level. This is true even if the
ancestor is explicitly denied.

In a member specification, you have three basic choices: allow only, deny only, or allow and deny.

Allow Only (M ember Specifications)

The members you explicitly allow access to and their descendants and ancestors can be accessed unless they are below the
bottom level. The only nondescendants that can be accessed are the allowed members' ancestors at or below the top level.

The following diagram shows a member hierarchy with access explicitly allowed to a single member.

Examples 4 and 7 illustrate this concept.

Deny Only (M ember Specifications)

The members you explicitly deny access to and their descendants cannot be accessed. Nondescendants can be accessed unless
they are above the top level or below the bottom level.

The following diagram shows a member hierarchy with access explicitly denied to a single member.

Examples 5 and 8 illustrate this concept.

Allow and Deny (M ember Specifications)

There are two common relationships between allowed members and denied members:

All of the explicitly denied members are descendants of the explicitly allowed members.

All of the explicitly allowed members are descendants of the explicitly denied members.

If all of the explicitly denied members are descendents of the explicitly allowed members, the members you explicitly allow access
to and their descendants can be accessed with the following exceptions: (1) descendants you explicitly deny access to and their
descendants cannot be accessed; and (2) descendants below the bottom level cannot be accessed. The only nondescendants of the
explicitly allowed members that can be accessed are the allowed members' ancestors at or below the top level.

The following diagram shows a member hierarchy with access explicitly allowed to a single member and access explicitly denied
to one of its descendants.

Examples 6 and 9 illustrate this concept.

If all of the explicitly allowed members are descendents of the explicitly denied members, the members you explicitly deny access
to and their descendants cannot be accessed with the following exceptions: (1) descendants you explicitly allow access to and their
descendants can be accessed unless they are below the bottom level; and (2) descendants you explicitly allow access to and their
ancestors up to and including the denied members can be accessed. Nondescendants of the explicitly denied members can be
accessed if they are between the top level and bottom level.

The following diagram shows a member hierarchy with access explicitly denied to a single member and access explicitly allowed
to one of its descendants.

Example 10 illustrates this concept.

Note This relationship between allowed and denied members cannot be defined in the Basic tab of the Custom Dimension
Security dialog box. You must use the Advanced tab.

Other relationships between allowed members and denied members are possible.

Visual Totals

For each dimension you can specify options for visual totals. These options determine whether displayed, aggregated cell values
are calculated according to all of a member's descendants or only the viewable descendants. In the first case, end users in the role
see actual totals; in the second, they see visual totals. A third option is available to display visual totals at and above a specified
level, but display actual totals below it. This option requires an expression in Multidimensional Expressions (MDX). This expression
must name the level or resolve to the level at and above which visual totals are displayed. Example 11 illustrates this concept.

Note Visual totals cannot be enabled for a cube that contains a distinct count measure. For more information, see Using
Aggregate Functions.

By default, visual totals are disabled. In this case, displayed, aggregated cell values are calculated according to all of a member's

descendants, regardless of whether they are viewable. If some members are not viewable, the default setting can cause some cell
values to appear incorrect to end users.

Important The default setting (that is, visual totals are disabled) creates security exposures if it allows end users to deduce values
for members to which they are denied access. Examples 4, 6, 8, and 9 illustrate this concept.

Default Member

For each dimension you can select a default member. The default member affects the datasets returned by queries on cubes that
include the dimension. When the dimension is not displayed on an axis, by default the dataset is filtered (that is, sliced) using the
default member. Example 12 illustrates this concept.

If you do not select a default member, the default member is determined by the dimension's Default Member property, which is
accessed in the properties pane of Dimension Editor (if the dimension is shared) or Cube Editor (if the dimension is private).

Custom Dimension Security Dialog Box

Custom rules for dimension security are defined in the Custom Dimension Security dialog box. To indicate the levels and
members that can be accessed, you can choose from two methods:

Select items by using drop-down lists, a member tree, and other elements of the dialog box. This method is used in the
Basic tab.

Write MDX. With this method, you can implement all techniques permitted by the preceding method plus a few,
infrequently used techniques. This method is used in the Advanced tab.

Options for visual totals and the default member are specified in the Common tab.

Example Custom Rules in Dimension Security

The examples are for an Offices dimension defined with the following levels:

(All), containing only the All Offices member

Continent

Country

City

Office

Before dimension security is implemented, a dataset returned from a cube with this dimension looks like this. (The dimension is
fully expanded to show all members.)

Each example defines alternative dimension security for this dimension. Each example includes one or more MDX expressions in a
custom rule for a read permission. The result on the preceding dataset is shown for each example except Example 12, which
includes only an expression for a default member.

The examples are applied to read permissions so that the effects of the MDX expressions on the Offices dimension can be visually
demonstrated. However, the examples are also applicable to read/write permissions. That is, if an example's expressions were
used in a read/write permission, they would allow and deny access to the same members as in the read permission. Exceptions
are Examples 11 and 12, which demonstrate options that are defined once per dimension and cannot vary between the read and
read/write permissions.

Example 1

This example includes only a top level selection.

The following MDX expressions are specified in the following boxes and areas of the Custom Dimension Security dialog box:

Advanced tab
Top Level box:

[Offices].[Office]

Bottom Level box: no expression specified. However, by default the following expression is supplied by Microsoft®
SQL Server™ 2000 Analysis Services to represent the dimension's lowest level:

[Offices].[Office]

Allowed Members box: no expression specified.

Denied Members box: no expression specified.
Common tab

Visual Totals area: no expression specified, but visual totals are enabled. (That is, Enable - Show visual totals is
selected.)

Default Member area: no expression specified.

In a read permission, these expressions cause the example dataset to be modified as follows. (The following dimension is fully
expanded to show all viewable members.)

Analysis Services (SQL Server 2000)

Multiple Custom Rules in Dimension Security Applied to an End
User
Multiple Dimension Custom Rules Applied to an End User

If, on an Analysis server, an end user is included in multiple cube roles that contain custom rules for dimension security, it is not
always possible to resolve the combination of the custom rules. The easiest way to test whether and how the combination is
resolved is to perform the following procedure.

To test the combination of multiple custom rules for dimension security

1. In the Analysis Manager tree pane, under the database that contains the cube roles, expand the Cubes folder.

2. Right-click the cube to which the cube roles apply, and then click Manage Roles.

3. In Cube Role Manager, limit the list to roles that contain the end user's user name:
a. Next to Show, in the first box, select Roles containing users.

b. In the next box, type the user name.

c. Click the magnifying glass button.
4. Select the cube roles that contain the end user:

a. Click the first cube role in the list.

b. While you hold down SHIFT, click the last cube role in the list.
5. Click Test Role. Cube Browser is displayed to simulate the browsing experience of the end user. If the combination of the

custom rules cannot be resolved, an error message is displayed.

6. In Cube Browser, drag restricted dimensions to the data viewing pane and drill down to identify the allowed and denied
levels and members.

Analysis Services (SQL Server 2000)

Cell Security
Cell Security

In a cube role, you can implement cell security to limit the cube cells that end users in the role can view as they browse cubes. You
can also grant read/write access to a write-enabled cube and limit the cells that end users in the role can update. You do this by
selecting a policy and by selecting a rule or defining a custom rule for each permission.

Cell security is optional. If you do not specify cell security, end users see all cell values in cubes they are authorized to access.
(However, if dimension security is specified, cells for some members might not be viewable.) If a cube is write-enabled, end users
cannot update cell values. If one or more of a virtual cube's component cubes are write-enabled, end users cannot update the cell
values of virtual cubes.

If a policy or rule permits updates to a cell, it can be updated if it is an atomic cell. If the cell is not atomic, it can be updated only if
the client application provides a way of dispersing the update over the subordinate atomic cells. For example, in a client
application a write-enabled cube is displayed with the lowest level of every dimension except Time. On the axis for the Time
dimension, the nonatomic cells for months are displayed, but the subordinate atomic cells for days are not. (Days is the lowest
level in the Time dimension.) A cell for June can be updated by adding $90 if the client application provides a way of dividing the
+$90 update into thirty +$3 updates, one to each of the cells for the 30 days in June. Dispersion methods other than simple
division can also be used. The UPDATE CUBE statement provides several methods. For more information, see UPDATE CUBE
Statement.

Cell security is defined in the Cells tab of the Cube Role dialog box.

Policies

When you specify cell security, for each cube role you can select one of the following policies.

Policy Description
Unrestricted Read End users can view all cell values. This policy is the

default.
Unrestricted Read/Write End users can view and update all cell values.
Advanced End users can view and update only the cell values you

specify in the permissions and rules for cell security.

You can select the Unrestricted Read/Write policy for a cube only if it has been write-enabled. If you select this policy, and the
cube is subsequently write-disabled, this policy is disabled, and end users cannot update the cube's cell values. You can select this
policy for a virtual cube only if one or more of its component cubes have been write-enabled. If you select this policy, and all the
component cubes are subsequently write-disabled, this policy is disabled, and end users cannot update the virtual cube's cell
values.

Permissions and Rules for the Advanced Policy

If you select the Advanced policy, you can define three permissions: read, read contingent, and read/write. Other policies do not
involve permissions or rules. The permissions you define for Advanced policy allow further definition through rules. These rules
are similar to the rules you set for roles.

Read Permission (Advanced Policy)

This permission determines which cell values are viewable. Cells specified in this permission are viewable regardless of whether
they are derived from other cells that are not viewable. For example, the calculate member Profit is derived from cells for
measures Sales and Cost. (Profit equals Sales minus Cost.) If Profit is included in the read permission, its cells are viewable even if
cells for Sales or Cost are not.

Note Including derived cells in the read permission incurs the risk that end users might determine cell values they cannot view.
For example, if cells for Profit and Cost are viewable, but cells for Sales are not, end users can determine Sales values by adding
Profit and Cost values.

You can select one of the following rules for the read permission.

Rule Description
Unrestricted End users can view all cell values. This rule is the default.

Fully Restricted End users can view only the cell values specified in the
read/write permission or read contingent permission, subject
to the limitations of the read contingent permission
described later in this topic.

Custom This rule provides the most flexibility. You can write an
expression in Multidimensional Expressions (MDX) to identify
the cell values that are viewable and that are not viewable.

Read Contingent Permission (Advanced Policy)

This permission determines which cell values are viewable. However, cells specified in this permission and derived from other
cells are viewable only if all the other cells are also viewable (that is, included in the read permission; or included in read
contingent permission but not derived). Cells specified in this permission but not derived from other cells are viewable.

For example, if Profit is included in the read contingent permission, its cells are viewable only if cells for both Sales and Cost are
included in the read permission, or if they are included in the read contingent permission but not derived from other cells. If Cost
was included in the read contingent permission and derived from other cells, Profit would be viewable only if those cells were
included in the read permission or if they were included in read contingent permission but not derived. Thus, with the read
contingent permission, a chain of contingencies can be created when a cell is derived from others, which in turn are derived from
others, and possibly so on.

If a cell is included in both the read and read contingent permissions, the read permission is enforced, but the read contingent
permission is not.

Rule Description
Unrestricted End users can view all cell values that are not derived from

other cells. If a cell value is derived from other cells, it is
viewable if all the other cells are included in the read or
read/write permission.

Fully Restricted End users can view only the cell values specified in the read
permission or read/write permission. This rule is the default.

Custom This rule provides the most flexibility. You can write an MDX
expression to identify the cell values that are viewable and
that are not viewable, subject to the limitations of the read
contingent permission described earlier in this topic.

If the rules define a cell as not viewable, the cell itself is visible but its value is not. Thus, cell security does not restrict the members
that are visible and thereby the size of the visible cube. Rather, it can limit the ability to view the cell values associated with
specified members. To limit the members that are viewable, use dimension security. For more information, see Dimension
Security.

If the rules define a cell as not viewable, and an end user in the cube role queries this cell, by default the Analysis server returns
the formatted value #N/A. The end user sees this value for the cell unless the client application translates the value, or another
value is specified by setting the Secured Cell Value property in the connection string. For more information about this property,
see Secured Cell Value Property.

Read/write Permission (Advanced Policy)

This permission determines which cell values are updatable.

You can define and grant this permission for a cube only if it has been write-enabled. If you grant this permission, and the cube is
subsequently write-disabled, this permission is disabled and end users cannot update the cube's cell values.

Cells specified in the read/write permission are also viewable as if they were specified in the read permission, not the read
contingent permission.

Rule Description
Unrestricted End users can update all cell values.
Fully Restricted End users cannot update cell values.
Custom This rule provides the most flexibility. You can write an MDX

expression to identify the cell values that are updatable and
that are not updatable.

See Also

Creating Cube Roles

Custom Rules in Cell Security

Maintaining Write-Enabled Cubes and Writeback Data

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Custom Rules in Cell Security
Custom Rules in Cell Security

In a cube role, by defining a custom rule for cell security, you can specify which cube cells can be accessed by end users in the
role.

Each custom rule contains an expression written in Multidimensional Expressions (MDX) that allows or denies access to specific
cells or groups of cells. The MDX expression resolves to either True or False for each cell (atomic and nonatomic) in the cube. (If
the MDX expression resolves to a numeric value, any nonzero value is evaluated True, and zero is evaluated False.) If the
expression resolves to True for a cell, access is allowed. If it resolves to False, access is denied.

Custom rules are defined in the Cube Cell Security dialog box.

A custom rule provides two alternative approaches for each dimension in the cube. You can either specify the members whose
cells can be accessed, or you can specify the members whose cells cannot be accessed.

If you can specify the member whose cells can be accessed, cells of other members cannot be accessed. You can use the equality
operator (=) in the MDX expression to identify the cells that can be accessed. Example 1 illustrates this concept.

If you specify the members whose cells cannot be accessed, the cells of other members can be accessed. You can use the
inequality operator (<>) in the MDX expression to identify the cells that cannot be accessed. Example 2 illustrates this concept.

In the MDX expression, it is not necessary to include every dimension in the cube. Omitted dimensions do not place restrictions on
cell access; that is, cells for all their members can be accessed unless denied by way of a dimension in the MDX expression. If you
want to restrict access by only one dimension, a relatively simple MDX expression usually suffices. The complexity of the MDX
expression depends largely on the number of dimensions it includes.

By allowing access to cells for specific members in some dimensions and denying access to cells for specific members in other
dimensions, you can exercise great flexibility in defining cell security. In fact, you can allow or deny access to any possible
combination of cells. Following are examples of functions to use in specific scenarios.

To allow or deny access to cells for a specific member or measure, you can use the MDX functions CurrentMember and Name in
combination. Examples 1 and 2 illustrate this concept. If you specify a member name that is not unique within the dimension, use
the UniqueName function instead of the Name function.

To allow or deny access to the cells for a member and its descendants, include the Ancestor function in the expression. Example 3
illustrates this concept. To allow or deny access to cells based on criteria in multiple dimensions, create an expression for each
dimension and combine them with AND or OR into one expression. Examples 4, 5, and 6 illustrate this concept.

Example Custom Rules in Cell Security

The examples are for a cube defined as follows:

Measures:
Cost

Revenue

Tax
Time dimension with levels:

Year, limited to members 1997 and 1998

Month
Geography dimension with levels:

Continent, limited to members Asia, Europe, and North America

Country, limited to members Japan, Korea, France, Germany, Canada, and USA

City

Before cell security is implemented, a dataset returned from this cube looks like the following.

Each example defines alternative cell security for this cube. Each example includes an expression in Multidimensional Expressions
(MDX) in a custom rule for a read permission. The result on the preceding dataset is shown for each example.

The examples assume that the client application translates the formatted value #N/A, which indicates that access to a cell is
denied, to a null value.

The examples are applied to read permissions so that the effect of the MDX expression on the dataset can be visually
demonstrated. However, the examples are also applicable to read/write permissions. That is, if an example's expression was used
in a read/write permission, it would allow and deny access to the same cells as in the read permission. The examples would also
be applicable to read contingent permissions if none of the displayed cells were derived from other cells.

Example 1

The following MDX expression allows access to cells for the measure Cost, but denies access to cells for all other measures.

Measures.CurrentMember.Name = "Cost"

In a read permission, this expression causes the example dataset to be modified as follows.

Analysis Services (SQL Server 2000)

Mining Model Security
Mining Model Security

The type and scope of access to a data mining model by end users in a mining model role is determined by the settings in the
mining model role. An end user can access only those mining models that are assigned a role containing that end user's user
name.

A database role provides defaults for the mining model roles of the same name, but default role memberships can be overridden
in the mining model roles. After a database role is created, it can be assigned to any mining model in the database. This action
grants the end users in the database role access to the mining model and creates a mining model role with the same name as the
database role. Database roles are assigned to cubes in the Mining Models tab of the Database Role dialog box or in Mining
Model Role Manager.

See Also

Creating Mining Model Roles

Creating Security Roles

Database, Cube, and Mining Model Roles

Database Role Manager

Mining Model Role Manager

Analysis Services (SQL Server 2000)

Operational Considerations
 New Information - SQL Server 2000 SP3.

This topic describes operational considerations for security in Microsoft® SQL Server™ 2000 Analysis Services. These
considerations are related to Analysis server administration.

Service Logon Account Permissions

The service name for Analysis Services is MSSQLServerOLAPService. By default, this service runs under the local system account.
If the MSSQLServerOLAPService service is subsequently configured to run under a local or domain user account, the account
must be a member of the OLAP Administrators group on the Analysis server. Otherwise, Analysis Manager cannot process cubes
and dimensions on the server. Membership in the OLAP Administrators group allows the service to access the registry and the
data directory on an Analysis server.

For Kerberos authentication, delegation, and mutual authentication to work, the MSSQLServerOLAPService service must run
under one of the following types of accounts:

The local system account.

A domain account with administrative privileges in the Microsoft® Active Directory® domain.

A domain account without administrative privileges in the Active Directory domain. For this type of account, a domain
administrator must register a Service Principal Name (SPN) for the account separately, using the setspn utility from the
Windows 2000 Resource Kit. For additional information, see Security Account Delegation.

To maintain the logon account, use the Services application in Control Panel.

Service Logon Account Permissions to Data Sources

If Microsoft Windows NT® 4.0, Windows® 2000, or Windows XP integrated security is used, the logon account associated with
the MSSQLServerOLAPService service must have permissions to access data sources that Analysis Services administrators can
access through Analysis Manager. Otherwise, Analysis Services administrators will not be able to process the objects they
maintain using Analysis Manager.

The permissions that are required depend on the type of storage structure used for the Analysis Services cube. When MOLAP
storage is used, the account must at least have SELECT permissions on the source database. If ROLAP or HOLAP storage is used,
the account must at least have SELECT and CREATE TABLE permissions on the source database.

Accessing Your Cube from Another Workstation

An administrator who creates a cube can be denied access to the cube. This can occur when the administrator logs on to a
workstation other than the one hosting Analysis Services and attempts to view data in the cube on the server computer. A
common cause for this problem is that the administrator was logged on under a local account on the server computer when the
cube was created, and then logged on under a local account on the second computer. The cube owner's access control list (ACL)
reflects the local account on the server computer, not the local account on the second computer, and the administrator is denied
access.

To avoid this problem, you have two options:

Always log on as a domain account when you create cubes, and then log on as the same domain account on other
computers.

Assign a role to the cube after it is created. You are then able to access the cube from other computers, if you log on as an
account granted access by the role.

Lapse Between Change to End User's Access and Effect of Change

The time that elapses between a change to an end user's access defined in an Analysis Services role and the actual effect of the
change depends on the value of the Auto Synch Period initialization property, the end user's actions, and how long the end user
maintains a connection. The value of this property controls the frequency (in milliseconds) of client/server synchronization,
including revalidation of end users' access. This value defaults to 10,000 milliseconds (10 seconds), but is passed to Analysis

Services in each connection string. Thus, the default can be overridden by end users and client applications and can vary from end
user to end user and client application to client application.

If the Auto Synch Period property is set to null or 0 (zero), synchronization does not occur at a constant interval. It occurs due to
end users' actions; therefore, the time that synchronization will occur cannot be predicted accurately. In this case, changes made
to an end user's access while the end user is connected to a cube do not take effect until synchronization occurs or the end user
disconnects from the cube. After an end user has been granted access to a cube, that end user can remain connected to the cube
for the duration of a query session until synchronization occurs. An end user cannot be forcibly disconnected from a cube during
a query session after access has been granted. If the end user's access is removed during the query session, the end user will not
be able to reconnect to the cube after disconnecting from it.

If the Auto Synch Period property is set to a nonnull, nonzero value, at the specified interval, end users' logon user names and
authorizations are compared to their access defined in Analysis Services roles. At that time, changes to an end user's access that
occurred since the last synchronization take effect immediately. For example, if an end user's access to a cube has been removed,
the end user is immediately unable to access the cube.

For more information about the Auto Synch Period property, see Auto Synch Period Property.

Protecting Data

It is important that you protect the security of your data. As with all database products, this includes judicious assignment of
administrative access. All users who have administrative access to Analysis servers should be careful when they use Web
browsers, productivity applications, and e-mail.

It is recommended that you establish specific Windows NT 4.0, Windows 2000, or Windows XP user accounts to administer
Analysis Services and require administrators to refrain from accessing Web pages, productivity applications, and e-mail
applications that support scripts or macros when using these administrative accounts. If it is necessary to use an application that
supports scripts or macros when you are logged on as an administrator, set security to the highest level and never accept any
control or object that is not marked script safe. Decision Support Objects (DSO) is not marked script safe, and your browser will
provide a prompt before loading DSO. You should reject the loading of DSO in this way unless you are certain the application
loading it is trusted.

It is also recommended that you use Windows NT 4.0, Windows 2000, or Windows XP integrated security for connections
between an Analysis server and SQL Server used as a data source. Windows Authentication has benefits over SQL Server
Authentication, such as secure validation and encryption of passwords, primarily because to its integration with the Windows NT
4.0, Windows 2000, and Windows XP security systems. For additional information, see Authentication Modes.

See Also

User Accounts and Groups

Analysis Services (SQL Server 2000)

Data Warehousing and OLAP
Although sometimes used interchangeably, the terms data warehousing and online analytical processing (OLAP) apply to
different components of systems often referred to as decision support systems or business intelligence systems. Components of
these types of systems include databases and applications that provide the tools analysts need to support organizational decision-
making.

A data warehouse is a database containing data that usually represents the business history of an organization. This historical
data is used for analysis that supports business decisions at many levels, from strategic planning to performance evaluation of a
discrete organizational unit. Data in a data warehouse is organized to support analysis rather than to process real-time
transactions as in online transaction processing systems (OLTP).

OLAP technology enables data warehouses to be used effectively for online analysis, providing rapid responses to iterative
complex analytical queries. OLAP's multidimensional data model and data aggregation techniques organize and summarize large
amounts of data so it can be evaluated quickly using online analysis and graphical tools. The answer to a query into historical data
often leads to subsequent queries as the analyst searches for answers or explores possibilities. OLAP systems provide the speed
and flexibility to support the analyst in real time.

See Also

Creating and Using Data Warehouses Overview

Analysis Services (SQL Server 2000)

About Data Warehouses
A data warehouse is often used as the basis for a decision support system. Data warehouses are designed to overcome problems
encountered when an organization attempts to perform strategic analysis using the same database that is used for online
transaction processing (OLTP).

OLTP systems typically:

Support large numbers of concurrent users who are actively adding and modifying data.

Represent the constantly changing state of an organization but don't save its history.

Contain large amounts of data, including extensive data used to verify transactions.

Have complex structures.

Are tuned to be responsive to transaction activity.

Provide the technology infrastructure to support the day-to-day operations of an organization.

Difficulties often encountered when OLTP databases are used for online analysis include the following:

Analysts do not have the technical expertise required to create ad hoc queries against the complex data structure.

Analytical queries that summarize large volumes of data adversely affect the ability of the system to respond to online
transactions.

System performance when responding to complex analysis queries can be slow or unpredictable, providing inadequate
support to online analytical users.

Constantly changing data interferes with the consistency of analytical information.

Security becomes more complicated when online analysis is combined with online transaction processing.

Data warehousing provides one of the keys to solving these problems, by organizing data for the purpose of analysis. Data
warehouses:

Can combine data from heterogeneous data sources into a single homogenous structure.

Organize data in simplified structures for efficiency of analytical queries rather than for transaction processing.

Contain transformed data that is valid, consistent, consolidated, and formatted for analysis.

Provide stable data that represents business history.

Are updated periodically with additional data rather than frequent transactions.

Simplify security requirements.

Provide a database organized for OLAP rather than OLTP.

A data mart is a special form of data warehouse, typically containing a topic-oriented subset of enterprise data appropriate to a
specific business function.

Microsoft® SQL Server™ 2000 provides many essential tools for building data warehouses and data marts, including Data
Transformation Services (DTS).

Analysis Services (SQL Server 2000)

About OLAP
Whereas data warehouses and data marts are the data stores for analysis data, online analytical processing (OLAP) is the
technology that enables client applications to efficiently access this data. OLAP provides many benefits to analytical users, for
example:

An intuitive multidimensional data model makes it easy to select, navigate, and explore the data.

An analytical query language provides power to explore complex business data relationships.

Precalculation of frequently queried data enables very fast response time to ad hoc queries.

Microsoft® SQL Server™ 2000 Analysis Services is a robust OLAP tool that can be used with data stored in various data
warehouse databases, including SQL Server, Microsoft Access, and Oracle databases. For more information, see Analysis Services
Features.

Analysis Services (SQL Server 2000)

OLAP and Data Warehouses
OLAP provides a multidimensional presentation of data warehouse data, creating cubes that organize and summarize data for
efficient analytical querying. The design of the data warehouse structure can affect how easily these cubes can be designed and
constructed.

Microsoft® SQL Server™ 2000 Analysis Services relies on the data provided by the data warehouse to be accurate, stable, and to
have referential integrity. When creating a data warehouse for use with Analysis Services, these design factors should be
considered:

Use a star schema if possible.

If a snowflake schema is needed, minimize the number of dimension tables beyond the first level from the fact table.

Design dimension tables for the users.

Dimension tables should include meaningful information about the facts that users will want to explore, such as the color or
size of a product.

Apply commonsense normalization to dimension table design.

Unrelated data should not be combined into a single dimension table, and data should not be repeated in multiple
dimension tables. For example, create a separate customer dimension instead of repeating customer information in more
than one dimension table.

Do not over-summarize in the fact table.

Retain the finest level of granularity users need to access, and keep all fact table records at the same level of detail. Analysis
Services is designed to create and manage summary data from highly granular data warehouses without penalizing users in
query response time.

Use a common fact table structure for similar data.

Data intended to be used in the same cube can be stored in multiple fact tables, but those tables must have the same
structure.

Do not create auxiliary tables of summarized data.

Analysis Services precalculates summaries into structures that are designed for query efficiency. Other auxiliary
summarization tables are not used.

Create indexes on key fields.

For each dimension table, create an index on its key column. For each fact table, create a single index on the combination of
columns that contain the foreign keys of the dimension tables associated with the fact table. Analysis Services uses these
indexes when it loads multidimensional data structures and calculates summary data. These indexes significantly improve
cube processing performance.

Ensure referential integrity.

It is important that all facts be represented in all dimension tables. Facts in a fact table that do not have a corresponding key
in a dimension table can cause errors or fact table rows to be ignored if the fact and dimension tables are used in the same
cube.

Design a data update strategy.

When data is added to or changed in the data warehouse, cubes that have been built from previous data must be updated
before the new data is available to users. Incorporating additional data into cubes requires less time than rebuilding cubes
when existing data changes. For more information, see Maintaining OLAP Data.

See Also

Creating and Using Data Warehouses Overview

Analysis Services (SQL Server 2000)

Maintaining OLAP Data
The purpose of Microsoft® SQL Server™ 2000 Analysis Services is to provide rapid analytical access to data warehouse data. To
accomplish this purpose, Analysis Services creates multidimensional cubes from data in the data warehouse fact and dimension
tables. Numerical measures are also summarized into preaggregated values during cube construction. Cubes are stored in
multidimensional structures that are designed for rapid query response, combining preaggregated information with raw fact data
to respond to a wide variety of queries.

Cubes can contain data summarized, copied, or read directly from the data warehouse. Changes to the structure of the data
warehouse or the data contained in it can affect the integrity and accuracy of cubes that have been created from the data
warehouse. Because Analysis Services provides continuous online access to cubes, changes to the underlying data warehouse
must be approached with a clear understanding of their effects on cubes and how to manage the synchronization of data in the
data warehouse with data in cubes.

OLAP data must be updated after data warehouse data is changed. You process OLAP cubes, dimensions, and partitions to
incorporate new or changed data from the data warehouse. The method of processing an OLAP object depends on the object and
type of change made to the data warehouse, such as data addition, data change, or structural change.

Real-time OLAP is a feature that uses real-time cubes to automatically synchronize cube data with changes in the underlying
relational database. Real-time cubes can be used for applications that need to monitor and analyze live data, and are intended to
extend OLAP capabilities rather than replace traditional cube designs and applications.

Changes in the Data Warehouse

Data is usually added periodically to the data warehouse to include more recent information about the organization's business
activities. Changes to data already in the data warehouse are less frequent and usually made only to incorporate corrections to
errors discovered in the source from which the data was extracted, or to restructure data due to organizational changes. Structural
changes to the data warehouse design typically are the least common.

Data Additions

It is common to add new data to the data warehouse. Cube information available online to client applications can be affected
when data is added to the data warehouse due to interaction between the data and cube partitions. You can manage the effects of
adding data to the data warehouse by carefully defining partition filters, and by designing a strategy to synchronize OLAP and
data warehouse data.

Data Changes

Changes to correct errors in a data warehouse can be minimized by applying care during the data transformation, validation, and
scrubbing operations. Other changes to existing data warehouse data can arise from changes in the structure of an organization
or its products. For example, reorganizing products into different categories can require significant changes to data in the data
warehouse, as well as to reports derived from the data warehouse. In some cases, such changes can require the complete
redesign of cubes. In other cases, the redesign of dimensions and the processing of all cubes that use those dimensions may be all
that is required.

Changes to correct errors in basic data should be incorporated in the source database, usually the OLTP business database, and
then migrated to the data warehouse in a controlled manner. Many business OLTP database designs require changes to be made
by a transaction that offsets the incorrect data and applies new correct data. It is often easier to manage the impact of such
correction transactions on OLAP data. Cubes can incorporate new data transactions that correct value errors, such as an incorrect
sale value. However, transactions that move a fact from one dimension member to another, such as a sale posted to the wrong
customer, can affect the results of aggregate functions such as Avg. This is true for non-OLAP databases as well; if an original sale
order is zeroed out but the record remains in the database, it will be included in the count of sales records and affect the
calculation.

Depending on cube storage design, changes to data in the fact table can affect the accuracy of queries to a cube until the cube is
processed. The Refresh data processing option can be used to reload the cube's data and recalculate the aggregations. Because
aggregation design remains the same, the Refresh data processing option is faster than the complete Full process processing
option.

Dimension hierarchies can be affected by changes to data in the data warehouse dimension tables even though the table schema
remains the same. The dimension hierarchy is based on relationships between members in a dimension table. When these
relationships are changed (for example, when cities are reorganized into different sales regions), the dimension structure must be
rebuilt.

Referential integrity must be maintained when data warehouse data is added, changed, or deleted. Loss of referential integrity can
result in errors during cube processing, fact table records being bypassed, or inaccurate OLAP information.

Structure Changes

The structure of OLAP cubes and dimensions can be affected by changes to the design of the data warehouse such as the
addition, deletion, or alteration of tables, or relationships between tables. When the structure changes, you must modify the
design of affected cubes and dimensions, redefine partitions and aggregations, and completely process the modified cubes and
dimensions.

Synchronizing OLAP and Data Warehouse Data

Valid cubes are online and available to client applications at all times when the Analysis server is running. Because of the potential
for interaction of OLAP cube partitions with data in the data warehouse, the design of the data warehouse should include a
synchronization strategy to enable the addition of data without causing cubes to provide incorrect answers to queries in cubes
available to online client applications.

One strategy for managing additions to data warehouse and OLAP data is to design a batch update system. In this strategy, all
data in the data warehouse fact table includes a batch number in each record. When you design a cube, add an expression to the
filter for each of the cube's partitions to specify the largest batch number applicable, for example, "... AND DWBatch <= 33 ..."
When additions to the fact table need to be made, include a new, higher batch number in the new records. Cubes are unaffected
by these added records because the cube partitions are restricted to reading data from previous batches only.

Data added to a dimension table does not affect existing cube private or shared dimensions until the dimensions are processed. A
batch number in dimension table records is not necessary, but it can be useful in ensuring continued referential integrity.

Dimensions and cubes or partitions can be processed to incorporate new data after a batch of data has been added to the fact
table and dimension tables. Shared dimensions should be processed before the cubes that use them. To add new members to a
dimension that do not affect the dimension's structure, use the Incremental update option. To add new members and rebuild
the dimension's structure, use the Rebuild the dimension structure option. Note that when a shared dimension is processed
with the Rebuild the dimension structure option, all cubes that incorporate that dimension will immediately become
unavailable to client applications and must be processed before they can be used again. However, when a shared dimension is
processed using the Incremental update option, a cube that uses the shared dimension will display the new members, but the
cells associated with those members will remain empty until the cube is updated with new data from the fact table that relates to
the new members.

To incorporate a new data batch in a cube, update the filter expression in each of the cube's partitions to include the new batch
number, and then process or incrementally update the cube. If a cube's data is divided among multiple partitions, you can use one
of the partitions to accumulate new data batches and process that partition only. The cube's other partitions must have filters that
exclude new data so that data will be added only to the accumulation partition.

Visibility to Client Applications

When a cube that is currently online is processed by any one of the three processing options (Full process, Incremental update,
or Refresh data), the cube remains online until the processing has been completed, at which time the online cube is replaced by
the new cube version. When a cube is processed using the Full process option, online client applications will be disconnected
from the cube when the switch is made to the new version of the cube, and the client applications must individually reconnect to
access the new version. When a cube is processed using either the Incremental update or the Refresh data option, online client
applications will not be disconnected from the cube when the processing completes. The new version of the cube will be
immediately visible with no break in service.

The processing of a shared dimension can affect cubes that incorporate the dimension in their design. If a shared dimension is
processed using the Rebuild the dimension structure option, all cubes that use the dimension will immediately become
unavailable to client applications and must be processed before they can be used again. If a shared dimension is processed using
the Incremental update option, cubes that use the dimension remain available to client applications and any new members
added to the dimension automatically become available to client applications when the dimension processing is complete. Any
such new members will not have fact data associated with them until the cube is updated with new related facts.

See Also

Building and Processing Cubes

Updating Cubes and Dimensions

Analysis Services (SQL Server 2000)

Administering Analysis Services
The following topics contain conceptual information about administering Microsoft® SQL Server™ 2000 Analysis Services.

Topic Description
Before Administering
Analysis Services

Describes preliminary steps you must take before
administering Analysis Services, such as preparing the data
warehouse and defining data sources.

Administrative Tools Describes the user interface tools you use to work with
Analysis Services, including Analysis Manager, Data
Transformation Services (DTS), Multidimensional
Expressions (MDX), and the msmdarch command.

Administrative Tasks Summarizes necessary administrative tasks and processes.

Analysis Services (SQL Server 2000)

Before Administering Analysis Services
Before you begin administering Microsoft® SQL Server™ 2000 Analysis Services, prepare the data warehouse from which you
will create cubes or data mining models. Also, if you are planning to specify data sources that are accessed through ODBC drivers,
create system data source names (DSNs) for these databases.

Preparing the Data Warehouse

Several objects in Analysis Services are created from data in a data warehouse: cubes, partitions, dimensions, and data mining
models. The data warehouse from which an object is created is specified in the data source of the object. For more information
about data sources, see Data Sources.

Before you create these objects, prepare the data warehouse so that the objects can be efficiently created and maintained. For
more information about the specific actions required to prepare the data warehouse, see OLAP and Data Warehouses.

Defining Data Sources in the ODBC Data Source Administrator

Analysis Services supports OLE DB and ODBC data sources. If you are using only OLE DB data sources as input to Analysis
Services, you do not need to use the ODBC Data Source Administrator.

If you are planning to use the Microsoft OLE DB Provider for ODBC drivers for connections to ODBC data sources, before you start
Analysis Manager, ensure that all of these ODBC data sources are defined as system DSNs in the ODBC Data Source
Administrator.

Note Remote administrators of Analysis Services must also define the same data sources on their computers.

See Also

Specifying Data Sources

Analysis Services (SQL Server 2000)

Administrative Tools
Microsoft® SQL Server™ 2000 Analysis Services provides several administrative tools, which are summarized in the following
topics.

Topic Description
Analysis Manager Describes the user interface for administering

Analysis Services.
Using Active Directory with
Analysis Services

Details the registration of Analysis servers with
Active Directory™.

Using Data Transformation
Services with Analysis Services

Summarizes the Analysis Services Processing task,
which is used to process cubes, data mining
models, and other objects.

Using MDX with Analysis
Services

Describes uses, operations, and functions of
Multidimensional Expressions (MDX), a syntax for
manipulating multidimensional data.

Msmdarch Command Describes the command used for archiving and
restoring Analysis Services databases.

Analysis Services (SQL Server 2000)

Analysis Manager
Microsoft® SQL Server™ 2000 Analysis Services includes Analysis Manager, a console application that provides a user interface
for accessing Analysis servers and their meta data repositories. Use Analysis Manager to:

Administer Analysis servers. Multiple users can administer an Analysis server using Analysis Manager. Locking is applied
only to the objects being edited and their dependent objects.

Create databases and specify data sources.

Build and process cubes.

Create and process data mining models.

Specify storage options and optimize query performance.

Manage security.

Browse data sources, shared dimensions, security roles, and other objects.

Find links for third-party client applications, support resources, Help updates, and product news.

Work through the Analysis Manager tutorial. This step-by-step tutorial guides you through building, deploying, managing,
and enhancing an OLAP cube. This tutorial also provides instruction on how to create a data mining model.

Obtain information about the complete SQL Server 2000 product.

In addition to the tutorial, the HTML (that is, right) pane of Analysis Manager assists you in learning the concepts and terminology
of online analytical processing (OLAP) and data mining, as well as how to store and manage the associated data.

Analysis Services (SQL Server 2000)

MMC
MMC

Microsoft® Management Console (MMC) is a common console framework for server and network management applications
known as snap-ins. Snap-ins allow administrators to more effectively manage network resources. Analysis Manager is a snap-in
to MMC.

Analysis Services (SQL Server 2000)

Starting Analysis Manager
Starting Analysis Manager

To start Analysis Manager

On your desktop click Start, point to Programs, point to Microsoft SQL Server, point to Analysis Services, and then click
Analysis Manager.

Analysis Services (SQL Server 2000)

The Analysis Manager Tree Pane
The Analysis Manager Tree Pane

Analysis Manager is represented as a folder named Analysis Servers located beneath the Console Root folder. This topic describes
the Analysis Manager hierarchy and the location of its components, which make up the Analysis Manager tree pane.

Analysis Servers

The Analysis Servers folder contains an icon for each Analysis server registered in Analysis Manager. The name beside the icon is
the same as the server name.

Databases

Each Analysis server contains one or more databases. Each database is represented by an icon beneath the Analysis server icon.

Beneath each database icon is a:

Data Sources folder for the data sources specified in the database.

Cubes folder for the cubes in the database.

Shared Dimensions folder for the shared dimensions in the database. These dimensions are defined at the database level
and can be shared among the cubes in the database.

Mining Models folder for data mining models stored in the database.

Database Roles icon that represents all of the database roles in the database.

Data Sources

Beneath each database icon is a Data Sources folder for the data sources specified in the database. A data source maintains OLE
DB provider information, server connection information, network settings, connection time-out, and access permissions. A
database can contain multiple data sources in its Data Sources folder.

Cubes

Beneath each database icon is a Cubes folder for the cubes in the database. Each cube is represented by an icon. Three varieties of
cubes are depicted in the Analysis Manager tree pane: regular, linked, and virtual.

Regular Cubes

In a Cubes folder, each regular cube is represented by an icon. Beneath each regular cube icon is a:

Partitions folder that contains an icon for each partition in the cube.

Cube Roles icon that represents all of the cube roles for the cube.

To see the dimensions, measures, and other components in a regular cube, right-click its icon and then click Edit.

Linked Cubes

In a Cubes folder, each linked cube is represented by an icon. Beneath each linked cube icon is a Cube Roles icon that represents
all of the cube roles for the cube.

Virtual Cubes

In a Cubes folder, each virtual cube is represented by an icon. Beneath each virtual cube icon is a Cube Roles icon that represents
all of the cube roles for the cube.

To see the dimensions, measures, and other components in a virtual cube, right-click its icon and then click Edit.

Partitions

A cube's Partitions folder contains an icon for each partition in the cube. There are two types of partitions depicted in the Analysis
Manager tree pane: local and remote.

Local Partitions

In a Partitions folder, each local partition is represented by an icon. To access the settings for a partition, right-click its icon, and
then click Edit.

Remote Partitions

In a Partitions folder, each remote partition is represented by an icon. To access the settings for a partition, right-click its icon, and
then click Edit.

Cube Roles

Beneath a cube, a single Cube Roles icon represents all of the cube roles for the cube. To access the roles, right-click the icon, and
then click Manage Roles.

Shared Dimensions

Beneath each database icon is a Shared Dimensions folder that contains an icon for each shared dimension in the database. These
dimensions can be included in any cube in the database. Four varieties of shared dimensions are depicted in the Analysis
Manager tree pane: regular, virtual, parent-child, and data mining.

Regular Dimensions

In a Shared Dimensions folder, each regular dimension is represented by an icon.

To see the levels, members, and other components in a dimension, right-click its icon, and then click Edit.

Virtual Dimensions

In a Shared Dimensions folder, each virtual dimension is represented by an icon.

To see the levels, members, and other components in a dimension, right-click its icon, and then click Edit.

Parent-Child Dimensions

In a Shared Dimensions folder, each parent-child dimension is represented by an icon.

To see the levels, members, and other components in a dimension, right-click its icon, and then click Edit.

Data M ining Dimensions

In a Shared Dimensions folder, each data mining dimension is represented by an icon.

To see the levels, members, and other components in a dimension, right-click its icon, and then click Edit.

Mining Models

Beneath each database icon is a Mining Models folder that contains an icon for each mining model in the database, There are two
types of mining models depicted in the Analysis Manager, relational and OLAP.

Relational M ining M odels

In a Mining Models folder, each relational mining model is represented by an icon.

To view or modify the structure of a mining model, right-click its icon, and then click Edit. To view the content of a mining model,
right-click its icon, and then click Browse.

OLAP M ining M odels

In a Mining Models folder, each OLAP mining model is represented by an icon.

To view or modify the structure of a mining model, right-click its icon, and then click Edit. To view the content of a mining model,
right-click its icon, and then click Browse.

Mining Model Roles

Beneath a mining model, a single Mining Model Roles icon represents all of the mining model roles for the mining model. To
access the roles, right-click the icon, and then click Manage Roles.

Database Roles

Beneath a database, a single Database Roles icon represents all of the database roles in the database. These roles can be assigned
to any cube in the database. To access the roles, right-click the icon, and then click Manage Roles.

See Also

Object Architecture

Analysis Services (SQL Server 2000)

Using Active Directory with Analysis Services
Microsoft® SQL Server™ 2000 Analysis Services supports Active Directory™. You can register an Analysis server with Active
Directory to provide users with an easy way to search for registered servers using the Microsoft Windows® 2000 Search
functionality.

For each Analysis server that you register, you can expose server information that the user subsequently uses to select the server.
For example, you can provide relevant details, such as the location of the server, the name of the person who maintains the server,
how the server is used, the kind of data it stores, and so on. In an enterprise that follows strict naming conventions, the ability to
use additional criteria to locate a server can help circumvent server names that are not intuitive or are difficult to remember.

In Analysis Services, support for Active Directory is available for Analysis servers. Specific databases and cubes cannot be
registered with Active Directory.

Registering an Analysis Server with Active Directory

During installation, Active Directory is configured to accept registration entries of SQL Server and Analysis Services instances.
After installation is complete, you can register an Analysis server to make it available as a shared resource on your intranet. After
you register an Analysis server, Windows 2000 notifies Active Directory of the new entry.

Registering an Analysis server with Active Directory is not a substitute for creating user accounts or setting permissions. Users
who select a registered server are subject to the security measures that you have set for specific servers, databases, and cubes.

To register an Analysis server, use the Properties dialog box. You can access the Properties dialog box by right-clicking a server
name in the Analysis Manager tree pane, and then clicking Properties. Use the Active Directory tab to register the server and
set additional properties.

The properties that you can set correspond to search criteria that the user defines. When specifying properties, provide values that
users are most likely to find helpful. For more information, see Active Directory Tab (Properties Dialog Box).

Searching for an Analysis server using Active Directory requires code that you provide. To support Active Directory searches, you
can create a simple application or tool that allows users to find Analysis servers through name-based or keyword searches.
Creating an Active Directory application requires the Active Directory Service Interfaces (ADSI). You can use the functions and
properties of Active Directory objects to support browsing. For more information about ADSI, go to the MSDN® Web page at the
Microsoft Web site and search for ADSI.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services (SQL Server 2000)

Using Data Transformation Services with Analysis Services
You can use Data Transformation Services (DTS) in Microsoft® SQL Server™ 2000 to process cubes, data mining models, and
other objects, and to create prediction tasks based on mining models. For processing activities, a DTS task called the Analysis
Services Processing task is provided, and for mining model predictions, the Data Mining Prediction Query task is provided. You
can access both tasks within DTS Designer, which provides a user interface for defining DTS packages and tasks. After you define
a package that contains an Analysis Services Processing task or a Data Mining Prediction Query task, you can schedule it to
execute automatically. For more information, see Processing Objects Using Data Transformation Services.

See Also

DTS Basics

Analysis Services (SQL Server 2000)

Using MDX with Analysis Services
Multidimensional Expressions (MDX) is used in a variety of administrative tasks. You can use MDX to create the following items.

Item Description
For more

information, see
Action An end user-initiated operation upon a

selected cube or portion of a cube.
Actions

Calculated member A dimension member whose value is
calculated at run time using an
expression that you specify when you
define the calculated member.

Calculated Members

Calculated cells An expression that determines the cube
cell values associated with a specific
selection of cells. The expression
overrides the aggregate functions of
measures.

Calculated Cells

Named set A set of dimension members or a set
expression that is created for reuse, for
example, in MDX queries.

Named Sets

Custom rollup
formula

An expression that determines the cube
cell values associated with the
members of a dimension level. The
expression overrides the aggregate
functions of measures.

Custom Rollup
Formulas and Custom
Member Formulas

Custom member
formula

An expression that determines the cube
cell values associated with a member.
The expression overrides the aggregate
functions of measures.

Custom Rollup
Formulas and Custom
Member Formulas

Custom rule in
dimension security

A rule that specifies the dimension
levels and members that can be
accessed by a role.

Custom Rules in
Dimension Security

Custom rule in cell
security

A rule that specifies the cube cells that
can be accessed by a role.

Custom Rules in Cell
Security

For more information about MDX, see MDX.

Analysis Services (SQL Server 2000)

Msmdarch Command
You can use the msmdarch command to archive and restore databases in Microsoft® SQL Server™ 2000 Analysis Services. You
can execute the command in the Command Prompt window or from a .bat file. The msmdarch command returns an exit code of
1 if it fails. For more information, see Archiving and Restoring Databases.

To archive an Analysis Services database using the msmdarch command

Command Prompt

Command Prompt

To restore an Analysis Services database using the msmdarch command

Command Prompt

Command Prompt

Analysis Services (SQL Server 2000)

Administrative Tasks
These topics contain information you should read before performing administrative tasks or procedures in Microsoft® SQL
Server™ 2000 Analysis Services for the first time. Where applicable, topics contain links to step-by-step procedures. For more
information about specific objects in Analysis Services and how they work together, see Analysis Services Architecture.

Topic Description
Configuring Analysis
Servers

Contains information about registering servers, setting
server properties, migrating repositories, and
configuring servers for access from the Internet.

Creating Prerequisite
Objects for Cubes

Contains information about creating databases,
specifying data sources, and creating dimensions.

Building and Processing
Cubes

Describes different methods of building cubes and ways
of browsing data before and after processing the cubes
for use.

Creating Security Roles Provides background information about creating roles
and rules for different levels of security.

Managing Partitions Contains information about creating and merging
partitions.

Enhancing Dimensions with
Optional Features

Describes different ways of including additional
information and creating customized views of
dimension data, including member properties, custom
member formulas, and member groups.

Enhancing Cubes with
Optional Features

Describes working with specialized types of cube data
and configurations, including calculated members,
named sets, actions, write-enabled cubes, and
drillthrough.

Updating Cubes and
Dimensions

Describes different methods for updating and
rebuilding cube and dimension data and structure.

Building and Using Data
Mining Models

Contains information about working with mining
models.

Archiving, Restoring, and
Copying Data

Contains information about archiving and restoring
databases and copying and pasting objects in Analysis
Manager.

Analyzing and Optimizing
Performance

Describes how to use Analysis Manager to produce
reports of query history and optimize storage and
performance based on that history.

Automating and Scheduling
Administrative Tasks

Describes how to use Data Transformation Services
(DTS) and batch files to perform certain administrative
tasks in Analysis Services.

See Also

Administrative Tools

Before Administering Analysis Services

Analysis Services (SQL Server 2000)

Configuring Analysis Servers
The following topics contain conceptual information about configuring Analysis servers in Microsoft® SQL Server™ 2000
Analysis Services.

Topic Description
Registering Servers Contains information about what happens when

you register an Analysis server and how to register
servers.

Setting Server Properties Describes using the Properties dialog box to set
server properties.

Migrating Analysis Services
Repositories

Describes using the Migrate Repository Wizard to
move the Analysis Services repository from one
format and location to another.

Analysis Services (SQL Server 2000)

Registering Servers
Registering Servers

The computer on which you install Microsoft® SQL Server™ 2000 Analysis Services is registered automatically as a server. It
appears in the Analysis Manager tree pane immediately below the Analysis Servers folder. To access and maintain meta data on
other servers, you must register them separately.

Each server stores its own Analysis Services database or databases.

To register an Analysis server

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Setting Server Properties
Setting Server Properties

The Properties dialog box gives you access to many of the Analysis server settings that are stored in the registry. This dialog box
appears when you right-click an Analysis server node in the Analysis Manager tree pane and then click Properties.

You can optimize a server through the Properties dialog box. This lets you get the best performance possible from Microsoft®
SQL Server™ 2000 Analysis Services, while it minimizes the dangers that can occur when settings stored in the registry are
manually edited. You can also use the Properties dialog box to reset the options in the Properties dialog box to their default
installation values.

The Properties dialog box contains options that control user interfaces, server environment, processing, logging, and add-ins.

See Also

Properties Dialog Box

Analysis Services (SQL Server 2000)

Migrating Analysis Services Repositories
Migrating Analysis Services Repositories

 New Information - SQL Server 2000 SP3.

For each Analysis server, Microsoft® SQL Server™ 2000 Analysis Services creates a repository called the Analysis Services
repository to store meta data for the objects of the Analysis server (cubes, dimensions, and so on). By default, this repository is a
Microsoft Access (.mdb) database on the server computer where Analysis Services is installed. By default, this database is:

C:\Program Files\Microsoft Analysis Services\Bin\msmdrep.mdb

If the SQL Server 2000 database engine is available to the Analysis server, either on the same computer or another computer, you
can migrate the Access repository to SQL Server. Doing so adds the enterprise-level scalability, support, and security of the SQL
Server database engine for the Analysis Services repository. If the SQL Server 2000 database engine is not already installed on
your network, and you are supporting enterprise-level applications for Analysis Services, you may consider a minimal installation
of SQL Server 2000 to support the SQL Server 2000 repository for Analysis Services.

You can use the Migrate Repository Wizard to migrate the Microsoft Access repository to a SQL Server (.mdf) database on the
same or another server computer. You can also use the wizard to migrate a SQL Server repository to another SQL Server
database.

Important After you migrate the repository to a SQL Server database, you cannot migrate the repository back to a Microsoft
Access database. For added security, you should remove the Access database after you successfully complete the migration.

You can change the format of your repository when you migrate it from the default Microsoft Access database to a SQL Server
database or from one SQL Server database to another SQL Server database. By default the repository is in SQL Server 7.0 OLAP
Services format (Analysis Services native format). You can keep this format when you migrate the repository or you can change
the format to use the SQL Server 2000 Meta Data Services repository format.

Analysis Services native format is recommended. If you choose to migrate the repository to a SQL Server database (native or
Meta Data Services), it is recommended that you create a dedicated SQL Server database for the repository instead of using an
existing database (such as msdb).

Before you start the Migrate Repository Wizard, create or identify the SQL Server database to which you want to migrate the
Analysis Services repository.

To start the Migrate Repository Wizard

Analysis Manager

Analysis Manager

After migration, both the old and new databases remain; however, only the new database is used by Analysis Services. You can
manually delete the old database by deleting the file in Windows Explorer.

If an error prevents the Migrate Repository Wizard from finishing successfully, the migration is canceled, and Analysis Services
continues to use the repository it used before you started the wizard.

Analysis Services (SQL Server 2000)

Creating Prerequisite Objects for Cubes
Before you can create cubes, you must create or identify supporting objects such as databases and dimensions. These topics
provide basic information about these objects and how they work with cubes.

Topic Description
Creating Databases Contains information about databases and what

they store in Microsoft® SQL Server™ 2000 Analysis
Services.

Specifying Data Sources Contains information about data sources for cubes
and the impacts of specifying different data sources
after you have built cubes that use them.

Creating Shared Dimensions Describes the creation of shared dimensions, which
are available to multiple cubes.

Creating Virtual Dimensions Describes the creation of virtual dimensions, which
combine existing dimensions.

Viewing Dimension Data Contains information about how to browse
dimension data.

Analysis Services (SQL Server 2000)

Creating Databases
Creating Databases

On each of your Analysis servers, create one or more databases to store your cubes, data mining models, and related objects.
Create a database for each group of related cubes and mining models that you plan to create. Each database stores its own cubes,
mining models, data sources, shared dimensions, and database roles. Objects that will be shared among multiple cubes and
mining models should be stored within the same database.

To create a database, use the Database dialog box.

To create a database

Analysis Manager

Analysis Manager

See Also

Databases

Analysis Services (SQL Server 2000)

Specifying Data Sources
Specifying Data Sources

 New Information - SQL Server 2000 SP3.

For each of your databases, specify one or more data sources that will provide data for your cubes, data mining models, and other
objects. When you specify a data source, Analysis Manager retrieves a list of available OLE DB providers. If you want to use a
database accessible through an ODBC driver as a data source, select Microsoft® OLE DB Provider for ODBC Drivers as the OLE DB
provider, and then select the ODBC data source name (DSN) for the database as defined in ODBC Data Source Administrator from
a separate dropdown list. You can easily select a provider and, if necessary, a DSN from these lists.

Note DSNs defined in ODBC Data Source Administrator must be defined as system DSNs.

If you later edit the data source and change the provider, errors can occur during subsequent processing of objects. For example,
in a time dimension, the values for the levels' Member Key Column and Member Name Column properties are frequently SQL
expressions. If the syntax of the expressions is supported by the original provider, but not by the new provider, processing the
dimension will fail.

To specify a data source, use the Data Link Properties dialog box.

To specify a data source

Analysis Manager

Analysis Manager

If you specify a SQL Server data source that uses Windows Authentication, the MSSQLServerOLAPService service must have
permissions to access the data source. Otherwise, Analysis Services administrators cannot process the objects they maintain using
Analysis Manager.

See Also

Data Sources

Analysis Services (SQL Server 2000)

Creating Shared Dimensions
Creating Shared Dimensions

Dimensions are descriptive categories by which the numeric data (that is, measures) in a cube can be separated for analysis. For
example, if the measure of a cube is Cost, and its dimensions are Time, Supplier, and Item Description, users of the cube can
separate Cost into various categories of Time, Supplier, and Item Description.

A shared dimension is a dimension available to multiple cubes in a database. You should create shared dimensions for common
dimensions, such as Time, that will be added to multiple cubes. You can create a shared dimension by using the Dimension
Wizard or Dimension Editor, and you have the option of creating a shared dimension to store results of a data mining analysis
when creating an OLAP mining model.

The following topics describe the creation of regular shared dimensions.

Topic Description
Creating a Shared Dimension with the
Wizard

Describes the steps in the Dimension
Wizard that create regular shared
dimensions.

Creating a Shared Dimension with the
Editor

Describes the steps in Dimension Editor
you use to create new shared dimensions.

Creating Virtual Dimensions Provides information about virtual
dimensions, which are dimensions based
on columns or member properties.

Viewing Dimension Data Describes how to browse data using
Dimension Browser.

See Also

Mining Model Wizard

Analysis Services (SQL Server 2000)

Creating a Shared Dimension with the Wizard
Creating a Shared Dimension with the Wizard

To create a regular shared dimension quickly and easily, use the Dimension Wizard. The wizard takes you through steps to specify
the structure of your shared dimension:

Required features, such as the dimension's source data

Features required in some situations, such as dimension levels, dimension table joins, and various types of dimension table
columns

Optional features, such as special properties and custom formulas

Specifying Dimension Data Sources

You can specify whether the shared dimension will be created from a single dimension table, multiple dimension tables, an OLAP
data mining model, or from the member properties of another dimension. The dimension table or tables or the mining model you
select should contain the column or columns you want in your shared dimension. If you create the dimension from a single
dimension table, when you add the shared dimension to a cube and the shared dimension table joins only to the fact table, the
cube will have a star schema. If the shared dimension is created from multiple dimension tables, the cube will have a
snowflake schema. In either case, you can define a new data source if the table you want to use is not visible in the wizard.

If you create the dimension from an OLAP mining model, you create the dimension from a column that has contents predicted by
the mining model, and the mining model dimension has the same impact on a cube's schema as dimensions created from tables
when it is added to the cube.

If you use the member properties of another dimension, you can create a virtual dimension. A virtual dimension can be used like
other dimensions when it is added to a cube.

Another type of dimension you can create when using a single dimension table is a parent-child dimension. Two columns of the
dimension table are used to define the dimension where one column identifies each dimension member, and the other defines its
parent. You can also define a new data source for a parent-child if needed.

Steps Required in Some Situations

The following steps are required in certain situations, which are described here.

Select the Dimension Type

If the dimension table contains columns that contains both date-formatted columns and columns of other formats, you specify
whether the shared dimension is a standard or time dimension.

Create Time Dimension Levels

If you specified the creation of a time dimension, you also specify the levels for the time dimension.

Create and Edit Joins

If you are creating a snowflake-schema dimension, you confirm, delete, or specify new joins between dimension tables.

Select Levels

For star-schema, snowflake-schema, or virtual dimensions, you define the levels to be used in the dimension. Each level is defined
by a column (except in some time dimensions).

Levels within a regular shared dimension are organized hierarchically. For example, in a Location dimension, the levels are named
Country, State, and City. The values (that is, members) in each level determine the column and row headings that end users see
when they browse the cube with a tabular browser. (In graphical browsers, end users see other types of descriptive labels
produced by the members. For example, each member produces a value on the scale of an axis.) The column you select is used to
supply member names and member keys.

Specify Member Key Columns

For star-schema or snowflake-schema dimensions, you can change the member key columns if the default values supplied by the
wizard do not uniquely identify level members.

Select Columns for Parent-Child Dimension

If you are creating a parent-child dimension, you select the two columns upon which the parent-child dimension is based.

Select the Dimension with Member Properties

If you are creating a virtual dimension, you select the source dimension containing the member that you will use to define your
dimension.

Select Levels for Virtual Dimension

If you are creating a virtual dimension, you also select the member properties from the source dimension to define the levels of
your dimension.

Select Mining Model and Predictable Column

This step appears only if you are using an OLAP mining model to define a data mining dimension. You select the mining model
and one of its available predictable columns to create the dimension.

Optional Features

Advanced options in the Dimension Wizard allow you to further tailor your shared dimension. Depending upon the type of
dimension being created, these are accessible by selecting them from the Select Advanced Options step of Dimension Wizard.
Another option, Create a hierarchy of a dimension, is available in the last step of the wizard. If you started the Dimension
Wizard from Cube Editor or the Cube Wizard, you can change the new dimension, which is a private dimension by default in this
case, to a shared dimension.

Advanced options that can be enabled include the following:

Changing dimension

If you are creating dimensions from single or multiple tables, you can make the dimension a changing dimension. Compared to
other dimensions, a changing dimension allows more kinds of changes without the necessity of fully processing the dimension or
the cubes that contain it.

Custom rollups

For parent-child dimensions, you can define formulas or mathematical operators that determine how members are aggregated.

Members with data

For parent-child dimensions, you can enable associated data for dimension members.

Ordering and uniqueness of members

For all dimension types except data mining dimensions, you can enable member sorting. Select from member name, member key,
or the contents of a specified column. For each level, you can also specify the scope of uniqueness among member names and
member keys.

Storage mode and members groups

If you are creating dimensions from single or multiple tables, you can determine the storage mode for dimension members and
enable member grouping. You can specify whether the dimension has a storage mode of MOLAP or ROLAP. The preferred
storage mode is MOLAP, but it is not supported in extremely large dimensions, that is, those generally having 5 million members
or more. If you select MOLAP, you can specify that member groups be created in a level inserted automatically above the
dimension's lowest level. This occurs only if the lowest level contains more than 64,000 members under a common parent.

Writeback

For parent-child dimensions, you can enable writeback capability. Changes to dimension members are written directly to the
dimension table.

As mentioned previously, the Create a hierarchy of a dimension option is available in the last step of the wizard. This option is
usually selected to create one hierarchy of a multiple-hierarchy dimension. To create another hierarchy within the dimension, run
the wizard again and specify the same dimension name but a different hierarchy name.

To create a shared dimension using the Dimension Wizard

Analysis Manager

Analysis Manager

See Also

Changing Dimensions

Cube Structure

Data Sources

Levels and Members

Member Groups

Member Names and Member Keys

Dimension Storage Modes

Analysis Services (SQL Server 2000)

Creating a Shared Dimension with the Editor
Creating a Shared Dimension with the Editor

You can use Dimension Editor to create new shared dimensions such as regular dimensions from single or multiple relational
tables or virtual dimensions; you can also create new shared dimensions with multiple hierarchies in Dimension Editor. However,
you cannot use Dimension Editor to create new parent-child dimensions or data mining dimensions; you must create these using
the Dimension Wizard.

In Dimension Editor, you select several options for the shared dimension: data source, dimension table, and dimension levels.

The data source that you select should contain the tables and columns that define the shared dimension. A data source name
identifies a database resource and parameters for its usage.

The dimension table or tables that you select should contain the column or columns you want in your shared dimension. A
dimension table is a table that contains a dimension's members. It is a peripheral table joined to a central fact table in a cube's
schema.

Select the levels you want in your shared dimension. Each level is defined by a column. Levels within a regular shared dimension
are organized hierarchically. For example, in a Location dimension, the levels are named Country, State, and City. The values (that
is, members) in each level determine the column and row headings that end users see when they browse the cube with a tabular
browser. (In graphical browsers, end users see other types of descriptive labels produced by the members. For example, each
member produces a value on the scale of an axis.) You can modify the properties of the dimension and its levels.

To create a shared dimension using Dimension Editor

Analysis Manager

Analysis Manager

When you use Dimension Editor to create new shared dimensions with multiple hierarchies, use a period within the name of the
new shared dimension to identify a hierarchy. This new dimension and identified hierarchy can be used to create additional
hierarchies for the dimension.

To create a dimension with multiple hierarchies using Dimension Editor

Analysis Manager

Analysis Manager

See Also

Creating Dimensions with Multiple Hierarchies

Data Sources

Dimension Editor - Data View

Dimension Editor - Schema View

Dimensions

Dimension Wizard

Levels and Members

Analysis Services (SQL Server 2000)

Creating Virtual Dimensions
Creating Virtual Dimensions

Virtual dimensions enable you to display categorical labels from a single dimension table on multiple axes in browsers without
increasing cube size. (Without virtual dimensions, multiple regular or parent-child dimensions would be required.) Specifically,
you can display the members of a dimension level on one axis and an associated attribute (that is, a member property) of those
members on the other axis. This presentation is useful when end users want to explore the trends of measures depending on the
relationship between members and member properties.

For example, an end user requests to analyze Sales by Product Name and Package Material to explore customers' preferences for
recyclable Package Materials. If the Product dimension already contains Product Name, add Package Material as a member
property and create a virtual dimension from it. After you add the virtual dimension to the cube, the user can cross-reference
Product Names and Package Materials and compare the Sales at the intersections.

The main advantages of virtual dimensions are storage savings and reduced cube processing time. Aggregation data for virtual
dimensions is not stored. It is calculated in memory. Therefore, if you add a virtual dimension to a cube, its storage usage and
processing time do not increase as when you add a regular or parent-child dimension. All cubes require dimensions, but not all
cubes require virtual dimensions.

A virtual dimension is created from member properties or columns of another dimension that is not a virtual dimension. You can
add a virtual dimension to a cube only if the dimension that supplies the member properties or columns is also included in the
cube. To create a virtual dimension from columns, the columns must be in one of the other dimension's tables, but they do not
have to be part of the dimension's definition (for example, the source of a level). For more information about member properties,
see Creating Member Properties.

To create a virtual dimension based on member properties, use the Dimension Wizard. The wizard allows you to select the
member properties that define the virtual dimension. Virtual dimensions based on member properties cannot be created in
Dimension Editor. They can be created in Cube Editor only if you start the Dimension Wizard from within Cube Editor. However,
after it is created, a virtual dimension can be edited in Dimension Editor (if the virtual dimension is shared) or Cube Editor (if the
virtual dimension is private).

To create a virtual dimension based on member properties

Analysis Manager

Analysis Manager

To create a virtual dimension based on columns, use the Dimension Wizard. The wizard allows you to select the columns that
define the virtual dimension.

To create a virtual dimension based on columns

Analysis Manager

Analysis Manager

See Also

Dimension Editor - Data View

Dimension Editor - Schema View

Dimension Wizard

Virtual Dimensions

Analysis Services (SQL Server 2000)

Viewing Dimension Data
Viewing Dimension Data

Dimension Browser allows you to view dimension data within Analysis Manager. You can view the members, member property
values, and custom member formulas of a dimension.

If the dimension is write-enabled, you can also update these items.

To browse a shared dimension

Analysis Manager

Analysis Manager

To browse a private dimension

Analysis Manager

Analysis Manager

See Also

Dimension Browser

Analysis Services (SQL Server 2000)

Building and Processing Cubes
Building and processing cubes are two of the most common administrative tasks in Microsoft® SQL Server™ 2000 Analysis
Services. Analysis Manager provides wizards and editors to help you perform these tasks. When you build a cube, you should
consider the data source of the cube, the type of storage the cube will use, and how much data you want to precalculate.

When you process a cube, you can choose from different processing methods depending on the type of changes you want to
incorporate. This topic contains information to help you make these decisions.

You can also use Decision Support Objects (DSO) to build and process cubes programmatically. For more information, see Using
Decision Support Objects.

Topic Description
Building Cubes Describes how you can build and maintain cubes using the

Cube Wizard and Cube Editor, and the items you specify in
each step of the process.

Designing Storage
Options and
Aggregations

Describes the steps and options you use when you design
storage options and aggregations using the Storage Design
Wizard.

Managing Linked Cubes Discusses the special requirements of linked cubes,
including synchronization and the use of user-defined
functions.

Processing Cubes Describes conditions for performing complete processing
on cubes.

Viewing Cube Data Describes how to view cube data using Cube Browser, and
also reviews changing dimensions, drilling down, and
slicing.

See Also

Cubes

Processing Cubes

Analysis Services (SQL Server 2000)

Building Cubes
Building Cubes

You can build a cube using the Cube Wizard or Cube Editor. The Cube Wizard takes you through the process in a series of steps.
Cube Editor allows you to perform some of the steps in your own order. To build a cube using either the Cube Wizard or Cube
Editor, you must specify the data source, fact table, measures, and dimensions for your cube.

The data source contains the fact table and dimension tables you want to include in your cube. A data source name identifies a
database resource and parameters for its usage.

The fact table contains the measures you want to include in your cube. A fact table is the central table in a schema. It contains the
numerical data (that is, measures) of main interest to end users of the cube. A fact table also contains foreign keys that are joined
to primary keys in dimension tables.

The measures that you select are the ones that you want to make available to end users. A measure contains numerical data (for
example, Sales) viewed and analyzed by end users. Each measure corresponds to a column in the fact table. This column supplies
the measure's values.

The dimensions that you select will also be made available to end users. Dimensions are descriptive categories by which the
measures can be separated for analysis. In tabular browsers, dimensions provide the column headings, row headings, and
subheadings by which the measures are separated and displayed to end users. (In graphical browsers, they provide other types of
descriptive labels but with the same function as in tabular browsers.) For example, the measure is Sales, and the dimensions are
Time, Location, and Product. End users can separate Sales into various categories of Time, Location, and Product. Time provides
headings for individual years and subheadings for months. Location and Product also supply a variety of headings and
subheadings.

Each dimension is created from one or more columns in a dimension table. These columns supply the values of the dimension,
and produce the column headings, row headings, and subheadings seen by end users.

Each dimension table contains a primary key that is joined to a foreign key in either the fact table or another dimension table.

You can also build virtual cubes, which combine elements of multiple, previously built cubes. When end users browse the virtual
cube, they see the combined elements together as if they were in a single cube. One of the advantages of virtual cubes is that their
definitions, but not their data, are stored. Thus, virtual cubes require much less storage space than regular cubes.

You can also build linked cubes, which can provide additional flexibility in distributing cube data to end users.

See Also

Cubes

Cube Structure

Cube Wizard

Cube Editor - Data View

Cube Editor - Schema View

Data Sources

Dimensions

Measures

Analysis Services (SQL Server 2000)

Building a Cube with the Wizard
Building a Cube with the Wizard

To build a cube quickly and easily, use the Cube Wizard.

To start the Cube Wizard

Analysis Manager

Analysis Manager

After you complete the wizard, Cube Editor appears so that you can further refine your cube.

After you build your cube, you must process it before you and end users can view its data. Depending on the size of your cube,
processing can take considerable time.

Note Newly processed cubes are visible to end users only after they reconnect to the server computer.

See Also

Building a Cube with the Editor

Cubes

Processing Cubes

Analysis Services (SQL Server 2000)

Building a Cube with the Editor
Building a Cube with the Editor

Cube Editor allows you to choose the order in which you perform certain tasks and variations of those tasks. You can also see and
modify object properties. You can also use Cube Editor to update existing cubes.

To build a cube with Cube Editor

Analysis Manager

Analysis Manager

See Also

Building a Cube with the Wizard

Cubes

Cube Editor - Data View

Cube Editor - Schema View

Cube Wizard

Analysis Services (SQL Server 2000)

Creating and Maintaining Private Dimensions
Creating and Maintaining Private Dimensions

A private dimension is used only in one cube and cannot be used in other cubes. To create a private dimension, use Cube Editor
and the Dimension Wizard.

To create a private dimension

Analysis Manager

Analysis Manager

After you create a private dimension, use Cube Editor to maintain it.

See Also

Cube Editor - Data View

Cube Editor - Schema View

Dimensions

Dimension Wizard

Analysis Services (SQL Server 2000)

Adding a Multiple-Column Measure to a Cube
Adding a Multiple-Column Measure to a Cube

A measure can contain multiple columns combined in an expression. For example, the Profit measure is the difference of two
numeric columns: Sales and Cost.

When you build or update a cube in Cube Editor, you can add such a measure.

To add a multiple-column measure to a cube

Analysis Manager

Analysis Manager

After adding the measure, you must redesign storage options and aggregations for the cube using the Storage Design Wizard.

You must process the cube before end users can view its data. Depending on the size of the cube, processing may take
considerable time.

See Also

Cube Editor - Data View

Cube Editor - Schema View

Measures

Processing Cubes

Storage Design Wizard

Analysis Services (SQL Server 2000)

Building a Virtual Cube
Building a Virtual Cube

To build a virtual cube quickly and easily, use the Virtual Cube Wizard. The wizard takes you through a series of steps to specify
cubes, measures, and dimensions used for your virtual cube.

You select the cubes that contain the data you want in your virtual cube. A cube is a set of data organized and summarized into a
multidimensional structure defined by measures and dimensions. The virtual cube creates a combined view of your selected
cubes by including the measures and dimensions that you select.

The measures you select are the measures that will be available to end users of your virtual cube. A measure contains numerical
data (for example, Sales) viewed and analyzed by end users. Each measure corresponds to a column in the fact table of a selected
cube. This column supplies the values of the measure.

The dimensions you select are the dimensions that will be available to end users of your virtual cube. Dimensions are descriptive
categories by which the measures can be separated for analysis. In tabular browsers, they provide the column headings, row
headings, and subheadings by which the measures are separated and displayed to end users. (In graphical browsers, they provide
other types of descriptive labels but with the same function as in tabular browsers.) For example, if the measure is Sales, and the
dimensions are Time, Location, and Product, end users can separate Sales into the categories of Time, Location, and Product. Time
provides headings for individual years and subheadings for months. Location and Product also supply a variety of headings and
subheadings.

Each dimension is created from one or more columns in a dimension table. These columns supply the values of the dimension,
which produce the column headings, row headings, and subheadings seen by virtual cube users.

Note A virtual cube based on a linked cube does not support the custom rollup operators, custom rollup formulas, cell
calculations, or custom member formulas contained in the linked cube.

To start the Virtual Cube Wizard

Analysis Manager

Analysis Manager

The last step of the wizard gives you the option to process your virtual cube now or later. You must process it before you and end
users can view its data. Depending on the size of the unprocessed cubes in your virtual cube, processing may take considerable
time. If all the cubes in your virtual cube have been processed, virtual cube processing is much faster.

Note Newly processed virtual cubes are visible to end users only after they reconnect to the server computer.

After you make structural and nonstructural changes to a source cube, you must process dependent virtual cubes so that end
users have continuing access to them. (This processing is much faster than processing the component cubes if the structures of
the component cubes have not changed since they were last processed.) These changes include adding or changing a calculated
member or measure, changing security roles, and changing the Description property value. When you make a nonstructural
change, virtual cube users connected to the server computer are unaffected as long as they remain connected. However, until you
process the dependent virtual cubes, end users who connect cannot see them.

See Also

Dimensions

Linked Cubes

Measures

Processing Cubes

Virtual Cubes

Virtual Cube Wizard

Analysis Services (SQL Server 2000)

Building a Linked Cube
Building a Linked Cube

Linked cubes are built using the Linked Cube dialog box. This dialog box allows you to specify a source cube for a new linked
cube on a publishing server. The source cube can be based on any data source that the current user has permissions on.

To build a new linked cube

Analysis Manager

How to create a linked cube

To select a source cube for the new linked cube, select a cube from the list of cubes in the source cube pane.

Important If source cubes reference user-defined functions that are contained in DLLs on the publishing server, the DLLs need
to be registered on the linked cube's subscribing server so that the user-defined functions can be referenced by the linked cube.
Also, if a source cube has members with custom member formulas or custom rollup formulas that reference other cubes on the
publishing server, then the cube that is referenced on the publishing server must be referenced on the subscribing server. You can
make the reference on the subscribing server by creating another linked cube that is based on the cube being referenced in the
formulas. This linked cube must have the same name on the subscribing server as the source cube on the publishing server.

To specify a data source for a linked cube

Analysis Manager

How to specify a data source for a linked cube

If the source cube is a member of a data source that is not listed in the Source Cube box, you can add a new data source with the
Multidimensional Data Source dialog box. After you select a cube, you can give it a name in the Name box. A list of the
dimensions of the cube is displayed in the Dimensions box. Before creating the linked cube, you must decide whether or not to
process the new linked cube immediately after creating it. If you want to process the cube immediately, you must select the
Process after creating new cube check box.

The Multidimensional Data Source dialog box is used to add a new data source to the database. The name field specifies the
name of server on which the new data source resides. The Database list specifies a database on that server. You can test your
connection settings to the server by clicking Test Connection.

Clicking Advanced opens the Data Link Properties dialog box. Use this dialog box to specify a data source when you want to
use nondefault options and properties for connection to the data source. For example, if the logon account for the remote server
is different from the current account, use this dialog box to specify a different user name and password. You can also set other
connection properties by using the Advanced and All tabs of the dialog box.

After the new cube is created, it must be processed before it can be browsed by a client application.

To process a linked cube

Analysis Manager

How to process a linked cube

For more information, see Linked Cube Dialog Box.

See Also

Linked Cubes

Managing Linked Cubes

Analysis Services (SQL Server 2000)

Building a Distributed Partitioned Cube
Building a Distributed Partitioned Cube

A distributed partitioned cube is a regular cube that utilizes remote partitions, distributing query and processing workload across
multiple Analysis servers.

The procedure used to create a distributed partitioned cube starts with the creation of a regular cube. To create a regular cube, use
either the Cube Wizard or Cube Editor.

To start the Cube Wizard

Analysis Manager

Analysis Manager

To build a cube with Cube Editor

Analysis Manager

Analysis Manager

Once the regular cube is created, remote partitions can be created for the cube with the Partition Wizard.

To start the Partition Wizard

Analysis Manager

Analysis Manager

In the Partition Wizard, use the Specify the partition type step to specify local or remote storage for the new partition. To create
a remote partition, select Remote. Next, either select the registered remote Analysis server from the Select the server this
partition will reside on drop-down list, or click the Register server button to register a new remote Analysis server.

Important To create remote partitions, the logon account for the Analysis server service (MSSQLServerOLAPService) must be a
domain user account.

See Also

Cubes

Distributed Partitioned Cubes

Cube Wizard

Cube Editor - Data View

Cube Editor - Schema View

Processing Cubes

Remote Partitions

Analysis Services (SQL Server 2000)

Building a Real-Time Cube
Building a Real-Time Cube

A real-time cube is a regular cube that utilizes relational OLAP (ROLAP) shared dimensions, private dimensions, or partitions
enabled for real-time updates. Real-time cubes support real-time OLAP in Microsoft® SQL Server™ 2000 Analysis Services.

Note Real-time OLAP features require a SQL Server 2000 data source to be used when creating the cube. To use real-time
updates, an Analysis server must use a system administrator account to connect to SQL Server.

If you want to use a ROLAP shared dimension enabled for real-time updates, it is recommended that you create the dimension
before creating the real-time cube. For more information about creating shared dimensions, see Creating Shared Dimensions.

The procedure for creating a real-time cube begins with the creation of a regular cube. To create a regular cube, use either the
Cube Wizard or Cube Editor.

To start the Cube Wizard

Analysis Manager

Analysis Manager

To build a cube with Cube Editor

Analysis Manager

Analysis Manager

If you want to use ROLAP private dimensions or partitions, create these after the regular cube is created. The Cube Editor is used
to create a ROLAP private dimension enabled for real-time updates; the Partition Wizard is used to create ROLAP partitions
enabled for real-time updates.

Note ROLAP partitions must meet certain conditions to be enabled for real-time updates. For more information, see Real-Time
Cubes.

To create a private dimension

Analysis Manager

Analysis Manager

To start the Partition Wizard

Analysis Manager

Analysis Manager

See Also

Cubes

Real-Time Cubes

Cube Wizard

Cube Editor - Data View

Cube Editor - Schema View

Processing Cubes

Analysis Services (SQL Server 2000)

Designing Storage Options and Aggregations
Designing Storage Options and Aggregations

Use the Storage Design Wizard to quickly and easily set storage options and design aggregations for a partition. The wizard
operates on a single partition at a time so that you can select different options and designs for each partition. If you start the
wizard by selecting a multiple-partition cube, the wizard prompts you to select a partition. You can also start the wizard by
selecting a single-partition cube or a partition. The wizard takes you through steps to specify storage and aggregation options for
a partition.

Select a storage option if no aggregations exist or if you choose to replace existing aggregations. Each option is briefly described
in the following table.

Storage option Description
MOLAP Multidimensional OLAP (MOLAP) stores aggregations and a

copy of the partition's source data in a multidimensional
structure on an Analysis server computer.

ROLAP Relational OLAP (ROLAP) stores aggregations in a relational
structure and leaves the partition's source data in its existing
relational structure.

HOLAP Hybrid OLAP (HOLAP) stores aggregations in a
multidimensional structure on an Analysis server computer and
leaves the partition's source data in its existing relational
structure.

Each storage option has advantages and disadvantages. For more information, see Partition Storage.

Aggregations are precalculated summaries of cube data that help enable Microsoft® SQL Server™ 2000 Analysis Services to
provide rapid query responses. Select a method of controlling the number of aggregations the wizard will design, and then let the
wizard design the aggregations.

The goal is to design the optimal number of aggregations. This number should not only provide satisfactory response time, but
also prevent excessive partition size. A greater number of aggregations produces faster response time but it also requires more
storage space. Moreover, as the wizard designs more and more aggregations, earlier aggregations produce considerably larger
performance gains than later aggregations. You can control the number of aggregations the wizard designs by one of the
following methods available in the wizard:

Specify a storage space limit for the aggregations.

Specify a performance gain limit.

Stop the wizard manually when the displayed Performance vs. Size curve starts to level off at an acceptable performance
gain.

For more information about aggregations, see Aggregations.

The final step of the wizard allows you to process or defer processing. Processing creates the aggregations you design with the
wizard, while deferring processing saves the designed aggregations for future processing, thus allowing design activities to
continue without having to process. Depending on the size of the partition, processing may take considerable time.

To start the Storage Design Wizard

Analysis Manager

Analysis Manager

See Also

Partitions

Storage Design Wizard

Analysis Services (SQL Server 2000)

Processing Cubes
Processing Cubes

 New Information - SQL Server 2000 SP3.

When you process a cube, the aggregations designed for the cube are calculated and the cube is loaded with the calculated
aggregations and data. Processing a cube involves reading the dimension tables to populate the levels with members from the
actual data, reading the fact table, calculating specified aggregations, and storing the results in the cube. After a cube has been
processed, users can query it.

Caution Referential integrity of the data warehouse is not verified by Microsoft® SQL Server™ 2000 Analysis Services during
processing. For example, if the cube's fact table contains foreign key values that are not present in a joined dimension table's
primary key column, the rows that contain those values are not processed. In this case, processing does not produce an error
message, but the cube contains incomplete and, therefore, inaccurate data.

Before attempting to browse the cube, you must process the cube if you perform any of the following tasks:

Building the cube and designing its storage options and aggregations.

Changing the cube's structure (measures, dimensions, and so on) and saving the changes to the cube.

Changing the structure of a shared dimension used in the cube.

Also, if data in the cube's data warehouse has been added or changed, processing is recommended in order to ensure accurate
results when browsing the cube.

Note Newly processed cubes are visible to end users only after they reconnect to the server computer.

If cubes or dimensions are based on SQL Server data sources that use Windows Authentication, the logon account for the
MSSQLServerOLAPService service must have permissions to access the data sources. Otherwise, Analysis Services may fail to
process these cubes or dimensions.

Cube Processing Options

Each of the following three processing options is appropriate in different circumstances:

Full Process

Incremental update

Refresh data

In addition to these three mutually exclusive options, you can select a fourth option, Incrementally update the dimensions of
this cube, in conjunction with any of these options. This option allows you to incrementally update the cube's dimensions as part
of the cube processing.

These options are available in the Process a Cube dialog box, which is displayed when you right-click a cube in the Analysis
Manager tree pane and then click Process.

To process a cube

Analysis Manager

Analysis Manager

Depending on the size of your cube, processing may take considerable time. After processing completes but before you close the
Process dialog box, you can view the SQL statement used to process the cube.

To view the SQL statement used to process a cube

Analysis Manager

Analysis Manager

Also, the storage required for temporary files during processing can be substantially larger than the final size of the cube. If

during processing you exhaust the free space of the disk containing your temporary file folder, you can specify a folder on
another disk with more free space.

To change the temporary file folder used by Analysis Services

Analysis Manager

Analysis Manager

Completely Processing a Cube

Full Process is the processing option used to perform a complete load of the cube. All dimension and fact table data is read and
all specified aggregations are calculated. You must process a cube with the Full Process option when its structure is new or when
the cube, its dimensions, or its measures have undergone structural changes. In addition, virtual and linked cubes also require
complete processing after you build them, change their structure, or change one of their shared dimensions. To process a virtual
cube or a linked cube, use the Process dialog box.

To process a virtual cube

Analysis Manager

Analysis Manager

To process a linked cube

Analysis Manager

Analysis Manager

Potential exceptions are cubes in which only changing dimensions have been changed. A changing dimension does not always
require its parent cubes to be processed with the Full Process option after the structure of the dimension is changed. However,
processing with an alternative option may be required. Changing dimensions include virtual, parent-child, and relational OLAP
(ROLAP) dimensions. For more information, see Changing Dimensions.

Processing a cube with the Full Process option can take a substantial amount of time if there is a large fact table and there are
many dimensions with many levels and many items in each level. You do not need to load of dimension information if you use
only preprocessed shared dimensions in cubes.

If there are changes in the data warehouse schema that affect the structure of cubes, you must change the structure of those
cubes and then process them with the Full Process option. If there are changes in or additions to data in the data warehouse, you
do not need to completely process cubes. Such changes can be incorporated into existing cubes using the Incremental update
or Refresh data processing options, depending on how the data changed.

The Full Process option can be used while users continue to query a previously processed cube; however, after processing has
completed, users need to disconnect and reconnect to reestablish access to the cube.

Caution If a shared dimension's structure is updated and saved but not processed, it will be processed automatically when any
cube that incorporates the dimension is processed using the Full Process option. At that time any other cubes that incorporate
the dimension immediately become unavailable to users and must be processed before they can be used again.

Incrementally Updating a Cube

An incremental update is appropriate when new data is to be added to a cube, but existing data has not changed and the cube
structure remains the same. The Incremental update option adds new data and updates aggregations.

An incremental update does not affect the existing data that has already been processed. It usually requires significantly less time
than processing with the Full Process option. An incremental update can be performed while users continue to query the cube;
after the update is complete, users have access to the additional data without having to disconnect and reconnect.

Because an incremental update creates a temporary partition from the new data and merges it into an existing partition, it is
necessary to understand the special considerations that apply to partitions before performing an incremental update.

Refreshing a Cube's Data

The Refresh data option causes a cube's data to be cleared and reloaded and its aggregations recalculated. This option is
appropriate when the underlying data in the data warehouse has changed but the cube's structure remains the same.

The Refresh data option can be performed while users continue to query the cube; after the refresh has completed, users have
access to the updated data without having to disconnect and reconnect.

Incrementally Updating Dimensions

The Incrementally update the dimensions of this cube option causes the cube's dimensions to be incrementally updated
when the cube is processed. This option is valid with the Full Process, Incremental update, or Refresh data option. The
Incrementally update the dimensions of this cube option is appropriate when rows have been added to any of the cube's
dimension tables since the cube or dimension was last processed.

Cube Properties for Processing

Some properties of a cube are used to control its processing. You can set these properties in the properties pane of Cube Editor or
in the Cube Processing Settings dialog box, which is displayed when you click Settings in the Process a Cube dialog box. The
following table describes these properties.

Property name in
Cube Editor

Option in Cube
Processing Settings

dialog box

Description

Processing
Optimization
Mode

Processing Optimization
Mode

If you select Regular in Cube Editor
or After all aggregations are
calculated in the Cube
Processing Settings dialog box,
new cube data is not available until
processing completes. These values
are the defaults. If you select Lazy
Aggregations in Cube Editor or
Immediately after data is loaded
in the Cube Processing Settings
dialog box, new cube data is
available before processing
completes; however, because the
optimizations are not complete
when the new data becomes
available, query performance is
reduced until the optimizations
complete.

Stop Processing
on Key Errors

Stop processing after
encountering missing
dimension key errors or
Ignore all missing
dimension key errors

If you select Yes in Cube Editor or
Stop processing after
encountering missing
dimension key errors in the Cube
Processing Settings dialog box,
processing is halted and canceled
when the specified limit for the
number of dimension key errors is
exceeded. (See Key Error Limit.) A
dimension key error occurs when a
fact table row is encountered that
contains a foreign key value not
present in the joined primary key
column of a dimension table.

If you select No in Cube Editor or
Ignore all missing dimension
key errors in the Cube Processing
Settings dialog box, dimension key
errors never halt and cancel cube
processing regardless of the
number of errors encountered. If
one or more dimension key errors
are encountered, the cube's data
does not reflect the entire fact table.

Key Error Limit Processing will stop after Limit for the number of dimension
key errors. Cube processing is
halted and canceled when the limit
is exceeded. The default is 0. If you
select a higher number and
processing completes, the cube's
data does not reflect the entire fact
table. This property is ignored if you
select No for the Stop Processing
on Key Errors property in Cube
Editor, or if you select or Ignore all
missing dimension key errors in
the Cube Processing Settings
dialog box.

Key Error Log File File path and name Path and file name of the log file for
dimension key errors.

See Also

Changing Dimensions

Cube Processing

Dimension Processing

Incremental Updates and Partitions

Managing Linked Cubes

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

Managing Linked Cubes
Managing Linked Cubes

After a linked cube has been created and processed, it is managed the same way as a normal cube. The only exception to this rule
as that linked cubes cannot be write-enabled. A linked cube contains all of the information of the parent cube. All of the cube's
meta data, such as actions and commands, is available to the subscribed linked cube. However, you must ensure that all user-
defined functions used by the publishing cube are distributed to subscribing cubes.

Note Because user-defined functions are difficult to maintain across an enterprise-wide application, published cubes should not
use user-defined functions.

Linked cubes and their source cubes are synchronized whenever the linked cube is processed. Linked cubes are automatically
synchronized whenever their source cube is changed. This update happens the first time the linked cube connects to a source
cube that has changed since the last time the link cube connected. In some cases, the change may not be detected immediately. In
this situation, you can explicitly process the linked cube to update it.

For more information, see Working with Linked Cubes.

See Also

Linked Cubes

Building a Linked Cube

Analysis Services (SQL Server 2000)

Viewing Cube Data
Viewing Cube Data

Analysis Manager provides Cube Browser for rapid and easy access to your cube data. Cube Browser allows you to quickly
browse multidimensional data in a flattened, two-dimensional grid format.

Cube Browser appears when you right-click a processed cube and then click Browse Data, or when you click Browse Sample
Data in the last step of the Cube Wizard.

Cube Browser functions identically to the Data tab in Cube Editor. An exception is that you cannot use Cube Browser to view
sample data for an unprocessed cube unless you display Cube Browser from the Cube Wizard. If you right-click an unprocessed
cube and then click Browse Data, Cube Browser does not present any data for viewing. For more information about browsing
unprocessed cubes and the Data tab of Cube Editor, see Browsing an Unprocessed Cube and Cube Editor - Data View.

Analysis Services (SQL Server 2000)

Browsing Cube Data
Browsing Cube Data

When you browse cube data, you can view different dimensions, drill down into members, and slice through dimensions.

Changing the Dimensions

You can quickly change the data viewing pane by dragging a dimension from the data slicing pane to the data viewing pane. For
example, using the Sales cube in the sample FoodMart 2000 database, to view profit totals by store location for each product
category, perform the following steps:

1. Drag the Store dimension to the Measures dimension located on the row axis.

2. Drag the Product dimension to the Customers dimension located on the column axis.

Cube Browser should now look like this.

For more information about these kinds of operations, see Cube Browser.

Drilling Down into Members

To drill down into a particular member, double-click the member. In the previous example, to drill down into the details of the
USA store profit numbers, double-click USA on the row axis. Cube Browser should now look like this.

To further drill down into USA store profit by individual drink categories, double-click Drink on the column axis. Cube Browser
should now look like this.

Drill down as deep into your cube data as the levels or Cube Browser memory allows.

Cube Browser has an internal memory limit, which you may reach if you attempt to browse too much data or drill down too
deeply. When you reach the limit, the following message is displayed:

Unable to display current view of cube.
Unable to Allocate Memory For Flexgrid.

The limit cannot be increased by adding or allocating more memory. If you reach the limit, reduce the amount or depth of data
you are attempting to browse or use another browser.

Slicing Through Cube Dimensions

To filter the cube data, select a member from a members box. In the preceding example, to view the data for only small grocery
stores, click the Store Type members box, expand the members, and then click Small Grocery.

Slicing Through Time Dimensions

To view small grocery store profit in the second quarter of 1997, click the Time members box, expand the members, and then
click Q2 under 1997.

Analysis Services (SQL Server 2000)

Browsing an Unprocessed Cube
Browsing an Unprocessed Cube

Cube Browser does not display data for an unprocessed cube. (An exception is that when you create a new cube in the Cube
Wizard and click Browse Sample Data in the wizard's last step, Cube Browser displays sample data.) Sample data is generated
during cube editing sessions so that you can view the impact of your changes without having to process the cube after each
change.

If a cube has not been processed since it was last changed, the following message appears when you open Cube Browser by
right-clicking a cube and then clicking Browse Data:

Unable to browse the cube 'cube-name'.
Cube not processed. To browse sample data for this cube, open
Cube Editor, and then on the View menu, click Data.

If you receive this message, you have two options.

First, you can close Cube Browser, process the cube, and then browse it with Cube Browser. However, cube processing can take
considerable time. For more information about processing cubes, see Processing Cubes.

Second, you can close Cube Browser and browse sample data in Cube Editor. Browsing sample data enables you to preview the
structure of a cube without viewing its actual data.

To browse sample data in Cube Editor

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating Security Roles
The following topics describe how to enable end users to access cube data through client applications. For information about
enabling administrators to access cube data and meta data and to perform administrative functions, see Administrator Security.

Topic Description
Creating Database Roles Identifies ways of creating database roles.
Creating Cube Roles Describes ways of creating cube roles, changing their

default values, and specifying their cell security.
Creating Mining Model Roles Describes ways of creating mining model roles and

changing their default values.
Defining Custom Rules for
Dimension Security

Describes creating custom rules in database and cube
roles.

Defining Custom Rules for Cell
Security

Describes ways of creating custom rules.

Microsoft® SQL Server™ 2000 Analysis Services uses Microsoft Windows NT® 4.0 or Microsoft Windows® 2000 user accounts
and groups to define roles for end user access to Analysis Services databases and cube data. Essentially, you combine user
accounts and groups into roles and then assign the roles to cubes. Set up these user accounts and groups in Windows NT 4.0
User Manager or Windows 2000 Computer Management before you create roles in Analysis Services.

The three types of roles included in Analysis Services are database, cube, and mining model roles.

The database role is defined at the Analysis Services database level; it can be assigned to multiple cubes in the database, thereby
granting the role's users access to these cubes. Such an assignment creates a cube role with the same name as the database role.
A database role provides defaults for cube roles of the same name. Use Database Role Manager to maintain database roles.

The cube role is created at the cube level when a database role is assigned to a cube; a cube role applies to only that cube.
Defaults in a cube role are derived from the database role of the same name, but some of these defaults can be overridden in the
cube role. A cube role contains additional options such as cell security that are not contained in a database role. Use Cube Role
Manager to maintain cube roles.

To implement cube-specific security using roles, perform two procedures:

1. Create database roles by combining user accounts and groups and specifying the kind of access the roles are allowed.

2. For each cube in the database, create cube roles by selecting the database roles that can access the cube. You can then
change the defaults of the cube roles. These defaults are provided by the database roles.

The mining model role is created at the mining model level when a database role is assigned to a mining model; a mining model
role applies to only that mining model. Defaults in a mining model role are derived from the database role of the same name, but
some of these defaults can be overridden in the mining model role.

The default access provided by roles is read (that is, read-only), but you can also grant read/write access to select database or
cube roles if a cube or dimension is write-enabled.

A write-enabled cube allows users in roles with read/write access to save changes to the cube's data. However, because the
changes are saved separately from the original cube data, they affect only displayed cube data and can be deleted if necessary.
The separately stored changes are called writeback data. A write-enabled dimension allows users in roles with read/write access
to update the dimension's members. These changes are recorded directly in the dimension table.

See Also

Cube Role Manager

Database Role Manager

Database, Cube, and Mining Model Roles

Data Mining Models

Maintaining Write-Enabled Cubes and Writeback Data

Mining Model Role Manager

Security and Authentication

Write-Enabled Cubes

Write-Enabled Dimensions

Analysis Services (SQL Server 2000)

Creating Database Roles
Creating Database Roles

After you have defined the necessary Microsoft® Windows NT® 4.0 or Windows® 2000 user accounts and groups, you can
create database roles.

Note Some values in a database role can be overridden in cube roles of the same name.

To create a database role, use Database Role Manager and the Database Role dialog box.

How to create a database role

Analysis Manager

Analysis Manager

See Also

Database Role Dialog Box

Database Role Manager

Database Security

Analysis Services (SQL Server 2000)

Creating Cube Roles
Creating Cube Roles

For each cube in the database, select the database roles that can access it. Each selection creates a cube role with the same name
as the database role. A cube role's defaults are derived from the selected database role, but you can change some of the default
values in the cube role.

Alternatively, you can create a cube role without selecting an existing database role. This action creates a database role with the
same name as the new cube role.

In a cube role, you can also specify cell security, which cannot be defined in database roles. Specifying cell security is optional.

To create a cube role, change its default values, and specify cell security, use Cube Role Manager and the Cube Role dialog box.

To create a cube role, change its default values, and specify cell security

Analysis Manager

Analysis Manager

After you change a cube role for a cube, you must process dependent virtual cubes to provide users continuing access to them.
(This processing is much faster than processing the component cubes if the structures of the component cubes have not changed
since their last processing.) When you change the cube role, virtual cube users connected to the server computer are unaffected
as long as they remain connected. However, until you process the dependent virtual cubes, users who connect cannot see them.

See Also

Cell Security

Creating Database Roles

Cube Role Dialog Box

Cube Role Manager

Cube Security

Analysis Services (SQL Server 2000)

Creating Mining Model Roles
Creating Mining Model Roles

To create mining model roles, for each mining model in the database, select the database roles that can access the model. Each
selection creates a mining model role with the same name as the database role. A mining model role's defaults are derived from
the selected database role, but you can change some of the default values in the mining model role.

Alternatively, you can create a mining model role without selecting an existing database role. This action creates a database role
with the same name as the new mining model role.

To create a mining model role and change its default values, use Mining Model Role Manager and the Mining Model Role
dialog box.

To create a mining model role and change its default values

Analysis Manager

Analysis Manager

See Also

Mining Model Role Manager

Mining Model Role Dialog Box

Analysis Services (SQL Server 2000)

Defining Custom Rules for Dimension Security
Defining Custom Rules for Dimension Security

A custom rule is the most flexible type of rule for controlling access to dimension members by users in a role. In a custom rule,
you can allow and deny access to specific dimension levels and members. You can also control visual totals and select a default
member.

You can create a custom rule for dimension security in a database role or in a cube role. Custom rules in a cube role override
custom rules in the database role of the same name.

To create a custom rule in a database role, use Database Role Manager, the Database Role dialog box, and the Custom
Dimension Security dialog box.

To create a custom rule for dimension security in a database role

Analysis Manager

Analysis Manager

To create a custom rule in a cube role, use Cube Role Manager, the Cube Role dialog box, and the Custom Dimension Security
dialog box.

To create a custom rule for dimension security in a cube role

Analysis Manager

Analysis Manager

See Also

Cube Role Dialog Box

Custom Rules in Dimension Security

Database Role Manager

Analysis Services (SQL Server 2000)

Defining Custom Rules for Cell Security
Defining Custom Rules for Cell Security

A custom rule is the most flexible type of rule for controlling access to cube cells by users in a cube role. In a custom rule, you can
allow or deny access to any combination of cube cells. For each cell permission in the cube role, you can allow access to some
cells and deny access to others.

To create a custom rule for cell security, use Cube Role Manager, the Cube Role dialog box, and the Cube Cell Security dialog
box.

To create a custom rule for cell security

Analysis Manager

Analysis Manager

See Also

Cube Role Dialog Box

Custom Rules in Cell Security

Analysis Services (SQL Server 2000)

Managing Partitions
Partitions must be created and managed correctly to avoid inconsistent or inaccurate results. This requirement applies to
multiple-partition cubes. It also applies when you incrementally update any cube, including a single-partition cube, because an
incremental update creates a temporary partition and merges it into an existing partition.

The integrity of a cube's data relies on the data being distributed among the partitions of the cube such that no data is duplicated
among the partitions. When data is summarized from the partitions, any data elements that are present in more than one
partition will be summarized as if they were different data elements. This can result in incorrect summaries and erroneous data
provided to the end user. For example, if a sales transaction for Product X is duplicated in the fact tables for two partitions,
summaries of Product X sales can include a double accounting of the duplicated transaction.

Partitions can be merged; you can use this feature in your overall storage and data update strategy. Partitions can be merged only
if they have the same storage mode and aggregation design. To create partitions that are candidates for later merging, you can
copy the aggregation design of another partition when you create partitions. You can also edit a partition after it has been created
to copy the aggregation design of another partition. Merging partitions must also be performed carefully to avoid duplication of
data in the resulting partition, which can cause cube data to be inaccurate.

When you are creating or merging partitions, you may need to perform manual operations on underlying dataor create
appropriate filters to ensure that the partitions of the cube always contain the correct data. This topic addresses issues and
precautions to be aware of when you are creating or merging partitions or performing incremental updates of cubes.

Topic Description
Creating Partitions Contains information about how to partition data using filters

or different fact tables without duplicating data.
Merging Partitions Contains information about how to merge partitions that have

different fact tables or different data slices without duplicating
data.

See Also

Incremental Updates and Partitions

Analysis Services (SQL Server 2000)

Creating Partitions
Creating Partitions

You can use the Partition Wizard to create additional partitions in a cube. You can specify which portion of a cube's data is
allocated to a partition in two ways:

Assign the partition a fact table that is different from those used by the cube's other partitions

Filter data in a fact table used by multiple partitions

For more information, see Different Fact Tables for Partitions and Same Fact Table for Multiple Partitions.

Regardless of the method you use to specify the data for a partition, you must ensure that data is not duplicated among a cube's
partitions.

Note You can create multiple partitions in a cube only if you install Analysis Services for Microsoft® SQL Server™ 2000
Enterprise Edition.

To start the Partition Wizard

Analysis Manager

Analysis Manager

See Also

Partition Wizard

Analysis Services (SQL Server 2000)

Different Fact Tables for Partitions
Different Fact Tables for Partitions

When you create a partition for a cube, you can choose to use the fact table specified for the default partition of the cube, or you
can select a different fact table. All fact tables and dimensions for a cube's partitions must have the same structure as the fact
table and dimensions of the cube. For example, different fact tables can have the same structure but contain data for different
years or different product lines.

When you use different fact tables for the partitions of a cube, ensure that no data is duplicated among the fact tables. For
example, if one fact table contains transactions for only 1997 and another fact table contains transactions for only 1998, they
contain independent data. Similarly, fact tables for distinct product lines or distinct geographical areas are independent.

It is possible but not recommended to use different fact tables that contain duplicated data. In this case, you must use filters in the
partitions to ensure that data used by one partition is not used by any other partition.

Note Merging partitions that have different fact tables requires special consideration and attention. For more information, see
Fact Table Considerations When Merging Partitions.

See Also

Partition Structure

Analysis Services (SQL Server 2000)

Same Fact Table for Multiple Partitions
Same Fact Table for Multiple Partitions

When the same fact table is used for more than one partition in a cube, it is important that the same rows are not used in more
than one partition. It is possible for a row that is used in more than one partition to be included multiple times when the cube is
processed or queried; this can cause queries to return incorrect data.

You can use filters in partitions to ensure that data is not duplicated among the partitions. A partition's filter specifies which data
in the fact table is used in the partition. It is important that the filters for all partitions in a cube extract mutually exclusive datasets
from the fact table. For example, these filters are mutually exclusive within each set:

Set 1:

"SaleYear" = 1997
"SaleYear" = 1998

Set 2:

"Continent" = 'NorthAmerica'
"Continent" = 'Europe'
"Continent" = 'SouthAmerica'

Set 3:

"Country" = 'USA'
"Country" = 'Mexico'
("Country" <> 'USA' AND "Country" <> 'Mexico')

When you create mutually exclusive filters for partitions, ensure that the combined partition data includes all data you want to
include in the cube.

See Also

Partition Filters and Incremental Update Filters

Analysis Services (SQL Server 2000)

Data Slice
Data Slice

A data slice is an optimization feature that helps direct queries to the data of the appropriate partitions. A data slice is not a
substitute for or an alternative to a partition's filter. That is, a data slice should not be used to limit the data selected from the
partition's fact table and included in the partition. You can specify a data slice when you create a partition using the Partition
Wizard.

A data slice of a partition should reflect as closely as possible the data in the partition. For example, if a partition is limited to 1997
data, the partition's data slice should specify the 1997 member of the Time dimension. It is not always possible to specify a data
slice that reflects the exact contents of a partition. For example, if a partition contains data for only January and February, but the
levels of the Time dimension are Year, Quarter, and Month, there is no way in the Partition Wizard to select both the January and
February members. In such cases, select the parent of the members that reflect the partition's contents. In this example, select
Quarter 1.

When the partitions of a cube contain data slices, Microsoft® SQL Server™ 2000 Analysis Services can more efficiently determine
which partitions must be accessed to resolve queries on the cube.

Although a data slice sometimes modifies the WHERE clause that is used to populate a partition, this does not always occur. For
this reason, whenever it is necessary to limit the data selected from a partition's fact table, you must use a filter, not a data slice.

You cannot slice partitions on a ROLAP dimension.

See Also

Merging Partitions That Have Data Slices

Same Fact Table for Multiple Partitions

Analysis Services (SQL Server 2000)

Merging Partitions
Merging Partitions

The ability to merge partitions can be a powerful option, but care must be taken to fully understand both the process of merging
and ways to ensure that the merge operation produces your intended results.

To ensure that partitions can be merged at a later time, when you create the partitions, you must take into account certain
restrictions on merging partitions. Partitions can be merged only if they meet all the criteria listed here:

They are in the same cube

They have the same structure (the default situation)

They are stored in the same mode (MOLAP, HOLAP, or ROLAP)

They contain identical aggregation designs

Remote partitions can be merged only with other remote partitions that are defined with the same remote Analysis server.

To create a partition that is a candidate for future merging, when you create the partition in the Partition Wizard, you can choose
to copy the aggregation design from another of the cube's partitions. This ensures that these partitions have the same
aggregation design; when they are merged, the aggregations of the source partition are combined with the aggregations in the
target partition.

To merge two partitions

Analysis Manager

Analysis Manager

See Also

Partition Wizard

Partition Storage

Analysis Services (SQL Server 2000)

Fact Table Considerations When Merging Partitions
Fact Table Considerations When Merging Partitions

When you merge partitions, the filters of both partitions are combined using OR to create a filter for the resulting partition. This
combined filter specifies the set of facts used in the resulting partition. If the source partition and target partition use the same
fact table, the combined filter specifies the fact table data that is appropriate to the resulting partition. Because the facts necessary
for the resulting partition are present in the fact table, no further action is necessary.

Important Fact tables are not merged automatically when you merge partitions. You must manually merge fact tables when the
partitions being merged have different fact tables.

When you merge partitions that use different fact tables, the resulting partition refers only to the original fact table of the target
partition. You must manually merge the facts from the fact table of the source partition into the fact table of the target partition. If
this manual step is not performed, the partition does not contain complete information.

MOLAP Partitions

When multidimensional (MOLAP) partitions are merged, the facts stored in the multidimensional structures of the partitions are
also merged. This results in an internally complete and consistent partition. However, the facts stored in MOLAP partitions are
copies of facts in the fact table. When the partition is subsequently processed, the facts in the multidimensional structure are
deleted and data is copied from the fact table as specified by the partition's filter. If the source partition uses a different fact table
from the target partition, the fact table of the source partition must be manually merged with the fact table of the target partition
to ensure that a complete set of data is available when the resulting partition is processed.

Caution A merged MOLAP partition with an incomplete fact table contains an internally merged copy of fact table data and
operates correctly until it is processed.

HOLAP and MOLAP Partitions

When hybrid OLAP (HOLAP) or relational OLAP (ROLAP) partitions that have different fact tables are merged, the fact tables are
not automatically merged. Unless the fact tables are manually merged, only the fact table associated with the target partition is
available to the resulting partition. Facts associated with the source partition are not available for drilldown in the resulting
partition, and when the partition is processed, aggregations do not summarize data from the unavailable table.

Caution A merged HOLAP or ROLAP partition with an incomplete fact table contains accurate aggregations, but incomplete
facts. Queries that refer to missing facts return incorrect data. When the partition is processed, aggregations are computed only
from available facts.

The absence of unavailable facts might not be noticed unless a user attempts to drill down to a fact in the unavailable table or
executes a query that requires a fact from the unavailable table. Because aggregations are combined during the merge process,
queries whose results are based only on aggregations return accurate data, whereas other queries may return inaccurate data.
Even after the resulting partition is processed, the missing data from the unavailable fact table may not be noticed, especially if it
represents only a small portion of the combined data.

Fact tables can be merged before or after merging the partitions. However, the aggregations will not accurately represent the
underlying facts until both operations have been completed. It is recommended that you merge HOLAP or ROLAP partitions that
access different fact tables when users are not connected to the cube containing these partitions.

Analysis Services (SQL Server 2000)

Merging Partitions That Have Data Slices
Merging Partitions That Have Data Slices

When you merge partitions that have data slices specified in the Partition Wizard, the resulting partition can contain unexpected,
incorrect data after it is processed. To prevent this, you can create a filter that specifies the data in the resulting partition.

For example, a cube containing information about three soft drink products has three partitions that use the same fact table.
These partitions have data slices based on product. Partition 1 contains data about [ColaFull], Partition 2 contains data about
[ColaDecaf], and Partition 3 contains data about [ColaDiet]. If Partition 3 is merged into Partition 2, the data in the resulting
partition (Partition 2) is correct and the cube data is accurate. However, when Partition 2 is processed, if it does not have a filter, its
content may be determined by the parent of the members at the product level. This parent, [SoftDrinks], also includes [ColaFull],
the product in Partition 1. Processing Partition 2 loads the partition with data for all soft drinks, including [ColaFull]. The cube then
contains duplicate data for [ColaFull] and returns incorrect data to end users.

In this example, after merging Partition 3 into Partition 2, you can provide a filter such as ("Product" = 'ColaDecaf' OR "Product" =
'ColaDiet') in the resulting Partition 2 to specify that only data about [ColaDecaf] and [ColaDiet] be extracted from the fact table,
and that data pertaining to [ColaFull] be excluded. Alternatively, you can specify filters for Partition 2 and Partition 3 when they
are created, and these filters will be combined during the merger process. In either case, after the partition is processed, the cube
does not contain duplicate data.

See Also

Data Slice

Analysis Services (SQL Server 2000)

Enhancing Dimensions with Optional Features
Dimensions can be enhanced with a number of features designed to increase functionality, such as member properties, custom
rollup operators, custom member formulas, and member groups. Member properties are a way to associate additional attributes
with dimension members. Custom rollup operators allow you to control the way in which aggregate values are calculated from
child members. Custom member formulas allow you to specify Multidimensional Expressions (MDX) formulas to specify cell
values that override the aggregate values of measures. Member groups provide a way of grouping large numbers of members
without adding levels.

Topic Description
Creating Member Properties Contains information about member properties

and how to use them.
Using Custom Rollup Operators Describes custom rollup operators and how to

use them.
Creating Custom Member
Formulas

Describes custom member formulas and the
steps to take before you create them.

Creating Member Groups Contains information about member groups and
how to process their dimensions or cubes
depending on different property settings.

Creating Dimensions with Multiple
Hierarchies

Describes dimensions with multiple hierarchies
and the ways to create them.

Adding Hierarchies to Existing
Dimensions

Describes the process of adding hierarchies to
existing dimensions.

See Also

Custom Rollup Formulas and Custom Member Formulas

Member Groups

Member Properties

Analysis Services (SQL Server 2000)

Creating Member Properties
Creating Member Properties

Member properties are attributes associated with members. A member is an item in a dimension level. A member property is
created in a dimension for the purpose of providing end users with additional information about members. The information is
typically less important to end users than the members themselves and does not qualify as a level within the dimension. For
example, if a Time dimension contains Year, Month, and Day levels, and the data of the dimension table spans one full calendar
year, the Month level contains 12 members: January through December. If the data of the Time dimension table spans two full
calendar years, the Month level contains 24 members. Thus, members need not be unique values within a dimension level.
Member properties are optional components of dimensions and cubes.

A member property is an attribute associated with a member. For example, each member of the Month level has an associated
Boolean member property called Bonus Month. It records whether bonuses are awarded during the month because they are not
awarded at a regular frequency. In months in which bonuses are awarded, Bonus Month equals –1, or TRUE; in the remaining
months, Bonus Month equals 0, or FALSE.

A member property is stored in a column in the same table as the dimension level containing the members. For example, Bonus
Month is stored in the same table as the Month level.

You can create a member property by inserting it into the level that contains the members with which the member property is
associated. For example, Bonus Month is defined inside the Month level.

For example, before Bonus Month existed as a member property, it existed as a column in the Time dimension table. End users
requested that Bonus Month be added to some cubes. However, it was inappropriate to add Bonus Month as a level because it is
not a natural component of the Time dimension hierarchy. If Bonus Month had been added as a level, end users would have
drilled down, for example, from Month to Bonus Month to Day, experiencing an awkward and confusing presentation. Because
Bonus Month is associated with members of the Month level, the solution was to create the Bonus Month member property by
inserting it in the Month level. Consequently, end users can now display Bonus Month values, for example, by right-clicking
Month values, and the basic Time dimension hierarchy is undisturbed.

Before you create a member property in a dimension level with a source column containing nonunique values, you must ensure
that each member in the level can have only one value for each member property. Otherwise, member property values will be
incomplete and misleading because only one value can be displayed for each member. For example, values in the source column
of the Salesperson level are not unique. Each Salesperson can have only one Manager, so Manager is a valid member property in
the Salesperson level. However, a Salesperson can work in multiple Regions, so Region is not a valid member property. If Region
were defined as a member property, it would display only one Region to end users, even for Salespersons who work in multiple
Regions.

You can create member properties in both private dimensions and shared dimensions. To create a member property in a private
dimension, you can create them in Cube Editor for the cube containing the private dimension, or you can use the Decision
Support Objects (DSO) library in a client application that creates an object of ClassType clsMemberProperty. To create a
member property in a shared dimension, use Dimension Editor.

To create a member property in a shared dimension

Analysis Manager

Analysis Manager

After you create a member property in a shared dimension, you must process the dimension with the Incremental update
option. For more information, see Updating and Rebuilding Shared Dimensions.

In order to access the member property, users must then reconnect to the server computer.

Note Member properties in shared dimensions are not visible in the Analysis Manager tree pane. You must use Dimension
Editor to view, create, update, or delete them.

Member properties can also be used in the creation of virtual dimensions.

See Also

clsMemberProperty

Cube Editor - Data View

Cube Editor - Schema View

Dimension Editor - Data View

Dimension Editor - Schema View

Member Properties

Virtual Dimensions

Working with Dimensions and Levels

Analysis Services (SQL Server 2000)

Using Custom Rollup Operators
Using Custom Rollup Operators

Custom rollup operators provide a simple way to control how member values are rolled up to their parent's values. When custom
rollup operators are assigned to the name of a column, either when creating them as an optional feature of new parent-child
dimensions in Dimension Wizard or adding them to existing dimensions in Dimension Editor or Cube Editor, the contents of that
column are used as the custom rollup operator for the member. This custom rollup operator is applied to the member when
evaluating the value of the member's parents.

In Dimension Editor, values for the custom rollup operators are stored in the Unary Operator Column property of the level and
are applied to each member.

Custom rollup operators provide similar but simplified functionality of custom rollup formulas. In comparison to custom rollup
formulas, which use Multidimensional Expressions (MDX) expressions to determine how the members are rolled up, the custom
rollup operator uses simple math operators to determine how the value of a member affects the parent. However, the value of the
custom rollup operator is unique for each level member, while a custom rollup formula applies to all level members.

In relation to a dimension's custom member formulas, custom member formulas of the preceding level override a level's custom
rollup operators. However, the custom rollup operators of a level override the custom rollup expression of the previous level.

The following table lists available custom rollup operators and describes how they behave when they are applied to a level.

Custom rollup
operator

Description

+ The value of the member is added to the aggregate value of the
preceding sibling members.

- The value of the member is subtracted from the aggregate value
of the preceding sibling members.

* The value of the member is multiplied by the aggregate value of
the preceding sibling members.

/ The value of the member is divided by the aggregate value of the
preceding sibling members.

~ The value of the member is ignored.

Note Blank values and any other values not found in the table are treated as the plus sign (+) unary operator. There is no
operator precedence, so the order of members as stored in the unary operator column determines the order of evaluation. To
change the order of evaluation, create a new member property, set its Type property to Sequence, and assign sequence numbers
corresponding to the order of evaluation in its Source Column property.

Besides being able to create new custom rollups for parent-child dimensions in the Dimension Wizard, you can create custom
rollups for existing shared or private dimensions.

To create a custom rollup operator for a shared dimension

Analysis Manager

Analysis Manager

To create a custom rollup operator for a private dimension

Analysis Manager

Analysis Manager

Note If a dimension with a custom rollup operator is included in a cube that has a measure where the value of its Aggregate
Function property is set to Distinct Count, an error will occur when the cube is saved. This is due to invalid cube structure.

See Also

Creating Custom Member Formulas

Custom Rollup Formulas and Custom Member Formulas

Dimension Wizard

Analysis Services (SQL Server 2000)

Creating Custom Member Formulas
Creating Custom Member Formulas

Custom member formulas determine the cell values associated with members and override the aggregate functions of measures.
They are written in Multidimensional Expressions (MDX). Each custom member formula applies to a single member. Custom
member formulas are stored in the dimension table.

Custom member formulas can include MDX functions in Microsoft® SQL Server™ 2000 Analysis Services and some Microsoft
Visual Basic® for Applications functions. Custom member formulas can also include some functions from the Microsoft Excel
worksheet function library if it is installed. If installed, this library is registered automatically. Other functions are also supported if
their libraries are installed and registered. For more information about installing and registering custom function libraries, see
Register Function Libraries Dialog Box.

Before you can create custom member formulas for a level, you must first create or select a column in the dimension table to
store the custom member formulas. To create or select a column for an existing dimension, use the Define Custom Member
Column dialog box.

To create or select a column to store custom member formulas

Analysis Manager

Analysis Manager

After you create or select a column to store the custom member formulas, you can begin creating the custom member formulas.
If the dimension is write-enabled, you can use the custom member formula pane of Dimension Editor or Dimension Browser to
create a custom member formula. (This procedure requires that the write-enabled dimension be included in a cube that was
processed since the dimension last changed.) If the dimension is not write-enabled, you must use a tool other than Analysis
Manager to insert custom member formulas into the column. The Decision Support Objects (DSO) library supports this
functionality through the CustomRollupExpression property of the Level interface. For more information about the
CustomRollupExpression property, see CustomRollupExpression (Level Interface).

To create a custom member formula in a write-enabled dimension

Analysis Manager

Analysis Manager

After custom member formulas are created or updated in a shared dimension, it must be processed with the Incremental
update option. After custom member formulas are created or updated in a private dimension, its cube must be processed with
the Refresh data option. Exceptions are write-enabled dimensions whose custom member formulas are created or updated in
Analysis Manager or through client applications; these dimensions and the cubes that contain them do not require subsequent
processing. For more information, see Updating and Refreshing Cube Data and Updating and Rebuilding Shared Dimensions.

Note If a cube has multiple custom member formulas, they are evaluated in the order that the dimensions are included in the
cube. Therefore, if you want to change the order in which custom member formulas are evaluated in the cube, change the order
of the dimensions in Cube Editor. If you have dimensions with custom member formulas that need to be evaluated first and you
want to move them to the top of the tree, use the tree pane to delete and then add them again to the cube. You can use the same
technique to move other dimensions with custom member formulas within the tree pane so that they correspond to the order of
their evaluation.

See Also

Cube Editor - Data View

Cube Editor - Schema View

Custom Rollup Formulas and Custom Member Formulas

Define Custom Member Column Dialog Box

Dimension Editor - Data View

Dimension Editor - Schema View

MDX

Analysis Services (SQL Server 2000)

Creating Member Groups
Creating Member Groups

A dimension level can contain member groups, which are system-generated parents of collections of consecutive dimension
members. End users see no difference between member groups and ordinary members.

Member groups can provide an intermediate level for drilldown between a level with few members and one with numerous
members. They can also be used to satisfy the requirement of having no more than 64,000 members under a parent member.

You can choose to create member groups automatically in regular dimensions while you are creating them with the Dimension
Wizard. This option is available only for member groups immediately above the lowest level of the dimension. To select this
option, in the Specify storage mode and create member groups step of the wizard, select Create member groups
automatically.

To create member groups in an existing dimension, create a copy of the level that contains the numerous or excess members
immediately above the original. Then create member groups in the new level, which you can hide if you don't want end users to
see the new level.

Important Members of the level used to create member groups must have unique names. Set the Member Names Unique
property to True for the level in Dimension Editor or Cube Editor before you create member groups.

Member groups rely on the Order By property of the level that contains their children. This property specifies the sort order of
displayed members. Within this sort order, a member group's children are consecutive.

To create member groups in an existing dimension, use Dimension Editor or Cube Editor.

To create member groups

Analysis Manager

Analysis Manager

After you create member groups in a shared dimension, you must process the dimension. If the dimension's Changing property
was set to True before you created the member groups, process the dimension with the Incremental update option. If the
dimension's Changing property was set to False prior to the creation of the member groups, process the dimension with the
Rebuild the dimension structure option.

After you create member groups in a private dimension, you must process the cube. If the dimension's Changing property was
set to True before you created the member groups, process the cube with the Refresh data option. If the dimension's Changing
property was set to False before you created the member groups, process the cube with the Process option.

See Also

Cube Editor - Data View

Cube Editor - Schema View

Dimension Editor - Data View

Dimension Editor - Schema View

Member Groups

Processing Cubes

Updating and Rebuilding Shared Dimensions

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

Creating Dimensions with Multiple Hierarchies
Creating Dimensions with Multiple Hierarchies

Multiple hierarchies can be created for a dimension to provide alternative views of dimension members. For example, a time
dimension that has two hierarchies can consist of a regular calendar view and a fiscal calendar view.

In Microsoft® SQL Server™ 2000 Analysis Services, a dimension with multiple hierarchies is actually two or more separate
dimensions that can share dimension tables and may share the same aggregations. Using multiple hierarchies helps optimize
building aggregations in Analysis Services.

Unlike dimensions with a single hierarchy, the naming schema requires a period to indicate the presence of more than one
hierarchy. (Dimensions with a single hierarchy can use a period and a hierarchy name part, but this is optional.) In the previous
example, when a time dimension is defined to provide a regular calendar view and a fiscal calendar view, the resulting names can
be Time.Calendar and Time.Fiscal.

Important When creating dimensions with multiple hierarchies, the hierarchy part of the name should not equal any current or
future level name or member name in the dimension because queries using the dimension may be ambiguous.

To help minimize disruption to cubes, it is helpful to identify dimensions with multiple hierarchies before they are deployed. One
way to do this is to name the dimension with a period and a hierarchy name part at the time of creation. Additional hierarchies
can then be created by using the same dimension name part followed by the period and the hierarchy name part.

Dimensions that have multiple hierarchies can be created in the Dimension Wizard or Dimension Editor. For each hierarchy that is
being created, the process is similar to creating a new dimension.

To create a dimension with multiple hierarchies using the Dimension Wizard

Analysis Manager

Analysis Manager

To create a dimension with multiple hierarchies using Dimension Editor

Analysis Manager

Analysis Manager

Multiple hierarchies can also be added to existing dimensions with some limitations. For more information, see Adding
Hierarchies to Existing Dimensions.

See Also

Dimension Hierarchies

Analysis Services (SQL Server 2000)

Adding Hierarchies to Existing Dimensions
Adding Hierarchies to Existing Dimensions

Two approaches can be used to add a hierarchy to an existing dimension. The first can be used if a hierarchy has already been
defined for an existing dimension, and the second is used when no hierarchies have been defined. Both approaches involve using
Dimension Editor.

The first approach involves editing an existing dimension with a defined hierarchy and saving it as a new dimension with a new
hierarchy. The name part of the existing dimension is used followed by a period and a new hierarchy name part.

The second approach uses an existing dimension as the template for new dimensions with multiple hierarchies. If you are adding
multiple hierarchies to an existing dimension that has no defined hierarchies, you can base the additional hierarchies on the
existing dimension by renaming the dimension with a new dimension name part, a period, and a hierarchy name part. To create
the next hierarchy, you use the new dimension name part followed by the period and a different hierarchy name part.

Important When creating dimensions with multiple hierarchies, the hierarchy part of the name should not equal any current or
future level name or member name in the dimension because queries using the dimension may be ambiguous.

To add a hierarchy to an existing dimension

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Enhancing Cubes with Optional Features
Microsoft® SQL Server™ 2000 Analysis Services offers many powerful optional features you can use to enhance the analysis
performed in cubes and the presentation of cube data. There are additional optional features for dimensions that further enhance
cube capabilities. For more information, see Enhancing Dimensions with Optional Features.

Topic Description
Creating Calculated Members Contains information about using function

libraries to create members that display values
calculated at run time.

Creating Calculated Cells Describes using calculated cells to create a
multidimensional section of cells, defined by a
Multidimensional Expressions (MDX) set
expression, to which an MDX value expression is
selectively applied depending upon a condition
described by an MDX logical expression.

Creating Named Sets Contains information about different options for
creating sets of dimension members or set
expressions that you can use in MDX queries.

Creating Actions Describes different types of actions, which you
can create to provide end users with ways to view
and even interact with data sources.

Maintaining Write-Enabled Cubes
and Writeback Data

Contains information about configuring cube data
so that end users can make changes to it.

Specifying Drillthrough Options Describes ways to allow users to see the source
data for a cube cell.

Analysis Services (SQL Server 2000)

Creating Calculated Members
Creating Calculated Members

You can create customized measures or dimension members, called calculated members, by combining cube data, arithmetic
operators, numbers, and/or functions. For example, you can create a calculated member called Marks that converts dollars to
marks by multiplying an existing dollar measure by a conversion rate. Marks can then be displayed to end users in a separate row
or column.

Calculated member definitions are stored, but their values exist only in memory. In the preceding example, values in marks are
displayed to end users but are not stored as cube data.

You can create calculated members in regular or virtual cubes. For more information, see Creating Calculated Members in
Regular Cubes and Creating and Maintaining Calculated Members in Virtual Cubes.

To create a calculated member, use Calculated Member Builder. It enables you to specify the following options for the calculated
member:

Parent dimension

Select the parent dimension to include the calculated member. Dimensions are descriptive categories by which the numeric
data (that is, measures) in a cube can be separated for analysis. In tabular browsers, dimensions provide the column and
row headings displayed to end users when they browse a cube's data. (In graphical browsers, they provide other types of
descriptive labels but with the same function as in tabular browsers.) A calculated member provides a new heading (or
label) in the parent dimension you select.

Alternatively, you can include the calculated member in the measures instead of a dimension. This option also provides a
new column or row heading, but it is attached to measures in the browser.

Parent member

Select a parent member to include the calculated member. This option is unavailable if you select a one-level dimension or
Measures as the parent dimension.

Dimensions are divided into levels that contain members. Each member produces a heading. While browsing the cube's
data, end users can drill down from a selected heading to previously undisplayed subordinate headings. The heading for the
calculated member is added at the level directly below the parent member you select.

Name

Select the name of the calculated member. This name appears as the column or row heading for the calculated member
values when end users browse the cube.

Value expression

Specify the expression that produces the values of the calculated member. This expression can be written in
Multidimensional Expressions (MDX). The expression may contain any of the following:

Data expressions that represent the cube's components such as dimensions, levels, measures, and so on

Arithmetic operators

Numbers

Functions

Important Any calculated member that will be used in the value expression of another calculated member must be
created before the calculated member that will use it.

After you create a calculated member, you can rename it. Renaming changes the associated column or row heading displayed to
end users.

To rename a calculated member

Analysis Manager

Analysis Manager

Using Function Libraries to Build Calculated Members

Microsoft® SQL Server™ 2000 Analysis Services provides its own extensive function library for creating calculated members.
Analysis Services also supports other function libraries:

Microsoft Visual Basic® for Applications Expression Services: This library is included with Analysis Services and is
automatically registered.

Microsoft Excel worksheet: This library must be installed separately from Analysis Services, but it is automatically registered
if present.

Others: These libraries must be installed separately from Analysis Services and manually registered by clicking Register in
Calculated Member Builder.

A function in a library other than the Analysis Services function library is supported by Analysis Services only if it meets the
following conditions:

The function accepts as arguments only string or numeric types, or array or variant data types containing string or numeric
values.

The function returns only string or numeric data types, or variant data types containing numeric values.

You should test each function separately from libraries other than the Analysis Services function library before you expose the
resulting data to end users. For more information about supported functions, see Visual Basic for Applications Functions and Excel
Functions.

Note When you use a function in a library other than the Analysis Services function library, you can omit an optional argument
only if you also omit all arguments that follow it.

If multiple libraries include the same function name, Analysis Services functions take precedence. After that, precedence is
resolved in order of registration.

In order for end users to see the correct values returned by a function, the library containing the function must be installed and
registered on their computers.

Usage Notes

You can use the following techniques when you create calculated members:

Null keyword

You can use the keyword Null to create a calculated member whose value is null.

Solve Order

When you create a calculated member, you can specify an integer value for its Solve Order property in the Advanced tab
of the properties pane. This property specifies a priority for solving calculated members, zero being the highest priority. The
order of solving calculated members becomes an issue for cells at intersections where two or more calculated members are
involved and the result depends on the order in which the calculated members are solved. For example, if a calculated
member for Annual Growth is presented in columns and Performance is presented in rows, the cell at the intersections can
mean Annual Growth of Performance or Performance of Annual Growth, depending on which calculated member is solved
first.

Temporary alias for a set

A set in a function can be given a temporary alias for use within the function by using the keyword As. In this example, the
set {State} is given the temporary alias S1 so it can be referred to later in the function in a nested iteration.

Sum({State} As S1, Sum(Geography.CurrentMember.Children,
Population * Val((Geography.CurrentMember.Properties("CityTax")) +
Val(S1.Current.Properties("StateTax")))))

See Also

Calculated Members

Calculated Member Builder

MDX

Analysis Services (SQL Server 2000)

Creating Calculated Members in Regular Cubes
Creating Calculated Members in Regular Cubes

To create a calculated member in a regular cube, use Cube Editor and Calculated Member Builder.

To create a calculated member using Calculated Member Builder

Analysis Manager

Analysis Manager

After you add or change a calculated member in a cube, you must process dependent virtual cubes to provide end users
continuing access to them. (This processing is much faster than processing the component cubes if the structures of the
component cubes have not changed since they were last processed.) When you add or change the calculated member, virtual
cube users connected to the server computer are unaffected as long as they remain connected. However, until you process the
dependent virtual cubes, end users who connect will be unable to see them.

Note Calculated members in regular cubes are not visible in the Analysis Manager tree pane. To create and access them, you
must first display Cube Editor.

Analysis Services (SQL Server 2000)

Creating Calculated Cells
Creating Calculated Cells

With calculated cells, you can define a Multidimensional Expressions (MDX) formula that can be used to supply a value for each
cell in a specific group of cells. Optionally, each cell in the group of cells can be evaluated against a logical MDX statement to
determine whether the formula is applied for a particular cell in the group of cells.

For example, you can create a calculated cells definition that provides forecasting values for the next year from a calculation based
on the actual values of the current year, but only for specific clients and products. Unlike calculated members, custom members,
or custom rollups, this functionality can affect specific cells of a cube, instead of an entire member; a calculated cells definition can
be created for only a single cell in an entire cube.

As with calculated members, the definitions for calculated cells are stored. The values for calculated cells are evaluated only when
the cube is queried by a client application. Unlike calculated members, however, the cells retain their original underlying data.
Thus, calculated cells can be added to a cube without affecting the underlying data, and calculated cells can be removed from the
cube without invalidating the cube. Calculated cells are not evaluated when processing a regular or virtual cube; the cube is
processed as if the calculated cells definitions do not exist.

With the introduction of calculation passes, calculated cells can be recursively applied across any number of calculation passes,
with evaluation starting at a specified calculation pass. For more information about calculation passes, see Understanding Pass
Order and Solve Order.

You can create calculated cells in regular or virtual cubes. For more information about creating calculated cells, see Creating
Calculated Cells in Regular Cubes and Creating Calculated Cells in Virtual Cubes.

To create a calculated cells definition, use the Calculated Cells Wizard. It enables you to specify the following options for the
calculated cells:

Calculation Subcube

Select the members from each dimension in the cube to define the calculation subcube. The calculation subcube contains
the group of cells against which the calculation formula is applied. The combination of all dimensions with specified
members and all other dimensions define the calculation subcube. If a given dimension does not have any specified
members, all members in that dimension are considered part of the calculation subcube.

If members are not specified from any of the dimensions of the regular or virtual cube, the calculation subcube is defined as
the entire regular or virtual cube.

Calculation Condition

Define an MDX logical expression (an expression that evaluates to either True or False) that will be applied to each cell in
the calculation subcube. If the calculation condition evaluates to True for a cell, the result of the calculation formula applied
to that cell is returned when the cell is queried. If the calculation condition evaluates to False for a cell, the actual value of
the cell is returned when the cell is queried.

If no calculation condition is specified, the calculation formula will apply to all cells in the calculation subcube.

Calculation Formula

Define an MDX expression that will supply the value of each cell in the calculation subcube, subject to the calculation
condition. The calculation formula can be any MDX expression that returns a string or numeric value.

After they have been created, calculated cells can also be edited in Cube Editor (for regular cubes) or Virtual Cube Editor (for
virtual cubes).

To edit a calculated cells definition in Cube Editor

Analysis Manager

Analysis Manager

To edit a calculated cells definition in Virtual Cube Editor

Analysis Manager

Analysis Manager

See Also

Calculated Cells

Calculated Cells Wizard

Cube Editor - Schema View

Virtual Cube Editor

Understanding Pass Order and Solve Order

Analysis Services (SQL Server 2000)

Creating Calculated Cells in Regular Cubes
Creating Calculated Cells in Regular Cubes

To create calculated cells in regular cubes, use Cube Editor and the Calculated Cells Wizard.

To create calculated cells in a regular cube

Analysis Manager

Analysis Manager

After you create calculated cells in a regular cube, it is not necessary to process the cube to provide end users with access. The
calculated cells definition is immediately available for querying purposes.

Note Calculated cells definitions in regular cubes are not visible in the Analysis Manager tree pane. To create and access them,
you must first display Cube Editor.

Analysis Services (SQL Server 2000)

Creating Calculated Cells in Virtual Cubes
Creating Calculated Cells in Virtual Cubes

To create calculated cells in virtual cubes, use Virtual Cube Editor and Calculated Cells Wizard.

To create calculated cells in a virtual cube

Analysis Manager

Analysis Manager

After you create calculated cells in a virtual cube, it is not necessary to process the cube to provide end users with access. The
calculated cells definition is immediately available for querying purposes.

Note Calculated cells definitions in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them,
you must first display Virtual Cube Editor.

Analysis Services (SQL Server 2000)

Creating and Maintaining Calculated Members in Virtual Cubes
Creating and Maintaining Calculated Members in Virtual Cubes

You can import calculated members into virtual cubes from their component cubes and you can also create new calculated
members directly in virtual cubes. With Calculated Member Builder you can create and edit calculated members in virtual cubes.
In a virtual cube, you can import calculated members from the component cubes of that virtual cube so that you do not have to
re-create the calculated members. After import, you can edit the calculated member in the virtual cube.

Use Virtual Cube Editor to maintain the calculated members in a virtual cube. Virtual Cube Editor provides single-click access to
Calculated Member Builder and the Import Calculated Members dialog box, which is used to import calculated members into
virtual cubes.

Note Virtual Cube Editor is used for maintaining calculated members in virtual cubes only. To maintain calculated members in
regular cubes, use Cube Editor to access Calculated Member Builder.

The topics in the following table describe the three basic procedures for maintaining calculated members in virtual cubes.

Topic Description
Importing a Calculated Member
into a Virtual Cube

Contains information about importing one or
more calculated members from the component
cubes of a virtual cube to the virtual cube.

Editing a Calculated Member in a
Virtual Cube

Describes how to update the calculated members
of a virtual cube.

Creating a Calculated Member in a
Virtual Cube

Describes how to add new calculated members
to a virtual cube.

See Also

Calculated Members

Creating Calculated Members

Virtual Cubes

Virtual Cube Editor

Analysis Services (SQL Server 2000)

Importing a Calculated Member into a Virtual Cube
Importing a Calculated Member into a Virtual Cube

When you import a calculated member, you will see an error message if the syntax of the calculated member is incorrect or its
value expression includes a measure, dimension, or other object that is not in the virtual cube. (The value expression is displayed
beside Value in the properties pane of Virtual Cube Editor.) The calculated member is not included in the virtual cube data
displayed to end users as long as the error exists. To correct the error, you can:

Add the missing measure, dimension, or object to the virtual cube and process it. To add a measure or dimension, use
Virtual Cube Wizard. To start Virtual Cube Wizard from within Virtual Cube Editor, on the Edit menu, click Structure
(Wizard).

-or-

Edit the calculated member with the error and remove from its value expression the measure, dimension, or object that is
not in the virtual cube. For more information, see Editing a Calculated Member in a Virtual Cube.

If you import a calculated member with the same name as a calculated member already in the virtual cube, the imported
calculated member is given a new name consisting of its old name and a numeric suffix.

You can import calculated members only from cubes that are in the same database as the edited virtual cube.

To import a calculated member into a virtual cube, use Virtual Cube Editor and the Import Calculated Members dialog box.

To import a calculated member into a virtual cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Editing a Calculated Member in a Virtual Cube
Editing a Calculated Member in a Virtual Cube

To edit a calculated member in a virtual cube, use Virtual Cube Editor and Calculated Member Builder.

Note Calculated members in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you
must first display Virtual Cube Editor.

To edit a calculated member in a virtual cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating a Calculated Member in a Virtual Cube
Creating a Calculated Member in a Virtual Cube

To create a calculated member in a virtual cube, use Virtual Cube Editor and Calculated Member Builder.

Note Calculated members in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you
must first display Virtual Cube Editor.

To create a calculated member in a virtual cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating Named Sets
Creating Named Sets

A named set is a set of dimension members or a set expression that is created for reuse, for example, in Multidimensional
Expressions (MDX) queries. You can create named sets by combining cube data, arithmetic operators, numbers, and/or functions.
For example, you can create a named set called Top Ten Factories that contains the ten members of the Factories dimension that
have the highest values for the Production measure. Top Ten Factories can then be used in queries by end users. For example, an
end user can place Top Ten Factories on one axis and the Measures dimension, including Production, on another axis.

For more information, see Named Sets.

Microsoft® SQL Server™ 2000 Analysis Services provides its own extensive function library for creating named sets. For more
information, see MDX Function List. Analysis Services also supports other function libraries, as when you create calculated
members. For more information, see Creating Calculated Members.

To create a named set, use Named Set Builder. It enables you to specify the following options for the named set:

Name

Select the name of the named set. This name appears to end users when they browse the cube.

Set expression

Specify the expression that produces the named set. This expression can be written in Multidimensional Expressions (MDX). The
expression may contain any of the following:

Data expressions that represent the cube's components such as dimensions, levels, measures, and so on

Arithmetic operators

Numbers

Functions

Note If you create the set expression by explicitly naming the members in the set, enclose the list of members in a pair of
braces ({}).

For more information, see Named Set Builder.

You can create named sets in regular or virtual cubes. In a virtual cube, you can import named sets from the virtual cube's
component cubes so that you do not have to re-create the named sets. After import, you can edit the named set in the virtual
cube. For more information, see Creating Named Sets in Regular Cubes and Creating and Maintaining Named Sets in Virtual
Cubes.

Analysis Services (SQL Server 2000)

Creating Named Sets in Regular Cubes
Creating Named Sets in Regular Cubes

To create a named set in a regular cube, use Cube Editor and Named Set Builder.

Note Named sets in regular cubes are not visible in the Analysis Manager tree pane. To create and access them, you must first
display Cube Editor.

To create a named set in a regular cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating and Maintaining Named Sets in Virtual Cubes
Creating and Maintaining Named Sets in Virtual Cubes

You can both import named sets into virtual cubes from their component cubes and create new named sets directly in virtual
cubes. You can use Named Set Builder to create and edit named sets in virtual cubes.

Use Virtual Cube Editor to maintain the named sets in a virtual cube. Virtual Cube Editor provides single-click access to Named
Set Builder and the Import Named Sets dialog box, which is used to import named sets into virtual cubes.

Note Virtual Cube Editor is used for maintaining named sets in virtual cubes only. To maintain named sets in regular cubes, use
Cube Editor, from which you can access Named Set Builder.

For more information, see Virtual Cube Editor.

The following topics describe the three basic procedures used to maintain named sets in virtual cubes.

Topic Description
Importing a Named Set into a Virtual
Cube

Describes the procedure you use to copy one
or more named sets from a virtual cube's
component cubes to the virtual cube.

Editing a Named Set in a Virtual Cube Describes the procedure you use to update a
virtual cube's named sets.

Creating a Named Set in a Virtual Cube Describes the procedure you use to add new
named sets to a virtual cube.

Analysis Services (SQL Server 2000)

Importing a Named Set into a Virtual Cube
Importing a Named Set into a Virtual Cube

To import a named set into a virtual cube, use Virtual Cube Editor and the Import Named Sets dialog box.

To import a named set into a virtual cube

Analysis Manager

Analysis Manager

You can import named sets only from cubes that are in the same database as the edited virtual cube.

If you import a named set with the same name as a named set already in the virtual cube, the imported named set is given a new
name consisting of its old name and a numeric suffix.

When you import a named set, you will see an error message if the named set's syntax is incorrect or if its expression includes a
measure, dimension, or other object that is not in the virtual cube. (The named set's expression is displayed beside Value in the
properties pane of Virtual Cube Editor.) The named set is not included in the virtual cube data displayed to end users as long as
the error exists. To correct the error, you can:

Add the missing measure, dimension, or object to the virtual cube and process it. To add a measure or dimension, use the
Virtual Cube Wizard. To start the Virtual Cube Wizard from within Virtual Cube Editor, on the Edit menu, click Structure...
(Wizard).

-or-

Edit the named set with the error and remove from its expression the measure, dimension, or object that is not in the virtual
cube. For more information, see Editing a Named Set in a Virtual Cube.

Analysis Services (SQL Server 2000)

Editing a Named Set in a Virtual Cube
Editing a Named Set in a Virtual Cube

To edit a named set in a virtual cube, use Virtual Cube Editor and Named Set Builder.

Note Named sets in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you must first
display Virtual Cube Editor.

To edit a named set in a virtual cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating a Named Set in a Virtual Cube
Creating a Named Set in a Virtual Cube

To create a named set in a virtual cube, use Virtual Cube Editor and Named Set Builder.

Note Named sets in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you must first
display Virtual Cube Editor.

To create a named set in a virtual cube

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Creating Actions
Creating Actions

An action is an end-user initiated operation upon a selected cube or portion of a cube. The operation can start an application with
the selected item as a parameter, or it can retrieve information about the selected item. For more information about actions, see
Actions.

To create an action, use the Action Wizard. The wizard takes you through steps to specify the following options for an action:

Target

Select the object to which the action is attached. Generally, in client applications, the action is displayed when end users
select the target object; however, the client application determines which end-user operation displays actions. Select from
the following objects:

Cube

Dimension

Members in a dimension

Level

Members in a level

Cells

Named sets
Type

Select the type of action. The following table summarizes the available types.

Type Description
Command Line Executes a command at the command prompt in

Microsoft® Windows NT® 4.0 or Windows® 2000
Statement Executes an OLE DB command
HTML Executes an HTML script in an Internet browser
URL Displays a variable page in an Internet browser
Data set Retrieves a dataset
Rowset Retrieves a rowset
Proprietary Performs an operation using an interface different from

those listed earlier in this table

Syntax

Specify the parameters that are passed when the action is executed. The syntax must evaluate to a string, and you must
include an expression written in Multidimensional Expressions (MDX). For example, your MDX expression can indicate a part
of the cube that is included in the syntax. MDX expressions are evaluated before the parameters are passed. Also, MDX
Builder is available to help you build MDX expressions.

You can create actions in regular or virtual cubes. In a virtual cube, you can import actions from the virtual cube's component
cubes so that you do not have to re-create the actions. After importing these actions, you can edit them in the virtual cube.

See Also

Action Wizard

Creating Actions in Regular Cubes

Creating and Maintaining Actions in Virtual Cubes

MDX Builder

Analysis Services (SQL Server 2000)

Creating Actions in Regular Cubes
Creating Actions in Regular Cubes

To create an action in a regular cube, use Cube Editor and the Action Wizard.

To create an action in a regular cube

Analysis Manager

Analysis Manager

Note Actions in regular cubes are not visible in the Analysis Manager tree pane. To create and access regular cubes, you must
first display Cube Editor.

Analysis Services (SQL Server 2000)

Creating and Maintaining Actions in Virtual Cubes
Creating and Maintaining Actions in Virtual Cubes

You can both import actions into virtual cubes from their component cubes and create new actions directly in virtual cubes. You
can use the Action Wizard to create and edit actions in virtual cubes.

Use Virtual Cube Editor to maintain the actions in a virtual cube. Virtual Cube Editor provides single-click access to the Action
Wizard and the Import Actions dialog box, which is used to import actions into virtual cubes.

Note Virtual Cube Editor is used for maintaining actions in virtual cubes only. To maintain actions in regular cubes, use Cube
Editor. From Cube Editor you can access the Action Wizard.

For more information, see Virtual Cube Editor.

There are three basic procedures for maintaining actions in virtual cubes. These procedures are described in the following topics.

Topic Description
Importing an Action into a Virtual
Cube

Describes the procedure for copying one or
more actions from the component cubes of a
virtual cube to the virtual cube itself

Editing an Action in a Virtual Cube Describes the procedure for updating actions
for a virtual cube

Creating an Action in a Virtual Cube Describes the procedure for adding new
actions to a virtual cube

Analysis Services (SQL Server 2000)

Importing an Action into a Virtual Cube
Importing an Action into a Virtual Cube

To import an action into a virtual cube, use Virtual Cube Editor and the Import Actions dialog box.

To import an action into a virtual cube

Analysis Manager

Analysis Manager

You can only import actions from cubes that are in the same database as the edited virtual cube.

If you import an action with the same name as an action already in the virtual cube, the imported action is given a new name
consisting of its old name and a numeric suffix.

When you import an action, you will see an error message if the action's definition includes a measure, dimension, or other object
that is not in the virtual cube or if there are syntax errors. The action is not included in the virtual cube data displayed to end users
as long as the error exists. To correct the error, you can:

Add the missing measure, dimension, or object to the virtual cube and process it. To add a measure or dimension, use the
Virtual Cube Wizard. To start Virtual Cube Wizard from within Virtual Cube Editor, on the Edit menu, click Structure...
(Wizard).

-or-

Edit the action with the error and remove from its definition the measure, dimension, or object that is not in the virtual cube.
For more information, see Editing an Action in a Virtual Cube.

Analysis Services (SQL Server 2000)

Editing an Action in a Virtual Cube
Editing an Action in a Virtual Cube

To edit an action in a virtual cube, use Virtual Cube Editor and the Action Wizard.

How to edit an action in a virtual cube

Analysis Manager

Analysis Manager

Note Actions in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you must first display
Virtual Cube Editor.

Analysis Services (SQL Server 2000)

Creating an Action in a Virtual Cube
Creating an Action in a Virtual Cube

To create an action in a virtual cube, use Virtual Cube Editor and the Action Wizard.

How to create an action in a virtual cube

Analysis Manager

Analysis Manager

Note Actions in virtual cubes are not visible in the Analysis Manager tree pane. To create and access them, you must first display
Virtual Cube Editor.

Analysis Services (SQL Server 2000)

Maintaining Write-Enabled Cubes and Writeback Data
Maintaining Write-Enabled Cubes and Writeback Data

If you write-enable a cube, end users can change displayed cube data while they browse it. However, the changes are saved in a
separate table called a writeback table, not in the cube data or source data. End users who browse a write-enabled cube see the
net effect of all changes in the writeback table for the cube.

On a write-enabled cube, you can use cube roles to grant read/write access to users and groups of users, and to limit access to
specific cells or groups of cells in the cube. For more information about granting read/write access to a cube's cells, see Cell
Security.

You can browse or delete writeback data. You can also convert writeback data to a partition.

The following table lists links to topics that provide more detailed information.

Topic Description
Write-Enabling a Cube Describes using the Write-Enable dialog box to

write-enable a cube.
Browsing Writeback Data Describes using the Browse Data dialog box to

browse data for a write-enabled cube.
Deleting Writeback Data and Write-
Disabling a Cube

Identifies considerations when deleting writeback
data for a cube.

Converting Writeback Data to a
Partition

Identifies considerations when converting
writeback data to a partition.

Note Converting to a partition is available only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise
Edition.

See Also

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Write-Enabling a Cube
Write-Enabling a Cube

To write-enable a cube, use the Write-Enable dialog box, which is accessed by right-clicking a cube from the Analysis Manager
tree pane.

To write-enable a cube

Analysis Manager

Analysis Manager

See Also

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Browsing Writeback Data
Browsing Writeback Data

You can browse the contents of a cube's writeback table in the Browse Data dialog box, which is accessed by right-clicking a
write-enabled cube from the Analysis Manager tree pane.

To browse writeback data for a cube

Analysis Manager

Analysis Manager

See Also

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Deleting Writeback Data and Write-Disabling a Cube
Deleting Writeback Data and Write-Disabling a Cube

You can delete the contents of a cube's writeback table by using the Delete Writeback Data dialog box, which is accessed by
right-clicking a write-enabled cube from the Analysis Manager tree pane.

Important When you delete the writeback data for a cube, you also write-disable the cube. All Unrestricted Read/Write policies
and read/write permissions for the cube's cells are disabled, and end users will not be able to change displayed cube data. (End
users with disabled Unrestricted Read/Write policies or disabled read/write permissions will still be able to browse the cube.)
Read and read contingent permissions are not affected.

To delete writeback data for a cube and write-disable it

Analysis Manager

Analysis Manager

See Also

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Converting Writeback Data to a Partition
Converting Writeback Data to a Partition

You can convert the data in a cube's writeback table to a partition.

Caution Incorrect use of partitions can result in inaccurate cube data. For more information, see Managing Partitions.

When you convert the writeback data for a cube to a partition, you also write-disable the cube. All Unrestricted Read/Write
policies and read/write permissions for the cube's cells are disabled, and end users will not be able to change displayed cube data.
(End users with disabled Unrestricted Read/Write policies or disabled read/write permissions will still be able to browse the cube.)
Read and read contingent permissions are not affected.

This procedure causes the writeback table to become the new partition's fact table.

Note Converting to a partition is available only if you install Analysis Services for Microsoft® SQL Server™ 2000 Enterprise
Edition.

To convert writeback data to a partition, use the Convert to Partition dialog box, which is accessed by right-clicking a write-
enabled cube from the Analysis Manager tree pane.

To convert a cube's writeback data to a partition and write-disable the cube

Analysis Manager

Analysis Manager

See Also

Partitions

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Specifying Drillthrough Options
Specifying Drillthrough Options

 New Information - SQL Server 2000 SP3.

Drillthrough is an operation in which an end user selects a single cell from a regular, virtual, or linked cube and retrieves a result
set from the source data for that cell in order to get more detailed information. For end users to drill through, their client
applications must support this capability.

By default, a drillthrough result set is derived from only the table rows that were evaluated to calculate the value of the selected
cube cell. For example, in a three-dimension cube, if the selected cube cell is the intersection of 1998 and Mexico, and the
displayed dataset is sliced by all Customers and the measure Sales, the result set from drillthrough is generated from only:

Fact table rows that are for both 1998 and Mexico.

Time dimension table rows that store 1998.

Location dimension table rows that store Mexico.

All rows in the Customers dimension table.

The result set is summarized using the joins in the cube's schema.

Note Drillthrough is not supported for cells that have values based on expressions such as calculated member cells or ones that
are associated with custom member formulas. This includes cells that display values for the level members of a mining model
dimension.

Drillthrough permissions are granted through membership in cube roles. The only end users who can drill through are those in
cube roles that have been granted this ability. You can grant this ability in Cube Role Manager or through programming with
Decision Support Objects (DSO). For information about setting drillthrough options using DSO, see AllowDrillThrough (MDStore
Interface).

To enable or disable drillthrough for a regular cube, open Cube Editor. On the Tools menu, click Drillthrough Options. Then, in
the Drillthrough Options dialog box, select or clear the Enable drillthrough check box. You can choose, on the Columns tab,
which columns to display on drillthrough.

To enable or disable drillthrough for a virtual cube, open Virtual Cube Editor. In the tree pane, select the virtual cube icon, and
then, in the properties pane, set the Enable Drillthrough property to either True or False. For linked cubes, enable or disable
drillthrough by changing the settings of the source cube or cubes on the publishing server.

If drillthrough is enabled for a cube, you can test drillthrough while you browse the cube's data in Cube Browser, Cube Editor, or
Virtual Cube Editor. To do this, right-click a cube cell, and then click Drill Through.

Specifying Drillthrough Options for Regular Cubes

You can enable drillthrough for individual regular cubes. For each cube, you can select the columns and tables that are included in
the result set returned by a drillthrough operation. These columns can be from any table in the cube's data source, including those
that are not part of the cube's schema. If drillthrough is enabled, at least one column must be selected.

Because a drillthrough operation can consume an extremely large amount of resources, enable drillthrough only after careful
consideration. Grant cube roles the ability to drill through only after testing drillthrough with the cube.

One way to limit the resources used by a drillthrough is to specify a drillthrough filter. This filter is a WHERE clause expression
added to the SQL SELECT statement that generates the result set. The filter can limit the number of rows in the result set.

If you want to enable drillthrough for a multiple-partition cube, before you begin the following procedure, make sure that the
columns that you want to display in the result set exist in the tables for all of the cube's partitions. (The Drillthrough Options
dialog box, where drillthrough is enabled, displays the column names and table names for only the cube's default partition.)
Qualifying fact table names do not need to be the same in all partitions. If necessary, Microsoft® SQL Server™ 2000 Analysis
Services automatically changes the query to reference the appropriate fact table name for each partition.

Note If a cube contains multiple partitions, drillthrough within the cube returns multiple result sets, one per partition. A client
application might attempt to merge these result sets before presentation to the end user, thus yielding unexpected results.

To specify drillthrough options for a regular cube, use Cube Editor and the Drillthrough Options dialog box.

To specify drillthrough options for a regular cube

Analysis Manager

Analysis Manager

Specifying Drillthrough Options for Individual Partitions

Enabling or disabling drillthrough for a cube applies to partitions in the cube, but you can tailor drillthrough options on a
partition-by-partition basis. Drillthrough options for a regular cube provide default drillthrough options for each of its partitions.
In each partition, these defaults can be overridden except for the ability to drill through, which is set at the cube level. For each
partition you can select a different set of columns to be included in the partition's result set.

To specify drillthrough options for a partition, use the Partition Wizard, the Advanced Settings dialog box, and the Drillthrough
Options dialog box.

To specify drillthrough options for a partition

Analysis Manager

Analysis Manager

Specifying Drillthrough Options for Virtual Cubes

The process of specifying drillthrough options for virtual cubes is different from that for regular cubes. The main difference is that
the set of displayed columns is inherited from settings in the source cubes. However, the drillthrough settings for a virtual cube
are dependent on the drillthrough settings for its source cubes. In other words, you cannot enable drillthrough on a virtual cube if
drillthrough has been disabled for all of its source cubes.

To specify drillthrough options for a virtual cube, use Cube Editor to set options and enable drillthrough for each source cube in
the virtual cube, and then use Virtual Cube Editor to enable drillthrough for the virtual cube.

To specify drillthrough options for a virtual cube

Analysis Manager

Analysis Manager

Specifying Drillthrough Options for Linked Cubes

Drillthrough settings and permissions of a linked cube are set in the source cube or cubes for the linked cube. The source cube or
cubes reside on a different Analysis server then the linked cube. To specify drillthrough options for a linked cube, modify the
drillthrough settings for each source cube on the publishing server.

To specify drillthrough options for a linked cube

Analysis Manager

Analysis Manager

See Also

Creating Cube Roles

Creating Security Roles

Cube Editor - Data View

Cube Role Manager

Partition Wizard

Linked Cubes

Managing Linked Cubes

Analysis Services (SQL Server 2000)

Updating Cubes and Dimensions
The following topics contain information about updating cubes and dimensions in Microsoft® SQL Server™ 2000 Analysis
Services.

Topic Description
Updating and Refreshing Cube Data Discusses the type of processing you must use

depending on the type of change being made.
Updating and Rebuilding Dimensions Contains information about how to incorporate

changes to shared and private dimensions.

Analysis Services (SQL Server 2000)

Updating and Refreshing Cube Data
Updating and Refreshing Cube Data

Many of the changes you make within Analysis Manager and all of the changes to a cube's source data require the cube to be
processed in order for the changes to be reflected in the cube's data.

You can process a cube in the following ways:

Incremental update

Adds new data to a partition in the cube and updates aggregations. This method does not process changes to a cube's
structure (measures, dimensions, and so on) or changes to its existing source data. An incremental update creates a
temporary partition from the new data and merges it into an existing partition.

Refresh data

Clears and reloads a cube's data and recalculates its aggregations. Use this method if the cube's source data has changed
but its structure has not.

Full process

Completely restructures a cube based on its current definition and then recalculates its data.

For more information about the kinds of changes processed by the preceding methods, see Processing Cubes.

Because an incremental update creates a temporary partition from the new data and merges it into an existing partition, it is
necessary to understand the special considerations that apply to partitions before performing an incremental update. For more
information, see Incremental Updates and Partitions.

Referential integrity of the data warehouse is not verified by Microsoft® SQL Server™ 2000 Analysis Services. So, for example, if
the cube's (or one of its partition's) fact table contains foreign key values that are not present in a joined dimension table's
primary key column, the rows containing those values are not processed. In this case, processing does not produce an error
message, but the cube contains incomplete and therefore inaccurate data.

To incrementally update a cube, use the Process a Cube dialog box, the Incremental Update Wizard, and the Process dialog box.

To incrementally update a cube

Analysis Manager

Analysis Manager

To refresh a cube's data, use the Process a Cube and Process dialog boxes.

To refresh a cube's data

Analysis Manager

Analysis Manager

After processing completes but before you close the Process dialog box, you can view the SQL statement used to incrementally
update or refresh the cube. This statement includes any filter specified in the Incremental Update Wizard.

To view an SQL statement

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Updating and Rebuilding Dimensions
Updating and Rebuilding Dimensions

Different procedures are used to update or rebuild a dimension, depending on whether it is shared or private. For more
information about the differences between shared and private dimensions, see Introduction to Dimensions.

Topic Description
Updating and Rebuilding Shared
Dimensions

Contains information about what type of
processing to use depending on how the data
in a shared dimension has changed.

Updating and Rebuilding Private
Dimensions

Contains information about what type of
processing to use depending on how the data
in the private dimension has changed.

See Also

Dimension Processing

Analysis Services (SQL Server 2000)

Updating and Rebuilding Shared Dimensions
Updating and Rebuilding Shared Dimensions

After you update a shared dimension or its table, you must process it. You can process a shared dimension in the following ways:

Incremental update

Processes the addition of members (that is, rows) to the dimension table. This method does not process changes to a
dimension's structure or relationships among members.

Rebuild the dimension structure

Processes changes to a dimension's structure such as adding, deleting, or moving a level. This method also processes
changes to member relationships such as moving a member from one parent member to another.

Exceptions are changing dimensions, which do not always require processing by the second method after changes to the
dimension's structure or changes to member relationships. Changing dimensions include virtual, parent-child, and relational
OLAP (ROLAP) dimensions. For more information, see Changing Dimensions.

Important When a shared dimension is processed with the Rebuild the dimension structure option, all cubes that incorporate
the shared dimension immediately become unavailable to users and must be processed before they can be used again.

Caution If a shared dimension's structure is updated and saved but not processed, it will automatically be processed when any
cube incorporating the dimension is processed. At that time any other cubes that incorporate the dimension immediately become
unavailable to users and must be processed before they can be used again.

To incrementally update a shared dimension or rebuild a shared dimension's structure, use the Process a Dimension and
Process dialog boxes.

To incrementally update a shared dimension

Analysis Manager

Analysis Manager

To rebuild the structure of a shared dimension

Analysis Manager

Analysis Manager

After you process a shared dimension using the Rebuild the dimension structure option, you must process all of the cubes that
include the dimension. For more information, see Processing Cubes.

Analysis Services (SQL Server 2000)

Updating and Rebuilding Private Dimensions
Updating and Rebuilding Private Dimensions

After you update a private dimension or its table, you must process it. To process a private dimension, process the cube in which it
is included. The type of cube processing that is required depends on the type of change made to the dimension. One of the
following cube processing options is appropriate:

Refresh data option

Processes the addition of members (that is, rows) to the dimension table. This method does not process changes to a
dimension's structure or relationships among members or deletion of members.

Full process option

Processes changes to a dimension's structure such as adding, deleting, or moving a level. This method also processes
changes to member relationships such as moving a member from one parent member to another.

Exceptions are changing dimensions, whose cubes do not always require processing with the Full process option after changes
to the dimension's structure or changes to member relationships. Changing dimensions include virtual, parent-child, and
relational OLAP (ROLAP) dimensions. For more information, see Changing Dimensions.

For information about processing a cube by using the Refresh data option, see Updating and Refreshing Cube Data. For
information about processing a cube by using the Full process option, see Processing Cubes.

Analysis Services (SQL Server 2000)

Building and Using Data Mining Models
Data mining, an exciting feature introduced as part of Microsoft® SQL Server™ 2000 Analysis Services, provides new tools for
decision analysis by discovering patterns and rules in data and using them for predictive analysis, using industry standard data
mining algorithms.

The primary mechanism for data mining is the data mining model, an abstract object that stores data mining information in a
series of schema rowsets. Data mining models are easily accessible with a variety of tools. You can use the Mining Model Wizard
to create data mining models, and you can use Data Mining Model Browser to display data mining model content in a graphical
format.

You can also create, train, and use data mining models programmatically using OLE DB for Data Mining, an extension to the OLE
DB specification that supports data mining functionality.

Data mining models can be used to perform sophisticated decision analysis on large amounts of data, whether relational or OLAP,
and with a variety of algorithms. The following topics help you through the steps needed to create, train, and apply a data mining
model, as well as view the content of a trained data mining model. Advanced operations, such as using mining model roles to
provide security for a data mining model, are also covered.

Topic Description
Creating Data Mining Models Explains the use of the Mining Model

Wizard for the creation of relational and
OLAP data mining models.

Editing Data Mining Models Explains the use of Mining Model Editor
for editing relational and OLAP data
mining models.

Training Data Mining Models Details the process of training a data
mining model.

Viewing Data Mining Models Explains the use of Data Mining Model
Browser and Dependency Network
Browser for viewing and editing data
mining model content.

Advanced Data Mining Model Operations Covers the use of roles with data mining.

Analysis Services (SQL Server 2000)

Creating Data Mining Models
Creating Data Mining Models

Use the Mining Model Wizard to create new data mining models. The Mining Model Wizard takes you through several steps
needed to establish the model type, build the model the case set will work with, and choose the data mining technique the model
will use to construct a new data mining model.

There are two types of data mining models used, based on the type of case set data to be processed. A relational data mining
model is designed to process traditional relational database tables, while an OLAP data model is designed to process OLAP data
stored in the form of cubes. The creation of each type of mining model is covered in its own topic.

Data mining models share the same schemas and basic structures, regardless of whether they are based on relational or OLAP
data. The most important element in the construction of a data mining model is the case. The case is a set of data mining columns
used to define the information that the model will use to identify and study, and for which the model will provide prediction data.

Data mining columns vary in content type: Key columns are used to identify a specific case, input columns are used to provide
information that the data mining provider can use to analyze a case, and predictive columns provide meaningful results, in the
form of histogram data, from the analyzed case.

See Also

Creating OLAP Data Mining Models

Creating Relational Data Mining Models

Data Mining Columns

Data Mining Models

Analysis Services (SQL Server 2000)

Creating Relational Data Mining Models
Creating Relational Data Mining Models

The Mining Model Wizard is used to create a relational data mining model. For more information about the Mining Model Wizard
and the steps needed to create a relational data mining model, see Mining Model Wizard.

The Mining Model Wizard uses the case tables, data mining technique, case key column, input columns, and predictable columns
you provide to build and optionally process a mining model.

The case tables contain the columns needed to establish a case set for a data mining model. In the case of a single case table, a
single relational database table contains all of the information needed. With multiple case tables, however, the information may
be distributed across several tables and joins between relational database tables are needed to establish the case set.

When you select a data mining technique, you choose a data mining algorithm to be used with the relational data mining model.
By doing this, you implicitly select a data mining algorithm provider. The data mining algorithm provider supplies the data mining
algorithms and dictates the model structure for the data mining model.

You also select input and prediction columns when you use the wizard to create a relational mining model. Input columns are
used by the data mining provider to contain training data. Selection columns are used to provide predictive analysis results when
querying a data mining model.

Prerequisites

Before you build a relational data mining model, a relational database containing a table structure for training data must exist, so
that the Mining Model Wizard can use the table structure to define data mining columns. The Mining Model Wizard can also train
the data mining model. Relational data mining models cannot be created from OLAP data sources.

See Also

Data Mining Algorithms

Data Mining Columns

Data Mining Models

Relational Model Steps (Mining Model Wizard)

Analysis Services (SQL Server 2000)

Creating OLAP Data Mining Models
Creating OLAP Data Mining Models

The process of creating an OLAP data mining model is similar to the process of creating a relational data mining model. To create
an OLAP mining model, use the Mining Model Wizard. The steps needed to create an OLAP mining model are nearly identical to
those needed to create a relational mining model.

The Mining Model Wizard uses the source cube, data mining technique, case dimension and level, predicted entity, and training
data to create an OLAP data mining model.

The source cube provides the Mining Model Wizard with the information needed to both create a case set for the data mining
model. Because a cube may contain many groups of information, the model uses a dimension and level that you choose from the
cube to establish key columns for the case set.

When you select the data mining technique, you also select a data mining provider. The data mining provider provides the data
mining algorithms and model structure for the data mining model.

The case dimension and level provide a specific orientation for the data mining model into the cube for creating a case set.

The predicted entity can be one of the following entities:

A measure of the source cube

A member property of the case dimension and level, selected earlier in the Mining Model Wizard

Members of another dimension in the cube

This provides flexibility in dealing with the potentially complex process of predictive analysis on OLAP data.

Training data, in the form of dimensions, levels, member properties and measures, is used to process the OLAP data mining
model and further define the data mining column structure for the case set.

Optionally, the wizard can create a new dimension for the source cube or a virtual cube based on the source cube. This enables
users to query the data mining data just as they would query OLAP data.

Prerequisites

The columns in an OLAP data mining column are constructed from visible levels in the OLAP cube on which the mining model is
based. To create an OLAP data mining model, the Mining Model Wizard requires a cube whose dimensions contain at least one
visible level.

OLAP data mining models cannot be created from relational data sources, and virtual dimensions created in Microsoft® SQL
Server™ 7.0 OLAP Services cannot be used in OLAP mining models. Also, an OLAP mining model cannot be based on a virtual
cube that contains a data mining dimension.

See Also

Mining Model Wizard

Data Mining Algorithms

Data Mining Columns

Data Mining Models

OLAP Model Steps (Mining Model Wizard)

Analysis Services (SQL Server 2000)

Editing Data Mining Models
Editing Data Mining Models

The process of editing data mining models depends upon the type of mining model; relational and OLAP data mining models
each have an editor, designed to meet the specialized needs of each model.

See Also

Editing OLAP Data Mining Models

Editing Relational Data Mining Models

Analysis Services (SQL Server 2000)

Editing Relational Data Mining Models
Editing Relational Data Mining Models

You can use Relational Mining Model Editor to edit the structure of relational data mining models. Relational Mining Model Editor
can also be used to process a data mining model and view the resulting content.

Relational Mining Model Editor enables you to change basic properties, such as the data mining algorithm, of the data mining
model. It shows the data mining model columns, including key, input, and predictive columns, and it allows you to edit the column
properties individually.

Relational Mining Model Editor also displays the table schema used to construct the case set in the Mining Model Wizard,
showing both case and supporting tables.

For trained relational mining models, Relational Mining Model Editor can display the data mining model content graphically using
Data Mining Model Browser.

See Also

Data Mining Model Browser

Relational Mining Model Editor

Analysis Services (SQL Server 2000)

Editing OLAP Data Mining Models
Editing OLAP Data Mining Models

You can use OLAP Mining Model Editor to edit the structure of OLAP data mining models. And, similar to Relational Mining Model
Editor, OLAP Mining Model Editor can process a data mining model and display the resulting content.

OLAP Mining Model Editor enables you to change basic properties, such as the data mining algorithm, of the data mining model.
The editor also enables you to change the properties of the dimensions, levels, and measures that compose the case set for the
data mining model.

If the OLAP data mining model has been trained, OLAP Mining Model Editor also displays the data mining model content
graphically using Data Mining Model Browser.

See Also

Data Mining Model Browser

OLAP Mining Model Editor

Analysis Services (SQL Server 2000)

Training Data Mining Models
Training Data Mining Models

In order for data mining models to provide predictive results, they first must work with known data in a process known as
training. During this process, data is inserted into the untrained data mining model. The process of inserting the data does not
save the training data into the data mining model; rather, the data mining model analyzes the training data, looking for rules and
patterns that can be used later to determine the histogram values for predictive columns, and then it stores the statistical
information as data mining model content.

Training is done by processing the data mining model in the Mining Model Wizard, in the mining model editors, and from
Analysis Manager.

The training process is similar for both relational and OLAP mining models. In the Mining Model Wizard, the source tables or cube
used to construct the model are assumed to contain training data and are used to supply the data mining model. In the Mining
Model Editor, the case and association tables for a relational data mining model expected to supply the training data are displayed
as part of the model. This is not so with the OLAP mining model, because all of the dimensions, levels, and measures of the source
cube are duplicated as part of the structure of the OLAP mining model, even if they are not being employed as an active part of
the mining model. A relational data mining model incorporates only those data mining columns that will be used by the mining
model into its structure.

Processing the data mining model can be performed in one of the following ways.

Refresh

Clears the data mining model content and retrains the model from the training data. It is best used when the model structure has
not changed, but the model needs to be completely retrained from a new set of training data. End users can continue to query a
data mining model during a refresh process; after the refresh process completes, the users have access to the refreshed data
without having to reconnect.

Full Process

Completely removes and rebuilds the data mining model and trains the newly constructed model from the training data. It is
required for data mining models whose structure has changed and for models that have not yet been trained. End users working
with the data mining model must reconnect to the server after this process completes in order to continue to work with it.

After the mining model is processed, the information about the patterns and rules discovered in the training data are stored as
data mining model content, along with the distribution information of the case data as well.

See Also

Mining Model Wizard

Analysis Manager

OLAP Mining Model Editor

Relational Mining Model Editor

Analysis Services (SQL Server 2000)

Viewing Data Mining Models
Viewing Data Mining Models

The easiest way to view the contents of a trained data mining model is to use Data Mining Model Browser and Dependency
Network Browser. These visualization tools display the complex contents of a data mining model, such as a decision tree, in an
understandable graphical interface. The browsers enable you to visualize the data mining model content.

Visualization, the process of displaying complex data in a visual format that can be easily comprehended, can be difficult when it
comes to data mining. Data Mining Model Browser simplifies the visualization of data mining model content, while Dependency
Network Browser makes visualization of the complex relationships within a decision tree data mining model readily
understandable.

By browsing the data mining model content, you can detect spurious relationships, which can suggest overfitting or other mining
model problems, allowing you to modify and fully process the data mining model later using one of the mining model editors.

The following topics describe the viewers supplied with Microsoft® SQL Server™ 2000 Analysis Services in more detail.

Topic Description
Viewing with Data Mining Model Browser Describes how to use Data Mining Model

Browser to study distribution information
in detail for a data mining model.

Viewing with Dependency Network
Browser

Details how to use Dependency Network
Browser to understand complex
dependency networks within decision tree
data mining models.

See Also

OLAP Mining Model Editor

Relational Mining Model Editor

Data Mining Model Browser

Dependency Network Browser

Analysis Services (SQL Server 2000)

Viewing with Data Mining Model Browser
Viewing with Data Mining Model Browser

Data Mining Model Browser allows you to view data mining content from the vantage point of a single attribute and its
relationships. It shows the mining model content for each node that is influenced by a single attribute, as well as histogram data
for each node. It displays the data mining model nodes used in the mining model, including the relationships between the nodes
and the rules or attributes assigned to them, as an interconnected network of boxes. Each box represents a node in a single
decision tree or a single cluster.

The nodes are color-coded to represent the data density of an attribute applicable to a selected node in relation to the total
number of cases processed by the selected node. The color coding and selected attribute can be changed through the use of the
tree color drop-down list on the legend pane.

The nodes are represented in ranking order of attribute factors, from left to right, in the content detail pane. The further down the
tree a split is represented, the less influence the factor that caused the carries in the data mining model. Additionally, the attributes
pane allows sorting of attributes by number of cases or probability of occurrence in the selected node, allowing you to better
understand the relevance of a given attribute to a node.

The benefit of data mining model content visualization with Data Mining Model Browser is the understanding of the patterns and
rules that encompass a case set, and the ability to fine tune these patterns and rules to better fit training data. For example, you
can use the visualization capabilities of Data Mining Model Browser to eliminate a common problem in data mining called
overfitting. Overfitting occurs when the data mining model starts constructing rules that are specific to single cases; the model
starts attaching importance to unimportant patterns. For example, assume that there is a customer case set for a department store
data mining model, which includes the last name of the customer as an attribute field. The data mining model might create a rule
where a customer named Smith is most likely to purchase tools because a single customer named Smith purchased tools. This
rule is based on a random pattern, which has no meaningful content. This rule is an example of overfitting; the correlation
between the last name of a customer and the type of products purchased is meaningless. Overfitting occurs most often when
attributes are added to a data mining model that do not supply meaningful content. In such cases, the model attempts to
construct rules where none should exist.

The information shown in Data Mining Model Browser represents the statistical model of trends learned by the data mining
model through the review of training data. As such, you will find it useful to review the attributes and node paths that define the
knowledge gained by training a data mining model to better understand the general patterns and rules represented by the
training data.

See Also

Data Mining Model Browser

OLAP Mining Model Editor

Relational Mining Model Editor

Dependency Network Browser

Analysis Services (SQL Server 2000)

Viewing with Dependency Network Browser
Viewing with Dependency Network Browser

Dependency Network Browser views data mining content for decision tree mining models from a vantage point different from
that of Data Mining Model Browser. Whereas Data Mining Model Browser allows you to view relationship and distribution
information from the viewpoint of a single attribute, Dependency Network Browser gives you the ability to view the data mining
model from the viewpoint of all attributes by relationship information alone, providing a wider perspective on the entire data
mining model.

Consider the following example. You have constructed a data mining model based on product purchases for customers using
store credit cards. The customer demographic information and product order information is quite rich; numerous input and
predictable columns have been supplied for the data mining model. Using Dependency Network Browser, you can get an
immediate sense of how well customer demographic information predicts other customer demographic information, for example,
and how the same customer demographic information predicts product order information. Dependency Network Browser shows
the relationships contained in every tree in the data mining model, information that would be difficult to extrapolate by viewing
each tree in isolation.

After an attribute is isolated, Data Mining Model Browser allows you to view the details and distribution information for the
relationships of the selected attribute.

Dependency Network Browser displays all of the attributes in the data mining model as nodes, with arrows indicating prediction
links between nodes. For example, an arrow from an Exercise node to a Heart Rate node indicates that the Exercise attribute
predicts the Heart Rate attribute. The strength of the prediction link can be viewed by the use of a slider on the left side of the
window. If the slider is set to All links, all prediction links are shown, no matter how little they affect the related nodes. If the
slider is set to Strongest links, only the strongest prediction links are displayed.

The nodes are color-coded to represent the selected node and the direction of predictability of related nodes. The nodes can also
be moved by clicking and dragging to improve the view of relationships, or the Improve Layout button can be used to
automatically distribute and resize nodes for better viewing.

See Also

Dependency Network Browser

OLAP Mining Model Editor

Relational Mining Model Editor

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Advanced Data Mining Model Operations
Advanced Data Mining Model Operations

The advanced task in this topic allows you to improve the performance and accuracy of a data mining model and apply security
features to mining models by using database roles.

Topic Description
Using Roles in Data Mining Models Explains the use of database roles as a

method of securing data mining models.

Analysis Services (SQL Server 2000)

Using Roles in Data Mining Models
Using Roles in Data Mining Models

Data mining models, like other objects managed by Microsoft® SQL Server™ 2000 Analysis Services, can have security roles
assigned to them to restrict access to the model and to its prediction capabilities to specific users and groups.

As data mining models are linked to databases in Analysis Manager, database roles are employed to grant or deny access to a
data mining model linked to a database, similar to the use of a database role with a cube. Mining Model Role Manager handles
the task of creating, editing, and maintaining mining model roles.

Caution Because database roles can be shared with other cubes and data mining models, a change made to the definition of a
role, such as the name or the user membership, affects other cubes or data mining models that use the role.

See Also

Database Roles

Mining Model Role Manager

Analysis Services (SQL Server 2000)

Archiving, Restoring, and Copying Data
Microsoft® SQL Server™ 2000 Analysis Services provides functionality to help you copy, move, or back up objects in Analysis
Manager. You can use Analysis Manager or the msmdarch command to archive and restore Analysis Services databases. Each
database is archived to one or more .cab files, which you can reserve for restoration requirements or migrate to other server
computers. A .cab file is called an archive file. You can also copy and paste various objects in Analysis Manager.

The following topics contain information about archiving, restoring, and copying data in Microsoft SQL Server 2000 Analysis
Services.

Topic Description
Archiving and Restoring
Databases

Describes how databases are archived and restored
in Analysis Services.

Copying and Pasting Objects Contains information about duplicating or moving
objects in Analysis Manager.

Analysis Services (SQL Server 2000)

Archiving and Restoring Databases
Archiving and Restoring Databases

An archive file for a Microsoft® SQL Server™ 2000 Analysis Services database contains the contents of the directory named the
same as the database. For example, the archive file for the FoodMart 2000 sample database stores the contents of the FoodMart
2000 directory. The default path of this directory is:

C:\Program Files\Microsoft Analysis Services\Data\FoodMart 2000

All Analysis Services databases can be found in the Data directory. The path leading to the Data directory can be changed. To
determine the current path, in Analysis Manager, right-click the server that contains the database, click Properties, and then see
the Data folder box.

Important The subdirectories of the Data directory store security files that control end users' access to objects on the Analysis
server. These files are included in the archive files. For this reason, archive files must be secured against unauthorized access.

The archive file also stores meta data for the database and its objects. The appropriate records from the Analysis Services
repository are included in the archive file. By default the Analysis Services repository is:

C:\Program Files\Microsoft Analysis Services\Bin\msmdrep.mdb

However, the path of the repository can be changed at installation, and the repository can be migrated to a SQL Server database.

Caution When you restore a database, its file set (in the Data directory and its subdirectories) and its meta data are returned to
their states at the time the archive file was created. Files that were created since then in these directories are deleted. Changes and
additions since then to Analysis Services repository records for the database and its objects are removed.

When you restore a database:

The files in the selected archive file are restored to the appropriate directories in the Data directory. If these directories
already contain files with the same names as files in the archive file, the existing files are overwritten by the files in the
archive file. If these directories contain files with different names, including new files that were created since the archive file
was created, these files are deleted.

The records in the Analysis Services repository that are associated with the database and its objects are replaced by the
Analysis Services repository records in the selected archive file.

When restoring a database that contains relational OLAP (ROLAP) partitions, Analysis Services first attempts to replace the
original, archived partitions. If this fails, Analysis Services creates new partitions, rather than replaces the original, archived
partitions. In this case, the original ROLAP partitions and their copies will use the original aggregation tables. This situation may
cause overwrite conflicts in the tables. For example, if you change and process an original partition, the aggregation tables may no
longer be valid for the copy of that partition. To avoid this problem, specify a unique aggregation prefix for each ROLAP partition
immediately after restoration, and then process the partitions whose aggregation prefixes you changed. This action creates
different aggregation tables for each partition. To access the aggregation prefix for a partition, in the Analysis Manager tree pane,
right-click the partition, click Edit, advance to the final step of the Partition Wizard, and then click Advanced.

Caution Archiving a database does not archive writeback tables, source data, or aggregations for ROLAP partitions in that
database. Writeback tables, source data, and aggregations for ROLAP partitions are required for ongoing, correct operation of
Analysis Services. You must archive or back up this data with the backup software you ordinarily use because it is not contained in
archive files created by Analysis Services.

Writeback tables are not stored in the archive file. Therefore, if you restore a write-enabled cube and its writeback table is not
available, the cube must be processed before it can be used. After processing, the effects of the writeback data are absent from the
cube's data. For more information about writeback data and write-enabled cubes, see Write-Enabled Cubes.

Data in remote partitions is not archived or restored with a database. After you restore a database that has a remote partition, you
must process the remote partition. For more information about remote partitions, see Remote Partitions. To process a partition,
see How to process a partition.

The contents of the archive file vary according to the storage types of the partitions in the database. The following table indicates
these variations.

Storage type

Source data is
contained in
archive file

Copy of source data
usable by partition is

contained in archive file

Aggregations
are contained in

archive file

MOLAP No Yes Yes
ROLAP No No No
HOLAP No No Yes

Restored MOLAP partitions are usable even if their source data (that is, the tables in the data source used by the partition) is lost
or unavailable. However, a restored MOLAP partition and its parent cube cannot be updated if the source data for the partition is
lost permanently. Restored ROLAP and HOLAP partitions rely on the availability of their source data for correct operation.
Restored ROLAP partitions also rely on the availability of their aggregation tables or indexed views, which are stored with the
source data.

Analysis Services (SQL Server 2000)

Archiving an Analysis Services Database
Archiving an Analysis Services Database

You can archive a Microsoft® SQL Server™ 2000 Analysis Services database by using Analysis Manager or the msmdarch
command.

To archive an Analysis Services database using Analysis Manager, use the Archive Database and Archive Database Progress
dialog boxes.

To archive an Analysis Services database using Analysis Manager

Analysis Manager

Analysis Manager

To archive an Analysis Services database using the msmdarch command, you can use the Command Prompt window.

To archive an Analysis Services database using the msmdarch command

Command Prompt

Command Prompt

You can also execute the msmdarch command from a .bat file. If you want to schedule execution of a .bat file, you can use Data
Transformation Services (DTS) to create an Execute Process task that runs the batch file. The msmdarch command returns an exit
code of 1 if it fails.

See Also

DTS Overview

Execute Process Task

Analysis Services (SQL Server 2000)

Restoring an Analysis Services Database
Restoring an Analysis Services Database

You can restore a Microsoft® SQL Server™ 2000 Analysis Services database by using Analysis Manager or the msmdarch
command.

To restore an Analysis Services database with the Analysis Manager, use the Open Archive File, Restore Database, and Restore
Database Progress dialog boxes. If you are restoring a database on a remote server, you must also use the Remote Server Data
Directory dialog box.

To restore an Analysis Services database using Analysis Manager

Analysis Manager

Analysis Manager

To restore an Analysis Services database with the msmdarch command, you can use the command prompt.

To restore an Analysis Services database using the msmdarch command

Command Prompt

Command Prompt

You can also execute the msmdarch command from a .bat file. If you want to schedule execution of a .bat file, it is recommended
that you use Data Transformation Services (DTS) to create an Execute Process task that runs the batch file. The msmdarch
command returns an exit code of 1 if it fails.

See Also

DTS Overview

Execute Process Task

Analysis Services (SQL Server 2000)

Copying and Pasting Objects
Copying and Pasting Objects

You can use Analysis Manager to copy and paste many types of objects used in Microsoft® SQL Server™ 2000 Analysis Services.
The Copy and Paste commands are provided on the following menus:

The shortcut (that is, right-click) menus in the Analysis Manager tree pane

The Analysis Manager Action menu

You can copy and paste objects within a database, between databases, and between servers.

To copy and paste an object

Analysis Manager

Analysis Manager

Only meta data and aggregations are copied. Data (such as source data and writeback tables) is not copied. This data must be
available to some newly pasted objects. To ensure this availability, follow these steps after pasting:

1. Make sure data sources at the target location are defined correctly and connected so that the newly pasted objects have
access to source data. This requirement is especially important after copying and pasting objects between servers.

2. Process newly pasted objects of types that require processing.

You must copy and paste within a single instance of Analysis Manager. It is not possible to copy an object within one instance of
Analysis Manager and then paste it within another instance.

If you attempt to paste an object to a location that already contains an object of the same type and name, you are prompted to
supply a different name for the new object you are creating.

When some types of objects are copied, supporting objects are copied with them. For example, a cube contains dimensions,
measures, one or more partitions, and a data source. A cube may also contain other objects. It may also rely on other objects such
as shared dimensions and roles that exist outside the cube. All of these objects are the supporting objects of the cube, and they
are copied along with the cube. (If a supporting object has its own supporting objects, they are also copied.) When you paste an
object that was copied with supporting objects, the supporting objects are pasted along with the main object. Exceptions are:

Virtual cubes. Before you copy and paste a virtual cube to a different database, you must copy and paste to that database
the component cubes on which the virtual cube is based. To determine these component cubes, in the Analysis Manager
tree pane select the virtual cube, and then in the HTML (that is, right) pane, select the Meta Data tab, then see the Uses
Cubes line.

Shared virtual dimensions. Before you copy and paste a shared virtual dimension to a different database, you must copy
and paste to that database the shared dimension that is specified in the Depends On Dimension property of the virtual
dimension. To determine this shared dimension, in the Analysis Manager tree pane, right-click the virtual dimension, click
Edit, and then see the Advanced tab in the properties pane.

OLAP data mining models. Before you copy and paste an OLAP mining model to a different database, the source cube must
already exist in the target database.

Relational data mining models. Before you copy and paste a relational mining model to a different database, the data source
must already exist in the target database.

The situation in which the target location already contains an object with the same type and name, but a different structure,
than a supporting object. In this case, the paste operation fails, and no objects are pasted. If objects already exist in the target
location with the same types, names, and structures as the supporting objects, the paste of the main object is successful, but
the supporting objects are not pasted.

If you paste a relational OLAP (ROLAP) partition (or an object that contains a ROLAP partition), the original ROLAP partition and
its copy will use the same aggregation tables. This situation may cause overwrite conflicts in the tables. For example, if you change

and process the original partition, the aggregation tables may no longer be valid for its copy. To avoid this problem, immediately
after pasting, specify a unique aggregation prefix for the pasted ROLAP partition and process it. This action creates new
aggregation tables used by only the pasted partition. To access the aggregation prefix for a partition, in the Analysis Manager tree
pane, right-click the partition, click Edit, advance to the final step of the Partition Wizard, and then click Advanced.

You can use Copy and Paste to create a copy of a database that contains only the meta data and aggregations of the original
database. This copy can be archived, and the archive file can be transferred to another Analysis server and restored there. This
procedure provides a convenient way to transfer only the structure of a database to another Analysis server.

See Also

Archiving and Restoring Databases

Archiving an Analysis Services Database

Restoring an Analysis Services Database

Analysis Services (SQL Server 2000)

Analyzing and Optimizing Performance
Microsoft® SQL Server™ 2000 Analysis Services provides tools that you can use to analyze and optimize the performance of your
Analysis Services installation.

Topic Description
Analyzing Usage Patterns Describes the Usage Analysis Wizard. You can use

this wizard to generate performance reports.
Optimizing Performance Based
on Usage

Describes the Usage-Based Optimization Wizard.
You can use this wizard to optimize aggregation
design based on past queries.

Optimizing the Data Warehouse
Database for Analysis Services
Performance

Discusses techniques you can use when designing
your data warehouse that will improve the
performance of Analysis Services.

Optimizing Cube Schemas Discusses the Optimize Schema option for cubes
and how it can substantially reduce cube processing
time.

Monitoring Analysis Services
Performance

Details performance objects, counters, and
instances you can use with Microsoft Windows
2000® System Monitor (known as Performance
Monitor in Windows NT® 4.0) to monitor the
performance of Analysis servers.

Analysis Services (SQL Server 2000)

Analyzing Usage Patterns
Analyzing Usage Patterns

 New Information - SQL Server 2000 SP3.

To produce an on-screen report of a cube's query patterns quickly, use the Usage Analysis Wizard. Report content is derived from
the query log, which, by default, records every tenth query. You can adjust the content of the query log by changing this interval,
stopping logging altogether, or clearing the log to restart logging. For more information, see Logging Tab (Properties Dialog Box).

You can tailor report content by using criteria to select the log entries you want to include in the report. The following reports are
available.

Report name Displays
Query Run-Time Table The run time of queries, ordered from the longest to

the shortest run time.
Query Frequency Table The frequency of queries, ordered from the most to

the least frequent.
Active User Table Users and the number of queries they have sent,

ordered from the most to least queries sent per user.
Query Response Graph The response time for all queries.
Query By Hour Graph The total number of queries processed, grouped by

hour.
Query By Date Graph The total number of queries sent, grouped by date.

To start the Usage Analysis Wizard

Analysis Manager

Analysis Manager

Security Note The default location for the query log file is C:\Program Files\Microsoft Analysis Services\Bin\msmdqlog.mdb.
This file, like any log file, should be secured from unauthorized access.

See Also

Usage Analysis Wizard

Analysis Services (SQL Server 2000)

Optimizing Performance Based on Usage
Optimizing Performance Based on Usage

To optimize partition performance based on patterns of logged queries, use the Usage-Based Optimization Wizard, which takes
you through steps to specify options for optimization. For more information, see Usage-Based Optimization Wizard.

You can optimize some or all of the partitions for cubes that contain multiple partitions, but each partition must be individually
optimized. If a partition contains existing aggregations, you can either add the new aggregations to the existing ones or replace
them. You can also change the storage mode of the partition you are optimizing. You must process a partition after optimizing its
aggregations, and the final step of the wizard allows you to process immediately or defer processing.

Important Do not optimize partition aggregation designs if you might want to merge partitions in the future. You cannot merge
partitions unless their aggregation designs are identical. For more information, see Partitions and Merging Partitions.

The usage-based optimization process designs aggregations tailored for query patterns recorded in the query log, which by
default records every tenth query. You can adjust the content of the query log by changing this interval, stopping logging
altogether, or clearing the log to restart logging. One approach to optimizing performance based on usage is to create partitions
with zero aggregations, adjust query logging to log every query for a period of time to capture typical usage patterns, and then
use the wizard to design aggregations appropriate to the usage. For more information, see Logging Tab (Properties Dialog Box).

To start the Usage-Based Optimization Wizard

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Optimizing the Data Warehouse Database for Analysis Services
Performance
Optimizing the Data Warehouse Database for Analysis Services Performance

The design and performance of the data warehouse database significantly affect the performance of Microsoft® SQL Server™
2000 Analysis Services.

Analysis Services creates multidimensional presentations of data warehouse data by reading and organizing the data into
multidimensional objects such as dimensions and cubes. The Analysis server uses the database relational engine to access the
data warehouse database when creating and processing dimensions and cubes. Therefore, the data warehouse schema design
and relational database performance have a significant effect on the ease of designing cubes and on the performance of
processing cubes.

Cube Storage Modes

A cube's storage mode significantly influences the degree to which the data warehouse schema and relational database
performance affect cube query performance.

With multidimensional OLAP (MOLAP) storage, cube query performance does not depend on relational database
performance because all of the cube's data is contained in the multidimensional structure used by the Analysis server.

With hybrid OLAP (HOLAP) storage, only cube queries that require retrieval of facts from the fact table will require the
Analysis server to query the relational database. Such queries are affected by database performance, but queries that do not
access the fact table are unaffected.

With relational OLAP (ROLAP) storage, all cube queries are affected by the database performance because the Analysis
server must retrieve fact and aggregated data from the relational database. If dimensions also use ROLAP storage, cube
query performance will depend to a large extent on the performance of the relational database. Caching in the Analysis
server affects cube performance in this situation, but only to the extent that queries can be at least partially resolved from
cached information.

Dimensional Modeling

The design of the data warehouse database schema should incorporate the principles of dimensional modeling so the dimension
tables and fact tables represent the business data and the way clients will view and query the data. Most dimensional modeling
results in a star or snowflake database schema. Such schemas facilitate cube design and reduce the number of multiple-table
joins when querying the database to process dimensions and cubes. If a snowflake schema is needed, minimize the number of
dimension tables beyond the first level from the fact table, and minimize the depth of the snowflake dimensions. Fact tables
usually hold the vast majority of data in the data warehouse, sometimes containing hundreds of millions of rows. Fact tables
should be carefully designed to eliminate duplicated data and to minimize the length of the rows.

Cube Processing

Relational database optimization techniques that improve the speed of reading the data will improve dimension and cube
processing performance in Analysis Services. One of the most important optimization techniques is to design and use effective
indexes on the fact and dimension tables to facilitate performance of the joins and queries Analysis Services issues when
processing dimensions and cubes.

SQL Server 2000 offers a number of options and suggestions for optimizing logical and physical relational database design and
query performance. Many of these techniques apply to data warehouse databases, as well as to transaction processing databases.
For more information, see Optimizing Database Performance Overview.

Common Data Warehouse Techniques

Many common data warehouse design and optimization techniques apply regardless of the tools that are used to present data to
clients. However, some optimization techniques that are appropriate when SQL queries are used as the presentation tool may not
be necessary or appropriate if the tool is Analysis Services. In general, the granularity of the fact table should not be reduced by
summarization; the number of fact table rows affects the time to process cubes but has little effect on OLAP client query response
performance. Analysis Services uses sophisticated algorithms to create aggregation tables of summary data, so these need not be

created in the database schema. Special bridge tables for parent-child dimensions such as organizational hierarchies are not
necessary; Analysis Services can use self-referential dimension tables in their native form.

Record Size and Data Types

The size of a record affects Analysis Services performance in all areas, including cube size, processing time, server memory usage,
server to client data transfer time, and client memory usage. Fact tables typically contain the vast majority of data in the data
warehouse. Fact table records should be kept as short as possible and include only fields for measures and indexed key columns.
Measure fields should use the smallest data type consistent with the measure data, but be sure the data type is large enough to
contain summarized values to prevent overflow when aggregations are calculated. In a fact table containing millions of rows, a
saving of even two bytes per record can amount to a significant reduction in table size and the time required to process the table
when creating cubes.

Data Warehouse Updates

Because Analysis Services reads data warehouse data and stores it in multidimensional structures, the frequency of changes to
the data warehouse data affects how often OLAP cubes and dimensions have to be reprocessed. A data warehouse update
strategy should be designed to take the need for reprocessing OLAP objects into account.

Analysis Services (SQL Server 2000)

Optimizing Cube Schemas
Optimizing Cube Schemas

In many situations Microsoft® SQL Server™ 2000 Analysis Services can optimize a cube's schema to significantly reduce cube
processing time by eliminating joins between dimension tables and fact tables.

During dimension processing, the Analysis server creates an internal representation of the dimension data and hierarchy. When
processing a cube, the dimension member keys identified in the member key column property are used to access the information
in the internal representation of the processed dimension. Under certain conditions, the dimension member's foreign key in the
fact table can be used for this lookup, thereby eliminating the need to join the dimension table to the fact table in the database
query. This significantly reduces the complexity of the query, the amount of data accessed in the relational database, and network
traffic between the Analysis server and the relational database.

To take advantage of cube schema optimization, when you design a cube in Cube Editor, click the Optimize Schema command
on the Tools menu. Analysis Services then modifies the schema to eliminate joins between the fact table and dimension tables,
where possible. Certain conditions must be met for Analysis Services to eliminate a join between a dimension and the fact table.
These are:

The dimension must be a shared dimension, and must have been processed before you optimize the cube schema.

The member key column for the lowest level of the dimension must contain the keys that relate the fact table and the
dimension table. This must be the only key necessary to relate the fact table to the dimension table.

The keys in the member key column for the lowest level of the dimension must be unique.

The lowest level of the dimension must be represented in the cube, that is, the level's Disabled property must be set to No.
The level can be hidden.

If these conditions are met, and the cube's schema is optimized using the Optimize Schema option, the Analysis server ignores
the dimension table in the database when processing the cube. If these conditions are met for all dimensions in the cube, the
Analysis server needs to read only the fact table to process the cube. Processing time reductions often can be substantial when
this optimization technique is used.

Cube schema optimization applies to all partitions of the cube whether the partitions are processed independently or as a group.

Note You should not optimize a cube's schema if you depend on inner joins between the fact table and dimension tables to
exclude fact rows for the cube content. The entire fact table is read if all dimension table joins are removed by this optimization.

Because schema optimization can eliminate joins, a cube with an optimized schema may not display all available tables for use
when specifying drillthrough options. You can join a table to the schema for drillthrough when specifying drillthrough options by
adding the table and defining a SQL WHERE clause to establish the join. For more information, see Specifying Drillthrough
Options.

Member Key Column

Analysis Services uses the Member Key Column property of the lowest level of a dimension to control cube schema
optimization. During cube schema optimization, each dimension is evaluated to determine if it meets the conditions for
optimization. If the dimension meets the required conditions, the Member Key Column property of the lowest level of the
dimension is changed to refer to the foreign key in the fact table instead of the key in the dimension table. For example, before
optimization the dimension level's Member Key Column is "Products"."SKU_ID", which is joined to the key, "Facts"."SKU_Key", in
the fact table. After optimization, the Member Key Column property value is "Facts"."SKU_Key". This signals the Analysis server
to use the key from the fact table during processing instead of issuing queries that join the dimension to the fact table in the
relational database.

Example

A dimension for time contains the levels Year, Quarter, Month, and Day. There is a dimension member for each day in the
dimension, and each day member has a unique key, which is specified as the member key column for the Day level. The Member
Keys Unique property for the Day level is set to True.

The dimension's Day level member keys are used as foreign keys in the fact table to relate the dimension table to the fact table.
No other keys are required to uniquely relate a fact table row to a row in the dimension table.

A cube is designed that uses this fact table and this time dimension. It is preferable that the cube contain summarized data at the
Month level and above but not at the Day level. In the cube, the Disabled property for the dimension's Day level is set to No, so
the level keys will be available for the cube processing optimization. The Visible property for the dimension's Day level is set to
False, so the cube will not display data for the Day level.

When the Optimize Schema command on the Tools menu is selected, the cube schema is optimized. Then, when the cube is
saved and processed, the SQL query issued by the Analysis server to read the fact table will not need to join or access the
dimension table.

Modifying Cube Schema Optimization

You can remove the optimization for one or more dimensions in a cube by changing the Member Key Column property for the
lowest level of each of the dimensions to refer to its original column in the dimension table. This will cause the Analysis server to
issue a query that joins the dimension table to the fact table during processing.

Note A cube's schema optimization can be affected by adding or deleting dimensions, or by modifying dimension properties in
the cube. You should check the cube's schema optimization or redo the optimization whenever you make such changes.

Unknown Dimension Member Error

This error indicates that a dimension member's key is not found in the internal representation of a dimension when processing a
cube that contains the dimension. The cause can be either that a dimension has not been processed after new members were
added, or that the dimension table does not contain a key that matches a key found in the fact table.

This error occurs regardless of whether a cube's schema has been optimized if new members are added to a dimension and
related facts are added to the fact table but the dimension has not been processed. It makes no difference whether the member
keys are read from the joined dimension (schema not optimized) or from the member foreign keys in the fact table (schema
optimized). The internal representation of the dimension will not contain the new keys until the dimension has been processed.

There is one situation where this error is triggered if the cube's schema has been optimized, but is not be triggered if the schema
has not been optimized. This condition occurs when a fact has been added to the fact table but no corresponding member exists
in a dimension table. If the cube's schema has been optimized, the key for the new fact will be read from the fact table but not
found in the internal representation of the dimension, even if the dimension has been processed. However, if the cube's schema
has not been optimized, the query that joins the dimension table to the fact table causes any facts that do not have corresponding
dimension members to be ignored and not read during processing, so the error is not triggered.

You can avoid these errors by maintaining referential integrity between dimension tables and fact tables, and by always
processing a dimension after making changes to the dimension table and before processing cubes that use the dimension.

Analysis Services (SQL Server 2000)

Monitoring Analysis Services Performance
Monitoring Analysis Services Performance

System Monitor is a graphical tool in Microsoft® Windows® 2000 for measuring the performance of your own computer or
other computers on a network. (In Microsoft Windows NT® 4.0, this tool is called Performance Monitor). You can use either
System Monitor or Performance Monitor to do the tasks described in this section. For each computer, you can view the behavior
of objects, such as processors, memory, cache, threads, and processes. Each of these objects has an associated set of counters that
measure device usage, queue lengths, delays, and other indicators of throughput and internal congestion. The dynamic link library
that provides the performance objects and counters for Microsoft® SQL Server™ 2000 Analysis Services, MSMDCTR80.DLL, is
installed into the \Bin subdirectory of the Analysis Services directory.

Windows System Monitor provides charting, alerting, and reporting capabilities that reflect both current activity and ongoing
logging. You can open, browse, and chart log files later as if they reflected current activity.

Installing and Uninstalling Analysis Services Performance Counters

To manually install the performance objects and counters supplied by Analysis Services, for use with the System Monitor, the
following steps must be performed.

Installing Analysis Services Performance Counters

1. Add the named values in the following table to the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQLServerOLAPService\Performance

The registry path is described in the following table.

Named value Value
Library The file path of the Msmdctr80.dll library
Open OpenPerformanceData
Collect CollectPerformanceData
Close ClosePerformanceData

2. The information for the performance counters must be installed into the registry. Two files, Msmdctr.ini and Msmdctr.h, are
included for this purpose. The two files are typically installed in the same location as the msmdctr80.dll library. To load this
information into the registry, use the LODCTR.EXE program distributed with Windows NT 4.0 and Windows 2000. To install,
execute the following command in a command prompt:

LODCTR msmdctr.ini

Note If the Performance Monitor extensible counter DLL path in the registry contains more than 62 characters, you will receive
an "Access violation" error message in Performance Monitor (Perfmon.exe) when you click Add Counters in any chart, log, or
report. For more information about resolving this issue, see Knowledge Base article Q242472, "Access Violation in Perfmon When
Using Long Extensible Counter DLL Path in the Registry."

Uninstalling Analysis Services Performance Counters

1. To uninstall the performance objects and counters, use the UNLODCTR.EXE program distributed with Windows NT 4.0 and
Windows 2000 for this purpose. To uninstall, execute the following command in a command prompt:

UNLODCTR MSSQLServerOLAPService

Analysis Services provides objects and counters that can be used to monitor activity in computers running Analysis Services. The
topics in the following table of objects provide more detailed information about monitoring Analysis Services performance.

Analysis Services objects Description
Analysis Server:Agg Cache Object Collects statistical information about

aggregation cache as related to Analysis
Services

Analysis Server:Connection Object Collects statistical information about
connections as related to Analysis Services

Analysis Server:Last Query Object Collects statistical information about the
last Analysis Services query

Analysis Server:Locks Object Collects statistical information about
internal server latches and locks as related
to Analysis Services

Analysis Server:Proc Object Collects statistical information about
processing data as related to Analysis
Services

Analysis Server:Proc Aggs Object Collects statistical information about the
processing of aggregations in
multidimensional OLAP (MOLAP) data
files

Analysis Server:Proc Indexes Object Collects statistical information about the
processing of indexes for MOLAP data
files

Analysis Server:Query Object Collects statistical information about
Analysis Services queries

Analysis Server:Query Dims Object Collects statistical information about
Analysis Services query of dimensions and
meta data

Analysis Server:Startup Object Collects statistical information about
Analysis Services startup

See Also

Analyzing and Optimizing Performance

Analysis Services (SQL Server 2000)

Analysis Server:Agg Cache Object
Analysis Server:Agg Cache Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Agg Cache object. The
Agg Cache object counters provide information about the aggregation cache.

Agg Cache object counters Description
Bytes added/sec Rate of bytes added to the cache.
Current bytes Current number of bytes used by the aggregation

cache.
Current entries Current number of cache entries.
Direct hit ratio Ratio of cache direct hits to cache lookups, for the

period between obtaining counter values.
Direct hits/sec Rate of cache direct hits. Queries were answered from

an existing cache entry.
Evictions/sec Rate of evictions from the cache. This is per partition

per cube per database. Typically due to background
cleaner.

Filter hit ratio Ratio of cache filter hits to cache lookups, for the
period between obtaining counter values.

Filter hits/sec Rate of cache filter hits. Queries were answered by
filtering an existing cache entry.

Inserts/sec The rate of insertions into the cache. This is per
partition per cube per database.

Lookups/sec The rate of cache lookups.
Misses/sec The rate of cache misses.
Total direct hits Total count of direct cache hits. Queries were answered

from existing cache entries.
Total filter hits Total count of filter cache hits. Queries were answered

by filtering existing cache entries.
Total evictions Evictions from the cache. This is per partition per cube

per database. Typically due to background cleaner.
Total inserts Insertions into the cache. This is per partition per cube

per database.
Total lookups Total number of lookups into the cache. Note that each

MDX query has zero or more server round trips, and
each partition will be queried.

Total misses Total count of cache misses.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Connection Object
Analysis Server:Connection Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Connection object. The
Connection object counters provide information about server activity in general. They can be used to monitor the performance
of user connections with Analysis Services.

Connection object counters Description
Authentications/sec Rate of user authentications.
Completions/sec Rate of completed connections. This is derived by

adding both successful and failed completions.
Current agents Current number of agents on server.
Current authentications Current number of authentications in progress.
Current connections Current number of client connections established.
Current connections in progress Current number of connections pending

completion.
Current http connections Current number of HTTP connections established.
Failures/sec Rate of failures.
Requests/sec Rate of requests. These are arrivals.
Successes/sec Rate of connections successfully completed.
Total authentications Total user authentications.
Total completions Total connection completions.
Total failures Total failed connection attempts.
Total requests Total connection requests. These are arrivals.
Total successes Total successful connections.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Last Query Object
Analysis Server:Last Query Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Last Query object. The
Last Query object counters provide information about processing on the last query.

Last Query object counters Description
Answer from cache direct Number of answers directly from cache. Note that

this counter is per partition.
Answer from cache filtered Number of partitions by filtering from other cache

entries.
Answer from file Number of partitions contributing to the answer from

files.
Data avg bytes/read Average bytes per data file per read operation.
Data avg bytes/row Average bytes per row read during the last query.
Data avg rows/read Average number of rows read per data file read

operation during the last query.
Data bytes Bytes read from the data file during the last query.
Data bytes total Data file size in bytes during the last query. Total for

all multidimensional OLAP (MOLAP) partitions
examined.

Data reads Number of logical I/O reads against the Data file
during the last query.

DSN requested Data Set Name requested as the query to the server.
(Levels used for each dimension.)

DSN used Data Set Name used to answer the query. (Levels
used for each dimension.)

Index bytes Number of bytes read from the Index file during the
last query.

Index reads Number of logical I/O reads against the Index file
during the last query.

Map bytes Bytes read from the Map file during the last query.
Map reads Number of logical input/output (I/O) reads against

the Map file during the last query.
Query num Monotonically increasing query count. Might be

useful for tools to check which query this information
applies to.

Rows created Number of rows created, which forms the final
answer in the aggregation set. Because this is the
result of aggregation this counter will usually be
much smaller than the Rows read counter.

Rows filter excluded Number of rows that a filter has excluded during the
last query.

Rows filter included Number of rows that a filter has included during the
last query.

Rows filtered Number of rows against which a filtering operation
was applied during the last query.

Rows read Number of rows read from a disk (facts or
aggregations) or from the aggregation cache (in
memory).

Time (ms) Elapsed time in milliseconds.
Total bytes Bytes read from all files.
Total reads Number of logical I/O reads against all files

processed during the last query.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Locks Object
Analysis Server:Locks Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Locks object. The Locks
object counters provide information about latching and locking activity. They can be used to monitor the performance of latches
and locks with Analysis Services.

Latch object counters Description
Current latch waits Current number of threads waiting for a latch. These are

latch requests that could not be given immediate grants
and are in a wait state.

Current lock waits Current number of clients waiting for a lock.
Current locks Current number of locked objects.
Latch waits/sec Rate of latch requests that could not be granted

immediately.
Lock denials/sec Rate of lock denials.
Lock grants/sec Number of lock grants per second.
Lock requests/sec Number of lock requests per second.
Lock waits/sec Number of lock waits per second. These are lock requests

that could not be given immediate lock grants and are in a
wait state.

Unlock requests/sec Number of unlock requests per second.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Proc Object
Analysis Server:Proc Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Proc object. The Proc
object counters provide information about processing data.

Proc object counters Description
Current partitions Current number of partitions being processed.
Current threads merging Current number of threads merging data. Decremented

when blocked by pipeline of work.
Current threads reading Current number of threads reading source data. It is

decremented when blocked by pipeline of work.
Current threads writing Current number of threads writing data to disk. It is

decremented when blocked by pipeline of work.
File bytes written/sec Rate of bytes written to a multidimensional (MOLAP) file

per second.
File rows written/sec Rate of rows written to a MOLAP file per second.
Memory size bytes Size of current rows in memory.
Memory size rows Count of rows in memory.
Rows created/sec Rate of aggregation rows created. This will be different

from rows read/sec if duplicates exist.
Rows merged/sec Number of rows merged or inserted into an aggregation,

per second.
Rows read/sec Number of rows read from source database per second.
Total rows Count of rows read from source database.
Total partitions Accumulating count of partitions processed. This count is

incremented if process is successful or not.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Proc Aggs Object
Analysis Server:Proc Aggs Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Proc Aggs object. The
Proc Aggs object counters provide information about processing aggregations.

Proc Aggs object counters Description
Current partitions Current number of partitions being processed.
Memory size bytes Size of current aggregations in memory. This count is

an estimate.
Memory size rows Size of current aggregations in memory. This count is

an estimate.
Rows created/sec Number of aggregation rows created per second.
Rows merged/sec Number of rows merged or inserted into an

aggregation per second.
Temp file bytes written/sec Number of bytes written to a temporary file per

second. Temporary files are written when
aggregations exceed memory limits.

Temp file rows written/sec Number of temporary file rows written per second.
Temporary files are written when aggregations exceed
memory limits.

Total partitions Total number of partitions processed (successfully or
otherwise).

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Proc Indexes Object
Analysis Server:Proc Indexes Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Proc Indexes object.
The Proc Indexes object counters provide information about processing indexes.

Proc Indexes object counters Description
Current partitions Current number of partitions being processed.
Rows/sec Count of rows per second that are working on

processing indexes.
Total partitions Accumulating count of partitions processed. This

count is incremented regardless of whether
process is successful or not.

Total rows Accumulating count of rows that are processing
indexes.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Query Object
Analysis Server:Query Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Query object. The
Query object counters provide information about processing on the last query, such as elapsed time in milliseconds of the last
query processed.

Query object counters Description
Avg time/query Average time per query in milliseconds. This

counter is based on queries answered since
the last counter measurement.

Bytes sent/sec Count of bytes sent per second.
Current process thread pool Current count of threads in processing threads

pool. These threads resolve queries.
Current process thread queue length Current length of queue for work items in the

processing thread pool.
Current process threads active Current number of threads actively working

on queries.
Current pyramid operations Current pyramid operations.
Current queries Current number of queries being actively

worked on.
Current threads Current number of threads working on

queries.
Current worker thread pool Current count of threads in worker thread

pool. These threads answer requests from
clients.

Current worker threads active Current count of worker threads active.
Data bytes/sec Count of bytes reads from the data file per

second.
Data reads/sec Count of logical I/O reads against the data file

per second.
Filter rows excluded/sec Count of filter rows excluded per second.
Filter rows included/sec Count of filter rows included per second.
Filtered rows/sec Count of filtered rows per second.
Index bytes/sec Count of byte reads from the Index file per

second.
Index reads/sec Count of logical I/O reads against the index file

per second.
Map bytes/sec Count of bytes read from the Map file per

second.
Map reads/sec Count of logical input/output (I/O) reads

against the Map file per second.
Network round trips/sec Rate of network round trips. This includes all

client/server communication.
Pyramid operations/sec Rate of pyramid operations started.
Queries answered/sec Count of queries being answered per second.
Queries from cache direct/sec Count of queries from cache direct per second.
Queries from cache filtered/sec Count of per queries from cache filtered per

second.
Queries from file/sec Rate of queries answered from files.
Queries requested/sec Count of query requests arriving at the server

per second.
Rows read/sec Count of rows read per second.
Rows sent/sec Count of rows sent per second.
Total bytes sent Accumulating count of bytes sent.

Total network round trips Total network round trips. This includes all
client/server communication.

Total pyramid operations Accumulating count of pyramid operations.
Total queries answered Accumulating count of queries answered.
Total queries from cache direct Accumulating count of queries derived directly

from cache. Note that this is per partition.
Total queries from cache filtered Accumulating count of queries from cache

filtered.
Total queries from file Accumulating count of queries from files.
Total queries requested Accumulating count of queries requested.
Total rows sent Accumulating count of rows sent.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Query Dims Object
Analysis Server:Query Dims Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Query Dims object. The
Query Dims object counters provide information about processing queries dimensions.

Query Dims object counters Description
Bytes/sec Count of sending bytes per second.
Current requests Current number of requests for part of the member

tree or for member properties.
Members/sec Count of sending members per second.
Requests/sec Rate of requests for part of the member tree or for

member properties. Consider increasing Large
Level Threshold if this counter is excessive.

Total bytes Accumulating count of bytes sent.
Total members Total number of requests for part of the member

tree or for member properties.
Total requests Accumulating count of requests.
Total VLDM requests Accumulating count of Very Large Dimension

Manager (VLDM) requests sent.
VLDM requests/sec Count of VLDM requests per second.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Analysis Server:Startup Object
Analysis Server:Startup Object

The following table lists performance counters from the Microsoft® SQL Server™ 2000 Analysis Services Startup object. The
Startup object counters provide information about processing startups.

Startup object counters Description
Bytes/sec Count of bytes per second.
Members/sec Count of loading members per second.
Properties/sec Count of loading properties per second.
Server uptime Accumulating seconds since the server

was started.
Total bytes Accumulating count of bytes.
Total dimensions Accumulating count of dimensions loaded.
Total members Accumulating count of members loaded.
Total properties Accumulating count of properties loaded.

See Also

Monitoring Analysis Services Performance

Analysis Services (SQL Server 2000)

Automating and Scheduling Administrative Tasks
Microsoft® SQL Server™ 2000 Analysis Services integrates with Data Transformation Services (DTS) to help you administer your
OLAP and data mining data. You can use DTS to automate processing, and you can use a batch file to automate archive and
restoration of Analysis Services databases. The following topics describe how to automate these administrative tasks by using
DTS or the command prompt.

Topic Description
Processing Objects Using Data
Transformation Services

Describes how Analysis Services works with DTS
to process objects.

Creating Predictions Using Data
Transformation Services

Describes how DTS can be used to create a task
that creates output tables containing the
predictive column results from a data mining
model analysis.

Analysis Services (SQL Server 2000)

Processing Objects Using Data Transformation Services
Processing Objects Using Data Transformation Services

Use the Analysis Services Processing task in a Data Transformation Services (DTS) package to perform processing of one or more
cubes or other objects defined in Microsoft® SQL Server™ 2000 Analysis Services. Use DTS to extract, transform, and consolidate
data from disparate sources into single or multiple destinations. For more information about using DTS with Analysis Services,
see Using Data Transformation Services with Analysis Services. For more information about DTS, see DTS Overview.

After you define the package with the task, you can schedule the package to execute at a future date and time. The package can be
executed once or repeatedly at a periodic interval.

Note To use the Analysis Services Processing task, you must install SQL Server 7.0 or SQL Server 2000, including SQL Server
Enterprise Manager, as well as Analysis Manager on the server computer on which you want to execute the package containing
the task.

To process one or more objects using the Analysis Services Processing task, complete the following steps.

1. Create a DTS package that processes objects in Analysis Services.
a. Create an Analysis Services processing task.

b. (Optional.) Add connections and other tasks to the package.

c. Save the package.
2. Schedule and execute the package.

For more information about steps a and b, see Creating an Analysis Services Processing Task and Adding Connections and Other
Tasks to the Package.

Analysis Services (SQL Server 2000)

Creating an Analysis Services Processing Task
Creating an Analysis Services Processing Task

To create an Analysis Services Processing task, use the Analysis Services Processing Task dialog box, which is accessed through
Data Transformation Services (DTS) Designer in SQL Server Enterprise Manager.

To create an Analysis Services Processing task

Enterprise Manager

Enterprise Manager

Analysis Services (SQL Server 2000)

Adding Connections and Other Tasks to the Package
Adding Connections and Other Tasks to the Package

In a Data Transformation Services (DTS) package, you can add connections and tasks of various types in addition to the Analysis
Services Processing task. The specific connections and tasks you may need depend on your unique requirements and
circumstances. The following table lists some common examples.

If the Analysis
Services Processing

task ... You can add ...
That executes

... Because ...
Processes a cube with
the Process option

A connection to
a Microsoft®
SQL Server™
2000 containing
an OLTP
database, and

A connection to
a SQL Server
containing a
data warehouse,
and

A Data Driven
Query task to
update the data
warehouse from
the OLTP
database

Before the
Analysis
Services
Processing task

You can schedule and
periodically execute the
package to
automatically update
the data warehouse
and add current
information to the
cube.

Processes a cube or
partition with the
Incremental update
option

A Microsoft ActiveX®
Script task that
modifies one or more
of the properties of
the Analysis Services
Processing task. These
properties include
Datasource,
FactTable, and Filter.

Before the
Analysis
Services
Processing task

A package that is
executed repeatedly to
perform periodic
incremental updates
usually requires that
one or more of these
properties be changed
for each execution. For
more information, see
Changing Properties of
an Analysis Services
Processing Task.

Processes any object
with any option

A Send Mail task
configured so that the
task executes if the
preceding task fails

After the
Analysis
Services
Processing task

An administrator will
be notified
automatically if the
Analysis Services
Processing task fails.

Note In a package, you do not need to add connections to the data sources of databases, cubes, and partitions defined in SQL
Server 2000 Analysis Services. The Analysis Services Processing task establishes the required connections.

After you add the connections and tasks, you can organize them into an orderly workflow by adding precedence constraints.

See Also

DTS Overview

Analysis Services (SQL Server 2000)

Changing Properties of an Analysis Services Processing Task
Changing Properties of an Analysis Services Processing Task

You can change some properties of an Analysis Services Processing task by including in its package a Microsoft® ActiveX® Script
task that executes before the Analysis Services Processing task. The ActiveX Script task can change property values every time the
package is executed or it can change them depending on conditional logic. An ActiveX Script task that updates properties for
every execution is particularly useful prior to an Analysis Services Processing task that performs incremental updates of a cube or
partition. These incremental updates usually require that the filter or fact table be changed for each package execution.

After you add the two tasks to a package and connect them with a success precedence constraint, the Data Transformation
Services (DTS) Designer design sheet looks like this:

The following properties of the Analysis Services Processing task can be changed. Note that all property names are case sensitive.

ProcessOption. This is the processing option for the object or folder processed by the task. The following table lists valid
values for ProcessOption depending upon the object selected.

Object or
folder

Processing
option

ProcessOption
property value Description

Database Process 0 Completely processes all cubes,
partitions, and dimensions in the
database.

Cubes folder Process 0 Completely processes all cubes in
the folder.

 Refresh data 1 For each cube in the folder,
performs a refresh data operation
if possible; otherwise, completely
processes the cube.

Cube with
single
partition*

Process 0 Completely processes the cube,
including structural changes. This
is the most thorough type of cube
processing.

 Refresh data 1 Reloads cube data and recalculates
aggregations. This option
processes changes to existing
source data but not the addition of
source data. This option does not
process structural cube changes
such as new dimensions, levels, or
measures.

 Incremental
update

2 Adds new data to cube and
updates aggregations. This option
processes the addition of source
data. This option does not process
changes to the cube's structure or
existing source data.

Cube with
multiple
partitions*

Process 0 Completely processes the cube,
including structural changes. This
option is more thorough than the
Refresh data option.

 Refresh data 1 Reloads cube data and recalculates
aggregations. This option
processes changes to existing
source data but not the addition of
source data. This option does not
process structural cube changes
such as new dimensions, levels, or
measures.

Partition,
including
remote
partitions*

Process 0 Reloads partition data and
recalculates aggregations. This
option processes changes to
existing source data but not the
addition of source data. This
option does not process structural
changes to the parent cube such as
new dimensions, levels, or
measures.

 Incremental
update

2 Adds new data to a partition and
updates aggregations. This option
processes the addition of source
data. This option does not process
changes to the structure of the
parent cube or existing source data
of the partition.

Linked cube Process 0 Completely processes the linked
cube.

Virtual cube Process 0 Completely processes the virtual
cube.

Dimensions
folder

Process 0 Completely processes all
dimensions in the folder.

 Incremental
update

2 For each dimension in the folder,
performs an incremental update
operation if possible; otherwise,
completely processes the
dimension.

Shared
dimension

Rebuild the
dimension
structure

0 Completely processes the
dimension, including structural
changes. This option is more
thorough than the Incremental
update option.

 Incremental
update

2 Processes the addition of
members (that is, rows) to the
dimension table. This method does
not process changes to the
structure of the dimension or
relationships among members.

Virtual
dimension

Rebuild the
dimension
structure

0 Completely processes the virtual
dimension.

Mining
Models
folder

Process 0 Completely processes mining
models in the folder.

 Refresh data 1 For each mining model in the
folder, performs a refresh data
operation if possible; otherwise,
completely processes the mining
model.

Mining
model**

Process 0 Completely processes the mining
model.

 Refresh data 1 Adds new data to the source data
of the mining model and updates
nodes. This option does not
process changes to the structure of
the mining model or existing
source data.

* An additional property, IncrementallyUpdateDimensions, is available when this object is selected. Its data type is
Boolean.
** The TrainingQuery property is an additional string property available when a mining model object is selected.

Datasource. This is the data source used for an incremental update of a cube or partition. Valid values are strings that
contain data source names as they appear in the Analysis Manager tree pane.

FactTable. This is the fact table used for an incremental update of a cube or partition. Valid values are strings that contain
fact table names.

Filter. This is an expression that limits the fact table records selected for the incremental update of a cube or partition. Valid
values are strings that contain valid filters. For more information about filters, see Partition Filters and Incremental Update
Filters.

In addition to specifying properties and their values, the ActiveX Script task must name the Analysis Services Processing task to
change. Task names are displayed in the Analysis Services Processing Task dialog box.

The following example shows how the task name DTSTask_DTSOlapProcess.Task_1 is used to indicate which Analysis Services
Processing task is changed.

Example

The following code, written in Microsoft Visual Basic® Scripting Edition, is used in an ActiveX Script task that modifies the
properties of an Analysis Services Processing task. The Analysis Services Processing task incrementally updates the sample Sales
cube included in Microsoft SQL Server™ 2000 Analysis Services. The incremental update is executed monthly throughout 1998
except in December.

The code selects a fact table different than the original fact table for the Sales cube (sales_fact_1997). It also creates a different
filter each month.

Note The code specifies the sales_fact_1998 fact table in the sample FoodMart 2000 database. This table includes data for only
1998 (except December). Before executing the package containing this code, set your computer's clock to a date between January
1, 1998 and November 30, 1998. Immediately after the package executes, reset the clock to the current date.

Function Main()
 Dim pkg
 Dim task
 Dim props
 Dim currentyear
 Dim currentmonth
 Set pkg = DTSGlobalVariables.parent
 Set task = pkg.Tasks("DTSTask_DTSOlapProcess.Task_1")
 Set props = task.Properties
 props("ProcessOption").Value = 2
 props("Datasource").Value = "FoodMart"
 props("FactTable").Value = "sales_fact_1998"
 ' Create filter based on current year and month.
 currentyear = YEAR(NOW)
 currentmonth = MONTH(NOW)
 props("Filter").Value = "([sales_fact_1998].[time_id] " _
 & "IN (SELECT [time_id] FROM [time_by_day] " _
 & "WHERE [time_by_day].[the_year] = " _
 & currentyear _
 & " AND [time_by_day].[month_of_year] = " _
 & currentmonth & "))"
 Main = DTSTaskExecResult_Success
End Function

After the incremental update is complete, you must merge the selected rows from sales_fact_1998 into sales_fact_1997. For
more information, see Fact Table Considerations When Merging Partitions.

Analysis Services (SQL Server 2000)

Creating Predictions Using Data Transformation Services
Creating Predictions Using Data Transformation Services

Use the Data Mining Prediction Query Task dialog box in a Data Transformation Services (DTS) package to run prediction
queries based on a data mining model defined in Microsoft® SQL Server™ 2000 Analysis Services. Such queries can be used to
create output tables that store the predictive results from a mining model analysis.

After you define the DTS package with the task, you can schedule the package to execute at a future date and time. The package
can be executed once or at periodic intervals.

Note To use the Data Mining Prediction Query task, you must install SQL Server 7.0 or SQL Server 2000, including SQL Server
Enterprise Manager, as well as Analysis Manager on the server computer on which you want to execute the package containing
the task.

To create a Relational Data Mining Prediction Query task

Analysis Manager

Analysis Manager

Analysis Services (SQL Server 2000)

Administrator's Reference
The Administrator's Reference contains technical information about Microsoft® SQL Server™ 2000 Analysis Services, such as
specifications and limits. The Analysis Manager Help topics accessed by the F1 key and Help buttons are also inluded.

Analysis Services (SQL Server 2000)

Specifications and Limits
 New Information - SQL Server 2000 SP3.

This topic contains information about supported relational database management systems, object specifications, and source
column data types in OLE DB.

Supported Relational Database Products

Microsoft® SQL Server™ 2000 Analysis Services supports the following relational database products as data sources:

SQL Server versions 6.5 and later

Microsoft Access 97 and later

Oracle versions 7.3 and 8.0

Note Text columns in Oracle tables should be variable length column type when using the OLE DB Provider for Oracle. Use
the OLE DB for Provider for ODBC if Oracle tables contain text columns of fixed length column type.

Specifications

The following specifications apply to Analysis Services.

Item Specification
Dimensions in a database 65,535 maximum, regardless of the

number of cubes or whether dimensions
are shared or private

Levels in a database 65,535 maximum
Cubes in a virtual cube 255 maximum
Measures in a cube 1,024 maximum
Measures in a virtual cube 2,048 maximum
Dimensions in a cube 128 maximum
Levels in a cube 256 maximum
Levels in a dimension 64 maximum
Members in a dimension 2^31-1 = 2,147,483,647 maximum
Members (or member groups) per parent 64,000 maximum

For more information about using
member groups, see Member Groups.

Calculated members (server defined) in a
cube

65,535 maximum

Calculated members in a parent measure
in session context

31,743 maximum

Calculated members in a parent measure
in query context

31,743 maximum

Calculated members in a parent dimension
member in session context

759 maximum

Calculated members in a parent dimension
member in query context

759 maximum

Aggregations per partition 65,535 maximum
Cells returned by a query 2^31-1 = 2,147,483,647 cells maximum

Although cubes can be larger than this
limit, a query that requests more than
2^31-1 cells from a cube will fail.

Record size for source database table 64 kilobytes (KB) maximum

Length of object name (except dimension
name)

50 characters maximum when using
Analysis Manager

24 characters maximum when using
PivotTable® Service

Length of dimension name 24 characters maximum
Length of aggregation prefix 50 characters maximum
Maximum number of distinct states in a
data mining model attribute column

255, after which the column becomes
MODEL_EXISTENCE_ONLY

For more information, see Data Mining
Columns

Note The term character in this documentation refers to a UNICODE character.

Source Column Data Types

The data type of the source column for a measure must be numeric except when the Count aggregate function is used.

The data type of the source column for a dimension level must be string or numeric (except currency).

OLE DB Data Types

Columns of the following OLE DB data types may be used as measures or dimension levels. Columns types that are marked with
an asterisk are supported data types for data mining model columns.

DBTYPE_BOOL*

DBTYPE_I1

DBTYPE_I2

DBTYPE_I4*

DBTYPE_UI1

DBTYPE_UI2

DBTYPE_UI4

DBTYPE_I8

DBTYPE_UI8

DBTYPE_R4

DBTYPE_R8* (Note: Data mining model column inputs of this type will be cast to a 4 byte floating point number)

DBTYPE_DECIMAL

DBTYPE_NUMERIC

DBTYPE_VARNUMERIC

DBTYPE_CY

DBTYPE_DATE*

DBTYPE_DBDATE

DBTYPE_DBTIME

DBTYPE_DBTIMESTAMP

Columns of the following OLE DB data types may be used as measures only if the Count aggregate function is used. These data
types may be used as dimension levels.

DBTYPE_BYTES

DBTYPE_HCHAPTER*

DBTYPE_STR

DBTYPE_WSTR*

External Limitations

Limitations imposed by other technologies, such as the RDBMS being used, may limit some features of Analysis Services. For
example, when merging two partitions containing a large number (> 100) of aggregations, you may receive an error message
indicating that the maximum number of ODBC Access 97 File Sharing lock counts has been exceeded. This number is controlled
by the Access 97 MaxLocksPerFile registry entry, not by any configuration parameter in Analysis Services.

Other such external limitations may apply as well.

Analysis Services (SQL Server 2000)

SQL
Microsoft® SQL Server™ 2000 Analysis Services supports SQL queries or clauses in filters. A filter is the section of a Structured
Query Language (SQL) SELECT statement that follows the WHERE keyword. That is, it is the list of predicates that make up the
WHERE clause of the SELECT statement. The following topics describe how filters are used in Analysis Services.

Topic Description
Partition Filters and
Incremental Update Filters

Describes the filters specify the data to be incorporated
into the partitions of a cube.

Dimension Filters Describes the filters that specify which members from a
dimension table will be used to build a dimension.

Drillthrough Filters Describes the filter that specifies which aggregation
elements are returned when users drill through to the
source data. For more information about using
drillthrough, see Using DRILLTHROUGH to Retrieve
Source Data.

You can use a filter to limit the following:

The dataset of a partition

The dataset of a dimension

The rows used during an incremental update

The rows returned by drillthrough

In PivotTable® Service, SQL can be used to query data, build local cubes, and build data mining models. For more information,
see PivotTable Service.

Analysis Services is both a multidimensional data provider and a tabular data provider. Therefore, executing a query returns either
a multidimensional dataset or a flattened rowset, depending on the query language dialect used. Analysis Services recognizes two
dialects: SQL and Multidimensional Expressions (MDX). For more information, see SQL in Analysis Services.

See Also

PivotTable Service

Partition Filters and Incremental Update Filters

Dimension Filters

Drillthrough Filters

Analysis Services (SQL Server 2000)

Partition Filters and Incremental Update Filters
Partition Filters and Incremental Update Filters

You can use filters to specify the data that you want to incorporate into the partitions of a cube. You can specify a filter for your
partition data or incremental update by entering the criteria expression of an SQL WHERE clause.

Note When entering a filter clause, the WHERE keyword is not required.

The filter expression you enter is used in a pass-through statement to be executed by the source database. The filter is not verified
for syntax until the partition or incremental update is processed. Regardless of the complexity of your filter, data is retrieved only
from the fact table for use in the partition. The default value for a partition filter is derived from the Source Table Filter property
for the parent cube. This property is accessed in the properties pane of Cube Editor.

The simplest filters are based on one or more columns in the fact table. For example, to select rows for only the West region from
the Location fact table, use the following filter:

"location"."region"='West'

Note Because the 1992 ISO and ANSI standards for SQL specify that double quotation marks (") should be used as delimiters for
table and column names, the preceding example uses this convention. Microsoft® SQL Server™ 2000 and Microsoft Access
standards also support brackets ([]).

More complicated filters are also possible. Because dimension tables are inner-joined to the fact table, a filter can include criteria
applied against the fact table or any dimension table used by dimensions in the partition. However, to filter on dimension tables,
the column names from the dimension tables must be contained in a nested SELECT statement, and the underlying database must
support nested SELECT statements. If the underlying database supports nested SELECT statements, you can use tables that are not
referenced by the cube definition in your filter, but you must specify the join to the fact table in your filter.

Important Whenever necessary to avoid ambiguity, use a qualified expression. For example, if a column name appears in
multiple tables, include the table name in the expression.

The following examples of filters can be used in a partition for a cube that is based on the sample FoodMart 2000 database,
where the cube includes the sales_fact_1997 fact table and the time_by_day dimension table (and possibly other dimension
tables):

This filter uses the fact table (518 is the time_id for June 1, 1997, and 547 is the time_id for June 30, 1997):

"sales_fact_1997"."time_id" BETWEEN 518 AND 547

The following equivalent filter uses the fact table and the time_by_day dimension table in a nested query:

"sales_fact_1997"."time_id" IN
(SELECT "time_id" FROM "time_by_day"
WHERE "time_by_day"."the_year" = 1997
AND "time_by_day"."the_month" = 'June')

You can set filters in either the Advanced Settings dialog box or in the Incremental Update Wizard. The Advanced Settings
dialog box appears when you click Advanced in the last step of the Partition Wizard or in the Convert to Partition dialog box.

Using Filters with Overlapping Partition Data

Incorrect results can be returned from cubes whose partitions contain overlapping data as a result of filter statements that are not
mutually exclusive. For more information, see Managing Partitions.

You must ensure that no data is duplicated among multiple partitions, and that no data is duplicated within a partition. For
example, these sets of filters are mutually exclusive within each set.

Examples

A. M aking the Years 1997 and 1998 Exclusive of Each Other

"SaleYear" = 1997
"SaleYear" = 1998

Analysis Services (SQL Server 2000)

Dimension Filters
Dimension Filters

You can use a dimension filter to specify which members of the source table are used to build that dimension. This topic provides
examples of how to do this in different scenarios.

The following example demonstrates how to limit the members of the Geography dimension to those members in the USA.

Examples

A. Limiting Geography Dimension M embers to M embers
of the USA Country Level

"Customer.Country" = 'USA'

Analysis Services (SQL Server 2000)

Drillthrough Filters
Drillthrough Filters

You can use a drillthrough filter to limit the number of rows returned when users use the Drillthrough qualifier in a
Multidimensional Expressions (MDX) query. Because the component elements for a member (that is, the elements that make up
the aggregation of the member) from the fact table can be numerous, a mechanism is needed to limit the number of rows that
come back as a result of a drillthrough.

Examples

Using a Filter w ith the Drillthrough Function

The following example limits the results returned by the Drillthrough function to those customers who live in the city of
Olympia:

"Customers.City" = "Olympia"

See Also

DrillThroughFilter

Drillthrough Options Dialog Box

Filter Tab (Drillthrough Options Dialog Box)

Analysis Services (SQL Server 2000)

User Interface Help Reference
This section includes Help topics for Microsoft® SQL Server™ 2000 Analysis Services. These topics are also available from the
user interface by pressing the F1 key or by clicking Help in wizard steps and dialog boxes.

Section Contains
Analysis Services Icons Icons used in Analysis Services
Wizards Help topics for wizards
Dialog Boxes Help topics for dialog boxes

Analysis Services (SQL Server 2000)

Analysis Services Icons
The following table lists links to topics that identify icons used in Analysis Manager, editors, and browsers in Microsoft® SQL
Server™ 2000 Analysis Services.

Topic Description
Analysis Manager Icons Icons used in Analysis Manager
Cube Editor Icons Icons used in Cube Editor
Dimension Browser Icons Icons used in Dimension Browser
Dimension Editor Icons Icons used in Dimension Editor
OLAP Mining Model Editor Icons Icons used in OLAP Mining Model Editor
Relational Mining Model Editor Icons Icons used in Relational Mining Model

Editor
Virtual Cube Editor Icons Icons used in Virtual Cube Editor

Analysis Services (SQL Server 2000)

Analysis Manager Icons
Analysis Manager Icons

The following table lists the icons displayed in the tree pane of Analysis Manager.

Icon Description
Active server
Inactive server
Unknown server
Database
Data source
Regular cube
Virtual cube
Linked cube
Local partition
Remote partition
Regular (shared) dimension
Virtual dimension
Parent-child dimension
Mining model dimension
Relational mining model
OLAP mining model
Cube role
Database role
Mining model role

Analysis Services (SQL Server 2000)

Cube Editor Icons
Cube Editor Icons

The following table lists the icons used in the tree pane of Cube Editor. The See Also links provide information about toolbar icons
used in Cube Editor.

Icon Description
Regular (shared) dimension
Virtual dimension
Parent-child dimension
Mining model dimension
Private dimension
(All) Level
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10
Level 11
Level 12
Level 13
Level 14
Level 15
Level 16
Member property
Measure
Calculated member
Calculated cells
Action
Named set

See Also

Toolbar (Cube Editor Data View)

Toolbar (Cube Editor Schema View)

Analysis Services (SQL Server 2000)

Dimension Browser Icons
Dimension Browser Icons

The following table lists the icons used in the tree pane of Dimension Browser. In addition to the following icons, the unary
operator precedes the icon for each member shown in the tree pane.

Icon Description
Member
Custom member
Calculated member
Measure
Calculated measure

Analysis Services (SQL Server 2000)

Dimension Editor Icons
Dimension Editor Icons

The following table lists the icons used in the tree pane of Dimension Editor. The See Also links provide information about toolbar
icons used in Dimension Editor.

Icon Description
Regular (shared) dimension
Virtual dimension
Parent-child dimension
Mining model dimension
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10
Level 11
Level 12
Level 13
Level 14
Level 15
Level 16
Member property

See Also

Toolbar (Dimension Editor Data View)

Toolbar (Dimension Editor Schema View)

Analysis Services (SQL Server 2000)

OLAP Mining Model Editor Icons
OLAP Mining Model Editor Icons

The following table lists the icons used in the tree pane of OLAP Mining Model Editor. The See Also links provide information
about toolbar icons used in OLAP Mining Model Editor.

Icon Description
OLAP mining model
Mining model dimension
Case dimension
Predictable case dimension
Predictable dimension
Case level
Predictable case level
Predictable level
Case measure
Predictable case measure
Predictable measure
Case member property
Predictable case member property
Predictable member property

See Also

Toolbar (OLAP Mining Model Editor)

Analysis Services (SQL Server 2000)

Relational Mining Model Editor Icons
Relational Mining Model Editor Icons

The following table lists the icons used in the tree pane of Relational Mining Model Editor. The See Also links provide information
about toolbar icons used in Relational Mining Model Editor.

Icon Description
Relational mining model
Key column
Input column
Predictable column
Input and predictable column

See Also

Toolbar (Relational Mining Model Editor)

Analysis Services (SQL Server 2000)

Virtual Cube Editor Icons
Virtual Cube Editor Icons

The following table lists the icons used in the tree pane of Virtual Cube Editor. The See Also links provide information about
toolbar icons used in Virtual Cube Editor.

Icon Description
Regular (shared) dimension
Virtual dimension
Parent-child dimension
Mining model dimension
Private dimension
(All) Level
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10
Level 11
Level 12
Level 13
Level 14
Level 15
Level 16
Member property
Measure
Calculated member
Calculated cells
Action
Named set

See Also

Toolbar (Virtual Cube Editor)

Analysis Services (SQL Server 2000)

Wizards
This section contains Help topics that are available from the user interface by pressing F1 or by clicking Help in wizards.

See Also

Dialog Boxes

Analysis Services (SQL Server 2000)

Action Wizard
Action Wizard

Use this wizard to create actions for a cube. Actions allow client applications to trigger various operations in response to specific
browsing activities.

The Action Wizard appears when you perform any of the following actions:

In Cube Editor, on the Insert menu, click Action.

In the Cube Editor tree pane, right-click the Actions folder, and then click New Action.

In Virtual Cube Editor, on the Insert menu, click Action.

In the Virtual Cube Editor tree pane, right-click the Actions folder, and then click New Action.

Right-click an existing action in Cube Editor or Virtual Cube Editor, and then click Edit.

The Action Wizard has the following steps:

Select a target object for the action.

Select the type of action to create.

Define the syntax for the action.

Name and save your action.

See Also

Actions

Analysis Services (SQL Server 2000)

Introduction (Action Wizard)
Introduction (Action Wizard)

Use this wizard to create an action.

Options

Skip this screen in the future

Select to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the future by
clicking Back in the second step of the wizard.

See Also

Actions

Analysis Services (SQL Server 2000)

Select Target (Action Wizard)
Select Target (Action Wizard)

In this step of the wizard, you select the object that launches the action. Depending on the object you define as the target, you may
be prompted to specify additional options within this step.

Options

Target

Select the object that you want to be the target of the action. The target launches the action. If you choose This cube, Cells in this
cube, or Sets in this cube, you can move to the next step of the wizard. If you choose A dimension in this cube or A level in
this cube, you can change the target of the action.

Dimension

Select the dimension in which you want to define the action, or specify a dimension level within the cube as the target object.

Levels

Select a level in the chosen dimension.

Define the target as

Members of the selected dimension

Select to make the action available if end users select any member of a dimension while browsing.

The dimension object

Select to make the action available only if you select the heading that represents the dimension while you are browsing.

Members of the selected level

Select to make the action available for launching if you select any member of a level while you are browsing

The level object

Select to make the action available for launching only if users select the heading that represents the level while browsing.

See Also

Actions

Named Sets

Analysis Services (SQL Server 2000)

Select the Action Type (Action Wizard)
Select the Action Type (Action Wizard)

In this step of the wizard, you select the type of action to be launched when an end user selects the target object in the client
application while browsing the cube.

Options

Type

Select from the following action types.

Select To
Command Line Create an action that executes an MS-DOS command prompt.

For example, you can use the path C:\Winnt\Notepad.exe to
start the Notepad application in Windows NT® 4.0 or
Windows® 2000.

Statement Create an action that executes an SQL statement through OLE
DB from the client application.

HTML Create an action that executes an HTML script within the
default Web browser.

URL Create an action that navigates to a Web address and displays
its respective page in the default Web browser.

Data set Create an action that returns a multidimensional data set.
Rowset Create an action that returns a set of tabular rows.
Proprietary Create an action that enables the client application to perform

a custom action.

Sample

View an example of the syntax for the type of action you select.

See Also

Actions

Analysis Services (SQL Server 2000)

Define the Action Syntax (Action Wizard)
Define the Action Syntax (Action Wizard)

In this step of the wizard, you specify the syntax for the action. The syntax is in the form of a Multidimensional Expressions (MDX)
expression and can include literal expressions enclosed by quotation marks. For example, if you want to create a URL action that
qualifies a specific address, your syntax can use a quoted expression for the address followed by a plus sign (+) and an MDX
function:

"http://MyIntranetServer/Sales.asp?"+CustomerDimension.CurrentMember.Name

Options

Syntax

Type the syntax directly into the Syntax box, or click MDX Builder to display MDX Builder, which can help you define the syntax.

Sample

View an example of the syntax for the type of action you selected in the Select the Action Type step of the wizard.

See Also

Actions

MDX Builder

Analysis Services (SQL Server 2000)

Finish (Action Wizard)
Finish (Action Wizard)

In this final step of the wizard, you supply a name for the action. After naming your action and finishing the wizard, you can save
and test your action in Cube Editor or Virtual Cube Editor.

Note This wizard saves the action, but you must also save the cube or virtual cube with which the action is associated. You
cannot select or test actions in the data viewing pane until after you save them in the editor.

How to test an action

Analysis Manager

Analysis Manager

Options

Action name

Enter a unique name for the action. The name can be a maximum of 50 characters and must begin with a letter of the alphabet.

Finish

Click to save your action and exit the wizard. Clicking Finish displays Cube Editor or Virtual Cube Editor, where you can save your
new action to the cube or virtual cube and test the action.

See Also

Data Tab (Cube Editor Data View)

Actions

Analysis Services (SQL Server 2000)

Calculated Cells Wizard
Calculated Cells Wizard

Use this wizard to create calculated cells. Calculated cells enable you to use a Multidimensional Expressions (MDX) expression to
override values for cells in a specific area of a cube.

The Calculated Cells Wizard appears when you perform any of the following actions:

In the Cube Editor or Virtual Cube Editor tree pane, right-click the Calculated Cells folder, and then click New Calculated
Cells.

In the Cube Editor or Virtual Cube Editor, on the Insert menu, click Calculated Cells.

Right-click an existing calculated cells definition in the Cube Editor or Virtual Cube Editor, and then click New Calculated
Cells or Edit.

The Calculated Cells Wizard has the following steps:

Define the calculation subcube.

Define the calculation condition.

Define the calculation formula.

Name and save the calculated cells definition.

See Also

Calculated Cells

Analysis Services (SQL Server 2000)

Introduction (Calculated Cells Wizard)
Introduction (Calculated Cells Wizard)

Use this wizard to create calculated cells. The wizard helps you define the calculation subcube, condition, and formula for
calculated cells.

Options

Skip this screen in the future

Select this option to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the
future by clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Define the Calculation Subcube (Calculated Cells Wizard)
Define the Calculation Subcube (Calculated Cells Wizard)

In this step of the wizard, you define the calculation subcube. The subcube defines the scope of the calculation formula. To restrict
the subcube, select a dimension from the Dimensions box and a member selection operator from the Members Set box.

Options

Dimensions

Select each dimension for which you want to specify a Members Set.

Members Set

After you select a dimension, select the members set to which the formula applies. You can press DELETE while a dimension is
selected to reset it to All members. The available options depend on the type of dimension selected.

The following table lists options that apply to the Measures dimension.

Select To
All members Select all members in a dimension. This

choice results in an empty set that is
interpreted as all members, excluding
calculated members, of the Measures
dimension. This is the default for the
Measures dimension.

A single measure Select a single measure from the list
displayed.

Custom MDX expression Build a Multidimensional Expressions
(MDX) expression either by typing it
under MDX Expression or by clicking
MDX Builder to use MDX Builder.

The following table contains options that apply to all other dimensions.

Select To
All members Select all members in a dimension. This

choice results in an empty set that is
interpreted as all members, excluding
calculated members, of the dimension.
This is the default for each dimension.

A single member Select a single member from the list
displayed.

A single level Select a single level in the dimension
from the list displayed.

Descendants of a member Display a tree view of the dimension.
Expand the tree and select a single
member.

Descendants of a member at a level Select a level for a member. Expand the
tree under Member to select a member,
and then under Level select a single
level.

Custom MDX expression Build a MDX expression either by typing
it under MDX Expression or by clicking
MDX Builder to use MDX Builder.

See Also

Calculated Cells

Members, Tuples, and Sets

Analysis Services (SQL Server 2000)

Define the Calculation Condition (Calculated Cells Wizard)
Define the Calculation Condition (Calculated Cells Wizard)

In this optional step of the wizard, you can specify a logical Multidimensional Expressions (MDX) expression that limits the scope
for a calculated cells formula. The calculated cells formula is applied only to cells of the calculation subcube (defined in the
previous step) that meet the condition.

Options

Apply the calculation formula to the entire calculation subcube

Choose this option if you are not adding any calculation condition. The calculated cells formula then applies to all cells in the
subcube.

Apply the calculation formula to cells in the calculation subcube that meet the following condition

Choose this option to add a Boolean condition. Choosing this option disables the Next button until after you add an MDX
expression. You can either type an expression or use MDX Builder to construct it.

MDX Expression

Type an MDX expression that evaluates to a single Boolean value. The calculated cells formula applies only to those cells for which
the expression evaluates to TRUE. The actual cell value is used for any cell for which the expression evaluates to FALSE.

MDX Builder

Click this to use MDX Builder to construct the expression.

Analysis Services (SQL Server 2000)

Define the Calculation Formula (Calculated Cells Wizard)
Define the Calculation Formula (Calculated Cells Wizard)

In this step of the wizard, you construct the calculation formula that provides the value for each cell in the calculation subcube.
The Next button is enabled only after you enter a calculation formula. When you click Next, the wizard performs a syntax check
and proceeds to the next step only if there are no syntax errors. The wizard displays a warning if the syntax check fails.

Options

MDX Expression

Type a Multidimensional Expressions (MDX) expression that evaluates to a single Boolean value.

MDX Builder

Click this to use MDX Builder to construct the expression.

Analysis Services (SQL Server 2000)

Finish (Calculated Cells Wizard)
Finish (Calculated Cells Wizard)

In this step of the wizard, you name and save the calculated cells definition.

Options

Name

Type a unique name. You can enter a maximum of 50 characters for the calculated cells definition name. A calculated cells
definition name must begin with a letter of the alphabet. The name cannot be the same as the name of an existing calculated
member, calculated cells definition, named set, or action.

Summary

Review the calculation subcube.

Finish

Click to save your calculated cells definition and exit the wizard.

Analysis Services (SQL Server 2000)

Cube Wizard
Cube Wizard

Use this wizard to build a multidimensional cube from relational data. After you build and process the cube, you can browse its
data in Cube Browser. If you do not process the cube, you will see sample data in Cube Browser.

The Cube Wizard appears when you right-click the Cubes folder in the Analysis Manager tree pane or right-click an existing cube,
point to New Cube, and then click Wizard.

The Cube Wizard has the following steps:

Select the data source and fact table for your cube.

Define the measures for your cube.

Select the dimensions for your cube.

Name and save your cube.

Use Cube Editor to further define your cube.

Analysis Services (SQL Server 2000)

Introduction (Cube Wizard)
Introduction (Cube Wizard)

Use this wizard to create a cube. The wizard helps you select the data source, fact table, measures, and dimensions for a new cube.

Options

Skip this screen in the future

Select this option to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the
future by clicking Back in the second step of the wizard.

See Also

Building and Processing Cubes

Cubes

Analysis Services (SQL Server 2000)

Select a Fact Table (Cube Wizard)
Select a Fact Table (Cube Wizard)

In this step of the wizard, you select a fact table. A fact table contains the numeric data that cube users want to analyze.

The wizard displays a list of data sources that are currently available. Click the expand (+) button to expand the data source and
view the tables contained within.

Options

Data sources and tables

Select a primary fact table for the cube from one of the tables in a data source listed in this box.

Details

View the columns in the table selected in the Data sources and tables box.

New Data Source

Choose this option to define a new data source. For more information about selecting a data source, click Help in the Data Link
Properties dialog box.

Browse Data

Choose this option to preview the contents of the table you have selected.

Analysis Services (SQL Server 2000)

Define Measures (Cube Wizard)
Define Measures (Cube Wizard)

In this step of the wizard, you choose the numeric columns that you want to use as measures for the cube.

Options

Fact table numeric columns

Select a primary fact table for the cube from one of the tables in a data source listed in this box.

Cube measures

View the columns in the table selected in the Data sources and tables box.

See Also

Measures

Analysis Services (SQL Server 2000)

Select Dimensions (Cube Wizard)
Select Dimensions (Cube Wizard)

In this step of the wizard, you choose dimensions for the cube. You can choose from previously defined dimensions, which are
shared (that is, available to other cubes), or start the Dimension Wizard to create a new dimension. If you create a new dimension,
you can define it as either shared or private (available only to the cube you are creating).

Options

Shared dimensions

Select previously defined dimensions from the list.

Cube dimensions

View the dimensions you are adding to your cube.

New Dimension

Choose this option to start the Dimension Wizard, which helps you create a new dimension.

See Also

Dimensions

Analysis Services (SQL Server 2000)

Finish (Cube Wizard)
Finish (Cube Wizard)

In this step of the wizard, you name and save the cube. You can also review the structure of the cube.

Options

Cube name

Type a unique name. You can enter a maximum of 50 characters for the cube name. A cube name must begin with a letter of the
alphabet.

Cube structure

Review the measures and dimensions of the cube under Cube structure.

Browse Sample Data

Choose this option to open Cube Browser and view sample data in the dimensions and measures of the cube. You cannot browse
your actual data until you have processed the cube.

Note This option is not available if you have been directed to create joins manually in Cube Editor.

Finish

Click to save your cube, exit the wizard, and display Cube Editor.

See Also

Building and Processing Cubes

Cubes

Analysis Services (SQL Server 2000)

Dimension Wizard
Dimension Wizard

Use this wizard to create dimensions for your cubes.

The Dimension Wizard appears when you perform any of the following actions:

In the Cube Wizard, in the Select dimensions step, click New Dimension.

In Cube Editor, on the Insert menu, point to Dimension, and then click New.

In the Analysis Manager tree pane, right-click the Shared Dimensions folder, point to New Dimension, and then click
Wizard. If you start the Dimension Wizard in this way, you cannot create a private dimension.

The Dimension Wizard has the following steps:

Choose how to create the dimension. You can create it from:
Columns in a single table. This option creates a regular dimension.

Columns in multiple tables. This option creates a regular dimension.

Two hierarchically related columns. This option creates a parent-child dimension.

Member properties. This option creates a virtual dimension.

The predictable column of an OLAP mining model. This option creates a data mining dimension.
Select the table or tables for your dimension. This step is displayed only if you are creating a regular or parent-child
dimension.

Select the dimension type: standard or time. This step is displayed only if you are creating a regular dimension and the
dimension table contains a datetime column.

Create time dimension levels. This step is displayed only if you are creating a regular time dimension.

Edit joins. This step is displayed only if you are creating a regular dimension from multiple tables.

Select the levels for your dimension. This step is displayed only if you are creating a regular, non-time dimension.

Specify the member key columns. This step is displayed only if you are creating a regular, non-time dimension.

Select the columns for a parent-child dimension. This step is displayed only if you are creating a parent-child dimension.

Select the dimension with the member properties. This step is displayed only if you are creating a virtual dimension.

Select the levels for the virtual dimension. This step is displayed only if you are creating a virtual dimension.

Select advanced options for your dimension. This step does not appear if you are creating a data mining dimension.

Confirm if you want to create a changing dimension. This step is displayed only if you selected this as an advanced option.

Enable and define custom rollup expressions. This step is displayed only if you selected this as an advanced option.

Specify how members are ordered and uniquely named. This step is displayed only if you selected this as an advanced
option.

Specify the storage mode and automatically create member groups. This step is displayed only if you selected this as an
advanced option.

Enable writeback capability. This step is displayed only if you are creating a parent-child dimension and you selected this as
an advanced option.

Select an OLAP mining model and predictable column. This step is displayed only if you are creating a dimension from an
OLAP mining model.

Finish. Name your dimension and preview its data.

See Also

Dimensions

Analysis Services (SQL Server 2000)

Introduction (Dimension Wizard)
Introduction (Dimension Wizard)

The Dimension Wizard takes you through the creation of a dimension for your cube.

Option

Skip this screen in the future

Select to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the future by
clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Choose How To Create Dimension (Dimension Wizard)
Choose How To Create Dimension (Dimension Wizard)

In this step of the wizard, you specify the type of source for the dimension's data.

Options

Star Schema: A single dimension table

Select to create a regular dimension based on a single dimension table. The depth of the dimension depends on the number of
levels you select in a later step. Each level is derived from a column. Alternatively, a single datetime column can be parsed into
multiple levels to create a time dimension.

When the dimension is added to a cube, the dimension table joins to the fact table. If each of the cube's dimensions is based on a
single table, the cube has a star schema.

Snowflake Schema: Multiple, related dimension tables

Select to create a regular dimension based on multiple, joined dimension tables. The depth of the dimension depends on the
number of levels you select in a later step. Each level is derived from a column.

When the dimension is added to a cube, only one of its dimension tables joins to the fact table. Therefore, the cube has a
snowflake schema.

Parent-Child: Two related columns in a single dimension table

Select to create a parent-child dimension, which is based on two columns of the same data type. One column identifies each
dimension member, and the other identifies each member's parent. For example, in an Employee table, an Employee Number
column contains an identifier for each employee, and a Manager Employee Number column contains the employee number of
each employee's manager. A parent-child dimension based on these two columns mirrors an organization chart.

When the dimension is added to a cube, the dimension table joins to the fact table.

Virtual Dimension: The member properties of another dimension

Select to create a virtual dimension that is based on one or more member properties in another dimension.

Mining Model: A predictable column of an OLAP mining model

Select to create a data mining dimension from a predictable column of an OLAP mining model.

See Also

Parent-Child Dimensions

Virtual Dimensions

Analysis Services (SQL Server 2000)

Select Dimension Table (Dimension Wizard)
Select Dimension Table (Dimension Wizard)

In this step of the wizard, you select the table or tables from which you want to create your dimension. If you select multiple
tables, all the tables must come from the same data source.

This wizard step is not displayed if you selected Virtual Dimension: The member properties of another dimension or
Mining Model: Predictable column of OLAP mining model in the second step of the wizard.

Under Available tables, the wizard displays a list of the tables in your data source that are available for creating dimensions.
Click the expand (+) button to expand the data source and view the tables contained within.

Options

Available tables

Select the table you want to add. If you do not see the table you want to use for the dimension, choose another data source.

Note All the tables you select must come from the same data source. If you add a table from a data source that is different from
that of the other selected tables, the list of tables under Selected tables will be cleared.

Details

View the columns of the table selected in Available tables.

New Data Source

Click to choose a data source that is not listed under Available tables.

Browse Data

Click to view data in the table selected in Available tables.

Analysis Services (SQL Server 2000)

Select the Dimension Type (Dimension Wizard)
Select the Dimension Type (Dimension Wizard)

This step of the wizard appears only if, in the Select dimension table step, you selected a table that contains both date-
formatted columns and columns of other formats. In this step, you specify the type of dimension you want to create.

Options

Standard dimension

Creates a standard categorical dimension, rather than a time dimension.

Time dimension

Creates a time dimension based on a date-formatted column.

Date column

If you click Time dimension, you must select the date-formatted column from the Date column list.

Analysis Services (SQL Server 2000)

Create Time Dimension Levels (Dimension Wizard)
Create Time Dimension Levels (Dimension Wizard)

This step appears only if you are creating a time dimension. In this step, you select the levels for your time dimension. You can
also specify a start date for your year.

Options

Select time levels

Click the date levels you want in your time dimension. These levels are created from the date-formatted column you selected in
the previous step of the wizard.

Dimension structure

Preview the level structure of the dimension you are creating.

Year starts on

Set the start date for your year.

Day

Select the day of the month on which the dimension's year starts.

Month

Select the first month in your dimension's year.

Analysis Services (SQL Server 2000)

Create and Edit Joins (Dimension Wizard)
Create and Edit Joins (Dimension Wizard)

This step appears only if you selected Snowflake Schema: Multiple, related dimension tables in the second step of the
wizard, indicating that you would use more than one table for your dimension.

In this step of the wizard, you can create, edit, and remove joins between your dimension tables. The wizard displays the tables
you have selected for your dimension. If two or more tables share a column, the wizard shows that it has automatically created a
join by showing a line connecting the matching columns.

Note The Dimension Wizard is designed for use with simple schemas. If you are designing a complex snowflake schema, it is
recommended that you use Dimension Editor.

If you need to edit joins but do not have a mouse or pointing device, cancel the Dimension Wizard and create the dimension using
Dimension Editor, which provides the Join command on the Insert menu and the Remove Join command on the Edit menu.

Analysis Services (SQL Server 2000)

Select Levels (Dimension Wizard)
Select Levels (Dimension Wizard)

In this step of the wizard, you can define certain columns as levels in your dimension. The columns you can use appear under
Available columns.

This wizard step appears only if you selected Star Schema: A single dimension table, Snowflake Schema: Multiple, related
dimension tables, or Mining Model: A predictable column of an OLAP mining model in the second step of the wizard.

Note Your levels must appear in hierarchical order beginning with the most general level of detail. For example, the levels of the
Store dimension in the FoodMart 2000 sample database are ordered as [Store Country], [Store State], [Store City], and [Store
Name].

Options

Available columns

Click the columns you want to use in your dimension. Use the arrow keys to move selected columns to the dimension levels pane.

Dimension levels

View the levels that will be generated based on the columns selected in Available columns. Use the arrow keys to remove
unwanted levels or to change their order.

Count level members automatically

Counts the members of the selected level in Available dimensions. This is required for cube processing. It may take some time
to process levels with a large number of members. To speed up the dimension creation process, clear the Count level members
automatically check box.

Note If automatic counting of level members is turned off, you must manually enter an estimated number for levels using the
Dimension Editor properties pane or respond to individual prompts during cube processing.

See Also

Dimension Structure

Levels and Members

Analysis Services (SQL Server 2000)

Specify Member Key Columns (Dimension Wizard)
Specify Member Key Columns (Dimension Wizard)

In this step of the wizard, you can change the member key columns for your level members as needed. This is necessary if the
default member key columns do not uniquely identify the level members.

This wizard step is only visible if you selected Star Schema: A single dimension table or Snowflake Schema: Multiple,
related dimension tables in the second step of the wizard.

Options

Name

View the name of a defined level.

Member Key Column

(Optional.) Select new key column names for levels to override the default values supplied by the wizard.

See Also

Member Names and Member Keys

Analysis Services (SQL Server 2000)

Select Columns for Parent-Child Dimension (Dimension Wizard)
Select Columns for Parent-Child Dimension (Dimension Wizard)

In this step of the wizard, you select the two columns upon which the parent-child dimension is based. You can also select a
column to provide member names.

This wizard step is displayed only if, in the second step of the wizard, you selected Parent-Child: Two related columns in a
single dimension table.

Options

Member key

Select the column that uniquely identifies each member. The column must have the same data type as the column you select in
the Parent key box.

Parent key

Select the column that uniquely identifies the parent of each member. This column defines the lineage relationships among the
members. For each member, it determines the parent member. The column must have the same data type as the column you
select in the Member key box.

Member name

Select the column that provides member names to be displayed to end users as they browse cubes.

See Also

Parent-Child Dimensions

Analysis Services (SQL Server 2000)

Select Dimension with Member Properties (Dimension Wizard)
Select Dimension with Member Properties (Dimension Wizard)

In this step of the wizard, you select the dimension on which the virtual dimension will be based. This dimension must contain all
the member properties on which the virtual dimension's levels will be based.

This wizard step is displayed only if in the second step of the wizard you selected Virtual Dimension: The member properties
of another dimension.

Options

Available Dimensions

Click the dimension containing member properties on which the virtual dimension will be based.

Member Properties

View the member properties of the dimension selected in Available Dimensions.

Display member keys and names

Click to display all dimensions in the database, including private dimensions. This enables you to use keys and names as if they
were member properties.

See Also

Creating Virtual Dimensions

Member Properties

Virtual Dimensions

Analysis Services (SQL Server 2000)

Select Levels for Virtual Dimension (Dimension Wizard)
Select Levels for Virtual Dimension (Dimension Wizard)

In this step of the wizard, you select the member properties on which the virtual dimension's levels will be based.

This wizard step is displayed only if, in the second step of the wizard, you selected Virtual Dimension: The member properties
of another dimension.

Options

Available member properties

Select the member properties on which to base the levels of the virtual dimension.

Selected virtual levels

View the list of virtual levels based on the member properties selected in Available member properties.

Analysis Services (SQL Server 2000)

Select Advanced Options (Dimension Wizard)
Select Advanced Options (Dimension Wizard)

In this step of the wizard, you can select advanced options for your dimension.

This wizard step is not displayed if you selected Mining Model: A predictable column of an OLAP mining model in the
second step of the wizard.

Options

Options

The following options are available depending on the type of dimension that is being created.

Advanced option Description Option available for
Changing dimension Allows you to add and

reorder dimension
members without having to
reprocess cubes.

Regular dimensions (created
from single or multiple tables)*

Custom rollups Allows you to create
aggregate dimension
members.

Parent-child dimensions

Members with data Allows data to be
associated with members.

Parent-child dimensions

Ordering and
uniqueness of
members

Enables member sorting. Regular dimensions (created
from single or multiple tables),
parent-child dimensions, or
virtual dimensions

Storage mode and
member groups

Determines the storage
location for dimension
members and enables
member grouping.

Regular dimensions (created
from single or multiple tables)

Writeback Allows users to add, delete,
or modify members in a
dimension.

Parent-child dimensions

* This option is automatically enabled for parent-child or virtual dimensions as a property.

Select All

Click to select all available advanced options.

Deselect All

Click to clear all selected advanced options.

Analysis Services (SQL Server 2000)

Set Changing Property (Dimension Wizard)
Set Changing Property (Dimension Wizard)

In this step of the wizard, you confirm whether to create a changing dimension.

This step is displayed only if you selected Changing dimension in the Select advanced options step of the wizard.

Options

No, the new dimension is not changing

Select to prevent the new dimension to be created as a changing dimension. This is the default option.

Yes, the new dimension is a changing dimension

Select to confirm that the new dimension is to be created as a changing dimension.

See Also

Changing Dimensions

Analysis Services (SQL Server 2000)

Set Custom Rollups (Dimension Wizard)
Set Custom Rollups (Dimension Wizard)

In this step of the wizard, you enable and define custom rollup expressions.

This step is displayed only if you selected Custom rollups in the Select advanced options step of the wizard.

Options

Enable custom rollups

Select to enable custom rollup expressions for the new dimension.

Operator-defined custom rollup

Select to use mathematical operators to define the custom rollup.

Operator column

Type the name of the existing dimension table column that will store the mathematical operators, or click the edit (...) button
to display the Define Custom Member Column dialog box, where you can select an existing column or define a new one.

MDX-defined custom formula

Select to use a Multidimensional Expressions (MDX) expression to define the custom rollup.

Expression column

Type the name of the existing dimension table column that will store the MDX expressions, or click the edit (...) button to
display the Define Custom Member Column dialog box, where you can select an existing column or define a new one.

See Also

Define Custom Member Column Dialog Box

Analysis Services (SQL Server 2000)

Set Members with Data Property (Dimension Wizard)
Set Members with Data Property (Dimension Wizard)

In this step of the wizard, you can enable associated data for nonleaf dimension members, that is, dimension members with one
or more descendants.

This step is displayed only if you selected Members with data in the Select advanced options step of the wizard.

Options

Nonleaf members have associated data

Select to allow dimension members to have associated data in the fact table.

Data members are visible

Select to display and aggregate data for nonleaf members as a visible data member.

Data members are hidden

Select to have data for nonleaf members override the aggregate value of the dimension's regular members.

Analysis Services (SQL Server 2000)

Specify Ordering and Uniqueness (Dimension Wizard)
Specify Ordering and Uniqueness (Dimension Wizard)

In this step of the wizard, you can enable associated data for nonleaf dimension members, that is, dimension members with one
or more descendants.

This step is displayed only if you selected Ordering and uniqueness in the Select advanced options step of the wizard. In
addition, available options for this step differ for parent-child dimensions.

Options (Regular and Virtual Dimensions)

Name

View the name of the level.

Order by

Select <name> to sort by member name, <key> to sort by the member key column, or <column> to sort by the column name.
If you select <column>, the Select Column dialog box is displayed.

Keys unique

Select the object that determines the scope of unique member values.

Names unique

Select the object that determines the scope of unique member names.

Options (Parent-Child Dimensions)

Order members by

Select <name> to sort by member name, <key> to sort by the member key column, or <column> to sort by the column name.
If you select <column>, the Select Column dialog box is displayed.

Names are unique among

Select the object that determines the scope of unique member names.

Analysis Services (SQL Server 2000)

Specify Storage Mode and Member Groups (Dimension Wizard)
Specify Storage Mode and Member Groups (Dimension Wizard)

In this step of the wizard, you can determine the storage mode for your dimension.

This step is displayed only if you selected Storage mode and member groups in the Select advanced options step of the
wizard.

Options

Store as multidimensional OLAP (MOLAP)

Select to store your dimension's data on the Analysis server. This is the default option.

Create member groups for the lowest level

Select to automatically create a grouping level if the lowest level of the dimension contains more than 64,000 members.

Store as relational OLAP (ROLAP)

Select to optimize query performance for extremely large dimensions, those generally having 5 million members or more.
Dimension data remains in the dimension tables.

Enable real-time updates

Select for the dimension to support real-time updates.

See Also

Creating Member Groups

Dimension Storage Modes

Real-Time Cubes

Analysis Services (SQL Server 2000)

Set Dimension Writeback Capability (Dimension Wizard)
Set Dimension Writeback Capability (Dimension Wizard)

In this step of the wizard, you can enable writeback for a new parent-child dimension.

This step is displayed only if you selected Writeback in the Select advanced options step of the wizard.

Options

Enable writeback in this dimension

Select to enable changes to the dimension to be written directly to the dimension table.

Analysis Services (SQL Server 2000)

Select Mining Model and Predictable Column (Dimension
Wizard)
Select Mining Model and Predictable Column (Dimension Wizard)

In this step of the wizard, you select an OLAP data mining model and a predictable column used to create your data mining
dimension.

This step is only displayed if you selected Mining Model: A predictable column of an OLAP mining model in the second step
of the wizard.

Options

Select OLAP mining model

Choose the mining model on which you want to base your dimension.

Select predictable column

Choose the column that will be the source of the dimension's data. Only available predictable columns from the mining model are
displayed.

Analysis Services (SQL Server 2000)

Finish (Dimension Wizard)
Finish (Dimension Wizard)

In this final step of the wizard, you can name your dimension and preview the dimension data. If you started the Dimension
Wizard from Cube Editor or the Cube Wizard, you can also choose whether you want this to be a shared dimension or a private
dimension.

Options

Dimension name

Type a unique name for your new dimension. You can enter a maximum of 24 characters for the dimension name, which must
begin with an alphabetical character.

Create a hierarchy of a dimension

Select this check box to create a hierarchy and organize the dimension to support multiple hierarchies. For more information, see
Creating Dimensions with Multiple Hierarchies.

Hierarchy name

Type a name for the new hierarchy. (This box is available only if you select the Create a hierarchy of a dimension check box.)
The hierarchy name will be appended to the dimension name, separated by a period to distinguish the hierarchy from other
hierarchies in the dimension.

Preview

Preview the hierarchy of your dimension.

Share this dimension with other cubes

Select this option to make this dimension a shared dimension. (This option is available only if you started the Dimension Wizard
from Cube Editor or the Cube Wizard. Select it if you want your dimension to be available to other cubes.) If you choose to save
this dimension as a shared dimension, the dimension will appear in the Shared Dimensions folder in the Analysis Manager tree
pane.

If you started the Dimension Wizard from the shortcut menu of a Shared Dimensions folder in the Analysis Manager tree pane,
your dimension will be shared automatically.

Analysis Services (SQL Server 2000)

Incremental Update Wizard
Incremental Update Wizard

Use this wizard to update a partition in your cube with new data from a data source.

Caution This wizard updates a partition. Incorrect use of partitions can result in inaccurate cube data. For more information, see
Managing Partitions.

The Incremental Update Wizard appears when, in the Analysis Manager tree pane, you right-click your cube, click Process, and
then in the Process a Cube dialog box, click Incremental update and then click OK.

The Incremental Update Wizard has the following steps:

Select the partition to update, if the cube has more than one partition.

Specify the data source and the fact table.

Create a filter expression.

Update the partition in your cube.

Analysis Services (SQL Server 2000)

Introduction (Incremental Update Wizard)
Introduction (Incremental Update Wizard)

Use this wizard to add new data to an existing cube partition. The wizard creates a temporary partition from the new data and
merges it into an existing partition.

Caution This wizard updates a partition. Incorrect use of partitions can result in inaccurate cube data. For more information, see
Managing Partitions.

Running the wizard is appropriate when new data has been added to the data warehouse, but existing data has not changed, and
you want to add the new data to your cube. The wizard adds the new data and associated aggregations but does not process
changes to the cube's structure.

To start the wizard, in the Analysis Manager tree pane, right-click your cube, and then click Process. In the Process a Cube dialog
box, click Incremental update, and then click OK.

Options

Skip this screen in the future

Select to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the future by
clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Select Partition (Incremental Update Wizard)
Select Partition (Incremental Update Wizard)

In this step of the wizard, you select the partition you want to update. This step of the wizard appears only if the cube you are
updating contains more than one partition. Because you can update only one partition at a time, you must select the one you want
to update.

Options

Partition

Select the partition you want to update.

Analysis Services (SQL Server 2000)

Specify Data Source and Fact Table (Incremental Update
Wizard)
Specify Data Source and Fact Table (Incremental Update Wizard)

In this step of the wizard, you select the data source and fact table that contain the new data to add to your partition. The data
source and fact table already used by the partition are displayed by default. If they also contain the new data you are adding, click
Next.

You can select a data source and/or fact table different from those already used by the partition.

Options

Data source

View the data source that contains new data for the incremental update. If you select a different data source, it must contain a fact
table with the same structure and columns as the partition's fact table, and it must contain dimension tables with the same
structure and columns as the partition's dimension tables. The wizard displays the required dimension tables.

Fact table

View the fact table that contains the new data for the incremental update. If you select a different table, it must have the same
structure and columns as the partition's fact table. You must also manually merge the table with the partition's fact table after the
incremental update completes.

Change

Click this button to open the Choose a Fact Table dialog box, where you can select a new data source and fact table.

The required dimension tables are

View a list of the dimension tables your data source must contain. If you select a different data source, it must contain fact and
dimension tables with the same structure and columns as the cube's data source.

See Also

Fact Table Considerations When Merging Partitions

Introduction to Partitions

Managing Partitions

Analysis Services (SQL Server 2000)

Create Filter Expression (Incremental Update Wizard)
Create Filter Expression (Incremental Update Wizard)

In this step of the wizard, you create an SQL filter expression (WHERE clause expression) to update your partition with only a
subset of the data in the fact table.

Caution If in the preceding step of the wizard, you selected the default fact table (that is, the same table already used as the
partition's fact table), you must use a filter expression to ensure that only data not already in the partition is added. Otherwise, the
cube containing the partition will contain duplicate and therefore inaccurate data.

Options

Create a filter expression

Type a WHERE clause expression. Do not type WHERE. Filters consist of one or more expressions using columns in the fact table. A
filter can also contain columns in dimension tables if they are included in a nested SELECT statement and the underlying database
supports nested SELECT statements. The filter expression acts as a pass-through statement, and its syntax is not checked until you
finish the wizard. If the syntax is incorrect, the incremental update fails.

For example, the partition contains data for years 1995 through 1997. You are adding data for 1998 from the same table that
supplies the 1995 through 1997 data. The name of the column that contains years is the_year. You must use the following filter
expression:

"the_year"=1998

This example uses alphanumeric data:

"the_month"='January'

Whenever necessary to avoid ambiguity, use a qualified expression. For example, if a column name appears in multiple tables,
include the table name in the expression:

"time"."the_month"='January'

The SELECT statement used to retrieve records for the incremental update is generated automatically by the wizard. The filter
expression is connected with an AND to the automatically generated part of the WHERE clause. Therefore, if you specify multiple
filter expressions, enclose them all in a pair of parentheses. For example:

("the_year"=1998 OR "the_year"=1999)

See Also

Partition Filters and Incremental Update Filters

Analysis Services (SQL Server 2000)

Finish (Incremental Update Wizard)
Finish (Incremental Update Wizard)

In this final step of the wizard, you finish setting options for the incremental update and begin to incorporate the new data into
the partition. Depending on the size of the fact table, this operation may take a long time.

Options

Finish

Click to start the incremental update of your partition.

Analysis Services (SQL Server 2000)

Mining Model Wizard
Mining Model Wizard

 New Information - SQL Server 2000 SP3.

Use this wizard to create a data mining model. A mining model enables you to analyze your data for patterns and to make
predictions based on the patterns. You can create a mining model from a relational schema or a cube, and you can store output
from the model in a tabular column, a cube dimension, or a mining model diagram.

The Mining Model Wizard appears when you perform any of the following actions:

In the Analysis Manager tree pane, right-click the Mining Models folder, and then click New Mining Model.

In the Analysis Manager tree pane, right-click a cube, and then click New Mining Model.

In the Analysis Manager tree pane, select a cube, and then on the Action menu, click New Mining Model.

After the Introduction step, the Mining Model Wizard begins with the following step if you start the wizard by right-clicking the
Mining Models folder or by clicking New Mining Model on the Action menu:

Choose the type of data source for the mining model. You can create it from:
Relational tables. This option creates a relational mining model.

A cube. This option creates a multidimensional mining model.

The next steps depend on the type of data source you select. For a relational mining model, the Mining Model Wizard has the
following steps:

Select the table or tables for your mining model.

Select the data mining technique to be used by your mining model.

Edit joins. This step is displayed only if you are creating a mining model from multiple tables.

Select the case key column for your mining model.

Select the input and predictable columns. You select predictable columns only if you select Microsoft Decision Trees as your
data mining technique.

Finish. Name and save your mining model and optionally process it to view its results.

For OLAP data sources, which are directly specified either by using the wizard or by starting the wizard from selecting a cube, the
Mining Model Wizard has the following steps:

Select the source cube for your mining model. If you began the wizard by right-clicking a cube, this step is not displayed.

Select the data mining technique to be used by your mining model.

Select the case dimension and level to be analyzed by the mining model.

Select the initial predicted entity. This can be a measure of the source cube, a member property of the case level, or
members of another dimension. This step appears only if you select Microsoft Decision Trees as your data mining
technique.

Select training data. Training data is known data that is represented by cube elements such as dimensions, levels, member
properties, or measures. These are used by the model, the case dimension and the case level to derive the predicted entity
by extrapolating from the known training data.

(Optional.) Create a dimension and/or a virtual cube. The wizard can create a dimension and a virtual cube from the results
of the model analysis, enabling you to browse the model, include its cubes, or compare it to the source data. This step
appears if you select Microsoft Decision Trees as your data mining technique.

Finish. Name and save your mining model and optionally process it to view its results.

When you finish creating a new mining model, you can create data mining roles to control end-user access to the mining model.
For additional information, see Mining Model Roles.

See Also

Building and Using Data Mining Models

Data Mining Model Structure

Mining Model Security

Properties Pane (Cube Editor Data View)

Properties Pane (Virtual Cube Editor)

Analysis Services (SQL Server 2000)

Introduction (Mining Model Wizard)
Introduction (Mining Model Wizard)

Use this wizard to create a data mining model.

Options

Skip this screen in the future

Select to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the future by
clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Select Source Type (Mining Model Wizard)
Select Source Type (Mining Model Wizard)

In this step of the wizard, you select the type of source data from which you want to build your mining model. The data source
type you select determines the steps that follow in the wizard.

Options

Relational data

Select to create your mining model from relational tables in data sources supported by Microsoft® SQL Server™ 2000 Analysis
Services.

OLAP data

Select to create your mining model from an existing cube. If you select this option, in a later step of this wizard you can create a
dimension and a virtual cube to see the results of the data mining analysis.

See Also

Relational Model Steps (Mining Model Wizard)

OLAP Model Steps (Mining Model Wizard)

Analysis Services (SQL Server 2000)

Relational Model Steps (Mining Model Wizard)
Relational Model Steps (Mining Model Wizard)

If you specify a relational data source, the Mining Model Wizard has the following steps:

Select the table or tables for your mining model.

Select the data mining technique to be used by your mining model.

Edit joins. This step is displayed only if you are creating a mining model from multiple tables.

Select the case key column for your mining model.

Select the input and predictable columns.

Finish.

Analysis Services (SQL Server 2000)

Select Case Tables (Mining Model Wizard)
Select Case Tables (Mining Model Wizard)

In this step of the wizard, you select the table or tables that contain the case and attribute columns you want to analyze. The case
column uniquely represents the entity being analyzed by the mining model, and the attribute columns represent entities that can
be predicted by the model.

Options

A single table contains the data

Select the table from the Available tables pane by clicking its name or icon.

Multiple tables contain the data

Select tables from the Available tables pane.

Available tables

Select a table or tables by clicking table names or icons. Use the buttons provided to move tables to the Selected tables pane or
remove tables from the Selected tables pane.

New Data Source

Click to display the Data Link Properties dialog box, where you can specify a new data source for relational tables.

Browse Data

Click to view data in the table selected in Available tables.

To specify a data source

Analysis Manager

Analysis Manager

See Also

Specifying Data Sources

Analysis Services (SQL Server 2000)

Select Data Mining Technique (Mining Model Wizard)
Select Data Mining Technique (Mining Model Wizard)

In this step of the wizard, you select the algorithm used to build your mining model.

Options

Select a data mining technique

Choose from two available algorithms.

Option Description
Microsoft Clustering Select this option if you want to see general

patterns or groupings in your data.
Microsoft Decision Trees This technique is useful if you want to make

specific predictions from the source data. Select
this option if you want to create a predictable
column in a later step of this wizard.

See Also

Data Mining Algorithms

Analysis Services (SQL Server 2000)

Create and Edit Joins (Mining Model Wizard)
Create and Edit Joins (Mining Model Wizard)

In this optional step of the wizard, you can change the default table joins that were established when the multiple tables option
was previously selected in the wizard.

This wizard step appears only if you selected Multiple tables contain the data in the Select case tables step of the wizard.

Options

Tables

Select a column from one dimension table and drag to the corresponding column in another dimension table to create a join. To
delete a join, right-click the join and then click Remove.

Analysis Services (SQL Server 2000)

Select the Key Column (Mining Model Wizard)
Select the Key Column (Mining Model Wizard)

In this step of the wizard, you select the column containing the case key, which is the column in the dimension table that uniquely
identifies the case you want to analyze in the mining model.

Options

Case key table

Select the dimension table that contains the case key column. This option is available only if you specified Multiple tables
contain the data in the Select case tables step.

Case key column

Select the column from the dimension table that contains the case key.

See Also

Data Mining Columns

Analysis Services (SQL Server 2000)

Select Input and Predictable Columns (Mining Model Wizard)
Select Input and Predictable Columns (Mining Model Wizard)

In this step of the wizard, from the available columns, you select at least one input column for your mining model. Input columns
represent actual data that is used to train the mining model. You also select at least one predictable column if you selected
Microsoft Decision Trees in the Select case tables step. Predictable columns store predicted output from the mining model
that is based on the input columns; they are also used as input columns for the mining model.

Options

Available columns

Select columns from the tree view. Use the buttons provided to move columns to either the predictable columns pane or the input
columns pane or to remove columns from the selection. You cannot use the column you selected in the Select the key column
step as an input column.

Predictable columns

View the selected predictable columns. This pane is displayed only if you selected Microsoft Decision Trees in the Select case
tables step.

Input columns

View the selected input columns.

Finish this mining model in the editor

Select to bypass selection of input and predictable columns complete the mining model definition in Relational Mining Model
Editor. If you select this option, you cannot process the mining model in the last step of the wizard.

See Also

Data Mining Columns

Finish (Mining Model Wizard)

Analysis Services (SQL Server 2000)

OLAP Model Steps (Mining Model Wizard)
OLAP Model Steps (Mining Model Wizard)

If you specify an OLAP data source, the Mining Model Wizard has the following steps:

Select the source cube for your mining model. If you started the wizard by right-clicking a cube, this step is not displayed.

Select the data mining technique to be used by your mining model.

Select the case dimension and level you want your mining model to analyze.

Select the predicted entity. This step appears only if you selected Microsoft Decision Trees in the Select data mining
technique step.

Select training data.

(Optional.) Create a dimension and/or a virtual cube.

Finish.

Note Objects that are not visible in the source cube of an OLAP mining model cannot be included in the mining model. For
example, if a dimension has its Visible property set to False in Cube Editor or Virtual Cube Editor, it cannot be a case
dimension. Also, virtual dimensions created in Microsoft® SQL Server™ 7.0 OLAP Services cannot be included in mining
models.

See Also

Creating OLAP Data Mining Models

Properties Pane (Cube Editor Data View)

Properties Pane (Virtual Cube Editor)

Analysis Services (SQL Server 2000)

Select Source Cube (Mining Model Wizard)
Select Source Cube (Mining Model Wizard)

In this step of the wizard, you select the cube from the current database that provides the source data for your model.

This wizard step appears only if you started the wizard by right-clicking the Mining Models folder or by clicking New Mining
Model on the Action menu.

Options

Cube

Click a cube to select it.

Dimensions

View the dimensions of the selected cube.

Analysis Services (SQL Server 2000)

Select Data Mining Technique (Mining Model Wizard)
Select Data Mining Technique (Mining Model Wizard)

In this step of the wizard, you select the algorithm used to build your mining model.

Options

Select a data mining technique

Choose from two available algorithms.

Option Description
Microsoft Clustering Select this option if you want to see general

patterns or groupings in your data.
Microsoft Decision Trees This technique is useful if you want to make

specific predictions from the source data. Select
this option if you want to create a dimension from
the analysis results or a virtual cube containing the
new dimension in a later step of this wizard.

See Also

Data Mining Algorithms

Analysis Services (SQL Server 2000)

Select Case (Mining Model Wizard)
Select Case (Mining Model Wizard)

In this step of the wizard, you select a dimension and, optionally, a level that represent the case, the cube entity that you want to
analyze. For example, in a customer credit application, the case is the customer.

Options

Dimension

Select the dimension that represents the case you want to analyze. Only dimensions that have at least one visible level are
available. This option selects the dimension along with its lowest dimension by default.

Level

(Optional.) Select a level that further defines the case dimension you want to analyze. This option allows you to select another
level other than the dimension's lowest level.

See Also

Creating OLAP Data Mining Models

Analysis Services (SQL Server 2000)

Select the Predicted Entity (Mining Model Wizard)
Select the Predicted Entity (Mining Model Wizard)

In this step of the wizard, you select a predicted entity. This step appears only if you selected Microsoft Decision Trees in the
Select data mining technique step.

After the mining model has been built and processed, you can use OLAP Mining Model Editor to add additional entities to be
predicted.

Options

A measure of the source cube

Select an existing measure from the source cube.

A member property of the case level

Select an existing member property of the case level selected in the Select case step of the wizard.

Members of another dimension

Select a dimension that differs from the dimension selected in the Select case step of the wizard.

See Also

Creating OLAP Data Mining Models

OLAP Mining Model Editor

Analysis Services (SQL Server 2000)

Select Training Data (Mining Model Wizard)
Select Training Data (Mining Model Wizard)

In this step of the wizard, you select cube elements, such as dimensions, levels, or member properties, that represent actual data
with which to train the mining model. These elements are in addition to the case dimension member you selected in the Select
case step of the wizard. Entities can include dimensions, individual levels with their respective dimensions, or measures.

Options

Cube structure

Select the check box next to a structural element to include it in the training data. By default, all members of the case dimension
are included. You can exclude members of the case dimension by clearing corresponding check boxes. However, you must select
at least one element in addition to the case dimension.

See Also

Training Data Mining Models

Analysis Services (SQL Server 2000)

Create a Dimension and Virtual Cube (Mining Model Wizard)
Create a Dimension and Virtual Cube (Mining Model Wizard)

In this optional step of the wizard, you can create a new dimension that contains the results of the mining model analysis. You can
also create a virtual cube that contains the created dimension and the model's source cube.

Note If the source cube of the mining model contains a distinct count measure, this feature is unavailable.

Options

Create a new dimension based on this mining model

Select to provide a name for the new dimension.

Dimension name
Type a unique name for your new dimension. You can enter a maximum of 24 characters for the dimension name, which must
begin with an alphabetical character.

Create a new virtual cube

Select to create a virtual cube that incorporates both the new dimension and the source cube.

Virtual Cube Name
Type a name unique to the database for the new virtual cube. You can enter a maximum of 50 characters for the virtual cube
name. The name must begin with an alphabetical character.

Analysis Services (SQL Server 2000)

Finish (Mining Model Wizard)
Finish (Mining Model Wizard)

In this final step of the wizard, you name the mining model and can optionally process it.

Options

Model Name

Type a name unique to the database for the new mining model. You can enter a maximum of 50 characters for the name, and the
name must begin with an alphabetical character.

Save, but don't process now

Select to postpone mining model processing to a later time. You must process the model before you can view its structure.

Save and process now

Select to process the mining model when you click Finish. If this option is unavailable for a relational mining model, you can
process the mining model after completing its definition in Relational Mining Model Editor.

Finish

Click to finish the wizard. If you chose the Save and process now option, the Process dialog box appears in which you can view
the progress of the operation.

Analysis Services (SQL Server 2000)

Partition Wizard
Partition Wizard

Use this wizard to separate one logical cube into separate physical partitions. This allows you to enhance flexibility in data storage
and location of data sources, and improve query performance. The wizard also helps you add partitions to cubes.

Caution It is possible to create partitioned cubes that contain incorrect data. For more information, see Managing Partitions.

The Partition Wizard appears when you expand your cube in the Analysis Manager tree pane, right-click the Partitions folder, and
then click New Partition.

The Partition Wizard has the following steps:

Specify the data source and fact table for the partition.

(Optional.) Select a data slice (that is, subset of cube data) to be stored in the partition.

Specify the partition type: local or remote.

Final step:
Name your partition.

Specify filters (WHERE clause expressions) and/or set the aggregation prefix.

Start the Storage Design Wizard to design your partition's aggregations (optional) or copy the aggregation design
of another partition.

Save your partition.

(Optional.) Process your partition.

Note You can create multiple partitions in a cube only if you install Analysis Services for Microsoft® SQL Server™ 2000
Enterprise Edition.

Analysis Services (SQL Server 2000)

Introduction (Partition Wizard)
Introduction (Partition Wizard)

Use this wizard to separate one logical cube into separate physical partitions. Using partitions can enhance flexibility in data
storage and data source location, and can also improve query performance. The wizard also helps you add partitions to cubes.

Caution It is possible to create partitioned cubes that contain incorrect data. For more information, see Managing Partitions.

You can partition data on different servers (using multiple data sources). This approach provides parallel query processing for one
cube across a cluster of servers.

You can also separate data into multiple partitions on a single server (using a single data source). This enables you to fine-tune
your cube by specifying different data storage modes—multidimensional OLAP (MOLAP), relational OLAP (ROLAP), or hybrid
OLAP (HOLAP)—and designing different aggregations for each partition.

To start the Partition Wizard, expand your cube in the Analysis Manager tree pane, right-click the Partitions folder, and then click
New Partition.

Options

Skip this screen in the future

Select this check box to bypass the wizard's introductory step the next time you start the wizard. If you select this option, you can
return to the introductory step in the future by clicking Back in the second step of the wizard.

See Also

Introduction to Partitions

Partition Storage

Remote Partitions

Analysis Services (SQL Server 2000)

Specify Data Source and Fact Table (Partition Wizard)
Specify Data Source and Fact Table (Partition Wizard)

In this step of the wizard, you select the data source and fact table for your partition. The data source and fact table used by the
cube are displayed by default. If they also contain the data for your partition, click Next.

You can select a data source and/or fact table different from those used by the cube.

Options

Data source

View the data source your new partition will use.

Fact table

View the fact table your new partition will use.

Change

Click to display the Choose a Fact Table dialog box, where you can select a new data source and fact table. If you select a
different fact table, it must have the same structure and columns as the cube's fact table.

The required dimension tables are

View a list of the dimension tables your data source must contain. If you select a different data source, it must contain fact and
dimension tables with the same structure and columns as the cube's data source.

See Also

Introduction to Partitions

Managing Partitions

Analysis Services (SQL Server 2000)

Select Data Slice (Partition Wizard)
Select Data Slice (Partition Wizard)

In this optional step of the wizard, you can specify a subset, or slice, of the data in your cube to use as the partition data. To bypass
this step, click Next.

Options

Dimensions

View all the dimensions in the cube in the Name column, and view the member you select for each dimension in the Data slice
column. The data slice is defined by all the dimension members you select.

Members

Expand members to reveal other members, and then click the member to define the data slice. To remove a dimension member
from the data slice, click the dimension name, and then press DELETE.

Analysis Services (SQL Server 2000)

Specify Partition Type (Partition Wizard)
Specify Partition Type (Partition Wizard)

In this step of the wizard, you specify whether the partition's data is stored on the local Analysis server or on a remote Analysis
server.

You can change the options in this step only if you are creating a new partition. You cannot change them if you are editing an
existing partition.

Options

Local

Select to store the partition's data on the local Analysis server (that is, the Analysis server on which the partition is being defined).
This is the default option.

Remote

Select to store the partition's data on a remote Analysis server.

If a remote partition is defined on an Analysis server, the Analysis server service (MSSQLServerOLAPService) logon account must
be a domain user account. Otherwise, processing the partition will fail. This restriction applies to the Analysis server on which the
remote partition is defined, not the Analysis server in the Select the server this partition will reside on box.

Select the server this partition will reside on

Select the remote Analysis server on which to store the partition's data. Only registered Analysis servers appear in the box.
Remote partitions on a server computer running SQL Server™ 7.0 OLAP Services are not supported.

Register server

Click to display the Register Analysis Server dialog box in which you can register an Analysis server. To register an Analysis
server, your user name must be included in the OLAP Administrators group on that Analysis server.

See Also

Introduction to Partitions

Managing Partitions

Partition Storage

Remote Partitions

Analysis Services (SQL Server 2000)

Finish (Partition Wizard)
Finish (Partition Wizard)

In this step of the wizard, you can name your partition, choose aggregation design options, and specify advanced settings for your
partition. You can also process your new partition when the wizard finishes.

Caution It is possible to create partitioned cubes that contain incorrect data. For more information, see Managing Partitions.

If in an earlier step you selected the default fact table (that is, the same fact table used by the cube), you must use a filter to ensure
that each partition in the cube includes mutually exclusive data. Otherwise, the cube containing the partition will contain duplicate
and therefore inaccurate data. To create a filter, click Advanced.

Options

Partition Name

Type a name that is unique in the database. You can enter a maximum of 50 characters.

Design the aggregations for your partition now

Select to start the Storage Design Wizard when you click Finish.

Design the aggregations later

Select to save your partition now and design aggregations later.

Copy the aggregation design from an existing partition.

Select to copy the aggregation design from another partition to your new partition.

Copy from

Select the partition from which to copy the aggregation design.

Note If in the future you might merge the new partition with another, copy the aggregation design of the other partition.
To be merged, partitions must have the same structure and aggregation design.

Process the partition when finished

Select if you want to process the new partition when you click Finish. This option is not available if you select Design the
aggregations for your partition now.

Advanced

Click to display the Advanced Settings dialog box, where you can add a filter (WHERE clause expression), change the
aggregation prefix, or specify drillthrough options.

Finish

Click to apply the settings you have chosen and either save the partition, process and then save the partition, or start the Storage
Design Wizard.

Analysis Services (SQL Server 2000)

Storage Design Wizard
Storage Design Wizard

Use this wizard to specify data storage and query performance options for the aggregations on a cube or partition.

The Storage Design Wizard appears when, in the Analysis Manager tree pane, you expand the Cubes folder, right-click an existing
cube, and then click Design Storage.

This wizard also appears when you expand the Partitions folder for an existing cube, right-click an existing cube partition, and
then click Design Storage.

The Storage Design Wizard has the following steps:

Select the type of data storage for your cube or partition: multidimensional OLAP (MOLAP), relational OLAP (ROLAP), or
hybrid OLAP (HOLAP).

Design aggregations for your cube or partition based on aggregation storage size and query performance options.

Process the aggregations or save and process the aggregations later.

See Also

Cube Storage

Aggregations

Analysis Services (SQL Server 2000)

Introduction (Storage Design Wizard)
Introduction (Storage Design Wizard)

Use this wizard to specify data storage and query performance options for the aggregations on a cube or partition.

Options

Skip this screen in the future

Select this option to bypass this step the next time you start the wizard. If you select this option, you can return to this step in the
future by clicking Back in the second step of the wizard.

See Also

Cube Storage

Aggregations

Analysis Services (SQL Server 2000)

Select a Partition (Storage Design Wizard)
Select a Partition (Storage Design Wizard)

This step of the wizard appears only if you started the wizard on a cube and it contains multiple partitions. You can run the wizard
on only one partition at a time, so you must select the desired partition.

Options

Partition

Select the partition for which you want to design aggregations and choose storage options.

Analysis Services (SQL Server 2000)

Aggregations Already Exist (Storage Design Wizard)
Aggregations Already Exist (Storage Design Wizard)

This step of the wizard appears only if there are previously designed aggregations for your cube or partition. This step contains
information about the existing data storage and aggregation settings.

Options

Data storage type

View the data storage type used in this cube partition.

Aggregation storage space

View the existing storage space used by the previously designed aggregations in this cube partition.

Number of aggregations

View the number of aggregations that have been previously designed for this cube partition.

Replace the existing aggregations

Select this option to completely replace the existing aggregations with new aggregations that you design. To use new
aggregations, you must reprocess the cube after aggregation design.

Add new aggregations to the existing ones

Select this option to append new aggregations to the existing ones. You must reprocess the cube before you can use combined
aggregations for this cube partition.

Analysis Services (SQL Server 2000)

Select Data Storage (Storage Design Wizard)
Select Data Storage (Storage Design Wizard)

In this step of the wizard, you specify the type of data storage you want to use to store the data and aggregations for a cube or
partition.

For more information about data storage choices, see Flexible Data Model.

Options

MOLAP

Select this option to store the data for your cube or partition in a multidimensional structure. The aggregations you design for this
storage type will also be stored with the multidimensional data.

Multidimensional OLAP (MOLAP) storage provides the potential for the most rapid query response times, depending only on the
percentage and design of the cube's aggregations. In general, MOLAP is more appropriate for cubes with frequent use and the
necessity for rapid query response.

ROLAP

Select this option to keep the data for your cube or partition in the existing relational data store. Aggregations designed for
relational OLAP (ROLAP) will also be stored in the relational database, rather than in a multidimensional structure.

ROLAP query response is generally slower than that available with MOLAP or HOLAP. A typical use of ROLAP is for large datasets
that are infrequently queried, such as less recent historical data.

Enable real-time updates

Select this to enable the partition to support real-time updates. This option is available only in Analysis Services for SQL
Server™ 2000 Enterprise Edition, and only when the data source is SQL Server 2000 Enterprise Edition.

HOLAP

Select this option to keep the data for your cube or partition in the existing relational data store and to keep your aggregations in
a multidimensional structure.

For queries that access summary data, hybrid OLAP (HOLAP) is equivalent to MOLAP. Queries that access base data, such as a
drilldown to a single fact, must retrieve data from the relational database and will not be as fast as if the base data were stored in
the MOLAP structure. Cubes stored as HOLAP are smaller than equivalent MOLAP cubes and respond faster than ROLAP cubes
for queries involving summary data. HOLAP storage is generally suitable for cubes that require rapid query response for
summaries based on a large amount of base data.

See Also

Flexible Data Model

Partition Storage

Real-Time Cubes

Analysis Services (SQL Server 2000)

Set Aggregation Options (Storage Design Wizard)
Set Aggregation Options (Storage Design Wizard)

In this step of the wizard, you set options for storage and performance to design the aggregations for the cube or partition.

In designing your cube, you will have to balance the storage needs of the aggregation tables against the speed and performance
of the queries. The three approaches to achieving this balance are as follows:

Set the storage size and let Microsoft® SQL Server™ 2000 Analysis Services determine which aggregations to store. This
approach works well when you have limited storage space.

Set the percentage of performance gain and let the necessary aggregation tables take as much storage space as they need.

Manually determine the best balance by watching the progress of the Performance vs. Size graph.

Note If you selected the ROLAP data storage option in the previous step of the Storage Design Wizard, you can use ROLAP
data storage without creating aggregations in the relational data store. To do this, select Until I click Stop, and then click
Next to advance to the Finish step of the wizard.

Options

Select the option you want for aggregation design.

Estimated storage reaches

Enter the amount of hard disk storage to allocate for storing the aggregation tables. You can enter a maximum storage size in
either megabytes (MB) or gigabytes (GB).

Performance gain reaches

Specify the percentage amount of performance gain for your queries. This amount represents the percentage improvement
between the maximum and minimum query times, as represented by the following formula:

PercentGain = 100 * (QTimeMAX - QTimeTARGET) / (QTimeMAX - QTimeMIN)

For example, if a query that is not optimized takes twenty-two seconds (QTimeMAX) to execute, and the best possible query
performance with maximum aggregations is two seconds (QTimeMIN), specify a 75% desired performance gain to achieve a
query time of seven seconds (QTimeTARGET).

Until I click Stop

Select to manually control the balance. Watch the Performance vs. Size graph to determine when the increase in performance
levels off, even though storage continues to build.

Start

Click to begin designing aggregations based on the options you have selected.

Continue

Click to resume designing aggregations based on the options you have selected. The Continue button replaces the Start button
after you click Stop or the line in the Performance vs. Size graph reaches the specified storage or performance gain.

Stop

Click to manually end the aggregation design process.

Reset

Click to delete any aggregations you have just added and restart aggregation design.

Performance vs. Size

View the progress of the design process, including the estimated performance gain and the estimated storage space
requirements.

See Also

Partition Storage

Aggregations

Analysis Services (SQL Server 2000)

Finish (Storage Design Wizard)
Finish (Storage Design Wizard)

In this step of the wizard, you save the aggregations. You can process the cube as you save the aggregations or process it at a
later time. If you are designing several cubes, you can postpone processing and process them all at once.

Options

Process now

Select this option to save the designed aggregations for the cube or partition and process the cube. The new aggregations will be
available for use by queries sent to the cube only after processing is completed.

Save, but don't process now

Select this option if you want to save the newly designed aggregations for the cube or partition, but you want to delay cube
processing to a later time. Your new aggregations will not be available for use by queries sent to the cube until processing is
completed.

Finish

Click to save your settings. If you selected Process now, clicking Finish also displays the Process dialog box, in which you can
view the progress of the operation.

See Also

Processing Cubes

Analysis Services (SQL Server 2000)

Usage Analysis Wizard
Usage Analysis Wizard

Use this wizard to generate an on-screen report analyzing the query usage of your cube.

The Usage Analysis Wizard appears when you right-click a cube in the Analysis Manager tree pane and then click Usage
Analysis.

The Usage Analysis Wizard has the following steps:

Select a report type.

(Optional.) Select the criteria to filter your report.

View the results.

Analysis Services (SQL Server 2000)

Introduction (Usage Analysis Wizard)
Introduction (Usage Analysis Wizard)

Use this wizard to set criteria to analyze the queries sent to your cube. You can choose from a variety of reports to analyze. You
can specify the following report types:

Report type Shows
Table Length of time a query takes to return a result set
 Number of times a query has been run
 Users and number of queries they have sent
Graph Response times for all queries
 Number of queries processed each hour
 Number of queries processed in a specified date range

Options

Select a report type, and then click Next

Select the type of report you want the wizard to generate.

Description

View a description of the report type you select.

Analysis Services (SQL Server 2000)

Select Filter Criteria (Usage Analysis Wizard)
Select Filter Criteria (Usage Analysis Wizard)

In this optional step of the wizard, you set criteria to analyze query usage. A query log contains information about the queries sent
to your cube. To determine the specifics of your report, you apply filters to this log. Available filter criteria include time period,
users, query duration, and query frequency.

This step is optional. If you select no filter criteria, the wizard will return a report on all queries. If you want to skip this step, click
Next.

Options

Queries for the dates

Select to set the one week period of dates you want the wizard to analyze. To choose the start date for the week to be analyzed,
ether type the date directly into the One week beginning with field, or select the expand (...) button to choose the start date. If,
in the Introduction step, you selected Query by Date Graph, this check box is automatically selected.

Queries by these users

Select to add users and groups of users whose queries you want the wizard to analyze. Because the available users and groups
are defined based on user roles, you cannot filter by users unless you have defined user roles. For more information about roles,
see Database, Cube, and Mining Model Roles.

Add
Click to display the Select Users dialog box, where you can select users from the list of available users.

Remove
Click to remove a selected user or group from the list.

Queries that ran more than

Select to tell the wizard to analyze only queries that were sent more than a certain number of times.

Queries that took longer than

Select to tell the wizard to analyze only queries that took longer than a certain amount of time. Use the two boxes provided to
specify the number of seconds or minutes.

Analysis Services (SQL Server 2000)

Review Results (Usage Analysis Wizard)
Review Results (Usage Analysis Wizard)

In this final step of the wizard, you can view your report. It cannot be saved. The title on this page reflects the report choice you
made in the first step of the wizard.

Options

Delete Records

Click to delete queries analyzed for your report from the query log.

Finish

Click to close the wizard.

Analysis Services (SQL Server 2000)

Usage-Based Optimization Wizard
Usage-Based Optimization Wizard

Use this wizard to tune performance of cube partitions based on the history of queries previously sent to the cube.

For more information about optimizing performance, see Scalability.

The Usage-Based Optimization Wizard appears when, in the Analysis Manager tree pane, you right-click an existing cube and then
click Usage-Based Optimization.

The Usage-Based Optimization Wizard has the following steps:

Select the cube partition whose query performance you want to optimize.

Select the queries on which you want to base your optimization.

Review the results.

Choose whether to replace existing aggregations or to add new ones.

Select a type of data storage.

Design new aggregations.

Save and process the new aggregations.

Analysis Services (SQL Server 2000)

Introduction (Usage-Based Optimization Wizard)
Introduction (Usage-Based Optimization Wizard)

Use this wizard to optimize the aggregations for your cube partitions based on the queries that have been previously sent to your
cube.

To start the Usage-Based Optimization Wizard, in the Analysis Manager tree pane, right-click an existing cube, and then click
Usage-Based Optimization.

Options

Skip this screen in the future

Select this option to bypass the wizard introductory screen the next time you start the wizard. If you select this option, you can
return to the introductory screen in the future by clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Select Partition (Usage-Based Optimization Wizard)
Select Partition (Usage-Based Optimization Wizard)

In this step of the wizard, you select the partition whose performance you want to optimize. You can perform this operation on
only one partition at a time. This step of the wizard appears only if your cube has multiple partitions.

Options

Partition

Select a partition from the list provided.

Analysis Services (SQL Server 2000)

Select Queries (Usage-Based Optimization Wizard)
Select Queries (Usage-Based Optimization Wizard)

In this step of the wizard, you select the queries on which you want to base your optimization. You can specify:

Queries between two dates

Queries by specific users

Length of time that a query takes to return a result set

Numbers of times a query has been run

Queries sent to one of the specific data storage types used in your cube

A combination of any number of these

Options

Queries for the dates

Select to set the date range for queries on which you want the wizard to base optimization. To choose the date range type, use the
drop-down list to select Between, Before, or After. The options available under this check box change depending on the date
range type.

Between

To use all queries between a desired start date and end date for optimization, enter the desired start date in the following
text box, or click the expand (...) button to select the desired start date. Then, enter the desired end date in the last text box,
or click the expand (...) button to select the desired end date.

Before

To use all queries on or before a desired date for optimization, enter the desired date in the following text box, or click the
expand (...) button to select the desired date.

After

To use all queries after a desired date for optimization, enter the desired date in the following text box, or click the expand
(...) button to select the desired date.

Queries by these users

Select to add users and groups of users whose queries you want the wizard to base optimization on. Because the available users
and groups are defined based on user roles, you cannot filter by users unless you have defined user roles. For more information
about roles, see Database, Cube, and Mining Model Roles.

Add

Click to display the Select Users dialog box, which you can use to select users from the list of available users.

Remove

Click to remove a selected user or group from the list.

Queries that ran more than

Select to tell the wizard to optimize based only on queries that were sent more than a certain number of times. Choose the
number in the box provided.

Queries that took longer than

Select to tell the wizard to optimize based only on queries that took longer than a certain amount of time. Use the two boxes
provided to specify the number of seconds or minutes.

Queries to

Select to tell the wizard to optimize performance based only on queries to a certain type of data storage object.

MOLAP cubes

Select to optimize aggregations based on queries to multidimensional OLAP (MOLAP) cubes.

ROLAP tables

Select to optimize aggregations based on queries to relational OLAP (ROLAP) tables.

The server cache

Select to optimize aggregations based on lookup queries to the server cache.

Analysis Services (SQL Server 2000)

Review Results (Usage-Based Optimization Wizard)
Review Results (Usage-Based Optimization Wizard)

In this step of the wizard, you can view the queries that match the options you have specified for optimization of your cube
partition. A status bar near the bottom of the screen displays the number of matching queries found. These results will be used to
optimize future queries by modifying existing aggregations.

Options

Request Data Set Description

View information on the data requested by each matching query.

Times Executed

View the number of times each matching query had been sent to the cube.

Average Duration (min:sec)

View the average duration of each matching query.

Analysis Services (SQL Server 2000)

Aggregations Already Exist (Usage-Based Optimization
Wizard)
Aggregations Already Exist (Usage-Based Optimization Wizard)

This step of the wizard appears only if there are previously designed aggregations for your cube or partition. Information appears
on the screen about the existing data storage and aggregation settings.

Options

Data storage type

View the data storage type used in this cube partition.

Aggregation storage space

View the existing storage space used by the previously designed aggregations in this cube partition.

Number of aggregations

View the number of aggregations previously designed for this cube partition.

Replace the existing aggregations

Select this option to completely replace the existing aggregations with new ones you design. Before you can use your new
aggregations, you must reprocess the cube.

Add new aggregations to the existing ones

Select this option to append new aggregations to the existing ones. You must reprocess the cube to use combined aggregations
for this cube partition.

Analysis Services (SQL Server 2000)

Select Data Storage (Usage-Based Optimization Wizard)
Select Data Storage (Usage-Based Optimization Wizard)

In this step of the wizard, you specify the type of data storage you want to use to store the data and aggregations for your cube or
partition. This step appears if you selected Replace the existing aggregations in the previous step of the wizard.

Options

MOLAP

Select to store the data for your cube or partition in a multidimensional structure. The aggregations you design for this storage
type will also be stored with the multidimensional data.

Multidimensional OLAP (MOLAP) storage provides the potential for the most rapid query response times, depending only on the
percentage and design of the cube's aggregations. In general, MOLAP is more appropriate for cubes that are used frequently and
which require rapid query response.

ROLAP

Select to keep the data for your cube or partition in the existing relational data store. The aggregations you design for this storage
type will also be stored in the relational database, rather than in a multidimensional structure.

Relational OLAP (ROLAP) query response is generally slower than that available with the other two options. A typical use of
ROLAP is for large datasets that are infrequently queried, such as historical data from less recent years.

HOLAP

Select to keep the data for your cube or partition in the existing relational data store and your aggregations in a multidimensional
structure.

For queries that access summary data, hybrid OLAP (HOLAP) is the equivalent of MOLAP. Queries that access base data, such as a
drill-down to a single fact, must retrieve data from the relational database and will not be as fast as if the base data were stored in
the MOLAP structure. Cubes stored as HOLAP are smaller than equivalent MOLAP cubes and respond faster than ROLAP cubes
for queries involving summary data. HOLAP storage is generally suitable for cubes that require rapid query response for
summaries based on a large amount of base data.

See Also

Aggregations

Cube Storage

Partition Storage

Analysis Services (SQL Server 2000)

Set Aggregation Options (Usage-Based Optimization Wizard)
Set Aggregation Options (Usage-Based Optimization Wizard)

In this step of the wizard, you set options for storage and performance to design the aggregations for your cube or partition.

In designing your cube, you will have to balance the storage needs of your aggregation tables against the speed and performance
of your queries. There are three approaches to achieving this balance:

Set the storage size and let Microsoft® SQL Server™ 2000 Analysis Services determine which aggregations to store. This
approach works well when you have limited storage space.

Set the percentage of performance gain you want and let the necessary aggregation tables take as much storage space as
they need.

Manually determine the best balance by watching the progress of the Performance vs. Size graph.

Note If you selected the ROLAP data storage option in the previous step of this wizard, you can use ROLAP data storage
without creating aggregations in the relational data store. To do this, select Until I click Stop and then click Next to
advance to the Finish step.

Options

Estimated storage reaches

Enter the amount of hard disk storage you want to allocate for storing the aggregation tables. You can enter a maximum storage
size in either megabytes (MB) or gigabytes (GB).

Performance gain reaches

Specify the percentage amount of performance gain for your queries. This amount represents the percentage improvement
between the maximum and minimum query times, as represented by the following formula:

PercentGain = 100 * (QTimeMAX - QTimeTARGET) / (QTimeMAX - QTimeMIN)

For example, if an unoptimized query takes twenty-two seconds (QTimeMAX) to execute, and the best possible query
performance with maximum aggregations is two seconds (QTimeMIN), specify a 75% desired performance gain to achieve a
query time of seven seconds (QTimeTARGET).

Until I click Stop

Select to manually control the balance. Watch the Performance vs. Size graph to determine when the increase in performance
levels off even though storage continues to build.

Start

Click to begin designing aggregations based on the options you have selected.

Continue

Click Continue to resume designing aggregations based on the options you have selected. The Continue button replaces the
Start button after you click Stop or the line in the Performance vs. Size graph reaches the specified storage or performance
gain.

Stop

Click to manually halt the aggregation design process.

Reset

Click to delete any aggregations you have just added and restart aggregation design.

Performance vs. Size

View the progress of the design process, including the estimated performance gain and the estimated storage space
requirements.

Analysis Services (SQL Server 2000)

Finish (Usage-Based Optimization Wizard)
Finish (Usage-Based Optimization Wizard)

In this step of the wizard, you save the aggregations. You can process the cube while you save the aggregations, or process it at a
later time. If you are designing several cubes, you can postpone processing and process them all at once.

Options

Process now

Select to save the designed aggregations for the cube or partition and process the cube. The new aggregations will be available
for use by queries sent to the cube only after processing is completed.

Save, but don't process now

Select to save the newly-designed aggregations for the cube or partition, but to delay cube processing to a later time. Your
queries sent to the cube cannot use your new aggregations until processing is completed.

Finish

Click to save your settings and, if you selected Process now, process the object. If you selected Process now, clicking Finish
opens the Process dialog box, in which you can view the progress of the operation.

See Also

Processing Cubes

Analysis Services (SQL Server 2000)

Virtual Cube Wizard
Virtual Cube Wizard

Use this wizard to create a virtual cube, which is a superset of selected cubes in your database. Virtual cubes allow you to create a
broader view of your multidimensional data without storing additional data in a physical storage space on your drive.

The Virtual Cube Wizard appears when, in the Analysis Manager tree pane, you expand your database, right-click the Cubes
folder, and then click New Virtual Cube.

The Virtual Cube Wizard has the following steps:

Select the cubes in your database that you want to include in your virtual cube.

Select the measures for your virtual cube.

Select the dimensions for your virtual cube.

Name and save your virtual cube.

See Also

Virtual Cubes

Analysis Services (SQL Server 2000)

Introduction (Virtual Cube Wizard)
Introduction (Virtual Cube Wizard)

Use this wizard to create a virtual cube. Select the cubes that you want to include in the virtual cube, and then select the specific
measures and dimensions that you want to use in the virtual cube.

Options

Skip this screen in the future

Select to bypass the wizard introductory screen the next time you start the wizard. If you select this option, you can return to the
introductory screen in the future by clicking Back in the second step of the wizard.

Analysis Services (SQL Server 2000)

Select Cubes (Virtual Cube Wizard)
Select Cubes (Virtual Cube Wizard)

In this step of the wizard, you select the cubes from your database that you want to add to your virtual cube.

Options

Available cubes

Use the buttons provided to move cubes to the Virtual cube includes box.

Virtual cube includes

View the list of cubes you have selected to include in your virtual cube.

See Also

Virtual Cubes

Analysis Services (SQL Server 2000)

Select Measures (Virtual Cube Wizard)
Select Measures (Virtual Cube Wizard)

In this step of the wizard, you add measures to your virtual cube.

Options

Available measures

Use the buttons provided to move cubes to the Virtual cube includes box.

Selected measures

View the list of measures you have selected to include in your virtual cube.

See Also

Virtual Cubes

Analysis Services (SQL Server 2000)

Select Dimensions (Virtual Cube Wizard)
Select Dimensions (Virtual Cube Wizard)

In this step of the wizard, you add dimensions to your virtual cube.

The dimensions that are available for your virtual cube are listed in the Available dimensions box. Dimension availability is
based on the measures you have selected for your virtual cube. Only the dimensions from cubes that contain your selected
measures are available to your virtual cube. If the Available dimensions box does not contain a dimension that you want to add,
make certain that you have selected a measure from the cube containing that dimension.

Options

Available dimensions

Use the buttons provided to move cubes to the Selected dimensions box.

Selected dimensions

View the list of dimensions you have selected to include in your virtual cube.

See Also

Virtual Cubes

Analysis Services (SQL Server 2000)

Finish (Virtual Cube Wizard)
Finish (Virtual Cube Wizard)

In this final step of the wizard, you name the virtual cube.

Options

Virtual cube name

Type a name unique to the database for the new virtual cube. You can enter a maximum of 50 characters for the virtual cube
name. The name must begin with an alphabetical character.

Process now

Select this option to process the virtual cube when you click Finish. If the structure of a component cube has changed since the
last time it was processed, the cube is processed along with the virtual cube; component cube processing may take considerable
time.

Save and don't process now

Select this option to postpone virtual cube processing to a later time. You must process the virtual cube before it can be used.

Finish

Click to save your settings and optionally process the cube. If you selected Process now, clicking Finish displays the Process
dialog box, where you can view the progress of the operation.

See Also

Virtual Cubes

Analysis Services (SQL Server 2000)

Dialog Boxes
This section contains Help topics that are available from the user interface by pressing F1 or by clicking Help in dialog boxes.

See Also

Wizards

Analysis Services (SQL Server 2000)

Advanced Settings Dialog Box
Advanced Settings Dialog Box

Use this dialog box to:

Create a filter (WHERE clause expression) that limits the data used to create the partition.

Change the prefix for the aggregation names.

Access the Drillthrough Options dialog box, where you can specify drillthrough options for the partition.

Caution It is possible to create partitioned cubes that contain incorrect data. For more information, see Managing
Partitions.

This dialog box is displayed when you click Advanced in the Convert to Partition dialog box or in the last step of the Partition
Wizard.

Options

Filter statement

Type a filter expression (WHERE clause expression of an SQL SELECT statement) to limit the data used to create the partition. Do
not type WHERE.

Important Filter expressions can be used to ensure that all partitions in a cube contain mutually exclusive data. Otherwise, the
cube will contain duplicate and therefore inaccurate data. When you use a filter expression for this purpose, make sure that it
excludes data already in the partitions of the cube.

For example, a cube contains three partitions, one each for the years 1995, 1996, and 1997. You are creating a new partition for
1998 from the same table that supplies the data for the other partitions. The name of the column that contains years is the_year.
You must use the following filter expression:

"the_year"=1998

This example uses alphanumeric data:

"the_month"='January'

If necessary, use a qualified expression to avoid ambiguity. For example, if a column name appears in multiple tables, include the
table name in the expression:

"time"."the_month"='January'

The SELECT statement used to retrieve records for the creation of the partition is generated automatically. The filter expression is
connected with an AND to the automatically generated part of the WHERE clause. Therefore, if you specify multiple filter
expressions, you must enclose them all in a pair of parentheses. For example:

("the_year"=1998 OR "the_year"=1999)

Filters consist of one or more expressions using columns in the fact table. A filter can also contain columns in dimension tables if
they are included in a nested SELECT statement and the underlying database supports nested SELECT statements. For more
information, see Partition Filters and Incremental Update Filters.

The filter expression acts as a pass-through statement, and its syntax is not checked until you process the partition. If the syntax is
incorrect, processing fails.

Aggregation Prefix

Specify the prefix used for the aggregation names of the partition.

Drillthrough Options

Click to display the Drillthrough Options dialog box, where you can specify drillthrough options for the partition. For more
information, see Drillthrough Options Dialog Box.

Analysis Services (SQL Server 2000)

Analysis Services Processing Task Dialog Box
Analysis Services Processing Task Dialog Box

Use this dialog box to add a Data Transformation Services (DTS) task that performs processing of one or more objects defined in
Microsoft® SQL Server™ 2000 Analysis Services. For more information about using DTS tasks to automate processing, see
Processing Objects Using Data Transformation Services.

This dialog box is displayed when you perform either of the following actions in DTS Designer:

Drag the icon for the Analysis Services Processing task from the Task toolbar to the design sheet.

Right-click an Analysis Services Processing task, and then click Properties.

Options

Name

View the task name.

Description

Specify a description for the task (optional).

Select the object to process

Select an object or folder to process.

Note If Analysis Manager is not installed on the system, you will be prompted to enter the name of an Analysis server. This is the
name of the server, not its IP address.

Object Object icon Processing includes
Database All cubes, partitions, virtual cubes,

and dimensions in the database.
Cubes folder All cubes and virtual cubes in the

folder.
Cube The selected cube.
Partition The selected partition.
Remote partition The selected remote partition.
Linked cube The selected linked cube.
Virtual cube The selected virtual cube.
Dimensions folder All dimensions in the folder.
Shared dimension The selected shared dimension.
Virtual dimension The selected virtual dimension.
Relational mining
model

The selected relational mining
model.

OLAP mining model The selected OLAP mining model.

Local server

Select this option to:

Limit the objects in the Select the object to process box to those on the local Analysis server.

Specify that the task processes an object or objects on the server computer where the package is stored.

If you select this option, you can later migrate the package to another instance of SQL Server and execute it to process an
object or objects on that instance of SQL Server. This processing requires that the other instance of SQL Server stores the
meta data for the processed objects and has access to their data sources. Meta data can be copied easily from one server to
another by copying and pasting.

Select a processing option

Select a processing option for the object or folder you selected. The available options change according to the object type or
folder you select.

Some objects and folders have only one available option. For more information about those with multiple options, see Processing
Cubes, Incremental Updates and Partitions, and Dimension Processing.

Data source

View the data source for an incremental update of a cube or partition. You can change the data source by clicking the edit (...)
button beside the Fact table box and using the Choose a Fact Table dialog box.

This option is displayed only when you select a single-partition cube or partition and Incremental update.

Fact table

View the fact table for an incremental update of a cube or partition. You can change the fact table by clicking the edit (...) button
beside the Fact table box and using the Choose a Fact Table dialog box.

This option is displayed only if you select a single-partition cube or partition and Incremental update.

Filter

View the filter for an incremental update of a cube or partition. A filter limits the fact table records used in the incremental update.
You can add or change a filter by clicking the edit (...) button beside the Filter box and using the Filter Expression dialog box.

This option is displayed only if you select a single-partition cube or partition and Incremental update.

Note You must specify a filter if you selected a single-partition cube or partition, Incremental update, and the default fact table.
Otherwise, the cube or partition will contain duplicate and therefore inaccurate data.

OK

Click to add the task with the values you selected to the package and close the dialog box. (To save the task, you must save the
package in DTS Designer.)

Cancel

Click to add the task with default values to the package and close the dialog box.

Analysis Services (SQL Server 2000)

Archive Database Dialog Box
Archive Database Dialog Box

Use this dialog box to:

Specify options for archiving a Microsoft® SQL Server™ 2000 Analysis Services database.

Begin the archive process, which produces an archive file.

The archive file includes files for the selected database that are in a directory with the same name as the database. This directory is
in the Data directory, which contains a directory for each database on the server. For example, if you archive the FoodMart 2000
database, the files in C:\Program Files\Microsoft Analysis Services\Data\FoodMart 2000\ are included in the archive file.

Important The subdirectories of the Data directory store the security files that control end users' access to objects on the
Analysis server. These files are included in the archive files. For this reason, archive files must be secured against unauthorized
access.

The archive file also stores meta data for the database and its objects. The appropriate records from the Analysis Services
repository are included in the archive file. By default, the Analysis Services repository is Msmdrep.mdb, but it can be migrated to a
SQL Server database.

For more information about archiving Analysis Services databases, see Archiving and Restoring Databases.

The dialog box is displayed when, in the Analysis Manager tree pane, you right-click a database and then click Archive Database.

Options

Save in

Specify the name and path of the archive file. To browse available paths, click the browse (...) button.

Temp Folder

Specify the directory in which to store temporary files during the archive process. To browse available paths, click the browse (...)
button.

Remote Path

Specify the path of the Data directory that contains the files for the database you are archiving. To browse available paths, click
the expand (...) button.

The Data directory is created during installation of Analysis Services and contains a directory for each database on the Analysis
server. The default path of the Data directory is C:\Program Files\Microsoft Analysis Services\Data\

The C:\Program Files\Microsoft Analysis Services\ portion of the path can be changed. (To determine the current value, right-click
the remote server, click Properties, and then view the Data folder box.)

In the Remote Path box, you must precede the path of the Data directory with the remote server name. If the Data directory is
shared at its disk level, you must also include the share name associated with the disk. The following example Remote Path value
includes the server name Server-1 and the disk share name C$.

\\Server-1\C$\Program Files\Microsoft Analysis Services\Data\

The Remote Path box appears only if the database you are archiving is on a remote server.

Archive

Begin the archive process. The Archive Database Progress dialog box is displayed, and it allows you to monitor or cancel the
archive process.

Analysis Services (SQL Server 2000)

Archive Database Progress Dialog Box
Archive Database Progress Dialog Box

Use this dialog box to monitor the archiving of a Microsoft® SQL Server™ 2000 Analysis Services database. You can also cancel
the archive process or save the archive log.

For more information about archiving Analysis Services databases, see Archiving and Restoring Databases and Archive Database
Dialog Box.

This dialog box is displayed when you click Archive in the Archive Database dialog box.

Options

Save Log

Click to display the Save Log File dialog box, in which you specify the path and file name of the archive log and then save it. If the
archive process completes successfully, the archive log contains a list of the files contained in the archive file. Otherwise, the
archive log contains one or more messages. The Save Log button is available only after the archive process is completed or
canceled.

Cancel

Click to cancel the archive process. If you click Cancel and receive a message indicating that the archive was canceled, nothing
has been archived. A delay may occur between clicking Cancel and display of the message.

After the archive process is completed or canceled, the Cancel button is replaced by the Close button.

Close

Click to close the dialog box. The Close button is available only after the archive process is completed or canceled.

Analysis Services (SQL Server 2000)

Calculated Member Builder
Calculated Member Builder

Use this dialog box to add a calculated member to a cube or virtual cube.

This dialog box appears for a cube or a virtual cube when you do one of the following in Cube Editor or in Virtual Cube Editor:

On the Insert menu, click Calculated Member.

In the tree pane, right-click the Calculated Members folder or a calculated member, and then click New Calculated
Member.

In the tree pane, right-click a calculated member, and then click Edit.

On the toolbar, click Insert Calculated Member.

Options

Parent dimension

Select the dimension in which to create the calculated member.

Parent member

Enter an expression for the parent member of the calculated member, or click Change to select a parent member. The parent
member determines the location of the calculated member in the dimension structure. This option is enabled if you select a
parent dimension (other than the Measures dimension) that has more than one level.

Change

Click to display the Select the Parent Member dialog box. This option is enabled if you select a parent dimension other
than Measures that has more than one level.

Member name

Enter a name for the calculated member (for example, Average Sale.)

Value expression

Build or enter the expression that determines the values of the calculated member. To add a function to the Value expression
box, place the cursor where you want to insert the function, select a function in the Functions box, and either double-click the
function or click Insert. The function syntax appears in the Value expression box. Replace arguments and their delimiters (« and
») with the appropriate values.

You can also type an expression directly into the Value expression box. You must use this method if you want to add functions
from libraries other than the Microsoft® SQL Server™ 2000 Analysis Services Multidimensional Expressions (MDX) function
library.

Check

Click to validate the syntax in the Value expression box.

Data

Select the cube's dimensions, measures, and existing calculated members to build the expression in the Value expression box.
To add objects, you can double-click the selected object, select the object and then click Insert, or drag the selected object to the
Value expression box.

Functions

Select a function from the list to build the expression in the Value expression box. To add functions, you can double-click the
selected object, select the object and then click Insert, or drag the selected object to the Value expression box. The list includes
the Analysis Services MDX function library and any additional function libraries you have registered. For MDX, a short description
of the function and an example of the syntax are displayed below the Functions and Data boxes. For more information about the
functions, see MDX Function List.

Insert

Click to add the item selected in the Data box or Functions box to the value expression.

Number and arithmetic operator buttons

Click to add numbers and operators to the value expression.

Register

Click to display the Register Function Libraries dialog box, where you can register an external function type library (*.olb, *.tlb,
*.dll). The new library appears in the Functions box. For more information, see Register Function Libraries Dialog Box.

See Also

Registered Function Libraries

Select the Parent Member Dialog Box

Analysis Services (SQL Server 2000)

Choose a Dimension Table Dialog Box
Choose a Dimension Table Dialog Box

Use this dialog box to choose a dimension table from a selected data source.

This dialog box appears when you create a new dimension in Dimension Editor.

Options

Tables

View the tables of the selected data source.

Details

View a description of the data source if a data source is selected in the Tables box. If a table is selected in the Tables box, you can
view the columns in that table.

New Data Source

Click to display the Data Link Properties dialog box, where you can specify a new data source.

See Also

Dimension Editor - Schema View

Analysis Services (SQL Server 2000)

Choose a Fact Table Dialog Box
Choose a Fact Table Dialog Box

Use this dialog box to choose a fact table from a selected data source.

This dialog box appears when you create a new cube in Cube Editor or edit the fact table from the Analysis Services Processing
Task dialog box.

Options

Tables

View the tables of the selected data source.

Details

View a description of the data source, if a data source is selected in the Tables box. If a table is selected in the Tables box, you can
view the columns of that table.

New Data Source

Click to display the Data Link Properties dialog box, where you can specify a new data source. This option is available only if you
are creating a new cube in Cube Editor.

Analysis Services (SQL Server 2000)

Convert to Partition Dialog Box
Convert to Partition Dialog Box

Use this dialog box to convert a writeback table to a partition. This action also makes read/write permissions on the cube
unavailable. (Users with unavailable read/write permissions can still browse the cube.) Read permissions are not affected.

Caution It is possible to create partitioned cubes that contain incorrect data. For more information, see Managing Partitions.

This dialog box appears when you right-click a cube that has writeback enabled, point to Writeback Options, and then click
Convert to Partition.

Options

Partition name

Type a name for the new partition.

Design the aggregations for your partition now

Start the Storage Design Wizard when you click OK.

Design the aggregations later

Save the partition when you click OK, but design aggregations later.

Copy the aggregation design from an existing partition

Copy the aggregation design from another partition to the new partition. In the Copy from box, select the partition from which to
copy existing aggregations.

If in the future you might merge the new partition with another, copy the aggregation design of the other partition. Merged
partitions must have the same aggregation design.

Process the partition when finished

Process the new partition when you click OK. This option is not available if you select Design the aggregations for your
partition now.

Advanced

Use to add a filter, to change the aggregation prefix, or to specify drillthrough options. The Advanced Settings dialog box is
displayed. For more information, see Advanced Settings Dialog Box.

OK

Save changes you have made, convert the writeback table to a partition, and close the dialog box.

Analysis Services (SQL Server 2000)

Cube Browser
Cube Browser

Use this tool to view data in a cube.

Cube Browser organizes the cube data in the data viewing pane. The default view in the data viewing pane shows the data in table
format with one dimension across the column headings and another dimension down the left column. Measures are treated as a
single dimension for this purpose. The remaining dimensions of the cube are displayed in the data slicing pane.

The white cells in the data viewing pane represent the measure values according to the members that appear in the members
boxes for all the dimensions shown in the data slicing pane. In the preceding example, the measure values reflect the All member
of every dimension in the data slicing pane except Time. The members box for the Time dimension displays 1997, which indicates
that the displayed measure values are limited to 1997. Later in this topic, an example shows you how to slice through dimensions
in the data slicing pane to limit the measure values that are displayed.

Cube Browser is displayed when you perform one of the following actions:

In the Analysis Manager tree pane, right-click a processed cube, and then click Browse Data. If the structure of a cube has
changed since it was last processed, the cube must be processed before you perform this action. Also, you can view sample
data in the Data tab of Cube Editor.

In the last step of the Cube Wizard, click Browse Sample Data. The displayed data is sample data rather than actual data
because the cube has not yet been processed.

Working in Cube Browser

To browse the cube data in the data viewing pane by any combination of dimensions, drag measures or dimensions from the data
slicing pane onto either axis in the data viewing pane.

To replace a dimension in the data viewing pane with another dimension

Drag the dimension from the data slicing pane to the dimension in the data viewing pane that you want to replace.

The pointer is in the correct position when it appears like this:

-or-

The dimension in the data viewing pane moves up to the data slicing pane and the new one takes its place.

To move a dimension to the data viewing pane

Drag the dimension from the data slicing pane to a cell below (or beside) the existing dimension.

The pointer is in the correct position when it appears like this:

-or-

The new dimension appears under (or beside) the existing dimension, expanding your data viewing pane.

To change the order of dimensions in the data viewing pane

Drag the dimension and drop it on the dimension where you want it to be located.

To remove a dimension from the data viewing pane

Drag the dimension you want to remove from the data viewing pane to the data slicing pane.

To drill down into a member

Double-click a dimension member in the data viewing pane. If the member has members beneath it, they are displayed.

Only the member you double-click is expanded. The other members retain their current levels in the data viewing pane. In
the following example, double-click the Drink member to drill down into its child members.

If you want to display all the members in a level, double-click the parent level name in the data viewing pane. Level names are
depicted with the shading of a button (for example, Product Family in the preceding example).

To slice through a dimension

To change the member in a dimension in the data slicing pane, click the down arrow on the members box, expand the
members, and then select a new member. The cube data in the data viewing pane changes to reflect the change in the
dimension member.

Cube Browser has an internal memory limit that you may reach if you attempt to browse too much data or drill down too deeply.
When you reach the limit, the following message is displayed:
Unable to display current view of cube.
Unable to Allocate Memory For Flexgrid.

The limit cannot be increased by adding or allocating more memory. If you reach the limit, reduce the amount or depth of data
you are attempting to browse or use another browser.

Analysis Services (SQL Server 2000)

Cube Cell Security Dialog Box
Cube Cell Security Dialog Box

Use this dialog box to define a custom rule for cell security.

In this dialog box, there are two ways to allow or deny access to specific cells or groups of cells. You can type an expression in
Multidimensional Expressions (MDX) to allow or deny access to specific cells or groups of cells. The MDX expression resolves to
either TRUE or FALSE for each cell (atomic and nonatomic) in the cube. (If the MDX expression resolves to a numeric value, any
nonzero value is evaluated TRUE, and zero is evaluated FALSE.) If the expression resolves to TRUE for a cell, access is allowed. If it
resolves to FALSE, access is denied.

You can also click Build to display MDX Builder, in which you can construct the MDX expression by using drag-and-drop
techniques.

This dialog box is displayed when, in the Cells tab of the Create a Cube Role or Edit a Cube Role dialog box, you select
Advanced in the Cell Security box, and then select a permission in the Advanced Cell Security box. Next, select Custom in the
Rule column, and then click the edit (...) button in the Custom Settings column.

Options

Permission

View the permission to which the custom rule applies. This box is read-only.

Description

View or enter a description of the custom rule.

MDX

View or enter the MDX expression that defines the custom rule. You can also use the edit button (...) to open the MDX builder,
where you can create an MDX expression.

You can allow access to cells for a dimension member by including the following elements in the expression:

Dimension name

MDX CurrentMember function

MDX Name function

Equality operator (=)

Member name (If you specify a member name that is not unique within the dimension, use the UniqueName function
instead of the Name function.)

Cells for other members in the dimension are not accessible.

For example, to allow access to cells for the USA member in the Geography dimension but deny access to cells for all other
members in that dimension, use the following expression:

Geography.CurrentMember.Name = "USA"

Alternatively, you can deny access to cells for a member by substituting the inequality operator (<>). Cells for other
members in the dimension are accessible. For example, to deny access to cells for the Brazil member in the Geography
dimension but allow access to cells for all other members in that dimension, use the following expression:

Geography.CurrentMember.Name <> "Brazil"

To include a member's descendants in the access criteria, add the Ancestor function and the member's level name to the
expression. For example, to deny access to cells for the Brazil member and all its descendants in the Geography dimension
but allow access to cells for all other members in that dimension, use the following expression:

Ancestor(Geography.CurrentMember,[Country]).Name <> "Brazil"

To include multiple dimensions from the cube in the access criteria, write an expression for each dimension and combine
them into one expression using AND or OR. (Dimensions that are excluded from the expression do not impose restrictions
on cell access.) For example, the following expression allows access to cells for the Tokyo member and its descendants in the
Geography dimension but denies access to cells for all other members in that dimension. It also denies access to cells for
the Sales measure, including Sales cells for Tokyo and its descendants.

Ancestor(Geography.CurrentMember,[City]).Name = "Tokyo" AND
 Measures.CurrentMember.Name <> "Sales"

For more information and examples, see Custom Rules in Cell Security.

Check

Checks the cell security syntax.

OK

Closes the dialog box and displays the Cube Role dialog box. To save the custom rule, click OK in the Cube Role dialog box.

See Also

MDX Function List

Analysis Services (SQL Server 2000)

Cube Editor - Data View
Cube Editor - Data View

Use this tool to browse a cube's data and examine and edit a cube's structure. You can also use Cube Editor and connected dialog
boxes to perform various procedures.

Cube Editor appears in two views, data and schema. Both views include the tree pane and properties pane. The data view includes
the Data tab, and the schema view includes the Schema tab. You can switch from one view to another by clicking the Data tab or
the Schema tab at the bottom of Cube Editor. You can also click Data or Schema on the View menu.

This topic describes the data view. For information about the schema view, see Cube Editor - Schema View. The data view is
shown here.

Cube Editor – Data View appears when you do either of the following:

In the Analysis Manager tree pane, right-click a cube, and then click Edit.

In the Analysis Manager tree pane, click a cube, and then on the Action menu, click Edit.

Cube Editor has five areas. For more details about the areas, click a link in the following table.
To do this See

Perform commands available in Cube
Editor menus

Menus (Cube Editor Data View)

Perform common actions represented by
icons on the Cube Editor toolbar

Toolbar (Cube Editor Data View)

View cube objects displayed in the tree
pane

Tree Pane (Cube Editor Data View)

View and modify properties of the object
selected in the Cube Editor tree pane

View descriptions of properties and the
objects to which they apply

Properties Pane (Cube Editor Data View)

View the cube data in a table format.
Exchange or move dimensions

Slice through a dimension, or drill down
into a member

Data Tab (Cube Editor Data View)

See Also

Building a Cube with the Editor

Creating and Maintaining Private Dimensions

Creating Calculated Members

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

Menus (Cube Editor Data View)
Menus (Cube Editor Data View)

The following options are available through menus in Cube Editor.

Menu Option Description
File New Cube - Wizard Starts the Cube Wizard so you can create a new

cube.
 New Cube - Editor Displays the Choose a Fact Table dialog box so

you can begin building a cube with the editor.
 Save Saves the cube.If you are saving a parent-child or

changing dimension, you will be prompted to
perform an incremental processing of the
dimension.

 Save As Saves the cube under a different name.
 Exit Closes Cube Editor.
Edit Rename Renames the selected object.
 Delete Deletes the selected object.
 Remove Join Removes all joins from the selected column

(schema view only).
View Schema Displays the schema view, including the Schema

tab.
 Data Displays the data view, including the Data tab.
 Properties Expands or collapses the properties pane.
Insert Tables Displays the Select Table dialog box so you can

add tables to the cube.
 Dimension - New Starts the Dimension Wizard so you can create a

new dimension.
 Dimension - Existing Displays Dimension Manager so you can add

existing shared dimensions to the cube.
 Level Displays the Insert Level dialog box so you can

add a new level.
 Measure Displays the Insert Measure dialog box so you

can add a new measure.
 Member Property Displays the Insert Member Property dialog box

so you can add a new member property.
 Calculated Member Displays Calculated Member Builder so you can

begin creating calculated members.
 Action Starts the Action Wizard so you can create a new

action.
 Named Set Displays Named Set Builder so you can define a

new named set.
 Join Adds a join to the selected column (schema view

only).
Tools Process Cube* Processes the cube.
 Design Storage Starts the Storage Design Wizard so you can

select storage options and design aggregations
for the cube.

 Drillthrough Options* Displays the Drillthrough Options dialog box so
you can select the columns that are displayed
when a drillthrough is executed.

 Count Dimension
Members

Provides an estimate of the number of members
in a dimension. This estimate is used by the
aggregation design algorithm when it determines
what aggregations to create for this dimension.

 Validate Cube
Structure

Verifies that the cube structure does not contain
invalid components that would prevent
processing of the cube.

 Optimize Schema Simplifies a cube's schema for maximum
performance during processing by removing
unnecessary joins between dimension and fact
tables and eliminating the need to read
dimension tables during processing.

Several conditions must be met before this option
can be used. For more information, see
Optimizing Cube Schemas.

To remove other tabular joins, use the Remove
Join command.

Help Help on Cube Editor Displays a Help topic about Cube Editor.
 Contents and Index Opens SQL Server Books Online.

* If this option is not available, the cube structure is not valid. You can try to determine the problem by clicking Validate Cube
Structure on the Tools menu.

Analysis Services (SQL Server 2000)

Toolbar (Cube Editor Data View)
Toolbar (Cube Editor Data View)

Use the Cube Editor toolbar buttons to perform common operations.

Button Description
New Cube Starts the Cube Wizard so you can create a new cube.
Save Saves the cube.If you are saving a parent-child or

changing dimension, you will be prompted to perform
an incremental processing of the dimension.

Insert Table Displays the Select table dialog box so you can add
tables to the cube.

Insert Dimension Displays Dimension Manager so you can add existing
dimensions to the cube. In Dimension Manager you can
start the Dimension Wizard to create a new dimension.

Insert Level Displays the Insert Level dialog box so you can add a
new level to a private dimension. Use Dimension Editor
to add a new level to a shared dimension.

Insert Member Property Displays the Insert Member Property dialog box so
you can add a new member property in the selected
level of a private dimension. Use Dimension Editor to
add a new member property in a level of a shared
dimension.

Insert Measure Displays the Insert Measure dialog box so you can add
a new measure.

Insert Calculated
Member

Displays Calculated Member Builder so you can begin
creating calculated members.

Insert Calculated Cells Starts the Calculated Cells Wizard so you can define
calculated cells. The wizard adds the new calculated cells
definition to the Calculated Cells folder.

Insert Action Starts the Action Wizard so you can create a new action.
Insert Named Set Displays Named Set Builder so you can define a new

named set.
Process Cube Displays the Process a Cube dialog box so you can

select cube processing options.

Analysis Services (SQL Server 2000)

Tree Pane (Cube Editor Data View)
Tree Pane (Cube Editor Data View)

Use the tree pane to display objects in a cube. Right-click an object to see a shortcut menu for that object.

The following table lists how to access available information about cube objects.

Right-click Shortcut menu option Description
Cube New Cube Displays the Choose a Fact Table dialog

box so you can begin building a cube with
the editor.

 Process Cube Processes the cube.
 New Dimension Starts the Dimension Wizard so you can

create a new dimension.
 Existing Dimensions Displays Dimension Manager so you can add

existing shared dimensions to the cube.
 New Measure Displays the Insert Measure dialog box so

you can add a new measure.
Dimensions
folder

New Dimension Starts the Dimension Wizard so you can
create a new dimension.

 Existing Dimensions Displays Dimension Manager so you can add
existing shared dimensions to the cube.

Dimension New Dimension Starts the Dimension Wizard so you can
create a new dimension.

 Existing Dimensions Displays Dimension Manager so you can add
existing shared dimensions to the cube.

 Remove Removes the dimension from the cube.
 Browse Displays the dimension members in

Dimension Browser.
Level New Dimension Starts the Dimension Wizard so you can

create a new dimension.
 Existing Dimensions Displays Dimension Manager so you can add

existing shared dimensions to the cube.
Measures
folder

New Measure Displays the Insert Measure dialog box so
you can add a new measure.

Measure New Measure Displays the Insert Measure dialog box so
you can add a new measure.

 Delete Deletes the measure.
 Rename Renames the measure.
Calculated
members
folder

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

Calculated
member

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

 Edit Displays the calculated member in
Calculated Member Builder so you can edit
it.

 Delete Deletes the calculated member.
 Rename Renames the calculated member.
Calculated
Cells folder

New Calculated Cells Displays the Calculated Cells Wizard so you
can begin Creating Calculated Cells.

 Import Calculated
Cells

Displays the Import Calculated Cells
dialog box so you can import calculated
cells from a source cube or another cube.

Calculated
cells

New Calculated Cells Displays the Calculated Cells wizard so you
can begin Creating Calculated Cells.

 Edit Displays the Calculated Cells Wizard so you
can edit the selected calculated cells
definition.

 Rename Renames the selected calculated cells
definition.

 Delete Deletes the selected calculated cells action.
Actions folder* New Action Starts the Action Wizard so you can create a

new action.
Action New Action Starts the Action Wizard so you can create a

new action.
 Edit Starts the Action Wizard so you can edit it.
 Delete Deletes the action.
 Rename Renames the action.
Named Sets
folder

New Named Set Displays Named Set Builder so you can
create new named sets.

Named set New Named Set Displays Named Set Builder so you can
create new named sets.

 Edit Starts Named Set Builder so you can edit the
set.

 Rename Renames the named set.

* A limit of 32 actions can be displayed when the Actions folder is expanded.

Analysis Services (SQL Server 2000)

Properties Pane (Cube Editor Data View)
Properties Pane (Cube Editor Data View)

Use the properties pane to display the properties of the object selected in the tree pane. To display the properties pane, click
Properties beneath the tree pane.

Each type of object contains a different set of properties. Use the properties pane to modify the property settings for the selected
object. For shared dimensions, their levels, and their member properties, some properties are read-only and must be changed in
Dimension Editor.

The following table describes the properties displayed in the properties pane.

Object Property Description
Action Action Type Indicates the particular type of action. For descriptions

of the different types of actions, see CREATE ACTION
Statement.

 Application Used to provide additional information to the
application that performs the action.

 Caption
Expression

A Multidimensional Expressions (MDX) expression
used by the client application as a caption for the
action.

 Description Used to provide a description for the action.
 Invocation Used to determine how the action will be activated.

Interactive: Actions run interactively when the
end user activates an associated element in the
user interface. This is the default setting and the
only type supported by Cube Browser in
Microsoft® SQL Server™ 2000 Analysis
Services.

On Open: Actions run automatically when the
client opens a cube.

Batch: Actions are run by the client in a batch
job. These actions provide a way to check for
exceptions.

 Name The name of the action. This is displayed when
selecting the target object for the action.

 Value The MDX expression that defines the action.
Calculated
cells

BackColor Indicates the background color of the cells defined by
the cell coordinates and condition.

 Calculation
Condition

Contains an MDX conditional expression that defines
the calculation subcube cells that are computed with
the calculation formula by testing each cell.

 Calculation
Subcube

Contains an MDX set expression that defines the
subset of the cube data that is computed using the
calculation formula.

 Calculation
Value

Contains an MDX expression that provides the value
for each cell in the calculation subcube.

 Description Contains the text string that describes the calculated
cells definition.

 Disabled Determines whether the cell calculation is disabled.
The default value is False.

 FontName Indicates the font name of the cells defined by the cell
coordinates and condition.

 FontSize Indicates the font size of the cells defined by the cell
coordinates and condition.

 FontFlags Indicates the font flags of the cells defined by the cell
coordinates and condition.

 Calculation
Pass Number

Indicates the calculation pass in which this calculation
is executed.

 Calculation
Pass Depth

Determines how many calculation passes are required
to fully compute a calculated cells definition.

 ForeColor Indicates the foreground color of the cells defined by
the cell coordinates and condition.

 Format String Contains the format string of the cells defined by the
cell coordinates and condition.

 Name Contains the name of the calculated cells definition.
This property is read-only.

 Solve Order Contains a number representing the order of
evaluation of the calculated cells.

 Visible Determines whether the calculated cells definition is
visible in the schema rowset. The default value is True.

Calculated
member

BackColor The background color of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 FontFlags The font flags of the displayed calculated member. To
use this optional property, the client application must
support its use and interpret its values. Only numeric
values are valid. Cube Browser, the Cube Editor Data
tab, and the Virtual Cube Editor data pane do not
support this property.

 FontName The font of the displayed calculated member. To use
this optional property, the client application must
support its use and interpret its values. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 FontSize The font size of the displayed calculated member. To
use this optional property, the client application must
support its use and interpret its values. Only numeric
values are valid. Cube Browser, the Cube Editor Data
tab, and the Virtual Cube Editor data pane do not
support this property.

 ForeColor The foreground color of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 Format String The format for displaying cell values. A list of common
formats is displayed when you click Format String
and display the dropdown list. This property accepts
the same values as the Display Format property of
measures. For more information, see Display Formats.

 Name The name of calculated member. The name is
displayed when end users browse the cube.

 Non Empty
Behavior

Stores the name of the measure used to resolve NON
EMPTY queries in MDX. If the Non Empty Behavior
property is blank, the calculated member must be
evaluated repeatedly to determine if a member is
empty. If the Non Empty Behavior property contains
the name of a measure, the calculated member is
treated as empty if the specified measure is empty.

 Parent
Dimension

The dimension that includes the calculated member. If
the calculated member is a measure, specify
Measures.

 Parent Member The member that includes the calculated member. The
parent member determines the location of the
calculated member in the dimension structure. This
property must be null if the parent dimension is
Measures or a one-level dimension.

 Solve Order The order in which the calculated member is resolved
in case of intersection with other calculated members.
Valid values are 0 (zero) and positive or negative
integers. Calculated members with lower Solve Order
values have precedence in resolution.

 Value An MDX expression that defines the values of the
calculated member. The values are displayed when
end users browse the cube.

 Visible Determines whether the cube is visible in a list of
cubes.

Cube Aggregation
Prefix

The prefix appended to aggregation names for the
cube's partitions, provided that the partition's
aggregation prefix begins with a plus sign (+). In this
case, this property's value is appended to the
beginning of the partition's aggregation prefix. If the
partition's aggregation prefix does not begin with a
plus sign, this property is ignored. To access the
aggregation prefix for a partition, in the Analysis
Manager tree pane, right-click the partition, click Edit,
advance to the Finish step of the Partition Wizard, and
then click Advanced.

 Data Source The data source for the cube. The partitions of the
cube can have different data sources.

 Default
Measure

The measure that is returned by queries when no
measure is displayed on an axis and no slicing
measure is specified. If no default measure is specified,
an arbitrary measure is the default measure.

 Description The description of the cube.
 Fact Table The fact table for the cube. The partitions of the cube

can have different fact tables.
 Fact Table Size The number of rows in the fact table of the cube at the

time they were last counted by Analysis Services, or a
user-provided estimate of the number of rows.

 Key Error Limit Limit for the number of dimension key errors. The
default is 0. Cube processing is halted and cancelled
when the limit is exceeded, provided that the Stop
Processing on Key Errors property of the cube is
Yes. If you select Yes and a Key Error Limit value
greater than 0, and processing completes, the data in
the cube does not reflect the entire fact table. The Key
Error Limit property is ignored if the Stop
Processing on Key Errors property is No.

 Key Error Log
File

Path and file name of the log file for dimension key
errors.

 Name The name of the cube.

 Processing
Optimization
Mode

Values of the Processing Optimization Mode
property are Regular (processed data is available
after all aggregations have been computed) or Lazy
Aggregations (processed data is available
immediately after data has been loaded). This property
only applies to MOLAP partitions of a cube.

 Source Table
Filter

The WHERE clause expression applied to the
partitions' fact tables to limit the data in the cube. This
property provides defaults for the filters in the
partitions of the cube. These filters override this
property. To access a filter in a partition, in the
Analysis Manager tree pane, right-click the partition,
click Edit, advance to the Finish step of the Partition
Wizard, and then click Advanced.

 Stop Processing
on Key Errors

If you select Yes, processing is halted and cancelled
when the limit for the number of dimension key errors
is exceeded. This limit is specified in the Key Error
Limit property of the cube. A dimension key error
occurs when a fact table row is encountered that
contains a foreign key value not present in the joined
primary key column of a dimension table.

If you select No, dimension key errors never halt or
cancel cube processing regardless of the number of
errors encountered. If one or more dimension key
errors are encountered, the data in the cube does not
reflect the entire fact table.

 Visible Indicates whether the cube is visible when end users
browse the list of available cubes.

Dimension Aggregation
Usage

Indicates the levels for which aggregation data is
calculated. Choices in the list are:

Standard: The levels for which aggregation data
is calculated depend on the variety of the
dimension. For regular dimensions, aggregation
data is calculated for all levels unless the
Changing property of the dimension is True, in
which case aggregation data is not calculated for
levels between the top and bottom levels. For
parent-child dimensions, aggregation data is
calculated for the bottom level displayed to end
users and the (All) level, if any. For virtual
dimensions, aggregation data is not calculated
for any level.

Top Level Only: Aggregation data is calculated
for only the top level. This value is not valid for
parent-child dimensions or dimensions with
their Changing property set to True unless the
All Level property of the dimension is set to
Yes.

Bottom Level Only: Aggregation data is
calculated for only the bottom level.

Top and Bottom Levels: Aggregation data is
calculated for only the top and bottom levels.
This value is not valid for parent-child
dimensions or dimensions with their Changing
property set to True unless the All Level
property of the dimension is set to Yes.

Custom: Aggregation data is calculated for only
the levels with an Enable Aggregations
property of Yes. Custom is not valid for parent-
child dimensions or dimensions with their
Changing property set to True.

 All Caption The name of the member in the (All) level.
 All Level Indicates whether the dimension contains an (All)

level. If the value is Yes, the (All) level is the top level
of the dimension but is not displayed in the Cube
Editor tree pane. The (All) level contains a single
member whose cell value is the aggregate of cell
values for all members in the next lower level.

 All Member
Formula

The custom rollup formula for the (All) level. This
formula is an MDX expression that determines the cell
values for the All member and overrides the
Aggregate Function properties of measures. For
more information, see Custom Rollup Formulas and
Custom Member Formulas.

 Allow
Duplicate
Names

Indicates whether the members under a common
parent can have the same name.

 Changing Indicates whether the dimension is optimized for
frequent changes. If the value is set to True, query
performance may be slower. However, levels and
members below the top level and above the bottom
level can be added, moved, and deleted. This
eliminates or reduces the subsequent processing
requirement, and also minimizes interruptions of end
users' access to the cubes that include that dimension.

Several conditions must exist before the Changing
property can be set to True. For more information, see
Changing Dimensions.

 Data Member
Caption
Template

Controls the names of data members when the
Members With Data property of the dimension is set
to Nonleaf data visible. When you type a value that
includes an asterisk (*), the name of each data
member will be the value with the asterisk replaced by
the name of the parent member. The Data Member
Caption Template property is available only for
parent-child dimensions.

 Data source The data source that contains the dimension table(s).
 Default

Member
The member that slices the datasets returned by
queries when the dimension is not displayed on an
axis and no slicing member in the dimension is
specified. If no default member is specified, and the
All Level property of the dimension is Yes, the
member indicated by the All Caption property is the
default member. If no default member is specified, and
the All Level property of the dimension is No, an
arbitrary member of the highest level is the default
member.

 Depends on
Dimension

For virtual dimensions, the dimension that supplies
the member properties or columns on which the
levels of the virtual dimension are based.

For dimensions that are not virtual, the dimension
according to which aggregation design is optimized. A
dimension in the value of this property is
advantageous when the cross product of the two
dimensions' members results in a significant
percentage of combinations that cannot coexist. For
example, the Depends on Dimension property of a
Customer Gender dimension is Customers. Fifty
percent of the combinations resulting from the cross
product of the dimensions' lowest-level members
cannot coexist because a customer can have only one
gender. For more information, see Dependent
Dimensions.

 Description Provides a description of the dimension.
 Enable All Level

Aggregations
Determines whether to consider the (All) level when
designing aggregations to optimize performance.

 Enable Real-
Time Updates

Indicates whether the dimension supports real-time
updates to underlying dimension tables.

 Member Keys
Unique

Indicates whether member keys are unique within the
dimension. If this property is set to True, the Member
Keys Unique property for every level in the
dimension is set to True.

If the value of this property is changed, you must
reprocess the current cube using the Full Process
option. For more information, see Processing Cubes.

 Member Names
Unique

Indicates whether member names are unique within
the dimension. If the value is True, internal member
names omit qualifying level names and member
names. These internal member names are used in
MDX expressions. If this property is set to True, the
Member Names Unique property for every level in
the dimension is set to True.

 Members With
Data

Indicates whether nonleaf members are allowed to
have associated fact table data. If they are allowed, this
property also indicates whether children of nonleaf
members are created to display this data. Valid values
are:

Leaf members only: Only leaf members can have
associated fact table data. If a nonleaf member
has associated fact table data, processing fails.
This value is the default.

Nonleaf data hidden: Nonleaf members can
have associated fact table data. This data is not
represented among the nonleaf members.
Consequently, it might appear to end users that
values aggregate incorrectly.

Nonleaf data visible: Nonleaf members can have
associated fact table data. This data is
represented among the descendants of the
nonleaf members by the creation of a child for
each nonleaf member. This child, called a data
member, is a leaf member and has a value equal
to the aggregate of its parent's associated fact
table data. The data members' names are
controlled by the Data Member Caption
Template property.

This property is available only for parent-child
dimensions.

 Name The name of the dimension.
 Source Table

Filter
A WHERE clause expression applied to the dimension
table to limit the members in the dimension. For
example, in the Store dimension supplied with
Analysis Services, to include only the Canada member
and its descendants, type:

"store"."store_country" = 'Canada'

 Storage Mode The type of storage for the dimension. If the value is
MOLAP (multidimensional OLAP), the dimension data
is stored in a multidimensional structure on the
Analysis server. If the value is ROLAP (relational
OLAP), the dimension data is the dimension table
itself. MOLAP provides better performance and is
recommended except for extremely large dimensions,
that is, dimensions that have roughly 5 to 10 million
members. In order to select ROLAP, the Member
Keys Unique property of the lowest level must be
True. Restrictions also apply to the dimension's
Aggregation Usage property in all cubes in which
the dimension is used. For more information, see
Dimension Storage Modes.

 Type The type of the dimension. Standard is the default.
This property indicates to client applications the kind
of information in the dimension.

 Virtual Indicates whether the dimension is a virtual
dimension, that is, one based on the tables and
columns of another dimension). If this property is set
to True, an (All) level is automatically created for the
dimension.

 Visible Indicates whether the dimension is visible when end
users browse the cube.

 Write-enabled Indicates whether the members of the dimension can
be updated while administrators browse the
dimension and while end users browse the cube. The
only end users that can update a write-enabled
dimension are those in cube roles granted read/write
access to that dimension. Only parent-child
dimensions can be write-enabled. For more
information, see Write-Enabled Dimensions.

Level Custom
Members

Indicates whether custom member formulas are used
to determine cell values of the members. For more
information, see Custom Rollup Formulas and Custom
Member Formulas. To view the custom member
formulas, right-click the dimension, click Browse, and
then see the custom member formula pane.

 Custom
Member
Options

Indicates whether calculation options can be defined
for custom members on this level and unary operators
on the following level. Calculation options are stored
in a column in the dimension table. To set this
property to True, you must first set the Custom
Members property to True.

 Custom Rollup
Formula

An MDX expression that determines the members' cell
values and overrides the Aggregate Function
properties of measures. For more information, see
Custom Rollup Formulas and Custom Member
Formulas.

The structure of a cube will not be valid if the cube has
a measure with the Distinct Count aggregate
function, or if you add a custom rollup formula to a
level of the cube.

 Description Provides a description of the level.
 Disabled Indicates whether the level is included in the cube. This

property is not available for parent-child dimensions.
A level whose Disabled property is Yes cannot be
referenced explicitly in calculated members and other
MDX expressions.

 Enable
Aggregations

Indicates whether aggregations are calculated for the
level. The value of this property can be changed only if
the Aggregation Usage property of the dimension is
Custom. The value of this property is always No for
levels in virtual dimensions. This property is not
available for parent-child dimensions.

 Grouping Indicates whether the level contains member groups.
Member groups can be used to satisfy the maximum
limit of 64,000 members under a parent. To group
members, create a new level immediately above and
identical to the level that exceeds the limit, and then
set the Grouping property of the new level to
Automatic. For more information, see Member
Groups. If the level is in a shared dimension, you must
group members in Dimension Editor.

 Hide Member If Determines which members are hidden from end
users browsing the cube. Hidden members support
ragged dimensions, which contain logical gaps in
member lineage, by hiding the members that occupy
the gaps. Valid values are:

Never hidden: No members are hidden.

No name: Every member whose name is null or
an empty string is hidden.

Parent's name: Every member with the same
name as its parent is hidden.

Only child with no name: Every member that is
an only child and whose name is null or an
empty string is hidden.

Only child with parent's name: Every member
that is an only child and has the same name as
its parent is hidden.

This property is not available for parent-child
dimensions.

 Key Data Size The size (in bytes) of the columns that store member
keys in aggregations. Member keys are copied from
the column specified in the Member Key Column
property.

 Key Data Type The data type of the columns that store member keys
in aggregations. Member keys are copied from the
column specified in the Member Key Column
property.

 Level Naming
Template

Determines the level names displayed to end users
browsing the cube. This property is available only for
parent-child dimensions. If the level is in a private
dimension, click this property and click the edit (...)
button to display the Level Naming Template dialog
box.

 Level Type The type of the level. Regular is the default. The
following values are used only in dimensions whose
Type property is Time: Years, Half-Years, Quarters,
Months, Weeks, Days, Hours, Minutes, Seconds, and
Time-Undefined. The Level Type property indicates to
client applications the kind of information in the level.
This property is not displayed for parent-child
dimensions.

 Member Count The number of members in the level at the time
members were last estimated by Analysis Services, or
a user-provided estimate of the member count. If the
level is in a private dimension, you can update the
member count by clicking Count Dimension
Members on the Tools menu.

 Member Key
Column

The column that contains the member keys.
Alternatively, the value can be derived from a column,
such as an expression that extracts the year value from
a date-formatted column. The syntax of such
expressions must comply with the requirements of the
data source provider; otherwise, processing fails with
one or more errors.

 Member Keys
Unique

Indicates whether member keys are unique within the
level. This property is not available for parent-child
dimensions.

If the value of this property is changed, you must
reprocess the current cube using the Full Process
option. For more information, see Processing Cubes.

 Member Name
Column

The column that contains the member names, which
are displayed to end users browsing the cube.
Alternatively, the value can be derived from a column,
such as an expression that extracts the year value from
a date-formatted column. The syntax of such
expressions must comply with the requirements of the
data source provider; otherwise, processing fails with
one or more errors.

 Member Names
Unique

Indicates whether member names are unique within
the level. If the value is True, internal member names
omit qualifying member names. These internal
member names are used in MDX expressions.

 Name The name of the level.
 Order By The sort order for displayed members. You can sort by

member name, member key, or any member property
defined for the level.

 Parent Key
Column

The column that contains the keys for the members'
parents. This property is available only for parent-child
dimensions.

 Root Member If Indicates the criteria by which members of the highest
level (ignoring the (All) level, if any) are identified. The
following values are valid:

Parent is blank, self, or missing: A member is in
the highest level if any of the following three
criteria is met.

Parent is blank: A member is in the highest level
if its value in the Parent Key Column is null or
0 (zero).

Parent is self: A member is in the highest level if
its value in the Parent Key Column is equal to
its value in the Member Key Column.

Parent is missing: A member is in the highest
level if its value in the Parent Key Column does
not exist in the Member Key Column.

This property is available for parent-child dimensions
only.

 Skipped Levels
Column

Indicates the column that contains the number of
levels between a member and its parent, excluding the
member and parent. Valid values in the column are 0
(zero) and positive integers. This property is available
only for parent-child dimensions.

 Unary
Operators

Enables unary operators or custom rollup operators
that control how level members are aggregated into
the value of their parent member. For more
information, see Custom Rollup Operators. To view
the custom member formulas, on the View menu click
Data, and then see the value beside UNARY_COLUMN
in the Member properties pane.

The structure of the cube will not be valid if a cube has
a measure with the Distinct Count aggregate
function, or if you add custom rollup operators to a
level of the cube.

 Visible Indicates whether the level is visible to end users
browsing the cube. To set this property to False, you
must first set the Member Keys Unique property of
all lower levels to True. The Visible property is not
available for parent-child dimensions. Unlike other
objects whose Visible property is False, a level cannot
be explicitly referenced in calculated members and
other MDX expressions.

Measure Aggregate
Function

The function used to aggregate measure values. Valid
values are:

Sum: The measure value for a dimension
member is calculated by adding the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants.

Count: The measure value for a dimension
member is calculated by adding the number of
values in the measure's Source Column in rows
where the foreign key value for the dimension
equals the key value of the member or one of its
descendants. Null values are not counted.

Min: The measure value for a dimension
member is the lowest of the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants.

Max: The measure value for a dimension
member is the highest of the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants.

Distinct Count: The measure value for a
dimension member is calculated by adding the
number of different values in the measure's
Source Column in rows where the foreign key
value for the dimension equals the key value of
the member or one of its descendants. A cube
can contain only one measure with the Distinct
Count aggregate function.

If a cube has a measure with the Distinct Count
aggregate function, the structure of the cube will not
be valid if you add a custom rollup operator or
expression to a level of the cube.

Measure values for the intersections of members from
different dimensions are also calculated using the
selected aggregate function. For more information
about aggregate functions, see Aggregate Functions.

A multiple-partition cube can have multiple fact tables,
so a measure can have multiple source columns. (Note
that each source column must have the same column
name.) In this case the aggregate function spans all
the source columns.

 Data Type The data type of the columns that store measure
values in aggregations.

 Description The description of the measure.

 Display Format The format of the measure values displayed to end
users browsing the cube. For more information, see
Display Formats.

 Name The name of the measure. The name is displayed to
end users browsing the cube.

 Source Column In the fact table of the default partition of the cube, the
column that stores the measure values before they are
aggregated.

 Visible Indicates whether the measure is visible to end users
browsing the cube.

Member
property

Caption The caption used to display the member property.

 Data Size The maximum number of characters allowed in the
column that stores the member property values.
Allows dimension tables to be linked to fact tables
when the data types of the columns do not match but
the contents represent the same values.

 Data Type The data type of the column that stores the member
property values. Allows dimension tables to be linked
to fact tables when the data types of the columns do
not match but the contents represent the same values.

 Description The description of the member property.
 Language The language used to display the member property.
 Name The name of the member property.
 Source Column The column that stores the values of the member

property. This column must be in one of the
dimension tables for the dimension that contains the
member property.

 Type Indicates to client applications the type of information
in the member property values.

 Visible Indicates whether the member property is visible to
end users browsing the cube.

Named set Name The name of the named set.
 Value The MDX expression that defines the named set.

Analysis Services (SQL Server 2000)

Data Tab (Cube Editor Data View)
Data Tab (Cube Editor Data View)

Use the Data tab to display the cube data. The default view in the data viewing pane shows the data in table format with one
dimension across the column headings and another dimension down the left column. (Measures are treated as a single
dimension for this purpose.) The remaining dimensions of the cube are displayed in the data slicing pane.

The white cells in the data viewing pane represent the measure values according to the members that appear in the members
boxes for all the dimensions shown in the data slicing pane. In the preceding example, the measure values reflect the All member
of every dimension in the data slicing pane except Time. The members box for the Time dimension displays 1997, which indicates
that the displayed measure values are limited to 1997. Later in this topic, an example shows you how to slice through dimensions
in the data slicing pane to limit the measure values that are displayed.

The data in the Data tab is either internally generated sample data or actual data from the cube.

Sample data appears when the cube has been changed since it was last processed, including changes made during your current
editing session. You can browse the sample data to check the design of your cube as you are building or editing it. You can see
how the data is organized according to the current structure of the cube.

Actual data appears when the cube structure has not been changed since it was last processed. To browse the actual data, you can
drill down or slice through your data.

Working in the Data Tab

To browse the cube data in the data viewing pane by any combination of dimensions, drag measures or dimensions from the data
slicing pane onto either axis in the data viewing pane.

To replace a dimension in the data viewing pane with another dimension

Drag the dimension from the data slicing pane to the dimension in the data viewing pane that you want to replace.

The pointer is in the correct position when it appears as follows.

-or-

The dimension in the data viewing pane moves up to the data slicing pane and the new one takes its place.

To move a dimension to the data viewing pane

Drag the dimension from the data slicing pane to a cell below (or beside) the existing dimension.

The pointer is in the correct position when it appears as follows.

-or-

The new dimension appears under (or beside) the existing dimension, expanding your data viewing pane.

To change the order of dimensions in the data viewing pane

Drag the dimension and drop it on the dimension where you want it to be located.

To remove a dimension from the data viewing pane

Drag the dimension you want to remove from the data viewing pane to the data slicing pane.

To drill down into a member

Double-click a dimension member in the data viewing pane. If the member has members beneath it, they are displayed.

Only the member you double-click is expanded. The other members retain their current levels in the data viewing pane. In
the following example, double-click the Drink member to drill down into its child members.

If you want to display all the members in a level, double-click the parent level name in the data viewing pane. Level names are

depicted with the shading of a button (for example, Product Family in the preceding example).

To slice through a dimension

To change the member in a dimension in the data slicing pane, click the down arrow on the members box, expand the
members, and then select a new member. The cube data in the data viewing pane changes to reflect the change in the
dimension member.

The Data tab has an internal memory limit that you may reach if you attempt to browse too much data or drill down too deeply.
When you reach the limit, the following message is displayed:

Unable to display current view of cube.
Unable to Allocate Memory For Flexgrid.

The limit cannot be increased by adding or allocating more memory. If you reach the limit, reduce the amount or depth of data
you are attempting to browse, or use another browser.

Analysis Services (SQL Server 2000)

Cube Editor - Schema View
Cube Editor - Schema View

Use this tool to view and edit the schema of a cube and examine and edit the structure of a cube. You can also use Cube Editor
and connected dialog boxes to perform various procedures.

Cube Editor appears in two views, data and schema. Both views include the tree pane and the properties pane, but the data view
includes the Data tab, whereas the schema view includes the Schema tab. You can switch from one view to another by clicking
the Data tab or the Schema tab at the bottom of Cube Editor. You can also click Data or Schema on the View menu.

This topic describes the schema view. For information about the data view, see Cube Editor - Data View. The schema view is
shown here.

Cube Editor appears when you do either of the following:

In the Analysis Manager tree pane, right-click a cube, and then click Edit.

In the Analysis Manager tree pane, click a cube, and then on the Action menu, click Edit.

Cube Editor has five areas. For more information about the areas, click a link in the following table.

To do this See
Perform commands available in the
Cube Editor menus

Menus (Cube Editor Schema View)

Perform common actions represented
by icons on the Cube Editor toolbar

Toolbar (Cube Editor Schema View)

View cube objects displayed in the tree
pane

Tree Pane (Cube Editor Schema View)

View and modify certain properties of
the object selected in the Cube Editor
tree pane

View descriptions of properties and the
objects to which they apply

Properties Pane (Cube Editor Schema View)

View a the fact table and the dimension
tables of a cube, and all columns in a
table

Add measures and shared dimensions,
and create private dimensions

Schema Tab (Cube Editor Schema View)

See Also

Building a Cube with the Editor

Creating and Maintaining Private Dimensions

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

Menus (Cube Editor Schema View)
Menus (Cube Editor Schema View)

The following options are available through the menus in Cube Editor.

Menu Option Description
File New Cube - Wizard Starts the Cube Wizard so you can create a new

cube.
 New Cube - Editor Displays the Choose a Fact Table dialog box so

you can begin building a cube with the editor.
 Save Saves the cube. If you are saving a parent-child or

changing dimension, you will be prompted to
perform an incremental processing of the
dimension.

 Save As Saves the cube under a different name.
 Exit Closes Cube Editor.
Edit Edit Edits the selected object. This option is unavailable

for objects that have no associated editor or
wizard.

 Rename Renames the selected object.
 Delete Deletes the selected object.
 Remove Join Removes all joins from the selected column

(schema view only).
View Schema Displays the schema view, including the Schema

tab.
 Data Displays the data view, including the Data tab.
 Properties Expands or collapses the properties pane.
Insert Tables Displays the Select Table dialog box so you can

add tables to the cube.
 Dimension - New Starts the Dimension Wizard so you can create a

new dimension.
 Dimension - Existing Displays Dimension Manager so you can add

existing shared dimensions to the cube.
 Level Displays the Insert Level dialog box so you can

add a new level.
 Measure Displays the Insert Measure dialog box so you can

add a new measure.
 Member Property Displays the Insert Member Property dialog box

so you can add a new member property.
 Calculated Member Displays Calculated Member Builder so you can

begin creating calculated members.
 Calculated Cells Displays the Calculated Cells Wizard so you can

begin creating calculated cells.
 Action Starts the Action Wizard so you can create a new

action.
 Named Set Displays Named Set Builder so you can define a

new named set.
 Join Adds a join to the selected column (schema view

only).
Tools Process Cube* Processes the cube.
 Design Storage Starts the Storage Design Wizard so you can select

storage options and design aggregations for the
cube.

 Drillthrough Options* Displays the Drillthrough Options dialog box so
you can select the columns that are displayed
when a drillthrough is executed.

 Count Dimension
Members

Provides an estimate of the number of members in
a dimension. This estimate is used by the
aggregation design algorithm when it determines
what aggregations to create for this dimension.

 Validate Cube
Structure

Verifies that the cube structure does not contain
invalid components that would prevent processing
of the cube.

 Optimize Schema Simplifies a cube's schema for maximum
performance during processing by removing
unnecessary joins between dimension and fact
tables and eliminating the need to read dimension
tables during processing.

Several conditions must be met before this option
can be used. For more information, see Optimizing
Cube Schemas.

To remove other tabular joins, use the Remove
Join command.

Help Help on Cube Editor Displays a Help topic about Cube Editor.
 Contents and Index Opens SQL Server Books Online.

* If this option is not available, the cube structure is not valid. You can try to determine the problem by clicking Validate Cube
Structure on the Tools menu.

Analysis Services (SQL Server 2000)

Toolbar (Cube Editor Schema View)
Toolbar (Cube Editor Schema View)

Use the toolbar buttons to perform common operations.

Button Description
New Cube Starts the Cube Wizard so you can create a new cube.
Save Saves the cube.If you are saving a parent-child or changing

dimension, you will be prompted to perform an incremental
processing of the dimension.

Insert Table Displays the Select table dialog box so you can add tables to
the cube.

Insert Dimension Displays Dimension Manager so you can add existing
dimensions to the cube. In Dimension Manager you can start
the Dimension Wizard to create a new dimension.

Insert Level Displays the Insert Level dialog box so you can add a new
level to a private dimension. Use Dimension Editor to add a
new level to a shared dimension.

Insert Member
Property

Displays the Insert Member Property dialog box so you can
add a new member property in the selected level of a private
dimension. Use Dimension Editor to add a new member
property in a level of a shared dimension.

Insert Measure Displays the Insert Measure dialog box so you can add a new
measure.

Insert Calculated
Member

Displays Calculated Member Builder so you can begin creating
calculated members.

Insert Calculated
Cells

Starts the Calculated Cells Wizard so you can define calculated
cells. The wizard adds the new calculated cells definition to the
Calculated Cells folder.

Insert Action Starts the Action Wizard so you can create a new action.
Insert Named Set Displays Named Set Builder so you can define a new named

set.
Process Cube Displays the Process a Cube dialog box so you can select cube

processing options.

Analysis Services (SQL Server 2000)

Tree Pane (Cube Editor Schema View)
Tree Pane (Cube Editor Schema View)

Use the tree pane to display objects in a cube. Right-click an object to see a shortcut menu for that object.

The following table lists how to access available information about cube objects.

Right-click Shortcut menu
option

Description

Cube New Cube Displays the Choose a Fact Table dialog box
so you can begin building a cube with the
editor.

 Process Cube Processes the cube.
 New Dimension Starts the Dimension Wizard so you can

create a new dimension.
 Existing Dimensions Displays Dimension Manager so you can add

existing shared dimensions to the cube.
 New Measure Displays the Insert Measure dialog box so

you can add a new measure.
Dimensions
folder

New Dimension Starts the Dimension Wizard so you can
create a new dimension.

 Existing Dimensions Displays Dimension Manager so you can add
existing shared dimensions to the cube.

Dimension New Dimension Starts the Dimension Wizard so you can
create a new dimension.

 Existing Dimensions Displays Dimension Manager so you can add
existing shared dimensions to the cube.

 Remove Removes the dimension from the cube.
 Browse Displays the dimension members in

Dimension Browser.
Level New Dimension Starts the Dimension Wizard so you can

create a new dimension.
 Existing Dimensions Displays Dimension Manager so you can add

existing shared dimensions to the cube.
Measures
folder

New Measure Displays the Insert Measure dialog box so
you can add a new measure.

Measure New Measure Displays the Insert Measure dialog box so
you can add a new measure.

 Delete Deletes the measure.
 Rename Renames the measure.
Calculated
members
folder

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

Calculated
member

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

 Edit Displays the calculated member in Calculated
Member Builder so you can edit it.

 Delete Deletes the calculated member.
 Rename Renames the calculated member.
Calculated Cells
folder

New Calculated
Cells

Displays the Calculated Cells Wizard so you
can begin creating calculated cells.

 Import Calculated
Cells

Displays the Import Calculated Cells
dialog box so you can import calculated
cells from a source cube or another cube.

Calculated cells New Calculated
Cells

Displays the Calculated Cells wizard so you
can begin creating calculated cells.

 Edit Displays the Calculated Cells Wizard so you
can edit the selected calculated cells
definition.

 Rename Renames the selected calculated cells
definition.

 Delete Deletes the selected calculated cells action.
Actions folder* New Action Starts the Action Wizard so you can create a

new action.
Action New Action Starts the Action Wizard so you can create a

new action.
 Edit Starts the Action Wizard so you can edit it.
 Delete Deletes the action.
 Rename Renames the action.
Named set New Named Set Displays Named Set Builder so you can create

new named sets.
 Edit Starts Named Set Builder so you can edit the

set.
 Rename Renames the named set.

* A limit of 32 actions can be displayed when the Actions folder is expanded.

Analysis Services (SQL Server 2000)

Properties Pane (Cube Editor Schema View)
Properties Pane (Cube Editor Schema View)

Use the properties pane to display the properties of the object selected in the tree pane. To display the properties pane, click
Properties beneath the tree pane.

Each type of object contains a different set of properties. Use the properties pane to modify the property settings for the selected
object. For shared dimensions, their levels, and their member properties, some properties are read-only and must be changed in
Dimension Editor.

The following table describes the properties displayed in the properties pane.

Object Property Description
Action Action Type Indicates the particular type of action. For descriptions

of the different types of actions, see CREATE ACTION
Statement.

 Application Used to provide additional information to the
application that performs the action.

 Caption
Expression

A Multidimensional Expressions (MDX) expression
used by the client application as a caption for the
action.

 Description Used to provide a description for the action.
 Invocation Used to determine how the action will be activated.

Interactive: Actions run interactively when the
end user activates an associated element in the
user interface. This is the default setting and the
only type supported by Cube Browser in
Microsoft® SQL Server™ 2000 Analysis Services.

On Open: Actions run automatically when the
client opens a cube.

Batch: Actions are run by the client in a batch
job. These actions provide a way to check for
exceptions.

 Name The name of the action. This is displayed when
selecting the target object for the action.

 Value The MDX expression that defines the action.
Calculated
cells

BackColor Indicates the background color of the cells defined by
the cell coordinates and condition.

 Calculation
Condition

Contains an MDX conditional expression that defines
the calculation subcube cells that are computed with
the calculation formula by testing each cell.

 Calculation
Subcube

Contains an MDX set expression that defines the
subset of the cube data that is computed using the
calculation formula.

 Calculation
Value

Contains an MDX expression that provides the value
for each cell in the calculation subcube.

 Description Contains the text string that describes the calculated
cells definition.

 Disabled Determines whether the cell calculation is disabled.
The default value is False.

 FontName Indicates the font name of the cells defined by the cell
coordinates and condition.

 FontSize Indicates the font size of the cells defined by the cell
coordinates and condition.

 FontFlags Indicates the font flags of the cells defined by the cell
coordinates and condition.

 Calculation
Pass Number

Indicates the calculation pass in which this calculation
is executed.

 Calculation
Pass Depth

Determines how many calculation passes are required
to fully compute a calculated cells definition.

 ForeColor Indicates the foreground color of the cells defined by
the cell coordinates and condition.

 Format String Contains the format string of the cells defined by the
cell coordinates and condition.

 Name Contains the name of the calculated cells definition.
This property is read-only.

 Solve Order Contains a number representing the order of
evaluation of the calculated cells.

 Visible Determines whether the calculated cells definition is
visible in the schema rowset. The default value is True.

Calculated
member

BackColor The background color of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 FontFlags The font flags of the displayed calculated member. To
use this optional property, the client application must
support its use and interpret its values. Only numeric
values are valid. Cube Browser, the Cube Editor Data
tab, and the Virtual Cube Editor data pane do not
support this property.

 FontName The font of the displayed calculated member. To use
this optional property, the client application must
support its use and interpret its values. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 FontSize The font size of the displayed calculated member. To
use this optional property, the client application must
support its use and interpret its values. Only numeric
values are valid. Cube Browser, the Cube Editor Data
tab, and the Virtual Cube Editor data pane do not
support this property.

 ForeColor The foreground color of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Cube Browser,
the Cube Editor Data tab, and the Virtual Cube Editor
data pane do not support this property.

 Format String The format for displaying cell values. A list of common
formats is displayed when you click Format String
and display the dropdown list. This property accepts
the same values as the Display Format property of
measures. For more information, see Display Formats.

 Name The name of calculated member. The name is
displayed when end users browse the cube.

 Non Empty
Behavior

Stores the name of the measure used to resolve NON
EMPTY queries in MDX. If the Non Empty Behavior
property is blank, the calculated member must be
evaluated repeatedly to determine if a member is
empty. If the Non Empty Behavior property contains
the name of a measure, the calculated member is
treated as empty if the specified measure is empty.

 Parent
Dimension

The dimension that includes the calculated member. If
the calculated member is a measure, specify
Measures.

 Parent Member The member that includes the calculated member. The
parent member determines the location of the
calculated member in the dimension structure. This
property must be null if the parent dimension is
Measures or a one-level dimension.

 Solve Order The order in which the calculated member is resolved
in case of intersection with other calculated members.
Valid values are 0 (zero) and positive or negative
integers. Calculated members with lower Solve Order
values have precedence in resolution.

 Value An MDX expression that defines the values of the
calculated member. The values are displayed when end
users browse the cube.

 Visible Indicates whether the dimension is visible when end
users browse the cube.

Cube Aggregation
Prefix

The prefix appended to aggregation names for the
cube's partitions, provided that the partition's
aggregation prefix begins with a plus sign (+). In this
case, this property's value is appended to the
beginning of the partition's aggregation prefix. If the
partition's aggregation prefix does not begin with a
plus sign, this property is ignored. To access the
aggregation prefix for a partition, in the Analysis
Manager tree pane, right-click the partition, click Edit,
advance to the Finish step of the Partition Wizard, and
then click Advanced.

 Data Source The data source for the cube. The partitions of the cube
can have different data sources.

 Default
Measure

The measure that is returned by queries when no
measure is displayed on an axis and no slicing
measure is specified. If no default measure is specified,
an arbitrary measure is the default measure.

 Description The description of the cube.
 Fact Table The fact table for the cube. The partitions of the cube

can have different fact tables.
 Fact Table Size The number of rows in the fact table of the cube at the

time they were last counted by Analysis Services, or a
user-provided estimate of the number of rows.

 Key Error Limit Limit for the number of dimension key errors. The
default is 0. Cube processing is halted and cancelled
when the limit is exceeded, provided that the Stop
Processing on Key Errors property of the cube is Yes.
If you select Yes and a Key Error Limit value greater
than 0, and processing completes, the data in the cube
does not reflect the entire fact table. The Key Error
Limit property is ignored if the Stop Processing on
Key Errors property is No.

 Key Error Log
File

Path and file name of the log file for dimension key
errors.

 Name The name of the cube.
 Processing

Optimization
Mode

Values of the Processing Optimization Mode
property are Regular (processed data is available after
all aggregations have been computed) or Lazy
Aggregations (processed data is available
immediately after data has been loaded). This property
only applies to MOLAP partitions of a cube.

 Source Table
Filter

The WHERE clause expression applied to the partitions'
fact tables to limit the data in the cube. This property
provides defaults for the filters in the partitions of the
cube. These filters override this property. To access a
filter in a partition, in the Analysis Manager tree pane,
right-click the partition, click Edit, advance to the
Finish step of the Partition Wizard, and then click
Advanced.

 Stop
Processing on
Key Errors

If you select Yes, processing is halted and cancelled
when the limit for the number of dimension key errors
is exceeded. This limit is specified in the Key Error
Limit property of the cube. A dimension key error
occurs when a fact table row is encountered that
contains a foreign key value not present in the joined
primary key column of a dimension table.

If you select No, dimension key errors never halt or
cancel cube processing regardless of the number of
errors encountered. If one or more dimension key
errors are encountered, the data in the cube does not
reflect the entire fact table.

 Visible Determines whether the cube is visible in a list of
cubes.

Dimension Aggregation
Usage

Indicates the levels for which aggregation data is
calculated. Choices in the list are:

Standard: The levels for which aggregation data
is calculated depend on the variety of the
dimension. For regular dimensions, aggregation
data is calculated for all levels unless the
Changing property of the dimension is True, in
which case aggregation data is not calculated for
levels between the top and bottom levels. For
parent-child dimensions, aggregation data is
calculated for the bottom level displayed to end
users and the (All) level, if any. For virtual
dimensions, aggregation data is not calculated
for any level.

Top Level Only: Aggregation data is calculated
for only the top level. This value is not valid for
parent-child dimensions or dimensions with
their Changing property set to True unless the
All Level property of the dimension is set to Yes.

Bottom Level Only: Aggregation data is
calculated for only the bottom level.

Top and Bottom Levels: Aggregation data is
calculated for only the top and bottom levels.
This value is not valid for parent-child
dimensions or dimensions with their Changing
property set to True unless the All Level
property of the dimension is set to Yes.

Custom: Aggregation data is calculated for only
the levels with an Enable Aggregations
property of Yes. Custom is not valid for parent-
child dimensions or dimensions with their
Changing property set to True.

 All Caption The name of the member in the (All) level.
 All Level Indicates whether the dimension contains an (All) level.

If the value is Yes, the (All) level is the top level of the
dimension but is not displayed in the Cube Editor tree
pane. The (All) level contains a single member whose
cell value is the aggregate of cell values for all
members in the next lower level.

 All Member
Formula

The custom rollup formula for the (All) level. This
formula is an MDX expression that determines the cell
values for the All member and overrides the
Aggregate Function properties of measures. For
more information, see Custom Rollup Formulas and
Custom Member Formulas.

 Allow
Duplicate
Names

Indicates whether the members under a common
parent can have the same name.

 Changing Indicates whether the dimension is optimized for
frequent changes. If the value is set to True, query
performance may be slower. However, levels and
members below the top level and above the bottom
level can be added, moved, and deleted. This
eliminates or reduces subsequent processing
requirements, and also minimizes interruptions of end
users' access to the cubes that include that dimension.

Several conditions must exist before the Changing
property can be set to True. For more information, see
Changing Dimensions.

 Data Member
Caption
Template

Controls the names of data members when the
Members With Data property of the dimension is set
to Nonleaf data visible. When you type a value that
includes an asterisk (*), the name of each data member
will be the value with the asterisk replaced by the
name of the parent member. The Data Member
Caption Template property is available only for
parent-child dimensions.

 Data source The data source that contains the dimension table(s).
 Default

Member
The member that slices the datasets returned by
queries when the dimension is not displayed on an
axis and no slicing member in the dimension is
specified. If no default member is specified, and the All
Level property of the dimension is Yes, the member
indicated by the All Caption property is the default
member. If no default member is specified, and the All
Level property of the dimension is No, an arbitrary
member of the highest level is the default member.

 Depends on
Dimension

For virtual dimensions, the dimension that supplies the
member properties or columns on which the levels of
the virtual dimension are based.

For dimensions that are not virtual, the dimension
according to which aggregation design is optimized. A
dimension in the value of this property is
advantageous when the cross product of the two
dimensions' members results in a significant
percentage of combinations that cannot coexist. For
example, the Depends on Dimension property of a
Customer Gender dimension is Customers. Fifty
percent of the combinations resulting from the cross
product of the dimensions' lowest-level members
cannot coexist because a customer can have only one
gender. For more information, see Dependent
Dimensions.

 Description The description of the dimension.
 Member Keys

Unique
Indicates whether member keys are unique within the
dimension. If this property is set to True, the Member
Keys Unique property for every level in the
dimension is set to True.

If the value of this property is changed, you must
reprocess the current cube using the Full Process
option. For more information, see Processing Cubes.

 Member
Names Unique

Indicates whether member names are unique within
the dimension. If the value is True, internal member
names omit qualifying level names and member
names. These internal member names are used in
MDX expressions. If this property is set to True, the
Member Names Unique property for every level in
the dimension is set to True.

 Members With
Data

Indicates whether nonleaf members are allowed to
have associated fact table data. If they are allowed, this
property also indicates whether children of nonleaf
members are created to display this data. Valid values
are:

Leaf members only: Only leaf members can have
associated fact table data. If a nonleaf member
has associated fact table data, processing fails.
This value is the default.

Nonleaf data hidden: Nonleaf members can have
associated fact table data. This data is not
represented among the descendants of the
nonleaf member. Consequently, it might appear
to end users that values aggregate incorrectly.

Nonleaf data visible: Nonleaf members can have
associated fact table data. This data is
represented among the descendants of the
nonleaf members by the creation of a child for
each nonleaf member. This child, called a data
member, is a leaf member and has a value equal
to the aggregate of its parent's associated fact
table data. The data members' names are
controlled by the Data Member Caption
Template property.

This property is available only for parent-child
dimensions.

 Enable All
Level
Aggregations

Determines whether to consider the (All) level when
designing aggregations to optimize performance.

 Name The name of the dimension.
 Source Table

Filter
A WHERE clause expression applied to the dimension
table to limit the members in the dimension. For
example, in the Store dimension supplied with Analysis
Services, to include only the Canada member and its
descendants, type:

"store"."store_country" = 'Canada'

 Storage Mode The type of storage for the dimension. If the value is
MOLAP (multidimensional OLAP), the dimension data
is stored in a multidimensional structure on the
Analysis server. If the value is ROLAP (relational
OLAP), the dimension data is the dimension table itself.
MOLAP provides better performance and is
recommended except for extremely large dimensions,
that is, dimensions that have roughly 5 to 10 million
members. In order to select ROLAP, the Member Keys
Unique property of the lowest level must be True.
Restrictions also apply to the dimension's
Aggregation Usage property in all cubes in which the
dimension is used. For more information, see
Dimension Storage Modes.

 Type The type of the dimension. Standard is the default. This
property indicates to client applications the kind of
information in the dimension.

 Virtual Indicates whether the dimension is a virtual dimension,
that is, one based on the tables and columns of
another dimension. If this property is set to True, an
(All) level is automatically created for the dimension.

 Visible Indicates whether the dimension is visible when end
users browse the cube.

 Write-enabled Indicates whether the members of the dimension can
be updated while administrators browse the
dimension and while end users browse the cube. The
only end users that can update a write-enabled
dimension are those in cube roles granted read/write
access to that dimension. Only parent-child
dimensions can be write-enabled. For more
information, see Write-Enabled Dimensions.

 Enable Real-
Time Updates

Indicates whether the dimension supports real-time
updates to underlying dimension tables.

Level Custom
Members

Indicates whether custom member formulas are used
to determine cell values of the members. For more
information, see Custom Rollup Formulas and Custom
Member Formulas. To view the custom member
formulas, right-click the dimension, click Browse, and
then see the custom member formula pane.

 Custom
Member
Options

Indicates whether calculation options can be defined
for custom members on this level and unary operators
on the following level. Calculation options are stored in
a column in the dimension table. To set this property
to True, you must first set the Custom Members
property to True.

 Custom Rollup
Formula

An MDX expression that determines the members' cell
values and overrides the Aggregate Function
properties of measures. For more information, see
Custom Rollup Formulas and Custom Member
Formulas.

Allows dimension tables to be linked to fact tables
when the data types of the columns do not match but
the contents represent the same values.

 Description The description of the level.
 Disabled Indicates whether the level is included in the cube. This

property is not available for parent-child dimensions. A
level whose Disabled property is Yes cannot be
referenced explicitly in calculated members and other
MDX expressions.

 Enable
Aggregations

Indicates whether aggregations are calculated for the
level. The value of this property can be changed only if
the Aggregation Usage property of the dimension is
Custom. The value of this property is always No for
levels in virtual dimensions. This property is not
available for parent-child dimensions.

 Grouping Indicates whether the level contains member groups.
Member groups can be used to satisfy the maximum
limit of 64,000 members under a parent. To group
members, create a new level immediately above and
identical to the level that exceeds the limit, and then set
the Grouping property of the new level to Automatic.
For more information, see Member Groups. If the level
is in a shared dimension, you must do this in
Dimension Editor.

 Hide Member
If

Determines which members are hidden from end
users browsing the cube. Hidden members support
ragged dimensions, which contain logical gaps in
member lineage, by hiding the members that occupy
the gaps. Valid values are:

Never hidden: No members are hidden.

No name: Every member whose name is null or
an empty string is hidden.

Parent's name: Every member with the same
name as its parent is hidden.

Only child with no name: Every member that is
an only child and whose name is null or an
empty string is hidden.

Only child with parent's name: Every member
that is an only child and has the same name as
its parent is hidden.

This property is not available for parent-child
dimensions.

 Key Data Size The size (in bytes) of the columns that store member
keys in aggregations. Member keys are copied from
the column specified in the Member Key Column
property.

 Key Data Type The data type of the columns that store member keys
in aggregations. Member keys are copied from the
column specified in the Member Key Column
property.

 Level Naming
Template

Determines the level names displayed to end users
browsing the cube. This property is available only for
parent-child dimensions. If the level is in a private
dimension, click this property and click the edit (...)
button to display the Level Naming Template dialog
box.

 Level Type The type of the level. Regular is the default. The
following values are used only in dimensions whose
Type property is Time: Years, Half-Years, Quarters,
Months, Weeks, Days, Hours, Minutes, Seconds, and
Time-Undefined. The Level Type property indicates to
client applications the kind of information in the level.
This property is not displayed for parent-child
dimensions.

 Member Count The number of members in the level at the time
members were last estimated by Analysis Services, or
a user-provided estimate of the member count. If the
level is in a private dimension, you can update the
member count by clicking Count Dimension
Members on the Tools menu.

 Member Key
Column

The column that contains the member keys.
Alternatively, the value can be derived from a column,
such as an expression that extracts the year value from
a date-formatted column. The syntax of such
expressions must comply with the requirements of the
data source provider; otherwise, processing fails with
one or more errors.

 Member Keys
Unique

Indicates whether member keys are unique within the
level. This property is not available for parent-child
dimensions.

If the value of this property is changed, you must
reprocess the current cube using the Full Process
option. For more information, see Processing Cubes.

 Member Name
Column

The column that contains the member names, which
are displayed to end users browsing the cube.
Alternatively, the value can be derived from a column,
such as an expression that extracts the year value from
a date-formatted column. The syntax of such
expressions must comply with the requirements of the
data source provider; otherwise, processing fails with
one or more errors.

 Member
Names Unique

Indicates whether member names are unique within
the level. If the value is True, internal member names
omit qualifying member names. These internal
member names are used in MDX expressions.

 Name The name of the level.
 Order By The sort order for displayed members. You can sort by

member name, member key, or any member property
defined for the level.

 Parent Key
Column

The column that contains the keys for the members'
parents. This property is available only for parent-child
dimensions.

 Root Member
If

Indicates the criteria by which members of the highest
level (ignoring the (All) level, if any) are identified. The
following values are valid:

Parent is blank, self, or missing: A member is in
the highest level if any of the following three
criteria is met.

Parent is blank: A member is in the highest level
if its value in the Parent Key Column is null or 0
(zero).

Parent is self: A member is in the highest level if
its value in the Parent Key Column is equal to
its value in the Member Key Column.

Parent is missing: A member is in the highest
level if its value in the Parent Key Column does
not exist in the Member Key Column.

This property is available for parent-child dimensions
only.

 Skipped Levels
Column

Indicates the column that contains the number of
levels between a member and its parent, excluding the
member and parent. Valid values in the column are 0
(zero) and positive integers. This property is available
only for parent-child dimensions.

 Unary
Operators

Enables unary operators or custom rollup operators
that control how level members are aggregated into
the value of their parent member. For more
information, see Custom Rollup Operators. To view the
custom member formulas, on the View menu click
Data, and then see the value beside UNARY_COLUMN
in the Member properties pane.

The structure of the cube will not be valid if a cube has
a measure with the Distinct Count aggregate
function, or if you add custom rollup operators to a
level of the cube.

 Visible Indicates whether the level is visible to end users
browsing the cube. To set this property to False, you
must first set the Member Keys Unique property of
all lower levels to True. The Visible property is not
available for parent-child dimensions. Unlike other
objects whose Visible property is False, a level cannot
be explicitly referenced in calculated members and
other MDX expressions.

Measure Aggregate
Function

The function used to aggregate measure values. Valid
values are:

Sum: The measure value for a dimension
member is calculated by adding the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants.

Count: The measure value for a dimension
member is calculated by adding the number of
values in the measure's Source Column in rows
where the foreign key value for the dimension
equals the key value of the member or one of its
descendants. Null values are not counted.

Min: The measure value for a dimension
member is the lowest of the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants

Max: The measure value for a dimension
member is the highest of the values in the
measure's Source Column in rows where the
foreign key value for the dimension equals the
key value of the member or one of its
descendants.

Distinct Count: The measure value for a
dimension member is calculated by adding the
number of different values in the measure's
Source Column in rows where the foreign key
value for the dimension equals the key value of
the member or one of its descendants. A cube
can contain only one measure with the Distinct
Count aggregate function.

If a cube has a measure with the Distinct Count
aggregate function, the structure of the cube will not
be valid if you add a custom rollup operator or
expression to a level of the cube.

Measure values for the intersections of members from
different dimensions are also calculated using the
selected aggregate function. For more information
about aggregate functions, see Aggregate Functions.

A multiple-partition cube can have multiple fact tables,
so a measure can have multiple source columns. (Note
that each source column must have the same column
name.) In this case the aggregate function spans all the
source columns.

 Data Type The data type of the columns that store measure
values in aggregations.

 Description The description of the measure.

 Display Format The format of the measure values displayed to end
users browsing the cube. For more information, see
Display Formats.

 Name The name of the measure. The name is displayed to
end users browsing the cube.

 Source Column In the fact table of the default partition of the cube, the
column that stores the measure values before they are
aggregated.

 Visible Indicates whether the measure is visible to end users
browsing the cube.

Member
property

Caption The caption used to display the member property.

 Data Size The maximum number of characters allowed in the
column that stores the member property values.
Allows dimension tables to be linked to fact tables
when the data types of the columns do not match but
the contents represent the same values.

 Data Type The data type of the column that stores the member
property values. Allows dimension tables to be linked
to fact tables when the data types of the columns do
not match but the contents represent the same values.

 Description The description of the member property.
 Language The language used to display the member property.
 Name The name of the member property.
 Source Column The column that stores the values of the member

property. This column must be in one of the dimension
tables for the dimension that contains the member
property.

 Type Indicates to client applications the type of information
in the member property values.

 Visible Indicates whether the member property is visible to
end users browsing the cube.

Named set Name The name of the named set.
 Value The MDX expression that defines the named set.

Analysis Services (SQL Server 2000)

Schema Tab (Cube Editor Schema View)
Schema Tab (Cube Editor Schema View)

Use the Schema tab to display the cube's fact table with a yellow title bar and all dimension tables with blue title bars. Joins are
indicated by lines that connect the key columns between the tables.

In the Schema tab, you can organize the structure of a cube in a graphical display, add measures and shared dimensions, and
create private dimensions.

To view all columns in a table, lengthen the table window vertically, or use the scroll bars. You can also widen the table window to
view long column names.

Note Changing the structure of a cube causes the results of previous cube processing to be invalidated. After a cube's structure
has changed, you must process the cube to re-create its data.

Working in the Schema Tab

This section lists the actions that can be performed in the Schema tab. Many actions can be performed in multiple ways. For
example, an action can be accomplished by a drag-and-drop procedure, or by right-clicking an object and then clicking an item on
the shortcut menu.

To add a new table

Right-click anywhere in the Schema tab, and then click Insert Tables. A join using the key column is automatically created
between this new dimension table and the fact table.

To browse the data in a table

Right-click the title bar of the table, and then click Browse Data.

To create a join between two tables

Select the key column name in the first table, and then drag it to the corresponding key column name in the second table.

To remove a join between two tables

Right-click the line depicting the join, and then click Remove.

To remove a dimension table

Right-click the title bar of the table, and then click Remove.

To replace the fact table

Right-click the title bar of the table you want to replace, and then click Replace Fact Table.

The schema is refreshed with the new fact table. Joins with the existing dimension tables are constructed from the common key
columns in the corresponding tables.

When you replace the fact table, if the cube contains multiple partitions, the fact tables for the partitions are not automatically
changed. (If the cube contains only one partition, the fact table for the partition is changed to match the new fact table for the
cube.) To change a partition's fact table, in the Analysis Manager tree pane, right-click the partition, click Edit, and then use the
Partition Wizard.

To change the alias of a table

Right-click the title bar of the table, and then click Change Alias.

Note If the table is the source table of a dimension that is used to define a virtual dimension, this capability is not available.

To add a new dimension

You can add a new cube dimension from any column contained in a table.

Right-click the column, and then click Insert as Dimension.

-or-

Double-click the column. In the Map the Column dialog box, click Dimension, and then click OK.

-or-

Drag the column name from the Schema tab to the Dimensions folder.

Note If you add or delete dimensions in your cube, you must redesign the aggregations and reprocess the cube.

To add a new measure

You can add a new measure from any numeric or time column contained in the fact table. Each cube must contain at least one
measure.

Right-click the column, and then click Insert As Measure.

-or-

Double-click the column. In the Map the Column dialog box, click Measure, and then click OK.

-or-

Drag the column name from the Schema tab to the Measures folder.

Note If you add or delete measures in your cube, you must redesign the aggregations and reprocess the cube.

Analysis Services (SQL Server 2000)

Cube Processing Settings Dialog Box
Cube Processing Settings Dialog Box

Use the Cube Processing Settings dialog box to specify settings for processing a cube. Settings in this dialog box are used
whenever a cube or one of its partitions is processed.

This dialog box appears when, in the Process a Cube dialog box, you click Settings. It also appears when, in the Analysis
Services Processing Task dialog box, you click Cube Settings.

Important Cube or partition processing options are stored with the meta data for the cube or partition. Changes to the settings
for these options replace previous settings for the cube or partition, regardless of whether the options are set by Analysis
Manager, Data Transformation Services (DTS) tasks, or Decision Support Objects (DSO) applications.

Options

After all aggregations are calculated

Select to make data available for browsing only after all aggregations have been computed. This is the default option.

Immediately after data is loaded

Select to make data available for browsing after it has been loaded but before all aggregations have been computed. The new
data is available for querying sooner, but the Analysis server may not be as responsive to query execution.

Stop processing after encountering missing dimension key errors

Select to stop processing if dimension key errors are encountered.

Processing will stop after

Specify the number of errors after which you want processing to stop. The default is zero.

Ignore all missing dimension key errors

Processing continues despite dimension key errors.

Log dimension key errors to a file

Select to provide a path to a text file. Universal Naming Convention (UNC) paths are recommended.

File path and name

Type the path into the File path and name dialog box.

Browse

Click to select a local or network location for the file.

See Also

Process a Cube Dialog Box

Processing Cubes

Analysis Services Processing Task Dialog Box

Analysis Services (SQL Server 2000)

Cube Role Dialog Box
Cube Role Dialog Box

Use this dialog box to create or edit a cube role.

This dialog box is displayed when you perform any of the following actions in Cube Role Manager:

Click New or Edit.

In a checked row in the list, click in any column except Role or Description, and then click the edit (...) button. Depending
on the column in which you click the edit (...) button, the appropriate tab is displayed, and the cursor is placed in the
appropriate box.

The Cube Role dialog box has three tabs. For more information about the tabs, click a link in the following table.

To do this See
View a summary of the role definition. This tab is visible only
when you are editing an existing role.

Summary Tab (Cube
Role Dialog Box)

Maintain the list of users and groups in the role.

Changes in this tab propagate to the database role and cube
roles with the same name as the edited cube role.

Membership Tab
(Cube Role Dialog
Box)

Control the role's access to the dimensions in the cube for
which the role is defined.

Dimensions Tab
(Cube Role Dialog
Box)

Control the role's access to the cells in the cube for which the
role is defined.

Cells Tab (Cube Role
Dialog Box)

Enable or disable cube linking, drillthrough, and SQL queries
for the role.

Options Tab (Cube
Role Dialog Box)

Note The default values for a cube role are derived from the database role of the same name.

Options

The following options are displayed for all tabs.

Role name

View the name of the role. The name can be a maximum of 50 characters; it must begin with an alphabetical character. If you are
editing an existing role, you cannot change the name of that role.

Description

View the description of the role. You can enter a maximum of 200 characters. This is not available if you are editing an existing
role.

Enforce on

View or set the location of security enforcement: Server or Client. Server enforcement is more secure but may slow performance.
Client enforcement generally provides better performance but increases the risk of unauthorized access to data on the client
workstation.

If Client is selected, queries might be resolved partially or completely at the client workstation.

If Server is selected, queries are resolved entirely on the Analysis server or at the data source. User-defined functions stored
exclusively on client workstations cannot be used.

Restore Defaults

Click to replace the entire cube role definition with the definition of the database role of the same name as the cube role.

Analysis Services (SQL Server 2000)

Summary Tab (Cube Role Dialog Box)
Summary Tab (Cube Role Dialog Box)

Use this tab to view a summary of the cube role definition. This tab is read-only and appears only if you are editing a cube role.

Boxes

Membership

View the Microsoft® Windows NT® 4.0 or Windows® 2000 users and groups in the role.

Restricted Dimensions

View the cube's dimensions with a read permission or read/write permission of Fully Restricted or Custom.

To change the dimension security settings, use the Dimensions tab. For more information, see Dimensions Tab (Cube Role
Dialog Box).

Cells

View information about current cell security settings.

To change the cell security settings, use the Cells tab. For more information, see Cells Tab (Cube Role Dialog Box).

Analysis Services (SQL Server 2000)

Membership Tab (Cube Role Dialog Box)
Membership Tab (Cube Role Dialog Box)

Use this tab to maintain the list of Microsoft® Windows NT® 4.0 or Windows® 2000 users and groups in the role.

Note Changes in this tab propagate to the database role and cube roles with the same name as the edited cube role.

Options

Name

View the Windows NT 4.0 or Windows 2000 users and groups in the role.

Domain

View the domains of the users and groups in the role.

Add

View the Add Users and Groups dialog box so you can add new users or groups to the role.

Remove

Click to remove the selected user or group from the role.

Analysis Services (SQL Server 2000)

Dimensions Tab (Cube Role Dialog Box)
Dimensions Tab (Cube Role Dialog Box)

Use this tab to control the role's access to dimensions in the cube for which the role is defined.

Dimension security is defined with permissions and rules. A dimension always has a read permission, but only write-enabled
dimensions have read/write permissions and may be updated by end users. For each permission, you can select from various
rules (described later in this topic).

Note Changes to a read/write permission propagate to the database role of the same name.

For more information about dimension security, see Dimension Security.

Options

Name

View the names of dimensions in the cube. Data mining dimensions are not displayed. Security for data mining dimensions is not
supported in Analysis Services.

Permission

View or set the permissions associated with the dimensions. A dimension can have read or read/write permissions.

Option Description
Read Determines which dimension members the users in the role can

view. All dimensions have a read permission.
Read/write Determines which dimension members the users in the role can

update. Only write-enabled dimensions have a read/write
permission. If you allow access to a member in the read/write
permission, it is viewable even if it is not accessible in the read
permission.

For each displayed permission, select a rule.

Rule

View or set the rules associated with the displayed permissions. The following table describes the rules that are available for each
permission.

Permission Rule Rule description
Read Unrestricted The role can view all members. This rule is the

default.
 Fully Restricted The role cannot view members. When users in the

role browse the cube, they do not see the
dimension.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
viewed. To access this dialog box, select Custom,
and then in the Custom Settings column click the
edit (...) button. For more information, see Defining
Custom Rules for Dimension Security.

Read/write Unrestricted The role can update all members. This rule is
available only if the rule for the read permission is
Unrestricted.

 Fully Restricted The role cannot update members. This rule is the
default and is available only if the rule for the read
permission is Unrestricted or Fully Restricted.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
updated. To access this dialog box, select Custom,
and then in the Custom Settings column click the
edit (...) button. This rule is available only if rule for
the read permission is Unrestricted or Custom. For
more information, see Defining Custom Rules for
Dimension Security.

Custom Settings

View or set descriptions of custom rules. For other rules, this column is blank.

See Also

Write-Enabled Dimensions

Analysis Services (SQL Server 2000)

Cells Tab (Cube Role Dialog Box)
Cells Tab (Cube Role Dialog Box)

Use this tab to control the role's access to cells in the cube for which the role is defined.

Cell security is defined with policies, permissions, and rules.

The default policy is Unrestricted Read. For a write-enabled cube, you can select a policy of Unrestricted Read/Write. For any cube,
you can select a policy of Advanced, which allows you to select the cells that can and cannot be accessed.

You select or define rules for each displayed permission only with an Advanced policy. With an Advanced policy, a cube always
has a read permission and a read contingent permission. However, only write-enabled cubes have read/write permissions and
may be updated by end users. (A virtual cube has a read/write permission if one or more of its component cubes is write-
enabled.) For each permission, you can select from various rules, which are described later in this topic.

For more information about cell security, see Cell Security.

Options

Cell security policy

Select from the following policies:

Unrestricted read

The role can view all cell values. This policy is the default.

Unrestricted read/write

The role can view and update all cell values. This policy is available only for write-enabled cubes. It is available for virtual
cubes only if one or more of its component cubes is write-enabled.

Advanced

The role can view and update only the cell values you specify in the permissions and rules.

Allow users to commit writeback changes

This option is available only for write-enabled cubes for which Cell security policy is Advanced. This option permits users
to make actual changes to the writeback table when selected. If this option is not enabled, changes apply only to ad hoc
analysis and are temporary.

Permission

View or set permissions. Permissions are used only if Cell security policy is Advanced. A cube role can have read, read
contingent, or read/write permissions.

Option Description
Read Determines which cells the users in the role can view. Cube

roles for all cubes have a read permission.

Read contingent Determines which cells the users in the role can view, subject
to the following condition: if a cell is specified in this
permission and derived from other cells, it is viewable only if
all the other cells are viewable. The other cells are deemed
viewable if they are included in the read permission or
included in the read contingent permission but not derived
from other cells. If a cell is specified in the read contingent
permission and not derived from other cells, it is viewable.

The most common derived cells are for calculated members.
For example, the calculated member Profit is derived from the
measures Sales and Cost (Profit equals Sales minus Cost). If
cells for Profit are specified in the read contingent permission,
they are viewable only if cells for both Sales and Cost are
viewable (that is, included in the read permission or included
in the read contingent permission but not derived from other
cells).

If a cell is included in both the read and read contingent
permissions, the read permission is enforced, but the read
contingent permission is not. Cube roles for all cubes have a
read contingent permission.

Read/write Determines which cells the users in the role can update. A cube
role has a read/write permission only if the associated cube is
write-enabled or the associated virtual cube has one or more
write-enabled, component cubes. If you allow access to a cell in
the read/write permission, it is viewable even if it is not
accessible in the read permission or read contingent
permission. In this case the cell is viewable as if it were
accessible in the read permission.

If Cell security policy is Advanced, for each displayed permission, select a rule.

Note Including derived cells in the read permission incurs the risk that end users might determine cell values they cannot view.
For example, if Profit is included in the read permission, and cells for Cost are viewable, but cells for Sales are not, end users can
determine Sales values by adding Profit and Cost values.

Rule

View or set rules. Rules are accessible only if Cell security policy is Advanced.

The following table describes the rules that are available for each permission.

Permission Rule Rule description
Read Unrestricted The role can view all cell values. This rule is the

default.
 Fully Restricted The role can view only the cell values specified in

the read/write permission or read contingent
permission, subject to its limitations described
earlier in this topic.

 Custom You can specify the cell values that are viewable
and not viewable in the Cube Cell Security dialog
box. To access this dialog box, select Custom, and
then in the Custom Settings column click the edit
(...) button.

Read
contingent

Unrestricted The role can view all cell values that are not derived
from other cells. If a cell value is derived from other
cells, it is viewable if all the other cells are included
in the read or read/write permission.

 Fully Restricted The role can view only the cell values specified in
the read permission or read/write permission. This
rule is the default.

 Custom You can specify the cell values that are viewable
and not viewable, subject to the limitations of the
read contingent permission described earlier in this
topic, in the Cube Cell Security dialog box. To
access this dialog box, select Custom, and then in
the Custom Settings column click the edit (...)
button.

Read/write Unrestricted The role can update all cell values.
 Fully Restricted The role cannot update cell values.
 Custom You can specify the cell values that are updatable

and not updatable in the Cube Cell Security
dialog box. To access this dialog box, select
Custom, and then in the Custom Settings column
click the edit (...) button.

If the rules define a cell as not viewable, the cell itself is visible but its value is not.

Custom Settings

View descriptions of custom rules. For other rules, this column is blank.

See Also

Write-Enabled Cubes

Analysis Services (SQL Server 2000)

Options Tab (Cube Role Dialog Box)
Options Tab (Cube Role Dialog Box)

Use this tab to control the role's access to data in cells in the cube for which the role is defined.

Options

Allow drillthrough

Select to allow end users in the role to drill through to the source data of a cell. This ability also requires that drillthrough is
enabled for the cube or at least one of its partitions. For more information, see Specifying Drillthrough Options.

This check box is cleared and read-only if the cube role is for a linked cube. Linked cubes do not support drillthrough.

Allow linking to this cube

Select to allow end users in the role to use this cube as the source cube for linked cubes. This check box is selected by default.

Allow sending SQL queries to this cube

Select to allow end users in the role to perform SQL queries to find cell values in the cube. This check box is selected by default.

See Also

Linked Cubes

Analysis Services (SQL Server 2000)

Cube Role Manager
Cube Role Manager

Use this tool to maintain cube roles.

A cube role applies to only a single cube. A cube role is created when you assign a database role to a cube by selecting the
database role in Cube Role Manager. This action grants the role's users access to the cube. The name and default values of a cube
role are derived from the selected database role. Some of these defaults can be overridden in the cube role. In addition, cube roles
contain options such as cell security that are not contained in database roles.

In Cube Role Manager, each row with a selected check box in the list displays a cube role. Users in these roles can access the cube
displayed in the title bar of Cube Role Manager. These roles can be maintained within Cube Role Manager.

Each unchecked row displays a database role not assigned to the cube. Users in these roles cannot access the cube unless they are
also in one or more of the selected cube roles. The database roles cannot be maintained within Cube Role Manager. (To maintain
them, use Database Role Manager.)

To grant users in a database role access to the cube, select the check box beside the database role. This action creates a cube role
with the same name as the database role and removes the database role from the list.

Caution Clearing the check box beside a role deletes the cube role and all its settings, including cell security settings.

To deny users in a cube role access to the cube, clear the check box beside the cube role. This action deletes the cube role and
adds to the list the database role with the same name as the cube role.

The list is sorted with cube roles followed by database roles. Each category is sorted alphabetically by the role names in the Role
column.

Cube Role Manager appears when in the Analysis Manager tree pane, you right-click a cube and then click Manage Roles.

Options

View whether a role can access the cube displayed in the title bar of Cube Role Manager. Only checked roles can access the cube.

Role

View the role names.

Enforce on

Set the location of security enforcement: Server or Client. Server enforcement is more secure but may slow performance. Client
enforcement generally provides better performance but increases the risk of unauthorized access to data on the client
workstation.

If Client is selected, queries might be resolved partially or completely at the client workstation.

If Server is selected, queries are resolved entirely on the Analysis server or at the data source. User-defined functions stored
exclusively on client workstations cannot be used.

To change the value, click it, click the edit (...) button, and then in the Cube Role dialog box, in the Enforce on box, select the new
value.

Membership

View the Microsoft® Windows NT® 4.0 or Windows® 2000 users and groups in each role.

To change the membership of a cube role, click the cell where the role intersects Membership, click the edit (...) button, and then
use the Membership tab of the Cube Role dialog box.

Note Changes in this tab propagate to the database role and cube roles with the same name as the edited cube role.

Restricted Dimensions

View the cube's dimensions with a read permission or read/write permission of Fully Restricted or Custom.

To access the dimension security settings for a cube role, click the cell where the role intersects Restricted Dimensions, click the
edit (...) button, and then use the Dimensions tab of the Cube Role dialog box.

Cells

View the cell security policy. A lock icon indicates that the cell security policy of the role is Advanced.

If the Cells column is blank, the cell security policy is Unrestricted Read.

To access the cell security settings for a cube role, click the cell where the role intersects Cells, click the edit (...) button, and then
use the Cells tab of the Cube Role dialog box.

Drillthrough

Select whether end users in the role can drill through to a cell's source data. This ability also requires drillthrough to be enabled
for the cube or at least one of its partitions. For more information, see Specifying Drillthrough Options.

To change the value, click it, click the edit (...) button, and then on the Options tab of the Cube Role dialog box, select or clear the
Allow drillthrough check box.

Description

View the description of each role. To change a description, click it, click the edit (...) button, and then in the Cube Role dialog box,
in the Description box, type a new description.

Show

Click to limit the roles displayed in the list. You can limit by a user name or group name in the roles.

Roles containing users
Select to limit by a user name or group name in the roles. Type the user name or group name, or type the first part of a name,
and then click the magnifying glass button.

Roles assigned to cubes
Select to limit by a cube to which the roles are assigned. Type the cube name, and then click the magnifying glass button.

New

Click to display the Cube Role dialog box so you can create a new cube role. When you create a new cube role, a database role
with the same name and specifications is also created.

Edit

Click to display the selected cube role in the Cube Role dialog box, where you can edit the cube role.

Duplicate

Click to display the Duplicate Role dialog box, where you can supply a name for a new cube role based on the selected cube role,
and to display the Cube Role dialog box, where you can define the new cube role. When you create a new cube role in this way, a
database role with the same name and specifications is also created.

Test Role

Click to simulate the selected role by displaying Cube Browser, where you can browse the cube as if you are a user in the role. Use
this button to test read permissions and read contingent permissions but not read/write permissions. Writeback is not supported
by Cube Browser.

To test an end user's inclusion in multiple roles, select the roles and then click Test Role.

Analysis Services (SQL Server 2000)

Custom Dimension Security Dialog Box
Custom Dimension Security Dialog Box

Use this dialog box to create a custom rule for dimension security.

You can specify a range of dimension levels that are accessible to the role. Within this range, you can also specify which
dimension members are accessible.

Important If you limit access to levels or members by using the Basic or Advanced tab, consider selecting Enable - Show
visual totals in the Common tab. If instead you use the default setting for visual totals (that is, Disable - Do not show visual
totals), security exposures might be created. These exposures allow end users in the role to deduce values for members to which
they are denied access. For more information, see Example 4, Example 6, Example 8, and Example 9 in Custom Rules in Dimension
Security.

This dialog box is displayed when, in the Dimensions tab of the Database Role dialog box or Cube Role dialog box, you select a
custom rule, and then, in the Custom Settings column, click the edit (...) button.

The Custom Dimension Security dialog box has three tabs. For more information about the tabs, click a link in the following
table.

To do this See
Define a custom rule by selecting levels
from lists and members from a tree

Basic Tab (Custom Dimension Security
Dialog Box)

Define a custom rule by supplying
Multidimensional Expressions (MDX)

Specify a range of dimension levels that
are accessible to the role, and, within this
range, specify which dimension members
are accessible

Advanced Tab (Custom Dimension
Security Dialog Box)

Specify options for visual totals and select
a default member

Common Tab (Custom Dimension
Security Dialog Box)

Options

The following options are displayed for all tabs.

Permission

View the permission to which the custom rule applies. This box is read-only.

Note If the custom rule applies to a read/write permission in a cube role, changes propagate to the database role of the same
name.

Description

Enter the description of the custom rule.

Restore Defaults

Discards any changes you have made to a cube role.

OK

Click to close the dialog box. After you close the dialog box, save the custom rule by clicking OK in the Edit a Database Role
dialog box or Edit a Cube Role dialog box (depending on whether you are working in a database role or cube role).

See Also

Custom Rules in Dimension Security

Analysis Services (SQL Server 2000)

Basic Tab (Custom Dimension Security Dialog Box)
Basic Tab (Custom Dimension Security Dialog Box)

Use this tab to define a custom rule by selecting levels from lists and members from a tree.

This tab includes a procedure:

1. (Optional.) In the Select visible levels area, select levels.

2. In the Select members area, select a default setting for member selection, and then optionally select members.

The selections you make in this tab dynamically refresh the Advanced tab. For more information, see Advanced Tab (Custom
Dimension Security Dialog Box).

Options

Top Level

Click to display the topmost level that can be accessed. Levels above the top level cannot be accessed. The top level must be above
or the same as the bottom level. Members above the top level are not displayed in the Members box.

Bottom Level

Click to display the bottommost level that can be accessed. Levels below the bottom level cannot be accessed. The bottom level
must be below or the same as the top level. Members below the bottom level are not displayed in the Members box.

Visible Levels

View the accessible levels depending on the values in the Top Level and Bottom Level boxes. The Visible Levels box is read-
only.

Select all members

Click to select all members. You can then specify inaccessible members by clearing their check boxes in the Members box.

Note If you click Select all members, then clear one or more check boxes, and then decide you want to select all members, you
must first click Deselect all members and then click Select all members.

Deselect all members

Click to clear the selection of all members. You can then specify accessible members by selecting their check boxes in the
Members box.

Note If you click Deselect all members, then select one or more check boxes, and then decide you want to clear the selection of
all members, you must first click Select all members and then click Deselect all members.

Members

View all members between the top level and bottom level, including those in the top level and bottom level. Selected members
are accessible, and unselected members are not accessible.

Select a check box beside a member to allow access to it. This action also selects the member's descendants and ancestors that
are visible in the Members box.

Clear a check box beside a member to deny access to it. This action also clears the selection of the member's descendants that are
visible in the Members box.

Analysis Services (SQL Server 2000)

Advanced Tab (Custom Dimension Security Dialog Box)
Advanced Tab (Custom Dimension Security Dialog Box)

Use this tab to define a custom rule by supplying Multidimensional Expressions (MDX) statements.

You can specify a range of dimension levels that are accessible to the role, and, within this range, which dimension members are
accessible.

This topic contains an example MDX expression for each option in this tab. For more information about these options and for
more examples, see Custom Rules in Dimension Security.

The expressions you supply in this tab dynamically refresh the Basic tab if the expressions can be translated successfully. If they
cannot be translated, you are notified with a message in the Basic tab. For more information, see Basic Tab (Custom Dimension
Security Dialog Box).

Options

To supply MDX expressions for the following options, you can either type in the expression or click the edit (...) button to open
MDX Builder.

The Allowed Members and Denied Members boxes are optional.

Top Level

Supply an MDX expression that represents the topmost accessible level. For example, in the Warehouse dimension included with
Microsoft® SQL Server™ Analysis Services, to specify State Province as the top level, type the following expression:

[Warehouse].[State Province]

The top level must be above or the same as the bottom level. Members above the top level cannot be accessed even if they are
included in the expression in the Allowed Members box.

Bottom Level

Supply an MDX expression that represents the bottommost accessible level. For example, in the Warehouse dimension, to specify
City as the bottom level, type the following expression:

[Warehouse].[City]

The bottom level must be below or the same as the top level. Members below the bottom level cannot be accessed even if they
are included in the expression in the Allowed Members box.

Allowed Members

Supply an MDX expression for the set of members that can be accessed. Descendants of these members can also be accessed
unless they are above the top level, below the bottom level, or access to them is denied by the expression in the Denied
Members box. The only nondescendants of these members that can be accessed are their ancestors at and below the top level.

For example, in the Warehouse dimension, to allow access to the WA and OR members, type the following expression:

{[Warehouse].[All Warehouses].[USA].[WA],
[Warehouse].[All Warehouses].[USA].[OR]}

Denied Members

Supply an MDX expression for the set of members that cannot be accessed. Descendants of these members cannot be accessed
unless access to them is allowed by the expression in the Allowed Members box. Nondescendants can be accessed unless they
are above the top level or below the bottom level.

For example, in the Warehouse dimension, to deny access to the Seattle, Tacoma, and Bremerton members, type the following
expression:

{[Warehouse].[All Warehouses].[USA].[WA].[Seattle],
[Warehouse].[All Warehouses].[USA].[WA].[Tacoma],
[Warehouse].[All Warehouses].[USA].[WA].[Bremerton]}

Combined Example

This example demonstrates the effect of using all the previous examples in this topic together in a read permission. If a user in the

role issues an MDX query that projects the Warehouse dimension on the y-axis, the data set is returned, and the user fully
expands the Warehouse dimension, it would appear as follows:

Members in the (All), Country, and Warehouse Name levels are not visible because they are above the top level or below the
bottom level. The only members of the State Province level that are visible are OR and WA because they are specified in the
Allowed Members box. The only members of the City level that are visible are descendants of OR and WA that are not denied by
the expression in the Denied Members box.

Analysis Services (SQL Server 2000)

Common Tab (Custom Dimension Security Dialog Box)
Common Tab (Custom Dimension Security Dialog Box)

Use this tab to specify options for visual totals and to define a default member.

The options for visual totals determine whether users see aggregated cube cell values that are calculated with values for:

Only the members they can see (users see visual totals).

All members (users see actual totals).

One option produces visual totals at and above a specified level, and actual totals below it.

If you select a default member, and a query is issued on a cube that includes the dimension, but the query does not project the
dimension on an axis, by default the returned dataset is filtered (that is, sliced) by the default member. If you do not select a
default member, the default member is determined by the Default Member property of the dimension, which is accessed in the
properties pane of Dimension Editor (if the dimension is shared) or Cube Editor (if the dimension is private).

Options

Enable - Show visual totals

Displayed, aggregated cell values are calculated according to only the viewable members.

Note Visual totals cannot be enabled for a cube that contains a distinct count measure. For more information, see Using
Aggregate Functions.

Custom - Show visual totals starting at the following level and above

To produce visual totals at and above a certain level, but to produce actual totals below it, select this option and, in the box below
it, type an expression for the level in Multidimensional Expressions (MDX). Or, instead of typing, beside the box you can click the
build (...) button to access MDX Builder, where you can select the level in the Data box and drag it to the MDX expression box.
The MDX expression must name a level or resolve to a level.

For example, in the Geography dimension, to display visual totals at and above the Continent level, type:

[Geography].[Continent]

Important This option creates one or more security exposures below the specified level when it allows end users to calculate
values for a denied member by combining values for allowed members. For example, in the Geography dimension, if France has
two children, Northern France and Southern France, and only Northern France is denied, users in the role can calculate values for
Northern France by subtracting values for Southern France from values for France.

Disable - Do not show visual totals

Displayed, aggregated cell values are calculated according to all members, whether they are viewable or not. This option is the
default for visual totals.

Important This option creates one or more security exposures when it allows end users to calculate values for a denied member
by combining values for allowed members. For example, in the Geography dimension if France has two children, Northern France
and Southern France, and only Northern France is denied, users in the role can calculate values for Northern France by
subtracting values for Southern France from values for France.

Define default member and specify using MDX

To select a default member, select this check box and in the box below it type an MDX expression for the default member. Or,
instead of typing, beside the box you can click the edit button (...) to access MDX Builder, where you can select the default member
in the Data box and drag it to the MDX expression box.

For example, in the Geography dimension to select the France member, type:

[Geography].[All Geography].[Europe].[France]

Analysis Services (SQL Server 2000)

Data Mining Model Browser
Data Mining Model Browser

Use this tool to provide visualization of data mining model content in an easily understandable format. It consists of several
panes, as shown here.

Data Mining Model Browser appears when you do one of the following:

In the Analysis Manager tree pane, right-click a data mining model, and then click Browse.

In the Analysis Manager tree pane, click a data mining model, and then, on the Action menu, click Browse.

Data Mining Model Browser has five areas. For more details about the areas, click a link in the following table.

To do this See
Change the view of the content detail
pane and select prediction trees.

Toolbar (Data Mining Model Browser)

View the structure of the mining model.

View the nodes that define the data
mining model content, and the rules used
by each node.

Content Detail Pane (Data Mining Model
Browser)

Browse the data mining model content,
especially on complex structures. View
data density of the entire data mining
model.

Change the view of the content detail
pane.

Content Navigator Pane (Data Mining
Model Browser)

View the attributes, including distribution
data, and node path for the data mining
model node selected in the content detail
pane.

Attributes Pane (Data Mining Model
Browser)

Change the attribute used to color code
the nodes in the data mining model.

Legend Pane (Data Mining Model
Browser)

Use keyboard shortcuts to navigate the
browser.

Keyboard Shortcuts (Data Mining Model
Browser)

See Also

Viewing with Data Mining Model Browser

Analysis Services (SQL Server 2000)

Toolbar (Data Mining Model Browser)
Toolbar (Data Mining Model Browser)

Use the Data Mining Model Browser toolbar to change the view of the content detail pane and select prediction trees.

Tool Description
Zoom In Zoom in to the data mining model content in the content

detail pane.
Zoom Out Zoom out of the data mining model content in the

content detail pane.
Prediction Tree list A data mining model can have multiple prediction trees,

depending on the model structure and the data mining
provider. The Prediction Tree list allows you to view the
prediction trees for each model individually.

See Also

Content Detail Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Content Detail Pane (Data Mining Model Browser)
Content Detail Pane (Data Mining Model Browser)

Use the content detail pane to view the structure of the mining model. The content detail pane shows the structure of the data
mining model by displaying the nodes that define the data mining model content, as well as the rules used by each node, if
applicable. Each data mining model node is shaded, based on the data density of that node, according to the legend provided at
the bottom of Data Mining Model Browser. Generally speaking, the lighter the color, the lower the data density for the selected
attribute. The positioning of the nodes also provides information about the data mining model. The nodes are shown in left-to-
right order, based on the ranking of factors within the data mining model. The farther down the tree a split occurs, the less
influence the fact that causes the split has in the data mining model in general.

Relationships between nodes are displayed as lines connecting nodes and are referred to as node paths. The attributes pane
shows the rules used to follow a given node path when a node is selected in this pane.

Nodes can be selected in the content detail pane, so that the attributes, distribution, and rules of that node can be viewed in the
attributes pane. To select a data mining model node, click it; a highlight border appears around the selected node as shown in the
diagram.

Right-click on the content detail pane to display a menu with the following two options.

Menu option Description
Zoom In Zoom in on the data mining model content.
Zoom Out Zoom out from the data mining model content.

See Also

Attributes Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Content Navigator Pane (Data Mining Model Browser)
Content Navigator Pane (Data Mining Model Browser)

Use the content navigator pane to easily browse the data mining model content, especially on complex structures. The content
navigator pane also provides a concise view of the data density for the entire data mining model, by shading the mining model
content according to the legend provided at the bottom of Data Mining Model Browser.

The content detail area represents the portion of the data mining model currently displayed in the content detail pane. Clicking on
a different area in the content navigator pane can move this area, and it changes the view of the content detail pane.

See Also

Content Detail Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Attributes Pane (Data Mining Model Browser)
Attributes Pane (Data Mining Model Browser)

Use the attributes pane to view the attributes, including distribution data, and node path for a data mining model node selected in
the content detail pane.

Tool Description
Node Attribute Sets Use this to change the attribute set used to determine

the shading for nodes in the content detail and content
navigator panes. This appears for all cluster models and
for any tree model based on multiple attribute sets.

Node information tab For a node attribute set, a set of totals and distributions
can be viewed; this set is limited to 20 attributes. Use the
Totals tab to view the case totals for the selected node
and the Histogram tab to view a distribution graph for
the cases pertaining to the selected node. Double-click a
column heading to change the order in which the
attributes are sorted.

Node path Use this to view the rules to be satisfied in order to reach
the selected node. All the rules needed to reach a node
are displayed in this area, along a given node path.

Note Due to the data mining algorithms used in Microsoft® SQL Server™ 2000 Analysis Services, it is possible for the attributes
pane to display probabilities greater than 0% when there are no cases for an attribute.

See Also

Content Detail Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Legend Pane (Data Mining Model Browser)
Legend Pane (Data Mining Model Browser)

Use the legend pane to view and change the attribute used to shade the nodes in the content detail pane.

The shading is determined on the number of cases for the specified attribute relative to the total number of cases evaluated for
the tree or node. For example, if the total number of cases evaluated for a given node was 80, and the number of cases associated
with a specified attribute was 40, then the shading for the node would be in the middle of the range of shades indicated by the
legend.

Tool Description
Legend Displays the range of colors used to represent high and

low data density of nodes. If an attribute is selected with
the Attribute Shading list, the legend is used to represent
the high and low attribute probability of nodes for the
selected attribute.

Node attribute sets Use this to change the attributes set used to determine
shading for nodes in the content detail and content
navigator panes. This appears for all cluster models and
for any tree model based on multiple attribute sets.

Attribute Shading List Use this to change the attribute used to determine the
shading for each node in the content detail pane and
content navigator pane.

See Also

Content Detail Pane (Data Mining Model Browser)

Content Navigator Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Keyboard Shortcuts (Data Mining Model Browser)
Keyboard Shortcuts (Data Mining Model Browser)

This table describes the keyboard shortcuts available in Data Mining Model Browser. You can use shortcuts to access all parts of
the browser except the content navigator pane.

Some sections support additional shortcuts. After a section has focus, you can use shortcuts to navigate within the section.

Activity Shortcut
Move the focus to the next item. Navigation progression moves
from the top left towards the bottom right of the screen.

You can use the TAB key to access the prediction tree, content
detail pane, attributes pane, node path, attribute shading list
and Help.

When the focus is on the content detail pane, you can use
arrow keys to navigate the model.

TAB (SHIFT+ TAB for
reverse order)

Toggle the focus between the content detail and attributes
panes.

F6

When the focus is on the content detail pane, right-click in the
pane to access the Zoom In and Zoom Out menu commands.

SHIFT+F10

Zoom out, when focus is on the content detail pane. CTRL+ -
Zoom in, when focus is on the content detail. CTRL+ +
Move the focus to the prediction tree pane, and then use arrow
keys to navigate the list and the ENTER key to select a different
value.

ALT+ P

Move the focus to the attribute shading list, and then use arrow
keys to navigate the list and the ENTER key to select a different
value.

ALT+ O

Move the focus to the node path pane, and then use arrow keys
to navigate the text.

ALT+ D

Move the focus to the attributes pane, and then use the arrow
keys to navigate between the Totals and Histograms tabs and
to scroll tab contents.

ALT+ U

Copy text, when the focus is on an attribute. CTRL+ C
Select all, when the focus is on attributes. CTRL+ A
Open Help. ALT+ H

See Also

Content Detail Pane (Data Mining Model Browser)

Content Navigator Pane (Data Mining Model Browser)

Viewing with Data Mining Model Browser

Data Mining Model Browser

Analysis Services (SQL Server 2000)

Data Mining Prediction Query Task Dialog Box
Data Mining Prediction Query Task Dialog Box

Use this dialog box to add a Data Transformation Services (DTS) task that creates a prediction query and an output table from a
data mining model object defined in Microsoft® SQL Server™ 2000 Analysis Services. For more information about using DTS to
create prediction queries, see Creating Predictions Using Data Transformation Services.

This dialog box is displayed when you perform either of the following actions in DTS Designer:

Drag the icon for the Data Mining Prediction Query task from the Task toolbar to the design sheet.

Right-click a Data Mining Prediction Query task, and then click Properties.

The Data Mining Prediction Query Task dialog box has three tabs. For more information about the tabs, click a link in the
following table.

To do this See
Specify an Analysis server, a database, and
a data mining model for the Data Mining
Prediction Query task

Mining Model Tab (Data Mining Prediction
Query Task Dialog Box)

Specify a prediction query and a data
source for the query and its output table

Query Tab (Data Mining Prediction Query
Task Dialog Box)

Specify a data source for the output table
of the prediction query

Output Tab (Data Mining Prediction Query
Task Dialog Box)

Options

Name

Enter a name for the task.

Description

(Optional.) Enter a description for the task. This description becomes the label on the design sheet.

Analysis Services (SQL Server 2000)

Mining Model Tab (Data Mining Prediction Query Task Dialog
Box)
Mining Model Tab (Data Mining Prediction Query Task Dialog Box)

Use this tab to specify an Analysis server, a database, and a data mining model for the Data Mining Prediction Query task.

Options

Server

Specify an Analysis server name matching the computer name on the network that contains the mining model. Do not use
universal naming convention (UNC) or network paths.

Database

Select an existing database on the specified Analysis server.

Data Mining Models

Click the name or icon of a mining model to select it for the task.

Details

View a description of the selected mining model. The description includes its algorithm and processing status.

Analysis Services (SQL Server 2000)

Query Tab (Data Mining Prediction Query Task Dialog Box)
Query Tab (Data Mining Prediction Query Task Dialog Box)

Use this tab to specify a prediction query and a data source for the query and its output table.

Options

Input data source

Enter a valid Microsoft® ActiveX® Data Objects (ADO) connection string to the data source of the input query, or click the edit (...)
button to display the Data Link Properties dialog box, where you can build the connection string.

Prediction query

Type the syntax for the query, or click New Query to display Prediction Query Builder, where you can build the query syntax.
Syntax must conform to the OLE DB for Data Mining specification. For more information about the OLE DB for Data Mining
specification, see the Microsoft OLE DB Web page at the Microsoft Web site.

New Query

Click to start Prediction Query Builder.

See Also

Prediction Query Builder

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services (SQL Server 2000)

Output Tab (Data Mining Prediction Query Task Dialog Box)
Output Tab (Data Mining Prediction Query Task Dialog Box)

Use this tab to specify a data source for the output table of the prediction query.

Options

Output data source

Enter a valid Microsoft® ActiveX® Data Objects (ADO) connection string to the data source for the output table, or click the edit
(...) button to display the Data Link Properties dialog box, where you can build the connection string.

Output table

Enter a name for the output table of the prediction query.

Analysis Services (SQL Server 2000)

Database Dialog Box
Database Dialog Box

Use the Database dialog box to create a new Microsoft® SQL Server™ 2000 Analysis Services database or change the
description of an existing database.

This dialog box appears when you right-click a database or a server in the Analysis Manager tree pane and then click New
Database. It also appears when you right-click a database and then click Edit.

Options

Database name

Type a name for your database. This option is not available if you are editing an existing database.

Description

Type a short description of your database.

Analysis Services (SQL Server 2000)

Database Role Dialog Box
Database Role Dialog Box

Use this dialog box to create or edit a database role.

This dialog box is displayed when you perform any of the following actions in Database Role Manager:

Click New or Edit.

-or-

In a row in the list, click in any column except Role, and then click the edit (...) button. Depending on the column in which
you click the edit (...) button, the appropriate tab is displayed, and the cursor is placed in the appropriate box.

The Database Role dialog box has four tabs. For more information about the tabs, click a link in the following table:

To do this See
Maintain the list of users and groups in
the role.

Membership Tab (Database Role Dialog Box)

Grant or deny access to the cubes in
the database.

Cubes Tab (Database Role Dialog Box)

Grant or deny access to the data
mining models in the database.

Mining Models Tab (Database Role Dialog
Box)

Control the role's access to dimensions
in the database.

Dimensions Tab (Database Role Dialog Box)

Options

The following options are available for all tabs.

Role name

Enter the name of the role. You can enter a maximum of 50 characters; the name must begin with an alphabetical character. If you
are editing an existing role, this box displays the name of that role, and you cannot change it.

Description

Enter the description of the role. You can enter a maximum of 200 characters.

Enforce on

Select the location of security enforcement: Server or Client. Server enforcement is more secure but may slow performance.
Client enforcement generally provides better performance but increases the risk of unauthorized access to data on the client
workstation.

If Client is selected, queries might be resolved partially or completely at the client workstation.

If Server is selected, queries are resolved entirely on the Analysis server or at the data source. User-defined functions stored
exclusively on client workstations cannot be used.

Analysis Services (SQL Server 2000)

Membership Tab (Database Role Dialog Box)
Membership Tab (Database Role Dialog Box)

Use this tab to maintain the list of users and groups in the role.

Note Changes in this tab are propagated to all cube roles with the same name as the database role.

Options

Name

View the Microsoft® Windows NT® 4.0 or Windows® 2000 users and groups in the role.

Domain

View the domains of the users and groups in the role.

Add

View the Add Users and Groups dialog box so you can add new users or groups to the role.

Remove

Click to remove the selected user or group from the role.

Analysis Services (SQL Server 2000)

Cubes Tab (Database Role Dialog Box)
Cubes Tab (Database Role Dialog Box)

Use this tab to grant or deny access to the cubes in the database.

To grant access to a cube, select the check box beside it. This action also creates a cube role with the same name as the database
role.

Caution Clearing the check box beside a cube deletes the associated cube role and all its settings, including cell security settings.

To deny access to a cube, clear the check box beside it. This action also deletes the cube role that is associated with the cube and
has the same name as the database role.

Options

This column determines whether a cube can be accessed by users in the role. Only checked cubes can be accessed.

Cube name

View the names of the cubes in the database.

Check All

Click to select all displayed cubes.

Clear All

Click to select all displayed cubes.

Analysis Services (SQL Server 2000)

Mining Models Tab (Database Role Dialog Box)
Mining Models Tab (Database Role Dialog Box)

Use this tab to grant or deny access to the data mining models in the database.

To grant access to a mining model, select the check box beside it. This action also creates a mining model role with the same
name as the database role.

Note Changes in this tab are propagated to all mining model roles with the same name as the database role.

To deny access to a mining model, clear the check box beside it. This action also deletes the mining model role that is associated
with the mining model and has the same name as the database role.

Options

Only mining models with check boxes that are selected can be accessed by users in the role.

Mining model name

View the names of the mining models in the database.

Check All

Click to select all displayed mining models.

Clear All

Click to select all displayed mining models.

Analysis Services (SQL Server 2000)

Dimensions Tab (Database Role Dialog Box)
Dimensions Tab (Database Role Dialog Box)

Use this tab to control the role's access to dimensions in the database.

Dimension security is defined with permissions and rules. A dimension always has a read permission, but only write-enabled
dimensions have read/write permissions and may be updated by end users. For each permission you can select from various
rules.

Note The dimension security settings in a database role can be overridden in cube roles of the same name.

For more information about dimension security, see Dimension Security.

Options

Name

View the names of dimensions in the database.

Private dimensions and data mining dimensions are not displayed. To define security for private dimensions, use the Dimensions
tab of the Cube Role dialog box. Security for data mining dimensions is not supported in Analysis Services.

Permission

View the permissions associated with the dimensions. A dimension can have read or read/write permissions.

Option Description
Read Determines which dimension members the users in the role can

view. All dimensions have a read permission.
Read/write Determines which dimension members the users in the role can

update. Only write-enabled dimensions have a read/write
permission. If you allow access to a member in the read/write
permission, it is viewable even if it is not accessible in the read
permission.

For each displayed permission, select a rule.

Rule

View the rules associated with the displayed permissions. The following table describes the rules that are available for each
permission.

Permission Rule Rule description
Read Unrestricted The role can view all members. This rule is the

default.
 Fully Restricted The role cannot view members. When users in the

role browse a cube that includes the dimension,
they do not see it.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
viewed. To access this dialog box, select Custom,
and then in the Custom Settings column, click the
edit (...) button.

Read/write Unrestricted The role can update all members. This rule is
available only if the rule for the read permission is
Unrestricted.

 Fully Restricted The role cannot update members. This rule is the
default and is available only if the rule for the read
permission is Unrestricted or Fully Restricted.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
updated. To access this dialog box, select Custom,
and then in the Custom Settings column, click the
edit (...) button. This rule is available only if the rule
for the read permission is Unrestricted or Custom.

Custom Settings

View descriptions of custom rules. For other rules, this column is blank.

See Also

Defining Custom Rules for Dimension Security

Write-Enabled Dimensions

Analysis Services (SQL Server 2000)

Database Role Manager
Database Role Manager

Use this dialog box to create and maintain database roles or to set values for database roles assigned to data mining models.

Each row in the list displays a database role. The list is sorted alphabetically by the role names in the Role column.

Each database role defines a set of users and groups and the access they share. A database role can be assigned to any cube
(including virtual and linked cubes) and data mining models in the database. This action grants users in the role access to the cube
or mining model. It also creates a cube role or mining model role with the same name as the database role.

Note Some values in a database role can be overridden in cube roles of the same name. However, database role values cannot
be overridden for mining model roles of the same name, because you cannot edit role properties in Mining Model Role Manager.

A cube role applies to only a single cube. The default values for a cube role are derived from the database role of the same name.
Some of these defaults can be overridden in the cube role. In this case, the specifications in the database role are not the
specifications used when users in the role access the cube. To determine the specifications that are used, see the cube role. Cube
roles are maintained in Cube Role Manager.

Database Role Manager appears when, in the Analysis Manager tree pane, you right-click a database and then click Manage
Roles.

Options

Role

View the database role names.

Enforce on

View the location of security enforcement: Server or Client. Server enforcement is more secure but may slow performance. Client
enforcement generally provides better performance, but it may allow users to gain unauthorized access to data on the client
workstation.

If Client is selected, queries might be resolved partially or completely at the client workstation.

If Server is selected, queries are resolved entirely on the Analysis server or at the data source. User-defined functions stored
exclusively on client workstations cannot be used.

To change the value, click it, click the edit (...) button, and then in the Database Role dialog box, in the Enforce on box, select the
new value.

Membership

View the Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 users and groups in each database role.

To change the membership of a database role, click the cell where the role intersects Membership, click the edit (...) button, and
then use the Membership tab of the Database Role dialog box.

Note Changes in this tab are propagated to all cube roles with the same name as the database role.

Cubes & Mining Models

View the cubes and mining models to which each database role has access.

To change the cubes or mining models a database role can access, in the cell where the role intersects Cubes & Mining Models,
click the edit (...) button to display the Database Role dialog box. Next, use the Cubes or the Mining Models tab.

Restricted Dimensions

View the database's dimensions with a read permission or read/write permission of Fully Restricted or Custom.

To access the dimension security settings for a database role, click the cell where the role intersects Restricted Dimensions, click
the edit (...) button, and then use the Dimensions tab of the Database Role dialog box.

Description

View the description of each database role.

To change a description, click it, click the edit (...) button, and then in the Database Role dialog box, in the Description box, type

a new description.

Show

Click to limit the database roles displayed in the list. You can limit by a user name or group name in the roles or by a cube to
which the roles are assigned.

To limit by a user name or group name in the roles, next to Show, in the first box, select Roles containing users. In the next box,
type the user name or group name, or type the first part of a name. Click the magnifying glass button.

To limit by a cube to which the roles are assigned, next to Show, in the first box, select Roles assigned to cubes. In the next box,
type the cube name. Click the magnifying glass button.

New

Click to display the Database Role dialog box, where you can create a new database role.

Edit

Click to display the selected database role in the Database Role dialog box, where you can edit the database role.

Duplicate

Click to display the Duplicate Role dialog box, where you can supply a name for a new database role based on the selected
database role, and the Database Role dialog box, where you can define the new database role.

Delete

Click to delete the selected database role.

Analysis Services (SQL Server 2000)

Define Custom Member Column Dialog Box
Define Custom Member Column Dialog Box

Use this dialog box to:

Enable or disable the use of custom member formulas.

Create or select a column to store custom member formulas. This column is created in or selected from the same dimension
table that stores the members to which the custom member formulas apply.

Custom member formulas are expressions in Multidimensional Expressions (MDX) that determine the cell values associated with
members and override the aggregate functions of measures. For write-enabled dimensions, custom member formulas are
created in the custom member formula pane of Dimension Editor (if the dimension is shared) or Dimension Browser. (This action
requires that the write-enabled dimension is included in a cube that was processed since the dimension last changed.) For other
dimensions, they are inserted into the dimension table using a tool other than Analysis Manager.

For more information about custom member formulas, see Custom Rollup Formulas and Custom Member Formulas.

For more information about related procedures, see Creating Custom Member Formulas.

The Define Custom Member Column dialog box appears when, in the tree pane of Dimension Editor or Cube Editor, you select
a level, and in the Advanced tab of the properties pane click the value beside Custom Members, then click the edit (...) button.

Options

Enable Custom Members

Select to enable the use of custom member formulas. This action sets the level's Custom Members property to True. Cell values
for members with custom member formulas will be calculated according to the custom member formulas.

Clear to disable the use of custom member formulas. This action sets the level's Custom Members property to False. Custom
member formulas will be ignored; cell values for members will be calculated according to the measures' aggregate functions.

Create a new column

Click to create a new column in which to store custom member formulas. Specify the column name in the New column name
box, which appears only when Create a new column is selected.

Use an existing column

Click to select an existing column in which to store custom member formulas. Select the column in the Existing column box,
which appears only when Use an existing column is selected.

Note If you select an existing column, its contents will be overwritten by the custom member formulas.

New column name

Type the name of the column that will store custom member formulas. This option is available only if you select Create a new
column.

A dimension table can have multiple columns (one per level) that store custom member formulas. Therefore, it is recommended
that the new column name identify the column that stores the members to which the custom member formulas apply. For
example, if the members are stored in the store_country column, type:

store_country_custom_member_formula

Existing column

Select the column that will store custom member formulas. This option is available only if you select Use an existing column.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes, after this dialog box closes,
on the File menu, click Save.

Analysis Services (SQL Server 2000)

Define Custom Member Options Dialog Box
Define Custom Member Options Dialog Box

Use this dialog box to:

Enable or disable the use of custom member options.

Create or select a column to store custom member options. This column is created in or selected from the same dimension
table that stores the members to which the custom member options apply.

Custom member options are cell properties defined for custom members. Custom member options can be used to change the
font, display format, and other characteristics of the cells for the specified custom member. For more information about cell
properties, see Using Cell Properties.

This property is available only when the Custom Members property for the level is set to True. This property is ignored for any
member not defined as a custom member. In other words, no Multidimensional Expressions (MDX) expression has been defined
for a given member in the custom member column.

The Custom Member Options property accepts a column reference containing, for each member, a comma-delimited list of cell
properties. The cell properties are represented as string expressions. For more information, see Custom Member Options in Using
Cell Properties.

The Define Custom Member Options dialog box appears when, in the tree pane of Dimension Editor (if the dimension is
shared) or Cube Editor (if the dimension is private), you select a level, and in the Advanced tab of the properties pane click the
value beside Custom Member Options, and then click the edit (...) button. This button is available only when the Custom
Members property is set to True.

Options

Enable Custom Member Options

Select to enable the use of custom member options to determine the cell properties of custom members. This action sets the
Custom Member Options property of the level to True.

Clear to make the use of custom member options unavailable. This action sets the Custom Member Options property of the
level to False. Custom member options will be ignored.

Create a new column

Click to create a new column in which the cell properties for custom members will be stored. Specify the column name in the
New column name box, which appears only when Create a new column is selected.

Use an existing column

Click to select an existing column in which to store cell properties for custom members. Select the column in the Existing
column box, which appears only when Use an existing column is selected.

Note If you select an existing column, its contents will be overwritten by the cell properties of custom members.

New column name

Type the name of the column that will store the cell properties for custom members. This option is available only if you select
Create a new column.

A dimension table can have multiple columns (one per level) that store cell properties for custom members. Therefore, it is
recommended that the new column name identify the column that stores the members to which the custom member options
apply. For example, if the members are stored in the store_country column, type:

store_country_custom_member_options

Existing column

Select the column that will store the cell properties for custom members. This option is available only if you select Use an
existing column.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes, after this dialog box closes,
on the File menu, click Save.

Analysis Services (SQL Server 2000)

Define Unary Operator Column Dialog Box
Define Unary Operator Column Dialog Box

Use this dialog box to:

Enable or disable the use of custom rollup operators.

Create or select a column to store custom rollup operators. This column is created in or selected from the same dimension
table that stores the members to which the custom rollup operators apply.

Custom rollup operators are simple mathematical functions that determine the cell values associated with members, and override
the aggregate functions of measures. For write-enabled dimensions, custom rollup operators are created in the member
properties pane of Dimension Editor (if the dimension is shared) or Dimension Browser. (This action requires that the write-
enabled dimension is included in a cube that was processed since the dimension last changed.) For other dimensions, custom
rollup operators are inserted into the dimension table using a tool outside Analysis Manager.

For more information about custom member formulas, see Custom Rollup Operators.

For related procedures and information on the behavior of specific custom rollup operators, see Using Custom Rollup Operators.

The Define Unary Operator Column dialog box appears when, in the tree pane of Dimension Editor or Cube Editor, you select a
level, and in the Advanced tab of the properties pane, click the value beside Unary Operators, and then click the edit (...) button.

Options

Enable Unary Operators

Select to enable the use of custom rollup operators. This action sets the level's Unary Operators property to True. Cell values for
members with custom rollup operators will be calculated according to the custom rollup operators.

Clear to disable the use of custom rollup operators. This action sets the level's Unary Operators property to False. Custom rollup
operators will be ignored; cell values for members will be calculated according to the measures' aggregate functions.

Create a new column

Click to create a new column in which to store custom rollup operators. Specify the column name in the New column name box,
which appears only when Create a new column is selected.

Use an existing column

Click to select an existing column in which to store custom rollup operators. Select the column in the Existing column box, which
appears only when Use an existing column is selected.

Note If you select an existing column, its contents will be overwritten by the custom rollup operators.

New column name

Type the name of the column that will store custom rollup operators. This option is available only if you select Create a new
column.

A dimension table can have multiple columns (one per level) that store custom rollup operators. Therefore, it is recommended
that the new column name identify the column that stores the members to which the custom rollup operators apply. For example,
if the members are stored in the store_country column, type:

store_country_custom_rollup_operator

Existing column

Select the column that will store custom rollup operators. This option is available only if you select Use an existing column.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes, after this dialog box closes,
on the File menu, click Save.

Analysis Services (SQL Server 2000)

Delete Member Dialog Box
Delete Member Dialog Box

Use this dialog box to:

Confirm the deletion of a member.

Select the disposition of its descendants.

Caution Clicking OK deletes the selected member. If you select Delete its descendants, clicking OK also deletes the member's
descendants. Rows for these members are deleted from the dimension table. These deletions cannot be undone after you save
dimension writeback changes.

This dialog box appears when you delete a member in the dimension members pane of Dimension Editor or Dimension Browser.

The following options are available only if the selected member has descendants.

Options

Delete its descendants

Select to delete the descendants of the deleted member.

Promote its descendants

Select to promote the descendants of the deleted member one level, to retain them as descendants of the deleted member's
parent.

Analysis Services (SQL Server 2000)

Dependency Network Browser
Dependency Network Browser

Use this tool to view the dependencies or relationships among objects in a data mining model.

Dependency Network Browser is displayed when, in the Analysis Manager tree pane, you right-click a data mining model and
then click Browse Dependency Network.

In Dependency Network Browser, a data mining model is expressed as a network of attributes. Within the model, you can identify
data dependencies and predictability among the related attributes. Dependency is indicated by arrows. The direction of
predictability is indicated by arrowheads and by the color-coding of the nodes. For more information about why you should use
this browser, see Viewing with Dependency Network Browser.

You can navigate the browser using keyboard shortcuts. For more information, see Keyboard Shortcuts (Dependency Network
Browser).

Dependency Network Browser has four areas. For more information about the areas, click a link in the following table.

To do this See
View a data mining model as a network of
related attributes.

Network Browser Pane (Dependency
Network Browser)

Change the view of the network browser
pane and search for specific attributes by
name.

Toolbar (Dependency Network Browser)

Use a slider to show the degree of
dependency.

Slider Pane (Dependency Network
Browser)

View and modify the color codes that
indicate attribute state and predictability.

Legend Pane (Dependency Network
Browser)

See Also

Building and Using Data Mining Models

Analysis Services (SQL Server 2000)

Network Browser Pane (Dependency Network Browser)
Network Browser Pane (Dependency Network Browser)

Use the network browser pane to view the contents of a data mining model. In this pane, you can use toolbar tools to adjust the
view to see more of the model or narrow the focus to see detail about specific areas.

When you first open a data mining model in the browser, attributes are positioned for you. However, you can move attributes by
dragging them to new locations.

When you select an attribute, the color of its container changes to reflect selection state. In addition, the color scheme of
surrounding nodes changes to reflect the direction of predictability. For example, for each attribute you select, the colors of the
surrounding nodes indicate whether they predict the selected attribute, are predicted by the selected attribute, or both. Selecting
an attribute also displays the legend pane, which provides a key to the color scheme associated with directions of predictability.

In the current view, you can reposition the slider bar to indicate the strength of dependency. As you move the slider up, the
browser adds arrows corresponding to weaker dependencies.

You can search for specific attributes by name or add missing attributes to the network browser pane. If the model is very large,
the initial presentation may omit attributes that are weakly related. To add these attributes to the network browser pane, click
Find on the toolbar to select the node of interest. Adding an attribute also adds any additional nodes that are connected to it.

See Also

Viewing with Dependency Network Browser

Toolbar (Dependency Network Browser)

Slider Pane (Dependency Network Browser)

Legend Pane (Dependency Network Browser)

Keyboard Shortcuts (Dependency Network Browser)

Analysis Services (SQL Server 2000)

Toolbar (Dependency Network Browser)
Toolbar (Dependency Network Browser)

Use the toolbar to change the view of the network browser pane and select an attribute by name.

Icon Label Description
Zoom In Zoom in to the data mining model content in the

network browser pane. With each successive click, the
data mining model shrinks incrementally.

Zoom Out Zoom out of the data mining model content in the
network browser pane. With each successive click, the
data mining model expands incrementally.

Zoom To Fit Click to size the data mining model to the area of the
network browser pane.

Improve Layout Click to optimize node layout so that the strongest
relationships are visible.

Find Click to display the Find Node dialog box, where you
can select an attribute by name.

See Also

Viewing with Dependency Network Browser

Dependency Network Browser

Analysis Services (SQL Server 2000)

Slider Pane (Dependency Network Browser)
Slider Pane (Dependency Network Browser)

Use the slider pane to identify the strength of the relationship between attributes. The slider pane is a continuum between two
points. As you move the slider along the continuum, the number of connections varies:

All links shows the connections of all attributes that are visible in the network browser pane. Positioning the slider at All
links shows how all attributes are related.

Strongest links shows relationships among only those attributes that strongly predict the presence of the selected
attribute.

See Also

Viewing with Dependency Network Browser

Dependency Network Browser

Analysis Services (SQL Server 2000)

Legend Pane (Dependency Network Browser)
Legend Pane (Dependency Network Browser)

Use the legend pane to view the color codes that indicate attribute state and predictability. To change a color code, double-click
the color swatch to open a color picker dialog box.

Icon Label Description
Selected Node The attribute currently selected. You can only

select one attribute at a time.
Node that
predicts it

Indicates one or more attributes that predict
the selected attribute.

Node it predicts Indicates one or more attributes that the
selected attribute predicts.

Predicts both
ways

Between two related attributes, each attribute
predicts and is predicted by the other.

See Also

Viewing with Dependency Network Browser

Dependency Network Browser

Analysis Services (SQL Server 2000)

Keyboard Shortcuts (Dependency Network Browser)
Keyboard Shortcuts (Dependency Network Browser)

This table describes the keyboard shortcuts available in Dependency Network Browser. These shortcuts correspond to toolbar
buttons. For more information about the tools, see Toolbar (Dependency Network Browser).

Toolbar button Shortcut
Zoom In CTRL- +
Zoom Out CTRL- -
Zoom To Fit ALT- F
Improve Layout ALT- L
Find CTRL- F

See Also

Viewing with Dependency Network Browser

Dependency Network Browser

Analysis Services (SQL Server 2000)

Dimension Browser
Dimension Browser

Use this tool to examine a dimension, including its members, member properties, member property values, and custom member
formulas. Dimension Browser also permits the update of write-enabled dimensions.

Dimension Browser is displayed when you perform one of the following actions:

In the Analysis Manager tree pane, right-click a shared dimension or virtual dimension, and then click Browse Dimension
Data.

In the Cube Editor tree pane, right-click a dimension, and then click Browse.

Dimension Browser displays the dimension in a graphical format, allowing you to view a multilevel dimension hierarchy.

Dimension Browser has three areas. For more information about the areas, click a link in the following table.

To do this See
Display the dimension members in a tree
format. Expand individual members to
browse their descendants.

For write-enabled dimensions, update the
member hierarchy and the member
names in the dimension members pane.
Add, delete, and move members.

Dimension Members Pane (Dimension
Browser)

View a list of the member properties of
the member selected in the dimension
members pane.

For write-enabled dimensions, you can
update the member property values.

Member Properties Pane (Dimension
Browser)

View the custom member formula for the
member selected in the dimension
members pane.

In some cases, create and update custom
member formulas for that level's
members.

Custom Member Formula Pane
(Dimension Browser)

Analysis Services (SQL Server 2000)

Dimension Members Pane (Dimension Browser)
Dimension Members Pane (Dimension Browser)

Use this pane to display the dimension members in a tree format. Expand individual members to browse their descendants.

If the dimension is write-enabled, and included in a processed cube, you can update the member hierarchy and the member
names in the dimension members pane. You can add, delete, and move members.

Important Changes to a write-enabled dimension are recorded in the dimension table after you click Close and then click Yes to
confirm the changes. Thereafter, these changes cannot be undone except by browsing the dimension again and manually
reversing the changes.

To move a member, drag it to its new parent. To add, delete, move, or rename a member, right-click it, and then click one of the
following shortcut menu options.

Shortcut menu option Click to
Delete Display the Delete Member dialog box, where you can

confirm the deletion of the selected member and select
the disposition of its descendants.

Move Down Move the selected member (and its descendants)
downward on its current level. The selected member
becomes a child of its parent's following sibling.

Move Up Move the selected member (and its descendants)
upward on its current level. The selected member
becomes a child of its parent's preceding sibling.

Indent Move the selected member (and its descendants) down
one level. The selected member's preceding sibling
becomes its new parent. If the selected member does not
have a preceding sibling, its following sibling becomes
its new parent.

Outdent Move the selected member (and its descendants) up one
level. The selected member's grandparent becomes its
new parent.

Rename Rename the selected member.
New Member - Sibling Display the Create Member dialog box, where you can

add a sibling of the selected member.
New Member - Child Display the Create Member dialog box, where you can

add a child of the selected member.

See Also

Dimension Browser

Analysis Services (SQL Server 2000)

Member Properties Pane (Dimension Browser)
Member Properties Pane (Dimension Browser)

Use this pane to view a list of the member properties of the member selected in the dimension members pane. The list of
member properties contains all user-defined member properties for the selected member.

For each member property, the name is shown in the first column of the pane, and the value is shown in the second column.

If the dimension is write-enabled and is included in a processed cube, you can use the member properties pane to update the
member property values.

Important Changes to member property values are recorded in the dimension table after you click Close and then click Yes to
confirm the changes. Thereafter, these changes cannot be undone except by browsing the dimension again and manually
reversing the changes.

See Also

Dimension Browser

Analysis Services (SQL Server 2000)

Custom Member Formula Pane (Dimension Browser)
Custom Member Formula Pane (Dimension Browser)

Use this pane to create and update custom member formulas for members of the selected level, if certain conditions are met. The
browsed dimension must be write-enabled, and one of its level's Custom Members properties must be set to True.

The custom member formula pane displays the custom member formula for the member selected in the dimension members
pane. If no formula is visible, none is defined.

A custom member formula is a Multidimensional Expressions (MDX) expression that determines the cell values associated with a
member and overrides the aggregate functions of measures. For more information about custom member formulas, see Custom
Rollup Formulas and Custom Member Formulas.

The custom member formulas are stored in the dimension table that contains the members.

Important Changes to custom member formulas are recorded in the dimension table after you click Close and then click Yes to
confirm the changes. Thereafter, these changes cannot be undone except by browsing the dimension again and manually
reversing the changes.

Options

Dimension Members

View dimension members in a tree format. Expand individual members to browse their descendents. Select a member to create or
update members of that level.

Member properties

View member properties for the selected member. You can use this pane to modify properties if the dimension is write-enabled.

Custom Member Formula

View the custom member formula for the member selected in the dimension members pane. If no formula is visible, none is
defined. You can use the custom member formulas pane to create and update custom member formulas for members of that
level, if certain conditions are met. The browsed dimension must be write-enabled, and one of its level's Custom Members
properties must be set to True.

Arithmetic operator buttons

Click to add operators to a formula.

Edit (...) button

Click to open MDX Builder, where you can create an MDX expression.

For more information, see Creating Custom Member Formulas.

See Also

Custom Rollup Formulas and Custom Member Formulas

Dimension Browser

Analysis Services (SQL Server 2000)

Dimension Editor - Data View
Dimension Editor - Data View

Use this tool to browse a shared dimension's members, member properties, and custom member formulas. You can also examine and
edit the structure of all types of shared dimensions, including parent-child and virtual dimensions, and their levels. You can also use
Dimension Editor and connected dialog boxes to perform various procedures with shared dimensions.

Dimension Editor appears in two views, data and schema. Both views include the tree pane and properties pane. You can switch from
one view to another by clicking the Data tab or the Schema tab at the bottom of Dimension Editor, or by clicking Data or Schema on
the View menu.

This topic describes the data view. For information about the schema view, see Dimension Editor - Schema View. The data view is
shown here.

Dimension Editor appears when you do either of the following:

In the Analysis Manager tree pane, under a database, open the Shared Dimensions folder. Right-click a dimension, and then click
Edit.

In the Analysis Manager tree pane, under a database, open the Shared Dimensions folder. Click a dimension, and then on the
Action menu, click Edit.

Dimension Editor has five areas. For more information about the areas, click a link in the following table.

To do this See
Perform commands available in
Dimension Editor menus.

Menus (Dimension Editor Data View)

Perform common actions represented by
icons on the Dimension Editor toolbar.

Toolbar (Dimension Editor Data View)

Display the objects in the dimension.

Access associated dialog boxes.

Tree Pane (Dimension Editor Data View)

Display the properties of the object
selected in the tree pane.

Modify the property settings for the
selected object.

Properties Pane (Dimension Editor Data
View)

Browse members of a shared dimension,
member properties, and custom member
formulas.

Data Tab (Dimension Editor Data View)

See Also

Creating Custom Member Formulas

Creating a Shared Dimension with the Editor

Creating Member Groups

Creating Member Properties

Analysis Services (SQL Server 2000)

Menus (Dimension Editor Data View)
Menus (Dimension Editor Data View)

The following options are available through menus in Dimension Editor.

Menu Option Description
File New Dimension - Wizard Starts the Dimension Wizard so you can

create a new shared dimension.
 New Dimension - Editor Displays the Choose a Dimension Table

dialog box so you can begin creating a shared
dimension with the editor.

 Save Saves the dimension. If you are saving a
parent-child or changing dimension, you will
be prompted to perform an incremental
processing of the dimension.

 Save As Saves the dimension under a different name.
 Exit Closes Dimension Editor.
Edit Rename Renames the selected object.
 Delete Deletes the selected object.
 Remove Join Removes all joins from the selected column

(schema view only).
View Schema Displays the schema view, including the

Schema tab.
 Data Displays the data view, including the Data

tab.
 Properties Expands or collapses the properties pane.
Insert Tables Displays the Select Table dialog box so you

can add tables to the dimension.
 Level Displays the Insert Level dialog box so you

can add a new level.
 Member Property Displays the Insert Member Property dialog

box so you can add a new member property
in the selected level.

 Join Displays the Join Columns dialog box, where
you can add a join to the selected column
(schema view only).

Tools Process Dimension Processes the dimension.
 Count Dimension

Members
Counts the number of members in a
dimension.

 Validate Dimension
Structure

Verifies that the dimension structure does not
contain invalid components that would
prevent processing of the dimension.

Help Help on Dimension Editor Displays a Help topic about Dimension Editor.
 Contents and Index Opens SQL Server Books Online.

Analysis Services (SQL Server 2000)

Toolbar (Dimension Editor Data View)
Toolbar (Dimension Editor Data View)

Use the following toolbar buttons to perform common operations.

Button Description
New Dimension Starts the Dimension Wizard so you can create a new

shared dimension.
Save Saves the dimension.If you are saving a parent-child or

changing dimension, you will be prompted to perform an
incremental processing of the dimension.

Insert Table Displays the Select table dialog box where you can add tables
to the dimension. This button is not available for virtual
dimensions.

Insert Level Displays the Insert Level dialog box so you can add a new
level.

Insert Member
Property

Displays the Insert Member Property dialog box so you can
add a new member property in the selected level.

Process Dimension Displays the Process a Dimension dialog box so you can
incrementally update or rebuild the selected dimension.

Move Selected
Member Left*

In the dimension members pane, moves the selected member
(and its descendants) up one level. The selected member's
grandparent becomes its new parent.

Move Selected
Member Right*

In the dimension members pane, moves the selected member
(and its descendants) down one level. The selected member's
preceding sibling becomes its new parent.

Move Selected
Member Up*

In the dimension members pane, moves the selected member
(and its descendants) upward on its current level. The preceding
sibling of the selected member's parent becomes its new
parent.

Move Selected
Member Down*

In the dimension members pane, moves the selected member
(and its descendants) downward on its current level. The
following sibling of the selected member's parent becomes its
new parent.

* This button is visible only when you are in data view and editing a write-enabled dimension that is included in a cube that was
processed since the dimension last changed.

Analysis Services (SQL Server 2000)

Tree Pane (Dimension Editor Data View)
Tree Pane (Dimension Editor Data View)

Use the tree pane to display the objects in the dimension. Right-click an object to see a shortcut menu for that object.

Right-click Shortcut menu option Description
Dimension New Dimension Displays the Choose a Dimension

Table dialog box, where you can begin
creating a shared dimension with the
editor.

 Process Dimension Processes the dimension.
 New Level Displays the Insert Level dialog box,

where you can add a new level.
Level New Level Displays the Insert Level dialog box,

where you can add a new level.
 New Member Property Displays the Insert Member Property

dialog box, where you can add a new
member property in the level.

 Delete Deletes the level.
 Rename Renames the level.
Member
Property
Folder

New Member Property Displays the Insert Member Property
dialog box, where you can add a new
member property.

Member
Property

New Member Property Displays the Insert Member Property
dialog box, where you can add a new
member property.

 Delete Deletes the member property.
 Rename Renames the member property.

Analysis Services (SQL Server 2000)

Properties Pane (Dimension Editor Data View)
Properties Pane (Dimension Editor Data View)

Use the properties pane to display the properties of the object selected in the tree pane. To display the properties pane, click the
Properties button.

Each type of object (dimension, level, or member property) contains a different set of properties. Use the properties pane to
modify the property settings for the selected object.

The following table describes the properties displayed in the properties pane.

Object Property Description
Dimension All Caption The name of the member in the (All) level.
 All Level Indicates whether the dimension contains an (All)

level. If the value is Yes, the (All) level is the top
level of the dimension but is not displayed in the
Dimension Editor tree pane. The (All) level contains
a single member whose cell value is the aggregate
of cell values for all members in the next lower
level.

 All Member
Formula

Stores the MDX expression used to override the
default rollup of the All member.

 Allow Duplicate
Names

Indicates whether the members under a common
parent can have the same name.

 Changing Indicates whether the dimension is optimized for
frequent changes. If the value is True, query
performance may be slower. However, levels and
members below the top level and above the
bottom level can be added, moved, and deleted,
and the subsequent processing requirement is
eliminated or reduced. Consequently, interruptions
of end users' access to the cubes that include the
dimension can be reduced. For more information,
see Changing Dimensions.

 Data Member
Caption
template

Controls the names of data members when the
dimension's Members With Data property is set
to Nonleaf data visible. Type a value that
includes an asterisk (*). The name of each data
member will be the value with the asterisk replaced
by the parent member's name. The Data Member
Caption template property is available only for
parent-child dimensions.

 Data source Indicates the data source that contains the
dimension table(s).

 Default Member Indicates the member that slices the datasets
returned by queries when the dimension is not
displayed on an axis and no slicing member in the
dimension is specified. If no default member is
specified, and the dimension's All Level property
is Yes, the member indicated by the All Caption
property is the default member. If no default
member is specified, and the dimension's All Level
property is No, an arbitrary member of the highest
level is the default member.

 Depends on
Dimension

For virtual dimensions, indicates the dimension
that supplies the member properties or columns
on which the virtual dimension's levels are based.

For dimensions that are not virtual, this is the
dimension according to which aggregation design
is optimized. A dimension in this property's value is
advantageous when the cross product of the two
dimensions' members results in a significant
percentage of combinations that cannot coexist.
For example, a Customer Gender dimension's
Depends on Dimension property is Customers.
Fifty percent of the combinations resulting from
the cross product of the dimensions' lowest-level
members cannot coexist because a customer can
have only one gender. For more information, see
Dependent Dimensions.

 Description Contains the description of the dimension.
 Enable Real-

Time Updates
Indicates whether or not the dimension supports
real-time updates. For this to be set to True, the
dimension must use a ROLAP partition and a
Microsoft® SQL Server™ 2000 data source. For
more information, see Real-Time Cubes.

 Member Keys
Unique

Indicates whether member keys are unique within
the dimension. If the value of this property is
changed, process the dimension using the Rebuild
the dimension structure option. This is read-only
and set to True for changing dimensions. For more
information, see Updating and Rebuilding Shared
Dimensions.

 Member Names
Unique

Indicates whether member names are unique
within the dimension. If the value is True, internal
member names omit qualifying level names and
member names. These internal member names are
used in Multidimensional Expressions (MDX)
expressions.

 Members with
Data

Indicates whether nonleaf members are allowed to
have associated fact table data. If they are allowed,
this property also indicates whether children of
nonleaf members are created to display this data.
Valid values are:

Leaf members only: Only leaf members can
have associated fact table data. If a nonleaf
member has associated fact table data,
processing fails. This value is the default.

Nonleaf data hidden: Nonleaf members
can have associated fact table data. This data
is not represented among the nonleaf
members' descendants. Consequently, it
might appear to end users that values
aggregate incorrectly.

Nonleaf data visible: Nonleaf members can
have associated fact table data. This data is
represented among the nonleaf members'
descendants by the creation of a child for
each nonleaf member. This child, called a
data member, is a leaf member and has a
value equal to the aggregate of its parent's
associated fact table data. The data members'
names are controlled by the Data Member
Caption Template property.

This property is available only for parent-child
dimensions.

 Name Indicates the name of the dimension.
 Source Table

Filter
Lists the WHERE clause expression that is applied
to the dimension table to limit the members in the
dimension. For example, in the Store dimension
supplied with SQL Server 2000 Analysis Services,
to include only the Canada member and its
descendants, type:

"store"."store_country" = 'Canada'

 Storage Mode Determines the type of storage for the dimension.
If the value is MOLAP (multidimensional OLAP),
the dimension data is stored in a multidimensional
structure on the Analysis server. If the value is
ROLAP (relational OLAP), the dimension data is the
dimension table itself. MOLAP provides better
performance and is recommended except for
extremely large dimensions (that is, dimensions
that have approximately 5 to 10 million members).
In order to select ROLAP, the lowest level's
Member Keys Unique property must be True.
Restrictions also apply to the dimension's
Aggregation Usage property in all cubes in which
the dimension is used. For more information, see
Dimension Storage Modes.

 Type Indicates the type of the dimension. Standard is the
default. This property indicates to client
applications the kind of information in the
dimension.

 Virtual Indicates whether the dimension is a virtual
dimension. If you set this property to True while
the Depends on Dimension property is (None),
the tables in the Schema tab disappear. In the
Depends on Dimension property, select the
dimension that supplies the columns or member
properties on which the edited dimension is based.
The tables for the selected dimension appear in the
Schema tab.

 Write-Enabled Indicates whether the dimension's members can be
updated while administrators browse the
dimension and while end users browse cubes that
contain the dimension. The only end users that can
update a write-enabled dimension are those in
cube roles granted read/write access to the
dimension. Only parent-child dimensions can be
write-enabled. For more information, see Write-
Enabled Dimensions.

Level Custom
Members

Indicates whether custom member formulas are
used to determine members' cell values. For more
information, see Custom Rollup Formulas and
Custom Member Formulas. To view the custom
member formulas, on the View menu click Data,
and then see the custom member formula pane.

 Custom Member
Options

Indicates whether calculation options can be
defined for custom members on this level and
unary operators on the following level. Calculation
options are stored in a column in the dimension
table. To set this property to True, you must first
set the Custom Members property to True.

 Custom Rollup
Formula

Stores the MDX expression used to override the
default rollup of values in the level.

 Description Contains the description of the dimension.
 Grouping Indicates whether the level contains member

groups. Member groups can be used to satisfy the
maximum limit of 64,000 members under a parent.
To use member groups in this way, create a new
level immediately above and identical to the level
that exceeds the limit, and then set the new level's
Grouping property to Automatic. For more
information, see Member Groups.

 Hide Member If Determines which members are hidden from end
users as they browse cubes. Hidden members
support ragged dimensions, which contain logical
gaps in member lineage, by hiding the members
that occupy the gaps. Valid values are:

Never hidden: No members are hidden.

No name: Every member whose name is null
or an empty string is hidden.

Parent's name: Every member with the
same name as its parent is hidden.

Only child with no name: Every member
that is an only child and whose name is null
or an empty string is hidden.

Only child with parent's name: Every
member that is an only child and has the
same name as its parent is hidden.

This property is not available for parent-child
dimensions.

 Key Data Size Indicates the size (in bytes) of the columns that
store member keys in aggregations. Member keys
are copied from the column specified in the
Member Key Column property.

 Key Data Type Indicates the data type of the columns that store
member keys in aggregations. Member keys are
copied from the column specified in the Member
Key Column property.

 Level Naming
Template

Determines the level names displayed to end users
when they browse cubes containing the dimension.
This property is available only for parent-child
dimensions. Click this property and click the edit
(...) button to display the Level Naming Template
dialog box.

 Level Type Indicates the type of the level. Regular is the
default. The following values are used only in
dimensions whose Type property is Time: Years,
Half-Years, Quarters, Months, Weeks, Days, Hours,
Minutes, Seconds, and Time-Undefined. The Level
Type property indicates to client applications the
kind of information in the level. This property is not
displayed for parent-child dimensions.

 Member Count Indicates the number of members in the level at
the time they were last counted by Analysis
Services, or a user-provided estimate of the
member count. You can update this value by
clicking Count Dimension Members on the
Tools menu.

 Member Key
Column

Contains the member keys. Alternatively, the value
can be derived from a column, such as an
expression that extracts the year value from a date-
formatted column. The syntax of such expressions
must comply with the requirements of the data
source provider; otherwise, processing fails with
one or more errors.

 Member Keys
Unique

Indicates whether member keys are unique within
the level. This property is not available for parent-
child dimensions.

If the value of this property is changed, process the
level's corresponding dimension using the
Rebuild the dimension structure option. For
more information, see Updating and Rebuilding
Shared Dimensions.

 Member Name
Column

Indicates the column that contains the member
names, which are displayed to end users as they
browse cubes. Alternatively, the value can be
derived from a column, such as an expression that
extracts the year value from a date-formatted
column. The syntax of such expressions must
comply with the requirements of the data source
provider; otherwise, processing fails with one or
more errors.

 Member Names
Unique

Indicates whether member names are unique
within the level. If the value is True, internal
member names omit qualifying member names.
These internal member names are used in MDX
expressions.

 Name Contains the name of the level.
 Order By Determines the sort order for displayed members.

You can sort by member name, member key, or
any member property defined for the level.

 Parent Key
Column

Indicates the column that contains the keys for the
members' parents. This property is available only
for parent-child dimensions.

 Root Member If Indicates the criteria by which members of the
highest level (ignoring the (All) level, if any) are
identified. The following values are valid:

Parent is blank, self, or missing: A member
is in the highest level if any of the following
three criteria is met.

Parent is blank: A member is in the highest
level if its value in the Parent Key Column is
null or 0 (zero).

Parent is self: A member is in the highest
level if its value in the Parent Key Column is
equal to its value in the Member Key
Column.

Parent is missing: A member is in the
highest level if its value in the Parent Key
Column does not exist in the Member Key
Column.

This property is available only for parent-child
dimensions.

 Skipped Levels
Column

Indicates the column that contains the number of
levels between a member and its parent, excluding
the member and parent. Valid values in the column
are 0 (zero) and positive integers. This property is
available only for parent-child dimensions.

 Unary Operators Enables unary operators (custom rollup operators)
that control how level members are aggregated
into their parent member's value. For more
information, see Custom Rollup Operators. To view
the custom rollup operators, on the View menu
click Data, and then see the value beside
UNARY_COLUMN in the member properties pane.

 Visible Indicates whether the level is visible to end users as
they browse cubes. To set this property to False,
you must first set the Member Keys Unique
property of all lower levels to True. The Visible
property is not available for parent-child
dimensions. This property's value can be
overridden for individual cubes by the Visible
property in Cube Editor.

Member
property

Caption Contains the caption used to display the member
property.

 Data Size Indicates the maximum number of characters
allowed in the column that stores the member
property values.

 Data Type Indicates the data type of the column that stores
the member property values.

 Description Contains a description of the member property.
 Language Indicates the language used to display the member

property.
 Name Indicates the name of the member property.
 Source Column Indicates the column that stores the values of the

member property. This column must be in one of
the dimension tables for the dimension that
contains the member property.

 Type Provides an indicator to client applications of the
type of information in the member property values.

 Visible Indicates whether the member property is visible
to end users as they browse the cube.

Analysis Services (SQL Server 2000)

Data Tab (Dimension Editor Data View)
Data Tab (Dimension Editor Data View)

Use this tab to browse a shared dimension's members, member properties, and custom member formulas. The following topics
describe panes in the Data tab.

Dimension Members Pane (Dimension Editor Data View)

Member Properties Pane (Dimension Editor Data View)

Custom Member Formula Pane (Dimension Editor Data View)

Analysis Services (SQL Server 2000)

Dimension Members Pane (Dimension Editor Data View)
Dimension Members Pane (Dimension Editor Data View)

Displays the dimension members in a tree format. Expand individual members to browse their descendants.

If the dimension is write-enabled and included in a processed cube, you can update the member hierarchy and member names in
the dimension members pane. You can add, delete, and move members.

Caution Changes to a write-enabled dimension are recorded in the dimension table when you save the dimension. Thereafter,
these changes cannot be undone except by editing the dimension and manually reversing the changes.

To move a member, drag it to its new parent or use the Move Selected Member buttons on the toolbar. To add, delete, move, or
rename a member, right-click the member, and then click one of the following shortcut menu options.

Shortcut menu option Description
Delete Displays the Delete Member dialog box so you can

confirm the deletion of the selected member and select
the disposition of its descendants.

Move Down Moves the selected member (and its descendants)
downward on its current level. The selected member
becomes a child of its parent's following sibling.

Move Up Moves the selected member (and its descendants)
upward on its current level. The selected member
becomes a child of its parent's preceding sibling.

Indent Moves the selected member (and its descendants) down
one level. The selected member's preceding sibling
becomes its new parent. If the selected member does not
have a preceding sibling, its following sibling becomes
its new parent.

Outdent Moves the selected member (and its descendants) up
one level. The selected member's grandparent becomes
its new parent.

Rename Renames the selected member.
New Member - Sibling Displays the Create Member dialog box so you can add

a sibling of the selected member.
New Member - Child Displays the Create Member dialog box so you can add

a child of the selected member.

Analysis Services (SQL Server 2000)

Member Properties Pane (Dimension Editor Data View)
Member Properties Pane (Dimension Editor Data View)

Lists the member properties of the member selected in the dimension members pane. The list of member properties contains all
user-defined member properties for the selected member.

For each member property, the name is shown in the first column of the pane and the value is shown in the second column. The
member properties are sorted in the same order as in the tree pane.

If the dimension is write-enabled and is included in a processed cube, you can use the member properties pane to update the
member property values.

Caution Changes to member property values are recorded in the dimension table when you save the dimension. Thereafter,
these changes cannot be undone except by editing the dimension and manually reversing the changes.

Analysis Services (SQL Server 2000)

Custom Member Formula Pane (Dimension Editor Data View)
Custom Member Formula Pane (Dimension Editor Data View)

Contains a custom member formula, which is an expression in Multidimensional Expressions (MDX) that determines the cell
values associated with a member and overrides the aggregate functions of measures. For general information about custom
member formulas, see Custom Rollup Formulas and Custom Member Formulas.

The custom member formula pane displays the custom member formula for the member selected in the dimension members
pane. If no custom member formula is visible, none is defined.

You can use the custom member formulas pane to create and update custom member formulas for members of that level, if
certain conditions are met. The browsed dimension must be write-enabled, it must be included in a processed cube, and one of
the Custom Members property for one of its levels must be set to True. You can use any combination of the following methods:

Type.

Click the arithmetic operator buttons and parentheses buttons.

Click the edit button (...) to display MDX Builder, and then drag and drop items to construct the custom member formula.

The custom member formulas are stored in the dimension table that contains the members.

Caution Changes to custom member formulas are recorded in the dimension table when you save the dimension. Thereafter,
these changes cannot be undone except by editing the dimension and manually reversing the changes.

For more information, see Creating Custom Member Formulas.

Analysis Services (SQL Server 2000)

Dimension Editor - Schema View
Dimension Editor - Schema View

Use this tool to view and edit a shared dimension's schema. You can also examine and edit the structure of all types of shared
dimensions, including parent-child and virtual dimensions, and their levels. You can also use Dimension Editor and connected
dialog boxes to perform various procedures with shared dimensions.

Dimension Editor appears in two views, data and schema. Both views include the tree pane and properties pane. You can switch
from one view to another by clicking the Data tab or the Schema tab at the bottom of Dimension Editor, or by clicking Data or
Schema on the View menu.

This topic describes the schema view. For information about the data view, see Dimension Editor - Data View. The schema view is
shown here.

Dimension Editor appears when you do either of the following:

In the Analysis Manager tree pane, under a database, open the Shared Dimensions folder. Right-click a dimension, and then
click Edit.

In the Analysis Manager tree pane, under a database, open the Shared Dimensions folder. Click a dimension, and then on
the Action menu, click Edit.

Dimension Editor has four areas. For more information about the areas, click a link in the following table.
To do this See

Perform commands available in
Dimension Editor menus.

Menus

Perform common actions represented by
icons on the Dimension Editor toolbar.

Toolbar

Display objects in the dimension.

Access associated dialog boxes and
available information about dimension
objects.

Tree Pane

Display the properties of the object
selected in the tree pane.

Modify the property settings for the
selected object.

Properties Pane

Display the dimension tables.

Add tables and levels, and browse the data
in the dimension tables.

View columns in a table.

Schema Tab

See Also

Creating a Shared Dimension with the Editor

Creating Custom Member Formulas

Creating Member Groups

Creating Member Properties

Analysis Services (SQL Server 2000)

Menus (Dimension Editor Schema View)
Menus (Dimension Editor Schema View)

The following options are available through menus in Dimension Editor.

Menu Option Description
File New Dimension - Wizard Starts the Dimension Wizard so you can

create a new shared dimension.
 New Dimension - Editor Displays the Choose a Dimension Table

dialog box so you can begin creating a shared
dimension with the editor.

 Save Saves the dimension. If you are saving a
parent-child or changing dimension, you will
be prompted to perform an incremental
processing of the dimension.

 Save As Saves the dimension under a different name.
 Exit Closes Dimension Editor.
Edit Rename Renames the selected object.
 Delete Deletes the selected object.
 Remove Join Removes all joins from the selected column

(schema view only).
View Schema Displays the schema view, including the

Schema tab.
 Data Displays the data view, including the Data

tab.
 Properties Expands or collapses the properties pane.
Insert Tables Displays the Select Table dialog box so you

can add tables to the dimension.
 Level Displays the Insert Level dialog box so you

can add a new level.
 Member Property Displays the Insert Member Property dialog

box so you can add a new member property
in the selected level.

 Join Displays the Join Columns dialog box, where
you can add a join to the selected column
(schema view only).

Tools Process Dimension Processes the dimension.
 Count Dimension Members Counts the number of members in a

dimension.
 Validate Dimension

Structure
Verifies that the dimension structure does not
contain invalid components that would
prevent processing of the dimension.

Help Help on Dimension Editor Displays a Help topic about Dimension Editor.
 Contents and Index Opens SQL Server Books Online.

Analysis Services (SQL Server 2000)

Toolbar (Dimension Editor Schema View)
Toolbar (Dimension Editor Schema View)

Use the following toolbar buttons to perform common operations.

Button Description
New Dimension Starts the Dimension Wizard, where you can create a new

shared dimension.
Save Saves the dimension.If you are saving a parent-child or

changing dimension, you will be prompted to perform an
incremental processing of the dimension.

Insert Table Displays the Select table dialog box so you can add tables to
the dimension. This button is not available for virtual
dimensions.

Insert Level Displays the Insert Level dialog box, where you can add a new
level.

Insert Member
Property

Displays the Insert Member Property dialog box, where you
can add a new member property in the selected level.

Process Dimension Displays the Process a Dimension dialog box, where you can
incrementally update or rebuild the selected dimension.

Move Selected
Member Left*

In the dimension members pane, moves the selected member
(and its descendants) up one level. The selected member's
grandparent becomes its new parent.

Move Selected
Member Right*

In the dimension members pane, moves the selected member
(and its descendants) down one level. The selected member's
preceding sibling becomes its new parent.

Move Selected
Member Up*

In the dimension members pane, moves the selected member
(and its descendants) upward on its current level. The preceding
sibling of the selected member's parent becomes its new
parent.

Move Selected
Member Down*

In the dimension members pane, moves the selected member
(and its descendants) downward on its current level. The
following sibling of the selected member's parent becomes its
new parent.

*This button is visible only when you are in data view and editing a write-enabled dimension that is included in a cube that was
processed since the dimension last changed.

Analysis Services (SQL Server 2000)

Tree Pane (Dimension Editor Schema View)
Tree Pane (Dimension Editor Schema View)

Use the tree pane to display the objects in the dimension. Right-click an object to see a shortcut menu for that object.

The following table lists how to access available information about dimension objects.

Right-click Shortcut menu option Description
Dimension New Dimension Displays the Choose a Dimension

Table dialog box, where you can begin
creating a shared dimension with the
editor.

 Process Dimension Processes the dimension.
 New Level Displays the Insert Level dialog box,

where you can add a new level.
Level New Level Displays the Insert Level dialog box,

where you can add a new level.
 New Member Property Displays the Insert Level dialog box,

where you can add a new member
property in the level.

 Delete Deletes the level.
 Rename Renames the level.
Member
Property Folder

New Member Property Displays the Insert Member Property
dialog box, where you can add a new
member property.

Member
Property

New Member Property Displays the Insert member Property
dialog box, where you can add a new
member property.

 Delete Deletes the member property.
 Rename Renames the member property.

Analysis Services (SQL Server 2000)

Properties Pane (Dimension Editor Schema View)
Properties Pane (Dimension Editor Schema View)

Use the properties pane to display the properties of the object selected in the tree pane. To display the properties pane, click the
Properties button.

Each type of object (dimension, level, or member property) contains a different set of properties. Use the properties pane to
modify the property settings for the selected object.

The following table describes the properties displayed in the properties pane.

Object Property Description
Dimension All Caption Indicates the name of the member in the (All) level.
 All Level Indicates whether the dimension contains an (All)

level. If the value is Yes, the (All) level is the top
level of the dimension but is not displayed in the
Dimension Editor tree pane. The (All) level contains
a single member whose cell value is the aggregate
of cell values for all members in the next lower
level.

 Allow Duplicate
Names

Indicates whether the members under a common
parent can have the same name.

 All Member
Formula

Stores the MDX expression used to override the
default rollup of the All member.

 Changing Indicates whether the dimension is optimized for
frequent changes. If the value is True, query
performance may be slower. However, levels and
members below the top level and above the bottom
level can be added, moved, and deleted, and the
subsequent processing requirement is eliminated
or reduced. Consequently, interruptions of end
users' access to the cubes that include the
dimension can be reduced. For more information,
see Changing Dimensions.

 Data Member
Caption template

Controls the names of data members when the
dimension's Members With Data property is set
to Nonleaf data visible. Type a value that includes
an asterisk (*). The name of each data member will
be the value with the asterisk replaced by the
parent member's name. The Data Member
Caption template property is available only for
parent-child dimensions.

 Data source Indicates the data source that contains the
dimension table(s).

 Default Member Indicates the member that slices the datasets
returned by queries when the dimension is not
displayed on an axis and no slicing member in the
dimension is specified. If no default member is
specified, and the dimension's All Level property is
Yes, the member indicated by the All Caption
property is the default member. If no default
member is specified, and the dimension's All Level
property is No, an arbitrary member of the highest
level is the default member.

 Depends on
Dimension

For virtual dimensions, indicates the dimension that
supplies the member properties or columns on
which the virtual dimension's levels are based.

For dimensions that are not virtual, this is the
dimension according to which aggregation design
is optimized. A dimension in this property's value is
advantageous when the cross product of the two
dimensions' members results in a significant
percentage of combinations that cannot coexist. For
example, a Customer Gender dimension's Depends
on Dimension property is Customers. Fifty
percent of the combinations resulting from the
cross product of the dimensions' lowest-level
members cannot coexist because a customer can
have only one gender. For more information, see
Dependent Dimensions.

 Description Contains the description of the dimension.
 Enable Real-Time

Updates
Indicates whether or not the dimension supports
real-time updates. For this to be set to True, the
dimension must use a ROLAP partition and a
Microsoft® SQL Server™ 2000 data source. For
more information, see Real-Time Cubes.

 Member Keys
Unique

Indicates whether member keys are unique within
the dimension. If the value of this property is
changed, process the dimension using the Rebuild
the dimension structure option. This is read-only
and set to True for changing dimensions. For more
information, see Updating and Rebuilding Shared
Dimensions.

 Member Names
Unique

Indicates whether member names are unique
within the dimension. If the value is True, internal
member names omit qualifying level names and
member names. These internal member names are
used in Multidimensional Expressions (MDX)
expressions.

 Members with
Data

Indicates whether nonleaf members are allowed to
have associated fact table data. If they are allowed,
this property also indicates whether children of
nonleaf members are created to display this data.
Valid values are:

Leaf members only: Only leaf members can
have associated fact table data. If a nonleaf
member has associated fact table data,
processing fails. This value is the default.

Nonleaf data hidden: Nonleaf members can
have associated fact table data. This data is
not represented among the nonleaf members'
descendants. Consequently, it might appear to
end users that values aggregate incorrectly.

Nonleaf data visible: Nonleaf members can
have associated fact table data. This data is
represented among the nonleaf members'
descendants by the creation of a child for
each nonleaf member. This child, called a data
member, is a leaf member and has a value
equal to the aggregate of its parent's
associated fact table data. The data members'
names are controlled by the Data Member
Caption Template property.

This property is available only for parent-child
dimensions.

 Name Contains the name of the dimension.
 Source Table

Filter
Indicates the WHERE clause expression applied to
the dimension table to limit the members in the
dimension. For example, in the Store dimension
supplied with SQL Server 2000 Analysis Services, to
include only the Canada member and its
descendants, type:

"store"."store_country" = 'Canada'

 Storage Mode Indicates the type of storage for the dimension. If
the value is MOLAP (multidimensional OLAP), the
dimension data is stored in a multidimensional
structure on the Analysis server. If the value is
ROLAP (relational OLAP), the dimension data is the
dimension table itself. MOLAP provides better
performance and is recommended except for
extremely large dimensions (that is, dimensions
that have approximately 5 to 10 million members).
In order to select ROLAP, the lowest level's
Member Keys Unique property must be True.
Restrictions also apply to the dimension's
Aggregation Usage property in all cubes in which
the dimension is used. For more information, see
Dimension Storage Modes.

 Type Indicates the type of the dimension. Standard is the
default. This property indicates to client applications
the kind of information in the dimension.

 Virtual Indicates whether the dimension is a virtual
dimension. If you set this property to True while the
Depends on Dimension property is (None), the
tables in the Schema tab disappear. In the
Depends on Dimension property, select the
dimension that supplies the columns or member
properties on which the edited dimension is based.
The tables for the selected dimension appear in the
Schema tab.

 Write-Enabled Indicates whether the dimension's members can be
updated while administrators browse the
dimension and while end users browse cubes that
contain the dimension. The only end users that can
update a write-enabled dimension are those in cube
roles granted read/write access to the dimension.
Only parent-child dimensions can be write-enabled.
For more information, see Write-Enabled
Dimensions.

Level Custom Members Indicates whether custom member formulas are
used to determine members' cell values. For more
information, see Custom Rollup Formulas and
Custom Member Formulas. To view the custom
member formulas, on the View menu click Data,
and then see the custom member formula pane.

 Custom Member
Options

Indicates whether calculation options can be
defined for custom members on this level and
unary operators on the following level. Calculation
options are stored in a column in the dimension
table. To set this property to True, you must first set
the Custom Members property to True.

 Custom Rollup
Formula

Stores the MDX expression used to override the
default rollup of values in the level.

 Description Contains a description of the level.
 Grouping Indicates whether the level contains member

groups. Member groups can be used to satisfy the
maximum limit of 64,000 members under a parent.
To use member groups in this way, create a new
level immediately above and identical to the level
that exceeds the limit, and then set the new level's
Grouping property to Automatic. For more
information, see Member Groups.

 Hide Member If Determines which members are hidden from end
users as they browse cubes. Hidden members
support ragged dimensions, which contain logical
gaps in member lineage, by hiding the members
that occupy the gaps. Valid values are:

Never hidden: No members are hidden.

No name: Every member whose name is null
or an empty string is hidden.

Parent's name: Every member with the same
name as its parent is hidden.

Only child with no name: Every member
that is an only child and whose name is null
or an empty string is hidden.

Only child with parent's name: Every
member that is an only child and has the
same name as its parent is hidden.

This property is not available for parent-child
dimensions.

 Key Data Size Indicates the size (in bytes) of the columns that
store member keys in aggregations. Member keys
are copied from the column specified in the
Member Key Column property.

 Key Data Type Indicates the data type of the columns that store
member keys in aggregations. Member keys are
copied from the column specified in the Member
Key Column property.

 Level Naming
Template

Determines the level names displayed to end users
when they browse cubes containing the dimension.
This property is available only for parent-child
dimensions. Click this property and click the edit (...)
button to display the Level Naming Template
dialog box.

 Level Type Indicates the type of the level. Regular is the default.
The following values are used only in dimensions
whose Type property is Time: Years, Half-Years,
Quarters, Months, Weeks, Days, Hours, Minutes,
Seconds, and Time-Undefined. The Level Type
property indicates to client applications the kind of
information in the level. This property is not
displayed for parent-child dimensions.

 Member Count Indicates the number of members in the level at the
time they were last counted by Analysis Services, or
a user-provided estimate of the member count. You
can update this value by clicking Count
Dimension Members on the Tools menu.

 Member Key
Column

Indicates the column that contains the member
keys. Alternatively, the value can be derived from a
column, such as an expression that extracts the year
value from a date-formatted column. The syntax of
such expressions must comply with the
requirements of the data source provider;
otherwise, processing fails with one or more errors.

 Member Keys
Unique

Indicates whether member keys are unique within
the level. This property is not available for parent-
child dimensions.

If the value of this property is changed, process the
level's corresponding dimension using the Rebuild
the dimension structure option. For more
information, see Updating and Rebuilding Shared
Dimensions.

 Member Name
Column

Indicates the column that contains the member
names, which are displayed to end users as they
browse cubes. Alternatively, the value can be
derived from a column, such as an expression that
extracts the year value from a date-formatted
column. The syntax of such expressions must
comply with the requirements of the data source
provider; otherwise, processing fails with one or
more errors.

 Member Names
Unique

Indicates whether member names are unique
within the level. If the value is True, internal
member names omit qualifying member names.
These internal member names are used in MDX
expressions.

 Name Contains the name of the level.
 Order By Determines the sort order for displayed members.

You can sort by member name, member key, or any
member property defined for the level.

 Parent Key
Column

Indicates the column that contains the keys for the
members' parents. This property is available only
for parent-child dimensions.

 Root Member If Indicates the criteria by which members of the
highest level (ignoring the (All) level, if any) are
identified. The following values are valid:

Parent is blank, self, or missing: A member
is in the highest level if any of the following
three criteria is met.

Parent is blank: A member is in the highest
level if its value in the Parent Key Column is
null or 0 (zero).

Parent is self: A member is in the highest
level if its value in the Parent Key Column is
equal to its value in the Member Key
Column.

Parent is missing: A member is in the
highest level if its value in the Parent Key
Column does not exist in the Member Key
Column.

This property is available for parent-child
dimensions only.

 Skipped Levels
Column

Indicates the column that contains the number of
levels between a member and its parent, excluding
the member and parent. Valid values in the column
are 0 (zero) and positive integers. This property is
available only for parent-child dimensions.

 Unary Operators Enables unary operators (custom rollup operators)
that control how level members are aggregated
into their parent member's value. For more
information, see Custom Rollup Operators. To view
the custom rollup operators, on the View menu
click Data, and then see the value beside
UNARY_COLUMN in the member properties pane.

 Visible Indicates whether the level is visible to end users as
they browse cubes. To set this property to False,
you must first set the Member Keys Unique
property of all lower levels to True. The Visible
property is not available for parent-child
dimensions. This property's value can be
overridden for individual cubes by the Visible
property in Cube Editor.

Member
property

Caption Contains the caption used to display the member
property.

 Data Size Indicates the maximum number of characters
allowed in the column that stores the member
property values.

 Data Type Indicates the data type of the column that stores the
member property values.

 Description Contains a description of the member property.
 Language Indicates the language used to display the member

property.
 Name Indicates the name of the member property.
 Source Column Indicates the column that stores the values of the

member property. This column must be in one of
the dimension tables for the dimension that
contains the member property.

 Type Provides an indicator to client applications of the
type of information in the member property values.

 Visible Indicates whether the member property is visible to
end users as they browse the cube.

Analysis Services (SQL Server 2000)

Schema Tab (Dimension Editor Schema View)
Schema Tab (Dimension Editor Schema View)

Use the Schema tab to display the dimension tables. Joins are indicated by lines connecting the key columns between the tables.

In the Schema tab, you can organize the structure of the dimension in a graphical display, add additional tables and levels, and
browse the data in the dimension tables.

To view all columns in a table, lengthen the table window vertically, or use the scroll bars. You can also widen the table window to
view long column names.

Note Changing the structure of a dimension causes the results of previous dimension processing to be invalidated. After the
structure of a dimension has changed, you must process the dimension to re-create the data.

Working in the Schema Tab

This section lists the actions that can be performed in the Schema tab. Many actions can be performed in multiple ways. For
example, an action can be accomplished by a drag-and-drop procedure, or by right-clicking an object, and then clicking an item
on the shortcut menu.

To add a new table

Right-click anywhere in the Schema tab, and then click Insert Tables.

To remove a table

Right-click the title bar of a table, and then click Remove.

To replace a table

Right-click the title bar of the table, and then click Replace.

To browse the data in a table

Right-click the title bar of a table, and then click Browse Data.

To create a join between two tables

Select the key column name in the first table, and then drag it over the corresponding key column name in the second table.

To remove a join between two tables

Right-click the line depicting the join, and then click Remove.

To change the alias of a table

Right-click the title bar of the table, and then click Change Alias.

Analysis Services (SQL Server 2000)

Dimension Manager
Dimension Manager

Use this tool to add or remove dimensions from a cube or create new dimensions.

Dimension Manager appears when in Cube Editor, you right-click the Dimensions folder or a dimension and then click Existing
Dimensions.

You can choose from previously defined dimensions or start the Dimension Wizard to create a new dimension. If you create a
new dimension, you can define it as either a shared dimension or private dimension (available only to the cube you are creating).

The previously defined, available dimensions are listed under Shared dimensions.

For more information about dimensions, see Dimensions.

Options

Shared dimensions

Select dimensions to add to the cube.

Cube dimensions

View the list of dimensions you have selected.

New Dimension

Click to start the Dimension Wizard, which helps you create a new dimension.

Analysis Services (SQL Server 2000)

Drillthrough Options Dialog Box
Drillthrough Options Dialog Box

Use this dialog box to specify drillthrough options for a cube or partition.

Drillthrough is an action in which an end user selects a single cube cell and retrieves a result set from the source data for that cell.
If drillthrough is enabled, administrators can also drill through in Cube Browser and the Cube Editor Data tab. For more
information about drillthrough, see Specifying Drillthrough Options.

In this dialog box, if you are editing a cube, you can enable or disable drillthrough for the cube. If you are editing a cube or
partition, you can select the columns that are displayed in the result set. You can also specify a filter to limit the rows in the result
set.

This dialog box appears when you perform one of the following actions:

In Cube Editor, on the Tools menu, click Drillthrough Options. In this case, the drillthrough options apply to a cube.

In the Advanced Settings dialog box, click Drillthrough. (The Advanced Settings dialog box is displayed when you click
Advanced in the Convert to Partition dialog box or the last step of the Partition Wizard.) In this case, the drillthrough
options apply to a partition.

The Drillthrough Options dialog box has two tabs. For more details about the tabs, click a link in the following table.
To do this See

Select the columns that are displayed
when a drillthrough is executed.

Columns Tab (Drillthrough Options Dialog
Box)

Specify a filter (WHERE clause expression
of an SQL SELECT statement) to limit the
result set returned by drillthrough.

Filter Tab (Drillthrough Options Dialog
Box)

Options

The following options are displayed for all tabs.

Enable drillthrough

Select to enable end users to drill through any cube cell they are authorized to access. This action also allows administrators to
drill through. In the Columns tab, you must select at least one column.

The only end users who can drill through are those in cube roles granted the ability to drill through. For more information, see
Creating Cube Roles.

Clear to disable end users' and administrators' ability to drill through.

Enable drillthrough is read-only if you are editing a partition. Drillthrough can be enabled and disabled only at the cube level.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes:

If you are editing a cube, in Cube Editor, save the cube.

If you are editing a partition, in the Advanced Settings dialog box, click OK. Then, in the Partition Wizard, click Finish (or, in
the Convert to Partition dialog box, click OK).

Analysis Services (SQL Server 2000)

Columns Tab (Drillthrough Options Dialog Box)
Columns Tab (Drillthrough Options Dialog Box)

Use this tab to select the columns that are displayed when a drillthrough is executed.

Important If you select a column to which a cube role is denied access and then grant drillthrough permissions to the cube role,
you will create a security exposure. (You can deny access to a column by using either dimension security or cell security. For more
information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they will access the
denied column.

If you are editing a cube, options in this tab can be overridden in the cube's partitions. For information about accessing the
drillthrough options of a partition, see Specifying Drillthrough Options.

Options

Column

Select the columns that are displayed in the result set when a drillthrough is executed. By default only the tables in the cube's or
partition's schema are displayed. To add other tables in the cube's or partition's data source, click Add Table, and then use the
Select Table dialog box.

Table

View the tables in which the columns are defined.

In multiple-partition cubes, fact table names can vary among the partitions. However, if you are editing a multiple-partition cube,
the Columns tab displays only the columns and tables in the cube's default partition. For drillthrough in a multiple-partition cube,
Microsoft® SQL Server™ 2000 Analysis Services automatically changes the fact table name, if necessary, for each partition.

Add Table

Click to display the Select Table dialog box, where you can add a table and its columns to the list. You can select tables only from
the data source of the cube or of the partition.

Select All

Click to select all columns.

Deselect All

Click to clear the selections of all columns.

Analysis Services (SQL Server 2000)

Filter Tab (Drillthrough Options Dialog Box)
Filter Tab (Drillthrough Options Dialog Box)

Use this tab to specify a filter (WHERE clause expression of an SQL SELECT statement) to limit the result set returned by
drillthrough. Type the text that follows WHERE, but exclude the WHERE keyword.

For example, to limit the result set to 1998 data, type:

"the_year"=1998

Another example (alphanumeric data):

"the_month"='January'

Whenever necessary to avoid ambiguity, use a qualified expression. For example, if a column name appears in multiple tables,
include the table name in the expression:

"time"."the_month"='January'

The SELECT statement used to retrieve rows for the creation of the result set is generated automatically. The filter expression is
connected with an AND to the automatically generated part of the WHERE clause. Therefore, if you specify multiple filter
expressions, enclose them all in a pair of parentheses, for example:

("the_year"=1998 OR "the_year"=1999)

The filter expression acts as a pass-through statement, and its syntax is not checked until a drillthrough is executed. If the syntax is
incorrect, drillthrough fails.

For more information, see Drillthrough Filters.

If you are editing a cube, the filter in this tab can be overridden in the cube's partitions. For information about accessing the
drillthrough filter of a partition, see Specifying Drillthrough Options.

Analysis Services (SQL Server 2000)

Edit Virtual Dimension Dialog Box
Edit Virtual Dimension Dialog Box

Use this dialog box to select, from an existing dimension, the new member property on which the virtual dimension will be based.

This dialog box is displayed when, in the Analysis Manager tree pane, you right-click a virtual dimension created in Microsoft®
SQL Server™ version 7.0 OLAP Services, and then click Edit. If you perform the same action on a virtual dimension created in SQL
Server 2000 Analysis Services, Dimension Editor is displayed. For more information about virtual dimensions created in SQL
Server 7.0 OLAP Services, see Virtual Dimensions Created in Version 7.0.

Options

Member properties

Select the member property on which you want to base your virtual dimension.

Analysis Services (SQL Server 2000)

Filter Expression Dialog Box
Filter Expression Dialog Box

Use this dialog box to specify a filter to limit the fact table records used in the incremental update of the cube or partition you
selected in the Analysis Services Processing Task dialog box.

This dialog box is displayed when, in the Analysis Services Processing Task dialog box, you select a cube, click Incremental
update, and then click the edit (...) button beside the Filter box.

Caution If in the Analysis Services Processing Task dialog box you select the default fact table (that is, the same fact table
already used by the cube or partition), you must create a filter to ensure that only data not already in the cube or partition will be
added. Otherwise, the cube or partition will contain duplicate and therefore inaccurate data.

For example, a cube contains data for years 1995 through 1997. You are adding data for 1998 from the same table that supplies
the 1995 through 1997 data. The name of the column that contains years is the_year. You must use the following filter
expression:

"the_year"=1998

Another example (alphanumeric data):

"the_month"='January'

Options

Filter expression

Type a WHERE clause expression of an SQL SELECT statement. Do not include the WHERE keyword.

Whenever necessary to avoid ambiguity, use a qualified expression. For example, if a column name appears in multiple tables,
include the table name in the expression:

"time"."the_month"='January'

The SELECT statement used to retrieve records for the incremental update is generated automatically. The filter expression is
connected with AND to the automatically generated part of the WHERE clause. Therefore, if you specify multiple filter expressions,
enclose them all in a pair of parentheses. For example, to retrieve records for years 1998 and 1999, use the following filter:

("the_year"=1998 OR "the_year"=1999)

Filters consist of one or more expressions using columns in the fact table. A filter can also contain columns in dimension tables if
they are included in a nested SELECT statement and the underlying database supports nested SELECT statements.

The filter expression acts as a pass-through statement, and its syntax is not checked until the package is executed. If the syntax is
incorrect, the incremental update and the task fail.

See Also

Analysis Services Processing Task Dialog Box

Partition Filters and Incremental Update Filters

Analysis Services (SQL Server 2000)

Find Node Dialog Box
Find Node Dialog Box

Use this dialog box in Dependency Network Browser to select a node by name. In large data mining models, some nodes may be
excluded in the initial presentation. Other nodes may be difficult to locate. Using the Find Node dialog box provides a way to
quickly locate or add nodes to the network browser pane. You can only select or add one node at a time.

This dialog box is displayed when, on the Dependency Network Browser toolbar, you click the Find tool. For more information,
see Toolbar (Dependency Network Browser).

Options

Node Name

Type the name of the node you want to select. As you type, the list of available nodes narrows to match the values you provide.

Show hidden nodes

Select this option to display nodes that are not visible in the network browser pane. You can select this option when you want to
add nodes that are not included in the initial presentation of the data mining model.

Node List

Click the name of the node that you want to add to the network browser pane. You can also double-click a name to
simultaneously select and close the dialog box. This list displays all nodes defined in the data mining model.

See Also

Dependency Network Browser

Viewing with Dependency Network Browser

Analysis Services (SQL Server 2000)

Import Actions Dialog Box
Import Actions Dialog Box

Use this dialog box to import an existing action into a virtual cube from another cube that is within the same database. After
selecting an individual action to import, you can view the Multidimensional Expressions (MDX) statement that was used to create
the action in the Action MDX box.

This dialog box appears for a virtual cube when, in Virtual Cube Editor, you perform one of the following actions:

On the Edit menu, select Import, and then click Actions.

In the tree pane, right-click the Actions folder, and then click Import Action.

On the toolbar, click Import Actions.

Options

Available Actions

To select an individual action from a cube, select the check box next to the name of the action you want to select. To select all
actions from a cube, select the check box next to the name of the cube.

Show source cubes only

Clear this check box to display all available cubes and source cubes in the Available Actions tree view.

Analysis Services (SQL Server 2000)

Import Calculated Cells Dialog Box
Import Calculated Cells Dialog Box

Use this dialog box to import a calculated cells definition into a virtual cube from its component cubes.

This dialog box is displayed in Virtual Cube Editor when you perform one of the following actions:

On the Edit menu, click Import, and then click Calculated Cells.

Click the Import Calculated Cells button on the toolbar.

In the tree pane of the Virtual Cube Editor, right-click the Calculated Cells folder, and then click Import Calculated Cells.

Options

Available Calculated Cells

Select the check boxes beside the calculated cells definitions that you want to import. If you want to import all the calculated cells
definitions in a cube, select the check box next to the cube.

This box lists only calculated cells definitions that are in the component cubes of the virtual cube.

If you select a calculated cells definition with the same name as a calculated cells definition already in the virtual cube, the selected
calculated cells definition is imported with a new name consisting of its old name and a numeric suffix.

Value expression

View the calculation formula for the selected calculated cells definition. To change this formula in the virtual cube, import the
calculated cells definition and edit it in the Calculated Cells Wizard.

Show source cubes only

Specifies whether to view calculated cells definitions only in the component cubes of the virtual cube. Clear this check box to view
all calculated cells definitions in the database. Adding a calculated cells definition that is not in a source cube of the virtual cube
may generate formula errors. After you import a calculated cells definition, you can edit it to fix formula errors or make any other
required changes.

See Also

Calculated Cells

How to import calculated cells into a virtual cube

How to edit a calculated cells definition

Analysis Services (SQL Server 2000)

Import Calculated Members Dialog Box
Import Calculated Members Dialog Box

Use this dialog box to import calculated members into a virtual cube from its component cubes.

This dialog box is displayed when, in Virtual Cube Editor, you perform one of the following actions:

On the Edit menu, click Import, and then click Calculated Members.

Click the Import Calculated Members button on the toolbar.

In the tree pane, right-click the Calculated Members folder, and then click Import Calculated Member.

Options

Available Calculated Members

Select the check boxes beside the calculated members you want to import. If you want to import all the calculated members in a
cube, select the check box next to the cube.

If you select a calculated member with the same name as a calculated member already in the virtual cube, the selected calculated
member is imported with a new name consisting of its old name and a numeric suffix.

Value expression

View the expression for the selected calculated member. To change this expression in the virtual cube, import the calculated
member and edit it in Calculated Member Builder.

Show source cubes only

Specifies whether to view calculated member definitions only in the component cubes of the virtual cube. Clear this check box to
select from all calculated members in the database. Adding a calculated member that is not in a source cube of the virtual cube
may generate formula errors. After you import calculated members, you can edit them to fix formula errors or make any other
necessary changes.

Analysis Services (SQL Server 2000)

Import Named Sets Dialog Box
Import Named Sets Dialog Box

Use this dialog box to import an existing named set into a virtual cube from another cube that is within the same database. After
selecting an individual named set to import, you can view the Multidimensional Expressions (MDX) statement that was used to
create the named set in the Set Expression box.

This dialog box appears for a virtual cube when, in Virtual Cube Editor, you perform one of the following actions:

On the Edit menu, point to Import, and then click Named Sets.

In the tree pane, right-click the Named Sets folder, and then click Import Named Set.

On the toolbar, click Import Named Sets.

Options

Available Named Sets

To select an individual named set from a cube, select the check box next to the name of the desired named set. To select all named
sets from a cube, select the check box next to the name of the cube.

Show source cubes only

Clear this check box to display all available cubes in the Available Named Sets tree view as well as the virtual cube's source
cubes.

Analysis Services (SQL Server 2000)

Insert Level Dialog Box
Insert Level Dialog Box

Use this dialog box to select a column for a dimension in Dimension Editor or Cube Editor.

This dialog box appears at various times when you edit dimensions in Cube Editor or Dimension Editor.

Options

Tree box

View the available columns.

Column Types

Select or clear check boxes to display columns of the type described.

Analysis Services (SQL Server 2000)

Insert Measure Dialog Box
Insert Measure Dialog Box

Use this dialog box to select a source column for a measure in Cube Editor.

This dialog box appears for a cube when, in Cube Editor, you perform one of the following actions:

On the Insert menu, click Measure.

In the tree pane, right-click the cube icon, and then click New Measure.

On the toolbar, click the Insert Measure button.

Options

Tree box

View the available columns.

Column Types

Select or clear check boxes to display columns of the type described.

Analysis Services (SQL Server 2000)

Insert Member Property Dialog Box
Insert Member Property Dialog Box

Use this dialog box to select a column for a new member property of a level in Dimension Editor or Cube Editor.

This dialog box appears when you create a new member property in Cube Editor or Dimension Editor.

Options

Tree box

View the available columns.

Column Types

Select or clear check boxes to display columns of the type described.

Analysis Services (SQL Server 2000)

Join Columns Dialog Box
Join Columns Dialog Box

Use this box to create joins between tables in a cube's schema.

This dialog box appears when, in the schema view of Cube Editor or Relational Mining Model Editor, you right-click a column in a
table, and then click Insert Join.

Options

Select a column

Choose a column from a table to join to the originally selected column.

Column Types

Select a data type to restrict the selection of available columns.

OK

Click to create the join and to close the dialog box.

Analysis Services (SQL Server 2000)

Level Naming Template Dialog Box
Level Naming Template Dialog Box

Use this dialog box to specify the level names that are displayed to end users when they browse a cube containing the dimension
displayed in the dialog box title bar.

This dialog box is displayed only for parent-child dimensions. A parent-child dimension always contains a single meta data level
(excluding the (All) level, if any), which typically produces multiple displayed levels. The number of displayed levels is not always
known when the dimension is created or edited. Also, this number can change when the data in the dimension table is updated.
For these reasons, you can use this dialog box to specify the names applied to the displayed levels.

For more information about parent-child dimensions, see Parent-Child Dimensions.

If you do not specify level names, by default the displayed levels are named Level nn where nn is an integer indicating the level's
rank, starting from the top level. An exception is the (All) level, which must be named (All).

This dialog box appears when, in the tree pane of Dimension Editor or Cube Editor, you select the level in a parent-child
dimension, and, in the Advanced tab of the properties pane, click Level Naming Template, and then click the edit (...) button.

After you change values in this dialog box for a shared dimension and save it, you must process it with the Incremental update
option. For more information, see Updating and Rebuilding Shared Dimensions. After you change values in this dialog box for a
private dimension and save the cube that contains it, you must process the cube with the Refresh data option. For more
information, see Updating and Refreshing Cube Data.

Options

Level

View the displayed level names ranked from highest to lowest. By default, if the dimension's All Level property is No, only the
row for Level 1 is displayed. If the dimension's All Level property is Yes, only the rows for Level 1 and Level 2 are displayed.

You can add a blank row by placing your cursor in the last row's Name column and typing a value. Each row's value in the Level
column is one greater than the preceding row's. You cannot edit the Level values.

If the dimension's All Level property is Yes, the entire row for the (All) level (Level 1) is read-only because the name of the (All)
level must be (All). (Some client applications do not display the (All) level's name.)

Name

View the level names displayed to end users. There are two common techniques for supplying the level names:

In the top row (or second row if the dimension's All Level property is Yes), type a value followed by a space and asterisk (*).
This technique produces names that are identical except for an incrementing, numeric suffix, which replaces the asterisk. For
example, if the dimension's All Level property is No, in the top row type My Level * to apply the name My Level 01 to the
top level, the name My Level 02 to the next level, and so on. Or, if the dimension's All Level property is Yes, in the second
row type My Level * to apply the name My Level 02 to the level below the (All) level, the name My Level 03 to the next level,
and so on.

Add rows and type a level name in each. If the number of supplied level names is exceeded by the number of displayed
levels, the last nonempty Name value along with an appended, incrementing, numeric suffix is applied to the unnamed
levels. For example, if the last Name value, supplied for Level 8, is Element, the names Element 01, Element 02, and so on
are applied to the unnamed levels. If the last Name value contains an asterisk, the resulting suffixes indicate each level's
rank, starting from the top level. If the last Name value, supplied for Level 8, is Element *, the name Element 08 is applied to
Level 8, and the names Element 09, Element 10, and so on are applied to the unnamed levels.

The Result value changes to reflect the current values in the Name column. To refresh the Result value, click anywhere in
the Level or Name column except in the row where you most recently typed.

To display an asterisk in the level name, type a double asterisk (**) in the Name column.

Because semicolons (;) are used to separate level names when they are stored, it is recommended that you omit them from
level names. If you type a semicolon in the Name column, it is interpreted as a level name separator.

Clear All

Click to delete all values in the Level and Name columns except the values for the (All) level, if any.

Result

View the first five level names that are displayed to end users. The names are separated by semicolons (;). The names change to
reflect the values in the Name column. The semicolons and ellipses (...) are not displayed to end users.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes, in the editor, on the File
menu, click Save.

Analysis Services (SQL Server 2000)

Linked Cube Dialog Box
Linked Cube Dialog Box

Use this dialog box to create a linked cube. A linked cube is based on another cube, called a source cube, which is defined and
stored on another Analysis server. You can create linked cubes as an alternative to storing multiple copies of a cube on multiple
Analysis servers. For more information about linked cubes, see Linked Cubes.

To create a linked cube, you must have access to the source cube. You have access if your user name is included in either of the
following on the Analysis server where the source cube is defined: the OLAP Administrators group or a cube role for the source
cube.

This dialog box appears when, in the Analysis Manager tree pane, you right-click a Cubes folder and then click New Linked Cube.

Options

Name

Type a name for the linked cube. The name must begin with an alphabetical character and can be up to 50 characters in length.

Source Cube

Expand a data source and select the source cube.

Important Do not select from a data source that has the same Analysis server as the Analysis server on which you are creating
the linked cube.

Cubes are displayed only if they have been processed since they were last changed.

You can refresh the connection to a data source by right-clicking the data source and then clicking Refresh Connection.

Dimensions

View the dimensions contained in the cube selected in the Source Cube box. The Dimensions box is read-only.

New Data Source

Click to display the Multidimensional Data Source dialog box, where you can specify a new multidimensional data source. For
more information about this procedure, see Managing Linked Cubes.

Process after creating new cube

Select to begin processing the new linked cube when you click OK.

To process a linked cube on an Analysis server, the Analysis server service (MSSQLServerOLAPService) logon account must be a
domain user account. This account must have access to the source cube. The account has access if it is included in either of the
following on the publishing server: the OLAP Administrators group or a cube role for the source cube. If the account does not
have access to the source cube, computers or users cannot process the linked cube through that account.

Analysis Services (SQL Server 2000)

Map the Column Dialog Box
Map the Column Dialog Box

Use this dialog box to create a new level in a dimension, new dimension, or new measure in Cube Editor.

This dialog box appears when, in the Cube Editor schema view, you double-click a column in a table.

Options

Level in Dimension

Select to create a new level in the private dimension you select from the drop-down list. This option is available only when the
cube contains a private dimension.

Dimension

Select to create a new private dimension.

Measure

Select to create a new measure from the fact table of this cube.

Analysis Services (SQL Server 2000)

MDX Builder
MDX Builder

Use this dialog box to create an expression in the Multidimensional Expressions (MDX) syntax. For information about the MDX
functions in Microsoft® SQL Server™ 2000 Analysis Services, see MDX Function List.

This dialog box is displayed from dialog boxes and wizards in which an MDX expression can be specified.

Options

MDX expression

Build the MDX expression using the Data box, Functions box, Insert button, arithmetic operator buttons, and number buttons.

Note The Data and Functions boxes provide a convenient means for building valid expressions. You can double-click or drag
values from both boxes to the MDX expression box.

You can also type an expression directly into the MDX expression box. You may need to use this method if you want to add
functions from libraries other than the Analysis Services MDX function library.

Data

View the data structures in the object to which the MDX expression applies.

Functions

View the functions in the Analysis Services MDX function library and any additional libraries that have been registered. For
information about an individual Analysis Services MDX function, select it, and then press F1.

To add a function to the MDX expression box, place the cursor where you want to insert the function, select a function in the
Functions box, and either double-click or click Insert. The function syntax appears in the MDX expression box. Replace
arguments and their delimiters (« and ») with the appropriate values.

Insert

Click to add the item selected in the Data box or Functions box to the MDX expression.

Arithmetic operator buttons

Click to add operators to the MDX expression.

Number buttons

Click to add numbers to the MDX expression.

Register

Click to display the Register Function Libraries dialog box, where you can register an external function type library (*.olb, *.tlb,
*.dll). The new library appears in the Functions box. For more information, see Register Function Libraries Dialog Box.

Usage Notes

You can use the following techniques when you create MDX expressions:

Null keyword

You can use the keyword Null to create an MDX expression that has a null value.

Temporary alias for a set

A set in a function can be given a temporary alias for use within the function by using the keyword As. In this example, the
set {State} is given the temporary alias S1 so it can be referred to later in the function in a nested iteration:

Sum({State} As S1, Sum(Geography.CurrentMember.Children,
Population * Val((Geography.CurrentMember.Properties("CityTax")) +
Val(S1.Current.Properties("StateTax")))))

Analysis Services (SQL Server 2000)

Mining Model Role Dialog Box
Mining Model Role Dialog Box

Use this dialog box to create or edit a mining model role.

This dialog box is displayed when you perform any of the following actions:

In Mining Model Role Manager, click New.

In Mining Role Manager, right-click an entry in the Role column, the Membership column, or the Description column, and
then click New.

In the Analysis Manager tree pane, right-click a mining model roles icon, click Manage Roles, and then click New. The
mining model roles icon appears here.

Note The default values for a mining model role are derived from the database role of the same name. Changes you make in this
role are also made in the database role of the same name.

Options

Role name

View or edit the name of the role. You can enter a maximum of 50 characters; the name must begin with an alphabetical
character. If you are editing an existing role, this box displays the name of that role, and you cannot change it.

Description

View or edit the description of the role. You can enter a maximum of 200 characters. If you are editing an existing role, you cannot
change the description.

Membership tab

View the names of users and groups of the mining model role and their associated domains.

Add

Click to display the Add Users and Groups dialog box, where you can add Microsoft® Windows NT® 4.0 or Microsoft
Windows® 2000 users and groups to the membership of the role.

Remove

Click to delete the selected role.

Analysis Services (SQL Server 2000)

Mining Model Role Manager
Mining Model Role Manager

Use this tool to create, edit, and maintain mining model roles.

A mining model role applies to only a single model. A role is created when you assign a role to a mining model by selecting the
role in Mining Model Role Manager. This grants the role's users access to the model. The name and default values of a model role
are derived from the database role with the same name.

In Mining Model Role Manager, each row whose check box is selected in the list displays a role. Users in these roles can access the
model whose name appears in the title bar. These roles can be maintained within Mining Model Role Manager.

Each unchecked row displays a role not assigned to the mining model. Only users who are members of the selected roles can
access the model.

To grant users in a database role access to the model, select the check box beside the role. To assign a role to the mining model,
select the check box beside the role. This creates a mining model role with the same name as the database role.

The roles assigned to the model are listed first, followed by the roles that are not assigned to mining models (that is, the
remaining database roles). Each category is sorted alphabetically by the role names in the Role column.

Mining Model Role Manager appears when, in the Analysis Manager tree pane, you right-click either a mining model roles icon or
a mining model icon, and then click Manage Roles.

Options

Access

Select a check box next to a role to determine whether it can access the model listed in the title bar of Mining Model Role
Manager. Only roles whose check boxes are selected can access the model.

Role

View role names.

Membership

Modify the Microsoft® Windows NT® 4.0 or Windows® 2000 users and groups in each role.

To change the membership of a mining model role, right-click the Membership column and click Edit, or click the edit (...) button
to display the Mining Model Role dialog box.

Note Changes in this tab propagate to the database role and cube roles with the same name as the edited mining model role.

Description

View the description of each role.

Show

Use to limit the roles displayed in the list. By default, All roles is displayed, but you can limit by a user name or group name in the
roles. To limit by a user name or group name in the roles, in the box beside Show, select Roles containing users. In the next box,
type the user name or group name, or type part of a name, and then click the magnifying glass button.

New

Click to display the Mining Model Role dialog box, where you can create and add a new mining model role. When you create a
new role, a database role with the same name and specifications is also created.

Edit

Click to display the Mining Model Role dialog box, where you can edit this role.

Duplicate

Click to display the Duplicate Role dialog box, where you can supply a name for a new role based on the selected mining model
role. When you create a new mining model role in this way, a database role with the same name and specifications is also created.

Analysis Services (SQL Server 2000)

Merge Partitions Dialog Box
Merge Partitions Dialog Box

Use this dialog box to merge two partitions. The data and aggregations of the partition you selected in the Analysis Manager tree
pane are consolidated into the partition you select in the Into this partition box, and the first partition is then deleted.

This dialog box appears when, in the Analysis Manager tree pane, you expand the Partitions folder for a cube, right-click a
partition, and then click Merge. This command is available only for partitions in cubes that contain more than one partition.

Caution When you merge partitions that have different fact tables, you must manually merge the fact tables so the target
partition's fact table contains all the facts required for the combined partition. For more information, see Merging Partitions.

Options

Merge this partition

View the partition you selected in the Analysis Manager tree pane. This is the source partition. After being merged, it is deleted.

into this partition

Select the target partition with which you want the source partition to be merged. After merging, this partition is the one that
remains.

Merge

Click to consolidate the specified partitions. The newly merged partition is processed after you click Merge. Processing status of
the partition is displayed in the Process dialog box.

Analysis Services (SQL Server 2000)

Multidimensional Data Source Dialog Box
Multidimensional Data Source Dialog Box

Use this dialog box to define a new multidimensional data source for a new linked cube. This new data source must use an
existing Microsoft® SQL Server 2000™ Analysis Services database on an Analysis server, and you must have access to the
database. You can provide access by including your user name in the OLAP Administrators group for the linked cube's publishing
server or by including it in a cube role for the source cube.

For more information about data sources, see Data Sources. For more information about access requirements for linked cubes,
see Linked Cubes.

This dialog box appears when in the Linked Cube dialog box, you click New Data Source.

Options

Server

Type the name of the Analysis server to which you want to connect.

Note You cannot connect to an Analysis server by specifying its IP address.

Database

Select the database that contains the source cube you want to use for the new linked cube.

Advanced

Click to display the Data Link Properties dialog box. Use this dialog box to specify special options to connect to the linked cube's
publishing server.

Test Connection

Click to verify your connection to the linked cube's publishing server and source cube.

Analysis Services (SQL Server 2000)

Named Set Builder
Named Set Builder

Use this tool to create an expression to define a named set in the Multidimensional Expressions (MDX) syntax. You can build the
MDX expression for the named set by using appropriate combinations of the Data box, Functions box, Insert button, arithmetic
operator buttons, and number buttons, or by typing an expression directly into the Set expression box.

This tool appears when you are creating a new named set in either Cube Editor or Virtual Cube Editor.

Options

Set name

Enter a name for the new named set.

Set expression

Type the MDX expression to define the named set.

Important The Data and Functions boxes provide a convenient means for building valid expressions. You can either double-
click or drag values from both boxes to add them to the Set expression box. However, to add functions from libraries other than
the Microsoft® SQL Server™ 2000 Analysis Services MDX function library, you may need to type expressions containing such
functions directly into the Set expression box.

Data

Select the data structures in the cube that can be used as elements of the MDX expression.

Functions

Select the functions in the Analysis Services MDX function library and any additional libraries that have been registered. For more
information about the functions, see Function List. For information about an individual Analysis Services MDX function, select it,
and then press F1.

To add a function to the Set expression box, place the cursor where you want to insert the function, select a function in the
Functions box, and click Insert. The function syntax appears in the Set expression box. Replace arguments and their delimiters
(« and ») with the appropriate values.

Insert

Click to add the item selected in the Data box or Functions box to the Set expression box.

Arithmetic operator buttons

Click to add operators to the Set expression box.

Number buttons

Click to add numbers to the Set expression box.

Register

Click to display the Register Function Libraries dialog box, where you can register an external function type library (*.olb, *.tlb,
*.dll). The new library will appear in the Functions box. For more information, see Register Function Libraries Dialog Box.

MDX Usage Notes

You can use the following techniques when you create MDX expressions:

Null keyword

You can use the keyword Null to create an MDX expression whose value is null.

Temporary alias for a set

A set in a function can be given a temporary alias for use within the function by using the keyword As. In this example, the
set {State} is given the temporary alias S1 so it can be referred to later in the function in a nested iteration.

Sum({State} As S1, Sum(Geography.CurrentMember.Children,

Population * Val((Geography.CurrentMember.Properties("CityTax")) +
Val(S1.Current.Properties("StateTax")))))

See Also

Named_Sets

Analysis Services (SQL Server 2000)

OLAP Mining Model Editor
OLAP Mining Model Editor

Use this tool to browse the content of an OLAP data mining model and edit its structure. You can also use OLAP Mining Model
Editor and the associated dialog boxes to perform various procedures.

The following diagram shows the elements that make up OLAP Mining Model Editor.

Unlike Relational Mining Model Editor, OLAP Mining Model Editor does not show a schema view, because the OLAP data mining
model is based on the structure of a single cube. The browser pane shows only the content of the OLAP data mining model, while
the structure pane contains the complete structure of the cube, including indicators to show which dimensions, levels, member
properties, and measures from the cube provide input and predictable information to the OLAP data mining model.

OLAP Mining Model Editor appears when you do one of the following:

In the Analysis Manager tree pane, right-click an OLAP data mining model, and then click Edit.

In the Analysis Manager tree pane, click an OLAP data mining model, and then on the Action menu, click Edit.

OLAP Mining Model Editor has five elements. For more information about these elements, click a link in the following table.

To do this See
Perform various basic tasks within OLAP
Mining Model Editor.

Menu Bar (OLAP Mining Model Editor)

Carry out common functions within OLAP
Mining Model Editor.

Toolbar (OLAP Mining Model Editor)

View the OLAP data mining model
structure, such as input and predictable
columns.

Change the structure of the OLAP data
mining model.

Structure Pane (OLAP Mining Model
Editor)

View and edit properties associated with
the OLAP data mining model and its data
mining columns.

View descriptions of properties and the
objects to which they apply.

Properties Pane (OLAP Mining Model
Editor)

Display the content of the processed OLAP
data mining model.

Browser Pane (OLAP Mining Model Editor)

Analysis Services (SQL Server 2000)

Menu Bar (OLAP Mining Model Editor)
Menu Bar (OLAP Mining Model Editor)

Use the menu bar in OLAP Mining Model Editor to perform various tasks with OLAP data mining models.

The following table describes the menus and their associated options.

Menu item Description
File Saves OLAP data mining models and exits OLAP Mining Model

Editor.
Edit Allows you to include in or remove from the OLAP data mining

model dimensions, levels, member properties, and measures
associated with the cube upon which the mining model is based,
as well as specifying the case dimension for the OLAP data mining
model.

View Provides property viewing options.
Tools Supports processing of the OLAP data mining model.
Help Provides access to Help about OLAP Mining Model Editor, as well

as to SQL Server Books Online, which contains all of the Analysis
Services documentation.

Analysis Services (SQL Server 2000)

Toolbar (OLAP Mining Model Editor)
Toolbar (OLAP Mining Model Editor)

Use the toolbar to access the most commonly used functions in OLAP Mining Model Editor.

The following table describes the toolbar buttons in greater detail.

Button Description
Save Saves the OLAP data mining model.
Process Mining
Model

Processes the OLAP data mining model.

Analysis Services (SQL Server 2000)

Structure Pane (OLAP Mining Model Editor)
Structure Pane (OLAP Mining Model Editor)

Use the structure pane in OLAP Mining Model Editor to review and change the structure of an OLAP data mining model. The
structure pane provides a graphical representation of the usage of each dimension, level, member property, and measure in the
cube associated with the OLAP data mining model, as shown in the following diagram.

The check boxes beside each cube element in the structure pane indicate whether the cube element is used to define the OLAP
data mining model. Depending on the setting of the Case Dimension, Case Level, or Usage properties, the checked cube
elements are used to create data mining columns of various usage types.

The following table describes the data mining column usage types in more detail.

Column type Description
Input The dimension, level, member property, or

measure is used by the OLAP data mining
model as an attribute column, to supply
input for the case set.

Predictable The dimension, level, member property, or
measure is used by the OLAP data mining
model as a predictive column, to supply
output for the case set.

Input and predictable The dimension, level, member property, or
measure is used by the OLAP data mining
model as an attribute column, to supply
both input and output for the case set.

Analysis Services (SQL Server 2000)

Properties Pane (OLAP Mining Model Editor)
Properties Pane (OLAP Mining Model Editor)

Use the properties pane in OLAP Mining Model Editor to view properties associated with the OLAP data mining model and its
data mining columns.

The following table describes the features of the properties pane.

Feature Description
Properties button Use this button to show or hide the properties pane.
Basic tab The Basic tab shows the most commonly used properties,

such as Name and Description, for the OLAP data mining
model and mining model columns.

Description This area of the properties pane displays the name and
brief explanation of a property selected in the Basic tab.

Basic Properties

The Basic tab is used to display and, optionally, edit the most commonly viewed properties for OLAP data mining models and
data mining columns. The following table describes the properties displayed in the Basic tab in more detail for each type of
object, such as mining model, dimension, level, member property, and measure, that can be selected in the structure pane.

Property Description Applicable
objects

Name The name of the selected object. This
property is read-only.

All

Description The description of the selected object.
This property is not available for
dimensions whose Case Dimension
property is True, and is read-only for
levels whose Case Level property is
True.

All

Source Object The source object from the cube
associated with the OLAP data mining
model.

All, except data
mining model

Usage Determines how the object will be used
in the OLAP data mining model. For more
information about the usage types, see
structure pane (OLAP Mining Model
Editor). This property is not available for
dimensions whose Case Dimension
property is True, and is read-only for
levels whose Case Level property is
True.

All

Source Cube The source cube associated with the
OLAP data mining model.

Data mining
model

Mining Algorithm The name of the mining algorithm
provider used by the OLAP data mining
model.

Data mining
model

Additional Parameters A comma-delimited list of mining
parameters and values for the OLAP data
mining model.

Data mining
model

Case Dimension Indicates whether or not the dimension
provides the case set to be used by the
OLAP data mining model.

Dimension

Case Level Indicates whether or not the level
provides the case set to be used by the
OLAP data mining model.

Level

Cluster Count The number of clusters the algorithm
identifies.

Data mining
model

Analysis Services (SQL Server 2000)

Browser Pane (OLAP Mining Model Editor)
Browser Pane (OLAP Mining Model Editor)

The browser pane of OLAP Mining Model Editor shows the mining model content of processed OLAP data mining models. The
browser pane uses Data Mining Model Browser to illustrate the mining model content.

The following diagram shows the browser pane for processed OLAP data mining models, with a displayed Microsoft® Decision
Trees node structure.

For more information on the Data Mining Model Browser, see Data Mining Model Browser.

Analysis Services (SQL Server 2000)

Partition Processing Settings Dialog Box
Partition Processing Settings Dialog Box

Use this dialog box to specify settings for processing a cube. Settings in this dialog box are used whenever a cube or one of its
partitions is processed.

This dialog box appears when, in DTS Designer, you click Cube Settings in the Analysis Services Processing Task dialog box.

Important Cube or partition processing options are stored with the meta data for the cube or partition. Changes to the settings
for these options replace previous settings for the cube or partition, regardless of whether the options are set by Analysis
Manager, Data Transformation Services (DTS) tasks, or Decision Support Objects (DSO) applications.

Options

After all aggregations have been calculated

Select to make data unavailable for browsing until all aggregations have been computed. This is the default option.

Immediately after data is loaded

Select to make data available for browsing after it has been loaded but before all aggregations have been computed. This means
that new data is available for querying sooner, but the Analysis server may not be as responsive to query execution.

Stop processing after encountering missing dimension key errors

Select to stop processing if dimension key errors are encountered.

Processing will stop after

Specify the number of errors (the default is 0).

Ignore all missing dimension key errors

Select to have processing continue despite dimension key errors.

Log dimension key errors to a file

Select to log dimension key errors to a file. Use one of the following options to provide the file name and path.

File path and name

Type a path to the text file in which you want to log dimension key errors.

Browse

Click to select a local or network location for the file.

See Also

Process a Cube Dialog Box

Processing Cubes

Analysis Services (SQL Server 2000)

Prediction Query Builder
Prediction Query Builder

Use this tool to create prediction query syntax for a Data Mining Prediction Query task that conforms to the OLE DB for Data
Mining specification.

This dialog box is displayed when you click New Query on the Query tab of the Data Mining Prediction Query Task dialog
box.

Options

Case table

Select the source table that contains the cases to be analyzed for the prediction query.

Browse

Click to view a sample of data from the source table.

Input columns

Clear the check box next to the name of an input column other than the case key column to remove it from the prediction query.
The case key column is used to uniquely identify records in the results of the prediction query.

Note Excluding columns from Input columns may affect the values of the predicted column in the output table the task
produces.

Name

View the names of input columns from the source table that are available to be included in the prediction query.

Source Column

View the names of input columns selected to be included in the prediction query.

Predicted column

Select a predicted column from the list of available prediction columns. The definition of the data mining model used in the data
mining prediction query task determines which columns are available.

See Also

Data Mining Prediction Query Task Dialog Box

Predictions and Results of Data Mining

5

Analysis Services (SQL Server 2000)

Process Dialog Box
Process Dialog Box

Use this dialog box to monitor processing operations while processing your cube, dimension, data mining model, or database.

This dialog box appears at various times when you process, incrementally update, or refresh the data in a cube or dimension. It
also appears when you process a database or when you process or incrementally update a data mining model.

Options

Status bar

View the status of processing operations on the cube, dimension, data mining model, or database.

Stop

Click to halt and cancel processing operations on the cube, dimension, data mining model, or database.

Reprocess

Click to restart processing operations on the cube, dimension, data mining model, or database from the beginning.

View Details

Click to display the View Trace Line dialog box. Click a message, and then click View Details to see details about the message.

Analysis Services (SQL Server 2000)

Process a Cube Dialog Box
Process a Cube Dialog Box

Use this dialog box to choose how to process a cube.

This dialog box appears when you right-click a cube in the Analysis Manager tree pane, and then click Process.

Options

Incremental update

Select to append new data from the data warehouse to one of your cube's partitions and update aggregations. An incremental
update does not affect the existing data that has already been processed and usually requires significantly less time than
processing with the Process option.

An incremental update can be performed while users continue to query the cube; after the update has completed, users will have
access to the additional data without having to reconnect.

This option is not applicable if the cube's structure has changed, or if the data from which the cube was created has changed.

Caution This option updates a partition. Incorrect use of partitions can result in inaccurate cube data. For more information, see
Managing Partitions.

Refresh data

Select to cause the cube's data to be cleared and reloaded and aggregations recalculated. This option is applicable when the
underlying data in the data warehouse has changed but the cube's structure remains the same.

A refresh can be performed while users continue to query the cube; after the refresh has completed, users will have access to the
refreshed data without having to reconnect.

Full Process

Select to completely rebuild your cube after you have made structural changes to it, such as adding a dimension, dimension level,
or measure. This option restructures the cube based on its current definition and recalculates and reloads its data. This option can
take a long time.

After you process a cube with this option, users must reconnect to the server computer to continue working with the cube.

If a shared dimension's structure is updated and saved but not processed, it will automatically be processed when any cube
incorporating the dimension is processed with this option. At that time any other cubes that incorporate the dimension
immediately become unavailable to users and must be processed before they can be used again.

Incrementally update the dimensions of this cube

Select to enable incremental updating of the cube's shared and private dimensions whenever the cube is processed.

Settings

Click to display the Cube Processing Settings Dialog Box, where you can specify additional cube processing options.

See Also

Cube Processing Settings Dialog Box

Processing Cubes

Analysis Services (SQL Server 2000)

Process a Dimension Dialog Box
Process a Dimension Dialog Box

Use this dialog box to process a shared dimension.

This dialog box appears when in the Analysis Manager tree pane, in the Shared Dimensions folder, you right-click a shared
dimension, and then click Process.

Options

Incremental update

Select this option to append new dimension members to your shared dimension. This option is appropriate when the structure
and relationship of the dimension levels and members have not changed, but new members (that is, rows) have been added to
the dimension table.

A cube that incorporates a shared dimension remains available to users while the dimension is incrementally updated, and the
added dimension members are available in the cube after the update is complete.

Rebuild the dimension structure

Select this option to completely rebuild the dimension structure. This option is appropriate after you have made changes to the
structure or relationship of the dimension levels or members. For example, use this option after you add, delete, or move a level,
or after you move a member from one parent member to another.

Important If a shared dimension's structure is updated and saved but not processed, it will automatically be processed when any
cube incorporating the dimension is processed. At that time any other cubes that incorporate the dimension immediately become
unavailable to users and must be processed before they can be used again.

Analysis Services (SQL Server 2000)

Process a Mining Model Dialog Box
Process a Mining Model Dialog Box

Use this dialog box to choose how to process a relational or OLAP data mining model.

This dialog box appears when you right-click a relational or OLAP data mining model in the Analysis Manager tree pane, and then
click Process.

Options

Refresh data

Select to cause the content for the data mining model to be cleared and retrained.

A refresh can be performed while users continue to access the data mining model; after the refresh has completed, users will have
access to the refreshed data without having to reconnect.

Full process

Select to completely rebuild your data mining model after you have made structural changes to it, such as adding a supporting
table or a data mining column or changing the usage of an existing data mining column. This option restructures the data mining
model based on its current definition, and fully trains the mining model. This option can take a long time.

After you process a data mining model with this option, users must reconnect to the server computer to continue working with
the data mining model.

See Also

Training Data Mining Models

Analysis Services (SQL Server 2000)

Properties Dialog Box
Properties Dialog Box

 New Information - SQL Server 2000 SP3.

Use this dialog box to specify options for warnings, file locations, performance and memory settings, processing, logging, add-ins,
and Active Directory™.

This dialog box appears when you right-click a server in the Analysis Manager tree pane and then click Properties.

The Properties dialog box has seven tabs. For more information about the tabs, click a link in the following table.

To do this See
Specify whether certain warnings are
displayed and to change the folders used
by Microsoft® SQL Server™ 2000
Analysis Services.

General Tab (Properties Dialog Box)

Change performance and memory
settings.

Environment Tab (Properties Dialog Box)

Change optimization settings. Processing Tab (Properties Dialog Box)
Change the settings for the automatic
logging of queries performed by Analysis
Services and the automatic logging of
processing messages.

Options in this tab affect the output of the
Usage-Based Optimization Wizard and the
Usage Analysis Wizard.

Logging Tab (Properties Dialog Box)

Control which add-ins are started
automatically with Analysis Manager.

Add-ins Tab (Properties Dialog Box)

Register an Analysis server with Active
Directory, and set properties.

Active Directory Tab (Properties Dialog
Box)

Enable error reporting for Analysis
Services.

Error Reporting Tab (Properties Dialog
Box)

Options

The following option is displayed for all tabs.

Reset Defaults

Resets options on all tabs of the Properties dialog box, except the Add-ins tab, to their default installation values.

Analysis Services (SQL Server 2000)

General Tab (Properties Dialog Box)
General Tab (Properties Dialog Box)

Use this tab to specify whether certain warnings are displayed and to change the folders used by Microsoft® SQL Server™ 2000
Analysis Services.

Options

Enable dimension level counting

Select to cause Analysis Services to count the members in a new dimension level when it is added. If you select this option,
whenever a user attempts to add a level below a level with more members, the following warning is displayed.

Although this option provides real-time hierarchical structure validation, counting large numbers of members may take several
minutes or longer. Turning off the option speeds up the dimension creation process; however, the hierarchical structure of
members is not validated.

Default: Members are counted automatically, and warnings are displayed.

Note In the Dimension Wizard, you can temporarily override this option by using the Count level members automatically
check box. The override is effective only for the duration of the wizard.

Show process warning

Select to cause Analysis Services to display the following warning when a new or updated cube is saved without aggregations.

Individual administrators can turn off the option by selecting the Don't show this message again check box in the Design
Storage dialog box. Thereafter, the only way to begin displaying the warnings again is to select the Show process warning
check box in the Properties dialog box.

Default: Warnings are displayed.

Show database password warning

Select to cause Analysis Services to display a warning when a data source is saved with a password. The following warning is
displayed when in the Data Link Properties dialog box, on the Connection tab, an administrator specifies a user name and
password, selects the Allow saving of password check box, and then clicks OK.

In the Security Warning dialog box, the administrator can click Cancel to avoid the security exposure.

Individual administrators can turn off the option by selecting the Don't show this message again check box in the Security

Warning dialog box. Thereafter, the only way to begin displaying the warnings again is to select the Show database password
warning check box in the Properties dialog box.

Default: Warnings are displayed.

To display warnings when data source passwords are saved, select the Show database password warning check box, and then
click OK.

Data folder

Select the Data folder used by Analysis Services. If you select a new folder, the temporary file folder (see below) is also changed to
that folder. If you select a new folder, Analysis Services does not access existing data.

Important The Data folder stores security files that control end users' access to objects on the Analysis server. For this reason,
you must secure the Data folder against unauthorized access.

The maximum allowed length is 102 characters.

Default: C:\Program Files\Microsoft Analysis Services\Data

To change the Data folder used by Analysis Services, click Browse next to the Data folder box, select a new folder, and then click
OK.

Temporary file folder

Select the temporary folder used by Analysis Services. If you select a new Data folder, the temporary file folder is also changed to
that folder.

The maximum allowed length is 102 characters.

Default: the folder specified in the Data folder box.

To change the temporary file folder used by Analysis Services, click Browse next to the Temporary file folder box, select a new
folder, and then click OK. If you change this folder, you must stop and then restart the Analysis server service
(MSSQLServerOLAPService).

Analysis Services (SQL Server 2000)

Environment Tab (Properties Dialog Box)
Environment Tab (Properties Dialog Box)

Use this tab to change performance and memory settings.

Options

Maximum number of threads

Set the number of threads that can simultaneously use the CPUs in the server computer.

Default: two times the number of CPUs in the server computer.

Valid range: 1-1000.

To change the maximum number of threads, in the Maximum number of threads box, specify the maximum number. Only
integers are valid.

Large level defined as

Set the minimum number of members a dimension level must contain to be processed as a large level.

Microsoft® SQL Server™ 2000 Analysis Services classifies dimension levels into large and small categories based on the number
of level members. These two categories are processed differently. For example, large levels are not sent to the client unless they
are specifically requested, but small levels are sent to the client even if the entire level is not requested.

Default: 1,000 members.

Valid range: 1-10,000 members.

To change the definition of large levels, in the Large level defined as box, specify the minimum number of members a
dimension level must contain to be processed as a large level. Only integers are valid.

Minimum allocated memory

Set the amount of memory allocated exclusively to Analysis Services. Actual memory usage may exceed this value.

Default: one-half of the server computer's memory.

To change the amount of memory allocated to Analysis Services, in the Minimum allocated memory box, specify the allocated
memory in megabytes (MB). Only integers are valid.

Memory conservation threshold

Set the memory threshold near which memory usage decreases. When the amount of memory used by Analysis Services
approaches this threshold, usage decreases as memory management becomes more efficient. Actual memory usage may exceed
this value unless the default value is used.

Default: all of server computer's memory.

To change the threshold for memory usage, in the Memory conservation threshold box, specify the threshold in MB. Only
integers are valid.

Analysis Services (SQL Server 2000)

Processing Tab (Properties Dialog Box)
Processing Tab (Properties Dialog Box)

Use this tab to change optimization settings.

Options

Read-ahead buffer size

Set the maximum amount of data placed into memory during each read of the database. Setting this option as high as possible
minimizes the number of disk accesses.

Default: 4 megabytes (MB).

To change the read-ahead buffer size, in the Read-ahead buffer size box, specify the buffer size in MB. Only integers are valid.

Process buffer size

Set how much data is processed in memory before an I/O is performed. The larger the value, the fewer the I/Os.

Default: 4 MB.

To change the process buffer size, in the Process buffer size box, specify the buffer size in MB. Only integers are valid.

Server timeout

Set the maximum time Microsoft® SQL Server™ 2000 Analysis Services waits for a reply from a query to the data source when
an object is processed. If the Server timeout check box is selected and the specified time elapses without a reply, a timeout
occurs, and processing fails.

Default: 0 (disabled).

Valid range: 0 (disabled) - 1,000,000 seconds (approximately 11 days, 13 hours, 46 minutes).

To enable a server timeout, select the Server timeout check box. Then, in the Seconds box, specify the amount of time that
elapses between submission of a query and timeout. Only integers are valid.

Analysis Services (SQL Server 2000)

Logging Tab (Properties Dialog Box)
Logging Tab (Properties Dialog Box)

Use this tab to change the settings for the automatic logging of queries performed by Microsoft® SQL Server™ 2000 Analysis
Services and the automatic logging of processing messages.

The Usage-Based Optimization Wizard and Usage Analysis Wizard rely on the query log. Options in this tab affect the output of
these wizards.

Options

Log queries sent to server

Select to enable query logging.

Write to log once per __ queries

Specify the frequency of query logging. By default, every tenth query is logged. You can turn off query logging altogether or
change the frequency.

Important Setting this option too low may adversely affect performance. Only integers are valid for this setting.

Default: 10 (1 in 10 queries is logged).

Valid range: 1-10,000.

Clear log

Select to delete the contents of the query log.

Consider clearing the query log after you run the Usage-Based Optimization Wizard consecutively on all cubes on the server.

To clear the query log, click Clear log, and then click Yes.

Log processing messages to a file

Select to enable the logging of processing messages to a log file (.log).

File path and name

Type a path and a name for the log file. UNC paths are recommended.

Browse

Click to display the Open dialog box, where you can select a path and specify a file name for the File path and name box.

See Also

Analyzing Usage Patterns

Optimizing Performance Based on Usage

Usage Analysis Wizard

Usage-Based Optimization Wizard

Analysis Services (SQL Server 2000)

Add-ins Tab (Properties Dialog Box)
Add-ins Tab (Properties Dialog Box)

Use this tab to control which add-ins are started automatically with Analysis Manager. Add-ins are other applications that are
compatible with Microsoft® SQL Server™ 2000 Analysis Services but may be produced by companies other than Microsoft.
Changes on this tab do not take effect until Analysis Manager is restarted.

Important Unlike the other tabs in the Properties dialog box, the Add-ins tab always applies to the local computer even if you
displayed the dialog box by selecting a remote server.

Options

Available Add-ins

View the installed add-ins. Add-ins with selected check boxes are started automatically when you start Analysis Manager. They are
started in the order displayed.

Priority

Set the order in which add-ins are started with Analysis Manager.

To change the order in which add-ins are started, click the add-in to change, and click one of the Priority buttons repeatedly until
they are in the order you want.

Description

View a description of the add-in selected in the Available Add-ins box.

Reset Defaults

This button does not affect the options on this tab.

Analysis Services (SQL Server 2000)

Active Directory Tab (Properties Dialog Box)
Active Directory Tab (Properties Dialog Box)

Use this tab to register an Analysis server with Active Directory™ directory services and provide information about the server. You
can also use this tab to edit or delete the information you provide.

Options

Enable Active Directory registration

Select this check box to enable the options on this dialog box and to register the server with Active Directory.

Keywords

Define a comma-separated list of search keywords used to identify this server. For example, you can indicate the organization or
workgroup, whether the server is dedicated to production or development activities, or the location of the server.

InformationURL

Specify a URL to a Web page containing detailed information about the server or server object. The URL that you specify must
correspond to a custom Web page that you create and publish within your intranet. The page that you create should contain
additional information about the server.

Contact

Specify the name of the person responsible for maintaining the Analysis server or the Microsoft® SQL Server™ 2000 instance
that hosts the Analysis server. The values you enter are stored as a text string. You can type the contact's full name, an e-mail alias,
or both.

Name

Type a descriptive name that identifies the Active Directory server that contains registration information about the Analysis server.
The name that you provide serves as a user-friendly alias that is intended as an alternative to the computer name. This name is
stored as a text string. It does not need to be unique. The name can include special characters or symbols, spaces, and
alphanumeric characters.

See Also

Using Active Directory with Analysis Services

Analysis Services (SQL Server 2000)

Error Reporting Tab (Properties Dialog Box)
Error Reporting Tab (Properties Dialog Box)

 New Information - SQL Server 2000 SP3.

Use this tab to enable error reporting for Analysis Services.

Options

Enable the error reporting feature

Enabling this feature configures Analysis Services to send a report to Microsoft automatically if a fatal error occurs in Analysis
Services. Microsoft uses error reports to improve SQL Server functionality, and treats all information as confidential.

To turn off error reporting for Analysis Services, clear the Enable the error reporting feature check box.

For more information about error reporting, see Using Error Reporting.

Analysis Services (SQL Server 2000)

Relational Mining Model Editor
Relational Mining Model Editor

Use this tool to browse the content of a relational data mining model and edit its structure. You can also use Relational Mining
Model Editor and associated dialog boxes to perform various procedures.

The following diagram shows the elements that make up Relational Mining Model Editor.

Unlike OLAP Mining Model Editor, Relational Mining Model Editor supplies two views, schema and content. Use the schema view
to view the case and supporting tables that help in defining the data mining columns for the mining model. Use the content view
to examine the data mining model content. You can switch from one view to another by clicking the Schema tab or the Content
tab at the bottom of Relational Mining Model Editor. You can also click Schema or Content on the View menu.

Relational Mining Model Editor appears when you do one of the following:

In the Analysis Manager tree pane, right-click a data mining model, and then click Edit.

In the Analysis Manager tree pane, click a data mining model, and then on the Action menu, click Edit.

Relational Mining Model Editor has five tabs. For more information about the tabs, click a link in the following table.

To do this See
Perform various basic tasks within
Relational Mining Model Editor.

Menu Bar (Relational Mining Model Editor)

Carry out common functions within
Relational Mining Model Editor.

Toolbar (Relational Mining Model Editor)

View the mining model structure, such
as column types.

Structure Pane (Relational Mining Model
Editor)

View and edit properties associated
with the relational mining model and its
data mining columns.

View descriptions of properties and the
objects to which they apply.

Properties Pane (Relational Mining Model
Editor)

Display two views of the mining model
provided by the Data and the Schema
tabs in the browser pane.

Browser Pane (Relational Mining Model
Editor)

Analysis Services (SQL Server 2000)

Menu Bar (Relational Mining Model Editor)
Menu Bar (Relational Mining Model Editor)

Use the menu bar to perform various tasks with relational data mining models.

The following table describes the menus and their associated options.

Menu item Description
File Saves relational data mining models and exits Relational Mining

Model Editor.
Edit Allows you to rename or delete columns in the relational data

mining model, as well as removing or reversing joins in the
schema of the mining model.

View Provides schema, content and property viewing options.
Insert Inserts tables, columns, and nested tables into the relational

data mining model.
Tools Supports processing of the relational data mining model.
Help Provides access to Help about Relational Mining Model Editor,

as well as access to SQL Server Books Online, which contains all
of the Microsoft® SQL Server™ 2000 Analysis Services
documentation.

Analysis Services (SQL Server 2000)

Toolbar (Relational Mining Model Editor)
Toolbar (Relational Mining Model Editor)

Use the toolbar to access the most commonly-used functions in Relational Mining Model Editor.

The following table describes the toolbar buttons in greater detail.

Button Description
Save Saves the relational data mining model.
Insert Table Adds a new table to the schema of the relational data

mining model.
Insert Column Adds a new column to the structure of the relational data

mining model.
Insert Nested Table Adds a new nested table to the structure of the relational

data mining model.
Process Mining Model Displays the Process a mining model dialog box,

where you can select the processing method for the
relational mining model.

Analysis Services (SQL Server 2000)

Structure Pane (Relational Mining Model Editor)
Structure Pane (Relational Mining Model Editor)

The structure pane provides a graphical representation of the usage of each data mining model column in the mining model, as
shown in the following diagram.

The following table describes column types in more detail.

Column type Description
Key Column The column the mining model uses as a key column.

The key column is an identifying column for the case
set.

Input Column The column the mining model uses as an attribute
column for input for the case set.

Predictable Column The column the mining model uses as a predictive
column for output for the case set.

Input and Predictable
Column

The column the mining model uses as an attribute
column for both input and output for the case set.

Analysis Services (SQL Server 2000)

Properties Pane (Relational Mining Model Editor)
Properties Pane (Relational Mining Model Editor)

Use the properties pane in Relational Mining Model Editor to view properties associated with the relational data mining model
and its data mining model columns.

The following table describes the features of the properties pane.

Feature Description
Properties button Shows or hides the properties pane.
Basic tab Shows the most commonly used properties, such as

Name and Description, for the mining model and
mining model columns.

Advanced tab Displays advanced properties, such as Distribution and
Content Type, used to further define the mining model
columns.

Description Displays the name and a brief explanation of the property
selected in the properties pane.

Basic Properties

The Basic tab is used to display and, optionally, edit the most commonly viewed properties for data mining models and data
mining columns. The following table describes the properties displayed in the Basic tab in more detail, and it indicates the data
mining object (data mining model or data mining column) to which the property applies.

Property Description Applicable objects
Name The name of the selected data mining

model or column. This property is read-
only for data mining models.

Both

Description The description of the selected data
mining model or column.

Both

Mining Algorithm The data mining algorithm provider for
the selected data mining model.

Data mining model

Are Keys Unique Whether the key columns in the data
mining model uniquely identify records
in the source case table.

Data mining model

Is Case Key Whether the data mining column is used
as a key column in the data mining
model. This property must be set to
False before you can delete the column.

Data mining column

IsNestedKey Whether the data mining column is used
as a key column for a nested table in the
data mining model. This property must
be set to False before you can delete the
column.

Data mining nested
table column

Source Column The name of the source column in the
case or supporting table.

Data mining column

Data Type The data type of the data mining
column. This setting must be compatible
with the data mining algorithm provider
that is being used. The data types and
algorithms that Microsoft® SQL
Server™ 2000 Analysis Services
supports are documented in the OLE DB
for Data Mining specification. For more
information about the OLE DB for Data
Mining specification, see the Microsoft
OLE DB Web page at the Microsoft Web
site. For data types supported by data
mining algorithm providers, see the data
mining algorithm provider
documentation.

Data mining column

Usage Whether the data mining column is used
as an input column, a predictable
column, or both. This property is read-
only for key columns.

Data mining column

Additional
Parameters

A comma-delimited list of provider-
specific mining parameter names and
values. For mining parameters
supported by data mining algorithm
providers, see the data mining algorithm
provider documentation.

Data mining model

Advanced Properties

The Advanced tab displays advanced properties for data mining models and data mining columns, such as relation column
information and distribution. The following table describes these advanced properties in more detail.

Property Description Applicable objects
Related To For relation columns, the name of the

column to which the selected data
mining column is related. It is read-only
for key columns. When this property is
set for a column, the Usage property is
changed to match the value of the
related column.

Data mining column

Distribution The distribution flag, such as NORMAL
or UNIFORM, of the data mining
column. It is read-only for key columns.

Data mining column

Content Type The content type, such as DISCRETE or
ORDERED, for the data mining column. It
is read-only for key columns.

Data mining column

Data Options The model flag, such as
MODEL_EXISTENCE_ONLY or NOT
NULL, of the data mining column. It is
read-only for key columns.

Data mining column

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services (SQL Server 2000)

Browser Pane (Relational Mining Model Editor)
Browser Pane (Relational Mining Model Editor)

The browser pane provides two views of the relational data mining model. The Schema tab shows the case and associated tables
used to construct the relational data mining model. The Content tab shows the mining model content for processed relational
data mining models. The Content tab uses Data Mining Model Browser to illustrate the mining model content.

The following diagram shows the Schema tab with a displayed case table.

The following diagram shows the Content tab with a displayed Microsoft® Decision Trees node structure.

Analysis Services (SQL Server 2000)

Register Analysis Server Dialog Box
Register Analysis Server Dialog Box

Use this dialog box to register Analysis servers.

To register an Analysis server, your user name must be included in the OLAP Administrators group on that Analysis server. If your
user name is added to the OLAP Administrators group, you must log off and log on Microsoft® Windows® before you can
register the Analysis server.

This dialog box appears when you:

Right-click the Analysis Servers folder in the Analysis Manager tree pane and then click Register Server.

-or-

Click Register Server in the Partition Wizard.

Options

Server name

Type the name of the Analysis server to which you want to connect.

Note You cannot register an Analysis server by specifying its IP address.

Analysis Services (SQL Server 2000)

Register Function Libraries Dialog Box
Register Function Libraries Dialog Box

Use this dialog box to register function libraries of other products or user-defined function libraries.

You can create user-defined functions to provide functions not in the Microsoft® SQL Server™ 2000 Analysis Services function
library. A user-defined function can be developed on any tool capable of generating Microsoft ActiveX® libraries.

You can register user-defined function libraries of the following types:

Type libraries (*.olb, *.tlb, *.dll)

Executable files (*.exe, *.dll)

ActiveX controls (*.ocx)

The Analysis Services functions always take precedence over registered function libraries when function name conflicts occur
(that is, two libraries contain the same function name). Except Analysis Services functions, the order of the libraries in the list is
important. It defines the precedence of function resolution in cases of name conflicts. The first library takes precedence.

Analysis Services automatically registers the Microsoft Visual Basic® for Applications Expression Services function library
(VBA332.dll) and the library that supports the Microsoft Excel worksheet functions. However, the Excel library must be installed
separately from Analysis Services. For more information, including lists of supported functions, see Visual Basic for Applications
Functions and Excel Functions.

This dialog box appears when you click Register in Calculated Member Builder or MDX Builder. After libraries are registered, the
program IDs of the libraries appear in the Functions box of Calculated Member Builder or MDX Builder. You can return to the
Register Function Libraries dialog box and add or remove other libraries.

Note Functions are supported only if they accept as arguments only string or numeric data types, or array or variant data types
containing string or numeric values. In addition, functions are supported only if they return only string or numeric data types, or
variant data types containing numeric values.

Options

Add

Click to locate and select the library file you want to register. The program IDs associated with the function library appear in the
list box.

Remove

Click to remove a selected program ID from the selection to be registered.

Close

Click to complete registration when you are satisfied that the correct programs in external function libraries are contained in the
list box.

Calling a User-Defined Function within MDX

After a user-defined function is registered in the Register Function Libraries dialog box, it can be used anywhere in the
Multidimensional Expressions (MDX) syntax that allows expressions, for example:

With Member Measures.[Forecasted Sales] As
 'Sales * ForecastedGrowthRate(SaleReps.CurrentMember.Name)'
Select TopCount(SalesReps, HowManyReps(), Sales) on Rows,
 {Sales, [Forecasted Sales] } on Columns
From Sales

The HowManyReps and ForecastedGrowthRate user-defined functions are defined as:

Public Function HowManyReps() as Integer
Public Function ForecastedGrowthRate(RepName as String) as Double

Note There may be multiple user-defined functions residing in the same ActiveX library.

Analysis Services (SQL Server 2000)

Remote Server Data Directory Dialog Box
Remote Server Data Directory Dialog Box

Use this dialog box to confirm or change the path of the Data directory to which a Microsoft® SQL Server™ 2000 Analysis
Services database will be restored.

For more information about restoring Analysis Services databases, see Archiving and Restoring Databases.

This dialog box is displayed when, in the Analysis Manager tree pane, you right-click a remote server and then click Restore
Database.

Options

Path

Specify the path of the Data directory that will contain the files for the database after the restoration is complete.

The Data directory is created during installation of Analysis Services and contains a directory for each database on the Analysis
server. The default path of the Data directory is:

C:\Program Files\Microsoft Analysis Services\Data\

You can change the \Program Files\Microsoft Analysis Services\ portion of the path. (To determine the current path, right-click the
remote server, click Properties, and then see the Data folder box.)

In the Path box, you must precede the path of the Data directory with the remote server name. If the Data directory is shared at its
disk level, you must also include the share name associated with the disk. The following example Path value includes the server
name Server-1 and the disk share name C$.

\\Server-1\C$\Program Files\Microsoft Analysis Services\Data\

Browse

Click to display a dialog box in which you can browse available paths and select one.

OK

Click to select the path in the Path box and continues the restoration procedure.

If OK is unavailable (dimmed), the path in the Path box is not valid or you do not have authorization to access it.

Analysis Services (SQL Server 2000)

Restore Database Dialog Box
Restore Database Dialog Box

Use this dialog box to begin the restoration of a Microsoft® SQL Server™ 2000 Analysis Services database.

Caution When you restore a database, its file set (in the Data directory and its subdirectories) and its meta data are returned to
their states at the time the archive file was created. Files that were created since then in these directories are deleted. Changes and
additions since then to Analysis Services repository records for the database and its objects are removed.

For more information about restoring Analysis Services databases, see Archiving and Restoring Databases.

This dialog box is displayed when in the Open Archive File dialog box you click Open. To open the Open Archive File dialog
box, right-click the server on which you want to restore the database, and then click Restore Database.

Options

Restore

Click to start the restoration and display the Restore Database Progress dialog box, where you can monitor or cancel the
restoration.

Analysis Services (SQL Server 2000)

Restore Database Progress Dialog Box
Restore Database Progress Dialog Box

Use this dialog box to monitor the restoration of a Microsoft® SQL Server™ 2000 Analysis Services database. You can also cancel
the restoration or save the restore log.

For more information about restoring Analysis Services databases, see Archiving and Restoring Databases.

This dialog box is displayed when, in the Restore Database dialog box, you click Restore. To restore a database, right-click the
server on which you want to restore the database, and then click Restore Database. This displays the Open Archive File dialog
box. Select an archive to restore, and then click Open to display the Restore Database dialog box.

Options

Save Log

Click to display a dialog box in which you specify the path and file name of the restore log and then save it. If the restoration
completes successfully, the restore log contains a list of the restored files. Otherwise, the restore log contains one or more
messages. Save Log is available only after the restoration is completed or canceled.

Cancel

Click to cancel the restoration. If you click Cancel and receive a message indicating that the extraction was cancelled, nothing has
been restored. A delay may occur between clicking Cancel and display of the message.

Cancel is replaced by Close after the restoration is completed or canceled.

Close

Click to close the dialog box. Close is available only after the restoration is completed or canceled.

Analysis Services (SQL Server 2000)

Save Object Dialog Box
Save Object Dialog Box

Use this dialog box to name objects.

This dialog box appears at various times when you save new or edited objects.

Option

Object name

Type a name for the object. For a dimension name, you can enter a maximum of 24 characters. For the names of other objects,
such as cubes, you can enter a maximum of 50 characters.

Analysis Services (SQL Server 2000)

Select Column Dialog Box
Select Column Dialog Box

Use this dialog box to select a column in the Dimension Wizard, Dimension Editor, Cube Editor, or Relational Mining Model Editor.

This dialog box appears when you perform one of the following actions:

In the Dimension Wizard, specify ordering options for a new dimension.

In Dimension Editor or Cube Editor, specify various property values.

On the Relational Mining Model Editor toolbar, select Insert Column.

Options

Tree pane

View the available columns.

Column Types

Select or clear check boxes to display columns of the type described.

Analysis Services (SQL Server 2000)

Select Nested Table Key Column Dialog Box
Select Nested Table Key Column Dialog Box

Use this dialog box to specify the key column for a nested table in a relational data mining model. To add a nested table to the
mining model definition, you must first add it as a supporting table in the Schema tab of Relational Mining Model Editor.

This dialog box appears when you do one of the following in Relational Mining Model Editor:

Click the Insert Nested Table button on the toolbar.

Click Nested Table from the Insert menu.

Options

Select a column

Choose a column from an available supporting table to become the key for the new nested table.

Column Types

Select a data type to restrict the selection of available columns.

OK

Click to add the nested table to the mining model and to close the dialog box.

See Also

Relational Mining Model Editor

Analysis Services (SQL Server 2000)

Select Table Dialog Box
Select Table Dialog Box

Use this dialog box to select a table from a selected data source.

This dialog box appears at various times when you work in Cube Editor, Dimension Editor, or Relational Mining Model Editor.

Options

Tables

View the tables of the selected data source.

Details

View a description of the data source if a data source is selected in the Tables box. View the columns in the table if a table is
selected in the Tables box.

New Data Source

Click to display the Data Link Properties dialog box, where you can specify a new data source. This button is unavailable for
some operations.

Add

Click to select the table you choose. If you are replacing a table, click OK.

Analysis Services (SQL Server 2000)

Select the Parent Member Dialog Box
Select the Parent Member Dialog Box

Use this dialog box to select a different parent member for your calculated member. The parent member determines the location
of the calculated member in the dimension structure.

This dialog box appears when you click Change in Calculated Member Builder.

Options

Tree box

Expand the dimension and select the parent member you want for the calculated member.

Analysis Services (SQL Server 2000)

Select Users Dialog Box
Select Users Dialog Box

Use this dialog box to:

Select user names and groups by whose query usage you want to optimize. Display this dialog box from the Usage-Based
Optimization Wizard.
Select user names and groups whose query usage you want to analyze. Display this dialog box from the Usage Analysis
Wizard.

Groups and users in roles granted access to the cube are displayed in the Available users box.

To select a group or user, click the group or user in the Available users box, and then click Add.

The Select Users dialog box appears when in either wizard you select the Queries by these users check box, and then click Add.

Options

Available users

View the groups and users in roles granted access to the cube.

Add

Click to add the selected group or user to the Selected users box.

Selected users

View the groups and users you select.

OK

Click to return to the wizard and place the groups and users you selected in the Queries by these users box.

Analysis Services (SQL Server 2000)

Set Default Member Dialog Box
Set Default Member Dialog Box

Use this dialog box to:

Clear a previously specified custom default member.

Specify a default member by selecting it in a member tree or by creating an expression in Multidimensional Expressions
(MDX).

The default member of a dimension slices the datasets returned by queries when the dimension is not displayed on an axis and
no slicing member in the dimension is specified.

Note The default member can be overridden in individual roles. For more information, see Custom Rules in Dimension Security.

This dialog box appears when, in the tree pane of Dimension Editor or Cube Editor, you select a dimension, click Default
Member in the properties pane, and then click the edit (...) button.

Options

No custom default

Select to clear the specification of a default member.

If the All Level property of the dimension is set to Yes, the member indicated by the All Caption property will be the default
member. If the All Level property of the dimension is set to No, an arbitrary member of the highest level will be the default
member.

Choose member to be the default

Expand the member tree and select a default member.

Enter MDX formula to specify default member for dimension

Type an MDX expression to represent the default member. For example, to specify Paris as the default member of the Location
dimension, type:
[Location].[All Location].[Europe].[France].[Paris]

You can also click the expand (...) button to display MDX Builder, where you can construct an MDX expression.

OK

Click to temporarily save your changes and close the dialog box. To permanently save your changes, in the editor, on the File
menu, click Save.

Analysis Services (SQL Server 2000)

Training Query Dialog Box
Training Query Dialog Box

Use this dialog box to modify a training query used to process a mining model within a Data Transformation Services (DTS)
Analysis Services processing task.

This dialog box is displayed when, in the Analysis Services Processing Task dialog box tree pane, you select a relational mining
model and click the edit (...) button next to the Training query box.

Options

Training query

Type the Multidimensional Expressions (MDX) syntax for the training query. Syntax must conform to the OLE DB for Data Mining
specification. For more information about the OLE DB for Data Mining specification, see the Microsoft® OLE DB Web page at the
Microsoft Web site.

See Also

Analysis Services Processing Task Dialog Box

MDX

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services (SQL Server 2000)

Virtual Cube Editor
Virtual Cube Editor

Use this tool to browse a virtual cube's data and to examine and edit the structure of a virtual cube. In addition, with Virtual Cube
Editor and associated dialog boxes, you can perform various procedures.

Virtual Cube Editor appears when you do either of the following:

In the Analysis Manager tree pane, right-click a virtual cube, and then click Edit.

In the Analysis Manager tree pane, click a virtual cube, and then on the Action menu, click Edit.

Virtual Cube Editor has five areas. For more information about the areas, click a link in the following table.
To do this See

Perform commands available in the
Virtual Cube Editor menus.

Menus (Virtual Cube Editor)

Perform common actions represented by
icons on the Virtual Cube Editor toolbar.

Toolbar (Virtual Cube Editor)

View objects of the virtual cube displayed
in the tree pane.

Tree Pane (Virtual Cube Editor)

View and modify certain properties of the
object selected in the Virtual Cube Editor
tree pane.

View descriptions of properties and the
objects to which they apply.

Properties Pane (Virtual Cube Editor)

View the cube data in a table format.
Exchange or move dimensions.

Slice through a dimension, or drill down
into a member.

Data Pane (Virtual Cube Editor)

See Also

Building a Virtual Cube

Creating and Maintaining Calculated Members in Virtual Cubes

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

Menus (Virtual Cube Editor)
Menus (Virtual Cube Editor)

Use the following menu options to perform operations in Virtual Cube Editor.

Menu Option Description
File Save Saves the virtual cube.
 Save As Saves the virtual cube under a different name.
 Exit Closes Virtual Cube Editor.
Edit Structure Displays the Virtual Cube Wizard so you can

modify the virtual cube's structure.
 Edit Edits the selected object. This option is

unavailable for objects that have no associated
editor or wizard.

 Rename Renames the selected object, if applicable.
 Delete Deletes the selected object, if applicable.
 Import Displays options for the types of objects to be

imported into the virtual cube. Options include
calculated members, actions, or named sets.

View Properties Expands or collapses the properties pane.
 Browsing Enabled Retrieves and displays cube data for browsing.

Until this option is reset, it retains the previous
setting.

Insert Calculated Member Displays Calculated Member Builder so you can
begin creating calculated members.

 Calculated Cells Displays Calculated Cells wizard so you can begin
creating calculated cells.

 Action Displays the Action Wizard so you can create a
new action.

 Named Set Displays Named Set Builder so you can create a
new named set.

Tools Process Virtual Cube Processes the virtual cube.
Help Help on Virtual

Cube Editor
Displays a Help topic about Virtual Cube Editor.

 SQL Services Books
Online

Opens SQL Server Books Online.

Analysis Services (SQL Server 2000)

Toolbar (Virtual Cube Editor)
Toolbar (Virtual Cube Editor)

Use the following toolbar buttons to perform common operations.

Button Description
Save Saves the cube.
Edit Structure
(Wizard)

Starts the Virtual Cube Wizard so you can modify the
structure of the virtual cube.

Insert Calculated
Member

Displays Calculated Member Builder so you can begin
creating calculated members.

Insert Calculated
Cells

Displays the Calculated Cells Wizard so you can begin
creating calculated cells.

Insert Action Displays the Action Wizard so you can create a new action.
Insert Named Set Displays Named Set Builder so you can create a new named

set.
Import Calculated
Members

Displays the Import Calculated Members dialog box so you
can import calculated members from a source cube or from
another cube.

Import Calculated
Cells

Displays the Import Calculated Cells dialog box so you can
import calculated cells from a source cube or another cube.

Import Actions Displays the Import Actions dialog box so you can import
actions from a source cube or from another cube.

Import Named Sets Displays the Named Sets dialog box so you can import
named sets from a source cube or from another cube.

Analysis Services (SQL Server 2000)

Tree Pane (Virtual Cube Editor)
Tree Pane (Virtual Cube Editor)

Use the tree pane to display objects in the cube. Right-click an object to see a shortcut menu for that object.

The following table lists how to access available information about cube objects.

Right-click Shortcut menu option Description
Virtual cube Process Virtual Cube Processes the virtual cube.
 Edit Structure

(Wizard)
Displays the Virtual Cube Wizard so you can
modify the virtual cube's structure.

Dimensions
folder

Edit Structure
(Wizard)

Displays the Virtual Cube Wizard so you can
modify the virtual cube's structure.

Dimension Edit Structure
(Wizard)

Displays the Virtual Cube Wizard so you can
modify the virtual cube's structure.

Level None --
Measures
folder

Edit Structure
(Wizard)

Displays the Virtual Cube Wizard so you can
modify the virtual cube's structure.

Measure Edit Structure
(Wizard)

Displays the Virtual Cube Wizard so you can
modify the virtual cube's structure.

 Rename Renames the measure.
Calculated
members
folder

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

 Import Calculated
Member

Displays the Import Calculated Members
dialog box so you can import calculated
members from a source cube or from
another cube.

Calculated
member

New Calculated
Member

Displays Calculated Member Builder so you
can begin creating calculated members.

 Import Calculated
Member

Displays the Import Calculated Members
dialog box so you can import calculated
members from a source cube or from
another cube.

 Edit Displays the calculated member in Calculated
Member Builder so you can edit it.

 Delete Deletes the calculated member.
 Rename Renames the calculated member.
Calculated
Cells folder

New Calculated Cells Displays the Calculated Cells Wizard so you
can begin creating calculated cells.

 Import Calculated
Cells

Displays the Import Calculated Cells
dialog box so you can import calculated
cells from a source cube or another cube.

Calculated
cells

New Calculated Cells Displays the Calculated Cells wizard so you
can begin creating calculated cells.

 Import Calculated
Cells

Displays the Import Calculated Cells dialog
box so you can import calculated cells from a
source cube or another cube.

 Edit Displays the Calculated Cells Wizard so you
can edit the selected calculated cells
definition.

 Rename Renames the selected calculated cells
definition.

 Delete Deletes the selected calculated cells action.
Actions folder New Action Displays the Action Wizard so you can create

a new action.

 Import Action Displays the Import Actions dialog box so
you can import actions from a source cube or
from another cube.

Action New Action Displays the Action Wizard so you can create
a new action.

 Import Action Displays the Import Actions dialog box so
you can import actions from a source cube or
from another cube.

 Edit Displays the Action Wizard so you can edit
the selected action.

 Rename Renames the action.
 Delete Deletes the action from the virtual cube.
Named sets
folder

New Named Set Displays Named Set Builder so you can create
a new named set.

 Import Named Set Displays the Import Named Sets dialog box
so you can import named sets from a source
cube or from another cube.

Named set New Named Set Displays Named Set Builder so you can create
a new named set.

 Import Named Set Displays the Import Named Sets dialog box
so you can import named sets from a source
cube or from another cube.

 Edit Displays Named Set Builder so you can edit
the selected named set.

 Rename Renames the named set.
 Delete Deletes the named set from the virtual cube.

Analysis Services (SQL Server 2000)

Properties Pane (Virtual Cube Editor)
Properties Pane (Virtual Cube Editor)

Use the properties pane to view the properties of the object selected in the tree pane. To display the properties pane, click
Properties beneath the tree pane or click Properties from the View menu.

Each type of object contains a different set of properties. Use the properties pane to modify the property settings for the selected
object. For shared dimensions, their levels, and their member properties, some properties are read-only and must be changed in
Dimension Editor or by editing their source cubes in Cube Editor.

The following table describes the properties displayed in the properties pane.

Object Property Description
Action Action Type Indicates the kind of operation performed by the

action.
 Application Stores additional information required by the

application used to perform the action.
 Caption

Expression
The text displayed for an action if supported by the
application used to perform the action. This is in the
form of a Multidimensional Expressions (MDX)
expression.

 Description Displays the text string used to describe an action.
 Invocation Determines how the action is activated.

Interactive: Actions run interactively when the
end user activates an associated element in the
user interface. This is the default setting and the
only type supported by Cube Browser in
Microsoft® SQL Server™ 2000 Analysis
Services.

On Open: Actions run automatically when the
client opens a virtual cube.

Batch: Actions are run by the client application
in a batch job. These actions provide a way to
check for exceptions.

 Name Contains the name of the action. This property is read-
only.

 Value Displays the syntax for the action. The syntax is in the
form of an MDX expression and can include literal
expressions enclosed by quotation marks.

Calculated
member

BackColor Indicates the background color of the displayed
calculated member. To use this optional property, the
client application must support its use and interpret its
values. Only numeric values are valid. Virtual Cube
Browser and the Virtual Cube Editor data pane do not
support this property.

 FontFlags Indicates the font flags of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Virtual Cube
Browser and the Virtual Cube Editor data pane do not
support this property.

 FontName Indicates the font of the displayed calculated member.
To use this optional property, the client application
must support its use and interpret its values. Virtual
Cube Browser and the Virtual Cube Editor data pane
do not support this property.

 FontSize Indicates the font size of the displayed calculated
member. To use this optional property, the client
application must support its use and interpret its
values. Only numeric values are valid. Virtual Cube
Browser and the Virtual Cube Editor data pane do not
support this property.

 ForeColor Indicates the foreground color of the displayed
calculated member. To use this optional property, the
client application must support its use and interpret its
values. Only numeric values are valid. Virtual Cube
Browser and the Virtual Cube Editor data pane do not
support this property.

 Format String Indicates the format for displaying cell values. A list of
common formats is displayed when you click Format
String and display the drop-down list. This property
accepts the same values as the Display Format
property of measures. For more information, see
Display Formats.

 Name Contains the name of calculated member.
 Non Empty

Behavior
Stores the name of the measure used to resolve NON
EMPTY queries in MDX. If the Non Empty Behavior
property is blank, the calculated member must be
evaluated repeatedly to determine if a member is
empty. If the Non Empty Behavior property contains
the name of a measure, the calculated member is
treated as empty if the specified measure is empty.

 Parent
Dimension

Lists the dimension that includes the calculated
member. If the calculated member is a measure,
specify Measures.

 Parent Member Lists the member that includes the calculated
member. The parent member determines the location
of the calculated member in the dimension structure.
This property must be null if the parent dimension is a
one-level dimension or Measures.

 Solve Order Indicates the order in which the calculated member is
resolved in case of intersection with other calculated
members. Valid values are 0 (zero) and positive or
negative integers. Calculated members with lower
Solve Order values have precedence in resolution.

 Value Contains an MDX expression that defines the values of
the calculated member. The values are displayed to
end users as they browse the virtual cube.

 Visible Determines whether the calculated member is visible
in the cube or not.

Calculated
cells

BackColor Indicates the background color of the cells defined by
the cell coordinates and condition.

 Calculation
Condition

Contains an MDX conditional expression that defines
the calculation subcube cells that are computed with
the calculation formula by testing each cell.

 Calculation
Subcube

Contains an MDX set expression that defines the
subset of the cube data that is computed using the
calculation formula.

 Calculation
Value

Contains an MDX expression that provides the value
for each cell in the calculation subcube.

 Description Contains the text string that describes the calculated
cells definition.

 Disabled Determines whether the cell calculation is disabled.
The default value is False.

 FontName Indicates the font name of the cells defined by the cell
coordinates and condition.

 FontSize Indicates the font size of the cells defined by the cell
coordinates and condition.

 FontFlags Indicates the font flags of the cells defined by the cell
coordinates and condition.

 Calculation Pass
Number

Indicates the calculation pass in which this calculation
is executed.

 Calculation Pass
Depth

Determines how many calculation passes are required
to fully compute a calculated cells definition.

 ForeColor Indicates the foreground color of the cells defined by
the cell coordinates and condition.

 Format String Contains the format string of the cells defined by the
cell coordinates and condition.

 Name Contains the name of the calculated cells definition.
This property is read-only.

 Solve Order Contains a number representing the order of
evaluation of the calculated cells.

 Visible Determines whether the calculated cells definition is
visible in the schema rowset. The default value is True.

Cube Default Measure Indicates the measure that is returned by queries
when no measure is displayed on an axis and no
slicing measure is specified. If no default measure is
specified, an arbitrary measure is the default measure.

 Description Contains the text string used to describe the virtual
cube.

 Enable
Drillthrough

Indicates whether drillthrough is enabled for the
virtual cube. For more information, see Specifying
Drillthrough Options.

 Name Contains the name of the virtual cube.
 Visible Indicates whether the virtual cube is visible to end

users as they browse the list of available cubes.
Dimension All Member

Formula
Contains the custom rollup formula for the (All) level.
This formula is an MDX expression that determines
the All member's cell values and overrides the
Aggregate Function properties of measures. For
more information, see Custom Rollup Formulas and
Custom Member Formulas.

 Description Contains the text string used to describe the
dimension. This property is read-only in Virtual Cube
Editor.

 Name Contains the name of the dimension. This property is
read-only in Virtual Cube Editor.

 Visible Indicates whether the dimension is visible to end
users as they browse the virtual cube.

Level Custom Rollup
Formula

Contains an MDX expression that overrides the default
rollup of values in the level. For more information, see
Custom Rollup Formulas and Custom Member
Formulas.

 Description Contains the text string used to describe the level. This
is read-only in Virtual Cube Editor.

 Disabled Indicates whether the level is available in the cube.
This property is not available for parent-child
dimensions. A level whose Disabled property is Yes
cannot be referenced explicitly in calculated members
and other MDX expressions.

 Name Contains the name of the level. This property is read-
only in Virtual Cube Editor.

 Visible Indicates whether the level is visible to end users as
they browse the cube. To set this property to False,
you must first set the Member Keys Unique
property of all lower levels to True. The Visible
property is not available for parent-child dimensions.
Unlike other objects whose Visible property is False,
a level cannot be explicitly referenced in calculated
members and other MDX expressions.

Measure Aggregate
Function

Contains the function used to aggregate measure
values. This is read-only in Virtual Cube Editor.

 Data Type Indicates the data type of the columns that store
measure values in aggregations. This is read-only in
Virtual Cube Editor.

 Description Contains the text string used to describe the measure.
 Display Format Indicates the format of the measure values displayed

to end users as they browse the virtual cube. For more
information, see Display Formats. This is read-only in
Virtual Cube Editor.

 Name Contains the name of the measure. The name is
displayed to end users as they browse the virtual
cube.

 Source Cube Lists the source cube from which the selected
measure's values are obtained. This is read-only in
Virtual Cube Editor.

 Source Measure Lists the source measure from which the selected
measure's values are obtained. This is read-only in
Virtual Cube Editor.

 Visible Indicates whether the measure is visible to end users
as they browse the virtual cube. If this value is False
for a measure in a source cube, this property is read-
only in Virtual Cube Editor.

Member
property

Caption Contains the caption used to display the member
property. This is read-only in Virtual Cube Editor.

 Data Size Indicates the maximum number of characters allowed
in the column that stores the member property values.
This is read-only in Virtual Cube Editor.

 Data Type Indicates the data type of the column that stores the
member property values. This is read-only in Virtual
Cube Editor.

 Description Contains the text string used to describe the member
property. This is read-only in Virtual Cube Editor.

 Language Identifies the client language of the member property.
This is read-only in Virtual Cube Editor.

 Name Contains the name of the member property. This is
read-only in Virtual Cube Editor.

 Source Column Contains the column in one of the dimension tables
for the dimension that contains the member property
that stores the values of the member property. This is
read-only in Virtual Cube Editor.

 Type Indicates to client applications of the type of
information in the member property values. This is
read-only in Virtual Cube Editor.

 Visible Indicates whether the member property is visible to
end users as they browse the virtual cube. This is
read-only in Virtual Cube Editor.

Named set Name Contains the name of the named set.
 Value Contains the MDX expression of the named set.

Analysis Services (SQL Server 2000)

Data Pane (Virtual Cube Editor)
Data Pane (Virtual Cube Editor)

Use the data pane to display the virtual cube's data. The default view in the data viewing pane shows the data in table format with
one dimension across the column headings and another dimension down the left column. (Measures are treated as a single
dimension for this purpose.) The remaining dimensions of the virtual cube are displayed in the data slicing pane.

The white cells in the data viewing pane represent the measure values according to the members that appear in the members
boxes for all the dimensions shown in the data slicing pane. In the preceding example, the measure values reflect the All member
of every dimensions in the data slicing pane except Time. The members box for the Time dimension displays 1997, which
indicates that the displayed measure values are limited to 1997. Later in this topic, an example shows you how to slice through
dimensions in the data slicing pane to limit the measure values that are displayed. To browse the actual data, you can drill down
or slice through your data.

Working in the Data Viewing Pane

To browse the cube data in the data viewing pane by any combination of dimensions, drag measures or dimensions from the data
slicing pane onto either axis in the data viewing pane.

To replace a dimension in the data viewing pane with another dimension

Drag the dimension from the data slicing pane to the dimension in the data viewing pane that you want to replace.

The pointer is in the correct position when it appears like this.

-or-

The dimension in the data viewing pane moves up to the data slicing pane and the new one takes its place.

To move a dimension to the data viewing pane

Drag the dimension from the data slicing pane to a cell below (or beside) the existing dimension.

The pointer is in the correct position when it appears like this.

-or-

The new dimension appears under (or beside) the existing dimension, expanding your data viewing pane.

To change the order of dimensions in the data viewing pane

Drag the dimension and drop it on the dimension where you want it to be located.

To remove a dimension from the data viewing pane

Drag the dimension you want to remove from the data viewing pane to the data slicing pane.

To drill down into a member

Double-click a dimension member in the data viewing pane. If the member has members beneath it, they are displayed.

Only the member you double-click is expanded. The other members retain their current levels in the data viewing pane. In
the following example, double-click the Drink member to drill down into its child members.

If you want to display all the members in a level, double-click the parent level name in the data viewing pane. Level names

are depicted with the shading of a button (for example, Product Family in the preceding example).

To slice through a dimension

To change the member in a dimension in the data slicing pane, click the down arrow on the members box, expand the
members, and then select a new member. The cube data in the data viewing pane changes to reflect the change in the
dimension member.

The Data tab has an internal memory limit that you may reach if you attempt to browse too much data or drill down too deeply.
When you reach the limit, the following message is displayed:
Unable to display current view of cube.
Unable to Allocate Memory For Flexgrid.

You cannot increase the limit by adding or allocating more memory. If you reach the limit, reduce the amount or depth of data
you are attempting to browse or use another browser.

Analysis Services (SQL Server 2000)

Write Enable Dialog Box
Write Enable Dialog Box

Use this dialog box to enable read/write access to a cube.

If you write-enable a cube, end users in roles granted read/write access to the cube's cells can record changes to cell data while
they browse the cube. Changes are recorded in a table called a writeback table, separate from the cube data and its source data.
End users who browse a write-enabled cube see the net effect of all changes in the writeback table for the cube.

This dialog box appears when, in the Analysis Manager tree pane, you right-click a cube and then click Write-Enable.

Options

Table name

Type a name for the cube's writeback table.

Data source

Select the data source to store the writeback table.

New

Click to specify a new data source.

Analysis Services (SQL Server 2000)

OLE DB Compliance
This section contains an overview of the differences between the features of this version of Microsoft® SQL Server™ 2000
Analysis Services and the OLAP section of the OLE DB specification of March 1999 (version 2.6).

Analysis Services complies with all but 4 of the 394 mandatory items required by the specification.

Analysis Services implements all but one of the seven optional items identified in the Multidimensional Expressions (MDX)
grammar Backus-Naur form (BNF) specification.

Analysis Services extends the MDX grammar with 32 functions and aliases.

Analysis Services implements the optional IMDFind interface as defined in the specification.

Noncompliant Items

The following items are part of the OLE DB specification that Analysis Services either implements differently from the
specification, or omits entirely.

M andatory

Of the four mandatory items that do not comply with the OLE DB specification in Analysis Services, one is an MDX function, one is
a member function of a COM interface, and the last two are related to MDX grammar. The following table identifies each item and
explains the difference between the specification and Analysis Services implementation.

Item
Analysis Services
implementation

OLE DB
specification

Ancestors(«Member», «Level») «Level» must be a level of
the same hierarchy as
«Member».

The set of returned
members must all
be from the same
hierarchy, but
«Level» need not
be a level of the
same hierarchy as
«Member».

Count(«Set»[, EXCLUDEEMPTY |
INCLUDEEMPTY])

Empty cells are counted by
default.

Empty cells are not
counted by default.

Descendants(«Member», «Level»[,
«Desc_flags»]

Returns leaf members on all
levels between member and
specified level.

Returns leaf
members
irrespective of the
level.

Descendants(«Member»,
«Distance»[, «Desc_flags»]

Returns leaf members on all
levels between member and
specified distance in
hierarchy.

Returns leaf
members
irrespective of the
distance.

IMDRangeRowset::GetRangeRowset Returns S_OK only if the
requested range returns a
single cell or the entire
dataset. Any other range
returns E_FAIL.

Partial datasets are
allowed.

Expression delimiters Single quotation marks are
required around expressions
that define calculated
members in MDX
statements.

No delimit
characters are
required.

Cell Property Value delimiters Single quotation marks are
required around cell
property values in MDX
statements.

No delimit
characters are
required.

Optional

Of the seven optional MDX functions identified in the BNF specification, Analysis Services implements all but one. This omitted
function is the CASE statement, both simple and searched forms.

Additional Items and Extensions

Analysis Services provides additional functionality that extends the OLE DB specification by implementing an optional interface
and providing 32 additional MDX functions and aliases.

IM DFind

IMDFind is an optional interface on the dataset object. This interface contains methods that find the ordinal number of a cell in a
dataset and the ordinal number of a tuple on an axis.

Method Description
FindCell Finds and returns a cell ordinal based on an array of members and

a starting cell ordinal in the dataset.
FindTuple Returns a pointer to a tuple ordinal based on an array of

members, a starting ordinal, and an axis identifier.

M DX Extensions

These MDX functions are available for use with Analysis Services even though they do not appear in the OLE DB specification.
Most provide additional functionality, and some act as aliases for existing functions.

Function Description
AddCalculatedMembers(«Set») Adds calculated members to a set.
«Member».Children Returns the children of a member.
CovarianceN(«Set», «Numeric
Expression»[, «Numeric Expression»])

Returns the covariance of two series
evaluated over a set (unbiased).

Crossjoin(«Set1», «Set2») Returns the cross product of two sets.
«Set».Current Returns the current tuple from a set

during an iteration.
Dimensions(«Numeric Expression») Returns the dimension whose zero-based

position within the cube is specified by a
numeric expression.

Dimensions(«String Expression») Returns the dimension whose name is
specified by a string.

DrilldownLevel(«Set», , «Index») Drills down into a specified dimension in
the set.

Head(«Set»[, « Numeric Expression »]) Returns the first specified number of
elements in a set.

Levels(«String Expression») Returns the level whose name is specified
by a string expression.

«Hierarchy».Levels(«Numeric Expression») Returns the level whose position in a
hierarchy is specified by a numeric
expression.

Members(«String Expression») Returns the member whose name is
specified by a string expression.

«Level».Ordinal Returns the zero-based ordinal value
associated with a level.

SetToArray(«Set»[, «Set»]...[, «Numeric
Expression»])

Converts one or more sets to an array for
use in a user-defined function.

SetToStr(«Set») Constructs a string from a set.
Stddev(«Set»[, «Numeric Expression»]) Alias for Stdev.
StddevP(«Set»[, «Numeric Expression»]) Alias for StdevP.
StdevP(«Set»[, «Numeric Expression»]) Returns the standard deviation of a

numeric expression evaluated over a set
(biased).

StripCalculatedMembers(«Set») Removes calculated members from a set.

StrToSet(«String Expression») Constructs a set from a string expression.
StrToTuple(«String Expression») Constructs a tuple from a string.
Subset («Set», «Start»[, «Count»]) Returns a subset of elements from a set.
Tail(«Set»[, «Count»]) Returns a subset from the end of a set.
TupleToStr(«Tuple») Constructs a string from a tuple.
«Dimension».UniqueName Returns the unique name of a dimension.
«Level».UniqueName Returns the unique name of a level.
«Member».UniqueName Returns the unique name of a member.
ValidMeasure(«Tuple») Returns a valid measure in a virtual cube

by forcing inapplicable dimensions to
their top level.

Variance(«Set»[, «Numeric Expression»]) Alias for Var.
VarianceP(«Set»[, «Numeric Expression»]) Alias for VarP.
VarP(«Set»[, «Numeric Expression»]) Returns the variance of a numeric

expression evaluated over a set (biased).
VisualTotals(«Set», «Pattern») Dynamically totals child members

specified in a set using a pattern for the
total label in the result set.

Analysis Services (SQL Server 2000)

OLE DB for Data Mining Compliance
This section contains an overview of the differences between the features of this version of Microsoft® SQL Server™ 2000
Analysis Services and the OLE DB for Data Mining specification of June 2000.

Analysis Services complies with all but eight items required by the specification.

Analysis Services extends the MINING_MODELS schema rowset with an additional column.

Noncompliant Items

Of the eight items that do not comply with the OLE DB for Data Mining specification, four deal directly with supported data
mining grammar, two refer to supported data mining model settings, and two refer to data mining functions.

Item
Analysis Services
implementation

OLE DB for Data Mining
specification

Refining Mining Models All of the data
mining model
content must be
deleted and the data
mining model must
be retrained using
the full set of old and
new cases.

A data mining model can be
refined by executing another
INSERT INTO statement with
additional cases, if the mining
algorithm provider supports
refining data mining models.

CONTENT_TYPE CONTENT_TYPE
supports the
following content
types:

CONTINUOUS

DISCRETE

DISCRETIZED

KEY

TABLE

CONTENT_TYPE supports the
following content types:

CONTINUOUS

CYCLICAL

DISCRETE

DISCRETIZED

KEY

ORDER

ORDERED

PROBABILITY

PROBABILITY_VARIANCE

PROBABILITY_STDEV

SEQUENCE

SEQUENCE_TIME

STDEV

SUPPORT

TABLE

VARIANCE

DISTRIBUTION_FLAG DISTRIBUTION_FLAG
supports the
following
distribution types:

NORMAL

DISTRIBUTION_FLAG supports
the following distribution
types:

BINOMIAL

LOG_NORMAL

MULTINOMIAL

NORMAL

POISSON

T-DISTRIBUTION

UNIFORM

INSERT Statement <source data query>
supports the
following source
data query types:

OPENROWSET

SHAPE

SINGLETON
SELECT

<source data query> supports
the following source data
query types:

OPENROWSET

SELECT

SHAPE

SINGLETON CONSTANT

SINGLETON SELECT

SELECT Statement SELECT * FROM
<model> syntax not
allowed.

SELECT * FROM <model>
syntax used to browse all
possible cases.

CREATE MINING MODEL Statement The following
modeling flags are
supported in the
column definition
statement for
handling missing
values:

NOT NULL

The following modeling flags
are supported in the column
definition statement for
handling missing values:

NOT NULL
IGNORE NULL
NULL INFORMATIVE

PredictScore(<scalar column
reference>)

Not implemented. For predictable columns, this
function returns the prediction
score, as a scalar value, of the
input dataset on the specified
column.

PredictNodeID(<scalar column
reference>)

Not implemented. For predictable columns, this
function returns the node ID of
the leaf node where the case is
classified for the specified
column.

PredictProbabilityStdev(<scalar
column reference>)

Not implemented. This function returns the
standard deviation of
probability for the histogram
entry with the highest
probability.

PredictProbabilityVariance(<scalar
column reference>)

Not implemented. This function returns the
variance of probability for the
histogram entry with the
highest probability.

MINING_COLUMNS Default sort order
not implemented.

The default sort order is:

MODEL_CATALOG

MODEL_SCHEMA

MODEL_NAME

COLUMN_NAME

MINING_MODEL_CONTENT Default sort order
not implemented.

The default sort order is:

MODEL_CATALOG

MODEL_SCHEMA

MODEL_NAME

ATTRIBUTE_NAME

MINING_MODELS Default sort order
not implemented.

The default sort order is:

MODEL_CATALOG

MODEL_SCHEMA

MODEL_NAME

Additional Items and Extensions

Analysis Services provides additional functionality that extends the OLE DB for Data Mining specification by implementing an
additional schema rowset column.

Schema Rowset Extensions

The MINING_MODELS schema rowset stores meta data related to data mining models. The following table contains columns
added to the MINING_MODELS schema rowset.

Column name Type indicator Description
MSOLAP_MODEL_SOURCE DBTYPE_WSTR Stores the name of the source cube

for OLAP mining models.

Analysis Services (SQL Server 2000)

MDX
The Multidimensional Expressions (MDX) language is used to manipulate multidimensional information in Microsoft® SQL
Server™ 2000 Analysis Services. MDX is defined in the OLAP extensions in OLE DB.

Similar to SQL in many respects, MDX provides a rich and powerful syntax for the retrieval and manipulation of multidimensional
data, such as the data stored in cubes on the Analysis server. Analysis Services supports MDX functions in the definitions of
calculated members, as well as a full language implementation for building local cubes and querying cube data using PivotTable®
Service with OLE DB and Microsoft ActiveX® Data Objects (ADO).

Additionally, MDX supports the creation and registration of user-defined functions. You can create user-defined functions to
operate on multidimensional data and accept arguments and return values in the MDX syntax.

The following topics provide more information about MDX.

Topic Description
MDX Overview Describes basic MDX concepts and provides a

comparison between SQL syntax and MDX syntax.
Basic MDX Gives a basic overview of the construction of a simple

MDX query.
Advanced MDX Details more advanced information, such as named sets

and calculated members, for complex MDX queries.
Effective MDX Provides a list of tips, workarounds, and feature

discussions regarding MDX.
MDX Functions in Analysis
Services

Details the statements and functions supported by MDX.

Analysis Services (SQL Server 2000)

MDX Overview
This section introduces Multidimensional Expressions (MDX) and explains some of the concepts behind its structure and syntax. It
contains the following topics.

Topic Description
Introduction to MDX Provides a brief introduction to MDX.
Key Concepts in MDX Explains the differences between relational and

multidimensional queries.
Comparison of SQL and MDX Gives a more detailed description of the differences

between SQL and MDX.

Analysis Services (SQL Server 2000)

Introduction to MDX
MDX, an acronym for Multidimensional Expressions, is a syntax that supports the definition and manipulation of
multidimensional objects and data. MDX is similar in many ways to the Structured Query Language (SQL) syntax, but is not an
extension of the SQL language; in fact, some of the functionality that is supplied by MDX can be supplied, although not as
efficiently or intuitively, by SQL.

As with an SQL query, each MDX query requires a data request (the SELECT clause), a starting point (the FROM clause), and a filter
(the WHERE clause). These and other keywords provide the tools used to extract specific portions of data from a cube for analysis.
MDX also supplies a robust set of functions for the manipulation of retrieved data, as well as the ability to extend MDX with user-
defined functions.

MDX, like SQL, provides data definition language (DDL) syntax for managing data structures. There are MDX commands for
creating (and deleting) cubes, dimensions, measures, and their subordinate objects.

Analysis Services (SQL Server 2000)

Key Concepts in MDX
The purpose of Multidimensional Expressions (MDX) is to make accessing data from multiple dimensions easier and more
intuitive.

Dimensions, Levels, Members, and Measures

Most languages used for data definition and manipulation, such as SQL, are designed to retrieve data in two dimensions: a
column dimension and a row dimension. The following diagram illustrates a traditional relational database, used to store order
information.

Each table represents two-dimensional data. At the intersection of each row and column is a single element of data, called a field.
The specific columns to be viewed in an SQL query are specified with a SELECT statement, and the rows to be retrieved are limited
by a WHERE clause.

Multidimensional data, on the other hand, can be represented by structures with more than two dimensions. These structures,
called cubes, have multiple dimensions. At the intersection of dimensions in a cube, there may be more than one element of data,
called a measure. The following diagram illustrates a cube that employs three dimensions, Route, Service and Time; and two
measures, Packages and Last. Each dimension is broken down into different levels, each of which is broken down further into
members. For example, the Source dimension supplies the Eastern Hemisphere level, which is broken down into four members,
Africa, Asia, Australia, and Europe.

As you can see, the querying of even simple data out of a multidimensional data source can be a complex task. A cube can have
more than three dimensions, for example, or it may only have one dimension.

The concepts of cubes, dimensions, levels, members, and measures are important to the understanding of MDX syntax. Further
reading on these architectural topics is recommended if you are new to online analytical processing (OLAP) databases.

Cells, Tuples, and Sets

As SQL returns a subset of two-dimensional data from tables, MDX returns a subset of multidimensional data from cubes.

The cube diagram illustrates that the intersection of multidimensional members creates cells from which you can obtain data. To
identify and extract such data, whether it be a single cell or a block of cells, MDX uses a reference system called tuples. Tuples list
dimensions and members to identify individual cells as well as larger sections of cells in the cube; because each cell is an
intersection of all the dimensions of the cube, tuples can uniquely identify every cell in the cube. For the purposes of reference,
measures in a cube are treated as a private dimension, named Measures, in the cube itself. For example, in the preceding diagram,

the following tuple identifies a cell in which the value is 240:

(Source.[Eastern Hemisphere].Africa, Time.[2nd half].[4th quarter], Route.Air, Measures.Packages)

The tuple uniquely identifies a section in the cube; it does not have to refer to a specific cell, nor does it have to encompass all of
the dimensions in a cube. The following examples are all tuples of the cube diagram:

(Source.[Eastern Hemisphere])
(Time.[2nd half], Source.[Western Hemisphere])

These tuples provide sections of the cube, called slices, that encompass more than one cell.

An ordered collection of tuples is referred to as a set. In an MDX query, axis and slicer dimensions are composed of such sets of
tuples. The following example is a description of a set of tuples in the cube in the diagram:

{ (Time.[1st half].[1st quarter]), Time.[2nd half].[3rd quarter]) }

In addition, it is possible to create a named set. A named set is a set with an alias, used to make your MDX query easier to
understand and, if it is particularly complex, easier to process.

Axis and Slicer Dimensions

In SQL, it is usually necessary to restrict the amount of data returned from a query on a table. For example, you may want to see
only two fields of a table with forty fields, and you want to see them only if a third field meets a specific criteria. You can
accomplish this by specifying columns in the SELECT statement, using a WHERE statement to restrict the rows that are returned
based on specific criteria.

In MDX, those concepts also apply. A SELECT statement is used to select the dimensions and members to be returned, referred to
as axis dimensions. The WHERE statement is used to restrict the returned data to specific dimension and member criteria, referred
to as a slicer dimension. An axis dimension is expected to return data for multiple members, while a slicer dimension is expected
to return data for a single member.

The terms "axis dimension" and "slicer dimension" are used to differentiate the dimensions of the cells in the source cube of the
query, indicated in the FROM clause, from the dimensions of the cells in the result cube, which can be composed of multiple cube
dimensions.

Calculated Members

Calculated members are members that are based not on data, but on evaluated expressions in MDX. They are returned in the
same fashion as a normal member. MDX supplies a robust set of functions that can be used to create calculated members, giving
you extensive flexibility in the manipulation of multidimensional data.

User-Defined Functions

MDX provides extensibility in the form of user-defined functions using any programming language that can support Component
Object Model (COM) interfaces. You create and register your own functions that operate on multidimensional data as well as
accept arguments and return values in the MDX syntax. You can call user-defined functions from within Calculated Member
Builder, data definition language (DDL) statements that support MDX, and MDX queries.

PivotTable Service

In Microsoft® SQL Server™ 2000 Analysis Services, MDX data definition and manipulation services are provided through
PivotTable® Service. PivotTable Service also provides stand-alone OLE DB provider capabilities for multidimensional queries
when not connected to an Analysis server. PivotTable Service is used for the definition and manipulation of local cubes, which can
be used to locally store data in a multidimensional format.

See Also

Axis and Slicer Dimensions

Calculated Members

Cubes

Dimensions

Levels

Measures

Members, Tuples, and Sets

PivotTable Service

Analysis Services (SQL Server 2000)

Comparison of SQL and MDX
The Multidimensional Expressions (MDX) syntax appears, at first glance, to be remarkably similar to the syntax of Structured
Query Language (SQL). In many ways, the functionality supplied by MDX is also similar to that of SQL; with effort, you can even
duplicate some of the functionality provided by MDX in SQL.

However, there are some striking differences between SQL and MDX, and you should be aware of these differences at a
conceptual level. The following information is intended to provide a guide to these conceptual differences between SQL and MDX,
from the point of view of an SQL developer.

The principal difference between SQL and MDX is the ability of MDX to reference multiple dimensions. Although it is possible to
use SQL exclusively to query cubes in Microsoft® SQL Server™ 2000 Analysis Services, MDX provides commands that are
designed specifically to retrieve data as multidimensional data structures with almost any number of dimensions.

SQL refers to only two dimensions, columns and rows, when processing queries. Because SQL was designed to handle only two-
dimensional tabular data, the terms "column" and "row" have meaning in SQL syntax.

MDX, in comparison, can process one, two, three, or more dimensions in queries. Because multiple dimensions can be used in
MDX, each dimension is referred to as an axis. The terms "column" and "row" in MDX are simply used as aliases for the first two
axis dimensions in an MDX query; there are other dimensions that are also aliased, but the alias itself holds no real meaning to
MDX. MDX supports such aliases for display purposes; many OLAP tools are incapable of displaying a result set with more than
two dimensions.

In SQL, the SELECT clause is used to define the column layout for a query, while the WHERE clause is used to define the row
layout. However, in MDX the SELECT clause can be used to define several axis dimensions, while the WHERE clause is used to
restrict multidimensional data to a specific dimension or member.

In SQL, the WHERE clause is used to filter the data returned by a query. In MDX, the WHERE clause is used to provide a slice of the
data returned by a query. While the two concepts are similar, they are not equivalent.

The SQL query uses the WHERE clause to contain an arbitrary list of items that should (or should not) be returned in the result set.
While a long list of conditions in the filter can narrow the scope of the data that is retrieved, there is no requirement that the
elements in the clause will produce a clear and concise subset of data.

In MDX, however, the concept of a slice means that each member in the WHERE clause identifies a distinct portion of data from a
different dimension. Because of the organizational structure of multidimensional data, it is not possible to request a slice for
multiple members of the same dimension. Because of this, the WHERE clause in MDX can provide a clear and concise subset of
data.

The process of creating an SQL query is also different than that of creating an MDX query. The creator of an SQL query visualizes
and defines the structure of a two-dimensional rowset and writes a query on one or more tables to populate it. In contrast, the
creator of an MDX query usually visualizes and defines the structure of a multidimensional dataset and writes a query on a single
cube to populate it. This could result in a multidimensional dataset with any number of dimensions; a one-dimensional dataset is
possible, for example.

The visualization of an SQL result set is intuitive; the set is a two-dimensional grid of columns and rows. The visualization of an
MDX result set is not as intuitive, however. Because a multidimensional result set can have more than three dimensions, it can be
challenging to visualize the structure. To refer to such two-dimensional data in SQL, the name of a column and the unique
identification of a row, in whatever method is appropriate for the data, are used to refer to a single cell of data, called a field.
However, MDX uses a very specific and uniform syntax to refer to cells of data, whether the data forms a single cell or a group of
cells.

Although SQL and MDX share similar syntax, the MDX syntax is remarkably robust, and it can be complex. However, because MDX
was designed to provide a simple, effective way of querying multidimensional data, it addresses the conceptual differences
between two-dimensional and multidimensional querying in a consistent and easily understood fashion.

Analysis Services (SQL Server 2000)

Basic MDX
Multidimensional Expressions (MDX) commands allow you to query multidimensional objects, such as cubes, and return
multidimensional datasets. This topic and its subtopics provide an overview of MDX queries.

As is the case with SQL, the author of an MDX query must determine the structure of the requested dataset before writing the
query. The following topics describe MDX queries and the datasets they produce, and provide more detailed information about
basic MDX syntax.

Topic Description
The Basic MDX Query Provides basic syntax information for an MDX query.
Members, Tuples, and Sets Gives a brief description of members, tuples, and sets,

including conceptual information and syntax.
Axis and Slicer Dimensions Describes the axis and slicer dimensions and their use

within an MDX query with the SELECT and WHERE
clauses.

Establishing Cube Context Provides a description of the purpose of the FROM
clause in MDX queries.

Analysis Services (SQL Server 2000)

The Basic MDX Query
A basic Multidimensional Expressions (MDX) query is structured in a fashion similar to the following example:

SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

Basic MDX Syntax - SELECT Statement

In MDX, the SELECT statement is used to specify a dataset containing a subset of multidimensional data. To discuss the various
syntax elements of the MDX SELECT statement, this topic presents a basic MDX query example and breaks it down into its syntax
elements, discussing the purpose and structure of each element.

To specify a dataset, an MDX query must contain information about:

The number of axes. You can specify up to 128 axes in an MDX query.

The members from each dimension to include on each axis of the MDX query.

The name of the cube that sets the context of the MDX query.

The members from a slicer dimension on which data is sliced for members from the axis dimensions.

This information can be complex. As you will see in this topic, MDX syntax can provide such information in a simple and
straightforward manner, using the MDX SELECT statement.

Basic M DX Query Example

The following MDX query example is used to discuss the various parts of basic MDX SELECT statement syntax:

SELECT
 { [Measures].[Unit Sales], [Measures].[Store Sales] } ON COLUMNS,
 { [Time].[1997], [Time].[1998] } ON ROWS
FROM Sales
WHERE ([Store].[USA].[CA])

The basic MDX SELECT statement contains a SELECT clause and a FROM clause, with an optional WHERE clause.

The SELECT clause determines the axis dimensions of an MDX SELECT statement. Two axis dimensions are defined in the MDX
query example. For more information about the construction of axis dimensions in a SELECT clause, see Specifying the Contents
of an Axis Dimension.

The FROM clause determines which multidimensional data source is to be used when extracting data to populate the result set of
the MDX SELECT statement. For more information about the FROM clause, see SELECT Statement.

The WHERE clause optionally determines which dimension or member to use as a slicer dimension; this restricts the extracting of
data to a specific dimension or member. The MDX query example uses a WHERE clause to restrict the data extract for the axis
dimensions to a specific member of the Store dimension. For more information about the construction of a slicer dimension in a
WHERE clause, see Specifying the Contents of a Slicer Dimension.

The MDX SELECT statement supports other optional syntax, such as the WITH keyword, and the use of MDX functions to construct
members by calculation for inclusion in an axis or slicer dimension. For more information about the MDX SELECT statement, see
SELECT Statement.

The syntax format of the MDX SELECT statement is similar to that of SQL syntax; however, you will note several obvious
differences:

MDX syntax distinguishes sets by surrounding tuples or members with braces (the { and } characters.) For more information
about member, tuple, and set syntax, see Members, Tuples, and Sets.

MDX queries can have up to 128 axis dimensions in the SELECT statement, but only the first 5 axes have aliases. An axis can
be referred to by its ordinal position within an MDX query or by its alias, if it has an alias assigned to it. In the MDX query
example, the COLUMNS and ROWS axis aliases are used. The MDX query could also have been written in the following
fashion, using the ordinal position of each axis:

https://msdn.microsoft.com/en-us/library/ms948097(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms948097(v=sql.80).aspx

SELECT
 { [Measures].[Unit Sales], [Measures].[Store Sales] } ON AXIS(0),
 { [Time].[1997], [Time].[1998] } ON AXIS(1)
FROM Sales
WHERE ([Store].[USA].[CA])

As with an SQL query, the FROM clause names the source of the data for the MDX query. However, unlike an SQL query, the
FROM clause in an MDX query is restricted to a single cube. Information from other cubes can be retrieved, however, on a
value-by-value basis using the LookupCube function.

The WHERE clause is used to describe the slicer dimensions. If a dimension is not mentioned as part of the WHERE clause,
Microsoft® SQL Server™ 2000 Analysis Services assumes that any dimension not assigned to an axis dimension is a slicer
dimension, and the dimension is filtered on its default members. The WHERE clause can change the filtering process for
specified dimensions, allowing fine control of included data.

Analysis Services (SQL Server 2000)

Members, Tuples, and Sets
Before proceeding on the creation of a Multidimensional Expressions (MDX) query, you should understand the definitions of
members, tuples and sets, as well as the MDX syntax used to construct and refer to these elements.

Members

A member is an item in a dimension representing one or more occurrences of data. Think of a member in a dimension as one or
more records in the underlying database whose value in this column falls under this category. A member is the lowest level of
reference when describing cell data in a cube.

For example, the following diagram is shaded to represent the Time.[2nd half].[3rd quarter] member.

The bracket characters, [and], are used if the name of a member has a space or a number in it. Although the Time dimension is
one word, bracket characters can also be used around it as well; the member shown in the previous diagram could also be
represented as:

[Time].[2nd half].[4th quarter]

The right bracket (]) can be used as an escape character in MDX if the member name or member key contains a right bracket, as
shown in the following example:

[Premier [150]] 98]

M ember N ames and M ember Keys

A member can be referenced by either its member name or by its member key. The previous example referenced the member by
its member name, 4th quarter, in the Time dimension. However, the member name can be duplicated in the case of dimensions
with nonunique member names, or it can be changed in the case of changing dimensions.

An alternate method to reference members is by referencing the member key. The member key is used by the dimension to
specifically identify a given member. The ampersand (&) character is used in MDX to differentiate a member key from a member
name, as shown in the following example:

[Time].[2nd half].&[Q4]

In this case, the member key of the 4th quarter member, Q4, is used. Referencing the member key ensures proper member
identification in changing dimensions and in dimensions with nonunique member names.

The ampersand character can be used to indicate a member key reference in any MDX expression.

Calculated M embers

Members can also be created, as part of an MDX query, to return data based on evaluated expressions instead of stored data in a
cube to be queried. These members are called calculated members, and they provide a great deal of the power and flexibility of
MDX. The WITH keyword is used in an MDX query to define a calculated member. For example, if you want to provide a forecast
estimate all of the packages by adding 10% of the existing value of the Packages measure, you can simply create a calculated

member that provides the information and use it just like any other member in the cube, as demonstrated in the following
example.

WITH MEMBER [Measures].[PackagesForecast] AS
'[Measures].[Packages] * 1.1'

For more information, see Calculated Members.

M ember Functions

MDX supplies a number of functions for retrieving members from other MDX entities, such as dimensions and levels, so that
explicit references to a member are not always necessary. For example, the FirstChild function allows the retrieval of all the
members from a given dimension or level; to get the first child member of the Time dimension, you can explicitly state it, as
demonstrated in the following example:

Time.[1st half]

You can also use the FirstChild function to return the same member, demonstrated in the next example.

Time.FirstChild

For more information about MDX member functions, see MDX Function List.

Tuples

A tuple is used to define a slice of data from a cube; it is composed of an ordered collection of one member from one or more
dimensions. A tuple is used to identify specific sections of multidimensional data from a cube; a tuple composed of one member
from each dimension in a cube completely describes a cell value. Put another way, a tuple is a vector of members; think of a tuple
as one or more records in the underlying database whose value in these columns falls under these categories. A series of
diagrams presents different types of tuples.

The shaded area of the cube represents the (Time.[2nd half]) tuple. Note that this tuple encompasses half of the cube, because
it does not rule out any information in the Source or Route dimensions.

The following diagram is shaded to represent the (Time.[2nd half], Route.nonground.air) tuple.

This tuple represents the cells at the intersection of these members.

In MDX, tuples are syntactically constructed depending upon their complexity. If a tuple is composed of only one member from a
single dimension, often referred to as a simple tuple, the following syntax is acceptable.

Time.[2nd half]

If a tuple is composed of members from more than one dimension, the members represented by the tuple must be enclosed in
parentheses, as demonstrated in the following example.

(Time.[2nd half], Route.nonground.air)

A tuple composed of a single member can also be enclosed in parentheses, but this is not required. Tuples are often grouped
together in sets for use in MDX queries.

Tuple Functions

There are a few MDX functions that return tuples, and they can be used anywhere that a tuple is accepted.

For more information about tuple functions, see MDX Function List.

Tuples and Dimensionality

A tuple can encompass members in multiple dimensions, as well as multiple members from the same dimension. The term
dimensionality is used to indicate the dimensions described by the members in a tuple. Order plays a factor in the dimensionality
of a tuple, and can affect the use of a tuple within a set.

Sets

A set is an ordered collection of zero, one or more tuples. A set is most commonly used to define axis and slicer dimensions in an
MDX query, and as such may have only a single tuple or may be, in certain cases, empty. The following example shows a set of
two tuples:

{ (Time.[1st half], Route.nonground.air), (Time.[2nd half], Route.nonground.sea) }

A set can contain more than one occurrence of the same tuple. The following set is acceptable:

{ Time.[2nd half], Time.[2nd half] }

A set refers to either a set of member combinations, represented as tuples, or to the values in the cells that the tuples in the set
represent, depending on the context of usage for the set.

In MDX syntax, tuples are enclosed in braces to construct a set.

Important Sets composed of a single tuple are not tuples; they are interpreted as sets by MDX. Certain MDX functions accept
tuples as parameters, and will raise an error if a single tuple set is passed. Tuples and single-tuple sets are not interchangeable.

Set Functions

Explicitly typing tuples and enclosing them in braces is not the only way to retrieve a set. MDX supports a wide variety of
functions that return sets.

The colon operator allows you to use the natural order of members to create a set. For example, the following set:

{[1st quarter]:[4th quarter]}

retrieves the same set of members as the following set:

{[1st quarter], [2nd quarter], [3rd quarter], [4th quarter]}

The colon operator is an inclusive function; the members on both sides of the colon operator are included in the resulting set.

Other MDX functions that return sets can be used either by themselves or as part of a comma-delimited list of members. For
example, all of the following MDX expressions are valid:

{Time.Children}
{Time.Children, Route.nonground.air}
{Time.Children, Route.nonground.air, Source.Children}

For more information about set functions, see MDX Function List.

Sets and Dimensionality

Like tuples, sets also have dimensionality. As a set is composed of tuples, so the dimensionality of a set is expressed by the
dimensionality of each tuple within it. Because of this, tuples within a set must have the same dimensionality. In other words, this
example would not work as a set:

{ (Time.[2nd half], Route.nonground.air), (Route.nonground.air, Time.[2nd half]) }

The order of tuples in a set is important; it affects, for example, the nesting order in an axis dimension. The first tuple represents
the first, or outermost, dimension, the second tuple represents the next outermost dimension, and so on.

N amed Sets

A named set is a set for which an alias has been created. A named set is most commonly used in complex MDX queries to make
these queries easier to read and to increase the ease of maintenance.

For more information about named sets, see Building Named Sets in MDX.

Analysis Services (SQL Server 2000)

Axis and Slicer Dimensions
When formulating a Multidimensional Expressions (MDX) query, an application typically looks at the cubes and divides the set of
dimensions into two subsets:

Axis dimensions, for which data is retrieved for multiple members.

Slicer dimensions, for which data is retrieved for a single member.

Because axis and slicer dimensions can be constructed from multiple dimensions of the cube to be queried, these terms are used
to differentiate the dimensions employed by the cube to be queried from the dimensions created in the cube returned by an MDX
query.

For example, assume that a cube exists, named TestCube, with two simple dimensions named Route and Time. Because the
measures of the cube are part of the Measures dimension, this cube has three dimensions in all. The query is to provide a matrix
in which the Packages measure can be compared across routes and times.

In the following MDX query example, the Route and Time dimensions are used as axis dimensions and the Measures dimension is
used as the slicer dimension. The Members function indicates that the members of the dimension or level are to be used to
construct a set, instead of having to explicitly state each member of a given dimension or level in an MDX query.

SELECT
 { Route.nonground.Members } ON COLUMNS,
 { Time.[1st half].Members } ON ROWS
FROM TestCube
WHERE ([Measures].[Packages])

The resulting grid of values would resemble the following table, showing the value of the Packages measure at each intersection
of the COLUMNS and ROWS axis dimensions.

 air sea
1st quarter 60 50
2nd quarter 45 45

MDX evaluates the axis and slicer dimensions first, building the structure of the result cube before retrieving the information from
the cube to be queried.

The slicer dimension is similar to an axis dimension in its purpose, but has limitations that axis dimensions do not share.

Note Microsoft® SQL Server™ 2000 Analysis Services supports a maximum of 128 shared or private dimensions in a cube, in
addition to the Measures dimension. Therefore, MDX queries on Analysis Services cubes are limited to 129 axes maximum.

See Also

Specifying the Contents of an Axis Dimension

Specifying the Contents of a Slicer Dimension

Analysis Services (SQL Server 2000)

Specifying the Contents of an Axis Dimension
Specifying the Contents of an Axis Dimension

Axis dimensions determine the edges of a multidimensional result set. Multidimensional Expressions (MDX) uses the SELECT
clause to specify axis dimensions by assigning a set to a particular axis. The following information describes how this assignment
is handled in MDX.

In the following syntax example, each <axis_specification> value defines one axis dimension. The number of axes in the dataset
is equal to the number of <axis_specification> values in the Multidimensional Expressions (MDX) query. An MDX query can
support up to 128 specified axes, but very few MDX queries will use more than 5 axes.

The breakdown of the <axis_specification> syntax is:

<axis_specification> ::= <set> ON <axis_name>

<axis_name> ::= COLUMNS | ROWS | PAGES | SECTIONS | CHAPTERS | AXIS(<index>)

Each axis dimension is associated with a number: 0 for the x-axis, 1 for the y-axis, 2 for the z-axis, and so on. The <index> value is
the axis number. For the first 5 axes, the aliases COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS can be used in place of
AXIS(0), AXIS(1), AXIS(2), AXIS(3), and AXIS(4), respectively.

An MDX query cannot skip axes. That is, a query that includes one or more <axis_name> values must not exclude lower-numbered
or intermediate axes. For example, a query cannot have a ROWS axis without a COLUMNS axis, or have COLUMNS and PAGES
axes without a ROWS axis.

However, you can specify a SELECT clause with no axes (that is, an empty SELECT clause). In this case, all dimensions are slicer
dimensions, and the MDX query selects one cell.

Each <set> value defines the contents of the axis. For more information about sets, see Members, Tuples, and Sets.

Analysis Services (SQL Server 2000)

Specifying the Contents of a Slicer Dimension
Specifying the Contents of a Slicer Dimension

Slicer dimensions filter multidimensional data. You can use them to limit the data returned by including them in the WHERE
clause of a Multidimensional Expressions (MDX) query.

Dimensions that are not explicitly assigned to an axis are assumed to be slicer dimensions and filter with their default members.
The default member of a dimension can be explicitly specified in its Default Member property in Analysis Manager. This
property is equivalent to the DefaultMember property in Decision Support Objects (DSO). If no default member is explicitly
specified, the default member is the All member if an (All) level exists, or else an arbitrary member of the highest level. (The name
of the All member is not necessarily All.)

Slicer dimensions can also be specified explicitly by using the WHERE clause of the MDX syntax. The breakdown of the WHERE
clause syntax is:

[WHERE [<slicer_specification>]]

The member name [All] will probably not be unique within the cube, because many dimensions possess an [All] level. It is
recommended that you qualify it with the dimension name to make it unambiguous. The following example demonstrates the use
of the WHERE clause and the All member:

WHERE ([Route].[All], [Time].[1st half])

A slicer dimension can accept only expressions that evaluate into a single tuple. This does not mean that only a single tuple can be
explicitly stated in the slicer dimension, as the following example shows:

WHERE ([Time].[1st half], [Route].[nonground])

If a set of tuples is supplied as the slicer expression, MDX will attempt to evaluate the set, aggregating the result cells in every
tuple along the set. In other words, MDX will attempt to use the Aggregate function on the set, aggregating each measure by its
associated aggregation function. The following examples show a valid WHERE clause using a set of tuples:

WHERE { ([Time].[1st half], [Route].[nonground]), ([Time].[1st half], [Route].[ground]) }

If the «slicer_specification» cannot be resolved into a single tuple, an error will occur.

For more information about the Aggregate function, see Aggregate.

Analysis Services (SQL Server 2000)

Establishing Cube Context
To establish cube context, indicate the cube on which you want the Multidimensional Expressions (MDX) query to run. The FROM
clause in an MDX query determines the cube context. The following syntax indicates which cube supplies the context for the MDX
query:

FROM «cube_specification»

The «cube_specification» is completed with the name of a single cube.

For example, if an MDX query is to be run against the SalesCube cube, the FROM clause would be:

FROM SalesCube

This does not limit you from working with more than one cube at a time; you can use the LookupCube function to retrieve data
from cubes outside the cube context. The following syntax will cause an error, because unlike SQL, the FROM clause in an MDX
query does not usually permit joins:

FROM SalesCube, OtherCube

However, some OLAP providers may permit the joining of cubes along congruent dimensions; if two cubes share a dimension, the
cubes can be joined using this syntax, in a fashion similar to that of linked cubes. For more information about joining cubes, see
your OLAP provider documentation.

For more information about the FROM clause in the MDX SELECT statement, see SELECT Statement.

https://msdn.microsoft.com/en-us/library/ms948097(v=sql.80).aspx

Analysis Services (SQL Server 2000)

Advanced MDX
The Multidimensional Expressions (MDX) syntax is designed not only to extract simple data from multidimensional data sources,
but also to provide additional functionality to create named sets, calculated members, and write information back to dimensions
and cells.

The following topics cover the more advanced aspects of MDX syntax.

Topic Description
Creating and Using Property Values Details the process of creating and using

dimension, level, member, and cell properties
Building Named Sets in MDX Describes the purpose of named sets in MDX and

the techniques needed to create and use them in
MDX queries

Building Calculated Members in
MDX

Provides information about calculated members
in MDX, including the techniques needed to
create and use them in MDX expressions

Building Caches in MDX Gives information about caches in MDX,
including the techniques needed to create and
use them in MDX queries

Building Calculated Cells in MDX Details the process of creating and using
calculated cells

Creating and Using User-Defined
Functions in MDX

Details the creation and use of external function
libraries and user-defined functions in MDX

Using Writebacks Describes the technique of writing information
back into the dimensions and cells of
multidimensional data sources using MDX

Using DRILLTHROUGH to Retrieve
Source Data

Discusses the use of the MDX DRILLTHROUGH
statement to retrieve the rowsets of source data
applicable to a cell in a multidimensional data
source

Understanding Pass Order and
Solve Order

Details the concepts of pass order and solve
order, and how these features affect MDX queries
and expressions

Analysis Services (SQL Server 2000)

Creating and Using Property Values
Multidimensional Expressions (MDX) supports intrinsic and custom properties for dimensions, levels, members, and cells. The
intrinsic properties are used to provide unique names, captions, and even formatting and font sizes for individual cells. Custom
properties, on the other hand, can be used to provide almost any kind of additional attribute to members.

The following table lists the topics that describe the use of such properties.

Topic Description
Using Member Properties Describes the intrinsic properties supported by

members, the process of creating new member
properties, and the process used to query them

Using Cell Properties Describes the intrinsic properties supported by cells,
the process of creating new cell properties, and the
process used to query them

Analysis Services (SQL Server 2000)

Using Member Properties
Using Member Properties

In the axis specification for a given axis, the set expression selects tuples to populate the axis. The dataset returns some basic
information about each member in each tuple, such as the member name, parent level, the number of children, and so on. These
are referred to as member properties. Members often have additional properties associated with them, and member properties
are available for all members at a given level. In terms of organization, member properties are treated as dimensionally organized
data, stored on a single dimension.

For example, the Products level may offer the SKU, SRP, Weight, and Volume properties for each product. These properties are not
members, but contain additional information about members at the Products level. All members support intrinsic member
properties, such as the formatted value of a member, while dimensions and levels supply additional intrinsic dimension and level
member properties, such as the ID of a member. Additional member properties can be created in Analysis Manager using
Dimension Editor or Cube Editor, or with Multidimensional Expressions (MDX) statements. Member properties can be retrieved
through the use of the DIMENSION PROPERTIES keyword or the Properties function.

DIMENSION PROPERTIES Keyword

An application might want to extend member information by adding member properties on the axis. Therefore, each level of each
dimension may contain a set of available properties for the members.

The DIMENSION PROPERTIES keyword is used to specify member properties to be used for a given axis dimension. The following
syntax defines the MDX SELECT syntax, adding the syntax for the DIMENSION PROPERTIES keyword:

SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

The <axis_specification> value includes an optional <dim_props> value, which enables querying of dimension, level, and
member properties using the DIMENSION PROPERTIES keyword. The breakdown of the <axis_specification> syntax with the
<dim_props> value is:

<axis_specification> ::= <set> [<dim_props>] ON <axis_name>

The <set> and <axis_name> values are described in Specifying the Contents of an Axis Dimension. The breakdown of the
<dim_props> syntax is:

<dim_props> ::= [DIMENSION] PROPERTIES <property> [,<property>...]

The breakdown of the <property> syntax varies depending on the property you are querying. Intrinsic member properties for
dimensions and levels must be preceded with the name of the dimension and/or level. Intrinsic member properties for members
cannot be qualified by the dimension or level name. Custom member properties should be preceded by the name of the level in
which they reside.

Additional member properties can be selected by using the DIMENSION PROPERTIES keyword after the set expression of the axis
specification. For example, the following MDX query:

SELECT
 CROSSJOIN(Years, (Sales, BudgetedSales)) ON COLUMNS,
 NON EMPTY Products.MEMBERS
 DIMENSION PROPERTIES Products.SKU, Products.SRP ON ROWS
FROM SalesCube
WHERE (January, SalesRep.[All], Geography.USA)

returns the following dataset:

You can specify only those dimension properties projected on the axis for that particular axis. You can mix requests for intrinsic

dimension and level member properties in the same query with intrinsic member properties. The difference between intrinsic
dimension and level member properties and intrinsic member properties is explained in greater detail later in this topic.

Properties Function

Member properties can also be retrieved by the use of the Properties function in MDX. For example, the following MDX query
uses the WITH keyword to create a calculated member consisting of the [Store Sqft] member property:

WITH
 MEMBER [Measures].[Store Size] AS
 'Val(Store.CurrentMember.Properties("Store Sqft"))'

SELECT
 {[Measures].[Unit Sales], [Measures].[Store Size]} ON COLUMNS,
 {[Store].[Store Name].Members} ON ROWS
From Sales

to generate a result set similar to the one in the following table:

For more information about building calculated members, see Building Calculated Members in MDX.

Note the use of the Val() function in the MDX query example. The Properties function is a string function; all member properties
retrieved with the Properties function will be coerced into strings.

See Also

CREATE CUBE Statement

Custom Member Properties

Intrinsic Dimension and Level Member Properties

Intrinsic Member Properties

Properties

SELECT Statement

https://msdn.microsoft.com/en-us/library/ms948097(v=sql.80).aspx

Analysis Services (SQL Server 2000)

Intrinsic Dimension and Level Member Properties
Intrinsic Dimension and Level Member Properties

All dimensions and levels support a list of intrinsic member properties, displayed in the following table. These member properties
are used in the context of a specific dimension or level, and supply values for each member of the specified dimension or level.
For example, specifying the following statement in a Multidimensional Expressions (MDX) query:

[Sales].Name

returns the names of each referenced member of the [Sales] dimension.

Property Description
ID The internally maintained ID for the member
Key The value stored in the MEMBER_KEY column of the MEMBERS schema

rowset for the member
Name The name of the member

Dimension member properties are preceded by the name of the dimension to which the property applies. The following example
demonstrates the appropriate syntax:

DIMENSION PROPERTIES «Dimension».ID

Level member properties can be preceded with the level name or, for additional specification, the dimension and level name, as
shown here:

DIMENSION PROPERTIES [«Dimension».]«Level».ID

See Also

Using Member Properties

Analysis Services (SQL Server 2000)

Intrinsic Member Properties
Intrinsic Member Properties

All members support a list of intrinsic member properties as well, displayed in the following table. Intrinsic member properties
cannot be requested for a specific dimension or level; they apply to all members of an axis dimension in a Multidimensional
Expressions (MDX) query. Specifying, for example, the following statement in an MDX query:

PROPERTIES DESCRIPTION

returns the description of each member in the axis dimension.

The following table lists the intrinsic member properties supported by Microsoft® SQL Server™ 2000 Analysis Services.

Property Description
CALCULATION_PASS_DEPTH For calculated cells only. The pass depth for the

calculation formula, this property determines how
many passes are needed to resolve the calculation
formula. For more information about pass order,
see Understanding Pass Order and Solve Order.

CALCULATION_PASS_NUMBER For calculated cells only. The pass number for the
calculation formula, this property determines on
which pass the calculation formula will begin
evaluation and end calculation. The default for this
property is 1; its maximum value is 65,535. For
more information about pass order, see
Understanding Pass Order and Solve Order.

CATALOG_NAME The name of the catalog to which this member
belongs.

CHILDREN_CARDINALITY The number of children that the member has. This
can be an estimate, so you should not rely on this
to be the exact count. Providers should return the
best estimate possible.

CONDITION For calculated cells only. The calculation condition
of the calculated cells. This property receives an
MDX logical expression, which is evaluated on
each cell in the calculation subcube. If it returns
True, the calculation formula is applied and the
cell returns the resulting value. If it returns False,
the cell returns the original cell value. If not
specified, CONDITION defaults to True (in other
words, the calculation formula applies to all cells
in the calculation subcube.)

CUBE_NAME The name of the cube to which this member
belongs.

DESCRIPTION A human-readable description of the member or
calculated cells definition.

DIMENSION_UNIQUE_NAME The unique name of the dimension to which this
member belongs. For providers that generate
unique names by qualification, each component
of this name is delimited.

DISABLED For calculated cells only. A Boolean property that
indicates whether or not the calculated cells are
disabled. DISABLED defaults to False.

HIERARCHY_UNIQUE_NAME The unique name of the hierarchy. If the member
belongs to more than one hierarchy, there is one
row for each hierarchy to which it belongs. For
providers that generate unique names by
qualification, each component of this name is
delimited.

LEVEL_NUMBER The distance of the member from the root of the
hierarchy. The root level is zero.

LEVEL_UNIQUE_NAME Unique name of the level to which the member
belongs. For providers that generate unique
names by qualification, each component of this
name is delimited.

MEMBER_CAPTION A label or caption associated with the member. It
is used primarily for display purposes. If a caption
does not exist, MEMBER_NAME is returned.

MEMBER_GUID The member GUID.
MEMBER_NAME The name of the member.
MEMBER_ORDINAL The ordinal number of the member. This is the

sort rank of the member when members of this
dimension are sorted in their natural sort order. If
providers do not have the concept of natural
ordering, this should be the rank when sorted by
MEMBER_NAME.

MEMBER_TYPE The type of the member. It can be one of the
following values:

MDMEMBER_TYPE_REGULAR

MDMEMBER_TYPE_ALL

MDMEMBER_TYPE_FORMULA

MDMEMBER_TYPE_MEASURE

MDMEMBER_TYPE_UNKNOWN

MDMEMBER_TYPE_FORMULA takes precedence
over MDMEMBER_TYPE_MEASURE. Therefore, if
there is a formula (calculated) member on the
Measures dimension, it is listed as
MDMEMBER_TYPE_FORMULA.

MEMBER_UNIQUE_NAME The unique name of the member. For providers
that generate unique names by qualification, each
component of this name is delimited.

PARENT_COUNT The number of parents that this member has.
PARENT_LEVEL The distance of the member's parent from the

root level of the hierarchy. The root level is zero.
PARENT_UNIQUE_NAME The unique name of the member's parent. NULL

is returned for any members at the root level. For
providers that generate unique names by
qualification, each component of this name is
delimited.

SCHEMA_NAME The name of the schema to which this member
belongs.

Columns in the MEMBERS schema rowset support the intrinsic member properties. For more information about the MEMBERS
schema rowset, see MDSCHEMA_MEMBERS. Other intrinsic member properties can be supported, depending upon the provider.
However, all providers must support the intrinsic member properties listed here to be compliant with the OLAP section of the OLE
DB specification dated March 1999 (2.6).

Intrinsic member properties are used without additional specification of any sort, as intrinsic member properties apply to all
members. The following syntax example demonstrates usage:

PROPERTIES «Property»

Important Because intrinsic member properties cannot be qualified by the dimension or level name, a consumer cannot choose

different intrinsic member properties for different dimensions (or levels) on an axis. For example, if the ROWS axis has Geography
and SalesRep dimensions, the consumer cannot choose the MEMBER_CAPTION intrinsic member property for the Geography
dimension or the MEMBER_UNIQUE_NAME intrinsic member property for the SalesRep dimension. The consumer must choose
the same intrinsic member property (or properties) for all dimensions on an axis.

See Also

Using Member Properties

Analysis Services (SQL Server 2000)

Custom Member Properties
Custom Member Properties

Custom member properties can be added to a specific named level in a dimension. Custom member properties cannot be added
to the (All) level of a dimension, or to the dimension itself. Custom member properties can be added to server based dimensions
or cubes using Dimension Editor or Cube Editor in Analysis Manager, or by an application using the Decision Support Objects
(DSO) library. Additionally, custom member properties can be defined as part of the CREATE CUBE statement when creating local
cubes in PivotTable® Service.

The syntax used to refer to custom member properties is similar to that used to refer to intrinsic level member properties, as
demonstrated in the following example:

PROPERTIES [«Dimension».]«Level».«Custom Member Property»

See Also

Using Member Properties

Analysis Services (SQL Server 2000)

Using Cell Properties
Using Cell Properties

Cell properties in Multidimensional Expressions (MDX) contain information about the content and format of cells in a
multidimensional data source, such as a cube. MDX supports the CELL PROPERTIES keyword in an MDX SELECT statement to
retrieve intrinsic cell properties. Intrinsic cell properties are most commonly used to assist in the visual presentation of cell data.

The following example displays the syntax of the MDX SELECT statement, with the CELL PROPERTIES keyword syntax included.

SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]
[<cell_props>]

The syntax of the <cell_props> value is displayed here, and it employs the CELL PROPERTIES keyword along with one or more
intrinsic cell properties:

<cell_props> ::= CELL PROPERTIES <property> [, <property>...]

The supported intrinsic cell properties used in the <property> value are listed in the following table, with brief descriptions on the
content of the cell property.

Property Description
BACK_COLOR The background color for displaying the VALUE or

FORMATTED_VALUE property. For more information,
see FORE_COLOR and BACK_COLOR Contents.

CELL_EVALUATION_LIST The semicolon-delimited list of evaluated formulas
applicable to the cell, in order from lowest to highest
solve order. For more information about solve order, see
Understanding Pass Order and Solve Order

CELL_ORDINAL The ordinal number of the cell in the dataset.
FORE_COLOR The foreground color for displaying the VALUE or

FORMATTED_VALUE property. For more information,
see FORE_COLOR and BACK_COLOR Contents.

FONT_NAME The font to be used to display the VALUE or
FORMATTED_VALUE property.

FONT_SIZE Font size to be used to display the VALUE or
FORMATTED_VALUE property.

FONT_FLAGS The bitmask detailing effects on the font. The value is the
result of a bitwise OR operation of one or more of the
following constants:

MDFF_BOLD = 1

MDFF_ITALIC = 2

MDFF_UNDERLINE = 4

MDFF_STRIKEOUT = 8

For example, the value 5 represents the combination of
bold (MDFF_BOLD) and underline (MDFF_UNDERLINE)
font effects.

FORMAT_STRING The format string used to create the
FORMATTED_VALUE property value.

For more information, see FORMAT_STRING Contents.

FORMATTED_VALUE The character string that represents a formatted display
of the VALUE property.

NON_EMPTY_BEHAVIOR The measure used to determine the behavior of
calculated members when resolving empty cells.

SOLVE_ORDER The solve order of the cell.
VALUE The unformatted value of the cell.

Providers are not required to support all intrinsic cell properties; only the CELL_ORDINAL, FORMATTED_VALUE, and VALUE cell
properties must be supported. All cell properties, intrinsic or provider-specific, are defined in the PROPERTIES schema rowset,
including their data types and provider support. For more information about the PROPERTIES schema rowset, see
MDSCHEMA_PROPERTIES.

By default, if the CELL PROPERTIES keyword is not used, the cell properties returned are VALUE, FORMATTED_VALUE, and
CELL_ORDINAL (in that order). If the CELL PROPERTIES keyword is used, only those cell properties explicitly stated with the
keyword are returned.

The following example demonstrates the use of the CELL PROPERTIES keyword in an MDX query:

SELECT
 {[Measures].[Unit Sales], [Measures].[Store Size]} ON COLUMNS,
 {[Store].[Store Name].Members} ON ROWS
FROM Sales
CELL PROPERTIES VALUE, FORMATTED_VALUE, FORMAT_STRING, FORE_COLOR, BACK_COLOR

Cell properties are not returned for MDX queries that return flattened rowsets; in this case, each cell is represented as if only the
FORMATTED_VALUE cell property were returned.

Custom Member Options

Cell properties can be set through Analysis Manager by using the Custom Member Options property of Dimension Editor or
Cube Editor. The Custom Member Options property accepts a column reference containing, for each member, a comma-
delimited list of cell properties. The cell properties are represented as string expressions, shown in the following example.

FORE_COLOR='255',BACK_COLOR='65535'

The example will provide, for the specified member, a yellow background with a red foreground. Cell properties usually roll up to
parent members, unless the parent is a custom member with cell properties. In this case, the parent cell properties override the
cell properties derived from its children.

See Also

Properties Pane (Dimension Editor Schema View)

Properties Pane (Cube Editor Schema View)

Analysis Services (SQL Server 2000)

FORMAT_STRING Contents
FORMAT_STRING Contents

The cell property FORMAT_STRING is used to format the VALUE cell property, creating the value for the FORMATTED_VALUE
cell property. The FORMAT_STRING cell property handles both string and numeric raw values, applying a format expression
against the value to return a formatted value for the FORMATTED_VALUE cell property. The following tables detail the syntax
and formatting characters used to handle string and numeric values.

String Values

A format expression for strings can have one section or two sections separated by a semicolon (;).

Usage Result
One section The format applies to all string values.
Two sections The first section applies to string data, whereas the second section

applies to null values and zero-length strings ("").

The characters described in the following table can appear in the format string for character strings.

Character Description
@ Character placeholder. It displays a character or a space. If the string

has a character in the position where the at sign (@) appears in the
format string, it displays the character. Otherwise, it displays a space
in that position. Placeholders are filled from right to left unless there
is an exclamation point (!) in the format string.

& Character placeholder. It displays a character or nothing. If the string
has a character in the position where the ampersand (&) appears, it
displays the character. Otherwise, it displays nothing. Placeholders
are filled from right to left unless there is an exclamation point (!) in
the format string.

< Forces lowercase. It displays all characters in lowercase format.
> Forces uppercase. It displays all characters in uppercase format.
! Forces left-to-right fill of placeholders. (The default is to fill

placeholders from right to left.)

Numeric Values

A user-defined format expression for numbers can have anywhere from one to four sections separated by semicolons. If the
format argument contains one of the named numeric formats, only one section is allowed.

Usage Result
One section The format expression applies to all values.
Two sections The first section applies to positive values and zeros, the second to

negative values.
Three sections The first section applies to positive values, the second to negative

values, and the third to zeros.
Four sections The first section applies to positive values, the second to negative

values, the third to zeros, and the fourth to null values.

The following example has two sections: The first section defines the format for positive values and zeros, and the second section
defines the format for negative values.

"$#,##0;($#,##0)"

If you include semicolons with nothing between them, the missing section is printed using the format of the positive value. For
example, the following format displays positive and negative values using the format in the first section and displays "Zero" if the
value is zero:

"$#,##0;;\Z\e\r\o"

The following table identifies the characters that can appear in the format string for number formats.

Character Description
None Displays the number with no formatting.
0 Digit placeholder. Displays a digit or a zero.

If the expression has a digit in the position where the 0 appears in
the format string, it displays the digit. Otherwise, it displays a zero in
that position.

If the number has fewer digits than there are zeros (on either side of
the decimal) in the format expression, it displays leading or trailing
zeros.

If the number has more digits to the right of the decimal separator
than there are zeros to the right of the decimal separator in the
format expression, it rounds the number to as many decimal places
as there are zeros.

If the number has more digits to the left of the decimal separator
than there are zeros to the left of the decimal separator in the
format expression, it displays the extra digits without modification.

Digit placeholder. Displays a digit or nothing. If the expression has a
digit in the position where the # appears in the format string, it
displays the digit. Otherwise, it displays nothing in that position. This
symbol works like the 0 digit placeholder except that leading and
trailing zeros are not displayed if the number has the same or fewer
digits than there are # characters on either side of the decimal
separator in the format expression.

. Decimal placeholder. (In some locales, a comma is used as the
decimal separator.) The decimal placeholder determines how many
digits are displayed to the left and right of the decimal separator. If
the format expression contains only number signs (#) to the left of
this symbol, numbers smaller than 1 begin with a decimal separator.
To display a leading zero displayed with fractional numbers, use 0
as the first digit placeholder to the left of the decimal separator. The
actual character used as a decimal placeholder in the formatted
output depends on the number format recognized by your system.

% Percentage placeholder. The expression is multiplied by 100. The
percent character (%) is inserted in the position where it appears in
the format string.

, Thousand separator. (In some locales, a period is used as a thousand
separator.) The thousand separator separates thousands from
hundreds within a number that has four or more places to the left of
the decimal separator. Standard use of the thousand separator is
specified if the format contains a thousand separator surrounded by
digit placeholders (0 or #). Two adjacent thousand separators, or a
thousand separator immediately to the left of the decimal separator
(whether or not a decimal is specified), means "scale the number by
dividing it by 1000, rounding as needed." For example, you can use
the format string "##0,," to represent 100 million as 100. Numbers
smaller than 1 million are displayed as 0. Two adjacent thousand
separators in any position other than immediately to the left of the
decimal separator are treated simply as specifying the use of a
thousand separator. The actual character used as the thousand
separator in the formatted output depends on the number format
recognized by your system.

: Time separator. (In some locales, other characters may be used to
represent the time separator.) The time separator separates hours,
minutes, and seconds when time values are formatted. The actual
character used as the time separator in formatted output is
determined by your system settings.

/ Date separator. (In some locales, other characters may be used to
represent the date separator.) The date separator separates the day,
month, and year when date values are formatted. The actual
character used as the date separator in formatted output is
determined by your system settings.

E- E+ e- e+ Scientific format. If the format expression contains at least one digit
placeholder (0 or #) to the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is inserted between the
number and its exponent. The number of digit placeholders to the
right determines the number of digits in the exponent. Use E- or e-
to place a minus sign next to negative exponents. Use E+ or e+ to
place a minus sign next to negative exponents and a plus sign next
to positive exponents.

- + $ () Displays a literal character. To display a character other than one of
those listed, precede it with a backslash (\) or enclose it in double
quotation marks (" ").

\ Displays the next character in the format string. To display a
character that has special meaning as a literal character, precede it
with a backslash (\). The backslash itself is not displayed. Using a
backslash is the same as enclosing the next character in double
quotation marks. To display a backslash, use two backslashes (\\).
Examples of characters that cannot be displayed as literal characters
are the date-formatting and time-formatting characters (a, c, d, h,
m, n, p, q, s, t, w, y, /, and :), the numeric-formatting characters (#, 0,
%, E, e, comma, and period), and the string-formatting characters
(@, &, <, >, and !).

"ABC" Displays the string inside the double quotation marks (" "). To
include a string in format from within code, use Chr(34) to enclose
the text. (The character code for a double quotation mark is 34.)

Date Values

The following table identifies characters that can appear in the format string for date/time formats.

Character Description
: Time separator. (In some locales, other characters may be used to

represent the time separator.) The time separator separates hours,
minutes, and seconds when time values are formatted. The actual
character used as the time separator in formatted output is
determined by your system settings.

/ Date separator. (In some locales, other characters may be used to
represent the date separator.) The date separator separates the day,
month, and year when date values are formatted. The actual
character used as the date separator in formatted output is
determined by your system settings.

C Displays the date as ddddd and displays the time as ttttt, in that
order. Displays only date information if there is no fractional part to
the date serial number. Displays only time information if there is no
integer portion.

d Displays the day as a number without a leading zero (1–31).
dd Displays the day as a number with a leading zero (01–31).
ddd Displays the day as an abbreviation (Sun–Sat).
dddd Displays the day as a full name (Sunday–Saturday).

ddddd Displays the date as a complete date (including day, month, and
year), formatted according to your system's short date format
setting. For Microsoft® Windows®, the default short date format is
m/d/yy.

dddddd Displays a date serial number as a complete date (including day,
month, and year), formatted according to the long date setting
recognized by your system. For Windows, the default long date
format is mmmm dd, yyyy.

w Displays the day of the week as a number (1 for Sunday through 7
for Saturday).

ww Displays the week of the year as a number (1–54).
m Displays the month as a number without a leading zero (1–12). If m

immediately follows h or hh, the minute rather than the month is
displayed.

mm Displays the month as a number with a leading zero (01–12). If m
immediately follows h or hh, the minute rather than the month is
displayed.

mmm Displays the month as an abbreviation (Jan–Dec).
mmmm Displays the month as a full month name (January–December).
q Displays the quarter of the year as a number (1–4).
y Displays the day of the year as a number (1–366).
yy Displays the year as a two-digit number (00–99).
yyyy Displays the year as a four-digit number (100–9999).
h Displays the hour as a number without leading zeros (0–23).
hh Displays the hour as a number with leading zeros (00–23).
n Displays the minute as a number without leading zeros (0–59).
nn Displays the minute as a number with leading zeros (00–59).
s Displays the second as a number without leading zeros (0–59).
ss Displays the second as a number with leading zeros (00–59).
t t t t t Displays a time as a complete time (including hour, minute, and

second), formatted using the time separator defined by the time
format recognized by your system. A leading zero is displayed if the
leading zero option is selected and the time is earlier than 10:00 (for
example 09:59), in either the A.M. or the P.M. cycle. For Windows,
the default time format is h:mm:ss.

AM/PM Uses the 12-hour clock. Displays an uppercase with any hour from
midnight until noon; displays an uppercase AMPM with any hour
from noon until midnight.

am/pm Uses the 12-hour clock. Displays a lowercase am with any hour
from midnight until noon; displays a lowercase pm with any hour
from noon until midnight.

A/P Uses the 12-hour clock. Displays an uppercase A with any hour
from midnight until noon; displays an uppercase P with any hour
from noon until midnight.

a/p Uses the 12-hour clock. Displays a lowercase a with any hour from
midnight until noon; displays a lowercase p with any hour from
noon until midnight.

AMPM Uses the 12-hour clock. Displays the AM string literal as defined by
your system with any hour from midnight until noon; displays the
PM string literal as defined by your system with any hour from
noon until midnight. AMPM can be either uppercase or lowercase,
but the case of the string displayed matches the string as defined by
your system settings. For Windows, the default format is AM/PM.

Analysis Services (SQL Server 2000)

FORE_COLOR and BACK_COLOR Contents
FORE_COLOR and BACK_COLOR Contents

The FORE_COLOR and BACK_COLOR cell properties are used to store color information for the text and the background of a cell,
respectively, in the Microsoft® Windows® operating system red-green-blue (RGB) format.

The valid range for a normal RGB color is 0 to 16,777,215 (&H00FFFFFF). The high byte of a number in this range always equals
0; the lower 3 bytes, from least to most significant byte, determine the amount of red, green, and blue, respectively. The red,
green, and blue components are each represented by a number between 0 and 255 (&HFF).

For example, the value 255 (&H000000FF) represents red, the value (65280 (&H0000FF00) represents green, and the value
16711680 (&H00FF0000) represents blue.

Analysis Services (SQL Server 2000)

Building Named Sets in MDX
A set in Multidimensional Expressions (MDX) can be a lengthy and complex declaration, and difficult to follow or understand. For
example, the following MDX query examines the unit sales of the various Chardonnay and Chablis wines in FoodMart 2000:

SELECT
 {[Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chablis Wine]}
ON COLUMNS,
 {Measures.[Unit Sales]} ON ROWS
FROM Sales

The MDX query, although fairly simple in terms of the result set, is lengthy and unwieldy when it comes to maintenance.

One method of easing maintenance and increasing understandability of an MDX query such as the previous example is to create a
named set. A named set is simply a set expression associated with an alias. A named set can incorporate member or function that
can normally be incorporated into a set. The named set alias is treated as a set expression, and can be used anywhere a set
expression is accepted.

To illustrate, the previous MDX query example is rewritten to employ a named set, as shown in the following example:

WITH SET [ChardonnayChablis] AS
 '{[Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chablis
Wine]}'

SELECT
 [ChardonnayChablis] ON COLUMNS,
 {Measures.[Unit Sales]} ON ROWS
FROM Sales

The WITH keyword is used to create the [ChardonnayChablis] named set, which is then reused in the MDX SELECT statement. In
this fashion, the set created with the WITH keyword can be changed without disturbing the MDX SELECT statement. For more
information about using the WITH keyword to create named sets, see Using WITH to Create Named Sets.

The named set makes the MDX query example a bit easier to follow, but still difficult to maintain because the named set is defined
as part of the MDX query itself. The scope of the named set is limited to this MDX query alone, and is not reusable.

MDX and PivotTable® Service, however, offer the capability of creating a named set with a wider scope. The CREATE SET
statement allows the client application to create a named set that exists for the lifetime of the MDX session, making the named set
available to all MDX queries in that session. The CREATE SET statement makes sense, for example, in a client application that
consistently reuses a set in a variety of queries. For more information about using the CREATE SET to create named sets in a
session, see CREATE SET Statement.

Even this scope, however, may be limiting in terms of maintenance. Microsoft® SQL Server™ 2000 Analysis Services offers the
capability of creating global named sets, stored as part of a cube. For more information about creating global named sets, see
Creating Named Sets.

See Also

PivotTable Service

Analysis Services (SQL Server 2000)

Using WITH to Create Named Sets
Using WITH to Create Named Sets

The WITH keyword is included as part of the MDX SELECT statement, to allow construction of named sets as part of an MDX
query.

The following syntax is used to add the WITH keyword to the MDX SELECT statement:

[WITH <formula_specification>
 [<formula_specification>...]]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

The <formula_specification> value for named sets is further broken out in the following syntax definition:

<formula_specification> ::= SET <set_name> AS '<set>'

The <set_name> parameter contains the alias for the named set. The <set> parameter contains the set expression to which the
named set alias will refer.

For example, the [ChardonnayChablis] named set is used to refer specifically to all of the Chardonnay and Chablis wine members
in the Product dimension of the FoodMart 2000 database. The syntax for the named set is depicted in the following example:

WITH SET [ChardonnayChablis] AS
 '{[Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chardonnay],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Good].[Good Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Pearl].[Pearl Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Portsmouth].[Portsmouth
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Top Measure].[Top Measure
Chablis Wine],
 [Product].[All Products].[Drink].[Alcoholic Beverages].[Beer and Wine].[Wine].[Walrus].[Walrus Chablis
Wine]}'

You can also use MDX functions in the set expression used to create a named set. The following MDX query example uses the
Filter, CurrentMember, Name, and InStr functions to create the [ChardonnayChablis] named set, as used in earlier MDX query
examples in this topic.

WITH SET [ChardonnayChablis] AS
 'Filter([Product].Members, (InStr(1, [Product].CurrentMember.Name, "chardonnay") <> 0) OR (InStr(1,
[Product].CurrentMember.Name, "chablis") <> 0))'

SELECT
 [ChardonnayChablis] ON COLUMNS,
 {Measures.[Unit Sales]} ON ROWS
FROM Sales

Analysis Services (SQL Server 2000)

Building Calculated Members in MDX
In Multidimensional Expressions (MDX), a calculated member is defined as a member that is resolved not by retrieving data, but
by calculating an MDX expression to return a value. This innocuous definition covers an incredible amount of ground; the ability
to construct and use calculated members in an MDX query provides a great deal of manipulation capability for multidimensional
data. This topic discusses some of the simpler aspects of creating calculated members, as covered in the following table.

Topic Description
Using WITH to Create Calculated
Members

Discusses the use of the WITH keyword to create
calculated members in an MDX query.

Using Functions in Calculated
Members

Details the use of functions in calculated
members and other MDX expressions.

Conditional Expressions Covers the use of conditional expressions, such
as the IF keyword, in calculated members.

Analysis Services (SQL Server 2000)

Using WITH to Create Calculated Members
Using WITH to Create Calculated Members

Similar to the way it is used in named sets, the WITH keyword in Multidimensional Expressions (MDX) is used to describe
calculated members.

The following syntax is used to add the WITH keyword to the MDX SELECT statement:

[WITH <formula_specification>
 [<formula_specification>...]]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

The <formula_specification> value for calculated members is further broken out in the following syntax definition:

<formula_specification> ::= MEMBER <member_name>
 AS '<value_expression>'
 [,SOLVE_ORDER = <unsigned integer>]
 [,<cell_property>=<value_expression>...]

The <member_name> value is the fully qualified name of the calculated member, including the dimension or level to which the
calculated member is associated, and the <value_expression> value, after it has been evaluated, returns the value of the
calculated member. Optionally, the SOLVE_ORDER keyword can be used to specify the solve order of the calculated member; if
not used, the solve order of the calculated member is set by default to 0.

The values of intrinsic cell properties for a calculated member can be optionally specified by supplying the name of the cell
property in the <cell_property> value and the value of the cell property in the <value_expression> value.

For example, the following MDX query example defines two calculated members. The first calculated member, [Measures].
[StoreType], is used to represent the Store Type member property. The second calculated member, [Measures].[ProfitPct], is used
to calculate the total profit margin for a given store, and represent it as a formatted percentile value.

WITH
 MEMBER [Measures].[StoreType] AS
 '[Store].CurrentMember.Properties("Store Type")',
 SOLVE_ORDER = 2
 MEMBER [Measures].[ProfitPct] AS
 'Val((Measures.[Store Sales] - Measures.[Store Cost]) / Measures.[Store Sales])',
 SOLVE_ORDER = 1, FORMAT_STRING = 'Percent'
SELECT
 { [Store].[Store Name].Members} ON COLUMNS,
 { [Measures].[Store Sales], [Measures].[Store Cost], [Measures].[StoreType],
 [Measures].[ProfitPct] } ON ROWS
FROM Sales

Calculated members can be created at any point within a hierarchy. For example, the following MDX query example defines a
calculated member, created as a child member of the [Beer and Wine] member, to determine whether a given store has at least
100.00 in unit sales for beer and wine:

WITH
 MEMBER [Product].[Beer and Wine].[BigSeller] AS
 'IIf([Product].[Beer and Wine] > 100, "Yes","No")'
SELECT
 {[Product].[BigSeller]} ON COLUMNS,
 {Store.[Store Name].Members} ON ROWS
FROM Sales

You can also create calculated members that depend not only on existing members in a cube, but also on other calculated
members defined in the same MDX expression. The following example illustrates such an MDX expression:

WITH
 MEMBER [Measures].[ProfitPct] AS
 'Val((Measures.[Store Sales] - Measures.[Store Cost]) / Measures.[Store Sales])',
 SOLVE_ORDER = 1, FORMAT_STRING = 'Percent'
 MEMBER [Measures].[ProfitValue] AS
 '[Measures].[Store Sales] * [Measures].[ProfitPct]',
 SOLVE_ORDER = 2, FORMAT_STRING = 'Currency'
SELECT
 { [Store].[Store Name].Members} ON COLUMNS,
 { [Measures].[Store Sales], [Measures].[Store Cost], [Measures].[ProfitValue],

 [Measures].[ProfitPct] } ON ROWS
FROM Sales

The second calculated member, [Measures].[ProfitValue], uses the value created in the first calculated member, [Measures].
[ProfitPct], to generate its value.

Analysis Services (SQL Server 2000)

Using Functions in Calculated Members
Using Functions in Calculated Members

Calculated members in Multidimensional Expressions (MDX) are extremely flexible. One of the ways in which calculated members
provide such flexibility is in the wide variety of functions available for use in MDX. Besides the intrinsic MDX functions provided by
the Microsoft® SQL Server™ 2000 Analysis Services function library, calculated members can also take advantage of external
function libraries to supply additional capability.

A discussion of all of the myriad ways to use calculated members is beyond the scope of this topic. Instead, this topic focuses on
the most commonly employed operators and functions in calculated members, and how to use them.

Operators

MDX supports a variety of arithmetic, logical, and comparison operators for use in MDX expressions.

Arithmetic Operators

Arithmetic operators support a basic set of arithmetic operations. Arithmetic precedence is followed when resolving arithmetic
operations; multiplication and division operators are processed first, followed by addition and subtraction operators. If all of the
arithmetic operators used in an expression have the same order of precedence; for example, as in the statement a + b + c + d,
the arithmetic operators are handled in a left to right order. The basic arithmetic operators supported are specified in the
following table.

Operator Description
+ Addition
- Subtraction and unary negation
* Multiplication
/ Division

Comparison Operators

Comparison operators compare two string, numeric or date expressions and return TRUE or FALSE based on the outcome of the
tested comparison. For the purposes of comparison, null values are treated as zero when a null value is compared with a nonnull
value. To check for null values in a cell, use the IsEmpty or Is functions to return TRUE if the cell contains a null value, FALSE
otherwise. The TRUE and FALSE constants are supported; the TRUE constant evaluates to 1, while the FALSE constant evaluates to
0.

Operator Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to
= Equal to

Bitwise Operators

Bitwise operators return a TRUE or FALSE value based on the review of logical expressions. As the TRUE and FALSE constants are
supported, either of the following MDX expressions is now valid:

([Measures].[IsTrue] AND [Measures].[IsFalse]) = 0
([Measures].[IsTrue] AND [Measures].[IsFalse]) = FALSE

Logical operators require expressions that can be evaluated to a logical value. Numeric expressions are implicitly converted to
logical values before a logical comparison is performed. Any numeric expression that evaluates to 0 or NULL is considered FALSE,
while any numeric expression that evaluates to something other than 0 is considered TRUE. String expressions are not implicitly
converted; attempting to use a bitwise operator with string expressions will result in an error.

Operator Description

«Expression1» AND «Expression2» Returns TRUE if both expressions are true,
FALSE otherwise.

«Expression1» OR «Expression2» Returns TRUE if either expression is true,
FALSE otherwise.

NOT «Expression1» Returns TRUE if the expression is not true,
FALSE otherwise.

«Expression1» XOR «Expression2» Returns TRUE if either expression, but not
both, is true, FALSE otherwise.

Set Operators

Set operators are provided to deal with the creation, separation, and joining of sets, as described in the following table.

Operator Description
«Set1» + «Set1» Performs the Union function on two sets.
«Set1» * «Set2» Performs the Crossjoin function on two sets.
«Set1» - «Set2» Performs the Except function on two sets.
«Member1»:«Member2» Creates a naturally ordered set, with the two members as

endpoints and all members between the two specified
members included as members of the set.

Functions

MDX supplies a wide variety of functions for use in MDX expressions. This topic briefly touches on each category of functions,
broken out by the type of data returned by the MDX functions in a specific category.

For more information about the categories of MDX functions, see MDX Function List.

N umeric Functions

MDX supplies a rich set of numeric functions, which can be used to perform a variety of aggregation and statistical calculations.

Aggregate functions in MDX are used to quickly perform a calculation across a number of members, usually specified as a set. For
example, the Aggregate function aggregates the cells formed by all the members in a set, and can do so much easier than
attempting to perform a manual aggregation. The Aggregate function is extremely powerful when combined with a measure
that produces a sum, as the following MDX query example demonstrates:

WITH
 MEMBER [Time].[1st Half Sales] AS 'Aggregate({Time.[Q1], Time.[Q2]})'
 MEMBER [Time].[2nd Half Sales] AS 'Aggregate({Time.[Q3], Time.[Q4]})',
 MEMBER [Time].[Difference] AS 'Time.[2nd Half Sales] - Time.[1st Half Sales]',
SELECT
 { [Store].[Store State].Members} ON COLUMNS,
 { Time.[1st Half Sales], Time.[2nd Half Sales], Time.Difference} ON ROWS
FROM Sales
WHERE [Measures].[Store Sales]

The query produces the sum of the store sales for each state, with aggregations for the first and second halves of the year
supplied by the first two calculated members using the Aggregate function, with a difference between the two supplied by a
third calculated member.

MDX also supplies a list of statistical functions as well, for handling routine statistical calculations such as statistical covariance
and standard deviation. For example, the Median function computes the median value across a set, as demonstrated in the
following MDX query.

WITH
 MEMBER [Time].[1st Half Sales] AS 'Sum({[Time].[Q1], [Time].[Q2]})'
 MEMBER [Time].[2nd Half Sales] AS 'Sum({[Time].[Q3], [Time].[Q4]})'
 MEMBER [Time].[Median] AS 'Median(Time.Members)'
SELECT
 NON EMPTY { [Store].[Store Name].Members} ON COLUMNS,
 { [Time].[1st Half Sales], [Time].[2nd Half Sales], [Time].[Median]} ON ROWS
FROM Sales
WHERE [Measures].[Store Sales]

In this case, the [Time].[Median] calculated member provides the median value of store sales for each store, in addition to the
aggregation of store sales for each half of the year for each store provided by the [Time].[1st Half Sales] and [Time].[2nd Half
Sales] calculated members.

String Functions

MDX supplies a number of string functions not just for string processing within MDX expressions, but to support user-defined
functions in MDX as well. For example, the MemberToStr function converts a member reference to a string in the MDX format
for use with a user-defined function, as user-defined functions cannot accept object references from MDX.

Set Functions

Set functions are used to return sets in MDX, giving you the capability to easily build dynamically defined sets and quickly create
reusable named sets. One of the most commonly used set functions, the Members function, returns all members, excluding
calculated members, of a level or dimension as a set. The following MDX query example shows the Members function in action.

SELECT
 NON EMPTY { [Store].[Store Name].Members} ON COLUMNS,
 {Measures.[Store Sales]} ON ROWS
FROM Sales

The MDX query example returns the total store sales figures for each store in the Sales cube. Without the Members function, you
would have to explicitly enter each and every store name for it to function as it does in the MDX query example.

Tuple Functions

As with set functions, tuple functions are used to return tuples in MDX. Tuple functions are also supplied, such as the StrToTuple
function, to aid user-defined functions in MDX. As user-defined functions cannot handle MDX object references, a user-defined
function can pass back a string return value in MDX format, representing a tuple, and use the StrToTuple function to convert it to
a valid tuple reference.

M ember Functions

Members are often referred to in calculated members; member functions allow calculated members to perform complex member
retrieval, negotiating hierarchies and sets with equal ease.

The resolution of calculated members in MDX can be iterative in nature, as calculated members can be constructed based upon
iteration over the members of a set. Functions in MDX such as CurrentMember allow you to take advantage of this iterative
capability.

Other Functions

MDX supplies other functions as well, including functions that deal with dimensions, hierarchies, levels, and arrays. For example,
the SetToArray function allows user-defined functions to receive set references as a variant array of individual members
represented as strings, allowing you to create user-defined functions that can supply set related functionality.

Analysis Services (SQL Server 2000)

Conditional Expressions
Conditional Expressions

Another capability in Multidimensional Expressions (MDX) is the ability to create conditional expressions, expressions that return
different information depending upon a decision made in the calculated member based on the existence of a condition.

The following topics discuss the various conditional expressions in use in MDX.

Topic Description
IIf Function Describes the use of the IIf function in MDX expressions for simple

decisions.

Analysis Services (SQL Server 2000)

IIf Function
IIf Function

The IIf function in Multidimensional Expressions (MDX) can be used to perform simple, yes-or-no decisions. For example,
consider the following MDX query example.

WITH MEMBER [Measures].[BigSeller] AS
 'IIf(Measures.[Store Sales] > 20000, "Yes", "No")'

SELECT
 {[Store].[Store Name].Members} ON COLUMNS,
 {[Measures].[Store Sales], [Measures].[BigSeller]} ON ROWS
FROM Sales

The MDX query example returns two rows for each store in the Sales cube. One row, the [Measures].[Store Sales] member,
supplies the total store sales for each store. The second row is a calculated member that, based on the store sales for each store,
determines if the store is a "big seller". That is, the IIf function is used to check a simple yes-or-no condition. In this case, the
condition is whether or not the store sales figure for each store is greater than $20,000.00. If it is, the value of the member for that
store is Yes. If the store sales figure is equal to or less than $20,000.00, it returns the value No.

This is a simple but graphic example of the use of the IIf function to return different values based upon a single Boolean
condition; other MDX functions and operators can be used to supply the returned values in the IIf function.

For more information about the syntax of the IIf function, see IIf.

Analysis Services (SQL Server 2000)

Building Caches in MDX
Another feature Multidimensional Expressions (MDX) provides to improve performance is the ability to load a commonly used
slice of a cube into memory, caching it for faster retrieval.

Microsoft® SQL Server™ 2000 Analysis Services and PivotTable® Service automatically cache query definitions, data, and meta
data on the server and client sides, respectively. This caching increases performance in those cases where queries are repeatedly
requesting the same data or meta data, reducing network traffic or execution time.

The ability to create caches for specific data in MDX gives you complete control over the caching of data to be used repeatedly,
allowing fine-tuning of query performance.

In terms of creation scope, caches are similar to named sets in that a cache may be created for the lifetime of a single query or a
session.

To create a cache to be used at the session level, the CREATE CACHE statement can be used. The CREATE CACHE statement can be
used to create caches at the query level, but the WITH statement can perform this task just as easily.

For example, the following MDX query uses the WITH statement to cache:

WITH CACHE AS '(Store.[Store Name].Members)'

SELECT
 {[Store].[Store Name].Members} ON COLUMNS,
 {[Measures].[Unit Sales]} ON ROWS
FROM Sales

While the WITH statement can be used to create a cache for a single query, the CREATE CACHE statement can be used to create
caches at the session level, as well. The CREATE CACHE statement requires PivotTable Service in order to employ a session level
cache.

For more information about the CREATE CACHE statement, see CREATE CACHE Statement.

Analysis Services (SQL Server 2000)

Using WITH to Create Caches
Using WITH to Create Caches

As with named sets and calculated members, the WITH keyword is also used to create query level caches, usable for the lifetime of
a single query. The following syntax is used to add the WITH keyword to the MDX SELECT statement:

[WITH <formula_specification>
 [<formula_specification>...]]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

The <formula_specification> value for caches is further broken out in the following syntax definition:

<formula_specification> ::= CACHE AS '(<set>[, <set>...])'

The <set> value is the set expression used to create the cache. The <set> value can support the use of MDX set functions.

When using the <set> set expression for constructing a cache, the following rules apply:

Each <set> must contain members from only one dimension. Each member must be distinct.

Each <set> must be from a different dimension.

The <set> cannot contain measures.

Analysis Services (SQL Server 2000)

Building Calculated Cells in MDX
Multidimensional Expressions (MDX) provides you with a number of tools for generating calculated values, such as calculated
members, custom rollups, and custom members. Although powerful and versatile features, they provide limited functionality
because they affect members, not cells. It is difficult to affect a specific set of cells, or a single cell for that matter, using these
features.

The calculated cells feature provides this functionality by allowing you to define a specific slice of cells, called a calculation
subcube, and apply a formula to each and every cell within the calculation subcube, subject to an optional condition that can be
applied to each cell.

Calculated cells take advantage of the pass order feature in Microsoft® SQL Server™ 2000 Analysis Services to provide such
complex functionality as goal-seeking formulas, by allowing recursive passes to be made with calculated cells, with calculation
formulas applied at specific passes in the pass order.

For more information on pass order, see Understanding Pass Order and Solve Order.

In terms of creation scope, calculated cells are similar to calculated members in that calculated cells can be made globally
available as part of a cube, or temporarily created for the lifetime of either a session or a single query.

To create calculated cells as part of a cube, use the CREATE CELL CALCULATION statement. For existing cubes, the ALTER CUBE
statement can also be used to add calculated cells.

To create calculated cells for the lifetime of a session, use the CREATE CELL CALCULATION statement.

To create calculated cells for the lifetime of a query, use the WITH statement.

See Also

ALTER CUBE Statement

CREATE CELL CALCULATION Statement

Using WITH to Create Calculated Cells

Analysis Services (SQL Server 2000)

Using WITH to Create Calculated Cells
Using WITH to Create Calculated Cells

Similar to the way it is used in calculated members, the WITH keyword in Multidimensional Expressions (MDX) is used to describe
calculated cells.

The following syntax is used to add the WITH keyword to the MDX SELECT statement:

[WITH <formula_specification>
 [<formula_specification>...]]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

The <formula_specification> value for calculated cells is further broken out in the following syntax definition:

<formula_specification> ::= CELL CALCULATION <formula_name>
 FOR '(<calculation_subcube>)'
 AS '<calculation_formula>'
 [,<calculation_property_list>]

The <cell_property_list> is further defined by the following syntax:

<cell_property_list> ::= <property_name = '<value>'
 [, <property_name> = '<value>'...]

The <formula_name> value is the name of the calculated cells. The <calculation_subcube> contains a list of orthogonal, single-
dimensional MDX set expressions, each of which must resolve to one of the following categories of sets.

Category Description
Empty set An MDX set expression that resolves into an empty set. In this

case, the set is ignored.
Single member set An MDX set expression that resolves into a single member.
Set of level members An MDX set expression that resolves into the members of a

single level. An example of this is the «Level».Members MDX
function. To include calculated members, use the
«Level».AllMembers MDX function.

Set of descendants An MDX set expression that resolves into the descendants of a
specified member. An example of this is the
Descendants(«Member», «Level», «Desc_flags») MDX
function.

If a dimension is not described in the <calculation_subcube> argument, it is assumed that all members are included for the
purposes of constructing the calculation subcube. Therefore, if the <calculation_subcube> argument is NULL, the calculated cells
definition applies to the entire cube.

The <calculation_formula> argument contains an MDX expression that evaluates to a cell value for all of the cells defined in the
<calculation_subcube> argument.

The <calculation property list> argument contains a list of member properties to be applied to the cells specified in the
<calculation_subcube> argument.

The following properties apply specifically to calculated cells.

Property Description
CALCULATION_PASS_DEPTH The pass depth for the calculation formula, this

property determines how many passes are needed
to resolve the calculation formula. For more
information about pass order, see Understanding
Pass Order and Solve Order.

CALCULATION_PASS_NUMBER The pass number for the calculation formula, this
property determines on which pass the calculation
formula will begin calculation. The default for this
property is 1. For more information about pass
order, see Understanding Pass Order and Solve
Order.

CELL_EVALUATION_LIST The semicolon-delimited list of evaluated formulas
applicable to the cell, in order from lowest to
highest solve order. For more information about
solve order, see Understanding Pass Order and
Solve Order

CONDITION The calculation condition of the calculated cells, this
property receives an MDX logical expression, which
is evaluated on each cell in the calculation subcube.
If it returns True, the calculation formula is applied
and the cell returns the resulting value. If it returns
False, the cell returns the original cell value. If not
specified, CONDITION defaults to True (in other
words, the calculation formula applies to all cells in
the calculation subcube).

DESCRIPTION A human-readable text description of the calculated
cells definition.

DISABLED A Boolean property which indicates whether or not
the calculated cells are disabled. DISABLED defaults
to False.

Other standard cell properties, such as FORE_COLOR and BACK_COLOR, can be used as well.

For more information about using cell properties and using member properties, see Using Cell Properties and Using Member
Properties.

Additional Considerations

The calculation condition, specified by the CONDITION property, is processed only once, depending on the creation scope of the
calculated cells definition. This provides increased performance for the evaluation of multiple calculated cells definitions,
especially with overlapping calculated cells across cube passes.

If created at global scope, as part of a cube, the calculation condition is processed when the cube is processed. If cells are modified
in the cube in any way, and the cells are included in the calculation subcube of a calculated cells definition, the calculation
condition may not be accurate until the cube is reprocessed. This can occur through the use of writebacks, for example. The
calculation condition is reprocessed when the cube is reprocessed.

If created at session scope, the calculation condition is processed when the statement is issued during the session. As with
calculated cells definitions created globally, if the cells are modified, the calculation condition may not be accurate for the
calculated cells definition.

If created at query scope, the calculation condition is processed when the query is executed. The cell modification issue applies
here, as well, although data latency issues are minimal at best due to the low processing time of MDX query execution.

The calculation formula, on the other hand, is processed whenever an MDX query is issued against the cube involving cells
included in the calculated cells definition, no matter the scope.

See Also

Understanding Pass Order and Solve Order

Analysis Services (SQL Server 2000)

Creating and Using User-Defined Functions in MDX
Multidimensional Expressions (MDX) supplies a great deal of intrinsic functions, designed to accomplish everything from standard
statistical calculation to member traversal in a hierarchy. But, as with any other complex and robust product, there is always the
need to extend the functionality of such a product further.

To this end, MDX provides the ability to add user-defined function references to MDX statements. This ability is already in
common use in MDX; the functionality supplied by external libraries, such as the Microsoft® Excel and Microsoft Visual Basic® for
Applications libraries, takes advantage of this capability.

Using a User-Defined Function in MDX

Calling a user-defined function in MDX is done in the same manner as calling an intrinsic MDX function. For a function that takes
no parameters, the name of the function and an empty pair of parentheses are used, as shown here:

MyNewFunction()

If the user-defined function takes one or more parameters, then the parameters are supplied, in order, separated by commas. The
following example demonstrates a sample user-defined function with three parameters:

MyNewFunctionWithParms("Parameter1", 2, 800)

USE LIBRARY Statement

Before employing a user-defined function in an MDX statement, however, the external library that contains the user-defined
function must first be loaded into memory. Loading an external library is performed with the USE LIBRARY statement.

All user-defined functions must be associated with a Component Object Model (COM) class in order to be used, usually supplied
in the form of a Microsoft ActiveX® dynamic link library (DLL).

If, for example, the user-defined function is part of an ActiveX DLL named MyFunc.dll, located in the C:\Winnt\System path, you
can use the USE LIBRARY statement to load it by the library name, as demonstrated here:

USE LIBRARY "C:\WINNT\SYSTEM\MyFunc.dll"

The USE LIBRARY statement can also load user-defined functions by class name, as each class must be registered in order to work
correctly. So, if your example function is located in the example ActiveX DLL and associated with the class "MyFuncClass", the
library can be loaded using the following example:

USE LIBRARY "MyFunc.MyFuncClass"

This method is recommended when referring to libraries that may be in different locations on different servers. As ActiveX DLL
components must be registered on server and client machines, referring to the class name ensures that the library is loaded from
the correct location, regardless of that location.

Multiple libraries can be loaded at the same time with a single USE LIBRARY statement, by separating the library names or class
names with commas, as demonstrated here:

USE LIBRARY "C:\WINNT\SYSTEM\MyFunc.dll", "C:\WINNT\SYSTEM\NewFuncs.dll"

A USE LIBRARY statement with no parameters unregisters all function libraries except the Microsoft SQL Server™ 2000 Analysis
Services function library.

PivotTable® Service supports the USE LIBRARY statement. For more information about the USE LIBRARY statement, see USE
LIBRARY Statement.

DROP LIBRARY Statement

The DROP LIBRARY statement can be used to unload a specific library or to unload all libraries. As with the USE LIBRARY
statement, the DROP LIBRARY syntax can accept either the file name or the class name, as demonstrated in the following
statement:

DROP LIBRARY "MyFunc.MyFuncClass"

PivotTable Service supports the DROP LIBRARY statement. For more information about the DROP LIBRARY statement, see DROP
LIBRARY Statement.

Creating User-Defined Functions

User-defined functions can be created in any programming language that supports COM interfaces.

Parameter and Return Values

A user-defined function can accept any parameter that can be coerced into strings, numbers, or arrays of strings or numbers.
User-defined types or object references cannot be used as a parameter. If the parameter data type is explicitly declared as part of
the function prototype, such as a double or an integer, Microsoft SQL Server™ 2000 Analysis Services will first coerce values
passed into the parameter to the explicitly declared data type. For example, long integer values may be coerced into double
precision floating point values if the parameter accepts a Double data type. Date data types are coerced into string
representations of a date. PivotTable Service also attempts to coerce strings passed directly into a numeric parameter into
numeric values. If coercion fails for any reason, PivotTable Service returns an error condition.

Arrays can also be used as parameters; Analysis Services supports the use of arrays through such functions as SetToArray. As
with other parameters, if the data type of the array parameter is explicitly declared as part of the function prototype, PivotTable
Service will coerce array values into the explicitly declared data type.

If the data type of the array parameter is not explicitly declared or is declared as a variant array, PivotTable Service will also
attempt to coerce the elements of the array. However, PivotTable Service handles the coercion of variables in an array a bit
differently; the coerced data type is dependent upon the first element of the array, and all other array elements are expected to
conform to the same data type. If, for example, the first element in an array is a string, then it is expected that all of the elements in
the array are strings, and PivotTable Service will attempt to coerce the other elements into a string data type. If the first element in
an array, such as an empty cell, evaluates as empty, then an empty variant is passed to the array parameter instead of a variant
array whose first element is empty. If other elements in the array evaluate as empty, the array element is coerced into a zero. You
are recommended to explicitly declare the data types of arrays to be used as parameters in user-defined functions.

Similarly, a user-defined function can return any data type that can be coerced into a number, a string, or a variant. The return
values are more restrictive; arrays are not allowed. Additionally, PivotTable Service assumes that if a variant is returned, it contains
numeric data. If a string, array, or other non-numeric data is returned through a variant, PivotTable Service returns an error
condition for the calculation.

Optional parameters in a function are not supported; PivotTable Service requires all parameters in a user-defined function to be
populated.

Functions that return void values (for example, subroutines in Visual Basic) can also be used, but are employed with the CALL
keyword. If, for example, you wanted to use the function MyVoidFunction() in an MDX statement, the following syntax would be
employed:

CALL(MyVoidFunction)

Other Considerations

As with any other MDX function, an external function must be resolved before an MDX session can continue; external functions
lock MDX sessions while executing. Unless a specific reason exists to halt an MDX session pending user interaction, it is strongly
recommended that any user interaction, such as dialog boxes, be discouraged.

External function libraries can duplicate the function names of the Analysis Services function library or other external function
libraries. Normally, if an external function library contains a function with the same name as a function in the Analysis Services
function library, the Analysis Services function library takes precedence. If two external function libraries contain a function with
the same name, the registration order of the external function libraries determines precedence.

However, if you want to override precedence or call a function from a specific external function library, the external function can
be preceded by the program ID, delimited with an exclamation point character, as demonstrated here:

«ProgramID»!«FunctionName»(«Argument1», «Argument2», ...)

If an external function library supports multiple interfaces, the interface ID can also be used to additionally specify the function, as
demonstrated here:

«ProgramID»!«InterfaceID»!«FunctionName»(«Argument1», «Argument2», ...)

Analysis Services (SQL Server 2000)

Using Writebacks
The ability to write information to a write-enabled cube in Multidimensional Expressions (MDX) is called a writeback. Writebacks
are supported by two different methods, depending upon the level depth of the member to be changed. Writebacks are
supported on server cubes through PivotTable® Service, as described later in this topic. Writebacks to local cubes are not
supported.

Lowest-Level Member Writebacks

A lowest-level member is a member in a dimension associated with the lowest defined level of that dimension. For example, in
the following diagram, the Products dimension is defined with three levels (not counting the (All) level).

Any writeback to a member at the [Product Name] level is considered a lowest-level writeback, because there are no defined
levels below the [Product Name] level.

A separate table is maintained by Microsoft® SQL Server™ 2000 Analysis Services to store data changed by writebacks, and
PivotTable Service propagates the data through the affected aggregate members.

For more information about lowest-level writebacks, see Writing a Value Back to a Cell.

Lowest-level writebacks are most commonly used to modify individual lowest-level member data for speculative analysis. If all of
the members of a given aggregate are to be modified, it is often easier to use an aggregate-level member writeback.

Aggregate-Level Member Writebacks

An aggregate-level member is any member in a dimension whose value depends upon the value of members related to levels
below the aggregate level. For example, in the previous diagram, the [Brand Name] level is an aggregate level because the values
for its members depend upon aggregations performed on the [Product Name] level. The [Product Category], too, is an aggregate
level, because the values for its members depend upon aggregations created from the [Brand Name] level members.

Aggregate-level writebacks are more difficult to process, because in order to modify an aggregate level, all of the members that
are used to construct the values for that aggregate level must be modified. You could individually modify each lowest-level
member so that the aggregate level represents the desired value, but for cubes representing thousands, tens of thousands, or
more values, this is not a recommended option.

Instead, the UPDATE CUBE statement can be employed, using an allocation. Using one of four different allocation formulas, MDX
can distribute the desired aggregate value across all of the lowest level members, in effect handling all of the individual lowest-
level writebacks for you. Aggregate-level writebacks can be used only when the values are aggregated using the Sum aggregate
function.

Aggregate-level writebacks are best used when a correction to an aggregate figure is required affecting all lowest-level members
of a particular aggregation. Although lowest-level writebacks can also be used to accomplish this task, the aggregate-level
writeback is faster and, because it is treated as a single atomic transaction, ensures that security or formula validation issues will
not leave a cube in an inconsistent state.

Note Aggregate-level writebacks may produce imprecise results when integer values are allocated, due to incremental rounding
variations.

For more information about aggregate-level member writebacks, see UPDATE CUBE Statement.

Analysis Services (SQL Server 2000)

Using DRILLTHROUGH to Retrieve Source Data
The DRILLTHROUGH statement is used in Multidimensional Expressions (MDX) to retrieve a rowset from the source data for a
cube cell.

In order to execute a DRILLTHROUGH statement on a cube, drillthrough must be enabled for that cube in the Drillthrough
Options dialog box. The columns that are returned by a DRILLTHROUGH statement are also specified in this dialog box. (If you
are programming with Decision Support Objects (DSO), instead of using the dialog box, you can use the AllowDrillThrough and
DrillThroughColumns properties.) For more information, see Specifying Drillthrough Options.

The following syntax construct describes the DRILLTHROUGH statement:

<drillthrough> := DRILLTHROUGH [<Max_Rows>] [<First_Rowset>] <MDX select>
 < Max_Rows> := MAXROWS <positive number>
 <First_Rowset> := FIRSTROWSET <positive number>

The DRILLTHROUGH statement contains a SELECT clause to identify the cube cell for which source data is retrieved. The SELECT
clause is identical to an ordinary MDX SELECT statement except that in the SELECT clause only one member can be specified on
each axis. If more than one member is specified on an axis, an error occurs.

The <max_rows> syntax specifies the maximum number of the rows in each returned rowset. If the OLE DB provider that is used
to connect to the data source does not support DBPROP_MAXROWS, the <max_rows> setting is ignored.

The <first_rowset> syntax identifies the partition whose rowset is returned first.

The following example demonstrates the use of the DRILLTHROUGH statement:

DRILLTHROUGH
 SELECT [Warehouse].[All Warehouses].[Canada].[BC] ON ROWS,
 [Time].[1998].[Q1] ON COLUMNS,
 [Product].[All Products].[Drink] ON PAGES,
 [Measures].[Units Shipped] ON SECTIONS
 FROM [My Cube]

Analysis Services (SQL Server 2000)

Understanding Pass Order and Solve Order
Two of the most powerful and, correspondingly, most difficult concepts in Microsoft® SQL Server™ 2000 Analysis Services, solve
order and pass order together determine the manner in which a cube is resolved when queries are processed. This topic assumes
that you have a basic understanding of cubes, custom members, calculated members, and custom rollups.

Pass Order

When a cube is calculated as the result of a Multidimensional Expressions (MDX) query, it goes through at least one stage of
computation, and potentially more stages depending on the use of various calculation-related features, such as custom rollup
formulas, custom rollup operators, and calculated cells.

Each stage is referred to as a calculation pass, because the Analysis server makes a complete pass of the calculations applicable
for that stage. A calculation pass can be referred to by an ordinal position, called the calculation pass number. The count of
calculation passes required to fully compute all the cells of a cube is referred to as the calculation pass depth of the cube.

A cube always has one calculation pass, which retrieves data stored for the cube. Because the ordinal position of the pass number
begins at zero, this is always referred to as calculation pass 0. All calculated members and custom members are also calculated on
pass 0, and every calculation pass thereafter, with formula precedence within this calculation pass established by the solve order
of each calculated member. No other actions are allowed for this calculation pass; calculated cells cannot have calculation pass 0
assigned to their calculation pass number.

If a cube has custom rollup formulas or custom rollup operators, a second calculation pass is performed to handle the
computations needed to calculate these features. These features are calculated starting at calculation pass 1, and for every
calculation pass thereafter as determined by calculated cells definitions. The calculation pass number cannot be changed for
custom rollup formulas or custom rollup operators, because they are calculated on each calculation pass, with formula
precedence handled by solve order. However, calculated cells can have calculation pass 1 assigned to their calculation pass
number, described in more detail later in this topic.

A cube without calculated cells will have at most two calculation passes. Calculated cells, however, can specify the last calculation
pass number on which the calculated cells definition is calculated, and how many passes with which the calculated cells definition
is used, providing the ability to create cubes that use two or more calculation passes.

Calculated cells can specify the calculation pass number by using the Calculation Pass Number property on the Advanced tab
of Cube Editor, or by using the CALCULATION_PASS_NUMBER property in MDX statements. Additionally, recursive calculation is
allowed by specifying the number of calculation passes to which the calculation formula is recursively applied to the calculation
subcube. This feature, accessed through the Calculation Pass Depth property on the Advanced tab of Cube Editor or by using
the CALCULATION_PASS_DEPTH property in MDX statements, can allow highly complex calculations, such as goal-seeking
equations, to be employed in a cube. The calculation pass number determines the calculation pass at which evaluation starts and
calculation finishes for a calculated cells definition. The calculation pass depth determines how many calculation passes are
required to fully compute a calculated cells definition. Only calculated cells will have a calculation pass number higher than 1.

The number of the inclusive range of calculation passes required to fully compute calculated cells can be defined by the formula
CALCULATION_PASS_NUMBER to (CALCULATION_PASS_NUMBER - CALCULATION_PASS_DEPTH) + 1, using the cell properties
CALCULATION_PASS_NUMBER and CALCULATION_PASS_DEPTH of the calculated cells definition. In other words, if a calculated
cells definition has a CALCULATION_PASS_NUMBER of 4 and a CALCULATION_PASS_DEPTH of 3, the calculated cells definition is
evaluated in calculation passes 4, 3, and 2, then calculated in calculation passes 2, 3, and 4.

All calculation passes are retained in memory, to facilitate references to previous pass values in calculation formulas. This ability
to refer to previous pass values for a given cell allows for complex calculations, such as speculative analysis and goal-seeking
formulas, with an increase in performance.

The number of calculation passes required to fully compute all of the cells of a cube is determined by first evaluating all of the
custom members, custom rollups, calculated members, and calculated cells. Evaluation is done from highest calculation pass to
lowest calculation pass, determined by the CALCULATION_PASS_NUMBER property, in order to accurately determine formula
precedence across calculation passes. The order is then reversed when calculating the calculation passes, by calculating from
lowest to highest. Essentially, each calculation pass is treated as a nested calculation, with the lowest calculation pass being the
most nested.

The following table illustrates the effects of calculation pass number and calculation pass depth on a sample cube. The sample
cube contains four calculations:

A calculated member, shaded in dark gray, with a SOLVE_ORDER of 1.

A custom rollup formula, shaded in dark blue, with a SOLVE_ORDER of 2.

A calculated cells definition, shaded in green, with a CALCULATION_PASS_NUMBER of 2, a CALCULATION_PASS_DEPTH of
1, and a SOLVE_ORDER of 1.

A calculated cells definition, shaded in red, with a CALCULATION_PASS_NUMBER of 3, a CALCULATION_PASS_DEPTH of 2,
and a SOLVE_ORDER of 2.

Pass diagram Pass description
Calculation Pass 3
Because the CALCULATION_PASS_DEPTH of the
calculated cells definition shaded with red is 2, the
cells are recursively calculated again, using the
values derived from the previous calculation pass.
The calculated member and custom rollup formula
are also calculated again on this pass.

Calculation Pass 2
The calculations for both calculated cells
definitions start here, based on the evaluation of
CALCULATION_PASS_NUMBER and
CALCULATION_PASS_DEPTH. The calculated
member and custom rollup formula are also
calculated again on this pass.

Calculation Pass 1
All custom rollup formulas and custom rollup
operators start calculation on pass 1.

Calculation Pass 0
Data is retrieved from sources. Calculated and
custom members are calculated. No other
calculations can be performed at this point.

Color-coded arrows show evaluation and calculation order for the various calculations in the diagram shown in the previous
table. In cubes with multiple calculations, some of the calculations can overlap. When this occurs, the solve order of the
overlapping calculations is used to resolve formula precedence, but only within a given pass. If a solve order is specified for a
calculated cells definition that encompasses multiple passes (that is, the CALCULATION_PASS_DEPTH is greater than 1), the solve
order is applied to each pass to resolve formula precedence. Because solve order is applied on each calculation pass, overlapping
calculated cells definitions can generate different values for cells that may be involved in custom rollup or calculated member
resolution. A more detailed discussion of solve order is given later in this topic.

Recursive calculations and goal-seeking calculations can make use of values obtained in previous passes through the use of the
CalculationPassValue and CalculationCurrentPass functions in MDX. The CalculationCurrentPass function provides the
current calculation pass number, and the CalculationPassValue, given an MDX expression and a calculation pass number,
evaluates the MDX expression within the specified calculation pass number and returns the result.

Solve Order

Within a single pass, solve order determines two things: the order in which dimensions, members, calculated members, custom
rollups, and calculated cells are evaluated, and the order in which they are calculated. The member with the highest solve order is
evaluated first, but calculated last. This is similar in behavior to any other nested operation: the outermost operation cannot
complete until the innermost operation is completed, but the outermost operation is evaluated first in order to determine that the
innermost operation must be completed before the outermost can be completed. The lower the solve order, the more nested the
member in terms of evaluation and calculation, with the member having the highest solve order occupying the outermost
position.

In cubes with dimensions that contain custom members, custom rollup formulas, calculated members, and calculated cells, the
solve order determines the order in which various calculations are evaluated. The highest solve order is always evaluated first,
then the next highest, and so on.

The order in which they are calculated, however, is reversed. The lowest solve order is calculated first, then the next lowest, and so
on. Solve order essentially nests formulas, and as with any nested formula, the outermost formulas are evaluated first, but
calculated last. The innermost formulas are evaluated last, but calculated first, because the outermost formulas may depend on

the values produced by the innermost formulas for their calculation.

Although measures are usually treated as another dimension, they are always evaluated last and calculated first for solve order
purposes. In other words, measures are always treated as having the lowest possible solve order.

In Cube Editor, the solve order for calculated members and calculated cells can be changed by altering the Solve Order property
in the Advanced tab of the properties pane. The solve order for dimensions can be changed by reordering the positions of the
dimensions within the tree pane. For more information about using Cube Editor, see Cube Editor - Schema View.

In MDX the SOLVE_ORDER member property can be used when creating or changing calculated members and calculated cells

Solve order directly affects the results generated by the calculation of dimensions and members in this fashion. The following
diagram describes the behavior of two dimensions, each with a calculated member, that intersect at a cell. Two examples are
presented in the following diagram, with different solve orders.

In the first example, Dimension 2 has a higher solve order. So, the intersection is evaluated using the formula for Dimension 2.
However, in order to provide data for this formula, the calculated member in Dimension 1 must be evaluated and calculated. So,
the formula for Dimension 1 is calculated to provide the values needed to calculate the formula for Dimension 2. Then, the
formula for Dimension 2 is calculated and the result is placed in the cell.

In the second example, Dimension 1 has a higher solve order. The cell at the intersection is evaluated using the formula for
Dimension 1. As Dimension 2 has a lower solve order, it is evaluated next, then calculated first and the values provided to the
formula for Dimension 1. Then, the formula for Dimension 1 is calculated and the result is placed in the cell.

To further demonstrate the potential complexities of solve order, a series of example MDX queries is presented here.

For the first example, you are interested in seeing the difference in income and expenses for each half of the year. You would then
construct a simple MDX query similar to the following example:

WITH
MEMBER [Time].[Year Difference] AS
 '[Time].[2nd half] - [Time].[1st half]
SELECT
 { [Money].[Income], [Money].[Expenses] } ON COLUMNS,
 { [Time].[1st half], [Time].[2nd half], [Time].[Year Difference] } ON ROWS
FROM TestCube

This MDX query would produce a result set similar to the following table, with the calculated member shaded.

 Income Expenses
1st half 5000 4200
2nd half 8000 7000
Year Difference 3000 2800

For this query, solve order is not an issue, assuming the cube does not use any calculated members, because there is only one
calculated member in the query.

Now, for the second example, you are interested in seeing the percentage of net income after expenses for each half of the year,
using the following MDX query:

WITH
MEMBER [Money].[Net Income] AS
 '([Money].[Income] [Money].[Expenses]) / [Money].[Income]'
SELECT

 { [Money].[Income], [Money].[Expenses], [Money].[Net Income] } ON COLUMNS,
 { [Time].[1st half], [Time].[2nd half] } ON ROWS
FROM TestCube

This MDX query would produce a slightly different result set, similar to the following table, with the calculated member shaded.

 Income Expenses Net Income
1st half 5000 4200 0.16
2nd half 8000 7000 0.125

This MDX query, like the previous one, does not have any solve order complications, because it also has only a single calculated
member. Notice the placement of the calculated member in the result dataset of this example, as well as in the previous example.
The first MDX query example uses a calculated member as part of the ROWS axis dimension, but this query example uses a
calculated member as part of the COLUMNS axis dimension. This placement becomes important in the next example, which
combines the two calculated members in a single MDX query.

Finally, you decide you want to combine both of the previous examples into a single MDX query. In this case, solve order becomes
important. Take, for example, the first attempt at this combination in the following MDX query:

WITH
MEMBER [Time].[Year Difference] AS
 '[Time].[2nd half] - [Time].[1st half],
 SOLVE_ORDER = 1
MEMBER [Money].[Net Income] AS
 '([Money].[Income] - [Money].[Expenses]) / [Money].[Income]',
 SOLVE_ORDER = 2
SELECT
 { [Money].[Income], [Money].[Expenses], [Money].[Net Income] } ON COLUMNS,
 { [Time].[1st half], [Time].[2nd half], [Time].[Year Difference] } ON ROWS
FROM TestCube

The two calculated members, Year Difference and Net Income, intersect at a single cell in the result dataset of the MDX query
example. The only way to determine how this cell will be evaluated is by the solve order. The formulas used to construct this cell
will produce different results depending upon the solve order of the two calculated members.

The SOLVE_ORDER keyword is be used to specify the solve order of calculated members in an MDX query or the CREATE
MEMBER command. If the solve order is not specified, it defaults to zero. In that case, the order of the dimensions in the cube
whose context is specified in the MDX query is used to determine the solve order, following the rules listed earlier in this topic.
This also applies to calculated members in different dimensions that are assigned the same SOLVE_ORDER value.

The integer values used with the SOLVE_ORDER keyword are relative; the value simply tells MDX to calculate a member based on
values derived from calculating members with a higher value. If a calculated member is defined without the SOLVE_ORDER
keyword, its default value is zero. The specified values do not need to start at zero, nor do they need to be consecutive.

In the MDX query example, Net Income has the highest solve order, so the cell in question is evaluated using the Net Income
formula. But the Net Income formula is calculated last; in order to calculate Net Income, the next calculated member, Year
Difference, must be calculated first so that Net Income can use the results of that calculated member to perform its own
calculation.

The results of this nested calculation can be viewed in the following table.

 Income Expenses Net Income
1st half 5000 4200 0.16
2nd half 8000 7000 0.125
Year Difference 3000 2800 0.066

As you can see, the result in the shared cell is based on the formula for Net Income; in other words, it was calculated with the Year
Difference data, producing the following formula (the result is rounded for clarity):

((8000 - 5000) - (7000 - 4200)) / (8000 - 5000) = 0.066

or

(3000 - 2800) / 3000 = 0.066

The result in the shared cell, however, is calculated differently if the solve orders for the calculated members in the MDX query are
switched, as demonstrated here:

WITH

MEMBER [Time].[Year Difference] AS
 '[Time].[2nd half] - [Time].[1st half],
 SOLVE_ORDER = 2
MEMBER [Money].[Net Income] AS
 '([Money].[Income] - [Money].[Expenses]) / [Money].[Income]',
 SOLVE_ORDER = 1
SELECT
 { [Money].[Income], [Money].[Expenses], [Money].[Net Income] } ON COLUMNS,
 { [Time].[1st half], [Time].[2nd half], [Time].[Year Difference] } ON ROWS
FROM TestCube

As the order of the calculated members has been switched, the Year Difference formula is used to evaluate the cell. The Net
Income calculated member is resolved first, and then the Year Difference calculated member is resolved, producing a strikingly
different result as shown in the following table.

 Income Expenses Net Income
1st half 5000 4200 0.16
2nd half 8000 7000 0.125
Year Difference 3000 2800 -0.035

Because it uses the Year Difference formula with the Net Income data, the formula for the shared cell resembles the following
calculation:

((8000 - 7000) / 8000) - ((5000 - 4200) / 5000) = -0.035

Or

0.125 - 0.16 = -0.035

Changing Solve Order Values

Solve order values can range from -8181 to 65535. It is highly recommended that you use only positive integers when setting
solve order values. Certain calculations reside at specific solve orders, as listed in the following table. The solve order for a pass
can become unpredictable if these values are used by other calculations.

Calculation Solve order
Calculated cell formula "dirtiness" -6143
Custom rollup formulas (if not otherwise specified) -5119
Virtual dimensions created with earlier versions of Analysis Services -4097
Visual totals calculation -4096
All other calculations (if not otherwise specified) 0

For example, changing the solve order for a calculated cells definition below the default custom rollup formula value of -5119
causes the calculated cells definition to be calculated before the custom rollup formulas; this can produce incorrect results.

In the case of multiple calculations having the same solve order, the following formula precedence is used:

1. Calculated cells

2. Custom rollup formulas

3. Custom and calculated members

4. All other calculations

Calculated cells take precedence over all other calculations in the case of solve order conflict. If multiple calculations occur within
the same category, the declaration order of the calculation is used. For example, if two calculated cells definitions have the same
solve order for the same calculation pass, the declaration order determines which is evaluated first.

Additional Considerations

The combination of pass order and solve order can be a very complex issue to deal with, especially in cubes with a high number
of dimensions involving calculated member, custom rollup formulas, or calculated cells. When MDX evaluates an MDX query, the
solve order values for everything involved within a given pass, including the dimensions of the cube specified in the MDX query,

are taken into account.

When a query with calculated members is executed against a cube with calculated members, for example, the solve orders for
both the query and the cube are evaluated as if the query were part of the cube; it is executed within the context of a cube.
Because it can be difficult to review the solve order of the dimensions on a cube, it can be challenging to ensure that the solve
order for calculated members in a complex MDX query are correctly handled within the context of a cube.

Also, as the solve order for the dimensions on a cube can be changed from Cube Editor, MDX queries can be affected; a once-
working MDX query can return unexpected results because the solve order of the cube on which context the MDX query executes
is changed.

See Also

CalculationCurrentPass

CalculationPassValue

Cube Editor - Schema View

CREATE MEMBER Statement

Analysis Services (SQL Server 2000)

Effective MDX
This topic provides information on more effective uses of Multidimensional Expressions (MDX) functions in various scenarios. The
topics covered are listed in the following table.

Topic Description
Comments in MDX Describes the use of comments in MDX

statements.
Working with Empty Cells Explains the behavior and functions associated

with empty cells in MDX.
Creating a Cell Within the Context
of a Cube

Covers the creation of an MDX query that returns
a single cell.

Working with the RollupChildren
Function

Discusses the impact of the RollupChildren
function on analysis of multidimensional data.

WHERE Clause Overrides Details how and when the WHERE clause of an
MDX query can override the resolution of
individual set, member, tuple, or numeric
functions in an MDX statement.

Analysis Services (SQL Server 2000)

Comments in MDX
Statements in Multidimensional Expressions (MDX) can contain user-readable comments that are ignored when the commands
are processed. The three different character sets that indicate comments are outlined in the following table.

Characters Description
// C++-style forward slashes. All text between the forward slashes and

the end of the same line is ignored.
-- SQL-style hyphens. All text between the dashes and the end of the

same line is ignored.
/*...*/ C-style forward slash and asterisk pairs. All text between the opening

forward slash and asterisk and the closing asterisk and backward
slash is ignored. This type of comment can span multiple lines.

The following example shows the use of comments in an MDX command:

/* Using this query to view
 info about units shipped
 and units ordered */

WITH MEMBER [Measures].[ShippingPercent] AS
'-- Returns [Units Shipped] over [Units Ordered] as a percent value
Measures.[Units Shipped] / Measures.[Units Ordered]',
FORMAT_STRING = 'Percent'

SELECT
 { [Measures].[Units Shipped], [Measures].[Units Ordered], [Measures].[ShippingPercent] } ON COLUMNS,
// The next command specifies nonempty members only
 NON EMPTY [Store].[Store Name].Members ON ROWS
FROM Warehouse -- Pulled from the Warehouse cube

Comments are recommended in complex or difficult to understand MDX queries, because they add information without incurring
performance penalties.

Analysis Services (SQL Server 2000)

Working with Empty Cells
Empty cells occur in Multidimensional Expressions (MDX) statements when data for the intersection of two or more dimensions
does not exist. For example, the following MDX query example produces many empty cells:

SELECT
 {[Store].[Store Name].Members} ON COLUMNS,
 {[Product].[Excellent Diet Cola]} ON ROWS
FROM Sales
WHERE [Measures].[Unit Sales]

The product, Excellent Diet Cola, is not sold in all stores. For the stores that sell the product, the Unit Sales measure will contain a
numeric value. For the stores that do not sell the product, however, an empty cell will be displayed.

Empty cells affect the evaluation of value expressions and search conditions. To understand why this is so, note that a value
expression is composed of value expression primaries. One of the value expression primaries is <tuple>[.VALUE], which returns
the value of a cell in the cube (some of whose coordinates are specified explicitly by <tuple>, and others that are available
implicitly from the context of the MDX statement). This cell can be an empty cell. Empty cells affect expression evaluation in the
following three cases:

With numeric value expressions. In a numeric value expression, this value can be added, subtracted, multiplied, or divided by
other values. It can also appear as the parameter of any function that has a <numeric_value_expression> argument.

With string value expressions. In a string value expression, this value can be concatenated to another string.

With search conditions composed of Boolean primaries. A Boolean primary is of the following form:

<boolean_primary> ::= <value_expression> <comp_op> <value_expression>

A value expression will be made up of the value expression primary, and this will lead to the first two cases described listed
earlier.

Empty Cell Evaluation

MDX specifically identifies an empty cell by defining a special empty cell value that is present in an empty cell. The empty cell
value is evaluated as follows:

The function IsEmpty(<value_expression>) returns TRUE if <value_expression> is the empty cell value. Otherwise it returns
FALSE.

When the empty cell value is an operand for any of the numeric operators (+, -, *, /), it behaves like the number zero.

When the empty cell value is an operand for the string concatenation operator (||), it behaves like the empty string.

When the empty cell value is an operand for any of the comparison operators (=. <>, >=, <=, >, <), it behaves like the
number zero or the empty string, depending on whether the data type of the other operand is numeric or string,
respectively.

When collating numeric values, the empty cell value collates in the same place as zero. Between the empty cell value and
zero, empty collates before zero.

When collating string values, the empty cell value collates in the same place as the empty string. Between the empty cell
value and the empty string, the empty cell value collates before an empty string.

Empty cells can be handled in a variety of ways; the easiest is to simply remove them from consideration. However, because this is
not always practical in MDX, functions have been provided to deal with empty cells.

NON EMPTY Keyword

The easiest way to remove empty cells from consideration is to use the NON EMPTY keyword in an MDX query. The following
example is the same MDX query example discussed earlier in this topic, but using the NON EMPTY keyword.

SELECT

 NON EMPTY {[Store].[Store Name].Members} ON COLUMNS,
 {[Product].[Excellent Diet Cola]} ON ROWS
FROM Sales
WHERE [Measures].[Unit Sales]

All of the stores in the first axis dimension that do not have values for the unit sales of the product are excluded from the result
dataset. The empty tuples are screened out of the result dataset of the MDX query.

It is important to note that this function screens out empty tuples, not individual empty cells. Because of this, empty cells can
appear in a result dataset even when the NON EMPTY keyword is used. For example, suppose you want to examine the unit sales
for two different products in 1997 for each store. The following MDX query example uses the NON EMPTY keyword to screen out
empty tuples:

SELECT
 NON EMPTY CROSSJOIN ({[Product].[Excellent Diet Cola], [Product].[Fabulous Diet Cola]}, {[Time].[1997]}) ON
COLUMNS,
 NON EMPTY {[Store].[Store Name].Members} ON ROWS
FROM Sales
WHERE [Measures].[Unit Sales]

However, the result dataset resembles the following table.

 Excellent Diet Soda Fabulous Diet Soda
 1997 1997

Store 6 20.00 11.00
Store 7 25.00 6.00
Store 24 11.00 19.00
Store 11 36.00 32.00
Store 13 25.00 22.00
Store 2 2.00
Store 3 23.00 16.00
Store 15 14.00 17.00
Store 16 13.00
Store 17 22.00 12.00
Store 22 2.00
Store 23 4.00 5.00

The result dataset still shows three empty cells, despite the presence of the NON EMPTY keyword. The tuples created by the MDX
query may contain empty cells, but the tuples themselves are not empty. For example, in the preceding result dataset, though
Store 22 did not sell any of the Fabulous Diet Soda product in 1997, it did sell some of the Excellent Diet Soda product in 1997.
So, the tuple created by the CROSSJOIN command does contain a member that does not evaluate to an empty cell; therefore the
tuple is not considered empty and is not screened out.

For more information about the use of NON EMPTY in MDX SELECT statements, see SELECT Statement.

CoalesceEmpty Function

This MDX function returns the first nonempty value in a list of values. It is useful when you want to replace empty cell values with
another numeric or string expression.

The CoalesceEmpty function allows you to evaluate a series of value expressions from left to right. The first value expression in
the series that does not evaluate to the empty cell value is returned. For example, the following MDX query modifies the previous
MDX query example to replace all of the empty cell values in the Unit Sales measure with zero:

WITH MEMBER [Measures].[NonEmptyUnitSales] AS
 'CoalesceEmpty(Measures.[Unit Sales], 0)'

SELECT
 NON EMPTY CROSSJOIN ({[Product].[Excellent Diet Cola], [Product].[Fabulous Diet Cola]}, {[Time].[1997]}) ON
COLUMNS,
 NON EMPTY {[Store].[Store Name].Members} ON ROWS
FROM Sales
WHERE [Measures].[NonEmptyUnitSales]

The following table demonstrates the result dataset returned by the MDX query example.

 Excellent Diet Soda Fabulous Diet Soda

https://msdn.microsoft.com/en-us/library/ms948097(v=sql.80).aspx

 1997 1997
Store 19 0 0
Store 20 0 0
Store 9 0 0
Store 21 0 0
Store 1 0 0
Store 5 0 0
Store 10 0 0
Store 8 0 0
Store 4 0 0
Store 12 0 0
Store 18 0 0
HQ 0 0
Store 6 20.00 11.00
Store 7 25.00 6.00
Store 24 11.00 19.00
Store 11 36.00 32.00
Store 13 25.00 22.00
Store 2 2.00 0
Store 3 23.00 16.00
Store 15 14.00 17.00
Store 16 0 13.00
Store 17 22.00 12.00
Store 22 2.00 0
Store 23 4.00 5.00

The values of the calculated member NonEmptyUnitSales were determined by the CoalesceEmpty function. If the Unit Sales
value evaluated to a nonempty cell, the first value in the CoalesceEmpty statement was returned. If the [Unit Sales] value
evaluated to an empty cell value, the second value in the CoalesceEmpty statement was returned. Because the CoalesceEmpty
function replaced all of the empty cell values with zero, the NON EMPTY keyword has nothing to screen out, so all of the tuples in
the query were valid and were presented in the result dataset.

Other Functions

The way that other functions (especially calculation functions) deal with empty cells depends on the capabilities and options that
are available to those functions. Functions such as Count and Avg evaluate a count of cells, but whether or not to evaluate an
empty cell by this type of function should be given careful thought. In practice, it is sometimes preferable to count the number of
empty cells. For example, when the number of sales representatives is counted as part of a performance evaluation query, all sales
representatives should be included in the count whether or not they sold anything. In this case, each no-sale results in an empty
cell. However, there are other situations in which empty cells should not be counted, such as when getting the average of sales
over a certain domain. In this case, counting the no-sale cells would inaccurately decrease the average.

Some MDX functions in which empty cells may change the outcome allow for the inclusion or exclusion of empty cells as part of
their calculation. Count, for example, supports the use of INCLUDEEMPTY and EXCLUDEEMPTY flags to handle the inclusion or
exclusion of empty cells, respectively, while counting.

Analysis Services (SQL Server 2000)

Creating a Cell Within the Context of a Cube
For certain applications, you may want to return data for a single cell within a cube. For example, executives might have a decision
support application written in Microsoft® Excel that uses data from a multidimensional data store. Suppose that when the
application starts each day, the executives want to view, at the top of the application's main window, the quarter-to-date
worldwide sales for the current year across all products and customers.

The solution is to create a dataset for which all dimensions are slicer dimensions. The Multidimensional Expressions (MDX)
statement for doing this takes the following form:

SELECT FROM cube_name WHERE slicer_specification

This results in a dataset with one cell. Because no axis dimensions are specified, the slicer specification focuses on the desired
point in the entire cube.

In this case, where there are no axes and hence only one cell, the following conditions apply:

The IMDDataset::GetAxisInfo method returns 0 for *pcAxes and a null pointer in *prgAxisInfo.

The axis rowsets for all axes will be empty, except for the axis MDAXIS_SLICERS. The axis for the slicer dimension will
contain information on the slicer conditions that created the single cell.

The single cell can be addressed by using the cell ordinal 0.

Analysis Services (SQL Server 2000)

Working with the RollupChildren Function
The use of the RollupChildren function in Multidimensional Expressions (MDX) statements is simple to explain, but the impact of
this function on MDX queries can be wide-ranging.

The RollupChildren function rolls up the children of a member, applying a different unary operator to each child, and returns the
value of this rollup as a number. The unary operator used can be supplied by a member property associated with the child
member, or it can be a string expression provided directly to the function.

The impact of the RollupChildren function occurs in MDX queries designed to perform selective analysis on existing cube data.
For example, the following table contains a list of child members for the Net Sales parent member, with their unary operators
(represented by the UNARY_OPERATOR member property) shown in parentheses.

Parent member Child member
Net Sales Domestic Sales (+)

Domestic Returns (-)
Foreign Sales (+)
Foreign Returns (-)

The Net Sales parent member currently provides a total of net sales minus the gross domestic and foreign sales values, with the
domestic and foreign returns subtracted as part of the rollup.

Now, if you want to provide a quick and easy forecast of domestic and foreign gross sales plus 10%, ignoring the domestic and
foreign returns, there are two ways to perform this action using the RollupChildren function.

Custom Member Properties

If this is to be a commonly performed operation, one method is to create a member property that stores the operator to be used
for each child for a given function. For example, a member property called SALES_OPERATOR is created, and the following unary
operators are assigned to it, as shown in the following table.

Parent member Child member
Net Sales Domestic Sales (+)

Domestic Returns (~)
Foreign Sales (+)
Foreign Returns (~)

With this new member property, the following MDX statement performs the gross sales estimate operation quickly and efficiently:

RollupChildren([Net Sales], [Net Sales].CurrentMember.Properties("SALES_OPERATOR")) * 1.1

When the function is called, the value of each child is applied to a total using the operator stored in the member property. The
following table displays valid unary operators and describes the expected result.

Operator Result
+ total = total + current child
- total = total - current child
* total = total * current child
/ total = total / current child
~ Child is not used in the rollup. Its value is ignored.

The tilde (~) unary operator indicates that this member is to be ignored when generating rollups totals. The members for
domestic and foreign returns are ignored and the rollup total returned by the RollupChildren function is multiplied by 1.1.

IIf Function

However, if the example operation is not commonplace or if it applies only to one MDX query, then the IIf function can be used
with the RollupChildren function to provide the same result. The following MDX query provides the same result as the earlier
MDX example, but does so without resorting to the use of a custom member property:

RollupChildren([Net Sales], IIf([Net Sales].CurrentMember.Properties("UNARY_OPERATOR") = "-", "~", [Net
Sales].CurrentMember.Properties("UNARY_OPERATOR))) * 1.1

The MDX statement checks the unary operator of the child member; if it is used for subtraction (as with the domestic and foreign
returns members), the tilde (~) unary operator is substituted by the IIf function. Otherwise, the unary operator of the child
member is used. Finally, the returned rollup total is then multiplied by 1.1 to provide the domestic and foreign gross sales
forecast value.

See Also

RollupChildren

Analysis Services (SQL Server 2000)

WHERE Clause Overrides
Each individual set, member, tuple, or numeric function in a Multidimensional Expressions (MDX) statement always executes in
the larger context of the entire statement. For example, consider the FILTER function in the following expression:

SELECT FILTER(SalesRep.MEMBERS, [1996].VALUE > 500) ON COLUMNS,
 Quarters.MEMBERS ON ROWS
FROM SalesCube
WHERE ([Geography].[All], [Products].[All], [1996], Sales)

The second argument of FILTER, "[1996].VALUE", does not contain enough information by itself. Six coordinates are needed, one
from each of the six dimensions, to determine VALUE. The argument contains only one coordinate, from the Years dimension. In
such a case, the other coordinates are obtained by looking at the following, in order:

1. The rest of the axis specification. This yields (in the preceding example) the coordinate of the SalesRep dimension because
the FILTER function iterates through each member of the SalesRep dimension.

2. The slicer condition (WHERE clause) and the coordinates for the slicer dimension. This yields the coordinates for the
Geography, Products, and Measures dimensions as (respectively) Geography.[All], Products.[All], and Measures.Sales.

3. The default member for dimensions that appear neither on the axis nor on the slicer. Thus the default members are picked
for the Quarters dimension.

A special case arises when a coordinate is specified both in the WHERE clause and within the expression. For example, suppose an
application calls for a dataset that, on the COLUMNS axis, contains 1996 budgeted sales for all the states in the United States that
had more than 500 units of ActualSales in 1995 and that, on the ROWS axis, contains the Quarters. The following statement can
create this dataset:

SELECT FILTER({USA.CHILDREN}, ([1995], ActualSales) > 500) ON COLUMNS,
 Quarters.MEMBERS ON ROWS
FROM SalesCube
WHERE ([1996], BudgetedSales, [Products].[All], [SalesRep].[All])

As the FILTER function is evaluated for each state in the United States, it already has the coordinates ([1996], BudgetedSales) from
the WHERE clause. However, it receives the coordinates ([1995], ActualSales) from the FILTER function. To avoid potential conflict,
the argument of the FILTER function takes precedence. In general, any coordinates obtained from the WHERE clause are
overridden by coordinates that are specified within an axis specification.

Analysis Services (SQL Server 2000)

MDX Functions in Analysis Services
Microsoft® SQL Server™ 2000 Analysis Services provides for the use of functions in Multidimensional Expressions (MDX) syntax.
Functions can be used in any valid MDX statement, and are often used in queries, calculated members, and custom rollup
definitions. There are three types of functions in MDX, and each is described in a separate topic. The following table lists,
describes, and provides links to each topic.

Topic Description
MDX Function Reference Provides a list of functions intrinsic to MDX,

including syntax and examples.
Registered Function Libraries Describes the use of external function libraries, such

as the Microsoft Excel worksheet library and the
Microsoft Visual Basic® for Applications Expression
Services library, in MDX expressions.

Analysis Services (SQL Server 2000)

MDX Function Reference
This topic provides information about the Multidimensional Expressions (MDX) functions included with Microsoft® SQL Server™
2000 Analysis Services. You can use the MDX Function List to find functions by their category of return value, or you can select a
function by name from the alphabetical list in the table of contents.

See Also

MDX Function List

Analysis Services (SQL Server 2000)

MDX Syntax Conventions
MDX Syntax Conventions

The diagrams for Multidimensional Expressions (MDX) syntax in the MDX Function Reference use these conventions.

Convention Usage
[] (brackets) Optional syntax items. Do not type the brackets.
| (vertical bar) Separating syntax items within brackets or braces. You can

choose only one of the items.
« » (guillemets) User-supplied parameters of MDX syntax. Do not type the

guillemets.
[,...] Indicating that the preceding item can be repeated any number

of times. The items are separated by commas.

Analysis Services (SQL Server 2000)

MDX Function List
MDX Function List

 New Information - SQL Server 2000 SP3.

This topic contains lists of the Multidimensional Expressions (MDX) functions in Microsoft® SQL Server™ 2000 Analysis Services.
You can use these lists to find functions by their category of return value, or you can select a function by name from the
alphabetical list in the table of contents.

Samples Used in Examples

For many expression examples in the following topics, SampleSet is defined as:

{USA, Buffalo, France, NYC, London, California, LA, Nice, UK, Paris}

The following table lists sales data for each member of the set.

Location 1995 sales 1996 sales
UK 1900 1700
 London 250 300
France 2500 2500
 Paris 365 250
 Nice 27 100
USA 5000 6500
 Boston 900 1100
 Buffalo 300 200
 California 2000 3500
 Los Angeles 500 900

MDX Function Groups

The following tables list the MDX functions grouped by their return value categories. You can use the links in the tables to jump to
the function reference topics.

Array Functions

Function Description
SetToArray Converts one or more sets to an array for use in a user-defined

function.

Analysis Services (SQL Server 2000)

A
A

Analysis Services (SQL Server 2000)

AddCalculatedMembers
AddCalculatedMembers

Returns a set generated by adding calculated members to a specified set.

Syntax

AddCalculatedMembers(«Set»)

Remarks

This function includes only the calculated members that are siblings in the set.

Example

In the preceding diagram, the following functions return the following values.

Expression Returns
AddCalculatedMembers({GrandParent.Children}) {[Parent 1],[Parent 2],

[Calculated member 0]}
AddCalculatedMembers({[Parent 1].Children}) {[Member 1.1], [Member 1.2],

[Member 1.3], [Calculated
member 1.4]}

AddCalculatedMembers({[Parent 2].[Member
2.1]})

{[Member 2.1], [Calculated
member 2.4]}

Analysis Services (SQL Server 2000)

Aggregate
Aggregate

Returns a calculated value using the appropriate aggregate function, based on the aggregation type of the member.

Syntax

Aggregate(«Set»[, «Numeric Expression»])

Remarks

This function cannot be used on calculated members.

Example

In the following expression, the calculated member Total is displayed first against the measure SumSales and then against the
measure MaxSales. In the former case, Total is calculated by adding (with Sum). In the latter case, Total is calculated by taking the
maximum.

WITH MEMBER Geography.Total AS 'AGGREGATE({USA, France})'
SELECT {Measures.SumSales, Measures.MaxSales} ON COLUMNS,
 {USA, France, Total} ON ROWS
FROM SalesCube
WHERE ([1998])

Analysis Services (SQL Server 2000)

AllMembers
AllMembers

Returns a set containing all members of the specified dimension or level, including calculated members.

Syntax

Dimension

«Dimension».AllMembers

Level

«Level».AllMembers

Remarks

Semantically similar to the AddCalculatedMembers function, this function also includes only the calculated members that are
siblings in the dimension or level. However, if there are no members, such as with the [Measures] dimension, the AllMembers
function will still return the calculated members.

Example

In this diagram, the following example returns the set {[Parent 1],[Parent 2],[Calculated Member 0]}:

[GrandParent].AllMembers

Analysis Services (SQL Server 2000)

Ancestor
Ancestor

Returns the ancestor of a member at a specified level or distance.

Syntax

Level

Ancestor(«Member», «Level»)

Returns the ancestor of «Member» from the dimension level specified in «Level».

Distance

Ancestor(«Member», «Numeric Expression»)

Returns the ancestor of «Member» that is «Numeric Expression» steps away in the hierarchy.

Example

If the Geography dimension includes levels named Country, State, and City, the following functions return the following values.

Expression Returns
Ancestor(Los Angeles, Country) [USA]
Ancestor(Los Angeles, State) [California]
Ancestor(Los Angeles, 0) [Los Angeles]
Ancestor(Los Angeles, 1) [California]
Ancestor(Los Angeles, 2) [USA]

Analysis Services (SQL Server 2000)

Ancestors
Ancestors

Returns a set of all the ancestors of a member at a specified level or distance.

Syntax

Level

Ancestors(«Member», «Level»)

Returns all ancestors of «Member» at the level specified in «Level».

The set of returned members must all be from the same hierarchy, but «Level» does not need to be a level of the same hierarchy
as «Member».

Distance

Ancestors(«Member», «Numeric Expression»)

Returns all members of the hierarchy that are «Numeric Expression» steps above «Member» in the hierarchy. This form of the
Ancestors function is intended for cases in which the level of the parent is unknown or cannot be named. The set of returned
members must all be from the same hierarchy.

Note Ancestors(«Member», 0) returns «Member».

Remarks

Unlike the Ancestor function, Ancestors is a set value expression; it returns a set, not a member.

Examples

If the Geography dimension includes levels named Country, State, and City, the following functions return the following values.

Expression Returns
Ancestors([Los Angeles], Country) { USA }
Ancestors([Los Angeles], State) { California }
Ancestors([Los Angeles], 0) { [Los Angeles] }
Ancestors([Los Angeles], 1) { California }
Ancestors([Los Angeles], 2) { USA }

Analysis Services (SQL Server 2000)

Ascendants
Ascendants

Returns the set of the ascendants of a specified member.

Syntax

Ascendants(«Member»)

Remarks

Unlike the Ancestor function, which returns a specific ascendant member, or ancestor, at a specific level, the Ascendants
function performs a post-order traversal of the member hierarchy, returning all of the ascendant members related to the given
member, including itself, in a set.

Example

The following example returns the set { LA, California, USA, [All Locations] }:

Ascendants([Los Angeles])

Analysis Services (SQL Server 2000)

Avg
Avg

Returns the average value of a numeric expression evaluated over a set.

Syntax

Avg(«Set»[, «Numeric Expression»])

Remarks

This function requires an implicit count of the number of cells, not including empty cells. In order to force the inclusion of empty
cells, the application must use the CoalesceEmpty function. For more information about empty cells, see the OLE DB
documentation.

Example

The following function returns 2000 if respective Sales are 1000, 2000, and 3000:

Avg({USA, Canada, Mexico}, Sales)

Analysis Services (SQL Server 2000)

Axis
Axis

Returns a set defined in an axis.

Syntax

Axis(«Numeric Expression»)

Remarks

The Axis function uses the zero-based position of an axis, specified in «Numeric Expression», to return the set defined in the axis.
For example, Axis(0) returns the COLUMNS axis, Axis(1) returns the ROWS axis, and so on. This function cannot be used on the
filter axis.

Example

The examples in the table use the following Multidimensional Expressions (MDX) query.

SELECT {Time.Members} ON COLUMNS, {Location.Members} ON ROWS
FROM TestCube

Expression Returns
Axis(0) The set of members represented by {Time.Members}, in the

COLUMNS axis.
Axis(1) The set of members represented by {Location.Members}, in

the ROWS axis.

Analysis Services (SQL Server 2000)

B
B

Analysis Services (SQL Server 2000)

BottomCount
BottomCount

Returns a specified number of items from the bottom of a set, optionally ordering the set first.

Syntax

BottomCount(«Set», «Count»[, «Numeric Expression»])

Remarks

This function sorts a set according to the value of «Numeric Expression» and returns the bottom «Count» members, where
«Count» is a numeric expression.

Important The BottomCount function, as with the TopCount function, always breaks the hierarchy.

Example

BottomCount(Geography.Cities.Members, 5, Sales)

See Also

TopCount

Analysis Services (SQL Server 2000)

BottomPercent
BottomPercent

Sorts a set and returns the specified number of bottommost elements whose cumulative total is at least a specified percentage.

Syntax

BottomPercent(«Set», «Percentage», «Numeric Expression»)

Remarks

This function sorts a set specified in «Set» and returns the specified number of bottommost elements whose cumulative total of
«Numeric Expression» is at least «Percentage». «Percentage» is a numeric expression.

Important The BottomPercent function, as with the TopPercent function, always breaks the hierarchy.

Example

BottomPercent(Products.[Product Description].Members, 25, Sales)

See Also

TopPercent

Analysis Services (SQL Server 2000)

BottomSum
BottomSum

Sorts a set using a numeric expression and returns the specified number of bottommost elements whose sum is at least a
specified value.

Syntax

BottomSum(«Set», «Value», «Numeric Expression»)

Remarks

This function sorts on «Numeric Expression» and picks up the specified number of bottommost (the smallest number possible)
elements such that their sum is at least «Value».

Important The BottomSum function, as with the TopSum function, always breaks the hierarchy.

Example

BottomSum(Products.[Product Description].Members, 100000, Quantity)

See Also

TopSum

Analysis Services (SQL Server 2000)

C
C

Analysis Services (SQL Server 2000)

CalculationCurrentPass
CalculationCurrentPass

Returns the current calculation pass of a cube for the specified query context.

Syntax

CalculationCurrentPass()

Remarks

The CalculationCurrentPass function returns the zero-based index of the calculation pass of the current query context flag.

Example

The following example returns the current calculation pass number:

CalculationCurrentPass()

See Also

CalculationPassValue

Analysis Services (SQL Server 2000)

CalculationPassValue
CalculationPassValue

Returns the value of a Multidimensional Expressions (MDX) expression evaluated over the specified calculation pass of a cube.

Syntax

N umeric

CalculationPassValue(«Numeric Expression», «Pass Value»[, «Access Flag»])

The CalculationPassValue function returns a numeric value, evaluating the MDX numeric expression specified in «Numeric
Expression» in the calculation pass specified in «Pass Value», optionally modified by an access flag specified in «Access Flags».

String

CalculationPassValue(«String Expression», «Pass Value»[, «Access Flag»])

The CalculationPassValue function returns a string value, evaluating the MDX string expression specified in «Numeric
Expression» in the calculation pass specified in «Pass Value», optionally modified by an access flag specified in «Access Flags».

Remarks

The behavior of the «Pass Value» parameter can change depending on the content of the «Access Flag» parameter. The following
table details the access flags allowed in the «Access Flag» parameter.

Access flag Description
ABSOLUTE The «Pass Value» contains the zero-based

index of a calculation pass.
RELATIVE The «Pass Value» contains a relative offset

from the current calculation pass. If the
offset resolves into a calculation pass
index less than 0, calculation pass 0 is
used; no error occurs.

Example

N umeric

The following example returns the value of [Sales] from calculation pass 0:

CalculationPassValue([Sales], 0)

String

The following example returns the full name of the [Sales] member from the previous calculation pass 0:

CalculationPassValue(MemberToStr([Sales]), -1, RELATIVE)

See Also

CalculationCurrentPass

Analysis Services (SQL Server 2000)

Call
Call

Executes a void-returning user-defined function.

Syntax

Call «UDF Name»

Remarks

The Call function executes the registered user-defined function specified by «UDF». This function is designed for use only with
void-returning user-defined functions.

Note If the user-defined function is not registered on the client, the Call function will attempt to call the user-defined function
from the Analysis server.

Example

Call MyOwnVoidFunction()

Analysis Services (SQL Server 2000)

Children
Children

Returns the children of a member.

Syntax

«Member».Children

Example

The following code returns { Nebraska, Oklahoma, Montana }:

[Geography].[All Geography].[Central Region].Children

Analysis Services (SQL Server 2000)

ClosingPeriod
ClosingPeriod

Returns the last sibling among the descendants of a member at a specified level.

Syntax

ClosingPeriod([«Level»[, «Member»]])

Remarks

The dimension that contains «Level» is used if «Level» is specified; otherwise, the Time dimension is used. If no «Level» is
specified, the level below that of «Member» is used. If no «Level» or «Member» is specified, the default is Time.CurrentMember.

This function is equivalent to BottomCount(Descendants(«Member», «Level»), 1).

The OpeningPeriod function is similar, except that it returns the first sibling instead of the last sibling.

Example

The following example returns [1991].December:

ClosingPeriod(Month, [1991])

See Also

OpeningPeriod

Analysis Services (SQL Server 2000)

CoalesceEmpty
CoalesceEmpty

Coalesces an empty cell value to a number or string and returns the coalesced value.

Syntax

N umeric

CoalesceEmpty(«Numeric Expression»[, «Numeric Expression»]...)

String

CoalesceEmpty(«String Expression»[, «String Expression»]...)

Remarks

This function returns the first (from the left) nonempty value expression in the list of value expressions. Returns the empty cell
value if all value expressions evaluate to the empty cell value.

All value expressions must evaluate to a numeric data type or to the empty cell value. Alternatively, all value expressions must
evaluate to a string data type or to the empty cell value.

For more information about empty cells, see the OLE DB documentation.

Examples

N umber

The following example returns -99 if Measures.CurrentMember is the empty cell value, otherwise it returns
Measures.CurrentMember :

CoalesceEmpty(Measures.CurrentMember, -99)

String

The following example returns the string "EMPTY" if Time.Parent.Name is the empty cell value, Time.Parent.Name otherwise:

CoalesceEmpty(Time.Parent.Name, "EMPTY")

Analysis Services (SQL Server 2000)

Correlation
Correlation

Returns the correlation of two series evaluated over a set.

Syntax

Correlation(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

This function evaluates «Set» against the first «Numeric Expression» to get the values for the y-axis. «Set» is evaluated against the
second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is not present,
the members of «Set» are used as values for the x-axis.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Analysis Services (SQL Server 2000)

Count
Count

Returns the number of items in a collection, depending on the collection.

Syntax

Dimension

Dimensions.Count

Returns the number of dimensions in a cube, including the [Measures] dimension.

Level

«Dimension»|«Hierarchy».Levels.Count

Returns the number of levels in a dimension or hierarchy, including the [All] level if applicable.

Set - Syntax 1

Count(«Set»[, ExcludeEmpty | IncludeEmpty])

Returns the number of cells in a set. This syntax allows empty cells to be excluded or included with the use of the ExcludeEmpty
or IncludeEmpty flags, respectively.

Set - Syntax 2

«Set».Count

Returns the number of cells in a set, with empty cells included.

Tuple

«Tuple».Count

Returns the number of dimensions in a tuple.

Note Empty cells are counted by default. The comparable Count function in OLE DB excludes empty cells by default.

Remarks

To exclude empty cells in the count of a set, use the optional ExcludeEmpty keyword.

Example

If Time has levels Year and Month, and the members of Year are 1994 and 1995, the following examples return 24:

Set - Example 1

Count({Time.Month.Members})

Set - Example 2

Time.Month.Members.Count

Analysis Services (SQL Server 2000)

Cousin
Cousin

Returns the child member with the same relative position under a parent member as the specified child member.

Syntax

Cousin(«Member1», «Member2»)

Remarks

This function operates on the order and position of members within levels. If two dimensions exist, in which the first one has four
levels and the second one has five levels, the cousin of the third level of the first dimension is the third level of the second
dimension.

Example

The following example assumes that both years 1996 and 1994 contain the same number of months preceding the member
March:

Cousin([1996].March, [1994])

This example yields the member [1994].March.

If the same example assumes that the 1996 level contains the January, February, March, April, May, June, July, August,
September, October, November, and December members, and the 1994 level contains the [1st Quarter], [2nd Quarter], [3rd
Quarter], and [4th Quarter] members, the example returns [1994].[3rd Quarter] because it is in the same relative position
(third) within the level.

Analysis Services (SQL Server 2000)

Covariance
Covariance

Returns the population covariance of two series evaluated over a set, using the biased population formula.

Syntax

Covariance(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

This function evaluates «Set» against the first «Numeric Expression» to get the values for the y-axis. «Set» is evaluated against the
second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is not present,
the members of «Set» are used as values for the x-axis.

Covariance uses the biased population formula. CovarianceN uses the unbiased population formula.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Analysis Services (SQL Server 2000)

CovarianceN
CovarianceN

Returns the sample covariance of two series evaluated over a set, using the unbiased population formula.

Syntax

CovarianceN(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

This function evaluates «Set» against the first «Numeric Expression» to get the values for the y-axis. «Set» is evaluated against the
second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is not present,
the members of «Set» are used as values for the x-axis.

The CovarianceN function uses the unbiased population formula, while the Covariance function uses the biased population
formula.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Analysis Services (SQL Server 2000)

Crossjoin
Crossjoin

Returns the cross product of two sets.

Syntax

Crossjoin(«Set1», «Set2»)

Alternate Syntax

«Set1» * «Set2»

Note This alternate syntax is a Microsoft® SQL Server™ 2000 Analysis Services extension to Multidimensional Expressions
(MDX) in OLE DB 2.0 and later.

Remarks

The order of tuples in the resulting set depends on the order of «Set1» and «Set2» and the order of their members.

If «Set1» = {x1, x2,...,xn} and «Set2» = {y1, y2, ..., yn}, then Crossjoin(Set1, Set2) is:

{(x1, y1), (x1, y2),...,(x1, yn), (x2, y1), (x2, y2),...,

(x2, yn),..., (xn, y1), (xn, y2),..., (xn, yn)}

Example

The following example returns {([1994], USA), ([1994], Japan), ([1995], USA), ([1995], Japan)}:

CrossJoin({[1994], [1995]}, {USA, Japan})

Analysis Services (SQL Server 2000)

Current
Current

Returns the current tuple from a set during an iteration.

Syntax

«Set».Current

Remarks

During an iteration through a set, as in functions such as Generate, at each step in the iteration the tuple being operated upon is
the current tuple. This function returns that tuple.

Analysis Services (SQL Server 2000)

CurrentMember
CurrentMember

Returns the current member along a dimension during an iteration.

Syntax

«Dimension».CurrentMember

Remarks

During iteration through a set of dimension members, at each step in the iteration, the member being operated upon is the
current member. This function returns that member.

Example

Time.[1996].CurrentMember

Analysis Services (SQL Server 2000)

D
D

Analysis Services (SQL Server 2000)

DataMember
DataMember

Returns the system-generated data member that is associated with a nonleaf member of a dimension.

Syntax

«Member».DataMember

Remarks

Returns «Member» if «Member» is a leaf member, or if the nonleaf member does not have an associated data member.

Example

The following example returns the data member for the [Location].[UK] nonleaf member:

[Location].[UK].DataMember

Analysis Services (SQL Server 2000)

DefaultMember
DefaultMember

Returns the default member of a dimension or hierarchy.

Syntax

Dimension

«Dimension».DefaultMember

Hierarchy

«Hierarchy».DefaultMember

Remarks

The default member is specified in the Default Member property of the dimension or hierarchy (DefaultMember in the
Decision Support Objects library.) If this property is empty and the dimension contains an (All) level, the default member is the All
member. If this property is empty and the dimension or hierarchy does not contain an (All) level, the default member is an
arbitrary member of the highest level. In this last case, the DefaultMember function is ambiguous.

Example

Dimension

If the Time dimension has levels (All), Year, Quarter, and Month, and member All-Time, the following expression returns All-Time:

Time.DefaultMember

Hierarchy

If the [Fiscal Year] hierarchy has levels Quarter, and Month, and member [Month 1], the following expression returns [Month 1]:

[Fiscal Year].DefaultMember

Analysis Services (SQL Server 2000)

Descendants
Descendants

 New Information - SQL Server 2000 SP3.

Returns the set of descendants of a member at a specified level or distance, optionally including or excluding descendants in other
levels.

Syntax

Level

Descendants(«Member» | «Set», [«Level»[, «Desc_flags»]])

Returns the set of descendants of a member specified by «Member» or of a set specified by «Set», at the level specified by
«Level», optionally modified by a flag specified in «Desc_flags».

If a set is specified, the Descendants function is resolved individually for each member of the set, then the set is recreated. In
other words, the syntax used for the Descendants statement is functionally equivalent to the following MDX statement:

Generate(«Set», Descendants(«Set».CurrentMember, «Level», «Desc_flags»), ALL)

If the «Level» parameter is not specified, the default value for the parameter is determined by calling the Level MDX function for
the specified member (if «Member» is specified) or by calling the Level MDX function for each member of the specified set (if
«Set» is specified.)

If the «Desc_flags» parameter is not specified, the default value for the parameter is set to SELF.

Distance

Descendants(«Member» | «Set», «Distance»[, «Desc_flags»])

Returns the descendants of a member specified by «Member» or of a set specified by «Set», that are «Distance» steps away in the
hierarchy, optionally modified by a flag specified in «Desc_flags». This syntax is typically used to deal with ragged hierarchies.
Specifying a «Distance» of 0 returns a set consisting only of the member specified in «Member».

If a set is specified, the Descendants function is resolved individually for each member of the set, then the set is recreated. In
other words, the syntax used for the Descendants statement is functionally equivalent to the following MDX statement:

Generate(«Set», Descendants(«Set».CurrentMember, «Distance», «Desc_flags»), ALL)

If the «Desc_flags» parameter is not specified, the default value for the parameter is set to SELF.

Flags

Flag Description
SELF Default. Returns descendant members from «Level» only.

Includes «Member», if and only if «Level» specified is the level
of «Member».

AFTER Returns descendant members from all levels subordinate to
«Level».

BEFORE Returns descendant members from all levels between
«Member» and «Level», not including members from «Level».

BEFORE_AND_AFTER Returns descendant members from all levels subordinate to
the level of «Member» except members from «Level».

SELF_AND_AFTER Returns descendant members from «Level» and all levels
subordinate to «Level».

SELF_AND_BEFORE Returns descendant members from «Level» and all levels
between «Member» and «Level».

SELF_BEFORE_AFTER Returns descendant members from all levels subordinate to
the level of «Member».

LEAVES Returns leaf descendant members between «Member» and
«Level» or «Distance».

Remarks

By default, only members at the specified level or distance will be included. This function corresponds to a «Desc_flags» value of
SELF. By changing the value of «desc_flags», you can include or exclude descendants at the specified level or distance, the children
before or the children after the specified level or distance (until the leaf node), as well as all of the leaf children regardless of the
specified level or distance.

Example

Assume the levels in the Location dimension are named (in hierarchical order) Countries, States, Counties, and Cities.

Expression Returns
Descendants(USA) All states, counties and cities in USA
Descendants(USA, Counties) All counties in USA
Descendants(USA, Counties, SELF) All counties in USA
Descendants(USA, Counties, BEFORE) All states in USA
Descendants(USA, Counties, AFTER) All cities in USA
Descendants(USA, Counties,
BEFORE_AND_AFTER) All states and cities in USA
Descendants(USA, Counties,
SELF_BEFORE_AFTER) All states, counties, and cities in USA
Descendants(USA, States, LEAVES) All states in USA and any leaf

members between the Countries level
and the States level.

Descendants(USA, 1) All states in USA
Descendants(USA, 2, SELF_BEFORE_AFTER) All states, counties and cities in USA
Descendants({USA, France}, Cities) All cities in USA and France.

See Also

Level

Analysis Services (SQL Server 2000)

Dimension
Dimension

Returns the dimension that contains a specified member, level, or hierarchy.

Syntax

M ember

«Member».Dimension

Returns the dimension that contains «Member».

Level

«Level».Dimension

Returns the dimension that contains «Level».

Hierarchy

«Hierarchy».Dimension

Returns the dimension that contains «Hierarchy».

Remarks

Microsoft® SQL Server™ 2000 Analysis Services implements hierarchies as separate dimensions, so «Hierarchy».Dimension
returns «Hierarchy».

Example

M ember

[1998].Dimension

This example returns Time.

Level

Year.Dimension

This example returns Time.

Hierarchy

FiscalYear.Dimension

This example returns Time.

Analysis Services (SQL Server 2000)

Dimensions
Dimensions

Returns the dimension specified by a numeric or string expression.

Syntax

N umeric

Dimensions(«Numeric Expression»)

Returns the dimension whose zero-based position within the cube is specified by «Numeric Expression».

Note The Measures dimension is always represented by Dimensions(0).

String

Dimensions(«String Expression»)

Returns the dimension whose name is specified by «String Expression».

Remarks

The string version of the Dimensions function is typically used with user-defined functions.

Example

If dimensions Time, Region, and Product are added to a cube (in the listed order), the following expression returns Region:

Dimensions(2)

Analysis Services (SQL Server 2000)

Distinct
Distinct

Returns a set, removing duplicate tuples from a specified set.

Syntax

Distinct(«Set»)

Remarks

Duplicates are eliminated from the tail.

Example

The following example returns {(a,b), (c,d)}:

Distinct({(a,b), (c,d), (a,b)})

Analysis Services (SQL Server 2000)

DistinctCount
DistinctCount

Returns the number of distinct, non-empty tuples in a set.

Syntax

DistinctCount(«Set»)

Remarks

The DistinctCount function is equivalent to Count(Distinct(«Set»), ExcludeEmpty). This function can be applied only on
calculated measures, and can involve only the topmost level. For example, the following MDX query will fail, because the
DistinctCount function is being applied to a non-measure member:

WITH MEMBER Gender.a as 'DistinctCount({[Product Name].Members})'
SELECT
 { Gender.a } ON COLUMNS,
 { Customers.Children } ON ROWS
FROM Sales
WHERE (Measures.[unit sales])

By using a calculated measure to replace the non-measure member in the previous example, the following MDX query example
will work:

WITH MEMBER Measures.a as 'DistinctCount({[Product Name].Members})'
SELECT
 { Measures.a } ON COLUMNS,
 { Customers.Children } ON ROWS
FROM Sales
WHERE (Measures.[unit sales])

Example

The following example returns 2, assuming all three tuples resolve to non-empty cells:

DistinctCount({Time.[1995], Time.[1997], Time.[1995]})

Analysis Services (SQL Server 2000)

DrilldownLevel
DrilldownLevel

Drills down the members of a set to one level below the lowest level represented in the set, or to one level below an optionally
specified level of a member represented in the set.

Syntax

DrilldownLevel(«Set»[, {«Level» | , «Index»}])

Returns the hierarchized members of a set, specified in «Set», one level below the lowest level represented in the set, or to one
level below an optional level, either specified by reference in «Level» or by its zero-based index in «Index», of a member
represented in the set.

Remarks

The members that result from the drill down are hierarchized to occur under their parents. Order is preserved among the original
members in «Set».

If «Level» is specified and there is no member of «Level» represented in «Set», «Set» is returned.

When drilling down in sets of tuples, you can specify the dimension to be drilled down by its zero-based numeric position in the
tuples instead of by level. For example, in the following set, a sample tuple is (Canada, Drink, [1998]):

(Crossjoin(Crossjoin([Store Country].members,[Product Family].members),
[Year].members)

The Store dimension is position 0, the Product dimension is position 1, and the Time dimension is position 2. The following
expression drills down on the Product dimension:

DrilldownLevel(Crossjoin(Crossjoin([Store Country].members,
[Product Family].members),[Year].members),,1)

Example

The following example returns the set {USA, CA, <all cities in CA>, WA, <all cities in WA>, Canada}:

DrilldownLevel({[Customers Location].USA, [Customers Location].CA,
[Customers Location].WA, [Customers Location].Canada})

This example returns the same set as the previous example:

DrilldownLevel({[Customers Location].USA, [Customers Location].CA,
[Customers Location].WA, [Customers Location].Canada},
[Customers Location].[State Province])

The following example returns the set {USA, CA, WA, Canada, BC}, assuming that the [Country] level of the [Customers
Location] dimension has an index of 1:

DrilldownLevel({[Customers Location].USA, [Customers Location].CA,
[Customers Location].WA, [Customers Location].Canada}, ,1)

Analysis Services (SQL Server 2000)

DrilldownLevelBottom
DrilldownLevelBottom

Drills down the bottommost members of a set, at a specified level, to one level below.

Syntax

DrilldownLevelBottom(«Set», «Count»[, [«Level»][, «Numeric Expression»]])

Remarks

This function is similar to the DrilldownLevel function, but instead of including all children for each member at the specified
«Level», only the bottom «Count» of children is returned, based on «Numeric Expression».

Example

Assuming Oregon and Washington had the lowest sales, the following example returns the set {USA, Oregon, Washington}:

DrilldownLevelBottom({[Customers Location].USA},2,,[Unit Sales])

The expression

DrilldownLevelBottom({[Customers Location].[Country].Members},2,,[Unit Sales])

returns the set

{Canada, <bottom two provinces in Canada>,
Mexico, <bottom two states in Mexico>, ...,
USA, <bottom two states in USA>}.

See Also

DrilldownLevel

Analysis Services (SQL Server 2000)

DrilldownLevelTop
DrilldownLevelTop

Drills down the topmost members of a set, at a specified level, to one level below.

Syntax

DrilldownLevelTop(«Set», «Count»[, [«Level»][, «Numeric Expression»]])

Remarks

This function is similar to the DrilldownLevel function, but instead of including all children for each member at the specified
«Level», only the top «Count» of children is returned, based on «Numeric Expression».

Example

Assuming California and New York had the highest sales, the following example returns the set {USA, California, New York}:

DrilldownLevelTop({[Customers Location].USA},2,,[Unit Sales])

The expression

DrilldownLevelTop({[Customers Location].[Country].Members},2,,[Unit Sales])

returns the set

{Canada, <top two provinces in Canada>,
Mexico, < top two states in Mexico>, ...,
USA, < top two states in USA>}.

See Also

DrilldownLevel

Analysis Services (SQL Server 2000)

DrilldownMember
DrilldownMember

Drills down the members in a specified set that are present in a second specified set.

Alternatively, drills down on a set of tuples.

Syntax

DrilldownMember(«Set1», «Set2»[, RECURSIVE])

Remarks

This function drills down the members in «Set1» that are present in «Set2». «Set1» is usually a subset of «Set2». If RECURSIVE is
specified, the drilldown continues, comparing the expanded result set against «Set2» at each step.

«Set1» may contain tuples instead of members. Tuple drilldown is an extension of OLE DB, and it returns a set of tuples instead of
members.

Example

These examples drill down into members.

This example

DrilldownMember({USA, Canada, Mexico}, {USA, Washington, Mexico})

returns the set:

{USA, <all states in USA>, Canada, Mexico, <all states in Mexico>}

and this example

DrilldownMember({USA, Canada, Mexico}, {USA, Washington, Mexico},RECURSIVE)

returns the set:

{USA, <all states in USA before Washington>,
WA, <all cities in Washington>, <all cities in USA after Washington>,
Canada, Mexico, <all states in Mexico>}.

The following examples drill down into tuples.

This example

DrilldownMember({(USA,[Unit Sales]), (Canada,[Unit Sales]),
(Mexico,[Unit Sales])},{USA, Washington})

returns the set of tuples:

{(USA,[Unit Sales]), (Arizona,[Unit Sales]), ... , (Wyoming,[Unit Sales]),
(Canada,[Unit Sales]), (Mexico,[Unit Sales])}.

and this example

DrilldownMember({(USA,[Unit Sales]), (Canada,[Unit Sales]),
(Mexico,[Unit Sales])},{USA, Washington},RECURSIVE)

returns the set of tuples:

{(USA,[Unit Sales]), (Arizona,[Unit Sales]), ... (Washington,[Unit Sales]), (<City1 in Washington>,[Unit
Sales]), ... (<CityN in Washington>,[Unit Sales]), ...
(Wyoming,[Unit Sales]), (Canada,[Unit Sales]), (Mexico,[Unit Sales])}.

Analysis Services (SQL Server 2000)

DrilldownMemberBottom
DrilldownMemberBottom

Drills down the members in a specified set that are present in a second specified set, limiting the result set to a specified number
of members. Alternatively, it also drills down on a set of tuples.

Syntax

DrilldownMemberBottom(«Set1», «Set2», «Count»[, [«Numeric Expression»][, RECURSIVE]])

Remarks

«Set1» can contain tuples instead of members. Tuple drilldown is an extension of OLE DB, and it returns a set of tuples instead of
members.

This function is similar to the DrilldownMember function, but instead of including all children of a member, only the bottom
«Count» of children is returned, based on «Numeric Expression».

Example

This example

DrilldownMemberBottom({USA, Canada, Mexico}, {USA, Washington, Mexico}, 2, [Unit Sales])

returns the set

{USA, <bottom two states in USA>, Canada, Mexico, <bottom two states in Mexico>}

and this example

DrilldownMemberBottom({USA, Washington, Canada, Mexico}, {USA, Washington, Mexico}, 2, [Unit Sales],
RECURSIVE)

returns the set

{USA, Washington, <bottom two cities in WA>, Canada, Mexico, <bottom two states in Mexico>}.

Tuple drilldown

This example

DrilldownMemberBottom({(USA, [Unit Sales]), (Washington, [Unit Sales]),
(Canada, [Unit Sales]), (Mexico, [Unit Sales])},
{USA, Washington},2,[Store Sales],RECURSIVE)

returns the set

{(USA, [Unit Sales]), (Washington, [Unit Sales]), (<bottom two cities in WA>,
[Unit Sales]), (Canada, [Unit Sales]), (Mexico, [Unit Sales]}.

See Also

DrilldownMember

Analysis Services (SQL Server 2000)

DrilldownMemberTop
DrilldownMemberTop

Drills down the members in a specified set that are present in a second specified set, limiting the result set to a specified number
of members.

Alternatively, drills down on a set of tuples.

Syntax

DrilldownMemberTop(«Set1», «Set2», «Count»[, [«Numeric Expression»][, RECURSIVE]])

Remarks

«Set1» can contain tuples instead of members. Tuple drilldown is an extension of OLE DB, and it returns a set of tuples instead of
members.

This function is similar to the DrilldownMember function, but instead of including all children of a member, only the top
«Count» of children is returned, based on «Numeric Expression».

Example

M ember Drilldown

The following examples demonstrate member drilldown:

Expression Returns
DrilldownMemberTop({USA, Canada,
Mexico}, {USA, Washington, Mexico},
2, [Unit Sales])

{USA, <top two states in USA>,
Canada, Mexico, <top two states in
Mexico>}

DrilldownMemberTop({USA, Washington,
Canada, Mexico}, {USA, Washington,
Mexico}, 2, [Unit Sales], RECURSIVE)

{USA, Washington, <top two cities in
Washington>, Canada, Mexico, <top
two states in Mexico>}.

Tuple drilldown

This example

DrilldownMemberTop({(USA, [Unit Sales]), (Washington, [Unit Sales]),
(Canada, [Unit Sales]), (Mexico, [Unit Sales])},
{USA, Washington},2,[Store Sales],RECURSIVE)

returns the set

{(USA, [Unit Sales]), (Washington, [Unit Sales]), (<top two cities in Washington>,
[Unit Sales]), (Canada, [Unit Sales]), (Mexico, [Unit Sales]}.

See Also

DrilldownMember

Analysis Services (SQL Server 2000)

DrillupLevel
DrillupLevel

Drills up the members of a set that are below a specified level.

Syntax

DrillupLevel(«Set»[, «Level»])

Remarks

If «Level» is not specified, it is assumed to be the level immediately above the level of the lowest level member in «Set».

Example

This example

DrillUpLevel({USA, California, [Los Angeles], Washington, Seattle, Canada, [British Columbia]})

returns the set

{USA, California, Washington, Canada, [British Columbia]}

and this example

DrillUpLevel({USA, California, [Los Angeles], Washington, Seattle, Canada, [British Columbia]},[Store Country])

returns the set

{USA, Canada }.

Analysis Services (SQL Server 2000)

DrillupMember
DrillupMember

Drills up the members in a specified set that are present in a second specified set.

Syntax

DrillupMember(«Set1», «Set2»)

Remarks

This function drills up the members in «Set1» that are present in «Set2». «Set2» is usually a subset of «Set1».

Example

This example

DrillupMember({Canada, Mexico, USA, Washington, Seattle},{Washington})

returns the set

{Canada, Mexico, USA, Washington}.

Analysis Services (SQL Server 2000)

E
E

Analysis Services (SQL Server 2000)

Except
Except

Finds the difference between two sets, optionally retaining duplicates.

Syntax

Except(«Set1», «Set2»[, ALL])

Remarks

Duplicates are eliminated from both sets prior to finding the difference. The optional ALL flag retains duplicates. Matching
duplicates in «Set1» are eliminated and nonmatching duplicates are retained.

Example

This example

Except({Canada, [British Columbia], Mexico, [British Columbia], USA, Washington}, {Canada, Mexico, California})

returns

{[British Columbia], USA, Washington}

and this example

Except({Canada, [British Columbia], Mexico, [British Columbia], USA, Washington}, {Canada, Mexico, California},
ALL)

returns

{[British Columbia], [British Columbia], USA, Washington}.

Analysis Services (SQL Server 2000)

Extract
Extract

Returns a set of tuples from extracted dimension elements.

Syntax

Extract(«Set», «Dimension»[, «Dimension»...])

Remarks

This function returns a set consisting of tuples from the extracted «Dimension» elements. This function always removes the
duplicates. The Extract function performs the opposite action of the Crossjoin function.

Example

This example

Extract({([1997], Washington), ([1997], California), ([1998], California)}, Time)

returns the set

{[1997], [1998]}

See Also

Crossjoin

Analysis Services (SQL Server 2000)

F
F

Analysis Services (SQL Server 2000)

Filter
Filter

Returns the set resulting from filtering a specified set based on a search condition.

Syntax

Filter(«Set», «Search Condition»)

Remarks

The Filter function evaluates a Multidimensional Expressions (MDX) logical expression, specified in «Search Condition», against
each member of the set specified in «Set», returning the set of members that met the search condition.

The Filter function works in a fashion similar to that of the IIf function. While the IIf function returns only one of two options
based on the evaluation of an MDX logical expression, the Filter function returns a set of members that meet the specified search
condition. In effect, the Filter function executes IIf(«Search Criteria», «Member», NULL) on each member in the set and returns
the resulting set. If none of the members meet the search condition, an empty set is returned.

Example

The following example returns {Paris, Buffalo} if these cities declined in sales from the 1995 to the 1996 level:

Filter(SampleSet, (Sales,[1996]) < (Sales, [1995]))

See Also

IIf

Analysis Services (SQL Server 2000)

FirstChild
FirstChild

Returns the first child of a member.

Syntax

«Member».FirstChild

Example

If the Time dimension includes the levels Year, Quarter, Month, Week, and Day, the following code returns January:

[1995].FirstChild

Analysis Services (SQL Server 2000)

FirstSibling
FirstSibling

Returns the first child of the parent of a member.

Syntax

«Member».FirstSibling

Example

Assuming a dimension composed of months, the following example returns January:

May.FirstSibling

Analysis Services (SQL Server 2000)

G
G

Analysis Services (SQL Server 2000)

Generate
Generate

Applies a set to each member of another set and joins the resulting sets by union. Alternatively, returns a concatenated string
created by evaluating a string expression over a set.

Syntax

Set

Generate(«Set1», «Set2»[, ALL])

String

Generate(«Set», «String Expression»[, «Delimiter»])

Remarks

The set version of this function applies «Set2» to each member of «Set1» and joins the resulting sets by union. If ALL is specified,
duplicates in the result are retained.

The string version of this function iterates through each member of the set specified in «Set», evaluates a string expression,
specified in «String Expression», against the member and concatenates the result into the return string. Optionally, the string can
be delimited by supplying a string expression in «Delimiter», separating each result in the concatenated return string.

Examples

Set

Generate({USA, France}, Descendants(Geography.CurrentMember, Cities))

For each member of the set {USA, France}, this function applies the expression Descendants(Geography.CurrentMember,
Cities). Each such application results in a set. (Application to USA will generate the set of all cities in USA; application to France will
generate all cities in France.) These sets are joined by union to return the result of this function. In this example, all cities in USA
and France will be the result. In general, Generate(«Set1», «set_expression») will apply «set_expression» to each member of
«Set1» and join the results by union.

If «Set1» is not related to «set_expression» by means of CurrentMember, then Generate results in a simple replication of the set
implied by «set_expression», with as many replications as there are tuples in «Set1». If the optional ALL flag is specified, all
duplicates are retained in the result. If ALL is not specified, duplicates are removed. For example,

Generate({USA, FRANCE}, {SEATTLE, BOSTON}, ALL)

returns the set

{SEATTLE, BOSTON, SEATTLE, BOSTON}.

However, if ALL was not specified, then the set returned is

{SEATTLE, BOSTON}.

String

The following example returns the string "19971998":

Generate({Time.[1997], Time.[1998]}, Time.CurrentMember.Name)

The following example returns the string "1997 and 1998":

Generate({Time.[1997], Time.[1998]}, Time.CurrentMember.Name, " and ")

Analysis Services (SQL Server 2000)

H
H

Analysis Services (SQL Server 2000)

Head
Head

Returns the first specified number of elements in a set.

Syntax

Head(«Set»[, «Numeric Expression»])

Remarks

This function returns the first «Numeric Expression» elements in a set. The order of elements is preserved. The default value of
«Numeric Expression» is 1. If «Numeric Expression» is less than 1, the empty set is returned. If «Numeric Expression» exceeds the
number of tuples in the set, the original set is returned.

Example

The following example returns the set {USA, Canada, France}:

Head({USA, Canada, France, Germany, Japan}, 3)

Analysis Services (SQL Server 2000)

Hierarchize
Hierarchize

Orders the members of a set in a hierarchy.

Syntax

Hierarchize(«Set»[, POST])

Remarks

This function orders the members of «Set» in a hierarchy. Unless the POST keyword is used, members in a level are sorted in their
natural order, which is the default ordering of the members along a dimension when no other sort conditions are specified. The
POST keyword uses a post-natural order for the sorting of members in a level. Hierarchize will always retain duplicates.

Example

This example

Hierarchize(SampleSet)

returns the set in natural order. The hierarchized dataset follows (assuming that the natural order for the data source is
alphabetical):

France
Nice
Paris

UK
London

USA
California

LA
Buffalo
NYC

Analysis Services (SQL Server 2000)

Hierarchy
Hierarchy

Returns the hierarchy that contains a specified member or level.

Syntax

M ember

«Member».Hierarchy

Returns the hierarchy that contains «Member».

Level

«Level».Hierarchy

Returns the hierarchy that contains «Level».

Example

M ember

[January].Hierarchy

This example returns Time.FiscalYear.

Level

[Quarter].Hierarchy

This example returns Time.FiscalYear.

Analysis Services (SQL Server 2000)

I
I

Analysis Services (SQL Server 2000)

Ignore
Ignore

Reserved.

Analysis Services (SQL Server 2000)

IIf
IIf

Returns one of two numeric or string values determined by a logical test.

Syntax

N umeric

IIf(«Logical Expression», «Numeric Expression1», «Numeric Expression2»)

This function returns «Numeric Expression1» if «Logical Expression» evaluates to TRUE, otherwise returns «Numeric
Expression2».

String

IIf(«Logical Expression», «String Expression1», «String Expression2»)

This function returns «String Expression1» if «Logical Expression» evaluates to TRUE, otherwise returns «String Expression2».

Remarks

«Logical Expression» is considered to be FALSE only if its value is zero. Any other value is interpreted as TRUE.

The Iif function is not recommended for creating a set of members based on search criteria. Instead, use the Filter function to
evaluate each member in a specified set against a logical expression and return a subset of members.

Examples

N umeric

The following example returns 0 if Measures.CurrentMember is an empty cell, 1 otherwise:

IIf(IsEmpty(Measures.CurrentMember), 0, 1)

String

The following string returns the string "Yes" if Measures.CurrentMember is an empty cell, the string, "No" otherwise:

IIf(IsEmpty(Measures.CurrentMember), "Yes", "No")

See Also

Filter

Analysis Services (SQL Server 2000)

Intersect
Intersect

Returns the intersection of two input sets, optionally retaining duplicates.

Syntax

Intersect(«Set1», «Set2»[, ALL])

Remarks

This function returns the intersection of «Set1» and «Set2». By default, duplicates are eliminated from both sets prior to
intersection.

The optional ALL retains duplicates. There are several ways for ALL to work. The algorithm is: Nonduplicated elements are
intersected as usual. For each duplicate in «Set1», match it with a duplicate in «Set2», if one exists, and keep matching duplicates
in the intersected set.

Example

This example

Intersect({[1994], [1995], [1996]}, {[1995], [1996], [1997]})

returns the set {[1995], [1996]}.

Analysis Services (SQL Server 2000)

Is
Is

Returns TRUE if two compared objects are equivalent, FALSE otherwise.

Syntax

«Object 1» IS «Object 2»

Returns TRUE if the two tuples or members specified in «Object 1» and «Object 2» are equivalent, FALSE otherwise.

Alternate Syntax

«Object 1» IS NULL

Returns TRUE if the level, tuple, or member specified in «Object 1» is NULL, FALSE otherwise.

Remarks

The Is function is typically used for tuples and members to determine whether the objects are idempotent.

Example

The following example returns FALSE:

Time.[1996] IS NULL

Analysis Services (SQL Server 2000)

IsAncestor
IsAncestor

Returns TRUE if a specified member is an ancestor of another specified member, FALSE otherwise.

Syntax

IsAncestor(«Member1»,«Member2»)

Remarks

This function returns TRUE if the member indicated in «Member 1» is an ancestor of the member specified in «Member 2».

Example

The following example returns TRUE if [Time].CurrentMember is an ancestor of [Time].[January]:

IsAncestor([Time].CurrentMember, [Time].[January])

See Also

Ancestor

Analysis Services (SQL Server 2000)

IsEmpty
IsEmpty

Returns TRUE if the evaluated expression is the empty cell value, FALSE otherwise.

Syntax

IsEmpty(«Value Expression»)

Remarks

The IsEmpty function is the only way to reliably test for an empty cell, because the empty cell value has special meaning to
Microsoft® SQL Server™ 2000 Analysis Services. For more information about empty cells, see the OLE DB documentation.

Example

The following example returns TRUE if Measures.CurrentMember is an empty cell:

IsEmpty(Measures.CurrentMember)

See Also

Working with Empty Cells

Analysis Services (SQL Server 2000)

IsGeneration
IsGeneration

Returns TRUE if a specified member is in a specified generation, FALSE otherwise.

Syntax

IsGeneration(«Member»,«Numeric Expression»)

Remarks

This function returns TRUE if the member indicated in «Member» is in the generation specified in «Numeric Expression». For the
purposes of generation indexing, leaf members are generation index 0. All other members are part of the reunion of their children
generation + 1. Because of this, a specific member could belong to more than one generation.

Example

The following example returns TRUE if [Time].CurrentMember is part of the second generation:

IsGeneration([Time].CurrentMember, 2)

Analysis Services (SQL Server 2000)

IsLeaf
IsLeaf

Returns TRUE if a specified member is a leaf member, FALSE otherwise.

Syntax

IsLeaf(«Member»)

Remarks

This function returns TRUE if the member indicated in «Member» is a leaf member.

Example

The following example returns TRUE if [Time].CurrentMember is a leaf member:

IsLeaf([Time].CurrentMember)

Analysis Services (SQL Server 2000)

IsSibling
IsSibling

Returns TRUE if a specified member is a sibling of another specified member, FALSE otherwise.

Syntax

IsSibling(«Member1»,«Member2»)

Remarks

This function returns TRUE if the member indicated in «Member 1» is a sibling of the member specified in «Member 2».

Example

The following example returns TRUE if [Time].[1995] is a sibling of [Time].[1997]:

IsSibling([Time].[1995], [Time].[1997])

Analysis Services (SQL Server 2000)

Item
Item

Returns a member from a specified tuple. Alternatively, returns a tuple from a set.

Syntax

M ember

«Tuple».Item(«Index»)

Returns a member from the tuple specified in «Tuple». The member to be returned is specified by the zero-based position of the
member in the tuple in «Index».

Tuple

«Set».Item(«String Expression»[, «String Expression»...] | «Index»)

Returns a tuple from the set specified in «Set». The tuple to be returned is specified either by name in «String Expression», or by
the zero-based position of the tuple in the set in «Index».

Examples

M ember

The following example returns [1999]:

([1999],Sales, [2000],Sales).Item(0)

The following example returns [1996], if [1996] is the first member in the Year level of the Time dimension:

Time.Year.Members.Item(0)

Tuple

The following example returns ([1996],Sales):

{([1996],Sales), ([1997],Sales), ([1998],Sales)}.Item(0)

Analysis Services (SQL Server 2000)

L
L

Analysis Services (SQL Server 2000)

Lag
Lag

Returns the member that is a specified number of positions prior to a specified member along the dimension of the member.

Syntax

«Member».Lag(«Numeric Expression»)

Remarks

Member positions in the dimension are determined by the dimension's natural order. The numbering of the positions is zero-
based.

If «Numeric Expression» is zero, «Member» is returned. If «Numeric Expression» is negative, a subsequent member is returned.

Lag(1) is equivalent to PrevMember. Lag(-1) is equivalent to NextMember.

The «Member».Lead function is similar, except that it looks in the opposite direction. Lag(n) is equivalent to Lead(-n).

Example

If the levels in the Time dimension include Year and Month, the following example returns [1994].November:

[1995].February.Lag(3)

Analysis Services (SQL Server 2000)

LastChild
LastChild

Returns the last child of a specified member.

Syntax

«Member».LastChild

Example

If a Time dimension includes Year, Quarter, Month, Week, and Day, the following example returns December:

1995.LastChild

Analysis Services (SQL Server 2000)

LastPeriods
LastPeriods

Returns a set of members prior to and including a specified member.

Syntax

LastPeriods(«Index»[, «Member»])

Remarks

If «Member» is not specified, it is Time.CurrentMember.

If «Index» is positive, returns the set of «Index» members ending with «Member» and starting with the member lagging «Index» -
1 from «Member».

If «Index» is negative, returns the set of (- «Index») members starting with «Member» and ending with the member leading (-
«Index» - 1) from «Member».

If «Index» is zero, the empty set is returned.

Examples

The following table lists possible uses of the LastPeriods function.

Expression Returns
LastPeriods(2, [1997June]) {[1997May], [1997June]}
LastPeriods(-2, [1997June]) {[1997June], [1997July]}
LastPeriods(1, [1997June]) {[1997June]}
LastPeriods(-1, [1997June]) {[1997June]}
LastPeriods(0, [1997June]) Empty set

Analysis Services (SQL Server 2000)

LastSibling
LastSibling

Returns the last child of the parent of a specified member.

Syntax

«Member».LastSibling

Example

If the parent level is quarters, the following example returns June:

May.LastSibling

Analysis Services (SQL Server 2000)

Lead
Lead

Returns the member that is a specified number of positions following a specified member along the dimension of the member.

Syntax

«Member».Lead(«Numeric Expression»)

Remarks

Member positions in the dimension are determined by the dimension's natural order. The numbering of the positions is zero-
based.

If «Numeric Expression» is zero, «Member» is returned. If «Numeric Expression» is negative, a prior member is returned.

Lead(1) is equivalent to NextMember. Lead(-1) is equivalent to PrevMember.

The «Member».Lag function is similar, except that it looks in the opposite direction. Lead(n) is equivalent to Lag(-n).

Example

If the levels in the Time dimension include Year and Month, the following example returns [1995].February:

[1994].November.Lead(3)

Analysis Services (SQL Server 2000)

Level
Level

Returns the level of a member.

Syntax

«Member».Level

Example

If the Time dimension has the (All), Year, Quarter, Month, Week, and Day levels, the following example returns the Month level:

January.Level

This example returns the name of the Month level:

January.Level.Name

Analysis Services (SQL Server 2000)

Levels
Levels

Returns the level specified by a numeric or string expression.

Syntax

N umeric

«Dimension».Levels(«Numeric Expression»)

Returns the level whose zero-based position is specified by «Numeric Expression».

String

Levels(«String Expression»

Returns the level whose name is specified by «String Expression».

Remarks

Use the string version of the Levels function for user-defined functions.

Examples

The following examples assume that the Time dimension has (All), Year, Quarter, Month, Week and Day levels.

N umeric

The following example returns the Quarter level:

Time.Levels(2)

String

The following example returns the Year level:

Levels("Year")

Analysis Services (SQL Server 2000)

LinkMember
LinkMember

Returns the member equivalent to a specified member in a specified hierarchy.

Syntax

LinkMember(«Member», «Hierarchy»)

Example

The following example returns [Fiscal Year].[1999].[Qtr1].[Jan].[12]:

LinkMember([Calendar].[1999].[Jan].[12], [Fiscal Year])

Analysis Services (SQL Server 2000)

LinRegIntercept
LinRegIntercept

Calculates the linear regression of a set and returns the value of b in the regression line y = ax + b.

Syntax

LinRegIntercept(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

Linear regression that uses the least-squares method calculates the equation of the best-fit line for a series of points. Let the
regression line be given by the following equation, where a is called the slope and b is called the intercept:

y = ax+b

This function evaluates «Set» against the first «Numeric Expression» to get the set of values for the y-axis. It then evaluates «Set»
against the second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is
not present, the function uses the members of «Set» as values for the x-axis.

The latter case is not often useful for standard dimensions (for example, SalesPerson). However, it is often used with the Time
dimension.

After obtaining the set of points, LinRegIntercept returns the intercept of the regression line (b in the equation).

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Example

The following example returns the b value for y = ax + b formula to find the trend in Sales for the sales of the last nine periods:

LinRegIntercept(LastPeriods(9), Sales) returns the value for b.

Analysis Services (SQL Server 2000)

LinRegPoint
LinRegPoint

Calculates the linear regression of a set and returns the value of y in the regression line y = ax + b.

Syntax

LinRegPoint(«Numeric Expression», «Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

Linear regression that uses the least-squares method calculates the equation of the best-fit line for a series of points. Let the
regression line be given by the following equation, where a is called the slope and b is called the intercept:

y = ax+b

LinRegPoint uses its last three arguments like the other LinRegxxx functions use them: to calculate the regression line. The
function evaluates the first argument and uses the resulting number as the x value in the regression equation (y = ax + b) to
calculate the y value.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Example

This example finds the trend in Sales for the sales of the last nine periods and forecasts the next period:

LinRegPoint(10, LastPeriods(9), Sales) returns the next period.

Analysis Services (SQL Server 2000)

LinRegR2
LinRegR2

Calculates the linear regression of a set and returns R2 (the coefficient of determination).

Syntax

LinRegR2(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

Linear regression that uses the least-squares method calculates the equation of the best-fit line for a series of points. Let the
regression line be given by the following equation, where a is called the slope and b is called the intercept:

y = ax+b

This function evaluates «Set» against the first «Numeric Expression» to get the set of values for the y-axis. It then evaluates «Set»
against the second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is
not present, the function uses the members of «Set» as values for the x-axis.

The latter case is not often useful for standard dimensions (for example, SalesPerson). However, it is often used with the Time
dimension.

After obtaining the set of points, LinRegR2 returns the statistical R2 that describes the fit of the linear equation to the points.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Analysis Services (SQL Server 2000)

LinRegSlope
LinRegSlope

Calculates the linear regression of a set and returns the value of a in the regression line y = ax + b.

Syntax

LinRegSlope(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

Linear regression that uses the least-squares method calculates the equation of the best-fit line for a series of points. Let the
regression line be given by the following equation, where a is called the slope and b is called the intercept:

y = ax+b

This function evaluates «Set» against the first «Numeric Expression» to get the set of values for the y-axis. It then evaluates «Set»
against the second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is
not present, the function uses the members of «Set» as values for the x-axis.

The latter case is not often useful for standard dimensions (for example, SalesPerson). However, it is often used with the Time
dimension.

After obtaining the set of points, LinRegSlope returns the slope of the regression line (a in the equation).

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Example

The following example finds the trend in Sales for the sales of the last nine periods and returns the value for a in the formula y =
ax + b:

LinRegSlope(LastPeriods(9), Sales) returns the value for a.

Analysis Services (SQL Server 2000)

LinRegVariance
LinRegVariance

Calculates the linear regression of a set and returns the variance associated with the regression line y = ax + b.

Syntax

LinRegVariance(«Set», «Numeric Expression»[, «Numeric Expression»])

Remarks

Linear regression that uses the least-squares method calculates the equation of the best-fit line for a series of points. Let the
regression line be given by the following equation, where a is called the slope and b is called the intercept:

y = ax+b

This function evaluates «Set» against the first «Numeric Expression» to get the set of values for the y-axis. It then evaluates «Set»
against the second «Numeric Expression», if present, to get the set of values for the x-axis. If the second «Numeric Expression» is
not present, the function uses the members of «Set» as values for the x-axis.

The latter case is not often useful for standard dimensions (for example, SalesPerson). However, it is often used with the Time
dimension.

After obtaining the set of points, LinRegVariance returns the statistical variance that describes the fit of the linear equation to the
points.

Note Empty cells or cells containing text or logical values are ignored; however, cells with values of zero are included.

Analysis Services (SQL Server 2000)

LookupCube
LookupCube

Returns the value of a Multidimensional Expressions (MDX) expression evaluated over another specified cube in the same
database.

Syntax

N umeric

LookupCube(«Cube String», «Numeric Expression»)

The LookupCube function returns a numeric value, evaluating the numeric expression specified in «Numeric Expression» in
another cube within the context of the cube specified in «Cube String».

String

LookupCube(«Cube String», «String Expression»)

The LookupCube function returns a string value, evaluating the string expression specified in «String Expression» in another
cube within the context of the cube specified in «Cube String».

Remarks

The LookupCube function works only on other cubes within the same database. The function cannot be used to access cubes in a
database other than the one established by the source cube context of the MDX expression. For example, if an MDX SELECT
statement refers to the Sales cube in the FoodMart 2000 database, the LookupCube function is limited to other cubes within the
FoodMart 2000 database.

Example

N umeric

The following example returns the value of the [Warehouse].[All Warehouses] member in the Warehouse cube:

LookupCube("Warehouse","[Warehouse].[All Warehouses]")

String

The following example returns the full name of the value of the [Warehouse].[Maddock Stored Foods] member in the Warehouse
cube:

LookupCube("Warehouse", "MemberToStr([Warehouse].[Maddock Stored Foods])")

Analysis Services (SQL Server 2000)

M
M

Analysis Services (SQL Server 2000)

Max
Max

Returns the maximum value of a numeric expression evaluated over a set.

Syntax

Max(«Set»[, «Numeric Expression»])

Remarks

The Max function returns the maximum value of a numeric expression, specified in «Numeric Expression», evaluated from a set
specified in «Set».

Example

If the respective values in the Sales measure for the USA, CANADA and MEXICO members are 1000, 2000, and 3000, the
following example returns 3000:

Max({USA, CANADA, MEXICO}, Sales)

Analysis Services (SQL Server 2000)

Median
Median

 Topic last updated -- July 2003

Returns the median value of a numeric expression evaluated over a set.

Syntax

Median(«Set»[, «Numeric Expression»])

Remarks

The Median function returns the median value of a numeric expression that is specified in «Numeric Expression» and evaluated
over a set specified in «Set». The median value is the middle value in a set of ordered numbers (unlike the mean value, which is
the sum of a set of numbers divided by the count of numbers in the set). The median value is determined by choosing the
smallest value such that at least half of the values in the set are no greater than the chosen value. If the number of values within
the set is odd, the median value corresponds to a single value. If the number of values within the set is even, the median value
corresponds to the sum of the two middle values divided by two.

Example

The following example, a calculated member that is executed against the Sales cube of the FoodMart 2000 database, returns the
median value of the Unit Sales measure for the children of the Juice member in the Product dimension:

WITH MEMBER [Measures].[MedianJuiceUnitSales] AS
'MEDIAN(Product.Juice.CHILDREN, Measures.[Unit Sales])'

Analysis Services (SQL Server 2000)

Members
Members

Returns the set of members in a dimension, level, or hierarchy. Alternatively, returns a member specified by a string expression.

Syntax

Dimension

«Dimension».Members

This syntax returns the set of all members in «Dimension».

Hierarchy

«Hierarchy».Members

This syntax returns the set of all members in «Hierarchy».

Level

«Level».Members

This syntax returns the set of all members at a specified level in a dimension.

String

Members(«String Expression»)

This syntax returns the member whose name is given by «String Expression» in Multidimensional Expressions (MDX) format. It is
typically used with user-defined functions.

Examples

Dimension

This example

Geography.Members

returns the set of all members in the Geography dimension.

Hierarchy

This example

Time.Quarterly.Members

returns the set of all members in the Quarters hierarchy of the Time dimension.

Level

If the Year level contains [1994], [1995], and [1996], this example returns the set {[1994], [1995], [1996]}:

Year.Members

String

The following example returns a member, where UDF() is a user-defined function that returns a string in MDX format, such as "
[Measures].[Unit Sales]":

Members(UDF())

Analysis Services (SQL Server 2000)

MemberToStr
MemberToStr

Returns a string in Multidimensional Expressions (MDX) format from a member.

Syntax

MemberToStr(«Member»)

Remarks

Returns a string, in MDX format, of the definition of a member. The MemberToStr function is typically employed for user-defined
functions.

Example

The following example returns the string Time.[1998]:

MemberToStr(Time.[1998])

Analysis Services (SQL Server 2000)

Min
Min

Returns the minimum value of a numeric expression evaluated over a set.

Syntax

Min(«Set»[, «Numeric Expression»])

Remarks

The Min function returns the minimum value of a numeric expression, specified in «Numeric Expression», evaluated over a set
specified in «Set».

Example

If the respective values in the Sales measure for the USA, CANADA and MEXICO members are 1000, 2000, and 3000, the
following example returns 1000:

Min({USA, CANADA, MEXICO}, Sales)

Analysis Services (SQL Server 2000)

Mtd
Mtd

 Topic last updated -- July 2003

Returns a set of sibling members from the same level as a given member, starting with the first sibling and ending with the given
member, as constrained by the Month level in the Time dimension.

Syntax

Mtd([«Member»])

Remarks

The Mtd function is a shortcut function to the PeriodsToDate function that defines that function's «Level» argument to be
Month. If no member is specified, the default is Time.CurrentMember.

Mtd(«Member») is equivalent to PeriodsToDate(Month, «Member»).

Example

The following example returns a set of members that represent the first five days of September, 1997:

MTD([05-Sep-1997])

Analysis Services (SQL Server 2000)

N
N

Analysis Services (SQL Server 2000)

Name
Name

Returns the name of a level, dimension, member, or hierarchy.

Syntax

Dimension

«Dimension».Name

Level

«Level».Name

M ember

«Member».Name

Hierarchy

«Hierarchy».Name

Remarks

The Name function returns the name of the object, not the unique name.

Examples

Dimension

Products.Name

Level

Products.[Product Description].Name

M ember

Products.[Product Description].Widgets.Name

Hierarchy

Time.[Fiscal Year].Name

Analysis Services (SQL Server 2000)

NameToSet
NameToSet

Returns a set containing a single member based on a string expression containing a member name.

Syntax

NameToSet(«Member Name»)

Remarks

If the member name specified in «Member Name» exists, a set containing that member is returned. Otherwise, the NameToSet
function returns an empty set.

Example

The following function returns a set containing the [Quarter 1] member of the Time dimension:

NameToSet("[Time].[Quarter 1]")

Analysis Services (SQL Server 2000)

NextMember
NextMember

Returns the next member in the level that contains a specified member.

Syntax

«Member».NextMember

Remarks

The NextMember function returns the next member in the same level that contains the member specified in «Member».

Example

If the Year level consists of members named [1994], [1995], and [1996], the following example returns [1995]:

[1994].NextMember

Analysis Services (SQL Server 2000)

NonEmptyCrossjoin
NonEmptyCrossjoin

Returns the cross product of one or more sets as a set, excluding empty tuples and tuples without associated fact table data.

Syntax

NonEmptyCrossjoin(«Set1»[, «Set2»...][, «Crossjoin Set Count»])

Remarks

The NonEmptyCrossjoin function returns the cross product of two or more sets as a set, excluding empty tuples or tuples
without data supplied by underlying fact tables; because of this, all calculated members are automatically excluded. If «Crossjoin
Set Count» is not specified, all specified sets are crossjoined and empty members are excluded from the resulting set. If «Crossjoin
Set Count» is specified, the number of sets specified in «Crossjoin Set Count», starting with «Set1», are crossjoined. The remaining
sets are used to determine, in the resulting crossjoined set, which members are considered nonempty.

For example, you want to view the total unit sales for each store in Beverly Hills involved with the Big Time Savings promotion,
but only for those customers based in California. However, the following Multidimensional Expressions (MDX) statement returns a
set containing the unit sales for all the cities in California with customers, grouped by the stores in Beverly Hills, involved with the
Big Time Savings promotion; this set is a cross product of the three sets. The unit sales returned are only for the cross product of
the three sets; the gross sales of the stores in Beverly Hills involved with the Big Time Savings promotion are not returned, but the
individual unit sales involved with just the promotion itself, for each store and customer city, are.

NonEmptyCrossJoin([Store].[Beverly Hills].Children, [Customers].[CA].Children, {[Promotions].[Big Time
Savings]})

The previous example was too narrow in scope to accomplish the task. By contrast, the following MDX statement simply
crossjoins the first two sets and removes nonempty members from the returned set. Because the {[Promotions].[Big Time
Savings]} set is not used, the preceding MDX statement is too wide in scope; the MDX statement includes too many tuples to
accomplish the goal.

NonEmptyCrossJoin([Store].[Beverly Hills].Children, [Customers].[CA].Children)

The following MDX statement, by using the «Crossjoin Set Count» parameter, returns a set containing the unit sales for all of the
cities in California with customers grouped by the stores in Beverly Hills; this set is a cross product of the first two sets. Only those
members in the crossjoined set that participated in the Big Time Savings promotion are returned, however, accomplishing the
task. The first two sets, specified in the «Crossjoin Set Count» parameter, were crossjoined, while the third set was used to
determine which members of the crossjoined set were to be considered when determining if a crossjoin set member contained
data.

NonEmptyCrossJoin([Store].[Beverly Hills].Children, [Customers].[CA].Children, {[Promotions].[Big Time
Savings]},2)

The benefits of the NonEmptyCrossjoin function include faster, more efficient processing of crossjoins involving more than two
sets, as well as the simpler syntax provided by the function. The same results can be obtained less effectively, using the Filter,
Crossjoin, and IsEmpty functions as shown in the following MDX statement:

Filter(Crossjoin([Store].[Beverly Hills].Children, [Customers].[CA].Children), NOT IsEmpty([Promotions].[Big
Time Savings])

As additional sets are added, the use of Filter, Crossjoin, and IsEmpty becomes increasingly impractical, because each Crossjoin
statement is nested inside another Crossjoin statement to return the same results. For example, adding the [Product].Children set
to the returned set using the NonEmptyCrossjoin function resembles:

NonEmptyCrossJoin([Store].[Beverly Hills].Children, [Customers].[CA].Children, [Product].Children,
{[Promotions].[Big Time Savings]}, 3)

Performing the same functionality with the Filter, Crossjoin, and IsEmpty functions, on the other hand, resembles the following:

Filter(Crossjoin(Crossjoin([Store].[Beverly Hills].Children, [Customers].[CA].Children), [Product].Children),
NOT IsEmpty([Promotions].[Big Time Savings]))

The preceding MDX statement is slower in execution and less readable than its NonEmptyCrossjoin-based counterpart.

Example

The following statement returns the set containing all the unit sales for all of the cities in California with customers grouped by
the stores in Beverly Hills that participated in the Big Time Savings promotion:

NonEmptyCrossJoin([Store].[Beverly Hills].Children, [Customers].[CA].Children, {[Promotions].[Big Time
Savings]},2)

See Also

Crossjoin

Filter

IsEmpty

Analysis Services (SQL Server 2000)

O
O

Analysis Services (SQL Server 2000)

OpeningPeriod
OpeningPeriod

Returns the first sibling among the descendants of a specified level, optionally at a specified member.

Syntax

OpeningPeriod([«Level»[, «Member»]])

Remarks

The dimension that contains «Level» is used if «Level» is specified; otherwise, the Time dimension is used. If no «Level» is
specified, the level below that of «Member» is used. If no «Level» or «Member» is specified, the default is Time.CurrentMember.

This function is equivalent to TopCount(Descendants(«Member», «Level»), 1).

The ClosingPeriod function is similar, except that it returns the last sibling instead of the first sibling.

Example

The following example returns [1991].January:

OpeningPeriod(Month, [1991])

Analysis Services (SQL Server 2000)

Order
Order

Arranges members of a specified set, optionally preserving or breaking the hierarchy.

Syntax

Order(«Set», {«String Expression» | «Numeric Expression»}
[, ASC | DESC | BASC | BDESC])

Remarks

There are two varieties of Order: hierarchized (ASC or DESC) and nonhierarchized (BASC or BDESC, where B stands for Break
hierarchy). The hierarchized ordering first arranges members according to their position in the hierarchy. Then it orders each
level. The nonhierarchized ordering arranges members in the set without regard to the hierarchy. In the absence of an explicit
specification, ASC is the default.

Example

This example

Order(SampleSet, ([1995], Sales), DESC)

hierarchizes all members and sorts each level according to Sales. Sales are compared at the highest level when the sorted list is
constructed. Therefore, if the sum of Sales in all California cities is less than the sum of Sales in all New York cities, California and
California.LA will appear below NYC in the sorted, descending list.

The result of

Order(SampleSet, ([1995], Sales), DESC)

is listed in the following table.

Location 1995 sales
USA 5000

California 2000
LA 500
Buffalo 300
NYC 900

France 2500
Paris 365

 Nice 27
UK 1900

London 250

The following expression sorts the members according to their values without regard for their relative positions in the member
hierarchy. In this example, numeric values are sorted by 1995 sales per city, including aggregate sales values by state and
country/region:

Order(SampleSet, ([1995], Sales), BDESC)

The following table shows the result of the previous expression.

Location 1995 sales
USA 5000
France 2500
California 2000
UK 1900
NYC 900
LA 500

Paris 365
Buffalo 300
London 250
Nice 27

Note When the input set has two elements for which the «String Expression» or «Numeric Expression» has the same value, the
input order is preserved.

For example, if the sales for USA and Europe is 300 each, and the sales for Asia is 100, the following expression returns the set
{Asia, USA, Europe}, not the set {Asia, Europe, USA}:

Order({USA, Europe, Asia}, Sales, BASC)

Analysis Services (SQL Server 2000)

Ordinal
Ordinal

Returns the zero-based ordinal value associated with a level.

Syntax

«Level».Ordinal

Example

For a dimension named Products with three levels, named [All Products], [Product Category], and [Product Name], the following
example returns 2:

Products.[Product Name].Ordinal

Analysis Services (SQL Server 2000)

P
P

Analysis Services (SQL Server 2000)

ParallelPeriod
ParallelPeriod

Returns a member from a prior period in the same relative position as a specified member.

Syntax

ParallelPeriod([«Level»[, «Numeric Expression»[, «Member»]]])

Remarks

This function is similar to the Cousin function, but is more closely related to time series. It takes the ancestor of «Member» at
«Level» (call it ancestor); then it takes the sibling of ancestor that lags by «Numeric Expression», and returns the parallel period of
«Member» among the descendants of that sibling.

This function has the following defaults:

Default «Member» value is Time.CurrentMember if «Level» is not specified. Otherwise it is dimension.CurrentMember,
where dimension is the dimension to which level belongs.

Default «Numeric Expression» is 1.

Default «Level» is the level of the parent of «Member».

This function is equivalent to Cousin(Member,Lag(Ancestor(Member,Level),Numeric Expression).

Example

The following table lists different examples of how you can use this function.

Expression Returns
ParallelPeriod(Year,2,
[96 Qtr 3])

[94 Qtr 3]

ParallelPeriod(Year,2) The parallel period of Time.CurrentMember, two years
ago.

That is, if Time.CurrentMember is [1993June], the
returned member is [1991June].

ParallelPeriod(Year) The parallel period of Time.CurrentMember from last
year.

That is, if Time.CurrentMember is [1993June], the
returned member is [1992June].

ParallelPeriod() The parallel period in the immediately prior sibling to
the parent of Time.CurrentMember.

For example, if Time.CurrentMember is [1993June],
the returned member is [1993March]. The parent of
([1993June] is Quarter2, whose immediately prior
sibling is Quarter1, in which the parallel period is
[1993March].

Analysis Services (SQL Server 2000)

Parent
Parent

Returns the parent of a member.

Syntax

«Member».Parent

Remarks

This function returns the parent member of the member specified in «Member».

Example

If the Geography dimension includes levels named State and Country, the following example returns USA:

California.Parent

Analysis Services (SQL Server 2000)

PeriodsToDate
PeriodsToDate

 Topic last updated -- July 2003

Returns a set of sibling members from the same level as a given member, starting with the first sibling and ending with the given
member, as constrained by a specified level in the Time dimension.

Syntax

PeriodsToDate([«Level»[, «Member»]])

Remarks

Within the scope of «Level», this function returns the set of periods on the level of «Member», starting with the first period and
ending with «Member». If no level or member is specified, the «Member» value is Time.CurrentMember and «Level» is the
parent level of Time.CurrentMember. If a level is specified, «Member» is dimension.CurrentMember, where dimension is the
dimension of «Level».

Example

The following table lists the different ways you can use PeriodsToDate.

Expression Returns
PeriodsToDate(Quarter,
[05-Sep-1997]) The set of members that represent the days from the

beginning of the third quarter of 1997.
PeriodsToDate(Year,
March) The set {January, February, March}.
PeriodsToDate(Year) The set of members from the beginning of the year

that is the ancestor of Time.CurrentMember, through
Time.CurrentMember.

PeriodsToDate() The set of members from the beginning of the level
containing the period of Time.CurrentMember to
Time.CurrentMember. All the returned members are
at the same level as Time.CurrentMember.

PeriodsToDate(level, member) is the same as TopCount(Descendants(Ancestor(member, level), member.Level), 1):member

Analysis Services (SQL Server 2000)

Predict
Predict

Returns a value of a numeric expression evaluated over a data mining model.

Syntax

Predict(«Mining Model Name», «Numeric Expression»)

Remarks

The Predict function evaluates the numeric expression specified in «Numeric Expression» in another data mining model, within
the context of the mining model specified in «Mining Model Name».

Data mining syntax and functions are documented in the OLE DB for Data Mining specification. For more information about the
OLE DB for Data Mining specification, see the Microsoft OLE DB Web page at the Microsoft Web site.

Example

The following code returns the variance value for the histogram entry in the [Gender] data mining column that has the highest
probability in the Customer Pattern Discovery data mining model:

Predict("Customer Pattern Discovery","PredictVariance([Customer Pattern Discovery].[Gender])")

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services (SQL Server 2000)

PrevMember
PrevMember

Returns the previous member in the level that contains a specified member.

Syntax

«Member».PrevMember

Remarks

This function returns the previous member in the same level of the member specified in «Member».

Example

If the Year level consists of [1994], [1995], and [1996], the following example returns the member [1995]:

[1996].PrevMember

Analysis Services (SQL Server 2000)

Properties
Properties

Returns a string containing a member property value.

Syntax

«Member».Properties(«String Expression»)

Remarks

The Properties function returns the value of the member property specified in «String Expression». The member property can be
any of the standard member properties, such as NAME, ID, KEY, or CAPTION, or it can be a user-defined member property.

Example

In the Store dimension, if the Store Name level has an associated member property, Store Manager, the following example
returns Smith:

[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2].Properties("Store Manager")

Analysis Services (SQL Server 2000)

Q
Q

Analysis Services (SQL Server 2000)

Qtd
Qtd

 Topic last updated -- July 2003

Returns a set of sibling members from the same level as a given member, starting with the first sibling and ending with the given
member, as constrained by the Quarter level in the Time dimension.

Syntax

Qtd([«Member»])

Remarks

This shortcut function to the PeriodsToDate function predefines that function's «Level» argument to be Quarter. If no member is
specified, the default is Time.CurrentMember.

Qtd(«Member») is equivalent to PeriodsToDate(Quarter, «Member»).

Example

The following example returns the set of days from the beginning of the third quarter of 1997:

Qtd([05-Sep-1997]))

See Also

PeriodsToDate

Analysis Services (SQL Server 2000)

R
R

Analysis Services (SQL Server 2000)

Rank
Rank

Returns the one-based rank of a specified tuple in a specified set.

Syntax

Rank(«Tuple», «Set»[, «Calc Expression»])

Remarks

If «Calc Expression» is not specified, the Rank function returns the one-based ordinal position of a tuple, specified in «Tuple»,
within a set specified in «Set».

If «Calc Expression» is specified, the Rank function evaluates the numeric expression specified in «Calc Expression» against the
tuple to determine its one-based rank. When «Calc Expression» is specified, the Rank function assigns the same rank to tuples in
a set with duplicate values. However, the presence of duplicate values affects the ranks of subsequent tuples in the set. For
example, if the tuple (a,b) had the same value as the tuple (c,d) in the set {(a,b), (e,f), (c,d)}, and the tuple (a,b) has a
rank of 1, then (a,b) and (c,d) would both have a rank of 1, but (e,f) would have a rank of 3. No tuple would have a rank of 2
in the set.

The Rank function does not order the set.

Example

The following example returns 3:

Rank((c,d), {(a,b), (e,f), (c,d)})

However, if the tuples in the set { (a,b), (e,f), (c,d) } have values of 1, 8, and 3, respectively, in the [Test] measure, the
following example returns 2:

Rank ((c,d), {(a,b), (e,f), (c,d)}, Measures.Test)

Analysis Services (SQL Server 2000)

RollupChildren
RollupChildren

Returns a value generated by rolling up the values of the children of a specified member using the specified unary operator.

Syntax

RollupChildren(«Member», «String Expression»)

Remarks

The RollupChildren function rolls up the values of the children of the member specified in «Member», using the unary operator
specified in «String Expression».

The following table describes the valid unary operators for this function.

Operator Result
+ total = total + current child
- total = total - current child
* total = total * current child
/ total = total / current child
% total = (total / current child) * 100
~ Child is not used in the rollup. Its value is ignored.

If the operator in the member property does not appear in the list, an error occurs. The order of evaluation is determined by the
order of the siblings (not by the precedence of the operators).

Example

The following example uses the default unary operator for each child member to create the rollup for the parent member:

RollupChildren(Location.CurrentMember, Location.CurrentMember.Properties("UNARY_OPERATOR"))

Analysis Services (SQL Server 2000)

S
S

Analysis Services (SQL Server 2000)

SetToArray
SetToArray

Converts one or more sets to an array for use in a user-defined function.

Syntax

SetToArray(«Set»[, «Set»...][, «Numeric Expression»])

Remarks

This function converts one or more sets to an array for use in a user-defined function. The number of dimensions in the resulting
array is the same as the number of sets specified.

The optional numeric expression can be used to provide the values in the array cells. If omitted, the default value of the set
member is used for the array cell value.

The cell coordinates in the resulting array correspond to the position of the sets in the list. For example, SetToArray(SA, SB, SC),
where each set has two elements, produces the three-dimensional array:

(SA1, SB1, SC1) (SA2, SB1, SC1) (SA1, SB2, SC1) (SA2, SB2, SC1)
(SA1, SB1, SC2) (SA2, SB1, SC2) (SA1, SB2, SC2) (SA2, SB2, SC2)

Note The return type of SetToArray is the VARIANT type VT_ARRAY. For that reason, the output of SetToArray should be used
only as input to a user-defined function.

Example

SetToArray(Geography.Members, Measures.Sale)

Analysis Services (SQL Server 2000)

SetToStr
SetToStr

Constructs a string in Multidimensional Expressions (MDX) format from a set.

Syntax

SetToStr(«Set»)

Example

The following example returns "{[Time].[1995], [Time].[1996]}":

SetToStr({1995, 1996})

Analysis Services (SQL Server 2000)

Siblings
Siblings

Returns the siblings of a specified member, including the member itself.

Syntax

«Member».Siblings

Examples

The following example returns the set { January, February, March }:

[Time].[All Time].[1998].[Quarter 1].[January].Siblings

Analysis Services (SQL Server 2000)

Stddev
Stddev

Alias for Stdev.

See Also

Stdev

Analysis Services (SQL Server 2000)

StddevP
StddevP

Alias for StdevP.

See Also

StdevP

Analysis Services (SQL Server 2000)

Stdev
Stdev

Returns the sample standard deviation of a numeric expression evaluated over a set, using the unbiased population formula.

Syntax

Stdev(«Set»[, «Numeric Expression»])

Remarks

The Stdev function uses the unbiased population formula, while the StdevP function uses the biased population formula.

Example

Stdev({USA, CANADA, MEXICO}, Sales)

See Also

StdevP

Analysis Services (SQL Server 2000)

StdevP
StdevP

Returns the population standard deviation of a numeric expression evaluated over a set, using the biased population formula.

Syntax

StdevP(«Set»[, «Numeric Expression»])

Remarks

The StdevP function uses the biased population formula, while the Stdev function uses the unbiased population formula.

Example

Stdev({USA, CANADA, MEXICO}, Sales)

See Also

Stdev

Analysis Services (SQL Server 2000)

StripCalculatedMembers
StripCalculatedMembers

Returns a set generated by removing calculated members from a specified set.

Syntax

StripCalculatedMembers(«Set»)

Remarks

This function removes calculated members from a set that includes calculated members added using AddCalculatedMembers.

Example

StripCalculatedMembers([Store Size in SQFT].[All Store Size in SQFT].Children)

Analysis Services (SQL Server 2000)

StrToMember
StrToMember

Returns a member from a string expression in Multidimensional Expressions (MDX) format.

Syntax

StrToMember(«String Expression»)

Returns a member from a string in MDX format containing a member, specified in «String Expression».

Remarks

The StrToMember function is typically employed with user-defined functions.

Example

The following example returns the member Time.[1996]:

StrToMember("Time.[1996]")

Analysis Services (SQL Server 2000)

StrToSet
StrToSet

Constructs a set from a specified string expression in Multidimensional Expressions (MDX) format.

Syntax

StrToSet(«String Expression»)

Example

The following example returns a set containing all the members of the Time dimension:

StrToSet("Time.Members")

Analysis Services (SQL Server 2000)

StrToTuple
StrToTuple

Constructs a tuple from a specified string expression in Multidimensional Expressions (MDX) format.

Syntax

StrToTuple(«String Expression»)

Example

The following example returns (Sales, [1994]):

StrToTuple("(Sales, [1994])")

Analysis Services (SQL Server 2000)

StrToValue
StrToValue

Returns a value from a string expression.

Syntax

StrToValue(«String Expression»)

Remarks

The StrToValue function is typically used for user-defined functions.

Example

The following example returns 45:

StrToValue("45")

Analysis Services (SQL Server 2000)

Subset
Subset

Returns a subset of tuples from a specified set.

Syntax

Subset(«Set», «Start»[, «Count»])

Remarks

This function returns «Count» tuples from «Set» as a set, starting at position «Start». «Start» is zero-based: 0 corresponds to the
first tuple in the set, 1 corresponds to the second, and so on. If «Count» is not specified, all tuples from «Start» to the end of the
set are returned.

Example

The following example returns the set {USA, Canada}:

Subset({USA, Canada, France, Germany, Japan, Iceland, Peru}, 0, 2)

Analysis Services (SQL Server 2000)

Sum
Sum

Returns the sum of a numeric expression evaluated over a set.

Syntax

Sum(«Set»[, «Numeric Expression»])

Example

If the respective values for the USA, CANADA and MEXICO members are 1000, 2000, and 3000, the following example returns
6000:

Sum({USA, CANADA, MEXICO}, Sales.VALUE)

The following example, which is more intuitive, is also valid:

Sum({USA, CANADA, MEXICO}, Sales)

Analysis Services (SQL Server 2000)

T
T

Analysis Services (SQL Server 2000)

Tail
Tail

Returns a subset from the end of a set.

Syntax

Tail(«Set»[, «Count»])

Remarks

This function returns the last «Count» elements in a set. The order of elements is preserved. The default value of «Count» is 1. If
«Count» is less than 1, the empty set is returned. If «Count» exceeds the number of tuples in the set, the original set is returned.

Example

The following code returns the set {France, Germany, Japan}:

Tail({USA, Canada, France, Germany, Japan}, 3)

Analysis Services (SQL Server 2000)

ToggleDrillState
ToggleDrillState

Toggles the drill state of members.

Syntax

ToggleDrillState(«Set1», «Set2»[, RECURSIVE])

Remarks

This function is a combination of DrillupMember and DrilldownMember. It toggles the drill state of each member of «Set2»
that is present in «Set1». If a member m of «Set2» that is present in «Set1» is drilled down (that is, has a descendant),
DrillupMember(«Set1», {m}) is applied. If it is drilled up (that is, there is no descendant of m that immediately follows m),
DrilldownMember(«Set1», {m}[, RECURSIVE]) is applied to Set1. The optional RECURSIVE flag is used if ToggleDrillState was
called with RECURSIVE.

Example

ToggleDrillState({Product.Bread.Members},{Product.Bagels, Product.Muffins}, RECURSIVE)

See Also

DrillupMember

DrilldownMember

Analysis Services (SQL Server 2000)

TopCount
TopCount

Returns a specified number of items from the topmost members of a specified set, optionally ordering the set first.

Syntax

TopCount(«Set», «Count»[, «Numeric Expression»])

Remarks

This function sorts a set according to the value of «Numeric Expression» and returns the top «Count» members, where «Count» is
a numeric expression.

Important Like the BottomCount function, this function always breaks the hierarchy.

Example

Topcount(Geography.Cities.Members, 5, Sales)

See Also

BottomCount

Analysis Services (SQL Server 2000)

TopPercent
TopPercent

Sorts a set and returns the topmost elements whose cumulative total is at least a specified percentage.

Syntax

TopPercent(«Set», «Percentage», «Numeric Expression»)

Remarks

This function sorts a set using «Numeric Expression» and returns the top n elements whose cumulative total of «Numeric
Expression» is at least «Percentage». «Percentage» is a numeric expression.

Important Like the BottomPercent function, this function always breaks the hierarchy.

Example

TopPercent({London, Paris, Rome, New York, Seattle, Tokyo}, 15, Sales)

See Also

BottomPercent

Analysis Services (SQL Server 2000)

TopSum
TopSum

Sorts a set and returns the topmost elements whose cumulative total is at least a specified value.

Syntax

TopSum(«Set», «Value», «Numeric Expression»)

Remarks

This function sorts on «Numeric Expression» and picks up the top n (the smallest number possible) elements such that their sum
is at least «Value».

Important Like the BottomSum function, this function always breaks the hierarchy.

Example

Topsum(Products.[Product Description].Members, 100000, Quantity)

See Also

BottomSum

Analysis Services (SQL Server 2000)

TupleToStr
TupleToStr

Returns a string in Multidimensional Expressions (MDX) format from a specified tuple.

Syntax

TupleToStr(«Tuple»)

Example

The following example returns "([Time].[1995], [Regions].[All Regions].[Europe].[France])":

TupleToStr(France, 1995)

Analysis Services (SQL Server 2000)

U
U

Analysis Services (SQL Server 2000)

Union
Union

Returns a set generated by the union of two sets, optionally retaining duplicate members.

Syntax

Union(«Set1», «Set2»[, ALL])

Alternate Syntax 1

{«Set1», «Set2»}

Alternate Syntax 2

«Set1» + «Set 2»

Remarks

This function returns the union of «Set1» and «Set2», eliminating duplicates by default. The ALL flag keeps duplicates in the joined
set. Duplicates are deleted from the tail.

You can also join by union using either a comma-separated list of sets within braces or the + operator. For example:

{USA.Children, CANADA.Children}

and

{USA.Children} + {CANADA.Children}

are equivalent to

Union(USA.Children, CANADA.Children, ALL)

Duplicated members are always retained when an alternate syntax is used.

Note This alternate syntax is a Microsoft® SQL Server™ 2000 Analysis Services extension to Multidimensional Expressions
(MDX) in OLE DB.

Analysis Services (SQL Server 2000)

UniqueName
UniqueName

Returns the unique name of a specified level, dimension, member, or hierarchy.

Syntax

Dimension

«Dimension».UniqueName

Level

«Level».UniqueName

M ember

«Member».UniqueName

Hierarchy

«Hierarchy».UniqueName

Remarks

The UniqueName function returns the unique name of the object, not the name.

Examples

Dimension

Products.UniqueName

Level

Products.[Product Description].UniqueName

M ember

Products.[Product Description].Widgets.UniqueName

Hierarchy

Time.[Fiscal Year].UniqueName

Analysis Services (SQL Server 2000)

UserName
UserName

Returns the domain name and user name of the current connection.

Syntax

UserName

Remarks

The returned value has the following format:

domain-name\user-name

Example

If a user is connected to the NYC domain, and the name of the user is alanc, the following example returns NYC\alanc:

UserName

Analysis Services (SQL Server 2000)

V
V

Analysis Services (SQL Server 2000)

ValidMeasure
ValidMeasure

Returns a valid measure in a virtual cube by forcing inapplicable dimensions to their top level.

Syntax

ValidMeasure(«Tuple»)

Returns a valid measure from a tuple in a virtual cube specified in «Tuple».

Remarks

When computing values in a virtual cube, measure cells only contain values at the (All) level for dimensions that are not common
between the underlying cubes. The ValidMeasure function returns the measure value from the cell at the (All) level coordinates
for the dimensions that are not common.

Example

Consider a virtual cube named ExchSales that is derived from cubes Sales and ExchRate. The Sales cube contains dimensions
Time, Products, and Customers, and the measure Sale in dollars. The ExchRate cube contains the dimensions Time and Currency
and the measure Rate.

To create a calculated member named YenSale that returns the value of each sale in Yen, the (All) level must be specified for each
dimension not present in the ExchRate cube for there to be a value present in the virtual cube cell. This can be cumbersome for
virtual cubes where a number of dimensions are not common between the underlying cubes.

The ValidMeasure function ensures the measure's value is taken from the appropriate cell at the (All) level for each dimension
not in common. The following two Multidimensional Expressions (MDX) statements are equivalent:

YenSale = Sum({Descendants(Time.CurrentMember, Day}},
 Sale * (Currency.Yen, AllProducts, AllCustomers))

YenSale = Sum({Descendants(Time.CurrentMember, Day}},
 Sale * ValidMeasure(Currency.Yen))

Analysis Services (SQL Server 2000)

Value
Value

Returns the value of a measure.

Syntax

«Member».Value

Remarks

The Value function returns the value of a measure specified in «Member». This is the default property of a measure.

Example

Sales.Measures.CurrentMember.Value

Analysis Services (SQL Server 2000)

Var
Var

Returns the sample variance of a numeric expression evaluated over a set, using the unbiased population formula.

Syntax

Var(«Set»[, «Numeric Expression»])

Remarks

The Var function returns the unbiased variance of a numeric expression, specified in «Numeric Expression», evaluated over a set
specified in «Set».

The Var function uses the unbiased population formula, while the VarP function uses the biased population formula.

Example

Var ({USA, CANADA, MEXICO}, Sales)

See Also

VarP

Analysis Services (SQL Server 2000)

Variance
Variance

Alias for Var.

See Also

Var

Analysis Services (SQL Server 2000)

VarianceP
VarianceP

Alias for VarP.

See Also

VarP

Analysis Services (SQL Server 2000)

VarP
VarP

Returns the population variance of a numeric expression evaluated over a set, using the biased population formula.

Syntax

VarP(«Set»[, «Numeric Expression»])

Remarks

The VarP function returns the biased variance of a numeric expression, specified in «Numeric Expression», evaluated over a set
specified in «Set».

The VarP function uses the biased population formula, while the Var function uses the unbiased population formula.

Example

VarP({USA, CANADA, MEXICO}, Sales)

See Also

Var

Analysis Services (SQL Server 2000)

VisualTotals
VisualTotals

Returns a set generated by dynamically totaling child members in a specified set, optionally using a pattern for the name of the
parent member in the result set.

Important The VisualTotals function cannot be used in a query to a cube that contains a distinct count measure; such a query
will return an error for all measure values. For more information, see Using Aggregate Functions.

Syntax

VisualTotals(«Set», «Pattern»)

Remarks

This function totals the values of the child members specified in «Set» only. Child members not specified in «Set» will not be
included in the result. «Pattern» specifies the format for the totals label. Text for the pattern is taken literally and the asterisk (*) is
the substitution character for the parent member. To display a literal asterisk, use two asterisks (**).

Note The VisualTotals function replaces the parent member of the resulting cellset. Multiple hierarchies of Parent and Child
members may be specified in «Set».

Example

Assume that the Product dimension has the member Baked Goods with a child of Bread. Bread has the child members Bagels,
Muffins, and Sliced Bread.

In the first case, a select statement is done using

[Product].[All Products].[Food].[Baked Goods].[Bread]

as the parent member and

[Product].[All Products].[Food].[Baked Goods].[Bread].[Bagels]
[Product].[All Products].[Food].[Baked Goods].[Bread].[Muffins]

for the child members. The results for the parent member reflect the precalculated values of all of its children and do not take into
account that other child members have not been included in the resulting set.

select
 {[Measures].[Unit Sales]} on columns,
 {[Product].[All Products].[Food].[Baked Goods].[Bread],
 [Product].[All Products].[Food].[Baked Goods].[Bread].[Bagels],
 [Product].[All Products].[Food].[Baked Goods].[Bread].[Muffins]
 } on rows
from Sales

 Unit Sales
Bread 7,870.00
Bagels 815.00
Muffins 3,497.00

An alternate solution is to use the VisualTotals function to dynamically total the child members in the set and display an accurate
value for Bread.

select
{[Measures].[Unit Sales]} on columns,
{VisualTotals({[Product].[All Products].[Food].[Baked Goods].[Bread],
 [Product].[All Products].[Food].[Baked Goods].[Bread].[Bagels],
 [Product].[All Products].[Food].[Baked Goods].[Bread].[Muffins]},
 "**Subtotal - *")
} on rows
from Sales

 Unit Sales
*Subtotal - Bread 4,312.00

Bagels 815.00

Muffins 3,497.00

The string "*Subtotal - Bread" is constructed by substituting the single asterisk substitution character with "Bread" to produce a
meaningful name for the dynamically calculated total. The double asterisks in the substitution string specify the output asterisk in
the string "*Subtotal - Bread".

Analysis Services (SQL Server 2000)

W
W

Analysis Services (SQL Server 2000)

Wtd
Wtd

 Topic last updated -- July 2003

Returns a set of sibling members from the same level as a given member, starting with the first sibling and ending with the given
member, as constrained by the Week level in the Time dimension.

Syntax

Wtd([«Member»])

Remarks

The Wtd function is a shortcut function to the PeriodsToDate function that defines that function's «Level» argument to be Week.
If no member is specified, then the default is Time.CurrentMember.

Wtd(«Member») is equivalent to PeriodsToDate(Week, «Member»).

Example

The following example returns the days from the beginning of the week to the current day:

Wtd(Day)

See Also

PeriodsToDate

Analysis Services (SQL Server 2000)

Y
Y

Analysis Services (SQL Server 2000)

Ytd
Ytd

 Topic last updated -- July 2003

Returns a set of sibling members from the same level as a given member, starting with the first sibling and ending with the given
member, as constrained by the Year level in the Time dimension.

Syntax

Ytd([«Member»])

Remarks

The Ytd function is a shortcut function to the PeriodsToDate function that defines that function's «Level» argument to be Year. If
no member is specified, the default is Time.CurrentMember.

Ytd(«Member») is equivalent to PeriodsToDate(Year, «Member»).

Example

The following example returns the set of members from the beginning of the year from the ancestor of Time.CurrentMember
through Time.CurrentMember:

Ytd()

See Also

PeriodsToDate

Analysis Services (SQL Server 2000)

Registered Function Libraries
Microsoft® SQL Server™ 2000 Analysis Services includes and automatically registers the Microsoft Visual Basic® for Applications
Expression Services library of functions, and automatically registers the Microsoft Excel worksheet library if it is installed on the
computer with Analysis Services.

Analysis Services supports many but not all functions in these libraries. For information about supported functions, see Visual
Basic for Applications Functions and Excel Functions.

Analysis Services (SQL Server 2000)

Visual Basic for Applications Functions
Visual Basic for Applications Functions

Microsoft® SQL Server™ 2000 Analysis Services supports many functions in the Microsoft Visual Basic® for Applications
Expression Services library. This library is included with Analysis Services and automatically registered. Functions not supported in
this release are marked by an asterisk in this table.

For more information about syntax and examples of these functions, search on the function name in the MSDN® Library at the
Microsoft Web site.

Abs *Add *AppActivate Array
Asc AscB AscW Atn
*Beep *Calendar *CallByName CBool
CByte Ccur CDate CDbl
*CDec *ChDir *ChDrive Choose
Chr *ChrB ChrW CInt
*Clear CLng *Command Cos
*Count *CreateObject CSng CStr
*CurDir Cvar CVDate *CVErr
Date DateAdd DateDiff DatePart
DateSerial DateValue Day DDB
*DeleteSetting *Description *Dir *DoEvents
*Environ *EOF *Err *Error
Exp *FileAttr *FileCopy *FileDateTime
FileLen *Filter Fix Format
*FormatCurrency *FormatDateTime *FormatNumber *FormatPercent
*FreeFile FV *GetAllSettings *GetAttr
*GetObject *GetSetting *HelpContext *HelpFile
Hex Hour IIf *IMEStatus
*Input *InputB *InputBox InStr
InStrB *InStrRev Int IPmt
*IRR *IsArray IsDate IsEmpty
IsError *IsMissing IsNull IsNumeric
IsObject *Item *Join *Kill
*LastDllError LCase Left LeftB
Len LenB *Loc *LOF
Log LTrim Mid MidB
Minute *MIRR *MkDir Month
*MonthName *MsgBox Now NPer
*NPV *Number Oct Partition
Pmt PPmt PV QBColor
*Raise *Randomize Rate *Remove
*Replace *Reset RGB Right
RightB *RmDir Rnd Round
RTrim *SaveSetting Second *Seek
*SendKeys *SetAttr Sgn *Shell
Sin SLN *Source Space
*Split Sqr Str StrComp
String *StrReverse Switch SYD
Tan Time Timer TimeSerial
TimeValue Trim TypeName UCase
Val *VarType Weekday *WeekdayName
*Width Year

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services (SQL Server 2000)

Excel Functions
Excel Functions

Microsoft® SQL Server™ 2000 Analysis Services supports many functions in the Microsoft Excel worksheet library, which is
automatically registered if installed on the computer with Analysis Services. Functions not supported in this release are marked by
an asterisk in this table.

Acos Acosh And *Application
Asc Asin Asinh Atan2
Atanh AveDev Average BetaDist
BetaInv BinomDist Ceiling ChiDist
ChiInv ChiTest Choose Clean
Combin Confidence Correl Cosh
Count CountA *CountBlank *CountIf
Covar *Creator CritBinom *DAverage
Days360 Db Dbcs *DCount
*DCountA Ddb Degrees DevSq
*DGet *DMax *DMin Dollar
*DProduct *DStDev *DStDevP *DSum
*DVar *DVarP Even ExponDist
Fact FDist Find FindB
FInv Fisher FisherInv Fixed
Floor Forecast *Frequency FTest
Fv GammaDist GammaInv GammaLn
GeoMean *Growth HarMean *HLookup
HypGeomDist *Index Intercept Ipmt
Irr IsErr IsError IsLogical
IsNA IsNonText IsNumber Ispmt
IsText Kurt Large *LinEst
Ln Log Log10 *LogEst
LogInv LogNormDist *Lookup Match
Max *MDeterm Median Min
*MInverse MIrr *MMult Mode
NegBinomDist NormDist NormInv NormSDist
NormSInv NPer Npv Odd
Or *Parent Pearson Percentile
PercentRank Permut Pi Pmt
Poisson Power Ppmt Prob
Product Proper Pv Quartile
Radians *Rank Rate Replace
ReplaceB Rept Roman Round
RoundDown RoundUp RSq Search
SearchB Sinh Skew Sln
Slope Small Standardize StDev
StDevP StEyx Substitute *Subtotal
Sum *SumIf SumProduct SumSq
SumX2MY2 SumX2PY2 SumXMY2 Syd
Tanh TDist Text TInv
Transpose *Trend Trim TrimMean
TTest USDollar Var VarP
Vdb *VLookup Weekday Weibull
ZTest

Analysis Services (SQL Server 2000)

User-Defined Functions with MDX Syntax
 New Information - SQL Server 2000 SP3.

You can create and register your own functions that operate on multidimensional data. These functions, called user-defined
functions, can accept arguments and return values in the Multidimensional Expressions (MDX) syntax. You can create user-defined
functions using Component Object Model (COM) automation languages such as Microsoft® Visual Basic® or Microsoft Visual
C++®. A user-defined function can be developed using any tool capable of generating Microsoft ActiveX® libraries.

Security Note User-defined functions can be a source of security vulnerabilities; they can invoke system functions or other user-
defined functions without user knowledge or intervention and may contain security credentials that are stored in plain text. Before
implementing user-defined functions, review the functions for security issues. Always use absolute paths when loading libraries
that contain user-defined functions.

Before you use a user-defined function, you must register the library (that is, file) in which it is compiled. You can register user-
defined function libraries of the following types:

Type libraries (*.olb, *.tlb, *.dll)

Executable files (*.exe, *.dll)

ActiveX controls (*.ocx)

To register a user-defined function library, issue a USE LIBRARY statement. Its syntax is:

USE LIBRARY "<library_path_and_file_name>" | <program_ID>
[,"<library_path_and_file_name>" | <program_ID>...]

Example:

USE LIBRARY "c:\functions\mylib.dll"

To register multiple libraries, issue a USE LIBRARY statement with multiple parameters in a comma-separated list. Example:

USE LIBRARY "c:\functions\mylib.dll","c:\functions\johnslib.dll"

A USE LIBRARY statement with no parameters unregisters all function libraries except the Microsoft SQL Server™ 2000 Analysis
Services function library.

Hidden and restricted user-defined functions are not supported.

Note User-defined functions are supported only if they accept as arguments only string or numeric data types, or array or
variant data types containing string or numeric values. In addition, user-defined functions are supported only if they return only
string or numeric data types, or variant data types containing numeric values.

Multiple user-defined functions can reside in the same ActiveX library.

Calling a User-Defined Function within MDX

After a user-defined function is registered, it can be used anywhere in the MDX syntax that allows expressions. For example:

With Member Measures.[Forecasted Sales] As
 'Sales * ForecastedGrowthRate(SaleReps.CurrentMember.Name)'
Select TopCount(SalesReps, HowManyReps(), Sales) on Rows,
 {Sales, [Forecasted Sales] } on Columns
From Sales

The HowManyReps and ForecastedGrowthRate user-defined functions are defined as:

Public Function HowManyReps() as Integer
Public Function ForecastedGrowthRate(RepName as String) as Double

User-defined functions can also be used in Calculated Member Builder.

Note When you call a user-defined function, you can omit an optional argument only if you also omit all arguments that follow
it.

Function Precedence and Qualification

If multiple function libraries contain a function with the same name, the Analysis Services function library takes precedence.
Excluding the Analysis Services function library, precedence is resolved in order of registration by the USE LIBRARY statement.

You can override precedence or call functions from specific libraries by using the following syntax when you invoke the function:

programid!functionname(argument1,argument2,...)

The function name is preceded by the function library's program ID and an exclamation point (!). This syntax ensures that the
correct function is called in cases where a function name is not unique among libraries.

If a library includes multiple interfaces, you can use the following syntax to specify the library and interface:

programid!interfaceid!functionname(argument1,argument2,...)

Analysis Services (SQL Server 2000)

How To
This section contains the administrative procedures for Microsoft® SQL Server™ 2000 Analysis Services. Procedure are listed in
the following topics:

Configuring Analysis Servers

Creating Cubes' Prerequisite Objects

Building and Processing Cubes

Creating Security Roles

Managing Cube Storage

Enhancing Dimensions

Enhancing Cubes with Optional Features

Updating Cubes and Dimensions

Managing Data Mining Models

Archiving, Restoring, and Copying Data

Analyzing and Optimizing Performance

Automating and Scheduling Administrative Tasks

For more information about the background for a procedure, in the topic that lists the steps in the procedure, click a link in the
See Also list.

See Also

Administering Analysis Services

Analysis Services (SQL Server 2000)

Configuring Analysis Servers
The following topics describe procedures for configuring Analysis servers:

How to register an Analysis server

How to add a linked Analysis server using SQL Server Enterprise Manager

How to start the Migrate Repository Wizard

How to configure Analysis Services for the Web

Analysis Services (SQL Server 2000)

How to register an Analysis server
To register a server

1. In the Analysis Manager tree pane, right-click the Analysis Servers folder, and then click Register Server.

2. Depending on the method of authentication, in the Register Analysis Server dialog box, type the following:

For a direct connection, which is the default authentication method, type the name of a server in the Microsoft®
Windows NT® 4.0 or Microsoft Windows® 2000 system, and then click OK.

For a connection based on HTTP, type "http://" and the name or IP address of the Web server that hosts Analysis
Services, and then click OK. In many cases, the name of the Web server will be the same as the name of the Analysis
server. Establishing connections based on HTTP is possible only if you install Analysis Services for Microsoft SQL
Server™ 2000 Enterprise Edition.

Note You must have security authorization to access the Analysis server through both methods. Your user name must be
included in the OLAP Administrators group on the Analysis server being registered, and if the Analysis server being
registered is a remote computer, your user name must also be included in the OLAP Administrators group on the local
computer. If your user name is added to the OLAP Administrators group, you may have to log off and log back on to
Windows NT 4.0 or Windows 2000 before you can register the server.

See Also

Authentication of Connections

Authentication of Direct Connections

Registering Servers

Analysis Services (SQL Server 2000)

How to add a linked Analysis server using SQL Server
Enterprise Manager
To add a linked Analysis server using SQL Server Enterprise Manager

1. In SQL Server Enterprise Manager, connect to the instance of SQL Server that will host the link.

2. In the tree pane, expand the Security folder to view the Linked Servers.

3. Right-click Linked Servers, and then click New Linked Server.

4. In the Linked Server Properties dialog box, type information about the linked server. The required fields are:

Linked Server: This is the name of the Analysis server as it is referenced in SQL Server. This name is used to identify
the linked server in queries.

Provider Name: Select Microsoft OLE DB Provider for Olap Services 8.0.

Data Source: This is the host name of the computer hosting Analysis Services.

Catalog: This is the name of the OLAP database provided through this link.

5. Click Provider Options. In the Provider Options dialog box, select the Allow InProcess check box.

Note The Allow InProcess option affects all linked servers that use the OLE DB for Analysis Services provider. This option
can be changed only in SQL Server Enterprise Manager.

See Also

Adding a Linked Server

Analysis Services (SQL Server 2000)

How to start the Migrate Repository Wizard
To start the Migrate Repository Wizard

1. In the Analysis Manager tree pane, expand the Analysis Servers folder.

2. Right-click the server whose Analysis Services repository you want to migrate, and then click Migrate Repository.

See Also

Migrating Analysis Services Repositories

Analysis Services (SQL Server 2000)

How to configure Analysis Services for the Web
To configure Analysis Services for the Web

1. Copy the Msolap.asp file from the C:\Program Files\Microsoft Analysis Services\Bin folder to the C:\Inetpub\Wwwroot
folder of the computer that you want to use as an Analysis server. (The actual locations might differ from these default
locations.) This computer must be accessible through a connection authenticated by Microsoft® Internet Information
Services (IIS).

Important If the C:\Inetpub\Wwwroot folder does not exist on the Analysis server computer, IIS might not be installed. IIS
must be installed on the Analysis server computer, and a name or IP address must be assigned to the default Web site
before you can complete this procedure. The Analysis server computer must be running an operating system that supports
IIS, such as Microsoft Windows NT® 4.0 Server (not Windows NT 4.0 Workstation) or Microsoft Windows® 2000.

2. Create or open a Microsoft Management Console (MMC) console containing the Internet Information Services snap-in.

On Windows 2000, you can open Administrative Tools and run Internet Services Manager.

3. In the console tree, expand the server you are administering, and then click Default Web Site.

If the server you want to administer does not appear in the console tree, right-click Internet Information Services, and
then click Connect to specify the server.

4. In the details pane, right-click Msolap.asp, and then click Properties.

5. In the Properties dialog box, select the Read check box if it is not selected, and then select the Script source access check
box. Click OK to set these properties and close the dialog box.

6. In the tree pane of the Internet Information Services snap-in, right-click the Web site, and then click Properties.

7. In the Web site properties dialog box, click the Home Directory tab. Depending on the operating system of the Analysis
server computer, make the following changes for the site where Msolap.asp is hosted:

For Windows 2000, in the Execute Permissions box, select either Scripts only or Scripts and Executables.
Optionally, in the Application Protection box, select High (Isolated) to ensure maximum stability for Analysis
Services running as an IIS-based process.

For Windows NT 4.0 Server, click either Script or Execute (including script). Optionally, select the Run in separate
memory space (isolated process) check box to ensure maximum stability for Analysis Services running as an IIS-
based process.

8. Click OK.

See Also

Authentication of Connections

How to register an Analysis server

Analysis Services (SQL Server 2000)

Creating Cubes' Prerequisite Objects
The following topics describe procedures for creating cubes' prerequisite objects:

How to create a database

How to specify a data source

How to to create a shared dimension using the Dimension Wizard

How to create a shared dimension using Dimension Editor

How to create a virtual dimension based on member properties

How to create a virtual dimension based on columns

See Also

Creating Prerequisite Objects For Cubes

Analysis Services (SQL Server 2000)

How to create a database
To create a database

1. In the Analysis Manager tree pane, under the Analysis Servers folder, right-click the server that will contain the database,
and then click New Database.

2. In the Database dialog box, type a database name and description of your choice, and then click OK.

See Also

Creating Databases

Analysis Services (SQL Server 2000)

How to specify a data source
 New Information - SQL Server 2000 SP3.

To specify a data source

1. In the Analysis Manager tree pane, expand the database that will draw data from the data source.

2. Right-click the Data Sources folder, and then click New Data Source.

3. In the Data Link Properties dialog box, on the Provider tab, click an OLE DB provider.

4. Complete the Connection tab, which varies by provider.

Note If you are connecting to a SQL Server™ 2000 data provider, it is recommended that, under Enter information to log
on to the server, you select Use Windows NT Integrated security.

Security Note If you select Allow saving password, the password is saved unmasked and unencrypted with the
connection string. This can create a security vulnerability if the repository is accessible to other users.

If, in Step 3 you selected Microsoft® OLE DB Provider for ODBC Drivers, on the Connection tab click Use data source
name, click the drop-down arrow to display a list of data source names, and then click a data source name. If the data
source name you want to select is not in the list, you must define one. In Control Panel, use the ODBC Data Source
Administrator to define the data source name, and then return to the Connection tab and click Refresh. For more
information, see Before Administering Analysis Services.

5. To determine whether the data source is correctly connected, click Test Connection. If the connection is correct, you receive
a message indicating that the test connection succeeded. Click OK to clear the message.

6. In the Data Link Properties dialog box, click OK.

See Also

Specifying Data Sources

Analysis Services (SQL Server 2000)

How to create a shared dimension using the Dimension Wizard
To create a shared dimension using the Dimension Wizard

1. In the Analysis Manager tree pane, expand the database in which you want to create a shared dimension.

2. Right-click the Shared Dimensions folder, point to New Dimension, and then click Wizard.

3. In the second step of the wizard select either Star Schema: A single dimension table or Snowflake Schema: Multiple,
related dimension tables. The other options are for parent-child, virtual, and data mining dimensions.

4. Follow the remaining wizard steps.

After you complete the wizard, Dimension Editor appears so that you can further refine the dimension.

See Also

Creating a Shared Dimension with the Wizard

Analysis Services (SQL Server 2000)

How to create a shared dimension using Dimension Editor
To create a shared dimension using Dimension Editor

1. In the Analysis Manager tree pane, expand the database in which you want to create the shared dimension.

2. Right-click the Shared Dimensions folder, point to New Dimension, and then click Editor.

3. In the Choose a Dimension Table dialog box, expand a data source, click the dimension table for the dimension, and then
click OK.

Dimension Editor appears with the dimension table showing in the Schema tab.

4. To add more tables to the dimension, on the Insert menu, click Tables, and then use the Select Table dialog box.

5. If the dimension contains multiple tables, ensure each is joined to another. To join two columns, in the Schema tab, drag
one column to the other.

6. Create levels in the dimension. It is easiest to create the highest, most general level first and then create progressively lower,
more specific levels; otherwise, if member counting is enabled, a confirmation dialog box appears each time you add a level.
For each level you want to create:

a. On the Insert menu, click Level.

b. In the Insert Level dialog box, select the column on which the level is based, and then click OK.

As you create each level, it appears in the tree pane.

7. (Optional.) In the properties pane, modify the properties of the dimension and its levels. For information about these
properties, see Properties Pane (Dimension Editor Data View).

8. To save the dimension, on the File menu, click Save, type a name for the dimension in the New Dimension Name dialog
box, and then click OK.

See Also

Creating a Shared Dimension with the Editor

Analysis Services (SQL Server 2000)

How to browse a shared dimension
To browse a shared dimension

In the Analysis Manager tree pane, right-click a shared dimension, and then click Browse Dimension Data.

-or-

In the Cube Editor tree pane, right-click a shared dimension, and then click Browse.

See Also

Viewing Dimension Data

Analysis Services (SQL Server 2000)

How to browse a private dimension
To browse a private dimension

In the Cube Editor tree pane, right-click a private dimension, and then click Browse.

See Also

Viewing Dimension Data

Analysis Services (SQL Server 2000)

How to create a virtual dimension based on member properties
To create a virtual dimension based on member properties

1. Depending on whether the virtual dimension will be shared or private, do one of the following:

If the virtual dimension will be shared, in the Analysis Manager tree pane, expand the database in which you want to
create the virtual dimension. Right-click the Shared Dimensions folder, point to New Dimension, and then click
Wizard.

If the virtual dimension will be private, in the Analysis Manager tree pane, right-click the cube in which you want to
create the virtual dimension, and then click Edit. On the Insert menu, point to Dimension, and then click New.

2. In the Welcome step, click Next.

3. In the Choose how you want to create the dimension step, select Virtual Dimension: The member properties of
another dimension. Click Next.

4. In the Select the dimension with the member properties step, select the dimension that contains the member
properties. Click Next.

5. In the Select the levels for the virtual dimension step, select the levels for the virtual dimension:
a. For each level you want to define, beginning with the top level, in the Available member properties box, select the

member property that defines the level, and then click >.

b. Click Next.
6. In the Select advanced options step, choose any advanced options that may apply. If no advanced options apply, click

Next.

7. If the Specify ordering and uniqueness step appears, for each level, in the Order by column, select the value that
determines the order by which the level's members are displayed to end users. Also, for each level, in the Keys unique and
Names unique columns, specify the scope of uniqueness among the member keys and member names, respectively. Click
Next.

8. In the Finish step:
a. In the Dimension name box, type a name up to 24 characters long.

b. If the virtual dimension will be private, clear the Share this dimension with other cubes check box. (This check box
is not displayed if you are following the procedure for a shared virtual dimension.)

c. Click Finish.

See Also

Creating Virtual Dimensions

Analysis Services (SQL Server 2000)

How to create a virtual dimension based on columns
To create a virtual dimension based on columns

1. Depending on whether the virtual dimension will be shared or private, do one of the following:

If the virtual dimension will be shared, in the Analysis Manager tree pane, expand the database in which you want to
create the virtual dimension. Right-click the Shared Dimensions folder, point to New Dimension, and then click
Wizard.

If the virtual dimension will be private, in the Analysis Manager tree pane, right-click the cube in which you want to
create the virtual dimension, and then click Edit. On the Insert menu, point to Dimension, and then click New.

2. In the Welcome step, click Next.

3. In the Choose how you want to create the dimension step, do one of the following:

If the dimension that will supply the columns has a single dimension table, select Star Schema: A single dimension
table).

If the dimension that will supply the columns has multiple dimension tables, select Snowflake Schema: Multiple,
related dimension tables.

4. Click Next.

5. In the Select the dimension table(s) step, select the dimension table or tables that will supply the columns for the virtual
dimension. Click Next.

6. If the Create and edit joins step appears, join all tables by dragging columns to their joining columns. Click Next.

7. If the Select the dimension type step appears, select the dimension type. If you select Time dimension:
a. In the Date column box, select the column that will be parsed to create the levels of the virtual dimension.

b. Click Next.

c. In the Select time levels box, select the levels for the virtual dimension.

d. (Optional.) In the Day and Month boxes, select the starting date of the year.

e. Click Next.

If you select Standard dimension, click Next.

8. If the Select the levels for your dimension step appears, select the levels for the virtual dimension:
a. For each level you want to define, beginning with the top level, in the Available columns box, select the column that

defines the level, and then click >.

b. Click Next.
9. If the Specify the member key columns step appears, select member key columns for one or more of the levels. Click

Next.

10. In the Select advanced options step, choose any advanced options that may apply, and then click Next. Depending on the
advanced options you select, other dialog boxes may appear.

11. In the Set Changing property step, select Changing. A virtual dimension must be a changing dimension. Click Next.

12. If the Specify ordering and uniqueness step appears, for each level, in the Order by column, select the value that
determines the order by which the level's members are displayed to end users. Also, for each level, in the Keys unique and

Names unique columns, specify the scope of uniqueness among the member keys and member names, respectively. Click
Next.

13. If the Specify storage mode and create member groups step appears, specify a storage mode. If you select MOLAP,
indicate whether to create member groups in a level inserted automatically above the dimension's lowest level. Click Next.

14. In the Finish step:
a. In the Dimension name box, type a name up to 24 characters long.

b. If the virtual dimension will be private, clear the Share this dimension with other cubes check box. (This check box
is not displayed if you are following the procedure for a shared virtual dimension.)

c. Click Finish.
15. In the editor tree pane, select the newly created virtual dimension.

16. If the properties pane is not expanded, expand it by clicking Properties beneath the tree pane.

17. In the properties pane, click the Advanced tab.

18. Click the Depends on Dimension property, and in the drop-down list click the dimension that supplies the columns for the
virtual dimension.

19. Click the Virtual property, and in the drop-down list click True.

20. On the File menu, click Save.

See Also

Creating Virtual Dimensions

Analysis Services (SQL Server 2000)

Building and Processing Cubes
The following topics describe procedures for building and processing cubes:

How to start the Cube Wizard

How to build a cube with Cube Editor

How to create a private dimension

How to add a multiple-column measure to a cube

How to start the Virtual Cube Wizard

How to start the Storage Design Wizard

How to process a cube

How to process a virtual cube

How to view an SQL statement

How to change the temporary file folder used by Analysis_Services

How to browse sample data in Cube Editor

See Also

Building and Processing Cubes

Analysis Services (SQL Server 2000)

How to start the Cube Wizard
To start the Cube Wizard

1. In the Analysis Manager tree pane, expand the database in which you want to build a cube.

2. Right-click the Cubes folder, point to New Cube, and then click Wizard.

After you complete the wizard, Cube Editor appears so that you can further refine your cube.

See Also

Building a Cube with the Wizard

Cubes

Analysis Services (SQL Server 2000)

How to build a cube with Cube Editor
To build a cube with Cube Editor

1. In the Analysis Manager tree pane, expand the database in which you want to build a cube.

2. Right-click the Cubes folder, point to New Cube, and then click Editor.

3. In the Choose a fact table dialog box, expand a data source, and then click the table to use as your cube's fact table.

The columns of the table you click appear under Details.

4. Click OK.

Cube Editor appears, with your fact table showing in the Schema tab.

5. To select measures for your cube, in the Cube Editor tree pane, right-click the Measures folder, and then click New
Measure. Use the Insert Measure dialog box to select columns in your fact table as measures.

As you select each measure, it appears in the tree pane under the Measures folder.

6. Select existing shared dimensions or define new dimensions for your cube.

Existing shared dimensions: In the Cube Editor tree pane, right-click the Dimensions folder, and then click Existing
Dimensions. Select existing shared dimensions under Shared dimensions, and then click > to add them to your
cube.

New dimensions: In the Cube Editor tree pane, right-click the Dimensions folder, and then click New Dimension. Use
the Dimension Wizard to create a new dimension. If you want the dimension to be private, in the Finish step, clear the
Share this dimension with other cubes check box.

After you select or define a dimension, its dimension table appears in the Schema tab of Cube Editor, with the join between
the dimension table and the fact table illustrated by a line. Also, a dimension table can be joined to another dimension table
to form a snowflake schema. Verify that all desired joins are present. To add a join, drag a column to the joining column.

7. To save your cube, on the File menu, click Save, type a name for your cube in the New Cube Name dialog box, and then
click OK.

The new name for your cube appears in the Cube Editor tree pane.

8. To design the aggregations for your cube, on the Tools menu, click Design Storage. The Storage Design Wizard appears to
help you design aggregations.

The last step of the wizard gives you the option to process your cube now or later. You must process it before you and end
users can view its data. Depending on the size of your cube, processing can take considerable time.

Note Newly processed cubes are visible to end users only after they reconnect to the server computer.

See Also

Building a Cube with the Editor

Cubes

Designing Storage Options and Aggregations

Processing Cubes

Analysis Services (SQL Server 2000)

How to create a private dimension
To create a private dimension

1. In the Analysis Manager tree pane, right-click the cube in which you want to create a private dimension, and then click Edit.

2. In Cube Editor, on the Insert menu, point to Dimension, and then click New.

3. In the Dimension Wizard, advance through the steps to define the private dimension. For more information, in the wizard,
click Help.

4. In the Finish step, to indicate the dimension is private, clear the Share this dimension with other cubes check box.

5. Click Finish.

6. (Optional.) In the properties pane, modify the properties of the dimension and its levels.

7. On the File menu, click Save.

See Also

Creating and Maintaining Private Dimensions

Properties Pane (Dimension Editor Data View)

Analysis Services (SQL Server 2000)

How to add a multiple-column measure to a cube
To add a multiple-column measure to a cube

1. In the Analysis Manager tree pane, right-click the cube, and then click Edit.

2. In the Cube Editor tree pane, right-click the Measures folder, and then click New Measure. Use the Insert Measure dialog
box to select one of the columns for the measure.

3. In the Cube Editor tree pane, ensure the new measure is selected.

4. Expand the properties pane, and in the Source Column value, type an expression containing the columns. For example:

"sales_fact_1998"."store_sales"-"sales_fact_1998"."store_cost"

5. On the File menu, click Save.

See Also

Adding a Multiple-Column Measure to a Cube

Analysis Services (SQL Server 2000)

How to start the Virtual Cube Wizard
To start the Virtual Cube Wizard

1. In the Analysis Manager tree pane, expand the database in which you want to create a virtual cube.

2. Right-click the Cubes folder, and then click New Virtual Cube.

See Also

Building a Virtual Cube

Analysis Services (SQL Server 2000)

How to start the Storage Design Wizard
To start the Storage Design Wizard

1. In the Analysis Manager tree pane, under the database that contains the cube for which you want to set storage options and
design aggregations, expand the Cubes folder.

2. Right-click the cube for which you want to set storage options and design aggregations, and then click Design Storage.

See Also

Designing Storage Options and Aggregations

Analysis Services (SQL Server 2000)

How to process a cube
To process a cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, and then click Process.

3. In the Process a Cube dialog box, click Full Process, and then click OK.

4. In the Process dialog box, wait for the cube to finish processing, or click Stop to halt and cancel processing.

After processing completes, but before you close the Process dialog box, you can view the SQL statement used to process the
cube.

Note Newly processed cubes are visible to end users only after they reconnect to the server computer.

See Also

How to view an SQL statement

Processing Cubes

Analysis Services (SQL Server 2000)

How to process a virtual cube
To process a virtual cube

1. In the Analysis Manager tree pane, under the database that contains the virtual cube, expand the Cubes folder.

2. Right-click the virtual cube, and then click Process.

3. In the Process dialog box, wait for the virtual cube to finish processing, or click Stop to halt and cancel processing.

After processing completes, but before you close the Process dialog box, you can view the SQL statement used to process the
virtual cube.

Note Newly processed virtual cubes are visible to end users only after they reconnect to the server computer.

See Also

How to view an SQL statement

Processing Cubes

Analysis Services (SQL Server 2000)

How to view an SQL statement
To view an SQL statement

1. In the Process dialog box, click a line beginning with the SQL icon.

2. Click View Details.

See Also

Creating Partitions

Processing Cubes

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

How to change the temporary file folder used by Analysis
Services
To change the temporary file folder used by Analysis Services

1. In the Analysis Manager tree pane, right-click the Analysis server for which you want to change the temporary file folder,
and then click Properties.

2. Beside the Temporary file folder box, click Browse, select a new folder, and then click OK.

3. In the Properties dialog box, click OK.

If you change the folder, you must stop and restart the MSSQLServerOLAPService service.

See Also

Processing Cubes

Analysis Services (SQL Server 2000)

How to browse sample data in Cube Editor
To browse sample data in Cube Editor

1. In the Analysis Manager tree pane, under the Cubes folder, right-click an unprocessed cube, and then click Edit.

2. In Cube Editor, on the View menu, click Data.

Analysis Services displays the Data tab of Cube Editor with sample data in the data viewing pane. The following message is
displayed at the bottom of Cube Editor:

! Cube is not processed. Viewing sample data.

See Also

Browsing an Unprocessed Cube

Analysis Services (SQL Server 2000)

Creating Security Roles
The following topics describe procedures for creating security roles:

How to create a database role

How to create a cube role, change its default values, and specify cell security

How to create a mining model role and change its default values

How to create a custom rule for dimension security in a database role

How to create a custom rule for dimension security in a cube role

How to create a custom rule for cell security

See Also

Creating Security Roles

Analysis Services (SQL Server 2000)

How to create a database role
To create a database role

1. In the Analysis Manager tree pane, right-click the database for which you want to create a database role, and then click
Manage Roles.

2. In Database Role Manager, do one of the following:

To use an existing role as the basis for the new role, select the existing role, and then click Duplicate. In the Duplicate
Role dialog box, specify a name for the new role, and then click OK. Select the new role, and then click Edit.

To define the new role without values from another role, click New. In the Database Role dialog box, type a value in
the Role name box. You can enter a maximum of 50 characters; the name must begin with an alphabetical character.

3. (Optional.) In the Database Role dialog box, type a value in the Description box.

4. In the Enforce on box, select one of the following:

Server. Server enforcement is more secure due to filtering of data on the server, but this may slow performance.
Queries are resolved entirely on the Analysis server or at the data source.

Client. Client enforcement generally provides better performance but may allow users to gain unauthorized access to
data on the client workstation. Queries might be resolved partially or completely at the client workstation.

5. In the Membership tab, specify the users and groups in the role. To begin adding users and groups, click Add, and then in
the Add Users and Groups dialog box:

a. In the List Names From list, click the domain from which to select users and groups.

b. To display users under Names, click Show Users.

c. To display a group's members, click the group, and then click Members.

d. To add a user or group to the role, click the user or group, and then click Add.

e. After you finish adding the users and groups to the role, click OK.

To remove a user or group from the role, in the Membership tab, select the user or group, and then click Remove.

6. (Optional.) In the Cubes tab, select the cubes that the database role can access. For each cube you select, a cube role is
created.

7. (Optional.) In the Mining Models tab, select the data mining models that the database role can access. For each mining
model you select, a mining model role is created.

8. (Optional.) In the Dimensions tab, for each displayed permission, select a rule. (A read/write permission appears only for a
write-enabled dimension.) The following table describes the rules that are available for each permission.

Permission Rule Rule description
Read Unrestricted The role can view all members. This rule is the

default.
 Fully

Restricted
The role can view only a single member. If the
dimension does not have an (All) level, then the
visible member is the first member in the topmost
level.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
viewed. To access this dialog box, select Custom,
and then in the Custom Settings column, click the
edit (...) button. For more information, see Defining
Custom Rules for Dimension Security.

Read/write Unrestricted The role can update all members. This rule is
available only if the rule for the read permission is
Unrestricted.

 Fully
Restricted

The role cannot update members. This rule is the
default and is available only if the rule for the read
permission is Unrestricted or Fully Restricted.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
updated. To access this dialog box, select Custom,
and then in the Custom Settings column click the
edit (...) button. This rule is available only if the rule
for the read permission is Unrestricted or Custom.
For more information, see Defining Custom Rules
for Dimension Security.

For more information about these permissions and rules, see Dimension Security.

9. In the Database Role dialog box, click OK.

The read/write permission in the Dimensions tab is effective only as long as the dimension remains write-enabled. For more
information, see Write-Enabled Dimensions.

See Also

Creating Database Roles

Analysis Services (SQL Server 2000)

How to create a cube role, change its default values, and
specify cell security
To create a cube role, change its default values, and specify cell security

1. In the Analysis Manager tree pane, right-click the cube for which you want to create a cube role, and then click Manage
Roles.

2. In Cube Role Manager, unchecked roles are database roles without access to the cube. Checked roles are cube roles, which
have access. Do one of the following:

To create a new cube role by granting access to a database role, select the check box beside the database role. The
remaining steps in this procedure are optional. To continue, select the cube role, and then click Edit.

To use an existing cube role as the basis for the new cube role, select the existing cube role, and then click Duplicate.
(This action also creates a database role with the same name as the new cube role.) In the Duplicate Role dialog box,
specify a name for the new role that is 50 characters or less and begins with an alphabetical character, and then click
OK. Select the new role, and then click Edit.

To define the new cube role without values from another role, click New. (This action also creates a database role with
the same name as the cube role.) In the Cube Role dialog box, type a value in the Role name box. You can enter a
maximum of 50 characters; the name must begin with an alphabetical character.

3. (Optional.) In the Cube Role dialog box, type a value in the Description box.

4. In the Enforce on box, select one of the following:

Server. Server enforcement is more secure but may slow performance. Queries are resolved entirely on the Analysis
server or at the data source.

Client. Client enforcement generally provides better performance but may allow users to gain unauthorized access to
data on the client workstation. Queries might be resolved partially or completely at the client workstation.

5. In the Enable drillthrough check box, indicate whether the role can drill through to the source data for a cell. This ability
also requires that you enable drillthrough for the cube or at least one of its partitions. For more information, see Specifying
Drillthrough Options.

6. In the Membership tab, specify the users and groups in the role.

Note Changes in this tab propagate to the database role and cube roles with the same name as the edited cube role.

To begin adding users and groups, click Add, and then in the Add Users and Groups dialog box:

a. In the List Names From list, click the domain from which to select users and groups.

b. To display users under Names, click Show Users.

c. To display a group's members, click the group, and then click Members.

d. To add a user or group to the role, click the user or group, and then click Add.

e. After you have added the users and groups to the role, click OK.

To remove a user or group from the role, in the Membership tab, select the user or group, and then click Remove.

7. (Optional.) In the Dimensions tab, for each displayed permission, select a rule. (A read/write permission appears only for a
write-enabled dimension.) The following table describes the rules that are available for each permission.

Permission Rule Rule description

Read Unrestricted The role can view all members. This rule is the
default.

 Fully
Restricted

The role cannot view members. When users in the
role browse the cube, they do not see the
dimension.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
viewed. To access this dialog box, select Custom,
and then in the Custom Settings column, click the
edit (...) button. For more information, see Defining
Custom Rules for Dimension Security.

Read/write Unrestricted The role can update all members. This rule is
available only if the rule for the read permission is
Unrestricted.

 Fully
Restricted

The role cannot update members. This rule is the
default and is available only if the rule for the read
permission is Unrestricted or Fully Restricted.

 Custom Only the levels and members you specify in the
Custom Dimension Security dialog box can be
updated. To access this dialog box, select Custom,
and then in the Custom Settings column, click the
edit (...) button. This rule is available only if the rule
for the read permission is Unrestricted or Custom.
For more information, see Defining Custom Rules
for Dimension Security.

Changes to a read/write permission propagate to the database role of the same name. For more information about these
permissions and rules, see Dimension Security.

8. (Optional.) In the Cells tab, in the Cell security policy box, select one of the following three policies:

Unrestricted read

The role can view all cell values. This policy is the default.

Unrestricted read/write

The role can view and update all cell values. This policy is available only if the cube you selected in Step 1 is write-
enabled or if the virtual cube you selected in Step 1 has one or more write-enabled, component cubes.

Advanced

The role can view and update only the cell values you specify in the permissions and rules in the Cells tab.

Allow users to commit writeback changes

This option is available only for write-enabled cubes with an Advanced cell security policy. If this option is selected,
changes are permanently recorded in the writeback table. If this option is not selected, changes apply only to ad hoc
analysis and are temporary.

9. (Optional.) If in the preceding step you selected the Advanced policy, select a rule for each permission displayed in the Cells
tab. (A read/write permission appears only if in Step 1 the cube you selected is write-enabled, or if the virtual cube you
selected has one or more write-enabled, component cubes.) The following table describes the rules that are available for
each permission.

Permission Rule Rule description
Read Unrestricted The role can view all cell values. This rule is the

default.
 Fully

Restricted
The role can view only the cell values specified in
the read/write permission or read contingent
permission, subject to its limitations. For more
information about the limitations of the read
contingent permission, see Cell Security.

 Custom You can specify the cell values that are viewable
and not viewable in the Cube Cell Security dialog
box. To access this dialog box, select Custom, and
then in the Custom Settings column, click the edit
(...) button.

Read
contingent

Unrestricted The role can view all cell values that are not derived
from other cells. If a cell value is derived from other
cells, it is viewable if all the other cells are included
in the read or read/write permission.

 Fully
Restricted

The role can view only the cell values specified in
the read permission or read/write permission. This
rule is the default.

 Custom You can specify the cell values that are viewable
and not viewable, subject to the limitations of the
read contingent permission. (For more information
about the limitations of the read contingent
permission, see Cell Security.) To do this, use the
Cube Cell Security dialog box. To access this
dialog box, select Custom, and then in the Custom
Settings column, click the edit (...) button.

Read/write Unrestricted The role can update all cell values.
 Fully

Restricted
The role cannot update cell values.

 Custom You can specify the cell values that are updatable
and not updatable in the Cube Cell Security
dialog box. To access this dialog box, select
Custom, and then in the Custom Settings column,
click the edit (...) button.

For more information about these permissions and rules, see Cell Security.

10. In the Cube Role dialog box, click OK.

The read/write permission in the Dimensions tab is effective only as long as the dimension remains write-enabled. For more
information, see Write-Enabled Dimensions.

The Unrestricted Read/Write policy and read/write permission in the Cells tab are effective only as long as the cube remains
write-enabled. For more information, see Maintaining Write-Enabled Cubes and Writeback Data.

See Also

Creating Cube Roles

Analysis Services (SQL Server 2000)

How to create a mining model role and change its default
values
To create a mining model role and change its default values

1. In the Analysis Manager tree pane, right-click the mining model for which you want to create a mining model role, and then
click Manage Roles.

2. In Mining Model Role Manager, unchecked roles are database roles without access to the mining model. Checked roles are
mining model roles, which have access. Do one of the following:

To create a new mining model role by granting access to a database role, select the check box beside the database
role. The remaining steps in this procedure are optional. To continue, select the mining model role, and then click Edit.

To use an existing mining model role as the basis for the new mining model role, select the existing mining model
role, and then click Duplicate. (This action also creates a database role with the same name as the new mining model
role.) In the Duplicate Role dialog box, specify a name for the new role that is 50 characters or less and begins with
an alphabetical character, and then click OK. Select the new role, and then click Edit.

To define the new mining model role without values from another role, click New. (This action also creates a database
role with the same name as the mining model role.) In the Mining Model Role dialog box, type a value in the Role
name box. You can enter a maximum of 50 characters; the name must begin with an alphabetical character.

3. (Optional.) In the Mining Model Role dialog box, type a value in the Description box.

4. In the Membership tab, specify the users and groups in the role.

Note Changes in this tab propagate to the database role and mining model roles with the same name as the edited mining
model role.

To begin adding users and groups, click Add, and then in the Add Users and Groups dialog box:

a. In the List Names From list, click the domain from which to select users and groups.

b. To display users under Names, click Show Users.

c. To display a group's members, click the group, and then click Members.

d. To add a user or group to the role, click the user or group, and then click Add.

e. After you have added the users and groups to the role, click OK.

To remove a user or group from the role, in the Membership tab, select the user or group, and then click Remove.

5. In the Mining Model Role dialog box, click OK.

See Also

Creating Mining Model Roles

Analysis Services (SQL Server 2000)

How to create a custom rule for dimension security in a
database role
To create a custom rule for dimension security in a database role

1. In the Analysis Manager tree pane, right-click the database that contains the database role, and then click Manage Roles.

2. In Database Role Manager, select the database role in which you want to create a custom rule, and then click Edit. If the
database role does not yet exist, you must create it before performing this procedure. For more information, see Creating
Database Roles.

3. In the Database Role dialog box, click the Dimensions tab.

4. In the row displaying the dimension and permission for which you want to create a custom rule, in the Rule column, select
Custom. For more information about permissions, see Dimension Security.

5. In the same row, in the Custom Settings column, click the edit (...) button.

6. (Optional.) In the Custom Dimension Security dialog box, in the Description box, type a description of the custom rule.

7. If you want to limit access to levels or members, decide whether to use the Basic tab or Advanced tab, which provide
alternative methods. The Basic tab is easier to use and satisfies most needs. The Advanced tab provides a little more
flexibility, but you must write Multidimensional Expressions (MDX).

8. (Optional.) To use the Basic tab to limit access to levels or members:
a. Click the Basic tab.

b. (Optional.) In the Top Level box, select the topmost accessible level.

c. (Optional.) In the Bottom Level box, select the bottommost accessible level.

d. Select Select all members to select all members in the Members box, or select Deselect all members to clear the
selection of all members in the Members box.

e. (Optional.) In the Members box, select a check box beside a member to allow access to it. (This action also selects the
member's descendants and ancestors that are visible in the Members box.) Clear a check box beside a member to
deny access to it. (This action also clears the selection of the member's descendants that are visible in the Members
box.)

Important If you limit access to levels or members, consider selecting Enable - Show visual totals in the Common
tab. If instead you use the default setting for visual totals (that is, Disable - Do not show visual totals), security
exposures might be created. These exposures allow end users in the role to deduce values for members to which they
are denied access. For more information, see Example 4, Example 6, Example 8, and Example 9 in Custom Rules in
Dimension Security.

9. (Optional.) To use the Advanced tab to limit access to levels or members, click the Advanced tab, and use one or more of
the following boxes:

In the Top Level box, type an MDX expression that evaluates to a level that will be the topmost accessible level.

In the Bottom Level box, type an MDX expression that will evaluate to a level that will be the bottommost accessible
level.

In the Allowed Members box, type an MDX expression for the set of members that can be accessed. Descendants of
these members can also be accessed unless they are below the bottom level or access to them is denied by the
expression in the Denied Members box. The ancestors of the allowed members will be visible at the top level.

In the Denied Members box, type an MDX expression for the set of members that cannot be accessed. Descendants
of these members cannot be accessed unless access to them is allowed by the expression in the Allowed Members
box.

For more information, see Custom Rules in Dimension Security.

Important If you limit access to levels or members, consider selecting Enable - Show visual totals in the Common tab. If
instead you use the default setting for visual totals (that is, Disable - Do not show visual totals), security exposures might
be created. These exposures allow end users in the role to deduce values for members to which they are denied access. For
more information, see Example 4, Example 6, Example 8, and Example 9 in Custom Rules in Dimension Security.

10. (Optional.) To control visual totals, click the Common tab, and in the Visual Totals area, do one of the following:

To enable visual totals at all viewable levels, select Enable - Show visual totals.

To disable visual totals at all viewable levels, select Disable - Do not show visual totals.

To enable visual totals at and above a certain level but disable them below it, select Custom - Show visual totals
starting at the following level and above, and in the box below it type an MDX expression for the level. Or, instead
of typing, beside the box you can click the edit (...) button to access MDX Builder, where you can select the level in the
Data box and drag it to the MDX expression box.

Note Visual totals cannot be enabled for a cube that contains a distinct count measure. For more information, see Using
Aggregate Functions.

11. (Optional.) To select a default member, click the Common tab, select Define default member and specify using MDX,
and in the box below it type an MDX expression for the default member. Or, instead of typing, beside the box you can click
the edit (...) button to access MDX Builder, where you can select the default member in the Data box and drag it to the MDX
expression box.

12. Click OK.

13. In the Database Role dialog box, click OK.

See Also

Defining Custom Rules for Dimension Security

Analysis Services (SQL Server 2000)

How to create a custom rule for dimension security in a cube
role
To create a custom rule for dimension security in a cube role

1. In the Analysis Manager tree pane, right-click the cube associated with the cube role in which you want to create a custom
rule, and then click Manage Roles.

2. In Cube Role Manager, select the cube role in which you want to create a custom rule, and then click Edit. If the cube role
does not yet exist, you must create it before performing this procedure. For more information, see Creating Cube Roles.

3. In the Cube Role dialog box, click the Dimensions tab.

4. In the same row, in the Custom Settings column, click the edit (...) button.

5. (Optional.) In the Custom Dimension Security dialog box, in the Description box, type a description of the custom rule.

6. In the row displaying the dimension and permission for which you want to create a custom rule, in the Rule column, select
Custom. For information about permissions, see Dimension Security.

7. If you want to limit access to levels or members, decide whether to use the Basic tab or Advanced tab, which provide
alternative methods. The Basic tab is easier to use and satisfies most needs. The Advanced tab provides a little more
flexibility, but you must write Multidimensional Expressions (MDX) expressions.

8. (Optional.) To use the Basic tab to limit access to levels or members:
a. Click the Basic tab.

b. (Optional.) In the Top Level box, select the topmost accessible level.

c. (Optional.) In the Bottom Level box, select the bottommost accessible level.

d. Select Select all members to select all members in the Members box, or select Deselect all members to clear the
selection of all members in the Members box.

e. (Optional.) In the Members box, select a check box beside a member to allow access to it. (This action also selects the
member's descendants and ancestors that are visible in the Members box.) Clear a check box beside a member to
deny access to it. (This action also clears the selection of the member's descendants that are visible in the Members
box.)

Important If you limit access to levels or members, consider selecting Enable - Show visual totals in the Common
tab. If instead you use the default setting for visual totals (that is, Disable - Do not show visual totals), security
exposures might be created. These exposures allow end users in the role to deduce values for members to which they
are denied access. For more information, see Example 4, Example 6, Example 8, and Example 9 in Custom Rules in
Dimension Security.

9. (Optional.) To use the Advanced tab to limit access to levels or members, click the Advanced tab, and use one or more of
the following boxes:

In the Top Level box, type an MDX expression that evaluates to a level that will be the topmost accessible level.

In the Bottom Level box, type an MDX expression that evaluates to a level that will be the bottommost accessible
level.

In the Allowed Members box, type an MDX expression for the set of members that can be accessed. Descendants of
these members can also be accessed unless they are below the bottom level or access to them is denied by the
expression in the Denied Members box. The ancestors of the allowed members will be visible at the top level.

In the Denied Members box, type an MDX expression for the set of members that cannot be accessed. Descendants
of these members cannot be accessed unless access to them is allowed by the expression in the Allowed Members
box.

For more information, see Custom Rules in Dimension Security.

Important If you limit access to levels or members, consider selecting Enable - Show visual totals in the Common tab. If
instead you use the default setting for visual totals (that is, Disable - Do not show visual totals), security exposures might
be created. These exposures allow end users in the role to deduce values for members to which they are denied access. For
more information, see Example 4, Example 6, Example 8, and Example 9 in Custom Rules in Dimension Security.

10. (Optional.) To control visual totals, click the Common tab, and in the Visual Totals area, do one of the following:

To enable visual totals at all viewable levels, select Enable - Show visual totals.

To disable visual totals at all viewable levels, select Disable - Do not show visual totals.

To enable visual totals at and above a certain level but disable them below it, select Custom - Show visual totals
starting at the following level and above, and in the box below it type an MDX expression for the level. Or, instead
of typing, beside the box you can click the edit (...) button to access MDX Builder, where you can select the level in the
Data box and drag it to the MDX expression box.

Note Visual totals cannot be enabled for a cube that contains a distinct count measure. For more information, see Using
Aggregate Functions.

11. (Optional.) To select a default member, click the Common tab, select Define default member and specify using MDX,
and in the box below it type an MDX expression for the default member. Or, instead of typing, beside the box you can click
the edit (...) button to access MDX Builder, where you can select the default member in the Data box and drag it to the MDX
expression box.

12. Click OK.

13. In the Cube Role dialog box, click OK.

See Also

Defining Custom Rules for Dimension Security

Analysis Services (SQL Server 2000)

How to create a custom rule for cell security
To create a custom rule for cell security

1. In the Analysis Manager tree pane, right-click the cube associated with the cube role in which you want to create a custom
rule, and then click Manage Roles.

2. In Cube Role Manager, select the cube role in which you want to create a custom rule, and then click Edit. If the cube role
does not yet exist, you must create it before performing this procedure. For more information, see Creating Cube Roles.

3. In the Cube Role dialog box, click the Cells tab.

4. In the Cell security policy box, select Advanced.

5. In the row displaying the permission for which you want to create a custom rule, in the Rule column, select Custom. For
information about permissions, see Cell Security.

6. In the same row, in the Custom Settings column, click the edit (...) button.

7. (Optional.) In the Cube Cell Security dialog box, in the Description box, type a description of the custom rule.

8. In the MDX box, type a Multidimensional Expressions (MDX) expression to allow or deny access to specific cube cells. Or,
instead of typing, beside the box you can click the edit (...) button to access MDX Builder, where you can create the
expression by using drag and drop techniques. For more information, see Custom Rules in Cell Security.

9. Click OK.

10. In the Cube Role dialog box, click OK.

See Also

Defining Custom Rules for Cell Security

Analysis Services (SQL Server 2000)

Managing Cube Storage
The following topics describe procedures for managing cube storage:

How to start the Partition Wizard

How to process a partition

How to merge two partitions

How to specify a data source for a linked cube

How to create a linked cube

How to process a linked cube

See Also

Introduction to Partitions

Partition Wizard

Linked Cubes

Analysis Services (SQL Server 2000)

How to start the Partition Wizard
To start the Partition Wizard

1. In the Analysis Manager tree pane, under the database in which you want to create a partition, expand the Cubes folder, and
then expand the cube in which you want to create a partition.

2. Right-click the Partitions folder, and then click New Partition.

See Also

Creating Partitions

Analysis Services (SQL Server 2000)

How to process a partition
To process a partition

1. In the Analysis Manager tree pane, under the database that contains the partition, expand the Cubes folder, expand the cube
that contains the partition, and then expand the Partitions folder.

2. Right-click the partition, and then click Process.

3. In the Process dialog box, wait for the partition to finish processing, or click Stop to halt and cancel processing.

After processing completes but before you close the Process dialog box, you can view the SQL statement used to process the
partition.

How to view an SQL statement

See Also

Creating Partitions

Analysis Services (SQL Server 2000)

How to merge two partitions
To merge two partitions

1. In the Analysis Manager tree pane, under the database that contains the partitions, expand the Cubes folder, expand the
cube that contains the partitions, and then expand the Partitions folder.

2. Right-click the source partition, and then click Merge.

3. In the Merge Partitions dialog box, select the target partition, and then click Merge.

4. In the Process dialog box, wait for the merge to finish processing, or click Stop to halt and cancel processing.

See Also

Merging Partitions

Analysis Services (SQL Server 2000)

How to specify a data source for a linked cube
To specify a data source for a linked cube

1. In the Analysis Manager tree pane, expand the database in which you want to create a linked cube.

2. Right-click the Data Sources folder, and then click New Data Source.

3. In the Data Link Properties dialog box, on the Provider tab, click Microsoft OLE DB Provider for Olap Services 8.0 or
another provider that is compliant with the OLAP section of the OLE DB specification dated March 1999 (2.6).

4. On the Connection tab, in the Data Source box, type the name of the Analysis server where the source cube is defined.

5. In the Enter the initial catalog to use box, type the name of the database where the source cube is defined.

6. To determine whether the data source is correctly connected, click Test Connection. If the connection is correct, you receive
a message indicating that the test connection succeeded. Click OK to clear the message.

7. In the Data Link Properties dialog box, click OK.

See Also

Linked Cubes

Analysis Services (SQL Server 2000)

How to create a linked cube
To create a linked cube

1. In the Analysis Manager tree pane, expand the Analysis server and database in which you want to create the linked cube.

Note The Analysis server cannot be the same as the server in the linked cube's data source.

2. Right-click the Cubes folder, and then click New Linked Cube.

3. In the Linked Cube dialog box, in the Name box, type a name for the linked cube.

4. In the Source Cube box, expand the data source that contains the source cube, and then select the source cube.

5. If you want to process the linked cube now, select the Process after creating new cube check box. The linked cube must
be processed before end users can connect to it.

See Also

Linked Cubes

Analysis Services (SQL Server 2000)

How to process a linked cube
To process a linked cube

1. In the Analysis Manager tree pane, under the database that contains the linked cube, expand the Cubes folder.

2. Right-click the linked cube, and then click Process.

3. In the Process a Cube dialog box, click Process, and then click OK.

4. In the Process dialog box, wait for the linked cube to finish processing, or click Stop to halt and cancel processing.

Note Newly processed linked cubes are visible to end users only after they reconnect to the server computer.

See Also

Linked Cubes

Managing Linked Cubes

Analysis Services (SQL Server 2000)

Enhancing Dimensions
The following topics describe procedures for enhancing dimensions with optional features:

How to create a member property in a shared dimension

How to create a custom rollup operator for a shared dimension

How to create a custom rollup operator for a private dimension

How to create or select a column to store custom member formulas

How to create a custom member formula in a write-enabled dimension

How to create member groups

How to create a dimension with multiple hierarchies in Dimension Editor

How to create a dimension with multiple hierarchies in the Dimension Wizard

How to add a hierarchy to an existing dimension

See Also

Enhancing Dimensions with Optional Features

Analysis Services (SQL Server 2000)

How to create a member property in a shared dimension
To create a member property in a shared dimension

1. In the Analysis Manager tree pane, expand the database that contains the dimension, and then expand the Shared
Dimensions folder.

2. Right-click the shared dimension in which you want to create a member property, and then click Edit.

3. In Dimension Editor, right-click the level in which you want to create a member property, and then click New Member
Property.

4. In the Insert Member Property dialog box, click the column that stores the member property values, and then click OK.

See Also

Creating Member Properties

Analysis Services (SQL Server 2000)

How to create a custom rollup operator for a shared dimension
To create a custom rollup operator for a shared dimension

1. Access the dimension that will contain the custom rollup operator by right-clicking the dimension, and then click Edit.

2. In Dimension Editor, in the tree pane, click the level for which to create the custom rollup operator.

3. If the properties pane is not expanded, expand it by clicking Properties beneath the tree pane.

4. In the properties pane, click the Advanced tab.

5. Click the value beside Unary Operators, and then click the edit (...) button.

6. In the Define Unary Operator Column dialog box, select the Enable Unary Operators check box to enable custom rollup
operators for the level.

7. Create or select an existing column to store the custom rollup operators:

To create a new column in the dimension table, select Create a new column, and then in the New column name
box, type the name of the new column.

A dimension table can have multiple columns (one per level) that store custom rollup operators. Therefore, it is
recommended that the new column name identify the column that stores the members to which the custom rollup
operators apply (that is, the column for the level selected in Step 2.) For example, if in Step 2 you selected the Store
Country level, and its members are stored in the store_country column, in the New column name box, type:

store_country_custom_rollup_operator

Note If the dimension is not write-enabled, you must use a tool other than Dimension Editor or Analysis Manager to
add values to the new column.

To select an existing column in the dimension table, select Use an existing column, and then in the Existing
column box, select the column.

8. In the Define Unary Operator Column dialog box, click OK.

9. On the File menu, click Save.

After you perform this procedure once for a level, you do not need to repeat it as long as the column that stores the custom
rollup operators remains in the dimension table.

10. (Optional.) To browse your custom rollup operators, click the Data tab, and then expand the dimension members pane.
Custom rollup operators are indicated next to member names. If you created a new, unpopulated column in Step 7, the plus
operator (+), which is the default rollup operator, will display beside the member names.

11. (Optional.) To edit custom rollup operators in a write-enabled parent-child dimension, select a dimension member from the
dimension members pane, and then select an operator in the column beside UNARY_OPERATOR in the member properties
pane.

After editing, click Save on the File menu to commit changes to the dimension table.

Note Before you can edit the write-enabled dimension, it must be included in a cube, and then the cube must be
processed.

Analysis Services (SQL Server 2000)

How to create a custom rollup operator for a private dimension
To create a custom rollup operator for a private dimension

1. Access the cube with the private dimension that will contain the custom rollup operator by right-clicking the cube, and then
click Edit.

2. In Cube Editor, in the tree pane, click the level for which to create the custom rollup operator.

3. If the properties pane is not expanded, expand it by clicking Properties beneath the tree pane.

4. In the properties pane, click the Advanced tab.

5. Click the value beside Unary Operators, and then click the edit (...) button.

6. In the Define Unary Operator Column dialog box, select the Enable Unary Operators check box to enable custom rollup
operators for the level.

7. Create or select an existing column to store the custom rollup operators:

To create a new column in the dimension table, select Create a new column, and then in the New column name
box, type the name of the new column.

A dimension table can have multiple columns (one per level) that store custom rollup operators. Therefore, it is
recommended that the new column name identify the column that stores the members to which the custom rollup
operators apply (that is, the column for the level selected in Step 2.) For example, if in Step 2 you selected the Store
Country level, and its members are stored in the store_country column, in the New column name box, type:

store_country_custom_rollup_operator

Note If the dimension is not write-enabled, you must use a tool other than Dimension Editor or Analysis Manager to
add values to the new column.

To select an existing column in the dimension table, select Use an existing column, and then in the Existing
column box, select the column.

8. In the Define Unary Operator Column dialog box, click OK.

9. On the File menu, click Save.

After you perform this procedure once for a level, you do not need to repeat it as long as the column that stores the custom
rollup operators remains in the dimension table.

10. (Optional.) To browse custom rollup operators stored in an existing column, click the Schema tab, right-click the dimension
table containing the stored operator, and then click Browse Data. Custom rollup operators are indicated in the respective
column indicated in Step 7 for the first 1000 rows of data.

11. (Optional.) To edit custom rollup operators of a writable dimension, right-click the dimension in the Cube Editor tree pane
and click Browse to display Dimension Browser. In the Dimension Browser tree pane, select the dimension member that has
the custom rollup operator that you want changed. Click the value next to UNARY_OPERATORS in the member properties
pane to modify the value for the selected member.

Analysis Services (SQL Server 2000)

How to create or select a column to store custom member
formulas
To create or select a column to store custom member formulas

1. Access the dimension that will contain the custom member formulas:

If the dimension is shared, in the Analysis Manager tree pane, right-click the dimension, and then click Edit.

If the dimension is private, in the Analysis Manager tree pane, right-click the cube that contains the dimension, and
then click Edit. In the Cube Editor tree pane, expand the dimension to reveal its levels.

2. In the editor tree pane, select the level for which you want to create custom member formulas.

3. If the properties pane is not expanded, expand it by clicking Properties beneath the tree pane.

4. In the properties pane, click the Advanced tab.

5. Click the value beside Custom Members, and then click the edit (...) button.

6. In the Define Custom Member Column dialog box, select Enable Custom Members.

7. Create or select a column to store the custom member formulas:

To create a new column in the dimension table, select Create a new column, and then in the New column name
box, type the name of the new column.

A dimension table can have multiple columns (one per level) that store custom member formulas. Therefore, it is
recommended that the new column name identify the column that stores the members to which the custom member
formulas apply (that is, the column for the level selected in Step 2.) For example, if in Step 2 you selected the Store
Country level, and its members are stored in the store_country column, in the New column name box, type:

store_country_custom_member_formula

To select an existing column in the dimension table, select Use an existing column, and then in the Existing
column box, select the column.

Caution If you select an existing column, its contents will be overwritten by the custom member formulas.

8. In the Define Custom Member Column dialog box, click OK.

9. On the File menu, click Save.

After you perform this procedure once for a level, you do not need to repeat it as long as the column that stores the custom
member formulas remains in the dimension table.

See Also

Creating Custom Member Formulas

Analysis Services (SQL Server 2000)

How to create a custom member formula in a write-enabled
dimension
To create a custom member formula in a write-enabled dimension

1. (Only parent-child dimensions can be write-enabled.) Access the dimension that will contain the custom member formula:

If the dimension is shared, in the Analysis Manager tree pane, right-click the dimension, and then click Edit. In
Dimension Editor, on the View menu, click Data.

If the dimension is private, in the Analysis Manager tree pane, right-click the cube that contains the dimension, and
then click Edit. In the Cube Editor tree pane, right-click the dimension, and then click Browse.

2. In the dimension members pane, select the member for which you want to create the custom member formula.

3. In the custom member formula pane, create the custom member formula. Use any combination of the following methods:

Type.

Click the arithmetic operator buttons and parentheses buttons.

Click the edit (...) button to access MDX Builder in which you can construct the custom member formula with drag and
drop techniques. After you are done in MDX Builder, click OK.

4. If the dimension is private, in Dimension Browser, click Close.

5. In the editor, on the File menu, click Save.

See Also

Creating Custom Member Formulas

Analysis Services (SQL Server 2000)

How to create member groups
To create member groups

1. Access the dimension that will contain the member groups:

If the dimension is shared, in the Analysis Manager tree pane, right-click the dimension, and then click Edit.

If the dimension is private, in the Analysis Manager tree pane, right-click the cube that contains the dimension, and
then click Edit. In the Cube Editor tree pane, expand the dimension to reveal its levels.

2. Create a copy of the level that contains the members that will be the children of the member groups. Create it immediately
above the original. To do this, follow these steps:

a. In the editor tree pane, select the level to be copied.

b. If the properties pane is not expanded, expand it by clicking Properties beneath the tree pane.

c. In the properties pane, click the Basic tab.

d. Record the value of the Member Key Column property.

e. On the Insert menu, click Level.

f. In the Select Column dialog box, select the column recorded in Step d, and then click OK.

g. Select the new level.

h. Drag the new level to a position immediately above the original level.

i. In the properties pane, ensure that all of the new level's properties except Name have the same values as the original
level.

3. In the editor tree pane, select the level in which you want to create member groups. (Select the new level from Step 2, not
the original level.)

4. In the properties pane, click the Advanced tab.

5. For the Grouping property, select Automatic.

6. If you want to hide from end users the level that contains the member groups, follow these steps:
a. In the editor tree pane, select the level that contains the member groups.

b. In the properties pane, click the Advanced tab.

c. Change the value of the Visible property to False.
7. In the editor, on the File menu, click Save.

See Also

Creating Member Groups

Analysis Services (SQL Server 2000)

How to create a dimension with multiple hierarchies in the
Dimension Wizard
To create a dimension with a single defined hierarchy using the Dimension Wizard

1. In the Analysis Manager tree pane, expand the database in which you want to create a dimension with multiple hierarchies.

2. Right-click the Shared Dimensions folder, point to New Dimension, and then click Wizard.

3. In the second step of the wizard select either Star Schema: A single dimension table or Snowflake Schema: Multiple,
related dimension tables.

4. Follow the remaining wizard steps to define levels and various options for the dimension.

5. In the Finish step of the wizard, enter a name in the Dimension name box.

6. Select the Create a hierarchy of a dimension box.

7. Enter a name in the Hierarchy name box.

8. Click Finish to complete the wizard. After you complete the wizard, Dimension Editor appears so that you can further refine
the dimension.

9. (Optional.) To create another hierarchy of the dimension, from the File menu in Dimension Editor, point to New
Dimension, and then click Wizard. Follow the steps in the next procedure, "To create a dimension with additional defined
hierarchies using the Dimension Wizard," beginning with Step 3.

To create a dimension with additional defined hierarchies using the Dimension Wizard

1. In the Analysis Manager tree pane, expand the database in which you want to define additional hierarchies for a dimension
with at least one named hierarchy.

2. Right-click the Shared Dimensions folder, point to New Dimension, and then click Wizard.

3. In the second step of the Dimension Wizard select either Star Schema: A single dimension table or Snowflake Schema:
Multiple, related dimension tables.

4. Follow the remaining wizard steps to define levels and various options for the dimension.

5. Select the Create a hierarchy of a dimension box.

6. Select a dimension name having a defined hierarchy from the Dimension name box.

7. Enter a name in the Hierarchy name box.

8. Click Finish to complete the wizard. After you complete the wizard, Dimension Editor appears so that you can further refine
the dimension.

9. (Optional.) To create another hierarchy of the dimension, from the File menu in Dimension Editor, point to New
Dimension, and then click Wizard. Repeat Steps 3 through 8.

See Also

Creating Dimensions with Multiple Hierarchies

Dimension Hierarchies

Analysis Services (SQL Server 2000)

How to create a dimension with multiple hierarchies in
Dimension Editor
To create a dimension with multiple hierarchies using Dimension Editor

1. In the Analysis Manager tree pane, expand the database in which you want to create the dimension with multiple
hierarchies.

2. Right-click the Shared Dimensions folder, point to New Dimension, and then click Editor.

In the Choose a Dimension Table dialog box, expand a data source, click the dimension table for the dimension, and then
click OK. Dimension Editor appears with the dimension table showing in the Schema tab.

3. To add more tables to the dimension, on the Insert menu, click Tables, and then use the Select Table dialog box.

4. If the dimension contains multiple tables, ensure each is joined to another. To join two columns, in the Schema tab, drag
one column to the other.

5. Create levels in the dimension. It is easiest to create the highest, most general level first and then create progressively lower,
more specific levels; otherwise, if member counting is enabled, a confirmation dialog box appears each time you add a level.
For each level you want to create:

a. On the Insert menu, click Level.

b. In the Insert Level dialog box, select the column on which the level is based, and then click OK. As you create each
level, it appears in the tree pane.

6. (Optional.) In the properties pane, modify the properties of the dimension and its levels. For information about these
properties, see Properties Pane (Dimension Editor Schema View).

7. To save the dimension, on the File menu, click Save, type a name for the dimension in the New Dimension Name dialog
box. To define a hierarchy for the dimension, this name must be of the form dimensionname.hierarchyname, where
dimensionname is unique if there are no existing hierarchies or the same as another if it is another hierarchy of a
dimension; hierarchyname is unique for each hierarchy being defined. Click OK.

8. (Optional.) To create another hierarchy, repeat Steps 2 through 8.

See Also

Creating Dimensions with Multiple Hierarchies

Dimension Hierarchies

Analysis Services (SQL Server 2000)

How to add a hierarchy to an existing dimension
To add a hierarchy to a dimension with a previously identified hierarchy

1. In the Analysis Manager tree pane, expand the database in which you want to create the dimension with multiple
hierarchies, and then expand the Shared Dimensions folder.

2. Right-click the shared dimension with an identified hierarchy in which you want to add a hierarchy, and then click Edit. Such
dimensions have names where a period is used to separate the dimension name part from the hierarchy name part.

3. In Dimension Editor, edit the dimension by adding or deleting levels or changing its schema. For more information, see
Creating a Shared Dimension with the Editor.

4. After editing the dimension, to save the dimension with a new hierarchy, on the File menu, click Save As to display the
Dimension: New Name dialog box. To add a new hierarchy, change the hierarchy part of the name following the period in
the New name box. (Do not change the dimension name part before the period.) Click OK.

Important When additional hierarchies are created for dimensions, the hierarchy part of the name should not equal any
current or future level name or member name in the dimension because queries using the dimension may be ambiguous.

5. (Optional.) To create another hierarchy, repeat Steps 2 through 5.

To add a hierarchy to a dimension without a previously identified hierarchy

1. In the Analysis Manager tree pane, expand the database in which you want to create the dimension with multiple
hierarchies, and then expand the Shared Dimensions folder.

2. Right-click the shared dimension with an unidentified hierarchy in which you want to add a hierarchy, and then click Edit.
The names of dimensions with unidentified hierarchies are those that do not contain periods.

3. In Dimension Editor, to create a new dimension with a new hierarchy based on the selected dimension, on the File menu,
click Save As to display the Dimension: New Name dialog box. In the New name box, provide a different dimension
name followed by a period and a hierarchy name. Click OK.

Important When creating dimensions with multiple hierarchies, the hierarchy part of the name should not equal any
current or future level name or member name in the dimension because queries using the dimension may be ambiguous.

4. (Optional.) In Dimension Editor, edit the hierarchy of the dimension by adding or deleting levels or changing its schema. For
more information, see Creating a Shared Dimension with the Editor.

5. After editing the dimension and its hierarchy, on the File menu, click Save to save changes.

6. (Optional.) To create additional hierarchies for the dimension, on the File menu, click Save As to display the Dimension:
New Name dialog box. To add a new hierarchy, change the hierarchy part of the name following the period in the New
name box. (In this case, do not change the dimension name part before the period.) Click OK.

7. Repeat Steps 4 through 6 to edit and save the new hierarchy.

See Also

Adding Hierarchies to Existing Dimensions

Dimension Hierarchies

Analysis Services (SQL Server 2000)

Enhancing Cubes with Optional Features
The following topics describe procedures for enhancing cubes with optional features. Topics are grouped beneath the feature they
support.

Calculated cells
How to create calculated cells

How to import calculated cells into a virtual cube

How to edit a calculated cells definition
Calculated members

How to rename a calculated member

How to create a calculated member in a regular cube

How to import a calculated member into a virtual cube

How to edit a calculated member in a virtual cube

How to create a calculated member in a virtual cube
Named sets

How to create a named set in a regular cube

How to import a named set into a virtual cube

How to edit a named set in a virtual cube

How to create a named set in a virtual cube
Actions

How to create an action in a regular cube

How to import an action into a virtual cube

How to edit an action in a virtual cube

How to create an action in a virtual cube

How to test an action
Write-enabled cubes

How to write-enable a cube

How to browse writeback data for a cube

How to delete writeback data for a cube and write-disable it

How to convert a cube's writeback data to a partition and write-disable the cube
Drillthrough

How to specify drillthrough options for a regular cube

How to specify drillthrough options for a virtual cube

How to specify drillthrough options for a linked cube

How to specify drillthrough options for a partition

See Also

Enhancing Cubes with Optional Features

Analysis Services (SQL Server 2000)

How to create calculated cells
To create calculated cells

1. In the Analysis Manager tree pane, under the database to which you want to add calculated cells, expand the Cubes folder.

2. Right-click the cube or virtual cube to which you want to add calculated cells, and then click Edit.

3. In Cube Editor or Virtual Cube Editor, on the Insert menu, click Calculated Cells.

4. Follow the steps in the wizard.

After you finish, the new calculated cells definition appears under Calculated Cells in the tree pane of Cube Editor or Virtual Cube
Editor.

See Also

Calculated Cells

How to edit a calculated cells definition

How to import calculated cells into a virtual cube

Analysis Services (SQL Server 2000)

How to import calculated cells into a virtual cube
To import calculated cells into a virtual cube

1. In the Analysis Manager tree pane, under the database that contains the calculated cells, expand the Cubes folder.

2. Right-click the virtual cube into which you want to import calculated cells, and then click Edit.

3. In Virtual Cube Editor, right-click the Calculated Cells folder, and then click Import Calculated Cells.

4. Under Available Calculated Cells, select the check boxes beside the calculated cells definitions that you want to import. If
you want to import all the calculated cells definitions in a cube, select the check box next to the cube.

To import a calculated cells definition that is not in the component cubes of the virtual cube, clear the Show source cubes
only check box.

After you finish, the imported calculated cells definitions appear under the Calculated Cells folder in the tree pane of Virtual Cube
Editor.

See Also

Calculated Cells

How to create calculated cells

How to edit a calculated cells definition

Analysis Services (SQL Server 2000)

How to edit a calculated cells definition
To edit a calculated cells definition

1. In the Analysis Manager tree pane, under the database that contains the calculated cells, expand the Cubes folder.

2. Right-click the cube or virtual cube containing the calculated cells definition, and then click Edit.

3. In the tree pane of Cube Editor or Virtual Cube Editor, expand the Calculated Cells folder.

4. Right-click the calculated cells definition you want to edit, and then click Edit.

5. Follow the steps in the Calculated Cells Wizard to make the changes to the calculated cells definition.

See Also

Calculated Cells

How to create calculated cells

How to import calculated cells into a virtual cube

Analysis Services (SQL Server 2000)

How to rename a calculated member
To rename a calculated member

1. In the Analysis Manager tree pane, under the database that contains the calculated member, expand the Cubes folder.

2. Right-click the cube that contains the calculated member, and then click Edit.

3. In the Cube Editor tree pane, right-click the calculated member, and then click Rename.

4. In the box next to the calculated member icon, type a new name, and then click outside the box.

See Also

Creating Calculated Members

Analysis Services (SQL Server 2000)

How to create a calculated member in a regular cube
To create a calculated member in a regular cube

1. In the Analysis Manager tree pane, under the database in which you want to create the calculated member, expand the
Cubes folder.

2. Right-click the cube in which you want to create the calculated member, and then click Edit.

3. In Cube Editor, on the Insert menu, click Calculated Member.

4. In Calculated Member Builder, in the Parent dimension box, select the dimension that will include the calculated member,
or select Measures.

5. In the Parent member box, specify the member that will include the calculated member. Click Change to select a member
other than the displayed member. (Change is unavailable if you selected a one-level dimension or Measures in Step 4.)

6. In the Member name box, type a name for the calculated member.

7. In the Value expression box, construct an expression to produce the values of the calculated member. Use any
combination of the following methods to add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type. This method is required to add functions from libraries other than the Microsoft® SQL Server™ 2000 Analysis
Services function library.

8. (Optional.) To register additional function libraries, click Register.

9. To close Calculated Member Builder, click OK.

10. To save the cube with the new calculated member, in Cube Editor, on the File menu, click Save.

Example

To manually enter a calculated member that finds the average profit margin by store, which is defined as 1 - (Store Cost/Store
Sales), follow these steps:

1. In the Value expression box, type 1-.

2. Click the opening parenthesis (() operator button, and then in the Value expression box, click immediately to the right of
the parenthesis to place the cursor.

3. In the Data box, expand Measures and MeasuresLevel to display the individual measures.

4. Select Store Cost, and then click Insert.

5. In the Value expression box, place the cursor at the end of the phrase that was just entered, and then type a slash mark (/).

6. In the Data box, select Store Sales.

7. Click Insert.

8. Click the closing parenthesis ()) operator button.

The following expression appears in the Value expression box:

1-([Measures].[Store Cost]/[Measures].[Store Sales])

9. In the Member Name box, type Average Store Margin, and then click OK.

See Also

Creating Calculated Members in Regular Cubes

Analysis Services (SQL Server 2000)

How to import a calculated member into a virtual cube
To import a calculated member into a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Edit menu, point to Import, and then click Calculated Members.

3. In the Import Calculated Members dialog box, select the check box beside the calculated member, and then click OK. (To
select all the calculated members in a cube, select the check box beside the cube.)

4. In Virtual Cube Editor, on the File menu, click Save.

See Also

Importing a Calculated Member into a Virtual Cube

Analysis Services (SQL Server 2000)

How to edit a calculated member in a virtual cube
To edit a calculated member in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In the Virtual Cube Editor tree pane, right-click the calculated member, and then click Edit.

3. In Calculated Member Builder, in the Parent dimension box, select the dimension that will include the calculated member,
or select Measures.

4. In the Parent member box, specify the member that will include the calculated member. Click Change to select a member
other than the displayed member. (Change is unavailable if you selected a one-level dimension or Measures in Step 3.)

5. In the Value expression box, construct an expression to produce the values of the calculated member. Use any
combination of the following methods to add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type.

6. (Optional.) To register additional function libraries, click Register.

7. To close Calculated Member Builder, click OK.

8. To save the calculated member, in Virtual Cube Editor, on the File menu, click Save.

See Also

Editing a Calculated Member in a Virtual Cube

Analysis Services (SQL Server 2000)

How to create a calculated member in a virtual cube
To create a calculated member in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Insert menu, click Calculated Member.

3. In Calculated Member Builder, in the Parent dimension box, select the dimension that will include the calculated member,
or select Measures.

4. In the Parent member box, specify the member that will include the calculated member. Click Change to select a member
other than the displayed member. (Change is unavailable if you selected a one-level dimension or Measures in Step 3.)

5. In the Member name box, type a name for the calculated member.

6. In the Value expression box, construct an expression to produce the values of the calculated member. Use any
combination of the following methods to add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type.

7. (Optional.) To register additional function libraries, click Register.

8. To close Calculated Member Builder, click OK.

9. To save the calculated member, in Virtual Cube Editor, on the File menu, click Save.

Example

To manually enter a calculated member that finds the average profit margin by store, which is defined as 1 - (Store Cost/Store
Sales), follow these steps:

1. In the Value expression box, type 1-.

2. Click the opening parenthesis (() operator button, and then in the Value expression box, click immediately to the right of
the parenthesis to place the cursor.

3. In the Data box, expand Measures and MeasuresLevel to display the individual measures.

4. Select Store Cost, and then click Insert.

5. In the Value expression box, place the cursor at the end of the phrase that was just entered, and then type a slash mark (/).

6. In the Data box, select Store Sales.

7. Click Insert.

8. Click the closing parenthesis ()) operator button.

The following expression appears in the Value expression box:

1-([Measures].[Store Cost]/[Measures].[Store Sales])

9. In the Member Name box, type Average Store Margin, and then click OK.

See Also

Creating a Calculated Member in a Virtual Cube

Analysis Services (SQL Server 2000)

How to create a named set in a regular cube
To create a named set in a regular cube

1. In the Analysis Manager tree pane, under the database in which you want to create the named set, expand the Cubes folder.

2. Right-click the cube in which you want to create the named set, and then click Edit.

3. In Cube Editor, on the Insert menu, click Named Set.

4. In Named Set Builder, in the Set name box, type a name for the named set.

5. In the Set expression box, construct an expression for the named set. Use any combination of the following methods to
add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type.

Note If you create the set expression by explicitly naming the members in the set, enclose the list of members in a
pair of braces ({}).

6. (Optional.) To register additional function libraries, click Register.

7. To close Named Set Builder, click OK.

8. To save the named set, in Cube Editor, on the File menu, click Save.

See Also

Creating Named Sets in Regular Cubes

Analysis Services (SQL Server 2000)

How to import a named set into a virtual cube
To import a named set into a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Edit menu, point to Import, and then click Named Sets.

3. In the Import Named Sets dialog box, select the check box beside the named set, and then click OK. (To select all the
named sets in a cube, select the check box beside the cube.)

4. In Virtual Cube Editor, on the File menu, click Save.

See Also

Importing a Named Set into a Virtual Cube

Analysis Services (SQL Server 2000)

How to edit a named set in a virtual cube
To edit a named set in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In the Virtual Cube Editor tree pane, right-click the named set, and then click Edit.

3. In Named Set Builder, in the Set expression box, construct an expression for the named set. Use any combination of the
following methods to add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type.

Note If you create the set expression by explicitly naming the members in the set, enclose the list of members in a
pair of braces ({}).

4. (Optional.) To register additional function libraries, click Register.

5. To close Named Set Builder, click OK.

6. To save the named set, in Virtual Cube Editor, on the File menu, click Save.

See Also

Editing a Named Set in a Virtual Cube

Analysis Services (SQL Server 2000)

How to create a named set in a virtual cube
To create a named set in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Insert menu, click Named Set.

3. In Named Set Builder, in the Set name box, type a name for the named set.

4. In the Set expression box, construct an expression for the named set. Use any combination of the following methods to
add to the expression:

Drag items from the Data and Functions boxes.

Click an item in the Data or Functions box, and then click Insert.

Click the arithmetic operator and number buttons.

Type.

Note If you create the set expression by explicitly naming the members in the set, enclose the list of members in a
pair of braces ({}).

5. (Optional.) To register additional function libraries, click Register.

6. To close Named Set Builder, click OK.

7. To save the named set, in Virtual Cube Editor, on the File menu, click Save.

See Also

Creating a Named Set in a Virtual Cube

Analysis Services (SQL Server 2000)

How to create an action in a regular cube
To create an action in a regular cube

1. In the Analysis Manager tree pane, under the database in which you want to create the action, expand the Cubes folder.

2. Right-click the cube in which you want to create the action, and then click Edit.

3. In Cube Editor, on the Insert menu, click Action.

4. In the Action Wizard, in Welcome step, click Next.

5. In the Select target step, select the object to which the action is attached. Generally, in client applications, the action is
displayed when end users select the target object; however, the client application determines which end-user operation
displays actions. Click Next.

6. In the Select the action type step, select the type of action. The type indicates the kind of operation performed by the
action. For more information about action types, see Creating Actions. Click Next.

7. In the Define the Action Syntax step, specify the parameters that are passed when the action is executed. The syntax must
evaluate to a string. Click Next.

8. In the Finish step, specify the action name. Click Finish.

9. To save the action, in Cube Editor, on the File menu, click Save.

See Also

Creating Actions in Regular Cubes

How to test an action

Analysis Services (SQL Server 2000)

How to import an action into a virtual cube
To import an action into a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Edit menu, point to Import, and then click Actions.

3. In the Import Actions dialog box, select the check box beside the action, and then click OK. (To select all the actions in a
cube, select the check box beside the cube.)

4. In Virtual Cube Editor, on the File menu, click Save.

See Also

Importing an Action into a Virtual Cube

How to test an action

Analysis Services (SQL Server 2000)

How to edit an action in a virtual cube
To edit an action in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In the Virtual Cube Editor tree pane, right-click the action, and then click Edit.

3. In the Action Wizard, in the Select target step, select the object to which the action is attached. Generally, in client
applications, the action is displayed when end users select the target object; however, the client application determines
which end-user operation displays actions. Click Next.

4. In the Select the action type step, select the type of action. The type indicates the kind of operation performed by the
action. For more information about action types, see Creating Actions. Click Next.

5. In the Define the action syntax step, specify the parameters that are passed when the action is executed. The syntax must
evaluate to a string. Click Next.

6. In the Finish step, specify the action name. Click Finish.

7. To save the action, in Virtual Cube Editor, on the File menu, click Save.

See Also

Editing an Action in a Virtual Cube

How to test an action

Analysis Services (SQL Server 2000)

How to create an action in a virtual cube
To create an action in a virtual cube

1. In the Analysis Manager tree pane, right-click the virtual cube, and then click Edit.

2. In Virtual Cube Editor, on the Insert menu, click Action.

3. In the Action Wizard, in Welcome step, click Next.

4. In the Select target step, select the object to which the action is attached. Generally, in client applications, the action is
displayed when end users select the target object; however, the client application determines which end-user operation
displays actions. Click Next.

5. In the Select the action type step, select the type of action. The type indicates the kind of operation performed by the
action. For more information about action types, see Creating Actions. Click Next.

6. In the Define the action syntax step, specify the parameters that are passed when the action is executed. The syntax must
evaluate to a string. Click Next.

7. In the Finish step, specify the action name. Click Finish.

8. To save the action, in Virtual Cube Editor, on the File menu, click Save.

See Also

Creating an Action in a Virtual Cube

How to test an action

Analysis Services (SQL Server 2000)

How to test an action
To test an action in a processed regular or virtual cube

1. In the Analysis Manager tree pane, right-click the cube, and then click Edit or Browse Data. If you click Edit, select the Data
tab in the editor.

2. If the target object such as a dimension is not visible in the data viewing pane as a column or row heading, drag it from the
data slicing pane down to the data viewing pane.

3. In the data viewing pane, right-click the grid element that corresponds to the action's target object.

For the cube, right-click outside the grid area to select.

If the target is members of a dimension, right-click any member cell that is beneath the row or column heading
corresponding to the highest level of the dimension.

If the target is a dimension object, right-click the column or row heading for the dimension's highest level to select the
dimension.

If the target is members of a level, right-click any member cell that is beneath the row or column heading
corresponding to the level name.

If the target is a level object, right-click the column or row heading for the level.

If the target is cells in the cube, right-click any data cell in the grid.

4. Point to the action to launch it.

Note Actions based on named sets are not executable within Cube Browser, Cube Editor, or Virtual Cube Editor. They are,
however, executable within custom applications built in a Component Object Model (COM) Automation language, such as
Microsoft®Visual Basic®, that references Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) or in Microsoft
Visual C++® using COM interfaces provided by the Microsoft SQL Server™ 2000 Analysis Services libraries.

See Also

Actions

Creating Actions

Cube Browser

Data Tab (Cube Editor Data View)

PivotTable Service

Analysis Services (SQL Server 2000)

How to write-enable a cube
To write-enable a cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, and then click Write-enable.

3. In the Write-enable dialog box, in the Table name box, type a name for the writeback table.

4. In the Data source box, select a data source name. To specify a new data source, follow these steps:
a. Click New.

b. In the Data Link Properties dialog box, specify the new data source, and then click OK. For more information, see
Specifying Data Sources.

5. In the Write-enable dialog box, click OK.

See Also

Write-Enabling a Cube

Analysis Services (SQL Server 2000)

How to browse writeback data for a cube
To browse writeback data for a cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, point to Writeback Options, and then click Browse Writeback Data.

See Also

Browsing Writeback Data

Analysis Services (SQL Server 2000)

How to delete writeback data for a cube and write-disable it
To delete writeback data for a cube and write-disable it

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, point to Writeback Options, and then click Disable Writeback.

3. In the Confirm Writeback Disable dialog box, click Yes.

See Also

Deleting Writeback Data and Write-Disabling a Cube

Analysis Services (SQL Server 2000)

How to convert a cube's writeback data to a partition and
write-disable the cube
To convert a cube's writeback data to a partition and write-disable the cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, point to Writeback Options, and then click Convert to Partition.

3. In the Convert to Partition dialog box, in the Partition name box, type a name for the partition.

4. Select an aggregation design option:

To design aggregations using the Storage Design Wizard, click Design the aggregations for your partition now.
For more information, see Designing Storage Options and Aggregations.

To defer aggregation design, click Design the aggregations later.

To copy the aggregation design of an existing partition, click Copy the aggregation design from an existing
partition and select the partition name from the Copy from list. If in the future you might merge the new partition
with another, copy the aggregation design of the other partition. Merged partitions must have the same aggregation
design.

5. To specify a filter (WHERE clause expression) that limits the data selected from the writeback table and added to the
partition, click Advanced. For more information, see Partition Filters and Incremental Update Filters.

6. To process the new partition, select the Process the partition when finished check box. Depending on the size of the
writeback table, processing may take considerable time.

See Also

Converting Writeback Data to a Partition

Analysis Services (SQL Server 2000)

How to specify drillthrough options for a regular cube
To specify drillthrough options for a regular cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, and then click Edit.

3. On the Tools menu, click Drillthrough Options. (If this option is not available, the cube structure is not valid. You can try to
determine the problem by clicking Validate Cube Structure on the Tools menu.)

4. In the Drillthrough Options dialog box, perform one of the following actions:

To enable drillthrough, select the Enable drillthrough check box.

To disable drillthrough, clear the Enable drillthrough check box. Go to Step 7.

5. In the Columns tab, select the columns to be displayed when drillthrough is executed.

Important If you select a column to which a cube role is denied access and then grant the cube role the ability to drill
through, you create a security exposure. (You can deny access to a column by using dimension security or cell security. For
more information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they access
the denied column.

6. (Optional.) In the Filter tab, specify a filter (WHERE clause expression) to limit the result set returned by drillthrough. Do not
include the keyword WHERE. For example, to limit the result set to fourth-quarter data, specify:

"shipment_facts"."quarter"=4

For more information, see Drillthrough Filters.

7. Click OK.

8. In Cube Editor, on the File menu, click Save.

See Also

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

How to specify drillthrough options for a virtual cube
 New Information - SQL Server 2000 SP3.

To specify drillthrough options for a virtual cube

1. In the Analysis Manager tree pane, under the database that contains the virtual cube, expand the Cubes folder.

2. Right-click one of the source cubes of the virtual cube, and then click Edit.

3. On the Tools menu, click Drillthrough Options. (If this command is not available, the cube structure is not valid. You can
determine the problem by clicking Validate Cube Structure on the Tools menu.)

4. In the Drillthrough Options dialog box, ensure that the Enable drillthrough check box is selected. Drillthrough must be
enabled on the source cube before you can enable drillthrough for the virtual cube.

5. In the Columns tab, select the columns to be displayed when drillthrough is executed.

Important If you select a column to which a cube role is denied access and then grant the cube role the ability to drill
through, you create a security exposure. (You can deny access to a column by using dimension security or cell security. For
more information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they access
the denied column.

6. (Optional.) In the Filter tab, specify a filter (WHERE clause expression) to limit the result set returned by drillthrough. Do not
include the keyword WHERE. For example, to limit the result set to fourth-quarter data, specify:

"shipment_facts"."quarter"=4

For more information, see Drillthrough Filters.

7. Click OK.

8. In Cube Editor, on the File menu, click Save.

9. (Optional.) If there is more than one source cube, select the name of the next source cube from the Cube box within Cube
Editor. Repeat Steps 3 through 9 as necessary for each source cube.

10. Exit Cube Editor.

11. In the Analysis Manager tree pane, right-click the virtual cube for which you want to enable drillthrough and click Edit. If the
properties pane is not expanded in Virtual Cube Editor, expand it by clicking Properties beneath the tree pane.

12. Click the Advanced tab of the properties pane, and then click the value next to the Enable Drillthrough property.

13. Click True to enable drillthrough for the virtual cube.

14. In Virtual Cube Editor, on the File menu, click Save.

See Also

Cube Role Manager

Database Role Manager

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

How to specify drillthrough options for a linked cube
 New Information - SQL Server 2000 SP3.

To specify drillthrough options for a linked cube based on a regular cube

1. On the publishing server hosting the source cube of the linked cube, in the Analysis Manager tree pane, under the database
that contains the source cube, expand the Cubes folder.

2. Right-click the source cube, and then click Edit.

3. On the Tools menu, click Drillthrough Options. (If this command is not available, the cube structure is not valid. You can
try to determine the problem by clicking Validate Cube Structure on the Tools menu.)

4. In the Drillthrough Options dialog box, perform one of the following actions:

To enable drillthrough, select the Enable drillthrough check box. Go to Step 5.

To disable drillthrough, clear the Enable drillthrough check box. Go to Step 7.

5. In the Columns tab, select the columns to be displayed when the end user attempts to drill through from the linked cube on
the subscribing server.

Important If you select a column to which a cube role is denied access and then grant the cube role the ability to drill
through, you create a security exposure. (You can deny access to a column by using dimension security or cell security. For
more information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they access
the denied column.

6. (Optional.) In the Filter tab, specify a filter (WHERE clause expression) to limit the result set returned by drillthrough. Do not
include the keyword WHERE. For example, to limit the result set to fourth-quarter data, specify:

"shipment_facts"."quarter"=4

For more information, see Drillthrough Filters.

7. Click OK.

8. In Cube Editor, on the File menu, click Save.

9. (Optional.) On the subscribing server, browse the linked cube from Analysis Manager to test the drillthrough settings for the
linked cube.

To specify drillthrough options for a linked cube based on a virtual cube

1. On the publishing server hosting the virtual cube that is the source cube of the linked cube, in the Analysis Manager tree
pane, under the database that contains the virtual cube, expand the Cubes folder.

2. Right-click a source cube of the virtual cube, and then click Edit.

3. On the Tools menu, click Drillthrough Options. (If this command is not available, the cube structure is not valid. You can
determine the problem by clicking Validate Cube Structure on the Tools menu.)

4. In the Drillthrough Options dialog box, select the Enable drillthrough check box.

5. In the Columns tab, select the columns to be displayed when the end user drills through the linked cube on the subscribing
server.

Important If you select a column to which a cube role is denied access and then grant the cube role the ability to drill
through, you create a security exposure. (You can deny access to a column by using dimension security or cell security. For
more information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they access
the denied column.

6. (Optional.) In the Filter tab, specify a filter (WHERE clause expression) to limit the result set returned by drillthrough. Do not
include the keyword WHERE. For example, to limit the result set to fourth-quarter data, specify:

"shipment_facts"."quarter"=4

For more information, see Drillthrough Filters.

7. Click OK.

8. In Cube Editor, on the File menu, click Save.

9. (Optional.) If there is more than one source cube on the publishing server, select the name of the next source cube from the
Cube box within Cube Editor. Repeat Steps 3 through 9 as necessary for each source cube.

10. Close Cube Editor.

11. On the publishing server in the Analysis Manager tree pane, right-click the virtual cube that is the source cube for the linked
cube to enable drillthrough, and then click Edit.

12. If the properties pane is not expanded in Virtual Cube Editor, expand it by clicking Properties beneath the tree pane.

13. Click the Advanced tab of the properties pane, and then click the value next to the Enable Drillthrough property.

14. Click True to enable drillthrough for the virtual cube.

15. In Virtual Cube Editor, on the File menu, click Save.

16. (Optional.) On the subscribing server, browse the linked cube from Analysis Manager to test the drillthrough settings for the
linked cube.

Analysis Services (SQL Server 2000)

How to specify drillthrough options for a partition
To specify drillthrough options for a partition

1. In the Analysis Manager tree pane, under the cube that contains the partition, expand the Partitions folder.

2. Right-click the partition, and then click Edit.

3. Advance to the Finish step of the Partition Wizard, and then click Advanced.

4. In the Advanced Settings dialog box, click Drillthrough.

5. In the Columns tab, select the columns to be displayed when drillthrough is executed.

Important If you select a column to which a cube role is denied access and then grant the cube role the ability to drill
through, you create a security exposure. (You can deny access to a column by using dimension security or cell security. For
more information, see Dimension Security and Cell Security.) When the end users in the cube role drill through, they access
the denied column.

6. (Optional.) In the Filter tab, specify a filter (WHERE clause expression) to limit the result set returned by drillthrough. Do not
include the keyword WHERE. For example, to limit the result set to fourth quarter data, specify:

"shipment_facts"."quarter"=4

For more information, see Drillthrough Filters.

7. Click OK.

8. In the Advanced Settings dialog box, click OK.

9. In the Partition Wizard, click Finish.

See Also

Specifying Drillthrough Options

Analysis Services (SQL Server 2000)

Updating Cubes and Dimensions
The following topics describe procedures for updating cubes and dimensions:

How to incrementally update a cube

How to refresh data in a cube

How to incrementally update a shared dimension

How to rebuild the structure of a shared dimension

See Also

Processing Cubes

Updating Cubes and Dimensions

Analysis Services (SQL Server 2000)

How to incrementally update a cube
To incrementally update a cube

Caution This procedure updates a partition. Incorrect use of partitions can result in inaccurate cube data. For more information,
see Managing Partitions.

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, and then click Process.

3. In the Process a Cube dialog box, click Incremental update.

4. (Optional.) To incrementally update shared dimensions contained in the cube during processing, select Incrementally
update the shared dimensions used in this cube.

5. Click OK to display the Incremental Update Wizard.

6. In the Incremental Update Wizard:
a. In the Welcome step, click Next.

b. If the cube contains multiple partitions, the Select a partition to update step appears. In the Partition box, select the
partition to update, and then click Next.

c. In the Data source box, select the data source that contains the data to add to the partition. You can select the same
data source used by the partition or a different one. By default the same data source used by the partition is initially
displayed. To select a different data source, click Change, select the data source, and then click OK. If you select a
different data source, it must contain a fact table with the same structure and columns as the fact table for the
partition, and it must contain dimension tables with the same structure and columns as the partition's dimension
tables.

d. In the Fact table box, select the table that contains the data to add to the partition. You can select the partition's fact
table or a different table. By default the partition's fact table is initially displayed. If you select this table, you must use a
filter, as described in the next step, to ensure that only data not already in the partition is added. To select a different
table, click Change, select the table, and then click OK. If you select a different table, it must have the same structure
and columns as the fact table for the partition. You must also manually merge the table with the fact table for the
partition after the incremental update completes. For more information, see Fact Table Considerations When Merging
Partitions. Click Next.

e. Specify a filter (WHERE clause expression) to limit the data selected from the fact table and added to the partition. A
filter is required if you select the fact table for the partition as the fact table for the incremental update (that is, if you
select the default fact table). For more information, see Partition Filters and Incremental Update Filters. Click Next.

f. Click Finish.
7. In the Process dialog box, wait for the incremental update to finish processing, or click Stop to halt and cancel processing.

See Also

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

How to refresh data in a cube
To refresh data in a cube

1. In the Analysis Manager tree pane, under the database that contains the cube, expand the Cubes folder.

2. Right-click the cube, and then click Process.

3. In the Process a Cube dialog box, click Refresh data.

4. (Optional.) To incrementally update shared dimensions contained in the cube during processing, select Incrementally
update the shared dimensions used in this cube.

5. Click OK.

6. In the Process dialog box, wait for the data refresh to finish processing, or click Stop to halt and cancel processing.

See Also

Updating and Refreshing Cube Data

Analysis Services (SQL Server 2000)

How to incrementally update a shared dimension
To incrementally update a shared dimension

1. In the Analysis Manager tree pane, under the database that contains the shared dimension, expand the Shared Dimensions
folder.

2. Right-click the shared dimension, and then click Process.

3. In the Process a Dimension dialog box, click Incremental update, and then click OK.

4. In the Process dialog box, wait for the incremental update to finish processing or click Stop to halt and cancel processing.

See Also

Updating and Rebuilding Shared Dimensions

Analysis Services (SQL Server 2000)

How to rebuild the structure of a shared dimension
To rebuild the structure of a shared dimension

1. In the Analysis Manager tree pane, under the database that contains the shared dimension, expand the Shared Dimensions
folder.

2. Right-click the shared dimension, and then click Process.

3. In the Process a Dimension dialog box, click Rebuild the dimension structure, and then click OK.

4. In the Process dialog box, wait for the rebuild to finish processing or click Stop to halt and cancel processing.

After you process a shared dimension using the Rebuild the dimension structure option, you must process all of the cubes that
include the dimension. For more information, see Processing Cubes.

See Also

Updating and Rebuilding Shared Dimensions

Analysis Services (SQL Server 2000)

Managing Data Mining Models
The following topic describes procedures for managing data mining models:

How to start the Mining Model Wizard

How to start Relational Mining Model Editor

How to start OLAP Mining Model Editor

How to process a data mining model

How to start Mining Model Role Manager

How to add a role to a data mining model

See Also

Mining Model Wizard

Relational Mining Model Editor

OLAP Mining Model Editor

Mining Model Role Manager

Analysis Services (SQL Server 2000)

How to start the Mining Model Wizard
To start the Mining Model Wizard

In the Analysis Manager tree pane, under the database in which you want to create a data mining model, right-click the
Mining Models folder, and then click New Mining Model.

After you complete the Mining Model Wizard, Relational Mining Model Editor or OLAP Mining Model Editor will appear,
depending on whether you created a relational data mining model or an OLAP data mining model, respectively.

See Also

Mining Model Wizard

Relational Mining Model Editor

OLAP Mining Model Editor

Analysis Services (SQL Server 2000)

How to start Relational Mining Model Editor
To start Relational Mining Model Editor

1. In the Analysis Manager tree pane, under the database in which you have a relational data mining model, expand the Mining
Models folder.

2. Right-click the relational data mining model to be edited, and then click Edit.

Note If the structure of a relational data mining model is altered, the mining model must be processed before the mining
model content can be viewed.

See Also

Relational Mining Model Editor

Analysis Services (SQL Server 2000)

How to start OLAP Mining Model Editor
To start OLAP Mining Model Editor

1. In the Analysis Manager tree pane, under the database in which you have an OLAP data mining model, expand the Mining
Models folder.

2. Right-click the OLAP data mining model to be edited, and then click Edit.

Note If the structure of an OLAP data mining model is altered, the mining model must be processed before the mining
model content can be viewed.

See Also

OLAP Mining Model Editor

Analysis Services (SQL Server 2000)

How to process a data mining model
To process a data mining model from Analysis Manager

1. In the Analysis Manager tree pane, under the database in which you have a relational or OLAP data mining model, expand
the Mining Models folder.

2. Right-click the relational or OLAP data mining model to be processed, and then click Process.

To process a data mining model from Relational Mining Model Editor

1. In the Analysis Manager tree pane, under the database in which you have a relational data mining model, expand the Mining
Models folder.

2. Right-click the relational data mining model to be edited, and then click Edit.

3. In Relational Mining Model Editor, click the Tools menu, then click Process Mining Model.

To process a data mining model from OLAP Mining Model Editor

1. In the Analysis Manager tree pane, under the database in which you have an OLAP data mining model, expand the Mining
Models folder.

2. Right-click the OLAP data mining model to be edited, and then click Edit.

3. In OLAP Mining Model Editor, click the Tools menu, then click Process Mining Model.

See Also

Relational Mining Model Editor

OLAP Mining Model Editor

Process a Mining Model Dialog Box

Analysis Services (SQL Server 2000)

How to start Mining Model Role Manager
To start Mining Model Role Manager

1. In the Analysis Manager tree pane, under the database in which you have a relational or OLAP data mining model, expand
the Mining Models folder.

2. Right-click the relational or OLAP data mining model to be processed, and then click Manage Roles.

See Also

Mining Model Role Manager

Analysis Services (SQL Server 2000)

How to add a role to a data mining model
To add an existing role to a data mining model

1. In the Analysis Manager tree pane, under the database in which you have a relational or OLAP data mining model, expand
the Mining Models folder.

2. Right-click the relational or OLAP data mining model to be processed, and then click Manage Roles.

3. Select the check box next to the name of the role to be added.

4. Click OK.

To add a new role to a data mining model

1. In the Analysis Manager tree pane, under the database in which you have a relational or OLAP data mining model, expand
the Mining Models folder.

2. Right-click the relational or OLAP data mining model to be processed, and then click Manage Roles.

3. Click New to display the Create a Mining Model Role dialog box.

4. In the Role Name box, type the name of the new role.

5. (Optional.) In the Description box, type a description of the new role.

6. On the Membership tab, click Add to display the Add Users and Groups dialog box, where you can add users and groups
to the new role.

7. Click OK to return to Mining Model Role Manager.

8. Click OK.

Important Any changes made to a data mining model role will propagate to the corresponding database role.

See Also

Mining Model Role Manager

Mining Model Role Dialog Box

Analysis Services (SQL Server 2000)

Archiving, Restoring, and Copying Data
The following topics describe procedures for archiving, restoring, and copying data:

How to archive an Analysis Services database using Analysis Manager

How to archive an Analysis Services database using the msmdarch command

How to restore an Analysis Services database using Analysis Manager

How to restore an Analysis Services database using the msmdarch command

How to copy and paste an object

See Also

Archiving, Restoring, and Copying Data

Analysis Services (SQL Server 2000)

How to archive an Analysis Services database using Analysis
Manager
To archive a Microsoft® SQL Server™ 2000 Analysis Services database using Analysis Manager

1. In the Analysis Manager tree pane, right-click the database, and then click Archive Database.

2. In the Archive Database dialog box:
a. In the Save in box, specify a file name and path for the archive file.

b. In the Temp Folder box, specify a folder in which temporary files can be created during the archive process.

c. If you are archiving a database on a remote server, the Remote Path box is present. Specify the path of the Data
directory containing the files for the database.

d. Click Archive.
3. In the Archive Database Progress dialog box, monitor the progress of the archive process. You can cancel the archive

process after it has begun. You can also save the archive log.

See Also

Archiving an Analysis Services Database

Analysis Services (SQL Server 2000)

How to archive an Analysis Services database using the
msmdarch command
To archive a Microsoft® SQL Server™ 2000 Analysis Services database using the msmdarch command

1. Open a command prompt.

2. (Optional.) Use the cd command to access the directory containing the msmdarch.exe file. By default, this file is at the
following location:

C:\Program Files\Microsoft Analysis Services\Bin

3. Type a valid msmdarch command with the /a switch. The full syntax and an example are shown later in this topic.

4. Press ENTER.

Note You can use the /? switch to display a help window that shows the syntax of the switches.

Syntax

["command-path]msmdarch["] /a Server "OLAPDataPath" "DatabaseName" "BackupFileName" ["LogFileName"
["TempDirectory"]]

command-path

The path containing the msmdarch.exe file. By default, this path is:

C:\Program Files\Microsoft Analysis Services\Bin

Server

The server computer name that contains the database you want to archive.

OLAPDataPath

The path of the Data directory that contains the files for the database you want to archive. By default, this path is:

C:\Program Files\Microsoft Analysis Services\Data

DatabaseName

The name of the database you want to archive.

BackupFileName

The path, file name, and .cab extension of the archive file.

LogFileName

The path, file name, and .log extension of the archive log. If you specify an archive log that already exists, the new archive log is
appended to it. If you specify an invalid path or file name, the archive log is written to the DBArchive.log file, which by default is
C:\Program Files\Microsoft Analysis Services\Bin\DBArchive.log.

TempDirectory

The specified path of the temporary directory used for processing space. This option must be specified if LogFileName is specified.

Example

The following command archives the sample FoodMart 2000 database included in Analysis Services.

"\Program Files\Microsoft Analysis Services\Bin\msmdarch" /a myserver
"\Program Files\Microsoft Analysis Services\Data\" "FoodMart 2000"
"\My archives\server myserver\FoodMart 2000.cab"

See Also

Archiving an Analysis Services Database

Analysis Services (SQL Server 2000)

How to restore an Analysis Services database using Analysis
Manager
To restore a Microsoft® SQL Server™ 2000 Analysis Services database using Analysis Manager

1. In the Analysis Manager tree pane, right-click the server to which you want to restore the database, and then click Restore
Database.

2. If you are restoring a database on a remote server, the Remote Server Data Directory dialog box appears. Specify the
path of the Data directory to which the database will be restored. This directory will contain the files for the database after
the restoration is complete. Click OK.

3. In the Open Archive File dialog box, specify the path and file name of the archive file, and then click Open.

4. In the Restore Database dialog box, click Restore.

5. In the Restore Database Progress dialog box, monitor the progress of the restoration. You can cancel the restoration after
it has begun. You can also save the restore log.

See Also

Restoring an Analysis Services Database

Analysis Services (SQL Server 2000)

How to restore an Analysis Services database using the
msmdarch command
To restore a Microsoft® SQL Server™ 2000 Analysis Services database using the msmdarch command

1. Open a command prompt.

2. (Optional.) Use the cd command to access the directory containing the msmdarch.exe file. By default, this file is at the
following location:

C:\Program Files\Microsoft Analysis Services\Bin

3. Type a valid msmdarch command with the /r or /rs switch. The full syntax and an example are shown later in this topic.

4. Press ENTER.

Note You can use the /? switch to display a Help window that shows the syntax of the switches.

Syntax

["command-path]msmdarch["] switch Server "OLAPDataPath" "BackupFileName" ["LogFileName" ["TempDirectory"]]

command-path

(Optional.) The path containing the msmdarch.exe file. By default, this path is:

C:\Program Files\Microsoft Analysis Services\Bin

switch

Specifies the option to be used when executing the command. The /r switch is used to specify a regular restoration, which will
overwrite the database if it exists. The /rs switch is used to restore the database from the archive file only if the database does not
exist already.

Server

The server computer name to which you want to restore the database.

OLAPDataPath

The path of the Data directory that will contain the files for the database after the restoration is complete. By default, this path is:

C:\Program Files\Microsoft Analysis Services\Data

BackupFileName

The path, file name, and .cab extension of the archive file.

LogFileName

The path, file name, and .log extension of the restore log. If you specify a restore log that already exists, the new restore log is
appended to it. If you specify an invalid path or file name, the restore log is written to the DBRestore.log file, which by default is
C:\Program Files\Microsoft Analysis Services\Bin\DBRestore.log.

TempDirectory

The specified path of the temporary directory used for processing space. This option must be specified if LogFileName is specified.

Example

The following command restores the sample FoodMart 2000 database included in Analysis Services.

"\Program Files\Microsoft Analysis Services\Bin\msmdarch" /r myserver
"\Program Files\Microsoft Analysis Services\Data\"
"\My archives\server myserver\FoodMart 2000.cab"

See Also

Restoring an Analysis Services Database

Analysis Services (SQL Server 2000)

How to copy and paste an object
To copy and paste an object

1. In the Analysis Manager tree pane, right-click the object, and then click Copy.

2. Right-click the target location for the new object, and then click Paste.

Copy is not available for all object types. Paste is not available if you select a target location that is invalid for the object type you
have copied.

See Also

Copying and Pasting Objects

Analysis Services (SQL Server 2000)

Analyzing and Optimizing Performance
The following topics describe procedures for analyzing and optimizing performance:

How to start the Usage Analysis Wizard

How to start the Usage-Based Optimization Wizard

See Also

Analyzing and Optimizing Performance

Analysis Services (SQL Server 2000)

How to start the Usage Analysis Wizard
To start the Usage Analysis Wizard

1. In the Analysis Manager tree pane, under the database that contains the cube you want to analyze, expand the Cubes folder.

2. Right-click the cube you want to analyze, and then click Usage Analysis.

See Also

Analyzing Usage Patterns

Analysis Services (SQL Server 2000)

How to start the Usage-Based Optimization Wizard
To start the Usage-Based Optimization Wizard

1. In the Analysis Manager tree pane, under the database that contains the cube you want to optimize, expand the Cubes
folder.

2. Right-click the cube you want to optimize, and then click Usage-Based Optimization.

See Also

Optimizing Performance Based on Usage

Analysis Services (SQL Server 2000)

Automating and Scheduling Administrative Tasks
The following topics describe procedures for automating and scheduling administrative tasks:

How to create an Analysis Services Processing task

How to create a Relational Data Mining Prediction Query task

See Also

Automating and Scheduling Administrative Tasks

Analysis Services (SQL Server 2000)

How to create an Analysis Services Processing task
To create an Analysis Services Processing task

1. Open DTS Designer:
a. On your desktop click Start, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

b. In the console tree, expand the server on which you want to create the Data Transformation Services (DTS) package
that will contain the Analysis Services Processing task.

c. Right-click the Data Transformation Services folder, and then click New Package.
2. In DTS Designer, from the Task toolbar, drag the icon for the Analysis Services Processing task onto the design sheet. This

icon appears here.

3. (Optional.) In the Analysis Services Processing Task dialog box, in the Description box, type a task description.

4. (Optional.) To limit the tree to objects on the local Analysis server and set the task to process an object or objects on the
server computer where the package is stored, select Local server. If you select this option, you can later migrate the
package to another server computer and execute it to process an object or objects on that server computer. This processing
requires that the other server computer stores the processed objects' meta data and has access to their data sources. Meta
data can be copied easily from one server to another by using the Copy and Paste commands in the Analysis Manager tree
pane.

5. In the Analysis Services Processing Task dialog box, expand the server tree, and then select the object or folder to
process.

6. Select a processing option. Selecting an option determines the value of the ProcessOption property, which is used in
Microsoft® ActiveX® Script tasks to modify processing options in Analysis Services Processing tasks.

For more information about processing options, see Processing Cubes and Dimension Processing. For more information
about valid values of the ProcessOption property, see Changing Properties of an Analysis Services Processing Task.

7. If you selected the Incremental update option for a partition or single-partition cube, you can:

Change the data source and fact table used for the incremental update. Click the edit (...) button beside the Fact table
box and use the Choose a Fact Table dialog box.

Specify a filter to limit the fact table records used in the incremental update. Click the edit (...) button beside the Filter
box and use the Filter Expression dialog box.

Note You must specify a filter if you select the default fact table. Otherwise, the cube or partition will contain duplicate, and
therefore inaccurate, data.

If you change the fact table, the new fact table must have the same structure and columns as the default fact table. You must
also merge the new fact table with the default fact table after the incremental update is complete. For more information, see
Fact Table Considerations When Merging Partitions.

8. Click OK to finish creating the task. To save the task in a DTS package in DTS Designer, on the Package menu, click Save.
For information about the different ways you can save your package, see Saving a DTS Package.

See Also

ActiveX Script Task

Creating a Package with DTS Designer

Creating an Analysis Services Processing Task

Save DTS Package

Analysis Services (SQL Server 2000)

How to create a Relational Data Mining Prediction Query task
To create a Relational Data Mining Prediction Query task

1. Start DTS Designer:
a. On your desktop click Start, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

b. In the console tree, expand the server on which you want to create the package that will contain the Data Mining
Prediction Query task.

c. Right-click the Data Transformation Services folder, and then click New Package.
2. In DTS Designer, from the Task tool palette, drag the icon for the Data Mining Prediction Query task onto the DTS Designer

design sheet. This icon appears here.

3. (Optional.) In the Data Mining Prediction Query Task dialog box, in the Name box, type a new name to replace the
default name for the task.

4. (Optional.) In the Description box, type a task description. This description is used to identify the task in DTS Designer.

5. In the Server box, type the name of the Analysis server that contains the data mining model to be used as the source for the
prediction query. The server name is the same as the computer name on the network. Do not use UNC or network paths.

6. From the Database list, select the database that contains the mining model to be queried.

7. If the mining model you want to use for the prediction query is not already highlighted in the Mining Models box, select a
mining model from the box by clicking its name or icon. You can view some of the properties of the mining model in the
Details box.

8. Click the Query tab, and then in the Input data source box, either type a valid ActiveX® Data Objects (ADO) connection
string to the case table containing the input and predictable columns for the query, or click the edit (...) button to display the
Data Link Properties dialog box, where you can build the connection string.

In the Prediction query box, type the syntax, or click New Query to display Prediction Query Builder. The prediction query
syntax must conform to the OLE DB for Data Mining specification. For more information about the OLE DB for Data Mining
specification, see the Microsoft OLE DB Web page at the Microsoft Web site.

9. (Optional.) In the Output table box, type a new name for the output table to replace the default name.

10. Click OK to finish creating the task. To save the task in a DTS package in DTS Designer, on the Package menu, click Save.
For information about the different ways you can save your package, see Saving a DTS Package.

See Also

ActiveX Script Task

Creating a Package with DTS Designer

Save DTS Package

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

English Query (SQL Server 2000)

English Query Overview
The English Query documentation contains these principal sections.

Section Description
English Query Tutorials Provides step-by-step instructions for creating and

building English Query models. The tutorials are
available from the English Query Start menu or
from the Microsoft® Visual Studio® Help menu
when an English Query project is opened. It is
recommended that you complete the tutorials prior
to developing your own English Query application.

What's New in English Query Describes the new features in English Query.
English Query Fundamentals Provides a basic description of English Query.
Developing and Deploying
English Query Applications

Provides information about English Query models
and command relationships, database
normalization requirements, updating, replacing,
testing and compiling models, and deploying the
application to the Web.

Sample Applications and Client
Interfaces

Describes where you can locate the sample
applications included with English Query.

Analysis Services in English
Query

Describes integrating Microsoft SQL Server™ 2000
Analysis Services with English Query.

Object Model Reference Describes the Authoring, Engine, and Question
Builder object models.

How To Provides step-by-step instructions for tasks you can
accomplish using English Query.

English Query User Interface
Help Reference

Describes the shortcut keys, wizards, editors and
windows, dialog boxes, icons, and buttons used in
English Query.

English Query (SQL Server 2000)

What's New in English Query
This section describes new features in English Query.

English Query Features Introduced in This Version

This version of English Query contains these new features:

Visual Studio Integration

The English Query authoring tool is now integrated into the familiar Microsoft® Visual Studio® version 6.0 development
environment.

Graphical Authoring

A diagramming tool is provided that displays the entities and relationships in the English Query model you are creating. You can
also drag entities onto one another to automatically create relationships between them.

SQL Project Wizard

You can use the SQL Project Wizard to automatically create entities and relationships for all tables in the database. For each entity,
it automatically builds name and trait relationships, plus other relationships, resulting in automatic creation of the majority of the
entities and relationships needed in a model.

Analysis Services Integration (formerly OLAP Services) and OLAP Project Wizard

The OLAP Project Wizard provides an even higher percentage of automatic entity and relationship creation for OLAP databases.
When connected to Microsoft® SQL Server™ 2000 Analysis Services and a model authored for an OLAP cube, Multidimensional
Expressions (MDX), rather than SQL, are generated.

Semantic Modeling Format (SMF) and Authoring Object Model

SMF is an XML-based language that is used for persisting English Query model information (entities and relationships and their
ties to the database). Combined with SMF, the Authoring object model provides programmatic authoring of English Query
models.

New Regression Features

Regression test output can now be promoted to serve as the new regression text file.

Structured results output can be used as input to other tools.

Full-Text Query Support

This version integrates the SQL Server full-text feature, which allows the searching of both structured and unstructured textual
data within English Query applications.

Two-Click Deployment

You can deploy an English Query application to the Web simply by clicking twice and selecting several commands from the
Project menu.

Enhanced Authoring by Example

During the testing process, you can see suggested entities and phrasings that need to be defined to answer questions. The new
version provides multiple suggestions and simplifies the clarification process by providing a single form in which you can work.

Oracle Database Support

English Query can generate SQL for Oracle.

Graphical Question Builder

A querying interface is now provided for the end user of English Query applications. Question Builder uses the English Query
model behind the application to provide easy question building and quick answers from the database. End users can drag entities
onto other entities to display all available relationships.

English Query (SQL Server 2000)

Installation Requirements and Considerations
Installation of English Query requires the following:

Microsoft® Windows® 95, Windows 98, Microsoft Windows NT® version 4.0 (Service Pack 6 or later), or Windows 2000.

40 MB of free disk space.

Microsoft Internet Explorer version 5.0 or later (build 2615 or later is required for the display of large models and other user
interface elements if running on a Windows 98 system).

Note Internet Explorer version 5.5 may affect how topics appear when they are printed.

Before installing English Query, consider the following:

English Query and Windows 2000 logo requirements.

Because English Query appears within Microsoft Visual Studio® version 6.0, which is not compliant, English Query does not
meet Windows 2000 logo requirements.

English Query documentation.

All of the documentation for English Query is available in the HTMLHelp file Eqdoc.chm and the tutorial Eqtut.chm, which
can be accessed from the English Query Help menu or from the English Query program group. If English Query is the only
Visual Studio product you have installed, you must install MSDN® to access Visual Studio Help.

If English Query has been installed with Microsoft SQL Server™ 2000, the Help system will access SQL Server Books Online,
SQL80.col, instead of English Query Books Online, Eqdoc.chm. However, both documentation files contain essentially the
same material and both provide context-sensitive (F1) Help for English Query. Regardless of the installation scenario,
English Query Books Online is called from the English Query program group.

English Query 2000 is compiled with XML 2.0, whereas SQL Server 2000 uses XML 2.6. To prevent compilation errors, select
XML 2.0 in the References section of your English Query project.

OLAP Services version 7.0 must not be running during installation.

Installing English Query 2000 when the SQL Server 7.0 OLAP Services service is running may break connectivity to the local
OLAP Client. This issue does not occur when SQL Server 2000 Analysis Services is running.

If you are running OLAP Services 7.0, OLAP Manager must not be running during installation.

If OLAP Manager is running, English Query Setup cannot copy the files needed for English Query OLAP support. Quit OLAP
Manager before running English Query Setup.

Uninstalling English Query breaks SQL Server 7.0 OLAP Services and vice versa.

If you have installed SQL Server 7.0 OLAP Services, and you uninstall English Query, you must reinstall OLAP Services.
Conversely, if you have installed English Query and you uninstall SQL Server 7.0 OLAP Services, you must reinstall English
Query to maintain OLAP connectivity. This issue does not occur with Analysis Services.

Microsoft Internet Information Services (IIS) must not be running with an English Query application during installation.

If using English Query in a Web page, shut down IIS by running net stop iisadmin before installing English Query.

Microsoft Visual Basic® and Microsoft Visual C++® sample applications use either the Microsoft PivotTable® or Microsoft
FlexGrid Control version 6.0 to connect to a Analysis Services server.

The Visual Basic and Visual C++ sample applications use either the PivotTable or the FlexGrid control to display the results
of Multidimensional Expressions (MDX) queries. At run-time, the sample application detects which of the following
dynamic-link libraries (DLLs) or Microsoft ActiveX® controls are installed on your computer. The sample applications can
display the results of MDX queries in a PivotTable using an MDX wrapper.

PivotTable

To display the query results in a PivotTable, you must have the following files registered on your computer.

File Description

Msowc.dll This DLL contains the PivotTable control and is installed
with Microsoft Office 2000.

Owcmdx.dll This DLL contains the MDX wrapper and is installed with
English Query.

FlexGrid Control

If the PivotTable control is not installed on your computer, the sample applications use the FlexGrid Control 6.0 and
ActiveX Data Objects (multidimensional) (ADO MD) version 2.5 to display the query results.

To display the query results using the FlexGrid control, you must have the following files registered on your
computer.

File Description
Msflxgrd.ocx This file contains the FlexGrid control.
Msadomd.dll This DLL is required to use ADO MD 2.5.

The authoring tool shows the splash screen for Microsoft Visual InterDev® and Microsoft Visual J++®.

The English Query authoring tool is integrated within the Visual Studio common shell, which also includes Visual InterDev
and Visual J++. The splash screens for these products may also appear at startup.

See Also

English Query Usage Issues

English Query (SQL Server 2000)

English Query Fundamentals
Using English Query, you can turn your relational databases into English Query applications, which allow end users to pose
questions in English instead of forming a query with an SQL statement.

The English Query Model Editor appears within the Microsoft® Visual Studio® version 6.0 development environment. From
there, you can choose one of the English Query project wizards, the SQL Project Wizard or the OLAP Project Wizard, to
automatically create an English Query project and model. After the basic model is created, you can refine, test, and compile it into
an English Query application (*.eqd), and then deploy it (for example, to the Web).

English Query (SQL Server 2000)

SQL Database Normalization Rules
SQL-based English Query applications work best with normalized databases. In general, it is easiest to create English Query
applications against normalized SQL databases. In addition, the resulting applications are more flexible and powerful than those
developed against databases that are not normalized.

This topic describes normalization rules as they pertain to English Query SQL applications. It describes problematic database
structures that break these rules and how to solve these problems by creating views in Microsoft® SQL Server™, which can be
used in English Query just like any other table.

Rule 1: There should be a one-to-one relationship between the instances of an entity and the rows of the table.

For every table that represents an entity, each and every row in that table should represent one and only one instance of that
entity. Conversely, each and every instance of that entity should be represented by one and only one row in the table.

In this situation, this rule is not met:

Table: Employees
Fields: Emp_id, Emp_name, Status, Position, Salary
Keys: Emp_id, Status

This table stores information about employees. It contains their names, positions, and salaries. But sometimes employees move
around from position to position, and when they do, their salaries change. So for some employees, this table also stores
information about their projected position and salary. If the value of the Status field is C, the row contains the current information
for the employee. If the value is P, it contains the projected information. Thus, an individual employee may appear twice in this
table.

Because an employee can appear twice, you cannot use this table to represent the employees entity. If you were to associate the
employees entity with this table, even simple requests, such as "Count the employees", would give the wrong answer. The
solution to this problem is to create a view in the database that contains a single row for each employee and to tell English Query
about this view.

Here is what the view would look like:

CREATE VIEW Emps AS
SELECT Emp_id, Emp_name, Position, Salary
FROM employees
WHERE status = 'C'

You now have a view that contains exactly one row per employee. The employees entity can now be represented by this view.

Rule 2: A field should have the same meaning in each row of the table.

Refer to the Employees table again:

Table: Employees
Fields: Emp_id, Emp_name, Status, Position, Salary
Keys: Emp_id, Status

This table violates the second rule as well. Remember, the Position and Salary fields contain current information if the value of the
Status field is C, and projected information if the value of Status is P. The Position field really represents two distinct entities:
current position and projected position, depending on the value of Status. This is true for the Salary field as well.

Notice that you have already extracted the current salary and current position when you created the Emps view. Do the same for
the projected salary and projected position:

CREATE VIEW Projected_info AS
SELECT Emp_id, Position Projected_position, Salary, Projected_salary
FROM employees
WHERE status = 'P'

Now, you can tell English Query that the projected position entity is represented by the Projected_position field in the
Projected_info view, and similarly, Projected_salary.

Rule 3: Each table should represent at most one entity.

Often, if an attribute means one thing for one subset of the rows in the table and something else for another subset, those subsets
of rows actually represent two different (but related) entities. For example, consider a table that represents various media

productions, either movies or TV programs:

Table: Productions
Fields: Prod_id, Title, Type, Show_date, Mpaa_rating, Network
Keys: Prod_id

If the value of the Type field is M, the production is a motion picture. If the value is T, it is a television show. For motion pictures,
the Show_date field contains the date it was released; for television shows, it contains the date on which the show was broadcast.
The Mpaa_rating field contains the rating of a movie (for example, G, PG, and PG-13), but is meaningless for television shows.
Likewise, the Network field is the network on which a television show appears, but this field is meaningless for motion pictures.

This structure makes authoring an English Query application difficult in several ways. First, television shows and motion
pictures are distinct entities. You can tell this by the fact that they participate in different relationships. Second, the Show_date
field has a different interpretation for a movie versus a TV show. Finally, the Mpaa_rating and Network fields are meaningless for
certain rows in the Productions table.

To define TV shows and movies as distinct entities, you must create views in SQL Server:

CREATE VIEW Tv_shows AS
SELECT Prod_id, Title, Show_date, Broadcast_date, Network
FROM Productions
WHERE type = 'T'

CREATE VIEW Movies AS
SELECT Prod_id, Title, Show_date, Release_date, Mpaa_rating
FROM Productions
WHERE type = 'M'

You can then create the television show entity, which is represented by the Tv_shows view, and the movie entity, which is
represented by the Movies view.

Note A superficially similar table would not have the same problem. For example, consider a table of employees that contains a
Name, a Salary, and a Type field. Type indicates what type of job that person has (for example, engineer, salesperson, receptionist).
Because engineers, salespeople, and receptionists have the same kind of information (names and salaries), there is no need to
create a view for each of these job types. Instead, use the Type field to define subsets of people. Thus, a user could ask, "How
many engineers are there?" and get the right answer.

However, if you have the Productions table, use the Type field to define movies and TV shows as subsets of productions. Instead
of creating a view for each, users can then ask nonsensical questions, such as "What is television program X rated?" and would get
incorrect answers to seemingly valid questions like "When was movie X broadcast?"

Rule 4: Multiple instances of an entity should be represented by multiple rows in a table.

When there is a many-to-one relationship between two (or more) entities, it should be represented in the database as a many-to-
one join between two (or more) tables. There are two ways in which this rule is typically violated: by splitting data among multiple
columns, and by splitting data among multiple tables. The solutions to both problems involve creating union views.

Rule 4a: M ultiple instances of an entity should not be represented as multiple columns.

Consider the following database of people and their pets. The designer of this database did not anticipate anyone owning more
than three pets, and hard-coded three pet IDs in the People table:

Table: People
Fields: Person_id, Person_name, Pet_id1, Pet_id2, Pet_id3
Keys: Person_id

Table: Pets
Fields: Pet_id, Pet_name
Keys: Pet_id

You can create the person entity, which is represented by the People table, and you can create the pets entity, represented by
the Pets table. Unfortunately, when you try to create a relationship between people and their pets, you must specify a join path
between the People table and the Pets table. You could arbitrarily choose one of the ID fields on which to join, but this would
ultimately create three relationships that would force users to ask questions in awkward ways, for example, "Show the people and
their first pets and second pets and third pets".

Because there is nothing that distinguishes these three pet IDs from one another, a better database design would have a many-to-
many join table containing all pet IDs in a single column. To achieve this, create the following union view:

CREATE VIEW Pet_owners AS
SELECT Person_id, Pet_id1 AS Pet_id
FROM People
WHERE Pet_id1 IS NOT NULL
UNION
SELECT Person_id, Pet_id2 AS Pet_id
FROM People
WHERE Pet_id2 IS NOT NULL
UNION
SELECT Person_id, Pet_id3 AS Pet_id
FROM People
WHERE Pet_id3 IS NOT NULL

Because this view contains a direct relationship between pets and their owners, it can now be used as a join table.

Rule 4b: M ultiple instances of an entity should not be represented as multiple tables.

In this financial database, the high-volume budget table is divided into yearly archive tables to avoid having a single table become
too large to manage:

Table: Branches
Fields: Branch_id, Branch_name
Keys: Branch_id

Table: Budgets_1995
Fields: Branch_id, Budget, Actual
Keys: Branch_id

Table: Budgets_1996
Fields: Branch_id, Budget, Actual
Keys: Branch_id

Table: Budgets_1997
Fields: Branch_id, Budget, Actual
Keys: Branch_id

To create the budget and actual_expense entities, use a union view to create a single database object to represent each one:

CREATE VIEW Budgets AS
SELECT Branch_id, 1995 AS year, Budget, Actual
FROM Budgets_1995
UNION
SELECT Branch_id, 1996 AS year, Budget, Actual
FROM Budgets_1996
UNION
SELECT Branch_id, 1997 AS year, Budget, Actual
FROM Budgets_1997

The Budget and Actual fields in the Budgets view can now represent the budget and actual_expense entities.

Rule 5: Joins should be based only on primary and foreign-key equality.

Sometimes, a relationship between two entities is represented in the database with a nonstandard join. Because English Query
recognizes only joins based on the equality of primary and foreign keys, any nonstandard join must be translated, by using a
view, into a standard join.

For example, this database contains information about people's heights, as well as a description of the ideal weight for people
who fall into a certain height range:

Table: People
Fields: Person_id, Height, Weight
Keys: Person_id

Table: Ideal_weights
Fields: Min_height, Max_height, Ideal_weight
Keys: Min_height

Because ideal weight depends on height, it is easy to learn the ideal weight for any given person. However, there is no way for
English Query to make the connection between the People table and the Ideal_weights table because there is no primary- and
foreign-key join between the two tables. You must make this join explicit by creating a view that contains the ideal weight of each
person.

CREATE VIEW Ideal_weights AS
SELECT Person_id, Ideal_weight
FROM People, Ideal_weights
WHERE Height >= Min_height
AND Height <= Max_height

This view can then be used as the join table for the relationship between the person entity and the ideal weight entity (which is
represented by the Ideal_weight field).

Rule 6: Make sure keys are linked correctly.

An English Query compile error will occur if a field that represents an entity is joined to the key of another table. The entity should
be represented by the other table rather than this field.

For example, if a Branch entity is created from the Branch ID field in the Employee table, an error occurs. The error occurs
because a join exists from the Branch ID field of the Employee table to the ID field of the Branch table. The entity should be
made a table entity and should point to the Branch Table table.

Likewise, foreign keys must point in the right direction. The subentity hierarchy cannot be circular. It must go in one direction
from the subentity to the parent entity. The following examples show an incorrect hierarchy:

Enlisted is a subentity of Military Personnel.

Officer is a subentity of Enlisted.

Military Personnel is a subentity of Officer.

To correct this problem, change the join for Enlisted to point to Military Personnel, and delete the join from Enlisted to
Officer. Then, make Military Personnel a subentity of both the Enlisted and Officer entities.

See Also

Advanced Tab (Table/New Table Dialog Box)

English Query (SQL Server 2000)

Updating or Replacing Models
Existing models can be replaced with a new one by simply copying the new model file over the old one. This has no effect on
existing user sessions; they continue to use the old version.

For example, as system administrator you are given a new model file to replace or update an existing model. A server is running
English Query with multiple models loaded and multiple user sessions attached to each domain. Each new session attaching to
the model receives the new version of the model (with the first new session causing the new version model to be loaded). When
the last user session attached to the old version of the model is gone, the old version of the model is automatically unloaded.

English Query (SQL Server 2000)

Importing and Exporting Models to Meta Data Services
Microsoft® SQL Server™ 2000 Meta Data Services is an object-oriented repository technology that can be used to store English
Query models. Meta Data Services is an installed component of SQL Server 2000. If you are using SQL Server, a repository
database already exists for your use. Within Microsoft Visual Studio®, Meta Data Services supports the exchange of model data
with other development tools as well.

You can use Meta Data Services for your own purposes: as a component of an integrated information system, as a native store for
custom applications that process meta data, or as a storage and management service for sharing reusable models. You can also
extend Meta Data Services to provide support for new tools for resale or customize it to satisfy internal tool requirements.

When importing an English Query model, you specify a connection to an instance of Meta Data Services. After the connection is
established, you choose from a list of models. The model is then imported into the English Query project.

When exporting an English Query model, you make a connection to an instance of Meta Data Services from which you specify a
model name. If the model name already exists in that instance, you are prompted confirm that you want to overwrite the existing
model or choose a new name.

English Query (SQL Server 2000)

Developing and Deploying English Query Applications
Developing an English Query application involves creating, refining, testing, compiling and deploying a model, based on a
normalized SQL database or an OLAP cube.

Here are the basic steps for developing and deploying an English Query application:

1. Determine the questions that end users are most likely to ask.

Determining what questions must be answered prior to creating a model helps you to create the entities and relationships
and to test your application.

For example, suppose you want to create a model for the Northwind database. It contains sales data from a fictitious
company called Northwind Traders, which imports and exports specialty foods from around the world. As an owner of the
company, you may want to know which suppliers are being used, how much of each product sold during the previous year,
the total sales for the previous year, or how many orders a specific customer placed. As a manager, you may want to know
how many sales your employees have made, who was the top salesperson in an area, or the total regional revenues for the
past year.

2. Create a basic model using the SQL Project Wizard or OLAP Project Wizard.

The Project wizards automatically create a basic model by bringing in the schema of the data source (database or cube) and
automatically creating entities and relationships based on the tables, fields (columns), joins, or OLAP objects.

3. Refine the model to address any questions that cannot be answered using the basic model.

After creating the basic model, you can further define it to answer user questions by adding entities and relationships. Drag
the entities from the Entities list in the left pane onto the Canvas pane, and then create a relationship between them. You
can also drag relationships onto the Canvas pane.

4. Test the model and refine the model until it successfully returns the answers to the questions you pose.

If questions are not answered successfully with the model, click Suggestion Wizard on the Model Test window to view
suggested relationships and to further refine the model. Continue to test the questions until you are satisfied with the
entities and relationships.

Note A limited knowledge of the English language in English Query, incomplete authoring of an application, and the design
of a database affects how many of the users' questions can be answered.

5. Build the application and then deploy it.

An English Query application can be deployed in several ways, including within a Microsoft® Visual Basic® or Microsoft
Visual C++® application and on a Web page running on the Microsoft Internet Information Services (IIS). In the Web
scenario, the interface of the application is with a set of Microsoft Active Server Pages (ASP).

See Also

Compiling an English Query Application

Creating an English Query Model

Deploying an English Query Application

Expanding an English Query Model

Testing an English Query Model

Sample Applications and Client Interfaces

English Query (SQL Server 2000)

Creating an English Query Model
An English Query model is a collection of information about the database objects, the semantic objects, dictionary entries, and
application properties. It is created within a Microsoft® Visual Studio® development environment.

In English Query, the SQL or OLAP Project wizards automatically generate the major portion of most models, including the
database structure and the semantic objects that answer many basic questions.

You can expand the model by adding and modifying entities and relationships, adding tables and specifying joins, and setting
other options.

To create a project using a Project wizard

SQL Project Wizard

SQL Project Wizard

OLAP Project Wizard

OLAP Project Wizard

To create an entity in a model

Model Editor

Model Editor

To delete an entity from a model

Model Editor

Model Editor

To edit an entity in a model

Model Editor

Model Editor

To add or create a relationship

Model Editor

Model Editor

Canvas Pane

Canvas Pane

Model Test Window

Model Test Window

To add entities to a relationship

Model Editor

Model Editor

To modify a relationship

Model Editor

Model Editor

Select Relationship Phrasing

Select Relationship Phrasing

Time Location Options

Time Location Options

English Data Values

Specify English Data Values

See Also

Compiling an English Query Application

Deploying an English Query Application

English Query Fundamentals

Expanding an English Query Model

Sample Applications and Client Interfaces

Testing an English Query Model

English Query (SQL Server 2000)

Expanding an English Query Model
After creating a basic English Query Model with the project wizards, you can refine and expand it by:

Adding database objects, entities, relationships, and even other databases.

Creating a mixed SQL/OLAP model.

Utilizing the full-text search feature of Microsoft Search service.

To refine your model, choose among the following methods:

Graphical authoring in the Model Editor, which is a diagramming tool that displays the entities and relationships in the
English Query model. You can also drag entities onto one another to automatically create relationships between them.

Manual authoring, which is done by starting with an empty project and adding entities and relationships individually. It is
supported by commands on the English Query Model menu.

Authoring by example, which provides the ability to start with questions that a user may ask. The Suggestion Wizard returns
suggested entities and phrasings that need to be defined to answer the questions. The Suggestion Wizard is particularly
useful in the testing phase, when you want to see what entities and relationships are missing from the model.

Programmatic authoring, which is supported by Semantic Modeling Format (SMF) and the Authoring object model. SMF is
an XML-based language that is used for persisting English Query model information (entities and relationships and their
ties to the database).

Note English Query is English-only, and the user interface for the authoring tool does not support double-byte character
keyboard input. However, Unicode data in the database is supported.

See Also

Adding Question Builder to an English Query Application

Authoring with Semantic Modeling Format

Creating a Mixed English Query Model

Creating an English Query Model

Defining Entities in an English Query Model

Enabling Analysis Services for an English Query Model

Enabling SQL for an English Query Model

Enabling Full-Text Search for an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Creating a Mixed English Query Model
While creating an English Query model, you may find that not all of the questions are answered using the current database. If you
have created an OLAP model using the OLAP Project Wizard, you can enable SQL to access the data in the underlying SQL
database.

If you create a project without using the OLAP Project Wizard, by default, both SQL and OLAP are enabled. When both Microsoft®
SQL Server™ 2000 Analysis Services and SQL are enabled, English Query first tries to answer the question using
multidimensional expressions (MDX) and then, if unsuccessful, generates SQL statements for the question.

Using mixed models, you can:

Ask questions that cannot be answered using only OLAP cubes because the data is not in an OLAP cube but in the
underlying SQL database.

Speed up the retrieval of data for questions that are not about aggregation of data, such as "What products do people buy?".

Considerations

Before expanding your model by creating a mixed model, consider the following:

Make sure that your OLAP cube is current with the underlying SQL database. If your OLAP cube and SQL database are not
synchronized, you may get erroneous responses to your queries.

Each time that you ask a question, English Query creates a new query using the appropriate database. Follow-up questions
provide inconsistent results if the underlying data has changed and the cube has not.

Important You cannot access the underlying database structure of an OLAP cube in an English Query model unless you
are a member of the OLAP Administrators group and the Microsoft Windows NT® 4.0 or Windows® 2000 user group on
the server with the Analysis Services database for which you are building the model. You must have OLAP Administrator
permissions to load the tables underlying the cubes using Decision Support Objects (DSO).

To create a mixed model

Model Editor

Model Editor

OLAP Connection

OLAP Connection

Map OLAP Objects

Map OLAP Objects

Set Sample Data Option

Set Sample Data Options

See Also

Creating an English Query Model

Defining Entities in an English Query Model

Enabling Analysis Services for an English Query Model

Enabling SQL for an English Query Model

Enabling Full-Text Search for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Enabling Analysis Services for an English Query Model
Enable Microsoft® SQL Server™ 2000 Analysis Services for an English Query model by:

Creating a new project with the OLAP Project Wizard using an Analysis Services database.

Use the New Project command on the File menu to select the OLAP Project Wizard. If OLAP Project Wizard is selected
instead of the SQL Project Wizard, the project is enabled for Analysis Services. The project is created automatically after you
select the Analysis Services server, the database, and the OLAP cubes to use. Then, specify the entities and relationships you
want included from the OLAP cubes.

Importing cubes to an English Query model.

Use the select Import Cubes command on the Model menu to add an OLAP cube to your project.

Adding an Analysis Services data source to the English Query model.

Use the Enable OLAP option on the Data Connection tab in the Project Properties dialog box to add OLAP cubes and
other objects to the English Query model.

To enable Analysis Services

OLAP Connection

OLAP Connection

Model Editor

Model Editor

Global Properties

Global Properties

Enable OLAP

OLAP Model

Manually Map OLAP Objects

Map OLAP

See Also

Creating a Mixed English Query Model

Creating an English Query Model

Defining Entities in an English Query Model

Enabling SQL for an English Query Model

Enabling Full-Text Search for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Enabling SQL for an English Query Model
Enable SQL for an English Query model by:

Creating a new project with the SQL Project Wizard.

Use the New Project command on the File menu to access the SQL Project Wizard. When using the SQL Project Wizard,
the project is enabled for SQL only. Initially, when selecting the OLE DB provider, you must select the data source or server,
and then enter the logon information. After logging on, select a database, and then specify the entities and relationships
from the tables that you want in the project. The project is automatically created.

Importing tables from a SQL database to a previously created Microsoft® SQL Server™ 2000 Analysis Services (OLAP)–only
project.

Use the Import Tables command on the Model menu to add tables from a SQL database to the project.

Adding a SQL database to the English Query model by using the Enable SQL option on the Data Connection tab in the
Project Properties dialog box.

Important You cannot access the underlying database structure of an OLAP cube in an English Query model unless you
are a member of the OLAP Administrators group and the Microsoft Windows NT® 4.0 or Windows® 2000 user group on
the server with the Analysis Services database for which you are building the model. You must have OLAP Administrator
permissions to load the tables underlying the cubes using Decision Support Objects (DSO).

To enable SQL by adding a database

Model Editor

Model Editor

To enable SQL by adding tables from another data source

Model Editor

Model Editor

To enable SQL by creating a new project with SQL Project wizard

SQL Project Wizard

SQL Project Wizard

To enable SQL by setting global properties

Model Editor

Model Editor

To enable SQL by setting data source properties

Model Editor

Model Editor

See Also

Creating a Mixed English Query Model

Creating an English Query Model

Defining Entities in an English Query Model

Enabling Analysis Services for an English Query Model

Enabling Full-Text Search for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Enabling Full-Text Search for an English Query Model
Enable Microsoft Search service and the full-text search feature to support faster, more powerful, and more flexible searches of
structured and unstructured textual data in SQL databases.

Using full-text search, users' questions can:

Retrieve more information because the full-text searches can be for: inflections (alternate tenses and singular and plural
forms); automatic combinations of successive words into search phrases; prefix stemming to search for various derived
phrases; and proximity searching for words that occur near one another.

Work much faster because they take advantage of the full-text indexes that are maintained in the database.

Return documents that match or partially match the queries in order or relevance.

For example, using full-text search, the question "What movies released last year were about a big asteroid threatening to crash
into Earth" generates the full-text FREETEXTTABLE() function. This function searches for many words and phrases (big, asteroid,
threatening, crash, Earth,), all of the tenses of the verbs, singulars and plurals of the nouns, and phrases such as big asteroid.

To enable full-text searching

Model Editor

Model Editor

See Also

Creating a Mixed English Query Model

Creating an English Query Model

Defining Entities in an English Query Model

Enabling Analysis Services for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Defining Entities in an English Query Model
After entities are automatically created using one of the Project wizards, they can be further defined in the Model Editor. A
discussion on design considerations regarding entities is followed by descriptions of refinements that can be made, including
entity name synonyms, entity defaults, and specifying entities as roles.

See Also

Creating a Mixed English Query Model

Creating an English Query Model

Enabling Analysis Services for an English Query Model

Enabling Full-Text Search for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Associating Entities
Associating Entities

When creating new entities for a model, you must consider whether to associate entities with database objects and how you want
to do so. For example, how do you decide whether to represent the database object by a table or by one or more fields? You may
also find that there are entities that are not associated with any database object. The Northwind database and sample project,
Northwind.eqp, present a good example of the considerations to make when designing a model.

Associating an Entity With a Database Object

Most entities are associated with a database object; however, there are considerations as to which database object to use for an
association.

Consider the entity, product. Two database objects in the Northwind database might represent products: Product Name field
in the Products table and the Products table as a whole. If you specify that products are represented in the database by the field
only, almost all of the questions work correctly. For example, if you ask, "Show the suppliers and their products," you get the right
list. You can even ask, "Who sells Chef Anton's Cajun Seasoning?" and get the right answer.

If you ask for a count of products, you may get the wrong answer, however. If you ask, "How many products were sold by New
Orleans Cajun Delights?", English Query will build SQL statements that count the number of products sold by that supplier. If
there is more than one product with the same name, the answer does not include the duplicates.

Therefore, it is not accurate to say that the Product Name field in the Products table represents products. In fact, the entire
Products table represents products because each unique row in the table represents a single product. The field Product Name,
on the other hand, represents the names of the products, not the products themselves.

Entities Not Associated with Database Objects

Sometimes, there is an entity in a model that is not represented explicitly in the database at all. Consider the question, "Do buyers
like Chef Anton's Cajun Seasoning?". To make questions like this work, create a relationship containing the phrasing, buyers like
products (for example, with some SQL condition like product_name.1997_sales>1000). To create this phrasing, first create the
entity buyer. Because there is no list of buyers in the database, create an entity not represented by a database object.

See Also

Creating an English Query Model

Defining Entities in an English Query Model

Enabling SQL for an English Query Model

Enabling Full-Text Search for an English Query Model

Entity Name Synonyms

Entity Defaults

Entities as Roles

Expanding an English Query Model

SQL Database Normalization Rules

Testing an English Query Model

English Query (SQL Server 2000)

Entity Name Synonyms
Entity Name Synonyms

Use a name synonym to specify "Bill" as a synonym for "William" (an instance of the entity author_name). That allows users to
ask a question such as "How many books did Bill write?" and have that interpreted as "How many books does the author named
William write?"

A name synonym only takes effect if the question is about names of entities. For example, it would not cause the question, "Who
did we send a bill to last week?" to be interpreted as, "Who did we send a william to last week?"

Likewise, a product name may be stored in the database as "chair, wicker," but users may typically refer to it as a "wicker chair."
Similarly, "Big Apple" may appear in the database as "New York."

Specifying a name synonym is useful, too, if an unknown word is stored in the database but its value has not been added to the
model. This can occur when:

None of the entities' values are being added because the Add values of entity to model check box in the Entity/New
Entity dialog box was not selected.

The number of values being added is restricted to limit the size of the model, and the specific value was not among those
added. Increase the number of values being added by entering a number in the Words per entity box on the Data
Connection tab of the Project Properties dialog box.

Caution Defining a global synonym using the Read Synonym option in the New Dictionary Entry dialog box overrides
any synonyms you set using the Name Synonyms tab. For example, if you set the Read Synonym option to read "ship" as
"boat," the question, "How many boats sailed last week?" is interpreted as "How many ships sailed last week?" But the
question, "How many widgets did we ship last week?" is incorrectly interpreted as "How many widgets did we boat last
week?" To avoid this error, specify a regular entity synonym with Entity/New Entity dialog box that sets "ship" as a
synonym of boat. This specifies that "ship" is a synonym of "boat" only when the question is about boats.

See Also

Associating Entities

Creating an English Query Model

Defining Entities in an English Query Model

Entity Defaults

Entities as Roles

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Entity Defaults
Entity Defaults

Whenever an entity is used in a query, all appropriate defaults are attached to it. For example, if the entity customer has a default
indicating that the customer must be a current customer, then the question, "Show the customers" is interpreted as "Show the
current customers."

An entity default consists of a relationship in which the entity participates and, optionally, one or more conditions on the other
entities in the relationship. For example, a relationship customers have statuses with a condition that the status must equal
"current" is a default entity.

Note The default conditions are English conditions, not SQL conditions. For example, for the relationship customers have
statuses, the condition is "current," not "c" (the code in the database that corresponds to "current").

To override the defaults:

Users can specify "all" of an entity in their questions. For example, "Show all the customers," is interpreted by English Query
as "Show the customers," without the default.

Users ask questions that explicitly contradict a condition in the default. For example, "Show the inactive customers"
contradicts the default status of "current."

Specify a relationship that implicitly contradicts a default condition (for example, to specify the condition "stores that have
gone out of business" contradicts the default status of "current"). When a user asks "Which stores have gone out of
business," the default is not added.

You can also create entity defaults that are negated relationships. For example, an entity might have a negated relationship as a
default so that a question such as "Show the customers" is interpreted as "Show the inactive customers." To create a negated
relationship, customers are not inactive, chose customers are inactive and select Invert in the Add/Edit Entity Default dialog
box. The default is the inverse of the relationship.

Note These are English conditions and not SQL conditions.

See Also

Associating Entities

Creating an English Query Model

Defining Entities in an English Query Model

Entity Name Synonyms

Entities as Roles

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Entities as Roles
Entities as Roles

Entities serve as roles in relationships. For example, in the relationship employees work for employees:

employee is an entity.

works_for is a relationship that has two roles (employee_1 and employee_2) and one phrasing (employee_1s work for
employee_2s).

Employee_1 and employee_2 are both roles that are represented by the entity employee.

You specify roles in the <Role> role dialog box, which is available from the Relationship dialog box. In this dialog box, you add
an entity if needed, select it, and then edit it to further specify its role in the relationship.

See Also

Advanced Entity Properties Dialog Box

Associating Entities

Creating an English Query Model

Defining Entities in an English Query Model

Entity Defaults

Entity Name Synonyms

Expanding an English Query Model

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

Testing an English Query Model

English Query (SQL Server 2000)

Defining Relationship Phrasings
In English Query, a relationship is an association between entities that describes what those entities have to do with one another.
Relationships can be described as simple statements about entities (for example, customers purchase products). More than one
join may be required to represent a single relationship.

Phrasings are ways to express a relationship in English. Types of phrasings include name, adjective, subset, preposition, verb, and
trait phrasings. For example, customers purchase products is an example of a verb phrasing, and department names are names of
departments is an example of a name phrasing. Using different phrasings are a good way to expand a model.

See Also

Creating an English Query Model

Defining Entities in an English Query Model

Enabling SQL for an English Query Model

Enabling Full-Text Search for an English Query Model

Expanding an English Query Model

Testing an English Query Model

English Query (SQL Server 2000)

Prepositional Phrasings in Relationships
Prepositional Phrasings in Relationships

A preposition phrasing describes a relationship between the subject and object entities that includes prepositions. For example,
the phrase patients are on medications (for illnesses) (at dosages) (for studies) allows the following questions to be answered by
English Query:

"Who is on medication X?"

"Who is on medication for heart disease?"

"Who is on medication for the XYZ study?"

"Who is on medication X for the XYZ study for heart disease?"

"Who is on medication X at 100 mg for heart disease for the XYZ study?"

Likewise, use prepositional phrasing to answer questions about geographical locations, such as "How many cabins are in the
Sierra Nevada mountain range?" and "How many cabins are in the Southern Hemisphere?" You would set up the hierarchy to
answer these questions with the following phrasings:

cabins are on mountains

mountains are in mountain ranges

mountain ranges are in continents

continents are in hemispheres

Words commonly used as prepositions include about, above, across, before, below, concerning, down, for, from, in, like of, on,
over, past, regarding, since, through, till, to, toward, under, until, with, and without.

Phrasal prepositions include according to, along with, as to, because of, due to, in case of, in place of, instead of, up to, and with
regard to.

See Also

Defining Relationship Phrasings

Expanding an English Query Model

Preposition Phrasing Dialog Box

English Query (SQL Server 2000)

Grouped Phrasings Examples
Grouped Phrasings Examples

Phrasings are a way to talk about a relationship in English. Choose phrasings that most closely reflect how users would ask their
questions.

The following examples show when phrasings need to be grouped to correctly specify the relationship.

Example 1: Consider a database that contains information about people and their hair color. One phrasing that describes this
relationship is the trait phrasing, such as people have hair color. However, this phrasing will not answer questions such as, "What
is the color of John's hair?" For this, you need the phrasings people have hair and hair has color.

Note "Hair", in this case, is an entity that is not represented by a database object.

These two phrasings collectively describe the relationship between people and hair color. In order for English Query to treat these
two phrasings as one logical unit, they need to be grouped.

Example 2: You have a table containing ages, sexes, and part counts that indicates how many parts were bought by people of
each age and sex. You want to ask questions such as, "How many parts did young women buy?" This is a relationship among
ages, sexes, parts (an entity not represented in the database) that have quantities, and people (another entity not represented in
the database).

You must group the following phrasings: people have ages (a measurement adjective phrasing); people have sexes (a dynamic
adjective phrasing); and people buy parts (a verb phrasing). These three phrasings collectively describe a single relationship.

Example 3: Consider a table containing suppliers, parts, and colors. You want to answer questions such as, "Who sells green
parts?". This is a single relationship among suppliers, parts, and colors. You would need the following phrasings in a group:
suppliers supply parts (verb phrasing) and parts have colors (adjective phrasing). Although you might consider creating separate
relationships for these two phrasings, this would not supply the correct answer. In this table, the colors of the parts are inherently
dependent on who supplied them. If you were to create independent relationships for these two phrasings, then the question,
"Who sells green parts," is necessarily interpreted as, "Find all of the suppliers and parts in the sales table such that the part also
appears in the sales table with the color green" (in other words, "Who sells parts (in any color) that are also sold (by any supplier)
in green").

Individual phrasings in a phrasing group can be used separately from the group. In the example above, a user could ask, "Who
sells parts?" without referring to colors at all. However, it may not make sense to ask about some phrasings in the group without
also including other required phrasings. For example, you may want the question "List the colors of the parts" to always be
interpreted as "List the colors of the parts which suppliers supply." That way, the user clearly understands that colors of parts are
known only in the context of suppliers supplying them. To do this, simply mark the required phrasings in the Phrasing dialog
box.

Example 4: You have a table containing people and lunch times. You want to be able to ask, "What time did John eat his lunch?".
This is a relationship between people, lunches (an entity not represented in the database), and lunch times. You need to group the
following phrases: people have lunches (a trait phrasing) and people eat lunches at lunch times. People each lunches at lunch
times is sufficient to answer, "What time did John eat lunch?". Because you also want to refer to "his lunch," you need the
additional phrasing in the group.

See Also

Defining Relationship Phrasings

Expanding an English Query Model

English Query (SQL Server 2000)

Verb Phrasings in Relationships
Verb Phrasings in Relationships

When a relationship between two entities can be expressed by an action word or verb, use verb phrasing to describe it (for
example, salespeople sell teachers briefcases from the warehouse).

When specifying a phrasing, English Query provides the passive equivalent of the phrase. For example, specifying the verb
phrasing Salespeople sell customers products also allows users to ask the passive question "Which products were sold to
customers by which salespeople?".

In general, use active voice, rather than passive voice, in verb phrasings. For example, instead of creating the phrasing products
are sold to customers by salespeople, create the phrasing salespeople sell customers products. By creating the phrasing in the
active voice, you enable English Query to understand questions in both the active and passive voices. For example, it could answer
both Who sold John a lawnmower? (active voice) and What was sold to John by Fred? (passive voice).

Converting a Passive Voice Phrasing to an Active Voice Phrasing

Whenever a phrasing that has prepositional phrases is missing a subject, a direct object, or an indirect object, check to see
whether any of the objects of the prepositions can be used to restate the phrase in the active voice. For example, in the phrasing
Cars are driven by people, cars is the direct object, are driven is the verb, and people is the object of a preposition. This phrasing
works better as People drive cars, and it can be converted by making people the subject. Similarly, Customers give money to
salespeople can be converted to Customers give salespeople money.

Note Pay close attention to prepositional phrases using the prepositions by and to. Frequently, the objects of these prepositions
can be changed into subjects and indirect objects, respectively.

Using Multiple Instances of an Entity

In some cases, another instance of an entity is needed to create the desired phrasing (for example, persons migrate from countries
to countries). In this case, two instances of the countries entity are needed. The join condition determines your choice about
which instance of the countries entity goes with each preposition. For the first instance, the join condition is
migration.from_cid~country.id. For the second instance, the join condition is migration.to_cid~country.id.

See Also

Defining Relationship Phrasings

Expanding an English Query Model

Verb Phrasing Dialog Box

English Query (SQL Server 2000)

Adjective Phrasings in Relationships
Adjective Phrasings in Relationships

When a relationship between entities is expressed with an adjective, use adjective phrasing to define the relationship. The
adjective can be:

A single word not represented by a field.

Part of a database object that represents an entity.

A measurement.

When specifying the adjective phrasing that describes the relationship between the subject and the adjectives or entities that
contain adjectives, you are providing information to answer questions such as:

"Which people are old?"

"Which people are young?"

Adjective phrasing also provides the information needed to answer trait-like questions for measurement and entity adjectives
only:

"What is John Smith's age," as well as "What is the age of John Smith?"

In addition, specifying a measurement adjective phrasing allows questions that use the comparative or superlative forms:

"Is John older than Mary?" (comparative)

"Who is the youngest employee?" (superlative)

See Also

Defining Relationship Phrasings

Expanding an English Query Model

English Query (SQL Server 2000)

Using Command Relationships in an English Query Model
English Query interprets English questions (for example, "Who is the oldest patient?") and statements (for example, "Show the
salespeople") as commands to display a set of data. In some applications, you may want to enhance English Query to understand
other types of commands. Relationships that contain command phrasings are used to define these model-specific commands and
are called command relationships. Command relationships do not use join tables or SQL conditions.

Similarly, entities used in command relationships do not use join paths or "how many" and "how much" properties. Entities in
command relationships can be assigned mandatory roles, which means that they are required.

When command phrasings and entities are called in the object model, they require a command ID and a parameter ID,
respectively.

Command Relationship Example

An English Query application tracks an art collection, in conjunction with a database that contains information about the artists. A
user states, "Display the paintings by xxx artist that are watercolors." This statement is translated into two commands to be
executed by the application:

The first is an SQL command, which fetches information from the database about paintings by xxx artist that are
watercolors.

The second command instructs the client application to display the actual paintings identified by the first command, rather
than a display of textual data from the database.

This application uses model knowledge about paintings, artists, and medium, and a relationship containing a command phrasing.
The command phrasing in this example has the verb "display" and the direct object "painting."

Mandatory Roles

Mandatory roles is an enhancement to English Query that allows entities used as command relationship arguments to be
required. Command relationships are not complete unless all (or a specific subset) of the parameters are specified. This is
required for situations in which the target command has arguments that are mandatory.

For example, in the command, "ship (amounts of) products to customers on dates", the product and the customer and the amount
must all be specified, or the command is incomplete.

For such roles, if the user does not specify a specific instance of the entity or a qualifier describing a subset of the entity, English
Query prompts for such information. When a mandatory role has not been specified in the command or question, the English
Query engine object model generates a clarification response with an InputText object for each missing mandatory role, using
the prompt provided on the role by the author of the model. For example:

Question: Order 10 bottles of Coho Vineyard Merlot

InputText 1: Who should the order be sent to?

InputText 2: When should the order be sent?

In this example, the user provides a customer name for the first clarification and a date for the second clarification.

Command IDs and Parameter IDs

Command phrasings and entities require an ID when called in the object model. Command phrasings require a command ID,
which is returned to the application and indicates which command relationship it is. Each entity used in a command phrasing
requires a parameter ID. This ID is returned to the client application in a Parameter object and indicates which command
parameter the object specifies.

Some command phrasings use entities that are not represented by database objects. These entities may simply be a static part of
the phrasing, for example, "the Recycle Bin" in the command "Move <file> into the Recycle Bin". Or, these entities may
correspond to command arguments that are obtained from the user's question rather than from the database (for example, in the
command, "Raise the temperature of vat 6 by 12 degrees"). The command phrasing that is used would be "Raise the_temperature
of vats by temperature_increase_amounts". The entity "the_temperature" is not represented by a database object and does not
correspond to a command argument. So, you specify this by selecting "None" as the parameter type. The entity
"temperature_increase_amounts" (also not represented by a database object) does correspond to a parameter of the command.
As a result, you must indicate the data type of the parameter by using the Parameter Type property.

Parameters that correspond to nondatabase entities are returned to the client application through the object model as value
Parameter objects, rather than as field Parameter objects. In the previous example, "12 degrees" would be sent as a Parameter
with the Value property set to "12" and the Units property set to "degrees".

To create a command relationship

Model Editor

Model Editor

See Also

Command Phrasing Dialog Box

Defining Entities in an English Query Model

<Role Name> Role In Command Dialog Box

Verbs to Avoid in Command Relationships

English Query (SQL Server 2000)

Verbs to Avoid in Command Relationships
Verbs to Avoid in Command Relationships

The following built-in verbs can return unexpected results if they are used in command relationships.

achieve equal name
add exceed rate
add up fill reach
adjust find relate
alphabetize finish reduce
ascent help rise
attain include subtract
average gain report
base keep sum
begin go down reprint
break down go up reshow
calculate graph save
call know sum up
cease grow search
change identify search out
chart improve select
commerce increase sequence
compare locate tell
compute list show
contain lose total
contract look up shrink
correlate meet total up
count magnify sort
decline mention unview
decrease merge stack
describe miss vary
display order stack up
divide multiply view
drop plot start
end print stop
enlarge print out store
expand quit subcount
fetch raise subtotal
find out rank widen

English Query (SQL Server 2000)

Authoring with Semantic Modeling Format
English Query stores its information about the database structure and semantic information into an Extensible Markup Language
(XML) vocabulary designed for this purpose. The objects in this XML grammar are quite general: entities and relationships, along
with their (possible) associations with SQL tables, columns, and joins, and Microsoft® SQL Server™ 2000 Analysis Services
(formerly OLAP) cubes, dimensions and levels.

Semantic Modeling Format (SMF) is an XML-based language that was created to allow greater accessibility for other applications
to the model information in an English Query application and to enable developers to programmatically expand an English Query
model. You can use SMF to create, read, and generate English Query models programmatically without writing the .eqp file
format directly.

Typographic errors or the deletion of required text will cause compile errors when building the model.

Universal Access to Model Information

English Query provides Question Builder, a tool that allows presentation of the entities and relationships available in the model
with any Web browser that supports Microsoft ActiveX® Script. To allow an English Query model to be navigated by any COM
application, the XMLDOMDocument object, available with the Authoring object model, loads the SMF into a hierarchy. Thus, the
English Query model information is easier to access when you are programming the application.

See Also

Adding Question Builder to an English Query Application

Authoring Object Model

Expanding an English Query Model

English Query (SQL Server 2000)

Testing an English Query Model
Test the English Query model before compiling it into an application to make sure that the questions users are likely to ask are
supported by the model and then modify it accordingly. After you are satisfied with the performance of the model, build it into a
compiled English Query application (*.eqd file).

The Suggestion Wizard is available within the Model Test window and is useful during the testing phase. You can start by asking a
question that users are likely to ask. Suggestion Wizard presents suggested entities and relationships needed to answer the
question.

Model Test Window

The Model Test window in English Query enables you to test the English-to-SQL translation of your model and the execution of
the resulting database query before compiling the application.

Note For the data values to appear in the Entity list box in Question Builder, you must select Sample Data on the Data
Connections tab before compiling the application.

In the Model Test window (available from the Start command on the Debug menu), you can use the Analysis feature to review
the entities for functioning and for questions that return incorrect answers.

When testing a model, questions can be saved to a regression file with the Save Query command. A regression file is
automatically created with each project. There can be multiple regression files, but questions are saved in the first regression file
under the project in the Project Explorer window.

An output file can be added and then compared with the original file if the files have names that differ from one another. You can
also promote an output file to the new regression file. Regression output is displayed in Extensible Markup Language (XML)-
tagged format, which differentiates the questions, restatements, answers, and SQL statements for easier editing.

Suggestion Wizard

The Suggestion Wizard, which is also available from the Model Test window toolbar, suggests entities and relationships for
answering ambiguous questions.

The Suggestion Wizard analyzes the question and looks for unknown or ambiguous entities. For each of these entities, it displays
a sentence in the form "<word> refers to an <entity list>." You may select an existing entity from the entity list, or create a new
one by using the new entity button.

For pronouns or ambiguous entity names, simply associating the word with an entity is enough. For undefined entities, the
Suggestion Wizard asks you to clarify the definition in one of several ways:

As a synonym for the entity

This is appropriate if, for the purposes of the database, the word means exactly the same as some other word. For example,
"films" might be a synonym for "movies."

As an instance of the entity

For example, "Clark Gable" might refer to an instance of entity "actor."

As a subset of the entity type

For example "documentaries" refers to "documentary," a subset of the entity movies.

After the entities have been added or clarified, you may have to define relationships among them. This is done by validating the
correctness of the declarative sentences that the wizard generates from the question.

For relationships that are described as adjectives, the wizard displays a more complex set of sentences. If the sentence does make
sense, you can define the meaning of the adjective relative to the base entity in one of the following ways:

As an ignorable adjective, for cases in which the adjective isn't important from the standpoint of the database. For example,
all customers are "valued" customers.

As an adjective based on the value of another entity. There are two sub-cases of this:
The other entity can either be a measurement of the base entity (for example, old movies are movies whose age
entity is greater than 40).

The other entity stores adjectives (or codes mapping to adjectives) describing the base entity (for example, "Disaster"
movies are movies that have "Disaster" in their genre).

As an adjective based on a SQL condition.

This option is not available for OLAP-only projects.

When you complete the Suggestion Wizard, it updates your model with new entities and relationships based on your answers.

To save a regression file

Model Editor

Model Editor

To test an English Query model

Model Editor

Model Editor

To compare model test results

Add a Regression File

Regression File

View Differences Between Test Files

View Differences Between Test Files

View Output of a Regression File

View Output of a Regression File

See Also

Automatic Clarification of Questions

Compiling an English Query Application

English Query (SQL Server 2000)

Compiling an English Query Application
The Model Test window in English Query enables you to test the English-to-SQL translation of your model and the execution of
the resulting database query before compiling the application. When the model performs as expected, build it into a compiled
English Query application (*.eqd file).

Note For the data values to appear in the Entity list box in Question Builder, you must select Sample Data on the Data
Connections tab before compiling the application.

To compile a model into an application

Model Editor

Model Editor

See Also

Automatic Clarification of Questions

Deploying an English Query Application

Testing an English Query Application

English Query (SQL Server 2000)

Deploying an English Query Application
You can deploy an English Query application in several ways, including within a Microsoft® Visual Basic® or Microsoft Visual
C++® application and on a Web page running on the Microsoft Internet Information Server (IIS). In the Web scenario, the
interface of the application is with a set of Microsoft Active Server Pages (ASP).

Note English Query domain files (*.eqd) are built to work with a specific version of the English Query engine. If you are
upgrading from an earlier version of English Query, you must rebuild your English Query domain files from the project (*.eqp)
using the Model Editor.

After the English Query application is deployed, Question Builder helps the end user determine the information that is available in
the English Query model.

To deploy an application to the Web

Model Editor

Model Editor

To set the sample data option

Model Editor

Model Editor

Embedding an English Query Application into Active Server Pages (or COM-Based) Application

You can integrate an English Query application into other ASP applications (for example, to make an English query text box
available on a search page).

The following code fragment shows how to convert the users' supplied questions into SQL. Code like this could be embedded into
the ASP page that processed the users' queries:

Set objEQSession = Server.CreateObject("Mseq.Session")
objEQSession.InitDomain("Northwind.eqd")
Set objEQResponse = objEQSession.ParseRequest(Request("EQQuestion"))

Select Case objEQResponse.Type
Case nlCommandResponse
 Set objCommands = objEQResponse.Commands
 For intCommand = 0 To objCommands.Count - 1
 Set objCommand = objCommands(intCommand)
 Select Case objCommand.CmdID
 Case nlQueryCmd
 DoSQLCommand objCommand
 Case nlAnswerCmd
 Response.Write objCommand.Answer
 Next
Case nlUserClarifyResponse
 DoClarification objEQResponse, Request("EQQuestion")
Case nlErrorResponse
 Response.Write objEQResponse.Description & "
"
 Response.End
End Select

In this sample, the English Query object is created with Server.CreateObject("Mseq.Session"). To load the domain, the
InitDomain method is called with the name of the .eqd file. A response object is returned by calling the ParseRequest() method
with the user's question. The response can be a command response, which is a set of commands that are either SQL commands
or direct answers that English Query can supply without the accompanying SQL commands.

The SQL command is executed against the database, and the result is generally displayed as a table in a Web page. The process of
executing the SQL command using Microsoft ActiveX® Data Objects (ADO) and displaying the result in a table is embedded in the
DoSQLCommand function (available in \Program Files\Microsoft English Query\EQProjects\Web Pages\Common.inc).

If the command is an answer, it is displayed directly to the user. The response might also be a request for clarification. For
example, the question might be "how much was sold in Washington last year", and the clarification might ask whether
Washington was a city or a state. The DoClarification call (also available in Common.asp) encapsulates the code necessary to
prompt the user to clarify the question, by displaying possible values from the UserInputs collection on the Response object. If
there is an error, it is displayed using the Description property of the Response object.

See Also

Adding Question Builder to an English Query Application

Automatic Clarification of Questions

Compiling an English Query Application

Redistributing the English Query Run-time DLLs

Run-Time Environment for English Query Applications

Sample Applications and Client Interfaces

Testing an English Query Model

English Query (SQL Server 2000)

Adding Question Builder to an English Query Application
Question Builder provides an interface for the end users of English Query applications. It uses the English Query model behind the
application to provide easy question building and quick answers from the database. End users can find out what the model
contains, what basic relationships are represented in the model, and what English phrases can be used to ask about the
relationships.

Question Builder features a three-pane interface that makes the user's job of determining what information is available in the
database easier. Question Builder graphically shows users what entities and relationships are present in the model, and provides
drag-and-drop interaction and sample questions based on data in the application database. You specify Help for the end user in
the English Query Model Editor.

Question Builder provides a listing of the entities, their corresponding attributes, and the relationships in which they participate.
For each entity, an end user discovers:

Its singular and plural forms.

Any corresponding synonyms.

Using this information, the end user can reference the entity in a question.

For exploring the relations between two or more entities, Question Builder generates a list of relationships. After exploring the
contents of the model, users may still need guidance in forming their questions. Question Builder provides two types of example
questions:

General questions.

Questions about a specific instance of an entity.

Integrating Question Builder into Applications

Question Builder is a single Microsoft® ActiveX® control that can be integrated into many different applications, such as: ASP-
based Web sites, Microsoft Visual Basic® applications, Microsoft Visual C++® programs, or any application that can act as an
ActiveX script container. To see the Question Builder interface, run one of the sample models in \Program Files\Microsoft English
Query\Samples\Models.

To see how to integrate Question Builder into an application, review the ASP applications in \Program Files\Microsoft English
Query\Samples\Applications.

Question Builder provides Help for the user. To include the Question Builder Help, the following files must be in the same path as
Question Builder. By default, when English Query is installed, they are in \Program Files\Common files\System\EQ80:

Mseqgrqb.ocx

Eqqbhlp.chm

Programmatically Retrieving Model Information

The Question Builder object model is a COM-automation interface used to programmatically retrieve information about an
English Query model.

See Also

Automatic Clarification of Questions

Question Builder Object Model

Redistributing the English Query Run-time DLLs

Sample Applications and Client Interfaces

English Query (SQL Server 2000)

Automatic Clarification of Questions
The automatic clarification enhancements to English Query provide a way for a client application to automatically clarify certain
classes of ambiguous questions when the user cannot or does not wish to provide the needed clarification. Although not all
questions can be automatically clarified, these types of clarification questions can be automatically clarified for the user.

Proper Noun Clarification

Proper noun clarifications determine the entity to which an unknown proper noun refers, for example:

Question: How many awards did John Fortune win?

A movie:

SELECT * FROM movies WHERE name = 'John Fortune'

An actor:

SELECT * FROM actors WHERE fname = 'John' and lname = 'Fortune'

Unique ID Clarification

Unique ID clarifications determine the entity to which an unknown ID refers, for example:

Question: Show the total sales for 423.

Clarification question: Which of these do you mean by "423"?

A customer:

SELECT * FROM customers WHERE id = 423

An employee:

SELECT * FROM employees WHERE id = '423'

Name/ID Clarification

Name/ID clarifications determine whether an unknown word refers to the name or ID of the specified entity, for example:

Question: What did customer Smith order?

Clarification question: Which of these do you mean by "Smith"?

The customer whose name is Smith:

SELECT * FROM customers WHERE name = 'Smith'

The customer whose ID is Smith:

SELECT * FROM customers WHERE id = 'SMITH'

Measurement Clarification

Measurement clarifications determines the value parameters used by an adjective of a specified entity, for example:

Question: List the old salespeople.

Clarification question: An old salesperson is a salesperson whose age is over ___

SELECT average(age) FROM salespeople

See Also

Adding Question Builder to an English Query Application

Testing an English Query Model

English Query (SQL Server 2000)

Run-Time Environment for English Query Applications
At run-time, an end user of an English Query Web-based application connects to a Web page through Microsoft® Internet
Explorer (or another Web browser), and enters a question. Internet Explorer then passes the question to Microsoft Internet
Information Services (IIS), along with the URL of the Active Server Pages (ASP) page that executes Microsoft Visual Basic®
Scripting Edition (VBScript).

The script passes the question to English Query for translation into SQL. English Query uses a model of the target database (in the
form of a compiled English Query model) to parse the question and translate it into SQL. The script then retrieves the SQL code,
executes it using Microsoft ActiveX® Data Objects (ADO), and displays the results as HTML.

Note English Query is not compliant with Microsoft Windows® 2000 logo requirements, because it appears within Microsoft
Visual Studio® version 6.0.

See Also

Redistributing the English Query Run-time DLLs

English Query (SQL Server 2000)

Redistributing the English Query Run-time DLLs
When including English Query capability in an application, the English Query run-time DLLs accompany the application. The
exception to redistributing the English Query DLLs occurs when the English Query application is deployed on a Web server. In this
case, the English Query run-time DLLs only need to be installed on the Web server.

Mseqgrqb.ocx and Mseqgrqb.cab are Microsoft® ActiveX® controls used to enhance the use of English Query models. For
applications deployed to a Web site, end users can download these files from the site. It is neither necessary nor permissible to
allow end users to download the English Query system DLLs from the Web.

Redistributing the English Query run-time DLLs involves copying all of the English Query DLLs and registering the necessary DLLs
when the application is installed. If you need to redistribute the English Query DLLs, all users of English Query must be licensed
Microsoft SQL Server™ users. Because the application usually accesses SQL Server data, each English Query user must have a
SQL Server client access license.

You can redistribute the files shown in this table with an English Query application.

File name Description
Mseqole.dll English Query Server object model
Mseqbase.dll English Query supplemental file
Mseqsql.dll English Query supplemental file
Mseqmsg.dll English Query supplemental file
Mseqconn.dll English Query supplemental file
Mseqcore.eqd English Query supplemental file
Mseqgrqb.ocx English Query Question Builder ActiveX control
Mseqgrqb.cab English Query cabinet file containing Mseqgrqb.ocx, the Help

file (.chm); and the .inf file that tells Microsoft Internet Explorer
where to copy the files, how to register the .ocx file, and how
to uninstall the control.

When English Query is installed, these files are installed by default in the \Program Files\Common Files\System\EQ80 directory.
Before registering the files, the English Query application or Setup installs them in this common directory or creates the directory
if it does not exist. The compiled English Query application (.eqd) (for example, Northwind.eqd) is copied to the end user's
computer. By default, the .eqd file is located in the same directory that is used by the rest of the application.

Registering the Necessary Files

Both Mseqole.dll and Mseqgrqb.ocx must be registered using the Regsvr32.exe utility:

To register Mseqole.dll, use "\path to the dll\Mseqole.dll". For example:

Regsvr32 "\Program Files\Common Files\System\EQ80\Mseqole.dll"

To register Mseqgrqb.ocx, use "\path to the location of the ActiveX controls\Mseqgrqb.ocx". For example:

Regsvr32 "\Program Files\Common Files\System\EQ80\Mseqgrqb.ocx"

If you do not want the end users to see the dialog box that confirms successful registration, use the /s (silent) switch:

Regsvr32 "\Program Files\Common Files\System\EQ80\Mseqole.dll" /s

If you want to clean up the end users' registries when English Query is uninstalled, use the /u (uninstall) switch:

Regsvr32 "\Program Files\Common Files\System\EQ80\Mseqole.dll" /u

See Also

Run-Time Environment for English Query Applications

English Query (SQL Server 2000)

Sample Applications and Client Interfaces
English Query includes several sample applications and sample client interfaces, which you can modify for your own applications.

Sample English Query Models

English Query includes several sample models in the following folders in \Program Files\Microsoft English
Query\Samples\Models:

\Pubs

Contains a sample English Query model for the Microsoft® SQL Server™ pubs sample database.

\Northwind

Contains a model for the Northwind sample database, distributed with SQL Server version 7.0 and SQL Server 2000.

\FoodMart

Contains a model for the FoodMart sample OLAP database, distributed with SQL Server OLAP Services version 7.0, and
FoodMart 2000, distributed with SQL Server 2000 Analysis Services.

Sample Client User Interfaces

English Query includes several sample client user interfaces, which can be modified to create your own English Query
applications. These interfaces appear in \Program Files\Microsoft English Query\Samples\Applications in the following locations:

\ASP

Contains a complete Active Server Pages (ASP) sample application for English Query. It requires Microsoft Internet
Information Server version 3.0 or later.

\VB

Contains a sample Microsoft Visual Basic® application for English Query. It requires Visual Basic version 6.0 or later and
either the PivotTable or FlexGrid control.

\VC

Contains a sample Microsoft Visual C++® application for English Query. It requires Visual C++ version 6.0 or later and
either the PivotTable or FlexGrid control.

The ASP application includes a setup file, as well as an implementation of Question Builder.

The Visual Basic and Visual C++ sample applications use either the PivotTable or the FlexGrid control to display the results of
Multidimensional Expression (MDX) queries. If the sample applications display the results of MDX queries in a Pivot Table (a
Microsoft Office 2000 Web component), an MDX wrapper is used. At run-time, the sample application detects which of the
following dynamic-link libraries (.dll) or ActiveX controls (.ocx) are installed on your computer.

To display the query results in a Pivot Table, the following files must be registered.

File Description
Msowc.dll This DLL contains the PivotTable control and is installed with

Microsoft Office 2000.
Owcmdx.dll This DLL contains the MDX wrapper and is installed with English

Query.

If the PivotTable control is not installed, the sample applications use the FlexGrid control version 6.0 and Microsoft ActiveX Data
Objects (Multidimensional) (ADO MD) version 2.5 to display the query results.

To display the query results using the FlexGrid control, the following files must be registered:

File Description
Msflxgrd.ocx This file contains the FlexGrid control.
Msadomd.dll This DLL is required to use ADO MD 2.5.

See Also

Compiling an English Query Application

Deploying an English Query Application

Redistributing the English Query Run-time DLLs

Run-Time Environment for English Query Applications_

English Query (SQL Server 2000)

Analysis Services in English Query
Microsoft® SQL Server™ 2000 Analysis Services (formerly OLAP Services) is now integrated with English Query. Analysis
Services is a middle-tier server for online transaction processing (OLTP).

Analysis Services includes a powerful server that constructs multidimensional cubes of data for analysis and provides rapid client
access to cube information. The source data for Analysis Services is commonly stored in data warehouses in a relational database.

Using Analysis Services with English Query

With the integration of Analysis Services and English Query, client applications can produce answers to users' questions in either
a multidimensional display or in traditional SQL rows.

Using Analysis Services also enhances the performance of queries processed by English Query.

When an English Query model has been enabled for Analysis Services, entities and relationships can be associated with OLAP
cube information. The English Query Model Editor now includes an explicit representation of OLAP cube dimensions, levels,
properties, measures, and facts.

The following example shows the resulting query and Multidimensional Expressions (MDX) of the English question "Show me the
sales for stores in California for 1996 through 1998" that is run against the sample FoodMart 2000 database:

WITH SET set_1 AS 'filter([Time].[Year].members, [Time].currentmember.name>="1996"
 AND [Time].currentmember.name<="1998")'
 MEMBER Measures.[Unit Sales] AS 'sum(set_1, Measures.[Unit Sales])'
SELECT {Measures.[Unit Sales]} ON COLUMNS,
 filter([Store].[Store Name].members, ancestor([Store].currentmember, [Store].[Store State]).name="CA") ON ROWS
 FROM [Sales]

For more information about Analysis Services, see Analysis Services Overview.

See Also

Enabling Analysis Services for an English Query Model

English Query (SQL Server 2000)

Naming Entities in the OLAP Project Wizard
The OLAP Project Wizard automatically creates entities and relationships for OLAP cube objects. The OLAP Project Wizard
suggests a set of entities and relationships for all dimensions, levels, properties, measures, and the one fact table for the cube.

Entities are named according to the dimension, level, measure, property, or cube to which they are associated. The singular form
of the object name is used for dimension, level, property, and cube entities, and the plural form is used for measures.

If two entities have the same name, the object type is added to the entity that is being created. For example, because fact entities
are created last, if the cube and the fact entities have the same name, the fact entity name is <cube name> fact.

To avoid badly named entities, such as time or date (which would cause problems for the English Query engine), the entity name
of any time dimension is <cube name> <dimension name>.

OLAP object Description of generated entity
Dimension Entity created for dimension if the dimension has more than one

level.
Level Entity created for each level unless the level appears in time

dimension.
Measure Entity created for each measure.
Property Entity created for each member property of each level.
Fact Entity created for the single fact table associated with each cube.

The entity name is based on the cube name. If there is a name
collision in this name, then entity is <cube name> <fact>.

Naming Sample

From the FoodMart 2000 sample database, the OLAP Project Wizard creates entities such as:

store

store country

store state

store city

sales time (Because this is a time dimension, no entities are created for its levels.)

product

product family

product department

product category

product subcategory

brand name

product name

customer

country

state

city

customer name

gender

age

income

media type (Because this dimension is one level, no entities are created for it. An entity is created for a single level in the

Promotion Media dimension.)

sale (The cube name in singular form is the entity name associated with the fact table.)

unit sale

store cost

store sale

sales count

store sales net

English Query (SQL Server 2000)

Creating Relationships in the OLAP Project Wizard
If there is more than one level in a dimension, the OLAP Project Wizard creates relationships between a dimension's entity and
the entities for each level in the dimension. In the example in which Customer is the dimension and the levels under it are
Country, State, City, and Customer Name, the following relationships are created:

Trait phrasings on the dimension-level relationships (dimension entity has lowest level entity) and on the level-level
relationships (lower level entity has higher level entity). For example:

customers have cities is a dimension-level relationship, where customers is the dimension entity, and cities is the
lowest level entity.

Cities have states is a level-level relationship, where cities is the lower-level entity, and states is the higher-level
entity.

Preposition phrasings on those relationships in which the lower-level entities are in higher-level entities. For example:
cities are in states, where cities is the lower-level entity and states is the higher-level entity.

Preposition phrasings on those relationships in which the dimensions are in lower-level entities. For example:
customers are in cities, where customers is the dimension entity and cities is the lower-level entity.

A name or ID relationship between the dimension entity and for the lowest-level of the dimension. For example:
customer names are the names of customers where customer name is the lowest-level entity, and customers is
the dimension entity.

Relationship Sample

Here are a few relationships created by the OLAP Project Wizard:

sale

sales have unit sales (fact to measures)

sales have store costs

sales have store sales

store

stores names are the names of stores (dimension to bottom level)

stores have sales (dimension to fact)

stores have store managers (dimension to properties)

product

product names are the names of products (dimension to bottom level)

products have sales (dimension to fact)

products have brand names

sale time (a single entity is proposed for the time dimension)

sale times have sales

promotion media

promotion medias have sales

promotion

promotions have sales

customer

customer names are the names of customers (dimension to bottom level)

customers have sales (dimension to fact)

customers have customer genders (dimension to properties)

education level

education levels have sales

gender

genders have sales

marital status

marital statuses have sales

yearly income

yearly incomes have sales

English Query (SQL Server 2000)

Level-Level Relationships
Users may want to ask questions about relationships between any combination of level entities in a dimension hierarchy. This can
be accomplished by creating the minimum number of relationships necessary to allow a connection from any entity to any other
entity, given the restriction that only two relationships can be used. Start by creating a relationship from each level entity to the
next highest level entity. In the Customer dimension example, the following trait phrasing and preposition phrasing relationships
are necessary:

customers names are the names of customers

customers have cities, customers are in cities

cities have states, cities are in states

states have countries, states are in countries

With the addition of customers have states, customers are in states relationship, users can ask the question, "What stores are in
the United States?"

English Query (SQL Server 2000)

Additional Relationships
Additional relationships depend on the number of level entities that exist. These additional relationships include the relationships
between level and dimensions entities and property entities, levels and dimensions and the cube fact entity, and between
measures and the cube fact entity.

Level and Dimensions Entities and Property Entities

If the property entity is located at the bottom level of a dimension entity, create a relationship between the dimension entity and
the property. If the property entity is not located at the bottom level of the dimension entity, create a relationship between the
entity for the level containing the property and the property entity itself.

Levels and Dimensions and the Cube Fact Entity

Relationships are created between level and dimension entities and the entity associated with the cube's fact table. Although the
fact table entity has relationships to each level entity of each dimension and each dimension entity, relationships are not created
between the fact entity and the bottom-most level of a multilevel dimension, the name/ID level. For example, the following
relationships and phrasings can occur between level (cities, states, and countries) and dimension entities (customer) and the cube
fact entity (sales):

customers have sales

cities have sales

states have sales

countries have sales

Relationships Between Measures and the Cube Fact Entity

The OLAP Project Wizard also creates relationships between the OLAP cube fact entity and the entities of all of the cube's
measures. Using the previous example, the following relationships would be created between the cube fact entity (sales) and the
measures (unit sales, store cost, store sales, sales count, and store sales net):

sales have unit sales

sales have store cost

sales have store sales

sales have sales count

sales have store sales net

English Query (SQL Server 2000)

Analysis Services Requirements for (All) Level
English Query generates Multidimensional Expressions (MDX) queries with the assumption that each dimension has an (All) level.
The (All) level is the top level of a dimension that aggregates all the members of all the levels with no breakdown. When you
create a dimension using Cube Editor, the dimension has an (All) level by default.

If a dimension does not have an (All) level, users may not get the results they expect. For example, for the question, "show the
total unit sales", English Query generates this query:

SELECT{Measures.[UnitSales]} ON COLUMNS
FROM Sales

If the [Time] dimension has an (All) level, this query retrieves the sum of the unit sales for all of the years in the [Time] level. For
example, if the [Time] dimension contains the years 1997 and 1998, this query retrieves the combined total sales for 1997 and
1998. However, if the [Time] dimension does not have an (All) level, this query retrieves the unit sales for only the first year in the
[Time] dimension. For example, if the [Time] dimension contains the years 1997 and 1998, this query retrieves the total unit sales
for 1997 only.

For more information about OLAP cubes and MDX syntax, see Introduction to Cubes and Basic MDX.

English Query (SQL Server 2000)

Object Model Reference
English Query has three object models:

Authoring Object Model

Can be used to automate the compilation of applications and enable alternate authoring tools.

Engine Object Model

Can be used by any application that uses COM objects, such as a Microsoft® Visual Basic® or Microsoft Visual C++® program,
or an Active Server Pages (ASP)-based Web site. The objects, methods, properties, and parameters can be used to edit Microsoft
Visual Basic Scripting Edition (VBScript) sample scripts or to create scripts that make the compiled application available from ASP.

Question Builder Object Model

Can be used to form questions that are semantically and syntactically valid for their applications.

English Query (SQL Server 2000)

Authoring Object Model
The English Query Authoring object model is a Component Object Model (COM) object that provides the following services for an
English Query application:

Loading and saving an application

Validating an object

Compiling the English Query connection into an English Query application (.eqd)

Object creation and manipulation are performed by means of the XMLDOMDocument object model.

Automating the Compile Process of Your Applications

When you add records to the target database, you can rebuild the English Query application from your English Query project so
that it reflects the vocabulary changes. This simplifies the application building process and provides a way to automate rebuilding
applications to check for errors.

Enabling Alternative Authoring Tools

Using the Authoring object model, you can create and edit objects programmatically and compile and build the Semantic
Modeling Format (SMF) file. In addition, in conjunction with the XMLDOMDocument object model, you can provide an
alternative authoring environment in which other database access tools, such as Microsoft® Access, can be used with English
Query.

English Query (SQL Server 2000)

Authoring Object Model Diagram

English Query (SQL Server 2000)

Authoring Objects Summary
This summary lists all the objects in the Authoring object model and their properties and methods.

EQError Object

Properties/Methods

Properties/Methods Description
FileName Property Indicates the file name and/or the full

path to the file with the error of the
current English Query project (*.eqp).

ErrorCode Property Indicates a unique error code for the
error.

LineNumber Property Displays the number of the line
containing the error.

ObjectID Property Contains the ID of the object that
generated the error.

ObjectType Property Indicates the type of object that
generated the error.

Severity Property Indicates the type of error.
Text Property Specifies the text of the error.

EQModel Object

Properties/Methods

Properties/Methods Description
Errors Property Contains the collection of errors

generated from the last method used on
the EQModel object.

AutoModel Method Creates default entities and relationships
for tables and entities in the current
project.

Build Method Builds an English Query model from the
current project.

Compile Method Performs all object validation checks on
each object in the project and returns a
collection of errors, warnings, and the
number of occurrences.

CreateProject Method Clears the contents of the current project
and sets the name of the new project.

FetchDatabaseStructure Method Retrieves schema information, such as
tables or cubes, from the database by
using the given Microsoft® ActiveX®
Data Objects (ADO) Connection object.

OpenModule Method Loads the contents of a English Query
module (*.eqm) and appends it to the
existing XMLDOMDocument object.

OpenProject Method Clears the XMLDOMDocument object
and then loads a project (*.eqp),
including modules (*.eqm), into the
XMLDOMDocument object.

OpenProjectFromXMLDOM Method Loads the contents of the current project
from an XMLDOMDocument object.

SaveModule Method Saves the contents of a module in the
XMLDOMDocument object into the
specified module file.

SaveProject Method Saves the contents of the
XMLDOMDocument object in semantic
modeling format (SMF) into project
(*.eqp) and module (*.eqm) files.

SaveProjectAsSMF Method Saves the contents of the current project
to a merged single SMF (.smf) file.

English Query (SQL Server 2000)

EQError Object
EQError Object

Contains information about an error, warning, or hint generated during the compilation of an EQModel object or during the
loading of a project or module.

Properties

FileName Indicates the file name and/or the full path to the file
with the error or the loaded English Query project
(*.eqp).

ErrorCode Indicates a unique error code for the error.
LineNumber Displays the number of the line containing the error.
ObjectID (EQError Object) Contains the ID of the object that generated the error.
ObjectType (EQError Object) Indicates the type of object that generated the error.
Severity Indicates the type of error.
Text (EQError Object) Specifies the text of the error.

English Query (SQL Server 2000)

EQModel Object
EQModel Object

An object into which model information is loaded when a model is compiled and built.

Note EQModel is used as the default name of the project file when using one of the Save methods.

Properties

Errors Contains the collection of errors generated from the
last method used on the EQModel object.

English Query (SQL Server 2000)

Authoring Properties Summary
This table lists all the properties in the Authoring object model and the objects to which they apply.

Property Applies to
ErrorCode Property

FileName Property

LineNumber Property

ObjectID Property

ObjectType Property

Severity Property

Text Property

EQError Object

Errors Property EQModel Object

English Query (SQL Server 2000)

ErrorCode Property
ErrorCode Property

Indicates a unique error code for the error.

Applies To

EQError Object

English Query (SQL Server 2000)

Errors Property
Errors Property

Contains the collection of errors generated from the last method used on the EQModel object.

Applies To

EQModel Object

English Query (SQL Server 2000)

FileName Property
FileName Property

Indicates the file name and/or the full path to the file with the error or the loaded English Query project (*.eqp).

Applies To

EQError Object

English Query (SQL Server 2000)

LineNumber Property
LineNumber Property

Displays the number of the line containing the error.

Applies To

EQError Object

English Query (SQL Server 2000)

ObjectID Property (EQError Object)
ObjectID Property (EQError Object)

Contains the ID of the object that generated the error.

Applies To

EQError Object

English Query (SQL Server 2000)

ObjectType Property (EQError Object)
ObjectType Property (EQError Object)

Indicates the type of object that generated the error.

Applies To

EQError Object

English Query (SQL Server 2000)

Severity Property
Severity Property

Indicates the type of error.

Applies To

EQError Object

English Query (SQL Server 2000)

Text Property (EQError Object)
Text Property (EQError Object)

Specifies the text of the error.

Applies To

EQError Object

English Query (SQL Server 2000)

Authoring Methods Summary
This table lists the methods of the Authoring object model and the objects to which they apply.

Method Applies to
AutoModel Method

Build Method

Compile Method

CreateProject Method

FetchDatabaseStructure Method

OpenModule Method

OpenProject Method

OpenProjectFromXMLDOM Method

SaveModule Method

SaveProject Method

SaveProjectAsSMF Method

SaveProjectFile Method

SaveProjectToXMLDOM Method

EQModel Object

English Query (SQL Server 2000)

AutoModel Method
AutoModel Method

Creates default entities and relationships for database objects in the current project.

Applies To

EQModel Object

English Query (SQL Server 2000)

Build Method
Build Method

Builds an English Query compiled (*.eqd) model from the current project.

Applies To

EQModel Object

English Query (SQL Server 2000)

Compile Method
Compile Method

Performs all object validation checks on each object in the project and returns a collection of any errors, warnings, and hints that
are found.

Applies To

EQModel Object

English Query (SQL Server 2000)

CreateProject Method
CreateProject Method

Clears the contents of the current project and sets the name of the new project.

Applies To

EQModel Object

English Query (SQL Server 2000)

FetchDatabaseStructure Method
FetchDatabaseStructure Method

Retrieves schema information, such as tables or cubes, from the SQL or Microsoft® SQL Server™ 2000 Analysis Services (OLAP)
database by using the given Microsoft ActiveX® Data Objects (ADO) connection object.

Applies To

EQModel Object

English Query (SQL Server 2000)

OpenModule Method
OpenModule Method

Loads the contents of an English Query module (*.eqm) and appends it to the existing XMLDOMDocument object.

Applies To

EQModel Object

English Query (SQL Server 2000)

OpenProject Method
OpenProject Method

Clears the XMLDOMDocument object, and then loads an English Query project (*.eqp) or Semantic Modeling Format (SMF) file
(*.smf).

Applies To

EQModel Object

English Query (SQL Server 2000)

OpenProjectFromXMLDOM Method
OpenProjectFromXMLDOM Method

Loads the contents of the current project from an XMLDOMDocument object.

Applies To

EQModel Object

English Query (SQL Server 2000)

SaveModule Method
SaveModule Method

Saves the contents of a module in the XMLDOMdocument object into the specified module file.

Applies To

EQModel Object

English Query (SQL Server 2000)

SaveProject Method
SaveProject Method

Saves the contents of the XMLDOMDocument object into the English Query project (*.eqp) and English Query module (*.eqm)
files. The SaveProject method retrieves data from the XMLDOMDocument object and divides the data into the main project file
and multiple module files.

Applies To

EQModel Object

English Query (SQL Server 2000)

SaveProjectAsSMF Method
SaveProjectAsSMF Method

Saves the contents of the current project to a merged single Semantic Modeling Format (SMF) file (*.smf).

Applies To

EQModel Object

English Query (SQL Server 2000)

SaveProjectFile Method
SaveProjectFile Method

Saves the content of the English Query project file (*.eqp) in the XMLDOMDocument object to the specified file.

Applies To

EQModel Object

English Query (SQL Server 2000)

SaveProjectToXMLDOM Method
SaveProjectToXMLDOM Method

Saves a copy of the current project into an XMLDOMDocument object.

Applies To

EQModel Object

English Query (SQL Server 2000)

Authoring Sample Script
This sample script creates a new English Query model using the Authoring object model. This script:

Loads the schema from the database.

Runs the project wizard and uses the AutoModel method to create entities and relationships.

Saves the project and then builds it into an English Query Domain (.eqd) file.

You must have a system data source name (DSN) that points to a Northwind database, or alternately, you can specify any
database from which you want to create a model. You can copy this sample code and paste it directly into a Microsoft® Visual
Basic® Scripting Edition (VBScript) file:

Dim adoConn, szEqmID, szEqm, szEqp, szEqd, szPath, szDatabase
szPath = "c:\temp\Northwind" 'Specify a location to store the files that are created on your local
computer.This path must already exist.
szDatabase = "Northwind" 'Specify a system DSN on your local computer.

Public EQModel
On Error Resume Next
Set EQModel = CreateObject("MSEQ.Model")

'Derive all necessary parameters. ...
szEqp = szPath + "\" + szDatabase + ".eqp"
szEqmID = szDatabase + ".eqm"
szEqm = Left(szEqp, Len(szEqp) - 1) + "m"
szEqd = Left(szEqp, Len(szEqp) - 1) + "d"
Set adoConn = CreateObject("ADODB.Connection")
adoConn.Open (szDatabase) 'Looks for a system DSN.
CheckForErrors

EQModel.FetchDatabaseStructure adoConn, szEqmID 'Import the database schema.
CheckForErrors

Const EQOBJMODULE = 10 'This constant matches constant defined in the object model.
EQModel.AutoModel EQOBJMODULE, szEqmID, szEqmID 'Project wizard creates entities and relationships.
CheckForErrors

EQModel.SaveModule szEqmID, szEqm 'Save the .eqm file.
CheckForErrors

EQModel.SaveProjectFile szEqp 'Save the .eqp file.
CheckForErrors

EQModel.Build szEqd, adoConn 'Build the project to make an .eqd file.
CheckForErrors

Sub CheckForErrors()
'Check Visual Basic Err object to see whether the method call failed.
If err.Number <> 0 Then
MsgBox ("OM Method called failed: " & err.Description)
WScript.Quit (1)
End If

'Check the EQError object to see whether EQ errors, warnings, or hints are generated.
Dim EqSevInfo, EqSevWarning, EqSevError, colErrors, szMsg
EqSevInfo = 0: EqSevWarning = 1: EqSevError = 2: szMsg = ""
'Report only the Warnings and Errors, skip the Info hints.
Set colErrors = EQModel.Errors
For i = 0 To colErrors.Count - 1
Select Case colErrors(i).Severity
 Case EqSevInfo
 szMsg = szMsg + "Hint: " & colErrors(i).Text + Chr(10)
 Case EqSevWarning
 szMsg = szMsg + "Warning: " & colErrors(i).Text + Chr(10)
 Case EqSevError
 szMsg = szMsg + "Error: " & colErrors(i).Text + Chr(10)
End Select
Next
If szMsg <> "" Then
MsgBox (szMsg)

End If
End Sub

English Query (SQL Server 2000)

Engine Object Model
English Query objects can be used to deploy English Query applications on the Internet. Objects, methods, properties, and
parameters are available for editing a sample script written in Microsoft® Visual Basic® Scripting Edition (VBScript) or for
creating a new script that makes the compiled application available from Active Server Pages (ASP). For more information about
this run-time system, see Deploying an English Query Application.

English Query is a multithreaded, automation server. In addition to VBScript (including the Microsoft ActiveX® Server
Framework), it can be called from Microsoft Visual Basic® version 4.0 or later, or any other programming language that supports
ActiveX controls.

The English Query engine object model does not presuppose any particular language, although the English Query server currently
supports only the English language.

Parsing English Queries

The English Query server provides the parsing service. English Query translates English questions or requests about data in a
database server into query statements. For example, it converts the question, "How many products did we ship in 1996?" into a
query statement. Likewise, it converts a request, such as "Show me the suppliers this year," into query statements. Therefore, an
end user can easily retrieve information stored in the database without having to know the physical structure of the database.

English Query provides other responses to English questions, such as requests for clarification and error checking and handling.

In addition, when it parses an English question or request, the English Query server can respond with:

A collection of database queries to execute.

An answer in English.

A request for end-user clarification.

A parsing error (for example, an error caused by references to concepts not defined in the model).

After the English Query server parses an English question or request into one of these responses, the client acts on it. For example,
English Query parses the question and may return a collection of database queries. The client then executes the queries. The client
is also responsible for all interactions with the end user, including getting the initial English Query request from the user and
displaying the data resulting from executing a query to the end user.

Note Using the database query generated by the English Query server depends on the availability of a compatible database
interface, such as Microsoft ActiveX Data Objects (ADO).

English Query Engine Objects and Collections

Some English Query engine object types have a corresponding collection. A collection includes all the existing objects of that type.
For example, the Commands collection contains all open Command objects. Each collection is owned by another object at the
next higher level in the hierarchy. For example, the Commands collection is owned by the CommandResponse object.

The table shows the five categories of English Query engine objects and collections.

Object category Object/Collection name
Domain management DomainInfo object

QuestionBuilder object
End-user sessions EndCommands collection

Session object
Command responses AnswerCmd object

Command object
CommandResponse object
Commands collection
DomainCmd object
EntityInfo object
FieldInfo object
ObjectReference object
Pivot object
QueryCmd object
Response object
Substitution object

Parsing error responses ErrorResponse object
Response object

Clarification responses Listlnput object
Response object
StaticInput object
TextInput object
UserInput object
UserClarifyResponse object
UserInputs collection

English Query (SQL Server 2000)

Engine Object Model Diagram

English Query (SQL Server 2000)

Engine Objects Summary
This summary lists all the objects in the Engine Object model and the properties and methods for each.

AnswerCmd Object

Properties/Methods

Properties/Methods Description
Answer Property Provides the English answer text to a question that

cannot be answered with data in the database.

Command Object

Properties/Methods

Properties/Methods Description
CmdID Property Contains an integer or symbolic constant

representing a command, such as: a query, an answer,
a user request for help, or a user request to exit
command.

CommandResponse Object

Properties/Methods

Properties/Methods Description
Restatement Property An English interpretation of the end user's question or

request.
Type Property Contains an integer or a symbolic constant

representing a type of response object.

DomainCmd Object

Properties/Methods

Properties/Methods Description
CmdID Property Contains an integer or a symbolic constant

representing a command, such as: a query, an answer,
a user request for help, or a user request to exit
command.

CommandName Property Contains a string representing a
command relationship.

DomainInfo Object

Properties/Methods

Properties/Methods Description
Closed Property Indicates the open and closed status of the

DomainInfo object.
FullName Property Indicates the path of the DomainInfo object.
QuestionBuilder Property Contains the Question Builder information (the

QuestionBuilder object) for the DomainInfo object.
Close Method Closes the DomainInfo object.

ErrorResponse Object

Properties/Methods

Properties/Methods Description

Description Property Contains a description of the error to be displayed to
the end user.

Type Property Contains an integer or a symbolic constant
representing a type of response object.

HelpCmd Object

Properties/Methods

Properties/Methods Description
HelpText Property Specifies Help text of the application for an entity.
HelpType Property Contains an integer representing the type of object for

which Help is requested.
ObjectID Property Contains the ID of the object for which Help is being

requested.
ObjectType Property Contains an integer representing the type of object for

which Help is requested.

Listlnput Object

Properties/Methods

Properties/Methods Description
Caption Property Specifies the recommended caption for one of three

user input types: ListInput, StaticInput, and
TextInput.

Items Property Specifies the array of strings in the list from which the
user chooses.

ItemCount Property Specifies the number of items in the list from which
the end user chooses.

Selection Property Specifies the end user's selection from the list.

ObjectReference Object

Properties/Methods

Properties/Methods Description
ObjectID Property
(ObjectReference Object)

Contains the ID of the object that is being referenced.

ObjectType Property
(ObjectReference Object)

Contains an integer representing the type of object
that is being referenced.

Parameter Object

Properties/Methods

Properties/Methods Description
FieldCount Property Contains the number of fields in the Fields property

array.
Fields Property Contains an array of the fields in the specified query

command, which yields the values of a parameter of a
command relationship.

ParameterID Property Contains an integer identifying a parameter of a
command relationship.

ParameterType Property Contains an integer representing a parameter for a
command relationship.

QueryCommand Property Contains an index of the query command in the
QueryCommands collection that yields the values of
a parameter of a command relationship.

Units Property Contains a description that qualifies the parameter
value, such as percent or dollars.

Value Property Contains a parameter value representing a parameter
for a command relationship.

QueryCmd Object

Properties/Methods

Properties/Methods Description
DBMSType Property
(QueryCmd Object)

Specifies the type of database used for the database
query.

DisplayRows Property The number of rows the client displays to answer the
end user's question.

DisplayToUser Property Specifies whether to display the results of the query to
the user or to execute the database query without
displaying the results.

IgnoreError Property Specifies whether the client ignores database errors
resulting from executing the command.

QueryText Property Returns the query text to execute. Use instead of the
SQL property.

SQL Property Returns the query text to execute.
TableCaption Property Specifies the suggested English caption for the result

table.
TrueFalseAnswer Property Specifies whether the client shows TRUE or FALSE as

an answer instead of a table.

Response Object

Properties/Methods

Properties/Methods Description
Type Property Contains an integer or a symbolic constant

representing a type of response object.

Session Object

Properties/Methods

Properties/Methods Description
ClarifySpellingErrors
Property

Indicates whether English Query prompts end users
for clarification of spelling errors or corrects spelling
errors without prompting.

DBMSType Property
(Session Object)

Specifies the type of database used in this session.

DBMSVersion Property Specifies the version of the database used in this
session.

DomainInfo Property Contains the model information (the DomainInfo
object) for the Session object.

FallbackDBMSType Property Specifies the type of database to use if the primary
database is unavailable.

FallbackDBMSVersion
Property

Specifies the version of the database to use if the
primary database is unavailable.

RetainContext Property Retains user context between questions for the
Session object.

ClearContext Method Clears the conversation context.
InitDomain Method Creates (if necessary) the DomainInfo object and

attaches it to the Session object.
ParseRequest Method Parses an English question or request into a

collection of database queries or other response
types for the attached model.

SetDBMS Method Sets the database type and version for which the
query is generated.

SetFallbackDBMS Method Sets the alternate database type and version for
which a query is generated if none can be generated
for the primary database.

StaticInput Object

Properties/Methods

Properties/Methods Description
Caption Property Specifies the recommended caption for one of three

user input types: ListInput, StaticInput, and
TextInput.

TextInput Object

Properties/Methods

Properties/Methods Description
Caption Property Specifies the recommended caption for one of three

user input types: ListInput, StaticInput, and
TextInput.

Text Property Specifies the text end users provide to clarify their
questions, statements, or errors.

UserClarifyResponse Object

Properties/Methods

Properties/Methods Description
Type Property Contains an integer or a symbolic constant

representing a type of response object.
Reply Method Continues parsing the current English request into a

Response object after the end user has responded
to a request for clarification.

UserInput Object

Properties/Methods

Properties/Methods Description
Type Property Contains an integer or a symbolic constant

representing a type of user input object: ListInput,
StaticInput, or TextInput object.

English Query (SQL Server 2000)

AnswerCmd Object
AnswerCmd Object

Contains the answer to a question that is not in the database (for example, "What time is it?"). English Query can answer the
question directly, without submitting the database query to the client to be executed.

Properties

Answer Property Provides the English answer text to a question that
cannot be answered with data in the database.

English Query (SQL Server 2000)

Command Object
Command Object

Provides the client with information about what data or command the end user requested, such as a query, an answer, a user
request for help, or a user request to exit command.

Properties

CmdID Property Contains an integer or a symbolic constant
representing a command, such as a query, an
answer, a user request for help, or a user request
to exit.

English Query (SQL Server 2000)

CommandResponse Object
CommandResponse Object

Returned from the Session.ParseRequest method when the English request is parsed into a collection of commands, which
includes database commands.

Collections

Commands Collection Contains commands for the client to execute.

English Query (SQL Server 2000)

DomainCmd Object
DomainCmd Object

Provides the client with information about the command relationship that the end user requested.

Collections

Parameters Collection A collection of Parameter objects that are
parameters for a command relationship.

QueryCommands Collection A collection of QueryCmd objects, which contain
the queries that must be executed by the client
application to obtain the parameters for a
command relationship.

English Query (SQL Server 2000)

DomainInfo Object
DomainInfo Object

Encapsulates information about the entities and relationships in a particular model. It represents the information in the English
Query application (*.eqd) file. You do not use this information directly.

Properties

Closed Property Indicates the open and closed status of the
DomainInfo object.

FullName Property Indicates the path of the DomainInfo object.
QuestionBuilder Property Contains the Question Builder information (the

QuestionBuilder object) for the DomainInfo
Object.

English Query (SQL Server 2000)

ErrorResponse Object
ErrorResponse Object

Returned from Session.ParseRequest method when the English request was not understood.

Properties

Description Property Contains a description of the error to be displayed to
the end user.

English Query (SQL Server 2000)

HelpCmd Object
HelpCmd Object

Provides the Help for an English Query application, entity, or relationship.

Properties

HelpText Property Specifies Help text of the application for an entity.
HelpType Property Contains an integer representing the type of

object for which Help is requested.
ObjectID Property (HelpCmd
Object)

Contains the ID of the object for which Help is
being requested.

ObjectType Property (HelpCmd
Object)

Contains an integer representing the type of
object for which Help is requested.

Remarks

The HelpCmd object also has all the properties of a Command object.

English Query (SQL Server 2000)

ListInput Object
ListInput Object

Specifies a list from which end users can choose an option to clarify their question.

Properties

Caption Property Specifies the recommended caption for one of three
user input types: ListInput, StaticInput, and
TextInput.

Items Property Specifies the array of strings in the list from which the
user chooses.

ItemCount Property Specifies the number of items in the list from which the
end user chooses.

Selection Property Specifies the end user's selection from the list.

English Query (SQL Server 2000)

ObjectReference Object
ObjectReference Object

Refers to an object in the model (for example, an entity or relationship).

Properties

ObjectID Property
(ObjectReference Object)

Contains the ID of the object that is being referenced.

ObjectType Property
(ObjectReference Object)

Contains an integer representing the type of object that
is being referenced.

English Query (SQL Server 2000)

Parameter Object
Parameter Object

A parameter for a command relationship.

Collections

Parameters Collection A collection of Parameter objects, which are
parameters for a command relationship.

English Query (SQL Server 2000)

QueryCmd Object
QueryCmd Object

Instructs the client to execute a database query.

Properties

DisplayRows Property Specifies the number of rows the client displays to
answer the end user's question.

DisplayToUser Property Specifies whether to display the results of the query to
the user or to execute the database query without
displaying the results.

DBMSType Property Specifies the type of database used for the database
query.

IgnoreError Property Specifies whether the client ignores database errors
resulting from executing the command.

QueryText Property Returns the query text to execute.
SQL Property Returns the query text to execute.
TableCaption Property Specifies the suggested English caption for the result

table.
TrueFalseAnswer Property Specifies whether the client shows True or False as an

answer instead of a table.

English Query (SQL Server 2000)

Response Object
Response Object

Returned from the Session.ParseRequest method when the English request is parsed into a collection of database queries.

Properties

Type Property (Response Object) Contains an integer or a symbolic constant
representing a type of Response object.

English Query (SQL Server 2000)

Session Object
Session Object

Represents the current state of the end-user session with the English Query server.

Properties

ClarifySpellingErrors Property Indicates whether English Query prompts end
users for clarification of spelling errors or corrects
spelling errors without prompting.

DBMSType Property (Session
Object)

Specifies the type of the primary database used in
this session.

DBMSVersion Property Specifies the version of the database used in this
session.

DomainInfo Property Contains the model information (the
DomainInfo object) for the Session object.

FallbackDBMSType Property Specifies the type of database to use if a query
cannot be generated for the primary database.

FallbackDBMSVersion Property Specifies the version of the database to use if a
query cannot be generated for the primary
database.

RetainContext Property Retains user context between questions for the
Session object.

English Query (SQL Server 2000)

StaticInput Object
StaticInput Object

Specifies static text to display to the user during clarification.

Properties

Caption Property Specifies the recommended caption for one of three
user input types: ListInput, StaticInput, and
TextInput.

English Query (SQL Server 2000)

TextInput Object
TextInput Object

Specifies the text that end users have entered to clarify their questions.

Properties

Caption Property Specifies the recommended caption for one of three user
input types: ListInput, StaticInput, and TextInput.

Text Property Specifies the text end users provide to clarify their
questions, statements, or errors.

English Query (SQL Server 2000)

UserClarifyResponse Object
UserClarifyResponse Object

A clarification response object that is returned from Session.ParseRequest when English Query needs end-user input before it
can complete parsing a request.

Collections

UserInputs Collection A collection of UserInput object.

English Query (SQL Server 2000)

UserInput Object
UserInput Object

One of three user-clarification input objects: a list input, static text, or text input object.

Properties

Type Property Contains an integer or a symbolic constant that
represents a type of user input object: a ListInput,
StaticInput, or TextInput object.

English Query (SQL Server 2000)

Engine Properties Summary
The table shows the properties of the Engine object model and the objects to which they apply.

Property Applies to
Answer Property AnswerCmd Object
Caption Property Listlnput Object

StaticInput Object

TextInput Object

ClarifySpellingErrors Property Session Object
Closed Property DomainInfo Object
CmdID Property Command Object

DomainCmd Object

CommandName Property DomainCmd Object
DBMSType Property QueryCmd Object
DBMSType Property Session Object
DBMSVersion Property Session Object
Description Property ErrorResponse Object
DisplayRows Property QueryCmd Object
DisplayToUser Property QueryCmd Object
DomainInfo Property Session Object
FallbackDBMSType Property FallbackDBMSType Property
FallbackDBMSVersion Property FallbackDBMSVersion Property
FieldCount Property Parameter Object
Fields Property Parameter Object
FullName Property DomainInfo Object
HelpText Property HelpCmd Object
HelpType Property HelpCmd Object
IgnoreError Property QueryCmd Object
ItemCount Property Listlnput Object
Items Property Listlnput Object
ObjectID Property HelpCmd Object
ObjectID Property ObjectReference Object
ObjectType Property HelpCmd Object
ObjectType Property ObjectReference Object
ParameterID Property Parameter Object
ParameterType Property Parameter Object
QueryCommand Property Parameter Object
QueryText Property QueryCmd Object
QuestionBuilder Property DomainInfo Object
Restatement Property CommandResponse Object
RetainContext Property Session Object
Selection Property Listlnput Object
SQL Property QueryCmd Object
TableCaption Property QueryCmd Object
Text Property TextInput Object
TrueFalseAnswer Property QueryCmd Object

Type Property CommandResponse Object

ErrorResponse Object

Response Object

UserClarifyResponse Object

Type Property UserInput Object
Units Property Parameter Object
Value Property Parameter Object

English Query (SQL Server 2000)

Answer Property
Answer Property

Provides the English answer text to a question that can be answered without executing a query.

Applies To

AnswerCmd Object

English Query (SQL Server 2000)

Caption Property
Caption Property

Specifies the recommended caption for one of three user input types: ListInput, StaticInput, and TextInput.

Applies To

ListInput Object

StaticInput Object

TextInput Object

English Query (SQL Server 2000)

ClarifySpellingErrors Property
ClarifySpellingErrors Property

Indicates whether English Query prompts end users for clarification of spelling errors or corrects spelling errors without
prompting.

Applies To

Session Object

English Query (SQL Server 2000)

Closed Property
Closed Property

Indicates the open and closed status of the DomainInfo object.

Applies To

DomainInfo Object

English Query (SQL Server 2000)

CmdID Property
CmdID Property

Contains an integer or symbolic constant representing a command, such as a query, an answer, a user request for help, or a user
request to exit.

Applies To

Command Object

DomainCmd Object

English Query (SQL Server 2000)

CommandName Property
CommandName Property

Contains a string that represents a command relationship.

Applies To

DomainCmd Object

English Query (SQL Server 2000)

DBMSType Property (QueryCmd Object)
DBMSType Property (QueryCmd Object)

Specifies the type of database used for the database query.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

DBMSType Property (Session Object)
DBMSType Property (Session Object)

Specifies the type of the primary database used in this session.

Applies To

Session Object

English Query (SQL Server 2000)

DBMSVersion Property
DBMSVersion Property

Specifies the version of the database used in this session.

Applies To

Session Object

English Query (SQL Server 2000)

Description Property (ErrorResponse Object)
Description Property (ErrorResponse Object)

Contains a description of the error to be displayed to the end user.

Applies To

ErrorResponse Object

English Query (SQL Server 2000)

DisplayRows Property
DisplayRows Property

The number of rows the client displays to answer the end user's question.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

DisplayToUser Property
DisplayToUser Property

Specifies whether to display the results of the query to the user or to execute the database query without displaying the results.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

DomainInfo Property
DomainInfo Property

Contains the model information (the DomainInfo object) for the Session object.

Applies To

Session Object

English Query (SQL Server 2000)

FallbackDBMSType Property
FallbackDBMSType Property

Specifies the type of database to use if a query cannot be generated for the primary database.

Applies To

Session Object

English Query (SQL Server 2000)

FallbackDBMSVersion Property
FallbackDBMSVersion Property

Specifies the version of the database to use if a query cannot be generated for the primary database.

Applies To

Session Object

English Query (SQL Server 2000)

FieldCount Property
FieldCount Property

Contains the number of fields in the Fields property array.

Applies To

Parameter Object

English Query (SQL Server 2000)

Fields Property (Parameter Object)
Fields Property (Parameter Object)

Contains an array of the fields in the specified query command, which yields the values of a parameter of a
command relationship.

Applies To

Parameter Object

QueryCmd Object

English Query (SQL Server 2000)

FullName Property
FullName Property

Indicates the path of the DomainInfo object.

Applies To

DomainInfo Object

English Query (SQL Server 2000)

HelpText Property (HelpCmd Object)
HelpText Property (HelpCmd Object)

Specifies Help text of the application for an entity.

Applies To

HelpCmd Object

English Query (SQL Server 2000)

HelpType Property
HelpType Property

Contains an integer that represents the type of object for which Help is requested.

Applies To

HelpCmd Object

English Query (SQL Server 2000)

IgnoreError Property
IgnoreError Property

Specifies whether the client should ignore database errors resulting from executing the command.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

ItemCount Property
ItemCount Property

Specifies the number of items in the list from which the end user chooses.

Applies To

ListInput Object

English Query (SQL Server 2000)

Items Property
Items Property

Specifies the array of strings in the list from which the user chooses.

Applies To

ListInput Object

English Query (SQL Server 2000)

ObjectID Property (HelpCmd Object)
ObjectID Property (HelpCmd Object)

Contains the ID of the object for which Help is being requested.

Applies To

HelpCmd Object

English Query (SQL Server 2000)

ObjectID Property (ObjectReference Object)
ObjectID Property (ObjectReference Object)

Contains the ID of the object in the model to which there is a reference.

Applies To

ObjectReference Object

English Query (SQL Server 2000)

ObjectType Property (HelpCmd Object)
ObjectType Property (HelpCmd Object)

Contains an integer representing the type of object for which Help is requested.

Applies To

HelpCmd Object

English Query (SQL Server 2000)

ObjectType Property (ObjectReference Object)
ObjectType Property (ObjectReference Object)

Contains an integer representing the type of object that is being referenced.

Applies To

ObjectReference Object

English Query (SQL Server 2000)

ParameterID Property
ParameterID Property

Contains an integer identifying a parameter of a command relationship.

Applies To

Parameter Object

English Query (SQL Server 2000)

ParameterType Property
ParameterType Property

Contains an integer representing a parameter for a command relationship.

Applies To

Parameter Object

English Query (SQL Server 2000)

QueryCommand Property
QueryCommand Property

Contains an index of the query command in the QueryCommands collection that yields the values of a parameter of a
command relationship.

Applies To

Parameter Object

English Query (SQL Server 2000)

QueryText Property
QueryText Property

Returns the query text to execute.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

QuestionBuilder Property
QuestionBuilder Property

Contains the Question Builder information (the QuestionBuilder object) for the DomainInfo object.

Applies To

DomainInfo Object

English Query (SQL Server 2000)

Restatement Property
Restatement Property

An English interpretation of the end user's question or request.

Applies To

CommandResponse Object

English Query (SQL Server 2000)

RetainContext Property
RetainContext Property

Retains user context between questions for the Session object.

Applies To

Session Object

English Query (SQL Server 2000)

Selection Property
Selection Property

Specifies the end user's selection from the list.

Applies To

ListInput Object

English Query (SQL Server 2000)

SQL Property
SQL Property

Returns the query text to execute.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

TableCaption Property
TableCaption Property

Specifies the suggested English caption for the result table.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

Text Property (TextInput Object)
Text Property (TextInput Object)

Specifies the text end users provide to clarify their questions, statements, or errors.

Applies To

TextInput Object

English Query (SQL Server 2000)

TrueFalseAnswer Property
TrueFalseAnswer Property

Specifies whether the client should show TRUE or FALSE as an answer instead of a table.

Applies To

QueryCmd Object

English Query (SQL Server 2000)

Type Property (Response Object)
Type Property (Response Object)

Contains an integer or a symbolic constant representing a type of Response object.

Applies To

Response Object

English Query (SQL Server 2000)

Type Property (UserInput Object)
Type Property (UserInput Object)

Contains an integer or symbolic constants that represent a type of user input object: a ListInput, StaticInput, or TextInput
object.

Applies To

UserInput Object

English Query (SQL Server 2000)

Units Property
Units Property

Contains a description that qualifies the parameter value, such as percent or dollars.

Applies To

Parameter Object

English Query (SQL Server 2000)

Value Property
Value Property

Contains a parameter value that represents a parameter for a command relationship.

Applies To

Parameter Object

English Query (SQL Server 2000)

Engine Methods Summary
The table shows the methods in the Engine object model and the objects to which they apply.

Methods Applies to
ClearContext Method Session Object
Close Method DomainInfo Object
InitDomain Method Session Object
ParseRequest Method Session Object
Reply Method UserClarifyResponse Object
SetDBMS Method Session Object
SetFallbackDBMS Method Session Object

English Query (SQL Server 2000)

ClearContext Method
ClearContext Method

Clears the conversation context.

Applies To

Session Object

English Query (SQL Server 2000)

Close Method
Close Method

Closes the DomainInfo object.

Applies To

DomainInfo Object

English Query (SQL Server 2000)

InitDomain Method
InitDomain Method

Creates a Domain object if necessary and attaches it to the Session object.

Applies To

Session Object

English Query (SQL Server 2000)

ParseRequest Method
ParseRequest Method

Parses an English question or request into a collection of database queries or other response types for the attached model.

Applies To

Session Object

English Query (SQL Server 2000)

Reply Method
Reply Method

Continues parsing the current English request into a Response object after the end user has responded to a request for
clarification.

Applies To

UserClarifyResponse Object

English Query (SQL Server 2000)

SetDBMS Method
SetDBMS Method

Sets the primary database type and version for which the query is generated.

Applies To

Session Object

English Query (SQL Server 2000)

SetFallBackDBMS Method
SetFallBackDBMS Method

Sets the alternate database type and version for which a query is generated if none can be generated for the primary database.

Applies To

Session Object

English Query (SQL Server 2000)

Engine Collections Summary
This summary lists all the collections in the Engine Object model and the properties and methods for each.

Commands Collection

Properties/Methods

Properties/Methods Description
Count Property The number of commands in the collection.
Index Method Returns a command from the collection by ordered

position.

EndCommands Collection

Properties/Methods

Properties/Methods Description
Count Property The number of commands in the collection.
Index Method Returns a command from the collection by ordered

position.

Parameters Collection

Properties/Methods

Properties/Methods Description
Count Property The number of commands in the collection.
Index Method Returns a command from the collection by ordered

position.

QueryCommands Collection

Properties/Methods

Properties/Methods Description
Count Property The number of commands in the collection.
Index Method Returns a command from the collection by ordered

position.

UserInputs Collection

Properties/Methods

Properties/Methods Description
Count Property The number of commands in the collection.
Index Method Returns a command from the collection by ordered

position.

English Query (SQL Server 2000)

Commands Collection
Commands Collection

Contains commands for the client to execute.

Properties

Count Property Indicates the number of commands in the
Commands, EndCommands, Parameters,
QueryCommands, and UserInputs collections.

English Query (SQL Server 2000)

EndCommands Collection
EndCommands Collection

A collection of commands that should be executed by the client to clean up when ending a session.

Properties

Count Property The number of commands in the Commands,
EndCommands, Parameters, QueryCommands,
and UserInputs collections.

English Query (SQL Server 2000)

Parameters Collection
Parameters Collection

A collection of Parameter objects, which are parameters for a command relationship.

Properties

Count Property The number of commands in the Commands,
EndCommands, Parameters, QueryCommands, and
UserInputs collections.

English Query (SQL Server 2000)

QueryCommands Collection
QueryCommands Collection

A collection of QueryCmd objects, which contain the queries that must be executed by the client application to obtain the
parameters for a command relationship.

Properties

Count Property The number of commands in the Commands,
EndCommands, Parameters, QueryCommands, and
UserInputs collections.

English Query (SQL Server 2000)

UserInputs Collection
UserInputs Collection

A collection of UserInput objects.

Properties

Count Property The number of commands in the Commands,
EndCommands, Parameters, QueryCommands, and
UserInputs collections.

English Query (SQL Server 2000)

Engine Collections Properties Summary
The table shows the properties in the Engine object model and collections to which they apply.

Property Applies to
Count Property Commands Collection

EndCommands Collection

Parameters Collection

QueryCommands Collection

UserInputs Collection

English Query (SQL Server 2000)

Count Property
Count Property

Indicates the number of commands in the Commands, EndCommands, Parameters, QueryCommands, and UserInputs
collections.

Applies To

Commands Collection

EndCommands Collection

Parameters Collection

QueryCommands Collection

UserInputs Collection

English Query (SQL Server 2000)

Engine Collections Methods Summary
The table shows the methods in the Engine object model and the collections to which they apply.

Methods Applies to
Index Method Commands Collection

EndCommands Collection

Parameters Collection

QueryCommands Collection

UserInputs Collection

English Query (SQL Server 2000)

Index Method (Engine Object Model)
Index Method (Engine Object Model)

Returns a command from the Commands, EndCommands, Parameters, QueryCommands, and UserInputs collection by
ordered position.

Applies To

Commands Collection

EndCommands Collection

Parameters Collection

QueryCommands Collection

UserInputs Collection

English Query (SQL Server 2000)

Question Builder Object Model
The Question Builder object model is a COM-automation interface used to programmatically retrieve information about an
English Query model. Question Builder allows the end user to dynamically browse model-specific knowledge and to view
questions based on this knowledge.

Use the Question Builder in your application so an end user can find:

Information in the database.

Basic relationships represented in the database.

English phrases that can be used to ask questions about basic relationships.

Question Builder helps end users form questions that are semantically and syntactically valid by allowing them to:

Explore the contents in the model.

Question Builder provides a list of entities, their corresponding attributes, and the relationships in which they participate.
For each entity, Question Builder displays:

The singular and plural forms.

Any corresponding synonyms.

Help information that was specified by the Model Editor.
Generate both general questions and questions about a specific instance of an entity.

See Also

Adding Question Builder to an English Query Application

English Query (SQL Server 2000)

Question Builder Object Model Diagram

English Query (SQL Server 2000)

Question Builder Objects Summary
This summary lists all the objects in the Question Builder object model and the properties and methods for each.

QBEntity Object

Properties/Methods

Properties/Methods Description
Description Property Specifies a brief description of the entity or

relationship.
HelpText Property Specifies the Help information for the entity that is

specified when the model is created.
InstanceValues Property Specifies the known instance values for the entity.
IsMajor Property Specifies whether the entity stands alone or is an

attribute of another entity.
ObjectID Property Specifies the object identifier for the entity or

relationship.
ObjectType Property Specifies whether the object is an entity or

relationship.
Parent Property Specifies the parent entity if the entity is an attribute

of another entity.
Plural Property Specifies the plural form of the main noun

describing the entity.
Singular Property Specifies the singular form of the main noun

describing the entity.
SummaryText Property Specifies a list, in the English sentence form, of

relationships in which the entity participates.
Synonyms Property Specifies the array of strings that are synonyms for

the entity.
Value Property Sets the specific instance values that will be used

during the generation of questions.
FindTemplates Method Specifies a collection of templates whose subject is

the entity itself (for QBEntity) or the object
identification (for QBRelationship).

GetCommonRelationships
Method

Returns the relationships that involves two entities:
the QBEntity and the entity represented by the
ObjectID.

QBRelationship Object

Properties/Methods

Properties/Methods Description
Description Property Specifies a brief description of the entity or

relationship.
HelpText Property Specifies the Help information for the entity that is

specified when the model is created.
ObjectID Property Specifies the object identifier for the entity or

relationship.
ObjectType Property Specifies whether the object is an entity or

relationship.

QBTemplate Object

Properties/Methods

Properties/Methods Description
Description Property Specifies a brief description of the question template.

GetExamples Method Returns all possible question examples for a
relationship in which the entity is the subject of the
question.

QuestionBuilder Object

Properties/Methods

Properties/Methods Description
FindObject Method Returns an entity or relationship based on object

identification.

English Query (SQL Server 2000)

QBEntity Object
QBEntity Object

An entity in the application model.

Properties

Description Property Specifies a brief description of the entity or relationship.
HelpText Property Specifies the Help information for the entity that is

specified when the model is created.
InstanceValues Specifies the known instance values for the entity.
IsMajor Property Specifies whether the entity stands alone or is an

attribute of another entity.
ObjectID Property Specifies the object identifier for the entity or

relationship.
ObjectType Property Specifies whether the object is an entity or relationship.
Parent Property Specifies the parent entity if the entity is an attribute of

another entity.
Plural Property Specifies the plural form of the main noun describing

the entity.
Singular Property Specifies the singular form of the main noun describing

the entity.
SummaryText Property Specifies a list of relationships in which the entity

participates. The list is in the form of English sentences.
Synonyms Property Specifies the array of strings that are synonyms for the

entity.
Values Property Sets the particular instance values that will be used

during the generation of questions.

English Query (SQL Server 2000)

QBRelationship Object
QBRelationship Object

A relationship in the application model.

Properties

Description Property Specifies a brief description of the entity or relationship.
HelpText Property Specifies the Help information for the entity that is

specified when the model is created.
ObjectID (QBEntity Object,
QBRelationship Object)
Property

Specifies the object identifier for the relationship.

ObjectType Property Specifies whether the object is an entity or relationship.

English Query (SQL Server 2000)

QBTemplate Object
QBTemplate Object

Represents a question template that can be used to help a user construct a question about concepts in the model.

Properties

Description Property Specifies a brief description of the question template.

English Query (SQL Server 2000)

QuestionBuilder Object
QuestionBuilder Object

The root object for Question Builder.

Methods

FindObject Method Returns an entity or relationship based on object
identification.

English Query (SQL Server 2000)

Question Builder Properties Summary
This table lists the objects and their properties in the Question Builder object model.

Property Applies to
Description Property QBEntity Object

QBRelationship Object

Description Property QBTemplate Object
HelpText Property QBEntity Object

QBRelationship Object

InstanceValues Property QBEntity Object
IsMajor Property QBEntity Object
ObjectID Property QBEntity Object

QBRelationship Object

ObjectType Property QBEntity Object

QBRelationship Object

Parent Property QBEntity Object
Plural Property QBEntity Object
Singular Property QBEntity Object
SummaryText Property QBEntity Object
Synonyms Property QBEntity Object
Values Property QBEntity Object

English Query (SQL Server 2000)

Description Property (QBEntity Object, QBRelationship Object)
Description Property (QBEntity Object, QBRelationship Object)

Specifies a brief description of the entity or relationship.

Applies To

QBEntity Object

QBRelationship Object

English Query (SQL Server 2000)

Description Property (QBTemplateObject)
Description Property (QBTemplateObject)

Specifies a brief description of the question template.

Applies To

QBTemplate Object

English Query (SQL Server 2000)

HelpText Property (QBEntity Object, QBRelationship Object)
HelpText Property (QBEntity Object, QBRelationship Object)

Specifies the Help information for the entity that is specified when the model is created.

Applies To

QBEntity Object

QBRelationship Object

English Query (SQL Server 2000)

InstanceValues Property
InstanceValues Property

Specifies the known instance values for the QBEntity object.

Applies To

QBEntity Object

English Query (SQL Server 2000)

IsMajor Property
IsMajor Property

Specifies whether the entity stands alone or is an attribute of another entity.

Applies To

QBEntity Object

English Query (SQL Server 2000)

ObjectID Property (QBEntity Object, QBRelationship Object)
ObjectID Property (QBEntity Object, QBRelationship Object)

Specifies the object identifier for the entity or relationship.

Applies To

QBEntity Object

QBRelationship Object

English Query (SQL Server 2000)

ObjectType Property (QBEntity Object, QBRelationship Object)
ObjectType Property (QBEntity Object, QBRelationship Object)

Specifies the kind of object, either an entity or relationship.

Applies To

QBEntity Object

QBRelationship Object

English Query (SQL Server 2000)

Parent Property
Parent Property

Specifies the parent entity if the entity is an attribute of another entity.

Applies To

QBEntity Object

English Query (SQL Server 2000)

Plural Property
Plural Property

Specifies the plural form of the main noun describing the entity.

Applies To

QBEntity Object

English Query (SQL Server 2000)

Singular Property
Singular Property

Specifies the singular form of the main noun describing the entity.

Applies To

QBEntity Object

English Query (SQL Server 2000)

SummaryText Property
SummaryText Property

Specifies a list, in the English sentence form, of relationships in which the entity participates.

Applies To

QBEntity

English Query (SQL Server 2000)

Synonyms Property
Synonyms Property

Specifies the array of strings of synonyms for the entity.

Applies To

QBEntity Object

English Query (SQL Server 2000)

Value Property
Value Property

Sets the specific instance values that will be used in generating questions.

Applies To

QBEntity Object

English Query (SQL Server 2000)

Question Builder Methods Summary
This table lists the objects and their associated methods in the Question Builder object model.

Method Applies to
FindObject Method QuestionBuilder Object
FindTemplates Method QBEntity Object
GetCommonRelationships Method QBEntity Object
GetExamples Method QBTemplate Object

English Query (SQL Server 2000)

FindObject Method
FindObject Method

Returns an entity or relationship depending on object identification.

Applies To

QuestionBuilder Object

English Query (SQL Server 2000)

FindTemplates Method
FindTemplates Method

Returns a collection of templates whose subject is the entity itself.

Applies To

QBEntity Object

English Query (SQL Server 2000)

GetCommonRelationships Method
GetCommonRelationships Method

Returns the relationships that involves two entities: the QBEntity object and the entity represented by the ObjectID property.

Applies To

QBEntity Object

English Query (SQL Server 2000)

GetExamples Method
GetExamples Method

Returns all possible examples of questions for a relationship in which the entity is the subject of the question.

Applies To

QBTemplate Object

English Query (SQL Server 2000)

Question Builder Collections Summary
This summary lists all the collections in the Question Builder object model and the properties and methods for each.

Entities Collection

Properties/Methods
Properties/Methods Description

Index Method Returns entities, relationships, and templates.

RelatedEntities Collection

Properties/Methods
Properties/Methods Description

Index Method Returns entities, relationships, and templates.

RelatedRelationships Collection

Properties/Methods
Properties/Methods Description

Index Method Returns entities, relationships, and templates.

Relationships Collection

Properties/Methods
Properties/Methods Description

Index Method Returns entities, relationships, and templates.

Templates Collection

Properties/Methods
Properties/Methods Description

Index Method Returns entities, relationships, and templates.

English Query (SQL Server 2000)

Entities Collection
Entities Collection

A collection of entities.

Applies To

QuestionBuilder Object

English Query (SQL Server 2000)

RelatedEntities Collection
RelatedEntities Collection

A collection of entities that participate in the relationship.

Applies To

QBRelationship Object

English Query (SQL Server 2000)

Relationships Collection
Relationships Collection

A collection of relationships.

Applies To

QuestionBuilder Object

English Query (SQL Server 2000)

RelatedRelationships Collection
RelatedRelationships Collection

A collection of ObjectIDs in relationships in which the entity participates.

Applies To

QBEntity Object

English Query (SQL Server 2000)

Templates Collection
Templates Collection

A collection of question templates.

Applies To

QBRelationship Object

English Query (SQL Server 2000)

Question Builder Collections Methods Summary
This table lists the collections and their associated methods in the Question Builder object model.

Method Applies to
Index Method Entities Collection

RelatedEntities Collection

RelatedRelationships Collection

Relationships Collection

Templates Collection

English Query (SQL Server 2000)

Index Method (Question Builder Object Model)
Index Method (Question Builder Object Model)

Returns entities, relationships, and templates from the Question Builder collections: Entities, RelatedEntities,
RelatedRelationships, Relationships, and Templates.

Applies To

Entities Collection

RelatedEntities Collection

RelatedRelationships Collection

Relationships Collection

Templates Collection

English Query (SQL Server 2000)

How To
These topics provide step-by-step instructions for performing tasks while creating English Query projects, models, and
applications.

For more information, see Developing and Deploying English Query Application.

For information about building an English Query application step-by-step, see the English Query Tutorials. These scenario-based
lessons are available from the English Query Start menu or from the Microsoft® Visual Studio® Help menu when an English
Query project is opened.

English Query (SQL Server 2000)

Working with Projects
English Query can create new projects by automatically extracting the schema or structure of a database using the SQL Project
Wizard or the OLAP Project Wizard.

You can also begin with an empty project, add tables, fields, joins, and other data objects, and then create the entities and
relationships needed for the model.

A project can be modified by:

Adding an existing or new project.

Deleting a project.

Adding or deleting a data source.

Adding or deleting modules.

Modifying the project properties.

English Query (SQL Server 2000)

How to add a new project to a solution
A new project can be added to an existing solution. A solution is a collection of projects and dependent projects. When adding a
project to a solution, the current model is not affected by the new project.

To add a new project to a solution

1. On the File menu, choose Add Project.

2. Choose the Project wizard to use for creating the project or choose Empty Project.

3. Enter a name for the new project in the Name box.

4. Enter a location for the new project in the Location box.

Note To select another location for the new project, click Browse.

5. To add the project to the current solution, choose Add to current solution to add the project to the current solution or
without adding it to the current solution, choose Close current solution.

6. Click Open and proceed as if creating a new project.

For additional information about solutions, on the Help menu click Index and then enter solution.

See Also

How to create a new project

How to create a new project using the SQL Project wizard

How to create a project using the OLAP Project wizard

English Query (SQL Server 2000)

How to add an existing project to a solution
An existing project can be added to a solution. A solution is a collection of projects and dependent projects. When adding a project
to a solution, the current model is not affected by the new project.

To add an existing project to a solution

1. On the File menu, click Add Project.

2. Choose the project to add from the list shown on the Existing or Recent tab.

3. To add the project to the current solution, choose Add to current solution or choose Close current solution to add a
project without adding it to the current solution.

4. Click Open.

For additional information about solutions, on the Help menu click Index and then enter solution.

English Query (SQL Server 2000)

How to create a new project
A new project can be created using the SQL Project or OLAP Project wizards, or from an empty project.

To create a new project

1. On the File menu, click New Project.

2. On the New tab of the New Project dialog box, enter a name and location for the project.

3. Double-click one of following three options:

SQL Project Wizard

Connect to the appropriate SQL database and then choose the tables to automatically create an English Query SQL
model based on selected entities and relationships from the database. To create additional entities and relationships
use the commands on the Model menu.

OLAP Project Wizard

Connect to the appropriate Microsoft® SQL Server™ 2000 Analysis Services database and then choose the cubes to
automatically create an English Query OLAP model based on selected entities and relationships from the structures
(cubes including dimensions, levels, measures, properties, and facts). To create additional entities and relationships by
use the commands on the Model menu.

Empty Project

Create a new, blank project. Connect to the appropriate database. Then specify the database structure manually by
creating database objects using the Model menu, or by selecting tables and views with the Import Tables command
on the Model menu.

4. On the File menu, choose Save All to save all of the components of the project.

To save only the module, choose Save <module name.eqm>.

Note If the project is not saved before it is closed, all of the work will be lost when it is closed. A project is not saved until
one of the Save commands is selected.

See Also

How to create a new project using the SQL Project wizard

How to create a project using the OLAP Project wizard

OLAP Project Wizard

Project Wizards

SQL Project Wizard

English Query (SQL Server 2000)

How to create a new project using the SQL Project wizard
How to create a new project using the SQL Project wizard

The SQL Project Wizard helps you to create an English Query model from a SQL database. It extracts the structure of a database
and creates and defines the entities and relationships for an English Query application.

To create a project using the SQL Project Wizard

1. On the File menu, click New Project.

2. In the Name box of the New Project dialog box, enter a name and select a location for the project.

3. Double-click SQL Project Wizard.

4. Connect to the database using the Data Link Properties dialog box.

5. On the Provider tab, double-click the OLE DB provider to use.

6. On the Connection tab, follow the on-screen instructions for the specific provider and click OK.

Note The options on the Connection tab vary with the provider chosen.

7. In the New Database Tables and Views dialog box, select the table or tables from the database to make accessible to the
model and then click OK.

Either double-click the available table or tables or select the table and click the > button to make it accessible to the model.

Note To include all of the tables, click the >> button. To remove one or more tables from the Selected list, double-click the
tables or select the ones to remove and click the < button. To remove all of the tables from the Selected list, click the >>
button.

8. In the Project Wizard, select or clear the entities and relationships to be includes or removes from the project.

Expand the entities to view the relationships that can be automatically created from the SQL database structure. Click an
entity, relationship, or phrasing icon to edit the proposed entities or relationships.

9. When all of the desired entities and relationships have been selected, click OK.

Now, refine the model and address the questions that users are expected to ask.

See Also

How to create a new project

Project Wizards

SQL Project Wizard

Table/New Table Dialog Box

English Query (SQL Server 2000)

How to create a project using the OLAP Project wizard
How to create a project using the OLAP Project wizard

The OLAP Project Wizard helps to create an English Query application from an Microsoft® SQL Server™ 2000 Analysis Services
database. Use the OLAP Project Wizard to create either an Analysis Services project, including extracting the structure of a
database and creating and defining the entities and relationships for an English Query application.

To create a project using the OLAP Project Wizard

1. On the File menu, click New Project.

2. In the Name box of the New Project dialog box, enter a name and select a location for the project.

3. Double-click OLAP Project Wizard.

4. Connect to the database using the Select An Analysis Server dialog box, enter the name of the server and select the
database to use.

5. In the New OLAP Cubes dialog box, select the OLAP cube or cubes to be made accessible to the model.

Either double-click the available cube or cubes or select the cube and click the > button.

Note To include all of the cubes, click the >> button. To remove one or more cubes from the Selected list, select the ones
to remove and click the < button. To remove all of the cubes from the Selected list, click the << button.

6. In the Project Wizard, select or clear the entities and relationships to be included or removed from the project.

Expand the entities to view the relationships that can be automatically created from the Analysis Services database structure.

7. When the entities and relationships are selected, click OK.

You can further refine the model by adding entities and relationships as needed to answer more of the questions users are
expected to ask.

See Also

How to create a new project

New <Database Object> Dialog Box

OLAP Project Wizard

Project Wizards

English Query (SQL Server 2000)

How to remove a database from a project
When a database is no longer needed for the model, it can be removed from the project.

To remove the database

1. Select the project from which the database is to be removed.

2. On the Project menu, click <Project name> Properties.

3. On the Data Connection tab, clear the Enable SQL or Enable OLAP check box.

Note A database cannot be removed if there are any semantic objects that refer to that database.

See Also

Data Connection Tab (Project Properties Dialog Box)

Project Properties Dialog Box

English Query (SQL Server 2000)

How to remove a project from the solution
If a project no longer works for the application that is being developed, it can be removed from the solution.

To remove a project

1. In the Project Explorer window, right-click the project to be deleted and then click Remove Project.

2. When asked if the project should be removed from the solution, click Yes.

3. When asked if the changes to the file or files should be saved, click Yes to save the changes and No if the changes should
not be saved.

English Query (SQL Server 2000)

How to create and modify project properties
The following properties can be specified for the entire English Query project:

Properties that determine how a model uses the database.

Properties that apply to the entire English Query application, such as loading the vocabulary from the database, loading
sample data for entities, limiting the number of words to be added to the dictionary for each field or level, and setting a date
to use for regression tests. This also includes setting language options such as asking a user about spelling mistakes,
dealing with unknown information, and setting the dates for a fiscal year.

Properties that define defaults for ambiguous relationships.

To set the project options

1. On the Project menu, click <project name> Properties.

2. Choose the various tabs, as needed, and make the changes.

3. When all of the changes have been made, click OK.

See Also

Data Connection Tab (Project Properties Dialog Box)

Default Relationships Tab (Project Properties Dialog Box)

English Tab (Project Properties Dialog Box)

Project Properties Dialog Box

English Query (SQL Server 2000)

How to add a module
An existing or new module can be added to the project. Using modules allows a model to be created once and used multiple
times. Modules not only save time, but also provide consistency when creating multiple applications that have similar functions.

To add a module

1. In the Project Explorer window, right-click the project to which the module is to be added, and then click Add Module.

2. Choose a new or existing module.

If adding a new module, enter a name for it in the Name box.

3. Click Open.

English Query (SQL Server 2000)

How to remove a module
If a module is no longer needed in the project, it can be removed.

To remove a module

Right-click the module, and then click Remove <module name>.

English Query (SQL Server 2000)

How to modify the data source in a project
To specify a database other than the one selected when creating a project, change the OLE DB data source.

To modify the data source

1. In the Project Explorer window, double-click the module file (.eqm) for which the data source is to be changed.

Note The Model Editor becomes active and the English Query commands are displayed.

2. On the Project menu, click <project name> Properties.

3. On the Data Connection tab, select or clear the appropriate database connection information.

See Also

Data Connection Tab (Project Properties Dialog Box)

Model Editor

Project Properties Dialog Box

English Query (SQL Server 2000)

Working with Models
After creating a model, refine the model to answer the questions users are expected to ask about the database information.

Refine a model by:

Adding entities and relationships.

Adding or deleting a database connection.

Adding or modifying fields.

English Query (SQL Server 2000)

How to add entities and relationships using the Create
Semantics command
When refining a model, entities and relationships that already exist in the database can be added to the model, either manually or
by using the Create Semantics command.

To add entities and relationships

1. In the Project Explorer window, double-click the module file (.eqm) to the entities and relationships are to be added.

The Model menu appears and the Model Editor becomes active.

2. On the Model menu, click Create Semantics.

3. Select or clear the entities and relationships to add to the project.

Expand the entities to view the relationships that can be automatically created from the database structure. Relationships
where more than one exists can also be expanded.

Note If the Project Wizard is unable to find new entities or relationships to add to the model from the existing tables or
cubes, add tables or cubes from the database to expand the number of questions that can be answered.

See Also

How to add a table

How to add an Analysis Services (formerly OLAP) cube to a model

How to create a new project using the SQL Project Wizard

How to create a project using the OLAP Project Wizard

Model Editor

OLAP Project Wizard

Project Wizards

SQL Project Wizard

English Query (SQL Server 2000)

How to add or change a SQL connection
If the current Microsoft® SQL Server™ 2000 Analysis Services database or current SQL database does not answer all of the
questions that a user might ask, modify the project by adding a new or changing the current SQL database connection. There can
be, at most, one SQL and one Analysis Services database per project.

Note Before adding a SQL connection to an Analysis Services project, make sure that you are a member of the OLAP
Administrators group and the Microsoft Windows NT® 4.0 or Windows® 2000 user group on the server of the Analysis Services
database for which the model is being built. You must have OLAP Administrator permissions to load the tables underlying the
cubes using Decision Support Objects (DSO).

To add or change a SQL connection

1. Select the project to which the database is being added.

2. On the Project menu, click <Project name> Properties.

3. On the Data Connection tab, select Enable SQL if adding a SQL database.

Note Both SQL and Analysis Services databases can be enabled.

4. On the Provider tab of the Data Link Properties dialog box, select the OLE DB provider and then click Next.

5. On the Connection tab, enter or select the server or data source name, the log on information, and the database, and then
click OK.

See Also

Expanding an English Query Model

Data Connection Tab (Project Properties Dialog Box)

Enabling SQL for an English Query Model

Project Properties Dialog Box

English Query (SQL Server 2000)

How to add or change an Analysis Services (formerly OLAP)
connection
If the current SQL database does not answer all of the questions that a user may ask, modify the SQL Project by adding a
Microsoft® SQL Server™ 2000 Analysis Services data connection. Questions that require Multidimensional Expressions (MDX)
can then be answered.

Note There can be, at most, one SQL and one Analysis Services database for each project.

To add or change an Analysis Services connection

1. Select the project to which the Analysis Services database is to be added.

2. On the Project menu, click <Project name> Properties.

3. On the Data Connection tab, select Enable OLAP if adding an Analysis Services database.

Note Both SQL and Analysis Services databases can be enabled.

4. Click Change.

5. In the Select an Analysis Server dialog box, enter the Analysis Services server, select the database, and then click OK.

6. Click OK.

The Analysis Services connection appears in the Project Explorer and Data View windows.

See Also

Expanding an English Query Model

Data Connection Tab (Project Properties Dialog Box)

Enabling Analysis Services for an English Query Model

Project Properties Dialog Box

Select An Analysis Server Dialog Box

English Query (SQL Server 2000)

How to create a mixed model
An English Query application based on a mixed model allows access to the Microsoft® SQL Server™ tables that underlie an OLAP
cube. English Query first attempts to answer the questions using the OLAP cube. If unsuccessful, it then accesses the data in the
underlying SQL Server tables.

To create a mixed model

1. Enable SQL on the Data Connection tab of the Project Properties dialog box.

2. Add any tables that are necessary for the model.

3. Create the entities and relationships needed for the model.

See Also

How to create a relationship using the Canvas pane

How to add a table

How to add or change a SQL connection

How to add tables and views from a SQL data source

How to create an entity

How to create relationships using the Create Relationships command

English Query (SQL Server 2000)

How to delete a field from a model
A field can be deleted from a model when it is no longer needed. Deleting a field from a model does not delete it from the
database table.

To delete a field

1. On the SQL tab, expand Tables, and then double-click the table from which the filed is to be deleted.

2. To select the field to delete, click the far-left gray column for the field.

3. Right-click anywhere in the selected field, and then click Delete Rows.

4. Click OK.

5. If prompted to delete the field, click OK.

6. To delete any entities, joins, phrasing, relationships, or roles that refer to the field, select In addition, delete the following
objects which refer to the field <fieldname> in the Confirm Deletion dialog box.

Note Generally after deleting a field, delete the objects or the project will not compile.

See Also

Model Editor

SQL Tab (Model Editor)

Table/New Table Dialog Box

English Query (SQL Server 2000)

How to edit a field in a model
The properties of a field in an open model can be reviewed and edited. Changes affect the field as it occurs only in the project.
Columns in the database table remain unchanged.

To edit a field

1. On the SQL tab, expand Tables.

2. Double-click the table containing the field to be edited.

3. In the Table\New Table dialog box, select the field by clicking in the gray column to the left of the field name.

4. Review and edit the properties of the field.

Changes can also be made on the Basic and Advanced tabs.

5. When all of the desired changes have been made, click OK.

See Also

Advanced Tab (Table/New Table Dialog Box)

Basic Tab (Table/New Table Dialog Box)

Model Editor

SQL Tab (Model Editor)

Table/New Table Dialog Box

English Query (SQL Server 2000)

Working with Joins
Joins allow an association between a field in one table or view with a field of the same data type in another table or view. Joins
show how the data in one table relates to the data in another table.

By using joins, data from two or more tables or queries based on logical relationships among the tables can be retrieved. Joins
can be added, edited, or deleted to retrieve the data from the database.

English Query (SQL Server 2000)

How to add a join
In English Query, when a new table or view is added to the model, associations between the new table or view and an existing
table or view must be made. The associations are made by adding a join.

To add a join

1. On the SQL tab, expand Tables, and select the table to which the join is added.

2. Expand the table, right-click Joins, and click Add Join.

3. In the New Join dialog box, select the name of the Destination Table for the join.

4. Click Add.

Note If the Add button is not available, select a Destination Table.

5. In the Join Condition dialog box, select the pair of fields to be joined, and click OK.

6. Click Allow outer join if it is necessary to use this join as an outer join.

See Also

Join/New Join Dialog Box

Model Editor

SQL Tab (Model Editor)

English Query (SQL Server 2000)

How to delete a join
Unused joins can be deleted from a model (for example, if a join no longer represents a relationship).

To delete a join

1. Select the SQL tab, and then expand Tables.

2. Expand the table containing the join to be deleted.

3. Expand Joins, right-click the join to be deleted, and then click Delete.

4. When asked to confirm the deletion, click OK.

See Also

Model Editor

SQL Tab (Model Editor)

English Query (SQL Server 2000)

How to edit a join
A database join can be modified (for example, if the fields involved in the join change).

To edit a join

1. On the SQL tab, expand Tables, and expand the table containing the join to be edited.

2. Expand Joins, and then double-click the join to edit.

3. In the Join/New Join dialog, select the join to edit.

4. Click Edit.

5. In the Join Condition box, edit the source table and/or destination table fields, and click OK.

See Also

Join/New Join Dialog Box

Model Editor

SQL Tab (Model Editor)

English Query (SQL Server 2000)

Working with Tables
Existing database tables can be included in a model. Tables can also be deleted, refreshed, or have fields added to them.

English Query (SQL Server 2000)

How to add a field to a table
Include existing database fields in a model one by one. For example, if a field has been added to a table in a database, it can be
made available to and used in an English Query application.

To insert a field in a table

1. On the SQL tab, right-click the table to which a field is to be added and click Add Field.

2. In the Field Name box, enter the field name.

Note Enter the name of each new field on a separate line.

3. Select the Data Type.

4. If the field is to have a caption, enter one in the Caption box.

5. On the Basic tab, choose or enter the data type options.

Note The available options change with the data type selected.

6. On the Advanced tab, choose or enter the options for allowing Null values, denormalization, and aggregation for the
selected field.

See Also

Advanced Tab (Table/New Table Dialog Box)

Basic Tab (Table/New Table Dialog Box)

Model Editor

SQL Tab (Model Editor)

Table/New Table Dialog Box

English Query (SQL Server 2000)

How to add a table
Further expand a model by adding tables to it.

To add a table

1. On the Model menu, select Add Database Object, and then select Add Table.

2. For each new field, enter the name in the Field Name column, select the Data Type, and enter an optional Caption.

3. To choose the fields that constitute the primary key, select the field, right-click on the far left gray column for that field, then
and choose Primary Key.

To select multiple fields at once, press CTRL and click in the far left gray column for each field.

4. On the Basic tab, select or enter the options desired.

Note The available options vary with the Data Type chosen.

5. Click the Advanced tab and set or change the options related to Null values, denormalization, and aggregation.

6. When finished setting the options, click OK.

The table is created with a default name.

7. On the SQL tab, right-click the new table, click Rename.

8. Enter a name for the table and press ENTER.

See Also

Advanced Tab (Table/New Table Dialog Box)

Basic Tab (Table/New Table Dialog Box)

Model Editor

SQL Tab (Model Editor)

Table/New Table Dialog Box

English Query (SQL Server 2000)

How to add tables and views from a SQL data source
Tables or views that exist in the SQL data source can be added to SQL-enabled models.

To add tables from a SQL data source

1. In the Project Explorer window, double-click the module file (.eqm) in the project to the tables are to be added.

The Model Editor specific to that project and the Model menu appear.

2. On the Model menu, click Import Tables.

3. In the Available list of the New Databases Tables and Views dialog box, double-click the table, tables, or views to make
them accessible to the model, and then click OK.

To add all of the tables, click the >> button.

To remove a table, select it from the Selected list, and then click the < button.

See Also

Model Editor

New <Database Object> Dialog Box

English Query (SQL Server 2000)

How to change the table options for a relationship
Change the table options for a relationship to calculate or identify the table that contains all the links to the tables (join table)
represented by entities, or to specify a condition for when the relationship is true.

To change the table options for a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, and then double-click the relationship whose table options are to be changed.

3. On the Database tab, select a table from the Table that contains joins to all entities in this relationship box.

As an alternative, have English Query find that table by clicking Calculate Default Join Table.

4. To specify when the relationship is true, select This relationship is true only when the following SQL condition is true
and enter an appropriate SQL condition.

For example, if the relationship is products are shipped to customers and the SQL condition is a requirement that customers'
credit be approved, type:

Approval= 'T'

5. To have English Query answers generated from the most recent data in the database, select Show most recent data by
default.

See Also

Database Tab (Relationship/New Relationship Dialog Box)

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to delete a table
Sometimes, it is necessary to delete a table and its fields from a project.

Note Deleting a table from a project does not delete it from the database.

To delete a table from a project

1. On the SQL tab, right-click the table to be deleted and click Delete.

2. In the Confirm Deletion dialog box, select In addition, delete the following objects which refer to the table if any
entities, joins, phrasing, relationships, or roles that refer to the table.

Note It is necessary to delete the objects or the project will not compile if the table is missing.

See Also

Model Editor

SQL Tab (Model Editor)

English Query (SQL Server 2000)

How to edit a table
Sometimes it is necessary to review or edit the fields that are part of a model.

Note Changes affect only the table as it is defined in the model, not its structure in the database.

To modify a table

1. On the SQL tab, expand Tables and then double-click the table to modify.

2. Modify the table by adding a field, deleting field, or changing the properties of a field

3. On the Basic tab, select, enter, or change the options.

Note The available options vary with the Data Type chosen.

4. Click the Advanced tab and set or change the options related to Null values, denormalization, and aggregation.

If it is necessary to delete a field, click the far left gray column to select the field, and then press DELETE.

See Also

Advanced Tab (Table/New Table Dialog Box)

Basic Tab (Table/New Table Dialog Box)

How to add a field to a table

How to change the table options for a relationship

Model Editor

Table/New Table Dialog Box

English Query (SQL Server 2000)

How to enable full-text searching for a field
Full-text searches for a field can be enabled if the underlying database supports full-text indexing.

To enable full-text searching

1. In the Model Editor, click the SQL tab.

2. Select the table.

Note After making changes to the full-text index in any tables in the database, refresh the table or tables before proceeding
to step 3.

3. Select the field to be enabled.

4. On the Basic tab, select Full-text indexed.

The Search Type changes to Freetext.

5. Repeat steps 1 through 4 for each field to be included.

6. Click OK.

See Also

Basic Tab (Table/New Table Dialog Box)

Enabling Full-Text Search for an English Query Model

English Query (SQL Server 2000)

How to refresh all tables in a project
Occasionally, it is necessary to refresh the database structure used in a project (for example, if tables or fields have been added to
or deleted from the database).

To refresh the tables in a project

On the Model menu, click Refresh Tables.

English Query (SQL Server 2000)

Working with Entities
Entities are real-world objects, referred to by a noun. They can be a person, place, thing, or idea. In English Query, use entities to
create relationships. To create and refine a model, create, add, delete, or edit the entities.

English Query (SQL Server 2000)

How to add an entity to a relationship
After entities are defined, they can be used to create relationships.

To add an entity to a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the relationship to which the entity is to be added, and click Edit.

3. On the Semantics tab of the New Relationship dialog box, click Add in the Entities section.

4. In the Select Entities dialog box, select an entity that will be involved in the relationship and click OK.

5. Double-click an entity from the list in the Entities.

6. In the Role dialog box, select the desired options.

See Also

How to create an entity

How to delete an entity from a relationship

How to edit the entity's role in a relationship

Model Editor

Relationship/New Relationship Dialog Box

<Role Name>Role Dialog Box

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to create an entity
Sometimes it is necessary to create an additional entity for a model in order to make a question return the right answer.

To create an entity

1. On the Semantics tab, right-click Semantic Objects, and then click Add Entity.

2. In the Words box, enter the word that identifies the entity and press ENTER.

As many words or phrases as needed can be added. Enter the word or phrase and press ENTER after each. For example, for
an entity that is represented by an Employee table, enter employee, worker, and staff member. English Query automatically
adds the words or phrases with a comma separating each to the Words box.

Note The entries should appear in the singular form, not in the plural.

3. Click the Add Synonym button, the ellipses button (...) to view a list of synonyms for the selected word or words.

4. Click on the words from the Available words list that should be moved to the Selected words list.

To remove a word in the Selected words list, click on the word to move it to the Available words list.

When clicking outside of the synonym list box, the words, separated by commas, automatically appear in the Words box.

5. Under Entity associated with, choose the way the entity is to be represented.

If the entity is represented by a table, select the table to which it is associated and the fields of the table to be displayed on
the Semantics tab.

Note If Table is chosen, the Name Type option is not available.

If Field(s) are chosen to represent the entity, select the table to which the field or fields belong, and then select the specific
field or fields.

If OLAP is chosen, indicate whether the entity is associated with a level, dimension, measure, property, or fact.

Note The availability of the remaining Microsoft® SQL Server™ 2000 Analysis Services (OLAP) options varies with the
choice of level, dimension, measure, property or fact. Choose the available options.

If the entity is not associated with a table, field, or OLAP object, choose None.

6. In the Entity Type box, select a type.

7. In the Name Type box, select an option.

This option is available only if the entity is to be associated with Field(s) or an OLAP level or property.

8. Select Add values of entity to model if English Query is to automatically add the values in the field or set of fields
represented by the entity to the model knowledge for this application.

This ensures that questions using specific database values can be answered.

Note The amount of time it takes to load these values when the application is compiled depends upon the number of field
values in the database.

9. Enter any Help text to be displayed to the user.

For example, when the user asks a question such as "What is a customer", help text describing a customer is displayed.

10. Click Create Relationships to create new relationships for the new entity.

11. Click Advanced if to further define the entity, specify a synonym for a particular instance of the entity, or set default
conditions.

See Also

Advanced Entity Properties Dialog Box

Entity/New Entity Dialog Box

Model Editor

Relationship/New Relationship Dialog Box

English Query (SQL Server 2000)

How to delete an entity
Sometimes it is necessary to delete an entity from a model. Deleting an entity affects all relationships between it and other
entities.

To delete an entity

1. On the Semantics tab, expand Semantic Objects.

2. Expand Entities, right-click the entity to delete, and then click Delete.

3. In the Confirm Deletion dialog, select In addition, delete the following objects which refer to the entity
<entityname> to delete any joins, phrasing, relationships, or roles that refer to the entity.

Note Generally, delete the object associated with the entity; otherwise, the application will not compile if the entity is
deleted and the object is not.

4. Click OK when prompted to delete the entity.

See Also

How to create an entity

How to edit an entity

Model Editor

SQL Tab (Model Editor)

English Query (SQL Server 2000)

How to delete an entity from a relationship
When an entity no longer participates in a relationship, delete it from the relationship. Deleting an entity from a relationship does
not delete it from the model.

To delete an entity from a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the relationship containing the entity to delete, and then click Edit.

3. On the Semantics tab of the Relationship/New Relationship dialog box, select the entity in the Entities section, and
then click Delete.

See Also

How to add an entity to a relationship

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to edit an entity
In English Query an entity can be modified by changing its semantic properties and corresponding database properties.

To modify an entity

1. On the Semantics tab, expand Semantic Objects.

2. Expand Entities, and then double-click the entity to modify.

3. In the Entity/New Entity dialog box, select the options to modify.

4. Click Advanced and change any options in the Advanced Entity Properties dialog box.

See Also

Advanced Entity Properties Dialog Box

Entity Defaults Tab (Advanced Entity Properties Dialog Box)

Entity/New Entity Dialog Box

Model Editor

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

Relationship/New Relationship Dialog Box

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

English Query (SQL Server 2000)

How to edit the entity's role in a relationship
An entity's role in a relationship may require modification. For example, when testing a model, you may discover that a custom
join path is required or that a measure for an entity's role needs to be modified.

To edit an entity in a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the relationship with the entity to edit, and click Edit.

3. In the Entities section of the Semantics tab of the Relationship/New Relationship dialog box, select the entity to edit
and click Edit.

4. In the Role dialog box, change the options and click OK.

See Also

<Role Name>Role Dialog Box

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Working with Relationships
Relationships describe how the entities relate to one another. A new relationship may be needed to reflect the addition of a join to
a database structure.

After creating relationships in a model, modify them by:

Adding additional relationships.

To add relationships, use the Create Relationships or Add Relationship commands, click Create Relationships on the
Entity/New Entity dialog box, drag entities to the Canvas pane, or click Suggest Relationships in the Model Test window.

Deleting relationships.

Modify a relationship, for example, by adding phrasings.

English Query (SQL Server 2000)

How to add a relationship
Refine a model by adding relationships to those automatically generated by the Project wizard (for example, the relationship
customers have names).

To add a relationship

1. In the hierarchical pane of the Semantics tab of the Model Editor, right-click the entity for which the relationship is being
created.

2. Click Add Relationship.

3. On the Semantics tab under Entities, click Add.

Double-click the other entity to be included in the relationship.

Specify when the relationship occurs by setting the When, Start and End times. Set a Default date if to have the
relationship assume a selected date.

To set the relationship to occur over a period of time, set Duration.

To set the location of the relationship, set the Where option.

4. Under Phrasings, click Add and proceed as if adding a phrasing.

To specify that specific phrasings be grouped together to define the relationship, select them, and then click Group.

5. In Help Text, enter any information about the relationship that it to be displayed to the user.

6. To let English Query find the table containing all the joins to the tables and fields representing the entities in the
relationship, click the Database tab and select a table from the Table that contains joins to all entities in this
relationship list or click Calculate Default Join Table.

Note The Database tab is available only when a project is enabled for SQL.

7. To specify when a relationship is true, on the Database tab select This relationship is true only when the following
SQL condition is true, and enter the appropriate SQL condition.

8. To have English Query generate answers from the most recent data in the database, on the Database tab select Show
most recent data by default.

See Also

Database Tab (Relationship/New Relationship Dialog Box)

How to add a join

How to add an entity to a relationship

How to add phrasings to a relationship

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to add phrasings to a relationship
Phrasings are a way of expressing relationships among entities. When considering a phrasing type, select the phrasings that most
closely reflect how users are likely to ask their questions.

To add phrasing to a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the relationship to which the phrasing is to be added, and click Add Phrasing.

3. In the Select Phrasing dialog box, double-click a phrasing type.

4. In the dialog box specific to the phrasing type, choose the phrasing structure, and click OK.

5. Check the Relationship/New Relationship dialog box to make sure that the desired phrasing is listed at the bottom of the
dialog box.

See Also

Adjective Phrasing Dialog Box

Grouped Phrasings Examples

Model Editor

Name/ID Phrasing Dialog Box

Preposition Phrasing Dialog Box

Select Phrasing Dialog Box

Semantics Tab (Model Editor)

Subset Phrasing Dialog Box

Trait Phrasing Dialog Box

Verb Phrasing Dialog Box

English Query (SQL Server 2000)

How to add time and location options to a relationship
Using English Query, it is possible to specify when and where a relationship occurs. The time and location options are specified in
an entity (for example, a date entity that specifies when salespeople sold products to customers).

To add time and location options to a relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships and double-click an existing relationship.

3. On the Semantics tab of the Relationship/New Relationship dialog box, select the entity from the Entities box.

4. Select When, Start, End, Default date, and Duration, and Where this relationship occurs.

See Also

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to create a relationship using the Canvas pane
Adding relationships to those automatically generated (for example, by the SQL Project or the OLAP Project wizard) can refine a
model. For example, to create the relationship stores sell books between store and product, drag the entities from the Entities
folder in the left-hand hierarchical pane onto the Canvas pane.

To create a relationship using the Canvas pane

1. In the hierarchical pane of the Semantics tab of the Model Editor, select the entity to be included in the new relationship
and drag it onto the Canvas pane.

2. Select any other entity in the hierarchical pane that should be included in the relationship and drag it onto the entity
currently in the Canvas pane.

The Relationship/New Relationship dialog box appears.

3. On the Semantics tab under Phrasings, click Add.

4. In the Select Phrasing dialog box, select the desired phrasing, click Add, and select the appropriate options in the phrasing
dialog box.

To create a group of phrasings that work together to define the relationship, select the phrasings and click Group.

5. Enter any Help Text to be displayed to the user.

6. On the Database tab, select a table from the Table that contains joins to all entities in this relationship box or click
Calculate Default Join Table to have English Query find the table that contains all the joins to the tables and fields that
represent entities in the relationship.

The Database tab is available only when a project is enabled for SQL .

7. Select This relationship is true only when the following SQL condition is true and enter the appropriate SQL
condition to specify when a relationship is true.

8. Select Show most recent data by default to have English Query answers generated from the most recent data in the
database.

See Also

Database Tab (Relationship/New Relationship Dialog Box)

How to add a join

How to add an entity to a relationship

How to add phrasings to a relationship

Model Editor

Relationship/New Relationship Dialog Box

Select Phrasing Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to create relationships from the Model Test Window
When testing a model if a question cannot be understood or is answered incorrectly, English Query can suggest and create
possible relationships.

To create relationships from the Model Test window

1. Create a model and double-click it in the Project Explorer window.

2. From the Debug menu, click Start.

3. Enter a question and click .

4. When there is a question cannot be understood or is answered incorrectly, click .

5. Select the entities and identifying information, and the relationships that create the appropriate phrasing for the question.

6. Click OK.

7. Retest the question.

8. If the question continues to be answered incorrectly or cannot be understood, repeat Steps 4 through 7.

9. If the question continues to be answered incorrectly or cannot be understood, create a relationship using one of the other
methods, or modify an existing relationship.

10. Repeat Steps 3 through 9 as needed until the model answers the question appropriately.

See Also

How to add a relationship

How to add a relationship using the Canvas pane

How to create relationships using the Create Relationships command

How to modify a relationship

How to test a model

Model Test Window

English Query (SQL Server 2000)

How to create relationships using the Create Relationships
command
Models may be refined by creating additional relationships. To create relationships

1. In the hierarchical pane of the Semantics tab of the Model Editor, expand Semantics, expand Entities, and then right-click
the entity for which the relationship is being created.

2. Click Create Relationships.

3. In the SQL and OLAP Project wizards, select the relationships to add to a model.

See Also

Model Editor

Project Wizards

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to associate English Data values with a relationship
To use adjectives or subset words to describe a relationship, it is necessary to specify where they can be found: either in a
database field or in a set of word-value pairs. Specify where the adjective or subset words are found by associating English Data
values with the relationship.

To associate English Data values with a relationship

1. Choose or create the relationship containing the Adjective or Subset phrasing to which associate English Data values are to
be added.

2. In the Adjective Phrasing or Subset Phrasing dialog box, click Associate English Values.

3. Decide whether the adjectives or subset words are in a field or in a lookup table, or whether they need to be specified in the
application.

If the adjectives or subset words are in a field or lookup table, select Read English from table.

If the words are in a lookup table, select the table, word field, and value field from the appropriate lists.

To create a lookup table that exists only in the application, select Specify values and then enter the values that the codes
represent.

4. Click OK to return to the Adjective Phrasing or Subset Phrasing dialog box.

See Also

Adjective Phrasing Dialog Box

English Data Values Dialog Box

How to add a relationship

How to add phrasings to a relationship

How to create relationships using the Create Relationships command

How to modify a relationship

Subset Phrasing Dialog Box

English Query (SQL Server 2000)

How to delete a relationship
Delete a relationship from the model if it is no longer needed.

To delete a relationship

1. In the hierarchical pane of the Semantics tab of the Model Editor, expand the Relationship folder and right-click the
relationship to delete.

2. Click Delete.

3. Click OK when prompted to delete the relationship.

See Also

How to create a relationship using the Canvas pane

How to add a relationship

How to create relationships from the Model Test Window

How to create relationships using the Create Relationships command

Model Editor

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to modify a relationship
After creating a relationship, it can be refined or expanded. For example, it is possible to add or change the entities and phrasing,
or change the joins in SQL-enabled projects.

To modify a relationship

1. In the hierarchical pane of the Semantics tab of the Model Editor, expand the Relationships and double-click the
relationship to modify.

2. Make the changes on the Semantics and Database tabs.

The Database tab is available only for SQL-enabled project.

See Also

Database Tab (Relationship/New Relationship Dialog Box)

How to add phrasings to a relationship

How to add time and location options to a relationship

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Working with Dictionary Entries
English Query includes a dictionary containing thousands of common English words. This dictionary provides an English Query
application with the terminology needed to answer most questions posed in English.

Creating entities (with synonyms) and relationships provides most of the specialized vocabulary required for an application.
Create a dictionary entry if the word being defined is not associated with a particular entity or relationship. The new terms appear
under the Dictionary Entries on Semantics tab in the Model Editor. To view the entries, expand Dictionary Entries, then add,
edit, or delete dictionary entries.

English Query (SQL Server 2000)

How to add a dictionary entry
Add new words to the dictionary if the application requires specialized terms that are not generally known. For example, an
application used in a medical setting may require the addition of specialized medical terms.

To add a dictionary entry

1. On the Semantics tab, expand Semantic Objects.

2. Right-click Dictionary Entry and click Add Dictionary Entry.

3. Select the Dictionary Entry Type option.

Choose Word to define a main entry in the dictionary, or Read synonym or Write synonym to define a synonym for a
word already in the dictionary.

4. Select or enter the specific information for the entry type.

See Also

New Dictionary Entry Dialog Box

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to delete a dictionary entry
Dictionary entries that have been added to an English Query application can be deleted when they are no longer needed.

To delete a dictionary entry

1. On the Semantics tab, expand Semantic Objects.

2. Expand Dictionary Entry, right-click the entry to delete, and then click Delete.

See Also

How to add a dictionary entry

Model Editor

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to edit a dictionary entry
Dictionary entries that have been added to the English Query application can be modified. For example, synonyms can be added
to a word that is in the dictionary.

To edit a dictionary entry

1. On the Semantics tab, expand Semantic Objects.

2. Expand Dictionary Entry, right-click the entry to edit, and then click Edit.

3. Make modifications to its options in the Dictionary Entry dialog box.

See Also

Model Editor

New Dictionary Entry Dialog Box

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

Working with Command Relationships
After the entities for an English Query application have been defined, they can be used to create a command relationship (for
example, a command relationship that allows a user to enter, "Display the paintings by xxx artist that are watercolors").

Command relationships can enhance the English Query model. They require a command ID and a parameter ID that can be set or
modified on the Command tab of the Relationship/New Relationship dialog box.

Command relationships can be added, modified, or deleted. In addition, phrasings can be added or modified.

English Query (SQL Server 2000)

How to add a phrasing to a command relationship
If a command relationship does not adequately address the questions being asked or if a model needs to be modified, add
phrasings to the command relationship.

To add a phrasing to a command relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Command Relationship and then, right-click the command relationship to be edited, and then click Add
Phrasing.

3. Double-click the phrasing to be added.

4. Create the phrasing and click OK.

See Also

Using Command Relationships in an English Query Model

How to add phrasings to a relationship

Model Editor

Relationship/New Relationship Dialog Box

Select Phrasing Dialog Box

English Query (SQL Server 2000)

How to create a command relationship
Command relationships consist of entities and command phrasings and are used to define model-specific commands. Unlike
other relationships, command phrasings require both a command ID and a parameter ID.

To create a command relationship

1. On the Semantics tab of the Model Editor, expand Entities and select the entity to be included in the command
relationship.

If relevant, select When, Start, End, Default Date, Duration, and/or Where.

Note These options will be available depending on the type of entity choosen. If an option is dimmed, it is not available for
the selected entity.

2. In the Phrasings section, click Add.

3. Select Command Phrasing and click OK.

4. Create the phrasing.

In command relationships, verbs are case sensitive so capitalize them the same way the users will type them in questions.
To provide the most options for users, enter the verb with the first letter capitalized and then add a synonym of the same
verb but with the first letter not capitalized.

5. Click OK to the warning about capitalization.

6. Enter Help text if desired.

7. On the Command tab, enter a command name.

8. Select the Parameter.

The Parameter ID is automatically generated

See Also

Command Phrasing Dialog Box

Using Command Relationships in an English Query Model

Command Tab (Relationship/New Relationship Dialog Box)

How to add an entity to a relationship

How to add phrasings to a relationship

Relationship/New Relationship Dialog Box

English Query (SQL Server 2000)

How to create time and location options for command
relationships
You can specify when and where a command relationship occurs.

To create time and location options for command relationships

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships and then double-click the command relationship to which time or location options are to be added.

3. On the Semantics tab, click Add, select the entities to add for time and place options, and click OK.

4. Select more than one entity by selecting the first entity, holding down the CTRL key, and selecting the additional entities.

5. Select the When, Start, End, Default date, Duration, and Where options wanted.

See Also

Using Command Relationships in an English Query Model

How to add phrasings to a relationship

Model Editor

Relationship/New Relationship Dialog Box

Select Phrasing Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

How to delete a command relationship
When a command relationship is no longer needed in a model, delete it.

To delete a command relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the command relationship to delete, and then, click Delete.

3. When prompted to delete the command relationship, click OK.

See Also

Using Command Relationships in an English Query Model

Model Editor

Semantics Tab (Model Editor)

English Query (SQL Server 2000)

How to edit a command relationship
After a command relationship is created, it can be modified to handle specific questions in a model.

To edit a command relationship

1. On the Semantics tab, expand Semantic Objects.

2. Expand Relationships, right-click the command relationship to edit, and then, click Edit.

3. On the Semantics, Database, and Command tabs, make the desired changes, and click OK.

See Also

Using Command Relationships in an English Query Model

Command Tab (Relationship/New Relationship Dialog Box)

Database Tab (Relationship/New Relationship Dialog Box)

How to add a phrasing to a command relationship

How to add an entity to a relationship

How to create time and location options for command relationships

Model Editor

Relationship/New Relationship Dialog Box

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Working with Analysis Services (formerly OLAP Services)
After creating a project using the OLAP Project wizard, add cubes to the project, modify cubes, dimensions, properties, and levels,
and add entities, relationships, and dictionary entries.

Add, edit, and delete entities, relationships, and dictionary entries in the same way that it is done for SQL-enabled projects.

See Also

How to add a dictionary entry

How to add a relationship

How to add an entity to a relationship

How to delete a relationship

How to delete an entity

How to delete an entity from a relationship

How to edit a dictionary entry

How to edit an entity

How to edit the entity's role in a relationship

English Query (SQL Server 2000)

How to add an Analysis Services (formerly OLAP) cube to a
model
To enhance a model and create questions for OLAP cube data, add one or more OLAP cubes to a model, or add an OLAP cube to
an existing SQL-enabled project

Note The project must be either an OLAP or OLAP-enabled project.

To add an OLAP cube to a project

1. On the Model menu, click Import Cubes.

2. If asked, enter the name of the Analysis server on which the database resides, select the name of the database.

3. From the Available list, double-click the desired OLAP cube or cubes.

See Also

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

Model Editor

OLAP Cube Dialog Box

English Query (SQL Server 2000)

How to edit an Analysis Services (formerly OLAP) cube
The objects in the OLAP cube in the model can be changed.

To edit an OLAP cube

1. On the OLAP tab, expand Cubes.

2. Right-click the cube that to edit, and then click Edit.

3. Select the fact table and make the changes to Dimensions, Measure, Aggregation, Field and/or Units.

To delete a measure, select it by clicking in the gray column to the left of it and then click Delete.

4. When satisfied with the changes, click OK.

See Also

Additional Relationships

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

How to enable Analysis Services (formerly OLAP)

Level-Level Relationships

Model Editor

OLAP Cube Dialog Box

OLAP Tab (Model Editor)

English Query (SQL Server 2000)

How to edit Analysis Services levels
The levels associated with each dimension can be edited to provide additional information and allow questions to be refined.

To edit Analysis Services levels

1. On the OLAP tab, expand Dimensions, and then expand the dimension whose levels are to be edited.

2. Right-click the level, and then click Edit.

3. Make the changes to the Level, Table, Field, or the level properties.

To delete a level, select it by clicking in the gray column to the left of it and then, click Delete.

4. When satisfied with the changes, click OK.

See Also

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

How to enable Analysis Services (formerly OLAP)

Level-Level Relationships

Model Editor

OLAP Dimension Dialog Box

OLAP Tab (Model Editor)

English Query (SQL Server 2000)

How to edit Analysis Services (formerly OLAP) measures
Information associated with a Microsoft® SQL Server™ 2000 Analysis Services measures, including database properties such as
table and field and units, can be modified.

To edit Analysis Services measures

1. On the OLAP tab, expand Cubes.

2. Expand the cube that contains the measures to be edited and then expand Measures.

3. Double-click Measures.

4. Select the fact table and make the changes to Dimensions, Measure, Aggregation, Field and/or Units.

To delete a measure, select it by clicking in the gray column to the left of it and then, click Delete.

5. When satisfed with the changes, click OK.

See Also

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

How to enable Analysis Services (formerly OLAP)

Model Editor

OLAP Cube Dialog Box

English Query (SQL Server 2000)

How to edit Analysis Services (formerly OLAP) properties
The properties associated with each level can be edited to provide additional information and allow the questions to be modified
and refined.

To edit Analysis Services properties

1. On the OLAP tab, expand Dimensions, and then expand the dimension whose property is to be edited.

2. Expand the level containing the property to edit.

3. Right-click the property, and then click Edit.

4. Make the changes to the level, table, fields, or level properties.

5. When satisfied with the changes, click OK.

See Also

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

How to enable Analysis Services (formerly OLAP)

Model Editor

OLAP Dimension Dialog Box

English Query (SQL Server 2000)

How to enable Analysis Services (formerly OLAP)
If there are questions that cannot be answered using only the SQL database or if it is desirable to speed retrieval of data for
questions that are not about aggregation of data, create a mixed model by enabling Microsoft® SQL Server™ 2000 Analysis
Services and importing the appropriate cube.

To enable Analysis Services

1. From the Project menu, choose <project name> Properties.

If the <project name> Properties command does not appear on the Project menu, double click <project name>.eqm in
the Project Explorer window.

2. On the Data Connection tab, select Enable OLAP.

3. Enter the path to the database or click Change and select the path.

4. The Type and Version should automatically appear. If not, select MSOLAP for Type and enter the version number.

See Also

Analysis Services in English Query

Data Connection Tab (Project Properties Dialog Box)

Project Properties Dialog Box

English Query (SQL Server 2000)

How to manually map OLAP objects to the underlying SQL
database objects
When English Query is unable to acquire the information from a Microsoft® SQL Server™ 2000 Analysis Services server to map
an OLAP cube to its underlying SQL table while creating a mixed model, the mapping information must be obtained manually or
the project will not build properly.

To manually map OLAP objects to the underlying SQL database objects

1. In the Project Explorer window, double-click the module (.eqm).

2. On the Model menu, click Import Tables.

3. On the Provider tab of the Data Link Properties dialog box, double click Microsoft OLE DB Provider for SQL Server.

4. On the Connection tab, select or enter the name of the server on which the SQL database resides.

5. Enter the log on information.

6. Select the database containing the SQL database objects.

7. Click OK.

8. In the New Database Tables and Views dialog box, select all of the tables used by cubes and dimensions that are being
mapped.

9. Click the OLAP tab and expand Cubes.

10. Double-click each cube to map.

11. In the OLAP Cube dialog box, select the appropriate table and field for each measure that needs to be mapped and then,
click OK.

12. Repeat steps 10 and 11 until all of the cubes are mapped.

13. Expand Dimensions.

14. Double-click each dimension that to map.

15. In the OLAP Dimension dialog box, select the appropriate table and field for each level and member property and then,
click OK.

16. Repeat steps 14 and 15 for each dimension to map.

Note All OLAP objects except calculated measures must be mapped to a SQL database object.

English Query (SQL Server 2000)

How to remove an Analysis Services (formerly OLAP) cube
If an OLAP cube is no longer appropriate for a model, remove it from a project.

To remove an OLAP cube

1. On the OLAP tab, expand Cubes.

2. Right-click the cube to delete, and then click Delete.

3. When asked to confirm the deletion, click OK.

See Also

Analysis Services in English Query

Enabling Analysis Services for an English Query Model

Model Editor

OLAP Tab (Model Editor)

English Query (SQL Server 2000)

Testing and Building a Model
You test a model by asking questions that users of your application are likely to ask.

When you click Save Query while testing a model, you add the current question to the first regression file under the project in
the Project Explorer window. There can be more than one regression text file in a project. A regression file can be added and then
compared with the original file if the files have names that differ from one another.

After testing the model, build the application. The resulting file is an .eqd file, which can be made available to users inside any
COM-supporting application, such as the Active Server Pages (ASP), Microsoft® Visual Basic®, or Microsoft Visual C++® sample
applications that come with English Query.

Note When using Question Builderif it is desired to have the data values to appear in the entities' list in the Relationship pane,
select Sample Data on the Data Connections tab before compiling the application.

See Also

Data Connection Tab (Project Properties Dialog Box)

How to set the Sample Data option

Sample Applications and Client Interfaces

English Query (SQL Server 2000)

How to add a new or existing regression test file to a project
New or existing regression test files (.eqr) can be added to a project. After adding the regression test file, it is possible to view and
edit the file and promote it to the new regression test file. The regression output is displayed in Extensible Markup Language
(XML)-tagged format, which differentiates the questions, restatements, answers, and SQL statements for easier editing.

To add a regression file to the project

1. In the Project Explorer window, right-click the project to which the regression test file is to be added, and then click Add
Regression Test.

2. In the Add Item dialog box, select Regression Test for a new file or, on the Existing tab, choose an existing file.

3. In the Name box, enter a name for the file or leave the default name.

The default file name for a new file is Regression(number).eqr (for example, Regression1.eqr). Rename the regression test
file if desired.

4. Click Open.

Note When a text (.txt) file, containing one question per line, is added as a regression test file to the project, English Query
automatically converts it into regression test file format.

See Also

How to edit a regression test file

How to remove a regression test file

How to rename a regression test file

How to save model test information to a regression test file

English Query (SQL Server 2000)

How to build an application
After the model is tested, it can be built into an application and then deployed.

To build an application

1. From the Project menu, select <Project> Properties.

2. Select the Data Connection tab.

3. Select Sample Data.

Note For the data values to appear in the Entity list in Question Builder, select Sample Data on the Data Connections
tab before compiling the application. Loading sample data may take some time.

4. Click OK.

5. In the Project Explorer window, right-click the project that need to be built into an application, and click Build <project
name>.

The application is built with the default name as <project name>.eqd. If desired, rename the application in Microsoft®
Windows Explorer. The application can then be deployed.

See Also

How to deploy an application to the Web

English Query (SQL Server 2000)

How to edit a regression test file
The regression file can be edited in an editor that displays the questions in English Query Regression file (.eqr) format.

To edit a regression file

1. In the Project Explorer window, double-click the regression test file to edit.

2. In the editor window, make the desired changes.

3. Save the file using the Save <file name> on the File menu.

See Also

How to save model test information to a regression test file

English Query (SQL Server 2000)

How to remove a regression test file
A regression test can be removed from the project when it is no longer needed.

To remove a regression test file

1. In the Project Explorer window, right-click the regression test file to delete, and click Remove <file name>.

2. Click Yes to remove the file.

See Also

How to add a new or existing regression test file to a project

English Query (SQL Server 2000)

How to rename a regression test file
The default regression test file name is the <name of a model>.eqr or regression<version number, 1, 2>.eqr. The default name or
the name of any regression test file can be changed at any time.

To rename a regression test file

1. In the Project Explorer window, right-click the regression test file whose name is to be changed, and click Rename.

2. Enter the new name and press ENTER.

See Also

How to add a new or existing regression test file to a project

English Query (SQL Server 2000)

How to save model test information to a regression test file
English Query creates an empty regression file (.eqr) when a project is created. The model test information can be saved to it or to
another regression file. Later the file can be compared with the current regression file.

To save model test information to a regression file

1. In the Model Test window, test a question.

2. Click Save Query.

3. Click Save Query after each question whose information is to be saved.

The results are saved in the current regression file.

See Also

How to add a new or existing regression test file to a project

How to edit a regression test file

How to remove a regression test file

How to rename a regression test file

How to view the output of a regression test created using the Run Regression command

Model Test Window

English Query (SQL Server 2000)

How to save the regression output to a regression test file
Copy the output file to a regression test file after verifying, with the View Output command, that the output is correct and should
be used to determine whether the English Query model is functioning properly.

Note The output file must have been created using the Run Regression command, and it must be writable.

To save the output to a regression test file

1. Right-click on the regression test file in the Project Explorer window, and then click Promote.

2. Chose OK to replace the regression test file with the current output file.

See Also

How to add a new or existing regression test file to a project

Model Test Window

English Query (SQL Server 2000)

How to set the Sample Data option
Set the Sample Data option before compiling an application that includes Question Builder. This will cause data values to appear
in the entities' list in the Relationship pane.

To set the Sample Data option

1. From the Project menu, select <Project> Properties.

2. Select the Data Connection tab.

3. Select Sample Data.

4. Click OK.

See Also

Data Connection Tab (Project Properties Dialog Box)

Deploying an English Query Applicaton

How to deploy an application to the Web

Project Properties Dialog Box

English Query (SQL Server 2000)

How to test a model
A model can be tested as many times as needed to create the application that lets users ask the questions they want.

To test a model

1. In the Project Explorer window, select the project to test.

2. On the Debug menu, click Start.

3. In the Query box, enter a question to be tested, and then click the Submit Query button.

4. If the restatement correctly reflects the question asked, execute the equivalent SQL statement by clicking the View Results
button.

5. If the answer is correct, click Save Query to add the question to the regression test file.

6. If the question does not produce the correct answer, click the Suggest Relationships button to create additional
relationships with the help of the Suggestion Wizard.

7. When testing and adding questions to the question file, click the Close box in the upper right-hand corner.

See Also

Model Test Window

English Query (SQL Server 2000)

How to view the differences between the current regression
test file and the regression output file
The differences between the current regression file and the regression output file can be displayed and reviewed. Although the
files cannot be edited, they can be searched for a specific word or phrase, and a comparison of the differences in the files can be
made.

To view the differences between current regression test file and the regression output file

1. Test the model and click Save Query.

2. Do this for as many questions as desired.

3. In the Project Explorer window, right-click on the current regression file.

4. Click View Differences.

5. In the Regression Differences dialog box, review the differences.

Note Deleted lines appear in blue text, changed lines in red text, and inserted lines in green text.

6. After reviewing the files, click the Close box in the upper right corner.

See Also

How to add a new or existing regression test file to a project

How to edit a regression test file

How to save model test information to a regression test file

Model Test Window

Regression Differences Dialog Box

English Query (SQL Server 2000)

How to view the output of a regression test created using the
Run Regression command
The results of a regression test can be viewed by using the Run Regression command. The output displays the restatements, SQL
commands, and, if Execute SQL is selected, the database results. The output file can be edited but the changes do not persist if
another regression test is run. To keep the changes, use the Promote command, which copies the output file over the original
regression test file.

To view an output file

In the Project Explorer window, expand the project, right-click the regression test file (.eqr), and then click View Output.

Note The Run Regression command must have been chosen on the regression test file shortcut menu or the View
Output command is not available.

See Also

How to edit a regression test file

How to save model test information to a regression test file

Model Test Window

English Query (SQL Server 2000)

How to deploy an application to the Web
An application can be easily deployed to the Web. English Query uses the Web Project Wizard in Microsoft® Visual InterDev® to
deploy English Query applications to the Web.

To deploy an application to the Web

1. From the Project menu, choose Deploy, and then Web.

The Web Project Wizard appears.

2. Follow the steps of the Web Project Wizard.

Note It is necessary to know the name of the server to which the application is being deployed. Also the person who
deploys the project must have permission to write to the root of the Web server and must be added as an operator for that
server.

Note It is necessary to have Visual InterDev installed to create Web projects. Documentation for the Web Project Wizard is
not available unless Visual InterDev Help or the MSDN® Library has been installed.

English Query (SQL Server 2000)

English Query User Interface Help Reference
The topics in this section provide a quick reference for these elements in the English Query interface:

Shortcut keys

Icons

Buttons

Wizards

Editors

Project Wizards

Model Test window

Dialog boxes

English Query (SQL Server 2000)

Shortcut Keys Used in English Query
This topic describes the shortcut keys used in English Query.

Global Keys

Use these shortcut keys in all English Query windows.

Shortcut keys Description
CTRL+N Opens a new project.
CTRL+O Opens an existing project.
CTRL+SHIFT+N Opens a new file.
CTRL+SHIFT+O Opens an existing file.
CTRL+SHIFT+S Saves all modules and the project.
F1 Displays Help.
LEFT ARROW
UP ARROW

Selects the previous item in a combo box.

RIGHT ARROW
DOWN ARROW

Selects the next item in a combo box.

For more information about shortcut keys, see the Microsoft® Visual Studio® documentation.

Menu Keys

Use these keys to navigate the Menu bar.

Shortcut keys Description
LEFT Selects the next menu.
RIGHT Selects the previous menu.
UP Selects the previous item in a menu.
DOWN Selects the next item in a menu or expand menu.
ESC Clears menus.

Model Editor: Navigation Keys

Use these keys to navigate the hierarchical panes and tabs of the Model Editor.

Note These shortcut keys do not work in the Canvas pane.

Shortcut keys Description
CTRL+PAGE UP Selects the next tab.
CTRL+PAGE DOWN Selects the previous tab.
UP Selects the previous item in the tree.
DOWN Selects the next item in the tree.
RIGHT Expands current item in the tree.
LEFT Collapses current item in the tree if expanded.

Otherwise, selects parent item in the tree.

Model Editor: Editing Keys

Use these keys to edit objects in the hierarchical pane of the Model Editor.

Shortcut keys Description
ENTER
Double-click an entity or
relationship.

Displays a dialog box in which you can edit the
currently selected object in the tree.

CTRL+C Copies the selected object or objects and places
them on the Clipboard.

CTRL+V Pastes the object or objects.
CTRL+X Cuts the selected object or objects and place them

on the Clipboard.
DELETE Deletes the selected object or objects.
CTRL+Click Selects multiple objects.

Canvas Pane Keys

Use these shortcut keys in the Canvas pane.

Shortcut keys Description
BACKSPACE Cancels any selection.
TAB Selects the next object.
SPACEBAR Starts auto layout.

Stops the layout process in animation mode.
DELETE Removes the selected object from the Canvas pane.
UP ARROW
PAGE UP

Moves the Canvas pane up.

DOWN ARROW
PAGE DOWN

Moves the Canvas pane down.

LEFT ARROW
HOME

Moves the Canvas pane to the left.

RIGHT ARROW
END

Moves the Canvas pane to the right.

CTRL+A Selects all of the objects in the Canvas pane.
CTRL+F Displays the Find dialog box.

Project Wizard Keys

Use these shortcut keys in the SQL Project and OLAP Project wizards.

Shortcut keys Description
SPACEBAR Selects or clears the check boxes.
TAB Move the focus through the various elements. If the

relationships are expanded, TAB also moves the
focus among the elements.

ENTER Runs the Project Wizard and closes the window.
Expands any item with a plus sign (+) and collapses
an item with a minus sign (-).

Model Test Window Keys

Use these shortcut keys in the Model Test window.

Shortcut keys Description
ENTER Runs the query.
CTRL+BREAK Stops the query.
CTRL+S Saves the query in a regression file.
CTRL+R Displays or hides the query results.
CTRL+W Runs the Suggestion Wizard that helps define

entities and relationships to answer a question that
currently does not work.

CTRL+T Displays the Test Properties dialog box
CTRL+PAGE UP Selects the next tab in the Model Test window.

CTRL+PAGE DOWN Selects the previous tab in the Model Test window.

Command Tab (Relationship/New Relationship Dialog Box)

Use these shortcut keys on the Command tab of the Relationship/New Relationship dialog box.

Shortcut keys Description
ALT+P Moves the focus to the grid.
CTRL+SPACEBAR Selects the current row.
DELETE Deletes the selected row.
INSERT Inserts a row above the selected row.
UP and DOWN ARROWS Selects the preceding and following item.
SPACEBAR Activates the cell and selects the item.
TAB Moves the focus to the next element in the tab.

Default Relationships Dialog Box

Use these shortcut keys in the Default Relationships dialog box.

Note You can make only contiguous selections using the keyboard. To make noncontiguous selections, press CTRL and click the
rows you want to select.

Shortcut keys Description
CTRL+SPACEBAR Selects the current row.
DELETE Deletes the selected row.
INSERT Inserts a row above the selected row.
RIGHT, LEFT, UP, and DOWN
ARROWS

Selects the item to the right, left, up, and down of
the currently selected item.

SHIFT+DOWN ARROW Selects the next row to make a contiguous selection.
SHIFT+UP ARROW Selects the previous row to make a contiguous

selection.
SPACEBAR Activates the cell and selects the item.
TAB Moves the focus to the next element in the tab.

Entity/New Entity Dialog Box

Use these keys in the Entity/New Entity dialog box.

Shortcut keys Description
SPACEBAR When the Words list has the focus, displays the

words so you can view or edit them.

When editing the Words list, moves a selected item
between Selected Fields and Available Fields.

When the Display Field(s) or the Fields(s) list has
the focus, displays the Selected Fields and
Available Fields lists so that you can view and edit
them.

When editing the Selected Fields and Available
Fields lists, moves the selected item from one list to
the other.

Comma (,) or DOWN ARROW Moves the pointer to the next line when entering
data in the Words list.

UP and DOWN ARROWS Selects the previous or next item in the Words,
synonym, and Display Field(s) lists.

ENTER Closes a list.

Regression Differences Dialog Box Keys

Use these keys in the Regression Differences dialog box.

Shortcut keys Description
ALT+F3 Displays the Find dialog box where you specify the

text you are trying to find.
F3 In the active pane, finds and selects the next

occurrence of the text specified in the Find What
box of the Find dialog box.

SHIFT+F3 In the active pane, finds and selects the previous
occurrence of the text that is specified in the Find
What box of the Find dialog box.

SHIFT+F7 Finds and moves the to the beginning of the
previous text that has differences.

F7 Finds and moves the to the beginning of the next
text that has differences.

Table/New Table Dialog Box Keys

Use these keys to make changes in the Table/New Table dialog box.

Note You can make only contiguous selections using the keyboard. To make noncontiguous selections, press CTRL and click the
rows you want to select.

Shortcut keys Description
CTRL+K Makes the field of the selected row a primary key.
CTRL+SPACEBAR Selects the current row.
DELETE Deletes the selected row.
INSERT Inserts a row above the selected row.
RIGHT, LEFT, UP, and DOWN
ARROWS

Selects the item to the right, left, up, and down from
the item in the selected box.

SHIFT+DOWN ARROW Selects the next row so you can make a contiguous
selection.

SHIFT+UP ARROW Selects the previous row so you can make a
contiguous selection.

List Keys

Use these shortcut keys in any list. A list is any type of box that contains a list of items from which you can select.

Keys Descriptions
UP and RIGHT ARROW Selects the next item in the list. If there is more than

one column, RIGHT ARROW selects the item in the
next column. Not available in all lists.

DOWN and LEFT ARROW Selects the previous item in the list. If there is more
than one column, LEFT ARROW selects the item in
the previous column. Not available in all lists.

CTRL+SPACEBAR Opens the list and displays all of the items.

Editable List Keys

Use these shortcut keys in any editable list. An editable list consists of a rectangular box in which you can type text. If the list
already contains items, you can select that default text or delete it and type new text.

Keys Description

SPACEBAR Displays the list and selects the first empty cell.

When a cell with an item has the focus, also selects
the text so that it can be edited.

ENTER Accepts the changes and closes the list.
Comma (,) or DOWN ARROW Moves the cursor to the next line when editing data.
UP and DOWN ARROWS Select the previous or next line in the list.

Select Box Keys

Use these shortcut keys in any select box with Selected and Available Fields columns in which you move an item from one
column to the other.

Keys Description
SPACEBAR When the select box has the focus, displays the

Selected Fields and Available Fields list so that
you can view and edit the lists.

When editing the lists, moves the selected item from
the current list to the other list.

ENTER Accepts the selection and closes the list.
RIGHT and LEFT ARROWS Select the item in the column to the right or the left

of the selected item.
UP and DOWN ARROWS Select the item prior to or after the selected item.

See Also

Add/Edit Entity Default Dialog Box

Adjective Phrasing Dialog Box

Command Phrasing Dialog Box

Data Connection Tab (Project Properties Dialog Box)

Database Tab (Relationship/New Relationship Dialog Box)

Default Relationships Tab (Project Properties Dialog Box)

English Data Values Dialog Box

English Tab (Project Properties Dialog Box)

Entity/New Entity Dialog Box

Find Dialog Box

Name/ID Phrasing Dialog Box

New Dictionary Entry Dialog Box

OLAP Cube Dialog Box

OLAP Dimension Dialog Box

OLAP Tab (Model Editor)

Preposition Phrasing Dialog Box

Regression Differences Dialog Box

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

Semantics Tab (Model Editor)

Semantics Tab (Relationship/New Relationship Dialog Box)

SQL Tab (Model Editor)

Subset Phrasing Dialog Box

Table/New Table Dialog Box

Test Properties Dialog Box

Trait Phrasing Dialog Box

Verb Phrasing Dialog Box

English Query (SQL Server 2000)

Icons and Cursors Used in English Query
The table shows and describes the icons used in English Query.

Icon Description Location
Move selected item(s) from
Available list to Selected list.

Entity/New Entity dialog box

Move selected item(s) from
Selected list to Available list.

Entity/New Entity dialog box

Cube OLAP Project Wizard and the
OLAP tab of the Model Editor

Dimension OLAP Project Wizard and the
OLAP tab of the Model Editor

Entity SQL Project and OLAP Project
Wizards, and the Semantics tab
of the Model Editor

Fact table OLAP Project Wizard and the
OLAP tab of the Model Editor

Level OLAP Project Wizard and OLAP
tab of the Model Editor

Measure OLAP Project Wizard and the
OLAP tab of the Model Editor

Member property OLAP Project Wizard and the
OLAP tab of the Model Editor

Multiple level OLAP Project Wizard and the
OLAP tab of the Model Editor

Phrasings SQL Project and OLAP Project
Wizards

Relationship SQL Project and OLAP Project
Wizards, and the Semantics tab
of the Model Editor

Table SQL Project Wizard and the SQL
tab of the Model Editor

Current regression text with
difference

Regression Differences dialog
box

See Also

OLAP Project Wizard

Regression Differences Dialog Box

SQL Project Wizard

English Query (SQL Server 2000)

Buttons Used in English Query
The table shows the buttons used in the English Query dialog boxes and windows.

Button Button name Location
Synonyms Entity/New Entity dialog box
Cancel Query Model Test window
Save Query Model Test window
Submit Query Model Test window
Suggest Relationships Model Test window
Test Properties Model Test window
View Results Model Test window
Move all of the items to the left
column.

New <Database Object> dialog
box

Move all of the items to the
right column.

New <Database Object> dialog
box

Move selected item(s) to the
left column.

New <Database Object> dialog
box

Move selected item(s) to the
right column.

New <Database Object> dialog
box

Find Regression Differences dialog box
Find Next Regression Differences dialog box
Find Previous Regression Differences dialog box
Next Difference Regression Differences dialog box
Previous Difference Regression Differences dialog box
Primary Key Table/New Table dialog box

English Query (SQL Server 2000)

Wizards
This section describes the following wizards.

Project Wizards
SQL Project Wizard

OLAP Project Wizard
Suggestion Wizard

English Query (SQL Server 2000)

Project Wizards
Use one of the Project wizards, either the SQL Project Wizard or the OLAP Project Wizard, to automatically create a project and
model. Depending on your choice, the wizard uses an SQL database or a Microsoft® SQL Server™ 2000 Analysis Services
database to build the model. These Project wizards:

Extract all or a subset of the database based on the tables or cubes selected in the New <Database Object> dialog box.

Create and define the entities and relationships based on the database objects selected from the database.

Options

Create

Include or remove an entity in the model and display the relationships that will be automatically created based on the database
structure.

To display or hide the relationships that are automatically created, click +.

Entity

Display a list of potential entities and the relationships for each entity based on the database objects chosen in the New
<Database Object> dialog box.

Select or clear a relationship to include it or remove it from the model.

Database Object

Display the database object that was used to create the entity.

See Also

Icons and Cursors Used in English Query

New <Database Object> Dialog Box

OLAP Project Wizard

SQL Project Wizard

English Query (SQL Server 2000)

OLAP Project Wizard
OLAP Project Wizard

Use the OLAP Project Wizard to automatically create entities and relationships for all OLAP objects in the cubes selected in the
New OLAP Cubes dialog box.

The OLAP Project Wizard suggests a set of entities and relationships for all dimensions, levels, properties, and measures and the
fact table for the cube.

Note If the same OLAP level appears in more than one dimension or hierarchy, or if more than one OLAP level uses the same
database table and fields, entities will not be created for subsequent levels using the same table or fields.

When creating a project using the OLAP Project Wizard, you enable OLAP only. Therefore, questions generate only
Multidimensional Expressions (MDX), not SQL statements. Also, some dialog box options will not be available. For example, you
cannot create relationships that associate entities with fields so there is no Database tab available in the Relationship/New
Relationship dialog box.

However, after the project is created, you can enable SQL using the Data Connection tab of the Project Properties dialog box.
The resultant mixed model uses data from the OLAP cube or the SQL database tables and fields that underlie the OLAP objects.
Enable SQL when questions:

Cannot be answered using OLAP cubes only because the data is not in the cube but in the underlying SQL database.

For example, "What is the SKU of the product that sold the most" produces no results using only OLAP cubes because the
SKU data is not in an OLAP cube. It is in the underlying SQL database.

Are not about the aggregation of data.

Although using OLAP cubes allows the application to answer this type of question, OLAP performance may be slower than
using SQL tables. In a mixed model, English Query uses the data that produces the results in the quickest manner. For
example, for questions such as "What products do people buy," enabling SQL may speed up retrieval of the data. In mixed
models, English Query initially tries to answer the question using MDX. If MDX is insufficient, English Query will use SQL
statements.

When using mixed models, make sure that the OLAP cube is current with the underlying SQL database. Each time that a question
is asked, English Query creates a new query using the appropriate database. If the OLAP cube is not current, the user may get
different results with an MDX query than with an SQL query.

See Also

Data Connection Tab (Project Properties Dialog Box)

Database Tab (Relationship/New Relationship Dialog Box)

Developing and Deploying English Query Applications

How to add or change an Analysis Services (formerly OLAP) connection

How to create a project using the OLAP Project wizard

Icons and Cursors Used in English Query

Naming Entities in the OLAP Project Wizard

New <Database Object> Dialog Box

English Query (SQL Server 2000)

SQL Project Wizard
SQL Project Wizard

Use the SQL Project Wizard to automatically create entities and relationships for all database objects in the database tables
selected in the New Database Tables and Views dialog box.

The SQL Project wizard suggests a set of entities and relationships from those available in the database and based on the tables
selected. Tables that are exclusively join tables are not included in the list of potential entities.

When creating a project using the SQL Project Wizard, tables but not views are imported. Although most views are used for
reporting purposes only, any views that are used for an English Query model can be imported after a project is created.

Proposed entities are grouped by the name of the table.

See Also

Creating an English Query Model

How to add or change a SQL connection

How to add tables and views from a SQL data source

Icons and Cursors Used in English Query

New <Database Object> Dialog Box

English Query (SQL Server 2000)

Suggestion Wizard
Use the Suggestion Wizard to create new entities and relationships for questions that cannot be answered using the current
model and database structure. The Suggestion Wizard is displayed when you click the in the Model Test window.

The suggestions are displayed as sentences in which you fill in the blanks by either selecting or entering the appropriate
information. You also can create a new entity by clicking the Entity Icon () to display the Entity/New Entity dialog box when it
is available.

Note Any relationships created by the Suggestion Wizard that involve self-joins need a join path created after closing the
Suggestion Wizard and before building the model to avoid errors when building the model. Create the join path in the <Role
Name>Role dialog box for one of the entities the relationship.

See Also

Entity/New Entity Dialog Box

How to create relationships from the Model Test Window

<Role Name>Role Dialog Box

Shortcut Keys Used in English Query

Testing an English Query Model

English Query (SQL Server 2000)

Editors
This section describes the user interface for the following two editors:

Model Editor

Regression Test Editor

English Query (SQL Server 2000)

Model Editor
Use Model Editor to easily create an English Query model. It consists of the following three tabs:

OLAP Tab (Model Editor)

Semantics Tab (Model Editor)

SQL Tab (Model Editor)

English Query (SQL Server 2000)

OLAP Tab (Model Editor)
OLAP Tab (Model Editor)

Use the OLAP tab to display the OLAP objects in the project, including cubes, levels, dimensions, measures, properties and facts.

To see definitions of existing cube objects, double-click them.

Right-click a cube, dimension, level, property, or measure to display the OLAP Dimension or OLAP Cube dialog box.

See Also

OLAP Cube Dialog Box

OLAP Dimension Dialog Box

Semantics Tab (Model Editor)

SQL Tab (Model Editor)

English Query (SQL Server 2000)

Semantics Tab (Model Editor)
Semantics Tab (Model Editor)

Use the Semantics tab to display the semantic objects and to graphically create relationships.

The Semantics tab consists of two panes:

The left pane contains a hierarchical list of the semantic objects in the selected module, including entities, relationships, and
dictionary entries.

To see definitions of existing semantic objects, double-click the object. To create a semantic object, select one of the Add
commands (Entity, Relationship, or Dictionary Entry) from the Model menu.

Canvas Pane

The right pane is where you graphically create and view relationships. Drag the entities from the left pane to the Canvas
pane to create relationships among them. Drag relationships from the left pane to the Canvas pane to add or modify a
relationship in the model.

Entities are displayed in a rectangle containing the name of the entity and relationships are displayed as an oval containing
a description of the relationship.

Entities and Relationships

Drag entities and relationships from the left pane to the Canvas pane to accomplish the following:

Addition of a relationship and entities that are part of it to your model.

Drag a relationship from the left pane to the Canvas pane to add the relationship and any corresponding entities to the
diagram.

Addition of an entity to an existing relationship.

Drag one or more selected entities onto a relationship that is currently part of the relationship to add entities to the existing
relationship.

Creation or modification of a relationship between two entities.

Drag an entity onto another entity in the Canvas pane to create the relationship rectangle.

Creation of relationships among multiple entities.

Create relationships among multiple entities by pressing SHIFT and clicking the desired entities. Then drag the entities to
another entity, or right-click one of the entities on the Canvas pane and click Relate.

Modification of an entity or its relationship.

Display and modify an existing entity or its relationship. If you drag an entity to the Canvas pane without dragging it onto
another entity, all relationships between that entity and all other entities currently on the Canvas pane are displayed.
Double-clicking the entity displays the Entity/New Entity dialog box, where the entity can be modified and double-clicking
a relationship displays the Relationship/New Relationship dialog box. There, the relationship can be edited.

Repositioning of entities in the Canvas pane.

Move entities to another position on the Canvas pane by dragging them to the new location. Repositioning an entity
anchors it in the new location.

Removal of entities from the diagram.

Remove entities from the Canvas pane by dragging them from the diagram. This action does not delete them from your
model.

Shortcut Menu Commands

Canvas Pane

These commands are available only when you click on the Canvas pane and affect the objects within the Canvas pane.

Select All
Select all of the entities and relationships in the Canvas pane.

Add Relationship
Display the New Relationship dialog box, where you add a relationship to your model.

Float All
Set all of the entities and relationships to automatically adjust their positions on the Canvas pane when a new object is added.
When an entity or relationship floats, it appears with a shadow around it.

Anchor All
Set all of the entities and relationships to remain in position on the Canvas pane a new object is added. Anchored entities and
relationships do not have a shadow.

Zoom In/Zoom Out
Change the view of the entities and relationships on the Canvas Pane.

Clear
Clear all of the objects from the Canvas pane.

Animate Layout
Gradually position the entities and relationships when you add entities to the model.

Help
Display Help for the Semantics tab.

Entities and Relationships

These commands are available only when you right-click an entity or relationship in the Canvas pane.

Add Relationship
Display the New Relationship dialog box, where you add a relationship to your model. Available only for entities.

Explode
Add all of the relationships associated with the selected entity to the Canvas pane. All necessary entities associated with the
relationships are also added. Available only for entities.

Implode
Remove the relationships from the diagram associated with the selected entity. Available only for entities.

Float
Set the selected relationship to allow its position to be automatically adjusted on the Canvas pane when a new object is added.
A relationship in float mode has a shadow around it. Available only for relationships.

Anchor
Set the selected entity to remain in position on the Canvas pane when a new object is added. Available only for entities.

Remove from Diagram
Remove the selected entities or relationships from the Canvas pane.

Note Removing an entity or relationship does not delete it from the model.

Help
Display Help for the Semantics tab.

See Also

Entity/New Entity Dialog Box

OLAP Tab (Model Editor)

Relationship/New Relationship Dialog Box

English Query (SQL Server 2000)

SQL Tab (Model Editor)
SQL Tab (Model Editor)

Use the SQL tab to view the database schema of the SQL database used with the selected module.

After you open a module, select the Tables tree to view a list of tables, fields, and joins in the SQL database.

To see how an object has been defined in the project, double-click it.

See Also

Entity/New Entity Dialog Box

Table/New Table Dialog Box

English Query (SQL Server 2000)

Regression Test Editor
Use the Regression Test editor to display the regression file and test your model by trying old and new questions against English
Query.

Right-click on the .eqr file in the Project Explorer window to use the following commands.

Open

Display an editor with the original English question, the restatement, the answer, and the SQL statements.

Run Regression

Execute all of the questions available in the regression file and place the questions, their restatements, answers, and database
query statements into a temporary regression output file.

An output file is a temporary file that results from running a regression. It is identical in format to a regression test file. When an
output file is saved, it becomes a regression test file that can be used with multiple versions of the model.

Click View Output to view and edit the temporary output file. When you choose Promote, the contents of the temporary output
file is saved as a new regression file.

A list of questions in a plain text file can also be run using this command.

View Output

Display the results of a regression test run that was performed after you clicked Run Regression.

The results include the restatements, answers, SQL commands, and database results in Extensible Markup Language (XML)
format. To edit the file and the changes, click View Output to open the editor before you click Run or Execute SQL again. If you
click Promote, the changes appear in the new regression test file.

View Differences

Display the differences between the selected regression file and the output from the last time you clicked Run Regression on this
regression file.

Use the View Differences command to determine whether the model is still functioning properly.

Promote

Copy the contents of the temporary output file to the original regression test file.

Click Promote to determine whether the English Query model is functioning properly. Do this after verifying the output and
results displayed using the View Output command are correct.

This command is only available if you have previously selected the Run Regression command.

Note The .eqr file must be writeable. If you are working in a project that is using source control, check the file out before using
this command.

See Also

How to add a new or existing regression test file to a project

Testing and Building a Model

English Query (SQL Server 2000)

Model Test Window
Use the Model Test Window to:

Ask a question or state a command.

Check the response from English Query.

Execute the query to view the results from the database.

Options

Query

Evaluate the model by typing a test question and clicking Submit Query.

English Query returns a restated version of the question and the generated SQL query.

Save Query Button

Save the question, answer, and any clarifications.

Submit Query Button

Submit the question to English Query.

Cancel Query Button

Cancel the database query that is being executed.

View Results Button

View the results of the database query.

Note This requires a data connection.

Suggest Relationships Button

Display a suggestion for the necessary entities and relationships to make a question that cannot be understood or has been
answered incorrectly work.

Test Properties Button

Display the Test Properties dialog box, where you set the amount of time to wait before a query that has not been completed
stops, and the maximum number of rows displayed per question.

Restatement pane

View a restatement of the query in English.

Answer Tab

View a response to the query.

Statement pane

View the query as a statement.

SQL pane

View the SQL statements for the query.

Results pane

View the query results. This option is available only if you clicked View Results.

Analysis Tab

View the entities and phrasing used in the question. This tab appears when a query is submitted.

If the question was interpreted, you will see a description of the entities and phrasings.

GoTo

Display the Entity/New Entity or Relationship/New Relationship dialog box for the selected entity or relationship
where you can edit it. Only available when an entity is selected.

Command Tab

Display the command structure for the command. This tab appears when a command relationship is submitted.

Table Tab

Display the database query and result table for each command relationship parameter. This tab appears when a command
relationship is submitted.

See Also

Buttons Used in English Query

Suggestion Wizard

Test Properties Dialog Box

English Query (SQL Server 2000)

Dialog Boxes
This section describes topics that are available from the user interface. For more information about Help topics, see Project
Wizards, Model Editor, Regression Test Editor, and Model Test Window.

English Query (SQL Server 2000)

Add/Edit Entity Default Dialog Box
Use this dialog box to specify a new default entity or to edit an existing default entity.

Options

Relationship

Specify a relationship in which the entity participates as the relationship for the default.

Invert

Specify that the default condition is the opposite of the condition expressed in the selected relationship.

Conditions

Optional. Specify conditions on the other entities in the relationship. A condition consists of the following elements:

Entity

Select the entity, other than the current entity, for which you want to set a condition. In the example, status equals current,
the entity is status.

Operator

Choose the operator from the list. Greater than and less than are not available for text entities. In the example, status equals
current, the operator is equals.

Value

Enter the value for the condition. The value may be numeric or text. In the example, status equals current, the value is
current.

When the entity is a date the following values are accepted:

Dates in the form MM/DD/[YY]YY

Times in the form HH:MM[:SS]

Datetimes in the form MM/DD/[YY] HH:MM:[:SS]

Months in the form MM/[YY]YY

Years [YY]YY

Special text such as "today", "this month", and "this year."

Note Because there is no "is null" or "is not null" available as a condition, it may not be obvious how to get defaults like:

employees whose ages are not null
or
employees whose termination dates are null.

However, they are not needed because creating the default employees have ages on the entity employees gives the
behavior the user expects. The question, "List the employees," shows only the employees who have ages.

Similarly, creating the default employees have termination dates on the entity employees and setting the Invert on the
default causes the question, "List the employees," to show only employees who do not have a termination date.

Default conditions invalid when these relationships are used

Specify the relationships in which this entity participates and for which you do not want to use default conditions if the
relationship is used in the question.

For example, if you specified employees who have termination dates relationship, the default relationship employees who are
active would not be used if a user asks, "Which employees have terminated?"

English Query (SQL Server 2000)

Adjective Phrasing Dialog Box
Use this dialog box to specify adjective phrasing for a relationship.

When a relationship between entities is expressed with an adjective, use adjective phrasing to define the relationship. The
adjective can be:

A single word not represented by a field.

Part of a database object that represents an entity.

A measurement.

Options

Subject

Select an entity that represents the subject of the relationship.

Adjective type

Select the adjective type.

Single adjective
Select if the adjective is a word not represented by an entity. Then enter the word in the Adjective that describes subject box.

Entity contains adjectives
Select if the adjective is contained in a field. Then enter the entity in the Entity that contains adjective box.

Measurement
Select if the adjective is a measurement of some kind, such as tall, fast, or heavy. Then enter the entity that contains it in the
Entity that contains the measurement box.

Adjective that describes subject

Enter an adjective that describes the subject entity in the relationship. This word or words is not represented by an entity.
Available only if you click Single Adjective. Entity that contains adjectives

Select an entity, which represents a table or field, containing the adjectives in the relationship.

Available only if you click Entity contains Adjectives.

Associate English Values

Display the English Data Values dialog box, where you specify English data values.

Available only if you click Entity contains adjectives.

Entity that contains the measurement

Select an entity containing the measurement for the relationship.

Available only when you click Measurement.

Adjectives associated with higher values (Use root form)

Enter adjectives that describe the high value ranges in their root form. For example, in the question, "List the old salespeople," old
is the adjective associated with a higher value.

Numeric threshold for high values

Specify the highest value to use when users ask questions involving absolute, but subjective, measurements. For example, the
question, "List the old salespeople," requires specifying what age is considered old. Only numeric values can be specified. If a
threshold is not specified, English Query prompts the user for the information when the question is asked.

Use lower value words as the default

Select to define the lower values as the default in the restatement of the question.

For example, identify whether the lower value (for example, young) should be seen as the top, or higher value. The use of the
lower value in this example allows questions such as "Show the people and their ages" to be restated as "Show the people and
how young they are." This restatement is not as likely as the idiom, "how old they are."

Adjectives associated with lower values (Use root form)

Enter adjectives that describe the lower values in their root form, for example, young.

Numeric threshold for low values

Specify the lowest value to use when users ask questions involving absolute, but subjective, measurements. For example, the
question "List the young salespeople" requires you to specify what age is considered young. Only numeric values can be specified.
If a threshold is not specified, English Query prompts the user for the information when the question is asked.

Add prepositional phrase

Enter the preposition and select an object from the Object of preposition list to further describe the relationship.

See Also

Adjective Phrasings in Relationships

English Query (SQL Server 2000)

Advanced Entity Properties Dialog Box
Use this dialog box to refine the entities in your model. This dialog box has the following three tabs:

Entity Defaults Tab (Advanced Entity Properties Dialog Box)

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

See Also

Defining Entities in an English Query Model

English Query (SQL Server 2000)

Entity Defaults Tab (Advanced Entity Properties Dialog Box)
Entity Defaults Tab (Advanced Entity Properties Dialog Box)

Use this tab to specify default conditions for an entity.

Whenever an entity is used in a query, all appropriate defaults are attached to it. For example, if the entity, customer, has a
default indicating that the customer should be a current customer, then the question, "Show the customers" is interpreted as
"Show the current customers."

Options

Defaults for

View the current default conditions.

Add

Click to display the Add/Edit Entity Default dialog box, where you start a new default condition.

Edit/Delete

Modify or remove the selected default condition.

See Also

Advanced Entity Properties Dialog Box

Defining Entities in an English Query Model

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

English Query (SQL Server 2000)

Name Synonyms Tab (Advanced Entity Properties Dialog Box)
Name Synonyms Tab (Advanced Entity Properties Dialog Box)

Use this tab to specify a synonym for a particular instance of an entity and add the specified names to the model as if they were
added from the database.

This is useful for situations in which certain names you want to be recognized are not present in the database or are not stored in
a form that users expect. For example, a product name may be stored in the database as "chair, wicker," but users may typically
refer to it as a "wicker chair." Similarly, "Big Apple" may appear in the database as "New York."

Options

This word

Specify the synonym for the term that appears in the database. For example, specify "Bill" as a synonym for "William."

Appears in database as

Specify the name that you want specified as a synonym. For example, the name "William" is the name stored in the application
database for the synonym "Bill."

See Also

Advanced Entity Properties Dialog Box

Defining Entities in an English Query Model

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

English Query (SQL Server 2000)

Semantic Properties Tab (Advanced Entity Properties Dialog
Box)
Semantic Properties Tab (Advanced Entity Properties Dialog Box)

Use this tab to define the entities in a model.

Options

Is a subentity of

Specify an entity from which this entity inherits relationships. Available only if a join exists from the key of this entity's table to the
key of the entity table from which the relationships are inherited. For example, click this option to have a salesmanagers entity
inherit all the relationships for the salesperson entity. This option ensures that relationships supporting questions such as "List
the sales people and their sales last month" will work for "List the sales managers and their sales last month," without having to
define the relationship explicitly between salesmanagers and sales.

Load words from

Specify a smaller table or a view from which to load data values into the dictionary for this entity. Available if you select the Add
values of this entity to the model check box and if a table is available for selection.

For example, specify a CurrentCustomers view from which to load customer names to avoid loading the larger Customers table.

The Load words from list contains any table that has:

A denormalized copy of each of the fields in the entity's field list.

Set these tables using the Denormalized option on the Advanced tab of the Table/New Table dialog box.

For example, the Load words from list for the customer_name entity, which refers to the fname and lname fields of the
dbo.customer table, contains the dbo.currentCustomers table. This occurs because dbo.currentCustomers.fname is a
denormalized copy of dbo.Customers.fname and dbo.currenCustomers.lname is a denormaized cop of
dbo.Customers.lname.

Fields with the same names as the fields in the entity's field list.

When the table is selected, the fields in the table are automatically marked as denormalized copies of the entity's fields. For
example, the Load words from list for the customer_name entity, which refers to the fname and lname fields of the
dbo.customer table, also contains the dbo.BestCustomers table because the table contains the fname and lname fields
although they currently are not marked as denormalized. However, the fields will be marked as denormalized when the
table is selected.

Unknown dates refer to

Specify a relationship that contains a date so that ambiguous questions can be answered correctly. Available only if this entity
participates in more than one relationship that involves a date. For example, the question "List the 2000 customers" can be
interpreted as "Show the customers who bought products in 2000" or "Show the customers that returned products in 2000." To
clarify the interpretation, specify the appropriate relationship. Otherwise, English Query guesses the meaning of the question.

Numerical references are to

Specify a field that contains the intended numerical data in an entity that is represented by a table. For example, the sales entity,
which is represented by a sales table, could be used for questions such as "Show the sales for last week." To allow numeric
questions such as "List the sales greater than $50" or "Show the total sales for last week," specify which field in the sales table
should be used for questions that involve numeric operations like this.

This is a standalone entity

Display data by itself, (without the accompanying data from a related table entity), when returning an answer.

Available only if this entity is represented by fields and does not participate in a name relationship. For example, to display
employees' ages only, you'd specify this option for the age entity. Questions such as "What are employees' ages?" returns a list of
ages, without employee names.

Sort by

Specify the sort order in which data from this entity is displayed.

Remote fields

Specify the fields from other tables to show whenever this entity is displayed. Available only when the entity is one requested by a
table with joins to other tables.

The table associated with the entity must have a join to the table containing the remote field.

Add Field

Display the Select Remote Fields dialog box, where you select fields from other tables. Add a field by selecting the remote table
and field you want displayed when the entity is displayed. To remove a field from the display list, select it in the Selected fields
box and click DELETE.

Note The table associated with the entity must have a join to the table containing the remote field.

See Also

Add/Edit Entity Default Dialog Box

Advanced Entity Properties Dialog Box

Advanced Tab (Table/New Table Dialog Box)

Buttons Used in English Query

Entity Defaults Tab (Advanced Entity Properties Dialog Box)

Entity/New Entity Dialog Box

How to add a join

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

New Dictionary Entry Dialog Box

Select Remote Fields Dialog Box

English Query (SQL Server 2000)

Command Phrasing Dialog Box
Use this dialog box to specify a command phrasing for your command relationships.

Command phrasings are used to define commands that display a set of data or other commands such as "Show the paintings by
xxx artist that are watercolors" or "Print the file."

Options

Sentence type

Select the type of sentence structure:

Verb

An example is print or exit.

Verb Object

An example is print file or order product.

Verb Object Object

An example is charge customers amounts for products.

Examples of selected phrasing

Display multiple examples of the selected sentence type.

Verb

Enter a verb that describes the action in the command relationship (for example, sell).

Indirect object

Select an entity that contains an indirect object (for example, teachers).

Direct object

Select an entity that contains a direct object (for example, briefcases).

Add prepositional phrase

Enter the prepositions and the object of preposition that further describe the relationship (for example, from the warehouses).

See Also

Using Command Relationships in an English Query Model

Verbs to Avoid in Command Relationships

English Query (SQL Server 2000)

English Data Values Dialog Box
Use this dialog box to specify English data values.

When the adjectives or subset words used to describe a relationship are defined in an entity, you can specify that they be found
either in a database field or in a specified set of word-value pairs. For example, a lookup table can contain gender codes and the
values they represent, M for Male and F for Female.

Options

Read English from table

Indicate that the adjective or subset entity contains codes and adjectives or subset words that must be looked up in a lookup table.

Table

Select a table that contains the fields in which adjective or subset words are stored. An example is the Gender Codes table.

Available only if you select Read English from table.

Word field

Select the field that contains the descriptive words in the adjective or subset phrasing.

Available only if you select Read English from table.

Value field

Select the field that contains the codes in the adjective or subset phrasing.

Available only if you select Read English from table.

Specify values

Specify a lookup table, which contains the values that serve as the adjectives or subset words in the relationship (for example, M,
Male and F, Female).Word and Value

Enter the word and its associated values. Although you can enter only one entry per line, you can have multiple words or multiple
values. For example, Male could be entered as the word, as the value, M, and as the value, Y. Female could be entered as the word,
as the value F, and as the value, X. Unknown could be entered as U.

Available only if you select Specify values.

English Query (SQL Server 2000)

Entity/New Entity Dialog Box
Use this dialog box to create or modify entities, which are semantic objects, for your model.

Options

Words

Enter the words, phrases, or synonyms that identify the entity.

For example, for an entity represented by the Employee table, you can type: employee, then worker, and then associate. Each
time you click Words:, you enter a synonym on a separate line at the bottom of the list. When you press ENTER, the synonyms are
displayed in the Words: box with a comma separating each entry.

Note The words appear in their singular forms, not in the plural.

Click the browse (...) button to display a list of synonyms for all the words in the Words box.

Entity type

Select a type from the drop-down list:

None
Default. Enable no additional language capabilities.

Who
Refer to the entity as "who" in a question. For example, indicating that customers are people lets "Who bought a lawnmower?"
be interpreted as "Which customer bought a lawnmower?"

Where
Refer to the entity as "where" or as a "location." For example, using this option allows you to ask questions like "Show the
buildings and their locations?".

When
Refer to the entity as "when" and allow it to be used in the When, Start, and End options of the Semantics tab of the
Relationship/New Relationship dialog boxes.

Measure
Indicate that the entity is a measure quantifying something else. Using this option allows the entity to be used in the How
many and How much options of the <Role name>Role dialog boxes.

Name Type

Specify the type of name for the entity.

Available only if you select Field(s), OLAP levels, or OLAP properties.

No name type
Default. Indicate that this data does not represent a name or unique ID. Disables the Add values of entity to model option.

Proper Name
Indicate the proper name of something. Proper names are capitalized and are not preceded by an article (a, an, or the) (for
example, Mary Smith).

Common Name
Specify a general term for something. Common names are not capitalized and typically include an article: a, an, or the (for
example, a wrench). An exception to the requirement for an article is "an e-mail name."

Classifier Name
Select a name of something commonly preceded by a, an, or the, and the entity word is included in the name. For example, the
Finance department includes the name of the entity, department.

Model Name

Select a name that is capitalized and preceded by the word a, an, or the (for example, brand names such as a Mustang).

Note Do not include the name of the entity. For example, an entity is not typically phrased a Mustang car.

Unique ID
Specify that the entity is represented by a special type of name in the database that makes each entry unique (for example,
Employee 37541).

Add values of entity to model

Add data in the selected table or field to the model so references to instances of the entity can be recognized out of context.

Depending on the number of distinct instances of the entity stored in the database, the process of loading these values can take
several minutes.

Available with all Name Type options except None.

Attribute of

Indicate that the selected entity is an attribute of another entity. For example, name, phone number, and age are attributes of an
employee.

The list contains all of the entities that are not already an attribute of another entity. The list is unavailable if the entity is
associated with a table, dimension, or fact because such entities cannot be attributes of other entities. The selection is blank if the
entity cannot be considered an attribute of another entity.

Help Text

Specify Help about this entity.

Users view this information in the Question Builder or by asking questions such as "What do you know about customers?".

Entity associated with

Specify that the entity is associated with:

Table
Show that the entity is represented by the rows in the table. Table and Field(s) are available when Table is selected.

Field(s)
Indicate that the entity is represented by one or more fields. Table and Field(s) are available when Field(s) is selected.

OLAP
Indicate the entity is associated with an OLAP object Level (default), Dimension, Measure, Property, or Fact.

The OLAP object list is unavailable until OLAP is selected. If the model is not OLAP enabled, these options are unavailable.

None
Indicate the entity is not associated with any database properties.

Table

Select the table you want associated with the entity. Available only if you select Table or Field(s).

Fields/Display Field(s)

Select the fields from the selected table that you want displayed. Available only you select Table or Field(s).

The list is displayed in two columns, Available Fields and Selected Fields. To display a field, place the cursor over the field you
want displayed and click. The field moves from the Available Fields list to the Selected Fields list.

To remove a field from the Selected Fields list, place your cursor over it and click. The field moves to the Available Fields list.

Note The cursor changes to a right- or left-pointing arrow depending on the column over which it is placed.

OLAP Cube

Display all of the OLAP cubes in the Microsoft® SQL Server™ 2000 Analysis Services database and select the OLAP cube to which
you want to associate the entity.

Available only when you select an OLAP object.

Dimension

Display all of the dimensions in the selected cube and select the one for which you want to associate the entity.

Available only when you select an OLAP object (for example, Level, Dimension, or Property).

Level

Display all of the levels in the selected dimension, and select the one to which to associate the entity.

Available only when you select an OLAP object (for example, Level or Property).

Property

Display all of the properties associated with the level and select the one to which to associate the entity.

Available only when you select the OLAP object, Property.

Show Relationships

Display the Show Relationships dialog box with a list of relationships that involve this entity.

Create Relationships

Display the Relationship wizard, which you use to add entities and create relationships.

Advanced

Display the Advanced Entity Properties dialog box, where you set semantic properties, defaults, and synonyms for the entity.

See Also

Advanced Entity Properties Dialog Box

Associating Entities

Buttons Used in English Query

Defining Entities in an English Query Model

Icons and Cursors Used in English Query

<Role Name>Role Dialog Box

<Role Name> Role in Command Dialog Box

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Find Dialog Box
Use this dialog box to search for a specific string in the current file.

Options

Find What

Enter the string you want to find.

Match case

Make the search case-sensitive.

Match whole word only

Match the specified string only if the string is a whole word, not part of a word.

Use regular expression

Default. Use the * and ? characters as wildcards.

For example, A?B matches ABB or AQB, and A*B matches ADSFFDFDSB.

Clear this option to have the * and ? characters interpreted literally. For example, A*B matches only one string, A*B.

Direction

Specify whether the search continues up or down in the file.

Find Next

Find and select the next occurrence of the specified text in the file.

See Also

Regression Differences Dialog Box

English Query (SQL Server 2000)

Join/New Join Dialog Box
Use this dialog box to specify tables involved in the join.

Options

Source Table

Specify the table that contains the field (foreign key) from which the join originates.

Destination Table

Specify the table that contains the field (primary key) to which the join is made.

Join Conditions

Specify the fields that make up the primary and foreign keys in the join.

Add/Edit/Delete

Add, modify, or delete a join condition. Click Add or Edit to display the Join Condition dialog box, where you can select fields to
be joined.

Allow outer join

Specify an outer join, because all rows in the source table may not have matching rows in the destination table.

For example, the table Employees contains an employee ID, name, and building ID. The table Buildings contains a building ID
and a building name. The question, "Show the employees and their buildings" usually generates a query with an outer join from
Employees to Buildings so employees who are not assigned to buildings are also displayed in the result set. If all employees are
assigned to buildings, clear this option to improve the performance of the query.

English Query (SQL Server 2000)

Name/ID Phrasing Dialog Box
Use this dialog box to specify a name phrasing for your relationship.

When one entity is the name (or ID) of another entity, use name phrasing to describe the relationship between them.

When specifying the two entities in this dialog box, you provide information to answer the following types of questions:

"Show me a customer named John Smith."

"List all the employees by name."

"What do you know about Mary Smith?"

"Show last names of people named Tom."

Options

Entity that is Name/ID

Select the entity represented by a database object in which name or ID values are stored.

For example, in the phrasing, Customer_Names are the names of customers, customer_name is the entity.

Entity being named

Select the entity named.

For example, in the phrasing, Customer_Names are the names of customers, customer is the entity being named.

English Query (SQL Server 2000)

New <Database Object> Dialog Box
Use this dialog box to select the new database objects you want to add to your model.

A database object can be a table, view, or OLAP cube. After choosing the database objects, use the Project Wizard to automatically
add entities and relationships.

The title of this dialog box changes with the type of project that is being created or edited. In SQL projects, the name of this dialog
box is the New Database Tables and Views dialog box. In OLAP projects, the name of the dialog box is New OLAP Cubes
dialog box. In this Help file, it is referred to as the New <Database Objects> dialog box in the general sense, and the specific
name otherwise.

Options

Available List

Display a list of the objects in the database that can be added to a model.

Selected List

Display a list of the objects that you have chosen to add to your model.

> Button

Move the selected object(s) from the Available list to the Selected list.

To add multiple contiguous objects, select the first object, hold down SHIFT, and then click the last object. To select multiple
noncontiguous objects, select the first object, hold down CTRL, and then click the additional objects.

>> Button

Move all of the objects from the Available list to the Selected list.

< Button

Move the selected object(s) from the Selected list to the Available list.

<< Button

Move all of the objects from the Selected list to the Available list.

OK

Import the database structure of the selected objects into the model.

See Also

Buttons Used in English Query

OLAP Project Wizard

Project Wizards

SQL Project Wizard

English Query (SQL Server 2000)

New Dictionary Entry Dialog Box
Use this dialog box to specify additional words to include in the English Query dictionary.

The English Query dictionary includes thousands of common English words, and provides your English Query application with the
terminology it needs to answer most questions posed in English. Add new words to the dictionary if the application requires
specialized terms that are not known by English Query.

Creating entities with synonyms and relationships will provide most of the vocabulary the system requires. Create a dictionary
entry if the word being defined is not associated with a particular entity or relationship.

Options

Dictionary entry type

Specify an entry as a main word or a synonym for a word that already exists in the dictionary.

Define word

Define irregular forms of words that are not known to English Query. For example, the irregular plural form of person is people,
and the irregular past tense form of shoot is shot.

Read synonym

Indicate that a word be interpreted the same way as another word when a query is received from a user.

This option is global and overrides any synonyms set in the Name Synonyms tab. For example, if you set this option to read
"ship" as "boat," the question "How many boats sailed last week?" would be interpreted as "How many ships sailed last week." But
it would incorrectly interpret, "How many widgets did we ship last week?" as "How many widgets did we boat last week?" In this
case, it is better to add the synonym "ship" to the primary entity word, "boat", in the Entity/New Entity dialog box.

Write synonym

Indicate that an alternative word be used in the response to a query.

For example, click Write: employees as: associates to specify that if a question has been received about employees, the
response can use the term associates instead.

See Also

Advanced Entity Properties Dialog Box

Entity/New Entity Dialog Box

Name Synonyms Tab (Advanced Entity Properties Dialog Box)

English Query (SQL Server 2000)

OLAP Dimension Dialog Box
Use this dialog box to display all levels in the dimension, including the underlying tables and fields associated with them. In
addition, this dialog box displays additional properties of the level and any OLAP properties associated with it.

Selecting Enable SQL on the Data Connection tab of the <Project > Properties dialog box enables you to edit the Table and
Field columns.

Options

Date dimension

Indicate that the dimension is of a date and/or time type.

Level, Table, Field

Display the Tables and Fields underlying the specified level.

If a table or field cell contained None when you imported an OLAP cube, English Query was not able to access the fields that
underlie the OLAP levels and SQL text could not be generated.

Capitalization

Specify the case in which the data was entered (for example, all lowercase, initial caps, and so on). If you do not know how the
data was entered or the data is inconsistently capitalized, select Unknown.

For all values of Data Capitalization other than Unknown:

Regardless of how the user types in the data value in the question, the SQL statement generated by English Query matches the
data capitalization values. For example, if the user asks, "Who sold the most widgets?", and the data capitalization on the
product_name field is "UPPERCASE", then the SQL statement will contain "product_name = 'WIDGET'". An exception to this can
occur when the values of product_name are loaded into the model. If there are any data values that violate the capitalization
convention, these are memorized so that the correct capitalization will be used in the SQL statement.

For data capitalization that is unknown:

The capitalization in the SQL statement generated by English Query matches the user's capitalization exactly, whether or not the
data values have been loaded into the model. For example, if the user asks, "How many awards did Gone With the Wind win?", the
SQL statement is movie_name = 'Gone With the Wind'. When users are unlikely to know the correct capitalization to use, pick
the closest data capitalization value other than Unknown, and load values of the entity into the model so that all capitalization is
memorized by English Query.

Date Type

Specify the date type of the data in the level, if any. Available only if the field representing the level is of date, string, integer, or
float data type.

None
Specify that the date type is unknown.

Integer Year, Integer Month, Integer Quarter, and Integer Day
Specify that the year, month, quarter, or day is a number (for example, 2000).

2 Digit Year
Specify that the date uses the last two digits of the year (for example, 99).

3 Letter Month or Month Name
Specify that the level contains a month in string format (for example, Mar). Not available for integers.

Quarter Name
Specify that the level contains a quarter in string format (for example, First Quarter). Not available for integers.

Name Structure

Specify the type of name data contained in the level, if any. In the last two selections, [Middle] indicates that the middle name is
optional. If the structure does not match any of the options, click None.

Note You can identify a Name structure of the level if the data type of the field associated with it is a string data type. If the field
representing the level is a date, string, integer or float data type, a date data type can be associated it.

English Query (SQL Server 2000)

OLAP Cube Dialog Box
Use this dialog box to display the dimensions and measures, including database properties such as tables, fields, and units of
measure, associated with a cube.

Options

Is virtual

Indicate whether the cube is virtual. A virtual cube can be either a combination of multiple cubes in one logical cube, somewhat
like a relational database view that combines other views and tables, or a cube based on a single cube that exposes only selected
subsets of its measures and dimensions.

Fact Table

Specify the fact table associated with the cube.

Dimensions

Select the dimensions associated with the cube.

Measure

Display and modify the measures in the cube. The Primary Key icon indicates the default measure.

Aggregation

Indicate the type of aggregation, precalculated summary data used to create the units of measure.

Units

Specify (in singular, rather than plural form) the units of measure in which the measure data is stored (for example, year, inch, or
kilometer).

Field

Display the fields and synonyms underlying the specified level.

See Also

Icons and Cursors Used in English Query

English Query (SQL Server 2000)

Preposition Phrasing Dialog Box
Use this dialog box to specify a preposition phrasing for the relationship.

Preposition phrasing can be specified between subject and object entities that include prepositions. For example, the phrase
patients are on medications (for illnesses) (at dosages) (for studies) allows the following questions to be answered by
English Query:

"Who is on medication X?"

"Who is on medication for heart disease?"

"Who is on medication for the XYZ study?"

"Who is on medication X for the XYZ study for heart disease?"

"Who is on medication X at 100 mg for heart disease for the XYZ study?"

Options

Subject

Select an entity that represents the subject of the relationship.

For example, in patients are on medications (for illnesses) (at dosages) (for studies), patients is the subject.

Preposition

Specify the preposition or prepositions that are used in the expression.

For example, in patients are on medications (for illnesses) (at dosages) (for studies), on is the preposition.

Object

Select an entity that is the object in the relationship.

For example, in patients are on medications (for illnesses) (at dosages) (for studies), medicines is the object.

Add prepositional phrase

Enter the prepositions and the objects of the prepositions (represented by entities) that further describe the relationship.

For example, in patients are on medications (for illnesses) (at dosages) (for studies), for (preposition) illnesses is the prepositional
phrase that further describes the relationship.

See Also

Prepositional Phrasings in Relationships

English Query (SQL Server 2000)

Project Properties Dialog Box
Use this dialog box to specify properties that are applicable to the entire model. This dialog box contains the following three tabs:

Data Connection Tab (Project Properties Dialog Box)

Default Relationships Tab (Project Properties Dialog Box)

English Tab (Project Properties Dialog Box)

English Query (SQL Server 2000)

Data Connection Tab (Project Properties Dialog Box)
Data Connection Tab (Project Properties Dialog Box)

Use this tab to set up how the model uses an SQL database or a Microsoft® SQL Server™ 2000 Analysis Services database.

Options

SQL Connection

Create a connection to an SQL database.

Enable SQL

Create entities associated with tables and fields and generate queries for SQL databases.

For an OLAP project, selecting the Enable SQL check box allows you to build an English Query model with entities and
relationships directly associated with the SQL database tables and fields underlying the OLAP objects. This allows users to ask
questions about database objects that may not be present in the OLAP cube.

Connection
Specify the data source connection string used to connect to the SQL database. Available only if you have enabled SQL.

Change
Display the Data Link Properties dialog box, where you change your connection. Available only if SQL is enabled.

For information about the Data Link Properties dialog box, see the Microsoft Data Link API documentation.

Type and Version
Select the database management system, such as SQL Server, and the version number of the database management software.
Available only if SQL is enabled.

Enable Outer Joins
Specify that the English Query application should generate SQL queries containing outer joins.

By selecting this option, you display rows in which no matching data is found. For example, if the question is Show the people
and their salaries for 1999, the answer will include all people whether or not they had salaries in 1999.

OLAP Connection

Create a connection to an Analysis Server database.

Enable OLAP
Create entities associated with OLAP objects and query an OLAP cube in an Analysis Services database.

If you create a project without using a Project wizard, by default, both Enable SQL and Enable OLAP are selected.

Enable both OLAP and SQL if questions cannot be answered using only an Analysis Services database or to speed up the
retrieval of data for questions that are not about aggregation of data, such as "What products do people buy?"

Connection
Specify the data source connection string used to connect to the Analysis Services database. Available only if you have enabled
OLAP.

Change
Display the Select An Analysis Server dialog box, where you change your connection. Available only if you have enabled
OLAP.

Type and Version
Select the database management system, such as MS Analysis Services, and the version number of the database management
software. Available only if OLAP is enabled.

Vocabulary

Specify that the vocabulary (values for entities) should be loaded from the database.

Select this option to include entity values in the dictionary. Clear for a faster compile time.

Words per entry

Specify a limit to the number of words to be added to the dictionary from each field or level. Select a lower number to decrease
compile time.

Sample data

Specify that the sample data values should be loaded for each entity. When selected prior to building an application, sample data
is useful for generating instance values in Question Builder.

Clear for faster modeling and compile time.

Note To use Question Builder and include instance values, select Sample data prior to building the application.

See Also

Creating an English Query Model

Expanding an English Query Model

English Query (SQL Server 2000)

Default Relationships Tab (Project Properties Dialog Box)
Default Relationships Tab (Project Properties Dialog Box)

Use this tab to specify the default relationship English Query chooses for vague questions about a particular pair of entities.

If two entities mutually participate in more than one relationship, English Query may not be able to determine which relationship
users are referring to when the users ask vague questions. For example, "Show the people and their cars" could mean either
"Show the people and cars they own" or "Show the people and the cars they drive." Use this option to specify a default
relationship for vague questions about a particular pair of entities.

Options

Entities with Ambiguous Relationships

View all pairs of entities that participate in more than one relationship.

For example, if you have both relationships, people own cars and people drive cars, then "people and their cars" and "cars and
their people" would appear in this list. For either or both entries, you can select the relationship that should be used to answer
vague questions about people and cars.

Default Relationship

Select the relationship to be used when questions about the selected entities are vague.

Note Choose a different relationship for each phrasing direction. For example, you can indicate both that "people and their cars"
means "people and the cars they own" and also that "cars and their drivers" means "people and the cars they drive."

English Query (SQL Server 2000)

English Tab (Project Properties Dialog Box)
English Tab (Project Properties Dialog Box)

Use this tab to specify properties that are applicable to the entire English Query application, rather than particular database or
semantic objects, represented by the open project.

Options

Ask about spelling mistakes

Specify that users of the application will be prompted to correct spelling mistakes in their questions. If this option is not selected,
English Query attempts to correct spelling errors automatically.

Default date

Specify that the application should assume the selected date if the question does not specify one directly.

For example, if year is selected, then the question, "Show Ann's sales," is interpreted as "Show Ann's sales for this year." (A default
date also can be set for individual relationships.)

Enable user context

Specify that English Query should retain a "conversational context" for the user.

This option allows the user to refer to previous questions using pronouns (for example, "Who was hired last year?" followed by
"Which department hired them?") and ellipsis (for example, "Show the total sales for 1996" followed by "for 1997").

Keyword mode

Provide a best guess of the meaning of a query that English Query does not understand because it contains improper syntax
and/or unknown vocabulary.

For example, the question "List the tall customers who ordered Chai," generates different results with and without Keyword mode
selected.

With Keyword mode cleared, English Query generates an error such as "Based on the information I've been given about this
database, I can't answer: 'How tall are customers.' I haven't been given any information on tallness." This error occurs
because English Query tries to understand every part of the query, and tallness has nothing to do with who ordered Chai.

With Keyword mode selected, English Query ignores words and concepts it cannot recognize and makes a best guess of the
meaning of the query. In this example, English Query ignores "tall" and uses the question, "which customers ordered Chai?"
This is a question that English Query can answer based on information from the database and the model.

Assume unknown names refer to

Specify an entity that should be used if it is unclear to what name the entity is referring.

For example, "Show John's appointments" would be interpreted as show appointments for the doctor named John.

Assume unknown IDs refer to

Specify an entity that should be used if it is unclear to what entity an ID is referring.

Assume "I" and "me" refer to

Specify an entity, which contains names that should be used if "I" or "me" is used in a question. If this option is specified, a
clarification request is made when the user asks questions starting with "I" or "me" or its variations, such as "my" or "mine." A
user can avoid the clarification request by entering an "I am" declarative question, such as "I am Sue." English Query will
remember Sue and assume that all "I" and "me" questions refer to Sue.

Fiscal Year

Enter parameters for the fiscal year:

Fiscal year start
Enter the month and day that the fiscal year begins.

Assume years are fiscal years
Specify that when a year is used in a question, the application will assume that it refers to a fiscal year unless otherwise

specified in the question.

Regression Test

Set parameters of regression:

Regression date
Specify a particular date to use when running regressions.

Using this option allows time-dependent questions to generate identical responses when regressions are run on different days.
For example, the question, "How many customers bought products yesterday?" generates different SQL each day unless this
option is set.

See Also

Advanced Entity Properties Dialog Box

Entity/New Entity Dialog Box

OLAP Dimension Dialog Box

Select An Analysis Server Dialog Box

English Query (SQL Server 2000)

Regression Differences Dialog Box
Use this dialog box to display the differences between the current regression file and the regression output file so you can
compare them. You cannot make changes to the files from this dialog box.

The Regression Differences dialog box displays two files side-by-side. It uses three colors to show deleted, modified, and added
lines. Deleted lines appear in blue text, modified lines are displayed in red text, and added lines appear in green text.

Options

Find Button

Display the Find dialog box, where you specify the text you want to find. Words are found and highlighted only in the active pane.

Find Next Button

Find and select the next occurrence of the text in the active pane that is specified in the Find What box of the Find dialog box.

Find Previous Button

Find and select the previous occurrence of the text in the active pane, which is specified in the Find What box of the Find dialog
box.

Previous Difference Button

Find and move the blue arrow to the beginning of the previous text with differences.

Next Difference Button

Find and move the blue arrow to the beginning of the text for the next text with differences.

Help Button

Display Help for the dialog box.

Regression File Pane

Display the original version of the selected regression file.

Text that has been deleted when the next regression test is run is displayed in blue text.

Regression Output Pane

Display results of the most recent regression test performed using the Run Regression command.

The output file display includes the restatements, answers, SQL commands, and database results, if applicable.

Text that has been changed or inserted is displayed in red and green text respectively.

See Also

Buttons Used in English Query

Find Dialog Box

Icons and Cursors Used in English Query

Testing an English Query Model

English Query (SQL Server 2000)

Relationship/New Relationship Dialog Box
Use this dialog box to refine the relationships within the model. This dialog box has the following three tabs:

Command Tab (Relationship/New Relationship Dialog Box)

Database Tab (Relationship/New Relationship Dialog Box)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Command Tab (Relationship/New Relationship Dialog Box)
Command Tab (Relationship/New Relationship Dialog Box)

Use this tab to specify properties for the command relationship.

Options

Command Name

Enter a string representing a command relationship.

Command parameters

Set the parameters for the command relationship.

Parameter
Specify the parameters for a command relationship.

Parameter ID
Display an integer identifying a parameter of a command relationship.

See Also

Database Tab (Relationship/New Relationship Dialog Box)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Database Tab (Relationship/New Relationship Dialog Box)
Database Tab (Relationship/New Relationship Dialog Box)

Use this tab to specify database options for a relationship when you want to either identify the table containing all the links to the
tables represented by entities or specify a condition under which the relationship is true.

If the relationship is a command relationship, the tab title changes from Database tab to Command tab.

Note Not available if the model is enabled for OLAP only.

Options

Table that contains joins to all entities in this relationship

Select the table that is the starting point for all of the joins to the tables and fields that represent entities in the relationship.

Calculate Default Join Table

Have English Query find the join table.

This relationship is true only when the following SQL condition is true

Enter an SQL condition that specifies when the relationship is true.

For the relationship Products are shipped to customers, this SQL condition is a requirement that customers' credit be approved:
Sales.Approval='T'

Show most recent data by default

Specify that English Query answers are generated from the most recent data in the database.

For example, if this option is selected, the question, "What is John's salary?" will show only John's most recent salary, although the
associated table may contain several historical references to John's salary at various points in time.

This option is available if the relationship has a date that is part of the key of the join table for the relationship. It is unavailable if
the date on the relationship is not a single field.

See Also

Command Tab (Relationship/New Relationship Dialog Box)

Semantics Tab (Relationship/New Relationship Dialog Box)

English Query (SQL Server 2000)

Semantics Tab (Relationship/New Relationship Dialog Box)
Semantics Tab (Relationship/New Relationship Dialog Box)

Use this tab to display the entities that participate in a new or existing relationship and to:

Add and delete entities to and from the relationship, and edit the role the entity plays in the relationship.

Add, modify, and delete the phrasings for the relationship.

Specify a time or location for the relationship.

Options

Entities

Add and delete entities to and from the relationship and edit the role the entity plays in the relationship.

Entities List
Display each entity that participates in the relationship.

Press CTRL or SHIFT and click the entities to select more than one entity.

Add/Edit/Delete
Specify a new entity to be used in the relationship, modify the role of the selected entity, or delete the role of the selected entity.

Deleting an entity from a command relationship does not delete it from the project.

When/Start/End

Specify when the relationship occurs, begins, or ends. Only available when a Date entity is in the relationship.

For example, for the relationship, People buy products, where the when entity is purchase_date, you can ask the following
questions:

"When did John Smith buy a hammer?"
"Who bought a hammer first?"
"How many hammers were bought this year?"
"What did John Smith buy yesterday?"
"Which products were bought in January?"
"Who bought a product before December 5, 1995?"

For the relationship, Companies ship products, where the start entity is start_date and the end entity is end_date, you can ask the
following questions:

"When did Acme start shipping Brand X Soap?"
"When did Acme stop shipping Brand X Soap?"
"Did Acme ship Brand X Soap in 1995?" This question can be answered only if both start and end dates are defined.

Default date

Specify that this relationship should assume the selected date. Click None to indicate that the relationship should use the global
default setting. Available only when there is a Date entity in the relationship.

Duration

Specify the duration of the relationship.

For example, for the relationship, People run races where the duration entity is race_time, you can ask the following questions:

"How long did Mary run?"
"How long did it take for Mary to run the Boston Marathon?"
"Who ran the longest?"

Where

Specify the location of the relationship.

For example, for the relationship, People buy products and the location entity, store, you can ask the following questions:

"Where did Peter buy flowers?"

For the relationship Cities are in states and the location entity is state, you can ask the following question:

"Where is Chicago?"

Phrasings

List all of the phrasings added to the relationship.

Specify phrasings for a relationship. Phrasings are a way to talk about a relationship in English. Choose the phrasings that most
closely reflect how users would ask their questions.

For example, Salespeople sell customers products is a verb phrasing that describes a relationship between salespeople and
product.

Add/Edit/Delete
Add a phrasing type that represents the selected relationship and modify or delete the selected phrasing.

Group/Ungroup
Specify that the selected phrasings are required to work together in order to describe the relationship, or separate the
phrasings.

Help text

Specify Help about this entity. Users view this information in the Question Builder or by asking questions such as "What do you
know about customers?"

See Also

Command Tab (Relationship/New Relationship Dialog Box)

Database Tab (Relationship/New Relationship Dialog Box)

Defining Relationship Phrasings

Grouped Phrasings Examples

English Query (SQL Server 2000)

<Role Name>Role Dialog Box
Use this dialog box to add entities to a new relationship or to modify entities in an existing relationship that does not have
command phrasings.

Note <Role name> is the name of the role, not the name of the entity.

Options

Always display <entity>

Specify that the entity is always displayed whenever the relationship is used, whether or not the question suggests its use.

For example, you can select this option from the salesperson role in the customers buy products from salespeople relationship. In
response to the question, "Who bought a hammer yesterday?", English Query shows the salesperson who sold the hammer in
addition to the person who bought it.

How many

Select any entity in the model whose entity type is Measure.

It indicates that the quantity of the role entity used in the relationship is indicated by another entity chosen from this list. This
allows English Query to answer questions such as "How many products did xxx buy," when each purchase consists of a quantity
greater than 1.

Note Select either How many or How much, but not both for a role.

For example, in the relationship, customers buy products from salespeople, the product role entity can be quantified by the entity,
sales quantity, that was chosen from this list. This allows English Query to answer the question, "How many products did John
buy," with a response of five, if John bought 2 boxes of Chai and 3 boxes of tea.

How much

Select any entity in the model whose entity type is Measure.

Note You can select either How many or How much, but not both for a role.

For example, the product role in the customers buy products relationship can be specified by selecting the sales amount entity.
This enables English Query to answer the question, "How much cheese did Quick-Stop buy" and get an answer in terms of the
sales amount in dollars.

Join Path

Use the join path that currently exists between the join table and the table or field that represents this entity.

Specify

Display the Specify Join Path dialog box, where the join path can be changed. Specify a join path when there is more than one
way to get to the entity from the join table specified for the relationship.

See Also

Entities as Roles

Specify Join Path Dialog Box

English Query (SQL Server 2000)

<Role Name> Role In Command Dialog Box
Use this dialog box to add entities to a new role or to modify roles in an existing relationship that has command phrasings.

Note <Role name> is the name of the role, not the name of the entity.

User must specify

Indicate that the role is mandatory. If the user does not state a specific instance of the entity and you used the Prompt if not
present option, English Query will ask for the information.

A mandatory role is one in which the command is not complete unless this role is supplied. The role can be a command
argument. Mandatory roles allow entities used as command relationship arguments to be required. This is used for situations
where the target command has arguments that are required for the command to work. For example, in the command, ship
(amounts of) products to customers on dates, product, customer, and amount must all be specified or the phrase is incomplete.

Prompt if not present

Enter the text that your English Query application displays if User must specify <role> is selected and the user's command does
not specify this role.

For example, if the user says "Ship 10 units of Chai," mandatory roles cause English Query to ask for a customer.

The user's command can specify a quantity ("how many") for this entity

Allow, but not require, the user to specify the quantity of the role that is being used in the command. The user only has to specify
a quantity if you enter text in the Prompt if not present box.

Only enabled if User must specify <role> is selected.

Note You can select either How many or How much, but not both for a role.

Prompt if not present

Allow English Query to ask for a quantity ("how many") if the quantity is not specified in the command.

Only enabled if The user's command can specify a quantity ("how many") for this entity is selected.

For example, if you entered "Please indicate how many units" and the user says, "Ship Chai to John", the text appears and the user
must enter the number of units of Chai that should be shipped to John.

The user's command can specify an amount ("how much") for this entity

Allow the user to specify the amount the role is used in the command. The user only has to specify an amount if you enter text in
Prompt if not present.

Only enabled if User must specify <role> is selected.

Note You can select either How many or How much, but not both for a role.

Prompt if not present

Allow English Query to ask for the amount ("how much") if it is not specified in the command.

Only enabled if The user's command can specify an amount ("how much") for this entity is selected.

For example, if you entered "Please indicate the amount of the shipment in dollars" and the user says, "Ship Chai to John", the text
appears and the user must enter the shipment cost in dollars of Chai that should be shipped to John.

Entity type

Specify the data type for non-database entities. This option is only available for entities that are not associated with a
database object.

None
(Default). Indicate that no data type checking occurs when English Query responds to commands.

Numeric
Indicate that the entity is a numeric data type.

Text
Indicate that the entity is a string data type.

Date
Indicate that the entity is a date data type.

See Also

Entities as Roles

Specify Join Path Dialog Box

Using Command Relationships in an English Query Model

English Query (SQL Server 2000)

Select An Analysis Server Dialog Box
Use this dialog box to select the Analysis server and database to use in the project.

Options

Analysis Server

Enter the name of the Analysis server where the database that you want to use resides.

Database

Select the database from the specified Analysis server.

English Query (SQL Server 2000)

Select Phrasing Dialog Box
Use this dialog box to select a phrasing type for a relationship.

A phrasing describes a relationship between entities. In other words, phrasings are a way to talk about a relationship in English.
Choose the phrasing that most closely reflects how users would ask their questions.

For example, Customers buy products from stores is a verb phrasing that describes a relationship. It allows questions to be asked
such as, "What customers bought widgetX from Store #1?"

Options

Name/ID Phrasing

Create a relationship in which an entity has a name or ID.

For example, Name/ID phrasing includes employee_names are the names of employees or titles are the names of books.

Trait Phrasing

Create a relationship in which an entity is a trait of another entity.

For example, trait phrasing include patients have blood types.

Preposition Phrasing

Create a relationship between two entities in which one is the subject and one is the accompanying object of a preposition.

For example, preposition phrasing includes stories are about topics where stories is the subject, about is the preposition, and
topics is the object.

Adjective Phrasing

Create a relationship in which an entity is described by an adjective.

For example, adjective phrasing includes city is hot where city is an entity, and hot may be defined in the project or contained in a
field in the database.

Subset Phrasing

Create an English description of a relationship in which one entity or word is a subset of another entity.

For example, subset phrasing includes some mountains are volcanoes where volcanoes are a subset of mountains.

Verb Phrasing

Create a relationship in which the entity acts.

For example, verb phrasing includes people work or salespeople sell products to customers.

Command Phrasing

Create phrasing used to define new model-specific commands in a command relationship. Command relationships can use
entities that are not represented by database objects, such as Delete folder in the command, Move <file> into the Delete folder.

For example, command phrasing includes print <file> or show paintings.

See Also

Adjective Phrasing Dialog Box

Command Phrasing Dialog Box

Defining Relationship Phrasings

Name/ID Phrasing Dialog Box

Preposition Phrasing Dialog Box

Subset Phrasing Dialog Box

Trait Phrasing Dialog Box

Verb Phrasing Dialog Box

English Query (SQL Server 2000)

Select Remote Fields Dialog Box
Use this dialog box to specify fields from other tables to show whenever this entity is displayed.

Available when the entity is an entity associated with a table that has joins to other tables.

Note The table associated with the entity must have a join to the table containing the remote field.

Options

Table and Field

Select the remote field to display whenever the entity is displayed.

Add

Add the remote field selected with Table and Field options.

Delete

Delete the selected remote field in the Selected fields box.

Selected fields

Display the remote fields that you selected in the Table/Field options and then added to the list by clicking Add.

English Query (SQL Server 2000)

Specify Join Path Dialog Box
Use this dialog box to specify a join path when there is more than one way to get to the entity from the join table specified for the
relationship.

For example, in a relationship called Sell, an entity is branch. The join table is the table Sales. There is more than one way to get
from the table Sales to the table Branches.

The two ways to get to the table representing the entity are:

Use the field Branch_id to join from the table Sales to the table Branches.

In other words, use the join Sales.branch_id~Branches.id.

Use the field Salesrep_id to join from the table Sales to the table Salesreps, and then use the field Branch_id to join from
Salesreps to the table Branches.

In other words, use the join Sales.salesrep_id~Salesreps.id followed by the join Salesreps.branch_id~Branches.id.

Options

Joins available from the table <table name> list

Select the join to use for the entity.

This list changes to the list of joins in the other table of your selection each time you click Add. For example, if you choose the join
between Branch_id in the Branches table and the Sales table, Brances.Branch_id~Sales.Branch_id, and click Add, this box will
change to list the joins in the Sales table.

Add

Move the selected join from the Joins available from the table <table name> list to the Join path so far list and change the
Joins available list to reflect the joins available in the other table.

Join path so far

Display a list of the joins that you have added.

Delete

Move the join selected in the Join path so far list to the Joins available from the table <table name> list and change the list
to reflect the joins available in that table.

English Query (SQL Server 2000)

Subset Phrasing Dialog Box
Use this dialog box to specify a subset phrasing for a relationship when the relationship can be described as an entity having a
subset.

An example is some mountains are volcanoes.

Options

Subject

Select the entity that represents the universal concept for which you wish to define a subset.

For example, in the relationship some mountains are volcanoes, select mountains as the subject.

Subset word (singular)

Select Subset word if the subset is simply a word, not an entity.

For example, in the relationship some mountains are volcanoes, enter the word volcanoes.

Entity that contains category values

Select Entity that contains category values if the subset is stored in another entity, and then enter the corresponding entity
that contains the subset values.

Associate English Values

Display the English Data Values dialog box, where you specify where the subset words are to be found: either in a database field
or in a set of specified word-value.

For example, a lookup table can contain gender codes and the values they represent (M for man and F for woman).

Add prepositional phrase

Enter the Prepositions and the Objects of Prepositions (represented by entities) that further describe the subset relationship.

For example, in doctors are primary care providers of patients, of patients is the prepositional phrase.

See Also

Defining Relationship Phrasings

English Data Values Dialog Box

English Query (SQL Server 2000)

Table/New Table Dialog Box
Use this dialog box to specify the properties of tables or fields that have been added to a project.

Existing database tables or fields can be included in a project one by one (rather than having them extracted automatically). For
example, use this command when adding a table to a database structure.

Options

Primary Key Icon

Specify that the field is part of the primary key for the table. Right-click the field to change the primary key.

Field Name

Display the name of the field you want to add. You can change the field name by typing a new one.

Data Type

Specify the type of data the field contains. If you do not know what kind of data the field contains, select Unknown.

The following describes the English Query data types and their equivalent Microsoft® SQL Server™ data types:

Integer—int, smallint, tinyint
Float—real, decimal, numeric, money, small money
Date—datetime, smalldatetime
String—char, varchar
Bit—bit
Text—text
Binary—binary, varbinary, image
Other—timestamp (anything not listed above)
GUID—a globally unique identifier

Caption

Optional. Specify the label for this field, if one exists.

For example, the LastName field may have a caption of Last Name, which is used on forms.

Basic Tab

Use this tab to define the fields in your project.

Advanced Tab

Use this tab to further define the fields in your project.

See Also

Advanced Tab (Table/New Table Dialog Box)

Basic Tab (Table/New Table Dialog Box)

Icons and Cursors Used in English Query

English Query (SQL Server 2000)

Basic Tab (Table/New Table Dialog Box)
Basic Tab (Table/New Table Dialog Box)

Use this tab to define the fields in a model.

Options

Capitalization

Specify the case in which the data was entered.

The effect of using this option depends on whether the Add values of this entity to the model check box is selected.

For all values of Capitalization other than Unknown:
Regardless of how the user types in the data value in the question, the SQL statement generated by English Query matches the
capitalization values. For example, if the user asks, "Who sold the most widgets," and the capitalization on the product_name
field is "UPPERCASE", then the SQL statement will contain product_name = 'WIDGET'. An exception to this can occur when the
values of product_name are loaded into the model. If there are any data values that violate the capitalization convention, these
are memorized so that the correct capitalization will be used in the SQL statement.

For capitalization that is Unknown:
The capitalization in the SQL statement generated by English Query matches the user's capitalization exactly, whether or not the
data values have been loaded into the model. For example, if the user asks, "How many awards did Gone With the Wind win,"
the SQL statement is movie_name = 'Gone With the Wind'. When users are unlikely to know the correct capitalization to use,
pick the closest capitalization value other than Unknown, and load values of the entity into the model so that the capitalization is
memorized by English Query.

If you do not know how the data was entered or the data is inconsistently capitalized, select the Unknown check box.

Date Type

Specify the date type of the data in the field, if any.

Integer Year, Integer Month, Integer Quarter, and Integer Day
Use if the field containing a year, month, quarter, or day is a number (for example, 2000).

2 Digit Year
Use if the field contains the last two digits of the year (for example, 99).

3 Letter Month
Use if the field contains a month in String format (for example, Mar). Not available for Integers.

Month or Quarter Name
Use if the field contains a month or quarter in String format (for example, March). Not available for Integers.

Name Structure

Specify the type of name data contained in the field, if any.

For example, in the last two selections, [Middle] indicates that the middle name is optional. If the structure does not match any of
the options, choose None.

Search Type

Specify the type of search to perform by default on the field when a user enters a question.

Exact Match
Default if the field is not full-text indexed. Display the field that matches exactly, including capitalization. For example, "where is
the restaurant named Bento" would find a restaurant named Bento but not The Bento Box, Bento Express, or Tachibana Bento.

Contains
Display all rows with fields that have words that include the specified word or letters. For example, "Where is the restaurant
named Bento" would find The Bento Box, Bento Express, and Tachibana Bento.

Prefix
Display all rows with fields that have words beginning with the letters indicated. For example, "where is the restaurant named
Bento" would find Bento Express but not The Bento Box.

Sounds Like
Find rows with fields containing words that have the same sound. For example, "where is the restaurant named bentow" would
find The Bento Box, Bento Express, and Tachibana Bento.

Free Text

Default if the Full-text indexed check box is selected for the field. Display all the rows with fields that approximately match the
words or phrase specified. For example, "Display all of the books about how I can cook seafood Japanese style" would display
Cooking Seafood New England Style, The Simple Art of Japanese Cooking, and Aunt Louise's Seafood Cookbook because it
would find all books about seafood, Japanese, and cooking. Only available if you select Full-text indexed.

Units of Measure

Specify in singular, rather than plural, form the units of measure in which the field data, if any, is stored (for example, year, inch, or
kilometer).

Field contains a fiscal year

Indicate if this field contains a fiscal year.

Full-text indexed

Default if the field is full-text indexed. Enable full-text searching for the field if the database supports full-text indexing.

Note This option is disabled if you are not using Microsoft® SQL Server™ version 7.0 or later, or if the field data type is not
String or Text.

When using SQL Server to create a full-text index for a table, specify a unique key column to be stored in the index. Specify the
same column as the primary key for the table in English Query. Otherwise, the query that English Query generates for full-text
searching in that table will not retrieve any results.

Clear this option to disable full-text searching, even if the field is full-text indexed.

See Also

Advanced Tab (Table/New Table Dialog Box)

English Query (SQL Server 2000)

Advanced Tab (Table/New Table Dialog Box)
Advanced Tab (Table/New Table Dialog Box)

Use this tab to further define the fields in a model.

Options

Allow Nulls

Specify that the field can contain nulls. Clearing this will cause the application to omit explicit null checks from the SQL database.

Denormalized

Specify that the selected field is a duplicate of a field in another table. Sometimes databases are denormalized for efficiency
purposes.

For example, in a database containing Sales, Customers, and Products tables, the product name appears both in the Products
table and in the Sales table. This allows a question such as, "Who bought a sprocket last week?", to be answered without a join to
the Products table. This property is set on the Product Name field in the Sales table, indicating it is the same as the Product
field in the Products table. English Query then can take advantage of the denormalization, rather than treating the fields as if they
are two different fields that happen to have the same, or similar, names.

Aggregate

Specify that the selected field is an aggregate for a field in another table. Available only for numeric fields (for example, an
average or total field).

Computed Field

Specify that the value of this field is derived from a computation, rather than occurring in a database table. Add or edit an
SQL expression associated with the selected field. Table names in the expression are required.

An example is dbo.titles.ytd_sales-dbo.titles.advance or datediff(year, dbo.employee.hire_date, getdate()).

See Also

Basic Tab (Table/New Table Dialog Box)

SQL Database Normalization Rules

English Query (SQL Server 2000)

Test Properties Dialog Box
Use this dialog box to change the time-out and the number of rows to display when executing queries in the Model Test window.

Options

Query Time-out

Specify the time in seconds that will be allowed to elapse before a query will time out. The range must be between 1 and 9999
seconds. The default is 120 seconds.

Maximum rows to display

Enter the number of rows of query results that will be displayed per question when executing a database query. The number must
be between 1 and 1000 rows. The default is 100 rows.

See Also

Model Test Window

Testing an English Query Model

English Query (SQL Server 2000)

Trait Phrasing Dialog Box
Use this dialog box to specify a trait phrasing for your relationship.

An entity is a real-world object, referred to by a noun. Some entities are traits of other entities. For example, the entity, blood
type, is a trait of the entity Patient.

When specifying the two entities in this dialog box, provide the information needed to answer these types of questions:

"What is Mary's blood type?" and "Show me the blood type of Mary."

"What hair color does John have?" and "Show me the hair color of John."

Note These questions can be formed using the possessive case (Mary's blood type) or by using of and have.

Prepositional phrases that further define the trait can be specified. For example, Banks have branches in cities. In this case, banks
is the subject, branches is the trait, and in cities is an additional object that specifies where the branches are.

Options

Subject

Select an entity that represents the subject of the relationship.

For example, in the phrase, Banks have branches in cities, banks is the subject.

Object

Select an entity that contains the trait

For example, in the phrase, banks have branches in cities, branches is the object and trait.

Add prepositional phrase

Enter the prepositions and the object of prepositions that further describe the relationship.

For example, in the phrase, banks have branches in cities, in the cities is the prepositional phrase.

English Query (SQL Server 2000)

Verb Phrasing Dialog Box
Use this dialog box to specify a verb phrasing for your relationship.

Options

Sentence type

Select the type of sentence structure.

Subject Verb
An example is volcanoes erupt or employees work (for companies).

Subject Verb Object
An example is customers buy products or patients take medicines (for illnesses).

Subject Verb Object Object
An example is salespeople sell customers products or doctors give patients medicine.

Object are Verb
An example is products are tested or cars are driven (on roads).

Object are Verb Object
An example is products are tested or cars are driven (on roads).

Examples of selected phrasing

Display multiple examples of the selected sentence type.

Subject

Select an entity that represents the subject of the relationship. For example, for the verb phrase, salespeople sell briefcases, the
entity salesperson represents the subject.

Verb

Enter a verb that describes the action in the relationship. For example, in the verb phrase, salespeople sell briefcases, sell is the
verb.

Indirect

Select an entity that contains an indirect object. For example, in the verb phrase, students give teachers answers, teachers is the
indirect object.

Direct object

Select an entity that contains a direct object. For example, in the verb phrase, salespeople sell briefcases, briefcases is the direct
object.

Add prepositional phrase

Enter the Prepositions and the Object of prepositions that further describe the relationship. For example, in the verb phrasing,
products come from the warehouses, from the warehouse is the prepositional phrase.

See Also

Defining Relationship Phrasings

Verb Phrasings in Relationships

English Query (SQL Server 2000)

Troubleshooting English Query Applications
This section includes information about resolving English Query usage issues and compile-time error messages.

English Query (SQL Server 2000)

English Query Usage Issues
The following issues may affect the performance of English Query applications.

English Query OLAP Projects Are Not Supported on Windows 95 and Windows 98

English Query is supported on the Microsoft® Windows® 95 and Windows 98 operating systems, but the server
components required by Microsoft SQL Server™ 2000 Analysis Services are not.

To build English Query OLAP projects on Windows 95 and Windows 98, manually install a SQL Server version 7.0 OLAP
Services client (such as the MDX Sample or Microsoft Excel 2000). You still cannot build OLAP mixed mode projects that use
multidimensional expressions (MDX) and SQL because those projects require Decision Support Objects (DSO), which do not
work at all on Windows 95 and Windows 98. However, with this workaround, you can create or edit an English Query OLAP
project on Windows 95 or Windows 98, though you cannot select the Enable SQL option in an OLAP project.

"Enable SQL" in OLAP Model Requires Membership in the OLAP Administrators Group

With Analysis Services, you cannot access the underlying database structure of an OLAP cube in an English Query model
unless you are a member of the OLAP Administrators group.

That is, you must be a member of the OLAP Administrators group or a Microsoft Windows NT® 4.0 and Windows 2000
user group, on the server of the Analysis Services database for which you are building an English Query model. The user of
the English Query modeling tool must have OLAP Administrator permissions to load the tables underlying the cubes using
DSO.

Domain Files from Earlier Versions of English Query Must Be Rebuilt

English Query domain files (*.eqd) are built to work with a specific version of the English Query engine. If you are upgrading
from an earlier version of English Query, you must rebuild your English Query domain files from your project (*.eqp) using
the Model Editor.

DBCS (Unicode) Is Not Fully Supported

Because English Query is English-only, the user interface for the authoring tool does not support double-byte character
keyboard input. However, Unicode data in your database is supported.

Temp Table Generation Requires SQL Server version 6.5 SP3 or Later

SQL Server version 6.5 is supported by this release of English Query, but only when you install Service Pack 3 (SP3) or later.
If you are not running SQL Server 6.5 with SP3, you may encounter problems with generated temp tables that are required
for some queries.

Problems Converting English Query 1.0 Projects to this Version of English Query

If you encounter problems converting English Query version 1.0 to this release of English Query, convert the English Query
1.0 project to English Query version 7.0 first.

Full-Text Search Does Not Work on Tables With uniqueidentifier Keys

English Query is unable to build SQL statements for questions that require a full-text search on a table that has a
uniqueidentifier key. Asking such questions may cause English Query to stop responding.

See Also

Installation Requirements and Considerations

English Query (SQL Server 2000)

Compile-Time Error Messages (Authoring Object Model)
Compile-time errors are returned by the English Query methods: Domain.Compile and Domain.Build. These compile-time
errors approximate the object-level validation errors generated by the authoring tool in English Query version 7.0.

ID Value Type ObjectType Error text
eqIDTooLong 0x10025 eqSevError <various> The ID of

{objecttype}
<ObjectID> is too
long.

eqErrorInCube 0x10B00 eqSevError eqCube Error in cube
<ObjectID>.

eqBadCubeName 0x10B01 eqSevError eqCube Invalid name for
cube <ObjectID>.

eqBadCubeTable 0x10B02 eqSevError eqCube Invalid table for
cube <ObjectID>.

eqDuplicateDimension 0x10B03 eqSevError eqCube Duplicate
dimension for
cube <ObjectID>.

eqDuplicateMeasure 0x10B04 eqSevError eqCube Duplicate measure
for cube
<ObjectID>.

eqDuplicateCubeName 0x10B05 eqSevError eqCube Multiple cubes
with ID
<ObjectID>.

eqMissingDimensions 0x10B06 eqSevError eqCube Missing
dimensions for
cube <ObjectID>.

eqMissingMeasures 0x10B07 eqSevError eqCube Missing measures
for cube
<ObjectID>.

eqMissingCubeTable 0x10B09 eqSevError eqCube Missing table for
cube <ObjectID>.

eqMissingFactTable 0x10B0A eqSevError eqCube Missing fact table
for cube
<ObjectID>.

eqDuplicateDefaultMeasure 0x10B0B eqSevError eqCube Duplicate default
measure for cube
<ObjectID>.

eqMissingDefaultMeasure 0x10B0C EqSevError EqCube Missing default
measure in cube
<ObjectID>.

eqErrorInDictEntry 0x10800 eqSevError eqDictEntry Error in dictionary
entry <ObjectID>.

eqBadIrregularForm 0x10801 eqSevError eqDictEntry Invalid irregular
form for dictionary
entry <ObjectID>.

eqBadIrregularFormType 0x10802 eqSevError eqDictEntry Invalid irregular
form type for
dictionary entry
<ObjectID>.

eqBadPartOfSpeech 0x10803 eqSevError eqDictEntry Invalid part of
speech for
dictionary entry
<ObjectID>.

eqBadRootWord 0x10804 eqSevError eqDictEntry Invalid root word
for dictionary
entry <ObjectID>.

eqDuplicateDictEntry 0x10805 eqSevError eqDictEntry Multiple dictionary
entries with ID
<ObjectID>.

eqDuplicateIrregularForm 0x10806 eqSevError eqDictEntry Duplicate irregular
form in dictionary
entry <ObjectID>.

eqDuplicateRootWord 0x10807 eqSevError eqDictEntry Duplicate root
word in dictionary
entry <ObjectID>.

eqMissingIrregularForm 0x10808 eqSevError eqDictEntry Missing irregular
form in dictionary
entry <ObjectID>.

eqMissingIrregularFormType 0x10809 eqSevError eqDictEntry Missing irregular
type in dictionary
entry <ObjectID>.

eqMissingPartOfSpeech 0x1080A eqSevError eqDictEntry Missing part of
speech in
dictionary entry
<ObjectID>.

eqMissingRootWord 0x1080B eqSevError eqDictEntry Missing root word
in dictionary entry
<ObjectID>.

eqMissingWriteWord 0x1080C eqSevError eqDictEntry Missing write
word for
dictionary entry
<ObjectID>.

eqMissingReadWord 0x1080D eqSevError eqDictEntry Missing read word
for dictionary
entry <ObjectID>.

eqWriteSynonymSameAsWord 0x1080E eqSevWarning eqDictEntry Write synonym in
dictionary entry
<ObjectID> is
identical to the
root word.

eqWriteSynonymWithBadChar 0x1080F eqSevError eqDictEntry Invalid character in
write synonym for
dictionary entry
<ObjectID>.

eqErrorInDimension 0x10C00 eqSevError eqDimension Error in dimension
<ObjectID>.

eqBadDimensionName 0x10C01 eqSevError eqDimension Invalid name for
dimension
<ObjectID>.

eqBadDimensionTable 0x10C02 eqSevError eqDimension Invalid table for
dimension
<ObjectID>.

eqBadDimensionType 0x10C03 eqSevError eqDimension Invalid type for
dimension
<ObjectID>.

eqDuplicateLevel 0x10C04 eqSevError eqDimension Duplicate level for
dimension
<ObjectID>.

eqDuplicateDimensionName 0x10C05 eqSevError eqDimension Multiple
dimensions with
ID <ObjectID>.

eqMissingLevels 0x10C06 eqSevError eqDimension Missing levels for
dimension
<ObjectID>.

eqMissingDimensionTable 0x10C08 eqSevError eqDimension Missing table for
dimension
<ObjectID>.

eqMissingDimensionType 0x10C09 eqSevError eqDimension Missing type for
dimension
<ObjectID>.

eqMissingDimensionSourceTable 0x10C0A eqSevError eqDimension Missing source
table for
dimension
<ObjectID>.

eqOutOfOrderTimeDimension 0x10C0B eqSevError eqDimension Date types of
levels in time
dimension
<ObjectID> are
not in descending
order.

eqErrorInEntity 0x10100 eqSevError eqEntity Error in entity
<ObjectID>.

eqBadDBObject 0x10101 eqSevError eqEntity Invalid database
object for entity
<ObjectID>.

eqBadDBObjectField 0x10102 eqSevError eqEntity Invalid field for
entity <ObjectID>.

eqBadDBObjectTable 0x10103 eqSevError eqEntity Invalid table for
entity <ObjectID>.

eqBadDefaultConditionEntity 0x10104 eqSevError eqEntity Invalid entity on
entity default
condition for
entity <ObjectID>.

eqBadDefaultConditionOperator 0x10105 eqSevError eqEntity Invalid operator
on entity default
condition for
entity <ObjectID>.

eqBadDefaultCondtionValue 0x10106 eqSevError eqEntity Invalid value on
entity default
condition for
entity <ObjectID>.

eqBadDisplayField 0x10107 eqSevError eqEntity Invalid display
field for entity
<ObjectID>.

eqBadEntityDefaultRelationship 0x10108 eqSevError eqEntity Invalid default
relationship for
entity <ObjectID>.

eqBadEntityID 0x10109 eqSevError eqEntity Invalid ID for
entity <ObjectID>.

eqBadEntityType 0x1010A eqSevError eqEntity Invalid entity type
for entity
<ObjectID>.

eqBadInheritsFrom 0x1010B eqSevError eqEntity Invalid entity used
in the option Is
subentity of.

eqBadMemorizeNames 0x1010C eqSevError eqEntity Invalid table
specified from
which to load
words.

eqBadNameType 0x1010D eqSevError eqEntity Invalid name type
for entity
<ObjectID>.

eqBadNumbersIn 0x1010E eqSevError eqEntity Invalid numerical
references
specified.

eqBadRelatedEntity 0x1010F eqSevError eqEntity Invalid related
entity for entity
<ObjectID>.

eqBadSampleData 0x10110 eqSevError eqEntity Invalid sample
data for entity
<ObjectID>.

eqBadSortBy 0x10111 eqSevError eqEntity Invalid sort field
for entity
<ObjectID>.

eqBadSynonymInNameSynonym 0x10112 eqSevError eqEntity Invalid synonym
word for entity
<ObjectID>.

eqBadUnknownDates 0x10113 eqSevError eqEntity Invalid unknown
dates relationship
for entity
<ObjectID>.

eqBadUnless 0x10114 eqSevError eqEntity Invalid unless
relationship on
entity default for
entity <ObjectID>.

eqBadWord 0x10115 eqSevError eqEntity Invalid word for
entity <ObjectID>.

eqBadWordInNameSynonym 0x10116 eqSevError eqEntity Invalid database
value on name
synonym for entity
<ObjectID>.

eqDateEntityIsTable 0x10117 eqSevError eqEntity Date entity
<ObjectID> is a
table.

eqDateFieldWithNameType 0x10118 eqSevError eqEntity Date entity
<ObjectID> has a
name type.

eqDuplicateDBObject 0x10119 eqSevError eqEntity Duplicate database
object for entity
<ObjectID>.

eqDuplicateDefaultCondition 0x1011A eqSevError eqEntity Duplicate default
condition in entity
default for entity
<ObjectID>.

eqDuplicateDefaultRelationship 0x1011B eqSevError eqEntity Duplicate default
relationship for
entity <ObjectID>
and entity
{entityid}.

eqDuplicateDisplayField 0x1011C eqSevError eqEntity Duplicate display
field for entity
<ObjectID>.

eqDuplicateEntity 0x1011D eqSevError eqEntity Entity <ObjectID>
and entity
{entityid} have the
same underlying
database object(s).

eqDuplicateEntityDefaultRelationship 0x1011E eqSevError eqEntity Duplicate
relationship on
entity default for
entity <ObjectID>.

eqDuplicateEntityID 0x1011F eqSevError eqEntity Multiple entities
with ID
<ObjectID>.

eqDuplicateEntityType 0x10120 eqSevError eqEntity Duplicate entity
type for entity
<ObjectID>.

eqDuplicateInheritsFrom 0x10121 eqSevError eqEntity More than one
entity used in the
option Is a
subentity of.

eqDuplicateMemorizeNames 0x10122 eqSevError eqEntity Duplicate table to
memorize names
from for entity
<ObjectID>.

eqDuplicateNameSynonym 0x10123 eqSevError eqEntity Duplicate name
synonym
{synonym}/{value}
for entity
<ObjectID>.

eqDuplicateNameType 0x10124 eqSevError eqEntity Duplicate name
type for entity
<ObjectID>.

eqDuplicateNumbersIn 0x10125 eqSevError eqEntity Duplicate numbers
in entity
<ObjectID>.

eqDuplicateSortBy 0x10126 eqSevError eqEntity Duplicate sort-by
field for entity
<ObjectID>.

eqDuplicateUnknownDates 0x10127 eqSevError eqEntity Duplicate
unknown date
relationship for
entity <ObjectID>.

eqDuplicateUnless 0x10128 eqSevError eqEntity Duplicate unless
relationship
{relationshipid} on
entity default for
entity <ObjectID>.

eqDuplicateWord 0x10129 eqSevError eqEntity Duplicate word "
{word}" for entity
<ObjectID>.

eqEntityConditionTakesDateTime 0x1012A eqSevError eqEntity Comparing date
entity {entityid} to
nondate in entity
default for entity
<ObjectID>.

eqEntityConditionTakesInteger 0x1012B eqSevError eqEntity Comparing integer
entity {entityid} to
noninteger in
entity default for
entity <ObjectID>.

eqEntityConditionTakesNumber 0x1012C eqSevError eqEntity Comparing
numeric entity
{entityid} to
nonnumber in
entity default for
entity <ObjectID>.

eqEntityConditionWithBadDatePart 0x1012D eqSevError eqEntity Comparing
{datepart} to entity
that has no
{datepart} in entity
default for entity
<ObjectID>.

eqEntityWithBothTableAndField 0x1012E eqSevError eqEntity Entity <ObjectID>
has both table and
field as database
objects.

eqEntityWithMultipleTables 0x1012F eqSevError eqEntity Entity <ObjectID>
has multiple tables
as database
objects.

eqIdNametypeOnly 0x10130 eqSevError eqEntity Numeric entity
<ObjectID> has
name type other
than Unique ID.

eqLoopInSubentity 0x10131 eqSevError eqEntity Entity <ObjectID>
is a subentity of
itself.

eqMissingDefaultRelationship 0x10132 eqSevError eqEntity Missing
relationship on
default
relationship for
entity <ObjectID>.

eqMissingEntityType 0x10134 eqSevError eqEntity Missing entity type
for entity
<ObjectID>.

eqMissingEntityWord 0x10135 eqSevError eqEntity Missing words for
entity <ObjectID>.

eqMissingRelatedEntity 0x10136 eqSevError eqEntity Missing related
entity on default
relationship for
entity <ObjectID>.

eqMissingSynonymInNameSynonym 0x10137 eqSevError eqEntity Missing synonym
on name synonym
for entity
<ObjectID>.

eqMissingWordInNameSynonym 0x10138 eqSevError eqEntity Missing database
value on name
synonym for entity
<ObjectID>.

eqNameSynonymsWithoutNameType 0x10139 eqSevError eqEntity Name synonym
but no name type
on entity
<ObjectID>.

eqNonTableEntityWithDisplayField 0x1013A eqSevError eqEntity Entity <ObjectID>
has display fields
but is not a table
entity.

eqWrongEntityTypeForName 0x1013B eqSevError eqEntity Entity <ObjectID>
is name/ID of
entity {entityid},
but has entity type
other than None.

eqSuggestAddRemoteNameFields 0x1013C eqSevInfo eqEntity Display fields for
entity <ObjectID>
should include
fields from name
entity {entityid}.

eqSuggestDifferentNameWord 0x1013D eqSevInfo eqEntity Entity <ObjectID>
has the same
words as its
{nametype}
{entityid}.

eqSuggestLinkedEntity 0x1013E eqSevInfo eqEntity Entity <ObjectID>
should be
represented by
table <tableid>.

eqDontUseNameAsWord 0x1013F eqSevWarning eqEntity Entity <ObjectID>
uses the word
"name".

eqInitialCapsOnEntityWord 0x10140 eqSevInfo eqEntity Mixed-case word
for entity
<ObjectID>.

eqUnderscoreInEntityWord 0x10142 eqSevWarning eqEntity Underscores used
in word for entity
<ObjectID>.

eqMissingSampleData 0x10143 eqSevWarning eqEntity Missing sample
data for entity
<ObjectID>.

eqPropertyEntitySameAsLevel 0x10144 eqSevError eqEntity Entity <ObjectID>
should be
represented by
level {levelid}.

eqBadCharacterInWord 0x10146 eqSevError eqEntity Invalid character
{char} in word for
entity <ObjectID>.

eqCantLoadWordsFromAlternateTable 0x10147 eqSevError eqEntity Entity <ObjectID>
cannot load words
from table
{tableid}.

eqDateFieldEntityNotDate 0x10148 eqSevWarning eqEntity Entity <ObjectID>
represented by
date field, but not
marked as date.

eqDBEntityRequiredForMeasure 0x10149 eqSevError eqEntity A database object
is not specified for
measure entity
<ObjectID>.

eqErrorLoadingInstanceValues 0x1014A eqSevWarning eqEntity Error loading
instance values for
entity <ObjectID>.

eqNameStructureNotAllowedOnDates 0x1014B eqSevError eqEntity Name structure is
not allowed for
date entity
<ObjectID>.

eqNametypeNotAllowed 0x1014C eqSevError eqEntity Name type is
incompatible with
database object
type on entity
<ObjectID>.

eqNameTypeNotAllowedForDateLevels 0x1014D eqSevError eqEntity Name type is
incompatible with
level date type on
entity <ObjectID>.

eqNameTypeNotAllowedForDateProperties 0x1014E eqSevError eqEntity Name type is
incompatible with
property date type
on entity
<ObjectID>.

eqNoJoinForRemoteFields 0x1014F eqSevError eqEntity Entity <ObjectID>
cannot show fields
from table
{tableid}.

eqNoJoinForSubentity 0x10150 eqSevError eqEntity Entity <ObjectID>
is subentity of
{entityid}, but has
no join.

eqNumberAsEntityWord 0x10151 eqSevError eqEntity Numeric word on
entity <ObjectID>.

eqPartOfNameAsEntity 0x10152 eqSevWarning eqEntity Fields from name
entity {objectid}
are reused in
entity <ObjectID>.

eqStandaloneNotAllowed 0x10153 eqSevError eqEntity Stand-alone entity
<ObjectID> must
be either a field
entity or a level
entity.

eqTableEntityRequiredForNumericalReferences 0x10154 eqSevError eqEntity Numeric
references are not
allowed for
nontable entity
<ObjectID>.

eqTableEntityRequiredForRemoteFields 0x10155 eqSevError eqEntity Remote fields are
not allowed for
nontable entity
<ObjectID>.

eqSameDateTypeFields 0x10156 eqSevError eqEntity Fields {fieldid} and
{fieldid} in entity
<ObjectID> have
the same date
type.

eqInvalidTimeDimEntity 0x10157 eqSevError eqEntity The dimension
{objectid} for the
time entity
<ObjectID> is not
a time dimension.

eqMutipleFieldNameSynonym 0x10158 eqSevError eqEntity Multiple field enity
<ObjectID> has
name synonyms.

eqEntityDefaultWrongDatetype 0x10159 eqSevError eqEntity Date entity
{entityid} in a
default condition
on entity
<ObjectID>
cannot be
compared with a
{date type}.

eqEntityDefaultBadDate 0x1015A eqSevError eqEntity Date entity
{entityid} in a
default condition
on entity
<ObjectID>
cannot be
compared with a
{value}.

eqEntityDefaultWrongDatatype 0x1015B eqSevError eqEntity The entity
<ObjectID> in
default condition
can only be
compared with a
{datatype}.

eqEntityWordTooLong 0x1015D eqSevError eqEntity Word for entity
<ObjectID> is too
long.

eqErrorInField 0x10500 eqSevError eqField Error in field
<ObjectID>.

eqBadAggregateField 0x10501 eqSevError eqField Invalid aggregate
field for field
<ObjectID>.

eqBadAggregateType 0x10502 eqSevError eqField Invalid aggregate
type for field
<ObjectID>.

eqBadCapitalization 0x10503 eqSevError eqField Invalid
capitalization
convention for
field <ObjectID>.

eqBadCaption 0x10504 eqSevError eqField Invalid caption for
field <ObjectID>.

eqBadComputation 0x10505 eqSevError eqField Invalid
computation for
field <ObjectID>.

eqBadDataType 0x10506 eqSevError eqField Invalid data type
for field
<ObjectID>.

eqBadDateType 0x10507 eqSevError eqField Invalid date type
for field
<ObjectID>.

eqBadDenormalizedCopy 0x10508 eqSevError eqField Invalid
denormalized
copy field for field
<ObjectID>.

eqBadFieldID 0x10509 eqSevError eqField Invalid ID for field
<ObjectID>.

eqBadFieldName 0x1050A eqSevError eqField Invalid name for
field <ObjectID>.

eqBadNameStructure 0x1050B eqSevError eqField Invalid name
structure for field
<ObjectID>.

eqBadUnits 0x1050C eqSevError eqField Invalid units of
measure for field
<ObjectID>.

eqCaptionTooLarge 0x1050D eqSevError eqField Caption is too long
for field
<ObjectID>.

eqDuplicateAggregate 0x1050E eqSevError eqField Duplicate
aggregate field for
field <ObjectID>.

eqDuplicateCapitalization 0x1050F eqSevError eqField Duplicate
capitalization
convention for
field <ObjectID>.

eqDuplicateCaption 0x10510 eqSevError eqField Duplicate caption
for field
<ObjectID>.

eqDuplicateComputation 0x10511 eqSevError eqField Duplicate
computation for
field <ObjectID>.

eqDuplicateDataType 0x10512 eqSevError eqField Duplicate data
type for field
<ObjectID>.

eqDuplicateDateType 0x10513 eqSevError eqField Duplicate date
type for field
<ObjectID>.

eqDuplicateDenormalizedCopy 0x10514 eqSevError eqField Duplicate
denormalized
copy field for field
<ObjectID>.

eqDuplicateFieldID 0x10515 eqSevError eqField Multiple fields
with ID
<ObjectID>.

eqDuplicateNameStructure 0x10516 eqSevError eqField Duplicate name
structure for field
<ObjectID>.

eqDuplicateUnits 0x10517 eqSevError eqField Duplicate units of
measure for field
<ObjectID>.

eqMissingAggregateField 0x10518 eqSevError eqField Missing aggregate
field for field
<ObjectID>.

eqMissingAggregateType 0x10519 eqSevError eqField Missing aggregate
type for field
<ObjectID>.

eqMissingDataType 0x1051A eqSevError eqField Missing data type
for field
<ObjectID>.

eqMissingDateType 0x1051B eqSevError eqField Missing date type
for field
<ObjectID>.

eqMissingFieldID 0x1051C eqSevError eqField Missing ID for field
<ObjectID>.

eqMissingFiscalYear 0x1051E eqSevError eqField No fiscal year
specified, but field
<ObjectID> is
fiscal.

eqMissingNameStructure 0x1051F eqSevError eqField Missing name
structure for field
<ObjectID>.

eqInitialCapsOnUnits 0x10520 eqSevWarning eqField Mixed-case unit
word for field
<ObjectID>.

eqUnderscoreInUnits 0x10521 eqSevWarning eqField Underscores used
in unit word for
field <ObjectID>.

eqAggregateFieldNonNumeric 0x10522 eqSevError eqField Aggregate field for
field <ObjectID> is
not numeric.

eqDenormalizedCopyHasWrongType 0x10523 eqSevError eqField Denormalized
copy field for field
<ObjectID> has
incorrect data
type.

eqComputedPrimaryKey 0x10524 eqSevError eqField Computed field
<ObjectID>
cannot be in key of
table.

eqWrongTableCaseInComputation 0x10525 eqSevError eqField Case mismatch for
table {tablename}
in computation for
field <ObjectID>.

eqWrongFieldCaseInComputation 0x10526 eqSevError eqField Case mismatch for
field {fieldname} in
computation for
field <ObjectID>.

eqBadNameSearchCombo 0x10527 eqSevError eqField Invalid
combination of
name structure
and search type
for field
<ObjectID>.

eqFieldWithoutTableInComputation 0x10528 eqSevError eqField Field {fieldname}
without table
name in
computation for
field <ObjectID>.

eqBadTableInComputation 0x10529 eqSevError eqField Undefined table
{tablename} in
computation for
field <ObjectID>.

eqBadFieldInComputation 0x1052A eqSevError eqField Undefined field
{fieldname} in
computation for
field <ObjectID>.

eqErrorInGlobal 0x10000 eqSevError eqGlobal Unexpected error
in global settings.

eqBadDBMaxRows 0x10001 eqSevError eqGlobal Invalid maximum
number of rows
set.

eqBadDBMSType 0x10002 eqSevError eqGlobal Invalid database
type.

eqBadDBMSVersion 0x10003 eqSevError eqGlobal Invalid database
version.

eqBadDBTimeout 0x10004 eqSevError eqGlobal Invalid database
time-out.

eqBadGlobalDefaultDate 0x10005 eqSevError eqGlobal Invalid default
date.

eqBadDefaultID 0x10006 eqSevError eqGlobal Invalid default ID
entity.

eqBadDefaultModule 0x10007 eqSevError eqGlobal Invalid default
module name.

eqBadDefaultName 0x10008 eqSevError eqGlobal Invalid default
name entity.

eqBadDefaultSelf 0x10009 eqSevError eqGlobal Invalid default self
entity.

eqBadDSN 0x1000A eqSevError eqGlobal Invalid DSN.
eqBadFiscalYearDay 0x1000B eqSevError eqGlobal Invalid fiscal year

start day.
eqBadFiscalYearMonth 0x1000C eqSevError eqGlobal Invalid fiscal year

start month.
eqBadLoadWords 0x1000D eqSevError eqGlobal Invalid number of

words to load.
eqBadRegressionDate 0x1000E eqSevError eqGlobal Invalid regression

test date.
eqBadRegressionOutFile 0x1000F eqSevError eqGlobal Invalid regression

test output file.
eqBadRegressionQuestionFile 0x10010 eqSevError eqGlobal Invalid regression

test question file.
eqBadRegressionSaveFile 0x10011 eqSevError eqGlobal Invalid regression

test save file.
eqDuplicateDBMaxRows 0x10012 eqSevError eqGlobal Maximum number

of rows to display
is specified more
than one time.

eqDuplicateDBMSInfo 0x10013 eqSevError eqGlobal Duplicate database
information.

eqDuplicateDBTimeout 0x10014 eqSevError eqGlobal Duplicate database
time-out.

eqDuplicateDefaultDate 0x10015 eqSevError eqGlobal Duplicate default
date.

eqDuplicateDefaultID 0x10016 eqSevError eqGlobal Duplicate default
ID entity.

eqDuplicateDefaultModule 0x10017 eqSevError eqGlobal Duplicate default
module name.

eqDuplicateDefaultName 0x10018 eqSevError eqGlobal Duplicate default
name entity.

eqDuplicateDefaultSelf 0x10019 eqSevError eqGlobal Duplicate default
self entity.

eqDuplicateDSN 0x1001A eqSevError eqGlobal Duplicate DSN.
eqDuplicateFiscalYear 0x1001B eqSevError eqGlobal Duplicate fiscal

year start
information.

eqDuplicateLoadWords 0x1001C eqSevError eqGlobal Duplicate number
of words to load.

eqDuplicateRegressionDate 0x1001D eqSevError eqGlobal Duplicate
regression test
date.

eqDuplicateRegressionOutFile 0x1001E eqSevError eqGlobal Duplicate
regression test
output file.

eqDuplicateRegressionQuestionFile 0x1001F eqSevError eqGlobal Duplicate
regression test
question file.

eqDuplicateRegressionSaveFile 0x10020 eqSevError eqGlobal Duplicate
regression test
save file.

eqMissingFiscalYearDay 0x10021 eqSevError eqGlobal Missing fiscal year
day.

eqMissingFiscalYearMonth 0x10022 eqSevError eqGlobal Missing fiscal year
month.

eqOLAPObjectsInNonOLAPProject 0x10023 eqSevError eqGlobal OLAP objects in
non-OLAP project.

eqUndefinedObject 0x10024 eqSevError eqGlobal Undefined
{objecttype}
{objectid} is
referenced in
{objecttype}
<ObjectID>.

eqUndefinedObjectInGlobal 0x10026 eqSevError eqGlobal Undefined
{objecttype}
{objectid} is
referenced in
global project
settings.

eqTooManyLoadWords 0x10027 eqSevWarning eqGlobal Loading more
than 10,000 words
per entity is not
recommended.

eqDefaultNameHasNoName 0x10028 eqSevError eqGlobal Default name
entity <ObjectID>
has no name type
and no name
phrasing.

eqDefaultIDHasNoID 0x10029 eqSevError eqGlobal Default ID entity
<ObjectID> has
no name phrasing
with ID name type.

eqErrorInJoin 0x10600 eqSevError eqJoin Error in join
<ObjectID>.

eqBadDestinationField 0x10601 eqSevError eqJoin Invalid destination
field for join
<ObjectID>.

eqBadDestinationTable 0x10602 eqSevError eqJoin Invalid destination
table for join
<ObjectID>.

eqBadJoinID 0x10603 eqSevError eqJoin Invalid ID for join
<ObjectID>.

eqBadSourceField 0x10604 eqSevError eqJoin Invalid source field
for join
<ObjectID>.

eqComputationFieldInJoin 0x10605 eqSevError eqJoin Computed field
{fieldid} used in
join condition for
join <ObjectID>.

eqDestinationFieldIsNotKey 0x10606 eqSevError eqJoin Destination field
{fieldname} in join
<ObjectID> is not
a key of
destination table
{tableid}.

eqDestinationFieldUsedTwice 0x10607 eqSevError eqJoin Destination field
{fieldname} is used
more than once in
join <ObjectID>.

eqDuplicateJoin 0x10608 eqSevError eqJoin Join <ObjectID> is
identical to join
{joinid}.

eqDuplicateJoinCondition 0x10609 eqSevError eqJoin Duplicate join
condition
{condition} in join
<ObjectID>.

eqDuplicateJoinID 0x1060A eqSevError eqJoin Multiple joins with
ID <ObjectID>.

eqJoinConditionToSelf 0x1060B eqSevError eqJoin Join <ObjectID>
contains a
condition with
identical source
and destination
fields.

eqJoinDoesntCoverKey 0x1060C eqSevError eqJoin Conditions for join
<ObjectID> do not
cover primary key
fields of
destination table
{tableid}.

eqJoinFieldIsOtherDatatype 0x1060D eqSevError eqJoin Join field {fieldid}
in join <ObjectID>
has data type
"Other".

eqJoinFieldsHaveDifferentDatatype 0x1060E eqSevError eqJoin Join field {fieldid}
and {fieldid} in join
<ObjectID> do not
have the same
data types.

eqJoinInWrongDirection 0x1060F eqSevError eqJoin Join <ObjectID> is
backwards.

eqMissingDestinationField 0x10610 eqSevError eqJoin Missing
destination field
for join condition
in join
<ObjectID>.

eqMissingDestinationTable 0x10611 eqSevError eqJoin Missing
destination table
in join
<ObjectID>.

eqMissingJoinCondition 0x10612 eqSevError eqJoin Missing join
conditions in join
<ObjectID>.

eqMissingSourceField 0x10613 eqSevError eqJoin Missing source
field for join
condition in join
<ObjectID>.

eqSameSourceJoins 0x10614 eqSevError eqJoin Join <ObjectID>
and join {joinid}
have the same
source fields.

eqDuplicateReversedJoin 0x10615 eqSevError eqJoin Join <ObjectID> is
identical to join
{joinid} except the
source and
destination are
reversed.

eqErrorInLevel 0x10D00 eqSevError eqLevel Error in level
<ObjectID>.

eqBadLevelField 0x10D01 eqSevError eqLevel Invalid field for
level <ObjectID>.

eqBadLevelName 0x10D02 eqSevError eqLevel Invalid name for
level <ObjectID>.

eqDuplicateProperty 0x10D03 eqSevError eqLevel Duplicate member
property for level
<ObjectID>.

eqDuplicateLevelName 0x10D04 eqSevError eqLevel Multiple levels
with ID
<ObjectID>.

eqMissingLevelField 0x10D05 eqSevError eqLevel Missing field for
level <ObjectID>.

eqBadLevelDateType 0x10D07 eqSevError eqLevel Invalid date type
for level
<ObjectID>.

eqDateLevelWithoutDateField 0x10D08 eqSevError eqLevel Date/time level
<ObjectID> does
not refer to a date
or time field.

eqLevelDataCapitalizationMismatch 0x10D09 eqSevWarning eqLevel Data capitalization
does not match
field for level
<ObjectID>.

eqLevelDateTypeMismatch 0x10D0A eqSevWarning eqLevel Date type does not
match field for
level <ObjectID>.

eqLevelNameStructureMismatch 0x10D0B eqSevWarning eqLevel Name structure
does not match
field for level
<ObjectID>.

eqMissingLevelDateType 0x10D0C eqSevError eqLevel Missing date type
for level
<ObjectID>.

eqMissingLevelSourceField 0x10D0D eqSevError eqLevel Missing source
field for level
<ObjectID>.

eqMeasureUnitsMismatch 0x11001 eqSevWarning eqMeasure Units does not
match field for
measure
<ObjectID>.

eqNumericFieldRequiredForMeasure 0x11002 eqSevError eqMeasure Nonnumeric field
is associated with
measure
<ObjectID>.

eqErrorInPhrasing 0x10300 eqSevError eqPhrasing Error in phrasing
<ObjectID>.

eqAdjectiveIsTableWithCompoundKey 0x10301 eqSevError eqPhrasing Phrasing
<ObjectID> has a
table adjective
entity with a
multifield key.

eqAdjectiveIsTableWithoutName 0x10302 eqSevError eqPhrasing Adjective entity
{entityid} in
phrasing
<ObjectID> has
no name.

eqAdjPhrasingNeedsAdjOrObject 0x10303 eqSevError eqPhrasing Missing adjective
or object entity for
phrasing
<ObjectID>.

eqBadAdjective 0x10304 eqSevError eqPhrasing Invalid adjective
for phrasing
<ObjectID>.

eqBadEnglishValues 0x10305 eqSevError eqPhrasing Invalid English
values for
phrasing
<ObjectID>.

eqBadMainPrep 0x10306 eqSevError eqPhrasing Invalid main
preposition for
phrasing
<ObjectID>.

eqBadLowValueThreshold 0x10307 eqSevError eqPhrasing Invalid low value
threshold for
phrasing
<ObjectID>.

eqBadLowValueWord 0x10308 eqSevError eqPhrasing Invalid low value
adjective for
phrasing
<ObjectID>.

eqBadObject 0x10309 eqSevError eqPhrasing Invalid object
entity for phrasing
<ObjectID>.

eqBadPhrasingID 0x1030A eqSevError eqPhrasing Invalid ID for
phrasing
<ObjectID>.

eqBadHighValueThreshold 0x1030B eqSevError eqPhrasing Invalid high value
threshold for
phrasing
<ObjectID>.

eqBadHighValueWord 0x1030C eqSevError eqPhrasing Invalid high value
adjective for
phrasing
<ObjectID>.

eqBadPrep 0x1030D eqSevError eqPhrasing Invalid preposition
for phrasing
<ObjectID>.

eqBadPrepObject 0x1030E eqSevError eqPhrasing Invalid preposition
entity for phrasing
<ObjectID>.

eqBadSubject 0x1030F eqSevError eqPhrasing Invalid subject
entity for phrasing
<ObjectID>.

eqBadSubsetWord 0x10310 eqSevError eqPhrasing Invalid subset
noun for phrasing
<ObjectID>.

eqBadValueField 0x10311 eqSevError eqPhrasing Invalid value field
of lookup table for
phrasing
<ObjectID>.

eqBadValueInWordValuePair 0x10312 eqSevError eqPhrasing Invalid lookup
value for phrasing
<ObjectID>.

eqBadVerb 0x10313 eqSevError eqPhrasing Invalid verb for
phrasing
<ObjectID>.

eqBadWordField 0x10314 eqSevError eqPhrasing Invalid word field
of lookup table for
phrasing
<ObjectID>.

eqBadWordInWordValuePair 0x10315 eqSevError eqPhrasing Invalid lookup
word for phrasing
<ObjectID>.

eqDBEntityRequiredForAdjective 0x10316 eqSevError eqPhrasing Adjective entity for
phrasing
<ObjectID> is not
a database entity.

eqDBEntityRequiredForName 0x10317 eqSevError eqPhrasing Name entity for
phrasing
<ObjectID> is not
a database entity.

eqDBEntityRequiredForSubject 0x10318 eqSevError eqPhrasing Subject entity for
phrasing
<ObjectID> is not
a database entity.

eqDBEntityRequiredForSubset 0x10319 eqSevError eqPhrasing Subset entity for
phrasing
<ObjectID> is not
a database entity.

eqDuplicateAdjective 0x1031A eqSevError eqPhrasing Duplicate adjective
for phrasing
<ObjectID>.

eqDuplicateLowValueThreshold 0x1031B eqSevError eqPhrasing Duplicate low-
value threshold for
phrasing
<ObjectID>.

eqDuplicateLowValueWord 0x1031C eqSevError eqPhrasing Duplicate low-
value adjective for
phrasing
<ObjectID>.

eqDuplicateObject 0x1031D eqSevError eqPhrasing Duplicate object
entity for phrasing
<ObjectID>.

eqDuplicatePhrasing 0x1031E eqSevError eqPhrasing Phrasing
<ObjectID> is
identical to
phrasing
{phrasingid}.

eqDuplicatePhrasingID 0x1031F eqSevError eqPhrasing Multiple phrasings
with ID
<ObjectID>.

eqDuplicateHighValueThreshold 0x10320 eqSevError eqPhrasing Duplicate high-
value threshold for
phrasing
<ObjectID>.

eqDuplicateHighValueWord 0x10321 eqSevError eqPhrasing Duplicate high-
value adjective for
phrasing
<ObjectID>.

eqDuplicatePrep 0x10322 eqSevError eqPhrasing Duplicate
preposition {prep}
in prepositional
phrase for
phrasing
<ObjectID>.

eqDuplicatePrepObject 0x10323 eqSevError eqPhrasing Duplicate object
entity in
prepositional
phrase for
phrasing
<ObjectID>.

eqDuplicatePrepPhrase 0x10324 eqSevError eqPhrasing Duplicate
prepositional
phrase "{prep}
{entityid}" for
phrasing
<ObjectID>.

eqDuplicateSubject 0x10325 eqSevError eqPhrasing Duplicate subject
entity for phrasing
<ObjectID>.

eqDuplicateSubsetWord 0x10326 eqSevError eqPhrasing Duplicate subset
word "{subset}" for
phrasing
<ObjectID>.

eqDuplicateVerb 0x10327 eqSevError eqPhrasing Duplicate verb "
{verb}" for
phrasing
<ObjectID>.

eqDuplicateWordValuePair 0x10328 eqSevError eqPhrasing Duplicate
word/value pair "
{word} / {value}"
for phrasing
<ObjectID>.

eqDuplicateWordValueTable 0x10329 eqSevError eqPhrasing Duplicate
word/value table
for phrasing
<ObjectID>.

eqRoleUsedTwiceInPhrasing 0x1032A eqSevError eqPhrasing Duplicate role "
{roleid}" for
phrasing
<ObjectID>.

eqHighThreshholdNotANumber 0x1032B eqSevError eqPhrasing High-value
threshold for
phrasing
<ObjectID> is not
a number.

eqLowThreshholdNotANumber 0x1032C eqSevError eqPhrasing Low-value
threshold for
phrasing
<ObjectID> is not
a number.

eqMeasurementEntityIsTable 0x1032D eqSevError eqPhrasing Measurement
entity for phrasing
<ObjectID> is a
table entity.

eqMissingAdjective 0x1032E eqSevError eqPhrasing Missing adjective
for phrasing
<ObjectID>.

eqMissingAdjectiveEntity 0x1032F eqSevError eqPhrasing Missing adjective
entity for phrasing
<ObjectID>.

eqMissingLookupCodeField 0x10330 eqSevError eqPhrasing Missing code field
in lookup table for
phrasing
<ObjectID>.

eqMissingLookupValues 0x10331 eqSevError eqPhrasing Missing
word/code pairs
for phrasing
<ObjectID>.

eqMissingLookupWordField 0x10332 eqSevError eqPhrasing Missing word field
in lookup table for
phrasing
<ObjectID>.

eqMissingMainPrep 0x10333 eqSevError eqPhrasing Missing
prepositional
phrase for
phrasing
<ObjectID>.

eqMissingMeasurementEntity 0x10334 eqSevError eqPhrasing Missing
measurement
entity for phrasing
<ObjectID>.

eqMissingLowValueWord 0x10335 eqSevError eqPhrasing Missing low-value
adjectives for
phrasing
<ObjectID>.

eqMissingNameEntity 0x10336 eqSevError eqPhrasing Missing name
entity for phrasing
<ObjectID>.

eqMissingNameType 0x10337 eqSevError eqPhrasing Missing name type
for name entity in
phrasing
<ObjectID>.

eqMissingObject 0x10338 eqSevError eqPhrasing Missing object
entity for phrasing
<ObjectID>.

eqMissingHighValueWord 0x10339 eqSevError eqPhrasing Missing high-
value adjectives
for phrasing
<ObjectID>.

eqMissingPrepObject 0x1033A eqSevError eqPhrasing Missing
preposition entity
for prepositional
phrase in phrasing
<ObjectID>.

eqMissingPreposition 0x1033B eqSevError eqPhrasing Missing
preposition for
prepositional
phrase in phrasing
<ObjectID>.

eqMissingSubject 0x1033C eqSevError eqPhrasing Missing subject
entity for phrasing
<ObjectID>.

eqMissingSubsetEntity 0x1033D eqSevError eqPhrasing Missing subset
entity for phrasing
<ObjectID>.

eqMissingSubsetWord 0x1033E eqSevError eqPhrasing Missing subset
word for phrasing
<ObjectID>.

eqMissingValueInWordValuePair 0x10340 eqSevError eqPhrasing Missing value in
word/value pair
for phrasing
<ObjectID>.

eqMissingVerb 0x10341 eqSevError eqPhrasing Missing verb for
phrasing
<ObjectID>.

eqMissingWordInWordValuePair 0x10343 eqSevError eqPhrasing Missing word in
word/value pair
for phrasing
<ObjectID>.

eqNamedEntityIsField 0x10344 eqSevError eqPhrasing Subject entity
{entityid} is field
entity for phrasing
<ObjectID>.

eqNameEntityIsTable 0x10345 eqSevError eqPhrasing Name entity
{entityid} is table
entity for phrasing
<ObjectID>.

eqNumericValueRequired 0x10346 eqSevError eqPhrasing Text value is not
allowed for
associated value in
phrasing
<ObjectID>.

eqObjectHasEntityAndRole 0x10347 eqSevError eqPhrasing Object for
phrasing
<ObjectID> has
both an entity and
a role.

eqPhrasingHasTooManyObjects 0x10348 eqSevError eqPhrasing Too many object
entities for
phrasing
<ObjectID>.

eqSubjectHasEntityAndRole 0x10349 eqSevError eqPhrasing Subject for
phrasing
<ObjectID> has
both an entity and
a role.

eqSubsetEntityIsMultiField 0x1034A eqSevError eqPhrasing Subset entity for
phrasing
<ObjectID> is a
multifield entity.

eqSubsetIsTableWithoutName 0x1034C eqSevError eqPhrasing Subset entity
{entityid} in
phrasing
<ObjectID> has
no name.

eqSubsetPhrasingNeedsWordOrObject 0x1034D eqSevError eqPhrasing Subset phrasing
<ObjectID> has
no subset word or
object entity.

eqSuggestByPrepAsSubject 0x1034F eqSevInfo eqPhrasing Relationship
<ObjectID> uses a
passive voice.

eqSuggestToPrepAsIndirectObject 0x10350 eqSevInfo eqPhrasing Relationship
<ObjectID> uses a
dative alternation.

eqInitialCapsOnAdjective 0x10351 eqSevWarning eqPhrasing Mixed-case
adjective used for
phrasing
<ObjectID>.

eqInitialCapsOnLowValueWords 0x10352 eqSevWarning eqPhrasing Mixed-case, low-
value adjective
used for phrasing
<ObjectID>.

eqInitialCapsOnHighValueWords 0x10353 eqSevWarning eqPhrasing Mixed-case, high-
value adjective
used for phrasing
<ObjectID>.

eqInitialCapsOnSubsetWord 0x10354 eqSevWarning eqPhrasing Mixed-case subset
word used for
phrasing
<ObjectID>.

eqInitialCapsOnVerb 0x10355 eqSevWarning eqPhrasing Mixed-case verb
used for phrasing
<ObjectID>.

eqUnderscoreInAdjective 0x10356 eqSevWarning eqPhrasing Underscores used
in adjective for
phrasing
<ObjectID>.

eqUnderscoreInLowValueWords 0x10357 eqSevWarning eqPhrasing Underscores used
in low-value word
for phrasing
<ObjectID>.

eqUnderscoreInHighValueWords 0x10358 eqSevWarning eqPhrasing Underscores used
in high-value word
for phrasing
<ObjectID>.

eqUnderscoreInSubsetWord 0x10359 eqSevWarning eqPhrasing Underscores used
in subset word for
phrasing
<ObjectID>.

eqUnderscoreInVerb 0x1035A eqSevWarning eqPhrasing Underscores used
in verb for
phrasing
<ObjectID>.

eqVerbNotRoot 0x1035B eqSevWarning eqPhrasing Verb "{verb}" is
not in root form
for phrasing
<ObjectID>.

eqAdjectiveIsMultiField 0x1035C eqSevError eqPhrasing Adjective entity for
phrasing
<ObjectID> is a
multifield entity.

eqAdjectivePhrasingWithBadOLAPEntity 0x1035D eqSevError eqPhrasing Dimension or cube
entity is object of
adjective phrasing
<ObjectID>.

eqLowThresholdBiggerThanHigh 0x1035E eqSevError eqPhrasing High threshold is
lower than low
threshold in
phrasing
<ObjectID>.

eqNamePhrasingWithPrepPhrases 0x1035F eqSevError eqPhrasing Prepositional
phrases in name
phrasing
<ObjectID>.

eqNumberAsAdjective 0x10360 eqSevError eqPhrasing Numeric adjective
in phrasing
<ObjectID>.

eqNumberAsSubsetWord 0x10361 eqSevError eqPhrasing Numeric subset
word in phrasing
<ObjectID>.

eqOnlyOneThreshold 0x10362 eqSevError eqPhrasing Phrasing
<ObjectID> has a
low threshold or a
high threshold but
not both.

eqProperNameSubset 0x10363 eqSevWarning eqPhrasing Entity {objectid}
has a proper name
but is used as the
object of subset
phrasing
<ObjectID>.

eqErrorInProperty 0x10E00 eqSevError eqProperty Error in member
property
<ObjectID>.

eqBadPropertyField 0x10E01 eqSevError eqProperty Invalid field for
member property
<ObjectID>.

eqBadPropertyName 0x10E02 eqSevError eqProperty Invalid name for
member property
<ObjectID>.

eqDuplicatePropertyName 0x10E03 eqSevError eqProperty Multiple
properties with ID
<ObjectID>.

eqMissingPropertyField 0x10E04 eqSevError eqProperty Missing field for
member property
<ObjectID>.

eqPropertyDataCapitalizationMismatch 0x10E06 eqSevWarning eqProperty Data capitalization
does not match
field for member
property
<ObjectID>.

eqPropertyNameStructureMismatch 0x10E07 eqSevWarning eqProperty Name structure
does not match
field for member
property
<ObjectID>.

eqMissingPropertySourceField 0x10E08 eqSevError eqProperty Missing source
field for member
property
<ObjectID>.

eqErrorInMeasure 0x10F00 eqSevError eqProperty Error in measure
<ObjectID>.

eqBadMeasureAggType 0x10F01 eqSevError eqProperty Invalid aggregate
type for measure
<ObjectID>.

eqBadMeasureField 0x10F02 eqSevError eqProperty Invalid field for
measure
<ObjectID>.

eqBadMeasureName 0x10F03 eqSevError eqProperty Missing aggregate
type for measure
<ObjectID>.

eqDuplicateMeasureName 0x10F04 eqSevError eqProperty Missing field for
measure
<ObjectID>.

eqMissingMeasureAggType 0x10F05 eqSevError eqProperty Missing name for
measure
<ObjectID>.

eqMissingMeasureField 0x10F06 eqSevError eqProperty Invalid name for
measure
<ObjectID>.

eqMissingMeasureName 0x10F07 eqSevError eqProperty Multiple measures
with ID
<ObjectID>.

eqErrorInRelationship 0x10200 eqSevError eqRelationship Error in
relationship
<ObjectID>.

eqBadCommandArgumentEntity 0x10201 eqSevError eqRelationship Invalid entity on
command
argument for
relationship
<ObjectID>.

eqBadCommandArgumentID 0x10202 eqSevError eqRelationship Invalid argument
ID on command
argument for
relationship
<ObjectID>.

eqBadCommandArgumentType 0x10203 eqSevError eqRelationship Invalid argument
type on command
argument for
relationship
<ObjectID>.

eqBadDefaultDate 0x10204 eqSevError eqRelationship Invalid default
date for
relationship
<ObjectID>.

eqBadDomainCommandID 0x10205 eqSevError eqRelationship Invalid command
ID for relationship
<ObjectID>.

eqBadDuration 0x10206 eqSevError eqRelationship Invalid duration
entity for
relationship
<ObjectID>.

eqBadEnd 0x10207 eqSevError eqRelationship Invalid end date
entity for
relationship
<ObjectID>.

eqBadJoinTable 0x10208 eqSevError eqRelationship Invalid join table
for relationship
<ObjectID>.

eqBadRelationshipID 0x10209 eqSevError eqRelationship Invalid ID for
relationship
<ObjectID>.

eqBadSQLCondition 0x1020A eqSevError eqRelationship Invalid SQL
condition for
relationship
<ObjectID>.

eqBadStart 0x1020B eqSevError eqRelationship Invalid start date
entity for
relationship
<ObjectID>.

eqBadWhen 0x1020C eqSevError eqRelationship Invalid date entity
for relationship
<ObjectID>.

eqBadWhere 0x1020D eqSevError eqRelationship Invalid location
entity for
relationship
<ObjectID>.

eqDateEntityRequiredForEnd 0x1020E eqSevError eqRelationship End date entity for
relationship
<ObjectID> is not
a date.

eqDateEntityRequiredForStart 0x1020F eqSevError eqRelationship Start date entity
for relationship
<ObjectID> is not
a date.

eqDateEntityRequiredForWhen 0x10210 eqSevError eqRelationship Date entity for
relationship
<ObjectID> is not
a date.

eqDBEntityRequiredForDuration 0x10211 eqSevError eqRelationship Duration entity for
relationship
<ObjectID> is not
a database entity.

eqDBEntityRequiredForEnd 0x10212 eqSevError eqRelationship End date entity for
relationship
<ObjectID> is not
a database entity.

eqDBEntityRequiredForLocation 0x10213 eqSevError eqRelationship Location entity for
relationship
<ObjectID> is not
a database entity.

eqDBEntityRequiredForStart 0x10214 eqSevError eqRelationship Start date entity
for relationship
<ObjectID> is not
a database entity.

eqDBEntityRequiredForWhen 0x10215 eqSevError eqRelationship Date entity for
relationship
<ObjectID> is not
a database entity.

eqDuplicateCommandArgumentEntity 0x10216 eqSevError eqRelationship Duplicate
argument
{entityid} +
{argtype} for
relationship
<ObjectID>.

eqDuplicateCommandArgumentID 0x10217 eqSevError eqRelationship Duplicate
argument ID
{argid} for
relationship
<ObjectID>.

eqDuplicateDuration 0x10218 eqSevError eqRelationship Duplicate duration
entity for
relationship
<ObjectID>.

eqDuplicateEnd 0x10219 eqSevError eqRelationship Duplicate end date
entity for
relationship
<ObjectID>.

eqDuplicateRole 0x1021A eqSevError eqRelationship Duplicate role for
relationship
<ObjectID>.

eqDuplicateJoinTable 0x1021B eqSevError eqRelationship Duplicate join
table for
relationship
<ObjectID>.

eqDuplicatePhrasingGroup 0x1021C eqSevError eqRelationship Duplicate phrasing
group for
relationship
<ObjectID>.

eqDuplicateRelationship 0x1021D eqSevError eqRelationship Relationship
<ObjectID> is
identical to
relationship
{relationshipid}.

eqDuplicateRelationshipDefaultDate 0x1021E eqSevError eqRelationship Duplicate default
date for
relationship
<ObjectID>.

eqDuplicateRelationshipID 0x1021F eqSevError eqRelationship Multiple
relationships with
ID <ObjectID>.

eqDuplicateSQLCondition 0x10220 eqSevError eqRelationship Duplicate SQL
condition for
relationship
<ObjectID>.

eqDuplicateStart 0x10221 eqSevError eqRelationship Duplicate start
date entity for
relationship
<ObjectID>.

eqDuplicateWhen 0x10222 eqSevError eqRelationship Duplicate date
entity for
relationship
<ObjectID>.

eqDuplicateWhere 0x10223 eqSevError eqRelationship Duplicate location
entity for
relationship
<ObjectID>.

eqEndIsMultifield 0x10224 eqSevError eqRelationship Multifield end date
entity for
relationship
<ObjectID>.

eqMissingCmdInPhrasingGroup 0x10225 eqSevError eqRelationship Missing command
phrasing in
phrasing group for
command
relationship
<ObjectID>.

eqMissingCommandArgumentEntity 0x10226 eqSevError eqRelationship Missing entity in
argument for
relationship
<ObjectID>.

eqMissingCommandArgumentID 0x10227 eqSevError eqRelationship Missing argument
ID in argument for
relationship
<ObjectID>.

eqMissingCommandArgumentType 0x10228 eqSevError eqRelationship Missing argument
type in argument
for relationship
<ObjectID>.

eqMissingCommandName 0x10229 eqSevError eqRelationship Missing command
name for
relationship
<ObjectID>.

eqMissingEntities 0x1022A eqSevError eqRelationship Missing entities
for relationship
<ObjectID>.

eqMissingJoinTable 0x1022B eqSevError eqRelationship Missing join table
for relationship
<ObjectID>.

eqMissingPhrasings 0x1022C eqSevError eqRelationship Missing phrasings
for relationship
<ObjectID>.

eqNoConditionJoinpath 0x1022D eqSevError eqRelationship Missing join path
to field {fieldid} in
relationship
<ObjectID>.

eqNoJoinpath 0x1022E eqSevError eqRelationship Missing path from
join table of
relationship
<ObjectID> to
entity {entityid}.

eqNonCommandPhraseNotInGroup 0x1022F eqSevError eqRelationship Ungrouped
noncommand
phrasing in
command
relationship
<ObjectID>.

eqRelationshipWithMultiQtyOrAmt 0x10230 eqSevError eqRelationship Multiple
quantity/amount
in relationship
<ObjectID>.

eqStartIsMultifield 0x10231 eqSevError eqRelationship Multifield start
date entity for
relationship
<ObjectID>.

eqTooManyCmdInPhrasingGroup 0x10232 eqSevError eqRelationship Multiple command
phrasings in
phrasing group for
relationship
<ObjectID>.

eqSuggestAugmentRels 0x10233 eqSevInfo eqRelationship Relationship
<ObjectID> and
{relationshipid}
each cover only
part of the
underlying
database
relationship

eqSuggestMergeRelationships 0x10234 eqSevInfo eqRelationship Relationship
<ObjectID> and
relationship
{relationshipid} are
identical.

eqSuggestWhen 0x10235 eqSevInfo eqRelationship Entity {entityid}
should be the
date/time of
relationship
<ObjectID>.

eqSuggestWhere 0x10236 eqSevInfo eqRelationship Entity {entityid}
should be the
location of
relationship
<ObjectID>.

eqAmbiguousJoinPath 0x10237 eqSevWarning eqRelationship Multiple possible
paths from join
table of
relationship
<ObjectID> to
entity {entityid}.

eqUnsupportedAmountOrQuantity 0x10238 eqSevWarning eqRelationship Unsupported
quantity/amount
in phrasing
{phrasingid} in
relationship
<ObjectID>.

eqUnsupportedDuration 0x10239 eqSevWarning eqRelationship Duration
unsupported by
phrasing in
relationship
{ObjectID}.

eqUnsupportedEnd 0x1023A eqSevWarning eqRelationship End date
unsupported by
phrasing in
relationship
{ObjectID}.

eqUnsupportedStart 0x1023B eqSevWarning eqRelationship Start date
unsupported by
phrasing in
relationship
{ObjectID}

eqUnsupportedWhen 0x1023C eqSevWarning eqRelationship Date unsupported
by phrasing in
relationship
{ObjectID}.

eqUnsupportedWhere 0x1023D eqSevWarning eqRelationship Location
unsupported by
phrasing in
relationship
{ObjectID}.

eqBothStartAndWhen 0x1023E eqSevError eqRelationship Relationship
<ObjectID> has
both a when date
and start date.

eqBothEndAndWhen 0x1023F eqSevError eqRelationship Relationship
<ObjectID> has
both a when date
and an end date.

eqMostRecentNotSupported 0x10240 eqSevError eqRelationship Most recent data is
not supported for
the relationship
<ObjectID>.

eqNonDBRequiredForDate 0x10241 eqSevError eqRelationship Database entity
used as date for
the command
relationship
<ObjectID>.

eqNonDBRequiredForDuration 0x10242 eqSevError eqRelationship Database entity
used as duration
for the command
relationship
<ObjectID>.

eqNonDBRequiredForEndDate 0x10243 eqSevError eqRelationship Database entity
used as end date
for the command
relationship
<ObjectID>.

eqNonDBRequiredForStartDate 0x10244 eqSevError eqRelationship Database entity
used as start date
for the command
relationship
<ObjectID>.

eqNonLocationUsedAsLocation 0x10245 eqSevError eqRelationship Nonlocation entity
used as location in
relationship
<ObjectID>.

eqTooManyPhrasingsInRelationship 0x10246 eqSevError eqRelationship Too many
phrasings in
relationship
<ObjectID>.

eqTooManyRolesInRelationship 0x10247 eqSevError eqRelationship Too many roles in
relationship
<ObjectID>.

eqNoCubePath 0x10248 eqSevError eqRelationship No relationship in
OLAP cube
between
<ObjectID> and
{objectid}.

eqDuplicateRoleInTimeAndLocation 0x10249 eqSevError eqRelationship The entity
{entityid} is used
as both the
{usage} and the
{usage} in the
relationship
<ObjectID>.

eqTwoMeasurePhrasing 0x1024A eqSevError eqRelationship Relationship
<ObjectID> has
two measurement
phrasings that use
the same
measurement.

eqWrongTableCaseInCondition 0x1024B eqSevError eqRelationship Case mismatch for
table {tablename}
in SQL condition
for relationship
<ObjectID>.

eqWrongFieldCaseInCondition 0x1024C eqSevError eqRelationship Case mismatch for
field {fieldname} in
SQL condition for
relationship
<ObjectID>.

eqTwoMeasurePhrInTwoRel 0x1024D eqSevError eqRelationship Relationship
<ObjectID> and
relationship
{relationshipid}
have
measurement
phrasings that use
the same
measurement.

eqRoleNotUsedInPhrasingGroup 0x1024E eqSevError eqRelationship Role {roleid} is not
marked to always
display and does
not appear in each
phrasing group in
relationship
<ObjectID>.

eqFieldWithoutTableInSQLCondition 0x1024F eqSevError eqRelationship Field {fieldname}
without table
name in SQL
condition for
relationship
<ObjectID>.

eqBadTableInSQLCondition 0x10250 eqSevError eqRelationship Undefined table
{tablename} in
SQL condition for
relationship
<ObjectID>.

eqBadFieldInSQLCondition 0x10251 eqSevError eqRelationship Undefined field
{fieldname} in SQL
condition for
relationship
<ObjectID>.

eqErrorInRole 0x10700 eqSevError eqRole Error in role
<ObjectID>.

eqAlwaysShowForDomainCmd 0x10701 eqSevError eqRole Role <ObjectID>
is marked to
always display in a
command
relationship.

eqBadAmountField 0x10702 eqSevError eqRole Invalid amount
field for role
<ObjectID>.

eqBadRoleID 0x10703 eqSevError eqRole Invalid ID for role
<ObjectID>.

eqBadEntity 0x10704 eqSevError eqRole Invalid entity for
role <ObjectID>.

eqBadJoin 0x10705 eqSevError eqRole Invalid join path
for role
<ObjectID>.

eqBadJoinInJoinpath 0x10706 eqSevError eqRole Source/destination
mismatch in join
path for role
<ObjectID>.

eqBadJoinRef 0x10707 eqSevError eqRole Invalid join in join
path for role
<ObjectID>.

eqBadNonDBType 0x10708 eqSevError eqRole Invalid
nondatabase
entity data type for
role <ObjectID>.

eqBadQuantityField 0x10709 eqSevError eqRole Invalid quantity
entity for role
<ObjectID>.

eqDuplicateAmount 0x1070A eqSevError eqRole Duplicate amount
entity for role
<ObjectID>.

eqDuplicateRoleID 0x1070B eqSevError eqRole Multiple roles with
ID <ObjectID>.

eqDuplicateJoinPath 0x1070C eqSevError eqRole Duplicate join path
for role
<ObjectID>.

eqDuplicateJoinRef 0x1070D eqSevError eqRole Duplicate join in
join path for role
<ObjectID>.

eqDuplicateNonDBType 0x1070E eqSevError eqRole Duplicate
nondatabase
entity data type for
role <ObjectID>.

eqDuplicateQuantity 0x1070F eqSevError eqRole Duplicate quantity
entity for role
<ObjectID>.

eqMissingEntity 0x10710 eqSevError eqRole Missing entity for
role <ObjectID>.

eqMissingJoinPath 0x10711 eqSevWarning eqRole Missing join path
for role
<ObjectID>.

eqMissingJoinRef 0x10712 eqSevError eqRole Missing joins in
join path for role
<ObjectID>.

eqMissingNonDBType 0x10713 eqSevError eqRole Missing
nondatabase
entity data type for
role <ObjectID>.

eqNonDBTypeForDBEntity 0x10714 eqSevError eqRole Role <ObjectID>
is a database
entity but has a
nondatabase
entity data type.

eqNonDBTypeForNonDomainCmd 0x10715 eqSevError eqRole Role <ObjectID>
has a nondatabase
entity data type in
a noncommand
relationship.

eqMandatoryTableEntityWithoutName 0x10716 eqSevError eqRole Role <ObjectID>
is mandatory, but
has no name
phrasing.

eqMandatoryFieldEntityWithoutName 0x10717 eqSevError eqRole Role <ObjectID>
is mandatory, but
is not a number,
name, or date.

eqRoleNotUsedInPhrasing 0x10718 eqSevError eqRole Role <ObjectID>
is not marked to
always display and
does not appear in
phrasing
{phrasingid}.

eqRoleNotUseInPhrasingGroups 0x10719 eqSevError eqRole Role <ObjectID>
is not marked to
always display and
does not appear in
each phrasing
group.

eqAmountEntitySameAsRole 0x1071A eqSevError eqRole Entity {entityid}
used as amount of
itself in role
<ObjectID>.

eqMeasureEntityRequiredForAmount 0x1071B eqSevError eqRole Nonmeasure
entity {entityid}
used as amount
on role
<ObjectID>.

eqMeasureEntityRequiredForQuantity 0x1071C eqSevError eqRole Nonmeasure
entity {entityid}
used as quantity
on role
<ObjectID>.

eqQuantityEntitySameAsRole 0x1071D eqSevError eqRole Entity {entityid}
used as quantity of
itself in role
<ObjectID>.

eqSingleFieldEntityRequiredForAmount 0x1071E eqSevError eqRole Multifield entity
{entityid} used as
amount on role
<ObjectID>.

eqSingleFieldEntityRequiredForQuantity 0x1071F eqSevError eqRole Multifield entity
{entityid} used as
quantity on role
<ObjectID>.

eqErrorInTable 0x10400 eqSevError eqTable Error in table
<ObjectID>.

eqBadTableName 0x10401 eqSevError eqTable Invalid name for
table <ObjectID>.

eqDuplicateField 0x10402 eqSevError eqTable Duplicate field in
table <ObjectID>.

eqDuplicateTableName 0x10403 eqSevError eqTable Multiple tables
with ID
<ObjectID>.

eqMissingFields 0x10404 eqSevError eqTable Missing fields for
table <ObjectID>.

eqMissingKeys 0x10405 eqSevError eqTable Missing keys for
table <ObjectID>.

English Query (SQL Server 2000)

Cube Error Messages
This section provides expanded text for the cube error messages.

English Query (SQL Server 2000)

Duplicate default measure for cube <ObjectID>.
Duplicate default measure for cube <ObjectID>.

Message Text

This cube has more than one default measure. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate dimension for cube <ObjectID>.
Duplicate dimension for cube <ObjectID>.

Message Text

The same dimension is used more than one time in this cube. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate measure for cube <ObjectID>.
Duplicate measure for cube <ObjectID>.

Message Text

The same measure is used more than one time in this cube. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in cube <ObjectID>.
Error in cube <ObjectID>.

Message Text

This cube contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for cube <ObjectID>.
Invalid name for cube <ObjectID>.

Message Text

The name for this cube is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid table for cube <ObjectID>.
Invalid table for cube <ObjectID>.

Message Text

The table for this cube is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing default measure in cube <ObjectID>.
Missing default measure in cube <ObjectID>.

Message Text

The default measure for this cube is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing dimensions for cube <ObjectID>.
Missing dimensions for cube <ObjectID>.

Message Text

The dimensions for this cube are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing fact table for cube <ObjectID>.
Missing fact table for cube <ObjectID>.

Message Text

The fact table on this cube is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing measures for cube <ObjectID>.
Missing measures for cube <ObjectID>.

Message Text

The measures for this cube are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing table for cube <ObjectID>.
Missing table for cube <ObjectID>.

Message Text

The table for this cube is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple cubes with ID <ObjectID>.
Multiple cubes with ID <ObjectID>.

Message Text

The same ID is assigned to more than one cube. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Dictionary Entry Error Messages
This section provides expanded text for the dictionary entry error messages.

English Query (SQL Server 2000)

Duplicate irregular form in dictionary entry <ObjectID>.
Duplicate irregular form in dictionary entry <ObjectID>.

Message Text

This dictionary entry has more than one irregular form. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate root word in dictionary entry <ObjectID>.
Duplicate root word in dictionary entry <ObjectID>.

Message Text

This dictionary entry has more than one root word. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in dictionary entry <ObjectID>.
Error in dictionary entry <ObjectID>.

Message Text

This dictionary entry contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid character in write synonym for dictionary entry
<ObjectID>.
Invalid character in write synonym for dictionary entry <ObjectID>.

Message Text

The write synonym for this dictionary entry contains a nonalphanumeric character.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid irregular form for dictionary entry <ObjectID>.
Invalid irregular form for dictionary entry <ObjectID>.

Message Text

The irregular form for this dictionary entry is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid irregular form type for dictionary entry <ObjectID>.
Invalid irregular form type for dictionary entry <ObjectID>.

Message Text

The irregular form type for this dictionary entry is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid part of speech for dictionary entry <ObjectID>.
Invalid part of speech for dictionary entry <ObjectID>.

Message Text

The part of speech for this dictionary entry is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid root word for dictionary entry <ObjectID>.
Invalid root word for dictionary entry <ObjectID>.

Message Text

The root word for this dictionary entry is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing irregular form in dictionary entry <ObjectID>.
Missing irregular form in dictionary entry <ObjectID>.

Message Text

The irregular form for this dictionary entry is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing irregular type in dictionary entry <ObjectID>.
Missing irregular type in dictionary entry <ObjectID>.

Message Text

The irregular type for this dictionary entry is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing part of speech in dictionary entry <ObjectID>.
Missing part of speech in dictionary entry <ObjectID>.

Message Text

The part of speech for this dictionary entry is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing read word for dictionary entry <ObjectID>.
Missing read word for dictionary entry <ObjectID>.

Message Text

This dictionary entry is a read synonym, but the read word is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing root word in dictionary entry <ObjectID>.
Missing root word in dictionary entry <ObjectID>.

Message Text

The root word for this dictionary entry is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing write word for dictionary entry <ObjectID>.
Missing write word for dictionary entry <ObjectID>.

Message Text

This dictionary entry is a write synonym, but the write word is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple dictionary entries with ID <ObjectID>.
Multiple dictionary entries with ID <ObjectID>.

Message Text

This dictionary entry defines the same root word as another dictionary entry. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Write synonym in dictionary entry <ObjectID> is identical to
the root word.
Write synonym in dictionary entry <ObjectID> is identical to the root word.

Message Text

The write synonym for this dictionary entry is the same as the word for which it is a write synonym.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Dimension Error Messages
This section provides expanded text for the dimension error messages.

English Query (SQL Server 2000)

Date types of levels in time dimension <ObjectID> are not in
descending order.
Date types of levels in time dimension <ObjectID> are not in descending order.

Message Text

The date types on the levels of this dimension are not in descending order (for example, year then month then day).

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate level for dimension <ObjectID>.
Duplicate level for dimension <ObjectID>.

Message Text

The same level is used more than one time in this dimension. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in dimension <ObjectID>.
Error in dimension <ObjectID>.

Message Text

This dimension contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for dimension <ObjectID>.
Invalid name for dimension <ObjectID>.

Message Text

The name for this dimension is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid table for dimension <ObjectID>.
Invalid table for dimension <ObjectID>.

Message Text

The table for this dimension is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid type for dimension <ObjectID>.
Invalid type for dimension <ObjectID>.

Message Text

The type for this dimension is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing levels for dimension <ObjectID>.
Missing levels for dimension <ObjectID>.

Message Text

The levels for this dimension are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing source table for dimension <ObjectID>.
Missing source table for dimension <ObjectID>.

Message Text

The source table on this dimension is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing table for dimension <ObjectID>.
Missing table for dimension <ObjectID>.

Message Text

The table for this dimension is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing type for dimension <ObjectID>.
Missing type for dimension <ObjectID>.

Message Text

The type for this dimension is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple dimensions with ID <ObjectID>.
Multiple dimensions with ID <ObjectID>.

Message Text

The same ID is assigned to more than one dimension. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity Error Messages
This section provides expanded text for the entity error messages. In some cases, an action is recommended to resolve the errors.

English Query (SQL Server 2000)

A database object is not specified for measure entity
<ObjectID>.
A database object is not specified for measure entity <ObjectID>.

Message Text

This measure entity does not have a database object. Measure entities must be represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Comparing {datepart} to entity that has no {datepart} in entity
default for entity <ObjectID>.
Comparing {datepart} to entity that has no {datepart} in entity default for entity <ObjectID>.

Message Text

In an entity default on this entity, a date value is being compared with an entity, which does not contain dates of that type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Comparing date entity {entityid} to nondate in entity default
for entity <ObjectID>.
Comparing date entity {entityid} to nondate in entity default for entity <ObjectID>.

Message Text

In an entity default on this entity, a nondatetime value is being compared with a datetime entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Comparing integer entity {entityid} to noninteger in entity
default for entity <ObjectID>.
Comparing integer entity {entityid} to noninteger in entity default for entity <ObjectID>.

Message Text

In an entity default on this entity, a noninteger value is being compared with an integer entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Comparing numeric entity {entityid} to nonnumber in entity
default for entity <ObjectID>.
Comparing numeric entity {entityid} to nonnumber in entity default for entity <ObjectID>.

Message Text

In an entity default on this entity, a nonnumeric value is being compared with a numeric entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity {entityid} in a default condition on entity
<ObjectID> cannot be compared with a {date type}.
Date entity {entityid} in a default condition on entity <ObjectID> cannot be compared with a {date
type}.

Message Text

This entity has an entity default with a default condition that compares a constant value to an entity with a date type not
compatible with that value. For example, comparing the value "1/1/2000" with a month entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity {entityid} in a default condition on entity
<ObjectID> cannot be compared with a {value}.
Date entity {entityid} in a default condition on entity <ObjectID> cannot be compared with a {value}.

Message Text

This entity has an entity default with a default condition that compares a constant value that is not a recognized date to an entity
that is a date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity <ObjectID> has a name type.
Date entity <ObjectID> has a name type.

Message Text

This entity is represented by a date field but has a name type. Date entities cannot contain names or IDs.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity <ObjectID> is a table.
Date entity <ObjectID> is a table.

Message Text

This entity is a date but is represented by a table. Dates can be represented only by fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Display fields for entity <ObjectID> should include fields from
name entity {entityid}.
Display fields for entity <ObjectID> should include fields from name entity {entityid}.

Message Text

This entity is not defined to show its name fields. The fields in its name entity should be added as remote display fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate database object for entity <ObjectID>.
Duplicate database object for entity <ObjectID>.

Message Text

The same database object is used more than one time in this entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default condition in entity default for entity
<ObjectID>.
Duplicate default condition in entity default for entity <ObjectID>.

Message Text

This entity has an entity default that contains more than one occurrence of the same default condition. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default relationship for entity <ObjectID> and entity
{entityid}.
Duplicate default relationship for entity <ObjectID> and entity {entityid}.

Message Text

This entity has more than one default relationship for the same entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate display field for entity <ObjectID>.
Duplicate display field for entity <ObjectID>.

Message Text

The same field is used more than one time in display fields of this entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate entity type for entity <ObjectID>.
Duplicate entity type for entity <ObjectID>.

Message Text

This entity has more than one entity type. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate name synonym {synonym}/{value} for entity
<ObjectID>.
Duplicate name synonym {synonym}/{value} for entity <ObjectID>.

Message Text

The same name synonym is used more than one time in this entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate name type for entity <ObjectID>.
Duplicate name type for entity <ObjectID>.

Message Text

This entity has more than one name type. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate numbers in entity <ObjectID>.
Duplicate numbers in entity <ObjectID>.

Message Text

This entity has more than one field containing numeric references to the entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate relationship on entity default for entity <ObjectID>.
Duplicate relationship on entity default for entity <ObjectID>.

Message Text

An entity default for this entity has more than one relationship. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate sort-by field for entity <ObjectID>.
Duplicate sort-by field for entity <ObjectID>.

Message Text

The same field is used more than one time in sort-by fields of this entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate table to memorize names from for entity
<ObjectID>.
Duplicate table to memorize names from for entity <ObjectID>.

Message Text

This entity has more than one table from which database values are loaded. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate unknown date relationship for entity <ObjectID>.
Duplicate unknown date relationship for entity <ObjectID>.

Message Text

This entity has more than one unknown date relationship. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate unless relationship {relationshipid} on entity default
for entity <ObjectID>.
Duplicate unless relationship {relationshipid} on entity default for entity <ObjectID>.

Message Text

This entity has an entity default in which a relationship is used as an unless relationship more than one time. Remove the
duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate word "{word}" for entity <ObjectID>.
Duplicate word "{word}" for entity <ObjectID>.

Message Text

The same word is used more than one time on this entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> and entity {entityid} have the same
underlying database object(s).
Entity <ObjectID> and entity {entityid} have the same underlying database object(s).

Message Text

This entity and another entity are represented by the same database objects. Remove one of the entities and add its words as
synonyms of the other entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> cannot load words from table {tableid}.
Entity <ObjectID> cannot load words from table {tableid}.

Message Text

This entity has an alternate table specified to load words from, but that table does not contain the fields that represent this entity.

Explanation

While building an application, English Query loads the vocabulary in the database either from the table that contains the entity or
from an alternate table. If an alternate table is used, it must contain denormalized copies of the fields that represent the entity.

For example, the database for a project contains a Customers table and an alternative table called Current Customers, which
contains fields that are marked as denormalized. If the Customers table contains a Suite number field and the Suite number
field is missing from the Current Customers table, English Query will not be able to load words from the table.

This error can occur when:

The Semantic Modeling Format (SMF) text file has been edited and a field is missing from one table but not the other.

A field is marked as a denormalized copy of a field and deleted in one table without making the same changes in the
corresponding field of the other table.

Action

To correct this error:

Mark one field as a denormalized copy of the other field.

Add the missing field to the appropriate table.

Edit the SMF text file to either add the field or remove it from the other table.

Refresh the tables.

See Also

Advanced Tab (Table/New Table Dialog Box)

Compile-Time Error Messages (Authoring Object Model)

How to add a field to a table

How to add tables and views from a SQL data source

How to edit a table

How to refresh all tables in a project

SQL Database Normalization Rules

English Query (SQL Server 2000)

Entity <ObjectID> cannot show fields from table {tableid}.
Entity <ObjectID> cannot show fields from table {tableid}.

Message Text

This entity has remote fields specified, but there is no join from this entity to the table that contains the remote fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> has both table and field as database objects.
Entity <ObjectID> has both table and field as database objects.

Message Text

This entity is represented by both a table and a field. Entities can be represented only by a single table, or by one or more fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> has display fields but is not a table entity.
Entity <ObjectID> has display fields but is not a table entity.

Message Text

This entity is not represented by a table but has display fields. Only table entities can have display fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> has multiple tables as database objects.
Entity <ObjectID> has multiple tables as database objects.

Message Text

This entity is represented by more than one table. Entities can be represented only by a single table, or by one or more fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> has the same words as its {nametype}
{entityid}.
Entity <ObjectID> has the same words as its {nametype} {entityid}.

Message Text

This entity has the same words as another entity that is its name or ID. It is recommended that you choose other words to
differentiate them.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> is a subentity of itself.
Entity <ObjectID> is a subentity of itself.

Message Text

This entity is a subentity of itself, due to a loop in the subentity hierarchy. One of the entities in this hierarchy should not be a
subentity.

Explanation

The subentity hierarchy cannot be circular. It must go in one direction from the subentity to the parent entity. The following
examples show an incorrect hierarchy:

Enlisted is a subentity of Military Personnel.

Officer is a subentity of Enlisted.

Military Personnel is a subentity of Officer.

This error occurs when:

An error is introduced while editing the Semantic Modeling Format (SMF).

Action

To prevent this error:

Redirect the foreign keys when you make one entity a subentity of the other.

To correct this error, redirect the join and make one entity a subentity of the other:

1. In the Join/New Join dialog box, correct the joins between the table so that they point in the right direction. In the Military
Personnel example, point the join for Enlisted to Military Personnel and delete the join from Enlisted to Officer as seen
in the following diagram:

2. In the Advance Entity Properties dialog box for the subentity, on the Semantics Properties tab, in the Is subentity of
list, click the parent entity. In this example, Military Personnel would be listed in the Is subentity of option for both the
Enlisted and Officer entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to add a join

How to delete a join

How to edit a join

Join/New Join Dialog Box

Semantic Properties Tab (Advanced Entity Properties Dialog Box)

Specify Join Path Dialog Box

SQL Database Normalization Rules

Table/New Table Dialog Box

English Query (SQL Server 2000)

Entity <ObjectID> is name/ID of entity {entityid}, but has
entity type other than None.
Entity <ObjectID> is name/ID of entity {entityid}, but has entity type other than None.

Message Text

This entity has an entity type other than "None". Because it is the name or ID of another entity, the entity type should be "None".

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> is subentity of {entityid}, but has no join.
Entity <ObjectID> is subentity of {entityid}, but has no join.

Message Text

This entity is a subentity of another entity, but there is no join from the key of the subentity (child) table to the key of the entity
(parent) table.

Explanation

The subentities (child) table has no join to connect it to the parent entities table. In the following example, both Enlisted and
Officer are subentities of Military Personnel but only Officer has a join to the Military Personnel table.

This error occurs when:

The underlying join between the child table and the parent table is missing.

Action

To prevent this error:

Make sure that a valid join exists between the child and parent tables and that the join is in the right direction.

Maintain all desired joins when you edit the Semantic Modeling Format (SMF).

Check for errors in changes to the SMF (for example, typographical errors, deletion of essential material and incorrect SMF).

If a parent table is deleted, delete the joins to that table.

To correct this error:

Create a join between the child and parent table by using the Table/New Table dialog box or by editing the SMF. For
example, create a join between Enlisted and Military Personnel.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to add a join

How to delete a join

How to edit a join

Join/New Join Dialog Box

Specify Join Path Dialog Box

SQL Database Normalization Rules

Table/New Table Dialog Box

English Query (SQL Server 2000)

Entity <ObjectID> represented by date field, but not marked as
date.
Entity <ObjectID> represented by date field, but not marked as date.

Message Text

This entity is represented by date/time fields, but it is not marked as a date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity <ObjectID> should be represented by level {levelid}.
Entity <ObjectID> should be represented by level {levelid}.

Message Text

This entity is represented by a member property whose underlying field is the same as the underlying field for some level in the
model. If a level and a property have the same underlying field, only the level can represent an entity.

Explanation

In an OLAP or mixed SQL/OLAP model, every OLAP object has an underlying SQL object. You cannot have one entity representing
the OLAP member property and another entity representing the OLAP level if the member property and the level have the same
underlying database fields. Only one entity representing the level should exist.

Action

To correct this error:

Delete the member property entity. English Query will determine the appropriate SQL statements from the OLAP level.

See Also

Additional Relationships

Compile-Time Error Messages (Authoring Object Model)

Expanding an English Query Model

How to delete an entity

How to edit an entity

How to manually map OLAP objects to the underlying SQL database objects

Naming Entities in the OLAP Project Wizard

English Query (SQL Server 2000)

Entity <ObjectID> should be represented by table <tableid>.
Entity <ObjectID> should be represented by table <tableid>.

Message Text

The field that represents this entity is joined to the key of another table. The entity should be represented by the other table rather
than this field.

Explanation

This entity is represented by a field that has a join to the key of another table. For example, if a Branch entity is created from the
Branch ID field in the Employee table, an error occurs. The error occurs because a join exists from the Branch ID field of the
Employee table to the ID field of the Branch table. Make the entity a table entity and point it to the Branch table as seen in the
following diagram:

Action

To prevent this error:

Represent the Branch entity by the Branch table.

To correct this error:

In the Entity/New Entity dialog box, click Table. In the Table list, click the table containing the foreign key and in the Field
list, click the fields you want to display.

Note Make sure that the appropriate join exists.

See Also

Compile-Time Error Messages (Authoring Object Model)

Entity/New Entity Dialog Box

How to add a join

How to edit a join

Join/New Join Dialog Box

Specify Join Path Dialog Box

SQL Database Normalization Rules

English Query (SQL Server 2000)

Entity <ObjectID> uses the word "name".
Entity <ObjectID> uses the word "name".

Message Text

The word "name" on an entity can cause English Query to misunderstand questions about names. Use a more specific word (for
example, customer name) on this entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in entity <ObjectID>.
Error in entity <ObjectID>.

Message Text

This entity contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error loading instance values for entity <ObjectID>.
Error loading instance values for entity <ObjectID>.

Message Text

There was an error loading instance values from the database for this entity. Check permissions on the database object that
represents this entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Fields {fieldid} and {fieldid} in entity <ObjectID> have the
same date type.
Fields {fieldid} and {fieldid} in entity <ObjectID> have the same date type.

Message Text

There is more than one field in this entity with the same date type. Date entities must have only one field of each date type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Fields from name entity {objectid} are reused in entity
<ObjectID>.
Fields from name entity {objectid} are reused in entity <ObjectID>.

Message Text

This entity is represented by fields that represent a different name entity. Generally, fields used in name entities do not require
additional entities created from them.

Explanation

In English Query, a name entity can represent a single field or set of fields. Therefore, it is recommended that another entity not be
represented by one of the previously used fields. For example, if the Customer Name entity is represented by the FirstName
and LastName fields from the Customer table, do not use a new entity, Customer First Name, that uses the FirstName field of
the Customer table.

Action

To correct this error:

Delete the entity represented by only one of the fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

Entity/New Entity Dialog Box

How to delete an entity

How to edit an entity

English Query (SQL Server 2000)

Invalid character {char} in word for entity <ObjectID>.
Invalid character {char} in word for entity <ObjectID>.

Message Text

This entity contains an invalid character in one of its words.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid database object for entity <ObjectID>.
Invalid database object for entity <ObjectID>.

Message Text

The database object for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid database value on name synonym for entity
<ObjectID>.
Invalid database value on name synonym for entity <ObjectID>.

Message Text

The database value of a name synonym on this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default relationship for entity <ObjectID>.
Invalid default relationship for entity <ObjectID>.

Message Text

The default relationship for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid display field for entity <ObjectID>.
Invalid display field for entity <ObjectID>.

Message Text

A display field for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid entity on entity default condition for entity
<ObjectID>.
Invalid entity on entity default condition for entity <ObjectID>.

Message Text

The entity in a condition on an entity default of this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid entity type for entity <ObjectID>.
Invalid entity type for entity <ObjectID>.

Message Text

The entity type for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid entity used in the option Is subentity of.
Invalid entity used in the option Is subentity of.

Message Text

The inherits-from entity for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid field for entity <ObjectID>.
Invalid field for entity <ObjectID>.

Message Text

The field specified as the database object for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for entity <ObjectID>.
Invalid ID for entity <ObjectID>.

Message Text

The ID for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name type for entity <ObjectID>.
Invalid name type for entity <ObjectID>.

Message Text

This entity has a name type but is not represented by a string or text field.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid numerical references specified.
Invalid numerical references specified.

Message Text

The numeric reference field for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid operator on entity default condition for entity
<ObjectID>.
Invalid operator on entity default condition for entity <ObjectID>.

Message Text

The operator for a condition on an entity default on this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid related entity for entity <ObjectID>.
Invalid related entity for entity <ObjectID>.

Message Text

The related entity for a default relationship of this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid sample data for entity <ObjectID>.
Invalid sample data for entity <ObjectID>.

Message Text

The sample data for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid sort field for entity <ObjectID>.
Invalid sort field for entity <ObjectID>.

Message Text

One of the sort fields for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid synonym word for entity <ObjectID>.
Invalid synonym word for entity <ObjectID>.

Message Text

The synonym word on a name synonym for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid table for entity <ObjectID>.
Invalid table for entity <ObjectID>.

Message Text

The table specified as the database object of this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid table specified from which to load words.
Invalid table specified from which to load words.

Message Text

The table to memorize names from for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid unknown dates relationship for entity <ObjectID>.
Invalid unknown dates relationship for entity <ObjectID>.

Message Text

The unknown dates relationship for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid unless relationship on entity default for entity
<ObjectID>.
Invalid unless relationship on entity default for entity <ObjectID>.

Message Text

The unless relationship for an entity default of this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid value on entity default condition for entity <ObjectID>.
Invalid value on entity default condition for entity <ObjectID>.

Message Text

The condition for a default of this entity contains a value that is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid word for entity <ObjectID>.
Invalid word for entity <ObjectID>.

Message Text

One of the words for this entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing database value on name synonym for entity
<ObjectID>.
Missing database value on name synonym for entity <ObjectID>.

Message Text

The database value for a name synonym on this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing entity type for entity <ObjectID>.
Missing entity type for entity <ObjectID>.

Message Text

The entity type for this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing related entity on default relationship for entity
<ObjectID>.
Missing related entity on default relationship for entity <ObjectID>.

Message Text

The related entity for a default relationship of this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing relationship on default relationship for entity
<ObjectID>.
Missing relationship on default relationship for entity <ObjectID>.

Message Text

The relationship for a default relationship of this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing sample data for entity <ObjectID>.
Missing sample data for entity <ObjectID>.

Message Text

The sample data for this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing synonym on name synonym for entity <ObjectID>.
Missing synonym on name synonym for entity <ObjectID>.

Message Text

The synonym for a name synonym on this entity is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing words for entity <ObjectID>.
Missing words for entity <ObjectID>.

Message Text

The words for this entity are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case word for entity <ObjectID>.
Mixed-case word for entity <ObjectID>.

Message Text

Entity words are case-sensitive. Verify that the words on this entity are capitalized in the same way that users will type them in
questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

More than one entity used in the option Is a subentity of.
More than one entity used in the option Is a subentity of.

Message Text

This entity has more than one inherits-from entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple entities with ID <ObjectID>.
Multiple entities with ID <ObjectID>.

Message Text

The same ID is assigned to more than one entity. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple field enity <ObjectID> has name synonyms.
Multiple field enity <ObjectID> has name synonyms.

Message Text

This entity is represented by multiple fields but has name synonyms. Only single-field entities can have name synonyms.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name structure is not allowed for date entity <ObjectID>.
Name structure is not allowed for date entity <ObjectID>.

Message Text

This date entity has a name structure specified. Date entities may not have a name structure.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name synonym but no name type on entity <ObjectID>.
Name synonym but no name type on entity <ObjectID>.

Message Text

The name type for this entity is not specified. Entities without a name type cannot have name synonyms.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name type is incompatible with database object type on entity
<ObjectID>.
Name type is incompatible with database object type on entity <ObjectID>.

Message Text

This entity has a name type but is represented by a table or an OLAP dimension, cube, or measure. Only field entities and OLAP
level and property entities can have name types.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name type is incompatible with level date type on entity
<ObjectID>.
Name type is incompatible with level date type on entity <ObjectID>.

Message Text

This entity has a name type but is represented by a member property that has a date type. Entities represented by date properties
cannot be names.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name type is incompatible with property date type on entity
<ObjectID>.
Name type is incompatible with property date type on entity <ObjectID>.

Message Text

This entity has a name type but is represented by a member property that has a date type. Entities represented by date properties
cannot be names.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Numeric entity <ObjectID> has name type other than Unique
ID.
Numeric entity <ObjectID> has name type other than Unique ID.

Message Text

This entity is represented by a numeric field, but has a name type other than Unique ID. Numeric entities cannot contain names.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Numeric references are not allowed for nontable entity
<ObjectID>.
Numeric references are not allowed for nontable entity <ObjectID>.

Message Text

This entity has a numeric references property, but is not a table entity. Only table entities can have a numeric references property.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Numeric word on entity <ObjectID>.
Numeric word on entity <ObjectID>.

Message Text

This entity has a word that is a number. Numbers cannot be used as words on entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Remote fields are not allowed for nontable entity <ObjectID>.
Remote fields are not allowed for nontable entity <ObjectID>.

Message Text

This entity has remote fields specified, but is not a table entity. Only table entities can have remote fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Stand-alone entity <ObjectID> must be either a field entity or
a level entity.
Stand-alone entity <ObjectID> must be either a field entity or a level entity.

Message Text

This entity is marked as a stand-alone entity but either is not a field entity or is used as the name of another entity. Only nonname
field entities can be stand-alone entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

The dimension {objectid} for the time entity <ObjectID> is not
a time dimension.
The dimension {objectid} for the time entity <ObjectID> is not a time dimension.

Message Text

This date entity is represented by a dimension that is not a time dimension. Only time dimensions can represent date entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

The entity <ObjectID> in default condition can only be
compared with a {datatype}.
The entity <ObjectID> in default condition can only be compared with a {datatype}.

Message Text

This entity has an entity default with a default condition that compares a constant value to an entity with a data type not
compatible with that value. For example, comparing the value "XYZ" with an integer entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in word for entity <ObjectID>.
Underscores used in word for entity <ObjectID>.

Message Text

Underscores are not commonly used in English nouns. Verify that the words on this entity are entered in the same way that users
will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Word for entity <ObjectID> is too long.
Word for entity <ObjectID> is too long.

Message Text

One of the words for this entity is too long.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Field Error Messages
This section provides expanded text for the field error messages.

English Query (SQL Server 2000)

Aggregate field for field <ObjectID> is not numeric.
Aggregate field for field <ObjectID> is not numeric.

Message Text

The aggregate field for this field is not numeric.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Caption is too long for field <ObjectID>.
Caption is too long for field <ObjectID>.

Message Text

Caption for this field exceeds the length supported by your database.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Case mismatch for field {fieldname} in computation for field
<ObjectID>.
Case mismatch for field {fieldname} in computation for field <ObjectID>.

Message Text

The computation for this field references a field for which there is no exact match in the model. There are more than one case-
insensitive matches. This makes the SQL condition ambiguous. Change the case to match the desired field exactly.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Case mismatch for table {tablename} in computation for field
<ObjectID>.
Case mismatch for table {tablename} in computation for field <ObjectID>.

Message Text

The computation for this field references a table for which there is no exact match in the model. There are more than one case-
insensitive matches. This makes the SQL condition ambiguous. Change the case to match the desired table exactly

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Computed field <ObjectID> cannot be in key of table.
Computed field <ObjectID> cannot be in key of table.

Message Text

This field is a computed field but is marked as a part of the primary key of the table. Computed fields cannot be used in primary
keys.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Denormalized copy field for field <ObjectID> has incorrect
data type.
Denormalized copy field for field <ObjectID> has incorrect data type.

Message Text

The data type of this field does not match the data type of its denormalized copy field.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate aggregate field for field <ObjectID>.
Duplicate aggregate field for field <ObjectID>.

Message Text

This field has more than one aggregate field. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate capitalization convention for field <ObjectID>.
Duplicate capitalization convention for field <ObjectID>.

Message Text

This field has more than one capitalization convention. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate caption for field <ObjectID>.
Duplicate caption for field <ObjectID>.

Message Text

This field has more than one caption. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate computation for field <ObjectID>.
Duplicate computation for field <ObjectID>.

Message Text

This field has more than one computation. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate data type for field <ObjectID>.
Duplicate data type for field <ObjectID>.

Message Text

This field has more than one data type. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate date type for field <ObjectID>.
Duplicate date type for field <ObjectID>.

Message Text

This field has more than one date type. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate denormalized copy field for field <ObjectID>.
Duplicate denormalized copy field for field <ObjectID>.

Message Text

This field has more than one denormalized copy field. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate name structure for field <ObjectID>.
Duplicate name structure for field <ObjectID>.

Message Text

This field has more than one name structure. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate units of measure for field <ObjectID>.
Duplicate units of measure for field <ObjectID>.

Message Text

This field has more than one unit of measure. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in field <ObjectID>.
Error in field <ObjectID>.

Message Text

This field contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Field {fieldname} without table name in computation for field
<ObjectID>.
Field {fieldname} without table name in computation for field <ObjectID>.

Message Text

The computation for this field uses a field without a fully specified table name.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid aggregate field for field <ObjectID>.
Invalid aggregate field for field <ObjectID>.

Message Text

The aggregate field for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid aggregate type for field <ObjectID>.
Invalid aggregate type for field <ObjectID>.

Message Text

The aggregate type for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid capitalization convention for field <ObjectID>.
Invalid capitalization convention for field <ObjectID>.

Message Text

The capitalization convention for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid caption for field <ObjectID>.
Invalid caption for field <ObjectID>.

Message Text

The caption for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid combination of name structure and search type for field
<ObjectID>.
Invalid combination of name structure and search type for field <ObjectID>.

Message Text

The combination of name structure and search type specified for this field is not supported.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid computation for field <ObjectID>.
Invalid computation for field <ObjectID>.

Message Text

The computation for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid data type for field <ObjectID>.
Invalid data type for field <ObjectID>.

Message Text

The data type for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid date type for field <ObjectID>.
Invalid date type for field <ObjectID>.

Message Text

The date type of this field is incompatible with the field's data type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid denormalized copy field for field <ObjectID>.
Invalid denormalized copy field for field <ObjectID>.

Message Text

The denormalized copy field for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for field <ObjectID>.
Invalid ID for field <ObjectID>.

Message Text

The ID for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for field <ObjectID>.
Invalid name for field <ObjectID>.

Message Text

The name for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name structure for field <ObjectID>.
Invalid name structure for field <ObjectID>.

Message Text

The name structure for this field is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid units of measure for field <ObjectID>.
Invalid units of measure for field <ObjectID>.

Message Text

The units of measure for this field are not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing aggregate field for field <ObjectID>.
Missing aggregate field for field <ObjectID>.

Message Text

The aggregate field for this field is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing aggregate type for field <ObjectID>.
Missing aggregate type for field <ObjectID>.

Message Text

The aggregate type for this field is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing data type for field <ObjectID>.
Missing data type for field <ObjectID>.

Message Text

The data type for this field is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing date type for field <ObjectID>.
Missing date type for field <ObjectID>.

Message Text

Date type is not specified for this field, which represents a date entity. All fields representing a date entity must have a date type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing ID for field <ObjectID>.
Missing ID for field <ObjectID>.

Message Text

The ID for this field is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing name structure for field <ObjectID>.
Missing name structure for field <ObjectID>.

Message Text

This field is used in name entity; therefore, it must have a name structure.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case unit word for field <ObjectID>.
Mixed-case unit word for field <ObjectID>.

Message Text

Units are case-sensitive. Verify that the units on this field are capitalized in the same way that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple fields with ID <ObjectID>.
Multiple fields with ID <ObjectID>.

Message Text

The same ID is assigned to more than one field. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

No fiscal year specified, but field <ObjectID> is fiscal.
No fiscal year specified, but field <ObjectID> is fiscal.

Message Text

This field is marked as fiscal, but fiscal year is not specified in the global properties.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Undefined field {fieldname} in computation for field
<ObjectID>.
Undefined field {fieldname} in computation for field <ObjectID>.

Message Text

The computation for this field references an undefined field.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Undefined table {tablename} in computation for field
<ObjectID>.
Undefined table {tablename} in computation for field <ObjectID>.

Message Text

The computation for this field references an undefined table.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in unit word for field <ObjectID>.
Underscores used in unit word for field <ObjectID>.

Message Text

Underscores are not commonly used in English nouns. Verify that the units of measure on this field are entered in the same way
that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Global Project Error Messages
This section provides expanded text for the global project error messages. In some cases, an action is recommended to resolve the
errors.

English Query (SQL Server 2000)

Belongs in nonvalidation compile method errors.
Belongs in nonvalidation compile method errors.

Message Text

Unable to connect to the Analysis server.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Default ID entity <ObjectID> has no name phrasing with ID
name type.
Default ID entity <ObjectID> has no name phrasing with ID name type.

Message Text

The entity specified for "Assume unknown IDs refer to" does not have a name phrasing with an entity whose name type is 'Unique
ID.' Only entities with unique ID name phrasings can be used as the default ID entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Default name entity <ObjectID> has no name type and no
name phrasing.
Default name entity <ObjectID> has no name type and no name phrasing.

Message Text

The entity specified for "Assume unknown names refer to" has no name type and no name phrasing. Only entities with name
phrasings or name types can be used as the default name entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate database information.
Duplicate database information.

Message Text

Database information is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate database time-out.
Duplicate database time-out.

Message Text

Database time-out is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default date.
Duplicate default date.

Message Text

Default date is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default ID entity.
Duplicate default ID entity.

Message Text

Default ID entity is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default module name.
Duplicate default module name.

Message Text

The default module is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default name entity.
Duplicate default name entity.

Message Text

Default name entity is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default self entity.
Duplicate default self entity.

Message Text

Default self entity is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate DSN.
Duplicate DSN.

Message Text

DSN is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate fiscal year start information.
Duplicate fiscal year start information.

Message Text

Fiscal year is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate number of words to load.
Duplicate number of words to load.

Message Text

The number of words to load from the database is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate regression test date.
Duplicate regression test date.

Message Text

Regression test date is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate regression test output file.
Duplicate regression test output file.

Message Text

The regression test output file is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate regression test question file.
Duplicate regression test question file.

Message Text

The regression test question file is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate regression test save file.
Duplicate regression test save file.

Message Text

The regression test save file is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid database time-out.
Invalid database time-out.

Message Text

The database time-out is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid database type.
Invalid database type.

Message Text

The database type is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid database version.
Invalid database version.

Message Text

The database version is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default date.
Invalid default date.

Message Text

The default date is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default ID entity.
Invalid default ID entity.

Message Text

The default ID entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default module name.
Invalid default module name.

Message Text

The default module name is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default name entity.
Invalid default name entity.

Message Text

The default name entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default self entity.
Invalid default self entity.

Message Text

The default self entity is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid DSN.
Invalid DSN.

Message Text

The DSN is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid fiscal year start day.
Invalid fiscal year start day.

Message Text

The fiscal year start day is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid fiscal year start month.
Invalid fiscal year start month.

Message Text

The fiscal year start month is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid maximum number of rows set.
Invalid maximum number of rows set.

Message Text

The maximum numbers of rows to return is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid number of words to load.
Invalid number of words to load.

Message Text

The number of words to load from the database is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid regression test date.
Invalid regression test date.

Message Text

The regression test date is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid regression test output file.
Invalid regression test output file.

Message Text

The regression test output file name is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid regression test question file.
Invalid regression test question file.

Message Text

The regression test question file name is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid regression test save file.
Invalid regression test save file.

Message Text

The regression test save file name is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Loading more than 10,000 words per entity is not
recommended.
Loading more than 10,000 words per entity is not recommended.

Message Text

Loading more than 10,000 words per entity is not recommended, because the size of the compiled English Query model increases
with the number of values memorized from the database.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Maximum number of rows to display is specified more than
one time.
Maximum number of rows to display is specified more than one time.

Message Text

The maximum number of result rows is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing fiscal year day.
Missing fiscal year day.

Message Text

Fiscal year start day is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing fiscal year month.
Missing fiscal year month.

Message Text

Fiscal year start month is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

OLAP objects in non-OLAP project.
OLAP objects in non-OLAP project.

Message Text

The project contains OLAP objects, but OLAP is not enabled for the project.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Undefined {objecttype} {objectid} is referenced in {objecttype}
<ObjectID>.
Undefined {objecttype} {objectid} is referenced in {objecttype} <ObjectID>.

Message Text

This object references another object that has not been defined.

Explanation

This error occurs when there is a dangling reference. A dangling reference can result from:

Making errors while creating or editing the Semantic Modeling Format (SMF) (for example, typing adress instead of
address).

Keeping objects referenced by an object that is being deleted. When deleting an entity, delete the objects that refer to it. This
can be done in the Confirm Deletion dialog box.

Importing a model that contains a reference to an object that has been deleted.

Referencing a role in a phrasing that does not exist in the relationship.

Action

To prevent this error:

Delete all objects that refer to the object. By default, English Query deletes the objects which refer to an entity or role that is
being deleted. In the Confirm Deletion dialog box, do not clear the In addition, delete the following objects which
refer to the entity <entityname> check box.

Check all typing when editing SMF and make sure that the name of the object does not contain typographical errors.

To correct this error:

Delete the objects that reference this deleted object.

Create the missing object.

Import a model that contains the missing object.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to add an entity to a relationship

How to add tables and views from a SQL data source

How to create an entity

How to create relationships using the Create Relationships command

How to delete an entity

How to edit the entity's role in a relationship

English Query (SQL Server 2000)

Undefined {objecttype} {objectid} is referenced in global
project settings.
Undefined {objecttype} {objectid} is referenced in global project settings.

Message Text

The global project settings contain a reference to an object that has not been defined.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Unexpected error in global settings.
Unexpected error in global settings.

Message Text

The global settings for the project contain an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Unexpected error.
Unexpected error.

Message Text

An unexpected error has occurred.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join Error Messages
This section provides expanded text for the join error messages. In some cases, an action is recommended to resolve the errors.

English Query (SQL Server 2000)

Computed field {fieldid} used in join condition for join
<ObjectID>.
Computed field {fieldid} used in join condition for join <ObjectID>.

Message Text

This join contains a join condition that uses a computed field. Computed fields cannot be the source or target of a join.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Conditions for join <ObjectID> do not cover primary key fields
of destination table {tableid}.
Conditions for join <ObjectID> do not cover primary key fields of destination table {tableid}.

Message Text

The join conditions in this join do not cover all the fields in the primary key of the destination table.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Destination field {fieldname} in join <ObjectID> is not a key of
destination table {tableid}.
Destination field {fieldname} in join <ObjectID> is not a key of destination table {tableid}.

Message Text

One of the destination fields in this join is not part of the key of the destination table.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Destination field {fieldname} is used more than once in join
<ObjectID>.
Destination field {fieldname} is used more than once in join <ObjectID>.

Message Text

The same destination field is used more than one time in this join. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate join condition {condition} in join <ObjectID>.
Duplicate join condition {condition} in join <ObjectID>.

Message Text

This join contains the same join condition more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in join <ObjectID>.
Error in join <ObjectID>.

Message Text

This join contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid destination field for join <ObjectID>.
Invalid destination field for join <ObjectID>.

Message Text

The destination field for this join is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid destination table for join <ObjectID>.
Invalid destination table for join <ObjectID>.

Message Text

The destination table for this join is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for join <ObjectID>.
Invalid ID for join <ObjectID>.

Message Text

The ID for this join is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid source field for join <ObjectID>.
Invalid source field for join <ObjectID>.

Message Text

The source field for this join is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join <ObjectID> and join {joinid} have the same source fields.
Join <ObjectID> and join {joinid} have the same source fields.

Message Text

This join and another join have the same source fields. Delete one of these joins.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join <ObjectID> contains a condition with identical source and
destination fields.
Join <ObjectID> contains a condition with identical source and destination fields.

Message Text

This join contains a join condition with identical source and destination fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join <ObjectID> is backward.
Join <ObjectID> is backward.

Message Text

This join is backward. Based on the primary keys of the tables, the join should go from the current destination table to the current
source table.

Explanation

According to the primary keys of the tables, the destination and the source tables of this join are reversed. Joins must be from the
source table to the destination table or from the entity to the subentity. For example, if the join is from YID in table Y to the YID in
table X, you will have a backward join, as seen in the following diagram.

However, Table X is the source table and Table Y is the destination table; YID is the primary key in Table Y and a foreign key in
Table X. The correct direction of the join is from YID in Table X to YID in Table Y, as seen in the following diagram.

This error can occur:

When editing the Semantic Modeling Format (SMF).

If a change is made to a primary key that causes a join to be redirected after it is created.

Action

To correct this error, do one of the following:

Edit the SMF so that the join goes from the source table to its destination table.

Edit the join in the Model Editor to reverse the direction of the join.

Change the primary key to redirect the join.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to change the table options for a relationship

How to edit a join

Join/New Join Dialog Box

Specify Join Path Dialog Box

Table/New Table Dialog Box

Working with Joins

English Query (SQL Server 2000)

Join <ObjectID> is identical to join {joinid} except the source
and destination are reversed.
Join <ObjectID> is identical to join {joinid} except the source and destination are reversed.

Message Text

This join is identical to another join, except their source and destination are opposite. Remove one of the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join <ObjectID> is identical to join {joinid}.
Join <ObjectID> is identical to join {joinid}.

Message Text

This join is identical to another join. Remove one of the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join field {fieldid} and {fieldid} in join <ObjectID> do not have
the same data types.
Join field {fieldid} and {fieldid} in join <ObjectID> do not have the same data types.

Message Text

One of the source and destination join fields in this join does not have the same data type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Join field {fieldid} in join <ObjectID> has data type "Other".
Join field {fieldid} in join <ObjectID> has data type "Other".

Message Text

A join field in this join has a data type specified as Other. Joins cannot use Other fields in join conditions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing destination field for join condition in join <ObjectID>.
Missing destination field for join condition in join <ObjectID>.

Message Text

The destination field for a join condition on this join is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing destination table in join <ObjectID>.
Missing destination table in join <ObjectID>.

Message Text

The destination table for this join is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing join conditions in join <ObjectID>.
Missing join conditions in join <ObjectID>.

Message Text

The join conditions for this join are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing source field for join condition in join <ObjectID>.
Missing source field for join condition in join <ObjectID>.

Message Text

The source field for a join condition of this join is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple joins with ID <ObjectID>.
Multiple joins with ID <ObjectID>.

Message Text

The same ID is assigned to more than one join. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Level Error Messages
This section provides expanded text for the level error messages.

English Query (SQL Server 2000)

Data capitalization does not match field for level <ObjectID>.
Data capitalization does not match field for level <ObjectID>.

Message Text

The data capitalization specified for this level does not match the data capitalization specified for the field associated with it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date type does not match field for level <ObjectID>.
Date type does not match field for level <ObjectID>.

Message Text

The date type specified for this level does not match the date type specified for the field associated with it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date/time level <ObjectID> does not refer to a date or time
field.
Date/time level <ObjectID> does not refer to a date or time field.

Message Text

This level is part of a date dimension, but the corresponding field is not a date or time field. Levels in date dimensions must refer
to date/time fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate member property for level <ObjectID>.
Duplicate member property for level <ObjectID>.

Message Text

The same member property is used more than one time in this level. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in level <ObjectID>.
Error in level <ObjectID>.

Message Text

This level contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid date type for level <ObjectID>.
Invalid date type for level <ObjectID>.

Message Text

The date type of this level is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid field for level <ObjectID>.
Invalid field for level <ObjectID>.

Message Text

The field for this level is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for level <ObjectID>.
Invalid name for level <ObjectID>.

Message Text

The name for this level is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing date type for level <ObjectID>.
Missing date type for level <ObjectID>.

Message Text

This level is part of a date dimension, but has no date type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing field for level <ObjectID>.
Missing field for level <ObjectID>.

Message Text

The field for this level is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing source field for level <ObjectID>
Missing source field for level <ObjectID>.

Message Text

The source field on this level is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple levels with ID <ObjectID>.
Multiple levels with ID <ObjectID>.

Message Text

The same ID is assigned to more than one level. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name structure does not match field for level <ObjectID>.
Name structure does not match field for level <ObjectID>.

Message Text

The name structure specified for this level does not match the name structure specified for the field associated with it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Measure Error Messages
This section provides expanded text for the measure error messages.

English Query (SQL Server 2000)

Nonnumeric field is associated with measure <ObjectID>.
Nonnumeric field is associated with measure <ObjectID>.

Message Text

This measure is associated with a nonnumeric field. Measures must be associated with numeric fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Units does not match field for measure <ObjectID>.
Units does not match field for measure <ObjectID>.

Message Text

The units specified for this measure does not match the units specified for the field associated with it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Module Error Messages
This section provides expanded text for the module error messages.

English Query (SQL Server 2000)

Multiple modules with ID <ObjectID>
Multiple modules with ID <ObjectID>

Message Text

The same ID is assigned to more than one module. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Phrasing Error Messages
This section provides expanded text for the phrasing error messages. In some cases, an action is recommended to resolve the
errors.

English Query (SQL Server 2000)

Adjective entity {entityid} in phrasing <ObjectID> has no
name.
Adjective entity {entityid} in phrasing <ObjectID> has no name.

Message Text

The adjective entity in this phrasing is represented by a table but does not have a name relationship. Table entities can be
adjective entities only if they have a name relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Adjective entity for phrasing <ObjectID> is a multifield entity.
Adjective entity for phrasing <ObjectID> is a multifield entity.

Message Text

The adjective entity in this phrasing is represented by multiple fields. Field entities can be adjectives only if they are single fields.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Adjective entity for phrasing <ObjectID> is not a database
entity.
Adjective entity for phrasing <ObjectID> is not a database entity.

Message Text

The adjective entity for this phrasing is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Dimension or cube entity is object of adjective phrasing
<ObjectID>.
Dimension or cube entity is object of adjective phrasing <ObjectID>.

Message Text

This adjective phrasing has a dimension or cube entity as its object. The object of an adjective phrasing cannot be a cube or
dimension entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate adjective for phrasing <ObjectID>.
Duplicate adjective for phrasing <ObjectID>.

Message Text

The same adjective is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate high-value adjective for phrasing <ObjectID>.
Duplicate high-value adjective for phrasing <ObjectID>.

Message Text

The same high-value adjective is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate high-value threshold for phrasing <ObjectID>.
Duplicate high-value threshold for phrasing <ObjectID>.

Message Text

This phrasing has more than one high-value threshold. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate low-value adjective for phrasing <ObjectID>.
Duplicate low-value adjective for phrasing <ObjectID>.

Message Text

The same low-value adjective is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate low-value threshold for phrasing <ObjectID>.
Duplicate low-value threshold for phrasing <ObjectID>.

Message Text

This phrasing has more than one low-value threshold. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate object entity for phrasing <ObjectID>.
Duplicate object entity for phrasing <ObjectID>.

Message Text

This relationship has more than one object entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate object entity in prepositional phrase for phrasing
<ObjectID>.
Duplicate object entity in prepositional phrase for phrasing <ObjectID>.

Message Text

A prepositional phrase in this phrasing has more than one object entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate preposition {prep} in prepositional phrase for
phrasing <ObjectID>.
Duplicate preposition {prep} in prepositional phrase for phrasing <ObjectID>.

Message Text

The same preposition is used more than once in a prepositional phrase on this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate prepositional phrase "{prep} {entityid}" for phrasing
<ObjectID>.
Duplicate prepositional phrase "{prep} {entityid}" for phrasing <ObjectID>.

Message Text

The same prepositional phrase is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate role "{roleid}" for phrasing <ObjectID>.
Duplicate role "{roleid}" for phrasing <ObjectID>.

Message Text

The same role is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate subject entity for phrasing <ObjectID>.
Duplicate subject entity for phrasing <ObjectID>.

Message Text

This relationship has more than one subject entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate subset word "{subset}" for phrasing <ObjectID>.
Duplicate subset word "{subset}" for phrasing <ObjectID>.

Message Text

The same subset word is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate verb "{verb}" for phrasing <ObjectID>.
Duplicate verb "{verb}" for phrasing <ObjectID>.

Message Text

The same verb is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate word/value pair "{word} / {value}" for phrasing
<ObjectID>.
Duplicate word/value pair "{word} / {value}" for phrasing <ObjectID>.

Message Text

The same word/value pair is used more than one time in this phrasing. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate word/value table for phrasing <ObjectID>.
Duplicate word/value table for phrasing <ObjectID>.

Message Text

This phrasing has more than one word/value table. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity {objectid} has a proper name but is used as the object of
subset phrasing <ObjectID>.
Entity {objectid} has a proper name but is used as the object of subset phrasing <ObjectID>.

Message Text

Do not use entities with proper names as the object of a subset phrasing. Such entities include: field and level entities with a
proper name type, and table and cube entities that have a name phrasing with a name entity that has a proper name type.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in phrasing <ObjectID>.
Error in phrasing <ObjectID>.

Message Text

This phrasing contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

High threshold is lower than low threshold in phrasing
<ObjectID>.
High threshold is lower than low threshold in phrasing <ObjectID>.

Message Text

This phrasing has a high-value threshold that is lower than its low-value threshold.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

High-value threshold for phrasing <ObjectID> is not a number.
High-value threshold for phrasing <ObjectID> is not a number.

Message Text

The high-value threshold for this phrasing is not a number.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid adjective for phrasing <ObjectID>.
Invalid adjective for phrasing <ObjectID>.

Message Text

The adjective for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid English values for phrasing <ObjectID>.
Invalid English values for phrasing <ObjectID>.

Message Text

The English values for this phrasing are not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid high value adjective for phrasing <ObjectID>.
Invalid high value adjective for phrasing <ObjectID>.

Message Text

An adjective associated with high values for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid high value threshold for phrasing <ObjectID>.
Invalid high value threshold for phrasing <ObjectID>.

Message Text

The threshold for high values on this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for phrasing <ObjectID>.
Invalid ID for phrasing <ObjectID>.

Message Text

The ID for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid lookup value for phrasing <ObjectID>.
Invalid lookup value for phrasing <ObjectID>.

Message Text

One of the lookup values for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid lookup word for phrasing <ObjectID>.
Invalid lookup word for phrasing <ObjectID>.

Message Text

One of the lookup words for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid low value adjective for phrasing <ObjectID>.
Invalid low value adjective for phrasing <ObjectID>.

Message Text

An adjective associated with low values on this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid low value threshold for phrasing <ObjectID>.
Invalid low value threshold for phrasing <ObjectID>.

Message Text

The low value threshold for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid main preposition for phrasing <ObjectID>.
Invalid main preposition for phrasing <ObjectID>.

Message Text

The main preposition for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid object entity for phrasing <ObjectID>.
Invalid object entity for phrasing <ObjectID>.

Message Text

The object entity for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid preposition entity for phrasing <ObjectID>.
Invalid preposition entity for phrasing <ObjectID>.

Message Text

The preposition entity for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid preposition for phrasing <ObjectID>.
Invalid preposition for phrasing <ObjectID>.

Message Text

One of the prepositions for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid subject entity for phrasing <ObjectID>.
Invalid subject entity for phrasing <ObjectID>.

Message Text

The subject entity of this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid subset noun for phrasing <ObjectID>.
Invalid subset noun for phrasing <ObjectID>.

Message Text

The subset noun for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid value field of lookup table for phrasing <ObjectID>.
Invalid value field of lookup table for phrasing <ObjectID>.

Message Text

The value field for the lookup table on this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid verb for phrasing <ObjectID>.
Invalid verb for phrasing <ObjectID>.

Message Text

The verb for this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid word field of lookup table for phrasing <ObjectID>.
Invalid word field of lookup table for phrasing <ObjectID>.

Message Text

The word field for the lookup table on this phrasing is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Low-value threshold for phrasing <ObjectID> is not a number.
Low-value threshold for phrasing <ObjectID> is not a number.

Message Text

The low-value threshold for this phrasing is not a number.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Measurement entity for phrasing <ObjectID> is a table entity.
Measurement entity for phrasing <ObjectID> is a table entity.

Message Text

The measurement entity in this phrasing is represented by a table. Only field entities can be measurements.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing adjective entity for phrasing <ObjectID>.
Missing adjective entity for phrasing <ObjectID>.

Message Text

The adjective entity for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing adjective for phrasing <ObjectID>.
Missing adjective for phrasing <ObjectID>.

Message Text

The adjective for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing adjective or object entity for phrasing <ObjectID>.
Missing adjective or object entity for phrasing <ObjectID>.

Message Text

This adjective phrasing has neither an adjective nor an object entity. One or the other is required.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing code field in lookup table for phrasing <ObjectID>.
Missing code field in lookup table for phrasing <ObjectID>.

Message Text

The code field in the lookup table for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing high-value adjectives for phrasing <ObjectID>.
Missing high-value adjectives for phrasing <ObjectID>.

Message Text

The high-value adjectives for this phrasing are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing low-value adjectives for phrasing <ObjectID>.
Missing low-value adjectives for phrasing <ObjectID>.

Message Text

The low-value adjectives for this phrasing are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing measurement entity for phrasing <ObjectID>.
Missing measurement entity for phrasing <ObjectID>.

Message Text

The measurement entity is not specified for this phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing name entity for phrasing <ObjectID>.
Missing name entity for phrasing <ObjectID>.

Message Text

The name entity for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing name type for name entity in phrasing <ObjectID>.
Missing name type for name entity in phrasing <ObjectID>.

Message Text

The name type for the name entity in this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing object entity for phrasing <ObjectID>.
Missing object entity for phrasing <ObjectID>.

Message Text

The object entity for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing preposition entity for prepositional phrase in phrasing
<ObjectID>.
Missing preposition entity for prepositional phrase in phrasing <ObjectID>.

Message Text

The preposition entity for one of the prepositional phrases in this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing preposition for prepositional phrase in phrasing
<ObjectID>.
Missing preposition for prepositional phrase in phrasing <ObjectID>.

Message Text

The preposition for a prepositional phrase in this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing prepositional phrase for phrasing <ObjectID>.
Missing prepositional phrase for phrasing <ObjectID>.

Message Text

A prepositional phrase for this phrasing is not specified .

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing subject entity for phrasing <ObjectID>.
Missing subject entity for phrasing <ObjectID>.

Message Text

The subject entity for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing subset entity for phrasing <ObjectID>.
Missing subset entity for phrasing <ObjectID>.

Message Text

The subset entity for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing subset word for phrasing <ObjectID>.
Missing subset word for phrasing <ObjectID>.

Message Text

The subset word for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing value in word/value pair for phrasing <ObjectID>.
Missing value in word/value pair for phrasing <ObjectID>.

Message Text

The value for a word/value pair on this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing verb for phrasing <ObjectID>.
Missing verb for phrasing <ObjectID>.

Message Text

The verb for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing word field in lookup table for phrasing <ObjectID>.
Missing word field in lookup table for phrasing <ObjectID>.

Message Text

The word field in the lookup table for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing word in word/value pair for phrasing <ObjectID>.
Missing word in word/value pair for phrasing <ObjectID>.

Message Text

The word in a word/value pair for this phrasing is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing word/code pairs for phrasing <ObjectID>.
Missing word/code pairs for phrasing <ObjectID>.

Message Text

Word/code pairs in the lookup table for this phrasing are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case adjective used for phrasing <ObjectID>.
Mixed-case adjective used for phrasing <ObjectID>.

Message Text

Adjectives are case-sensitive. Verify that the adjectives in this phrasing are capitalized in the same way that users will type them in
questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case subset word used for phrasing <ObjectID>.
Mixed-case subset word used for phrasing <ObjectID>.

Message Text

Subset words are case-sensitive. Verify that the words on this phrasing are capitalized in the same way that users will type them
in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case verb used for phrasing <ObjectID>.
Mixed-case verb used for phrasing <ObjectID>.

Message Text

Verbs are case-sensitive. Verify that the verbs on this phrasing are capitalized in the same way that users will type them in
questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case, high-value adjective used for phrasing
<ObjectID>.
Mixed-case, high-value adjective used for phrasing <ObjectID>.

Message Text

Words associated with high values are case-sensitive. Verify that the words on this phrasing are capitalized in the same way that
users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Mixed-case, low-value adjective used for phrasing <ObjectID>.
Mixed-case, low-value adjective used for phrasing <ObjectID>.

Message Text

Words associated with low values are case-sensitive. Verify that the words on this phrasing are capitalized in the same way that
users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple phrasings with ID <ObjectID>.
Multiple phrasings with ID <ObjectID>.

Message Text

The same ID is assigned to more than one phrasing. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name entity {entityid} is table entity for phrasing <ObjectID>.
Name entity {entityid} is table entity for phrasing <ObjectID>.

Message Text

The object of this name phrasing is a table entity. Only field entities can be used as the object of a name phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name entity for phrasing <ObjectID> is not a database entity.
Name entity for phrasing <ObjectID> is not a database entity.

Message Text

The name entity for this phrasing is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Numeric adjective in phrasing <ObjectID>.
Numeric adjective in phrasing <ObjectID>.

Message Text

This phrasing has an adjective that is a number. Numbers cannot be used as adjectives.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Numeric subset word in phrasing <ObjectID>.
Numeric subset word in phrasing <ObjectID>.

Message Text

This phrasing has a subset word that is a number. Numbers cannot be used as subset words.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Object for phrasing <ObjectID> has both an entity and a role.
Object for phrasing <ObjectID> has both an entity and a role.

Message Text

The object of this phrasing refers to both an entity and a role. It can refer only to one.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Phrasing <ObjectID> has a low threshold or a high threshold
but not both.
Phrasing <ObjectID> has a low threshold or a high threshold but not both.

Message Text

This phrasing has either a low or high value threshold. If one threshold is specified, they both must be specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Phrasing <ObjectID> has a table adjective entity with a
multifield key.
Phrasing <ObjectID> has a table adjective entity with a multifield key.

Message Text

The adjective entity in this phrasing is represented by a table that has a multi-field key. Table entities can be adjectives only if they
have single-field keys.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Phrasing <ObjectID> is identical to phrasing {phrasingid}.
Phrasing <ObjectID> is identical to phrasing {phrasingid}.

Message Text

This phrasing is identical to another phrasing in a different relationship. Remove the duplicate.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Prepositional phrases in name phrasing <ObjectID>.
Prepositional phrases in name phrasing <ObjectID>.

Message Text

This name phrasing contains one or more prepositional phrases. Prepositional phrases are not allowed on name phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> uses a dative alternation.
Relationship <ObjectID> uses a dative alternation.

Message Text

This phrasing has no indirect object but has both a direct object and the preposition "to". Typically, this indicates the entity that is
the object of the preposition should be used as the indirect object instead. For example, instead of "salespeople sell products to
customers", it should be "salespeople sell customers products".

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> uses a passive voice.
Relationship <ObjectID> uses a passive voice.

Message Text

This phrasing has no subject but has the preposition "by". Typically, this indicates the entity that is the object of the preposition
should be used as the subject instead. For example, instead of "products are bought by customers", it should be "customers buy
products".

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subject entity {entityid} is field entity for phrasing <ObjectID>.
Subject entity {entityid} is field entity for phrasing <ObjectID>.

Message Text

The subject of this name phrasing is a field entity. Only table entities can be used as the subject of a name phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subject entity for phrasing <ObjectID> is not a database
entity.
Subject entity for phrasing <ObjectID> is not a database entity.

Message Text

The subject entity for this phrasing is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subject for phrasing <ObjectID> has both an entity and a role.
Subject for phrasing <ObjectID> has both an entity and a role.

Message Text

The subject of this phrasing refers to both an entity and a role. It can refer only to one.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subset entity {entityid} in phrasing <ObjectID> has no name.
Subset entity {entityid} in phrasing <ObjectID> has no name.

Message Text

The subset entity in this phrasing is represented by a table, but does not have a name relationship. Table entities can be subset
entities only if they have a name relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subset entity for phrasing <ObjectID> is a multifield entity.
Subset entity for phrasing <ObjectID> is a multifield entity.

Message Text

The subset entity in this phrasing is represented by more than one field. Only single-field entities and table entities can be subset
entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subset entity for phrasing <ObjectID> is not a database entity.
Subset entity for phrasing <ObjectID> is not a database entity.

Message Text

The subset entity in this phrasing is not represented by a database object. Only database entities can be subset entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Subset phrasing <ObjectID> has no subset word or object
entity.
Subset phrasing <ObjectID> has no subset word or object entity.

Message Text

This subset phrasing has neither a subset word nor an object entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Text value is not allowed for associated value in phrasing
<ObjectID>.
Text value is not allowed for associated value in phrasing <ObjectID>.

Message Text

This phrasing contains a word/value pair that has a text value. Because the field representing the adjective or subset entity is
numeric, the value is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Too many object entities for phrasing <ObjectID>.
Too many object entities for phrasing <ObjectID>.

Message Text

This phrasing has too many object entities. Verb phrasings can have no more than two object entities. All other phrasings can
have no more than one.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in adjective for phrasing <ObjectID>.
Underscores used in adjective for phrasing <ObjectID>.

Message Text

Underscores are not commonly used in English adjectives. Verify that the adjectives on this phrasing are entered in the same way
that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in high-value word for phrasing <ObjectID>.
Underscores used in high-value word for phrasing <ObjectID>.

Message Text

Underscores are not commonly used in English adjectives. Verify that the high-value words on this phrasing are entered in the
same way that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in low-value word for phrasing <ObjectID>.
Underscores used in low-value word for phrasing <ObjectID>.

Message Text

Underscores are not commonly used in English adjectives. Verify that the low-value words on this phrasing are entered in the
same way that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in subset word for phrasing <ObjectID>.
Underscores used in subset word for phrasing <ObjectID>.

Message Text

Underscores are not commonly used in English nouns. Verify that the subset words on this phrasing are entered in the same way
that users will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Underscores used in verb for phrasing <ObjectID>.
Underscores used in verb for phrasing <ObjectID>.

Message Text

Underscores are not commonly used in English verbs. Verify that the verb on this phrasing are entered in the same way that users
will type them in questions.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Verb "{verb}" is not in root form for phrasing <ObjectID>.
Verb "{verb}" is not in root form for phrasing <ObjectID>.

Message Text

This phrasing uses a verb that is not in its root form. Verbs must be entered in their root forms.

Explanation

For English Query to create a phrase correctly, verbs must be in their root form. English Query takes the root form and creates the
additional forms as necessary. For example, to create a relationship to answer the question "show the customers that bought
products", use the root form buy for the verb in your phrase. The phrasing would be customers buy products not customers
bought products.

Action

To prevent this error:

Always use the root form of a verb when creating a phrasing. If you are not sure of the root form, consult a dictionary.

To correct this error:

Edit the phrasing in the relationship to change the verb to its root form.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to add a relationship

How to add phrasings to a relationship

How to create relationships using the Create Relationships command

How to modify a relationship

Relationship/New Relationship Dialog Box

Verb Phrasing Dialog Box

English Query (SQL Server 2000)

Property Error Messages
This section provides expanded text for the property error messages.

English Query (SQL Server 2000)

Data capitalization does not match field for member property
<ObjectID>.
Data capitalization does not match field for member property <ObjectID>.

Message Text

The data capitalization specified for this member property does not match the data capitalization specified for the field associated
with it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in measure <ObjectID>.
Error in measure <ObjectID>.

Message Text

This measure contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in member property <ObjectID>.
Error in member property <ObjectID>.

Message Text

This member property contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid aggregate type for measure <ObjectID>.
Invalid aggregate type for measure <ObjectID>.

Message Text

The aggregate type for this measure is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid field for measure <ObjectID>.
Invalid field for measure <ObjectID>.

Message Text

The field for this measure is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid field for member property <ObjectID>.
Invalid field for member property <ObjectID>.

Message Text

The field for this member property is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for measure <ObjectID>.
Invalid name for measure <ObjectID>.

Message Text

The name for this measure is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for member property <ObjectID>.
Invalid name for member property <ObjectID>.

Message Text

The name for this member property is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing aggregate type for measure <ObjectID>.
Missing aggregate type for measure <ObjectID>.

Message Text

The aggregate type for this measure is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing field for measure <ObjectID>.
Missing field for measure <ObjectID>.

Message Text

The field for this measure is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing field for member property <ObjectID>.
Missing field for member property <ObjectID>.

Message Text

The field for this member property is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing name for measure <ObjectID>.
Missing name for measure <ObjectID>.

Message Text

The name for this measure is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing source field for member property <ObjectID>.
Missing source field for member property <ObjectID>.

Message Text

The source field on this member property is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple measures with ID <ObjectID>.
Multiple measures with ID <ObjectID>.

Message Text

The same ID is assigned to more than one measure. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple properties with ID <ObjectID>.
Multiple properties with ID <ObjectID>.

Message Text

This member property has the same name as another member property. Remove one of the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Name structure does not match field for member property
<ObjectID>.
Name structure does not match field for member property <ObjectID>

Message Text

The name structure specified for this member property does not match the name structure specified for the field associated with
it.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationships Error Messages
This section provides expanded text for relationship error messages. In some cases, an action is recommended to resolve the
errors.

English Query (SQL Server 2000)

Case mismatch for field {fieldname} in SQL condition for
relationship <ObjectID>.
Case mismatch for field {fieldname} in SQL condition for relationship <ObjectID>.

Message Text

The SQL condition for this relationship references a field for which there is no exact match in the model. There are more than one
case-insensitive matches. This makes the SQL condition ambiguous. Change the case to match the desired field exactly.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Case mismatch for table {tablename} in SQL condition for
relationship <ObjectID>.
Case mismatch for table {tablename} in SQL condition for relationship <ObjectID>.

Message Text

The SQL condition for this relationship references a table for which there is no exact match in the model. There are more than one
case-insensitive matches. This makes the SQL condition ambiguous. Change the case to match the desired table exactly.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Database entity used as date for the command relationship
<ObjectID>.
Database entity used as date for the command relationship <ObjectID>.

Message Text

The date entity for this command relationship is represented by a database object. Only nondatabase entities can be used as dates
in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Database entity used as duration for the command relationship
<ObjectID>.
Database entity used as duration for the command relationship <ObjectID>.

Message Text

The duration entity for this command relationship is represented by a database object. Only nondatabase entities can be used as
durations in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Database entity used as end date for the command relationship
<ObjectID>.
Database entity used as end date for the command relationship <ObjectID>.

Message Text

The end date entity for this command relationship is represented by a database object. Only nondatabase entities can be used as
end dates in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Database entity used as start date for the command
relationship <ObjectID>.
Database entity used as start date for the command relationship <ObjectID>.

Message Text

The start date entity for this command relationship is represented by a database object. Only nondatabase entities can be used as
start dates in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity for relationship <ObjectID> is not a database
entity.
Date entity for relationship <ObjectID> is not a database entity.

Message Text

The date entity for this relationship is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date entity for relationship <ObjectID> is not a date.
Date entity for relationship <ObjectID> is not a date.

Message Text

The date entity for this relationship is not a date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Date unsupported by phrasing in relationship {ObjectID}.
Date unsupported by phrasing in relationship {ObjectID}.

Message Text

This relationship contains a date but one of its phrasings does not support dates. Dates cannot be used with name phrasings or
subset phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate argument {entityid} + {argtype} for relationship
<ObjectID>.
Duplicate argument {entityid} + {argtype} for relationship <ObjectID>.

Message Text

The same entity is specified more than one time in the arguments of the command relationship <ObjectID>. Remove the
duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate argument ID {argid} for relationship <ObjectID>.
Duplicate argument ID {argid} for relationship <ObjectID>.

Message Text

The same argument is specified more than one time in this command relationship. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate date entity for relationship <ObjectID>.
Duplicate date entity for relationship <ObjectID>.

Message Text

Date entity for this relationship is specified more than one time. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate default date for relationship <ObjectID>.
Duplicate default date for relationship <ObjectID>.

Message Text

This relationship has more than one default date. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate duration entity for relationship <ObjectID>.
Duplicate duration entity for relationship <ObjectID>.

Message Text

This relationship has more than one duration entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate end date entity for relationship <ObjectID>.
Duplicate end date entity for relationship <ObjectID>.

Message Text

This relationship has more than one end date entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate join table for relationship <ObjectID>.
Duplicate join table for relationship <ObjectID>.

Message Text

This relationship has more than one join table. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate location entity for relationship <ObjectID>.
Duplicate location entity for relationship <ObjectID>.

Message Text

This relationship has more than one location entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate phrasing group for relationship <ObjectID>.
Duplicate phrasing group for relationship <ObjectID>.

Message Text

This relationship contains two identical phrasing groups. Remove one of the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate role for relationship <ObjectID>.
Duplicate role for relationship <ObjectID>.

Message Text

The same entity is specified more than one time in this relationship. This is valid only if this entity has a different join path each
time it is used.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate SQL condition for relationship <ObjectID>.
Duplicate SQL condition for relationship <ObjectID>.

Message Text

This relationship contains more than one SQL condition. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate start date entity for relationship <ObjectID>.
Duplicate start date entity for relationship <ObjectID>.

Message Text

This relationship has more than one start date entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duration entity for relationship <ObjectID> is not a database
entity.
Duration entity for relationship <ObjectID> is not a database entity.

Message Text

The duration entity for this relationship is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duration unsupported by phrasing in relationship {ObjectID}.
Duration unsupported by phrasing in relationship {ObjectID}.

Message Text

This relationship contains a duration, but one of its phrasings does not support durations. Durations can be used only with verb,
preposition, and trait phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

End date entity for relationship <ObjectID> is not a database
entity.
End date entity for relationship <ObjectID> is not a database entity.

Message Text

The end date entity for this relationship is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

End date entity for relationship <ObjectID> is not a date.
End date entity for relationship <ObjectID> is not a date.

Message Text

End date entity for this relationship is not a date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

End date unsupported by phrasing in relationship {ObjectID}.
End date unsupported by phrasing in relationship {ObjectID}.

Message Text

This relationship contains an end date, but one of its phrasings does not support end dates. End dates can be used only with verb,
preposition, and trait phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity {entityid} should be the date/time of relationship
<ObjectID>.
Entity {entityid} should be the date/time of relationship <ObjectID>.

Message Text

This relationship contains an entity that is known to be a date or time but the relationship does not have a date or time specified.
To enable questions about locations, the entity should be made the date/time of the relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity {entityid} should be the location of relationship
<ObjectID>.
Entity {entityid} should be the location of relationship <ObjectID>.

Message Text

This relationship contains an entity that is known to be a location, but the relationship does not have a location specified. To
enable questions about locations, the entity should be made the location of the relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in relationship <ObjectID>.
Error in relationship <ObjectID>.

Message Text

This relationship contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Field {fieldname} without table name in SQL condition for
relationship <ObjectID>.
Field {fieldname} without table name in SQL condition for relationship <ObjectID>.

Message Text

The SQL condition for this relationship uses a field without a fully specified table name.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid argument ID on command argument for relationship
<ObjectID>.
Invalid argument ID on command argument for relationship <ObjectID>.

Message Text

The argument ID for a command argument on this command relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid argument type on command argument for relationship
<ObjectID>.
Invalid argument type on command argument for relationship <ObjectID>.

Message Text

Argument type for a command argument on this command relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid command ID for relationship <ObjectID>.
Invalid command ID for relationship <ObjectID>.

Message Text

The command ID for this command relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid date entity for relationship <ObjectID>.
Invalid date entity for relationship <ObjectID>.

Message Text

The date entity for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid default date for relationship <ObjectID>.
Invalid default date for relationship <ObjectID>.

Message Text

The default date for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid duration entity for relationship <ObjectID>.
Invalid duration entity for relationship <ObjectID>.

Message Text

The duration entity for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid end date entity for relationship <ObjectID>.
Invalid end date entity for relationship <ObjectID>.

Message Text

The end date entity for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid entity on command argument for relationship
<ObjectID>.
Invalid entity on command argument for relationship <ObjectID>.

Message Text

The entity for a command argument of this command relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for relationship <ObjectID>.
Invalid ID for relationship <ObjectID>.

Message Text

The ID for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid join table for relationship <ObjectID>.
Invalid join table for relationship <ObjectID>.

Message Text

The join table for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid location entity for relationship <ObjectID>.
Invalid location entity for relationship <ObjectID>.

Message Text

The location entity for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid SQL condition for relationship <ObjectID>.
Invalid SQL condition for relationship <ObjectID>.

Message Text

The SQL condition on this relationship contains an error. Verify that the SQL condition is valid and that it uses the complete
[owner.]tablename.fieldname syntax.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid start date entity for relationship <ObjectID>.
Invalid start date entity for relationship <ObjectID>.

Message Text

The start date entity for this relationship is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Location entity for relationship <ObjectID> is not a database
entity.
Location entity for relationship <ObjectID> is not a database entity.

Message Text

The location entity for this relationship is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Location unsupported by phrasing in relationship {ObjectID}.
Location unsupported by phrasing in relationship {ObjectID}.

Message Text

This relationship contains a location, but one of its phrasings does not support locations. Locations can be used only with verb,
preposition, and trait phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing argument ID in argument for relationship <ObjectID>.
Missing argument ID in argument for relationship <ObjectID>.

Message Text

The argument ID for an argument of this command relationship is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing argument type in argument for relationship
<ObjectID>.
Missing argument type in argument for relationship <ObjectID>.

Message Text

The argument type for an argument of this command relationship is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing command name for relationship <ObjectID>.
Missing command name for relationship <ObjectID>.

Message Text

The command name for this command relationship is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing command phrasing in phrasing group for command
relationship <ObjectID>.
Missing command phrasing in phrasing group for command relationship <ObjectID>.

Message Text

This command relationship has a phrasing group that contains no command phrasings. Each phrasing group must contain exactly
one command phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing entities for relationship <ObjectID>.
Missing entities for relationship <ObjectID>.

Message Text

Entities for this relationship are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing entity in argument for relationship <ObjectID>.
Missing entity in argument for relationship <ObjectID>.

Message Text

The entity for an argument of this command relationship is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing join path to field {fieldid} in relationship <ObjectID>.
Missing join path to field {fieldid} in relationship <ObjectID>.

Message Text

This relationship has a SQL condition that references a field that cannot be reached from the join table of the relationship. This
indicates that either the SQL condition is incorrect or there are one or more joins missing from tables in the model.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing join table for relationship <ObjectID>.
Missing join table for relationship <ObjectID>.

Message Text

The join table for this relationship is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing path from join table of relationship <ObjectID> to
entity {entityid}.
Missing path from join table of relationship <ObjectID> to entity {entityid}.

Message Text

There is no join path from the join table of this relationship to one of the entities in this relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing phrasings for relationship <ObjectID>.
Missing phrasings for relationship <ObjectID>.

Message Text

The phrasings for this relationship are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Most recent data is not supported for the relationship
<ObjectID>.
Most recent data is not supported for the relationship <ObjectID>.

Message Text

This relationship is marked to show the most recent data by default. This feature can be used only on relationships where the date
entity is represented by a single field that is part of the primary key of the join table.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multifield end date entity for relationship <ObjectID>.
Multifield end date entity for relationship <ObjectID>.

Message Text

The end date entity in this relationship is represented by more than one field. Only single-field entities can be end dates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multifield start date entity for relationship <ObjectID>.
Multifield start date entity for relationship <ObjectID>.

Message Text

The start date entity is represented by more than one field in this relationship. Only single-field entities can be start dates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple command phrasings in phrasing group for
relationship <ObjectID>.
Multiple command phrasings in phrasing group for relationship <ObjectID>.

Message Text

This command relationship has a phrasing group that contains more than one command phrasing. Each phrasing group must
contain exactly one command phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple possible paths from join table of relationship
<ObjectID> to entity {entityid}.
Multiple possible paths from join table of relationship <ObjectID> to entity {entityid}.

Message Text

There is more than one possible join path from the join table of this relationship to one of the entities used in the relationship.

Explanation

English Query chooses the join path from the join table for the relationship to each entity in the relationship. If there is more than
one possible join path, English Query calculates a default path unless an explicit join path is set. For the relationship, branches sell
customers products, there is more than one path from the join table, Sales, to the Branches table. The first path (1) uses the join,
Sales.branch_id~Branches.id. The second path (2) uses the joins Sales.salesrep_id~Salesrep.id and
Salesrep.branch_id~Branches.id.

Action

To prevent this error:

Specify a join path if there is more than one join path from the join table of a relationship to one of the entities used in that
relationship.

To correct this error, set the desired join path:

1. In the Relationship/New Relationship dialog box, on the Semantics tab, in the Entities list, double-click the role (entity)
that has the ambiguous join path.

2. In the <role> Role dialog box, click Specify.

3. In the Specify Join Path dialog box, add the correct join path.

Note You must specify the complete join path from beginning to end. You may have to add multiple joins to accomplish
this.

See Also

Compile-Time Error Messages (Authoring Object Model)

How to edit the entity's role in a relationship

<Role Name>Role Dialog Box

Semantics Tab (Relationship/New Relationship Dialog Box)

Specify Join Path Dialog Box

English Query (SQL Server 2000)

Multiple quantity/amount in relationship <ObjectID>.
Multiple quantity/amount in relationship <ObjectID>.

Message Text

This relationship contains more than one entity with a quantity or amount. Only one quantity or amount can be specified in a
relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple relationships with ID <ObjectID>.
Multiple relationships with ID <ObjectID>.

Message Text

The same ID is assigned to more than one relationship. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

No relationship in OLAP cube between <ObjectID> and
{objectid}.
No relationship in OLAP cube between <ObjectID> and {objectid}.

Message Text

The OLAP database contains no relationship between these two objects. Therefore, they cannot be used together in a relationship.

Explanation

This error occurs when there are multiple OLAP cubes in a project and a relationship is created that uses entities that do not have
an underlying relationship within the same OLAP cube. The relationship must contain only entities represented by OLAP objects
in the same cube.

For example, in the FoodMart database, there is a Sales cube and a Warehouse cube. The Sales cube contains a customer
dimension and a product dimension. The Warehouse cube contains a product dimension and a warehouse dimension. Using
these two cubes, there can be a relationship between:

customer and product in the Sales cube

product and warehouse in the Warehouse cube.

There cannot be a relationship between customers and warehouses because no cube that contains both customers and
warehouses exists.

Action

To prevent the error, create entities from:

The same cube.

To correct this error:

Edit or create the necessary relationships using entities that come from the same cube.

For more information, see Introduction to Dimensions.

See Also

Additional Relationships

Analysis Services in English Query

Compile-Time Error Messages (Authoring Object Model)

How to create relationships using the Create Relationships command

How to edit the entity's role in a relationship

How to modify a relationship

Relationship/New Relationship Dialog Box

English Query (SQL Server 2000)

Nonlocation entity used as location in relationship <ObjectID>.
Nonlocation entity used as location in relationship <ObjectID>.

Message Text

The location entity for this relationship has entity type "Who" or "When". Only entities with entity type "Where" or "None" can be
used as locations.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> and relationship {relationshipid} are
identical.
Relationship <ObjectID> and relationship {relationshipid} are identical.

Message Text

This relationship is identical to another relationship except for its phrasings. Create a single relationship with multiple phrasings
instead of multiple relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> and relationship {relationshipid} have
measurement phrasings that use the same measurement.
Relationship <ObjectID> and relationship {relationshipid} have measurement phrasings that use the
same measurement.

Message Text

This relationship and another relationship have measurement phrasings that use the same measurement entity. These phrasings
must be combined into a single phrasing in a single relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> has both a when date and an end
date.
Relationship <ObjectID> has both a when date and an end date.

Message Text

This relationship contains both a when date and an end date. End date cannot be used in a relationship with a when date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> has both a when date and start date.
Relationship <ObjectID> has both a when date and start date.

Message Text

This relationship contains both a when date and a start date. Start date cannot be used in a relationship with a when date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> has two measurement phrasings that
use the same measurement.
Relationship <ObjectID> has two measurement phrasings that use the same measurement.

Message Text

This relationship has two measurement phrasings that use the same measurement entity. These phrasings must be combined into
a single phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationship <ObjectID> is identical to relationship
{relationshipid}.
Relationship <ObjectID> is identical to relationship {relationshipid}.

Message Text

This relationship is identical to another relationship. Remove one of the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Relationships <ObjectID> and {relationshipid} each cover only
part of the underlying database relationship.
Relationships <ObjectID> and {relationshipid} each cover only part of the underlying database
relationship.

Message Text

Based on the keys of the join table, this relationship covers only part of the underlying relationship represented in the database.
There is another relationship that also covers only part of this underlying relationship. These relationships probably contain
phrasings that operate as a group. If so, these relationships should be merged, and their phrasings merged into a phrasing group.

Explanation

There are two or more relationships that include only part of the underlying database relationship. If these relationships remain
independent of each other, some questions will not result in an accurate response. For example, the entities manufacturer,
product, color, year, and quantity are used to create the following relationships:

manufacturers make quantities of products in years

products have colors

The relationships are based on the following underlying table.

If these phrases are put into two separate relationships, they will be used by English Query in the following order to generate a
response to the question "How many green products did Acme make last year?":

1. The relationship products have colors will be used to find all of the products that have the color green. The results include
the products, both bikes and skateboards, from all manufacturers. This phrase determines that bikes and skateboards are
green.

2. The relationship manufacturers make quantities of products in years will be used to find all of the manufacturers named
Acme who make bikes and skateboards and the number of these products that they made last year, regardless of color. (The
color was already accounted for in the first phrase.) The second phrase does not incorporate anything about color.

The relationships are based on the:

The total quantity of products is 55. This is not the desired result because it includes red skateboards in the total.

This situation arises when the database tables are structured in a particular way and the tables are not normalized. Although this

may be by design, in this case, the color of the bikes is inherently dependent on the product and the manufacturer. The only way
for English Query to correctly respond to this question is for it to process both of these phrases simultaneously, instead of in
sequence. If both phrases are processed simultaneously, English Query will look for green products that are made by Acme.

Action

To prevent this error:

Create or group phrasings to cover the underlying relationship in the database.

To correct this error, group the two phrases in one relationship:

1. Double-click one of the relationships.

2. In the Relationship dialog box, create the second phrasing.

3. Select one phrasing, press CTRL, and then select the other phrasing.

4. Click Group.

5. Select the products have colors check box.

A red check mark appears to the left of the phrasing, indicating that the phrase is mandatory. The phrase must be part
of this relationship when the relationship is used.

6. Delete the other relationship.

In the example above, you would:

1. Create one relationship that contains both of the phrasings, products have colors and manufacturers make quantities of
products in years.

2. Make them a group.

3. Specify both phrases as mandatory.

Creating a group forces both phrases to be used simultaneously if either one of the phrases is used. Then, English Query will
search for products that are both green and made by Acme.

See Also

Compile-Time Error Messages (Authoring Object Model)

Grouped Phrasings Examples

How to add a relationship

Relationship/New Relationship Dialog Box

English Query (SQL Server 2000)

Role {roleid} is not marked to always display and does not
appear in each phrasing group in relationship <ObjectID>.
Role {roleid} is not marked to always display and does not appear in each phrasing group in relationship
<ObjectID>.

Message Text

This role does not appear in all the phrasing groups in the relationship and is not marked as Always Show. Every role that is not
used must be marked as Always Show.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Start date entity for relationship <ObjectID> is not a database
entity.
Start date entity for relationship <ObjectID> is not a database entity.

Message Text

The start date entity for this relationship is not represented by a database object.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Start date entity for relationship <ObjectID> is not a date.
Start date entity for relationship <ObjectID> is not a date.

Message Text

The start date entity for this relationship is not a date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Start date unsupported by phrasing in relationship {ObjectID}
Start date unsupported by phrasing in relationship {ObjectID}

Message Text

This relationship contains a start date, but one of its phrasings does not support start dates. Start dates can be used only with
verb, preposition, and trait phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

The entity {entityid} is used as both the {usage} and the {usage}
in the relationship <ObjectID>.
The entity {entityid} is used as both the {usage} and the {usage} in the relationship <ObjectID>.

Message Text

The same entity is used more than once as a time or location property of this relationship. Each entity can be used once as a time
or location property in a relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Too many phrasings in relationship <ObjectID>.
Too many phrasings in relationship <ObjectID>.

Message Text

This relationship contains more than 32 phrasings. A maximum of 32 phrasings is allowed in each relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Too many roles in relationship <ObjectID>.
Too many roles in relationship <ObjectID>.

Message Text

This relationship contains more than 32 roles. A maximum of 32 roles is allowed in each relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Undefined field {fieldname} in SQL condition for relationship
<ObjectID>.
Undefined field {fieldname} in SQL condition for relationship <ObjectID>.

Message Text

The SQL condition for this relationship references an undefined field.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Undefined table {tablename} in SQL condition for relationship
<ObjectID>.
Undefined table {tablename} in SQL condition for relationship <ObjectID>.

Message Text

The SQL condition for this relationship references an undefined table.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Ungrouped noncommand phrasing in command relationship
<ObjectID>.
Ungrouped noncommand phrasing in command relationship <ObjectID>.

Message Text

This command relationship contains a noncommand phrasing that is not part of a phrasing group. All noncommand phrasings
must be grouped with a command phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Unsupported quantity/amount in phrasing {phrasingid} in
relationship <ObjectID>.
Unsupported quantity/amount in phrasing {phrasingid} in relationship <ObjectID>.

Message Text

One of the phrasings in this relationship does not support quantities and amounts. However, one of the roles in the relationship
has a quantity or amount. Amounts and quantities can be used only with verb, preposition, and trait phrasings.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role Error Messages
This section provides expanded text for the role error messages.

English Query (SQL Server 2000)

Duplicate amount entity for role <ObjectID>.
Duplicate amount entity for role <ObjectID>.

Message Text

This role has more than one amount entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate join in join path for role <ObjectID>.
Duplicate join in join path for role <ObjectID>.

Message Text

The same join is used more than one time in the join path for this role. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate join path for role <ObjectID>.
Duplicate join path for role <ObjectID>.

Message Text

This role has more than one join path. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate nondatabase entity data type for role <ObjectID>.
Duplicate nondatabase entity data type for role <ObjectID>.

Message Text

This role has more than one nondatabase entity data type. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Duplicate quantity entity for role <ObjectID>.
Duplicate quantity entity for role <ObjectID>.

Message Text

This role has more than one quantity entity. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity {entityid} used as amount of itself in role <ObjectID>.
Entity {entityid} used as amount of itself in role <ObjectID>.

Message Text

This role has an amount entity that is identical to the role's entity. The amount entity must be different from the role entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Entity {entityid} used as quantity of itself in role <ObjectID>.
Entity {entityid} used as quantity of itself in role <ObjectID>.

Message Text

This role has a quantity entity that is identical to the role's entity. The quantity entity must be different than the role entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in role <ObjectID>.
Error in role <ObjectID>.

Message Text

This role contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid amount field for role <ObjectID>.
Invalid amount field for role <ObjectID>.

Message Text

The amount field for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid entity for role <ObjectID>.
Invalid entity for role <ObjectID>.

Message Text

The entity for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid ID for role <ObjectID>.
Invalid ID for role <ObjectID>.

Message Text

The ID for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid join in join path for role <ObjectID>.
Invalid join in join path for role <ObjectID>.

Message Text

A join in the join path for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid join path for role <ObjectID>.
Invalid join path for role <ObjectID>.

Message Text

The join path for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid nondatabase entity data type for role <ObjectID>.
Invalid nondatabase entity data type for role <ObjectID>.

Message Text

The nondatabase entity data type for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid quantity entity for role <ObjectID>.
Invalid quantity entity for role <ObjectID>.

Message Text

The quantity entity for this role is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing entity for role <ObjectID>.
Missing entity for role <ObjectID>.

Message Text

The entity for this role is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing join path for role <ObjectID>.
Missing join path for role <ObjectID>.

Message Text

More than one possible path exists to this role from the join table of the relationship; therefore, no default join path is available.
Add a join path to the role.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing joins in join path for role <ObjectID>.
Missing joins in join path for role <ObjectID>.

Message Text

The join path for this role is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing nondatabase entity data type for role <ObjectID>.
Missing nondatabase entity data type for role <ObjectID>.

Message Text

The nondatabase entity data type for this role is not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multifield entity {entityid} used as amount on role <ObjectID>.
Multifield entity {entityid} used as amount on role <ObjectID>.

Message Text

This role has an amount entity that is represented by more than one field. Amount entities must be single-field entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multifield entity {entityid} used as quantity on role
<ObjectID>.
Multifield entity {entityid} used as quantity on role <ObjectID>.

Message Text

This role has a quantity entity that is represented by more than one field. Quantity entities must be single-field entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple roles with ID <ObjectID>.
Multiple roles with ID <ObjectID>.

Message Text

The same ID is assigned to more than one role. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Nonmeasure entity {entityid} used as amount on role
<ObjectID>.
Nonmeasure entity {entityid} used as amount on role <ObjectID>.

Message Text

This role has an amount entity that does not have the entity type "measure". Amount entities must be measure entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Nonmeasure entity {entityid} used as quantity on role
<ObjectID>
Nonmeasure entity {entityid} used as quantity on role <ObjectID>.

Message Text

This role has a quantity entity that does not have the entity type "measure". Quantity entities must be measure entities.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> has a nondatabase entity data type in a
noncommand relationship.
Role <ObjectID> has a nondatabase entity data type in a noncommand relationship.

Message Text

This role has a nondatabase entity data type. Nondatabase entity types are valid only for roles in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is a database entity but has a nondatabase
entity data type.
Role <ObjectID> is a database entity but has a nondatabase entity data type.

Message Text

This role has a nondatabase entity data type but is not a nondatabase entity.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is mandatory, but has no name phrasing.
Role <ObjectID> is mandatory, but has no name phrasing.

Message Text

This role is mandatory, but it is a table entity and does not have a name phrasing.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is mandatory, but is not a number, name, or
date.
Role <ObjectID> is mandatory, but is not a number, name, or date.

Message Text

This role is mandatory, but the entity is not a number, name, or date.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is marked to always display in a command
relationship.
Role <ObjectID> is marked to always display in a command relationship.

Message Text

This role is marked as Always Show. Always Show is not valid in command relationships.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is not marked to always display and does not
appear in each phrasing group.
Role <ObjectID> is not marked to always display and does not appear in each phrasing group.

Message Text

This role is not marked as Always Show, and it does not appear in each phrasing group in the relationship.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Role <ObjectID> is not marked to always display and does not
appear in phrasing {phrasingid}.
Role <ObjectID> is not marked to always display and does not appear in phrasing {phrasingid}.

Message Text

This role does not appear in all phrasings in the relationship and is not marked as Always Show. Each role that does not appear in
all phrasings must be marked as Always Show.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Source/destination mismatch in join path for role <ObjectID>
Source/destination mismatch in join path for role <ObjectID>.

Message Text

The source table of a join in the join path on this role does not equal the destination table of the previous join (or join table).

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Table Error Messages
This section provides expanded text for the table error messages.

English Query (SQL Server 2000)

Duplicate field in table <ObjectID>.
Duplicate field in table <ObjectID>.

Message Text

The same field is used more than one time in this table. Remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Error in table <ObjectID>.
Error in table <ObjectID>.

Message Text

This table contains an unexpected error.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Invalid name for table <ObjectID>.
Invalid name for table <ObjectID>.

Message Text

The name for this table is not valid.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing fields for table <ObjectID>.
Missing fields for table <ObjectID>.

Message Text

The fields for this table are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Missing keys for table <ObjectID>.
Missing keys for table <ObjectID>.

Message Text

The keys for this table are not specified.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Multiple tables with ID <ObjectID>.
Multiple tables with ID <ObjectID>.

Message Text

The same ID is assigned to more than one table. Rename or remove the duplicates.

See Also

Compile-Time Error Messages (Authoring Object Model)

English Query (SQL Server 2000)

Various Error Messages
This section provides expanded text for error messages that occur in a variety of situations.

English Query (SQL Server 2000)

The ID of {objecttype} <ObjectID> is too long.
The ID of {objecttype} <ObjectID> is too long.

Message Text

This object has an ID that exceeds the maximum ID length.

See Also

Compile-Time Error Messages (Authoring Object Model)

Meta Data Services (SQL Server 2000)

Meta Data Services Overview
Microsoft® SQL Server™ 2000 Meta Data Services is an object-oriented repository technology that can be integrated with
enterprise information systems or with applications that process meta data.

A number of Microsoft technologies use Meta Data Services as a native store for object definitions or as a platform for deploying
meta data. One of the ways in which SQL Server 2000 uses Meta Data Services is to store versioned Data Transformation Services
(DTS) packages. In Microsoft Visual Studio®, Meta Data Services supports the exchange of model data with other development
tools.

You can use Meta Data Services for your own purposes: as a component of an integrated information system, as a native store for
custom applications that process meta data, or as a storage and management service for sharing reusable models. You can also
extend Meta Data Services to provide support for new tools for resale or customize it to satisfy internal tool requirements.

Meta Data Services documentation contains the following sections.

Section Description
Meta Data Services Fundamentals Describes fundamental concepts and strategies

for using Meta Data Services.
Meta Data Services Architecture Explains the components of Meta Data Services

and how they relate to each other.
OIM in Meta Data Services Describes the Open Information Model (OIM)

and how it is used in Meta Data Services.
Using Meta Data Browser Introduces Meta Data Browser and explains how

to use it.
Programming Meta Data Services
Applications

Provides information about programming
against meta data in a repository.

Repository API Reference Describes the classes, interfaces, and objects that
you can use to program the repository engine
and information models.

XML Encoding Reference Describes the classes, interfaces, and objects that
you can use to implement Extensible Markup
Language (XML) encoding in your tool or
application.

See Also

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Meta Data Services Fundamentals
Microsoft® SQL Server™ 2000 Meta Data Services provides a way to store and manage meta data about information systems
and applications. This technology serves as a hub for data and component definitions, development and deployment models,
reusable software components, and data warehousing descriptions.

Product components consist of the repository engine, tools, APIs, standard information models, a browser, and a Software
Development Kit (SDK). For more information about product components, see Meta Data Services Architecture.

Integrating a meta data management service into a product, a development environment, or an information system requires
understanding what meta data is and how it is used. The topics in this section describe fundamental concepts and usage
strategies that identify ways in which this meta data management technology is applied.

Topic Description
Meta Data Fundamentals Defines and explains the characteristics of meta

data.
Information Model Fundamentals Provides basic information about information

models.
Meta Data Management Explains why meta data management is

important and how repository technology
supports management tasks.

Using Meta Data Services Describes ways to use Meta Data Services based
on user roles and objectives.

Designing Meta Data Types Using
Information Models

Explains the role of Meta Data Services in the
design process.

Developing Applications Using
Meta Data

Explains the role of Meta Data Services in the
development process.

Processing Meta Data at Run Time Explains the role of Meta Data Services during
run time.

See Also

OIM in Meta Data Services

Repository API

Repository Engine

Repository Object Architecture

Using Meta Data Browser

Meta Data Services (SQL Server 2000)

Meta Data Fundamentals
Microsoft® SQL Server™ 2000 Meta Data Services is a set of services that allows you to manage meta data. Using Microsoft Meta
Data Services requires understanding meta data characteristics. If you are new to the concept of meta data, this overview will help
you learn about the type of data that Meta Data Services manages.

Meta data describes the structure and meaning of data, as well as the structure and meaning of applications and processes. It is
important to remember that meta data is abstract, has a context, and can be used for multiple purposes in a development
environment.

Meta Data Is Abstract

The simple act of describing real-world phenomena generates abstract information that qualifies as meta data. For example,
describing natural phenomena such as rain, wind, and sunshine requires abstractions like the concept of weather. Weather can be
further abstracted by defining concepts such as temperature, precipitation, and humidity.

In data design, real-world phenomena are also described in abstract terms. People, places, things, and numbers are grouped or
designated as employee, customer, or product data.

In software design, the application and database structures that represent or store data can be abstracted into meta data
classification schemes that make sense to developers and designers. A table or form is derived from an object, which, in turn, can
be derived from a class.

There are multiple levels of abstraction in meta data. You can describe a data instance, then describe that description, and
continue to describe subsequent descriptions until you reach some practical limit. Typically, meta data descriptions used in
software development extend to two or three levels of abstraction. In real terms, a data instance of "loan table" can be described
as a database table name. A database table can be described as a database table object. Finally, a database table object can be
described by an abstract class that formalizes the fixed set of characteristics to which all derived objects must conform.

Meta Data Has Context

The distinction between data and meta data is often called the type/instance distinction. Model designers articulate types (such as
classes or relationships) and software developers articulate instances (such as a Table class or a table has columns relationship).

The distinction between instance and type is context-sensitive. What is meta data in one scenario becomes data in another
scenario. For example, in a typical relational DBMS, the system catalog describes the tables and columns that contain your data.
You can think of the data in the system catalog as meta data because it describes data definitions. However, with the right
software tool, you can manipulate it as you would manipulate any other data. Examples of manipulating meta data include
viewing data lineage or table versioning information, or identifying all tables that express financial data by searching for columns
that have a currency-based data type. In this scenario, standard meta data like the system catalog becomes data that you can
manipulate.

Meta Data Has Multiple Purposes

You can work with meta data type and instance information just as you would with any kind of application or data design
elements. Expressing design information as meta data, especially standard meta data, opens up new possibilities for reuse,
sharing, and multiple tool support.

For example, defining data objects as meta data enables you to see how they are constructed and versioned. Versioning support
provides a way to view, branch, or retrieve any historical version of a particular DTS package or data warehousing definition.
When you develop code based on meta data, you can define a structure once and then reuse it to create multiple instances that
can be versioned for specific tools and applications. You can also create new relationships among existing meta data types to
support a new application design.

See Also

Information Model Fundamentals

Meta Data Management

OIM in Meta Data Services

Meta Data Services (SQL Server 2000)

Information Model Fundamentals
An information model is a set of meta data types that describe a tool, application, data structure, or information system. You can
model a business process, for example, to describe the progression of an order as it moves from order entry to final invoicing. If
you model a database application, your information model describes the tables and columns that are supported by the
application. If your goal is to define an application for booksellers, your information model will include elements that describe
books, authors, and publishers. Books, authors, and publishers are the kinds of data that a bookseller application would need to
manipulate.

Notice that these examples depict types of data rather than instances of data. The first example describes an order process, not the
specific orders placed by a customer. Similarly, an information model for a database application describes tables, keys,
constraints, and stored procedures, but not the actual data that these elements store and manipulate. In the same way, the
information model for the bookseller application describes the concept of a book, but not data about individual books. As you can
see, information models articulate things that are always two steps removed from end user instance data.

Information Model Building Blocks

Information models are described by classes, relationships, and properties.

A class is a template that defines the characteristics of objects. A class represents entities in an information model. In previous
examples, an order, a table, a key, a constraint, and a stored procedure represent different classes.

A relationship type defines a template to which stored relationships must conform. For example, you can define the type of
relationship between a table and a column, a column and a data type, or a schema and a table. A relationship type defines a set of
criteria that describe how two objects relate.

A property is a template to which stored property values must conform. For example, when you store an invoice total, you must
store a currency value.

Standard Information Models

Microsoft® SQL Server™ 2000 Meta Data Services distributes an implementation of the Open Information Model (OIM) that
provides standard meta data types that tools can use. The OIM is a generic set of information models that describe object
modeling, database modeling, and component reuse.

You can extend the OIM by adding custom elements. For example, if you are creating an application that requires elements that
are not included in the OIM, you can add those elements to complete your design. Although the OIM is not required, deploying an
OIM-based strategy provides integration possibilities that are not otherwise achievable.

Importance of Information Models

In SQL Server 2000 and in other Microsoft products that integrate with Meta Data Services, OIM-based models are predefined,
installed, and operational. No action is required on your part if all you want to do is use these services. However, if you want to
build your own tools and applications that work with meta data types, or if you want to create or extend an information model,
you will need to know all about information models.

Information models are the key to integrating Meta Data Services with other tools and technologies. For more information about
how information models fit into Meta Data Services architecture, see Information Models.

See Also

Using Meta Data Services

Meta Data Fundamentals

Meta Data Management

Meta Data Services (SQL Server 2000)

Meta Data Management
Tool developers can make use of Microsoft® SQL Server™ 2000 Meta Data Services by adding meta data management support
in products they provide. Meta Data Services provides a platform for building meta data management capability into dedicated
tools or into add-on features of existing tools.

Shared meta data is a way to deploy data and application structures across heterogeneous platforms and development
environments. It provides common definition so that tools and applications can interpret the same meta data definition and
transform it into application-specific structures. Meta data is an integration point because it is abstract, containing essential details
that remain constant regardless of the implementation strategy. This flexibility makes it ideally suited for design purposes
because it allows you to separate design from implementation. When you work with predefined meta data, you can implement a
specific design using the development tool that best serves your needs.

As you incorporate meta data into your information systems, you need tools that can keep track of the meta data you create, how
it is used, and how it can be reused in subsequent projects.

Meta Data Services helps you manage meta data by providing a platform that enables you to:

Store meta data constructs.

Version meta data objects and relationships so that you can work with current and historical editions with equal ease.

Allocate workspaces to isolate modifications to a specific set of objects.

Import and export meta data structures in Extensible Markup Language (XML) format to work with your meta data in a
variety of environments.

See Also

Using Meta Data Services

Meta Data Fundamentals

Meta Data Services (SQL Server 2000)

Using Meta Data Services
Microsoft® SQL Server™ 2000 Meta Data Services is a technology that you use with other tools. The tools that you use vary
depending on whether you are designing meta data, programming with meta data, or accessing meta data at run time.

The following diagram shows the ways you can interact with Meta Data Services. It shows design time, development time, and run
time phases. In practice, the distinction between these phases is not so precise. However, making these distinctions can help you
understand the various ways you can work with Meta Data Services.

During design, the focus is on model creation. You can use modeling tools and the Meta Data Services Software Development Kit
(SDK) to create meta data to store in a repository database.

Development begins after you have model information in the database. You can then use the API to program against it, or you
can use XML encoding to exchange meta data with other repositories.

At run time, you can use browser tools that work directly with repository contents. At every level, you can create custom solutions
that are based on Meta Data Services.

See Also

Designing Meta Data Types Using Information Models

Developing Applications Using Meta Data

Meta Data Fundamentals

Meta Data Management

Meta Data Services Architecture

Processing Meta Data at Run Time

Meta Data Services (SQL Server 2000)

Designing Meta Data Types Using Information Models
Deploying Microsoft® SQL Server™ 2000 Meta Data Services technology begins with an information model. Meta Data Services
is intended to be used with information models that provide type information about meta data. The repository engine, repository
API, add-on tools, and Software Development Kit (SDK) work with information models. The meta data types that are defined in an
information model provide the design data that interacts with development tools, applications, and browsers. All Microsoft
products that integrate with Meta Data Services technology base integration on some type of information model.

If you want to build an application with Meta Data Services, the information models that you use should completely describe the
data, tool, or application structure that you will code later. For example, if you want to build an inventory control application, the
information model that you need should completely describe the inventory control application.

If you are using the Open Information Model (OIM), your design elements are predefined. You can also use a subset of OIM
elements and then supplement the model with the additional elements you require. OIM can be extended to support tool-specific
meta data types or any other meta data types that your design requires.

Although the OIM provides significant advantages in terms of tool and programming support, you are not required to use it. You
can create custom information models in Unified Modeling Language (UML) that are completely unrelated to the OIM.

Custom or OIM-extended information models that you create must conform to the abstract classes provided through the
repository API. To build custom information models or extend an OIM model, you should use the Meta Data Services SDK. It
includes a model compiler that validates your model against the repository API.

Using an information model does not eliminate the need for coding. Rather, it changes the role that coding plays. In a model-
driven development environment, code provides the implementation strategy. For more information about programming against
information models, see Developing Applications Using Meta Data.

See Also

Using Meta Data Services

Information Model Fundamentals

Meta Data Services SDK

OIM in Meta Data Services

Processing Meta Data at Run Time

Meta Data Services (SQL Server 2000)

Developing Applications Using Meta Data
After an information model is installed in a repository database, you can program against it using the repository API.

Before you begin programming, it is helpful to understand how the information model is constructed. The information model
completely describes at least a portion (if not all) of the code that you must provide. If it contains customer and order objects,
your code should instantiate customer and order object instances.

Model-driven development does not place boundaries on what your application can do. As always, application code can support
whatever structures and behaviors are required of it, regardless of whether they are described by a model. To be especially useful,
however, your information model must contain the most complete set of meta data types that is possible. The key point to
understand is that the information model provides the minimum design that you must implement in your code.

If you are using the Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK), you can speed up your
development effort by incorporating samples and using the tools it provides to generate program files from your information
model.

Development Scenarios

For tool vendors, Meta Data Services provides a basis for integrating tools and managing tool meta data. Meta Data Services can
act as an intermediate store, converting the output from one tool into the input for another tool. It also provides a way to create
variants of a specific application, so that different workgroups can simultaneously pursue new application development or
maintain an existing application. Meta Data Services includes functions that allow you to track this activity and then synchronize
or merge the versions later.

Using meta data improves the way you develop applications. When you use meta data, you separate design from implementation.
You can create a design once and then implement that design using a variety of tools. When you use meta data types, you can
redirect a specific application design to different operating systems, database, networks, and transaction processors by using
repository data to drive the implementation tools.

See Also

Designing Meta Data Types Using Information Models

Using Meta Data Services

Information Model Fundamentals

Meta Data Management

Meta Data Services Architecture

Processing Meta Data at Run Time

Meta Data Services (SQL Server 2000)

Processing Meta Data at Run Time
To support interoperability, application designers and vendors rely on processed meta data in their applications. Although it is not
a common or obvious implementation of Microsoft® SQL Server™ 2000 Meta Data Services, repository technology can be
deployed in run-time scenarios.

SQL Server 2000 can retrieve and process meta data constructs at run time to produce cleansed data for data warehousing,
queries, or Data Transformation Services (DTS) packages.

For data warehousing professionals, Meta Data Services enables tool integration and single-sourcing of data warehousing
definitions used to produce cleansed data.

Meta Data Browser is another example of a tool that processes meta data at run time. The browser enables you to view existing
meta data and how it is defined. For application developers, the browser provides a way to scan repository contents for objects to
decide which one to use for a particular purpose.

You can create custom browsers or analysis tools for studying meta data content stored in a repository database, or create full-
featured applications that manage the meta data types used by your organization.

These examples represent just some of the uses of processed meta data. You can create similar tools or new ones that use meta
data in innovative ways.

See Also

Designing Meta Data Types Using Information Models

Developing Applications Using Meta Data

Using Meta Data Services

Meta Data Services Architecture

Using Meta Data Browser

Meta Data Services (SQL Server 2000)

What's New in Meta Data Services
Microsoft® SQL Server™ 2000 Meta Data Services extends and renames the former repository component known as Microsoft
Repository. Meta Data Services extends repository technology by introducing a new browser for viewing data in a repository
database, new Extensible Markup Language (XML) interchange support, and new repository engine features.

The What's New topics contain brief overviews of the new Meta Data Services features with links to the conceptual topics that
discuss each feature in more detail and provide further links into the documentation.

Topic Description
Meta Data Browser Enhancement New in this release, Meta Data Browser is a tool

that you can use to browse a repository
database.

XML Encoding Enhancements New in this release, XML Encoding supports a
new implementation of meta data interchange in
Meta Data Coalition (MDC)
Open Information Model (OIM) XML.

Repository Engine Programming
Enhancements

Programming enhancements detail new and
better ways for programming against an
installed information model.

Repository Engine Modeling
Enhancements

Modeling enhancements support new definitions
that you can include in an information model.

See Also

Meta Data Services Architecture

Meta Data Services Overview

Meta Data Services SDK

Upgrading from Earlier Versions

Meta Data Services (SQL Server 2000)

Meta Data Browser Enhancement
Meta Data Browser is a new tool that you can use to browse the contents of a repository database. This tool is introduced in
Microsoft® SQL Server™ 2000 Meta Data Services. You can run Meta Data Browser when you select Meta Data Services. Meta
Data Services is available for each copy of SQL Server you install.

For more information, see Using Meta Data Browser.

See Also

Meta Data Services Overview

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

XML Encoding Enhancements
Microsoft® SQL Server™ 2000 Meta Data Services now uses Extensible Markup Language (XML) encoding in native mode. You
can import, export, and publish repository meta data in a format that more closely matches your information model.

XML encoding supercedes the XML Interchange Format (XIF) that was part of previous versions of the software. For more
information, see XML in Meta Data Services and Using XML Encoding.

New COM Interfaces

XML IExport Interface Overview

XML IImport Interface Overview

See Also

Meta Data Services Overview

Upgrading an Information Model

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Repository Engine Programming Enhancements
Repository engine version 3.0 is backward compatible with version 2.0 functionality and interfaces. You can use version 3.0 with
no change to the databases. In this case, only the version 2.0 features will work. You can upgrade the database version 2.0 to the
database version 3.0 format by passing the REPOS_CONN_UPGRADE flag when you open the repository database. Another way
to upgrade a repository database is through Meta Data Browser, during repository database registration. Upgrading allows you to
use all the features of version 3.0. After you upgrade, however, you cannot open the upgraded database using a version 2.0
engine.

Microsoft® SQL Server™ 2000 Meta Data Services introduces the following new repository engine features in version 3.0. These
features extend your ability to program against an information model that resides in a repository database.

View Generation

View generation provides a way to automatically generate relational views based on classes, interfaces, and relationships in an
information model. You can use the relational views that you define to simplify repository database queries. To generate views,
four new interfaces have been exposed to the repository engine. For more information, see Generating Views.

New COM Interfaces

IViewClassDef Interface

IViewInterfaceDef Interface

IViewPropertyDef Interface

IViewRelationshipDef Interface

Performance Hints

New performance hints described in this documentation can be used to optimize engine performance. In addition to the existing
list of optimization techniques, you can adjust cache aging to vary aging for different row types, enable atomicity of operations,
and preload object collections for each repository object. The new performance enhancements can be implemented through
IReposOptions. For adjustable cache aging, set one or more of the AGEOUT options. For atomicity of operations, set
OPT_ATOMICMODE. For preloading object collections, set OPT_EXPORT_MODE or OPT_PRELOAD_COL_MODE to specify the
maximum number of objects in each collection.

New COM Interfaces

IReposOptions Interface

Property Extensions for BLOBs and Large Text Fields

Property extensions have been exposed to the repository engine to handle large properties or binary large objects (BLOBs) and
give access to the meta data about the object. For more information, see Programming BLOBs and Large Text Fields.

New COM Interfaces

IReposProperty2 Interface

IReposPropertyLarge Interface

IRepositoryObject2 Interface

Collection Filters

Collection filters now support SQL selection criteria through the repository API. In this version of the repository engine, you can
specify selection criteria for any target object at run time to precisely select objects of interest. To set criteria, use the
GetCollection method of the IReposQuery interface.

New COM Interfaces

IReposQuery Interface

Integration with MS DTC

The repository engine is integrated with Microsoft Distributed Transaction Coordinator (MS DTC), so that an application that is
using the repository engine can execute a transaction that spans multiple database systems. For more information, see Integration
with Distributed Transaction Coordinator.

New COM Interfaces

IRepositoryTransaction2 Interface

Version Propagation

Version propagation behavior has been extended to relationships through two new flags. You can set
COLLECTION_NEWDESTVERSIONADD to specify that an origin object always links to the latest version of a destination object.
This eliminates manual versioning of an origin object in response to a new versioned destination object. The second new flag,
COLLECTION_NEWDESTVERSIONPROPAGATE, has the opposite effect. It can be set to expand propagation behavior deeper into a
chain of relationships. In cases where an object is both an origin and a destination, setting this flag creates a reverse-cascade
versioning effect. A new destination object version causes the creation of a new origin object version, repeating this behavior until
the engine reaches an unfrozen object. Setting this flag automates a task that developers previously had to handle in application
code. For more information, see Propagating Versions and CollectionDefFlags Enumeration.

See Also

Meta Data Services Overview

Repository Engine Modeling Enhancements

Upgrading the Repository Engine

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Repository Engine Modeling Enhancements
Microsoft® SQL Server™ 2000 Meta Data Services introduces the following new repository engine features in version 3.0 of the
engine. These features extend your ability to create an information model that can take advantage of new features added to this
version of the repository engine.

Scripting Support

Scripting support provides the ability to validate properties and implement methods through Microsoft ActiveX® scripts. Model
creators can assign scripts to methods that are defined in an information model. With scripting support, you no longer need to
use aggregation to validate properties and implement methods. For more information, see Defining Script Objects.

New COM Interfaces

IClassDef2 Interface

IInterfaceMember2 Interface

IInterfaceDef2 Interface

IScriptDef Interface

Interface Implication

Interface implication enables a client to define an implication between two interfaces in an information model. Using
IInterfaceDef2, you can simulate some of the functionality of multiple inheritance, which is not allowed in COM. For more
information, see Interface Implication.

New COM Interfaces

IInterfaceDef2 Interface

Member Delegation

Member delegation extends the engine to support the delegation of derived members on one interface to base members on
another interface. This delegation can be used to support relationship inheritance. Two interfaces support this new mapping
capability: IInterfaceMember2 and IInterfaceDef2. For more information, see Member Delegation.

New COM Interfaces

IInterfaceMember2 Interface

IInterfaceDef2 Interface

Sharing Model Information

Model dependency allows model developers to define dependencies between information models to support the creation of
more modular, integrated models. To support model dependency, use the new DependsOn collection of IReposTypeLib2. For
more information, see Define Dependencies Between Type Libraries.

New COM Interfaces

IReposTypeLib2 Interface

Naming Semantics for Objects

Object naming semantics have been extended to support more consistent naming. In this version of repository engine, you can
set the COLLECTION_OBJECTNAMING flag of CollectionDefFlag to specify an object name automatically when creating names
for subsequent collections and relationships. For more information, see CollectionDefFlags Enumeration.

Parameter Support

Parameters can now be defined in models. Version 3.0 supports method parameter definitions so that model creation can include
complete object descriptions. You can now use the Meta Data Services Software Development Kit (SDK) to generate fully
descriptive Interface Definition Language (IDL) files from an information model. For more information, see Defining a Parameter.

New COM Interfaces

IMethodDef Interface

IParameterDef Interface

Enumeration Definition

Repository enumeration definition allows you to specify a property as an enumeration that has a fixed set of constant strings or
integer values that correspond to real-world concepts. To use this feature, specify an EnumerationDef object and associated
EnumerationValue objects and associate these with PropertyDef objects. For more information, see Repository Enumeration
Definition.

New COM Interfaces

IEnumerationDef Interface

IEnumerationValueDef Interface

IPropertyDef2 Interface

Type Information Aliasing

Type information aliasing allows classes, interfaces, and relationships to be referred to by a second name (a synonym). You can
implement type information aliasing through new interfaces.

New COM Interfaces

IReposTypeInfo Interface

IReposTypeInfo2 Interface

IInterfaceMember2 Interface

Version Labeling

Version labeling allows users to set or retrieve the version comments properties. Use IVersionAdminInfo2 to implement version
labeling.

New COM Interfaces

IVersionAdminInfo2 Interface

Virtual Members

Virtual member support enables you to define nonpersistent members by setting the VIRTUAL_MEMBER flag on the
InterfaceMemberFlags property. If this flag is set and the member is a property, the engine does not allocate a column for it in
the interface's table. For more information, see Virtual Members and IInterfaceMember Flags Property.

See Also

Meta Data Services Overview

Repository Engine Programming Enhancements

Upgrading the Repository Engine

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Meta Data Services Architecture
Microsoft® SQL Server™ 2000 Meta Data Services architecture is based on a set of integrated components. Key components are
summarized in the following list and presented in a subsequent diagram.

Component Summary

Architecture components are described in the following list. You can find out more about each component by reading specific
topics.

Topic Description
Tools and Applications Describes how tools and applications relate to the

Meta Data Services architecture.

Meta Data Browser is a tool provided with Meta Data
Services. For more information, see Using Meta Data
Browser.

Open Standards: OIM, COM,
XML

Describes open standards that Meta Data Services
supports, including Component Object Model (COM)-
based interfaces, Extensible Markup Language (XML)
encoding, and Open Information Model (OIM).

OIM supports standard meta data. XML encoding
supports import and exporting of OIM meta data. For
more information, see OIM in Meta Data Services and
XML in Meta Data Services.

Information Models Describes how Meta Data Services supports standard
and user-defined meta data through the OIM and
other information models.

Model designers and programmers can use the
Software Development Kit (SDK) to create meta data-
based applications and to build or extend information
models that are the basis of shared meta data. For
more information, see Meta Data Services SDK.

Repository Engine Discusses the repository engine, which stores,
consolidates, and retrieves meta data in repository
databases.

The repository engine is exposed as an object model
that you can access using the repository API.

Repository API Discusses the API, which exposes repository engine
functions and information model definitions through
COM interfaces.

Repository Databases Discusses the database storage of meta data.

Architecture Diagram

In Meta Data Services architecture, tools and applications connect to the core engine and storage components through open
standards. Information models define type information that determines the structure and behavior of meta data that is exposed
by tools and applications at the top layer.

See Also

Meta Data Services Fundamentals

OIM in Meta Data Services

Specifications and Limits

Using Meta Data Services

XML in Meta Data Services

Meta Data Services (SQL Server 2000)

Tools and Applications
Microsoft® SQL Server™ 2000 Meta Data Services is a technology designed to be used by tools and applications. A tool is a
software program intended to help application developers design, implement, deploy, and maintain applications. An application is
a program designed to assist in the performance of a specific task, such as word processing, accounting, or inventory
management.

In Meta Data Services architecture, tools and applications are programs that you build or provide. In the architecture, tools and
applications exist outside of the core engine and storage components, connecting to these core components through open
standards.

Tools and applications range from modeling software that you use to build information models at design time to data
warehousing or application development tools that use or transform meta data at run time. The type of tools and applications that
can be used with Meta Data Services is open-ended.

The following list summarizes some of the ways in which Microsoft, independent software vendors (ISVs), and software
developers have integrated Meta Data Services with tools and product offerings. This list shows a few examples of how the
Microsoft repository technology is being applied.

SQL Server 2000, SQL Server 2000 Analysis Services, English Query, and Microsoft Visual Studio® use Meta Data Services
to store meta data, to interchange meta data with other tools, and to add versioning capability to tools that support meta
data creation.

ISV providers use Meta Data Services in commercial product offerings to store value-added, predefined information models
that can be used by ISV customers.

Software developers have incorporated Meta Data Services into application development environments to deploy
application designs across a variety of development tools.

For more information about how the technology is deployed by third-party vendors, see the SQL Server page at the Microsoft
Web site.

See Also

Developing Applications Using Meta Data

Meta Data Services Architecture

Open Standards: OIM, COM, XML

Using Meta Data Browser

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Meta Data Services (SQL Server 2000)

Open Standards: OIM, COM, XML
Open standards are publicly available specifications that describe the characteristics of a technology. The objective of open
standards is to promote interoperability. For integration platforms like Microsoft® SQL Server™ 2000 Meta Data Services,
interoperability is essential. For this reason, you find open interfaces and specifications used wherever possible in Meta Data
Services architecture.

Meta Data Services supports three open standards: the Meta Data Coalition (MDC) Open Information Model (OIM), Component
Object Model (COM) interfaces, and Extensible Markup Language (XML) encoding. At each phase of an application life cycle, there
is an open standard that you can use to lock in integration.

OIM for Design-Time Integration

OIM is a standard information model that can be shared, reused, and extended. It is published by the MDC and is widely
supported in the tool vendor market. The wide support of OIM makes it possible to use the same information model design in a
variety of implementation tools.

In Meta Data Services, you can use OIM as a framework on which to build type information. OIM is not required by the repository
engine or the API. However, when you use OIM, you can take advantage of resources and features in the Meta Data Services
Software Development Kit (SDK) that greatly simplify your development effort. Furthermore, you can use information models in
any OIM-compliant tool.

COM Interfaces for Program-Level Integration

COM interfaces are binary specifications for building, using, and evolving component software. COM is supported in
programming languages such as Microsoft Visual Basic®, Microsoft Visual C++®, and Microsoft Visual J++®. COM architecture
and supporting infrastructure are developed and maintained by Microsoft.

When programming Meta Data Services, you can use COM interfaces defined in the repository API to access both the repository
engine and your information model from your application code. Because the repository engine and information models are
exposed as COM objects, the only thing that varies from one programming language to another is the COM-implementation
strategy of your development platform.

XML for Run-Time and Storage-Level Integration

XML is a World Wide Web Consortium (W3C) standard for the representation of information as structured documents. XML is
used increasingly for data transport between heterogeneous systems.

The repository engine supports XML encoding to provide import and export of stored meta data in XML format. XML encoding
enables the exchange of meta data between different OIM-compliant repositories.

See Also

Meta Data Services Architecture

OIM in Meta Data Services

Repository API

Using XML Encoding

XML in Meta Data Services

Meta Data Services (SQL Server 2000)

Information Models
Information models define meta data types that are stored in a repository database and used by tools and applications.
Information models used with Microsoft® SQL Server™ 2000 Meta Data Services must be described using Unified Modeling
Language (UML).

Meta Data Services distributes a set of standard information models called the Open Information Model (OIM). SQL Server 2000
preinstalls into the msdb database the standard OIM subject areas that describe Data Transformation Services (DTS) packages,
data warehousing definitions, and online analytical processing (OLAP) cubes. These information models require no modification
to perform the functions for which they are intended.

You can use these same standard models as a framework for building new applications. You can also create new models to work
with using the Meta Data Services Software Development Kit (SDK). As long as your information models are defined in UML, you
can use them in Meta Data Services.

Although you can create information models programmatically, most information models are created in modeling tools like
Rational Rose. Custom information models must conform to the repository API. The repository API includes abstract classes that
formally describe the elements you can include in a model. If you are creating a custom model, you may want to review the
repository API for more information about the type information objects that the repository engine supports.

After you define and test an information model, you can install it in a repository database. Model installation creates the storage
structure for your meta data. Tools and applications that use the model can populate the storage with instance data about the
model definitions.

At run time, the repository engine reads the meta data and instantiates Component Object Model (COM) objects in a tool or
application that correspond to the objects, relationships, and members of your information model. The COM interfaces that you
use are derived from an information model installed in a repository database. In this way, the information model is a blueprint for
the COM objects that the repository engine exposes.

You can also use Extensible Markup Language (XML) to import and export meta data between platforms, tools, and applications.
For more information, see Using XML Encoding.

See Also

Creating and Extending Type Information

Designing Meta Data Types Using Information Models

Information Model Fundamentals

Meta Data Services SDK

OIM in Meta Data Services

Meta Data Services (SQL Server 2000)

Repository Engine
The repository engine is a service that provides basic functions for storing and retrieving objects and maintaining the
relationships among them.

The engine performs these functions within the context of an information model. In this way, it is a model-driven interpreter. The
engine processes user-defined model information to determine how to store and support objects, relationships, and actions.
When you use the repository engine to manipulate instances of information models, the engine does so only to the extent that
model structure allows. For example, the engine will establish an object relationship only if the underlying model supports it.

To use the repository engine, you program against the repository API. The repository engine responds to directives issued by
application code through Component Object Model (COM) and COM Automation interfaces.

The repository engine handles all interaction with the storage layer for you. Although you control when and how transactions
occur, the engine generates the SQL commands that execute specific actions.

Engine architecture

The following diagram illustrates engine architecture. The engine executes as a class library. It buffers instance data from
repository databases in a cache. Objects that you manipulate in code point to the cached data. Row caching maintains state
information about the objects, properties, and relationships that are instantiated.

See Also

Meta Data Services Architecture

Repository API

Meta Data Services (SQL Server 2000)

Repository API
The repository API is a programming interface that is used to drive the repository engine from within application code.

The API is based on an object model that describes repository engine functionality and type definitions that correspond to
information models. Examples of engine functionality include transaction, workspace management, and connection services.
Examples of type definitions include class, interface, property, and relationship definitions. In practice, the distinction between the
two parts of the object model is artificial. Depending on the requirements of your application code, you will invoke objects of
either type whenever and wherever you need to.

The API is exposed through Component Object Model (COM) and COM Automation interfaces, supporting an open standard for
application development so that you can program using any COM-compliant programming language.

By using the Meta Data Services Software Development Kit (SDK), you can build models that conform to the type definitions
supported by the API. After you build and install a model, you can instantiate objects and invoke interfaces through application
code. Instantiated objects support interfaces that have single-valued properties and collections of relationships.

See Also

Meta Data Services Architecture

Meta Data Services SDK

Open Standards: OIM, COM, XML

Programming Meta Data Services Applications

Repository API Reference

Meta Data Services (SQL Server 2000)

Repository Databases
A repository database stores physical data. Such data includes repository type libraries that contain type information or object
instance data, and tables used to map or otherwise manage object relationships. In the versions of Microsoft® SQL Server™ 2000
Meta Data Services that Microsoft distributes, storage is provided through SQL Server, SQL Server Runtime Engine, or Microsoft
Jet.

Meta Data Services is an installed component of SQL Server. If you are using SQL Server, a repository database already exists for
your use. By default, repository tables are predefined in the msdb system database. These tables store data warehousing meta
data used by SQL Server and other add-on components.

At a minimum, a repository database includes standard tables that are present in every repository database. Additional tables are
created for custom interface definitions. Within its tables, the repository engine stores properties and relationships. For more
information about repository tables, see Repository SQL Schema.

If you prefer, you can choose to add your custom meta data to msdb. By keeping all your meta data in one database, you can
combine existing definitions in new ways by creating relationships.

Managing Repository Databases

Repository databases are driven by the repository engine, which manages all transactions and determines storage structure. To
save space in the database, Meta Data Services can sometimes eliminate redundant data definitions. For example, it may store a
single copy of a property value, even if that property value describes many object versions. Similarly, Meta Data Services can
sometimes store a single copy of a relationship, even if many different object versions have that relationship.

Repository databases should not be modified directly. Unless you are an expert database programmer or administrator, avoid
modifications because you can introduce changes that the repository engine cannot manage.

You can store multiple information models in a single repository database. Connection to a repository database is made using
ODBC drivers. To access a specific information model in the tables, use the repository API.

Other Database Types

If you are using Meta Data Services as an add-on component of SQL Server, physical storage of meta data is implemented as a
SQL Server database. However, Meta Data Services is also distributed with other Microsoft products. If you are using Meta Data
Services as an add-on component of Microsoft Visual Studio®, you can implement data storage as SQL Server tables using
Microsoft Jet or SQL Server Runtime Engine. SQL Server Runtime Engine is a SQL Server compatible data engine and it can be
used to provide local data storage. For more information about Microsoft Jet or the SQL Server Runtime Engine, see the MSDN®
Library at the Microsoft Web site.

Other third-party vendors support Meta Data Services on non-Microsoft database platforms. Future development by third-party
vendors will expand the number of database platforms that you can use with Meta Data Services. For more information about
third-party support, see Meta Data Services on the SQL Server page at the Microsoft Web site.

See Also

Connecting to and Configuring a Repository

Meta Data Services Architecture

Repository API

Repository Engine

Storage Strategy in a Repository Database

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Meta Data Services (SQL Server 2000)

Meta Data Services SDK
The Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK) contains resources for model designers
and programmers. It includes the Modeling Development Kit (MDK), modeling documentation, sample code, and add-on tools.
Together, the SDK and MDK provide essential resources for extending models, customizing models, building new models, and
programming against models.

The following components are distributed in the SDK.

The MDK includes documentation, programming extensions, and resource files that you can use to validate models and
generate programming resources for Microsoft Visual Basic® and Microsoft Visual C++® programs.

The Open Information Model (OIM) contains models organized by subject area. Each subject area model is distributed as a
separate file. Associated with each model file is a set of ready-to-use modeling files that can help you get started.

The Model Installer automates the process of adding information models to a repository database. The Model Compiler
prepares models for installation by compiling them into Repository Distributable Model (RDM) files.

Development samples provide sample files and documentation that explains how to use the files. You can practice working
with Meta Data Services using development samples. Working with sample files will help you develop the skills you need to
build and work with your own files.

You can download the SDK from the Meta Data Services Web site. You must already have Meta Data Services installed in order to
use the SDK. For more information, see the SQL Server page at the Microsoft Web site.

See Also

Installing Information Models

Meta Data Services Architecture

OIM in Meta Data Services

Using OLE DB Scanner

Using XML Encoding

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home

Meta Data Services (SQL Server 2000)

Specifications and Limits
Memory and storage limits depend on the amount of RAM on your server and the disk storage resources available to the DBMS
providing database storage services.

You can fine-tune repository engine performance by following the performance hints provided in this documentation. For more
information, see Optimizing Repository Performance.

Storage Limits

Microsoft® SQL Server™ 2000 Meta Data Services uses storage provided by a DBMS. SQL Server 2000 imposes no practical limit
on database size. If you are using msdb, or if you are creating a new repository using SQL Server 2000, you can configure
database size when you require more storage.

Memory Limits at Run Time

The repository engine works with available RAM to process transactions and instantiate model information. The more RAM you
have available, the better the repository engine performs.

See Also

Meta Data Services Architecture

Programming Environment

Repository Databases

Meta Data Services (SQL Server 2000)

OIM in Meta Data Services
The Open Information Model (OIM) is a set of standard object models that tools and applications use to create exchangeable
meta data. The OIM is published by the Meta Data Coalition (MDC).

Microsoft distributes a version of the OIM with Microsoft® SQL Server™ 2000, the SQL Server 2000 Meta Data Services Software
Development Kit (SDK), and Microsoft Visual Studio®. Meta data models based on the OIM are used to define meta data in these
and other Microsoft offerings. To accommodate tool-specific meta data, Microsoft has extended the version of the OIM that it
distributes to support its meta data requirements.

The OIM is an evolving standard. You can always obtain the latest version of the OIM from the MDC to support your model-based
application development. You can also extend it by adding new definitions to support your tool-specific meta data requirements.

This section includes topics that explain why the OIM is important, where you can get additional information and resources, and
who backs OIM development.

Topic Description
Why the OIM is Important Explains why Microsoft integrates the OIM with

Meta Data Services.
OIM Resources and Documentation Tells you where to obtain OIM documentation

and model development resources.
Meta Data Coalition Introduces the Meta Data Coalition (MDC).

See Also

Information Models

Information Model Fundamentals

Open Standards: OIM, COM, XML

XML in Meta Data Services

Meta Data Services (SQL Server 2000)

Why the OIM is Important
The Open Information Model (OIM) is a formal specification of meta data that provides common ground for defining standard
meta data. To achieve maximum integration across its product lines, Microsoft uses the OIM standard when defining meta data
constructs. To promote the use of standard meta data for model-driven application development, Microsoft distributes the OIM
with the Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK), with SQL Server 2000, and with
Microsoft Visual Studio®.

OIM definitions are widely supported by third-party data warehousing, enterprise application, and knowledge management tool
vendors. By building OIM-compliant models, you introduce a level of standardization that provides recurring benefits by later
allowing you to choose from a variety of development tools that support OIM.

The OIM is an established specification based on the collective experience of many vendors and developers. An important
advantage to using the OIM is that it is a stable model framework. Modeling is not trivial. If you are unfamiliar with modeling, the
OIM can help you get started by providing a general architecture within which you can organize your development effort.

The OIM is extensible and evolving. If existing definitions do not meet your needs, you can create new core information models
that satisfy your requirements exactly. In the same way, as tool and data warehousing vendors identify new requirements for
meta data definition, the OIM can be extended in a way that supports a common implementation.

See Also

Meta Data Coalition

Meta Data Fundamentals

OIM Resources and Documentation

Open Standards: OIM, COM, XML

Meta Data Services (SQL Server 2000)

OIM Resources and Documentation
This topic identifies important resources and documentation that can help you get started with the Open Information Model
(OIM).

The OIM is a formal specification that is extensively documented. OIM documentation is published by the Meta Data
Coalition (MDC) and can be downloaded from the MDC Web site. It is also distributed with the Microsoft® SQL Server™
2000 Meta Data Services Software Development Kit (SDK). For more information about the OIM, see
http://www.mdcinfo.com.

The Meta Data Services SDK includes a version of the OIM, modeling documentation, and several resources to help you use
and deploy the OIM right away. OIM resources include definition files for Microsoft Visual C++® and Microsoft Visual
Basic®, Extensible Markup Language (XML) files, Interface Definition Language (IDL) files, and installation scripts for OIM
models. For more information about the SDK, see Meta Data Services SDK.

See Also

Developing Applications Using Meta Data

Meta Data Coalition

http://www.mdcinfo.com/

Meta Data Services (SQL Server 2000)

Meta Data Coalition
The Meta Data Coalition (MDC) is an independent organization of vendors and users who volunteer time and resources to pursue
agreed-upon goals related to the standardization of enterprise meta data for the mutual benefit of all interested parties.

The MDC drives the definition, implementation, and evolution of the Open Information Model (OIM) and its support mechanisms.
Proposals for new OIM models and extensions are made available to members for in-depth review. From this process, agreed-
upon models are formally adopted into the OIM specification and published through the MDC Web site.

The MDC maintains a Web site to disseminate information and an e-mail address to allow members and potential members to
communicate electronically. For more information about the MDC, see the MDC Web site at http://www.mdcinfo.com.

http://www.mdcinfo.com/

Meta Data Services (SQL Server 2000)

XML in Meta Data Services
Microsoft® SQL Server™ 2000 Meta Data Services supports Extensible Markup Language (XML) Encoding of information models
for the purpose of importing, exporting, and publishing meta data in XML. You can exchange meta data between two repository
databases, between a repository database and an application, or between two applications that can interpret the same XML
format.

Meta Data Services encodes, exchanges, and decodes XML documents for you. This functionality is provided through dual
interfaces so that you can manage these operations from code.

The XML format supported by Meta Data Services is defined by the Meta Data Coalition (MDC) Open Information Model (OIM)
XML Encoding format. This format defines rules for generating XML that is based on an information model. Applying these rules
enables Meta Data Services to generate XML that corresponds to your information model. These same rules also enable Meta
Data Services to convert an XML document back into repository instance data.

XML Encoding provided with this release of Meta Data Services supersedes the XML Interchange Format (XIF) that was part of
previous versions of the software. For more information about backward compatibility, see Using XML Encoding. For more
information about how to use XML Encoding, see Ways to Use XML in Meta Data Services.

About MDC OIM XML Encoding

Both the OIM and the MDC OIM XML Encoding format are defined by the MDC. To make best use of the XML Encoding
functionality, your meta data should conform to the most recent version of the OIM. The MDC OIM XML Encoding format is
optimized for the most recent version of the OIM. You can generate richer, more accurate XML if your information model is based
on the version of OIM that best matches the XML Encoding format.

You can generate valid and well-formed XML for any information model, however, even if it is not based on OIM. If the
information model is not based on the OIM, the MDC OIM XML Encoding rules still determine which XML tag elements are used
to structure your repository data. To see which XML elements will be created for your information model, you can use the Meta
Data Services Model Development Kit (MDK) to generate an XML Document Type Definition (DTD). XML DTDs are definitions of
the structure that an XML document can assume.

See Also

Meta Data Coalition

OIM in Meta Data Services

Open Standards: OIM, COM, XML

Meta Data Services (SQL Server 2000)

Ways to Use XML in Meta Data Services
Extensible Markup Language (XML) support for Open Information Model (OIM)-based meta data opens up new possibilities for
publishing and sharing meta data. For example, you can build an application that creates XML and then let the repository engine
manage it. You can also exchange meta data with other repositories and with other tools that use meta data. If you have two
applications that understand the same XML format, you can exchange meta data between the two applications directly, without
interacting with a repository database or the repository engine.

In Microsoft® SQL Server™ 2000 Meta Data Services, you can use XML Encoding to achieve the following benefits. You can
compare each benefit to the diagram to see how XML is used between repositories and applications.

You can export and import meta data between two repository databases. The diagram shows that you can exchange meta
data between Repository A and Repository B through XML documents.

You can export meta data from a repository database to a tool or run-time object. In the diagram, you can provide data from
Repository A to Application A through an XML document.

You can import meta data from a tool or run-time object to a repository database. In the diagram, you can import meta data
from Application A to Repository A through an XML document.

XML Encoding supports a fourth benefit outside the scope of repository technology. OIM-enabled tools that support the
same OIM models can exchange meta data directly, without the support of an underlying repository database. Although the
diagram does not indicate this, you can exchange data between Application A and Application B (for example) using XML
documents.

The following diagram shows the relationship and flow of XML from one repository to another, and subsequently to other
applications.

See Also

Open Standards: OIM, COM, XML

Using XML Encoding

Meta Data Services (SQL Server 2000)

Upgrading from Earlier Versions
A Microsoft® SQL Server™ 2000 Meta Data Services installation consists of certain core components, each of which can vary by
version or format. A single configuration includes the following: a DBMS, a repository engine, a repository database, one or more
information models, and an Extensible Markup Language (XML) interchange format.

The DBMS used to manage the repository database can be Microsoft Jet 3.5 or later, SQL Server 6.5 or 7.0, or SQL Server
2000.

The repository engine can be version 2.0 or 3.0.

The repository database can be a 2.0 database or a 3.0 database (created with repository engine 2.0 or 3.0, respectively).

Information models can be Microsoft Open Information Model (OIM) 1.0, Microsoft OIM 1.1, Meta Data Coalition (MDC)
OIM, or a custom information model you define.

XML interchange support can be XML Interchange Format (XIF) or the MDC XML Encoding format.

Recommended Configuration

We recommend that you upgrade to repository engine 3.0 on each computer, and that you upgrade your repository databases to
the 3.0 format. In addition, you will get better performance and have access to more repository engine features if you migrate
your repository database to SQL Server 2000.

Upgrading an information model provides access to more meta data types (for example, access to Unified Modeling Language
(UML) 1.3 elements).

Whether you should upgrade your information models depends on the requirements of your tools and applications. For example,
if your tools and applications are using Data Transformation Services (DTS) or Microsoft Visual Component Manager, it is not
necessary to upgrade your information model. SQL Server 2000 and Visual Component Manager use the existing OIM as it is
currently implemented.

Before upgrading an information model, you should determine whether a new model format will provide you with the definitions
required for your repository applications. If a new model format does not offer compelling advantages, you should retain your
existing information models for use with a 3.0 repository engine and databases.

For more information about upgrading any element of your Meta Data Services installation, see Retaining Legacy Components in
a Repository.

See Also

Information Models

Repository Engine

Repository Databases

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Retaining Legacy Components in a Repository
While upgrading every component of an installation has its advantages, in practice many installations retain at least one
component that is not the latest version.

The following table describes how different versions of these components work in combination and how to upgrade to another
version.

Topic Description
Upgrading the Repository Engine Explains how to upgrade the repository engine.
Upgrading and Migrating a
Repository Database

Explains how to upgrade a repository database
and migrate it to a different DBMS format, and
how to use a nonupgraded database with an
upgraded repository engine.

Upgrading an Information Model Explains how to upgrade an information model
using Extensible Markup Language (XML).

Using Repository Engine Features
with Older Databases

Describes the availability of some features
depending on the kind of DBMS and operating
system you are using.

See Also

Information Models

Repository Engine

Repository Databases

What's New in Meta Data Services

Meta Data Services (SQL Server 2000)

Upgrading the Repository Engine
Repository engine 3.0 is the newest version of the repository engine. It supports new features that improve your ability to fully
define information models and program against a Microsoft® SQL Server™ 2000 Meta Data Services repository.

Only one version of the repository engine can be installed on each computer. You can upgrade to version 3.0 to use the new
features, or you can continue to use the version you already have installed. If you keep the previous version, you cannot upgrade
a repository database. Use the newest version of the Meta Data Coalition (MDC) Open Information Model (OIM), or use the
newest version of Extensible Markup Language (XML) interchange functionality.

The following table lists the versions of database, information models, and XML interchange formats that can be used with each
repository engine.

Engine version Database version OIM version XML version
2.0 2.0 OIM 1.0 XML Interchange

Format (XIF)
3.0 2.0 and 3.0 OIM 1.0 and MDC OIM XIF and MDC XML

How to Upgrade the Repository Engine

SQL Server 2000 uses repository engine 3.0 . As a result, upgrading to repository engine 3.0 is accomplished when you upgrade
an existing SQL Server or create a new SQL Server 2000 installation.

To take advantage of new repository engine features, we recommend that you upgrade the repository database to the latest
format. Upgrading adds tables and columns that support new features. For more information, see Upgrading and Migrating a
Repository Database.

See Also

Repository Engine Modeling Enhancements

Repository Engine Programming Enhancements

Retaining Legacy Components in a Repository

Upgrading an Information Model

Upgrading from Earlier Versions

Using Repository Engine Features with Older Databases

Meta Data Services (SQL Server 2000)

Upgrading and Migrating a Repository Database
Upgrading a repository database updates the repository schema with new tables and columns that support repository engine 3.0
features. If you have upgraded to repository engine 3.0, you should upgrade your database so that it corresponds to the engine.

Upgrading and migrating a database are separate, optional tasks. For any repository database, you can do all or none of the
following:

Upgrade the repository schema to the repository engine 3.0 format.

After you install repository engine 3.0, you can choose whether to upgrade all or some of your repository databases. After
you upgrade, however, you cannot open the database using a version 2.0 engine. Upgrading is unrelated to database
migration. You can upgrade a repository database that you created in Microsoft® SQL Server™ version 6.5, for example,
without having to migrate your SQL Server 6.5 database to a later version of SQL Server.

Migrate a repository database so that it runs on a more recent or different DBMS.

You can migrate a database if you require performance improvements or the view generation features that are only
available on SQL Server 2000.

How to Upgrade a Repository Database

You can upgrade a repository database by passing the REPOS_CONN_UPGRADE flag when you open the repository database
using repository engine 3.0. For more information about REPOS_CONN_UPGRADE, see ConnectionFlags Enumeration.

If you are upgrading a SQL Server 6.5 or 7.0 database, you can either use the REPOS_CONN_UPGRADE flag or Meta Data
Browser. To upgrade the database through the browser, you must edit the properties of a registered repository database. For
more information, see Working with Repository Databases in Meta Data Browser.

Backward Compatibility with 2.0 Repository Databases

The version of the repository engine that you use to initially populate the database determines the version of the repository
database. For example, if you used repository engine 2.0 to populate the repository database, the repository database is version
2.0.

Repository engine 3.0 is backward compatible with version 2.0 functionality and interfaces. When you use a 2.0 repository
database, typically only the 2.0 engine features of repository engine 3.0 will work. However, two repository engine 3.0 features,
IReposProperty2 and handling of bit properties, are available to 2.0 repository databases.

Most new features are provided through new interfaces. If you inadvertently invoke a repository engine 3.0 feature on 2.0
repository database, QueryInterface returns E_NOTIMPL for the interface that provides the new feature.

For more information about feature restrictions for an upgraded database, see Using Repository Engine Features with Older
Databases.

How to Migrate a Repository Database

You can migrate a repository database from one DBMS version to another. Your DBMS provides these features.

To convert from a Jet database to a SQL Server database, you must copy the data in the Jet database to the SQL Server database
using features provided by SQL Server and Microsoft Access. Next, you must set REPOS_CONN_RECOMPUTE on the Open
command to add definitions that SQL Server 2000 Meta Data Services requires for SQL Server databases. For more information,
see ConnectionFlags Enumeration.

See Also

Connecting to a SQL Server Repository Database

Generating Views

Repository SQL Schema

Retaining Legacy Components in a Repository

Upgrading the Repository Engine

Meta Data Services (SQL Server 2000)

Upgrading an Information Model
This topic provides information about using different versions of information models and Extensible Markup Language (XML)
interchange formats. Generally, you can omit upgrading (that is, replacing) an existing information model with a newer format of
the same information model if you do not require the additional meta data types that the newer format provides.

If you do choose to replace an older information model format with a newer format, you must copy your object instance data to
the new information model. XML interchange provides the means to move your data.

Open Information Model Formats

The Open Information Model (OIM) is a generic information model. OIM 1.0 and the Meta Data Coalition (MDC) OIM are two
alternate modeling formats of the OIM. MDC OIM is an enhanced version of OIM 1.0 that includes Unified Modeling Language
(UML) 1.3 support. OIM 1.0 and the MDC OIM use the same repository tables and cannot be installed into the same repository
database. If you want to use the MDC OIM, you must copy your OIM 1.0 meta data to the new information model.

OIM 1.0 is supported by repository engine 2.0 and repository engine 3.0. A version of OIM 1.0 is distributed with
Microsoft® SQL Server™.

MDC OIM is supported by repository engine 3.0, and it is the newer of the two formats. A version of MDC OIM is distributed
with the SQL Server 2000 Meta Data Services Software Development Kit (SDK).

You can exchange and migrate meta data between these two model formats using either XML interchange format. The following
section discusses backward compatibility in more detail. For more information about XML Interchange Format (XIF) and backward
compatibility, see Using XML Encoding.

XML Interchange Formats

XML interchange formats define the way in which you can exchange meta data in XML with other tools and repositories. You can
choose between two alternate XML interchange formats.

XIF is supported by repository engine 2.0 and repository engine 3.0. It expresses meta data in entity-normal format.

MDC XML Encoding is supported by repository engine 3.0, and it is the native format of the MDC OIM. It expresses meta
data in attribute-normal format. MDC XML Encoding conforms to the XML specification published by the World Wide Web
Consortium (W3C).

XIF and MDC XML Encoding are two alternate encoding mechanisms. They are not compatible.

Note In practice, because MDC OIM and MDC XML Encoding are not supported by repository engine 2.0, you cannot pair OIM
1.0 with MDC XML Encoding unless you are running repository engine 3.0. MDC OIM and XIF are not compatible. You cannot pair
MDC OIM with XIF under any circumstances.

The following table lists which versions of the OIM and XML interchange format you can use with each repository engine version.

Engine version OIM version XML version
2.0 OIM 1.0 XIF
3.0 OIM 1.0

MDC OIM

XIF or MDC XML Encoding

MDC XML Encoding only

Meta Data Interchange Combinations

The following table recommends an XML interchange format for each information model source-target combination, for all
versions of the repository engine.

Engine
version

Source model
version

Target model
version

Recommended XML
interchange

2.0 OIM 1.0 OIM 1.0 XIF
3.0 OIM 1.0 OIM 1.0 MDC XML Encoding
3.0 OIM 1.0 MDC OIM MDC XML Encoding

3.0 MDC OIM MDC OIM MDC XML Encoding
3.0 MDC OIM OIM 1.0 MDC XML Encoding

See Also

Information Models

OIM in Meta Data Services

Retaining Legacy Components in a Repository

Upgrading from Earlier Versions

Upgrading the Repository Engine

XML in Meta Data Services

Meta Data Services (SQL Server 2000)

Using Repository Engine Features with Older Databases
Upgrading a repository database to version 3.0 makes repository engine 3.0 features available to the database. Depending on the
DBMS you use to manage the database, however, you can encounter some exceptions. A few newer features are not supported on
older versions of DBMS products. This topic provides more information about these exceptions.

DBMS Version Exceptions

The majority of repository engine features work identically for all supported DBMS products and versions.

The following table details which features are unavailable for certain DBMS versions when you upgrade a repository database to
repository engine 3.0.

Database type Features
Microsoft® SQL Server™ 6.5 Bit properties cannot be added to existing tables.

View generation and view-based queries are not
supported.

SQL Server 7.0 View generation and view-based queries are not
supported.

SQL Server 2000 All features are supported.
Microsoft Jet 3.5 and later Bit properties cannot be added to existing tables.

View generation and view-based queries are not
supported.
Some performance optimization techniques are not
supported.

Note Converting a Microsoft SQL Server database to a more recent version of SQL Server does not automatically generate
views. Generating views and database conversion are separate tasks.

About Operating Systems

You can run SQL Server 2000 Meta Data Services on the following Microsoft Windows® operating systems: Windows 98,
Windows NT® 4.0, and Windows 2000. Integration with Microsoft Distributed Transaction Coordinator (MS DTC) runs only on a
computer that is running Windows 2000. For more information, see Integration with Distributed Transaction Coordinator.

See Also

Generating Views

IReposProperty2 Interface

Optimizing Repository Performance

Repository Databases

Retaining Legacy Components in a Repository

Upgrading and Migrating a Repository Database

Upgrading the Repository Engine

Meta Data Services (SQL Server 2000)

Using Meta Data Browser
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 Meta Data Services supports browsing of registered repository databases through Meta Data
Browser. You can use Meta Data Browser in the following ways:

From within SQL Server 2000 using SQL Server Enterprise Manager

As a stand-alone snap-in that you add through Microsoft Management Console (MMC) and run separately from SQL Server
Enterprise Manager

The way you use the browser determines the set of features and functionality that you can work with.

Using Meta Data Browser in SQL Server Enterprise Manager

To run the browser from within SQL Server Enterprise Manager, click Meta Data Services.

In SQL Server, Meta Data Services provides storage service for SQL Server meta data, including meta data associated with specific
Data Transformation Services (DTS) packages and all online analytical processing (OLAP) meta data. Repository tables are
included in the SQL Server msdb system database to support management and storage of SQL Server meta data.

In SQL Server Enterprise Manager, Meta Data Browser enables you to view meta data that you create and store in msdb. You can
view this data in the Contents folder.

When you use Meta Data Browser in SQL Server Enterprise Manager, you function in End User mode. End User Mode provides
read-only access to the repository database. You can view information about any meta data that you store in the repository.

SQL Server Enterprise Manager purposely restricts the functionality of Meta Data Browser to protect the meta data that it uses.
Modifying or deleting native meta data can corrupt your SQL Server installation. For this reason, actions that put your meta data
at risk are not supported in this mode.

Running Meta Data Browser Separately

Meta Data Services can be run separately from SQL Server Enterprise Manager as a stand-alone MMC snap-in. You can add Meta
Data Services to a console to work with other SQL Server repository databases, using a wider range of functionality.

After you add Meta Data Services to the MMC, you can run the Meta Data Browser to register the repository databases you want
to work with. You can work with any SQL Server repository database created in SQL Server version 6.5 or 7.0, or in SQL Server
2000. However, you must use version 3.0 of the repository engine that is distributed with SQL Server 2000.

To run the browser in stand-alone mode, click Meta Data Services.

Security Note If you run Meta Data Browser as a stand-alone MMC snap-in and use SQL Server Authentication to access the
repository database, the credentials that are used to access the repository database are saved in the console (.msc) file. To prevent
other users from accessing this information, you must either use Windows Authentication to avoid storing the credentials in the
first place, or you must secure the console file by setting properties that deny access to the file.

See Also

Viewing Meta Data in Meta Data Browser

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Working with Repository Databases in Meta Data Browser

Meta Data Fundamentals

Repository Databases

Storage Strategy in a Repository Database

Meta Data Services (SQL Server 2000)

Viewing Meta Data in Meta Data Browser
Meta Data Browser presents content in different ways, depending on whether you run the browser from within SQL Server
Enterprise Manager or in stand-alone mode. In addition, display options that you select can expand the kinds of meta data that
you can view. Icons are used to visually identify the kinds of meta data displayed in the browser.

Viewing Meta Data in SQL Server Enterprise Manager

Meta data in SQL Server Enterprise Manager is presented in the Contents folder. In SQL Server Enterprise Manager, repository
tables are defined within the msdb database. In SQL Server Enterprise Manager, msdb is the only database that provides
viewable content in Meta Data Browser.

Initially, the msdb database does not contain any meta data for you to view. However, after you add content to a repository, you
can view it by expanding the Contents folder in Meta Data Services.

Adding content to a repository occurs when you choose to save to Microsoft® SQL Server™ 2000 Meta Data Services (for
example, when saving Data Transformation Services (DTS) packages).

Viewing Meta Data in Stand-Alone Mode

When you run Meta Data Browser as a separate, stand-alone Microsoft Management Console (MMC) snap-in, you can work with
multiple repository databases, and you can view content and perform tasks that are not available otherwise.

Meta Data Browser organizes content by repository database. Depending on the browse mode you select for your database,
content can be further organized into folders named Contents and Information Models. Within each folder, objects and collections
are arranged within a hierarchy to facilitate browsing.

The Contents folder shows meta data stored in the repository database. Meta data varies depending on the database. In
some repository databases, for example, meta data can be application objects, database objects, or some other software
artifact.

The Information Models folder shows the information models that are installed in a repository database, and the classes and
relationship definitions that they contain. Information models can be viewed only in Administrator browse mode.

See Also

Icons Used in Meta Data Browser

Selecting Browse Mode in Meta Data Browser

Setting Display Options in Meta Data Browser

Using Meta Data Browser

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Meta Data Services (SQL Server 2000)

Icons Used in Meta Data Browser
This table shows and describes the icons used in Meta Data Browser.

Icon Description
Information model icon
Class icon
Connection object icon
Interface icon
Relationship icon
DTS package icon
Generic object icon
Data source icon
OLE DB provider icon
Class diagram icon
Attribute icon
Method icon
Tagged value icon
Generic collection icon

See Also

Setting Display Options in Meta Data Browser

Using Meta Data Browser

Meta Data Services (SQL Server 2000)

Working with Repository Databases in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can register any Microsoft® SQL Server™ database that contains
repository tables. Registered repository databases are listed in the SQL Server 2000 Meta Data Services folder. All registered
repository databases are grouped together on the same level.

Upgrading Databases

After you register a database, you have the option of upgrading the database to the latest format. Upgrading applies the most
recent repository SQL schema to a repository database that you formatted using a version of the repository engine that is older
than the current repository engine. Although you can register repository databases created with earlier versions of the repository
engine, upgrading gets the most current repository SQL schema tables that support new repository engine features. During the
upgrade process, new tables are added, and data from existing tables is copied to the new table format. Custom tables that you
create remain unchanged.

To upgrade a SQL Server repository database, right-click the registered database and then click Properties. This opens the
Repository Properties dialog box. Providing the required information in this dialog box completes your option selections.

More Database Related Tasks

The following table contains links to topics that can help you learn more about related tasks. For more information about
repository databases, see Repository Databases.

Topic Description
Selecting Browse Mode in Meta
Data Browser

Describes how to select End User, Power User, or
Administrator browse mode. When working with
a repository database, the scope of actions that
are available to you depend on the browse mode
you choose for the database.

Setting Display Options in Meta
Data Browser

Describes how to make optional items viewable
in the browser.

Registering a Repository Database
in Meta Data Browser

Explains how to add a new repository database
to the list of registered databases.

Editing Registration Properties in
Meta Data Browser

Explains how to edit registration properties.

Deleting Registration Properties in
Meta Data Browser

Explains how to delete registration information
and thereby unregister a database.

Exporting to XML Explains how to copy repository data to an XML
file.

See Also

Repository Properties Dialog Box

Repository SQL Schema

Upgrading From Previous Versions

Using Meta Data Browser

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Meta Data Services (SQL Server 2000)

Registering a Repository Database in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can register repository databases. You can register only
repository databases that you created in Microsoft® SQL Server™ 6.5 or 7.0, SQL Server 2000, or the SQL Server Runtime Engine.
Registering a repository database makes it available to users of Meta Data Browser. Later, if you want to make the database
unavailable, you can unregister it by deleting registration information.

When you register a repository database, you must provide connection information similar to SQL Server 2000 database
registration.

Before you can register a repository database, it must already exist. SQL Server 2000 Meta Data Services does not create
repository databases.

After you register a database, you can upgrade it to use the newest features of the repository engine. For more information, see
Working with Repository Databases in Meta Data Browser.

To register a repository database, right-click Meta Data Services, and then click Register Database. This opens the Database
Registration Properties dialog box. Providing the information requested in this dialog box completes the database registration.

See Also

Deleting Registration Properties in Meta Data Browser

Editing Registration Properties in Meta Data Browser

Database Registration Properties Dialog Box

Selecting Browse Mode in Meta Data Browser

Meta Data Services (SQL Server 2000)

Selecting Browse Mode in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can set a browse mode at the repository database level to
determine the scope of actions that are available to you. Browse modes include End User, Power User, and Administrator. You can
choose different browse modes for each database.

The scope of actions for each browse mode includes the following:

Creating, editing, and deleting registration information can be performed in all browse modes.

Viewing the Contents folder and setting display options can be performed in all browse modes.

Creating, editing, and deleting objects and object properties can be performed in Power User and Administrator browse
mode.

Viewing the Information Models folder can be performed in Administrator browse mode. In addition, only Administrators
can view repository identifiers.

Browse modes apply exclusively to repository databases and have no impact on Microsoft® SQL Server™ 2000 user modes,
Microsoft Windows NT® 4.0 user modes, or Microsoft Windows® 2000 user modes. In other words, being a repository
Administrator does not confer administrator rights in SQL Server.

You cannot change the browse mode if you are running Meta Data Browser from within SQL Server Enterprise Manager. From
within SQL Server Enterprise Manager, Meta Data Browser can only be run in End User mode.

To set a browse mode, you must select it during database registration. The browse mode you select is part of the registration
information. To select a different browse mode, you must edit registration properties. For more information about the scope of
actions each user mode supports, see Database Registration Properties Dialog Box.

See Also

Editing Registration Properties in Meta Data Browser

Registering a Repository Database in Meta Data Browser

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Meta Data Services (SQL Server 2000)

Setting Display Options in Meta Data Browser
For the meta data that you view in Meta Data Browser, you can set display options to alternately show or hide collection and
inherited property information. If you show collections, you can set additional options to show or hide empty collections and
reverse relationships.

The following figure shows a collection icon and a relationship icon, respectively.

Display options are context-sensitive. The options you set affect the current selection and all child nodes that branch from it. You
can set display options for all or part of the selected database. The display options you select remain in effect until you reset the
options. Display options are independent of browse mode selections.

To set display options, right-click a registered repository database or an object within the database, and then click Browse
Options. This opens the Meta Data Services Browser Display Options dialog box. Providing the required information in this
dialog box completes your option selections.

See Also

Meta Data Services Browser Display Options Dialog Box

Meta Data Services (SQL Server 2000)

Editing Registration Properties in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can edit the properties of a registered repository database to
change connection information, choose a different database, or change browse mode.

To edit database registration, right-click a repository database from Microsoft® SQL Server™ 2000 Meta Data Services, and then
click Edit Database Registration. This opens the Database Registration Properties dialog box. For more information about
repository database properties, see Database Registration Properties Dialog Box.

See Also

Deleting Registration Properties in Meta Data Browser

Registering a Repository Database in Meta Data Browser

Meta Data Services (SQL Server 2000)

Deleting Registration Properties in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can remove a repository database from the Meta Data Services
folder by deleting its registration information. To delete a repository database, use the database deletion features of Microsoft®
SQL Server™ 2000.

To delete database registration, right-click a repository database from SQL Server 2000 Meta Data Services and then click Delete.
Meta Data Services prompts you to confirm the deletion.

See Also

Editing Registration Properties in Meta Data Browser

Registering a Repository Database in Meta Data Browser

Meta Data Services (SQL Server 2000)

Exporting to XML
You can export any kind of meta data stored in the repository to an XML file, including instance data from the Contents folder and
information model elements from the Information Models folder.

The format of the XML is defined by MDC OIM XML Encoding. For more information, see Using XML Encoding.

To export to XML, right-click an element and then click Export to XML.

The scope of an export varies depending on whether the selected element is related to other elements. For elements that are
related through containing or aggregate relationships, the XML export file includes the related data. In the Contents folder, where
the relationship between parent and child elements is a containing relationship, the export file includes multiple XML tagged
elements. In contrast, relationships between elements in the Information Models folder are typically not containing relationships.
As a result, XML export files for elements in the Information Models folder include XML data for only the selected node.

See Also

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Meta Data Services (SQL Server 2000)

Working with Contents in Meta Data Browser
You can use Meta Data Browser to discover facts about objects already implemented in, designed for, or defined by an
application. If you are an application developer, browsing the contents of a repository can help you identify the best object to
choose when building a new application. You can also browse the contents to view details about an existing Data Transformation
Services (DTS) package or application component.

The kind of content that you can view varies depending on how you run the browser and the options you select. For more
information, see Using Meta Data Browser and Viewing Meta Data in Meta Data Browser.

Inside the Contents Folder

The Contents folder shows object instance data in a repository database. You can view objects, object properties, collections, and
relationships. Your browse mode selection determines how you interact with the Contents folder. Your display option selections
determine what is visible. Except for sequenced relationship collections, the order in which objects appear is undefined. If a
database does not show a Contents folder, it is probably not a repository database.

Note The browser does not track workspace or repository object version data. Object properties do not indicate the workspace
to which an object belongs. However, some version information is surfaced through property information. Version labeling can be
particularly helpful in identifying how a specific object version is deployed.

Objects

Objects can contain collections and other objects. If you choose not to display collections, you can more easily view object
relationships. In the browser, object relationships are rendered hierarchically. Expanding an object brings its related objects into
view. For example, expanding a Car object can show additional objects for Engine, Body, and Tires. Expanding Engine can show
an additional object for Parts.

The following figure shows a generic object icon.

For each object, you can view properties that tell you a great deal about each object. Properties are listed in alphabetical order. For
more information about properties, see Working with Object Properties in Meta Data Browser.

If you are a repository Administrator, you can delete, rename, and remove objects from collections. For more information, see
Deleting, Renaming, and Removing Objects from Collections.

Collections

Collections can contain objects or be empty. When you display collections, you can see how objects are grouped. For example,
because Engine, Body, and Tires are elements of Car, displaying collection information can reveal that Engine, Body, and Tires
are members of an Elements collection under Car.

The following figure shows a generic collection icon.

See Also

Selecting Browse Mode in Meta Data Browser

Setting Display Options in Meta Data Browser

Meta Data Services (SQL Server 2000)

Working with Object Properties in Meta Data Browser
You can display object properties to view the characteristics of individual objects.

To view properties, right-click an object, and then click Properties. This opens the Repository Object Properties dialog box. For
more information about the options on this dialog box, see Repository Object Properties Dialog Box.

In addition to viewing properties, when you run Meta Data Browser as a stand-alone snap-in, you can edit property values of
objects in the Contents folder. You must be a repository Administrator or Power User to edit property values. Editing property
values can only be performed on objects in the Contents folder. The Information Models folder is always read-only.

To edit a property value, select a property for an object in the Contents folder and type a different value in the Value column. For
more information about how to become a repository Administrator or Power User, see Selecting Browse Mode in Meta Data
Browser.

Understanding Property Information

Object properties expose Class Name and a property set that reveals details about a particular object. Each object supports a
property set that varies from object to object and folder to folder.

In the Contents folder, Class Name identifies the information model class used to create the object. If you understand
information models, knowing about the class reveals abstract data about an object that can be useful. The property set defines
object characteristics. Property values are instance data about the object. The property set originates from the properties
supported by the abstract class.

In the Information Models folder, Class Name identifies the repository API definition used to build the object class. A repository
API definition can be an InterfaceDef, a ClassDef, or some other definition. The property set defines object class characteristics.
Type information about the object class is expressed through property values. The property set originates from the properties
supported by the repository API definition.

You can search SQL Server Books Online for more information about repository API definitions and properties. For example, you
can search for InterfaceDef. You can also search for specific properties, such as CreateByUser, Name, and VersionLabel.

Special Properties

Custom objects support a property set that is determined by a model designer. For more information about custom object
properties, check with the author of the model.

Enumeration objects are associated with property definitions. The purpose of an enumeration object is to provide a list of
predefined values for a given property. In the browser, when you view a property that is enumerated, you can select one of the
enumerated values from a predefined list. The list appears in the Values column of the property.

Virtual properties are a special category of properties that typically do not have persistent data. However, if the aggregation
objects are stored in the repository database, virtual properties will appear in the Meta Data Browser.

See Also

Creating Objects

Deleting, Renaming, and Removing Objects from Collections

Repository API Reference

Working with Contents in Meta Data Browser

Working with Information Models in Meta Data Browser

Meta Data Services (SQL Server 2000)

Creating Objects
You can populate a repository with new object instance data that you create. The objects you create must be compatible with the
definitions of an installed information model. For example, to create a new table object, the underlying information model must
support a table object definition.

To create objects, right-click the parent object under which the new object is to reside, and then click Create Object.

To create objects, the following conditions must be satisfied.

Criteria Conditions
Environment Stand-alone snap-in. You cannot create objects from within

Enterprise Manager. For more information about stand-alone
mode, see Using Meta Data Browser.

Browser mode Administrator or Power User. For more information, see
Selecting Browse Mode in Meta Data Browser.

Kind of meta data Contents folder meta data. You cannot create objects in
information models. For more information about Contents,
see Viewing Meta Data in Meta Data Browser.

Creating an object requires choosing a collection, choosing a class, and defining a name. Your choices determine the
characteristics assumed by the object.

Collections that you can choose from belong to the parent element. For example, if the parent object is a Table object, you
can choose from the collections that belong to the Table object (in this case, the Columns collection). You cannot create
collections. You can only choose from collections that are provided for the parent object by way of the information model.

Class selections are derived from the collection. If a collection supports multiple classes, you must choose which class to use.

Names are object names that you define. The name you define must be under 255 characters in length. Names can include
spaces.

After you create the object, you can edit properties. For more information, see Working with Object Properties in Meta Data
Browser.

See Also

Deleting, Renaming, and Removing Objects from Collections

Working with Contents in Meta Data Browser

Meta Data Services (SQL Server 2000)

Deleting, Renaming, and Removing Objects from Collections
When you run Meta Data Browser as a stand-alone snap-in, you can delete, rename, or remove object instance data from
collections. You must be a repository Administrator to perform these actions. You can only perform these actions on object
instance data that appears in the Contents folder.

When you delete, rename, or remove an object from a collection, your changes are immediately saved in the repository database.
Except for renaming, you cannot reverse these changes using the Meta Data Browser.

To perform these actions, right-click an object in the Contents folder, and then click Delete, Rename, or Remove.

Delete permanently deletes the object instance data from the repository database.

Rename activates an in-place editor so that you can type over the existing name. If you are naming an object in a collection
that requires unique names, Meta Data Services does not allow you to duplicate a name in that collection. Otherwise,
duplicate names are supported.

Remove deletes reference information that associates an object with a collection. The object instance data is not deleted.

For more information about how to become a repository Administrator, see Selecting Browse Mode in Meta Data Browser.

See Also

Creating Objects

Working with Contents in Meta Data Browser

Working with Object Properties in Meta Data Browser

Meta Data Services (SQL Server 2000)

Working with Information Models in Meta Data Browser
If you are an application developer or model designer, you can use Meta Data Browser as a visual tool for tracking your inventory
of information models. You can also discover facts about the objects, collections, and properties that make up an information
model.

The Information Models folder shows the information models that are installed in a repository database. The Information Models
folder is visible only to repository Administrators, and it is available only when you run the browser as a stand-alone snap-in.
Except for sequenced relationship collections, the order in which information model objects appear is undefined.

Information models are the blueprints of items you see in the Contents folder. In its native format, an information model is
typically a network of related objects. In Meta Data Browser, information models are depicted hierarchically. When you expand an
object, the child nodes that appear are the objects related to the expanded object. Depicting a network structure in a hierarchical
format means that some objects appear multiple times. For example, in a relationship, each object will appear as a child node of
the other object.

You can install ready-to-use information models (stored as .rdm files) using Meta Data Browser or a separate installation tool that
comes with the Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK). Installing an information
model extracts information from a model and places it into tables in the repository database. How an information model is used
from that point forward can vary considerably across tools, users, and environments.

For more information about how to become a repository Administrator, see Selecting Browse Mode in Meta Data Browser.

Inside the Information Models Folder

In the browser, you can expand an installed information model to view the objects and collections it contains. You cannot create,
modify, or delete an information model, its objects, or its properties. To perform those tasks, you must use modeling tools.

You can expand an information model to do the following.

View objects, collections, interfaces, and members.

View the inheritance tree for each interface.

View read-only object properties to see how an object is defined.

See Also

Information Models

Information Model Fundamentals

Installing Information Models in Meta Data Browser

Working with Contents in Meta Data Browser

Working with Object Properties in Meta Data Browser

Meta Data Services (SQL Server 2000)

Installing Information Models in Meta Data Browser
When you run Meta Data Browser as a stand-alone snap-in, you can install ready-to-use information models to the repository
database, making them available to applications, application developers, and model designers. You must be a repository
Administrator to install an information model. For more information about how to become a repository Administrator, see
Selecting Browse Mode in Meta Data Browser.

After you install an information model, it remains in the repository database. Deleting an information model is not currently
supported by Microsoft® SQL Server™ 2000 Meta Data Services.

To install an information model, right-click the Information Models folder of the database in which you want the model to reside,
and then click Install Information Model. This opens the Install Information Model dialog box so that you can choose a
Repository Distributable Model (RDM) file to install. RDM files are compiled information model files. RDM files are generated
from a modeling tool in the Meta Data Services Software Development Kit (SDK).

Note It is also possible to install information models programmatically or by command line, without using Meta Data Browser.
For more information about this alternate approach, see Installing Information Models.

See Also

Information Model Fundamentals

Information Models

Meta Data Services SDK

Meta Data Services (SQL Server 2000)

Meta Data Browser User Interface Reference
Meta Data Browser includes dialog boxes. Several of these dialog boxes support direct access to context-sensitive Help topics.

To open a context-sensitive Help topic, click Help or press F1 when the dialog box is open. You can also choose a topic from the
following list.

Dialog box Description
Meta Data Services Browser
Display Options Dialog Box

Contains options that you can set to increase the
amount of viewable content.

Repository Object Properties
Dialog Box

Displays the properties of an information model,
object, or collection.

Database Registration Properties
Dialog Box

Connects a repository database so that you can
view meta data in the browser. It also includes
options for selecting a browse mode.

Repository Properties Dialog Box Displays the server name, database name, and
repository database version. It also includes an
option for upgrading the database format.

Create New Object Dialog Box Populates an information model with new object
instance data.

See Also

Using Meta Data Browser

Meta Data Services (SQL Server 2000)

Meta Data Services Browser Display Options Dialog Box
Use this dialog box to set display options that filter collection and property data in Meta Data Browser.

This dialog box appears when you right-click any item within the Meta Data Services folder, and then click Browse Options. The
display options that you select apply to the current item and all items that branch from it.

Collection Options

These options enable you to view collections, and to select whether empty collections and reverse relationships are visible.

Display Collections

Specifies whether object and relationship collections are displayed. The following icon identifies a collection.

Selecting this option enables the following additional options.

Show Empty Collections

Specifies whether empty collections are displayed. Empty collections contain no members.

Show Reverse Relationships

Specifies whether reverse relationships are displayed. Reverse relationships show a relationship from the opposite perspective
and may contain additional data not otherwise available. For example, given this one-to-one relationship, car contains engine, the
reverse relationship is engine contained by car. The reverse relationship represents a data definition that shows whether one type
of engine is used in many types of cars.

Properties Options

These options enable you to show or suppress inherited property values for objects in the Contents and Information Model
folders.

Show All Class Properties

Specifies whether inherited properties are displayed. An inherited property is an alias of a property on a base interface. When you
show inherited properties, you see both the alias and the base property from which the alias is derived.

Consider a Person object that has a property named Phone Number. Through aliasing, you could base a new property of a
different object on Phone Number. For example, a Customer object could have a property named Customer ID that is derived
from Phone Number. When you select the Show All Class Properties option, both the inherited property (Customer ID) and
the base property (Phone Number) are presented as sibling properties.

See Also

Repository Collections

Repository Relationship Objects

Setting Display Options in Meta Data Browser

Working with Object Properties in Meta Data Browser

Meta Data Services (SQL Server 2000)

Repository Object Properties Dialog Box
Use this dialog box to view properties of a repository object. The name of the current object determines the name of the dialog
box. For example, if the object name is TblCustomer, the dialog box name is TblCustomer Properties.

If you are running Meta Data Browser as a stand-alone snap-in, and you are running in either Power User or Administrator
browse mode, you can edit property values.

This dialog box appears when you right-click an object in the Contents folder or in the Information Models folder, and then click
Properties.

Options

Name

Displays the name of the object or information model.

Class Name

Displays the name of the class upon which an object is based. The class name is a repository API class that provides meta data
about the object.

Columns

Name
Shows the name of the property.

Data Type
Shows the data type of a property.

Value
Shows the user-defined value of a property. Depending on your browser mode, you can click the value to invoke an in-place
editor used to modify the value.

See Also

Editing Registration Properties in Meta Data Browser

Repository API Reference

Selecting Browse Mode in Meta Data Browser

Working with Object Properties in Meta Data Browser

Meta Data Services (SQL Server 2000)

Database Registration Properties Dialog Box
Use this dialog box to register a new repository database with Meta Data Browser. You should only register repository databases.
Databases that do not contain the standard repository SQL tables do not have viewable content in Meta Data Browser.

This dialog box is available when you run Meta Data Browser as a stand-alone snap-in. It is not available for use within SQL
Server Enterprise Manager. For more information, see Using Meta Data Browser.

This dialog box appears when you right-click the Meta Data Services folder or an existing registered repository database and then
click Register Database. You can also open this dialog box by clicking Edit Database Registration.

Options

Server

The name of a registered computer running Microsoft® SQL Server™ 2000.

Connection

Provides two authentication approaches that are identical to SQL Server database registration. For more information, search on
"registered SQL Server properties" in SQL Server Books Online.

Database

The name of the repository database you want to register. Be sure to choose a database that has the repository SQL tables. These
tables provide data for the Contents and Information folders.

Browse Mode

Specifies the browse mode for browsing contents and information models. The default selection is End User. Power User and
Administrator modes provide additional browsing capability.

End User

The default user mode selection. End User mode supports read-only access to the Contents folder.

Power User
Power User mode supports read/write access to the Contents folder. In the Contents folder, Power Users can display and edit
object properties.

Administrator
Administrator mode supports read-write access to the Contents folder, read-only access to the Information Models folder, and
support for creating, editing, and deleting repository database registration. Repository Administrators can also install
information models and view object identifier properties (such as ObjID and InternalID) in the Repository Object Properties
dialog box.

Browse mode selection is available during new database registration. The browse mode that you select determines your degree
of interaction with the database. To change the browse mode, you must edit the registration properties.

The browse mode selection you make applies to you. You cannot set or predetermine the browse mode for other users.

See Also

Editing Registration Properties in Meta Data Browser

Registering a Repository Database in Meta Data Browser

Selecting Browse Mode in Meta Data Browser

Meta Data Services (SQL Server 2000)

Repository Properties Dialog Box
Use this dialog box to specify an upgrade option and view version information about the repository database. The name of the
current repository database determines the name of the dialog box. For example, if the repository database name is DevTools, the
dialog box name is DevTools Properties. If you open this dialog box from within Enterprise Manager, the dialog box name is
Meta Data Services Properties.

This dialog box appears when you right-click a repository database and then click Properties.

Options

Server

The name of an installed instance of Microsoft® SQL Server™ 2000.

Database

The name of the repository database.

Repository Database Version

Shows a version number and a point release number, if applicable. Version information identifies which version of the repository
engine was used to create the database. The outcome of creating a database varies depending on the DBMS you are using. For a
SQL Server database, creating a database causes SQL Server to create repository SQL tables in an empty database that you
provide. For more information, see Connecting to a SQL Server Repository Database.

Upgrade

Updates repository SQL schema tables in a repository database so that you can use new repository engine features. After you
upgrade a repository database, you cannot work with it using previous versions of the repository engine.
This button is enabled only when the database version is less than the current version of the repository engine.

See Also

Registering a Repository Database in Meta Data Browser

Repository SQL Schema

Upgrading from Earlier Versions

Meta Data Services (SQL Server 2000)

Create New Object Dialog Box
Use this dialog box to create a new repository object and add it to the specified collection. You can add repository objects instance
data in the Contents folder. You cannot create new objects for items in the Information Models folder.

This dialog box is available when you run Meta Data Browser as a stand-alone snap-in, in either Power User or Administrator
browse mode. This dialog is not available within SQL Server Enterprise Manager. For more information, see Using Meta Data
Browser.

This dialog box appears when you right-click an item in the Contents folder and then click New Object. The item that you select
determines what type of object you can create and where it is located.

Options

Collection to add object to

Lists the collections defined on an object. Objects are always added to collections. If collections are visible (that is, the Display
Collections option is enabled), the collection is selected for you. If collections are hidden, you must select the collection in which
to place the object.

Object Type

Lists the object types that are allowed for the collection. Only valid object types are available for selection.

Object Name

The objName of the object. This name is required when adding objects to a naming relationship. The name of the object should
reflect its context. For example, a name of an interface member should include the package, interface, and member name. Names
composed of multiple parts must be separated by colons (for example, BaseInterfaces:IUMLPackage:Visibility).

See Also

Creating Objects

Working with Object Properties in Meta Data Browser

Building SQL Server Applications (SQL Server 2000)

Building SQL Server Applications Overview
Application Programming Interfaces (APIs) are the mechanisms used by applications to access resources on the local computer or
available through a network. Microsoft® SQL Server™ 2000 supports several classes of APIs that applications can use to access
SQL Server resources:

General database access APIs allow applications to work with the data in a relational database. The APIs present results to
applications in one of two forms:

Tabular result sets, which some APIs call rowsets.

XML documents, which are the preferred way of representing data in Internet applications.
SQL Server database services APIs allow applications to administer and configure the services included with the relational
database engine, such as replication and Data Transformation Services (DTS).

The Analysis Services API gives applications access to the OLAP and data mining facilities of Analysis Services. For more
information, see Programming Analysis Services Applications.

The Meta Data Services API gives applications access to the repository of SQL Server meta data stored in Meta Data
Services. For more information, see Programming Meta Data Services Applications.

The English Query API provides applications the ability to pass customer questions, written in English, about information in
a database or OLAP cube to the English Query engine. The engine returns a Transact-SQL statement or MDX query that can
be executed to answer the question. For more information, see Developing and Deploying English Query Applications.

For information about additional considerations regarding the use of the APIs supported by SQL Server 2000, see Application
Development Architecture.

General Database Access APIs

Database applications generally deal with data in one of two formats:

Tabular result sets, which are sometimes called rowsets. The application uses a database API to execute a Transact-SQL
statement and process any result sets that may be returned. These APIs support result set processing: ADO, OLE DB, ODBC,
Embedded SQL for C, and DB-Library.

XML documents. The application uses an API or Universal Resource Locator (URL) to execute a Transact-SQL statement or
XPath query. The application then retrieves any XML document that is returned. These access methods support XML
documents: ADO, URLs, OLE DB.

While result set and XML processing is typically discussed in relation to retrieving the results of a command, result sets and XML
documents can both be used as the source of data for modifications of database tables:

An application using tabular result sets can open a cursor over a result set, and use data from the cursor to modify data in
tables.

An application using XML documents can use sp_xml_preparedocument to add a document to the database, and then use
OPENXML to retrieve data from the document. The retrieved data can be used to modify data in tables.

Most of the general database APIs supported by SQL Server are of two types:

An object database API uses an object model comprised of objects, properties, and interfaces an application uses to connect
to a database, pass commands to the database, and retrieve results.

A C database API is a set of C functions an application calls to connect to a database, pass commands to the database, and
retrieve results.

In addition, SQL Server 2000 can be accessed from URLs in Internet applications. URLs are formatted strings, or stream objects,
that Internet applications use to access resources available through the Internet or an enterprises intranet. SQL Server 2000
supports URLs that specify Transact-SQL statements, query templates, or XPath queries.

Any SQL commands sent to SQL Server 2000 through the database APIs or URLs must comply with the Transact-SQL language.
Transact-SQL complies with the Entry Level of the SQL-92 standard, and in addition, supports powerful extensions to SQL-92.The
SQL Server OLE DB provider and SQL Server ODBC driver also support the ODBC SQL specification. For more information, see
Transact-SQL Overview.

These are the general database APIs supported by SQL Server 2000.

Topic Description
Programming ADO SQL Server
Applications
(Microsoft ActiveX® Data
Objects)

COM API recommended as the primary API for
accessing data from general business applications,
such as human resources, accounting, and marketing
applications. ADO encapsulates the OLE DB API in a
simplified object model that reduces application
development and maintenance costs. The SQL Server
OLE DB provider is the preferred provider to use in
ADO applications that access SQL Server. ADO,
similar to OLE DB, can access data from many
sources, not just SQL databases. In SQL Server 2000,
ADO supports XML document processing in addition
to relational result set processing.

URL Access Formatted strings or stream objects used by Internet
applications to access resources available on the
Internet or intranet. SQL Server 2000 supplies an
ISAPI .dll that Internet Information Services (IIS)
supports references to SQL Server 2000 from URLs.

OLE DB and SQL Server Strategic, low-level, COM API for accessing data. OLE
DB is recommended for developing tools, utilities, or
low-level components that need high performance.
The SQL Server OLE DB provider is a native, high
performance provider that accesses the SQL Server
TDS protocol directly. In SQL Server 2000, OLE DB
supports XML document processing in addition to
relational result set processing.

Programming ODBC SQL
Server Applications
(Open Database Connectivity)

Open C API designed to access data in SQL
databases. The SQL Server ODBC driver is a native,
high-performance driver that directly accesses the
SQL Server TDS protocol.

Programming Embedded SQL
for C

Standard API defined for accessing SQL databases
from C or COBOL applications.

Programming DB-Library for C Legacy C API designed to work with SQL Server.

Warning While the DB-Library and Embedded SQL for C APIs are still supported in Microsoft SQL Server 2000, no future
versions of SQL Server will include the files needed to do programming work on applications that use these APIs. Connections
from existing applications written using DB-Library and Embedded SQL for C will still be supported in the next version of SQL
Server, but this support will also be dropped in a future release. When writing new applications, avoid using these components.
When modifying existing applications, you are strongly encouraged to remove dependencies on these technologies. Instead of
DB-Library or Embedded SQL for C, you can use ADO, OLE DB, or ODBC to access data in SQL Server.

Through its support of ODBC, SQL Server 2000 also supports applications written to the Remote Data Objects (RDO) and Data
Access Objects (DAO) APIs. These are object APIs that encapsulate ODBC. They are not discussed further in SQL Server Books
Online; programmers using RDO and DAO should refer to ODBC and SQL Server 2000 for implementation details for the SQL
Server ODBC Driver.

SQL Server Books Online topics about ADO, OLE DB, and ODBC do not cover the full functionality of those APIs. The topics cover
only the issues specific to those APIs when you are using the SQL Server OLE DB provider or the SQL Server ODBC driver. They
assume that you are familiar with the general concepts for the API you are using, and that you have access to the documentation
for the API. You can download the documentation for ADO, OLE DB, and ODBC at Microsoft Web site.

Microsoft Distributed Transaction Coordinator (MS DTC) is a component that allows applications to define distributed
transactions. Distributed transactions protect the integrity of a series of updates made against multiple servers. SQL Server 2000
database applications can initiate distributed transactions themselves by calling the MS DTC API directly, but the SQL Server
database engine can also call MS DTC to implement the functionality required by distributed Transact-SQL statements executed

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

by applications. For more information, see MS DTC Distributed Transactions

SQL Server Database Services APIs

SQL Server 2000 supports APIs that allow applications to configure and administer the DTS and replication components of SQL
Server. Applications can use the same administration and configuration API, SQL-DMO, which the SQL Server tools use when
managing instances of SQL Server.

Topic Description
DTS Programming Reference
(Data Transformation Services)

Set of COM interfaces (based on OLE DB) for defining
and executing complex data transformations between
OLE DB data providers.

MS DTC Distributed
Transactions

Component that allows applications to define
distributed transactions that protect the integrity of a
series of updates made against multiple servers.
Applications use the transaction commands of an API
or Transact-SQL, the API or SQL Server 2000
interface with MS DTC to implement the distributed
transactions.

Programming Extended Stored
Procedures

C API for writing SQL Server extended stored
procedures.

Getting Started with
Replication Programming

Set of COM interfaces for defining and managing
replication between instances of SQL Server
databases. You can also replicate data from
heterogeneous third-party databases to SQL Server.

Developing SQL-DMO
Applications
(SQL Distributed Management
Objects)

Set of COM interfaces for managing and
administering SQL Server 2000.

For information about additional considerations regarding the use of the APIs discussed, see Application Development
Architecture.

Through its support of ODBC, SQL Server 2000 also supports applications written to the Remote Data Objects (RDO) and Data
Access Objects (DAO) APIs. These are object APIs that encapsulate ODBC. They are not discussed further in SQL Server Books
Online; programmers using RDO and DAO should refer to ODBC and SQL Server 2000 for implementation details for the SQL
Server ODBC Driver.

SQL Server Books Online topics about ADO, OLE DB, and ODBC do not cover the full functionality of those APIs. The topics cover
only the issues specific to those APIs when you are using the SQL Server OLE DB provider or the SQL Server ODBC driver. They
assume that you are familiar with the general concepts for the API you are using, and that you have access to the documentation
for the API. You can download the documentation for ADO, OLE DB, and ODBC at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

Building SQL Server Applications (SQL Server 2000)

Building SQL Server Applications Overview
Application Programming Interfaces (APIs) are the mechanisms used by applications to access resources on the local computer or
available through a network. Microsoft® SQL Server™ 2000 supports several classes of APIs that applications can use to access
SQL Server resources:

General database access APIs allow applications to work with the data in a relational database. The APIs present results to
applications in one of two forms:

Tabular result sets, which some APIs call rowsets.

XML documents, which are the preferred way of representing data in Internet applications.
SQL Server database services APIs allow applications to administer and configure the services included with the relational
database engine, such as replication and Data Transformation Services (DTS).

The Analysis Services API gives applications access to the OLAP and data mining facilities of Analysis Services. For more
information, see Programming Analysis Services Applications.

The Meta Data Services API gives applications access to the repository of SQL Server meta data stored in Meta Data
Services. For more information, see Programming Meta Data Services Applications.

The English Query API provides applications the ability to pass customer questions, written in English, about information in
a database or OLAP cube to the English Query engine. The engine returns a Transact-SQL statement or MDX query that can
be executed to answer the question. For more information, see Developing and Deploying English Query Applications.

For information about additional considerations regarding the use of the APIs supported by SQL Server 2000, see Application
Development Architecture.

General Database Access APIs

Database applications generally deal with data in one of two formats:

Tabular result sets, which are sometimes called rowsets. The application uses a database API to execute a Transact-SQL
statement and process any result sets that may be returned. These APIs support result set processing: ADO, OLE DB, ODBC,
Embedded SQL for C, and DB-Library.

XML documents. The application uses an API or Universal Resource Locator (URL) to execute a Transact-SQL statement or
XPath query. The application then retrieves any XML document that is returned. These access methods support XML
documents: ADO, URLs, OLE DB.

While result set and XML processing is typically discussed in relation to retrieving the results of a command, result sets and XML
documents can both be used as the source of data for modifications of database tables:

An application using tabular result sets can open a cursor over a result set, and use data from the cursor to modify data in
tables.

An application using XML documents can use sp_xml_preparedocument to add a document to the database, and then use
OPENXML to retrieve data from the document. The retrieved data can be used to modify data in tables.

Most of the general database APIs supported by SQL Server are of two types:

An object database API uses an object model comprised of objects, properties, and interfaces an application uses to connect
to a database, pass commands to the database, and retrieve results.

A C database API is a set of C functions an application calls to connect to a database, pass commands to the database, and
retrieve results.

In addition, SQL Server 2000 can be accessed from URLs in Internet applications. URLs are formatted strings, or stream objects,
that Internet applications use to access resources available through the Internet or an enterprises intranet. SQL Server 2000
supports URLs that specify Transact-SQL statements, query templates, or XPath queries.

Any SQL commands sent to SQL Server 2000 through the database APIs or URLs must comply with the Transact-SQL language.
Transact-SQL complies with the Entry Level of the SQL-92 standard, and in addition, supports powerful extensions to SQL-92.The
SQL Server OLE DB provider and SQL Server ODBC driver also support the ODBC SQL specification. For more information, see
Transact-SQL Overview.

These are the general database APIs supported by SQL Server 2000.

Topic Description
Programming ADO SQL Server
Applications
(Microsoft ActiveX® Data
Objects)

COM API recommended as the primary API for
accessing data from general business applications,
such as human resources, accounting, and marketing
applications. ADO encapsulates the OLE DB API in a
simplified object model that reduces application
development and maintenance costs. The SQL Server
OLE DB provider is the preferred provider to use in
ADO applications that access SQL Server. ADO,
similar to OLE DB, can access data from many
sources, not just SQL databases. In SQL Server 2000,
ADO supports XML document processing in addition
to relational result set processing.

URL Access Formatted strings or stream objects used by Internet
applications to access resources available on the
Internet or intranet. SQL Server 2000 supplies an
ISAPI .dll that Internet Information Services (IIS)
supports references to SQL Server 2000 from URLs.

OLE DB and SQL Server Strategic, low-level, COM API for accessing data. OLE
DB is recommended for developing tools, utilities, or
low-level components that need high performance.
The SQL Server OLE DB provider is a native, high
performance provider that accesses the SQL Server
TDS protocol directly. In SQL Server 2000, OLE DB
supports XML document processing in addition to
relational result set processing.

Programming ODBC SQL
Server Applications
(Open Database Connectivity)

Open C API designed to access data in SQL
databases. The SQL Server ODBC driver is a native,
high-performance driver that directly accesses the
SQL Server TDS protocol.

Programming Embedded SQL
for C

Standard API defined for accessing SQL databases
from C or COBOL applications.

Programming DB-Library for C Legacy C API designed to work with SQL Server.

Warning While the DB-Library and Embedded SQL for C APIs are still supported in Microsoft SQL Server 2000, no future
versions of SQL Server will include the files needed to do programming work on applications that use these APIs. Connections
from existing applications written using DB-Library and Embedded SQL for C will still be supported in the next version of SQL
Server, but this support will also be dropped in a future release. When writing new applications, avoid using these components.
When modifying existing applications, you are strongly encouraged to remove dependencies on these technologies. Instead of
DB-Library or Embedded SQL for C, you can use ADO, OLE DB, or ODBC to access data in SQL Server.

Through its support of ODBC, SQL Server 2000 also supports applications written to the Remote Data Objects (RDO) and Data
Access Objects (DAO) APIs. These are object APIs that encapsulate ODBC. They are not discussed further in SQL Server Books
Online; programmers using RDO and DAO should refer to ODBC and SQL Server 2000 for implementation details for the SQL
Server ODBC Driver.

SQL Server Books Online topics about ADO, OLE DB, and ODBC do not cover the full functionality of those APIs. The topics cover
only the issues specific to those APIs when you are using the SQL Server OLE DB provider or the SQL Server ODBC driver. They
assume that you are familiar with the general concepts for the API you are using, and that you have access to the documentation
for the API. You can download the documentation for ADO, OLE DB, and ODBC at Microsoft Web site.

Microsoft Distributed Transaction Coordinator (MS DTC) is a component that allows applications to define distributed
transactions. Distributed transactions protect the integrity of a series of updates made against multiple servers. SQL Server 2000
database applications can initiate distributed transactions themselves by calling the MS DTC API directly, but the SQL Server
database engine can also call MS DTC to implement the functionality required by distributed Transact-SQL statements executed

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

by applications. For more information, see MS DTC Distributed Transactions

SQL Server Database Services APIs

SQL Server 2000 supports APIs that allow applications to configure and administer the DTS and replication components of SQL
Server. Applications can use the same administration and configuration API, SQL-DMO, which the SQL Server tools use when
managing instances of SQL Server.

Topic Description
DTS Programming Reference
(Data Transformation Services)

Set of COM interfaces (based on OLE DB) for defining
and executing complex data transformations between
OLE DB data providers.

MS DTC Distributed
Transactions

Component that allows applications to define
distributed transactions that protect the integrity of a
series of updates made against multiple servers.
Applications use the transaction commands of an API
or Transact-SQL, the API or SQL Server 2000
interface with MS DTC to implement the distributed
transactions.

Programming Extended Stored
Procedures

C API for writing SQL Server extended stored
procedures.

Getting Started with
Replication Programming

Set of COM interfaces for defining and managing
replication between instances of SQL Server
databases. You can also replicate data from
heterogeneous third-party databases to SQL Server.

Developing SQL-DMO
Applications
(SQL Distributed Management
Objects)

Set of COM interfaces for managing and
administering SQL Server 2000.

For information about additional considerations regarding the use of the APIs discussed, see Application Development
Architecture.

Through its support of ODBC, SQL Server 2000 also supports applications written to the Remote Data Objects (RDO) and Data
Access Objects (DAO) APIs. These are object APIs that encapsulate ODBC. They are not discussed further in SQL Server Books
Online; programmers using RDO and DAO should refer to ODBC and SQL Server 2000 for implementation details for the SQL
Server ODBC Driver.

SQL Server Books Online topics about ADO, OLE DB, and ODBC do not cover the full functionality of those APIs. The topics cover
only the issues specific to those APIs when you are using the SQL Server OLE DB provider or the SQL Server ODBC driver. They
assume that you are familiar with the general concepts for the API you are using, and that you have access to the documentation
for the API. You can download the documentation for ADO, OLE DB, and ODBC at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

Building SQL Server Applications (SQL Server 2000)

Connecting Early Version Clients to SQL Server 2000
Microsoft® SQL Server™ 2000 supports connections from client applications that use the client software of SQL Server version
7.0 or earlier. SQL Server 2000 supports these connections in a compatibility mode. If a database is migrated to SQL Server 2000
from SQL Server 4.21a, 6.0, 6.5, or 7.0, the applications using the database can continue working with few, if any, changes.

SQL Server uses an application level protocol called Tabular Data Stream (TDS) to communicate between applications and
instances of SQL Server. SQL Server 2000 supports these versions of TDS:

Applications using the SQL Server 2000 versions of the OLE DB provider for SQL Server or the SQL Server ODBC driver
communicate using TDS 8.0.

Applications using the SQL Server 7.0 versions of the OLE DB provider for SQL Server or the SQL Server ODBC driver
communicate using TDS 7.0.

Applications using the SQL Server ODBC driver from SQL Server versions 6.5, 6.0, or 4.21a communicate using TDS 4.2.
These versions of SQL Server did not include OLE DB providers.

Applications using any version of DB-Library or Embedded-SQL for C communicate using TDS 4.2. The DB-Library .dll used
by these two APIs has not been enhanced since SQL Server 6.5, so even the .dll versions included with SQL Server 2000 and
SQL Server 7.0 still use TDS 4.2.

Applications using TDS 7.0 cannot access all features introduced in SQL Server 2000. The new features not available to TDS 7.0
clients include:

TDS 7.0 does not support sql_variant data. sql_variant data values are returned as nvarchar(4000) values to TDS 7.0
clients.

TDS 7.0 does not support bigint data. bigint data values are returned as decimal(19,0) values to TDS 7.0 clients.

TDS 7.0 does not support column-level collations. SQL Server 2000 always reports the instance default collation back to
TDS 7.0 clients.

Applications using TDS 4.2 cannot access all features introduced in SQL Server 7.0 and SQL Server 2000. The new features that
are not available to TDS 4.2 clients include:

TDS 4.2 does not support sql_variant data. sql_variant data values are returned as varchar(255) values to TDS 4.2 clients.

TDS 4.2 does not support bigint data. bigint data values are returned as float values to TDS 4.2 clients.

TDS 4.2 does not support column-level collations. SQL Server 2000 always reports the instance default collation back to
TDS 4.2 clients.

TDS 4.2 does not support XML document processing. TDS 4.2 applications attempting to execute SELECT statements with a
FOR XML clause will receive an error.

char, varchar, nchar, nvarchar, binary, and varbinary values longer than 255 bytes are truncated to 255 bytes.

TDS 4.2 does not support Unicode. nchar and nvarchar values are converted to char and varchar using the non-Unicode
Windows® code page of the server, with possible loss of extended characters. ntext values cannot be retrieved.

uniqueidentifier data types are converted to varbinary(16).

NULL values in bit columns are returned as 0. Catalog and meta data functions report all bit columns as NOT NULL
because NULL was not allowed for bit columns in SQL Server version 6.5 and earlier.

Catalog and meta data functions do not report the SQL Server 2000 data types (nchar, nvarchar, ntext, or
uniqueidentifier).

In SQL Server 6.5 and earlier, sysname was defined as varchar(30). In SQL Server 2000, sysname is defined as
nvarchar(128) to allow for longer identifiers that contain more extended characters. TDS 4.2 clients cannot access SQL
Server 2000 objects that have names more than 30 characters in length or that include characters not represented in the
Windows code page on the client computer.

If any of these features are introduced into a SQL Server database, applications running with earlier versions of the SQL Server
client software must be upgraded before they can access these new features.

Warning While the DB-Library and Embedded SQL for C APIs are still supported in Microsoft SQL Server 2000, no future
versions of SQL Server will include the files needed to do programming work on applications that use these APIs. Connections
from existing applications written using DB-Library and Embedded SQL for C will still be supported in the next version of SQL
Server, but this support will also be dropped in a future release. When writing new applications, avoid using these components.
When modifying existing applications, you are strongly encouraged to remove dependencies on these technologies. Instead of
DB-Library or Embedded SQL for C, you can use ADO, OLE DB, or ODBC to access data in SQL Server.

Building SQL Server Applications (SQL Server 2000)

Validating User Input
 New Information - SQL Server 2000 SP3.

Always validate user input. Untested input can cause program errors, and may be used by hackers as a point of entry into your
system. When implementing precautions against malicious input, consider the architecture and deployment scenarios of your
application. Remember that programs designed to run in a secure environment can be copied to an insecure environment.

Best Practices

The following suggestions should be considered best practices:

Make no assumptions about the size, type, or content of the data received by your application. For example, evaluate:
How will your application behave if an errant, or malicious, user enters a 10-megabyte MPEG where your
application expects a postal code?

How will your application behave if a DROP TABLE statement is embedded in a text field?
Test the size and data type of input, and enforce appropriate limits. This can help prevent deliberate buffer overruns.

Test the content of string variables and accept only expected values. Reject entries containing binary data, escape sequences,
and comment characters. This can help prevent script injection and can protect against some buffer overrun exploits.

When working with XML documents, validate all data against its schema as it is entered.

Never build Transact-SQL statements directly from user input.

Use stored procedures to validate user input.

In multitiered environments, all data should be validated before admission to the trusted zone. Data that does not pass the
validation process should be rejected, and an error returned to the previous tier.

Implement multiple layers of validation. Precautions you take against casually malicious users may be ineffective against
expert hackers. The best practice is to validate input in the user interface, and then at all subsequent points at which it
crosses a trust boundary.

For example, data validation in a client-side application may prevent simple script injection; however, if the next tier
assumes that its input has already been validated, any hacker capable of bypassing your client can have unrestricted access
to your system.

Never concatenate user input that is not validated. String concatenation is the primary point of entry for script injection.

Do not accept the following strings in fields from which file names may be constructed: AUX, CLOCK$, COM1 through
COM8, CON, CONFIG$, LPT1 through LPT8, NUL, and PRN.

When possible, reject input that contains the following potentially dangerous characters.
Input character Meaning in Transact-SQL

; Query delimiter
' Character data string delimiter
-- Comment delimiter
/* ... */ Comment delimiters. Text between /* and */ is not

evaluated by the server.
xp_ Begins the name of catalog extended stored procedures

such as xp_cmdshell.

See Also

Parameters

Building SQL Server Applications (SQL Server 2000)

Security and Scripting
 New Information - SQL Server 2000 SP3.

The flexibility and effectiveness of scripting is demonstrated by its widespread use in SQL Server 2000. However, this flexibility
and effectiveness can potentially be exploited in unsafe ways. You should treat scripts like any other software package in terms of
installation and security measures.

For more information about scripting, see this page on Microsoft.com.

Best Practices

The following suggestions should be considered best practices:

When possible, set the script engine to run scripts in safe mode.

If the script is to be distributed in a separate file, such as a Microsoft Visual Basic® Scripting Edition (VBScript) file (.vbs),
consider using the Scripting Runtime Signer object to digitally sign the script.

Avoid using COM libraries and ActiveX controls that are not marked as safe for initialization or scripting.

Avoid using unsigned COM libraries and ActiveX controls.

Always use the least privilege necessary to run a script.

Validate all user input used by the script, and do not concatenate user input before validating it. Never execute a command
constructed from user input that has not been validated. For more information, see Validating User Input.

Never store security credentials as part of a script. If you must persist credentials, you should encrypt them with the
Microsoft Win32® crypto API. For information about the crypto API, see this page on Microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=9714
http://go.microsoft.com/fwlink/?LinkId=9504

Samples (SQL Server 2000)

Samples
 New Information - SQL Server 2000 SP3.

SQL Server 2000 provides programming samples that demonstrate how to use a number of different technologies with a variety
of programming languages. You can install these as part of a custom installation.

You can use the following table to view all available samples, or you can select a specific category by clicking the Technology
down arrow and making a specific selection (for example, Replication). You can also sort the table by clicking a column heading
(for example, Language). To view detailed information about a specific sample, click the text in the Sample column.

ADO Employee ../adosql/adoprg04_9nc9.htm Visual Basic Displays long data types using the Employees table in the Northwind
database. ADO Employee ../adosql/adoprg04_1sa1.htm C++ Displays long data types using the Employees table in the Northwind
database. ADO FORXML ../adosql/adoprg04_92gc.htm XML Builds an Active Server Page (ASP) that retrieves result sets into
streams. ADO Intro ../adosql/adoprg04_5iw7.htm Visual Basic Connects to and queries a SQL Server database. Also shows error
handling. ADO OpenXML ../adosql/adoprg04_15ik.htm XML Builds an Active Server Page (ASP) that maps an XML schema to a
relational schema. ADO Xpath ../adosql/adoprg04_21vd.htm XML Builds an Active Server Page (ASP) that performs an xpath
query. ADO Web ../adosql/adoprg04_85ym.htm Web Builds Active Server Page (ASP)that interacts with instance of SQL Server.
Analysis Services AspAdoComplex ../olapdmpr/prsamples_1rji.htm VBScript Creates and manipulates a query-based cube.
Analysis Services AspAdoCubeDoc ../olapdmpr/prsamples_6p7y.htm VBSCript Retrieves and manipulates a cube schema.
Analysis Services AspAdoCubeTree ../olapdmpr/prsamples_6p7y.htm VBScript,JScript Retrieves and manipulates a cube schema.
Analysis Services AspAdoSimple ../olapdmpr/prsamples_1rji.htm VBScript Creates and manipulates a query-based cube. Analysis
Services CppOlapDemo ../olapdmpr/prsamples_1rji.htm C++ Creates and manipulates a query-based cube. Analysis Services
VbAdoComplex ../olapdmpr/prsamples_1rji.htm Visual Basic Creates and manipulates a query-based cube. Analysis Services
VbAdoCreateCube ../olapdmpr/prsamples_96zy.htm Visual Basic Creates a client-side cube. Analysis Services VbAdoCubeDoc
../olapdmpr/prsamples_6p7y.htm Visual Basic Retrieves and manipulates a cube schema. Analysis Services VbAdoSimple
../olapdmpr/prsamples_1rji.htm Visual Basic Creates and manipulates a query-based cube. Analysis Services
VbDsoCreateSmallCube ../olapdmpr/prsamples_63ou.htm Visual Basic Creates and manipulates a complex cube. Analysis
Services VbDSOExample ../olapdmpr/prsamples_96zy.htm Visual Basic Creates a server-side cube. Analysis Services
VbAdoWriteBack ../olapdmpr/prsamples_63ou.htm Visual Basic Creates and manipulates a complex cube. Analysis Services
VbDsoWriteEnableCube ../olapdmpr/prsamples_63ou.htm Visual Basic Creates and manipulates a complex cube. Analysis
Services VbMdHTMLdll ../olapdmpr/prsamples_63ou.htm Visual Basic Creates and manipulates a complex cube. DB Library
Example8 ../dblibc/dbc_db_csamp_3k6r.htm C++ Shows DB Library support for output parameters in Microsoft SQL Server
stored procedures. DB Library Sqlexamp ../dblibc/dbc_db_csamp_8gvn.htm C++ Shows how to handle various data types for
consistent output. DB Library Sqltestc ../dblibc/dbc_db_csamp_2tpj.htm C++ Issues a simple SELECT statement and prints the
returned result set rows to the console. DB Library Sqltestn ../dblibc/dbc_db_csamp_71pq.htm C++ Connects to a database and
executes a SELECT statement from the Microsoft(r) Windows NT(r) graphical user interface. DB Library Textcopy
../dblibc/dbc_db_csamp_67dt.htm C++ Illustrates how to handle Microsoft SQL Server text and image data types from a Microsoft
Foundation Class (MFC) console. Desktop Engine Desktop Engine installation ../distsql/distsql_7b91.htm C++ Installs an instance
of the Desktop Engine. DTS CustomTaskNoUI ../dtsprog/dtspsamp_7u3t.htm Active Template Library (ATL) ATL template for a DTS
custom task that does not support a custom user interface, but instead uses the default property grid in DTS Designer. DTS
CustomTaskWithUI ../dtsprog/dtspsamp_0dk9.htm Active Template Library (ATL) ATL template for a DTS custom task that
supports a custom user interface. DTS CustomTransform ../dtsprog/dtspsamp_9tkd.htm Active Template Library (ATL) ATL
template for a DTS custom transformation. DTS DTSActiveScriptTask ../dtsprog/dtspsamp_76p7.htm Visual Basic Runs a VBScript
as part of a DTS Task. DTS DTSAppObject ../dtsprog/dtspsamp_91ys.htm Visual Basic Uses DTS application object on the local
server. DTS DTSApplicationObject ../\dtsprog/dtspsamp_4a7o.htm Visual Basic Gets information from the DTS Application object.
DTS DTSBulkInsertTask ../dtsprog/dtspsamp_14iz.htm Visual Basic Uses DTS to do a Bulk Insert from a flat text file. DTS DTSCopy
../dtsprog/dtspsamp_0k55.htm C++ Copies a single source column of any simple type into a destination column of the same type.
DTS DTSCopyDatabase ../dtsprog/dtspsamp_5pnp.htm Visual Basic Uses the DTS TransferObjectsTask object to copy a database.
DTS DTSExecProcess ../dtsprog/dtspsamp_9ik3.htm Visual Basic Runs a Win32 application from a DTS task. DTS DTSExecSQLTask
../dtsprog/dtspsamp_2ip7.htm Visual Basic Executes a SQL statement while running a DTS package. DTS DTSExecutePackage
../dtsprog/dtspsamp_6jvp.htm Visual Basic Executes programmatically a DTS package that has been saved to structured storage
(i.e. .dts file). DTS DTSexmp1 ../dtsprog/dtspsamp_5wvn.htm Visual Basic Copies data from a source table to a destination table.
DTS DTSexmp2 ../dtsprog/dtspsamp_7zcc.htm Visual Basic Copies database to Microsoft Excel spreadsheet and creates pivot
table; also creates a DTS package. DTS DTSexmp3 ../dtsprog/dtspsamp_3ur7.htm Visual Basic Creates a package supporting
multiple sources and destinations. DTS DTSFTPTask ../dtsprog/dtspsamp_6ai3.htm Visual Basic Uses DTS to copy files external to
SQL Server from a source to a destination. DTS DTSPackageInfo ../dtsprog/dtspsamp_5rov.htm Visual Basic Gets information
using the DTS Application GetPackageInfos method. DTS DTSStrings ../dtsprog/dtspsamp_47n7.htm C++ Reformats two source
columns. DTS DTStask ../dtsprog/dtspsamp_72qz.htm C++ Creates and registers a CreateProcessTask COM object. DTS
DTSTransferObjectsTask ../dtsprog/dtspsamp_65yj.htm Visual Basic Uses DTS to transfer various types of SQLServer objects from
a pubs database to a pubs2 database. DTS DTSTskGVUpdate ../dtsprog/dtspsamp_12lh.htm C++ Displays and allows the user to
update the value of a global variable. DTS DTSTskPropIcon ../dtsprog/dtspsamp_9f3i.htm C++ Displays a message whose text is

specified as a custom task property. DTS DTSvbpkg ../dtsprog/dtspsamp_5ns3.htm Visual Basic Builds and executes a DTS
package. DTS DTSxform ../dtsprog/dtspsamp_74h1.htm C++ Creates and registers a custom Transformation object. DTS
FoodMart2000 ../dtsprog/dtspsamp_7smo.htm Visual Basic Uses the Visual Basic file output from the DTS import/export wizard
to convert the FoodMart 2000.mdb database to SQLServer. DTS Packages ../dtsprog/dtspsamp_0f8z.htm C++ Creates and
registers a custom Transformation object. DTS Pub2Pubs ../dtsprog/dtspsamp_2m7n.htm Visual Basic Copies the authors table
from the 'pubs' database to the 'pubs2' database, while doing some operations on various fields. Embedded SQL Edlib
../esqlforc/ec_6_eex_00_9o36.htm C Uses GET CONNECTION to obtain the DB-Library DBPROCESS connection pointer. Embedded
SQL Embedded SQL for C Examples ../esqlforc/ec_6_eex_00_6376.htm C 8 examples using C to connect to a specified instance of
MicrosoftSQL Server and execute a series of Embedded SQL statements. Note: These samples use SQL Server authentication.
Please use the $integrated keyword instead of the login and password arguments with the CONNECT TO statement to enable
Windows authentication (recommended). Embedded SQL Genchar ../esqlforc/ec_6_eex_00_4uya.htm C Issues a SELECT statement
query from the authors table in the pubs database. Embedded SQL Genwin ../esqlforc/ec_6_eex_00_2a7m.htm C Issues a SELECT
statement query from the authors table in the pubs database. Extended Stored Procedure xp-dblib
../odssql/ods_6_sam_01_4xia.htm C Uses DB Library to open bound connection to same SQL Server that called the extended
stored procedure. Extended Stored Procedure xp-hello ../odssql/ods_6_sam_01_060f.htm C Displays "hellow world" in output row.
Extended Stored Procedure xp-ODBC ../odssql/ods_6_sam_01_9jkz.htm C Uses ODBC to open bound connection to same SQL
Server that called the extended stored procedure. Extended Stored Procedure xp-param ../odssql/ods_6_sam_01_4yel.htm C
Accepts parameters from Transact-SQL script and reports values. MS DTC DB Library ../samples/samp_msdtc_5a79.htm C++
Shows how to use MS-DTC in a C++ program. MS DTC ODBC ../samples/samp_msdtc_5tnp.htm C++ Shows how to use MS-DTC
in a C++ program, using ODBC. MS DTC T-SQL ../samples/samp_msdtc_26hx.htm Transact-SQL Shows how to use MS-DTC in a
Transact-SQL script. ODBC bcp ../odbcsql/od_odbcsamp_4pm8.htm C++ Uses bulk copy functions with ODBC driver. ODBC
Compute ../odbcsql/od_odbcsamp_7yb7.htm C++ Executes SELECT statement, then determines shape of each result set
generated. ODBC Loaddata ../odbcsql/od_odbcsamp_74rl.htm C++ Loads data into SQL Server table. ODBC Mfcperf
../odbcsql/od_odbcsamp_7xly.htm C++ Tunes MFC ODBC database classes for performance, and captures and interprets
Microsoft SQL Server ODBC driver performance data. ODBC Trans ../odbcsql/od_odbcsamp_8037.htm C++ Uses cursors to
enable concurrent data access. OLE Automation Getnpv ../samples/samp_oleauto_04md.htm Visual Basic Retrieves net present
value. OLE Automation Loopback (DAO) ../samples/samp_oleauto_7x45.htm Visual Basic Retrieves contents of the input table
name provided to the DAO table and returns a tabular array equivalent to the result set returned from SQL Server. OLE
Automation Loopback (RDO) ../samples/samp_oleauto_5lyd.htm Visual Basic Uses RDO to call SQL Server and retrieve the
contents of the authors table; returns a tabular array equivalent to the result set returned from SQL Server. OLE Automation
Traverse ../samples/samp_oleauto_5t2d.htm Transact-SQL Traverses an object hierarchy. Replication Deflt_sp
../replprog/rp_replsamp_446q.htm Transact-SQL Builds a custom stored procedure resolver. Replication Distsamp
../replprog/rp_replsamp_2pf2.htm C++ Shows how to include the SQL Merge and SQL Distribution controls in a custom
application. Replication Repldts ../replprog/rp_replsamp_3l0j.htm Visual Basic Creates a transformation subscription. Replication
Replsamp ../replprog/rp_replsamp_5uwe.htm HTML Shows how to include the SQL Merge and SQL Distribution controls in a
custom application. Replication Replsamp.vbp ../replprog/rp_replsamp_7yr2.htm Visual Basic Shows how to include the SQL
Merge and SQL Distribution controls in a custom application. Replication Samppub ../replprog/rp_replsamp_2mr3.htm Transact-
SQL Configures a third-party publication and distributor. Replication Subspres ../replprog/rp_replsamp_6p5x.htm C++ Builds a
custom stored procedure resolver that executes the stored procedure at the Subscriber. Replication xp_enumntusers
../replprog/rp_replsamp_3rsj.htm C++ Generates multiple merge dynamic snapshot jobs. SQL-DMO AxSQLDMOCtl
../sqldmo/dmoref_ex01_3uy4.htm Visual Basic Creates a UserControl. SQL-DMO BackRestEvents ../sqldmo/dmoref_ex01_0kix.htm
Visual Basic Backs up and restores a database. SQL-DMO BackRestEvents ../sqldmo/dmoref_ex01_01gp.htm C++ Backs up and
restores a database. SQL-DMO BackupDevice ../sqldmo/dmoref_ex01_325h.htm Visual Basic Uses BackupDevice object to add
and remove a backup device. SQL-DMO CreateDatabase ../sqldmo/dmoref_ex01_0bs5.htm Visual Basic Creates a database. SQL-
DMO CreateTable ../sqldmo/dmoref_ex01_5w11.htm Visual Basic Uses SQL-DMO objects to create and alter tables. SQL-DMO
DMOExplorer ../sqldmo/dmoref_ex01_53ci.htm Visual Basic Walks the DMO object model and shows the values in it. SQL-DMO
Dmoping ../sqldmo/dmoref_ex01_82pl.htm C++ Determines version of SQL Server instance. SQL-DMO Enums
../sqldmo/dmoref_ex01_8roz.htm Visual Basic Uses SQL Server enumeration methods and recordsets. SQL-DMO Explore
../sqldmo/dmoref_ex01_5a3p.htm Visual Basic Displays contents of collections and properties of objects in SQL-DMO object tree.
SQL-DMO Idxtest ../sqldmo/dmoref_ex01_3cc4.htm Visual Basic Tests optimization strategies for stored procedures and views.
SQL-DMO Login ../sqldmo/dmoref_ex01_0b72.htm Visual Basic Locates available SQL Servers and logs in to them. SQL-DMO
Registry ../sqldmo/dmoref_ex01_7gxl.htm Visual Basic Finds registry information about a specified SQL Server. SQL-DMO Service
../sqldmo/dmoref_ex01_04yt.htm Visual Basic Checks status of, starts, and stops the service. SQL-DMO Smartptr
../sqldmo/dmoref_ex01_07oy.htm C++ Uses Microsoft Visual C++ features to optimize size of program and speed of
development. SQL-DMO Soc ../sqldmo/dmoref_ex01_40tf.htm C Shows how to use C for SQL-DMO development. SQL-DMO
Socpp ../sqldmo/dmoref_ex01_74kw.htm C++ Shows how to use C++ for SQl-DMO development. SQL-DMO SQLScripts
../sqldmo/dmoref_ex01_13sj.htm Visual Basic Shows how to generat SQL scripts to regenerate SQLServer objects. SQL-DMO
VerifyBackup ../sqldmo/dmoref_ex01_3t80.htm Visual Basic Finds backup devices and verifies backup set. SQL-NS Dbprop
../sqlns/ns_samp_6x2a.htm C++ Displays Properties dialog for Pubs database. SQL-NS Dumptree ../sqlns/ns_samp_5t7p.htm C++
Dumps all objects in the SQL namespace tree. SQL-NS Browse ../sqlns/ns_samp_2h82.htm Visual Basic Creates browser for
viewing and manipulating SQL namespace. SQL-NS Dbprop ../sqlns/ns_samp_85gj.htm Visual Basic Displays Properties dialog for
Pubs database. User Defined Functions CustNamesInRegion ../samples/samples_1far.htm Transact-SQL Creates an in-line user-

defined function in the Northwind database to view customer information for specific regions from the Customers table. User
Defined Functions FindReports ../samples/samples_1far.htm Transact-SQL Queries the Employees table in the Northwind
database and shows all direct and indirect reports. User Defined Functions LargeFreight ../samples/samples_1far.htm Transact-
SQL Creates a user-defined function that queries the Shippers and Orders tables in the Northwind database and returns orders
with freight greater than a certain value. User Defined Functions MyDate ../samples/samples_1far.htm Transact-SQL Changes the
format in which the date is returned Utilities Bii ../samples/samples_2isp.htm Executable utiiity Mimics the bcp utility, but adds
additional functinality. Utilities Pbalance ../samples/samples_9h9h.htm C++ Displays process information for instances of
Microsoft(r) SQL Server(tm) 2000 running on a local computer,and manages process priorities. Virtual Backup Device Mprocess
../samples/samples_2p0z.htm C++ Demonstrates a multiple stream Backup or Restore, in which each stream is handled by a
secondary process.. Virtual Backup Device Mthread ../samples/samples_0b38.htm C++ Demonstrates a multiple stream Backup or
Restore from a single process. Virtual Backup Device Osimple ../samples/samples_2j51.htm C++ Demonstrates how to backup or
restore a database across an ODBC connection. Virtual Backup Device Simple ../samples/samples_4rfp.htm C++ Demonstrates
how to backup or restore a database. Virtual Backup Device Snapshot ../samples/samples_1kqc.htm C++ Demonstrates how to
backup or restore a database using snapshot extensions. XML XMLDemo ../samples/samples_6fj3.htm XML Demonstrates
Microsoft(r) SQL Server(tm) 2000 support for XML. XML XMLStartup ../samples/samples_0374.htm XML Demonstrates features
that make SQL Server an XML-enabled database server. Technology

New and updated SQL Server programming samples are available from the Microsoft Web site. On the Resources menu, click
Code Center.

Note When using the sample programs, ensure that hard-coded values, such as user name and password, are modified as
necessary.

Security Note This is not a secure way of storing login credentials in a production application. If you use any of these samples as
templates for application development, modify the login routine to either use Windows authentication (recommended), or
prompt the user for name and password information rather than hard-coding it.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

Samples (SQL Server 2000)

User-Defined Function Samples
These four Transact-SQL samples show how to use user-defined functions. Earlier versions of Microsoft® SQL Server™ supplied
only built-in functions defined as part of the Transact-SQL language. Built-in functions operate as defined in the Transact-SQL
Reference and cannot be modified. Microsoft® SQL Server™ 2000 introduces user-defined functions that allow you to define and
modify your own Transact-SQL functions.

Sample Description
Udf_CustNamesInRegion Transact-SQL sample. This script creates an in-line user-

defined function in the Northwind database to view
customer information for specific regions from the
Customers table.

Udf_FindReports Transact-SQL sample. This script creates a function that
queries the Employees table in the Northwind database
and shows all direct and indirect reports.

Udf_LargeFreight Transact-SQL sample. This script creates a user-defined
function that queries the Shippers and Orders tables in
the Northwind database and returns orders with freight
greater than a certain value.

Udf_MyDate Transact-SQL sample. This script creates a single function
that changes the format in which the date is returned. The
script can be used on any table in the database.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_misc.exe, located at C:\Program
Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Misc.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Misc\Udf

Running the Samples

Instructions are included in Userdefinedfunc.doc, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Misc\Udf.

See Also

Samples

Samples (SQL Server 2000)

Utility Samples
The following samples illustrate Microsoft® SQL Server™ 2000 utility development.

Sample Description
Bii Utility sample. Stand-alone console application that

mimics the bcp utility that ships with Microsoft® SQL
Server™ 2000.

Pbalance C++ sample. Displays instance names, process identifiers,
CPU-time as a percentage, high and low thresholds of the
CPU-time, and the process priorities of instances of
Microsoft® SQL Server™ 2000 running on the local
computer.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_utils.exe, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Utils.

Prerequisites

C++ samples require Microsoft Visual C++ version 6.0.

Samples (SQL Server 2000)

Bii
This sample is a stand-alone console application that mimics the bcp utility that ships with Microsoft® SQL Server™ 2000. Unlike
the bcp utility, the bii utility detects when an image field is the destination database field and the input is a filename that can be
located in the file system. In this case, instead of loading the filename string into the image field, the program opens the file, loads
the data, and inserts the file contents in the image data type field.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Utils\bii

Running the Sample

To run the sample:

1. Open SQL Query Analyzer, connect to an instance of SQL Server, and run the Createtb.sql query.

2. Open a Command Prompt window and change the current directory to
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Utils\bii.

3. Enter the following command (The -v option is optional; it displays current status.):
bii testinsert.bii -Syourservername -Dyourdbname -Usqlusername -Psqlpassword -t, -v

See Also

Utility Samples

Samples (SQL Server 2000)

Pbalance
This sample displays instance names, process identifiers, CPU-time as a percentage, high and low thresholds of the CPU-time, and
the process priorities of instances of Microsoft® SQL Server™ 2000 running on the local computer. The sample also manages
process priorities and gives users the option of setting them manually.

You must install Microsoft Platform Software Development Kit (SDK) to compile and run this sample.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Utils\pbalance

Running the Sample

1. Open pbalance.dsw in Microsoft® Visual C++® 6.0 and compile the program.

2. Run pbalance.exe on your local machine. The application will display the information of the running instances.

3. To set the timer interval for collecting data, select any running instance in the list box and click Set (or double click any
running instance name). This displays the Change Setting dialog box. On the upper-right corner, enter the new time
interval value in the edit box and then click OK.

4. To set high and low CPU-time thresholds of a running instance, select the running instance in the list box and click Set (or
double click any running instance name). This displays the Change Setting dialog box. Enter the new high and low CPU-
time thresholds values in the edit boxes. You can also set the process priority of the running instance here. To do this, select
the new process priority in the combo box. Click OK to make the new settings effective.

Remarks

The sample extracts the CPU real time (the percentage) consumed by each running instance once in every fixed time interval. The
default value of this time interval is 5 seconds. Users have the option to set this time interval to a different value. If the CPU-time
consumed by a running instance is higher than the high threshold or lower than the low threshold, the application then lowers or
raises the process priority by one level. If the priority is already at the top or bottom level and cannot be lowered or raised, the
priority will then remain the same. Users also have the option to set the high and low thresholds.

See Also

Utility Samples

Samples (SQL Server 2000)

Virtual Backup Device Samples
The following samples illustrate Microsoft® SQL Server™ 2000 Virtual Backup Device application development.

Sample Description
Mprocess Visual C++ sample. Demonstrates how to backup or

restore the pubs sample database by using the Virtual
Device Interface feature of SQL Server 2000.

Mthread Visual C++ sample. Demonstrates how to backup or
restore the pubs sample database by using the Virtual
Device Interface feature of SQL Server 2000.

Osimple Visual C++ sample. Demonstrates how to backup or
restore the pubs sample database by using the Virtual
Device Interface feature of SQL Server 2000 with ODBC.

Simple Visual C++ sample. Demonstrates how to backup or
restore the pubs sample database by using the Virtual
Device Interface feature of SQL Server 2000.

Snapshot Visual C++ sample. Demonstrates how to backup or
restore the pubs sample database with snapshot by using
the Virtual Device Interface feature of SQL Server 2000,
and handles snapshot extensions.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Development Tools.

3. Under Sub-Components, select Backup/Restore API.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_backup.exe, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup.

Note The SQL Server 2000 Virtual Backup Device Specification, which contains detailed information about Virtual Backup Device
application development, is also installed as Vbackup.chm.

Prerequisites

C++ samples require Microsoft Visual C++ version 6.0.

See Also

Samples

Samples (SQL Server 2000)

Mprocess
 New Information - SQL Server 2000 SP3.

This Microsoft® Visual C++® console sample demonstrates how to backup or restore the pubs sample database by using the
Virtual Device Interface feature of Microsoft® SQL Server™ 2000. It demonstrates a multiple stream Backup or Restore, in which
each stream is handled by a secondary process.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup\Mprocess

Running the Sample

Open the mprocess.dsw in Microsoft Visual C++ 6.0 and compile this program. Make sure to do the following before compiling.

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where mprocess.exe is located.
Run the program by entering "mprocess [b|r] [nStreams]".

The program requires two command line parameters. The first parameter can be one of the following:

b: perform a backup

r: perform a restore

The second parameter gives the number of streams to use. It can be an integer from 1 to 32.

Remarks

This sample is designed for use with Mixed Mode security. Comments explaining how to implement Windows Authentication
mode are provided in the code.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Virtual Backup Device Samples

http://go.microsoft.com/fwlink/?LinkId=9504

Samples (SQL Server 2000)

Mthread
 New Information - SQL Server 2000 SP3.

This Microsoft® Visual C++® console sample demonstrates how to backup or restore the pubs sample database by using the
Virtual Device Interface feature of Microsoft® SQL Server™ 2000. It demonstrates a multiple stream Backup or Restore from a
single process.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup\Mthread

Running the Sample

Open the mthread.dsw in Microsoft Visual C++ 6.0 and compile this program. Make sure to do the following before compiling:

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where mthread.exe is located.
Run the program by entering "mthread [b|r] [nStreams]".

The program requires two command line parameters. The first parameter can be one of the following:

b: perform a backup

r: perform a restore

The second parameter, nStreams, specifies the number of streams to use. It can be an integer from 1 to 32.

Remarks

This sample is designed for use with Mixed Mode security. Comments explaining how to implement Windows Authentication
mode are provided in the code.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Virtual Backup Device Samples

http://go.microsoft.com/fwlink/?LinkId=9504

Samples (SQL Server 2000)

Osimple
This Microsoft® Visual C++® console sample demonstrates how to backup or restore the pubs sample database by using the
Virtual Device Interface feature of Microsoft® SQL Server™ 2000. This sample extends the Simple sample to use an ODBC
connection.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup\Osimple

Running the Sample

Open osimple.dsw in Microsoft® Visual C++® 6.0 and compile this program. Make sure to do the following before compiling:

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where osimple.exe is located. Run
the program by entering "osimple [b|r]".

The program requires one command line parameter. This parameter can be one of the following:

b: perform a backup

r: perform a restore

See Also

Virtual Backup Device Samples

Samples (SQL Server 2000)

Simple
 New Information - SQL Server 2000 SP3.

This Microsoft® Visual C++® console sample demonstrates how to backup or restore the pubs sample database by using the
Virtual Device Interface feature of Microsoft® SQL Server™.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup\Simple

Running the Sample

Open the simple.dsw in Microsoft® Visual C++® 6.0 and compile this program. Make sure to do the following before compiling.

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where simple.exe is located. Run
the program by entering "simple [b|r]".

The program requires one command line parameter. This parameter can be one of the following:

b: perform a backup

r: perform a restore

Remarks

This sample is designed for use with Mixed Mode security. Comments explaining how to implement Windows Authentication
mode are provided in the code.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Virtual Backup Device Samples

http://go.microsoft.com/fwlink/?LinkId=9504

Samples (SQL Server 2000)

Snapshot
This Microsoft® Visual C++® console sample demonstrates how to backup or restore the pubs sample database with snapshot
by using the Virtual Device Interface feature of Microsoft SQL Server™ 2000. This sample extends the Osimple sample to handle
the snapshot extensions. The ability to take or mount snapshots must be implemented before this sample is truly functional.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Backup\Snapshot

Running the Sample

Open snapshot.dsw in Microsoft® Visual C++® 6.0 and compile this program. Make sure to do the following before compiling:

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where snapshot.exe is located.
Run the program by entering "snapshot [b|r]".

The program requires one command line parameter. This parameter can be one of the following:

b: perform a backup

r: perform a restore

See Also

Virtual Backup Device Samples

Samples (SQL Server 2000)

XML Samples
The following samples illustrate Microsoft® SQL Server™ 2000 XML development.

Sample Description
XMLDemo XML Sample. Demonstrates Microsoft® SQL Server™

2000 support for XML functionality.
XMLStartup XML Sample. Demonstrates a combination of these

features makes SQL Server 2000 an XML-enabled
database server

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_xml.exe, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Xml.

See Also

Samples

Samples (SQL Server 2000)

XMLDemo
This sample demonstrates Microsoft® SQL Server™ 2000 support for XML functionality.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Xml\XMLDemo

Running the Sample

To install virtual roots:

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Configure SQL XML Support in IIS.

2. Create a new virtual directory named "Demos" to access the Northwind database.

3. Configure these three virtual names using a local path setting:

Name Type
Dbobject Dbobject
T Template
S Schema

4. On the Setting tab, check all the boxes.

5. Save the configuration.

6. In Control Panel, click Administrative Tools, and then click Internet Services Manager.

7. Add a virtual root to the Web site name "Demodir", and configure it to refer to the same physical directory where you
installed the demo files.

8. Save the configuration. Do not edit the "Demos" virtual directory entry. You should now have access to the files in the
Northwind database.

To install the stored procedure and table:

1. Open SQL Query Analyzer.

2. Connect to the Northwind database.

3. Open the Mycustomers.sql.

4. Execute the query.

5. Open Mysproc.sql.

6. Execute the query.

7. Leave Query Manager running so you can run the OpenXML demos.

You can now run Url.htm.

See Also

XML Samples

Samples (SQL Server 2000)

XMLStartup
Microsoft® SQL Server™ 2000 introduces various new features to support XML functionality. The combination of these features
makes SQL Server an XML-enabled database server.

This example shows how to:

Configure Microsoft Internet Information Services (IIS) and SQL Server virtual domains.

Execute queries and stored procedures from a URL.

Execute template files.

There are four exercises in this example:

Exercise Description
Exercise1 Configure URL access to the Northwind database on a

local instance of SQL Server. Your local server is also
running IIS and will act as its own host.

Exercise2 Execute different types of queries against the Northwind
database.

Exercise3 Execute stored procedures using a browser.
Exercise4 Execute queries against the Northwind database using

template files.

For more details about how to use this example, please refer to the file, C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\Xml\Xmlstartup\Xmlstartup.doc.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Xml\Xmlstartup

See Also

XML Samples

Samples (SQL Server 2000)

SQL-SCM Samples
The file Unzip_misc.exe in C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Misc creates an SCM subfolder
that contains sample applications for the SQL Service Control Manager (SQL-SCM) API. Do not use these samples. Microsoft®
SQL Server™ 2000 does not support the SQL-SCM API.

Sample Description
SCMControl C++ Sample. Illustrates using SQL Service Control

Manager (SQL-SCM) to query and change the execution
state of services on a local computer.

SCMStatus C++ Sample. Illustrates using SQL Service Control
Manager (SQL-SCM) w95scm.dll to query the execution
state of services on a local computer.

See Also

Samples

Samples (SQL Server 2000)

SCMControl
This sample illustrates using SQL Service Control Manager (SQL-SCM) API. Do not use this sample. Microsoft® SQL Server™
2000 does not support the SQL-SCM API.

See Also

SQL-SCM Samples

Samples (SQL Server 2000)

SCMStatus
This sample illustrates using SQL Service Control Manager (SQL-SCM) API. Do not use this sample. Microsoft® SQL Server™
2000 does not support the SQL-SCM API.

See Also

SQL-SCM Samples

Samples (SQL Server 2000)

MS DTC Samples
The following samples illustrate using Microsoft® SQL Server™ 2000 with Microsoft Distributed Transaction Coordinator (MS
DTC), using various technologies.

Sample Description
MS DTC Dblib Sample This program demonstrates how to use MS DTC in C++

using DB-Library.
MS DTC ODBC Sample This program demonstrates how to use MS DTC in C++

using ODBC.
MS DTC T-SQL Sample This sample demonstrates how to use MS DTC in a

Transact-SQL script.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_msdtc.exe, located at C:\Program
Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Msdtc.

Prerequisites

C samples require Microsoft Visual C++ version 6.0.

See Also

Samples

Samples (SQL Server 2000)

MS DTC Dblib Sample
This program demonstrates how to use MS DTC in C++ using DB-Library.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Msdtc\Dblib

Running the Sample

Open dblib.dsw in Microsoft® Visual C++® 6.0 and compile this program. Make sure to do the following before compiling:

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included and appear at the top of the list:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where sqlcurs.exe is located. Run
the program by typing "dblib -h".

See Also

MS DTC Samples

Samples (SQL Server 2000)

MS DTC ODBC Sample
This program demonstrates how to use MS DTC in C++ using ODBC. It uses MS DTC to perform simultaneous updates on two
SQL servers. The transaction in this example is client initiated. The client also initiates the commit operation.

Because this sample uses the ODBC interface, you'll need to configure ODBC data source names for two instances of SQL server
to run this sample. Each data source name (DSN) must reference the pubs database in a separate instance of SQL Server. The
authors table in the pubs database is used in this sample.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Msdtc\Odbc

Running the Sample

Open odbc.dsw in Microsoft® Visual C++® 6.0 and compile this program. Make sure to do the following before compiling:

1. From the Tools menu, choose Options, and then click the Directories tab.

2. From the Show directories for box, choose Include files and Library files, and ensure that these directories (as
appropriate) are included and appear at the top of the list:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

To run the sample, open a Command Prompt window, and then change the current directory to where sqlcurs.exe is located. Run
the program by entering "odbc -h".

See Also

MS DTC Samples

Samples (SQL Server 2000)

MS DTC T-SQL Sample
This sample demonstrates how to use MS DTC in a Transact-SQL script.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Msdtc\Tsql

Running the Sample

1. Run Updadr.sql to create a stored procedure.

2. Run Chgaddr.sql to run the stored procedure using MS DTC.

See Also

MS DTC Samples

Samples (SQL Server 2000)

OLE Automation Samples
The following samples illustrate Microsoft® SQL Server™ 2000 OLE Automation application development.

Sample Description
Getnpv OLE Automation
Sample

Microsoft Visual Basic® sample. Returns a net present
value from a query.

Loopback (DAO) OLE
Automation Sample

Visual Basic sample. Retrieves contents of the input table
name provided to the DAO table and returns a tabular
array equivalent to the result set returned from SQL
Server.

Loopback (RDO) OLE
Automation Sample

Visual Basic sample. Uses RDO to call SQL Server and get
the contents of the authors table, and returns a tabular
array equivalent to the result set returned from SQL
Server.

Traverse OLE Automation
Sample

Transact-SQL sample. Demonstrates how to use traversal
syntax for object hierarchies.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_oleauto.exe, located at C:\Program
Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Oleauto.

Prerequisites

Visual Basic samples require Microsoft Visual Basic version 6.0.

See Also

Samples

Samples (SQL Server 2000)

Getnpv OLE Automation Sample
This Microsoft® Visual Basic® sample returns a net present value from a query.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Oleauto\Getnpv

See Also

OLE Automation Samples

Samples (SQL Server 2000)

Loopback (DAO) OLE Automation Sample
This Microsoft® Visual Basic® sample retrieves contents of the input table name provided to the DAO table, and returns a tabular
array equivalent to the result set returned from Microsoft SQL Server™.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Oleauto\Loopback.dao

See Also

OLE Automation Samples

Samples (SQL Server 2000)

Loopback (RDO) OLE Automation Sample
This Microsoft® Visual Basic® sample uses RDO to call Microsoft SQL Server™ and get the contents of the authors table, and
returns a tabular array equivalent to the result set returned from SQL Server.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Oleauto\Loopback.rdo

See Also

OLE Automation Samples

Samples (SQL Server 2000)

Traverse OLE Automation Sample
This sample is a Transact-SQL script that demonstrates how to use traversal syntax for object hierarchies.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Oleauto\Traverse

See Also

OLE Automation Samples

Samples (SQL Server 2000)

Database Schema Samples
Microsoft® SQL Server™ 2000 includes a license for four popular database schema samples that are developed and documented
by Len Silverston, W.H. Inmon, and Kent Graziano, authors of The Data Model Resource Book (published by John Wiley, Inc. 1999,
ISBN: 0-471-15364-8).

You can review these samples to learn about database schema construction, use them as a basis for building your own custom
schemas, or gain hands-on experience by working with the schemas while reading The Data Model Resource Book. For detailed
descriptions and ideas for deploying the Silverston database schemas in database and modeling tools, you should refer to The
Data Model Resource Book.

The Silverston database schema samples are available only with SQL Server 2000 Enterprise Edition.

Each sample consists of SQL scripts that populate a database with tables and columns, and a Microsoft Word document that
describes schema definitions. There is no sample data for the sample schemas. The following samples are included:

Sample Corporate Data Model

Sample Enterprise Data Warehouse

Sample Human Resources Data Mart

Sample Sales Data Mart

Installing Samples

To install the samples, you can run a custom setup and select Code Samples. You can also select Code Samples when you run
Setup to add components to your existing installation.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_silverstondb.exe, located at C:\Program
Files\
Microsoft SQL Server\80\Devtools\Samples\silverstondb.

See Also

Code Samples

Setup Type: Typical, Minimum, or Custom

https://msdn.microsoft.com/en-us/library/ms917340(v=sql.80).aspx

Samples (SQL Server 2000)

Sample Corporate Data Model
The corporate data model is a sample database schema published by Silverston, Inmon, and Graziano, and it is licensed for use
with Microsoft® SQL Server™ 2000. This sample includes definitions of tables frequently used when implementing models of an
enterprise.

For this sample, an additional file called Tabdsc.txt contains detailed table descriptions for the corporate data model.

Default Location

C:\Program Files\Microsoft SQL Server\
80\Tools\Devtools\Samples\Silverstondb\Common

Running the Samples

1. In SQL Server Enterprise Manager, create a database to store the sample schema elements.

2. In SQL Query Analyzer, run Common_tables.sql to create the tables, and then run Common_constraints.sql to create
primary and foreign key constraints.

3. In SQL Server Enterprise Manager, open the database you just created to view the contents.

See Also

Database Schema Samples

Samples (SQL Server 2000)

Sample Enterprise Data Warehouse
The enterprise data warehouse is a sample database schema published by Silverston, Inmon, and Graziano, and licensed for use
with Microsoft® SQL Server™ 2000. This sample includes definitions of tables frequently used when implementing models of an
enterprise data warehouse.

Default Location

C:\Program Files\Microsoft SQL Server\
80\Tools\Devtools\Samples\Silverstondb\DWEnt

Running the Samples

1. In SQL Server Enterprise Manager, create a database to store the sample schema elements.

2. In SQL Query Analyzer, run Dwent_tables.sql to create the tables, and then run Dwent_constraints.sql to create primary and
foreign key constraints.

3. In SQL Server Enterprise Manager, open the database you just created to view the contents.

See Also

Database Schema Samples

Samples (SQL Server 2000)

Sample Human Resources Data Mart
The human resources data mart is a sample database schema published by Silverston, Inmon, and Graziano, and licensed for use
with Microsoft® SQL Server™ 2000. This sample includes definitions of tables frequently used when implementing models of a
Human Resources department.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Silverstondb\DWHr

Running the Samples

1. In SQL Server Enterprise Manager, create a database to store the sample schema elements.

2. In SQL Query Analyzer, run Dwhr_tables.sql to create the tables, and then run Dwhr_constraints.sql to create primary and
foreign key constraints.

3. In SQL Server Enterprise Manager, open the database you just created to view the contents.

See Also

Database Schema Samples

Samples (SQL Server 2000)

Sample Sales Data Mart
The sales data mart is a sample database schema published by Silverston, Inmon, and Graziano, and licensed for use with
Microsoft® SQL Server™ 2000. This sample includes definitions of tables frequently used when implementing models of Sales
department.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Silverstondb\DWSales

Running the Samples

1. In SQL Server Enterprise Manager, create a database to store the sample schema elements.

2. In SQL Query Analyzer, run Dwsales_tables.sql to create the tables, and then run Dwsales_constraints.sql to create primary
and foreign key constraints.

3. In SQL Server Enterprise Manager, open the database you just created to view the contents.

See Also

Database Schema Samples

ADO and SQL Server (SQL Server 2000)

Programming ADO SQL Server Applications
Microsoft® ActiveX® Data Objects (ADO) is a data access interface used to communicate with OLE DB-compliant data sources,
such as Microsoft SQL Server™ 2000. Data consumer applications can use ADO to connect to, retrieve, manipulate, and update
data from an instance of SQL Server.

Architecturally, ADO is an application-level interface that uses OLE DB, a library of COM interfaces that enables universal access to
diverse data sources. Because ADO uses OLE DB as its foundation, it benefits from the data access infrastructure that OLE DB
provides; yet shields the application developer from the necessity of programming COM interfaces. Developers can use ADO for
general-purpose access programs in business applications (Accounting, Human Resources, and Customer Management), and use
OLE DB for tool, utility, or system-level development (development tools and database utilities).

The ADO topics emphasize the use of ADO 2.6 with SQL Server 2000, and are not intended as a general primer in using ADO. For
more information about ADO 2.6, see the ADO documentation in the Microsoft Data Access Components (MDAC) SDK, located in
the MSDN Library at Microsoft Web site. The ADO sections in MSDN Online contain ADO getting started topics and reference
topics for ADO objects, collections, properties, and methods.

Data sources in SQL Server 2000 are suited for access through ADO. Because SQL Server is OLE DB-compliant, you can use ADO
to develop client applications, service providers, Web applications, and business objects that access data in SQL Server 2000.

When programming ADO applications, consider:

Which OLE DB provider to use.

Which development environment to use.

Additional data access requirements (for example, cursor types, transaction management, stored procedure usage, and so
on).

A developer might also consider using Microsoft Remote Data Services (RDS). RDS is a Web-based technology that uses
Microsoft Internet Information Services (IIS) and special ActiveX controls to bind data from an SQL data source to data controls on
a Web page. RDS is integrated with ADO technology. For more information about RDS, see the RDS documentation in the
Microsoft Data Access Components (MDAC) SDK, located in the Platform SDK in MSDN Online.

ADO can also be integrated with Microsoft® ActiveX® Data Objects (Multidimensional) (ADO MD), which you can use to browse
a multidimensional schema, and query and retrieve the results of a cube; and Microsoft® ActiveX® Data Objects Extensions for
Data Definition Language and Security (ADOX), which includes objects for schema creation and modification, and security.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO and SQL Server (SQL Server 2000)

Getting Started with ADO
Microsoft® SQL Server™ 2000 applications can use ADO to connect to, retrieve, manipulate, and update data from an instance of
SQL Server. These topics are discussed in Getting Started with ADO.

Topic Description
ADO Syntax Conventions Describes text formatting used when explaining ADO

syntax.
System Requirements for
ADO

Lists software required for using ADO to access data in
SQL Server 2000.

ADO and OLE DB Provider
Installation

Describes the OLE DB providers that are installed with
SQL Server 2000.

ADO File Locations Lists the locations of all files that are required for ADO
to communicate with SQL Server 2000.

Upgrading the Catalog
Stored Procedures

Explains the process for updating catalog stored
procedures when using ADO with instances of SQL
Server version 6.5 or earlier.

Using ADO in Different
Development Environments

Discusses using ADO with Microsoft Visual Basic®,
Microsoft Visual C++®, and using ADO in Web-based
applications.

Adding a Data Source Describes how to add data sources for use with ADO.
Deleting a Data Source Describes how to delete data sources.

ADO and SQL Server (SQL Server 2000)

ADO Syntax Conventions
ADO programming documentation uses the following conventions to distinguish elements of text.

Convention Used for
UPPERCASE Transact-SQL functions and statements, and C macro names.
courier new Sample commands and program code.
italic Function parameter names and information that the user or

the application must provide.
bold Function names, parameter keywords, and other syntax that

must be typed exactly as shown.

ADO and SQL Server (SQL Server 2000)

System Requirements for ADO
To access data in Microsoft® SQL Server™ 2000, you must have the following software installed:

Microsoft OLE DB Provider for SQL Server (SQLOLEDB) or Microsoft OLE DB Provider for ODBC (MSDASQL).

SQL Server 2000.

Network software on the computers on which the driver and instance of SQL Server are installed (not required when
connecting to a local desktop instance of SQL Server).

SQL Server

If you use the Microsoft OLE DB Provider for SQL Server (SQLOLEDB), or Microsoft OLE DB Provider for ODBC (MSDASQL) to
access data in version 6.0, or 6.5 of SQL Server, you may need to install the catalog stored procedures. For more information, see
Upgrading the Catalog Stored Procedures.

Network Software

Network software is required to connect the clients running SQLOLEDB or MSDASQL to the server on which an instance of SQL
Server resides. To connect to a server running an instance of SQL Server, you can use the Microsoft Windows® 95, Microsoft
Windows 98, Microsoft Windows NT® version 4.0, or Microsoft Windows 2000 operating system, or a compatible network such
as Novell NetWare, or Banyan VINES. For information about the hardware and software required for each network, see the
documentation for the network.

ADO and SQL Server (SQL Server 2000)

ADO and OLE DB Provider Installation
ADO clients that communicate with OLE DB need an OLE DB provider, a dynamic-link library that uses OLE DB interfaces and
methods to query an SQL data source. For Microsoft® SQL Server™ 2000, the following types of OLE DB providers can be used:

Microsoft OLE DB Provider for SQL Server (SQLOLEDB), which maps OLE DB interfaces and methods over SQL Server data
sources.

Microsoft OLE DB Provider for ODBC (MSDASQL), which maps OLE DB interfaces and methods to ODBC APIs. OLE DB
consumers connect to an instance of SQL Server using the SQL Server ODBC driver as an intermediary layer.

SQLOLEDB is installed with SQL Server 2000 and is recommended when developing new applications. MSDASQL is provided for
backward compatibility only.

The ADO Connection and Error Handling sample application, used in some of the code examples in ADO topics, uses SQLOLEDB.
Where pertinent, MSDASQL examples are also provided.

SQLOLEDB does not support the use of an ODBC DSN connection, but it does support the use of Microsoft Data Links. For more
information about the use of connection properties for SQLOLEDB and MSDASQL, see Connecting to a SQL Server Data Source.

If you are running ADO code with SQL Server 2000 and an unexpected error occurs, check the provider properties. The error
could be attributable to the way ADO interacts with different OLE DB providers.

ADO and SQL Server (SQL Server 2000)

ADO File Locations
All required ADO components are installed as part of either a Microsoft® SQL Server™ 2000 server or client installation. You can
develop ADO applications on either a client or a server.

ADO sample applications, which provide additional reference material for ADO application development, are included with SQL
Server 2000. The ADO DLLs are installed automatically as part of SQL Server Setup in the C:\Program Files\Common
Files\System\ADO directory.

Directory File Description
C:\Program Files\Common
Files\System\ADO

ALL Files implementing ADO
objects.

C:\Program Files\Common
Files\System\OLE DB

Sqloledb.dll Dynamic-link library that
implements the SQLOLEDB
provider.

C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Include

Sqloledb.h C/C++ header file used for
developing SQLOLEDB
consumers.

C:\Program Files\Common
Files\System\OLE DB

Sqloledb.rll SQLOLEDB resource file for
developing Microsoft Visual
Basic® applications.

C:\Program Files\Common
Files\System\OLE DB

Msdasql.dll Dynamic-link library that
implements the MSDASQL
provider.

C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Include

Msdasql.h C/C++ header file used for
developing MSDASQL
consumers.

C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\Ado

ALL Sample applications that
illustrate the use of ADO.

See Also

Overview of Installing SQL Server 2000

ADO and SQL Server (SQL Server 2000)

Upgrading the Catalog Stored Procedures
The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) and Microsoft OLE DB Provider for ODBC (MSDASQL) can use a set
of system stored procedures, known as catalog stored procedures, to obtain information from the SQL Server system catalog.
SQL Server 2000 installs the catalog stored procedures automatically when you install or upgrade SQL Server. The Instcat.sql file
includes updates to the catalog stored procedures. If the current version of SQLOLEDB or MSDASQL will be used against SQL
Server version 6.5 or earlier, the SQL Server system administrator must upgrade the catalog stored procedures. Upgrading the
catalog stored procedures does not affect the operation of existing SQL Server clients.

To upgrade the catalog stored procedures, the system administrator can run a script using the osql utility. To run osql, the
computer must be installed as a client workstation for SQL Server. The system administrator should back up the master database
before running Instcat.sql.

At a command prompt, use the osql utility to run the Instcat.sql script. For example:

C:> ISQL -Usa -Psa_password -Sserver_name -ilocation\Instcat.sql

Arguments

sa_password

System administrator password.

server_name

Name of the server on which an instance of SQL Server 2000 is installed.

location

Full path of the location of Instcat.sql. You can use Instcat.sql from an installed instance of SQL Server (the default location is
C:\Program Files\Microsoft SQL Server\MSSQL\Install) or from the SQL Server 2000 compact disc (the default location is
D:\platform where D is the CD-ROM drive letter and platform is the appropriate server platform directory, such as 386).

The Instcat.sql script generates many messages. Most of these indicate how Transact-SQL statements issued by the script affected
rows. These messages can be ignored, although the output should be scanned for messages that indicate an execution error.
When Instcat.sql is run against SQL Server 6.0, the message generated about the object sp_MS_upd_sysobj_category not
existing can be ignored. The last message should indicate that Instcat.sql completed successfully.

The Instcat.sql script fails when there is not enough space available in the master database to store the catalog stored procedures
or to log the changes to existing procedures. If the Instcat.sql script fails, contact your system administrator.

The system administrator can also run Instcat.sql using SQL Query Analyzer.

ADO and SQL Server (SQL Server 2000)

Using ADO in Different Development Environments
The ADO object model is language neutral; it can be used in a variety of development environments. These include any of the
Microsoft Visual languages (Microsoft® Visual Basic®, Microsoft Visual C++®, Microsoft Visual J++®), and Web development
environments such as Microsoft Visual InterDev™.

ADO and SQL Server (SQL Server 2000)

Visual Basic and ADO
Visual Basic and ADO

With Microsoft® Visual Basic®, the ADO object model is integrated into the development environment. This allows you to use
features such as drop-down lists of ADO properties and methods as you enter code, and internally, high-level access to OLE DB
functionality.

Visual Basic version 6.0 includes:

The ADO Data Control and other ADO/OLE DB capable data bound controls.

The Data Environment Designer, an interactive graphical tool that allows for the building of ADO connections and
commands. It provides a programmatic interface to the data access objects in a project.

Dynamic data binding, which allows the run-time setting of a DataSource property of a data consumer, such as a DataGrid
control, to a data source, such as the ADO Data Control.

To use ADO to access SQL Server 2000 data in a Visual Basic application

1. Reference ADO from your Visual Basic Project.

2. Set the Provider property of the Connection object by specifying Sqloledb.

To reference ADO from a Visual Basic project

1. In Visual Basic, on the Project menu, click References.

2. Select Microsoft ActiveX Data Objects 2.6 Library. Verify that at least the following libraries are also selected:

Visual Basic for Applications

Visual Basic runtime objects and procedures

Visual Basic objects and procedures

OLE Automation

The library for ADO is msado15.dll and the program ID (ProgID) is ADODB.

For more information about the use of connection properties for SQLOLEDB, see Connecting to a SQL Server Data Source.

For more information about Visual Basic, see the MSDN Library at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO and SQL Server (SQL Server 2000)

Visual C++ and ADO
Visual C++ and ADO

Using Microsoft® Visual C++® with ADO allows you to write data access applications for Microsoft SQL Server™ 2000. When
developing a SQL Server application, you can:

Use the #import Compiler COM directive to import the Msado15.dll before using ADO. The directive generates header files
containing typedef declarations, smart pointers for interfaces, and enumerated constants. Each interface is encapsulated, or
wrapped, in a class. This is the recommended way to program ADO using Visual C++.

Use the IADORecordBinding interface (also referred to as ADO Visual C++ Extensions), which supports retrieving data
into native C/C++ data types without going through a VARIANT data type. It also provides preprocessor macros when using
the interface. The interface has methods to associate ADO Recordset fields with C/C++ variables, to add new rows, and to
perform updates. This method of programming ADO using Visual C++ is recommended for backward compatibility only.

Visual Studio version 6.0 includes the ADO Data Control and other databound controls that you can use to design Microsoft
Win32® applications that use ADO.

The Component Gallery contains the ADO Data Bound Dialog Wizard, which guides you through the process of creating a
Microsoft Foundation Class Library (MFC) data bound dialog box with ADO. The controls of the dialog box bind to the fields
of a recordset. Using the wizard, you can automatically generate all of the resources, classes, and Component Object Model
(COM) initialization code necessary to build a data bound dialog box and add it to your project.

For more information about using Visual C++ with ADO, see the MSDN Library at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO and SQL Server (SQL Server 2000)

Web-Based Applications and ADO
Web-Based Applications and ADO

ADO helps build Web applications that access data in Microsoft® SQL Server™ 2000. With Microsoft Visual InterDev™ as a Web
development environment, you can use ADO connection and data access routines from within your Microsoft Visual Basic®
Scripting Edition or Microsoft JScript® code in your client .htm or server .asp pages. You can encapsulate ADO routines into
business objects that perform specific functions, such as validation and authentication.

An example of a Web application that uses ADO to communicate with a SQL Server 2000 database is the Northwind Inventory
Management sample. This online inventory management application allows users to view Northwind database inventory-related
tables, make product updates, add new products, and remove old ones.

See Also

ADO Web Application

ADO and SQL Server (SQL Server 2000)

Adding a Data Source
With ADO, you can connect to an instance of Microsoft® SQL Server™ by using the following types of data sources:

Microsoft Data Links, using the Microsoft OLE DB Provider for SQL Server (SQLOLEDB).

ODBC data sources, using the Microsoft OLE DB Provider for ODBC (MSDASQL).

Adding a Microsoft Data Link

You can add a Microsoft Data Link by using Microsoft Windows® Explorer.

To add a Microsoft Data Link by using Windows Explorer

1. In Windows Explorer, select the folder in which to add the new data link.

2. On the File menu, point to New, and then click Text Document.

3. Rename the file in the form Filename.udl.

4. Double-click the new file to open the Data Link Properties window.

5. Select the Provider tab, select Microsoft OLE DB Provider for SQL Server, and then select the Connection tab.

6. Specify a server name, the login type, and the default database.

Adding an ODBC Data Source

You can add a data source by using ODBC Administrator, programmatically (by using SQLConfigDataSource), or by creating a
file.

To add a data source by using ODBC Administrator

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click ODBC Data Sources (32bit) (if using Windows 95 or Windows 98) or Data Sources (ODBC) (if using
Windows NT 4.0 or Windows 2000), click the User DSN, System DSN, or File DSN tab, and then click Add.

3. Click SQL Server, and then click Finish.

Complete the steps in the Create a New Data Source to SQL Server Wizard.

ADO and SQL Server (SQL Server 2000)

Deleting a Data Source
Data sources can be deleted by:

Deleting the .udl file if the data source is a Microsoft Data Link.

Using ODBC Administrator if the data source is an ODBC data source.

Deleting a Microsoft Data Link

To delete a Microsoft Data Link file by using Windows Explorer

1. In Windows Explorer, select the Microsoft Data Link file.

2. Click Delete, and then click Yes to confirm the deletion.

Deleting an ODBC Data Source

To delete a data source by using ODBC Administrator

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click ODBC Data Sources (32bit) (if using Windows 95 or Windows 98) or Data Sources (ODBC) (if using
Windows NT 4.0 or Windows 2000), and then click the User DSN, System DSN, or File DSN tab.

3. Click the data source to delete, click Remove, and then click Yes to confirm the deletion.

ADO and SQL Server (SQL Server 2000)

Creating an ADO Application
The following components and functions are part of the ADO architecture.

Component Function
Application Calls ADO objects, collections, methods, and properties to

communicate with a data source. Submits SQL statements, and
processes result sets.

ADO Manages communication between an application and the OLE
DB provider used by the application.

OLE DB provider Processes all ADO calls from the application, connects to a data
source, passes SQL statements from the application to the data
source, and returns results to the application.

Data source Contains the information used by a provider to access a specific
instance of data in a DBMS.

An application that uses ADO to communicate with Microsoft® SQL Server™ 2000 performs the following tasks:

Connects with a data source.

Sends SQL statements to the data source.

Processes the results of statements from the data source.

Processes errors and messages.

Terminates the connection to the data source.

A more complex application written using ADO can also perform the following tasks:

Use cursors to control location in a result set.

Execute stored procedures on a server.

Execute user-defined functions on a server.

Manage queries that generate multiple result sets.

Request commit or rollback operations for transaction control.

Perform catalog operations to inquire about the attributes of a result set.

Manage long data (text, ntext, and image columns) operations.

Perform XML operations using XPath queries, annotated schemas, and Transact-SQL extensions such as FOR XML and
OpenXML.

For more information, see Using ADO in Different Development Environments.

ADO and SQL Server (SQL Server 2000)

Connecting to a SQL Server Data Source
 New Information - SQL Server 2000 SP3.

ADO can use any OLE DB provider to establish a connection. The provider is specified through the Provider property of the
Connection object. Microsoft® SQL Server™ 2000 applications use SQLOLEDB to connect to an instance of SQL Server, although
existing applications can also use MSDASQL to maintain backward compatibility.

Using the Execute method of the Connection object is one way to execute an SQL statement against a SQL Server data source.

The Connection object allows you to:

Configure a connection.

Establish and terminate sessions with data sources.

Identify an OLE DB provider.

Execute a query.

Manage transactions on the open connection.

Choose a cursor library available to the data provider.

There are some differences in connection properties between SQLOLEDB and MSDASQL. For information about connection
properties for MSDASQL, see the MSDN Library at Microsoft Web site.

If you are writing a connection string for use with SQLOLEDB:

Use the Initial Catalog property to specify the database.

Use the Data Source property to specify the server name.

Use the Integrated Security keyword, set to a value of SSPI, to specify Windows Authentication (recommended),
or
use the User ID and Password connection properties to specify SQL Server Authentication.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to
enter their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt
them with the Win32® crypto API. For more information, see "The Crypto API Function" in the MSDN® Library at this
Microsoft Web site.

If you are writing a connection string for use with MSDASQL:

Use the Database keyword or Initial Catalog property to specify the database.

Use the Server keyword or Data Source property to specify the server name.

Use the Trusted_Connection keyword, set to a value of yes, to specify Windows Authentication (recommended),
or
Use the UID keyword or User ID property, and the Pwd keyword or Password property to specify SQL Server
Authentication.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to
enter their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt
them with the Win32 crypto API. For more information, see "The Crypto API Function" in the MSDN Library at this Microsoft
Web site.

For more information about a complete list of keywords available for use with a SQLOLEDB connection string, see Connection
Object.

Restrictions on Multiple Connections

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://go.microsoft.com/fwlink/?LinkId=9504
http://go.microsoft.com/fwlink/?LinkId=9504

SQLOLEDB does not allow multiple connections. Unlike MSDASQL, SQLOLEDB does not attempt to reconnect when the
connection is blocked.

Examples

A. Using SQLOLEDB to connect to an instance of SQL Server: setting individual properties

The following Microsoft Visual Basic® code fragments from the ADO Introductory Visual Basic Sample show how to use
SQLOLEDB to connect to an instance of SQL Server.

' Initialize variables.
Dim cn As New ADODB.Connection
. . .
Dim ServerName As String, DatabaseName As String

' Put text box values into connection variables.
ServerName = txtServerName.Text
DatabaseName = txtDatabaseName.Text

' Specify the OLE DB provider.
cn.Provider = "sqloledb"

' Set SQLOLEDB connection properties.
cn.Properties("Data Source").Value = ServerName
cn.Properties("Initial Catalog").Value = DatabaseName

' Windows NT authentication.
cn.Properties("Integrated Security").Value = "SSPI"

' Open the database.
cn.Open

B. Using SQLOLEDB to connect to an instance of SQL Server: connection string method

The following Visual Basic code fragment shows how to use SQLOLEDB to connect to an instance or SQL Server:

' Initialize variables.
Dim cn As New ADODB.Connection
Dim provStr As String

' Specify the OLE DB provider.
cn.Provider = "sqloledb"

' Specify connection string on Open method.
ProvStr = "Server=MyServer;Database=northwind;Trusted_Connection=yes"
cn.Open provStr

C. Using M SDASQL to connect to an instance of SQL Server

To use MSDASQL to connect to an instance of SQL Server, use the following types of connections.

The first type of connection is based on the ODBC API SQLConnect function. This type of connection is useful in situations where
you do not want to code specific information about the data source. This may be the case if the data source could change or if you
do not know its particulars.

In the code fragment shown, the ConnectionTimeout method sets the connection time-out value to 100 seconds. Next, the data
source name, and authentication type are passed as parameters to the Open method of the Connection object, using an ODBC
data source named MyDataSource that points to the northwind database on an instance of SQL Server.

Dim cn As New ADODB.Connection

cn.ConnectionTimeout = 100
' DSN connection
' cn.Open "DSN=MyDataSource;Trusted_Connection=yes;"

cn.Close

The second type of connection is based on the ODBC API SQLDriverConnect function. This type of connection is useful in
situations where you want a driver-specific connection string. To make a connection, use the Open method of the Connection
object and specify the driver, server name, authentication type, and database. You can also specify any other valid keywords to
include in the connection string. For more information about the keyword list, see SQLDriverConnect.

Dim cn As New ADODB.Connection

' Connection to SQL Server without using ODBC data source.
cn.Open "Driver={SQL Server};Server=Server1;Database=northwind;Trusted_Connection=yes"

cn.Close

See Also

ADO Connection and Error Handling

ADO and SQL Server (SQL Server 2000)

Connecting to Multiple Instances of SQL Server
 New Information - SQL Server 2000 SP3.

Multiple instances of Microsoft® SQL Server™ 2000 can be run on one computer. The computer can support a default instance of
SQL Server and additional named instances of SQL Server. An application connects to the default instance of SQL Server by
specifying the name of the computer. To connect to a named instance, the application specifies both the computer name and the
instance name using this format: '<computername>\<instancename>'

Examples

A. Using ADO and SQLOLEDB to connect to a default instance of SQL Server

The following Microsoft Visual Basic® code fragment shows use ADO and SQLOLEDB to connect to a default instance of SQL
Server.

'Initialize variables.
Dim cn As New ADODB.Connection
Dim provStr As String
'Specify the OLE DB provider.
cn.Provider = "sqloledb"
'Specify a connection string for the default instance
'of SQL Server.
ProvStr = "Server=NorthRegion;Database=northwind;Trusted_Connection=yes;"
cn.Open ProvStr

B. Using ADO and SQLOLEDB to connect to a named instance of SQL Server

The following Visual Basic code fragment shows how to use ADO and SQLOLEDB to connect to a named instance of SQL Server
2000.

Note To connect to an instance of SQL Server, you must have the latest version of Microsoft Data Access Components (MDAC)
installed on both computers. The latest version of MDAC is installed automatically with SQL Server 2000; however, if you are
using SQL Server 7.0, 6.5, or 6.0, you need to install the latest version of MDAC.

'Initialize variables.
Dim cn As New ADODB.Connection
Dim provStr As String
'Specify the OLE DB provider.
cn.Provider = "sqloledb"
'Specify a connection string for an additional instance
'of SQL Server.
ProvStr = "Server=NorthRegion\Inst02;Database=northwind;Trusted_Connection=yes;"
cn.Open ProvStr

Note To connect to a named instance using JScript, use this format: '<computername>\\<instancename>'

ADO and SQL Server (SQL Server 2000)

Retrieving Connection Properties
The Properties collection and Property object provide information about the characteristics of the Connection, Command,
Recordset, and Field objects. The Properties collection can be accessed through any of these objects, and the Property object
can be accessed through the Properties collection by using the default indexing method.

Examples

A. Retrieving the ConnectionTimeout, CommandTimeout, and Updatability properties.

The Properties collection is retrieved through the Connection, Command, and Recordset objects. The ConnectionTimeout
property of the Connection object is then printed. The same steps are performed for the Command and Recordset objects.

This example demonstrates how to retrieve connection properties.

Dim cn As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset

cn.Provider = "sqloledb"
cn.Properties("Data Source").Value = "MyServerName"
cn.Properties("Initial Catalog").Value = "northwind"
cn.Properties("Integrated Security").Value = "SSPI"
cn.Open

' Retrieve the ConnectionTimeout property.
Debug.Print cn.Properties("ConnectionTimeout")

Set Cmd.ActiveConnection = Cn
cmd.CommandText = "titles"
cmd.CommandType = adCmdTable
Set rs = cmd.Execute

' Retrieve the CommandTimeout property.
Debug.Print cmd.Properties("CommandTimeout")

' Retrieve the Updatability property.
Debug.Print rs.Properties("Updatability")

ADO and SQL Server (SQL Server 2000)

Executing Queries
After an ADO application connects with a data source, it can execute SQL statements on the data source. The general sequence of
events in executing an SQL statement is:

1. Construct the statement.

2. Execute the statement.

3. Retrieve any result sets.

After an application retrieves all of the rows in all of the result sets returned by the SQL statement, it can execute another query
using the same connection. If an application does not need to retrieve all of the rows in a particular result set, it can cancel the
remainder of the result set by calling the Close method to close the Connection object. This closes any active Recordset objects
associated with the connection.

If an ADO application must execute the same SQL statement multiple times with different data, you can use the Parameters
collection, which consists of Parameter objects that provide parameter information and data to the Command object.

In addition to executing SQL statements, an application can:

Execute stored procedures.

Execute user-defined functions.

Perform batch updates.

Generate multiple recordsets.

ADO and SQL Server (SQL Server 2000)

Using the Command Object
An application can use the Command object to issue commands to the database. These commands include query strings,
prepared query strings, and associated parameters. The actual command language and features supported depend on the
underlying OLE DB provider.

The Command object can either open a new connection or use an existing connection to perform queries, depending on what is
specified in the ActiveConnection property of the Command object:

If the ActiveConnection property is set with a reference to a Connection object, the Command object uses the existing
connection.

If the ActiveConnection property is set with a connection string, a new connection is established.

More than one Command object can use the connection from the same Connection object.

Executing commands can generate zero, one, or multiple recordsets. For example, executing a data definition language query does
not generate a recordset. Executing one SELECT statement can generate a recordset, and executing a batch of SELECT statements
or a stored procedure can generate more than one recordset.

Execute Method

Use the Execute method of the Command object to execute a query, data definition command, or stored procedure. The syntax
is:

Set rs = cmd.Execute(NumRecords, Parameters, Options)

The variable rs is the returned Recordset object, and the parameters are optional. The NumRecords parameter specifies the
number of rows returned; Parameters is a variant that specifies initial input parameter values; and Options specifies the type of
query (in the form of a CommandTypeEnum constant), if known, to optimize processing.

Command Type Options

Command type options are specified in the CommandType property. A command can be a standard SQL data manipulation
language statement, such as SELECT, INSERT, UPDATE, or DELETE, or any data definition language statement, such as CREATE or
DROP. A command can also be the name of a stored procedure or table.

The CommandType property has the following values.

CommandTypeEnum Constant Query String
adCmdFile File name of a persistently stored Recordset

object
adCmdStoreProc Stored procedure
adCmdTable Table name
adCmdTableDirect Table name whose columns are all returned
adCmdText SQL statement
adCmdUnknown Contents of the command are not known (default)
adCmdUnspecified Unspecified command type argument

Prepared Property

You can prepare query strings using the Prepared property. Setting the Prepared property allows a query plan to be created
when it is first executed. The query plan is then used for subsequent executions to enhance performance. A query string should be
prepared only when executed more than one time because it may take more time to create a query plan than to execute the query
string directly. Performance is enhanced only when you execute the query string more than one time.

The Prepared property can also be useful when executing a parameterized query string repeatedly. Different parameter values
can be substituted each time it is executed instead of reconstructing the query string. The Parameter object can be created using
the CreateParameter method.

See Also

Command Object

ADO and SQL Server (SQL Server 2000)

Using the Connection Object
In addition to the Command object, an application can use the Connection object to issue commands, stored procedures, and
user-defined functions to a database as if they were native methods on the Connection object. To execute a query without using
a Command object, an application can pass a query string to the Execute method of a Connection object.

However, a Command object is required if you want to save and re-execute the command text, or use query parameters.

To execute a command on the Connection object

1. Assign a name to the command using the Name property of the Command object.

2. Set the ActiveConnection property of the Command object to the connection.

3. Issue a statement where the command name is used as if it were a method on the Connection object, followed by any
parameters.

4. Create a Recordset object if any rows are returned.

5. Set the Recordset properties to customize the resulting Recordset.

Using the Connection Object to Execute Commands

This example shows how to use the Execute method of the Connection object to execute commands.

Dim cn As New ADODB.Connection
. . .
Dim rs As New ADODB.Recordset

cmd1 = txtQuery.Text
Set rs = cn.Execute(cmd1)

After the Connection and Recordset objects are created, the variable cmd1 is assigned the value of a user-supplied query string
(txtQuery.Text) from a Microsoft Visual Basic® form. The recordset is assigned the results of a query, by calling the Execute
method of the Connection object, with the variable cmd1 used as the query string parameter.

See Also

Connection Object

ADO and SQL Server (SQL Server 2000)

Constructing an SQL Statement
ADO applications perform much of their database access by executing SQL statements. The form of these statements depends on
the needs of the application. SQL statements can be constructed in the following ways:

Hard-coded

Constructed at run time

Hard-coded SQL statements are static statements performed by an application as a fixed task.

SQL statements constructed at run time enable the user to tailor the statement by using common clauses, such as SELECT,
WHERE, and ORDER BY. This includes ad hoc queries entered by users.

The column list in a SELECT statement should contain only the columns needed to perform the current task. This reduces the
amount of data sent over the network, and it reduces the effect of database changes on the application. For example, if an
application does not reference a column from a table, the application is not affected by any changes made to that column.

Constructing SQL Statements for Cursors

The set of rows returned by a SELECT statement consists of all the rows that satisfy the conditions in the WHERE clause of the
statement, and is known as the result set. Because ADO applications cannot always work effectively with the entire result set as a
unit, they must use either ADO client-side cursors or SQL Server server-side cursors to work with a smaller subset of rows. For
more information, see Cursors and Using Cursors with ADO.

ADO and SQL Server (SQL Server 2000)

Using Parameters
Prepared statements, stored procedures, and user-defined functions may require the use of parameters. The Parameters
collection, which consists of Parameter objects, provides parameter information and data for the Command object. You use the
Parameters collection and Parameter objects when the query in the Command object requires parameters.

A Parameter object can serve as an input parameter, an output parameter data, or a return value. The Refresh method of the
Parameters collection can force providers to update parameter information; however, this operation can take some time to
complete.

The Parameters collection provides parameter information and data for the Command object. You use the Parameters
collection and Parameter objects when the query in the Command object requires parameters.

This example shows the creation of an input parameter for a stored procedure using Transact-SQL syntax:

USE NORTHWIND
GO
drop proc myADOParaProc
GO
CREATE PROC myADOParaProc
@categoryid int(4)
AS
SELECT * FROM products WHERE categoryid = @categoryid
GO

The myADOParaProc stored procedure performs a SELECT query against the products table of the northwind database, taking
one @categoryid input parameter in its WHERE clause. The data type for the @category parameter is int, and its size is 4.

Here is the Microsoft® Visual Basic® code:

Dim cn As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset
Dim prm As ADODB.Parameter
Dim fld As ADODB.Field
Dim provStr As String

' Connect using the SQLOLEDB provider.
cn.Provider = "sqloledb"

' Specify connection string on Open method.
provStr = "Server=MyServer;Database=northwind;Trusted_Connection=yes"
cn.Open provStr

' Set up a command object for the stored procedure.
Set cmd.ActiveConnection = cn
cmd.CommandText = "myADOParaProc"
cmd.CommandType = adCmdStoredProc
cmd.CommandTimeout = 15

' Set up a new parameter for the stored procedure.
Set prm = Cmd.CreateParameter("CategoryID", adInteger, adParamInput, 4, 7)
Cmd.Parameters.Append prm

' Create a recordset by executing the command.
Set rs = cmd.Execute
Set Flds = rs.Fields

' Print the values for all rows in the result set.
While (Not rs.EOF)
 For Each fld in Flds
 Debug.Print fld.Value
 Next
 Debug.Print ""
 rs.MoveNext
Wend

' Close recordset and connection.
rs.Close
cn.Close

The myADOParaProc stored procedure expects an input parameter with a data type of int and a size of 4. The CreateParameter
method is used to create a Parameter object with the following characteristics: the data type is adInteger for an integer, the
parameter type is adParamInput for input parameter, and the data length is 4. This Parameter object is also given the name
CategoryID. The data value 7 (one of the possible values of CategoryID in the products table) is hard-coded.

After the parameter is specified, the Append method adds the Parameter object to the Parameters collection. The
myADOParaProc stored procedure is executed, and a Recordset object is created. The values for the columns of each row in the
recordset are printed, and the Connection and Recordset objects are closed.

See Also

Using Return Code and Output Parameters for Stored Procedures

ADO and SQL Server (SQL Server 2000)

Executing Statements
An ADO application can execute an SQL statement in the following ways:

Direct execution

Prepared execution

These methods of execution can be used for one SQL statement, a call of a stored procedure or user-defined function, or a batch
of SQL statements.

ADO and SQL Server (SQL Server 2000)

Executing Statements Directly
Executing Statements Directly

Direct execution is the most basic way to execute a statement and is commonly used by applications that build and execute
statements at run time. It is the most efficient method for using statements that will be executed a single time or for calling stored
procedures. One drawback of direct execution is that a SQL statement must be parsed and compiled every time it is executed,
which increases overhead if the statement is executed a number of times.

An application builds a character string containing an SQL statement and submits it for execution using the Execute method of
the Command or Connection object. When the statement reaches the server, Microsoft® SQL Server™ 2000 compiles it into an
execution plan and then immediately runs the execution plan.

For SQL Server 2000 applications, using the Execute method with parameter markers for commonly executed SQL Statements
can approach the efficiency of prepared execution.

ADO and SQL Server (SQL Server 2000)

Executing Prepared Statements
Executing Prepared Statements

Prepared execution is commonly used by applications to execute the same parameterized SQL statement repeatedly. Prepared
execution is faster than direct execution for statements executed more than three or four times because the statement is compiled
only once, while statements executed directly are compiled each time they are executed. Prepared execution can also provide a
reduction in network traffic because the driver can send an execution plan identifier and the parameter values, rather than an
entire SQL statement, to the data source each time the statement is executed. The Prepared property of the Command object
allows you to specify whether to prepare a statement.

An ADO application can use prepared execution to reduce the parsing and compiling overhead associated with repeatedly
executing an SQL statement that is executed numerous times. The application builds a character string containing an SQL
statement and then uses the Prepared property to have the provider save a prepared (or compiled) version of the query specified
in the CommandText property before the first execution of a Command object. This can slow the first call of the Execute
method, but after the command is compiled, the provider uses the compiled version of the command for any subsequent
executions, which results in improved performance.

If the Prepared property is set to False, the provider executes the Command object directly without creating a compiled version.

The Prepared property can be used when executing a statement with multiple parameter sets. An application can execute a
parameterized statement more than once by supplying a different parameter set at each execution instead of reconstructing the
statement whenever the parameter set is different.

Microsoft® SQL Server™ 2000 continues to support the prepare/execute model of OLE DB and ODBC. For applications using the
Microsoft OLE DB Provider for ODBC (MSDASQL), this option can be disabled through the SQL Server ODBC Data Source
Setup dialog box if an ODBC data source is used to connect to an instance of SQL Server. If the option is disabled, the SQL
statement is stored and then sent to the server each time it is executed.

This example shows using a prepared statement to update a query and construct the query dynamically with a different set of
parameters at execution time.

Dim cn As New ADODB.Connection
Dim cmdPrep1 As New ADODB.Command
Dim prm1 As New ADODB.Parameter
Dim prm2 As New ADODB.Parameter
Dim strCn As String

strCn = "Server=MyServerName;Database=pubs;Trusted_Connection=yes"
cn.Provider = "sqloledb"
cn.Open strCn
Set cmdPrep1.ActiveConnection = cn
cmdPrep1.CommandText = "UPDATE titles SET type=? WHERE title_id =?"
cmdPrep1.CommandType = adCmdText
cmdPrep1.Prepared = True

Set prm1 = cmdPrep1.CreateParameter("Type", adChar, adParamInput, 12, "New Bus")
cmdPrep1.Parameters.Append prm1

Set prm2 = cmdPrep1.CreateParameter("ProductID", adInteger, adParamInput, 4, 3)
cmdPrep1.Parameters.Append prm2

cmdPrep1.Execute

cmdPrep1("Type") = "New Cook"
cmdPrep1("title_id") = "TC7777"
cmdPrep1.Execute

cn.Close

Data is updated in the titles table by using different parameter values. The query string is prepared so that different sets of
parameters can be supplied. Two parameters are required for the update operation: type and title_id. They are created by the two
CreateParameter methods and appended to the Parameters collection with the Append method.

The first set of parameters has the values New Bus and BU7832. Because the Prepared property is set to TRUE, different values
can be supplied to cmdPrep1 without reconstructing and re-executing the query string.

Note Prepared statements cannot be used to create temporary objects on SQL Server. Prepared statements cannot reference
system stored procedures that create temporary objects, such as temporary tables. An application must directly execute these
procedures.

ADO and SQL Server (SQL Server 2000)

Executing Stored Procedures
A stored procedure is a precompiled executable object that contains one or more SQL statements. Stored procedures can have
input and output parameters and can issue an integer return code.

Executing a stored procedure is similar to executing a prepared statement, except that the stored procedure exists as a
permanently compiled object in the database. A stored procedure can also be used to hide complex SQL statements from the
application.

When executing a stored procedure in a Command object, the CommandType property must be specified with the
adCmdStoredProc value. With adCmdStoredProc, the corresponding SQL statement for the underlining provider is generated.
For applications that use the Microsoft OLE DB Provider for ODBC (MSDASQL), ODBC escape sequences for procedure calls are
generated.

There is no need to prepare a statement that calls only a stored procedure. Both stored procedures and prepared statements are
methods of precompiling statements. Because a stored procedure is precompiled, preparing a stored procedure call adds
overhead. The prepared statement adds a small precompiled execution plan that calls the stored procedure execution plan, rather
than executing the stored procedure execution plan directly.

This example shows the execution of the sp_who SQL Server system stored procedure:

Dim cn As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset

cn.Provider = "sqloledb"
cn.Properties("Data Source").Value = "MyServerName"
cn.Properties("Initial Catalog").Value = "northwind"
cn.Properties("Integrated Security").Value = "SSPI"
cn.Open

Cmd.ActiveConnection = cn
Cmd.CommandText = "sp_who"
Cmd.CommandType = adCmdStoredProc

Set rs = Cmd.Execute
Debug.Print rs(0)
rs.Close

See Also

Calling a Stored Procedure (OLE DB)

ADO and SQL Server (SQL Server 2000)

Using Return Code and Output Parameters for Stored
Procedures
Using Return Code and Output Parameters for Stored Procedures

Stored procedures can contain input parameters, output parameters, and return values. You specify input parameters, output
parameters, and return values for a stored procedure through the Parameter object. In the case of output parameters and return
values, the values are not returned until the data of the Recordset object has been fetched completely or the Recordset has been
closed.

The following stored procedure contains one input parameter, one output parameter, and a return parameter. The procedure
selects those rows in the titles table of the pubs database where the royalty percent paid to the author is greater than the
amount entered by the user (the input parameter). The program returns the number of rows as the output variable. If the
program returns any rows, a return code of 0 is issued; if no rows are returned, a return code of 99 is issued.

USE pubs
GO
CREATE PROCEDURE myProc
@outparm int OUTPUT
@inparm int
AS
SELECT * FROM titles WHERE royalty > @inparm
SELECT @outparm = COUNT (*) FROM TITLES WHERE royalty > @inparm
IF (@outparm > 0)
RETURN 0
ELSE
RETURN 99
GO

An ADO code program that executes the stored procedure myProc is shown here.

Dim cn As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset
Dim fldloop As ADODB.Field
Dim param1 As Parameter, param2 As Parameter, param3 As Parameter
Dim provStr As String
Dim royalty As Variant

Private Sub spStart()

' Connect using the SQLOLEDB provider.
cn.Provider = "sqloledb"

' Specify connection string on Open method.
provStr = "Server=MyServer;Database=pubs;Trusted_Connection=yes"
cn.Open provStr

' Set up a command object for the stored procedure.
Set cmd.ActiveConnection = cn
cmd.CommandText = "myProc"
cmd.CommandType = adCmdStoredProc

' Set up a return parameter.
Set param1 = cmd.CreateParameter("Return", adInteger, adParamReturnValue)
cmd.Parameters.Append param1

' Set up an output parameter.
Set param2 = cmd.CreateParameter("Output", adInteger, adParamOutput)
cmd.Parameters.Append param2

' Set up an input parameter.
Set param3 = cmd.CreateParameter("Input", adInteger, adParamInput)
cmd.Parameters.Append param3
royalty = Trim(InputBox("Enter royalty:"))
param3.Value = royalty

' Execute command, and loop through recordset, printing out rows.
Set rs = cmd.Execute

Dim i As Integer
While Not rs.EOF
 For Each fldloop In rs.Fields
 Debug.Print rs.Fields(i)

 i = i + 1
 Next fldloop
 Debug.Print ""
 i = 0
 rs.MoveNext
Wend

' Need to close recordset before getting return
' and output parameters.
rs.Close

Debug.Print "Program ended with return code: " & Cmd(0)
Debug.Print "Total rows satisfying condition: " & Cmd(1)
cn.Close

End Sub

The following parameters are needed for the myProc stored procedure:

A return parameter to hold the return value (0 or 99).The return parameter is created as a return type of parameter
adParamReturnValue, and the data type is adInteger for integer. Because the return parameter is the first parameter
added to the collection, its index value is zero, and it can be dereferenced through that index (for example, as Cmd(0)).

An output parameter to hold the value of the count of the number of returned rows. The output parameter is created as
adParamOuput for the output parameter type, and the data type is adInteger for integer. Because the output parameter
is the second parameter added to the collection, its index value is 1, and it can be dereferenced through that index (for
example, as Cmd(1)).

An input parameter, which holds the value of the user-supplied percent royalty number. The input parameter is created as
adParamInput for the input parameter type, and the data type is adInteger for integer.

Because the data type of these stored procedure parameters is integer, there is no need to specify the data length as a parameter
when defining them with the CreateParameter method.

After each parameter is added to the Parameters collection, executing the query string creates a recordset. After the recordset is
closed, the values for the return code and output parameters are available.

ADO and SQL Server (SQL Server 2000)

Executing User-Defined Functions
 New Information - SQL Server 2000 SP3.

Executing a user-defined function is similar to executing a prepared Transact-SQL statement, except that the user-defined function
exists as a permanent object in the database. Executing a user-defined function can increase the efficiency of an application
because it can reference complex Transact-SQL statements at the server instead of from an application.

This example shows the execution of the fn_helpcollations built-in, user-defined function. All user-defined functions can be
executed using the technique demonstrated in this example.

Dim cn As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset

cn.Open "Provider=sqloledb;Data Source=MyServerName;" & _
 "Initial Catalog=northwind;Trusted_Connection=yes;"

'Prepare the user-defined function statement and execute the command.
Cmd.ActiveConnection = cn
Cmd.CommandText = "select * from ::fn_helpcollations()"
Set rs = Cmd.Execute

rs.Close

ADO and SQL Server (SQL Server 2000)

Using Batch Updates
 New Information - SQL Server 2000 SP3.

The Update method of the Recordset object allows you to update the current row. The UpdateBatch method applies all
pending new, updated, and deleted rows to the Recordset object. Using a LockType property value of adLockBatchOptimistic,
the UpdateBatch method allows you to commit all pending changes at the client and send all the changes to the database at one
time. The pending changes can be canceled by calling the CancelBatch method.

With the UpdateBatch method, an error is returned if all the changes fail to be applied to the database. If only some of the
changes fail, a warning is returned instead of an error, by using the Errors collection and Error object.

The UpdateBatch method is valid only when the LockType property is specified with adLockBatchOptimistic and the cursor
type is either keyset-driven or static. The keyset-driven cursor can be supported only with tables that have unique indexes.

This example shows the use of the UpdateBatch method to apply all pending changes; it creates a recordset by using the keyset-
driven cursor with the LockType property set to adLockBatchOptimistic. After the Recordset object is created, the user is
prompted to change any row in the titles table of pubs with a type of psychology to self help. Clicking OK commits the changes
using the UpdateBatch method; clicking No cancels the changes using the CancelBatch method. The routine at the end restores
the original values to the table.:

Public Sub UpdateBatchX()

 Dim rstTitles As ADODB.Recordset
 Dim strCnn As String
 Dim strTitle As String
 Dim strMessage As String

 ' Assign connection string to variable.
 strCnn = "Provider=sqloledb;" & _
 "Data Source=srv;Initial Catalog=pubs;Trusted_Connection=yes; "

 Set rstTitles = New ADODB.Recordset
 rstTitles.CursorType = adOpenKeyset
 rstTitles.LockType = adLockBatchOptimistic
 rstTitles.Open "titles", strCnn, , , adCmdTable

 rstTitles.MoveFirst

 ' Loop through recordset, and prompt user for
 ' change of type for a specified title.
 Do Until rstTitles.EOF
 If Trim(rstTitles!Type) = "psychology" Then
 strTitle = rstTitles!Title
 strMessage = "Title: " & strTitle & vbCr & _
 "Change type to self help?"

 If MsgBox(strMessage, vbYesNo) = vbYes Then
 rstTitles!Type = "self_help"
 End If
 End If

 rstTitles.MoveNext
 Loop

 ' Ask if the user wants to commit to all the
 ' changes made earlier.
 If MsgBox("Save all changes?", vbYesNo) = vbYes Then
 rstTitles.UpdateBatch
 Else
 rstTitles.CancelBatch
 End If

 ' Print current data in recordset.
 rstTitles.Requery
 rstTitles.MoveFirst
 Do While Not rstTitles.EOF
 Debug.Print rstTitles!Title & " - " & rstTitles!Type
 rstTitles.MoveNext
 Loop

 ' Restore original values because this is a demonstration.
 rstTitles.MoveFirst
 Do Until rstTitles.EOF
 If Trim(rstTitles!Type) = "self_help" Then

 rstTitles!Type = "psychology"
 End If
 rstTitles.MoveNext
 Loop
 rstTitles.UpdateBatch

 rstTitles.Close

End Sub

ADO and SQL Server (SQL Server 2000)

Generating Multiple Recordsets
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 allows a batch of queries to be issued and executed. When a batch of queries is executed, more
than one recordset can be generated. Multiple recordsets can also be generated by SQL statements that include multiple SELECT
statements or COMPUTE BY and COMPUTE clauses, or by stored procedures that contain more than one SELECT statement.

Note If you are using a SQL Server API server cursor, you cannot execute a Transact-SQL statement or stored procedure that
generates more than one result set. If you need to generate multiple result sets, use a client cursor by leaving the cursor
properties of the Recordset object set to their defaults (for example, forward only/read-only (adOpenForwardOnly) and an
editing lock of adLockReadOnly).

When multiple recordsets are generated, you need to fetch one recordset at a time until no more recordsets are available. The
NextRecordset method of the Recordset object allows you to fetch subsequent recordsets. If no more recordsets are available,
the returned Recordset object is set to Nothing. Generally, you write code to test whether a Recordset object is set to Nothing
as the test condition for exiting the multiple recordset loop.

The following example shows how to fetch multiple recordsets from a stored procedure using the NextRecordset method of the
Recordset object.

The stored procedure syntax is:

DROP PROC myNextproc
GO
CREATE PROC myNextproc AS
SELECT * FROM titles
SELECT * FROM publishers
GO

The stored procedure generates two result sets: one for the result of SELECT * FROM titles and the other for the result of SELECT
* FROM publishers.

The ADO code syntax is:

Dim cmd As New ADODB.Command
Dim rs As ADODB.Recordset

cn.Provider = "sqloledb"
cn.Properties("Data Source") = "MyServerName"
cn.Properties("Initial Catalog") = "pubs"
cn.Properties("Integrated Security") = "SSPI"
cn.Open

Cmd.CommandText = "myNextProc"
Cmd.CommandType = adCmdStoredProc

Set rs = Cmd.Execute
While Not rs Is Nothing
 If (Not rs.EOF) Then
 Debug.Print rs(0)
 End If
 Set rs = rs.NextRecordset
Wend

After the myNextProc stored procedure is executed, a Recordset object is created. Because two result sets are generated by the
myNextProc stored procedure, each Recordset object can be retrieved by using the NextRecordset method. The Recordset
object, rs, is reused for each recordset.

ADO and SQL Server (SQL Server 2000)

Processing Results
After an application submits an SQL statement, Microsoft® SQL Server™ 2000 returns any resulting data as one or more result
sets. A result set is a set of rows and columns that match the criteria of the query. SELECT statements, catalog functions, and some
procedures produce a result set made available to an application in tabular form. If the executed SQL statement is a stored
procedure, a batch containing multiple commands, or a SELECT statement containing keywords, such as COMPUTE or COMPUTE
BY, there will be multiple result sets to process.

The ADOX Catalog object can also retrieve data. For example, The Catalog object allows you to manipulate and retrieve data
about tables, views, and stored procedures in a SQL Server 2000 database. These result sets can contain zero or more rows. Other
SQL statements, such as GRANT or REVOKE, do not return result sets.

Each INSERT, UPDATE, and DELETE statement returns a result set containing only the number of rows affected by the
modification. These counts can be canceled by including a SET NOCOUNT ON statement in the batch or stored procedure.

Transact-SQL includes the SET NOCOUNT statement. When the NOCOUNT option is set to ON, SQL Server does not return the
counts of the rows affected by a statement.

Several other Transact-SQL statements return their data in messages rather than result sets, such as:

DBCC

SET SHOWPLAN

SET STATISTICS

PRINT

RAISERROR

ADO applications use the Recordset object to manipulate result sets, and the Fields collection and Field object to access data in a
row. In addition, you can use the Properties collection and Property object to provide information about the characteristics of a
result set.

ADO and SQL Server (SQL Server 2000)

Using the Recordset Object
The Recordset object provides methods for manipulating result sets. It allows you to add, update, delete, and scroll through rows
in the recordset.

A Recordset object can be created using the Execute method of the Connection or Command object.

Each row in a recordset can also be retrieved and updated using the Fields collection and the Field object. Updates on the
Recordset object can be in an immediate or batch mode. When a Recordset object is created, a cursor is opened automatically.

The Recordset object allows you to specify the cursor type and location for fetching the result set. With the CursorType property,
you can specify whether the cursor is read-only, forward-only, static, keyset-driven, or dynamic. Cursor type determines if a
Recordset object can be scrolled or updated and affects the visibility of changed rows. By default, the cursor type is read-only and
forward-only.

An application can specify the location of the cursor with the CursorLocation property. This property allows you to specify
whether to use a client or server cursor. The CursorLocation property setting is important when you use disconnected
recordsets.

The first part of the cmdExecute_Click method in the ADO Introductory Visual Basic Sample shows an example of creating,
opening, passing a command string variable to, and positioning the cursor in a recordset.

Dim cn As New ADODB.Connection
Dim rs As ADODB.Recordset
. . .
cmd1 = txtQuery.Text
Set rs = New ADODB.Recordset
rs.Open cmd1, cn
rs.MoveFirst
. . .
' Code to loop through result set(s)

See Also

Using Cursors with ADO

ADO and SQL Server (SQL Server 2000)

Using the Fields Collection and Field Object
The Fields collection and Field object allow you to access each data column of the current row. The Fields collection can be
accessed through the Recordset object and the Field object can be accessed through the Fields collection by using the default
indexing method. You can use the Field object to create a new row or change existing data, and use the AddNew, Update, or
UpdateBatch method of the Recordset object to apply the new or changed data. An explicit Edit method does not need to
specified.

This code fragment shows how to use the Field object to retrieve the name, type, and values for each data column of the current
row. This code assumes you have made a connection and passed an SQL command string to the cmdText variable. After the
Recordset object is created, the Fields collection can be retrieved. The example loops through the Fields collection to retrieve
each Field object. The Name, Type, and Value property of each Field object is printed.

Dim rs As New ADODB.Recordset
Dim fld As ADODB.Field
Dim cn As ADODB.Connection
Dim cmdText As String

cn.Provider = "sqloledb"
cn.Properties("Data Source").Value = "MyServerName"
cn.Properties("Initial Catalog").Value = "northwind"
cn.Properties("Integrated Security").Value = "SSPI"
cn.Open

cmdText = "select * from authors"

rs.Open cmdText, cn
Set Flds = rs.Fields
Dim TotalCount As Integer
TotalCount = Flds.Count

For Each fld In Flds
 Debug.Print fld.Name
 Debug.Print fld.Type
 Debug.Print fld.Value
Next
rs.Close

ADO and SQL Server (SQL Server 2000)

Determining the Characteristics of a Result Set
The Properties collection and Property object provide information about the characteristics of the Connection, Command,
Recordset, and Field objects. The Properties collection can be accessed through any of these objects, and the Property object
can be accessed through the Properties collection by using the default indexing method.

The Properties collection consists of Property objects. In addition to returning the value and type for a property, the Property
object provides attributes of a property. Attributes describe things such as whether the specific property of an object is supported
or required, or whether it is read/write or read-only. For example, ConnectionTimeout is a property that provides information
about the number of seconds to wait to establish a connection before returning a time-out error.

Examples

Enumerating Through the Properties Collection for an Object.

The following code shows a method for listing each property of an object, using a Connection object and Recordset object as
examples.

Dim cn As New ADODB.Connection
Dim rs As ADODB.Recordset

cn.Provider = "sqloledb"
cn.Properties("Data Source").Value = "MyServerName"
cn.Properties("Initial Catalog").Value = "northwind"
cn.Properties("Integrated Security").Value = "SSPI"
cn.Open

Set rs = New ADODB.Recordset
rs.Open "select * from products", cn

' Create a variable to list the properties.
Dim prop As ADODB.Property

' Enumerate through the properties of the Connection object.
For Each prop In cn.Properties
 Debug.Print prop.Name, prop.Value, prop.Attributes
Next

' Enumerate through the properties of the Recordset object.
For Each prop In rs.Properties
 Debug.Print prop.Name, prop.Value, prop.Attributes
Next

ADO and SQL Server (SQL Server 2000)

Mapping Data Types
In rowsets and as parameter values, ADO represents data in Microsoft® SQL Server™ 2000 by using the following data types. The
ADO enumerated constant, DataTypeEnum, specifies the data type of the Field and Parameter objects.

SQL Server Data Type ADO Data Type
bigint adBigInt
binary adBinary
bit adBoolean
char adChar
datetime adDBTimeStamp
decimal adNumeric
float adDouble
image adVarbinary
int adInteger
money adCurrency
nchar adWChar
ntext adWChar
numeric adNumeric
nvarchar adWChar
real adSingle
smalldatetime adTimeStamp
smallint adSmallInt
smallmoney adCurrency
sql_variant adVariant
sysname adWChar
text adChar
timestamp adBinary
tinyint adVarbinary
uniqueidentifier adGUID
varbinary adVarbinary
varchar adChar

ADO supports consumer-requested data conversions as shown in this illustration.

ADO and SQL Server (SQL Server 2000)

Data Type Usage Considerations
Data Type Usage Considerations

Microsoft® SQL Server™ 2000 includes the following data types that cannot be used with SQL Server version 7.0 or earlier:

bigint

sql_variant

Using the bigint Data Type

The bigint data type is an integer containing values from -2^63 (-9,223,372,036,854,775,808) through 2^63-1
(9,223,372,036,854,775,807). The storage size is 8 bytes.

The ADO enumerated constant, DataTypeEnum, specifies the data type of an ADO field, parameter, or property. The
DataTypeEnum value, adBigInt, has a value of 20, and indicates an 8-byte signed integer, which maps to the SQL Server 2000
bigint data type and the OLE DB DBTYPE_I8 data type.

Using the sql_variant Data Type

The sql_variant data type can contain data of any of the SQL Server 2000 data types except those for large objects (text, ntext,
and image data types), and the timestamp data type. For example, a sql_variant column can contain smallint values for some
rows, float values for other rows, and char/nchar values in the remainder.

Although there are some restrictions, the sql_variant data type is similar to the variant data type in Microsoft Visual Basic® and
DBTYPE_VARIANT in OLE DB. The ADO DataTypeEnum value, adVariant, has a value of 12, and maps to the OLE DB
DBTYPE_VARIANT data type. However, ADO does not yet support this data type completely, and usage may cause unpredictable
results.

For more information about support of the sql_variant data type by the Microsoft OLE DB Provider for SQL Server (SQLOLEDB),
see Data Type Mapping in Rowsets and Parameters.

ADO and SQL Server (SQL Server 2000)

Using Cursors with ADO
ADO uses both client and server cursors to implement the cursor functionality required by an application. An ADO application
controls the cursor behavior by using the CursorType, CursorLocation, LockType, and CacheSize properties of the Recordset
object.

When these properties are set to their default values at the time an SQL statement is executed, the Microsoft OLE DB Provider for
SQL Server (SQLOLEDB) does not use a server cursor to implement the result set; instead, it uses a default result set. If any of the
values of these properties are changed from their default values at the time an SQL statement is executed, SQLOLEDB attempts to
use a server cursor to implement the result set.

Cursor Options with SQL Server

Because ADO allows the setting of cursor properties, the following options exist for using cursors with ADO and Microsoft® SQL
Server™ 2000:

Leave all cursor properties set to their defaults.

If you use these settings, the provider uses default result set processing (forward only and read-only cursor). The default
settings allow a program to execute any Transact-SQL statement; however, only one statement can be active on any
connection at a time. The program must either fetch all the rows or cancel the result set before another statement can be
executed on the same connection. Following those rules, a program can process Transact-SQL statements or stored
procedures that allow multiple result sets.

Change the default cursor type or lock type.

The provider uses SQL Server API server cursors to deliver the requested cursor functionality. Although this option provides
a wide range of cursor functionality, it introduces some restrictions. For example, you cannot execute any Transact-SQL
statement, batch, or stored procedure that returns more than one result set. However, it is possible to have multiple active
statements on one connection (there can be pending results in the statement handle), provided they are all executed with
API server cursors.

Use an ADO client cursor (set the CursorLocation property to adUseClient).

ADO implements the cursor; therefore, the application can use only the capabilities supported by the ADO client cursors.
The application cannot access the cursor capabilities of the underlying provider. Only a CursorType property of
adOpenStatic (static cursor) is supported for a setting of adUseClient.

ADO Cursor Settings

An ADO application can control the cursor functionality using these Recordset properties.

Property Description
CursorType Default: adOpenForwardOnly

Indicates the type of cursor used:
Forward-only/read-only (adOpenForwardOnly)
Static (adOpenStatic)
Keyset (adOpenKeyset)
Dynamic (adOpenDynamic)

CursorLocation Default: adUseServer
Sets or returns the location of the cursor engine. If you set this
property to adUseClient, you can open only a static cursor.

LockType Default: adLockReadOnly
Indicates the type of locks placed on rows during editing.

CacheSize Default: 1
Controls how many rows the provider keeps in its buffer and
how many rows to retrieve at one time into local memory.

See Also

Cursors

ADO and SQL Server (SQL Server 2000)

Using Default Result Sets
Using Default Result Sets

By default, an ADO application does not use Microsoft® SQL Server™ 2000 API server cursors with SQLOLEDB. The default cursor
used by the ADO application is read-only and forward-only, and uses default result set processing.

Default result sets support all of the Transact-SQL statements. There are no restrictions on the types of SQL statements that can
be executed when using a default result set. However, server cursors do not support all Transact-SQL statements. For example,
server cursors do not support any SQL statement that generates multiple result sets.

The following types of statements are not supported by server cursors:

Batches. These are SQL statements built from two or more individual SQL SELECT statements. For example:

SELECT * FROM authors; SELECT * FROM titles

Stored procedures with multiple SELECT statements. These are SQL statements that execute a stored procedure containing
more than one SELECT statement. This includes SELECT statements that fill parameters or variables.

Keywords These are SQL statements containing the keywords COMPUTE, COMPUTE BY, FOR BROWSE, or INTO.

In SQL Server 2000, if an SQL statement that matches any of these types is executed with a server cursor, the server cursor is
implicitly converted to a default result set. An application can call the Supports method of the Recordset object to verify the
specific functionality of the cursor setting. For more information, see Implicit Cursor Conversions.

SQL statements that do not fit the types listed earlier can be executed with any statement settings; they work equally well with
either a default result set or a server cursor.

ADO and SQL Server (SQL Server 2000)

Using Server Cursors with ADO
Using Server Cursors with ADO

ADO and OLE DB map cursors over the result sets of executed SQL statements. SQLOLEDB implements these operations using
server cursors, which are cursors implemented on the server and managed by API cursor functions.

Server Cursor Details

To use a server cursor, an application can set these properties to anything other than the default value:

Set the cursor type of the Recordset object to adOpenKeyset, adOpenDynamic, or adOpenStatic.

Set the LockType of the Recordset object to adLockPessimistic, adLockOptimistic, or adLockBatchOptimistic.

Set the CacheSize property to anything other than the default value of 1.

The CursorLocation property should remain at the default setting, adUseServer.

Server cursors are created only for statements that begin with:

SELECT

EXEC[ute] procedure_name

call procedure_name

Even if an application explicitly requests a server cursor, server cursors are not created for statements such as INSERT.

Server cursors cannot be used with statements that generate more than one recordset.

This restriction applies to all statements described in Generating Multiple Recordsets. For more information, see Generating
Multiple Recordsets. If a server cursor is used with any statement that generates multiple recordsets, an application can return
one of the following errors:

Cannot open a cursor on a stored procedure that has anything other than a single SELECT statement in it.

sp_cursoropen. The statement parameter can only be a single SELECT statement or stored procedure.

This example shows the opening of a dynamic server cursor:

Dim rs As New ADODB.Recordset
. . .
rs.Open "SELECT * FROM titles", , adOpenDynamic, adLockOptimistic
rs.Close

See Also

API Server Cursors

Default Result Sets

ADO and SQL Server (SQL Server 2000)

Scrolling and Retrieving Rows
An application can use the MoveFirst, MoveLast, MoveNext, and MovePrevious methods to scroll through a recordset to
retrieve rows. Use the MoveFirst method to move the current record position to the first record in the Recordset. Use the
MoveLast method to move the current record position to the last record in the Recordset.

Use the MoveNext method to move the current record position one record forward. If the last record is the current record and
you call the MoveNext method, ADO sets the current record to the position after the last record in the Recordset and sets the
EOF property to True. An attempt to move forward when the EOF property is set to True generates an error.

Use the MovePrevious method to move the current record position one record backward. If the first record is the current record
and you call the MovePrevious method, ADO sets the current record to the position before the first record in the Recordset and
sets the BOF property to True. An attempt to move backward when the BOF property is set to True generates an error.

If the Recordset object does not support backward cursor movement, a call to the MoveFirst or MovePrevious methods
generates an error. For example, the default setting of the CursorType property is adOpenForwardOnly, which supports only
the MoveLast and MoveNext methods.

Determining Recordset Limits

An application can use the BOF and EOF properties to determine whether a Recordset object contains records or whether you
have gone beyond the limits of a Recordset object when you move from record to record. By testing the values of the BOF and
EOF properties, an application can avoid generating an error by using the MoveFirst, MoveLast, MoveNext and MovePrevious
methods.

The BOF property returns True (-1) if the current record position is before the first record, and returns False (0) if the current
record position is on or after the first record. The EOF property returns True if the current record position is after the last record,
and returns False if the current record position is on or before the last record. If the BOF and EOF properties both are set to True,
there is no current record. In this situation, the RecordCount property is set to zero.

If you delete the last remaining record in the Recordset object, the BOF and EOF properties may remain False until you attempt
to reposition the current record.

ADO and SQL Server (SQL Server 2000)

Bookmarking Rows
Bookmarking Rows

An application can use the Bookmark property to save the position of the current record and to return to that record at any time.
When you open a Recordset object, each of its records has a unique bookmark. To save the bookmark for the current record,
assign the value of the Bookmark property to a variable. To return to that record at any time after moving to a different record,
set the Recordset object Bookmark property to the value of that variable.

The user may not be able to view the value of the bookmark. Also, users should not expect bookmarks to be directly comparable;
two bookmarks that refer to the same record may have different values.

If you use the Clone method to create a copy of a Recordset object, the Bookmark property settings for the original and for the
duplicate Recordset objects are identical and you can use them interchangeably. However, you cannot use bookmarks from
different Recordset objects interchangeably, even if they were created from the same source or command.

ADO and SQL Server (SQL Server 2000)

Performing Transactions in ADO
ADO supports transaction management in Microsoft® SQL Server™ 2000, allowing an application to perform explicitly and
implicitly started transactions on a single connection to an instance of SQL Server. After the connection is established, a recordset
is opened on the result set of a select query, using a dynamic cursor and pessimistic locking (properties of a Recordset object).
After you edit or update the data, you select whether to commit the changes or cancel them. The data changed in the transaction
can then be committed or rolled back.

To perform an explicit transaction in an application

1. Open a new connection to an instance of SQL Server.

2. Retrieve a recordset from an instance of SQL Server.

3. Call the BeginTrans method of the Connection object to begin the transaction.

4. Make changes to the recordset.

5. Call the CommitTrans method of the Connection object to save changes to the recordset

Or

Call the RollbackTrans method of the Connection object to discard changes to the recordset.

Managing a Transaction

This example shows how to use the ADO transaction methods BeginTrans, CommitTrans, and RollbackTrans to manage a
transaction.

Dim cn As New ADODB.Connection
Dim rs As New ADODB.Recordset

. . .
' Open connection.
cn.Open

' Open titles table.
rs.Open "SELECT * FROM titles", Cn, adOpenDynamic, adLockPessimistic
. . .
' Begin the transaction.
rs.MoveFirst
cn.BeginTrans

' User loops through the recordset making changes.
. . .
' Ask if the user wants to commit all the changes made.
If MsgBox("Save all changes?", vbYesNo) = vbYes Then
 cn.CommitTrans
Else
 cn.RollbackTrans
End If

See Also

Transactions

ADO and SQL Server (SQL Server 2000)

Handling Errors and Messages in ADO
ADO applications use the Errors collection and the Error object to return provider-specific error information to an application. The
Errors collection contains the errors generated by a single operation. Each Error object constitutes one such error in the
collection. To get information about an error, query the properties of an Error object from the Connection object. To get all the
Error objects in the Errors collection, use code to loop through the collection.

ADO errors (for example, invalid use of ADO properties or methods), as opposed to provider errors, do not appear in the Errors
collection. ADO errors are captured by the exception handling mechanism of your run-time environment. For example, in
Microsoft® Visual Basic®, the occurrence of an ADO error triggers an On Error event and appears as a Visual Basic Error object.

If you want to trap both provider-specific errors (by querying the properties of an Error object) and ADO errors (by trapping ADO
errors through the run-time exception handler) in your application, you have to write error-handling code for both. For more
information about ADO Error Codes, see the MSDN Library at Microsoft Web site.

Warning messages that do not stop code execution can be saved in the Errors collection. A warning message has a positive
number value, which differentiates it from an error message.

However, critical warning or status messages (such as calls made with unsupported or conflicting properties) may be ignored by
ADO and not saved to the Errors collection if the operation succeeded.

The properties of an Error object contain specific details about each error:

The Description property contains the text of the error.

The Number property contains the long integer value of the error constant.

The Source property identifies the object that raised the error.

The SQLState and NativeError properties provide information from SQL data sources.

The HelpFile and HelpContext properties indicate the appropriate Microsoft Windows® Help file and topic, respectively,
(if any exist) for the error.

This code fragment, taken from the ADO Introductory Visual Basic Sample, shows how to create a basic data provider error log.
The code enumerates the first five properties (all properties except for HelpFile and HelpContext) of each Error object in the
Errors collection and displays them in a list on a Visual Basic form. In this example, the variable errLoop is an Error object in the
Errors collection. The variable strError is an array of five strings, with each array element corresponding to a label and a specific
property of an Error object. The routine loops through each Error object, exposes the value for each specified property, and
displays the results as items in a list.The routine provides a count of the errors, using the Errors collection Count property, and
clears out the Errors collection (using the Clear property).

Private Sub ErrorLog()
. . .
Dim errLoop As ADODB.Error
. . .
' Loop through each Error object in Errors collection.
For Each errLoop In cn.Errors

 Dim strError(5)
 Dim i As Integer

 strError(0) = "Error Number: " & errLoop.Number
 strError(1) = " Description: " & errLoop.Description
 strError(2) = " Source: " & errLoop.Source
 strError(3) = " SQL State: " & errLoop.SQLState
 strError(4) = " Native Error: " & errLoop.NativeError

 ' Loop through the five specified properties of Error object.
 i = 0
 Do While i < 5
 Form2.lstErrors.AddItem strError(i)
 i = i + 1
 Loop

 Form2.lstErrors.AddItem ""

Next

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

' Create string for summary count of errors.
c = cn.Errors.Count & " provider error(s) occurred."

' Display a count of the provider errors.
Form2.lstErrors.AddItem c
Form2.lstErrors.AddItem ""

' Clear the Errors collection.
cn.Errors.Clear

See Also

ADO Connection and Error Handling

ADO and SQL Server (SQL Server 2000)

Handling Data Definition Language
Data definition language (DDL) statements are SQL statements that support the definition or declaration of database objects (for
example, CREATE TABLE, DROP TABLE, and ALTER TABLE).

You can use the ADO Command object to issue DDL statements. To differentiate DDL statements from a table or stored
procedure name, set the CommandType property of the Command object to adCmdText. Because executing DDL queries with
this method does not generate any recordsets, there is no need for a Recordset object.

Microsoft® SQL Server™ 2000 provides a group of query processing options that can be specified by using the SET statement.
These SET options do not generate result sets and can be treated as the same category of DDL queries.

This example shows the use of the Command object to turn off the SET NOCOUNT option of the Transact-SQL SET statement.
This example drops a table, creates a table, and then inserts data into the new table by using the Execute method of the
Command object. Recordset objects are not created for this type of query. The ADOTestTable table may not exist in the
database, so execution of DROP TABLE ADOTestTable may generate an error indicating the table does not exist in the database.
Some error handling code is provided for this situation. The SET NOCOUNT ON SET option is also executed.

Dim Cn As New ADODB.Connection
Dim Cmd As New ADODB.Command

' If the ADOTestTable does not exist, go to AdoError.
On Error GoTo AdoError

' Connect using the SQLOLEDB provider.
cn.Provider = "sqloledb"
cn.Properties("Data Source").Value = "MyServerName"
cn.Properties("Initial Catalog").Value = "northwind"
cn.Properties("Integrated Security").Value = "SSPI"
cn.Open

' Set up command object.
Set Cmd.ActiveConnection = Cn
Cmd.CommandText = "DROP TABLE ADOTestTable"
Cmd.CommandType = adCmdText
Cmd.Execute

Done:
 Cmd.CommandText = "SET NOCOUNT ON"
 Cmd.Execute
 Cmd.CommandText = "CREATE TABLE ADOTestTable (id int, name char(100))"
 Cmd.Execute
 Cmd.CommandText = "INSERT INTO ADOTestTable values(1, 'Jane Doe')"
 Cmd.Execute
 Cn.Close
Exit Sub

AdoError:
 Dim errLoop As Error
 Dim strError As String

 ' Enumerate Errors collection and display properties of
 ' each Error object.
 Set Errs1 = Cn.Errors
 For Each errLoop In Errs1
 Debug.Print errLoop.SQLState
 Debug.Print errLoop.NativeError
 Debug.Print errLoop.Description
 Next

 GoTo Done

End Sub

Using ADOX

Microsoft® ActiveX® Data Objects Extensions for Data Definition Language and Security (ADOX) is an extension to the ADO
objects and programming model. ADOX includes objects for schema creation and modification, as well as security. However,
certain features of ADOX are not be supported by the Microsoft SQL Server OLE DB Provider (SQLOLEDB). For more information,
see Provider Support for ADOX.

ADO and SQL Server (SQL Server 2000)

Managing Long Data Types
 New Information - SQL Server 2000 SP3.

Long data types include ntext, text, and image data types. ntext, text, and image data can be so large that they cannot be
retrieved in one operation or fit into memory. If the long data can fit into memory, the Value property of the Field object can be
used to retrieve all the data in one operation. If the long data is too large to fit into memory, the data must be retrieved or written
in chunks. You can manipulate long data in chunks through the Field object or through the Parameter object.

The Field object allows you to write and read long data through the Recordset object. The AppendChunk method of the Field
object allows you to append data at the end of the current data when the query has already been executed. The GetChunk
method allows you to read the data in chunks.

With the Parameter object, there is no GetChunk method, and there is no Recordset object when you are dealing with long data
at run time. With the Parameter object, long data is bound at run time and executed with the Command object.

There are some restrictions for long data when using MSDASQL. If no server cursor is used, all long columns must be to the right
of all nonlong columns. If there are multiple long columns, the long columns must be accessed in order (from left to right).

This example shows how to use ADO with SQLOLEDB to read and write image data. The critical routines are the while loops that
copy the long data (image) to a variable and write the variable to a record in chunks (using the GetChunk and AppendChunk
methods).

Before setting up the destination table in this example, make sure to run the sp_dboption stored procedure:

EXEC sp_dboption 'pubs', 'Select into/bulkcopy', 'True'

The destination table is a copy of the pub_info table in the pubs database. Create the table by running:

USE pubs
SELECT * INTO pub_info_x
 FROM pub_info
GO

The pub_info_x table is the destination table in which the long data will be inserted.

The ADO code is:

Public Sub AppendChunkX()

 Dim cn As ADODB.Connection
 Dim rstPubInfo As ADODB.Recordset
 Dim strCn As String
 Dim strPubID As String
 Dim strPRInfo As String
 Dim lngOffset As Long
 Dim lngLogoSize As Long
 Dim varLogo As Variant
 Dim varChunk As Variant

 Const conChunkSize = 100

 ' Open a connection.
 Set cn = New ADODB.Connection
 strCn = "Server=srv;Database=pubs;Trusted_Connection=yes;"

 cn.Provider = "sqloledb"
 cn.Open strCn

 'Open the pub_info_x table.
 Set rstPubInfo = New ADODB.Recordset
 rstPubInfo.CursorType = adOpenDynamic
 rstPubInfo.LockType = adLockOptimistic
 rstPubInfo.Open "pub_info_x", cn, , , adCmdTable

 'Prompt for a logo to copy.
 strMsg = "Available logos are : " & vbCr & vbCr

 Do While Not rstPubInfo.EOF
 strMsg = strMsg & rstPubInfo!pub_id & vbCr & _
 Left(rstPubInfo!pr_info,
 InStr(rstPubInfo!pr_info, ",") - 1) & vbCr & vbCr
 rstPubInfo.MoveNext
 Loop

 strMsg = strMsg & "Enter the ID of a logo to copy:"
 strPubID = InputBox(strMsg)

 ' Copy the logo to a variable in chunks.
 rstPubInfo.Filter = "pub_id = '" & strPubID & "'"
 lngLogoSize = rstPubInfo!logo.ActualSize
 Do While lngOffset < lngLogoSize
 varChunk = rstPubInfo!logo.GetChunk(conChunkSize)
 varLogo = varLogo & varChunk
 lngOffset = lngOffset + conChunkSize
 Loop

 ' Get data from the user.
 strPubID = Trim(InputBox("Enter a new pub ID:"))
 strPRInfo = Trim(InputBox("Enter descriptive text:"))

 ' Add a new record, copying the logo in chunks.
 rstPubInfo.AddNew
 rstPubInfo!pub_id = strPubID
 rstPubInfo!pr_info = strPRInfo
 lngOffset = 0 ' Reset offset.

 Do While lngOffset < lngLogoSize
 varChunk = LeftB(RightB(varLogo, lngLogoSize - _
 lngOffset),conChunkSize)
 rstPubInfo!logo.AppendChunk varChunk
 lngOffset = lngOffset + conChunkSize
 Loop

 rstPubInfo.Update

 ' Show the newly added data.
 MsgBox "New record: " & rstPubInfo!pub_id & vbCr & _
 "Description: " & rstPubInfo!pr_info & vbCr & _
 "Logo size: " & rstPubInfo!logo.ActualSize

 rstPubInfo.Close
 cn.Close

End Sub

See Also

ADO and Long Data Types (C++)

ADO and Long Data Types (Visual Basic)

ADO and Long Data Types (Web)

ADO and SQL Server (SQL Server 2000)

ADO Support for SQL Server XML Features
ADO applications can use the Microsoft OLE DB Provider for SQL Server (SQLOLEDB) to use the XML features of Microsoft® SQL
Server™ 2000. Applications can:

Use template queries. A template is a valid XML document, containing one or more SQL queries.

Use XML Views on the database. XML Views provide a mapping from an XML document to a relational database. The
mapping is done by annotating an XML-Data Reduced Schema. Once the XML View is defined, an XPath query can be
executed to retrieve data from the database.

Use the OpenXML extension to Transact-SQL. OpenXML provides a relational view on an XML document by allowing stored
procedures to process XML and generate rowsets from the data for use by Transact SQL statements.

ADO and SQL Server (SQL Server 2000)

XML-Related Properties
The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) implements several new provider-specific properties that are used to
retrieve XML from Microsoft® SQL Server™ 2000. These properties are available to ADO applications as dynamic properties.

These properties are used to specify the mapping schema against which an XPath query is specified as a command or to specify
an XSL file to process the results.

Property Name Description
Base Path Property The Base Path property specifies a file path or

URL to use for resolving relative paths in a
template (for example, XSL on a template root
directory, sql:mapping-schema attribute on a
sql:xpath:query, external schema references in
an inline schema, or Mapping Schema and
XML Root properties).

Content Type Property The Content Type property returns the output
content type of an XML transmission.

Mapping Schema Property The Mapping Schema property specifies a file
name or URL that points to the mapping schema
used by the provider to translate an XPath
command.

SS STREAM FLAGS Property The SS STREAM FLAGS property specifies how
an application manages mapping schemas, XSL
files, and templates.

XML Root Property The XML Root property provides a root tag in
which the query result is wrapped to return a
well-formed document.

XSL Property The XSL property specifies an XSL file name or
URL applied to the result of a query.

These ADO properties map to standard OLE DB 2.6 properties and are used when retrieving the results of a Command execution
as a stream.

Property Name Description
Output Encoding Property The Output Encoding property specifies the

encoding to use in the stream set or returned by
the Execute method.

Output Stream Property The Output Stream property specifies the
stream containing the results returned by the
Execute method.

ADO and SQL Server (SQL Server 2000)

Using Streams for Command Input
ADO queries can be specified by setting the CommandText property on the Command object or by associating the stream with
the Command object using the CommandStream property.This example demonstrates using a stream to access the
Northwind database. It uses an Active Server Page (ASP) and is written in Microsoft Visual Basic® Scripting Edition.

Using XML Template Queries in Streams

The application initializes the ADO Stream object to contain query text:

Dim adoStreamQuery
Set adoStreamQuery = Server.CreateObject("ADODB.Stream")
adoStreamQuery.Open

The application requires a reference to the XML Namespace identified by the sql: prefix of the <sql:query> tag. The SELECT
statement with a reference to the sql: Namespace takes this form:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:query> SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML AUTO </sql:query>
</ROOT>

By using the FOR XML AUTO mode of the SELECT statement, this query requests that results are returned in XML format, rather
than as a Recordset object. For more information, see Retrieving and Writing XML Data.

The command is then assigned to a string variable, and copied to the adoStreamQuery stream, which is associated with an ADO
Command object:

sQuery = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:query> SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML AUTO </sql:query>
</ROOT>"
adoStreamQuery.WriteText sQuery, adWriteChar
adoStreamQuery.Position = 0
Dim adoCmd
Set adoCmd = Server.CreateObject("ADODB.Command")
Set adoCmd.CommandStream = adoStreamQuery

Setting the Command Language Dialect

The second requirement of the application is setting the command language dialect, which specifies how the Microsoft OLE DB
Provider for SQL Server interprets the command text received from ADO. The dialect is specified by a globally unique identifier
(GUID) and is set using the Dialect property of the Command object. The Microsoft OLE DB Provider for SQL Server
(SQLOLEDB) supports these values.

ADO Value OLE DB Constant Description
{C8B521FB-5CF3-11CE-ADE5-
00AA0044773D}

DBGUID_DEFAULT Provider-specific default
behavior

{C8B522D7-5CF3-11CE-ADE5-
00AA0044773D}

DBGUID_SQL Transact-SQL query

{5D531CB2-E6Ed-11D2-B252-
00C04F681B71}

DBGUID_MSSQLXML XML template query

{EC2A4293-E898-11D2-B1B7-
00C04F680C56}

DBGUID_XPATH XPath query

The command dialect for XML queries is specified as follows:

AdoCmd.Dialect = "{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

ADO and SQL Server (SQL Server 2000)

Retrieving Result Sets into Streams
 New Information - SQL Server 2000 SP3.

In addition to receiving results in a Recordset object, an ADO application can use the Stream object to contain these results in
XML format. These results also can be streamed into any object that supports the OLE DB IStream interface, (for example, the ASP
Response object.

This example demonstrates using a stream to access the Northwind database. It uses an Active Server Page (ASP) and is written
in Microsoft Visual Basic Scripting Edition (VBScript).

FOR XML Queries

The FOR XML clause, which allows SQL Server to return data in the form of an XML document, has been added to the SELECT
statement in SQL Server 2000. The syntax of the FOR XML clause is:

FOR XML [RAW|AUTO|EXPLICIT]

FOR XML RAW generates generic row elements with column values as attributes. FOR XML AUTO uses heuristics to generate a
hierarchical tree with element names based on table names. FOR XML EXPLICIT provides complete control over the format of the
XML returned by the query. For more information, see Retrieving XML Data Using FOR XML.

The command can be entered in the form of:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML AUTO

The command can also be entered in the form of a template query. When constructing a template query for use with the ADO
Command object, the application must enclose the command text in <sql:query> </sql:query> tags to reference an XML
Namespace specific to SQL Server queries. The command is entered in the form of:

<sql:query> SELECT * FROM PRODUCTS ORDER BY PRODUCTNAME FOR XML AUTO </sql:query>

The application must also specify where to send the output of the query. When using the FOR XML clause, the application can
specifies a Stream object to receive the resulting XML output. In this example, the application uses the ASP Response object by
setting the Output Stream property on the ADO Command object:

adoCmd.Properties("Output Stream") = Response

After the output stream has been associated with the Command object using the Output Stream property, the command can be
executed. The application sets the adExecuteStream parameter to retrieve results in the form of a stream instead as a record set,
which is the default. This example encloses the stream in XML tags that create an XML data island.

Response.write "<XML ID='MyDataIsle'>"
adoCmd.Execute , , adExecuteStream
Response.write "</XML>"

At this point in the code execution, the application has streamed XML to the client browser and to display it using client-side
VBScript to bind the XML document to an instance of the Document Object Model (DOM), looping through each child node to
build a list of products in HTML:

<SCRIPT language="VBScript" For="window" Event="onload">

Dim xmlDoc
Set xmlDoc = MyDataIsle.XMLDocument
xmlDoc.resolveExternals=false
xmlDoc.async=false

Dim root, child
Set root = xmlDoc.documentElement

For each child in root.childNodes
 dim OutputXML
 OutputXML = document.all("log").innerHTML
 document.all("log").innerHTML = OutputXML & "" & child.getAttribute("ProductName") & ""
Next

</SCRIPT>
</HEAD>
<BODY>
<H3>Client-side processing of XML Document MyDataIsle</H3>
<UL id=log>

</BODY>
</HTML>

Example

This is the complete code listing from the ASP described previously. The ASP:

Queries SQL Server 2000.

Binds the resulting XML stream to the DOM.

Displays data from several nodes.

<%@ LANGUAGE = VBScript %>
<% Option Explicit %>

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Developer Studio"/>
<META HTTP-EQUIV="Content-Type" content="text/html" charset="iso-8859-1"/>
<TITLE>ADO 2.6 E</TITLE>

<!-- #include file="adovbs.inc" -->
<%
 Response.Write "<H3>Server-side processing</H3>"

 Dim adoConn
Set adoConn = Server.CreateObject("ADODB.Connection")

Dim sConn
sConn = "Provider=SQLOLEDB;Data Source=MYSERVER1;Initial Catalog=Northwind;Trusted_Connection=yes;"
adoConn.ConnectionString = sConn
adoConn.CursorLocation = adUseClient
adoConn.Open

 Dim adoCmd
Set adoCmd = Server.CreateObject("ADODB.Command")
Set adoCmd.ActiveConnection = adoConn

 Dim sQuery
sQuery = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:query>SELECT * FROM PRODUCTS ORDER BY
PRODUCTNAME FOR XML AUTO</sql:query></ROOT>"

 Dim adoStreamQuery
Set adoStreamQuery = Server.CreateObject("ADODB.Stream")
adoStreamQuery.Open
 adoStreamQuery.WriteText sQuery, adWriteChar
 adoStreamQuery.Position = 0

 Set adoCmd.CommandStream = adoStreamQuery
 adoCmd.Dialect = "{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

 Response.write "Pushing XML to client for processing " & "
"

 adoCmd.Properties("Output Stream") = Response
Response.write "<XML ID='MyDataIsle'>"
 adoCmd.Execute , , adExecuteStream
 Response.write "</XML>"
%>

<SCRIPT language="VBScript" For="window" Event="onload">

 Dim xmlDoc
 Set xmlDoc = MyDataIsle.XMLDocument
 xmlDoc.resolveExternals=false
 xmlDoc.async=false

 Dim root, child
 Set root = xmlDoc.documentElement

 For each child in root.childNodes
 dim OutputXML
 OutputXML = document.all("log").innerHTML
 document.all("log").innerHTML = OutputXML & "" & child.getAttribute("ProductName") & ""
 Next

</SCRIPT>

</HEAD>
<BODY>
 <H3>Client-side processing of XML Document MyDataIsle</H3>
 <UL id=log>

</BODY>
</HTML>

See Also

ADO and FOR XML

ADO and SQL Server (SQL Server 2000)

Mapping an XML Schema to a Relational Schema Using
Annotated Schemas

 New Information - SQL Server 2000 SP3.

An application can create XML views of relational data using annotated XDR (XML-Data Reduced) schemas, which can then be
queried using XPath queries. This process is conceptually similar to creating views using Transact-SQL CREATE VIEW statements,
and then specifying SQL queries against the view. Annotated schemas, which are Microsoft-developed extensions to the XML Data
specification, allow client applications to view a relational database as an XML document instead of a group of tables. An XML file
that maps XML elements and attributes to tables and columns of a relational database is called a Mapping Schema. Applications
can use these two technologies to query Microsoft® SQL Server™ without using SQL commands and without knowing the
relational design of the database. For more information about XPath queries, see Using XPath Queries. For more information
about XML views and annotated schemas, see Creating XML Views Using Annotated XDR Schemas.

The following example demonstrates how to build an XPath query that is functionally equivalent to this Transact-SQL statement:

SELECT o.OrderID, o.OrderDate from Orders o, Customers c,
WHERE o.CustomerID = c.CustomerID and c.CompanyName = ?

This example passes the CompanyName, Tortuga Restaurante, as an input parameter.

The Customers and Orders tables from the Northwind database are used to create a mapping schema. This is the structure of
the Customers and Orders tables, including primary and foreign key relationships.

CREATE TABLE [Customers]
 [CustomerID] [nchar] (5) NOT NULL ,
 [CompanyName] [nvarchar] (40) NOT NULL ,
 [ContactName] [nvarchar] (30) NULL ,
 [ContactTitle] [nvarchar] (30) NULL ,
 [Address] [nvarchar] (60) NULL ,
 [City] [nvarchar] (15) NULL ,
 [Region] [nvarchar] (15) NULL ,
 [PostalCode] [nvarchar] (10) NULL ,
 [Country] [nvarchar] (15) NULL ,
 [Phone] [nvarchar] (24) NULL ,
 [Fax] [nvarchar] (24) NULL

 PRIMARY KEY [CustomerID]

CREATE TABLE [Orders] (
 [OrderID] [int] IDENTITY (1, 1) NOT NULL,
 [CustomerID] [nchar] (5) NULL,
 [EmployeeID] [int] NULL,
 [OrderDate] [datetime] NULL,
 [RequiredDate] [datetime] NULL,
 [ShippedDate] [datetime] NULL,
 [ShipVia] [int] NULL,
 [Freight] [money] NULL,
 [ShipName] [nvarchar] (40) NULL,
 [ShipAddress] [nvarchar] (60) NULL,
 [ShipCity] [nvarchar] (15) NULL,
 [ShipRegion] [nvarchar] (15) NULL,
 [ShipPostalCode] [nvarchar] (10) NULL,
 [ShipCountry] [nvarchar] (15) NULL

 PRIMARY KEY [OrderID]
 FOREIGN KEY [Customers].[CustomerID]

The example SQL query requires the OrderID, OrderDate, and CustomerID columns from the Orders table, and the
CompanyName and CustomerID columns from the Customers table.

The application also requires a mapping schema, which in this example, is stored in the Orders.xml file in the virtual root directory.

The document contains Namespace declarations, specifically the XML-Data namespace. These table-mapping elements are also
included:

The sql:relation attribute, which is used to identify the table or view in the database. Inside each element are attributes that
map to columns in the table identified by the element.

The sql:field attribute, which is used to identify the field in the SQL table.

The sql:relationship attribute, which is used to identify the primary and foreign key relationships between the two tables.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="CustomerID" />
 <AttributeType name="OrderID" />
 <AttributeType name="OrderDate" />
 <attribute type="CustomerID" sql:field="CustomerID" />
 <attribute type="OrderID" sql:field="OrderID" />
 <attribute type="OrderDate" sql:field="OrderDate" />
</ElementType>

<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />
 <AttributeType name="CompanyName" />
 <attribute type="CustomerID" sql:field="CustomerID" />
 <attribute type="CompanyName" sql:field="CompanyName" />
 <element type="Order" >
 <sql:relationship key-relation="Customers" key="CustomerID"
 foreign-key="CustomerID" foreign-relation="Orders" />
 </element>
</ElementType>
</Schema>

Using an Active Server Page (ASP), an application user generates a URL containing a company name for which he or she wants to
see orders. In this example, the URL takes the form:

http://WebServer/Vroot/Orders.asp?CompanyName="Tortuga%20Restaurante"

Using the customer name passed in by the user, the ASP constructs this XPath query to run against the mapping schema:

Customer[@CompanyName="Tortuga Restaurante"]

This query string is passed to the ADO Command object and executed, returning the results in an XML stream.

The ASP begins by using the ASP Request object to capture the CompanyName passed in using the URL and storing it in a string
variable called sCompanyName.

dim sCompanyName
sCompanyName = Request.QueryString("CompanyName")

The application then creates ADO Connection and Command objects. Because the application issues commands written as
XPATH queries, it must use the XPATH command dialect.

adoCmd.CommandText = "Customer[@CompanyName=" & sCompanyName & "]"
adoCmd.Dialect = "{ec2a4293-e898-11d2-b1b7-00c04f680c56}"

The application then sets properties specific to the Microsoft OLE DB Provider for SQL Server: Mapping Schema and Base Path.
The application sets the Mapping Schema property to the name of the mapping schema file, and Base Path property to the
directory containing the mapping schema file.

 adoCmd.Properties("Mapping Schema") = "Orders.xml"
 adoCmd.Properties("Base Path") = "C:\INETPUB\WWWROOT\Kowalski\"

After the Output Stream property is set to the ASP Response object, the command can be executed. The application sets the
adExecuteStream parameter of the Command object, and encloses the setting in XML tags to create an XML data island.

Response.write "<XML ID='MyDataIsle'>"
 adoCmd.Execute , , adExecuteStream
 Response.write "</XML>"
%>

At this point in the code execution, the application has passed the XML stream to the client browser. The XML stream is displayed
using client-side VBScript to bind the XML document to an instance of the DOM, and by looping through each child node to build
a list of OrderIDs and OrderDates using HTML.

Examples

This is the complete code listing from the ASP described previously.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Developer Studio"/>
<META HTTP-EQUIV="Content-Type" content="text/html" charset="iso-8859-1"/>
<TITLE>XPATH Query Annotated Schema Orders.asp</TITLE>

<STYLE>
 BODY
 {
 FONT-FAMILY: Tahoma;
 FONT-SIZE: 8pt;
 OVERFLOW: auto
 }
 H3
 {
 FONT-FAMILY: Tahoma;
 FONT-SIZE: 8pt;
 OVERFLOW: auto
 }

</STYLE>

<!-- #include file="adovbs.inc" -->
<%
 dim sCompanyName
 sCompanyName = Request.QueryString("CompanyName")
 If Len(sCompanyName) = 0 then
 Response.redirect "http://MYSERVER1/Kowalski/OrdersErr.asp"
 Else
Dim sConn
sConn = "Provider=SQLOLEDB; Data Source=MYSERVER1; Initial Catalog=Northwind;Trusted_Connection=yes;"

Dim adoConn
Set adoConn = Server.CreateObject("ADODB.Connection")
 adoConn.ConnectionString = sConn
adoConn.CursorLocation = adUseClient
adoConn.Open

 Dim adoCmd
 Set adoCmd = CreateObject("ADODB.Command")
 Set adoCmd.ActiveConnection = adoConn
 adoCmd.CommandText = "/Customer[@CompanyName=" & sCompanyName & "]"
adoCmd.Dialect = "{ec2a4293-e898-11d2-b1b7-00c04f680c56}"

 adoCmd.Properties("Mapping Schema") = "Orders.xml"
 adoCmd.Properties("Base Path") = "C:\INETPUB\WWWROOT\Kowalski\"
 adoCmd.Properties("Output Stream") = Response

Response.write "<XML ID='MyDataIsle'>"
 adoCmd.Execute , , adExecuteStream
 Response.write "</XML>"
End If
%>

<SCRIPT language="VBScript" For="window" Event="onload">

 Dim xmlDoc
 Set xmlDoc = MyDataIsle.XMLDocument
 xmlDoc.resolveExternals=false
 xmlDoc.async=false

 Dim root, child, header, OutputHeader
 Set root = xmlDoc.documentElement

 OutputHeader = document.all("header").innerHTML
 OutputHeader = OutputHeader & "CustomerID: " & root.getAttribute("CustomerID")
 document.all("header").innerHTML = OutputHeader

 For each child in root.childNodes
 dim OutputOrders, OrderList
 OutputOrders = document.all("Orders").innerHTML
 OrderList = " Order # " & child.getAttribute("OrderID") & ", Date: " &
child.getAttribute("OrderDate") & ""
 TotalPage = OutputOrders & OrderList
 document.all("Orders").innerHTML = TotalPage
 Next

</SCRIPT>

</HEAD>
<BODY>

 <H3>Client-side processing of XML Document MyDataIsle</H3>
 <DIV id=Header></DIV>
 <UL id=Orders>
</BODY>
</HTML>

See Also

ADO and XPath Query

ADO and SQL Server (SQL Server 2000)

ADO Support for OpenXML
 New Information - SQL Server 2000 SP3.

OpenXML is a SQL Server 2000 extension to Transact-SQL that allows stored procedures to process XML and generate rowsets
from the data for use by Transact-SQL statements. In the following example, ADO passes an XML document to a stored
procedure. The stored procedure executes a SELECT statement generating a rowset. This rowset can then be processed by the
stored procedure, or returned to the client as an ADO Recordset.

To use stored procedures to process XML:

1. Execute the sp_xml_preparedocument stored procedure to prepare the XML document for use by Transact-SQL
statements.

2. Use the OpenXML-generated rowset in one or more queries.

3. Execute sp_xml_removedocument to remove the prepared XML document from memory.

The ASP calls Command.Execute to execute the stored procedure, and passes in the XML document. The application then
executes sp_xml_preparedocument to create an in-memory representation of the XML document. sp_xml_preparedocument
has an output parameter (@iDoc, int), which is a pointer to the prepared XML document, and an input parameter (@XMLDoc,
VarChar(2000), which contains the text of an XML document to be accessed using T-SQL statements.

 EXECUTE sp_xml_preparedocument @iDoc OUTPUT, @XMLDoc

In this SELECT statement, the application passes in the @iDoc handle, an XPath command '/Root/Customers', a flag '1' indicating
that the XML is attribute-centric, and a WITH clause describing the structure of the rowset to be returned.

SELECT * FROM OpenXML(@iDoc, '/ROOT/Customers',1)
 WITH (CustomerID varchar(10), ContactName varchar(20))

Any Transact-SQL statement that operates with a rowset can be used with the OpenXML keyword. For example, an application can
also use INSERT, UPDATE, DELETE, and JOIN statements.

After the application completes processing of the in-memory XML document, it releases the document by passing the @iDoc
parameter to sp_xml_removedocument:

 EXECUTE sp_xml_removedocument @iDoc

For more information about OpenXML, see Writing XML Using OpenXML.

Example

This is the complete listing of the stored procedure discussed previously.

CREATE PROCEDURE SP_OpenXML_Example
 @XMLDoc varchar(2000)
AS
 DECLARE @ReturnCode INT
 DECLARE @iDoc int

 EXECUTE sp_xml_preparedocument @iDoc OUTPUT, @XMLDoc

 SELECT * FROM OpenXML(@iDoc, '/ROOT/Customers',1)
 WITH (CustomerID varchar(10), ContactName varchar(20))

 EXECUTE sp_xml_removedocument @iDoc

 SELECT @ReturnCode = 1
 RETURN @ReturnCode
GO

Active Server Page

This is the complete listing of the ASP discussed previously.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Developer Studio"/>

<META HTTP-EQUIV="Content-Type" content="text/html" charset="iso-8859-1"/>
<TITLE>ADO 2.6 OpenXML Example - OpenXML.asp</TITLE>

<STYLE>
 BODY
 {
 FONT-FAMILY: Tahoma;
 FONT-SIZE: 8pt;
 OVERFLOW: auto
 }

 H3
 {
 FONT-FAMILY: Tahoma;
 FONT-SIZE: 8pt;
 OVERFLOW: auto
 }

</STYLE>

<!-- #include file="adovbs.inc" -->
<%
Response.Write "Page Generated @ " & Now() & "
"

 Dim sConn
 sConn = "Provider=SQLOLEDB;Data Source=MYSERVER1;Initial Catalog=Northwind;Trusted_Connection=yes;"

 Response.write "Connect String = " & sConn & "
"

 Dim adoConn
 Set adoConn = Server.CreateObject("ADODB.Connection")
 adoConn.ConnectionString = sConn
 adoConn.CursorLocation = adUseClient
 adoConn.Open

 Response.write "ADO Version = " & adoConn.Version & "
"
 Response.write "adoConn.State = " & adoConn.State & "
"

 Dim sXMLDoc, sQuery

 sXMLDoc = "<ROOT>"
 sXMLDoc = sXMLDoc & "<Customers CustomerID='VINET' ContactName='Paul Henriot'>"
 sXMLDoc = sXMLDoc & "<Orders CustomerID='VINET' EmployeeID='5' OrderDate='1996-07-04T00:00:00'>"
 sXMLDoc = sXMLDoc & "<Order_0020_Details OrderID='10248' ProductID='11' Quantity='12'/>"
 sXMLDoc = sXMLDoc & "<Order_0020_Details OrderID='10248' ProductID='42' Quantity='10'/>"
 sXMLDoc = sXMLDoc & "</Orders>"
 sXMLDoc = sXMLDoc & "</Customers>"
 sXMLDoc = sXMLDoc & "<Customers CustomerID='LILAS' ContactName='Carlos Gonzlez'>"
 sXMLDoc = sXMLDoc & "<Orders CustomerID='LILAS' EmployeeID='3' OrderDate='1996-08-16T00:00:00'>"
 sXMLDoc = sXMLDoc & "<Order_0020_Details OrderID='10283' ProductID='72' Quantity='3'/>"
 sXMLDoc = sXMLDoc & "</Orders>"
 sXMLDoc = sXMLDoc & "</Customers>"
 sXMLDoc = sXMLDoc & "</ROOT>"

sQuery = "SP_OpenXML_Example"
 Response.write "sQuery = " & sQuery & "
"

 Dim adoCmd
 Set adoCmd = Server.CreateObject("ADODB.Command")
 Set adoCmd.ActiveConnection = adoConn
 adoCmd.CommandText = sQuery
 adoCmd.CommandType = adCmdStoredProc
 adoCmd.Parameters.Refresh
 adoCmd.Parameters.Item(1).Value = sXMLDoc

 Dim adoRS
 Set adoRS = adoCmd.Execute()

 Response.write "Data = " & adoRS.Fields(0).Value & "
"
 adoRS.Close

 Response.write "ReturnValue = " & adoCmd.Parameters.Item(0).Value & "
"

%>
</HEAD>
<BODY>
</BODY>
</HTML>

See Also

ADO and Open XML

ADO and SQL Server (SQL Server 2000)

Objects
The ADO object model defines a collection of programmable objects that can be used by any of the Microsoft Visual languages
(Microsoft® Visual Basic®, Microsoft Visual C++®, and Microsoft Visual J++™); Web scripting languages such as Visual Basic
Scripting Edition and Microsoft JScript®; and generally, any platform that supports both COM and Automation. The ADO object
model, which contains nine objects and four collections, is designed to expose the most commonly used features of OLE DB.

The following diagram shows the relationships among the ADO objects and collections:

The Connection, Command, and Recordset objects are the most commonly used ADO objects.

The Connection object is used to establish connections between the client and database server.

The Command object is used to issue commands, such as SQL queries and updates, to the database.

The Recordset object is used to view and manipulate the results of the query.

Use the Parameters collection and Parameter objects when the query in the Command object requires parameters. The Errors
collection and Error object are accessed through the Connection object after a provider error occurs. The Fields collection and
Field object are accessed through the Recordset object after data exists in the Recordset object, and through the Row object.

The Properties collection provides information about the characteristics of the Connection, Command, Recordset, Row, Field,
and Stream objects. Each Property object belonging to the Properties collection must be accessed through one of those six
objects.

Although ADO defines an object hierarchy, all ADO objects except for the Error, Field, and Property objects can be created on
their own. (This differs somewhat from the DAO and RDO object models, where an object must often be qualified with its parent
objects when used.)

Because ADO offers flexibility in defining programmable objects, there are often several ways of accomplishing the same task. For
example, to execute a query, you can use the Execute method of either the Connection object or the Command object.

See Also

Using the Fields Collection and Field Object

Using Parameters

ADO and SQL Server (SQL Server 2000)

Command Object
The Command object is used to query a database and return records in a Recordset object, to execute a bulk operation, or to
manipulate the structure of a database.

In addition to the standard ADO properties, these dynamic properties are added to the Properties collection of the Command
object.

Dynamic Properties

Access Order Property Notification Granularity Property
Base Path Property Notification Phases Property
Blocking Storage Objects Property Objects Transacted Property
Bookmark Type Property Others' Changes Visible Property
Bookmarkable Property Others' Inserts Visible Property
Change Inserted Rows Property Output Encoding Property
Column Privileges Property Output Stream Property
Column Set Notification Property Own Changes Visible Property
Content Type Property Own Inserts Visible Property
Cursor Auto Fetch Property Preserve on Abort Property
Defer Column Property Preserve on Commit Property
Defer Prepare Property Quick Restart Property
Delay Storage Object Updates Property Reentrant Events Property
Fetch Backwards Property Remove Deleted Rows Property
Hold Rows Property Report Multiple Changes Property
IAccessor Property Return Pending Inserts Property
IColumnsInfo Property Row Delete Notification Property
IColumnsRowset Property Row First Change Notification Property
IConnectionPointContainer Property Row Insert Notification Property
IConvertType Property Row Privileges Property
Immobile Rows Property Row Resynchronization Notification

Property
IRowset Property Row Threading Model Property
IRowsetChange Property Row Undo Change Notification Property
IRowsetIdentity Property Row Undo Delete Notification Property
IRowsetInfo Property Row Undo Insert Notification Property
IRowsetLocate Property Row Update Notification Property
IRowsetResynch Property Rowset Fetch Position Change Notification

Property
IRowsetScroll Property Rowset Release Notification Property
IRowsetUpdate Property Scroll Backwards Property
ISequentialStream Property Server Cursor Property
ISupportErrorInfo Property Server Data on Insert Property
Literal Bookmarks Property Skip Deleted Bookmarks Property
Literal Row Identity Property SS STREAM FLAGS Property
Lock Mode Property Strong Row Identity Property
Mapping Schema Property Updatability Property
Maximum Open Rows Property Use Bookmarks Property
Maximum Pending Rows Property XML Root Property
Maximum Rows Property XSL Property

ADO and SQL Server (SQL Server 2000)

Connection Object
A Connection object represents a unique session with a data source. In the case of a client/server database system, it may be
equivalent to an actual network connection to the server.

In addition to the standard ADO properties, these dynamic properties are added to the Properties collection of the Connection
object.

Dynamic Properties

Active Sessions Property NULL Collation Order Property
Asynchable Abort Property NULL Concatenation Behavior Property
Asynchable Commit Property OLE DB Version Property
Autocommit Isolation Levels Property OLE Object Support Property
Catalog Location Property Open Rowset Support Property
Catalog Term Property ORDER BY Columns in Select List Property
Column Definition Property Output Parameter Availability Property
Connect Timeout Property Pass By Ref Accessors Property
Current Catalog Property Password Property
Data Source Property Persist Security Info Property
Data Source Name Property Persistent ID Type Property
Data Source Object Threading Model
Property

Prepare Abort Behavior Property

DBMS Name Property Prepare Commit Behavior Property
DBMS Version Property Procedure Term Property
Extended Properties Property Prompt Property
GROUP BY Support Property Provider Friendly Name Property
Heterogeneous Table Support Property Provider Name Property
Identifier Case Sensitivity Property Provider Version Property
Initial Catalog Property Read-Only Data Source Property
Isolation Levels Property Rowset Conversions on Command Property
Isolation Retention Property Schema Term Property
Locale Identifier Property Schema Usage Property
Maximum Index Size Property SQL Support Property
Maximum Row Size Property Structured Storage Property
Maximum Row Size Includes BLOB
Property

Subquery Support Property

Maximum Tables in SELECT Property Table Term Property
Multiple Parameter Sets Property Transaction DDL Property
Multiple Results Property User ID Property
Multiple Storage Objects Property User Name Property
Multi-Table Update Property Window Handle Property

ADO and SQL Server (SQL Server 2000)

Record Object
A Record object represents one row of data, and has some conceptual similarities with a one-row Recordset. An application can
retrieve Record objects directly from the provider instead of a one-row Recordset, for example when an SQL query that selects
only one row (singleton select) is executed. It is much more efficient for an application to use a Record object than a Recordset
object if only one row is to be retrieved from a query.

A Record object also can be obtained directly from a Recordset object.

ADO and SQL Server (SQL Server 2000)

Recordset Object
You use Recordset objects to manipulate data from the provider. When you use ADO, you manipulate data almost entirely using
Recordset objects. All Recordset objects consist of records (rows) and fields (columns).

In addition to the standard ADO properties, these dynamic properties are added to the Properties collection of the Recordset
object.

Dynamic Properties

Access Order Property Notification Granularity Property
Blocking Storage Objects Property Notification Phases Property
Bookmark Type Property Objects Transacted Property
Bookmarkable Property Others' Changes Visible Property
Change Inserted Rows Property Others' Inserts Visible Property
Column Privileges Property Own Changes Visible Property
Column Set Notification Property Own Inserts Visible Property
Command Time Out Property Preserve on Abort Property
Defer Column Property Preserve on Commit Property
Delay Storage Object Updates Property Quick Restart Property
Fetch Backwards Property Reentrant Events Property
Hold Rows Property Remove Deleted Rows Property
IAccessor Property Report Multiple Changes Property
IColumnsInfo Property Return Pending Inserts Property
IColumnsRowset Property Row Delete Notification Property
IConnectionPointContainer Property Row First Change Notification Property
IConvertType Property Row Insert Notification Property
Immobile Rows Property Row Privileges Property
IRowset Property Row Resynchronization Notification

Property
IRowsetChange Property Row Threading Model Property
IRowsetIdentity Property Row Undo Change Notification Property
IRowsetInfo Property Row Undo Delete Notification Property
IRowsetLocate Property Row Undo Insert Notification Property
IRowsetResynch Property Row Update Notification Property
IRowsetScroll Property Rowset Fetch Position Change

Notification Property
IRowsetUpdate Property Rowset Release Notification Property
ISequentialStream Property Scroll Backwards Property
ISupportErrorInfo Property Server Cursor Property
Literal Bookmarks Property Skip Deleted Bookmarks Property
Literal Row Identity Property Strong Row Identity Property
Maximum Open Rows Property Unique Rows Property
Maximum Pending Rows Property Updatability Property
Maximum Rows Property Use Bookmarks Property

ADO and SQL Server (SQL Server 2000)

Stream Object
In tree-structured hierarchies such as a file system or an e-mail system, a Record object may have a default binary stream of bits
associated with it that contains the contents of the file or the e-mail. A Stream object can be used to manipulate fields or records
containing these streams of data. A Stream object can be obtained:

From a URL pointing to an object (typically a file) containing binary or text data. This object can be a simple document, a
Record object representing a structured document, or a folder.

By opening the default Stream object associated with a Record object. You can obtain the default stream associated with a
Record object when the Record is opened, to eliminate a round-trip just to open the stream.

By instantiating a Stream object. These Stream objects can be used to store data for the purposes of your application.
Unlike a Stream associated with a URL, or the default Stream of a Record, an instantiated Stream has no association with
an underlying source by default.

ADO and SQL Server (SQL Server 2000)

Dynamic Properties
The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) inserts a number of dynamic properties into the Properties
collection of the unopened Connection, Recordset, and Command objects.

Each of the topics in this section cross-reference a dynamic property with the ADO objects to which it applies, and the
corresponding OLE DB property to which it maps. ADO dynamic properties either map to standard OLE DB properties, or to
provider-specific OLE DB properties.

Provider-Specific Dynamic Properties

Properties in the form of DBPROP_PROPERTYNAME are standard OLE DB properties. Properties in the form of
SSPROP_PROPERTYNAME are provider-specific OLE DB properties. SQLOLEDB supports these provider-specific dynamic
properties:

Property Name Description
Base Path Property The Base Path property specifies a file path or

URL to use for resolving relative paths in a
template (for example, XSL on a template root
directory, sql:mapping-schema attribute on a
sql:xpath:query, external schema references in
an inline schema, or Mapping Schema and
XML Root properties).

Content Type Property The Content Type property returns the output
content type of an XML transmission.

Cursor Auto Fetch Property The Cursor Auto Fetch property specifies
whether the initial result set is returned when a
cursor is opened.

Defer Prepare Property The Defer Prepare property specifies whether
to prepare and perform the initial execution of a
statement in a single operation.

Mapping Schema Property The Mapping Schema property specifies a file
name or URL that points to the mapping schema
used by the provider to translate an XPath
command.

SS STREAM FLAGS Property The SS STREAM FLAGS property specifies how
an application manages mapping schemas, XSL
files, and templates.

XML Root Property The XML Root property provides a root tag in
which the query result is wrapped to return a
well-formed document.

XSL Property The XSL property specifies an XSL file name or
URL applied to the result of a query.

Examples

Applications reference ADO dynamic properties though the ADO Properties collection using this VBScript syntax:

Dim adoCmd
Set adoCmd = CreateObject("ADODB.Command")

Dim sBasePath
sBasePath = adoCmd.Properties("Base Path")
'Or
adoCmd.Properties("Base Path") = "C:\Inetpub\wwwroot\myvroot\"

ADO and SQL Server (SQL Server 2000)

A

ADO and SQL Server (SQL Server 2000)

Access Order Property
Access Order Property

The Access Order property sets the order in which columns must be accessed by methods that operate on recordsets, rows, and
streams.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Active Sessions Property
Active Sessions Property

The Active Sessions property returns the maximum number of session objects that can be active at one time.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Asynchable Abort Property
Asynchable Abort Property

The Asynchable Abort property indicates whether transactions can be aborted asynchronously.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Asynchable Commit Property
Asynchable Commit Property

The Asynchable Commit property indicates whether transactions can be committed asynchronously.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Autocommit Isolation Levels Property
Autocommit Isolation Levels Property

The Autocommit Isolation Levels property specifies the transaction isolation levels while in auto-commit mode.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

B

ADO and SQL Server (SQL Server 2000)

Base Path Property
Base Path Property

The Base Path property specifies a file path or URL to use for resolving relative paths in a template (for example, XSL on a
template root directory, sql:mapping-schema attribute on a sql:xpath:query, external schema references in an inline schema, or
Mapping Schema and XML Root properties).

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Blocking Storage Objects Property
Blocking Storage Objects Property

The Blocking Storage property indicates whether storage objects might prevent use of other methods on the recordset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Bookmark Type Property
Bookmark Type Property

The Bookmark Type property indicates the bookmark type supported by the recordset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Bookmarkable Property
Bookmarkable Property

The Bookmarkable property specifies whether a recordset supports bookmarks.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

C

ADO and SQL Server (SQL Server 2000)

Catalog Location Property
Catalog Location Property

The Catalog Location property indicates the position of the catalog name in a qualified table name in a text command.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Catalog Term Property
Catalog Term Property

The Catalog Term property returns the name the data source object uses for a catalog (for example, catalog, database, or
directory).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Change Inserted Rows Property
Change Inserted Rows Property

The Change Inserted Rows property specifies whether an application can call the Delete or Update methods on a newly
inserted row.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Column Definition Property
Column Definition Property

The Column Definition property returns valid clauses that can be used in column definition.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Column Privileges Property
Column Privileges Property

The Column Privileges property indicates whether access rights are restricted on a column-by-column basis.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Column Set Notification Property
Column Set Notification Property

The Column Set Notification property specifies whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Command Time Out Property
Command Time Out Property

The Command Time Out property specifies the number of seconds before a command times out.

Applies To

Recordset Object

ADO and SQL Server (SQL Server 2000)

Connect Timeout Property
Connect Timeout Property

The Connect Timeout property specifies the amount of time in seconds to wait for connection initialization to complete.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Content Type Property
Content Type Property

The Content Type property returns the output content type of an XML transmission.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Current Catalog Property
Current Catalog Property

The Current Catalog property specifies the name of the current catalog.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Cursor Auto Fetch Property
Cursor Auto Fetch Property

The Cursor Auto Fetch property specifies whether the initial result set is returned when a cursor is opened.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

D

ADO and SQL Server (SQL Server 2000)

Data Source Property
Data Source Property

The Data Source property specifies the name of the database to which to connect.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Data Source Name Property
Data Source Name Property

The Data Source Name property returns the name of the data source object, and is typically used during the connection process.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Data Source Object Threading Model Property
Data Source Object Threading Model Property

The Data Source Object Threading Model property specifies which threading models are supported by the data source.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

DBMS Name Property
DBMS Name Property

The DBMS Name property returns the name of the product accessed by the provider (for example, Microsoft® SQL Server™, or
Microsoft Excel).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

DBMS Version Property
DBMS Version Property

The DBMS Version property returns the version of the product accessed by the provider.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Defer Column Property
Defer Column Property

The Defer Column property specifies when data in a column is fetched.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Defer Prepare Property
Defer Prepare Property

The Defer Prepare property specifies whether to prepare and perform the initial execution of a statement in a single operation.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Delay Storage Object Updates Property
Delay Storage Object Updates Property

The Delay Storage Object Updates property specifies whether changes to storage objects are immediately transmitted to the
data source when delayed update mode is in effect.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

E

ADO and SQL Server (SQL Server 2000)

Extended Properties Property
Extended Properties Property

The Extended Properties property sets or retrieves provider-specific connection information that cannot be explicitly described
through the property mechanism.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

F

ADO and SQL Server (SQL Server 2000)

Fetch Backwards Property
Fetch Backwards Property

The Fetch Backwards property indicates whether the recordset can fetch backward.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

G

ADO and SQL Server (SQL Server 2000)

GROUP BY Support Property
GROUP BY Support Property

The GROUP BY Support property indicates the relationship between the columns in a GROUP BY clause and the nonaggregated
columns in a SELECT statement.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

H

ADO and SQL Server (SQL Server 2000)

Heterogeneous Table Support Property
Heterogeneous Table Support Property

The Heterogeneous Table Support property indicates whether the provider can join tables from different catalogs or providers.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Hold Rows Property
Hold Rows Property

The Hold Rows property specifies whether the recordset allows the application to retrieve more rows or change the next fetch
position, while holding previously fetched rows or rows with pending changes.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

I

ADO and SQL Server (SQL Server 2000)

IAccessor Property
IAccessor Property

The IAccessor property indicates whether the provider supports the OLE DB IAccessor interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IColumnsInfo Property
IColumnsInfo Property

The IColumnsInfo property indicates whether the provider supports the OLE DB IColumnsInfo interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IColumnsRowset Property
IColumnsRowset Property

The IColumnsRowset property indicates whether the provider supports the OLE DB IColumnsRowset interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IConnectionPointContainer Property
IConnectionPointContainer Property

The IConnectionPointContainer property indicates whether the provider supports the OLE DB IConnectionPointContainer
interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IConvertType Property
IConvertType Property

The IconvertType property indicates whether the provider supports the OLE DB IConvertType interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Identifier Case Sensitivity Property
Identifier Case Sensitivity Property

The Identifier Case Sensitivity property indicates how identifiers treat case in data definition commands or interfaces.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Immobile Rows Property
Immobile Rows Property

The Immobile Rows property specifies whether to reorder inserted rows in a recordset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Initial Catalog Property
Initial Catalog Property

The Initial Catalog property specifies the name of the initial default catalog to use when connecting to a data source.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

IRowset Property
IRowset Property

The IRowset property indicates whether the provider supports the OLE DB IRowset interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetChange Property
IRowsetChange Property

The IRowsetChange property indicates whether the provider supports the OLE DB IRowsetChange interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetIdentity Property
IRowsetIdentity Property

The IRowsetIdentity property indicates whether the provider supports the OLE DB IRowsetIdentity interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetInfo Property
IRowsetInfo Property

The IRowsetInfo property indicates whether the provider supports the OLE DB IRowsetInfo interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetLocate Property
IRowsetLocate Property

The IRowsetLocate property indicates whether the provider supports the OLE DB IRowsetLocate interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetResynch Property
IRowsetResynch Property

The IRowsetResynch property indicates whether the provider supports the OLE DB IRowsetResynch interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetScroll Property
IRowsetScroll Property

The IRowsetScroll property indicates whether the provider supports the OLE DB IRowsetScroll interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

IRowsetUpdate Property
IRowsetUpdate Property

The IRowsetUpdate property indicates whether the provider supports the OLE DB IRowsetUpdate interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

ISequentialStream Property
ISequentialStream Property

The ISequentialStream property indicates whether the provider supports the OLE DB ISequentialStream interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Isolation Levels Property
Isolation Levels Property

The Isolation Levels property specifies the supported transaction isolation levels.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Isolation Retention Property
Isolation Retention Property

The Isolation Retention property specifies the supported transaction isolation retention levels.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

ISupportErrorInfo Property
ISupportErrorInfo Property

The ISupportErrorInfo property indicates whether the provider supports the OLE DB ISupportErrorInfo interface.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

L

ADO and SQL Server (SQL Server 2000)

Literal Bookmarks Property
Literal Bookmarks Property

The Literal Bookmarks property specifies whether bookmarks can be compared as a sequence of bytes.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Literal Row Identity Property
Literal Row Identity Property

The Literal Row Identity property indicates whether an application can perform a binary comparison of two row handles to
determine whether they point to the same row.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Locale Identifier Property
Locale Identifier Property

The Locale Identifier property specifies a preferred locale ID.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Lock Mode Property
Lock Mode Property

The Lock Mode property specifies the level of locking performed by the recordset.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

M

ADO and SQL Server (SQL Server 2000)

Mapping Schema Property
Mapping Schema Property

The Mapping Schema property specifies a file name or URL that points to the mapping schema used by the provider to translate
an XPath command.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Maximum Index Size Property
Maximum Index Size Property

The Maximum Index Size property returns the maximum number of bytes allowed in the combined columns of an index. If
there is no specified limit or the limit is unknown, the value is set to zero.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Maximum Open Rows Property
Maximum Open Rows Property

The Maximum Open Rows property specifies the maximum number of rows that can be active at the same time.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Maximum Pending Rows Property
Maximum Pending Rows Property

The Maximum Pending Rows property specifies the maximum number of rows that can have pending changes at the same
time.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Maximum Row Size Property
Maximum Row Size Property

The Maximum Row Size property returns the maximum length of a single row in a table.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Maximum Row Size Includes BLOB Property
Maximum Row Size Includes BLOB Property

The Maximum Row Size Includes BLOB property indicates that the value returned by the Maximum Row Size property
includes all BLOB data.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Maximum Rows Property
Maximum Rows Property

The Maximum Rows property specifies the maximum number of rows that can be returned in a recordset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Maximum Tables in SELECT Property
Maximum Tables in SELECT Property

The Maximum Tables in SELECT property specifies the maximum number of tables allowed in the FROM clause of a SELECT
statement.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Multiple Parameter Sets Property
Multiple Parameter Sets Property

The Multiple Parameter Sets property indicates whether a provider supports multiple parameter sets.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Multiple Results Property
Multiple Results Property

The Multiple Results property specifies whether the provider supports multiple results objects and what restrictions it places on
these objects.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Multiple Storage Objects Property
Multiple Storage Objects Property

The Multiple Storage Objects property indicates whether the provider supports multiple open storage objects at the same time.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Multi-Table Update Property
Multi-Table Update Property

The Multi-Table Update property indicates whether the provider can update recordsets derived from multiple tables.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

N

ADO and SQL Server (SQL Server 2000)

Notification Granularity Property
Notification Granularity Property

The Notification Granularity property specifies how to process modifications on multiple rows.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Notification Phases Property
Notification Phases Property

The Notification Phases property returns a bitmask specifying the notification phases supported by the provider.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

NULL Collation Order Property
NULL Collation Order Property

The NULL Collation Order property indicates how NULLs are sorted in a list.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

NULL Concatenation Behavior Property
NULL Concatenation Behavior Property

The NULL Concatenation Behavior property specifies how the data source handles the concatenation of NULL-valued character
data type columns with non–NULL-valued character data type columns.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

O

ADO and SQL Server (SQL Server 2000)

Objects Transacted Property
Objects Transacted Property

The Objects Transacted property specifies whether an object created on the referenced columns can be committed in a
transaction.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

OLE DB Version Property
OLE DB Version Property

The OLE DB Version property returns the version of OLE DB supported by the provider.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

OLE Object Support Property
OLE Object Support Property

The OLE Object Support property returns a bitmask that specifies how the provider supports access to BLOBs and COM objects
stored in columns.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Open Rowset Support Property
Open Rowset Support Property

The Open Rowset Support property returns a bitmask that specifies how the provider supports opening objects through the
Connection object.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

ORDER BY Columns in Select List Property
ORDER BY Columns in Select List Property

The ORDER BY Columns in Select List property indicates whether columns in an ORDER BY clause must be included in the
SELECT statement.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Others' Changes Visible Property
Others' Changes Visible Property

The Others' Changes Visible property specifies whether row updates or deletions by a process other than the application
accessing a recordset are visible without statement reexecution.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Others' Inserts Visible Property
Others' Inserts Visible Property

The Others' Inserts Visible property specifies whether row inserts by a process other than the application accessing a recordset
are visible without statement reexecution.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Output Encoding Property
Output Encoding Property

The Output Encoding property specifies the encoding to use in the stream set or returned by the Execute method.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Output Parameter Availability Property
Output Parameter Availability Property

The Output Parameter Availability property specifies when output parameter values become available to an application.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Output Stream Property
Output Stream Property

The Output Stream property specifies the stream containing the results returned by the Execute method.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Own Changes Visible Property
Own Changes Visible Property

The Own Changes Visible property specifies whether row updates or deletions by the application accessing a recordset are
visible without statement reexecution.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Own Inserts Visible Property
Own Inserts Visible Property

The Own Inserts Visible property specifies whether row inserts by the application accessing a recordset are visible without
statement reexecution.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

P

ADO and SQL Server (SQL Server 2000)

Pass By Ref Accessors Property
Pass By Ref Accessors Property

The Pass By Ref Accessors property indicates whether the provider supports the DBACCESSOR_PASSBYREF flag in the OLE DB
IAccessor::CreateAccessor interface. This applies both to row and to parameter accessors.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Password Property
Password Property

 New Information - SQL Server 2000 SP3.

The Password property specifies the password to be used when connecting to a data source.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Persist Security Info Property
Persist Security Info Property

The Persist Security Info property specifies whether the data source can persist sensitive authentication information such as a
password.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Persistent ID Type Property
Persistent ID Type Property

The Persistent ID Type property specifies the type of DBID that the provider uses when persisting DBIDs that name entities in the
database, such as tables, indexes, columns, commands, or constraints. This is generally the type of DBID that the provider
considers the most permanent under schema changes and physical data reorganizations.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Prepare Abort Behavior Property
Prepare Abort Behavior Property

The Prepare Abort Behavior property indicates how aborting a transaction affects prepared commands.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Prepare Commit Behavior Property
Prepare Commit Behavior Property

The Prepare Commit Behavior property specifies how committing a transaction affects prepared commands.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Preserve on Abort Property
Preserve on Abort Property

The Preserve on Abort property specifies whether a recordset remains active after a transaction is aborted.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Preserve on Commit Property
Preserve on Commit Property

The Preserve on Commit property specifies whether a recordset remains active after a transaction is committed.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Procedure Term Property
Procedure Term Property

The Procedure Term property returns a character string with the database name for a procedure (for example, database
procedure, stored procedure, or procedure).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Prompt Property
Prompt Property

The Prompt property specifies how to prompt the user when connecting to a data source.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Provider Friendly Name Property
Provider Friendly Name Property

The Provider Friendly Name property returns the display name of the provider (for example, "Microsoft OLE DB Provider for
SQL Server").

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Provider Name Property
Provider Name Property

The Provider Name property returns the file name of the provider (for example, Sqloledb.dll).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Provider Version Property
Provider Version Property

The Provider Version property returns the version of the provider.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Q

ADO and SQL Server (SQL Server 2000)

Quick Restart Property
Quick Restart Property

The Quick Restart property specifies whether the command that created a recordset must be reexecuted before the MoveFirst
method is executed.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

R

ADO and SQL Server (SQL Server 2000)

Read-Only Data Source Property
Read-Only Data Source Property

The Read-Only Data Source property indicates whether the referenced database is read-only.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Reentrant Events Property
Reentrant Events Property

The Reentrant Events property indicates whether the provider supports reentrancy on Recordset methods.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Remove Deleted Rows Property
Remove Deleted Rows Property

The Remove Deleted Rows property specifies whether rows that are detected as deleted are removed from the recordset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Report Multiple Changes Property
Report Multiple Changes Property

The Report Multiple Changes property indicates whether an update or delete operation can affect multiple rows.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Return Pending Inserts Property
Return Pending Inserts Property

The Return Pending Inserts property indicates whether pending insert rows can be returned.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Delete Notification Property
Row Delete Notification Property

The Row Delete Notification property returns a bitmask that indicates whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row First Change Notification Property
Row First Change Notification Property

The Row First Change Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Insert Notification Property
Row Insert Notification Property

The Row Insert Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Privileges Property
Row Privileges Property

The Row Privileges property indicates whether access rights are restricted on a row-by-row basis.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Resynchronization Notification Property
Row Resynchronization Notification Property

The Row Resynchronization Notification property returns a bitmask that specifies whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Threading Model Property
Row Threading Model Property

The Row Threading Model property specifies which threading models are supported by the rowset.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Undo Change Notification Property
Row Undo Change Notification Property

The Row Undo Change Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Undo Delete Notification Property
Row Undo Delete Notification Property

The Row Undo Delete Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Undo Insert Notification Property
Row Undo Insert Notification Property

The Row Undo Insert Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Row Update Notification Property
Row Update Notification Property

The Row Update Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Rowset Conversions on Command Property
Rowset Conversions on Command Property

The Row Conversions on Command property specifies how inquiries on a command about supported conversions are handled.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Rowset Fetch Position Change Notification Property
Rowset Fetch Position Change Notification Property

The Rowset Fetch Position Change Notification property returns a bitmask specifying whether the notification phase of
DBREASON_ROWSET_CHANGE is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Rowset Release Notification Property
Rowset Release Notification Property

The Rowset Release Notification property returns a bitmask specifying whether the notification phase is cancelable.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

S

ADO and SQL Server (SQL Server 2000)

Schema Term Property
Schema Term Property

The Schema Term property returns the name the data source uses for a schema (for example, schema or owner).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Schema Usage Property
Schema Usage Property

The Schema Usage property returns a bitmask specifying how schema names can be used in text commands.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Scroll Backwards Property
Scroll Backwards Property

The Scroll Backwards property indicates whether the recordset can scroll backward.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Server Cursor Property
Server Cursor Property

The Server Cursor property determines where a cursor, if required, is materialized.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Server Data on Insert Property
Server Data on Insert Property

The Server Data on Insert property specifies whether an application can retrieve values from the database for newly inserted
rows.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Skip Deleted Bookmarks Property
Skip Deleted Bookmarks Property

The Skip Deleted Bookmarks property indicates whether the recordset allows certain methods of the RecordSet object to skip
a bookmark row and continue with the next row.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

SQL Support Property
SQL Support Property

The SQL Support property returns a bitmask specifying the level of support for SQL.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

SS STREAM FLAGS Property
SS STREAM FLAGS Property

The SS STREAM FLAGS property specifies how an application controls mapping schemas, XSL files, and templates.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Strong Row Identity Property
Strong Row Identity Property

The Strong Row Identity property indicates whether the handles of newly inserted rows can be compared.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Structured Storage Property
Structured Storage Property

The Structured Storage property returns a bitmask specifying which OLE DB interfaces the recordset supports on storage
objects.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Subquery Support Property
Subquery Support Property

The Subquery Support property returns a bitmask specifying the predicates in text commands that support subqueries.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

T

ADO and SQL Server (SQL Server 2000)

Table Term Property
Table Term Property

The Table Term property returns the name the data source uses for a table (for example, table or file).

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

Transaction DDL Property
Transaction DDL Property

The Transaction DDL property indicates the relationship of transactions to table and index modification data definition language
(DDL) statements.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

U

ADO and SQL Server (SQL Server 2000)

Unique Rows Property
Unique Rows Property

The Unique Rows property specifies whether each row is uniquely identified by its column values.

Applies To

Recordset Object

ADO and SQL Server (SQL Server 2000)

Updatability Property
Updatability Property

The Updatability property specifies the supported methods on the Recordset object.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

Use Bookmarks Property
Use Bookmarks Property

The Use Bookmarks property indicates whether the recordset supports bookmarks.

Applies To

Command Object Recordset Object

ADO and SQL Server (SQL Server 2000)

User ID Property
User ID Property

The User ID property specifies the user ID to use when connecting to the data source.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

User Name Property
User Name Property

The User Name property returns the name used in a particular database, which can be different than a login name.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

W

ADO and SQL Server (SQL Server 2000)

Window Handle Property
Window Handle Property

The Window Handle property specifies the window handle to use if the data source needs to prompt for additional information.

Applies To

Connection Object

ADO and SQL Server (SQL Server 2000)

X

ADO and SQL Server (SQL Server 2000)

XML Root Property
XML Root Property

The XML Root property provides a root tag in which the query result is wrapped to return a well-formed document.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

XSL Property
XSL Property

The XSL property specifies an XSL file name or URL applied to the result of a query.

Applies To

Command Object

ADO and SQL Server (SQL Server 2000)

Provider Support for ADOX
Microsoft ActiveX Data Objects Extensions for Data Definition Language and Security (ADOX) is an extension to the ADO objects
and programming model. ADOX includes objects for schema creation and modification, as well as security.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) and the Microsoft OLE DB Provider for ODBC (MSDASQL) support
most ADOX features. However support for some features is restricted or unavailable.

Restrictions on SQLOLEDB support for ADOX

Object or Collection Usage Restriction
Catalog object The Create method is not supported.
Table object Properties are read/write prior to object creation, and

read-only when referencing an existing object.
Views collection Views is not supported.
Procedures collection The Append and Delete methods are not supported.
Procedure object The Command property is not supported.
Keys collection The Append and Delete methods are not supported.
Users collection Users is not supported.
Groups collection Groups is not supported.

Restrictions on MSDASQL support for ADOX

Object or Collection Usage Restriction
Catalog object The Create method is not supported.
Table object Properties are read/write prior to object creation, and

read-only when referencing an existing object.
Tables collection The Append and Delete methods are not supported.
Procedures collection The Append and Delete methods are not supported.
Procedure object The Command property is not supported.
Indexes collection The Append and Delete methods are not supported.
Keys collection The Append and Delete methods are not supported.
Users collection Users is not supported.
Groups collection Groups is not supported.

ADO and SQL Server (SQL Server 2000)

ADO Samples
Microsoft® SQL Server™ 2000 includes the following query applications to introduce you to using ADO:

Sample Description
ADO and Long Data
Types (C++)

C++ language sample. Demonstrates how to use ADO to
display long data types.

ADO and Long Data
Types (Visual Basic)

Visual Basic sample. Demonstrates how to use ADO to
display long data types.

ADO Connection and
Error Handling

Visual Basic sample. Uses ADO to connect to an instance
of SQL Server.

ADO and Long Data
Types (Web)

Web sample. Demonstrates how to use ADO to display
long data types.

ADO Web Application Web sample. Demonstrates how to create a Web
application using ADO.

ADO and FOR XML XML sample. Retrieves result sets into streams using the
Transact-SQL FOR XML clause.

ADO and Open XML XML sample. Maps an XML schema to a relational schema
using annotated schemas.

ADO and XPath Query XML sample. Performs an XPath query.

The ADO samples are not intended to be fully featured applications or demonstrations of the complete range of data access
capabilities available through ADO. The samples are designed to cover some basic areas of ADO usage with SQL Server 2000,
such as connecting to an instance of SQL Server, querying, editing, and updating a data source, handling multiple result sets, and
enumerating provider errors.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_ado.exe, located at C:\Program
Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Ado.

Prerequisites

C and C++ samples require Microsoft Visual C++ version 6.0. Visual Basic samples require Microsoft Visual Basic version 6.0.

See Also

Samples

ADO and SQL Server (SQL Server 2000)

ADO Connection and Error Handling
This sample application demonstrates how to use ADO to connect to and query a database in an instance of Microsoft® SQL
Server™ using the Microsoft OLE DB Provider for SQL Server (SQLOLEDB). Error handling routines are also demonstrated.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\VB\Intro

Running the Sample

Open the Microsoft Visual Basic® project file, Adomain.vbp, and then start the project.

Remarks

Visual Basic version 6.0 includes new data handling tools not covered in this sample, such as the ADO Data Binding Control.
Features such as these allow the building of client applications with a minimum amount of code. For more information about
building a basic database client using the DataGrid and ADO Data Control, see the MSDN Library at Microsoft Web site

See Also

ADO Samples

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO and SQL Server (SQL Server 2000)

ADO and Long Data Types (Visual Basic)
This sample application demonstrates how to use ADO and Microsoft® Visual Basic® to display long data types using the
Employees table in the Northwind database. The Photo column is an image data type, and the Notes column is an ntext data
type.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\VB\Employee

Running the Sample

Open the Visual Basic project file, Employee.vbp, and then start the project.

Remarks

See Also

ADO Samples

ADO and SQL Server (SQL Server 2000)

ADO and Long Data Types (C++)
This sample application demonstrates how to use ADO and Microsoft® Visual C++® to display long data types using the
Employees table in the Northwind database. The Photo column is an image data type, and the Notes column is an ntext data
type.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\Cpp\Employee

Running the Sample

Open the Microsoft Visual C++® project file, Employee.dsw, and then start the project.

Remarks

See Also

ADO Samples

ADO and SQL Server (SQL Server 2000)

ADO and Long Data Types (Web)
This sample application demonstrates how to use ADO and VBScript to display long data types on an Active Server Page (ASP)
using the Employees table in the Northwind database. The Photo column is an image data type, and the Notes column is an
ntext data type.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\Web\Employee

Running the Sample

1. Register the ActiveX control, FileAccessor.dll, using Regsvr32. For example, if you place the file in C:\Test, register it using
this syntax:
regsvr32 c:\test\fileaccessor.dll

2. In EmployeeSample.asp, set the global variable, TempFileDrive, to an existing directory. This is where the temporary image
files are created.

3. In EmployeeSample.asp, set the global variable, TempFileHttp, to a URL equivalent to TempFileDrive. For example, if
TempFileDrive is set to C:\Inetpub\wwwroot\EmployeeSample\, TempFileHttp might be set to
http://Myserver/EmployeeSample/.

Remarks

The Visual Basic code used to create FileAccessor.dll is located at: C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\ADO\Web\Employee\Fileaccessor. If you create FileAccessor.dll using these files, it is
registered automatically, and Step 1 in Running the Sample is unnecessary. To create FileAccessor.dll using these files:

Open the Visual Basic project file, FileAccessor.vbp.

On the File menu, click Make FileAccessor.dll.

See Also

ADO Samples

ADO and SQL Server (SQL Server 2000)

ADO Web Application
This sample application demonstrates how to use ADO to build an Active Server Page (ASP) Web application that interacts with an
instance of SQL Server. The sample models an inventory management system based on the Products and Categories tables in
the Northwind database. The application allows you to view the products and categories, make updates to product information,
add new products, and remove products.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\Web

Prerequisites

This ASP sample requires Microsoft® Internet Information Services (IIS) version 4.0 or later, or Microsoft Personal Web Server
(PWS). IIS 4.0 for Microsoft Windows NT® Server and PWS for Windows 95, Windows 98, and Windows NT Workstation are
included in the Windows NT Option Pack, which can be downloaded from Microsoft Web site. IIS 5.0 is included in Windows 2000
Server, Windows 2000 Advanced Server, and Windows 2000 Datacenter.

Running the Sample

Here are the steps for running the Northwind Inventory Management System application:

1. Create a new Web page in IIS or PWS using the directory containing the sample files.

2. Open the global.asa file in an editor, add the name of an instance of Microsoft SQL Server™ to the provider string variable,
ProvStr, and then save the file.

3. Start and browse the Web page from IIS or PWS to view the Northwind Inventory Management System application.

Remarks

To use this sample, you should have a basic understanding of Active Server Pages and IIS. For more information, see the MSDN
Library at Microsoft Web site.

See Also

ADO Samples

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO and SQL Server (SQL Server 2000)

ADO and FOR XML
This sample application demonstrates how to use ADO to build an Active Server Page (ASP) Web application that retrieves result
sets into streams using the Transact-SQL FOR XML clause.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\XML\FORXML.asp

Prerequisites

This ASP sample requires Microsoft® Internet Information Services (IIS) version 5.0.

Running the Sample

Add the sample file to a Microsoft Visual InterDev® project, and then click Start.

Remarks

See Also

ADO Samples

ADO and SQL Server (SQL Server 2000)

ADO and Open XML
This sample application demonstrates how to use ADO to build an Active Server Page (ASP) Web application that maps an XML
schema to a relational schema using annotated schemas.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\XML\OpenXML.asp

Prerequisites

This ASP sample requires Microsoft® Internet Information Services (IIS) version 5.0.

Running the Sample

Add the sample file to a Microsoft Visual InterDev® project, and then click Start.

Remarks

See Also

ADO Samples

ADO and SQL Server (SQL Server 2000)

ADO and XPath Query
This sample application demonstrates how to use ADO to build an Active Server Page (ASP) Web application that performs an
XPath query.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ADO\XML\Xpath.asp

Prerequisites

This ASP sample requires Microsoft® Internet Information Services (IIS) version 5.0.

Running the Sample

Add the sample file to a Microsoft Visual InterDev® project, and then click Start.

Remarks

See Also

ADO Samples

OLE DB and SQL Server (SQL Server 2000)

Programming OLE DB SQL Server Applications
OLE DB is a low-level, COM API that is used for accessing data. OLE DB is recommended for developing tools, utilities, or low-level
components that need high performance. The OLE DB Provider for SQL Server (SQLOLEDB) is a native, high performance
provider that accesses the SQL Server TDS protocol directly.

SQLOLEDB exposes interfaces to consumers wanting access to data on one or more computers running an instance of
Microsoft® SQL Server™ 2000 or SQL Server version 7.0 or earlier.

When developing an OLE DB consumer, select a provider developed for the data source to consume. Use SQLOLEDB to develop
an optimized OLE DB consumer for SQL Server databases.

SQLOLEDB is an OLE DB version 2.0–compliant provider.

SQLOLEDB passes the command statements (such as SQL-92 and Transact-SQL) through to the server. The server rejects invalid
commands.

OLE DB and SQL Server (SQL Server 2000)

Getting Started with the OLE DB Provider for SQL Server
The topics in this section describe how to use Microsoft OLE DB Provider for SQL Server to communicate with Microsoft® SQL
Server™ 2000.

OLE DB and SQL Server (SQL Server 2000)

OLE DB Syntax Conventions
Convention Used for

UPPERCASE Transact-SQL functions and statements, and C macro names.
Monospace Sample commands and program code.
Italic Function parameter names and information that the user or

the application must provide.
Bold Function names, parameter keywords, and other syntax that

must be typed exactly as shown.

OLE DB and SQL Server (SQL Server 2000)

System Requirements for the OLE DB Provider for SQL Server
To access data in Microsoft® SQL Server™ 2000, you must have the following software installed:

Microsoft OLE DB Provider for SQL Server (SQLOLEDB).

An instance of SQL Server.

Network software.

OLE DB consumer development requires Microsoft Visual C++® version 5.0.

SQLOLEDB Requirements

SQLOLEDB requires one of the following:

Microsoft Windows® 95 or Windows 98 operating system on Intel® computers.

Microsoft Windows 2000 or Microsoft Windows NT® 4.0 operating system on Intel computers.

SQL Server Requirements

To use SQLOLEDB to access data in SQL Server databases, you must have an instance of SQL Server 2000 or SQL Server version
6.5 or later installed; the catalog stored procedures must also be installed.

Network Software Requirements

SQLOLEDB communicates with network software through the SQL Server Net-Library interface, which requires a Net-Library
dynamic-link library (DLL). The Microsoft OLE DB Provider for SQL Server 2000 requires SQL Server 2000 Net-Library .dll files,
which are installed when you run the client portion of SQL Server 2000 Setup.

See Also

Configuring Client Network Connections

Hardware and Software Requirements for Installing SQL Server

Client Net-Libraries and Network Protocols

Upgrading the Catalog Stored Procedures (OLE DB)

OLE DB and SQL Server (SQL Server 2000)

Installing the OLE DB Provider for SQL Server
The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is installed automatically when you install Microsoft® SQL Server™
2000. In a custom installation, the provider is installed when any of the following components are selected:

Server Components

Management Tools

Client Connectivity

SQLOLEDB Files

Files necessary to develop SQLOLEDB consumers are installed when the appropriate option is selected during a custom
installation; several SQLOLEDB sample applications are included. The samples implement SQLOLEDB consumers in C++.

Directory File Description
Program files\Common
files\System\Ole db

Sqloledb.dll Dynamic-link library that
implements the SQLOLEDB
provider.

Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include

Oledb.h OLE DB SDK header file for OLE
DB providers and consumers.

Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include

Sqloledb.h Header file used for developing
SQLOLEDB consumers.

Program Files\Microsoft SQL
Server\80\Tools\Dev Tools\Lib

Oledb.lib Library file used for developing
SQLOLEDB consumers.

OLE DB SDK

The primary source of information for OLE DB is the OLE DB Software Development Kit (SDK), which can be downloaded from
Microsoft Web site.

The OLE DB SDK is not installed with SQL Server 2000. To develop OLE DB applications, you need the OLE DB SDK from Microsoft
Web site.

See Also

Overview of Installing SQL Server 2000

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

OLE DB and SQL Server (SQL Server 2000)

Upgrading the Catalog Stored Procedures (OLE DB)
The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) uses a set of system stored procedures known as catalog stored
procedures to obtain information from the system catalog. Microsoft® SQL Server™ 2000 installs the catalog stored procedures
automatically when you install or upgrade an instance of SQL Server. The Instcat.sql file included with this provider includes
updates to the catalog stored procedures. If this version of SQLOLEDB will be used with SQL Server version 6.5, the SQL Server
system administrator must upgrade the catalog stored procedures on the earlier instance of SQL Server by running Instcat.sql.
Upgrading the catalog stored procedures does not affect the operations of SQL Server clients.

To upgrade the catalog stored procedures

ODBC

ODBC

OLE DB and SQL Server (SQL Server 2000)

Creating an OLE DB Application
 New Information - SQL Server 2000 SP3.

Creating an OLE DB application involves these steps:

1. Establishing a connection to a data source.

2. Executing a command.

3. Processing the results.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

OLE DB and SQL Server (SQL Server 2000)

Establishing a Connection to a Data Source
 New Information - SQL Server 2000 SP3.

To access the Microsoft OLE DB Provider for SQL Server (SQLOLEDB), the consumer must first create an instance of a data source
object by calling the CoCreateInstance method. A unique class identifier (CLSID) identifies each OLE DB provider. For
SQLOLEDB, the class identifier is CLSID_SQLOLEDB.

The data source object exposes the IDBProperties interface, which the consumer uses to provide basic authentication
information such as server name, database name, user ID, and password. The IDBProperties::SetProperties method is called to
set these properties.

If there are multiple instances of Microsoft® SQL Server™ running on the computer, the server name is specified as
ServerName\\InstanceName (the escape sequence \\ is used for the backslash).

The data source object also exposes the IDBInitialize interface. After the properties are set, connection to the data source is
established by calling the IDBInitialize::Initialize method. For example:

CoCreateInstance(CLSID_SQLOLEDB,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IDBInitialize,
 (void **) &pIDBInitialize)

This call to CoCreateInstance creates a single object of the class associated with CLSID_SQLOLEDB (CSLID associated with the
data and code that will be used to create the object). IID_IDBInitialize is a reference to the identifier of the interface (IDBInitialize)
to be used to communicate with the object.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

This is a sample function that initializes and establishes a connection to the data source:

void InitializeAndEstablishConnection()
{
 //Initialize the COM library.
 CoInitialize(NULL);
 //Obtain access to the SQLOLEDB provider.
 hr = CoCreateInstance(CLSID_SQLOLEDB,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IDBInitialize,
 (void **) &pIDBInitialize);
 /*
 Initialize the property values needed
 to establish the connection.
 */
 for(i = 0; i < 4; i++)
 VariantInit(&InitProperties[i].vValue);
 //Server name.
 InitProperties[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
 InitProperties[0].vValue.vt = VT_BSTR;
 InitProperties[0].vValue.bstrVal=
 SysAllocString(L"MySQLServer");
 InitProperties[0].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[0].colid = DB_NULLID;
 //Database.
 InitProperties[1].dwPropertyID = DBPROP_INIT_CATALOG;
 InitProperties[1].vValue.vt = VT_BSTR;
 InitProperties[1].vValue.bstrVal= SysAllocString(L"MyDatabase");
 InitProperties[1].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[1].colid = DB_NULLID;
 //Using Windows Authentication.
 InitProperties[2].dwPropertyID = DBPROP_AUTH_USERID;
 InitProperties[2].vValue.vt = VT_BSTR;
 InitProperties[2].vValue.bstrVal= SysAllocString(L"SSPI");
 InitProperties[2].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[2].colid = DB_NULLID;
 /*
 Construct the DBPROPSET structure(rgInitPropSet). The
 DBPROPSET structure is used to pass an array of DBPROP
 structures (InitProperties) to the SetProperties method.
 */
 rgInitPropSet[0].guidPropertySet = DBPROPSET_DBINIT;

http://go.microsoft.com/fwlink/?LinkId=9504

 rgInitPropSet[0].cProperties = 4;
 rgInitPropSet[0].rgProperties = InitProperties;
 //Set initialization properties.
 hr = pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void **)&pIDBProperties);
 hr = pIDBProperties->SetProperties(1, rgInitPropSet);
 pIDBProperties->Release();
 //Now establish the connection to the data source.
 pIDBInitialize->Initialize()
}

OLE DB and SQL Server (SQL Server 2000)

Executing a Command
After the connection to a data source is established, the consumer calls the IDBCreateSession::CreateSession method to create
a session. The session acts as a command, rowset, or transaction factory.

To work directly with individual tables or indexes, the consumer requests the IOpenRowset interface. The
IOpenRowset::OpenRowset method opens and returns a rowset that includes all rows from a single base table or index.

To execute a command (such as SELECT * FROM Authors), the consumer requests the IDBCreateCommand interface. The
consumer can execute the IDBCreateCommand::CreateCommand method to create a command object and request for the
ICommandText interface. The ICommandText::SetCommandText method is used to specify the command that is to be
executed.

The Execute command is used to execute the command. The command can be any SQL statement, procedure name, and so on.
Not all commands produce a result set (rowset) object. Commands such as SELECT * FROM authors produce a result set.

OLE DB Extensions for XML

The ICommandText::SetCommandText and ICommand::Execute statements can be used to set XML documents as command
text, execute the command, and retrieve the result as a stream, which can then be used in further processing, such as passing the
XML to the Document Object Model (DOM).

Templates are valid XML documents that contain one or more SQL command tags. These XML templates can be passed to
ICommandText::SetCommandText. When XML templates are set as command text using
ICommandText::SetCommandText, the consumer must pass DBGUID_MSSQLXML as the globally unique identifier (GUID) of
the command syntax. This GUID indicates that the command text is an XML template.

The consumer must call ICommand::Execute to execute XML templates. To obtain XML documents as a result set, riid must be
set to IStream.

OLE DB and SQL Server (SQL Server 2000)

Processing Results
If a rowset object is produced by either the execution of a command or the generation of a rowset object directly from the
provider, the consumer needs to retrieve and access data in the rowset.

Rowsets are central objects that enable all OLE DB data providers to expose data in tabular form. Conceptually, a rowset is a set of
rows in which each row has column data. A rowset object exposes interfaces such as IRowset (contains methods for fetching
rows from the rowset sequentially), IAccessor (permits the definition of a group of column bindings describing the way tabular
data is bound to consumer program variables), IColumnInfo (provides information about columns in the rowset), and
IRowsetInfo (provides information about rowset).

A consumer can call the IRowset::GetData method to retrieve a row of data from the rowset into a buffer. Before GetData is
called, the consumer describes the buffer using a set of DBBINDING structures. Each binding describes how a column in a rowset
is stored in a consumer buffer and contains information such as:

Ordinal of the column (or parameter) to which the binding applies.

What is bound (data value, length of the data, and its binding status).

What is offset in the buffer to each of these parts.

Length and type of the data values as they exist in the consumer buffer.

When getting the data, the provider uses information in each binding to determine where and how to retrieve data from the
consumer buffer. When setting data in the consumer buffer, the provider uses information in each binding to determine where
and how to return data in the consumer's buffer.

After the DBBINDING structures are specified, an accessor is created (IAccessor::CreateAccessor). An accessor is a collection of
bindings and is used to get or set the data in the consumer buffer.

OLE DB and SQL Server (SQL Server 2000)

Compiling OLE DB Applications
OLE DB applications must include Oledb.h, Sqloledb.h, and Oledberr.h (if using error constants defined in this file) files. Most
applications use wide character strings to make OLE DB function calls. If applications are using TCHAR variables, the application
must include #define UNICODE in the application. It converts the TCHAR variables to wide character strings. OLE DB applications
must be linked with the Oledb.lib file. In a custom installation of Microsoft® SQL Server™ 2000, the header files are installed in
the C:\Program Files\Microsoft SQL Server\80\Tools\Dev Tools\Include directory and the library files are installed in the
C:\Program Files\Microsoft SQL Server\80\Tools\Dev Tools\Lib directory. The SQL Server Include and Lib directories are located
in the INCLUDE and LIB path on the compiler.

The latest versions of these files can be downloaded with the latest Microsoft Data Access SDK from Microsoft Web site. If you
have downloaded a version of the Microsoft Data Access SDK and the dates are later than the dates for SQL Server 2000, place
the MSDA directories before the SQL Server 2000 directories. For example:

LIB=c:\msdasdk\oledb\lib;c:\Program Files\Microsoft SQL Server\80\Tools\Dev Tools\lib;c:\msdev\lib;
 c:\msdev\mfc\lib
INCLUDE=c:\msdasdk\oledb\include;c:\Program Files\Microsoft SQL Server\80\Tools\Dev Tools\include;
 c:\msdev\include;c:\msdev\mfc\include

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

OLE DB and SQL Server (SQL Server 2000)

About OLE DB Properties
Consumers set property values to request specific object behavior. For example, consumers use properties to specify the
interfaces to be exposed by a rowset. Consumers get the property values to determine the capabilities of an object such as rowset,
session, or a data source object.

Each property has a value, type, description, and read/write attribute, and for rowset properties, an indicator of whether it can be
applied on a column-by-column basis.

A property is identified by a GUID and an integer representing the property ID. A property set is a set of all properties that share
the same GUID. In addition to the predefined OLE DB property sets, SQLOLEDB implements provider-specific property sets and
properties in them. Each property belongs to one or more property groups. A property group is the group of all properties that
apply to a particular object. Some property groups include the initialization property group, data source property group, session
property group, rowset property group, table property group, column property group, and so on. There are properties in each of
these property groups.

Setting property values involves:

1. Determining the properties for which to set values.

2. Determining the property sets that contain the identified properties.

3. Allocating an array of DBPROPSET structures, one for each identified property set.

4. Allocating an array of DBPROP structures for each property set. The number of elements in each array is the number of
properties (identified in Step 1) that belong to that property set.

5. Filling in the DBPROP structure for each property.

6. Filling in information (property set GUID, count of number of elements, and a pointer to the corresponding DBPROP array)
in the DBPROPSET structure for each property set.

7. Calling a method to set properties and passing the count and the array of DBPROPSET structures.

OLE DB and SQL Server (SQL Server 2000)

Data Source Objects
OLE DB uses the term data source for the set of OLE DB interfaces used to establish a link to a data store, such as Microsoft® SQL
Server™ 2000. Creating an instance of the data source object of the provider is the first task of an OLE DB consumer.

Every OLE DB provider declares a class identifier (CLSID) for itself. The CLSID for SQLOLEDB is the C/C++ GUID
CLSID_SQLOLEDB. With the CLSID, the consumer uses the OLE CoCreateInstance function to manufacture an instance of the
data source object.

SQLOLEDB is an in-process server. Instances of SQLOLEDB objects are created using the CLSCTX_INPROC_SERVER macro to
indicate the executable context.

The SQLOLEDB data source object exposes the OLE DB initialization interfaces that allow the consumer to connect to existing SQL
Server databases.

Every connection made through SQLOLEDB sets these options automatically:

SET ANSI_WARNINGS ON

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_NULL_DFLT_ON ON

SET QUOTED_IDENTIFIER ON

SET CONCAT_OF_NULL_YIELDS_NULL ON

This example uses the class identifier macro to create a SQLOLEDB data source object and get a reference to its IDBInitialize
interface.

IDBInitialize* pIDBInitialize;
HRESULT hr;

hr = CoCreateInstance(CLSID_SQLOLEDB, NULL, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**) &pIDBInitialize);

if (SUCCEEDED(hr))
{
 // Perform necessary processing with the interface.
 pIDBInitialize->Uninitialize();
 pIDBInitialize->Release();
}
else
{
 // Display error from CoCreateInstance.
}

With successful creation of an instance of a SQLOLEDB data source object, the consumer application can continue by initializing
the data source and creating sessions. OLE DB sessions present the interfaces that allow data access and manipulation.

SQLOLEDB makes its first connection to a specified instance of SQL Server 2000 as part of a successful data source initialization.
The connection is maintained as long as a reference is maintained on any data source initialization interface, or until the
IDBInitialize::Uninitialize method is called.

OLE DB and SQL Server (SQL Server 2000)

Data Source Properties
SQLOLEDB implements data source properties as follows.

Property ID Description
DBPROP_CURRENTCATALOG R/W: Read/write

Default: None
Description: The value of
DBPROP_CURRENTCATALOG reports the
current database for a SQLOLEDB session.
Setting the property value has the identical
effect as setting the current database by using
the Transact-SQL USE database statement.

DBPROP_MULTIPLECONNECTIONS R/W: Read/write
Default: VARIANT_TRUE
Description: If the connection is running a
command that does not produce a rowset, or
produces a rowset that is not a server cursor
and you execute another command, a new
connection will be created to execute the new
command if DBPROP_MULTIPLECONNECTIONS
is VARIANT_TRUE.

SQLOLEDB will not create another connection if
DBPROP_MULTIPLECONNECTION is
VARIANT_FALSE or if a transaction is active on
the connection. SQLOLEDB returns
DB_E_OBJECTOPEN if
DBPROP_MULTIPLECONNECTIONS is
VARIANT_FALSE and returns E_FAIL if there is
an active transaction. Transactions and locking
are managed by Microsoft® SQL Server™ 2000
on a per connection basis. If a second
connection is generated, the commands on the
separate connections do not share locks. Ensure
that one command does not block another by
holding locks on rows requested by the other
command. This is also true for creating multiple
sessions.

Each session has a separate connection.

In the provider-specific property set DBPROPSET_SQLSERVERDATASOURCE, SQLOLEDB defines the following additional data
source property.

Property ID Description
SSPROP_ENABLEFASTLOAD R/W: Read/write

Default: VARIANT_FALSE
Description: To bulk copy,
SSPROP_ENABLEFASTLOAD property is set to
VARIANT_TRUE. With this property set on the
data source, the newly created session allows
consumer access to the IRowsetFastLoad
interface.

If the property is set to VARIANT_FALSE,
IRowsetFastLoad interface is available through
IopenRowset::OpenRowset by requesting
IID_IRowsetFastLoad interface or by setting
SSPROP_IRowsetFastLoad to VARIANT_TRUE.

OLE DB and SQL Server (SQL Server 2000)

Data Source Information Properties
In the provider-specific property set DBPROPSET_SQLSERVERDATASOURCEINFO, SQLOLEDB defines the following data source
information properties.

Property ID Description
SSPROP_CHARACTERSET Type: VT_BSTR

R/W: R
Default: NULL
Description: The character set in the server.
Apply to only Microsoft® SQL Server™
version 7.0 and earlier.

SSPROP_CURRENTCOLLATION Type: VT_BSTR
R/W: R
Default: NULL
Description: The current database collation
name. Apply to only SQL Server 2000.

SSPROP_SORTORDER Type: VT_BSTR
R/W: R
Default: NULL
Description: The sort order in the server.
Apply to only SQL Server 7.0 and earlier.

SSPROP_UNICODELCID Type: VT_I4
R/W: Read
Description: Unicode locale ID.

This is the locale used for Unicode data
sorting. The value of this property is 0 for
Microsoft SQL Server version 6.5.

SSPROP_UNICODECOMPARISONSTYLE Type: VT_I4
R/W: Read
Description: Unicode comparison style.

The sorting options used for Unicode data
sorting. The value of this property is 0 for
SQL Server 6.5.

In the provider-specific property set DBPROPSET_SQLSERVERSTREAM, SQLOLEDB defines the following additional properties.

Property ID Description
SSPROP_STREAM_BASEPATH Type: VT_BSTR

R/W: Read/Write
Description: Is used for resolving relative paths
like XSL, mapping schema or external schema
references in a template.

SSPROP_STREAM_CONTENTTYPE Type: VT_BSTR
R/W: Read Only
Description: If XSL is applied to the result, the
media-type property on <xsl:output> in the XSL
is returned as the value of this property.

SSPROP_STREAM_FLAGS Type: dword
R/W: Read/Write
Description: Following values can be assigned to
this property (multiple values can be ORed
together).

STREAM_FLAGS_DISALLOW_URL
No URL reference to any files is allowed.
For example, in a template you can specify XSL or
mapping schema files. When
STREAM_FLAGS_DISALLOW_URL value is set for
the property, no URL references to these files is
allowed in the templates.
URL references to files can slow down the
performance and it is also a security risk because
if it is not your server you may not be sure about
the file content.

STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH
No absolute path to files is allowed. The file path
must be relative to the template in which the file
is specified.
Absolute paths such as references to external
sites are security risk. Therefore,
STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH is
set to disallow absolute paths.

STREAM_FLAGS_DISALLOW_QUERY
No queries are allowed in the templates (for
example, the <sql:query> tag is not allowed in a
template). For security reasons you may not want
to allow an SQL query in a template.

SSPROP_STREAM_MAPPINGSCHEMA Type: VT_BSTR
R/W: Read/Write
Description: Is used for specifying a schema for
the XPath queries. The path specified can be
relative or absolute.
If the path specified is relative, base path
specified in SSPROP_STREAM_BASEPATH is used
to resolve the relative path.
If the base path is not specified, the relative path
is relative to the current directory.

SSPROP_STREAM_XMLROOT Type: VT_BSTR
R/W: Read/Write
Description: The result of a query (SQL or XPath)
may not be a well-formed document. When this
property is specified, the query result is wrapped
in the root tag provided by this property to
return a well formed document (if query is
executed in the browser it may cause the
browser to display parser errors when loading
the result. To avoid the error, SQL ISAPI supports
the keyword ROOT. This keyword maps to
SSPROP_STREAM_XMLROOT property. For more
information, see URL Access.)

SSPROP_STREAM_XSL Type: VT_BSTR
R/W: Read/Write
Description: Is used for specifying an XSL file. The
path specified can be relative or absolute.
If the path specified is relative, the base path
specified in SSPROP_STREAM_BASEPATH is used
to resolve the relative path.
If the base path is not specified, the relative path
is relative to the current directory.

OLE DB and SQL Server (SQL Server 2000)

Initialization and Authorization Properties
SQLOLEDB interprets OLE DB initialization and authorization properties as follows.

Property ID Description
DBPROP_AUTH_CACHE_AUTHINFO SQLOLEDB does not cache

authentication information.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_CACHE_AUTHINFO SQLOLEDB uses standard
Microsoft® SQL Server™ 2000
security mechanisms to ensure
password privacy.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_INTEGRATED If DBPROP_AUTH_INTEGRATED is
set to a NULL pointer, a null string,
or 'SSPI' VT_BSTR value,
SQLOLEDB uses Windows
Authentication Mode to authorize
user access to the SQL Server
database specified by the
DBPROP_INIT_DATASOURCE and
DBPROP_INIT_CATALOG
properties.

If it is set to VT_EMPTY (the default),
SQL Server 2000 security is used.
The SQL Server 2000 login and
password are specified in the
DBPROP_AUTH_USERID and
DBPROP_AUTH_PASSWORD
properties.

DBPROP_AUTH_MASK_PASSWORD SQLOLEDB uses standard SQL
Server 2000 security mechanisms
to ensure password privacy.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_PASSWORD Password assigned to a SQL Server
2000 login. This property is used
when SQL Server Authentication is
selected for authorizing access to a
SQL Server database.

DBPROP_AUTH_PERSIST_ENCRYPTED SQLOLEDB does not encrypt
authentication information when
persisted.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO SQLOLEDB persists authentication
values, including an image of a
password, if requested to do so. No
encryption is provided.

DBPROP_AUTH_USERID SQL Server login. This property is
used when SQL Server
Authentication is selected for
authorizing access to a SQL Server
database.

DBPROP_INIT_ASYNCH SQLOLEDB does not support
asynchronous initiation.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_CATALOG Name of an existing SQL Server
database to which to connect.

DBPROP_INIT_DATASOURCE Network name of a server running
an instance of Microsoft® SQL
Server™. If there are multiple
instances of SQL Server 2000
running on the computer, then to
connect to a specific instance of
SQL Server, the value
DBPROP_INIT_DATASOURCE is
specified as
\\ServerName\InstanceName. The
escape sequence \\ is used for
backslash itself.

DBPROP_INIT_HWND Window handle from the calling
application. A valid window handle
is required for the initialization
dialog box displayed when
prompting for initialization
properties is allowed.

DBPROP_INIT_IMPERSONATION_LEVEL SQLOLEDB does not support
impersonation level adjustment.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_LCID SQLOLEDB validates the locale ID
and returns an error if the locale ID
is not supported or is not installed
on the client.

DBPROP_INIT_LOCATION SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_MODE SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_PROMPT SQLOLEDB supports all prompting
modes for data source initialization.
SQLOLEDB uses
DBPROMPT_NOPROMPT as its
default setting for the property.

DBPROP_INIT_PROTECTION_LEVEL SQLOLEDB does not support a
protection level on connections to
instances of SQL Server.

SQLOLEDB returns
DB_S_ERRORSOCCURRED on an
attempt to set the property value.
The property structure dwStatus
member indicates
DBPROPSTATUS_NOTSUPPORTED.

DBPROP_INIT_PROVIDERSTRING See SQLOLEDB Provider String
later in this topic.

DBPROP_INIT_TIMEOUT SQLOLEDB returns an error on
initialization if a connection to the
instance of SQL Server cannot be
established within the number of
seconds specified.

In the provider-specific property set DBPROPSET_SQLSERVERDBINIT, SQLOLEDB defines these additional initialization properties.

Property ID Description
SSPROP_AUTH_REPL_SERVER_NAME Type: VT_BSTR

R/W: W
Default: NULL
Description: Replication server name connect
option.

SSPROP_INIT_APPNAME Type: VT_BSTR
R/W: Read/write
Description: The client application name.

SSPROP_INIT_AUTOTRANSLATE Type: VT_BOOL
R/W: Read/write
Default: VARIANT_TRUE
Description: OEM/ANSI character
conversion.

VARIANT_TRUE: SQLOLEDB translates ANSI
character strings sent between the client and
server by converting through Unicode to
minimize problems in matching extended
characters between the code pages on the
client and the server:

Client DBTYPE_STR data sent to an instance
of SQL Server char, varchar, or text
variable, parameter, or column is converted
from character to Unicode using the client
ANSI code page (ACP), and then converted
from Unicode to character using the ACP of
the server.

SQL Server 2000 char, varchar, or text data
sent to a client DBTYPE_STR variable is
converted from character to Unicode using
the server ACP, and then converted from
Unicode to character using the client ACP.

These conversions are performed on the
client by SQLOLEDB. This requires that the
same ANSI code page (ACP) used on the
server be available on the client.

These settings have no effect on the
conversions that occur for these transfers:

Unicode DBTYPE_WSTR client data sent to
char, varchar, or text on the server.

char, varchar, or text server data sent to a
Unicode DBTYPE_WSTR variable on the
client.

ANSI DBTYPE_STR client data sent to
Unicode nchar, nvarchar, or ntext on the
server.

Unicode char, varchar, or text server data
sent to an ANSI DBTYPE_STR variable on the
client.

VARIANT_FALSE: SQLOLEDB does not
perform character translations.

SQLOLEDB does not translate client ANSI
character DBTYPE_STR data sent to char,
varchar, or text variables, parameters, or
columns on the server. No translation is
performed on char, varchar, or text data
sent from the server to DBTYPE_STR
variables on the client.

If the client and the instance of SQL Server
2000 are using different ACPs, extended
characters can be misinterpreted.

SSPROP_INIT_CURRENTLANGUAGE Type: VT_BSTR
R/W: Read/write
Description: A SQL Server language name.
Identifies the language used for system
message selection and formatting. The
language must be installed on the computer
running an instance of SQL Server or data
source initialization fails.

SSPROP_INIT_ENCRYPT Type: VT_BOOL
R/W: Read/Write
Default: VARIANT_FALSE
Description: To encrypt the data going over
the network, SSPROP_INIT_ENCRYPT
property is set to VARIANT_TRUE.

Error occurs if the Enable Protocol
Encryption is set to ON on the client, and the
SSPROP_INIT_ENCRYPT is set to
VARIANT_FALSE.

If Enable Protocol Encryption is set to OFF on
the client side, and SSPROP_INIT_ENCRYPT
is set to VARIANT_TRUE, encryption will be
enabled on that particular connection.

SSPROP_INIT_FILENAME Type: VT_BSTR
R/W: Read/write
Description: Specifies the primary file name
of an attachable database. This database is
attached and becomes the default database
for the connection. To use
SSPROP_INIT_FILENAME, you must specify
the name of the database as the value of the
initialization property
DBPROP_INIT_CATALOG. If the database
name does not exist, then it looks for the
primary file name specified in
SSPROP_INIT_FILENAME and attaches that
database with the name specified in
DBPROP_INIT_CATALOG. If the database was
previously attached, SQL Server does not
reattach it. This option is valid only when
connected to SQL Server 2000.

SSPROP_INIT_NETWORKADDRESS Type: VT_BSTR
R/W: Read/write
Description: The network address of the
server running an instance of SQL Server
specified by the
DBPROP_INIT_DATASOURCE property.

SSPROP_INIT_NETWORKLIBRARY Type: VT_BSTR
R/W: Read/write
Description: The name of the Net-Library
(DLL) used to communicate with an instance
of SQL Server 2000. The name should not
include the path or the .dll file name
extension.

The default is provided by the SQL Server
Client Network Utility.

SSPROP_INIT_PACKETSIZE Type: VT_I4
R/W: Read/write
Description: A network packet size in bytes.
The packet size property value must be
between 512 and 32,767. The default
SQLOLEDB network packet size is 4,096.

SSPROP_INIT_TAGCOLUMNCOLLATION Type: BOOL
R/W:W
Default: FALSE
Description: Is used during a database
update when server-side cursors are used.
This property tags the data with collation
information obtained from the server
instead of the code page on the client.
Currently, this property is used only by the
distributed query process because it knows
the collation of destination data and converts
it correctly.

SSPROP_INIT_USEPROCFORPREP Type: VT_I4
R/W: Read/write
Default:
SSPROPVAL_USEPROCFORPREP_ON
Description: SQL Server stored procedure
use.
Defines the use of SQL Server temporary
stored procedures to support the
ICommandPrepare interface. This property
is meaningful only when connecting to SQL
Server 6.5. The property is ignored for later
versions.

SSPROPVAL_USEPROCFORPREP_OFF: A
temporary stored procedure is not created
when a command is prepared.

SSPROPVAL_USEPROCFORPREP_ON: A
temporary stored procedure is created when
a command is prepared. The temporary
stored procedures are dropped when the
session is released.

SSPROPVAL_USEPROCFORPREP_ON_DROP:
A temporary stored procedure is created
when a command is prepared. The
procedure is dropped when the command is
unprepared with
ICommandPrepare::Unprepare, or when a
new command is specified for the command
object with
ICommandText::SetCommandText, or
when all application references to the
command are released.

SSPROP_INIT_WSID Type: VT_BSTR
R/W: Read/write
Description: A string identifying the
workstation.

In the provider-specific property set DBPROPSET_SQLSERVERDATASOURCEINFO, SQLOLEDB defines the following additional
properties.

Property ID Description

SSPROP_COLUMNLEVELCOLLATION Type: VT_BOOL
R/W: Read
Default: VARIANT_TRUE
Description: Used to determine if column
collation is supported.

VARIANT_TRUE: Column level collation is
supported (in case of SQL Server 2000)

VARIANT_FALSE: Column level collation is not
supported.

SQLOLEDB Provider String

SQLOLEDB recognizes an ODBC-like syntax in provider string property values. The provider string property is provided as the
value of the OLE DB initialization property DBPROP_INIT_PROVIDERSTRING when a connection is established to the OLE DB data
source. This property specifies OLE DB provider-specific connection data required to implement a connection to the OLE DB data
source. Within the string, elements are delimited by using a semicolon. The final element in the string must be terminated with a
semicolon. Each element consists of a keyword, an equal sign character, and the value passed on initialization. For example:

Server=London1;UID=nancyd;

With SQLOLEDB, the consumer never needs to use the provider string property. The consumer can set any initialization property
reflected in the provider string by using either OLE DB or SQLOLEDB-specific initialization properties.

SQLOLEDB recognizes the following keywords in the provider string property.

Keyword PropertyID Description
Address SSPROP_INIT_NETWORKADDRESS Network address of an

instance of SQL Server in
the organization.

APP SSPROP_INIT_APPNAME String identifying the
application.

AttachDBFileName DBPROP_INIT_PROVIDERSTRING Name of the primary file
(include the full path
name) of an attachable
database. To use
AttachDBFileName, you
must also specify the
database name with the
provider string
DATABASE keyword. If
the database was
previously attached, SQL
Server does not reattach
it (it uses the attached
database as the default
for the connection).

AutoTranslate SSPROP_INIT_AUTOTRANSLATE Configures OEM/ANSI
character translation.
Recognized values are
"yes" and "no."

Database DBPROP_INIT_CATALOG Database name.
Encrypt SSPROP_INIT_ENCRYPT Specifies if data should

be encrypted before
sending it over the
network.

Language SSPROPT_INIT_CURRENTLANGUAGE SQL Server language
record name.

Network SSPROP_INIT_NETWORKLIBRARY Net-Library used to
establish a connection to
an instance of SQL Server
in the organization.

PWD DBPROP_AUTH_PASSWORD SQL Server login
password.

Server DBPROP_INIT_DATASOURCE Name of an instance of
SQL Server in the
organization.

Trusted_Connection DBPROP_AUTH_INTEGRATED Accepts the strings "yes"
and "no" as values.

UID DBPROP_AUTH_USERID SQL Server login record
name.

UseProcForPrepare SSPROP_INIT_USEPROCFORPREP Accepts 0, 1, and 2 as
values. This keyword is
meaningful only when
connecting to SQL Server
6.5. It is ignored for any
newer versions.

WSID SSPROP_INIT_WSID Workstation identifier.

OLE DB and SQL Server (SQL Server 2000)

Sessions
 New Information - SQL Server 2000 SP3.

A SQLOLEDB session represents a single connection to an instance of Microsoft® SQL Server™ 2000.

OLE DB requires that sessions delimit transaction space for a data source. All command objects created from a specific session
object participate in the local or distributed transaction of the session object.

The first session object created on the initialized data source receives the SQL Server connection established at initialization.
When all references on the interfaces of the session object are released, the connection to the instance of SQL Server becomes
available to another session object created on the data source.

An additional session object created on the data source establishes its own connection to the instance of SQL Server as specified
by the data source. The connection to the instance of SQL Server is dropped when the application releases all references to
objects created that session.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

This example shows SQLOLEDB SQL Server connection usage:

int main()
{
 // Interfaces used in the example.
 IDBInitialize* pIDBInitialize = NULL;
 IDBCreateSession* pIDBCreateSession = NULL;
 IDBCreateCommand* pICreateCmd1 = NULL;
 IDBCreateCommand* pICreateCmd2 = NULL;
 IDBCreateCommand* pICreateCmd3 = NULL;

 // Initialize COM.
 if (FAILED(CoInitialize(NULL)))
 {
 // Display error from CoInitialize.
 return (-1);
 }

 // Get the memory allocator for this task.
 if (FAILED(CoGetMalloc(MEMCTX_TASK, &g_pIMalloc)))
 {
 // Display error from CoGetMalloc.
 goto EXIT;
 }

 // Create an instance of the data source object.
 if (FAILED(CoCreateInstance(CLSID_SQLOLEDB, NULL,
 CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void**)
 &pIDBInitialize)))
 {
 // Display error from CoCreateInstance.
 goto EXIT;
 }

 // The InitFromPersistedDS function
 // performs IDBInitialize->Initialize() establishing
 // the first application connection to the instance of SQL Server.
 // SECURITY NOTE: Whenever possible, use Windows Authentication.
 // Avoid saving credentials to a file when possible.
 if (FAILED(InitFromPersistedDS(pIDBInitialize, L"MyDataSource",
 NULL, NULL)))
 {
 goto EXIT;
 }

 // The IDBCreateSession interface is implemented on the data source
 // object. Maintaining the reference received maintains the
 // connection of the data source to the instance of SQL Server.
 if (FAILED(pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void**) &pIDBCreateSession)))
 {
 // Display error from pIDBInitialize.
 goto EXIT;
 }

http://go.microsoft.com/fwlink/?LinkId=9504

 // Releasing this has no effect on the SQL Server connection
 // of the data source object because of the reference maintained by
 // pIDBCreateSession.
 pIDBInitialize->Release();
 pIDBInitialize = NULL;

 // The session created next receives the SQL Server connection of
 // the data source object. No new connection is established.
 if (FAILED(pIDBCreateSession->CreateSession(NULL,
 IID_IDBCreateCommand, (IUnknown**) &pICreateCmd1)))
 {
 // Display error from pIDBCreateSession.
 goto EXIT;
 }

 // A new connection to the instance of SQL Server is established to support the
 // next session object created. On successful completion, the
 // application has two active connections on the SQL Server.
 if (FAILED(pIDBCreateSession->CreateSession(NULL,
 IID_IDBCreateCommand, (IUnknown**) &pICreateCmd2)))
 {
 // Display error from pIDBCreateSession.
 goto EXIT;
 }

 // pICreateCmd1 has the data source connection. Because the
 // reference on the IDBCreateSession interface of the data source
 // has not been released, releasing the reference on the session
 // object does not terminate a connection to the instance of SQL Server.
 // However, the connection of the data source object is now
 // available to another session object. After a successful call to
 // Release, the application still has two active connections to the
 // instance of SQL Server.
 pICreateCmd1->Release();
 pICreateCmd1 = NULL;

 // The next session created gets the SQL Server connection
 // of the data source object. The application has two active
 // connections to the instance of SQL Server.
 if (FAILED(pIDBCreateSession->CreateSession(NULL,
 IID_IDBCreateCommand, (IUnknown**) &pICreateCmd3)))
 {
 // Display error from pIDBCreateSession.
 goto EXIT;
 }

EXIT:
 // Even on error, this does not terminate a SQL Server connection
 // because pICreateCmd1 has the connection of the data source
 // object.
 if (pICreateCmd1 != NULL)
 pICreateCmd1->Release();

 // Releasing the reference on pICreateCmd2 terminates the SQL
 // Server connection supporting the session object. The application
 // now has only a single active connection on the instance of SQL Server.
 if (pICreateCmd2 != NULL)
 pICreateCmd2->Release();

 // Even on error, this does not terminate a SQL Server connection
 // because pICreateCmd3 has the connection of the
 // data source object.
 if (pICreateCmd3 != NULL)
 pICreateCmd3->Release();

 // On release of the last reference on a data source interface, the
 // connection of the data source object to the instance of SQL Server is broken.
 // The example application now has no SQL Server connections active.
 if (pIDBCreateSession != NULL)
 pIDBCreateSession->Release();

 // Called only if an error occurred while attempting to get a
 // reference on the IDBCreateSession interface of the data source.
 // If so, the call to IDBInitialize::Uninitialize terminates the
 // connection of the data source object to the instance of SQL Server.
 if (pIDBInitialize != NULL)
 {
 if (FAILED(pIDBInitialize->Uninitialize()))
 {
 // Uninitialize is not required, but it fails if an
 // interface has not been released. Use it for

 // debugging.
 }
 pIDBInitialize->Release();
 }

 if (g_pIMalloc != NULL)
 g_pIMalloc->Release();

 CoUninitialize();

 return (0);
}

Connecting SQLOLEDB session objects to an instance of SQL Server can generate significant overhead for applications that
continually create and release session objects. The overhead can be minimized by managing SQLOLEDB session objects
efficiently. SQLOLEDB applications can keep the SQL Server connection of a session object active by maintaining a reference on at
least one interface of the object.

For example, maintaining a pool of command creation object references keeps active connections for those session objects in the
pool. As session objects are required, the pool maintenance code passes a valid IDBCreateCommand interface pointer to the
application method requiring the session. When the application method no longer requires the session, the method returns the
interface pointer back to the pool maintenance code rather than releasing the application's reference to the command creation
object.

Note In the preceding example, the IDBCreateCommand interface is used because the ICommand interface implements the
GetDBSession method, the only method in command or rowset scope that allows an object to determine the session on which it
was created. Therefore, a command object, and only a command object, allows an application to retrieve a data source object
pointer from which additional sessions can be created.

OLE DB and SQL Server (SQL Server 2000)

Session Properties
SQLOLEDB interprets OLE DB session properties as follows.

Property ID Description
DBPROP_SESS_AUTOCOMMITISOLEVELS SQLOLEDB supports all autocommit

transaction isolation levels with the
exception of the chaos level,
DBPROPVAL_TI_CHAOS.

In the provider-specific property set DBPROPSET_SQLSERVERSESSION, SQLOLEDB defines the following additional session
property.

Property ID Description
SSPROP_QUOTEDCATALOGNAMES Type: VT_BOOL

R/W: Read/write
Default: VARIANT_FALSE
Description: Quoted identifiers allowed in
CATALOG restriction.

VARIANT_TRUE: Quoted identifiers are
recognized for a catalog restriction for the
schema rowsets that supply distributed query
support.

VARIANT_FALSE: Quoted identifiers are not
recognized for a catalog restriction for the
schema rowsets that supply distributed query
support.

For more information about schema rowsets
that supply distributed query support, see
Distributed Query Support in Schema Rowsets.

OLE DB and SQL Server (SQL Server 2000)

Persisted Data Source Objects
 New Information - SQL Server 2000 SP3.

SQLOLEDB supports persisted data source objects with the IPersistFile interface.

Example

Persist data source in itialization properties

This example shows a function that persists data source initialization properties defining a server, database, and the use of the
Windows Authentication Mode for connection. The server name and database name are received in the pLocation and
pDatasource parameters of the function.

HRESULT SetAndSaveInitProps
 (
 IDBInitialize* pIDBInitialize,
 WCHAR* pDataSource,
 WCHAR* pCatalog,
 BOOL bUseWinNTAuth
)
 {
 const ULONG nProps = 4;
 ULONG nSSProps;
 ULONG nPropSets;
 ULONG nProp;
 IDBProperties* pIDBProperties = NULL;
 IPersistFile* pIPersistFile = NULL;
 DBPROP aInitProps[nProps];
 DBPROP* aSSInitProps = NULL;
 DBPROPSET* aInitPropSets = NULL;
 HRESULT hr;

 nSSProps = 0;
 nPropSets = 1;

 aInitPropSets = new DBPROPSET[nPropSets];

 // Initialize common property options.
 for (nProp = 0; nProp < nProps; nProp++)
 {
 VariantInit(&aInitProps[nProp].vValue);
 aInitProps[nProp].dwOptions = DBPROPOPTIONS_REQUIRED;
 aInitProps[nProp].colid = DB_NULLID;
 }

 // Level of prompting that will be done to complete the connection
 // process.
 aInitProps[0].dwPropertyID = DBPROP_INIT_PROMPT;
 aInitProps[0].vValue.vt = VT_I2;
 aInitProps[0].vValue.iVal = DBPROMPT_NOPROMPT;

 // Server name.
 aInitProps[1].dwPropertyID = DBPROP_INIT_DATASOURCE;
 aInitProps[1].vValue.vt = VT_BSTR;
 aInitProps[1].vValue.bstrVal = SysAllocString(pDataSource);

 // Database.
 aInitProps[2].dwPropertyID = DBPROP_INIT_CATALOG;
 aInitProps[2].vValue.vt = VT_BSTR;
 aInitProps[2].vValue.bstrVal = SysAllocString(pCatalog);

 aInitProps[3].dwPropertyID = DBPROP_AUTH_INTEGRATED;
 if (bUseWinNTAuth == TRUE)
 {
 aInitProps[3].vValue.vt = VT_BSTR;
 aInitProps[3].vValue.bstrVal = SysAllocString(L"SSPI");
 } //end if

 // Now that properties are set, construct the PropertySet array.
 aInitPropSets[0].guidPropertySet = DBPROPSET_DBINIT;
 aInitPropSets[0].cProperties = nProps;
 aInitPropSets[0].rgProperties = aInitProps;

 // Set initialization properties
 pIDBInitialize->QueryInterface(IID_IDBProperties,

 (void**) &pIDBProperties);
 hr = pIDBProperties->SetProperties(nPropSets, aInitPropSets);
 if (FAILED(hr))
 {
 // Display error from failed SetProperties.
 }
 pIDBProperties->Release();

 // Free references on OLE known strings.
 for (nProp = 0; nProp < nProps; nProp++)
 {
 if (aInitProps[nProp].vValue.vt == VT_BSTR)
 SysFreeString(aInitProps[nProp].vValue.bstrVal);
 }

 for (nProp = 0; nProp < nSSProps; nProp++)
 {
 if (aSSInitProps[nProp].vValue.vt == VT_BSTR)
 SysFreeString(aInitProps[nProp].vValue.bstrVal);
 }

 // Free dynamically allocated memory.
 delete [] aInitPropSets;
 delete [] aSSInitProps;

 // On success, persist the data source.
 if (SUCCEEDED(hr))
 {
 pIDBInitialize->QueryInterface(IID_IPersistFile,
 (void**) &pIPersistFile);

 hr = pIPersistFile->Save(OLESTR("MyDataSource.txt"), FALSE);

 if (FAILED(hr))
 {
 // Display errors from IPersistFile interface.
 }
 pIPersistFile->Release();
 }

 return (hr);
 }

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

The IPersistFile::Save method can be called before or after calling IDBInitialize::Initialize. Calling the method after a successful
return from IDBInitialize::Initialize ensures persisting a valid data source specification.

http://go.microsoft.com/fwlink/?LinkId=9504

OLE DB and SQL Server (SQL Server 2000)

Commands
SQLOLEDB exposes the ICommand interface and command objects.

OLE DB and SQL Server (SQL Server 2000)

Command Syntax
SQLOLEDB recognizes command syntax specified by the DBGUID_SQL macro. For SQLOLEDB, the specifier indicates that an
amalgam of ODBC SQL, SQL-92, and Transact-SQL is valid syntax. For example, the following SQL statement uses an ODBC SQL
escape sequence to specify the LCASE string function:

SELECT customerid={fn LCASE(CustomerID)} FROM Customers

LCASE returns a character string, converting all uppercase characters to their lowercase equivalents. The SQL-92 string function
LOWER performs the same operation, so the following SQL statement is a SQL-92 equivalent to the ODBC statement presented
above:

SELECT customerid=LOWER(CustomerID) FROM Customers

SQLOLEDB processes either form of the statement successfully when specified as text for a command.

Stored Procedures

When executing a Microsoft® SQL Server™ 2000 stored procedure using a SQLOLEDB command, use the ODBC CALL escape
sequence in the command text. SQLOLEDB then uses the remote procedure call mechanism of SQL Server 2000 to optimize
command processing. For example, the following ODBC SQL statement is preferred command text over the Transact-SQL form:

ODBC SQL

{call SalesByCategory('Produce', '1995')}

Transact-SQL

EXECUTE SalesByCategory 'Produce', '1995'

OLE DB and SQL Server (SQL Server 2000)

Command Parameters
Parameters are marked in command text with the ODBC-specified question mark character. For example, the following ODBC SQL
statement is marked for a single input parameter:

{call SalesByCategory('Produce', ?)}

To improve performance by reducing network traffic, SQLOLEDB does not automatically derive parameter information unless
ICommandWithParameters::GetParameterInfo or ICommandPrepare::Prepare is called before executing a command. This
means that SQLOLEDB does not automatically:

Verify the correctness of the data type specified with ICommandWithParameters::SetParameterInfo.

Map from the DBTYPE specified in the accessor binding information to the correct Microsoft® SQL Server™ 2000 data type
for the parameter.

Applications will receive possible errors or loss of precision with either of these methods if they specify data types that are not
compatible with the SQL Server 2000 data type of the parameter.

To ensure this does not happen, the application should:

If hard-coding ICommandWithParameters::SetParameterInfo, ensure that pwszDataSourceType matches the SQL
Server data type for the parameter.

If hard-coding an accessor, ensure that the DBTYPE value being bound to the parameter is of the same type as the SQL
Server data type for the parameter.

Code the application to call ICommandWithParameters::GetParameterInfo so the provider can obtain the SQL Server
data types of the parameters dynamically. Note that this causes an extra network roundtrip to the server.

SQLOLEDB supports input parameters in SQL statement commands. On procedure-call commands, SQLOLEDB supports input,
output, and input/output parameters. Output parameter values are returned to the application either on execution or when all
returned rowsets are exhausted by the application. To ensure that returned values are valid, use IMultipleResults to force rowset
consumption.

// Macro used in the example.
#define COUNTRY_MAX_CHARS 15

// Structure supporting the parameters of the example stored procedure.
typedef struct tagSPROCPARAMS
 {
 long lReturnValue;
 char acCountry[COUNTRY_MAX_CHARS + 1];
 } SPROCPARAMS;

 // Interfaces used in the example.
 ICommandText* pICommandText = NULL;
 ICommandWithParameters* pICommandWithParameters = NULL;
 IAccessor* pIAccessor = NULL;
 IMultipleResults* pIMultipleResults = NULL;
 IRowset* pIRowset = NULL;

 // Command parameter data.
 DBPARAMS Params;
 const ULONG nParams = 2;
 DBPARAMBINDINFO rgParamBindInfo[nParams] =
 {
 L"DBTYPE_I4",
 L"ReturnVal",
 sizeof(long),
 DBPARAMFLAGS_ISOUTPUT,
 11,
 0,
 L"DBTYPE_VARCHAR",
 L"@Country",
 COUNTRY_MAX_CHARS,
 DBPARAMFLAGS_ISINPUT,
 0,
 0 };
 ULONG rgParamOrdinals[nParams] = {1,2};

 // Parameter accessor data.
 HACCESSOR hAccessor;
 DBBINDING acDBBinding[nParams];
 DBBINDSTATUS acDBBindStatus[nParams];

 // The command and parameter data.
 WCHAR* wszSQLString =
 L"{? = call CustomersInCountry(?)}";
 SPROCPARAMS sprocparams = {0, "USA"};

 // Returned count of rows affected.
 LONG cRowsAffected = 0;

 HRESULT hr;

 // Create the command.
 if (FAILED(hr = pIDBCreateCommand->CreateCommand(NULL,
 IID_ICommandText, (IUnknown**) &pICommandText)))
 {
 // Process error from IDBCreateCommand and return.
 }

 // Set the command text value.
 if (FAILED(hr = pICommandText->SetCommandText(DBGUID_DBSQL,
 wszSQLString)))
 {
 // Process error from ICommand and return.
 }

 // Get the ICommandWithParameters interface to set up parameter
 // values.
 if (FAILED(hr = pICommandText->QueryInterface(
 IID_ICommandWithParameters,
 (void**) &pICommandWithParameters)))
 {
 // Process error from ICommand and return.
 }

 // Set parameter information.
 if (FAILED(hr = pICommandWithParameters->SetParameterInfo(nParams,
 rgParamOrdinals, rgParamBindInfo)))
 {
 // Process error from ICommandWithParameters and return.
 }

 // Create parameter accessor, but first set binding structures
 // to indicate the characteristics of each parameter.
 for (ULONG i = 0; i < nParams; i++)
 {
 acDBBinding[i].obLength = 0;
 acDBBinding[i].obStatus = 0;
 acDBBinding[i].pTypeInfo = NULL;
 acDBBinding[i].pObject = NULL;
 acDBBinding[i].pBindExt = NULL;
 acDBBinding[i].dwPart = DBPART_VALUE;
 acDBBinding[i].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
 acDBBinding[i].dwFlags = 0;
 acDBBinding[i].bScale = 0;
 }

 acDBBinding[0].iOrdinal = 1;
 acDBBinding[0].obValue = offsetof(SPROCPARAMS, lReturnValue);
 acDBBinding[0].eParamIO = DBPARAMIO_OUTPUT;
 acDBBinding[0].cbMaxLen = sizeof(long);
 acDBBinding[0].wType = DBTYPE_I4;
 acDBBinding[0].bPrecision = 11;

 acDBBinding[1].iOrdinal = 2;
 acDBBinding[1].obValue = offsetof(SPROCPARAMS, acCountry);
 acDBBinding[1].eParamIO = DBPARAMIO_INPUT;
 acDBBinding[1].cbMaxLen = COUNTRY_MAX_CHARS;
 acDBBinding[1].wType = DBTYPE_STR;
 acDBBinding[1].bPrecision = 0;

 // Get the IAccessor interface, then create the accessor for
 // the defined parameters.
 pICommandWithParameters->QueryInterface(IID_IAccessor,
 (void**) &pIAccessor);

 hr = pIAccessor->CreateAccessor(DBACCESSOR_PARAMETERDATA,
 nParams, acDBBinding, sizeof(SPROCPARAMS), &hAccessor,

 acDBBindStatus);
 if (FAILED(hr))
 {
 // Process error from IAccessor and return.
 }

 // Fill the DBPARAMS structure for the command execution.
 Params.pData = &sprocparams;
 Params.cParamSets = 1;
 Params.hAccessor = hAccessor;

 // Execute the command.
 if (FAILED(hr = pICommandText->Execute(NULL, IID_IMultipleResults,
 &Params, &cRowsAffected, (IUnknown**) &pIMultipleResults)))
 {
 // Process error from ICommand and return.
 }

 // For each rowset or count of rows affected...
 do
 {
 hr = ((IMultipleResults*) pIResults)->GetResult(NULL, 0,
 IID_IRowset, &cRowsAffected, (IUnknown**) &pIRowset);

 switch (hr)
 {
 case S_OK:
 {
 if (pIRowset != NULL)
 {
 // Process data from the rowset and release.
 pIRowset->Release();
 }
 else if (cRowsAffected != -1)
 {
 printf("Command succeeded. %ld rows affected.\n\n",
 cRowsAffected);
 }
 else
 {
 printf("Command succeeded.\n\n");
 }

 break;
 }

 case DB_S_NORESULT:
 case DB_S_STOPLIMITREACHED:
 break;

 default:
 {
 DumpError(pIResults, IID_IMultipleResults);
 break;
 }
 }
 }
 while (hr == S_OK);

 if (SUCCEEDED(hr))
 {
 // At this point, the value of the return is guaranteed correct.
 // If any other output parameters had been specified, then they
 // too would now contain their correct values.
 printf("Return value %d\n", sprocparams.lReturnValue);
 }

The names of stored procedure parameters need not be specified in a DBPARAMBINDINFO structure. Use NULL for the value of
the pwszName member to indicate that SQLOLEDB should ignore the parameter name and use only the ordinal specified in the
rgParamOrdinals member of ICommandWithParameters::SetParameterInfo. If the command text contains both named and
unnamed parameters, all the unnamed parameters must be specified before any named parameters.

If the name of a stored procedure parameter is specified, SQLOLEDB checks the name to ensure that it is valid. SQLOLEDB returns
an error when it receives an erroneous parameter name from the consumer.

OLE DB and SQL Server (SQL Server 2000)

Preparing Commands
SQLOLEDB supports command preparation for optimized multiple execution of a single command; however, command
preparation generates overhead, and a consumer does not need to prepare a command to execute it more than once. In general, a
command should be prepared if it will be executed more than three times.

For performance reasons, the command preparation is deferred until the command is executed. This is the default behavior. Any
errors in the command being prepared are not known until the command is executed or a metaproperty operation is performed.
Setting the Microsoft® SQL Server™ 2000 property SSPROP_DEFERPREPARE to FALSE can turn off this default behavior.

In SQL Server 2000, when a command is executed directly (without preparing it first), an execution plan is created and cached. If
the SQL statement is executed again, SQL Server has an efficient algorithm to match the new statement with the existing
execution plan in the cache, and reuses the execution plan for that statement.

For prepared commands, SQL Server provides native support for preparing and executing command statements. When you
prepare a statement, SQL Server creates an execution plan, caches it, and returns a handle to this execution plan to the provider.
The provider then uses this handle to execute the statement repeatedly. No stored procedures are created. Because the handle
directly identifies the execution plan for an SQL statement instead of matching the statement to the execution plan in the cache
(as is the case for direct execution), it is more efficient to prepare a statement than to execute it directly, if you know the statement
will be executed more than a few times.

In SQL Server 2000 and SQL Server version 7.0, the prepared statements cannot be used to create temporary objects and cannot
reference system stored procedures that create temporary objects, such as temporary tables. These procedures must be executed
directly.

When connected to SQL Server version 6.5, SQLOLEDB may create a temporary stored procedure when command text is
prepared. Some commands should never be prepared. For example, commands that specify stored procedure execution or
include invalid text for SQL Server stored procedure creation should not be prepared.

If a temporary stored procedure is created, SQLOLEDB executes the temporary stored procedure, returning results as if the
statement itself was executed.

Temporary stored procedure creation is controlled by the SQLOLEDB-specific initialization property
SSPROP_INIT_USEPROCFORPREP. If the property value is either SSPROPVAL_USEPROCFORPREP_ON or
SSPROPVAL_USEPROCFORPREP_ON_DROP, SQLOLEDB attempts to create a stored procedure when a command is prepared.
Stored procedure creation succeeds if the application user has sufficient SQL Server permissions.

For consumers that infrequently disconnect, creation of temporary stored procedures can require significant resources of
tempdb, the SQL Server system database in which temporary objects are created. When the value of
SSPROP_INIT_USEPROCFORPREP is SSPROPVAL_USEPROCFORPREP_ ON, temporary stored procedures created by SQLOLEDB
are dropped only when the session that created the command loses its connection to the instance of SQL Server. If that
connection is the default connection created on data source initialization, the temporary stored procedure is dropped only when
the data source becomes uninitialized.

When the value of SSPROP_INIT_USEPROCFORPREP is SSPROPVAL_USEPROCFORPREP_ON_DROP, SQLOLEDB temporary
stored procedures are dropped when one of the following occurs:

The consumer uses ICommandText::SetCommandText to indicate a new command.

The consumer uses ICommandPrepare::Unprepare to indicate that it no longer requires the command text.

The consumer releases all references to the command object using the temporary stored procedure.

A command object has at most one temporary stored procedure in tempdb. Any existing temporary stored procedure represents
the current command text of a specific command object.

OLE DB and SQL Server (SQL Server 2000)

Commands Generating Multiple-Rowset Results
SQLOLEDB can return multiple rowsets from Microsoft® SQL Server™ 2000 statements. SQL Server 2000 statements return
multiple-rowset results under the following conditions:

Batched SQL statements are submitted as a single command.

Stored procedures implement a batch of SQL statements.

SQL statements include the Transact-SQL COMPUTE or COMPUTE BY clause.

Batches

SQLOLEDB recognizes the semicolon character as a batch delimiter for SQL statements:

WCHAR* wSQLString = L"SELECT * FROM Categories; "
 L"SELECT * FROM Products";

Sending multiple SQL statements in one batch is more efficient than executing each SQL statement separately. Sending one batch
reduces the network roundtrips from the client to the server.

Stored Procedures

SQL Server 2000 returns a result set for each statement in a stored procedure, so most SQL Server 2000 stored procedures
return multiple result sets.

COMPUTE BY and COMPUTE

The Transact-SQL COMPUTE BY clause generates subtotals within a SELECT statement result set. The COMPUTE clause generates
a total at the end of the result set. SQLOLEDB returns each COMPUTE BY subtotal and the COMPUTE total as a separate rowset
result.

OLE DB and SQL Server (SQL Server 2000)

Using IMultipleResults to Process Multiple Result Sets
Using IMultipleResults to Process Multiple Result Sets

In general, consumers should use the IMultipleResults interface to process the rowset or rowsets returned by SQLOLEDB
command execution.

When SQLOLEDB submits a command for execution, Microsoft® SQL Server™ 2000 executes the statement or statements and
returns any results. The complete process is a round trip between the client and the instance of SQL Server. Each client connection
to an instance of SQL Server can have at most one active round trip. That is, within a SQLOLEDB session, only a single command
object can be actively executing or returning results on the connection. This is the default result set behavior of SQL Server client
connections.

To complete a round trip, a client must process all results from command execution. Because SQLOLEDB command execution can
generate multiple-rowset objects as results, use the IMultipleResults interface to ensure that application data retrieval completes
the client-initiated roundtrip.

The following Transact-SQL statement generates multiple rowsets, some containing row data from the OrderDetails table and
some containing results of the COMPUTE BY clause:

SELECT OrderID, FullPrice = (UnitPrice * Quantity), Discount,
 Discounted = UnitPrice * (1 - Discount) * Quantity
FROM OrderDetails
ORDER BY OrderID
COMPUTE
 SUM(UnitPrice * Quantity), SUM(UnitPrice * (1 - Discount) * Quantity)
 BY OrderID

If a consumer executes a command containing this text and requests a rowset as the returned results interface, only the first set of
rows is returned. The consumer may process all rows in the rowset returned but if the DBPROP_MULTIPLECONNECTIONS data
source property is set to VARIANT_FALSE, until the command is canceled, no other commands can be executed on the session
object (SQLOLEDB will not create another connection). SQLOLEDB returns a DB_E_OBJECTOPEN error if
DBPROP_MULTIPLECONNECTIONS is VARIANT_FALSE and returns E_FAIL if there is an active transaction.

If the connection is busy running a command that does not produce a rowset or produces a rowset that is not a server cursor and
the DBPROP_MULTIPLECONNECTIONS data source property is set to VARIANT_TRUE, SQLOLEDB creates additional connections
to support concurrent command objects unless a transaction is active, in which case it returns an error. Transactions and locking
are managed by SQL Server 2000 on a per connection basis. If a second connection is generated, the command on the separate
connections do not share locks. Care must be taken to ensure that one command does not block another by holding locks on
rows requested by the other command.

The consumer can cancel the command either by using ICommand::Cancel or by releasing all references held on the command
object and the derived rowset.

Using IMultipleResults in all instances allows the consumer to get all rowsets generated by command execution and allows
consumers to appropriately determine when to cancel command execution and free a session object for use by other commands.

Note When you use SQL Server 2000 cursors, command execution creates the cursor. SQL Server 2000 returns success or
failure on the cursor creation; therefore, the round trip to the instance of SQL Server is complete upon the return from command
execution. Each GetNextRows call then becomes a round trip. In this way, multiple active command objects can exist, each
processing a rowset that is the result of a fetch from the server cursor. For more information, see Rowsets and SQL Server
Cursors.

OLE DB and SQL Server (SQL Server 2000)

Rowsets
A rowset is a set of rows that contain columns of data. Rowsets are central objects that enable all OLE DB data providers to expose
result set data in tabular form.

After a consumer creates a session by using the IDBCreateSession::CreateSession method, the consumer can use either the
IOpenRowset or IDBCreateCommand interface on the session to create a rowset. The SQLOLEDB provider supports both of
these interfaces. Both of these methods are described here.

Create a rowset by calling the IOpenRowset::OpenRowset method.

This is equivalent to creating a rowset over a single table. This method opens and returns a rowset that includes all the rows
from a single base table. One of the arguments to OpenRowset is a table ID that identifies the table from which to create
the rowset.

Create a command object by calling the IDBCreateCommand::CreateCommand method.

The command object executes commands that the provider supports. In SQLOLEDB, the consumer can specify any Transact-
SQL statement (such as a SELECT statement or a call to a stored procedure). The steps for creating a rowset by using a
command object are:

1. The consumer calls the IDBCreateCommand::CreateCommand method on the session to get a command object
requesting the ICommandText interface on the command object. This ICommandText interface sets and retrieves
the actual command text. The consumer fills in the text command by calling the ICommandText::SetCommandText
method.

2. The user calls the ICommand::Execute method on the command. The rowset object built when the command
executes contains the result set from the command.

The consumer can use the ICommandProperties interface to get or set the properties for the rowset returned by the command
executed by the ICommand::Execute interfaces. The most commonly requested properties are the interfaces the rowset must
support. In addition to interfaces, the consumer can request properties that modify the behavior of the rowset or interface.

Consumers release rowsets with the IRowset::Release method. Releasing a rowset releases any row handles held by the
consumer on that rowset. Releasing a rowset does not release the accessors. If you have an IAccessor interface, it still has to be
released.

OLE DB and SQL Server (SQL Server 2000)

Creating a Rowset with IOpenRowset
SQLOLEDB supports the IOpenRowset::OpenRowset method with the following restrictions:

A base table or view must be specified in a DBID structure that the pTableID parameter points to.

The DBID eKind member must indicate DBKIND_NAME.

The DBID uName member must specify name of an existing base table or a view as a Unicode character string.

The pIndexID parameter of OpenRowset must be NULL.

The result set of IOpenRowset::OpenRowset contains a single rowset. Result sets containing a single rowset can be supported
by Microsoft® SQL Server™ 2000 cursors. Cursor support allows the developer to use SQL Server concurrency mechanisms.

OLE DB and SQL Server (SQL Server 2000)

Creating Rowsets with ICommand::Execute
For rowsets created with the ICommand::Execute method, the properties desired in the resulting rowset can constrain the text
of the command. This is especially critical for consumers that support dynamic command text.

SQLOLEDB cannot use Microsoft® SQL Server™ 2000 cursors to support the multiple-rowset results generated by many
commands. If a consumer requests a rowset requiring SQL Server 2000 cursor support, an error occurs if the command text used
generates more than a single rowset as its result. For more information, see Commands Generating Multiple-Rowset Results.

Scrollable SQLOLEDB rowsets are supported by SQL Server 2000 cursors. SQL Server 2000 imposes limitations on cursors that
are sensitive to changes made by other users of the database. Specifically, the rows in some cursors cannot be ordered, and
attempting to create a rowset by using a command containing an SQL ORDER BY clause can fail. For more information, see
Rowsets and SQL Server Cursors.

OLE DB and SQL Server (SQL Server 2000)

Rowset Properties and Behaviors
These are the SQLOLEDB rowset properties.

Property ID Description
DBPROP_ABORTPRESERVE R/W: Read/write

Default: VARIANT_FALSE
Description: The behavior of a rowset after an
abort operation is determined by this property.

VARIANT_FALSE: SQLOLEDB invalidates rowsets
after an abort operaton. The rowset object's
functionality is virtually lost. It supports only
IUnknown operations and the release of
outstanding row and accessor handles.

VARIANT_TRUE: SQLOLEDB maintains a valid
rowset.

DBPROP_ACCESSORDER R/W: Read/write
Default: DBPROPVAL_AO_RANDOM
Description: Access order. Order in which columns
must be accessed on the rowset.

DBPROPVAL_AO_RANDOM: Column can be
accessed in any order.

DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS:
Columns bound as storage objects can only be
accessed in sequential order determined by the
column ordinal.

DBPROPVAL_AO_SEQUENTIAL: All columns must
be accessed in sequential order determined by
column ordinal.

DBPROP_APPENDONLY This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_BLOCKINGSTORAGEOBJECTS R/W: Read-only
Default: VARIANT_TRUE
Description: SQLOLEDB storage objects block the
use of other rowset methods.

DBPROP_BOOKMARKS
DBPROP_LITERALBOOKMARKS

R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB supports bookmarks for
rowset row identification when
DBPROP_BOOKMARKS or
DBPROP_LITERALBOOKMARKS is VARIANT_TRUE.

Setting either property to VARIANT_TRUE does
not enable rowset positioning by bookmark. Set
DBPROP_IRowsetLocate or
DBPROP_IRowsetScroll to VARIANT_TRUE to
create a rowset supporting rowset positioning by
bookmark.

SQLOLEDB uses a Microsoft® SQL Server™ 2000
cursor to support a rowset containing bookmarks.
For more information, see Rowsets and SQL
Server Cursors.

Note: Setting these properties in conflict with
other SQLOLEDB cursor-defining properties
results in an error. For example, setting the
DBPROP_BOOKMARKS to VARIANT_TRUE when
DBPROP_OTHERINSERT is also VARIANT_TRUE
generates an error when the consumer attempts
to open a rowset.

DBPROP_BOOKMARKSKIPPED R/W: Read-only
Default: VARIANT_FALSE
Description: SQLOLEDB returns
DB_E_BADBOOKMARK if the consumer indicates
an invalid bookmark when positioning or
searching a bookmarked rowset.

DBPROP_BOOKMARKTYPE R/W: Read-only
Default: DBPROPVAL_BMK_NUMERIC
Description: SQLOLEDB implements numeric
bookmarks only. A SQLOLEDB bookmark is 32-bit
unsigned integer, type DBTYPE_UI4.

DBPROP_CACHEDEFERRED This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_CANFETCHBACKWARDS
DBPROP_CANSCROLLBACKWARDS

R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB supports backward
fetching and scrolling in nonsequential rowsets.
SQLOLEDB creates a cursor-supported rowset
when either DBPROP_CANFETCHBACKWARDS or
DBPROP_CANSCROLLBACKWARDS is
VARIANT_TRUE. For more information, see
Rowsets and SQL Server Cursors.

DBPROP_CANHOLDROWS R/W: Read/write
Default: VARIANT_FALSE
Description: By default, SQLOLEDB returns
DB_E_ROWSNOTRELEASED if the consumer
attempts to obtain more rows for a rowset while
pending changes exist on those currently in the
rowset. This behavior can be altered.

Setting both DBPROP_CANHOLDROWS and
DBPROP_IRowsetChange to VARIANT_TRUE
implies a bookmarked rowset. If both properties
are VARIANT_TRUE, the IRowsetLocate interface
is available on the rowset and
DBPROP_BOOKMARKS and
DBPROP_LITERALBOOKMARKS are both
VARIANT_TRUE.

SQLOLEDB rowsets containing bookmarks are
supported by SQL Server cursors.

DBPROP_CHANGEINSERTEDROWS R/W: Read/write
Default: VARIANT_FALSE
Description: This property can only be set to
VARIANT_TRUE if the rowset is using a keyset-
driven cursor.

DBPROP_COLUMNRESTRICT R/W: Read-only
Default: VARIANT_FALSE
Description: SQLOLEDB sets the property to
VARIANT_TRUE when a column in a rowset
cannot be changed by the consumer. Other
columns in the rowset may be updatable and the
rows themselves may be deleted.

When the property is VARIANT_TRUE, the
consumer examines the dwFlags member of the
DBCOLUMNINFO structure to determine whether
the value of an individual column can be written
or not. For modifiable columns, dwFlags exhibits
DBCOLUMNFLAGS_WRITE.

DBPROP_COMMANDTIMEOUT R/W: Read/write
Default: 0
Description: By default, SQLOLEDB does not time
out on the ICommand::Execute method.

DBPROP_COMMITPRESERVE R/W: Read/write
Default: VARIANT_FALSE
Description: The behavior of a rowset after a
commit operation is determined by this property.

VARIANT_TRUE: SQLOLEDB maintains a valid
rowset.

VARIANT_FALSE: SQLOLEDB invalidates rowsets
after a commit operation. The rowset object's
functionality is virtually lost. It supports only
IUnknown operations and the release of
outstanding row and accessor handles.

DBPROP_DEFERRED R/W: Read/write
Default: VARIANT_FALSE
Description: When set to VARIANT_TRUE
SQLOLEDB attempts to use a server cursor for the
rowset. Text, ntext, and image columns are not
returned from the server until they are accessed
by the application.

DBPROP_DELAYSTORAGEOBJECTS R/W: Read-only
Default: VARIANT_FALSE
Description: SQLOLEDB supports immediate
update mode on storage objects.

Changes made to data in a sequential stream
object are immediately submitted to SQL Server
2000. Modifications are committed based on the
rowset transaction mode.

DBPROP_IAccessor
DBPROP_IColumnsInfo
DBPROP_IConvertType
DBPROP_IRowset
DBPROP_IrowsetInfo

R/W: Read-only
Default: VARIANT_TRUE
Description: SQLOLEDB supports these interfaces
on all rowsets.

DBPROP_IColumnsRowset R/W: Read/write
Default: VARIANT_TRUE
Description: SQLOLEDB supports the
IColumnsRowset interface.

DBPROP_IconnectionPointContainer R/W: Read/write
Default: VARIANT_FALSE

DBPROP_IMultipleResults R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB supports the
IMultipleResults interface.

DBPROP_IRowsetChange
DBPROP_IRowsetUpdate

R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB supports the
IRowsetChange and IRowsetUpdate interfaces.

A rowset created with DBPROP_IRowsetChange
equal to VARIANT_TRUE exhibits immediate
update mode behaviors.

When DBPROP_IRowsetUpdate is VARIANT_TRUE,
DBPROP_IRowsetChange is also VARIANT_TRUE.
The rowset exhibits delayed update mode
behavior.

SQLOLEDB uses a SQL Server 2000 cursor to
support rowsets exposing either IRowsetChange
or IRowsetUpdate. For more information, see
Rowsets and SQL Server Cursors.

DBPROP_IRowsetIdentity R/W: Read/write
Default: VARIANT_TRUE
Description: SQLOLEDB supports the
IRowsetIdentity interface. If a rowset supports
this interface, any two row handles representing
the same underlying row will always reflect the
same data and state. Consumers can call the
IRowsetIdentity:: IsSameRow method to
compare two row handles to see if they refer to
the same row instance.

DBPROP_IRowsetLocate
DBPROP_IRowsetScroll

R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB can expose the
IRowsetLocate and IRowsetScroll interfaces.

When DBPROP_IRowsetLocate is VARIANT_TRUE,
DBPROP_CANFETCHBACKWARDS and
DBPROP_CANSCROLLBACKWARDS are also
VARIANT_TRUE.

When DBPROP_IRowsetScroll is VARIANT_TRUE,
DBPROP_IRowsetLocate is also VARIANT_TRUE,
and both interfaces are available on the rowset.

Bookmarks are required for either interface.
SQLOLEDB sets DBPROP_BOOKMARKS and
DBPROP_LITERALBOOKMARKS to VARIANT_TRUE
when the consumer requests either interface.

SQLOLEDB uses SQL Server 2000 cursors to
support IRowsetLocate and IRowsetScroll. For
more information, see Rowsets and SQL Server
Cursors.

Setting these properties in conflict with other
SQLOLEDB cursor-defining properties results in
an error. For example, setting
DBPROP_IRowsetScroll to VARIANT_TRUE when
DBPROP_OTHERINSERT is also VARIANT_TRUE
generates an error when the consumer attempts
to open a rowset.

DBPROP_IRowsetResynch R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB exposes the
IRowsetResynch interface on demand.
SQLOLEDB can expose the interface on any
rowset.

DBPROP_ISupportErrorInfo R/W: Read/write
Default: VARIANT_TRUE
Description: SQLOLEDB exposes the
ISupportErrorInfo interface on rowsets.

DBPROP_IlockBytes This interface is not implemented by SQLOLEDB.
Attempting to read or write the property
generates an error.

DBPROP_ISequentialStream R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB exposes the
ISequentialStream interface to support long,
variable-length data stored in SQL Server 2000.

DBPROP_Istorage This interface is not implemented by SQLOLEDB.
Attempting to read or write the property
generates an error.

DBPROP_Istream This interface is not implemented by SQLOLEDB.
Attempting to read or write the property
generates an error.

DBPROP_IMMOBILEROWS R/W: Read/write
Default: VARIANT_TRUE
Description: The property is only VARIANT_TRUE
for SQL Server keyset cursors; it is
VARIANT_FALSE for all other cursors.

VARIANT_TRUE: The rowset will not reorder the
inserted or updated rows. For
IRowsetChange::InsertRow, rows will appear at
the end of the rowset. For
IRowsetChange::SetData, if the rowset is not
ordered, then the position of the updated rows is
not changed. If the rowset is ordered and
IRowsetChange::SetData changes a column that
is used to order the rowset, the row is not moved.
If the rowset is build on a set of key columns
(typically a rowset for which
DBPROP_OTHERUPDATEDELETE is
VARIANT_TRUE but DBPROP_OTHERINSERT is
VARIANT_FALSE), changing the value of a key
column is generally equivalent to deleting the
current row and inserting a new one. Thus, the
row may appear to move or even disappear from
the rowset (if DBPROP_OWNINSERT is
VARIANT_FALSE), even though the
DBPROP_IMMOBILEROWS property is
VARIANT_TRUE.

VARIANT_FALSE: If the rowset is ordered, inserted
rows appear in the rowset's proper order. If the
rowset is not ordered, the inserted row appears at
the end. If IRowsetChange::SetData changes a
column that is used to order the rowset, the row is
moved (if the rowset is not ordered, then the
position of the row is not changed).

DBPROP_LITERALIDENTITY R/W: Read-only
Default: VARIANT_TRUE
Description: This property is always
VARIANT_TRUE.

DBPROP_LOCKMODE R/W: Read/write
Default: DBPROPVAL_LM_NONE
Description: Level of locking performed by the
rowset (DBPROPVAL_LM_NONE,
DBPROPVAL_LM_SINGLEROW).

DBPROP_MAXOPENROWS R/W: Read-only
Default: 0
Description: SQLOLEDB does not limit the number
of rows that can be active in rowsets.

DBPROP_MAXPENDINGROWS R/W: Read-only
Default: 0
Description: SQLOLEDB does not limit the number
of rowset rows with changes pending.

DBPROP_MAXROWS R/W: Read/write
Default: 0
Description: By default, SQLOLEDB does not limit
the number of rows in a rowset. When the
consumer sets DBPROP_MAXROWS, SQLOLEDB
uses the SET ROWCOUNT statement to limit the
number of rows in the rowset.

SET ROWCOUNT can cause unintended
consequences in SQL Server 2000 statement
execution. For more information, see SET
ROWCOUNT.

DBPROP_MAYWRITECOLUMN This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_MEMORYUSAGE This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_NOTIFICATIONGRANULARITY This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_NOTIFICATIONPHASES R/W: Read-only
Default: DBPROPVAL_NP_OKTODO |
DBPROPVAL_NP_ABOUTTODO |
DBPROPVAL_NP_SYNCHAFTER |
DBPROPVAL_NP_FAILEDTODO |
DBPROPVAL_NP_DIDEVENT
Description: SQLOLEDB supports all notification
phases.

DBPROP_NOTIFYCOLUMNSET
DBPROP_NOTIFYROWDELETE
DBPROP_NOTIFYROWFIRSTCHANGE
DBPROP_NOTIFYROWINSERT
DBPROP_NOTIFYROWRESYNCH
DBPROP_NOTIFYROWSETRELEASE
DBPROP_NOTIFYROWSETFETCH-
POSITIONCHANGE
DBPROP_NOTIFYROWUNDOCHANGE
DBPROP_NOTIFYROWUNDODELETE
DBPROP_NOTIFYROWUNDOINSERT
DBPROP_NOTIFYROWUPDATE

R/W: Read-only
Default: DBPROPVAL_NP_OKTODO |
DBPROPVAL_NP_ABOUTTODO
Description: SQLOLEDB notification phases are
cancelable prior to an attempt to perform the
rowset modification indicated. SQLOLEDB does
not support phase cancellation after the attempt
has completed.

DBPROP_ORDEREDBOOKMARKS This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_OTHERINSERT
DBPROP_OTHERUPDATEDELETE
DBPROP_OWNINSERT
DBPROP_OWNUPDATEDELETE

R/W: Read/write
Default: VARIANT_FALSE
Description: Setting change visibility properties
causes SQLOLEDB to use SQL Server 2000
cursors to support the rowset. For more
information, see Rowsets and SQL Server Cursors.

DBPROP_QUICKRESTART R/W: Read/write
Default: VARIANT_FALSE
Description: When set to VARIANT_TRUE,
SQLOLEDB attempts to use a server cursor for the
rowset.

DBPROP_REENTRANTEVENTS R/W: Read-only
Default: VARIANT_TRUE
Description: SQLOLEDB rowsets are reentrant and
can return DB_E_NOTREENTRANT if a consumer
attempts to access a nonreentrant rowset method
from a notification callback.

DBPROP_REMOVEDELETED R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB alters the value of the
property based on the visibility of changes to the
SQL Server 2000 data exposed by the rowset.

VARIANT_TRUE: Rows deleted by the consumer or
other SQL Server users are removed from the
rowset when the rowset is refreshed.
DBPROP_OTHERINSERT is VARIANT_TRUE.

VARIANT_FALSE: Rows deleted by the consumer
or other SQL Server 2000 users are not removed
from the rowset when the rowset is refreshed. The
row status value for deleted SQL Server rows in
the rowset is DBROWSTATUS_E_DELETED.
DBPROP_OTHERINSERT is VARIANT_TRUE.

This property only has value for rowsets
supported by SQL Server 2000 cursors. For more
information, see Rowsets and SQL Server Cursors.

When the DBPROP_REMOVEDELETED property is
implemented on a keyset cursor rowset, deleted
rows are removed at fetch time and it is possible
for row-fetching methods (such as GetNextRows
and GetRowsAt) to return both S_OK and fewer
rows than requested. Note that this behavior does
not signify the DB_S_ENDOFROWSET condition
and that the number of rows returned will never
be zero if there are any remaining rows.

DBPROP_REPORTMULTIPLECHANGES This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_RETURNPENDINGINSERTS R/W: Read-only
Default: VARIANT_FALSE
Description: When a method that fetches rows is
called, SQLOLEDB does not return pending insert
rows.

DBPROP_ROWRESTRICT R/W: Read-only
Default: VARIANT_TRUE
Description: SQLOLEDB rowsets do not support
access rights based on the row. If the
IRowsetChange interface is exposed on a rowset,
then the SetData method can be called by the
consumer.

DBPROP_ROWSET_ASYNCH This rowset property is not implemented by
SQLOLEDB. Attempting to read or write the
property value generates an error.

DBPROP_ROWTHREADMODEL R/W: Read-only
Default: DBPROPVAL_RT_FREETHREAD
Description: SQLOLEDB supports access to its
objects from multiple execution threads of a
single consumer.

DBPROP_SERVERCURSOR R/W: Read/write
Default: VARIANT_FALSE
Description: When set, a SQL Server 2000 cursor
is used to support the rowset. For more
information, see Rowsets and SQL Server Cursors.

DBPROP_SERVERDATAONINSERT R/W: Read/write
Default: VARIANT_FALSE
Description: Server data on insert.

VARIANT_TRUE: At the time an insert is
transmitted to the server, the provider retrieves
data from the server to update the local row
cache.

VARIANT_FALSE: The provider does not retrieve
server values for newly inserted rows.

DBPROP_STRONGIDENTITY R/W: Read-only
Default: VARIANT_TRUE
Description: Strong row identity. If inserts are
allowed on a rowset (either IRowsetChange or
IRowsetUpdate is true), and
DBPROP_UPDATABILITY is set to support
InsertRows, then the value of
DBPROP_STRONGIDENTITY depends on
DBPROP_CHANGEINSERTEDROWS property (will
be VARIANT_FALSE if
DBPROP_CHANGEINSERTEDROWS property
value is VARIANT_FALSE).

DBPROP_TRANSACTEDOBJECT R/W: Read-only
Default: VARIANT_FALSE
Description: SQLOLEDB supports only transacted
objects. For more information, see Transactions.

DBPROP_UNIQUEROWS R/W: Read/write
Default: VARIANT_FALSE
Description: Unique rows.

VARIANT_TRUE: Each row is uniquely identified by
its column values. The set of columns which
uniquely identify the row have the
DBCOLUMNFLAGS_KEYCOLUMN set in the
DBCOLUMNINFO structure returned from the
GetColumnInfo method.

VARIANT_FALSE: Rows may or may not be
uniquely identified by their column values. The
key columns may or may not be flagged with
DBCOLUMNFLAGS_KEYCOLUMN.

DBPROP_UPDATABILITY R/W: Read/write
Default: 0
Description: SQLOLEDB supports all
DBPROP_UPDATABILITY values. Setting
DBPROP_UPDATABILITY does not create a
modifiable rowset. To make a rowset modifiable,
set DBPROP_IRowsetChange or
DBPROP_IRowsetUpdate.

SQLOLEDB defines the provider-specific property set DBPROPSET_SQLSERVERROWSET as shown in this table.

Property ID Description

SSPROP_DEFERPREPARE Column: No
R/W: Read/Write
Type: VT_BOOL
Default: VARIANT_TRUE
Description:
VARIANT_TRUE: In prepared execution, the
command preparation is deferred until
Icommand::Execute is called or a metaproperty
operation is performed. If the property is set to

VARIANT_FALSE: The statement is prepared
when ICommandPrepare::Prepare is executed.

SSPROP_IRowsetFastLoad Column: No
R/W: r/w
Type: VT_BOOL
Default: VARIANT_FALSE
Description: Set this property to VARIANT_TRUE
to open a fast load rowset through
IopenRowset::OpenRowset(). You cannot set
this property in
IcommandProperties::SetProperties().

SSPROP_MAXBLOBLENGTH Column: No
R/W: Read/write
Type: VT_I4
Default: The provider does not restrict the size of
the text returned by the server. Therefore, it is set
to the maximum, for example, 2147483647.
Description: SQLOLEDB executes a SET TEXTSIZE
statement to restrict the length of BLOB data
returned in a SELECT statement.

See Also

SET TEXTSIZE

WRITETEXT

OLE DB and SQL Server (SQL Server 2000)

Rowsets and SQL Server Cursors
Microsoft® SQL Server™ 2000 returns result sets to consumers using two methods:

Default result sets, which:
Minimize overhead.

Provide maximal performance in fetching data.

Support only the default forward-only, read-only cursor functionality.

Return rows to the consumer one row at a time.

Support only one active statement at a time on a connection.

After a statement has been executed, no other statements can be executed on the connection until all of the results
have been retrieved by the consumer, or the statement has been canceled.

Support all Transact-SQL statements.
Server cursors, which:

Support all cursor functionality.

Can return blocks of rows to the consumer.

Support multiple active statements on a single connection.

Balance cursor functionality against performance.

The support for cursor functionality can decrease performance relative to a default result set. This can be offset if the
consumer can use cursor functionality to retrieve a smaller set of rows.

Do not support any Transact-SQL statement that returns more than a single result set.

Consumers can request different cursor behaviors in a rowset by setting certain rowset properties. If the consumer does not set
any of these rowset properties, or sets them all to their default values, SQLOLEDB implements the rowset using a default result
set. If any one of these properties is set to a value other than the default, SQLOLEDB implements the rowset using a server cursor.

The following rowset properties direct SQLOLEDB to use SQL Server 2000 cursors. Some properties can be safely combined with
others. For example, a rowset that exhibits the DBPROP_IRowsetScroll and DBPROP_IRowsetChange properties will be a
bookmark rowset exhibiting immediate update behavior. Other properties are mutually exclusive. For example, a rowset
exhibiting DBPROP_OTHERINSERT cannot contain bookmarks.

Property ID Value Rowset behavior
DBPROP_SERVERCURSOR VARIANT_TRUE Cannot update SQL Server

2000 data through the
rowset. The rowset is
sequential, supporting
forward scrolling and
fetching only. Relative row
positioning is supported.
Command text can contain an
ORDER BY clause.

DBPROP_CANSCROLLBACKWARDS
or
DBPROP_CANFETCHBACKWARDS

VARIANT_TRUE Cannot update SQL Server
2000 data through the
rowset. The rowset supports
scrolling and fetching in
either direction. Relative row
positioning is supported.
Command text can contain an
ORDER BY clause.

DBPROP_BOOKMARKS or
DBPROP_LITERALBOOKMARKS

VARIANT_TRUE Cannot update SQL Server
2000 data through the
rowset. The rowset is
sequential, supporting
forward scrolling and
fetching only. Relative row
positioning is supported.
Command text can contain an
ORDER BY clause.

DBPROP_OWNUPDATEDELETE or
DBPROP_OWNINSERT or
DBPROP_OTHERUPDATEDELETE

VARIANT_TRUE Cannot update SQL Server
data through the rowset. The
rowset supports scrolling and
fetching in either direction.
Relative row positioning is
supported. Command text
can contain an ORDER BY
clause.

DBPROP_OTHERINSERT VARIANT_TRUE Cannot update SQL Server
2000 data through the
rowset. The rowset supports
scrolling and fetching in
either direction. Relative row
positioning is supported.
Command text can include an
ORDER BY clause if an index
exists on the referenced
columns.

DBPROP_OTHERINSERT
cannot be VARIANT_TRUE if
the rowset contains
bookmarks. Attempting to
create a rowset with this
visibility property and
bookmarks results in an
error.

DBPROP_IRowsetLocate or
DBPROP_IrowsetScroll

VARIANT_TRUE Cannot update SQL Server
2000 data through the
rowset. The rowset supports
scrolling and fetching in
either direction. Bookmarks
and absolute positioning
through the IRowsetLocate
interface are supported in the
rowset. Command text can
contain an ORDER BY clause.

DBPROP_IRowsetLocate and
DBPROP_IRowsetScroll
require bookmarks in the
rowset. Attempting to create
a rowset with bookmarks and
DBPROP_OTHERINSERT set
to VARIANT_TRUE results in
an error.

DBPROP_IRowsetChange or
DBPROP_IRowsetUpdate

VARIANT_TRUE Can update SQL Server 2000
data through the rowset. The
rowset is sequential,
supporting forward scrolling
and fetching only. Relative
row positioning is supported.
All the commands that
support updatable cursors
can support these interfaces.

DBPROP_IRowsetLocate
or DBPROP_IRowsetScroll
and
DBPROP_IRowsetChange
or DBPROP_IRowsetUpdate

VARIANT_TRUE Can update SQL Server data
through the rowset. The
rowset supports scrolling and
fetching in either direction.
Bookmarks and absolute
positioning through
IRowsetLocate are
supported in the rowset.
Command text can contain an
ORDER BY clause.

DBPROP_IMMOBILEROWS VARIANT_FALSE Cannot update SQL Server
2000 data through the
rowset. The rowset supports
forward scrolling only.
Relative row positioning is
supported. Command text
can include an ORDER BY
clause if an index exists on
the referenced columns.

DBPROP_IMMOBILEROWS is
only available in rowsets that
can show SQL Server 2000
rows inserted by commands
on other sessions or by other
users. Attempting to open a
rowset with the property set
to VARIANT_FALSE on any
rowset for which
DBPROP_OTHERINSERT
cannot be VARIANT_TRUE
results in an error.

DBPROP_REMOVEDELETED VARIANT_TRUE Cannot update SQL Server
2000 data through the
rowset. The rowset supports
forward scrolling only.
Relative row positioning is
supported. Command text
can contain an ORDER BY
clause unless constrained by
another property.

A SQLOLEDB rowset supported by a server cursor can be easily created on a SQL Server 2000 base table or view by using the
IOpenRowset::OpenRowset method. Specify the table or view by name, passing the required rowset property sets in the
rgPropertySets parameter.

Command text that creates a rowset is restricted when the consumer requires that the rowset be supported by a server cursor.
Specifically, the command text is restricted to either a single SELECT statement that returns a single rowset result, or a stored
procedure that implements a single SELECT statement returning a single rowset result.

These two tables show the mappings of various OLE DB properties and the cursor models. They also show which rowset
properties should be set to use certain type of cursor model.

Each cell in the table contains a value of the rowset property for the specific cursor model. The data type of the rowset properties
listed above are all VT_BOOL and the default values are VARIANT_FALSE. The following symbols are used in the table.

F = default value (VARIANT_FALSE)

T = VARIANT_TRUE

- = VARIANT_TRUE or VARIANT_FALSE

To use a certain type of cursor model, locate the column corresponding the cursor model, and find all the rowset properties with
value 'T' in the column. Set these rowset properties to VARIANT_TRUE to use the specific cursor model. The rowset properties
with '-' as a value can be set to either VARIANT_TRUE or VARIANT_FALSE.

Rowset properties/Cursor models

Default
result

set
(RO)

Fast
Forward-

only
(RO)

Static
(RO)

Keyset
driven
(RO)

DBPROP_SERVERCURSOR F T T T
DBPROP_DEFERRED F F - -
DBPROP_IrowsetChange F F F F
DBPROP_IrowsetLocate F F - -
DBPROP_IrowsetScroll F F - -
DBPROP_IrowsetUpdate F F F F
DBPROP_BOOKMARKS F F - -
DBPROP_CANFETCHBACKWARDS F F - -
DBPROP_CANSRCOLLBACKWARDS F F - -
DBPROP_CANHOLDROWS F F - -
DBPROP_LITERALBOOKMARKS F F - -
DBPROP_OTHERINSERT F T F F
DBPROP_OTHERUPDATEDELETE F T F T
DBPROP_OWNINSERT F T F T
DBPROP_OWNUPDATEDELETE F T F T
DBPROP_QUICKSTART F F - -
DBPROP_REMOVEDELETED F F F -
DBPROP_IrowsetResynch F F F -
DBPROP_CHANGEINSERTEDROWS F F F F
DBPROP_SERVERDATAONINSERT F F F -
DBPROP_UNIQUEROWS - F F F
DBPROP_IMMOBILEROWS - - - T

Rowset properties/Cursor models
Dynamic

(RO)
Keyset
(R/W)

Dynamic
(R/W)

DBPROP_SERVERCURSOR T T T
DBPROP_DEFERRED - - -
DBPROP_IrowsetChange F - -
DBPROP_IrowsetLocate F - F
DBPROP_IrowsetScroll F - F
DBPROP_IrowsetUpdate F - -
DBPROP_BOOKMARKS F - F
DBPROP_CANFETCHBACKWARDS - - -
DBPROP_CANSRCOLLBACKWARDS - - -
DBPROP_CANHOLDROWS F - F
DBPROP_LITERALBOOKMARKS F - F
DBPROP_OTHERINSERT T F T
DBPROP_OTHERUPDATEDELETE T T T
DBPROP_OWNINSERT T T T
DBPROP_OWNUPDATEDELETE T T T
DBPROP_QUICKSTART - - -

DBPROP_REMOVEDELETED T - T
DBPROP_IrowsetResynch - - -
DBPROP_CHANGEINSERTEDROWS F - F
DBPROP_SERVERDATAONINSERT F - F
DBPROP_UNIQUEROWS F F F
DBPROP_IMMOBILEROWS F T F

For a given set of rowset properties, which cursor model is selected is determined as follows.

From the given collection of rowset properties, obtain a subset of properties that is listed in the above tables. Divide these
properties into two subgroups depending on the flag value (required (T, F) or optional (-)) of each of the rowset properties listed
in the above tables. For each cursor model from left to right (starting from the first table), compare the values of the properties in
the two subgroups with the values of the corresponding properties at that column. The cursor model that has no mismatch with
the required properties and the least number of mismatches with the optional properties is selected. If there is more than one
cursor model, the leftmost is chosen.

SQL Server Cursor Block Size

When a SQL Server 2000 cursor supports a SQLOLEDB rowset, the number of elements in the row handle array parameter of the
IRowset::GetNextRows or the IRowsetLocate::GetRowsAt methods defines the cursor block size. The rows indicated by the
handles in the array are the members of the cursor block.

For rowsets supporting bookmarks, the row handles retrieved by using the IRowsetLocate::GetRowsByBookmark method
define the members of the cursor block.

Regardless of the method used to populate the rowset and form the SQL Server 2000 cursor block, the cursor block is active until
the next row-fetching method is executed on the rowset.

To obtain FAST_FORWARD cursor

OLE DB

OLE DB

See Also

Block Cursors

OLE DB and SQL Server (SQL Server 2000)

Fetching Rows
The IRowset interface is the base rowset interface. The IRowset interface provides methods for fetching rows sequentially,
getting the data from those rows, and managing rows. Consumers use the methods in IRowset for all basic rowset operations,
including fetching and releasing rows and getting column values.

When a consumer gets an interface pointer on a rowset, usually the first step is to determine the capabilities of the rowset by
using the IRowsetInfo::GetProperties method. This returns information about the interfaces exposed by the rowset as well as
capabilities of the rowset that do not show up as distinct interfaces, such as the maximum number of active rows and how many
rows can have pending updates at the same time.

The next step for consumers is to determine the characteristics, or metadata, of the columns in the rowset. For this they use the
IColumnsInfo or IColumnsRowset methods, for simple or extended column information, respectively. The GetColumnInfo
method returns:

The number of columns in the result set.

An array of DBCOLUMNINFO structures, one per column.

The order of the structures is the order in which the columns appear in the rowset. Each DBCOLUMNINFO structure
includes column meta data, such as column name, ordinal of the column, maximum possible length of a value in the
column, data type of the column, precision, and length.

The pointer to a storage for all string values within a single allocation block.

The consumer determines which columns it needs, either from the meta data or on the basis of the text command that generated
the rowset. It determines the ordinals of the needed columns from the ordering of the column information returned by
IColumnsInfo or from the ordinals in the column meta data rowset returned by IColumnsRowset.

The IColumnsRowset and IColumnsInfo interfaces are used to extract information about the columns in the rowset. The
IColumnsInfo interface returns a limited set of information, whereas IColumnsRowset provides all the meta data.

Note In SQL Server version 7.0 and earlier, the optional meta data column DBCOLUMN_COMPUTEMODE returned by
IColumnsInfo::GetColumnsInfo returns DBSTATUS_S_ISNULL (instead of the values describing if the column is computed or
not) because it cannot be determined if the underlying column is computed column or not.

The ordinals are used to specify a binding to a column. A binding is a structure that associates an element of the consumer's
structure with a column. The binding can bind the data value, length, and status value of the column.

A set of bindings is gathered together in an accessor, which is created with the IAccessor::CreateAccessor method. An accessor
can contain multiple bindings so that the data for multiple columns can be retrieved or set in a single call. The consumer can
create several accessors to match different usage patterns in different parts of the application. It can create and release accessors
at any time while the rowset remains in existence.

To fetch rows from the database, the consumer calls a method, such as IRowset::GetNextRows or IRowsetLocate::GetRowsAt.
These fetch operations put row data from the server into the row buffer of the provider. The consumer does not have direct
access to the row buffer of the provider. The consumer uses IRowset::GetData to copy data from the buffer of the provider to the
consumer buffer and IRowsetChange::SetData to copy data changes from the consumer buffer to the provider buffer.

The consumer calls the GetData method and passes it the handle to a row, the handle to an accessor, and a pointer to a
consumer-allocated buffer. GetData converts the data and returns the columns as specified in the bindings used to create the
accessor. The consumer can call GetData more than once for a row, using different accessors and buffers; therefore, the
consumer can have multiple copies of the same data.

Data from variable-length columns can be treated several ways. First, such columns can be bound to a finite section of the
consumer's structure, which causes truncation when the length of the data exceeds the length of the buffer. The consumer can
determine that truncation has occurred by checking for the status DBSTATUS_S_TRUNCATED. The returned length is always the
true length in bytes, so the consumer also can determine how much data was truncated.

When the consumer is finished fetching or updating rows, it releases them with the ReleaseRows method. This releases
resources from the copy of the rows in the rowset and makes room for new rows. The consumer can then repeat its cycle of
fetching or creating rows and accessing the data in them.

When the consumer is done with the rowset, it calls the IAccessor::ReleaseAccessor method to release any accessor. It calls the
IUnknown::Release method on all interfaces exposed by the rowset to release the rowset. When the rowset is released, it forces
the release of any remaining rows or accessors the consumer may hold.

OLE DB and SQL Server (SQL Server 2000)

Next Fetch Position
Next Fetch Position

The SQLOLEDB provider keeps track of the next fetch position so that a sequence of calls to the GetNextRows method (with no
skips, changes of direction, or intervening calls to the FindNextRow, Seek, or RestartPosition methods) reads the entire rowset
without skipping or repeating any row. The next fetch position is changed either by calling IRowset::GetNextRows,
IRowset::RestartPosition, or IRowsetIndex::Seek, or by calling FindNextRow with a null pBookmark value. Calling
FindNextRow with a nonnull pBookmark value has no effect on the next fetch position.

To fetch rows from a result set

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Fetching a Single Row Using IRow
IRow interface implementation in SQLOLEDB is simplified to increase performance. IRow allows direct access to columns of a
single row object. If you know ahead of time that the result of a command execution will produce exactly one row, IRow will
retrieve the columns of that row. If the result set includes multiple rows, IRow will expose only the first row.

IRow implementation does not allow any navigation of the row. Each column in the row is accessed only once, with one
exception: a column can be accessed twice, once to find the column size, and again to fetch the data.

IRow::Open supports only DBGUID_STREAM and DBGUID_NULL type of objects to be opened.

To obtain a row object using Icommand::Execute, method IID_IRow must be passed.

IMultipleResults must be used to handle multiple result sets. IMultipleResults supports IRow and IRowset. IRowset is used
for bulk operations.

OLE DB and SQL Server (SQL Server 2000)

Using IRow::GetColumns
Using IRow::GetColumns

IRow implementation allows forward only sequential access to the columns. You can either access all the columns in the row with
a single call to IRow::GetColumns, or call IRow::GetColumns multiple times each time accessing few columns in the row.

The multiple calls to IRow::GetColumns should not overlap. For example, if the first call to IRow::GetColumns retrieves columns
1, 2, and 3, the second call to IRow::GetColumns should call for columns 4, 5, and 6. If subsequent calls to IRow::GetColumns
overlap, the status flag (dwstatus field in DBCOLUMNACCESS) will be set to DBSTATUS_E_UNAVAILABLE.

To fetch columns using IRow::GetColumns

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Fetching BLOB Data Using IRow
Fetching BLOB Data Using IRow

BLOB column in a row object can be retrieved using IRow::GetColumns or IRow::Open and ISequentialStream.

OLE DB and SQL Server (SQL Server 2000)

Fetching BLOB Data Using IRow::GetColumns and
ISequentialStream
Fetching BLOB Data Using IRow::GetColumns and ISequentialStream

The following function uses IRow::GetColumns and ISequentialStream to fetch large data.

void InitializeAndExecuteCommand()
{
 ulong iidx;
 WCHAR* wCmdString=OLESTR(" SELECT * FROM MyTable");
 // Do the initialization, create the session, and set command text
 hr=pICommandText->Execute(NULL, IID_IRow, NULL,
 &cNumRows,(Iunknown **)&pIRow)))
 //Get 1 column at a time
 for(ulong i=0; i < NoOfColumns; i++)
 GetSequentialColumn(pIRow, iidx);
 //do the clean up
}
HRESULT GetSequentialColumn(IRow* pUnkRow, ULONG iCol)
{
 HRESULT hr = NOERROR;
 ULONG cbRead = 0;
 ULONG cbTotal = 0;
 ULONG cColumns = 0;
 ULONG cReads = 0;
 ISequentialStream* pIStream = NULL;
 WCHAR* pBuffer[kMaxBuff];//50 chars read by ISequentialStream::Read()
 DBCOLUMNINFO* prgInfo;
 OLECHAR* pColNames;
 IColumnsInfo* pIColumnsInfo;
 DBID columnid;
 DBCOLUMNACCESS column;
 hr = pUnkRow->QueryInterface(IID_IColumnsInfo,
 (void**) &pIColumnsInfo);
 if(FAILED(hr))
 goto CLEANUP;
 hr = pIColumnsInfo->GetColumnInfo(&cColumns, &prgInfo, &pColNames);
 //Get Column ID
 columnid = (prgInfo + (iCol))->columnid;
 IUnknown* pUnkStream = NULL;
 ZeroMemory(&column, sizeof(column));
 column.columnid = prgInfo[iCol].columnid;
 // Ask for Iunknown interface pointer
 column.wType = DBTYPE_IUNKNOWN;
 column.pData = (LPVOID*) &pUnkStream;

 hr = pUnkRow->GetColumns(1, &column);
 //Get ISequentialStream from Iunknown pointer retrieved from
 //GetColumns()
 hr = pUnkStream->QueryInterface(IID_ISequentialStream,
 (LPVOID*) &pIStream);
 ZeroMemory(pBuffer, kMaxBuff * sizeof(WCHAR));
 //Read 50 chars at a time until no more data.
 do
 {
 hr = pIStream->Read(pBuffer, kMaxBuff, &cbRead);
 cbTotal = cbTotal + cbRead;
 //Process the data
 } while(cbRead > 0);
 //Do the cleanup.
 return hr;
}

To fetch large data using IRow::GetColumns (or IRow::Open) and ISequentialStream

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Fetching BLOB Data Using IRow::Open and ISequentialStream
Fetching BLOB Data Using IRow::Open and ISequentialStream

IRow::Open supports only DBGUID_STREAM and DBGUID_NULL type of objects to be opened.

The following function uses IRow::Open and ISequentialStream to fetch large data.

Large data can be bound or retrieved by using the ISequentialStream interface. For bound columns, the status flag indicates if
the data is truncated by setting DBSTATUS_S_TRUNCATED.

void InitializeAndExecuteCommand()
{
 ulong iidx;
 WCHAR* wCmdString=OLESTR(" SELECT * FROM MyTable");
 // Do the initialization, create the session, and set command text
 hr=pICommandText->Execute(NULL, IID_IRow, NULL,
 &cNumRows,(Iunknown **)&pIRow)))
 //Get 1 column at a time
 for(ulong i=1; i <= NoOfColumns; i++)
 GetSequentialColumn(pIRow, iidx);
 //do the clean up
}
HRESULT GetSequentialColumn(IRow* pUnkRow, ULONG iCol)
{
 HRESULT hr = NOERROR;
 ULONG cbRead = 0;
 ULONG cbTotal = 0;
 ULONG cColumns = 0;
 ULONG cReads = 0;
 ISequentialStream* pIStream = NULL;
 WCHAR* pBuffer[kMaxBuff];//50 chars read by ISequentialStream::Read()
 DBCOLUMNINFO* prgInfo;
 OLECHAR* pColNames;
 IColumnsInfo* pIColumnsInfo;
 DBID columnid;
 DBCOLUMNACCESS column;

 hr = pUnkRow->QueryInterface(IID_IColumnsInfo,
 (void**) &pIColumnsInfo);
 hr = pIColumnsInfo->GetColumnInfo(&cColumns, &prgInfo, &pColNames);
 //Get Column ID
 columnid = (prgInfo + (iCol - 1))->columnid;
 //Get sequential stream object by calling IRow::Open
 hr = pUnkRow->Open(NULL, &columnid, DBGUID_STREAM, 0,
 IID_ISequentialStream,(LPUNKNOWN *)&pIStream);
 ZeroMemory(pBuffer, kMaxBuff * sizeof(WCHAR));
 //Read 50 chars at a time until no more data.
 do
 {
 hr = pIStream->Read(pBuffer, kMaxBuff, &cbRead);
 cbTotal = cbTotal + cbRead;
 //Process the data
 } while(cbRead > 0);
// do the clean up
 return hr;
}

To fetch large data using IRow::GetColumns (or IRow::Open) and ISequentialStream

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Bookmarks
Bookmarks allow consumers to return quickly to a row. With bookmarks, consumers can access rows randomly based on the
bookmark value. The bookmark column is column 0 in the rowset. The consumer sets the dwFlag field value of the binding
structure to DBCOLUMNSINFO_ISBOOKMARK to indicate that the column is used as bookmark. The consumer also sets the
rowset property DBPROP_BOOKMARKS to VARIANT_TRUE. This allows column 0 to be present in the rowset. The
IRowsetLocate::GetRowsAt method is then used to fetch rows, starting with the row specified as an offset from a bookmark.

To retrieve rows using bookmarks

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Running Stored Procedures (OLE DB)
A stored procedure is an executable object stored in a database. Microsoft® SQL Server™ 2000 supports:

Stored procedures

One or more SQL statements that have been precompiled into a single executable procedure.

Extended stored procedures

C or C++ DLLs written to the SQL Server Open Data Services API for extended stored procedures. The Open Data Services
API extends the capabilities of stored procedures to include C or C++ code.

When executing statements, calling a stored procedure on the data source (instead of executing or preparing a statement in the
client application directly) can provide:

Higher performance.

Reduced network overhead.

Better consistency.

Better accuracy.

Added functionality.

The OLE DB provider supports three of the mechanisms that SQL Server 2000 stored procedures use to return data:

Every SELECT statement in the procedure generates a result set.

The procedure can return data through output parameters.

The procedure can have an integer return code.

The application must be able to handle all of these outputs from stored procedures.

Different OLE DB providers return output parameters and return values at different times during result processing. In case of the
Microsoft OLE DB Provider for SQL Server (SQLOLEDB), the output parameters and return codes are not supplied until after the
consumer has retrieved or canceled the result sets returned by the stored procedure. The return codes and the output parameters
are returned in the last TDS packet from the server.

Providers use the DBPROP_OUTPUTPARAMETERAVAILABILITY property to report when it returns output parameters and return
values. This property is in the DBPROPSET_DATASOURCEINFO property set.

SQLOLEDB sets the DBPROP_OUTPUTPARAMETERAVAILABILITY property to DBPROPVAL_OA_ATROWRELEASE to indicate that
return codes and output parameters are not returned until the result set is processed or released.

Execute stored procedure using ODBC CALL syntax and process return code and output parameters

OLE DB

OLE DB

Execute stored procedure using RPC syntax and process return code and output parameters

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Calling a Stored Procedure (OLE DB)
A stored procedure can have zero or more parameters. It can also return a value. In OLE DB, parameters to a stored procedure can
be passed by:

Hard-coding the data value.

Using a parameter marker (?) to specify parameters, bind a program variable to the parameter marker, and then place the
data value in the program variable.

To support parameters, the ICommandWithParameters interface is exposed on the command object. To use parameters, the
consumer first describes the parameters to the provider by calling the ICommandWithParameters::SetParameterInfo method
(or optionally prepares a calling statement that calls the GetParameterInfo method). The consumer then creates an accessor that
specifies the structure of a buffer and places parameter values in this buffer. Finally, it passes the handle of the accessor and a
pointer to the buffer to Execute. On later calls to Execute, the consumer places new parameter values in the buffer and calls
Execute with the accessor handle and buffer pointer.

A command that calls a temporary stored procedure using parameters must first call
ICommandWithParameters::SetParameterInfo to define the parameter information, before the command can be successfully
prepared. This is because the internal name for a temporary stored procedure differs from the external name used by a client and
SQLOLEDB cannot query the system tables to determine the parameter information for a temporary stored procedure.

These are the steps in the parameter binding process:

1. Fill in the parameter information in an array of DBPARAMBINDINFO structures; that is, parameter name, provider-specific
name for the data type of the parameter, or a standard data type name, and so on. Each structure in the array describes one
parameter. This array is then passed to the SetParameterInfo method.

2. Call the ICommandWithParameters::SetParameterInfo method to describe parameters to the provider.
SetParameterInfo specifies the native data type of each parameter. SetParameterInfo arguments are:

The number of parameters for which to set type information.

An array of parameter ordinals for which to set type information.

An array of DBPARAMBINDINFO structures.

3. Create a parameter accessor by using the IAccessor::CreateAccessor command. The accessor specifies the structure of a
buffer and places parameter values in the buffer. The CreateAccessor command creates an accessor from a set of bindings.
These bindings are described by the consumer by using an array of DBBINDING structures. Each binding associates a single
parameter to the buffer of the consumer and contains information such as:

The ordinal of the parameter to which the binding applies.

What is bound (the data value, its length, and its status).

The offset in the buffer to each of these parts.

The length and type of the data value as it exists in the buffer of the consumer.

An accessor is identified by its handle, which is of type HACCESSOR. This handle is returned by the CreateAccessor
method. Whenever the consumer finishes using an accessor, the consumer must call the ReleaseAccessor method to
release the memory it holds.

When the consumer calls a method, such as ICommand::Execute, it passes the handle to an accessor and a pointer to a
buffer itself. The provider uses this accessor to determine how to transfer the data contained in the buffer.

4. Fill in the DBPARAMS structure. The consumer variables from which input parameter values are taken and to which output
parameter values are written are passed at run time to ICommand::Execute in the DBPARAMS structure. The DBPARAMS
structure includes three elements:

A pointer to the buffer from which the provider retrieves input parameter data and to which the provider returns

output parameter data, according to the bindings specified by the accessor handle.

The number of sets of parameters in the buffer.

The accessor handle created in Step 3.

5. Execute the command by using ICommand::Execute.

Methods of Calling a Stored Procedure

When executing a stored procedure in SQL Server 2000, Microsoft OLE DB Provider for SQL Server (SQLOLEDB) supports the:

ODBC CALL escape sequence.

RPC Escape sequence.

Transact-SQL EXECUTE statement.

ODBC CALL Escape Sequence

When the ODBC CALL syntax is used in calling a stored procedure, the provider calls a helper function to find the stored
procedure parameter information. Therefore, you do not need to call the ICommandWithParameters::SetParameterInfo
method to describe the parameters to the provider.

If you are not sure about the parameter information (parameter meta data), ODBC CALL syntax is recommended.

The general syntax for calling a procedure by using the ODBC CALL escape sequence is:

{[?=]call procedure_name[([parameter][,[parameter]]...)]}

For example:

{call SalesByCategory('Produce', '1995')}

RPC Escape Sequence

The PRC escape sequence is similar to the ODBC CALL syntax of calling a stored procedure. The RPC escape sequence provides
most optimal performance among the three methods of calling a stored procedure.

When the RPC escape sequence is used to execute a stored procedure, the provider does not call any helper function to determine
the parameter information (as it does in the case of ODBC CALL syntax). This improves the performance. In this case, you need to
provide the parameter information by executing ICommandWithParameters::SetParameterInfo.

The RPC escape sequence requires you to have a return value. If the stored procedure does not return a value, the server returns a
0 by default. In addition, you cannot open a SQL Server cursor on the stored procedure. The stored procedure is prepared
implicitly and actual call the ICommandPrepare::Prepare will fail.

If you know all the parameter meta data, RPC escape sequence is the recommended way to execute stored procedures.

This is an example of RPC escape sequence for calling a stored procedure:

{rpc SalesByCategory}

Transact-SQL EXECUTE Statement

The ODBC CALL escape sequence and the RPC escape sequence are the preferred methods for calling a stored procedure rather
than the Transact-SQL EXECUTE statement. SQLOLEDB uses the remote procedure call (RPC) mechanism of SQL Server 2000 to
optimize command processing. This RPC protocol increases performance by eliminating much of the parameter processing and
statement parsing done on the server.

This is an example of the Transact-SQL EXECUTE statement:

EXECUTE SalesByCategory 'Produce', '1995'

Execute stored procedure using ODBC CALL syntax and process return code and output parameters

OLE DB

OLE DB

Execute stored procedure using RPC syntax and process return code and output parameters

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Running User-Defined Functions (OLE DB)
The syntax for calling user-defined functions using the Microsoft OLE DB Provider for SQL Server is similar to calling the stored
procedures.

To call a user-defined function and processing the return code

OLE DB

OLE DB

See Also

Running Stored Procedures (OLE DB)

OLE DB and SQL Server (SQL Server 2000)

Bulk-Copy Rowsets
SQLOLEDB implements the provider-specific IRowsetFastLoad interface to expose support for Microsoft® SQL Server™ 2000
bulk copy from a consumer to a SQL Server 2000 table. IRowsetFastLoad exposes the two member functions:

InsertRow

Bulk copies a single row of data to a SQL Server 2000 table.

Commit

Marks the end of a batch of bulk copy insertions and writes inserted data to the SQL Server 2000 table.

OLE DB and SQL Server (SQL Server 2000)

Enabling a Session for IRowsetFastLoad
The consumer notifies SQLOLEDB of its need for bulk copy by setting the SQLOLEDB provider-specific data source property
SSPROP_ENABLEFASTLOAD to VARIANT_TRUE. With the property set on the data source, the consumer creates a SQLOLEDB
session. The new session allows consumer access to the IRowsetFastLoad interface.

Enabling a session for bulk copy constrains SQLOLEDB support for interfaces on the session. A bulk copy-enabled session
exposes only the following interfaces:

IDBSchemaRowset

IGetDataSource

IOpenRowset

ISupportErrorInfo

ITransactionJoin (not supported for Microsoft® SQL Server™ version 6.5)

To disable the creation of bulk copy-enabled rowsets and cause the SQLOLEDB session to revert to standard processing, reset
SSPROP_ENABLEFASTLOAD to VARIANT_FALSE.

Fastload sessions are not available with IDataInitialize (part of OLE DB service components).

To bulk copy data using IRowsetFastLoad

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

IRowsetFastLoad Rowsets
SQLOLEDB bulk copy rowsets are write-only, but the rowset exposes interfaces that allow the consumer to determine the
structure of a Microsoft® SQL Server™ 2000 table. The following interfaces are exposed on a bulk copy-enabled SQLOLEDB
rowset:

IAccessor

IColumnsInfo

IColumnsRowset

IConvertType

IRowsetFastLoad

IRowsetInfo

ISupportErrorInfo

The provider-specific properties SSPROP_FASTLOADOPTIONS, SSPROP_FASTLOADKEEPNULLS, and
SSPROP_FASTLOADKEEPIDENTITY control behaviors of a SQLOLEDB bulk-copy rowset. The properties are specified in the
rgProperties member of an rgPropertySets IOpenRowset parameter member.

Property ID Description
SSPROP_FASTLOADKEEPIDENTITY Column: No

R/W: Read/write
Type: VT_BOOL
Default: VARIANT_FALSE
Description: Maintains identity values supplied
by the consumer.

VARIANT_FALSE: Values for an identity column
in the SQL Server 2000 table are generated by
SQL Server 2000. Any value bound for the
column is ignored by SQLOLEDB.

VARIANT_TRUE: The consumer binds an
accessor providing a value for a SQL Server
2000 identity column. The identity property is
not available on columns accepting NULL, so
the consumer provides a unique value on each
IRowsetFastLoad::Insert call.

SSPROP_FASTLOADKEEPNULLS Column: No
R/W: Read/write
Type: VT_BOOL
Default: VARIANT_FALSE
Description: Maintains NULL for columns with a
DEFAULT constraint. Affects only SQL Server
2000 columns that accept NULL and have a
DEFAULT constraint applied.

VARIANT_FALSE: SQL Server 2000 inserts the
default value for the column when the
SQLOLEDB consumer inserts a row containing
NULL for the column.

VARIANT_TRUE: SQL Server 2000 inserts NULL
for the column value when the SQLOLEDB
consumer inserts a row containing NULL for
the column.

SSPROP_FASTLOADOPTIONS Column: No
R/W: Read/write
Type: VT_BSTR
Default: none
Description: This property is the same as the -h
"hint[,...n]" option of the bcp utility. The
following string(s) can be used as option(s) in
the bulk copying of data into a table.

ORDER(column[ASC | DESC][,...n])
Sort order of data in the data file. Bulk copy
performance is improved if the data file being
loaded is sorted according to the clustered
index on the table.

ROWS_PER_BATCH = bb
Number of rows of data per batch (as bb). The
server optimizes the bulk load according to the
value bb. By default, ROWS_PER_BATCH is
unknown.

KILOBYTES_PER_BATCH = cc
Number of kilobytes (KB) of data per batch (as
cc). By default, KILOBYTES_PER_BATCH is
unknown.

TABLOCK
A table-level lock is acquired for the duration of
the bulk copy operation. This option
significantly improves performance because
holding a lock only for the duration of the bulk
copy operation reduces lock contention on the
table. A table can be loaded by multiple clients
concurrently if the table has no indexes and
TABLOCK is specified. By default, the locking
behavior is determined by the table option
table lock on bulk load.

CHECK_CONSTRAINTS
Any constraints on table_name are checked
during the bulk copy operation. By default,
constraints are ignored.

OLE DB and SQL Server (SQL Server 2000)

Updating Data in Rowsets
SQLOLEDB updates Microsoft® SQL Server™ 2000 data when a consumer updates a modifiable rowset containing that data. A
modifiable rowset is created when the consumer requests support for either the IRowsetChange or IRowsetUpdate interface.

All SQLOLEDB modifiable rowsets use SQL Server 2000 cursors to support the rowset. The OLE DB rowset property
DBPROP_LOCKMODE alters SQL Server 2000 concurrency control behavior in cursors and determines the behavior of rowset
row fetching and data integrity error generation in updatable rowsets.

SQLOLEDB supports row synchronization before or after an update.

OLE DB and SQL Server (SQL Server 2000)

Updating Data in SQL Server Cursors
When fetching and updating data through Microsoft® SQL Server™ 2000 cursors, a SQLOLEDB consumer application is bound
by the same considerations and constraints that apply to any other client application.

Only rows in SQL Server 2000 cursors participate in concurrent data-access control. When the consumer requests a modifiable
rowset, the concurrency control is controlled by DBPROP_LOCKMODE. To alter the level of concurrent access control, the
consumer sets the DBPROP_LOCKMODE property prior to opening the rowset.

Transaction isolation levels can cause significant lags in row positioning if client application design allows transactions to remain
open for long periods of time. By default, SQLOLEDB uses the read-committed isolation level specified by
DBPROPVAL_TI_READCOMMITTED. SQLOLEDB supports dirty read isolation when the rowset concurrency is read-only. Therefore,
the consumer can request a higher level of isolation in a modifiable rowset but cannot request any lower level successfully.

Immediate and Delayed Update Modes

In immediate update mode, each call to IRowsetChange::SetData results in a round trip to the SQL Server 2000. If the consumer
makes multiple changes to a single row, it is more efficient to submit all changes with a single SetData call.

In delayed update mode, a roundtrip is made to the SQL Server 2000 for each row indicated in the cRows and rghRows
parameters of IRowsetUpdate::Update.

In either mode, a round trip represents a distinct transaction when no transaction object is open for the rowset.

When using IRowsetUpdate::Update, SQLOLEDB attempts to process each indicated row. An error occurring due to invalid data,
length, or status values for any row does not stop SQLOLEDB processing. All or none of the other rows participating in the update
may be modified. The consumer must check the returned prgRowStatus array to determine failure for any specific row when
SQLOLEDB returns DB_S_ERRORSOCCURED.

A consumer should not assume that rows are processed in any specific order. If a consumer requires ordered processing of data
modification over more than a single row, then the consumer should establish that order in the application logic and open a
transaction to enclose the process.

OLE DB and SQL Server (SQL Server 2000)

Resynchronizing Rows
SQLOLEDB supports IRowsetResynch on Microsoft® SQL Server™ 2000 cursor-supported rowsets only. IRowsetResynch is
not available on demand. The consumer must request the interface prior to opening the rowset.

OLE DB and SQL Server (SQL Server 2000)

BLOBs and OLE Objects
SQLOLEDB exposes the ISequentialStream interface to support consumer access to Microsoft® SQL Server™ 2000 ntext, text,
and image data types as binary large objects (BLOBs). The Read method on ISequentialStream allows the consumer to retrieve
large amounts of data in manageable chunks.

SQLOLEDB can use a consumer-implemented IStorage interface when the consumer provides the interface pointer in an
accessor bound for data modification.

SQLOLEDB Storage Object Limitations

SQLOLEDB can support only a single open storage object. Attempts to open more than one storage object (attempts to get a
reference on more than one ISequentialStream interface pointer) return DBSTATUS_E_CANTCREATE.

In SQLOLEDB, the default value of the DBPROP_BLOCKINGSTORAGEOBJECTS read-only property is VARIANT_TRUE. This
indicates that if a storage object is active, some methods (other than those on the storage objects) will fail with
E_UNEXPECTED.

The length of data presented by a consumer-implemented storage object must be made known to SQLOLEDB when the row
accessor that references the storage object is created. The consumer must bind a length indicator in the DBBINDING
structure used for accessor creation.

SQLOLEDB supports the ISequentialStream::Write method for zero-length strings and NULL values only. Attempts to
write more than zero bytes through ISequentialStream::Write fail.

If a row contains more than a single large data value, and DBPROP_ACCESSORDER is not DBPROPVAL_AO_RANDOM, the
consumer must either use a SQLOLEDB cursor-supported rowset to retrieve row data or process all large data values prior
to retrieving other row values. If DBPROP_ACCESSORDER is DBPROPVAL_AO_RANDOM, SQLOLEDB caches all the BLOB
data so it can be accessed in any order.

OLE DB and SQL Server (SQL Server 2000)

Getting Large Data
In general, consumers should isolate code that creates a SQLOLEDB storage object from other code that handles data not
referenced through an ISequentialStream interface pointer.

If the DBPROP_ACCESSORDER property (in the rowset property group) is set to either of the values
DBPROPVAL_AO_SEQUENTIAL or DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS, the consumer should fetch only a single row
of data in a call to the GetNextRows method because BLOB data is not buffered. If the value of DBPROP_ACCESSORDER is set to
DBPROPVAL_AO_RANDOM, the consumer can fetch multiple rows of data in GetNextRows.

SQLOLEDB does not retrieve large data from Microsoft® SQL Server™ until requested to do so by the consumer. The consumer
should bind all short data in one accessor, and then use one or more temporary accessors to retrieve large data values as
required.

This example retrieves a large data value from a single column:

HRESULT GetUnboundData
 (
 IRowset* pIRowset,
 HROW hRow,
 ULONG nCol,
 BYTE* pUnboundData
)
 {
 UINT cbRow = sizeof(IUnknown*) + sizeof(ULONG);
 BYTE* pRow = new BYTE[cbRow];

 DBOBJECT dbobject;

 IAccessor* pIAccessor = NULL;
 HACCESSOR haccessor;

 DBBINDING dbbinding;
 ULONG ulbindstatus;

 ULONG dwStatus;
 ISequentialStream* pISequentialStream;
 ULONG cbRead;

 HRESULT hr;

 // Set up the DBOBJECT structure.
 dbobject.dwFlags = STGM_READ;
 dbobject.iid = IID_ISequentialStream;

 // Create the DBBINDING, requesting a storage-object pointer from
 // SQLOLEDB.
 dbbinding.iOrdinal = nCol;
 dbbinding.obValue = 0;
 dbbinding.obStatus = sizeof(IUnknown*);
 dbbinding.obLength = 0;
 dbbinding.pTypeInfo = NULL;
 dbbinding.pObject = &dbobject;
 dbbinding.pBindExt = NULL;
 dbbinding.dwPart = DBPART_VALUE | DBPART_STATUS;
 dbbinding.dwMemOwner = DBMEMOWNER_CLIENTOWNED;
 dbbinding.eParamIO = DBPARAMIO_NOTPARAM;
 dbbinding.cbMaxLen = 0;
 dbbinding.dwFlags = 0;
 dbbinding.wType = DBTYPE_IUNKNOWN;
 dbbinding.bPrecision = 0;
 dbbinding.bScale = 0;

 if (FAILED(hr = pIRowset->
 QueryInterface(IID_IAccessor, (void**) &pIAccessor)))
 {
 // Process QueryInterface failure.
 return (hr);
 }

 // Create the accessor.
 if (FAILED(hr = pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA, 1,
 &dbbinding, 0, &haccessor, &ulbindstatus)))
 {
 // Process error from CreateAccessor.
 pIAccessor->Release();
 return (hr);

 }

 // Read and process BLOCK_SIZE bytes at a time.
 if (SUCCEEDED(hr = pIRowset->GetData(hRow, haccessor, pRow)))
 {
 dwStatus = *((ULONG*) (pRow + dbbinding.obStatus));

 if (dwStatus == DBSTATUS_S_ISNULL)
 {
 // Process NULL data
 }
 else if (dwStatus == DBSTATUS_S_OK)
 {
 pISequentialStream = *((ISequentialStream**)
 (pRow + dbbinding.obValue));

 do
 {
 if (SUCCEEDED(hr =
 pISequentialStream->Read(pUnboundData,
 BLOCK_SIZE, &cbRead)))
 {
 pUnboundData += cbRead;
 }
 }
 while (SUCCEEDED(hr) && cbRead >= BLOCK_SIZE);

 pISequentialStream->Release();
 }
 }
 else
 {
 // Process error from GetData.
 }

 pIAccessor->ReleaseAccessor(haccessor, NULL);
 pIAccessor->Release();
 delete [] pRow;

 return (hr);
 }

OLE DB and SQL Server (SQL Server 2000)

Setting Large Data
With the SQLOLEDB provider, you can set BLOB data by passing a pointer to a consumer storage object.

The consumer creates a storage object containing the data and passes a pointer to this storage object to the provider. The
provider then reads data from the consumer storage object and writes it to the BLOB column.

To pass a pointer to its own storage object, the consumer creates an accessor that binds the value of the BLOB column. The
consumer then calls the IRowsetChange::SetData or IRowsetChange::InsertRow method with the accessor that binds the
BLOB column. It passes a pointer to a storage interface on the storage object of the consumer.

To set large data

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Tables and Indexes
SQLOLEDB exposes the IIndexDefinition and ITableDefinition interfaces, allowing consumers to create, alter, and drop
Microsoft® SQL Server™ 2000 tables and indexes. Valid table and index definitions depend on the version of SQL Server.

The ability to create or drop tables and indexes depends on the SQL Server 2000 access rights of the consumer-application user.
Dropping a table can be further constrained by the presence of declarative referential integrity constraints or other factors.

Most applications targeting SQL Server 2000 use SQL-DMO instead of these OLE DB interfaces. SQL-DMO is a collection of OLE
Automation objects that support all the administrative functions of SQL Server 2000. Applications targeting multiple OLE DB
providers use these generic OLE DB interfaces that are supported by the various OLE DB providers.

In the provider-specific property set DBPROPSET_SQLSERVERCOLUMN, SQL Server defines the following property.

Property ID Description
SSPROP_COL_COLLATIONNAME Type: VT_BSTR

R/W:W
Default: Null
Description: This property is used only in
ITableDefinition. The string specified in
this property is used when creating a
CREATE TABLE statement.

See Also

CREATE TABLE

DROP TABLE

CREATE INDEX

DROP INDEX

OLE DB and SQL Server (SQL Server 2000)

Creating SQL Server Tables
SQLOLEDB exposes the ITableDefinition::CreateTable function, allowing consumers to create Microsoft® SQL Server™ 2000
tables. Consumers use CreateTable to create consumer-named permanent tables, and permanent or temporary tables with
unique names generated by SQLOLEDB.

When the consumer calls ITableDefinition::CreateTable, if the value of the DBPROP_TBL_TEMPTABLE property is
VARIANT_TRUE, SQLOLEDB generates a temporary table name for the consumer. The consumer sets the pTableID parameter of
the CreateTable method to NULL. The temporary tables with names generated by SQLOLEDB do not appear in the TABLES
rowset, but are accessible through the IOpenRowset interface.

When consumers specify the table name in the pwszName member of the uName union in the pTableID parameter, SQLOLEDB
creates a SQL Server 2000 table with that name. SQL Server 2000 table naming constraints apply, and the table name can
indicate a permanent table, or either a local or global temporary table. For more information, see CREATE TABLE. The ppTableID
parameter can be NULL.

SQLOLEDB can generate the names of permanent or temporary tables. When the consumer sets the pTableID parameter to NULL
and sets ppTableID to point to a valid DBID*, SQLOLEDB returns the generated name of the table in the pwszName member of
the uName union of the DBID pointed to by the value of ppTableID. To create a temporary, SQLOLEDB-named table, the
consumer includes the OLE DB table property DBPROP_TBL_TEMPTABLE in a table property set referenced in the rgPropertySets
parameter. SQLOLEDB-named temporary tables are local.

CreateTable returns DB_E_BADTABLEID if the eKind member of the pTableID parameter does not indicate DBKIND_NAME.

DBCOLUMNDESC Usage

The consumer can indicate a column data type by using either the pwszTypeName member or the wType member. If the
consumer specifies the data type in pwszTypeName, SQLOLEDB ignores the value of wType.

If using the pwszTypeName member, the consumer specifies the data type by using SQL Server data type names. Valid data type
names are those returned in the TYPE_NAME column of the PROVIDER_TYPES schema rowset.

SQLOLEDB recognizes a subset of OLE DB-enumerated DBTYPE values in the wType member. For more information, see Data
Type Mapping in ITableDefinition.

CreateTable returns DB_E_BADTYPE if consumer sets either the pTypeInfo or pclsid member to specify the column data type.

The consumer specifies the column name in the pwszName member of the uName union of the DBCOLUMNDESC dbcid
member. The column name is specified as a Unicode character string. The eKind member of dbcid must be DBKIND_NAME.
CreateTable returns DB_E_BADCOLUMNID if eKind is invalid, pwszName is NULL, or if the value of pwszName is not a valid SQL
Server 2000 identifier.

All column properties are available on all columns defined for the table. CreateTable can return DB_S_ERRORSOCCURRED or
DB_E_ERRORSOCCURRED if property values are set in conflict. CreateTable returns an error when invalid column property
settings cause SQL Server table-creation failure.

Column properties in a DBCOLUMNDESC are interpreted as follows.

Property ID Description

DBPROP_COL_AUTOINCREMENT R/W: Read/write
Default: VARIANT_FALSE
Description: Sets the identity property on the
column created. For SQL Server 2000, the
identity property is valid for a single column
within a table. Setting the property to
VARIANT_TRUE for more than a single column
generates an error when SQLOLEDB attempts to
create the table on the server.

The SQL Server 2000 identity property is only
valid for the integer, numeric, and decimal
types when the scale is 0. Setting the property to
VARIANT_TRUE on a column of any other data
type generates an error when SQLOLEDB
attempts to create the table on the server.

SQLOLEDB returns DB_S_ERRORSOCCURRED
when DBPROP_COL_AUTOINCREMENT and
DBPROP_COL_NULLABLE are both
VARIANT_TRUE and the dwOption of
DBPROP_COL_NULLABLE is not
DBPROPOPTIONS_REQUIRED.
DB_E_ERRORSOCCURRED is returned when
DBPROP_COL_AUTOINCREMENT and
DBPROP_COL_NULLABLE are both
VARIANT_TRUE and the dwOption of
DBPROP_COL_NULLABLE equals
DBPROPOPTIONS_REQUIRED. The column is
defined with the SQL Server identity property
and the DBPROP_COL_NULLABLE dwStatus
member is set to
DBPROPSTATUS_CONFLICTING.

DBPROP_COL_DEFAULT R/W: Read/write
Default: None
Description: Creates a SQL Server DEFAULT
constraint for the column.

The vValue DBPROP member can be any of a
number of types. The vValue.vt member should
specify a type compatible with the data type of
the column. For example, defining BSTR N/A as
the default value for a column defined as
DBTYPE_WSTR is a compatible match. Defining
the same default on a column defined as
DBTYPE_R8 generates an error when SQLOLEDB
attempts to create the table on the server.

DBPROP_COL_DESCRIPTION R/W: Read/write
Default: None
Description: The DBPROP_COL_DESCRIPTION
column property is not implemented by
SQLOLEDB.

The dwStatus member of the DBPROP structure
returns DBPROPSTATUS_NOTSUPPORTED when
the consumer attempts to write the property
value.

Setting the property does not constitute a fatal
error for SQLOLEDB. If all other parameter values
are valid, the SQL Server table is created.

DBPROP_COL_FIXEDLENGTH R/W: Read/write
Default: VARIANT_FALSE
Description: SQLOLEDB uses
DBPROP_COL_FIXEDLENGTH to determine data
type-mapping when the consumer defines a
column's data type by using the wType member
of the DBCOLUMNDESC. For more information,
see Data Type Mapping in ITableDefinition.

DBPROP_COL_NULLABLE R/W: Read/write
Default: None
Description: When creating the table, SQLOLEDB
indicates whether the column should accept null
values if the property is set. When the property is
not set, the ability of the column to accept NULL
as a value is determined by the SQL Server
ANSI_NULLS default database option.

SQLOLEDB is an SQL-92 compliant provider.
Connected sessions exhibit SQL-92 behaviors. If
the consumer does not set
DBPROP_COL_NULLABLE, columns accept null
values.

DBPROP_COL_PRIMARYKEY R/W: Read/write
Default: VARIANT_FALSE
Description: When VARIANT_TRUE, SQLOLEDB
creates the column with a PRIMARY KEY
constraint.

When defined as a column property, only a single
column can determine the constraint. Setting the
property VARIANT_TRUE for more than a single
column returns an error when SQLOLEDB
attempts to create the SQL Server 2000 table.

Note: The consumer can use
IIndexDefinition::CreateIndex to create a
PRIMARY KEY constraint on two or more
columns.

SQLOLEDB returns DB_S_ERRORSOCCURRED
when DBPROP_COL_PRIMARYKEY and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and the dwOption of DBPROP_COL_UNIQUE is
not DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED is returned when
DBPROP_COL_PRIMARYKEY and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and the dwOption of DBPROP_COL_UNIQUE
equals DBPROPOPTIONS_REQUIRED. The
column is defined with the SQL Server identity
property and the DBPROP_COL_PRIMARYKEY
dwStatus member is set to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB returns an error when
DBPROP_COL_PRIMARYKEY and
DBPROP_COL_NULLABLE are both
VARIANT_TRUE.

SQLOLEDB returns an error from SQL Server
when the consumer attempts to create a
PRIMARY KEY constraint on a column of invalid
SQL Server data type. PRIMARY KEY constraints
cannot be defined on columns created with the
SQL Server data types bit, text, ntext, and
image.

DBPROP_COL_UNIQUE R/W: Read/write
Default: VARIANT_FALSE
Description: Applies a SQL Server UNIQUE
constraint to the column.

When defined as a column property, the
constraint is applied on a single column only. The
consumer can use
IIndexDefinition::CreateIndex to apply a
UNIQUE constraint on the combined values of
two or more columns.

SQLOLEDB returns DB_S_ERRORSOCCURRED
when DBPROP_COL_PRIMARYKEY and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and dwOption is not
DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED is returned when
DBPROP_COL_PRIMARYKEY and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and dwOption equals
DBPROPOPTIONS_REQUIRED. The column is
defined with the SQL Server identity property
and the DBPROP_COL_PRIMARYKEY dwStatus
member is set to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB returns DB_S_ERRORSOCCURRED
when DBPROP_COL_NULLABLE and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and dwOption is not
DBPROPOPTIONS_REQUIRED.

DB_E_ERRORSOCCURRED is returned when
DBPROP_COL_NULLABLE and
DBPROP_COL_UNIQUE are both VARIANT_TRUE
and dwOption equals
DBPROPOPTIONS_REQUIRED. The column is
defined with the SQL Server identity property
and the DBPROP_COL_NULLABLE dwStatus
member is set to
DBPROPSTATUS_CONFLICTING.

SQLOLEDB returns an error from SQL Server
2000 when the consumer attempts to create a
UNIQUE constraint on a column of invalid SQL
Server 2000 data type. UNIQUE constraints
cannot be defined on columns created with the
SQL Server 2000 bit data type.

When the consumer calls ITableDefinition::CreateTable, SQLOLEDB interprets table properties as follows.

Property ID Description
DBPROP_TBL_TEMPTABLE R/W: Read/write

Default: VARIANT_FALSE
Description: By default, SQLOLEDB creates tables
named by the consumer. When VARIANT_TRUE,
SQLOLEDB generates a temporary table name
for the consumer. The consumer sets the
pTableID parameter of CreateTable to NULL.
The ppTableID parameter must contain a valid
pointer.

If the consumer requests that a rowset be opened on a successfully created table, SQLOLEDB opens a cursor-supported rowset.
Any rowset properties can be indicated in the property sets passed.

This example creates a SQL Server 2000 table.

// This CREATE TABLE statement shows the details of the table created by
// the following example code.
//
// CREATE TABLE OrderDetails
// (
// OrderID int NOT NULL
// ProductID int NOT NULL
// CONSTRAINT PK_OrderDetails
// PRIMARY KEY CLUSTERED (OrderID, ProductID),
// UnitPrice money NOT NULL,
// Quantity int NOT NULL,
// Discount decimal(2,2) NOT NULL
// DEFAULT 0
//)
//
// The PRIMARY KEY constraint is created in an additional example.
HRESULT CreateTable
 (
 ITableDefinition* pITableDefinition
)
 {
 DBID dbidTable;
 const ULONG nCols = 5;
 ULONG nCol;
 ULONG nProp;
 DBCOLUMNDESC dbcoldesc[nCols];

 HRESULT hr;

 // Set up column descriptions. First, set default property values for
 // the columns.
 for (nCol = 0; nCol < nCols; nCol++)
 {
 dbcoldesc[nCol].pwszTypeName = NULL;
 dbcoldesc[nCol].pTypeInfo = NULL;
 dbcoldesc[nCol].rgPropertySets = new DBPROPSET;
 dbcoldesc[nCol].pclsid = NULL;
 dbcoldesc[nCol].cPropertySets = 1;
 dbcoldesc[nCol].ulColumnSize = 0;
 dbcoldesc[nCol].dbcid.eKind = DBKIND_NAME;
 dbcoldesc[nCol].wType = DBTYPE_I4;
 dbcoldesc[nCol].bPrecision = 0;
 dbcoldesc[nCol].bScale = 0;

 dbcoldesc[nCol].rgPropertySets[0].rgProperties =
 new DBPROP[NCOLPROPS_MAX];
 dbcoldesc[nCol].rgPropertySets[0].cProperties = NCOLPROPS_MAX;
 dbcoldesc[nCol].rgPropertySets[0].guidPropertySet =
 DBPROPSET_COLUMN;

 for (nProp = 0; nProp < NCOLPROPS_MAX; nProp++)
 {
 dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
 dwOptions = DBPROPOPTIONS_REQUIRED;
 dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].colid
 = DB_NULLID;

 VariantInit(
 &(dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
 vValue));

 dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
 vValue.vt = VT_BOOL;
 }
 }

 // Set the column-specific information.
 dbcoldesc[0].dbcid.uName.pwszName = L"OrderID";
 dbcoldesc[0].rgPropertySets[0].rgProperties[0].dwPropertyID =
 DBPROP_COL_NULLABLE;
 dbcoldesc[0].rgPropertySets[0].rgProperties[0].vValue.boolVal =
 VARIANT_FALSE;
 dbcoldesc[0].rgPropertySets[0].cProperties = 1;

 dbcoldesc[1].dbcid.uName.pwszName = L"ProductID";
 dbcoldesc[1].rgPropertySets[0].rgProperties[0].dwPropertyID =
 DBPROP_COL_NULLABLE;
 dbcoldesc[1].rgPropertySets[0].rgProperties[0].vValue.boolVal =
 VARIANT_FALSE;
 dbcoldesc[1].rgPropertySets[0].cProperties = 1;

 dbcoldesc[2].dbcid.uName.pwszName = L"UnitPrice";
 dbcoldesc[2].wType = DBTYPE_CY;
 dbcoldesc[2].rgPropertySets[0].rgProperties[0].dwPropertyID =
 DBPROP_COL_NULLABLE;
 dbcoldesc[2].rgPropertySets[0].rgProperties[0].vValue.boolVal =
 VARIANT_FALSE;
 dbcoldesc[2].rgPropertySets[0].cProperties = 1;

 dbcoldesc[3].dbcid.uName.pwszName = L"Quantity";
 dbcoldesc[3].rgPropertySets[0].rgProperties[0].dwPropertyID =
 DBPROP_COL_NULLABLE;
 dbcoldesc[3].rgPropertySets[0].rgProperties[0].vValue.boolVal =
 VARIANT_FALSE;
 dbcoldesc[3].rgPropertySets[0].cProperties = 1;

 dbcoldesc[4].dbcid.uName.pwszName = L"Discount";
 dbcoldesc[4].wType = DBTYPE_NUMERIC;
 dbcoldesc[4].bPrecision = 2;
 dbcoldesc[4].bScale = 2;
 dbcoldesc[4].rgPropertySets[0].rgProperties[0].dwPropertyID =
 DBPROP_COL_NULLABLE;
 dbcoldesc[4].rgPropertySets[0].rgProperties[0].vValue.boolVal =
 VARIANT_FALSE;
 dbcoldesc[4].rgPropertySets[0].rgProperties[1].dwPropertyID =
 DBPROP_COL_DEFAULT;
 dbcoldesc[4].rgPropertySets[0].rgProperties[1].vValue.vt = VT_BSTR;
 dbcoldesc[4].rgPropertySets[0].rgProperties[1].vValue.bstrVal =
 SysAllocString(L"0");
 dbcoldesc[4].rgPropertySets[0].cProperties = 2;

 // Set up the dbid for OrderDetails.
 dbidTable.eKind = DBKIND_NAME;
 dbidTable.uName.pwszName = L"OrderDetails";

 if (FAILED(hr = pITableDefinition->CreateTable(NULL, &dbidTable,
 nCols, dbcoldesc, NULL, 0, NULL, NULL, NULL)))
 {
 DumpError(pITableDefinition, IID_ITableDefinition);
 goto SAFE_EXIT;
 }

SAFE_EXIT:
 // Clean up dynamic allocation in the property sets.
 for (nCol = 0; nCol < nCols; nCol++)
 {
 for (nProp = 0; nProp < NCOLPROPS_MAX; nProp++)
 {
 if (dbcoldesc[nCol].rgPropertySets[0].rgProperties[nProp].
 vValue.vt == VT_BSTR)
 {
 SysFreeString(dbcoldesc[nCol].rgPropertySets[0].
 rgProperties[nProp].vValue.bstrVal);
 }
 }

 delete [] dbcoldesc[nCol].rgPropertySets[0].rgProperties;
 delete [] dbcoldesc[nCol].rgPropertySets;
 }

 return (hr);
 }

OLE DB and SQL Server (SQL Server 2000)

Adding a Column to a SQL Server Table
SQLOLEDB exposes the ITableDefinition::AddColumn function, allowing consumers to add a column to a Microsoft® SQL
Server™ 2000 table.

When adding a column to a SQL Server 2000 table, the SQLOLEDB consumer is constrained as follows:

If DBPROP_COL_AUTOINCREMENT is VARIANT_TRUE, DBPROP_COL_NULLABLE must be VARIANT_FALSE.

If the column is defined with the SQL Server 2000 timestamp data type, DBPROP_COL_NULLABLE must be
VARIANT_FALSE.

For any other column definition, DBPROP_COL_NULLABLE must be VARIANT_TRUE.

Consumers specify the table name as a Unicode character string in the pwszName member of the uName union in the pTableID
parameter. The eKind member of pTableID must be DBKIND_NAME.

The new column name is specified as a Unicode character string in the pwszName member of the uName union in the dbcid
member of the DBCOLUMNDESC parameter pColumnDesc. The dbcid eKind member must be DBKIND_NAME.

See Also

ALTER TABLE

OLE DB and SQL Server (SQL Server 2000)

Removing a Column from a SQL Server Table
SQLOLEDB exposes the ITableDefinition::DropColumn function, allowing consumers to remove a column from a Microsoft®
SQL Server™ 2000 table.

Consumers specify the table name as a Unicode character string in the pwszName member of the uName union in the pTableID
parameter. The eKind member of pTableID must be DBKIND_NAME.

The consumer indicates a column name in the pwszName member of the uName union in the pColumnID parameter. The column
name is a Unicode character string. The eKind member of pColumnID must be DBKIND_NAME.

Note Removing a column is not supported for a consumer connected to a server running SQL Server version 6.5.
ITableDefinition::DropColumn returns E_NOTIMPL when the consumer application attempts to remove a column.

OLE DB and SQL Server (SQL Server 2000)

Dropping a SQL Server Table
SQLOLEDB exposes the ITableDefinition::DropTable function, allowing consumers to remove a Microsoft® SQL Server™ 2000
table from a database.

Consumers specify the table name as a Unicode character string in the pwszName member of the uName union in the pTableID
parameter. The eKind member of pTableID must be DBKIND_NAME.

OLE DB and SQL Server (SQL Server 2000)

Creating SQL Server Indexes
SQLOLEDB exposes the IIndexDefinition::CreateIndex function, allowing consumers to define new indexes on Microsoft® SQL
Server™ 2000 tables.

SQLOLEDB creates table indexes as either indexes or constraints. SQL Server 2000 gives constraint-creation privilege to the table
owner, database owner, and members of certain administrative roles. By default, only the table owner can create an index on a
table. Therefore, CreateIndex success or failure depends not only on the application user's access rights but also on the type of
index created.

Consumers specify the table name as a Unicode character string in the pwszName member of the uName union in the pTableID
parameter. The eKind member of pTableID must be DBKIND_NAME.

The pIndexID parameter can be NULL, and if it is, SQLOLEDB creates a unique name for the index. The consumer can capture the
name of the index by specifying a valid pointer to a DBID in the ppIndexID parameter.

The consumer can specify the index name as a Unicode character string in the pwszName member of the uName union of the
pIndexID parameter. The eKind member of pIndexID must be DBKIND_NAME.

The consumer specifies the column or columns participating in the index by name. For each DBINDEXCOLUMNDESC structure
used in CreateIndex, the eKind member of the pColumnID must be DBKIND_NAME. The name of the column is specified as a
Unicode character string in the pwszName member of the uName union in the pColumnID.

SQLOLEDB and SQL Server 2000 support ascending order on values in the index. SQLOLEDB returns E_INVALIDARG if the
consumer specifies DBINDEX_COL_ORDER_DESC in any DBINDEXCOLUMNDESC structure.

CreateIndex interprets index properties as follows.

Property ID Description
DBPROP_INDEX_AUTOUPDATE R/W: Read/write

Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_CLUSTERED R/W: Read/write
Default: VARIANT_FALSE
Description: Controls index clustering.

VARIANT_TRUE: SQLOLEDB attempts to create
a clustered index on the SQL Server 2000
table. SQL Server 2000 supports at most one
clustered index on any table.

VARIANT_FALSE: SQLOLEDB attempts to
create a nonclustered index on the SQL Server
2000 table.

DBPROP_INDEX_FILLFACTOR R/W: Read/write
Default: 0
Description: Specifies the percentage of an
index page used for storage. For more
information, see CREATE INDEX.

The type of the variant is VT_I4. The value must
be greater than or equal to 1 and less than or
equal to 100.

DBPROP_INDEX_INITIALIZE R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_NULLCOLLATION R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_NULLS R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_PRIMARYKEY R/W: Read/write
Default: VARIANT_FALSE
Description: Creates the index as a referential
integrity, PRIMARY KEY constraint.

VARIANT_TRUE: The index is created to
support the PRIMARY KEY constraint of the
table. The columns must be nonnullable.

VARIANT_FALSE: The index is not used as a
PRIMARY KEY constraint for row values in the
table.

DBPROP_INDEX_SORTBOOKMARKS R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_TEMPINDEX R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_TYPE R/W: Read/write
Default: None
Description: SQLOLEDB does not support this
property. Attempts to set the property in
CreateIndex cause a DB_S_ERRORSOCCURED
return value. The dwStatus member of the
property structure indicates
DBPROPSTATUS_BADVALUE.

DBPROP_INDEX_UNIQUE R/W: Read/write
Default: VARIANT_FALSE
Description: Creates the index as a UNIQUE
constraint on the participating column or
columns.

VARIANT_TRUE: The index is used to uniquely
constrain row values in the table.

VARIANT_FALSE: The index does not uniquely
constrain row values.

This example creates a primary key index:

// This CREATE TABLE statement shows the referential integrity and
// PRIMARY KEY constraint on the OrderDetails table that will be created
// by the following example code.
//
// CREATE TABLE OrderDetails
// (
// OrderID int NOT NULL
// ProductID int NOT NULL
// CONSTRAINT PK_OrderDetails
// PRIMARY KEY CLUSTERED (OrderID, ProductID),
// UnitPrice money NOT NULL,
// Quantity int NOT NULL,
// Discount decimal(2,2) NOT NULL
// DEFAULT 0
//)
//
HRESULT CreatePrimaryKey
 (
 IIndexDefinition* pIIndexDefinition
)
 {
 HRESULT hr = S_OK;

 DBID dbidTable;
 DBID dbidIndex;
 const ULONG nCols = 2;
 ULONG nCol;
 const ULONG nProps = 2;
 ULONG nProp;

 DBINDEXCOLUMNDESC dbidxcoldesc[nCols];
 DBPROP dbpropIndex[nProps];
 DBPROPSET dbpropset;

 DBID* pdbidIndexOut = NULL;

 // Set up identifiers for the table and index.
 dbidTable.eKind = DBKIND_NAME;
 dbidTable.uName.pwszName = L"OrderDetails";

 dbidIndex.eKind = DBKIND_NAME;
 dbidIndex.uName.pwszName = L"PK_OrderDetails";

 // Set up column identifiers.
 for (nCol = 0; nCol < nCols; nCol++)
 {
 dbidxcoldesc[nCol].pColumnID = new DBID;
 dbidxcoldesc[nCol].pColumnID->eKind = DBKIND_NAME;

 dbidxcoldesc[nCol].eIndexColOrder = DBINDEX_COL_ORDER_ASC;
 }
 dbidxcoldesc[0].pColumnID->uName.pwszName = L"OrderID";
 dbidxcoldesc[1].pColumnID->uName.pwszName = L"ProductID";

 // Set properties for the index. The index is clustered,
 // PRIMARY KEY.
 for (nProp = 0; nProp < nProps; nProp++)
 {
 dbpropIndex[nProp].dwOptions = DBPROPOPTIONS_REQUIRED;
 dbpropIndex[nProp].colid = DB_NULLID;

 VariantInit(&(dbpropIndex[nProp].vValue));

 dbpropIndex[nProp].vValue.vt = VT_BOOL;
 }
 dbpropIndex[0].dwPropertyID = DBPROP_INDEX_CLUSTERED;
 dbpropIndex[0].vValue.boolVal = VARIANT_TRUE;

 dbpropIndex[1].dwPropertyID = DBPROP_INDEX_PRIMARYKEY;
 dbpropIndex[1].vValue.boolVal = VARIANT_TRUE;

 dbpropset.rgProperties = dbpropIndex;
 dbpropset.cProperties = nProps;
 dbpropset.guidPropertySet = DBPROPSET_INDEX;

 hr = pIIndexDefinition->CreateIndex(&dbidTable, &dbidIndex, nCols,
 dbidxcoldesc, 1, &dbpropset, &pdbidIndexOut);

 // Clean up dynamically allocated DBIDs.
 for (nCol = 0; nCol < nCols; nCol++)
 {
 delete dbidxcoldesc[nCol].pColumnID;
 }

 return (hr);
 }

OLE DB and SQL Server (SQL Server 2000)

Dropping a SQL Server Index
SQLOLEDB exposes the IIndexDefinition::DropIndex function, allowing consumers to remove an index from a Microsoft® SQL
Server™ 2000 table.

SQLOLEDB exposes some SQL Server 2000 PRIMARY KEY and UNIQUE constraints as indexes. The table owner, database owner,
and some administrative role members can alter a SQL Server 2000 table, dropping a constraint. By default, only the table owner
can drop an existing index. Therefore, DropIndex success or failure depends not only on the application user's access rights but
also on the type of index indicated.

Consumers specify the table name as a Unicode character string in the pwszName member of the uName union in the pTableID
parameter. The eKind member of pTableID must be DBKIND_NAME.

Consumers specify the index name as a Unicode character string in the pwszName member of the uName union in the pIndexID
parameter. The eKind member of pIndexID must be DBKIND_NAME. SQLOLEDB does not support the OLE DB feature of dropping
all indexes on a table when pIndexID is null. If pIndexID is null, E_INVALIDARG is returned.

See Also

ALTER TABLE

DROP INDEX

OLE DB and SQL Server (SQL Server 2000)

Notifications
SQLOLEDB supports consumer notification on rowset modification. The consumer receives notification at every phase of rowset
modification and on any attempted change.

To receive notification, the consumer queries the rowset for a connection-point interface, then connects a consumer-implemented
IRowsetNotify interface to the rowset.

The consumer can cancel a rowset-modification attempt on receiving notification from SQLOLEDB. Any rowset-modification
attempt can be canceled prior to the application of the modification by SQLOLEDB. That is, rowset modifications can be canceled
when an IRowsetNotify member function indicates the event phase DBEVENTPHASE_OKTODO or
DBEVENTPHASE_ABOUTTODO.

OLE DB and SQL Server (SQL Server 2000)

Data Types (OLE DB)
To execute Transact-SQL statements and process the results by using the SQLOLEDB provider, you need to know how the
SQLOLEDB provider maps Microsoft® SQL Server™ 2000 data types to OLE DB data types when binding parameters or columns
in a rowset, and when using the ITableDefinition interface to create a table in SQL Server 2000.

OLE DB and SQL Server (SQL Server 2000)

Data Type Mapping in Rowsets and Parameters
In rowsets and as parameter values, SQLOLEDB represents Microsoft® SQL Server™ 2000 data by using the following OLE DB
defined data types, reported in the functions IColumnsInfo::GetColumnInfo and
ICommandWithParameters::GetParameterInfo.

SQL Server data type SQLOLEDB data type
bigint DBTYPE_I8
binary DBTYPE_BYTES
bit DBTYPE_BOOL
char DBTYPE_STR
datetime DBTYPE_DBTIMESTAMP
decimal DBTYPE_NUMERIC
float DBTYPE_R8
image DBTYPE_BYTES
int DBTYPE_I4
money DBTYPE_CY
nchar DBTYPE_WSTR
ntext DBTYPE_WSTR
numeric DBTYPE_NUMERIC
nvarchar DBTYPE_WSTR
real DBTYPE_R4
smalldatetime DBTYPE_DBTIMESTAMP
smallint DBTYPE_I2
smallmoney DBTYPE_CY
sql_variant DBTYPE_VARIANT, DBTYPE_SQLVARIANT*
sysname DBTYPE_WSTR
text DBTYPE_STR
timestamp DBTYPE_BYTES
tinyint DBTYPE_UI1
uniqueidentifier DBTYPE_GUID
varbinary DBTYPE_BYTES
varchar DBTYPE_STR

SQLOLEDB supports consumer-requested data conversions as shown in the illustration.

sql_variant (OLE DB)

The sql_variant data type column can contain any of the data types in SQL Server except large objects (LOBs), such as text,
ntext, and image. For example, the column can contain smallint values for some rows, float values for other rows, and
char/nchar values in the remainder.

The sql_variant data type is similar to the variant data type in Microsoft Visual Basic® and the DBTYPE_VARIANT in OLE DB.

When sql_variant data is fetched as DBTYPE_VARIANT (defined in Oledb.h), it is put in a VARIANT structure (defined in Oaidl.h) in
the buffer. But the subtypes in the VARIANT structure may not map to subtypes defined in the sql_variant data type. The
sql_variant data must then be fetched as DBTYPE_SQLVARIANT in order for all the subtypes to match.

DBTYPE_SQLVARIANT Data Type

To support the sql_variant data type, the Microsoft OLE DB Provider for SQL Server (SQLOLEDB) exposes a provider-specific data
type called DBTYPE_SQLVARIANT. When sql_variant data is fetched in as DBTYPE_SQLVARIANT (defined in Sqloleb.h), it is stored
in a provider-specific SSVARIANT structure (defined in Sqloledb.h). The SSVARIANT structure contains all of the subtypes that
match the subtypes of the sql_variant data type.

The session property SSPROP_ALLOWNATIVEVARIANT must also be set to TRUE.

Provider-Specific Property SSPROP_ALLOWNATIVEVARIANT

In fetching data, you can specify explicitly what kind of data type should be returned for a column or for a parameter.
IColumnInfo can also be used to get the column information and use that to do the binding. When IColumnInfo is used to
obtain column information for binding purposes, if the SSPROP_ALLOWNATIVEVARIANT session property is FALSE (default
value), DBTYPE_VARIANT is returned for sql_variant columns. If SSPROP_ALLOWNATIVEVARIANT property is FALSE
DBTYPE_SQLVARIANT is not supported. If SSPROP_ALLOWNATIVEVARIANT property is set to TRUE, the column type is returned
as DBTYPE_SQLVARIANT, in which case the buffer will hold the SSVARIANT structure. In fetching sql_variant data as
DBTYPE_SQLVARIANT, the session property SSPROP_ALLOWNATIVEVARIANT must be set to TRUE.

SSPROP_ALLOWNATIVEVARIANT property is part of the provider-specific DBPROPSET_SQLSERVERSESSION property set, and is
a session property.

DBTYPE_VARIANT applies to all other OLE DB providers. DBTYPE_VARIANT is defined in Oledb.h, whereas DBTYPE_SQLVARIANT
is specific to SQL Server and is defined in Sqloledb.h.

SSPROP_ALLOWNATIVEVARIANT

SSPROP_ALLOWNATIVEVARIANT is a session property and is part of DBPROPSET, SQLServer Session property set.

SSPROP_ALLOWNATIVEVARIANT Type: VT_BOOL
R/W: Read/Write
Default: VARIANT_FALSE
Description: Determines if the data fetched
in is as DBTYPE_VARIANT or
DBTYPE_SQLVARIANT.

VARIANT_TRUE: Column type is returned
as DBTYPE_SQLVARIANT in which case
the buffer will hold SSVARIANT structure.

VARIANT_FALSE: Column type is returned
as DBTYPE_VARIANT and the buffer will
have VARIANT structure.

OLE DB and SQL Server (SQL Server 2000)

Data Type Mapping in ITableDefinition
When creating tables by using the ITableDefinition::CreateTable function, the SQLOLEDB consumer can specify Microsoft®
SQL Server™ 2000 data types in the pwszTypeName member of the DBCOLUMNDESC array that is passed. If the consumer
specifies the data type of a column by name, then OLE DB data type mapping, represented by the wType member of the
DBCOLUMNDESC structure, is ignored.

When specifying new column data types with OLE DB data types using the DBCOLUMNDESC structure wType member,
SQLOLEDB maps OLE DB data types as follows.

OLE DB data type
SQL Server
data type Additional information

DBTYPE_BOOL bit
DBTYPE_BYTES binary, varbinary,

or image
SQLOLEDB inspects the ulColumnSize
member of the DBCOLUMNDESC
structure. Based on the value, and
version of the SQL Server 2000
instance, SQLOLEDB maps the type to
image.

If the value of ulColumnSize is smaller
than the maximum length of a binary
data type column, then SQLOLEDB
inspects the DBCOLUMNDESC
rgPropertySets member. If
DBPROP_COL_FIXEDLENGTH is
VARIANT_TRUE, SQLOLEDB maps the
type to binary. If the value of the
property is VARIANT_FALSE,
SQLOLEDB maps the type to
varbinary. In either case, the
DBCOLUMNDESC ulColumnSize
member determines the width of the
SQL Server 2000 column created.

DBTYPE_CY money
DBTYPE_DBTIMESTAMP datetime
DBTYPE_GUID uniqueidentifier
DBTYPE_I2 smallint
DBTYPE_I4 int
DBTYPE_NUMERIC numeric SQLOLEDB inspects the

DBCOLUMDESC bPrecision and bScale
members to determine precision and
scale for the numeric column.

DBTYPE_R4 real
DBTYPE_R8 float

DBTYPE_STR char, varchar, or
text

SQLOLEDB inspects the ulColumnSize
member of the DBCOLUMNDESC
structure. Based on the value and
version of the SQL Server 2000
instance, SQLOLEDB maps the type to
text.

If the value of ulColumnSize is smaller
than the maximum length of a
multibyte character data type column,
then SQLOLEDB inspects the
DBCOLUMNDESC rgPropertySets
member. If
DBPROP_COL_FIXEDLENGTH is
VARIANT_TRUE, SQLOLEDB maps the
type to char. If the value of the
property is VARIANT_FALSE,
SQLOLEDB maps the type to varchar.
In either case, the DBCOLUMNDESC
ulColumnSize member determines the
width of the SQL Server 2000 column
created.

DBTYPE_UI1 tinyint
DBTYPE_WSTR nchar, nvarchar, or

ntext
Using DBTYPE_WSTR to define a
column is supported for SQL Server
version 7.0 servers only.

SQLOLEDB inspects the ulColumnSize
member of the DBCOLUMNDESC
structure. Based on the value,
SQLOLEDB maps the type to ntext.

If the value of ulColumnSize is smaller
than the maximum length of a
Unicode character data type column,
then SQLOLEDB inspects the
DBCOLUMNDESC rgPropertySets
member. If
DBPROP_COL_FIXEDLENGTH is
VARIANT_TRUE, SQLOLEDB maps the
type to nchar. If the value of the
property is VARIANT_FALSE,
SQLOLEDB maps the type to
nvarchar. In either case, the
DBCOLUMNDESC ulColumnSize
member determines the width of the
SQL Server 2000 column created.

Note When creating a new table, SQLOLEDB maps only the OLE DB data type enumeration values specified in the preceding
table. Attempting to create a table with a column of any other OLE DB data type generates an error.

OLE DB and SQL Server (SQL Server 2000)

Schema Rowset Support in SQLOLEDB
If you connect to an earlier version of Microsoft® SQL Server™ 2000, you must upgrade the catalog stored procedures on that
server before the SQLOLEDB provider can give proper results in schema rowsets. SQLOLEDB also supports returning schema
information from a linked server when processing Transact-SQL distributed queries.

The following tables list schema rowsets and the restriction columns supported by SQLOLEDB.

Schema rowset Restriction columns
DBSCHEMA_CATALOGS CATALOG_NAME
DBSCHEMA_COLUMN_PRIVILEGES All the restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
GRANTOR
GRANTEE

DBSCHEMA_COLUMNS All the restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

DBSCHEMA_FOREIGN_KEYS All restrictions are supported.

PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
FK_TABLE_CATALOG
FK_TABLE_SCHEMA
FK_TABLE_NAME

DBSCHEMA_INDEXES Restrictions 1, 2, 3, and 5 are supported.

TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TABLE_NAME

DBSCHEMA_PRIMARYKEYS All restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

DBSCHEMA_PROCEDURE_PARAMETERS All restrictions are supported.

PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_NAME

DBSCHEMA_PROCEDURES Restrictions 1, 2, and 3 are supported.

PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME

DBSCHEMA_PROVIDER_TYPES All restrictions are supported.

DATA_TYPE
BEST_MATCH

DBSCHEMA_SCHEMATA All restrictions are supported.

CATALOG_NAME
SCHEMA_NAME
SCHEMA_OWNER

DBSCHEMA_STATISTICS All restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

DBSCHEMA_TABLE_CONSTRAINTS All restrictions are supported.

CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
CONSTRAINT_TYPE

DBSCHEMA_TABLE_PRIVILEGES All restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
GRANTOR
GRANTEE

DBSCHEMA_TABLES All restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

DBSCHEMA_TABLES_INFO All restrictions are supported.

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

OLE DB and SQL Server (SQL Server 2000)

Catalog Stored Procedures
To support reporting of schema data, Microsoft® SQL Server™ 2000 client interfaces rely on system stored procedures that
extract data from a server's catalog. As client software evolves, the catalog stored procedures also evolve.

When a SQLOLEDB consumer connects to SQL Server version 6.5, SQLOLEDB returns an informational error message stating that
the catalog stored procedures are out of date.

SQLOLEDB is compatible with earlier versions of SQL Server. However, not all schema rowsets are supported on earlier versions
of SQL Server unless the catalog stored procedures are upgraded to the current release level.

To upgrade the catalog stored procedures, use an appropriate client utility to run the Transact-SQL Instcat.sql script that ships
with the most recent version of SQLOLEDB. Instcat.sql requires system administrator privilege.

Depending on the version of the server, Instcat.sql execution can generate many error messages. All generated errors can be
safely ignored if the final line of execution output indicates success.

OLE DB and SQL Server (SQL Server 2000)

Distributed Query Support in Schema Rowsets
To support Microsoft® SQL Server™ 2000 distributed queries, the SQLOLEDB IDBSchemaRowset interface returns meta data on
linked servers.

If the DBPROPSET_SQLSERVERSESSION property SSPROP_QUOTEDCATALOGNAMES is VARIANT_TRUE, a quoted identifier can
be specified for the catalog name (for example "my.catalog"). When restricting schema rowset output by catalog, SQLOLEDB
recognizes a two-part name containing the linked server and catalog name. For the schema rowsets in the table below, specifying
a two-part catalog name as linked_server.catalog restricts output to the applicable catalog of the named linked server.

DBSCHEMA_CATALOGS CATALOG_NAME
DBSCHEMA_COLUMNS TABLE_CATALOG
DBSCHEMA_PRIMARY_KEYS TABLE_CATALOG
DBSCHEMA_TABLES TABLE_CATALOG
DBSCHEMA_FOREIGN_KEYS PK_TABLE_CATALOG

FK_TABLE_CATALOG
DBSCHEMA_INDEXES TABLE_CATALOG
DBSCHEMA_COLUMN_PRIVILEGES TABLE_CATALOG
DBSCHEMA_TABLE_PRIVILEGES TABLE_CATALOG

Note To restrict a schema rowset to all catalogs from a linked server, use the syntax linked_server. (where the period separator is
part of the name specification). This syntax is equivalent to specifying NULL for the catalog name restriction and is also used when
the linked server indicates a data source that does not support catalogs.

SQLOLEDB defines the schema rowset LINKEDSERVERS, returning a list of OLE DB data sources registered as linked servers.

See Also

LINKEDSERVERS Rowset (OLE DB)

OLE DB and SQL Server (SQL Server 2000)

Transactions
SQLOLEDB implements local transaction support. The consumer can use distributed or coordinated transactions by using
Microsoft Distributed Transaction Coordinator (MS DTC). For consumers requiring transaction control that spans multiple
sessions, SQLOLEDB can join transactions initiated and maintained by MS DTC.

By default, SQLOLEDB uses an autocommit transaction mode, where each discrete action on a consumer session comprises a
complete transaction against an instance of Microsoft® SQL Server™ 2000. SQLOLEDB autocommit mode is local and
autocommit transactions never span more than a single session.

SQLOLEDB exposes the ITransactionLocal interface, allowing the consumer to use explicitly and implicitly started transactions
on a single connection to an instance of SQL Server 2000. SQLOLEDB does not support nested local transactions.

OLE DB and SQL Server (SQL Server 2000)

Supporting Local Transactions
A session delimits transaction scope for a SQLOLEDB local transaction. When, at the direction of a consumer, SQLOLEDB submits
a request to a connected Microsoft® SQL Server™ 2000 instance, the request constitutes a unit of work for SQLOLEDB. Local
transactions always wrap one or more units of work on a single SQLOLEDB session.

Using the default SQLOLEDB autocommit mode, a single unit of work is treated as the scope of a local transaction. Only one unit
participates in the local transaction. When a session is created, SQLOLEDB begins a transaction for the session. Upon successful
completion of a work unit, the work is committed. On failure, any work begun is rolled back and the error is reported to the
consumer. In either case, SQLOLEDB begins a new local transaction for the session so that all work is conducted within a
transaction.

The SQLOLEDB consumer can direct more precise control over local transaction scope by using the ITransactionLocal interface.
When a consumer session initiates a transaction, all session work units between the transaction start point and the eventual
Commit or Abort method calls are treated as an atomic unit. SQLOLEDB implicitly begins a transaction when directed to do so
by the consumer. If the consumer does not request retention, the session reverts to parent transaction-level behavior, most
commonly autocommit mode.

SQLOLEDB supports ITransactionLocal::StartTransaction parameters as follows.

Parameter Description
IsoLevel In local transactions, SQLOLEDB supports

ISOLATIONLEVEL_READCOMMITTED,
ISOLATIONLEVEL_REPEATABLEREAD,
ISOLATIONLEVEL_ISOLATED, and the synonyms
ISOLATIONLEVEL_CURSORSTABILITY and
ISOLATIONLEVEL_SERIALIZABLE.

IsoFlags SQLOLEDB returns an error for any value other than zero.
POtherOptions If not NULL, SQLOLEDB requests the options object from the

interface. SQLOLEDB returns XACT_E_NOTIMEOUT if the
options object's ulTimeout member is not zero. SQLOLEDB
ignores the value of the szDescription member.

PulTransactionLevel If not NULL, SQLOLEDB returns the nested level of the
transaction.

For local transactions, SQLOLEDB implements ITransaction::Abort parameters as follows.

Parameter Description
pboidReason Ignored if set. Can safely be NULL.
Fretaining When TRUE, a new transaction is implicitly begun for the

session. The transaction must be committed or terminated by
the consumer. When FALSE, SQLOLEDB reverts to
autocommit mode for the session.

Fasync Asynchronous abort is not supported by SQLOLEDB.
SQLOLEDB returns XACT_E_NOTSUPPORTED if the value is
not FALSE.

For local transactions, SQLOLEDB implements ITransaction::Commit parameters as follows.

Parameter Description
fRetaining When TRUE, a new transaction is implicitly begun for the

session. The transaction must be committed or terminated by
the consumer. When FALSE, SQLOLEDB reverts to
autocommit mode for the session.

GrfTC Asynchronous and phase one returns are not supported by
SQLOLEDB. SQLOLEDB returns XACT_E_NOTSUPPORTED for
any value other than XACTTC_SYNC.

GrfRM Must be 0.

SQLOLEDB rowsets on the session are preserved on a local commit or abort operation based on the values of the rowset

properties DBPROP_ABORTPRESERVE and DBPROP_COMMITPRESERVE. By default, these properties are both VARIANT_FALSE
and all SQLOLEDB rowsets on the session are lost following an abort or commit operation.

SQLOLEDB does not implement the ITransactionObject interface. A consumer attempt to retrieve a reference on the interface
returns E_NOINTERFACE.

This example uses ITransactionLocal.

// Interfaces used in the example.
IDBCreateSession* pIDBCreateSession = NULL;
ITransaction* pITransaction = NULL;
IDBCreateCommand* pIDBCreateCommand = NULL;
IRowset* pIRowset = NULL;

HRESULT hr;

// Get the command creation and local transaction interfaces for the
// session.
if (FAILED(hr = pIDBCreateSession->CreateSession(NULL,
 IID_IDBCreateCommand, (IUnknown**) &pIDBCreateCommand)))
 {
 // Process error from session creation. Release any references and
 // return.
 }

if (FAILED(hr = pIDBCreateCommand->QueryInterface(IID_ITransactionLocal,
 (void**) &pITransaction)))
 {
 // Process error. Release any references and return.
 }

// Start the local transaction.
if (FAILED(hr = ((ITransactionLocal*) pITransaction)->StartTransaction(
 ISOLATIONLEVEL_REPEATABLEREAD, 0, NULL, NULL)))
 {
 // Process error from StartTransaction. Release any references and
 // return.
 }

// Get data into a rowset, then update the data. Functions are not
// illustrated in this example.
if (FAILED(hr = ExecuteCommand(pIDBCreateCommand, &pIRowset)))
 {
 // Release any references and return.
 }

// If rowset data update fails, then terminate the transaction, else
// commit. The example doesn't retain the rowset.
if (FAILED(hr = UpdateDataInRowset(pIRowset, bDelayedUpdate)))
 {
 // Get error from update, then terminate.
 pITransaction->Abort(NULL, FALSE, FALSE);
 }
else
 {
 if (FAILED(hr = pITransaction->Commit(FALSE, XACTTC_SYNC, 0)))
 {
 // Get error from failed commit.
 }
 }

if (FAILED(hr))
 {
 // Update of data or commit failed. Release any references and
 // return.
 }

// Release any references and continue.

OLE DB and SQL Server (SQL Server 2000)

Supporting Distributed Transactions
SQLOLEDB consumers can use the ITransactionJoin::JoinTransaction method to participate in a distributed transaction
coordinated by MS DTC.

MS DTC exposes COM objects that allow clients to initiate and participate in coordinated transactions across multiple connections
to a variety of data stores. To initiate a transaction, the SQLOLEDB consumer uses the MS DTC ITransactionDispenser interface.
The BeginTransaction member of ITransactionDispenser returns a reference on a distributed transaction object. This reference
is passed to SQLOLEDB using JoinTransaction.

MS DTC supports asynchronous commit and abort on distributed transactions. For notification on asynchronous transaction
status, the consumer implements the ITransactionOutcomeEvents interface and connects the interface to an MS DTC
transaction object.

For distributed transactions, SQLOLEDB implements ITransactionJoin::JoinTransaction parameters as follows.

Parameter Description
punkTransactionCoord A pointer to an MS DTC transaction object.
IsoLevel Ignored by SQLOLEDB. The isolation level for MS DTC-

coordinated transactions is determined when the
consumer acquires a transaction object from MS DTC.

IsoFlags Must be 0. SQLOLEDB returns XACT_E_NOISORETAIN if
any other value is specified by the consumer.

POtherOptions If not NULL, SQLOLEDB requests the options object from
the interface. SQLOLEDB returns XACT_E_NOTIMEOUT if
the options object's ulTimeout member is not zero.
SQLOLEDB ignores the value of the szDescription member.

This example coordinates transaction by using MS DTC.

// SQLOLEDB interfaces used in the example.
IDBCreateSession* pIDBCreateSession = NULL;
ITransactionJoin* pITransactionJoin = NULL;
IDBCreateCommand* pIDBCreateCommand = NULL;
IRowset* pIRowset = NULL;

// Transaction dispenser and transaction from MS DTC.
ITransactionDispenser* pITransactionDispenser = NULL;
ITransaction* pITransaction = NULL;

 HRESULT hr;

// Get the command creation interface for the session.
if (FAILED(hr = pIDBCreateSession->CreateSession(NULL,
 IID_IDBCreateCommand, (IUnknown**) &pIDBCreateCommand)))
 {
 // Process error from session creation. Release any references and
 // return.
 }

// Get a transaction dispenser object from MS DTC and
// start a transaction.
if (FAILED(hr = DtcGetTransactionManager(NULL, NULL,
 IID_ITransactionDispenser, 0, 0, NULL,
 (void**) &pITransactionDispenser)))
 {
 // Process error message from MS DTC, release any references,
 // and then return.
 }
if (FAILED(hr = pITransactionDispenser->BeginTransaction(
 NULL, ISOLATIONLEVEL_READCOMMITTED, ISOFLAG_RETAIN_DONTCARE,
 NULL, &pITransaction)))
 {
 // Process error message from MS DTC, release any references,
 // and then return.
 }

// Join the transaction.
if (FAILED(pIDBCreateCommand->QueryInterface(IID_ITransactionJoin,
 (void**) &pITransactionJoin)))
 {

 // Process failure to get an interface, release any references, and
 // then return.
 }
if (FAILED(pITransactionJoin->JoinTransaction(
 (IUnknown*) pITransaction, 0, 0, NULL)))
 {
 // Process join failure, release any references, and then return.
 }

// Get data into a rowset, then update the data. Functions are not
// illustrated in this example.
if (FAILED(hr = ExecuteCommand(pIDBCreateCommand, &pIRowset)))
 {
 // Release any references and return.
 }

// If rowset data update fails, then terminate the transaction, else
// commit. The example doesn't retain the rowset.
if (FAILED(hr = UpdateDataInRowset(pIRowset, bDelayedUpdate)))
 {
 // Get error from update, then abort.
 pITransaction->Abort(NULL, FALSE, FALSE);
 }
else
 {
 if (FAILED(hr = pITransaction->Commit(FALSE, 0, 0)))
 {
 // Get error from failed commit.
 //
 // If a distributed commit fails, application logic could
 // analyze failure and retry. In this example, terminate. The
 // consumer must resolve this somehow.
 pITransaction->Abort(NULL, FALSE, FALSE);
 }
 }

if (FAILED(hr))
 {
 // Update of data or commit failed. Release any references and
 // return.
 }

// Un-enlist from the distributed transaction by setting
// the transaction object pointer to NULL.
if (FAILED(pITransactionJoin->JoinTransaction(
 (IUnknown*) NULL, 0, 0, NULL)))
 {
 // Process failure, and then return.
 }

// Release any references and continue.

OLE DB and SQL Server (SQL Server 2000)

Isolation Levels in SQLOLEDB
Microsoft® SQL Server™ 2000 clients can control transaction-isolation levels for a connection. To control transaction-isolation
level, the SQLOLEDB consumer uses:

DBPROPSET_SESSION property DBPROP_SESS_AUTOCOMMITISOLEVELS for SQLOLEDB default autocommit mode.

The SQLOLEDB default for the level is DBPROPVAL_TI_READCOMMITTED.

The isoLevel parameter of the ITransactionLocal::StartTransaction method for local manual-commit transactions.

The isoLevel parameter of the ITransactionDispenser::BeginTransaction method for MS DTC-coordinated distributed
transactions.

SQL Server 2000 allows read-only access at the dirty read isolation level. All other levels restrict concurrency by applying locks to
SQL Server 2000 objects. As the client requires greater concurrency levels, SQL Server 2000 applies greater restrictions on
concurrent access to data. To maintain the highest level of concurrent access to data, the SQLOLEDB consumer should
intelligently control its requests for specific concurrency levels.

See Also

Isolation Levels

OLE DB and SQL Server (SQL Server 2000)

SQLOLEDB Enumerator
Each OLE DB provider has an enumerator that a consumer can call to get a list of data sources that the consumer can access with
that provider. The SQLOLEDB provider has an enumerator that lists all servers you can connect to with this provider.

For a client running on the Microsoft® Windows® 95 or Windows 98 operating system, the SQLOLEDB enumerator cannot
enumerate the list of servers running Microsoft SQL Server™ 2000 because the enumerator uses the NetServerEnum API. This
API is not available for the Windows 95 and Windows 98 operating systems (it is available only for the Microsoft Windows NT®
4.0 and Windows 2000 operating systems).

To enumerate OLE DB data sources

OLE DB

OLE DB

OLE DB and SQL Server (SQL Server 2000)

Errors
OLE/COM objects report errors through the HRESULT return code of object member functions. An OLE/COM HRESULT is a bit-
packed structure. OLE provides macros that dereference structure members.

OLE/COM specifies the IErrorInfo interface. The interface exposes methods such as GetDescription, allowing clients to extract
error details from OLE/COM servers. OLE DB extends IErrorInfo to support the return of multiple error information packets on a
single-member function execution.

SQLOLEDB exposes the OLE DB record-enhanced IErrorInfo, the custom ISQLErrorInfo, and the provider-specific
ISQLServerErrorInfo error object interfaces.

OLE DB and SQL Server (SQL Server 2000)

Return Codes
At the most basic level, a member function either succeeds or fails. At a somewhat more precise level, a function can succeed, but
its success may not be identical to that intended by the application developer.

When a SQLOLEDB member function returns S_OK, the function succeeded.

When a SQLOLEDB member function does not return S_OK, the OLE/COM HRESULT-unpacking FAILED and IS_ERROR macros
can determine the overall success or failure of a function.

If FAILED or IS_ERROR returns TRUE, the SQLOLEDB consumer is assured that member function execution failed. When FAILED or
IS_ERROR return FALSE, and the HRESULT does not equal S_OK, then the SQLOLEDB consumer is assured that the function
succeeded in some sense. The consumer can retrieve detailed information on this success-with-information return from
SQLOLEDB error interfaces. Also, in the case where a function clearly fails (the FAILED macro returns TRUE), extended error
information is available from the SQLOLEDB error interfaces.

SQLOLEDB consumers commonly encounter the DB_S_ERRORSOCCURRED success-with-information HRESULT return. Typically,
member functions that return DB_S_ERRORSOCCURRED define one or more parameters that deliver status values to the
consumer. No error information may be available to the consumer other than that returned in status-value parameters, so
consumers should implement application logic that retrieves status values when they are available.

SQLOLEDB member functions do not return the success code S_FALSE. Any SQLOLEDB member function always returns S_OK to
indicate success.

OLE DB and SQL Server (SQL Server 2000)

Information in OLE DB Error Interfaces
SQLOLEDB reports some error and status information in the OLE DB-defined error interfaces IErrorInfo, IErrorRecords, and
ISQLErrorInfo.

SQLOLEDB supports IErrorInfo member functions as follows.

Member function Description
GetDescription Descriptive error message string.
GetGUID GUID of the interface that defined the error.
GetHelpContext Not supported. Returns zero always.
GetHelpFile Not supported. Returns NULL always.
GetSource String Sqloledb.dll.

SQLOLEDB supports consumer-available IErrorRecords member functions as follows.

Member function Description
GetBasicErrorInfo Fills an ERRORINFO structure with basic information

about an error. An ERRORINFO structure contains
members that identify the HRESULT return value for the
error, and the provider and interface on which the error
applies.

GetCustomErrorObject Returns a reference on interfaces ISQLErrorInfo, and
ISQLServerErrorInfo.

GetErrorInfo Returns a reference on an IErrorInfo interface.
GetErrorParameters SQLOLEDB does not return parameters to the consumer

through GetErrorParameters.
GetRecordCount Count of error records available.

SQLOLEDB supports ISQLErrorInfo::GetSQLInfo parameters as follows.

Parameter Description
pbstrSQLState Returns a SQLSTATE value for the error. SQLSTATE

values are defined in the SQL-92, ODBC and ISO SQL,
and API specifications. Neither Microsoft® SQL Server™
2000 nor SQLOLEDB define implementation-specific
SQLSTATE values.

plNativeError Returns the SQL Server 2000 error number from
master.dbo.sysmessages when available. Native errors
are available after a successful attempt to initialize a
SQLOLEDB data source. Prior to the attempt, SQLOLEDB
always returns zero.

OLE DB and SQL Server (SQL Server 2000)

SQL Server Error Detail
SQLOLEDB defines the provider-specific error interface ISQLServerErrorInfo. The interface returns more detail about a
Microsoft® SQL Server™ 2000 error and is valuable when command execution or rowset operations fail.

There are two ways to obtain access to ISQLServerErrorInfo interface.

The consumer may call IErrorRecords::GetCustomerErrorObject (no need to obtain ISQLErrorInfo) to obtain an
ISQLServerErrorInfo pointer (as shown in the following code sample). Both ISQLErrorInfo and ISQLServerErrorInfo are custom
OLE DB error objects, with ISQLServerErrorInfo being the interface to use to obtain information of server errors, including such
details as procedure name and line numbers.

//Get SQLServer custom error object
if(FAILED(hr=pIErrorRecords->GetCustomErrorObject(
 nRec,
 IID_ISQLServerErrorInfo,
 (IUnknown**)&pISQLServerErrorErrorInfo)))

Another way to get an ISQLServerErrorInfo pointer is to call the QueryInterface method on an already obtained ISQLErrorInfo
pointer. Note that because ISQLServerErrorInfo contains a superset of the information available from ISQLErrorInfo, it makes
sense to go directly to ISQLServerErrorInfo through GetCustomerErrorObject.

The ISQLServerErrorInfo interface exposes one member function, GetErrorInfo. The function returns a pointer to an
SSERRORINFO structure and a pointer to a string buffer. Both pointers reference memory the consumer must deallocate by using
the IMalloc::Free method.

SSERRORINFO structure members are interpreted by the consumer as follows.

Member Description
pwszMessage SQL Server 2000 error message. Identical to the string

returned in IErrorInfo::GetDescription.
pwszServer Name of the instance of SQL Server for the session.
pwszProcedure If appropriate, the name of the procedure in which the error

originated. An empty string otherwise.
lNative SQL Server native error number. Identical to the value

returned in the plNativeError parameter of
ISQLErrorInfo::GetSQLInfo.

bState State of a SQL Server 2000 error message.
bClass Severity of a SQL Server 2000 error message.
wLineNumber When applicable, the line number of a stored procedure on

which the error occurred.

See Also

RAISERROR

OLE DB and SQL Server (SQL Server 2000)

SQLOLEDB Example: Retrieving Error Information
This example obtains information from the various error interfaces exposed by SQLOLEDB.

// DumpErrorInfo queries SQLOLEDB error interfaces, retrieving available
// status or error information.
void DumpErrorInfo
 (
 IUnknown* pObjectWithError,
 REFIID IID_InterfaceWithError
)
 {

 // Interfaces used in the example.
 IErrorInfo* pIErrorInfoAll = NULL;
 IErrorInfo* pIErrorInfoRecord = NULL;
 IErrorRecords* pIErrorRecords = NULL;
 ISupportErrorInfo* pISupportErrorInfo = NULL;
 ISQLErrorInfo* pISQLErrorInfo = NULL;
 ISQLServerErrorInfo* pISQLServerErrorInfo = NULL;

 // Number of error records.
 ULONG nRecs;
 ULONG nRec;

 // Basic error information from GetBasicErrorInfo.
 ERRORINFO errorinfo;

 // IErrorInfo values.
 BSTR bstrDescription;
 BSTR bstrSource;

 // ISQLErrorInfo parameters.
 BSTR bstrSQLSTATE;
 LONG lNativeError;

 // ISQLServerErrorInfo parameter pointers.
 SSERRORINFO* pSSErrorInfo = NULL;
 OLECHAR* pSSErrorStrings = NULL;

 // Hard-code an American English locale for the example.
 DWORD MYLOCALEID = 0x0409;

 // Only ask for error information if the interface supports
 // it.
 if (FAILED(pObjectWithError->QueryInterface(IID_ISupportErrorInfo,
 (void**) &pISupportErrorInfo)))
 {
 wprintf(L"SupportErrorErrorInfo interface not supported");
 return;
 }
 if (FAILED(pISupportErrorInfo->
 InterfaceSupportsErrorInfo(IID_InterfaceWithError)))
 {
 wprintf(L"InterfaceWithError interface not supported");
 return;
 }

 // Do not test the return of GetErrorInfo. It can succeed and return
 // a NULL pointer in pIErrorInfoAll. Simply test the pointer.
 GetErrorInfo(0, &pIErrorInfoAll);

 if (pIErrorInfoAll != NULL)
 {
 // Test to see if it's a valid OLE DB IErrorInfo interface
 // exposing a list of records.
 if (SUCCEEDED(pIErrorInfoAll->QueryInterface(IID_IErrorRecords,
 (void**) &pIErrorRecords)))
 {
 pIErrorRecords->GetRecordCount(&nRecs);

 // Within each record, retrieve information from each
 // of the defined interfaces.
 for (nRec = 0; nRec < nRecs; nRec++)
 {
 // From IErrorRecords, get the HRESULT and a reference
 // to the ISQLErrorInfo interface.
 pIErrorRecords->GetBasicErrorInfo(nRec, &errorinfo);
 pIErrorRecords->GetCustomErrorObject(nRec,

 IID_ISQLErrorInfo, (IUnknown**) &pISQLErrorInfo);

 // Display the HRESULT, then use the ISQLErrorInfo.
 wprintf(L"HRESULT:\t%#X\n", errorinfo.hrError);

 if (pISQLErrorInfo != NULL)
 {
 pISQLErrorInfo->GetSQLInfo(&bstrSQLSTATE,
 &lNativeError);

 // Display the SQLSTATE and native error values.
 wprintf(L"SQLSTATE:\t%s\nNative Error:\t%ld\n",
 bstrSQLSTATE, lNativeError);

 // SysFree BSTR references.
 SysFreeString(bstrSQLSTATE);

 // Get the ISQLServerErrorInfo interface from
 // ISQLErrorInfo before releasing the reference.
 pISQLErrorInfo->QueryInterface(
 IID_ISQLServerErrorInfo,
 (void**) &pISQLServerErrorInfo);

 pISQLErrorInfo->Release();
 }

 // Test to ensure the reference is valid, then
 // get error information from ISQLServerErrorInfo.
 if (pISQLServerErrorInfo != NULL)
 {
 pISQLServerErrorInfo->GetErrorInfo(&pSSErrorInfo,
 &pSSErrorStrings);

 // ISQLServerErrorInfo::GetErrorInfo succeeds
 // even when it has nothing to return. Test the
 // pointers before using.
 if (pSSErrorInfo)
 {
 // Display the state and severity from the
 // returned information. The error message comes
 // from IErrorInfo::GetDescription.
 wprintf(L"Error state:\t%d\nSeverity:\t%d\n",
 pSSErrorInfo->bState,
 pSSErrorInfo->bClass);

 // IMalloc::Free needed to release references
 // on returned values. For the example, assume
 // the g_pIMalloc pointer is valid.
 g_pIMalloc->Free(pSSErrorStrings);
 g_pIMalloc->Free(pSSErrorInfo);
 }

 pISQLServerErrorInfo->Release();
 }

 if (SUCCEEDED(pIErrorRecords->GetErrorInfo(nRec,
 MYLOCALEID, &pIErrorInfoRecord)))
 {
 // Get the source and description (error message)
 // from the record's IErrorInfo.
 pIErrorInfoRecord->GetSource(&bstrSource);
 pIErrorInfoRecord->GetDescription(&bstrDescription);

 if (bstrSource != NULL)
 {
 wprintf(L"Source:\t\t%s\n", bstrSource);
 SysFreeString(bstrSource);
 }
 if (bstrDescription != NULL)
 {
 wprintf(L"Error message:\t%s\n",
 bstrDescription);
 SysFreeString(bstrDescription);
 }

 pIErrorInfoRecord->Release();
 }
 }

 pIErrorRecords->Release();
 }

 else
 {
 // IErrorInfo is valid; get the source and
 // description to see what it is.
 pIErrorInfoAll->GetSource(&bstrSource);
 pIErrorInfoAll->GetDescription(&bstrDescription);

 if (bstrSource != NULL)
 {
 wprintf(L"Source:\t\t%s\n", bstrSource);
 SysFreeString(bstrSource);
 }
 if (bstrDescription != NULL)
 {
 wprintf(L"Error message:\t%s\n", bstrDescription);
 SysFreeString(bstrDescription);
 }
 }

 pIErrorInfoAll->Release();
 }
 else
 {
 wprintf(L"GetErrorInfo failed.");
 }

 pISupportErrorInfo->Release();

 return;
 }

OLE DB and SQL Server (SQL Server 2000)

SQL Server Message Results
These Transact-SQL statements do not generate SQLOLEDB rowsets or a count of affected rows when executed:

PRINT

RAISERROR with a severity of 10 or lower

DBCC

SET SHOWPLAN

SET STATISTICS

These statements either return one or more informational messages, or cause Microsoft® SQL Server™ 2000 to return
informational messages in place of rowset or count results. On successful execution, SQLOLEDB returns S_OK and the message or
messages are available to the SQLOLEDB consumer.

SQLOLEDB returns S_OK and has one or more informational messages available following the execution of many Transact-SQL
statements or the consumer execution of a SQLOLEDB member function.

The SQLOLEDB consumer allowing dynamic specification of query text should check error interfaces after every member function
execution regardless of the value of the return code, the presence or absence of a returned IRowset or IMultipleResults
interface reference, or a count of affected rows.

OLE DB and SQL Server (SQL Server 2000)

SQL Server OLE DB Programmer's Reference
SQLOLEDB, the Microsoft OLE DB Provider for SQL Server, exposes interfaces to consumers wanting access to data on one or
more computers running Microsoft® SQL Server™ 2000. SQLOLEDB is an OLE DB version 2.0–compliant provider.

This OLE DB programming reference does not document all of the OLE DB interfaces and methods, only those interfaces and
methods that exhibit provider-specific behavior when using SQLOLEDB. For a full description of the OLE DB API, see the Microsoft
OLE DB Software Development Kit (SDK). The OLE DB SDK is distributed by the Microsoft Developer Network (MSDN®) and can
be downloaded from Microsoft MSDN Web site.

http://go.microsoft.com/fwlink/?LinkId=10257

OLE DB and SQL Server (SQL Server 2000)

Interfaces (OLE DB)
The SQLOLEDB provider supports these provider-specific interfaces:

IRowsetFastLoad

ISQLServerErrorInfo

OLE DB and SQL Server (SQL Server 2000)

IRowsetFastLoad (OLE DB)
IRowsetFastLoad exposes support for Microsoft® SQL Server™ 2000 bulk-copy processing. SQLOLEDB consumers use the
interface to rapidly add data to an existing SQL Server 2000 table.

Method Description
Commit Marks the end of a batch of inserted rows and writes the rows

to the SQL Server 2000 table.
InsertRow Adds a row to the bulk-copy rowset.

See Also

Bulk-Copy Rowsets

OLE DB and SQL Server (SQL Server 2000)

IRowsetFastLoad::Commit (OLE DB)
IRowsetFastLoad::Commit (OLE DB)

Marks the end of a batch of inserted rows and writes the rows to the Microsoft® SQL Server™ 2000 table.

Syntax

HRESULT Commit(
BOOLEAN bDone);

Arguments

bDone [in]

If FALSE, the rowset maintains validity and can be used by the consumer for additional row insertion. If TRUE, the rowset loses
validity and no further insertion can be done by the consumer.

Return Code Values

S_OK

The method succeeded and all inserted data has been written to the SQL Server 2000 table.

E_FAIL

An error occurred.

E_UNEXPECTED

The method was called on a bulk-copy rowset previously invalidated by IRowsetFastLoad::Commit.

Remarks

A SQLOLEDB bulk-copy rowset behaves as a delayed-update mode rowset. As the user inserts row data through the rowset,
inserted rows are treated in the same fashion as pending inserts on a rowset supporting IRowsetUpdate.

The consumer must call Commit on the bulk-copy rowset to write inserted rows to the SQL Server 2000 table in the same way as
the IRowsetUpdate::Update member function is used to submit pending rows to an instance of SQL Server 2000.

If the consumer releases its reference on the bulk-copy rowset without calling Commit, all inserted rows not previously written
are lost.

The consumer can batch inserted rows by calling Commit with bDone FALSE. When bDone is TRUE, the rowset becomes invalid.
An invalid bulk-copy rowset supports only ISupportErrorInfo and IRowsetFastLoad::Release.

OLE DB and SQL Server (SQL Server 2000)

IRowsetFastLoad::InsertRow (OLE DB)
IRowsetFastLoad::InsertRow (OLE DB)

Adds a row to the bulk-copy rowset.

Syntax

HRESULT InsertRow(
HACCESSOR hAccessor,
void* pData);

Arguments

hAccessor [in]

Is the handle of the accessor defining the row data for bulk copy. The accessor referenced is a row accessor, binding consumer-
owned memory containing data values.

pData [in]

Is a pointer to the consumer-owned memory containing data values.

Return Code Values

S_OK

The method succeeded. Any bound status values for all columns have value DBSTATUS_S_OK or DBSTATUS_S_NULL.

E_FAIL

An error occurred. Error information is available from the rowset's error interfaces.

E_INVALIDARG

pData was a NULL pointer.

E_OUTOFMEMORY

SQLOLEDB was unable to allocate sufficient memory to complete the request.

E_UNEXPECTED

The method was called on a bulk-copy rowset previously invalidated by IRowsetFastLoad::Commit(TRUE).

DB_E_BADACCESSORHANDLE

The hAccessor provided by the consumer was invalid.

DB_E_BADACCESSORTYPE

The specified accessor was not a row accessor or did not specify consumer-owned memory.

Remarks

An error converting consumer data to the Microsoft® SQL Server™ 2000 data type for a column causes an E_FAIL return from
SQLOLEDB. Data can be transmitted to SQL Server on any InsertRow or only on Commit. Therefore, the consumer application
can call InsertRow many times with erroneous data before it receives notice that a data type conversion error exists. Because
Commit ensures that all data is correctly specified by the consumer, the consumer can use Commit appropriately to validate
data as necessary.

SQLOLEDB bulk-copy rowsets are write-only. SQLOLEDB exposes no methods allowing consumer query of the rowset. To
terminate processing, the consumer can release its reference on IRowsetFastLoad without calling Commit. There are no facilities
for accessing a consumer-inserted row in the rowset and changing its values, or removing it individually from the rowset.

Bulk-copied rows are formatted on the server for SQL Server version 7.0. The row format is affected by any options that may have
been set for the connection or session such as ANSI_PADDING. This option is set on by default for any connection made through
SQLOLEDB. If connected to SQL Server 6.5, the bulk-copied rows are formatted on the client and none of the option settings have
any effect.

OLE DB and SQL Server (SQL Server 2000)

ISQLServerErrorInfo (OLE DB)
SQLOLEDB defines the ISQLServerErrorInfo error interface. The interface returns details from a Microsoft® SQL Server™ 2000
error, including its severity and state.

Method Description
GetErrorInfo Returns a pointer to a SQLOLEDB SSERRORINFO structure

containing SQL Server 2000 error detail.

See Also

SQL Server Error Detail

OLE DB and SQL Server (SQL Server 2000)

ISQLServerErrorInfo::GetErrorInfo (OLE DB)
ISQLServerErrorInfo::GetErrorInfo (OLE DB)

Returns a pointer to a SQLOLEDB SSERRORINFO structure containing Microsoft® SQL Server™ 2000 error detail.

Syntax

HRESULT GetErrorInfo(
SSERRORINFO**ppSSErrorInfo,
OLECHAR**ppErrorStrings);

Arguments

ppSSErrorInfo [out]

Is a pointer to an SSERRORINFO structure. If the method fails or there is no SQL Server 2000 information associated with an
error, the provider does not allocate any memory, and ensures that **ppSSErrorInfo is a null pointer on output.

ppErrorStrings [out]

Is a pointer to a Unicode character-string pointer. If the method fails or there is no SQL Server information associated with an
error, the provider does not allocate any memory, and ensures that **ppErrorStrings is a null pointer on output. Freeing
ppErrorStrings with the IMalloc::Free function frees the three individual string members of the returned SSERRORINFO
structure, as the memory is allocated in a block.

Return Code Values

S_OK

The method succeeded.

E_INVALIDARG

Either ppSSErrorInfo or ppErrorStrings was NULL.

E_OUTOFMEMORY

SQLOLEDB was unable to allocate sufficient memory to complete the request.

Remarks

SQLOLEDB allocates memory for the SSERRORINFO and OLECHAR strings returned through the pointers passed by the
consumer. The consumer must deallocate this memory by using IMalloc::Free when it no longer requires access to the error
data.

The SSERRORINFO structure is defined as follows:

typedef struct tagSSErrorInfo
{
LPOLESTR pwszMessage;
LPOLESTR pwszServer;
LPOLESTR pwszProcedure;
LONG lNative;
BYTE bState;
BYTE bClass;
WORD wLineNumber;
}
SSERRORINFO;

Member Description
pwszMessage Error message from SQL Server 2000. The message is

returned through the IErrorInfo::GetDescription method.
pwszServer Name of the instance of SQL Server 2000 on which the error

occurred.

pwszProcedure Name of the stored procedure generating the error if the
error occurred in a stored procedure; otherwise, an empty
string.

lNative SQL Server error number. The error number is identical to
that returned in the plNativeError parameter of the
ISQLErrorInfo::GetSQLInfo method.

bState State of a SQL Server 2000 error.
bClass Severity of a SQL Server 2000 error.
wLineNumber When applicable, the line of a SQL Server 2000 stored

procedure that generated the error message. The default
value if there is no procedure involved is 1.

Pointers in the structure reference addresses in the string returned in ppErrorStrings.

See Also

RAISERROR

OLE DB and SQL Server (SQL Server 2000)

Schema Rowsets (OLE DB)
SQLOLEDB exposes the database schema rowset LINKEDSERVERS, enumerating organization data sources that can participate in
Microsoft® SQL Server™ 2000 distributed queries.

See Also

Schema Rowset Support in SQLOLEDB

OLE DB and SQL Server (SQL Server 2000)

LINKEDSERVERS Rowset (OLE DB)
The LINKEDSERVERS rowset enumerates organization data sources that can participate in Microsoft® SQL Server™ 2000
distributed queries.

The LINKEDSERVERS rowset contains the following columns.

Column name Type indicator Description
SVR_NAME DBTYPE_WSTR Name of a linked server.
SVR_PRODUCT DBTYPE_WSTR Manufacturer or other name

identifying the type of data store
represented by the name of the linked
server.

SVR_PROVIDERNAME DBTYPE_WSTR Friendly name of the OLE DB provider
used to consume data from the server.

SVR_DATASOURCE DBTYPE_WSTR OLE DB DBPROP_INIT_DATASOURCE
string used to acquire a data source
from the provider.

SVR_PROVIDERSTRING DBTYPE_WSTR OLE DB
DBPROP_INIT_PROVIDERSTRING value
used to acquire a data source from the
provider.

SVR_LOCATION DBTYPE_WSTR OLE DB DBPROP_INIT_LOCATION
string used to acquire a data source
from the provider.

The rowset is sorted on SRV_NAME and a single restriction is supported on SRV_NAME.

ODBC and SQL Server (SQL Server 2000)

Programming ODBC SQL Server Applications
ODBC is a standard definition of an application programming interface (API) used to access data in relational or indexed
sequential access method (ISAM) databases. Microsoft® SQL Server™ supports ODBC as one of the native APIs for writing C,
C++, and Microsoft Visual Basic® applications that communicate with SQL Server. SQL Server Setup installs an ODBC driver for
use with SQL Server when it installs the SQL Server client utilities.

ODBC defines a call-level interface, or CLI. A CLI is defined as a set of function calls and their associated parameters. A CLI
definition uses a native programming language to call functions; therefore a CLI requires no extensions to the underlying
programming language. This contrasts with an embedded API, such as Embedded SQL, where the API is defined as an extension
of the source code for a programming language, and applications using the API must be precompiled in a separate step.

ODBC aligns with the following specification and standard for relational SQL database CLI definitions:

The X/Open CAE specification Data Management: SQL Call-Level Interface (CLI)

ISO/IEC 9075-3:1995 (E) Call-Level Interface (SQL/CLI)

While C, C++, and Visual Basic applications can be written to call ODBC directly, Microsoft also provides several APIs that map
over ODBC. These APIs are simpler than ODBC itself, or offer improved integration with their respective programming languages:

Microsoft Visual Basic Remote Data Objects (RDO)

Microsoft Visual Basic Data Access Objects (DAO)

Microsoft Visual C++® development system MFC database classes

Microsoft Visual C++ development system DAO classes

While Visual Basic applications can be written directly to the ODBC API, they are usually written to either the RDO or DAO APIs.

SQL Server programs that are written using the ODBC API communicate with SQL Server through C function calls. The SQL
Server-specific versions of the ODBC functions are implemented in a SQL Server ODBC driver. The driver passes SQL statements
to SQL Server and returns the results of the statements to the application. ODBC applications are also interoperable with drivers
for heterogeneous data sources.

The SQL Server ODBC driver complies with the Microsoft Win32® ODBC 3.51 specification. The ODBC function calls in this
document use ODBC 3.51 syntax. The driver supports applications written with the ODBC 2.5 or earlier versions of the ODBC
functions in the manner defined in the ODBC 3.51 specification.

ODBC enables a database to become an integral part of an application. SQL statements can be incorporated into the application,
allowing the application to retrieve and update values from a database. Values from the database can be placed in program
variables for manipulation by the application. Conversely, values in program variables can be written to the database.

ODBC enables applications to access a variety of data sources, including a wide range of relational databases and local ISAM data.
ODBC supports applications in the Microsoft Windows® 2000, Microsoft Windows 98, Microsoft Windows 95, and Microsoft
Windows NT® 4.0 operating environments.

Tools for developing C and C++ applications using the ODBC API are available in the Microsoft ODBC Software Development Kit
(SDK). The ODBC SDK is part of the Microsoft Developer Network (MSDN®) Professional subscription. The ODBC SDK can also be
downloaded from the Microsoft Web site, and is available in the Microsoft ODBC 3.0 Software Development Kit and
Programmer's Reference available from Microsoft Press®. The ODBC driver for SQL Server is included with SQL Server. Visual
Basic includes all the components necessary to build applications using the RDO and DAO APIs. Visual C++ includes all the
components necessary to build C and C++ applications using the DAO and MFC database classes.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

ODBC and SQL Server (SQL Server 2000)

Getting Started with ODBC
These topics explain how to use ODBC to communicate with Microsoft® SQL Server™.

ODBC and SQL Server (SQL Server 2000)

ODBC Syntax Conventions
Convention Used for

UPPERCASE Transact-SQL functions and statements, and C macro names.
monospace Sample commands and program code.
italic Function parameter names and information that the user or

the application must provide.
bold Function names, parameter keywords, and other syntax that

must be typed exactly as shown.

ODBC and SQL Server (SQL Server 2000)

System Requirements for ODBC
To access Microsoft® SQL Server™ data, you must have the following software:

SQL Server ODBC driver

SQL Server

Network software on the computers on which the driver and SQL Server reside (not required when connecting to a local
(nonnetwork) desktop instance of SQL Server)

The hardware and software requirements of each of these components follow.

ODBC and SQL Server (SQL Server 2000)

SQL Server ODBC Driver
SQL Server ODBC Driver

The Microsoft® SQL Server™ ODBC driver requires:

Microsoft Windows® 2000, Microsoft Windows 95, or Microsoft Windows 98 on Intel computers.

Or

Microsoft Windows NT® 4.0 on Intel computers.

For more information about the hardware and software required for SQL Server clients, see Hardware and Software
Requirements for Installing SQL Server.

ODBC and SQL Server (SQL Server 2000)

SQL Server
SQL Server

To use the Microsoft® SQL Server™ ODBC driver to access data in SQL Server databases, you must have SQL Server version
4.21a or later. The catalog stored procedures must be installed on your SQL Server. You may need to install the catalog stored
procedures shipped with this driver when you use versions 4.21a, 6.0, or 6.5 of SQL Server. For more information, see Upgrading
the Catalog Stored Procedures (ODBC). For more information about the hardware and software required by ODBC SQL Server,
see Basic Installation Options.

ODBC and SQL Server (SQL Server 2000)

Network Software
Network Software

Network software is required to connect the clients running the Microsoft® SQL Server™ ODBC driver to the server on which the
instance of SQL Server resides. To connect to a server running an instance of SQL Server, you can use Microsoft Windows NT®
4.0, Microsoft Windows® 2000, Microsoft Windows 95, Microsoft Windows 98, or a compatible network such as Novell NetWare
or Banyan VINES. For more information about the hardware and software required by each network, see the network
documentation.

The SQL Server ODBC driver communicates with network software through the SQL Server Net-Library interface, which requires
a Net-Library dynamic-link library (DLL). The SQL Server 2000 ODBC driver requires the SQL Server 2000 versions of the Net-
Library .dll files. These are installed when you run the client portion of SQL Server Setup. For more information about supported
network configurations and Net-Library files, see Basic Installation Options.

ODBC and SQL Server (SQL Server 2000)

Installing the SQL Server ODBC Driver
The Microsoft® SQL Server™ ODBC driver is installed automatically when you install the SQL Server client software on a
computer running Microsoft Windows NT® 4.0, Microsoft Windows® 2000, Microsoft Windows 98, or Microsoft Windows 95.
For more information about installing SQL Server client software, see Basic Installation Options.

If you have servers running SQL Server versions 4.21a, 6.0, or 6.5, you must install the Instcat.sql file included with this driver on
those servers before using the driver to access them. Each version of the SQL Server ODBC driver is developed in conjunction
with a specific version of the catalog stored procedures. Instcat.sql upgrades the catalog stored procedures to the version required
by the ODBC driver. This version of the catalog stored procedures is compatible with existing SQL Server applications.

ODBC and SQL Server (SQL Server 2000)

Upgrading the Catalog Stored Procedures (ODBC)
 New Information - SQL Server 2000 SP3.

The Microsoft® SQL Server™ ODBC driver uses a set of system stored procedures, known as catalog stored procedures, to obtain
information from the SQL Server system catalog. SQL Server installs the catalog stored procedures automatically when you install
or upgrade SQL Server. The Instcat.sql file included with this driver includes minor updates to the catalog stored procedures. If
this version of the SQL Server ODBC driver will be used against SQL Server version 6.5 or earlier versions, the SQL Server system
administrator must upgrade the catalog stored procedures on the earlier SQL Server. Upgrading the catalog stored procedures
does not affect the operation of existing SQL Server clients.

Running the SQL Server 2000 ODBC driver against an earlier version of SQL Server that has earlier versions of catalog stored
procedures generates an error:

The ODBC catalog stored procedures installed on server <server_name> are
version <old_version_number>; version <new_version_number> or later is
required to ensure proper operation. Please contact your system
administrator.

Security Note Batch files may contain credentials stored in plain text. Credentials may be echoed to the user's screen during
batch execution.

To upgrade the catalog stored procedures

ODBC

ODBC

The SQL Server ODBC driver uses the following catalog stored procedures.

Stored procedure Returns
sp_catalogs List of all catalogs in a linked server. If the linked server

is a server running an instance of SQL Server, the
catalogs equate to databases.

sp_column_privileges Information about column permissions for the
specified table(s).

sp_columns Information about columns for the specified table(s).
sp_databases List of databases.
sp_datatype_info Information about the supported data types.
sp_fkeys Information about logical foreign keys.
sp_pkeys Information about primary keys.
sp_linkedservers List of all linked servers defined on the local server.
sp_server_info List of attribute names and matching values for the

server.
sp_special_columns Information for a single table about columns that have

special attributes.
sp_sproc_columns Column information for a stored procedure.
sp_statistics List of indexes for a single table.
sp_stored_procedures List of stored procedures.
sp_table_privileges Information about table permissions for the specified

table(s).
sp_tables List of objects that can be queried.

ODBC and SQL Server (SQL Server 2000)

Adding a Data Source
 New Information - SQL Server 2000 SP3.

ODBC applications typically connect to a database through an ODBC data source. Each ODBC data source on a client computer
has a unique data source name, or DSN. An ODBC data source for the Microsoft® SQL Server™ ODBC driver includes all the
information required to connect to a server running an instance of SQL Server, plus options, such as a default database or the
type of security to use.

There are three types of ODBC data sources:

User data source

User data sources are specific to the Microsoft Windows NT® 4.0, Microsoft Windows® 2000, Microsoft Windows 95, or
Microsoft Windows 98 account in effect when they are created. They are not visible to any other login account. They are not
always visible to applications running as a service on a Windows NT 4.0 computer.

System data source

System data sources are visible to all login accounts on a client. They are always visible to applications running as a service
on a Windows NT 4.0 computer.

File data source

File data sources were added with ODBC version 3.0. File data sources are not stored in the system registry. They are stored
in a file on the client.

There are several ways to add a data source:

ODBC Administrator

The ODBC Administrator is installed in Control Panel. The ODBC Administrator has tabs for user, system, and file data
sources. Click the proper tab, click Add, and then select the SQL Server ODBC driver. The ODBC Administrator then starts
the SQL Server DSN Configuration Wizard.

SQLConfigDataSource

User or system data sources can be created by an ODBC application that calls the SQLConfigDataSource function with the
fRequest parameter set to either ODBC_ADD_DSN or ODBC_ADD_SYS_DSN.

SQLWriteFileDSN

A file data source can be created by an ODBC application that calls the SQLWriteFileDSN function.

SQLDriverConnect

If an application specifies the SAVEFILE keyword in the connect string of a successful call to SQLDriverConnect, a file data
source is created using the information specified in the SQLDriverConnect connect string.

SQLCreateDataSource

An ODBC application can call the function SQLCreateDataSource to display an ODBC dialog box that guides a user
through creating a data source.

Data sources that reference the SQL Server ODBC driver contain driver-specific information and options. When a data source is
created with either SQLConfigDataSource or SQLWriteFileDSN, all of the driver-specific information is supplied through
keyword-value pairs in a character string passed to the function. When a data source is created using the ODBC Administrator or
the SQLCreateDataSource dialog box, the SQL Server DSN Creation wizard is invoked to help you perform the steps to specify
the driver-specific information.

The help file for the SQL Server DSN Creation Wizard contains information on the driver-specific options defined through the
wizard. These options can also be specified as keywords in SQLConfigDataSource. For more information about the driver-
specific options that can be specified with SQLConfigDataSource, see SQLConfigDataSource. The same driver-specific options
can also be specified as keywords in the connect string for SQLDriverConnect. For more information about the keywords and
their meanings, see SQLDriverConnect.

Security Note When possible, use Windows Authentication.

To start the Microsoft SQL Server DSN Configuration Wizard

ODBC

ODBC

See Also

SQLPrepare

SQLConfigDataSource

ODBC and SQL Server (SQL Server 2000)

Deleting a Data Source
ODBC data sources can be deleted in several ways:

Double-click the ODBC Administrator icon in Control Panel, select the data source, and then click Delete.

Call SQLConfigDataSource with the fRequest parameter set to either SQL_REMOVE_DSN or SQL_REMOVE_SYS_DSN.

Delete file data sources by deleting the file containing the data source.

To delete a data source

ODBC

ODBC

See Also

SQLConfigDataSource

ODBC and SQL Server (SQL Server 2000)

Connecting to a SQL Server Data Source
After an ODBC data source has been defined, you can connect to an instance of Microsoft® SQL Server™ from ODBC applications
using the data source. Some ODBC applications are written to connect through data sources and typically open a dialog box or
accept a parameter for the ODBC data source with which you want to connect. Other ODBC applications are written to connect
without a data source. These applications can display their own dialog box to get the information required to connect, or they can
have the ODBC driver display its dialog box to get the connection information. SQL Query Analyzer is an example of an ODBC
application that does not use a data source; Microsoft Excel is an example of an ODBC application that does use a data source.

ODBC and SQL Server (SQL Server 2000)

Using odbcping to Verify a Connection
Using odbcping to Verify a Connection

You can use the odbcping utility to check whether ODBC is properly installed by connecting to a server using the Microsoft®
SQL Server™ ODBC driver. This utility is a 32-bit application stored in the \Mssql7\Binn directory.

To verify ODBC connectivity

ODBC

ODBC and SQL Server (SQL Server 2000)

Creating an ODBC Application
ODBC architecture has four components that perform the following functions.

Component Function
Application Calls ODBC functions to communicate with an ODBC data

source, submits SQL statements, and processes result sets.
Driver Manager Manages communication between an application and all

ODBC drivers used by the application.
Driver Processes all ODBC function calls from the application,

connects to a data source, passes SQL statements from the
application to the data source, and returns results to the
application. If necessary, the driver translates ODBC SQL from
the application to native SQL used by the data source.

Data source Contains all information a driver needs to access a specific
instance of data in a DBMS.

An application that uses the ODBC interface to communicate with an instance of Microsoft® SQL Server™ performs the following
tasks:

Connects with a data source

Sends SQL statements to the data source

Processes the results of statements from the data source

Processes errors and messages

Terminates the connection to the data source

A more complex application written for the SQL Server ODBC driver might also perform the following tasks:

Use cursors to control location in a result set

Request commit or rollback operations for transaction control

Perform distributed transactions involving two or more servers

Run stored procedures on the remote server

Call catalog functions to inquire about the attributes of a result set

Perform bulk copy operations

Manage long data (text, ntext, and image columns) operations

Control failover servers in case the primary server becomes unavailable

Log performance data and long-running queries

To make ODBC function calls, a C or C++ application must include the Sql.h, Sqlext.h, and Sqltypes.h header files. To make calls to
the ODBC installer API functions, an application must include the Odbcinst.h header file. A Unicode ODBC application must
include the Sqlucode.h header file. ODBC applications must be linked with the Odbc32.lib file. ODBC applications that call the
ODBC installer API functions must be linked with the Odbccp32.lib file. By default, SQL Server Setup 2000 installs these header
files into the C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include directory and the library files into C:\Program
Files\Microsoft SQL Server\80\Tools\DevTools\Lib when the SQL Server development tools are installed. The latest versions of
these files can be downloaded with the latest Microsoft Data Access SDK from the Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

Many ODBC drivers, including the SQL Server ODBC driver, offer driver-specific ODBC extensions. To take advantage of SQL
Server ODBC driver-specific extensions, an application should include the Odbcss.h header file. This header file contains:

SQL Server ODBC driver-specific connection attributes.

SQL Server ODBC driver-specific statement attributes.

SQL Server ODBC driver-specific column attributes.

SQL Server-specific data types.

SQL Server-specific user-defined data types.

SQL Server ODBC driver-specific SQLGetInfo types.

SQL Server ODBC driver diagnostics fields.

SQL Server-specific diagnostic dynamic function codes.

C/C++ type definitions for SQL Server-specific native C data types (returned when columns bound to C data type
SQL_C_BINARY).

Type definition for the SQLPERF data structure.

Bulk copy macros and prototypes to support bulk copy API usage through an ODBC connection.

Call the distributed query meta data API functions for lists of linked servers and their catalogs.

Any C or C++ ODBC application that uses the bulk copy feature of the SQL Server 2000 ODBC driver must be linked with the
Odbcbcp.lib file. Applications calling the distributed query meta data API functions must also be linked with Odbcbcp.lib. The
Odbcss.h and Odbcbcp.lib files are distributed as part of the SQL Server developer's tools. The SQL Server Include and Lib
directories should be in the compiler's INCLUDE and LIB paths. If you have downloaded a version of the Microsoft Data Access
SDK whose dates are later than the dates for SQL Server version 7.0, place the MSDA directories before the SQL Server 7.0
directories; for example:

LIB=c:\msdasdk\odbc\lib;C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Lib;c:\msdev\lib;c:\msdev\mfc\lib
INCLUDE=c:\msdasdk\odbc\include;C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include;c:\msdev\include;
c:\msdev\mfc\include

One design decision made early in the process of building an application is whether the application needs to have multiple ODBC
calls outstanding at the same time. There are two methods for supporting multiple concurrent ODBC calls:

ODBC asynchronous mode

Multithreading

ODBC and SQL Server (SQL Server 2000)

Asynchronous Mode and SQLCancel
Some ODBC functions can operate either synchronously or asynchronously. (For more information about ODBC functions, see the
ODBC 3.0 Programmer's Reference.) The application can enable asynchronous operations for either a statement handle or a
connection handle. If the option is set for a connection handle, it affects all statement handles on the connection handle. The
application uses the following statements to enable or disable asynchronous operations:

SQLSetConnectAttr(hdbc, SQL_ATTR_ASYNC_ENABLE,
 SQL_ASYNC_ENABLE_ON, SQL_NTS);
SQLSetConnectAttr(hdbc, SQL_ATTR_ASYNC_ENABLE,
 SQL_ASYNC_ENABLE_OFF, SQL_NTS);
SQLSetStmtAttr(hstmt, SQL_ATTR_ASYNC_ENABLE,
 SQL_ASYNC_ENABLE_ON, SQL_NTS);
SQLSetStmtAttr(hstmt, SQL_ATTR_ASYNC_ENABLE,
 SQL_ASYNC_ENABLE_OFF, SQL_NTS);

When an application calls an ODBC function in synchronous mode, the driver does not return control to the application until it is
notified that the server has completed the command.

When operating asynchronously, the driver immediately returns control to the application, even before sending the command to
the server. The driver sets the return code to SQL_STILL_EXECUTING. The application can then perform other work.

When the application tests for completion of the command, it makes the same function call with the same parameters to the
driver. If the driver has not yet received an answer from the server, it will again return SQL_STILL_EXECUTING. The application
must test the command periodically until the return code is something other than SQL_STILL_EXECUTING. When the application
gets some other return code, even SQL_ERROR, it knows the command has completed.

Sometimes a command is outstanding for a long time. If the application needs to cancel the command without waiting for a reply,
it can do so by calling SQLCancel with the same statement handle as the outstanding command. This is the only time SQLCancel
should be used. Some programmers use SQLCancel when they have processed part way through a result set and want to cancel
the rest of the result set. SQLMoreResults or SQLCloseCursor should be used to cancel the remainder of an outstanding result
set, not SQLCancel.

See Also

SQLCloseCursor

SQLMoreResults

ODBC and SQL Server (SQL Server 2000)

Multithreaded Applications
The Microsoft® SQL Server™ ODBC driver is a multithreaded driver. Writing a multithreaded application is an alternative to using
asynchronous calls to process multiple ODBC calls. A thread can make a synchronous ODBC call, and other threads can process
while the first thread is blocked waiting for the response to its call. This model is more efficient than making asynchronous calls
because it eliminates overhead such as network traffic and making repeated ODBC function calls testing for
SQL_STILL_EXECUTING.

Asynchronous mode is still an effective method of processing. The performance improvements of a multithreaded model are not
enough to justify rewriting asynchronous applications. If users are converting DB-Library applications that use the DB-Library
asynchronous model, it is easier to convert them to the ODBC asynchronous model.

ODBC and SQL Server (SQL Server 2000)

Communicating with SQL Server
For an ODBC application to communicate with an instance of Microsoft® SQL Server™, it must allocate environment and
connection handles and connect to the data source. After a connection is established, the application can send queries to the
server and process any result sets. When the application has finished using the data source, it disconnects from the data source
and frees the connection handle. When the application has freed all of its connection handles, it frees the environment handle.

An application can connect to any number of data sources. The application can use a combination of drivers and data sources, the
same driver and a combination of data sources, or even the same driver and multiple connections to the same data source.

See Also

SQLSetEnvAttr

ODBC and SQL Server (SQL Server 2000)

Allocating an Environment Handle
Before an application can call any ODBC function, it must initialize the ODBC environment and allocate an environment handle,
which is the global context handle and placeholder for the other handles in ODBC. This is done by calling SQLAllocHandle with
the HandleType parameter set to SQL_HANDLE_ENV and InputHandle set to SQL_NULL_HANDLE.

After allocating the environment handle, the application must set environment attributes to indicate which version of ODBC
function calls it will be using. To use the ODBC 3.x functions, call SQLSetEnvAttr with the Attribute parameter set to
SQL_ATTR_ODBC_VERSION and ValuePtr set to SQL_OV_ODBC3.

How to allocate handles and connect to SQL Server

ODBC

ODBC

See Also

SQLSetEnvAttr

ODBC and SQL Server (SQL Server 2000)

Allocating a Connection Handle
Before the application can connect to a data source or driver, it must allocate a connection handle. This is done by calling
SQLAllocHandle with the HandleType parameter set to SQL_HANDLE_DBC and InputHandle pointing to an initialized
environment handle.

The characteristics of the connection are controlled by setting connection attributes. For example, because transactions occur at
the connection level, the transaction isolation level is a connection attribute. Similarly, the login time-out, or number of seconds to
wait while trying to connect before timing out, is a connection attribute.

Connection attributes are set with SQLSetConnectAttr, and their current settings are retrieved with SQLGetConnectAttr. If
SQLSetConnectAttr is called before a connection is attempted, the ODBC Driver Manager stores the attributes in its connection
structure and sets them in the driver as part of the connection process. Some connection attributes must be set before the
application attempts to connect; others can be set after the connection has completed. For example, SQL_ATTR_ODBC_CURSORS
must be set before a connection is made, but SQL_ATTR_AUTOCOMMIT can be set after connecting.

Applications running against Microsoft® SQL Server™ version 6.0 or later can sometimes improve their performance by resetting
the Tabular Data Stream (TDS) network packet size. The default packet size is set at the server, at 4 KB. A packet size of 4 KB to 8
KB generally gives the best performance. If testing shows that it performs better with a different packet size, the application can
reset the packet size. ODBC applications can do this before connecting by calling SQLSetConnectionAttr with the
SQL_ATTR_PACKET_SIZE option. Some applications perform better with a larger packet size, but performance improvements are
generally minimal for packet sizes larger than 8 KB.

The SQL Server ODBC driver has a number of extended connection attributes that an application can use to increase its
functionality. Some of these attributes control the same options that can be specified in data sources and used to override
whatever option is set in a data source. For example, if an application uses quoted identifiers, it can set the driver-specific attribute
SQL_COPT_SS_QUOTED_IDENT to SQL_QI_ON to ensure this option is always set regardless of the setting in any data source.

How to allocate handles and connect to SQL Server

ODBC

ODBC

See Also

SQLGetConnectAttr

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

SQL Server ODBC Data Sources
A Microsoft® SQL Server™ data source name (DSN) identifies an ODBC data source containing all of the information that an
ODBC application needs to connect to a SQL Server database on a specific server. There are two ways you can define an ODBC
data source name:

On a client computer, in Control Panel, double-click 32-bit ODBC.

In an ODBC application, call SQLConfigDataSource.

A SQL Server data source contains:

The name of the data source.

Any information needed to connect to a specific instance of SQL Server.

The default database to use on a specific instance of SQL Server (optional).

Settings such as which ANSI options to use, whether to log performance statistics, and so on (optional).

An ODBC application is not required to connect through a data source. However, the application must provide the same
connectivity information to an ODBC connect function that the driver would otherwise find in a DSN.

ODBC and SQL Server (SQL Server 2000)

Connecting to a Data Source
After allocating environment and connection handles and setting any connection attributes, the application connects to the data
source or driver. There are three functions you can use to connect:

SQLConnect

SQLDriverConnect

SQLBrowseConnect

SQLConnect

SQLConnect is the simplest connection function. It accepts three parameters: a data source name, a user ID, and a password. Use
SQLConnect when these three parameters contain all the information needed to connect to the database. To do this, build a list
of data sources using SQLDataSources; prompt the user for a data source, user ID, and password; and then call SQLConnect.

SQLConnect assumes that a data source name, user ID, and password are sufficient to connect to a data source and that the
ODBC data source contains all other information the ODBC driver needs to make the connection. Unlike SQLDriverConnect and
SQLBrowseConnect, SQLConnect does not use a connection string.

SQLDriverConnect

SQLDriverConnect is used when more information than the data source name, user ID, and password is required. One of the
parameters to SQLDriverConnect is a connection string containing driver-specific information. You might use
SQLDriverConnect instead of SQLConnect for the following reasons:

To specify driver-specific information at connect time.

To request that the driver prompt the user for connection information.

To connect without using an ODBC data source.

The SQLDriverConnect connection string contains a series of keyword-value pairs that specify all connection information
supported by an ODBC driver. Each driver supports the standard ODBC keywords (DSN, FILEDSN, DRIVER, UID, PWD, and
SAVEFILE) in addition to driver-specific keywords for all connection information supported by the driver. SQLDriverConnect can
be used to connect without a data source. For example, an application that is designed to make a "DSN-less" connection to an
instance of Microsoft® SQL Server™ can call SQLDriverConnect with a connection string that defines the login ID, password,
network library, server name to connect to, and default database to use.

When using SQLDriverConnect, there are two options for prompting the user for any needed connection information:

Application dialog box

You can create an application dialog box that prompts for connection information, and then calls SQLDriverConnect with a
NULL window handle and DriverCompletion set to SQL_DRIVER_NOPROMPT. These parameter settings prevent the ODBC
driver from opening its own dialog box. This method is used when it is important to control the user interface of the
application.

Driver dialog box

You can code the application to pass a valid window handle to SQLDriverConnect and set the DriverCompletion parameter
to SQL_DRIVER_COMPLETE, SQL_DRIVER_PROMPT, or SQL_DRIVER_COMPLETE_REQUIRED. The driver will then generate a
dialog box to prompt the user for connection information. This method simplifies the application code.

SQLBrowseConnect

SQLBrowseConnect, like SQLDriverConnect, uses a connection string. However, by using SQLBrowseConnect, an application
can construct a complete connection string iteratively with the data source at run time. This allows the application to do two
things:

Build its own dialog boxes to prompt for this information, thereby retaining control over its user interface.

Browse the system for data sources that can be used by a particular driver, possibly in several steps.

For example, the user might first browse the network for servers and, after choosing a server, browse the server for
databases accessible by the driver.

When SQLBrowseConnect completes a successful connection, it returns a connection string that can be used on subsequent calls
to SQLDriverConnect.

The SQL Server ODBC driver always returns SQL_SUCCESS_WITH_INFO on a successful SQLConnect, SQLDriverConnect, or
SQLBrowseConnect. When an ODBC application calls SQLGetDiagRec after getting SQL_SUCCESS_WITH_INFO, it can receive
the following messages:

5701

Indicates that SQL Server put the user's context into the default database defined in the data source, or into the default database
defined for the login ID used in the connection if the data source did not have a default database.

5703

Indicates the language being used on the server.

The following example shows the message returned on a successful connection by the system administrator:

szSqlState = "01000", *pfNativeError = 5701,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Changed database context to 'pubs'."
szSqlState = "01000", *pfNativeError = 5703,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Changed language setting to 'us_english'."

You can ignore messages 5701 and 5703; they are only informational. You should not, however, ignore a
SQL_SUCCESS_WITH_INFO return code because messages other than 5701 or 5703 may be returned. For example, if a driver
connects to a server running an instance of SQL Server with outdated catalog stored procedures, one of the errors returned
through SQLGetDiagRec after a SQL_SUCCESS_WITH_INFO is:

SqlState: 01000
pfNative: 0
szErrorMsg: "[Microsoft][ODBC SQL Server Driver]The ODBC
 catalog stored procedures installed on server
 my65server are version 06.50.0193; version 07.00.0205
 or later is required to ensure proper operation.
 Please contact your system administrator."

The error handling function of an application for SQL Server connections should call SQLGetDiagRec until it returns
SQL_NO_DATA. It should then act on any messages other than the ones with a pfNative code of 5701 or 5703.

Verifying Connection State

The behavior of SQL_ATTR_CONNECTION_DEAD and SQL_COPT_SS_CONNECTION_DEAD in SQL Server 2000 is different from
the behavior in earlier versions. In SQL Server 2000, SQL_ATTR_CONNECTION_DEAD returns the most recent state of the
connection, which may not be the current connection state. However, SQL_COPT_SS_CONNECTION_DEAD will always query the
Net-Library for the current state of the connection.

To differentiate between these behaviors, SQL_COPT_SS_CONNECTION_DEAD is given a new value in the SQL Server 2000
include files. Applications using this attribute that are built using the SQL Server 2000 headers will return an error (HY092, Invalid
attribute/option identifier) if the applications are run using a SQL Server 7.0 driver. It is recommended that the application check
the version of driver being used before calling SQLGetConnectAttr, and then use SQL_ATTR_CONNECTION_DEAD in place of
SQL_COPT_SS_CONNECTION_DEAD if the application is running on a SQL Server 7.0 driver.

To use connections

ODBC

ODBC

See Also

SQLBrowseConnect

SQLDriverConnect

ODBC and SQL Server (SQL Server 2000)

Disconnecting from a Data Source
When an application has finished using a data source, it calls SQLDisconnect. SQLDisconnect frees any statements that are
allocated on the connection and disconnects the driver from the data source. After disconnecting, the application can call
SQLFreeHandle to free the connection handle. Before exiting, an application also calls SQLFreeHandle to free the environment
handle.

After disconnecting, an application can reuse the allocated connection handle, either to connect to a different data source, or to
reconnect to the same data source. The decision to remain connected, as opposed to disconnecting and reconnecting later,
requires that the application writer consider the relative costs of each option: both connecting to a data source and remaining
connected can be relatively costly, depending on the connection medium. In making a correct tradeoff, the application must also
make assumptions about the likelihood and timing of further operations on the same data source. An application may also need
to use more than one connection.

To use connections

ODBC

ODBC

See Also

SQLFreeHandle

ODBC and SQL Server (SQL Server 2000)

Executing Queries
After an ODBC application initializes a connection handle and connects with a data source, it allocates one or more statement
handles on the connection handle. The application can then execute Microsoft® SQL Server™ statements on the statement
handle. The general sequence of events in executing an SQL statement is:

1. Set any required statement attributes.

2. Construct the statement.

3. Execute the statement.

4. Retrieve any result sets.

After an application retrieves all of the rows in all of the result sets returned by the SQL statement, it can execute another query
on the same statement handle. If an application determines that it is not required to retrieve all of the rows in a particular result
set, it can cancel the remainder of the result set by calling either SQLMoreResults or SQLCloseCursor.

If, in an ODBC application, it is necessary to execute the same SQL statement multiple times with different data, use a parameter
marker, denoted by a question mark (?), in the construction of an SQL statement:

INSERT INTO MyTable VALUES (?, ?, ?)

Each parameter marker can then be bound to a program variable by calling SQLBindParameter.

After all SQL statements execute and their result sets process, the application frees the statement handle.

The SQL Server ODBC driver supports multiple statement handles per connection handle. Transactions are managed at the
connection level, so all work done on all statement handles on a single connection handle are managed as part of the same
transaction.

See Also

SQLBindParameter

SQLCloseCursor

SQLMoreResults

ODBC and SQL Server (SQL Server 2000)

Allocating a Statement Handle
Before an application can execute a statement, it must allocate a statement handle. It does this by calling SQLAllocHandle with
the HandleType parameter set to SQL_HANDLE_STMT and InputHandle pointing to a connection handle.

Statement attributes are characteristics of the statement handle. Sample statement attributes can include whether to use
bookmarks and what kind of cursor to use with the statement's result set. Statement attributes are set with SQLSetStmtAttr, and
their current settings are retrieved with SQLGetStmtAttr. There is no requirement that an application set any statement
attributes; all statement attributes have defaults; some are driver-specific.

Use caution in the use of several ODBC statement and connection options. Calling SQLSetConnectAttr with fOption set to
SQL_ATTR_LOGIN_TIMEOUT controls the amount of time an application waits for a connection attempt to timeout while waiting
to establish a connection (0 specifies an infinite wait). Sites with slow response times can set this value high to ensure connections
have sufficient time to complete, but the interval should always be low enough to give the user a response in a reasonable
amount of time if the driver cannot connect.

Calling SQLSetStmtAttr with fOption set to SQL_ATTR_QUERY_TIMEOUT sets a query time-out interval to protect the server and
the user from long-running queries.

Calling SQLSetStmtAttr with fOption set to SQL_ATTR_MAX_LENGTH limits the amount of text and image data that an
individual statement can retrieve. Calling SQLSetStmtAttr with fOption set to SQL_ATTR_MAX_ROWS also limits a rowset to the
first n rows if that is all the application requires. Note that setting SQL_ATTR_MAX_ROWS causes the driver to issue a SET
ROWCOUNT statement to the server, which affects all Microsoft® SQL Server™ statements, including triggers and updates.

Use caution when setting these options. It is best if all statement handles on a connection handle have the same settings for
SQL_ATTR_MAX_LENGTH and SQL_ATTR_MAX_ROWS. If the driver switches from a statement handle to another with different
values for these options, the driver must generate the appropriate SET TEXTSIZE and SET ROWCOUNT statements to change the
settings. The driver cannot put these statements in the same batch as the user SQL statement because the user SQL statement can
contain a statement that must be the first statement in a batch. The driver must send the SET TEXTSIZE and SET ROWCOUNT
statements in a separate batch, which automatically generates an extra roundtrip to the server.

To use a statement

ODBC

ODBC

See Also

SQLGetStmtAttr

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Constructing an SQL Statement
ODBC applications perform almost all of their database access by executing Microsoft® SQL Server™ statements. The form of
these statements depends on the application requirements. SQL statements can be constructed in the following ways:

Hard-coded

Static statements performed by an application as a fixed task.

Constructed at run time

SQL statements constructed at run time that enable the user to tailor the statement by using common clauses, such as
SELECT, WHERE, and ORDER BY. This includes ad hoc queries entered by users.

The SQL Server ODBC driver parses SQL statements only for ODBC and SQL-92 syntax not directly supported by the database
engine, which the driver transforms into Transact-SQL. All other SQL syntax is passed to the database engine unchanged, where
SQL Server will determine if it is valid Transact-SQL. This approach yields two benefits:

Reduced overhead

Processing overhead for the driver is minimized because it only has to scan for a small set of ODBC and SQL-92 clauses.

Flexibility

Programmers can tailor the portability of their applications. To enhance portability against multiple databases, use primarily
ODBC and SQL-92 syntax. To use enhancements specific to SQL Server, use the appropriate Transact-SQL syntax. The SQL
Server ODBC driver supports the complete Transact-SQL syntax so ODBC-based applications can take advantage of all the
features in SQL Server.

The column list in a SELECT statement should contain only the columns required to perform the current task. Not only does this
reduce the amount of data sent across the network, but also it reduces the effect of database changes on the application. If an
application does not reference a column from a table, then the application is not affected by any changes made to that column.

To use statements

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Constructing SQL Statements for Cursors
The Microsoft® SQL Server™ ODBC driver uses server cursors to implement the cursor functionality defined in the ODBC
specification. An ODBC application controls the cursor behavior by using SQLSetStmtAttr to set different statement attributes.
These are the attributes and their defaults.

Attribute Default
SQL_ATTR_CONCURRENCY SQL_CONCUR_READ_ONLY
SQL_ATTR_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY
SQL_ATTR_CURSOR_SCROLLABLE SQL_NONSCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY SQL_UNSPECIFIED
SQL_ATTR_ROW_ARRAY_SIZE 1

When these options are set to their defaults at the time an SQL statement is executed, the SQL Server ODBC driver does not use a
server cursor to implement the result set; instead, it uses a default result set. If any of these options are changed from their
defaults at the time an SQL statement is executed, the SQL Server ODBC driver attempts to use a server cursor to implement the
result set.

Default result sets support all of the Transact-SQL statements. There are no restrictions on the types of SQL statements that can
be executed when using a default result set.

Server cursors do not support all Transact-SQL statements. Server cursors do not support any SQL statement that generates
multiple result sets.

The following types of statements are not supported by server cursors:

Batches

SQL statements built from two or more individual SQL SELECT statements, for example:

SELECT * FROM authors; SELECT * FROM titles

Stored procedures with multiple SELECT statements

SQL statements that execute a stored procedure containing more than one SELECT statement. This includes SELECT
statements that fill parameters or variables.

Keywords

SQL statements containing the keywords COMPUTE, COMPUTE BY, FOR BROWSE, or INTO.

In SQL Server, if an SQL statement that matches any of these conditions is executed with a server cursor, the server cursor is
implicitly converted to a default result set. After SQLExecDirect or SQLExecute returns SQL_SUCCESS_WITH_INFO, the cursor
attributes will be set back to their default settings.

In SQL Server version 6.5 or earlier, these statements cannot be executed with any of the statement attribute settings that would
generate a server cursor. SQLExecDirect or SQLExecute return SQL_ERROR unless the cursor attributes are first set to their
defaults to generate a default result set.

SQL statements that do not fit the categories above can be executed with any statement attribute settings; they work equally well
with either a default result set or a server cursor.

Errors

In SQL Server 7.0, an attempt to execute a statement that produces multiple result sets generates SQL_SUCCESS_WITH INFO and
the following message:

SqlState: 01S02"
pfNative: 0
szErrorMsgString: "[Microsoft][ODBC SQL Server Driver]
 Cursor type changed."

ODBC applications receiving this message can call SQLGetStmtAttr to determine the current cursor settings.

Attempting to execute statements that generate multiple results in SQL Server version 6.5 or earlier generates SQL_ERROR and
one of the following messages depending on the type of statement executed.

An attempt to execute a procedure with multiple SELECT statements when using server cursors generates the following error:

SqlState: 42000
pfNative: 16937
szErrorMsgString: [Microsoft][ODBC SQL Server Driver][SQL Server]
 A server cursor is not allowed on a stored procedure
 with more than one SELECT statement in it. Use a
 default result set or client cursor.

An attempt to execute a batch with multiple SELECT statements when using server cursors generates the following error:

SqlState: 42000
pfNative: 16938
szErrorMsgString: [Microsoft][ODBC SQL Server Driver][SQL Server]
 sp_cursoropen. The statement parameter can only
 be a single SELECT statement or a single stored
 procedure.

An attempt to execute a SELECT statement containing a COMPUTE clause when using server cursors generates the following
error:

SqlState: 42000
pfNative: 16907
szErrorMsgString: [Microsoft][ODBC SQL Server Driver][SQL Server]
 'COMPUTE' is not allowed in cursor statements.

ODBC applications receiving these errors must reset all the cursor statement attributes to their defaults before attempting to
execute the statement.

To set cursor options

ODBC

ODBC

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Using Statement Parameters
A parameter is a variable in an SQL statement that can enable an ODBC application to:

Efficiently provide values for columns in a table.

Enhance user interaction in constructing query criteria.

Manage text, ntext, and image data and Microsoft® SQL Server™-specific C data types.

For example, a parts table has columns named partid, description, and price. To add a part without parameters requires
constructing an SQL statement such as:

INSERT INTO Parts (PartID, Description, Price) VALUES (2100, 'Drive shaft', 50.00)

Although this statement is acceptable for inserting one row with a known set of values, it is awkward if an application is required
to insert several rows. ODBC addresses this by allowing an application to replace any data value in an SQL statement by a
parameter maker, which is denoted by a question mark (?). In the following example, three data values are replaced with
parameter markers:

INSERT INTO Parts (PartID, Description, Price) VALUES (?, ?, ?)

The parameter markers are then bound to application variables. To insert a new row, the application has only to set the values of
the variables and execute the statement. The driver then retrieves the current values of the variables and sends them to the data
source. If the statement will be executed multiple times, the application can make the process even more efficient by preparing the
statement.

Each parameter marker is referenced by its ordinal number, assigned to the parameters from left to right. The leftmost parameter
marker in an SQL statement has an ordinal value of 1, the next one is ordinal 2, and so on.

To execute a statement directly

ODBC

ODBC

To prepare and execute statements

ODBC

ODBC

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

ODBC and SQL Server (SQL Server 2000)

Binding Parameters
Binding Parameters

Each parameter marker in an SQL statement must be associated, or bound, to a variable in the application before the statement
can be executed. This is done by calling the SQLBindParameter function. SQLBindParameter describes the program variable
(address, C data type, and so on) to the driver. It also identifies the parameter marker by indicating its ordinal value and then
describes the characteristics of the SQL object it represents (SQL data type, precision, and so on).

Parameter markers can be bound or rebound at any time before a statement is executed. A parameter binding remains in effect
until one of the following occurs:

A call to SQLFreeStmt with the Option parameter set to SQL_RESET_PARAMS frees all parameters bound to the statement
handle.

A call to SQLBindParameter with ParameterNumber set to the ordinal of a bound parameter marker automatically
releases the previous binding.

An application can also bind parameters to arrays of program variables to process an SQL statement in batches. There are two
types of array binding:

Column-wise binding is done when each individual parameter is bound to its own array of variables.

Column-wise binding is specified by calling SQLSetStmtAttr with Attribute set to SQL_ATTR_PARAM_BIND_TYPE and
ValuePtr set to SQL_PARAM_BIND_BY_COLUMN.

Row-wise binding is done when all of the parameters in the SQL statement are bound as a unit to an array of structures that
contain the individual variables for the parameters.

Row-wise binding is specified by calling SQLSetStmtAttr with Attribute set to SQL_ATTR_PARAM_BIND_TYPE and ValuePtr
set to the size of the structure holding the program variables.

When the Microsoft® SQL Server™ ODBC driver sends character or binary string parameters to the server, it pads the values to
the length specified in SQLBindParameter ColumnSize parameter. If an ODBC 2.x application specifies 0 for ColumnSize, the
driver pads the parameter value to the precision of the data type. The precision is 8000 when connected to SQL Server servers,
255 when connected to earlier versions of SQL Server. ColumnSize is in bytes for variant columns.

SQL Server supports defining names for stored procedure parameters. ODBC 3.5 also introduced support for named parameters
used when calling SQL Server stored procedures. This support can be used to:

Call a stored procedure and provide values for a subset of the parameters defined for the stored procedure.

Specify the parameters in a different order in the application than the order specified when the stored procedure was
created.

Named parameters are only supported when using the Transact-SQL EXECUTE statement or the ODBC CALL escape sequence to
execute a stored procedure.

For more information about examples of using named parameters, see ODBC 3.0 Software Developers Kit and Programmer's
Reference.

See Also

SQLBindParameter

SQLFreeStmt

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Executing Statements
The ODBC API offers two ways to execute a Microsoft® SQL Server™ statement:

Direct execution

Prepared execution

These two methods can execute a single SQL statement, a call of a stored procedure, or a batch of SQL statements.

ODBC and SQL Server (SQL Server 2000)

Direct Execution
Direct Execution

Direct execution is the most basic way to execute a statement. An application builds a character string containing a Microsoft®
SQL Server™ statement and submits it for execution using the SQLExecDirect function. When the statement reaches the server,
SQL Server compiles it into an execution plan and then immediately runs the execution plan.

Direct execution is commonly used by applications that build and execute statements at run time and is the most efficient method
for statements that will be executed a single time. Its drawback with many databases is that the SQL statement must be parsed
and compiled each time it is executed, which adds overhead if the statement is executed multiple times.

When connected to versions of SQL Server earlier than 7.0, direct execution should be used:

When a statement is likely to be executed fewer than four times.

To call stored procedures.

SQL Server 2000 significantly improves the performance of direct execution of commonly executed statements in multiuser
environments. For SQL Server 7.0 applications, using SQLExecDirect with parameter markers for commonly executed SQL
statements can approach the efficiency of prepared execution.

When connected to an instance of SQL Server 2000, the SQL Server ODBC driver uses sp_executesql to transmit the SQL
statement or batch specified on SQLExecDirect. SQL Server 2000 has logic to quickly determine if an SQL statement or batch
executed with sp_executesql matches the statement or batch that generated an execution plan that already exists in memory. If a
match is made, SQL Server simply reuses the existing plan rather than compile a new plan. This means that commonly executed
SQL statements executed with SQLExecDirect in a system with many users will benefit from many of the plan-reuse benefits that
were only available to stored procedures in earlier versions of SQL Server.

This benefit of reusing execution plans only works when several users are executing the same SQL statement or batch. Follow
these coding conventions to increase the probability that the SQL statements executed by different clients are similar enough to
be able to reuse execution plans:

Do not include data constants in the SQL statements; instead use parameter markers bound to program variables. For more
information, see Using Statement Parameters.

Use fully qualified object names. Execution plans are not reused if object names are not qualified.

Have application connections as possible use a common set of connection and statement options. Execution plans
generated for a connection with one set of options (such as ANSI_NULLS) are not reused for a connection having another
set of options. The SQL Server ODBC driver and the OLE DB Provider for SQL Server both have the same default settings for
these options.

If all statements executed with SQLExecDirect are coded using these conventions, SQL Server can reuse execution plans when
the opportunity arises.

To use a statement

ODBC

ODBC

To execute statements directly

ODBC

ODBC

To prepare and execute statements

ODBC

ODBC

See Also

Building Statements at Run Time

sp_executesql

ODBC and SQL Server (SQL Server 2000)

Prepared Execution
Prepared Execution

The ODBC API defines prepared execution as a way to reduce the parsing and compiling overhead associated with repeatedly
executing a Microsoft® SQL Server™ statement. The application builds a character string containing an SQL statement and then
executes it in two stages. It calls SQLPrepare once to have the statement parsed and compiled into an execution plan by the
database engine. It then calls SQLExecute for each execution of the prepared execution plan. This saves the parsing and
compiling overhead on each execution. Prepared execution is commonly used by applications to repeatedly execute the same,
parameterized SQL statement.

For most databases, prepared execution is faster than direct execution for statements executed more than three or four times
primarily because the statement is compiled only once, while statements executed directly are compiled each time they are
executed. Prepared execution can also provide a reduction in network traffic because the driver can send an execution plan
identifier and the parameter values, rather than an entire SQL statement, to the data source each time the statement is executed.

SQL Server 2000 reduces the performance difference between direct and prepared execution through improved algorithms for
detecting and reusing execution plans from SQLExecDirect. This makes some of the performance benefits of prepared execution
available to statements executed directly. For more information, see Direct Execution.

SQL Server 2000 also provides native support for prepared execution. An execution plan is built on SQLPrepare and later
executed when SQLExecute is called. Because SQL Server 2000 is not required to build temporary stored procedures on
SQLPrepare, there is no extra overhead on the system tables in tempdb.

For performance reasons, the statement preparation is deferred until SQLExecute is called or a metaproperty operation (such as
SQLDescribeCol or SQLDescribeParam in ODBC) is performed. This is the default behavior. Any errors in the statement being
prepared are not known until the statement is executed or a metaproperty operation is performed. Setting the SQL Server ODBC
driver-specific statement attribute SQL_SOPT_SS_DEFER_PREPARE to SQL_DP_OFF can turn off this default behavior.

In case of deferred prepare, calling either SQLDescribeCol or SQLDescribeParam before calling SQLExecute generates an extra
roundtrip to the server. On SQLDescribeCol, the driver removes the WHERE clause from the query and sends it to the server with
SET FMTONLY ON to get the description of the columns in the first result set returned by the query. On SQLDescribeParam, the
driver calls the server to get a description of the expressions or columns referenced by any parameter markers in the query. This
method also has some restrictions, such as not being able to resolve parameters in subqueries.

Excess use of SQLPrepare with the SQL Server ODBC driver degrades performance, especially when connected to earlier versions
of SQL Server. Prepared execution should not be used for statements executed a single time. Prepared execution is slower than
direct execution for a single execution of a statement because it requires an extra network roundtrip from the client to the server.
On earlier versions of SQL Server it also generates a temporary stored procedure.

Prepared statements cannot be used to create temporary objects on SQL Server 2000, or on earlier versions of SQL Server if the
option to generate stored procedures is active. With this option turned on, the prepared statement is built into a temporary stored
procedure that is executed when SQLExecute is called. Any temporary object created during the execution of a stored procedure
is automatically dropped when the procedure finishes. Either of the following examples results in the temporary table
#sometable not being created if the option to generate stored procedures for prepare is active:

SQLPrepare(hstmt,
 "CREATE TABLE #sometable(cola int, colb char(8))",
 SQL_NTS);
SQLExecute(hstmt);

or

SQLPrepare(hstmt,
 "SELECT * FROM authors INTO #sometable",
 SQL_NTS);
SQLExecute(hstmt);

Some early ODBC applications used SQLPrepare anytime SQLBindParameter was used. SQLBindParameter does not require
the use of SQLPrepare, it can be used with SQLExecDirect. For example, use SQLExecDirect with SQLBindParameter to
retrieve the return code or output parameters from a stored procedure that is only executed one time. Do not use SQLPrepare
with SQLBindParameter unless the same statement will be executed multiple times.

SQLPrepare on SQL Server version 6.5 or earlier

Earlier versions of SQL Server did not directly support prepared execution. To get the benefits of prepared execution on earlier

versions of SQL Server, the SQL Server ODBC driver uses temporary stored procedures. On SQLPrepare, the SQL Server ODBC
driver builds the SQL statement from the application into a CREATE PROCEDURE statement that it then sends to the server. This
creates a temporary stored procedure and is essentially the same as having SQL Server parse the SQL statement and compile it
into an execution plan. The names of the temporary stored procedures generated by the SQL Server ODBC driver start with
#odbc#. On SQLExecute, the driver calls the stored procedure created on SQLPrepare. Administrators of SQL Server versions 6.0
or 6.5 must estimate the peak demand for SQLPrepare and make tempdb large enough to hold these temporary stored
procedures.

SQL Server version 4.21a does not support temporary stored procedures. When connected to SQL Server 4.21a the SQL Server
ODBC driver generates permanent stored procedures instead of temporary stored procedures. These permanent stored
procedures are stored in the user databases, so administrators must ensure the user databases are large enough to hold the peak
number of SQLPrepare functions. Also, the permanent stored procedures can be left in the database if the application terminates
or loses its connection before the ODBC driver can drop the procedures. SQL Server 4.21a administrators may be required to
periodically drop these stored procedures.

If an application will be run by many concurrent users and the users will all be using the same SQL statement, the best approach
is to create the SQL statement as a permanent, parameterized stored procedure, and execute it with SQLExecDirect. Having
many users issue concurrent SQLPrepare commands on earlier versions of SQL Server can create a concurrency problem on the
system tables in tempdb. Even if each user is executing exactly the same statement, the SQL Server ODBC driver on each client is
creating its own copy of a temporary stored procedure in tempdb. If the SQL statement is created as a parameterized stored
procedure, however, the procedure is created only once. Each ODBC application does not have to create a new procedure for its
exclusive use. It simply uses a copy of the execution plan of the permanent procedure from the procedure cache.

To avoid holding locks on tempdb system tables for the length of a user transaction, the SQL Server ODBC driver does not
generate a stored procedure for SQLPrepare if it is called within a transaction. The exception to this is when the SQLPrepare is
the first statement in the transaction. In this case, the driver generates a stored procedure but then immediately commits the
CREATE PROCEDURE statement.

The driver does not generate a stored procedure for a SQLPrepare that uses the ODBC CALL escape clause to call a stored
procedure. On SQLExecute, the driver executes the called stored procedure. (Creating a temporary stored procedure is not
required.)

Whether the SQL Server ODBC driver generates temporary stored procedures when connected to earlier versions of SQL Server,
and how long the procedures are retained, is controlled by data source parameters or connection attributes. The connection
attributes are set by calling SQLSetConnectAttr with fOption set to SQL_COPT_SS_USE_PROC_FOR_PREPARE. The options are:

SQL_UP_OFF

Temporary stored procedures are not generated for SQLPrepare.

SQL_UP_ON

Temporary stored procedures are generated for SQLPrepare and are not dropped until the connection is closed. This is the
default setting.

SQL_UP_ON_DROP

Temporary stored procedures are generated for SQLPrepare. The procedures are dropped the next time SQLPrepare is called on
the statement handle, when SQLFreeHandle is called to drop the statement handle, or when the connection is closed.

When SQL_UP_ON is set, most applications realize a performance boost because the SQL Server ODBC driver does not have to
continually drop the temporary stored procedures. If an application reprepares an SQL statement when SQL_UP_ON_DROP is set,
the driver can reuse the stored procedure created the first time the SQL statement was prepared. Applications that never
disconnect (such as a 24x7 application) or that make heavy use of SQLPrepare can see a buildup of #odbc# procedures in
tempdb. These applications should set SQL_UP_ON_DROP to alleviate the buildup.

Some APIs that map over ODBC (such as DAO) and the OLE DB Provider for ODBC do not expose the ability to set driver-specific
connection attributes. Applications using these APIs cannot dynamically control the SQL_USE_PROC_FOR_PREPARE settings. If
these applications use a SQL Server data source, these options can be set on the data source. This is done with the driver-specific
UseProcForPrepare keyword on SQLConfigDataSource, or with the procedure options displayed in the SQL Server DSN
Configuration Wizard.

To use a statement

ODBC

ODBC

To prepare and execute a statement

ODBC

ODBC

See Also

SQLBindParameter

SQLConfigDataSource

SQLFreeHandle

SQLPrepare

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

Procedures
Procedures

A stored procedure is a precompiled executable object that contains one or more Microsoft® SQL Server™ statements. Stored
procedures can have input and output parameters and can also put out an integer return code. An application can enumerate
available stored procedures by using catalog functions.

ODBC applications the target SQL Server should only use direct execution to call a stored procedure. When connected to earlier
versions of SQL Server, the SQL Server ODBC driver implements SQLPrepare by creating a temporary stored procedure, which is
then called on SQLExecute. It adds overhead to have SQLPrepare create a temporary stored procedure that only calls the target
stored procedure versus directly executing the target stored procedure. Even when connected to an instance of SQL Server,
preparing a call requires an extra round trip across the network and the building of an execution plan that just calls the stored
procedure execution plan.

ODBC applications should use the ODBC CALL syntax when executing a stored procedure. The driver is optimized to use a remote
procedure call mechanism to call the procedure when the ODBC CALL syntax is used. This is more efficient than the mechanism
used to send a Transact-SQL EXECUTE statement to the server.

For more information, see Running Stored Procedures.

To call remote procedures

ODBC

ODBC

User-defined Functions

User-defined functions in SQL Server 2000 can be executed using the SQL Server 2000 ODBC driver. The syntax for calling user-
defined functions using the SQL Server 2000 ODBC driver is similar to that for calling the stored procedures. Whereas stored
procedures return only an integer, the user-defined functions can return the value of any SQL Server data type.

See Also

SQLMoreResults

SQLPrepare

User-defined Functions

ODBC and SQL Server (SQL Server 2000)

Batches of Statements
Batches of Statements

 New Information - SQL Server 2000 SP3.

A batch of Microsoft® SQL Server™ statements contains two or more SQL statements, separated by a semicolon (;), built into a
single string passed to SQLExecDirect or SQLPrepare. For example:

SQLExecDirect(hstmt,
 "SELECT * FROM authors; SELECT * FROM titles",
 SQL_NTS);

Batches can be more efficient than submitting statements separately because network traffic is often reduced. Use
SQLMoreResults to get positioned on the next result set when finished with the current result set.

Batches can always be used when the ODBC cursor attributes are set to the defaults of a forward-only, read-only cursor with a
rowset size of 1.

If a batch is executed when using server cursors against SQL Server, the server cursor is implicitly converted to a default result set.
SQLExecDirect or SQLExecute return SQL_SUCCESS_WITH_INFO, and a call to SQLGetDiagRec returns:

szSqlState = "01S02", pfNativeError = 0
szErrorMsg = "[Microsoft][ODBC SQL Server Driver]Cursor type changed."

Batches are not supported with server cursors against SQL Server version 6.5 or earlier. SQLExecDirect or SQLExecute return
SQL_ERROR, and a call to SQLGetDiagRec returns one of three errors. For more information, see Constructing SQL Statements
for Cursors.

Security Note Batch files may contain credentials stored in plain text. Credentials may be echoed to the user's screen during
batch execution.

See Also

SQLMoreResults

SQLPrepare

ODBC and SQL Server (SQL Server 2000)

Effects of SQL-92 Options
Effects of SQL-92 Options

The ODBC standard is closely matched to the SQL-92 standard, and ODBC applications expect standard behavior from an ODBC
driver. To make its behavior conform more closely with that defined in the ODBC standard, the Microsoft® SQL Server™ ODBC
driver always uses any SQL-92 options available in the version of SQL Server with which it connects.

When the SQL Server ODBC driver connects to an instance of SQL Server, the server detects that the client is using the ODBC
driver and sets several options on. The options set on by SQL Server 2000 are the same as those turned on by SET statements
when the driver connects to an instance of SQL Server version 6.5, except that SQL Server 2000 also sets on the
CONCAT_NULL_YIELDS_NULL option.

The options set by the driver when connecting to each prior version of SQL Server are:

Connect to an instance of SQL Server 6.5:

SET QUOTED_IDENTIFIER ON
SET TEXTSIZE 2147483647
SET ANSI_DEFAULTS ON
SET CURSOR_CLOSE_ON_COMMIT OFF
SET IMPLICIT_TRANSACTIONS OFF

Connect to an instance of SQL Server 6.0:

SET ANSI_NULL_DFLT_ON ON
SET TEXTSIZE 2147483647
SET QUOTED_IDENTIFIER ON
SET ARITHABORT ON

Connect to an instance of SQL Server 4.21a:

SET TEXTSIZE 2147483647
SET ARITHABORT ON

The driver issues these statements itself; the ODBC application does nothing to request them. Setting these options allows ODBC
applications using the driver to be more portable because the server behavior then matches the SQL-92 standard.

DB-Library-based applications generally do not turn these options on. Sites observing different behavior between ODBC or DB-
Library clients when running the same SQL statement should not assume this points to a problem with the ODBC driver. They
should first rerun the statement in the DB-Library environment with the same SET options as would be used by the SQL Server
ODBC driver.

Because SET options can be turned on and off at any time by users and applications, developers of stored procedures and triggers
should also take care to test their procedures and triggers with the SET options listed above turned both on and off. This ensures
that the procedures and triggers work correctly regardless of which options a particular connection may have set on when they
invoke the procedure or trigger. Triggers or stored procedures that require a particular setting for one of these options should
issue a SET statement at the start of the trigger or stored procedure. This SET statement remains in effect only for the execution of
the trigger or stored procedure; when the procedure or trigger ends, the original setting is restored.

The SET options used when connected to SQL Server 7.0 or SQL Server 6.5 have the net effect of setting on three more SQL-92
options than those set in the 6.0 environment: ANSI_NULLS, ANSI_PADDING, and ANSI_WARNINGS. When connected to an
instance of SQL Server 2000, a fourth option, CONCAT_NULL_YIELDS_NULL, is also set on. These options can cause problems in
existing stored procedures and triggers migrated from SQL Server 6.0 to either SQL Server 6.5 or 7.0. The SQL Server ODBC
driver does not set these options on if AnsiNPW=NO is specified in the data source or on either SQLDriverConnect or
SQLBrowseConnect.

The SQL Server ODBC driver also sets on the QUOTED_IDENTIFIER option when connected to SQL Server 6.0 or later. With this
option set on, SQL statements should comply with the SQL-92 rule that character data strings be enclosed in single quotes and
that only identifiers, such as table or column names, be enclosed in double quotation marks:

SELECT "au_fname"
FROM "authors"
WHERE "au_lname" = 'O''Brien'

Like the SQL-92 options noted earlier, the SQL Server ODBC driver does not turn the QUOTED_IDENTIFIER option on if

QuotedID=NO is specified in the data source or on either SQLDriverConnect or SQLBrowseConnect.

To allow the driver to know the current state of SET options, ODBC applications should not use the Transact-SQL SET statement to
set these options. They should only set these options using either the data source or the connection options. If the application
issues SET statements, the driver can generate incorrect SQL statements.

See Also

SQLBrowseConnect

SQLDriverConnect

ODBC and SQL Server (SQL Server 2000)

Freeing a Statement Handle
As mentioned earlier, it is more efficient to reuse statement handles than drop them and allocate new ones. Before executing a
new Microsoft® SQL Server™ statement on a statement handle, applications should check that the current statement settings are
appropriate. These include statement attributes, parameter bindings, and result set bindings. Generally, parameters and result sets
for the old SQL statement must be unbound (by calling SQLFreeStmt with the SQL_RESET_PARAMS and SQL_UNBIND options)
and rebound for the new SQL statement.

When the application has finished using the statement, it calls SQLFreeHandle to free the statement. Note that SQLDisconnect
automatically frees all statements on a connection.

To use a statement

ODBC

ODBC

See Also

SQLFreeHandle

SQLFreeStmt

ODBC and SQL Server (SQL Server 2000)

Processing Results
After an application submits an SQL statement, Microsoft® SQL Server™ returns any resulting data as one or more result sets. A
result set is a set of rows and columns that match the criteria of the query. SELECT statements, catalog functions, and some
procedures produce a result set made available to an application in tabular form. If the executed SQL statement is a stored
procedure, a batch containing multiple commands, or a SELECT statement containing keywords, such as COMPUTE or COMPUTE
BY, there will be multiple result sets to process.

ODBC catalog functions also can retrieve data. For example, SQLColumns retrieves data about columns in the data source. These
result sets can contain zero or more rows.

Note that other SQL statements, such as GRANT or REVOKE, do not return result sets. For these statements, the return code from
SQLExecute or SQLExecDirect is usually the only indication the statement was successful.

Each INSERT, UPDATE, and DELETE statement returns a result set containing only the number of rows affected by the
modification. This count is made available when application calls SQLRowCount. ODBC 3.x applications must either call
SQLRowCount to retrieve the result set or SQLMoreResults to cancel it. When an application executes a batch or stored
procedure containing multiple INSERT, UPDATE, or DELETE statements, the result set from each modification statement must be
processed using SQLRowCount or cancelled using SQLMoreResults. These counts can be cancelled by including a SET
NOCOUNT ON statement in the batch or stored procedure.

Transact-SQL includes the SET NOCOUNT statement. When the NOCOUNT option is set on, SQL Server does not return the
counts of the rows affected by a statement and SQLRowCount returns 0. The SQL Server ODBC driver version 3.7 introduces a
driver-specific SQLGetStmtAttr option, SQL_SOPT_SS_NOCOUNT_STATUS, to report on whether the NOCOUNT option is on or
off. Anytime SQLRowCount returns 0, the application should test SQL_SOPT_SS_NOCOUNT_STATUS. If SQL_NC_ON is returned,
the value of 0 from SQLRowCount only indicates that SQL Server has not returned a row count. If SQL_NC_OFF is returned, it
means that NOCOUNT is off and the value of 0 from SQLRowCount indicates that the statement did not affect any rows.
Applications should not display the value of SQLRowCount when SQL_SOPT_SS_NOCOUNT_STATUS is SQL_NC_OFF. Large
batches or stored procedures may contain multiple SET NOCOUNT statements so programmers cannot assume
SQL_SOPT_SS_NOCOUNT_STATUS remains constant. The option should be tested each time SQLRowCount returns 0.

Several other Transact-SQL statements return their data in messages rather than result sets. When the SQL Server ODBC driver
receives these messages, it returns SQL_SUCCESS_WITH_INFO to let the application know that informational messages are
available. The application can then call SQLGetDiagRec to retrieve these messages. The Transact-SQL statements that work this
way are:

DBCC

SET SHOWPLAN (available with earlier versions of SQL Server)

SET STATISTICS

PRINT

RAISERROR

The SQL Server ODBC driver returns SQL_ERROR on a RAISERROR with a severity of 11 or higher. If the severity of the
RAISERROR is 19 or higher, the connection is also dropped.

To process the result sets from an SQL statement, the application:

Determines the characteristics of the result set.

Binds the columns to program variables.

Retrieves a single value, an entire row of values, or multiple rows of values.

Tests to see if there are more result sets, and if so, loops back to determining the characteristics of the new result set.

The process of retrieving rows from the data source and returning them to the application is called fetching.

Retrieving COMPUTE and COMPUTE BY result sets

The COMPUTE BY clause generates subtotals within a result set; the COMPUTE clause generates a total at the end of the result set.
The SQL Server ODBC driver presents these totals and subtotals to the calling application by generating multiple result sets for
each SELECT statement.

The following example uses COMPUTE BY to generate subtotals and COMPUTE to generate a total:

SELECT title = CONVERT(char(20), title), type, price, advance
FROM titles
WHERE ytd_sales IS NOT NULL
 AND type LIKE '%cook%'
ORDER BY type DESC
COMPUTE AVG(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)

These statements cause a subtotal calculation for the average price and sum of advances for each book type and then cause a
final total sum of both the price and advance data. The driver presents the first result set for the rows from books having the first
book type. It then produces a second result set with the two COMPUTE BY columns for the AVG(price) and SUM(advance) for this
first set of books. Then it produces a third result set for the next group of books, and a fourth result set with the COMPUTE BY
subtotals for that group. The driver interleaves these result sets until it produces the final result set with the total for the
COMPUTE SUM(price), SUM(advance) clause.

See Also

SQLColumns

SQLRowCount

ODBC and SQL Server (SQL Server 2000)

Determining the Characteristics of a Result Set
Meta data is data that describes other data. For example, result set meta data describes the characteristics of a result set, such as
the number of columns in the result set, the data types of those columns, their names, precision, nullability, and so on.

ODBC supplies meta data to applications through its catalog API functions. The Microsoft® SQL Server™ ODBC driver
implements many of the ODBC API catalog functions as calls to a corresponding SQL Server catalog procedure.

Applications require meta data for most result set operations. For example, the application uses the data type of a column to
determine what kind of variable to bind to that column. It uses the byte length of a character column to determine how much
space it needs to display data from that column. How an application determines the meta data for a column depends on the type
of the application.

Vertical applications typically work with predefined tables and perform predefined operations on those tables. Because the result
set meta data for such applications is defined before the application is even written and is controlled by the application developer,
it can be hard-coded into the application. For example, if an order ID column is defined as a 4-byte integer in the data source, the
application can always bind a 4-byte integer to that column. When meta data is hard-coded in the application, a change to the
tables used by the application generally implies a change to the application code.

Generic applications, especially applications that support ad hoc queries, almost never know the meta data of the result sets they
create. Therefore, they must discover the meta data at run time.

To determine the characteristics of a result set, an application can call:

SQLNumResultCols to determine how many columns a request returned.

SQLColAttribute or SQLDescribeCol to describe a column in the result set.

A well-designed application is written with the assumption that the result set is unknown and uses the information returned by
these functions to bind the columns in the result set. An application can call these functions at any time after a statement is
prepared or executed. However, for optimal performance, an application should call SQLColAttribute, SQLDescribeCol, and
SQLNumResultCols after a statement is executed.

You can have multiple concurrent calls for meta data. The system catalog procedures underlying the ODBC catalog API
implementations can be called by the ODBC driver while it is using static server cursors. This allows applications to concurrently
process multiple calls to ODBC catalog functions.

If an application uses a particular set of meta data more than once, it will probably benefit by caching the information in private
variables when it is first obtained. This eliminates the overhead of later calls to the ODBC catalog functions for the same
information (which forces the driver to make roundtrips to the server).

To retrieve result set information

ODBC

ODBC

To process results

ODBC

ODBC

See Also

SQLColAttribute

SQLDescribeCol

SQLNumResultCols

ODBC and SQL Server (SQL Server 2000)

Assigning Storage (Binding)
An application can assign storage for results before or after it executes an SQL statement. If an application prepares or executes
the SQL statement first, it can inquire about the result set before it assigns storage for results. For example, if the result set is
unknown, the application must retrieve the number of columns before it can assign storage for them.

To associate storage for a column of data, an application calls SQLBindCol and passes it:

The data type to which the data is to be converted.

The address of an output buffer for the data.

The application must allocate this buffer, and it must be large enough to hold the data in the form to which it is converted.

The length of the output buffer.

This value is ignored if the returned data has a fixed width in C, such as an integer, real number, or date structure.

The address of a storage buffer in which to return the number of bytes of available data.

An application can also bind result set columns to arrays of program variables to support fetching result set rows in blocks. There
are two different types of array binding:

Column-wise binding is done when each individual column is bound to its own array of variables.

Column-wise binding is specified by calling SQLSetStmtAttr with Attribute set to SQL_ATTR_ROW_BIND_TYPE and
ValuePtr set to SQL_BIND_BY_COLUMN. All of the arrays must have the same number of elements.

Row-wise binding is done when all of the parameters in the SQL statement are bound as a unit to an array of structures that
contain the individual variables for the parameters.

Row-wise binding is specified by calling SQLSetStmtAttr with Attribute set to SQL_ATTR_ROW_BIND_TYPE and ValuePtr
set to the size of the structure holding the variables that will receive the result set columns.

The application also sets SQL_ATTR_ROW_ARRAY_SIZE to the number of elements in the column or row arrays, and sets
SQL_ATTR_ROW_STATUS_PTR and SQL_ATTR_ROWS_FETCHED_PTR.

To process results

ODBC

ODBC

See Also

SQLBindCol

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Fetching Result Data
An ODBC application has three options for fetching result data.

The first option is based on SQLBindCol. Before fetching the result set, the application uses SQLBindCol to bind each column in
the result set to a program variable. After the columns have been bound, the driver transfers the data of the current row into the
variables bound to the result set columns each time the application calls SQLFetch or SQLFetchScroll. The driver handles data
conversions if the result set column and program variable have different data types. If the application has
SQL_ATTR_ROW_ARRAY_SIZE set greater than 1, it can bind result columns to arrays of variables, which will all be filled on each
call to SQLFetchScroll.

The second option is based on SQLGetData. The application does not use SQLBindCol to bind result set columns to program
variables. After each call to SQLFetch, the application calls SQLGetData once for each column in the result set. SQLGetData
instructs the driver to transfer data from a specific result set column to a specific program variable and specifies the data types of
the column and variable. This allows the driver to convert data if the result column and program variable have different data
types. Text, ntext, and image columns are typically too large to fit into a program variable but can still be retrieved using
SQLGetData. If the text, ntext, or image data in the result column is larger than the program variable, SQLGetData returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (string data, right truncated). Successive calls to SQLGetData return successive
chunks of the text or image data. When the end of the data is reached, SQLGetData returns SQL_SUCCESS. Each fetch returns a
set of rows, or rowset, if SQL_ATTR_ROW_ARRAY_SIZE is greater than 1. Before using SQLGetData, you must first use
SQLSetPos to specify a specific row within the rowset as the current row.

The third option is to use a mix of SQLBindCol and SQLGetData. An application could, for example, bind the first ten columns of
a result set and then, on each fetch, call SQLGetData three times to retrieve the data from three unbound columns. This would
typically be used when a result set contains one or more text or image columns.

Depending on the cursor options set for the result set, an application can also use the scrolling options of SQLFetchScroll to
scroll around the result set.

Excess use of SQLBindCol to bind a result set column to a program variable is expensive because SQLBindCol causes an ODBC
driver to allocate memory. When you bind a result column to a variable, that binding remains in effect until you either call
SQLFreeHandle to free the statement handle or call SQLFreeStmt with fOption set to SQL_UNBIND. The bindings are not
automatically undone when the statement completes.

This logic allows you to effectively deal with executing the same SELECT statement several times with different parameters.
Because the result set keeps the same structure, you can bind the result set once, process all the SELECT statements, then call
SQLFreeStmt with fOption set to SQL_UNBIND after the last execution. You should not call SQLBindCol to bind the columns in a
result set without first calling SQLFreeStmt with fOption set to SQL_UNBIND to free any previous bindings.

When using SQLBindCol, you can either do row-wise or column-wise binding. Row-wise binding is somewhat faster than
column-wise binding.

You can use SQLGetData to retrieve data on a column-by-column basis instead of binding result set columns using SQLBindCol.
If a result set contains only a few rows, using SQLGetData instead of SQLBindCol is faster; otherwise, SQLBindCol gives the best
performance. If you do not always put the data in the same set of variables, you should use SQLGetData instead of constantly
rebinding. You can only use SQLGetData on columns that are in the select list after all columns are bound with SQLBindCol. The
column must also appear after any columns on which you have already used SQLGetData.

The ODBC functions that deal with moving data into or out of program variables, such as SQLGetData, SQLBindCol, and
SQLBindParameter, support implicit data type conversion. For example, if an application binds an integer column to a character
string program variable, the driver automatically converts the data from integer to character before placing it into the program
variable.

Data conversion in applications should be minimized. Unless data conversion is required for the processing done by the
application, applications should bind columns and parameters to program variables of the same data type. If the data must be
converted from one type to another, however, it is more efficient to have the driver do the conversion than doing it in the
application. The Microsoft® SQL Server™ ODBC driver normally just transfers data directly from the network buffers to the
variables of the application. Requesting the driver to do data conversion forces the driver to buffer the data and use CPU cycles to
convert the data.

Program variables should be large enough to hold data transferred in from a column, except for text, ntext, and image data. If
an application attempts to retrieve result set data and place it into a variable that is too small to hold it, the driver generates a
warning. This forces the driver to allocate memory for the message, and the driver and application both have to spend CPU cycles
processing the message and doing error handling. The application should either allocate a variable large enough to hold the data
being retrieved or use the SUBSTRING function in the select list to reduce the size of the column in the result set.

Care must be taken when using SQL_C_DEFAULT to specify the type of the C variable. SQL_C_DEFAULT specifies that the type of
the C variable matches the SQL data type of the column or parameter. If SQL_C_DEFAULT is specified for an ntext, nchar, or
nvarchar column, Unicode data is returned to the application. This can cause various problems if the application has not been
coded to handle Unicode data. The same types of problems can occur with the uniqueidentifier (SQL_GUID) data type. In these
cases, use the odbccmpt utility to set the 6.5 ODBC compatibility option until the application can be changed. With the 6.5 ODBC
compatibility option, Unicode data is converted to character and uniqueidentifier is converted to varbinary.

text, ntext, and image data is typically too large to fit into a single program variable, and is usually processed with SQLGetData
instead of SQLBindCol. When using server cursors, the SQL Server ODBC driver is optimized to not transmit the data for
unbound text, ntext, or image columns at the time the row is fetched. The text, ntext, or image data is not actually retrieved
from the server until the application issues SQLGetData for the column.

This optimization can be applied to applications so that no text, ntext, or image data is displayed while a user is scrolling up and
down a cursor. After the user selects a row, the application can call SQLGetData to retrieve the text, ntext, or image data. This
saves transmitting the text, ntext, or image data for any of the rows the user does not select and can save the transmission of
very large amounts of data.

To process results

ODBC

ODBC

See Also

SQLBindCol

SQLBindParameter

SQLFetchScroll

SQLGetData

ODBC and SQL Server (SQL Server 2000)

Mapping Data Types
The Microsoft® SQL Server™ ODBC driver maps SQL Server SQL data types to ODBC SQL data types. The illustration below
shows SQL Server SQL data types and the ODBC SQL data types to which they map. It also shows ODBC SQL data types and their
corresponding ODBC C data types, and the supported and default conversions.

Note The SQL Server timestamp data type maps to the SQL_BINARY or SQL_VARBINARY ODBC data type because the values in
timestamp columns are not datetime values, but binary(8) or varbinary(8) values that indicate the sequence of SQL Server
activity on the row. If the SQL Server ODBC driver encounters a SQL_C_WCHAR (Unicode) value that is an odd number of bytes,
the trailing odd byte is truncated.

Dealing with sql_variant data type in ODBC

The sql_variant data type column can contain any of the data types in SQL Server except large objects (LOBs), such as text, ntext,
image. For example, the column could contain smallint values for some rows, float values for other rows, and char/nchar values in
the remainder.

The sql_variant data type is similar to the variant data type in Microsoft Visual Basic®.

Retrieving Data from the Server

ODBC does not have a notion of variant types. This limits the use of the sql_variant data type with an ODBC driver in SQL Server
2000. In SQL Server 2000, if binding is specified, the sql_variant data type must be bound to one of the documented ODBC data
types. SQL_CA_SS_VARIANT_TYPE, a new attribute specific to the SQL Server ODBC driver, returns the data type of an instance
in the sql_variant column to the user.

If no binding is specified, the SQLGetData function can be used to determine the data type of an instance in the sql_variant
column.

To retrieve sql_variant data follow these steps.

1. Call SQLFetch to position to the row retrieved.

2. Call SQLGetData, specifying SQL_C_BINARY for the type and 0 for the data length. This forces the driver to read the
sql_variant header. The header provides the data type of that instance in the sql_variant column. SQLGetData returns the
size (in bytes) of the value.

3. Call SQLColAttribute by specifying SQL_CA_SS_VARIANT_TYPE as its attribute value. This function will return the C data
type of the instance in the sql_variant column to the client.

Here is a code segment showing the preceding steps.

while ((retcode = SQLFetch (hstmt))==SQL_SUCCESS)
{
 if (retcode != SQL_SUCCESS && retcode != SQL_SUCCESS_WITH_INFO)
 {
 SQLError (NULL, NULL, hstmt, NULL,
 &lNativeError,szError,MAX_DATA,&sReturned);
 printf ("%s\n",szError);
 goto Exit;
 }
 retcode = SQLGetData (hstmt, 1, SQL_C_BINARY,
 pBuff,0,&Indicator);//Figure out the length
 if (retcode != SQL_SUCCESS_WITH_INFO && retcode != SQL_SUCCESS)
 {
 SQLError (NULL, NULL, hstmt, NULL, &lNativeError,
 szError,MAX_DATA,&sReturned);
 printf ("%s\n",szError);
 goto Exit;
 }
 printf ("Byte length : %d ",Indicator); //Print out the byte length

 int iValue = 0;
 retcode = SQLColAttribute (hstmt, 1, SQL_CA_SS_VARIANT_TYPE, NULL,
 NULL,NULL,&iValue); //Figure out the type
 printf ("Sub type = %d ",iValue);//Print the type, the return is C_type of the column]

//Set up a new binding or do the SQLGetData on that column with
//the appropriate type
}

If the user creates the binding using SQLBindCol, the driver reads the meta data and the data. The driver then converts the data
to the appropriate ODBC type specified in the binding.

Sending Data to the Server

SQL_SS_VARIANT, a new data type specific to the SQL Server ODBC driver, is used for data sent to an sql_variant column. When
sending data to the server using parameters (for example, INSERT INTO TableName VALUES (?,?)), SQLBindParameter is used to
specify the parameter information including the C type and the corresponding SQL Server type. The SQL Server ODBC driver will
convert the C data type to one of the appropriate sql_variant subtypes.

ODBC and SQL Server (SQL Server 2000)

Data Type Usage
The Microsoft® SQL Server™ ODBC driver and SQL Server impose the following use of data types.

Data type Limitation
Date literals Date literals, when stored in a SQL_TYPE_TIMESTAMP

column (SQL Server data types of datetime or
smalldatetime), have a time value of 12:00:00.000 A.M.

money and smallmoney Only the integer parts of the money and smallmoney
data types are significant. If the decimal part of SQL
money data is truncated during data type conversion,
the SQL Server ODBC driver returns a warning, not an
error.

SQL_BINARY (nullable) When connected to an instance of SQL Server version
6.0 and earlier, if a SQL_BINARY column is nullable, the
data that is stored in the data source is not padded with
zeroes. When data from such a column is retrieved, the
SQL Server ODBC driver pads it with zeroes on the right.
However, data that is created in operations performed by
SQL Server, such as concatenation, does not have such
padding.

Also, when data is placed in such a column in an instance
of SQL Server 6.0 or earlier, SQL Server truncates the
data on the right if it is too long to fit into the column.

SQL_CHAR (truncation) When connected to an instance of SQL Server 6.0 and
earlier, and data is placed into a SQL_CHAR column, SQL
Server truncates it on the right without warning if the
data is too long to fit into the column.

SQL_CHAR (nullable) When connected to an instance of SQL Server 6.0 and
earlier, if a SQL_CHAR column is nullable, the data that is
stored in the data source is not padded with blanks.
When data from such a column is retrieved, the SQL
Server ODBC driver pads it with blanks on the right.
However, data that is created in operations performed by
SQL Server, such as concatenation, does not have such
padding.

SQL_LONGVARBINARY,
SQL_LONGVARCHAR,
SQL_WLONGVARCHAR

Updates of columns with SQL_LONGVARBINARY,
SQL_LONGVARCHAR, or SQL_WLONGVARCHAR data
types (using a WHERE clause) that affect multiple rows
are fully supported when connected to an instance of
SQL Server 6.x and later. When connected to an instance
of SQL Server 4.2x, an S1000 error "Partial insert/update.
The insert/update of a text or image column(s) did not
succeed" is returned if the update affects more than one
row.

String function parameters string_exp parameters to the string functions must be of
data type SQL_CHAR or SQL_VARCHAR.
SQL_LONG_VARCHAR data types are not supported in
the string functions. The count parameter must be less
than or equal to 8,000 because the SQL_CHAR and
SQL_VARCHAR data types are limited to a maximum
length of 8,000 characters. When connected to an
instance of SQL Server 6.5 or earlier, the limit is 255
instead of 8000.

Time literals Time literals, when stored in a SQL_TIMESTAMP column
(SQL Server data types of datetime or smalldatetime),
have a date value of January 1, 1900.

timestamp Only a NULL value can be manually inserted into a
timestamp column. However, because timestamp
columns are automatically updated by SQL Server, a
NULL value is overwritten.

tinyint The SQL Server tinyint data type is unsigned. A tinyint
column is bound to a variable of data type
SQL_C_UTINYINT by default.

User-defined data types When connected to an instance of SQL Server 4.2x, the
SQL Server ODBC driver adds NULL to a column
definition that does not explicitly declare a column's
nullability. Therefore, the nullability that is stored in the
definition of a user-defined data type is ignored.

When connected to an instance of SQL Server 4.2x,
columns with a user-defined data type that has a base
data type of char or binary and for which no nullability
is declared are created as data type varchar or
varbinary. SQLColAttribute, SQLColumns, and
SQLDescribeCol return SQL_VARCHAR or
SQL_VARBINARY as the data type for these columns.
Data that is retrieved from these columns is not padded.

LONG data types data-at-execution parameters are restricted for both the
SQL_LONGVARBINARY and the SQL_LONGVARCHAR
data types.

ODBC and SQL Server (SQL Server 2000)

Autotranslation of Character Data
Character data, such as ANSI character variables declared with SQL_C_CHAR or data stored in Microsoft® SQL Server™ using the
char, varchar, or text data types, can represent only a limited number of characters. Character data stored using one byte per
character can only represent 256 characters. The values stored in SQL_C_CHAR variables are interpreted using the ANSI code
page (ACP) of the client computer. The values stored using char, varchar, or text data types on the server are evaluated using the
ACP of the server.

If both the server and the client have the same ACP, then they have no problems in interpreting the values stored in SQL_C_CHAR,
char, varchar, or text objects. If the server and client have different ACPs, then SQL_C_CHAR data from the client may be
interpreted as a different character on the server if it is used in char, varchar, or text columns, variables, or parameters. For
example, a character byte containing the value 0xA5 is interpreted as the character Ñ on a computer using code page 437 and is
interpreted as the yen sign (¥) on a computer running code page 1252.

Unicode data is stored using two bytes per character. All extended characters are covered by the Unicode specification, so all
Unicode characters are interpreted the same by all computers.

The AutoTranslate feature of the SQL Server ODBC driver attempts to minimize the problems in moving character data between a
client and a server that have different code pages. AutoTranslate can be set in the connect string of SQLDriverConnect, in the
configuration string of SQLConfigDataSource, or when configuring data sources for the SQL Server ODBC driver using ODBC
Administrator.

When AutoTranslate is no, no conversions are done on data moved between SQL_C_CHAR variables on the client and char,
varchar, or text columns, variables, or parameters in a SQL Server database. The bit patterns may be interpreted differently on
the client and server computers if the data contains extended characters and the two computers have different code pages. The
data will be interpreted the same if both computers have the same code page.

When AutoTranslate is yes, the ODBC driver uses Unicode to convert data moved between SQL_C_CHAR variables on the client
and char, varchar, or text columns, variables, or parameters in a SQL Server database:

When data is sent from an SQL_C_CHAR variable on the client to a char, varchar, or text column, variable, or parameter in
an SQL Server database, the ODBC driver first converts from SQL_C_CHAR to Unicode using the ACP of the client, then from
Unicode back to character using the ACP of the server.

When data is sent from a char, varchar, or text column, variable, or parameter in a SQL Server database to a SQL_C_CHAR
variable on the client, the ODBC driver first converts from character to Unicode using the ACP of the server, then from
Unicode back to SQL_C_CHAR using the ACP of the client.

Because all of these conversions are done by the SQL Server ODBC driver executing on the client, the server ACP must be one of
the code pages installed on the client computer.

Making the character conversions through Unicode ensures the proper conversion of all characters that exist in both code pages.
If a character exists in one code page but not another, however, then the character cannot be represented in the target code page.
For example, code page 1252 has the registered trademark symbol (®), while code page 437 does not.

The AutoTranslate setting has no effect on these conversions:

Moving data between character SQL_C_CHAR client variables and Unicode nchar, nvarchar, or ntext columns, variables, or
parameters in SQL Server databases.

Moving data between Unicode SQL_C_WCHAR client variables and character char, varchar, or text columns, variables, or
parameters in SQL Server databases.

Data always must be converted when moved from character to Unicode.

See Also

Collations

SQLConfigDataSource

SQLDriverConnect

ODBC and SQL Server (SQL Server 2000)

Using Cursors
ODBC supports a cursor model that allows:

Several types of cursors.

Scrolling and positioning within a cursor.

Several concurrency options.

Positioned updates.

ODBC applications rarely declare and open cursors or use any cursor-related Transact-SQL statements. ODBC automatically
opens a cursor for every result set returned from an SQL statement. The characteristics of the cursors are controlled by statement
attributes set with SQLSetStmtAttr before the SQL statement is executed. The ODBC API functions for processing result sets
support the full range of cursor functionality, including fetching, scrolling, and positioned updates.

This is a comparison of how Transact-SQL scripts and ODBC applications work with cursors.

Action Transact-SQL ODBC
Define cursor behavior Specify through DECLARE

CURSOR parameters
Set cursor attributes by
using SQLSetStmtAttr

Open a cursor DECLARE CURSOR
OPEN cursor_name

SQLExecDirect or
SQLExecute

Fetch rows FETCH SQLFetch or
SQLFetchScroll

Positioned update WHERE CURRENT OF clause
on UPDATE or DELETE

SQLSetPos

Close a cursor CLOSE cursor_name
DEALLOCATE

SQLCloseCursor

The server cursors implemented in Microsoft® SQL Server™ support the functionality of the ODBC cursor model. The SQL Server
ODBC driver uses server cursors to support the cursor functionality of the ODBC API.

See Also

CLOSE

Cursors

DEALLOCATE

DECLARE CURSOR

FETCH

OPEN

SQLCloseCursor

SQLFetchScroll

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

How Cursors Are Implemented
ODBC applications control the behavior of a cursor by setting one or more statement attributes before executing an SQL
statement. ODBC has two different ways to specify the characteristics of a cursor:

Cursor type

Cursor types are set using the SQL_ATTR_CURSOR_TYPE attribute of SQLSetStmtAttr. The ODBC cursor types are forward-
only, static, keyset-driven, mixed, and dynamic. Setting the cursor type was the original method of specifying cursors in
ODBC.

Cursor behavior

Cursor behavior is set using the SQL_ATTR_CURSOR_SCROLLABLE and SQL_ATTR_CURSOR_SENSITIVITY attributes of
SQLSetStmtAttr. These attributes are modeled on the SCROLL and SENSITIVE keywords defined for the DECLARE CURSOR
statement in SQL-92 and ISO SQL standards. These two SQL-92/ISO options were introduced in ODBC version 3.0.

The characteristics of an ODBC cursor should be specified using either one or the other of these two methods, with the preference
being to use the ODBC cursor types. While you can set all three options for the same cursor, the Microsoft ODBC 3.0
Programmer's Reference warns that this can prevent an ODBC driver from being able to efficiently implement the cursor.

In addition to setting the type of a cursor, ODBC applications also set other options, such as the number of rows returned on each
fetch, concurrency options, and transaction isolation levels. These options can be set for either ODBC-style cursors (forward-only,
static, keyset-driven, mixed, and dynamic) or SQL-92/ISO style cursors (scrollability and sensitivity).

The Microsoft® SQL Server™ ODBC driver supports several ways to physically implement the various types of cursors. The driver
implements some types of cursors using a SQL Server default result set; it implements others as server cursors or by using the
ODBC Cursor Library.

To use cursors

ODBC

ODBC

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Using Default Result Sets
Using Default Result Sets

The default ODBC cursor attributes are:

SQLSetStmtAttr(hstmt, SQL_ATTR_CURSOR_TYPE, SQL_CURSOR_FORWARD_ONLY);
SQLSetStmtAttr(hstmt, SQL_ATTR_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtAttr(hstmt, SQL_ATTR_ROW_ARRAY_SIZE, 1);

Whenever these attributes are set to their defaults, the Microsoft® SQL Server™ ODBC driver uses a SQL Server default result set.
Default result sets can be used for any SQL statement supported by SQL Server, and are the most efficient method of transferring
an entire result set to the client.

Default result sets do not support multiple active statements on the same connection. After an SQL statement is executed on a
connection, the server does not accept commands (except a request to cancel the rest of the result set) from the client on that
connection until all the rows in the result set have been processed. To cancel the remainder of a partially processed result set, call
SQLCloseCursor or SQLFreeStmt with the fOption parameter set to SQL_CLOSE. To finish a partially processed result set and
test for the presence of another result set, call SQLMoreResults. If an ODBC application attempts a command on a connection
handle before a default result set has been completely processed, the call generates SQL_ERROR and a call to SQLGetDiagRec
returns:

szSqlState: "HY000", pfNativeError: 0
szErrorMsg: "[Microsoft][SQL Server ODBC Driver]
 Connection is busy with results for another hstmt."

To use cursors

ODBC

ODBC

See Also

SQLCloseCursor

SQLFreeStmt

SQLMoreResults

ODBC and SQL Server (SQL Server 2000)

Using Server Cursors
Using Server Cursors

If an ODBC application sets any of the ODBC cursor attributes to anything other than the defaults, then the Microsoft® SQL
Server™ ODBC driver requests the server to implement an API server cursor of the same type. The use of API server cursors frees
memory on the client and can significantly reduce network traffic between the client and server.

A potential drawback of API server cursors is that they currently do not support all SQL statements. API server cursors cannot be
used to execute:

Batches or stored procedures that return multiple result sets.

SELECT statements that contain COMPUTE, COMPUTE BY, FOR BROWSE, or INTO clauses.

An EXECUTE statement referencing a remote stored procedure.

When connected to an instance of SQL Server 2000, attempting to execute a statement with these characteristics using a server
cursor results in the cursor being converted to a default result set. When connected to earlier versions of SQL Server, the attempt
results in an error.

See Also

Cursor Implementations

ODBC and SQL Server (SQL Server 2000)

ODBC Cursor Library
ODBC Cursor Library

Some ODBC drivers only support the default cursor settings; these drivers also do not support positioned cursor operations, such
as SQLSetPos. The ODBC cursor library is a component of the ODBC SDK used to implement block or static cursors on a driver
that normally does not support them. The cursor library also implements positioned UPDATE and DELETE statements and
SQLSetPos for the cursors it creates.

The ODBC cursor library is implemented as a layer between the ODBC Driver Manager and an ODBC driver. If the ODBC cursor
library is loaded, the ODBC Driver Manager routes all cursor-related commands to the cursor library instead of the driver. The
cursor library implements a cursor by fetching the entire result set from the underlying driver and caching the result set on the
client. When using the ODBC cursor library, the application is limited to the cursor functionality of the cursor library; any support
for additional cursor functionality in the underlying driver is not available to the application.

There is little need to use the ODBC cursor library with the Microsoft® SQL Server™ ODBC driver because the driver itself
supports more cursor functionality than the ODBC cursor library. The only reason to use the ODBC cursor library with the SQL
Server ODBC driver is because the driver implements its cursor support through server cursors, and server cursors do not
support all SQL statements. Anytime there is a need to have a static cursor with stored procedures, batches, or SQL statements
containing COMPUTE, COMPUTE BY, FOR BROWSE, or INTO, consider using the ODBC cursor library. However, care must be used
with the cursor library because it caches the entire result set on the client, which can use large amounts of memory and slow
performance.

An application invokes the cursor library on a connection-by-connection basis by using SQLSetConnectAttr to set the
SQL_ATTR_ODBC_CURSORS connection attribute before connecting to a data source. SQL_ATTR_ODBC_CURSORS is set to one of
three values:

SQL_CUR_USE_ODBC

When this option is set with the SQL Server ODBC driver, the ODBC cursor library overrides the SQL Server ODBC driver's native
cursor support. Only the cursor types supported by the cursor library can be used for the connection; server cursors cannot be
used.

SQL_CUR_USE_DRIVER

When this option is set, all of the cursor support native to the SQL Server ODBC driver can be used for the connection. The ODBC
cursor library cannot be used. All cursors are implemented as server cursors.

SQL_CUR_USE_IF_NEEDED

When this option is set, the effect is the same as SQL_CUR_USE_DRIVER when used with the SQL Server ODBC driver. At connect
time, the ODBC Driver Manager tests to see if the ODBC driver being connected to supports the SQL_FETCH_PRIOR option of
SQLFetchScroll. If the driver does not support the option, the ODBC Driver Manager loads the ODBC cursor library. If the driver
does support the option, the ODBC Driver Manager does not load the ODBC cursor library and the application uses the native
support of the driver. Because the SQL Server ODBC driver supports SQL_FETCH_PRIOR, the ODBC Driver Manager does not load
the ODBC cursor library.

The cursor library (shipped with the SQL Server ODBC driver) allows applications to use multiple active statements on a
connection, as well as scrollable, updatable cursors. The cursor library, Odbccr32.dll for ANSI applications and Odbccu32.dll for
Unicode applications, must be loaded to support this functionality. Use SQLSetConnectAttr to specify how the cursor library
should be used and SQLSetStmtAttr to specify the cursor type, concurrency, and rowset size.

See Also

Client Cursors

SQLFetchScroll

SQLSetConnectAttr

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Cursor Types
ODBC defines four cursor types supported by Microsoft® SQL Server™ and the SQL Server ODBC driver. These cursors vary in
their ability to detect changes to the result set and in the resources, such as memory and space in tempdb, they consume. A
cursor can detect changes to rows only when it attempts to refetch those rows; there is no way for the data source to notify the
cursor of changes to the currently fetched rows. A cursor's ability to detect changes not made through the cursor is also
influenced by the transaction isolation level.

These are the four ODBC cursor types supported by SQL Server:

Forward-only cursors do not support scrolling; they only support fetching rows serially from the start to the end of the
cursor.

Static cursors are built in tempdb when the cursor is opened. They always display the result set as it was when the cursor
was opened. They never reflect changes to the data. SQL Server static cursors are always read-only. Because a static server
cursor is built as a work table in tempdb, the size of the cursor result set cannot exceed the maximum row size allowed by
SQL Server.

Keyset-driven cursors have the membership and order of rows in the result set fixed when the cursor is opened. Changes to
nonkey columns are visible through the cursor.

Dynamic cursors are the opposite of static cursors. Dynamic cursors reflect all changes made to the rows in their result set.
The data values, order, and membership of the rows in the result set can change on each fetch.

See Also

Cursor Types

ODBC and SQL Server (SQL Server 2000)

Cursor Behaviors
ODBC supports the SQL-92/ISO options for specifying the behavior of cursors by specifying their scrollability and sensitivity.
These behaviors are specified by setting the SQL_ATTR_CURSOR_SCROLLABLE and SQL_ATTR_CURSOR_SENSITIVITY options on
a call to SQLSetStmtAttr. The Microsoft® SQL Server™ ODBC driver implements these options by requesting server cursors with
the following characteristics:

Cursor behavior settings Server cursor characteristics requested
SQL_SCROLLABLE and
SQL_SENSITIVE

Keyset-driven cursor and version-based
optimistic concurrency

SQL_SCROLLABLE and
SQL_INSENSITIVE

Static cursor and read-only concurrency

SQL_SCROLLABLE and
SQL_UNSPECIFIED

Static cursor and read-only concurrency

SQL_NONSCROLLABLE and
SQL_SENSITIVE

Forward-only cursor and version-based
optimistic concurrency

SQL_NONSCROLLABLE and
SQL_INSENSITIVE

Default result set (forward-only, read-only)

SQL_NONSCROLLABLE and
SQL_UNSPECIFIED

Default result set (forward-only, read-only)

Version-based optimistic concurrency requires a timestamp column in the underlying table. If version-based optimistic
concurrency control is requested on a table that does not have a timestamp column, the server uses values-based optimistic
concurrency.

Scrollability

When SQL_ATTR_CURSOR_SCROLLABLE is set to SQL_SCROLLABLE, the cursor supports all of the different values for the
FetchOrientation parameter of SQLFetchScroll. When SQL_ATTR_CURSOR_SCROLLABLE is set to SQL_NONSCROLLABLE, the
cursor only supports a FetchOrientation value of SQL_FETCH_NEXT.

Sensitivity

When SQL_ATTR_CURSOR_SENSITIVITY is set to SQL_SENSITIVE, the cursor reflects data modifications made by the current user
or committed by other users. When SQL_ATTR_CURSOR_SENSITIVITY is set to SQL_INSENSITIVE, the cursor does not reflect data
modifications.

ODBC and SQL Server (SQL Server 2000)

Cursor Properties
The overall characteristics of a cursor are determined by setting either the ODBC-style cursor type or the SQL-92/ISO cursor
behaviors. Additional statement and connection attributes also affect the behavior of a cursor:

Rowset size statement

Cursor concurrency statement

Transaction isolation-level connection

ODBC and SQL Server (SQL Server 2000)

Cursor Rowset Size
Cursor Rowset Size

ODBC cursors are not limited to fetching one row at a time; they can retrieve multiple rows in each call to SQLFetch or
SQLFetchScroll. When working with a client/server database such as Microsoft® SQL Server™, it is more efficient to fetch
several rows at a time. The number of rows returned on a fetch is called the rowset size and is specified using the
SQL_ATTR_ROW_ARRAY_SIZE of SQLSetStmtAttr. Cursors whose rowset size is greater than 1 are called block cursors.

There are two options for binding result set columns for block cursors:

Column-wise binding

Each column is bound to an array of variables. Each array has the same number of elements as the rowset size.

Row-wise binding

An array is built using structures that hold the data and indicators for all the columns in a row. The array has the same
number of structures as the rowset size.

When either column-wise or row-wise binding is used, each call to SQLFetch or SQLFetchScroll fills the bound arrays with data
from the rowset retrieved.

SQLGetData can also be used to retrieve column data from a block cursor. Because SQLGetData works one row at a time,
SQLSetPos must be called to set a specific row in the rowset as the current row before calling SQLGetData.

The SQL Server ODBC driver offers an optimization using rowsets to quickly retrieve an entire result set. To use this optimization,
set the cursor attributes to their defaults (forward-only, read-only, rowset size = 1) at the time SQLExecDirect or SQLExecute is
called. The ODBC driver sets up a default result set, which is more efficient than server cursors when only transferring results to
the client without scrolling. After the statement has been executed, increase the rowset size and use either column-wise or row-
wise binding. This allows SQL Server to use a default result set to efficiently send result rows to the client, while the ODBC driver
continuously pulls rows from the network buffers on the client.

See Also

SQLFetchScroll

SQLGetData

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Cursor Concurrency
Cursor Concurrency

Cursor operations, like cursor types, are affected by the concurrency options set by the application. Concurrency options are set
using the SQL_ATTR_CONCURRENCY option of SQLSetStmtAttr. The concurrency types are:

Read-only (SQL_CONCUR_READONLY)

Values (SQL_CONCUR_VALUES)

Row version (SQL_CONCUR_ROWVER)

Lock (SQL_CONCUR_LOCK)

For more information about the types of locks generated by these concurrency options, see Cursor Concurrency.

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Cursor Transaction Isolation Level
Cursor Transaction Isolation Level

The complete locking behavior of cursors is based on an interaction between concurrency attributes and the transaction isolation
level set by the client. ODBC clients set the transaction isolation level using the SQLSetConnectAttr SQL_ATTR_TXN_ISOLATION
attribute. The locking behavior of a specific cursor environment is determined by combining the locking behaviors of the
concurrency and transaction isolation level options.

The following cursor transaction isolation levels are supported by the Microsoft® SQL Server™ ODBC driver:

Read committed (SQL_TXN_READ_COMMITTED)

Read uncommitted (SQL_TXN_READ_UNCOMMITTED)

Repeatable read (SQL_TXN_REPEATABLE_READ)

Serializable (SQL_TXN_SERIALIZABLE)

For more information about the types of locks generated by the transaction isolation levels, see Cursor Transaction Isolation
Levels.

Note that the ODBC API specifies additional transaction isolation levels, but these are not supported by SQL Server or the SQL
Server ODBC driver.

ODBC and SQL Server (SQL Server 2000)

Cursor Programming Details (ODBC)
Choosing the correct cursor type can improve application performance. Under certain conditions, Microsoft® SQL Server™ may
implicitly convert a cursor type if you execute an SQL statement not supported by the cursor type you requested.

See Also

Choosing a Cursor Type

ODBC and SQL Server (SQL Server 2000)

Implicit Cursor Conversions (ODBC)
Implicit Cursor Conversions (ODBC)

Applications can request a cursor type through SQLSetStmtAttr and then execute an SQL statement that is not supported by
server cursors of the type requested. A call to SQLExecute or SQLExecDirect returns SQL_SUCCESS_WITH_INFO and
SQLGetDiagRec returns:

szSqlState = "01S02", *pfNativeError = 0,
szErrorMsg="[Microsoft][ODBC SQL Server Driver]Cursor type changed"

The application can determine what type of cursor is now being used by calling SQLGetStmtOption with fOption set to
SQL_CURSOR_TYPE. The cursor type conversion applies to only one statement. The next SQLExecDirect or SQLExecute will be
done using the original statement cursor settings.

See Also

Implicit Cursor Conversions

ODBC and SQL Server (SQL Server 2000)

Using Autofetch with ODBC Cursors
Using Autofetch with ODBC Cursors

When connected to an instance of Microsoft® SQL Server™ 2000 , the SQL Server ODBC driver supports an autofetch option
when using any server cursor type. With autofetch, the SQLExecute or SQLExecDirect function that opens the cursor also has an
implicit SQLFetchScroll(SQL_FIRST) function. The rows comprising the first rowset are returned to the bound application
variables as part of the statement execution, saving another roundtrip across the network to the server. SQLGetData is not
supported when the autofetch option is enabled; the result set columns must be bound to program variables.

Applications request autofetch by setting the driver-specific SQL_SOPT_SS_CURSOR_OPTIONS statement attribute to
SQL_CO_AF.

ODBC and SQL Server (SQL Server 2000)

Fast Forward-Only Cursors (ODBC)
Fast Forward-Only Cursors (ODBC)

When connected to an instance of Microsoft® SQL Server™ 2000, the SQL Server ODBC driver supports performance
optimizations for forward-only, read-only cursors. Fast forward-only cursors are implemented internally by the driver and server
in a manner very similar to default result sets. Besides having high performance, fast forward-only cursors also have these
characteristics:

SQLGetData is not supported. The result set columns must be bound to program variables.

The server automatically closes the cursor when the end of the cursor is detected. The application must still call
SQLCloseCursor or SQLFreeStmt(SQL_CLOSE), but the driver does not have to send the close request to the server. This
saves a roundtrip across the network to the server.

If a result set contains a text, ntext, or image column, a fast forward-only cursor is implicitly converted to a dynamic cursor and
SQL_SUCCESS_WITH_INFO is returned to the application. SQLGetData is enabled for the dynamic cursor.

The application requests fast forward-only cursors using the driver-specific statement attribute
SQL_SOPT_SS_CURSOR_OPTIONS. When set to SQL_CO_FFO, fast forward-only cursors are enabled without autofetch. When set
to SQL_CO_FFO_AF, the autofetch option is also enabled. For more information about autofetch, see Using Autofetch with ODBC
Cursors.

Fast forward-only cursors with autofetch can be used to retrieve a small result set with only one roundtrip to the server. In these
steps, n is the number of rows to be returned:

1. Set SQL_SOPT_SS_CURSOR_OPTIONS to SQL_CO_FFO_AF.

2. Set SQL_ATTR_ROW_ARRAY_SIZE to n + 1.

3. Bind the result columns to arrays of n + 1 elements (to be safe if n + 1 rows are actually fetched).

4. Open the cursor with either SQLExecDirect or SQLExecute.

5. If the return status is SQL_SUCCESS, then call SQLFreeStmt or SQLCloseCursor to close the cursor. All data for the rows
will be in the bound program variables.

With these steps, the SQLExecDirect or SQLExecute sends a cursor open request with the autofetch option enabled. On that
single request from the client, the server:

Opens the cursor.

Builds the result set and sends the rows to the client.

Because the rowset size was set to 1 more than the number of rows in the result set, the server detects the end of the cursor
and closes the cursor.

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Scrolling and Fetching Rows
To use a scrollable cursor, an ODBC application must:

Set the cursor capabilities using SQLSetStmtAttr.

Open the cursor using SQLExecute or SQLExecDirect.

Scroll and fetch rows using SQLFetch or SQLFetchScroll.

Both SQLFetch and SQLFetchSroll can fetch blocks of rows at a time. The number of rows returned is specified using
SQLSetStmtAttr to set the SQL_ATTR_ROW_ARRAY_SIZE parameter.

ODBC applications can use SQLFetch to fetch through a forward-only cursor.

SQLFetchScroll is used to scroll around a cursor. SQLFetchScroll supports fetching the next, prior, first, and last rowsets, as well
as relative fetching (fetch the rowset n rows from the start of the current rowset) and absolute fetching (fetch the rowset starting
at row n). If n is negative in an absolute fetch, rows are counted from the end of the result set. Thus, an absolute fetch of row -1
means to fetch the rowset that starts with the last row in the result set.

Applications that use SQLFetchScroll only for its block cursor capabilities, such as reports, are likely to pass through the result set
a single time, using only the option to fetch the next rowset. Screen-based applications, on the other hand, can take advantage of
all of the capabilities of SQLFetchScroll. If the application sets the rowset size to the number of rows displayed on the screen and
binds the screen buffers to the result set, it can translate scroll bar operations directly to calls to SQLFetchScroll.

Scroll bar operation SQLFetchScroll scrolling option
Page up SQL_FETCH_PRIOR
Page down SQL_FETCH_NEXT
Line up SQL_FETCH_RELATIVE with FetchOffset equal to -1
Line down SQL_FETCH_RELATIVE with FetchOffset equal to 1
Scroll box to top SQL_FETCH_FIRST
Scroll box to bottom SQL_FETCH_LAST
Random scroll box position SQL_FETCH_ABSOLUTE

To fetch and update rowsets

ODBC

ODBC

See Also

Fetching and Scrolling

SQLFetchScroll

ODBC and SQL Server (SQL Server 2000)

Bookmarking Rows
Bookmarking Rows

A bookmark is a value used to identify a row of data. The meaning of the bookmark value is known only to the driver or data
source. For example, it might be as simple as a row number or as complex as a disk address. In ODBC, the application requests a
bookmark for a particular row, stores it, and passes it back to the cursor to return to the row.

When fetching rows with SQLFetchScroll, an application can use a bookmark as a basis for selecting the starting row. This is a
form of absolute addressing because it does not depend on the current cursor position. To scroll to a bookmarked row, the
application calls SQLFetchScroll with a FetchOrientation of SQL_FETCH_BOOKMARK. This operation uses the bookmark pointed
to by the SQL_ATTR_FETCH_BOOKMARK_PTR option attribute. It returns the rowset starting with the row identified by that
bookmark. An application can specify an offset for this operation in the FetchOffset argument of the call to SQLFetchScroll.
When an offset is specified, the first row of the returned rowset is determined by adding the number in the FetchOffset argument
to the number of the row identified by the bookmark. The Microsoft® SQL Server™ ODBC driver only supports bookmarks on
static and keyset cursors. If a dynamic cursor is requested when bookmarks are set on, a keyset cursor is opened instead.

Bookmarks can also be used with SQLBulkOperations to perform operations on a set of rows starting at the bookmark.

To fetch and update rowsets

ODBC

ODBC

See Also

SQLFetchScroll

ODBC and SQL Server (SQL Server 2000)

Positioned Updates (ODBC)
ODBC supports two methods for performing positioned updates in a cursor:

SQLSetPos

WHERE CURRENT OF clause

The most common approach is to use SQLSetPos, which has the following options:

SQL_POSITION

Positions the cursor on a specific row in the current rowset.

SQL_REFRESH

Refreshes program variables bound to the result set columns with the values from the row the cursor is currently positioned on.

SQL_UPDATE

Updates the current row in the cursor with the values stored in the program variables bound to the result set columns.

SQL_DELETE

Deletes the current row in the cursor.

SQLSetPos can be used with any statement result set when the statement handle cursor attributes are set to use server cursors.
The result set columns must be bound to program variables. Once the application has fetched a row it calls
SQLSetPos(SQL_POSTION) to position the cursor on the row. The application could then call SQLSetPos(SQL_DELETE) to delete
the current row, or it can move new data values into the bound program variables and call SQLSetPos(SQL_UPDATE) to update
the current row.

Applications can update or delete any row in the rowset with SQLSetPos. Calling SQLSetPos is a convenient alternative to
constructing and executing an SQL statement. SQLSetPos operates on the current rowset and can be used only after a call to
SQLFetchScroll.

Rowset size is set by a call to SQLSetStmtAttr with an attribute argument of SQL_ATTR_ROW_ARRAY_SIZE. SQLSetPos uses a
new rowset size, however, only after a call to SQLFetch or SQLFetchScroll. For example, if the rowset size is changed, then
SQLSetPos is called, and then SQLFetch or SQLFetchScroll is called; the call to SQLSetPos uses the old rowset size, but
SQLFetch or SQLFetchScroll uses the new rowset size.

The first row in the rowset is row number 1. The RowNumber argument in SQLSetPos must identify a row in the rowset; that is,
its value must be in the range between 1 and the number of rows that were most recently fetched (which may be less than the
rowset size). If RowNumber is 0, the operation applies to every row in the rowset.

The delete operation of SQLSetPos makes the data source delete one or more selected rows of a table. To delete rows with
SQLSetPos, the application calls SQLSetPos with Operation set to SQL_DELETE and RowNumber set to the number of the row to
delete. If RowNumber is 0, all rows in the rowset are deleted.

After SQLSetPos returns, the deleted row is the current row, and its status is SQL_ROW_DELETED. The row cannot be used in any
further positioned operations, such as calls to SQLGetData or SQLSetPos.

When deleting all rows of the rowset (RowNumber is equal to 0), the application can prevent the driver from deleting certain
rows by using the row operation array in the same way as for the update operation of SQLSetPos.

Every row that is deleted should be a row that exists in the result set. If the application buffers were filled by fetching and if a row
status array has been maintained, its values at each of these row positions should not be SQL_ROW_DELETED, SQL_ROW_ERROR,
or SQL_ROW_NOROW.

Positioned updates can also be done using the WHERE CURRENT OF clause on UPDATE, DELETE, and INSERT statements. WHERE
CURRENT OF requires a cursor name, which ODBC will generate when the SQLGetCursorName function is called, or which you
can specify by calling SQLSetCursorName. The general steps to perform a WHERE CURRENT OF update in an ODBC application
are:

Call SQLSetCursorName to establish a cursor name for the statement handle.

Build a SELECT statement with a FOR UPDATE OF clause and execute it.

Call SQLFetchScroll to retrieve a rowset or SQLFetch to retrieve a row.

Call SQLSetPos (SQL_POSITION) to position the cursor on the row.

Build and execute an UPDATE statement with a WHERE CURRENT OF clause using the cursor name set with
SQLSetCursorName.

As an alternative, you could call SQLGetCursorName after executing the SELECT statement instead of calling
SQLSetCursorName before executing the SELECT statement. SQLGetCursorName returns a default cursor name assigned by
ODBC if you do not set a cursor name using SQLSetCursorName.

SQLSetPos is preferred over WHERE CURRENT OF when using server cursors. If you are using a static, updatable cursor with the
ODBC cursor library, the cursor library implements WHERE CURRENT OF updates by adding a WHERE clause with the key values
for the underlying table. This can cause unintended updates if the keys in the table are not unique.

To fetch and update rowsets

ODBC

ODBC

See Also

Changing Rows with Positioned Operations

SQLFetchScroll

SQLGetCursorName

SQLGetData

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Performing Transactions
Microsoft® SQL Server™ and the SQL Server ODBC driver support the ODBC API transaction management functions. Microsoft
offers full support for local transactions on an individual server. The SQL Server ODBC driver uses these features to support the
ODBC API functions that manage transactions.

Through the use of the Microsoft Distributed Transaction Coordinator (MS DTC), the SQL Server ODBC driver can participate in
distributed transactions spanning multiple servers.

See Also

Transactions

ODBC and SQL Server (SQL Server 2000)

Transactions in ODBC
Transactions in ODBC are managed at the connection level. When an application completes a transaction, it commits or rolls back
all work done through all statement handles on that connection. To commit or roll back a transaction, applications should call
SQLEndTran rather than submitting a COMMIT or ROLLBACK statement.

An application calls SQLSetConnectAttr to switch between the two ODBC modes of managing transactions:

Autocommit mode

Each individual statement is automatically committed when it completes successfully. When running in autocommit mode
no other transaction management functions are needed.

Manual-commit mode

All executed statements are included in the same transaction until it is specifically terminated by calling SQLEndTran.

Autocommit mode is the default transaction mode for ODBC. When a connection is made, it is in autocommit mode until
SQLSetConnectAttr is called to switch to manual-commit mode by setting autocommit mode off. When an application turns
autocommit off, the next statement sent to the database starts a transaction. The transaction then remains in effect until the
application calls SQLEndTran with either the SQL_COMMIT or SQL_ROLLBACK options. The command sent to the database after
SQLEndTran starts the next transaction.

If an application switches from manual-commit to autocommit mode, the driver commits any transactions currently open on the
connection.

ODBC applications should not use Transact-SQL transaction statements (such as BEGIN TRANSACTION, COMMIT TRANSACTION,
ROLLBACK TRANSACTION) because this can result in indeterminate behavior in the driver. An ODBC application should either:

Run in autocommit mode and not use any transaction management functions or statements.

-or-

Run in manual-commit mode and use the ODBC SQLEndTran function to either commit or roll back transactions.

See Also

SQLEndTran

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

Performing Distributed Transactions
The Microsoft Distributed Transaction Coordinator (MS DTC) allows applications to extend transactions across two or more
instances of Microsoft® SQL Server™. It also allows applications to participate in transactions managed by transaction managers
that comply with the X/Open DTP XA standard. ODBC applications that use SQL Server version 6.5 or later can participate in MS
DTC transactions.

Normally, all transaction management commands are sent through the ODBC driver to the server. The application starts a
transaction by calling SQLSetConnectAttr with the autocommit mode turned off. The application then performs the updates
comprising the transaction and calls SQLEndTran with either the SQL_COMMIT or SQL_ROLLBACK option.

When using MS DTC, however, MS DTC becomes the transaction manager and the application no longer uses SQLEndTran.

To use Microsoft Distributed Transaction Coordinator

ODBC

ODBC

See Also

SQLEndTran

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

Handling Errors and Messages
When an application calls an ODBC function, the driver executes the function and returns diagnostic information in two ways: A
return code indicates the overall success or failure of an ODBC function and diagnostic records provide detailed information
about the function. Diagnostic records include a header record and status records. At least one diagnostic record, the header
record, is returned even if the function succeeds.

Diagnostic information is used at development time to catch programming errors, such as invalid handles and syntax errors in
hard-coded SQL statements. It is also used at run time to catch run-time errors and warnings, such as data truncation, rule
violations, and syntax errors in SQL statements entered by the user. Program logic is generally based on return codes.

For example, after an application calls SQLFetch to retrieve the rows in a result set, the return code indicates if the end of the
result set was reached (SQL_NO_DATA), if any informational messages were returned (SQL_SUCCESS_WITH_INFO), or if an error
occurred (SQL_ERROR).

If an ODBC driver returns anything other than SQL_SUCCESS, then the application can call SQLGetDiagRec to retrieve any
informational or error messages present. Use SQLGetDiagRec to scroll up and down the message set if there is more than one
message.

The return code SQL_INVALID_HANDLE always indicates a programming error and should never be encountered at run time. All
other return codes provide run-time information, although SQL_ERROR may indicate a programming error.

The original Microsoft® SQL Server™ native API, DB-Library for C, allows an application to install callback error-handling and
message-handling functions that return errors or messages. Some Transact-SQL statements, such as PRINT, RAISERROR, DBCC,
and SET, return their results to the DB-Library message handler function instead of to a result set. However, the ODBC API has no
such callback capability, so when the SQL Server ODBC driver detects messages coming back from SQL Server, it sets the ODBC
return code to SQL_SUCCESS_WITH_INFO or SQL_ERROR and returns the message as one or more diagnostic records. Therefore,
an ODBC application must carefully test for these return codes and call SQLGetDiagRec to retrieve message data.

To process ODBC errors

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Processing Statements That Generate Messages
Using SET SHOWPLAN and SET STATISTICS

The Transact-SQL SET statement options STATISTICS TIME and STATISTICS IO are used to get information that aids in diagnosing
long-running queries. Earlier versions of Microsoft® SQL Server™ also support the SHOWPLAN option for analyzing query plans.
An ODBC application can set these options by executing the following statements:

SQLExecDirect(hstmt, "SET SHOWPLAN ON", SQL_NTS);
SQLExecDirect(hstmt, "SET STATISTICS TIME ON", SQL_NTS);
SQLExecDirect(hstmt, "SET STATISTICS IO ON", SQL_NTS);

When SET STATISTICS TIME or SET SHOWPLAN are ON, SQLExecute and SQLExecDirect return SQL_SUCCESS_WITH_INFO,
and, at that point, the application can retrieve the SHOWPLAN or STATISTICS TIME output by calling SQLGetDiagRec until it
returns SQL_NO_DATA. Each line of SHOWPLAN data comes back in the format:

szSqlState="01000", *pfNativeError=6223,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Table Scan"

SQL Server version 7.0 replaces the SHOWPLAN option with SHOWPLAN_ALL and SHOWPLAN_TEXT, both of which return
output as a result set, not a set of messages.

Each line of STATISTICS TIME comes back in the format:

szSqlState="01000", *pfNativeError= 3613,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 SQL Server Parse and Compile Time: cpu time = 0 ms."

The output of SET STATISTICS IO is not available until the end of a result set. To get STATISTICS IO output, the application calls
SQLGetDiagRec at the time SQLFetch or SQLFetchScroll returns SQL_NO_DATA. The output of STATISTICS IO comes back in
the format:

szSqlState="01000", *pfNativeError= 3615,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Table: testshow scan count 1, logical reads: 1,
 physical reads: 0."

Using DBCC Statements

DBCC statements return their data as messages, not result sets. SQLExecDirect or SQLExecute return
SQL_SUCCESS_WITH_INFO, and the application retrieves the output by calling SQLGetDiagRec until it returns SQL_NO_DATA.

For example, the following statement returns SQL_SUCCESS_WITH_INFO:

SQLExecDirect(hstmt, "DBCC CHECKTABLE(authors)", SQL_NTS);

Calls to SQLGetDiagRec return:

szSqlState = "01000", *pfNativeError = 2536,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Checking authors"
szSqlState = "01000", *pfNativeError = 2579,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 The total number of data pages in this table is 1."
szSqlState = "01000", *pfNativeError = 7929,
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 Table has 23 data rows."
szSqlState = "01000", *pfNativeError = 2528
szErrorMsg="[Microsoft][ODBC SQL Server Driver][SQL Server]
 DBCC execution completed. If DBCC printed error messages,
 see your System Administrator."

Using PRINT and RAISERROR Statements

Transact-SQL PRINT and RAISERROR statements also return data by calling SQLGetDiagRec. PRINT statements cause the SQL
statement execution to return SQL_SUCCESS_WITH_INFO, and a subsequent call to SQLGetDiagRec returns a SQLState of 01000.
A RAISERROR with a severity of ten or lower behaves the same as PRINT. A RAISERROR with a severity of 11 or higher causes the
execute to return SQL_ERROR, and a subsequent call to SQLGetDiagRec returns SQLState 42000. For example, the following
statement returns SQL_SUCCESS_WITH_INFO:

SQLExecDirect (hstmt, "PRINT 'Some message' ", SQL_NTS);

Calling SQLGetDiagRec returns:

szSQLState = "01000", *pfNative Error = 0,
szErrorMsg= "[Microsoft] [ODBC SQL Server Driver][SQL Server]
 Some message"

The following statement returns SQL_SUCCESS_WITH_INFO:

SQLExecDirect (hstmt, "RAISERROR ('Sample error 1.', 10, -1)",
 SQL_NTS)

Calling SQLGetDiagRec returns:

szSQLState = "01000", *pfNative Error = 50000,
szErrorMsg= "[Microsoft] [ODBC SQL Server Driver][SQL Server]
 Sample error 1."

The following statement returns SQL_ERROR:

SQLExecDirect (hstmt, "RAISERROR ('Sample error 2.', 11, -1)", SQL_NTS)

Calling SQLGetDiagRec returns:

szSQLState = "42000", *pfNative Error = 50000,
szErrorMsg= "[Microsoft] [ODBC SQL Server Driver][SQL Server]
 Sample error 2."

The timing of calling SQLGetDiagRec is critical when output from PRINT or RAISERROR statements is included in a result set. The
call to SQLGetDiagRec to retrieve the PRINT or RAISERROR output must be made immediately after the statement that receives
SQL_ERROR or SQL_SUCCESS_WITH_INFO. This is straightforward when only a single SQL statement is executed, as in the
examples above. In these cases, the call to SQLExecDirect or SQLExecute returns SQL_ERROR or SQL_SUCCESS_WITH_INFO
and SQLGetDiagRec can then be called. It is less straightforward when coding loops to handle the output of a batch of SQL
statements or when executing SQL Server stored procedures.

In this case, SQL Server returns a result set for every SELECT statement executed in a batch or stored procedure. If the batch or
procedure contains PRINT or RAISERROR statements, the output for these is interleaved with the SELECT statement result sets. If
the first statement in the batch or procedure is a PRINT or RAISERROR, the SQLExecute or SQLExecDirect returns
SQL_SUCCESS_WITH_INFO or SQL_ERROR, and the application needs to call SQLGetDiagRec until it returns SQL_NO_DATA to
retrieve the PRINT or RAISERROR information.

If the PRINT or RAISERROR statement comes after an SQL statement (such as a SELECT statement), then the PRINT or RAISERROR
information is returned when SQLMoreResults positions on the result set containing the error. SQLMoreResults returns
SQL_SUCCESS_WITH_INFO or SQL_ERROR depending on the severity of the message. Messages are retrieved by calling
SQLGetDiagRec until it returns SQL_NO_DATA.

See Also

SQLMoreResults

ODBC and SQL Server (SQL Server 2000)

Diagnostic Records and Fields
Diagnostic records are associated with ODBC environment, connection, statement, or descriptor handles. When any ODBC
function raises a return code other than SQL_SUCCESS or SQL_INVALID_HANDLE, the handle called by the function has
associated diagnostic records that contain informational or error messages. These records are retained until another function is
called using that handle, at which time they are discarded. There is no limit to the number of diagnostic records that can be
associated with a handle at any one time.

There are two types of diagnostic records: header and status. The header record is record 0; when there are status records, they
are records 1 and later. Diagnostic records contain different fields for the header record and the status records. ODBC
components can also define their own diagnostic record fields.

Fields in the header record contain general information about a function's execution, including the return code, row count,
number of status records, and type of statement executed. The header record is always created unless an ODBC function returns
SQL_INVALID_HANDLE. For a complete list of fields in the header record, see SQLGetDiagField.

Fields in the status records contain information about specific errors or warnings returned by the ODBC Driver Manager, driver,
or data source, including the SQLSTATE, native error number, diagnostic message, column number, and row number. Status
records are created only if the function returns SQL_ERROR, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_NEED_DATA, or
SQL_STILL_EXECUTING. For a complete list of fields in the status records, see SQLGetDiagField.

SQLGetDiagRec retrieves a single diagnostic record along with its ODBC SQLSTATE, native error number, and diagnostic-
message fields. This functionality is similar to the ODBC 2.x SQLError function. The simplest error-handling function in ODBC 3.x
is to repeatedly call SQLGetDiagRec starting with the RecNumber parameter set to 1 and incrementing RecNumber by 1 until
SQLGetDiagRec returns SQL_NO_DATA. This is equivalent to an ODBC 2.x application calling SQLError until it returns
SQL_NO_DATA_FOUND.

ODBC 3.x supports much more diagnostic information than ODBC 2.x. This information is stored in additional fields in diagnostic
records retrieved by using SQLGetDiagField.

The Microsoft® SQL Server™ ODBC driver has driver-specific diagnostic fields that can be retrieved with SQLGetDiagField.
Labels for these driver-specific fields are defined in Odbcss.h. Use these labels to retrieve the SQL Server state, severity level,
server name, procedure name, and line number associated with each diagnostic record. Also, Odbcss.h contains definitions of the
codes the driver uses to identify Transact-SQL statements if an application calls SQLGetDiagField with DiagIdentifier set to
SQL_DIAG_DYNAMIC_FUNCTION_CODE.

SQLGetDiagField is processed by the ODBC Driver Manager using error information it caches from the underlying driver. The
ODBC Driver Manager does not cache driver-specific diagnostic fields until after a successful connection has been made.
SQLGetDiagField returns SQL_ERROR if it is called to get driver-specific diagnostic fields before a successful connection has
been completed. If an ODBC connect function returns SQL_SUCCESS_WITH_INFO, the driver-specific diagnostic fields for the
connect function are not yet available. You can start calling SQLGetDiagField for driver-specific diagnostic fields only after you
have made another ODBC function call after the connect function.

Most errors reported by the SQL Server ODBC driver can be effectively diagnosed using only the information returned by
SQLGetDiagRec. In some cases, however, the information returned by the driver-specific diagnostic fields is important in
diagnosing an error. When coding an ODBC error handler for applications using the SQL Server ODBC driver, it is a good idea to
also use SQLGetDiagField to retrieve at least the SQL_DIAG_SS_MSGSTATE and SQL_DIAG_SS_SEVERITY driver-specific fields. If
a particular error can be raised at several locations in the SQL Server code, SQL_DIAG_SS_MSGSTATE indicates to a Microsoft
support engineer specifically where an error was raised, which sometimes aids in diagnosing a problem.

To process ODBC errors

ODBC

ODBC

See Also

SQLGetDiagField

ODBC and SQL Server (SQL Server 2000)

Native Error Numbers
For errors that occur in the data source (returned by Microsoft® SQL Server™), the SQL Server ODBC driver returns the native
error number returned to it by SQL Server. For errors detected by the driver, the SQL Server driver returns a native error number
of 0. For more information about a list of native error numbers, see the error column of the sysmessages system table in the
master database in SQL Server.

For errors returned by the Net-Library, the native error number is from the underlying network software.

For errors returned by Microsoft Windows NT® 4.0 or Microsoft Windows® 95, the SQL Server ODBC driver calls the Microsoft
Win32® GetLastError function and returns that error as the native error.

To process ODBC errors

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

SQLSTATE (ODBC Error Codes)
SQLSTATEs provide detailed information about the cause of a warning or error. For errors that occur in the data source, detected
and returned by Microsoft® SQL Server™, the SQL Server ODBC driver maps the returned native error number to the appropriate
SQLSTATE. If a native error number does not have an ODBC error code to map to, the SQL Server ODBC driver returns SQLSTATE
42000 ("syntax error or access violation"). For errors that are detected by the driver, the SQL Server ODBC driver generates the
appropriate SQLSTATE.

To process ODBC errors

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Error Messages
The text of messages returned by the Microsoft® SQL Server™ ODBC driver is placed in the MessageText parameter of
SQLGetDiagRec. The source of an error is indicated by the header of the message:

[Microsoft][ODBC Driver Manager]

These errors are raised by the ODBC Driver Manager.

[Microsoft][ODBC Cursor Library]

These errors are raised by the ODBC cursor library.

[Microsoft][ODBC SQL Server Driver]

These errors are raised by the SQL Server ODBC driver. If there are no other nodes with either the name of a Net-Library or SQL
Server, then the error was encountered in the driver.

[Microsoft][ODBC SQL Server Driver][Net-Libraryname]

These errors are raised by the SQL Server Net-Library, where Net-Libraryname is the display name of a SQL Server client Net-
Library (for example, Named Pipes, Shared Memory, Multiprotocol, TCP/IP Sockets, NWLink IPX/SPX, or Banyan VINES). The
remainder of the error message contains the Net-Library function called and the function called in the underlying network API by
the TDS function. The pfNative error code returned with these errors is the error code from the underlying network protocol
stack.

[Microsoft][ODBC SQL Server Driver][SQL Server]

These errors are raised by SQL Server. The remainder of the error message is the text of the error message from SQL Server. The
pfNative code returned with these errors is the error number from SQL Server. For more information about a list of error
messages (and their numbers) that can be returned by SQL Server, see the description and error columns of the sysmessages
system table in the master database in SQL Server.

To process ODBC errors

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Running Stored Procedures
A stored procedure is an executable object stored in a database. Microsoft® SQL Server™ supports:

Stored procedures

One or more SQL statements precompiled into a single executable procedure.

Extended stored procedures

C or C++ dynamic-link libraries (DLL) written to the SQL Server Open Data Services API for extended stored procedures.
The Open Data Services API extends the capabilities of stored procedures to include C or C++ code.

When executing statements, calling a stored procedure on the data source (instead of directly executing or preparing a statement
in the client application) can provide:

Higher performance

SQL statements are parsed and compiled when procedures are created. This overhead is then saved when the procedures
are executed.

Reduced network overhead

Executing a procedure instead of sending complex queries across the network can reduce network traffic. If an ODBC
application uses the ODBC { CALL } syntax to execute a stored procedure, the ODBC driver makes additional optimizations
that eliminate the need to convert parameter data.

Greater consistency

If an organization's rules are implemented in a central resource, such as a stored procedure, they can be coded, tested, and
debugged once. Individual programmers can then use the tested stored procedures instead of developing their own
implementations.

Greater accuracy

Because stored procedures are usually developed by experienced programmers, they tend to be more efficient and have
fewer errors than code developed multiple times by programmers of varying skill levels.

Added functionality

Extended stored procedures can use C and C++ features not available in Transact-SQL statements.

To call remote procedures

ODBC

ODBC

To process return codes and output parameters

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Calling a Stored Procedure
The Microsoft® SQL Server™ ODBC driver supports both the ODBC CALL escape sequence and the Transact-SQL EXECUTE
statement for executing stored procedures; the ODBC CALL escape sequence is the preferred method. Using ODBC syntax enables
an application to retrieve the return codes of stored procedures and the SQL Server ODBC driver is also optimized to use a
protocol originally developed for sending remote procedure (RPC) calls between SQL Servers. This RPC protocol increases
performance by eliminating much of the parameter processing and statement parsing done on the server.

The ODBC CALL escape sequence for calling a procedure is:

{[?=]call procedure_name[([parameter][,[parameter]]...)]}

where procedure_name specifies the name of a procedure and parameter specifies a procedure parameter.

A procedure can have zero or more parameters. It can also return a value (as indicated by the optional parameter marker ?= at
the start of the syntax). If a parameter is an input or an input/output parameter, it can be a literal or a parameter marker. If the
parameter is an output parameter, it must be a parameter marker because the output is unknown. Parameter markers must be
bound with SQLBindParameter before the procedure call statement is executed.

Input and input/output parameters can be omitted from procedure calls. If a procedure is called with parentheses but without any
parameters, the driver instructs the data source to use the default value for the first parameter. For example:

{call procedure_name()}

If the procedure does not have any parameters, the procedure can fail. If a procedure is called without parentheses, the driver
does not send any parameter values. For example:

{call procedure_name}

Literals can be specified for input and input/output parameters in procedure calls. For example, the procedure InsertOrder has five
input parameters. The following call to InsertOrder omits the first parameter, provides a literal for the second parameter, and uses
a parameter marker for the third, fourth, and fifth parameters. (Parameters are numbered ordinally, beginning with a value of 1.)

{call InsertOrder(, 10, ?, ?, ?)}

Note that if a parameter is omitted, the comma delimiting it from other parameters must still appear. If an input or input/output
parameter is omitted, the procedure uses the default value of the parameter. Other ways to specify the default value of an input or
input/output parameter are to set the value of the length/indicator buffer bound to the parameter to SQL_DEFAULT_PARAM, or to
use the DEFAULT keyword.

If an input/output parameter is omitted, or if a literal is supplied for the parameter, the driver discards the output value. Similarly,
if the parameter marker for the return value of a procedure is omitted, the driver discards the return value. Finally, if an
application specifies a return value parameter for a procedure that does not return a value, the driver sets the value of the
length/indicator buffer bound to the parameter to SQL_NULL_DATA.

Delimiters in CALL statements

The Microsoft SQL Server ODBC driver by default also supports a compatibility option specific to the ODBC { CALL } escape
sequence. The driver will accept CALL statements with only a single set of double quotation marks delimiting the entire stored
procedure name:

{ CALL "master.dbo.sp_who" }

By default the SQL Server ODBC driver also accepts CALL statements that follow the SQL-92 rules and enclose each identifier in
double quotation marks:

{ CALL "master"."dbo"."sp_who" }

When running with the default settings, however, the SQL Server ODBC driver does not support using either form of quoted
identifier with identifiers that contain characters not specified as legal in identifiers by the SQL-92 standard. For example, the
driver cannot access a stored procedure named "My.Proc" using a CALL statement with quoted identifiers:

{ CALL "MyDB"."MyOwner"."My.Proc" }

This statement is interpreted by the driver as:

{ CALL MyDB.MyOwner.My.Proc }

The server will raise an error that a linked server named MyDB does not exist.

The issue does not exist when using bracketed identifiers, this statement is interpreted correctly:

{ CALL [MyDB].[MyOwner].[My.Table] }

Users needing to access objects with periods in their identifiers can also use the odbccmpt command prompt utility to allow this.
The odbccmpt utility supports a /Q switch to enforce ODBC and SQL-92 compliant behaviors of quoted identifiers on the CALL
statement. To turn the standard compliant behavior on for an application, use the following code, where file_name is the name of
the application executable file without the path or .exe extension.

odbccmpt file_name /Q

For more information, see odbccmpt Utility.

To turn the standard compliance off for an application, use the following code.

odbccmpt file_name /Q /d

Running odbccmpt with only the /Q switch adds this key to the Windows NT registry, running with both /Q and /d deletes the
key.

HKEY_LOCAL_MACHINE

 SOFTWARE

 Microsoft

 MSSQLServer

 Client

 ODBCQIBehavior

 file_name:REG_SZ:NEW

When the standard compliance option is on for an application, CALL statements cannot use just a single set of double quotation
marks around the complete, qualified procedure name. Only individual identifiers can be quoted. Some examples of valid
statements are:

{ CALL "MyDB"."MyUserID"."My.Proc" }
{ CALL "MyDB".MyUserID."My.Proc" }
{ CALL MyDB.MyUserID."My.Proc" }

When the standard compliance option is on, the SQL Server ODBC driver supports using quoted identifiers that contain
characters not allowed in SQL-92 identifiers.

To call remote procedures

ODBC

ODBC

See Also

SQLBindParameter

ODBC and SQL Server (SQL Server 2000)

Batching Stored Procedure Calls
Batching Stored Procedure Calls

The Microsoft® SQL Server™ ODBC driver automatically batches stored procedure calls to the server when appropriate. The
driver only does this when the ODBC CALL escape sequence is used; it does not do this for the Transact-SQL EXECUTE statement.
Batching stored procedure calls can reduce the number of roundtrips to the server and significantly increase performance.

The driver batches procedure calls to the server when you execute a batch containing multiple ODBC CALL escape sequences. It
also batches procedure calls when bound parameter arrays are used with an ODBC CALL escape sequence. For example, if you
use either row-wise or column-wise parameter binding to bind an array with five elements to the parameters of an ODBC CALL
SQL statement, then when SQLExecute or SQLExecDirect is called, the driver sends a single batch with five procedure calls to
the server.

To call remote procedures

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Processing Stored Procedure Results
Microsoft® SQL Server™ stored procedures have four mechanisms used to return data:

Each SELECT statement in the procedure generates a result set.

The procedure can return data through output parameters.

A cursor output parameter can pass back a Transact-SQL server cursor.

The procedure can have an integer return code.

Applications must be able to handle all of these outputs from stored procedures. The CALL or EXECUTE statement should include
parameter markers for the return code and output parameters. Use SQLBindParameter to bind them all as output parameters
and the ODBC driver will transfer the output values to the bound variables. Output parameters and return codes are the last items
returned to the client by SQL Server; they are not returned to the application until SQLMoreResults returns SQL_NO_DATA.

ODBC does not support binding Transact-SQL cursor parameters. Since all output parameters must be bound before executing a
procedure, any Transact-SQL stored procedure that contains an output cursor parameter cannot be called by ODBC applications.

To call remote procedures

ODBC

ODBC

ODBC and SQL Server (SQL Server 2000)

Using Catalog Functions
All databases have a structure containing the data stored in the database. A definition of this structure, along with other
information such as permissions, is stored in a catalog (implemented as a set of system tables), also known as a data dictionary.

The Microsoft® SQL Server™ ODBC driver enables an application to determine the database structure through calls to ODBC
catalog functions. Catalog functions return information in result sets and are implemented using catalog stored procedures to
query the system tables in the catalog. For example, an application might request a result set containing information about all the
tables on the system or all the columns in a particular table. The standard ODBC catalog functions are used to get catalog
information from the SQL Server to which the application connected.

SQL Server supports distributed queries in which data from multiple, heterogeneous OLE DB data sources is accessed in a single
query. One of the methods of accessing a remote OLE DB data source is to define the data source as a linked server. This can be
done by using sp_addlinkserver. After the linked server has been defined, objects in that server can be referenced in Transact-
SQL statements by using a four part name:

linked_server_name.catalog.schema.object_name

The SQL Server ODBC driver supports two driver-specific functions that help get catalog information from linked servers:

SQLLinkedServers

Returns a list of the linked servers defined to the local server.

SQLLinkedCatalogs

Returns a list of the catalogs contained in a linked server.

After you have a linked server name and a catalog name, the SQL Server ODBC driver supports getting information from the
catalog by using a two part name of linked_server_name.catalog for CatalogName on the following ODBC catalog functions:

SQLColumnPrivileges SQLColumns SQLPrimaryKeys
SQLStatistics SQLTablePrivileges SQLTables

The two part linked_server_name.catalog is also supported for FKCatalogName and PKCatalogName on SQLForeignKeys.

Using SQLLinkedServers and SQLLinkedCatalogs requires the following files:

Odbcss.h

Includes function prototypes and constant definitions for the linked server catalog functions. Odbcss.h must be included in
the ODBC application and must be in the include path when the application is compiled.

Odbcbcp.lib

Must be in the library path of the linker and specified as a file to be linked. Odbcbcp.lib is distributed with the SQL Server
ODBC driver.

Odbcbcp.dll

Must be present at execution time. Odbcbcp.dll is distributed with the SQL Server ODBC driver.

See Also

Distributed Queries

sp_addlinkedserver

SQLColumnPrivileges

SQLColumns

SQLForeignKeys

SQLLinkedCatalogs

SQLLinkedServers

SQLPrimaryKeys

SQLTablePrivileges

SQLTables

SQLStatistics

ODBC and SQL Server (SQL Server 2000)

Performing Bulk Copy Operations
The Microsoft® SQL Server™ bulk copy feature supports the transfer of large amounts of data into or out of a SQL Server table or
view. Data can also be transferred out by specifying a SELECT statement. The data can be moved between SQL Server and an
operating-system data file, such as an ASCII file. The data file can have different formats; the format is defined to bulk copy in a
format file. Optionally, data can be loaded into program variables and transferred to SQL Server using bulk copy functions. This is
typically much faster than using INSERT statements or calling SQLBulkOperations with SQL_ADD.

The ODBC standard does not directly support SQL Server bulk copy operations. When connected to an instance of SQL Server
version 6.0 or later, the SQL Server 2000 ODBC driver supports the DB-Library functions that perform SQL Server bulk copy
operations. This driver-specific extension provides an easy upgrade path for existing DB-Library applications that use bulk copy
functions. The specialized bulk copy support is in the following files:

Odbcss.h

Includes function prototypes and constant definitions for bulk copy functions. Odbcss.h must be included in the ODBC
application performing bulk copy operations and must be in the application's include path when it is compiled.

Odbcbcp.lib

Must be in the library path of the linker and specified as a file to be linked. Odbcbcp.lib is distributed with the SQL Server
ODBC driver.

Odbcbcp.dll

Must be present at execution time. Odbcbcp.dll is distributed with the SQL Server ODBC driver.

An application typically uses bulk copy in one of the following ways:

Bulk copy from a table, view, or the result set of a Transact-SQL statement into a data file where the data is stored in the
same format as the table or view.

This is called a native-mode data file.

Bulk copy from a table, view, or the result set of a Transact-SQL statement into a data file where the data is stored in a
format other than the one of the table or view.

In this case, a separate format file is created that defines the characteristics (data type, position, length, terminator, and so
on) of each column as it is stored in the data file. If all columns are converted to character format, the resulting file is called a
character-mode data file.

Bulk copy from a data file into a table or view.

If needed, a format file is used to determine the layout of the data file.

Load data into program variables, then import the data into a table or view using the bulk copy functions for bulk copying in
a row at a time.

Data files used by bulk copy functions do not have to be created by another bulk copy program. Any other system can generate a
data file and format file according to bulk copy definitions; these files can then be used with a SQL Server bulk copy program to
import data into SQL Server. For example, you could export data from a spreadsheet in a tab-delimited file, build a format file
describing the tab-delimited file, and then use a bulk copy program to quickly import the data into SQL Server. Data files
generated by bulk copy can also be imported into other applications. For example, you could use bulk copy functions to export
data from a table or view into a tab-delimited file that could then be loaded into a spreadsheet.

Programmers coding applications to use the bulk copy functions should follow the general rules for good bulk copy performance.
For more information, see Factors Affecting Bulk Copy Performance.

Note The ODBC SQLBulkOperations function has no relationship to the SQL Server bulk copy functions. Applications must use
the SQL Server-specific bulk-copy functions to perform bulk copy operations.

ODBC and SQL Server (SQL Server 2000)

Logged and Nonlogged Bulk Copies
Microsoft® SQL Server™ bulk copies that import data into an instance of SQL Server are run in either logged or nonlogged
mode. The difference between logged and nonlogged bulk copy operations is how much information is logged. Both logged and
nonlogged bulk copy operations can be rolled back, but only a logged bulk copy operation can be rolled forward.

In a logged bulk copy all row insertions are logged, which can generate many log records in a large bulk copy operation. These
log records can be used to both roll forward and roll back the logged bulk copy operation. In a nonlogged bulk copy, only the
allocations of new pages to hold the bulk copied rows are logged. This significantly reduces the amount of logging that is needed
and speeds the bulk copy operation. If a nonlogged bulk copy operation encounters an error and has to be rolled back, the
allocation log records are used to deallocate the pages holding the bulk copied rows. Since the individual row insertions are not
logged in a nonlogged bulk copy, however, there is no log record of the individual rows that could be used to roll forward
nonlogged bulk copy operations. This is why a nonlogged bulk copy operation invalidates a log backup sequence.

If the database option trunc. log on chkpt. is set on, then there is no need to generate log records that would support rolling
forward a bulk copy operation. Use nonlogged bulk copy operations in databases where trunc. log on chkpt. is turned on.

Whether a bulk copy is logged or nonlogged is not specified as part of the bulk copy operation; it is dependent on the state of the
database and the table involved in the bulk copy. A nonlogged bulk copy occurs if all the following conditions are met:

The database option select into/bulkcopy is set to true.

The target table has no indexes, or if the table has indexes, it is empty when the bulk copy starts.

The target table is not being replicated.

The TABLOCK hint is specified using bcp_control with eOption set to BCPHINTS.

Any bulk copy into SQL Server that does not meet these conditions is logged.

See Also

Logged and Minimally Logged Bulk Copy Operations

ODBC and SQL Server (SQL Server 2000)

Using Data Files and Format Files
The simplest bulk copy program does the following:

1. Calls bcp_init to specify bulk copying out (set BCP_OUT) from a table or view to a data file.

2. Calls bcp_exec to execute the bulk copy operation.

The data file is created in native mode; therefore, data from all columns in the table or view are stored in the data file in the same
format as in the database. The file can then be bulk copied into a server by using these same steps and setting DB_IN instead of
DB_OUT. This works only if both the source and target tables have exactly the same structure. The resulting data file can also be
input to the bcp utility by using the /n (native mode) switch.

To bulk copy out the result set of a Transact-SQL statement instead of directly from a table or view:

1. Call bcp_init to specify bulk copying out, but specify NULL for the table name.

2. Call bcp_control with eOption set to BCPHINTS and iValue set to a pointer to a SQLTCHAR string containing the Transact-
SQL statement.

3. Call bcp_exec to execute the bulk copy operation.

The Transact-SQL statement can be any statement that generates a result set. The data file is created containing the first result set
of the Transact-SQL statement. Bulk copy ignores any result set after the first if the Transact-SQL statement generates multiple
result sets (for example, if it contains COMPUTE or COMPUTE BY).

To create a data file in which column data is stored in a different format than in the table, call bcp_columns to specify how many
columns will be changed, then call bcp_colfmt for each column whose format you want to change. This is done after calling
bcp_init but before calling bcp_exec. bcp_colfmt specifies the format in which the column's data is stored in the data file. It can
be used when bulk copying in or out. You can also use bcp_colfmt to set the row and column terminators. For example, if your
data contains no tab characters, you can create a tab-delimited file by using bcp_colfmt to set the tab character as the terminator
for each column.

When bulk copying out and using bcp_colfmt, you can easily create a format file describing the data file you have created by
calling bcp_writefmt after the last call to bcp_colfmt.

When bulk copying in from a data file described by a format file, read the format file by calling bcp_readfmt after bcp_init but
before bcp_exec.

The bcp_control function controls several options when bulk copying into Microsoft® SQL Server™ from a data file.
bcp_control sets options, such as the maximum number of errors before termination, the row in the file on which to start the
bulk copy, the row to stop on, and the batch size.

To bulk copy by using a format file

ODBC

ODBC

To bulk copy with the SQL Server ODBC driver

ODBC

ODBC

To bulk copy a SELECT result set

ODBC

ODBC

To bulk copy without a format file

ODBC

ODBC

To create a bulk copy format file

ODBC

ODBC

See Also

bcp_colfmt

bcp_columns

bcp_exec

bcp_init

bcp_readfmt

bcp_writefmt

ODBC and SQL Server (SQL Server 2000)

Bulk Copying from Program Variables
You can bulk copy directly from program variables. After allocating variables to hold the data for a row and calling bcp_init to
start the bulk copy, call bcp_bind for each column to specify the location and format of the program variable to be associated
with the column. Fill each variable with data, then call bcp_sendrow to send one row of data to the server. Repeat the process of
filling the variables and calling bcp_sendrow until all the rows have been sent to the server, then call bcp_done to specify that
the operation is complete.

The bcp_bind pData parameter contains the address of the variable being bound to the column. The data for each column can be
stored in one of two ways:

Allocate one variable to hold the data.

Allocate an indicator variable followed immediately by the data variable.

The indicator variable indicates the length of the data for variable-length columns, and also indicates NULL values if the column
allows NULLs. If only a data variable is used, then the address of this variable is stored in the bcp_bind pData parameter. If an
indicator variable is used, the address of the indicator variable is stored in the bcp_bind pData parameter. The bulk copy
functions calculate the location of the data variable by adding the bcp_bind cbIndicator and pData parameters.

bcp_bind supports three methods for dealing with variable-length data:

Use cbData with only a data variable. Place the length of the data in cbData. Each time the length of the data to be bulk
copied changes, call bcp_collen to reset cbData. If one of the other two methods is being used, specify SQL_VARLEN_DATA
for cbData. If all the data values being supplied for a column are NULL, specify SQL_NULL_DATA for cbData.

Use indicator variables. As each new data value is moved into the data variable, store the length of the value in the indicator
variable. If one of the other two methods is being used, specify 0 for cbIndicator.

Use terminator pointers. Load the bcp_bind pTerm parameter with the address of the bit pattern that terminates the data. If
one of the other two methods is being used, specify NULL for pTerm.

All three of these methods can be used on the same bcp_bind call, in which case the specification that results in the smallest
amount of data being copied is used.

The bcp_bind type parameter uses DB-Library data type identifiers, not ODBC data type identifiers. DB-Library data type
identifiers are #defined in Odbcss.h for use with the ODBC bcp_bind function.

Bulk copy functions do not support all ODBC C data types. For example, the bulk copy functions do not support the ODBC
SQL_C_TYPE_TIMESTAMP structure, so use SQLBindCol or SQLGetData to convert ODBC SQL_TYPE_TIMESTAMP data to a
SQL_C_CHAR variable. If you then use bcp_bind with a type parameter of SQLCHARACTER to bind the variable to a Microsoft®
SQL Server™ datetime column, the bulk copy functions convert the timestamp escape clause in the character variable to the
proper datetime format.

Here are the recommended data types to use in mapping from an ODBC SQL data type to a SQL Server data type.

ODBC SQLdata type
ODBC C data type bcp_bind type

parameter
SQL Server data

type
SQL_CHAR SQL_C_CHAR SQLCHARACTER character

char

SQL_VARCHAR SQL_C_CHAR SQLCHARACTER varchar

character
varying

char varying

sysname

SQL_LONGVARCHAR SQL_C_CHAR SQLCHARACTER text
SQL_WCHAR SQL_C_WCHAR SQLNCHAR nchar
SQL_WVARCHAR SQL_C_WCHAR SQLNVARCHAR nvarchar
SQL_WLONGVARCHAR SQL_C_WCHAR SQLNTEXT ntext

SQL_DECIMAL SQL_C_CHAR SQLCHARACTER decimal

dec

money

smallmoney

SQL_NUMERIC SQL_C_NUMERIC SQLNUMERICN numeric
SQL_BIT SQL_C_BIT SQLBIT bit
SQL_TINYINT (signed) SQL_C_SSHORT SQLINT2 smallint
SQL_TINYINT (unsigned) SQL_C_UTINYINT SQLINT1 tinyint
SQL_SMALL_INT
(signed)

SQL_C_SSHORT SQLINT2 smallint

SQL_SMALL_INT
(unsigned)

SQL_C_SLONG SQLINT4 int

integer

SQL_INTEGER (signed) SQL_C_SLONG SQLINT4 int

integer

SQL_INTEGER
(unsigned)

SQL_C_CHAR SQLCHARACTER decimal

dec

SQL_BIGINT (signed and
unsigned)

SQL_C_CHAR SQLCHARACTER bigint

SQL_REAL SQL_C_FLOAT SQLFLT4 real
SQL_FLOAT SQL_C_DOUBLE SQLFLT8 float
SQL_DOUBLE SQL_C_DOUBLE SQLFLT8 float
SQL_BINARY SQL_C_BINARY SQLBINARY binary

timestamp

SQL_VARBINARY SQL_C_BINARY SQLBINARY varbinary

binary varying

SQL_LONGVARBINARY SQL_C_BINARY SQLBINARY image
SQL_TYPE_DATE SQL_C_CHAR SQLCHARACTER datetime

smalldatetime

SQL_TYPE_TIME SQL_C_CHAR SQLCHARACTER datetime

smalldatetime

SQL_TYPE_TIMESTAMP SQL_C_CHAR SQLCHARACTER datetime

smalldatetime

SQL_GUID SQL_C_GUID SQLUNIQUEID uniqueidentifier
SQL_INTERVAL_ SQL_C_CHAR SQLCHARACTER char

SQL Server does not have signed tinyint, unsigned smallint, or unsigned int data types. To prevent the loss of data values when
migrating these data types, create the SQL Server table with the next largest integer data type. To prevent users from later adding
values outside the range allowed by the original data type, apply a rule to the SQL Server column to restrict the allowable values
to the range supported by the data type in the original source:

CREATE TABLE Sample_Ints(STinyIntCol SMALLINT,
USmallIntCol INT)
GO
CREATE RULE STinyInt_Rule
AS
@range >= -128 AND @range <= 127
GO
CREATE RULE USmallInt_Rule
AS

@range >= 0 AND @range <= 65535
GO
sp_bindrule STinyInt_Rule, 'Sample_Ints.STinyIntCol'
GO
sp_bindrule USmallInt_Rule, 'Sample_Ints.USmallIntCol'
GO

SQL Server does not support interval data types directly. An application can, however, store interval escape sequences as
character strings in a SQL Server character column. The application can read them for later use, but they cannot be used in
Transact-SQL statements.

The bulk copy functions can be used to quickly load data into SQL Server that has been read from an ODBC data source. Use
SQLBindCol to bind the columns of a result set to program variables, then use bcp_bind to bind the same program variables to
a bulk copy operation. Calling SQLFetchScroll or SQLFetch then fetches a row of data from the ODBC data source into the
program variables, and calling bcp_sendrow bulk copies the data from the program variables to SQL Server.

An application can use the bcp_colptr function anytime it needs to change the address of the data variable originally specified in
the bcp_bind pData parameter. An application can use the bcp_collen function anytime it needs to change the data length
originally specified in the bcp_bind cbData parameter.

You cannot read data from SQL Server into program variables using bulk copy; there is nothing like a "bcp_readrow" function.
You can only send data from the application to the server.

To bulk copy data from program variables

ODBC

ODBC

To bulk copy with the SQL Server ODBC driver

ODBC

ODBC

See Also

bcp_bind

bcp_colptr

bcp_done

bcp_init

bcp_sendrow

SQLBindCol

SQLGetData

ODBC and SQL Server (SQL Server 2000)

Managing Bulk Copy Batch Sizes
The primary purpose of a batch in bulk copy operations is to define the scope of a transaction. If a batch size is not set, then bulk
copy functions consider an entire bulk copy to be one transaction. If a batch size is set, then each batch constitutes a transaction
that is committed when the batch finishes.

If a bulk copy is performed with no batch size specified and an error is encountered, the entire bulk copy is rolled back. The
recovery of a long-running bulk copy can take a long time. When a batch size is set, bulk copy considers each batch a transaction
and commits each batch. If an error is encountered, only the last outstanding batch needs to be rolled back.

The batch size can also affect locking overhead. When performing a bulk copy against Microsoft® SQL Server™, the TABLOCK
hint can be specified using bcp_control to acquire a table lock instead of row locks. The single table lock can be held with
minimal overhead for an entire bulk copy operation. If TABLOCK is not specified then locks are held on individual rows and the
overhead of maintaining all the locks for the duration of the bulk copy can slow performance. Because locks are only held for the
length of a transaction, specifying a batch size addresses this problem by periodically generating a commit that frees the locks
currently held.

The number of rows making up a batch can have significant performance effects when bulk copying a large number of rows. The
recommendations for batch size depend on the type of bulk copy being performed.

When bulk copying to SQL Server, specify the TABLOCK bulk copy hint and set a large batch size.

When TABLOCK is not specified, limit batch sizes to less than 1,000 rows.

When bulk copying in from a data file, the batch size is specified by calling bcp_control with the BCPBATCH option before calling
bcp_exec. When bulk copying from program variables using bcp_bind and bcp_sendrow, the batch size is controlled by calling
bcp_batch after calling bcp_sendrow x times, where x is the number of rows in a batch.

In addition to specifying the size of a transaction, batches also affect when rows are sent across the network to the server. Bulk
copy functions normally cache the rows from bcp_sendrow until a network packet is filled, and then send the full packet to the
server. When an application calls bcp_batch, however, the current packet is sent to the server regardless of whether it has been
filled. Using a very low batch size can slow performance if it results in sending many partially filled packets to the server. For
example, calling bcp_batch after every bcp_sendrow causes each row to be sent in a separate packet and, unless the rows are
very large, wastes space in each packet. The default size of network packets for SQL Server is 4 KB, although an application can
change the size by calling SQLSetConnectAttr specifying the SQL_ATTR_PACKET_SIZE attribute.

Another side effect of batches is that each batch is considered an outstanding result set until it is completed with bcp_batch. If
any other operations are attempted on a connection handle while a batch is outstanding, the SQL Server ODBC driver issues an
error with SQLState = "HY000" and an error message string of:

"[Microsoft][ODBC SQL Server Driver] Connection is busy with
results for another hstmt."

See Also

bcp_batch

bcp_control

SQLSetConnectAttr

Batch Switches

ODBC and SQL Server (SQL Server 2000)

Bulk Copying text and image Data
Large text, ntext, and image values are bulk copied using the bcp_moretext function. You code bcp_bind for the text, ntext,
or image column with a pData pointer set to NULL indicating the data will be provided with bcp_moretext. It is important to
specify the exact length of data supplied for each text, ntext, or image column in each bulk-copied row. If the length of the data
for a column is different from the column length specified in bcp_bind, use bcp_collen to set the length to the proper value. A
bcp_sendrow sends all the non-text, non-ntext, and non-image data; you then call bcp_moretext to send the text, ntext, or
image data in separate units. Bulk copy functions determine that all data has been sent for the current text, ntext, or image
column when the sum of the lengths of data sent through bcp_moretext equals the length specified in the latest bcp_collen or
bcp_bind.

bcp_moretext has no parameter to identify a column. When there are multiple text, ntext, or image columns in a row,
bcp_moretext operates on the text, ntext, or image columns starting with the column having the lowest ordinal number and
proceeding to the column with the highest ordinal number. bcp_moretext goes from one column to the next when the sum of
the lengths of data sent equals the length specified in the latest bcp_collen or bcp_bind for the current column.

See Also

bcp_bind

bcp_collen

bcp_moretext

bcp_sendrow

ODBC and SQL Server (SQL Server 2000)

Converting from DB-Library to ODBC Bulk Copy
Converting a DB-Library bulk copy program to ODBC is easy because the bulk copy functions supported by the Microsoft® SQL
Server™ ODBC driver are similar to the DB-Library bulk copy functions, with the following exceptions:

DB-Library applications pass a pointer to a DBPROCESS structure as the first parameter of bulk copy functions. In ODBC
applications, the DBPROCESS pointer is replaced with an ODBC connection handle.

DB-Library applications call BCP_SETL before connecting to enable bulk copy operations on a DBPROCESS. ODBC
applications instead call SQLSetConnectAttr before connecting to enable bulk operations on a connection handle:

SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP,
 (void *)SQL_BCP_ON, SQL_IS_INTEGER);

The SQL Server ODBC driver does not support DB-Library message and error handlers; you must call SQLGetDiagRec to
get errors and messages raised by the ODBC bulk copy functions. The ODBC versions of bulk copy functions return the
standard bulk copy return codes of SUCCEED or FAILED, not ODBC-style return codes, such as SQL_SUCCESS or
SQL_ERROR.

The values specified for the DB-Library bcp_bind varlen parameter are interpreted differently than the ODBC bcp_bind
cbData parameter.

Condition indicated DB-Library varlen value ODBC cbData value
Null values supplied 0 -1 (SQL_NULL_DATA)
Variable data supplied -1 -10 (SQL_VARLEN_DATA)
Zero length character or
binary string

NA 0

In DB-Library, a varlen value of -1 indicates that variable length data is being supplied, which in the ODBC cbData is
interpreted to mean that only NULL values are being supplied. Change any DB-Library varlen specifications of -1 to
SQL_VARLEN_DATA and any varlen specifications of 0 to SQL_NULL_DATA.

The DB-Library bcp_colfmt file_collen and the ODBC bcp_colfmt cbUserData have the same issue as the bcp_bind varlen
and cbData parameters noted above. Change any DB-Library file_collen specifications of -1 to SQL_VARLEN_DATA and any
file_collen specifications of 0 to SQL_NULL_DATA.

The iValue parameter of the ODBC bcp_control function is a void pointer. In DB-Library, iValue was an integer. Cast the
values for the ODBC iValue to void *.

The bcp_control option BCPMAXERRS specifies how many individual rows can have errors before a bulk copy operation
fails. The default for BCPMAXERRS is 0 (fail on first error) in the DB-Library version of bcp_control and 10 in the ODBC
version. DB-Library applications that depend on the default of 0 to terminate a bulk copy operation must be changed to call
the ODBC bcp_control to set BCPMAXERRS to 0.

The ODBC bcp_control function supports the following options not supported by the DB-Library version of bcp_control:
BCPODBC

When set to TRUE, specifies that datetime and smalldatetime values saved in character format will have the ODBC
timestamp escape sequence prefix and suffix. This only applies to BCP_OUT operations.

With BCPODBC set to FALSE, a datetime value converted to a character string is output as:

1997-01-01 00:00:00.000

With BCPODBC set to TRUE, the same datetime value is output as:

{ts '1997-01-01 00:00:00.000' }

BCP6xFILEFMT

When set to TRUE, specifies that program variables bound to columns in native format, or columns stored in an

operating-system file in either native or character format use the SQL Server version 6x format instead of the SQL
Server 7.0 format. Columns bound in native format include columns for which bcp_bind was called with type set to
0 and varlen set to SQL_VARLEN_DATA. Columns stored in native format in a data file include columns for which
bcp_colfmt was called with file_type set to 0 and file_collen set to SQL_VARLEN_DATA.

BCPKEEPIDENTITY

When set to TRUE, specifies that bulk copy functions insert data values supplied for columns with identity
constraints. If this is not set, new identity values are generated for the inserted rows.

BCPHINTS

Specifies various bulk copy optimizations. This option cannot be used on 6.5 or earlier versions of SQL Server.

BCPFILECP

Specifies the code page of the bulk copy file.

BCPUNICODEFILE

Specifies that a character mode bulk copy file is a Unicode file.

The ODBC bcp_colfmt function does not support the file_type indicator of SQLCHAR because it conflicts with the ODBC
SQLCHAR typedef. Use SQLCHARACTER instead for bcp_colfmt.

In the ODBC versions of bulk copy functions, the format for working with datetime and smalldatetime values in character
strings is the ODBC format of yyyy-mm-dd hh:mm:ss.sss; smalldatetime values use the ODBC format of yyyy-mm-dd
hh:mm:ss.

The DB-Library versions of the bulk copy functions accept datetime and smalldatetime values in character strings using
several formats:

The default format is mmm dd yyyy hh:mmxx where xx is either AM or PM.

datetime and smalldatetime character strings in any format supported by the DB-Library dbconvert function.

When the Use international settings box is checked on the DB-Library Options tab of the SQL Server Client
Network Utility, the DB-Library bulk copy functions also accept dates in the regional date format defined for the
locale setting of the client computer registry.

The DB-Library bulk copy functions do not accept the ODBC datetime and smalldatetime formats.

The ODBC bulk copy functions will accept the same datetime formats as the DB-Library versions of the bulk copy functions
when BCP6xFILEFMT is specified. If the SQL_SOPT_SS_REGIONALIZE statement attribute is set to SQL_RE_ON, the ODBC
bulk copy functions will accept dates in the regional date format defined for the locale setting of the client computer
registry.

When outputting money values in character format, ODBC bulk copy functions supply 4 digits of precision and no comma
separators; DB-Library versions only supply 2 digits of precision and include the comma separators.

See Also

bcp_colfmt

bcp_control

Bulk-Copy Functions

SQLSetConnectAttr

Using Format Files

ODBC and SQL Server (SQL Server 2000)

Managing text and image Columns
Microsoft® SQL Server™ text, ntext, and image data (also referred to as long data) are character or binary string data types that
can hold data values too large to fit into char, varchar, binary, or varbinary columns. The SQL Server text data type maps to the
ODBC SQL_LONGVARCHAR data type; ntext maps to SQL_WLONGVARCHAR; and image maps to SQL_LONGVARBINARY.
Some data items, such as long documents or large bitmaps, may be too large to store reasonably in memory. To retrieve long
data from SQL Server in sequential parts, the SQL Server ODBC driver enables an application to call SQLGetData. To send long
data in sequential parts, the application can call SQLPutData. Parameters for which data is sent at execution time are known as
data-at-execution parameters.

An application can actually write or retrieve any type of data (not just long data) with SQLPutData or SQLGetData, although only
character and binary data can be sent or retrieved in parts. However, if the data is small enough to fit in a single buffer, there is
generally no reason to use SQLPutData or SQLGetData. It is much easier to bind the single buffer to the parameter or column.

To use data-at-execution parameters

ODBC

ODBC

To use data-at-execution columns

ODBC

ODBC

See Also

SQLGetData

SQLPutData

ODBC and SQL Server (SQL Server 2000)

Bound vs. Unbound text and image Columns
When using server cursors, the Microsoft® SQL Server™ ODBC driver is optimized to not transmit the data for unbound text,
ntext, or image columns at the time SQLFetch is performed. The text, ntext, or image data is not actually retrieved from the
server until the application issues SQLGetData for the column.

Many applications can be written so that no text, ntext, or image data is displayed while a user is simply scrolling up and down
in a cursor. When a user selects a row to get more detail, the application can then call SQLGetData to retrieve the text, ntext, or
image data. This will prevent transmitting the text, ntext, or image data for any of the rows the user does not select, and can
therefore prevent the transmission of very large amounts of data.

To use data-at-execution parameters

ODBC

ODBC

To use data-at-execution columns

ODBC

ODBC

See Also

Cursor Behaviors

SQLGetData

ODBC and SQL Server (SQL Server 2000)

Logged vs. Unlogged Modifications
An application can request that the Microsoft® SQL Server™ ODBC driver not log text, ntext, and image modifications. Care
should be used with this option, however. It should be used only for those situations where the text, ntext, or image data is not
critical and data owners are willing to trade off the ability to recover data for higher performance.

The logging of text, ntext, and image modifications is controlled by calling SQLSetStmtAttr with the Attribute parameter set to
SQL_SOPT_SS_
TEXTPTR_LOGGING and ValuePtr set to either SQL_TL_ON or SQL_TL_OFF.

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

Data-at-execution and text, ntext, or image Columns
ODBC data-at-execution is a feature that enables applications to work with extremely large amounts of data on bound columns or
parameters. When retrieving very large text, ntext, or image columns, an application may not be able to simply allocate a huge
buffer, bind the column into the buffer, and fetch the row. When updating very large text, ntext, or image columns, the
application may not be able to simply allocate a huge buffer, bind it to a parameter marker in an SQL statement, and then execute
the statement. In these cases, the application must use SQLGetData or SQLPutData with its data-at-execution options.

To use data-at-execution parameters

ODBC

ODBC

To use data-at-execution columns

ODBC

ODBC

See Also

SQLGetData

SQLPutData

ODBC and SQL Server (SQL Server 2000)

Connecting to a Failover Server
The Microsoft® SQL Server™ ODBC driver supports a failover configuration using the driver-specific SQL_FALLBACK_CONNECT
connection option for SQLSetConnectAttr and SQLGetConnectAttr. If the server you are connecting to has a failover server, the
driver can connect to the failover server if the primary server is unavailable.

ODBC applications can take advantage of SQL Server's failover feature by calling SQLSetConnectAttr with
SQL_FALLBACK_CONNECT enabled before connecting. When the driver connects to the primary server, it retrieves all the
information it needs to connect to the failover server and stores the information in the client registry. If the application then loses
its connection to the primary server, it completes its current transaction and attempts to reconnect to the primary server. If
unsuccessful, it uses the registry information to attempt to connect to the failover server.

See Also

SQLGetConnectAttr

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

Profiling ODBC Driver Performance
The Microsoft® SQL Server™ ODBC driver can profile two types of performance data:

Long-running queries.

The driver can write to a log file any query that does not get a response from the server within a specified amount of time.
Application programmers or database administrators can then research each logged SQL statement to determine how they
can improve its performance.

Driver-performance data.

The driver can record performance statistics and either write them to a file or make them available to an application through
a driver-specific data structure named SQLPERF. The file containing the performance statistics is a tab-delimited file that can
be easily analyzed with any spreadsheet that supports tab-delimited files, such as Microsoft Excel.

Either type of profiling can be turned on by:

Connecting to a data source that specifies logging.

Calling SQLSetConnectAttr to set driver-specific attributes that control profiling.

Each application process gets its own copy of the SQL Server ODBC driver, and profiling is global to the combination of a driver
copy and an application process. When anything in the application turns on profiling, profiling records information for all
connections active in the driver from that application. Even connections that did not specifically call for profiling are included.

After the driver has opened a profiling log (either the performance data or long-running query log), it does not close the log until
the driver is unloaded by the ODBC Driver Manager, when an application frees all the environment handles it opened in the
driver. If the application opens a new environment handle, a new copy of the driver is loaded. If the application then either
connects to a data source that specifies the same log file or sets the driver-specific attributes to log to the same file, the driver
overwrites the old log.

If an application starts profiling to a log file and a second application attempts to start profiling to the same log file, the second
application is not able to log any profiling data. If the second application starts profiling after the first application has unloaded its
driver, the second application overwrites the log file from the first application.

If an application connects to a data source that has profiling enabled, the driver returns SQL_ERROR if the application calls
SQLSetConnectOption to start logging. A call to SQLGetDiagRec then returns:

SQLState: 01000, pfNative = 0
ErrorMsg: [Microsoft][ODBC SQL Server Driver]
 An error has occurred during the attempt to access
 the log file, logging disabled.

The driver stops gathering performance data when an environment handle is closed. If an ODBC 3.x application has multiple
connections, each with its own environment handle, then the driver will stop gathering performance data when any of the
associated environment handles are closed.

The driver's performance data can either be stored in the SQLPERF data structure or logged in a tab-delimited file. The data
includes the following categories of statistics:

Application profile

Connection

Network

Time

In the following table, the descriptions of the fields in the SQLPERF data structure also apply to the statistics recorded in the
performance log file.

SQLPERF Field Description
Application Profile Statistics:

TimerResolution Minimum resolution of the server's clock time in
milliseconds. This is usually reported as 0 (zero) and
should only be considered if the number reported is
large. If the minimum resolution of the server clock is
larger than the likely interval for some of the timer-
based statistics, those statistics could be inflated.

SQLidu Number of INSERT, DELETE, or UPDATE statements after
SQL_PERF_START.

SQLiduRows Number of INSERT, DELETE, or UPDATE statements after
SQL_PERF_START.

SQLSelects Number of SELECT statements processed after
SQL_PERF_START.

SQLSelectRows Number of rows selected after SQL_PERF_START.
Transactions Number of user transactions after SQL_PERF_START,

including rollbacks. When an ODBC application is
running with SQL_AUTOCOMMIT_ON, each command
is considered a transaction.

SQLPrepares Number of SQLPrepare calls after SQL_PERF_START.
ExecDirects Number of SQLExecDirect calls after

SQL_PERF_START.
SQLExecutes Number of SQLExecute calls after SQL_PERF_START.
CursorOpens Number of times the driver has opened a server cursor

after SQL_PERF_START.
CursorSize Number of rows in the result sets opened by cursors

after SQL_PERF_START.
CursorUsed Number of rows actually retrieved through the driver

from cursors after SQL_PERF_START.
PercentCursorUsed Equals CursorUsed/CursorSize. For example, if an

application causes the driver to open a server cursor to
do "SELECT COUNT(*) FROM authors," 23 rows will be
in the result set for the SELECT statement. If the
application then fetches only three of these rows,
CursorUsed/CursorSize is 3/23, so PercentCursorUsed
is 13.043478.

AvgFetchTime Equals SQLFetchTime/SQLFetchCount.
AvgCursorSize Equals CursorSize/CursorOpens.
AvgCursorUsed Equals CursorUsed/CursorOpens.
SQLFetchTime Cumulative amount of time it took fetches against

server cursors to complete.
SQLFetchCount Number of fetches done against server cursors after

SQL_PERF_START.
CurrentStmtCount Number of statement handles currently open on all

connections open in the driver.
MaxOpenStmt Maximum number of concurrently opened statement

handles after SQL_PERF_START.
SumOpenStmt Number of statement handles that have been opened

after SQL_PERF_START.
Connection Statistics:
CurrentConnectionCount Current number of active connection handles the

application has open to the server.
MaxConnectionsOpened Maximum number of concurrent connection handles

opened after SQL_PERF_START.
SumConnectionsOpened Sum of the number of connection handles that have

been opened after SQL_PERF_START.

SumConnectionTime Sum of the amount of time that all of the connections
have been opened after SQL_PERF_START. For example,
if an application opened 10 connections and maintained
each connection for 5 seconds, then
SumConnectionTime would be 50 seconds.

AvgTimeOpened Equals SumConnectionsOpened/ SumConnectionTime.
Network Statistics:
ServerRndTrips The number of times the driver sent commands to the

server and got a reply back.
BuffersSent Number of Tabular Data Stream (TDS) packets sent to

SQL Server by the driver after SQL_PERF_START. Large
commands can take multiple buffers, so if a large
command is sent to the server and it fills six packets,
ServerRndTrips is incremented by one and BuffersSent
is incremented by six.

BuffersRec Number of TDS packets received by the driver from SQL
Server after the application started using the driver.

BytesSent Number of bytes of data sent to SQL Server in TDS
packets after the application started using the driver.

BytesRec Number of bytes of data in TDS packets received by the
driver from SQL Server after the application started
using the driver.

Time Statistics:
msExecutionTime Cumulative amount of time the driver spent processing

after SQL_PERF_START, including the time spent waiting
for replies from the server.

msNetworkServerTime Cumulative amount of time the driver spent waiting for
replies from the server.

To profile driver performance data

ODBC

ODBC

To log long-running queries

ODBC

ODBC

See Also

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

SQL Server ODBC Driver Programmer's Reference
Open Database Connectivity (ODBC) is a Microsoft® Win32® API used by applications to access data in ODBC data sources.

The SQL Server ODBC Driver Programmer's Reference does not document all of the ODBC function calls. Only those functions
that have driver-specific parameters or behaviors when used with the Microsoft® SQL Server™ ODBC driver are discussed. The
functions documented in the SQL Server ODBC Driver Programmer's Reference use ODBC 3.5.

For a full description of the ODBC API, see the Microsoft ODBC Software Development Kit (SDK). The ODBC SDK is part of the
Microsoft Developer Network (MSDN®). The ODBC SDK can also be downloaded from the Microsoft Web site, and is available in
the Microsoft ODBC 3.0 Software Development Kit and Programmer's Reference available from Microsoft Press®.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

ODBC and SQL Server (SQL Server 2000)

ODBC API Implementation Details
This section documents the ODBC functions that exhibit SQL Server-specific behaviors when used with the Microsoft® SQL
Server™ ODBC driver. Not all ODBC functions are documented here. The individual topics only discuss the SQL Server-specific
issues for an ODBC function. They are not a complete reference for the ODBC function.

The SQL Server 2000 ODBC driver complies with the ODBC 3.51 specification. For a comprehensive reference of ODBC 3.51,
download the Microsoft Data Access SDK from the Microsoft Web site. The ODBC 3.0 Software Development Kit and
Programmer's Reference is also available from Microsoft Press®.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

ODBC and SQL Server (SQL Server 2000)

SQLBindCol
As a general rule, consider the implications of using SQLBindCol to cause data conversion. Binding conversions are client
processes, so, for example, retrieving a floating-point value bound to a character column causes the driver to perform the float-to-
character conversion locally when a row is fetched. The Transact-SQL CONVERT function can be used to place the cost of data
conversion on the server.

An instance of Microsoft® SQL Server™ can return multiple sets of result rows on a single statement execution. Each result set
must be bound separately. For more information about binding for multiple result sets, see SQLMoreResults.

The developer can bind columns to SQL Server-specific C data types using the TargetType value SQL_C_BINARY. Columns bound
to SQL Server-specific types are not portable. The defined SQL Server-specific ODBC C data types match the type definitions for
DB-Library, and DB-Library developers porting applications may want to take advantage of this feature.

Reporting data truncation is an expensive process for the SQL Server ODBC driver. You can avoid truncation by ensuring that all
bound data buffers are wide enough to return data. For character data, the width should include space for a string terminator
when the default driver behavior for string termination is used. For example, binding an SQL Server char(5) column to an array
of five characters results in truncation for every value fetched. Binding the same column to an array of six characters avoids the
truncation by providing a character element in which to store the null terminator. SQLGetData can be used to efficiently retrieve
long character and binary data without truncation.

See Also

SQLGetData

ODBC and SQL Server (SQL Server 2000)

SQLBindParameter
SQLBindParameter can eliminate the burden of data conversion when used to provide data for the Microsoft® SQL Server™
ODBC driver, resulting in significant performance gains for both the client and server components of applications. Other benefits
include reduced loss of precision when inserting or updating approximate numeric data types.

If the SQL Server ODBC driver encounters an error on a single array element of an array of parameters, the driver continues to
execute the statement for the remaining array elements. If the application has bound an array of parameter status elements for
the statement, the row(s) of parameters generating errors can be determined from the array.

When using the SQL Server ODBC driver version 3.7 or later, specify SQL_PARAM_INPUT when binding input parameters. Only
specify SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT when binding stored procedure parameters defined with the
OUTPUT keyword.

SQLRowCount is unreliable with the SQL Server ODBC driver if an array element of a bound-parameter array causes an error in
statement execution. The ODBC statement attribute SQL_ATTR_PARAMS_PROCESSED_PTR will report the number of rows
processed prior to the error occurring. The application can then traverse its parameter status array to discover the number of
statements successfully executed, if necessary.

ODBC and SQL Server (SQL Server 2000)

SQLBrowseConnect
SQLBrowseConnect uses keywords that can be categorized into three levels of connection information. For each keyword, the
following table indicates whether a list of valid values is returned and whether the keyword is optional.

Level 1

Keyword List
returned?

Optional? Description

DSN N/A No Name of the data source returned by
SQLDataSources. The DSN keyword
cannot be used if the DRIVER keyword is
used.

DRIVER N/A No Microsoft® SQL Server™ ODBC driver
name is {SQL Server} or SQL Server (braces
are required when using driver version
2.65 or earlier). The DRIVER keyword
cannot be used if the DSN keyword is used.

Level 2

Keyword List
returned?

Optional? Description

SERVER Yes No Name of the server on the network on
which the data source resides. When
running on Microsoft Windows NT® 4.0, "
(local)" can be entered as the server, in
which case a local copy of SQL Server can
be used, even when this is a nonnetworked
version.

UID No Yes User login ID.
PWD No Yes (depends

on the user)
User-specified password.

APP No Yes Name of the application calling
SQLBrowseConnect.

WSID No Yes Workstation ID. Typically, this is the
network name of the computer on which
the application runs.

Level 3

Keyword List
returned?

Optional? Description

DATABASE Yes Yes Name of the SQL Server database.
LANGUAGE Yes Yes National language used by SQL Server.

SQLBrowseConnect ignores the values of the DATABASE and LANGUAGE keywords stored in the ODBC data source definitions.
If the database or language specified in the connection string passed to SQLBrowseConnect is invalid, SQLBrowseConnect
returns SQL_NEED_DATA and the level 3 connection attributes.

SQLBrowseConnect does not verify user access to all the databases listed with the DATABASE keyword when connected to SQL
Server version 6.5 or earlier servers. If the user does not have access to the chosen database, SQLBrowseConnect returns
SQL_NEED_DATA and the level 3 connection attributes.

The following attributes, set by calling SQLSetConnectAttr, determine the result set returned by SQLBrowseConnect.

SQL_COPT_SS_BROWSE_CONNECT: If it is set to SQL_MORE_INFO_NO, in SQL Server version 6.5 and later, SQLBrowseConnect
returns a list of servers. If it is set to SQL_MORE_INFO_YES, in SQL Server version 6.5 and 7.0, SQLBrowseConnect returns a list

of servers. In SQL Server 2000, SQLBrowseConnect returns an extended string of server properties.

This is an example of an extended string returned by SQLBrowseConnect in SQL Server 2000:

ServerName\InstanceName;Clustered:No;Version:8.00.131

In this string, semi-colons separate various parts of information about the server, and commas separate different server instances.

SQL_COPT_SS_BROWSE_SERVER: If a server name is specified, SQLBrowseConnect will return information for the server
specified. If SQL_COPT_SS_BROWSE_SERVER is set to NULL, SQLBrowseConnect returns information for all servers in the
domain.

ODBC and SQL Server (SQL Server 2000)

SQLCloseCursor
SQLCloseCursor replaces SQLFreeStmt with an Option value of SQL_CLOSE. On receipt of SQLCloseCursor, the Microsoft®
SQL Server™ ODBC driver discards pending result set rows. Note that the statement's column and parameter bindings (if any
exist) are left unaltered by SQLCloseCursor.

ODBC and SQL Server (SQL Server 2000)

SQLColAttribute
You can use SQLColAttribute to retrieve an attribute of a result set column for either prepared or executed ODBC statements.
Calling SQLColAttribute on prepared statements causes a roundtrip to the Microsoft® SQL Server™. The SQL Server ODBC
driver receives result set column data as part of statement execution, so calling SQLColAttribute after the completion of
SQLExecute or SQLExecDirect does not involve a server roundtrip.

ODBC column identifier attributes are not available on all SQL Server result sets.

FieldIdentifier value Description
SQL_COLUMN_TABLE_NAME Available on result sets retrieved from

statements that generate server cursors or on
executed SELECT statements containing a FOR
BROWSE clause.

SQL_DESC_BASE_COLUMN_NAME Available on result sets retrieved from
statements that generate server cursors or on
executed SELECT statements containing a FOR
BROWSE clause.

SQL_DESC_BASE_TABLE_NAME Available on result sets retrieved from
statements that generate server cursors or on
executed SELECT statements containing a FOR
BROWSE clause.

SQL_DESC_CATALOG_NAME Database name. Available on result sets
retrieved from statements that generate server
cursors or on executed SELECT statements
containing a FOR BROWSE clause.

SQL_DESC_LABEL Available on all result sets. The value is identical
to the value of the SQL_DESC_NAME field.

The field is zero length only if a column is the
result of an expression and the expression does
not contain a label assignment.

SQL_DESC_NAME Available on all result sets. The value is identical
to the value of the SQL_DESC_LABEL field.

The field is zero length only if a column is the
result of an expression and the expression does
not contain a label assignment.

SQL_DESC_SCHEMA_NAME Owner name. Available on result sets retrieved
from statements that generate server cursors or
on executed SELECT statements containing a
FOR BROWSE clause.

Available only if the owner name is specified for
the column in the SELECT statement.

SQL_DESC_TABLE_NAME Available on result sets retrieved from
statements that generate server cursors or on
executed SELECT statements containing a FOR
BROWSE clause.

SQL_DESC_UNNAMED SQL_NAMED for all columns in a result set
unless a column is the result of an expression
that does not contain a label assignment as part
of the expression. When SQL_DESC_UNNAMED
returns SQL_UNNAMED, all ODBC column
identifier attributes contain zero length strings
for the column.

Note When connected to an instance of SQL Server 4.2x, SQLColAttribute must create a result set to report column attributes.
The SQL Server ODBC driver appends the clause WHERE 1 = 2 to prepared SELECT statements prior to execution. When

connected to SQL Server 4.2x, SQLColAttribute cannot return information about a result set that is generated by a procedure if
that procedure has been prepared but not executed.

When connected to any later version of SQL Server, the SQL Server ODBC driver uses the SET FMTONLY statement to reduce
server overhead when SQLColAttribute is called for prepared but unexecuted statements.

For all versions, column attributes are reported for only the first result set when multiple result sets are generated by a prepared
batch of SQL statements.

The following column attributes are extensions exposed by the SQL Server ODBC driver. The SQL Server ODBC driver returns all
values in the NumericAttrPtr parameter. The values are returned as SDWORD (signed long) except
SQL_CA_SS_COMPUTE_BYLIST, which is a pointer to a WORD array.

FieldIdentifier value Value returned
SQL_CA_SS_COLUMN_HIDDEN* TRUE if the column referenced is part of a

hidden primary key created to support a
Transact-SQL SELECT statement containing FOR
BROWSE.

SQL_CA_SS_COLUMN_ID Ordinal position of a COMPUTE clause result
column within the current Transact-SQL SELECT
statement.

SQL_CA_SS_COLUMN_KEY* TRUE if the column referenced is part of a
primary key for the row and the Transact-SQL
SELECT statement contains FOR BROWSE.

SQL_CA_SS_COLUMN_OP Integer specifying the aggregate operator
responsible for the value in a COMPUTE clause
column. Definitions of the integer values are in
Odbcss.h.

SQL_CA_SS_COLUMN_ORDER Ordinal position of the column within an ODBC
or Transact-SQL SELECT statement's ORDER BY
clause.

SQL_CA_SS_COLUMN_SIZE Maximum length, in bytes, required to bind a
data value retrieved from the column to a
SQL_C_BINARY variable.

SQL_CA_SS_COLUMN_SSTYPE Native data type of data stored in the SQL Server
column. Definitions of the type values are in
Odbcss.h.

SQL_CA_SS_COLUMN_UTYPE Base data type of the SQL Server column's user-
defined data type. Definitions of the type values
are in Odbcss.h.

SQL_CA_SS_COLUMN_VARYLEN TRUE if the column's data can vary in length,
FALSE otherwise.

SQL_CA_SS_COMPUTE_BYLIST Pointer to an array of WORD (unsigned short)
specifying the columns used in the BY phrase of
a COMPUTE clause. If the COMPUTE clause does
not specify a BY phrase, a NULL pointer is
returned.

The first element of the array contains the count
of BY list columns. Additional elements are the
column ordinals.

SQL_CA_SS_COMPUTE_ID computeid of a row that is the result of a
COMPUTE clause in the current Transact-SQL
SELECT statement.

SQL_CA_SS_NUM_COMPUTES Number of COMPUTE clauses specified in the
current Transact-SQL SELECT statement.

SQL_CA_SS_NUM_ORDERS Number of columns specified in an ODBC or
Transact-SQL SELECT statement's ORDER BY
clause.

* Available if statement attribute SQL_SOPT_SS_HIDDEN_COLUMNS is set to
SQL_HC_ON.

See Also

SQLSetStmtAttr

ODBC and SQL Server (SQL Server 2000)

SQLColumnPrivileges
SQLColumnPrivileges uses the catalog stored procedure sp_column_privileges to report user permissions for columns in a
table.

The following table shows SQLColumnPrivileges parameter mapping for sp_column_privileges stored procedure execution.

SQLColumnPrivileges parameter
name

sp_column_privileges parameter name

CatalogName table_qualifier
SchemaName table_owner
TableName table_name
ColumnName column_name

SQLColumnPrivileges returns SQL_SUCCESS whether or not values exist for the CatalogName, SchemaName, TableName, or
ColumnName parameters. SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLColumnPrivileges can be executed on a static server cursor. An attempt to execute SQLColumnPrivileges on an updatable
(dynamic or keyset) cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

The Microsoft® SQL Server™ ODBC driver supports reporting information for tables on linked servers by accepting a two-part
name for the CatalogName parameter: Linked_Server_Name.Catalog_Name.

See Also

sp_column_privileges

ODBC and SQL Server (SQL Server 2000)

SQLColumns
SQLColumns executes the Transact-SQL procedure sp_columns to report catalog data for database columns.

The following table shows SQLColumns parameter mapping for sp_columns stored procedure execution.

SQLColumns parameter name sp_columns parameter name
CatalogName object_qualifier
SchemaName object_owner
TableName object_name
ColumnName column_name

SQLColumns returns SQL_SUCCESS whether or not values exist for the CatalogName, TableName, or ColumnName parameters.
SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLColumns can be executed on a static server cursor. An attempt to execute SQLColumns on an updatable (dynamic or keyset)
cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

The Microsoft® SQL Server™ ODBC driver supports reporting information for tables on linked servers by accepting a two-part
name for the CatalogName parameter: Linked_Server_Name.Catalog_Name.

For ODBC 2.x applications not using wildcards in TableName, SQLColumns returns information about any tables whose names
match TableName and are owned by the current user. If the current user owns no table whose name matches the TableName
parameter, SQLColumns returns information about any tables owned by other users where the table name matches the
TableName parameter. For ODBC 2.x applications using wildcards, SQLColumns returns all tables whose names match
TableName. For ODBC 3.x applications SQLColumns returns all tables whose names match TableName regardless of owner or
whether wildcards are used.

See Also

sp_columns

ODBC and SQL Server (SQL Server 2000)

SQLConfigDataSource
The Microsoft® SQL Server™ ODBC driver supports the following SQL Server-specific keyword/value pairs for data source
configuration attribute strings.

Keyword Values Description
Address Network address of the SQL Server.
AnsiNPW yes Default. Specifies that ANSI_NULLS,

ANSI_WARNINGS, ANSI_PADDING, and
CONCAT_NULL_YIELDS_NULL are set ON for
each connection. This allows SQL Server to
treat SQL statements as per SQL-92. For
more information see Effects of SQL-92
Options.

 no Do not use ANSI-defined behaviors for NULL
comparisons, padding, warnings, and NULL
concatenation.

AttachDBFileName file_path Name of the primary file of an attachable
database. Include the full path, and escape
any \ characters if using a C character string
variable:

AttachDBFileName=c:\\AB\\MyDB.mdf

This database is attached and becomes the
default database for the connection. To use
AttachDBFileName you must also specify the
database name in either the
SQLDriverConnnect DATABASE parameter
or the SQL_COPT_CURRENT_CATALOG
connection attribute. If the database was
previously attached, SQL Server will not
reattach it; it will use the attached database as
the default for the connection.

AutoTranslate yes Default. ANSI character strings sent between
the client and server are translated by
converting through Unicode to minimize
problems in matching extended characters
between the code pages on the client and the
server:

Client SQL_C_CHAR data sent to a SQL Server
char, varchar, or text variable, parameter, or
column is converted from character to
Unicode using the client ANSI code page
(ACP), then converted from Unicode to
character using the ACP of the server.

SQL Server char, varchar, or text data sent
to a client SQL_C_CHAR variable is converted
from character to Unicode using the server
ACP, then converted from Unicode to
character using the client ACP.

These conversions are performed on the
client by the SQL Server ODBC driver. This
requires that the same ANSI code page (ACP)
used on the server be available on the client.

These settings have no effect on the
conversions that occur for these transfers:

Unicode SQL_C_WCHAR client data sent to
char, varchar, or text on the server.

char, varchar, or text server data sent to a
Unicode SQL_C_WCHAR variable on the
client.

ANSI SQL_C_CHAR client data sent to
Unicode nchar, nvarchar, or ntext on the
server.

Unicode char, varchar, or text server data
sent to an ANSI SQL_C_CHAR variable on the
client.

 no Do not perform character translation.

The SQL Server ODBC driver does not
translate client ANSI character data sent to
char, varchar, or text variables, parameters,
or columns on the server. No translation is
performed on char, varchar, or text data
sent from the server to character variables on
the client.

If the client and SQL Server installation are
using different ACPs, then extended
characters can be misinterpreted.

Database Name of the default database for the
connection. If Database is not specified, the
default database defined for the login is used.
The default database from the ODBC data
source overrides the default database defined
for the login. If AttachDBFileName points to a
primary database file, the database is
attached and given the name specified in
Database.

Description Descriptive text. The description appears with
the data source in the ODBC Management
utility.

Driver {SQL Server} Driver name. The braces are required when
using version 2.65 or earlier of the SQL
Server ODBC driver.

Fallback
(SQL Server 6.5 only)

yes Fallback connection attempts are made if a
connection to the primary server fails.
Available only when connecting to an
instance of SQL Server 6.5.

 no Default. Fallback connection attempts are not
made.

Language SQL Server language name. SQL Server can
store messages for multiple languages in
sysmessages. If connecting to a SQL Server
with multiple languages, Language specifies
which set of messages are used for the
connection.

Network Name of a Net-Library dynamic-link library.
The name need not include the path and must
not include the .dll file name extension, for
example, Network=dbnmpntw.

QueryLog_On yes Enables logging of long-running queries.
 no Default. Disables logging of long-running

queries.
QueryLogFile Full path and name of the file used to log

long-running queries.
QueryLogTime Digit character string specifying the threshold

(in milliseconds) for logging long-running
queries. Any query that does not get a
response in the time specified is written to
the long-running query log file.

QuotedId yes Default. Specifies that QUOTED_IDENTIFIERS
is set ON for each connection, SQL Server
uses the SQL-92 rules regarding the use of
quotation marks in SQL statements. For more
information, see Effects of SQL-92 Options.

 no Specifies that QUOTED_IDENTIFIERS is set
OFF for each connection. SQL Server then
follows the legacy Transact-SQL rules
regarding the use of quotation marks in SQL
statements.

Regional yes Respect client workstation settings for region
when converting date, time, and currency
values to character strings. This setting
should only be specified for applications that
only display data, not for applications that
process data.

 no Default. Use ODBC-defined character formats
for date, time, and money conversion.

Server Name of a server running SQL Server on the
network. The value must be either the name
of a server on the network, or the name of a
SQL Server Client Network Utility advanced
server entry. You can enter (local) as the
server name on Windows NT 4.0 to connect
to a copy of SQL Server running on the same
computer. SQL Server 2000 supports
multiple instances of SQL Server running on
the same computer. To specify a named
instance of SQL Server, the server name is
specified as ServerName\InstanceName. For
more information about server names, see
Managing Clients.

StatsLog_On yes Enables driver performance logging.
 no Default. Disables driver performance logging.
StatsLogFile Full path and name of the file used to record

SQL Server ODBC driver performance
statistics.

Trusted_Connection yes Windows Authentication is enabled for the
data source.

 no Default. SQL Server Authentication is enabled
for the data source. A SQL Server login and
password must be specified for each
connection.

UseProcForPrepare 0 Temporary stored procedures are not created
on statement preparation.

(SQL Server 6.5 or
earlier only)

1 Default. Temporary stored procedures are
created for prepared SQL statements. The
procedures are dropped when the connection
is closed or lost.

 2 Temporary stored procedures are created for
prepared SQL statements. The procedures are
dropped when the cursor is closed.

Note Regional conversion settings apply to currency, numeric, date, and time data types. The conversion setting is only
applicable to output conversion and is only visible when currency, numeric, date, or time values are converted to character strings.

The driver uses the locale registry settings for the current user. The driver does not honor the current thread's locale if the
application sets it after connection by, for example, calling SetThreadLocale.

Altering the regional behavior of a data source can cause application failure. An application that parses date strings, and expects
date strings to appear as defined by ODBC, could be adversely affected by altering this value.

ODBC and SQL Server (SQL Server 2000)

SQLDescribeCol
For executed statements, the Microsoft® SQL Server™ ODBC driver does not need to query the server to describe columns in a
result set. In this case, SQLDescribeCol does not cause a server roundtrip. Like SQLColAttribute and SQLNumResultCols,
calling SQLDescribeCol on prepared but not executed statements generates a server roundtrip.

When a Transact-SQL statement or statement batch returns multiple result row sets, it is possible for a column, referenced by
ordinal, to originate in a separate table or to refer to an entirely different column in the result set. SQLDescribeCol should be
called for each set. When the result set changes, the application should rebind data values prior to fetching row results. For more
information about handling multiple result set returns, see SQLMoreResults.

Note When connected to an instance of SQL Server version 4.2x, SQLDescribeCol must create a result set to report column
attributes. The SQL Server ODBC driver will append the clause WHERE 1 = 2 to prepared SELECT statements prior to execution.
When connected to SQL Server 4.2x, SQLDescribeCol cannot return information about a result set that is generated by a
procedure if that procedure has been prepared but not executed.

When connected to any later version of SQL Server, the SQL Server ODBC driver uses the SET FMTONLY statement to reduce
server overhead when SQLDescribeCol is called for prepared but not executed statements.

For all versions, column attributes are reported for only the first result set when multiple result sets are generated by a prepared
batch of SQL statements.

ODBC and SQL Server (SQL Server 2000)

SQLDescribeParam
To describe the parameters of any SQL statement, the Microsoft® SQL Server™ ODBC driver builds and executes a Transact-SQL
SELECT statement when SQLDescribeParam is called on a prepared ODBC statement handle. The driver uses the SET FMTONLY
statement when executing the query. The meta data of the result set determines the characteristics of the parameters in the
prepared statement.

Consider this ODBC SQL statement:

INSERT INTO Shippers (ShipperID, CompanyName, Phone) VALUES (?, ?, ?)

On a call to SQLDescribeParam, this ODBC SQL statement causes the driver to execute the following Transact-SQL statement:

SET FMTONLY ON SELECT ShipperID, CompanyName, Phone FROM Shippers SET FMTONLY OFF

SQLDescribeParam can, therefore, return any error code that SQLExecute or SQLExecDirect might return.

Further, the driver does not support calling SQLDescribeParam after SQLExecDirect for any Transact-SQL UPDATE or DELETE
statements containing the FROM clause; for any ODBC or Transact-SQL statement depending on a subquery containing
parameters; for ODBC SQL statements containing parameter markers in both expressions of a comparison, like, or quantified
predicate; or queries where one of the parameters is a parameter to a function.

When processing a batch of Transact-SQL statements, the driver also does not support calling SQLDescribeParam for parameter
markers in statements after the first statement in the batch.

When describing the parameters of prepared stored procedures, SQLDescribeParam uses the system stored procedure
sp_sproc_columns to retrieve parameter characteristics. sp_sproc_columns can report data for stored procedures within the
current user database. Preparing a fully qualified stored procedure name allows SQLDescribeParam to execute across databases.
For example, the system stored procedure sp_who can be prepared and executed in any database as:

SQLPrepare(hstmt, "{call sp_who(?)}", SQL_NTS);

Executing SQLDescribeParam after successful preparation returns an empty row set when connected to any database but
master. The same call, prepared as follows, causes SQLDescribeParam to succeed regardless of the current user database:

SQLPrepare(hstmt, "{call master..sp_who(?)}", SQL_NTS);

ODBC and SQL Server (SQL Server 2000)

SQLDriverConnect
The Microsoft® SQL Server™ ODBC driver and the ODBC driver manager recognize the following SQLDriverConnect connection
string keywords.

Keyword Description
Address Network address of the server running an instance of SQL

Server. Address is usually the network name of the server,
but can be other names such as a pipe, or a TCP/IP port and
socket address. For more information, see Managing
Clients.

AnsiNPW When yes, the driver uses ANSI-defined behaviors for
handling NULL comparisons, character data padding,
warnings, and NULL concatenation. When no, ANSI defined
behaviors are not exposed. For more information about
ANSI NPW behaviors, see Effects of SQL-92 Options.

APP Name of the application calling SQLDriverConnect
(optional). If specified, this value is stored in the
master.dbo.sysprocesses column program_name and is
returned by sp_who and the Transact-SQL APP_NAME
function.

AttachDBFileName Name of the primary file of an attachable database. Include
the full path and escape any \ characters if using a C
character string variable:

AttachDBFileName=c:\\MyFolder\\MyDB.mdf

This database is attached and becomes the default database
for the connection. To use AttachDBFileName you must also
specify the database name in either the
SQLDriverConnnect DATABASE parameter or the
SQL_COPT_CURRENT_CATALOG connection attribute. If the
database was previously attached, SQL Server will not
reattach it; it will use the attached database as the default
for the connection.

AutoTranslate When yes, ANSI character strings sent between the client
and server are translated by converting through Unicode to
minimize problems in matching extended characters
between the code pages on the client and the server:

Client SQL_C_CHAR data sent to a SQL Server char,
varchar, or text variable, parameter, or column is
converted from character to Unicode using the client ANSI
code page (ACP), then converted from Unicode to character
using the ACP of the server.

SQL Server char, varchar, or text data sent to a client
SQL_C_CHAR variable is converted from character to
Unicode using the server ACP, then converted from
Unicode to character using the client ACP.

These conversions are performed on the client by the SQL
Server ODBC driver. This requires that the same ANSI code
page (ACP) used on the server be available on the client.

These settings have no effect on the conversions that occur
for these transfers:

Unicode SQL_C_WCHAR client data sent to char, varchar,
or text on the server.

char, varchar, or text server data sent to a Unicode
SQL_C_WCHAR variable on the client.

ANSI SQL_C_CHAR client data sent to Unicode nchar,
nvarchar, or ntext on the server.

Unicode char, varchar, or text server data sent to an ANSI
SQL_C_CHAR variable on the client.

When no, character translation is not performed.

The SQL Server ODBC driver does not translate client ANSI
character SQL_C_CHAR data sent to char, varchar, or text
variables, parameters, or columns on the server. No
translation is performed on char, varchar, or text data sent
from the server to SQL_C_CHAR variables on the client.

If the client and SQL Server are using different ACPs, then
extended characters can be misinterpreted.

DATABASE Name of the default SQL Server database for the
connection. If Database is not specified, the default
database defined for the login is used. The default database
from the ODBC data source overrides the default database
defined for the login. The database must be an existing
database unless AttachDBFileName is also specified. If
AttachDBFileName is also specified, the primary file it
points to is attached and given the database name specified
by DATABASE.

DRIVER Name of the driver as returned by SQLDrivers. The
keyword value for the SQL Server ODBC driver is "{SQL
Server}". The braces are required when using version 2.65
or earlier of the SQL Server ODBC driver. The SERVER
keyword is required if DRIVER is specified and
DriverCompletion is set to SQL_DRIVER_NOPROMPT.

DSN Name of an existing ODBC user or system data source.

Fallback
(SQL Server 6.5 only)

When yes, instructs the driver to attempt connection to a
fallback server if connection to a primary server fails. The
login time-out (set with ODBC SQLSetConnectAttr,
attribute SQL_ATTR_LOGIN_TIMEOUT) must be set for
fallback to occur. When no, no attempt at a fallback
connection is made. This option applies only to standby
servers. It does not apply to a virtual server in a
cluster/failover configuration.

FILEDSN Name of an existing ODBC file data source.
LANGUAGE SQL Server language name (optional). SQL Server can store

messages for multiple languages in sysmessages. If
connecting to a SQL Server with multiple languages,
Language specifies which set of messages are used for the
connection.

Network Name of a network library dynamic-link library. The name
need not include the path and must not include the .dll file
name extension, for example, Network=dbnmpntw.

PWD The password for the SQL Server login account specified in
the UID parameter. PWD need not be specified if the login
has a NULL password or when using Windows
Authentication (Trusted_Connection = yes).

SAVEFILE Name of an ODBC data source file into which the attributes
of the current connection are saved if the connection is
successful.

SERVER Name of a server running SQL Server on the network. The
value must be either the name of a server on the network,
or the name of a SQL Server Client Network Utility
advanced server entry. You can enter (local) as the server
name on Microsoft Windows® NT 4.0 to connect to a copy
of SQL Server running on the same computer. SQL Server
2000 supports multiple instances of SQL Server running on
the same computer. To specify a named instance of SQL
Server, the server name is specified as
ServerName\InstanceName. For more information about
server names, see Managing Clients.

QueryLogFile Full path and file name of a file to use to log data on long-
running queries.

QueryLog_On When yes, logging long-running query data is enabled on
the connection. When no, long-running query data is not
logged.

QueryLogTime Digit character string specifying the threshold (in
milliseconds) for logging long-running queries. Any query
that does not get a response in the time specified is written
to the long-running query log file.

QuotedID When yes, QUOTED_IDENTIFIERS is set ON for the
connection, SQL Server uses the SQL-92 rules regarding
the use of quotation marks in SQL statements. When no,
QUOTED_IDENTIFIERS is set OFF for the connection. SQL
Server then follows the legacy Transact-SQL rules
regarding the use of quotation marks in SQL statements.
For more information, see Effects of SQL-92 Options.

Regional When yes, the SQL Server ODBC driver uses client settings
when converting currency, date, and time data to character
data. The conversion is one way only; the driver does not
recognize non-ODBC standard formats for date strings or
currency values within; for example, a parameter used in an
INSERT or UPDATE statement. When no, the driver uses
ODBC standard strings to represent currency, date, and
time data that is converted to string data.

StatsLogFile Full path and file name of a file used to record SQL Server
ODBC driver performance statistics.

StatsLog_On When yes, enables the capture of SQL Server ODBC driver
performance data. When no, SQL Server ODBC driver
performance data is not available on the connection.

Trusted_Connection When yes, instructs the SQL Server ODBC driver to use
Windows Authentication Mode for login validation. The UID
and PWD keywords are optional. When no, instructs the
SQL Server ODBC driver to use a SQL Server username and
password for login validation. The UID and PWD keywords
must be specified.

UID A valid SQL Server login account. UID need not be specified
when using Windows Authentication.

UseProcForPrepare
(SQL Server 6.5 and
earlier only)

When 1, instructs the SQL Server ODBC driver to create
temporary stored procedures when statements are
prepared with SQLPrepare. The temporary stored
procedures are not dropped until the connection is broken.

When 2, the SQL Server ODBC driver creates temporary
stored procedures for SQLPrepare, but only one procedure
is created per statement handle and the procedure is
dropped when the statement handle becomes invalid or a
new SQL statement is prepared. When 0, the SQL Server
ODBC driver does not create temporary stored procedures
for SQLPrepare.

WSID Workstation ID. Typically, this is the network name of the
computer on which the application resides (optional). If
specified, this value is stored in the
master.dbo.sysprocesses column hostname and is
returned by sp_who and the Transact-SQL HOST_NAME
function.

Note Regional conversion settings apply to currency, numeric, date, and time data types. The conversion setting is only
applicable to output conversion and is only visible when currency, numeric, date, or time values are converted to character strings.

The driver uses the locale registry settings for the current user. The driver does not honor the current thread's locale if the
application sets it after connection by, for example, calling SetThreadLocale.

Altering the regional behavior of a data source can cause application failure. An application that parses date strings, and expects
date strings to appear as defined by ODBC, could be adversely affected by altering this value.

The SQL Server ODBC driver defines connection attributes that either replace or enhance connection-string keywords. Several
connection-string keywords have default values specified by the SQL Server ODBC driver. For more information about SQL
Server connection attributes and driver default behaviors, see SQLSetConnectAttr.

When the SQLDriverConnect DriverCompletion parameter value is SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE, or
SQL_DRIVER_COMPLETE_REQUIRED, the SQL Server ODBC driver retrieves keyword values from the displayed dialog box. If the
keyword value is passed in the connection string and the user does not alter the value for the keyword in the dialog box, the SQL
Server ODBC driver uses the value from the connection string. If the value is not set in the connection string and the user makes
no assignment in the dialog box, the driver uses the default.

SQLDriverConnect must be given a valid WindowHandle when any DriverCompletion value requires (or could require) the
display of the driver's connection dialog box. An invalid handle returns SQL_ERROR.

Specify either the DRIVER or DSN keywords. ODBC states that a driver uses the leftmost of these two keywords and ignores the
other if both are specified. If DRIVER is specified, or is the leftmost of the two, and the SQLDriverConnect DriverCompletion
parameter value is SQL_DRIVER_NOPROMPT, the SERVER keyword and an appropriate value are required.

When SQL_DRIVER_NOPROMPT is specified, user authentication keywords must be present with values. The driver ensures that
either the string "Trusted_Connection=yes" or both the UID and PWD keywords are present.

If the DriverCompletion parameter value is SQL_DRIVER_NOPROMPT or SQL_DRIVER_COMPLETE_REQUIRED and the language
or database comes from the connection string and either is invalid, SQLDriverConnect returns SQL_ERROR.

If the DriverCompletion parameter value is SQL_DRIVER_NOPROMPT or SQL_DRIVER_COMPLETE_REQUIRED and the language
or database comes from the ODBC data source definitions and either is invalid, SQLDriverConnect uses the default language or
database for the specified user ID and returns SQL_SUCCESS_WITH_INFO.

If the DriverCompletion parameter value is SQL_DRIVER_COMPLETE or SQL_DRIVER_PROMPT and if the language or database is
invalid, SQLDriverConnect redisplays the dialog box.

Examples

The following call illustrates the least amount of data required for SQLDriverConnect:

SQLDriverConnect(hdbc, hwnd,
 (SQLTCHAR*) "DRIVER={SQL Server};" SQL_NTS, szOutConn,
 MAX_CONN_OUT, cbOutConn, SQL_DRIVER_COMPLETE);

The following connection strings illustrate minimum required data when the DriverCompletion parameter value is
SQL_DRIVER_NOPROMPT:

"DSN=Human Resources;UID=Smith;PWD=Sesame"

"DSN=Human Resources;Trusted_Connection=yes"

"FILEDSN=HR_FDSN;UID=Smith;PWD=Sesame"

"FILEDSN=HR_FDSN;Trusted_Connection=yes"

"DRIVER={SQL Server};SERVER=hrserver;UID=Smith;PWD=Sesame"

"DRIVER={SQL Server};SERVER=hrserver;Trusted_Connection=yes"
Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt
users to enter their credentials at run time. Avoid storing credentials in a file. If you must persist
credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

http://go.microsoft.com/fwlink/?LinkId=9504

ODBC and SQL Server (SQL Server 2000)

SQLDrivers
The ODBC Driver Manager returns all ODBC 3.0-defined SQLDrivers attribute specification strings. For more information about
attribute string and value definition, see the ODBC 3.0 documentation.

ODBC and SQL Server (SQL Server 2000)

SQLEndTran
By default, the Microsoft® SQL Server™ ODBC driver closes a statement's associated cursor when SQLEndTran commits or rolls
back an operation. Server cursors are closed unless they are static. When SQLEndTran commits or rolls back an operation, the
behavior of the statement's associated cursor is determined by the value of the driver-specific ODBC connection attribute
SQL_COPT_SS_PRESERVE_CURSORS, set by SQLSetConnectAttr.

ODBC and SQL Server (SQL Server 2000)

SQLFetchScroll
SQLFetchScroll returns one row set of data to the application. The size of the row set is set using SQLSetStmtAttr. The
Microsoft® SQL Server™ ODBC driver supports all defined fetch instructions (for example, SQL_FETCH_RELATIVE) with the
following limitations:

If a forward-only cursor is defined for the statement, SQL_FETCH_NEXT is required and attempts to fetch in any other
fashion will result in an error return.

SQL_FETCH_BOOKMARK is supported for static and keyset-driven cursors only.

ODBC and SQL Server (SQL Server 2000)

SQLForeignKeys
SQLForeignKeys uses the catalog stored procedure sp_fkeys to report foreign keys referencing a table's primary key or columns
in a table that reference the primary key columns of other tables.

The following table shows the SQLForeignKeys parameter mapping for sp_fkeys stored procedure execution.

SQLForeignKeys parameter name sp_fkeys parameter name
PKTableCatalog pktable_qualifier
PKTableSchema pktable_owner
PKTableName pktable_name
FKTableCatalog fktable_qualifier
FKTableSchema fktable_owner
FKTableName fktable_name

Microsoft® SQL Server™ supports cascading updates and deletes through the foreign key constraint mechanism. SQL Server
returns SQL_CASCADE for UPDATE_RULE and/or DELETE_RULE columns if CASCADE option is specified on the ON UPDATE
and/or ON DELETE clause of the FOREIGN KEY constraints. SQL Server returns SQL_NO_ACTION for UPDATE_RULE and/or
DELETE_RULE columns if NO ACTION option is specified on the ON UPDATE and/or ON DELETE clause of the FOREIGN KEY
constraints.

When invalid values are present in any SQLForeignKeys parameter, SQLForeignKeys returns SQL_SUCCESS on execution.
SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLForeignKeys can be executed on a static server cursor. An attempt to execute SQLForeignKeys on an updatable (dynamic or
keyset) cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

The SQL Server ODBC driver supports reporting information for tables on linked servers by accepting a two-part name for the
FKCatalogName and PKCatalogName parameters: Linked_Server_Name.Catalog_Name.

See Also

sp_fkeys

ODBC and SQL Server (SQL Server 2000)

SQLFreeHandle
In manual-commit mode, calling SQLFreeHandle on a statement handle with an open transaction causes a rollback of pending
changes to the database. SQLFreeHandle of a statement handle always closes any open cursors and discards pending results,
freeing all resources associated with the statement handle.

ODBC and SQL Server (SQL Server 2000)

SQLFreeStmt
SQLFreeStmt is not recommended in ODBC 3.0 and later. The Microsoft® SQL Server™ ODBC driver supports all defined Option
values for SQLFreeStmt. However, SQLCloseCursor, SQLBindParameter, SQLBindCol, SQLSetDescField, and SQLFreeHandle
replace or duplicate the function of SQLFreeStmt and should be used instead.

See Also

SQLBindCol

SQLCloseCursor

SQLBindParameter

ODBC and SQL Server (SQL Server 2000)

SQLGetConnectAttr
The Microsoft® SQL Server™ ODBC driver defines driver-specific connection attributes. Some of the attributes are available to
SQLGetConnectAttr, and the function is used to report their current settings. The values reported for these attributes are not
guaranteed until after a connection has been made or the attribute has been set using SQLSetConnectAttr.

SQL_COPT_SS_ANSI_NPW

SQL_COPT_SS_ANSI_NPW enables or disables the use of ANSI handling of NULL comparisons, character data type padding,
warning levels, and NULL concatenation. For more information, see SET ANSI_NULLS, SET ANSI_PADDING, SET
ANSI_WARNINGS, and SET CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_AD_ON Default. The connection uses ANSI default behavior handling

NULL comparisons, padding, warnings, and NULL
concatenations.

SQL_AD_OFF The connection uses SQL Server defined handling of NULL
comparisons, character data type padding, warnings, and
NULL concatenations.

SQL_COPT_SS_CONNECTION_DEAD

SQL_COPT_SS_CONNECTION_DEAD reports the alive or dead state of a connection to a server. The driver queries the Net-Library
for the current state of the connection.

Value Description
SQL_CD_TRUE The connection to the server has been lost.
SQL_CD_FALSE The connection is open and available for statement

processing.

SQL_COPT_SS_PERF_DATA

SQL_COPT_SS_PERF_DATA returns a pointer to a SQLPERF structure containing the current driver performance statistics.
SQLGetConnectAttr will return NULL if performance logging is not enabled. The statistics in the SQLPERF structure are not
dynamically updated by the driver. Call SQLGetConnectAttr each time the performance statistics need to be refreshed. For more
information about performance logging, see SQLSetConnectAttr.

Value Description
NULL Performance logging is not enabled.
Any other value A pointer to a SQLPERF structure.

SQL_COPT_SS_PERF_QUERY

SQL_COPT_SS_PERF_QUERY returns TRUE if logging of long running queries is enabled. The request returns FALSE if query
logging is not active.

SQL_COPT_SS_PRESERVE_CURSORS

SQL_COPT_SS_PRESERVE_CURSORS defines the behavior of cursors when manual-commit mode is used. The behavior is
exposed as transactions and are either committed or rolled back using SQLEndTran.

Value Description
SQL_PC_OFF Default. Cursors are closed when transaction is committed or

rolled back using SQLEndTran.

SQL_PC_ON Cursors are not closed when transaction is committed or
rolled back using SQLEndTran, except when using a static or
keyset cursor in asynchronous mode. If a rollback is issued
while the population of the cursor is not complete, the cursor
is closed.

SQL_COPT_SS_QUOTED_IDENT

SQL_COPT_SS_QUOTED_IDENT allows quoted identifiers in ODBC and Transact-SQL statements submitted on the connection. By
supplying quoted identifiers, the SQL Server ODBC driver allows otherwise invalid object names such as "My Table," which
contains a space character in the identifier.

Value Description
SQL_QI_OFF The SQL Server connection does not allow quoted identifiers

in submitted Transact-SQL.
SQL_QI_ON Default. The connection allows quoted identifiers in Transact-

SQL submitted.

SQL_COPT_SS_TRANSLATE

SQL_COPT_SS_TRANSLATE controls character translation as MBCS data is exchanged. The attribute affects only data stored in
SQL Server char, varchar, and text columns.

Value Description
SQL_XL_OFF The SQL Server ODBC driver does not translate characters

from one code page to another in character data exchanged
between the client and the server.

SQL_XL_ON Default. The SQL Server ODBC driver translates characters
from one code page to another in character data exchanged
between the client and the server. The driver automatically
configures the character translation, determining the code
page installed on the server and that in use by the client.

SQL_COPT_SS_USE_PROC_FOR_PREP

This option is valid only when connected to SQL Server version 6.5 or earlier. SQL_COPT_SS_USE_PROC_FOR_PREP defines the
use of temporary stored procedures when ODBC and Transact-SQL statements are prepared for execution. For more information
about prepared statement execution, see SQLPrepare.

Value Description
SQL_UP_OFF The driver does not generate stored procedures when the

application prepares statements.
SQL_UP_ON Default. The driver generates a temporary stored procedure

when a statement is prepared. The stored procedure is
dropped when the application disconnects from the server.

SQL_UP_ON_DROP The driver generates a temporary stored procedure when a
statement is prepared. The stored procedure is dropped when
the statement handle is freed.

SQL_COPT_SS_USER_DATA

SQL_COPT_SS_USER_DATA retrieves the user-data pointer. User data is stored in client-owned memory and recorded per
connection. If the user-data pointer has not been set, SQL_UD_NOTSET, a NULL pointer, is returned.

Value Description
SQL_UD_NOTSET No user-data pointer is set.
Any other value A pointer to the user data.

See Also

Delimited Identifiers

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

SQLEndTran

ODBC and SQL Server (SQL Server 2000)

SQLGetCursorName
If the application does not specify a cursor name, the Microsoft® SQL Server™ ODBC driver generates one for the application
upon cursor generation. The application can use SQLGetCursorName to retrieve the driver-defined cursor name for positioned
UPDATE and DELETE statements. The application does not need to call SQLSetCursorName to take advantage of positioned data
manipulation statements.

ODBC and SQL Server (SQL Server 2000)

SQLGetData
SQLGetData is used to retrieve result set data without binding column values. SQLGetData can be called successively on the
same column to retrieve large amounts of data from a column with a text, ntext, or image data type.

There is no requirement that an application bind variables to fetch result set data. The data of any column can be retrieved from
the Microsoft® SQL Server™ ODBC driver by using SQLGetData.

The SQL Server ODBC driver does not support using SQLGetData to retrieve data in random column order. All unbound columns
processed with SQLGetData must have higher column ordinals than the bound columns in the result set. The application must
process data from the lowest unbound ordinal column value to the highest. Attempting to retrieve data from a lower ordinally
numbered column results in an error. If the application is using server cursors to report result set rows, the application can refetch
the current row and then fetch the value of a column. If a statement is executed on the default read-only, forward-only cursor, you
must re-execute the statement to back up SQLGetData.

The SQL Server ODBC driver accurately reports the length of text, ntext, and image data retrieved using SQLGetData. The
application can make good use of the StrLen_or_IndPtr parameter return to retrieve long data rapidly.

Examples

SQLHDBC hDbc = NULL;
SQLHSTMT hStmt = NULL;
long lEmpID;
PBYTE pPicture;
SQLINTEGER pIndicators[2];

// Get an environment, connection, and so on.
...

// Get a statement handle and execute a command.
SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (SQLExecDirect(hStmt,
 (SQLCHAR*) "SELECT EmployeeID, Photo FROM Employees",
 SQL_NTS) == SQL_ERROR)
 {
 // Handle error and return.
 }

// Retrieve data from row set.
SQLBindCol(hStmt, 1, SQL_C_LONG, (SQLPOINTER) &lEmpID, sizeof(long),
 &pIndicators[0]);

while (SQLFetch(hStmt) == SQL_SUCCESS)
 {
 printf("EmployeeID: %d\n", lEmpID);

 // Call SQLGetData to determine the amount of data that's waiting.
 if (SQLGetData(hStmt, 2, SQL_C_BINARY, pPicture, 0, &pIndicators[1])
 == SQL_SUCCESS_WITH_INFO)
 {
 printf("Photo size: %ld\n\n", pIndicators[1]);

 // Get all the data at once.
 pPicture = new BYTE[pIndicators[1]];
 if (SQLGetData(hStmt, 2, SQL_C_DEFAULT, pPicture,
 pIndicators[1], &pIndicators[1]) != SQL_SUCCESS)
 {
 // Handle error and continue.
 }

 delete [] pPicture;
 }
 else
 {
 // Handle error on attempt to get data length.
 }
 }

ODBC and SQL Server (SQL Server 2000)

SQLGetDescField
The Microsoft® SQL Server™ ODBC driver exposes driver-specific descriptor fields for the implementation row descriptor (IRD)
only. Within the IRD, SQL Server descriptor fields are referenced through driver-specific column attributes. For information about
a complete list of available driver-specific descriptor fields, see SQLColAttribute.

Descriptor fields that contain column identifier strings are often zero length strings. For a description of the behavior of ODBC
descriptor fields that contain column identifier strings, see SQLColAttribute.

All SQL Server-specific descriptor field values are read-only.

Like attributes retrieved with SQLColAttribute, descriptor fields that report row-level attributes (such as
SQL_CA_SS_COMPUTE_ID) are reported for all columns in the result set.

Example

...
typedef struct tagCOMPUTEBYLIST
 {
 SQLSMALLINT nBys;
 SQLSMALLINT aByList[1];
 } COMPUTEBYLIST;
typedef COMPUTEBYLIST* PCOMPUTEBYLIST;

SQLHDESC hIRD;
SQLINTEGER cbIRD;
SQLINTEGER nSet = 0;

// . . .
// Execute a statement that contains a COMPUTE clause,
// then get the descriptor handle of the IRD and
// get some IRD values.

SQLGetStmtAttr(g_hStmt, SQL_ATTR_IMP_ROW_DESC,
 (SQLPOINTER) &hIRD, sizeof(SQLHDESC), &cbIRD);

// For statement-wide column attributes, any
// descriptor record will do. You know that 1 exists,
// so use it.
SQLGetDescField(hIRD, 1, SQL_CA_SS_NUM_COMPUTES,
 (SQLPOINTER) &nComputes, SQL_IS_INTEGER, &cbIRD);

if (nSet == 0)
 {
 SQLINTEGER nOrderID;

 printf("Normal result set.\n");

 for (nCol = 0; nCol < nCols; nCol++)
 {
 SQLGetDescField(hIRD, nCol+1,
 SQL_CA_SS_COLUMN_ORDER,
 (SQLPOINTER) &nOrderID, SQL_IS_INTEGER,
 &cbIRD);

 if (nOrderID != 0)
 {
 printf("Col in ORDER BY, pos: %ld",
 nOrderID);
 }
 printf("\n");
 }

 printf("\n");
 }
else
 {
 PCOMPUTEBYLIST pByList;
 SQLSMALLINT nBy;
 SQLINTEGER nColID;

 printf("Computed result set number: %lu\n",
 nSet);

 SQLGetDescField(hIRD, 1, SQL_CA_SS_COMPUTE_BYLIST,
 (SQLPOINTER) &pByList, SQL_IS_INTEGER,
 &cbIRD);

 if (pByList != NULL)
 {
 printf("Clause ordered by columns: ");
 for (nBy = 0; nBy < pByList->nBys;)
 {
 printf("%u", pByList->aByList[nBy]);
 nBy++;

 if (nBy == pByList->nBys)
 {
 printf("\n");
 }
 else
 {
 printf(", ");
 }
 }
 }
 else
 {
 printf("Compute clause set not ordered.\n");
 }

 for (nCol = 0; nCol < nCols; nCol++)
 {
 SQLGetDescField(hIRD, nCol+1,
 SQL_CA_SS_COLUMN_ID, (SQLPOINTER) &nColID,
 SQL_IS_INTEGER, &cbIRD);
 printf("ColumnID: %lu, nColID);
 }
 printf("\n");
 }

if (SQLMoreResults(g_hStmt) == SQL_SUCCESS)
 {
 // Determine the result set indicator.
 SQLGetDescField(hIRD, 1, SQL_CA_SS_COMPUTE_ID,
 (SQLPOINTER) &nSet, SQL_IS_INTEGER, &cbIRD);
 }

// and carry on...

ODBC and SQL Server (SQL Server 2000)

SQLGetDiagField
The Microsoft® SQL Server™ ODBC driver specifies the following additional diagnostics fields for SQLGetDiagField. These fields
support rich error reporting for SQL Server applications and are available in all diagnostics records generated on connected
ODBC connection handles and ODBC statement handles. The fields are defined in Odbcss.h.

Diagnostics record field Description
SQL_DIAG_SS_LINE Reports the line number of a stored procedure

generating an error. The value of SQL_DIAG_SS_LINE
is meaningful only if SQL_DIAG_SS_PROCNAME
returns a value. The value is returned as an unsigned,
16-bit integer.

SQL_DIAG_SS_MSGSTATE The state of an error message. For information about
the error message state, see RAISERROR. The value is
returned as a signed, 32-bit integer.

SQL_DIAG_SS_PROCNAME Name of the stored procedure generating an error, if
appropriate. The value is returned as a character
string. The length of the string (in characters) depends
on the version of the SQL Server. It can be determined
by calling SQLGetInfo requesting the value for
SQL_MAX_PROCEDURE_NAME_LEN.

SQL_DIAG_SS_SEVERITY The severity level of the associated error message. The
value is returned as a signed, 32-bit integer.

SQL_DIAG_SS_SRVNAME The name of the server on which the error occurred.
The value is returned as a character string. The length
of the string (in characters) is defined by the
SQL_MAX_SQLSERVERNAME macro in Odbcss.h.

SQL Server-specific diagnostic fields that contain character data, SQL_DIAG_SS_PROCNAME and SQL_DIAG_SS_SRVNAME, return
that data to the client as null terminated, ANSI, or Unicode strings. If necessary, the count of characters should be adjusted by the
character width. Alternately, a portable C data type such as TCHAR or SQLTCHAR can be used to ensure correct program variable
length.

The SQL Server ODBC driver reports the following additional dynamic function codes that identify the last attempted SQL Server
statement. The dynamic function code is returned in the header (record 0) of the diagnostics record set and is therefore available
on every execution (successful or not).

Dynamic function code Source
SQL_DIAG_DFC_SS_ALTER_DATABASE ALTER DATABASE statement
SQL_DIAG_DFC_SS_CHECKPOINT CHECKPOINT statement
SQL_DIAG_DFC_SS_CONDITION Error arose in the WHERE or HAVING

clauses of a statement.
SQL_DIAG_DFC_SS_CREATE_DATABASE CREATE DATABASE statement
SQL_DIAG_DFC_SS_CREATE_DEFAULT CREATE DEFAULT statement
SQL_DIAG_DFC_SS_CREATE_PROCEDURE CREATE PROCEDURE statement
SQL_DIAG_DFC_SS_CREATE_RULE CREATE RULE statement
SQL_DIAG_DFC_SS_CREATE_TRIGGER CREATE TRIGGER statement
SQL_DIAG_DFC_SS_CURSOR_DECLARE DECLARE CURSOR statement
SQL_DIAG_DFC_SS_CURSOR_OPEN OPEN statement
SQL_DIAG_DFC_SS_CURSOR_FETCH FETCH statement
SQL_DIAG_DFC_SS_CURSOR_CLOSE CLOSE statement
SQL_DIAG_DFC_SS_DEALLOCATE_CURSOR DEALLOCATE statement
SQL_DIAG_DFC_SS_DBCC DBCC statement
SQL_DIAG_DFC_SS_DENY DENY statement
SQL_DIAG_DFC_SS_DISK DISK INIT statement
SQL_DIAG_DFC_SS_DROP_DATABASE DROP DATABASE statement
SQL_DIAG_DFC_SS_DROP_DEFAULT DROP DEFAULT statement
SQL_DIAG_DFC_SS_DROP_PROCEDURE DROP PROCEDURE statement

SQL_DIAG_DFC_SS_DROP_RULE DROP RULE statement
SQL_DIAG_DFC_SS_DROP_TRIGGER DROP TRIGGER statement
SQL_DIAG_DFC_SS_DUMP_DATABASE BACKUP or DUMP DATABASE

statement
SQL_DIAG_DFC_SS_DUMP_TABLE DUMP TABLE statement
SQL_DIAG_DFC_SS_DUMP_TRANSACTION BACKUP or DUMP TRANSACTION

statement. Also returned for a
CHECKPOINT statement if the trunc.
log on chkpt. database option is on.

SQL_DIAG_DFC_SS_GOTO GOTO control-of-flow statement
SQL_DIAG_DFC_SS_INSERT_BULK INSERT BULK statement
SQL_DIAG_DFC_SS_KILL KILL statement
SQL_DIAG_DFC_SS_LOAD_DATABASE LOAD or RESTORE DATABASE

statement
SQL_DIAG_DFC_SS_LOAD_HEADERONLY LOAD or RESTORE HEADERONLY

statement
SQL_DIAG_DFC_SS_LOAD_TABLE LOAD TABLE statement
SQL_DIAG_DFC_SS_LOAD_TRANSACTION LOAD or RESTORE TRANSACTION

statement
SQL_DIAG_DFC_SS_PRINT PRINT statement
SQL_DIAG_DFC_SS_RAISERROR RAISERROR statement
SQL_DIAG_DFC_SS_READTEXT READTEXT statement
SQL_DIAG_DFC_SS_RECONFIGURE RECONFIGURE statement
SQL_DIAG_DFC_SS_RETURN RETURN control-of-flow statement
SQL_DIAG_DFC_SS_SELECT_INTO SELECT INTO statement
SQL_DIAG_DFC_SS_SET SET statement (generic, all options)
SQL_DIAG_DFC_SS_SET_IDENTITY_INSERT SET IDENTITY_INSERT statement
SQL_DIAG_DFC_SS_SET_ROW_COUNT SET ROWCOUNT statement
SQL_DIAG_DFC_SS_SET_STATISTICS SET STATISTICS IO or SET STATISTICS

TIME statements
SQL_DIAG_DFC_SS_SET_TEXTSIZE SET TEXTSIZE statement
SQL_DIAG_DFC_SS_SETUSER SETUSER statement
SQL_DIAG_DFC_SS_SET_XCTLVL SET TRANSACTION ISOLATION

LEVEL statement
SQL_DIAG_DFC_SS_SHUTDOWN SHUTDOWN statement
SQL_DIAG_DFC_SS_TRANS_BEGIN BEGIN TRAN statement
SQL_DIAG_DFC_SS_TRANS_COMMIT COMMIT TRAN statement
SQL_DIAG_DFC_SS_TRANS_PREPARE Prepare to commit a distributed

transaction
SQL_DIAG_DFC_SS_TRANS_ROLLBACK ROLLBACK TRAN statement
SQL_DIAG_DFC_SS_TRANS_SAVE SAVE TRAN statement
SQL_DIAG_DFC_SS_TRUNCATE_TABLE TRUNCATE TABLE statement
SQL_DIAG_DFC_SS_UPDATE_STATISTICS UPDATE STATISTICS statement
SQL_DIAG_DFC_SS_UPDATETEXT UPDATETEXT statement
SQL_DIAG_DFC_SS_USE USE statement
SQL_DIAG_DFC_SS_WAITFOR WAITFOR control-of-flow statement
SQL_DIAG_DFC_SS_WRITETEXT WRITETEXT statement

See Also

SQLGetInfo

ODBC and SQL Server (SQL Server 2000)

SQLGetFunctions
The Microsoft® SQL Server™ ODBC driver interface complies with the three defined compliance levels for ODBC (ISO, X/Open,
and ODBC level 2). SQLGetFunctions reports that all ODBC functions are supported for the SQL Server ODBC driver.

ODBC and SQL Server (SQL Server 2000)

SQLGetInfo
The table shows the values returned by SQLGetInfo (may vary based on the version number of the connected server).

fInfoType rgbInfoValue
SQL_ACCESSIBLE_PROCEDURES "Y"
SQL_ACCESSIBLE_TABLES "Y"
SQL_ACTIVE_CONNECTIONS The number of connections is limited by

Microsoft® SQL Server™. The driver
returns 0 for this SQLGetInfo request.

SQL_ACTIVE_ENVIRONMENTS The number of environments is not limited
by the driver. The driver returns 0 for this
SQLGetInfo request.

SQL_ACTIVE_STATEMENTS The driver returns 1 for this SQLGetInfo
request. The number of statement handles
available to an application is not limited by
the driver, but default execution on a
statement handle will block execution on
any other handle.

SQL_ALTER_DOMAIN FALSE
SQL_ALTER_TABLE SQL_AT_ADD_COLUMN

SQL_AT_ADD_COLUMN_DEFAULT
SQL_AT_ADD_COLUMN_SINGLE
SQL_AT_ADD_CONSTRAINT
SQL_AT_ADD_TABLE_CONSTRAINT
SQL_AT_CONSTRAINT_NAME_DEFINITION
SQL_AT_DROP_COLUMN_RESTRICT

SQL_SQL_CONFORMANCE SQL_SC_SQL92_ENTRY
SQL_DATETIME_LITERALS FALSE
SQL_ASYNC_MODE SQL_AM_STATEMENT
SQL_BATCH_ROW_COUNT SQL_BRC_EXPLICIT
SQL_BATCH_SUPPORT SQL_BS_ROW_COUNT_EXPLICIT

SQL_BS_ROW_COUNT_PROC
SQL_BS_SELECT_EXPLICIT
SQL_BS_SELECT_PROC

SQL_BOOKMARK_PERSISTENCE SQL_BP_DELETE
SQL_BP_SCROLL
SQL_BP_UPDATE

SQL_CATALOG_LOCATION SQL_CL_START
SQL_CATALOG_NAME "Y"
SQL_CATALOG_NAME_SEPARATOR "."
SQL_CATALOG_TERM "database"
SQL_CATALOG_USAGE SQL_CU_DML_STATEMENTS

SQL_CU_PROCEDURE_INVOCATION
SQL_CU_TABLE_DEFINITION

SQL_COLLATION_SEQ The currently assigned collation sequence
for the connection and server.

SQL_COLUMN_ALIAS "Y"
SQL_CONCAT_NULL_BEHAVIOR SQL_CB_NULL

SQL_CB_NON_NULL if connected to a
version 6.5 or earlier server, or if AnsiNPW
is off when connected to an instance of
SQL Server 2000.

SQL_CONVERT_BIGINT No support for conversion of the ODBC
SQL_BIGINT data type. The SQL Server
ODBC driver supports the SQL Server
decimal(19,0) data type as ODBC type
SQL_DECIMAL. See
SQL_CONVERT_DECIMAL below.

SQL_CONVERT_BINARY SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TINYINT
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_BIT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_CHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_DATE No support for conversion of the ODBC
SQL_TYPE_DATE data type. The SQL Server
ODBC driver supports the SQL Server
datetime data type as ODBC type
SQL_TYPE_TIMESTAMP. See
SQL_CONVERT_TIMESTAMP below.

SQL_CONVERT_DECIMAL SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_DOUBLE No support for conversion of ODBC
SQL_DOUBLE data type. The SQL Server
ODBC driver supports the ODBC
SQL_DOUBLE data type as SQL_FLOAT.
See SQL_CONVERT_FLOAT below.

SQL_CONVERT_FLOAT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CONVERT
SQL_FN_CVT_CAST

SQL_CONVERT_INTEGER SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_INTERVAL_YEAR_MONTH No support for conversion of interval data
types.

SQL_CONVERT_INTERVAL_DAY_TIME No support for conversion of interval data
types.

SQL_CONVERT_LONGVARBINARY SQL_CVT_BINARY
SQL_CVT_LONGVARBINARY
SQL_CVT_VARBINARY

SQL_CONVERT_LONGVARCHAR SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_NUMERIC SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_REAL SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_SMALLINT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_TIME No support for conversion of the ODBC
SQL_TYPE_TIME data type. The SQL Server
ODBC driver supports the SQL Server
datetime data type as ODBC type
SQL_TYPE_TIMESTAMP. See
SQL_CONVERT_TIMESTAMP below.

SQL_CONVERT_TIMESTAMP SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TIMESTAMP
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_TINYINT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_VARBINARY SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TINYINT
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_VARCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WLONGVARCHAR SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WVARCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CORRELATION_NAME SQL_CN_ANY
SQL_CREATE_ASSERTION FALSE
SQL_CREATE_CHARACTER_SET FALSE
SQL_CREATE_COLLATION FALSE
SQL_CREATE_DOMAIN FALSE
SQL_CREATE_SCHEMA SQL_CS_AUTHORIZATION

SQL_CS_CREATE_SCHEMA
SQL_CREATE_TABLE SQL_CT_CREATE_TABLE
SQL_CREATE_TRANSLATION FALSE
SQL_CREATE_VIEW SQL_CV_CHECK_OPTION

SQL_CV_CREATE_VIEW
SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE
SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_CB_CLOSE
SQL_CURSOR_SENSITIVITY SQL_SENSITIVE
SQL_DATA_SOURCE_NAME Current data source name. Sets value

pointed to by StringLengthPtr to 0 if
connection did not specify a data source
name.

SQL_DATA_SOURCE_READ_ONLY Depends on setting of connection attribute
SQL_ATTR_ACCESS_MODE.

SQL_DATABASE_NAME The connection's current database.
SQL_DBMS_NAME "Microsoft SQL Server"
SQL_DBMS_VER The version number of the connected

instance of SQL Server.
SQL_DEFAULT_TXN_ISOLATION SQL_TXN_READ_COMMITTED
SQL_DESCRIBE_PARAMETER "Y"
SQL_DRIVER_NAME "Sqlsrv32.dll"
SQL_DRIVER_ODBC_VER The driver's supported ODBC version.
SQL_DRIVER_VER The version number of the driver.
SQL_DROP_ASSERTION FALSE
SQL_DROP_CHARACTER_SET FALSE
SQL_DROP_COLLATION FALSE
SQL_DROP_DOMAIN FALSE
SQL_DROP_SCHEMA DROP SCHEMA not supported.
SQL_DROP_TABLE SQL_DT_DROP_TABLE
SQL_DROP_TRANSLATION FALSE
SQL_DROP_VIEW SQL_DV_DROP_VIEW
SQL_DYNAMIC_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE

SQL_CA1_BULK_ADD
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_NEXT
SQL_CA1_POS_DELETE
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_POS_UPDATE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_POSITIONED_DELETE
SQL_CA1_RELATIVE
SQL_CA1_SELECT_FOR_UPDATE

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY "Y"
SQL_FETCH_DIRECTION SQL_FD_FETCH_ABSOLUTE

SQL_FD_FETCH_BOOKMARK
SQL_FD_FETCH_FIRST
SQL_FD_FETCH_LAST
SQL_FD_FETCH_NEXT
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_RELATIVE

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT
SQL_CA1_POSITIONED_DELETE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_SELECT_FOR_UPDATE

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY

SQL_GETDATA_EXTENSIONS SQL_GD_BLOCK
SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAINS_SELECT
SQL_IDENTIFIER_CASE SQL_IC_MIXED if connected to a server

running a case-insenstive sort order.

SQL_IC_SENSITIVE if connected to a server
running case-sensitive sort order.

SQL_IDENTIFIER_QUOTE_CHAR " (the double quote character)
SQL_INDEX_KEYWORDS SQL_IK_ASC

SQL_IK_DESC
SQL_INFO_SCHEMA_VIEWS Request not supported by driver.
SQL_INFO_SS_NETLIB_NAME SQL Server ODBC driver-specific attribute.

The name of the network library in use by
the connection.

SQL_INTEGRITY "Y"
SQL_KEYSET_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE

SQL_CA1_BOOKMARK
SQL_CA1_BULK_ADD
SQL_CA1_BULK_DELETE_BY_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK
SQL_CA1_BULK_UPDATE_BY_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_NEXT
SQL_CA1_POS_DELETE
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_POS_UPDATE
SQL_CA1_POSITIONED_DELETE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_RELATIVE
SQL_CA1_SELECT_FOR_UPDATE

SQL_KEYSET_CURSOR_ATTRIBUTES2 SQL_CA2_CRC_EXACT
SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS BREAK
BROWSE
BULK

CHECKPOINT
CLUSTERED
COMMITTED
COMPUTE
CONFIRM
CONTROLROW
DATABASE
DBCC
DISK
DISTRIBUTED
DUMMY
DUMP
ERRLVL
ERROREXIT
EXIT
FILE
FILLFACTOR
FLOPPY
HOLDLOCK
IDENTITY_INSERT
IDENTITYCOL
IF
KILL
LINENO
LOAD
MIRROREXIT
NONCLUSTERED
OFF
OFFSETS
ONCE
OVER
PERCENT
PERM
PERMANENT
PLAN
PRINT
PROC
PROCESSEXIT
RAISERROR
READ
READTEXT
RECONFIGURE
REPEATABLE
RETURN
ROWCOUNT
RULE
SAVE
SERIALIZABLE
SETUSER
SHUTDOWN
STATISTICS
TAPE
TEMP
TEXTSIZE
TRAN
TRIGGER
TRUNCATE
TSEQUEL
UNCOMMITTED
UPDATETEXT
USE
WAITFOR

WHILE
WRITETEXTSQL_LIKE_ESCAPE_CLAUSE "Y"

SQL_LOCK_TYPES SQL_LCK_NO_CHANGE
SQL_MAX_ASYNC_CONCURRENT_STATEMENTS 1
SQL_MAX_BINARY_LITERAL_LEN 131072
SQL_MAX_CATALOG_NAME_LEN 128/30*
SQL_MAX_CHAR_LITERAL_LEN 131072
SQL_MAX_COLUMN_NAME_LEN 128/30*
SQL_MAX_COLUMNS_IN_GROUP_BY 16
SQL_MAX_COLUMNS_IN_INDEX 16
SQL_MAX_COLUMNS_IN_ORDER_BY 16
SQL_MAX_COLUMNS_IN_SELECT 4000
SQL_MAX_COLUMNS_IN_TABLE 250
SQL_MAX_CONCURRENT_ACTIVITIES 1
SQL_MAX_CURSOR_NAME_LEN 128/30*
SQL_MAX_DRIVER_CONNECTIONS 0
SQL_MAX_IDENTIFIER_LEN 128/30*
SQL_MAX_INDEX_SIZE 127
SQL_MAX_PROCEDURE_NAME_LEN 134/36* (SQL Server procedure names

consist of the name (128 bytes in SQL
Server 7.0 and 30 bytes in earlier
versions), plus an optional colon and a 5
digit number.)

SQL_MAX_ROW_SIZE 8062/1962*
SQL_MAX_ROW_SIZE_INCLUDES_LONG "N"
SQL_MAX_SCHEMA_NAME_LEN 128/30*
SQL_MAX_STATEMENT_LEN 131072
SQL_MAX_TABLE_NAME_LEN 128/30*
SQL_MAX_TABLES_IN_SELECT 16
SQL_MAX_USER_NAME_LEN 128/30*
SQL_MAX_OWNER_NAME_LEN 128/30*
SQL_MAX_QUALIFIER_NAME_LEN 128/30*
SQL_MULT_RESULT_SETS "Y"
SQL_MULTIPLE_ACTIVE_TXN "Y"
SQL_NEED_LONG_DATA_LEN "Y"
SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL
SQL_NULL_COLLATION SQL_NC_LOW

SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS
SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CEILING
SQL_FN_NUM_COS
SQL_FN_NUM_COT
SQL_FN_NUM_DEGREES
SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_POWER
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN

SQL_ODBC_API_CONFORMANCE SQL_OAC_LEVEL2
SQL_ODBC_INTERFACE_CONFORMANCE SQL_OIC_LEVEL2 when connected to an

instance of SQL Server 2000.

SQL_OIC_CORE when connected to SQL
Server version 6.5 or earlier.

SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSCC_NOT_COMPLIANT
SQL_ODBC_SQL_CONFORMANCE SQL_OSC_CORE
SQL_ODBC_SQL_OPT_IEF "Y"
SQL_ODBC_VER Current version number of the ODBC

Driver Manager.
SQL_OJ_CAPABILITIES SQL_OJ_ALL_COMPARISON_OPS

SQL_OJ_FULL
SQL_OJ_INNER
SQL_OJ_LEFT
SQL_OJ_NESTED
SQL_OJ_NOT_ORDERED
SQL_OJ_RIGHT

SQL_OUTER_JOINS "Y"
SQL_ORDER_BY_COLUMNS_IN_SELECT "N"
SQL_OWNER_USAGE SQL_OU_DML_STATEMENTS

SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_DEFINITION
SQL_OU_PROCEDURE_INVOCATION
SQL_OU_TABLE_DEFINITION

SQL_PARAM_ARRAY_ROW_COUNTS SQL_PARC_BATCH
SQL_PARAM_ARRAY_SELECTS SQL_PAS_BATCH
SQL_POS_OPERATIONS SQL_POS_ADD

SQL_POS_DELETE
SQL_POS_POSITION
SQL_POS_REFRESH
SQL_POS_UPDATE

SQL_POSITIONED_STATEMENTS SQL_PS_POSITIONED_DELETE
SQL_PS_POSITIONED_UPDATE
SQL_PS_SELECT_FOR_UPDATE

SQL_PROCEDURE_TERM "stored procedure"

SQL_PROCEDURES "Y"
SQL_QUALIFIER_USAGE SQL_CU_DML_STATEMENTS

SQL_CU_PROCEDURE_INVOCATION
SQL_CU_TABLE_DEFINITION

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_MIXED when connected to a server
running a case-insensitive sort order.

SQL_IC_SENSITIVE when connected to a
server running a case-sensitive sort order.

SQL_ROW_UPDATES "N"
SQL_SCHEMA_TERM "owner"
SQL_SCHEMA_USAGE SQL_OU_DML_STATEMENTS

SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_DEFINITION
SQL_OU_PROCEDURE_INVOCATION
SQL_OU_TABLE_DEFINITION

SQL_SCROLL_OPTIONS SQL_SO_DYNAMIC
SQL_SO_FORWARD_ONLY
SQL_SO_KEYSET_DRIVEN
SQL_SO_STATIC

SQL_SCROLL_CONCURRENCY SQL_SCCO_LOCK
SQL_SCCO_OPT_ROWVER
SQL_SCCO_OPT_VALUES
SQL_SCCO_READ_ONLY

SQL_SEARCH_PATTERN_ESCAPE "\"
SQL_SERVER_NAME The connection's server name.
SQL_SPECIAL_CHARACTERS Depends on SQL Server-installed character

set.
SQL_SQL92_DATETIME_FUNCTIONS FALSE
SQL_SQL92_FOREIGN_KEY_DELETE_RULE FALSE
SQL_SQL92_FOREIGN_KEY_UPDATE_RULE FALSE
SQL_SQL92_GRANT SQL_SG_WITH_GRANT_OPTION
SQL_SQL92_NUMERIC_VALUE_FUNCTIONS FALSE
SQL_SQL92_PREDICATES SQL_SP_EXISTS SQL_SP_ISNOTNULL

SQL_SP_ISNULL
SQL_SQL92_RELATIONAL_JOIN_OPERATORS SQL_SRJO_CROSS_JOIN

SQL_SRJO_FULL_OUTER_JOIN
SQL_SRJO_INNER_JOIN
SQL_SRJO_LEFT_OUTER_JOIN
SQL_SRJO_RIGHT_OUTER_JOIN
SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE SQL_SR_GRANT_OPTION_FOR
SQL_SQL92_ROW_VALUE_CONSTRUCTOR SQL_SRVC_DEFAULT

SQL_SRVC_NULL
SQL_SRVC_ROW_SUBQUERY
SQL_SRVC_VALUE_EXPRESSION

SQL_SQL92_STRING_FUNCTIONS SQL_SSF_LOWER
SQL_SSF_UPPER

SQL_SQL92_VALUE_EXPRESSIONS SQL_SVE_CASE
SQL_SVE_CAST
SQL_SVE_COALESCE
SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE SQL_SCC_ISO92_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE
SQL_CA1_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_NEXT
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_RELATIVE

SQL_STATIC_CURSOR_ATTRIBUTES2 SQL_CA2_CRC_EXACT
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_READ_ONLY_CONCURRENCY

SQL_STATIC_SENSITIVITY SQL_SS_ADDITIONS
SQL_SS_UPDATES

SQL_STRING_FUNCTIONS SQL_FN_STR_ASCII
SQL_FN_STR_BIT_LENGTH
SQL_FN_STR_CHAR
SQL_FN_STR_CONCAT
SQL_FN_STR_DIFFERENCE
SQL_FN_STR_INSERT
SQL_FN_STR_LCASE
SQL_FN_STR_LEFT
SQL_FN_STR_LENGTH
SQL_FN_STR_LOCATE_2
SQL_FN_STR_LTRIM
SQL_FN_STR_OCTET_LENGTH
SQL_FN_STR_REPEAT
SQL_FN_STR_RIGHT
SQL_FN_STR_RTRIM
SQL_FN_STR_SOUNDEX
SQL_FN_STR_SPACE
SQL_FN_STR_SUBSTRING
SQL_FN_STR_UCASE

SQL_SUBQUERIES SQL_SQ_COMPARISON
SQL_SQ_CORRELATED_SUBQUERIES
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED

SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM "table"
SQL_TIMEDATE_ADD_INTERVALS SQL_FN_TSI_DAY

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_HOUR
SQL_FN_TSI_MINUTE
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_SECOND
SQL_FN_TSI_WEEK
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS SQL_FN_TSI_DAY
SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_HOUR
SQL_FN_TSI_MINUTE
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_SECOND
SQL_FN_TSI_WEEK
SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_CURDATE
SQL_FN_TD_CURRENT_DATE
SQL_FN_TD_CURRENT_TIME
SQL_FN_TD_CURRENT_TIMESTAMP
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_DAYOFYEAR
SQL_FN_TD_EXTRACT
SQL_FN_TD_HOUR
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH
SQL_FN_TD_MONTHNAME
SQL_FN_TD_NOW
SQL_FN_TD_QUARTER
SQL_FN_TD_SECOND
SQL_FN_TD_TIMESTAMPADD
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_WEEK
SQL_FN_TD_YEAR

SQL_TXN_CAPABLE SQL_TC_ALL
SQL_TXN_ISOLATION_OPTION SQL_TXN_READ_COMMITTED

SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE

SQL_UNION SQL_U_UNION
SQL_U_UNION_ALL

SQL_USER_NAME The current username.
* Dependent on SQL Server version. First value when connected to SQL Server 7.0 and
later; second value for all earlier versions.

ODBC and SQL Server (SQL Server 2000)

SQLGetStmtAttr
The Microsoft® SQL Server™ ODBC driver extends SQLGetStmtAttr to expose driver-specific statement attributes. All driver-
specific attributes are SQLINTEGER values.

The SQL Server ODBC driver SQL_TEXTPTR_LOGGING attribute exposes logging of operations on columns containing text or
image data.

Value Description
SQL_TL_OFF Logging operations performed on text, ntext, and image

data is disabled.
SQL_TL_ON Default. Logging of operations performed on text, ntext, and

image data is enabled.

The SQL_SOPT_SS_CURRENT_COMMAND attribute exposes the current command of a command batch. The return is an integer
specifying the location of the command in the batch.

SQL_SOPT_SS_HIDDEN_COLUMNS exposes, in the result set, columns hidden in a SQL Server SELECT FOR BROWSE statement.
The driver does not expose these columns by default.

Value Description
SQL_HC_OFF Default. FOR BROWSE columns are hidden from the result set.
SQL_HC_ON Exposes FOR BROWSE columns.

SQL_SOPT_SS_NCOUNT_STATUS indicates the current setting of the NOCOUNT option, which controls whether SQL Server
reports the numbers of rows affected by a statement when SQLRowCount is called.

Value Description
SQL_NC_OFF NOCOUNT is OFF. SQLRowCount returns number of rows

affected.
SQL_NC_ON NOCOUNT is ON. The counts of rows affected is not returned

by SQLRowCount.

ODBC and SQL Server (SQL Server 2000)

SQLGetTypeInfo
The Microsoft® SQL Server™ ODBC driver reports the additional column USERTYPE in the result set of SQLGetTypeInfo.
USERTYPE reports the DB-Library data type definition and is useful to developers porting existing DB-Library applications to
ODBC.

SQL Server treats identity as an attribute, whereas ODBC treats it as a data type. To resolve this mismatch, SQLGetTypeInfo
returns the data types: int identity, smallint identity, tinyint identity, decimal identity, and numeric identity. The
SQLGetTypeInfo result set column AUTO_UNIQUE_VALUE reports the value TRUE for these data types.

ODBC and SQL Server (SQL Server 2000)

SQLMoreResults
SQLMoreResults allows the application to retrieve multiple sets of result rows. A Transact-SQL SELECT statement containing a
COMPUTE clause, or a submitted batch of ODBC or Transact-SQL statements, causes the Microsoft® SQL Server™ ODBC driver to
generate multiple result sets. SQL Server does not allow creation of a server cursor to process the results in either case. Therefore,
the developer must ensure that the ODBC statement is blocking. The developer must exhaust the returned data or cancel the
ODBC statement before he or she can process data from other active statements on the connection.

The developer can determine properties of the result sets columns and rows that are generated by the COMPUTE clause of a SQL
Server SELECT statement. For more detail, see SQLColAttribute.

When SQLMoreResults is called with unfetched data rows in the result set, those rows are lost, and row data from the next result
row set is made available.

Examples

void GetComputedRows
 (
 SQLHSTMT hStmt
)
 {
 SQLUSMALLINT nCols;
 SQLUSMALLINT nCol;
 PODBCSETINFO pODBCSetInfo = NULL;
 SQLRETURN sRet;
 UINT nRow;
 SQLINTEGER nComputes = 0;
 SQLINTEGER nSet;
 BYTE* pValue;

 // If SQLNumResultCols failed, then some error occurred in
 // statement execution. Exit.
 if (!SQL_SUCCEEDED(SQLNumResultCols(hStmt, (SQLSMALLINT*) &nCols)))
 {
 goto EXIT;
 }

 // Determine the presence of COMPUTE clause result sets. The SQL
 // Server ODBC driver uses column attributes to report multiple
 // sets. The column number must be less than or equal to the
 // number of columns returned. You are guaranteed to have at least
 // one, so use '1' for the SQLColAttribute ColumnNumber
 // parameter.
 SQLColAttribute(hStmt, 1, SQL_CA_SS_NUM_COMPUTES,
 NULL, 0, NULL, (SQLPOINTER) &nComputes);

 // Create a result info structure pointer array, one element for
 // the normal result rows and one for each compute result set.
 // Initialize the array to NULL pointers.
 pODBCSetInfo = new ODBCSETINFO[1 + nComputes];

 // Process the result sets...
 nSet = 0;
 while (TRUE)
 {
 // If required, get the column information for the result set.
 if (pODBCSetInfo[nSet].pODBCColInfo == NULL)
 {
 if (pODBCSetInfo[nSet].nCols == 0)
 {
 SQLNumResultCols(hStmt, (SQLSMALLINT*) &nCols);
 pODBCSetInfo[nSet].nCols = nCols;
 }

 if (GetColumnsInfo(hStmt, pODBCSetInfo[nSet].nCols,
 &(pODBCSetInfo[nSet].pODBCColInfo)) == SQL_ERROR)
 {
 goto EXIT;
 }
 }

 // Get memory for bound return values if required.
 if (pODBCSetInfo[nSet].pRowValues == NULL)
 {
 CreateBindBuffer(&(pODBCSetInfo[nSet]));
 }

 // Rebind columns each time the result set changes.
 myBindCols(hStmt, pODBCSetInfo[nSet].nCols,
 pODBCSetInfo[nSet].pODBCColInfo,
 pODBCSetInfo[nSet].pRowValues);

 // Set for ODBC row array retrieval. Fast retrieve for all
 // sets. COMPUTE row sets have only a single row, but
 // normal rows can be retrieved in blocks for speed.
 SQLSetStmtAttr(hStmt, SQL_ATTR_ROW_BIND_TYPE,
 (void*) pODBCSetInfo[nSet].nResultWidth, SQL_IS_UINTEGER);
 SQLSetStmtAttr(hStmt, SQL_ATTR_ROW_ARRAY_SIZE,
 (void*) pODBCSetInfo[nSet].nRows, SQL_IS_UINTEGER);
 SQLSetStmtAttr(hStmt, SQL_ATTR_ROWS_FETCHED_PTR,
 (void*) &nRowsFetched, sizeof(SQLINTEGER));

 while (TRUE)
 {
 // In ODBC 3.x, SQLFetch supports arrays of bound rows or
 // columns. SQLFetchScroll (or ODBC 2.x SQLExtendedFetch)
 // is not necessary to support fastest retrieval of
 // data rows.
 if (!SQL_SUCCEEDED(sRet = SQLFetch(hStmt)))
 {
 break;
 }

 for (nRow = 0; nRow < (UINT) nRowsFetched; nRow++)
 {
 for (nCol = 0; nCol < pODBCSetInfo[nSet].nCols;
 nCol++)
 {
 // Processing row and column values...
 }
 }
 }

 // sRet is not SQL_SUCCESS and is not SQL_SUCCESS_WITH_INFO.
 // If it's SQL_NO_DATA, then continue. If it's an
 // error state, stop.
 if (sRet != SQL_NO_DATA)
 {
 break;
 }

 // If there's another set waiting, determine the result set
 // indicator. The indicator is 0 for regular row sets or an
 // ordinal indicating the COMPUTE clause responsible for the
 // set.
 if (SQLMoreResults(hStmt) == SQL_SUCCESS)
 {
 sRet = SQLColAttribute(hStmt, 1, SQL_CA_SS_COMPUTE_ID,
 NULL, 0, NULL, (SQLPOINTER) &nSet);
 }
 else
 {
 break;
 }
 }

EXIT:
 // Clean-up anything dynamically allocated and return.
 return;
 }

See Also

SELECT

SQLColAttribute

ODBC and SQL Server (SQL Server 2000)

SQLNativeSql
The Microsoft® SQL Server™ ODBC driver satisfies SQLNativeSql requests without visiting the server. The function will
efficiently test the syntax of SQL statements. Syntax checking does not determine if identifiers or the results of expressions in the
SQL are valid, and SQL Server native SQL returned by SQLNativeSql can fail to run.

ODBC and SQL Server (SQL Server 2000)

SQLNumResultCols
For executed statements, the Microsoft® SQL Server™ ODBC driver does not visit the server to report the number of columns in a
result set. In this case, SQLNumResultCols does not cause a server roundtrip. Like SQLDescribeCol and SQLColAttribute,
calling SQLNumResultCols on prepared but not executed statements generates a server roundtrip.

When a Transact-SQL statement or statement batch returns multiple result row sets, it is possible for the number of result set
columns to change from one set to another. SQLNumResultCols should be called for each set. When the number of columns
changes, the application should rebind data values prior to fetching row results. For more information about handling multiple
result set returns, see SQLMoreResults.

See Also

SQLMoreResults

ODBC and SQL Server (SQL Server 2000)

SQLPrepare
Note Microsoft® SQL Server™ 2000 supports the prepare/execute model of ODBC. The following discussion of
SQLPrepare/SQLExecute behavior is applicable only to versions of SQL Server earlier than 7.0.

The SQL Server ODBC driver creates a temporary stored procedure from prepared SQL statements. Stored procedures are an
efficient way to execute a statement multiple times, but stored procedure creation is more expensive than simple statement
execution. As a general rule, consider using SQLPrepare and SQLExecute if the application will submit an SQL statement more
than three times.

A temporary stored procedure created by SQLPrepare is named #odbc#useridentifier, where useridentifier is up to 6 characters
of the user-name concatenated with up to 8 digits that identify the procedure.

SQLPrepare creates the temporary stored procedure if all parameter values have been bound or if the SQL statement does not
contain parameters. SQLExecute creates the procedure if all parameters were not bound when SQLPrepare was called.

SQLPrepare can create stored procedures more efficiently than SQLExecute, and it is suggested that SQLBindParameter be
used to bind parameter variables prior to calling SQLPrepare.

If the CREATE PROCEDURE statement used to generate a temporary stored procedure returns an error, SQLPrepare or
SQLExecute submits the statement to SQL Server with the SET NOEXEC or SET PARSEONLY option enabled (depending on the
statement type). SQL Server checks the syntax of the statement and returns any errors.

SQLExecute can return any ODBC SQLSTATE and any SQL Server error that can be returned by SQLPrepare.

The SQL Server ODBC driver creates a new temporary stored procedure if the InputOutputType, ParameterType, ColumnSize, or
DecimalDigits values are altered in calls to SQLBindParameter on a prepared statement. A new temporary stored procedure will
not be created when bound parameters are pointed to new buffers in client memory, the length of client memory is changed, or
the pointer to the length or indicator value for the parameter is altered.

If a connection cannot create a stored procedure for any reason (such as lack of permission), the SQL Server ODBC driver does
not use a stored procedure but, instead, submits the SQL statement each time SQLExecute is called.

By default, the SQL Server ODBC driver drops temporary stored procedures when the connection is broken (SQLDisconnect is
called for the connection). This may present problems if the connection is expected to remain open indefinitely. The default
behavior can be changed using the driver-specific connection option SQL_USE_PROCEDURE_FOR_PREPARE.

Note If SET NOCOUNT ON has been executed, multiple statements embedded in a stored procedure do not create multiple
result sets as they should. Row counts generated by SQL statements inside a stored procedure are ignored by the driver.

See Also

SQLBindParameter

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

SQLPrimaryKeys
SQLPrimaryKeys uses the catalog stored procedure sp_pkeys to report primary key participants from a table. Though a table
may have a column or columns that can serve as unique row identifiers, tables created without a PRIMARY KEY constraint return
an empty result set to SQLPrimaryKeys. The ODBC function SQLSpecialColumns reports row identifier candidates for tables
without primary keys.

The following table shows SQLPrimaryKeys parameter mapping for sp_pkeys stored procedure execution.

SQLPrimaryKeys parameter name sp_pkeys parameter name
CatalogName table_qualifier
SchemaName table_owner
TableName table_name

SQLPrimaryKeys returns SQL_SUCCESS whether or not values exist for CatalogName, SchemaName, or TableName
parameters. SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLPrimaryKeys can be executed on a static server cursor. An attempt to execute SQLPrimaryKeys on an updatable (dynamic or
keyset) cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

The Microsoft® SQL Server™ ODBC driver supports reporting information for tables on linked servers by accepting a two-part
name for the CatalogName parameter: Linked_Server_Name.Catalog_Name

See Also

sp_pkeys

SQLSpecialColumns

ODBC and SQL Server (SQL Server 2000)

SQLProcedureColumns
SQLProcedureColumns uses the catalog stored procedure sp_sproc_columns to report the attributes of stored procedure
columns.

The following table shows SQLProcedureColumns parameter mapping for sp_sproc_columns stored procedure execution.

SQLProcedureColumns parameter name sp_sproc_columns parameter name
CatalogName procedure_qualifier
SchemaName procedure_owner
ProcName procedure_name
ColumnName column_name

SQLProcedureColumns returns one row reporting the return value attributes of all Microsoft® SQL Server™ stored procedures.

SQLProcedureColumns returns SQL_SUCCESS whether or not values exist for CatalogName, SchemaName, ProcName, or
ColumnName parameters. SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLProcedureColumns can be executed on a static server cursor. An attempt to execute SQLProcedureColumns on an
updatable (dynamic or keyset) cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

See Also

sp_sproc_columns

ODBC and SQL Server (SQL Server 2000)

SQLProcedures
SQLProcedures uses the catalog stored procedure sp_stored_procedures to report the names of stored procedures in a
Microsoft® SQL Server™ database.

The following table shows SQLProcedures parameter mapping for sp_stored_procedures stored procedure execution.

SQLProcedures parameter name sp_stored_procedures parameter name
CatalogName procedure_qualifier
SchemaName procedure_owner
ProcName procedure_name

All SQL Server stored procedures return a value. SQLProcedures reports SQL_PT_FUNCTION for the result set column
PROCEDURE_TYPE.

SQLProcedures returns SQL_SUCCESS whether or not values exist for CatalogName, SchemaName, or ProcName parameters.
SQLFetch returns SQL_NO_DATA when invalid values are used in these parameters.

SQLProcedures can be executed on a static server cursor. An attempt to execute SQLProcedures on an updatable (dynamic or
keyset) cursor will return SQL_SUCCESS_WITH_INFO, indicating that the cursor type has been changed.

SQLProcedures returns information about any tables whose names match ProcName and are owned by the current user.

See Also

sp_stored_procedures

ODBC and SQL Server (SQL Server 2000)

SQLPutData
Using SQLPutData to send more than 65,535 bytes of data (for Microsoft® SQL Server™ version 4.21a) or 400 KB of data (for
SQL Server version 6.0 and later) for a SQL_LONGVARCHAR (text), SQL_WLONGVARCHAR (ntext) or SQL_LONGVARBINARY
(image) column, imposes the following restrictions:

The referenced parameter can be an insert_value in an INSERT statement.

The referenced parameter can be an expression in the SET clause of an UPDATE statement.

Canceling a sequence of SQLPutData calls that provide data to a server running SQL Server in blocks causes a partial update of
the column's value when using version 6.5 or earlier. The text, ntext, or image column referenced when SQLCancel was called
will be set to an intermediate "place holder" value.

ODBC and SQL Server (SQL Server 2000)

SQLRowCount
When arrays of parameter values are bound for statement execution, SQLRowCount returns SQL_ERROR if any row of
parameter values generates an error condition in statement execution. No value is returned through the RowCountPtr argument
of the function.

The application can take advantage of the SQL_ATTR_PARAMS_PROCESSED_PTR statement attribute to capture the number of
parameters processed prior to the error occurring.

Further, the application can use an array of status values, bound by using the SQL_ATTR_PARAM_STATUS_PTR statement
attribute, to capture the array offsets of offending parameter rows. The application can traverse the status array to determine the
actual number of rows processed.

ODBC and SQL Server (SQL Server 2000)

SQLSetConnectAttr
The Microsoft® SQL Server™ ODBC driver ignores the setting of SQL_ATTR_CONNECTION_TIMEOUT. The SQL Server ODBC
driver will not time out on any operations other than login and query processing.

The SQL Server ODBC driver implements repeatable read transaction isolation as serializable. Setting SQL_ATTR_TXN_ISOLATION
to SQL_TXN_REPEATABLE_READ is exactly equivalent to setting the transaction isolation attribute to SQL_TXN_SERIALIZABLE.

Promoting ODBC statement attributes to connection attributes can have unintended consequences. Statement attributes that
request server cursors for result set processing can be promoted to the connection. For example, setting the ODBC statement
attribute SQL_ATTR_CONCURRENCY to a value more restrictive than the default SQL_CONCUR_READ_ONLY directs the driver to
use dynamic cursors for all statements submitted on the connection. Executing an ODBC catalog function on a statement on the
connection returns SQL_SUCCESS_WITH_INFO and a diagnostic record indicating that the cursor behavior has been changed to
read-only. Attempting to execute a Transact-SQL SELECT statement containing a COMPUTE clause on the same connection fails.

The SQL Server ODBC driver supports a number of driver-specific extensions to ODBC connection attributes defined in Odbcss.h.
The SQL Server ODBC driver may require that the attribute be set prior to connection, or it may ignore the attribute if it is already
set. The following table lists restrictions.

SQL Server attribute Set before or after connection to
server

SQL_COPT_SS_ANSI_NPW Before
SQL_COPT_SS_ATTACHDBFILENAME Before
SQL_COPT_SS_BCP Before
SQL_COPT_SS_BROWSE_CONNECT Before
SQL_COPT_SS_BROWSE_SERVER Before
SQL_COPT_SS_CONCAT_NULL Before
SQL_COPT_SS_ENLIST_IN_DTC After
SQL_COPT_SS_ENLIST_IN_XA After
SQL_COPT_SS_FALLBACK_CONNECT Before
SQL_COPT_SS_INTEGRATED_SECURITY Before
SQL_COPT_SS_PERF_DATA After
SQL_COPT_SS_PERF_DATA_LOG After
SQL_COPT_SS_PERF_DATA_LOG_NOW After
SQL_COPT_SS_PERF_QUERY After
SQL_COPT_SS_PERF_QUERY_INTERVAL After
SQL_COPT_SS_PERF_QUERY_LOG After
SQL_COPT_SS_PRESERVE_CURSORS Before
SQL_COPT_SS_QUOTED_IDENT Either
SQL_COPT_SS_TRANSLATE Either
SQL_COPT_SS_USE_PROC_FOR_PREP Either
SQL_COPT_SS_USER_DATA Either
SQL_COPT_SS_WARN_ON_CP_ERROR Before

SQL_COPT_SS_ANSI_NPW

SQL_COPT_SS_ANSI_NPW enables or disables the use of SQL-92 handling of NULL in comparisons and concatenation, character
data type padding, and warnings. For more information, see SET ANSI_NULLS, SET ANSI_PADDING, SET ANSI_WARNINGS, and
SET CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_AD_ON Default. The connection uses SQL-92 default behavior

handling NULL, padding, and warnings.
SQL_AD_OFF The connection uses SQL Server-defined handling of NULL,

character data type padding, and warnings.

SQL_COPT_SS_ATTACHDBFILENAME

SQL_COPT_SS_ATTACHDBFILENAME specifies the name of the primary file of an attachable database. This database is attached
and becomes the default database for the connection. To use SQL_COPT_SS_ATTACHDBFILENAME you must specify the name of
the database as the value of the connection attribute SQL_ATTR_CURRENT_CATALOG or in the DATABASE = parameter of a
SQLDriverConnect. If the database was previously attached, SQL Server will not reattach it. This option is not valid when
connected to an instance of SQL Server version 6.5 or earlier.

Value Description
SQLPOINTER to a
character string

The string contains the name of the primary file for the
database to attach. Include the full path name of the file.

SQL_COPT_SS_BCP

SQL_COPT_SS_BCP enables bulk copy functions on a connection. For more information, see Bulk-Copy Functions.

Value Description
SQL_BCP_OFF Default. Bulk copy functions are not available on the

connection.
SQL_BCP_ON Bulk copy functions are available on the connection.

SQL_COPT_SS_BROWSE_CONNECT

This attribute is used to customize the result set returned by SQLBrowseConnect. SQL_COPT_SS_BROWSE_CONNECT enables or
disables the return of additional information from an enumerated instance of SQL Server 2000. This can include information such
as whether the server is a cluster, names of different instances, and the version number.

Value Description
SQL_MORE_INFO_NO Default. In SQL Server version 6.5 and later, SQL

BrowseConnect returns a list of servers.
SQL_MORE_INFO_YES In SQL Server versions 6.5 and 7.0, SQLBrowseConnect

returns a list of servers. In SQL Server 2000,
SQLBrowseConnect returns an extended string of server
properties.

SQL_COPT_SS_BROWSE_SERVER

This attribute is used to customize the result set returned by SQLBrowseConnect. SQL_COPT_SS_BROWSE_SERVER specifies the
server name for which SQLBrowseConnect returns the information.

Value Description
computername SQLBrowseConnect returns a list of SQL servers on the

specified computer. Double backslashes (\\) should not be
used for the server name (for example, instead of \\MyServer,
MyServer should be used).

NULL Default. SQLBrowseConnect returns information for all
servers in the domain.

SQL_COPT_SS_CONCAT_NULL

SQL_COPT_SS_CONCAT_NULL enables or disables the use of SQL-92 handling of NULL when concatenating strings. For more
information, see SET CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_CN_ON Default. The connection uses SQL-92 default behavior for

handling NULL values when concatenating strings.
SQL_CN_OFF The connection uses SQL Server-defined behavior for

handling NULL values when concatenating strings.

SQL_COPT_SS_ENLIST_IN_DTC

The client calls the Microsoft Distributed Transaction Coordinator (MS DTC) OLE ITransactionDispenser::BeginTransaction
method to begin an MS DTC transaction and create an MS DTC transaction object that represents the transaction. The application
then calls SQLSetConnectAttr with the SQL_COPT_SS_ENLIST_IN_DTC option to associate the transaction object with the ODBC
connection. All related database activity will be performed under the protection of the MS DTC transaction. The application calls
SQLSetConnectAttr with SQL_DTC_DONE to end the connection's DTC association. For more information, see the MS DTC
documentation.

Value Description
DTC object* The MS DTC OLE transaction object that specifies the

transaction to export to SQL Server.
SQL_DTC_DONE Delimits the end of a DTC transaction.

SQL_COPT_SS_ENLIST_IN_XA

To begin an XA transaction with an XA-compliant Transaction Processor (TP), the client calls the X/Open tx_begin function. The
application then calls SQLSetConnectAttr with a SQL_COPT_SS_ENLIST_IN_XA parameter of TRUE to associate the XA
transaction with the ODBC connection. All related database activity will be performed under the protection of the XA transaction.
To end an XA association with an ODBC connection, the client must call SQLSetConnectAttr with a SQL_COPT_SS_ENLIST_IN_XA
parameter of FALSE. For more information, see the Microsoft Distributed Transaction Coordinator documentation.

SQL_COPT_SS_FALLBACK_CONNECT

This attribute is valid only when connected to SQL Server 6.5. It applies only to standby servers. It does not apply to a virtual
server in a cluster/failover configuration. SQL_COPT_SS_FALLBACK_CONNECT enables fallback attempts on a connection. When
successfully connected to the primary server, the SQL Server ODBC driver automatically determines the current fallback server
and verifies that fallback information is stored in the Registry. If an attempt to connect to a primary server fails (the connection
time-out must be greater than 0 for this to occur), the SQL Server ODBC driver will attempt to connect to the fallback server.

Value Description
SQL_FB_OFF Default. Fallback connection processing is not performed on

connect.
SQL_FB_ON Fallback connection will be attempted on login time-out.

SQL_COPT_SS_INTEGRATED_SECURITY

SQL_COPT_SS_INTEGRATED_SECURITY forces use of Windows Authentication for access validation on server login. When
Windows Authentication is used, the driver ignores user identifier and password values provided as part of SQLConnect,
SQLDriverConnect, or SQLBrowseConnect processing.

Value Description
SQL_IS_OFF Default. SQL Server Authentication is used to validate user

identifier and password on login.
SQL_IS_ON Windows Authentication Mode is used to validate a user's

access rights to the SQL Server.

SQL_COPT_SS_PERF_DATA

SQL_COPT_SS_PERF_DATA starts or stops performance data logging. The data log file name must be set prior to starting data
logging. See SQL_COPT_SS_PERF_DATA_LOG below.

Value Description
SQL_PERF_START Starts the driver sampling performance data.
SQL_PERF_STOP Stops the counters from sampling performance data.

SQL_COPT_SS_PERF_DATA_LOG

SQL_COPT_SS_PERF_DATA_LOG assigns the name of the log file used to record performance data. The log file name is an ANSI or
Unicode, null-terminated string depending upon application compilation. The StringLength argument should be SQL_NTS.

SQL_COPT_SS_PERF_DATA_LOG_NOW

SQL_COPT_SS_PERF_DATA_LOG_NOW instructs the driver to write a statistics log entry to disk.

SQL_COPT_SS_PERF_QUERY

SQL_COPT_SS_PERF_QUERY starts or stops logging for long running queries. The query log file name must be supplied prior to
starting logging. The application can define "long running" by setting the interval for logging.

Value Description
SQL_PERF_START Starts long running query logging.
SQL_PERF_STOP Stops logging of long running queries.

SQL_COPT_SS_PERF_QUERY_INTERVAL

SQL_COPT_SS_PERF_QUERY_INTERVAL sets the query logging threshold in milliseconds. Queries that do not resolve within the
threshold are recorded in the long running query log file. There is no upper limit on the query threshold. A query threshold value
of zero causes logging of all queries.

SQL_COPT_SS_PERF_QUERY_LOG

SQL_COPT_SS_PERF_QUERY_LOG assigns the name of a log file for recording long running query data. The log file name is an
ANSI or Unicode, null-terminated string depending upon application compilation. The StringLength argument should be
SQL_NTS.

SQL_COPT_SS_PRESERVE_CURSORS

SQL_COPT_SS_PRESERVE_CURSORS defines the behavior of cursors when manual-commit mode is used. The behavior is
exposed as transactions are either committed or rolled back using SQLEndTran.

Value Description
SQL_PC_OFF Default. Cursors are closed when transaction is committed or

rolled back using SQLEndTran.
SQL_PC_ON Cursors are not closed when transaction is committed or

rolled back using SQLEndTran, except when using a static or
keyset cursor in asynchronous mode. If a rollback is issued
while the population of the cursor is not complete, the cursor
is closed.

SQL_COPT_SS_QUOTED_IDENT

SQL_COPT_SS_QUOTED_IDENT allows quoted identifiers in ODBC and Transact-SQL statements submitted on the connection. By
supplying quoted identifiers, the SQL Server ODBC driver allows otherwise invalid object names such as "My Table," which
contains a space character in the identifier. For more information, see SET QUOTED_IDENTIFIER.

Value Description
SQL_QI_OFF The SQL Server connection does not allow quoted identifiers

in submitted Transact-SQL.
SQL_QI_ON Default. The connection allows quoted identifiers in submitted

Transact-SQL.

SQL_COPT_SS_TRANSLATE

SQL_COPT_SS_TRANSLATE causes the driver to translate characters between the client and server code pages as MBCS data is
exchanged. The attribute affects only data stored in SQL Server char, varchar, and text columns.

Value Description

SQL_XL_OFF The driver does not translate characters from one code page
to another in character data exchanged between the client and
the server.

SQL_XL_ON Default. The driver translates characters from one code page
to another in character data exchanged between the client and
the server. The driver automatically configures the character
translation, determining the code page installed on the server
and that in use by the client.

SQL_COPT_SS_USE_PROC_FOR_PREP

This attribute is only valid when connected to an instance of SQL Server 6.5 or earlier. SQL_COPT_SS_USE_PROC_FOR_PREP
defines the use of temporary stored procedures when ODBC and Transact-SQL statements are prepared for execution. For more
information about prepared statement execution, see SQLPrepare.

Value Description
SQL_UP_OFF The driver does not generate stored procedures when the

application prepares statements.
SQL_UP_ON Default. The driver generates a temporary stored procedure

when a statement is prepared. The stored procedure is
dropped when the application disconnects from the server.

SQL_UP_ON_DROP The driver generates a temporary stored procedure when a
statement is prepared. The stored procedure is dropped when
the statement handle is freed.

SQL_COPT_SS_USER_DATA

SQL_COPT_SS_USER_DATA sets the user data pointer. User data is client-owned memory recorded per connection.

SQL_COPT_SS_WARN_ON_CP_ERROR

When this attribute is set to SQL_COPT_YES, you get a warning if there is a loss of data during a code page conversion. This
applies to only data coming from the server.

Example

This example logs performance data.

SQLPERF* pSQLPERF;
SQLINTEGER nValue;

// See if you are already logging. SQLPERF* will be NULL if not.
SQLGetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA, &pSQLPERF,
 sizeof(SQLPERF*), &nValue);

if (pSQLPERF == NULL)
 {
 // Set the performance log file name.
 SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA_LOG,
 (SQLPOINTER) "\\My LogDirectory\\MyServerLog.txt", SQL_NTS);

 // Start logging...
 SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA,
 (SQLPOINTER) SQL_PERF_START, SQL_IS_INTEGER);
 }
else
 {
 // Take a snapshot now so that your performance statistics are discernible.
 SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA_LOG_NOW, NULL, 0);
 }

 // ...perform some action...

// ...take a performance data snapshot...
SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA_LOG_NOW, NULL, 0);

 // ...perform more actions...

// ...take another snapshot...
SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA_LOG_NOW, NULL, 0);

// ...and disable logging.
SQLSetConnectAttr(hDbc, SQL_COPT_SS_PERF_DATA,
 (SQLPOINTER) SQL_PERF_STOP, SQL_IS_INTEGER);

// Continue on...

See Also

Bulk-Copy Functions

SET ANSI_NULLS

SET ANSI_PADDING

SET ANSI_WARNINGS

SET CONCAT_NULL_YIELDS_NULL

SET QUOTED_IDENTIFIER

SQLPrepare

ODBC and SQL Server (SQL Server 2000)

SQLSetEnvAttr
The ODBC Programmer's Reference for ODBC 3 defines how ODBC 3.x drivers should interpret the SQLSetEnvAttr attribute
specifications from applications written to either the ODBC 2.x or ODBC 3.x API. The Microsoft® SQL Server™ ODBC driver
complies with those rules.

One of the attributes controlled by SQLSetEnvAttr is whether connection pooling is to be used. If connection pooling is used with
the SQL Server ODBC driver, the DriverCompletion parameter must be set to SQL_DRIVER_NOPROMPT when connecting with
either SQLDriverConnect or SQLConnect.

ODBC and SQL Server (SQL Server 2000)

SQLSetStmtAttr
The Microsoft® SQL Server™ ODBC driver does not support the mixed (keyset/dynamic) cursor model. Attempts to set the keyset
size using SQL_ATTR_KEYSET_SIZE fail if the value set is not equal to 0.

The application sets SQL_ATTR_ROW_ARRAY_SIZE on all statements to declare the number of rows returned on a SQLFetch or
SQLFetchScroll function call. On statements indicating a server cursor, the driver uses SQL_ATTR_ROW_ARRAY_SIZE to
determine the size of the block of rows the server generates to satisfy a fetch request from the cursor. Within the block size of a
dynamic cursor, row membership and ordering are fixed if the transaction isolation level is sufficient to ensure repeatable reads
of committed transactions. The cursor is completely dynamic outside of the block indicated by this value. Server cursor block size
is completely dynamic and can be changed at any point in fetch processing.

The SQL Server ODBC driver also supports the following driver-specific statement attributes.

SQL_SOPT_SS_CURSOR_OPTIONS

Specifies whether the driver will use driver-specific performance options on cursors. SQLGetData is not allowed when these
options are set. The default setting is SQL_CO_OFF. These options are valid only when connected to an instance of SQL Server
version 7.0.

ValuePtr value Description
SQL_CO_OFF Default. Disables fast forward-only, read-only cursors and

autofetch, enables SQLGetData on forward-only, read-only
cursors. When SQL_SOPT_SS_CURSOR_OPTIONS is set to
SQL_CO_OFF, the cursor type will not change. That is, fast
forward-only cursor will remain a fast forward-only cursor. To
change the cursor type, the application must now set a
different cursor type using
SQLSetStmtAttr/SQL_ATTR_CURSOR_TYPE.

SQL_CO_FFO Enables fast forward-only, read-only cursors, disables
SQLGetData on forward-only, read-only cursors.

SQL_CO_AF Enables the autofetch option on any cursor type. When this
option is set for a statement handle, SQLExecute or
SQLExecDirect generate an implicit
SQLFetchScroll(SQL_FIRST). The cursor is opened and the
first batch of rows is returned in a single roundtrip to the
server.

SQL_CO_FFO_AF Enables fast forward-only cursors with the autofetch option. It
is the same as if both SQL_CO_AF and SQL_CO_FFO are
specified.

When these options are set, the server closes the cursor automatically when it detects that the last row has been fetched. The
application must still call SQLFreeStmt(SQL_CLOSE) or SQLCloseCursor, but the driver does not have to send the close
notification to the server.

If the select list contains a text, ntext, or image column, the fast forward-only cursor is converted to a dynamic cursor and
SQLGetData is allowed.

SQL_SOPT_SS_DEFER_PREPARE

This attribute determines whether the statement is prepared immediately or deferred until SQLExecute, SQLDescribeCol or
SQLDescribeParam is executed. In SQL Server version 7.0 and earlier, this property is ignored (no deferred prepare).

ValuePtr value Description
SQL_DP_ON Default. After calling SQLPrepare, the statement preparation

is deferred until SQLExecute is called or metaproperty
operation (SQLDescribeCol or SQLDescribeParam) is
executed.

SQL_DP_OFF The statement is prepared as soon as SQLPrepare is
executed.

SQL_SOPT_SS_REGIONALIZE

The driver uses this attribute to determine data conversion at the statement level. The attribute causes the driver to respect the
client locale setting when converting date, time, and currency values to character strings. The conversion is from SQL Server
native data types to character strings only.

ValuePtr value Description
SQL_RE_OFF Default. The driver does not convert date, time, and currency

data to character string data using the client locale setting.
SQL_RE_ON The driver uses the client locale setting when converting date,

time, and currency data to character string data.

Regional conversion settings apply to currency, numeric, date, and time data types. The conversion setting is only applicable to:

Output conversions when currency, numeric, date, or time values are converted to character strings.

Bulk copy in operations containing character columns when BCP6xFILEFMT is also set on.

Note When the statement option SQL_SOPT_SS_REGIONALIZE is on, the driver uses the locale registry settings for the current
user. The driver does not honor the current thread's locale if the application sets it by, for example, calling SetThreadLocale.

Altering the regional behavior of a data source can cause application failure. An application that parses date strings and expects
date strings to appear as defined by ODBC, could be adversely affected by altering this value.

SQL_SOPT_SS_TEXTPTR_LOGGING

Attribute toggles logging of operations on columns containing text or image data. The default behavior is to log these
operations (SQL_TL_ON).

ValuePtr value Description
SQL_TL_OFF Disables logging of operations performed on text and image

data.
SQL_TL_ON Default. Enables logging of operations performed on text and

image data.

SQL_SOPT_SS_HIDDEN_COLUMNS

Exposes, in the result set, columns hidden in a SQL Server SELECT FOR BROWSE statement. The driver does not expose these
columns by default.

ValuePtr value Description
SQL_HC_OFF Default. FOR BROWSE columns are hidden from the result set.
SQL_HC_ON Exposes FOR BROWSE columns.

ODBC and SQL Server (SQL Server 2000)

SQLSpecialColumns
The Microsoft® SQL Server™ ODBC driver uses the catalog stored procedure sp_special_columns to generate the result set for
SQLSpecialColumns.

When requesting row identifiers (IdentifierType SQL_BEST_ROWID), SQLSpecialColumns returns an empty result set (no data
rows) for any requested scope other than SQL_SCOPE_CURROW. The generated result set indicates that the columns are only
valid within this scope.

SQL Server does not support pseudo columns for identifiers. The SQLSpecialColumns result set will identify all columns as
SQL_PC_NOT_PSEUDO.

SQLSpecialColumns can be executed on a static cursor. An attempt to execute SQLSpecialColumns on an updatable (keyset-
driven or dynamic) returns SQL_SUCCESS_WITH_INFO indicating the cursor type has been changed.

ODBC and SQL Server (SQL Server 2000)

SQLStatistics
The Microsoft® SQL Server™ ODBC driver uses the catalog stored procedure sp_statistics to provide results for SQLStatistics.

SQLStatistics can be executed on a static cursor. An attempt to execute SQLStatistics on an updatable (keyset-driven or
dynamic) returns SQL_SUCCESS_WITH_INFO indicating the cursor type is changed.

See Also

sp_statistics

ODBC and SQL Server (SQL Server 2000)

SQLTablePrivileges
The Microsoft® SQL Server™ ODBC driver uses the sp_table_privileges catalog stored procedure to satisfy table privilege data
requests using SQLTablePrivileges.

SQLTablePrivileges can be executed on a static cursor. An attempt to execute SQLTablePrivileges on an updatable (keyset-
driven or dynamic) returns SQL_SUCCESS_WITH_INFO indicating the cursor type has been changed.

The SQL Server ODBC driver supports reporting information for tables on linked servers by accepting a two-part name for the
CatalogName parameter: Linked_Server_Name.Catalog_Name.

See Also

sp_table_privileges

ODBC and SQL Server (SQL Server 2000)

SQLTables
When restricted to the current database, SQLTables executes the Transact-SQL procedure sp_tables to report table catalog data
for Microsoft® SQL Server™.

The following table shows SQLTables parameter mapping for sp_tables stored procedure execution.

SQLTables parameter name sp_tables parameter name
CatalogName table_qualifier
SchemaName table_owner
TableName table_name
TableType table_type

SQLTables can be executed on a static server cursor. An attempt to execute SQLTables on an updatable (dynamic or keyset)
cursor will return SQL_SUCCESS_WITH_INFO indicating that the cursor type has been changed.

SQLTables reports tables from all databases when the CatalogName parameter is SQL_ALL_CATALOGS and all other parameters
contain default values (NULL pointers). SQLTables does not make use of sp_tables in this special case.

To report available catalogs, schemas, and table types, SQLTables makes special use of empty strings (zero-length byte pointers).
Empty strings are not default values (NULL pointers).

The SQL Server ODBC driver supports reporting information for tables on linked servers by accepting a two-part name for the
CatalogName parameter: Linked_Server_Name.Catalog_Name.

SQLTables returns information about any tables whose names match TableName and are owned by the current user.

Example

// Get a list of all tables in the current database.
SQLTables(hstmt, NULL, 0, NULL, 0, NULL, 0, NULL,0);
// Get a list of all tables in all databases.
SQLTables(hstmt, (SQLCHAR*) "%", SQL_NTS, NULL, 0, NULL, 0, NULL,0);
// Get a list of databases on the current connection's server.
SQLTables(hstmt, (SQLCHAR*) "%", SQL_NTS, (SQLCHAR*)"", 0, (SQLCHAR*)"",
 0, NULL, 0);

See Also

sp_tables

ODBC and SQL Server (SQL Server 2000)

SQL Server Driver Extensions
The Microsoft® SQL Server™ ODBC driver implements driver-specific functions to allow ODBC applications access to the bulk
copy feature of SQL Server. The driver also has two driver-specific functions that allow ODBC applications to list the linked servers
defined in a server, and then query the catalog of the linked servers.

ODBC and SQL Server (SQL Server 2000)

Bulk-Copy Functions
The Microsoft® SQL Server™-specific bulk-copy API extension allows client applications to rapidly add data rows to, or extract
data rows from, a SQL Server table.

See Also

Performing Bulk Copy Operations

ODBC and SQL Server (SQL Server 2000)

bcp_batch
bcp_batch

Commits all rows previously bulk copied from program variables and sent to Microsoft® SQL Server™ by bcp_sendrow.

Syntax

DBINT bcp_batch (HDBC hdbc);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

Returns

The number of rows saved after the last call to bcp_batch, or -1 in case of error.

Remarks

Bulk copy batches define transactions. When an application uses bcp_bind and bcp_sendrow to bulk copy rows from program
variables to SQL Server tables, the rows are committed only when the program calls bcp_batch or bcp_done.

You can call bcp_batch once every n rows or when there is a lull in incoming data (as in a telemetry application). If an application
does not call bcp_batch the bulk copied rows are committed only when bcp_done is called.

See Also

bcp_bind

bcp_done

bcp_sendrow

ODBC and SQL Server (SQL Server 2000)

bcp_bind
bcp_bind

 New Information - SQL Server 2000 SP3.

Binds data from a program variable to a table column for bulk copy into Microsoft® SQL Server™.

Syntax

RETCODE bcp_bind (
HDBC hdbc,
LPCBYTE pData,
INT cbIndicator,
DBINT cbData,
LPCBYTE pTerm,
INT cbTerm,
INT eDataType,
INT idxServerCol);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

pData

Is a pointer to the data copied. If eDataType is SQLTEXT, SQLNTEXT, or SQLIMAGE, pData can be NULL. A NULL pData indicates
that long data values will be sent to SQL Server in chunks using bcp_moretext.

If indicators are present in the data, they appear in memory directly before the data. The pData parameter points to the indicator
variable in this case, and the width of the indicator, the cbIndicator parameter, is used by bulk copy to address user data correctly.

cbIndicator

Is the length, in bytes, of a length or null indicator for the column's data. Valid indicator length values are 0 (when using no
indicator), 1, 2, or 4.

Indicators appear in memory directly before any data. For example, the following structure type definition could be used to insert
integer values into an SQL Server table using bulk copy:

typedef struct tagBCPBOUNDINT
 {
 int iIndicator;
 int iValue;
 } BCPBOUNDINT;

In the example case, the pData parameter would be set to the address of a declared instance of the structure, the address of the
BCPBOUNDINT iIndicator structure member. The cbIndicator parameter would be set to the size of an integer (sizeof(int)), and the
cbData parameter would again be set to the size of an integer (sizeof(int)). To bulk copy a row to the server containing a NULL
value for the bound column, the value of the instance's iIndicator member should be set to SQL_NULL_DATA.

cbData

Is the count of bytes of data in the program variable, not including the length of any length or null indicator or terminator.

Setting cbData to SQL_NULL_DATA signifies that all rows copied to the server contain a NULL value for the column.

Setting cbData to SQL_VARLEN_DATA indicates that the system will use a string terminator, or other method, to determine the
length of data copied.

For fixed-length data types, such as integers, the data type indicates the length of the data to the system. Therefore, for fixed-
length data types, cbData can safely be SQL_VARLEN_DATA or the length of the data.

For SQL Server character and binary data types, cbData can be SQL_VARLEN_DATA, SQL_NULL_DATA, some positive value, or 0.
If cbData is SQL_VARLEN_DATA, the system uses either a length/null indicator (if present) or a terminator sequence to determine
the length of the data. If both are supplied, the system uses the one that results in the least amount of data being copied. If cbData

is SQL_VARLEN_DATA, the data type of the column is an SQL Server character or binary type, and neither a length indicator nor a
terminator sequence is specified, the system returns an error message.

If cbData is 0 or a positive value, the system uses cbData as the data length. However, if, in addition to a positive cbData value, a
length indicator or terminator sequence is provided, the system determines the data length by using the method that results in
the least amount of data being copied.

The cbData parameter value represents the count of bytes of data. If character data is represented by Unicode wide characters,
then a positive cbData parameter value represents the number of characters multiplied by the size in bytes of each character.

pTerm

Is a pointer to the byte pattern, if any, that marks the end of this program variable. For example, ANSI and MBCS C strings usually
have a 1-byte terminator (\0).

If there is no terminator for the variable, set pTerm to NULL.

You can use an empty string ("") to designate the C null terminator as the program-variable terminator. Because the null-
terminated empty string constitutes a single byte (the terminator byte itself), set cbTerm to 1. For example, to indicate that the
string in szName is null-terminated and that the terminator should be used to indicate the length:

 bcp_bind(hdbc, szName, 0, SQL_VARLEN_DATA, "", 1, SQLCHARACTER, 2)

A nonterminated form of this example could indicate that 15 characters be copied from the szName variable to the second
column of the bound table:

 bcp_bind(hdbc, szName, 0, 15, NULL, 0, SQLCHARACTER, 2)

The bulk copy API performs Unicode-to-MBCS character conversion as required. Make sure that both the terminator byte string
and the length of the byte string are set correctly. For example, to indicate that the string in szName is a Unicode wide character
string, terminated by the Unicode null terminator value:

 bcp_bind(hdbc, szName, 0, SQL_VARLEN_DATA, L"",
 sizeof(WCHAR), SQLNCHAR, 2)

If the bound SQL Server column is wide character, no conversion is performed on bcp_sendrow. If the SQL Server column is an
MBCS character type, wide character to multibyte character conversion is performed as the data is sent to the SQL Server.

cbTerm

Is the count of bytes present in the terminator for the program variable, if any. If there is no terminator for the variable, set
cbTerm to 0.

eDataType

Is the C data type of the program variable. The data in the program variable is converted to the type of the database column. If
this parameter is 0, no conversion is performed.

For more information about a list of supported conversions, see the ODBC 3.0 Programmer's Reference.

The eDataType parameter is enumerated by the SQL Server data type tokens in Odbcss.h, not the ODBC C data type enumerators.
For example, you can specify a two-byte integer, ODBC type SQL_C_SHORT, using the SQL Server-specific type SQLINT2.

idxServerCol

Is the ordinal position of the column in the database table to which the data is copied. The first column in a table is column 1. The
ordinal position of a column is reported by SQLColumns.

Returns

SUCCEED or FAIL.

Remarks

Use bcp_bind for a fast, efficient way to copy data from a program variable into a table in SQL Server.

Call bcp_init before calling this or any other bulk-copy function. Calling bcp_init sets the SQL Server target table for bulk copy.
When calling bcp_init for use with bcp_bind and bcp_sendrow, the bcp_init szDataFile parameter, indicating the data file, is set
to NULL; the bcp_init eDirection parameter is set to DB_IN.

Make a separate bcp_bind call for every column in the SQL Server table into which you want to copy. After the necessary
bcp_bind calls have been made, then call bcp_sendrow to send a row of data from your program variables to SQL Server.

Whenever you want SQL Server to commit the rows already received, call bcp_batch. For example, call bcp_batch once for every
1000 rows inserted or at any other interval.

When there are no more rows to be inserted, call bcp_done. Failure to do so results in an error.

Control parameter settings, specified with bcp_control, have no effect on bcp_bind row transfers.

Calling bcp_columns when using bcp_bind results in an error.

Example

...
// Variables like henv not specified.
HDBC hdbc;
char szCompanyName[MAXNAME];
DBINT idCompany;
DBINT nRowsProcessed;
DBBOOL bMoreData;
char* pTerm = "\t\t";

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source; return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc1, (UCHAR*)"MyDSN",
 SQL_NTS, (UCHAR*)"", SQL_NTS, (UCHAR*)"", SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bcp.
if (bcp_init(hdbc, "comdb..accounts_info", NULL, NULL
 DB_IN) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Bind program variables to table columns.
if (bcp_bind(hdbc, (LPCBYTE) &idCompany, 0, sizeof(DBINT), NULL, 0,
 SQLINT4, 1) == FAIL)
 {
 // Raise error and return.
 return;
 }
if (bcp_bind(hdbc, (LPCBYTE) szCompanyName, 0, SQL_VARLEN_DATA,
 (LPCBYTE) pTerm, strlen(pTerm), SQLCHARACTER, 2) == FAIL)
 {
 // Raise error and return.
 return;
 }

while (TRUE)
 {
 // Retrieve and process program data.
 if ((bMoreData = getdata(&idCompany, szCompanyName)) == TRUE)
 {
 // Send the data.
 if (bcp_sendrow(hdbc) == FAIL)
 {
 // Raise error and return.
 return;
 }
 }
 else
 {
 // Break out of loop and carry on.
 break;
 }
 }

// Terminate the bulk copy operation.
if ((nRowsProcessed = bcp_done(hdbc)) == -1)
 {
 printf("Bulk-copy unsuccessful.\n");
 return;
 }

printf("%ld rows copied.\n", nRowsProcessed);

// Carry on.
...

See Also

bcp_batch

bcp_colfmt

bcp_collen

bcp_colptr

bcp_columns

bcp_control

bcp_done

bcp_exec

bcp_init

bcp_moretext

bcp_sendrow

SQLColumns

ODBC and SQL Server (SQL Server 2000)

bcp_colfmt
bcp_colfmt

Specifies the source or target format of the data in a user file. When used as a source format, bcp_colfmt specifies the format of
an existing data file used as the source of data in a bulk copy to a Microsoft® SQL Server™ table. When used as a target format,
the data file is created using the column formats specified with bcp_colfmt.

Syntax

RETCODE bcp_colfmt (
HDBC hdbc,
INT idxUserDataCol,
BYTE eUserDataType,
INT cbIndicator,
DBINT cbUserData,
LPCBYTE pUserDataTerm,
INT cbUserDataTerm,
INT idxServerCol);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

idxUserDataCol

Is the ordinal column number in the user data file for which the format is being specified. The first column is 1.

eUserDataType

Is the data type of this column in the user file. If different from the data type of the corresponding column in the database table
(idxServerColumn), bulk copy converts the data if possible. For more information about supported data conversions, see the
ODBC 3.0 Programmer's Reference.

The eUserDataType parameter is enumerated by the SQL Server data type tokens in Odbcss.h, not the ODBC C data type
enumerators. For example, you can specify a character string, ODBC type SQL_C_CHAR, using the SQL Server-specific type
SQLCHARACTER.

To specify the default data representation for the SQL Server data type, set this parameter to 0.

For a bulk copy out of SQL Server into a file, when eUserDataType is SQLDECIMAL or SQLNUMERIC:

If the source column is not decimal or numeric, the default precision and scale are used.

If the source column is decimal or numeric, the precision and scale of the source column are used.

cbIndicator

Is the length, in bytes, of a length/null indicator within the column data. Valid indicator length values are 0 (when using no
indicator), 1, 2, or 4.

To specify default bulk copy indicator usage, set this parameter to SQL_VARLEN_DATA.

Indicators appear in memory directly before any data, and in the data file directly before the data to which they apply.

If more than one means of specifying a data file column length is used (such as an indicator and a maximum column length, or an
indicator and a terminator sequence), bulk copy chooses the one that results in the least amount of data being copied.

Data files generated by bulk copy when no user intervention adjusts the format of the data contain indicators when the column
data can vary in length or the column can accept NULL as a value.

cbUserData

Is the maximum length, in bytes, of this column's data in the user file, not including the length of any length indicator or
terminator.

Setting cbUserData to SQL_NULL_DATA indicates that all values in the data file column are, or should be set to NULL.

Setting cbUserData to SQL_VARLEN_DATA indicates that the system should determine the length of data in each column. For
some columns, this could mean that a length/null indicator is generated to precede data on a copy from SQL Server, or that the
indicator is expected in data copied to SQL Server.

For SQL Server character and binary data types, cbUserData can be SQL_VARLEN_DATA, SQL_NULL_DATA, 0, or some positive
value. If cbUserData is SQL_VARLEN_DATA, the system uses either the length indicator, if present, or a terminator sequence to
determine the length of the data. If both a length indicator and a terminator sequence are supplied, bulk copy uses the one that
results in the least amount of data being copied. If cbUserData is SQL_VARLEN_DATA, the data type is an SQL Server character or
binary type, and neither a length indicator nor a terminator sequence is specified, the system returns an error message.

If cbUserData is 0 or a positive value, the system uses cbUserData as the maximum data length. However, if, in addition to a
positive cbUserData, a length indicator or terminator sequence is provided, the system determines the data length by using the
method that results in the least amount of data being copied.

The cbUserData value represents the count of bytes of data. If character data is represented by Unicode wide characters, then a
positive cbUserData parameter value represents the number of characters multiplied by the size, in bytes, of each character.

pUserDataTerm

Is the terminator sequence to be used for this column. This parameter is useful mainly for character data types because all other
types are of fixed length or, in the case of binary data, require an indicator of length to accurately record the number of bytes
present.

To avoid terminating extracted data, or to indicate that data in a user file is not terminated, set this parameter to NULL.

If more than one means of specifying a user-file column length is used (such as a terminator and a length indicator, or a
terminator and a maximum column length), bulk copy chooses the one that results in the least amount of data being copied.

The bulk copy API performs Unicode-to-MBCS character conversion as required. Care must be taken to ensure that both the
terminator byte string and the length of the byte string are set correctly.

cbUserDataTerm

Is the length, in bytes, of the terminator sequence to be used for this column. If no terminator is present or desired in the data, set
this value to 0.

idxServerCol

Is the ordinal position of the column in the database table. The first column number is 1. The ordinal position of a column is
reported by SQLColumns.

If this value is 0, bulk copy ignores the column in the data file.

Returns

SUCCEED or FAIL.

Remarks

The bcp_colfmt function allows you to specify the user-file format for bulk copies. For bulk copy, a format contains the following
parts:

A mapping from user-file columns to database columns.

The data type of each user-file column.

The length of the optional indicator for each column.

The maximum length of data per user-file column.

The optional terminating byte sequence for each column.

The length of the optional terminating byte sequence.

Each call to bcp_colfmt specifies the format for one user-file column. For example, to change the default settings for three

columns in a five-column user data file, first call bcp_columns(5), and then call bcp_colfmt five times, with three of those calls
setting your custom format. For the remaining two calls, set eUserDataType to 0, and set cbIndicator, cbUserData, and
cbUserDataTerm to 0, SQL_VARLEN_DATA, and 0 respectively. This procedure copies all five columns, three with your customized
format and two with the default format.

The bcp_columns function must be called before any calls to bcp_colfmt.

You must call bcp_colfmt once for each column in the user file.

Calling bcp_colfmt more than once for any user-file column causes an error.

You do not need to copy all data in a user file to the SQL Server table. To skip a column, specify the format of the data for the
column, setting the idxServerCol parameter to 0. If you want to skip a column, you must specify its type.

The bcp_writefmt function can be used to persist the format specification.

See Also

bcp_batch

bcp_bind

bcp_collen

bcp_colptr

bcp_columns

bcp_control

bcp_done

bcp_exec

bcp_init

bcp_sendrow

bcp_writefmt

SQLColumns

ODBC and SQL Server (SQL Server 2000)

bcp_collen
bcp_collen

Sets the program variable data length for the current bulk copy into Microsoft® SQL Server™.

Syntax

RETCODE bcp_collen (
HDBC hdbc,
DBINT cbData,
INT idxServerCol);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

cbData

Is the length of the data in the program variable, not including the length of any length indicator or terminator. Setting cbData to
SQL_NULL_DATA indicates all rows copied to the server contain a NULL value for the column. Setting it to SQL_VARLEN_DATA
indicates a string terminator or other method is used to determine the length of data copied. If both a length indicator and a
terminator exist, the system uses the one that results in the least amount of data being copied.

idxServerCol

Is the ordinal position of the column in the table to which the data is copied. The first column is 1. The ordinal position of a
column is reported by SQLColumns.

Returns

SUCCEED or FAIL.

Remarks

The bcp_collen function allows you to change the program variable data length for a particular column when copying data to
SQL Server with bcp_sendrow.

Initially, the program variable data length is determined when bcp_bind is called. If the program variable data length changes
between calls to bcp_sendrow and no length prefix or terminator is being used, you can call bcp_collen to reset the length. The
next call to bcp_sendrow uses the length set by the call to bcp_collen.

You must call bcp_collen once for each column in the table whose data length you want to modify.

See Also

bcp_sendrow

SQLColumns

ODBC and SQL Server (SQL Server 2000)

bcp_colptr
bcp_colptr

Sets the program variable data address for the current copy into Microsoft® SQL Server™.

Syntax

RETCODE bcp_colptr (
HDBC hdbc,
LPCBYTE pData,
INT idxServerCol);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

pData

Is a pointer to the data to copy. If the bound data type is SQLTEXT, SQLNTEXT, or SQLIMAGE, pData can be NULL. A NULL pData
indicates long data values will be sent to SQL Server in chunks using bcp_moretext.

idxServerCol

Is the ordinal position of the column in the database table to which the data is copied. The first column in a table is column 1. The
ordinal position of a column is reported by SQLColumns.

Returns

SUCCEED or FAIL.

Remarks

The bcp_colptr function allows you to change the address of source data for a particular column when copying data to SQL
Server with bcp_sendrow.

Initially, the pointer to user data is set by a call to bcp_bind. If the program variable data address changes between calls to
bcp_sendrow, you can call bcp_colptr to reset the pointer to the data. The next call to bcp_sendrow sends the data addressed
by the call to bcp_colptr.

There must be a separate bcp_colptr call for every column in the table whose data address you want to modify.

See Also

bcp_bind

bcp_collen

bcp_moretext

bcp_sendrow

SQLColumns

ODBC and SQL Server (SQL Server 2000)

bcp_columns
bcp_columns

Sets the total number of columns found in the user file for use with a bulk copy into or out of Microsoft® SQL Server™.

Syntax

RETCODE bcp_columns (
HDBC hdbc,
INT nColumns);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

nColumns

Is the total number of columns in the user file. Even if you are preparing to bulk copy data from the user file to an SQL Server
table and do not intend to copy all columns in the user file, you must still set nColumns to the total number of user-file columns.

Returns

SUCCEED or FAIL.

Remarks

This function can be called only after bcp_init has been called with a valid file name.

You should call this function only if you intend to use a user-file format that differs from the default. For more information about
a description of the default user-file format, see bcp_init.

After calling bcp_columns, you must call bcp_colfmt for each column in the user file to completely define a custom file format.

See Also

bcp_colfmt

ODBC and SQL Server (SQL Server 2000)

bcp_control
bcp_control

 New Information - SQL Server 2000 SP3.

Changes the default settings for various control parameters for a bulk copy between a file and Microsoft® SQL Server™.

Syntax

RETCODE bcp_control (
HDBC hdbc,
INT eOption,
void* iValue);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

eOption

Is one of the following:

BCP6xFILEFMT

When iValue is TRUE, specifies that columns stored in a data file use the SQL Server version 6.x format instead of the SQL Server
7.0 format.

Version 6.x format does not support several data types when bulk copying out from an SQL Server 7.0 database. Nullable bit
values are converted to 0. char, varchar, binary, and varbinary values longer than 255 bytes are trunctated. uniqueidentifier,
nchar, nvarchar, and ntext columns are not supported. Zero length data is converted to NULL.

When bulk copying in from a character data file column, blank input values are converted to NULL when iValue is set to FALSE
and as follows when iValue is TRUE.

Target column data type Resulting value
Any data type in the numeric category 0
binary or varbinary 0x00
datetime or smalldatetime NULL
Uniqueidentifier NULL

When bulk copying in from a character data file column containing datetime strings, all datetime string formats supported by
earlier DB-Library versions of bulk copy are supported.

When iValue is set to TRUE, a prefix of 0x is allowed for binary values specified in character mode data files. The prefix is not
allowed if iValue is FALSE.

When iValue is set to FALSE, zero length indicates are stored as 0x00 in character mode data files and as 0x0000 in BCPUNICODE
files.

BCPABORT

Stops a bulk-copy operation that is already in progress. Call bcp_control with an eOption of BCPABORT from another thread to
stop a running bulk-copy operation. The iValue parameter is ignored.

BCPBATCH

Is the number of rows per batch. The default is 0, which indicates either all rows in a table, when data is being extracted, or all
rows in the user data file, when data is being copied to an SQL Server. A value less than 1 resets BCPBATCH to the default.

BCPFILECP

iValue contains the number of the code page for the data file. You can specify the number of the code page, such as 1252 or 850,
or one of these values:

BCPFILE_ACP: data in the file is in the Microsoft Windows® code page of the client.

BCPFILE_OEMCP: data in the file is in the OEM code page of the client (default).

BCPFILE_RAW: data in the file is in the code page of the SQL Server.

BCPFIRST

Is the first row of data to file or table to copy. The default is 1; a value less than 1 resets this option to its default.

BCPHINTS

iValue contains an SQLTCHAR character string pointer. The string addressed specifies either SQL Server bulk-copy processing
hints or a Transact-SQL statement that returns a result set. If a Transact-SQL statement is specified that returns more than one
result set, all result sets after the first are ignored. For more information about bulk-copy processing hints, see bcp Utility.

BCPKEEPIDENTITY

When iValue is TRUE, specifies that bulk copy functions insert data values supplied for SQL Server columns defined with an
identity constraint. The input file must supply values for the identity columns. If this is not set, new identity values are generated
for the inserted rows. Any data present in the file for the identity columns is ignored.

BCPKEEPNULLS

Specifies whether empty data values in the file will be converted to NULL values in the SQL Server table. When iValue is TRUE,
empty values will be converted to NULL in the SQL Server table. The default is for empty values to be converted to a default value
for the column in the SQL Server table if a default exists.

BCPLAST

Is the last row to copy. The default is to copy all rows; a value less than 1 resets this option to its default.

BCPMAXERRS

Is the number of errors allowed before the bulk copy operation fails. The default is 10; a value less than 1 resets this option to its
default. Bulk copy imposes a maximum of 65,535 errors. An attempt to set this option to a value larger than 65,535 results in the
option being set to 65,535.

BCPODBC

When TRUE, specifies that datetime and smalldatetime values saved in character format will use the ODBC timestamp escape
sequence prefix and suffix. The BCPODBC option only applies to BCP_OUT.

When FALSE, a datetime value representing January 1, 1997 is converted to the character string: 1997-01-01 00:00:00.000.
When TRUE, the same datetime value is represented as: {ts '1997-01-01 00:00:00.000'}.

BCPUNICODEFILE

When TRUE, specifies the input file is a Unicode file.

FIRE_TRIGGERS

Specifies that INSERT and INSTEAD OF triggers defined on the destination table are fired once for each bulk copy batch. The
inserted table passed to each trigger contains all of the rows inserted by the batch. Bulk copy operations that would otherwise be
logged minimally are fully logged when FIRE_TRIGGERS is specified. No result sets generated by the triggers are returned to the
client performing the bulk copy operation. Specify FIRE_TRIGGERS only when all of the INSERT and INSTEAD OF triggers on the
destination table support multiple row inserts. The iValue parameter is ignored.

iValue

Is the value for the specified eOption. iValue is an integer value cast to a void pointer to allow for future expansion to 64 bit
values.

Returns

SUCCEED or FAIL.

Remarks

This function sets various control parameters for bulk-copy operations, including the number of errors allowed before canceling a
bulk copy, the numbers of the first and last rows to copy from a data file, and the batch size.

This function is also used to specify the SELECT statement when bulk copying out from SQL Server the result set of a SELECT. Set
eOption to BCPHINTS and set iValue to have a pointer to an SQLTCHAR string containing the SELECT statement.

These control parameters are only meaningful when copying between a user file and an SQL Server table. Control parameter
settings have no effect on rows copied to SQL Server with bcp_sendrow.

Example

...
// Variables like henv not specified.
SQLHDBC hdbc;
DBINT nRowsProcessed;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,
 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bulk copy.
if (bcp_init(hdbc, _T("address"), _T("address.add"), _T("addr.err"),
 DB_IN) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Set the number of rows per batch.
if (bcp_control(hdbc, BCPBATCH, (void*) 1000) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Set file column count.
if (bcp_columns(hdbc, 1) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Set the file format.
if (bcp_colfmt(hdbc, 1, 0, 0, SQL_VARLEN_DATA, '\n', 1, 1)
 == FAIL)
 {
 // Raise error and return.
 return;
 }

// Execute the bulk copy.
if (bcp_exec(hdbc, &nRowsProcessed) == FAIL)
 {
 // Raise error and return.
 return;
 }

printf("%ld rows processed by bulk copy.", nRowsProcessed);

See Also

bcp_exec

bcp_sendrow

ODBC and SQL Server (SQL Server 2000)

bcp_done
bcp_done

Ends a bulk copy from program variables to Microsoft® SQL Server™ performed with bcp_sendrow.

Syntax

DBINT bcp_done (HDBC hdbc);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

Returns

The number of rows permanently saved after the last call to bcp_batch or -1 in case of error.

Remarks

Call bcp_done after the last call to bcp_sendrow or bcp_moretext. Failure to call bcp_done after copying all data results in
errors.

See Also

bcp_batch

bcp_moretext

bcp_sendrow

ODBC and SQL Server (SQL Server 2000)

bcp_exec
bcp_exec

 New Information - SQL Server 2000 SP3.

Executes a complete bulk copy of data between a database table and a user file.

Syntax

RETCODE bcp_exec (
HDBC hdbc,
LPDBINT pnRowsProcessed);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

pnRowsProcessed

Is a pointer to a DBINT. The bcp_exec function fills this DBINT with the number of rows successfully copied. If pnRowsProcessed is
NULL, it is ignored by bcp_exec.

Returns

SUCCEED, SUCCEED_ASYNC, or FAIL. The bcp_exec function returns SUCCEED if all rows are copied. bcp_exec returns
SUCCEED_ASYNC if an asynchronous bulk copy operation is still outstanding. bcp_exec returns FAIL if a complete failure occurs,
or if the number of rows generating errors reaches the value specified for BCPMAXERRS using bcp_control. BCPMAXERRS
defaults to 10. The BCPMAXERRS option affects only the syntax errors detected by the provider while reading the rows from the
data file (and not the rows sent to the server). Server aborts the batch when it detects an error with a row. Check the
pnRowsProcessed parameter for the number of rows successfully copied.

Remarks

This function copies data from a user file to a database table or vice versa, depending on the value of the eDirection parameter in
bcp_init.

Before calling bcp_exec, call bcp_init with a valid user file name. Failure to do so results in an error.

bcp_exec is the only bulk copy function that is likely to be outstanding for any length of time. It is therefore the only bulk copy
function that supports asynchronous mode. To set asynchronous mode, use SQLSetConnectAttr to set
SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON before calling bcp_exec. To test for completion, call bcp_exec with the
same parameters. If the bulk copy has not yet completed, bcp_exec returns SUCCEED_ASYNC. It also returns in pnRowsProcessed
a status count of the number of rows that have been sent to the server. Rows sent to the server are not committed until the end of
a batch has been reached.

Example

The following example shows how to use bcp_exec:

...
// Variables like henv not specified.
HDBC hdbc;
DBINT nRowsProcessed;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,

 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bulk copy.
if (bcp_init(hdbc, _T("pubs..authors"), _T("authors.sav"), NULL, DB_OUT)
 == FAIL)
 {
 // Raise error and return.
 return;
 }

// Now, execute the bulk copy.
if (bcp_exec(dbproc, &nRowsProcessed) == FAIL)
 {
 if (nRowsProcessed == -1)
 {
 printf("No rows processed on bulk copy execution.\n");
 }
 else
 {
 printf("Incomplete bulk copy. Only %ld row%s copied.\n",
 nRowsProcessed, (nRowsProcessed == 1) ? "": "s");
 }
 return;
 }

printf("%ld rows processed.\n", nRowsProcessed);

// Carry on.
...

See Also

bcp_init

ODBC and SQL Server (SQL Server 2000)

bcp_getcolfmt
bcp_getcolfmt

Used to find the column format property value.

Syntax

RETCODE bcp_getcolfmt (
HDBC hdbc,
INT field,
INT property,
void* pValue,
INT cbvalue,
INT* pcbLen);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

field

Is the column number for which the property is retrieved.

property

Is one of the property constants.

pValue

Is the pointer to the buffer in which to retrieve the property value.

cbValue

Is the length of the property buffer in bytes.

pcbLen

Pointer to length of the data that is being returned in the property buffer.

Returns

SUCCEED or FAIL.

Remarks

Column format property values are listed in the bcp_setcolfmt topic. The column format property values are set by calling the
bcp_setcolfmt function, and the bcp_getcolfmt function is used to find the column format property value.

See Also

bcp_setcolfmt

ODBC and SQL Server (SQL Server 2000)

bcp_init
bcp_init

 New Information - SQL Server 2000 SP3.

Initializes bulk copy operation.

Syntax

RETCODE bcp_init (
HDBC hdbc,
LPCTSTR szTable,
LPCTSTR szDataFile,
LPCTSTR szErrorFile,
INT eDirection);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

szTable

Is the name of the database table to be copied into or out of. This name can also include the database name or the owner name.
For example, pubs.gracie.titles, pubs..titles, gracie.titles, and titles are all legal table names.

If eDirection is DB_OUT, szTable can also be the name of a database view.

If eDirection is DB_OUT and a SELECT statement is specified using bcp_control before bcp_exec is called, bcp_init szTable must
be set to NULL.

szDataFile

Is the name of the user file to be copied into or out of. If data is being copied directly from variables by using bcp_sendrow, set
szDataFile to NULL.

szErrorFile

Is the name of the error file to be filled with progress messages, error messages, and copies of any rows that, for any reason,
could not be copied from a user file to a table. If NULL is passed as szErrorFile, no error file is used.

eDirection

Is the direction of the copy, either DB_IN or DB_OUT. DB_IN indicates a copy from program variables or a user file to a table.
DB_OUT indicates a copy from a database table to a user file. You must specify a user file name with DB_OUT.

Returns

SUCCEED or FAIL.

Remarks

Call bcp_init before calling any other bulk-copy function. bcp_init performs the necessary initializations for a bulk copy of data
between the workstation and Microsoft® SQL Server™.

The bcp_init function must be provided with an ODBC connection handle enabled for use with bulk copy functions. To enable the
handle, use SQLSetConnectAttr with SQL_COPT_SS_BCP set to SQL_BCP_ON on an allocated, but not connected, connection
handle. Attempting to assign the attribute on a connected handle results in an error.

When a data file is specified, bcp_init examines the structure of the database source or target table, not the data file. bcp_init
specifies data format values for the data file based on each column in the database table, view, or SELECT result set. This
specification includes the data type of each column, the presence or absence of a length or null indicator and terminator byte
strings in the data, and the width of fixed-length data types. bcp_init sets these values as follows:

The data type specified is the data type of the column in the database table, view, or SELECT result set. The data type is

enumerated by SQL Server native data types specified in Odbcss.h. Data itself is represented in its computer form. That is,
data from a column of integer data type is represented by a four-byte sequence that is big-or little-endian based on the
computer that created the data file.

If a database data type is fixed in length, the data file data is also fixed in length. Bulk-copy functions that process data (for
example, bcp_exec) parse data rows expecting the length of the data in the data file to be identical to the length of the data
specified in the database table, view, or SELECT column list. For example, data for a database column defined as char(13)
must be represented by 13 characters for each row of data in the file. Fixed-length data can be prefixed with a null indicator
if the database column allows null values.

When terminator-byte sequence is defined, the length of the terminator-byte sequence is set to 0.

When copying to SQL Server, the data file must have data for each column in the database table. When copying from SQL
Server, data from all columns in the database table, view, or SELECT result set are copied to the data file.

When copying to SQL Server, the ordinal position of a column in the data file must be identical to the ordinal position of the
column in the database table. When copying from SQL Server, bcp_exec places data based on the ordinal position of the
column in the database table.

If a database data type is variable in length (for example, varbinary(22)) or if a database column can contain null values,
data in the data file is prefixed by a length/null indicator. The width of the indicator varies based on the data type and
version of bulk copy. The bcp_control option BCP6xFILEFMT provides compatibility between earlier bulk copy data files
and servers running later versions of SQL Server by indicating when the width of indicators in the data is narrower than
expected.

To change data format values specified for a data file, call bcp_columns and bcp_colfmt.

Bulk copies to SQL Server can be optimized for tables that do not contain indexes by setting the database option select
into/bulkcopy (see the example). For more information, see Optimizing Bulk Copy Performance.

If no data file is used, you must call bcp_bind to specify the format and location in memory of the data for each column, then
copy data rows to the SQL Server using bcp_sendrow.

Example

Setting the select into/bulkcopy option allows faster bulk copies for tables that do not contain indexes.

...
// Variables like henv not specified.
HDBC hdbc;
SQLHSTMT hstmt;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,
 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Get a statement handle and set the select into/bulkcopy database
// option to TRUE.
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if (!SQL_SUCCEEDED(SQLExecDirect(hstmt,
 _T("sp_dboption 'mydb', 'select into/bulkcopy', 'true'"),
 SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Flush the statement handle.
while (SQL_SUCCEEDED(SQLMoreResults(hstmt)))
 ;

// Initialize bulk copy, perform copies, and so on.
...

// Turn off the select into/bulkcopy database option.
if (!SQL_SUCCEEDED(SQLExecDirect(hstmt,
 _T("sp_dboption 'mydb', 'select into/bulkcopy', 'false'"),
 SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Carry on.
...

See Also

bcp_bind

bcp_control

bcp_colfmt

bcp_columns

bcp_sendrow

Logged and Minimally Logged Bulk Copy Operations

SQLSetConnectAttr

ODBC and SQL Server (SQL Server 2000)

bcp_moretext
bcp_moretext

 New Information - SQL Server 2000 SP3.

Sends part of a long, variable-length data type value to Microsoft® SQL Server™.

Syntax

RETCODE bcp_moretext (
HDBC hdbc,
DBINT cbData,
LPCBYTE pData);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

cbData

Is the number of bytes of data being copied to SQL Server from the data referenced by pData.

pData

Is a pointer to the supported, long, variable-length data chunk to be sent to SQL Server.

Returns

SUCCEED or FAIL.

Remarks

This function can be used in conjunction with bcp_bind and bcp_sendrow to copy long, variable-length data values to SQL
Server in a number of smaller chunks. bcp_moretext can be used with columns that have SQL Server data types enumerated
with SQLTEXT, SQLNTEXT, and SQLIMAGE only. bcp_moretext does not support data conversions, the data supplied must match
the data type of the target column.

If bcp_bind is called with a nonNULL pData parameter for data types that are supported by bcp_moretext, bcp_sendrow sends
the entire data value, regardless of length. If, however, bcp_bind has a NULL pData parameter for supported data types,
bcp_moretext can be used to copy data immediately after a successful return from bcp_sendrow indicating that any bound
columns with data present have been processed.

If you use bcp_moretext to send one supported data type column in a row, you must also use it to send all other supported data
type columns in the row.

Calling either bcp_bind or bcp_collen sets the total length of all data parts to be copied to the SQL Server column. An attempt to
send SQL Server more bytes than specified in the call to bcp_bind or bcp_collen generates an error. This error would arise, for
example, in an application which used bcp_collen to set the length of available data for an SQL Server text column to 4500, then
called bcp_moretext five times while indicating on each call that the data buffer length was 1000 bytes long.

If a copied row contains more than one long, variable-length column, bcp_moretext first sends its data to the lowest ordinally
numbered column, followed by the next lowest ordinally numbered column, and so on. Correct setting of the total length of
expected data is important. There is no way to signal, outside of the length setting, that all data for a column has been received by
bulk copy.

An application normally calls bcp_sendrow and bcp_moretext within loops to send a number of rows of data. Here's an outline
of how to do this for a table containing two text columns:

while (there are still rows to send)
{
bcp_collen(..., total length of data for first text column,
 first text column's ordinal position);
bcp_collen(..., total length of data for second text column,
 second text column's ordinal position);

bcp_sendrow(...);

for (all the data in the first text column)
bcp_moretext(...);

for (all the data in the second text column)
bcp_moretext(...);
}

Example

This example shows how to use bcp_moretext with bcp_bind and bcp_sendrow.

...
// Variables like henv not specified.
HDBC hdbc;
DBINT idRow = 5;
char* pPart1 = "This text value isn't very long,";
char* pPart2 = " but it's broken into three parts";
char* pPart3 = " anyhow.";
DBINT cbAllParts;
DBINT nRowsProcessed;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,
 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bulk copy.
if (bcp_init(hdbc, "comdb..articles", NULL, NULL, DB_IN) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Bind program variables to table columns.
if (bcp_bind(hdbc, (LPCBYTE) &idRow, 0, SQL_VARLEN_DATA, NULL, 0,
 SQLINT4, 1) == FAIL)
 {
 // Raise error and return.
 return;
 }

cbAllParts = (DBINT) (strlen(pPart1) + strlen(pPart2) + strlen(pPart3));
if (bcp_bind(hdbc, NULL, 0, cbAllParts, NULL, 0, SQLTEXT, 2) == FAIL)
 {
 // Raise error and return.
 return;
 }

// Send this row, with the text value broken into three chunks.
if (bcp_sendrow(hdbc) == FAIL)
 {
 // Raise error and return.
 return;
 }

if (bcp_moretext(hdbc, (DBINT) strlen(pPart1), pPart1) == FAIL)
 {
 // Raise error and return.
 return;
 }
if (bcp_moretext(hdbc, (DBINT) strlen(pPart2), pPart2) == FAIL)
 {
 // Raise error and return.
 return;
 }
if (bcp_moretext(hdbc, (DBINT) strlen(pPart3), pPart3) == FAIL)

 {
 // Raise error and return.
 return;
 }

// All done. Get the number of rows processed (should be one).
nRowsProcessed = bcp_done(hdbc);

// Carry on.
...

See Also

bcp_bind

bcp_collen

bcp_sendrow

ODBC and SQL Server (SQL Server 2000)

bcp_readfmt
bcp_readfmt

 New Information - SQL Server 2000 SP3.

Reads a data file format definition from the specified format file.

Syntax

RETCODE bcp_readfmt (
HDBC hdbc,
LPCTSTR szFormatFile);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

szFormatFile

Is the path and file name of the file containing the format values for the data file.

Returns

SUCCEED or FAIL.

Remarks

After bcp_readfmt reads the format values, it makes the appropriate calls to bcp_columns and bcp_colfmt. There is no need
for you to parse a format file and make these calls.

To persist a format file, call bcp_writefmt. Calls to bcp_readfmt can reference saved formats. For more information, see bcp_init.

Alternately, the bulk-copy utility (bcp) can save user-defined data formats in files that can be referenced by bcp_readfmt. For
more information about the bcp utility and the structure of bcp data format files, see Using Format Files.

Note The format file must have been produced by version 4.2 or later of the bcp utility.

Example

// Variables like henv not specified.
HDBC hdbc;
DBINT nRowsProcessed;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,
 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bulk copy.
if (bcp_init(hdbc, _T("myTable"), _T("myData.csv"),
 _T("myErrors"), DB_IN) == FAIL)
 {
 // Raise error and return.
 return;
 }

if (bcp_readfmt(hdbc, _T("myFmtFile.fmt")) == FAIL)

 {
 // Raise error and return.
 return;
 }

if (bcp_exec(hdbc, &nRowsProcessed) == SUCCEED)
 {
 printf("%ld rows copied to SQL Server\n", nRowsProcessed);
 }

// Carry on.
...

See Also

bcp_colfmt

bcp_columns

bcp_writefmt

ODBC and SQL Server (SQL Server 2000)

bcp_sendrow
bcp_sendrow

Sends a row of data from program variables to Microsoft® SQL Server™.

Syntax

RETCODE bcp_sendrow (HDBC hdbc);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

Returns

SUCCEED or FAIL.

Remarks

The bcp_sendrow function builds a row from program variables and sends it to SQL Server.

Before calling bcp_sendrow, you must make calls to bcp_bind to specify the program variables containing row data.

If bcp_bind is called specifying a long, variable-length data type, for example, an eDataType parameter of SQLTEXT and a
nonNULL pData parameter, bcp_sendrow sends the entire data value, just as it does for any other data type. If, however,
bcp_bind has a NULL pData parameter, bcp_sendrow returns control to the application immediately after all columns with data
specified are sent to SQL Server. The application can then call bcp_moretext repeatedly to send the long, variable-length data to
SQL Server, a chunk at a time. For more information, see bcp_moretext.

When bcp_sendrow is used to bulk copy rows from program variables into SQL Server tables, rows are committed only when
the user calls bcp_batch or bcp_done. The user can choose to call bcp_batch once every n rows or when there is a lull between
periods of incoming data. If bcp_batch is never called, the rows are committed when bcp_done is called.

See Also

bcp_batch

bcp_bind

bcp_done

ODBC and SQL Server (SQL Server 2000)

bcp_setcolfmt
bcp_setcolfmt

The bcp_setcolfmt function supercedes the bcp_colfmt. In specifying the column collation, bcp_setcolfmt function must be
used.

This function provides a flexible approach to specifying the column format in a bulk copy operation. It is used to set individual
column format attributes. Each call to bcp_setcolfmt will set one column format attribute.

The bcp_setcolfmt function specifies the source or target format of the data in a user file. When used as a source format,
bcp_setcolfmt specifies the format of an existing data file used as a data source of data in a bulk copy to a table in Microsoft®
SQL Server™. When used as a target format, the data file is created using the column formats specified with bcp_setcolfmt.

Syntax

RETCODE bcp_setcolfmt (
HDBC hdbc,
INT field,
INT property,
void* pValue,
INT cbValue);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

field

Is the ordinal column number for which the property is being set.

property

Is one of the property constants. Property constants are defined in this table.

Property Value Description

BCP_FMT_TYPE BYTE Is the data type of this column in the user
file. If different from the data type of the
corresponding column in the database
table, bulk copy converts the data if
possible. For more information, see the
ODBC documentation.

The BCP_FMT_TYPE parameter is
enumerated by the SQL Server data type
tokens in Odbcss.h, rather than the ODBC
C data type enumerators. For example, you
can specify a character string, ODBC type
SQL_C_CHAR, using the SQLCHARACTER
type specific to SQL Server.

To specify the default data representation
for the SQL Server data type, set this
parameter to 0.

For a bulk copy out of SQL Server into a
file, when BCP_FMT_TYPE is SQLDECIMAL
or SQLNUMERIC:

If the source column is not decimal
or numeric, the default precision
and scale are used.

If the source column is decimal or
numeric, the precision and scale of
the source column are used.

BCP_FMT_INDICATOR_LEN INT Is the length in bytes of the indicator
(prefix).

It is the length, in bytes, of a length/null
indicator within the column data. Valid
indicator length values are 0 (when using
no indicator), 1, 2, or 4.

To specify default bulk copy indicator
usage, set this parameter to
SQL_VARLEN_DATA.

Indicators appear in memory directly
before any data, and in the data file directly
before the data to which they apply.

If more than one means of specifying a
data file column length is used (such as an
indicator and a maximum column length,
or an indicator and a terminator sequence),
bulk copy chooses the one that results in
the least amount of data being copied.

Data files generated by bulk copy when no
user intervention adjusts the format of the
data contain indicators when the column
data can vary in length or the column can
accept NULL as a value.

BCP_FMT_DATA_LEN DBINT Is the length in bytes of the data (column
length)

It is the maximum length, in bytes, of this
column's data in the user file, not including
the length of any length indicator or
terminator.

Setting BCP_FMT_DATA_LEN to
SQL_NULL_DATA indicates that all values
in the data file column are, or should be set
to, NULL.

Setting BCP_FMT_DATA_LEN to
SQL_VARLEN_DATA indicates that the
system should determine the length of
data in each column. For some columns,
this could mean that a length/null indicator
is generated to precede data on a copy
from SQL Server, or that the indicator is
expected in data copied to SQL Server.

For SQL Server character and binary data
types, BCP_FMT_DATA_LEN can be
SQL_VARLEN_DATA, SQL_NULL_DATA, 0,
or some positive value. If
BCP_FMT_DATA_LEN is
SQL_VARLEN_DATA, the system uses
either the length indicator, if present, or a
terminator sequence to determine the
length of the data. If both a length indicator
and a terminator sequence are supplied,
bulk copy uses the one that results in the
least amount of data being copied. If
BCP_FMT_DATA_LEN is
SQL_VARLEN_DATA, the data type is an
SQL Server character or binary type, and
neither a length indicator nor a terminator
sequence is specified, the system returns
an error message.

If BCP_FMT_DATA_LEN is 0 or a positive
value, the system uses
BCP_FMT_DATA_LEN as the maximum data
length. However, if, in addition to a positive
BCP_FMT_DATA_LEN, a length indicator or
terminator sequence is provided, the
system determines the data length by
using the method that results in the least
amount of data being copied.

The BCP_FMT_DATA_LEN value represents
the count of bytes of data. If character data
is represented by Unicode wide characters,
then a positive BCP_FMT_DATA_LEN
parameter value represents the number of
characters multiplied by the size, in bytes,
of each character.

BCP_FMT_TERMINATOR LPCBYTE Pointer to the terminator sequence (either
ANSI or Unicode as appropriate) to be
used for this column. This parameter is
useful mainly for character data types
because all other types are of fixed length
or, in the case of binary data, require an
indicator of length to accurately record the
number of bytes present.

To avoid terminating extracted data, or to
indicate that data in a user file is not
terminated, set this parameter to NULL.

If more than one means of specifying a
user-file column length is used (such as a
terminator and a length indicator, or a
terminator and a maximum column
length), bulk copy chooses the one that
results in the least amount of data being
copied.

The bulk copy API performs Unicode-to-
MBCS character conversion as required.
Care must be taken to ensure that both the
terminator byte string and the length of
the byte string are set correctly.

BCP_FMT_SERVER_COL INT Ordinal position of the column in the
database

BCP_FMT_COLLATION LPCSTR Collation name.

pValue

Is the pointer to the value to associate to the property. It allows each column format property to be set individually.

cbvalue

Is the length of the property buffer in bytes.

Returns

SUCCEED or FAIL.

Remarks

This function supercedes the bcp_colformat function. All the functionality of bcp_colformat is provided in bcp_setcolformat
function. In addition, support for column collation is also provided. It is recommended that the following column format attributes
be set in the order given below:

BCP_FMT_SERVER_COL

BCP_FMT_DATA_LEN

BCP_FMT_TYPE

The bcp_setcolfmt function allows you to specify the user-file format for bulk copies. For bulk copy, a format contains the
following parts:

A mapping from user-file columns to database columns.

The data type of each user-file column.

The length of the optional indicator for each column.

The maximum length of data per user-file column.

The optional terminating byte sequence for each column.

The length of the optional terminating byte sequence.

Each call to bcp_setcolfmt specifies the format for one user-file column. For example, to change the default settings for three
columns in a five-column user data file, first call bcp_columns(5), and then call bcp_setcolfmt five times, with three of those
calls setting your custom format. For the remaining two calls, set BCP_FMT_TYPE to 0, and set BCP_FMT_INDICATOR_LENGTH,
BCP_FMT_DATA_LEN, and cbValue to 0, SQL_VARLEN_DATA, and 0 respectively. This procedure copies all five columns, three with
your customized format and two with the default format.

The bcp_columns function must be called before calling bcp_setcolfmt.

You must call bcp_setcolfmt once for each property of each column in the user file.

You do not need to copy all data in a user file to the SQL Server table. To skip a column, specify the format of the data for the
column, setting the BCP_FMT_SERVER_COL parameter to 0. If you want to skip a column, you must specify its type.

The bcp_writefmt function can be used to persist the format specification.

See Also

bcp_getcolfmt

ODBC and SQL Server (SQL Server 2000)

bcp_writefmt
bcp_writefmt

 New Information - SQL Server 2000 SP3.

Creates a format file containing a description of the format of the current bulk copy data file.

Syntax

RETCODE bcp_writefmt (
HDBC hdbc,
LPCTSTR szFormatFile);

Arguments

hdbc

Is the bulk copy-enabled ODBC connection handle.

szFormatFile

Is the path and file name of the user file to receive format values for the data file.

Returns

SUCCEED or FAIL.

Remarks

The format file specifies the data format of a data file created by bulk copy. Calls to bcp_columns and bcp_colfmt define the
format of the data file. bcp_writefmt saves this definition in the file referenced by szFormatFile. For more information, see
bcp_init.

For more information about the structure of bcp data format files, see Using Format Files.

To load a saved format file, use bcp_readfmt.

Note The format file produced by bcp_writefmt is supported only by versions of the bcp utility distributed with Microsoft®
SQL Server™ version 7.0.

Example

// Variables like henv not specified.
HDBC hdbc;
DBINT nRowsProcessed;

// Application initiation, get an ODBC environment handle, allocate the
// hdbc, and so on.
...

// Enable bulk copy prior to connecting on allocated hdbc.
SQLSetConnectAttr(hdbc, SQL_COPT_SS_BCP, (SQLPOINTER) SQL_BCP_ON,
 SQL_IS_INTEGER);

// Connect to the data source, return on error.
if (!SQL_SUCCEEDED(SQLConnect(hdbc, _T("myDSN"), SQL_NTS,
 _T(""), SQL_NTS, _T(""), SQL_NTS)))
 {
 // Raise error and return.
 return;
 }

// Initialize bulk copy.
if (bcp_init(hdbc, _T("myTable"), _T("myData.csv"),
 _T("myErrors"), DB_OUT) == FAIL)
 {
 // Raise error and return.
 return;
 }

if (bcp_columns(hdbc, 3) == FAIL)
 {
 // Raise error and return.
 return;
 }

bcp_colfmt(hdbc, 1, SQLCHARACTER, 0, SQL_VARLEN_DATA, '\t', 1, 1);
bcp_colfmt(hdbc, 2, SQLCHARACTER, 0, SQL_VARLEN_DATA, '\t', 1, 2);
bcp_colfmt(hdbc, 3, SQLCHARACTER, 0, SQL_VARLEN_DATA, '\t', 1, 3);

if (bcp_writefmt(hdbc, _T("myFmtFile.fmt")) == FAIL)
 {
 // Raise error and return.
 return;
 }

if (bcp_exec(hdbc, &nRowsProcessed) == SUCCEED)
 {
 printf("%ld rows copied from SQL Server\n", nRowsProcessed);
 }

// Carry on.
...

See Also

bcp_colfmt

bcp_columns

bcp_readfmt

ODBC and SQL Server (SQL Server 2000)

Schema Functions Supporting Distributed Queries
The Microsoft® SQL Server™ ODBC driver provides extended catalog functions that support SQL Server distributed queries.

The catalog functions SQLLinkedCatalogs and SQLLinkedServers list data sources available for distributed query. A linked
server is an OLE DB data source. For the ODBC application, the name of the linked server can qualify tables and columns in a
query. SQL Server distributes the query as required.

The extended functions are implemented in the SQL Server ODBC driver. The application developer links with Odbcbcp.lib to build
an application by using SQLLinkedCatalogs or SQLLinkedServers.

In addition, the SQL Server ODBC driver supports using several standard ODBC functions to get catalog information for tables or
linked servers.

See Also

Distributed Queries

Using Catalog Functions

ODBC and SQL Server (SQL Server 2000)

SQLLinkedCatalogs
SQLLinkedCatalogs

SQLLinkedCatalogs returns a list of catalogs available on a linked server.

Syntax

SQLRETURN SQLLinkedCatalogs(
SQLHSTMT hstmt,
SQLTCHAR* ServerName,
SQLSMALLINT NameLength1)

Arguments

hstmt

Is an ODBC statement handle.

ServerName

Is the name of the linked server. Linked server names are returned in the SRV_NAME column of the result set defined for
SQLLinkedServers.

NameLength1

Is the length of *ServerName, in characters.

Returns

SUCCEED or FAIL.

Comments

Microsoft® SQL Server™ linked servers are OLE DB data sources. Some OLE DB data sources expose catalogs. For those that do,
SQLLinkedCatalogs returns the list of data source exposed catalogs.

SQLLinkedCatalogs returns a result set defined as follows.

Column name Column
number

Data type Comments

CATALOG_NAME 1 SQLWCHAR Name of the catalog.
DESCRIPTION 2 SQLWCHAR Human-readable description of

the catalog.

ODBC and SQL Server (SQL Server 2000)

SQLLinkedServers
SQLLinkedServers

SQLLinkedServers returns a list of data sources that can participate in distributed queries.

Syntax

SQLRETURN SQLLinkedServers(
SQLHSTMT hstmt)

Arguments

hstmt

Is an ODBC statement handle.

Returns

SUCCEED or FAIL.

Comments

Microsoft® SQL Server™ linked servers are OLE DB data sources that can be referenced using four-part names in distributed
queries. SQLLinkedServers returns the properties defining the data source as a result set. Linked servers are defined to SQL
Server using the sp_addlinkedserver system stored procedure. The columns of the result set are defined as follows.

Column name Column
number

Data type Comments

SRV_NAME 1 SQLWCHAR Name of the linked server.
SRV_PROVIDERNAME 2 SQLWCHAR Friendly name of the OLE DB

provider for this linked server.
SRV_PRODUCT 3 SQLWCHAR Product name for this linked

server.
SRV_DATASOURCE 4 SQLWCHAR Name that identifies the source

of the data to this provider.
SRV_PROVIDERSTRING 5 SQLWCHAR Provider-specific string that

identifies the source of the data.
SRV_LOCATION 6 SQLWCHAR Location argument that identifies

the database to this provider.
SRV_CAT 7 SQLWCHAR Name of the catalog containing

the data on the linked server.

SRV_PROVIDERSTRING is NULL when the SRV_DATASOURCE and SRV_CAT information is sufficient to identify the source of the
data to the provider.

When the linked server is a server running an instance of SQL Server, SRV_DATASOURCE is the name of the server,
SRV_CATALOG is the name of the database, and SRV_LOCATION is NULL.

See Also

Distributed Queries

sp_addlinkedserver

ODBC and SQL Server (SQL Server 2000)

ODBC Samples
The following samples have been developed for ODBC version 3.0 and later. The samples have all been developed with
Microsoft® Visual C++® version 6.0, and some expose properties of the Microsoft Foundation Classes.

When you choose to install sample files, the ODBC 3.x samples are installed to the C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\Odbc directory.

All samples include a project file (.dsw extension) created by Visual C++ 6.0. The project file can be opened in Visual C++ 6.0.

To open the project file in Visual C++ 6.0 and compile it:

1. On the File menu, click Open Workspace.

2. In the Files of type box, click Workspaces (*.dsw).

3. Click the project file name.

4. From the Tools menu, choose Options, and then click the Directories tab.

5. From the Show directories for box, choose Include files and Library files, and ensure that the following directories are
included and appear at the top of list:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

6. From the Build menu, choose Rebuild All or Build *.exe.

When the project file is opened, Visual C++ generates appropriate supporting files.

The default build configuration for all samples is Win32® Debug, which will build the samples as 32-bit applications.

Note To compile ODBC version 3.0 samples, you must obtain the ODBC 3.0 SDK available from Microsoft Press®, or the
Microsoft Data Access SDK on the Microsoft Web site.

All versions of the Microsoft Foundation Classes database classes are ODBC version 2.x compliant. 2.x versions of the ODBC
header files Sql.h, Sqlext.h, and Sqltypes.h ship in the Include directory of Microsoft Visual C++. You must ensure that 3.x versions
of the header files are included in the build process and that 3.x versions of the libraries are used for linking.

Sample Data

Some of the samples rely on sample data provided in the C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\Odbc\Data directory.

Three directories contain data for the samples. The BCP and LoadData samples each have a copy of the Microsoft Access-
developed Northwind example data.

Directory Description
\Data\Northbcp Contains a copy of the Northwind data
\Data\North Contains a copy of the Northwind data
\Data\Trans Contains data used by the transaction processing and

concurrency control sample

The sample data can be installed into any database. A Transact-SQL script, Createtb.sql, is installed into each sample data
directory. The script creates the sample tables and stored procedures.

The scripts drop the tables they create so that they can be run multiple times as an example. Running the scripts in a database that
contains data other than the supplied sample data can cause unintended results.

The sample data in \Data\Trans can be installed in any database. The sample data in the other two directories can be installed in
any database except the Northwind sample database installed with SQL Server.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home

To load the sample data

1. First make the ODBC samples and copy these files to a directory in your computer's path:

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\Loaddata\Release\Loaddata.exe
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\Bcp\Release\Bcpsamp.exe

2. Open Control Panel/ODBC and define an ODBC data source with the database you want to hold the sample data as the
default database.

3. Open a command prompt window:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\data\transloaddata

When loaddata.exe starts, connect to the data source defined in step 2. Open the command file lddist.cmd using the
CommandFile window, and then click GO. Click Close when the commands complete.

4. In the command prompt window:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\data\north loaddata

When loaddata.exe starts, connect to the data source defined in step 2. Open the command file ldnorthw.cmd using the
CommandFile window, and then click GO. Click Close when the commands complete.

5. As an alternative to step 4 you can:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\data\northbcp bcpsamp

When BCPSamp.exe starts, connect to the data source defined in step 2. Open the command file bcpnorth.cmd using the
CommandFile window, and then click GO. Click Close when the commands complete.

See Also

Samples

ODBC and SQL Server (SQL Server 2000)

Cursors and Transactions, Data Entry and Concurrency
The cursor sample illustrates using Microsoft® SQL Server™ cursors to allow concurrent access to data on a server running an
instance of SQL Server. The sample shows three methods of concurrent data access:

Optimistic, using SQL Server timestamp data types.

Pessimistic, using extremely isolated transactions and row-level locking.

Pessimistic, using the Microsoft Distributed Transaction Coordinator (MS DTC).

A dialog box, available when no document windows are open, allows the user to select the method of concurrency control to be
used by the application.

The sample relies on data shipped with the ODBC 3.x samples. The data can be installed using the LoadData sample and the
Lddist.cmd file. For more information about Lddist.cmd, see ODBC Samples.

The sample is a Microsoft Foundation Class MDI application. Each MDI window contains a property sheet of customer data from a
fictitious bank. The window is implemented on a separate connection to the database so that a single user can experiment with
various concurrency handling methods from a single instance of the application.

Customers at the bank can have one or two accounts and you can either deposit or withdraw funds from a customer's checking
or savings account. Each transaction inserts a row into an activity file and then attempts a positioned update of a balance item for
the account. If the balancing transaction fails, the activity file insert is rolled back.

To open a connection, select File\New from the menu.

Functions Illustrated

SQLAllocHandle SQLDriverConnect SQLGetDiagRec
SQLBindParameter SQLEndTran SQLNumResultCols
SQLCloseCursor SQLExecDirect SQLSetConnectAttr
SQLColAttribute SQLFetch SQLSetEnvAttr
SQLDataSources SQLFreeHandle SQLSetPos
SQLDescribeCol SQLGetCursorName SQLSetStmtAttr
SQLDisconnect SQLGetDiagField

ODBC and SQL Server (SQL Server 2000)

LoadData
The LoadData sample illustrates using SQLPrepare and SQLExecute to insert large amounts of data into Microsoft® SQL
Server™ tables.

LoadData is a general-purpose utility for loading data not bound by native data formats or character restrictions onto a server
running an instance of SQL Server.

The sample illustrates:

Using arrays of parameters for rapid execution of RPC batches.

Using manual-commit mode to break batches into units of work.

Using data-at-execution parameters to insert values into SQL Server text and image columns.

To build the application, you must ensure that 3.x versions of the ODBC header files and libraries are used, and that the SQL
Server 2000 version of Odbcss.h is used.

The sample is a Microsoft Foundation Class dialog application. The application allows you to connect to a defined ODBC SQL
Server data source and requires that you enter the name of a command file to process.

The command files of the LoadData sample application allow the user to tailor command processing by using the application. The
application recognizes two commands:

ScriptRun, which processes Transact-SQL statements.

LoadData, which executes a prepared INSERT statement with parameters to copy data to a server running SQL Server.

The application treats strings enclosed in brackets ([]) as progress text and displays them in its progress pane as the application
processes a command file.

Sample data, containing a command file, script file, and ANSI text data files are included.

Command File Syntax

[text]
ScriptRun "file_name"
LoadData "database..table", "file_name"

Arguments

[text]

Is progress text. Text between the enclosing brackets is displayed in the dialog box within its progress group.

ScriptRun "file_name"

Attempts to open and read the text file indicated in the file_name parameter. The text file must contain ODBC or Transact-SQL.
The application processes multiple lines of text as a single batch, using SQLExecDirect to execute the SQL batch when the string
"go" is located on a single line of the file.

LoadData "database..table", "file_name"

Copies data from the client file, specified in the file_name parameter, to the SQL Server table specified in the database..table
parameter.

To run the loaddata sample

1. Build a .cmd file containing ScriptRun and LoadData commands. For an example, see the file Ldnorthw.cmd in this directory:

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\Data\North

2. Run the sample by changing to the directory with the command file and specifying the samples name on the command
prompt:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\loaddata\Debug

Loaddata

When Loaddata.exe starts, connect to an ODBC data source, specify the location of the command file in the CommandFile
window, and then click GO.

Functions Illustrated

SQLAllocHandle SQLDriverConnect SQLParamData
SQLBindParameter SQLExecDirect SQLPrepare
SQLCloseCursor SQLExecute SQLPutData
SQLColAttribute SQLFreeHandle SQLSetConnectAttr
SQLDataSources SQLGetDiagField SQLSetEnvAttr
SQLDescribeCol SQLGetDiagRec SQLSetStmtAttr
SQLDisconnect SQLNumResultCols

ODBC and SQL Server (SQL Server 2000)

Performance
The MFCPerf sample illustrates two things: tuning the MFC ODBC database classes for performance, and capturing and
interpreting Microsoft® SQL Server™ ODBC driver performance data.

The sample uses advanced features of the MFC ODBC database classes and must be built with MFC version 4.2 or later. Although
MFC is ODBC 2.x compliant, the MFCPerf sample uses features of the SQL Server ODBC driver available only in SQL Server 2000.
The application must be built with ODBC 3.x header files and libraries.

The sample is an MFC MDI application that uses the Northwind sample database.

The application includes three documents. Two of the documents share a single view that displays customer order history. These
documents are selected using the File\New Fast or File\New Slow menu items. One of the documents is identified as "slow." It
uses MFC filter strings to execute SELECT statements, retrieving data from the Northwind Orders and OrderDetails tables. The
second document, identified as "fast," uses parameterized execution of a SQL Server stored procedure to accomplish the same
task.

The PerfTest menu, available when no document windows are open, automates creation of one of each document and steps
through 20 client records. The process captures the SQL Server performance statistics for each document and displays them. The
"fast" document shows a dramatic decrease in server roundtrips and a corresponding drop in data moved across the network.

Functions Illustrated

SQLAllocHandle SQLSetConnectAttr CRecordSet::Requery
SQLDataSources CDatabase::Open CRecordSet::MoveNext
SQLGetConnectAttr CRecordSet::Open CRecordSet::IsEOF

ODBC and SQL Server (SQL Server 2000)

ODBC Bulk Copy Sample
The ODBC bulk copy sample illustrates using Microsoft® SQL Server™ bulk copy functions with the SQL Server ODBC driver.

To build the application, you must ensure that 3.x versions of the ODBC header files and libraries are used, that the SQL Server
2000 version of Odbcss.h is used, and that the linker can find Odbcbcp.lib.

The sample is a Microsoft Foundation Class dialog application. The application allows you to connect to a defined ODBC SQL
Server datasource and requires that you enter the name of a command file to process.

Command files allow you to tailor command processing by the application. The application recognizes two commands: ScriptRun,
which processes Transact-SQL statements; and BCPData, which performs a bulk copy operation. The application treats strings
enclosed in brackets ([]) as progress text and displays them in its progress panel area as the application processes a command file.

Sample data, containing a command file, script file, and character format bcp data files for the Northwind sample database are
included.

Command File Syntax

[text]
ScriptRun "file_name"
BCPData "database..table", "file_name", "errorfile", direction

Arguments

[text]

Is progress text. Text between the enclosing brackets is displayed in the dialog box within its progress group.

ScriptRun "file_name"

Attempts to open and read the text file indicated in the file_name parameter. The text file must contain ODBC or Transact-SQL.
The application processes multiple lines of text as a single batch, using SQLExecDirect to execute the SQL batch when the string
"go" is located on a single line of the file.

BCPData "database..table", "file_name", "errorfile", direction

Performs a bcp command to copy data to or from a SQL Server table. The database..table and file_name parameters are required
and specify the server table and the local file respectively. The errorfile parameter can be an empty string. No error logging is
performed if it is. The direction parameter must be either IN or OUT.

To run the ODBC bulk copy sample

1. Build a .cmd file containing ScriptRun and DBCData commands. For an example, see the file Bcpnorth.cmd in this directory:

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\Data\Northbcp

2. Run the sample by changing to the directory with the command file and specifying the samples name on the command
prompt:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\bcp\Debug
Bcpsamp

3. When Bcpsamp.exe starts, connect to an ODBC data source, specify the location of the command file in the CommandFile
window, and then click GO.

Functions Illustrated

Bcp_control SQLDisconnect SQLNumResultCols
Bcp_exec SQLDriverConnect SQLPrepare
Bcp_init SQLExecDirect SQLSetConnectAttr
SQLAllocHandle SQLFreeHandle SQLSetEnvAttr
SQLColAttribute SQLGetDiagField
SQLDataSources SQLGetDiagRec

ODBC and SQL Server (SQL Server 2000)

COMPUTE Clause and Multiple Result Sets
The compute sample illustrates handling the multiple result sets that occur when an application executes a Transact-SQL SELECT
statement containing a COMPUTE clause.

The sample executes a statement, and then uses SQLMoreResults and SQLColAttribute to determine the shape of each result
set generated.

The sample shows how to mix array and single-row binding for rapid and space-efficient handling of the output.

Before compiling the compute sample, open the project and locate this line in compute.cpp:

PTSTR szDataSource = _T("MyDatasource");

Replace the string:

MyDatasource with the name of an ODBC datasource that has the Northwind sample database as its default database.

After compiling and linking the sample, run it by specifying its name at the command prompt:

cd C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODBC\Compute\Debug
Compute

Functions Illustrated

SQLAllocHandle SQLDisconnect SQLNumResultCols
SQLBindCol SQLExecDirect SQLSetEnvAttr
SQLColAttribute SQLFetch SQLSetStmtAttr
SQLConnect SQLFreeHandle
SQLDescribeCol SQLGetDiagRec

SQL-DMO (SQL Server 2000)

Developing SQL-DMO Applications
SQL Distributed Management Objects (SQL-DMO) is a collection of objects encapsulating Microsoft® SQL Server™ database and
replication management.

SQL-DMO is a dual interface COM, in-process server implemented as a dynamic-link library (DLL). When creating a SQL-DMO
application, you can use any OLE Automation controller or COM client development platform using C or C++.

SQL-DMO automates:

Repetitive or commonly performed SQL Server administrative tasks.

SQL Server object creation and administration.

Creation and administration of SQL Server Agent jobs, alerts, and operators.

SQL Server replication installation and configuration.

SQL-DMO documentation covers the components of SQL-DMO, their use in developing applications, and SQL-DMO application
construction. It also includes a detailed component reference.

See Also

Scripting Data Access Controls in Internet Explorer

SQL-DMO (SQL Server 2000)

Getting Started with SQL-DMO
In this section, you will find SQL-DMO syntax conventions and information about SQL-DMO system requirements and
installation.

SQL-DMO (SQL Server 2000)

SQL-DMO Syntax Conventions
SQL-DMO typographical conventions are based on those used in Microsoft® Visual Basic® reference materials.

Convention Used for
UPPERCASE Transact-SQL statements, macro names, and terms used at

the operating system level.
monospace Sample command lines and program code.
italic Information that the user or the application must provide.
bold SQL-DMO objects; object events, methods or properties; data

types; and other syntax that must be typed exactly as shown.

Note Automation allows SQL-DMO to expose object properties, methods, events, and constants through intelligent and easy-to-
use automation controllers, simplifying the development task.

When using an automation controller, such as Visual Basic, assistance built into the controller exposes SQL-DMO object
properties, methods, and events as defined, and prompts for required or optional parameters as part of the development process.
When using C or C++, every object property and method appears as an object member function, and the distinction disappears.

The SQL-DMO documentation is directed at the user of an automation controller. Properties are documented as properties, not
member functions. Prototypes for SQL-DMO object member functions are included in each topic for the C or C++ developer.

SQL-DMO (SQL Server 2000)

System Requirements for SQL-DMO
SQL-DMO uses the Microsoft® SQL Server™ ODBC driver to connect to and communicate with instances of SQL Server. Stored
procedures supporting SQL-DMO are installed on each instance of SQL Server.

SQL-DMO clients require one of these operating systems:

Microsoft Windows NT® version 4.0 (Service Pack 5 or later).

Microsoft Windows® 98 or Microsoft Windows® 95.

Or

Microsoft Windows® 2000.

SQL-DMO clients require SQL Server ODBC Driver, version 3.80 or later, which ships with SQL Server 2000. The client network
library must be properly configured.

SQL-DMO locates instances of SQL Server using the SQL Server instance name. SQL-DMO does not use ODBC data source
definitions for connection, and you need not use the ODBC Administrator to create data source definitions for servers
administered by SQL-DMO applications.

Stored procedures that support SQL-DMO are created as part of an instance of SQL Server 2000. The Transact-SQL script
Sqldmo.sql is shipped with SQL Server 2000 and can be used to reinstall the required stored procedures if necessary.

See Also

Hardware and Software Requirements for Installing SQL Server 2000

Configuring Client Network Connections

SQL-DMO (SQL Server 2000)

Installing SQL-DMO
All required SQL-DMO components are installed as part of an instance of Microsoft® SQL Server™ server or client. SQL-DMO is
implemented in a single dynamic-link library (DLL). You may develop SQL-DMO applications on either a client or a server. When
using an OLE Automation controller as a development platform, such as Microsoft Visual Basic®, no additional files are required.
Application development using C or C++ requires the SQL-DMO header files.

SQL-DMO sample applications, providing additional reference material for SQL-DMO application development, are included with
SQL Server.

Directory File Description
C:\Program Files\Microsoft
SQL Server\80\Tools\Binn

Sqldmo.dll DLL implementing SQL-DMO objects.

C:\Program Files\Microsoft
SQL Server\80\Tools\Binn

Sqldmo80.hlp SQL-DMO help file used within the
development environment to provide
context sensitive help about SQL-DMO
objects, properties and methods.

C:\Program Files\Microsoft
SQL Server\80\Tools\Binn\
Resources\xxxx

Sqldmo.rll Localized resource file. The resource
directory varies based on the national
language of the instance of SQL Server
client or server. For example, the
directory 1033 is a decimal
representation of the language identifier
0X0409, indicating English, U.S.

C:\Program Files\Microsoft
SQL Server\80\Tools\
Devtools\Include

Sqldmo.h C/C++ header file containing SQL-DMO
member function prototypes,
enumerated data types, and macros.

C:\Program Files\Microsoft
SQL Server\80\Tools\
Devtools\Include

Sqldmoid.h C/C++ header file containing SQL-DMO
interface and class identifiers.

\Program Files\Microsoft
SQL Server\MSSQL\Install

Sqldmo.sql Transact-SQL script implementing stored
procedures that support SQL-DMO.
Available on SQL Server server-instance
only.

C:\Program Files\Microsoft
SQL Server\80\Tools\
Devtools\Samples\Sqldmo

ALL Sample applications illustrating SQL-
DMO use.

To register the SQL-DMO components on a client computer

From C:\Program Files\Microsoft SQL Server \80\Tools\Binn\Resources\<language> directory, execute:

\Program Files\Microsoft SQL Server \80\Tools\Binn\REGSVR32 SQLDMO.DLL

From any directory, execute:

C:\Program Files\Microsoft SQL Server \80\Tools\Binn\REGSVR32.EXE

C:\Program Files\Microsoft SQL Server \80\Tools\Binn\resources\1033\SQLDMO.RLL

See Also

Overview of Installing SQL Server 2000

SQL-DMO (SQL Server 2000)

SQL-DMO Objects and SQL Server Administration
SQL-DMO encapsulates Microsoft® SQL Server™ components, presenting the attributes of the component piece to you as the
properties of an object instance. Alter the properties of the instance, or use object methods to automate SQL Server
administration.

An instance of SQL Server may be viewed as a collection of components. A component is not simply a database object or a
system database record, such as that defining an operator. It can be a more abstract construct, such as the current configuration
of an instance of SQL Server. For example:

An instance of SQL Server is installed by a user. The name of the user whom installs SQL Server is captured in the registry
of the computer on which an instance of SQL Server resides.

The SQL Server Northwind sample database is implemented in physical files in a specific subdirectory of a disk drive. At
any given point in time, the usage of space within those physical files can be measured.

The Northwind..Categories table has four columns.

With SQL-DMO, you can use:

The Registry object RegisteredOwner property as part of an installation of an instance of SQL Server.

The Database object PrimaryFilePath and DataSpaceUsage properties as part of an automated data integrity check
system.

The Count property of the Columns collection of a Table object to set the number of pages on a property sheet that
presents column definitions.

Essentially, SQL-DMO has three object types:

An object is a stand-alone object that references a single SQL Server component, such as the Table object.

A collection is a container object that allows members to be added and removed, such as the Tables collection.

A list is a container object that is fixed in membership, such as the SQLObjectList object list.

All SQL-DMO objects expose properties, such as Name or Count, identifying instance data. Most expose methods, such as
BindToColumn or MSXEnlist, which act upon an instance and usually modify instance data in some fashion. A few objects
support events, such as PercentComplete, which provide object state or other data back to the client application.

SQL-DMO (SQL Server 2000)

SQL-DMO Object
For SQL-DMO, an object references a single Microsoft® SQL Server™ component. The referenced component may be a new or
existing database object, a replication or SQL Server Agent component, or could encapsulate a SQL Server management process
such as database restore.

SQL-DMO (SQL Server 2000)

Object Properties
Object Properties

SQL-DMO object properties provide access to instance data. For those SQL-DMO objects that reference specific Microsoft® SQL
Server™ components, instance data identifies the referenced component for the application. For example:

The value of the Name property in a Table object instance referencing the Northwind..Employees table is Employees.

The value of the Name property in a Table object instance referencing the Northwind..Products table is Products.

Many properties are read-only, which expose informational data to the application. For example:

The Name property of a SystemDatatype object provides the name of a SQL Server data type; it can be used to assist
users in column definition for table creation.

The OccurrenceCount property of an Alert object reports the number of times that an event has caused SQL Server Agent
alert notification; an application could take exceptional action if the value is greater than 25.

Some properties can be both read and written. Altering the value of a read/write property causes alteration in the referenced
component. For example:

The Length property of a Column object exposes the number of characters or bytes in a fixed length or variable length
data type column. A column defined as varchar(12) reports 12 in the Length property of a referencing Column object.
Setting the property to 15 causes the execution of an ALTER TABLE statement that changes the data type definition on SQL
Server.

The CreationScriptOptions property of a TransArticle object specifies the attributes of table creation for the initial
snapshot supporting the referenced article. By default, creation of a declarative referential integrity PRIMARY KEY constraint
is not included as part of the table creation script. Setting the CreationScriptOptions property so that creation of a
PRIMARY KEY constraint is included records the desired change in object creation scripting. The change in behavior, initiated
in the SQL-DMO object, is reflected in the script created when the snapshot is next generated.

Important Modifying property values can have unintended consequences. For example, changing the Datatype or Length
property of a Column object referencing an existing column alters the table containing the column and attempts to convert
all data to the new data type. The process can be time-consuming and can fail. Applications that allow user property change
should notify the user through a message or busy pointer and should provide appropriate error handling.

Some properties can be read or written when they do not reference an existing SQL Server component, but are read-only when
they do. Typically, these properties name or identify a SQL Server component. For example:

The Name property of a LinkedServer object can be set when the LinkedServer object has been created by an application
and will be added to the LinkedServers collection of a SQLServer object. After LinkedServer has been added successfully
to the LinkedServers collection, the object references an existing linked server, and the Name property is no longer
modifiable.

The FillFactor property of an Index or Key object provides an argument for index creation. When the index exists, the
FillFactor property is not evaluated.

A few properties are write-only. Write-only properties are used to specify arguments for component creation only.

SQL-DMO (SQL Server 2000)

Object Methods
Object Methods

Many SQL-DMO object methods act upon a Microsoft® SQL Server™ component, modifying an instance of SQL Server in some
fashion. For example:

The BindToColumn method of a Default object binds a SQL Server default to the column identified in the method.
Selecting the referencing Column object displays the bound default by name in the Default property.

The ResetOccurrenceCount method of the Alert object resets the occurrence count start date and time to the current date
and time and sets count of alert notifications attempted after that time to zero.

Some SQL-DMO object methods use a SQL Server component for source data, providing usable output for other SQL Server
management tasks. For example:

The Script method of a MergeArticle object generates a Transact-SQL script that can be used to define the referenced
merge replication article on any similarly configured instance of SQL Server.

The ScriptDestinationObject method of a MergeArticle object generates a Transact-SQL script that can be used to create
the referenced merge replication article's source table on any similarly configured instance of SQL Server.

SQL-DMO methods also perform basic administration tasks. For example:

The Start method of the JobServer object attempts to start the SQLServerAgent service on the server referenced by the
SQLServer object from which the JobServer object was selected.

The SQLBackup method of the Backup object is used to back up SQL Server database data and log files.

SQL-DMO (SQL Server 2000)

Object Events
Object Events

Some SQL-DMO objects support events. Automated OLE object events provide a callback mechanism and SQL-DMO uses events
to signal an application conditionally. The SQL-DMO application can handle raised events to provide intelligent interaction with
the user during a long-running process and to handle abnormal conditions. For example:

The PercentComplete event of a Backup object informs the application of backup progress. The application can use the
callback to update a progress control or check for a user action, such as a request for cancellation.

The ConnectionBroken event of a SQLServer object informs the application that the network connection between the
client and an instance of Microsoft® SQL Server™ has been lost. The application could notify the user and prompt for
authorization information for a reconnection attempt.

SQL-DMO (SQL Server 2000)

Creating SQL Server Components Using SQL-DMO Objects
Using SQL-DMO to define new Microsoft® SQL Server™ components is always a three-step process. The application:

1. Requests a new object from SQL-DMO.

2. Configures the object to reflect the desired attributes of the SQL Server component.

3. Adds the appropriately configured object to the containing collection.

For most administrative tasks automated with SQL-DMO, the simple, three-step process is quickly evident.

The Microsoft Visual Basic® example shows adding a computed row total column:

Dim oColumn As New SQLDMO.Column

oColumn.Name = "SubTotalNoDiscount"
oColumn.Datatype = "money"
oColumn.ComputedText = "CONVERT(money, Quantity * UnitPrice)"
oColumn.IsComputed = True

oSQLServer.Databases("Northwind").Tables("[Order Details]").Columns.Add oColumn

The complexity of a DBMS implementation may sometimes obscure this simple process. For example, to define a SQL Server
database using SQL-DMO:

Request a new Database object from SQL-DMO.

Configure the Database object by:
Setting Database properties.

Requesting a new DBFile object from SQL-DMO.

Configuring the DBFile object.

Adding the DBFile object to the DBFiles collection of the FileGroup object named PRIMARY.

Requesting a new LogFile object from SQL-DMO.

Configuring the LogFile object.

Adding the LogFile object to the LogFiles collection of the Database object.
Add the Database object to the Databases collection of a SQLServer object.

The database is created by successively applying nested iterations of the three-step process. This example is still simple, and does
not include details such as multiple filegroups with multiple database files or multiple log files.

For more information about the details of creating a specific SQL Server component using a SQL-DMO object, see Objects.

SQL-DMO (SQL Server 2000)

SQL-DMO Objects and Existing SQL Server Components
When a SQL-DMO object references an existing Microsoft® SQL Server™ component, you can use the object to configure or tune
the instance of SQL Server.

Applications do not generally alter the properties of SQL-DMO objects that reference existing SQL Server components. For these
objects, properties often provide identifying data or data that is the source for application logic. SQL-DMO object methods then
become a much more important tool for database administration. For example:

The UpdateStatisticsWith method of a Column, Index, or Table object forces an update of data distribution statistics,
assisting SQL Server query optimization.

The CheckTables method of a Database object performs data file integrity validation on the tables in a database.

The AddNotification method of an Alert object configures a SQL Server Agent alert with a new operator to notify on an
event condition.

The SQLRestore method of a Restore object restores log or data file data after recovery from hardware failure.

Some SQL-DMO objects support the Remove method directly. Remove drops or deletes the referenced SQL Server component
and removes the object from its containing collection.

SQL-DMO (SQL Server 2000)

Programming Extended SQL-DMO Objects
 New Information - SQL Server 2000 SP3.

SQL-DMO in Microsoft® SQL Server™ 2000 features a number of new objects compatible only with this release. Most of these
new objects are named in the form of ObjectName2, and extend the functionality of similarly named objects supported by SQL
Server version 7.0. For example, the UserDefinedDataType2 object extends the functionality of the UserDefinedDataType
object by exposing the Collation property. Objects such as UserDefinedDataType2 inherit the methods and properties of their
base objects. Therefore, an application can always use the UserDefinedDataType2 object to call the methods and properties of
the UserDefinedDataType object.

It is unnecessary to modify existing SQL Server version 7.0 applications, because they do not reference the new objects, methods,
and properties exposed in SQL Server 2000.

Using C++ with the Extended SQL-DMO Objects

C++ applications that use the new SQL-DMO objects do not need to take any extra programmatic steps if the application will only
be used with SQL Server 2000. However, C++ applications that use the new SQL-DMO objects and also are used with SQL Server
version 7.0 will encounter an error if trying to use a new object. Therefore, the application must call the
IUnknown::QueryInterface method to use an ObjectName2 object with the related object from which it inherits, and to handle
errors gracefully.

These examples demonstrate how to use ObjectName2 objects using the Collation property of the UserDefinedDataType2
object. The first example demonstrates usage in an application that runs with SQL Server 2000 only. The second example
demonstrates usage in an application that might also run with SQL Server version 7.0.

Examples

A. Referencing the extended SQL-DM O objects w ith SQL Server 2000

//Define variable.
LPSQLDMOUSERDEFINEDDATATYPE2 oUDDT2 = NULL;

//Do CoCreate Instance for UserDefinedDataType.
CoCreateInstance(CLSID_SQLDMOUserDefinedDataType, NULL, CLSCTX_INPROC_SERVER, IID_ISQLDMOUserDefinedDataType2,
(LPVOID*) &oUDDT2))

oUDDT2->SetCollation(L"German_Phonebook_CI_AI_KI_WI");

//Now add the UserDefinedDataType object to the UserDefinedDataTypes collection.

B. Referencing the extended SQL-DM O objects w ith SQL Server 2000 or SQL Server version 7.0

//Define variables.
LPSQLDMOUSERDEFINEDDATATYPE oUDDT = NULL;
LPSQLDMOUSERDEFINEDDATATYPE2 oUDDT2 = NULL;
HRESULT hr;

//Do CoCreate Instance for UserDefinedDataType.
CoCreateInstance(CLSID_SQLDMOUserDefinedDataType2, NULL, CLSCTX_INPROC_SERVER, IID_ISQLDMOUserDefinedDataType,
(LPVOID*) &oUDDT))

//QueryInterface UserDefinedDataType2.
//Gracefully handle error situations arising from use with version 7.0.
hr=oUDDT->QueryInterface(IID_ISQLDMOUserDefinedDatatype2,&oUDDT2);
if (SUCCEEDED(hr))
oUDDT2->SetCollation(L"German_Phonebook_CI_AI_KI_WI");
else
 //oUDDT2 is not supported. Perform error handling routine.

//Now add the UserDefinedDataType object to the UserDefinedDataTypes collection.

Using Visual Basic with the Extended SQL-DMO Objects

Visual Basic applications that use the new SQL-DMO objects do not need to take any extra programmatic steps if the application
will only be used with SQL Server 2000. No extra steps are required for Visual Basic applications that use late binding. However,
Visual Basic applications that use early binding must be precise in setting an ObjectName2 object variable. For example, in this
code sample, the StoredProcedures.Item method returns a StoredProcedure object, not a StoredProcedure2 object:

Dim oSQLSvr2 as New SQLServer2
OSQLSvr2.LoginSecure = True
oSQLSvr2.Connect ("Myserver")
MsgBox oSQLSrv2.Databases("northwind").StoredProcedures(1).Name

However, using this approach, the StoredProcedures.Item method calls the IUnknown::QueryInterface method for the
StoredProcedure2 object:

Dim oStoredProc2 as SQLDMO.StoredProcedure2
Set oStoredProc2 = oSQLSrv2.Databases("northwind").StoredProcedures(1)
oStoredProc2.IsDeleted

SQL-DMO (SQL Server 2000)

Using SQL-DMO Multistrings
SQL-DMO multistrings are used in numerous parameters in SQL-DMO properties and methods. Using multistrings, a user can
supply one or more delimited strings to the parameter, and SQL-DMO parses the input into multiple strings.

Database objects in instances of Microsoft® SQL Server™ version 6.5 and earlier could not contain special characters such as
spaces, commas, and semicolons. Therefore, these characters could be used interchangeably as string delimiter characters. For
example, this multistring contains four separate strings:

S1 S2,S3;S4

However, database objects in instances of SQL Server 2000 and SQL Server version 7.0 can contain any valid Microsoft Windows
NT® or Microsoft Windows® 2000 characters, including spaces, commas, and semicolons. To accommodate this change, SQL-
DMO multistring format uses left and right brackets ([]) as delimiters. The use of spaces, commas, and semicolons between
bracketed strings is optional. For example these two multistrings, which contain four strings, are identical:

[S1] [S2] [S3] [S4]
[S1] [S2],[S3];[S4]

A right bracket is used as the escape character for a string that contains a right bracket. For example, the string "My]object" should
be specified as:

[My]]object]

No escape character is required for a left bracket because SQL-DMO parses multistrings from left to right.

To maintain backward compatibility, the original multistring format is still supported if the string does not contain any spaces,
commas, semicolons, or brackets. If an application uses the newer multistring format for one string, then the same format must
be used for all strings in the multistring parameter.

SQL-DMO multistrings are used by these properties and methods:

Properties

DatabaseFileGroups Property RelocateFiles Property
DatabaseFiles Property RpcList Property
Days Property ShortMonths Property
Devices Property StandbyFiles Property
IndexedColumns Property SuperSocketList Property
Months Property Tapes Property
Pipes Property ViaRecognizedVendors Property

SQL-DMO (SQL Server 2000)

SQL-DMO Collections and SQL Server Administration
Within SQL-DMO, collections represent a group of Microsoft® SQL Server™ components. The meaning of the collection, the
components referenced from the objects contained, is visible in the collection's name. For example, the Operators collection
contains Operator objects that reference SQL Server Agent operators.

Because collections represent the sum total of components within a given scope, altering the number of objects in the collection
by adding a new object or removing an existing one administers a server running SQL Server by creating or dropping a
referenced component.

SQL-DMO (SQL Server 2000)

SQL-DMO Collections
Microsoft® Visual Basic® defines a collection as any object containing other objects in a list. For a specific Visual Basic
application, a document collection can contain a Microsoft Word document and two Microsoft Excel spreadsheets, in no particular
order. SQL-DMO applies a much stricter definition for a collection. A SQL-DMO collection is a container object for SQL-DMO
objects of identical type.

For example, the Database object exposes a Tables collection. Each SQL-DMO object referenced from a Tables collection is a
Table object, and each Table object exposes the attributes of a specific Microsoft SQL Server™ table. Therefore, the Tables
collection of the Database object exposes all defined tables within the SQL Server database. Working with any given Tables
collection, you will not find a MergeArticle object or two, or the odd Operator object.

Because SQL-DMO collections are COM objects, they expose properties and methods. All SQL-DMO collections expose the Count
property, which reports the number of contained objects. Most collections expose the Add and Remove methods. A collection
exposing Add and Remove can be used to create or drop SQL Server components.

Note To enable more efficient processing, SQL-DMO caches much of the information about SQL Server components referenced
by objects maintained in a collection. When component data is cached, administrative activity of another SQL Server session is
not visible to the SQL-DMO session. The Refresh method queries the organization server, filling the collection with the most up-
to-date component information.

SQL-DMO (SQL Server 2000)

Collection Properties
Collection Properties

All SQL-DMO collections expose the Count and TypeOf properties.

The Count property returns the number of members in a collection and is often used for application control-of-flow logic, for
example, in a for...next loop.

For SQL-DMO collections, the TypeOf property reports the TypeOf property value for the objects contained within the collection.
For example, the TypeOf property value for the Databases collection returns SQLDMOObj_Database, which is the TypeOf
property value of a Database object.

All SQL-DMO collection properties are read-only.

SQL-DMO (SQL Server 2000)

Collection Methods
Collection Methods

All collections support some form of the Item method. As its name implies, the Item method is used to dereference a collection
member. For most collections, SQL-DMO supports the ItemByName and ItemByOrd methods.

With the ItemByName method, you can refer to a specific member using its name. This Microsoft® Visual Basic® example
shows selecting a database by name:

Dim oDatabase as SQLDMO.Database
Set oDatabase = oSQLServer.Databases("Northwind")

With the ItemByOrd method, you can refer to a specific member by its ordinal location within the collection. This Visual Basic
example shows setting a combo box to list the databases on a server:

Dim nDatabase as Integer
For nDatabase = 1 to oSQLServer.Databases.Count
 Combo1.AddItem oSQLServer.Databases(nDatabase).Name
Next nDatabase

Note For more information about specific collection support for ItemByName and ItemByOrd, see Collections.

Most collections expose the Add and Remove methods. The Add method forms part of the SQL-DMO three-step process for
creating Microsoft SQL Server™ components. The Remove method drops or deletes a SQL Server component.

Some collections expose other methods. For example, the TransPublications collection supports the Script method. When
invoked on the collection, the Script method generates a single Transact-SQL script that could be used to re-create all transaction
replication publications defined for a SQL Server database.

SQL-DMO (SQL Server 2000)

Creating SQL Server Components Using SQL-DMO Collections
Using SQL-DMO to create a Microsoft® SQL Server™ component is always a three-step process. The application:

1. Requests a new object from SQL-DMO.

2. Configures the object to reflect the desired attributes of the SQL Server component.

3. Adds the appropriately configured object to the containing collection.

When an application modifies SQL-DMO collection membership by adding objects, SQL-DMO attempts to convert the application
action to an appropriate SQL Server component creation Transact-SQL script.

Adding a SQL-DMO object to its containing collection can cause an immediate update of the indicated server running SQL Server.
In other instances, the same application action can cause a delayed update of the indicated server.

For example, adding a Column object to the Columns collection of a new Table object generates no Transact-SQL statement.
Instead, the properties of Column objects in the collection define the attributes of columns in a CREATE TABLE statement
submitted when the Table object is added to a Tables collection.

By default, SQL-DMO generates a Transact-SQL ALTER TABLE statement when a new, configured Column object is added to the
Columns collection referencing the columns of an existing SQL Server table.

When the application uses the BeginAlter method of the Table object, adding a Column object to the Columns collection does
not generate an ALTER TABLE statement. The referenced SQL Server table is modified by an ALTER TABLE statement created and
submitted when the application invokes the DoAlter method of the Table object.

SQL-DMO performs some error checking for object consistency when a new object is added to a containing collection. For
example, SQL-DMO checks to ensure that the Name and data type defining properties of a Column object are set and valid when
the Column object is added to the Columns collection of a Table object.

Other errors can occur as the component-creating script is submitted to SQL Server. For example, when defining a new column in
an existing table, the default error checking provided by SQL-DMO does not attempt to validate column null acceptance. As SQL
Server is the ultimate arbiter of null acceptance, SQL-DMO relies on SQL Server for error determination in this case.

Important A SQL Server administrative action directed by collection membership modification can be time-consuming and can
fail. Applications that allow collection membership change should notify the user through a message or busy pointer, and should
provide appropriate error handling.

SQL-DMO (SQL Server 2000)

Removing SQL Server Components Using SQL-DMO Collections
An application can use the Remove method of a SQL-DMO collection to delete a referenced Microsoft® SQL Server™ component
permanently.

When Remove is invoked, SQL-DMO translates the application action into appropriate Transact-SQL statements. For example,
using the Remove method of the Tables collection generates and submits a Transact-SQL DROP TABLE statement. Using the
Remove method of the DatabaseRoles collection executes Transact-SQL, calling either the sp_droprole or sp_dropapprole
system stored procedures.

Any collection Remove method may be constrained by rules applying to the referenced objects. For example, SQL Server does
not delete a table if it is referenced by a FOREIGN KEY constraint defined on another table. Using the Remove method of the
Tables collection to drop a table used as a foreign key reference fails, returning an appropriate error to the application.

A collection Remove method requires qualification, identifying the targeted object by name or ordinal position. For example:

oSQLServer.DatabaseRoles.Remove("Northwind_Users")

Or

oServer.Databases("Northwind").Users.Remove(5)

Collections referencing owned, SQL Server database objects allow additional qualification by owner name. For example:

oServer.Databases("Northwind").Tables.Remove("Orders", "anne")

Important A SQL Server administrative action directed by collection membership modification can be time-consuming and can
fail. Applications that allow collection membership change should notify the user through a message or busy pointer, and should
provide appropriate error handling.

SQL-DMO (SQL Server 2000)

Description of the SQLServer Object
The SQLServer object is the core of SQL-DMO. It is through the SQLServer object that an application connects to and alters the
properties of instances of Microsoft® SQL Server™.

Many SQL-DMO objects are exposed as properties of other SQL-DMO objects. Any SQL-DMO object that references an existing
SQL Server component can be selected by navigating from the SQLServer object. This implementation detail creates a tree that
structures SQL-DMO objects logically to guide and ease development.

Regardless of the development tool used to create an application, all SQL-DMO applications share basic logical elements. A SQL-
DMO application will:

Create a SQLServer object.

Use the Connect method of the SQLServer object to establish a session with an instance of SQL Server.

Use the SQL-DMO object selection methods of the SQLServer object to choose specific objects for modification.

These topics introduce the SQLServer object and describe the relationship of objects in SQL-DMO.

SQL-DMO (SQL Server 2000)

Creating and Connecting a SQLServer Object
 New Information - SQL Server 2000 SP3.

A SQL-DMO application creates a SQLServer object and uses the Connect method when a session is required on a specific
instance of Microsoft® SQL Server™. Some applications may create only a single SQLServer object, using it for all interaction
with a server. Others may create multiple SQLServer objects, connected to one or more servers, providing multiple server
administration functions.

SQL-DMO offers application developers flexibility in locating servers as administration targets. Regardless of the method used to
identify a server, the application creates a new SQLServer object for each session.

A Microsoft Visual Basic® installation routine using the example dialog box and the Connect method of a SQLServer object
might look something like:

Private Sub cmd_Install_Click()
 On Error GoTo ErrorHandler

 Dim oSQLServer As New SQLDMO.SQLServer
 Dim bConnected As Boolean

 bConnected = False

 oSQLServer.LoginTimeout = 30

 oSQLServer.LoginSecure = True
 oSQLServer.Connect txt_SQLServer.Text
' ... do installation ...

 oSQLServer.DisConnect
 Exit Sub

ErrorHandler:
 MsgBox (Err.Description)
 If bConnected = True Then
 oSQLServer.DisConnect
 End If
End Sub

Another application automating backup by using organization standard backup media and procedures may query the
RegisteredServers collection of the Application object, returning the list of user-registered servers in a combo box or other
control allowing selection. Based on user action, the application would use the properties of the selected RegisteredServer object
when using the Connect method of a SQLServer object.

Likewise, an application could use the ListAvailableSQLServers method of the Application object to locate all instances of SQL
Server in an organization.

SQL-DMO (SQL Server 2000)

SQL-DMO Object Tree
SQL-DMO objects are exposed as properties of other SQL-DMO objects. The relationship provides developers with a logical, tree-
like structure for SQL-DMO that simplifies programming with automation controllers. Many objects can be referenced using the
familiar dot notation used to reference properties or methods.

For example, the Database object exposes a Tables collection. Each Table object within the collection represents a single table of
an instance of Microsoft® SQL Server™. Obtaining a SQL-DMO Table object referencing a specific table can be done with the
following syntax:

Set oTable = oDatabase.Tables("Employees")

The SQLServer object forms the trunk of the SQL-DMO object tree. Three main branches are visible in the tree:

Objects implemented as properties of the Database object implement SQL Server database construction and maintenance
tasks.

Objects implemented as properties of the JobServer object implement SQL Server Agent job, operator, and alert
administration.

Objects implemented as properties of the Replication object implement transactional, snapshot, and merge replication
publication and subscription construction and maintenance.

SQL-DMO (SQL Server 2000)

Developing SQL-DMO Applications Using Visual Basic
When using an OLE Automation controller, such as Microsoft® Visual Basic®, as a SQL-DMO application development tool, you
should indicate that the application references the SQL-DMO object library. A specific OLE Automation controller defines which
object library reference methods it supports.

For example, using the Visual Basic Project menu item References, you can indicate that SQL-DMO will be used by the project.
When you indicate that a specific object library is referenced, Visual Basic can use OLE Automation to query the object library's
type library for more information about objects contained in the library. Visual Basic uses type library data to both enrich the
development experience and optimize the executable application.

When an OLE Automation controller can support an object library reference at the application or project level, it is recommended
that you use the feature. Though the level of programming assistance varies from controller to controller, all OLE Automation
controllers can use the object library reference to optimize the executable application. Making the controller aware of the SQL-
DMO library at the earliest opportunity allows it to provide you with the most efficient SQL-DMO application.

For more information about support for add-in object libraries, see the OLE Automation controller documentation.

SQL-DMO (SQL Server 2000)

Object Creation
An OLE Automation controller provides at least one mechanism for creating an instance of an object. Creating a SQL-DMO object,
specifically an instance of a SQLServer object, is part of almost any SQL-DMO application.

OLE object creation can be a resource-intensive process. It is recommended that you consider the costs of object creation for an
application.

All OLE Automation controllers provide a function that creates an instance of a specified object. The Microsoft® Visual Basic® or
Microsoft ActiveX® script function is CreateObject. CreateObject has a single argument that identifies the OLE object by
application identifier and object class name. The SQL-DMO application identifier is SQLDMO, and the following example
illustrates creating an instance of a Database object:

Dim oDatabase
Set oDatabase = CreateObject ("SQLDMO.Database")

Using CreateObject does not require an application or project level reference to the SQL-DMO object library. All information
necessary for object creation is contained in the function's single argument.

CreateObject represents the least efficient method for object creation and use and should be used only when no other
alternative exists. When you use the Visual Basic project reference method to indicate use of the SQL-DMO object library, the
Visual Basic keyword, New, can be used to create an instance of a SQL-DMO object. For example:

Dim oDatabase as SQLDMO.Database
Set oDatabase = New SQLDMO.Database

Or

Dim oDatabase as New SQLDMO.Database

When the New keyword is used, the Visual Basic application is built so that object creation is accomplished in the most optimal
fashion. Further, the Visual Basic compiler can ensure that object references, such as those required to get or set property values,
are resolved efficiently.

SQL-DMO (SQL Server 2000)

Properties Collection
OLE Automation controllers, such as Microsoft® Visual Basic®, commonly expose properties using an object. Visual Basic, Visual
Basic for Applications, and Microsoft ActiveX® implement a Property object and a containing Properties collection. When using
the Property object and Properties collection, the application can retrieve information about SQL-DMO object properties.

Like any other OLE Automation objects, the Property object and Properties collection expose properties and methods. For
example, Name, Value, and Type are all properties of a Property object. Count is a property of the Properties collection, and
the collection exposes the Item method.

For more information about the Property object and the Properties collection, see the OLE Automation controller
documentation.

For a detailed example of the Properties collection and its use, see the SQL-DMO Visual Basic sample Explore.

SQL-DMO (SQL Server 2000)

SQL-DMO Constants
SQL-DMO constants, implemented as enumerated data types, are visible through the type library. When constants are made
visible in this fashion, automation controllers providing syntax completion enrich the development experience by providing
available choices from an enumerated type.

Though the names of SQL-DMO constants can be quite long and can represent a significant portion of automation script, consider
using the constants when possible. Descriptive constant names are one tactic used to make self-documenting code a reality.

For example, these two statements accomplish exactly the same task.

oSchedule.FrequencyInterval = 42

oSchedule.FrequencyInterval = (SQLDMOWeek_Monday Or _
 SQLDMOWeek_Wednesday Or SQLDMOWeek_Friday)

SQL-DMO (SQL Server 2000)

Handling SQL-DMO Events
Some SQL-DMO objects raise events. For example, the Backup object raises events indicating a percent of the operation is
complete, that a specified media is full and requires operator action to provide an empty media, and that backup is done.
Microsoft® Visual Basic® implements the keyword, WithEvents, on object variable dimensioning statements to enable
application handling of SQL-DMO events.

WithEvents imposes restrictions on object dimensioning. An object variable allowing event handling must be declared within an
object module, such as that associated with a Visual Basic form. Further, WithEvents restricts the use of the keyword, New,
disallowing its use for shorthand object dimensioning and creation. This Visual Basic statement will return an error:

Private WithEvents oBackup as New SQLDMO.Backup

Object dimensioning must be accomplished in a separate step, as in:

Private WithEvents oBackup as SQLDMO.Backup
Set oBackup = New SQLDMO.Backup

When a SQL-DMO application indicates that it will handle events raised by an instance of a SQL-DMO object, the application must
supply subroutines to handle every event raised by the object. You must ensure that executable creation does not inadvertently
remove subroutines handling an event.

For example, an application may want to respond to only the PercentComplete event of the Backup object, ignoring the
Complete and NextMedia events. You can implement the Complete and NextMedia handlers using a single, processor-
inexpensive statement as shown here:

Private Sub oBackup_Complete(ByVal Message As String)
 Exit Sub
End Sub

Private Sub oBackup_NextMedia(ByVal Message As String)
 Exit Sub
End Sub

You can then handle the PercentComplete event, updating a progress bar control on a form as shown below:

Private Sub oBackup_PercentComplete(ByVal Message As String, ByVal Percent As Long)
 frmBackup.ProgressBar.Value = Percent
End Sub

The SQL-DMO Explore sample illustrates handling events in a Visual Basic application. For more information, see Explore. For
more information about Visual Basic support for events, see the Visual Basic documentation.

Note As indicated earlier, Visual Basic allows application response to raised events. To support SQL-DMO event handling, Visual
Basic requires that the project reference the SQL-DMO object library. Event handling is not supported when a SQL-DMO object is
created using the CreateObject function. Your OLE Automation controller may impose similar restrictions.

SQL-DMO (SQL Server 2000)

Handling SQL-DMO Errors
Microsoft® SQL Server™ administration can be a complex task. Realistically, an administrative application guides users,
streamlining tasks and limiting the range of possible errors. Nonetheless, errors can occur, and a SQL-DMO application should
supply error handling code to prevent abnormal termination.

Microsoft Visual Basic® or Microsoft ActiveX® scripts support error traps (error handlers) created using the On Error statement.
SQL-DMO supports the Visual Basic Err object, allowing application error handlers to respond intelligently to errors raised.

Note Error handling in your OLE Automation controller may differ from that described earlier. For more information about error
handling, see the OLE Automation controller documentation.

SQL-DMO (SQL Server 2000)

Developing SQL-DMO Applications Using C or C++
A SQL-DMO application built using C or C++ follows the same general guidelines as any application using a COM object library.
The application will:

Initialize class identifiers as part of application construction.

Initialize COM on application start.

Use the SQL-DMO object library during application execution.

Free COM on application exit.

Initializing class identifiers is performed one time, at global scope, for an application unit (.exe or .dll). Use the supported #include
<Initguid.h> method for identifier initialization, as in:

#include <initguid.h>
#include <sqldmoid.h>
// Other includes, such as sqldmo.h

When initializing class identifiers, read-only data, in this case, SQL-DMO globally unique identifiers (GUIDs) is added to your
application unit. Other modules, including Sqldmoid.h, are not initialized. Those modules contain declarations, resolved by the
linker, for data external to the module.

Errors in SQL-DMO class identifier initialization are reported as linker errors. If an unresolved external symbol error occurs on
application unit linking, the class identifiers have not been initialized. Include Initguid.h in a likely module in your application unit.
During linking, if you receive a multiply-defined symbol error with a SQL-DMO symbol specified, then SQL-DMO class identifiers
have been initialized more than one time. Remove the initialization from all modules but one.

COM initialization is performed through any of a number of mechanisms. For some applications, the CoInitialize function is
used. Other applications, for example, applications using compound document support or other functions of the OLE library, use
OleInitialize, which itself calls CoInitialize.

Remember that initializing COM can fail. If COM initialization fails, SQL-DMO is unavailable. An application should be built to
handle this abnormal condition gracefully.

The functions CoUninitialize and OleUninitialize free COM. When using CoInitialize to initialize COM, use CoUninitialize to
free COM. Likewise, use OleUninitialize to free OLE and COM when OleInitialize is used by the application. For example:

BOOL OnInitInstance()
 {
 m_bCOMAvailable = SUCCEEDED(OleInitialize(NULL));
 // Other initialization....
 return (TRUE);
 }

 // The remainder of the application uses SQL-DMO.

void OnExitInstance()
 {
 if (m_bCOMAvailable)
 OleUninitialize();

 // Other dynamic resource freeing....
 }

Application development frameworks may support other, easy to use methods. For example, the MFC function AfxOleInit
handles both OLE and COM initialization. Freeing COM and OLE is performed by framework code included as your application is
built, so there is no need to free COM explicitly when using MFC AfxOleInit.

SQL-DMO (SQL Server 2000)

Objects, References, and Reference Counting
Any COM application receives an object reference through which it controls an instance of a SQL-DMO object. This is true
regardless of the application development tool.

COM defines reference counting as the mechanism for COM server-created object lifetime management. When a COM client
application receives an object reference, the reference count on the object instance is implicitly incremented. When the COM client
is finished with the object reference, it decrements the reference count using the Release function. When the reference count is
zero, the COM server may, at its discretion, free resources used to implement the object instance.

When using an OLE Automation controller, such as Microsoft®Visual Basic®, the controller generally maintains references and
reference counts as directed by the scope of the variable referencing the object. For example, this Visual Basic subroutine shows
an application receiving a reference to a Databases collection, and references to multiple SQL-DMO Database and OLE BSTR
objects:

Private Sub ListDatabases(oSQLServer as SQLDMO.SQLServer)
 Dim oDatabase as SQLDMO.Database
 For Each oDatabase in oSQLServer.Databases
 lstDatabases.AddItem oDatabase.Name
 Next oDatabase
End Sub

No reference is ever released explicitly by the developer. Instead, Database object references are released as the object variable is
reassigned in the For Each loop. The reference maintained on the Databases collection and the last reference obtained on a
Database object in the collection are released as the variables go out of scope with the End Sub statement. The OLE BSTR object
references are hidden, and handled, even more effectively.

The C/C++ application developer must be aware of and control reference counts as necessary. When an object reference is
received from the SQL-DMO library, the application implicitly increases the reference count on an instance of the SQL-DMO
object, as shown here:

void CDlgSelectDatabase::GetDatabases(LPSQLDMOSERVER pServer)
 {
 LPSQLDMODATABASE pDatabase;
 BSTR bstrDBName;
 LONG nDatabase;
 LONG nDatabases;

 HRESULT hr;

 if (FAILED(hr = pServer->GetDatabaseCount(&nDatabases)))
 return;

 for (nDatabase = 0; nDatabase < nDatabases && SUCCEEDED(hr);
 nDatabase++)
 {
 pDatabase = NULL;
 bstrDBName = NULL;

 // Getting the next Database object from the collection
 // increases the client initiated reference count by one.
 hr = pServer->GetDatabaseByOrd(nDatabase, &pDatabase);

 // Getting a string back from SQL-DMO is also getting a
 // reference on an object. Be sure to release it.
 if (SUCCEEDED(hr))
 hr = pDatabase->GetName(&bstrDBName);

 if (SUCCEEDED(hr))
 m_listboxDatabases->AddString(bstrDBName);

 if (bstrDBName != NULL)
 SysFreeString(bstrDBName);

 if (pDatabase != NULL)
 pDatabase->Release();
 }
 }

For the C++ developer, SQL-DMO defines in Sqldmo.h the scope-aware, template classes CTempOLERef and CTempBSTR that
can simplify development.

See Also

CTempBSTR

CTempOLERef

SQL-DMO (SQL Server 2000)

Object Creation
For applications built with C/C++, use COM functions to create an object instance. Choose the method most suited to the
application to create an instance or instances. Use CoCreateInstance when a single object instance is required. For example:

HRESULT hr;
LPSQLDMOSERVER pSQLServer;
hr = CoCreateInstance(CLSID_SQLDMOServer, NULL,
 CLSCTX_INPROC_SERVER, IID_ISQLDMOServer, (void**) &pSQLServer);

 // Do something with the object, then release the reference.

pSQLServer->Release();

For applications requiring multiple instances of the same object, consider using a class factory interface on the SQL-DMO object
library to optimize object creation. For example:

HRESULT CDlgColumns::MakeColumns(UINT nCols, LPSQLDMOCOLUMN** ppColumns)
 {
 LPSQLDMOCOLUMN* apColumns;
 HRESULT hr = NOERROR;
 LPCLASSFACTORY pIClassFactory;
 UINT nCol;

 *ppColumns = NULL;

 apColumns = new LPSQLDMOCOLUMN[nCols];
 if (apColumns == NULL)
 return (E_OUTOFMEMORY);

 memset(apColumns, 0, nCols * sizeof(LPSQLDMOCOLUMN));

 hr = CoGetClassObject(CLSID_SQLDMOColumn, CLSCTX_INPROC_SERVER,
 NULL, IID_IClassFactory, (void**) &pIClassFactory);

 if (FAILED(hr))
 {
 // Handle error....
 return (hr);
 }

 for (nCol = 0; nCol < nCols && !FAILED(hr); nCol++)
 {
 hr = pIClassFactory->CreateInstance(NULL, IID_IUnknown,
 (void**) &(apColumns[nCol]));
 }

 if (FAILED(hr))
 {
 // Handle error, and clean any bad items.

 for (nCol = 0; nCol < nCols && apColumns[nCol] != NULL; nCol++)
 (apColumns[nCol])->Release();

 delete [] apColumns;
 apColumns = NULL;
 }

 pIClassFactory->Release();

 *ppColumns = apColumns;
 return (hr);
 }

Remember, creating an instance of an object increases the reference count on the object. You must release this initial reference
regardless of the use of the object. For example, adding an array of created Column objects to the Columns collection of a new
Table object does nothing to the reference your application maintains on each Column object. For example:

LPSQLDMOTABLE pTable;

const UINT NCOLS = 5;
LPSQLDMOCOLUMN* apColumns;
UINT nCol;
HRESULT hr = NOERROR;

if (SUCCEEDED(MakeColumns(NCOLS, &apColumns)))
 {

 hr = CoCreateInstance(CLSID_SQLDMOTable, NULL,
 CLSCTX_INPROC_SERVER, IID_ISQLDMOTable, (void**) &pTable);

 // Defining columns using the array of Column objects not shown.

 // Use the array of Column objects to define the new table.
 for (nCol = 0; nCol < NCOLS && SUCCEEDED(hr); nCol++)
 hr = pTable->AddColumn(apColumns[nCol]);

 // Release references on each Column object.
 for (nCol = 0; nCol < NCOLS; nCol++)
 (apColumns[nCol])->Release();

 delete [] apColumns;

 // Release the reference on the Table object.
 pTable->Release();
 }

See Also

Object Class Identifiers and Type Definitions

SQL-DMO (SQL Server 2000)

Member Functions (Properties and Methods)
All SQL-DMO properties and methods are exposed as object member functions for the C/C++ application developer.

SQL-DMO properties are implemented using either one or two member functions depending on the modifiability of the property
value. Read-only and write-only properties are implemented in a single function, a get or set. Read/write properties are exposed
through both a get and a set function.

SQL-DMO property-exposing functions are consistently named. When a property supports value retrieval, the name of the
member function exposing the property is formed from the word, Get, and the property name. When a property supports value
modification, the name of the member function is formed from the word, Set, and the property name. For example, the functions
implementing the read/write property LoginTimeout on the SQLServer object are GetLoginTimeout and SetLoginTimeout.

As with any COM function, SQL-DMO object member functions that expose properties return an HRESULT. A property value is
retrieved through an indirect pointer. For example:

LPSQLDMOSERVER pServer;
long lLoginTimeout;

HRESULT hr;

hr = pServer->GetLoginTimeout(&lLoginTimeout);
if (FAILED(hr))
 {
 // Handle get property error.
 }

SQL-DMO methods are exposed in the same fashion. For example, the EnumJobs method of the JobServer object lists those
SQL Server Agent jobs matching the criteria specified in the filter object as shown here:

LPSQLDMOJOBSERVER pJobServer = NULL;
LPSQLDMOQUERYRESULTS PQR = NULL;
LPSQLDMOJOBFILTER pJobFilter = NULL;
HRESULT hr;

// Create and connect object instance pSQLServer not shown.
hr = pSQLServer->GetJobServer(&pJobServer);

if (SUCCEEDED(hr))
 hr = pJobServer->GetJobFilter(&pJobFilter);

// Filter for Microsoft Search, full-text indexing jobs.
if (SUCCEEDED(hr))
 hr = pJobFilter->SetCategory(L"Full-Text");

// Get the job list...
if (SUCCEEDED(hr))
 hr = pJobServer->EnumJobs(&pQR, pJobFilter);

if (SUCCEEDED(hr))
 // ...display the results of job enumeration.

if (pQR != NULL)
 pQR->Release();

if (pJobFilter != NULL)
 pJobFilter->Release();

if (pJobServer != NULL)
 pJobServer->Release();

Many SQL-DMO method-implementing member functions define logical default values for the C++ using application developer.
For more information about a specific property or method member function, see Properties or Methods.

SQL-DMO (SQL Server 2000)

SQL-DMO Strings
SQL-DMO uses the OLE BSTR object to return strings to the client application. By definition, an OLE BSTR object is composed of
Unicode characters.

Further, when an OLE BSTR object is returned, the reference count on the string-implementing resource is implicitly incremented.
String references are released using the COM SysFreeString function. For example:

LPSQLDMODATABASE pDatabase;
BSTR bstrDBName = NULL;

HRESULT hr;

// Getting a string back from SQL-DMO is also getting a
// reference on an object. Be sure to release it.
hr = pDatabase->GetName(&bstrDBName);

if (SUCCEEDED(hr))
 SysFreeString(bstrDBName);

When setting a SQL-DMO property, or providing a string as a method argument, be sure to use Unicode character strings. A
number of macros exist to aid in coding constant values. For example:

LPSQLDMOCOLUMN pColumn;
WCHAR* szColumnName = L"EmployeeID"; // Use L macro to force
 // Unicode character
 // string. Could use
 // OLESTR() macro as
 // well.

HRESULT hr;

hr = CoCreateInstance(CLSID_SQLDMOColumn, NULL,
 CLSCTX_INPROC_SERVER, IID_ISQLDMOColumn, (void**) &pColumn);
if (SUCCEEDED(hr))
 pColumn->SetName(szColumnName);

When developing an application for operating systems that do not provide native Unicode support, such as Microsoft®
Windows® 95, you need to convert strings as required to ensure that the correct character set is used. The Windows API
functions MultiByteToWideChar and WideCharToMultiByte provide conversion between ANSI or other multibyte character
sets and Unicode. If using MFC, objects of the CString class can be used to convert strings easily from ANSI to Unicode and vice
versa.

SQL-DMO (SQL Server 2000)

SQL-DMO Properties Collection
The Properties collection and the Property object are implemented for OLE Automation controllers. The C/C++ SQL-DMO
application has access to these objects only through automation interfaces, such as those that query the type library.

Through querying the SQL-DMO type library, traversing object definitions and interpreting SQL-DMO member functions exposed
as properties or methods are available to the application developer. These topics are covered in other references and are
therefore considered outside the scope of this documentation.

For more information, see the Microsoft Platform SDK.

SQL-DMO (SQL Server 2000)

SQL-DMO Data Types
Type definitions included in Sqldmo.h, or in header files on which Sqldmo.h depends, provide the application with types defined
by the Microsoft® Platform SDK. With the exception of OLE date data type handling, there is nothing unique about SQL-DMO
data types.

Dates

For the C/C++ developer, SQL-DMO does not directly support a data type exposing a date and/or time value. Object properties
returning an OLE date data type to an application developed using an OLE Automation controller will, instead, return a packed
long integer to the C/C++ application.

For example, the LastOccurrenceDate property of the Alert object exposes a date value to a Microsoft Visual Basic®/ActiveX®
script application. The Alert object member functions implementing LastOccurrenceDate are GetLastOccurrenceDate and
SetLastOccurrenceDate with the following prototypes:

HRESULT GetLastOccurrenceDate(LPLONG pRetVal);

HRESULT SetLastOccurrenceDate(long NewValue);

SQL-DMO does not specify a function argument type wide enough to capture the precision expressed in an OLE date. Instead, the
member functions extract and set only the date portion of a date and time value.

For C/C++, SQL-DMO addresses the date/time data type width problem by implementing a group of member functions. One
member function pair extracts the date portion of the property value and a second extracts the time portion. For read/write
properties, a second function pair implements setting the date value.

When SQL-DMO uses a scaled long integer to represent a date, the integer is built as a sum of the year scaled by 10000, the
month scaled by 100, and the day. For example, the date April 19, 1997 is represented by the long integer value 19970419.

When SQL-DMO uses a scaled long integer to represent a time, the integer is built as a sum of the hour scaled by 10000, the
minute scaled by 100, and the seconds. The time value uses a 24-hour clock. For example, the time 1:03:09 P.M. is represented by
the long integer value 130309.

SQL-DMO (SQL Server 2000)

Handling SQL-DMO Events
The SQL-DMO Backup, BulkCopy, Replication, Restore, SQLServer, and Transfer objects are connectable COM objects,
supporting callback to the client application.

For connectable objects, COM defines the responsibilities for servers and clients. A connectable object exposes the
IConnectionPointContainer interface, through which the client obtains the IConnectionPoint interface. The client implements
functions to handle callbacks from the server, called a sink. Using the IConnectionPoint interface, the client notifies the server of
its ability to handle callbacks, providing its sink implementation as an argument.

The client-implemented sink is a COM object. As with any COM application development task, implementing a sink for any SQL-
DMO connectable object is fairly painless when using C++. The client application defines a class, inheriting from a defined SQL-
DMO sink interface definition, then implements members to handle the callbacks of interest. The example below illustrates class
definition and partial inline implementation for a COM object that can be connected to a SQLServer object instance:

class CSQLServerSink : public ISQLDMOServerSink
{
public:
 CSQLServerSink();

 ~CSQLServerSink()
 { ; }

 // IUnknown interface on all COM objects.
 STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID* ppvObj);

 // AddRef has an inline implementation.
 STDMETHOD_(ULONG, AddRef) (THIS)
 {return (++m_uiRefCount);}

 STDMETHOD_(ULONG, Release) (THIS);

 // Sink properties and methods. Implement CommandSent,
 // ConnectionBroken, QueryTimeout and RemoteLoginFailed as no
 // operation.
 STDMETHOD(CommandSent) (THIS_ SQLDMO_LPCSTR strSQL)
 {return (NOERROR);}

 STDMETHOD(ConnectionBroken) (THIS_ SQLDMO_LPCSTR strMsg,
 LPBOOL pbRetry)
 {return (NOERROR);}

 STDMETHOD(QueryTimeout) (THIS_ SQLDMO_LPCSTR strMsg,
 LPBOOL pbContinue)
 {return (NOERROR);}

 STDMETHOD(RemoteLoginFailed) (THIS_ long lMsgSeverity,
 long lMsgNumber, long MsgState, SQLDMO_LPCSTR strMsg)
 {return (NOERROR);}

 // Code implementing sink method ServerMessage is shown elsewhere.
 STDMETHOD(ServerMessage) (THIS_ long lMsgSeverity, long lMsgNumber,
 long MsgState, SQLDMO_LPCSTR strMsg);

private:
 // Keeping track of ourselves.
 UINT m_uiRefCount;

 // Used to format status messages from handled ServerMessage event.
 TCHAR m_acMessage[2048];
};

Implementing the QueryInterface and Release functions is done in standard fashion as:

HRESULT STDMETHODCALLTYPE CSQLServerSink::QueryInterface(
 THIS_ REFIID riid, LPVOID* ppvObj)
 {
 if ((riid == IID_IUnknown) || (riid == IID_IWSQLDMOServerSink))
 {
 AddRef();
 *ppvObj = this;

 return (NOERROR);
 }

 return (E_NOINTERFACE);
 }

and:

ULONG STDMETHODCALLTYPE CSQLServerSink::Release(THIS)
 {
 --m_uiRefCount;

 if (m_uiRefCount == 0)
 delete this;

 return (m_uiRefCount);
 }

Reference counting on COM objects implies a constructor such as the following:

CSQLServerSink::CSQLServerSink()
 {
 m_uiRefCount = 0;
 }

And finally, the implementation of the function handling the ServerMessage callback. The example shows using a message box
to display the status messages received by the application:

HRESULT STDMETHODCALLTYPE CSQLServerSink::ServerMessage
 (
 THIS_ long lMsgSeverity,
 long lMsgNumber,
 long MsgState,
 SQLDMO_LPCSTR szMsg
)
 {
#ifdef UNICODE
 swprintf(m_acMessage, L"%s", szMsg);
#else
 sprintf(m_acMessage, "%S", szMsg);
#endif

 MessageBox(NULL, m_acMessage, _T("SQLServer Status Message"),
 MB_OK | MB_ICONINFORMATION);

 return (NOERROR);
 }

With the class defined and its members implemented, an object instance of the class can be connected to a SQLServer object
instance, as shown here:

BOOL CSQLServerHandler::InstallConnectionPoint(
 LPSQLDMOSQLSERVER pSQLServer)
 {
 LPCONNECTIONPOINTCONTAINER piCPContainer = NULL;
 HRESULT hr;
 CSQLServerSink* pSQLServerSink;

 // Create an instance of the SQLServer sink.
 pSQLServerSink = new CSQLServerSink;

 if (pSQLServerSink != NULL)
 {
 hr = pSQLServer->QueryInterface(
 IID_IConnectionPointContainer, (void**) &piCPContainer);

 if (SUCCEEDED(hr))
 {
 // m_pCP is a CSQLServerHandler member variable (a pointer
 // to an IConnectionPoint). The connection point will be
 // used both to advise the SQLServer object of event
 // handling and to terminate event handling later. For that
 // reason, the variable is not local in scope to this
 // function.
 hr = piCPContainer->FindConnectionPoint(
 IID_ISQLDMOServerSink, &m_pCP);

 if (SUCCEEDED(hr))
 m_pCP->Advise(pSQLServerSink, &m_dwCookie);

 piCPContainer->Release();
 }

 }

 // If anything fails, delete the instance of CSQLServerSink that
 // was created. Otherwise, the self-destruct mechanism in
 // CSQLServerSink::Release will handle object destruction.
 if (FAILED(hr))
 {
 hrDisplayError(hr);

 delete pSQLServerSink;
 }

 return (SUCCEEDED(hr));
 }

When an application connects to a connectable object, it becomes responsible for breaking that connection when no longer
required. An example is shown here:

void CSQLServerHandler::ReleaseConnectionPoint()
 {
 if (m_dwCookie != _BAD_COOKIE)
 m_pCP->Unadvise(m_dwCookie);

 if (m_pCP != NULL)
 {
 m_pCP->Release();
 m_pCP = NULL;
 }
 }

Note The details of COM connectable object implementation are beyond the scope of this documentation. For more information
about COM connectable objects, IConnectionPointContainer, and IConnectionPoint, see a reliable COM/OLE reference.

SQL-DMO (SQL Server 2000)

Handling SQL-DMO Errors
At the highest level, a SQL-DMO object member function succeeds or fails. Every COM function returns an HRESULT value
indicating success or failure. The operating system reserves ranges of function return values for COM and OLE errors and defines
specific error conditions, such as success and success with additional information.

All SQL-DMO interfaces support the IErrorInfo interface. With an instance of any SQL-DMO object, QueryInterface for an
ISupportErrorInfo interface returns a valid interface pointer, and ISupportErrorInfo::InterfaceSupportsErrorInfo returns
NOERROR. Therefore, the COM GetErrorInfo function returns an IErrorInterface reference for any error raised by SQL-DMO
(HRESULT is greater than CO_E_LAST), and the SQL-DMO application can avoid querying for ISupportErrorInfo.

The SQL-DMO errors enumerated data type SQLDMO_ERROR_TYPE is defined as groups of related errors. The macro
SQLDMO_ECAT_MASK, defined in Sqldmo.h, can be used to determine the error category allowing error handling based on type
of error returned. For example, SQLDMO_ERROR_TYPE defines SQLDMO_ECAT_UNPRIVILEGEDLOGIN, a category indicating that
the currently connected user is not a member of a role with sufficient privilege to perform a requested action. An application may
decide to branch to extraordinary error handling code when receiving errors of this category.

SQL-DMO (SQL Server 2000)

SQL-DMO Reference
SQL Distributed Management Objects (SQL-DMO) is a collection of objects encapsulating Microsoft® SQL Server™ 2000
database and replication management. SQL-DMO Reference contains detailed information about objects, collections, properties,
methods, events, constants, and sample programs.

SQL-DMO (SQL Server 2000)

Objects
A SQL-DMO object exposes the attributes of a Microsoft® SQL Server™ 2000 component.

Properties

Parent Property UserData Property
TypeOf Property

SQL-DMO (SQL Server 2000)

A

SQL-DMO (SQL Server 2000)

Alert Object
Alert Object

The Alert object represents a single SQL Server Agent alert. Alerts respond to either specific Microsoft® SQL Server™ 2000 error
messages or SQL Server errors of a specified severity.

Properties

Category Property JobID Property
CountResetDate Property JobName Property
CountResetTime Property LastOccurrenceDate Property
DatabaseName Property LastOccurrenceTime Property
DelayBetweenResponses Property LastResponseDate Property
Enabled Property LastResponseTime Property
EventCategoryID Property MessageID Property
EventDescriptionKeyword Property Name Property
EventID Property NotificationMessage Property
EventSource Property OccurrenceCount Property
HasNotification Property PerformanceCondition Property
ID Property Severity Property
IncludeEventDescription Property Type Property (Alert)

SQL-DMO (SQL Server 2000)

AlertSystem Object
AlertSystem Object

The AlertSystem object represents properties and behaviors of the SQL Server Agent alert notification for all defined alerts.

Properties

FailSafeOperator Property PagerCCTemplate Property
ForwardAlways Property PagerSendSubjectOnly Property
ForwardingServer Property PagerSubjectTemplate Property
ForwardingSeverity Property PagerToTemplate Property
NotificationMethod Property

SQL-DMO (SQL Server 2000)

Application Object
Application Object

The Application object represents properties of SQL-DMO objects and the user application.

Properties

BlockingTimeout Property ODBCVersionString Property
FullName Property UseCurrentUserServerGroups Property
GroupRegistrationServer Property VersionBuild Property
GroupRegistrationVersion Property VersionMajor Property
Name Property VersionMinor Property

SQL-DMO (SQL Server 2000)

B

SQL-DMO (SQL Server 2000)

Backup Object
Backup Object

The Backup object defines a Microsoft® SQL Server™ 2000 database or log backup operation.

Properties

Action Property (Backup) Initialize Property
BackupSetDescription Property MediaDescription Property
BackupSetName Property MediaName Property
BlockSize Property PercentCompleteNotification Property
Database Property Pipes Property
DatabaseFileGroups Property Restart Property
DatabaseFiles Property RetainDays Property
Devices Property SkipTapeHeader Property
ExpirationDate Property Tapes Property
Files Property TruncateLog Property (Backup)
FormatMedia Property UnloadTapeAfter Property

SQL-DMO (SQL Server 2000)

Backup2 Object
Backup2 Object

The Backup2 object defines a Microsoft® SQL Server™ 2000 database or log backup operation and extends the functionality of
the Backup object.

Properties

MediaPassword Property Password Property
NoRewind Property

SQL-DMO (SQL Server 2000)

BackupDevice Object
BackupDevice Object

 Topic last updated -- July 2003

The BackupDevice object represents the properties of a Microsoft® SQL Server™ 2000 backup device.

Properties

DeviceNumber Property Status Property (BackupDevice)
Name Property SystemObject Property
PhysicalLocation Property Type Property (BackupDevice)
SkipTapeLabel Property

SQL-DMO (SQL Server 2000)

BulkCopy Object
BulkCopy Object

The BulkCopy object represents the parameters of a single bulk copy command issued against a Microsoft® SQL Server™ 2000
database.

Properties

CodePage Property MaximumErrorsBeforeAbort Property
ColumnDelimiter Property RowDelimiter Property
DataFilePath Property ServerBCPDataFileType Property
DataFileType Property ServerBCPKeepIdentity Property
ErrorFilePath Property ServerBCPKeepNulls Property
ExportWideChar Property SuspendIndexing Property
FirstRow Property TruncateLog Property (BulkCopy)
FormatFilePath Property Use6xCompatible Property
ImportRowsPerBatch Property UseBulkCopyOption Property
IncludeIdentityValues Property UseExistingConnection Property
LastRow Property UseServerSideBCP Property
LogFilePath Property

SQL-DMO (SQL Server 2000)

BulkCopy2 Object
BulkCopy2 Object

The BulkCopy2 object represents the parameters of a single bulk copy command issued against a Microsoft® SQL Server™ 2000
database and extends the functionality of the BulkCopy object.

Properties

TableLock Property

SQL-DMO (SQL Server 2000)

C

SQL-DMO (SQL Server 2000)

Category Object
Category Object

The Category object represents the attributes of a SQL Server Agent alert, job, or operator category.

Properties

ID Property Type Property (Category)
Name Property

SQL-DMO (SQL Server 2000)

Check Object
Check Object

The Check object represents the attributes of a single Microsoft® SQL Server™ 2000 integrity constraint.

Properties

Checked Property Name Property
ExcludeReplication Property Text Property

SQL-DMO (SQL Server 2000)

Column Object
Column Object

The Column object represents the properties of a single column in a Microsoft® SQL Server™ 2000 table.

Properties

AllowNulls Property InPrimaryKey Property
AnsiPaddingStatus Property IsComputed Property
ComputedText Property IsRowGuidCol Property
Datatype Property Length Property
Default Property (Column,
UserDefinedDatatype)

Name Property

DefaultOwner Property NotForRepl Property
FullTextIndex Property NumericPrecision Property
ID Property NumericScale Property
Identity Property PhysicalDatatype Property
IdentityIncrement Property Rule Property
IdentitySeed Property RuleOwner Property

SQL-DMO (SQL Server 2000)

Column2 Object
Column2 Object

The Column2 object represents the properties of a single column in a Microsoft® SQL Server™ 2000 table and extends the
functionality of the Column object.

Properties

Collation Property FullTextImageColumnType Property
FullTextColumnLanguageID Property

SQL-DMO (SQL Server 2000)

Configuration Object
Configuration Object

The Configuration object represents Microsoft® SQL Server™ 2000 engine-configurable parameters and values.

Properties

ShowAdvancedOptions Property

SQL-DMO (SQL Server 2000)

ConfigValue Object
ConfigValue Object

The ConfigValue object represents the attributes of a single Microsoft® SQL Server™ 2000 configuration option.

Properties

CurrentValue Property MaximumValue Property
Description Property MinimumValue Property
DynamicReconfigure Property Name Property
ID Property RunningValue Property

SQL-DMO (SQL Server 2000)

D

SQL-DMO (SQL Server 2000)

Database Object
Database Object

The Database object represents the properties of a single Microsoft® SQL Server™ 2000.

Properties

CompatibilityLevel Property (Database) Isdb_securityadmin Property
CreateDate Property IsFullTextEnabled Property
CreateForAttach Property Name Property
DataSpaceUsage Property Owner Property (Database,

UserDefinedFunction)
DboLogin Property Permissions Property
ID Property PrimaryFilePath Property
IndexSpaceUsage Property Size Property
Isdb_accessadmin Property SpaceAvailable Property
Isdb_backupoperator Property SpaceAvailableInMB Property
Isdb_datareader Property Status Property (Database)
Isdb_datawriter Property SystemObject Property
Isdb_ddladmin Property UserName Property
Isdb_denydatareader Property UserProfile Property
Isdb_denydatawriter Property Version Property
Isdb_owner Property

SQL-DMO (SQL Server 2000)

Database2 Object
Database2 Object

The Database2 object represents the properties of a single Microsoft® SQL Server™ 2000 and extends the functionality of the
Database object.

Properties

Collation Property IsDeleted Property
CurrentCompatibility Property SizeInKB Property

SQL-DMO (SQL Server 2000)

DatabaseRole Object
DatabaseRole Object

The DatabaseRole object represents the properties of a single Microsoft® SQL Server™ database role.

Properties

AppRole Property Password Property
Name Property

SQL-DMO (SQL Server 2000)

DatabaseRole2 Object
DatabaseRole2 Object

The DatabaseRole2 object represents the properties of a single Microsoft® SQL Server™ 2000 database role and extends the
functionality of the DatabaseRole object.

Properties

IsDeleted Property

SQL-DMO (SQL Server 2000)

DBFile Object
DBFile Object

The DBFile object represents the properties of an operating system file used by Microsoft® SQL Server™ 2000 for table and
index data storage.

Properties

FileGrowth Property PhysicalName Property
FileGrowthInKB Property PrimaryFile Property
FileGrowthType Property Size Property
ID Property SpaceAvailableInMB Property
MaximumSize Property SizeInKB Property
Name Property

SQL-DMO (SQL Server 2000)

DBObject Object
DBObject Object

The DBObject object represents properties of a Microsoft® SQL Server™ 2000 database object, such as a table or stored
procedure.

Properties

CreateDate Property SystemObject Property
ID Property Type Property (DBObject)
Name Property TypeName Property
Owner Property (Database Objects)

SQL-DMO (SQL Server 2000)

DBOption Object
DBOption Object

The DBOption object represents the settings for Microsoft® SQL Server™ database options for a specific SQL Server database.

Properties

AssignmentDiag Property DefaultCursor Property
AutoClose Property Offline Property
AutoCreateStat Property QuoteDelimiter Property
AutoShrink Property ReadOnly Property
AutoUpdateStat Property RecursiveTriggers Property
ColumnsNullByDefault Property SelectIntoBulkCopy Property
CompareNull Property SingleUser Property
ContactNull Property TornPageDetection Property
CursorCloseOnCommit Property TruncateLogOnCheckpoint Property
DBOUseOnly Property

SQL-DMO (SQL Server 2000)

DBOption2 Object
DBOption2 Object

 New Information - SQL Server 2000 SP3.

The DBOption2 object represents the settings for Microsoft® SQL Server™ 2000 database options for a specific SQL Server
database.

Properties

RecoveryModel Property DBChaining Property

SQL-DMO (SQL Server 2000)

Default Object
Default Object

The Default object represents the attributes of a single Microsoft® SQL Server™ 2000 default. SQL Server defaults provide data
to columns and user-defined data types when no other data is available on an INSERT statement execution.

Properties

CreateDate Property Owner Property (Database Objects)
ID Property Text Property
Name Property

SQL-DMO (SQL Server 2000)

Default2 Object
Default2 Object

The Default object represents the attributes of a single Microsoft® SQL Server™ 2000 default. SQL Server defaults provide data
to columns and user-defined data types when no other data is available on an INSERT statement execution. The Default2 object
extends the functionality of the Default object.

Properties

IsDeleted Property

SQL-DMO (SQL Server 2000)

DistributionArticle Object
DistributionArticle Object

The DistributionArticle object exposes the properties of a Distributor's image of a replicated article.

Properties

Description Property SourceObjectName Property
ID Property SourceObjectOwner Property
Name Property

SQL-DMO (SQL Server 2000)

DistributionArticle2 Object
DistributionArticle2 Object

The DistributionArticle2 object exposes the properties of a Distributor's image of a replicated article and extends the
functionality of the DistributionArticle object.

Properties

ID Property (DistributionArticle2)

SQL-DMO (SQL Server 2000)

DistributionDatabase Object
DistributionDatabase Object

The DistributionDatabase object represents a database located at the Distributor used to store replication information. A
Distributor can have multiple distribution databases.

Properties

AgentsStatus Property LogFileSize Property
DataFile Property LogFolder Property
DataFileSize Property MaxDistributionRetention Property
DataFolder Property MinDistributionRetention Property
DistributionCleanupTaskName Property Name Property
HistoryCleanupTaskName Property SecurityMode Property

(DistributionDatabase, IntegratedSecurity)
HistoryRetention Property StandardLogin Property
LogFile Property StandardPassword Property

SQL-DMO (SQL Server 2000)

DistributionDatabase2 Object
DistributionDatabase2 Object

The DistributionDatabase2 object represents a database located at the Distributor used to store replication information. A
Distributor can have multiple distribution databases. The DistributionDatabase2 object extends the functionality of the
DistributionDatabase object.

Methods

EnumAgentErrorRecords Method EnumQueueReaderAgentSessions Method
EnumQueueReaderAgentSessionDetails
Method

SQL-DMO (SQL Server 2000)

DistributionPublication Object
DistributionPublication Object

The DistributionPublication object exposes the properties of a Distributor's image of a snapshot, transactional, or merge
replication publication.

Properties

Description Property PublicationDB Property
ID Property PublicationType Property
LogReaderAgent Property SnapshotAgent Property
Name Property VendorName Property
PublicationAttributes Property

SQL-DMO (SQL Server 2000)

DistributionPublication2 Object
DistributionPublication2 Object

The DistributionPublication2 object exposes the properties of a Distributor's image of a snapshot, transactional, or merge
replication publication and extends the functionality of the DistributionPublication object.

Properties

SnapshotJobID Property ThirdPartyOptions Property

SQL-DMO (SQL Server 2000)

DistributionPublisher Object
DistributionPublisher Object

The DistributionPublisher object represents a Publisher using this Distributor for replication.

Properties

DistributionDatabase Property Name Property
DistributionWorkingDirectory Property ThirdParty Property
Enabled Property TrustedDistributorConnection Property

SQL-DMO (SQL Server 2000)

DistributionPublisher2 Object
DistributionPublisher2 Object

The DistributionPublisher2 object represents a Publisher using the referenced Distributor for replication and extends the
functionality of the DistributionPublisher object.

Methods

DisableAgentOffload Method EnumMergeAgentSessionDetails2 Method
EnableAgentOffload Method EnumMergeAgentSessions2 Method
EnumDistributionAgentSessionDetails2
Method

EnumSnapshotAgentSessionDetails2
Method

EnumDistributionAgentSessions2
Method

EnumSnapshotAgentSessions2 Method

EnumLogReaderAgentSessionDetails2
Method

GetAgentsStatus2 Method
(DistributionPublication2,
DistributionPublisher2)

EnumLogReaderAgentSessions2
Method

ReadAgentOffloadInfo Method

DisableAgentOffload Method EnumSnapshotAgentSessionDetails2
Method

EnableAgentOffload Method EnumSnapshotAgentSessions2 Method
EnumDistributionAgentSessions2
Method

GetAgentsStatus2 Method
(DistributionPublication2,
DistributionPublisher2)

EnumLogReaderAgentSessions2
Method

ReadAgentOffloadInfo Method

EnumMergeAgentSessions2 Method

SQL-DMO (SQL Server 2000)

DistributionSubscription Object
DistributionSubscription Object

The DistributionSubscription object exposes the properties of subscription to a publication maintained by a Distributor.

Properties

DistributionAgent Property SubscriptionDB Property
Name Property SubscriptionType Property
Status Property (Subscription Objects) SyncType Property
Subscriber Property

SQL-DMO (SQL Server 2000)

DistributionSubscription2 Object
DistributionSubscription2 Object

The DistributionSubscription2 object exposes the properties of a specific subscription to a publication maintained by a
Distributor and extends the functionality of the DistributionPublisher object.

Methods

DistributionJobID Property

SQL-DMO (SQL Server 2000)

Distributor Object
Distributor Object

The Distributor object represents the replication Distributor for an instance of Microsoft® SQL Server™ 2000.

Properties

AgentCheckupInterval Property DistributorInstalled Property
DistributionDatabase Property DistributorLocal Property
DistributionServer Property HasRemoteDistributionPublisher Property
DistributorAvailable Property IsDistributionPublisher Property

SQL-DMO (SQL Server 2000)

Distributor2 Object
Distributor2 Object

The Distributor2 object represents the replication Distributor for an instance of Microsoft® SQL Server™ 2000 and extends the
functionality of the DistributionPublisher object.

Methods

EnumDistributionAgentViews2 Method EnumThirdPartyVendorNames Method
EnumMergeAgentViews2 Method GetAgentsStatus2 Method (Distributor2)
EnumQueueReaderAgentViews Method RemoveDefunctAnonymousSubscription

Method
EnumThirdPartyPublications2 Method

SQL-DMO (SQL Server 2000)

DRIDefault Object
DRIDefault Object

The DRIDefault object represents the properties of a Microsoft® SQL Server™ 2000 column DEFAULT constraint.

Properties

Name Property Text Property

SQL-DMO (SQL Server 2000)

F

SQL-DMO (SQL Server 2000)

FileGroup Object
FileGroup Object

The FileGroup object exposes the attributes of a Microsoft® SQL Server™ 2000 filegroup.

Properties

Default Property (FileGroup) ReadOnly Property
ID Property Size Property
Name Property

SQL-DMO (SQL Server 2000)

FileGroup2 Object
FileGroup2 Object

The FileGroup2 object exposes the attributes of a Microsoft® SQL Server™ 2000 filegroup and extends the functionality of the
FileGroup object.

Methods

CheckFileGroupDataOnlyWithResult
Method

CheckFileGroupWithResult Method

SQL-DMO (SQL Server 2000)

FullTextCatalog Object
FullTextCatalog Object

The FullTextCatalog object exposes the properties of a single Microsoft Search persistent data store.

Properties

ErrorLogSize Property PopulateCompletionAge Property
FullTextCatalogID Property PopulateCompletionDate Property
FullTextIndexSize Property PopulateStatus Property
HasFullTextIndexedTables Property RootPath Property
ItemCount Property UniqueKeyCount Property
Name Property

SQL-DMO (SQL Server 2000)

FullTextCatalog2 Object
FullTextCatalog2 Object

The FullTextCatalog2 object exposes the properties of a single Microsoft Search persistent data store and extends the
functionality of the FullTextCatalog object.

Methods

Refresh Method

SQL-DMO (SQL Server 2000)

FullTextService Object
FullTextService Object

The FullTextService object exposes attributes of the Microsoft Search full-text indexing service.

Properties

ConnectTimeout Property ResourceUsage Property
DefaultPath Property Status Property (Services)
IsFullTextInstalled Property

SQL-DMO (SQL Server 2000)

I

SQL-DMO (SQL Server 2000)

Index Object
Index Object

The Index object exposes the attributes of a single Microsoft® SQL Server™ 2000 index.

Properties

FileGroup Property Name Property
FillFactor Property NoRecompute Property
ID Property SpaceUsed Property
IndexedColumns Property StatisticsIndex Property
IsFullTextKey Property Type Property (Index)

SQL-DMO (SQL Server 2000)

Index2 Object
Index2 Object

The Index2 object exposes the attributes of a single Microsoft® SQL Server™ 2000 index and extends the functionality of the
Index object.

Properties

IndexOnTable Property IsOnComputed Property

SQL-DMO (SQL Server 2000)

IntegratedSecurity Object
IntegratedSecurity Object

The IntegratedSecurity object exposes configurable parameters that affect all logins to Microsoft® SQL Server™ 2000
regardless of the login authentication type.

Properties

AuditLevel Property ImpersonateClient Property
DefaultDomain Property SecurityMode Property

(DistributionDatabase, IntegratedSecurity)
DefaultLogin Property SetHostName Property

SQL-DMO (SQL Server 2000)

J

SQL-DMO (SQL Server 2000)

Job Object
Job Object

The Job object exposes the attributes of a single SQL Server Agent job.

Properties

Category Property LastRunOutcome Property
CurrentRunRetryAttempt Property LastRunTime Property
CurrentRunStatus Property Name Property
CurrentRunStep Property NetSendLevel Property
DateCreated Property NextRunDate Property
DateLastModified Property NextRunScheduleID Property
DeleteLevel Property NextRunTime Property
Description Property OperatorToEmail Property
EmailLevel Property OperatorToNetSend Property
Enabled Property OperatorToPage Property
EventlogLevel Property OriginatingServer Property
HasSchedule Property Owner Property (Job, JobFilter)
HasServer Property PageLevel Property
HasStep Property StartStepID Property
JobID Property Type Property (Job, JobFilter)
LastRunDate Property VersionNumber Property

SQL-DMO (SQL Server 2000)

JobFilter Object
JobFilter Object

The JobServer object has a JobFilter object. The JobFilter object does not represent a Microsoft® SQL Server™ 2000
component. It is used to constrain the output of the EnumJobs method of the JobServer object.

Properties

Category Property Enabled Property
CurrentExecutionStatus Property Owner Property (Job, JobFilter)
DateFindOperand Property StepSubsystem Property
DateJobCreated Property Type Property (Job, JobFilter)
DateJobLastModified Property

SQL-DMO (SQL Server 2000)

JobHistoryFilter Object
JobHistoryFilter Object

The JobServer object exposes a JobHistoryFilter object. The JobHistoryFilter object does not represent a Microsoft® SQL
Server™ 2000 component. It is used to control JobServer object methods. When used as a parameter to the EnumJobHistory
method, a JobHistoryFilter object constrains the output of the method. When used with the PurgeJobHistory method, the
JobHistoryFilter object restricts the scope of the method.

Properties

EndRunDate Property OldestFirst Property
EndRunTime Property OutcomeTypes Property
JobID Property SQLMessageID Property
JobName Property SQLSeverity Property
MinimumRetries Property StartRunDate Property
MinimumRunDuration Property StartRunTime Property

SQL-DMO (SQL Server 2000)

JobSchedule Object
JobSchedule Object

The JobSchedule object exposes the attributes of a single SQL Server Agent executable job schedule.

Properties

DateCreated Property Name Property
Enabled Property ScheduleID Property

SQL-DMO (SQL Server 2000)

JobServer Object
JobServer Object

The JobServer object exposes attributes associated with SQL Server Agent. SQL Server Agent is responsible for executing
scheduled jobs and notifying operators of Microsoft® SQL Server™ 2000 error conditions or other SQL Server execution or job
states.

Properties

AutoStart Property Status Property (Services)
MSXServerName Property Type Property (JobServer)
StartupAccount Property

SQL-DMO (SQL Server 2000)

JobServer2 Object
JobServer2 Object

The JobServer2 object exposes attributes associated with SQL Server Agent. SQL Server Agent is responsible for executing
scheduled jobs and notifying operators of error conditions in Microsoft® SQL Server™ 2000 or other SQL Server execution or job
states. The JobServer2 object extends the functionality of the JobServer object.

Properties

ServiceName Property

SQL-DMO (SQL Server 2000)

JobStep Object
JobStep Object

The JobStep object exposes the attributes of a single SQL Server Agent executable job step.

Properties

AdditionalParameters Property OnFailAction Property
CmdExecSuccessCode Property OnFailStep Property
Command Property OnSuccessAction Property
DatabaseName Property OnSuccessStep Property
DatabaseUserName Property OSRunPriority Property
Flags Property OutputFileName Property
LastRunDate Property RetryAttempts Property
LastRunDuration Property RetryInterval Property
LastRunOutcome Property Server Property
LastRunRetries Property StepID Property
LastRunTime Property SubSystem Property
Name Property

SQL-DMO (SQL Server 2000)

K

SQL-DMO (SQL Server 2000)

Key Object
Key Object

The Key object exposes the attributes of Microsoft® SQL Server™ 2000 table keys.

Properties

Checked Property Name Property
Clustered Property ReferencedKey Property
ExcludeReplication Property ReferencedTable Property
FileGroup Property Type Property (Key)
FillFactor Property

SQL-DMO (SQL Server 2000)

L

SQL-DMO (SQL Server 2000)

Language Object
Language Object

The Language object exposes the properties of an installed Microsoft® SQL Server™ 2000 language record.

Properties

Alias Property Month Property
Day Property Months Property
Days Property Name Property
FirstDayOfWeek Property ShortMonth Property
ID Property ShortMonths Property
LangDateFormat Property Upgrade Property

SQL-DMO (SQL Server 2000)

LinkedServer Object
LinkedServer Object

The LinkedServer object exposes the properties of an OLE DB data source and allows directed Transact-SQL queries against
defined data sources.

Properties

Catalog Property Options Property
DataSource Property ProductName Property
DropLogins Property ProviderName Property
Location Property (LinkedServer) ProviderString Property
Name Property

SQL-DMO (SQL Server 2000)

LinkedServer2 Object
LinkedServer2 Object

The LinkedServer2 object exposes the properties of an OLE DB data source, allows directed Transact-SQL queries against defined
data sources, and extends the functionality of the LinkedServer object.

Properties

CollationName Property QueryTimeout Property
ConnectTimeout Property

SQL-DMO (SQL Server 2000)

LinkedServerLogin Object
LinkedServerLogin Object

The LinkedServerLogin object exposes the properties of an authentication record mapping used when an instance of
Microsoft® SQL Server™ 2000 attempts to connect to a linked server.

Properties

LocalLogin Property RemotePassword Property
Impersonate Property RemoteUser Property

SQL-DMO (SQL Server 2000)

LogFile Object
LogFile Object

The LogFile object exposes the attributes of an operating system file used to maintain transaction log records for a Microsoft®
SQL Server™ 2000 database.

Properties

FileGrowth Property Name Property
FileGrowthInKB Property PhysicalName Property
FileGrowthType Property Size Property
ID Property SizeInKB Property
MaximumSize Property

SQL-DMO (SQL Server 2000)

Login Object
Login Object

The Login object exposes the attributes of a single SQL Server Authentication record.

Properties

Database Property Name Property
DenyNTLogin Property NTLoginAccessType Property
Language Property SystemObject Property
LanguageAlias Property Type Property (Login)

SQL-DMO (SQL Server 2000)

Login2 Object
Login2 Object

The Login2 object exposes the attributes of a single SQL Server Authentication record and extends the functionality of the Login
object.

Properties

IsDeleted Property

SQL-DMO (SQL Server 2000)

M

SQL-DMO (SQL Server 2000)

MergeArticle Object
MergeArticle Object

The MergeArticle object represents a table published as part of a merge publication.

Properties

ArticleResolver Property PreCreationMethod Property
ArticleType Property ResolverInfo Property
ColumnTracking Property SnapshotObjectName Property
ConflictTable Property SnapshotObjectOwner Property
CreationScriptOptions Property SourceObjectName Property
CreationScriptPath Property SourceObjectOwner Property
Description Property Status Property (MergeArticle)
ID Property SubsetFilterClause Property
Name Property

SQL-DMO (SQL Server 2000)

MergeArticle2 Object
MergeArticle2 Object

The MergeArticle2 object represents a table published as part of a merge publication and extends the functionality of the
MergeArticle object.

Properties

AllowInteractiveResolver Property IdentityRangeThreshold Property
AutoIdentityRange Property MultipleColumnUpdate Property
CheckPermissions Property PublisherIdentityRangeSize Property
DestinationObjectName Property SubscriberIdentityRangeSize Property
DestinationOwnerName Property VerifyResolverSignature Property

SQL-DMO (SQL Server 2000)

MergeDynamicSnapshotJob Object
MergeDynamicSnapshotJob Object

The MergeDynamicSnapshotJob object represents a dynamic snapshot job that is part of a merge publication.

Methods

BeginAlter Method CancelAlter Method
DoAlter Method Remove Method (Objects)

SQL-DMO (SQL Server 2000)

MergePublication Object
MergePublication Object

The MergePublication object represents a merge publication. A publication contains one or more articles (tables) that contain
the replicated data.

Properties

CentralizedConflicts Property Priority Property
DynamicFilters Property PublicationAttributes Property
Description Property RetentionPeriod Property
Enabled Property SnapshotAvailable Property
HasSubscription Property SnapshotJobID Property
ID Property SnapshotMethod Property
Name Property

SQL-DMO (SQL Server 2000)

MergePublication2 Object
MergePublication2 Object

The MergePublication2 object represents a merge publication. A publication contains one or more articles (tables) that contain
the replicated data. The MergePublication2 object extends the functionality of the MergePublication object.

Properties

AllowSyncToAlternate Property FTPSubdirectory Property
AltSnapshotFolder Property InActiveDirectory Property
CompatibilityLevel Property
(MergePublication2, TransPublication2)

KeepPartitionChanges Property

ConflictRetention Property MaxConcurrentMerge Property
FTPAddress Property MaxConcurrentDynamicSnapshots

Property
FTPLogin Property PostSnapshotScript Property
FTPPassword Property PreSnapshotScript Property
FTPPort Property ValidateSubscriberInfo Property

SQL-DMO (SQL Server 2000)

MergePullSubscription Object
MergePullSubscription Object

The MergePullSubscription object represents a Subscriber-initiated pull or anonymous subscription to a merge publication.

Properties

Description Property Publication Property
Distributor Property PublicationDB Property
EnabledForSyncMgr Property Publisher Property
FTPAddress Property SubscriberLogin Property
FTPLogin Property SubscriberPassword Property
FTPPassword Property SubscriberSecurityMode Property
FTPPort Property SubscriberType Property

(MergePullSubscription,
MergeSubscription)

MergeJobID Property SubscriptionType Property
Name Property SyncType Property
Priority Property

SQL-DMO (SQL Server 2000)

MergePullSubscription2 Object
MergePullSubscription2 Object

The MergePullSubscription2 object represents a Subscriber-initiated pull or anonymous subscription to a merge publication
and extends the functionality of the MergePullSubscription object.

Properties

AgentOffload Property LastMergedTime Property
AgentOffloadServer Property SubscriptionID Property
AltSnapshotFolder Property UseFTP Property
DynamicSnapshotLocation Property UseInteractiveResolver Property
LastMergedStatus Property WorkingDirectory Property
LastMergedSummary Property

SQL-DMO (SQL Server 2000)

MergeSubscription Object
MergeSubscription Object

The MergeSubscription object represents a push subscription (made from the Publisher) to a merge publication.

Properties

Description Property Subscriber Property
EnabledForSyncMgr Property SubscriberType Property

(MergePullSubscription,
MergeSubscription)

MergeJobID Property SubscriptionDB Property
Name Property SubscriptionType Property
Priority Property SyncType Property
Status Property (Subscription Objects)

SQL-DMO (SQL Server 2000)

MergeSubscription2 Object
MergeSubscription2 Object

The MergeSubscription2 object represents a push subscription (made from the Publisher) to a merge publication and extends
the functionality of the MergeSubscription object.

Properties

AgentOffload Property UseInteractiveResolver Property
AgentOffloadServer Property

SQL-DMO (SQL Server 2000)

MergeSubsetFilter Object
MergeSubsetFilter Object

The MergeSubsetFilter object represents a filter (or partition) of the data in one article based on filtered data in another article.
Both articles must be part of the same merge publication.

Methods

BeginAlter Method DoAlter Method
CancelAlter Method Remove Method (Objects)

SQL-DMO (SQL Server 2000)

N

SQL-DMO (SQL Server 2000)

NameList Object
NameList Object

The NameList object is a string container object returned by methods that enumerate Microsoft® SQL Server™ components by
name.

Properties

Count Property

SQL-DMO (SQL Server 2000)

O

SQL-DMO (SQL Server 2000)

Operator Object
Operator Object

The Operator object represents a single Microsoft® SQL Server™ operator. SQL Server operators receive alert and job status
notification in response to events generated by the server.

Properties

Category Property Name Property
EmailAddress Property NetSendAddress Property
Enabled Property PagerAddress Property
ID Property PagerDays Property
LastEmailDate Property SaturdayPagerEndTime Property
LastEmailTime Property SaturdayPagerStartTime Property
LastNetSendDate Property SundayPagerEndTime Property
LastNetSendTime Property SundayPagerStartTime Property
LastPageDate Property WeekdayPagerEndTime Property
LastPageTime Property WeekdayPagerStartTime Property

SQL-DMO (SQL Server 2000)

P

SQL-DMO (SQL Server 2000)

Permission Object
Permission Object

The Permission object exposes Microsoft® SQL Server™ object-access rights.

Properties

Granted Property ObjectType Property
Grantee Property ObjectTypeName Property
ObjectID Property PrivilegeType Property
ObjectName Property PrivilegeTypeName Property
ObjectOwner Property

SQL-DMO (SQL Server 2000)

Permission2 Object
Permission2 Object

The Permission2 object exposes Microsoft® SQL Server™ object-access rights and extends the functionality of the Permission
object.

Properties

GrantedGranted Property

SQL-DMO (SQL Server 2000)

Property Object
Property Object

The Property object exposes the attributes of a SQL-DMO object property.

Properties

Get Property Type Property (Property)
Name Property Value Property
Set Property

SQL-DMO (SQL Server 2000)

Publisher Object
Publisher Object

The Publisher object represents the replication properties of a Microsoft® SQL Server™ Publisher.

Note The Publisher object is compatible with instances of SQL Server 2000 and SQL Server version 7.0. However, the
Publisher2 object extends the functionality of the Publisher object for use with features that are new in SQL Server 2000.

Methods

Script Method (Replication Objects) Uninstall Method

SQL-DMO (SQL Server 2000)

Publisher2 Object
Publisher2 Object

The Publisher2 object represents the replication properties of a Microsoft® SQL Server™ Publisher and extends the functionality
of the Publisher object.

Methods

CleanUpAnonymousAgentInfo Method EnumPublications2 Method

SQL-DMO (SQL Server 2000)

Q

SQL-DMO (SQL Server 2000)

QueryResults Object
QueryResults Object

The QueryResults object presents tabular data to the SQL-DMO application. SQL-DMO enumeration methods, such as the
EnumLocks method of the Database object, return a QueryResults object to report their data. SQL-DMO statement execution
methods, such as the ExecuteWithResults method of Database and SQLServer objects, also return a QueryResults object.

Properties

ColumnMaxLength Property CurrentResultSet Property
ColumnName Property ResultSets Property
Columns Property Rows Property
ColumnType Property

SQL-DMO (SQL Server 2000)

QueryResults2 Object
QueryResults2 Object

The QueryResults2 object presents tabular data to the SQL-DMO application and extends the functionality of the QueryResults
object.

Methods

GetColumnBigInt Method GetColumnSQLVARIANTLength Method
GetColumnSQLVARIANT Method GetColumnSQLVARIANTToString Method
GetColumnSQLVARIANTDataType
Method

SQL-DMO (SQL Server 2000)

R

SQL-DMO (SQL Server 2000)

RegisteredServer Object
RegisteredServer Object

The RegisteredServer object exposes the attributes of a single, registry-listed instance of Microsoft® SQL Server™.

Properties

Login Property SaLogin Property
Name Property UseTrustedConnection Property
Password Property VersionMajor Property
PersistFlags Property VersionMinor Property

SQL-DMO (SQL Server 2000)

RegisteredSubscriber Object
RegisteredSubscriber Object

The RegisteredSubscriber object represents what information a Publisher has about a Subscriber.

Properties

Description Property Type Property (RegisteredSubscriber)
Name Property

SQL-DMO (SQL Server 2000)

Registry Object
Registry Object

 Topic last updated -- July 2003

The Registry object exposes the Microsoft® Windows NT® 4.0, Microsoft® Windows 2000®, or Microsoft Windows® 98
registry settings that maintain an instance of Microsoft SQL Server™ and run-time parameters.

Properties

AutostartDTC Property NTEventLogging Property
AutostartLicensing Property NumberOfProcessors Property
AutostartMail Property PerfMonMode Property
AutostartServer Property PhysicalMemory Property
CaseSensitive Property RegisteredOwner Property
CharacterSet Property ReplicationInstalled Property
ErrorLogPath Property SortOrder Property
MailAccountName Property SQLDataRoot Property
MailPassword Property SQLRootPath Property
MasterDBPath Property TapeLoadWaitTime Property

SQL-DMO (SQL Server 2000)

Registry2 Object
Registry2 Object

The Registry2 object exposes the Microsoft® Windows NT® 4.0, Microsoft® Windows 2000® or Microsoft Windows® 95
registry settings that maintain an instance of Microsoft SQL Server™ and run-time parameters. The Registry2 object extends the
functionality of the Registry object.

Properties

Adsp Property SpxServiceName Property
AgentLogFile Property SQLCurrentVersion Property
BackupDirectory Property SuperSocketEncrypt Property
NP Property SuperSocketList Property
RpcEncrypt Property TcpFlag Property
RpcList Property TcpPort Property
RpcMaxCalls Property ViaListenInfo Property
RpcMinCalls Property ViaRecognizedVendors Property
SNMP Property ViaVendor Property
SNMPCurrentVersion Property VinesGroupName Property
SNMPExtensionAgents Property VinesItemName Property
SNMPExtensionAgentsData Property VinesOrgName Property
SpxFlag Property WSProxyAddress Property
SpxPort Property WSProxyPort Property

SQL-DMO (SQL Server 2000)

RemoteLogin Object
RemoteLogin Object

The RemoteLogin object exposes the properties of a single login mapping record for connections to an instance of Microsoft®
SQL Server™ originating from another, known instance of SQL Server.

Properties

LocalName Property Trusted Property
RemoteName Property

SQL-DMO (SQL Server 2000)

RemoteServer Object
RemoteServer Object

The RemoteServer object exposes the attributes of an instance of Microsoft® SQL Server™, known as a remote server, to
another server.

Methods

ExecuteImmediate Method (LinkedServer,
RemoteServer)

Remove Method (Objects)

ExecuteWithResults Method SetOptions Method
ExecuteWithResultsAndMessages Method SetTopologyXY Method

SQL-DMO (SQL Server 2000)

RemoteServer2 Object
RemoteServer2 Object

The RemoteServer2 object exposes the attributes of an instance of Microsoft® SQL Server™, known as a remote server, to
another server and extends the functionality of the RemoteServer object.

Methods

ExecuteWithResultsAndMessages2 Method

SQL-DMO (SQL Server 2000)

Replication Object
Replication Object

The Replication object represents the entire replication system for an instance of Microsoft® SQL Server™, and it is the root of
all replication objects.

Methods

EnumCustomResolvers Method Uninstall Method
EnumDataSourceNames Method ValidateDataSource Method
Script Method (Replication Objects)

SQL-DMO (SQL Server 2000)

Replication2 Object
Replication2 Object

The Replication2 object represents the entire replication system for an instance of Microsoft® SQL Server™, and it is the root of
all replication objects. The Replication2 object extends the functionality of the Replication object.

Methods

AttachSubscriptionDatabase Method

SQL-DMO (SQL Server 2000)

ReplicationDatabase Object
ReplicationDatabase Object

The ReplicationDatabase object represents a user database that can participate in replication.

Properties

AllowMergePublication Property EnableTransPublishing Property
DBOwner Property Name Property
EnableMergePublishing Property

SQL-DMO (SQL Server 2000)

ReplicationDatabase2 Object
ReplicationDatabase2 Object

The ReplicationDatabase2 object represents a user database that can participate in replication and extend the functionality of
the ReplicationDatabase object.

Properties

DBReadOnly Property

SQL-DMO (SQL Server 2000)

ReplicationSecurity Object
ReplicationSecurity Object

The ReplicationSecurity object represents authentication information used when connecting to a Distributor or Publisher. It is
commonly used with pull and anonymous subscriptions.

Properties

SecurityMode Property
(ReplicationSecurity)

StandardPassword Property

StandardLogin Property

SQL-DMO (SQL Server 2000)

ReplicationStoredProcedure Object
ReplicationStoredProcedure Object

The ReplicationStoredProcedure object represents a user stored procedure in a database that can participate in replication.

Properties

Name Property SystemObject Property
Owner Property (Database Objects)

SQL-DMO (SQL Server 2000)

ReplicationStoredProcedure2 Object
ReplicationStoredProcedure2 Object

The ReplicationStoredProcedure2 object represents the replication properties of a Microsoft® SQL Server™ stored procedure
and extends the functionality of the ReplicationStoredProcedure object.

Properties

Encrypted Property

SQL-DMO (SQL Server 2000)

ReplicationTable Object
ReplicationTable Object

The ReplicationTable object represents a user table in a database that can participate in replication.

Properties

HasGuidColumn Property Name Property
HasPrimaryKey Property Owner Property (Database Objects)
HasTimeStampColumn Property

SQL-DMO (SQL Server 2000)

ReplicationTable2 Object
ReplicationTable2 Object

The ReplicationTable2 object represents a user table in a database that can participate in replication and extends the
functionality of the ReplicationTable object.

Properties

HasBigIntColumn Property HasSQLVariantColumn Property
HasBigIntIdentityColumn Property ID Property
HasIdentityColumn Property PublishedInMerge Property
HasIdentityNotForReplColumn Property PublishedInQueuedTransactions Property
HasRowVersionColumn Property

SQL-DMO (SQL Server 2000)

Restore Object
Restore Object

The Restore object defines the behavior of a RESTORE statement for a Microsoft® SQL Server™ database or log.

Properties

Action Property (Restore) PercentCompleteNotification Property
Database Property Pipes Property
DatabaseFileGroups Property RelocateFiles Property
DatabaseFiles Property ReplaceDatabase Property
Devices Property Restart Property
FileNumber Property StandbyFiles Property
Files Property Tapes Property
LastRestore Property ToPointInTime Property
LoadHistory Property UnloadTapeAfter Property
MediaName Property

SQL-DMO (SQL Server 2000)

Restore2 Object
Restore2 Object

The Restore2 object defines the behavior of a RESTORE statement for a Microsoft® SQL Server™ database or log and extends the
functionality of the Restore object.

Properties

KeepReplication Property NoRewind Property
MediaPassword Property Password Property

SQL-DMO (SQL Server 2000)

Rule Object
Rule Object

The Rule object exposes the attributes of a single Microsoft® SQL Server™ data-integrity rule.

Properties

CreateDate Property Owner Property (Database Objects)
ID Property Text Property
Name Property

SQL-DMO (SQL Server 2000)

Rule2 Object
Rule2 Object

The Rule2 object exposes the attributes of a single Microsoft® SQL Server™ data-integrity rule and extends the functionality of
the Rule object.

Properties

IsDeleted Property

SQL-DMO (SQL Server 2000)

S

SQL-DMO (SQL Server 2000)

Schedule Object
Schedule Object

The Schedule object exposes the attributes of a timetable for automated Microsoft® SQL Server™ tasks, such as jobs and
replication publication.

Properties

ActiveEndDate Property FrequencyRecurrenceFactor Property
ActiveEndTimeOfDay Property FrequencyRelativeInterval Property
ActiveStartDate Property FrequencySubDay Property
ActiveStartTimeOfDay Property FrequencySubDayInterval Property
FrequencyInterval Property FrequencyType Property

https://msdn.microsoft.com/en-us/library/aa259465(v=sql.80).aspx

SQL-DMO (SQL Server 2000)

ServerGroup Object
ServerGroup Object

The ServerGroup object exposes the attributes of a Microsoft® Windows NT® 4.0, Microsoft® Windows 2000®, or Microsoft
Windows® 98 user registry key that organizes registered instances of Microsoft SQL Server™.

Properties

Name Property

SQL-DMO (SQL Server 2000)

ServerRole Object
ServerRole Object

The ServerRole object exposes the attributes of a single Microsoft® SQL Server™ security role not constrained to operation
within a single database.

Properties

Description Property Name Property
FullName Property

SQL-DMO (SQL Server 2000)

SQLObjectList Object
SQLObjectList Object

The SQLObjectList object is a fixed-membership container for objects enumerated by an object listing method.

Properties

Count Property

SQL-DMO (SQL Server 2000)

SQLServer Object
SQLServer Object

The SQLServer object exposes the attributes of an instance of Microsoft® SQL Server™.

Properties

AnsiNulls Property NetName Property
ApplicationName Property NetPacketSize Property
AutoReConnect Property NextDeviceNumber Property
BlockingTimeout Property ODBCPrefix Property
CodePage Property Password Property
CommandTerminator Property ProcessID Property
ConnectionID Property ProcessInputBuffer Property
EnableBcp Property ProcessOutputBuffer Property
HostName Property QueryTimeout Property
Isdbcreator Property QuotedIdentifier Property
Isdiskadmin Property RegionalSetting Property
Isprocessadmin Property SaLogin Property
Issecurityadmin Property Status Property (Services)
Isserveradmin Property StatusInfoRefetchInterval Property
Issetupadmin Property TranslateChar Property
Issysadmin Property TrueLogin Property
Language Property TrueName Property
Login Property UserProfile Property
LoginSecure Property VersionMajor Property
LoginTimeout Property VersionMinor Property
MaxNumericPrecision Property VersionString Property
Name Property

SQL-DMO (SQL Server 2000)

SQLServer2 Object
SQLServer2 Object

The SQLServer2 object exposes the attributes of an instance of Microsoft® SQL Server™ and extends the functionality of the
SQLServer object.

Properties

AutoStart Property IsFullTextInstalled Property
Collation Property PID Property
InstanceName Property ProductLevel Property
Isbulkadmin Property ServiceName Property
IsClustered Property StartupAccount Property

SQL-DMO (SQL Server 2000)

StoredProcedure Object
StoredProcedure Object

The StoredProcedure object exposes the attributes of a single Microsoft® SQL Server™ user-defined or system stored
procedure.

Properties

AnsiNullsStatus Property QuotedIdentifierStatus Property
CreateDate Property Startup Property
ID Property SystemObject Property
Name Property Text Property
Owner Property (Database Objects) Type Property (StoredProcedure)

SQL-DMO (SQL Server 2000)

StoredProcedure2 Object
StoredProcedure2 Object

The StoredProcedure2 object exposes the attributes of a Microsoft® SQL Server™ user-defined or system stored procedure and
extends the functionality of the StoredProcedure object.

Properties

AnsiNullsStatus Property IsDeleted Property
Encrypted Property

SQL-DMO (SQL Server 2000)

Subscriber Object
Subscriber Object

The Subscriber object represents the replication properties of a Microsoft® SQL Server™ Subscriber.

Methods

Script Method (Replication Objects)

SQL-DMO (SQL Server 2000)

Subscriber2 Object
Subscriber2 Object

The Subscriber2 object represents the replication properties of a Microsoft® SQL Server™ Subscriber and extends the
functionality of the Subscriber object.

Methods

EnumAllSubscriptions Method

SQL-DMO (SQL Server 2000)

SystemDatatype Object
SystemDatatype Object

The SystemDatatype object exposes the attributes of a Microsoft® SQL Server™ base data type.

Properties

AllowIdentity Property IsVariableLength Property
AllowLength Property MaximumChar Property
AllowNulls Property MaximumLength Property
IsNumeric Property Name Property

SQL-DMO (SQL Server 2000)

SystemDataType2 Object
SystemDataType2 Object

The SystemDatatype2 object exposes the attributes of a Microsoft® SQL Server™ base data type and extends the functionality
of the SystemDatatype object.

Properties

Collation Property

SQL-DMO (SQL Server 2000)

T

SQL-DMO (SQL Server 2000)

Table Object
Table Object

The Table object exposes the attributes of a single Microsoft® SQL Server™ table.

Properties

Attributes Property HasIndex Property
CreateDate Property ID Property
DataSpaceUsed Property InAlter Property
FakeSystemTable Property IndexSpaceUsed Property
FileGroup Property Name Property
FullTextCatalogName Property Owner Property (Database Objects)
FullTextIndex Property Rows Property
FullTextIndexActive Property SystemObject Property
FullTextKeyColumn Property TextFileGroup Property
HasClusteredIndex Property UniqueIndexForFullText Property

SQL-DMO (SQL Server 2000)

Table2 Object
Table2 Object

The Table2 object exposes the attributes of a single Microsoft® SQL Server™ table and extends the functionality of the Table
object.

Properties

AnsiNullsStatus Property QuotedIdentifierStatus Property
FullTextPopulateStatus Property TableFullTextChangeTrackingOn Property
IsDeleted Property TableFullTextUpdateIndexOn Property

SQL-DMO (SQL Server 2000)

TargetServer Object
TargetServer Object

The TargetServer object represents an instance of Microsoft® SQL Server™ on which a SQL Server Agent job will execute.

Properties

EnlistDate Property PollingInterval Property
LastPollDate Property ServerID Property
LocalTime Property ServerName Property
Location Property (TargetServer) Status Property (TargetServer)
PendingInstructions Property TimeZoneAdjustment Property

SQL-DMO (SQL Server 2000)

TargetServerGroup Object
TargetServerGroup Object

The TargetServerGroup object exposes the attributes of a multiserver administration target identification shortcut.

Properties

GroupID Property Name Property

SQL-DMO (SQL Server 2000)

TransactionLog Object
TransactionLog Object

The TransactionLog object exposes the attributes of the transaction log of a Microsoft® SQL Server™ database.

Properties

CreateDate Property SpaceAllocatedOnFiles Property
LastBackup Property SpaceAvailable Property
Size Property SpaceAvailableInMB Property

SQL-DMO (SQL Server 2000)

TransArticle Object
TransArticle Object

The TransArticle object represents a table or a stored procedure published using a transactional or a snapshot publication.

Properties

ArticleType Property Name Property
CreationScriptOptions Property PreCreationMethod Property
CreationScriptPath Property ReplicateAllColumns Property
CommandOptions Property ReplicationFilterProcName Property
DeleteCommand Property ReplicationFilterProcOwner Property
Description Property SnapshotObjectName Property
DestinationObjectName Property SnapshotObjectOwner Property
DestinationOwnerName Property SourceObjectName Property
FilterClause Property SourceObjectOwner Property
ID Property UpdateCommand Property
InsertCommand Property

SQL-DMO (SQL Server 2000)

TransArticle2 Object
TransArticle2 Object

The TransArticle2 object represents a table or a stored procedure published using a transactional or a snapshot publication and
extends the functionality of the TransArticle object.

Properties

AutoIdentityRange Property PublisherIdentityRangeSize Property
IdentityRangeThreshold Property SubscriberIdentityRangeSize Property

SQL-DMO (SQL Server 2000)

Transfer Object
Transfer Object

The Transfer object is used as a parameter for methods of the Database object. The Transfer object defines schema and data
elements moved from one Microsoft® SQL Server™ database to another.

Properties

CopyAllDefaults Property DestLogin Property
CopyAllObjects Property DestPassword Property
CopyAllRules Property DestServer Property
CopyAllStoredProcedures Property DestUseTrustedConnection Property
CopyAllTables Property DropDestObjectsFirst Property
CopyAllTriggers Property IncludeDependencies Property
CopyAllUserDefinedDatatypes Property IncludeLogins Property
CopyAllViews Property IncludeUsers Property
CopyData Property Script2Type Property
CopySchema Property ScriptType Property
DestDatabase Property

SQL-DMO (SQL Server 2000)

Transfer2 Object
Transfer2 Object

The Transfer2 object is used as a parameter for methods of the Transfer2 object. The Transfer2 object defines schema and data
elements moved from one Microsoft® SQL Server™ database to another. The Transfer2 object extends the functionality of the
Transfer object.

Properties

CopyAllFunctions Property SourceTranslateChar Property
DestTranslateChar Property UseCollation Property
IncludeDB Property UseDestTransaction Property
Script2Type Property

SQL-DMO (SQL Server 2000)

TransPublication Object
TransPublication Object

The TransPublication object represents a transactional or snapshot publication. A publication contains one or more articles
(tables or stored procedures) that contain replicated data.

Properties

AllowSynchronousTransactions Property PublicationAttributes Property
AutogenerateSyncProcedures Property ReplicationFrequency Property
Description Property RetentionPeriod Property
Enabled Property SnapshotAvailable Property
HasSubscription Property SnapshotJobID Property
ID Property SnapshotMethod Property
Name Property

SQL-DMO (SQL Server 2000)

TransPublication2 Object
TransPublication2 Object

The TransPublication2 object represents a transactional or snapshot publication. A publication contains one or more articles
(tables or stored procedures) that contain replicated data. The TransPublication2 object extends the functionality of the
TransPublication object.

Properties

AllowDTS Property FTPLogin Property
AllowQueuedTransactions Property FTPPassword Property
AltSnapshotFolder Property FTPPort Property
CentralizedConflicts Property FTPSubdirectory Property
CompatibilityLevel Property
(MergePublication2, TransPublication2)

InActiveDirectory Property

ConflictPolicy Property PostSnapshotScript Property
ConflictRetention Property PreSnapshotScript Property
FTPAddress Property QueueType Property

SQL-DMO (SQL Server 2000)

TransPullSubscription Object
TransPullSubscription Object

The TransPullSubscription object represents a Subscriber-originated pull or an anonymous subscription to a transactional or
snapshot publication.

Methods

BeginAlter Method ReInitialize Method
CancelAlter Method Remove Method (Objects)
DoAlter Method Script Method (Replication Objects)
EnumJobInfo Method

SQL-DMO (SQL Server 2000)

TransPullSubscription2 Object
TransPullSubscription2 Object

The TransPullSubscription2 object represents a Subscriber-originated pull or anonymous subscription to a transactional or
snapshot publication and extends the functionality of the TransPullSubscription object.

Properties

AgentOffload Property LastDistributionSummary Property
AgentOffloadServer Property LastDistributionSummaryTime Property
AltSnapshotFolder Property PublicationType Property
DTSPackageLocation Property SubscriptionID Property
DTSPackageName Property UseFTP Property
DTSPackagePassword Property WorkingDirectory Property
LastDistributionStatus Property

SQL-DMO (SQL Server 2000)

TransSubscription Object
TransSubscription Object

The TransSubscription object represents a push subscription (made from the Publisher) to a transactional or snapshot
publication.

Properties

DistributionJobID Property Subscriber Property
EnabledForSyncMgr Property SubscriberType Property

(TransPullSubscription, TransSubscription)
FullSubscription Property SubscriptionDB Property
Name Property SubscriptionType Property
Status Property (Subscription Objects) SyncType Property

SQL-DMO (SQL Server 2000)

TransSubscription2 Object
TransSubscription2 Object

The TransSubscription2 object represents a push subscription (made from the Publisher) to a transactional or snapshot
publication and extends the functionality of the TransSubscription object.

Properties

AgentOffload Property DTSPackageName Property
AgentOffloadServer Property DTSPackagePassword Property
DTSPackageLocation Property

SQL-DMO (SQL Server 2000)

Trigger Object
Trigger Object

The Trigger object exposes the attributes of a single Microsoft® SQL Server™ trigger.

Properties

AnsiNullsStatus Property Owner Property (Database Objects)
CreateDate Property QuotedIdentifierStatus Property
Enabled Property SystemObject Property
ID Property Text Property
Name Property Type Property (Trigger)

SQL-DMO (SQL Server 2000)

Trigger2 Object
Trigger2 Object

The Trigger2 object exposes the attributes of a single Microsoft® SQL Server™ trigger and extends the functionality of the
Trigger object.

Properties

AfterTrigger Property InsteadOfTrigger Property
AnsiNullsStatus Property IsDeleted Property
Encrypted Property

SQL-DMO (SQL Server 2000)

U

SQL-DMO (SQL Server 2000)

User Object
User Object

The User object exposes the attributes of a single Microsoft® SQL Server™ database user.

Properties

HasDBAccess Property ID Property
Login Property Name Property
Role Property SystemObject Property

SQL-DMO (SQL Server 2000)

User2 Object
User2 Object

The User2 object exposes the attributes of a single Microsoft® SQL Server™ database user and extends the functionality of the
User object.

Properties

IsDeleted Property

SQL-DMO (SQL Server 2000)

UserDefinedDatatype Object
UserDefinedDatatype Object

The UserDefinedDatatype object exposes the attributes of a single Microsoft® SQL Server™ user-specified data type.

Properties

AllowIdentity Property MaxSize Property
AllowNulls Property Name Property
BaseType Property NumericPrecision Property
Default Property (Column,
UserDefinedDatatype)

NumericScale Property

DefaultOwner Property Owner Property (Database,
UserDefinedFunction)

ID Property Rule Property
IsVariableLength Property RuleOwner Property
Length Property

SQL-DMO (SQL Server 2000)

UserDefinedDataType2 Object
UserDefinedDataType2 Object

The UserDefinedDatatype2 object exposes the attributes of a single Microsoft® SQL Server™ user-defined data type and
extends the functionality of the UserDefinedDatatype object.

Properties

Collation Property IsDeleted Property

SQL-DMO (SQL Server 2000)

UserDefinedFunction Object
UserDefinedFunction Object

The UserDefinedFunction object exposes the attributes of a single user-defined function.

Properties

AnsiNullsStatus Property Name Property
CreateDate Property Owner Property (Database,

UserDefinedFunction)
Encrypted Property QuotedIdentifierStatus Property
ID Property SystemObject Property
IsDeleted Property Text Property
IsDeterministic Property Type Property (UserDefinedFunction)
IsSchemaBound Property

SQL-DMO (SQL Server 2000)

V

SQL-DMO (SQL Server 2000)

View Object
View Object

The View object exposes the attributes of a Microsoft® SQL Server™ view table.

Properties

AnsiNullsStatus Property Owner Property (Database Objects)
CreateDate Property QuotedIdentifierStatus Property
ID Property SystemObject Property
Name Property Text Property

SQL-DMO (SQL Server 2000)

View2 Object
View2 Object

The View2 object exposes the attributes of a Microsoft® SQL Server™ view table and extends the functionality of the View
object.

Properties

AnsiNullsStatus Property IsDeleted Property
Encrypted Property IsSchemaBound Property

SQL-DMO (SQL Server 2000)

Collections
SQL-DMO collections are containers for objects of identical type. That is, the TypeOf property returns the same value for any
object contained in a given collection. For example, the Tables collection contains only SQL-DMO Table objects.

All SQL-DMO collections expose the Application, Count, Parent, TypeOf, and UserData properties, and support the Item
method. The Item method selects a contained object from the collection, using a supplied ordinal or name string to identify the
desired collection member. For information about Item method variations, see each collection.

Properties

Count Property TypeOf Property
Parent Property UserData Property

SQL-DMO (SQL Server 2000)

A

SQL-DMO (SQL Server 2000)

AlertCategories Collection
AlertCategories Collection

The AlertCategories collection contains Category objects that reference SQL Server Agent alert categories.

Methods

Add Method Refresh Method
ItemByID Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

Alerts Collection
Alerts Collection

The Alerts collection contains Alert objects that reference SQL Server Agent alerts.

Methods

Add Method Remove Method (Collections)
ItemByID Method Script Method
Refresh Method

SQL-DMO (SQL Server 2000)

B

SQL-DMO (SQL Server 2000)

BackupDevices Collection
BackupDevices Collection

The BackupDevices collection contains BackupDevice objects that expose the backup devices defined on a server running
Microsoft® SQL Server™.

Methods

Add Method Remove Method (Collections)
Refresh Method

SQL-DMO (SQL Server 2000)

C

SQL-DMO (SQL Server 2000)

Checks Collection
Checks Collection

The Checks collection contains Check objects that expose Microsoft® SQL Server™ integrity constraints defined on the columns
of a table.

Methods

Add Method Remove Method (Collections)
Refresh Method

SQL-DMO (SQL Server 2000)

Columns Collection
Columns Collection

The Columns collection contains Column objects that expose the columns of a Microsoft® SQL Server™ table.

Methods

Add Method Refresh Method
ItemByID Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

ConfigValues Collection
ConfigValues Collection

 Topic last updated -- July 2003

The ConfigValues collection contains ConfigValue objects that expose settings for configurable Microsoft® SQL Server™
engine parameters.

Remarks

The ConfigValues collection is fixed in membership and does not expose Add and Remove methods. The
ShowAdvancedOptions property of the Configuration object controls the membership of the ConfigValues collection.

Use the ConfigValues collection to reference a specific SQL Server engine parameter, for example:

Set oConfigValue = oSQLServer.Configuration.ConfigValues("remote query timeout")

See Also

Setting Configuration Options

SQL-DMO (SQL Server 2000)

D

SQL-DMO (SQL Server 2000)

DatabaseRoles Collection
DatabaseRoles Collection

The DatabaseRoles collection contains DatabaseRole objects that expose Microsoft® SQL Server™ security privilege roles
defined within a database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Databases Collection
Databases Collection

The Databases collection contains Database objects that expose Microsoft® SQL Server™ databases.

Properties

Count Property

SQL-DMO (SQL Server 2000)

DBFiles Collection
DBFiles Collection

The DBFiles collection contains DBFile objects that expose operating system files used by Microsoft® SQL Server™ for table and
index data storage.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Defaults Collection
Defaults Collection

The Defaults collection contains Default objects that reference Microsoft® SQL Server™ defaults.

Properties

Count Property

SQL-DMO (SQL Server 2000)

DistributionArticles Collection
DistributionArticles Collection

The DistributionArticles collection contains DistributionArticle objects that expose the properties of a Distributor's image of a
replicated article.

Methods

Add Method Refresh Method
Item Method Remove Method (Collections)
ItemByID Method

SQL-DMO (SQL Server 2000)

DistributionDatabases Collection
DistributionDatabases Collection

The DistributionDatabases collection contains DistributionDatabase objects that expose the properties of Microsoft® SQL
Server™ databases used by the replication Distributor for replicated image storage and other tasks.

Methods

Add Method Remove Method (Collections)
Item Method Script Method (Replication Objects)
Refresh Method

SQL-DMO (SQL Server 2000)

DistributionPublications Collection
DistributionPublications Collection

The DistributionPublications collection contains DistributionPublication objects that expose the properties of publications
managed by the Distributor.

Methods

Add Method Refresh Method
Item Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

DistributionPublishers Collection
DistributionPublishers Collection

The DistributionPublishers collection contains DistributionPublisher objects that expose the properties of Publishers using
the referenced Distributor.

Methods

Add Method Remove Method (Collections)
Item Method Script Method (Replication Objects)
Refresh Method

SQL-DMO (SQL Server 2000)

DistributionSubscriptions Collection
DistributionSubscriptions Collection

The DistributionSubscriptions collection contains DistributionSubscription objects that expose the properties of
subscriptions to a publication maintained by the referenced Distributor.

Methods

Add Method Refresh Method
Item Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

F

SQL-DMO (SQL Server 2000)

FileGroups Collection
FileGroups Collection

The FileGroups collection contains FileGroup objects that reference the filegroups of a Microsoft® SQL Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

FullTextCatalogs Collection
FullTextCatalogs Collection

The FullTextCatalogs collection contains FullTextCatalog objects that reference Microsoft Search persistent data organized in
full-text catalogs.

Properties

Count Property

SQL-DMO (SQL Server 2000)

I

SQL-DMO (SQL Server 2000)

Indexes Collection
Indexes Collection

The Indexes collection contains Index objects that reference indexes that implement Microsoft® SQL Server™ constraints and
user-defined access paths.

Properties

Count Property

SQL-DMO (SQL Server 2000)

J

SQL-DMO (SQL Server 2000)

JobCategories Collection
JobCategories Collection

The JobCategories collection contains Category objects that expose a SQL Server Agent job-organizing method.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Jobs Collection
Jobs Collection

 Topic last updated -- July 2003

The Jobs collection contains Job objects that reference all SQL Server Agent jobs defined on an instance of Microsoft® SQL
Server™.

Properties

Count Property

SQL-DMO (SQL Server 2000)

JobSchedules Collection
JobSchedules Collection

The JobSchedules collection contains JobSchedule objects, each referencing one execution schedule for a SQL Server Agent
job.

Properties

Count Property

SQL-DMO (SQL Server 2000)

JobSteps Collection
JobSteps Collection

The JobSteps collection contains JobStep objects defining the administrative tasks automated by a SQL Server Agent job.

Properties

Count Property

SQL-DMO (SQL Server 2000)

K

SQL-DMO (SQL Server 2000)

Keys Collection
Keys Collection

The Keys collection contains Key objects that reference referential integrity declarations that are implemented by Microsoft®
SQL Server™ PRIMARY KEY and FOREIGN KEY constraints.

Properties

Count Property

SQL-DMO (SQL Server 2000)

L

SQL-DMO (SQL Server 2000)

Languages Collection
Languages Collection

The Languages collection contains Language objects referencing the language records of an instance of Microsoft® SQL
Server™.

Properties

Count Property

SQL-DMO (SQL Server 2000)

LinkedServerLogins Collection
LinkedServerLogins Collection

The LinkedServerLogins collection contains LinkedServerLogin objects referencing Microsoft® SQL Server™ linked server
logins.

Properties

Count Property

SQL-DMO (SQL Server 2000)

LinkedServers Collection
LinkedServers Collection

The LinkedServers collection contains LinkedServer objects exposing the properties of an OLE DB data source.

Properties

Count Property

SQL-DMO (SQL Server 2000)

LogFiles Collection
LogFiles Collection

The LogFiles collection contains LogFile objects that reference operating system files that maintain the transaction log records of
a Microsoft® SQL Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

LogFiles2 Collection
LogFiles2 Collection

The LogFiles2 collection contains LogFile2 objects. These objects reference operating system files that maintain the transaction
log records of a Microsoft® SQL Server™ database. The LogFiles2 collection extends the functionality of the LogFiles collection.

Methods

Remove Method (Collections)

SQL-DMO (SQL Server 2000)

Logins Collection
Logins Collection

The Logins collection contains Login objects that reference login records that form one part of Microsoft® SQL Server™ security.

Properties

Count Property

SQL-DMO (SQL Server 2000)

M

SQL-DMO (SQL Server 2000)

MergeArticles Collection
MergeArticles Collection

The MergeArticles collection is a group of MergeArticle objects.

Methods

Add Method Refresh Method
ItemByID Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

MergeDynamicSnapshotJobs Collection
MergeDynamicSnapshotJobs Collection

The MergeDynamicSnapshotJobs collection is a group of MergeDynamicSnapshotJob objects.

Methods

Add Method Refresh Method
ItemByID Method

SQL-DMO (SQL Server 2000)

MergePublications Collection
MergePublications Collection

Methods

Add Method Remove Method (Collections)
ItemByID Method Script Method (Replication Objects)
Refresh Method

SQL-DMO (SQL Server 2000)

MergePullSubscriptions Collection
MergePullSubscriptions Collection

The MergePullSubscriptions collection is a group of MergePullSubscription objects.

Methods

Add Method Remove Method (Collections)
Refresh Method Script Method (Replication Objects)

SQL-DMO (SQL Server 2000)

MergeSubscriptions Collection
MergeSubscriptions Collection

Methods

Add Method Remove Method (Collections)
Refresh Method Script Method (Replication Objects)

SQL-DMO (SQL Server 2000)

MergeSubsetFilters Collection
MergeSubsetFilters Collection

Methods

Add Method Refresh Method
ItemByID Method Remove Method (Collections)

SQL-DMO (SQL Server 2000)

N

SQL-DMO (SQL Server 2000)

Names Collection
Names Collection

The Names collection is a string container used to manipulate a list of named objects.

Properties

Count Property

SQL-DMO (SQL Server 2000)

O

SQL-DMO (SQL Server 2000)

OperatorCategories Collection
OperatorCategories Collection

The OperatorCategories collection contains Category objects that reference a classification method for SQL Server Agent
operators.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Operators Collection
Operators Collection

The Operators collection contains Operator objects referencing SQL Server Agent operators.

Properties

Count Property

SQL-DMO (SQL Server 2000)

P

SQL-DMO (SQL Server 2000)

Properties Collection
Properties Collection

The Properties collection contains Property objects that expose the attributes of a SQL-DMO object property.

Properties

Count Property

SQL-DMO (SQL Server 2000)

R

SQL-DMO (SQL Server 2000)

RegisteredServers Collection
RegisteredServers Collection

The RegisteredServers collection contains RegisteredServer objects that expose the attributes of a single registry-listed
instance of Microsoft® SQL Server™.

Properties

Count Property

SQL-DMO (SQL Server 2000)

RegisteredSubscribers Collection
RegisteredSubscribers Collection

The RegisteredSubscribers collection contains RegisteredSubscriber objects that reference instances of Microsoft® SQL
Server™ maintained as registry entries. These objects are visible to replication as targets for Publisher-originated (push)
subscriptions.

Properties

Count Property

SQL-DMO (SQL Server 2000)

RemoteLogins Collection
RemoteLogins Collection

The RemoteLogin object exposes the properties of a single login mapping record for connections to an instance of Microsoft®
SQL Server™ that originates from another, known instance of SQL Server.

Properties

Count Property

SQL-DMO (SQL Server 2000)

RemoteServers Collection
RemoteServers Collection

The RemoteServers collection contains RemoteServer objects that expose the attributes of an instance of Microsoft® SQL
Server™ visible as a remote server.

Properties

Count Property

SQL-DMO (SQL Server 2000)

ReplicationDatabases Collection
ReplicationDatabases Collection

The ReplicationDatabases collection contains ReplicationDatabase objects that enumerate the user-defined databases.

Properties

Count Property

SQL-DMO (SQL Server 2000)

ReplicationStoredProcedures Collection
ReplicationStoredProcedures Collection

The ReplicationStoredProcedures collection contains ReplicationStoredProcedure objects that reference the user-defined
stored procedures of a Microsoft® SQL Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

ReplicationTables Collection
ReplicationTables Collection

The ReplicationTables collection contains ReplicationTable objects that reference the user-defined tables of a Microsoft® SQL
Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Rules Collection
Rules Collection

The Rules collection contains Rule objects that reference Microsoft® SQL Server™ data integrity constraints implemented as
database Rule objects.

Properties

Count Property

SQL-DMO (SQL Server 2000)

S

SQL-DMO (SQL Server 2000)

ServerGroups Collection
ServerGroups Collection

The ServerGroups collection contains ServerGroup objects that expose a classification system for the registry-maintained list of
instances of Microsoft® SQL Server™.

Properties

Count Property

SQL-DMO (SQL Server 2000)

ServerRoles Collection
ServerRoles Collection

The ServerRoles collection contains ServerRole objects that enumerate the security administration units used to configure
instance-affecting permissions.

Properties

Count Property

SQL-DMO (SQL Server 2000)

SQLServers Collection
SQLServers Collection

The SQLServers collection contains SQLServer objects created by the SQL-DMO application.

Properties

Count Property

SQL-DMO (SQL Server 2000)

StoredProcedures Collection
StoredProcedures Collection

The StoredProcedures collection contains StoredProcedure objects that reference the system and user-defined stored
procedures of a Microsoft® SQL Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

SystemDatatypes Collection
SystemDatatypes Collection

The SystemDatatypes collection contains SystemDatatype objects that enumerate the base data types of an instance of
Microsoft® SQL Server™.

Properties

Count Property

SQL-DMO (SQL Server 2000)

T

SQL-DMO (SQL Server 2000)

Tables Collection
Tables Collection

The Tables collection contains Table objects that reference the system and user-defined tables of a Microsoft® SQL Server™
database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

TargetServerGroups Collection
TargetServerGroups Collection

The TargetServerGroups collection contains TargetServerGroup objects that classify lists of multiserver administration target
servers (TSXs) referenced by the TargetServers collection.

Methods

Add Method Refresh Method
Item Method Remove Method (Collections)
ItemByID Method

SQL-DMO (SQL Server 2000)

TargetServers Collection
TargetServers Collection

The TargetServers collection contains TargetServer objects that reference multiserver administration TSX servers.

Properties

Count Property

SQL-DMO (SQL Server 2000)

TransArticles Collection
TransArticles Collection

The TransArticles collection contains TransArticle objects that reference the articles defined in a Microsoft® SQL Server™
transactional or snapshot replication publication.

Properties

Count Property

SQL-DMO (SQL Server 2000)

TransPublications Collection
TransPublications Collection

The TransPublications collection contains TransPublication objects that reference Microsoft® SQL Server™ transactional and
snapshot replication publications.

Properties

Count Property

SQL-DMO (SQL Server 2000)

TransPullSubscriptions Collection
TransPullSubscriptions Collection

The TransPullSubscriptions collection contains TransPullSubscription objects that reference Subscriber-originated (pull)
subscriptions to publications defined on other data sources.

Properties

Count Property

SQL-DMO (SQL Server 2000)

TransSubscriptions Collection
TransSubscriptions Collection

The TransSubscriptions collection contains TransSubscription objects that reference all known (nonanonymous) subscriptions
to a transactional or snapshot publication.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Triggers Collection
Triggers Collection

The Triggers collection contains Trigger objects that reference the triggers defined on a Microsoft® SQL Server™ table.

Properties

Count Property

SQL-DMO (SQL Server 2000)

U

SQL-DMO (SQL Server 2000)

UserDefinedDatatypes Collection
UserDefinedDatatypes Collection

The UserDefinedDatatypes collection contains UserDefinedDatatype objects that reference a Microsoft® SQL Server™ data
integrity mechanism called a user-defined data type.

Properties

Count Property

SQL-DMO (SQL Server 2000)

UserDefinedFunctions Collection
UserDefinedFunctions Collection

The UserDefinedFunctions collection contains UserDefinedFunction objects that reference the Microsoft® SQL Server™ user-
defined functions.

Properties

Count Property UserData Property
TypeOf Property

SQL-DMO (SQL Server 2000)

Users Collection
Users Collection

The Users collection contains User objects that reference Microsoft® SQL Server™ database user definitions.

Properties

Count Property

SQL-DMO (SQL Server 2000)

V

SQL-DMO (SQL Server 2000)

Views Collection
Views Collection

The Views collection contains View objects that reference the view tables defined in a Microsoft® SQL Server™ database.

Properties

Count Property

SQL-DMO (SQL Server 2000)

Properties
The values of SQL-DMO properties identify a specific Microsoft® SQL Server™ component. Some properties can be set, allowing
configuration of a SQL Server component. Others are read-only, providing information about a specific component.

All SQL-DMO objects expose the Parent, TypeOf, and UserData properties. Other properties may be shared by objects, but
many properties are specific to a component, clearly associating the property with a specific task or configured value of the
component.

See Also

Parent Property

UserData Property

TypeOf Property

SQL-DMO (SQL Server 2000)

A

SQL-DMO (SQL Server 2000)

Action Property (Backup)
Action Property (Backup)

The Action property controls the type of backup performed against a Microsoft® SQL Server™ database.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

Action Property (Restore)
Action Property (Restore)

The Action property specifies a restore operation target or type.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

ActiveEndDate Property
ActiveEndDate Property

The ActiveEndDate property indicates the last effective date for a schedule.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

ActiveEndTimeOfDay Property
ActiveEndTimeOfDay Property

The ActiveEndTimeOfDay property indicates the last effective time for a schedule.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

ActiveStartDate Property
ActiveStartDate Property

The ActiveStartDate property indicates the first effective date for a schedule.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

ActiveStartTimeOfDay Property
ActiveStartTimeOfDay Property

The ActiveStartTimeOfDay property indicates the first effective time for a schedule.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

AdditionalParameters Property
AdditionalParameters Property

The AdditionalParameters property is reserved for future use.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

Adsp Property
Adsp Property

The Adsp property specifies an AppleTalk (ADSP) service object name on a computer running Microsoft® SQL Server™.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

AfterTrigger Property
AfterTrigger Property

The AfterTrigger property indicates whether a trigger is an AFTER trigger.

Applies To

Trigger2 Object

SQL-DMO (SQL Server 2000)

AgentCheckupInterval Property
AgentCheckupInterval Property

The AgentCheckupInterval property specifies the default time slice for scheduled replication agent activities.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

AgentLogFile Property
AgentLogFile Property

The AgentLogFile property specifies the SQL Server Agent log path and file name.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

AgentOffload Property
AgentOffload Property

The AgentOffload property specifies whether the Merge or Distribution Agent runs on a computer other than the computer on
which the agent is created.

Applies To

MergePullSubscription2 Object TransPullSubscription2 Object
MergeSubscription2 Object TransSubscription2 Object

SQL-DMO (SQL Server 2000)

AgentOffloadServer Property
AgentOffloadServer Property

The AgentOffloadServer property specifies the network name of a computer that runs a Merge or Distribution Agent.

Applies To

MergePullSubscription2 Object TransPullSubscription2 Object
MergeSubscription2 Object TransSubscription2 Object

SQL-DMO (SQL Server 2000)

AgentsStatus Property
AgentsStatus Property

The AgentsStatus property returns a value representing, roughly, the current state of replication jobs affecting a distribution
database or providing services for a distribution Publisher.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

Alias Property
Alias Property

The Alias property identifies an alternate name for a Microsoft® SQL Server™ language.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

AllowDTS Property
AllowDTS Property

The AllowDTS property specifies whether a publication enables the Distribution Agent to use a Data Transformation Services
(DTS) package to transform data before changes are applied to a Subscriber.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

AllowIdentity Property
AllowIdentity Property

The AllowIdentity property exposes the ability of a data type to participate in a Microsoft® SQL Server™ column defined with
the identity property.

Applies To

SystemDatatype Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

AllowInteractiveResolver Property
AllowInteractiveResolver Property

The AllowInteractiveResolver property specifies whether to allow subscriptions to invoke an interactive resolver when conflicts
occur while synchronizing data with an article.

Applies To

MergeArticle2 Object

SQL-DMO (SQL Server 2000)

AllowLength Property
AllowLength Property

The AllowLength property exposes the ability to qualify a data type using a length parameter.

Applies To

SystemDatatype Object

SQL-DMO (SQL Server 2000)

AllowMergePublication Property
AllowMergePublication Property

The AllowMergePublication property returns TRUE when the referenced Microsoft® SQL Server™ database can be published
in merge replication.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

AllowNulls Property
AllowNulls Property

The AllowNulls property exposes the ability of a data type to accept NULL as a value.

Applies To

Column Object UserDefinedDatatype Object
SystemDatatype Object

SQL-DMO (SQL Server 2000)

AllowQueuedTransactions Property
AllowQueuedTransactions Property

The AllowQueuedTransactions property specifies whether a publication allows queued-transaction updates to be performed at
the Subscriber.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

AllowSynchronousTransactions Property
AllowSynchronousTransactions Property

The AllowSynchronousTransactions property configures a snapshot or transactional replication publication.

Applies To

TransPublication Object

SQL-DMO (SQL Server 2000)

AllowSyncToAlternate Property
AllowSyncToAlternate Property

The AllowSyncToAlternate property specifies whether to allow Subscribers to synchronize with an alternate Publisher. This is
especially useful for pull subscriptions.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

AltSnapshotFolder Property
AltSnapshotFolder Property

The AltSnapshotFolder property specifies an alternate path to use for snapshot file creation or application.

Applies To

MergePublication2 Object TransPublication2 Object
MergePullSubscription2 Object TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

AnsiNulls Property
AnsiNulls Property

The AnsiNulls property reports the NULL acceptance behavior for new columns.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AnsiNullsStatus Property
AnsiNullsStatus Property

The AnsiNullsStatus property returns TRUE when the database object referenced depends on a table exhibiting SQL-92 NULL
handling behavior.

Applies To

StoredProcedure Object Trigger2 Object
StoredProcedure2 Object UserDefinedFunction Object
Table2 Object View Object
Trigger Object View2 Object

SQL-DMO (SQL Server 2000)

AnsiPaddingStatus Property
AnsiPaddingStatus Property

The AnsiPaddingStatus property returns TRUE if the referenced column is defined to exhibit SQL-92 character padding
behavior.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

ApplicationName Property
ApplicationName Property

The ApplicationName property identifies the client application to Microsoft® SQL Server™.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AppRole Property
AppRole Property

The AppRole property exposes the security context for a database role.

Applies To

DatabaseRole Object

SQL-DMO (SQL Server 2000)

ArticleResolver Property
ArticleResolver Property

The ArticleResolver property identifies the COM module responsible for resolving conflicts.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

ArticleType Property
ArticleType Property

The ArticleType property indicates the method used to determine source data for replication and user-overrides of default
replication behaviors.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

AssignmentDiag Property
AssignmentDiag Property

The AssignmentDiag property enables SQL-92 standard behavior for NULL in aggregate, data truncation, divide-by-zero, and
arithmetic overflow errors.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

Attributes Property
Attributes Property

The Attributes property exposes various properties of a referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

AuditLevel Property
AuditLevel Property

The AuditLevel property exposes SQL Server Authentication logging behavior.

Applies To

IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

AutoClose Property
AutoClose Property

The AutoClose property exposes server behavior for databases not accessed by a user.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

AutoCreateStat Property
AutoCreateStat Property

The AutoCreateStat property exposes Microsoft® SQL Server™ data distribution statistics creation behavior.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

AutogenerateSyncProcedures Property
AutogenerateSyncProcedures Property

The AutogenrateSyncProcedures property configures a snapshot or transactional replication publication.

Applies To

TransPublication Object

SQL-DMO (SQL Server 2000)

AutoIdentityRange Property
AutoIdentityRange Property

The AutoIdentityRange property specifies whether to automatically assign an identity range to a table that has an identity
column and is an article in a publication that allows queued updates. The identity range is assigned at both the Publisher and
Subscriber.

Applies To

MergeArticle2 Object TransArticle2 Object

SQL-DMO (SQL Server 2000)

AutoReConnect Property
AutoReConnect Property

The AutoReConnect property controls SQLServer object behavior when the client application loses its connection to a
Microsoft® SQL Server™ installation.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AutoShrink Property
AutoShrink Property

The AutoShrink property exposes Microsoft® SQL Server™ sizing behavior for operating system files maintaining table and
index data.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

AutoStart Property
AutoStart Property

The AutoStart property exposes default agent service behavior when an operating system start occurs.

Applies To

JobServer Object SQLServer2 Object

SQL-DMO (SQL Server 2000)

AutostartDTC Property
AutostartDTC Property

The AutostartDTC property controls Microsoft® Distributed Transaction Coordinator service (MSDTC) behavior on computer
start.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

AutostartLicensing Property
AutostartLicensing Property

The AutostartLicensing property exposes license logging service behavior for Microsoft® SQL Server™.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

AutostartMail Property
AutostartMail Property

The AutostartMail property exposes the Microsoft® SQL Server™ mail startup behavior.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

AutostartServer Property
AutostartServer Property

The AutostartServer property exposes Microsoft® SQL Server™ startup behavior upon operating system start.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

AutoUpdateStat Property
AutoUpdateStat Property

The AutoUpdateStat property exposes Microsoft® SQL Server™ data distribution statistics creation behavior.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

B

SQL-DMO (SQL Server 2000)

BackupDirectory Property
BackupDirectory Property

The BackupDirectory property specifies the backup directory.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

BackupSetDescription Property
BackupSetDescription Property

The BackupSetDescription property provides descriptive or identifying text for the result of a backup operation.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

BackupSetName Property
BackupSetName Property

The BackupSetName property identifies a unit of backup work.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

BaseType Property
BaseType Property

The BaseType property exposes the system data type from which a user-defined data type has been derived.

Applies To

UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

BlockingTimeout Property
BlockingTimeout Property

The BlockingTimeout property specifies a timeout interval for resource requests that are blocked due to conflicting resource
lock requests.

Applies To

Application Object SQLServer Object

SQL-DMO (SQL Server 2000)

BlockSize Property
BlockSize Property

The BlockSize property specifies the formatting size unit for tapes formatted as part of a backup.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

C

SQL-DMO (SQL Server 2000)

CaseSensitive Property
CaseSensitive Property

The CaseSensitive property indicates the comparison method for multibyte character data on an instance of Microsoft® SQL
Server™.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

Catalog Property
Catalog Property

The Catalog property specifies the default or initial catalog for the referenced OLE DB data source definition.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

Category Property
Category Property

The Category property represents the name of a category for SQL Server Agent alerts, jobs, and operators.

Applies To

Alert Object JobFilter Object
Job Object Operator Object

SQL-DMO (SQL Server 2000)

CentralizedConflicts Property
CentralizedConflicts Property

The CentralizedConflicts property controls the distribution of conflict records for merge replication.

Applies To

MergePublication Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

CharacterSet Property
CharacterSet Property

The CharacterSet property identifies the code page used by an instance of Microsoft® SQL Server™ to interpret multibyte
character data.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

Checked Property
Checked Property

The Checked property enables or disables integrity or FOREIGN KEY constraint evaluation for an existing integrity or FOREIGN
KEY constraint.

Applies To

Check Object Key Object

SQL-DMO (SQL Server 2000)

CheckPermissions Property
CheckPermissions Property

The CheckPermissions property specifies how the permissions are checked at Publisher before a Subscriber INSERT, UPDATE, or
DELETE operation can be uploaded.

Applies To

MergeArticle2 Object

SQL-DMO (SQL Server 2000)

Clustered Property
Clustered Property

The Clustered property reports index clustering on Microsoft® SQL Server™ primary keys.

Applies To

Key Object

SQL-DMO (SQL Server 2000)

CmdExecSuccessCode Property
CmdExecSuccessCode Property

The CmdExecSuccessCode property records the process exit code of a command shell process executed as a job step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

CodePage Property
CodePage Property

The CodePage property returns the identifier of the character set used by an instance of Microsoft® SQL Server™ or is used to
interpret data for a bulk-copy operation.

Applies To

BulkCopy Object SQLServer Object

SQL-DMO (SQL Server 2000)

Collation Property
Collation Property

The Collation property returns the column-level collation of an object.

Applies To

Column2 Object SystemDataType2 Object
Database2 Object UserDefinedDataType2 Object
SQLServer2 Object

SQL-DMO (SQL Server 2000)

CollationName Property
CollationName Property

The CollationName property retrieves or sets the collation name of a linked server.

Applies To

LinkedServer2 Object

SQL-DMO (SQL Server 2000)

ColumnDelimiter Property
ColumnDelimiter Property

The ColumnDelimiter property specifies one or more characters used to delimit a row of data in a bulk copy data file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ColumnMaxLength Property
ColumnMaxLength Property

The ColumnMaxLength property exposes the maximum number of characters required to store the data of a column in the
current result set of a QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

ColumnName Property
ColumnName Property

The ColumnName property exposes a descriptive identifier for a column in the current result set of a QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

Columns Property
Columns Property

The Columns property exposes the number of columns contained in the current result set of a QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

ColumnsNullByDefault Property
ColumnsNullByDefault Property

The ColumnsNullByDefault property controls column default value behavior when a table is created in the Microsoft® SQL
Server™ database.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

ColumnTracking Property
ColumnTracking Property

The ColumnTracking property exposes conflict resolution behavior for rows of data merged through replication.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

ColumnType Property
ColumnType Property

The ColumnType property returns the base data type of a column in the current result set of a QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

Command Property
Command Property

The Command property specifies the task of a job step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

CommandOptions Property
CommandOptions Property

The CommandOptions property controls Transact-SQL statement generation and stored procedure parameter binding for data
and stored procedures replicated by the referenced transactional article.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

CommandTerminator Property
CommandTerminator Property

The CommandTerminator property specifies the Transact-SQL batch delimiter.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

CompareNull Property
CompareNull Property

The CompareNull property controls evaluation of NULL for equality.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

CompatibilityLevel Property (Database)
CompatibilityLevel Property (Database)

The CompatibilityLevel property controls the behavior of an instance of Microsoft® SQL Server™, setting behavior to match
either the current or earlier version.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CompatibilityLevel Property (MergePublication2,
TransPublication2)
CompatibilityLevel Property (MergePublication2, TransPublication2)

The CompatibilityLevel property returns a SQLDMO_REPLCOMPLEVEL_TYPE constant that indicates the feature set currently
supported by the publication.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

ComputedText Property
ComputedText Property

The ComputedText property contains the Transact-SQL expression used to generate the value of a computed column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

ConflictPolicy Property
ConflictPolicy Property

The ConflictPolicy property specifies whether the Publisher or Subscriber wins a conflict that occurs during a queued-
transaction operation.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

ConflictRetention Property
ConflictRetention Property

The ConflictRetention property specifies the conflict retention period in days.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

ConflictTable Property
ConflictTable Property

The ConflictTable property is reserved for future use.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

ConnectionID Property
ConnectionID Property

The ConnectionID is a SQL-DMO generated identifier for a connected SQLServer object.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ConnectTimeout Property
ConnectTimeout Property

The ConnectTimeout property specifies a time interval used by the Microsoft Search service when attempting a connection to an
instance of Microsoft® SQL Server™ version 7.0 enabled for full-text search.

Applies To

FullTextService Object LinkedServer2 Object

SQL-DMO (SQL Server 2000)

ContactNull Property
ContactNull Property

The ContactNull property specifies NULL value handling for catenation.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

CopyAllDefaults Property
CopyAllDefaults Property

The CopyAllDefaults property controls the transfer of Microsoft® SQL Server™ defaults from the source to the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllFunctions Property
CopyAllFunctions Property

The CopyAllFunctions property controls the transfer of Microsoft® SQL Server™ user-defined functions from the source to the
target database.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

CopyAllObjects Property
CopyAllObjects Property

The CopyAllObjects property controls the transfer of Microsoft® SQL Server™ database objects from the source to the target
database. SQL Server database objects are defaults, rules, stored procedures, tables, triggers, user-defined data types, and views.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllRules Property
CopyAllRules Property

The CopyAllRules property controls the transfer of Microsoft® SQL Server™ rules from the source to the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllStoredProcedures Property
CopyAllStoredProcedures Property

The CopyAllStoredProcedures property controls the transfer of Microsoft® SQL Server™ stored procedures from the source to
the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllTables Property
CopyAllTables Property

The CopyAllTables property controls the transfer of Microsoft® SQL Server™ table definitions from the source to the target
database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllTriggers Property
CopyAllTriggers Property

The CopyAllTriggers property controls the transfer of Microsoft® SQL Server™ triggers from the source to the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllUserDefinedDatatypes Property
CopyAllUserDefinedDatatypes Property

The CopyAllUserDefinedDatatypes property controls the transfer of Microsoft® SQL Server™ user-defined data types from the
source to the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyAllViews Property
CopyAllViews Property

The CopyAllViews property controls the transfer of Microsoft® SQL Server™ views from the source to the target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopyData Property
CopyData Property

The CopyData property controls data transfer from a source to a target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

CopySchema Property
CopySchema Property

The CopySchema property controls table creation on data transfer.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

Count Property
Count Property

The CountProperty indicates the number of items in a list or collection.

Applies To

All collections and lists.

Syntax

object.Count

object

Expression that evaluates to an object in the Applies To list

Data Type

Long

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetCount(LPLONG plConnectionID);

Remarks

The Count property is modified when items are added or removed from a collection or list, or when the Refresh method
retrieves new values from an instance of Microsoft® SQL Server™. The property always reflects the number of items currently in
the collection or list.

SQL-DMO (SQL Server 2000)

CountResetDate Property
CountResetDate Property

The CountResetDate property represents the day and time at which the SQL Server Agent alert occurrence count was reset to 0.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

CountResetTime Property
CountResetTime Property

The CountResetTime property represents the time at which the Microsoft® SQL Server™ Agent alert occurrence count was reset
to 0.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

CreateDate Property
CreateDate Property

The CreateDate property indicates the date and time the referenced SQLServer object was created.

Applies To

Database Object Table Object
DBObject Object TransactionLog Object
Default Object Trigger Object
Rule Object UserDefinedFunction Object
StoredProcedure Object View Object

SQL-DMO (SQL Server 2000)

CreateForAttach Property
CreateForAttach Property

The CreateForAttach property controls database file creation when the Database object is added to the Databases collection of
a connected SQLServer object.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CreationScriptOptions Property
CreationScriptOptions Property

The CreationScriptOptions property specifies creation attributes for database objects implementing a replication article.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

CreationScriptPath Property
CreationScriptPath Property

The CreationScriptPath property is reserved for future use.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

CurrentCompatibility Property
CurrentCompatibility Property

The CurrentCompatibility property specifies the current database compatibility level.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CurrentExecutionStatus Property
CurrentExecutionStatus Property

The CurrentExecutionStatus property filters jobs listed in the JobServer object EnumJobs method, restricting the returned
QueryResults object to list only those jobs whose execution state matches the value set.

Applies To

JobFilter Object

SQL-DMO (SQL Server 2000)

CurrentResultSet Property
CurrentResultSet Property

The CurrentResultSet property controls access to the result sets of a QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

CurrentRunRetryAttempt Property
CurrentRunRetryAttempt Property

The CurrentRunRetryAttempt property indicates the number of times SQL Server Agent has attempted job execution without
success.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

CurrentRunStatus Property
CurrentRunStatus Property

The CurrentRunStatus property returns the executing state of a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

CurrentRunStep Property
CurrentRunStep Property

The CurrentRunStep property reports the currently executing step of a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

CurrentValue Property
CurrentValue Property

The CurrentValue property specifies a configuration parameter value for a point in time.

Applies To

ConfigValue Object

SQL-DMO (SQL Server 2000)

CursorCloseOnCommit Property
CursorCloseOnCommit Property

The CursorCloseOnCommit property specifies cursor behavior when modifications made within a transaction are committed or
rolled back.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

D

SQL-DMO (SQL Server 2000)

Database Property
Database Property

The Database property identifies a Microsoft® SQL Server™ database.

Applies To

Backup Object Restore Object
Login Object

SQL-DMO (SQL Server 2000)

DatabaseFileGroups Property
DatabaseFileGroups Property

The DatabaseFileGroups property identifies filegroups targeted by a backup or restore operation.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

DatabaseFiles Property
DatabaseFiles Property

The DatabaseFiles property identifies operating system files that store table or index data as targets of a backup or restore
operation.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

DatabaseName Property
DatabaseName Property

The DatabaseName property represents the name of an existing Microsoft® SQL Server™ database. It constrains
SQLServerAgent service alerts or directs execution of SQLServerAgent job steps.

Applies To

Alert Object JobStep Object

SQL-DMO (SQL Server 2000)

DatabaseUserName Property
DatabaseUserName Property

The DatabaseUserName property exposes the execution context of a SQL Server Agent service job step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

DataFile Property
DataFile Property

The DataFile property specifies the operating system name of the primary file implementing the referenced Microsoft® SQL
Server™ replication distribution database.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

DataFilePath Property
DataFilePath Property

The DataFilePath property indicates the target or source for a Microsoft® SQL Server™ bulk copy operation.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

DataFileSize Property
DataFileSize Property

The DataFileSize property exposes the size of a Microsoft® SQL Server™ database used for replication distribution.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

DataFileType Property
DataFileType Property

Microsoft® SQL Server™ bulk copy operations can copy to or read from files containing data in a number of formats. Use the
DataFileType property to indicate the format type of the file desired or in use.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

DataFolder Property
DataFolder Property

The DataFolder property specifies the path of the operating system files implementing the referenced Microsoft® SQL Server™
replication distribution database.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

DataSource Property
DataSource Property

The DataSource property specifies the OLE DB data source part of initialization properties used by a provider to locate a data
store.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

DataSpaceUsage Property
DataSpaceUsage Property

The DataSpaceUsage property indicates the physical disk resource used to maintain the data of a database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

DataSpaceUsed Property
DataSpaceUsed Property

The DataSpaceUsed property reports the storage space, in kilobytes, used by the rows of the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

Datatype Property
Datatype Property

The Datatype property exposes the data type name for the referenced column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

DateCreated Property
DateCreated Property

The DateCreated property indicates the creation date and time of the referenced Microsoft® SQL Server™ job or job schedule.

Applies To

Job Object JobSchedule Object

SQL-DMO (SQL Server 2000)

DateFindOperand Property
DateFindOperand Property

The DateFindOperand property directs evaluation of the DateJobCreated and DateJobLastModified properties.

Applies To

JobFilter Object

SQL-DMO (SQL Server 2000)

DateJobCreated Property
DateJobCreated Property

The DateJobCreated property controls result set membership for the EnumJobs method of the JobServer object.

Applies To

JobFilter Object

SQL-DMO (SQL Server 2000)

DateJobLastModified Property
DateJobLastModified Property

The DateJobLastModified property controls result set membership for the EnumJobs method of the JobServer object.

Applies To

JobFilter Object

SQL-DMO (SQL Server 2000)

DateLastModified Property
DateLastModified Property

The DateLastModified property exposes the most recent date on which a change was applied to the referenced SQLServerAgent
job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

Day Property
Day Property

The Day property returns the text string representing the name of a day in the referenced language.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

Days Property
Days Property

The Days property identifies the names of the days of the week for a Microsoft® SQL Server™ language record.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

DboLogin Property
DboLogin Property

The DboLogin property identifies database ownership privilege for the current session.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

DBOUseOnly Property
DBOUseOnly Property

The DBOUseOnly property toggles access rights to a Microsoft® SQL Server™ database.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

DBChaining Property
DBChaining Property

 New Information - SQL Server 2000 SP3.

The DBChaining property specifies whether the user can enable or disable the ownership chaining at the database level.

Applies To

DBOption2 Object

SQL-DMO (SQL Server 2000)

DBOwner Property
DBOwner Property

The DBOwner property returns database ownership rights for the current connection for a referenced Microsoft® SQL Server™
database available for replication.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

DBReadOnly Property
DBReadOnly Property

The DBReadOnly property returns TRUE if the current Microsoft® SQL Server™ database is read-only.

Applies To

ReplicationDatabase2 Object

SQL-DMO (SQL Server 2000)

Default Property (Column, UserDefinedDatatype)
Default Property (Column, UserDefinedDatatype)

The Default property identifies a Microsoft® SQL Server™ default bound to a column or user-defined data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

Default Property (FileGroup)
Default Property (FileGroup)

The Default property indicates the filegroup used when no filegroup is specified as part of table or index creation.

Applies To

FileGroup Object

SQL-DMO (SQL Server 2000)

DefaultCursor Property
DefaultCursor Property

The DefaultCursor property controls the visibility of cursors created in Transact-SQL batches.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

DefaultDomain Property
DefaultDomain Property

The DefaultDomain property is maintained for compatibility with earlier versions of SQL-DMO.

Applies To

IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

DefaultLogin Property
DefaultLogin Property

The DefaultLogin property is maintained for compatibility with earlier versions of SQL-DMO.

Applies To

IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

DefaultOwner Property
DefaultOwner Property

The DefaultOwner property returns the name of the Microsoft® SQL Server™ database user owning the default bound to the
referenced column or user-defined data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

DefaultPath Property
DefaultPath Property

The DefaultPath property returns the operating system path naming a directory used as a root for Microsoft Search full-text
catalog implementation if no user-specified path is supplied during full-text catalog creation.

Applies To

FullTextService Object

SQL-DMO (SQL Server 2000)

DelayBetweenResponses Property
DelayBetweenResponses Property

The DelayBetweenResponses property represents the number of seconds SQLServerAgent waits before it generates another
response for an alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

DeleteCommand Property
DeleteCommand Property

The DeleteCommand property exposes the Transact-SQL script used to replicate a row delete operation in a transactional
replication article.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

DeleteLevel Property
DeleteLevel Property

The DeleteLevel property controls post-execution processing for SQLServerAgent jobs.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

DenyNTLogin Property
DenyNTLogin Property

The DenyNTLogin property controls access to an instance of Microsoft® SQL Server™ for login records that identify Microsoft
Windows NT® users or groups.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

Description Property
Description Property

The Description property specifies informational text for a Microsoft® SQL Server™ or SQLServerAgent object.

Applies To

ConfigValue Object MergeSubscription Object
DistributionArticle Object RegisteredSubscriber Object
DistributionPublication Object ServerRole Object
Job Object TransArticle Object
MergeArticle Object TransPublication Object
MergePublication Object TransPullSubscription Object
MergePullSubscription Object

SQL-DMO (SQL Server 2000)

DestDatabase Property
DestDatabase Property

The DestDatabase property specifies the transfer target database.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DestinationObjectName Property
DestinationObjectName Property

The DestinationObjectName property specifies the name of table or stored procedure created as the target of a transactional
replication article.

Applies To

MergeArticle2 Object TransArticle Object

SQL-DMO (SQL Server 2000)

DestinationOwnerName Property
DestinationOwnerName Property

The DestinationOwnerName property specifies a Microsoft® SQL Server™ user owning the table or stored procedure created
as the target of a transactional replication article.

Applies To

MergeArticle2 Object TransArticle Object

SQL-DMO (SQL Server 2000)

DestLogin Property
DestLogin Property

The DestLogin property provides a login account used to connect to a transfer target server.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DestPassword Property
DestPassword Property

The DestPassword property provides a password used to connect to a transfer target server.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DestServer Property
DestServer Property

The DestServer property identifies an instance of Microsoft® SQL Server™ that contains the target database for a transfer
operation.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DestTranslateChar Property
DestTranslateChar Property

The DestTranslateChar property performs character data translation on a destination server during a transfer operation.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

DestUseTrustedConnection Property
DestUseTrustedConnection Property

The DestUseTrustedConnection property requests Windows NT Authentication for the connection of the Transfer object to the
target server.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DeviceNumber Property
DeviceNumber Property

The DeviceNumber property is maintained for compatibility with earlier versions of SQL-DMO.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

Devices Property
Devices Property

The Devices property specifies one or more backup devices used as a database backup target or restore source.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

DistributionAgent Property
DistributionAgent Property

The DistributionAgent property returns the name of the SQLServerAgent job that starts the replication agent providing
distribution.

Applies To

DistributionSubscription Object

SQL-DMO (SQL Server 2000)

DistributionCleanupTaskName Property
DistributionCleanupTaskName Property

The DistributionCleanupTaskName property identifies the SQLServerAgent job responsible for maintenance of the database
used by the replication Distributor.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

DistributionDatabase Property
DistributionDatabase Property

The DistributionDatabase property identifies the Microsoft® SQL Server™ database used by a Distributor or
DistributionPublisher object as a workspace.

Applies To

DistributionPublisher Object Distributor Object

SQL-DMO (SQL Server 2000)

DistributionJobID Property
DistributionJobID Property

The DistributionJobID property identifies the SQLServerAgent job responsible for the distribution of published data.

Applies To

DistributionSubscription2 Object TransSubscription Object
TransPullSubscription Object

SQL-DMO (SQL Server 2000)

DistributionServer Property
DistributionServer Property

The DistributionServer property identifies an instance of Microsoft® SQL Server™ that acts as a Distributor for published data.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

DistributionWorkingDirectory Property
DistributionWorkingDirectory Property

The DistributionWorkingDirectory property specifies an operating system path naming an existing directory used by the
referenced Publisher for temporary or other file storage.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

Distributor Property
Distributor Property

The Distributor property identifies an instance of Microsoft® SQL Server™ that acts as a Distributor for replicated data.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

DistributorAvailable Property
DistributorAvailable Property

The DistributorAvailable property exposes the connected state of a replication Distributor.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

DistributorInstalled Property
DistributorInstalled Property

The DistributorInstalled property indicates that an instance of Microsoft® SQL Server™ has been configured to use a replication
Distributor.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

DistributorLocal Property
DistributorLocal Property

The DistributorLocal property indicates whether or not an instance of Microsoft® SQL Server™ is configured as, and is using
itself as, a replication Distributor.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

DropDestObjectsFirst Property
DropDestObjectsFirst Property

The DropDestObjectsFirst property manipulates Microsoft® SQL Server™ database object copying.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

DropLogins Property
DropLogins Property

The DropLogins property controls cascaded deletion of dependent linked server login records when a persisted OLE DB data
source definition is deleted.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

DTSPackageLocation Property
DTSPackageLocation Property

The DTSPackageLocation property specifies the location of a Data Transformation Services (DTS) package to be used during a
replication process.

Applies To

TransPullSubscription2 Object TransSubscription2 Object

SQL-DMO (SQL Server 2000)

DTSPackageName Property
DTSPackageName Property

The DTSPackageName property specifies a Data Transformation Services (DTS) package name to use during a replication
operation.

Applies To

TransPullSubscription2 Object TransSubscription2 Object

SQL-DMO (SQL Server 2000)

DTSPackagePassword Property
DTSPackagePassword Property

The DTSPackagePassword property specifies a Data Transformation Services (DTS) package password.

Applies To

TransPullSubscription2 Object TransSubscription2 Object

SQL-DMO (SQL Server 2000)

DynamicFilterHostName Property
DynamicFilterHostName Property

The DynamicFilterHostName property returns or sets the name of the Subscriber when connecting to the Publisher.

Applies To

MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

DynamicFilterLogin Property
DynamicFilterLogin Property

The DynamicFilterLogin property returns or sets the Subscriber login ID used when connecting to the Publisher.

Applies To

MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

DynamicFilters Property
DynamicFilters Property

The DynamicFilters property exposes filter clause interpretation for the referenced merge replication publication.

Applies To

MergePublication Object

SQL-DMO (SQL Server 2000)

DynamicReconfigure Property
DynamicReconfigure Property

The DynamicReconfigure property indicates modifiability of the configuration value.

Applies To

ConfigValue Object

SQL-DMO (SQL Server 2000)

DynamicSnapshotJobId Property
DynamicSnapshotJobId Property

The DynamicSnapshotJobID property returns the job ID used when connecting to the Publisher.

Applies To

MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

DynamicSnapshotLocation Property
DynamicSnapshotLocation Property

The DynamicSnapshotLocation property returns or sets the folder location used when connecting to the Publisher.

Applies To

MergeDynamicSnapshotJob Object MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

E

SQL-DMO (SQL Server 2000)

EmailAddress Property
EmailAddress Property

The EmailAddress property specifies an operator's e-mail address.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

EmailLevel Property
EmailLevel Property

The EmailLevel property specifies the job completion status that causes an e-mail notification to a specified operator.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

EnableBcp Property
EnableBcp Property

The EnableBcp property enables the use of BulkCopy objects on a SQLServer object.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Enabled Property
Enabled Property

The Enabled property represents the enabled/disabled state of SQL Server Agent and replication objects.

Applies To

Alert Object JobSchedule Object
DistributionPublisher Object MergePublication Object
Job Object TransPublication Object
Operator Object Trigger Object
JobFilter Object

SQL-DMO (SQL Server 2000)

EnabledForSyncMgr Property
EnabledForSyncMgr Property

The EnabledForSyncMgr property configures the referenced subscription for the mobile synchronization agent.

Applies To

MergePullSubscription Object TransPullSubscription Object
MergeSubscription Object TransSubscription Object

SQL-DMO (SQL Server 2000)

EnableMergePublishing Property
EnableMergePublishing Property

The EnableMergePublishing property enables or disables merge replication publication.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

EnableTransPublishing Property
EnableTransPublishing Property

The EnableTransPublishing property enables or disables transactional replication publication.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

Encrypted Property
Encrypted Property

The Encrypted property indicates whether the referenced stored procedure was created with encryption.

Applies To

ReplicationStoredProcedure2 Object UserDefinedFunction Object
StoredProcedure2 Object View2 Object
Trigger2 Object

SQL-DMO (SQL Server 2000)

EndRunDate Property
EndRunDate Property

The EndRunDate property specifies the most recent execution date of a SQL Server Agent job.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

EndRunTime Property
EndRunTime Property

The EndRunTime property specifies the most recent execution time of a SQL Server Agent job.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

EnlistDate Property
EnlistDate Property

The EnlistDate property returns the date and time at which an instance of Microsoft® SQL Server™ became a member of the
multiserver administration group.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

ErrorFilePath Property
ErrorFilePath Property

The ErrorFilePath property specifies the full path and full file name of a bulk copy operation error log file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ErrorLogPath Property
ErrorLogPath Property

The ErrorLogPath property specifies the operating system path and file name of the Microsoft® SQL Server™ error log.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

ErrorLogSize Property
ErrorLogSize Property

The ErrorLogSize property returns the size, in bytes, of a Microsoft Search full-text catalog error log.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

EventCategoryID Property
EventCategoryID Property

The EventCategoryID property is reserved for future use.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

EventDescriptionKeyword Property
EventDescriptionKeyword Property

The EventDescriptionKeyword property restricts SQL Server Agent alert firing.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

EventID Property
EventID Property

The EventID property is reserved for future use.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

EventlogLevel Property
EventlogLevel Property

The EventlogLevel property specifies the job completion status that causes an operating system log entry on job completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

EventSource Property
EventSource Property

The EventSource property is reserved for future use.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

ExcludeReplication Property
ExcludeReplication Property

The ExcludeReplication property controls integrity and FOREIGN KEY constraint enforcement when replicated data is inserted
into the columns on which the constraint is defined.

Applies To

Check Object Key Object

SQL-DMO (SQL Server 2000)

ExpirationDate Property
ExpirationDate Property

The ExpirationDate property specifies the last valid date for the backup data.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

ExportWideChar Property
ExportWideChar Property

The ExportWideChar property controls character set used in the data file when creating a data file using the ExportData
method of the Table and View object.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

F

SQL-DMO (SQL Server 2000)

FailSafeOperator Property
FailSafeOperator Property

The FailSafeOperator property specifies an operator to notify when no other operator is defined or available on SQL Server
Agent alert notification.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

FakeSystemTable Property
FakeSystemTable Property

The FakeSystemTable property returns TRUE when the Table object references a Microsoft® SQL Server™ system-defined table
not implemented as a base or view table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

FileGroup Property
FileGroup Property

The FileGroup property identifies the filegroup used to store Microsoft® SQL Server™ table or index data.

Applies To

Index Object Table Object
Key Object

SQL-DMO (SQL Server 2000)

FileGrowth Property
FileGrowth Property

The FileGrowth property specifies the growth increment of the operating system file used to store table, index, or log data.

Applies To

DBFile Object LogFile Object

SQL-DMO (SQL Server 2000)

FileGrowthInKB Property
FileGrowthInKB Property

The FileGrowthInKB property reports the number of kilobytes of disk space allocated when an incremental increase occurs on an
operating system file.

Applies To

DBFile Object LogFile Object

SQL-DMO (SQL Server 2000)

FileGrowthType Property
FileGrowthType Property

The FileGrowthType property specifies the method of incremental allocation applied when an operating system file is extended.

Applies To

DBFile Object LogFile Object

SQL-DMO (SQL Server 2000)

FileNumber Property
FileNumber Property

The FileNumber property identifies a backup set by ordinal location on the backup medium.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

Files Property
Files Property

The Files property specifies one or more operating system files used as a database backup target or restore source.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

FillFactor Property
FillFactor Property

The FillFactor property exposes the percent of each page used to store index data when the index is created.

Applies To

Index Object Key Object

SQL-DMO (SQL Server 2000)

FilterClause Property
FilterClause Property

The FilterClause property specifies a Transact-SQL WHERE clause used to filter row data published in the article.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

FirstDayOfWeek Property
FirstDayOfWeek Property

The FirstDayOfWeek property returns the calendar start day of the week for a language record.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

FirstRow Property
FirstRow Property

The FirstRow property is an ordinal value that defines the starting point for a bulk data copy.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

Flags Property
Flags Property

The Flags property is reserved for future use.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

FormatFilePath Property
FormatFilePath Property

The FormatFilePath property exposes the path and file name of a bulk-copy format file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

FormatMedia Property
FormatMedia Property

The FormatMedia property controls tape formatting on a backup operation.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

ForwardAlways Property
ForwardAlways Property

The ForwardAlways property controls event forwarding for SQL Server Agent.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

ForwardingServer Property
ForwardingServer Property

The ForwardingServer property identifies an instance of Microsoft® SQL Server™ that will receive forwarded events.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

ForwardingSeverity Property
ForwardingSeverity Property

The ForwardingSeverity property restricts forwarded events by the severity of the error generating the event.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

FrequencyInterval Property
FrequencyInterval Property

The FrequencyInterval property defines the most significant portion of a Microsoft® SQL Server™ schedule for daily, weekly, or
monthly schedules.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

FrequencyRecurrenceFactor Property
FrequencyRecurrenceFactor Property

The FrequencyRecurrenceFactor property controls evaluation of the most significant portion of a Microsoft® SQL Server™
schedule.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

FrequencySubDay Property
FrequencySubDay Property

The FrequencySubDay property specifies the unit for the least significant portion of a scheduled activity.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

FrequencySubDayInterval Property
FrequencySubDayInterval Property

The FrequencySubDayInterval property specifies the number of units elapsed between one scheduled activity and a second
occurrence of the same activity.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

FrequencyType Property
FrequencyType Property

The FrequencyType property specifies the unit for the most significant portion of a Schedule object.

Applies To

Schedule Object

SQL-DMO (SQL Server 2000)

FTPAddress Property
FTPAddress Property

The FTPAddress property exposes the address of an FTP server that maintains synchronization images of a Microsoft® SQL
Server™ publication.

Applies To

MergePublication2 Object TransPublication2 Object
MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

FTPLogin Property
FTPLogin Property

The FTPLogin property exposes the security account used to connect to an FTP server that maintains replication subscription
synchronization images.

Applies To

MergePublication2 Object TransPublication2 Object
MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

FTPPassword Property
FTPPassword Property

The FTPPassword property sets authentication data for the security account used to connect to an FTP server that maintains
replication subscription synchronization images.

Applies To

MergePublication2 Object TransPublication2 Object
MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

FTPPort Property
FTPPort Property

The FTPAddress property exposes the port of an FTP server that maintains synchronization images of a Microsoft® SQL Server™
publication.

Applies To

MergePublication2 Object TransPublication2 Object
MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

FTPSubdirectory Property
FTPSubdirectory Property

The FTPSubdirectory property specifies the FTP subdirectory where Internet-enabled snapshot files are stored before they are
downloaded.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

FullName Property
FullName Property

The FullName property returns descriptive data about an Application or ServerRole object.

Applies To

Application Object ServerRole Object

SQL-DMO (SQL Server 2000)

FullSubscription Property
FullSubscription Property

The FullSubscription property returns a high-level indication of Subscriber interest in a publication.

Applies To

TransSubscription Object

SQL-DMO (SQL Server 2000)

FullTextCatalogID Property
FullTextCatalogID Property

The FullTextCatalogID property returns a system-generated integer uniquely that identifies a Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

FullTextCatalogName Property
FullTextCatalogName Property

The FullTextCatalogName property specifies the Microsoft Search full-text catalog that supports full-text query for the
referenced Table object.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

FullTextColumnLanguageID Property
FullTextColumnLanguageID Property

The FullTextColumnLanguageID property returns the language identifier if a column is a full-text column.

Applies To

Column2 Object

SQL-DMO (SQL Server 2000)

FullTextImageColumnType Property
FullTextImageColumnType Property

The FullTextImageColumnType property returns the data type of an image column to be used in a full-text index.

Applies To

Column2 Object

SQL-DMO (SQL Server 2000)

FullTextIndex Property
FullTextIndex Property

The FullTextIndex property identifies those tables and columns participating in Microsoft Search full-text queries.

Applies To

Column Object Table Object

SQL-DMO (SQL Server 2000)

FullTextIndexActive Property
FullTextIndexActive Property

The FullTextIndexActive property controls Microsoft Search service activity for a table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

FullTextIndexSize Property
FullTextIndexSize Property

The FullTextIndexSize property returns the size, in megabytes, of the referenced Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

FullTextKeyColumn Property
FullTextKeyColumn Property

The FullTextKeyColumn property returns the identifier of the column selected for row identification for Microsoft Search.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

FullTextPopulateStatus Property
FullTextPopulateStatus Property

The FullTextPopulateStatus property returns the population state of a Microsoft Search full-text table.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

G

SQL-DMO (SQL Server 2000)

Get Property
Get Property

The Get property returns TRUE when the application can extract the value of the referenced object property.

Applies To

Property Object

SQL-DMO (SQL Server 2000)

Granted Property
Granted Property

The Granted property reports the access right of a user or login to the object referenced by the Permission object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

GrantedGranted Property
GrantedGranted Property

The GrantedGranted property reports the access right of a user or login to the object referenced by the Permission2 object.

Applies To

Permission2 Object

SQL-DMO (SQL Server 2000)

Grantee Property
Grantee Property

The Grantee property reports the database user, login, or database role granted or denied access.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

GroupID Property
GroupID Property

The GroupID property returns a system-generated, long integer that uniquely identifies a multiserver administration, target
server group.

Applies To

TargetServerGroup Object

SQL-DMO (SQL Server 2000)

GroupRegistrationServer Property
GroupRegistrationServer Property

Applies To

Application Object

SQL-DMO (SQL Server 2000)

GroupRegistrationVersion Property
GroupRegistrationVersion Property

The GroupRegistrationVersion property is reserved for future use.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

H

SQL-DMO (SQL Server 2000)

HasBigIntColumn Property
HasBigIntColumn Property

The HasBigIntColumn property returns TRUE if the referenced table has a bigint column.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasBigIntIdentityColumn Property
HasBigIntIdentityColumn Property

The HasBigIntIdentityColumn property returns TRUE if the referenced table has a bigint identity column.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasClusteredIndex Property
HasClusteredIndex Property

The HasClusteredIndex property returns TRUE when a clustered index is defined on the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

HasDBAccess Property
HasDBAccess Property

The HasDBAccess property reports whether a user has explicit permissions to access a database.

Applies To

User Object

SQL-DMO (SQL Server 2000)

HasFullTextIndexedTables Property
HasFullTextIndexedTables Property

The HasFullTextIndexedTables property reports Microsoft Search full-text catalog use.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

HasGuidColumn Property
HasGuidColumn Property

The HasGuidColumn property reports the presence of a globally unique identifier column in the replicated table.

Applies To

ReplicationTable Object

SQL-DMO (SQL Server 2000)

HasIdentityColumn Property
HasIdentityColumn Property

The HasIdentityColumn property specifies whether a table has an identity column.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasIdentityNotForReplColumn Property
HasIdentityNotForReplColumn Property

The HasIdentityNotForReplColumn property specifies whether a table has an identity column with the NOT FOR REPLICATION
option set.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasIndex Property
HasIndex Property

The HasIndex property returns TRUE if at least one index, clustered or nonclustered, is defined on the referenced Microsoft® SQL
Server™ table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

HasNotification Property
HasNotification Property

The HasNotification property returns the number of SQL Server Agent operators assigned to receive notification for an alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

HasPrimaryKey Property
HasPrimaryKey Property

The HasPrimaryKey property returns TRUE if the referenced table has a PRIMARY KEY constraint defined on a column.

Applies To

ReplicationTable Object

SQL-DMO (SQL Server 2000)

HasRemoteDistributionPublisher Property
HasRemoteDistributionPublisher Property

The HasRemoteDistributionPublisher property returns TRUE when an instance of Microsoft® SQL Server™ acts as a
Distributor for data replicated (published) by at least one other organization data source.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

HasRowVersionColumn Property
HasRowVersionColumn Property

The HasRowVersionColumn property specifies whether a table has a column named msrepl_tran_version.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasSchedule Property
HasSchedule Property

The HasSchedule property reports whether a schedule exists for a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

HasServer Property
HasServer Property

The HasServer property reports the presence of a target server for a job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

HasSQLVariantColumn Property
HasSQLVariantColumn Property

The HasSQLVariantColumn property returns TRUE if the referenced table has a sql_variant column.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

HasStep Property
HasStep Property

The HasStep property reports the presence of at least one job step for the job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

HasSubscription Property
HasSubscription Property

The HasSubscription property is TRUE when a subscription is visible to the referenced publication.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

HasTimeStampColumn Property
HasTimeStampColumn Property

The HasPrimaryKey property returns TRUE when the referenced table has at least one column defined on the Microsoft® SQL
Server™ data type timestamp.

Applies To

ReplicationTable Object

SQL-DMO (SQL Server 2000)

HistoryCleanupTaskName Property
HistoryCleanupTaskName Property

The HistoryCleanupTaskName property returns the name of a SQL Server Agent job responsible for cleaning the replication
distribution history tables.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

HistoryRetention Property
HistoryRetention Property

The HistoryRetention property specifies the number of hours to maintain replication distribution history data.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

HostName Property
HostName Property

The HostName property reports the network name of the client hosting the SQL-DMO application.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

I

SQL-DMO (SQL Server 2000)

ID Property
ID Property

The ID property exists for Microsoft® SQL Server™ database, agent, and replication components with defined identifiers.

Applies To

Alert Object MergePublication Object
Category Object MergeSubsetFilter Object
Column Object Operator Object
ConfigValue Object RemoteServer Object
Database Object ReplicationTable2 Object
DBFile Object Rule Object
DBObject Object StoredProcedure Object
Default Object Table Object
DistributionArticle Object TransArticle Object
DistributionPublication Object TransPublication Object
FileGroup Object Trigger Object
Index Object User Object
Language Object UserDefinedDatatype Object
LogFile Object UserDefinedFunction Object
MergeArticle Object View Object

SQL-DMO (SQL Server 2000)

ID Property (DistributionArticle2)
ID Property (DistributionArticle2)

The ID property exists for Microsoft® SQL Server™ replication components with defined identifiers. It is a read/write property
when used with the DistributionArticle2 object.

Applies To

DistributionArticle2 Object

Syntax

object.ID [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

Data Type

Long

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetID(LPLONG pRetVal);

HRESULT SetID(LONG lNewValue);

Remarks

The ID property of the DistributionArticle2 object is designed to allow an application to set a user-defined distribution article ID
when creating a third-party article. The ID must be unique, or an error occurs.

Note ID can be set only with instances of SQL Server 2000. However, the value of ID can be retrieved with SQL Server 2000 and
SQL Server version 7.0.

SQL-DMO (SQL Server 2000)

Identity Property
Identity Property

The Identity property exposes the Microsoft® SQL Server™ row identity property of a column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

IdentityIncrement Property
IdentityIncrement Property

The IdentityIncrement property exposes the value Microsoft® SQL Server™ adds to the maximum existing row identity value as
it generates the next identity value.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

IdentityRangeThreshold Property
IdentityRangeThreshold Property

The IdentityRangeThreshold property specifies when to assign a new range of values to an identity column at a Publisher or
Subscriber.

Applies To

MergeArticle2 Object TransArticle2 Object

SQL-DMO (SQL Server 2000)

IdentitySeed Property
IdentitySeed Property

The IdentitySeed property exposes the initial row value for an identity column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

Impersonate Property
Impersonate Property

The Impersonate property specifies 4.0 or Microsoft® Windows 2000 login credential use for connections attempted by the
referenced OLE DB data source user.

Applies To

LinkedServerLogin Object

SQL-DMO (SQL Server 2000)

ImpersonateClient Property
ImpersonateClient Property

The ImpersonateClient property exposes the security context for nonadministrative users executing xp_cmdshell.

Applies To

IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

ImportRowsPerBatch Property
ImportRowsPerBatch Property

The ImportRowsPerBatch property specifies the number of rows contained in a bulk copy transaction.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

InActiveDirectory Property
InActiveDirectory Property

The InActiveDirectory property specifies whether the referenced publication is represented as an object in Microsoft® Active
Directory™.

Applies To

MergePublication2 Object TransPublication2 Object

Syntax

object.InActiveDirectory [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

TRUE or FALSE

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetInActiveDirectory(LPBOOL pRetVal);

HRESULT SetInActiveDirectory(BOOL NewValue);

Remarks

This property gives user a way to make a subset of publication properties available to Active Directory so that other users may
find this publication using Microsoft Windows® Active Directory Services on the Windows® 2000 operating system. Using Active
Directory, you can search publication objects to view or retrieve properties of a Publication object. When a publication property
is changed, it is reflected in Active Directory if InActiveDirectory property is set to TRUE, and if the publication property is
included in the subset of properties available to Active Directory. However, users are not advised to change publication properties
directly using Active Directory. Instead, set InActiveDirectory to TRUE to make a subset of this publication's properties available
to Active Directory.

Note If an application calls InActiveDirectory on an instance of Microsoft SQL Server™ version 7.0, the constant,
SQLDMO_E_SQL80ONLY, and the message "This property or method requires Microsoft SQL Server 2000" are returned.

SQL-DMO (SQL Server 2000)

InAlter Property
InAlter Property

The InAlter property reports the change mode of a Table object.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

IncludeDB Property
IncludeDB Property

The IncludeDB property specifies whether to create a database on the destination server during a data transfer operation.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

IncludeDependencies Property
IncludeDependencies Property

The IncludeDependencies property controls the addition of dependent database objects to a user-defined list of Microsoft®
SQL Server™ database objects in a transfer operation.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

IncludeEventDescription Property
IncludeEventDescription Property

The IncludeEventDescription property indicates response notifications that receive alert error text when a SQL Server Agent
builds a notification message for an alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

IncludeIdentityValues Property
IncludeIdentityValues Property

The IncludeIdentityValues property controls the handling of existing values for a column with the Microsoft® SQL Server™
identity property when data is copied to the SQL Server table.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

IncludeLogins Property
IncludeLogins Property

The IncludeLogins property controls handling of system administrator-created logins in a transfer operation.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

IncludeUsers Property
IncludeUsers Property

The IncludeUsers property controls handling of Microsoft® SQL Server™ database user records in a transfer operation.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

IndexedColumns Property
IndexedColumns Property

The IndexedColumns property defines the list of columns participating in a Microsoft® SQL Server™ index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

IndexOnTable Property
IndexOnTable Property

The IndexOnTable property specifies whether an index is defined for a table or a view.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

IndexSpaceUsage Property
IndexSpaceUsage Property

The IndexSpaceUsage property returns the number of kilobytes assigned to index storage within all operating system files
maintaining indexes for the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

IndexSpaceUsed Property
IndexSpaceUsed Property

The IndexSpaceUsed property returns the number of kilobytes of disk space used to store indexes built on the referenced
Microsoft® SQL Server™ table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

Initialize Property
Initialize Property

The Initialize property controls backup device append and overwrite behavior for a backup to one or more specified devices.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

InPrimaryKey Property
InPrimaryKey Property

The InPrimaryKey property exposes primary key participation for a Microsoft® SQL Server™ column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

InsertCommand Property
InsertCommand Property

The InsertCommand property specifies record insert when new rows in the source are published to article Subscribers.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

InstanceName Property
InstanceName Property

The InstanceName property returns the name of an instance of Microsoft® SQL Server™.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

InsteadOfTrigger Property
InsteadOfTrigger Property

The InsteadOfTrigger property indicates whether a trigger is an INSTEAD OF trigger.

Applies To

Trigger2 Object

SQL-DMO (SQL Server 2000)

Isbulkadmin Property
Isbulkadmin Property

The Isbulkadmin property reports membership in the fixed server role bulkadmin for the SQL-DMO connection.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

IsClustered Property
IsClustered Property

The IsClustered property specifies whether a server is a clustered server.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

IsComputed Property
IsComputed Property

The IsComputed property reports whether the Column object references a computed Microsoft® SQL Server™ column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

Isdb_accessadmin Property
Isdb_accessadmin Property

The Isdb_accessadmin property reports membership in the fixed database role db_accessadmin for the SQL-DMO connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_backupoperator Property
Isdb_backupoperator Property

The Isdb_backupoperator property reports membership in the fixed database role db_backupoperator for the SQL-DMO
connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_datareader Property
Isdb_datareader Property

The Isdb_datareader property reports membership in the fixed database role db_datareader for the SQL-DMO connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_datawriter Property
Isdb_datawriter Property

The Isdb_datawriter property reports membership in the fixed database role db_datawriter for the SQL-DMO connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_ddladmin Property
Isdb_ddladmin Property

The Isdb_ddladmin property reports membership in the fixed database role db_ddladmin for the SQL-DMO connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_denydatareader Property
Isdb_denydatareader Property

The Isdb_denydatareader property reports membership in the fixed database role db_denydatareader for the SQL-DMO
connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_denydatawriter Property
Isdb_denydatawriter Property

The Isdb_denydatawriter property reports membership in the fixed database role db_denydatawriter for the SQL-DMO
connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_owner Property
Isdb_owner Property

The Isdb_owner property reports membership in the fixed database role db_owner for the SQL-DMO connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdb_securityadmin Property
Isdb_securityadmin Property

The Isdb_securityadmin property reports membership in the fixed database role db_securityadmin for the SQL-DMO
connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Isdbcreator Property
Isdbcreator Property

The Isdbcreator property reports membership in the fixed server role dbcreator for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsDeleted Property
IsDeleted Property

The IsDeleted property indicates whether the referenced object has been deleted from an instance of Microsoft® SQL Server™.

Applies To

Database2 Object Table2 Object
DatabaseRole2 Object Trigger2 Object
Default2 Object User2 Object
Login2 Object UserDefinedDataType2 Object
Rule2 Object UserDefinedFunction Object
StoredProcedure2 Object View2 Object

Syntax

object.IsDeleted

Parts

object

Expression that evaluates to an object in the Applies To list

value

TRUE or FALSE

Data Type

Boolean

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetIsDeleted(LPBOOL pRetVal);

Remarks

If a client session creates an object using SQL-DMO, and another client session subsequently deletes the object using another tool
(for example, SQL Query Analyzer), the SQL-DMO application is unaware of the deletion. For example, if a SQL-DMO application
creates a Tables collection that contains the CustReport table, and another application subsequently deletes the CustReport table,
the CustReport table remains in the SQL-DMO internal cache until the SQL-DMO application refreshes the Tables collection by
calling the Refresh method. Until the internal cache is refreshed, if the SQL-DMO application calls the properties or methods of
the CustReport Table object, SQL-DMO attempts to access the deleted table.

A SQL-DMO application can use the IsDeleted property to verify the existence of the object without calling the Refresh method,
which requires a round trip from the computer running the application to the instance of Microsoft® SQL Server™, and then
refreshes the entire collection of objects.

IsDeleted returns TRUE the object has been deleted from the server. However, IsDeleted does not clean up the SQL-DMO
internal cache. The application must call the Refresh method to perform the cleanup process.

Note IsDeleted can be used with SQL Server 2000 and SQL Server version 7.0.

See Also

IsObjectDeleted Method

SQL-DMO (SQL Server 2000)

IsDeterministic Property
IsDeterministic Property

The IsDeterministic property specifies whether a user-defined function is a deterministic function.

Applies To

UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

Isdiskadmin Property
Isdiskadmin Property

The Isdiskadmin property reports membership in the fixed server role diskadmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsDistributionPublisher Property
IsDistributionPublisher Property

The IsDistributionPublisher property returns TRUE when an instance of Microsoft® SQL Server™, configured as a replication
Distributor, is also a Publisher of replicated data.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

IsFullTextEnabled Property
IsFullTextEnabled Property

The IsFullTextEnabled property is TRUE when the referenced database is selected for participation in Microsoft Search full-text
queries.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

IsFullTextInstalled Property
IsFullTextInstalled Property

The IsFullTextInstalled property returns TRUE when the Microsoft Search service is successfully installed on an instance of
Microsoft® SQL Server™.

Applies To

FullTextService Object

SQL-DMO (SQL Server 2000)

IsFullTextKey Property
IsFullTextKey Property

The IsFullTextKey property identifies the index used by Microsoft Search to support row identification.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

IsNumeric Property
IsNumeric Property

The IsNumeric property is TRUE if the system data type referenced is an exact, numeric data type.

Applies To

SystemDatatype Object

SQL-DMO (SQL Server 2000)

IsOnComputed Property
IsOnComputed Property

The IsOnComputed property indicates whether any column in an index is a computed column.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

Isprocessadmin Property
Isprocessadmin Property

The Isprocessadmin property reports membership in the fixed server role processadmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsRowGuidCol Property
IsRowGuidCol Property

The IsRowGuidCol property identifies the column used as the globally unique identifier (GUID) for rows in a Microsoft® SQL
Server™ table.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

IsSchemaBound Property
IsSchemaBound Property

The IsSchemaBound property indicates whether a view is schema bound.

Applies To

UserDefinedFunction Object View2 Object

SQL-DMO (SQL Server 2000)

Issecurityadmin Property
Issecurityadmin Property

The Issecurityadmin property reports membership in the fixed server role securityadmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Isserveradmin Property
Isserveradmin Property

The Isserveradmin property reports membership in the fixed server role serveradmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Issetupadmin Property
Issetupadmin Property

The Issetupadmin property reports membership in the fixed server role setupadmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Issysadmin Property
Issysadmin Property

The Issysadmin property reports membership in the fixed server role sysadmin for the SQL-DMO connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsVariableLength Property
IsVariableLength Property

The IsVariableLength property specifies data length representation handling for a data type.

Applies To

SystemDatatype Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

ItemCount Property
ItemCount Property

The ItemCount property returns the number of entries contained in a Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

J

SQL-DMO (SQL Server 2000)

JobID Property
JobID Property

The JobID property is a string representing the unique identifier of a SQL Server Agent job.

Applies To

Alert Object JobHistoryFilter Object
Job Object

SQL-DMO (SQL Server 2000)

JobName Property
JobName Property

The JobName property is a string identifying a Microsoft® SQL Server™ 2000 Agent job.

Applies To

Alert Object JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

JoinArticleName Property
JoinArticleName Property

The JoinArticleName property identifies a source article for some types of merge replication horizontal partitioning.

Applies To

MergeSubsetFilter Object

SQL-DMO (SQL Server 2000)

JoinFilterClause Property
JoinFilterClause Property

The JoinFilterClause property specifies query construction when the content of one article participating in merge replication
depends on content in a second article.

Applies To

MergeSubsetFilter Object

SQL-DMO (SQL Server 2000)

JoinUniqueKey Property
JoinUniqueKey Property

The JoinUniqueKey property configures join clause interpretation for merge replication articles horizontally partitioned by
criteria established in a second article.

Applies To

MergeSubsetFilter Object

SQL-DMO (SQL Server 2000)

K

SQL-DMO (SQL Server 2000)

KeepPartitionChanges Property
KeepPartitionChanges Property

The KeepPartitionChanges property specifies whether a Publisher retains information about what data a Subscriber owns in a
horizontally partitioned merge replication topology.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

KeepReplication Property
KeepReplication Property

The KeepReplication property indicates whether to maintain a replication configuration during a restore operation.

Applies To

Restore2 Object

Syntax

object.KeepReplication [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

TRUE or FALSE

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetKeepReplication(LPBOOL pRetVal);

HRESULT SetKeepReplication(BOOL NewValue);

Remarks

If the KeepReplication property is set to TRUE, a replication configuration is retained during a database restore operation.
KeepReplication is set to FALSE by default.

Note If an application calls KeepReplication on an instance of SQL Server version 7.0, the operation is ignored.

SQL-DMO (SQL Server 2000)

L

SQL-DMO (SQL Server 2000)

LangDateFormat Property
LangDateFormat Property

The LangDateFormat property is a three-character string describing the position of the day, month, and year members of a date.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

Language Property
Language Property

The Language property exposes the language used by an instance of Microsoft® SQL Server™ 2000 or a login.

Applies To

Login Object SQLServer Object

SQL-DMO (SQL Server 2000)

LanguageAlias Property
LanguageAlias Property

The LanguageAlias property returns a friendly name for a language used by a Microsoft® SQL Server™ 2000 login.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

LastBackup Property
LastBackup Property

The LastBackup property identifies the most recent date and time at which a backup operation was performed against the
referenced transaction log.

Applies To

TransactionLog Object

SQL-DMO (SQL Server 2000)

LastDistributionDate Property
LastDistributionDate Property

The LastDistributionDate property returns the date and time when the last transaction was applied.

Applies To

TransPullSubscription Object

SQL-DMO (SQL Server 2000)

LastDistributionStatus Property
LastDistributionStatus Property

The LastDistributionStatus property returns the current status of the distribution agent synchronizing the referenced
subscription.

Applies To

TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastDistributionSummary Property
LastDistributionSummary Property

The LastDistributionSummary property returns a string describing the current status of the distribution agent synchronizing
the referenced subscription.

Applies To

TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastDistributionSummaryTime Property
LastDistributionSummaryTime Property

The LastDistributionSummaryTime property returns the date and time when the last synchronization summary text was
logged by the Distribution Agent.

Applies To

TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastEmailDate Property
LastEmailDate Property

The LastEmailDate property identifies the most recent date and time that the referenced operator received alert notification by
e-mail.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastEmailTime Property
LastEmailTime Property

The LastEmailTime property identifies the most recent time that the referenced operator received alert notification by e-mail.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastMergedStatus Property
LastMergedStatus Property

The LastMergedStatusproperty returns the current status of the merge agent synchronizing the referenced subscription.

Applies To

MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastMergedSummary Property
LastMergedSummary Property

The LastMergedSummary property returns a string describing the current status of the merge agent synchronizing the
referenced subscription.

Applies To

MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastMergedTime Property
LastMergedTime Property

The LastMergedTime property returns the last time a merge replication operation occurred between the Publisher and the
Subscriber.

Applies To

MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

LastNetSendDate Property
LastNetSendDate Property

The LastNetSendDate property identifies the most recent date on which the referenced operator received alert notification by
network pop-up message.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastNetSendTime Property
LastNetSendTime Property

The LastNetSendTime property identifies the most recent time at which the referenced operator received alert notification by
network pop-up message.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastOccurrenceDate Property
LastOccurrenceDate Property

The LastOccurrenceDate property identifies the most recent date on which a SQL Server Agent alert was raised.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

LastOccurrenceTime Property
LastOccurrenceTime Property

The LastOccurrenceTime property identifies the most recent time at which SQLServerAgent raised the referenced alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

LastPageDate Property
LastPageDate Property

The LastPageDate property identifies the most recent date and time at which the referenced operator received alert notification
by paging.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastPageTime Property
LastPageTime Property

The LastPageDate identifies the most recent time at which the referenced operator received alert notification by paging.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

LastPollDate Property
LastPollDate Property

The LastPollDate property identifies the most recent date and time at which the referenced target server successfully connected
to its master server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

LastResponseDate Property
LastResponseDate Property

The LastResponseDate property identifies the most recent date on which SQLServerAgent generated a notification for a raised
alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

LastResponseTime Property
LastResponseTime Property

The LastResponseTime property represents the most recent time at which SQLServerAgent generated a response to a raised
alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

LastRestore Property
LastRestore Property

The LastRestore property identifies the last transaction log unit in a chain of log backups.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

LastRow Property
LastRow Property

The LastRow property is an ordinal value defining the end point for a bulk data copy.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

LastRunDate Property
LastRunDate Property

The LastRunDate property exposes the most recent date on which a referenced job or job step executed.

Applies To

Job Object JobStep Object

SQL-DMO (SQL Server 2000)

LastRunDuration Property
LastRunDuration Property

The LastRunDuration property identifies the length of time, in seconds, required to execute the referenced job step on its most
recent run date and time.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

LastRunOutcome Property
LastRunOutcome Property

The LastRunOutcome property returns the execution completion status of the job or job step for the most recent execution
attempt.

Applies To

Job Object JobStep Object

SQL-DMO (SQL Server 2000)

LastRunRetries Property
LastRunRetries Property

The LastRunRetries property returns the number of times SQLServerAgent attempted execution of the referenced job step on
the last execution of the step-containing job.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

LastRunTime Property
LastRunTime Property

The LastRunTime property identifies the most recent time at which SQLServerAgent attempted execution of the referenced job
or job step.

Applies To

Job Object JobStep Object

SQL-DMO (SQL Server 2000)

Length Property
Length Property

The Length property specifies the maximum number of characters or bytes accepted by the referenced column or user-defined
data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

LoadHistory Property
LoadHistory Property

The LoadHistory property configures Restore object action when the object is used to verify the integrity of a Microsoft® SQL
Server™ 2000 backup.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

LocalLogin Property
LocalLogin Property

The LocalLogin property identifies a Microsoft® SQL Server™ 2000 login mapped by a linked server login to authentication data
used for connection to a linked server.

Applies To

LinkedServerLogin Object

SQL-DMO (SQL Server 2000)

LocalName Property
LocalName Property

The LocalName property identifies a Microsoft® SQL Server™ 2000 login record used by a second server for privilege
determination.

Applies To

RemoteLogin Object

SQL-DMO (SQL Server 2000)

LocalTime Property
LocalTime Property

The LocalTime property identifies the current date and time for the referenced target server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

Location Property (LinkedServer)
Location Property (LinkedServer)

The Location property specifies the OLE DB location part of initialization properties used by a provider to locate a data store.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

Location Property (TargetServer)
Location Property (TargetServer)

The Location property is a text string describing the physical location of the referenced target server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

LogFile Property
LogFile Property

The LogFile property identifies the operating system file maintaining Microsoft® SQL Server™ 2000 database transaction log
records.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

LogFilePath Property
LogFilePath Property

The LogFilePath property specifies the full operating system path and file name for a bulk copy log file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

LogFileSize Property
LogFileSize Property

The LogFileSize property exposes the size of the operating system file used to maintain transaction log records for the
Microsoft® SQL Server™ 2000 database referenced.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

LogFolder Property
LogFolder Property

The LogFolder property identifies the operating system directory storing the file that maintains Microsoft® SQL Server™ 2000
database transaction log records.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

Login Property
Login Property

The Login property exposes the name of a Microsoft® SQL Server™ 2000 login record.

Applies To

RegisteredServer Object User Object
SQLServer Object

SQL-DMO (SQL Server 2000)

LoginSecure Property
LoginSecure Property

The LoginSecure property directs authentication mode use when the application attempts to use the Connect method of a
SQLServer object to connect to a server.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

LoginTimeout Property
LoginTimeout Property

The LoginTimeout property specifies the number of seconds to wait for a connection attempt to succeed.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

LogReaderAgent Property
LogReaderAgent Property

The LogReaderAgent property identifies the SQLServerAgent job that starts the replication agent responsible for transaction log
interrogation.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

M

SQL-DMO (SQL Server 2000)

MailAccountName Property
MailAccountName Property

The MailAccountName property specifies the Microsoft® Exchange client account used by SQL Mail.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

MailPassword Property
MailPassword Property

The MailPassword property specifies the Microsoft® Exchange client account password for SQL Mail.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

MasterDBPath Property
MasterDBPath Property

The MasterDBPath property specifies the full path and file name of the operating system file containing the master database.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

MaxConcurrentMerge Property
MaxConcurrentMerge Property

The MaxConcurrentMerge property specifies the maximum number of Merge Agents that can synchronize with a publication
concurrently.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

MaxConcurrentDynamicSnapshots Property
MaxConcurrentDynamicSnapshots Property

The MaxConcurrentDynamicSnapshots property specifies the maximum concurrent dynamic snapshot sessions.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

MaxDistributionRetention Property
MaxDistributionRetention Property

The MaxDistributionRetention property specifies the greatest number of hours that an image of replicated data is maintained
within the distribution database.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

MaximumChar Property
MaximumChar Property

The MaximumChar property returns the maximum number of characters used when a value of the data type is converted to a
character string.

Applies To

SystemDatatype Object

SQL-DMO (SQL Server 2000)

MaximumErrorsBeforeAbort Property
MaximumErrorsBeforeAbort Property

The MaximumErrorsBeforeAbort property specifies the error limit for a bulk copy operation.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

MaximumLength Property
MaximumLength Property

The MaximumLength property identifies the greatest length of a data type in bytes, or the precision of the type.

Applies To

SystemDatatype Object

SQL-DMO (SQL Server 2000)

MaximumSize Property
MaximumSize Property

The MaximumSize property specifies an upper limit for the size of an operating system file containing table and index data, or
maintaining a database transaction log.

Applies To

DBFile Object LogFile Object

SQL-DMO (SQL Server 2000)

MaximumValue Property
MaximumValue Property

The MaximumValue property specifies an upper bound for a configuration value.

Applies To

ConfigValue Object

SQL-DMO (SQL Server 2000)

MaxNumericPrecision Property
MaxNumericPrecision Property

The MaxNumericPrecision property returns the greatest decimal precision available for exact numeric data types, including
decimal and numeric.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

MaxSize Property
MaxSize Property

The MaxSize property returns the greatest length of a data type in bytes, or the precision of the type.

Applies To

UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

MediaDescription Property
MediaDescription Property

The MediaDescription property provides informative text to aid in identification of a backup set

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

MediaName Property
MediaName Property

The MediaName property provides informative text to aid in identification of a backup set.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

MediaPassword Property
MediaPassword Property

The MediaPassword property sets or retrieves the password for a media set.

Applies To

Backup2 Object Restore2 Object

Syntax

object.MediaPassword[= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

String that contains the password

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetMediaPassword(SQLDMO_LPBSTR pRetVal);

HRESULT SetMediaPassword(SQLDMO_LPCSTR NewValue);

Remarks

The MediaPassword property provides the password used for a media set. If a media set password exists, it must be supplied to
perform any restore operation from the media. If no media set password is passed by the Backup2 object, MediaPassword is set
to NULL. An application can set MediaPassword multiple times; however once a backup or restore operation has been
performed, MediaPassword cannot be altered.

Note If an application calls MediaPassword on an instance of SQL Server version 7.0, the operation is ignored.

See Also

Password Property

SQL-DMO (SQL Server 2000)

MergeJobID Property
MergeJobID Property

The MergeJobID property identifies the SQL Server Agent job responsible for merging Subscriber and Publisher images of
replicated data.

Applies To

MergePullSubscription Object MergeSubscription Object

SQL-DMO (SQL Server 2000)

MessageID Property
MessageID Property

The MessageID property identifies a Microsoft® SQL Server™ 2000 message to a SQL Server Agent alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

MinDistributionRetention Property
MinDistributionRetention Property

The MinDistributionRetention property specifies the least number of hours that an image of replicated data is maintained
within the distribution database.

Applies To

DistributionDatabase Object

SQL-DMO (SQL Server 2000)

MinimumRetries Property
MinimumRetries Property

The MinimumRetries property specifies filtering by the number of times SQL Server Agent attempted to execute a scheduled job
prior to a successful execution.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

MinimumRunDuration Property
MinimumRunDuration Property

The MinimumRunDuration property specifies filtering by the amount of time required for successful Microsoft® SQL Server™
2000 Agent job execution.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

MinimumValue Property
MinimumValue Property

The MinimumValue property specifies a lower bound for a configuration value.

Applies To

ConfigValue Object

SQL-DMO (SQL Server 2000)

Month Property
Month Property

The Month property returns the text string representing the name of a month in the referenced language.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

Months Property
Months Property

The Months property returns a SQL-DMO multistring containing unabbreviated month names.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

MSXServerName Property
MSXServerName Property

The MSXServerName property identifies the master server for an enlisted target server.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

MultipleColumnUpdate Property
MultipleColumnUpdate Property

The MultipleColumnUpdate property specifies whether to update multiple columns using a single UPDATE statement.

Applies To

MergeArticle2 Object

SQL-DMO (SQL Server 2000)

N

SQL-DMO (SQL Server 2000)

Name Property
Name Property

The Name property is a character string identifying a Microsoft® SQL Server™ 2000 database, SQL Server Agent, or replication
object.

Applies To

Alert Object MergeDynamicSnapshotJob Object
Application Object MergePublication Object
BackupDevice Object MergePullSubscription Object
Category Object MergeSubscription Object
Check Object MergeSubsetFilter Object
Column Object Operator Object
ConfigValue Object Property Object
Database Object RemoteServer Object
DatabaseRole Object RegisteredServer Object
DBFile Object RegisteredSubscriber Object
DBObject Object ReplicationDatabase Object
Default Object ReplicationStoredProcedure Object
DistributionArticle Object ReplicationTable Object
DistributionDatabase Object Rule Object
DistributionPublication Object ServerRole Object
DistributionPublisher Object ServerGroup Object
DistributionSubscription Object SQLServer Object
DRIDefault Object StoredProcedure Object
FileGroup Object SystemDatatype Object
FullTextCatalog Object Table Object
Index Object TargetServerGroup Object
Job Object TransArticle Object
JobSchedule Object TransPublication Object
JobStep Object TransPullSubscription Object
Key Object TransSubscription Object
Language Object Trigger Object
Linked Server Object User Object
LogFile Object UserDefinedDatatype Object
Login Object UserDefinedFunction Object
MergeArticle Object View Object

SQL-DMO (SQL Server 2000)

NetName Property
NetName Property

The NetName property returns the network visible name of the server connected to an instance of Microsoft® SQL Server™
2000.

Applies To

RemoteServer Object SQLServer Object

SQL-DMO (SQL Server 2000)

NetPacketSize Property
NetPacketSize Property

The NetPacketSize property specifies the size of a network packet used to transmit a block of data from a client and to an
instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

NetSendAddress Property
NetSendAddress Property

The NetSendAddress property specifies a network visible name for an operator workstation or server.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

NetSendLevel Property
NetSendLevel Property

The NetSendLevel property controls Microsoft® SQL Server™ 2000 Agent operator network message notification on job
completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

NextDeviceNumber Property
NextDeviceNumber Property

The NextDeviceNumber property is maintained for compatibility with previous versions of SQL-DMO.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

NextRunDate Property
NextRunDate Property

The NextRunDate property returns a system-generated execution date for a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

NextRunScheduleID Property
NextRunScheduleID Property

The NextRunScheduleID property returns the system-generated identifier for the schedule determining the next execution date
of a Microsoft® SQL Server™ 2000 Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

NextRunTime Property
NextRunTime Property

The NextRunTime property returns a system-generated execution time for a Microsoft® SQL Server™ 2000 Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

NoRecompute Property
NoRecompute Property

The NoRecompute property controls statistics generation when the Index object is used to create a Microsoft® SQL Server™
2000 index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

NoRewind Property
NoRewind Property

The NoRewind property specifies whether Microsoft® SQL Server™ 2000 keeps a tape drive open and positioned after a backup
or restore operation.

Applies To

Backup2 Object Restore2 Object

Syntax

object.NoRewind [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

TRUE or FALSE

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetNoRewind(BOOL);

HRESULT SetNoRewind(BOOL);

Remarks

When NoRewind is set to TRUE, SQL-DMO issues the Transaction-SQL BACKUP or RESTORE command with the NOREWIND
option. This allows SQL Server 2000 to keep a tape drive open and positioned, thereby preventing the overhead of rewinding and
scanning a tape. This is useful in situations where a tape is repeatedly used. NoRewind is set to FALSE by default.

Note If an application calls NoRewind on an instance of SQL Server version 7.0, the operation is ignored.

See Also

BACKUP

RESTORE

SQL-DMO (SQL Server 2000)

NotForRepl Property
NotForRepl Property

The NotForRepl property enables or disables an IDENTITY constraint for data inserted by a replication process.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

NotificationMessage Property
NotificationMessage Property

The NotificationMessage property represents user-supplied text appended to any notification sent when a Microsoft® SQL
Server™ 2000 Agent responds to an alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

NotificationMethod Property
NotificationMethod Property

The NotificationMethod property specifies the method used when notifying a fail-safe operator of a raised alert.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

NP Property
NP Property

The NP property specifies the pipe name when using named pipe protocol on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

NTEventLogging Property
NTEventLogging Property

The NTEventLogging property reports Microsoft® SQL Server™ 2000 use of the Microsoft Windows application log.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

NTLoginAccessType Property
NTLoginAccessType Property

The NTLoginAccessType property reports whether a Microsoft® Windows NT® 4.0 login has explicit permissions to connect to
a server.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

NumberOfProcessors Property
NumberOfProcessors Property

The NumberOfProcessors property returns the number of central processing units (CPUs) available to Microsoft® SQL Server™
2000 on the server.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

NumericPrecision Property
NumericPrecision Property

The NumericPrecision property specifies the maximum number of digits in a fixed-precision, numeric data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

NumericScale Property
NumericScale Property

The NumericScale property specifies the number of digits to the right of the decimal point in a fixed-precision, numeric data
type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

O

SQL-DMO (SQL Server 2000)

ObjectID Property
ObjectID Property

The ObjectID property returns the system-assigned identifier for a Microsoft® SQL Server™ 2000 database or database object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ObjectName Property
ObjectName Property

The ObjectName property returns the name of the Microsoft® SQL Server™ 2000 database or database object referenced by a
Permission object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ObjectOwner Property
ObjectOwner Property

The ObjectOwner property returns the Microsoft® SQL Server™ 2000 database user owning the database or database object
referenced by a Permission object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ObjectType Property
ObjectType Property

The ObjectType property returns an enumerated value that specifies the type of Microsoft® SQL Server™ 2000 component
referenced by a Permission object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ObjectTypeName Property
ObjectTypeName Property

The ObjectTypeName property returns the type of Microsoft® SQL Server™ 2000 component referenced by the Permission
object as a text string.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

OccurrenceCount Property
OccurrenceCount Property

The SQL Server Agent alert occurrence count represents the number of times the alert has fired after a specific date and time.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

ODBCPrefix Property
ODBCPrefix Property

The ODBCPrefix property controls error and status message text formatting for a SQL-DMO application.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ODBCVersionString Property
ODBCVersionString Property

The ODBCVersionString property returns the major and minor version numbers of the installed ODBC driver manager.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

Offline Property
Offline Property

The Offline property controls Microsoft® SQL Server™ 2000 database availability.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

OldestFirst Property
OldestFirst Property

The OldestFirst property controls ordering for the SQL Server Agent job histories, listed using the EnumHistory or
EnumJobHistory method.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

OnFailAction Property
OnFailAction Property

The OnFailAction property controls the behavior of a SQL Server Agent job when the referenced step fails execution.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

OnFailStep Property
OnFailStep Property

The OnFailStep property identifies the SQL Server Agent job step executed after failure of the referenced step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

OnSuccessAction Property
OnSuccessAction Property

The OnSuccessAction property controls the behavior of a SQL Server Agent job when the referenced step succeeds.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

OnSuccessStep Property
OnSuccessStep Property

The OnSuccessStep property identifies the SQL Server Agent job step executed after the success of the referenced step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

OperatorToEmail Property
OperatorToEmail Property

The OperatorToEmail property specifies the SQL Server Agent operator receiving e-mail notification of job completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

OperatorToNetSend Property
OperatorToNetSend Property

The OperatorToNetSend property specifies the SQL Server Agent operator receiving a network message notification of job
completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

OperatorToPage Property
OperatorToPage Property

The OperatorToPage property specifies the SQL Server Agent operator receiving pager notification of job completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

Options Property
Options Property

The Options property returns a bit-packed long integer that describes the attributes of a remote or linked server.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

OriginatingServer Property
OriginatingServer Property

The OriginatingServer property identifies an instance of Microsoft® SQL Server™ 2000 assigning the referenced job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

OSRunPriority Property
OSRunPriority Property

The OSRunPriority property controls execution thread scheduling for job steps executing operating system tasks.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

OutcomeTypes Property
OutcomeTypes Property

The OutcomeTypes property controls job history filtering by completion status of a job.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

OutputFileName Property
OutputFileName Property

The OutputFileName property identifies an operating system file that records job step result message text.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

Owner Property (Database, UserDefinedFunction)
Owner Property (Database, UserDefinedFunction)

The Owner property exposes the Microsoft® SQL Server™ 2000 user-assigned ownership rights to the referenced SQL Server
element.

Applies To

Database Object UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

Owner Property (Database Objects)
Owner Property (Database Objects)

The Owner property exposes the Microsoft® SQL Server™ 2000 user-assigned ownership rights to the referenced SQL Server
element.

Applies To

DBObject Object StoredProcedure Object
Default Object Table Object
ReplicationStoredProcedure Object Trigger Object
ReplicationTable Object UserDefinedDatatype Object
Rule Object View Object

SQL-DMO (SQL Server 2000)

Owner Property (Job, JobFilter)
Owner Property (Job, JobFilter)

The Owner property exposes the Microsoft® SQL Server™ 2000 user-assigned ownership rights to the referenced SQL Server
element.

Applies To

Job Object JobFilter Object

SQL-DMO (SQL Server 2000)

P

SQL-DMO (SQL Server 2000)

PageLevel Property
PageLevel Property

The PageLevel property controls Microsoft® SQL Server™ 2000 Agent operator page notification on job completion.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

PagerAddress Property
PagerAddress Property

The PagerAddress property specifies an e-mail address used to route Microsoft® SQL Server™ Agent operator notification.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

PagerCCTemplate Property
PagerCCTemplate Property

The PagerCCTemplate property specifies text used to build the Cc: line of an e-mail message implementing pager notification
for all Microsoft® SQL Server™ 2000 operators.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

PagerDays Property
PagerDays Property

The PagerDays property specifies the days of the week on which Microsoft® SQL Server™ 2000 Agent attempts to notify the
referenced operator by page.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

PagerSendSubjectOnly Property
PagerSendSubjectOnly Property

The PagerSendSubjectOnly property controls message text sent when Microsoft® SQL Server™ 2000 Agent attempts to notify
an operator by page.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

PagerSubjectTemplate Property
PagerSubjectTemplate Property

The PagerSubjectTemplate property specifies text used to build the subject line of an e-mail message implementing pager
notification for all Microsoft® SQL Server™ 2000 operators.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

PagerToTemplate Property
PagerToTemplate Property

The PagerToTemplate property specifies text used to build the To: address line of an e-mail message implementing pager
notification for all Microsoft® SQL Server™ 2000 operators.

Applies To

AlertSystem Object

SQL-DMO (SQL Server 2000)

Parent Property
Parent Property

The Parent property returns the SQL-DMO object owning the referenced SQL-DMO object.

Applies To

All objects

Syntax

object.Parent

Parts

object

Expression that evaluates to an object in the Applies To list

Data Type

Object

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetParent(LPSQLDMOSTDOBJECT* ppParent);

Note A C/C++ application obtains a reference on the parent object. The application must release its reference using the
IUnknown::Release function.

SQL-DMO (SQL Server 2000)

Password Property
Password Property

 New Information - SQL Server 2000 SP3.

The Password property indicates a password for a Microsoft® SQL Server™ 2000 login record.

Applies To

Backup2 Object Restore2 Object
DatabaseRole Object SQLServer Object
RegisteredServer Object

SQL-DMO (SQL Server 2000)

PendingInstructions Property
PendingInstructions Property

The PendingInstructions property returns a count of Microsoft® SQL Server™ 2000 Agent target server (TSX) maintenance
tasks awaiting download by the target server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

PercentCompleteNotification Property
PercentCompleteNotification Property

The PercentCompleteNotification property configures a Backup or Restore object, setting the interval for PercentComplete
event handler calls.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

PerfMonMode Property
PerfMonMode Property

The PerfMonMode property controls Windows Performance Monitor polling behavior when the monitor is started.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

PerformanceCondition Property
PerformanceCondition Property

The PerformanceCondition property specifies a Microsoft Windows Performance Monitor counter, a comparison operator and
value, and enables raising a Microsoft® SQL Server™ 2000 Agent alert based on system activity.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

Permissions Property
Permissions Property

The Permissions property returns the database permissions for the current connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

PersistFlags Property
PersistFlags Property

The PersistFlags property is reserved for future use.

Applies To

RegisteredServer Object

SQL-DMO (SQL Server 2000)

PhysicalDatatype Property
PhysicalDatatype Property

The PhysicalDatatype property returns the name of the base data type for the referenced column.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

PhysicalLocation Property
PhysicalLocation Property

The PhysicalLocation property specifies an operating system name that identifies a backup device.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

PhysicalMemory Property
PhysicalMemory Property

The PhysicalMemory property returns the total RAM installed, in megabytes, on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

PhysicalName Property
PhysicalName Property

The PhysicalName property specifies the path and file name of the operating system file storing Microsoft® SQL Server™
database or transaction log data.

Applies To

DBFile Object LogFile Object

SQL-DMO (SQL Server 2000)

PID Property
PID Property

The PID property retrieves the Microsoft® SQL Server™ 2000 process identification.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

Pipes Property
Pipes Property

The Pipes property specifies one or more named pipes used as a database backup target or restore source.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

PollingInterval Property
PollingInterval Property

The PollingInterval property returns the number of seconds a target server (TSX) will wait before polling its master server (MSX)
server for newly posted instructions.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

PopulateCompletionAge Property
PopulateCompletionAge Property

The PopulateCompletionAge property returns the number of seconds between the time of the most recent, successful
Microsoft Search full-text catalog population and a system-defined date and time.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

PopulateCompletionDate Property
PopulateCompletionDate Property

The PopulateCompletionDate property returns the most recent date and time at which an update was made to the referenced
Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

PopulateStatus Property
PopulateStatus Property

The PopulateStatus property returns the population state of a Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

PostSnapshotScript Property
PostSnapshotScript Property

The PostSnapshotScript property specifies the complete path and file name of a Transact-SQL script that runs after an initial
snapshot is applied to a Subscriber.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

PreCreationMethod Property
PreCreationMethod Property

The PreCreationMethod property controls Subscriber replication object changes when article synchronization occurs.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

PreSnapshotScript Property
PreSnapshotScript Property

The PreSnapshotScript property specifies the complete path and file name of a Transact-SQL script that runs before an initial
snapshot is applied to a Subscriber.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

PrimaryFile Property
PrimaryFile Property

The PrimaryFile property identifies the operating system file that maintains database-specific system tables.

Applies To

DBFile Object

SQL-DMO (SQL Server 2000)

PrimaryFilePath Property
PrimaryFilePath Property

The PrimaryFilePath property returns the path and name of the operating system (OS) directory that contains the primary file
for the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Priority Property
Priority Property

The Priority property specifies the weighting given to resolve conflicts when more than one change occurs in replicated data.

Applies To

MergePublication Object MergeSubscription Object
MergePullSubscription Object

SQL-DMO (SQL Server 2000)

PrivilegeType Property
PrivilegeType Property

The PrivilegeType property returns the permissions granted to an authorized user or role on a specific database or database
object.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

PrivilegeTypeName Property
PrivilegeTypeName Property

The PrivilegeTypeName property returns a text string that identifies an access right.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ProcessID Property
ProcessID Property

The ProcessID property returns the Microsoft® SQL Server™ 2000 process identifier for the connection used by the SQLServer
object.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ProcessInputBuffer Property
ProcessInputBuffer Property

The ProcessInputBuffer property returns the contents of the memory used by a Microsoft® SQL Server™ process for input.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ProcessOutputBuffer Property
ProcessOutputBuffer Property

The ProcessOutputBuffer property returns the contents of the memory used by a Microsoft® SQL Server™ process for output.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ProductLevel Property
ProductLevel Property

 Topic last updated -- July 2003

The ProductLevel property returns the Microsoft® SQL Server™ 2000 product level.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ProductName Property
ProductName Property

The ProductName property is a Microsoft® SQL Server™ specific representation of an OLE DB provider name.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

ProviderName Property
ProviderName Property

The ProviderName property specifies the friendly, or as-registered, name of an OLE DB provider.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

ProviderString Property
ProviderString Property

The ProviderString property specifies OLE DB provider-specific connection data required to implement a connection to the
referenced OLE DB data source.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

Publication Property
Publication Property

The Publication property specifies the source for articles pulled from a replication Publisher.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

PublicationAttributes Property
PublicationAttributes Property

The PublicationAttributes property specifies available functions for a Microsoft® SQL Server™ 2000 replication publication.

Applies To

DistributionPublication Object TransPublication Object
MergePublication Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

PublicationDB Property
PublicationDB Property

The PublicationDB property specifies a Microsoft® SQL Server™ database providing data for a third-party data source or to a
Subscriber-initiated subscription.

Applies To

DistributionPublication Object TransPullSubscription Object
MergePullSubscription Object

SQL-DMO (SQL Server 2000)

PublicationType Property
PublicationType Property

The PublicationType property specifies treatment of data replicated from a Microsoft® SQL Server™ or heterogeneous data
source.

Applies To

DistributionPublication Object TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

PublishedInMerge Property
PublishedInMerge Property

The PublishedInMerge property indicates whether the referenced table is published in a merge publication.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

PublishedInQueuedTransactions Property
PublishedInQueuedTransactions Property

The PublishedInQueuedTransactions property indicates whether the referenced table is published in a queued transaction
publication.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

Publisher Property
Publisher Property

The Publisher property specifies an instance of Microsoft® SQL Server™ 2000 used as a source of replicated data for a
Subscriber-initiated subscription.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

PublisherIdentityRangeSize Property
PublisherIdentityRangeSize Property

The PublisherIdentityRangeSize property specifies the identity range size of a published table at the Publisher.

Applies To

MergeArticle2 Object TransArticle2 Object

SQL-DMO (SQL Server 2000)

Q

SQL-DMO (SQL Server 2000)

QueryTimeout Property
QueryTimeout Property

The QueryTimeout property specifies the number of seconds elapsed before a time-out error is reported on an attempted
statement execution.

Applies To

LinkedServer2 Object SQLServer Object

SQL-DMO (SQL Server 2000)

QueueType Property
QueueType Property

The QueueType property specifies the type of queuing to use if a publication allows queued transactions.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

QuoteDelimiter Property
QuoteDelimiter Property

The QuoteDelimiter property controls Microsoft® SQL Server™ 2000 interpretation of identifier strings in statements submitted
for execution.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

QuotedIdentifier Property
QuotedIdentifier Property

The QuotedIdentifier property controls Microsoft® SQL Server™ 2000 interpretation of identifier strings in statements
submitted for execution.

Applies To

SQLServer Object UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

QuotedIdentifierStatus Property
QuotedIdentifierStatus Property

The QuotedIdentifierStatus property returns TRUE when the database object referenced has been created with a dependency
on quote characters for identifier determination.

Applies To

StoredProcedure Object UserDefinedFunction Object
Table2 Object View Object
Trigger Object

SQL-DMO (SQL Server 2000)

R

SQL-DMO (SQL Server 2000)

ReadOnly Property
ReadOnly Property

The ReadOnly property controls the ability to update a Microsoft® SQL Server™ 2000 database or database filegroup.

Applies To

DBOption Object FileGroup Object

SQL-DMO (SQL Server 2000)

RecoveryModel Property
RecoveryModel Property

The RecoveryModel property specifies the recovery model for a database.

Applies To

DBOption2 Object

SQL-DMO (SQL Server 2000)

RecursiveTriggers Property
RecursiveTriggers Property

The RecursiveTriggers property controls nested call behavior for Microsoft® SQL Server™ 2000 triggers.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

ReferencedKey Property
ReferencedKey Property

The ReferencedKey property returns the name of the PRIMARY KEY or UNIQUE key constraint implementing the primary key
referenced by a foreign key.

Applies To

Key Object

SQL-DMO (SQL Server 2000)

ReferencedTable Property
ReferencedTable Property

The ReferencedTable property specifies a Microsoft® SQL Server™ 2000 table whose PRIMARY KEY constraint will constrain
values added to the table that owns the foreign key referenced by the Key object.

Applies To

Key Object

SQL-DMO (SQL Server 2000)

RegionalSetting Property
RegionalSetting Property

The RegionalSetting property exposes the Microsoft® SQL Server™ 2000 ODBC driver statement attribute
SQL_SOPT_SS_REGIONALIZE.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

RegisteredOwner Property
RegisteredOwner Property

The RegisteredOwner property returns the name of the installer supplied during the installation of an instance of Microsoft®
SQL Server™ 2000.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

RelocateFiles Property
RelocateFiles Property

The RelocateFiles property specifies database logical file names and operating system physical file names used to redirect
database storage when a Microsoft® SQL Server™ 2000 database is restored to a new physical location.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

RemoteName Property
RemoteName Property

The RemoteName property identifies a SQL Server Authentication login record on another server and controls mapping for that
login.

Applies To

RemoteLogin Object

SQL-DMO (SQL Server 2000)

RemotePassword Property
RemotePassword Property

The RemotePassword property specifies a password used when a distributed query, or another Microsoft® SQL Server™ 2000
process, accesses a data store using a linked server OLE DB data source definition.

Applies To

LinkedServerLogin Object

SQL-DMO (SQL Server 2000)

RemoteUser Property
RemoteUser Property

The RemoteUser property specifies a login name used when a distributed query, or another Microsoft® SQL Server™ 2000
process, accesses a data store using a linked server OLE DB data source definition.

Applies To

LinkedServerLogin Object

SQL-DMO (SQL Server 2000)

ReplaceDatabase Property
ReplaceDatabase Property

The ReplaceDatabase property directs a restore operation when a new image of the restored database is required.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

ReplicateAllColumns Property
ReplicateAllColumns Property

The ReplicateAllColumns property returns TRUE when transactional replication includes data values for all columns in all
replicated rows.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

ReplicationFilterProcName Property
ReplicationFilterProcName Property

The ReplicationFilterProcName property identifies a stored procedure used to partition a table-based article.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

ReplicationFilterProcOwner Property
ReplicationFilterProcOwner Property

The ReplicationFilterProcOwner property identifies the database user owning a stored procedure used to partition a table-
based article.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

ReplicationFrequency Property
ReplicationFrequency Property

The ReplicationFrequency property sets the method used to determine article publication.

Applies To

TransPublication Object

SQL-DMO (SQL Server 2000)

ReplicationInstalled Property
ReplicationInstalled Property

The ReplicationInstalled property returns TRUE when components supporting replication are installed on an instance of
Microsoft® SQL Server™ 2000.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

ResolverInfo Property
ResolverInfo Property

The ResolverInfo property specifies additional data or parameters used by a custom merge replication conflict resolution agent.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

ResourceUsage Property
ResourceUsage Property

The ResourceUsage property specifies a relative operating system execution priority setting for the Microsoft Search service.

Applies To

FullTextService Object

SQL-DMO (SQL Server 2000)

Restart Property
Restart Property

The Restart property controls Backup and Restore object behavior when the backup or restore operation specified by the object
was started and interrupted.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

ResultSets Property
ResultSets Property

The ResultSets property returns the count of units of data returned from query execution.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

RetainDays Property
RetainDays Property

The RetainDays property specifies the number of days that must elapse before a backup set can be overwritten.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

RetentionPeriod Property
RetentionPeriod Property

The RetentionPeriod property specifies a number of days or hours for limiting any subscription to the publication.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

RetryAttempts Property
RetryAttempts Property

The RetryAttempts property specifies a number of times SQL Server Agent attempts to execute the referenced job step before
reporting step failure.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

RetryInterval Property
RetryInterval Property

The RetryInterval property specifies a number of minutes that will elapse before SQL Server Agent attempts to execute a
previously failing job step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

Role Property
Role Property

The Role property identifies the initial security role assigned to the Microsoft® SQL Server™ 2000 database user.

Applies To

User Object

SQL-DMO (SQL Server 2000)

RootPath Property
RootPath Property

The RootPath property specifies an operating system directory used as the primary path for Microsoft Search full-text catalog
storage.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

RowDelimiter Property
RowDelimiter Property

The RowDelimiter property specifies a character or character sequence that marks the end of a row in a Microsoft® SQL
Server™ 2000 bulk copy data file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

Rows Property
Rows Property

The Rows property returns the number of rows in a referenced query result set or the number of rows existing in a Microsoft®
SQL Server™ 2000 table.

Applies To

QueryResults Object Table Object

SQL-DMO (SQL Server 2000)

RpcEncrypt Property
RpcEncrypt Property

The RpcEncrypt property specifies whether Microsoft® Windows NT® 4.0 RPC encryption is enabled (using the Multiprotocol
Net-Library) on an instance of SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

RpcList Property
RpcList Property

The RpcList property returns a Microsoft® Windows NT® 4.0 RPC protocol list.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

RpcMaxCalls Property
RpcMaxCalls Property

The RpcMaxCalls property specifies the maximum number of Microsoft® Windows NT® 4.0 RPC connections that can be active.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

RpcMinCalls Property
RpcMinCalls Property

The RpcMinCalls property specifies the maximum number of Microsoft® Windows NT® 4.0 RPC connections that can be active.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

Rule Property
Rule Property

The Rule property identifies a data integrity constraint, implemented by a Microsoft® SQL Server™ 2000 database rule and
bound to the referenced column or user-defined data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

RuleOwner Property
RuleOwner Property

The RuleOwner property returns the name of the Microsoft® SQL Server™ 2000 database user who owns the rule bound to the
referenced column or user-defined data type.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

RunningValue Property
RunningValue Property

The RunningValue property returns the setting used by Microsoft® SQL Server™ 2000 for the referenced configuration option.

Applies To

ConfigValue Object

SQL-DMO (SQL Server 2000)

S

SQL-DMO (SQL Server 2000)

SaLogin Property
SaLogin Property

The SaLogin property returns TRUE when the login used to establish a connection is a member of the sysadmin security role.

Applies To

RegisteredServer Object SQLServer Object

SQL-DMO (SQL Server 2000)

SaturdayPagerEndTime Property
SaturdayPagerEndTime Property

The SaturdayPagerEndTime specifies the latest time of day at which the referenced operator is available to receive alert
notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

SaturdayPagerStartTime Property
SaturdayPagerStartTime Property

The SaturdayPagerStartTime specifies the earliest time of day at which the referenced operator is available to receive alert
notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

ScheduleID Property
ScheduleID Property

The ScheduleID property returns the system-generated identifier of a system table record maintaining the data defining the
scheduled execution for a job.

Applies To

JobSchedule Object

SQL-DMO (SQL Server 2000)

Script2Type Property
Script2Type Property

The ScriptType and Script2Type properties configure the Transact-SQL script generated and used to copy database schema in a
transfer of schema from one database to another.

Applies To

Transfer Object Transfer2 Object

SQL-DMO (SQL Server 2000)

ScriptType Property
ScriptType Property

The ScriptType and Script2Type properties configure the Transact-SQL script generated and used to copy database schema in a
transfer of schema from one database to another.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

SecurityMode Property (DistributionDatabase,
IntegratedSecurity)
SecurityMode Property (DistributionDatabase, IntegratedSecurity)

The SecurityMode property directs the authentication mode used by an instance of Microsoft® SQL Server™ 2000 or a
connection to a SQL Server database used for replication distribution.

Applies To

DistributionDatabase Object IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

SecurityMode Property (ReplicationSecurity)
SecurityMode Property (ReplicationSecurity)

The SecurityMode property specifies an authentication mode used for the referenced object's initiated connection to an
indicated Distributor.

Applies To

ReplicationSecurity Object

SQL-DMO (SQL Server 2000)

SelectIntoBulkCopy Property
SelectIntoBulkCopy Property

The SelectIntoBulkCopy property enables bulk-logged operation on a Microsoft® SQL Server™ 2000 database.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

Server Property
Server Property

The Server property is reserved for future use.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

ServerBCPDataFileType Property
ServerBCPDataFileType Property

The ServerBCPDataFileType property specifies the format for an imported data file.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ServerBCPKeepIdentity Property
ServerBCPKeepIdentity Property

The ServerBCPKeepIdentity property controls the handling of existing values for a column with the identity property when
importing data into the column.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ServerBCPKeepNulls Property
ServerBCPKeepNulls Property

The ServerBCPKeepNulls property controls the handling of missing values for all columns accepting NULL and possessing a
default value constraint when importing data.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ServerID Property
ServerID Property

The ServerID property returns a system-generated number that uniquely identifies a multiserver administration target server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

ServerName Property
ServerName Property

The ServerName property returns the network name of an instance of Microsoft® SQL Server™ 2000 and participating in
multiserver administration as a target server.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

ServiceName Property
ServiceName Property

The ServiceName property returns the computer name on which an instance of Microsoft® SQL Server™ 2000 is running.

Applies To

JobServer2 Object SQLServer2 Object

SQL-DMO (SQL Server 2000)

Set Property
Set Property

The Set property returns TRUE when the referenced object property is changeable.

Applies To

Property Object

SQL-DMO (SQL Server 2000)

SetHostName Property
SetHostName Property

The SetHostName property is maintained for compatibility with earlier versions of SQL-DMO.

Applies To

IntegratedSecurity Object

SQL-DMO (SQL Server 2000)

Severity Property
Severity Property

The Severity property identifies a Microsoft® SQL Server™ 2000 error message severity level to a SQL Server Agent alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

ShortMonth Property
ShortMonth Property

The ShortMonth property returns an abbreviation for the name of a month from an installed Microsoft® SQL Server™ 2000
language.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

ShortMonths Property
ShortMonths Property

The ShortMonths property returns a SQL-DMO multistring containing a list of month name abbreviations for a language.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

ShowAdvancedOptions Property
ShowAdvancedOptions Property

The ShowAdvancedOptions property controls ConfigValues collection membership.

Applies To

Configuration Object

SQL-DMO (SQL Server 2000)

SingleUser Property
SingleUser Property

The SingleUser property exposes one method of constraining user access to a Microsoft® SQL Server™ 2000 database.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

Size Property
Size Property

The Size property exposes the total size, in megabytes, of the Microsoft® SQL Server™ 2000 component referenced.

Applies To

Database Object LogFile Object
DBFile Object TransactionLog Object
FileGroup Object

SQL-DMO (SQL Server 2000)

SizeInKB Property
SizeInKB Property

The SizeInKB property exposes the total size, in kilobytes, of the Microsoft® SQL Server™ 2000 component referenced.

Applies To

Database2 Object LogFile Object
DBFile Object

SQL-DMO (SQL Server 2000)

SkipTapeHeader Property
SkipTapeHeader Property

The SkipTapeHeader property enables or disables backup operation logic that verifies that correct media is loaded.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

SkipTapeLabel Property
SkipTapeLabel Property

The SkipTapeLabel property enables or disables, at a device level, backup operation logic that verifies that correct media is
loaded.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

SnapshotAgent Property
SnapshotAgent Property

The SnapshotAgent property identifies the Microsoft® SQL Server™ 2000 Agent job that starts the replication agent responsible
for snapshot creation.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

SnapshotAvailable Property
SnapshotAvailable Property

The SnapshotAvailable property is TRUE when an initial snapshot of article data is available to Subscribers.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

SnapshotJobID Property
SnapshotJobID Property

The SnapshotJobID property returns a system-generated value uniquely identifying the Microsoft® SQL Server™ 2000 Agent
job that implements initial snapshot-generation of third party published article data.

Applies To

DistributionPublication2 Object TransPublication Object
MergePublication Object

SQL-DMO (SQL Server 2000)

SnapshotMethod Property
SnapshotMethod Property

The SnapshotMethod property controls creation of the initial snapshot of published article data.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

SnapshotObjectName Property
SnapshotObjectName Property

The SnapshotObjectName identifies the Microsoft® SQL Server™ 2000 database object providing an initial snapshot of
replicated data for an article.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

SnapshotObjectOwner Property
SnapshotObjectOwner Property

The SnapshotObjectName identifies the owner of the Microsoft® SQL Server™ 2000 database object providing an initial
snapshot of replicated data for an article.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

SNMP Property
SNMP Property

The SNMP property indicates whether Simple Network Management Protocol (SNMP) is installed on an instance of Microsoft®
SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SNMPCurrentVersion Property
SNMPCurrentVersion Property

The SNMPCurrentVersion property specifies the version of Simple Network Management Protocol (SNMP) currently installed
on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SNMPExtensionAgents Property
SNMPExtensionAgents Property

The SNMPExtensionAgents property indicates whether Simple Network Management Protocol (SNMP) extension agents are
installed on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SNMPExtensionAgentsData Property
SNMPExtensionAgentsData Property

The SNMPExtensionAgentsData property retrieves or sets the value of the SNMPExtensionAgents property.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SortOrder Property
SortOrder Property

The SortOrder property returns a string describing the character set used and ordering applied for an instance of Microsoft®
SQL Server™ 2000.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

SourceObjectName Property
SourceObjectName Property

The SourceObjectName property identifies the Microsoft® SQL Server™ 2000 database object providing article data.

Applies To

DistributionArticle Object TransArticle Object
MergeArticle Object

SQL-DMO (SQL Server 2000)

SourceObjectOwner Property
SourceObjectOwner Property

The SourceObjectOwner property identifies the owner of the Microsoft® SQL Server™ 2000 database object providing article
data.

Applies To

DistributionArticle Object TransArticle Object
MergeArticle Object

SQL-DMO (SQL Server 2000)

SourceTranslateChar Property
SourceTranslateChar Property

The SourceTranslateChar property specifies whether to perform character data translation on the source server during a
transfer operation.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

SpaceAllocatedOnFiles Property
SpaceAllocatedOnFiles Property

The SpaceAllocatedOnFiles property returns the total disk resource allocated for transaction log implementing files.

Applies To

TransactionLog Object

SQL-DMO (SQL Server 2000)

SpaceAvailable Property
SpaceAvailable Property

The SpaceAvailable property returns the amount of disk resource allocated and unused in operating system files implementing
Microsoft® SQL Server™ 2000 database and database transaction log storage.

Applies To

Database Object TransactionLog Object

SQL-DMO (SQL Server 2000)

SpaceAvailableInMB Property
SpaceAvailableInMB Property

The SpaceAvailableInMB property returns the amount of disk resource allocated and unused in operating system files
implementing Microsoft® SQL Server™ 2000 database and database transaction log storage.

Applies To

Database Object TransactionLog Object
DBFile Object

SQL-DMO (SQL Server 2000)

SpaceUsed Property
SpaceUsed Property

The SpaceUsed property returns the amount of disk resource used to store data implementing the referenced Microsoft® SQL
Server™ 2000 index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

SpxFlag Property
SpxFlag Property

The SpxFlag property indicates whether an NWLink IPX/SPX flag is set on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SpxPort Property
SpxPort Property

The SpxPort property specifies the NWLink IPX/SPX port number on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SpxServiceName Property
SpxServiceName Property

The SpxServiceName property specifies the name of the NWLink IPX/SPX service on an instance of Microsoft® SQL Server™
2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SQLCurrentVersion Property
SQLCurrentVersion Property

The SQLCurrentVersion property returns the current instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SQLDataRoot Property
SQLDataRoot Property

The SQLDataRoot property identifies the default operating-system directory implementing storage for Microsoft® SQL Server™
2000 system user-defined databases.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

SQLMessageID Property
SQLMessageID Property

The SQLMessageID property identifies a Microsoft® SQL Server™ 2000 error message by message number.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

SQLRootPath Property
SQLRootPath Property

The SQLRootPath property identifies the operating-system directory specified as the root directory for an instance of Microsoft®
SQL Server™ 2000.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

SQLSeverity Property
SQLSeverity Property

The SQLSeverity property identifies a Microsoft® SQL Server™ 2000 error message severity level.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

StandardLogin Property
StandardLogin Property

The StandardLogin property identifies a Microsoft® SQL Server™ 2000 login record used by the referenced replication
component when a connection to an instance of SQL Server is required.

Applies To

DistributionDatabase Object ReplicationSecurity Object

SQL-DMO (SQL Server 2000)

StandardPassword Property
StandardPassword Property

The StandardPassword property identifies a string used as a password for login authentication when a connection to an instance
of Microsoft® SQL Server™ 2000 is required.

Applies To

DistributionDatabase Object ReplicationSecurity Object

SQL-DMO (SQL Server 2000)

StandbyFiles Property
StandbyFiles Property

The StandbyFiles property specifies the name of an undo file used as part of an instance of Microsoft® SQL Server™ 2000
imaging strategy.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

StartRunDate Property
StartRunDate Property

The StartRunDate property filters jobs listed in the JobServer object EnumJobHistory method, restricting the returned
QueryResults object result set to only those jobs whose execution date matches the value set.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

StartRunTime Property
StartRunTime Property

The StartRunTime property filters jobs listed in the JobServer object EnumJobHistory method, restricting the returned
QueryResults object result set to only those jobs whose execution time matches the value set.

Applies To

JobHistoryFilter Object

SQL-DMO (SQL Server 2000)

StartStepID Property
StartStepID Property

The StartStepID property identifies the first step executed when Microsoft® SQL Server™ 2000 Agent runs the referenced job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

Startup Property
Startup Property

The Startup property is TRUE when the referenced stored procedure is executed automatically when the Microsoft® SQL
Server™ 2000 service starts.

Applies To

StoredProcedure Object

SQL-DMO (SQL Server 2000)

StartupAccount Property
StartupAccount Property

The StartupAccount property returns the name of the Microsoft® Windows NT® 4.0 security account used by SQL Server Agent
for network access authentication.

Applies To

JobServer Object SQLServer2 Object

SQL-DMO (SQL Server 2000)

Status Property (BackupDevice)
Status Property (BackupDevice)

The Status property returns component execution or integrity state information.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

Status Property (Database)
Status Property (Database)

The Status property returns component execution or integrity state information.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Status Property (MergeArticle)
Status Property (MergeArticle)

The Status property returns component execution or integrity state information.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

Status Property (Services)
Status Property (Services)

The Status property returns component execution or integrity state information.

Applies To

FullTextService Object SQLServer Object
JobServer Object

SQL-DMO (SQL Server 2000)

Status Property (Subscription Objects)
Status Property (Subscription Objects)

The Status property returns component execution or integrity state information.

Applies To

DistributionSubscription Object TransSubscription Object
MergeSubscription Object

SQL-DMO (SQL Server 2000)

Status Property (TargetServer)
Status Property (TargetServer)

The Status property returns component execution or integrity state information.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

StatisticsIndex Property
StatisticsIndex Property

The StatisticsIndex property directs Index object property evaluation when using the object to create a Microsoft® SQL
Server™ 2000 index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

StatusInfoRefetchInterval Property
StatusInfoRefetchInterval Property

The StatusInfoRefetchInterval property controls the periodic, automatic update of status information maintained in SQL-DMO
objects.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

StepID Property
StepID Property

The StepID property is a user-defined, long integer identifying a Microsoft® SQL Server™ 2000 Agent job step.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

StepSubsystem Property
StepSubsystem Property

The StepSubsystem property controls job enumeration methods, filtering for any jobs with any step defined to use the
subsystem specified.

Applies To

JobFilter Object

SQL-DMO (SQL Server 2000)

Subscriber Property
Subscriber Property

The Subscriber property specifies the subscribing data source for a publisher-initiated (push) subscription.

Applies To

DistributionSubscription Object TransSubscription Object
MergeSubscription Object

SQL-DMO (SQL Server 2000)

SubscriberIdentityRangeSize Property
SubscriberIdentityRangeSize Property

The SubscriberIdentityRangeSize property specifies the identity range size of a table at the Subscriber.

Applies To

MergeArticle2 Object TransArticle2 Object

SQL-DMO (SQL Server 2000)

SubscriberLogin Property
SubscriberLogin Property

The SubscriberLogin property identifies a Microsoft® SQL Server™ 2000 login record used by the referenced replication
component when a connection to an instance of SQL Server is required.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

SubscriberPassword Property
SubscriberPassword Property

The SubscriberPassword property specifies a string used as a password for login authentication when a connection to an
instance of Microsoft® SQL Server™ 2000 is required.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

SubscriberSecurityMode Property
SubscriberSecurityMode Property

The SubscriberSecurityMode property is used to configure the authentication mode used for connections originated by the
agent implementing a Subscriber-initiated subscription.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

SubscriberType Property (MergePullSubscription,
MergeSubscription)
SubscriberType Property (MergePullSubscription, MergeSubscription)

The SubscriberType property defines subscription attributes.

Applies To

MergePullSubscription Object MergeSubscription Object

SQL-DMO (SQL Server 2000)

SubscriberType Property (TransPullSubscription,
TransSubscription)
SubscriberType Property (TransPullSubscription, TransSubscription)

The SubscriberType property defines subscription behavior when data maintained in a subscribed-to article is altered at the
Subscriber.

Applies To

TransPullSubscription Object TransSubscription Object

SQL-DMO (SQL Server 2000)

SubscriptionDB Property
SubscriptionDB Property

The SubscriptionDB property specifies the database on the Subscriber used to maintain images of articles retrieved by the
subscription.

Applies To

DistributionSubscription Object TransSubscription Object
MergeSubscription Object

SQL-DMO (SQL Server 2000)

SubscriptionID Property
SubscriptionID Property

The SubscriptionID property returns the subscription ID, which is a unique identifier, as a string.

Applies To

TransPullSubscription2 Object MergePullSubscription2 Object

Syntax

object.SubscriptionID

Parts

object

Expression that evaluates to an object in the Applies To list

Data Type

String

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetSubscriptionID(SQLDMO_LPBSTR pRetVal);

Remarks

When cleaning up anonymous agent meta data at a Distributor, an application can retrieve the subscription ID using the
SubscriptionID property. The application can then use the value in the bstrSubscriptionID parameter of the
CleanUpAnonymousAgentInfo method.

Note If an application calls SubscriptionID on an instance of SQL Server version 7.0, the constant, SQLDMO_E_SQL80ONLY,
and the message "This property or method requires Microsoft SQL Server 2000" are returned.

See Also

CleanUpAnonymousAgentInfo Method

SQL-DMO (SQL Server 2000)

SubscriptionType Property
SubscriptionType Property

The SubscriptionType specifies direction and Publisher-visibility for a replication subscription.

Applies To

DistributionSubscription Object TransPullSubscription Object
MergePullSubscription Object TransSubscription Object
MergeSubscription Object

SQL-DMO (SQL Server 2000)

SubsetFilterClause Property
SubsetFilterClause Property

The SubsetFilterClause property specifies a Transact-SQL WHERE clause used to partition data horizontally in the merge
replication article.

Applies To

MergeArticle Object

SQL-DMO (SQL Server 2000)

SubSystem Property
SubSystem Property

The SubSystem property specifies the Microsoft® SQL Server™ 2000 Agent execution subsystem used to interpret job step task-
defining text.

Applies To

JobStep Object

SQL-DMO (SQL Server 2000)

SundayPagerEndTime Property
SundayPagerEndTime Property

The SundayPagerEndTime specifies the latest time of day at which the referenced operator is available to receive alert
notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

SundayPagerStartTime Property
SundayPagerStartTime Property

The SundayPagerStartTime specifies the earliest time of day at which the referenced operator is available to receive alert
notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

SuperSocketEncrypt Property
SuperSocketEncrypt Property

The SuperSocketEncrypt property specifies whether Super Sockets Net-Library encryption is enabled on an instance of
Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SuperSocketList Property
SuperSocketList Property

The SuperSocketList property returns a super socket protocol list.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

SuspendIndexing Property
SuspendIndexing Property

The SuspendIndexing property controls index update when the ImportData method of the Table object is used to copy data to
Microsoft® SQL Server™ 2000.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

SyncType Property
SyncType Property

The SyncType property controls subscription agent behavior when subscription synchronization is required.

Applies To

DistributionSubscription Object MergeSubscription Object
MergePullSubscription Object TransSubscription Object

SQL-DMO (SQL Server 2000)

SystemObject Property
SystemObject Property

The SystemObject property returns TRUE for Microsoft® SQL Server™ database objects whose implementation is owned by
Microsoft.

Applies To

BackupDevice Object StoredProcedure Object
Database Object Table Object
DBObject Object Trigger Object
Login Object User Object
ReplicationStoredProcedure Object View Object

SQL-DMO (SQL Server 2000)

T

SQL-DMO (SQL Server 2000)

TableFullTextChangeTrackingOn Property
TableFullTextChangeTrackingOn Property

The TableFullTextChangeTrackingOn property specifies whether to enable the tracking and propagation of changes to a table
for a full-text image index.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

TableFullTextUpdateIndexOn Property
TableFullTextUpdateIndexOn Property

The TableFullTextUpdateIndexOn property specifies whether to start or stop propagating tracked changes to the Microsoft
Search service automatically.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

TableLock Property
TableLock Property

The TableLock property specifies whether to set table-level locking during the execution of a bulk copy import command.

Applies To

BulkCopy2 Object

SQL-DMO (SQL Server 2000)

TapeLoadWaitTime Property
TapeLoadWaitTime Property

The TapeLoadWaitTime property specifies a number of minutes a Microsoft® SQL Server™ 2000 backup or restore operation
will wait when trying to write to or read from an indicated tape media.

Applies To

Registry Object

SQL-DMO (SQL Server 2000)

Tapes Property
Tapes Property

The Tapes property specifies one or more tape devices used as a database backup target or restore source.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

TcpFlag Property
TcpFlag Property

The TcpFlag property specifies whether the TCP/IP Sockets Net-Libraries hide flag is set on a computer running an instance of
Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

TcpPort Property
TcpPort Property

The TcpPort property specifies the TCP/IP Sockets Net-Libraries port number on an instance of Microsoft® SQL Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

Text Property
Text Property

The Text property exposes the Transact-SQL or other script that defines the referenced Microsoft® SQL Server™ 2000 database
object.

Applies To

Check Object StoredProcedure Object
Default Object Trigger Object
DRIDefault Object UserDefinedFunction Object
Rule Object View Object

SQL-DMO (SQL Server 2000)

TextFileGroup Property
TextFileGroup Property

The TextFileGroup property specifies the Microsoft® SQL Server™ 2000 filegroup used to maintain long, variable-length data
stored in the referenced Table object.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

ThirdParty Property
ThirdParty Property

The ThirdParty property specifies the product acting as a replication Publisher.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

ThirdPartyOptions Property
ThirdPartyOptions Property

The ThirdPartyOptions property specifies whether to suppress the display of a heterogeneous publication in the Replication
folder in SQL Server Enterprise Manager.

Applies To

DistributionPublication2 Object

SQL-DMO (SQL Server 2000)

TimeZoneAdjustment Property
TimeZoneAdjustment Property

The TimeZoneAdjustment property returns the difference, in minutes, between the local time midnight for an instance of
Microsoft® SQL Server™ 2000 and midnight Greenwich Mean Time.

Applies To

TargetServer Object

SQL-DMO (SQL Server 2000)

ToPointInTime Property
ToPointInTime Property

The ToPointInTime property sets an end-point for database log restoration.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

TopologyX Property
TopologyX Property

The TopologyX property is reserved for future use.

Applies To

RemoteServer Object

SQL-DMO (SQL Server 2000)

TopologyY Property
TopologyY Property

The TopologyY property is reserved for future use.

Applies To

RemoteServer Object

SQL-DMO (SQL Server 2000)

TornPageDetection Property
TornPageDetection Property

The TornPageDetection property enables Microsoft® SQL Server™ 2000 logic-enhancing data security in the event of certain
types of system failure.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

TranslateChar Property
TranslateChar Property

The TranslateChar property exposes the Microsoft® SQL Server™ ODBC driver statement attribute SQL_COPT_SS_TRANSLATE.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

TrueLogin Property
TrueLogin Property

The TrueLogin property returns the login record name used by the current connection.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

TrueName Property
TrueName Property

The TrueName property returns the result set of the Microsoft® SQL Server™ 2000 global function @@SERVERNAME.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

TruncateLog Property (Backup)
TruncateLog Property (Backup)

The TruncateLog property controls log file processing for Backup and BulkCopy objects.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

TruncateLog Property (BulkCopy)
TruncateLog Property (BulkCopy)

The TruncateLog property controls log file processing for Backup and BulkCopy objects.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

TruncateLogOnCheckpoint Property
TruncateLogOnCheckpoint Property

The TruncateLogOnCheckpoint property configures automatic transaction log maintenance activity.

Applies To

DBOption Object

SQL-DMO (SQL Server 2000)

Trusted Property
Trusted Property

The Trusted property controls SQL Server Authentication behavior for server-initiated connections.

Applies To

RemoteLogin Object

SQL-DMO (SQL Server 2000)

TrustedDistributorConnection Property
TrustedDistributorConnection Property

The TrustedDistributorConnection property directs authentication mode use.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

Type Property (Alert)
Type Property (Alert)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

Type Property (BackupDevice)
Type Property (BackupDevice)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

Type Property (Category)
Type Property (Category)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Category Object

SQL-DMO (SQL Server 2000)

Type Property (DBObject)
Type Property (DBObject)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

DBObject Object

SQL-DMO (SQL Server 2000)

Type Property (Index)
Type Property (Index)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

Type Property (Job, JobFilter)
Type Property (Job, JobFilter)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Job Object JobFilter Object

SQL-DMO (SQL Server 2000)

Type Property (JobServer)
Type Property (JobServer)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

Type Property (Key)
Type Property (Key)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Key Object

SQL-DMO (SQL Server 2000)

Type Property (Login)
Type Property (Login)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

Type Property (Property)
Type Property (Property)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Property Object

SQL-DMO (SQL Server 2000)

Type Property (RegisteredSubscriber)
Type Property (RegisteredSubscriber)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

RegisteredSubscriber Object

SQL-DMO (SQL Server 2000)

Type Property (StoredProcedure)
Type Property (StoredProcedure)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

StoredProcedure Object

SQL-DMO (SQL Server 2000)

Type Property (Trigger)
Type Property (Trigger)

The Type property exposes configured attributes of the referenced Microsoft® SQL Server™ 2000 component.

Applies To

Trigger Object

SQL-DMO (SQL Server 2000)

Type Property (UserDefinedFunction)
Type Property (UserDefinedFunction)

The Type property returns the user-defined function type.

Applies To

UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

TypeName Property
TypeName Property

The TypeName property returns a string that identifies the type of Microsoft® SQL Server™ 2000 database object referenced by
the DBObject object.

Applies To

DBObject Object

SQL-DMO (SQL Server 2000)

TypeOf Property
TypeOf Property

The TypeOf property returns an enumerated value identifying a kind of SQL-DMO object. For example, a Backup object returns
SQLDMOObj_Backup when the object.TypeOf property is queried.

Applies To

All SQL-DMO objects

Syntax

object.TypeOf

Parts

object

Expression that evaluates to an object in the Applies To list

Data Type

Long, enumerated. For more information about value enumeration, see SQL-DMO Object Type Constants
(SQLDMO_OBJECT_TYPE).

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetTypeOf(LPLONG pRetVal);

Remarks

For SQL-DMO collections, the TypeOf property returns the kind of object contained in the collection.

SQL-DMO (SQL Server 2000)

U

SQL-DMO (SQL Server 2000)

UniqueIndexForFullText Property
UniqueIndexForFullText Property

The UniqueIndexForFullText property specifies the index used by Microsoft Search to identify rows uniquely in a full-text
indexed table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

UniqueKeyCount Property
UniqueKeyCount Property

The UniqueKeyCount property returns an approximate number of words uniquely addressable in a Microsoft Search full-text
catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

UnloadTapeAfter Property
UnloadTapeAfter Property

The UnloadTapeAfter property controls tape media handling on completion of a backup or restore operation.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

UpdateCommand Property
UpdateCommand Property

The UpdateCommand property specifies record update when altered rows in the source are published to article Subscribers.

Applies To

TransArticle Object

SQL-DMO (SQL Server 2000)

Upgrade Property
Upgrade Property

The Upgrade property is reserved for future use.

Applies To

Language Object

SQL-DMO (SQL Server 2000)

Use6xCompatible Property
Use6xCompatible Property

The Use6xCompatible property controls interpretation of Microsoft® SQL Server™ 2000 bulk copy native format data files.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

UseBulkCopyOption Property
UseBulkCopyOption Property

The UseBulkCopyOption property determines whether the select into/bulkcopy option is turned on automatically when the
ImportData method of the Table object is executed.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

UseCollation Property
UseCollation Property

The UseCollation property maintains column-level collation settings when transferring data between computers running an
instance of Microsoft® SQL Server™ 2000.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

UseCurrentUserServerGroups Property
UseCurrentUserServerGroups Property

The UseCurrentUserServerGroups property configures registry entries listing instances of Microsoft® SQL Server™ 2000.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

UseDestTransaction Property
UseDestTransaction Property

The UseDestTransaction property includes all DROP, CREATE SCHEMA, and data copying statements in a transaction during a
transfer operation.

Applies To

Transfer2 Object

Syntax

object.UseDestTransaction [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

TRUE or FALSE

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetUseDestTransaction(LPBOOL pRetVal);

HRESULT SetUseDestTransaction(BOOL NewValue);

Remarks

When UseDestTransaction is set to TRUE, the entire transfer operation (including DROP statements, CREATE SCHEMA
statements, and data copying) is included in a transaction. If any of these operations fail, the transaction is rolled back. Statistics
are updated after the transaction is committed. The default is FALSE.

When UseDestTransaction is set to TRUE, the application cannot perform these operations within the transaction:

Dump the transaction log.

Change bcp settings.

Update statistics.

Script a full-text catalog.

Note If an application calls UseDestTransaction on an instance of SQL Server version 7.0, the operation is ignored.

See Also

DropDestObjectsFirst Property

CopySchema Property

SQL-DMO (SQL Server 2000)

UseExistingConnection Property
UseExistingConnection Property

The UseExistingConnection property directs BulkCopy object connection behavior.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

UseFTP Property
UseFTP Property

The UseFTP property specifies whether snapshot files will be downloaded using FTP protocol by pull subscriptions.

Applies To

MergePullSubscription2 Object TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

UseInteractiveResolver Property
UseInteractiveResolver Property

The UseInteractiveResolver property specifies whether to use an interactive resolver during the synchronization process.

Applies To

MergePullSubscription2 Object MergeSubscription2 Object

SQL-DMO (SQL Server 2000)

UserData Property
UserData Property

The UserData property associates user-defined data with a SQL-DMO object instance.

Applies To

All SQL-DMO objects

Syntax

object.UserData [= value]

Parts

object

Expression that evaluates to an object in the Applies To list

value

Long integer

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT GetUserData(LPVOID *pRetVal);

HRESULT SetUserData(LPVOID lpvNewValue);

SQL-DMO (SQL Server 2000)

UserName Property
UserName Property

The UserName property returns the Microsoft® SQL Server™ 2000 database user, determining privilege for the current
connection.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

UserProfile Property
UserProfile Property

The UserProfile property returns a high-level role description for the Microsoft® SQL Server™ 2000 login or database user used
by the current connection.

Applies To

Database Object SQLServer Object

SQL-DMO (SQL Server 2000)

UseServerSideBCP Property
UseServerSideBCP Property

The UseServerSideBCP property directs BulkCopy object behavior when implementing a bulk copy import operation.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

UseTrustedConnection Property
UseTrustedConnection Property

The UseTrustedConnection property selects the authentication mode for registry-listed instances of Microsoft® SQL Server™
2000.

Applies To

RegisteredServer Object

SQL-DMO (SQL Server 2000)

V

SQL-DMO (SQL Server 2000)

ValidateSubscriberInfo Property
ValidateSubscriberInfo Property

The ValidateSubscriberInfo property is a selectable expression containing any dynamic filtering functions, which might have the
wrong value if the Merge Agent is started with the wrong parameter set.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

Value Property
Value Property

The Value property returns the current value of the referenced object property.

Applies To

Property Object

SQL-DMO (SQL Server 2000)

VendorName Property
VendorName Property

The VendorName property identifies the product manufacturer and source of a publication distributed by using Microsoft® SQL
Server™ 2000 replication.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

VerifyResolverSignature Property
VerifyResolverSignature Property

The VerifyResolverSignature property specifies whether to verify a digital signature before using a resolver in merge
replication.

Applies To

MergeArticle2 Object

SQL-DMO (SQL Server 2000)

Version Property
Version Property

The Version property returns a system-specified integer identifying the version of Microsoft® SQL Server™ 2000 used to create
the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

VersionBuild Property
VersionBuild Property

The VersionBuild property returns the revision number part of the SQL-DMO object library version identifier.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

VersionMajor Property
VersionMajor Property

The VersionMajor property returns the portion of a component version identifier to the left of the first decimal point in the
identifier.

Applies To

Application Object SQLServer Object
RegisteredServer Object

SQL-DMO (SQL Server 2000)

VersionMinor Property
VersionMinor Property

The VersionMinor property returns the portion of a component version identifier to the right of the first decimal point in the
identifier.

Applies To

Application Object SQLServer Object
RegisteredServer Object

SQL-DMO (SQL Server 2000)

VersionNumber Property
VersionNumber Property

The VersionNumber property returns a system-maintained change-tracking indicator for the referenced job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

VersionString Property
VersionString Property

The VersionString property executes the Microsoft® SQL Server™ 2000 scalar function @@VERSION and returns its results.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ViaListenInfo Property
ViaListenInfo Property

The ViaListenInfo property specifies the network interface card (NIC) and port number when using Virtual Interface Architecture
(VIA) protocol.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

ViaRecognizedVendors Property
ViaRecognizedVendors Property

 New Information - SQL Server 2000 SP3.

The ViaListenInfo property returns the names of recognized vendors when using Virtual Interface Architecture (VIA) protocol.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

ViaVendor Property
ViaVendor Property

The ViaListenInfo property specifies the vendor name when using Virtual Interface Architecture (VIA) protocol.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

VinesGroupName Property
VinesGroupName Property

The VinesGroupName property specifies the Banyan Vines Net-Library group name on a computer running Microsoft® SQL
Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

VinesItemName Property
VinesItemName Property

The VinesItemName property specifies the Banyan Vines Net-Library item name on a computer running Microsoft® SQL
Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

VinesOrgName Property
VinesOrgName Property

The VinesOrgName property specifies the Banyan Vines Net-Library organization name on a computer running Microsoft® SQL
Server™ 2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

W

SQL-DMO (SQL Server 2000)

WeekdayPagerEndTime Property
WeekdayPagerEndTime Property

The WeekdayPagerEndTime property specifies the latest time of day at which the referenced operator is available to receive
alert notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

WeekdayPagerStartTime Property
WeekdayPagerStartTime Property

The WeekdayPagerStartTime property specifies the earliest time of day at which the referenced operator is available to receive
alert notification by pager.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

WorkingDirectory Property
WorkingDirectory Property

The WorkingDirectory property specifies the directory to use for snapshot files that are downloaded using FTP protocol.

Applies To

MergePullSubscription2 Object TransPullSubscription2 Object

SQL-DMO (SQL Server 2000)

WSProxyAddress Property
WSProxyAddress Property

The WSProxyAddress property specifies the WinSock proxy server address on a computer running Microsoft® SQL Server™
2000.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

WSProxyPort Property
WSProxyPort Property

The WSProxyPort property specifies the WinSock proxy server port number on a computer running Microsoft® SQL Server.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

Methods
SQL-DMO object methods:

Configure a Microsoft® SQL Server™ component, modifying a SQL Server installation.

Generate textual documentation of a SQL Server component for use by another administrative task.

Perform basic administration tasks such as database backup or restore operations.

SQL-DMO (SQL Server 2000)

A

SQL-DMO (SQL Server 2000)

Abort Method
Abort Method

The Abort method interrupts a running SQL-DMO process, returning control to the application.

Applies To

Backup Object Restore Object
BulkCopy Object Transfer Object

SQL-DMO (SQL Server 2000)

ActivateSubscriptions Method
ActivateSubscriptions Method

The ActivateSubscriptions method executes the system stored procedure sp_refreshsubscriptions, targeting the transactional
or snapshot replication publication referenced by the SQL-DMO object.

Applies To

TransPublication Object

SQL-DMO (SQL Server 2000)

Add Method
Add Method

The Add method appends the object specified to an appropriate SQL-DMO collection.

Applies To

AlertCategories Collection MergeDynamicSnapshotJobs Collection
Alerts Collection MergePublications Collection
BackupDevices Collection MergePullSubscriptions Collection
Checks Collection MergeSubscriptions Collection
Columns Collection MergeSubsetFilters Collection
DatabaseRoles Collection Names Collection
Databases Collection OperatorCategories Collection
DBFiles Collection Operators Collection
Defaults Collection RegisteredServers Collection
DistributionArticles Collection RegisteredSubscribers Collection
DistributionDatabases Collection RemoteLogins Collection
DistributionPublications Collection RemoteServers Collection
DistributionPublishers Collection Rules Collection
DistributionSubscriptions Collection ServerGroups Collection
FileGroups Collection StoredProcedures Collection
FullTextCatalogs Collection Tables Collection
Indexes Collection TargetServerGroups Collection
JobCategories Collection TransArticles Collection
Jobs Collection TransPublications Collection
JobSchedules Collection TransPullSubscriptions Collection
JobSteps Collection TransSubscriptions Collection
Keys Collection Triggers Collection
LinkedServerLogins Collection UserDefinedDatatypes Collection
LinkedServers Collection UserDefinedFunctions Collection
LogFiles Collection Users Collection
Logins Collection Views Collection
MergeArticles Collection

SQL-DMO (SQL Server 2000)

AddAlternatePublisher Method
AddAlternatePublisher Method

The AddAlternatePublisher method adds a server to a list of alternate Publishers. Subscribers to a publication can synchronize
with listed alternate Publishers.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

AddMember Method
AddMember Method

The AddMember method assigns Microsoft® SQL Server™ database or server role membership to the specified user, database
role, or login.

Applies To

DatabaseRole Object ServerRole Object

SQL-DMO (SQL Server 2000)

AddMemberServer Method
AddMemberServer Method

The AddMemberServer method assigns target server (TSX) group membership to the target server specified.

Applies To

TargetServerGroup Object

SQL-DMO (SQL Server 2000)

AddNotification Method
AddNotification Method

The AddNotification method associates operators with alerts. Operators designated receive notification messages when an
event raising the alert occurs.

Applies To

Alert Object Operator Object

SQL-DMO (SQL Server 2000)

AddObject Method
AddObject Method

The AddObject method appends the database object referenced to the list of those objects copied when the Transfer method of
the Database object is used to copy database schema or data.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

AddObjectByName Method
AddObjectByName Method

The AddObjectByName method appends the database object named to the list of those objects copied when the Transfer
method of the Database object is used to copy database schema or data.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

AddReplicatedColumns Method
AddReplicatedColumns Method

The AddReplicatedColumns method vertically partitions a transactional or snapshot replication article.

Applies To

MergeArticle2 Object TransArticle Object

SQL-DMO (SQL Server 2000)

AddStartParameter Method
AddStartParameter Method

The AddStartParameter method appends a Microsoft® SQL Server™ service startup option to those currently used by the
service.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AddStepToJob Method
AddStepToJob Method

The AddStepToJob method configures the referenced Microsoft® SQL Server™ Agent job by appending the job step defined by
the JobStep object specified.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

Alter Method
Alter Method

The Alter method changes the definition of the referenced stored procedure, trigger, user-defined function, or view.

Applies To

StoredProcedure Object UserDefinedFunction Object
Trigger Object View Object

SQL-DMO (SQL Server 2000)

AlterDataType Method
AlterDataType Method

The AlterDataType method alters the data type of the referenced column.

Applies To

Column2 Object

Syntax

object.AlterDataType(Datatype , [Length] , [Precision] , [Scale])

Parts

object

Expression that evaluates to an object in the Applies To list

DataType

String that specifies the new data type

Length

Optional long integer that specifies the length of a string data type

Precision

Optional long integer that specifies the precision of a numeric data type

Scale

Optional long integer that specifies the scale of a numeric data type.

Prototype (C/C++)

HRESULT AlterDataType(
SQLDMO_LPCSTR DataType,
long Length,
long Precision,
long Scale);

Remarks

When using AlterDataType to convert the data type of an existing column to a new data type, the two data types must be
compatible. For example, an int data type can be converted to a decimal data type, and a char data type can be converted to an
nvarchar data type. However string data types cannot be converted to numeric data types.

Note If an application calls AlterDataType on an instance of SQL Server version 7.0, the constant, SQLDMO_E_SQL80ONLY, and
the message "This property or method requires Microsoft SQL Server 2000" are returned.

See Also

DataType Property

Using Data Types

SQL-DMO (SQL Server 2000)

ApplyToTargetServer Method
ApplyToTargetServer Method

The ApplyToTargetServer method adds an execution target to the list of targets maintained for the referenced Microsoft® SQL
Server™ Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

ApplyToTargetServerGroup Method
ApplyToTargetServerGroup Method

The ApplyToTargetServerGroup method adds one or more execution targets to the list of targets maintained for the referenced
Microsoft® SQL Server™ Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

AttachDB Method
AttachDB Method

The AttachDB method makes a database visible to an instance of Microsoft® SQL Server™.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AttachDBWithSingleFile Method
AttachDBWithSingleFile Method

The AttachDBWithSingleFile method makes a database visible to an instance of Microsoft® SQL Server™.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

AttachDBWithSingleFile2 Method
AttachDBWithSingleFile2 Method

The AttachDBWithSingleFile2 method makes a database visible to an instance of Microsoft® SQL Server™.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

AttachSubscriptionDatabase Method
AttachSubscriptionDatabase Method

The AttachSubscriptionDatabase method attaches a copied subscription database to a Subscriber.

Applies To

Replication2 Object

SQL-DMO (SQL Server 2000)

B

SQL-DMO (SQL Server 2000)

BeginAlter Method
BeginAlter Method

The BeginAlter method marks the start of a unit of change for the object referenced.

Applies To

Alert Object MergePublication Object
AlertSystem Object MergePullSubscription Object
Category Object MergeSubscription Object
DistributionArticle Object MergeSubsetFilter Object
DistributionDatabase Object Operator Object
DistributionPublication Object RegisteredSubscriber Object
DistributionPublisher Object Schedule Object
DistributionSubscription Object Table Object
Job Object TargetServerGroup Object
JobSchedule Object TransArticle Object
JobServer Object TransPublication Object
JobStep Object TransPullSubscription Object
MergeArticle Object TransSubscription Object
MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

BeginTransaction Method
BeginTransaction Method

The BeginTransaction method explicitly marks the start of a transaction unit.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

BindDefault Method
BindDefault Method

 Topic last updated -- July 2003

The BindDefault method implements Microsoft® SQL Server™ 2000 default binding and unbinding for columns and user-
defined data types.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

BindRule Method
BindRule Method

 Topic last updated -- July 2003

The BindRule method implements Microsoft® SQL Server™ 2000 rule binding and unbinding for columns and user-defined data
types.

Applies To

Column Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

BindToColumn Method
BindToColumn Method

 New Information - SQL Server 2000 SP3.

The BindToColumn method enables a Microsoft® SQL Server™ 2000 default or rule on the column specified.

Applies To

Default Object Rule Object

SQL-DMO (SQL Server 2000)

BindToDatatype Method
BindToDatatype Method

The BindToDatatype method enables a Microsoft® SQL Server™ 2000 default or rule on the user-defined data type specified.

Applies To

Default Object Rule Object

SQL-DMO (SQL Server 2000)

BrowseSnapshotFolder Method (MergePublication2)
BrowseSnapshotFolder Method (MergePublication2)

The BrowseSnapshotFolder method returns the complete path used by the Snapshot Agent to generate the most recent
snapshot.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

BrowseSnapshotFolder Method (TransPublication2)
BrowseSnapshotFolder Method (TransPublication2)

The BrowseSnapshotFolder method returns the complete path used to apply the most recent snapshot.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

C

SQL-DMO (SQL Server 2000)

CancelAlter Method
CancelAlter Method

The CancelAlter method marks the end of a unit of change for the object referenced and discards any changes made to object
property values.

Applies To

Alert Object MergePublication Object
AlertSystem Object MergePullSubscription Object
Category Object MergeSubscription Object
DistributionArticle Object MergeSubsetFilter Object
DistributionDatabase Object Operator Object
DistributionPublication Object RegisteredSubscriber Object
DistributionPublisher Object Schedule Object
DistributionSubscription Object Table Object
Job Object TargetServerGroup Object
JobSchedule Object TransArticle Object
JobServer Object TransPublication Object
JobStep Object TransPullSubscription Object
MergeArticle Object TransSubscription Object
MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

ChangeAgentParameter Method
ChangeAgentParameter Method

The ChangeAgentParameter method modifies a replication agent profile parameter.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

ChangeAgentProfile Method
ChangeAgentProfile Method

The ChangeAgentProfile method modifies an existing replication agent profile.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

CheckAllocations Method
CheckAllocations Method

The CheckAllocations method scans all pages of the referenced Microsoft® SQL Server™ 2000 database, testing pages to
ensure integrity.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckAllocationsDataOnly Method
CheckAllocationsDataOnly Method

The CheckAllocationsDataOnly method is maintained for compatibility with previous versions of SQL-DMO.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckAllocationsDataOnlyWithResult Method
CheckAllocationsDataOnlyWithResult Method

The CheckAllocationsDataOnlyWithResult method scans all pages of the referenced Microsoft® SQL Server™ 2000 database,
testing pages to ensure integrity. However, nonclustered indexes for nonsystem tables are not checked.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CheckAllocationsWithResult Method
CheckAllocationsWithResult Method

The CheckAllocationsWithResult method scans all pages of the referenced Microsoft® SQL Server™ 2000 database, testing
pages to ensure integrity.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CheckCatalog Method
CheckCatalog Method

The CheckCatalog method tests the integrity of the catalog of the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckCatalogWithResult Method
CheckCatalogWithResult Method

The method CheckCatalogWithResult tests the integrity of the catalog of the referenced database.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CheckDefaultSyntax Method
CheckDefaultSyntax Method

The CheckDefaultSyntax method allows an application to validate the syntax of a Transact-SQL database default prior to
creating it.

Applies To

Database2 Object

Syntax

object.CheckDefaultSyntax(Default)

Parts

object

Expression that evaluates to an object in the Applies To list

Default

definition

Prototype (C/C++)

HRESULT CheckDefaultSyntax(LPSQLDMODEFAULT Default);

Remarks

Database defaults and rules cannot be modified once they are created. They must first be dropped and then recreated. An
application can call the CheckDefaultSyntax or CheckRuleSyntax method to validate the syntax of a Transact-SQL database
rule prior to its creation.

An application might call the CheckDefaultSyntax or CheckRuleSyntax in a scenario in which a rule or default already exists,
and it is necessary to change the definition (specified by the Text property). The application:

1. Creates a new rule or default object.

2. Sets the Name property of the new object to the name of the existing object.

3. Sets the Text property of the new object to define the default or rule.

4. Calls CheckDefaultSyntax or CheckRuleSyntax to verify the syntax of the Text property.

5. Drops the existing object and recreates it using the new object if CheckDefaultSyntax or CheckRuleSyntax returns TRUE.

6. CheckDefaultSyntax returns TRUE if the Transact-SQL syntax is valid.

Note CheckDefaultSyntax can be used with Microsoft® SQL Server™ 2000 and SQL Server 7.0.

See Also

CheckRuleSyntax Method

SQL-DMO (SQL Server 2000)

CheckFilegroup Method
CheckFilegroup Method

The CheckFilegroup method scans and tests the integrity of database pages maintained in operating system files implementing
the referenced filegroup.

Applies To

FileGroup Object

SQL-DMO (SQL Server 2000)

CheckFilegroupDataOnly Method
CheckFilegroupDataOnly Method

The CheckFilegroupDataOnly method scans and tests the integrity of database pages used to maintain table data in the
operating system files implementing the referenced filegroup.

Applies To

FileGroup Object

SQL-DMO (SQL Server 2000)

CheckFileGroupDataOnlyWithResult Method
CheckFileGroupDataOnlyWithResult Method

The CheckFileGroupDataOnlyWithResult method scans and tests the integrity of database pages used to maintain table data
in the operating system files implementing the referenced filegroup.

Applies To

FileGroup2 Object

SQL-DMO (SQL Server 2000)

CheckFileGroupWithResult Method
CheckFileGroupWithResult Method

The CheckFileGroupWithResult method scans and tests the integrity of database pages maintained in operating system files
that implement the referenced filegroup.

Applies To

FileGroup2 Object

SQL-DMO (SQL Server 2000)

CheckIdentityValue Method
CheckIdentityValue Method

The CheckIdentityValue method verifies the integrity of an identity column in the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

CheckIdentityValues Method
CheckIdentityValues Method

The CheckIdentityValues method verifies the integrity of all identity columns in tables of the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckIndex Method
CheckIndex Method

The CheckIndex method tests the integrity of database pages implementing storage for the referenced index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

CheckIndexWithResult Method
CheckIndexWithResult Method

The CheckIndexWithResult method tests the integrity of database pages that store data for the referenced index.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

Checkpoint Method
Checkpoint Method

The Checkpoint method forces a write of dirty database pages.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckRuleSyntax Method
CheckRuleSyntax Method

The CheckRuleSyntax method validates the syntax of a Transact-SQL database rule prior to creating it.

Applies To

Database2 Object

Syntax

object.CheckRuleSyntax(Rule)

Parts

object

Expression that evaluates to an object in the Applies To list

Rule

definition

Prototype (C/C++)

HRESULT CheckRuleSyntax(LPSQLDMORULE Rule);

Remarks

Database defaults and rules cannot be modified once they are created. They must first be dropped and then recreated. An
application can call the CheckDefaultSyntax or CheckRuleSyntax method to validate the syntax of a Transact-SQL database
rule prior to its creation.

An application might call the CheckDefaultSyntax or CheckRuleSyntax in a scenario in which a rule or default already exists,
and it is necessary to change the definition (specified by the Text property). The application:

1. Creates a new rule or default object.

2. Sets the Name property of the new object to the name of the existing object.

3. Sets the Text property of the new object to define the default or rule.

4. Calls CheckDefaultSyntax or CheckRuleSyntax to verify the syntax of the Text property.

5. Drops the existing object and recreates it using the new object if CheckDefaultSyntax or CheckRuleSyntax returns TRUE.

6. CheckDefaultSyntax returns TRUE if the Transact-SQL syntax is valid.

Note CheckRuleSyntax can be used with Microsoft® SQL Server™ 2000 and SQL Server 7.0.

See Also

CheckDefaultSyntax Method

SQL-DMO (SQL Server 2000)

CheckTable Method
CheckTable Method

The CheckTable method tests the integrity of database pages implementing storage for the referenced table and indexes defined
on it.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

CheckTableDataOnly Method
CheckTableDataOnly Method

The CheckTableDataOnly method tests the integrity of database pages implementing storage for the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

CheckTableDataOnlyWithResult Method
CheckTableDataOnlyWithResult Method

The CheckTableDataOnlyWithResult method tests the integrity of database pages that store data for the referenced table.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

CheckTables Method
CheckTables Method

The CheckTables method tests the integrity of database pages implementing storage for all tables and indexes defined on the
tables of the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckTablesDataOnly Method
CheckTablesDataOnly Method

The CheckTablesDataOnly method tests the integrity of database pages implementing storage for all tables in the referenced
database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

CheckTablesDataOnlyWithResult Method
CheckTablesDataOnlyWithResult Method

The CheckTablesDataOnlyWithResult method tests the integrity of database pages that store data for all tables in the
referenced database.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CheckTablesWithResult Method
CheckTablesWithResult Method

The CheckTablesWithResult method executes DBCC CHECKDB WITH TABLERESULTS, and executes CHECKTABLE on all tables.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

CheckTableWithResult Method
CheckTableWithResult Method

The CheckTableWithResult method tests the integrity of database pages that store data for the referenced table and the indexes
defined on it.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

CleanUp Method
CleanUp Method

The CleanUp method directs the Microsoft Search service to locate and remove full-text catalog resources in the file system that
do not have corresponding entries in the system table sysfulltextcatalogs.

Applies To

FullTextService Object

SQL-DMO (SQL Server 2000)

CleanUpAnonymousAgentInfo Method
CleanUpAnonymousAgentInfo Method

The CleanUpAnonymousAgentInfo method cleans up anonymous agent meta data at a Distributor when called from a
Publisher.

Applies To

Publisher2 Object

Syntax

object.CleanUpAnonymousAgentInfo(bstrSubscriptionID , ReplicationType)

Parts

object

Expression that evaluates to an object in the Applies To list

bstrSubscriptionID

String that represents a subscription ID

ReplicationType

SQLDMORepType_Transactional or SQLDMORepType_Merge

Prototype (C/C++)

HRESULT CleanUpAnonymousAgentInfo(
SQLDMO_LPCSTR pszSubscriptionID,
SQLDMO_REPLICATION_TYPE ReplicationType);

Remarks

The value for the bstrSubscriptionID parameter can be obtained by retrieving the value of the SubscriptionID property. The value
for the ReplicationType parameter must be a SQLDMO_REPLICATION_TYPE of SQLDMORepType_Transactional for a
transactional publication or SQLDMORepType_Merge for a merge publication.

Note If an application calls CleanUpAnonymousAgentInfo on an instance of SQL Server version 7.0, the constant,
SQLDMO_E_SQL80ONLY, and the message "This property or method requires Microsoft SQL Server 2000" are returned.

See Also

SubscriptionID Property

SQL-DMO (SQL Server 2000)

CleanUpDistributionPublisherByName Method
CleanUpDistributionPublisherByName Method

The CleanUpDistributionPublisherByName method completely removes implementation of publications from the distribution
database used by the named Publisher.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

Close Method
Close Method

The Close method disconnects the SQLServer object and removes the object from the SQLServers collection of the Application
object.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

CommandShellImmediate Method
CommandShellImmediate Method

The CommandShellImmediate method executes an operating system command on an instance of Microsoft® SQL Server™
2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

CommandShellWithResults Method
CommandShellWithResults Method

The CommandShellWithResults method returns a QueryResults object enumerating execution output from an operating
system command executed on an instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

CommitTransaction Method
CommitTransaction Method

The CommitTransaction method commits a unit of work opened explicitly by a corresponding BeginTransaction method call.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Connect Method
Connect Method

 New Information - SQL Server 2000 SP3.

The Connect method attempts to establish a connection with a named instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Continue Method
Continue Method

The Continue method restarts a paused Microsoft® SQL Server™ 2000 service.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

CopySnapshot Method (MergePublication2)
CopySnapshot Method (MergePublication2)

The CopySnapshot method copies the latest snapshot files to the destination folder.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

CopySnapshot Method (TransPublication2)
CopySnapshot Method (TransPublication2)

The CopySnapshot method copies the latest snapshot files to the destination folder.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

CopySubscriptionDatabase Method
CopySubscriptionDatabase Method

The CopySubscriptionDatabase method copies a subscription database that has pull subscriptions, but no push subscriptions.
Only single file databases can be copied.

Applies To

ReplicationDatabase2 Object

SQL-DMO (SQL Server 2000)

CreateAgentProfile Method
CreateAgentProfile Method

The CreateAgentProfile method creates a replication agent profile.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

D

SQL-DMO (SQL Server 2000)

DeleteAgentProfile Method
DeleteAgentProfile Method

The DeleteAgentProfile method completely removes a replication agent profile.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

Deny Method (Database)
Deny Method (Database)

The Deny method negates a granted database permission or a list of granted permissions for one or more Microsoft® SQL
Server™ 2000 users or roles.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Deny Method (StoredProcedure)
Deny Method (StoredProcedure)

The Deny method negates a granted stored procedure permission or a list of granted permissions for one or more Microsoft®
SQL Server™ 2000 users or roles.

Applies To

StoredProcedure Object

SQL-DMO (SQL Server 2000)

Deny Method (Table, View)
Deny Method (Table, View)

The Deny method negates a granted table permission or a list of granted permissions for one or more Microsoft® SQL Server™
2000 users or roles.

Applies To

Table Object View Object

SQL-DMO (SQL Server 2000)

Deny Method (UserDefinedFunction)
Deny Method (UserDefinedFunction)

The Deny method negates a granted user-defined function permission or a list of granted permissions for one or more
Microsoft® SQL Server™ 2000 users or roles.

Applies To

UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

DetachDB Method
DetachDB Method

The DetachDB method makes a database invisible to an instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

DetachedDBInfo Method
DetachedDBInfo Method

The DetachedDBInfo method returns information about a detached database.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

DisableAgentOffload Method
DisableAgentOffload Method

The DisableAgentOffload method prevents a replication agent from offloading to a remote server.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

DisableFullTextCatalogs Method
DisableFullTextCatalogs Method

The DisableFullTextCatalogs method suspends Microsoft Search full-text catalog maintenance on the database specified.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

DisableMergeSubscription Method
DisableMergeSubscription Method

The DisableMergeSubscription method removes the record of a Subscriber-initiated (pull) subscription from the merge
publication Publisher and Distributor.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

DisableTransSubscription Method
DisableTransSubscription Method

The DisableTransSubscription method removes the record of a Subscriber-initiated (pull) subscription from the transactional or
snapshot publication Publisher and Distributor.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

DisConnect Method
DisConnect Method

The DisConnect method breaks the connection used by the SQLServer object referenced.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

DoAlter Method
DoAlter Method

The DoAlter method marks the end of a unit of change for the object referenced and submits changes made to property values.

Applies To

Alert Object MergePublication Object
AlertSystem Object MergePullSubscription Object
Category Object MergeSubscription Object
DistributionArticle Object MergeSubsetFilter Object
DistributionDatabase Object Operator Object
DistributionPublication Object RegisteredSubscriber Object
DistributionPublisher Object Schedule Object
DistributionSubscription Object Table Object
Job Object TargetServerGroup Object
JobSchedule Object TransArticle Object
JobServer Object TransPublication Object
JobStep Object TransPullSubscription Object
MergeArticle Object TransSubscription Object
MergeDynamicSnapshotJob Object

SQL-DMO (SQL Server 2000)

DoAlterWithNoCheck Method
DoAlterWithNoCheck Method

The DoAlterWithNoCheck method marks the end of a unit of change for the object referenced and submits changes made to
property values.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

DropMember Method
DropMember Method

The DropMember method removes the specified Microsoft® SQL Server™ 2000 user, database role, or login from the role
referenced.

Applies To

DatabaseRole Object ServerRole Object

SQL-DMO (SQL Server 2000)

E

SQL-DMO (SQL Server 2000)

EnableAgentOffload Method
EnableAgentOffload Method

The EnableAgentOffload method enables a replication agent to run at a remote Subscriber.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnableFullTextCatalogs Method
EnableFullTextCatalogs Method

The EnableFullTextCatalogs method enables Microsoft Search full-text indexing on the referenced Microsoft® SQL Server™
2000 database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnableMergeSubscription Method
EnableMergeSubscription Method

The EnableMergeSubscription method enables a Subscriber-originated (pull) subscription at the Publisher and Distributor.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

EnableTransSubscription Method
EnableTransSubscription Method

The EnableTransSubscription method enables a Subscriber-originated (pull) subscription at the Publisher and Distributor.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

EnumAccountInfo Method
EnumAccountInfo Method

The EnumAccountInfo method returns a QueryResults object that enumerates Microsoft® Windows NT® 4.0 or Microsoft
Windows 2000 accounts granted access permission to an instance of Microsoft SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumAgentErrorRecords Method
EnumAgentErrorRecords Method

The EnumAgentErrorRecords method returns a QueryResults object that enumerates a specified replication agent error.

Applies To

DistributionDatabase2 Object DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumAgentParameters Method
EnumAgentParameters Method

The EnumAgentParameters method returns a QueryResults object that enumerates startup options settings for the replication
agent when the agent is started using the specified profile.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumAgentProfiles Method
EnumAgentProfiles Method

The EnumAgentProfiles method returns a QueryResults object that enumerates agent session logging configurations available
on an instance of Microsoft® SQL Server™ 2000 monitoring replication.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumAlerts Method
EnumAlerts Method

The EnumAlerts method returns a QueryResults object that enumerates the Microsoft® SQL Server™ 2000 Agent alerts that
cause automated execution of the referenced job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

EnumAllSubscriptions Method
EnumAllSubscriptions Method

The EnumAllSubscriptions method enumerates subscriptions in a database on a Subscriber.

Applies To

Subscriber2 Object

SQL-DMO (SQL Server 2000)

EnumAllSubsetFilters Method
EnumAllSubsetFilters Method

The EnumAllSubsetFilters method returns a QueryResults object that enumerates the join filters defined within a merge
replication publication.

Applies To

MergePublication Object

SQL-DMO (SQL Server 2000)

EnumAlternatePublishers Method
EnumAlternatePublishers Method

The EnumAlternatePublisher method enumerates all servers in a list of alternate Publishers.

Applies To

MergePublication2 Object MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

EnumAvailableMedia Method
EnumAvailableMedia Method

The EnumAvailableMedia method returns a QueryResults object that enumerates media visible by an instance of Microsoft®
SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumCandidateKeys Method
EnumCandidateKeys Method

The EnumCandidateKeys method returns a QueryResults object that enumerates the user tables of a Microsoft® SQL Server™
2000 database and the constraints on those tables that could define primary keys.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumCollations Method
EnumCollations Method

The EnumCollations method returns all valid Microsoft® SQL Server™ 2000 collation names.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

EnumColumns Method
EnumColumns Method

The EnumColumns method returns a QueryResults object that enumerates the columns of tables defined on a linked server.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

EnumConflictTables Method
EnumConflictTables Method

The EnumConflictTables method returns a QueryResults object that enumerates the tables used for merge replication article
conflict resolution.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

EnumCustomResolvers Method
EnumCustomResolvers Method

The EnumCustomResolvers method returns a QueryResults object that enumerates the additional system or heterogeneous
replication conflict resolution components available in an instance of Microsoft® SQL Server™ 2000 that acts as a replication
Distributor.

Applies To

Replication Object

SQL-DMO (SQL Server 2000)

EnumDatabaseMappings Method
EnumDatabaseMappings Method

The EnumDatabaseMappings method returns a QueryResults object that enumerates the databases in which a username
represents the referenced login.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

EnumDatabaseRoleMember Method
EnumDatabaseRoleMember Method

The EnumDatabaseRoleMember method returns a QueryResults object that enumerates the database users granted role
membership.

Applies To

DatabaseRole Object

SQL-DMO (SQL Server 2000)

EnumDataSourceNames Method
EnumDataSourceNames Method

The EnumDataSourceNames method returns a QueryResults object that enumerates data sources visible to an instance of
Microsoft® SQL Server™ 2000 participating in replication as a Publisher.

Applies To

Replication Object

SQL-DMO (SQL Server 2000)

EnumDependencies Method
EnumDependencies Method

The EnumDependencies method returns a QueryResults object that enumerates Microsoft® SQL Server™ 2000 database user
objects and user object dependency relationships.

Applies To

Database Object Table Object
DBObject Object Trigger Object
ReplicationStoredProcedure Object View Object
StoredProcedure Object UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

EnumDirectories Method
EnumDirectories Method

The EnumDirectories method returns a QueryResults object that contains the names of subdirectories held by the user-
specified directory.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentSessionDetails Method
EnumDistributionAgentSessionDetails Method

The EnumDistributionAgentSessionDetails method returns a QueryResults object that enumerates detail information for a
specified Distribution Agent session.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentSessionDetails2 Method
EnumDistributionAgentSessionDetails2 Method

The EnumDistributionAgentSessionDetails2 method returns a QueryResults object that enumerates detail information for a
specified Distribution Agent session.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentSessions Method
EnumDistributionAgentSessions Method

The EnumDistributionAgentSessions method returns a QueryResults object that enumerates execution status information for
a specified Distribution Agent.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentSessions2 Method
EnumDistributionAgentSessions2 Method

The EnumDistributionAgentSessions2 method returns a QueryResults object that enumerates execution status information
for a specified Distribution Agent.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentViews Method
EnumDistributionAgentViews Method

The EnumDistributionAgentViews method returns a QueryResults object that enumerates historical data for all Distribution
Agents.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumDistributionAgentViews2 Method
EnumDistributionAgentViews2 Method

The EnumDistributionAgentViews2 method returns a QueryResults object that enumerates historical data for all Distribution
Agents.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

EnumErrorLogs Method
EnumErrorLogs Method

The EnumErrorLogs method returns a QueryResults object that enumerates the error logs used by an instance of Microsoft®
SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumFileGroups Method
EnumFileGroups Method

The EnumFileGroups method returns a QueryResults object that enumerates the filegroups of a Microsoft® SQL Server™ 2000
database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumFiles Method (Database)
EnumFiles Method (Database)

The EnumFiles method returns a QueryResults object that enumerates the operating system files used to implement
Microsoft® SQL Server™ 2000 database storage.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumFiles Method (FileGroup)
EnumFiles Method (FileGroup)

The EnumFiles method returns a QueryResults object that enumerates the operating system files used to implement
Microsoft® SQL Server™ 2000 database storage.

Applies To

FileGroup Object

SQL-DMO (SQL Server 2000)

EnumFixedDatabaseRolePermission Method
EnumFixedDatabaseRolePermission Method

The EnumFixedDatabaseRolePermission method returns a QueryResults object that enumerates the statement execution
privilege of a system-defined database role.

Applies To

DatabaseRole Object

SQL-DMO (SQL Server 2000)

EnumFullTextLanguages Method
EnumFullTextLanguages Method

The EnumFullTextLanguages method returns a list of available full-text languages.

Applies To

Registry2 Object

SQL-DMO (SQL Server 2000)

EnumGeneratedSubsetFilters Method
EnumGeneratedSubsetFilters Method

The EnumGeneratedSubsetFilters method applies the filter clause specified to the article indicated, performs temporary filter
generation, then returns a QueryResults object that enumerates default filters generated by the test case specified.

Applies To

MergePublication Object

SQL-DMO (SQL Server 2000)

EnumHistory Method
EnumHistory Method

The EnumHistory method returns a QueryResults object that enumerates the execution history of the referenced Microsoft®
SQL Server™ 2000 Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

EnumIdentityRangeInfo Method
EnumIdentityRangeInfo Method

The EnumIdentityRangeInfo method returns a QueryResults object that enumerates identity range information about articles
based on a table.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

EnumInitialAccesses Method
EnumInitialAccesses Method

The EnumInitialAccesses method returns a QueryResults object that enumerates Microsoft® SQL Server™ 2000 logins.

Applies To

ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

EnumJobHistory Method
EnumJobHistory Method

The EnumHistory method returns a QueryResults object that enumerates the execution history of all Microsoft® SQL Server™
2000 Agent jobs.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

EnumJobInfo Method
EnumJobInfo Method

The EnumJobInfo method returns a QueryResults object that enumerates execution state information for the Microsoft® SQL
Server™ 2000 Agent job controlling a replication agent that enables a Subscriber-originated (pull) subscription.

Applies To

MergePullSubscription Object TransPullSubscription Object

SQL-DMO (SQL Server 2000)

EnumJobNotifications Method
EnumJobNotifications Method

The EnumJobNotifications method returns a QueryResults object that enumerates notifications made by Microsoft® SQL
Server™ 2000 Agent on completion of job execution.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

EnumJobs Method
EnumJobs Method

The EnumJobs method returns a QueryResults object that enumerates all Microsoft® SQL Server™ 2000 Agent jobs defined for
a server.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

EnumLastStatisticsUpdates Method
EnumLastStatisticsUpdates Method

The EnumLastStatisticsUpdates method returns a QueryResults object that enumerates the query optimizing statistics
maintained on a table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

EnumLocks Method
EnumLocks Method

The EnumLocks method returns a QueryResults object that enumerates the resource locks held by an instance of Microsoft®
SQL Server™ 2000.

Applies To

Database Object SQLServer Object

SQL-DMO (SQL Server 2000)

EnumLoginMappings Method
EnumLoginMappings Method

The EnumLoginMappings method returns a QueryResults object that contains multiple result sets, where each result set
enumerates a Microsoft® SQL Server™ 2000 login and the database user(s) to which the login is mapped.

Applies To

Database Object SQLServer Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentSessionDetails Method
EnumLogReaderAgentSessionDetails Method

The EnumLogReaderAgentSessionDetails method returns a QueryResults object that enumerates detail information for a
specified Log Reader Agent session.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentSessionDetails2 Method
EnumLogReaderAgentSessionDetails2 Method

The EnumLogReaderAgentSessionDetails2 method returns a QueryResults object that enumerates detail information for a
specified Log Reader Agent session.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentSessions Method
EnumLogReaderAgentSessions Method

The EnumLogReaderAgentSessions method returns a QueryResults object that enumerates execution status data for the Log
Reader Agent specified.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentSessions2 Method
EnumLogReaderAgentSessions2 Method

The EnumLogReaderAgentSessions2 method returns a QueryResults object that enumerates execution status data for the Log
Reader Agent specified.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentView Method
EnumLogReaderAgentView Method

The EnumLogReaderAgentView method returns a QueryResults object that enumerates execution state for Log Reader Agents
used by the referenced distribution publication.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

EnumLogReaderAgentViews Method
EnumLogReaderAgentViews Method

The EnumLogReaderAgentViews method returns a QueryResults object that enumerates execution state for all Log Reader
Agents.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumMatchingSPs Method
EnumMatchingSPs Method

The EnumMatchingSPs method returns a QueryResults object that enumerates the stored procedures that contain the specified
search text.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentSessionDetails Method
EnumMergeAgentSessionDetails Method

The EnumMergeAgentSessionDetails method returns a QueryResults object that enumerates detail information for a
specified merge replication agent session.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentSessionDetails2 Method
EnumMergeAgentSessionDetails2 Method

The EnumMergeAgentSessionDetails2 method returns a QueryResults object that enumerates detail information for a
specified merge replication agent session.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentSessions Method
EnumMergeAgentSessions Method

The EnumMergeAgentSessions method returns a QueryResults object that enumerates execution status data for the merge
replication agent specified.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentSessions2 Method
EnumMergeAgentSessions2 Method

The EnumMergeAgentSessions2 method returns a QueryResults object that enumerates execution status data for the merge
replication agent specified.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentViews Method
EnumMergeAgentViews Method

The EnumMergeAgentViews method returns a QueryResults object that enumerates execution state for all replication merge
agents.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumMergeAgentViews2 Method
EnumMergeAgentViews2 Method

The EnumMergeAgentViews2 method returns a QueryResults object that enumerates execution state for all replication merge
agents.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

EnumMiscellaneousAgentViews Method
EnumMiscellaneousAgentViews Method

The EnumMiscellaneousAgentViews method returns a QueryResults object that enumerates historical data for all replication
agents not otherwise classified.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumNotifications Method
EnumNotifications Method

The EnumNotifications method returns a QueryResults object that enumerates notifications for a Microsoft® SQL Server™
2000 Agent operator or alert.

Applies To

Alert Object Operator Object

SQL-DMO (SQL Server 2000)

EnumNTDomainGroups Method
EnumNTDomainGroups Method

The EnumNTDomainGroups method returns a QueryResults object that enumerates the Microsoft® Windows NT® 4.0 or
Microsoft Windows 2000 group accounts defined on a domain.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumNTGroups Method
EnumNTGroups Method

The EnumNTGroups method returns a QueryResults object that enumerates the Microsoft® Windows NT® 4.0 or Microsoft
Windows 2000 group accounts with permissions in the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumObjects Method
EnumObjects Method

The EnumObjects method returns a QueryResults object that enumerates the system and user-defined tables, indexes, and
statistics mechanisms stored within a filegroup.

Applies To

FileGroup Object

SQL-DMO (SQL Server 2000)

EnumOutputs Method
EnumOutputs Method

The EnumOutputs method returns a list of all output columns from a user-defined function.

Applies To

UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

EnumParameters Method
EnumParameters Method

The EnumParameters method returns a QueryResults object that enumerates the parameters of a Microsoft® SQL Server™
2000 stored procedure or user-defined function.

Applies To

StoredProcedure Object UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

EnumProcesses Method
EnumProcesses Method

The EnumProcesses method returns a QueryResults object that enumerates the Microsoft® SQL Server™ 2000 processes
running on a referenced instance of Microsoft SQL Server.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumPublicationAccesses Method
EnumPublicationAccesses Method

The EnumPublicationAccesses method returns a QueryResults object that enumerates Microsoft® SQL Server™ 2000 logins.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

EnumPublicationArticles Method
EnumPublicationArticles Method

The EnumPublicationArticles method returns a QueryResults object that enumerates the publications and articles that
replicate the referenced table or stored procedure.

Applies To

ReplicationStoredProcedure Object ReplicationTable Object

SQL-DMO (SQL Server 2000)

EnumPublicationReferences Method
EnumPublicationReferences Method

The EnumPublicationReferences method returns a QueryResults object that enumerates dependency relationships for
database objects published as articles.

Applies To

MergePublication Object

SQL-DMO (SQL Server 2000)

EnumPublications Method
EnumPublications Method

The EnumPublications method returns a QueryResults object that enumerates the publications of a replication publishing data
source.

Applies To

Publisher Object

SQL-DMO (SQL Server 2000)

EnumPublications2 Method
EnumPublications2 Method

The EnumPublications2 method returns a QueryResults object that enumerates the publications of a replication publishing
data source.

Applies To

Publisher2 Object

SQL-DMO (SQL Server 2000)

EnumQueueReaderAgentSessionDetails Method
EnumQueueReaderAgentSessionDetails Method

The EnumQueueReaderAgentSessionDetails method returns a QueryResults object that enumerates detailed information
about a Queue Reader Agent session related to the specified publication.

Applies To

DistributionDatabase2 Object

SQL-DMO (SQL Server 2000)

EnumQueueReaderAgentSessions Method
EnumQueueReaderAgentSessions Method

The EnumQueueReaderAgentSessions method returns a QueryResults object that enumerates execution status data about
Queue Reader Agent sessions operating on the specified publication.

Applies To

DistributionDatabase2 Object

SQL-DMO (SQL Server 2000)

EnumQueueReaderAgentView Method
EnumQueueReaderAgentView Method

The EnumQueueReaderAgentView method returns a QueryResults object that enumerates execution status for the Queue
Reader Agents used by the referenced distribution publication.

Applies To

DistributionPublication2 Object

SQL-DMO (SQL Server 2000)

EnumQueueReaderAgentViews Method
EnumQueueReaderAgentViews Method

The EnumQueueReaderAgentViews method returns a QueryResults object that enumerates execution status for all Queue
Reader Agents.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

EnumReferencedKeys Method
EnumReferencedKeys Method

The EnumReferencedKeys method returns a QueryResults object that enumerates the PRIMARY KEY and UNIQUE constraints.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

EnumReferencedTables Method
EnumReferencedTables Method

The EnumReferencedTables method returns a QueryResults object that enumerates tables on which a PRIMARY KEY or
UNIQUE constraint is defined.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

EnumReferencingKeys Method
EnumReferencingKeys Method

The EnumReferencingKeys method returns a QueryResults object that enumerates the FOREIGN KEY constraints depending on
a candidate key defined on the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

EnumReferencingTables Method
EnumReferencingTables Method

The EnumReferencingTables method returns a QueryResults object that enumerates user-defined tables on which a FOREIGN
KEY constraint is defined.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

EnumServerAttributes Method
EnumServerAttributes Method

The EnumServerAttributes method returns a QueryResults object that enumerates various properties of an instance of
Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

EnumServerRoleMember Method
EnumServerRoleMember Method

The EnumServerRoleMember method returns a QueryResults object that enumerates the members of a Microsoft® SQL
Server™ 2000 fixed server security role.

Applies To

ServerRole Object

SQL-DMO (SQL Server 2000)

EnumServerRolePermission Method
EnumServerRolePermission Method

The EnumServerRolePermission method returns a QueryResults object that enumerates the statement execution permissions
of a Microsoft® SQL Server™ 2000 fixed server role.

Applies To

ServerRole Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentSessionDetails Method
EnumSnapshotAgentSessionDetails Method

The EnumSnapshotAgentSessionDetails method returns a QueryResults object that enumerates detail information for a
specified Snapshot Agent session.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentSessionDetails2 Method
EnumSnapshotAgentSessionDetails2 Method

The EnumSnapshotAgentSessionDetails2 method returns a QueryResults object that enumerates detail information for a
specified Snapshot Agent session.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentSessions Method
EnumSnapshotAgentSessions Method

The EnumSnapshotAgentSessions method returns a QueryResults object that enumerates session information for Snapshot
Agents used by a Distributor.

Applies To

DistributionPublisher Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentSessions2 Method
EnumSnapshotAgentSessions2 Method

The EnumSnapshotAgentSessions2 method returns a QueryResults object that enumerates session information for Snapshot
Agents used by a Distributor.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentView Method
EnumSnapshotAgentView Method

The EnumSnapshotAgentView method returns a QueryResults object that enumerates execution status information for an
agent used to create snapshots of replicated data.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

EnumSnapshotAgentViews Method
EnumSnapshotAgentViews Method

The EnumSnapshotAgentViews method returns a QueryResults object that enumerates historical data for all Snapshot Agents.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumStatistics Method
EnumStatistics Method

The EnumStatistics method returns a QueryResults object that enumerates index statistics used to support Microsoft® SQL
Server™ 2000 query optimization.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

EnumSubscriptions Method
EnumSubscriptions Method

The EnumSubscriptions method returns a QueryResults object that enumerates the subscriptions to a replication publication.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

EnumSubscriptionViews Method
EnumSubscriptionViews Method

The EnumSubscriptionViews method returns a QueryResults object that enumerates subscription execution status information
maintained at a Distributor.

Applies To

DistributionPublication Object

SQL-DMO (SQL Server 2000)

EnumSubscriptionViews2 Method
EnumSubscriptionViews2 Method

The EnumSubscriptionViews method returns a QueryResults object that enumerates subscription execution status information
maintained at a Distributor.

Applies To

DistributionPublication2 Object

SQL-DMO (SQL Server 2000)

EnumSubSystems Method
EnumSubSystems Method

The EnumSubSystems method returns a QueryResults object that enumerates installed Microsoft® SQL Server™ 2000 Agent
execution subsystems.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

EnumTables Method
EnumTables Method

The EnumTables method returns a QueryResults object that enumerates the tables of a linked server.

Applies To

LinkedServer Object

SQL-DMO (SQL Server 2000)

EnumTargetServers Method
EnumTargetServers Method

The EnumTargetServers method returns a QueryResults object that enumerates the execution targets of the referenced
Microsoft® SQL Server™ 2000 Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

EnumThirdPartyPublications Method
EnumThirdPartyPublications Method

The EnumThirdPartyPublications method returns a QueryResults object that enumerates publications originating from
heterogenous data sources.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

EnumThirdPartyPublications2 Method
EnumThirdPartyPublications2 Method

The EnumThirdPartyPublications2 method returns a QueryResults object that enumerates publications originating from
heterogeneous data sources.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

EnumThirdPartyVendorNames Method
EnumThirdPartyVendorNames Method

The EnumThirdPartyVendorNames method returns a QueryResults object that enumerates third-party vendor names.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

EnumUsers Method
EnumUsers Method

The EnumUsers method returns a QueryResults object that enumerates the users defined in a Microsoft® SQL Server™ 2000
database and their role participation.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

EnumVersionInfo Method
EnumVersionInfo Method

The EnumVersionInfo method returns a QueryResults object that enumerates the members of the VERSIONINFO resource that
identifies an instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ExecuteImmediate Method (Database, SQLServer)
ExecuteImmediate Method (Database, SQLServer)

The ExecuteImmediate method submits a Transact-SQL command batch on a connection, and directs execution or batch
interpretation as specified by the application.

Applies To

Database Object SQLServer Object

SQL-DMO (SQL Server 2000)

ExecuteImmediate Method (LinkedServer, RemoteServer)
ExecuteImmediate Method (LinkedServer, RemoteServer)

The ExecuteImmediate method connects to a linked server or remote server data source, executes a Transact-SQL command
batch on the connection, and disconnects.

Applies To

LinkedServer Object RemoteServer Object

SQL-DMO (SQL Server 2000)

ExecuteWithResults Method
ExecuteWithResults Method

The ExecuteWithResults method executes a Transact-SQL command batch returning batch result sets in a QueryResults object.

Applies To

Database Object RemoteServer Object
LinkedServer Object SQLServer Object

SQL-DMO (SQL Server 2000)

ExecuteWithResultsAndMessages Method
ExecuteWithResultsAndMessages Method

The ExecuteWithResultsAndMessages method executes a Transact-SQL command batch returning batch result sets in a
QueryResults object and capturing messages raised as part of command batch execution.

Applies To

Database Object RemoteServer Object
LinkedServer Object SQLServer Object

SQL-DMO (SQL Server 2000)

ExecuteWithResultsAndMessages2 Method
ExecuteWithResultsAndMessages2 Method

The ExecuteWithResultsAndMessages2 method executes a Transact-SQL command batch returning batch result sets in a
QueryResults object and capturing messages raised as part of command batch execution.

Applies To

Database2 Object RemoteServer2 Object
LinkedServer2 Object SQLServer2 Object

SQL-DMO (SQL Server 2000)

ExportData Method
ExportData Method

The ExportData method uses the indicated BulkCopy object to copy data from a Microsoft® SQL Server™ 2000 database to the
data file specified by the BulkCopy object.

Applies To

Table Object View Object

SQL-DMO (SQL Server 2000)

F

SQL-DMO (SQL Server 2000)

FindName Method
FindName Method

The FindName method returns the ordinal position of a string within a container object.

Applies To

NameList Object Names Collection

SQL-DMO (SQL Server 2000)

FullTextIndexScript Method
FullTextIndexScript Method

The FullTextIndexScript method returns a Transact-SQL command batch enabling Microsoft Search full-text indexing on a
database or table.

Applies To

Database Object Table Object

SQL-DMO (SQL Server 2000)

FullTextPopulation Method
FullTextPopulation Method

The FullTextPopulation method starts or stops Microsoft Search full-text table population, building the index supporting full-
text queries on data maintained by Microsoft® SQL Server™ 2000.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

FullTextUpdateIndex Method
FullTextUpdateIndex Method

The FullTextUpdateIndex method propagates the current set of tracked changes to Microsoft Search.

Applies To

Table2 Object

SQL-DMO (SQL Server 2000)

G

SQL-DMO (SQL Server 2000)

GenerateCreationSQL Method
GenerateCreationSQL Method

The GenerateCreationSQL method returns a string that contains a Transact-SQL command batch used to create the Microsoft®
SQL Server™ 2000 index defined by the properties of the Index object used.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

GenerateCreationSQLOnView Method
GenerateCreationSQLOnView Method

The GenerateCreationSQLOnView method returns a string that contains a Transact-SQL command batch. This command batch
can be used to create the Microsoft® SQL Server™ 2000 index defined by the properties of the Index object used to create the
index.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

GenerateFilters Method
GenerateFilters Method

The GenerateFilters method creates subset filters based on FOREIGN KEY constraints defined on tables published as articles of
the referenced merge replication publication.

Applies To

MergePublication Object

SQL-DMO (SQL Server 2000)

GenerateSQL Method (Backup, Restore)
GenerateSQL Method (Backup, Restore)

The GenerateSQL method returns a string that contains a Transact-SQL command batch used to perform the Microsoft® SQL
Server™ 2000 database backup or restore operation defined by the SQL-DMO object.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

GenerateSQL Method (Database)
GenerateSQL Method (Database)

The GenerateSQL method returns a string that contains a Transact-SQL command batch used to create the Microsoft® SQL
Server™ 2000 database defined by the properties of the Database object.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

GenerateSQL Method (FullTextCatalog)
GenerateSQL Method (FullTextCatalog)

The GenerateSQL method returns a string that contains a Transact-SQL command batch used to create a new Microsoft Search
full-text catalog or to re-create an existing Microsoft Search full-text catalog.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

GenerateSQL Method (Index)
GenerateSQL Method (Index)

The GenerateSQL method returns a string that contains a Transact-SQL command batch used to create the Microsoft® SQL
Server™ 2000 index defined by the properties of the Index object used.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

GenerateSQL Method (Table, UserDefinedDatatype)
GenerateSQL Method (Table, UserDefinedDatatype)

The GenerateSQL method returns a string that contains a Transact-SQL command batch used to create the Microsoft® SQL
Server™ 2000 database object defined by the properties of the SQL-DMO object used.

Applies To

Table Object UserDefinedDatatype Object

SQL-DMO (SQL Server 2000)

GenerateSQLOnView Method
GenerateSQLOnView Method

The GenerateSQLOnView method returns a string that contains a Transact-SQL command batch. This command batch can be
used to create the Microsoft® SQL Server™ index defined by the properties of the Index object used to create the index.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

GetAgentsStatus Method (DistributionPublication,
DistributionPublisher)
GetAgentsStatus Method (DistributionPublication, DistributionPublisher)

The GetAgentsStatus method returns a high level report of execution state for replication agents implementing the publications
of a Publisher.

Applies To

DistributionPublication Object DistributionPublisher Object

SQL-DMO (SQL Server 2000)

GetAgentsStatus Method (Distributor)
GetAgentsStatus Method (Distributor)

The GetAgentsStatus2 method returns a high level report of execution state for replication agents implementing a Distributor.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

GetAgentsStatus2 Method (DistributionPublication2,
DistributionPublisher2)
GetAgentsStatus2 Method (DistributionPublication2, DistributionPublisher2)

The GetAgentsStatus2 method returns a high level report of execution state for replication agents implementing the
publications of a Publisher.

Applies To

DistributionPublication2 Object DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

GetAgentsStatus2 Method (Distributor2)
GetAgentsStatus2 Method (Distributor2)

The GetAgentsStatus2 method returns a high level report of execution state for replication agents at a Distributor.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

GetColumnBigInt Method
GetColumnBigInt Method

The GetColumnBigInt method retrieves the contents of a bigint column as a string.

Applies To

QueryResults2 Object

SQL-DMO (SQL Server 2000)

GetColumnBinary Method
GetColumnBinary Method

The GetColumnBinary method returns a void pointer to the memory that implements storage of a binary data type.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnBinaryLength Method
GetColumnBinaryLength Method

The GetColumnBinaryLength method returns the length of a binary or long variable-length data type member of the
QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnBool Method
GetColumnBool Method

The GetColumnBool method returns a QueryResults object result set member converted to a Boolean value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnDate Method
GetColumnDate Method

The GetColumnDate method returns a QueryResults object result set member converted to a Date value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnDouble Method
GetColumnDouble Method

The GetColumnDouble method returns a QueryResults object result set member converted to a Double value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnFloat Method
GetColumnFloat Method

The GetColumnFloat method returns a QueryResults object result set member converted to a Single value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnGUID Method
GetColumnGUID Method

The GetColumnGUID method returns a void pointer to the memory that implements storage of a binary data type.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnLong Method
GetColumnLong Method

The GetColumnLong method returns a QueryResults object result set member converted to a Long value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetColumnSQLVARIANT Method
GetColumnSQLVARIANT Method

The GetColumnSQLVARIANT method retrieves a sql_variant column as an array of bytes.

Applies To

QueryResults2 Object

SQL-DMO (SQL Server 2000)

GetColumnSQLVARIANTDataType Method
GetColumnSQLVARIANTDataType Method

The GetColumnSQLVARIANTDataType method retrieves the underlying data type of the specified sql_variant column.

Applies To

QueryResults2 Object

SQL-DMO (SQL Server 2000)

GetColumnSQLVARIANTLength Method
GetColumnSQLVARIANTLength Method

The GetColumnSQLVARIANTLength method retrieves the number of bytes required to hold the data portion of the specified
sql_variant column.

Applies To

QueryResults2 Object

SQL-DMO (SQL Server 2000)

GetColumnSQLVARIANTToString Method
GetColumnSQLVARIANTToString Method

The GetColumnSQLVARIANTToString method converts a sql_variant column to a string and returns its value.

Applies To

QueryResults2 Object

SQL-DMO (SQL Server 2000)

GetColumnString Method
GetColumnString Method

The GetColumnString method returns a QueryResults object result set member converted to a String value.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetDatatypeByName Method
GetDatatypeByName Method

The GetDatatypeByName method returns an object that references the named system or user-defined data type.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

GetIndexedColumnDESC Method
GetIndexedColumnDESC Method

The GetIndexedColumnDESC method specifies whether the sort order of a column in an index is descending.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

GetJobByID Method
GetJobByID Method

The GetJobByID method returns a SQL-DMO Job object referencing the SQL Server Agent job identified by the specified job
identifier.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

GetMemoryUsage Method
GetMemoryUsage Method

The GetMemoryUsage method is retained for compatibility with previous versions of SQL-DMO.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

GetObjectByName Method
GetObjectByName Method

The GetObjectByName method returns a DBObject object that references the specified Microsoft® SQL Server™ 2000
database object.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

GetRangeString Method
GetRangeString Method

The GetRangeString method returns a single string that contains a block of rows and columns from the current result set of the
QueryResults object.

Applies To

QueryResults Object

SQL-DMO (SQL Server 2000)

GetUserName Method
GetUserName Method

The GetUserName method returns the database user used by the referenced login, when a connection using that login accesses
the specified database.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

Grant Method (Database)
Grant Method (Database)

The Grant method assigns a database permission or a list of permissions to one or more Microsoft® SQL Server™ 2000 users or
roles.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Grant Method (StoredProcedure, UserDefinedFunction)
Grant Method (StoredProcedure, UserDefinedFunction)

The Grant method assigns a stored procedure permission or a list of permissions to one or more Microsoft® SQL Server™ 2000
users or roles.

Applies To

StoredProcedure Object UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

Grant Method (Table, View)
Grant Method (Table, View)

The Grant method assigns a table permission or a list of permissions to one or more Microsoft® SQL Server™ 2000 users or
roles.

Applies To

Table Object View Object

SQL-DMO (SQL Server 2000)

GrantPublicationAccess Method
GrantPublicationAccess Method

The GrantPublicationAccess method the specified login to the publication access list.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

I

SQL-DMO (SQL Server 2000)

ImportData Method
ImportData Method

The ImportData method implements the bulk insert of data specified by the controlling BulkCopy object provided as an
argument.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

Insert Method
Insert Method

The Insert method adds a string to a Names collection at the position indicated.

Applies To

Names Collection

SQL-DMO (SQL Server 2000)

InsertColumn Method
InsertColumn Method

The InsertColumn method adds a column to the Columns collection of a Table object at the position indicated.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

Install Method
Install Method

The Install method sets up distribution on an instance of Microsoft® SQL Server™ 2000.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

Invoke Method
Invoke Method

The Invoke method executes the Microsoft® SQL Server™ 2000 Agent job referenced.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

IsDetachedPrimaryFile Method
IsDetachedPrimaryFile Method

The IsDetachedPrimaryFile method specifies whether a file is a detached primary database file.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

IsFixedRole Method
IsFixedRole Method

The IsFixedRole method returns TRUE when the database role referenced is system-defined.

Applies To

DatabaseRole Object

SQL-DMO (SQL Server 2000)

IsLogin Method
IsLogin Method

The IsLogin method returns TRUE when the string specified is a valid name string for a Microsoft® SQL Server™ 2000 login
record.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsMember Method
IsMember Method

The IsMember method returns TRUE when the user or login referenced is a member of the role identified in the Role argument.

Applies To

Login Object User Object

SQL-DMO (SQL Server 2000)

IsNTGroupMember Method
IsNTGroupMember Method

The IsNTGroupMember method exposes an instance of Microsoft® SQL Server™ 2000 access rights for Windows NT® 4.0 or
Microsoft Windows 2000 user accounts.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsObjectDeleted Method
IsObjectDeleted Method

The IsObjectDeleted method indicates whether the referenced object has been deleted from the database.

Applies To

Database2 Object

SQL-DMO (SQL Server 2000)

IsOS Method
IsOS Method

The IsOS method returns TRUE when an instance of Microsoft® SQL Server™ 2000 referenced is running on a computer using
the specified operating system.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsPackage Method
IsPackage Method

The IsPackage method returns a long integer value identifying an instance of Microsoft® SQL Server™ 2000

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

IsUser Method
IsUser Method

The IsUser method returns TRUE when the specified Microsoft® SQL Server™ 2000 user is defined in the referenced database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

IsValidKeyDatatype Method
IsValidKeyDatatype Method

The IsValidKeyDatatype method returns TRUE when the data type specified can participate in a PRIMARY KEY or FOREIGN KEY
constraint.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Item Method
Item Method

The Item method extracts a member from a SQL-DMO container object such as the Databases collection or the NameList
object.

Applies To

All collection and list objects

Syntax

object.Item(Name | Position) as Object

Parts

object

Expression that evaluates to an object in the Applies To list

Name | Position

Either a string that identifies an object by Microsoft® SQL Server™ 2000 component name or a long integer that specifies an
ordinal location in the container

Returns

A reference to the object extracted.

Remarks

In general, SQL-DMO supports container member dereferencing, using either a string naming an item, or an ordinal position for
an item. Some SQL-DMO containers support additional restrictions to identify items where component name does not offer
unique identification. Other containers do not support component name as an argument for the Item method at all.

For more information about support for Item, see documentation for a specific container object.

SQL-DMO (SQL Server 2000)

ItemByID Method
ItemByID Method

 Topic last updated -- July 2003

The ItemByID method extracts a member from a SQL-DMO container object such as the Databases collection, using a system-
defined component identifier to uniquely identify the container member.

Applies To

AlertCategories Collection OperatorCategories Collection
Alerts Collection Operators Collection
Columns Collection RemoteServers Collection
Databases Collection ReplicationDatabases Collection
DBFiles Collection Rules Collection
Defaults Collection SQLServers Collection
DistributionArticles Collection StoredProcedures Collection
FileGroups Collection Tables Collection
Indexes Collection TargetServerGroups Collection
JobCategories Collection TargetServers Collection
JobSchedules Collection TransArticles Collection
JobSteps Collection TransPublications Collection
Languages Collection Triggers Collection
Log Files Collection UserDefinedDatatypes Collection
MergeArticles Collection UserDefinedFunctions Collection
MergeDynamicSnapshotJobs Collection Users Collection
MergePublications Collection Views Collection
MergeSubsetFilters Collection

SQL-DMO (SQL Server 2000)

K

SQL-DMO (SQL Server 2000)

KillDatabase Method
KillDatabase Method

The KillDatabase method drops a database from the referenced Microsoft® SQL Server™ 2000 installation, regardless of the
status or availability of the database.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

KillProcess Method
KillProcess Method

The KillProcess method terminates the identified Microsoft® SQL Server™ 2000 process.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

L

SQL-DMO (SQL Server 2000)

ListAvailableSQLServers Method
ListAvailableSQLServers Method

The ListAvailableSQLServers method returns a NameList object that enumerates network-visible instances of Microsoft® SQL
Server™ 2000.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

ListAvailableUniqueIndexesForFullText Method
ListAvailableUniqueIndexesForFullText Method

The ListAvailableUniqueIndexesForFullText method returns a NameList object that enumerates those indexes defined on a
table capable of supporting Microsoft Search full-text indexing.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

ListBoundColumns Method
ListBoundColumns Method

The ListBoundColumns method returns a SQLObjectList object that enumerates the columns to which a rule, or default, is
bound or the columns defined on the user-defined data type.

Applies To

Default Object UserDefinedDatatype Object
Rule Object

SQL-DMO (SQL Server 2000)

ListBoundDatatypes Method
ListBoundDatatypes Method

The ListBoundDatatypes method returns a SQLObjectList object that enumerates the user-defined data types to which a rule,
or default, is bound.

Applies To

Default Object Rule Object

SQL-DMO (SQL Server 2000)

ListCollations Method
ListCollations Method

The ListCollations method returns all valid Microsoft® SQL Server™ 2000 collation names.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ListColumns Method
ListColumns Method

The ListColumns method returns a SQLObjectList object that enumerates the columns of a Microsoft® SQL Server™ 2000 view.

Applies To

View Object

SQL-DMO (SQL Server 2000)

ListCompatibilityLevels Method
ListCompatibilityLevels Method

The ListCompatibilityLevels method lists all available database compatibility levels.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ListDatabasePermissions Method
ListDatabasePermissions Method

The ListDatabasePermissions method returns a SQLObjectList object that enumerates database maintenance privilege for one
or more Microsoft® SQL Server™ security accounts.

Applies To

Database Object User Object
DatabaseRole Object

SQL-DMO (SQL Server 2000)

ListDetachedDBFiles Method
ListDetachedDBFiles Method

The ListDetachedDBFiles method lists all database files referenced by a primary database file.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ListDetachedLogFiles Method
ListDetachedLogFiles Method

The ListDetachedLogFiles method lists all log files referenced by primary log file.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ListIndexedColumns Method
ListIndexedColumns Method

The ListIndexedColumns method returns a SQLObjectList object that enumerates the columns participating in a Microsoft®
SQL Server™ 2000 index.

Applies To

Index Object

SQL-DMO (SQL Server 2000)

ListInstalledInstances Method
ListInstalledInstances Method

The ListInstalledInstances method returns a NameList object that enumerates all installed instances of Microsoft® SQL
Server™ 2000 on the local or specified computer.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

ListKeys Method
ListKeys Method

The ListKeys method returns a SQLObjectList object that enumerates the PRIMARY KEY and FOREIGN KEY constraints in which a
column participates.

Applies To

Column Object

SQL-DMO (SQL Server 2000)

ListMembers Method (Login, User)
ListMembers Method (Login, User)

The ListMembers method returns a NameList object that enumerates the Microsoft® SQL Server™ 2000 database roles in
which a database user has membership, or the server roles in which a login has membership.

Applies To

Login Object User Object

SQL-DMO (SQL Server 2000)

ListMembers Method (SQLServer)
ListMembers Method (SQLServer)

The ListMembers method returns a NameList object that enumerates the Microsoft® SQL Server™ 2000 server or database
roles in which the SQLServer object login has membership.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ListMemberServers Method
ListMemberServers Method

The ListMemberServers method returns a NameList object that enumerates the member target servers (TSXs) of the
multiserver administration, TSX server group referenced.

Applies To

TargetServerGroup Object

SQL-DMO (SQL Server 2000)

ListObjectPermissions Method
ListObjectPermissions Method

The ListObjectPermissions method returns a SQLObjectList object that enumerates object access privilege for one or more
Microsoft® SQL Server™ 2000 security accounts.

Applies To

Database Object User Object
DatabaseRole Object

SQL-DMO (SQL Server 2000)

ListObjectNames Method
ListObjectNames Method

The ListObjectNames method returns a NameList object that enumerates a specified type of database object involved in the
schema and/or data copy operation defined by the Transfer object used.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

ListObjects Method
ListObjects Method

The ListObjects method returns a SQLObjectList object that enumerates the system and user-defined objects defining the
database referenced.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

ListOwnedObjects Method
ListOwnedObjects Method

The ListOwnedObjects method returns a SQLObjectList object that enumerates the user-defined objects owned by the user
referenced by the User object.

Applies To

User Object

SQL-DMO (SQL Server 2000)

ListPermissions Method
ListPermissions Method

The ListPermissions method returns a SQLObjectList object that enumerates object access privilege for Microsoft® SQL
Server™ 2000 database roles and users.

Applies To

DBObject Object UserDefinedFunction Object
StoredProcedure Object View Object
Table Object

SQL-DMO (SQL Server 2000)

ListPrivilegeColumns Method
ListPrivilegeColumns Method

The ListPrivilegeColumns method returns a SQLObjectList object that enumerates the columns of a table or view exposing
update or query permission for a Microsoft® SQL Server™ 2000 database user or role.

Applies To

Permission Object

SQL-DMO (SQL Server 2000)

ListReplicatedColumns Method
ListReplicatedColumns Method

The ListReplicatedColumns method returns a SQLObjectList object that enumerates the columns of a table in a vertically-
partitioned transactional or snapshot replication article.

Applies To

MergeArticle2 Object TransArticle Object

SQL-DMO (SQL Server 2000)

ListStartupProcedures Method
ListStartupProcedures Method

The ListStartupProcedures method returns a SQLObjectList object that enumerates the stored procedures configured for
automatic execution when the an instance of Microsoft® SQL Server™ 2000 starts.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ListUserColumnPermissions Method
ListUserColumnPermissions Method

The ListUserColumnPermissions method returns a SQLObjectList object that enumerates column-level access permissions for
a specified Microsoft® SQL Server™ 2000 database role or user.

Applies To

Table2 Object View2 Object

SQL-DMO (SQL Server 2000)

ListUserPermissions Method
ListUserPermissions Method

The ListUserPermissions method returns a SQLObjectList object that enumerates object access privilege for a specified
Microsoft® SQL Server™ 2000 database role or user.

Applies To

DBObject Object UserDefinedFunction Object
StoredProcedure Object View Object
Table Object

SQL-DMO (SQL Server 2000)

M

SQL-DMO (SQL Server 2000)

MSXDefect Method
MSXDefect Method

The MSXDefect method ends SQL Server Agent participation in a multiserver administration group.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

MSXEnlist Method
MSXEnlist Method

The MSXEnlist method initiates SQL Server Agent participation as a target for multiserver administration.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

P

SQL-DMO (SQL Server 2000)

Pause Method
Pause Method

The Pause method temporarily suspends Microsoft® SQL Server™ 2000 service execution.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

PingSQLServerVersion Method
PingSQLServerVersion Method

The PingSQLServerVersion method returns a long integer that describes an instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

PurgeHistory Method
PurgeHistory Method

The PurgeHistory method removes system records maintaining execution history for the referenced Microsoft® SQL Server™
2000 Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

PurgeJobHistory Method
PurgeJobHistory Method

The PurgeJobHistory method removes system records maintaining execution history for all Microsoft® SQL Server™
2000.Agent jobs, or those matching the filter criteria specified.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

Q

SQL-DMO (SQL Server 2000)

Quit Method
Quit Method

The Quit method disconnects all SQLServer objects referenced by an application and forces a release of all application-
maintained references on SQL-DMO objects.

Applies To

Application Object

SQL-DMO (SQL Server 2000)

 R

SQL-DMO (SQL Server 2000)

ReadAgentOffloadInfo Method
ReadAgentOffloadInfo Method

The ReadAgentOffloadInfo method retrieves information about the offloading status of an agent from the Distributor.

Applies To

DistributionPublisher2 Object

SQL-DMO (SQL Server 2000)

ReadBackupHeader Method (BackupDevice)
ReadBackupHeader Method (BackupDevice)

The ReadBackupHeader method returns a QueryResults object that enumerates the contents of the media maintained by a
backup device.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

ReadBackupHeader Method (Restore)
ReadBackupHeader Method (Restore)

The ReadBackupHeader method returns a QueryResults object enumerating the contents of the media maintained by a backup
device or operating system file.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

ReadBackupHeader Method (SQLServer)
ReadBackupHeader Method (SQLServer)

The ReadBackupHeader method returns a QueryResults object enumerating the contents of the media maintained by a backup
device or operating system file.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ReadErrorLog Method
ReadErrorLog Method

The ReadErrorLog method returns a QueryResults object enumerating the contents of a Microsoft® SQL Server™ 2000 error
log.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ReadFileList Method
ReadFileList Method

The ReadFileList method returns a QueryResults object enumerating the Microsoft® SQL Server™ 2000 database files
maintained on a backup media.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

ReadLastValidationDateTimes Method
ReadLastValidationDateTimes Method

The ReadLastValidationDateTimes method returns the date and time of the last attempted and successful validation of a
subscription.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

ReadMediaHeader Method (BackupDevice)
ReadMediaHeader Method (BackupDevice)

The ReadMediaHeader method returns a QueryResults object that enumerates the values of a backup media header record.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

ReadMediaHeader Method (Restore)
ReadMediaHeader Method (Restore)

The ReadMediaHeader method returns a QueryResults object enumerating the values of a backup media header record.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

ReadReplicationFailOverMode Method
ReadReplicationFailOverMode Method

The ReadReplicationFailOverMode method retrieves the failover mode for a subscription that uses immediate updating with
queued updating as the failover option.

Applies To

ReplicationDatabase2 Object

SQL-DMO (SQL Server 2000)

ReAssignJobsByLogin Method
ReAssignJobsByLogin Method

The ReAssignJobsByLogin method changes ownership for any SQLServerAgent jobs currently owned by a Microsoft® SQL
Server™ 2000 login.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

Rebuild Method
Rebuild Method

The Rebuild method re-creates the Microsoft Search full-text catalog or Microsoft® SQL Server™ index referenced by the object.

Applies To

FullTextCatalog Object Index Object

SQL-DMO (SQL Server 2000)

RebuildIndex Method
RebuildIndex Method

The RebuildIndex method re-creates an index implementing a Microsoft® SQL Server™ 2000 PRIMARY KEY or UNIQUE key
constraint.

Applies To

Key Object

SQL-DMO (SQL Server 2000)

RebuildIndexes Method
RebuildIndexes Method

The RebuildIndexes method re-creates all indexes defined on a Microsoft® SQL Server™ table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

RecalcSpaceUsage Method
RecalcSpaceUsage Method

The RecalcSpaceUsage method forces the update of data reporting the disk resource usage of the referenced Microsoft® SQL
Server™ 2000 database or database object.

Applies To

Database Object Table Object
Index Object

SQL-DMO (SQL Server 2000)

ReCompileReferences Method
ReCompileReferences Method

The ReCompileReferences method causes recompilation, prior to the next execution, of any stored procedure or trigger
depending on the referenced table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

ReconfigureCurrentValues Method
ReconfigureCurrentValues Method

The ReconfigureCurrentValues method applies changes to configuration options made by changing the properties of the
ConfigValue objects contained in the Configuration object's ConfigValues collection.

Applies To

Configuration Object

SQL-DMO (SQL Server 2000)

ReconfigureWithOverride Method
ReconfigureWithOverride Method

The ReconfigureWithOverride method applies changes to configuration options made by changing the properties of the
ConfigValue objects contained in the Configuration object's ConfigValues collection.

Applies To

Configuration Object

SQL-DMO (SQL Server 2000)

ReConnect Method
ReConnect Method

The ReConnect method reestablishes a connection to an instance of Microsoft® SQL Server™ 2000.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Refresh Method
Refresh Method

The Refresh method updates a SQL-DMO object or collection with current values from the referenced instance of Microsoft®
SQL Server™ 2000.

Applies To

Alert Object Logins Collection
AlertCategories Collection MergeSubsetFilters Collection
Alerts Collection MergeArticles Collection
AlertSystem Object MergeDynamicSnapshotJobs Collection
BackupDevices Collection MergePublications Collection
Category Object MergePullSubscriptions Collection
Checks Collection MergeSubscriptions Collection
Columns Collection NameList Object
ConfigValues Collection Names Collection
DatabaseRoles Collection Operator Object
Databases Collection Operators Collection
DBFiles Collection OperatorCategories Collection
DBOption Object QueryResults Object
Defaults Collection RegisteredSubscribers Collection
DistributionArticles Collection RegisteredServers Collection
DistributionDatabase Object RegisteredSubscriber Object
DistributionDatabases Collection RemoteServers Collection
DistributionPublications Collection RemoteLogins Collection
DistributionPublisher Object ReplicationDatabases Collection
DistributionPublishers Collection ReplicationStoredProcedures Collection
DistributionSubscriptions Collection ReplicationTables Collection
Distributor Object Rules Collection
FileGroups Collection Schedule Object
FullTextCatalogs Collection ServerGroups Collection
Indexes Collection ServerRoles Collection
IntegratedSecurity Object SQLObjectList Object
Job Object StoredProcedures Collection
JobCategories Collection Table Object
Jobs Collection Tables Collection
JobSchedule Object TargetServer Object
JobSchedules Collection TargetServerGroup Object
JobServer Object TargetServerGroups Collection
JobStep Object TargetServers Collection
JobSteps Collection TransArticles Collection
Keys Collection TransPublications Collection
Languages Collection TransPullSubscriptions Collection
LinkedServer2 Object TransSubscriptions Collection
LinkedServerLogins Collection Triggers Collection
LinkedServers Collection UserDefinedDatatypes Collection
LogFiles Collection Users Collection
 Views Collection

SQL-DMO (SQL Server 2000)

RefreshChildren Method
RefreshChildren Method

The RefreshChildren method forces an update of dependent collection membership for a SQL-DMO object.

Applies To

MergePublication Object TransPublication Object
ReplicationDatabase Object

SQL-DMO (SQL Server 2000)

ReInitialize Method
ReInitialize Method

The ReInitialize method marks a subscription for reinitialization.

Applies To

MergePullSubscription Object TransPullSubscription Object
MergeSubscription Object TransSubscription Object

SQL-DMO (SQL Server 2000)

ReInitialize2 Method
ReInitialize2 Method

The ReInitialize2 method marks a subscription for reinitialization.

Applies To

MergePublication2 Object MergeSubscription2 Object
MergePullSubscription2 Object

SQL-DMO (SQL Server 2000)

ReInitializeAllSubscriptions Method
ReInitializeAllSubscriptions Method

The ReInitializeAllSubscriptions method marks all subscriptions for reinitialization.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

ReInitializeAllSubscriptions2 Method
ReInitializeAllSubscriptions2 Method

The ReInitializeAllSubscriptions2 method marks all subscriptions for reinitialization.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

Remove Method (Objects)
Remove Method (Objects)

The Remove method drops the referenced database, agent, or replication object from an instance of Microsoft® SQL Server™
2000 connected to, and removes the SQL-DMO object from its containing collection.

Applies To

Alert Object Login Object
BackupDevice Object MergeArticle Object
Category Object MergeDynamicSnapshotJob Object
Check Object MergePublication Object
Column Object MergePullSubscription Object
Database Object MergeSubscription Object
DatabaseRole Object MergeSubsetFilter Object
DBFile Object RegisteredServer Object
DBObject Object RegisteredSubscriber Object
Default Object RemoteLogin Object
DistributionArticle Object RemoteServer Object
DistributionDatabase Object Rule Object
DistributionPublication Object ServerGroup Object
DistributionPublisher Object StoredProcedure Object
DistributionSubscription Object Table Object
DRIDefault Object TargetServerGroup Object
FileGroup Object TransArticle Object
FullTextCatalog Object TransPublication Object
Index Object TransPullSubscription Object
Job Object TransSubscription Object
JobSchedule Object Trigger Object
JobStep Object User Object
Key Object UserDefinedDatatype Object
LinkedServer Object UserDefinedFunction Object
LinkedServerLogin Object View Object

SQL-DMO (SQL Server 2000)

Remove Method (Collections)
Remove Method (Collections)

The Remove method drops the referenced database, agent, or replication object from an instance of Microsoft® SQL Server™
2000 connected to, and removes the SQL-DMO object from its containing collection.

Applies To

AlertCategories Collection MergeArticles Collection
Alerts Collection MergePublications Collection
BackupDevices Collection MergeSubscriptions Collection
Checks Collection MergePullSubscriptions Collection
Columns Collection MergeSubsetFilters Collection
DatabaseRoles Collection Names Collection
Databases Collection OperatorCategories Collection
DBFiles Collection RegisteredServers Collection
Defaults Collection RegisteredSubscribers Collection
DistributionArticles Collection RemoteLogins Collection
DistributionDatabases Collection RemoteServers Collection
DistributionPublications Collection Rules Collection
DistributionPublishers Collection ServerGroups Collection
DistributionSubscriptions Collection StoredProcedures Collection
FileGroups Collection Tables Collection
FullTextCatalogs Collection TargetServerGroups Collection
Indexes Collection TargetServers Collection
JobCategories Collection TransArticles Collection
Jobs Collection TransPublications Collection
JobSchedules Collection TransPullSubscriptions Collection
JobSteps Collection TransSubscriptions Collection
Keys Collection Triggers Collection
LinkedServerLogins Collection UserDefinedDatatypes Collection
LinkedServers Collection UserDefinedFunctions Collection
LogFiles2 Collection Users Collection
Logins Collection Views Collection

SQL-DMO (SQL Server 2000)

Remove Method (Operator)
Remove Method (Operator)

The Remove method drops the referenced SQLServerAgent operator, optionally reassigning notifications to a named operator.

Applies To

Operator Object

SQL-DMO (SQL Server 2000)

Remove Method (Operators)
Remove Method (Operators)

The Remove method drops the indicated SQLServerAgent operator, optionally reassigning notifications to a named operator.

Applies To

Operators Collection

SQL-DMO (SQL Server 2000)

RemoveAllJobSchedules Method
RemoveAllJobSchedules Method

The RemoveAllJobSchedules method removes all system records maintaining execution schedules for the referenced
SQLServerAgent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

RemoveAllJobSteps Method
RemoveAllJobSteps Method

The RemoveAllJobSteps method removes all system records maintaining steps executed by the referenced SQLServerAgent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

RemoveAllObjects Method
RemoveAllObjects Method

The RemoveAllObjects method removes all objects from the list of objects to be copied during a transfer operation.

Applies To

Transfer2 Object

SQL-DMO (SQL Server 2000)

RemoveAlternatePublisher Method
RemoveAlternatePublisher Method

The RemoveAlternatePublisher method disables an alternate Publisher in the alternate Publishers list.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

RemoveDefunctAnonymousSubscription Method
RemoveDefunctAnonymousSubscription Method

The RemoveDefunctAnonymousSubscription method removes a defunct anonymous subscription agent entry from the
Distributor.

Applies To

Distributor2 Object

SQL-DMO (SQL Server 2000)

RemoveFromTargetServer Method
RemoveFromTargetServer Method

The RemoveFromTargetServer method drops a single execution target for a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

RemoveFromTargetServerGroup Method
RemoveFromTargetServerGroup Method

The RemoveFromTargetServerGroup method drops one or more execution targets for a SQL Server Agent job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

RemoveFullTextCatalogs Method
RemoveFullTextCatalogs Method

The RemoveFullTextCatalogs method drops all Microsoft Search full-text catalogs supporting full-text query on a Microsoft®
SQL Server™ 2000 database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

RemoveJobByID Method
RemoveJobByID Method

The RemoveJobByID method drops the SQLServerAgent job identified and removes the referencing Job object from the Jobs
collection.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

RemoveJobsByLogin Method
RemoveJobsByLogin Method

The RemoveJobsByLogin method drops all SQLServerAgent jobs owned by the login identified and removes the referencing
Job objects from the Jobs collection.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

RemoveJobsByServer Method
RemoveJobsByServer Method

The RemoveJobsByServer method is reserved for future use.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

RemoveMemberServer Method
RemoveMemberServer Method

The RemoveMemberServer method drops the indicated multiserver administration target server (TSX) from the group
referenced.

Applies To

TargetServerGroup Object

SQL-DMO (SQL Server 2000)

RemoveNotification Method
RemoveNotification Method

The RemoveNotification method drops all SQLServerAgent alert notification assignments for an operator.

Applies To

Alert Object Operator Object

SQL-DMO (SQL Server 2000)

RemoveReplicatedColumns Method
RemoveReplicatedColumns Method

The RemoveReplicatedColumns method configures a previously created, vertical partition for a transactional or snapshot
replication article.

Applies To

MergeArticle2 Object TransArticle Object

SQL-DMO (SQL Server 2000)

Replace Method
Replace Method

The Replace method substitutes a new string for an existing one in a Names collection.

Applies To

Names Collection

SQL-DMO (SQL Server 2000)

ReplicateUserDefinedScript Method
ReplicateUserDefinedScript Method

The ReplicateUserDefinedScript method replicates the execution of a user-defined script to the subscribers of the specified
publication.

Applies To

MergePublication2 Object TransPublication2 Object

SQL-DMO (SQL Server 2000)

ReplicationAddColumn Method
ReplicationAddColumn Method

The ReplicationAddColumn method adds a column to a table published in one or more publications.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

ReplicationDropColumn Method
ReplicationDropColumn Method

The ReplicationDropColumn method removes a column from a table published in one or more publications.

Applies To

ReplicationTable2 Object

SQL-DMO (SQL Server 2000)

ResetOccurrenceCount Method
ResetOccurrenceCount Method

The ResetOccurrenceCount method reinitializes history data for a SQLServerAgent alert.

Applies To

Alert Object

SQL-DMO (SQL Server 2000)

ReSynchronizeSubscription Method
ReSynchronizeSubscription Method

The ReSynchronizeSubscription method resynchronizes a subscription with all changes made at the Publisher and other
Subscribers since a specified time.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

Revoke Method (Database)
Revoke Method (Database)

The Revoke method undoes a grant or deny of database permissions for one or more Microsoft® SQL Server™ 2000 users or
roles.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Revoke Method (StoredProcedure)
Revoke Method (StoredProcedure)

The Revoke method undoes a grant or deny of a stored procedure permission for one or more Microsoft® SQL Server™ 2000
users or roles.

Applies To

StoredProcedure Object

SQL-DMO (SQL Server 2000)

Revoke Method (Table, View)
Revoke Method (Table, View)

The Revoke method undoes a grant or deny of a table permission or a list of permissions for one or more Microsoft® SQL
Server™ 2000 users or roles.

Applies To

Table Object View Object

SQL-DMO (SQL Server 2000)

Revoke Method (UserDefinedFunction)
Revoke Method (UserDefinedFunction)

The Revoke method undoes a grant or deny of a user-defined function permission for one or more Microsoft® SQL Server™
2000 users or roles.

Applies To

UserDefinedFunction Object

SQL-DMO (SQL Server 2000)

RevokePublicationAccess Method
RevokePublicationAccess Method

The RevokePublicationAccess method removes the specified login from the publication access list.

Applies To

MergePublication Object TransPublication Object

SQL-DMO (SQL Server 2000)

RollbackTransaction Method
RollbackTransaction Method

The RollbackTransaction method ends a unit of work explicitly opened by a corresponding BeginTransaction method call,
discarding any change(s) applied within the work unit.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

S

SQL-DMO (SQL Server 2000)

SaveTransaction Method
SaveTransaction Method

The SaveTransaction method marks a point within a transaction, that controls conditional application of the
RollbackTransaction method.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Script Method
Script Method

The Script method generates a Transact-SQL command batch that can be used to re-create the Microsoft® SQL Server™ 2000
component referenced by the SQL-DMO object.

Applies To

Alert Object Key Object
Alerts Collection Login Object
Check Object Operator Object
Database Object Operators Collection
DatabaseRole Object Rule Object
DBObject Object StoredProcedure Object
Default Object Trigger Object
DRIDefault Object User Object
FullTextCatalog Object UserDefinedDatatype Object
Index Object UserDefinedFunction Object
Job Object View Object
Jobs Collection

SQL-DMO (SQL Server 2000)

Script Method (BackupDevice Object)
Script Method (BackupDevice Object)

The Script method generates a Transact-SQL command batch that can be used to re-create the Microsoft® SQL Server™ 2000
component referenced by the SQL-DMO object.

Applies To

BackupDevice Object

SQL-DMO (SQL Server 2000)

Script Method (Replication Objects)
Script Method (Replication Objects)

The Script method generates a Transact-SQL command batch that can be used to re-create the Microsoft® SQL Server™ 2000
component referenced by the SQL-DMO object.

Applies To

DistributionDatabase Object RegisteredSubscribers Collection
DistributionDatabases Collection Replication Object
DistributionPublisher Object ReplicationDatabase Object
DistributionPublishers Collection ReplicationDatabases Collection
Distributor Object Subscriber Object
MergePublication Object TransArticle Object
MergePublications Collection TransPublication Object
MergePullSubscription Object TransPublications Collection
MergePullSubscriptions Collection TransPullSubscription Object
MergeSubscription Object TransPullSubscriptions Collection
MergeSubscriptions Collection TransSubscription Object
Publisher Object TransSubscriptions Collection
RegisteredSubscriber Object

SQL-DMO (SQL Server 2000)

Script Method (Table Object)
Script Method (Table Object)

The Script method generates a Transact-SQL command batch that can be used to re-create the Microsoft® SQL Server™
component referenced by the SQL-DMO object.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

ScriptDestinationObject Method
ScriptDestinationObject Method

The ScriptDestinationObject method generates a Transact-SQL command batch that can be used to create the replicated image
of the database object published by the referenced replication article.

Applies To

MergeArticle Object TransArticle Object

SQL-DMO (SQL Server 2000)

ScriptDestinationObject2 Method (MergeArticle2)
ScriptDestinationObject2 Method (MergeArticle2)

The ScriptDestinationObject2 method generates a Transact-SQL command batch that can be used to create the replicated
image of the database object published by the referenced replication article.

Applies To

MergeArticle2 Object

SQL-DMO (SQL Server 2000)

ScriptTransfer Method
ScriptTransfer Method

The ScriptTransfer method generates a Transact-SQL command batch that creates database objects contained in the Transfer
object indicated.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

ServerLoginMode Method
ServerLoginMode Method

The ServerLoginMode method returns the default login mode for the specified server.

Applies To

SQLServer2 Object

SQL-DMO (SQL Server 2000)

SetCodePage Method
SetCodePage Method

The SetCodePage method alters the character set used to interpret data during a bulk copy operation.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

SetFullTextIndexWithOptions Method
SetFullTextIndexWithOptions Method

The SetFullTextIndexWithOptions method creates or removes a full-text index on the current column.

Applies To

Column2 Object

SQL-DMO (SQL Server 2000)

SetIndexedColumnDESC Method
SetIndexedColumnDESC Method

The SetIndexedColumnDESC method specifies a column to sort in descending order as part of an index.

Applies To

Index2 Object

SQL-DMO (SQL Server 2000)

SetOptions Method
SetOptions Method

The SetOptions method modifies configurable parameters for a Microsoft® SQL Server™ remote or linked server.

Applies To

LinkedServer Object RemoteServer Object

SQL-DMO (SQL Server 2000)

SetOwner Method
SetOwner Method

The SetOwner method reassigns ownership for a Microsoft® SQL Server™ database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

SetPassword Method
SetPassword Method

The SetPassword method changes the password for the referenced login.

Applies To

Login Object

SQL-DMO (SQL Server 2000)

SetTopologyXY Method
SetTopologyXY Method

The SetTopologyXY method is reserved for future use.

Applies To

RemoteServer Object

SQL-DMO (SQL Server 2000)

SetUpDistributorPassword Method
SetUpDistributorPassword Method

The SetUpDistributorPassword method changes the password for the distributor_admin login.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

Shrink Method
Shrink Method

The Shrink method attempts to reduce the size of a referenced operating system file, or attempts to reduce the size of all
operating system files maintaining the referenced Microsoft® SQL Server™ 2000 database.

Applies To

Database Object LogFile Object
DBFile Object

SQL-DMO (SQL Server 2000)

Shutdown Method
Shutdown Method

The Shutdown method stops a running Microsoft® SQL Server™ 2000 service.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

SQLBackup Method
SQLBackup Method

The SQLBackup method performs the database backup operation specified by the properties of the Backup object used.

Applies To

Backup Object

SQL-DMO (SQL Server 2000)

SQLRestore Method
SQLRestore Method

The SQLRestore method performs the database restore operation specified by the properties of the Restore object used.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

SQLVerify Method
SQLVerify Method

The SQLVerify method checks the backup media specified, ensuring that a backup set is readable and complete.

Applies To

Restore Object

SQL-DMO (SQL Server 2000)

Start Method (FullTextCatalog)
Start Method (FullTextCatalog)

The Start method launches Microsoft Search full-text catalog population, building the index supporting full-text queries on data
maintained by Microsoft® SQL Server™ 2000.

Applies To

FullTextCatalog Object

SQL-DMO (SQL Server 2000)

Start Method (FullTextService, JobServer)
Start Method (FullTextService, JobServer)

The Start method starts a stopped Microsoft® SQLServerAgent service or Microsoft Search service.

Applies To

FullTextService Object JobServer Object

SQL-DMO (SQL Server 2000)

Start Method (Job)
Start Method (Job)

The Start method executes a Microsoft® SQLServerAgent service job.

Applies To

Job Object

SQL-DMO (SQL Server 2000)

Start Method (SQLServer)
Start Method (SQLServer)

 Topic last updated -- July 2003

The Start method starts the Microsoft® SQL Server™ 2000 service, optionally connecting the SQLServer object on successful
start.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

StartMonitor Method
StartMonitor Method

The StartMonitor method begins monitoring of the local Microsoft® SQLServerAgent service by an instance of Microsoft® SQL
Server™ 2000.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

Stop Method
Stop Method

The Stop method halts execution for a Microsoft® SQL Server™ 2000 service or SQLServerAgent service job, or stops Microsoft
Search full-text catalog population.

Applies To

FullTextCatalog Object JobServer Object
FullTextService Object SQLServer Object
Job Object

SQL-DMO (SQL Server 2000)

StopMonitor Method
StopMonitor Method

The StopMonitor method ends monitoring of the local SQLServerAgent service by an instance of Microsoft® SQL Server™.2000.

Applies To

JobServer Object

SQL-DMO (SQL Server 2000)

T

SQL-DMO (SQL Server 2000)

Transfer Method
Transfer Method

The Transfer method copies database schema and/or data from one Microsoft® SQL Server™ 2000 database to another.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

Truncate Method
Truncate Method

The Truncate method archive-marks transaction log records.

Applies To

TransactionLog Object

SQL-DMO (SQL Server 2000)

TruncateData Method
TruncateData Method

The TruncateData method deletes all rows from the referenced table as a bulk-logged operation.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

U

SQL-DMO (SQL Server 2000)

UnbindFromColumn Method
UnbindFromColumn Method

The UnbindFromColumn method breaks the binding between a Microsoft® SQL Server™ 2000 default or rule and the column
of a table.

Applies To

Default Object Rule Object

SQL-DMO (SQL Server 2000)

UnbindFromDatatype Method
UnbindFromDatatype Method

The UnbindFromDatatype method breaks the binding between a Microsoft® SQL Server™ 2000 default or rule and a user-
defined data type.

Applies To

Default Object Rule Object

SQL-DMO (SQL Server 2000)

Uninstall Method
Uninstall Method

The Uninstall method removes Microsoft® SQL Server™ 2000 components implementing replication.

Applies To

Distributor Object Replication Object
Publisher Object

SQL-DMO (SQL Server 2000)

UnloadODSDLL Method
UnloadODSDLL Method

The UnloadODSDLL method frees a dynamic-link library (DLL) loaded into Microsoft® SQL Server™ 2000 memory.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

UpdateAgentProfile Method
UpdateAgentProfile Method

The UpdateAgentProfile method alters a profile setting for the agent specified.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

UpdateDefaultAgentProfile Method
UpdateDefaultAgentProfile Method

The UpdateDefaultAgentProfile method updates the default replication agent profile.

Applies To

Distributor Object

SQL-DMO (SQL Server 2000)

UpdateIndexStatistics Method
UpdateIndexStatistics Method

The UpdateIndexStatistics method forces data distribution statistics update for all indexes on user-defined tables in the
referenced Microsoft® SQL Server™ 2000 database.

Applies To

Database Object

SQL-DMO (SQL Server 2000)

UpdateNotification Method
UpdateNotification Method

The UpdateNotification method configures SQL Server Agent operator notification for alerts raised.

Applies To

Alert Object Operator Object

SQL-DMO (SQL Server 2000)

UpdateStatistics Method
UpdateStatistics Method

The UpdateStatistics method forces data distribution statistics update for a referenced Microsoft® SQL Server™ 2000 index or
all indexes defined on a SQL Server table.

Applies To

Index Object Table Object

SQL-DMO (SQL Server 2000)

UpdateStatisticsWith Method (Column, Index)
UpdateStatisticsWith Method (Column, Index)

The UpdateStatisticsWith method forces data distribution statistics update for a referenced Microsoft® SQL Server™ 2000
index, or for a hypothetical index used to support data distribution statistics for a column.

Applies To

Column Object Index Object

SQL-DMO (SQL Server 2000)

UpdateStatisticsWith Method (Table)
UpdateStatisticsWith Method (Table)

The UpdateStatisticsWith method forces data distribution statistics update for a indexes defined on the referenced Microsoft®
SQL Server™ 2000 table.

Applies To

Table Object

SQL-DMO (SQL Server 2000)

V

SQL-DMO (SQL Server 2000)

ValidateDataSource Method
ValidateDataSource Method

The ValidateDataSource method attempts a connection to the indicated data source using the login name and password
specified.

Applies To

Replication Object

SQL-DMO (SQL Server 2000)

ValidatePublication Method (MergePublication2)
ValidatePublication Method (MergePublication2)

The ValidatePublication method invokes inline publication validation for all Subscribers.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

ValidatePublication Method (TransPublication2)
ValidatePublication Method (TransPublication2)

The ValidatePublication method invokes inline publication validation for all Subscribers.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

ValidateSubscription Method
ValidateSubscription Method

The ValidateSubscription method invokes inline validation for the specified subscription.

Applies To

MergePublication2 Object

SQL-DMO (SQL Server 2000)

ValidateSubscriptions Method
ValidateSubscriptions Method

The ValidateSubscriptions method invokes inline validation for one or more specified subscriptions.

Applies To

TransPublication2 Object

SQL-DMO (SQL Server 2000)

VerifyConnection Method
VerifyConnection Method

The VerifyConnection method tests the connection used by the SQLServer object.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

W

SQL-DMO (SQL Server 2000)

WriteReplicationFailOverMode Method
WriteReplicationFailOverMode Method

The WriteReplicationFailOverMode method sets the failover mode for a subscription that uses immediate updating with
queued updating as a failover option.

Applies To

ReplicationDatabase2 Object

SQL-DMO (SQL Server 2000)

Events
Some SQL-DMO objects support events. OLE object events provide a callback mechanism, and SQL-DMO uses events to signal an
application conditionally.

SQL-DMO applications can handle raised events to provide intelligent interaction with the user during long-running processes
and to handle abnormal conditions.

SQL-DMO (SQL Server 2000)

BatchImported Event
The BatchImported event occurs when a bulk copy transaction is committed.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

CommandSent Event
The CommandSent event occurs when SQL-DMO submits a Transact-SQL command batch to the connected instance of
Microsoft® SQL Server™.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

ConnectionBroken Event
The ConnectionBroken event occurs when a connected SQLServer object loses its connection to an instance of Microsoft® SQL
Server™.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

Complete Event
The Complete event occurs when a backup or restore operation completes.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

NextMedia Event
The NextMedia event occurs when a backup or restore operation exhausts the media in a device indicated as a target or source
for the operation.

Applies To

Backup Object Restore Object

SQL-DMO (SQL Server 2000)

PercentComplete Event
The PercentComplete event occurs when a backup, restore, or replication operation reaches a completion unit.

Applies To

Backup Object Restore Object
Replication Object

SQL-DMO (SQL Server 2000)

PercentCompleteAtStep Event
The PercentCompleteAtStep event occurs when a database schema and/or data copy operation reaches a system-defined
midpoint in processing.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

QueryTimeout Event
The QueryTimeout event occurs when Microsoft® SQL Server™ cannot complete execution of a Transact-SQL command batch
within a user-defined period of time.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

RemoteLoginFailed Event
The RemoteLoginFailed event occurs when an instance of Microsoft® SQL Server™ attempts to connect to a remote server fails.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

RowsCopied Event
The RowsCopied event occurs when a bulk copy operation completes processing for a system-defined number of rows.

Applies To

BulkCopy Object

SQL-DMO (SQL Server 2000)

ScriptTransferPercentComplete Event
The ScriptTransferPercentComplete event occurs after SQL-DMO completes Transact-SQL command batch generation for a
Microsoft® SQL Server™ component referenced by the Transfer object.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

ServerMessage Event
The ServerMessage event occurs when a Microsoft® SQL Server™ success-with-information message is returned to the SQL-
DMO application.

Applies To

SQLServer Object

SQL-DMO (SQL Server 2000)

StatusMessage Event
The StatusMessage occurs when a SQL-DMO object reaches a system-defined midpoint in processing.

Applies To

Replication Object Transfer Object

SQL-DMO (SQL Server 2000)

TransferPercentComplete Event
The TransferPercentComplete event occurs after SQL-DMO completes schema or data copy for a Microsoft® SQL Server™
component referenced by the Transfer object.

Applies To

Transfer Object

SQL-DMO (SQL Server 2000)

Constants
SQL-DMO constants enumerate values. Generally, when a set of specific values can satisfy a property or method argument, an
enumerated type defines constant values valid for the property or method argument.

A development environment may support syntax completion or other programming aids that make SQL-DMO constants visible
in the environment.

SQL-DMO (SQL Server 2000)

A

SQL-DMO (SQL Server 2000)

Alert Constants (SQLDMO_ALERT_TYPE)
Alert Constants (SQLDMO_ALERT_TYPE)

Alert constants specify alert generation events at a high level.

Constant Value Description
SQLDMOAlert_NonSQLServerEvent 3 Alert will be raised by an

event not defined for
Microsoft® SQL Server™

SQLDMOAlert_SQLServerEvent 1 Alert will be raised when a
specified SQL Server error
condition, or any error
condition of a specified
severity, occurs

SQLDMOAlert_SQLServerPerformanceCondition 2 Alert will be raised when a
bound is reached or
exceeded for a SQL Server
counter evaluated by
Windows NT Performance
Monitor

SQL-DMO (SQL Server 2000)

Audit Constants (SQLDMO_AUDIT_TYPE)
Audit Constants (SQLDMO_AUDIT_TYPE)

Audit constants specify login authentication success or failure, and are used to set the AuditLevel property of the
IntegratedSecurity object.

Constant Value Description
SQLDMOAudit_All 3 SQLDMOAudit_Success and

SQLDMOAudit_Failure combined by using an OR
logical operator

SQLDMOAudit_Failure 2 Authentication failed
SQLDMOAudit_None 0 Not evaluated
SQLDMOAudit_Success 1 Authentication succeeded

See Also

AuditLevel Property

SQL-DMO (SQL Server 2000)

B

SQL-DMO (SQL Server 2000)

Backup Process Control Constants (SQLDMO_BACKUP_TYPE)
Backup Process Control Constants (SQLDMO_BACKUP_TYPE)

Backup process control constants define, at the highest level, the type of backup performed using the Backup object. Greater
control over the backup operation is provided by specification of files and maintenance of the transaction log performed.

Constant Value Description
SQLDMOBackup_Database 0 Back up the database
SQLDMOBackup_Files 2 Back up only specified files
SQLDMOBackup_Differential 1 Back up rows changed after the most

recent full database or differential backup
SQLDMOBackup_Log 3 Back up only the database transaction log

SQL-DMO (SQL Server 2000)

Bulk Copy Code Page Constants
(SQLDMO_BCP_CODEPAGE_TYPE)
Bulk Copy Code Page Constants (SQLDMO_BCP_CODEPAGE_TYPE)

Bulk copy code page constants specify the character set used to interpret data in a bulk copy user data file. By default, a bulk copy
data file is interpreted using the code page used by the client computer directing data import or export.

Constant Value Description
SQLDMOBCP_RAW -1 Use the installed, server code page.
SQLDMOBCP_ACP 0 Use the Microsoft® Windows® default, code

page 1252 (ISO 8859-1).
SQLDMOBCP_OEM 1 Default behavior. Use the code page installed on

the client.
SQLDMOBCP_User 2 Use the caller-specified code page.

SQL-DMO (SQL Server 2000)

Bulk Copy Data Constants (SQLDMO_DATAFILE_TYPE)
Bulk Copy Data Constants (SQLDMO_DATAFILE_TYPE)

Bulk copy data constants specify the content of the data file used as a source for or target of a Microsoft® SQL Server™ bulk copy
operation.

Constant Value Description
SQLDMODataFile_CommaDelimitedChar 1 Columns are delimited using a comma

character. Each data row is delimited by a
carriage return/linefeed character pair.

SQLDMODataFile_Default 1 SQLDMODataFile_CommaDelimitedChar.
SQLDMODataFile_NativeFormat 4 SQL Server bulk copy native format.
SQLDMODataFile_SpecialDelimitedChar 3 User-defined by the ColumnDelimiter

and RowDelimiter properties of the
BulkCopy object.

SQLDMODataFile_TabDelimitedChar 2 Columns are delimited using a tab
character. Each data row is delimited by a
carriage return/linefeed character pair.

SQLDMODataFile_UseFormatFile 5 Bulk copy uses the file identified in the
FormatFilePath property of the
BulkCopy object.

SQL-DMO (SQL Server 2000)

Bulk Copy Server Data File Constants
(SQLDMO_SERVERBCP_DATAFILE_TYPE)
Bulk Copy Server Data File Constants (SQLDMO_SERVERBCP_DATAFILE_TYPE)

Bulk copy server data file constants specify data file format when importing data by using the BulkCopy object and the
UseServerSideBCP property is True.

Constant Value Description
SQLDMOBCPDataFile_Char 1 Read a data file as character data.

Interpret the data file using the character
set specified.

SQLDMOBCPDataFile_Default 1 SQLDMOBCPDataFile_Char.
SQLDMOBCPDataFile_Native 2 Assume bulk copy native data format

when reading the data file.
SQLDMOBCPDataFile_WideChar 4 Read a data file as Unicode character data.
SQLDMOBCPDataFile_WideNative 8 Assume bulk copy wide native data

format when reading the data file. Import
treats all character data types as wide
character (Unicode).

SQL-DMO (SQL Server 2000)

C

SQL-DMO (SQL Server 2000)

Compatibility Level Constants (SQLDMO_COMP_LEVEL_TYPE)
Compatibility Level Constants (SQLDMO_COMP_LEVEL_TYPE)

Compatibility level constants control version specific behavior for an instance of Microsoft® SQL Server™ version 7.0.

Constant Value Description
SQLDMOCompLevel_60 60 Force SQL Server 6.0 behavior.
SQLDMOCompLevel_65 65 Force SQL Server 6.5 behavior.
SQLDMOCompLevel_70 70 Force SQL Server 7.0 behavior.
SQLDMOCompLevel_80 80 Default. Instance behaves as

documented for SQL Server 2000.
SQLDMOCompLevel_Unknown 0 Bad or invalid value.

See Also

Backward Compatibility

CompatibilityLevel Property (Database)

SQL-DMO (SQL Server 2000)

Configuration Value Constants (SQLDMO_CONFIGVALUE_TYPE)
Configuration Value Constants (SQLDMO_CONFIGVALUE_TYPE)

Configuration value constants are returned by the ID property of the ConfigValue object, providing unique identification of a
Microsoft® SQL Server™ configurable option, such as the resource time-out period.

For more information about setting options, see Setting Configuration Options.

In the table, the constant description is matched to content describing the option specified by the constant. For a description of the
option and its maximum, minimum, and default running values, see the referenced content in SQL Server documentation.

Constant Value Reference
SQLDMOConfig_AllowUpdates 102 allow updates Option
SQLDMOConfig_CostThresholdForParallelism 1538 cost threshold for

parallelism Option
SQLDMOConfig_CursorThreshold 1531 cursor threshold Option
SQLDMOConfig_DefaultLanguage 124 default language Option
SQLDMOConfig_DefaultSortorderId 1123 Obsolete
SQLDMOConfig_FillFactor 109 fill factor Option
SQLDMOConfig_IndexCreateMem 1505 index create memory

Option
SQLDMOConfig_LanguageInCache 125 Obsolete
SQLDMOConfig_LanguageNeutral 1126 default full-text language

Option
SQLDMOConfig_LightweightPooling 1546 lightweight pooling Option
SQLDMOConfig_Locks 106 locks Option
SQLDMOConfig_MaxAsyncIO 502 Obsolete
SQLDMOConfig_MaxDegreeOfParallelism 1539 max degree of parallelism

Option
SQLDMOConfig_MaxMemory 1544 Server Memory Options
SQLDMOConfig_MaxTextReplSize 1536 max text repl size Option
SQLDMOConfig_MaxWorkerThreads 503 max worker threads Option
SQLDMOConfig_MediaRetention 1537 media retention Option
SQLDMOConfig_MinMemoryPerQuery 1540 min memory per query

Option
SQLDMOConfig_MinMemory 1543 Server Memory Options
SQLDMOConfig_NestedTriggers 115 nested triggers Option
SQLDMOConfig_NetworkPacketSize 505 network packet size Option
SQLDMOConfig_OpenObjects 107 open objects Option
SQLDMOConfig_PriorityBoost 1517 priority boost Option
SQLDMOConfig_ProcessorAffinityMask 1535 affinity mask Option
SQLDMOConfig_QueryMaxTime 1545 query governor cost limit

Option
SQLDMOConfig_QueryWait 1541 query wait Option
SQLDMOConfig_RecoveryInterval 101 recovery interval Option
SQLDMOConfig_RemoteAccess 117 remote access Option
SQLDMOConfig_RemoteConnTimeout 543 Obsolete
SQLDMOConfig_RemoteLoginTimeout 1519 remote login timeout

Option
SQLDMOConfig_RemoteProcTrans 542 remote proc trans Option
SQLDMOConfig_RemoteQueryTimeout 1520 remote query timeout

Option
SQLDMOConfig_ResourceTimeout 1533 Obsolete
SQLDMOConfig_SetWorkingSetSize 1532 set working set size Option
SQLDMOConfig_ShowAdvancedOption 518 show advanced options

Option

SQLDMOConfig_SpinCounter 1514 Obsolete
SQLDMOConfig_TimeSlice 1110 Obsolete
SQLDMOConfig_TwoDigitYearCutoff 1127 two digit year cutoff Option
SQLDMOConfig_UnicodeComparisonStyle 1125 Obsolete
SQLDMOConfig_UnicodeLocalID 1124 Obsolete
SQLDMOConfig_UserConnections 103 user connections Option
SQLDMOConfig_UserOptions 1534 user options Option
SQLDMOConfig_VLMSize 1542 Obsolete

See Also

ConfigValue Object

SQL-DMO (SQL Server 2000)

D

SQL-DMO (SQL Server 2000)

Database Compression Constants (SQLDMO_SHRINK_TYPE)
Database Compression Constants (SQLDMO_SHRINK_TYPE)

Database compression constants control the behavior of the Shrink method, optimizing method execution.

Constant Value Description
SQLDMOShrink_Default 0 Data in pages located at the end of the

file(s) is moved to pages earlier in the file(s).
File(s) are truncated to reflect allocated
space.

SQLDMOShrink_EmptyFile 3 Migrate all data from the referenced file to
other files in the same filegroup.

SQLDMOShrink_NoTruncate 1 Data in pages located at the end of the
file(s) is moved to pages earlier in the file(s).

SQLDMOShrink_TruncateOnly 2 Data distribution is not affected. File(s) are
truncated to reflect allocated space,
recovering free space at the end of any file.

See Also

Shrink Method

SQL-DMO (SQL Server 2000)

Database Repair Constants (SQLDMO_DBCC_REPAIR_TYPE)
Database Repair Constants (SQLDMO_DBCC_REPAIR_TYPE)

Database repair constants control behavior of the CheckTables and CheckAllocations methods of the Database object.

Constant Value Description
SQLDMORepair_Allow_DataLoss 3 Attempt all database repair regardless of

the possibility of data loss. For example,
delete corrupted text objects.

SQLDMORepair_Fast 1 Attempt database repair tasks that do
not incur data loss.

SQLDMORepair_None 0 Do not attempt database repair on
database inconsistencies encountered.

SQLDMORepair_Rebuild 2 Attempt database repair tasks that do
not incur data loss. Rebuild indexes on
successful database repair.

See Also

CheckAllocations Method

CheckTables Method

SQL-DMO (SQL Server 2000)

Database Statistics Affected Constants
(SQLDMO_STAT_AFFECT_TYPE)
Database Statistics Affected Constants (SQLDMO_STAT_AFFECT_TYPE)

Database statistics affected constants control behavior of the UpdateStatisticsWith method of the Table object. Use the
UpdateStatisticsWith method to force a refresh of query optimization supporting statistics maintained by Microsoft® SQL
Server™.

Constant Value Description
SQLDMOStatistic_AffectAll 2 Update all statistics regardless of the

source.
SQLDMOStatistic_AffectColumn 1 Update statistics derived from column

data only.
SQLDMOStatistic_AffectIndex 0 Default. Update statistics derived from

indexes only.

See Also

UpdateStatisticsWith Method (Table)

SQL-DMO (SQL Server 2000)

Database Statistics Scanning Constants
(SQLDMO_STAT_SCAN_TYPE)
Database Statistics Scanning Constants (SQLDMO_STAT_SCAN_TYPE)

Database statistics scanning constants control behavior of the UpdateStatisticsWith method of the Table object. Use the
UpdateStatisticsWith method to force a refresh of query optimization supporting statistics maintained by Microsoft® SQL
Server™.

Constant Value Description
SQLDMOStatistic_FullScan 3 Perform a full scan of the index(es) or

column(s) to determine statistics values.
SQLDMOStatistic_Percent 1 Perform a sampled scan using a percentage

value. When specified, use the ScanNumber
value to indicate percentage. Specify
percentage using a whole number, for
example, 55 specifies 55 percent.

SQLDMOStatistic_Rows 2 Perform a sampled scan using a number of
rows. When specified, use the ScanNumber
argument to indicate number of rows.

SQLDMOStatistic_Sample 0 Perform a percentage sampled scan using a
system defined percentage.

See Also

UpdateStatisticsWith Method (Column, Index)

UpdateStatisticsWith Method (Table)

SQL-DMO (SQL Server 2000)

Database Status Constants (SQLDMO_DBSTATUS_TYPE)
Database Status Constants (SQLDMO_DBSTATUS_TYPE)

Use database status constants to interpret the return value of the Status property of the Database object.

Constant Value Description
SQLDMODBStat_All 34784 All database status constants combined

by using an OR logical operator
SQLDMODBStat_EmergencyMode 32768 Emergency mode has been initiated on

the referenced database
SQLDMODBStat_Inaccessible 992 SQLDMODBStat_Loading,

SQLDMODBStat_Offline,
SQLDMODBStat_Recovering, and
SQLDMODBStat_Suspect combined by
using an OR logical operator

SQLDMODBStat_Loading 32 Database loading is underway on the
referenced database

SQLDMODBStat_Normal 0 Referenced database is available for
use

SQLDMODBStat_Offline 512 Referenced database has been placed
offline by a system or user action

SQLDMODBStat_Recovering 192 Database recovery is underway on the
referenced database

SQLDMODBStat_Standby 1024 Referenced database defined on a
standby server

SQLDMODBStat_Suspect 256 Database integrity is suspect for the
referenced database

SQL-DMO (SQL Server 2000)

Database User Profile Constants
(SQLDMO_DBUSERPROFILE_TYPE)
Database User Profile Constants (SQLDMO_DBUSERPROFILE_TYPE)

Database user profile constants roughly specify privilege for a Microsoft® SQL Server™ login or database user used by a client
connection.

Constant Value Description
SQLDMODbUserProf_AllProfileBits 1023 User has all specifiable

database maintenance
privileges

SQLDMODbUserProf_CreateDefault 32 User has permission to
execute the CREATE
DEFAULT statement

SQLDMODbUserProf_CreateFunction 512 User has permission to
execute the CREATE
FUNCTION statement

SQLDMODbUserProf_CreateProcedure 8 User has permission to
execute the CREATE
PROCEDURE statement

SQLDMODbUserProf_CreateRule 128 User has permission to
execute the CREATE RULE
statement

SQLDMODbUserProf_CreateTable 2 User has permission to
execute the CREATE TABLE
statement

SQLDMODbUserProf_CreateView 4 User has permission to
execute the CREATE VIEW
statement

SQLDMODbUserProf_DbNotAvailable -1073741824 Unable to determine user
privilege due to offline or
other error

SQLDMODbUserProf_DboLogin 1 User is a member of the
db_owner role

SQLDMODbUserProf_DumpDatabase 16 User can back up data for
the referenced database

SQLDMODbUserProf_DumpTransaction 64 User can back up the
transaction log of the
referenced database

SQLDMODbUserProf_DumpTable 256 User can back up database
data specifying a table as the
backup unit

SQLDMODbUserProf_InaccessibleDb -2147483648 Referenced database is
offline or is otherwise
inaccessible

SQLDMODbUserProf_InvalidLogin 1073741824 Current connection login has
no user privilege in the
referenced database

SQLDMODbUserProf_None 0 User has no database
modification or maintenance
privileges

See Also

Server User Profile Constants (SQLDMO_SRVUSERPROFILE_TYPE)

UserProfile Property

SQL-DMO (SQL Server 2000)

Data Copy Constants (SQLDMO_COPYDATA_TYPE)
Data Copy Constants (SQLDMO_COPYDATA_TYPE)

Data copy constants specify inclusion and behavior for table data when the Transfer object is used to copy schema or data from
one instance of Microsoft® SQL Server™ to another.

Constant Value Description
SQLDMOCopyData_Append 2 Copy data. Data copied will be appended to

existing tables.
SQLDMOCopyData_False 0 Do not copy data. Copy schema only.
SQLDMOCopyData_Replace 1 Copy data. Existing data will be replaced by

data copied.

SQL-DMO (SQL Server 2000)

Day of Week Constants (SQLDMO_WEEKDAY_TYPE)
Day of Week Constants (SQLDMO_WEEKDAY_TYPE)

Day of week constants enumerate the days of the week.

Constant Value Description
SQLDMOWeek_EveryDay 127 All days
SQLDMOWeek_Sunday 1 Sunday
SQLDMOWeek_Monday 2 Monday
SQLDMOWeek_Tuesday 4 Tuesday
SQLDMOWeek_Wednesday 8 Wednesday
SQLDMOWeek_Thursday 16 Thursday
SQLDMOWeek_Friday 32 Friday
SQLDMOWeek_Saturday 64 Saturday
SQLDMOWeek_WeekDays 62 Monday, Tuesday, Wednesday,

Thursday, and Friday
SQLDMOWeek_WeekEnds 65 Saturday and Sunday
SQLDMOWeek_Unknown 0 None specified

SQL-DMO (SQL Server 2000)

Dependency Constants (SQLDMO_DEPENDENCY_TYPE)
Dependency Constants (SQLDMO_DEPENDENCY_TYPE)

Dependency constants control the behavior of the EnumDependencies method exposed by several SQL-DMO objects.

Constant Value Description
SQLDMODep_Children 262144 List all Microsoft® SQL Server™

components that depend on the
referenced SQL Server component.

SQLDMODep_DRIOnly 2097152 List only SQL Server components that
depend on the referenced SQL Server
component in a DRI relationship.

SQLDMODep_FirstLevelOnly 1048576 List only immediate parents. Combine
with SQLDMODep_Children to list
only immediate children.

SQLDMODep_FullHierarchy 65536 List full parent hierarchy. Combine
with SQLDMODep_Children to list full
child hierarchy.

SQLDMODep_IncludeSystem 4194304 Include system objects.
SQLDMODep_OrderDescending 131072 Apply descending order to returned

list.
SQLDMODep_Parents 0 List all objects on which the

referenced SQL Server component
depends.

SQLDMODep_ReturnInputObject 524288 Include SQL Server component
referenced by the SQL-DMO object in
the list returned.

SQLDMODep_Valid 8323072 All dependency constants combined
by using an OR logical operator.

See Also

EnumDependencies Method

SQL-DMO (SQL Server 2000)

Device Type Constants (SQLDMO_DEVICE_TYPE)
Device Type Constants (SQLDMO_DEVICE_TYPE)

Device type constants define media that are valid as targets for designation as backup devices.

Constant Value Description
SQLDMODevice_CDROM 7 Reserved for future use
SQLDMODevice_DiskDump 2 Device is a disk file
SQLDMODevice_FloppyADump 3 Device is a disk file created on

removable media in drive A
SQLDMODevice_FloppyBDump 4 Device is a disk file created on

removable media in drive B
SQLDMODevice_PipeDump 6 Device identifies a named pipe
SQLDMODevice_TapeDump 5 Device is a tape
SQLDMODevice_Unknown 100 Bad or invalid device type

SQL-DMO (SQL Server 2000)

E

SQL-DMO (SQL Server 2000)

Error Constants (SQLDMO_ERROR_TYPE)
Error Constants (SQLDMO_ERROR_TYPE)

SQL-DMO errors are categorized, roughly grouping errors returned by source or process. SQL-DMO defines the macro
SQLDMO_ECAT_MASK, which can be used to determine the error category. For more information about using
SQLDMO_ECAT_MASK, see Handling SQL-DMO Errors and Helpful Macros.

The following table documents SQL-DMO error categories.

Constant Value Description
SQLDMO_ECAT_INVALIDCONTEXT 0x5000 Method call, property get,

or property set is not valid
in context.

SQLDMO_ECAT_INVALIDOBJECT 0x5100 SQL-DMO object is not
valid.

SQLDMO_ECAT_INVALIDOBJECTDEFINITION 0x5200 Microsoft® SQL Server™
component creation failed
due to error in definition of
component.

SQLDMO_ECAT_INVALIDPARAMETER 0x5300 Invalid argument value on
method call or property set.

SQLDMO_ECAT_INVALIDPLATFORM 0x5400 Invalid version of SQL
Server or an invalid version
of SQL-DMO.

SQLDMO_ECAT_ITEMNOTFOUND 0x5500 Collection item
dereferencing errors (item
not locatable by name or
ordinal position out of
range).

SQLDMO_ECAT_UNPRIVILEGEDLOGIN 0x5600 Login used for SQLServer
object connection does not
have sufficient privilege to
perform the requested
operation.

SQLDMO_ECAT_EXECUTION 0x5700 Errors indicating a query
execution error or an
inaccessible database.

SQLDMO_ECAT_CONNECTION 0x5800 SQLServer object failed an
automatic reconnect
attempt. A connection
cannot be restored.

SQLDMO_ECAT_RESOURCE 0x5900 Insufficient resources either
locally or on the server.

Errors masked by SQLDMO_ECAT_INVALIDCONTEXT include the following.

Constant Value Description
SQLDMO_E_ALREADYCONN 0x5000 Attempt to use the Connect

method of a connected
SQLServer object.

SQLDMO_E_ALREADYCOLL 0x5001 Attempt to add an object
redundantly to its
containing collection.

SQLDMO_E_NOTCONN 0x5002 SQLServer object is not
connected.

SQLDMO_E_CANTDROPSERVER 0x5003 Reserved.

SQLDMO_E_NOCOMPLEXALTER 0x5004 Attempt to modify a
property not changeable on
an existing SQL Server
component.

SQLDMO_E_PROPNEEDSCREATE 0x5005 Property or method not
available until the object (or
its parent, if appropriate)
references an existing SQL
Server component.

SQLDMO_E_COLTYPEFIXED 0x5006 Data type is fixed length; no
length can be specified.

SQLDMO_E_COLTYPENONNULL 0x5007 Data type does not allow
NULL value.

SQLDMO_E_CANTCHANGEUDDT 0x5008 Attempt to set the
AllowNulls, BaseType,
Length,
NumericPrecision, or
NumericScale property of
a UserDefinedDatatype
object referencing an
existing user-defined data
type.

SQLDMO_E_BASETYPEFIXED 0x5009 Base data type is fixed
length; no length can be
specified.

SQLDMO_E_BASETYPENONNULL 0x500A Base data type does not
allow NULL values.

SQLDMO_E_ENUMORDINAL 0x500B Reserved.
SQLDMO_E_CANTRENAMEUSER 0x500C Attempt to set the Name or

Login property of a User
object referencing an
existing user.

SQLDMO_E_CANTRENAMEGROUP 0x500D Reserved.
SQLDMO_E_CANTRENAMELOGIN 0x500E Attempt to set the Name

property of a Login object
referencing an existing
login.

SQLDMO_E_CANTRENAMEDEVICE 0x500F Attempt to set the Name,
PhysicalLocation,
SkipTapeLabel, or Type
property of a
BackupDevice object
referencing an existing
device.

SQLDMO_E_NOTDUMPPROP 0x5010 Reserved.
SQLDMO_E_NOSERVERASSOC 0x5011 Reserved.
SQLDMO_E_NOTCOLLTYPE 0x5012 Object type does not match

the collection type on Add
method call.

SQLDMO_E_CANTMODIFYDRIINDEX 0x5013 Referenced index supports a
declarative referential
integrity constraint.
Remove method of the
Index object or Indexes
collection fails, use Key
object or Keys collection to
drop the index.

SQLDMO_E_CANTCHANGEPROCTYPE 0x5014 Attempt to set the Type
property of a
StoredProcedure object
referencing an existing
stored procedure.

SQLDMO_E_CANTMODIFYINDEX 0x5015 Attempt to set the
FileGroup,
IndexedColumns,
NoRecompute,
StatisticsIndex, or Type
property, or attempt to use
GenerateCreationSQL or
GenerateSQL methods, of
an Index object referencing
an existing index.

SQLDMO_E_INVALIDPRIVOBJ 0x5016 Reserved.
SQLDMO_E_CANTCHANGETRIGTYPE 0x5017 Reserved.
SQLDMO_E_NOVIEWCOLALTER 0x5018 Column object retrieved by

using the ListColumns
method of the View object
cannot be used to modify
the column referenced.

SQLDMO_E_CANTRENAMELANGUAGE 0x5019 Reserved.
SQLDMO_E_CANTRENAMERSERVER 0x501A Attempt to set the Name

property of a
RemoteServer object
referencing an existing
remote server.

SQLDMO_E_CANTRENAMERLOGIN 0x501B Attempt to set the
LocalName or
RemoteName property of
a RemoteLogin object
referencing an existing
remote login.

SQLDMO_E_MUSTBEDBDEV 0x501C Reserved.
SQLDMO_E_NOINACTIVEMIRROR 0x501D Reserved.
SQLDMO_E_NOACTIVEMIRROR 0x501E Reserved.
SQLDMO_E_NOMIRROR 0x501F Reserved.
SQLDMO_E_SERVERDISCONNECTED 0x5020 SQLServer object

DisConnect method has
been called. Use Connect
or ReConnect to
reestablish connection.

SQLDMO_E_CANTRENAMESERVER 0x5021 Attempt to set the Login,
LoginSecure,
LoginTimeout, Name,
NetPacketSize, or
Password property of a
connected SQLServer
object.

SQLDMO_E_CANTMODIFYTEXT 0x5022 Attempt to set the Text
property of a Default or
Rule object that references
an existing component.
Attempt to set the Text
property of a
StoredProcedure object
that references an existing
extended stored procedure.

SQLDMO_E_CANTMODIFYSYSTABLE 0x5023 Attempt to set the Name
property, or attempt to use
BeginAlter, DoAlter,
ImportData, Remove, or
TruncateData method, of a
Table object that references
a SQL Server system table.

SQLDMO_E_LOGINALREADYALIASED 0x5024 Error in alias reassignment
performed by the
SetOwner method.

SQLDMO_E_LOGINALREADYUSER 0x5025 Error in user existence check
performed by the
SetOwner method.

SQLDMO_E_CACHENORESULTS 0x5026 Attempt to get or set a
property or call a method
on an empty QueryResults
object.

SQLDMO_E_ALREADYCREATED 0x5027 Attempt to set a property or
use the GenerateSQL
method of an object that
references an existing
component.

SQLDMO_E_NOTDISCONN 0x5028 Attempt to call the
ReConnect method of a
connected SQLServer
object.

SQLDMO_E_CANTMODIFYARTTABLE 0x5029 Attempt to set the
SourceObjectName or
SourceObjectOwner
property of an object that
references an existing
merge, transactional,
snapshot, or distribution
article.

SQLDMO_E_PROPERTYCANNOTBEMODIFIED 0x502A Attempt to set a property
not changeable when the
object references an existing
replication component.

SQLDMO_E_BASETYPENOTNUMERIC 0x502B Attempt to set the
NumericPrecision or
NumericScale property of
a Column or
UserDefinedDatatype
object that does not
reference a fixed numeric
precision and scale data
type.

SQLDMO_E_TOFILEBUTNOFILENAME 0x502C Object scripting arguments
specify a single file as
output, and no file name is
provided.

SQLDMO_E_CANTMODIFYKEY 0x502E Attempt to set the
Clustered,
ExcludeReplication,
FileGroup, Type, or
ReferencedTable property
of a Key object that
references an existing
primary or foreign key.

SQLDMO_E_LISTCANTREFRESH 0x502F Attempt to use the Refresh
method of a list object
cannot complete. Re-call
method returning the list
object.

SQLDMO_E_NOCOLTABLE 0x5030 This column object is not
associated with a table.

SQLDMO_E_MUSTBEINALTER 0x5031 Reserved.
SQLDMO_E_CANTUNDEDICATELOGDEVICE 0x5032 Reserved.
SQLDMO_E_CANTRENAMESERVERGROUP 0x5033 Attempt to set the Name

property of a ServerGroup
object that references an
existing server group.

SQLDMO_E_CANTRENAMEREGISTEREDSERVER 0x5034 Attempt to set the Name
property of a
RegisteredServer object
that references an existing
registered server.

SQLDMO_E_INDEXREBUILDKEYTYPE 0x5035 RebuildIndex method
called on a Key object that
references a FOREIGN KEY
constraint.

SQLDMO_E_REBUILDINDEXOPTIONS 0x5036 Invalid IndexType argument
specified on
RebuildIndexes method
call.

SQLDMO_E_IMPERSONATEXPONLY 0x5037 Reserved.
SQLDMO_E_CANTRENAMEPUBLICATION 0x5038 Attempt to set the Name

property of an object that
references an existing
distribution, merge or
transactional replication
publication.

SQLDMO_E_CANTMODIFYSPARTTYPE 0x5039 Attempt to change the
ArticleType property of a
TransArticle object that
references stored procedure
execution.

SQLDMO_E_INVALIDDISTDB 0x503A DistributionDatabase
property of a
DistributionPublisher
object does not reference an
existing database.

SQLDMO_E_CANTMODIFYTABLE 0x503B Attempt to set the
FileGroup or
TextFileGroup property, or
attempt to use the
GenerateSQL method, of a
Table object that references
an existing table.

SQLDMO_E_CANTDROPFILEGROUP 0x503C Attempt to use the Remove
method of the FileGroup
object or FileGroups
collection that indicates a
file group that maintains
indexes.

SQLDMO_E_DEFAULTFILEGROUP 0x503D Attempt to set the Name or
ReadOnly property, or
attempt to use the Remove
method of the FileGroup
object or FileGroups
collection that indicates the
primary file group.

SQLDMO_E_NOTDEFAULTFILEGROUP 0x503E Reserved.
SQLDMO_E_CANTRESETLOGINTYPE 0x503F Attempt to set the Type

property of a Login object
that references an existing
login.

SQLDMO_E_CANTRESETPASSWORD 0x5040 Attempt to set the AppRole
or Password property of a
DatabaseRole object that
references an existing
application role.

SQLDMO_E_PRESQL70 0x5041 Method or property no
longer implemented.

SQLDMO_E_PROPBEFORECREATE 0x5042 Attempt to get the
Password property of a
DatabaseRole object or set
the Role property of a User
object that references an
existing component.

SQLDMO_E_CANTRENAMEROLE 0x5043 Attempt to set the Name
property of a
DatabaseRole object that
references an existing
database role.

SQLDMO_E_CANTDROPFIXEDROLE 0x5044 Attempt to use the Remove
method of the
DatabaseRole object or
DatabaseRoles collection
that indicate a system-
defined database role.

SQLDMO_E_CANTADDTOAPPROLE 0x5045 Attempt to use the
AddMember method of a
DatabaseRole object that
references an application
role.

SQLDMO_E_CANTGETROLE 0x5046 Attempt to get the Role
property of a User object
that references an existing
user. The Role property is
read-write using the User
object to create a user.

SQLDMO_E_USERDBROLE 0x5047 Attempt to use the
ListDatabasePermissions
or ListObjectPermissions
method of a DatabaseRole
object that references a
system-defined database
role.

SQLDMO_E_FIXEDDBROLE 0x5048 Attempt to use the
EnumFixedDatabaseRole
Permission method of a
DatabaseRole object that
references a user-defined
database role.

SQLDMO_E_CANTMODIFYFILTER 0x5049 Reserved.
SQLDMO_E_INVALIDACTION 0x504A Returned by the

SQLBackup, SQLRestore,
or SQLVerify method when
the Action property of the
object specifies an invalid
operation.

SQLDMO_E_DBOPTION 0x504B Attempt to use set the
RecursiveTriggers
property of a DBOption
object that references the
system database master.

SQLDMO_E_USEALTER 0x504C Attempt to set the Text
property of a
StoredProcedure, Trigger,
or View object that
references an existing
component. Use the Alter
method to change
component definition.

SQLDMO_E_CREATEDBPERM 0x504D Attempt to use a Database
object that does not
reference the system
database master to grant,
deny, or revoke permission
to execute the CREATE
DATABASE statement.

SQLDMO_E_CANTCHECKFK 0x504E Attempt to set the Checked
property of a Key object
that references a primary
key.

SQLDMO_E_NOTINMB 0x504F Attempt to get the
FileGrowthInKB property
of a DBFile or LogFile
object that references an
operating system file
expanded by percentage of
current size calculation.

SQLDMO_E_CANTRENAMELSERVER 0x5050 Attempt to set the Catalog,
DataSource, Location,
Name, ProductName,
ProviderName, or
ProviderString property of
a LinkedServer object that
references an existing linked
server.

SQLDMO_E_CANTRENAMELLOGIN 0x5051 Attempt to set the
LocalLogin property of a
LinkedServerLogin object
referencing an existing
linked server login.

SQLDMO_E_CANTRENAMEFULLTEXT 0x5052 Attempt to set the
FullTextCatalogName or
UniqueIndexForFullText
property of a Table object
that references a full-text
indexed table.

SQLDMO_E_NOFULLTEXT 0x5053 Attempt to set the
FullTextIndexActive
property of a Table object
that references a table not
full-text indexed, or attempt
to set the FullTextIndex
property of a Column
object that references a
column in a table not full-
text indexed.

SQLDMO_E_ACTIVATEFULLTEXT 0x5054 Attempt to set the
FullTextIndex property of
a Column object that
references a column in a
table with full-text indexing
active. Use the
FullTextIndexActive
property of the Table object
to deactivate full-text
indexing.

SQLDMO_E_NOTFULLTEXTENABLED 0x5055 Database referenced by full-
text indexing component is
not enabled for full-text
indexing.

SQLDMO_E_CANTDROPLOGFILE 0x5056 Reserved.
SQLDMO_E_CANTDROPLSLOGIN 0x5057 Attempt to use the Remove

method of the
LinkedServerLogin object
or LinkedServerLogins
collection that indicates a
system-defined linked
server login.

SQLDMO_E_SCRIPTPWD 0x5058 Attempt to use the Script
method of a Login object to
script a password to a non-
Unicode file.

SQLDMO_E_DISTRIBUTORNOTINSTALLED 0x5059 Reserved.
SQLDMO_E_CANTRENAMESTAT 0x505A Attempt to set the Name

property of an Index object
that references an existing
data distribution statistics
index.

SQLDMO_E_CANTDROPAUTOINDEX 0x505B Attempt to use the Remove
method of the Index object
or Indexes collection that
indicates a data distribution
statistics index.

SQLDMO_E_FROMGUEST 0x505C Reserved.
SQLDMO_E_INVALIDPROPDISTNOTLOCAL 0x5060 Reserved.
SQLDMO_E_CANTMODIFYNONTABLEARTTYPE 0x5064 You can change the type of

an existing article only if it is
a table article.

SQLDMO_E_CANTMODIFYARTTYPE 0x5065 You cannot change the type
of an existing merge article.

SQLDMO_E_REGERROR 0x5066 Registry error occurred.
Registry key may not exist.

SQLDMO_E_NOCOLUMNALTER 0x5067 Attempt to modify existing
column not supported
because data type cannot be
altered after creation.

SQLDMO_E_INVALIDRESTORE 0x5068 BackupSetName property
is not supported by the
Restore object.

SQLDMO_E_NONTRANSFERENCRYPTED 0x5069 You cannot transfer an
encrypted stored procedure
using an instance of SQL
Server 2000.

SQLDMO_E_UDFSCRIPTERR 0x506A User-defined function text
cannot be retrieved.

Errors masked by SQLDMO_ECAT_INVALIDOBJECT include the following.

Constant Value Description
SQLDMO_E_OBJECTDROPPED 0x5100 Object invalid due to Remove

method call.
SQLDMO_E_NOTSQLDMOOBJECT 0x5101 OLE object passed to a SQL-DMO

method is not a SQL-DMO object.
SQLDMO_E_OBJECTDETACHED 0x5102 Object invalid due to Refresh

method call or other method
forcing reference release.

SQLDMO_E_SERVERCLOSED 0x5103 Object invalid due to Close method
call or other method of the
SQLServer object forcing
application reference release.

SQLDMO_E_CANTRENAMEUDF 0x5105 You cannot rename an existing
user-defined function.

SQLDMO_E_PRESQL80 0x5106 OLE object passed to a SQL-DMO
method is a pre-SQL Server 2000
object.

Errors masked by SQLDMO_ECAT_INVALIDOBJECTDEFINITION include the following.

Constant Value Description
SQLDMO_E_NOCOLUMNSADDED 0x5200 Attempt to add a Table object with

an empty Columns collection to the
Tables collection of a Database
object. DoAlter method of the Table
object called and Columns collection
is empty.

SQLDMO_E_COLUMNINCOMPLETE 0x5201 Attempt to add an incompletely
defined Column object to its
containing collection. Occurs when
the IsComputed property of the
Column object is False.

SQLDMO_E_TABLEINCOMPLETE 0x5202 Attempt to add a Table object with
an empty Name property to its
containing collection.

SQLDMO_E_UDDTINCOMPLETE 0x5203 Attempt to add an incompletely
defined UserDefinedDatatype
object to its containing collection.

SQLDMO_E_RULEINCOMPLETE 0x5204 Attempt to add an incompletely
defined Rule object to its containing
collection.

SQLDMO_E_DEFAULTINCOMPLETE 0x5205 Attempt to add an incompletely
defined Default object to its
containing collection.

SQLDMO_E_VIEWINCOMPLETE 0x5206 Attempt to add an incompletely
defined View object to its containing
collection.

SQLDMO_E_USERINCOMPLETE 0x5207 Attempt to add an incompletely
defined User object to its containing
collection.

SQLDMO_E_GROUPINCOMPLETE 0x5208 Reserved.
SQLDMO_E_PROCINCOMPLETE 0x5209 Attempt to add an incompletely

defined StoredProcedure object to
its containing collection.

SQLDMO_E_USERALREADYEXISTS 0x520A Attempt to add a User object to a
Users collection that exposes a user
of the same name.

SQLDMO_E_GROUPALREADYEXISTS 0x520B Reserved.
SQLDMO_E_COLUMNALREADYEXISTS 0x520C Attempt to add a Column object to a

Columns collection that exposes a
column of the same name.

SQLDMO_E_OBJECTALREADYEXISTS 0x520D Reserved.
SQLDMO_E_INDEXALREADYEXISTS 0x520E Reserved.
SQLDMO_E_DBALREADYEXISTS 0x520F Reserved.
SQLDMO_E_LOGINALREADYEXISTS 0x5210 Attempt to add a Login object to a

Logins collection that exposes a
login of the same name.

SQLDMO_E_DEVICEALREADYEXISTS 0x5211 Reserved.
SQLDMO_E_SKIPONLYTAPE 0x5212 Attempt to set the SkipTapeLabel

property when using the
BackupDevice object to define a
disk or named pipe backup device.

SQLDMO_E_DEVICEINCOMPLETE 0x5213 Attempt to add an incompletely
defined BackupDevice object to its
containing collection.

SQLDMO_E_PROCALREADYEXISTS 0x5214 Reserved.
SQLDMO_E_UDDTALREADYEXISTS 0x5215 Reserved.
SQLDMO_E_TABLEALREADYEXISTS 0x5216 Reserved.
SQLDMO_E_RULEALREADYEXISTS 0x5217 Reserved.
SQLDMO_E_DEFAULTALREADYEXISTS 0x5218 Reserved.
SQLDMO_E_VIEWALREADYEXISTS 0x5219 Reserved.
SQLDMO_E_INDEXINCOMPLETE 0x521A Attempt to add an incompletely

defined Index object to its containing
collection.

SQLDMO_E_TRIGINCOMPLETE 0x521B Attempt to add an incompletely
defined Trigger object to its
containing collection.

SQLDMO_E_TRIGALREADYEXISTS 0x521C Reserved.
SQLDMO_E_LANGUAGEINCOMPLETE 0x521D Reserved.
SQLDMO_E_LANGUAGEALREADYEXISTS 0x521E Reserved.
SQLDMO_E_LOGININCOMPLETE 0x521F Attempt to create a login based on

incomplete data. Logins are created
by the Add method of the Logins
collection, and by methods that
implement replication.

SQLDMO_E_RSERVERINCOMPLETE 0x5220 Attempt to add an incompletely
defined RemoteServer object to its
containing collection.

SQLDMO_E_RSERVERALREADYEXISTS 0x5221 Reserved.
SQLDMO_E_NULLRLOGINALREADYEXISTS 0x5222 Attempt to add a RemoteLogin

object that defines an unnamed
remote login to a RemoteLogins
collection that exposes an unnamed
remote login.

SQLDMO_E_RLOGINALREADYEXISTS 0x5223 Attempt to add a RemoteLogin
object to a RemoteLogins collection
that exposes a remote login of the
same name.

SQLDMO_E_REMOTENEEDSLOCAL 0x5224 Attempt to add an incompletely
defined RemoteLogin object to its
containing collection.

SQLDMO_E_BACKUPNEEDSDEVICE 0x5225 Attempt to use the SQLBackup
method of an incompletely defined
Backup object. Set the Devices,
Files, Tapes, or Pipes property to
specify a device.

SQLDMO_E_NEEDMANUALFILTERNAME 0x5226 Attempt to add an incompletely
defined TransArticle object to its
containing collection.

SQLDMO_E_TASKINCOMPLETE 0x5227 Reserved.
SQLDMO_E_ARTINCOMPLETE 0x5228 Attempt to add an incompletely

defined DistributionArticle,
MergeArticle, or TransArticle
object to its containing collection.

SQLDMO_E_PUBINCOMPLETE 0x5229 Attempt to add an incompletely
defined DistributionPublication,
MergePublication, or
TransPublication object to its
containing collection.

SQLDMO_E_SUBINCOMPLETE 0x522A Attempt to add an incompletely
defined DistributionSubscription
or TransSubscription object to its
containing collection. Attempt to add
an incompletely defined
RegisteredSubscriber object to
register a new Subscriber.

SQLDMO_E_ALERTINCOMPLETE 0x522B Attempt to add an incompletely
defined Alert object to its containing
collection.

SQLDMO_E_OPERATORINCOMPLETE 0x522C Attempt to add an incompletely
defined Operator object to its
containing collection.

SQLDMO_E_NAMEMUSTMATCH 0x522D Name of the SQL Server object, as
specified in the Text property of a
StoredProcedure, Trigger, or View
object, does not match the value of
the Name property of the SQL-DMO
object. Occurs when adding an object
to its containing collection and when
the Alter method is called.

SQLDMO_E_TRIGREQTABLENAME 0x522E Table name cannot be found in the
Text property of a Trigger object.
Occurs when adding a Trigger object
to its containing collection and when
the Alter method is called.

SQLDMO_E_MUSTBESYNCTASK 0x522F Reserved.
SQLDMO_E_NOEVENTCOMPLETION 0x5230 Reserved.
SQLDMO_E_FKEYINCOMPLETE 0x5231 Attempt to add an incompletely

defined Key object to its containing
collection. Occurs when the Type
property is SQLDMOKey_Foreign.

SQLDMO_E_KEYINCOMPLETE 0x5232 KeyColumns is empty, or Type
property is not set when using the
Key object to create a primary or
foreign key.

SQLDMO_E_KEYALREADYEXISTS 0x5233 Attempt to add a Key object to a
Keys collection that exposes a key of
the same name.

SQLDMO_E_CHECKINCOMPLETE 0x5234 Attempt to add an incompletely
defined Check object to its
containing collection.

SQLDMO_E_DRIDEFAULTINCOMPLETE 0x5235 Reserved.
SQLDMO_E_CHECKALREADYEXISTS 0x5236 Attempt to add a Check object to a

Checks collection that exposes an
integrity constraint of the same
name.

SQLDMO_E_ONLYONEPRIMARYKEY 0x5237 Attempt to add a Key object defining
a primary key to a Keys collection
exposing a primary key.

SQLDMO_E_NEEDMANUALVIEWNAME 0x5238 TransArticle object ArticleType
property includes SQLDMORep_
ManualSyncView and no view
specified. Occurs when adding the
TransArticle object to its containing
collection.

SQLDMO_E_SERVERGROUPINCOMPLETE 0x5239 Attempt to add an incompletely
defined ServerGroup object to its
containing collection.

SQLDMO_E_REGISTEREDSERVERINCOMPLETE 0x523A Attempt to add an incompletely
defined RegisteredServer object to
its containing collection.

SQLDMO_E_SERVERGROUPALREADYEXISTS 0x523B Attempt to add a ServerGroup
object to a ServerGroups collection
that exposes a server group with the
same name.

SQLDMO_E_REGISTEREDSERVERALREADYEXISTS 0x523C Attempt to add a RegisteredServer
object to a RegisteredServers
collection that exposes a server with
the same name.

SQLDMO_E_NEEDLOADTABLENAME 0x523D Reserved.
SQLDMO_E_DISTDBALREADYEXISTS 0x523E Attempt to add a

DistributionDatabase object to a
DistributionDatabases collection
that exposes a database with the
same name.

SQLDMO_E_DISTPUBALREADYEXISTS 0x523F Attempt to add a
DistributionPublisher object to a
DistributionPublishers collection
that exposes a publisher with the
same name.

SQLDMO_E_JOBSTEPINCOMPLETE 0x5240 Attempt to add an incompletely
defined JobStep object to its
containing collection.

SQLDMO_E_TARGETSERVERINCOMPLETE 0x5241 Attempt to add an incompletely
defined TargetServer object to its
containing collection.

SQLDMO_E_TARGETSERVERGROUPINCOMPLETE 0x5242 Attempt to add an incompletely
defined TargetServerGroup object
to its containing collection.

SQLDMO_E_JOBINCOMPLETE 0x5243 Attempt to add an incompletely
defined JobSchedule object to its
containing collection.

SQLDMO_E_MUSTBESYNCJOB 0x5244 Reserved.
SQLDMO_E_JOBCATEGORYINCOMPLETE 0x5245 Attempt to add an incompletely

defined Category object to its
containing collection.

SQLDMO_E_REGPUBINCOMPLETE 0x5246 Reserved.
SQLDMO_E_REGSUBINCOMPLETE 0x5247 Attempt to add an incompletely

defined RegisteredSubscriber
object to its containing collection.

SQLDMO_E_DISTPUBINCOMPLETE 0x5248 Attempt to add an incompletely
defined DistributionPublisher
object to its containing collection.

SQLDMO_E_DISTDBINCOMPLETE 0x5249 Attempt to add an incompletely
defined DistributionDatabase
object to its containing collection.

SQLDMO_E_FILEGROUPINCOMPLETE 0x524A Attempt to add an incompletely
defined FileGroup object to its
containing collection.

SQLDMO_E_DBFILEINCOMPLETE 0x524B Attempt to add an incompletely
defined DBFile object to its
containing collection. File(s) not
specified when using the AttachDB
or AttachDBWithSingleFile
method of the SQLServer object.

SQLDMO_E_LOGFILEINCOMPLETE 0x524C Attempt to add an incompletely
defined LogFile object to its
containing collection.

SQLDMO_E_FILEGROUPALREADYEXISTS 0x524D Attempt to add a FileGroup object to
a FileGroups collection that exposes
a filegroup with the same name.

SQLDMO_E_DATABASEINCOMPLETE 0x5250 Attempt to add an incompletely
defined Database object to its
containing collection.

SQLDMO_E_DATABASEROLEALREADYEXISTS 0x5251 Attempt to add a DatabaseRole
object to a DatabaseRoles collection
that exposes a role with the same
name.

SQLDMO_E_DATABASEROLEINCOMPLETE 0x5252 Attempt to add an incompletely
defined DatabaseRole object to its
containing collection. Role not
specified when using the IsMember
method of the User object.

SQLDMO_E_SERVERROLEINCOMPLETE 0x5253 Role not specified when using the
IsMember method of the Login
object.

SQLDMO_E_DSNINFOINCOMPLETE 0x5254 ValidateDataSource method failed.
SQLDMO_E_FILTERINCOMPLETE 0x5255 Attempt to add an incompletely

defined MergeSubsetFilter object to
its containing collection.

SQLDMO_E_OWNERMUSTMATCH 0x5256 Owner of the SQL Server object, as
specified in the Text property of a
StoredProcedure, Trigger, or View,
does not match the value of the
Owner property of the SQL-DMO
object. Occurs when adding an object
to its containing collection and when
the Alter method is called.

SQLDMO_E_BACKUPNEEDSFILE 0x5257 Attempt to use the SQLBackup
method of an incompletely defined
Backup object or the SQLRestore or
SQLVerify method of an
incompletely defined Restore.
Occurs when the Action property is
SQLDMOBackup_Files or
SQLDMORestore_Files and the Files
or FileGroups property is empty.

SQLDMO_E_BACKUPNEEDSMEDIA 0x5258 Reserved.
SQLDMO_E_COLUMNCOMPUTEDINCOMPLETE 0x5259 Attempt to add an incompletely

defined Column object to its
containing collection. Occurs when
the IsComputed property of the
Column object is True.

SQLDMO_E_REMAPFILEINCOMPLETE 0x525A Reserved.
SQLDMO_E_SMALLMAXSIZE 0x525B Attempt to add an incorrectly defined

DBFile or LogFile object to its
containing collection. Occurs when
the Size property specifies a value
greater than that specified by the
MaximumSize property.

SQLDMO_E_FILEALREADYEXISTS 0x525C Attempt to add a DBFile or LogFile
object to a DBFiles or LogFiles
collection that exposes a file with the
same logical name.

SQLDMO_E_BADFILEGROUPNAME 0x525D Attempt to add an incorrectly defined
FileGroup object to its containing
collection. Occurs when the Name
property of the FileGroup object is
PRIMARY.

SQLDMO_E_LINKEDSERVERINCOMPLETE 0x525E Attempt to add an incompletely
defined LinkedServer object to its
containing collection.

SQLDMO_E_LINKEDPROVIDERINCOMPLETE 0x525F Attempt to add an incorrectly defined
LinkedServer object to its containing
collection. Occurs when the
ProductName property specifies a
value, and the ProviderName
property is empty.

SQLDMO_E_FULLTEXTINCOMPLETE 0x5260 Attempt to add full-text indexing to a
table using an incorrectly defined
Table object.

SQLDMO_E_CATALOGALREADYEXISTS 0x5261 Attempt to add a FullTextCatalog
object to a FullTextCatalogs
collection that exposes a full-text
catalog with the same name.

SQLDMO_E_CATALOGINCOMPLETE 0x5262 Attempt to add an incompletely
defined FullTextCatalog object to its
containing collection.

SQLDMO_E_BACKUPINIT 0x5263 Attempt to use the SQLBackup
method of an incorrectly defined
Backup object. Occurs when the
FormatMedia and Initialize
properties are both True.

SQLDMO_E_LINKEDSERVERLOGININCOMPLETE 0x5264 Attempt to add an incompletely
defined LinkedServerLogin object
to its containing collection.

SQLDMO_E_NOSERVERBCP6 0x5265 Attempt to set Use6xCompatible
True when UseServerSideBCP is
True. Attempt to set
UseServerSideBCP True when
Use6xCompatible is True.

SQLDMO_E_JOBSTEPNAMEINCOMPLETE 0x5266 Attempt to add an incompletely
defined JobStep object to its
containing collection.

SQLDMO_E_UDFINCOMPLETE 0x5268 User-defined function property
settings are incomplete or incorrect.

SQLDMO_E_FULLTEXTCOLUMNINCOMPLETE 0x5269 Full-text column property settings are
incomplete or incorrect.

SQLDMO_E_CANTADDREGSUBTOSQLDISTPUBSHR 0x5270 Attempted to add
RegisteredSubscriber object to a
SQL Server DistributionPublisher
object instead of to a Publisher
object.

SQLDMO_E_SNAPSHOTPUBCANNOTPUBWIN 0x5271 ConflictPolicy property cannot be
set to
SQLDMOConflictPolicy_PublisherWin
for a queued snapshot publication.

SQLDMO_E_DYNAMICSNAPSHOTJOBINCOMPLETE 0x5272 Attempted to create
MergeDynamicSnapshotJob
without setting
DynamicSnapshotLocation
property.

Errors masked by SQLDMO_ECAT_INVALIDPARAMETER include the following.

Constant Value Description
SQLDMO_E_BADCOLLEN 0x5300 Attempt to add an incorrectly defined

Column or UserDefinedDatatype
object to its containing collection. Occurs
when the Length property specifies an
out of range value.

SQLDMO_E_INVALIDPERFMONSET 0x5301 Attempt to set the PerfMonMode
property of the Registry object to an
invalid value.

SQLDMO_E_BADDEVICETYPE 0x5302 Attempt to set the Type property of a
BackupDevice object to an invalid value.

SQLDMO_E_SIZEGREATERTHAN0 0x5303 Attempt to set the Size property of a
DBFile or LogFile object to a value less
than zero.

SQLDMO_E_RESULTSETOUTOFRANGE 0x5304 Attempt to set the CurrentResultSet
property of a QueryResults object to an
out of range value.

SQLDMO_E_OUTPUTPARAMREQUIRED 0x5305 Attempt to get a property or call a
method without providing an argument
required for property or method return
value.

SQLDMO_E_PROPTEXTNONNULL 0x5306 Attempt to set a property that incorrectly
specifies an empty string.

SQLDMO_E_BADPROCTYPE 0x5307 Attempt to set the Type property of a
StoredProcedure object to an invalid
value.

SQLDMO_E_BADFILLFACTOR 0x5308 Attempt to set the FillFactor property of
an Index or Key object to an out of
range value. FillFactor argument out of
range when RebuildIndexes method
called.

SQLDMO_E_INVALIDINDEXTYPE 0x5309 Attempt to set the Type property of an
Index object to an invalid value.

SQLDMO_E_INVALIDPRIVTYPE 0x530A Deny, Grant, or Revoke method called
that specifies a Privilege argument value
invalid for the SQL Server object type
referenced.

SQLDMO_E_BADTRIGTYPE 0x530B Reserved.
SQLDMO_E_INVALIDDAYOFWEEK 0x530C Attempt to get the Day property of a

Language object that specifies an out of
range value.

SQLDMO_E_INVALIDMONTH 0x530D Attempt to get the Month property of a
Language object that specifies an out of
range value.

SQLDMO_E_BADDAYCOUNT 0x530E Reserved.
SQLDMO_E_BADMONTHCOUNT 0x530F Reserved.
SQLDMO_E_BADCONFIGVALUE 0x5310 Attempt to set the CurrentValue

property of a ConfigValue object to an
out of range value.

SQLDMO_E_INVALIDPARAMINDEX 0x5311 Attempt to get a SQL-DMO object or a
string from a container object specifying
an out of range value.

SQLDMO_E_INVALIDPARAMRANGE 0x5312 Attempt to set a SQL-DMO property to
an out of range value.

SQLDMO_E_INVALIDDBOBJTYPE 0x5313 ObjectType argument invalid when
GetObjectByName or ListObjects
method of Database object called.

SQLDMO_E_ROWCOLOUTOFRANGE 0x5314 Row or column coordinate out of range
for QueryResults object property or
method.

SQLDMO_E_NONUNIQUENAME 0x5315 GetObjectByName method of the
Database object would return more than
a single object. Qualify SQL Server object
selection by using the ObjectType and/or
Owner argument.

SQLDMO_E_NOTIMESTAMPUDDT 0x5316 Attempt to set the BaseType property of
a UserDefinedDatatype object to the
invalid value timestamp.

SQLDMO_E_INVALIDNAME 0x5317 Name property of SQL-DMO object is
not a valid SQL Server identifier. Occurs
when setting the Name property of SQL-
DMO objects that reference database
objects.

SQLDMO_E_INVALIDCOMPLETION 0x5318 Invalid value used to set Job object
completion status property (e.g.
NetSendLevel).

SQLDMO_E_NAMETOOLONG 0x5319 Name property of SQL-DMO object is
too long for a valid SQL Server identifier.
Occurs when setting the Name property
of SQL-DMO objects that reference
database objects.

SQLDMO_E_INVALIDFREQTYPE 0x531A Reserved.
SQLDMO_E_INVALIDFREQSUBDAY 0x531B Reserved.
SQLDMO_E_INVALIDFREQRELINTERVAL 0x531C Reserved.
SQLDMO_E_BADWEEKLYINTERVAL 0x531D Reserved.

SQLDMO_E_BADMONTHLYINTERVAL 0x531E Reserved.
SQLDMO_E_BADMONTHLYRELINTERVAL 0x531F Reserved.
SQLDMO_E_INVALIDSRVOPTION 0x5320 Option argument invalid when

SetOptions method of LinkedServer or
RemoteServer object called.

SQLDMO_E_INVALIDRUNPRIORITY 0x5321 Reserved.
SQLDMO_E_DBNAMEREQUIRED 0x5322 Required object property or method

argument that specifies source or target
database is empty. Occurs when adding a
SQL-DMO object, such as a
MergeSubscription, to a containing
collection or when using a method such
as SQLBackup.

SQLDMO_E_PUBNAMEREQUIRED 0x5323 Required object property or method
argument that specifies source
publication is empty. Occurs when
adding a SQL-DMO object, such as a
MergePullSubscription, to a containing
collection or when using a method such
as EnableTransSubscription.

SQLDMO_E_PROPINDEXOUTOFRANGE 0x5324 Attempt to get a SQL-DMO Property
object from a Properties collection that
specifies an out of range value.

SQLDMO_E_INVALIDNOTIFYTYPE 0x5325 Attempt to set the
IncludeEventDescription property of
an Alert object to an invalid value.
NotificationType argument invalid when
AddNotification, EnumNotifications,
or UpdateNotification method of Alert
object called.

SQLDMO_E_INVALIDENUMNOTIFYTYPE 0x5326 EnumNotifyType argument invalid when
EnumNotifications method of Alert
object called.

SQLDMO_E_INVALIDWEEKDAY 0x5327 Attempt to set the PagerDays property
of an Operator object to an invalid value.

SQLDMO_E_INVALIDOBJECTTYPE 0x5328 OLE object that supplies a method
argument value is invalid. For example,
object supplied in the BulkCopy
argument of the ImportData method of
the Table object is not a SQL-DMO
BulkCopy object.

SQLDMO_E_OBJECTREQUIRED 0x5329 SQL-DMO method requiring an object
called with an empty object variable.

SQLDMO_E_INVALIDEVENTTYPE 0x532A Reserved.
SQLDMO_E_INVALIDCOMPLETIONTYPE 0x532B Reserved.
SQLDMO_E_INVALIDKEYTYPE 0x532C Attempt to set the Type property of a

Key object to an invalid value.
SQLDMO_E_TABLEMUSTBECREATED 0x532D Table object in Table argument of

GenerateCreationSQL method must
reference an existing table.

SQLDMO_E_INVALIDPREARTICLE 0x532E Attempt to set the PreCreationMethod
property of a MergeArticle or
TransArticle object to an invalid value.

SQLDMO_E_INVALIDSECURITYMODE 0x532F Attempt to set the SecurityMode
property of an IntegratedSecurity
object to an invalid value.

SQLDMO_E_INVALIDPREC 0x5330 Attempt to set the NumericPrecision
property of a Column or
UserDefinedDatatype object to an out
of range value.

SQLDMO_E_INVALIDDEPENDENCYTYPE 0x5331 DependencyType argument invalid when
EnumDependencies method called.

SQLDMO_E_INVALIDVERIFYCONNTYPE 0x5332 ReconnectIfDead argument invalid when
VerifyConnection method called.

SQLDMO_E_INVALIDSTATUSINFOTYPE 0x5333 Attempt to get or set the
StatusInfoRefetchInterval property of
a SQLServer object that specifies an out
of range value.

SQLDMO_E_INVALIDFORWARDINGSEVERITY 0x5334 Attempt to set the ForwardingSeverity
property of an AlertSystem object that
specifies an invalid value.

SQLDMO_E_INVALIDFORWARDINGSERVER 0x5335 Attempt to set the ForwardingServer
property of an AlertSystem object that
specifies the name of the local instance of
SQL Server.

SQLDMO_E_INVALIDRESTARTINTERVAL 0x5336 Reserved.
SQLDMO_E_INVALIDHISTORYROWSMAX 0x5337 Reserved.
SQLDMO_E_NAMETOOSHORT 0x5338 Reserved.
SQLDMO_E_UNEXPECTED 0x5339 Severe error. Error not trapped by normal

SQL-DMO error handling.
SQLDMO_E_INVALIDHISTORYROWSPERTASKMAX 0x533A Reserved.
SQLDMO_E_INVALIDOBJSORTTYPE 0x533B SortBy argument invalid when

ListObjects method called.
SQLDMO_E_INVALIDEXECTYPE 0x533C ExecutionType argument invalid when

ExecuteImmediate method called.
SQLDMO_E_INVALIDSUBSETFILTER 0x533D Reserved.
SQLDMO_E_INCOMPATIBLEPROPS 0x533E BulkCopy object properties that specify

data file format set incorrectly. For
example, the DataFileType property is
SQLDMODataFile_UseFormatFile, and the
FormatFilePath property is empty.

SQLDMO_E_FILEPATHREQUIRED 0x533F SQL-DMO object property that specifies a
file name required and not filled. For
example, the DataFilePath property of a
BulkCopy object is empty when the
object is used in an ExportData or
ImportData method call.

SQLDMO_E_INVALIDPROPALTER 0x5340 SQL-DMO object property cannot be
changed when owning object is in a
BeginAlter...DoAlter block.

SQLDMO_E_INVALIDALTERDISTINSTALLED 0x5341 Attempt to set the DistributionServer
property of a Distributor object that
references an installed Distributor.

SQLDMO_E_SERVERNAMEREQUIRED 0x5342 Required property that specifies a
replication source or target server is
empty.

SQLDMO_E_DISTSERVERNAMEREQUIRED 0x5343 Install or Uninstall method of a
Distributor object called and
DistributionServer property is empty.

SQLDMO_E_WORKINGDIRREQUIRED 0x5344 Attempt to add an incorrectly defined
DistributionPublisher object to its
containing collection. Occurs when the
DistributorLocal property of the
containing Distributor object is True,
and the DistributionWorkingDirectory
property of the DistributionPublisher
object is empty.

SQLDMO_E_DISTDBREQUIRED 0x5345 Install method of a Distributor object
called, and the DistributionDatabases
collection is empty.

SQLDMO_E_INVALIDHISTORYROWSPERJOBMAX 0x5348 Reserved.
SQLDMO_E_INVALIDPUBATTRIB 0x5349 Attempt to set the

PublicationAttributes property of a
SQL-DMO replication publication object
that specifies an invalid value for the
publication object type.

SQLDMO_E_INVALIDREPLICATIONTYPE 0x534A ReplicationType argument invalid when
EnumPublications method called.

SQLDMO_E_INVALIDSCHEMAOPTION 0x534B Attempt to set the
CreationScriptOptions property of a
TransArticle object incorrectly. Occurs
when ArticleType property is
SQLDMORep_ProcExecution or
SQLDMORep_SerializableProcExecution,
and CreationScriptOptions is not
SQLDMOCreationScript_PrimaryObject
or
SQLDMOCreationScript_DisableScripting.

SQLDMO_E_INVALIDFORREMDISTRIBUTOR 0x534C Reserved.
SQLDMO_E_INVALIDARTICLETYPE 0x534D Attempt to use the

AddReplicatedColumns or
RemoveReplicatedColumns method of
a TransArticle that references a
transactional article that replicates stored
procedure execution. Attempt to set the
ArticleType property of a MergeArticle
to SQLDMORep_ProcExecution or
SQLDMORep_SerializableProcExecution.

SQLDMO_E_SIZEGREATERTHANNEG 0x534E Attempt to set the FileGrowth property
of a DBFile or LogFile object incorrectly.
Prior to referenced file creation, the
property accepts -1 to specify default
value. When object references an existing
file, -1 is not allowed.

SQLDMO_E_INVALIDLOGINTYPE 0x534F Attempt to set the Type property of a
Login object to an invalid value.

SQLDMO_E_CANTMODIFYAFTERCREATE 0x5350 Property cannot be set for SQL-DMO
object that references an existing SQL
Server component.

SQLDMO_E_INVALIDDSN 0x5351 ValidateDataSource method failed.
SQLDMO_E_INVALIDNAME70 0x5352 Reserved.
SQLDMO_E_MUSTEVEN 0x5353 Attempt to set the RelocateFiles

property of a Restore object incorrectly.
SQLDMO_E_MISSINGALTER 0x5354 Transact-SQL batch supplied in the str

argument of the Alter method of a
StoredProcedure, Trigger, or View
object does not begin with the keyword
ALTER.

SQLDMO_E_NOTGUID 0x5355 GetColumnGUID method called that
indicates data not selected from a
uniqueidentifier type column.

SQLDMO_E_DESTSERVERREQUIRED 0x5356 DestServer property is required when
using the Transfer object in the Transfer
method of the Database object.

SQLDMO_E_CANTSHRINK 0x5357 Attempt to set the Size property of a
DBFile or LogFile object incorrectly.
When the SQL-DMO object references an
existing file, set Size to a larger value to
grow the file. Use the Shrink method to
reduce operating system file size.

SQLDMO_E_CANTDEFAULTOFF 0x5358 Attempt to set the Default property of a
FileGroup object incorrectly. Default
may be set True only.

SQLDMO_E_INVALIDNTNAME 0x5359 SQL-DMO property that specifies an
operating system file is empty or
contains invalid characters.

SQLDMO_E_INVALIDOUTCOMETYPE 0x535A Attempt to set the OutcomeTypes
property of a JobHistoryFilter object
incorrectly.

SQLDMO_E_NEEDSCOLUMNNAME 0x535B Reserved.
SQLDMO_E_INVALIDHYPOINDEXTYPE 0x535C Attempt to set the Type property of an

Index object to an invalid value
(SQLDMOIndex_Hypothetical).

SQLDMO_E_INVALIDPING 0x535D PingSQLServerVersion method failed.
SQLDMO_E_USEFTPORALTFOLDER 0x535E AltSnapshotFolder and UseFTP

properties cannot be specified at the
same time.

SQLDMO_E_INTERNETENABLEDORALTFOLDER 0x535F AltSnapshotFolder property and
InternetEnabled publication attribute
cannot be specified at the same time.

SQLDMO_E_NOTSQLVARIANT 0x5361 Referenced column in call to
GetColumnSQLVariant is not of type
SQLVariant.

SQLDMO_E_CANTCONVERTVARIANT 0x5362 Referenced column in call to
GetColumnSQLVariantToString cannot
be converted.

SQLDMO_E_USEFTPORDYNAMICSNAPSHOT 0x5363 DynamicSnapshotLocation and
UseFTP properties cannot be set at the
same time.

SQLDMO_E_ALTSNAPSHOTFOLDERORDYNSNAP 0x5364 DynamicSnapshotLocation and
AltSnapshotFolder properties cannot be
set at the same time.

Errors masked by SQLDMO_ECAT_INVALIDPLATFORM include the following.

Constant Value Description
SQLDMO_E_BACKUPSQL60ONLY 0x5400 Reserved.
SQLDMO_E_MSSQLONLY 0x5401 Reserved.

SQLDMO_E_WIN95REQUIRESCONN 0x5402 Returned by SQL-DMO
methods that start, stop, or
pause a service. When a
SQL-DMO client runs on
Microsoft Windows® 95,
service control methods
operate successfully against
services running on the
local computer or a
computer running Microsoft
Windows NT®, only.

SQLDMO_E_NOTONWIN95 0x5403 Returned by SQL-DMO
methods, such as
EnumNTDomainGroups,
that cannot successfully
execute on Windows 95.

SQLDMO_E_SQL60ONLY 0x5404 Reserved.
SQLDMO_E_REPLSQL60ONLY 0x5405 Reserved.
SQLDMO_E_STARTUPPROCSQL60ONLY 0x5406 Reserved.
SQLDMO_E_NEEDSQLDMOPROCS 0x5407 SQL-DMO supporting

system stored procedures
are not installed.

SQLDMO_E_ALTERSQL60ONLY 0x5408 Reserved.
SQLDMO_E_SORTEDDATAREORGSQL60ONLY 0x5409 Reserved.
SQLDMO_E_MSSQLNTONLY 0x540A Reserved.
SQLDMO_E_WIN95REQUIRESSQL60 0x540B Reserved.
SQLDMO_E_BACKUPSQL65ONLY 0x540C Reserved.
SQLDMO_E_SQL65ONLY 0x540D Reserved.
SQLDMO_E_ALERTSQL65ONLY 0x540E Reserved.
SQLDMO_E_REMOTESQL65ONLY 0x540F Reserved.
SQLDMO_E_PIPEDEVSQL60ONLY 0x5410 Reserved.
SQLDMO_E_FKEYSQL65ONLY 0x5411 Reserved.
SQLDMO_E_XPIMPERSONATESQL65ONLY 0x5412 Reserved.
SQLDMO_E_SQL70ONLY 0x5413 Reserved.
SQLDMO_E_FKEYSQL70ONLY 0x5414 Reserved.
SQLDMO_E_BACKUPSQL70ONLY 0x5415 Reserved.
SQLDMO_E_NEEDSQLDMOUPGRADE 0x5416 Returned on an attempt to

connect a SQL-DMO
SQLServer object to an
instance of SQL Server
released prior to version
7.0.

SQLDMO_E_NEEDSERVERBUILDUPGRADE 0x5417 Reserved.
SQLDMO_E_SQL80ONLY 0x5419 Requires SQL Server 2000

or later.

Errors masked by SQLDMO_ECAT_ITEMNOTFOUND include the following. Errors in this category indicate that an attempt to
dereference, by name, an object from its containing collection failed. Using the Refresh method of the collection can correct the
error condition.

Constant Value Description
SQLDMO_E_RULENOTFOUND 0x5500 Rule object not locatable in the

Rules collection.
SQLDMO_E_DEFAULTNOTFOUND 0x5501 Default object not locatable in

the Defaults collection.

SQLDMO_E_TYPENOTFOUND 0x5502 UserDefinedDatatype object
not locatable in the
UserDefinedDatatypes
collection. SystemDatatype
object not locatable in the
SystemDatatypes collection.

SQLDMO_E_LOGINNOTFOUND 0x5503 Login object not locatable in
the Logins collection.

SQLDMO_E_GROUPNOTFOUND 0x5504 Reserved.
SQLDMO_E_LANGNOTFOUND 0x5505 Language object not locatable

in the Languages collection.
SQLDMO_E_DBNOTFOUND 0x5506 Database object not locatable

in the Databases collection.
SQLDMO_E_DEVICENOTFOUND 0x5507 BackupDevice object not

locatable in the
BackupDevices collection.

SQLDMO_E_COLUMNNOTFOUND 0x5508 Column object not locatable in
the Columns collection of a
Table object or the
SQLObjectList object returned
by the ListColumns method of
the View object.

SQLDMO_E_ORDOUTOFRANGE 0x5509 Ordinal value used to
dereference an item in a
collection or object list is out of
range.

SQLDMO_E_NAMENOTFOUND 0x550A Object not locatable by name.
SQLDMO_E_USERNOTFOUND 0x550B User object not locatable in the

Users collection.
SQLDMO_E_NAMENOTINCACHE 0x550C Returned when an attempt to

call the DoAlter method fails
because the object no longer
exists in its containing
collection.

SQLDMO_E_PROPNAMENOTFOUND 0x550D Property object not locatable in
the Properties collection.

SQLDMO_E_IDNOTFOUND 0x550E Returned when the ItemByID
method fails to locate an object.

SQLDMO_E_DATABASEROLENOTFOUND 0x550F DatabaseRole object not
locatable in the DatabaseRoles
collection.

SQLDMO_E_NAMENOTFOUNDQI 0x5510 Returned when an object is not
locatable by name and quoting
identifier parts is applicable.

SQLDMO_E_SERVERNOTFOUND 0x5512 Server not locatable by name.

Errors masked by SQLDMO_ECAT_UNPRIVILEGEDLOGIN include the following.

Constant Value Description
SQLDMO_E_MUSTBESAORDBO 0x5600 Login used for SQLServer

object connection must be a
member of the sysadmin or
db_owner role to enable
successful execution of property
get or set or method call.

SQLDMO_E_MUSTBESAORLOGIN 0x5601 Login used for SQLServer
object connection must be a
member of the sysadmin role
or the login referenced by the
Login object, to successfully set
a Login object property.

SQLDMO_E_MUSTBESA 0x5602 Login used for SQLServer
object connection must be a
member of the sysadmin role
to enable successful execution
of property get or set or
method call.

SQLDMO_E_MUSTBESAORSECORLOGIN 0x5603 Login used for SQLServer
object connection must be a
member of the sysadmin or
securityadmin role, or the login
referenced by the Login object,
to enable successful execution
of property get or set or
method call.

Errors masked by SQLDMO_ECAT_EXECUTION include the following.

Constant Value Description
SQLDMO_E_SYSPROCERROR 0x5700 Reserved.
SQLDMO_E_CACHEEXECERROR 0x5701 QueryResults object row

fetch failed.
SQLDMO_E_INACCESSIBLEDB 0x5702 Database referenced by

object or method is not
accessible (offline, loading,
and so on).

SQLDMO_E_BATCHCOMPLETEWITHERRORS 0x5703 Command batch execution
completed, errors raised.

SQLDMO_E_BCPCOLFMTFAILED 0x5704 Bulk copy column
formatting failed. Returned
by the ExportData or
ImportData method when
data file format
interpretation fails.

SQLDMO_E_SUSPENDINDEX 0x5705 Attempt to suspend indexing
prior to bulk copy operation
failed. Returned by the
ImportData method.

SQLDMO_E_RESUMEINDEX 0x5706 Attempt to resume indexing
suspended prior to bulk
copy operation failed.
Returned by the
ImportData method.

SQLDMO_E_BCPEXECFAILED 0x5707 Bulk copy operation failed.
Returned by the
ExportData or ImportData
method.

SQLDMO_E_BCPINITFAILED 0x5708 Bulk copy operation
initialization failed. Returned
by the ExportData or
ImportData method.

SQLDMO_E_BCPCONTROLFAILED 0x5709 Bulk copy operation
parameter setting failed.
Returned by the
ExportData or ImportData
method.

SQLDMO_E_USERABORTED 0x570A Returned by the
SQLBackup, SQLRestore,
SQLVerify, ImportData,
ExportData, or Transfer
method when the Abort
method is called to
terminate object processing.

SQLDMO_E_QIERROR 0x570B Attempt to set the
QuotedIdentifier property
of the SQLServer object
failed.

SQLDMO_E_REGIONALERROR 0x570C Attempt to set the
RegionalSetting property
of the SQLServer object
failed.

SQLDMO_E_SINGLEUSERDB 0x570D Database referenced by
object or method is in
single-user mode.

SQLDMO_E_CANNOTCREATEARTICLEVIEW 0x570E Attempt to creates the
synchronization object for
an article to be filtered
vertically or horizontally
failed.

SQLDMO_E_CANNOTCREATEARTICLEFILTER 0x570F Attempt to filter data to be
published failed.

Errors masked by SQLDMO_ECAT_CONNECTION include the following.

Constant Value Description
SQLDMO_E_CANTRECONNDEADCONN 0x5800 Attempt to reestablish

automatically a SQLServer
object connection failed.

Errors masked by SQLDMO_ECAT_RESOURCE include the following.

Constant Value Description
SQLDMO_E_OUTOFMEMORY 0x5900 Insufficient memory on the client.
SQLDMO_E_NOMOREDEVNOS 0x5901 Reserved.
SQLDMO_E_SERVERLOCKTIMEDOUT 0x5902 Attempt to obtain a lock on a

server resource failed.
SQLDMO_E_APPLOCKTIMEDOUT 0x5903 Attempt to obtain a lock on a

local resource failed.

SQL-DMO (SQL Server 2000)

Event Type Constants (SQLDMO_EVENT_TYPE)
Event Type Constants (SQLDMO_EVENT_TYPE)

Event type constants are reserved for future use.

Constant Value Description
SQLDMOEvent_All 31 Reserved
SQLDMOEvent_AuditFailure 16 Reserved
SQLDMOEvent_AuditSuccess 8 Reserved
SQLDMOEvent_Error 4 Reserved
SQLDMOEvent_Info 1 Reserved
SQLDMOEvent_Unknown 0 Reserved
SQLDMOEvent_Warning 2 Reserved

SQL-DMO (SQL Server 2000)

F

SQL-DMO (SQL Server 2000)

File Growth Constants (SQLDMO_GROWTH_TYPE)
File Growth Constants (SQLDMO_GROWTH_TYPE)

File growth constants control evaluation of a file growth increment for operating system files that maintain Microsoft® SQL
Server™ database and transaction log data.

Constant Value Description
SQLDMOGrowth_Invalid 99 Reserved for future use.
SQLDMOGrowth_MB 0 Default for SQL Server database files. The

growth increment is interpreted as a size, in
megabytes.

SQLDMOGrowth_Percent 1 Default for the primary data file and SQL
Server log files. The growth increment is
interpreted as a percentage of the space
currently allocated.

See Also

FileGrowth Property

FileGrowthType Property

SQL-DMO (SQL Server 2000)

Find Operand Constants (SQLDMO_FIND_OPERAND)
Find Operand Constants (SQLDMO_FIND_OPERAND)

Find operand constants are used by SQL-DMO objects that apply filter criteria. Use find operand constants to specify comparison
for operations that enumerate Microsoft® SQL Server™ components.

Properties using find operand constants to specify a comparison behavior are always associated with at least one other property
through which a value is specified. For example, the DateFindOperand of the JobFilter object modifies interpretation of a date
value specified by the DateJobCreated property.

Constant Value Description
SQLDMOFindOperand_EqualTo 1 Default. Return values equal to the

user-defined, qualifying value.
SQLDMOFindOperand_GreaterThan 2 Return values greater than the user-

defined, qualifying value.
SQLDMOFindOperand_LessThan 3 Return values less than the user-

defined, qualifying value.
SQLDMOFindOperand_Unknown 0 Do not apply filtering on

comparison against the associated
property.

SQL-DMO (SQL Server 2000)

Full-Text Service Population Status Constants
(SQLDMO_FULLTEXT_POPULATE_STATUS)
Full-Text Service Population Status Constants (SQLDMO_FULLTEXT_POPULATE_STATUS)

Full-text service population status constants are used to return the population state of a Microsoft® Search full-text table.

Constant Value Description
SQLDMOFullText_Popu_Full 1 Full population of the table index is in

progress for the full-text catalog.
SQLDMOFullText_Popu_Inc 2 Incremental population of the table index

is in progress for the full-text catalog.
SQLDMOFullText_Popu_No 0 No propagation of the table index is in

progress for the full-text catalog.

See Also

FullTextPopulateStatus Property

SQL-DMO (SQL Server 2000)

Full-Text Service Population Type Constants
(SQLDMO_FULLTEXT_POPULATE_TYPE)
Full-Text Service Population Type Constants (SQLDMO_FULLTEXT_POPULATE_TYPE)

Full-text service population type constants are used when starting or stopping Microsoft® Search full-text table population, and
when building the index that supports full-text queries on data maintained by Microsoft SQL Server™.

Constant Value Description
SQLDMOFullText_PopuFull 0 Perform a full population of the of the

table index to the full-text catalog.
SQLDMOFullText_PopuInc 1 Perform an incremental population of

the table index to the full-text catalog.
SQLDMOFullText_PopuStop 2 Stop full or incremental population of

the table index to the full-text catalog.

See Also

FullTextPopulation Method

SQL-DMO (SQL Server 2000)

Full-text Service Start Constants
(SQLDMO_FULLTEXT_START_TYPE)
Full-text Service Start Constants (SQLDMO_FULLTEXT_START_TYPE)

Full-text service start constants control Microsoft® Search service behavior when forcing population of a full-text index catalog
using the Start method of the FullTextCatalog object.

Constant Value Description
SQLDMOFullText_Full 0 Perform a complete population
SQLDMOFullText_Inc 1 Perform an incremental population

SQL-DMO (SQL Server 2000)

Full-text Service Status Constants
(SQLDMO_FULLTEXTSTATUS_TYPE)
Full-text Service Status Constants (SQLDMO_FULLTEXTSTATUS_TYPE)

Full-text service status constants report the population state on a Microsoft® Search full-text catalog. A Search full-text catalog is
an index supporting full-text query on data maintained in a Microsoft SQL Server™ version 7.0 database.

The SQLDMOFullText_Incremental constant is only supported for an instance of SQL Server 7.0.

Constant Value Description
SQLDMOFullText_CrawlinProgress 1 Full-text index population is in progress

for the referenced full-text catalog.
SQLDMOFullText_DiskFullPause 8 Lack of available disk space has caused

an interruption.
SQLDMOFullText_Idle 0 No action is performed against the

referenced full-text catalog.
SQLDMOFullText_Incremental 6 Incremental index population is in

progress for the referenced full-text
catalog.

SQLDMOFullText_Notification 9 Full-text catalog is processing
notifications.

SQLDMOFullText_Paused 2 Lack of available resource, such as disk
space, has caused an interruption.

SQLDMOFullText_Recovering 4 Interrupted population on the referenced
full-text catalog is resuming.

SQLDMOFullText_Shutdown 5 The referenced full-text catalog is being
deleted or not otherwise accessible.

SQLDMOFullText_Throttled 3 Search service has paused the referenced
full-text index population.

SQLDMOFullText_UpdatingIndex 7 Referenced full-text catalog is being
assembled by the Search service.
Assemblage is the final step in full-text
catalog population.

See Also

PopulateStatus Property

SQL-DMO (SQL Server 2000)

G

SQL-DMO (SQL Server 2000)

Grant Type Constants (SQLDMO_GRANTED_TYPE)
Grant Type Constants (SQLDMO_GRANTED_TYPE)

Grant type constants are reserved for future use.

Constant Value Description
SQLDMOGranted_Deny 206 Reserved
SQLDMOGranted_Grant 205 Reserved
SQLDMOGranted_GrantGrant 204 Reserved

SQL-DMO (SQL Server 2000)

I

SQL-DMO (SQL Server 2000)

Index Constants (SQLDMO_INDEX_TYPE)
Index Constants (SQLDMO_INDEX_TYPE)

Index constants describe attributes of a Microsoft® SQL Server™ index. Use index constants when defining an index or
interpreting the attributes of an existing index.

Constant Value Description
SQLDMOIndex_Clustered 16 Index is clustered. SQL Server

supports a single clustered index on
any table.

SQLDMOIndex_Default 0 Nonclustered index.
SQLDMOIndex_DRIIndex 6144 Index is used to maintain declarative

referential constraint.
SQLDMOIndex_DRIPrimaryKey 2048 Index implements a SQL Server

PRIMARY KEY constraint. Value is
returned only. For more information,
see Key Object.

SQLDMOIndex_DRIUniqueKey 4096 Index implements a UNIQUE
constraint on a table not constrained
by primary key. Index is a candidate
key.

SQLDMOIndex_DropExist 32768 Optimizes index creation when an
existing index is rebuilt.

SQLDMOIndex_Hypothetical 32 Redirects index creation, mapping
Index object manipulation to CREATE
STATISTICS and DROP STATISTICS
statements.

SQLDMOIndex_IgnoreDupKey 1 Controls error generation when an
INSERT or UPDATE operation could
cause a constraint violation when the
index implements a PRIMARY KEY or
UNIQUE constraint.

SQLDMOIndex_NoRecompute 16777216 Index created with statistics
computation off. For more
information, see NoRecompute
Property.

SQLDMOIndex_PadIndex 256 Pad index nodes using fill factor.
SQLDMOIndex_SortedData 512 Obsolete.
SQLDMOIndex_SortedDataReorg 8192 Obsolete.
SQLDMOIndex_Unique 2 Index implements a UNIQUE

constraint.
SQLDMOIndex_Valid 41747 Or of values used for index creation.

SQL-DMO (SQL Server 2000)

J

SQL-DMO (SQL Server 2000)

Job Category Constants (SQLDMO_CATEGORYTYPE_TYPE)
Job Category Constants (SQLDMO_CATEGORYTYPE_TYPE)

Job category constants classify categories used to organize Microsoft® SQL Server™ Agent jobs.

Job categories are visible in SQL Server Enterprise Manager, and the user can sort jobs listed by category. When an instance of
Microsoft SQL Server is designated as a multiserver administration master server, SQL Server Enterprise Manager lists jobs using
two folders. One folder lists jobs with categories whose type indicates a local target. The second folder lists jobs with categories
whose type indicates that jobs of that category target one or more remote servers.

Constant Value Description
SQLDMOCategoryType_LocalJob 1 Category is used to classify jobs

that will execute on an instance of
SQL Server on which the job is
stored.

SQLDMOCategoryType_MultiServerJob 2 Category is used to classify jobs
that will execute on one or more
target servers.

SQLDMOCategoryType_None 3 Job is not classified using a
category.

SQLDMOCategoryType_Unknown 0 Job category is bad or invalid, or
the category object references a
classification used for alerts or
operators.

See Also

Category Object

SQL-DMO (SQL Server 2000)

Job Completion Constants (SQLDMO_COMPLETION_TYPE)
Job Completion Constants (SQLDMO_COMPLETION_TYPE)

Completion constants specify success or failure status for Microsoft® SQL Server™ Agent execution attempts. For example, use
job completion status constants to control operator notification on execution completion.

Constant Value Description
SQLDMOComp_All 6 Any completion status
SQLDMOComp_Always 3 Succeeded or failed to complete
SQLDMOComp_Failure 2 Failed to complete
SQLDMOComp_None 0 No value set
SQLDMOComp_Success 1 Succeeded
SQLDMOComp_Unknown 4096 Invalid value

See Also

DeleteLevel Property

EmailLevel Property

NetSendLevel Property

PageLevel Property

SQL-DMO (SQL Server 2000)

Job Execution Status Constants
(SQLDMO_JOBEXECUTION_STATUS)
Job Execution Status Constants (SQLDMO_JOBEXECUTION_STATUS)

Job execution status constants define the running state for a Microsoft® SQL Server™ Agent job.

Constant Value Description
SQLDMOJobExecution_BetweenRetries 3 Job is waiting on a

job step retry
attempt.

SQLDMOJobExecution_Executing 1 Job is executing.
SQLDMOJobExecution_Idle 4 Job is idle, awaiting

next scheduled
execution.

SQLDMOJobExecution_PerformingCompletionActions 7 All executable job
steps have
completed. Job
history logging is
being performed.

SQLDMOJobExecution_Suspended 5 Job is suspended.
SQLDMOJobExecution_Unknown 0 State cannot be

determined.
SQLDMOJobExecution_WaitingForStepToFinish 6 Job is waiting on the

outcome of a step.
SQLDMOJobExecution_WaitingForWorkerThread 2 Job is blocked, unable

to obtain a thread
resource.

SQL-DMO (SQL Server 2000)

Job Outcome Constants (SQLDMO_JOBOUTCOME_TYPE)
Job Outcome Constants (SQLDMO_JOBOUTCOME_TYPE)

Job outcome constants specify an execution completion status for Microsoft® SQL Server™ Agent jobs.

Constant Value Description
SQLDMOJobOutcome_Cancelled 3 Execution canceled by user action.
SQLDMOJobOutcome_Failed 0 Execution failed.
SQLDMOJobOutcome_InProgress 4 Job or job step is executing.
SQLDMOJobOutcome_Succeeded 1 Execution succeeded.
SQLDMOJobOutcome_Unknown 5 Unable to determine execution state.

See Also

OutcomeTypes Property

SQL-DMO (SQL Server 2000)

Job Step OS Priority Constants (SQLDMO_RUNPRIORITY_TYPE)
Job Step OS Priority Constants (SQLDMO_RUNPRIORITY_TYPE)

Operating system execution priority constants specify a relative base priority assigned to the execution thread of job steps
specifying operating system commands.

The constants specify a thread priority relative to an instance of Microsoft® SQL Server™.

Constant Value Description
SQLDMORunPri_AboveNormal 1 Slightly elevated priority.
SQLDMORunPri_BelowNormal -1 Reduced priority.
SQLDMORunPri_Highest 2 Highest priority level allowed by the

process priority.
SQLDMORunPri_Idle -15 No CPU time will be spent on this thread

unless all other threads are blocked.
SQLDMORunPri_Lowest -2 Least, scheduled priority allowed by the

process priority.
SQLDMORunPri_Min 1 SQLDMORunPri_AboveNormal.
SQLDMORunPri_Normal 0 Standard priority level for the given

process priority.
SQLDMORunPri_TimeCritical 15 No CPU time will be given other

processes while the job step executes.
SQLDMORunPri_Unknown 100 Value is invalid.

SQL-DMO (SQL Server 2000)

Job Scope Constants (SQLDMO_JOB_TYPE)
Job Scope Constants (SQLDMO_JOB_TYPE)

Job scope constants specify execution target attributes for Microsoft® SQL Server™ Agent jobs.

Constant Value Description
SQLDMOJob_Local 1 Job will execute on an instance of SQL Server

on which the job is stored.
SQLDMOJob_MultiServer 2 Job will execute on one or more target servers.
SQLDMOJob_Unknown 0 Job is bad or invalid.

SQL-DMO (SQL Server 2000)

Job Step Action Constants (SQLDMO_JOBSTEPACTION_TYPE)
Job Step Action Constants (SQLDMO_JOBSTEPACTION_TYPE)

Job step action constants specify simple logic for Microsoft® SQL Server™ Agent jobs. With SQL-DMO, use job step action
constants and the OnSuccessAction and OnFailAction properties of the JobStep object to implement job step-based logic for a
multistep job.

Constant Value Description
SQLDMOJobStepAction_GotoNextStep 3 Default for OnSuccessAction

property. On successful execution,
continue execution at next defined
step.

SQLDMOJobStepAction_GotoStep 4 Job step execution continues at
specified step. When
OnSuccessAction is
SQLDMOJobStepAction_GotoStep,
use the OnSuccessStep property
to specify the next-executed step.
When OnFailAction is
SQLDMOJobStepAction_GotoStep,
use the OnFailStep property to
specify the next-executed step.

SQLDMOJobStepAction_QuitWithFailure 2 Default for OnFailAction
property. On failed execution,
terminate job step processing and
raise an error.

SQLDMOJobStepAction_QuitWithSuccess 1 On successful execution of the
step, terminate job step processing
and report success.

SQLDMOJobStepAction_Unknown 0 Bad or invalid value.

See Also

OnFailAction Property

OnSuccessAction Property

SQL-DMO (SQL Server 2000)

K

SQL-DMO (SQL Server 2000)

Key Type Constants (SQLDMO_KEY_TYPE)
Key Type Constants (SQLDMO_KEY_TYPE)

Key type constants specify the attributes of a Microsoft® SQL Server™ constraint that implements a primary or foreign key on
table data.

Constant Value Description
SQLDMOKey_Foreign 3 Key references, or will be used to create, a

SQL Server FOREIGN KEY constraint.
SQLDMOKey_Primary 1 Key references, or will be used to create, a

SQL Server PRIMARY KEY constraint.
SQLDMOKey_Unique 2 Key references a SQL Server UNIQUE

constraint on a column not allowing NULL.
SQLDMOKey_Unknown 0 Bad or invalid value.

See Also

Type Property (Key)

SQL-DMO (SQL Server 2000)

L

SQL-DMO (SQL Server 2000)

Linked Table Type Constants (SQLDMO_LINKEDTABLE_TYPE)
Linked Table Type Constants (SQLDMO_LINKEDTABLE_TYPE)

Linked table type constants classify OLE DB provider tables and are used to restrict result set membership when using the
EnumTables method of the LinkedServer object.

Linked table type constants implement table types as specified by OLE DB. For more information about interpreting OLE DB table
types for a specific linked server, see the OLE DB provider documentation.

Constant Value Description
SQLDMOLinkedTable_Alias 1 Restrict result set membership to

alias tables
SQLDMOLinkedTable_Default 0 No restriction
SQLDMOLinkedTable_GlobalTemporary 2 Restrict result set membership to

global temporary tables
SQLDMOLinkedTable_LocalTemporary 3 Restrict result set membership to

local temporary tables
SQLDMOLinkedTable_SystemTable 4 Restrict result set membership to

system tables
SQLDMOLinkedTable_SystemView 7 Restrict result set membership to

System views
SQLDMOLinkedTable_Table 5 Restrict result set membership to

user tables
SQLDMOLinkedTable_View 6 Restrict result set membership to

views

See Also

EnumTables Method

SQL-DMO (SQL Server 2000)

List Sorting Constants (SQLDMO_OBJSORT_TYPE)
List Sorting Constants (SQLDMO_OBJSORT_TYPE)

List sorting constants are used to specify returned SQLObjectList object member ordering when using the ListObjects and
ListOwnedObjects methods.

Constant Value Description
SQLDMOObjSort_Date 3 List objects are ordered by creation date.
SQLDMOObjSort_Name 0 List objects are ordered by name.
SQLDMOObjSort_Owner 2 List objects are ordered by owner name.
SQLDMOObjSort_Type 1 List objects are ordered by type.

See Also

ListObjects Method

ListOwnedObjects Method

SQL-DMO (SQL Server 2000)

Login Type Constants (SQLDMO_LOGIN_TYPE)
Login Type Constants (SQLDMO_LOGIN_TYPE)

Login type constants identify the source of the name of a Microsoft® SQL Server™ login record.

Constant Value Description
SQLDMOLogin_NTGroup 1 Referenced login is the name of a Microsoft

Windows NT® security group.
SQLDMOLogin_NTUser 0 Referenced login is the name of a Windows NT

user.
SQLDMOLogin_Standard 2 Referenced login is used for SQL Server

Authentication. Login name and password may
be required when a client connects using the
login.

See Also

Type Property (Login)

SQL-DMO (SQL Server 2000)

M

SQL-DMO (SQL Server 2000)

Media Type Constants (SQLDMO_MEDIA_TYPE)
Media Type Constants (SQLDMO_MEDIA_TYPE)

Media type constants are used to direct the behavior of the EnumAvailableMedia method of the SQLServer object.

Constant Value Description
SQLDMOMedia_All 15 List all media
SQLDMOMedia_CDROM 8 List visible CD-ROM devices
SQLDMOMedia_FixedDisk 2 List visible fixed disk drive devices
SQLDMOMedia_Floppy 1 List visible floppy disk drive devices
SQLDMOMedia_SharedFixedDisk 16 List visible fixed disk drive devices

shared on a clustered computer
SQLDMOMedia_Tape 4 List visible tape devices

See Also

EnumAvailableMedia Method

SQL-DMO (SQL Server 2000)

Miscellaneous Constants (SQLDMO_CONSTANTS_TYPE)
Miscellaneous Constants (SQLDMO_CONSTANTS_TYPE)

Miscellaneous constants are provided to aid various tasks implemented in a SQL-DMO application.

Constant Value Description
SQLDMO_NOENDDATE 99991231 Largest value accepted by a

Schedule object property
representing a date. For example,
use to set ActiveEndDate for a
schedule that does not expire on
an exact date.

SQLDMO_NOENDTIME 235959 Largest value accepted by a
Schedule object property
representing a time.

SQLDMO_USEEXISTINGFILLFACTOR 0 Use an existing fill factor for
clustered indexes rebuilt by the
SQL-DMO application. Used in
methods, such as RebuildIndexes.

SQL-DMO (SQL Server 2000)

Month and Day (Relative Scheduling) Constants
(SQLDMO_MONTHDAY_TYPE)
Month and Day (Relative Scheduling) Constants (SQLDMO_MONTHDAY_TYPE)

Month and day constants specify part of the most significant portion of a schedule defining an event that occurs on a day relative
to the start of a month.

Use SQLDMO_MONTHDAY_TYPE constants to specify a value for the FrequencyInterval property of a Schedule object when
the FrequencyType property of the object is SQLDMOFreq_MonthlyRelative.

Constant Value Description
SQLDMOMonth_Day 8 Scheduled activity occurs on an occurrence

of a day, such as the first day of the month.
SQLDMOMonth_Friday 6 Scheduled activity occurs on a Friday.
SQLDMOMonth_MaxValid 10 SQLDMOMonth_WeekEndDay.
SQLDMOMonth_MinValid 1 SQLDMOMonth_Sunday.
SQLDMOMonth_Monday 2 Scheduled activity occurs on a Monday.
SQLDMOMonth_Saturday 7 Scheduled activity occurs on a Saturday.
SQLDMOMonth_Sunday 1 Scheduled activity occurs on a Sunday.
SQLDMOMonth_Thursday 5 Scheduled activity occurs on a Thursday.
SQLDMOMonth_Tuesday 3 Scheduled activity occurs on a Tuesday.
SQLDMOMonth_Unknown 0 Bad or invalid value.
SQLDMOMonth_Wednesday 4 Scheduled activity occurs on a Wednesday.
SQLDMOMonth_WeekDay 9 Scheduled activity occurs on a week day,

from Monday through Friday.
SQLDMOMonth_WeekEndDay 10 Scheduled activity occurs on a weekend day,

Saturday or Sunday.

SQL-DMO (SQL Server 2000)

N

SQL-DMO (SQL Server 2000)

Notification Enumeration Constants
(SQLDMO_ENUMNOTIFY_TYPE)
Notification Enumeration Constants (SQLDMO_ENUMNOTIFY_TYPE)

Notification enumeration constants control the behavior of the EnumNotifications method of the Alert and Operator objects.

Constant Value Description
SQLDMOEnumNotify_Actual 2 Enumerate only those operators or alerts

configured for notification
SQLDMOEnumNotify_All 1 Enumerate all operators or alerts
SQLDMOEnumNotify_Max 3 SQLDMOEnumNotify_Target
SQLDMOEnumNotify_Min 1 SQLDMOEnumNotify_All
SQLDMOEnumNotify_Target 3 Enumerate notifications for the operator or

alert specified

See Also

EnumNotifications Method

SQL-DMO (SQL Server 2000)

Notification Method Constants (SQLDMO_NOTIFY_TYPE)
Notification Method Constants (SQLDMO_NOTIFY_TYPE)

Notification method constants define a Microsoft® SQL Server™ Agent notification feature. Use notification method constants to
control SQL Server Agent behaviors when notifying an operator of an alert condition.

Constant Value Description
SQLDMONotify_All 7 Notification by e-mail, e-mail sent to the

pager address, and network pop-up message
SQLDMONotify_Email 1 Notification by e-mail sent to the operator e-

mail address
SQLDMONotify_NetSend 4 Notification by network pop-up message

posted to the operator network address
SQLDMONotify_None 0 No notification method specified for the

referenced operator
SQLDMONotify_Pager 2 Notification by e-mail sent to the operator

pager address

See Also

AddNotification Method

EnumNotifications Method

IncludeEventDescription Property

NotificationMethod Property

UpdateNotification Method

SQL-DMO (SQL Server 2000)

O

SQL-DMO (SQL Server 2000)

Object Scripting Constants (SQLDMO_SCRIPT_TYPE)
Object Scripting Constants (SQLDMO_SCRIPT_TYPE)

Object scripting constants are used by objects and methods that generate a Transact-SQL script as part of an administrative task
automated using SQL-DMO. For example, object scripting constants are used to control the behavior of the:

Script method of objects that reference Microsoft® SQL Server™ database objects, agent, and replication components.

Transfer object when using the transfer object to copy database objects and agent components.

ScriptDestinationObject method of article objects that define replicated data.

Object scripting constants are used in the context established by the object or method. For more information about object
scripting constant context, see the reference for the object or method.

Constant Value Description
SQLDMOScript_Aliases 16384 Obsolete.
SQLDMOScript_AppendToFile 256 Object Script method only. Append to indicated

output file. By default, Script method overwrites
existing file.

SQLDMOScript_Bindings 128 Generate sp_bindefault and sp_bindrule
statements. Applies only when scripting
references a SQL Server table.

SQLDMOScript_ClusteredIndexes 8 Generate Transact-SQL defining clustered
indexes. Applies only when scripting references
a SQL Server table or view.

SQLDMOScript_DatabasePermissions 32 Generate Transact-SQL database privilege
defining script. Database permissions grant or
deny statement execution rights.

SQLDMOScript_Default 4 SQLDMOScript_PrimaryObj
SQLDMOScript_DRI_All 532676608 All values defined as SQLDMOScript_DRI_...

combined using an OR logical operator.
SQLDMOScript_DRI_AllConstraints 520093696 SQLDMOScript_DRI_Checks,

SQLDMOScript_DRI_Defaults,
SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey, and
SQLDMOScript_DRI_UniqueKeys combined
using an OR logical operator.

SQLDMOScript_DRI_AllKeys 469762048 SQLDMOScript_DRI_ForeignKeys,
SQLDMOScript_DRI_PrimaryKey,
SQLDMOScript_DRI_UniqueKeys combined
using an OR logical operator.

SQLDMOScript_DRI_Checks 16777216 Generated script creates column-specified
CHECK constraints. Directs scripting when
declarative referential integrity establishes
dependency relationships. Applies only when
scripting references a SQL Server table.

SQLDMOScript_DRI_Clustered 8388608 Generated script creates clustered indexes.
Directs scripting when declarative referential
integrity establishes dependency relationships.
Applies only when scripting references a SQL
Server table.

SQLDMOScript_DRI_Defaults 33554432 Generated script includes column-specified
defaults. Directs scripting when declarative
referential integrity establishes dependency
relationships. Applies only when scripting
references a SQL Server table.

SQLDMOScript_DRI_ForeignKeys 134217728 Generated script creates FOREIGN KEY
constraints. Directs scripting when declarative
referential integrity establishes dependency
relationships. Applies only when scripting
references a SQL Server table.

SQLDMOScript_DRI_NonClustered 4194304 Generated script creates nonclustered indexes.
Directs scripting when declarative referential
integrity establishes dependency relationships.
Applies only when scripting references a SQL
Server table.

SQLDMOScript_DRI_PrimaryKey 268435456 Generated script creates PRIMARY KEY
constraints. Directs scripting when declarative
referential integrity establishes dependency
relationships. Applies only when scripting
references a SQL Server table.

SQLDMOScript_DRI_UniqueKeys 67108864 Generated script creates candidate keys defined
using a unique index. Directs scripting when
declarative referential integrity establishes
dependency relationships. Applies only when
scripting references a SQL Server table.

SQLDMOScript_DRIIndexes 65536 When SQLDMOScript_NoDRI is specified, script
PRIMARY KEY constraints using a unique index
to implement the declarative referential
integrity. Applies only when scripting references
a SQL Server table.

SQLDMOScript_DRIWithNoCheck 536870912 When using SQLDMOScript_DRI_Checks, or
SQLDMOScript_DRI_ForeignKeys, generated
script includes the WITH NOCHECK clause
optimizing constraint creation. Applies only
when scripting references a SQL Server table.

SQLDMOScript_Drops 1 Generate Transact-SQL to remove the
referenced component. Script tests for existence
prior attempt to remove component.

SQLDMOScript_IncludeHeaders 131072 Generated script is prefixed with a header
containing date and time of generation and
other descriptive information.

SQLDMOScript_IncludeIfNotExists 4096 Transact-SQL creating a component is prefixed
by a check for existence. When script is
executed, component is created only when a
copy of the named component does not exist.

SQLDMOScript_Indexes 73736 SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes, and
SQLDMOScript_DRIIndexes combined using an
OR logical operator. Applies to both table and
view objects.

SQLDMOScript_NoCommandTerm 32768 Individual Transact-SQL statements in the script
are not delimited using the connection-specific
command terminator. By default, individual
Transact-SQL statements are delimited.

SQLDMOScript_NoDRI 512 Generated Transact-SQL statements do not
include any clauses defining declarative
referential integrity constraints. Applies only
when scripting references a SQL Server table.
Only use when script will execute on an instance
of SQL Server version 4.21.

SQLDMOScript_NoIdentity 1073741824 Generated Transact-SQL statements do not
include definition of identity property, seed, and
increment. Applies only when scripting
references a SQL Server table.

SQLDMOScript_NonClusteredIndexes 8192 Generate Transact-SQL defining nonclustered
indexes. Applies only when scripting references
a SQL Server table or view.

SQLDMOScript_None 0 Obsolete.
SQLDMOScript_ObjectPermissions 2 Include Transact-SQL privilege defining

statements when scripting database objects.
SQLDMOScript_OwnerQualify 262144 Object names in Transact-SQL generated to

remove an object are qualified by the owner of
the referenced object. Transact-SQL generated
to create the referenced object qualify the object
name using the current object owner.

SQLDMOScript_Permissions 34 SQLDMOScript_ObjectPermissions and
SQLDMOScript_DatabasePermissions combined
using an OR logical operator.

SQLDMOScript_PrimaryObject 4 Generate Transact-SQL creating the referenced
component.

SQLDMOScript_SortedData 1048576 Obsolete.
SQLDMOScript_SortedDataReorg 2097152 Obsolete.
SQLDMOScript_TimestampToBinary 524288 When scripting object creation for a table or

user-defined data type, convert specification of
timestamp data type to binary(8).

SQLDMOScript_ToFileOnly 64 Most SQL-DMO object scripting methods
specify both a return value and an optional
output file. When used, and an output file is
specified, the method does not return the script
to the caller, but only writes the script to the
output file.

SQLDMOScript_TransferDefault 422143 Default. SQLDMOScript_PrimaryObject,
SQLDMOScript_Drops,SQLDMOScript_Bindings,
SQLDMOScript_ClusteredIndexes,
SQLDMOScript_NonClusteredIndexes,
SQLDMOScript_Triggers,
SQLDMOScript_ToFileOnly,
SQLDMOScript_Permissions,
SQLDMOScript_IncludeHeaders,
SQLDMOScript_Aliases,
SQLDMOScript_IncludeIfNotExists, and
SQLDMOScript_OwnerQualify combined using
an OR logical operator.

SQLDMOScript_Triggers 16 Generate Transact-SQL defining triggers.
Applies only when scripting references a SQL
Server table or view.

SQLDMOScript_UDDTsToBaseType 1024 Convert specification of user-defined data types
to the appropriate SQL Server base data type.
Applies only when scripting references a SQL
Server table.

SQLDMOScript_UseQuotedIdentifiers -1 Use quote characters to delimit identifier parts
when scripting object names.

See Also

Object Scripting Constants (SQLDMO_SCRIPT2_TYPE)

Script Method

Script Method (BackupDevice Object)

Script Method (Table Object)

ScriptType Property

ScriptDestinationObject Method

SQL-DMO (SQL Server 2000)

Object Scripting Constants (SQLDMO_SCRIPT2_TYPE)
Object Scripting Constants (SQLDMO_SCRIPT2_TYPE)

Object scripting constants are used by objects and methods that generate a Transact-SQL script as part of an administrative task
automated using SQL-DMO. For example, object scripting constants are used to control the behavior of the:

Script method of objects that reference Microsoft® SQL Server™ database objects, agent, and replication components.

Transfer object when using the object to copy database objects and agent components.

ScriptDestinationObject method of article objects that define replicated data.

Object scripting constants are used in the context established by the object or method. For more information about object
scripting constant context, see the reference for the object or method.

Constant Value Description
SQLDMOScript2_70Only 16777216 Disable features available in

instances of SQL Server so that
output is compatible with an
instance of SQL Server version 7.0.
Disabled features are:

Column-level collation
User-defined functions
Extended properties
Instead of triggers on tables and
views
Indexes on views
Indexes on computed columns
Descending indexes
Default is OFF

SQLDMOScript2_AgentAlertJob 2048 Generate Transact-SQL script
creating SQL Server Agent jobs and
alerts.

SQLDMOScript2_AgentNotify 1024 When scripting an alert, generate
script creating notifications for the
alert.

SQLDMOScript2_AnsiFile 2 Generated script file uses multibyte
characters. Code page 1252 is used
to determine character meaning.

SQLDMOScript2_AnsiPadding 1 Generate Transact-SQL SET
ANSI_PADDING ON and SET
ANSI_PADDDING OFF statements
before and after CREATE TABLE
statements in the generated script.
Applies only when scripting
references a SQL Server table.

SQLDMOScript2_Default 0 No scripting options specified.
SQLDMOScript2_EncryptPWD 128 Encrypt passwords with script. When

specified,
SQLDMOScript2_UnicodeFile must
also be specified.

SQLDMOScript2_ExtendedOnly 67108864 Ignore all SQLDMO_SCRIPT_TYPE
settings. Use to script extended
property settings only. Script may
require editing prior to running on
destination database.

SQLDMOScript2_ExtendedProperty 4194304 Include extended property scripting
as part of object scripting.

SQLDMOScript2_FullTextCat 2097152 Command batch includes Transact-
SQL statements creating Microsoft
Search full-text catalogs.

SQLDMOScript2_FullTextIndex 524288 Generated script includes
statements defining Microsoft
Search full-text indexing. Applies
only when scripting references a
SQL Server table. Include security
identifiers for logons scripted.

SQLDMOScript2_JobDisable 33554432 Disable the job at the end of script
creation.
SQLDMOScript2_PrimaryObject
must also be specified.

SQLDMOScript2_LoginSID 8192 Include security identifiers for logins
scripted.

SQLDMOScript2_MarkTriggers 32 Generated script creates replication
implementing triggers as system
objects. Reserved for scripting
replication articles.

SQLDMOScript2_NoCollation 8388608 Do not script the collation clause if
source is an instance of SQL Server
version 7.0 or later. The default is to
generate collation.

SQLDMOScript2_NoFG 16 Generated script does not include
'ON <filegroup>' clause directing
filegroup use. Applies only when
scripting references a SQL Server
table.

SQLDMOScript2_NonStop 8 If error occurs during script file
generation, log error and continue.
Applies when using object and
collection Script method only.
Reserved for SQL Server utilities.

SQLDMOScript2_NoWhatIfIndexes 512 Do not script hypothetical indexes
used to implement the CREATE
STATISTICS statement. Applies only
when scripting references a SQL
Server table.

SQLDMOScript2_OnlyUserTriggers 64 Generated script includes Transact-
SQL creating user-defined triggers
only. Reserved for scripting
replication articles.

SQLDMOScript2_SeparateXPs 256 Script generation creates a second
script file defining drop and create
of extended stored procedures.
Applies only when scripting stored
procedures. Reserved for SQL
Server utilities.

SQLDMOScript2_UnicodeFile 4 Generated script output file is a
Unicode-character text file.

See Also

Object Scripting Constants (SQLDMO_SCRIPT_TYPE)

Script Method

Script Method (BackupDevice Object)

Script Method (Table Object)

Script2Type Property

ScriptDestinationObject Method

SQL-DMO (SQL Server 2000)

Operating System Type Constants (SQLDMO_OS_TYPE)
Operating System Type Constants (SQLDMO_OS_TYPE)

Operating system type constants identify the operating systems on which Microsoft® SQL Server™ can run.

Constant Value Description
SQLDMO_WIN95 1 Microsoft Windows® 95 or

Microsoft Windows® 98
SQLDMO_WINNT 2 Microsoft Windows NT®

See Also

IsOS Method

SQL-DMO (SQL Server 2000)

P

SQL-DMO (SQL Server 2000)

Performance Monitor Constants (SQLDMO_PERFMON_TYPE)
Performance Monitor Constants (SQLDMO_PERFMON_TYPE)

Performance monitor constants describe Microsoft® Windows NT® Performance Monitor polling behavior. The Windows NT
Performance Monitor can poll continuously or when directed by the user.

The polling behavior of the Windows NT Performance Monitor can be changed after the application has started successfully.

Constant Value Description
SQLDMOPerfmon_Continuous 0 Configures Windows NT Performance

Monitor statistics polling using the
operating system default time slice

SQLDMOPerfmon_MaxSet 1 SQLDMOPerfmon_OnDemand
SQLDMOPerfmon_MinSet 0 SQLDMOPermon_Continuous
SQLDMOPerfmon_None 1000 Invalid value
SQLDMOPerfmon_OnDemand 1 Windows NT Performance Monitor

polls for statistics when directed to do
so by the user

See Also

PerfMonMode Property

SQL-DMO (SQL Server 2000)

Privilege Constants (SQLDMO_PRIVILEGE_TYPE)
Privilege Constants (SQLDMO_PRIVILEGE_TYPE)

Privilege constants define access rights and permissions within databases and for database objects.

Constant Value Description
SQLDMOPriv_AllDatabasePrivs 130944 All database permissions
SQLDMOPriv_AllObjectPrivs 63 All applicable object permissions
SQLDMOPriv_CreateDatabase 256 Can create and own databases
SQLDMOPriv_CreateDefault 4096 Can create DEFAULT objects
SQLDMOPriv_CreateFunction 65366 Can create and own

UserDefinedFunction objects
SQLDMOPriv_CreateProcedure 1024 Can create and own

StoredProcedure objects
SQLDMOPriv_CreateRule 16384 Can create rules
SQLDMOPriv_CreateTable 128 Can create and own base tables
SQLDMOPriv_CreateView 512 Can create and own view tables
SQLDMOPriv_Delete 8 Can delete rows in a referenced table
SQLDMOPriv_DumpDatabase 2048 Can back up a database
SQLDMOPriv_DumpTable 32768 Can back up a referenced table
SQLDMOPriv_DumpTransaction 8192 Can back up a database transaction

log
SQLDMOPriv_Execute 16 Can execute a referenced stored

procedure
SQLDMOPriv_Insert 2 Can add rows to a referenced table
SQLDMOPriv_References 32 Can grant DRI on a referenced table
SQLDMOPriv_Select 1 Can query a referenced table
SQLDMOPriv_Unknown 0 No privilege assigned or unable to

determine privilege on the referenced
database or database object

SQLDMOPriv_Update 4 Can change row data in a referenced
table

See Also

Deny Method (Database)

Deny Method (StoredProcedure)

Deny Method (Table, View)

Deny Method (UserDefinedFunction)

Grant Method (Database)

Grant Method (StoredProcedure, UserDefinedFunction)

Grant Method (Table, View)

ListDatabasePermissions Method

ListPermissions Method

ListObjectPermissions Method

Permissions Property

PrivilegeType Property

Revoke Method (Database)

Revoke Method (StoredProcedure)

Revoke Method (Table, View)

Revoke Method (UserDefinedFunction)

SQL-DMO (SQL Server 2000)

Procedure Constants (SQLDMO_PROCEDURE_TYPE)
Procedure Constants (SQLDMO_PROCEDURE_TYPE)

Procedure constants control interpretation of the text of a stored procedure record.

Constant Value Description
SQLDMOProc_Extended 2 StoredProcedure object references an

extended stored procedure
SQLDMOProc_Macro 3 Reserved for future use
SQLDMOProc_ReplicationFilter 4 Reserved for future use
SQLDMOProc_Standard 1 StoredProcedure object references a

Microsoft® SQL Server™ stored
procedure

SQLDMOProc_Unknown 0 Bad or invalid value

SQL-DMO (SQL Server 2000)

R

SQL-DMO (SQL Server 2000)

Recovery Model Constants (SQLDMO_RECOVERY_TYPE)
Recovery Model Constants (SQLDMO_RECOVERY_TYPE)

Recovery Model constants are used to specify the recovery model for a database.

Constant Value Description
SQLDMORECOVERY_BulkLogged 1 Use the Bulk-Logged Recovery

model.
SQLDMORECOVERY_Full 2 Use the Full Recovery model.
SQLDMORECOVERY_Simple 0 Default. Use the Simple

Recovery model.
SQLDMORECOVERY_Unknown 3 Recovery model is unknown.

See Also

RecoveryModel Property

SQL-DMO (SQL Server 2000)

Replication Agent Constants (SQLDMO_REPLAGENT_TYPE)
Replication Agent Constants (SQLDMO_REPLAGENT_TYPE)

Replication agent constants enumerate the Microsoft® SQL Server™ Agent job step subsystems implementing programmable
agents for Microsoft SQL Server replication.

Constant Value Description
SQLDMOReplAgent_All 0 All replication agent types
SQLDMOReplAgent_Default 0 SQLDMOReplAgent_All
SQLDMOReplAgent_Distribution 3 Replication Distribution Agent
SQLDMOReplAgent_LogReader 2 Replication transaction Log

Reader Agent
SQLDMOReplAgent_Merge 4 Replication Merge Agent
SQLDMOReplAgent_Miscellaneous 5 Agents not otherwise classified
SQLDMOReplAgent_Publishers -1 Agents supporting publishers
SQLDMOReplAgent_QueueReader 9 Replication Queue Reader Agent
SQLDMOReplAgent_Snapshot 1 Replication Snapshot Agent

See Also

CreateAgentProfile Method

EnumAgentProfiles Method

GetAgentsStatus Method (Distributor)

UpdateAgentProfile Method

SQL-DMO (SQL Server 2000)

Replication Article Command Option Constants
(SQLDMO_COMMANDOPTION_TYPE)
Replication Article Command Option Constants (SQLDMO_COMMANDOPTION_TYPE)

Replication article command option constants specify Transact-SQL statement generation and parameter binding for tables and
stored procedures replicated as a transactional replication article.

Constant Value Description
SQLDMOCommandOption_BinaryParameters 16 Default. Send the

stored procedure
parameters in
binary format when
replicating
commands as
stored procedures
for an article in a
transactional
publication.

SQLDMOCommandOption_IncludeInsertColumnNames 8 Include column
names in
destination table
INSERT statements.

SQLDMOCommandOption_DTSHorizontalPartition 64 Enable DTS
transformation
servers to manage
rows in horizontal
partitions.

See Also

CommandOptions Property

SQL-DMO (SQL Server 2000)

Replication Article Constants (SQLDMO_ARTICLE_TYPE)
Replication Article Constants (SQLDMO_ARTICLE_TYPE)

Replication article constants describe the source of data for, and the behavior of, a Publisher on, transactional, or merge articles.

Constant Value Description
SQLDMORep_FuncSchemaOnly 128 Article uses user-defined function

execution and schema to determine
source data.

SQLDMORep_IndexedView 256 Underlying object of the article is an
indexed view.

SQLDMORep_IndexedViewLogBased 257 Article monitors an indexed view and
the transaction log to determine source
data. TransArticle object only.

SQLDMORep_IndexedViewLogBasedManualBoth 263 Article monitors an indexed view and
the transaction log to determine source
data. The default filter procedure is
overridden. TransArticle object only.

SQLDMORep_IndexedViewLogBasedManualFilterProc 259 Article monitors an indexed view and
the transaction log to determine source
data. The default filter procedure is
overridden. TransArticle object only.

SQLDMORep_IndexedViewLogBasedManualSyncView 261 Article monitors an indexed view and
the transaction log to determine source
data. The default view is overridden.
TransArticle object only.

SQLDMORep_IndexedViewSchemaOnly 320 Article monitors an indexed view and
schema to determine source data.

SQLDMORep_LogBased 1 Article monitors the transaction log to
determine source data.

SQLDMORep_LogBasedManualBoth 7 Article monitors the transaction log to
determine source data. The default view
and filter procedure is overridden.

SQLDMORep_LogBasedManualFilterProc 3 Article monitors the transaction log to
determine source data. The default filter
procedure is overridden.

SQLDMORep_LogBasedManualSyncView 5 Article monitors the transaction log to
determine source data. The default view
is overridden.

SQLDMORep_LogBasedVerticalPartition 6 Article monitors the transaction log to
determine source data. The source data
is partitioned by column.

SQLDMORep_ManualFilterProc 2 Default filter procedure is overridden.
SQLDMORep_ManualSyncView 4 Default view is overridden.
SQLDMORep_Max 320 SQLDMORep_IndexedViewSchemaOnly.
SQLDMORep_Min 0 Not set or an error condition.
SQLDMORep_ProcExecution 8 Article uses stored procedure execution

to determine source data.
SQLDMORep_ProcSchemaOnly 32 Article uses stored procedure execution

and schema to determine source data.
SQLDMORep_SerializableProcExecution 24 Article uses stored procedure execution

to determine source data. The stored
procedure is executed within a
serializable transaction.

SQLDMORep_TableBased 10 Article monitors a table to determine
replicated data.

SQLDMORep_ViewSchemaOnly 64 Article monitors a view and schema to
determine source data.

See Also

ArticleType Property

EnumPublicationArticles Method

SQL-DMO (SQL Server 2000)

Replication Article Pre-Creation Constants
(SQLDMO_PREARTICLE_TYPE)
Replication Article Pre-Creation Constants (SQLDMO_PREARTICLE_TYPE)

Replication article precreation constants specify actions performed at a Subscriber prior to article synchronization.

Constant Value Description
SQLDMOPreArt_DeleteRows 2 Perform a logged delete prior to

synchronization
SQLDMOPreArt_DropTable 1 Drop and recreate table to synchronize
SQLDMOPreArt_Max 3 SQLDMOPreArt_TruncateTable
SQLDMOPreArt_Min 0 SQLDMOPreArt_None
SQLDMOPreArt_None 0 Do nothing prior to synchronization
SQLDMOPreArt_TruncateTable 3 Perform a bulk-logged delete prior to

synchronization

SQL-DMO (SQL Server 2000)

Replication Article Status Constants
(SQLDMO_ARTSTATUS_TYPE)
Replication Article Status Constants (SQLDMO_ARTSTATUS_TYPE)

Replication article status constants specify process state for articles defined as part of a merge replication publication.

SQLDMOArtStat_Active 2 Article is active.
SQLDMOArtStat_Conflicts 3 Conflicting copies of article data exist.
SQLDMOArtStat_Errors 4 Agent attempts to publish the article or

resolve conflicts in copies of the article have
resulted in errors.

SQLDMOArtStat_Inactive 0 Article is inactive.
SQLDMOArtStat_Max 6 SQLDMOArtStat_Errors,
SQLDMOArtStat_Min 0 SQLDMOArtStat_Inactive
SQLDMOArtStat_Unsynced 1 Initial snapshot of article has not been made

or has not been retrieved by all Subscribers.
SQLDMOArtStat_NewInactive 5 Newly created article is inactive.
SQLDMOArtStat_NewActive 6 Newly created article is active.

SQL-DMO (SQL Server 2000)

Replication Compatibility Level Constants
(SQLDMO_REPLCOMPLEVEL_TYPE)
Replication Compatibility Level Constants (SQLDMO_REPLCOMPLEVEL_TYPE)

Replication Compatibility Level constants are used to indicate which feature set is currently supported by a publication.

Constant Value Description
SQLDMOReplCompatibilityLevel_70 10 Microsoft® SQL Server™ version

7.0
SQLDMOReplCompatibilityLevel_70SP1 20 SQL Server 7.0 Service Pack 1
SQLDMOReplCompatibilityLevel_70SP2 30 SQL Server 7.0 Service Pack 2
SQLDMOReplCompatibilityLevel_80 40 SQL Server 2000

See Also

CompatibilityLevel Property (MergePublication2, TransPublication2)

SQL-DMO (SQL Server 2000)

Replication Conflict Policy Constants
(SQLDMO_CONFLICTPOLICY_TYPE)
Replication Conflict Policy Constants (SQLDMO_CONFLICTPOLICY_TYPE)

Replication conflict policy constants specify whether the Publisher or Subscriber wins a conflict that occurs during a queued-
transaction operation.

Constant Value Description
SQLDMOConflictPolicy_PublisherWin 1 Publisher wins the conflict
SQLDMOConflictPolicy_ReinitSubscription 3 Reinitialize the subscription
SQLDMOConflictPolicy_SubscriberWin 2 Subscriber wins the conflict

See Also

ConflictPolicy Property

SQL-DMO (SQL Server 2000)

Replication Conflict Resolution Constants
(SQLDMO_RESOLVECONFLICT_TYPE)
Replication Conflict Resolution Constants (SQLDMO_RESOLVECONFLICT_TYPE)

Replication conflict resolution constants are reserved for future use.

Constant Value Description
SQLDMOResolveConflict_Default 1 SQLDMOResolveConflict_Resubmit
SQLDMOResolveConflict_Discard 2 Reserved
SQLDMOResolveConflict_Resubmit 1 Reserved
SQLDMOResolveConflict_Unknown 100 Reserved

SQL-DMO (SQL Server 2000)

Replication Constants (SQLDMO_REPLCONSTANTS_TYPE)
Replication Constants (SQLDMO_REPLCONSTANTS_TYPE)

Replication constants represent miscellaneous values used in a SQL-DMO application managing replication.

Constant Value Description
SQLDMO_DEFAULTRETENTION 14 Default retention period for merge,

snapshot, or transactional replication
publications in days

SQL-DMO (SQL Server 2000)

Replication DTS Package Constants
(SQLDMO_REPLDTSLOC_TYPE)
Replication DTS Package Constants (SQLDMO_REPLDTSLOC_TYPE)

Replication Data Transformation Services (DTS) package constants specify the location of a DTS package executed during the
replication process.

Constant Value Description
SQLDMOReplDTSPackageLocation_Distributor 0 DTS package located on

the Distributor
SQLDMOReplDTSPackageLocation_Subscriber 1 DTS package located on

the Subscriber

See Also

DTSPackageLocation Property

SQL-DMO (SQL Server 2000)

Replication Failover Mode Constants
(SQLDMO_REPLFAILOVER_TYPE)
Replication Failover Mode Constants (SQLDMO_REPLFAILOVER_TYPE)

Replication failover mode constants set the failover mode for mixed mode updating of subscriptions.

Constant Value Description
SQLDMOReplFailOver_Immediate 0 Use Immediate Updating Subscribers

to propagate changes made at the
Subscribers to the Publisher.

SQLDMOReplFailOver_Queued 1 Use Queued Updating Subscribers to
propagate changes made at the
Subscribers to the Publisher.

See Also

ReadReplicationFailOverMode Method

WriteReplicationFailOverMode Method

SQL-DMO (SQL Server 2000)

Replication Frequency Constants (SQLDMO_REPFREQ_TYPE)
Replication Frequency Constants (SQLDMO_REPFREQ_TYPE)

Replication frequency constants specify a replication interval at the highest level, thereby determining the type of a transactional
publication.

Constant Value Description
SQLDMORepFreq_Continuous 0 Log monitoring or another method is used

to determine replicated article content.
SQLDMORepFreq_Max 1 SQLDMORepFreq_Snapshot.
SQLDMORepFreq_Min 0 SQLDMORepFreq_Continuous.
SQLDMORepFreq_Snapshot 1 Article is replicated at fixed times and is not

dependent upon transaction log monitoring
or other monitoring processes.

SQLDMORepFreq_Unknown 1000 Invalid value.

See Also

ReplicationFrequency Property

SQL-DMO (SQL Server 2000)

Replication Initial Synchronization Constants
(SQLDMO_INITIALSYNC_TYPE)
Replication Initial Synchronization Constants (SQLDMO_INITIALSYNC_TYPE)

Replication initial synchronization constants specify data file format used for an initial snapshot of data made to synchronize
Publisher and Subscriber images of data replicated.

Constant Value Description
SQLDMOInitSync_BCPChar 1 Use Microsoft® SQL Server™ bulk copy

in character data format to transfer data
for initial synchronization.

SQLDMOInitSync_BCPNative 0 Use SQL Server bulk copy in native data
format to transfer data for initial
synchronization.

SQLDMOInitSync_Concurrent 3 Use concurrent snapshot processing
(transactional replication).

SQLDMOInitSync_ConcurrentChar 4 Concurrent snapshot generating
character mode BCP files. Required
when the AllowDTS property is set to
True.

SQLDMOInitSync_Default 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Max 4 Maximum Initial Synchronization mode

value.
SQLDMOInitSync_Min 0 SQLDMOInitSync_BCPNative.
SQLDMOInitSync_Unknown 10 Bad or invalid value.

See Also

SnapshotMethod Property

SQL-DMO (SQL Server 2000)

Replication Merge Subscriber Constants
(SQLDMO_MERGESUBSCRIBER_TYPE)
Replication Merge Subscriber Constants (SQLDMO_MERGESUBSCRIBER_TYPE)

Replication merge subscriber constants specify attributes of a subscription to a merge replication publication.

Constant Value Description
SQLDMOMergeSubscriber_Anonymous 3 Anonymous subscription
SQLDMOMergeSubscriber_Default 2 SQLDMOMergeSubscriber_Local
SQLDMOMergeSubscriber_Global 1 Global subscription
SQLDMOMergeSubscriber_Local 2 Local subscription
SQLDMOMergeSubscriber_Max 4 SQLDMOMergeSubscriber_Republishing
SQLDMOMergeSubscriber_Min 1 SQLDMOMergeSubscriber_Global
SQLDMOMergeSubscriber_Republishing 4 Republishing subscription
SQLDMOMergeSubscriber_Unknown 256 Bad or invalid value

SQL-DMO (SQL Server 2000)

Replication Method Constants (SQLDMO_REPLICATION_TYPE)
Replication Method Constants (SQLDMO_REPLICATION_TYPE)

Replication method constants specify replication by type.

Constant Value Description
SQLDMORepType_Default 1 SQLDMORepType_Transactional
SQLDMORepType_Merge 2 Merge replication
SQLDMORepType_Transactional 1 Transactional or snapshot

replication
SQLDMORepType_TransactionalMerge 3 SQLDMORepType_Merge and

SQLDMORepType_Transactional
combined using an OR logical
operator (EnumPublications
method only)

SQLDMORepType_Unknown 256 Bad or invalid value

See Also

EnumPublications Method

RemoveDefunctAnonymousSubscription Method

SQL-DMO (SQL Server 2000)

Replication Object Creation Script Constants
(SQLDMO_CREATIONSCRIPT_TYPE)
Replication Object Creation Script Constants (SQLDMO_CREATIONSCRIPT_TYPE)

Replication object creation script constants define behavior on initial synchronization script generation. As articles are published,
the schema of replicated tables is captured for Subscribers. When a subscription receives the article, the table or object
implementing the article is created as specified by creation script constants.

Constant Value Description
SQLDMOCreationScript_ClusteredIndexes 16 Include clustered index

creation on tables in the
script

SQLDMOCreationScript_Collation 4096 Replicate column-level
collation

SQLDMOCreationScript_CustomProcs 2 Generates custom stored
procedures for the article if
defined (transactional
replication only)

SQLDMOCreationScript_DisableScripting 0 Do not script
SQLDMOCreationScript_DRI_Checks 1024 Include creation of check

constraints during creation
of tables in the script

SQLDMOCreationScript_DRI_Defaults 2048 Include creation of column
defaults during creation of
tables in the script

SQLDMOCreationScript_DRI_ForeignKeys 512 Include creation of foreign
keys during creation of
tables in the script

SQLDMOCreationScript_DRI_PrimaryKey 128 Include definition of primary
keys on tables in the script

SQLDMOCreationScript_DRI_UniqueKeys 16384 Include creation of unique
key during creation of tables
in the script

SQLDMOCreationScript_ExtendedProperties 8192 Replicate extended
properties

SQLDMOCreationScript_NonClusteredIndexes 64 Include nonclustered index
creation on tables in the
script

SQLDMOCreationScript_PKUKAsConstraints 32768 Include creation of primary
key and unique key during
creation of tables as
constraints instead of as
indexes in the script

SQLDMOCreationScript_PrimaryObject 1 Include object creation in the
script

SQLDMOCreationScript_UDDTsToBaseTypes 32 Convert all user-defined data
types to their Microsoft®
SQL Server™ base types
when defining columns in
table creation in the script

SQLDMOCreationScript_UserTriggers 256 Include creation of trigger
during creation of tables in
the script

See Also

CreationScriptOptions Property

SQL-DMO (SQL Server 2000)

Replication Permissions Checking Constants
(SQLDMO_CHECKPERMISSIONS_TYPE)
Replication Permissions Checking Constants (SQLDMO_CHECKPERMISSIONS_TYPE)

Replication permissions checking constants are used to determine which permissions are checked at Publisher before Subscriber-
side database changes can be uploaded. SQLDMO_CHECKPERMISSIONS_TYPE is a bitmask; therefore multiple options can be
specified at the same time.

Constant Value Description
SQLDMOCheckPermissions_DeleteCheck 4 Check permissions at the

Publisher before a Subscriber-
side DELETE can be uploaded.

SQLDMOCheckPermissions_InsertCheck 1 Check permissions at the
Publisher before a Subscriber-
side INSERT can be uploaded.

SQLDMOCheckPermissions_NoCheck 0 Do not check permissions.
SQLDMOCheckPermissions_UpdateCheck 2 Check permissions at the

Publisher before a Subscriber-
side UPDATE can be uploaded.

See Also

CheckPermissions Property

SQL-DMO (SQL Server 2000)

Replication Publication Attribute Constants
(SQLDMO_PUBATTRIB_TYPE)
Replication Publication Attribute Constants (SQLDMO_PUBATTRIB_TYPE)

Replication publication attribute constants specify available replication function for a referenced publication.

Constant Value Description
SQLDMOPubAttrib_AllowAnonymous 4 Allow anonymous Subscriber-

originated subscriptions against
the referenced publication.

SQLDMOPubAttrib_AllowPull 2 Allow known Subscriber-
originated (pull) subscriptions
against the referenced
publication.

SQLDMOPubAttrib_AllowPush 1 Allow Publisher to force
subscription to the publication.

SQLDMOPubAttrib_AllowSubscriptionCopy 100 Allow copying and attaching of
subscription database to other
Subscribers.

SQLDMOPubAttrib_CompressSnapshot 128 Compress snapshot files.
SQLDMOPubAttrib_Default 1 SQLDMOPubAttrib_AllowPush.
SQLDMOPubAttrib_ImmediateSync 16 Force immediate

synchronization of the
referenced publication.

SQLDMOPubAttrib_IndependentAgent 32 Run agent as an independent
agent.

SQLDMOPubAttrib_InternetEnabled 8 Enable the referenced
publication for distribution
across the Internet.

SQLDMOPubAttrib_Min 0 Referenced publication is
disabled.

SQLDMOPubAttrib_SnapshotInDefaultFolder 64 Keep snapshot copy in default
folder.

SQLDMOPubAttrib_Unknown 256 Referenced publication has a
bad or unknown attribute
setting.

SQLDMOPubAttrib_Valid 511 Mask for valid attribute
settings.

See Also

PublicationAttributes Property

SQL-DMO (SQL Server 2000)

Replication Publication Constants
(SQLDMO_PUBLICATION_TYPE)
Replication Publication Constants (SQLDMO_PUBLICATION_TYPE)

Replication publication constants identify the kind of data replication supported by a referenced publication.

Constant Value Description
SQLDMOPublication_Max 1 SQLDMOPublication_Transactional.
SQLDMOPublication_Merge 2 Referenced publication supports

merge replication.
SQLDMOPublication_Min 0 SQLDMOPublication_Transactional.
SQLDMOPublication_Snapshot 1 Referenced publication supports

snapshot replication.
SQLDMOPublication_Transactional 0 Referenced publication supports

transactional replication.
SQLDMOPublication_Unknown 1000 Error condition. No replication support

can be determined for the referenced
publication.

SQL-DMO (SQL Server 2000)

Replication Publication Status Constants
(SQLDMO_PUBSTATUS_TYPE)
Replication Publication Status Constants (SQLDMO_PUBSTATUS_TYPE)

Replication publication status constants are reserved for future use.

Constant Value Description
SQLDMOPubStat_Active 1 Reserved
SQLDMOPubStat_Default 1000 Reserved
SQLDMOPubStat_Inactive 0 Reserved
SQLDMOPubStat_Max 0 Reserved
SQLDMOPubStat_Min 1 Reserved
SQLDMOPubStat_Unknown 1000 Reserved

SQL-DMO (SQL Server 2000)

Replication Queue Type Constants
(SQLDMO_REPLQUEUE_TYPE)
Replication Queue Type Constants (SQLDMO_REPLQUEUE_TYPE)

Replication queue type constants are used to specify the type of queuing to use if a publication accepts queued transactions.

Constant Value Description
SQLDMOReplQueue_MSMQ 1 Use Microsoft® Message Queue

to implement queuing.
SQLDMOReplQueue_SQL 2 Use Microsoft SQL Server™ to

implement queuing.

See Also

QueueType Property

SQL-DMO (SQL Server 2000)

Replication Resynchronization Constants
(SQLDMO_RESYNC_TYPE)
Replication Resynchronization Constants (SQLDMO_RESYNC_TYPE)

Replication Resynchronization Constants specify which changes are applied when a merge subscription is resynchronized.

Constant Value Description
SQLDMOResync_SinceAGivenDateTime 2 Resynchronize subscription

with all changes since a
given date and time

SQLDMOResync_SinceLastSnapshotApplied 0 Resynchronize subscription
with all changes since last
snapshot was applied

SQLDMOResync_SinceLastSuccessfulValidation 1 Resynchronize subscription
with all changes since last
successful validation

See Also

ReSynchronizeSubscription Method

SQL-DMO (SQL Server 2000)

Replication Script Constants (SQLDMO_REPSCRIPT_TYPE)
Replication Script Constants (SQLDMO_REPSCRIPT_TYPE)

Replication script constants control Transact-SQL command batch contents for the Script method of a SQL-DMO object
representing a replication component.

Constant Value Description
SQLDMORepScript_AnsiFile 16777216 Output to a file is written as ANSI

character text.
SQLDMORepScript_AppendToFile 8192 Output is appended to a designated

operating system file. If not set,
output overwrites any data in an
existing, designated file.

SQLDMORepScript_Creation 16384 Script includes database object
creation.

SQLDMORepScript_Default 256 SQLDMORepScript_InstallDistributor.
SQLDMORepScript_Deletion 32768 Script includes deletion of existing

database objects.
SQLDMORepScript_DisableReplicationDB 134217728 Script disables a replication database.
SQLDMORepScript_EnableReplicationDB 67108864 Script enables a replication database.
SQLDMORepScript_InstallDistributor 256 Default. The script installs the

replication Distributor.
SQLDMORepScript_InstallPublisher 1024 Script installs a Publisher.
SQLDMORepScript_InstallReplication 1048576 Script installs replication.
SQLDMORepScript_NoCommandTerm 268435456 No command terminator is added to

script commands.
SQLDMORepScript_NoSubscription 128 Script creation of publication,

excluding push subscriptions.
SQLDMORepScript_PublicationCreation 65536 Script includes publication creation

text.
SQLDMORepScript_PublicationDeletion 131072 Script includes text that removes

publications.
SQLDMORepScript_PullSubscriptionCreation 262144 Script pull subscription creation.
SQLDMORepScript_PullSubscriptionDeletion 524288 Script pull subscription deletion.
SQLDMORepScript_ReplicationJobs 4194304 Script creation of replication-related

jobs to preserve job schedule and
steps. The corresponding job script
must be run before the replication
script.
This constant can only be used with
Microsoft® SQL Server™ 2000. Only
a member of the sysadmin fixed
server role or the owner of a job
have access to a job creation script.

SQLDMORepScript_SubscriptionCreation 262144 Obsolete.
SQLDMORepScript_SubscriptionDeletion 524288 Obsolete.
SQLDMORepScript_ToFileOnly 4096 Output generated by an executed

script is directed to an operating
system file only. If not set, output is
available as status or error messages.

SQLDMORepScript_UnicodeFile 33554432 Output to a file is written as Unicode
character text.

SQLDMORepScript_UninstallDistributor 512 Script removes the replication
Distributor.

SQLDMORepScript_UninstallPublisher 2048 Script removes a Publisher.
SQLDMORepScript_UninstallReplication 2097152 Script removes replication.

See Also

Script Method (Replication Objects)

SQL-DMO (SQL Server 2000)

Replication Security Constants (SQLDMO_REPLSECURITY_TYPE)
Replication Security Constants (SQLDMO_REPLSECURITY_TYPE)

Replication security constants are reserved for future use.

Constant Value Description
SQLDMOReplSecurity_Max 2 SQLDMOReplSecurity_PredefinedServer
SQLDMOReplSecurity_Min 0 SQLDMOReplSecurity_Normal
SQLDMOReplSecurity_Normal 0 Reserved
SQLDMOReplSecurity_Integrated 1 Reserved
SQLDMOReplSecurity_PredefinedServer 2 Reserved

SQL-DMO (SQL Server 2000)

Replication Signature Verification Constants
(SQLDMO_VERIFYSIGNATURE_TYPE)
Replication Signature Verification Constants (SQLDMO_VERIFYSIGNATURE_TYPE)

Replication signature verification constants are used to specify whether to verify a digital signature before using a resolver in
merge replication.

Constant Value Description
SQLDMOVerifySignature_NoVerification 0 No digital signature verification

for resolver
SQLDMOVerifySignature_TrustedAuthority 1 Verify digital signature of

trusted authority for resolver

See Also

VerifyResolverSignature Property

SQL-DMO (SQL Server 2000)

Replication Subscriber Constants (SQLDMO_SUBSCRIBER_TYPE)
Replication Subscriber Constants (SQLDMO_SUBSCRIBER_TYPE)

Replication Subscriber constants specify at a high level the data source target for data distributed by an instance of Microsoft®
SQL Server™.

Constant Value Description
SQLDMOSubInfo_ExchangeServer 4 Type property of

RegisteredSubscriber object that
identifies a Microsoft Exchange Server
installation persisted as a SQL Server
linked server.

SQLDMOSubInfo_JetDatabase 2 Name property of
RegisteredSubscriber object
identifies a Microsoft Jet version 3.5
database.

SQLDMOSubInfo_ODBCDatasource 1 Name property of
RegisteredSubscriber object
identifies an ODBC user or system
DSN.

SQLDMOSubInfo_OLEDBDatasource 3 Type property of
RegisteredSubscriber object that
identifies an OLE DB data source
specification, or Microsoft Jet version
4.0 database persisted as a SQL Server
linked server.

SQLDMOSubInfo_SQLServer 0 Name property of
RegisteredSubscriber object
identifies an instance of SQL Server by
name.

See Also

Type Property (RegisteredSubscriber)

ValidateDataSource Method

SQL-DMO (SQL Server 2000)

Replication Subscription Constants
(SQLDMO_SUBSCRIPTION_TYPE)
Replication Subscription Constants (SQLDMO_SUBSCRIPTION_TYPE)

Replication subscription constants specify direction and Publisher-visibility of a replication subscription.

Constant Value Description
SQLDMOSubscription_All 3 SQLDMOSubscription_Pull and

SQLDMOSubscription_Anonymous
combined using an OR logical operator.

SQLDMOSubscription_Anonymous 2 Subscription is anonymous. Valid for
Subscriber-originated subscriptions
only.

SQLDMOSubscription_Default 0 SQLDMOSubscription_Push.
SQLDMOSubscription_Max 3 SQLDMOSubscription_Anonymous.
SQLDMOSubscription_Min 0 SQLDMOSubscription_Push.
SQLDMOSubscription_Pull 1 Subscription is Subscriber-originated.
SQLDMOSubscription_Push 0 Subscription is Publisher-originated.
SQLDMOSubscription_Unknown 256 Bad or invalid value.

See Also

EnableMergeSubscription Method

EnableTransSubscription Method

EnumAllSubscriptions Method

EnumDistributionAgentViews Method

SubscriptionType Property

SQL-DMO (SQL Server 2000)

Replication Subscription Status Constants
(SQLDMO_SUBSTATUS_TYPE)
Replication Subscription Status Constants (SQLDMO_SUBSTATUS_TYPE)

Replication subscription status constants specify subscription activity, controlling action by a replication agent maintaining the
subscription.

Constant Value Description
SQLDMOSubStat_Active 2 Subscription is active. Agent will maintain

subscription.
SQLDMOSubStat_Default 1000 SQLDMOSubStat_Unknown.
SQLDMOSubStat_Inactive 0 Subscription is inactive. Agent will not

maintain subscription.
SQLDMOSubStat_Max 2 SQLDMOSubStat_Active.
SQLDMOSubStat_Min 0 SQLDMOSubStat_Inactive.
SQLDMOSubStat_Unknown 1000 Subscription state cannot be known.
SQLDMOSubStat_Unsynced 1 Subscription is not synchronized. Manual

or automated synchronization must occur
before agent can maintain subscription.

SQL-DMO (SQL Server 2000)

Replication Subscription Synchronization Constants
(SQLDMO_SUBSYNC_TYPE)
Replication Subscription Synchronization Constants (SQLDMO_SUBSYNC_TYPE)

Replication subscription synchronization constants specify subscription agent behavior when subscription synchronization is
required.

Constant Value Description
SQLDMOSubSync_Auto 1 Subscription agent will synchronize the

subscription automatically.
SQLDMOSubSync_Default 1 Default. SQLDMOSubSync_Auto.
SQLDMOSubSync_Manual 0 Maintained for backward compatibility.
SQLDMOSubSync_Max 2 SQLDMOSubSync_None.
SQLDMOSubSync_Min 1 Default. SQLDMOSubSync_Auto.
SQLDMOSubSync_None 2 Subscription agent will not attempt

publication synchronization. User interaction
necessary to ensure synchronization.

SQLDMOSubSync_Unknown 1000 Bad or invalid value.

SQL-DMO (SQL Server 2000)

Replication Task Status Constants
(SQLDMO_TASKSTATUS_TYPE)
Replication Task Status Constants (SQLDMO_TASKSTATUS_TYPE)

Replication task status constants represent the execution state of a Microsoft® SQL Server™ Agent job performing a replication
task.

Constant Value Description
SQLDMOTask_Failed 6 At least one job failed to execute.
SQLDMOTask_Idle 4 All jobs are scheduled and idle.
SQLDMOTask_Pending 0 All jobs are waiting to start.
SQLDMOTask_Retry 5 At least one job is attempting to execute

after a previous failure.
SQLDMOTask_Running 3 At least one job is executing.
SQLDMOTask_Starting 1 One or more jobs are starting.
SQLDMOTask_Succeeded 2 All jobs executed successfully.

SQL-DMO (SQL Server 2000)

Replication Third-Party Publication Display Option Constants
(SQLDMO_THIRDPARTYOPTION_TYPE)
Replication Third-Party Publication Display Option Constants (SQLDMO_THIRDPARTYOPTION_TYPE)

Replication third-party publication display option constants are used to specify whether to suppress the display of a publication in
the Replication folder in Microsoft® SQL Server™ Enterprise Manager.

Constant Value Description
SQLDMOThirdPartyOption_Default 0 Display a heterogeneous

publication in the Replication
folder in SQL Server Enterprise
Manager (default).

SQLDMOThirdPartyOption_SuppressDisplay 1 Suppress display of a
heterogeneous publication in
Replication folder in SQL
Server Enterprise Manager.

See Also

ThirdPartyOptions Property

SQL-DMO (SQL Server 2000)

Replication Transactional Subscriber Constants
(SQLDMO_TRANSUBSCRIBER_TYPE)
Replication Transactional Subscriber Constants (SQLDMO_TRANSUBSCRIBER_TYPE)

Replication transaction Subscriber constants specify subscription behavior when a Subscriber initiates a change to data in an
article image.

Constant Value Description
SQLDMOTranSubscriber_Default 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Failover 3 Transactional Immediate Updating

Subscriber with capability to fail over
to queued Subscriber.

SQLDMOTranSubscriber_Max 3 SQLDMOTranSubscriber_Synchronous.
SQLDMOTranSubscriber_Min 0 SQLDMOTranSubscriber_ReadOnly.
SQLDMOTranSubscriber_Queued 2 Subscriber update to a publication

article is applied as a queued
transaction.

SQLDMOTranSubscriber_ReadOnly 0 Default. Subscriber update to any
publication article affects only the
image maintained at the Subscriber.

SQLDMOTranSubscriber_Synchronous 1 Subscriber update to a publication
article is applied in a distributed
transaction, updating the Publisher-
maintained image for article data or
failing entirely.

SQLDMOTranSubscriber_Unknown 256 Bad or invalid value.

See Also

EnableTransSubscription Method

SubscriberType Property (TransPullSubscription, TransSubscription)

SQL-DMO (SQL Server 2000)

Replication Validation Method Constants
(SQLDMO_VALIDATIONMETHOD_TYPE)
Replication Validation Method Constants (SQLDMO_VALIDATIONMETHOD_TYPE)

Replication Validation Method Constants are used to specify the method of validation performed on transactional publications
and subscriptions.

Constant Value Description
SQLDMOValidationMethod_ConditionalFast 2 Default. Performs conditional

validation first using
SQLDMOValidationMethod_FastCount
but reverts to using
SQLDMOValidationMethod_FullCount
if
SQLDMOValidationMethod_FastCount
indicates differences.

SQLDMOValidationMethod_FastCount 1 Performs high speed validation, using
the rowcnt column of sysindexes.

SQLDMOValidationMethod_FullCount 0 Validates by returning the number of
rows, including NULL values, and
duplicates using Transact-SQL
COUNT(*).

See Also

ValidatePublication Method (TransPublication2)

ValidateSubscriptions Method

SQL-DMO (SQL Server 2000)

Replication Validation Option Constants
(SQLDMO_VALIDATIONOPTION_TYPE)
Replication Validation Option Constants (SQLDMO_VALIDATIONOPTION_TYPE)

Replication Validation Option Constants specify the type of validation performed on transactional and merge publications and
subscriptions.

Constant Value Description
SQLDMOValidationOption_70Checksum 0 Perform a Transact-SQL

CHECKSUM operation
compatible with an instance of
Microsoft® SQL Server™
version 7.0.

SQLDMOValidationOption_RowCountOnly 1 Default. Perform a Transact-SQL
@@ROWCOUNT operation.

SQLDMOValidationOption_80Checksum 2 Perform a Transact-SQL
CHECKSUM operation
compatible with an instance of
Microsoft® SQL Server™. Only
supported by SQL Server 2000
Subscribers.

See Also

ValidatePublication Method (MergePublication2)

ValidatePublication Method (TransPublication2)

ValidateSubscription Method

ValidateSubscriptions Method

SQL-DMO (SQL Server 2000)

Restore Process Control Constants (SQLDMO_RESTORE_TYPE)
Restore Process Control Constants (SQLDMO_RESTORE_TYPE)

Restore process control constants set the Action property of a Restore object and define, at the highest level, the target of the
operation performed by the SQLRestore or SQLVerify method.

Constant Value Description
SQLDMORestore_Database 0 Restore the database
SQLDMORestore_Files 1 Restore only files indicated
SQLDMORestore_Log 2 Restore records to the database transaction log

SQL-DMO (SQL Server 2000)

Role Constants (SQLDMO_DBUSERROLE_TYPE)
Role Constants (SQLDMO_DBUSERROLE_TYPE)

Role constants are reserved for internal use.

Database Roles

Constant Value Description
SQLDMORole_db_accessadmin 128 Database access

administrator
SQLDMORole_db_backupoperator 4096 Database backup

operator
SQLDMORole_db_datareader 256 Database data reader
SQLDMORole_db_datawriter 32768 Database data writer
SQLDMORole_db_ddladmin 512 Database DDL

administrator
SQLDMORole_db_denydatareader 1024 Database deny data

reader
SQLDMORole_db_denydatawriter 2048 Database deny data

writer
SQLDMORole_db_owner 8192 Database owner
SQLDMORole_db_None 0 None
SQLDMORole_db_securityadmin 16384 Database security

administrator

Server Roles

Constant Value Description
SQLDMORole_dbcreator 1 Database creators
SQLDMORole_diskadmin 2 Disk administrators
SQLDMORole_processadmin 4 Process

administrators
SQLDMORole_securityadmin 8 Security

administrators
SQLDMORole_serveradmin 16 Server administrators
SQLDMORole_setupadmin 32 Setup administrators
SQLDMORole_sysadmin 64 System

administrators
SQLDMORole_bulkadmin 65536 Bulk insert

administrators

SQL-DMO (SQL Server 2000)

Role Type Constants (SQLDMO_ROLE_TYPE)
Role Type Constants (SQLDMO_ROLE_TYPE)

Role type constants control the output of the ListMembers method of the SQLServer object.

Constant Value Description
SQLDMORole_All 3 List members of server and database roles
SQLDMORole_Database 2 List members of database roles only
SQLDMORole_Server 1 List members of server roles only

See Also

ListMembers Method (SQLServer)

SQL-DMO (SQL Server 2000)

S

SQL-DMO (SQL Server 2000)

Scheduling Frequency Constants (SQLDMO_FREQUENCY_TYPE)
Scheduling Frequency Constants (SQLDMO_FREQUENCY_TYPE)

Scheduling frequency constants specify Microsoft® SQL Server Agent service evaluation of a scheduled job or replication task.

Constant Value Description
SQLDMOFreq_Autostart 64 Scheduled activity is started when SQL

Server Agent service starts.
SQLDMOFreq_Daily 4 Schedule is evaluated daily.
SQLDMOFreq_Monthly 16 Schedule is evaluated monthly.
SQLDMOFreq_MonthlyRelative 32 Schedule is evaluated relative to a part of

a month, such as the second week.
SQLDMOFreq_OneTime 1 Scheduled activity will occur once at a

scheduled time or event.
SQLDMOFreq_OnIdle 128 SQL Server Agent service will schedule

the activity for any time during which the
processor is idle.

SQLDMOFreq_Unknown 0 No schedule frequency, or frequency not
applicable.

SQLDMOFreq_Valid 255 Mask to test schedule frequency validity.
SQLDMOFreq_Weekly 8 Schedule is evaluated weekly.

See Also

FrequencyType Property

SQL-DMO (SQL Server 2000)

Scheduling Relative Frequency Constants
(SQLDMO_FREQRELATIVE_TYPE)
Scheduling Relative Frequency Constants (SQLDMO_FREQRELATIVE_TYPE)

Scheduling relative frequency constants specify a schedule subunit as an offset relative to another, greater scheduling unit. For
example, a Microsoft® SQL Server Agent service job could be scheduled to occur on the first and third Sunday of every month.

Constant Value Description
SQLDMOFreqRel_First 1 Schedules an event to occur on the first

subunit
SQLDMOFreqRel_Fourth 8 Schedules an event to occur on the

fourth subunit
SQLDMOFreqRel_Last 16 Schedules an event to occur on the last

subunit
SQLDMOFreqRel_Second 2 Schedules an event to occur on the

second subunit
SQLDMOFreqRel_Third 4 Schedules an event to occur on the third

subunit
SQLDMOFreqRel_Unknown 0 Do not schedule relatively, or relative

scheduling not applicable
SQLDMOFreqRel_Valid 31 Mask of all valid relative scheduling unit

constants

SQL-DMO (SQL Server 2000)

Scheduling Subfrequency Constants (SQLDMO_FREQSUB_TYPE)
Scheduling Subfrequency Constants (SQLDMO_FREQSUB_TYPE)

Scheduling subfrequency constants specify a smaller scheduling unit for specific schedule frequencies. For example, an
administrative or replication task may be scheduled to occur on the days of the business week. Using subfrequency constants, the
task may be scheduled for execution every eight hours on each scheduled day.

Constant Value Description
SQLDMOFreqSub_Hour 8 Schedule reflects an activity scheduled

using an hour as the unit.
SQLDMOFreqSub_Minute 4 Schedule reflects an activity scheduled

using a minute as the unit.
SQLDMOFreqSub_Once 1 Schedule reflects an activity that occurs

once on a scheduled unit.
SQLDMOFreqSub_Unknown 0 Subunits are invalid for the scheduled

activity.
SQLDMOFreqSub_Valid 13 Mask to test schedule subfrequency

validity.

See Also

FrequencySubDay Property

SQL-DMO (SQL Server 2000)

Security Constants (SQLDMO_SECURITY_TYPE)
Security Constants (SQLDMO_SECURITY_TYPE)

Security constants define Microsoft® SQL Server™ authentication modes.

Constant Value Description
SQLDMOSecurity_Integrated 1 Allow Windows NT Authentication only
SQLDMOSecurity_Max 2 SQLDMOSecurity_Mixed
SQLDMOSecurity_Min 0 SQLDMOSecurity_Normal
SQLDMOSecurity_Mixed 2 Allow Windows NT Authentication or

SQL Server Authentication
SQLDMOSecurity_Normal 0 Allow SQL Server Authentication only
SQLDMOSecurity_Unknown 9 Security type unknown

See Also

AttachSubscriptionDatabase Method

SecurityMode Property (DistributionDatabase, IntegratedSecurity)

SecurityMode Property (ReplicationSecurity)

ServerLoginMode Method

SubscriberSecurityMode Property

SQL-DMO (SQL Server 2000)

Session Constants (SQLDMO_SESSION_TYPE)
Session Constants (SQLDMO_SESSION_TYPE)

Session constants control the output of methods listing replication agent execution log data.

Constant Value Description
SQLDMOSession_All 1 Output contains log information for all

sessions for agent.
SQLDMOSession_Errors 2 Output contains log information only for

those execution attempts ending in error.
SQLDMOSession_Unknown 256 Bad or invalid value.

See Also

EnumDistributionAgentSessions Method

EnumLogReaderAgentSessions Method

EnumMergeAgentSessions Method

EnumSnapshotAgentSessions Method

SQL-DMO (SQL Server 2000)

Server Option Constants (SQLDMO_SRVOPTION_TYPE)
Server Option Constants (SQLDMO_SRVOPTION_TYPE)

Server option constants describe the behavior of a remote or linked server.

A RemoteServer object exposes the attributes of a Microsoft® SQL Server™ installation known as a remote server to another
server. A LinkedServer object exposes the properties of an OLE DB data source, or linked server, allowing Transact-SQL queries
against defined data sources.

Constant Value Description
SQLDMOSrvOpt_CollationCompatible 256 Referenced server uses ordering

and character comparison identical
to that used by the local server
(LinkedServer object only).

SQLDMOSrvOpt_DataAccess 128 Referenced server is available to the
local server as a distributed query
participant (LinkedServer object
only).

SQLDMOSrvOpt_DistPublisher 16 Referenced server is a publication
Distributor for the local server
(RemoteServer object only).

SQLDMOSrvOpt_Distributor 8 Referenced server is a replication
Distributor (RemoteServer object
only).

SQLDMOSrvOpt_DynamicParameters 131072 Referenced server recognizes the
ODBC-specified ? character as a
parameter representation in a query
statement (LinkedServer object
only).

SQLDMOSrvOpt_IndexAsAccessPath 16384 Provider-implemented indexes will
be used as an access path for
distributed queries against the
referenced server (LinkedServer
object only).

SQLDMOSrvOpt_InProcess 8192 Launches the OLE DB provider
implementing the referenced data
source as a COM in-process server
(LinkedServer object only).

SQLDMOSrvOpt_LevelZeroOnly 32768 When accessing the referenced
server, distributed queries use only
OLE DB Level 0 support
(LinkedServer object only).

SQLDMOSrvOpt_NestedQueries 65536 Referenced server supports the
SELECT statement in the FROM
clause of a query (LinkedServer
object only).

SQLDMOSrvOpt_NonTransacted 4096 Distributed query allows update to
the referenced server regardless of
the presence of transaction support
(LinkedServer object only).

SQLDMOSrvOpt_Publisher 2 Referenced server publishes data to
the local server (RemoteServer
object only).

SQLDMOSrvOpt_RPC 1 Allows remote procedure calls
made by the remote or linked
server.

SQLDMOSrvOpt_RPC_out 64 Referenced server accepts remote
procedure calls from the local
server (LinkedServer object only).

SQLDMOSrvOpt_Subscriber 4 Referenced server subscribes to
replication publications on the local
server (RemoteServer object only).

SQLDMOSrvOpt_Unknown 0 No options set.
SQLDMOSrvOpt_UseRemoteCollation 1024 Collation of remote columns is used

for SQL Server data sources, and
the collation specified in
CollationName is used for non-
SQL Server data sources
(LinkedServer2 object only)

See Also

SetOptions Method

SQL-DMO (SQL Server 2000)

Server User Profile Constants
(SQLDMO_SRVUSERPROFILE_TYPE)
Server User Profile Constants (SQLDMO_SRVUSERPROFILE_TYPE)

Server user profile constants roughly specify privilege for a Microsoft® SQL Server™ login or database user used by a client
connection.

Constant Value Description
SQLDMOSrvUserProf_AllProfileBits 7 Login has all specifiable SQL Server

maintenance permissions.
SQLDMOSrvUserProf_CreateDatabase 2 Login has permission to execute the

CREATE DATABASE statement.
SQLDMOSrvUserProf_CreateXP 4 Login can execute

sp_addextendedproc and
sp_dropextendedproc (loading
and unloading extended stored
procedures).

SQLDMOSrvUserProf_None 0 Login has no SQL Server
maintenance permission.

SQLDMOSrvUserProf_SaLogin 1 Login is a member of the sysadmin
role.

See Also

Database User Profile Constants (SQLDMO_DBUSERPROFILE_TYPE)

UserProfile Property

SQL-DMO (SQL Server 2000)

SQL Server Agent Type Constants (SQLDMO_JOBSERVER_TYPE)
SQL Server Agent Type Constants (SQLDMO_JOBSERVER_TYPE)

Microsoft® SQL Server Agent service type constants expose an instance of Microsoft SQL Server™ participation in multiserver
administration.

Constant Value Description
SQLDMOJobServer_MSX 3 Participates in multiserver

administration. An instance of SQL
Server masters administration for other
servers.

SQLDMOJobServer_StandAlone 1 Does not participate in multiserver
administration.

SQLDMOJobServer_TSX 2 Participates in multiserver
administration. An instance of SQL
Server is a target for administration.

SQLDMOJobServer_Unknown 0 Bad or invalid value.

SQL-DMO (SQL Server 2000)

SQL Server Connection Constants
(SQLDMO_VERIFYCONN_TYPE)
SQL Server Connection Constants (SQLDMO_VERIFYCONN_TYPE)

Microsoft® SQL Server™ connection constants direct the action of the VerifyConnection method of the SQLServer object.

Constant Value Description
SQLDMOConn_CurrentState 2 Returns TRUE if connected.
SQLDMOConn_LastState 1 Returns TRUE if connected on last call and

still connected, or not connected on last
call and still not connected.

SQLDMOConn_ReconnectIfDead 6 Default. Attempts to reconnect the
SQLServer object if the object has been
connected and has lost its connection.
Returns TRUE if connection exists.

SQLDMOConn_Valid 7 All SQL Server connection constants
combined by using an OR logical
operator.

See Also

VerifyConnection Method

SQL-DMO (SQL Server 2000)

SQL Server Data Type Constants (SQLDMO_QUERY_DATATYPE)
SQL Server Data Type Constants (SQLDMO_QUERY_DATATYPE)

Microsoft® SQL Server™ data type constants are returned by the ColumnType property of the QueryResults object. The
constants report the SQL Server data type of the column data and direct data extraction from the result set.

Constant Value Description
SQLDMO_DtypeBigint -5 bigint data type.
SQLDMO_DTypeBinary -2 Fixed length binary data.
SQLDMO_DTypeBit -7 Unsigned integer data. The width of the

integer is one byte.
SQLDMO_DTypeChar 1 Fixed length character.
SQLDMO_DTypeDateTime -2 ODBC SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeDateTime4 93 ODBC SQL_TIMESTAMP_STRUCT.
SQLDMO_DTypeFloat4 7 Approximate numeric data. The width of

the numeric value is four bytes.
SQLDMO_DTypeFloat8 8 Approximate numeric data. The width of

the numeric value is eight bytes.
SQLDMO_DTypeGUID -11 Globally unique identifier (GUID). The

data is a data structure 16 bytes in
length.

SQLDMO_DTypeImage -4 Long, variable length binary data.
SQLDMO_DTypeInt1 -6 Unsigned integer data. The width of the

integer is one byte.
SQLDMO_DTypeInt2 5 Signed integer data. The width of the

integer is two bytes.
SQLDMO_DTypeInt4 4 Signed integer data. The width of the

integer is four bytes.
SQLDMO_DTypeMoney 3 Scaled integer data represented as a

string value.
SQLDMO_DTypeMoney4 3 Scaled integer data represented as a

string value.
SQLDMO_DTypeNText -10 Long, variable length, Unicode character

data.
SQLDMO_DtypeSQLVariant -150 sql_variant data type.
SQLDMO_DTypeText -1 Long, variable length character data.
SQLDMO_DTypeUChar -8 Fixed length, Unicode character data.
SQLDMO_DTypeUnknown 0 Bad or not supported data type value.
SQLDMO_DTypeUVarchar -9 Variable length, Unicode character data.
SQLDMO_DTypeVarBinary -3 Variable length binary data.
SQLDMO_DTypeVarchar 12 Variable length character data.

See Also

ColumnType Property

SQL-DMO (SQL Server 2000)

SQL Server Installed Product Constants
(SQLDMO_PACKAGE_TYPE)
SQL Server Installed Product Constants (SQLDMO_PACKAGE_TYPE)

Microsoft® SQL Server™ installed product constants specify Microsoft SQL Server product packaging options, exposing the SQL
Server product installed on a server running an instance of SQL Server.

Constant Value Description
SQLDMO_Unknown 0 Bad or invalid value
SQLDMO_OFFICE 1 Desktop
SQLDMO_ENTERPRISE 3 Enterprise
SQLDMO_MSDE 4 Microsoft Data Engine
SQLDMO_STANDARD 2 Standard

See Also

IsPackage Method

SQL-DMO (SQL Server 2000)

SQL Server Version Constants (SQLDMO_SQL_VER)
SQL Server Version Constants (SQLDMO_SQL_VER)

Microsoft® SQL Server™ version constants identify the version of an instance of SQL Server, directing behavior of the
PingSQLServerVersion method of the SQLServer object.

Constant Value Description
SQLDMOSQLVer_60 2 Version 6.0
SQLDMOSQLVer_65 4 Version 6.5
SQLDMOSQLVer_70 8 Version 7.0
SQLDMOSQLVer_80 16 SQL Server 2000
SQLDMOSQLVer_Pre_60 1 Version 6.0 or earlier
SQLDMOSQLVer_Unknown 0 Bad or invalid value

See Also

PingSQLServerVersion Method

SQL-DMO (SQL Server 2000)

SQL-DMO Object Type Constants (SQLDMO_OBJECT_TYPE)
SQL-DMO Object Type Constants (SQLDMO_OBJECT_TYPE)

SQL-DMO object type constants enumerate the kind of Microsoft® SQL Server™ element referenced by a specific SQL-DMO
object. For example, the TypeOf property returns an object type constant.

Object type constants are used optionally by listing methods to constrain list or query result set membership.

Constant Value Description
SQLDMOObj_Alert 2109440 Object references a SQL

Server Agent service alert.
SQLDMOObj_AlertSystem 2101248 Object is an AlertSystem

object giving access to SQL
Server Agent service
parameters.

SQLDMOObj_AllButSystemObjects 5119 List or query result set
membership includes all but
SQL Server system objects.

SQLDMOObj_AllDatabaseObjects 4607 List or query result set
membership includes
Microsoft SQL Server system
and user database objects.

SQLDMOObj_AllDatabaseUserObjects 4605 List or query result set
membership includes only
user database objects.

SQLDMOObj_Application 0 Object is the SQL-DMO
Application object.

SQLDMOObj_AutoProperty 188416 Object is a Property object
exposed for OLE Automation
controllers.

SQLDMOObj_Backup 184320 Object is a Backup object
defining a possible database
or log backup operation.

SQLDMOObj_BackupDevice 139264 Object references a SQL
Server backup device.

SQLDMOObj_BulkCopy 204800 Object is a BulkCopy object
defining a possible table
export or import operation.

SQLDMOObj_Category 2134016 Object references a SQL
Server Agent service alert,
operator, or job category.

SQLDMOObj_Check 49152 Object references an integrity
constraint.

SQLDMOObj_Column 24576 Object references a column in
a table.

SQLDMOObj_Configuration 159744 Object references a
configuration parameter.

SQLDMOObj_ConfigValue 163840 Object references a
configuration parameter
value.

SQLDMOObj_Database 135168 Object references a database.
SQLDMOObj_DatabaseRole 225280 Object references a database

role.
SQLDMOObj_DBFile 212992 Object references an

operating system file
implementing database
storage.

SQLDMOObj_DBObject 28672 Object is a DBObject object
visible in lists and used in
database transfer operations.

SQLDMOObj_DBOption 32768 Object references a database
option.

SQLDMOObj_Default 64 Object references a default.
SQLDMOObj_DistributionArticle 1134592 Object references a

heterogeneous replication
task.

SQLDMOObj_DistributionDatabase 1118208 Object references a database
used for replication
distribution.

SQLDMOObj_DistributionPublication 1130496 Object references a
publication maintained at the
Distributor.

SQLDMOObj_DistributionPublisher 1105920 Object references an instance
of SQL Server acting as a
Distributor for published
data.

SQLDMOObj_DistributionSubscription 1138688 Object references a push
subscription initiated by a
Distributor.

SQLDMOObj_Distributor 1097728 Object references an instance
of SQL Server acting as a
replication Distributor.

SQLDMOObj_DRIDefault 53248 Object references a SQL
Server column-specific
default value.

SQLDMOObj_FileGroup 208896 Object references a SQL
Server database filegroup.

SQLDMOObj_FullTextCatalog 266240 Object references a Microsoft
Search full-text catalog.

SQLDMOObj_FullTextService 270336 Object references the Search
service.

SQLDMOObj_Index 16384 Object references an index.
SQLDMOObj_IntegratedSecurity 45056 Object is an

IntegratedSecurity object
defining name mapping
applied by SQL Server when
using Windows NT
Authentication.

SQLDMOObj_Job 2117632 Object references a SQL
Server Agent service job.

SQLDMOObj_JobFilter 2166784 Object is a JobFilter object
controlling job enumerating
methods of the JobServer
object.

SQLDMOObj_JobHistoryFilter 2170880 Object is a JobHistoryFilter
object controlling job history
enumerating methods of the
JobServer object.

SQLDMOObj_JobSchedule 2174976 Object references a SQL
Server Agent service
schedule.

SQLDMOObj_JobServer 2105344 Object references a SQL
Server Agent service.

SQLDMOObj_JobStep 2121728 Object references a SQL
Server Agent service job step.

SQLDMOObj_Key 20480 Object references a primary
or foreign key.

SQLDMOObj_LinkedServer 233472 Object references a SQL
Server 2000 linked server.

SQLDMOObj_LinkedServerLogin 262144 Object references a SQL
Server linked server login.

SQLDMOObj_LogFile 217088 Object references an
operating system file
implementing a SQL Server
database log.

SQLDMOObj_Login 143360 Object references a SQL
Server login.

SQLDMOObj_Language 147456 Object references a SQL
Server language record.

SQLDMOObj_MergeArticle 1073152 Object references a merge
replication task.

SQLDMOObj_MergePublication 1069056 Object references merge
replication tasks grouped as a
publication.

SQLDMOObj_MergePullSubscription 1081344 Object references a
subscription to a merge
replication publication. The
Subscriber controls
replication synchronization
attempts.

SQLDMOObj_MergeSubscription 1077248 Object references a
subscription to a merge
replication publication. The
Publisher controls replication
synchronization attempts.

SQLDMOObj_MergeSubsetFilter 1142784 Object references a merge
replication partitioning filter.

SQLDMOObj_Operator 2113536 Object references a SQL
Server Agent service
operator.

SQLDMOObj_Permission 40960 Object is a Permission object
exposing SQL Server object-
level security.

SQLDMOObj_ProcedureParameter 36864 Object references a
parameter of a stored
procedure.

SQLDMOObj_Publisher 1089536 Object references a SQL
Server Agent service alert.

SQLDMOObj_QueryResults 167936 Object is a QueryResults
object.

SQLDMOObj_RegisteredServer 200704 Object references a registry
entry listing an instance of
SQL Server.

SQLDMOObj_RegisteredSubscriber 1110016 Object references a
replication Subscriber.

SQLDMOObj_Registry 176128 Object is a Registry object
exposing registry-maintained
data about an instance of
SQL Server.

SQLDMOObj_RemoteLogin 155648 Object references a mapping
for access by another SQL
Server instance.

SQLDMOObj_RemoteServer 151552 Object references an instance
of SQL Server allowed access
for remote procedure
execution.

SQLDMOObj_Replication 1085440 Object is the Replication
object.

SQLDMOObj_ReplicationDatabase 1114112 Object references a SQL
Server database replicated in
merge or transactional
publications.

SQLDMOObj_ReplicationSecurity 1101824 Object is a
ReplicationSecurity object
specifying login
authentication for replication
Publishers and Subscribers.

SQLDMOObj_ReplicationStoredProcedure 1126400 Object references a stored
procedure replicated in a
transactional or merge article.

SQLDMOObj_ReplicationTable 1122304 Object references a table
replicated in a transactional
or merge article.

SQLDMOObj_Restore 229376 Object is a Restore object
used to specify a database or
transaction log operation.

SQLDMOObj_Rule 128 Object references a rule.
SQLDMOObj_Schedule 2162688 Object is a Schedule object

used to specify run times for
administrative and replication
tasks.

SQLDMOObj_ServerGroup 192512 Object references a registry-
based grouping for servers.

SQLDMOObj_ServerRole 221184 Object references a fixed
server role.

SQLDMOObj_SQLServer 131072 Object is a SQLServer object.
SQLDMOObj_StoredProcedure 16 Object references a stored

procedure.
SQLDMOObj_Subscriber 1093632 Object references a

Subscriber for replicated
data.

SQLDMOObj_SystemDatatype 4096 Object references a SQL
Server base data type.

SQLDMOObj_SystemTable 2 Object references a system
table.

SQLDMOObj_TargetServer 2125824 Object references a SQL
Server Agent service target
server.

SQLDMOObj_TargetServerGroup 2129920 Object references a SQL
Server Agent service target
server group.

SQLDMOObj_TransactionLog 172032 Object is a TransactionLog
object exposing the
properties of SQL Server
database transaction logging.

SQLDMOObj_TransArticle 1056768 Object references a
transactional replication task.

SQLDMOObj_Transfer 180224 Object is a Transfer object
used to move data and
objects from one SQL Server
database to another.

SQLDMOObj_TransPublication 1069056 Object references a
publication grouping
transactional replication
tasks.

SQLDMOObj_TransPullSubscription 1064960 Object references a
subscription to a
transactional replication
publication. The Subscriber
controls synchronization
attempts.

SQLDMOObj_TransSubscription 1060864 Object references a
subscription to a
transactional replication
publication. The Publisher
controls synchronization
attempts.

SQLDMOObj_Trigger 256 Object references a trigger.
SQLDMOObj_Unknown 16384 Object type is unknown.

Indicates an error condition.
SQLDMOObj_User 8192 Object references a SQL

Server database user.
SQLDMOObj_UserDefinedDatatype 4096 Object references a SQL

Server user-defined data
type.

SQLDMOObj_UserDefinedFunction 1 Object references a user-
defined function.

SQLDMOObj_UserTable 8 Object references a SQL
Server user-defined table.

SQLDMOObj_View 4 Object references a view.

See Also

AddObjectByName Method

EnumDependencies Method

GetDatatypeByName Method

GetObjectByName Method

GetSQLDMOObject Method (SQL-NS)

IsObjectDeleted Method

ListObjectNames Method

ListObjects Method

ListOwnedObjects Method

ObjectType Property

Type Property (DBObject)

TypeOf Property

SQL-DMO (SQL Server 2000)

Statement Execution Constants (SQLDMO_EXEC_TYPE)
Statement Execution Constants (SQLDMO_EXEC_TYPE)

Statement execution constants are used to direct the behavior of the ExecuteImmediate method, altering execution behavior or
interpretation of the statement submitted for execution.

Constant Value Description
SQLDMOExec_ContinueOnError 2 Batch execution continues on any

error that does not break the
connection.

SQLDMOExec_Default 0 No statement execution options set.
SQLDMOExec_NoCommandTerm 1 Ignore the command terminator in

the script. Execute as a single batch.
SQLDMOExec_NoExec 4 Execute SET NOEXEC ON prior to

batch execution. Execute SET NOEXEC
OFF after batch execution.

SQLDMOExec_ParseOnly 8 Execute SET PARSEONLY ON prior to
batch execution. Execute SET
PARSEONLY OFF after batch
execution.

SQLDMOExec_QI_ON 16 Execute SET QUOTED_IDENTIFIER ON
prior to batch execution. Execute SET
QUOTED_IDENTIFIER OFF after batch
execution.

See Also

ExecuteImmediate Method (Database, SQLServer)

SET PARSEONLY

SET NOEXEC

SET QUOTED_IDENTIFIER

SQL-DMO (SQL Server 2000)

Status Information Constants (SQLDMO_STATUSINFO_TYPE)
Status Information Constants (SQLDMO_STATUSINFO_TYPE)

Status information constants direct SQL-DMO interpretation of the StatusInfoRefetchInterval property of the SQLServer
object.

When an application connects a SQLServer object to a instance of Microsoft® SQL Server™, SQL-DMO automates retrieval of
some status information allowing application action based on changes in status for some SQL Server components. For more
information about controlling automated status information retrieval, see StatusInfoRefetchInterval Property.

Constant Value Description
SQLDMOStatInfo_All 7 Used when setting

StatusInfoRefetchInterval only.
Set all values equal.

SQLDMOStatInfo_AutoVerifyConnection 4 Interval for testing broken
connection.

SQLDMOStatInfo_DatabaseSpace 2 Interval for retrieving space
available in databases referenced
by Database objects active in the
application.

SQLDMOStatInfo_DatabaseStatus 1 Interval for retrieving database
status information visible in the
Status property of Database
objects active in the application.

SQLDMOStatInfo_Unknown 0 Bad or invalid value.

SQL-DMO (SQL Server 2000)

T

SQL-DMO (SQL Server 2000)

Table Attribute Constants (SQLDMO_TABLEATT_TYPE)
Table Attribute Constants (SQLDMO_TABLEATT_TYPE)

Table attribute constants describe, roughly, a Microsoft® SQL Server™ table. For example, the Attributes property of a Table
object referencing a table on which a primary key is defined returns SQLDMOTabAtt_PrimaryKey. Information about the primary
key, its member columns, and construction, can be determined by using the Keys collection of the Table object.

Constant Value Description
SQLDMOTabAtt_Check 128 Referenced table has at least one

integrity constraint.
SQLDMOTabAtt_Default 2048 Referenced table has at least one DRI

default defined.
SQLDMOTabAtt_ForeignKey 4 Referenced table has at least one

foreign key.
SQLDMOTabAtt_HasConstraint 7300 Referenced table has at least one DRI

constraint.
SQLDMOTabAtt_Identity 1 Referenced table has a column

exposing the identity property.
SQLDMOTabAtt_PrimaryKey 512 Referenced table has a primary key.
SQLDMOTabAtt_Published 32 Referenced table is published for

replication.
SQLDMOTabAtt_Referenced 8 Referenced table is referenced by at

least one other table's foreign key.
SQLDMOTabAtt_ReplCheck 4096 Referenced table has at least one

integrity constraint not fired when
replicated data is inserted.

SQLDMOTabAtt_Replica 256 At least one Subscriber has an active
subscription.

SQLDMOTabAtt_Replicated 64 Referenced table is actively
subscribed to a Publisher.

SQLDMOTabAtt_SystemObject 2 Referenced table is a SQL Server
system object.

SQLDMOTabAtt_Unique 1024 Referenced table has at least one
UNIQUE constraint.

SQL-DMO (SQL Server 2000)

Target Server Status Constants
(SQLDMO_TARGETSERVERSTATUS_TYPE)
Target Server Status Constants (SQLDMO_TARGETSERVERSTATUS_TYPE)

Target server status constants interpret the return value of the Status property of the TargetServer object.

Constant Value Description
SQLDMOTargetServerStatus_Blocked 4 Server running an instance

of Microsoft® SQL
Server™ is visible. SQL
Server Agent service is
blocked.

SQLDMOTargetServerStatus_Normal 1 Server running an instance
of SQL Server is visible.
SQL Server Agent service is
known to be running.

SQLDMOTargetServerStatus_SuspectedOffline 2 Server running an instance
of SQL Server is visible.
SQL Server Agent service
execution state cannot be
determined.

SQLDMOTargetServerStatus_Unknown 0 Network error prevents
determination of
referenced server and SQL
Server Agent service.

SQL-DMO (SQL Server 2000)

Transaction Log Backup Constants
(SQLDMO_BACKUP_LOG_TYPE)
Transaction Log Backup Constants (SQLDMO_BACKUP_LOG_TYPE)

Transaction log backup constants configure execution when using the SQL-DMO Backup object to back up only the transaction
log of a selected database.

Constant Value Description
SQLDMOBackup_Log_NoLog 2 Records referencing committed

transactions are removed.
Transaction log is not backed up.

SQLDMOBackup_Log_NoOption 4 SQLDMOBackup_Log_ Truncate.
SQLDMOBackup_Log_NoTruncate 1 Transaction log is backed up.

Records referencing committed
transactions are not removed,
providing a point-in-time image of
the log.

SQLDMOBackup_Log_Truncate 0 Transaction log is backed up.
Records referencing committed
transactions are removed.

SQLDMOBackup_Log_Truncateonly 3 SQLDMOBackup_Log_NoLog.

See Also

TruncateLog Property (Backup)

SQL-DMO (SQL Server 2000)

Transfer Script Mode Constants
(SQLDMO_XFRSCRIPTMODE_TYPE)
Transfer Script Mode Constants (SQLDMO_XFRSCRIPTMODE_TYPE)

Transfer script mode constants direct behavior of the ScriptTransfer method of the Database object.

Constant Value Description
SQLDMOXfrFile_Default 1 SQLDMOXfrFile_ SummaryFiles.
SQLDMOXfrFile_SingleFile 2 Generate one file.
SQLDMOXfrFile_SingleFilePerObject 4 Generate one file for each

Microsoft® SQL Server™
component transferred.

SQLDMOXfFILE_SingleSummaryFile 8 Generate one file. File contents
organized by object type.

SQLDMOXfrFile_SummaryFiles 1 Generate one file for each kind of
object transferred. For example,
generate a file for user-defined data
types and a separate file for tables.

See Also

ScriptTransfer Method

SQL-DMO (SQL Server 2000)

Trigger Constants (SQLDMO_TRIGGER_TYPE)
Trigger Constants (SQLDMO_TRIGGER_TYPE)

Trigger constants enumerate the kind of Transact-SQL data modification statement that will cause a trigger to fire.

Microsoft® SQL Server™ cursors may fire when an INSERT, UPDATE, or DELETE statement modifies data in a table on which an
enabled trigger is defined. Separate triggers may be created to implement behavior for any one or a combination of Transact-SQL
DML statements.

Constant Value Description
SQLDMOTrig_All 7 Trigger is fired by any data modification

statement.
SQLDMOTrig_Delete 4 Trigger is fired by a DELETE statement.
SQLDMOTrig_Insert 1 Trigger is fired by an INSERT statement.
SQLDMOTrig_Unknown 0 Bad or invalid value.
SQLDMOTrig_Update 2 Trigger is fired by an UPDATE statement.

See Also

Type Property (Trigger)

SQL-DMO (SQL Server 2000)

U

SQL-DMO (SQL Server 2000)

User-Defined Function Constants (SQLDMO_UDF_TYPE)
User-Defined Function Constants (SQLDMO_UDF_TYPE)

User-defined function constants are used to return user-defined function types.

Constant Value Description
SQLDMOUDF_Inline 3 Inline function
SQLDMOUDF_Scalar 1 Scalar function
SQLDMOUDF_Table 2 Table function
SQLDMOUDF_Unknown 0 Unknown function type

See Also

Type Property (UserDefinedFunction)

SQL-DMO (SQL Server 2000)

W

SQL-DMO (SQL Server 2000)

Windows NT Access Constants (SQLDMO_NTACCESS_TYPE)
Windows NT Access Constants (SQLDMO_NTACCESS_TYPE)

Windows NT access constants are used to return the login access types of Microsoft® Windows NT® users.

Constant Value Description
SQLDMONTAccess_Deny 2 This login has explicit deny

permissions to access this server.
SQLDMONTAccess_Grant 1 This login has explicit grant

permissions to access this server.
SQLDMONTAccess_NonNTLogin 99 The login is a standard Microsoft®

SQL Server™ login; the property does
not apply.

SQLDMONTAccess_Unknown 0 The login has not been explicitly
granted or denied permissions to
access this server. The login may still
have access through a group
membership, but this is not recorded
as a login property.

See Also

NTLoginAccessType Property

SQL-DMO (SQL Server 2000)

Windows NT Authentication Constants
(SQLDMO_INTSECLOGIN_TYPE)
Windows NT Authentication Constants (SQLDMO_INTSECLOGIN_TYPE)

Microsoft® Windows NT® Authentication constants are reserved for future use.

Constant Value Description
SQLDMOIntSecLogin_Admin 1 Reserved
SQLDMOIntSecLogin_Replication 3 Reserved
SQLDMOIntSecLogin_Max 3 Reserved
SQLDMOIntSecLogin_Min 1 Reserved
SQLDMOIntSecLogin_Unknown 0 Reserved
SQLDMOIntSecLogin_User 2 Reserved

SQL-DMO (SQL Server 2000)

Windows NT Service Constants (SQLDMO_SVCSTATUS_TYPE)
Windows NT Service Constants (SQLDMO_SVCSTATUS_TYPE)

Microsoft® Windows NT® service constants specify the execution state for services implementing Microsoft SQL Server™
components, such as the Microsoft Search service.

Constant Value Description
SQLDMOSvc_Continuing 6 Service execution state in transition

from paused to running.
SQLDMOSvc_Paused 2 Service execution is paused.
SQLDMOSvc_Pausing 7 Service execution state in transition

from running to paused.
SQLDMOSvc_Running 1 Service is running.
SQLDMOSvc_Starting 4 Service execution state in transition

from stopped to running.
SQLDMOSvc_Stopped 3 Service is stopped.
SQLDMOSvc_Stopping 5 Service execution state in transition

from running to stopped.
SQLDMOSvc_Unknown 0 Unable to determine service execution

state.

SQL-DMO (SQL Server 2000)

C/C++ Specifics
This section presents information required by the C or C++ developer who creates a SQL-DMO application.

When Sqldmo.h and Sqldmoid.h are included in a C/C++ source file, SQL-DMO makes visible:

Class and interface IDs for SQL-DMO objects.

Pointer types used to maintain references on SQL-DMO objects.

Two scope-aware template classes that can simplify OLE object reference maintenance.

C/C++ shortcuts for collection and list handling.

Macros aiding property setting.

SQL-DMO (SQL Server 2000)

Object Class Identifiers and Type Definitions
SQL-DMO class and interface IDs and pointer types used to maintain references on SQL-DMO objects are documented in the
tables that follow.

Interface IDs and pointer types are documented for all SQL-DMO objects. When the application can manufacture an instance of a
SQL-DMO object, a class ID is documented for the object.

SQL-DMO (SQL Server 2000)

A
A

SQL-DMO object Type Value
Alert (object) Pointer

Class ID
Interface ID

LPSQLDMOALERT
CLSID_SQLDMOAlert
IID_ISQLDMOAlert

AlertCategories
(collection)

Pointer
Interface ID

LPSQLDMOALERTCATEGORIES
IID_ISQLDMOAlertCategories

Alerts (collection) Pointer
Interface ID

LPSQLDMOALERTS
IID_ISQLDMOAlerts

AlertSystem (object) Pointer
Interface ID

LPSQLDMOALERTSYSTEM
IID_ISQLDMOAlertSystem

Application (object) Pointer
Class ID
Interface ID

LPSQLDMOAPPLICATION
CLSID_SQLDMOApplication
IID_ISQLDMOApplication

SQL-DMO (SQL Server 2000)

B
B

SQL-DMO object Type Value
Backup (object) Pointer

Class ID
Interface ID
Sink pointer
Sink interface ID

LPSQLDMOBACKUP
CLSID_SQLDMOBackup
IID_ISQLDMOBackup
LPSQLDMOBACKUPSINK
IID_ISQLDMOBackupSink

BackupDevice (object) Pointer
Class ID
Interface ID

LPSQLDMOBACKUPDEVICE
CLSID_SQLDMOBackupDevice
IID_ISQLDMOBackupDevice

BackupDevices (collection) Pointer
Interface ID

LPSQLDMOBACKUPDEVICES
IID_ISQLDMOBackupDevices

BulkCopy (object) Pointer
Class ID
Interface ID
Sink pointer
Sink interface ID

LPSQLDMOBULKCOPY
CLSID_SQLDMOBulkCopy
IID_ISQLDMOBulkCopy
LPSQLDMOBULKCOPYSINK
IID_ISQLDMOBulkCopySink

SQL-DMO (SQL Server 2000)

C
C

SQL-DMO object Type Value
Category (object) Pointer

Class ID
Interface ID

LPSQLDMOCATEGORY
CLSID_SQLDMOCategory
IID_ISQLDMOCategory

Check (object) Pointer
Class ID
Interface ID

LPSQLDMOCHECK
CLSID_SQLDMOCheck
IID_ISQLDMOCheck

Checks (collection) Pointer
Interface ID

LPSQLDMOCHECKS
IID_ISQLDMOChecks

Column (object) Pointer
Class ID
Interface ID

LPSQLDMOCOLUMN
CLSID_SQLDMOColumn
IID_ISQLDMOColumn

Columns (collection) Pointer
Interface ID

LPSQLDMOCOLUMNS
IID_ISQLDMOColumns

Configuration (object) Pointer
Interface ID

LPSQLDMOCONFIGURATION
IID_ISQLDMOConfiguration

ConfigValue (object) Pointer
Interface ID

LPSQLDMOCONFIGVALUE
IID_ISQLDMOConfigValue

ConfigValues (collection) Pointer
Interface ID

LPSQLDMOCONFIGVALUES
IID_ISQLDMOConfigValues

SQL-DMO (SQL Server 2000)

D
D

SQL-DMO object Type Value
Database (object) Pointer

Class ID
Interface ID

LPSQLDMODATABASE
CLSID_SQLDMODatabase
IID_ISQLDMODatabase

DatabaseRole (object) Pointer
Class ID
Interface ID

LPSQLDMODATABASEROLE
CLSID_SQLDMODatabaseRole
IID_ISQLDMODatabaseRole

DatabaseRoles (collection) Pointer
Interface ID

LPSQLDMODATABASEROLES
IID_ISQLDMODatabaseRoles

Databases (collection) Pointer
Interface ID

LPSQLDMODATABASES
IID_ISQLDMODatabases

DBFile (object) Pointer
Class ID
Interface ID

LPSQLDMODBFILE
CLSID_SQLDMODBFile
IID_ISQLDMODBFile

DBFiles (collection) Pointer
Interface ID

LPSQLDMODBFILES
IID_ISQLDMODBFiles

DBObject (object) Pointer
Interface ID

LPSQLDMODBOBJECT
IID_ISQLDMODBObject

DBObjects (collection) Pointer
Interface ID

LPSQLDMODBOBJECTS
IID_ISQLDMODBObjects

DBOption (object) Pointer
Interface ID

LPSQLDMODBOPTION
IID_ISQLDMODBOption

Default (object) Pointer
Class ID
Interface ID

LPSQLDMODEFAULT
CLSID_SQLDMODefault
IID_ISQLDMODefault

Defaults (collection) Pointer
Interface ID

LPSQLDMODEFAULTS
IID_ISQLDMODefaults

DistributionArticle
(object)

Pointer
Interface ID

LPSQLDMODISTRIBUTIONARTICLE
IID_ISQLDMODistributionArticle

DistributionArticles
(collection)

Pointer
Class ID
Interface ID

LPSQLDMODISTRIBUTIONARTICLES
CLSID_SQLDMODistributionArticle
IID_ISQLDMODistributionArticles

DistributionDatabase
(object)

Pointer
Class ID
Interface ID

LPSQLDMODISTRIBUTIONDATABASE
CLSID_SQLDMODistributionDatabase
IID_ISQLDMODistributionDatabase

DistributionDatabases
(collection)

Pointer
Interface ID

LPSQLDMODISTRIBUTIONDATABASES
IID_ISQLDMODistributionDatabases

DistributionPublication
(object)

Pointer
Class ID
Interface ID

LPSQLDMODISTRIBUTIONPUBLICATION
CLSID_SQLDMODistributionPublication
IID_ISQLDMODistributionPublication

DistributionPublications
(collection)

Pointer
Interface ID

LPSQLDMODISTRIBUTIONPUBLICATIONS
IID_ISQLDMODistributionPublications

DistributionPublisher
(object)

Pointer
Class ID
Interface ID

LPSQLDMODISTRIBUTIONPUBLISHER
CLSID_SQLDMODistributionPublisher
IID_ISQLDMODistributionPublisher

DistributionPublishers
(collection)

Pointer
Interface ID

LPSQLDMODISTRIBUTIONPUBLISHERS
IID_ISQLDMODistributionPublishers

DistributionSubscription
(object)

Pointer
Class ID
Interface ID

LPSQLDMODISTRIBUTIONSUBSCRIPTION
CLSID_SQLDMODistributionSubscription
IID_ISQLDMODistributionSubscription

DistributionSubscriptions
(collection)

Pointer
Interface ID

LPSQLDMODISTRIBUTIONSUBSCRIPTIONS
IID_ISQLDMODistributionSubscriptions

Distributor (object) Pointer
Interface ID

LPSQLDMODISTRIBUTOR
IID_ISQLDMODistributor

DRIDefault (object) Pointer
Interface ID

LPSQLDMODRIDEFAULT
IID_ISQLDMODRIDefault

SQL-DMO (SQL Server 2000)

F
F

SQL-DMO object Type Value
FileGroup (object) Pointer

Class ID
Interface ID

LPSQLDMOFILEGROUP
CLSID_SQLDMOFileGroup
IID_ISQLDMOFileGroup

FileGroups (collection) Pointer
Interface ID

LPSQLDMOFILEGROUPS
IID_ISQLDMOFileGroups

FullTextCatalog (object) Pointer
Class ID
Interface ID

LPSQLDMOFULLTEXTCATALOG
CLSID_SQLDMOFullTextCatalog
IID_ISQLDMOFullTextCatalog

FullTextCatalogs (collection) Pointer
Interface ID

LPSQLDMOFULLTEXTCATALOGS
IID_ISQLDMOFullTextCatalogs

FullTextService (object) Pointer
Interface ID

LPSQLDMOFULLTEXTSERVICE
IID_ISQLDMOFullTextService

SQL-DMO (SQL Server 2000)

I
I

SQL-DMO object Type Value
Index (object) Pointer

Class ID
Interface ID

LPSQLDMOINDEX
CLSID_SQLDMOIndex
IID_ISQLDMOIndex

Indexes (collection) Pointer
Interface ID

LPSQLDMOINDEXES
IID_ISQLDMOIndexes

IntegratedSecurity (object) Pointer
Interface ID

LPSQLDMOINTEGRATEDSECURITY
IID_ISQLDMOIntegratedSecurity

SQL-DMO (SQL Server 2000)

J
J

SQL-DMO object Type Value
Job (object) Pointer

Class ID
Interface ID

LPSQLDMOJOB
CLSID_SQLDMOJob
IID_ISQLDMOJob

JobCategories (collection) Pointer
Interface ID

LPSQLDMOJOBCATEGORIES
IID_ISQLDMOJobCategories

JobFilter (object) Pointer
Interface ID

LPSQLDMOJOBFILTER
IID_ISQLDMOJobFilter

JobHistoryFilter (object) Pointer
Interface ID

LPSQLDMOJOBHISTORYFILTER
IID_ISQLDMOJobHistoryFilter

Jobs (collection) Pointer
Interface ID

LPSQLDMOJOBS
IID_ISQLDMOJobs

JobSchedule (object) Pointer
Class ID
Interface ID

LPSQLDMOJOBSCHEDULE
CLSID_SQLDMOJobSchedule
IID_ISQLDMOJobSchedule

JobSchedules (collection) Pointer
Interface ID

LPSQLDMOJOBSCHEDULES
IID_ISQLDMOJobSchedules

JobServer (object) Pointer
Interface ID

LPSQLDMOJOBSERVER
IID_ISQLDMOJobServer

JobStep (object) Pointer
Class ID
Interface ID

LPSQLDMOJOBSTEP
CLSID_SQLDMOJobStep
IID_ISQLDMOJobStep

JobSteps (collection) Pointer
Interface ID

LPSQLDMOJOBSTEPS
IID_ISQLDMOJobSteps

SQL-DMO (SQL Server 2000)

K
K

SQL-DMO object Type Value
Key (object) Pointer

Class ID
Interface ID

LPSQLDMOKEY
CLSID_SQLDMOKey
IID_ISQLDMOKey

Keys (collection) Pointer
Interface ID

LPSQLDMOKEYS
IID_ISQLDMOKeys

SQL-DMO (SQL Server 2000)

L
L

SQL-DMO object Type Value
Language (object) Pointer

Class ID
Interface ID

ISQLDMOLanguage
CLSID_SQLDMOLanguage
IID_ISQLDMOLanguage

Languages (collection) Pointer
Interface ID

LPSQLDMOLANGUAGES
IID_ISQLDMOLanguages

LinkedServer (object) Pointer
Class ID
Interface ID

LPSQLDMOLINKEDSERVER
CLSID_SQLDMOLinkedServer
IID_ISQLDMOLinkedServer

LinkedServerLogin (object) Pointer
Class ID
Interface ID

LPSQLDMOLINKEDSERVERLOGIN
CLSID_SQLDMOLinkedServerLogin
IID_ISQLDMOLinkedServerLogin

LinkedServerLogins (collection) Pointer
Interface ID

LPSQLDMOLINKEDSERVERLOGINS
IID_ISQLDMOLinkedServerLogins

LinkedServers (collection) Pointer
Interface ID

LPSQLDMOLINKEDSERVERS
IID_ISQLDMOLinkedServers

LogFile (object) Pointer
Class ID
Interface ID

LPSQLDMOLOGFILE
CLSID_SQLDMOLogFile
IID_ISQLDMOLogFile

LogFiles (collection) Pointer
Interface ID

LPSQLDMOLOGFILES
IID_ISQLDMOLogFiles

Login (object) Pointer
Class ID
Interface ID

LPSQLDMOLOGIN
CLSID_SQLDMOLogin
IID_ISQLDMOLogin

Logins (collection) Pointer
Interface ID

LPSQLDMOLOGINS
IID_ISQLDMOLogins

SQL-DMO (SQL Server 2000)

M
M

SQL-DMO object Type Value
MergeArticle (object) Pointer

Class ID
Interface
ID

LPSQLDMOMERGEARTICLE
CLSID_SQLDMOMergeArticle
IID_ISQLDMOMergeArticle

MergeArticles (collection) Pointer
Interface
ID

LPSQLDMOMERGEARTICLES
IID_ISQLDMOMergeArticles

MergeDynamicSnapshotJob
(object)

Pointer
Class ID
Interface
ID

LPSQLDMOMERGEDYNAMICSNAPSHOTJOB
CLSID_SQLDMOMergeDynamicSnapshotJob
IID_ISQLDMOMergeDynamicSnapshotJob

MergeDynamicSnapshotJobs
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEDYNAMICSNAPSHOTJOBS
IID_ISQLDMOMergeDynamicSnapshotJobS

MergePublication (object) Pointer
Class ID
Interface
ID

LPSQLDMOMERGEPUBLICATION
CLSID_SQLDMOMergePublication
IID_ISQLDMOMergePublication

MergePublications
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEPUBLICATIONS
IID_ISQLDMOMergePublications

MergePullSubscription
(object)

Pointer
Class ID
Interface
ID

LPSQLDMOMERGEPULLSUBSCRIPTION
CLSID_SQLDMOMergePullSubscription
IID_ISQLDMOMergePullSubscription

MergePullSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOMERGEPULLSUBSCRIPTIONS
IID_ISQLDMOMergePullSubscriptions

MergeSubscription (object) Pointer
Class ID
Interface
ID

LPSQLDMOMERGESUBSCRIPTION
CLSID_SQLDMOMergeSubscription
IID_ISQLDMOMergeSubscription

MergeSubscriptions
(collection)

Pointer
Interface
ID

LPSQLDMOMERGESUBSCRIPTIONS
IID_ISQLDMOMergeSubscriptions

MergeSubsetFilter (object) Pointer
Class ID
Interface
ID

LPSQLDMOMERGESUBSETFILTER
CLSID_SQLDMOMergeSubsetFilter
IID_ISQLDMOMergeSubsetFilter

MergeSubsetFilters
(collection)

Pointer
Interface
ID

LPSQLDMOMERGESUBSETFILTERS
IID_ISQLDMOMergeSubsetFilters

SQL-DMO (SQL Server 2000)

N
N

SQL-DMO object Type Value
NameList (object) Pointer

Interface ID
LPSQLDMONAMELIST
IID_ISQLDMONameList

Names (collection) Pointer
Interface ID

LPSQLDMONAMES
IID_ISQLDMONames

SQL-DMO (SQL Server 2000)

O
O

SQL-DMO object Type Value
Operator (object) Pointer

Class ID
Interface ID

LPSQLDMOOPERATOR
CLSID_SQLDMOOperator
IID_ISQLDMOOperator

OperatorCategories
(collection)

Pointer
Interface ID
Pointer

LPSQLDMOOPERATORCATEGORIES
IID_ISQLDMOOperatorCategories
LPSQLDMOOPERATORS

Operators (collection) Interface ID IID_ISQLDMOOperators

SQL-DMO (SQL Server 2000)

P
P

SQL-DMO object Type Value
Permission (object) Pointer

Interface ID
LPSQLDMOPERMISSION
IID_ISQLDMOPermission

Publisher (object) Pointer
Interface ID

LPSQLDMOPUBLISHER
IID_ISQLDMOPublisher

SQL-DMO (SQL Server 2000)

Q
Q

SQL-DMO object Type Value
QueryResults (object) Pointer

Interface ID
LPSQLDMOQUERYRESULTS
IID_ISQLDMOQueryResults

SQL-DMO (SQL Server 2000)

R
R

SQL-DMO object Type Value
RegisteredServer (object) Pointer

Class ID
Interface
ID

LPSQLDMOREGISTEREDSERVER
CLSID_SQLDMORegisteredServer
IID_ISQLDMORegisteredServer

RegisteredServers (collection) Pointer
Interface
ID

LPSQLDMOREGISTEREDSERVERS
IID_ISQLDMORegisteredServers

RegisteredSubscriber (object) Pointer
Class ID
Interface
ID

LPSQLDMOREGISTEREDSUBSCRIBER
CLSID_SQLDMORegisteredSubscriber
IID_ISQLDMORegisteredSubscriber

RegisteredSubscribers
(collection)

Pointer
Interface
ID

LPSQLDMOREGISTEREDSUBSCRIBERS
IID_ISQLDMORegisteredSubscribers

Registry (object) Pointer
Interface
ID

LPSQLDMOREGISTRY
IID_ISQLDMORegistry

RemoteLogin (object) Pointer
Class ID
Interface
ID

LPSQLDMOREMOTELOGIN
CLSID_SQLDMORemoteLogin
IID_ISQLDMORemoteLogin

RemoteLogins (collection) Pointer
Interface
ID

LPSQLDMOREMOTELOGINS
IID_ISQLDMORemoteLogins

RemoteServer (object) Pointer
Class ID
Interface
ID

LPSQLDMOREMOTESERVER
CLSID_SQLDMORemoteServer
IID_ISQLDMORemoteServer

RemoteServers (collection) Pointer
Interface
ID

LPSQLDMOREMOTESERVERS
IID_ISQLDMORemoteServers

Replication (object) Pointer
Class ID
Interface
ID
Sink
pointer
Sink
interface
ID

LPSQLDMOREPLICATION
CLSID_SQLDMOReplication
IID_ISQLDMOReplication
LPSQLDMOREPLICATIONSINK
IID_ISQLDMOReplicationSink

ReplicationDatabase (object) Pointer
Interface
ID

LPSQLDMOREPLICATIONDATABASE
IID_ISQLDMOReplicationDatabase

ReplicationDatabases
(collection)

Pointer
Interface
ID

LPSQLDMOREPLICATIONDATABASES
IID_ISQLDMOReplicationDatabases

ReplicationSecurity (object) Pointer
Class ID
Interface
ID

LPSQLDMOREPLICATIONSECURITY
CLSID_SQLDMOReplicationSecurity
IID_ISQLDMOReplicationSecurity

ReplicationStoredProcedure
(object)

Pointer
Interface
ID

LPSQLDMOREPLICATIONSTOREDPROCEDURE
IID_ISQLDMOReplicationStoredProcedure

ReplicationStoredProcedures
(collection)

Pointer
Interface
ID

LPSQLDMOREPLICATIONSTOREDPROCEDURES
IID_ISQLDMOReplicationStoredProcedures

ReplicationTable (object) Pointer
Interface
ID

LPSQLDMOREPLICATIONTABLE
IID_ISQLDMOReplicationTable

ReplicationTables (collection) Pointer
Interface
ID

LPSQLDMOREPLICATIONTABLES
IID_ISQLDMOReplicationTables

Restore (object) Pointer
Class ID
Interface
ID
Sink
pointer
Sink
interface
ID

LPSQLDMORESTORE
CLSID_SQLDMORestore
IID_ISQLDMORestore
LPSQLDMORESTORESINK
IID_ISQLDMORestoreSink

Rule (object) Pointer
Class ID
Interface
ID

LPSQLDMORULE
CLSID_SQLDMORule
IID_ISQLDMORule

Rules (collection) Pointer
Interface
ID

LPSQLDMORULES
IID_ISQLDMORules

SQL-DMO (SQL Server 2000)

S
S

SQL-DMO object Type Value
Schedule (object) Pointer

Interface ID
LPSQLDMOSCHEDULE
IID_ISQLDMOSchedule

ServerGroup (object) Pointer
Class ID
Interface ID

LPSQLDMOSERVERGROUP
CLSID_SQLDMOServerGroup
IID_ISQLDMOServerGroup

ServerGroups (collection) Pointer
Interface ID

LPSQLDMOSERVERGROUPS
IID_ISQLDMOServerGroups

ServerRole (object) Pointer
Class ID
Interface ID

LPSQLDMOSERVERROLE
CLSID_SQLDMOServerRole
IID_ISQLDMOServerRole

ServerRoles (collection) Pointer
Interface ID

LPSQLDMOSERVERROLES
IID_ISQLDMOServerRoles

SQLObjectList (object) Pointer
Interface ID

LPSQLDMOOBJECTLIST
IID_ISQLDMOObjectList

SQLServer (object) Pointer
Class ID
Interface ID
Sink pointer
Sink interface
ID

LPSQLDMOSERVER
CLSID_SQLDMOServer
IID_ISQLDMOServer
LPSQLDMOSERVERSINK
IID_ISQLDMOServerSink

SQLServers (collection) Pointer
Interface ID
Pointer
Class ID

LPSQLDMOSERVERS
IID_ISQLDMOServers
LPSQLDMOSTOREDPROCEDURE
CLSID_SQLDMOStoredProcedure

StoredProcedure (object) Interface ID IID_ISQLDMOStoredProcedure
StoredProcedures
(collection)

Pointer
Interface ID

LPSQLDMOSTOREDPROCEDURES
IID_ISQLDMOStoredProcedures

Subscriber (object) Pointer
Interface ID

LPSQLDMOSUBSCRIBER
IID_ISQLDMOSubscriber

SystemDatatype (object) Pointer
Interface ID

LPSQLDMOSYSTEMDATATYPE
IID_ISQLDMOSystemDatatype

SystemDatatypes
(collection)

Pointer
Interface ID

LPSQLDMOSYSTEMDATATYPES
IID_ISQLDMOSystemDatatypes

SQL-DMO (SQL Server 2000)

T
T

SQL-DMO object Type Value
Table (object) Pointer

Class ID
Interface ID

LPSQLDMOTABLE
CLSID_SQLDMOTable
IID_ISQLDMOTable

Tables (collection) Pointer
Interface ID

LPSQLDMOTABLES
IID_ISQLDMOTables

TargetServer (object) Pointer
Class ID
Interface ID

LPSQLDMOTARGETSERVER
CLSID_SQLDMOTargetServer
IID_ISQLDMOTargetServer

TargetServerGroup
(object)

Pointer
Class ID
Interface ID

LPSQLDMOTARGETSERVERGROUP
CLSID_SQLDMOTargetServerGroup
IID_ISQLDMOTargetServerGroup

TargetServerGroups
(collection)

Pointer
Interface ID

LPSQLDMOTARGETSERVERGROUPS
IID_ISQLDMOTargetServerGroups

TargetServers
(collection)

Pointer
Interface ID

LPSQLDMOTARGETSERVERS
IID_ISQLDMOTargetServers

TransactionLog (object) Pointer
Interface ID

LPSQLDMOTRANSACTIONLOG
IID_ISQLDMOTransactionLog

TransArticle (object) Pointer
Class ID
Interface ID

LPSQLDMOTRANSARTICLE
CLSID_SQLDMOTransArticle
IID_ISQLDMOTransArticle

TransArticles (collection) Pointer
Interface ID

LPSQLDMOTRANSARTICLES
IID_ISQLDMOTransArticles

Transfer (object) Pointer
Class ID
Interface ID
Sink pointer
Sink interface ID

LPSQLDMOTRANSFER
CLSID_SQLDMOTransfer
IID_ISQLDMOTransfer
LPSQLDMOTRANSFERSINK
IID_ISQLDMOTransferSink

TransPublication
(object)

Pointer
Class ID
Interface ID

LPSQLDMOTRANSPUBLICATION
CLSID_SQLDMOTransPublication
IID_ISQLDMOTransPublication

TransPublications
(collection)

Pointer
Interface ID

LPSQLDMOTRANSPUBLICATIONS
IID_ISQLDMOTransPublications

TransPullSubscription
(object)

Pointer
Class ID
Interface ID

LPSQLDMOTRANSPULLSUBSCRIPTION
CLSID_SQLDMOTransPullSubscription
IID_ISQLDMOTransPullSubscription

TransPullSubscriptions
(collection)

Pointer
Interface ID

LPSQLDMOTRANSPULLSUBSCRIPTIONS
IID_ISQLDMOTransPullSubscriptions

TransSubscription
(object)

Pointer
Class ID
Interface ID

LPSQLDMOTRANSSUBSCRIPTION
CLSID_SQLDMOTransSubscription
IID_ISQLDMOTransSubscription

TransSubscriptions
(collection)

Pointer
Interface ID

LPSQLDMOTRANSSUBSCRIPTIONS
IID_ISQLDMOTransSubscriptions

Trigger (object) Pointer
Class ID
Interface ID

LPSQLDMOTRIGGER
CLSID_SQLDMOTrigger
IID_ISQLDMOTrigger

Triggers (collection) Pointer
Interface ID

LPSQLDMOTRIGGERS
IID_ISQLDMOTriggers

SQL-DMO (SQL Server 2000)

U
U

SQL-DMO object Type Value
User (object) Pointer

Class ID
Interface ID

LPSQLDMOUSER
CLSID_SQLDMOUser
IID_ISQLDMOUser

UserDefinedDatatype
(object)

Pointer
Class ID
Interface ID

LPSQLDMOUSERDEFINEDDATATYPE
CLSID_SQLDMOUserDefinedDatatype
IID_ISQLDMOUserDefinedDatatype

UserDefinedDatatypes
(collection)

Pointer
Interface ID

LPSQLDMOUSERDEFINEDDATATYPES
IID_ISQLDMOUserDefinedDatatypes

UserDefinedFunction
(object)

Pointer
Class ID
Interface ID

LPSQLDMOUSERDEFINEDFUNCTION
CLSID_SQLDMOUserDefinedFunction
IID_ISQLDMOUserDefinedFunction

UserDefinedFunctions
(collection)

Pointer
Interface ID

LPSQLDMOUSERDEFINEDFUNCTIONS
IID_ISQLDMOUserDefinedFunctions

Users (collection) Pointer
Interface ID

LPSQLDMOUSERS
IID_ISQLDMOUsers

SQL-DMO (SQL Server 2000)

V
V

SQL-DMO object Type Value
View (object) Pointer

Class ID
Interface ID

LPSQLDMOVIEW
CLSID_SQLDMOView
IID_ISQLDMOView

Views (collection) Pointer
Interface ID

LPSQLDMOVIEWS
IID_ISQLDMOViews

SQL-DMO (SQL Server 2000)

Scope-aware Template Classes
As an aid to the C++ developer, two scope-aware template classes are defined in Sqldmo.h. The classes wrap OLE objects,
implementing application-held reference release when an instance of the class is reused in an assignment or when the instance
goes out of scope.

SQL-DMO (SQL Server 2000)

CTempBSTR
CTempBSTR

The CTempBSTR template class wraps an OLE BSTR object. When used to maintain references on BSTR objects returned by SQL-
DMO, the class ensures that references are released when:

An instance of the class is destroyed.

An instance of the class is maintaining an existing reference and is assigned a new reference.

Member Functions

CTempBSTR::b

SQLDMO_BSTR b();

Returns an SQLDMO_BSTR from the instance without incrementing the reference count maintained on the BSTR. Returns NULL if
the instance is not maintaining a reference.

CTempBSTR::CTempBSTR

CTempBSTR();

CTempBSTR(SQLDMO_BSTR bstrIn);

Creates an instance of the class.

CTempBSTR::Free

void Free();

Safely releases a BSTR reference maintained by the instance. The function is provided for class completeness. Class destruction
and assignment operator implementations ensure reference release, and the use of Free is not required by an application.

Operators

CTempBSTR::operator SQLDM O_LPCSTR

operator SQLDMO_LPCSTR ();

Returns an SQLDMO_LPCSTR pointing to the character string maintained by the BSTR object wrapped. Returns NULL if the
instance is not maintaining a reference on a BSTR object.

CTempBSTR::operator void*

operator void* ();

Returns a void pointer to the memory maintaining a BSTR object reference.

CTempBSTR::operator =

SQLDMO_BSTR operator = (SQLDMO_BSTR bstrIn);

If a BSTR reference is maintained by the instance, the reference is released. The instance maintains the reference on the BSTR
object assigned to the instance. Returns the reference assigned.

CTempBSTR::operator &

SQLDMO_BSTR* operator & ();

Returns a pointer to the memory maintaining a BSTR object reference as a pointer to a SQLDMO_BSTR.

CTempBSTR::operator !

BOOL operator ! ();

Returns FALSE when an instance maintains a reference on a BSTR object. Returns TRUE otherwise.

SQL-DMO (SQL Server 2000)

CTempOLERef
CTempOLERef

The CTempOLERef template class wraps any OLE object. When used to maintain references on OLE objects returned by SQL-
DMO, the class ensures that references are released when:

An instance of the class is destroyed.

An instance of the class is maintaining an existing reference and is assigned a new reference.

Member Functions

CTempOLERef::CTempOLERef

CTempOLERef();

CTempOLERef(OLEPTR pIn);

Creates an instance of the class.

CTempOLERef::p

OLEPTR p();

Returns an OLEPTR (pointer to an OLE object) from the instance without incrementing the reference count maintained on the OLE
object. Returns NULL if the instance is not maintaining a reference.

CTempOLERef::Release

void Release();

Safely releases a reference maintained by the instance on an OLE object. The function is provided for class completeness. Class
destruction and assignment operator implementations ensure reference release, and the use of Release is not required by an
application.

Operators

CTempOLERef::operator OLEPTR

operator OLEPTR ();

Returns the reference maintained by the instance as an OLEPTR. Returns NULL if the instance is not maintaining a reference.

CTempOLERef::operator LPUN KN OWN

operator LPUNKNOWN ();

Returns the reference maintained by the instance as an LPUNKNOWN. Returns NULL if the instance is not maintaining a
reference.

CTempOLERef::operator void*

operator void* ();

Returns a void pointer to the memory maintaining an OLE object reference.

CTempOLERef::operator BOOL

operator BOOL ();

Returns TRUE when an instance maintains a reference on a BSTR object. Returns FALSE otherwise.

CTempOLERef::operator =

OLEPTR operator = (OLEPTR pIn);

If an OLE object reference is maintained by the instance, the reference is released. The instance maintains the reference on the
OLE object assigned to the instance. Returns the reference assigned.

CTempOLERef::operator &

OLEPTR* operator & ();

Returns a pointer to the memory maintaining an OLE object reference as a pointer to an OLEPTR.

CTempOLERef::operator !

BOOL operator ! ();

Returns FALSE when an instance maintains a reference on a BSTR object. Returns TRUE otherwise.

CTempOLERef::operator ->

OLEPTR operator -> ();

Returns the reference maintained by the instance as an OLEPTR. Returns NULL if the instance is not maintaining a reference.

Implements member function derefencing for the OLE object reference wrapped.

SQL-DMO (SQL Server 2000)

C/C++ Shortcuts
As an aid to the C++ developer, shortcuts are implemented to assist collection member handling and object list handling.

SQL-DMO (SQL Server 2000)

Collection Handling
Collection Handling

SQL-DMO implements collection handling member functions within the parent object of any collection. For example, without the
shortcut member functions, the application that requires an item from a SQL-DMO collection would:

Get the parent object of the collection.

Get a reference on the collection.

Use the ItemByName or ItemByOrd member function of the collection to dereference a specific collection item.

Using a shortcut member function, the application can:

Get the parent object of the collection.

Use the ByName or ByOrd shortcut member function of the parent object to dereference a specific collection item.

Shortcut member function naming is consistent, following the rules illustrated in this table.

Collection implementation Parent implementation
GetItemByName GetObjectByName
GetItemByOrd GetObjectByOrd
RemoveByName RemoveObjectByName
RemoveByOrd RemoveObjectByOrd
Add AddObject
GetCount GetObjectCount

Replace Object in the rule description with the name of the object contained in the collection, as in GetDatabaseByName.

Shortcut member function syntax follows that defined in the SQL-DMO reference for the item member functions used by the
collection. For example, the GetItemByName member function of the Database object has the syntax:

HRESULT GetItemByName(SQLDMO_LPCSTR szName,
LPSQLDMODATABASE *ppObj,
SQLDMO_LPCSTR szOwner = NULL);

The GetDatabaseByName member function of the SQLServer object has the syntax:

HRESULT GetDatabaseByName(SQLDMO_LPCSTR szName,
LPSQLDMODATABASE *ppDatabase,
SQLDMO_LPCSTR szOwner = NULL);

SQL-DMO collection support for any specific member function is discussed in detail in documentation for a collection object. Use
collection documentation to determine presence of specific collection member functions and shortcut member functions
implemented on the parent object.

SQL-DMO (SQL Server 2000)

Defined List Types
Defined List Types

Where appropriate, SQL-DMO member functions that return a reference on a SQLObjectList object are implemented to return a
reference on a typed list of objects. For example, the ListIndexedColumns member function, that returns an SQLObjectList
object enumerating the columns on which a Microsoft® SQL Server™ index is defined, uses the syntax:

HRESULT ListIndexedColumns(LPSQLDMOCOLUMNLIST* ppList);

That the list object returned contains only SQL-DMO Column objects is visible from the function prototype, and for the C/C++
application developer, the typed list forces a specific type recognition and aids in program readability.

SQL-DMO defines the following object list types.

Type SQLObjectList object contains
LPSQLDMODBOBJECTLIST DBObject objects
LPSQLDMOPERMISSIONLIST Permission objects
LPSQLDMOCONFIGVALUELIST ConfigValue objects
LPSQLDMOBACKUPDEVICELIST BackupDevice objects
LPSQLDMOCOLUMNLIST Column objects
LPSQLDMOUSERDEFINEDDATATYPELIST UserDefinedDatatype objects
LPSQLDMOSTOREDPROCEDURELIST StoredProcedure objects
LPSQLDMOLOGINLIST Login objects
LPSQLDMOUSERLIST User objects
LPSQLDMODATABASELIST Database objects
LPSQLDMOKEYLIST Key objects

SQL-DMO (SQL Server 2000)

Helpful Macros
Helpful Macros

These macros, assisting the C/C++ developer, are defined within Sqldmo.h.

SQLDMOCategory_UseDefault

For the Category property of the Alert, Job, and Operator object, SQL-DMO defines the macro SQLDMOCategory_UseDefault
as TEXT("[DEFAULT]"). Use the macro when setting the property, as in:

pAlert->SetCategory(SQLDMOCategory_UseDefault);

SQLDMOTargetServer_Local

For the ApplyToTargetServer and RemoveFromTargetServer methods of the Job object, SQL-DMO defines the macro
SQLDMOTargetServer_Local as TEXT("(local)"). Use the macro when altering job execution target, as in:

pJob->ApplyToTargetServer(SQLDMOTargetServer_Local);

SQLDMOAlert_NoJob

For the JobID property of the Alert object, SQL-DMO defines the macro SQLDMOAlert_NoJob as
TEXT("00000000000000000000000000000000"). Use the macro to test or change the value of the property.

SQLDMO_ECAT_MASK

SQL-DMO errors enumerated by the SQLDMO_ERROR_TYPE data type are defined as groups of related errors.

SQL-DMO defines the macro SQLDMO_ECAT_MASK as 0x5F00. Use the macro to mask an error returned by SQL-DMO, as in:

// Handle insufficient privilege error.
if (SQLDMO_ECAT_UNPRIVILEGEDLOGIN == (hr & SQLDMO_ECAT_MASK))
{
// Execeptional processing for attempt to perform modification.
}

SQL-DMO (SQL Server 2000)

SQL-DMO Samples
The following samples illustrate Microsoft® SQL Server™ 2000 SQL-DMO application development in Microsoft Visual C++®
and Microsoft Visual Basic®.

Sample Description
Soc C language sample. Creates an instance of a SQLServer

object and calls the Connect member function.
BackRestEvents (C++) C++ language sample. Illustrates using SQL Server to

backup and restore a database, and uses events to report
the current status.

Dmoping C++ language sample. Uses the PingSQLServerVersion
method to query an instance of SQL Server. Illustrates
using SQL-DMO in an environment containing multiple
instances of SQL Server.

Smartptr C++ language sample. Illustrates SQL-DMO development
using COM object support built into Visual C++ 5.0

Socpp C++ language sample. Creates an instance of a
SQLServer object and calls the Connect member
function.

AxSQLDMOCtl Visual Basic sample. Demonstrates how to create a User
Control that uses SQLDMO

BackRestEvents (Visual
Basic)

Visual Basic sample. Illustrates using SQL Server to
backup and restore a database, and uses events to report
the current status.

BackupDevice Visual Basic sample. Demonstrates how to use the
BackupDevice Object to add and remove a backup
device

CreateDatabase Visual Basic sample. Demonstrates how to create a
database.

CreateTable Visual Basic sample. Demonstrates how to create and
alter tables.

DMOExplorer Visual Basic sample. Walks the DMO object model and
displays the values in it.

Enums Visual Basic sample. Demonstrates how to use the
SQLServer enumeration methods.

Explore Visual Basic sample. Illustrates using SQL-DMO to browse
SQL Server configuration in an enterprise.

Idxtest Visual Basic sample. Illustrates using SQL-DMO to build
and test the benefit of SQL Server indexes.

Login Visual Basic sample. Demonstrates how to locate the
available SQL servers and log in to them.

Registry Visual Basic sample. Demonstrates how to use the SQL
DMO object model to find Registry information for an
instance of SQL Server.

Service Visual Basic sample. Demonstrates how to use the
SQLServer object to check the status of the service, and
to start and stop it.

SQLScripts Visual Basic sample. Demonstrates how to generate SQL
scripts to recreate various SQL Server objects.

VerifyBackup Visual Basic sample. Demonstrates how to find backup
devices and verify the backup set.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_sqldmo.exe, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo

All samples include a project file applicable to the language used.

The SQL-DMO C and C++ samples have been built for the Microsoft® Windows® 95, Windows® 98, Windows NT® 4.0, and
Windows 2000 operating systems.

For C and C++ sample compilation, the Microsoft SQL Server™ development files must be installed to obtain the SQL-DMO
header files. After installation, set your compiler include directory path to contain C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include so that the compiler can access the Sqldmo.h and Sqldmoid.h files.

Prerequisites

C and C++ samples require Microsoft Visual C++ version 6.0. Visual Basic samples require Microsoft Visual Basic version 6.0.

See Also

Samples

SQL-DMO (SQL Server 2000)

AxSQLDMOCtl
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to create a User Control that uses SQLDMO.

Default Location

C:\Program Files\
Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\AxSQLDMOCtl

Running the Sample

1. Open the SQLDMOActiveX.vbg project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

BackRestEvents (Visual Basic)
The Visual Basic BackRestEvents sample demonstrates how to backup and restore a SQL Server database using the SQL-DMO
Backup and Restore objects. The sample also illustrates handling Backup and Restore object events.

Default Location

C:\Program Files
\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\BackRestEvents

Running the Sample

1. Open the BackRestEvents.vbp project.

2. Run the application.

Remarks

The BackRestEvents sample contains a single form, which solicits login information from the user.

Upon successful connection to an instance of Microsoft® SQL Server™, the user selects a database to backup or restore, a file
name, and a location, using the Database To Backup/Restore list, and the Backup/Restore File Name box. The user specifies
which operation to perform by clicking Backup or Restore.

Backup or Restore object event values are displayed in the Status box at the bottom of the form.

Note Although the sample allows the user to use either Windows Authentication or SQL Server Authentication, the
recommended method for connecting to an instance of SQL Server 2000 is to use Windows Authentication mode.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

BackRestEvents (C++)
The C++ BackRestEvents sample demonstrates how to backup and restore a SQL Server database using the SQL-DMO Backup
and Restore objects. The sample also illustrates handling Backup and Restore object events.

Default Location

C:\Program Files
\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Cpp\BackRestEvents

Running the Sample

1. Open the BackRestEvents.dsw workspace.

2. Run the application.

Remarks

The BackRestEvents sample contains a single form, which solicits login information from the user.

Upon successful connection to an instance of Microsoft® SQL Server™, the user selects a database to backup or restore, a file
name, and a location, using the Database To Backup/Restore list, and the Backup/Restore File Name box. The user specifies
which operation to perform by clicking Backup or Restore.

Backup or Restore object event values are displayed in the Status box at the bottom of the form.

Note Although the sample allows the user to use either Windows Authentication or SQL Server Authentication, the
recommended method for connecting to an instance of SQL Server 2000 is to use Windows Authentication mode.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

BackupDevice
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to use the BackupDevice Object to add and remove a backup
device.

This is not intended to be a complete production application. It does not test to ensure that non-file based device types are valid
on your system.

Default Location

C:\Program Files\
Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\BackupDevice

Running the Sample

1. Open the AddRemoveBackupDevice.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

CreateDatabase
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to create a database.

Default Location

C:\Program Files\
Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\CreateDatabase

Running the Sample

1. Open the CreateDatabase.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

CreateTable
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to create and alter tables.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\CreateTable

Running the Sample

1. Open the CreateTable.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

DMOExplorer
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample traverses the DMO object model, displaying its values. It does this by using the
Typelib Information COM Object to read the type library exposed by SQL DMO. This technique can be used to show the object
model of a COM object, but it is not recommended in a production environment.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\DMOExplorer

Running the Sample

1. Open the DMOExplorer.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Dmoping
The Dmoping sample illustrates version-independent SQL-DMO application development. The sample demonstrates using the
SQL-DMO version 7.0 PingSQLServerVersion function to determine the version of an instance of Microsoft® SQL Server™.
Based on the instance, Dmoping creates an instance of a version-specific SQLServer object, then uses that object in additional
processing.

Default Location

C:\Program Files\
Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\cpp\dmoping

Running the Sample

1. Open the Dmoping.dsw project.

2. Run the application.

Remarks

Applications developed using SQL-DMO version 7.0 or later cannot connect to or administer instances of SQL Server released
prior to 7.0. Applications that must administer instances of SQL Server version 7.0 or earlier can simultaneously reference the
SQL-DMO version 7.0 object library and a version of the library released prior to version 7.0.

The sample shows:

Creating an instance of a SQLServer object.

Calling the PingSQLServerVersion function to determine the version of an instance of SQL Server.

Creating and connecting a version-specific instance of a SQL-DMO SQLServer object based on the PingSQLServerVersion
return value.

The Dmoping sample is a console application.

Dmoping requires Microsoft Visual C++® version 6.0 or later. Project files for Visual C++ (.dsp and .dsw extensions) are included.
In the project files, build configurations are defined for computers using Intel® or compatible processors. All configurations
create a Unicode application.

Dmoping illustrates using SQL-DMO in an environment containing multiple versions of SQL Server. In addition to an installation
of SQL-DMO version 7.0 or later, Dmoping requires installation of SQL-DMO version 6.5 or earlier.

Functions and Methods Illustrated

Application::GetDBLibraryVersionString pApplication::GetVersionMinor
Application::GetODBCVersionString Release
Application::GetVersionBuild SQLServer::Connect
Application::GetVersionMajor SQLServer::DisConnect
CoCreateInstance SQLServer::GetApplication
ErrorInfo::GetDescription SQLServer::PingSQLServerVersion
ErrorInfo::GetSource SQLServer::SetLoginSecure
GetErrorInfo SysFreeString

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Enums
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to use the SQLServer enumeration methods.

It also shows a way to use recordset objects to show the values in a returned QueryResult.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Enums

Running the Sample

1. Open the SQLDMOEnums.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Explore
The Explore sample guides a user through the SQL-DMO object tree, displaying the contents of collections and the properties of
objects. The sample illustrates using the Properties collection and handling SQLServer2 object events.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\vb\explore

Running the Sample

1. Open the Explore.vbp project.

2. Run the application.

Remarks

The Explore sample contains a single form, shown in the illustration. The form solicits login information from the user.

Upon successful connection to an indicated instance of Microsoft® SQL Server™, SQLServer2 object properties and their values
are displayed in the box at the bottom of the form. The first combo box is enabled, containing SQL-DMO objects and collections
dependent upon the SQLServer2 object. User selection in the combo boxes and lists navigates the user through the configuration
of the indicated server.

The Explore sample makes heavy use of the automated properties collection available to automation controllers in iterating
property names and their values. The Explore sample is only compatible with instances of SQL Server 2000 because it iterates
many properties that are only compatible with instances SQL Server 2000. An application that also must be compatible with
earlier versions of SQL Server can use the VersionMajor property to determine the version of the server to which it connects
prior to referencing a specific property or method. For information about compatibility of a specific SQL-DMO object, property, or
method, refer to the specific topic in SQL-DMO Reference.

Note Although the sample allows the user to use either Windows Authentication or SQL Server Authentication, the
recommended method for connecting to an instance of SQL Server 2000 is to use Windows Authentication mode.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Idxtest
The Idxtest application illustrates using SQL-DMO to test optimization strategies for stored procedures and views. The sample
uses dependency enumeration to determine objects dependent upon a Microsoft® SQL Server™ table. The user can then create
test indexes and execute selected stored procedures or views and view execution time with or without the test index.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\vb\idxtest

Running the Sample

1. Open the Idxtest.vbp project.

2. Run the application.

Remarks

The Idxtest sample contains two forms. The main form, shown in the illustration, solicits login information from the user and
connects to the indicated server.

Upon successful connection, the user can browse databases and tables to generate a list of dependent stored procedures and
views.

With one or more views or stored procedures selected in the list, the test command and results grid is enabled. Click Test stored
proc(s) to execute a selected stored procedure, or a SELECT * FROM query on the view, capturing execution time in the results
grid.

The columns of the selected table are displayed in the index creation lists. To create an index for testing, use Add>> to move
columns to the Columns in index list, then click Create index for test to create the index and populate it.

Objects, Methods, and Properties Illustrated

Column.Name QueryResults.GetColumnBool
Columns.Item QueryResults.GetColumnLong
Database.ExecuteWithResults QueryResults.GetColumnString
Database.ExecuteWithResultsAndMessages QueryResults.Rows
Database.Name StoredProcedure.EnumParamters
Databases.Item SQLServer.ApplicationName
Index.IndexedColumns SQLServer.Connect
Index.Name SQLServer.DisConnect

Index.Remove SQLServer.LoginSecure
Index.Type Table.EnumDependencies
Indexes.Add Table.Name
New SQLDMO.Index Tables.Item

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Login
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to locate the available SQL servers and log in to them. It also
demonstrates how to use SQLDMO events to determine if the login was successful or not.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Login

Running the Sample

1. Open the SQLServersLogin.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Registry
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to use the SQL DMO object model to find Registry information
for an instance of SQL Server.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Registry

Running the Sample

1. Open the SQLDMORegistry.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Service
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to use the SQLServer object to check the status of the service,
and to start and stop it.

This sample does not have all error trapping necessary to use in a production environment where servers may or may not be
running, paused, or stopped. It also uses server groups to locate the available servers, therefore it assumes that the machines
hosting those servers are running.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\Service

Running the Sample

1. Open the SQLServerServices.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Smartptr
The Smartptr sample illustrates using specific Microsoft® Visual C++® COM development features to reduce program source
size and speed development.

Default Location

C:\Program Files\
Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\cpp\Smartptr

Running the Sample

1. Open the Smartptr.dsw workspace.

2. Run the application.

Remarks

The sample shows:

Using the #import directive to create smart pointers from the localized SQL-DMO type library.

Creating an instance of a SQLServer object.

Using smart pointers to manipulate SQLServer and QueryResults object properties and methods, including:
Setting SQLServer object properties such as LoginTimeout and NetPacketSize.

Calling the SQLServer object methods Connect and Close.

Calling the ExecuteWithResults method to execute a Transact-SQL command batch and capture results.

Setting and getting QueryResults object properties such as CurrentResultSet and Columns.

Displaying result set members by using the QueryResults object GetColumnString method.
Error handling in a C++ application using smart pointers.

The Smartptr sample is a console application.

Smartptr requires Visual C++ 5.0 or later. Project files for Visual C++ (.dsp and .dsw extensions) are included. In the project files,
build configurations are defined for computers using Intel or compatible processors. All configurations create a multibyte
character application.

Objects, Methods, and Properties Illustrated

CoCreateInstance QueryResults.ResultSets
Err QueryResults.Rows
Err.Description Release
Err.Error spSQLServer.Close
Err.ErrorMessage SQLServer
Err.Source SQLServer.ApplicationName
QueryResults SQLServer.Connect
QueryResults.ColumnName SQLServer.ExecuteWithResults
QueryResults.Columns SQLServer.HostName
QueryResults.CurrentResultSet SQLServer.LoginTimeout
QueryResults.GetColumnString SQLServer.NetPacketSize

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Soc
The Soc sample illustrates using C as a development language for SQL-DMO applications.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\c\soc

Running the Sample

1. Open the Soc.dsw workspace.

2. Run the application.

Remarks

The sample shows:

How to create an instance of a SQL-DMO object.

How to access a SQL-DMO object's member functions when using C.

The Soc sample is a console application.

Build Configurations

Soc.mak contains nmake configurations for Intel®.

Build target CFG parameter Output directory
Intel x86 debug "soc - Win32 Debug" Debug
Intel x86 release "soc - Win32 Release" Release

Functions and Methods Illustrated

CoCreateInstance SQLServer::Connect
Release SQLServer::SetLoginTimeout

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

Socpp
The Socpp sample illustrates using C++ as a development language for SQL-DMO applications.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\sqldmo\cpp\socpp

Running the Sample

1. Open the Socpp.dsw workspace.

2. Run the application.

Remarks

The sample shows:

How to create an instance of a SQL-DMO object.

How to access a SQL-DMO object's member functions when using C++.

Error handling in a C++ application.

The Socpp sample is a console application.

Build Configurations

Socpp.mak contains nmake configurations for Intel®.

Build target CFG parameter Output directory
Intel x86 debug "socpp - Win32 Debug" Debug
Intel x86 release "socpp - Win32 Release" Release

Functions Illustrated

Application::GetName SQLServer::Connect
CoCreateInstance SQLServer::GetApplication
ErrorInfo::GetDescription SQLServer::GetVersionMajor
ErrorInfo::GetSource SQLServer::GetVersionString
GetErrorInfo SQLServer::SetLoginTimeout
Release SysFreeString

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

SQLScripts
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to generate SQL scripts to recreate various SQL Server objects.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\SQLScripts

Running the Sample

1. Open the SQLScript.vbp project.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

VerifyBackup
This sample illustrates using SQL Distributed Management Objects (SQL-DMO) objects supplied with Microsoft® SQL Server™
2000. This Microsoft® Visual Basic® sample demonstrates how to find backup devices and verify the backup set.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqldmo\Vb\VerifyBackup

Running the Sample

1. Open the VerfyBackup.vbp.

2. Run the application.

See Also

SQL-DMO Samples

SQL-DMO (SQL Server 2000)

SQL-DMO Examples
This section contains examples illustrating Microsoft® SQL Server™ administration using SQL-DMO objects. All examples are
implemented using Microsoft Visual Basic®.

The examples contained here are brief, many accomplishing a part of a larger task. Their purpose is to provide, by illustration,
additional documentation for SQL-DMO.

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Alerts and Notification
These examples illustrate creating SQL Server Agent alerts and assigning responses made when an alert is raised.

SQL-DMO (SQL Server 2000)

Creating Alerts
Creating Alerts

These examples illustrate creating SQL Server Agent alerts.

A SQL Server Agent alert has, at least, a name and a definition of an event that raises the alert. When using SQL-DMO to create
SQL Server Agent alerts:

Create an Alert object.

Set the Name property.

Set either the MessageID, PerformanceCondition, or Severity property to indicate the event that will raise the alert.

Add the Alert object to an Alerts collection.

Setting more than a single event property causes an error.

Examples

A. Creating an Alert Based on a SQL Server Error

This example illustrates creating a SQL Server Agent alert raised when a Microsoft® SQL Server™ error condition occurs. The
alert created is constrained to be raised only if the error condition occurs in the Northwind database.

' Create an Alert object and set its Name property.
Dim oAlert As New SQLDMO.Alert
oAlert.Name = "Max filesize exceeded"

' Error 5176: The file '%.*ls' has been expanded beyond its
' maximum size to prevent recovery from failing. Contact the
' system administrator for further assistance.
oAlert.MessageID = 5176
oAlert.DatabaseName = "Northwind"

' Create the alert by adding the Alert object to its containing
' collection. Note: Create and connect of SQLServer object used
' not illustrated in this example.
oSQLServer.JobServer.Alerts.Add oAlert

B. Creating an Alert Based on a Performance Condition

This example illustrates creating a SQL Server Agent alert raised when a monitored performance counter value is exceeded.

' Create an Alert object and set its Name property.
Dim oAlert As New SQLDMO.Alert
oAlert.Name = "Batch Requests High"

' Performance monitor counter...
' Object: SQLServer:SQL Statistics
' Counter: Batch Requests/sec
' Instance: none
oAlert.PerformanceCondition = _
 "SQLServer:SQL Statistics|Batch Requests/sec||>|750"

' Create the alert by adding the Alert object to its containing
' collection. Note: Create and connect of SQLServer object used
' not illustrated in this example.
oSQLServer.JobServer.Alerts.Add oAlert

See Also

Alert Object

PerformanceCondition Property

MessageID Property

Severity Property

SQL-DMO (SQL Server 2000)

Handling Raised Alerts (Notification)
Handling Raised Alerts (Notification)

These examples illustrate configuring SQL Server Agent alerts so that operators can be notified or administrative action can be
taken.

In response to raised alerts, SQL Server Agent can notify operators or run jobs or both.

Examples

A. N otifying an Operator when an Alert is Raised

This example illustrates creating a SQL Server Agent operator notification as a response to a raised alert.

' Get the Alert object referencing the targeted alert. Note: Create and
' connect of SQLServer object used not illustrated in this example.
Dim oAlert As SQLDMO.Alert
Set oAlert = oSQLServer.JobServer.Alerts("Batch Requests High")

' Configure the alert response, adding operator notification by email
' and network popup message.
oAlert.AddNotification "anned", _
 SQLDMONotify_Email Or SQLDMONotify_NetSend

B. Running a Job when an Alert is Raised

This example illustrates altering a SQL Server Agent alert, configuring it for job execution as a response.

Dim oAlert As SQLDMO.Alert
Dim oJob As SQLDMO.Job

' Get the Alert object referencing the targeted alert, and the Job
' object referencing the job run in response. Use the Job object to
' determine the job identifier, uniquely identifying a SQL Server
' Agent job. Note: Create and connect of SQLServer object used not
' illustrated in this example.
Set oAlert = oSQLServer.JobServer.Alerts("Max filesize exceeded")
Set oJob = oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

' Modify the alert by setting the JobID property of the Alert object
' and committing the change.
oAlert.BeginAlter
oAlert.JobID = oJob.JobID
oAlert.DoAlter

See Also

AddNotification Method

Alert Object

JobID Property

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Backup and Restore
Backup and restore examples illustrate performing common Microsoft® SQL Server™ database and log backup and restore
operations by using SQL-DMO.

For SQL Server, backup operations can create a stable image of an entire database or some discrete part of the database. A
backup can contain all data in a database or only that data modified since the last backup. Selection of a backup methodology is
based on application implementation details, such as size of a database or transaction rate, and will vary from one instance of SQL
Server to another. For more information about selection of a backup strategy, see Backing Up and Restoring Databases.

Backup and restore operations performed by using the Backup and Restore objects can be long-running and can require user
intervention to complete, such as changing the tape in a tape device. SQL-DMO implements events on the Backup and Restore
objects allowing user notification of backup progress and signaling on exhaustion of media. For more information about using
SQL-DMO Backup and Restore object events, see Handling SQL-DMO Events.

SQL-DMO (SQL Server 2000)

Backing Up a Database
Backing Up a Database

Database backup examples illustrate backup operations against an entire database.

When using SQL-DMO to perform a backup operation against an entire database, the Backup object used provides, at least, a
source database and a target device. A backup against an entire database can back up all data (complete) or only that data
changed after the last backup (differential).

Use database backup when backup of the database transaction log is not part of a database maintenance plan. Small databases
and databases that change infrequently are good targets for database backup. When these conditions exist, regular complete
backup, or an initial complete backup and subsequent, intermittent differential backups, can safely protect data in most cases.

Examples

A. Performing a Complete Database Backup

This example illustrates using SQL-DMO to perform a complete database backup.

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Database
oBackup.Database = "Northwind"

' Example illustrates a striped backup using two target devices. Note:
' Device creation is not illustrated in this example.
oBackup.Devices = "[NorthDev1],[NorthDev2]"

' Optional. Backup set name and description properties provide
' descriptive text when backup header is displayed for the device(s).
oBackup.BackupSetName = "Northwind_Full"
oBackup.BackupSetDescription = "Full backup of Northwind sample."

' Call SQLBackup method to perform the backup. In a production
' environment, consider wrapping the method call with a wait pointer
' or use Backup object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oBackup.SQLBackup oSQLServer

B. Performing a Differential Backup on a Database

This example illustrates using SQL-DMO to perform a differential database backup.

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Differential
oBackup.Database = "Northwind"

' Example illustrates backup implemented to a single operating system
' file. A file naming convention could be easily applied allowing
' rapid identification of a specific differential backup.
oBackup.Files = "c:\program files\microsoft sql server\mssql\backup\NorthDiff.bak"

' Optional. When backup is directed to one or more files, set media
' name, backup set name and description to provide in-file documentation
' of the file and backup set contained.
oBackup.MediaName = "NorthDiff.bak " & Date & " " & Time
oBackup.BackupSetName = "NorthDiff"
oBackup.BackupSetDescription = _
 "Differential backup of Northwind sample."

' Call SQLBackup method to perform the backup. In a production
' environment, consider wrapping the method call with a wait pointer
' or use Backup object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oBackup.SQLBackup oSQLServer

See Also

Backup Object

SQLServer Object

SQL-DMO (SQL Server 2000)

Backing up Selected Portions of a Database
Backing up Selected Portions of a Database

Backing up selected portions of a database examples illustrate backup operations against a discrete subset of database data.

When using SQL-DMO to perform a backup operation against a portion of a database, the Backup object used provides, at least,
a source database, the source portion, and a target device. A backup against a subset of database data can back up all data in an
operating system file implementing database storage, all data in all files within a filegroup, or committed transaction log records.

Generally, backup of a portion of a database is chosen when backup of an entire database is not a viable option due to database
size or high-frequency of transactions. However, backup of a file or filegroup can be an effective strategy even for relatively small
databases when server configuration lends itself to a file-based backup operation.

Examples

A. Backing Up a Database File

This example illustrates using SQL-DMO to perform a backup of a single operating system file implementing database storage.

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Files
oBackup.Database = "Northwind"

oBackup.DatabaseFiles = "Northwind_txt1"

' Example illustrates backup implemented to a single operating system
' file. A file naming convention could be easily applied allowing
' rapid identification of a specific backup.
oBackup.Files = "c:\program files\microsoft sql server\mssql\backup\NorthText.bak"

' Optional. When backup is directed to one or more files, set media
' name, backup set name and description to provide in-file documentation
' of the file and backup set contained.
oBackup.MediaName = "NorthText.bak " & Date & " " & Time
oBackup.BackupSetName = "NorthDBFileText"
oBackup.BackupSetDescription = _
 "Backup of a database file by logical name."

' Call SQLBackup method to perform the backup. In a production
' environment, consider wrapping the method call with a wait pointer
' or use Backup object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oBackup.SQLBackup oSQLServer

B. Backing Up a Database Filegroup

This example illustrates using SQL-DMO to perform a backup of operating system file implementing the PRIMARY filegroup of a
database.

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Files
oBackup.Database = "Northwind"

oBackup.DatabaseFileGroups = "PRIMARY"

' Example illustrates backup implemented to a single operating system
' file. A file naming convention could be easily applied allowing
' rapid identification of a specific backup.
oBackup.Files = "c:\program files\microsoft sql server\mssql\backup\NorthFGPrim.bak"

' Optional. When backup is directed to one or more files, set media
' name, backup set name and description to provide in-file documentation
' of the file and backup set contained.
oBackup.MediaName = "NorthFGPrim.bak " & Date & " " & Time
oBackup.BackupSetName = "NorthFGPrim"
oBackup.BackupSetDescription = _
 "Backup of PRIMARY filegroup of Northwind sample."

' Call SQLBackup method to perform the backup. In a production

' environment, consider wrapping the method call with a wait pointer
' or use Backup object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oBackup.SQLBackup oSQLServer

C. Backing Up a Database Transaction Log

This example illustrates using SQL-DMO to perform a backup of a database transaction log.

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Log
oBackup.Database = "Northwind"

' Example illustrates a striped backup using two target devices. Note:
' Device creation is not illustrated in this example.
oBackup.Devices = "[NorthDev1],[NorthDev2]"

' Optional. Backup set name and description properties provide
' descriptive text when backup header is displayed for the device(s).
oBackup.BackupSetName = "Northwind_Log_" & Date & "_" & Time
oBackup.BackupSetDescription = _
 "Backup of Northwind sample database transaction log."

' Call SQLBackup method to perform the backup. In a production
' environment, consider wrapping the method call with a wait pointer
' or use Backup object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oBackup.SQLBackup oSQLServer

See Also

Backup Object

SQLServer Object

SQL-DMO (SQL Server 2000)

Scripting a Database Backup For Scheduled Execution
Scripting a Database Backup For Scheduled Execution

Some SQL-DMO objects supporting Transact-SQL command batch generation from objects representing Microsoft® SQL
Server™ administrative tasks. The command batch generated can be used to create a SQL Server Agent job which can be
scheduled for execution.

This example illustrates backup operation definition and creation of a Transact-SQL command batch representing the operation.
For more information about creating and scheduling SQL Server Agent jobs by using SQL-DMO, see SQL-DMO Examples: Jobs
and Schedules.

' Dimension a string object used to capture the Transact-SQL command
' batch implementing the backup.
Dim strBackup as String

' Create a Backup object and set action and source database properties.
Dim oBackup As New SQLDMO.Backup
oBackup.Action = SQLDMOBackup_Files
oBackup.Database = "Northwind"

' Example illustrates backup of multiple file groups.
oBackup.DatabaseFileGroups = "[PRIMARY],[NorthwindTextImg]"

' Example illustrates a striped backup using two target devices. Note:
' Device creation is not illustrated in this example.
oBackup.Devices = "[NorthDev1],[NorthDev2]"

' Optional. Backup set name and description properties provide
' descriptive text when backup header is displayed for the device(s).
oBackup.BackupSetName = "Northwind_FileGroups_" & Date & "_" & Time
oBackup.BackupSetDescription = _
 "Backup of PRIMARY and NorthwindTextImg filegroups."

' Call GenerateSQL method to generate the Transact-SQL command batch.
' The command batch returned can provide a value for the Command
' property of a JobStep object.
'
' Note: A connected SQLServer object is not necessary for routine
' execution.
strBackup = oBackup.GenerateSQL

SQL-DMO (SQL Server 2000)

Database Restore
Database Restore

Database backup examples illustrate restore operations performed by using SQL-DMO.

Examples

A. Restoring a Database

This example illustrates a full database restore.

Full database restore is the first step in restoring a Microsoft® SQL Server™ database lost due to hardware failure or other
extreme condition.

Database restore is constrained by the type of backup performed. This example illustrates a restore of a database backed up by
using full database backup and no transaction log backup. When a transaction log backup maintenance strategy is used to create
a chain of backup sets capturing point in time images, the initial full restore must indicate that the backup is the first in the series.
For more information, see the Restoring a Database and Transaction Log Chain example later.

' Create a Restore object and set action and target database properties.
Dim oRestore As New SQLDMO.Restore
oRestore.Action = SQLDMORestore_Database
oRestore.Database = "Northwind"

' Example illustrates restore from a striped backup. Two source devices
' are specified. The full database backup is indicated as the first
' backup set by using the FileNumber property. Note: Device creation is
' not illustrated in this example.
oRestore.Devices = "[NorthDev1],[NorthDev2]"
oRestore.FileNumber = 1

' Optional. ReplaceDatabase property ensures that any existing copy
' of the database is overwritten.
oRestore.ReplaceDatabase = True

' Call SQLRestore method to perform the restore. In a production
' environment, consider wrapping the method call with a wait pointer
' or use Restore object events to provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oRestore.SQLRestore oSQLServer

B. Restoring a Database and Transaction Log Chain

This example illustrates performing a database restore, then applying a log backup chain to roll the database forward to its state
at the last log backup.

When a transaction log backup maintenance strategy is used to create a chain of backup sets capturing point in time images, an
initial full restore of the database must indicate that the backup is the first in the series. Each successive restore of a member of
the log backup set chain is, until the final member, marked to indicate that it is not the last. The final restore is indicated as the last
in the series.

Performing a restore of a database and transaction log backup set chain can be performed using a one or more Restore objects.
This example illustrates using a single Restore object, reconfiguring the object as required, and calling the SQLRestore method
multiple times.

' Create a Restore object and set action and target database properties
' for initial restore of the database.
Dim oRestore As New SQLDMO.Restore
oRestore.Action = SQLDMORestore_Database
oRestore.Database = "Northwind"

' Example illustrates restore from a striped backup. Two source devices
' are specified. The full database backup is indicated as the first
' backup set by using the FileNumber property. Note: Device creation is
' not illustrated in this example.
oRestore.Devices = "[NorthDev1],[NorthDev2]"
oRestore.FileNumber = 1

' Optional. ReplaceDatabase property ensures that any existing copy

' of the database is overwritten.
oRestore.ReplaceDatabase = True

' When restoring a database and log backup set chain, the LastRestore
' property is False for all but the last log chain restored.
oRestore.LastRestore = False

' Call SQLRestore method to perform the restore of the database. In a
' production environment, consider wrapping this entire series of
' method calls with a wait pointer or use Restore object events to
' provide feedback to the user.
'
' Note: Create and connect of SQLServer object used is not
' illustrated in this example.
oRestore.SQLRestore oSQLServer

' Reconfigure Restore object for log chain restoration by resetting the
' Action property.
oRestore.Action = SQLDMORestore_Log

' Example would restore the second backup set from the devices specified
' above.
oRestore.FileNumber = 2

' Setting LastRestore here is redundant, but emphasizes that this is the
' first in a chain of log backup sets.
oRestore.LastRestore = False

' Call SQLRestore method to perform the restore of the first chain
' member.
oRestore.SQLRestore oSQLServer

' Indicate the next member of the chain. In the example, it's the third
' backup set in the devices specified above.
oRestore.FileNumber = 3

' Set LastRestore to indicate that the member is the last in the chain.
oRestore.LastRestore = True

' Call SQLRestore method to perform the restore of the last chain
' member.
oRestore.SQLRestore oSQLServer

See Also

Restore Object

SQLServer Object

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Databases
The database examples illustrate Microsoft® SQL Server™ database creation, and data and log file maintenance tasks automated
by using SQL-DMO.

SQL-DMO (SQL Server 2000)

Altering a Database by Adding a Database File
Altering a Database by Adding a Database File

These examples illustrate altering a database by adding data or log maintaining files.

You can create a Microsoft® SQL Server™ database on one or more data-maintaining operating system files. A database log is,
similarly, created on one or more operating system files. As a database grows, you can add operating system files to those
existing to direct the growth of the database.

When creating a database for SQL Server, database data files are created only in the PRIMARY filegroup. To use filegroups as part
of database maintenance tasks such as backup and restore, alter a database to add a filegroup, then add existing or new database
files to the filegroup.

Examples

A. Adding a Database Data File

This example illustrates adding a database file to the PRIMARY filegroup of an existing database.

Dim oDatabase As SQLDMO.Database
Dim oDBFile As New SQLDMO.DBFile

' Get the Northwind database. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set oDatabase = oSQLServer.Databases("Northwind")

' Define the new data file.
oDBFile.Name = "NorthData2"
oDBFile.PhysicalName = "c:\program files\microsoft sql server\mssql\data\northwn2.mdf"

' Specify an initial size and file growth in chunks of fixed size.
oDBFile.Size = 4
oDBFile.FileGrowthType = SQLDMOGrowth_MB
oDBFile.FileGrowth = 1

oDatabase.FileGroups("PRIMARY").DBFiles.Add oDBFile

B. Adding a Database Log File

This example illustrates adding a database transaction log-maintaining operating system file to an existing database.

Dim oDatabase As SQLDMO.Database
Dim oLogFile As New SQLDMO.LogFile

' Get the Northwind database. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set oDatabase = oSQLServer.Databases("Northwind")

' Define the database transaction log, setting an initial size.
oLogFile.Name = "NorthLog2"
oLogFile.PhysicalName = "c:\program files\microsoft sql server\mssql\data\northwn2.ldf"
oLogFile.Size = 8
oDatabase.TransactionLog.LogFiles.Add oLogFile

C. Adding a Filegroup

This example illustrates adding a filegroup, then using the filegroup when creating a new operating system file used for database
data.

Dim oDatabase As SQLDMO.Database

Dim oFileGroup as New SQLDMO.FileGroup
Dim oDBFile As New SQLDMO.DBFile

' Get the Northwind database. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set oDatabase = oSQLServer.Databases("Northwind")

' Define the new filegroup.
oFileGroup.Name = "fgNorthwindIdx"
oDatabase.FileGroups.Add oFileGroup

' Define the new data file.
oDBFile.Name = "NorthIdx1"
oDBFile.PhysicalName = "c:\program files\microsoft sql server\mssql\data\northix1.mdf"
oDBFile.Size = 2
oDBFile.FileGrowthType = SQLDMOGrowth_MB
oDBFile.FileGrowth = 1

' Alter the database, creating the new file group and data file.
oDatabase.FileGroups("fgNorthwindIdx").DBFiles.Add oDBFile

See Also

Database Object

DBFile Object

FileGroup Object

LogFile Object

TransactionLog Object

SQL-DMO (SQL Server 2000)

Creating a Database
Creating a Database

This example illustrates creating a Microsoft® SQL Server™ database by using SQL-DMO objects.

When using SQL Server Enterprise Manager for database creation, database data files are created so that file growth occurs in
fixed size chunks. By default, a database file created using SQL-DMO exhibits percentage growth behavior. The sample reflects the
default database data file growth settings for SQL Server Enterprise Manager.

The sample does not specify an initial size for either database data or log data files. The default value determined by SQL Server is
used.

Dim oDatabase As New SQLDMO.Database
Dim oDBFileData As New SQLDMO.DBFile
Dim oLogFile As New SQLDMO.LogFile

oDatabase.Name = "Northwind"

' Define the PRIMARY data file.
oDBFileData.Name = "NorthData1"
oDBFileData.PhysicalName = "c:\program files\microsoft sql server\mssql\data\northwnd.mdf"
oDBFileData.PrimaryFile = True

' Specify file growth in chunks of fixed size for all data files.
oDBFileData.FileGrowthType = SQLDMOGrowth_MB
oDBFileData.FileGrowth = 1

oDatabase.FileGroups("PRIMARY").DBFiles.Add oDBFileData

' Define the database transaction log.
oLogFile.Name = "NorthLog1"
oLogFile.PhysicalName = "c:\program files\microsoft sql server\mssql\data\northwnd.ldf"
oDatabase.TransactionLog.LogFiles.Add oLogFile

' Create the database as defined. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
oSQLServer.Databases.Add oDatabase

See Also

Database Object

DBFile Object

FileGroup Object

LogFile Object

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Full-text Indexing
These examples illustrate Microsoft Search full-text index configuration and catalog population.

Examples

A. Creating a M icrosoft Search Full-Text Catalog

The example illustrates enabling a Microsoft® SQL Server™ database for participation in Microsoft Search-supported full-text
indexing and query. Enabling a database is a two-step process. The application flags the database indicating intended
participation, then creates at least one full-text catalog.

' Enable the database for full-text indexing prior to adding the
' FullTextCatalog object to the containing collection. Note: Create
' and connect of SQLServer object used is not illustrated in this
' example.
oSQLServer.Databases("Northwind").EnableFullTextCatalogs

' Create a Microsoft Search full-text catalog.
Dim oFullTextCatalog As New SQLDMO.FullTextCatalog
oFullTextCatalog.Name = "ftcatNorthwind"

' Add the FullTextCatalog object to the collection, creating the
' full-text catalog on the server.
oSQLServer.Databases("Northwind").FullTextCatalogs.Add oFullTextCatalog

B. Indexing a Table for Full-Text Queries

This example illustrates creating a full-text index on a column in a SQL Server table.

Dim oTable As SQLDMO.Table

' Get the Table object referencing the Northwind..Employees table.
' Note: Create and connect of SQLServer object used is not illustrated
' in this example.
Set oTable = oSQLServer.Databases("Northwind").Tables("Employees")

' Indicate that Employees will be full-text indexed and use the
' Microsoft Search full-text catalog created in an earlier example.
oTable.FullTextCatalogName = "ftcatNorthwind"
oTable.UniqueIndexForFullText = "PK_Employees"
oTable.FullTextIndex = True

' Index the Notes column.
oTable.Columns("Notes").FullTextIndex = True

' Activate the full-text index on the table.
oTable.FullTextIndexActive = True

C. Populating a Full-Text Catalog

This example illustrates launching a full population on an existing Microsoft Search full-text catalog.

' Perform a full population on the Microsoft Search full-text
' index catalog created in an earlier example. Note: Create and connect
' of SQLServer object used is not illustrated in this example.
Set oFullTextCatalog = _
 oSQLServer.Databases("Northwind").FullTextCatalogs("ftcatNorthwind")

 oFullTextCatalog.Start (SQLDMOFullText_Full)

Note Microsoft Search full-text catalog population can be a lengthy task. Applications that allow full-text catalog population
should display a busy pointer or other appropriate interface device when using SQL-DMO to direct full-text catalog population.

D. Scheduling Population of a Full-Text Catalog

When using SQL-DMO, the you can implement scheduled population of a Microsoft Search full-text catalog by creating a SQL
Server Agent job. The step(s) of the job execute a Transact-SQL command batch directing catalog population.

This example illustrates creating a job that schedules an incremental full-text catalog population for weekly execution at 1:00 A.M.
of every Sunday.

Dim oJob As New SQLDMO.Job
Dim oJobSchedule As New SQLDMO.JobSchedule

Dim oJobStep As SQLDMO.JobStep
Dim oFullTextCatalog As SQLDMO.FullTextCatalog

Dim iStepID As Long
Dim strDatabase As String
Dim strExecP1, strExecP2 As String

Dim StartYear As String
Dim StartMonth As String
Dim StartDay As String

strDatabase = "Northwind"

' Transact-SQL command batch implementing incremental population
' for a Microsoft Search full-text catalog.
strExecP1 = "EXEC sp_fulltext_catalog '"
strExecP2 = "', 'start_incremental'"

' Create the SQL Server Agent job. Job name format and category
' designation allow job to appear as a schedule property of the
' catalog when the catalog is viewed in SQL Server Enterprise Manager.
' Note: Create and connect of SQLServer object used not illustrated in
' this example.
oJob.Name = "Start_Incremental on Northwind.ftcatNorthwind.[" & _
 oSQLServer.Databases("Northwind").ID & _
 "." & _
 oSQLServer.Databases("Northwind").FullTextCatalogs(1).FullText
 CatalogID & _"]"
oJob.Category = "Full-Text"
oSQLServer.JobServer.Jobs.Add oJob

' Alter the job, adding a step populating each full-text catalog
' defined.
oJob.BeginAlter
iStepID = 1
For Each oFullTextCatalog In _
 oSQLServer.Databases("Northwind").FullTextCatalogs

 Set oJobStep = New SQLDMO.JobStep
 oJobStep.Name = "Northwind_FullText_Incremental_" & iStepID
 oJobStep.DatabaseName = strDatabase
 oJobStep.SubSystem = "TSQL"
 oJobStep.Command = strExecP1 & oFullTextCatalog.Name & strExecP2
 oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure
 oJobStep.OnSuccessAction = SQLDMOJobStepAction_GotoNextStep
 oJobStep.StepID = iStepID

 oJob.JobSteps.Add oJobStep
 iStepID = iStepID + 1
Next oFullTextCatalog

oJob.JobSteps(oJob.JobSteps.Count).OnSuccessAction = _
 SQLDMOJobStepAction_QuitWithSuccess
oJob.StartStepID = 1
oJob.DoAlter

' Alter the job, adding a schedule for full-text catalog population.
oJobSchedule.Name = "Northwind_FullText_Incremental"

' Schedule start date is today's date. Build the string representing
' the date for SQL-DMO.
StartYear = DatePart("yyyy", Date)
StartMonth = DatePart("m", Date)
StartDay = DatePart("d", Date)

If Len(StartMonth) < 2 Then StartMonth = "0" & StartMonth
If Len(StartDay) < 2 Then StartDay = "0" & StartDay

oJobSchedule.Schedule.ActiveStartDate = StartYear & StartMonth & _
 StartDay

' Schedule execution for once, each Sunday at 1:00 AM.
oJobSchedule.Schedule.ActiveStartTimeOfDay = "10000"
oJobSchedule.Schedule.FrequencyInterval = SQLDMOWeek_Sunday

oJobSchedule.Schedule.FrequencyType = SQLDMOFreq_Weekly
oJobSchedule.Schedule.FrequencyRecurrenceFactor = 1

' Schedule never expires.
oJobSchedule.Schedule.ActiveEndDate = SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay = SQLDMO_NOENDTIME

oJob.BeginAlter
oJob.JobSchedules.Add oJobSchedule
oJob.DoAlter

' Target the local server to enable the job.
oJob.ApplyToTargetServer ("(Local)")

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Indexes
This example illustrates using SQL-DMO to create a unique, nonclustered index on a Microsoft® SQL Server™ table.

The IndexedColumns property, a write-only property, is used to specify columns participating in a SQL Server index when the
index is created. The IndexedColumns property value uses the SQL-DMO multistring data type. Column name identifiers in the
string are quoted by using the bracket characters ([]). If more than one column is specified, separate column identifiers using a
comma, as in: [OrderID],[ProductID].

' Get the Products table. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Dim tableProducts As SQLDMO.Table

Set tableProducts = _
oSQLServer.Databases("Northwind").Tables("Products")

' Create a new Index object, then populate the object defining a unique,
' nonclustered index on the indicated filegroup.
Dim idxProductName As New SQLDMO.Index
idxProductName.Name = "idx_Products_ProductName"
idxProductName.FileGroup = "fgNorthwindIdx"
idxProductName.Type = SQLDMOIndex_Unique
idxProductName.IndexedColumns = "[ProductName]"

' Create the index by adding the populated Index object to its
' containing collection.
tableProducts.Indexes.Add idxProductName

See Also

Index Object

IndexedColumns Property

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Jobs and Schedules
Jobs and schedules examples illustrate creating and scheduling SQL Server Agent jobs.

A SQL Server Agent job is named and contains at least one job step. A job step stores a command or language string defining an
administrative task.

A job can be run by SQL Server Agent when it contains at least one step and an execution target. A job can be scheduled, and
when scheduled, SQL Server Agent will run the job as directed by the schedules assigned to the job.

SQL-DMO (SQL Server 2000)

Creating SQL Server Agent Jobs
Creating SQL Server Agent Jobs

These examples illustrate creating SQL Server Agent jobs.

Use SQL-DMO to create a SQL Server Agent job by:

Creating and populating a Job object.

Adding the Job object to the Jobs collection of a JobServer object.

Creating and populating one or more JobStep objects.

Altering the Job object, by adding the JobStep object(s) created to the JobSteps collection.

With the job created, indicate an execution target. For more information about examples, see Targeting SQL Server Agent Jobs.

Note SQL Server Agent implements executable subsystems for job steps. The text defining the administrative task is interpreted
by the selected executable subsystem. In the examples that follow, all job steps in the job created by the example use a single
executable subsystem. This implementation is imposed for clarity only.

Examples

A. Creating a Job Containing a Transact-SQL Command Batch

This example illustrates creating a multistep job. Each job step is defined by using a Transact-SQL command batch.

This example:

Creates a Job object and adds the object to a Jobs collection to create a SQL Server Agent job.

Gets the Tables collection of a Database object.

For each Table object in the collection:
Creates a JobStep object.

Uses the Name property of the Table object to build a Transact-SQL command batch to set the Command
property of the JobStep object.

Builds default job control-of-flow logic.

Adds the JobStep object to the JobSteps collection of the Job object.
Assigns a starting step for the job and adjusts logic for the final step.

Commits job modifications.

' Table object used in iteration over Tables collection.
Dim oTable As SQLDMO.Table

Dim oJob As New SQLDMO.Job
Dim oJobStep As SQLDMO.JobStep
Dim idStep As Integer

' Create the SQL Server Agent job. Job will perform an update
' of all optimizer-supporting data distribution statistics.
oJob.Name = "Northwind_Statistics_Update"
oSQLServer.JobServer.Jobs.Add oJob

' Alter the job, adding job steps and setting starting step.
oJob.BeginAlter

' Each JobStep contains the Transact-SQL command batch
' updating statistics for a table.
idStep = 0

For Each oTable In oSQLServer.Databases("Northwind").Tables
 ' Only applies to user defined tables....
 If oTable.Attributes <> SQLDMOTabAtt_SystemObject Then
 Set oJobStep = New SQLDMO.JobStep

 idStep = idStep + 1

 oJobStep.Name = "Northwind_Statistics_Update_Step_" & idStep
 oJobStep.StepID = idStep

 oJobStep.DatabaseName = "Northwind"
 oJobStep.SubSystem = "TSQL"

 ' TSQL uses the [] syntax to quote table identifers.
 oJobStep.Command = "UPDATE STATISTICS [" & oTable.Name & _
 "] WITH FULLSCAN, NORECOMPUTE"

 ' Default logic. Amended below.
 oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure
 oJobStep.OnSuccessAction = SQLDMOJobStepAction_GotoNextStep

 oJob.JobSteps.Add oJobStep
 End If
Next oTable

' Reset the logic flow for the last job step to indicate success.
oJob.JobSteps.ItemByID(idStep).OnSuccessAction = _
 SQLDMOJobStepAction_QuitWithSuccess

' Set the starting step for the job.
oJob.StartStepID = 1

' Alter the job.
oJob.DoAlter

B. Creating a Job Containing an Operating System Command

This example illustrates creating a single-step job. The job step is defined by using an operating system command.

This example:

Creates a Job object and adds the object to a Jobs collection to create a SQL Server Agent job.

Creates a JobStep object.

Assigns the Command and SubSystem properties to indicate an operating system command.

Adds the JobStep object to the JobSteps collection of the Job object.

Assigns a starting step for the job and job logic.

Commits job modifications.

Dim oJob As New SQLDMO.Job
Dim oJobStep As New SQLDMO.JobStep

Dim strQuote As String

strQuote = Chr$(34)

' Create the SQL Server Agent job. Job will send a network
' popup message.
oJob.Name = "NetSend"
oSQLServer.JobServer.Jobs.Add oJob

' Alter the job, adding job steps and setting starting step.
oJob.BeginAlter

' The job is implemented using a single step.
oJobStep.Name = "NetSend_1"
oJobStep.StepID = 1

' Set the job step exucatable subsystem. For operating
' system command job steps, the subsystem is "CmdExec"
oJobStep.SubSystem = "CmdExec"

' Job step script is:
'
' Net Send SEATTLE1 "Now is the time for all good men " & _
' "to come to the aid of the party."
oJobStep.Command = _
 "Net Send SEATTLE1 " & strQuote & _
 "Now is the time for all good men to come to the " & _
 "aid of the party." & strQuote

' Logic for a single-step job.
oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure
oJobStep.OnSuccessAction = SQLDMOJobStepAction_QuitWithSuccess

oJob.JobSteps.Add oJobStep

' Set the starting step for the job.
oJob.StartStepID = 1

' Alter the job.
oJob.DoAlter

C. Creating a Job Containing an Active Script Command

This example illustrates creating a single-step job. The job step is defined by using a Microsoft ActiveX® script language.

This example:

Creates a Job object and adds the object to a Jobs collection to create a SQL Server Agent job.

Creates a JobStep object.

Assigns the Command, SubSystem, and DatabaseName properties to indicate an ActiveX language script.

Adds the JobStep object to the JobSteps collection of the Job object.

Assigns a starting step for the job and job logic.

Commits job modifications.

Dim oJob As New SQLDMO.Job
Dim oJobStep As New SQLDMO.JobStep

Dim strNewLine As String
Dim strQuote As String

strNewLine = Chr$(13) & Chr$(10)
strQuote = Chr$(34)

' Create the SQL Server Agent job. Job will perform an update
' of all optimizer-supporting data distribution statistics.
oJob.Name = "Northwind_Statistics_Update_ActiveScript"
oSQLServer.JobServer.Jobs.Add oJob

' Alter the job, adding job steps and setting starting step.
oJob.BeginAlter

' Define the job's single step.
oJobStep.Name = "Northwind_Statistics_Update_ActiveScript_1"
oJobStep.StepID = 1

' Set the job step executable subsystem. For ActiveX Script
' job steps, the DatabaseName property records the script
' interpreter selected.
oJobStep.SubSystem = "ActiveScripting"
oJobStep.DatabaseName = "VBScript"

' Job step script is:
'
' Set oSQLServer = CreateObject("SQLDMO.SQLServer")
'
' oSQLServer.LoginSecure = True
' oSQLServer.Connect
'
' oSQLServer.Databases("Northwind").UpdateIndexStatistics

'
' oSQLServer.DisConnect
' Set oSQLServer = Nothing

oJobStep.Command = _
 "Set oSQLServer = CreateObject(" & _
 strQuote & "SQLDMO.SQLServer" & strQuote & ")"

oJobStep.Command = oJobStep.Command & strNewLine & strNewLine

oJobStep.Command = oJobStep.Command & _
 "oSQLServer.LoginSecure = True"

oJobStep.Command = oJobStep.Command & strNewLine

oJobStep.Command = oJobStep.Command & _
 "oSQLServer.Connect"

oJobStep.Command = oJobStep.Command & strNewLine & strNewLine

oJobStep.Command = oJobStep.Command & _
 "oSQLServer.Databases(" & strQuote & "Northwind" & _
 strQuote & ").UpdateIndexStatistics"

oJobStep.Command = oJobStep.Command & strNewLine & strNewLine

oJobStep.Command = oJobStep.Command & _
 "oSQLServer.DisConnect"

oJobStep.Command = oJobStep.Command & strNewLine

oJobStep.Command = oJobStep.Command & _
 "Set oSQLServer = Nothing"

oJobStep.Command = oJobStep.Command & strNewLine

' Logic for a single-step job.
oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure
oJobStep.OnSuccessAction = SQLDMOJobStepAction_QuitWithSuccess

oJob.JobSteps.Add oJobStep

' Set the starting step for the job.
oJob.StartStepID = 1

' Alter the job.
oJob.DoAlter

See Also

Command Property

Job Object

JobStep Object

SubSystem Property

SQL-DMO (SQL Server 2000)

Controlling Job Step Logic
Controlling Job Step Logic

This example illustrates controlling SQL Server Agent job flow-of-control logic implemented in job step definitions.

SQL Server Agent jobs implement simple flow-of-control logic allowing jobs to branch based on success or failure of any one
step. This example illustrates application of job logic by creating a job in four steps where:

Steps 1 and 2 check the integrity of database filegroups.

Step 3 backs up the filegroups.

Step 4 attempts repair of the database on failure of an integrity check.

Job execution begins with Step 1. Flow-of-control logic in the job directs execution in the following manner.

Step On success... On failure...
1 Continue to next step (2) Branch to Step 4
2 Continue to next step (3) Branch to Step 4
3 Quit reporting success Quit reporting failure
4 Branch to Step 3 Quit reporting failure

' DBCC CHECKFILEGROUP ('PRIMARY') WITH NO_INFOMSGS
' DBCC CHECKFILEGROUP ('NorthwindTextImg') WITH NO_INFOMSGS
' BACKUP DATABASE [Northwind]
' FILEGROUP = N'PRIMARY', FILEGROUP = N'NorthwindTextImg'
' TO [NorthDev1], [NorthDev2]
' WITH NOINIT , NOUNLOAD ,
' NAME = N'Northwind_FileGroups_9/21/98_2:30:26 PM',
' NOSKIP , STATS = 10,
' Description = N'Backup of PRIMARY and NorthwindTextImg filegroups.',
' NOFORMAT
' DBCC CHECKDB ('Northwind', REPAIR_FAST) WITH NO_INFOMSGS

Dim oJob As New SQLDMO.Job
Dim oJobStep As SQLDMO.JobStep

' Create the SQL Server Agent job.
oJob.Name = "Backup_Northwind_Filegroups"
oSQLServer.JobServer.Jobs.Add oJob

' Alter the job, adding job steps and setting starting step.
oJob.BeginAlter

' First step. DBCC CHECKFILEGROUP ('PRIMARY') in database Northwind.
Set oJobStep = New SQLDMO.JobStep
oJobStep.Name = "CHECKFILEGROUP_PRIMARY"
oJobStep.StepID = 1

oJobStep.SubSystem = "TSQL"
oJobStep.DatabaseName = "Northwind"
oJobStep.Command = _
 "DBCC CHECKFILEGROUP ('PRIMARY') WITH NO_INFOMSGS"

' Set job logic. On success of Step 1, continue at next step.
oJobStep.OnSuccessAction = SQLDMOJobStepAction_GotoNextStep

' On failure of Step 1, branch to Step 4 which will attempt
' database repair. Note: the step number must be assigned prior
' to setting the action property.
oJobStep.OnFailStep = 4
oJobStep.OnFailAction = SQLDMOJobStepAction_GotoStep

oJob.JobSteps.Add oJobStep

' Second step. DBCC CHECKFILEGROUP ('NorthwindTextImg') in database
' Northwind.
Set oJobStep = New SQLDMO.JobStep
oJobStep.Name = "CHECKFILEGROUP_NorthwindTextImg"
oJobStep.StepID = 2

oJobStep.SubSystem = "TSQL"
oJobStep.DatabaseName = "Northwind"
oJobStep.Command = _
 "DBCC CHECKFILEGROUP ('NorthwindTextImg') WITH NO_INFOMSGS"

' Set job logic. On success of Step 2, continue at next step, backing
' up the database.
oJobStep.OnSuccessAction = SQLDMOJobStepAction_GotoNextStep

' On failure of Step 2, branch to Step 4 which will attempt
' database repair. Note: the step number must be assigned prior
' to setting the action property.
oJobStep.OnFailStep = 4
oJobStep.OnFailAction = SQLDMOJobStepAction_GotoStep

oJob.JobSteps.Add oJobStep

' Third step. On success of both Step 1 and 2, or on successful
' database repair implemented in Step 4, backup the filegroups
' PRIMARY and NorthwindTextImg from the database Northwind.
Set oJobStep = New SQLDMO.JobStep
oJobStep.Name = "Backup Northwind filegroups"
oJobStep.StepID = 3

oJobStep.SubSystem = "TSQL"
oJobStep.Command = _
 "BACKUP DATABASE [Northwind] " & _
 " FILEGROUP = N'PRIMARY', FILEGROUP = N'NorthwindTextImg' " & _
 "TO [NorthDev1], [NorthDev2]" & _
 "WITH NOINIT , NOUNLOAD , " & _
 " NAME = N'Northwind_FileGroups_9/21/98_2:30:26 PM', " & _
 " NOSKIP , STATS = 10," & _
 " Description = " & _
 "N'Backup of PRIMARY and NorthwindTextImg filegroups.', " & _
 " NOFORMAT"

' Set job logic. On success or failure, quit reporting execution
' completion status.
oJobStep.OnSuccessAction = SQLDMOJobStepAction_QuitWithSuccess
oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure

oJob.JobSteps.Add oJobStep

' Fourth step. DBCC CHECKDB ('Northwind', REPAIR_FAST). Executed only
' on failure of either steps 1 or 2.
Set oJobStep = New SQLDMO.JobStep
oJobStep.Name = "CHECKDB_Northwind_With_Repair"
oJobStep.StepID = 4

oJobStep.SubSystem = "TSQL"
oJobStep.Command = _
 "DBCC CHECKDB ('Northwind', REPAIR_FAST) WITH NO_INFOMSGS"

' Set job logic. On success, branch to Step 3, backing up the database.
' Note: the step number must be assigned prior to setting the action
' property.
oJobStep.OnSuccessStep = 3
oJobStep.OnSuccessAction = SQLDMOJobStepAction_GotoStep

' On failure, quit job reporting failure.
oJobStep.OnFailAction = SQLDMOJobStepAction_QuitWithFailure

oJob.JobSteps.Add oJobStep

' Set the starting step for the job.
oJob.StartStepID = 1

' Alter the job.
oJob.DoAlter

See Also

Job Object

JobStep Object

OnFailAction Property

OnFailStep Property

OnSuccessAction Property

OnSuccessStep Property

SQL-DMO (SQL Server 2000)

Targeting SQL Server Agent Jobs
Targeting SQL Server Agent Jobs

These examples illustrate assigning SQL Server Agent job execution targets. A job can be run by SQL Server Agent when it
contains at least one step and an execution target.

In these examples, the EnumTargetServers and RemoveFromTargetServer methods are used to remove existing execution
target assignment(s). When using the ApplyToTargetServer or ApplyToTargetServerGroup methods, SQL-DMO returns an
error if an attempt is made to indicate an execution target redundantly. A SQL Server Agent job may be targeted to execute on
either the local instance of Microsoft® SQL Server™ (the instance on which SQL Server Agent executes) or one or more target
servers (TSXs) in a multiserver administration group. A job cannot have both the local instance and any other server as execution
targets. By removing existing assignments, the examples ensure success of the execution target assignment made later in the
example.

Examples

A. Targeting a Local Server

This example illustrates assigning an execution target for a SQL Server Agent job. The execution target is the local instance of SQL
Server.

Dim oJob As SQLDMO.Job

' A QueryResults object will be used to test for current target
' server assignment.
Dim oQueryResults As SQLDMO.QueryResults
Dim iRow As Integer

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs ("Backup_Northwind_Filegroups")

' Enumerate existing target servers for the job.
Set oQueryResults = oJob.EnumTargetServers
For iRow = 1 To oQueryResults.Rows

 ' The target server name is the second column in the result set.
 oJob.RemoveFromTargetServer _
 oQueryResults.GetColumnString(iRow, 2)

Next iRow

' Target the local server, the server to which the SQLServer object is
' connected and from which the job has been retrieved.
oJob.ApplyToTargetServer "(Local)"

B. Targeting TSX Servers

This example illustrates assigning execution targets for a SQL Server Agent job. The execution targets are several TSXs in a
multiserver administration group.

Dim oJob As SQLDMO.Job

' A QueryResults object will be used to test for current target
' server assignment.
Dim oQueryResults As SQLDMO.QueryResults
Dim iRow As Integer

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs ("Backup_Northwind_Filegroups")

' Enumerate existing target servers for the job.
Set oQueryResults = oJob.EnumTargetServers
For iRow = 1 To oQueryResults.Rows

 ' The target server name is the second column in the result set.
 oJob.RemoveFromTargetServer _
 oQueryResults.GetColumnString(iRow, 2)

Next iRow

' Target a server group and a single server. Note: creation of target
' servers and target server groups is not illustrated in this example.
oJob.ApplyToTargetServerGroup "London"
oJob.ApplyToTargetServer "SEATTLE2"

See Also

ApplyToTargetServer Method

ApplyToTargetServerGroup Method

EnumTargetServers Method

Job Object

RemoveFromTargetServer Method

SQL-DMO (SQL Server 2000)

Scheduling SQL Server Agent Jobs
Scheduling SQL Server Agent Jobs

These examples illustrate scheduling execution for SQL Server Agent jobs by creating and populating SQL-DMO JobSchedule
objects.

A job can be run by SQL Server Agent when it contains at least one step and an execution target. Use the Start method of the Job
object to direct unscheduled execution of an executable job. Create schedules for jobs when automated execution of the job is
desired.

Examples

A. Scheduling a Job for Single Execution

This example illustrates creating a job schedule defining a single execution time for a SQL Server Agent job.

Dim oJobSchedule As New SQLDMO.JobSchedule
Dim oJob As SQLDMO.Job

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

' Set the schedule name.
oJobSchedule.Name = "Single_Execution"

' Indicate a single scheduled execution by using the
' FrequencyType property.
oJobSchedule.Schedule.FrequencyType = SQLDMOFreq_OneTime

' Use the ActiveStartDate and ActiveStartTimeOfDay properties
' to indicate the scheduled execution time for a JobSchedule
' object implementing a single run.
oJobSchedule.Schedule.ActiveStartDate = "19980922"
oJobSchedule.Schedule.ActiveStartTimeOfDay = "130000"

' Optional, but cleaner. Indicated that schedule never expires.
oJobSchedule.Schedule.ActiveEndDate = SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay = SQLDMO_NOENDTIME

' Alter the job, adding the new schedule.
oJob.BeginAlter
oJob.JobSchedules.Add oJobSchedule
oJob.DoAlter

B. Scheduling a Job for Execution Once Per Day

This example illustrates creating a job schedule defining daily execution for a SQL Server Agent job.

Dim oJobSchedule As New SQLDMO.JobSchedule
Dim oJob As SQLDMO.Job
Dim StartYear, StartMonth, StartDay As String

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

' Set the schedule name.
oJobSchedule.Name = "OncePerDay_Execution"

' Indicate execution scheduled for every day by using the
' FrequencyType and FrequencyInterval properties.
oJobSchedule.Schedule.FrequencyType = SQLDMOFreq_Daily
oJobSchedule.Schedule.FrequencyInterval = 1

' Set the ActiveStartDate to indicating the date on which the
' schedule becomes active. Start date is today's date.
StartYear = DatePart("yyyy", Date)
StartMonth = DatePart("m", Date)
StartDay = DatePart("d", Date)

If Len(StartMonth) < 2 Then StartMonth = "0" & StartMonth
If Len(StartDay) < 2 Then StartDay = "0" & StartDay

oJobSchedule.Schedule.ActiveStartDate = _
 StartYear & StartMonth & StartDay

' Set the ActiveStartTimeOfDay property to indicate the scheduled
' execution time on each day (2:32 AM).
oJobSchedule.Schedule.ActiveStartTimeOfDay = "23200"

' Indicated that the schedule never expires.
oJobSchedule.Schedule.ActiveEndDate = SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay = SQLDMO_NOENDTIME

' Alter the job, adding the new schedule.
oJob.BeginAlter
oJob.JobSchedules.Add oJobSchedule
oJob.DoAlter

C. Scheduling a Job for Execution M ultiple Times Per Day

This example illustrates creating a job schedule that defines hourly execution for a SQL Server Agent job.

Dim oJobSchedule As New SQLDMO.JobSchedule
Dim oJob As SQLDMO.Job
Dim StartYear, StartMonth, StartDay As String

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs("NetSend")

' Set the schedule name.
oJobSchedule.Name = "Hourly_Execution"

' Indicate execution scheduled for every day by using the
' FrequencyType and FrequencyInterval properties.
oJobSchedule.Schedule.FrequencyType = SQLDMOFreq_Daily
oJobSchedule.Schedule.FrequencyInterval = 1

' Indicate hourly execution by using the FrequencySubDay
' and FrequencySubDayInterval properties.
oJobSchedule.Schedule.FrequencySubDay = SQLDMOFreqSub_Hour
oJobSchedule.Schedule.FrequencySubDayInterval = 1

' Set the ActiveStartDate to indicating the date on which the
' schedule becomes active. Start date is today's date.
StartYear = DatePart("yyyy", Date)
StartMonth = DatePart("m", Date)
StartDay = DatePart("d", Date)

If Len(StartMonth) < 2 Then StartMonth = "0" & StartMonth
If Len(StartDay) < 2 Then StartDay = "0" & StartDay

oJobSchedule.Schedule.ActiveStartDate = _
 StartYear & StartMonth & StartDay

' Set the ActiveStartTimeOfDay property to indicate the time at
' which the schedule becomes active (12:00 AM).
oJobSchedule.Schedule.ActiveStartTimeOfDay = "00000"

' Indicated that the schedule never expires.
oJobSchedule.Schedule.ActiveEndDate = SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay = SQLDMO_NOENDTIME

' Alter the job, adding the new schedule.
oJob.BeginAlter
oJob.JobSchedules.Add oJobSchedule
oJob.DoAlter

D. Scheduling a Job for Execution Once Per Relative Interval

This example illustrates creating a job schedule defining once a month execution for a SQL Server Agent job. The job schedule
directs execution to a day relative to the start day of the month.

Dim oJobSchedule As New SQLDMO.JobSchedule
Dim oJob As SQLDMO.Job
Dim StartYear, StartMonth, StartDay As String

' Get the job to target. Note: Create and connect of SQLServer object
' is not illustrated in this example.
Set oJob = oSQLServer.JobServer.Jobs("Backup_Northwind_Filegroups")

' Set the schedule name.
oJobSchedule.Name = "Second_Friday"

' For monthly, relative day scheduling, the FrequencyType,
' FrequencyInterval, FrequencyRecurrenceInterval, and
' FrequencyRelativeInterval properties together define the
' schedule.
'
' FrequencyType and FrequencyRecurrence factor indicate relative
' and every month execution.
oJobSchedule.Schedule.FrequencyType = SQLDMOFreq_MonthlyRelative
oJobSchedule.Schedule.FrequencyRecurrenceFactor = 1

' FrequencyInterval indicates the day where 0 = Sunday, 7 =
' Saturday, and other values indicate "weekday" or "weekend
' day".
oJobSchedule.Schedule.FrequencyInterval = 6

' FrequencyRelativeInterval indicates the day relative to
' the start of the month.
oJobSchedule.Schedule.FrequencyRelativeInterval = _
 SQLDMOFreqRel_Second

' Set the ActiveStartDate property to indicating the date on which the
' schedule becomes active. Start date is today's date.
StartYear = DatePart("yyyy", Date)
StartMonth = DatePart("m", Date)
StartDay = DatePart("d", Date)

If Len(StartMonth) < 2 Then StartMonth = "0" & StartMonth
If Len(StartDay) < 2 Then StartDay = "0" & StartDay

oJobSchedule.Schedule.ActiveStartDate = _
 StartYear & StartMonth & StartDay

' Set the ActiveStartTimeOfDay property to indicate the scheduled
' job execution time (9:53:22 PM).
oJobSchedule.Schedule.ActiveStartTimeOfDay = "215322"

' Indicated that the schedule never expires.
oJobSchedule.Schedule.ActiveEndDate = SQLDMO_NOENDDATE
oJobSchedule.Schedule.ActiveEndTimeOfDay = SQLDMO_NOENDTIME

' Alter the job, adding the new schedule.
oJob.BeginAlter
oJob.JobSchedules.Add oJobSchedule
oJob.DoAlter

See Also

Job Object

JobSchedule Object

Schedule Object

SQL-DMO (SQL Server 2000)

SQL-DMO Examples: Tables
The table examples illustrate Microsoft® SQL Server™ table creation and maintenance automated by using SQL-DMO.

SQL-DMO (SQL Server 2000)

Altering a Table by Adding a Column
Altering a Table by Adding a Column

These examples illustrate adding columns to an existing Microsoft® SQL Server™ table.

Examples

A. Adding a Column Defined on a Base Data Type

The example illustrates creating a column that does not allow NULL. The provided default value is used to populate existing rows
in the table.

Dim tableProducts As SQLDMO.Table

' Create a Column object, then populate it to define a column
' called ShelfLife.
Dim colShelfLife As New SQLDMO.Column
colShelfLife.Name = "ShelfLife"
colShelfLife.Datatype = "smallint"
colShelfLife.AllowNulls = False
colShelfLife.DRIDefault.Text = "31"

' Get the Products table. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set tableProducts = _
oSQLServer.Databases("Northwind").Tables("Products")

' Mark start of change unit.
tableProducts.BeginAlter

' Add the populated Column object to its containing collection.
tableProducts.Columns.Add colShelfLife

' Create the column by committing the unit of change.
tableProducts.DoAlter

B. Adding a Computed Column

This example illustrates altering a table, adding a column that perform simple multiplication of the values in two other columns.

Dim tableProducts As SQLDMO.Table

' Create a Column object and populate it to define a new column
' called StockValue.
Dim colStockValue As New SQLDMO.Column
colStockValue.Name = "StockValue"
colStockValue.IsComputed = True
colStockValue.Datatype = "money"
colStockValue.ComputedText = "UnitsInStock * UnitPrice"

' Get the Products table. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set tableProducts = _
oSQLServer.Databases("Northwind").Tables("Products")

' Mark start of change unit.
tableProducts.BeginAlter

' Add the populated Column object to its containing collection.
tableProducts.Columns.Add colStockValue

' Create the column by committing the unit of change.
tableProducts.DoAlter

See Also

Column Object

SQL-DMO (SQL Server 2000)

Altering a Table by Adding a FOREIGN KEY Constraint
Altering a Table by Adding a FOREIGN KEY Constraint

This example illustrates foreign key definition using the SQL-DMO Key object. In the example, adding the Key object to the Keys
collection creates a FOREIGN KEY constraint on the referenced table.

' Create a FOREIGN KEY constraint on the
' Northwind..Products.CategoryID column referencing
' Northwind..Categories.CategoryID.

Dim tableProducts As SQLDMO.Table

Dim keyFKProducts As New SQLDMO.Key
Dim namesFKProducts As SQLDMO.Names

' Get the Products table. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set tableProducts = _
oSQLServer.Databases("Northwind").Tables("Products")

' Indicate the constrained column in the KeyColumns collection.
keyFKProducts.Type = SQLDMOKey_Foreign
keyFKProducts.KeyColumns.Add "CategoryID"

' Use the ReferencedTable property and ReferencedColumns
' collection to specify constraining values.
keyFKProducts.ReferencedTable = "Categories"
keyFKProducts.ReferencedColumns.Add "CategoryID"

' Mark start of change unit.
tableProducts.BeginAlter

' Add the populated Key object to the Keys collection of the
' Table object.
tableProducts.Keys.Add keyFKProducts

' Create the FOREIGN KEY constraint by committing the unit of change.
tableProducts.DoAlter

See Also

Key Object

Table Object

SQL-DMO (SQL Server 2000)

Altering a Table by Adding a PRIMARY KEY Constraint
Altering a Table by Adding a PRIMARY KEY Constraint

This example illustrates primary key definition using the SQL-DMO Key object. In the example, adding the Key object to the Keys
collection creates a clustered, PRIMARY KEY constraint on the referenced table.

Dim tableCategories As SQLDMO.Table

Dim keyPKCategories As New SQLDMO.Key
Dim namesPKCategories As SQLDMO.Names

' Get the Categories table. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set tableCategories = _
oSQLServer.Databases("Northwind").Tables("Categories")

' Create the primary, clustered key on CategoryID.
keyPKCategories.Clustered = True
keyPKCategories.Type = SQLDMOKey_Primary

' Use the Names collection to define the constraint on the
' CategoryID column.
Set namesPKCategories = keyPKCategories.KeyColumns
namesPKCategories.Add "CategoryID"

' Mark start of change unit.
tableCategories.BeginAlter

' Add the populated Key object to the Keys collection of the
' Table object.
tableCategories.Keys.Add keyPKCategories

' Create the PRIMARY KEY constraint by committing the unit of change.
tableCategories.DoAlter

See Also

Key Object

Table Object

SQL-DMO (SQL Server 2000)

Creating a Table
Creating a Table

This example illustrates table creation. Storage for large text and BLOB data in the table is assigned from a non-default filegroup.

Dim oDatabase As SQLDMO.Database

Dim tableCategories As New SQLDMO.Table
Dim colCategoryID As New SQLDMO.Column
Dim colCategoryName As New SQLDMO.Column
Dim colDescription As New SQLDMO.Column
Dim colPicture As New SQLDMO.Column

' Get the Northwind database. Note: Create and connect of SQLServer
' object used is not illustrated in this example.
Set oDatabase = oSQLServer.Databases("Northwind")

' Populate the Column objects to define the table columns.
colCategoryID.Name = "CategoryID"
colCategoryID.Datatype = "int"
colCategoryID.Identity = True
colCategoryID.IdentityIncrement = 1
colCategoryID.IdentitySeed = 1
colCategoryID.AllowNulls = False

colCategoryName.Name = "CategoryName"
colCategoryName.Datatype = "varchar"
colCategoryName.Length = 15
colCategoryName.AllowNulls = False

colDescription.Name = "Description"
colDescription.Datatype = "text"
colDescription.AllowNulls = True

colPicture.Name = "Picture"
colPicture.Datatype = "image"
colPicture.AllowNulls = True

' Name the table, then set desired properties to control eventual table
' construction.
tableCategories.Name = "Categories"
tableCategories.FileGroup = "PRIMARY"
tableCategories.TextFileGroup = "fgNorthwindTxtImg"

' Add populated Column objects to the Columns collection of the
' Table object.
tableCategories.Columns.Add colCategoryID
tableCategories.Columns.Add colCategoryName
tableCategories.Columns.Add colDescription
tableCategories.Columns.Add colPicture

' Create the table by adding the Table object to its containing
' collection.
oDatabase.Tables.Add tableCategories

See Also

Altering a Table by Adding a PRIMARY KEY Constraint

Column Object

Table Object

SQL-NS (SQL Server 2000)

Programming SQL-NS Applications
The SQL Namespace (SQL-NS) object model includes objects, collections, properties, and methods used to write programs that
can invoke SQL Server Enterprise Manager user interface components. SQL-NS objects are 32-bit Component Object Model
(COM) objects for the Microsoft® Windows NT® 4.0, Microsoft Windows® 2000, Microsoft Windows 95, and Microsoft
Windows 98 operating systems.

See Also

Scripting Data Access Controls in Internet Explorer

SQL-NS (SQL Server 2000)

Getting Started with SQL-NS
SQL Namespace (SQL-NS) is a set of COM interfaces that allow a Microsoft® Visual Basic® or C++ application to invoke wizards,
property sheets, dialog boxes and other SQL Server Enterprise Manager components. This layer complements the SQL Distributed
Management Objects (SQL-DMO) layer of COM objects that was introduced in Microsoft SQL Server™ version 6.0. SQL-NS is
layered on SQL-DMO.

SQL-NS (SQL Server 2000)

SQL-NS Syntax Conventions
SQL-NS programming documentation uses the following conventions to distinguish elements of text.

Convention Used for
UPPERCASE Statements, macro names, and terms used at the operating system

level.
monospace Sample command lines and program code.
italic Information that the user or the application must provide.
bold SQL-NS component objects; object events, methods or properties;

data types; and other syntax that must be typed exactly as shown.

SQL-NS (SQL Server 2000)

Installing SQL-NS
All required SQL-NS components are installed as part of a Microsoft® SQL Server™ 2000 server installation. SQL-NS is
implemented in a single dynamic-link library (DLL). You may develop SQL-NS applications on either a client or a server. When
using an OLE Automation controller as a development platform, such as Microsoft Visual Basic®, no additional files are required.
Application development using C or C++ requires the SQL-NS header files.

SQL-NS sample applications, which provide additional reference material for SQL-NS application development, are included with
SQL Server.

Directory File Description
C:\Program Files\
Microsoft SQL Server\80\Tools\Binn

Sqlns.dll DLL implementing SQL-NS
objects.

C:\Program Files\
Microsoft SQL Server\80\Tools\Binn

Sqlns80.hlp SQL-NS help file used within
the development environment
to provide context sensitive
help about SQL-NS objects,
properties and methods.

C:\Program Files\
Microsoft SQL
Server\80\Tools\Binn\Resources\xxxx

Sqlns.rll Localized resource file. The
resource directory varies based
on the national language of the
installed SQL Server client or
server. For example, the
directory 1033 is a decimal
representation of the language
identifier 0X0409, which
indicates English, U.S.

C:\Program Files\
Microsoft SQL
Server\80\Tools\Devtools\Include

Sqlnsx.h C/C++ header file containing
SQL-NS member function
prototypes, enumerated data
types, and macros.

C:\Program Files\
Microsoft SQL
Server\80\Tools\Devtools\Include

Sqlnsdef.h C/C++ header file containing
SQL-NS interface and class
identifiers.

C:\Program Files\
Microsoft SQL
Server\80\Tools\Devtools\Samples\Sqlns

ALL Sample applications
illustrating SQL-NS use.

To register the SQL-NS components on a client computer

From C:\Program Files\Microsoft SQL Server\80\Tools\Binn\Resources\<language> directory, execute:

\Program Files\Microsoft SQL Server\80\Tools\Binn\REGSVR32 SQLNS.RLL

From any directory, execute:

C:\Program Files\Microsoft SQL Server\80\Tools\Binn\REGSVR32.EXE

C:\Program Files\Microsoft SQL Server\80\Tools\Binn\resources\1033\SQLNS.DLL

SQL-NS (SQL Server 2000)

SQL-NS Object Model

SQL-NS (SQL Server 2000)

Using SQL-NS to Invoke SQL Server Enterprise Manager
Components
The main SQL-NS interface is the SQLNamespace object, which enumerates the objects in the namespace. Individual objects are
identified by the HSQLNSITEM handle. A SQLNamespaceObject interface can be obtained for this handle by calling the
GetSQLNamespaceObject method.

The steps to invoke a user interface component are:

1. Create the SQLNamespace object.

Visual Basic

Dim oSQLNS As SQLNamespace
Set oSQLNS = New SQLNamespace
' or using late binding
Dim oSQLNS As Object
Set oSQLNS = CreateObject("SQLNS.SQLNamespace")

Visual C++

ISQLNamespace * pNS = NULL;
CoInitialize(NULL);
CoCreateInstance(CLSID_SQLNamespace, NULL, LSCTX_INPROC_SERVER, IID_ISQLNamespace, (LPVOID*)&pNS);

2. Call ISQLNamespace::Initialize to initialize the namespace. This is the first action required after the object is declared, and
it only needs to be called once for the lifetime of the SQLNamespace object. The namespace can be initialized at one of
four different starting points (SQLNSRootType) in the namespace tree. The four SQLNSRootType constants are:

SQLNSRootType_DefaultRoot

SQLNSRootType_ServerGroup

SQLNSRootType_Server

SQLNSRootType_Database

The first two constants, SQLNSRootType_DefaultRoot and SQLNSRootType_ServerGroup, retrieve their connection
information from the registration information of SQL Server Enterprise Manager. Because this depends on a user's
individual configuration, it is not recommended that an application use these two SQLNSRootType constants as a starting
point. Instead, an application should use SQLNSRootType_Server, or SQLNSRootType_Database, because they give you
complete control over the destination without having to depend on an individual user's SQL Server Enterprise Manager
configuration.

3. Pass a connection string as a parameter for the Initialize method. The connection string is almost identical to an ODBC
connection string. The parts of the connection string are:

Server=MyServer;

SrvGrp=SQL Server Group;

UID=sa;

PWD=password;

Trusted_Connection=Yes;

Database=pubs;

If ROOTTYPE is SQLNSRootType_DefaultRoot, no connection string is required because all necessary information is
retrieved from the SQL Server Enterprise Manager registration information on the local computer. If ROOTTYPE is
SQLNSRootType_ServerGroup, the connection string only needs to contain the SvrGrp=SQL Server Group entry, because all
other information is retrieved from SQL Server Enterprise Manager registry settings on the local computer. If
SQLNSRootType_Server is used, an application must specify a complete connection string because no SQL Server
Enterprise Manager registration information is available. The complete initialization and the connection string should look
like this:

Visual Basic

' Initialize root object
eSQLNSRootType = SQLNSRootType_Server
strConnectString = String(255, 0)
strConnectString = "Server=MYSERVER;Trusted_Connection=Yes;"
strAppName = "SQLNS Application; "
objSQLNS.Initialize strAppName, eSQLNSRootType, Str(strConnectString), hWnd
If objSQLNS Is Nothing Then
 MsgBox "SQLNamespace could not be initiated. Terminating.", vbOKOnly, "Error"
End If

Visual C++

V_BSTR(&var) = SysAllocString(L"Server=.;Trusted_Connection=Yes;");
pNS->Initialize(L"SQLNSX Test App", SQLNSRootType_Server, &var, NULL);

'If the ROOTTYPE is SQLNSRootType_Database, add
'Database=pubs;
'to the connectstring. Otherwise, the connectstring is the same.

4. Traverse the hierachy by establishing a root node in the hierarchy using a call to the ISQLNamespace::GetRootItem
method. This root item is of the same type specified in the call to the Initialize method.

Visual Basic

Dim hRootItem As Long
hRootItem = objSQLNS.GetRootItem

All HSQLNSITEM types are stored as Long in Microsoft® Visual Basic®. When a HSQLNSITEM is zero after an assignment,

an error occurred. A good practice is to check for a zero HSQLNSITEM handle in your debug build by using asserts like this:

Debug.Assert hRootItem = 0

To test whether the object type of hRootItem is the same as the root type passed in to call to Initialize, an application can
call objSQLNS.GetType(hRootItem) which returns the object type.

Visual C++

HSQLNSITEM hServer;
pNS->GetRootItem(&hServer);
assert (hServer);

5. Walk the hierachy by calling the ISQLNamespace::GetChildItem method until the application reaches the required
destination. For example, to invoke the Properties dialog box for dbo in the master database:

Visual Basic

Dim hRootItem As Long
Dim hDatabases As Long
Dim hDatabase As Long
Dim hUsers As Long
Dim hUser As Long
hRootItem = objSQLNS.GetRootItem
hDatabases = objSQLNS.GetFirstChildItem(hRootItem, _ SQLNSOBJECTTYPE_DATABASES)
hDatabase = objSQLNS.GetFirstChildItem(hDatabases, _SQLNSOBJECTTYPE_DATABASE, "master")
hUsers = objSQLNS.GetFirstChildItem(hDatabase, _SQLNSOBJECTTYPE_DATABASE_USERS)
hUser = objSQLNS.GetFirstChildItem(hUsers, _SQLNSOBJECTTYPE_DATABASE_USER, "dbo")

Visual C++

HSQLNSITEM hServer, hDBs, hDB, hUsers, hUser;
pNS->GetRootItem(&hServer);
pNS->GetFirstChildItem(hServer, SQLNSOBJECTTYPE_DATABASES, NULL, &hDBs);
pNS->GetFirstChildItem(hDBs, SQLNSOBJECTTYPE_DATABASE, L"pubs", &hDB);
pNS->GetFirstChildItem(hDB, SQLNSOBJECTTYPE_DATABASE_USERS, NULL, &hUsers);
pNS->GetFirstChildItem(hUsers, SQLNSOBJECTTYPE_DATABASE_USER, L"dbo", &hUser);

6. Create a SQLNamespaceObject object to allow the user to execute commands that invoke the required user interface
components:

Visual Basic

Dim objSQLNSObj As SQLNS.SQLNamespaceObject
Set objSQLNSObj = objSQLNS.GetSQLNamespaceObject(hUser)

Visual C++

ISQLNamespaceObject* pObjUser = NULL;
pNS->GetSQLNamespaceObject(hUser, &pObjUser);

You can enumerate all available commands on SQLNamespaceObject objects by iterating through the Commands
collection.

7. Execute a command on the SQLNamespaceObject object just created, which invokes the user interface component. An
application can execute a command by name or ID. The latter is the prefered method because it is independent of the
language of the system. To execute by name, pass the command by calling the ExecuteCommandByName method:

objSQLNSObj.ExecuteCommandByName "Properties", hWnd, SQLNamespace_PreferModal

The other two parameters are the handle to the parent window, and the window modality. The modality can be one of three
values that indicate the preferred modality:

SQLNamespace_DontCare

SQLNamespace_PreferModal

SQLNamespace_PreferModeless

Note The SQL Namespace can overrule the requested modality due to default characteristics of the dialog box invoked.

The preferred way to execute a command by ID is to passing in a constant that indentifies the command:

objSQLNSObj.ExecuteCommandByID SQLNS_CmdID_PROPERTIES, hWnd, SQLNamespace_PreferModal

An application can also iterate through the Commands collection on the SQLNamespaceObject object. Each item of the
collection represents a SQLNamespaceCommand, which has an Execute method.

See Also

SQL-NS Reference

SQL-NS (SQL Server 2000)

Handling SQL-NS Errors
When using SQL Namespace to invoke SQL Server Enterprise Manager user interface components, an administrative application
should guide users, steamlining tasks and limiting the range of possible errors. Nonetheless, errors can occur and a SQL-NS
application should supply error handling code to prevent abnormal termination.

Microsoft Visual Basic®/ActiveX® script supports error traps (error handlers) created using the ON ERROR statement. SQL-NS
supports the Visual Basic Err object, allowing application error handlers to respond intelligently to errors raised.

In C++ applications, check the return value of each function. Every COM function returns an HRESULT value indicating success or
failure. If the HRESULT return value is not SUCCESS, create a COM error handling object like this.

void ReportError()
{
 OLECHAR szMsg[512];
 LPERRORINFO pErrorInfo;

 szMsg[0] = 0;
 if ((SUCCEEDED(GetErrorInfo(0, &pErrorInfo)))
 && (pErrorInfo != NULL))
 {
 BSTR bstrDesc = NULL;
 BSTR bstrSource = NULL;

 pErrorInfo->GetDescription(&bstrDesc);
 pErrorInfo->GetSource(&bstrSource);

 if (bstrDesc && wcslen(bstrDesc))
 {
 wcscat(szMsg, L"\r\n\r\n");
 if (bstrSource && wcslen(bstrSource))
 {
 wcscat(szMsg, L"[");
 wcscat(szMsg, bstrSource);
 wcscat(szMsg, L"] - ");
 }
 wcscat(szMsg, bstrDesc);
 }
 if (bstrDesc)
 SysFreeString(bstrDesc);
 if (bstrSource)
 SysFreeString(bstrSource);
 pErrorInfo->Release();
 }

 MessageBoxW(NULL, szMsg, L"Error", MB_OK);

}

SQL-NS (SQL Server 2000)

SQL-NS Reference
SQL Namespace objects are implemented in C:\Program Files\Microsoft SQL Server\80\Tools\Binn\Sqlns.dll and C:\Program
Files\Microsoft SQL Server\80\Tools\Binn\Resources\1033\Sqlns.rll. (The resource directory varies depending on the Unicode
collation locale for this instance. 1033 is the General Unicode collation.) Visual Basic applications must include a reference to the
SQL-NS object to use early binding. The type library is implemented in the resource Library, Sqlns.rll. C++ applications must
include Sqlnsx.h, which references Sqlnsdef.h or use the #import directive to import the type library located in the resource file
Sqlns.rll. All interfaces described are automation-enabled dual interfaces.

SQL-NS (SQL Server 2000)

SQL-NS Objects
SQL-NS exposes these objects:

SQLNamespace Object SQLNamespaceCommands Object
SQLNamespaceCommand Object SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

SQLNamespace Object
The SQLNamespace object (in C++ ISQLNamespace) is the main interface and starting point for using SQL-NS objects.

Methods

GetChildrenCount Method GetSQLDMOObject Method
GetFirstChildItem Method GetSQLNamespaceObject Method
GetName Method GetType Method
GetNextSiblingItem Method Initialize Method
GetParentItem Method Refresh Method
GetPreviousSiblingItem Method SetLCID Method
GetRootItem Method

SQL-NS (SQL Server 2000)

SQLNamespaceCommand Object
The SQLNamespaceCommand object is the interface that implements the commands for a SQLNamespace object, which
invokes user interface objects.

Properties

CommandID Property Name Property
HelpString Property

SQL-NS (SQL Server 2000)

SQLNamespaceCommands Object
The SQLNamespaceCommands object is a collection object containing the commands (SQLNamespaceCommand objects)
supported by a SQLNamespaceObject object.

Properties

Count Property

SQL-NS (SQL Server 2000)

SQLNamespaceObject Object
The SQLNamespaceObject object is the interface that represents a Microsoft® SQL Server™ 2000 Enterprise Manager user
interface node in the hierarchy of SQL Namespace.

Properties

Commands Property Name Property
Handle Property Type Property

SQL-NS (SQL Server 2000)

SQL-NS Properties
SQL-NS exposes these properties:

CommandID Property HelpString Property
Commands Property Name Property
Count Property Type Property
Handle Property

SQL-NS (SQL Server 2000)

CommandID Property
The CommandID property returns the SQLNSCommandID value of a SQLNamespaceCommand object. SQLNSCommandID
represents the command that invokes a user interface component on a SQLNamespaceObject object.

Applies To

SQLNamespaceCommand Object

SQL-NS (SQL Server 2000)

Commands Property
The Commands property returns the SQLNamespaceCommands collection object.

Applies To

SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

Count Property
The Count property returns the number of SQLNamespaceCommand objects in the SQLNamespaceCommands collection
object.

Applies To

SQLNamespaceCommands Object

SQL-NS (SQL Server 2000)

Handle Property
The Handle property contains the value of the SQLNamespaceObject object handle.

Applies To

SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

HelpString Property
The HelpString property returns a help string for the SQLNamespaceCommand object command.

Applies To

SQLNamespaceCommand Object

SQL-NS (SQL Server 2000)

Name Property
The Name property returns the descriptive string displayed in the namespace hierarchy of objects and commands.

Applies To

SQLNamespaceCommand Object SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

Type Property
The Type property returns the SQLNamespaceObject object type as SQLNSObjectType.

Applies To

SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

SQL-NS Methods
SQL-NS exposes these methods:

Execute Method GetPreviousSiblingItem Method
ExecuteCommandByID Method GetRootItem Method
ExecuteCommandByName Method GetSQLDMOObject Method
ExecuteWithParam Method GetSQLNamespaceObject Method
GetChildrenCount Method GetType Method
GetFirstChildItem Method Initialize Method
GetName Method Item Method
GetNextSiblingItem Method Refresh Method
GetParentItem Method SetLCID Method

SQL-NS (SQL Server 2000)

Execute Method
The Execute method executes the command associated with the SQLNamespaceCommand object related to the user interface
component associated with the command.

Applies To

SQLNamespaceCommand Object

SQL-NS (SQL Server 2000)

ExecuteCommandByID Method
The ExecuteCommandByID method executes the command on the SQLNamespaceObject object identified by the
CommandID parameter.

Applies To

SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

ExecuteCommandByName Method
The ExecuteCommandByName method executes the command identified by the bstrCommand parameter.

Applies To

SQLNamespaceObject Object

SQL-NS (SQL Server 2000)

ExecuteWithParam Method
The ExecuteWithParam method executes the command associated with the SQLNamespaceCommand object, which is related
to the user interface component associated with the command. A parameter can be passed with the command.

Applies To

SQLNamespaceCommand Object

SQL-NS (SQL Server 2000)

GetChildrenCount Method
The GetChildrenCount method retrieves the number of child members belonging to an item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetFirstChildItem Method
The GetFirstChildren method retrieves the first child item, relative from the item in the SQL Namespace hierarchy, and optionally
matchesthe object type or object name.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetName Method
The GetName method retrieves the name of a member item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetNextSiblingItem Method
The GetNextSiblingItem method retrieves the next sibling item, optionally matching the object type or object name.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetParentItem Method
The GetParentItem method retrieves the parent item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetPreviousSiblingItem Method
The GetPreviousSiblingItem method retrieves the previous sibling item, optionally matching the object type or object name.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetRootItem Method
Retrieves the handle to the root item in the Namespace hierarchy. The root item is defined by the Initialize method.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetSQLDMOObject Method
The GetSQLDMOObject method retrieves the SQL-DMO object associated with this item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetSQLNamespaceObject Method
The GetSQLNamespaceObject method retrieves the namespace interface for the item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

GetType Method
Retrieves the object type (SQLNSObjectType) of the item.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

Initialize Method
The Initialize method initializes the namespace, providing the name of client application.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

Item Method
The Item method returns the SQLNamespaceCommand object in the collection based on the specified index parameter.

Applies To

SQLNamespaceCommands Object

SQL-NS (SQL Server 2000)

Refresh Method
The Refresh method refreshes the console tree under the specified node.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

SetLCID Method
The SetLCID method sets the locale ID for SQL Namespace.

Applies To

SQLNamespace Object

SQL-NS (SQL Server 2000)

SQL-NS Constants
Enumerated data types are package constants defined in Sqlns.rll. They are used as parameters and return values in SQL-NS
package properties and methods.

SQL-NS exposes these constants:

SQLNSCommandID SQLNSObjectType
SQLNSErrors SQLNSRootType
SQLNSModality

SQL-NS (SQL Server 2000)

SQLNSCommandID
SQLNSCommandID constants specify SQL-NS command IDs available in the SQLNamespace object.

Constant Value Command
SQLNS_CmdID_AGENT_ERROR_DETAILS 76 Error Details

Opens the Agent
Error Details dialog
box for the specified
replication agent.

SQLNS_CmdID_AGENT_HISTORY 77 Agent History
Opens the Agent
History dialog box
for the specified
replication agent.

SQLNS_CmdID_DATABASE_BACKUP 80 Back up Database
Opens the SQL
Server Backup
dialog box.

SQLNS_CmdID_DATABASE_RESTORE 81 Restore Database
Opens the Restore
Database dialog
box.

SQLNS_CmdID_DATABASE_SHRINKDB 82 Shrink Database
Opens the Shrink
Database dialog
box.

SQLNS_CmdID_DEFECT 56 Defect.
SQLNS_CmdID_DELETE 17 Delete

Deletes the specified
item.

SQLNS_CmdID_DTS_EXPORT 60 Data Export
Starts the DTS Export
Wizard.

SQLNS_CmdID_DTS_IMPORT 59 Data Import
Starts the DTS
Import Wizard.

SQLNS_CmdID_DTS_RUN 61 Run Package
Executes a DTS
package.

SQLNS_CmdID_EDIT_SERVER 43 Edit Server
Registration dialog
box.

SQLNS_CmdID_ENLIST 55 Enlist
Starts the Make This
a Target Server
Wizard.

SQLNS_CmdID_ENLIST_REG_SERVERS 62 Enlist Registered
Servers.

SQLNS_CmdID_EXPORT_JOB 57 Generates a script
file for the selected
Microsoft® SQL
Server™ 2000 Agent
job.

SQLNS_CmdID_GENERATE_SCRIPTS 79 Generate Scripts
Opens the Generate
SQL Scripts dialog
box.

SQLNS_CmdID_JOB_HISTORY 40 Displays the job
history information
for a selected SQL
Server Agent job.

SQLNS_CmdID_JOB_PROPERTIES (was
SQLNS_CmdID_JOB_STEPS)

48 Displays the
property dialog box
for a selected SQL
Server Agent job.

SQLNS_CmdID_JOB_START 39 Starts a selected SQL
Server Agent job.

SQLNS_CmdID_JOB_STOP 41 Stops the selected
SQL Server Agent
job, if currently
running.

SQLNS_CmdID_JOBSERVER_ERRORLOG 38 Display Error log
Opens the SQL
Server Agent Error
Log dialog box.

SQLNS_CmdID_JOBSERVER_TARGET_SERVERS 42 Target Servers
Opens the Target
Servers dialog box.

SQLNS_CmdID_MULTI_SERVER_JOB_STATUS 58 Reserved.
SQLNS_CmdID_NEW_ALERT 20 New Alert

Opens the New
Alert Properties
dialog box.

SQLNS_CmdID_NEW_BACKUPDEVICE 36 New Backup Device
Opens the Backup
Device Properties -
New Device dialog
box.

SQLNS_CmdID_NEW_DATABASE 23 New Database
Opens the Database
Properties dialog
box.

SQLNS_CmdID_NEW_DATABASE_ROLE 33 New Database Role
Opens the Database
Role Properties -
New Role dialog
box.

SQLNS_CmdID_NEW_DBUSER 35 New Database User
Opens the Database
User Properties -
New User dialog
box.

SQLNS_CmdID_NEW_DEFAULT 29 New Default
Opens the Default
Properties dialog
box.

SQLNS_CmdID_NEW_DIAGRAM 32 Does not display a
dialog box (internal
use only).

SQLNS_CmdID_NEW_EXTENDED_STORED_PROCEDURE 27 Add extended stored
procedure (master
only).

SQLNS_CmdID_NEW_JOB 19 Add new SQL Server
Agent job.

SQLNS_CmdID_NEW_LOGIN 34 New Login.

SQLNS_CmdID_NEW_OPERATOR 21 New Operator
Opens the New
Operator
Properties dialog
box.

SQLNS_CmdID_NEW_PUBLICATION 69 New Publication
Starts the Create
Publication Wizard.

SQLNS_CmdID_NEW_REMOTE_SERVER 22 Add Remote Server.
SQLNS_CmdID_NEW_RULE 28 New Rule

Opens the Rule
Properties dialog
box.

SQLNS_CmdID_NEW_SERVER 18 Add Server to a
Server Group (only
on default root or
server group root
level).

SQLNS_CmdID_NEW_SERVER_GROUP 31 New Server Group
(only on default_root
root level).

SQLNS_CmdID_NEW_STORED_PROCEDURE 26 New Stored
Procedure
Opens the Stored
Procedure
Properties - New
Stored Procedure
dialog box.

SQLNS_CmdID_NEW_SUBSCRIPTION 72 New Pull
Subscription
Starts the Pull
Subscription Wizard.

SQLNS_CmdID_NEW_TABLE 24 Does not display a
dialog box (internal
use only).

SQLNS_CmdID_NEW_TRACE 86 New trace
SQLNS_CmdID_NEW_UDDT 30 New User Defined

Data Type
Opens the User-
Defined Data Type
Properties dialog
box.

SQLNS_CmdID_NEW_UDF 85 New user-defined
function

SQLNS_CmdID_NEW_VIEW 25 Does not display a
dialog box (internal
use only).

SQLNS_CmdID_OBJECT_DEPENDENCIES 45 Object Dependencies
Opens the
Dependencies
dialog box.

SQLNS_CmdID_OBJECT_PERMISSIONS 44 Object Permissions
Opens the Object
Permissions dialog
box.

SQLNS_CmdID_OPEN 37 Does not display a
dialog box (internal
use only).

SQLNS_CmdID_PROPERTIES 16 Properties
Opens the
Properties dialog
box for the specified
item.

SQLNS_CmdID_PUBLISHING_PROPERTIES 83 Publishing and
Distribution
Properties.

SQLNS_CmdID_PUSH_NEW_SUBSCRIPTION 70 New Pull
Subscription
Starts the Pull
Subscription Wizard.

SQLNS_CmdID_REINIT_SUBSCRIPTION 73 Reinitialize
Reinitializes a
subscription.

SQLNS_CmdID_REPLICATION_CONFIGURE 65 Configure Publishing
and Distribution
Starts the Configure
Publishing and
Distribution Wizard.

SQLNS_CmdID_REPLICATION_SUBSCRIBE 66 Pull Subscription
Opens the Pull
Subscription dialog
box.

SQLNS_CmdID_REPLICATION_UNINSTALL 68 Disable Publishing or
Distribution.

SQLNS_CmdID_REPLICATION_PUBLISH 64 Publish and Push
Subscription
Opens the Create
and Manage
Publications dialog
box.

SQLNS_CmdID_REPLICATION_RESOLVE_CONFLICTS 71 Resolve Conflicts.
SQLNS_CmdID_REPLICATION_SCRIPT 67 Create Replication

Script.
SQLNS_CmdID_SECURITY_LIST 78 Manage SQL Server

Security
Opens the SQL
Server Security
dialog box.

SQLNS_CmdID_SERVER_CONFIGURATION 54 Does not display a
dialog box (internal
use only).

SQLNS_CmdID_SERVER_CONNECT 53 Reserved.
SQLNS_CmdID_SERVER_SECURITY 52 Server Security

Starts the Create
Login Wizard.

SQLNS_CmdID_STOP_SYNCHRONIZING 75 Stop Synchronizing
Immediately stops
synchronization of a
subscription.

SQLNS_CmdID_SVC_PAUSE 50 Pause Service
Pauses the specified
service.

SQLNS_CmdID_SVC_START 51 Start Service
Starts the specified
service.

SQLNS_CmdID_SVC_STOP 49 Stop Service
Stops the specified
service.

SQLNS_CmdID_SYNCHRONIZE_NOW 74 Synchronize Now
Immediately
synchronizes a
subscription.

SQLNS_CmdID_TABLE_INDEXES 46 Manage Indexes
Opens the Manage
Indexes dialog box.

SQLNS_CmdID_TABLE_TRIGGERS 47 Manage Triggers
Opens the Trigger
Properties dialog
box.

SQLNS_CmdID_TOOLS_MAINT_PLAN 63 Database
Maintenance Plan
Starts the Database
Maintenance Plan
Wizard.

SQLNS_CmdID_WIZARD_INDEXTUNING 9 Index Tuning Wizard
Starts the Index
Tuning Wizard.

SQLNS_CmdID_WIZARD_ALERT 10 Create Alert Wizard
Starts the Create
Alert Wizard.

SQLNS_CmdID_WIZARD_BACKUP 13 Backup Wizard
Starts the Create
Database Backup
Wizard.

SQLNS_CmdID_WIZARD_CREATEDB 1 Create Database
Wizard
Starts the Create
Database Wizard.

SQLNS_CmdID_WIZARD_CREATEINDEX 2 Create Index Wizard
Starts the Create
Index Wizard.

SQLNS_CmdID_WIZARD_CREATEJOB 5 Create Job Wizard
Starts the Create Job
Wizard.

SQLNS_CmdID_WIZARD_CREATETRACE 14 Create Trace Wizard
Starts the Create
Trace Wizard.

SQLNS_CmdID_WIZARD_DTSEXPORT 4 Data Export Wizard
Starts the DTS Export
Wizard.

SQLNS_CmdID_WIZARD_DTSIMPORT 3 Data Import Wizard
Starts the DTS
Import Wizard.

SQLNS_CmdID_WIZARD_MAINTPLAN 11 Database
Maintenance Plan
Wizard
Starts the Database
Maintenance Plan
Wizard.

SQLNS_CmdID_WIZARD_SECURITY 6 Security Wizard
Starts the Create
Login Wizard.

SQLNS_CmdID_WIZARD_SP 7 Create Stored
Procedure Wizard
Starts the Stored
Procedure Wizard.

SQLNS_CmdID_WIZARD_VIEW 8 Create View Wizard
Starts the Create
View Wizard.

SQLNS_CmdID_WIZARD_WEBASST 12 Web Assistant
Wizard
Starts the Web
Assistant Wizard.

SQLNS_CmdID_WIZARDS 15 Wizards
Opens the Select
Wizard dialog box.

SQL-NS (SQL Server 2000)

SQLNSErrors
SQLNSErrors constants specify error ranges available to the SQLNamespace object.

Constant Value Description
SQLNS_E_Already_Initialized 1005 Initialize method was called more than

one time.
SQLNS_E_DatabaseNotFound 1019 Specified database was not found.
SQLNS_E_ExternalError 1100 Error outside the scope of SQL-NS and

SQL-DMO occurred.
SQLNS_E_InvalidCommandID 1011 Invalid command ID was specified in a

call to ExecuteCommandByID.
SQLNS_E_InvalidCommandName 1010 Invalid command name was specified in

a call to ExecuteCommandByName.
SQLNS_E_InvalidConnectString 1016 Connection string is invalid.
SQLNS_E_InvalidDBName 1015 Database name is invalid.
SQLNS_E_InvalidLoginInfo 1014 Login information is invalid.
SQLNS_E_InvalidObjectHandle 1008 Object handle is invalid due to

specifying an invalid relationship or
passing a null pointer.

SQLNS_E_InvalidRootInfo 1012 Connection string does not match with
the root object specified.

SQLNS_E_InvalidRootType 1006 Nonmember of the current root type
was specified.

SQLNS_E_InvalidServerName 1013 Invalid server name specified.
SQLNS_E_InvalidServerVersion 1020 Server specified must be running SQL

Server 7.0.
SQLNS_E_NameDup 1004 Reserved.
SQLNS_E_NameNotFound 1003 Command name was not found in a call

to ExecuteCommandByName.
SQLNS_E_NoDMOObject 1009 There is no underlying SQL-DMO

object
SQLNS_E_NotImplemented 1001 SQL Namespace object not

implemented.
SQLNS_E_OrdOutOfRange 1002 Call was made into a .dll where the

ordinal does not exist.
SQLNS_E_RequireAppName 1007 Application name is required in a call to

Initialize.
SQLNS_E_ServerNotFound 1018 Server name was not found when

specifying SQLNSRootType_Server.
SQLNS_E_SrvGrpNotFound 1017 Server group was not found when

specifying
SQLNSRootType_ServerGroup.

SQL-NS (SQL Server 2000)

SQLNSModality
SQLNSModality constants set the modality of the user interface component displayed.

Constant Value Description
SQLNamespace_DontCare 0 Default window behavior.
SQLNamespace_PreferModal 1 Modal window behavior if available.
SQLNamespace_PreferModeless 2 Modeless window behavior if available.

SQL-NS (SQL Server 2000)

SQLNSObjectType
SQLNSObjectType constants specify object type definitions.

Constant Value Description
SQLNSOBJECTTYPE _DATABASE 5 Specific database,

SQLNSRootType_Server\Databases\master.
SQLNSOBJECTTYPE_ALERT 58 SQLNSRootType_Server\Management\SQL Server

Agent\Alerts\Demo: Full msdb log.
SQLNSOBJECTTYPE_ALERTS 47 SQLNSRootType_Server\Management\SQL Server

Agent\Alerts.
SQLNSOBJECTTYPE_BACKUPDEVICE 12 Specific backup device.
SQLNSOBJECTTYPE_BACKUPDEVICES 11 Backup Devices.
SQLNSOBJECTTYPE_CURRENTACTIVITY 95 SQLNSRootType_Server\Management\Current Activity.
SQLNSOBJECTTYPE_CURRENTACTIVITY_LOCKEDOBJECT 101 SQLNSRootType_Server\Management\Current

Activity\Locks\Object\master.
SQLNSOBJECTTYPE_CURRENTACTIVITY_LOCKEDOBJECT_INFO 102 SQLNSRootType_Server\Management\Current

Activity\Locks\Object\master\1.
SQLNSOBJECTTYPE_CURRENTACTIVITY_LOCKEDOBJECTS 100 SQLNSRootType_Server\Management\Current

Activity\Locks\Object.
SQLNSOBJECTTYPE_CURRENTACTIVITY_LOGIN 97 Reserved.
SQLNSOBJECTTYPE_CURRENTACTIVITY_PROCESSINFO 98 SQLNSRootType_Server\Management\Current

Activity\Process Info.
SQLNSOBJECTTYPE_CURRENTACTIVITY_PROCESSINFO_INFO 99 SQLNSRootType_Server\Management\Current

Activity\Process Info\1.
SQLNSOBJECTTYPE_CURRENTACTIVITY_ USERS 96 Reserved.
SQLNSOBJECTTYPE_DATABASE_DEFAULTS 34 Defaults.
SQLNSOBJECTTYPE_DATABASE_DIAGRAM 23 Internal use only, not exposed.
SQLNSOBJECTTYPE_DATABASE_DIAGRAMS 22 Database Diagrams.
SQLNSOBJECTTYPE_DATABASE_EXTENDED_SP 31 Specific extended stored procedure,

SQLNSRootType_Server\Databases\master\Extended
Stored Procedures\<xp>.

SQLNSOBJECTTYPE_DATABASE_EXTENDED_SPS 30 Extended stored procedure folder,
SQLNSRootType_Server\Databases\master\Extended
Stored Procedures.

SQLNSOBJECTTYPE_DATABASE_PUBLICATION 14 Specific publication in a database tree.
SQLNSOBJECTTYPE_DATABASE_PUBLICATIONS 13 Publications in a database tree.
SQLNSOBJECTTYPE_DATABASE_DEFAULT 35 Specific default.
SQLNSOBJECTTYPE_DATABASE_PUB_SUBSCRIPTION 15 Specific subscription to a publication in a database tree.
SQLNSOBJECTTYPE_DATABASE_PULL_SUBSCRIPTION 17 Specific pull subscription.
SQLNSOBJECTTYPE_DATABASE_PULL_SUBSCRIPTIONS 16 Pull subscriptions.
SQLNSOBJECTTYPE_DATABASE_ROLE 21 Specific database role.
SQLNSOBJECTTYPE_DATABASE_ROLES 20 Database Roles.
SQLNSOBJECTTYPE_DATABASE_RULE 33 Specific rule.
SQLNSOBJECTTYPE_DATABASE_RULES 32 Rules.
SQLNSOBJECTTYPE_DATABASE_SP 29 Specific stored procedure.
SQLNSOBJECTTYPE_DATABASE_SPS 28 Stored Procedures.
SQLNSOBJECTTYPE_DATABASE_TABLE 25 Specific table.
SQLNSOBJECTTYPE_DATABASE_TABLES 24 Tables.
SQLNSOBJECTTYPE_DATABASE_UDDT 37 Specific user-defined data type.
SQLNSOBJECTTYPE_DATABASE_UDDTS 36 User Defined Data Types.
SQLNSOBJECTTYPE_DATABASE_UDF 102 Specific user-defined function.
SQLNSOBJECTTYPE_DATABASE_UDFS 101 User-defined Functions folder.
SQLNSOBJECTTYPE_DATABASE_USER 19 Specific database user.
SQLNSOBJECTTYPE_DATABASE_USERS 18 Database Users.
SQLNSOBJECTTYPE_DATABASE_VIEW 27 Specific view,

SQLNSRootType_Server\Databases\pubs\Views\titleview.

SQLNSOBJECTTYPE_DATABASE_VIEWS 26 SQL Server Views,
SQLNSRootType_Server\Databases\pubs\Views.

SQLNSOBJECTTYPE_DATABASES 4 Databases, SQLNSRootType_Server\Databases.
SQLNSOBJECTTYPE_DB_MAINT_PLAN 92 Specific database maintenance plan.
SQLNSOBJECTTYPE_DB_MAINT_PLANS 91 Database Maintenance Plans.
SQLNSOBJECTTYPE_DTC 40 Distributed Transaction Coordinator.
SQLNSOBJECTTYPE_DTS_LOCALPKGS 82 DTS packages saved to Microsoft® SQL Server™ 2000.
SQLNSOBJECTTYPE_DTS_METADATA 86 DTS package meta data folder.
SQLNSOBJECTTYPE_DTS_REPOSPKGS 83 DTS packages saved to repository.
SQLNSOBJECTTYPE_DTSCATEGORIES 85 Reserved.
SQLNSOBJECTTYPE_DTSCATEGORY 85 Reserved.
SQLNSOBJECTTYPE_DTSCONNECTION 90 Reserved.
SQLNSOBJECTTYPE_DTSCONNECTIONS 88 Reserved.
SQLNSOBJECTTYPE_DTSPKG 86 Specific DTS package.
SQLNSOBJECTTYPE_DTSPKGS 83 DTS Packages.
SQLNSOBJECTTYPE_DTSSTEP 89 Reserved.
SQLNSOBJECTTYPE_DTSSTEPS 87 Reserved.
SQLNSOBJECTTYPE_EMPTY 1 Generic object type.
SQLNSOBJECTTYPE_ERRORLOG 45 Specific error log,

SQLNSRootType_Server\Management\SQL Server
Logs\Current – Date.

SQLNSOBJECTTYPE_ERRORLOGENTRY 46 Error log entry,
SQLNSRootType_Server\Management\SQL Server
Logs\Current – Date and time.

SQLNSOBJECTTYPE_ERRORLOGS 44 Error log folder,
SQLNSRootType_Server\Management\SQL Server Logs.

SQLNSOBJECTTYPE_HETEROGENEOUS_PUB_SUBSCRIPTION 119 Subscription to a heterogeneous publication.
SQLNSOBJECTTYPE_HETEROGENEOUS_PUBLICATION 118 Specific heterogeneous publication.
SQLNSOBJECTTYPE_HETEROGENEOUS_PUBLICATIONS_FOLDER 117 Heterogeneous Publications folder.
SQLNSOBJECTTYPE_HETEROGENEOUS_VENDOR_FOLDER 120 Heterogeneous Vendors folder.
SQLNSOBJECTTYPE_INDEXSERVER 41 Index server catalog.
SQLNSOBJECTTYPE_INDEXSERVER_CATALOGS 42 Index server catalog folder.
SQLNSOBJECTTYPE_INDEXSERVER_CATOLOG 43 Specific index server catalog.
SQLNSOBJECTTYPE_JOBSERVER 38 SQL Server Agent.
SQLNSOBJECTTYPE_LINKEDSERVER 61 Specific linked server,

SQLNSRootType_Server\Security\Linked
Servers\NWIND.

SQLNSOBJECTTYPE_LINKEDSERVER_TABLE 62 Linked server table,
SQLNSRootType_Server\Security\Linked
Servers\NWIND\Tables\Categories.

SQLNSOBJECTTYPE_LINKEDSERVER_TABLES 63 Linked server table name,
SQLNSRootType_Server\Security\Linked
Servers\NWIND\Tables.

SQLNSOBJECTTYPE_LINKEDSERVERS 55 Linked server folder,
SQLNSRootType_Server\Security\Linked Servers.

SQLNSOBJECTTYPE_LINKEDSERVER_VIEW 122 Specific linked server view
SQLNSOBJECTTYPE_LINKEDSERVER_VIEWS 121 Linked server views folder.
SQLNSOBJECTTYPE_LOCAL_JOB 52 Specific local job,

SQLNSRootType_Server\Management\SQL Server
Agent\Jobs\test.

SQLNSOBJECTTYPE_LOCAL_JOBS 50 Local jobs, SQLNSRootType_Server\Management\SQL
Server Agent\Jobs.

SQLNSOBJECTTYPE_LOGIN 10 Specific user login.
SQLNSOBJECTTYPE_LOGINS 9 Logins.
SQLNSOBJECTTYPE_LOGSHIPPING_MONITOR 109 Specific Log Shipping monitor.
SQLNSOBJECTTYPE_LOGSHIPPING_MONITORS 108 Log Shipping monitor folder.
SQLNSOBJECTTYPE_MANAGEMENT 6 SQLNSRootType_Server\Management.

SQLNSOBJECTTYPE_MSX_JOBS 49 Reserved.
SQLNSOBJECTTYPE_MULTI_JOB 53 Jobs.
SQLNSOBJECTTYPE_MULTI_JOBS 51 Operators.
SQLNSOBJECTTYPE_OPERATOR 59 Server Roles.
SQLNSOBJECTTYPE_OPERATORS 48 Specific SQL Server log.
SQLNSOBJECTTYPE_PROFILER 103 SQL Server Performance Analysis Traces in the

Management folder.
SQLNSOBJECTTYPE_PROFILER_TRACE 104 Reserved.
SQLNSOBJECTTYPE_PUBLICATIONS_FOLDER 111 Publications folder in the Replication folder.
SQLNSOBJECTTYPE_REMOTESERVER 60 Specific server role.
SQLNSOBJECTTYPE_REMOTESERVERS 54 SQLNSRootType_Server\Security\Remote Servers.
SQLNSOBJECTTYPE_REPLICATION 64 Replication folder.
SQLNSOBJECTTYPE_REPLICATION_AGENTS 67 Replication agents folder.
SQLNSOBJECTTYPE_REPLICATION_ALERTS 69 Replication alerts folder.
SQLNSOBJECTTYPE_REPLICATION_DISTRIBUTION_AGENT 78 Specific replication Distribution Agent.
SQLNSOBJECTTYPE_REPLICATION_DISTRIBUTION_AGENTS 74 Replication Distribution Agents folder.
SQLNSOBJECTTYPE_REPLICATION_LOGREADER_AGENT 77 Specific replication Log Reader Agent.
SQLNSOBJECTTYPE_REPLICATION_LOGREADER_AGENTS 73 Replication Log Reader Agents folder.
SQLNSOBJECTTYPE_REPLICATION_MERGE_AGENT 79 Specific replication Merge Agent.
SQLNSOBJECTTYPE_REPLICATION_MERGE_AGENTS 75 Replication Merge Agents folder.
SQLNSOBJECTTYPE_REPLICATION_PUBLICATION 71 Specific replication publication.
SQLNSOBJECTTYPE_REPLICATION_PUBLISHER 66 Specific replication Publisher.
SQLNSOBJECTTYPE_REPLICATION_PUBLISHERS 65 Replication Publishers folder.
SQLNSOBJECTTYPE_REPLICATION_REPORT 80 Reserved.
SQLNSOBJECTTYPE_REPLICATION_REPORTS 68 Reserved.
SQLNSOBJECTTYPE_REPLICATION_SNAPSHOT_AGENT 76 Specific replication Snapshot Agent.
SQLNSOBJECTTYPE_REPLICATION_SNAPSHOT_AGENTS 72 Replication Snapshot Agents folder.
SQLNSOBJECTTYPE_REPLICATION_SUBSCRIPTION 70 Specific replication subscription.
SQLNSOBJECTTYPE_REPLICATION_FOLDER 110 Replication folder.
SQLNSOBJECTTYPE_REPLICATION_FOLDER_PUB_SUBSCRIPTION 114 Specific subscription to a publication in the Publications

folder.
SQLNSOBJECTTYPE_REPLICATION_FOLDER_PUBLICATION 113 Specific publication in the Publications folder.
SQLNSOBJECTTYPE_REPLICATION_FOLDER_PUSH_SUBSCRIPTION 116 Specific push subscription in the Subscriptions folder.
SQLNSOBJECTTYPE_REPLICATION_FOLDER_SUBSCRIPTION 115 Specific pull subscription in the Subscriptions folder.
SQLNSOBJECTTYPE_REPLICATION_MONITOR_GROUP 105 Replication monitor group folder.
SQLNSOBJECTTYPE_REPLICATION_QUEUEREADER_AGENT 107 Specific replication Queue Reader Agent.
SQLNSOBJECTTYPE_REPLICATION_QUEUEREADER_AGENTS 106 Replication Queue Reader Agents Folder.
SQLNSOBJECTTYPE_ROOT 0 Generic root node.
SQLNSOBJECTTYPE_SECURITY 7 Security folder SQLNSRootType_Server\Security.
SQLNSOBJECTTYPE_SERVER 3 Server.
SQLNSOBJECTTYPE_SERVER_GROUP 2 Server group.
SQLNSOBJECTTYPE_SERVERROLE 57 Specific remote server.
SQLNSOBJECTTYPE_SERVERROLES 56 Remote server folder,

SQLNSRootType_Server\Security\Server Roles.
SQLNSOBJECTTYPE_SERVICES 8 Services folder, SQLNSRootType_Server\Support

Services.
SQLNSOBJECTTYPE_SQLMAIL 39 SQL Mail.
SQLNSOBJECTTYPE_SUBSCRIPTIONS_FOLDER 112 Subscriptions folder in the Replication folder.
SQLNSOBJECTTYPE_WEBASSISTANTJOB 94 Specific Web Assistant job.
SQLNSOBJECTTYPE_WEBASSISTANTJOBS 93 Web Assistant Jobs.

SQL-NS (SQL Server 2000)

SQLNSRootType
SQLNSRootType constants specify the type of object to set as root.

Constant Value Description
SQLNSRootType_Database 3 Databases (preferred setting).
SQLNSRootType_DefaultRoot 0 Console tree.
SQLNSRootType_Server 2 Server name (preferred setting).
SQLNSRootType_ServerGroup 1 Server group node.

SQL-NS (SQL Server 2000)

SQL-NS Samples
Microsoft® SQL Server™ 2000 includes the following SQL-NS to introduce you to using SQL Namespace (SQL-NS):

Sample Description
SQL-NS Sample Program
Using Visual Basic

This sample Microsoft Visual Basic® application
demonstrates how to use SQL-NS to display the
Properties dialog box for the pubs database.

SQL-NS Sample Program
Using C++

This sample Microsoft Visual C++® application
demonstrates how to use SQL-NS to display the
Properties dialog box for the pubs database.

SQL Namespace Sample
Browser

This sample Microsoft Visual Basic application
demonstrates how to view the SQL Namespace object
hierarchy, and view and execute the commands available
for each object.

SQL Namespace Dump
Tree

This sample console application demonstrates how to
display the objects in the SQL Namespace tree for the
default instance of Microsoft SQL Server™ 2000 running
on the local computer.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_sqlns.exe, located at
C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlns.

Prerequisites

C++ samples require Microsoft Visual C++ version 6.0. Visual Basic samples require Microsoft Visual Basic version 6.0.

See Also

Samples

SQL-NS (SQL Server 2000)

SQL-NS Sample Program Using Visual Basic
This sample Microsoft® Visual Basic® application demonstrates how to use SQL-NS to display the Properties dialog box for the
pubs database.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlns\Vb\Dbprop

Running the Sample

Open the Microsoft Visual Basic project file, Dbprop.vbp, and then start the project.

See Also

SQL-NS Samples

SQL-NS (SQL Server 2000)

SQL-NS Sample Program Using C++
This sample Microsoft® Visual C++® application demonstrates how to use SQL-NS to display the Properties dialog box for the
pubs database.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlns\Cpp\Dbprop

Running the Sample

Open the Microsoft Visual C++ workspace file, Dbprop.dsw, and then start the project.

See Also

SQL-NS Samples

SQL-NS (SQL Server 2000)

SQL Namespace Sample Browser
This sample Microsoft® Visual Basic® application demonstrates how to view the SQL Namespace object hierarchy, and view and
execute the commands available for each object. The browser also displays the SQLNSObjectType and SQLNSCommandID for
your selections.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlns\Vb\Browse

Running the Sample

Open the Microsoft Visual Basic project file, Browse.vbp, and then start the project.

Remarks

This table describes the function of each item on the user interface.

Use this To do this
Root Object Select the highest level object to be shown in the

browser.
Server Enter the name of the server to connect to when the

Root Object is a server or database.
Server Group Enter the name of the server group to browse when

the Root Object is a server group.
User Enter the user name to connect to a server.
Password Enter the password to connect to a server.
Integrated Security Connect to a server using the integrated security.
Database Enter the name of the database to browse when the

Root Object is a database.
Connect Begin browsing at the specified Root Object and

then, if necessary, log on to a server or database.
Disconnect Disconnect from any servers or databases and stop

browsing.
SQL Namespace Browser View the SQL Namespace object hierarchy.
Commands View and execute the commands available for the

object selected in the SQL Namespace Browser.
Refresh Refresh the SQL Namespace Browser.
Execute Execute the command selected in the Commands

list. You can also execute a command by double-
clicking it in the Commands list.

See Also

SQL-NS Samples

SQL-NS (SQL Server 2000)

SQL Namespace Dump Tree
This sample console application demonstrates how to display the objects in the SQL Namespace tree for the default instance of
Microsoft® SQL Server™ 2000 running on the local computer.

Default Location

C:\Program Files
\Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlns\Cpp\Dumptree

Running the Sample

Open the Microsoft Visual C++® workspace file, Dumptree.dsw, and then start the project.

See Also

SQL-NS Samples

Analysis Services Programming (SQL Server 2000)

Programming Analysis Services Applications
Microsoft® SQL Server™ 2000 Analysis Services provides support for you to create and integrate custom applications that
enhance your online analytical processing (OLAP) and data mining installation.

Analysis Services includes the Analysis server and PivotTable® Service. The Analysis server manages and stores multidimensional
information and serves client application requests for OLAP data. PivotTable Service is an OLE DB for OLAP provider that connects
client applications to the Analysis server and manages offline cubes. A repository of meta data contains definitions of OLAP data
objects such as cubes and their elements.

An object model, Decision Support Objects (DSO), provides support for the Analysis Manager user interface and for custom
applications that manage OLAP meta data and control the server. An interface, IOlapAddIn, enables your applications to extend
and interact with the user interface. PivotTable Service provides access to OLAP data from the server and the ability to create local
cubes.

You can create applications that:

Manage the Analysis server and create and maintain OLAP and data mining objects such as cubes, dimensions, security
roles, and data mining models.

Extend the user interface by adding new objects to the object tree pane and by adding and responding to new menu
choices.

Connect to the Analysis server, query data in cubes, and create local cubes.

Combine any or all of these functions.

This section contains the following topics.

Topic Description
Analysis Services
Architecture

Information about the architecture of Analysis Services
and its components

Analysis Services Component
Tools

Information about the tools in Analysis Services that
you can use to create administrative support
applications and client data access applications

SQL in Analysis Services Details of the implementation of SQL in Analysis
Services

Decision Support Objects Information about the Analysis Services server object
model, the component tool for managing OLAP, and
data mining objects

Add-ins Information about the IOlapAddIn interface you can
use in your applications to interact with the Analysis
Manager user interface

PivotTable Service Information about the client application service you can
use with applications that query OLAP and data mining
data and create local cubes and mining models

Analysis Services
Programming Samples

Information about the samples that illustrate
development of applications for Analysis Services

Analysis Services Programming (SQL Server 2000)

Analysis Services Architecture
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 Analysis Services includes the Analysis server and PivotTable® Service. The Analysis server
creates and manages multidimensional data cubes for online analytical processing (OLAP) and provides multidimensional data to
PivotTable Service, which in turn provides this data to clients through
Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) and OLE DB for OLAP provider services.

The server stores cube meta data (cube definition specifications) in a repository. Completed cubes can be stored in a variety of
storage modes: as multidimensional database files (MOLAP), as tables in a relational database (ROLAP), or as a hybrid of
multidimensional database files and relational tables (HOLAP).

Source data for multidimensional cubes resides in relational databases where the data has been transformed into a star or
snowflake schema typically used in OLAP data warehouse systems. Analysis Services can work with many relational databases
that support connections using ODBC or OLE DB. When used as part of SQL Server 2000, Analysis Services offers enhanced
security and other capabilities. The Data Transformation Services (DTS) feature of SQL Server 2000 provides a means to manage
the data warehouse from which Analysis Services creates cubes.

Control of the server is accomplished through the Analysis Manager user interface, or through custom applications developed
using the Decision Support Objects (DSO) object model. DSO controls the creation and management of objects by the server, and
manages the object meta data in the repository. The object model is used by the Analysis Manager program that provides the
user interface through a snap-in to Microsoft Management Console (MMC). The DSO object model can be used by applications
written in Microsoft Visual Basic® to provide custom programmatic control of the server. You can also develop custom
applications to interact with the Analysis Manager user interface.

The following diagram illustrates the elements and functions of the Analysis server and its use of PivotTable Service to provide
multidimensional data to client consumer applications. The Analysis Manager user interface uses PivotTable Service to obtain
multidimensional data from the server for browsing by the server administrator. For more information about client applications,
see PivotTable Service.

Analysis Services Programming (SQL Server 2000)

Analysis Services Component Tools
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 Analysis Services provides three component tools you can use with your custom applications. You
can use any combination of these tools to create applications that help you manage your Analysis Services installation and
provide OLAP data to your end users.

DSO

Decision Support Objects (DSO) exposes the object model for the Analysis server. Your applications can use DSO to control and
automate functionality on the server. You can also create and maintain OLAP objects such as cubes, dimensions, and roles.

The DSO object model consists of interfaces, objects, collections, methods, and properties. You create and manipulate DSO objects
to manage the meta data for OLAP data. This meta data is stored in a repository in a relational database and is accessed by the
Analysis server and DSO.

DSO uses hierarchically arranged groups of objects to define basic elements of OLAP data. These basic elements include
databases, dimensions, cubes, partitions, aggregations, and virtual cubes. DSO addresses these basic elements in a hierarchical
structure where elements contain other elements in a tree, with the server at the root of the tree. You can observe the hierarchy of
this structure in the Analysis Manager tree pane. Some objects, such as roles, do not appear as individual nodes in the Analysis
Manager tree pane. Instead, a single node is used to represent a group of objects. This single node provides access to
management tools that allow you to centrally manage that group of objects.

Your application can use DSO in combination with other component tools of Analysis Services to enhance, augment, and
automate your Analysis Services installation.

You can develop your DSO applications in Microsoft Visual Basic® and other languages that support the Component Object
Model (COM). The DSO object model was developed in Visual Basic and is easiest to use with that language.

For more information, see Decision Support Objects.

Add-ins Interface and Objects

You can create applications that interact with and enhance the Analysis Services user interface. Analysis Manager can call various
routines in your application in response to user activity in the user interface. Your add-in can add nodes to the structure in the
tree pane as the user selects or expands a node; it can also augment node menus with items that cause your program to be called
when those items are selected. Multiple custom add-ins can be registered and operating at the same time.

The Analysis Manager user interface is implemented as an add-in and is called by the Analysis Services Add-in Manager in the
same way that your custom add-in will be called.

Your add-in can use other Analysis Services component tools to enhance, augment, and automate your Analysis Services
installation.

For more information about creating and registering your add-ins, see Add-ins.

PivotTable Service

PivotTable® Service, which is included with Analysis Services, is an OLE DB provider that supports the optional OLE DB for OLAP
extensions. It functions as a connection interface with cache management functionality to Analysis Services to support client
application access to OLAP data.

PivotTable Service is also an in-process desktop Analysis server designed to provide offline data analysis, cube building, and
functionality to manipulate data. PivotTable Service stores data locally on the client for offline analysis and offers connectivity to
the multidimensional data managed by Analysis Services, other OLE DB-compliant providers, and to non-OLAP relational data
sources.

PivotTable Service supports OLE DB Multidimensional Expressions (MDX) as its native consumer interface, and a subset of SQL.
PivotTable Service also extends the language defined in OLE DB by adding data definition language (DDL) and data manipulation
language (DML) statements to define the structure of local multidimensional data cubes.

Your applications that use PivotTable Service to communicate with the Analysis server or to manage local cubes can use OLE DB
interfaces for C++ or Microsoft ActiveX® Data Objects (ADO) and ADO (Multidimensional) (ADO MD) with any COM automation
language, including Visual Basic.

You can use PivotTable Service with OLE DB-compliant data sources or ODBC-compliant data sources. PivotTable Service
supports the following relational database products:

SQL Server version 7.0 and earlier and SQL Server 2000

Microsoft Access 97 and later

Oracle versions 7.3 and 8.0

See Also

Decision Support Objects

Add-ins

PivotTable Service

Analysis Services Programming (SQL Server 2000)

SQL in Analysis Services
Microsoft® SQL Server™ 2000 Analysis Services is both a multidimensional data provider and a tabular data provider. Therefore,
executing a query returns either a multidimensional dataset or a flattened rowset, depending on the query language used.
Analysis Services can interpret and process queries in both SQL and Multidimensional Expressions (MDX).

In addition to querying, you can use certain data definition language (DDL) statements to create local cubes, calculated members,
user-defined sets, and cache. For more information, see PivotTable Service.

For more information about OLE DB, OLE DB for OLAP, and the MDX syntax as defined by OLE DB for OLAP, see the OLE DB
documentation. For more information about Microsoft ActiveX® Data Objects (ADO) and ADO (Multidimensional) (ADO MD), see
the ADO documentation.

See Also

MDX

SQL

Analysis Services Programming (SQL Server 2000)

Executing an SQL Query
SQL queries can be passed to Microsoft® SQL Server™ 2000 Analysis Services using either of the following data connectivity
tools:

Microsoft OLE DB, including OLE DB for Online Analytical Processing (OLE DB for OLAP)

Microsoft ActiveX® Data Objects (ADO) and ADO (Multidimensional) (ADO MD).

OLE DB for OLAP extends OLE DB to include objects specific to multidimensional data. ADO MD extends ADO in the same way.

All three data connectivity tools provide objects that support SQL queries; OLE DB provides the Command object, ADO provides
the Recordset object, and ADO MD provides the Cellset object. Each data connectivity tool, however, provides support in a
different manner.

OLE DB

The OLE DB for OLAP Command object supports text commands in the Multidimensional Expressions (MDX) syntax by using the
OLE DB ICommandText interface. The ICommandText::SetCommandText method specifies the command and the
ICommand::Execute method processes the command. For commands that may be used several times, the
ICommandPrepare::Prepare method prepares the command.

OLE DB for OLAP defines a language dialect identifier GUID (MDGUID_MDX) that denotes the MDX syntax. This GUID is used in
ICommandText::SetCommandText to identify to the provider that the query language being used is the MDX syntax.

OLE DB also defines another language dialect identifier, DBGUID_DEFAULT, which denotes the default language dialect. The
following rules apply to the use of this identifier (from the OLE DB for OLAP specification):

If the provider is both a multidimensional data provider and a tabular data provider, it must interpret the command string
as SQL when DBGUID_DEFAULT is passed as the dialect identifier.

If the provider is a multidimensional data provider, it should interpret the command string as MDX when DBGUID_DEFAULT
is passed as the dialect identifier.

Important Analysis Services does not simultaneously conform to both of these semantics. Instead, when DBGUID_DEFAULT is
passed, Analysis Services analyzes the query string text and attempts to determine which dialect is being used.

If the SQL dialect is used, a flattened rowset is returned. If the MDX dialect is used, Analysis Services analyzes the rowset interface
identifier (IID) to determine whether a multidimensional dataset or a flattened rowset is returned.

ADO

The Open method of the ADO Recordset object retrieves the results of an SQL query.

Syntax

object.Open [Source], [ActiveConnection], CursorType As CursorTypeEnum = adOpenUnspecified], [LockType As
LockTypeEnum = adLockUnspecified], [Options As Long = -1]

Parameters

object

An instance of the ADO Recordset object.

Source

(Optional) A Variant that evaluates to a valid ADO Command object, valid SQL query, table name, stored procedure call, URL, or
the name of a file containing a persistently stored ADO Recordset object. This argument corresponds to the Source property.

ActiveConnection

(Optional) A Variant that evaluates to a valid ADO Connection object variable name or a string that contains a connection
definition. The ActiveConnection argument specifies the connection in which to open the Cellset object. If you pass a connection
definition for this argument, ADO opens a new connection using the specified parameters. The ActiveConnection argument

corresponds to the ActiveConnection property.

CursorType

(Optional) A CursorTypeEnum value that determines the type of cursor that the provider should use when opening the ADO
Recordset object.

LockType

(Optional) A LockTypeEnum value that determines what type of locking (concurrency) the provider should use when opening
the ADO Recordset object.

Options

(Optional) A value that indicates how the provider should evaluate the Source argument if it represents something other than an
ADO Command object, or if the ADO Recordset object should be restored from a file where it was previously saved. This value
may be set to a value supplied from either the ADO CommandTypeEnum or ExecuteOptionEnum enumerations.

Remarks

The Open method fails if either the Source or Active Connection parameters are missing or their corresponding properties are
not set.

The default value for the CursorType property is adOpenUnspecified.

The default value for the LockType is adLockUnspecified.

ADO MD

The Open method of the ADO MD Cellset object retrieves the results of a multidimensional query.

Syntax

object.Open [DataSource], [ActiveConnection]

Parameters

object

An instance of the ADO MD Cellset object.

DataSource

(Optional) A Variant that evaluates to a valid multidimensional query, such as an MDX query. The DataSource argument
corresponds to the Source property.

ActiveConnection

(Optional) A Variant that evaluates to a string specifying either a valid ADO Connection object variable name or a definition for a
connection. The ActiveConnection argument specifies the connection in which to open the Cellset object. If you pass a connection
definition for this argument, ADO opens a new connection using the specified parameters. The ActiveConnection argument
corresponds to the ActiveConnection property.

Remarks

The Open method generates an error if either of its parameters is omitted and its corresponding property value has not been set
prior to an attempt to open the Cellset.

Analysis Services Programming (SQL Server 2000)

Exposed Schema
Some of the OLE DB schema rowsets that are common to tabular data providers are interpreted differently when they are used
with Microsoft® SQL Server™ 2000 Analysis Services. The interpretation that Analysis Services ascribes to each one is listed in
the following table.

Rowset Meaning in Analysis Services
CATALOGS The list of catalogs (databases).
TABLES The list of cubes. For SQL queries, each cube can function as a table.
COLUMNS The list of levels and measures for each cube. Column names are of

the form dimension_name:level_name and
dimension_name:measure_name. For SQL queries, each level and
each measure can function as an SQL column.

Analysis Services Programming (SQL Server 2000)

Supported SQL SELECT Syntax
Microsoft® SQL Server™ 2000 Analysis Services supports the following subset of the SQL SELECT command syntax.

Syntax

SELECT [<options_clause>] <select_list> FROM <from_clause> [WHERE <where_clause>] [GROUP BY <groupby_clause>]

<options_clause> ::= <empty_clause> | DISTINCT

<select_list> ::= <scalar_exp_commalist> | ASTERISK

<scalar_exp_commalist> ::= <scalar_expression> [, <scalar_expression> [, <scalar_expression> [...]]]

<scalar_expression> ::= <column_ref>

 | <aggregate>

 | (<column_ref>) AS IDENTIFIER

<aggregate> ::= <aggregate_func> (<column_ref>)

Note In the preceding line, <column_ref> must be a measure name. <aggregate_func> must agree with the Aggregate
Function property of the measure.

<aggregate_func> ::= COUNT | MIN | MAX| SUM

Note <select_list> can contain references only to levels or measures. If measures are specified, you must also specify
<aggregate>.

<from_clause> ::= cube_name

<where_clause> ::= empty_clause | <search_condition>

<groupby_clause> ::= <column_ref_commalist>

<column_ref_commalist> ::= (<column_ref>) [, (<column_ref>) [, (<column_ref>) [...]]]

<search_condition> ::= <empty_clause>

 | <search_condition> AND <search_condition>

 | <search_condition> OR <search_condition>

 | (<search_condition>)

 | <comparison_predicate>

<comparison_predicate> ::= (<column_ref>) = VALUE | VALUE = (<column_ref>)

Note In the preceding line, <column_ref> must be a valid level name.

Remarks

There are some limitations of the SQL SELECT statement in Analysis Services.

You cannot use DISTINCT or GROUP BY if <select_list> contains members.

Using the DISTINCT option with levels in <select_list> can cause the following problems:
If a parent level has more than one member, and not all parents are listed, Analysis Services may return duplicate
rows. Be sure to explicitly include all parents.

If the root level for a dimension contains more than one member, Analysis Services may return duplicate rows.
Include all dimensions with root levels having more than one member as columns.

DISTINCT and GROUP BY may return multiple rows if the server contains more than one segment.

You cannot use SQL syntax to query a virtual dimension that was created in SQL Server version 7.0 OLAP Services. You
must use Multidimensional Expressions (MDX) to query this type of virtual dimension.

Analysis Services Programming (SQL Server 2000)

Passing Queries from SQL Server to a Linked Analysis Server
The linked server feature of Microsoft® SQL Server™ 2000 allows you to execute queries against OLE DB data sources that are
hosted on remote computers. There are no special requirements for using this feature with SQL Server 2000 Analysis Services,
but there are some important points to note when configuring the two systems.

Security

Analysis Services uses security that is integrated with Microsoft Windows NT® 4.0 and Windows® 2000 to identify user
accounts. It cannot be configured to recognize accounts created for use with SQL Server authentication. However, the
MSSQLServer service on the linked server can be configured to log on using an account that has sufficient permissions to access
Analysis Services.

Using the OPENQUERY Function

For best results with pass-through queries from SQL Server to Analysis Services, use the Transact-SQL function OPENQUERY to
execute SQL commands between servers. OPENQUERY sends the commands of the query directly to the Analysis server, which
then returns flattened rowsets (as described in the OLE DB documentation) that contain the requested data. The syntax of the
passed query is not limited to the abbreviated SQL SELECT options supported by Analysis Services, but can also include
Multidimensional Expressions (MDX) commands.

Executing SQL Queries using the OPENQUERY Function

The OPENQUERY function accepts two parameters: the name of the linked server and the text of the query to pass.

Examples

A. Returning Total Sales Grouped by Customer Gender

This query returns the total sales grouped by customer gender:

select * from openquery(LINKED_OLAP, 'select [Customer Gender:Gender],
sum([measures:unit sales]) from sales group by [Customer Gender:Gender]')

B. Returning Total Sales Grouped by Gender and Education

This query returns the total sales grouped by customer gender and education level:

select * from openquery(LINKED_OLAP,
'select [Customer Education Level:Education], [Customer Gender:Gender],
sum([measures:unit sales]) from sales
group by [Customer Education Level:Education],
[Customer Gender:Gender]')

Because there is a limitation in Analysis Services that causes GROUP BY and DISTINCT queries to produce multiple rows that
satisfy the grouping and/or distinct functions (instead of just one), it may be necessary to copy the rows to a temporary table and
reduce them further.

The following examples show how SQL Server can be used to merge the results of a query from Analysis Services.

C. Performing a DISTIN CT Operation

In this query, SQL Server performs an additional DISTINCT operation on the data retrieved by Analysis Services:

select distinct * from openquery(LINKED_OLAP,
'select distinct [Customer Location:Country],
[Customer Location:State Province],
[Customer Location:City]
from sales')

D. Using the ORDER BY Command

In this query, the ORDER BY command sorts the values retrieved by Analysis Services:

select distinct * from openquery(LINKED_OLAP,
'select distinct [Customer Location:Country!name],
[Customer Location:State Province!name],

[Customer Location:City!name]
from sales')
order by
[Customer Location:Country!name],
[Customer Location:State Province!name],
[Customer Location:City!name]

E. Guaranteeing the Correctness of the GROUP BY Command

In this query, SQL Server guarantees the correctness of the GROUP BY command (because Analysis Services might not coalesce
all of the returned rows):

select [Customer Location:Country!name], [Customer Gender:Gender!name],
sum([measures:unit sales])
from openquery(LINKED_OLAP,
'select [Customer Location:Country!name], [Customer Gender:Gender!name],
sum([measures:unit sales]) from sales
group by [Customer Location:Country!name],
[Customer Gender:Gender!name]')
group by [Customer Location:Country!name], [Customer Gender:Gender!name]

F. Using a WHERE Clause

This query combines all elements of the preceding examples and includes a WHERE clause:

select
[Customer Location:Country!name],
[Customer Gender:Gender!name],
[Product:Product Family!name],
[Product:Product Department!name],
[Product:Product Category!name],
[Product:Product Subcategory!name],
sum([measures:unit sales])
from openquery(LINKED_OLAP,
'select
[Customer Location:Country!name],
[Customer Gender:Gender!name],
[Product:Product Family!name],
[Product:Product Department!name],
[Product:Product Category!name],
[Product:Product Subcategory!name],
sum([measures:unit sales])
from sales
where
[Product:Product Family!name] = ''Food'' and
[Product:Product Department!name] = ''Baked Goods' '
group by
[Customer Location:Country!name],
[Customer Gender:Gender!name],
[Product:Product Family!name],
[Product:Product Department!name],
[Product:Product Category!name],
[Product:Product Subcategory!name] ')
group by
[Customer Location:Country!name],
[Customer Gender:Gender!name],
[Product:Product Family!name],
[Product:Product Department!name],
[Product:Product Category!name],
[Product:Product Subcategory!name]
order by
[Customer Location:Country!name],
[Customer Gender:Gender!name],
[Product:Product Family!name],
[Product:Product Department!name],
[Product:Product Category!name],
[Product:Product Subcategory!name]

Executing MDX Queries Using the OPENQUERY Function

Because the OPENQUERY function causes SQL Server to pass the text of the query directly to Analysis Services, you can use MDX
syntax for complex multidimensional queries. The result sets from MDX queries appear as flattened rowsets. For more
information about how a multidimensional result set is mapped to a tabular rowset in OLE DB for OLAP, see the OLE DB
documentation.

Example

The following example submits an MDX query using the OPENQUERY function.

select * from openquery
(LINKED_OLAP, 'select { measures.[unit sales] } on columns,
 non empty nest(nest([customer location].[country].members,
[gender].members), [product category].[bread].children) on rows
from sales ')

Avoiding Four-Part Naming

It is possible to access the data of a cube directly from SQL Server using queries with four-part naming. (The four parts are linked-
server-name, catalog, schema, and table.) However, this option is not recommended because SQL Server attempts to copy the
contents of the entire fact table and then perform the calculations for aggregating the data itself, substantially increasing the
query response time.

Analysis Services Programming (SQL Server 2000)

Adding a Linked Server
There are two ways to add a linked server. You can create one by using SQL Server Enterprise Manager interface or by issuing
SQL commands. If you use SQL Server Enterprise Manager, you can configure a wider set of options. For more information about
adding and using linked servers, see Configuring Linked Servers and Establishing Security for Linked Servers.

Enterprise Manager

Enterprise Manager

Adding a Linked Analysis Server Using Transact-SQL

Use the system stored procedure sp_addlinkedserver to add a linked Analysis server using SQL commands.

Syntax

Linking to Microsoft® SQL Server™ 2000 Analysis Services requires more specific syntax than that provided in the SQL Server
documentation. Note the required program ID MSOLAP.

sp_addlinkedserver @server = 'server', @srvproduct = 'product_name',
 @provider = 'MSOLAP', @datasrc = 'data_source',
 @catalog = 'catalog'

Arguments

@server = 'server'

This is the name of the Analysis server as it is referenced in SQL Server. This name is used to identify the linked server in pass-
through queries.

@srvproduct = 'product_name'

The product name of the OLE DB data source to be added as a linked server. Leave the product_name value NULL.

@provider = 'MSOLAP'

The progID of the OLE DB Provider for Analysis Services.

@datasrc = 'data_source'

The network name of the computer hosting Analysis Services.

@catalog = 'catalog'

The name of the Analysis Services database that contains cubes to be queried.

Example

Use the following example to create a linked server reference using SQL Server:

/* Remove any previous references to the linked server */
EXEC sp_dropserver 'LINKED_OLAP'

EXEC sp_addlinkedserver
 @server='LINKED_OLAP', /* local SQL name given to the
 linked server */
 @srvproduct='', /* not used */
 @provider='MSOLAP', /* OLE DB provider */
 @datasrc='OLAPSRV', /* analysis server name (machine name) */
 @catalog='foodmart' /* default catalog/database */

/* Two additional procedures obtain information about the
 tables and columns available in the cube. It is not
 necessary to use them to complete the link.*/

/* This provides schema rowset information about
 the dimensions available from the linked server */
EXEC sp_tables_ex
 @table_server='LINKED_OLAP'

/* This provides schema rowset information about the
 measures and levels of the dimensions

 available from the linked server */
EXEC sp_columns_ex
 @table_server='LINKED_OLAP',
 @table_name='Sales'

Analysis Services Programming (SQL Server 2000)

Decision Support Objects
The Decision Support Objects (DSO) library of Microsoft® SQL Server™ 2000 Analysis Services provides a robust set of
Component Object Model (COM) objects and interfaces that you can use to create applications that can programmatically
administer Analysis Services objects. With the DSO library, you can manage Analysis Services objects, such as servers, databases,
data sources, dimensions, cubes, mining models, and roles. You can also administer security, process cubes and mining models,
and so on. For more information about the features of Analysis Services, see Analysis Services Features.

The following table lists topics in this section, and describes their contents.

Topic Description
Introducing Decision Support
Objects

Gives a brief overview of DSO.

Redistributing Decision Support
Objects

Describes the files used to support DSO, including
prerequisites and redistribution instructions.

Decision Support Objects
Architecture

Provides information about the implementation
of the DSO object model, including discussion of
the MDStore interface and a brief description of
each object supported by DSO.

Using Decision Support Objects Explains how you can use DSO to perform
common and advanced tasks in Analysis Services.
Sample programs are provided to get you started.

Decision Support Objects
Programmer's Reference

Details the interfaces, objects, collections,
methods, and properties in DSO.

Analysis Services Programming (SQL Server 2000)

Introducing Decision Support Objects
Microsoft® SQL Server™ 2000 Analysis Services provides a wide range of online analytical processing (OLAP) and data mining
functionality. As it is also designed to be very flexible and extensible, you can also add third-party services and packages, such as
data mining algorithm providers, to extend the capabilities of Analysis Services even further. However, with a wide range of
functionality comes a wide range of complexity, and Analysis Services provides a complex and robust set of OLAP and data
mining features.

To access such a rich, extensible, wide-ranging set of features in a simple, straightforward fashion, the Decision Support Objects
(DSO) library supplies a hierarchical object model for use with any development environment that can support Component
Object Model (COM) objects and interfaces, such as Microsoft Visual C++®, Microsoft Visual Basic®, and Microsoft Visual Basic
Scripting Edition.

One of the features of the DSO object model, discussed in another topic, is the use of the MDStore interface. This shared interface
allows development environments that use late binding, such as Visual Basic Scripting Edition, to easily support such a complex
hierarchical model. The MDStore interface is used in DSO by objects that supply functionality for databases, cubes, partitions, and
aggregations in Analysis Services. For more information about the MDStore interface, see MDStore Interface.

See Also

Decision Support Objects Architecture

Analysis Services Programming (SQL Server 2000)

Redistributing Decision Support Objects
Decision Support Objects (DSO) is an object library that enables applications to manipulate objects on the Analysis server directly.
DSO can be redistributed with custom applications as needed.

Before installing DSO, ensure that Microsoft® Data Access Components (MDAC) and PivotTable® Service have been installed.
Then, install the following files.

File Description
Msmddo80.dll The DSO library, version 8.0.
Msmdso.rll The DSO resource file, version 8.0.
Msmdnet.dll The Analysis Services network interface.
Msmdlock.dll The Analysis Services lock manager.
Msmddo.dll The Microsoft SQL Server™ version 7.0 OLAP Services

compatibility file. This file is not required if the application will
only use features available in SQL Server 2000 Analysis
Services.

The DLLs are installed in the following location:

C:\Program Files\Common Files\Microsoft Shared\DSO

The resource file, Msmdso.rll, does not need to be registered and is installed by default in the following location:

C:\Program Files\Common Files\Microsoft Shared\DSO\Resources\1033

To register the DLL files, you should use Regsvr32.exe or use the DLLSelfRegister() functions of the DLL files. Additionally,
registry entries for each file should be made under the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs

If this registry value (known as the reference counter) already exists, it should be incremented by one during installation of the
DSO files. When uninstalling the DSO files, the reference counter should be decremented by one. The DSO files should not be
deleted if the corresponding reference counter is greater than zero.

Maintaining Backward Compatibility

The backward compatibility files that are included with Analysis Services (that is, Msmddo.dll and Msmdsgn.dll) are not
compatible with the files of the same name that were included with SQL Server 7.0 OLAP Services (that is, the 7.0 versions of
these files). Use the following rules to assist you in determining which files to install:

If the application will only be used with SQL Server 2000 Analysis Services, Msmddo80.dll, Msmdnet.dll, Msmdlock.dll, and
Msmdso.rll must be installed on the target computer.

If the application will also be used with SQL Server 7.0 OLAP Services, Msmddo.dll must be installed. If the 7.0 version of
this file already exists on the target computer, it must be replaced with the newer version.

Caution Installing the DSO library included with SQL Server 2000 Analysis Services on an Analysis server using SQL Server 7.0
OLAP Services, without upgrading OLAP Manager to Analysis Manager, will cause OLAP Manager to stop functioning.

Analysis Services Programming (SQL Server 2000)

Decision Support Objects Architecture
 New Information - SQL Server 2000 SP3.

Decision Support Objects (DSO) is a library of Component Object Model (COM) classes and interfaces that provide access to the Analysis server. These
classes and interfaces, when used together, form an object model that corresponds to the internal structure of the objects managed by Microsoft® SQL
Server™ 2000 Analysis Services and can be used to manage them programmatically.

Conceptually, DSO uses hierarchically arranged groups of objects to define basic elements of Analysis Services data storage, as implemented by the
Analysis server. These basic elements are databases, data sources, dimensions, cubes, data mining models, and roles. DSO maintains these basic
elements in a hierarchical structure where elements contain other elements in a tree, with the server object at the root of the tree. Other objects support
this basic structure. For example, databases, cubes, partitions, and aggregations support dimensions. The following diagram shows an overview of the
DSO object model hierarchy.

The DSO Server object contains a collection that defines databases accessed by the server. Each database can contain groups of objects that define
cubes, linked cubes, or virtual cubes. A cube contains one or more partitions, which contain one or more aggregations. Linked cubes serve to provide
local server access to a cube on another server; the remote server publishes the cube, and the local server subscribes to it by creating a linked cube. A
virtual cube is a special case of a cube, combining portions of the cubes it contains, similar to the way a relational database view combines portions of
tables. A database can also contain one or more relational or OLAP data mining models, represented in DSO by the MiningModel object. Data mining
models can contain one or more data mining columns. Databases also can contain roles, used to manage security on the database and its associated
cubes and data mining models.

MDStore Interface

You will notice in the diagram that two of the most important collections of objects in DSO, databases and cubes, are supplied with a collection named
MDStores, unlike other objects in DSO, such as data mining models or commands.

Databases, cubes, partitions, and aggregations expose a common interface, called MDStore, that provides the methods and properties you use to
manipulate the objects. These objects must be referenced from its parent object, and they cannot be created independently; the only way to create a
database, cube, partition, or aggregation is through the MDStores collection of the parent object. For example, the only way to obtain an object
reference to a database in DSO, or to create a new database using DSO, is through the MDStores collection of the DSO Server object.

This special collection maintains references to the objects that make up the elements of this hierarchy beneath the server. The MDStores collection
provides special implementations of Add, Find, and Remove methods, and a convenient AddNew method, which maintain parent-child relationships
among the various DSO objects. The ContainedClassType property determines what type of objects the MDStores collection can contain; the value of
this property directly corresponds to the ClassType property of the MDStore objects contained by the collection.

The MDStore interface also uses the SubClassType property to further differentiate DSO objects. For example, this property is used to tell the
difference between a cube, a linked cube, and a virtual cube.

This figure shows an expanded view of the DSO structure as viewed by its collections, including the value of the ClassType property of the objects
contained in each collection.

Objects and Interfaces

There are two major object classifications in DSO: objects that can be accessed and managed directly using their default interface, and objects that
implement other DSO interfaces in addition to their default interface.

Objects that can be accessed and managed directly have their own collections, methods, and properties, and they fully implement their default interface;
there is no change in the behavior of the interface based on its usage or parent-child association. For example, the DSO DataSource object behaves the
same way whether the parent is the DSO Server object or the DSO Cube object.

The following table lists the eight directly accessible DSO interfaces and the ClassType property values associated with them.

Interface ClassType property value
Column clsColumn
CubeAnalyzer clsCubeAnalyzer
DataSource clsDataSource
MemberProperty clsMemberProperty
MiningModel clsMiningModel
PartitionAnalyzer clsPartitionAnalyzer
Server clsServer

Objects that are implemented with more than one interface use a subset of the collections, methods, and properties associated with the interface for the
implemented variation of a DSO object; for example, the Command interface is implemented differently for database commands, cube commands, and
role commands. Each collection, method, and property description contains the names of the objects in which it appears. Conversely, each object
description contains the names of the collections, methods, and properties that it implements.

The following table lists the six DSO interfaces and the ClassType property values associated with them.

Interface ClassType property value
Command clsDatabaseCommand

clsCubeCommand

clsRoleCommand

Dimension clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Level clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

MDStore clsDatabase

clsCube

clsPartition

clsAggregation

Measure clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Role clsDatabaseRole

clsCubeRole

clsMiningModelRole

For more information, see Objects and Interfaces.

Scripting Considerations

The DSO library is not marked safe for scripting. Objects in libraries that are marked safe for scripting take into account the security context in which
they are created. When a control or a library that is not marked safe for scripting is loaded in Microsoft Internet Explorer 4.0 or later, the browser can
run a script only within the Low security mode of Internet Explorer, and even then only after a user responds to a message stating that a script will be
run. If you use DSO as part of a middle-tier component in a n-tier or client/server application, use a design pattern that does not pass direct references
to DSO objects; instead, implement other objects or functions, that in turn, call DSO objects.

See Also

MDStores

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Server (Decision Support Objects)
The Server object in the Decision Support Objects (DSO) hierarchy represents the root object in the model tree and handles the
functionality related to the Analysis server. The Server object uses the Server interface, with a ClassType property of clsServer.

The Server object is used to:

Connect to and disconnect from an Analysis server.

Start, pause, and stop the Analysis server service (MSSQLServerOLAPService) provider.

Provide detailed information, such as the version and edition, of an Analysis server.

Create other Microsoft® SQL Server™ 2000 Analysis Services objects, such as databases, data sources, commands,
dimensions, cubes, data mining models, and roles.

Manage object locking in Analysis Services, controlling read/write access in a multiple user situation.

Provide access to DSO Database objects using the MDStores collection.

See Also

Analysis Server

clsServer

Database (Decision Support Objects)

MDStore Interface

Working with Servers

Analysis Services Programming (SQL Server 2000)

Database (Decision Support Objects)
The Database object in Decision Support Objects (DSO) represents a database in Microsoft® SQL Server™ 2000 Analysis
Services. Database objects are accessed in DSO through the MDStores collection of the DSO Server object. As such, the
Database object is supported by the MDStore interface, with the ClassType property set to clsDatabase, and the Database
interface.

The Database object is used to:

Create, edit, and delete commands, data sources, cubes, dimensions, data mining models, and roles applicable to a database
in Analysis Services.

Manage transactions involving objects that belong to the database, such as cubes, dimensions, and mining models.

Provide access to events, using the Database interface, which is used to supply client applications with progress
information on currently executing database tasks.

See Also

clsDatabase

Command (Decision Support Objects)

Cube (Decision Support Objects)

Data Mining Model (Decision Support Objects)

Databases

DataSource (Decision Support Objects)

Dimension (Decision Support Objects)

MDStore Interface

Role (Decision Support Objects)

Server (Decision Support Objects)

Working with Databases

Analysis Services Programming (SQL Server 2000)

DataSource (Decision Support Objects)
 New Information - SQL Server 2000 SP3.

The DataSource object in Decision Support Objects (DSO) provides access to the data sources associated with a database, cube,
partition, or aggregation in Microsoft® SQL Server™ 2000 Analysis Services, under the DataSources collection for each DSO
object. The DataSource object uses the DataSource interface, with a ClassType property of clsDataSource.

The DataSource object is used to:

Retrieve data source-specific information such as connection strings and quote characters for use by client applications.

Security Note When possible, use Windows Authentication.

Determine various states, such as connection state, of the data source in Analysis Services.

See Also

Aggregation (Decision Support Objects)

clsDataSource

Cube (Decision Support Objects)

Data Sources

Database (Decision Support Objects)

Partition (Decision Support Objects)

Working with Data Sources

Analysis Services Programming (SQL Server 2000)

Cube (Decision Support Objects)
The Cube object in Decision Support Objects (DSO) provides access to cubes, virtual cubes, and linked cubes associated with a
database in Microsoft® SQL Server™ 2000 Analysis Services, supplied by the MDStores collection of the DSO Database object
using the MDStore interface. The Cube object uses the MDStore interface, with a ClassType property of clsCube.

The Cube object is used to:

Provide access to the commands, data sources, dimensions, measures, partitions, and roles associated with a cube, virtual
cube, or linked cube in Analysis Services.

Edit the structure of a cube, virtual cube, or linked cube.

Process a cube, virtual cube, or linked cube.

Manage object locks for a cube, virtual cube, or linked cube.

See Also

clsCube

Command (Decision Support Objects)

Cubes

Database (Decision Support Objects)

DataSource (Decision Support Objects)

Dimension (Decision Support Objects)

MDStore Interface

Measure (Decision Support Objects)

Partition (Decision Support Objects)

Role (Decision Support Objects)

Working with Cubes and Measures

Analysis Services Programming (SQL Server 2000)

Dimension (Decision Support Objects)
The Dimension object in Decision Support Objects (DSO) provides access to shared dimensions, virtual dimensions, and private
dimensions in Microsoft® SQL Server™ 2000 Analysis Services for several objects, including databases, cubes, partitions, and
aggregations. Shared dimensions and virtual dimensions are accessed using the Dimensions collection of the DSO Database
object, while private dimensions are accessed using the Dimensions collection of the DSO Cube object. Partitions and
aggregations, associated with a source cube, also support access to the dimensions related to them. Partition and aggregation
dimensions are also accessed by the Dimensions collection of the Partition and Aggregation DSO objects, respectively.

All four types of dimensions are supported with DSO objects. Each dimension object detailed in the following table uses the
Dimension interface, with the ClassType property set to the appropriate value for the dimension type as shown.

Dimension type Dimension object Dimension class type
Database dimensions DbDimension clsDatabaseDimension
Cube dimensions CubeDimension clsCubeDimension
Partition dimension PartitionDimension clsPartitionDimension
Aggregation dimension AggregationDimension clsAggregationDimension

The Dimension object is used to:

Provide access to shared dimensions, virtual dimensions, and private dimensions in Analysis Services.

Create and edit levels for a shared dimension or private dimension.

Determine the various states of a shared dimension, virtual dimension, or private dimension, such as the temporary status
and validity.

Process a shared dimension, virtual dimension, or private dimension.

See Also

Aggregation (Decision Support Objects)

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Cube (Decision Support Objects)

Database (Decision Support Objects)

Dimension Interface

Dimensions

Partition (Decision Support Objects)

Working with Dimensions and Levels

Analysis Services Programming (SQL Server 2000)

Data Mining Model (Decision Support Objects)
The MiningModel object in Decision Support Objects (DSO) provides support for data mining models in Microsoft® SQL
Server™ 2000 Analysis Services. To access data mining models, the MiningModels collection of the DSO Database object is
used. The MiningModel object uses the MiningModel interface, with a ClassType property of clsMiningModel.

The MiningModel object is used to:

Provide access to data mining columns for a relational or OLAP data mining model.

Construct and modify relational or OLAP data mining models.

Process a relational or OLAP data mining model.

Provide access to mining model roles.

See Also

clsMiningModel

Column (Decision Support Objects)

Data Mining Models

Data Mining Examples

Database (Decision Support Objects)

Role (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Role (Decision Support Objects)
The Role object in Decision Support Objects (DSO) provides access to role-based security for databases, cubes, and data mining
models. The DSO Database, Cube, and MiningModel objects all support the Roles collection, making security functions
available for each DSO object.

All three types of roles are supported with DSO objects. Each role object detailed in the following table uses the Role interface,
with the ClassType property set to the appropriate value for the role type as shown.

Role type Role object Role class type
Database role DbGroup clsDatabaseRole
Cube role CubeGroup clsCubeRole
Mining model role MiningModelGroup clsMiningModelRole

The Role object is used to:

Provide access to the list of users for a role associated with a database, cube, or data mining model.

Create or modify permissions on a role associated with a database, cube, or data mining model.

Provide access to commands for a role associated with a database, cube, or data mining model.

See Also

clsDatabaseRole

clsCubeRole

clsMiningModelRole

Cube (Decision Support Objects)

Data Mining Model (Decision Support Objects)

Database (Decision Support Objects)

Command (Decision Support Objects)

Roles

Analysis Services Programming (SQL Server 2000)

Aggregation (Decision Support Objects)
The Aggregation object in Decision Support Objects (DSO) provides access to aggregations associated with a partition in
Microsoft® SQL Server™ 2000 Analysis Services. The MDStores collection of the DSO Partition object allows access to
aggregations. The Aggregation object uses the MDStore interface, with a ClassType property of clsAggregation.

The Aggregation object is used to:

Provide access to the dimensions, data sources, and measures associated with an aggregation.

Edit the properties and objects associated with an aggregation.

Determine the various states of an aggregation, such as validity and processing status.

See Also

Aggregations

clsAggregation

DataSource (Decision Support Objects)

Dimension (Decision Support Objects)

MDStore Interface

Measure (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Command (Decision Support Objects)
 New Information - SQL Server 2000 SP3.

The Command object in Decision Support Objects (DSO) provides access to commands associated with databases, cubes, and
roles in Microsoft® SQL Server™ 2000 Analysis Services. The DSO Database, Cube, and Role objects support the Commands
collection for access to associated commands.

All three types of commands are supported with DSO objects. Each command object detailed in the following table uses the
Command interface, with the ClassType property set to the appropriate value for the command type as shown.

Command type Command object Command class type
Database command DbCommand clsDatabaseCommand
Cube command CubeCommand clsCubeCommand
Role command RoleCommand clsRoleCommand

The Command object is used to:

Provide access to the properties, such as the statement and ordinal position, of a command associated with a database,
cube, or role.

Manage locks for a command associated with a database, cube, or role.

Security Note Commands can be the source of security vulnerabilities; they can invoke system or user-defined functions
without user knowledge or intervention and may contain security credentials stored in plain text. Before implementing
commands, review the command text for security issues.

See Also

Commands

clsDatabaseCommand

clsCubeCommand

clsRoleCommand

Cube (Decision Support Objects)

Database (Decision Support Objects)

Role (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Level (Decision Support Objects)
The Level object in Decision Support Objects (DSO) provides access to levels associated with dimensions in Microsoft® SQL
Server™ 2000 Analysis Services. The Levels collection of the DSO Dimension object provides access to DSO Level objects. In
addition, the Levels collection is supported by the Cube, Aggregation, and Partition DSO objects.

All four types of levels are supported with DSO objects. Each level object detailed in the following table uses the Level interface,
with the ClassType property set to the appropriate value for the level type as shown.

Level type Level object Level class type
Database level DbLevel clsDatabaseLevel
Cube level CubeLevel clsCubeLevel
Partition level PartitionLevel clsPartitionLevel
Aggregation level AggregationLevel clsAggregationLevel

The Level object is used to:

Provide access to the member properties associated with a level.

Edit the properties, such as level type and custom rollup expression, associated with a level.

See Also

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

Dimension (Decision Support Objects)

Levels

Working with Dimensions and Levels

Analysis Services Programming (SQL Server 2000)

Measure (Decision Support Objects)
The Measure object in Decision Support Objects (DSO) provides support for measures. The Measures collection of the DSO
Cube, Partition, and Aggregation objects provides access to cube, partition, and aggregation measures, respectively.

All three types of measures are supported with DSO objects. Each measure object detailed in the following table uses the
Measure interface, with the ClassType property set to the appropriate value for the level type as shown.

Measure type Measure object Measure class type
Cube measure CubeMeasure clsCubeMeasure
Partition measure PartitionMeasure clsPartitionMeasure
Aggregation measure AggregationMeasure clsAggregationMeasure

The Measure object is used to edit the properties, such as the aggregation function and source column, associated with a
measure in Microsoft® SQL Server™ 2000 Analysis Services.

See Also

Aggregation (Decision Support Objects)

clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Cube (Decision Support Objects)

Measures

Partition (Decision Support Objects)

Working with Cubes and Measures

Analysis Services Programming (SQL Server 2000)

Member Property (Decision Support Objects)
The MemberProperty object in Decision Support Objects (DSO) provides access to member properties associated with levels in
Microsoft® SQL Server™ 2000 Analysis Services. The MemberProperties collection of the DSO Level object supports access to
the member properties associated with a level. The MemberProperty object uses the MemberProperty interface, with a
ClassType property of clsMemberProperty.

The MemberProperty object is used to edit the properties, such as column type and language, of a member property in Analysis
Services.

See Also

clsMemberProperty

Dimension (Decision Support Objects)

Level (Decision Support Objects)

Member Properties

Working with Dimensions and Levels

Analysis Services Programming (SQL Server 2000)

Partition (Decision Support Objects)
The Partition object in Decision Support Objects (DSO) provides access to partitions in Microsoft® SQL Server™ 2000 Analysis
Services. Access to partitions associated with cubes in Analysis Services is supplied by the MDStores collection of the DSO Cube
object. As such, the Partition object uses the MDStore interface, with a ClassType property of clsPartition.

The Partition object is used to:

Provide access to data sources, dimensions, aggregations, and measures associated with a partition in Analysis Services.

Update partitions programmatically.

Manage locks on partitions.

See Also

Aggregation (Decision Support Objects)

clsPartition

Cube (Decision Support Objects)

DataSource (Decision Support Objects)

Dimension (Decision Support Objects)

MDStore Interface

Measure (Decision Support Objects)

Partitions

Analysis Services Programming (SQL Server 2000)

Column (Decision Support Objects)
The Column object in Decision Support Objects (DSO) provides access to data mining columns in Microsoft® SQL Server™ 2000
Analysis Services. The Columns collection of the MiningModel and Column objects are used to access data mining columns
and nested data mining columns, respectively, in Analysis Services. The Column object uses the Column interface, with a
ClassType property of clsColumn.

The Column object is used to:

Provide access to nested data mining columns associated with a column in a data mining model.

Edit properties, such as content type and modeling flags, for a column in Analysis Services.

See Also

clsColumn

Data Mining Columns

Data Mining Examples

Data Mining Model (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Cube Analyzer (Decision Support Objects)
The CubeAnalyzer object in Decision Support Objects (DSO) provides access to analysis functions for cubes in Microsoft® SQL
Server™ 2000 Analysis Services. The Analyzer property of the DSO Cube object provides access to the CubeAnalyzer object.
The CubeAnalyzer object uses the CubeAnalyzer interface, with a ClassType property of clsCubeAnalyzer.

The CubeAnalyzer object is used to provide access to the query log of a cube in Analysis Services.

See Also

clsCubeAnalyzer

Cube (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Partition Analyzer (Decision Support Objects)
The PartitionAnalyzer object in Decision Support Objects (DSO) provides access to the partition analysis tools for a partition in
Microsoft® SQL Server™ 2000 Analysis Services. It is accessed through the Analyzer property of the DSO Partition object. The
PartitionAnalyzer object uses the PartitionAnalyzer interface, with a ClassType property of clsPartitionAnalyzer.

The PartitionAnalyzer object is used to:

Provide access to the aggregation analysis capabilities for a partition in Analysis Services.

Provide additional information, such as existing designed aggregations and goal queries, to the aggregation analysis
process for a partition.

See Also

clsPartitionAnalyzer

Partition (Decision Support Objects)

Analysis Services Programming (SQL Server 2000)

Using Decision Support Objects
You can use Decision Support Objects (DSO) in your applications to administer the server and to create and maintain OLAP and
data mining objects. DSO objects can also be created and used to incorporate the server functions of Microsoft® SQL Server™
2000 Analysis Services into client applications. For information about the programming environments in which you can use DSO
to create such client applications, see Development Environments.

A common sequence of operations for an application using DSO is:

1. Connect to an Analysis server.

2. Create a database object to contain dimensions and cubes.

3. Add a data source that contains the data.

4. Create dimensions and their levels.

5. Create a cube and specify dimensions and measures.

6. Process a cube to load its structure and data.

These operations are described and illustrated using Microsoft Visual Basic®, Microsoft Visual Basic Scripting Edition, and
Microsoft Visual C++® code in Common Operations and Examples.

Analysis Services Programming (SQL Server 2000)

Development Environments
You can use Decision Support Objects (DSO) with any language that supports COM Automation, such as Microsoft® Visual
Basic®, Microsoft Visual Basic Scripting Edition, or Microsoft Visual C++®.

Visual Basic

You can use the DSO library in Visual Basic simply by setting the Decision Support Objects library as a project reference.

Example

Dim dsoServer As New DSO.Server
dsoServer.Connect "LocalHost"

Setting Program References

To use the DSO library in a Visual Basic application, add it as a reference to the project. On the Project menu, click References,
and then select Microsoft Decision Support Objects.

Visual Basic Scripting Edition

Visual Basic Scripting Edition programmers can use DSO by using the CreateObject method. This method can be used to create
any needed object in the DSO libraries.

Example

The following example creates a DSO.Server object:

Dim dsoServer
Set dsoServer = CreateObject("DSO.Server")
dsoServer.Connect "LocalHost"

In order to support scripting, the DSO Database, Cube, Partition, and Aggregation objects implement the MDStore class
interface as well as their own class interface; this is the default interface used for MDStores collections of DSO objects. The
following code example illustrates the retrieval of a database from a server using the MDStores collection:

Dim dsoDatabase
Set dsoDatabase = dsoServer.MDStores(1)

The ClassType and SubClassType properties of the MDStore interface allow for class determination. If the class-specific
interface for a particular object is needed, first use the CreateObject command to create an instance of the object, then set it to
the required object in the MDStores collection. This is demonstrated in the following code example:

Dim dsoServer
Dim dsoDatabase
Set dsoServer = CreateObject("DSO.Server")
dsoServer.Connect "LocalHost"
Set dsoDatabase = CreateObject("DSO.Database")
Set dsoDatabase = dsoServer.MDStores(1)

Caution It is recommended that, for any DSO object supporting the MDStore interface, the class-specific interface not be used.

Analysis Services Programming (SQL Server 2000)

Common Operations and Examples
This topic provides basic and advanced examples, in a step-by-step format, that show you how to perform common operations
using Decision Support Objects (DSO). These examples assume that you have some experience in creating Microsoft® Visual
Basic® or Visual C++® database applications. The examples provide complete routines in Visual Basic that perform the following
functions:

Connects to your Analysis server

Accesses the FoodMart 2000 sample database

Adds a new database and data source

Adds dimensions and levels

Adds a cube and measures

Processes the cube

Creates a virtual cube

Creates a linked cube

Creates virtual dimensions

Performs incremental updates on a cube

Note You can also find sample applications on the Microsoft SQL Server™ 2000 CD-ROM in the \MSOLAP\Samples directory.
These illustrate some of the techniques you can use for developing your own applications that use DSO or PivotTable® Service.
The Readme.txt file in the folder provides descriptions of the individual samples and instructions for installing them on your
computer. Examples include displaying meta data and data over the Web, creating and processing cubes with DSO, and creating a
write-enabled cube.

The examples use DSO objects to create a cube derived from the FoodMart 2000 sample database, which is provided with
Microsoft SQL Server 2000 Analysis Services. It uses the Sales_Fact_1997, Product, Store, and Time_By_Day tables in a star
schema, as shown here.

The following dimensions and measures are also used, as shown here.

Remarks

You may also find it helpful to review the structure of the FoodMart 2000 database itself by examining it either in Microsoft
Access or in a third-party computer-aided software engineering (CASE) tool. This will help you to understand how the preceding
steps are applied to the specific instance of the FoodMart 2000 database.

Some of these exercises can modify the FoodMart 2000 sample database. We recommend that you make backup copies of the
following directories before you proceed:

C:\Program Files\Microsoft Analysis Services\Bin

C:\Program Files\Microsoft Analysis Services\Data

Analysis Services Programming (SQL Server 2000)

OLAP Examples
OLAP Examples

The basic examples provided in this topic cover the most commonly employed functions of the Decision Support Objects (DSO)
library. All of the examples are written in Microsoft® Visual Basic®, with additional code examples in Microsoft Visual C++®
given on selected topics. The following table lists the topics covered.

Topic Description
Working with Servers Describes how to connect to an Analysis server
Working with Databases Explains how to list, add, and delete databases for an

Analysis server
Working with Data Sources Shows how to list data sources on, add new data sources

to, or delete existing data sources for a database
Working with Dimensions
and Levels

Demonstrates how to list, add, and delete shared
dimensions for a database

Working with Cubes and
Measures

Describes how to list, add, delete, and process cubes for
a database, including examples on how to list and add
measures to a cube

Note The examples presented in this topic are for educational purposes. The code is intended to illustrate the functionality of the
DSO library, and it does not contain error-handling routines.

Analysis Services Programming (SQL Server 2000)

Working with Servers
Working with Servers

 New Information - SQL Server 2000 SP3.

The example code in this topic shows you how to connect to an Analysis server using Decision Support Objects (DSO) and list
some of its property values.

If the Analysis server is not installed on the computer on which you are running this example, change LocalHost to the name of
the Microsoft® Windows NT® Server 4.0 or Windows® 2000 computer where the Analysis server is installed and running.

List Servers

The following code example illustrates the use of the DSO.Server object in connecting to and retrieving attributes from an
Analysis server.

Example

The following code example connects to the local Analysis server using the Connect method of the DSO.Server object, and then
it displays some of the basic server properties in the Immediate window:

Private Sub ListServerProps()
 Dim dsoServer As DSO.Server
 Dim enuClassType As DSO.ClassTypes

 ' Create instance of server and connect.
 ' "LocalHost" will default to the
 ' local Windows NT Server 4.0 where the
 ' Analysis server is installed.
 Set dsoServer = New DSO.Server
 dsoServer.Connect "LocalHost"

 ' Show the server's information to the user.
 If dsoServer.ClassType = clsServer Then
 Debug.Print "Server Properties:"
 Debug.Print " Name: " & dsoServer.Name
 Debug.Print "Description: " & dsoServer.Description
 End If

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Databases
Working with Databases

Each Analysis server contains an MDStores collection of database objects (that is, objects of ClassType clsDatabase). A database
in Decision Support Objects (DSO) contains dimensions and their subordinate levels, data sources, roles, and commands. Each
database object also contains an MDStores collection of cube objects (that is, objects of ClassType clsCube.)

The following examples discuss the methods used to list, add, and delete databases on an Analysis server.

List Databases

The following code example connects to the specified DSO server and iterates through all of the databases on that server, using
the MDStores collection for the Analysis server object.

Example

When executed, the following code example prints the name and description of every database defined for the specified Analysis
server:

Private Sub ListDatabases()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore

 ' Connect to the server.
 dsoServer.Connect "LocalHost"

 ' For each MDStore database object on the server,
 ' print its name.
 For Each dsoDB In dsoServer.MDStores
 Debug.Print "Database: " & dsoDB.Name & _
 " - " & dsoDB.Description
 Next

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Data Sources
Working with Data Sources

 New Information - SQL Server 2000 SP3.

Collections of data sources (that is, MDStore objects of ClassType clsDataSource) are contained in MDStore objects of
ClassType clsDatabase, clsCube, and clsPartition. Each object's data source specifies an external database that will be used as
the source of data.

A database can contain multiple data sources in its DataSources collection. However, each cube and partition contains only a
single data source.

The two examples in this topic demonstrate how to list and add a data source to the database's DataSources collection.

List Data Sources

The easiest way to list data sources is to iterate through the DataSources collection of an MDStore database object, as shown in
the following code example which lists the Name and ConnectionString properties of each data source for every database on a
given Analysis server.

Security Note When possible, use Windows Authentication.

Example

The following code example loops through the DataSources collection of each database on the local Analysis server, printing
some of the basic properties for each data source in the Immediate window:

Private Sub ListDataSources()
 Dim dsoServer As New dso.Server
 Dim dsoDB As dso.MDStore
 Dim dsoDS As dso.DataSource

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 ' Step through the databases in the
 ' MDStores collection of the server.
 For Each dsoDB In dsoServer.MDStores

 ' Print the name & description of the database.
 Debug.Print "DATABASE: " & dsoDB.Name & " - " & _
 dsoDB.Description

 ' Determine whether the database has data sources.
 If dsoDB.DataSources.Count = 0 Then
 Debug.Print " Data source: None"
 Else
 ' Iterate through and print the data source
 ' information.
 For Each dsoDS In dsoDB.DataSources
 Debug.Print " Data source: " & dsoDS.Name
 Debug.Print " Valid?:" & dsoDS.IsValid
 Next
 End If
 Next

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Dimensions and Levels
Working with Dimensions and Levels

The dimensions of a cube store data derived from relational database tables and contain the categorical data you want to analyze.

The dimensions you build should be distinct categories that you want to add to cubes in your database (such as Time, Customer
Education, and Customer Age). A dimension can be created from a single dimension table (star schema) or from multiple
dimension tables (snowflake schema). Dimensions are classified as either standard or time dimensions, depending upon the data
type of the corresponding column in the dimension table.

Collections of dimensions are contained within objects of ClassType clsDatabase, clsCube, clsPartition, and clsAggregation.
The dimension objects contained within each of these collections are of respective ClassTypes clsDatabaseDimension,
clsCubeDimension, clsPartitionDimension, and clsAggregationDimension.

The List Dimensions example lists existing dimensions and their related levels. The Add Dimensions example creates new
dimensions and levels.

List Dimensions

The Dimensions collection of the DSO.Server object contains all shared dimensions on an Analysis server, as illustrated by the
following code example.

Example

The following code example illustrates the hierarchical nature of dimensions and levels by listing the levels in order of precedence
for every dimension contained in every database on a given Analysis server, printing basic properties of each dimension and level
in the Immediate window:

Private Sub ListDimensions()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension
 Dim dsoLev As DSO.Level

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 ' Enumerate databases on a server.
 For Each dsoDB In dsoServer.MDStores
 Debug.Print "DATABASE: " & dsoDB.Name & " - " & _
 dsoDB.Description

 ' Enumerate dimensions in a database.
 For Each dsoDim In dsoDB.Dimensions
 Debug.Print " Dimension: " & dsoDim.Name

 ' Enumerate levels in a dimension.
 For Each dsoLev In dsoDim.Levels
 Debug.Print " Level: " & dsoLev.Name
 Next
 Next
 Next

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Cubes and Measures
Working with Cubes and Measures

Each database contains an MDStores collection of cubes (that is, objects of ClassType clsCube). A cube is the central object in a
multidimensional database. A cube contains dimensions and their levels, measures, data sources, roles, and commands. Each cube
also contains an MDStores collection of partitions (that is, objects of ClassType clsPartition).

The previous examples created a new database, added a data source, and added shared dimensions and levels. The following
three examples demonstrate how to list, add, and remove a cube.

List Cubes

Because each MDStore database object contains a collection of MDStore cube objects, it is easy to list the cubes and their
properties for each database.

Example

The following code example prints a list of cubes for each database on a given server to the Immediate window. The
SubClassType and SourceTable properties for each cube are also printed.

Private Sub ListCubes()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 ' Step through the databases in the server object.
 For Each dsoDB In dsoServer.MDStores
 ' Print the name and description of the database
 Debug.Print "DATABASE: " & dsoDB.Name & " - " & _
 dsoDB.Description

 ' Step through the cubes in the database object.
 If dsoDB.MDStores.Count = 0 Then
 Debug.Print " Cube: None"
 Else
 For Each dsoCube In dsoDB.MDStores
 ' Print the name of the cube.
 Debug.Print " Cube: " & dsoCube.Name

 ' Check to see whether the cube is regular or virtual.
 If dsoCube.SubClassType = sbclsRegular Then
 Debug.Print " SubClassType: Regular"
 Debug.Print " SourceTable: " & _
 dsoCube.SourceTable
 Else
 Debug.Print " SubClassType: Virtual"
 End If
 Next
 End If
 Next

End Sub

Analysis Services Programming (SQL Server 2000)

Data Mining Examples
Data Mining Examples

The basic example provided in this topic illustrates the common data mining operations, such as the creation of data mining
models, that can be performed with Decision Support Objects (DSO). The following table lists the topic covered.

Topic Description
Building Data Mining Models Details how to create relational and OLAP data mining

models, including the use of mining model roles

Analysis Services Programming (SQL Server 2000)

Building Data Mining Models
Building Data Mining Models

To create a new relational or OLAP data mining model programmatically using Decision Support Objects (DSO), follow these
basic steps:

1. Connect to the target Analysis server and select a database from the MDStores collection of the Server object.

2. Create a new data mining model object using the MiningModels collection of the Database object, with the appropriate
SubClassType for the relational or OLAP data mining model.

3. If needed, create and assign mining model roles to the new relational or OLAP mining model object.

4. Set the properties needed for the relational or OLAP mining model object. The following table displays the differences
between the needed properties for relational and OLAP data mining models.

Property OLAP mining model Relational mining model
CaseDimension Defines the case dimension

used by the data mining
model.

Not used.

CaseLevel Defines the case level within
the case dimension used by
the data mining model. A
read-only property, it
identifies the lowest level in
the dimension whose data
mining model column has its
IsDisabled property set to
False.

Not used.

Description Contains a user-friendly description of the data mining
model.

FromClause Not used. Defines the case table, in the
form of a FROM clause, used
by the data mining model.

JoinClause Not used. Defines any supporting
tables, in the form of a JOIN
clause, used by the data
mining model.

MiningAlgorithm Defines the data mining algorithm provider, such as
Microsoft_Decision_Trees or Microsoft_Clustering, used by
both types of data mining models.

SourceCube Defines the OLAP cube used
by the data mining model for
training data.

Not used.

SubClassType Is set to sbclsOlap when the
MiningModel object is
created.

Is set to sbclsRelational
when the MiningModel
object is created.

TrainingQuery Defines the Multidimensional Expressions (MDX) query
used to insert training data into the data mining model. In
most instances, this property is left blank; DSO will
construct an appropriate training query if this property is
not used.

5. Create a new data mining model column in the Columns collection of the MiningModel object.

6. Set the properties needed for the new data mining model column. The following table displays the differences between the
needed column properties for relational and OLAP data mining models.

Property OLAP mining model Relational mining model

DataType Defines the expected data type of the data mining column.
Description Contains a user-friendly description of the data mining

model column.
ContentType Should contain a value from the

SUPPORTED_CONTENT_TYPES column of the
MINING_SERVICES schema rowset. For example, if the
column contained text data that corresponded to income
ranges for customers, the ContentType property would be
set to DISCRETE to reflect the discrete valuations of the
data. If, on the other hand, the column contained actual
salaries, the property would be set to either CONTINUOUS
or DISCRETIZED, depending on the capabilities of the data
mining algorithm provider.

IsKey Not used. This property is
read-only, and is
automatically set to True for
the lowest enabled level in
the case dimension specified
in the CaseDimension
property of the mining model.

Defines the key columns for
the data mining model. Set
to True to specify a key
column in the case set.

IsInput Defines the input columns for the data mining model. For a
set of related columns, changing the IsInput property for
one of the columns automatically changes the property for
the other related columns.

IsPredictable Defines the predictable columns for the data mining model.
A column can have both IsInput and IsPredictable set to
True. For a set of related columns, changing the
IsPredictable property for one of the columns
automatically changes the property for the other related
columns.

IsDisabled Defines the columns to be used in analysis for the data
mining model.

Distribution This property is used to optimize the mining model by
giving the mining model algorithm some indication of the
statistical nature of the data in the column. The values for
this property should come from the
SUPPORTED_DISTRIBUTION_FLAGS of the
MINING_SERVICES schema rowset.

SourceOlapObject The value of this property is
an object within the OLAP
cube. For instance, this
property might contain a DSO
level object or a DSO member
property object.

Not used.

SourceColumn Not used. The value of this property is
the fully qualified name of a
field in the case or
supporting table for the data
mining model.

There are other differences in how column properties are handled between OLAP and relational models. For more
information about data mining model columns, see clsColumn.

7. Save the mining model object using the Update method.

To optionally train the newly created data mining model, the following additional steps should be used. Although a new
data mining model does not need to be processed, the data mining model cannot be browsed until processing is completed.

8. Lock the mining model object using the olapLockProcess flag.

9. Train the mining model object using the Process method.

10. Unlock the mining model object.

Locking the data mining model during processing prevents access by other users until the mining model is unlocked, improving
performance during the training of the mining model and ensuring that repository integrity is maintained.

Creating an OLAP Data Mining Model

The following code example creates an OLAP data mining model, following the steps outlined earlier in this topic, that attempts to
predict the salary range of a customer in the Sales cube of the FoodMart 2000 database based on gender, marital status and
education.

Unlike the process of creating a relational data mining model, the column structure is directly drawn from the source cube
specified in the SourceCube property of the mining model object. To determine which columns are to be processed by the data
mining model, the column objects stored in the Columns collection of the mining model object can be changed. The IsDisabled
property determines which columns are to be used as part of the analysis, while the IsInput and IsPredictive properties of each
column object can be set to determine the behavior of the column, including whether it will serve as an input, predictive, or input
and predictive column in the data mining model.

Because the structure of the OLAP data mining model is drawn from the structure of the source cube, all source OLAP objects
used by the mining model must be visible to the mining model. The following requirements must be met:

The source cube must be visible.

The case dimension must be visible.

The SourceOlapObject property for each data mining column must contain a visible source OLAP object.

Example

This code example creates and processes an OLAP data mining model named CustSalesModelOLAP, based on the Sales cube of
the FoodMart 2000 database, that analyzes salaries for customers based on gender, marital status and education:

Public Sub CreateOLAPMiningModel()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDMM As DSO.MiningModel
 Dim dsoColumn As DSO.Column
 Dim dsoRole As DSO.Role

 ' Constants used for DataType property
 ' of the DSO.Column object.
 ' Note that these constants are identical to
 ' those used in ADO in the DataTypeEnum enumeration.
 Const adInteger = 3
 Const adWChar = 130

 ' Connect to the server on this computer.
 dsoServer.Connect "LocalHost"

 ' Select the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Check for the existence of the model on this computer.
 If Not dsoDB.MiningModels("CustSalesModelOLAP") Is Nothing Then
 ' If this model exists, delete it.
 dsoDB.MiningModels.Remove "CustSalesModelOLAP"
 End If

 ' Create a new OLAP mining model
 ' called CustSalesModelOLAP.
 Set dsoDMM = dsoDB.MiningModels.AddNew("CustSalesModelOLAP", _
 sbclsOlap)

 ' Create a new mining model role called All Users
 Set dsoRole = dsoDMM.Roles.AddNew("All Users")

 ' Set the needed properties for the new mining model.
 With dsoDMM
 .DataSources.AddNew "FoodMart", sbclsRegular
 ' Set the description of the model.
 .Description = "Analyzes the salaries " & _

 "of customers"
 ' Select the algorithm provider for the model.
 .MiningAlgorithm = "Microsoft_Decision_Trees"
 ' Set the source cube for the model to the Sales cube.
 .SourceCube = "Sales"
 ' Set the case dimension for the model to the
 ' Customers shared dimension.
 .CaseDimension = "Customers"
 ' Let DSO define the training query.
 .TrainingQuery = ""
 ' Let DSO add the cube structure to the
 ' data mining model structure, automatically
 ' creating needed data mining model columns.
 .Update
 End With

 ' Set the column properties pertinent to the new model.
 ' Note that, when columns are automatically added to
 ' the model in this fashion, the are disabled. You
 ' must choose which columns are to be enabled
 ' before you can process the
 ' model, and at least one column must be enabled,
 ' or an error will result.

 ' Enable the Name column. As this column is the
 ' lowest enabled level on the Customers case dimension,
 ' it becomes the case level for the data mining model.
 Set dsoColumn = dsoDMM.Columns("Name")
 dsoColumn.IsDisabled = False

 ' Enable the Gender column as an input column.
 Set dsoColumn = dsoDMM.Columns("Gender")
 dsoColumn.IsInput = True
 dsoColumn.IsDisabled = False

 ' Enable the Marital Status column as an input column.
 Set dsoColumn = dsoDMM.Columns("Marital Status")
 dsoColumn.IsInput = True
 dsoColumn.IsDisabled = False

 ' Enable the Education column as an input column.
 Set dsoColumn = dsoDMM.Columns("Education")
 dsoColumn.IsInput = True
 dsoColumn.IsDisabled = False

 ' Enable the Unit Sales column as a predictable column.
 Set dsoColumn = dsoDMM.Columns("Yearly Income")
 dsoColumn.IsPredictable = True
 dsoColumn.IsDisabled = False

 ' Save the data mining model.
 With dsoDMM
 ' Set the LastUpdated property of the new mining model
 ' to the present date and time.
 .LastUpdated = Now
 ' Save the model definition.
 .Update
 End With

 ' Process the data mining model.
 With dsoDMM
 ' Lock the mining model for processing
 .LockObject olapLockProcess, _
 "Processing the data mining model in sample code"
 ' Fully process the new mining model.
 ' This may take up to several minutes.
 .Process processFull
 ' Unlock the model after processing is complete.
 .UnlockObject
 End With

 ' Clean up objects and close server connection
 Set dsoRole = Nothing
 Set dsoColumn = Nothing
 Set dsoDMM = Nothing

 dsoServer.CloseServer
 Set dsoServer = Nothing

End Sub

Analysis Services Programming (SQL Server 2000)

Advanced Examples
Advanced Examples

The examples in this topic assume that you are familiar with using Decision Support Objects (DSO) to create databases, data
sources, dimensions and cubes. These advanced examples include the creation of virtual and linked cubes and virtual dimensions,
as well as the capability to perform incremental updates on a cube. The following table lists the examples covered.

Topic Description
Working with Virtual Cubes Gives information and examples on creating virtual

cubes in DSO
Working with Linked Cubes Provides information and examples in DSO on

creating linked cubes
Working with Virtual
Dimensions

Describes the creation of virtual dimensions in DSO

Working with Roles Details the differences between database, cube, and
mining model roles, providing examples on the
creation of roles in DSO

Incremental Updates Provides information and examples on processing
incremental updates in DSO

Analysis Services Programming (SQL Server 2000)

Working with Virtual Cubes
Working with Virtual Cubes

A cube object with a SubClassType of sbclsVirtual is a virtual cube. A virtual cube is used to encapsulate a subset of the
measures, dimensions, and levels contained in one or more cubes. A virtual cube, like a view in a relational database, is a logical
construct that itself contains no data. Just as a view is a join of multiple relations, a virtual cube is a join of multiple cubes.

The basic rule for using virtual cubes is that you add them to a database as a cube with the SubClassType parameter set to
sbclsVirtual, and then add dimensions and measures to them as needed. However, the dimensions and measures are derived
from previously defined cubes within the database rather than from a dimension table. Any levels associated with a dimension
that has been added to a virtual cube automatically apply to the dimension in the virtual cube. Partitions and aggregations do not
apply to virtual cubes.

If the structure for a virtual cube is changed, you must reprocess the virtual cube so that, just as with a regular cube, the data
supporting the structure change can be reprocessed. The same holds true if you alter the structure of a regular cube used by a
virtual cube; the regular cube needs to be reprocessed, and then the virtual cube also needs to be reprocessed.

Source Cubes and Source Dimensions

A virtual cube can contain any number of source cubes, including linked cubes, as long as they are from the same database.

Virtual cubes do not inherit the roles, calculated members, or actions that are assigned to their source cubes. After a virtual cube
has been created, you must re-create these objects (or design different ones). The information needed to re-create the roles,
calculated members or actions can be derived by reading the structures of the underlying regular cubes.

Other shared dimensions from the database but not from an included cube are also acceptable in a virtual cube. These
dimensions require custom rollup expressions on their levels. Without the custom expressions, the server will not be able to find
the dimension's data because the dimension references columns are not in the fact table.

Differences of Virtual Cubes

Because a virtual cube is based on the contents of one or more existing cubes, some of the properties and collections for a virtual
cube object are not available, or they have a different meaning from their counterparts in a regular cube. An attempt to set or
retrieve an unavailable property results in an error. The following table lists the properties and collections that are different for
virtual cubes.

Property or collection Description
AggregationPrefix A virtual cube does not use aggregation prefixes.
Analyzer A virtual cube does not have an analyzer object.
DataSources A virtual cube does not have a DataSources collection.
EstimatedRows For a virtual cube, this property is read-only and contains

the number of rows in all underlying cubes.
FromClause A virtual cube does not have a FROM clause.
JoinClause A virtual cube does not have a JOIN clause.
MDStores For a virtual cube, this collection contains the underlying

cubes instead of the cube partitions.
OlapMode A virtual cube does not use the OlapMode property.
SourceTable A virtual cube does not have its own fact table.
SourceTableAlias A virtual cube does not have its own fact table.
SourceTableFilter A virtual cube does not have its own fact table.
Dimension.DataSource The dimensions in a virtual cube do not have data sources.

Add a Virtual Cube

The process of adding a virtual cube is largely the same as the process of adding a regular cube. There are minor differences as
noted in the table and as illustrated in the following code example.

Example

Note The following example depends on the existence of the TestCube regular cube, created in previous code examples.

The following code example creates a new virtual cube, named VirtualCube, based on the TestCube cube in the TestDB database,
created in earlier code examples:

Private Sub AddVirtualCube()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore
 Dim dsoDim As DSO.Dimension
 Dim dsoMea As DSO.Measure

 Dim strDBName As String
 Dim strCubeName As String

 ' Initialize variables for the database and
 ' virtual cube names.
 strDBName = "TestDB"
 strCubeName = "VirtualCube"

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 If dsoServer.MDStores.Find(strDBName) = False Then
 MsgBox "Database " & strDBName & _
 " is not found."
 Else
 ' Retrieve the database from the server.
 Set dsoDB = dsoServer.MDStores(strDBName)

 ' Create the virtual cube in the MDStores collection
 ' of the database object.
 Set dsoCube = dsoDB.MDStores.AddNew(strCubeName, sbclsVirtual)

 ' Set the description for the virtual cube.
 dsoCube.Description = "The TestDB virtual cube"

 ' Set the source dimensions for the virtual cube by
 ' copying the dimensions from the underlying cube.
 For Each dsoDim In dsoDB.MDStores("TestCube").Dimensions
 dsoCube.Dimensions.AddNew dsoDim.Name
 Next

 ' Add measures to the virtual cube from the underlying cube.
 ' Measures for virtual cubes have the format
 ' [Cube Name].[Measure Name]

 ' Create the Unit Sales measure.
 Set dsoMea = dsoCube.Measures.AddNew("Unit Sales")
 dsoMea.SourceColumn = "[TestCube].[Unit Sales]"

 ' Create the Store Sales measure.
 Set dsoMea = dsoCube.Measures.AddNew("Store Sales")
 dsoMea.SourceColumn = "[TestCube].[Store Sales]"

 ' Save cube structure changes.
 dsoCube.Update

 ' Process the cube so that it can be used by client applications.
 dsoCube.Process

 End If

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Linked Cubes
Working with Linked Cubes

A linked cube is an MDStore cube object with a SubClassType of sbclsLinked. The contents of a linked cube are based on
another cube that is defined and stored on a different Analysis server. Unlike a virtual cube, which can contain portions of one or
more cubes, a linked cube references the entire contents of a single cube.

A subscribing server is an Analysis server that contains a linked cube. A publishing server contains the source cube upon which
the linked cube is based. To be a subscribing server, the Analysis server service (MSSQLServerOLAPService) must run under an
account that has query permissions on each publishing server to which it connects. This account can be an account that belongs
to the OLAP Administrators group on the publishing server, or an account that has query permissions established by a role on
each source cube to which the subscribing server needs access. There are no requirements an Analysis server has to meet in order
to become a publisher. Any processed cube on the publishing server can be made available for linking, subject to network and
cube security; the cube must be available for use by the subscribing server as if the subscribing server were a client querying the
cube on the publishing server.

All dimensions in a linked cube are treated as private dimensions on the subscribing server. This means that other regular cubes
in the subscribing database cannot use these dimensions. A linked cube can be included in a virtual cube.

Linked cubes cannot be created from regular cubes that employ shared or private ROLAP dimensions.

Differences of Linked Cubes

Because a linked cube is based on the contents of an existing cube, some of the properties for the linked cube object are not
supported, or they have a meaning that is different from their counterparts in a regular cube. An attempt to set or retrieve an
unsupported property results in an error. The properties that are different for linked cubes are listed in the following table.

Property Description
Cube.OlapMode Read-only. It is taken from the published cube.
Dimension.SubClassType Always sbclsLinked for a dimension in a linked cube.
Measure.AggregateFunction Read-only. It is taken from the measure in the

published cube.
Measure.ColumnType Read-only. It is taken from the measure in the

published cube.
Partition.OlapMode Always olapmodeROLAP for a partition in a linked

cube.

Add a Linked Cube

The following code example illustrates the steps needed to create a linked cube.

Note This procedure must involve two different servers: a publishing server and a subscribing server. Attempting to create a link
to a cube on the same server causes an error.

Example

The following code example creates a linked cube by joining the Sales cube from the FoodMart 2000 database on the publishing
server to a new cube, named LinkedCube, to the TestDB database on the subscribing server:

Private Sub AddLinkedCube()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore
 Dim dsoLDS As DSO.DataSource

 Dim strDBName As String
 Dim strCubeName As String
 Dim strServerName As String

 ' Initialize variables for the database and
 ' linked cube names.
 strDBName = "TestDB"
 strCubeName = "LinkedCube"

 ' The following variable should be set to the name
 ' of the publishing server.
 strServerName = "servername"

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 If dsoServer.MDStores.Find(strDBName) = False Then
 MsgBox "Database " & strDBName & _
 " is not found."
 Else
 ' Get a reference for the database that
 ' will contain the linked cube.
 Set dsoDB = dsoServer.MDStores(strDBName)

 ' Create a new data source for the linked cube.
 Set dsoLDS = dsoDB.DataSources.AddNew("PublishingServer")

 ' Set the connection string, so that the data source points
 ' to an Analysis server running SQL Server 2000 Analysis Services
 ' or later, installed with the FoodMart 2000 database.
 dsoLDS.ConnectionString = "Provider=MSOLAP;" & _
 "Data Source=" & strServerName & ";" & _
 "Initial Catalog=FoodMart 2000;"

 ' Save this data source in the repository.
 dsoLDS.Update

 ' Create a new cube on the local server, mark it as linked.
 Set dsoCube = dsoDB.MDStores.AddNew(strCubeName, sbclsLinked)

 ' Add dsoLDS to the DataSources collection of the linked cube.
 dsoCube.DataSources.Add dsoLDS

 ' Use the name of the published cube as the
 ' source table for the subscribed cube.
 dsoCube.SourceTable = """" & "Sales" & """"

 ' Update the cube. This creates the link.
 dsoCube.Update

 ' Commit the changes to the subscribing server.
 dsoCube.Process processFull
 End If

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Virtual Dimensions
Working with Virtual Dimensions

The steps for creating virtual dimensions with Decision Support Objects (DSO) are similar to those used to create regular
dimensions. To create a virtual dimension based on the columns of another dimension, create the dimension normally, but set the
IsVirtual property to True and set the DependsOnDimension property to the name of the source dimension. Creating a virtual
dimension based on the member properties of a regular dimension is more complicated. The procedure is outlined in the code
sample at the end of this topic.

Differences of Virtual Dimensions

Because a virtual dimension is based on the contents of an existing dimension, many of the properties for the virtual dimension
object and its level objects are read-only and do not need to be set before the dimension is processed. The remaining properties
for the dimension and level objects must be set to refer to the underlying dimension and/or member properties that provide the
source data for the virtual dimension.

The following table lists dimension and level properties that are read-only or ignored for virtual dimensions.

Object property Description
Dimension.FromClause Read-only. It is taken from the source dimension.
Dimension.IsChanging Always True for a virtual dimension created using

Microsoft® SQL Server™ 2000 Analysis Services.
Dimension.JoinClause Read-only. It is taken from the source dimension.
Dimension.StorageMode Always storeasMOLAP for a virtual dimension.
Dimension.SourceTableFilter Read-only. It is taken from the source dimension.
Dimension.SourceTableAlias Read-only. It is taken from the source dimension.
Level.EstimatedSize Not used for a level in a virtual dimension.
Level.Grouping Always groupingNone for a level in a virtual

dimension.
Level.HideMemberIf Always hideNever for a level in a virtual dimension.

Add a Virtual Dimension

Use the following code example to create a virtual dimension. The virtual dimension, except as noted in the table, is treated as any
other dimension.

Example

The following code example creates the Store Size in SQFT virtual dimension in the TestDB database. This virtual dimension is
based on a member property, Store SQFT, of the Stores source dimension:

Private Sub AddVirtualDimension()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDS As DSO.DataSource
 Dim dsoDim As DSO.Dimension
 Dim dsoLevel As DSO.Level

 Dim strDBName As String
 Dim strLQuote As String
 Dim strRQuote As String

 ' Define constants used for the ColumnType property
 ' of the DSO.Level object.
 ' Note that these constants are identical to
 ' those used in ADO in the DataTypeEnum enumeration.
 Const adDouble = 5

 ' Initialize variable for the database.
 strDBName = "TestDB"

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 ' Ensure that the server has an existing database.
 If dsoServer.MDStores.Find(strDBName) = False Then
 MsgBox "Database " & strDBName & _
 " is not found."
 Else
 ' Retrieve the database from the server.
 Set dsoDB = dsoServer.MDStores(strDBName)

 ' Retrieve a data source from the database.
 Set dsoDS = dsoDB.DataSources("FoodMart")

 ' Get the delimiter characters from the data source.
 strLQuote = dsoDS.OpenQuoteChar
 strRQuote = dsoDS.CloseQuoteChar

 ' Create the new dimension in the Dimensions
 ' collection of the database object.
 Set dsoDim = dsoDB.Dimensions.AddNew("Store Size in SQFT")

 ' Set the description of the dimension.
 dsoDim.Description = "The Store Size in SQFT virtual dimension"

 ' Set the data source of the dimension.
 Set dsoDim.DataSource = dsoDS

 ' Set the dimension type, make it virtual,
 ' and identify its underlying source dimension.
 dsoDim.DimensionType = dimRegular
 dsoDim.IsVirtual = True
 dsoDim.DependsOnDimension = "Stores"

 ' Next, create the levels.
 ' Start with the (All) level.
 Set dsoLevel = dsoDim.Levels.AddNew("(All)")

 ' Set the level type.
 dsoLevel.LevelType = levAll

 ' Set the MemberKeyColumn of the (All) level to a constant
 ' that also acts as the name of the level's only member.
 dsoLevel.MemberKeyColumn = "(All Store Sizes)"

 ' Create the Store SQFT level. This holds the SQFT value.
 Set dsoLevel = dsoDim.Levels.AddNew("Store Size")

 ' Name the source column for this level.
 ' The format for this is "table_name"."column_name".
 ' Database-specific delimiter characters are required.
 dsoLevel.MemberKeyColumn = strLQuote & "store" & strRQuote & "." & _
 strLQuote & "store_sqft" & strRQuote

 ' Set the following properties to be identical to their
 ' counterparts in the member property object that provides
 ' this level with its data.
 dsoLevel.ColumnType = adDouble
 dsoLevel.ColumnSize = 4

 ' Check to see that you set the level and
 ' dimension properties correctly, and that the rest
 ' of the dimension structure is correct. If so,
 ' update the repository and exit the function.
 If dsoLevel.IsValid And dsoDim.IsValid Then
 ' Update the dimension.
 dsoDim.Update

 ' Inform the user.
 MsgBox "Virtual dimension has been added."
 End If
 End If

End Sub

Analysis Services Programming (SQL Server 2000)

Working with Roles
Working with Roles

Roles are used in Microsoft® SQL Server™ 2000 Analysis Services to provide security for databases, cubes, and mining models.
Decision Support Objects (DSO) provides the Role object for administering all three types of roles.

Database Roles

A database role applies to a single Analysis Services database, and it includes a list of Microsoft Windows NT® 4.0 or Microsoft
Windows® 2000 user accounts and groups. A database role does not control administrative access to an Analysis Services object;
instead it determines read and write capabilities when a user is connected to an Analysis Services database through a client
application. Database roles can be used to manage the dimension security for shared dimensions in a database for multiple cubes.
For more information about dimension security, see Dimension Security.

When a database role is assigned to a cube or mining model, Analysis Services creates a corresponding cube or mining model
role. The property values specified in the database role are then propagated to the newly created cube or mining model role. A
cube or mining model role cannot exist without a corresponding database role.

If the property value of a database role is changed, any cube or mining model role based on that database role is also changed,
but only if the cube or mining model role still uses the value propagated from the database role. In other words, if you change a
cube or mining model role property directly, changing the corresponding database role property does not override the changed
cube or mining model role property.

For more information about database roles, see Database Roles.

A database role is represented in DSO by a Role object of ClassType clsDatabaseRole. The available properties for the Role
object are different for each type of role, and the behavior of some properties changes as well. For more information about the
Role object, see Role Interface.

Use the following example to create a new database role. The database role created in the example will be used by the other
examples in this topic.

Example

This code example creates a new database role, named TestRole, in the FoodMart 2000 database:

Private Sub CreateDatabaseRole()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore
 Dim dsoRole As DSO.Role

 Dim sDimensionSecurity As String

 ' Connect to the local server.
 dsoServer.Connect "LocalHost"

 ' Connect to the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores.Item("FoodMart 2000")

 ' Create a new database role named TestRole.
 Set dsoRole = dsoDB.Roles.AddNew("TestRole", sbclsRegular)

 ' Create the XML syntax to be used for the SetPermissions method
 ' of the Role object.
 sDimensionSecurity = "<MEMBERSECURITY " & _
 "DefaultMember=""[Store].[Store Country].&[USA]"" " & _
 "VisualTotalsLowestLevel=""[Store].[Store City]"">" & _
 "<PERMISSION Access=""Read"" " & _
 "DeniedSet=""{[Store].[Store Country].&[Canada]," & _
 "[Store].[Store Country].&[Mexico]}"" " & _
 "Description=""USA Store Restriction""/>" & _
 "</MEMBERSECURITY>"

 ' The preceding XML syntax limits the users of the database role
 ' to viewing only stores in the USA, by denying read access to
 ' stores associated with the Mexico and Canada members of the
 ' [Store Country] level of the Stores dimension.

 ' Change the role properties for TestRole

 With dsoRole
 ' Lock the database role.
 .LockObject olapLockRead, "Creating Role"

 ' Set the list of users assigned to this role.
 .UsersList = "Everyone"

 ' Set the role description.
 .Description = "Test role"

 ' Set the EnforcementLocation permission key to enforce
 ' the role on the server side.
 .SetPermissions "EnforcementLocation", "Server"

 ' Set the Dimension key for the Store dimension to
 ' restrict users to viewing only USA stores.
 .SetPermissions "Dimension:Store", sDimensionSecurity

 ' Unlock the database role.
 .UnlockObject
 End With

 ' Update the database role.
 dsoRole.Update

End Sub

Analysis Services Programming (SQL Server 2000)

Incremental Updates
Incremental Updates

Incremental updates allow you to keep the contents of a cube current without requiring you to reprocess the cube in full when
you add new data. An incremental update involves creating a temporary partition, filling it with updated source data, processing
the temporary partition, and then merging it into another partition in the cube.

Data to be added to a cube can come from the original fact table or from a separate fact table with a structure identical to the
original. If you add data from the original fact table, take care not to duplicate data that already exists in the cube. Set the
SourceTableFilter property before processing the created temporary partition to restrict the data that is imported from the fact
table. Temporary partitions created for this purpose are indicated by a tilde (~) character preceding the name of the temporary
partition.

If data to be added to a cube comes from the fact table from which the cube was originally created, a risk of duplicate aggregation
occurs. The cube uses the SourceTableFilter property to screen incoming data from a fact table; when performing an
incremental update, it adds the aggregations computed from the fact table to the aggregations stored by the cube. If the same
table is run twice, once to construct the original aggregations, and again as part of an incremental update, you will receive the
same data twice, added together in the cube. The SourceTableFilter property can be used to screen out existing, already
aggregated data in the fact table, preventing duplicate aggregation.

If you add data from a fact table that includes new members of a dimension, you must also reprocess the affected dimension
using the processRefreshData for the Process method of the dimension object.

Perform an Incremental Update

The following code example shows how to do an incremental update using a temporary partition based on a separate fact table.

Example

The following code example performs an incremental update on the TestCube cube of the TestDB database by creating a
temporary partition, adding a new table, and combining the partitions:

Private Sub IncrementalUpdate()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore
 Dim dsoPartition As DSO.MDStore
 Dim dsoClonePartition As DSO.MDStore
 Dim dsoMeasure As DSO.Measure

 ' Connect to the local server.
 dsoServer.Connect "LocalHost"

 ' Set up the MDStore objects:
 ' database, cube, and partition.
 Set dsoDB = dsoServer.MDStores.Item("TestDB")
 Set dsoCube = dsoDB.MDStores.Item("TestCube")
 Set dsoPartition = dsoCube.MDStores.Item("TestCube")

 ' Create a temporary partition to store the new data.
 ' Use the tilde character to indicate to the server
 ' that the partition is not permanent.
 Set dsoClonePartition = dsoCube.MDStores.AddNew("~New TestCube Data")

 ' Clone the main partition to the temporary one.
 dsoPartition.Clone dsoClonePartition, cloneMinorChildren

 ' Because this partition uses a different source table,
 ' the properties that identify the table must be changed
 ' (sales_fact_1997 becomes sales_fact_1998).
 ' If this update involved the original fact table, these
 ' properties would remain unchanged, but the SourceTableFilter
 ' property would have to be updated to prevent duplicate data
 ' from being imported during processing.
 dsoClonePartition.SourceTable = "sales_fact_1998"
 dsoClonePartition.FromClause = _
 Replace(dsoClonePartition.FromClause, "1997", "1998")
 dsoClonePartition.JoinClause = _
 Replace(dsoClonePartition.JoinClause, "1997", "1998")

 ' It is also necessary to update the measures in the
 ' partition, because they reference the old fact table, too.
 For Each dsoMeasure In dsoClonePartition.Measures
 dsoMeasure.SourceColumn = _
 Replace(dsoMeasure.SourceColumn, "1997", "1998")
 Next

 ' Although this is not the case in this example, if the
 ' MemberKeyColumn or MemberNameColumn properties of any of the
 ' dimension levels are based on the fact table, they too must
 ' be updated.

 ' Process the temporary partition.
 dsoClonePartition.Process processDefault

 ' Merge the two partitions.
 dsoPartition.Merge "~New TestCube Data"

 ' Close the server object and exit the subroutine.
 dsoServer.CloseServer

End Sub

Analysis Services Programming (SQL Server 2000)

Additional Considerations
This topic contains additional information, examples, and suggestions to help you use Decision Support Objects (DSO) more
effectively.

Topic Description
Considerations for Naming Decision
Support Objects

Covers the naming conventions for DSO
objects, and discusses the importance of
unique object names

Object Locking with Decision Support
Objects

Discusses the process of object locking in DSO
in multiuser situations

Tips for Creating Member Properties
in Multiple Languages

Explains the support for member properties to
handle multiple language requirements

Using SQL Server 7.0 OLAP Services Discusses the use of Microsoft® SQL Server™
7.0 OLAP Services with the current version of
the DSO library

Analysis Services Programming (SQL Server 2000)

Considerations For Naming Decision Support Objects
Considerations For Naming Decision Support Objects

When naming Decision Support Objects (DSO) objects, you should follow a consistent naming convention and ensure that the
name of each object is unique. Most of the naming conventions supplied in this topic are optional; some are required, as in the
cases of virtual and private dimensions. The following naming convention assists in understanding the sometimes complex
hierarchies formed by the DSO object model; the use of unique DSO object names also speeds performance.

DSO Object Naming Requirements

When you create a DSO object in an application, you must set a value for the object's Name property to differentiate it from
similar objects in use and/or stored on the Analysis server. To prevent errors during execution time caused by characters that are
not valid, follow these guidelines when you name objects:

All names must begin with a letter, with the exception of virtual dimensions. The name of a virtual dimension must start
with a tilde (~) character.

A dimension can contain a single period (.) in its name if it contains multiple hierarchies. This period serves to separate the
dimension name from the hierarchy name. (For example, consider MyDim.Hier1 and MyDim.Hier2, where MyDim is a
dimension with two hierarchies, named Hier1 and Hier2.) Private dimensions must contain the cube name followed by a
caret (^) character and the dimension name.

Avoid most symbol characters. Some objects have specific limitations regarding nonalphanumeric characters, while other
objects supply meaning to certain nonalphanumeric characters, such as the tilde (~) and caret (^) characters. The following
table lists characters that are not allowed.

The following reserved names should not be used for DSO objects:
AUX

CLOCK$

COM1 through COM9 (COM1, COM2, COM3, and so on)

CON

LPT1 through LPT9 (LPT1, LPT2, LPT3, and so on)

NUL

PRN

Object Invalid characters
Server The name must follow the rules for Microsoft® Windows NT® 4.0

and Windows® 2000 computer names. (IP addresses are not
valid.)

Data source : / \ * | ? " () [] {} <>
Level . , ; ' ` : / \ * | ? " & % $! - + = [] {}
Dimension , ; ' ` : / \ * | ? " & % $! - + = () [] {}
All other objects . , ; ' ` : / \ * | ? " & % $! - + = () [] {}

The Importance of Unique Names

Object names in Multidimensional Expressions (MDX) queries are resolved in a specific order. For best results with cube speed
and accuracy, make the effort to use unique names for all objects you create in a database on an Analysis server. If using unique
names is not an option, make an effort to qualify names as completely as possible in your queries, especially in cases where
identical names appear in different dimensions and levels. The following paragraphs outline the order in which name conflicts in

MDX statements are resolved.

When matching names to cube objects in an MDX query, the Analysis server first tries to match the initial portion of the name to a
dimension, then a level, and finally, a member. When the server is satisfied that it has located one of these objects, it then uses the
final element in the name to search within the bound object. For example, suppose there is a dimension [D1], a level [L1], and a
member [M]. The statement [D1].[L1].[M] is broken down and [D1].[L1] is bound to the level. The server then searches the level for
the member [M].

If a level in a dimension has a name identical to another dimension that is not its parent, that level will not be searched by a
poorly constructed query. For example, suppose there are two dimensions [D1] and [D2]. [D2] has a level named [D1]. If a query
refers to a member as [D1].[M], the Analysis server binds the name [D1] to the dimension and searches for [M] there. If it cannot
find [M] in [D1], the query fails (once the server has bound a name to an object, it does not continue to the next object in the
collection if the search fails). For this type of query to succeed, it should include the complete hierarchy of the dimension to locate
the member: [D2].[D1].[M].

The same rules apply to members with children. Suppose there is a dimension [D1] with both a level and a member named [L1].
The member [L1] also has a child [C]. In an attempt to reference [C], [D1].[L1].[C] fails because the server binds [D1].[L1] to the
level and searches for [C] as a member. For this type of query to succeed, it should include the complete hierarchy of the
dimension to locate the child: [D1].[L1].[L1].[C].

A first-fit algorithm solves ambiguities in member names. If a member is referred to as [M] (without a corresponding parent
dimension), the server searches the dimensions in the order they are listed in the cube's Dimensions collection until it finds the
member. Although this can help resolve ambiguous member names, this process is slow and can affect performance. If the
member is located in two different levels of the same dimension, the server returns the member closest to the root of the
dimension tree.

Analysis Services Programming (SQL Server 2000)

Object Locking with Decision Support Objects
Object Locking with Decision Support Objects

If you are developing applications for use in a multiple-administrator environment, you should become familiar with the
LockObject and UnlockObject methods. These methods provide for repository stability when changes are made to Microsoft®
SQL Server™ 2000 Analysis Services objects. When one application obtains a lock on an object, the options available to other
applications are restricted until the lock is released. The use of object locking can provide performance benefits when working
with Decision Support Objects (DSO) objects, and it can forestall some errors in multiple user object access situations.

When an application disconnects from the server, all locks it left in place are automatically released. This prevents objects from
being locked indefinitely from unexpected circumstances.

The types of locks defined by the OlapLockTypes enumeration are: olapLockExtendedRead, olapLockProcess,
olapLockRead, and olapLockWrite.

olapLockExtendedRead

The object's properties can be read by other applications, but cannot be changed or processed. This lock is used to prevent
processing of dependent objects of an object that is being processed, such as dimensions that are shared by multiple cubes.
Multiple olapLockExtendedRead locks may be applied to an object by multiple applications. However, no application can lock
the object for processing or writing until all olapLockExtendedRead locks have been released.

olapLockProcess

The object's Process method can be called and other applications can read the object's properties only until the lock is released.
Only one olapLockProcess lock can be applied to an object at a time, and other applications can apply olapLockRead locks only
while the olapLockProcess lock is in place.

olapLockRead

The properties of the object can be read from the repository and cannot be changed by another application until the lock is
released. Other applications can issue olapLockRead, olapLockExtendedRead, and olapLockProcess locks, but not
olapLockWrite locks, while the initial olapLockRead lock is in place.

olapLockWrite

The properties of the object can be modified in the repository using the Update method, and are not available to other
applications for any use until the lock is released. No other locks of any type can be applied to the object by another DSO client
until the olapLockWrite lock is released.

The different lock types are not valid for all objects that have a LockObject method. Review the different method descriptions for
information about the lock types each object supports.

It is sometimes possible for an application to obtain an additional lock on an already locked object. The following table defines
what lock options are available to an application (App2) that wants to request a lock on an object that is currently locked by
another application (App1).

 App2 can obtain lock
App1 lock
obtained olapLockRead

olapLock
ExtendedRead olapLockProcess olapLockWrite

olapLockRead Yes Yes Yes No
olapLock
ExtendedRead

Yes Yes No No

olapLockProcess Yes No No No
olapLockWrite No No No No

If a lock request is denied, DSO raises the error mderrLockCannotBeObtained. If the lock request was denied because the
object is already locked by another application, the Description property of the Error object contains the name of the user holding
the lock, the computer name where the lock was obtained, and the description the application provided when it obtained the lock.

In certain situations, an application can delete an object and cause another application to fail if both applications are using the
same object. For example, assume that App1 creates an object and obtains an olapLockWrite lock, and App2 obtains an
olapLockRead lock on the same object. If App1 deletes the object, the object reference in App2 will now not be valid. You can
check the validity of an object in this situation by examining its Parent property, which does not contain a valid parent object if

the object reference is not valid.

See Also

OlapLockTypes

LockObject

UnlockObject

Analysis Services Programming (SQL Server 2000)

Tips for Creating Member Properties for Multiple Languages
Tips for Creating Member Properties for Multiple Languages

The Caption and Language properties of the DSO.MemberProperty object allow you to tailor member properties to users with
specific language requirements. With this feature, a single cube can serve groups of users without a common language.

When a client application's query involves member properties with identical captions, the Analysis server uses the member
property object whose Language property most closely matches the application's LocaleID value. Multiple member properties
can have identical values for Caption only if they each have a different value for the Language property, so that the member
property most appropriate for the LocaleID value of the client application can be used. For a cube that serves client applications in
only one language, the Language property for each member property object should be set to languageAny.

The Name property of a clsMemberProperty object contains the name of the source column for the data contained in the
member property. The Caption property contains the name of the member property as it appears to the client application.

Add Members Properties for Multiple Languages

The following code example creates two member properties for Store Manager in the TestDB database. One is for English-
speaking users, the other for Spanish-speaking users.

Example

The following code example adds a new member property, Store Manager, for English and Spanish languages:

Private Sub AddMultiLangMembers()
 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDS As DSO.DataSource
 Dim dsoDim As DSO.Dimension
 Dim dsoLevel As DSO.Level
 Dim dsoMember As DSO.MemberProperty

 Dim strDBName As String
 Dim strLQuote As String
 Dim strRQuote As String

 ' Define constants used for the ColumnType property
 ' of the DSO.Level object.
 ' Note that these constants are identical to
 ' those used in ADO in the DataTypeEnum enumeration.
 Const adWChar = 130

 ' Initialize variables for the database name.
 strDBName = "TestDB"

 ' Create a connection to the Analysis server.
 dsoServer.Connect "LocalHost"

 ' Set the database object.
 Set dsoDB = dsoServer.MDStores(strDBName)

 ' Set the data source for the database object.
 ' A data source is required to run this example.
 If dsoDB.DataSources.Count = 0 Then
 MsgBox "Database " & dsoDB.Name & _
 " has no data sources."
 Else
 Set dsoDS = dsoDB.DataSources(1)
 End If

 ' Get database-specific delimiter characters.
 strLQuote = dsoDS.OpenQuoteChar
 strRQuote = dsoDS.CloseQuoteChar

 ' Retrieve the Store dimension.
 Set dsoDim = dsoDB.Dimensions("Stores")

 ' Retrieve the Store ID level.
 Set dsoLevel = dsoDim.Levels("Store ID")

 ' First, create the English (and default) member property.
 Set dsoMember = dsoLevel.MemberProperties.AddNew("Store Manager")

 dsoMember.SourceColumn = strLQuote & "store" & strRQuote & "." & _
 strLQuote & "store_manager" & strRQuote
 dsoMember.ColumnSize = 255
 dsoMember.ColumnType = adWChar
 dsoMember.Caption = "Store Manager"
 dsoMember.Language = languageAny
 ' Next, create an identical one for Spanish users.
 Set dsoMember = _
 dsoLevel.MemberProperties.AddNew("Encargado de Almacén")
 dsoMember.SourceColumn = strLQuote & "store" & strRQuote & "." & _
 strLQuote & "store_manager" & strRQuote
 dsoMember.ColumnSize = 255
 dsoMember.ColumnType = adWChar
 dsoMember.Caption = "Store Manager"
 dsoMember.Language = languageSpanish

 ' Update the Stores dimension.
 If dsoLevel.IsValid And dsoDim.IsValid Then
 dsoDim.Update
 End If

End Sub

Analysis Services Programming (SQL Server 2000)

Using SQL Server 7.0 OLAP Analysis Services
Using SQL Server 7.0 OLAP Services

You can create objects supported by Microsoft® SQL Server™ 7.0 OLAP Services. Decision Support Objects (DSO) can read and
process objects created in SQL Server 7.0 OLAP Services that support such objects. In particular, the creation of virtual dimensions
is now supported in a more efficient fashion; although code written for SQL Server 7.0 OLAP Services to create virtual dimensions
will continue to function, the more efficient process of virtual dimension creation supported in SQL Server 2000 Analysis Services
is recommended.

See Also

Virtual Dimensions Created in Version 7.0

Analysis Services Programming (SQL Server 2000)

Decision Support Objects Programmer's Reference
Microsoft® SQL Server™ 2000 Analysis Services offers substantial opportunity for you to create and integrate custom
applications. The server object model, Decision Support Objects (DSO), provides interfaces and objects that can be used with any
COM automation programming language such as Microsoft® Visual Basic® (version 5.0 and later). Additionally, Microsoft Visual
C++® programmers can use DSO. DSO objects support both early and late binding.

The Programmer's Reference provides detailed information about DSO for use in developing custom applications that interact
with the Analysis server. For more information about other programming tools for Analysis Services, see Programming Analysis
Services Applications.

Topics in this section cover the following subjects.

Topic Description
Interfaces The specifics of each interface that your program uses to

manipulate DSO objects, including collections, methods, and
properties managed by the interface.

Events Details on events supported by DSO objects, including database
reporting and object processing events.

Objects Information about DSO objects. Topics for objects that provide
their own default interfaces also include collections, methods, and
properties specific to those objects.

Enumerations The details of the enumerations provided by DSO, and
information about how to use them.

Collections Information about the collections used in DSO, including the
generic methods and properties that apply to these collections.

Analysis Services Programming (SQL Server 2000)

Interfaces
 New Information - SQL Server 2000 SP3.

There are a number of interfaces in Decision Support Objects (DSO). Objects that have similar functionality implement a common
interface.

For example, databases, cubes, partitions, and aggregations implement the MDStore interface. An MDStore object is a container
of multidimensional data. Databases contain cubes of related information, cubes contain partitions that store data, and
aggregations are precalculated summaries of data associated with partitions. MDStore objects have similar structures. They
contain collections of dimensions that categorize the data, the data sources that specify which relational database management
system (RDBMS) contains fact and dimension tables, the roles that define the security permissions, and so on.

Given a reference to an MDStore interface or any other DSO interface, you can determine which type of the object you are
dealing with by examining the ClassType property. The objects that implement the MDStore interface can have the following
class types: clsDatabase, clsCube, clsPartition, and clsAggregation. Throughout the programmer's reference, DSO objects are
identified using the notational prefix "cls." The DSO ClassTypes enumeration contains the complete list of all DSO class types.

Not all objects that implement a common interface implement the interface in the same way. Some objects do not implement all
of the interface properties, methods, and collections. For example, database objects (clsDatabase) implement the BeginTrans
method of the MDStore common interface, but cube objects (clsCube) do not. Some objects restrict access to certain properties
so that they become read-only rather than read/write. If you attempt to access a property or invoke a method that is not
implemented, DSO raises an error.

DSO exposes the Command, Dimension, Level, MDStore, Measure, and Role common interfaces. The following table lists the
DSO common interfaces and the types of objects that implement them.

Interface Description Implemented by
Command The Command interface exposes

functionality for defining and
managing
Multidimensional Expressions (MDX)
statements to be executed on the
client and the Analysis server.

clsDatabaseCommand
clsCubeCommand
clsRoleCommand

Dimension The Dimension interface defines
the properties, methods, and
collections that you can use to
manipulate different types of
dimensions: database dimensions,
cube dimensions, partition
dimensions, and aggregation
dimensions.

clsDatabaseDimension
clsCubeDimension
clsPartitionDimension
clsAggregationDimension

Level The Level interface defines objects
that specify the dimension hierarchy.

clsDatabaseLevel
clsCubeLevel
clsPartitionLevel
clsAggregationLevel

MDStore Objects that implement the
MDStore interface are those that
contain dimensions: databases,
cubes, partitions, and aggregations.

clsDatabase
clsCube
clsPartition
clsAggregation

Measure Objects that implement the
Measure interface describe the
values stored in cubes, partitions,
and aggregations.

clsCubeMeasure
clsPartitionMeasure
clsAggregationMeasure

Role Objects that implement the Role
interface contain access permissions
on databases, cubes, and data
mining models.

clsDatabaseRole
clsCubeRole
clsMiningModelRole

Some DSO objects do not implement a common interface. You access these objects by using their default interface: clsServer,
clsDataSource, clsMiningModel, clsColumn, clsCubeAnalyzer, clsPartitionAnalyzer, and clsMemberProperty.

Remarks

The DSO type library exposes several object classes, such as Cube, Database, Partition, CubeDimension, and so on. These
objects are reserved for future use and are not intended to be used in DSO applications. You should use the common interfaces
instead. For example, use the following code to create a new object of ClassType clsDatabase (a database object implements the
MDStore interface):

'Assume an object (dsoServer) of ClassType clsServer exists.
'Add database object to server's MDStores collection.
Dim dsoDB As MDStore ' Declare the object by the interface.
Set dsoDB = dsoServer.MDStores.AddNew("MyDB")

Always use the appropriate common interface for the object. For example, major objects typically use the MDStore interface as
their appropriate interface. The following code example shows the appropriate interface to use for cube objects:

Private dsoCube As DSO.Cube ' INCORRECT - DO NOT USE.
Private dsoCube As DSO.MDStore ' CORRECT

The only exceptions to this rule are Database objects. If your client application needs to trap database events, the internal
interface of the object should be used instead of the MDStore interface, as shown in the following code example:

Public dsoDB as DSO.MDStore ' Use this statement if you do not need to trap events.
Public WithEvents dsoDB as DSO.Database ' Use this statement if you need to trap events.

Analysis Services Programming (SQL Server 2000)

Command Interface
Command Interface

 New Information - SQL Server 2000 SP3.

In Decision Support Objects (DSO), certain objects can contain a series of user-defined commands that are automatically executed
on the PivotTable® Service client when you access the object. These commands can include expressions written in
Multidimensional Expressions (MDX) that define calculated members, named sets, library references, and other commands.

Security Note Commands can be the source of security vulnerabilities; they can invoke system or user-defined functions
without user knowledge or intervention and may contain security credentials stored in plain text. Before implementing
commands, review the command text for security issues.

The objects that implement the Command interface, CubeCommand, DBCommand, and RoleCommand, have a ClassType
property value of clsCubeCommand, clsDatabaseCommand, or clsRoleCommand respectively. The Command interface
provides collections, methods, and properties to manipulate these objects.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Collections

The Command interface contains the following collection.

Collection Description
CustomProperties The collection of user-defined properties for the command

object

Analysis Services Programming (SQL Server 2000)

Collections, Command Interface
Collections, Command Interface

The Command interface contains the following collection.

Collection Description
CustomProperties The collection of user-defined properties for the

command object

Access

Read/write

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Methods, Command Interface
Methods, Command Interface

The Command interface contains the following methods.

Method Description
Clone Copies an existing object to a target object of the same class

type
LockObject Locks an object
UnlockObject Unlocks a previously locked object
Update Saves the definition of the command object in the meta data

repository

For the Command interface, these methods apply only to objects of ClassType clsDatabaseCommand.

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Clone (Command Interface)
Clone (Command Interface)

The Clone method of the Command interface copies the properties of an existing object to a target object of the same class type.
The target object must exist prior to using the Clone method.

Applies To

clsDatabaseCommand

Syntax

object.Clone(ByVal TargetObject As Command, [ByVal Options As CloneOptions = cloneMajorChildren])

object

The object whose property values are to be copied.

TargetObject

A previously created object of the same class type.

Options

For objects of ClassType clsDatabaseCommand, the CloneOptions argument has no effect and is ignored.

Example

The following example clones a command object:

'Assume a command object (dsoCmd) exists.
Dim dsoCmdCopy as new DSO.Command
dsoCmd.Clone dsoCmdCopy

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

LockObject (Command Interface)
LockObject (Command Interface)

The LockObject method of the Command interface locks an object to prevent multiple users from concurrently changing the
object.

Applies To

clsDatabaseCommand

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

The object to lock.

LockType

One of the lock types of the OlapLockTypes enumeration. For more information, see OlapLockTypes.

LockDescription

A string that contains a description of the lock. This argument is available to other applications attempting to obtain a lock.

Remarks

Of the four types of locks defined by the OlapLockTypes enumeration, only OlapLockRead and OlapLockWrite apply to the
Command interface.

Lock type Applies to
OlapLockRead Applications can read the properties of the command object

from the repository but cannot make changes until the lock is
released (this includes the application that created the lock).

OlapLockWrite The application that created the lock can modify the object's
properties and save them in the repository using the Update
method. Other applications cannot read the properties of the
object until the lock is released.

For more information about object locking, see LockObject.

Example

The following example locks a command object so that it can be modified. It then unlocks the object and updates the repository
information for that object.

'Assume a command object (dsoCmd) exists.
dsoCmd.LockObect OlapLockRead, "Updating command, please wait."
' (Insert code to change command object here.)
dsoCmd.Update
dsoCmd.UnlockObject

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

UnlockObject (Command Interface)
UnlockObject (Command Interface)

The UnlockObject method of the Command interface releases the lock previously established on a command object by the
LockObject method.

Applies To

clsDatabaseCommand

Syntax

object.UnlockObject

object

The object to unlock.

Remarks

If an application that created one or more locks terminates before it can free them using the UnlockObject method, the Analysis
server automatically releases the locks when the connection with the application is closed.

Example

The following example locks a command object so that it can be modified. It then unlocks the object and updates its repository
information.

'Assume a command object (dsoCmd) exists.
dsoCmd.LockObect OlapLockRead, "Updating command, please wait."
' (Insert code to change command object here.)
dsoCmd.Update
dsoCmd.UnlockObject

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Update (Command Interface)
Update (Command Interface)

The Update method of the Command interface saves the definition of a command object in the meta data repository.

Applies To

clsDatabaseCommand

Syntax

object.Update

object

The command object to update.

Remarks

Use this method when you want to save changes to an object. Any changes made to an object will have session scope until this
method is executed.

Example

The following example locks a command object so that it can be modified. It then unlocks the object and updates its repository
information.

'Assume a command object (dsoCmd) exists.
dsoCmd.LockObect OlapLockRead, "Updating command, please wait."
' (insert code to change command object here)
dsoCmd.Update
dsoCmd.UnlockObject

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Properties, Command Interface
Properties, Command Interface

The Command interface supports the following properties.

Property Description
ClassType Returns an enumeration constant that identifies the specific

class type
CommandType Returns an enumeration constant that identifies the

command option
Description Sets or returns the description of the command object
IsValid Indicates whether the Name and Statement properties are

empty and whether the command object belongs to a
collection

Name Sets or returns the name of the command object
OrdinalPosition Returns the ordinal position of the command object in the

Commands collection of the parent MDStore object
Parent Returns a reference to the parent MDStore object
ParentObject Returns a reference to the parent object of which this object

is a child
Statement Sets or returns the text of the command statement
SubClassType Returns an enumeration constant that identifies the subclass

type of the object

Access Cross-Reference

The following table shows whether the property is read/write (R/W) or read-only (R) for different objects.

Property clsDatabaseCommand clsCubeCommand clsRoleCommand
ClassType R R R
CommandType R/W R/W R/W
Description R/W R/W R/W
IsValid R R R
Name R/W (R after the object

has been named)
R/W (R after the
object has been
named)

R/W (R after the
object has been
named)

OrdinalPosition R R R
Parent R R R
ParentObject R R R
Statement R/W R/W R/W
SubClassType R R R

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

ClassType (Command Interface)
ClassType (Command Interface)

The ClassType property of the Command interface contains an enumeration constant that identifies the class designation in the
Decision Support Objects (DSO) object model.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

ClassTypes

Access

Read-only

Example

Use the following code to return the class type of a command object and determine which object class has been returned:

'Assume an object (dsoCommand) of ClassType clsCommand exists.
Dim enuClassType As DSO.ClassTypes
enuClassType = dsoCommand.ClassType
Select Case enuClassType
 Case clsDatabaseCommand
 ' Insert code for a database command.
 Case clsCubeCommand
 ' Insert code for a cube command.
 Case clsRoleCommand
 ' Insert code for a role command
 Case Else
 ' Insert code for when this is not a command object.
End Select

Analysis Services Programming (SQL Server 2000)

CommandType (Command Interface)
CommandType (Command Interface)

 New Information - SQL Server 2000 SP3.

The CommandType property of the Command interface contains an enumeration constant that identifies the command option.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

CommandTypes

Access

Read/write

Remarks

The value of CommandType determines how the Analysis server interprets the command object. The following table lists the
possible values.

Command type Description
cmdCreateAction The command contains a CREATE ACTION statement.

For more information, see CREATE ACTION Statement.
cmdCreateMember The command defines one or more calculated members.
cmdCreateSet The command defines one or more sets of existing

members.
cmdUseLibrary The command specifies a third-party DLL that contains

functions to be registered for use in Multidimensional
Expressions (MDX).

cmdUnknown The command defines statements that are not included
in any of the other command types, such as DROP
MEMBER statements or new statements that may be
added to future versions.

Note This command type should be used only if the
statement does not correspond to any other command
type.

cmdCreateCellCalculation The command defines a calculated cells definition.

Important To ensure compatibility with Analysis Manager, you should create only one action, calculated member, named set, or
calculated cells definition per command.

Security Note Commands can be the source of security vulnerabilities; they can invoke system or user-defined functions
without user knowledge or intervention and may contain security credentials stored in plain text. Before implementing
commands, review the command text for security issues.

Examples

A. Specifying the Command Type

Use the following code to specify a command type for an existing command object:

CommandObject.CommandType = cmdCreateMember

Analysis Services Programming (SQL Server 2000)

Description (Command Interface)
Description (Command Interface)

The Description property of the Command interface contains the description of the command object.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

String

Access

Read/write

Remarks

The primary mechanism for identifying individual command objects is the Name property. The purpose of the Description
property is to provide additional descriptive information.

Example

Use the following code to set a command object description:

'Assume a command object (dsoCmd) exists.
dsoCmd.Description = "Create a new profit member as sales-cost."

See Also

Command Interface

Name

Analysis Services Programming (SQL Server 2000)

IsValid (Command Interface)
IsValid (Command Interface)

The IsValid property of the Command interface indicates whether the Name and Statement properties are empty and whether
the command object belongs to a collection.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

Boolean

Access

Read-only

Remarks

Because of the flexible nature of command objects, only the following checks are performed:

The Name property of the command object is not empty.

The Command object belongs to a Commands collection.

The Statement property of the command object is not empty.

Executing a command is the only way to determine whether the command functions correctly.

Example

Use the following code to return the validity status of a command object:

'Assume a command object (dsoCmd) exists.
If dsoCmd.IsValid Then
 'Insert code to save the command.
Else
 'Return an error with one or more properties.
End If

Analysis Services Programming (SQL Server 2000)

Name (Command Interface)
Name (Command Interface)

The Name property of the Command interface contains the name of a command object. This property is the primary mechanism
for identifying individual command objects.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

String

Access

Read/write (read-only after the object has been named)

Remarks

Within a cube, each command must have a unique name. For more information about naming conventions for Decision Support
Objects (DSO) objects, see Considerations For Naming Decision Support Objects.

Example

Use the following code to print a command object's name in the immediate window:

'Assume a command object (dsoCmd) exists.
debug.print dsoCmd.Name

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

OrdinalPosition (Command Interface)
OrdinalPosition (Command Interface)

The OrdinalPosition property of the Command interface contains the ordinal position of a command in the Commands
collection in the parent MDStore object.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

Integer

Access

Read-only

Remarks

Ordinal position determines the order in which commands are executed. This order is important when one command depends on
another command (for example, a CREATE SET command that uses a member defined in a CREATE MEMBER command). In this
case, the CREATE MEMBER command should have a lower OrdinalPosition property value than the CREATE SET command.
However, the ordinal position of the command does not affect the solve order of the calculated member or calculated cells
definition the command may create. For more information on how solve order affects calculated cells and calculated members,
see Understanding Pass Order and Solve Order.

Example

The following code creates three new commands in the Commands collection of the FoodMart 2000 database. It then
enumerates the collection, printing the OrdinalPosition and Name properties to the Debug window. Then, the code example
deletes and re-creates the first command, and again enumerates the collection to demonstrate the change in ordinal position on
the other commands.

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCmd As DSO.Command

 ' Connect to the local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Add three sample commands.
 Set dsoCmd = dsoDB.Commands.AddNew("Command3")
 Set dsoCmd = dsoDB.Commands.AddNew("Command1")
 Set dsoCmd = dsoDB.Commands.AddNew("Command2")

 ' Iterate through the commands for the database.
 For Each dsoCmd In dsoDB.Commands
 ' Print its name and ordinal position
 Debug.Print dsoCmd.OrdinalPosition & " = " & dsoCmd.Name
 Next

 ' Now, delete the Command3 command and add it again.
 dsoDB.Commands.Remove "Command3"
 Set dsoCmd = dsoDB.Commands.AddNew("Command3")

 ' Iterate again through the commands for the database.
 Debug.Print "-----"
 For Each dsoCmd In dsoDB.Commands
 ' Print its name and ordinal position
 Debug.Print dsoCmd.OrdinalPosition & " = " & dsoCmd.Name

 Next

Analysis Services Programming (SQL Server 2000)

Parent (Command Interface)
Parent (Command Interface)

 New Information - SQL Server 2000 SP3.

The Parent property of the Command interface contains a reference to the parent MDStore object of which this object is a child.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

MDStore

Access

Read-only

Remarks

The class of the parent object depends on the class of the command object.

Important This property returns Nothing if the command object has a ClassType property value of clsRoleCommand and is
associated with a mining model role. Mining models do not implement the MDStore interface and cannot be returned by this
property.

Command object class Parent object class
clsDatabaseCommand clsDatabase
clsCubeCommand clsCube
clsRoleCommand clsCube

clsDatabase

Example

The following example creates a cube command and assigns it to the first cube in the MDStores collection of the FoodMart 2000
database. It then prints some of the properties of the parent object by using the Parent property of the cube command object.

Dim dsoServer As New DSO.Server
Dim dsoDB As DSO.MDStore
Dim dsoCube As DSO.MDStore
Dim dsoDBCmd As DSO.Command
Dim dsoCubeCmd As DSO.Command

' Connect to the Analysis server.
 dsoServer.Connect "LocalHost"

' Get a reference to the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

' Get the first cube in the database's collection.
 Set dsoCube = dsoDB.MDStores(1)
 Debug.Print "Cube.Name = " & dsoCube.Name

' Add the command to the cube's collection.
 Set dsoCubeCmd = dsoCube.Commands.AddNew("TempCommand")
 Debug.Print "Cube.Commands(""TempCommand"").Name =" & _
 dsoCube.Commands("TempCommand").Name

' Print the properties of the command's
' Parent object.
 Debug.Print " .Parent properties" & vbCrLf & _

 " -----------"
 Debug.Print " TypeName(dsoCubeCmd.Parent) = " & _
 TypeName(dsoCubeCmd.Parent)
 If dsoCubeCmd.Parent.ClassType = clsCube Then
 Debug.Print " .ClassType = clsCube"
 Else
 Debug.Print "This line should never be executed."
 End If
 Debug.Print " .Description = " & dsoCubeCmd.Parent.Description
 Debug.Print " .Name = " & dsoCubeCmd.Parent.Name

 dsoCube.Commands.Remove ("TempCommand")

Analysis Services Programming (SQL Server 2000)

ParentObject (Command Interface)
ParentObject (Command Interface)

 New Information - SQL Server 2000 SP3.

The ParentObject property returns a late-bound reference to the default interface of the parent object.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

Object

Access

Read-only

Remarks

This property returns the default interface for the parent of the command object. For objects whose ClassType property is
clsRoleCommand, this property returns an object of ClassType clsCubeRole or clsDatabaseRole. The behavior of this
property is different than that of the Parent property. The Parent property returns the closest MDStore parent reference of the
command object, which may or may not be the immediate parent reference, depending on the ClassType of the command object.
This property returns the immediate parent reference of the command object regardless of the interface. This difference in
behavior is evident when you are working with command objects of ClassType clsRoleCommand.

The returned object and its class type depend on the class type of the current command object.

Class type Parent object interface Parent object class type
clsDatabaseCommand MDStore clsDatabase
clsCubeCommand MDStore clsCube
clsRoleCommand Role clsDatabaseRole

clsCubeRole
clsMiningModelRole

Example

Comparing the Parent and ParentObject Properties

The following example compares the use of the Parent property with the ParentObject property:

Dim dsoServer As New DSO.Server
Dim dsoDB As DSO.MDStore
Dim dsoRole As DSO.Role
Dim dsoRoleCmd As DSO.Command
Dim dsoDatabaseRole As DSO.Role

 dsoServer.Connect "LocalHost"
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

'Get the first role in the database.
'This should be the Everyone role.
 Set dsoRole = dsoDB.Roles(1)

 Debug.Print "DatabaseRole.Name = " & dsoRole.Name
'Add a new command to the role.
 Set dsoRoleCmd = dsoRole.Commands.AddNew("RoleCmd")

 'Print the properties of the Parent object.

 Debug.Print ".Parent properties" & vbCrLf & "---------"
 Debug.Print "Interface type = " & TypeName(dsoRoleCmd.Parent)
 If dsoRoleCmd.Parent.ClassType = clsDatabase Then
 Debug.Print ".ClassType = clsDatabase"
 Else
 Debug.Print "This should never be printed."
 End If
 Debug.Print ".Description = " & dsoRoleCmd.Parent.Description
 Debug.Print ".Name = " & dsoRoleCmd.Parent.Name

'Print the properties of the ParentObject object
 Debug.Print ".ParentObject properties" & vbCrLf & "---------"
 Debug.Print "Interface type = " & TypeName(dsoRoleCmd.ParentObject)
 Set dsoDatabaseRole = dsoRoleCmd.ParentObject
 If dsoDatabaseRole.ClassType = clsDatabaseRole Then
 Debug.Print ".ClassType = clsDatabaseRole"
 Else
 Debug.Print "This should never be printed."
 End If
 Debug.Print ".ClassType = " & dsoDatabaseRole.ClassType
 Debug.Print ".Description = " & dsoDatabaseRole.Description
 Debug.Print ".Name = " & dsoDatabaseRole.Name

Analysis Services Programming (SQL Server 2000)

Statement (Command Interface)
Statement (Command Interface)

 New Information - SQL Server 2000 SP3.

The Statement property of the Command interface contains the text of the command statement.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

String

Access

Read/write

Remarks

For more information about types of command statements, see CommandType.

The names used in statements that define actions, calculated members, named sets, and calculated cells must be unique within a
cube. For example, if you create an action named Test, you cannot create a calculated cells definition named Test. For more
information about naming conventions for Decision Support Objects, see Considerations For Naming Decision Support Objects.

Security Note Commands can be the source of security vulnerabilities; they can invoke system or user-defined functions
without user knowledge or intervention and may contain security credentials stored in plain text. Before implementing
commands, review the command text for security issues.

Examples

A. Creating a Command Object (cmdCreateAction)

Use the following code to create a cmdCreateAction command object:

CommandObject.Statement = "CREATE ACTION Sales.ShowCustDetails " & _
 "FOR [Customer] MEMBERS As " & _
 "'IIf(Customers.CurrentMember.Properties(""Existing Customer"")" & _
 " = ""True""," & _
 """http://MyServer/CustomerDetails.ASP?CustID="" + " & _
 "Customers.CurrentMember.ID,'') " & _
 "TYPE = URL " & _
 "APPLICATION = 'IE' " & _
 "DESCRIPTION = 'Launch the customer details page for " & _
 "this specific customer.'"

You can use CURRENTCUBE in command statements to refer to the cube that contains the command object. This syntax makes it
easier to copy command objects between cubes. For example, you can reconstruct the previous statement as:

CommandObject.Statement = "CREATE ACTION CURRENTCUBE.ShowCustDetails " & _
 "FOR [Customer] MEMBERS As " & _
 "'IIf(Customers.CurrentMember.Properties(""Existing Customer"")" & _
 " = ""True""," & _
 """http://MyServer/CustomerDetails.ASP?CustID="" + " & _
 "Customers.CurrentMember.ID,'') " & _
 "TYPE = URL " & _
 "APPLICATION = 'IE' " & _
 "DESCRIPTION = 'Open the customer details page for " & _
 "this specific customer.'"

Analysis Services Programming (SQL Server 2000)

SubClassType (Command Interface)
SubClassType (Command Interface)

The SubClassType property of the Command interface contains an enumeration constant that identifies the subclass type of the
object. Objects that implement the Command interface always have a SubClassType of sbclsRegular.

Applies To

clsCubeCommand

clsDatabaseCommand

clsRoleCommand

Data Type

SubClassTypes

Access

Read-only

See Also

Command Interface

CREATE MEMBER Statement

CREATE SET Statement

MDX (Administrative Tools)

Analysis Services Programming (SQL Server 2000)

Dimension Interface
Dimension Interface

In Decision Support Objects (DSO), dimensions are represented by objects that contain collections of other objects that, in turn,
represent levels in the dimensions. For example, a Time dimension often contains the levels Year, Quarter, Month, and Day. The
levels of a cube are defined by columns in a dimension table that is stored in the data warehouse database. When a dimension
object is processed, the Analysis server constructs the dimension and its levels and then populates them with members from the
dimension table. For more information about DSO, see Introducing Decision Support Objects.

All DSO dimension objects implement the Dimension interface, and you manipulate these objects through this interface. The
ClassType property of the dimension object specifies the dimension's type. The ClassType value of a database dimension is
clsDatabaseDimension. The ClassType values of cube, partition, and aggregation dimensions (supported by the
CubeDimension, PartitionDimension, DbDimension, and AggregationDimension objects) are clsCubeDimension,
clsPartitionDimension, and clsAggregationDimension, respectively. The Dimension interface provides collections, methods,
and properties to manipulate these objects. Dimensions reside in the Dimensions collection of the MDStore object that
represents a database, cube, partition, or aggregation.

To use dimensions, create them in the Dimensions collection of a database object. Then assign some or all of the dimensions to a
cube. The dimensions assigned to a cube automatically apply to its partitions and aggregations, and you can explicitly associate
them with virtual cubes that use the cube.

This topic discusses different types, varieties, and uses of dimensions and provides information about how to work with them in
DSO. For more information about dimensions, see Dimensions.

Types of DSO Dimensions

The following table describes each type of dimension and the context in which it is used.

Dimension type Description
Database dimension The dimensions are contained in a database
Cube dimension The dimensions are contained in a cube
Partition dimension The dimensions are used in a partition
Aggregation dimension The dimensions are contained in an aggregation

Database dimensions define the structure of the dimension and the data source where the dimension tables exist.

Any of the database dimensions can be used in a cube, if a join can be made between the dimension table and the fact table of the
cube. Cube dimensions have the same name as their corresponding database dimensions. When an existing database dimension
is added to the Dimensions collection of a cube, DSO automatically defines and creates all of the cube level objects for the cube
dimension. A cube dimension inherits its properties from the corresponding database dimension; some of those properties can be
customized in the cube. For example, you can specify how a cube dimension is used in the design of aggregations by setting the
AggregationUsage property of the dimension.

The dimensions of a partition relate to the dimensions of its parent cube in the same way that cube dimensions relate to database
dimensions. Each partition dimension has a corresponding cube dimension and has the same number of levels as the cube
dimension.

Aggregation dimensions are the dimensions used within an aggregation. They are different from their corresponding partition
dimensions in that they usually have fewer levels. This is because the aggregation dimensions represent the level of granularity of
the data in that aggregation.

For example, the following illustration represents two aggregations. The first summarizes sales by year for store cities and
product brand. The Time aggregation dimension in this case has only one level: Year. The Store and Product dimensions have all
of their respective levels. The second aggregation summarizes sales by Quarter and Region for products by category. The Time
aggregation dimension has two levels: Year and Quarter. The Store and Products dimensions, on the other hand, contain only the
first levels of each dimension: Region and Category.

Shared and Private Dimensions

DSO dimensions can be either shared or private. A shared dimension is one that can be used in multiple cubes, but a private
dimension can only be used in a single cube. For more information about shared and private dimensions, see Shared and Private
Dimensions.

Private dimensions use a special naming convention to identify the cubes to which they belong. In all other aspects, private
dimensions are identical to shared dimensions. The name of a private dimension is constructed by using the cube name, followed
by the caret character (^), followed by the dimension name. To create a private dimension in DSO, name the dimension according
to this convention. This naming convention allows private dimensions in different cubes to have the same name, and the cube
name prefix ensures uniqueness within the dimension collection of the database. For example, NorthWestSales^Stores represents
a private dimension of stores created for use in the NorthWestSales cube.

You can programmatically determine whether a dimension is shared or private by reading its IsShared property. DSO determines
the value of this property by examining the name of the dimension. All cubes, partitions, and aggregations that use the dimension
inherit its IsShared property.

Parent-Child Dimensions

Parent-child dimensions contain self-joining hierarchies. Because the level hierarchy is variable, rather than rigidly set, parent-
child dimensions are more flexible than regular dimensions. For more information about parent-child dimensions, see Parent-
Child Dimensions.

In DSO, a parent-child dimension has a maximum of two levels: the (All) level, which is optional, and a second level that acts as a
template for building other levels.

You can create a parent-child dimension by setting the SubClassType property to sbclsParentChild. When you define a parent-
child dimension, the system uses source table data to build a dimension that has a level hierarchy of variable depth.

Virtual Dimensions

Virtual dimensions are based on the columns or member properties of existing regular dimensions, and they can provide
additional information in cubes that use these regular dimensions. For more information about virtual dimensions, see Virtual
Dimensions.

To build a virtual dimension using DSO, create a regular dimension and set its IsVirtual property to True. Next, set the
DependsOnDimension property to refer to the underlying source dimension. Finally, create levels for the virtual dimension and
configure the MemberKeyColumn property of each virtual level to point to a source level or member property in the source
dimension.

Although it is possible to create a shared virtual dimension that is based on a private dimension, this virtual dimension will work
only in the cube that contains the private dimension.

Note In Microsoft® SQL Server™ 7.0 OLAP Services, virtual dimensions were limited to having an (All) level and a second level
whose SubClassType was set to sbclsVirtual. The dimension itself had a SubClassType of sbclsRegular. This convention is still
supported for compatibility, but the new method of setting the dimension's IsVirtual property to True should be used, because it
is more flexible and efficient.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Examples

A. Adding a Parent-Child Dimension to a Database

The following example shows the addition of a parent-child dimension to a database:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension
 Dim dsoLevel As DSO.Level

 ' Connect to local Analysis server
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Add a new dimension and set the data source
 Set dsoDim = dsoDB.Dimensions.AddNew("ParentChild Dimension", _
 sbclsParentChild)

 Set dsoDim.DataSource = dsoDB.DataSources("FoodMart")

 ' Add a new level to the new dimension.
 Set dsoLevel = dsoDim.Levels.AddNew("Template Level", _
 sbclsParentChild)

 ' Set the member key, parent key, and member name
 ' columns for the new level.
 With dsoLevel
 .MemberKeyColumn = """Account"".""account_id"""
 .ParentKeyColumn = """Account"".""account_parent"""
 .MemberNameColumn = """Account"".""account_description"""
 End With

 ' Update the dimension.
 dsoDim.Update

Analysis Services Programming (SQL Server 2000)

Collections, Dimension Interface
Collections, Dimension Interface

The Dimension interface implements the following collections.

Collection Description
CustomProperties The collection of user-defined properties
Levels The set of level objects associated with a dimension object

Access Cross-Reference

The following table shows whether the collection is read/write (R/W) or read-only (R) for different objects.

 Database
dimension

Cube
dimension

Partition
dimension

Aggregation
dimension

CustomProperties R/W R/W R/W R/W
Levels R/W R R R

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

CustomProperties (Dimension Interface)
CustomProperties (Dimension Interface)

The CustomProperties collection allows you to assign unique properties to objects that implement the Dimension interface.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Access

Read/write

Remarks

The CustomProperties collection contains properties that accept user-defined values that are stored in the repository and can be
used as needed. For example, an application can use this collection to store user interface parameters that are specific to this
dimension (and might change) rather than storing them in the registry.

Example

The following example associates a custom property called Icon with a Geography dimension and gives it a string value of
"GeographyIcon":

' Assume the existence of a Geography dimension object (dsoGeographyDim)
' of ClassType clsDimension.
' Add a custom property to the dimension.
 Dim dsoProp As DSO.Property
 Set dsoProp = dsoGeographyDim.CustomProperties.Add("GeographyIcon", "Icon", vbString)

' Retrieve custom property values.
 Dim dsoProp2 As DSO.Property
 Set dsoProp2 = dsoDim.CustomProperties("Icon")
 Debug.Print dsoProp2.Name, dsoProp2.Value

See Also

CustomProperties

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Levels (Dimension Interface)
Levels (Dimension Interface)

The Levels collection of the Dimension interface defines the set of level objects associated with a dimension object.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
clsAggregationDimension R

See Also

ClassType

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Methods, Dimension Interface
Methods, Dimension Interface

The Dimension interface supports the following methods.

Method Description
Clone Copies an existing object to a target object of the same class type
LockObject Locks an object to prevent multiple users from concurrently

changing the object
Process Processes a dimension object
UnlockObject Unlocks a previously locked dimension object
Update Updates the definition of a dimension object in the meta data

repository

For the Dimension interface, these methods apply only to objects of ClassType clsDatabaseDimension.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Clone (Dimension Interface)
Clone (Dimension Interface)

The Clone method of the Dimension interface copies the properties and levels of an existing object to a target object of the same
class type.

Applies To

clsDatabaseDimension

Syntax

object.Clone(ByVal TargetObject As Dimension, [ByVal Options As CloneOptions = cloneMajorChildren])

object

The Dimension object whose properties and levels are to be copied.

TargetObject

A previously created object of the same class type.

Options

The options to tell the method to what extent the source object should be duplicated. If no value is specified, the
cloneMajorChildren option is used.

Remarks

The following values for Options are valid for cloning a dimension.

Clone option Description
cloneObjectProperties The values of the properties of the source dimension are

copied to the target dimension
cloneMinorChildren The values of the properties and levels contained in the

source dimension are copied to the target dimension
cloneMajorChildren For dimension objects, this is the same as

cloneMinorChildren

Example

The following example copies the properties and levels of dimension DimA to dimension DimB:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDimA As DSO.Dimension
 Dim dsoDimB As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Create a new dimension, named DimA, to be used
 ' as a source dimension from which to clone.
 Set dsoDimA = dsoDB.Dimensions.AddNew("DimA")
 dsoDimA.Description = "First dimension"

 ' Create the target dimension, named DimB, and
 ' give it a different description.
 Set dsoDimB = dsoDB.Dimensions.AddNew("DimB")
 dsoDimB.Description = "Second dimension"

 ' Now, clone the DimA dimension into DimB.
 dsoDimA.Clone dsoDimB, cloneMajorChildren

 ' Print the description of the DimB dimension
 ' to the Debug window.
 Debug.Print dsoDimB.Description

Analysis Services Programming (SQL Server 2000)

LockObject (Dimension Interface)
LockObject (Dimension Interface)

The LockObject method of the Dimension interface locks an object to prevent multiple users from concurrently changing the
object.

Applies To

clsDatabaseDimension

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

The Dimension object to lock.

LockType

One of the enumerated constants of the OlapLockTypes enumeration. For more information, see OlapLockTypes.

LockDescription

A string containing the description of the lock, available to other applications attempting to obtain a lock.

Remarks

This table explains how each value that can be specified in LockType affects a lock made on a dimension object.

Lock type Description
OlapLockRead Applications can read the properties of the dimension

object from the repository but cannot make changes
until the lock is released (this includes the application
that created the lock). This lock does not affect
dependent objects of the dimension (data source
objects).

OlapLockWrite The application that created the lock can modify the
dimension object's properties and save them in the
repository using the Update method. Other applications
cannot read the properties of the object until the lock is
released.

OlapLockExtendedRead The properties of the dimension object and all of its
dependent objects can be read (but not changed or
processed) by other applications until the lock is
released. This lock is used to prevent processing of
dependent objects of a locked object (for example,
dimensions that are shared by multiple cubes).

OlapLockProcess This lock is similar to olapLockExtendedRead, except
the dimension object's Process method can be called by
the application that created the lock. Other applications
can read (but cannot change) the object's properties
while the lock is in effect.

Example

The following example locks the Product dimension of the FoodMart 2000 database, completely reprocesses it, and then unlocks
it so others can make changes:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Open the Product dimension.
 Set dsoDim = dsoDB.Dimensions("Product")

 ' Lock the dimension for processing.
 dsoDim.LockObject olapLockProcess, "Locked for processing."

 ' Completely reprocess the dimension.
 dsoDim.Process processFull

 ' Once complete, unlock the dimension.
 dsoDim.UnlockObject

 ' Clean up.
 Set dsoDim = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

Analysis Services Programming (SQL Server 2000)

Process (Dimension Interface)
Process (Dimension Interface)

The Process method of the Dimension interface creates and populates a dimension on the Analysis server.

Applies To

clsDatabaseDimension

Syntax

object.Process(ByVal Options As ProcessTypes)

object

The Dimension object to process.

Options

One of the valid ProcessTypes enumeration constants. For more information, see ProcessTypes.

Remarks

The following values for Options are valid for processing a dimension.

Process type Description
processDefault The default option. Setting this option causes the system to

default to the necessary processing option based on the
changes found in the data. In most cases, the system
refreshes the dimension object's data
(processRefreshData). However, if the structure of the
dimension has changed, or the dimension has not yet been
processed, the system fully processes the dimension
(processFull).

processFull Causes the dimension object to be fully processed or
rebuilt. The object's structure is changed if needed and its
data is refreshed (that is, discarded and repopulated). This
is the most complete type of processing supported. This
operation occurs inside a transaction, allowing users to
continue using current data while the transaction takes
place. After the transaction is committed, the new data is
available.

processRefreshData Causes the dimension object data to be refreshed (that is,
discarded and repopulated), but does not change the
object's structure. This operation occurs inside a
transaction, allowing users to continue using current data
while the transaction takes place. After the transaction is
committed, the new data is available.

Example

The following example locks the Product dimension of the FoodMart 2000 database, completely reprocesses it, and then unlocks
it so others can make changes:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Open the Product dimension.
 Set dsoDim = dsoDB.Dimensions("Product")

 ' Lock the dimension for processing.
 dsoDim.LockObject olapLockProcess, "Locked for processing."

 ' Completely reprocess the dimension.
 dsoDim.Process processFull

 ' Once complete, unlock the dimension.
 dsoDim.UnlockObject

 ' Clean up.
 Set dsoDim = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

Analysis Services Programming (SQL Server 2000)

UnlockObject (Dimension Interface)
UnlockObject (Dimension Interface)

The UnlockObject method of the Dimension interface releases a lock on a dimension object previously established by the
LockObject method.

Applies To

clsDatabaseDimension

Syntax

object.UnlockObject

object

The Dimension object to unlock.

Remarks

Calling the UnlockObject method without first calling the LockObject method raises an error.

Example

The following example locks the Product dimension of the FoodMart 2000 database, completely reprocesses it, and then unlocks
it so others make changes:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Open the Product dimension.
 Set dsoDim = dsoDB.Dimensions("Product")

 ' Lock the dimension for processing.
 dsoDim.LockObject olapLockProcess, "Locked for processing."

 ' Completely reprocess the dimension.
 dsoDim.Process processFull

 ' Once complete, unlock the dimension.
 dsoDim.UnlockObject

 ' Clean up.
 Set dsoDim = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

Analysis Services Programming (SQL Server 2000)

Update (Dimension Interface)
Update (Dimension Interface)

The Update method of the Dimension interface updates the definition of a dimension object in the meta data repository.

Applies To

clsDatabaseDimension

Syntax

object.Update

object

The Dimension object to update.

Remarks

Objects of ClassType clsAggregationDimension, clsCubeDimension, and clsPartitionDimension do not implement the
Update method. They are automatically updated when the Update method of the parent MDStore object is called.

Example

The following example changes the Description and LastUpdated properties for the Product dimension of the FoodMart 2000
database and updates the dimension on the Analysis server:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Open the Product dimension.
 Set dsoDim = dsoDB.Dimensions("Product")

 ' Change the description and update date
 ' of the dimension.
 dsoDim.Description = "Product dimension"
 dsoDim.LastUpdated = Now

 ' Update the dimension.
 dsoDim.Update

 ' Clean up.
 Set dsoDim = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

Analysis Services Programming (SQL Server 2000)

Properties, Dimension Interface
Properties, Dimension Interface

The Dimension interface supports the following properties.

Property Description
AggregationUsage Specifies how aggregations are to be designed for a

dimension.
AllowSiblingsWithSameName Indicates whether two or more children of the same

parent member can have the same name.
AreMemberKeysUnique Indicates whether member keys are unique for all

members in the dimension.
AreMemberNamesUnique Indicates whether member names are unique for all

members in the dimension.
ClassType Returns an enumeration constant that identifies the

specific object type.
DataMemberCaption
Template

Contains a template string that is used to generate
captions for system-generated data members.

DataSource The data source object of a dimension object.
DefaultMember Defines the default member of the dimension.
DependsOnDimension Names a dimension to which the current dimension is

related.
Description The description of a dimension.
DimensionType Returns an enumeration constant identifying the

specific type of dimension.
EnableRealTimeUpdates Indicates whether or not the dimension supports real-

time updates.
FromClause The SQL FROM clause for a dimension.
IsChanging Indicates whether members and/or levels are expected

to change on a regular basis.
IsReadWrite Indicates whether dimension writebacks are available

to client applications that have appropriate
permissions.

IsShared Indicates whether a dimension can be shared among
cubes.

IsTemporary Indicates whether an object is temporary.
IsValid Indicates whether a dimension structure is valid.
IsVirtual Indicates whether a dimension is virtual.
IsVisible Indicates whether the dimension is visible to clients.
JoinClause The SQL JOIN clause for a dimension.
LastProcessed The date and time when a dimension was last

processed.
LastUpdated A user-specified date. It is not used by Microsoft® SQL

Server™ 2000 Analysis Services.
MembersWithData Determines which members in a dimension can have

associated data in the fact table.
Name The dimension name.
OrdinalPosition Returns the ordinal position of the dimension object in

the Dimensions collection of its parent object.
Parent Returns a reference to the parent MDStore object.
SourceTable Returns the name of the source table for the

dimension.
SourceTableAlias Returns the alias of the source table for the dimension.
SourceTableFilter Restricts members included in a dimension.

State Returns an enumeration constant that indicates the
difference between the dimension object referenced by
the client application and the corresponding
dimension on the Analysis server.

StorageMode Determines the method of storing dimension contents.
SubClassType Returns an enumeration constant that identifies the

subclass type of the object.

Access Cross-Reference

The following table shows whether the property is read/write (R/W), read-only (R), or not applicable (n/a) for different objects.

Property
clsDatabase
dimension

clsCube
dimension

clsPartition
dimension

clsAggregation
dimension

AggregationUsage n/a R/W R n/a
AllowSiblingsWithSameName R/W R R R
AreMemberKeysUnique R/W R R R
AreMemberNamesUnique R/W R R R
ClassType R R R R
DataMemberCaptionTemplate R/W* R R R
DataSource R/W R R R
DefaultMember R/W R R R
DependsOnDimension R/W R R R
Description R/W R R/W n/a
DimensionType R/W R R R
EnableRealTimeUpdates R/W R R R
FromClause R/W R R R/W
IsChanging R/W R R R
IsReadWrite R/W R R R
IsShared R R R R
IsTemporary R R R R
IsValid R R R R
IsVirtual R/W R R R
IsVisible n/a R/W R R
JoinClause R/W R R R/W
LastProcessed** R R R R
LastUpdated R/W R R R
MembersWithData R/W* R R R
Name R/W (R after

the object
has been
named)

R/W (R
after the
object has
been
named)

R/W (R after
the object
has been
named)

R/W (R after the
object has been
named)

OrdinalPosition R R R R
Parent R R R R
SourceTable R R R n/a
SourceTableAlias R R R n/a
SourceTableFilter R/W R R R
State R n/a n/a R
StorageMode R/W R R R
SubClassType R R R R

* This property is read/write only for objects of SubClassType sbclsParentChild.
** The LastProcessed property of objects that implement the Dimension interface are not initialized until the dimension is
processed for the first time. An error is raised if LastProcessed is accessed when the State property of the dimension object

equals olapStateNeverProcessed.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

AggregationUsage (Dimension Interface)
AggregationUsage (Dimension Interface)

The AggregationUsage property of the Dimension interface specifies how aggregations are to be designed for the dimension
levels.

Applies To

clsCubeDimension

clsPartitionDimension

Data Type

DimensionAggUsageTypes

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsCubeDimension R/W
ClsPartitionDimension R

Remarks

When aggregations are desig

ned for a dimension, the value of this property determines which levels of a dimension may have aggregations created for them.
The following table describes how the value of this property affects the consideration of levels for aggregation.

Aggregation usage Description
dimAggUsageCustom Aggregations are created only for those levels

whose EnableAggregations property is set to
True.

dimAggUsageDetailsOnly Aggregations are created only for the lowest
level in the dimension.

dimAggUsageStandard All levels are considered by the aggregation
design algorithm.

dimAggUsageTopOnly Aggregations are created only for the top (All)
level.

dimAggUsageTopAndDetailsOnly Aggregations are created only for the top (All)
and lowest levels in the dimension.

Note For virtual dimensions, AggregationUsage is read-only and automatically set to dimAggUsageStandard. An error is
raised if you attempt to set this property on a virtual dimension.

Example

The following example changes the aggregation behavior of the Product dimension for the Sales cube in the FoodMart 2000
database to create aggregations only for the topmost level, and then it updates and reprocesses the Sales cube:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open FoodMart 2000 database.

 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Open the Sales cube.
 Set dsoCube = dsoDB.MDStores("Sales")

 ' Open the Product dimension in the Sales cube.
 Set dsoDim = dsoCube.Dimensions("Product")

 ' Set the dimension to create aggregations only
 ' for the topmost (or All) level.
 dsoDim.AggregationUsage = dimAggUsageTopOnly

 ' Update the cube.
 dsoCube.Update

 ' Process the cube.
 dsoCube.Process processFull

 ' Clean up.
 Set dsoDim = Nothing
 Set dsoCube = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

Analysis Services Programming (SQL Server 2000)

AllowSiblingsWithSameName (Dimension Interface)
AllowSiblingsWithSameName (Dimension Interface)

The AllowSiblingsWithSameName property of the Dimension interface determines whether children of a single member in a
hierarchy can have identical names.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

If this property is set to True, different members of a dimension can have identical names and positions. The members are
distinguished by their key values. For example, two John Smiths may live in Seattle. In this case, the members are siblings because
they are children of the same parent member, Seattle. If you set this property to True, the Analysis server disambiguates the
members using their key values rather than raising an error.

Example

The following example creates a dimension called Customers and sets its AllowSiblingsWithSameName property to True:

'Assume an object (dsoDimCust) of ClassType clsDatabase exists.
Dim dsoDimCust As DSO.Dimension
Set dsoDimCust = dsoDB.Dimensions.AddNew("Customer")
DsoDimCust.AllowSiblingsWithSameName = TRUE

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

AreMemberKeysUnique
AreMemberKeysUnique

The AreMemberKeysUnique property of the Dimension interface indicates whether member keys are unique throughout the
dimension and whether these members can be referred to by their keys.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

This property can be set to True only if the AreMemberKeysUnique property is set to True for all of the levels in the dimension.

This property can be used in two situations:

When you know that the position of a member (and that of the children of the member) may move within a dimension
hierarchy. You can make the method for generating unique names more consistent by using this property to determine
whether or not a member, name, or key is guaranteed to be unique within the dimension (or level).

When you need to improve server performance. Data can be more easily validated if you use this property to inform the
server that a dimension key is not unique within the dimension or level.

Example

' Assume the existence of a database dimension named dsoDim.
dsoDim.AreMemberKeysUnique = True

See Also

AreMemberNamesUnique

AreMemberKeysUnique

Dimension Interface

Analysis Services Programming (SQL Server 2000)

AreMemberNamesUnique (Dimension Interface)
AreMemberNamesUnique (Dimension Interface)

The AreMemberNamesUnique property of the Dimension interface determines whether member names are unique
throughout the dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

This property can be set to True only if the AreMemberNamesUnique property is set to True for all of the levels in the
dimension.

If AreMemberNamesUnique is set to False, each member name is assumed to be unique only among the siblings of that
member. In this case, the unique name of a member includes the names of its ancestors to ensure uniqueness throughout the
dimension. If AreMemberNamesUnique is set to True, each member name is assumed to be unique throughout the entire
dimension. In this case, the unique name of the member includes the dimension name and the member name.

Note Setting AreMemberNamesUnique to True is important in changing dimensions to preserve the identity of members in
calculated members on other persistent expressions. For example, if a product [Product 1] is moved from [Category A] to
[Category B], the old name [Products].[Category A].[Product 1] is no longer valid. However, if AreMemberNamesUnique is set
to True, the unique name remains [Products].[Product 1] and is valid before and after the change.

The following table provides examples for each setting of AreMemberNamesUnique.

AreMemberNamesUnique Member names
False [Product].[All Products].[Drink].[Beverages]

[Time].[1997].[Q1].[1/1/1997]
[Regions].[All Regions].[Asia]

True [Product].[Beverages]
[Time].[1/1/1997]
[Regions].[Asia]

Example

' Assume the existence of a database dimension named dsoDim.
dsoDim.AreMemberNamesUnique = True

See Also

AreMemberKeysUnique

AreMemberNamesUnique

Dimension Interface

Analysis Services Programming (SQL Server 2000)

ClassType (Dimension Interface)
ClassType (Dimension Interface)

The ClassType property of the Dimension interface contains an enumeration constant that identifies the specific class type.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

ClassTypes

For dimension objects, ClassType returns one of the following:

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Access

Read-only

Example

Use the following code to obtain the class type of a dimension object:

 Dim dsoDim As DSO.Dimension
 Dim objClassType As DSO.ClassTypes

 ' Insert code here for setting the dsoDim
 ' dimension object to a valid dimension.

 ' Get the ClassType property of the dimension.
 objClassType = dsoDimDimensionObject.ClassType

 ' Check the class type.
 Select Case objClassType
 Case clsDatabaseDimension
 ' Insert commands for a database dimension.
 Case clsCubeDimension
 ' Insert commands for a cube dimension or virtual cube dimension.
 Case clsPartitionDimension
 ' Insert commands for a partition dimension.
 Case clsAggregationDimension
 ' Insert commands for an aggregation dimension.
 Case Else
 ' Insert other commands.
 End Select

Analysis Services Programming (SQL Server 2000)

DataMemberCaptionTemplate (Dimension Interface)
DataMemberCaptionTemplate (Dimension Interface)

The DataMemberCaptionTemplate property of the Dimension interface contains a template string that is used to create
captions for system-generated data members.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

*Read/write for objects of ClassType clsDatabaseDimension with a SubClassType of sbclsParentChild or sbclsMining, read-
only for all others.

Remarks

This property is used in conjunction with the MembersWithData property. It is used to automatically generate captions for
system-generated data members.

The data member captions are generated by substituting the caption of the associated member for the asterisk (*) placeholder
character in the property string. The default data member caption template is "(* Data)".

For example, the template "(* Salary)" produces the caption "(John Doe Salary)" for the system-generated data member
associated with the member John Doe.

This property is ignored when the MembersWithData property is dataforLeafMembersOnly.

Example

The following code example constructs a template for data members that will supply captions similar to (Subtotals for John
Doe):

' Assume the existence of a database dimension named dsoDim.
dsoDim.DataMemberCaptionTemplate = "(Subtotals for *)"

See Also

Dimension Interface

MembersWithData

Analysis Services Programming (SQL Server 2000)

DataSource (Dimension Interface)
DataSource (Dimension Interface)

The DataSource property of the Dimension interface specifies the source of the data to be used by a dimension object.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

clsDataSource

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R**
ClsPartitionDimension R**
ClsAggregationDimension R

* Not implemented for virtual dimensions created in Microsoft® SQL Server™ 7.0 OLAP Services.
** Not implemented for virtual dimensions.

Example

Use the following code to add a data source to a database object:

'Assume an object (dsoDB) of ClassType clsDatabase exists.
'Add a new data source to database.
Dim dsoDS as DSO.DataSource
Set dsoDS = dsoDB.DataSources.AddNew("FoodMart 2000")

dsoDS.Name = "FoodMart"
dsoDS.ConnectionString = "Provider=MSDASQL.1;" &_
"Persist Security Info=False;" &_
"Data Source=FoodMart; " &_
"Connect Timeout=15"

'Update the database.
dsoDB.Update

Analysis Services Programming (SQL Server 2000)

DefaultMember (Dimension Interface)
DefaultMember (Dimension Interface)

The DefaultMember property of the Dimension interface defines the default member of the dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

DefaultMember is used to evaluate Multidimensional Expressions (MDX) expressions in which no context for the dimension is
available. This property contains an MDX expression that evaluates to a single member of the dimension to which the property
belongs. If blank, the Analysis server uses one of the members on the topmost level of the dimension as the default member. For
example, if you define Redmond as the default member of the Geography dimension, tuples such as (Sales, 1997) can be
evaluated as (Sales, 1997, Redmond).

Example

The following code example sets the default member to Food for the Product dimension in the FoodMart 2000 database:

' Assume the existence of a database dimension named dsoDim.
dsoDim.DefaultMember = "Food"

See Also

Dimension Interface

Custom Rules in Dimension Security

Set Default Member Dialog Box

Analysis Services Programming (SQL Server 2000)

DependsOnDimension (Dimension Interface)
DependsOnDimension (Dimension Interface)

The DependsOnDimension property of the Dimension interface contains the name of a dimension to which the current
dimension depends.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

The value of this property tells the Analysis server that the contents of the current dimension are dependent on the contents of
another dimension. The Analysis server uses this property to more accurately predict the size of cubes and better optimize the
design of aggregations.

Usually, a dimension is related to another dimension if the two represent different aspects of the same entity. For example, if the
Customers dimension contains ten customers and the Customer Gender dimension contains two genders, the cross product
contains only ten customer-gender combinations (no customer is measured once as male and once as female). In this case, the
Customer Gender dimension depends on the Customers dimension. In contrast, if there are five items in the Products dimension,
the cross product of Products and Customers contains a maximum of fifty customer-product combinations. In this case,
Customers and Products are independent dimensions.

The property has different implications for virtual dimensions (those with the IsVirtual property set to True). The
DependsOnDimension property for a virtual dimension contains the name of the underlying source dimension. All of the
member key columns in the virtual dimension must appear in the source dimension.

See Also

Dimension Interface

Dependent Dimensions

Virtual Dimensions

Analysis Services Programming (SQL Server 2000)

Description (Dimension Interface)
Description (Dimension Interface)

The Description property of the Dimension interface contains the description of a dimension object.

Applies To

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R

Remarks

The primary mechanism for identifying the data in a dimension is the Name property. The purpose of the Description property
is to provide additional descriptive information.

Example

Use the following code to set the description of a dimension object:

'Assume an object (dsoDim) of ClassType clsDatabaseDimension exists.
dsoDim.Description = "Total dollar sales"

See Also

Dimension Interface

Name

Analysis Services Programming (SQL Server 2000)

DimensionType (Dimension Interface)
DimensionType (Dimension Interface)

The DimensionType property of the Dimension interface contains an enumeration constant that identifies the specific type of
dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

DimensionTypes

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

The DimensionType property provides both the Analysis server and client applications with information about the contents of
the dimension. For example, a client application may benefit from knowing that a dimension is based upon geography, and
another on time. When accepting user inputs for these dimensions (say, in a filter statement), the client application can use a Map
control for the Geography dimension and a Calendar control for the Time dimension.

Example

Use the following code to set the DimensionType property of a dimension object:

'Assume an object (dsoDim) of ClassType clsDatabaseDimension exists.
dsoDim.DimensionType = dimRegular

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

EnableRealTimeUpdates (Dimension Interface)
EnableRealTimeUpdates (Dimension Interface)

The EnableRealTimeUpdates property of the Dimension interface indicates whether or not the object supports real-time
updates.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

To enable a clsDatabaseDimension object to support real-time updates for real-time cubes, the object must use a ROLAP
partition (the StorageMode property of the clsDatabaseDimension object must be storeasROLAP) and a Microsoft® SQL
Server™ 2000 data source.

See Also

Dimension Interface

Real-Time Cubes

Analysis Services Programming (SQL Server 2000)

FromClause (Dimension Interface)
FromClause (Dimension Interface)

The FromClause property of the Dimension interface contains the SQL FROM clause for the dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R/W

Example

A database contains the following tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

The following diagram illustrates the relationships of these tables.

Use the following code to create a dimension, assign a data source, and set the FromClause property:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoDS As DSO.DataSource
 Dim dsoDim As DSO.Dimension

 ' Connect to local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open TestDB database.
 Set dsoDB = dsoServer.MDStores("TestDB")

 ' Create a Product dimension for the database.
 Set dsoDim = dsoDB.Dimensions.AddNew("Products")

 ' Create a data source.
 Set dsoDS = dsoDB.DataSources.AddNew("FoodMart 2000")
 dsoDS.ConnectionString = "Provider=MSDASQL.1;" & _
 "Persist Security Info=False;" & _
 "Data Source=FoodMart;" & _
 "Connect Timeout=15"

 ' Assign the data source to the dimension.
 Set dsoDim.DataSource = dsoDS 'Set the dimension data source.
 dsoDim.FromClause = "product" 'Set the source dimension table.

 ' Update the database.
 dsoDB.Update

Analysis Services Programming (SQL Server 2000)

IsChanging (Dimension Interface)
IsChanging (Dimension Interface)

The IsChanging property of the Dimension interface indicates whether the members and/or levels of the dimension are
expected to change on a regular basis.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

* For more information about read/write access, see Remarks later in this topic.

Remarks

For all Dimension objects, the IsChanging property always returns a certain value depending on other property settings for the
object:

If the SubClassType property is sbclsLinked, the IsChanging property returns False.

If the SubClassType property is sbclsParentChild or sbclsMining, or if the object is a virtual dimension, or if the
StorageMode property is storeasROLAP, the IsChanging property returns True.

If the object is a virtual dimension created in Microsoft® SQL Server™ 7.0 OLAP Services, the property returns False.

For objects of ClassType clsDatabaseDimension, read/write access is further qualified by several other factors. The
IsChanging property for objects of ClassType clsDatabaseDimension is read-only if:

The SubClassType property is sbclsParentChild, sbclsMining, or sbclsLinked.

-or-

The StorageMode property is set to storeasROLAP.

-or-

The object of ClassType clsDatabaseDimension is a virtual dimension created using SQL Server 7.0 OLAP Services.

If IsChanging is set to True, levels other than the first and last of the dimension can be added, moved, deleted, or changed
without requiring that you fully reprocess all cubes that use the dimension. Also, members that belong to any level other than the
first or last level can be added, moved, deleted, or changed without reprocessing cubes that use the dimension.

For dimensions that are not virtual, the IsUnique property must be set to True for the last level of the dimension before the
IsChanging property can be set to True.

In addition to these requirements, the value of the IsChanging property can restrict the acceptable values for the
AggregationUsage property of a dimension that is not virtual. The following table shows the values that are valid for
dimensions with the IsChanging property set to True.

Aggregation usage Dimensions with
an (All) level

Dimensions without
an (All) level

DimAggUsageCustom n/a n/a
DimAggUsageDetailsOnly valid valid
DimAggUsageStandard valid valid
DimAggUsageTopOnly valid n/a
dimAggUsageTopAndDetailsOnly valid n/a
DimAggUsageStandard valid valid

For more information about processing requirements for ROLAP dimensions, see StorageMode.

See Also

Dimension Interface

StorageMode

Analysis Services Programming (SQL Server 2000)

IsReadWrite (Dimension Interface)
IsReadWrite (Dimension Interface)

The IsReadWrite property of the Dimension interface determines whether dimension writebacks are available to end users who
have been granted appropriate permissions.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

* Read/write for clsDatabaseDimension objects with a SubClassType of sbclsParentChild, read-only for all other
clsDatabaseDimension objects.

Remarks

Setting the IsReadWrite property to True allows end users who have been granted appropriate permissions to modify the
contents of a parent-child dimension. They can add or remove dimension levels, members, and member properties.

A write-enabled dimension cannot be added to a cube that contains a remote partition. An error occurs if you try to:

Add a write-enabled dimension to a cube with at least one remote partition.

Add a remote partition to a cube that contains at least one write-enabled dimension.

Set the IsReadWrite property to True for a dimension used by a cube that has a remote partition.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

IsShared (Dimension Interface)
IsShared (Dimension Interface)

The IsShared property of the Dimension interface indicates whether a dimension object can be shared among multiple
MDStore objects.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Read-only

Remarks

DSO sets the IsShared property by reading the Name property of the Dimension object. A dimension that is private to a cube
has a name of the form MyCube^MyDim, where MyCube is the cube that contains the dimension. A dimension object that can be
shared does not have the cube name as a prefix.

The value of the IsShared dimension of a database property is inherited by the associated cubes (and their partitions,
aggregations, and virtual cubes).

Example

Use the following code to determine whether a dimension object can be shared with other dimension objects:

'Assume an object (dsoDim) of ClassType clsDatabaseDimension exists.
Dim bShared As Boolean
bShared = dsoDim.IsShared
If bShared Then
 'Insert code for a shared dimension.
Else
 'Insert code for a private dimension.
End If

Analysis Services Programming (SQL Server 2000)

IsTemporary (Dimension Interface)
IsTemporary (Dimension Interface)

The IsTemporary property of the Dimension interface indicates whether an object is temporary. Temporary objects are local to
the session in which they are created, cannot be saved, and are not available to other users. To create a temporary dimension
object, preface the name with the tilde (~) character.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Read-only

Remarks

A temporary object is not stored in the repository and is not available to other users. Temporary objects persist only during the
session in which they are created, unless they are renamed or cloned to another object that has the same class type. Objects that
are subordinate to a temporary object, such as levels for a dimension, internally inherit the IsTemporary setting of the parent
object.

Note Only temporary objects can be renamed by changing the Name property. Removing the tilde character from the name of a
temporary object means that it is no longer temporary and prevents any subsequent renaming of the object. Also, executing the
Update method of a temporary object has no effect. The object is not saved to the repository until it is renamed without the tilde
prefix.

Example

Use the following code to create a temporary dimension and then make it permanent:

 ' Assume an object (dsoCube) of ClassType clsCube exists.
 Dim tmpDim As DSO.Dimension
 ' Create a temporary dimension, using the tilde character in
 ' the dimension name.
 Set tmpDim = dsoCube.Dimensions.AddNew("~MyDim")

 ' Add levels, add member properties, process, and so on.

 ' If you want to save the dimension permanently,
 ' drop the tilde prefix.
 tmpDim.Name = "MyDim"
 ' Update the dimension.
 tmpCube.Update

Analysis Services Programming (SQL Server 2000)

IsValid (Dimension Interface)
IsValid (Dimension Interface)

The IsValid property of the Dimension interface indicates whether the structure of a dimension object is valid. A structure is
valid if it is fully and correctly defined. For example, a dimension object whose data source has not been defined is not valid.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Read-only

Remarks

Depending on the value of the ClassType property of the object, the IsValid property checks different structure elements to
confirm validity, as described in the following table.

Class type Checks
ClsDatabaseDimension The Name and Parent properties; the database
ClsCubeDimension The Name and Parent properties; the source cube;

the dimension and levels
ClsPartitionDimension The Name and Parent properties
ClsAggregationDimension The Name and Parent properties; the IsValid

property of the parent object of ClassType
clsPartitionDimension

Example

Use the following code to determine whether the structure of a dimension object is valid:

'Assume an object (dsoDim) of ClassType clsDimension exists.
Dim bValid As Boolean
bValid = dsoDim.IsValid
If bValid Then
 'Insert code to process a valid dimension.
Else
 'Something is not valid - handle errors.
End If

Analysis Services Programming (SQL Server 2000)

IsVirtual (Dimension Interface)
IsVirtual (Dimension Interface)

The IsVirtual property of the Dimension interface indicates whether the dimension is virtual.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

A virtual dimension is based upon the contents of another dimension. The DependsOnDimension property contains the name
of source dimension of the virtual dimension.

For objects of ClassType clsDatabaseDimension, the IsVirtual property cannot be set to True if the SubClassType is
sbclsParentChild or sbclsMining, or if the IsVirtual property is set to True for any level of the dimension.

See Also

DependsOnDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

IsVisible (Dimension Interface)
IsVisible (Dimension Interface)

The IsVisible property of the Dimension interface determines whether the dimension is visible to client applications. Calculated
members can still refer to the dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsPartitionDimension

Data Type

Boolean

The default value is True.

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsCubeDimension R/W
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

This property is used to hide a dimension from the client application. For example, you might decide that it is useful to include a
gender virtual dimension in a cube but hide the customer source dimension on which it is based.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

JoinClause (Dimension Interface)
JoinClause (Dimension Interface)

The JoinClause property of the Dimension interface contains the SQL JOIN clause for the dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R/W

* Read-only for objects of ClassType clsDatabaseDimension that represent a virtual dimension created in Microsoft® SQL
Server™ 7.0 OLAP Services.

Remarks

For objects of ClassType clsDatabaseDimension, if it represents a virtual dimension created in SQL Server 7.0 OLAP Services,
the JoinClause property returns an empty string.

Example

A database contains the following tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

The following diagram illustrates the relationships of these tables.

Use the following code to return the JoinClause of the dimension object:

'Assume an object (dsoDim) of ClassType clsDimension exists
'and is associated with the Product dimension.
Dim strJoinClause As String
strJoinClause = dsoDim.JoinClause

'The immediate window displays the following:
'"product"."SKU"="product_class"."SKU"
Debug.Print " Join Clause: " & strJoinClause

Analysis Services Programming (SQL Server 2000)

LastProcessed (Dimension Interface)
LastProcessed (Dimension Interface)

The LastProcessed property of the Dimension interface contains the date and time when a dimension was last processed.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Date

Access

Read-only

Remarks

If the value of the State property is olapStateNeverProcessed, the LastProcessed property for an object is undefined, and it
raises an error.

Example

Use the following code to determine when a dimension object was last processed:

'Assume an object (dsoDim) of ClassType clsDimension exists.
If dsoDim.State <> olapStateNeverProcessed Then
 If dsoDim.LastProcessed < Date Then
 'Insert code to process the dimension.
 End If
End If

Analysis Services Programming (SQL Server 2000)

LastUpdated (Dimension Interface)
LastUpdated (Dimension Interface)

The LastUpdated property of the Dimension interface is not used by Microsoft® SQL Server™ 2000 Analysis Services. You can
set this to any date/time value you want. For example, you can use it to indicate when the source data was last changed.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Date

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

Remarks

The LastUpdated property is not automatically set by any Decision Support Objects (DSO) method. It is provided as a means for
client applications to indicate a date or time that can assist in validating information. For example, a date of 12/31/96 may mean
that the information stored in a cube is not valid after December of 1996.

Example

Use the following code to update an out-of-date dimension:

'Assume an object (dsoDim) of ClassType clsDatabaseDimension exists.
If dsoDim.LastUpdated < date Then
 'Insert ode to update dimension.
End If

See Also

Dimension Interface

LastProcessed

Analysis Services Programming (SQL Server 2000)

MembersWithData (Dimension Interface)
MembersWithData (Dimension Interface)

The MembersWithData property of the Dimension interface determines which members in a dimension can have associated
data in the fact table.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

MembersWithDataValues

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

* Read/write for objects of ClassType clsDatabaseDimension with a SubClassType of sbclsParentChild or sbclsMining,
read-only for all other objects.

Remarks

When a nonleaf member has associated data in the fact table, a processing error occurs if this property is equal to
dataforLeafMembersOnly. Otherwise, that nonleaf data is associated with a system-generated leaf member. Depending on the
property setting, this system-generated data member may or may not be visible on query axes and in schema rowsets.

By default, the data for nonleaf members is aggregated with the values of the regular children of that member. This behavior can
be overridden by defining a custom rollup function for the member (or the entire level). The system-generated data member is
always available through a Multidimensional Expressions (MDX) statement by way of the <Member>.DataMember syntax. (This
syntax returns the original member if that member is already a leaf.)

Consider the example of a cube based on human resources data. If a parent-child dimension contains all of the employees of an
organization, a problem will exist in tracking the salaries for people at higher levels of the organization's hierarchy. Their salaries
will be an aggregate of the salaries of the people who report to them (that is, the value of their member will be the aggregate of
all the children of that member). By setting the value of this property to DataForNonLeafMembersHidden, you can build a cube
in which nonleaf members of the dimension will also have data.

Using this method may present a problem, however, because the numbers for nonleaf nodes no longer add up as might be
expected. You can solve the problem by setting this property to DataForNonLeafMembersVisible. In this scenario, the
members at each level contain the correct numbers for the aggregation, but the data for that individual member is available
under the DataMember property.

See Also

Dimension Interface

DataMemberCaptionTemplate

Analysis Services Programming (SQL Server 2000)

Name (Dimension Interface)
Name (Dimension Interface)

The Name property of the Dimension interface contains the name of a dimension object.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Read/write (read-only after the object has been named)

Remarks

The primary mechanism for identifying the data in a dimension is the Name property. The purpose of the Description property
is to provide additional descriptive information.

Example

Use the following code to print the names of the dimensions in a database:

'Assume an object (dsoDB) of ClassType clsDatabase exists.
Dim dsoDim As DSO.Dimension
Dim dimCounter As Integer
For dimCounter = 1 To dsoDB.Dimensions.Count
 Set dsoDim = dsoDB.Dimensions(dimCounter)
 Debug.Print dsoDim.Name
Next dimCounter

Analysis Services Programming (SQL Server 2000)

OrdinalPosition (Dimension Interface)
OrdinalPosition (Dimension Interface)

The OrdinalPosition property of the Dimension interface contains the ordinal position of the dimension object within the
Dimensions collection of its parent object.

Note The ordinal position is 1 for all dimension objects in the collection of dimensions for a database. The position of a
dimension within the collection is significant only when it is used in a cube, partition, or aggregation.

The OrdinalPosition property for dimensions is different from the OrdinalPosition property for levels. Dimensions are ordered
by the time sequence in which you add them to their parent object. The ordinal position of levels determines the hierarchy of the
dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

Integer

Access

Read-only

Example

Use the following code to identify the first dimension in the Dimensions collection:

'Assume an object (dsoDim) of ClassType clsCubeDimension exists.
If dsoDim.OrdinalPosition = 1 Then
 'Insert code to handle the first dimension in the cube.
Else
 'Insert code to handle other dimensions.
End If

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Parent (Dimension Interface)
Parent (Dimension Interface)

The Parent property of the Dimension interface contains a reference to the parent MDStore object.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

MDStore

Access

Read-only

Remarks

The value of the ClassType property of the parent object depends on the value of the ClassType property of the object.

Dimension object ClassType Parent object ClassType
ClsDatabaseDimension clsDatabase
ClsCubeDimension clsCube
ClsPartitionDimension clsPartition
ClsAggregationDimension clsAggregation

Example

Use the following code to obtain the parent of a dimension object:

'Assume an object (dsoDim) of ClassType clsDimension exists.
Dim objClassType As ClassTypes
objClassType = dsoDim.Parent.ClassType
Select Case objClassType
 Case clsDatabase
 'Insert code for the database parent object.
 Case clsCube
 'Insert code for the cube/virtual cube parent object.
 Case clsPartiton
 'Insert code for the partition parent object.
 Case clsAggregation
 'Insert code for the aggregation parent object.
End Select

Analysis Services Programming (SQL Server 2000)

SourceTable (Dimension Interface)
SourceTable (Dimension Interface)

The SourceTable property of the Dimension interface contains the name of a dimension object's primary source table.

Applies To

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Read-only

Remarks

This property returns the name of the source table associated with the lowest level in the dimension. For example, if your cube
has a dimension called Product, and the dimension has levels called ProductCategory, ProductSubCategory, and ProductName,
with ordinal positions 1, 2, and 3, respectively, the SourceTable property for the Product dimension returns the name of the
source table associated with level ProductName.

Example

Use the following code to obtain the name of the source table associated with level ProductName in dimension Product:

'Assume an object (dsoDim) of ClassType clsDimension exists.
If dsoDim.SourceTable = "Product" Then
 'Insert code to handle the dimension.
End If

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

SourceTableAlias (Dimension Interface)
SourceTableAlias (Dimension Interface)

The SourceTableAlias property of the Dimension interface contains the alias of the source table for the dimension.

Applies To

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

Data Type

String

Access

Read-only

Remarks

If the source table has no alias, the contents of this property are identical to the SourceTable property.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

SourceTableFilter (Dimension Interface)
SourceTableFilter (Dimension Interface)

The SourceTableFilter property of the Dimension interface restricts the members included in a dimension.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

* Read-only for virtual dimensions.

Remarks

Use this property to filter dimension members. For example, suppose you want to build a sales cube that only contains customer
information from the state of California. You can set this property equal to the following SQL expression to solve this problem:

"Customer"."State" = 'California'

Note The expression must be entered in terms of the SQL dialect used on the source server, not Multidimensional Expressions
(MDX). Thus "Customer"."State" refers to the State column of the Customer table in a Microsoft® SQL Server™ 2000 database.

The SourceTableFilter property contains an SQL expression such as those found in SQL WHERE clauses. That is, it must contain
an SQL expression that evaluates to either True or False.

For virtual dimensions, this property is always read-only and empty.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

State (Dimension Interface)
State (Dimension Interface)

The State property of the Dimension interface contains an enumeration constant that indicates the difference between the
dimension object referenced by the client application and the corresponding dimension on the Analysis server.

Applies To

clsDatabaseDimension

Data Type

OlapStateTypes

Access

Read-only

Remarks

The State property indicates the current status of an object of ClassType clsDimension. It is also used to determine whether the
dimension needs to be processed. The following table lists the possible values for the State property.

State Description
OlapStateNeverProcessed The database dimension has never been

processed.
olapStateStructureChanged The structure of the database dimension

has changed.
olapStateMemberPropertiesChanged The member properties have changed.
olapStateSourceMappingChanged The source mappings for the database

dimension have changed.
OlapStateCurrent The database dimension has been

processed and is current.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

StorageMode (Dimension Interface)
StorageMode (Dimension Interface)

The StorageMode property of the Dimension interface determines how the contents of a dimension are stored.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

StorageModeValues

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseDimension R/W*
ClsCubeDimension R
ClsPartitionDimension R
ClsAggregationDimension R

* Read-only for virtual dimensions and objects with a SubClassType of sbclsLinked, sbclsMining, or sbclsParentChild.

Remarks

If the StorageMode property is set to storeasMOLAP, the contents of the dimension are processed and stored on the Analysis
server. If StorageMode is set to storeasROLAP, the dimension contents are not read during processing; they are left in the
source relational database and retrieved as required. ROLAP storage mode provides for improved scalability of dimensions at the
expense of slower query performance.

The StorageMode property uses one of the constants, defined in the StorageModeValues enumeration, shown in the following
table.

Storage mode Result
storeasMOLAP Dimension members are read during processing and are

stored in the Analysis server.
storeasROLAP Dimension members are not read during processing and

are left in the relational data source.

Before the StorageMode property for a dimension can be set to storeasROLAP, the AreMemberKeysUnique property must be
set to True for the last level in the dimension.

When the StorageMode property is set to storeasROLAP, the value of the IsChanging property for the dimension automatically
becomes read-only and True.

Caution Any changes to the relational source table of a ROLAP dimension must be followed by an immediate reprocessing of
the dimension. Failure to do so may result in inconsistent results to queries of the cubes that use the dimension. To ensure correct
processing of both the source table and the dimension, use nested transactions to link the two changes together. Because an
incremental update is all that is necessary, use the processRefreshData option with the Process method to update the
dimension.

To set the StorageMode property to storeasROLAP, the Grouping property for all levels in the dimension must be set to None.
Member groups are not supported for ROLAP dimensions.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

SubClassType (Dimension Interface)
SubClassType (Dimension Interface)

The SubClassType property of the Dimension interface contains an enumeration constant that identifies the subclass type of the
object.

Applies To

clsAggregationDimension

clsCubeDimension

clsDatabaseDimension

clsPartitionDimension

Data Type

SubClassTypes

Access

Read-only

Remarks

For objects of ClassType clsDimension, SubClassType can be sbclsRegular or sbclsParentChild.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Level Interface
Level Interface

Levels describe the hierarchy within a dimension from the highest (most precalculated) to the lowest (most detailed) levels of
data.

The following table shows an example of level positions of a time dimension in which the most detailed (day) values are included
in the next level (week), which are, in turn, included in the next level (quarter), and so on. If the Year level has 4 members, 1994
through 1997, then the Quarter level has 4 members for each year, and the Week level has 52 members for each year.

Level Position in hierarchy
Year 1
Quarter 2
Week 3
Day 4

In Decision Support Objects (DSO), objects that implement the Level interface have one of the following ClassType property
values.

ClassType Description
clsAggregationLevel The levels contained within an aggregation

dimension objects levels collection
clsCubeLevel The levels of all dimensions assigned to a cube
clsDatabaseLevel The levels of all dimensions within a database
clsPartitionLevel The levels of all of the dimensions contained

within a partition

Additionally, the SubClassType property for level objects can have the following values.

Subclass type Description
sbclsRegular A regular level
sbclsParentChild A parent-child level

The Level interface provides a number of properties to manipulate these objects. For more information about levels and other
objects, see Introducing Decision Support Objects.

Differences in the implementation of the Level interface exist between the derived objects. Some objects provide read-only access
to a few Level properties, while others implement a subset of the properties contained in the interface. For example, a
clsDatabaseLevel object allows read and write access to its LevelType property, whereas, for a clsPartitionLevel object, access
to this property is read-only. For more information about the Level interface properties and their applicability to the associated
objects, see Collections, Level Interface and Properties, Level Interface.

There are no methods associated with the Level interface.

Parent-Child Levels

Parent-child levels appear only in parent-child dimensions (those whose SubClassType is sbclsParentChild). Unlike regular
levels that are constructed using predefined member columns, parent-child levels function as templates for hierarchies that are
dynamically built from source tables with parent-child relationships. Parent-child levels identify the MemberKeyColumn,
MemberNameColumn, and ParentKeyColumn properties of the data source, which are used to dynamically build variable-
level hierarchies.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

See Also

Dimension Interface

Levels and Members

MemberKeyColumn

Parent-Child Dimensions

SubClassType

SubClassTypes

Analysis Services Programming (SQL Server 2000)

Collections, Level Interface
Collections, Level Interface

The Level interface supports the following collections.

Collection Description
CustomProperties The collection of user-defined properties
MemberProperties The collection of objects of ClassType

clsMemberProperty

Access Cross-Reference

The following table shows whether the collection is read/write (R/W), read-only (R), or not applicable (n/a) for different objects.

Collection
clsDatabase

Level clsCubeLevel
clsPartition

Level
clsAggregation

Level
CustomProperties R/W R/W R/W R/W
MemberProperties R/W R R n/a

See Also

clsMemberProperty

Level Interface

Analysis Services Programming (SQL Server 2000)

Properties, Level Interface
Properties, Level Interface

The Level interface supports the following properties.

Property Description
AreMemberKeysUnique Indicates whether the members of a level are

uniquely identified by their member key column
AreMemberNamesUnique Indicates whether the members of a level are

uniquely identified by their member name column
ClassType Returns an enumeration constant that identifies the

specific object type
ColumnSize The size (in bytes) of members in the level member

key column
ColumnType The data type of the level member key column in an

aggregation table
CustomRollUpColumn Contains the name of the column that contains

member-specific rollup instructions
CustomRollUpExpression Contains a Multidimensional Expressions (MDX)

expression used to override the default rollup mode
CustomRollUpPropertiesColumn Contains the name of the column that contains

member-specific rollup properties
Description The description of the level
EnableAggregations Determines whether aggregations can be created

for a level in a dimension whose
AggregationUsage property is set to
dimAggUsageCustom

EstimatedSize The estimated number of members in the level
FromClause The SQL FROM clause for a level
Grouping Indicates the type of grouping used by the Analysis

server
HideMemberIf Indicates whether a member should be hidden from

client applications
IsDisabled Indicates whether the level is disabled
IsValid Indicates whether the level structure is valid
IsVisible Indicates whether the level is visible to client

applications
JoinClause The SQL JOIN clause for the level
LevelNamingTemplate Defines how levels in a parent-child hierarchy are

named
LevelType Returns an enumeration constant that identifies the

specific type of level
MemberKeyColumn The name of the column or expression that contains

member keys
MemberNameColumn The name of the column or expression that contains

member names
Name The name of the level
Ordering Specifies how the level should be ordered
OrderingMemberProperty Specifies a member property used to determine the

ordering of members
OrdinalPosition Returns the ordinal position of the level in the

collection of levels
Parent Returns a reference to the parent Dimension object
ParentKeyColumn Identifies the parent of a member in a parent-child

hierarchy

RootMemberIf Determines how the root member or members of a
parent-child hierarchy are identified

SkippedLevelsColumn Identifies the column that holds the number of
empty levels between a member and its parent in a
parent-child hierarchy

SliceValue The name of the level member used to define a
partition slice

SubClassType Returns an enumeration constant identifying the
subclass type of an object

UnaryOperatorColumn The name of the column that contains member-
specific rollup instructions in the form of
mathematical operators

Access Cross-Reference

The following table shows whether the property is read/write (R/W), read-only (R), or not applicable (n/a) for different objects.

Property
clsDatabase

Level
clsCube

Level
clsPartition

Level
clsAggregation

Level
AreMemberKeysUnique R/W R R R
AreMemberNamesUnique R/W R R R
ClassType R R R R
ColumnSize R/W R R R
ColumnType R/W R R R
CustomRollUpColumn R/W R R R
CustomRollUpExpression R/W R/W R R
CustomRollUpPropertiesColumn R/W R R R
Description R/W R R R
EnableAggregations n/a R/W R n/a
EstimatedSize R/W R R R
FromClause R R R R
Grouping R/W R R R
HideMemberIf** R/W R R R
IsDisabled n/a R/W R R
IsValid R R R R
IsVisible R/W R/W R R
JoinClause R R R R
LevelNaming
Template†

R/W R R R

LevelType R/W R R R
MemberKey
Column

R/W R/W R/W R/W

MemberName
Column

R/W R R R

Name R/W (R after
the object
has been
named)

R/W (R
after the
object
has
been
named)

R/W (R after
the object
has been
named)

R/W (R after the
object has been
named)

Ordering R/W R R R
OrderingMemberProperty R/W R R R
OrdinalPosition R R R R
Parent R R R R
ParentKeyColumn† R/W R R R
RootMemberIf R/W R R R

SkippedLevelsColumn R/W R R R
SliceValue n/a n/a R/W n/a
SubClassType R R R R
UnaryOperatorColumn R/W R R R

** This property does not apply to levels of SubClassType sbclsParentChild or sbclsMining.
† This property applies only to levels of SubClassType sbclsParentChild or sbclsMining.

See Also

AggregationUsage

Level Interface

Analysis Services Programming (SQL Server 2000)

AreMemberKeysUnique (Level Interface)
AreMemberKeysUnique (Level Interface)

The AreMemberKeysUnique property of the Level interface indicates whether the members of a level can be uniquely identified
within the dimension by their member key column and without a reference to a higher level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

* For more information about read/write access, see Remarks later in this topic.

Remarks

For objects of ClassType clsDatabaseLevel, the AreMemberKeysUnique column is read-only if the object meets one of the
following criteria:

The level is the first level in the dimension, or the LevelType property of the object is levAll.

The Grouping property of the object is groupingAutomatic.

The AreMemberKeysUnique property is always read-only for objects of ClassType clsDatabaseLevel objects with a
SubClassType of sbclsParentChild or sbclsMining.

If the AreMemberKeysUnique property is True, the MemberKeyColumn property of the level uniquely identifies all level
members. For example, the following diagram shows the hierarchy of a time dimension. Because the members of Level 3 -
Quarters are duplicated under each year level, it is not possible to determine the exact time slice to query without also reading the
corresponding value for Level 2 - Years. To uniquely identify the time period 1997 - Q1, the member key columns for Level 2 -
Years and Level 3 - Quarters must be combined.

A similar example can be made for a geographic hierarchy. While the names of states or provinces are unique within a single
country or region, one or more cities in different countries or regions may share the same name. In this case, the City level does
not have unique values.

Example

If a level for months of the year with members named Month1, Month2, ... Month12 is added to a dimension below a quarter
level, the AreMemberKeysUnique property is set to False. This is because the values in MemberKeyColumn do not uniquely
identify each member in the month level within the dimension.

' Assume an object (dsoDim) of ClassType clsDimension exists
Dim dsoLevel As DSO.Level
Set dsoLevel = dsoDim.Levels.AddNew("Months")
dsoLevel.AreMemberKeysUnique = False

See Also

Level Interface

MemberKeyColumn

Analysis Services Programming (SQL Server 2000)

AreMemberNamesUnique (Level Interface)
AreMemberNamesUnique (Level Interface)

The AreMemberNamesUnique property of the Level interface indicates whether the names of members are unique throughout
the level and then determines a naming scheme based on the indication.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks

If AreMemberNamesUnique is False, each member name is assumed to be unique only among its siblings. In this case, the
unique name for the member is constructed using the name of the member and the names of its ancestors. If the property for the
level is True, each member name is assumed to be unique for the entire level. In this case, the unique name for the member is
constructed using only the dimension name, the level name, and the member name. Other properties, such as connection string
and Registry settings, can influence the method by which unique member names are generated. This property is read-only and
always True for the (All) level of a dimension (that is, the level that has a LevelType of levAll). Additionally, this property is read-
only and always False for levels with automatic grouping (that is, a level that has a Grouping property of groupingAutomatic).

See Also

AreMemberNamesUnique

Level Interface

Analysis Services Programming (SQL Server 2000)

ClassType (Level Interface)
ClassType (Level Interface)

The ClassType property of the Level interface contains an enumeration constant that identifies the specific class type.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

ClassTypes

For level objects, ClassType is set to one of the following values:

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

clsAggregationLevel

Access

Read-only

Example

Use the following code to return the class type of a level object and to determine which object class has been returned:

'Assume an object (dsoLevel) of ClassType clsLevel exists
Dim objClass As DSO.ClassTypes
objClassType = dsoLevel.ClassType
Select Case objClassType
 Case clsAggregationLevel
 ' Insert commands for an aggregation level.
 Case clsCubeLevel
 ' Insert commands for a cube level.
 Case clsDatabaseLevel
 ' Insert commands for a database level.
 Case clsPartitionLevel
 ' Insert commands for a partition level.
End Select

Analysis Services Programming (SQL Server 2000)

ColumnSize (Level Interface)
ColumnSize (Level Interface)

The ColumnSize property of the Level interface contains the size (in bytes) of the members in the level aggregation column in
an aggregation table.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Integer

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W*
ClsPartitionLevel R
ClsAggregationLevel R

* Read-only for virtual cube levels and cube levels of a shared dimension (a parent Dimension object whose IsShared property
is True).

Remarks

The ColumnSize property always returns 0 for (All) levels (that is, levels whose LevelType property is levAll) with a
SubClassType of sbclsRegular, sbclsParentChild, sbclsLinked or sbclsMining, and for levels whose LevelType property is
set to sbclsVirtual.

Set ColumnSize to be large enough to store the data type of the level. Integer values, for example, require a minimum of four
bytes. If the level contains string values, find the length of the member with the longest string. Set ColumnSize greater than or
equal to the length of that string multiplied by the byte size of an individual character. The ColumnSize property cannot be set to
zero.

Example

Use the following code to specify a column size of 40:

'Assume an object (dsoLev) of ClassType clsDatabaseLevel exists
dsoLev.ColumnSize = 40

See Also

ColumnType

Level Interface

Analysis Services Programming (SQL Server 2000)

ColumnType (Level Interface)
ColumnType (Level Interface)

The ColumnType property of the Level interface contains the data type of the level member key column.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

ADODB.DataTypeEnum

The ColumnType property is set to one of the following enumerated values.

Column type Value
Big integer adBigInt
Binary adBinary
Boolean adBoolean
String (Unicode) adBSTR
Char adChar
Currency adCurrency
Date adDate
Date adDBDate
Time adDBTime
Timestamp adDBTimeStamp
Decimal adDecimal
Double adDouble
Integer adInteger
Numeric adNumeric
Single adSingle
Small integer adSmallInt
Tiny integer adTinyInt
Unsigned big integer adUnsignedBigInt
Unsigned integer adUnsignedInt
Unsigned small integer adUnsignedSmallInt
Unsigned tiny integer adUnsignedTinyInt
Text (Unicode) adWChar
Text adChar

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W*
clsCubeLevel R/W**
clsPartitionLevel R
clsAggregationLevel R

* Read-only for levels with automatic grouping (a level whose Grouping property is groupingAutomatic).
** Read-only for virtual cube levels and cube levels of a shared dimension (a parent Dimension object whose IsShared property
is True).

Remarks

The ColumnType property determines how the server will bind the member key column. This property must be set to a
compatible type or processing the dimension or cube will result in an error.

The ColumnSize property always returns adInteger for levels with a SubClassType of sbclsRegular, sbclsParentChild,
sbclsLinked, or sbclsMining that use automatic grouping (that is, the Grouping property is groupingAutomatic). Additionally,
this property always returns adVarChar for levels with a SubClassType of sbclsVirtual.

Example

Use the following code to specify an integer ColumnType:

' Assume an object (dsoDim) of ClassType clsDimension exists
Set dsoLev = dsoDim.Levels.AddNew("Store Id")
dsoLev.MemberKeyColumn = """store"".""store_number"""
dsoLev.ColumnSize = 4
dsoLev.ColumnType = adInteger
dsoLev.EstimatedSize = 24

Analysis Services Programming (SQL Server 2000)

CustomRollupColumn (Level Interface)
CustomRollupColumn (Level Interface)

The CustomRollupColumn property of the Level interface contains the name of the column that stores member-specific rollup
instructions.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

The string values in this column should contain valid Multidimensional Expressions (MDX) expressions. If a column is empty, the
corresponding member is calculated normally. If the formula in the column is invalid, a run-time error occurs when a cell value
using the member is retrieved.

Order of evaluation among dimensions with custom rollups is determined by the order of the dimensions in the Dimensions
collection of the parent cube. Calculated members are always evaluated before custom rollups.

Note Because the DISTINCT COUNT aggregation function does not support custom aggregations, the use of this aggregation
function in combination with the CustomRollupExression and CustomRollupColumn properties is not supported. If a cube
uses the DISTINCT COUNT aggregation function and any of the dimensions in that cube use either the
CustomRollupExpression property or the CustomRollupColumn property then the cube is considered to be invalid.
Processing such a cube will raise a validation error with an error code of
mderrInvalidCubeDistinctCountWithCustomRollups.

See Also

Level Interface

Custom Rollup Formulas and Custom Member Formulas

CustomRollupExpression (Level Interface)

CustomRollupPropertiesColumn (Level Interface)

Analysis Services Programming (SQL Server 2000)

CustomRollupExpression (Level Interface)
CustomRollupExpression (Level Interface)

The CustomRollupExpression property of the Level interface contains a Multidimensional Expressions (MDX) expression that is
used to override the default rollup mode for the level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

If the CustomRollupExpression property is blank, member values are rolled up normally using the aggregation function of the
current measure. If the property contains an MDX expression, that expression is used to evaluate each member of the level. The
formulas contained in this member property are resolved in the same way as regular calculated members.

CustomRollupExpression can be set on both database and cube levels. If set on both types of levels for a given cube, the
CustomRollupExpression for the cube level overrides the CustomRollupExpression for the database level. Member-specific
rollup expressions in the column specified by the CustomRollupExpression for the level always override this property.

A common usage scenario for this property involves tracking inventory over time. Inventory counts do not aggregate along time
dimensions, but they do aggregate along other types of dimensions, such as geography or sales. By defining a
CustomRollupExpression property to use the last member of its respective level within a time dimension, closing inventory
counts can be rolled up over time.

Note Because the DISTINCT COUNT aggregation function does not support custom aggregations, the use of this aggregation
function in combination with the CustomRollupExression and CustomRollupColumn properties is not supported. If a cube
uses the DISTINCT COUNT aggregation function and any of the dimensions in that cube use either the
CustomRollupExpression property or the CustomRollupColumn property then the cube is considered to be invalid.
Processing such a cube will raise a validation error with an error code of
mderrInvalidCubeDistinctCountWithCustomRollups.

For more information about CREATE MEMBER, see CREATE MEMBER Statement.

See Also

Custom Rollup Formulas and Custom Member Formulas

Custom Rollup Operators

CustomRollupColumn

CustomRollupPropertiesColumn

Level Interface

Analysis Services Programming (SQL Server 2000)

CustomRollupPropertiesColumn (Level Interface)
CustomRollupPropertiesColumn (Level Interface)

The CustomRollupPropertiesColumn property of the Level interface is used to provide properties associated with the member
formulas provided in the CustomRollupColumn property.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

Any properties that can be specified for a calculated member can also be specified for the member formulas. The column
assigned to this property should contain a comma-delimited list of the properties, employing the following syntax:

<property identifier> = '<property value>' [, <property identifier> = '<property value>'...]

The <property identifier> contains the name of a valid property, while the <property value> contains the string
representation of the value of the specified property. For example, the FORE_COLOR cell property accepts a long integer
containing the RGB value of a given color. To set the foreground color of the member to red, the syntax would resemble the
following statement.

FORE_COLOR='255'

As with calculated members, these properties are optional. If the CustomRollupColumn property of the Level object is empty,
the contents of its CustomRollupPropertiesColumn property are ignored.

See Also

Custom Rollup Formulas and Custom Member Formulas

Custom Rollup Operators

CustomRollupColumn

Level Interface

Analysis Services Programming (SQL Server 2000)

Description (Level Interface)
Description (Level Interface)

The Description property of the Level interface contains the level description.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R/W

Example

Use the following code to set the Description property for a level object:

' Assume an object (dsoLevel) of ClassType clsLevel exists
dsoLevel.Description = "Sales for 1998"

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

EnableAggregations (Level Interface)
EnableAggregations (Level Interface)

The EnableAggregations property of the Level interface specifies whether aggregations can be created for the level by the
aggregation design algorithm.

Applies To

clsCubeLevel

clsPartitionLevel

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsCubeLevel R/W
clsPartitionLevel R

Remarks

To create aggregations for a level when aggregations are designed for the parent dimension, set the EnableAggregations
property of the level to True and set the AggregationUsage property of the dimension to dimAggUsageCustom.

See Also

AggregationUsage

Level Interface

Analysis Services Programming (SQL Server 2000)

EstimatedSize (Level Interface)
EstimatedSize (Level Interface)

The EstimatedSize property of the Level interface contains the estimated number of members in the level object. This property
is used by the partition analyzer when aggregations are designed.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Long

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W
clsCubeLevel R/W*
clsPartitionLevel R
clsAggregationLevel R

* Read-only for virtual cube levels.

Remarks

The EstimatedSize property is used during analysis of a partition when aggregations are designed. The value provided does not
need to be precise, but it should be a close approximation.

Note The EstimatedSize property for an (All) level is read-only and always set to one (1). This is also true for levels that belong
to a virtual dimension created by Microsoft® SQL Server™ 7.0 OLAP Services.

Example

Use the following code to set the size and type values for a new level object:

' Assume an object (dsoDim) of ClassType clsDimension exists
Set dsoLev = dsoDim.Levels.AddNew("Store Id")
dsoLev.MemberKeyColumn = """store"".""store_number"""
dsoLev.ColumnSize = 4
dsoLev.ColumnType = adInteger
dsoLev.EstimatedSize = 24

See Also

clsPartitionAnalyzer

Level Interface

Analysis Services Programming (SQL Server 2000)

FromClause (Level Interface)
FromClause (Level Interface)

The FromClause property of the Level interface contains the SQL FROM clause for the level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Read-only

Remarks

This property returns a table name that is the same value as the SourceTable property of the parent dimension object.

Example

A database contains the following tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

This diagram illustrates the relationships of these tables.

Use the following code to print the FROM clause for a level object:

' Assume an object (dsoLevel) of ClassType clsLevel
' and is associated with the Store dimension and
' Store_Name level
Debug.Print " Level: " & dsoLevel.Name
Debug.Print " From Clause: " & dsoLevel.FromClause

The immediate window displays the following:

 Level: Store_Name
 From Clause: "store"

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

Grouping (Level Interface)
Grouping (Level Interface)

The Grouping property of the Level interface determines whether members in the level are used individually or are part of
groups.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

GroupingValues

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks

You can group level members to segment and organize the data contained in a cube. For example, a department store chain may
want to use a cube to monitor customer purchasing trends. Querying for data on the customers dimension without grouping
might return long lists of individual purchase events that are impractical to view or analyze. Grouping level members based on
gender, age group, credit history, or payment method returns more manageable and meaningful data. When such natural
groupings are not available, this property can still be used to artificially impose organization on the data.

Member groups allow you to circumvent the maximum limit of 64,000 members per level. When members are grouped, queries
return smaller segments of data. Each level can contain 64,000 groups, and each group can contain 64,000 members.

This feature provides support for very large levels. A level can be added (visible or invisible) that provides grouping for a large
level. If you create a duplicate of a large level and set the Grouping property to groupingAutomatic, you can ignore the 64,000
member limit.

When this property is set to groupingAutomatic, the Analysis server automatically creates and names the member groups each
time the dimension is processed. The number and names of the groups can change as the data in the cube changes.

If Grouping is set to groupingAutomatic, Decision Support Objects (DSO) changes the following properties for the level:

The AreMemberNamesUnique property is read-only and set to False.

The AreMemberKeysUnique property is read-only and set to False.

The Ordering property is read-only and set to orderName.

You cannot set Grouping to groupingAutomatic for a level when any of the following conditions occur:

The IsChanging property for the parent dimension is False.

The level is the first or last within the dimension.

The Grouping property of an adjacent level in the dimension is set to groupingAutomatic.

The StorageMode property for the parent dimension is storeasROLAP. Member groups are not supported for ROLAP
dimensions.

See Also

AreMemberKeysUnique

AreMemberNamesUnique

IsChanging

Level Interface

Member Groups

Ordering

Analysis Services Programming (SQL Server 2000)

HideMemberIf (Level Interface)
HideMemberIf (Level Interface)

The HideMemberIf property of the Level interface indicates whether and when a level member should be hidden from client
applications.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

HideIfValues

Access

Access depends on the value of the ClassType property of the object. This property does not apply to levels whose
SubClassType is sbclsParentChild or sbclsMining.

Class type Access
ClsDatabaseLevel R/W*
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

* Always read-only and set to hideNever for levels of virtual dimensions created in Microsoft® SQL Server™ 7.0 OLAP Services.

Remarks

Hidden members represent empty positions in a ragged hierarchy. The members are hidden to function as placeholders for a
branch of a hierarchy that contains no real members at that level. For example, a geography dimension may have cities at its
lowest level. Members on this level roll up into a state/province level, which, in turn, rolls up into a country/region level. Some
countries and regions, however, do not have states or provinces. In such cases a placeholder occupies the position.

See Also

Level Interface

Ragged Dimension Support

Analysis Services Programming (SQL Server 2000)

IsDisabled (Level Interface)
IsDisabled (Level Interface)

The IsDisabled property of the Level interface indicates whether the level is disabled.

Applies To

clsAggregationLevel

clsCubeLevel

clsPartitionLevel

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object. This property does not apply to levels whose
SubClassType is sbclsParentChild or sbclsMining.

Class type Access
clsCubeLevel R/W*
clsPartitionLevel R
clsAggregationLevel R

* Read-only for virtual cube levels.

Remarks

If a level is disabled, it does not show up in a processed cube. That is, you cannot see the level when querying the cube using
Multidimensional Expressions (MDX).

This property is useful in certain cases involving shared dimensions and multiple cubes. For example, if a parent dimension is
shared between two different cubes and a child level has corresponding values in only one of the cubes, you can set the
IsDisabled property of the level object in the other cube to True to prevent queries against nonexistent level members.

Note When a level is disabled, all subordinate levels must already be disabled. When a level is enabled, all higher levels must
already be enabled. At least one level must be enabled.

Example

Use the following code to disable a level object:

' Assume an object (dsoCubeLevel) of ClassType clsCubeLevel exists
dsoCubeLevel.IsDisabled = True

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

IsValid (Level Interface)
IsValid (Level Interface)

The IsValid property of the Level interface indicates whether the level structure is valid. A level is valid if it is fully and correctly
defined. For example, a level for which the FromClause has not been defined is not valid.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Boolean

Access

Read-only

Example

Use the following code to have Decision Support Objects (DSO) determine the validity of a level object:

' Assume an object (dsoLevel) of ClassType clsLevel exists
If Not dsoLevel.IsValid Then
 'Code to validate level definition
End If

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

IsVisible (Level Interface)
IsVisible (Level Interface)

The IsVisible property of the Level interface determines whether the level is visible to client applications.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R/W
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

Setting this property for a level of ClassType clsCubeLevel overrides the database setting of this property. Unlike other objects
in the Decision Support Objects (DSO) library, a level cannot be referenced by calculated members or other Multidimensional
Expressions (MDX) statements if its IsVisible property is False.

At least one level in a dimension must be visible. DSO raises an error if all the levels of a dimension have their IsVisible property
set to False.

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

JoinClause (Level Interface)
JoinClause (Level Interface)

The JoinClause property of the Level interface describes how related tables that define the parent Dimension object are linked
and takes the form of a SQL JOIN clause.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Read-only

Remarks

The JoinClause property of a level returns a nonempty string only when multiple dimension tables are used to define the parent
Dimension object of the level. This type of definition results from the snowflake schema of fact and dimension tables in the cube.

Example

A database contains the following tables:

Sales_Facts

Customer

Product

Product_Class

Promotion

Store

Calendar

This diagram illustrates the relationships of these tables.

Use the following code to return the JoinClause of the level object:

' Assume an object (dsoLevel) of ClassType clsLevel
' and is associated with the Product dimension and
' SKU level
Debug.Print " Level: " & dsoLevel.Name
Debug.Print " Join Clause: " & dsoLevel.JoinClause

The display in the immediate window would show the following:

 Level: SKU
 Join Clause: "product"."SKU"="product_class"."SKU"

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

LevelNamingTemplate (Level Interface)
LevelNamingTemplate (Level Interface)

The LevelNamingTemplate property of the Level interface defines how levels in a parent-child hierarchy are named.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object. This property applies only to levels whose SubClassType is
sbclsParentChild or sbclsMining.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

There are two ways to create a level-naming template. You can design a naming pattern or you can specify a list of names. A
naming pattern contains an asterisk (*) as a placeholder character for a counter that is incremented and inserted into the name of
each new and deeper level. For example, a LevelNamingTemplate value of Level * results in the level names Level 1, Level 2,
Level 3, and so on, if no (All) level is defined. If a naming pattern does not contain the placeholder, it is first used as is, and then
subsequent level names are formed by appending a space and a number to the end of the pattern. For example, the
LevelNamingTemplate Level results in the level names Level, Level 1, Level 2, and so on.

To use a specific set of names for the LevelNamingTemplate property, create a list of level names and separate them with
semicolons. Each member of the list is used for a subsequent level name. If the number of levels exceeds the number of names in
the list, the last name in the list is used as a template for any additional level names. For example, a LevelNamingTemplate
value of Division;Group;Unit results in the level names Division, Group, Unit, Unit 1, Unit 2, and so on. By contrast, a
LevelNamingTemplate value of Division;Group;Unit * results in the level names Division, Group, Unit 3, Unit 4, and so on.

Each name in the list is treated as a template to ensure uniqueness of level names. A LevelNamingTemplate value of
Manager;Team Lead;Manager;Team Lead;Worker * results in the level names Manager, Team Lead, Manager 1, Team Lead 1,
Worker 5, Worker 6.

To use the asterisk (*) character in a level name using LevelNamingTemplate, use two asterisks (**).

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

LevelType (Level Interface)
LevelType (Level Interface)

The LevelType property of the Level interface returns an enumeration constant that identifies the specific type of level. It tells
client applications that encounter this level what kind of content the level contains.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

LevelTypes

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

* Read-only for virtual cube levels and for levels with a SubClassType of sbclsParentChild or sbclsMining.

Remarks

The LevelType property can be set to one of the constants enumerated by the LevelTypes enumeration. If the level is part of a
relational OLAP (ROLAP) dimension, the first level must be unique and must always be of type levAll. Time levels have their
LevelType property set to one of the time level constants, such as levTimeYears or levTimeMonths. Time levels must be
created according to the time hierarchy: For example, a level of type levTimeYears must be above a level of type
levTimeMonths.

Examples

A. Setting Level Type

Use the following code to set the level type of a level object to days:

LevelObject.LevelType = levTimeDays

B. Setting and Determining Level Type

Use the following code to return the level type of a level object and to determine which level type has been returned:

'Assume an object (dsoLevel) of ClassType clsDatabaseLevel exists
Dim objType As DSO.LevelTypes
objType = dsoLevel.LevelType
Select Case objType
 Case levRegular
 ' Commands for levRegular, a level not time-related
 Case levAll
 ' Commands for levAll, the topmost level
 Case levTimeQuarters
 ' Commands for levTimeQuarters, a calendar quarter level
 Case levCompany
 ' Commands for levCompany, a company information level

 Case levGeoCity
 ' Commands for levGeoCity, a city name level
 Case levProduct
 ' Commands for levProduct, an individual products level
 Case Else
 ' Commands for other LevelTypes
End Select

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

MemberKeyColumn (Level Interface)
MemberKeyColumn (Level Interface)

The MemberKeyColumn property of the Level interface contains the name or expression of the column that contains member
keys.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W
clsCubeLevel R/W*
clsPartitionLevel R/W
clsAggregationLevel R/W

* Read-only for virtual cube levels.

Remarks

Some general considerations concerning the MemberKeyColumn property are as follows:

In relational terms, a key is a set of one or more columns that uniquely identify an entity. MemberKeyColumn is a key in
this sense if the AreMemberKeysUnique property of a level is True. If AreMemberKeysUnique is False,
MemberKeyColumn uniquely identifies a member within the context of a parent member only. For example, months are
unique only within the context of a given year.

The MemberKeyColumn property controls the way the dimensions within a cube are processed. To improve cube-
processing efficiency, when you create levels, make sure the lowest level has unique members.

Often, the fact table will contain member key values but not necessarily member names. The user, however, sees the
member names rather than the keys.

MemberKeyColumn can contain any valid SQL expression that involves one or more columns from a single table. For
example, either of the following is a valid expression that uses the Product.Prod_Year column:

"""Product"".""Prod_Year"""
DatePart('q',"Product"."Prod_Year")

Note If this property contains an SQL expression, the expression must be compatible with the SQL dialect supported by the OLE
DB provider. Using an incompatible expression will result in an error when the cube is processed.

Example

Use the following code to set a level object MemberKeyColumn to the Customer_Number column in table Customer:

LevelObject.MemberKeyColumn = """Customer"".""Customer_Number"""

See Also

AreMemberKeysUnique

Level Interface

Member Names and Member Keys

MemberNameColumn

Analysis Services Programming (SQL Server 2000)

MemberNameColumn (Level Interface)
MemberNameColumn (Level Interface)

The MemberNameColumn property of the Level interface contains the name of the column that contains member names.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

* Read-only for virtual cube levels, levels with a LevelType property of levAll, and levels with a Grouping of
groupingAutomatic.

Remarks

This property is useful when the member key column may not contain information recognizable to the user.

For example, a table may contain the columns SKU and Product_Name. When you generate queries by SKU number, you may
want to display the corresponding product name for the sake of clarity. In this case, the member key column is SKU, but the
member name column is Product_Name.

If you do not assign a value to MemberNameColumn, the Analysis server uses the MemberKeyColumn values for the member
names.

Be careful when using expressions in MemberNameColumn that are based on columns other than those specified by
MemberKeyColumn. Ensure that there is always a one-to-one correspondence in the values produced by the expressions in
MemberNameColumn and MemberKeyColumn.

The MemberNameColumn property can contain any valid SQL expression involving one or more columns from the table that
contains the member key column. Such an expression can be used to produce a calculated or concatenated string expression. For
example, the following is a valid expression for a Product.Prod_Year member key column:

'Quarter ' & Format(DatePart('q',"Product"."Prod_Year"))

The following is another example from an Employees table:

"Employees"."LastName" + ', ' + "Employees"."Firstname"

Note If this property contains an SQL expression, the expression must be compatible with the SQL dialect supported by the OLE
DB provider. Using an incompatible expression will result in an error when the cube is processed.

Example

Use the following code to set the MemberNameColumn property of a level object to the Product_Name column in table Sales:

' Assume an object (dsoLev) of ClassType clsLevel exists
dsoLev.MemberNameColumn = """Sales"".""Product_Name"""

See Also

Level Interface

MemberKeyColumn

Analysis Services Programming (SQL Server 2000)

Name (Level Interface)
Name (Level Interface)

The Name property of the Level interface contains the name of the level object.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String (maximum length of 50 characters)

Access

Read/write (read-only after the object has been named)

Example

Use the following code to return a level object name:

Dim sName As String
sName = LevelObject.Name

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

Ordering (Level Interface)
Ordering (Level Interface)

The Ordering property of the Level interface specifies the method to use when ordering the members of a level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

OrderTypes

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks

Values of the Ordering property affect the access and values of the OrderingMemberProperty. For example, to enable
read/write access for OrderingMemberProperty, specify orderMemberProperty for the Ordering OrderType. If orderKey or
orderName are specified, OrderingMemberProperty has read-only access with respective values of "Key" and "Name".

See Also

Level Interface

Ordering

OrderingMemberProperty

Analysis Services Programming (SQL Server 2000)

OrderingMemberProperty (Level Interface)
OrderingMemberProperty (Level Interface)

The OrderingMemberProperty of the Level interface specifies the member property that is used to determine the ordering of
level members.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsDatabaseLevel R/W*
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

* Read-only for levels with an Ordering of orderKey or orderName.

Remarks

This property allows the level to be ordered by a member property instead of by name or by key. To order by member property,
set the value of the Ordering property to orderMemberProperty, and then set the value of the OrderMemberProperty
property to the name of the member property. If the Ordering property of the object is set to orderName or orderKey, this
property is read-only, and the value of this property is set to "Name" or "Key", respectively.

See Also

Level Interface

Ordering

OrderTypes

Analysis Services Programming (SQL Server 2000)

OrdinalPosition (Level Interface)
OrdinalPosition (Level Interface)

The OrdinalPosition property of the Level interface contains the ordinal position of the level in the Levels collection.

 Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Integer

Access

Read-only

Remarks

The OrdinalPosition property for a level determines the relative position of the level in the dimension hierarchy: A value of 1
defines the most aggregated level, and the maximum value defines the most detailed level. Decision Support Objects (DSO) sets
the value of this property when you add the level to a dimension.

The following table shows an example of relative ordinal positions.

Level Ordinal position
All 1
Yearly 2
Quarterly 3
Weekly 4
Daily 5

Example

Use the following code to return the ordinal position of a level object:

' Assume an object (dsoLev) of ClassType clsLevel exists
If dsoLev.OrdinalPosition = 1 Then
 'Code to handle top level
Else
 'Code to handle remaining levels
End If

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

Parent (Level Interface)
Parent (Level Interface)

The Parent property of the Level interface returns a reference to the parent Dimension object.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

Dimension

Access

Read-only

Remarks

For each level, the ClassType of the parent object depends on the ClassType of the level object.

Class type Parent object class type
clsDatabaseLevel clsDatabaseDimension
ClsCubeLevel clsCubeDimension
ClsPartitionLevel clsPartitionDimension
ClsAggregationLevel clsAggregationDimension

See Also

Dimensions

Level Interface

Analysis Services Programming (SQL Server 2000)

ParentKeyColumn (Level Interface)
ParentKeyColumn (Level Interface)

The ParentKeyColumn of the Level interface contains the name of the parent column in a parent-child level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object. This property applies only to levels whose SubClassType is
sbclsParentChild or sbclsMining.

Class type Access
ClsDatabaseLevel R/W*
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

The ParentKeyColumn property contains the name of the column that stores the key values for the parents of individual
members. This setting tells the Analysis server how to find the relationship information necessary to build the hierarchy of
members in a parent-child dimension.

Note Because the ParentKeyColumn defines a parent-child relationship, the column named in the ParentKeyColumn property
must contain data of the same type as the column named in the MemberKeyColumn property.

See Also

Level Interface

LevelTypes

MemberKeyColumn

Parent-Child Dimensions

Analysis Services Programming (SQL Server 2000)

RootMemberIf (Level Interface)
RootMemberIf (Level Interface)

The RootMemberIf property of the Level interface determines how the root member or members of a parent-child hierarchy are
identified.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

RootIfValues

Access

Access depends on the value of the ClassType property of the object. This property applies only to levels whose SubClassType is
sbclsParentChild or sbclsMining.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

This property determines how root members are identified within the level. A root member is a top-level member within a
parent-child dimension.

See Also

Level Interface

Parent-Child Dimensions

Analysis Services Programming (SQL Server 2000)

SkippedLevelsColumn (Level Interface)
SkippedLevelsColumn (Level Interface)

The SkippedLevelsColumn of the Level interface is used to define empty positions in a parent-child dimension.

Applies To

clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object. This property applies only to levels whose SubClassType is
sbclsParentChild or sbclsMining.

Class type Access
ClsDatabaseLevel R/W
ClsCubeLevel R
ClsPartitionLevel R
ClsAggregationLevel R

Remarks

This property contains the name of a column that stores the number of skipped (empty) levels between each member and its
parent. This allows a parent-child hierarchy to skip levels between members. The values contained in this column must be
nonnegative integers; otherwise a processing error occurs. If the column contains no value, the current member has a level depth
one below its parent.

See Also

Level Interface

Parent-Child Dimensions

Ragged Dimension Support

SubClassType

Analysis Services Programming (SQL Server 2000)

SliceValue (Level Interface)
SliceValue (Level Interface)

The SliceValue property of the Level interface contains the level slice value.

Applies To

clsPartitionLevel

Data Type

String

Access

Read/write

Remarks

This property applies only to levels whose SubClassType is sbclsRegular, sbclsParentChild, or sbclsMining. For all other
levels, this property returns an empty string.

Examples

Use the following code to set a level object slice value to the member name May_Sales:

' Assume an object (dsoLevel) of ClassType clsPartitionLevel exists
dsoLevel.SliceValue = "May_Sales"

Use the following code to return the slice value for a level object:

Dim sSliceVal As String
sSliceVal = LevelObject.SliceValue

See Also

clsPartitionLevel

Dimensions

Level Interface

Analysis Services Programming (SQL Server 2000)

SubClassType (Level Interface)
SubClassType (Level Interface)

The SubClassType property of the Level interface contains an enumeration constant that identifies the subclass type of the
object.

Applies To

clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects that implement the Level interface can have a SubClassType property of sbclsRegular, sbclsLinked, sbclsVirtual,
sbclsMining, or sbclsParentChild.

Example

Use the following code to check the SubClassType property of a level object.

' Assume an object (dsoLevel) of ClassType clsCubeLevel exists
If dsoLevel.SubClassType = sbclsParentChild Then
 'Code to handle a parent-child level
Else
 'Code to handle other types of levels
End If

See Also

Level Interface

Analysis Services Programming (SQL Server 2000)

UnaryOperatorColumn (Level Interface)
UnaryOperatorColumn (Level Interface)

The UnaryOperatorColumn property of the Level interface contains the name of a column that stores mathematical operators
serving as member-specific rollup instructions for a specified level.

Applies To

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsPartitionLevel

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

ClassType Access
clsDatabaseLevel R/W
clsCubeLevel R
clsPartitionLevel R
clsAggregationLevel R

Remarks

The UnaryOperatorColumn property provides a simple way to control how member values are rolled up to the values of their
parents. When the value of this property is assigned to the name of a column, the contents of that column are used as the unary
operator for the member. This unary operator is applied to the member when evaluating the value of the member's parent.

This property provides similar but simplified functionality of the CustomRollupColumn property. In comparison to the
CustomRollupColumn property, which uses Multidimensional Expressions (MDX) expressions to determine how the member
itself is evaluated, the UnaryOperatorColumn contains simple math operators to determine how the value of a member affects
the parent. This property may be overridden by the values in the column specified in the CustomRollupColumn property.
However, the UnaryOperatorColumn property overrides the CustomRollupExpression property.

The following table lists available unary operators and describes how they behave.

Unary operator Description
+ The value of the member is added to the aggregate value of

the preceding sibling members.
- The value of the member is subtracted from the aggregate

value of the preceding sibling members.
* The value of the member is multiplied by the aggregate value

of the preceding sibling members.
/ The value of the member is divided by the aggregate value of

the preceding sibling members.
~ The value of the member is ignored.

Blank values and any other values not found in the table are treated as the plus sign (+) unary operator. There is no operator
precedence, so the order of members among their siblings is important.

See Also

CustomRollUpColumn

Level Interface

Analysis Services Programming (SQL Server 2000)

MDStore Interface
MDStore Interface

The MDStore interface is implemented by objects in Decision Support Objects (DSO) that contain multidimensional data. The
following table describes these objects.

Object Description
Database An object that represents a database on the Analysis server. Databases

contain cubes, dimensions, mining models, and roles.
Cube An object that represents a cube on the Analysis server. Cubes contain

dimensions, measures, and commands.
Partition An object that represents the physical storage for the data in a cube.

Partitions contain dimensions, measures, and aggregations.
Aggregation An object that represents the tables of aggregated (that is,

precalculated) data in a cube. Aggregations contain dimensions,
measures, and member properties.

Although all of these objects implement their own internal interfaces, the MDStore interface is the primary interface to be used
when using these objects. To differentiate between the objects implementing the MDStore interface, the ClassType property is
used. The following table lists the objects implementing the MDStore interface and associated ClassType property values.

Object Class type
Database clsDatabase
Cube clsCube
Partition clsPartition
Aggregation clsAggregation

The relationships among these objects are maintained through hierarchical linkages using the MDStores collections of each of
these objects and the server object. The MDStores collection of a server object contains database objects. Database objects
contain cube objects. Cubes contain partitions, and partitions contain aggregations. Together, the MDStore interface and the
MDStores collections establish and maintain the hierarchy that defines the structure of OLAP data.

The MDStore interface provides collections, methods, and properties to manipulate these objects, their contained objects, and
data. The four objects that implement the MDStore interface do not necessarily implement all of the MDStores collections,
properties, and methods. For example, only objects of ClassType clsDatabase have MiningModels collections. Also, some
MDStore properties and collections may be restricted to read-only access by some objects. For example, an object of ClassType
clsDatabase allows read/write access to its DataSources collection, whereas access to the DataSources collection of an object
of ClassType clsAggregation is read-only.

You create objects that implement the MDStore interface by declaring a variable as an MDStore data type and then creating an
instance of the object and adding it to the MDStores collection of another object. The AddNew method of the MDStores
collection creates the instance, sets the object's name to the name you provide, adds the object to the collection, and sets its
parent property to reference the owner of the collection. At the same time, the new object's ClassType is automatically initialized
to the appropriate value depending on the object's parent. For example, if you use the AddNew method to create an object in a
cube's MDStores collection, the new object's ClassType will be set to clsPartition.

For more information about DSO, see Introducing Decision Support Objects and Interfaces.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Examples

The following examples walk through the hierarchy of usage for the MDStore object. First, a server object is created, which
contains an MDStores collection of databases. Next, a database is created in the server's MDStores database collection. Then, a
cube is created in this new database's own collection of MDStores objects. The same process continues by creating a new
partition and a new aggregation using the same method. Each time, an interface (or placeholder) is defined to hold an MDStore
object. Then the AddNew method of the parent object's MDStores collection is used to create the MDStore object.

A. Creating a Server Object

In this example, a new server object is created and a connection is established to a server named LocalHost:

Dim dsoServer As DSO.Server
' Create a server object and connect to an OLAP server.
Set dsoServer = New DSO.Server
dsoServer.Connect("LocalHost")

Analysis Services Programming (SQL Server 2000)

Collections, MDStore Interface
Collections, MDStore Interface

The MDStore interface supports the following collections.

Collection Description
Commands The collection of user-defined commands or sequence of

commands
CustomProperties The collection of user-defined properties
DataSources The collection of objects specifying a data provider
Dimensions The collection that holds the dimension definitions for an

object
MDStores The collection that holds MDStore objects
Measures The collection that holds the measures
MiningModels The collection of data mining models contained within a

database
Roles The collection that holds the user role definitions for a

database

The following table shows the class types of the objects that each collection can contain.

Collection Class type of contained objects
Commands clsCubeCommand

clsDatabaseCommand
CustomProperties Property
DataSources clsDataSource
Dimensions clsAggregationDimension

clsCubeDimension
clsDatabaseDimension
clsPartitionDimension

MDStores clsAggregation
clsCube
clsDatabase
clsPartition

Measures clsAggregationMeasure
clsCubeMeasure
clsPartitionMeasure

MiningModels clsMiningModel
Roles clsCubeRole

clsDatabaseRole
clsMiningModelRole

Access Cross-Reference

The following table shows whether a collection is read/write (R/W), read-only (R), or not applicable (n/a) for each of the MDStore
objects.

Collection clsDatabase clsCube clsPartition clsAggregation
Commands R/W R/W n/a n/a
Custom
Properties

R/W R/W R/W R/W

DataSources R/W R/W* R/W n/a
Dimensions R/W R/W R R
MDStores R/W R/W R/W R
Measures n/a R/W R R

MiningModels R/W n/a n/a n/a
Roles R/W R/W n/a n/a

*This property is not applicable (n/a) for virtual cubes (that is, those of SubClassType sbclsVirtual).

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Methods, MDStore Interface
Methods, MDStore Interface

 New Information - SQL Server 2000 SP3.

The MDStore interface supports the following methods.

Method Description
BeginTrans Begins a transaction on a database.
Clone Copies an existing object to a target object of the same class type.
CommitTrans Commits a transaction.
CommitTransEx Commits a transaction, additionally providing control over lazy

processing.
LockObject Locks an object to prevent multiple users from concurrently

changing the object. This method is administered through the
Command interface.

Merge Merges two partitions.
Process Processes an MDStore object.
Rollback Rolls back a transaction.
UnlockObject Unlocks a previously locked object.
Update Updates the definition of an object in the meta data repository.

Method/Class Cross-Reference

The following table shows the implementation of methods by object. X indicates applicable; n/a indicates not applicable.

Method Database Cube Partition Aggregation
BeginTrans X n/a n/a n/a
Clone X X X X
CommitTrans X n/a n/a n/a
CommitTransEx X n/a n/a n/a
LockObject X X X n/a
Merge n/a n/a X n/a
Process X X X n/a
Rollback X n/a n/a n/a
UnlockObject X X X n/a
Update X X X n/a

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

BeginTrans (MDStore Interface)
BeginTrans (MDStore Interface)

 New Information - SQL Server 2000 SP3.

The BeginTrans method of the MDStore interface initiates a transaction on the Analysis server database.

Applies To

clsDatabase

Syntax

object.BeginTrans

object

The Database object to which changes are to be applied.

Remarks

Transactions group the processing of objects on the Analysis server by using the Process method for Database, Cube, Partition,
or Dimension objects after executing the BeginTrans method. Processing actions within a transaction are not initiated on the
server until you execute the CommitTrans or CommitTransEx method. You can use the Rollback method to void a transaction
and leave the state of the objects on the server in the same condition they were in before the transaction was initiated. The
processing of all objects on which you execute the Process method within the same transaction is completed as a single atomic
operation. All of the specified processing is completed if the transaction completes successfully; none of it is completed if you roll
back the transaction or if it terminates abnormally.

If you invoke a Process method on an object without first explicitly beginning a transaction using the BeginTrans method,
Decision Support Objects (DSO) creates a single transaction for you so that the object you are processing is always processed
inside a transaction.

Example

The following code example begins a transaction on the FoodMart 2000 database, processes the Sales and Budget cubes, and
commits the transaction:

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore

 ' Connect to the local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Begin a transaction on the database.
 dsoDB.BeginTrans

 ' Create a reference to the Sales cube.
 Set dsoCube = dsoDB.MDStores("Sales")

 ' Process the cube, refreshing data.
 dsoCube.Process processRefreshData

 'Creae a reference to the Budget cube.
 Set dsoCube = dsoDB.MDStores("Budget")

 ' Process the cube completely.
 dsoCube.Process processFull

 ' Commit the transaction.
 dsoDB.CommitTrans

Analysis Services Programming (SQL Server 2000)

Clone (MDStore Interface)
Clone (MDStore Interface)

The Clone method of the MDStore interface copies the property values and optionally the collections of major and minor objects
of an existing object to a target object of the same class type.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Syntax

object.Clone(ByVal TargetObject As MDStore, [ByVal Options As CloneOptions = cloneMajorChildren])

object

The MDStore object whose property values and collections of major and minor objects are to be copied.

TargetObject

An existing MDStore object.

Options

One of the values of the CloneOptions enumeration. If no value is specified, the cloneMajorChildren option is used. For more
information, see CloneOptions.

Remarks

The Clone method, depending on the clone option specified in Options, copies properties and minor objects to a new MDStore
object with the same ClassType property value.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

CommitTrans (MDStore Interface)
CommitTrans (MDStore Interface)

 New Information - SQL Server 2000 SP3.

The CommitTrans method of the MDStore interface commits a transaction previously initiated by the BeginTrans method on a
Database object.

Applies To

clsDatabase

Syntax

object.CommitTrans

object

The Database object associated with the transaction.

Remarks

The CommitTrans method commits the transaction started with the BeginTrans method. The Rollback method can be used if
the objects involved in the transaction are rolled back to the state prior to the execution of the BeginTrans method. If the
CommitTrans method is called before the BeginTrans method is called, an error occurs.

Example

The following code example begins a transaction on the FoodMart 2000 database, processes the Sales and Budget cubes, and
commits the transaction.

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore

 ' Connect to the local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Begin a transaction on the database.
 dsoDB.BeginTrans

 ' Create a reference to the Sales cube.
 Set dsoCube = dsoDB.MDStores("Sales")

 ' Process the cube, refreshing data.
 dsoCube.Process processRefreshData

 'Create a reference to the Budget cube.
 Set dsoCube = dsoDB.MDStores("Budget")

 ' Process the cube completely.
 dsoCube.Process processFull

 ' Commit the transaction.
 dsoDB.CommitTrans

Analysis Services Programming (SQL Server 2000)

CommitTransEx (MDStore Interface)
CommitTransEx (MDStore Interface)

 New Information - SQL Server 2000 SP3.

The CommitTransEx method of the MDStore interface commits a transaction previously initiated by the BeginTrans method on
a Database object, additionally providing control over lazy processing.

Applies To

clsDatabase

Syntax

object.CommitTransEx([ByVal Options As ProcessTypes])

object

The Database object to process.

Options

An optional parameter specifying one of the values enumerated by the ProcessTypes enumeration. For more information, see
ProcessTypes.

Remarks

The CommitTransEx method is similar to the CommitTrans method in that the CommitTransEx method commits the
transaction started with the BeginTrans method. The Rollback method can be used if the objects involved in the transaction are
rolled back to the state prior to the execution of the BeginTrans method. If the CommitTransEx method is called before the
BeginTrans method is called, an error occurs.

The CommitTransEx uses an optional parameter from the ProcessTypes enumeration to control processing behavior. Only two
values are allowed—processDefault and processFullReaggregate. If no parameter is provided, the processDefault value is
used.

If the CommitTransEx method is called using the processFullReaggregate value, the method iterates through all of the cubes
in the database. If any cube meets the following criteria, it is processed as if the Process method was called using the new
processFullReaggregate option described earlier:

The cube uses one or more changing dimensions previously referenced within the current transaction.

The cube itself has not been processed within the current transaction.

None of the partitions for the cube have been processed within the current transaction.

If the cube does not meet all of these criteria, an error is raised. Also, if the processing of a dimension invalidates the structure of a
cube, the cube is ignored for the purposes of re-aggregation, but no error is raised.

If the CommitTransEx method is called using the processDefault value, the method functions identically to the CommitTrans
method.

Example

The following code sample demonstrates the use of the CommitTransEx method on the FoodMart 2000 sample database. Both
the Sales and the Warehouse cubes in FoodMart 2000 use the Product dimension, so the CommitTransEx method will
automatically process the Sales and Warehouse cubes because the Product dimension was incrementally updated within the
transaction:

Public Sub ReaggregateProductAndDatabase()
 Dim dsoServer As DSO.Server
 Dim dsoDatabase As DSO.MDStore
 Dim dsoDimension As DSO.Dimension

 On Error Resume Next

 Set dsoServer = New DSO.Server
 dsoServer.Connect "LocalHost"

 If dsoServer.State = stateConnected Then
 Set dsoDatabase = dsoServer.MDStores("FoodMart 2000")
 If Not (dsoDatabase Is Nothing) Then
 ' Begin the transaction.
 dsoDatabase.BeginTrans

 ' First, process the Product changing dimension.
 Set dsoDimension = dsoDatabase.Dimensions("Product")
 dsoDimension.Process processRefreshData

 ' Commit the transaction.
 dsoDatabase.CommitTransEx processFullReaggregate
 End If
 End If
End Sub

Analysis Services Programming (SQL Server 2000)

LockObject (MDStore Interface)
LockObject (MDStore Interface)

The LockObject method of the MDStore interface locks an object to prevent multiple users from concurrently changing the
object.

Applies To

clsCube

clsDatabase

clsPartition

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String))

object

The object to lock.

LockType

One of the lock types defined in the OlapLockTypes enumeration. For more information, see OlapLockTypes.

LockDescription

A string containing a description of the lock, available to other applications attempting to obtain a lock.

Remarks

It is sometimes possible for an application to request an additional lock on an already locked object. For example, other
applications can request and receive an olapLockRead lock on an object already locked using the olapLockProcess lock. For
more information on how lock types interact, see OlapLockTypes.

See Also

MDStore Interface

UnlockObject

Analysis Services Programming (SQL Server 2000)

Merge (MDStore Interface)
Merge (MDStore Interface)

The Merge method of the MDStore interface merges two partitions into a single partition. The partitions must have the same
aggregations and storage modes.

Applies To

clsPartition

Syntax

object.Merge(ByVal SourceName As String)

object

The partition object into which to merge the source partition object.

SourceName

A string that contains the name of the source partition object.

Remarks

Before merging two partitions that specify data slices, you must first set the slice of the receiving partition to the slice that will
apply after the merge has been completed. Otherwise, the partitions will not be successfully merged. The slice for the receiving
partition must be the parent of the first level, where the slice values for the two partitions differ.

For example, if you are merging a partition that contains data based on the slice [AllTime].[1998].[Quarter2] into a partition that
contains [AllTime].[1998].[Quarter1], the target partition's slice must be set to the parent of the two slices that differ, in this case
[AllTime].[1998]. The target partition's slice must be set to this value before merging the partitions. For more information, see
Managing Partitions and Merging Partitions.

Note This adjustment is done automatically when you merge partitions using the Analysis Manager user interface.

Examples

M erging Data Slices

The following code prepares two partitions for a merge by merging the data slice values so they are equal:

Sub MergeDataSlices(SourcePart As DSO.MDStore, _
 TargetPart As DSO.MDStore)
 ' This example code merges the data slices of two partitions.
 ' This subroutine does not merge the partitions; instead,
 ' it compares the source and target partitions, changing
 ' the target partition to match the source partition to
 ' prepare it for merging.

 Dim dsoDimSource As DSO.Dimension
 Dim dsoLevelSource As DSO.Level
 Dim dsoDimTarget As DSO.Dimension
 Dim dsoLevelTarget As DSO.Level

 Dim nDim As Integer, nLev As Integer, nLev2 As Integer

 ' Search for the first level where the slice differs.
 ' Then use the parent level just above it.
 ' Loop through each dimension in the source partition.
 For nDim = 1 To SourcePart.Dimensions.Count
 Set dsoDimSource = SourcePart.Dimensions(nDim)
 Set dsoDimTarget = TargetPart.Dimensions(nDim)

 ' For each source and target dimension, compare the two
 ' and find the first level where the data slice differs.
 For nLev = 1 To dsoDimSource.Levels.Count
 Set dsoLevelSource = dsoDimSource.Levels(nLev)
 Set dsoLevelTarget = dsoDimTarget.Levels(nLev)

 If dsoLevelSource.SliceValue <> dsoLevelTarget.SliceValue Then

 ' Clear the slice values for all of the levels below
 ' in the target partition.
 For nLev2 = nLev To dsoDimSource.Levels.Count
 Set dsoLevelTarget = dsoDimTarget.Levels(nLev2)
 dsoLevelTarget.SliceValue = ""
 Next

 ' Stop looping through levels.
 Exit For

 End If
 Next
 Next

 ' Now that the target partition is ready for merge,
 ' update it.
 TargetPart.Update
End Sub

Analysis Services Programming (SQL Server 2000)

Process (MDStore Interface)
Process (MDStore Interface)

The Process method of the MDStore interface creates and populates an MDStore object on the Analysis server.

Applies To

clsCube

clsDatabase

clsPartition

Syntax

object.Process([ByVal Options As ProcessTypes])

object

The MDStore object to process.

Options

An optional parameter specifying one of the values enumerated by the ProcessTypes enumeration. For more information, see
ProcessTypes.

Remarks

Databases, cubes, and partitions can be processed. Processing each of these objects means that all subordinate objects are
processed. For example, invoking the Process method for a database processes all of the associated dimensions, cubes, and data
mining models. For more information about processing and the differences between processing and updating, see Maintaining
OLAP Data, Cube Processing, and Dimension Processing.

Processing an MDStore object causes the Analysis server to read source data, perform calculations, and store aggregated data.
For example, processing an object of ClassType clsCube causes the server to read all source data corresponding to the definition
of the cube and to create the resulting multidimensional cube of data. If you use the Process method on a Database object, all
cubes, dimensions, and mining models in the database are processed. Processing a cube automatically causes the processing of
all subordinate partitions. In addition, any of the cube's dimensions whose State property is not set to olapStateCurrent will also
be processed, including shared dimensions.

Processing a cube whose SubClassType is sbclsVirtual causes cubes used by the virtual cube to be processed only if their State
property is not set to olapStateCurrent.

See Also

MDStore Interface

UnlockObject

Analysis Services Programming (SQL Server 2000)

Rollback (MDStore Interface)
Rollback (MDStore Interface)

 New Information - SQL Server 2000 SP3.

The Rollback method of the MDStore interface rolls back a transaction on a database. All changes made to the object
subsequent to the initiation of the transaction with the BeginTrans method are voided and the object remains in the state it was
in at the time of the beginning of the transaction.

Applies To

clsDatabase

Syntax

object.Rollback

object

The database object on which to roll back the transaction.

Remarks

If the Rollback method is called without first calling the BeginTrans method, an error occurs.

Example

The following code example begins a transaction on the FoodMart 2000 database, processes the Sales and Budget cubes, and
rolls back the transaction. Executing the Rollback method for the database restores the Sales and Budget cubes to the state prior
to the execution of the BeginTrans method.

 Dim dsoServer As New DSO.Server
 Dim dsoDB As DSO.MDStore
 Dim dsoCube As DSO.MDStore

 ' Connect to the local Analysis server.
 dsoServer.Connect "LocalHost"

 ' Open the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Begin a transaction on the database.
 dsoDB.BeginTrans

 ' Create a reference to the Sales cube.
 Set dsoCube = dsoDB.MDStores("Sales")

 ' Process the cube, refreshing data.
 dsoCube.Process processRefreshData

 'Create a reference to the Budget cube.
 Set dsoCube = dsoDB.MDStores("Budget")

 ' Process the cube completely.
 dsoCube.Process processFull

 ' Rollback the transaction
 dsoDB.Rollback

Analysis Services Programming (SQL Server 2000)

UnlockObject (MDStore Interface)
UnlockObject (MDStore Interface)

The UnlockObject method of the MDStore interface releases a lock on an MDStore object previously established by the
LockObject method.

Applies To

clsCube

clsDatabase

clsPartition

Syntax

object.UnlockObject

object

The MDStore object to unlock.

Remarks

If an application that created one or more locks terminates before freeing them with the UnlockObject method, the Analysis
server automatically releases the locks when the connection with the application is closed.

See Also

LockObject

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Update (MDStore Interface)
Update (MDStore Interface)

The Update method of the MDStore interface updates the definition of an MDStore object in the meta data repository. Changes
made to the values of an object's properties are not saved to the repository until the object's Update method is executed.

Applies To

clsCube

clsDatabase

clsPartition

Syntax

object.Update

object

The MDStore object to be updated.

Remarks

The Update method has no effect on an object whose IsTemporary property is set to True, which means these objects are not
stored in the repository.

See Also

IsTemporary

LockObject

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Properties, MDStore Interface
Properties, MDStore Interface

The MDStore interface supports the following properties.

Property Description
AggregationPrefix Contains the prefix that associates the MDStore

object with an aggregation in the store.
AllowDrillThrough Indicates whether drillthrough is allowed on the

cube.
Analyzer The analyzer object for the store.
ClassType Returns an enumeration constant identifying the

specific object type.
DefaultMeasure The name of the default measure for the object.
Description The description of the store.
DrillThroughColumns The columns that are included in a drillthrough

query.
DrillThroughFilter The statement restricting rows that are returned by

a drillthrough query.
DrillThroughFrom An SQL FROM clause with the names of the tables

used in drillthrough queries.
DrillThroughJoins An SQL JOIN clause with the names of the tables

used in drillthrough queries.
EstimatedRows The estimated number of rows in the store.
EstimatedSize Estimated size of all rows, in bytes, in the store.
FromClause A comma-separated list of the tables from which

the store data is obtained.
IsDefault Indicates whether the store is the default store.
IsReadWrite Indicates whether the MDStore object is writable.
IsTemporary Indicates whether the object is temporary.
IsValid Indicates whether the store object is valid.
IsVisible Indicates whether a cube is visible to clients.
JoinClause A list of join conditions separated by AND.
LastProcessed The date and time a store was last processed.
LastUpdated A user-defined date. This property is not used by

Microsoft® SQL Server™ 2000 Analysis Services.
Name The name of the store.
OlapMode Returns an enumeration constant that identifies the

type of OLAP mode of the store.
Parent Returns a reference to the parent MDStore object.
ProcessingKeyErrorLimit Sets the number of allowable errors that can occur

before processing will be stopped.
ProcessingKeyErrorLogFileName The UNC path to a file for logging dimension key

errors encountered during processing.
ProcessOptimizationMode Indicates whether the Analysis server creates

indexes and aggregations during or after
processing.

RemoteServer The name of the remote server where the data for
the MDStore object is stored.

Server Returns a reference to the DSO.Server object.
SourceTable The name of the source table for the store.
SourceTableAlias The alias of the source table for the MDStore

object.
SourceTableFilter The SQL expression that specifies the source table

records to include in the store.

State Returns an enumeration constant indicating the
difference between the MDStore object that is
referenced by the DSO client application and the
corresponding MDStore object on the Analysis
server.

SubClassType Returns an enumeration constant that identifies the
subclass type of the object.

Property Cross-Reference

The following table shows whether the property is read/write (R/W), read-only (R), or not applicable (n/a) for different objects.

Property Database Cube Partition Aggregation
AggregationPrefix R R/W R/W R
AllowDrillThrough n/a R/W R n/a
Analyzer n/a R* R n/a
ClassType R R R R
DefaultMeasure n/a R/W R n/a
Description R/W R/W R/W R/W
DrillThroughColumns n/a R/W R/W n/a
DrillThroughFilter n/a R/W R/W n/a
DrillThroughFrom n/a R/W R/W n/a
DrillThroughJoins n/a R/W R/W n/a
EstimatedRows n/a R/W** R/W R/W
EstimatedSize R R R R
FromClause n/a R/W* R/W R/W
IsDefault n/a n/a R R/W
IsReadWrite R R R/W n/a
IsTemporary n/a R R R
IsValid R R R R
IsVisible n/a R/W n/a n/a
JoinClause n/a R/W* R/W R/W
LastProcessed R R R R
LastUpdated R/W R/W R/W R
Name R/W (R after

the object has
been named)

R/W (R after
the object has
been named)

R/W (R after
the object has
been named)

R/W (R after the
object has been
named)

OlapMode R/W R/W* R/W R/W
Parent R R R R
RemoteServer n/a n/a R/W n/a
Server R R R R
SourceTable n/a R/W* R/W R/W
SourceTableAlias n/a R/W R/W n/a
SourceTableFilter n/a R/W* R/W n/a
State R R R n/a
SubClassType R R R R

* This property is not applicable (n/a) for virtual cubes (that is, those of SubClassType sbclsVirtual).
** This property is read-only (R) for virtual cubes (that is, those of SubClassType sbclsVirtual).

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

AggregationPrefix (MDStore Interface)
AggregationPrefix (MDStore Interface)

The AggregationPrefix property of the MDStore interface contains the prefix associated with an aggregation in an MDStore
object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

String (maximum length 50 characters, exclusive of any plus signs)

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsCube R/W
clsDatabase R/W
clsPartition R/W
clsAggregation R

Remarks

The default value for this property depends on the value of the ClassType property of the object.

Class type Default value
clsDatabase None.
clsCube None.
clsPartition If not provided by user, a unique name is derived from the parent

cube name and partition name.
clsAggregation The name of the parent partition.

Aggregation prefixes are used to generate aggregation names, and they are used for table names in the relational database.

A fully expanded aggregation name has four parts:

<DatabasePrefix><CubePrefix><PartitionPrefix><AggregationID>

The first three parts of the name are provided by the user and make up the aggregation prefix; the fourth part of the name is a
system-defined ID over which users have no control. The first two prefixes (DatabasePrefix and CubePrefix) are optional.
CubePrefix is used only if PartitionPrefix begins with a plus sign (+), and DatabasePrefix is used only if CubePrefix begins with a
plus sign. For example, if PartitionPrefix is +_Partition1, CubePrefix is +_1995, and DatabasePrefix is Sales, the aggregation prefix
is Sales_1995_Partition1.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

AllowDrillThrough (MDStore Interface)
AllowDrillThrough (MDStore Interface)

The AllowDrillThrough property of the MDStore interface indicates whether drillthrough is enabled on the cube.

Applies To

clsCube

clsPartition

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsCube R/W
ClsPartition R

Remarks

If this property is set to True, a user with drillthrough permissions on the cube can issue a drillthrough query requesting source
rows for a cell.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Analyzer (MDStore Interface)
Analyzer (MDStore Interface)

The Analyzer property of the MDStore interface contains a reference to the analyzer object associated with an MDStore object.
The system automatically associates one analyzer with an MDStore object.

Applies To

clsCube (excluding virtual cubes)

clsPartition

Data Type

Object

The ClassType value of the returned object depends on the value of the ClassType property of the object.

Class type Returned object class type
ClsCube clsCubeAnalyzer
ClsPartition clsPartitionAnalyzer

Access

Read-only

Remarks

The analyzer object is used to perform structure and data analysis for the cube or partition to which it is associated. For more
information, see clsCubeAnalyzer and clsPartitionAnalyzer.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

ClassType (MDStore Interface)
ClassType (MDStore Interface)

The ClassType property of the MDStore interface contains an enumeration constant identifying the specific class type.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

ClassTypes

Access

Read-only

Remarks

Most objects in Decision Support Objects (DSO) have a ClassType and a SubClassType property. The SubClassType property
uses an enumerated value to provide additional information about the object. This property supports four values from the
ClassTypes enumeration:

clsAggregation

clsCube

clsDatabase

clsPartition

See Also

MDStore Interface

SubClassTypes

Analysis Services Programming (SQL Server 2000)

DefaultMeasure (MDStore Interface)
DefaultMeasure (MDStore Interface)

The DefaultMeasure property of the MDStore interface contains the name of the default measure for the MDStore object.

Applies To

clsCube

clsPartition

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsCube R/W
clsPartition R

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Description (MDStore Interface)
Description (MDStore Interface)

The Description property of the MDStore interface contains a user-supplied description of the MDStore object or its contents.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

String

Access

Read/write

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

DrillThroughColumns (MDStore Interface)
DrillThroughColumns (MDStore Interface)

The DrillThroughColumns property of the MDStore interface contains a list of columns that will be included in a drillthrough
query.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read/write

Remarks

The format of the string is identical to the format of the column list contained in an SQL SELECT clause. It includes the ability to
define aliases. The format of the string in this property is provider-specific; it must be formatted according to the rules of the data
source associated with the cube or partition.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

DrillThroughFilter (MDStore Interface)
DrillThroughFilter (MDStore Interface)

The DrillThroughFilter property of the MDStore interface contains a filter restricting the rows that can be returned by a
drillthrough query.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read/write

Remarks

This property contains a filter restricting the rows that can be returned by a drillthrough query. The format of the string is identical
to the format of the Boolean expression contained in an SQL WHERE clause. If a filter is specified, it is logically combined using
AND with the tables specified by the DrillThroughJoins property. The format of the string in this property is provider-specific; it
must be formatted according to the rules of the data source associated with the cube or partition.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

DrillThroughFrom (MDStore Interface)
DrillThroughFrom (MDStore Interface)

The DrillThroughFrom property of the MDStore interface contains an SQL FROM clause with the names of the tables used in
drillthrough queries.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read/write

Remarks

This property contains the names of the tables to be used in the drillthrough query. The format of the string is identical to the
format of the expression contained in an SQL FROM clause. The format of the string in this property is provider-specific; it must
be formatted according to the rules of the data source associated with the cube or partition.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

DrillThroughJoins (MDStore Interface)
DrillThroughJoins (MDStore Interface)

The DrillThroughJoins property of the MDStore interface contains a series of joins between the tables used in drillthrough
queries.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read/write

Remarks

This property contains the names of the tables to be used in the query. The format of the string is identical to the format of the
Boolean expression contained in an SQL FROM clause. The format of the string in this property is provider-specific; it must be
formatted according to the rules of the data source associated with the cube or partition.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

EnableRealTimeUpdates (MDStore Interface)
EnableRealTimeUpdates (MDStore Interface)

The EnableRealTimeUpdates property of the MDStore interface indicates whether or not the object supports real-time updates.

Applies To

clsAggregation

clsPartition

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsPartition R/W
ClsAggregation R

Remarks

To enable an object of ClassType clsPartition object to support real-time updates, which are used by real-time cubes, the object
must use a relational OLAP (ROLAP) storage mode (the StorageMode property of the object of ClassType clsPartition must be
storeasROLAP) and a Microsoft® SQL Server™ 2000 data source.

See Also

MDStore Interface

Real-Time Cubes

Analysis Services Programming (SQL Server 2000)

EstimatedRows (MDStore Interface)
EstimatedRows (MDStore Interface)

The EstimatedRows property of the MDStore interface contains the estimated number of rows in the MDStore object. This
property value is used in the algorithm that designs aggregations.

Applies To

clsAggregation

clsCube

clsPartition

Data Type

Double

Access

Read/write

Remarks

The interpretation of this property value depends on the value of the ClassType and SubClassType properties of the object.

Class type Subclass type Interpretation of property value
clsCube Any (except

sbclsVirtual)
Number of rows in the fact table of the cube

clsCube sbclsVirtual Sum of number of rows in the underlying
cubes

clsPartition Any Number of rows in the fact table of the
parent cube

clsAggregation Any Number of rows in the aggregation table

See Also

EstimatedSize

MDStore Interface

Analysis Services Programming (SQL Server 2000)

EstimatedSize (MDStore Interface)
EstimatedSize (MDStore Interface)

The EstimatedSize property of the MDStore interface contains the estimated size, in bytes, of the MDStore object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

Double

Access

Read-only

Remarks

Note The EstimatedSize property for a relational OLAP (ROLAP) cube does not include the size of the tables in the relational
database. For a hybrid OLAP (HOLAP) cube, the EstimatedSize property does not include the size of the fact table. For more
information about partition storage modes, see Partition Storage.

The EstimatedSize property is valid only after an object is processed. The interpretation of this property value depends on the
value of the ClassType and SubClassType properties of the object.

Class type Subclass type Interpretation of property value
ClsCube Any (except

sbclsVirtual)
The size of the cube data and aggregations

ClsCube sbclsVirtual The size of the virtual cube
clsPartition Any The size of the partition
clsAggregation Any The size of the aggregation table

See Also

EstimatedRows

MDStore Interface

Analysis Services Programming (SQL Server 2000)

FromClause (MDStore Interface)
FromClause (MDStore Interface)

The FromClause property of the MDStore interface contains a comma-separated list of the fact table and the dimension tables
from which store data is obtained.

Applies To

clsAggregation

clsCube (excluding virtual cubes)

clsPartition

Data Type

String

Access

Read/write

Remarks

The FromClause property contains the string used by the data source provider to construct an SQL FROM clause.

Note You must separate the table and column names with the delimiters appropriate to the source database. You can use the
CloseQuoteChar and OpenQuoteChar properties of the DataSource object to determine the correct delimiters.

Example

 ' Assume the existence of a clsCube object, named dsoCube.
 dsoCube.FromClause = """tblFacts"", ""tblProduct"", ""tblCustomer"""

The previous code example sets the FromClause property to the following string:

"tblFacts", "tblProduct", "tblCustomer"

See Also

EstimatedRows

MDStore Interface

Analysis Services Programming (SQL Server 2000)

IsDefault (MDStore Interface)
IsDefault (MDStore Interface)

The IsDefault property of the MDStore interface indicates that an MDStore object is the default partition of a cube or the default
aggregation of a partition.

Applies To

clsAggregation

clsPartition

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregation R/W
clsPartition R

Remarks

The default value for this property depends on the value of the ClassType property of the object.

Class type Default value
clsAggregation If you generate the aggregation by using an object of ClassType

clsPartitionAnalyzer, the system automatically sets IsDefault to
True. Generating aggregations in this way has performance benefits
and is the recommended method for generating aggregations.

If you generate the aggregation without using a partition analyzer
object, you should set IsDefault to False.

clsPartition True if the partition is the only one in the cube, False otherwise.

Note This property does not indicate that an aggregation object is the default within a collection of aggregations. If set to True, it
indicates that the aggregation object contains the default dimensions and measures of the partition, which are already stored in
the repository. This reduces the size of aggregation meta data, which can become important when a partition contains a large
number of aggregations.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

IsReadWrite (MDStore Interface)
IsReadWrite (MDStore Interface)

The IsReadWrite property of the MDStore interface indicates whether the MDStore object is read-only or write-enabled.

Applies To

clsCube

clsDatabase

clsPartition

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsCube R
clsDatabase R
clsPartition R/W

Remarks

The IsReadWrite property for objects of ClassType clsCube is set to True if the IsReadWrite property is set to True for at least
one of the partitions associated with the cube. The IsReadWrite property for objects of ClassType clsDatabase is set to True if
the IsReadWrite property is set to True for at least one of the cubes associated with the database.

See Also

MDStore Interface

Write-Enabled Cubes

Analysis Services Programming (SQL Server 2000)

IsTemporary (MDStore Interface)
IsTemporary (MDStore Interface)

The IsTemporary property of the MDStore interface indicates whether an object is temporary. Temporary objects are local to the
session in which they are created, cannot be saved, and are not available to other users. To create a temporary object, preface the
name with the tilde (~) character.

Applies To

clsAggregation

clsCube

clsPartition

Data Type

Boolean

Access

Read-only

Remarks

A temporary object is not stored in the repository and is not available to other users. Temporary objects persist only during the
session in which they are created unless renamed or cloned to another existing object having the same class type. Objects
subordinate to a temporary object, such as levels for a dimension, internally inherit the parent object's IsTemporary setting.

Note Only temporary objects can be renamed by changing the Name property. Removing the tilde (~) character from the name
of a temporary object means that it is no longer temporary and prevents subsequent renaming of the object. Also, executing the
Update method of a temporary object has no effect; the object is not saved to the repository unless the tilde prefix is removed by
changing the Name property.

Examples

Creating a Temporary Object

Use the following code to create a temporary dimension object that is renamed and saved to the repository:

'Assume an object (dsoCube) of ClassType clsCube exists.
Dim tmpDim As DSO.Dimension
Set tmpDim = dsoCube.Dimensions.AddNew("~MyDim") 'Temporary
'Add levels, member properties, process, etc.
...
'This is something we want to keep - so drop "~".
tmpDim.Name = "MyDim" 'No longer temporary
tmpCube.Update

Analysis Services Programming (SQL Server 2000)

IsValid (MDStore Interface)
IsValid (MDStore Interface)

The IsValid property of the MDStore interface indicates whether the MDStore object and its dependent objects are valid.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

Boolean

Access

Read-only

Remarks

Validation depends on the value of the ClassType property of the object.

Class type Validation
clsAggregation The name, parent, and prefix of the aggregation
clsCube The measures, dimensions, data source, fact table, and other

properties of the cube
clsDatabase The cubes, virtual cubes, dimensions, roles, and commands of the

database
clsPartition The measures, dimensions, fact table, aggregation prefix, and other

properties of the partition

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

IsVisible (MDStore Interface)
IsVisible (MDStore Interface)

The IsVisible property of the MDStore interface indicates whether a cube is visible to client applications.

Applies To

clsCube (excluding virtual cubes)

Data Type

Boolean

Access

Read/write

Remarks

You can create virtual cubes whose source cubes are not visible to client applications. This provides you with greater control over
the data available to client users.

See Also

MDStore Interface

Virtual Cubes

Analysis Services Programming (SQL Server 2000)

JoinClause (MDStore Interface)
JoinClause (MDStore Interface)

The JoinClause property of the MDStore interface contains the list of join conditions currently defined for an MDStore object.

Applies To

clsAggregation

clsCube (excluding virtual cubes)

clsPartition

Data Type

String

Access

Read/write

Remarks

The JoinClause property stores the list of join conditions for the data source in the format used to define an SQL INNER JOIN
clause for the data source provider.

Note You must separate the table and column names with the delimiters that are appropriate to the source database. You can
use the CloseQuoteChar and OpenQuoteChar properties of the DataSource object to determine the correct quoting
characters.

Example

 ' Assume the existence of a clsCube object named dsoCube.
 dsoCube.JoinClause = """FactTable"".""CustomerId""=" & _
 """CustTable"".""CustomerId"" AND " & _
 """FactTable"".""ProductId""=""ProductTable"".""SKU"""

The previous code example sets the JoinClause property to the following string:

"FactTable"."CustomerId"="CustTable"."CustomerId" AND "FactTable"."ProductId"="ProductTable"."SKU"

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

LastProcessed (MDStore Interface)
LastProcessed (MDStore Interface)

The LastProcessed property of the MDStore interface contains the date and time when an MDStore object was last processed.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

Date

Access

Read-only

Remarks

The LastProcessed property for an object is undefined and will raise an error if you attempt to read it when the value of the
object's State property is olapStateNeverProcessed. For more information, see State.

See Also

MDStore Interface

Process

Analysis Services Programming (SQL Server 2000)

LastUpdated (MDStore Interface)
LastUpdated (MDStore Interface)

The LastUpdated property of the MDStore interface is not used by Microsoft® SQL Server™ 2000 Analysis Services. You can set
this to any date/time value you want, for example, to indicate when the source data was last changed.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

Date

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabase R/W
ClsCube R/W
ClsPartition R/W
ClsAggregation R

Remarks

Except for aggregation objects, which inherit the value of this property from their parents, the LastUpdated property is not
automatically set by any method in the Decision Support Objects (DSO) object model. It is provided as a means for client
applications to specify a date or time that represents the validity of information. For example, a date of 12/31/97 may mean that
the information stored in a cube is not valid after December of 1997.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

LazyOptimizationProgress (MDStore Interface)
LazyOptimizationProgress (MDStore Interface)

The LazyOptimizationProgress property returns the progress of lazy optimization processing for an object of ClassType
clsPartition object representing a multidimensional OLAP (MOLAP) partition.

Applies To

clsPartition

Data Type

Integer

Access

Read-only

Remarks

This property reports lazy processing progress for MOLAP partitions as an integer between 0 and 100, representing the
completed percentage of lazy processing. For relational OLAP (ROLAP) and hybrid OLAP (HOLAP) partitions, the returned value is
always 100. For unprocessed partitions or for partitions whose lazy processing has not yet started, this property returns 0.

See Also

MDStore Interface

State

Dimension Storage Modes

Analysis Services Programming (SQL Server 2000)

Name (MDStore Interface)
Name (MDStore Interface)

The Name property of the MDStore interface contains the name of the MDStore object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

String (maximum length of 50 characters)

Access

Read/write (read-only after the object has been named)

Remarks

The primary mechanism for identifying an MDStore object is the Name property. You specify the name of an object when you
create the object. Unless the object is temporary, you cannot rename it after it has been created.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

OlapMode (MDStore Interface)
OlapMode (MDStore Interface)

The OlapMode property of the MDStore interface contains the OLAP storage mode assigned to the MDStore object.

Applies To

clsAggregation

clsCube (excluding virtual cubes)

clsDatabase

clsPartition

Data Type

OlapStorageModes

Access

Read/write

Remarks

The OlapMode property defines the storage mode for each fact table and aggregation in an MDStore object. Possible storage
modes are relational OLAP (ROLAP) and multidimensional OLAP (MOLAP). Hybrid OLAP (HOLAP) storage combines ROLAP and
MOLAP storage modes. Setting this property for a clsDatabase object defines the default storage mode for new cubes created
within the database, whereas setting this property for a clsCube object defines the default storage mode for new partitions
created within the cube.

This property is read-only and always olapmodeROLAP for a linked cube (that is, a cube of SubClassType of sbclsLinked).

See Also

MDStore Interface

Storage Modes for Partitions (MOLAP, ROLAP, HOLAP)

Analysis Services Programming (SQL Server 2000)

Parent (MDStore Interface)
Parent (MDStore Interface)

The Parent property of the MDStore interface contains a reference to the parent of the MDStore object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

Object

The ClassType value of the returned object depends on the value of the ClassType property of the object.

Class type Returned object class type
ClsDatabase clsServer
ClsCube clsDatabase
ClsPartition clsCube
ClsAggregation clsPartition

Access

Read-only

Remarks

The return type of the Parent property depends on the ClassType property of the object itself. For example, an object of
ClassType clsDatabase has an MDStores collection that contains objects of ClassType clsCube. The object of ClassType
clsDatabase is the parent of the clsCube objects.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

ProcessingKeyErrorLimit (MDStore Interface)
ProcessingKeyErrorLimit (MDStore Interface)

The ProcessingKeyErrorLimit property of the MDStore interface sets the number of allowable dimension key errors that cause
processing on the Analysis server to cease.

Applies To

clsCube

clsPartition

Data Type

Long

Access

Read/write

Remarks

If the value of this property is 0 (the default), processing stops and an error description is written to the file specified in the
ProcessingKeyErrorLogFileName property (if one is specified) the very first time a dimension key error is encountered during
processing. By default, this property is set for an entire cube. However, it can be overridden by the value of this property for the
individual partitions of the cube.

See Also

Cube Processing

MDStore Interface

Analysis Services Programming (SQL Server 2000)

ProcessingKeyErrorLogFileName (MDStore Interface)
ProcessingKeyErrorLogFileName (MDStore Interface)

The ProcessingKeyErrorLogFileName property of MDStore interface stores a directory path to a file for logging dimension key
errors encountered during processing.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read/write

Remarks

Dimension key errors occurring during processing will result in a row being appended to the error log file if specified in this
property. This file is in comma-separated values format (.csv) with the following fields:

Date and time of the error

The name of the database object containing the cube being processed

The name of the cube being processed

The name of the partition of the cube being processed

The name of the dimension with the key error

The name of the level with the key error (empty for parent-child dimensions)

The key value from the cube's fact table that failed to match to the dimension

A key value that fails during processing may be written more than once. Thus, it is possible for this value to fail multiple times
during an operation.

This error log file can be used to find rows in the fact table that do not correspond to rows in the dimension source table. For
example, you can import the log file into a table within Microsoft® SQL Server™ 2000 and construct a query with an inner join
between the fact table to the error log table to find the distinct rows that will not match.

By default, this property applies to the entire cube. However, it can be overridden by the value for this property for the individual
partitions of the cube.

See Also

Cube Processing

MDStore Interface

Analysis Services Programming (SQL Server 2000)

ProcessOptimizationMode (MDStore Interface)
ProcessOptimizationMode (MDStore Interface)

The ProcessOptimizationMode property of the MDStore interface indicates whether the Analysis server indexes and
aggregates during or after processing.

Applies To

clsCube

clsPartition

Data Type

ProcessOptimizationModes

Access

Read/write

Remarks

This property can be used to expedite the availability of a cube or partition to users for analysis. By default, the
processOptimizationModeRegular option specifies that the cube's source data is read, stored, indexed, and aggregated within
the processing transaction. The processOptimizationModeLazyOptimizations option reads and stores the source data during
the processing transaction and performs lazy processing of indexes and aggregations after processing is complete, when the
Analysis server is idle.

By default, this property applies to the entire cube. However, it can be overridden by the value for this property for the individual
partitions of the cube.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

RemoteServer (MDStore Interface)
RemoteServer (MDStore Interface)

The RemoteServer property of the MDStore interface contains the name of the remote server where the data for the partition is
stored, for remote partitions.

Applies To

clsPartition

Data Type

String

Access

This property is read-write only for partitions with a SubClassType of sbclsRemote. This property is read-only for all others.

Remarks

When the partition is first created, the value of this property is the empty string. After the property has been changed, it becomes
read-only and cannot be changed again. If you want to change the remote server, you must delete and then re-create the
partition. Remote partitions are used by distributed partitioned cubes to store partitioned data on Analysis servers other than the
one on which the distributed partitioned cube is defined.

See Also

MDStore Interface

Distributed Partitioned Cubes

Analysis Services Programming (SQL Server 2000)

Server (MDStore Interface)
Server (MDStore Interface)

The Server property of the MDStore interface contains a reference to the DSO.Server object that is the ancestor of the object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

clsServer

Access

Read-only

Remarks

You can use this property to access the methods and properties of the server object.

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

SourceTable (MDStore Interface)
SourceTable (MDStore Interface)

The SourceTable property of the MDStore interface contains the name of the fact table associated with the MDStore object.

Applies To

clsAggregation

clsCube (excluding virtual cubes)

clsPartition

Data Type

String

Access

Read/write

See Also

MDStore Interface

SourceTableFilter

Analysis Services Programming (SQL Server 2000)

SourceTableAlias (MDStore Interface)
SourceTableAlias (MDStore Interface)

The SourceTableAlias property of the MDStore interface contains the alias of the source table for the cube or partition.

Applies To

clsCube

clsPartition

Data Type

String

Access

Read-write

Remarks

If the source table has no alias, the contents of this property are identical to those of the SourceTable property.

Examples

Setting the SourceTable and SourceTable Alias Properties

The following example shows how to set the SourceTable and SourceTableAlias properties:

' Assume that an MDStore object dsoCube exists
' If the FromClause property for the cube is:
' "customer, store, sales_fact_1997 AS Sales"
' Set the SourceTable property to the actual name of the table
dsoCube.SourceTable = "sales_fact_1997"
' And set the SourceTableAlias property to the name of the alias
dsoCube.SourceTableAlias = "Sales"

Analysis Services Programming (SQL Server 2000)

SourceTableFilter (MDStore Interface)
SourceTableFilter (MDStore Interface)

The SourceTableFilter property of the MDStore interface contains the WHERE clause of an SQL statement (without the WHERE
keyword) used to determine which fact table records are to be included in the MDStore object.

Applies To

clsCube (excluding virtual cubes)

clsPartition

Data Type

String

Access

Read/write

Remarks

The SQL statement can contain multiple conditions, for example:

"time_by_day"."the_year" = '1997' AND "product"."product_id" = 'soap'

Note You must separate the table and column names with the delimiters that are appropriate to the source database. You can
use the CloseQuoteChar and OpenQuoteChar properties of the DataSource object to determine the correct quoting
characters.

See Also

MDStore Interface

SourceTable

Analysis Services Programming (SQL Server 2000)

State (MDStore Interface)
State (MDStore Interface)

The State property of the MDStore interface returns an enumeration constant indicating the processing state of the object on the
server represented by the Decision Support Objects (DSO) MDStore object.

Applies To

clsCube

clsDatabase

clsPartition

Data Type

OlapStateTypes

Access

Read-only

Remarks

The State property indicates the current status of an MDStore object. It is used to determine whether processing of the object is
required. For more information, see OlapStateTypes.

The supported values of the State property depend on the value of the class type of the associated MDStore object. The default
value is olapStateNeverProcessed.

Class type State
ClsDatabase olapStateNeverProcessed

olapStateCurrent
ClsCube olapStateNeverProcessed

olapStateSourceMappingChanged
olapStateCurrent

ClsPartition All states apply

See Also

MDStore Interface

Analysis Services Programming (SQL Server 2000)

SubClassType (MDStore Interface)
SubClassType (MDStore Interface)

The SubClassType property of the MDStore interface contains the enumeration constant that identifies the subclass type of the
object.

Applies To

clsAggregation

clsCube

clsDatabase

clsPartition

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects of ClassType clsAggregation and clsDatabase can have a SubClassType property value of sbclsRegular. An object of
ClassType clsCube can be of SubClassType sbclsRegular, sbclsVirtual, and sbclsLinked. An object of ClassType clsPartition
can be of SubClassType sbclsRegular and sbclsRemote.

Examples

Checking the SubClassType Property of a Cube

Use the following code to check the SubClassType property of a cube:

'Assume an object (dsoCube) of ClassType clsCube exists.
If dsoCube.SubClassType = sbclsVirtual Then
 'Code to handle a virtual cube
Else
 'Code to handle a regular cube
End If

Analysis Services Programming (SQL Server 2000)

Measure Interface
Measure Interface

Measures are the quantitative, numerical columns from the fact table of a cube. When a cube is processed, the data in the
measures is aggregated across the dimensions in the cube. The aggregate functions are: Sum, Min, Max, Count, and Distinct
Count. For more information, see Aggregate Functions.

In Decision Support Objects (DSO), the objects that implement the Measure interface have a ClassType property value of
clsCubeMeasure, clsPartitionMeasure, or clsAggregationMeasure. These objects serve as containers for measure objects
within each respective parent object. The Measure interface provides collections and properties that allow you to manipulate
these objects. There are no methods associated with this interface. For more information about cube, partition, and aggregation
objects, and how they relate to each other, see Introducing Decision Support Objects.

Not all of the objects that implement the Measure interface implement all of the properties of the interface. The properties of
some objects may be restricted to read-only access, depending upon their type. For example, a clsCubeMeasure object allows
read and write access to its FormatString property. Access to this property for any other measure object is read-only. The
collections and properties of the Measure interface also apply to the measures of virtual cubes, although no special class is
implemented for virtual cube measures. There are no methods associated with the Measure interface.

To illustrate the place of measures in a fact table, consider the case of a database that contains the following tables:

Sales_Facts

Customer

Product

Promotion

Product_Class

Store

Calendar

The following diagram illustrates the relationships of these tables.

If you build a cube based upon this database, the Sales_Facts table will be the fact table. The related tables will be the dimensions.
The Sales_Quantity, Unit_Price, and Unit_Cost rows are measures that can be precalculated across dimensions such as Store,
Customer, or Product.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

See Also

Collections, Measure Interface

Properties, Measure Interface

Analysis Services Programming (SQL Server 2000)

Collections, Measure Interface
Collections, Measure Interface

The Measure interface supports the following collection.

Collection Description
CustomProperties The collection of user-defined properties

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Access

Read/write

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

Properties, Measure Interface
Properties, Measure Interface

The Measure interface supports the following properties.

Property Description
AggregateFunction Sets or returns a value that corresponds to the type of

aggregate function used for a measure
ClassType Returns an enumeration constant that identifies the

specific object type
Description Sets or returns the measure description
FormatString Sets or returns the format used to display the measure

values
IsValid Indicates whether the measure object is valid
IsVisible Indicates whether the measure is visible to client

applications
Name Sets or returns the measure name
OrdinalPosition Returns the ordinal position of the measure in the parent

object's Measures collection
Parent Returns a reference to the parent MDStore object
SourceColumn Sets or returns the name of the column that is

precalculated
SourceColumnType Sets or returns the data type of the measure source

column
SubClassType Returns an enumeration constant that identifies the

subclass type of the object

Access Cross-Reference

The following table shows whether the property is read/write (R/W) or read-only (R) for different objects.

Property
clsCube
Measure

clsPartition
Measure

clsAggregation
Measure

AggregateFunction R/W* R R
ClassType R R R
Description R/W R R
FormatString R/W* R R
IsValid R R R
IsVisible R/W R R
Name R/W (R after the

object has been
named)

R/W (R after the
object has been
named)

R/W (R after the
object has been
named)

OrdinalPosition R R R
Parent R R R
SourceColumn R/W R/W R
SourceColumnType R/W* R R
SubClassType R R R

* This property is read-only (R) for virtual cubes (that is, those of SubClassType sbclsVirtual).

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

AggregateFunction (Measure Interface)
AggregateFunction (Measure Interface)

The AggregateFunction property of the Measure interface contains an enumeration constant that corresponds to the type of
aggregate function used to generate the precalculated value of the measure.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

AggregatesTypes

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R

* Read-only for virtual cube measures and measures in fully-created linked cubes.

Remarks

To create more sophisticated measures (for example, ratios or statistical functions), use the command object to create a calculated
member. For more information, see clsCubeCommand and clsDatabaseCommand.

Note Because the DISTINCT COUNT aggregation function does not support custom aggregations, the use of this aggregation
function in combination with the CustomRollupExression and CustomRollupColumn properties is not supported. If a cube
uses the DISTINCT COUNT aggregation function and any of the dimensions in that cube use either the
CustomRollupExpression property or the CustomRollupColumn property, including data mining dimensions, the cube is
invalid. Processing such a cube raises a validation error.

Examples

Reading the AggregateFunction Property of a M easure Object

Use the following code to read the value of the AggregateFunction property of a measure object:

'Assume an object (dsoAggMea) of ClassType clsAggregationMeasure exists
Dim AggType As DSO.AggregatesTypes
AggType = dsoAggMea.AggregateFunction
Select Case AggType
 Case aggSum
 ' Insert code for aggregation summation.
 Case aggCount
 ' Insert code for aggregation counts.
 Case aggMin
 ' Insert code for aggregation min.
 Case aggMax
 ' Insert code for aggregation max.
 Case aggDistinctCount
 ' Insert for aggregation distinct counts.
End Select

Analysis Services Programming (SQL Server 2000)

ClassType (Measure Interface)
ClassType (Measure Interface)

The ClassType property of the Measure interface returns an enumeration constant that identifies the specific object type.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

ClassTypes

For measure objects, ClassType is set to one of the following values:

clsCubeMeasure

clsPartitionMeasure

clsAggregationMeasure

Access

Read-only

Examples

Determining the ClassType Property of a M easure Object

Use the following code to return the class type of a measure object and determine which object class has been returned:

'Assume an object (dsoCubeMea) of ClassType clsCubeMeasure exists
Select Case dsoCubeMea.ClassType
 Case clsCubeMeasure
 ' Insert code for a cube measure.
 Case clsPartitionMeasure
 ' Insert code for a partition measure.
 Case clsAggregationMeasure
 ' Insert code for an aggregation measure.
 Case Else
 ' other commands
End Select

Analysis Services Programming (SQL Server 2000)

Description (Measure Interface)
Description (Measure Interface)

The Description property of the Measure interface contains the measure description.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregationMeasure R
clsCubeMeasure R/W
clsPartitionMeasure R

Example

Use the following code to set the measure object's description:

'Assume an object (dsoCubeMea) of ClassType clsCubeMeasure exists
dsoCubeMea.Description = "Extended price"

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

FormatString (Measure Interface)
FormatString (Measure Interface)

The FormatString property of the Measure interface contains the format used to display the measure values. Any format string
valid for use with Microsoft® Visual Basic® is acceptable.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R

* Read-only for virtual cube measures.

Example

Use the following code to set the format string for the measure object [Sales_Facts].[Price]:

'Assume an object (dsoCubeMea) of ClassType clsCubeMeasure exists
dsoCubeMea.FormatString = "#,###.##"

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

IsValid (Measure Interface)
IsValid (Measure Interface)

The IsValid property of the Measure interface indicates whether the measure structure is valid.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

Boolean

Access

Read-only

Remarks

Depending on the value of the ClassType property of the measure object, the IsValid property validates the properties and
methods of the measure as indicated in the following table.

Class type Validation
clsAggregationMeasure Name, Parent, and SourceField

properties
clsCubeMeasure Name, Parent, SourceField, and

ColumnType properties
clsPartitionMeasure Name, Parent, SourceField, and

ColumnType properties

Example

Use the following code to determine whether the structure of a measure object is valid:

'Assume an object (dsoCubeMea) of ClassType clsCubeMeasure exists
Dim bValid As Boolean
bValid = dsoCube.IsValid

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

IsVisible (Measure Interface)
IsVisible (Measure Interface)

The IsVisible property of the Measure interface determines whether the measure is visible to client applications.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

Boolean

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsAggregationMeasure R
ClsCubeMeasure R/W
ClsPartitionMeasure R

Remarks

You can use hidden measures to contain calculations used by other members, thereby keeping intermediate values away from
client users.

At least one measure in a cube must be visible. The Analysis server raises an error if all the measures of a cube have their
IsVisible property set to False.

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

Name (Measure Interface)
Name (Measure Interface)

The Name property of the Measure interface contains the name of the measure object.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

String

Access

Read/write (Objects can be renamed after their initial creation.)

Example

Use the following code to create a cube measure object and name it MyMeasure:

'Assume an object (dsoCube) of ClassType clsCube exists
Dim dsoMeasure As DSO.Measure
Set dsoMeasure = dsoCube.Measures.AddNew("MyMeasure")

See Also

Description

Measure Interface

Analysis Services Programming (SQL Server 2000)

OrdinalPosition (Measure Interface)
OrdinalPosition (Measure Interface)

The OrdinalPosition property of the Measure interface contains the ordinal position of the measure in the Measures collection
of the parent object.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

Integer

Access

Read-only

Remarks

If no default measure is specified, the first measure is the default measure for the cube. If a Multidimensional Expressions (MDX)
expression or query does not contain an explicit reference to a measure, the Analysis server performs the command using the
default measure.

Example

Use the following code to return the ordinal position of a measure object:

Dim OrdPos As Integer
OrdPos = MeasureObject.OrdinalPosition

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

Parent (Measure Interface)
Parent (Measure Interface)

The Parent property of the Measure interface contains a reference to the parent MDStore object.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

MDStore

The ClassType value of the returned object depends on the value of the ClassType property of the object.

Class type Returned object class type
ClsAggregationMeasure clsAggregation
ClsCubeMeasure clsCube
ClsPartitionMeasure clsPartition

Access

Read-only

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

SourceColumn (Measure Interface)
SourceColumn (Measure Interface)

The SourceColumn property of the Measure interface contains a reference to the column in the fact table that contains the
measure.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregationMeasure R
clsCubeMeasure R/W
clsPartitionMeasure R/W

Remarks

To set this property for a measure contained in a regular cube, use the delimiter characters for the data source when naming the
table and the column.

For a virtual cube (a cube object with IsVirtual = True), the SourceColumn property is used to reference a measure within an
existing cube rather than a column in a source fact table. When you set this property for a measure object within a virtual cube,
you do not need to include the delimiter characters associated with the data source for the underlying cube.

The SourceColumn property works in conjunction with the SourceColumnType property.

Examples

Setting the SourceColumn Property

Use the following code to set the SourceColumn property for two measure objects:

' Assume two objects (dsoCubeMea, dsoVirtCubeMea)
' of ClassType clsCubeMeasure exist.
' The first object is a measure within a regular cube.
' The measure contains data from the Price column in
' the Sales_Facts table.
dsoCubeMea.SourceColumn = """Sales_Facts"".""Price"""
...
' The second measure is for a virtual cube that references
' the Unit_Price measure of a regular cube named Sales
dsoVirtCubeMea.SourceColumn = "[Sales].[Unit_Price]"

Analysis Services Programming (SQL Server 2000)

SourceColumnType (Measure Interface)
SourceColumnType (Measure Interface)

The SourceColumnType property of the Measure interface identifies the type of data found in the measure object's
SourceColumn property.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

ADODB.DataTypeEnum

For more information about the ADODB.DataTypeEnum enumeration, see the Microsoft® ActiveX® Data Objects (ADO)
documentation.

SourceColumnType is set to one of the following values.

Column type Value
Big Integer adBigInt
Binary adBinary
Boolean adBoolean
String (Unicode) adBSTR
Char adChar
Currency adCurrency
Date adDate
Date adDBDate
Time adDBTime
Date & Time adDBTimeStamp
Decimal adDecimal
Double adDouble
Integer adInteger
Numeric adNumeric
Single adSingle
Small Integer adSmallInt
Tiny Integer adTinyInt
Unsigned Big Integer adUnsignedBigInt
Unsigned Integer adUnsignedInt
Unsigned Small Integer adUnsignedSmallInt
Unsigned Tiny Integer adUnsignedTinyInt
Char (Unicode) adWChar
Text adChar

Access

Access depends on the value of the ClassType property of the object.

Class type Access
clsAggregationMeasure R
clsCubeMeasure R/W*
clsPartitionMeasure R

* Read-only for virtual cube measures and measures in fully created linked cubes.

Remarks

The SourceColumnType property works in conjunction with the SourceColumn property. Be sure to specify a SourceColumn
and SourceColumnType for each measure you create for a cube.

The SourceColumnType property for a measure within a virtual cube is inherited from the measure in the underlying regular
cube and cannot be changed.

Note You must reference the ADO library in your project to use the ADODB.DataTypeEnum enumeration.

Examples

Specifying the SourceColumnType Property

Use the following code to specify and read a value for the SourceColumnType property:

'Assume an object (dsoCubeMea) of ClassType clsCubeMeasure exists
dsoCubeMea.ColumnType = adCurrency
...
Dim ColType As ADODB.DataTypeEnum
ColType = dsoCubeMea.ColumnType
Select Case ColType
 Case adDouble
 ' commands for adDouble
 Case adSingle
 ' commands for adSingle
 Case Else
 ' other commands
End Select

Analysis Services Programming (SQL Server 2000)

SubClassType (Measure Interface)
SubClassType (Measure Interface)

The SubClassType property of the Measure interface contains an enumeration constant identifying the subclass type of the
object.

Applies To

clsAggregationMeasure

clsCubeMeasure

clsPartitionMeasure

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects that implement the Measure interface, (that is, those of ClassType of clsAggregationMeasure, clsCubeMeasure, or
clsPartitonMeasure) can have a SubClassType property of sbclsRegular only. For more information, see SubClassTypes.

See Also

Measure Interface

Analysis Services Programming (SQL Server 2000)

Role Interface
Role Interface

The Role interface supports the maintenance of user groups and security parameters. Users can be grouped according to
common access permissions by using the Role interface.

Using Decision Support Objects (DSO), you can use role objects to set permissions on the following areas in Analysis Services:

Server

Database

Cube

Dimensions and members

Individual cube cells

Each role object also contains a collection for Command objects. The ability to create role-based commands is important for
security reasons, and can also increase cube flexibility. You can customize the content of a cube to match the needs of individual
users or entire groups.

In DSO, the objects that implement the Role interface have a ClassType property value of clsCubeRole, clsMiningModelRole,
or clsDatabaseRole. The Role interface provides properties and methods to manipulate these objects.

Updating Security Information on the Analysis Server

Any changes you make to role objects are saved when any of the events listed in the following table occur.

Event Description
Saving a cube or mining
model

Using the Update method of a cube or mining model
object sends the updated security information to the
Analysis server (assuming the cube or mining model
has been processed at least once).

Processing a cube or mining
model

Processing a cube or mining model updates the
security information on the server. All role
configuration data is saved, regardless of the
processing option specified with the Process method.

Saving a database role Using the Update method of an object of ClassType
clsDatabaseRole sets the default values for the
affiliated cube role objects in the database. Any
changes you make to this default role are not applied
to the affiliated cube role or mining model role objects
that have values overriding the default.

When you make a change to default permission settings on a database role and invoke the Update method on the role, DSO
finds all cubes that still use the default permission settings and sends the new security permissions for these cubes to the server.

For more information about database and cube objects and how they relate to each other, see Introducing Decision Support
Objects.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

See Also

Collections, Role Interface

Methods, Role Interface

Properties, Role Interface

Analysis Services Programming (SQL Server 2000)

Collections, Role Interface
Collections, Role Interface

The Role interface supports the following collections.

Collection Description
Commands The collection of commands for the role
CustomProperties The collection of user-defined properties

Access

Read/write

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Methods, Role Interface
Methods, Role Interface

The Role interface supports the following methods.

Method Description
Clone Copies the properties of a role object to an existing role object
LockObject Locks a role object
SetPermissions Sets role permissions for a given key
UnlockObject Unlocks a previously locked role object
Update Saves a role in the repository

Method/Class Cross-Reference

The following table shows the applicability of each method to each object. X indicates applicable; n/a indicates not applicable.

 clsDatabaseRole clsCubeRole clsMiningModelRole
Clone X n/a n/a
LockObject X n/a n/a
SetPermissions X X X
UnlockObject X n/a n/a
Update X n/a n/a

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Clone (Role Interface)
Clone (Role Interface)

The Clone method of the Role interface copies the property values and the collections of a role to a target object of the same
class type.

Applies To

clsDatabaseRole

Syntax

object.Clone(ByVal TargetObject As Role, [ByVal Options As CloneOptions = cloneMajorChildren])

object

The clsDatabaseRole object to be copied.

TargetObject

An existing clsDatabaseRole object.

Options

One of values of the CloneOptions enumeration. If no value is specified, the cloneMajorChildren option is used. For more
information, see CloneOptions.

Remarks

Because Role objects do not contain major or minor objects, any clone option specified in Options is treated as
cloneObjectProperties.

See Also

CloneOptions

Role Interface

Analysis Services Programming (SQL Server 2000)

LockObject (Role Interface)
LockObject (Role Interface)

The LockObject method of the Role interface locks a role object to prevent multiple users from concurrently changing the object.

Applies To

clsDatabaseRole

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

The object to lock.

LockType

One of the lock types defined in the OlapLockTypes enumeration. Because a Role object has no dependent objects and cannot
be processed, the only valid options for LockType are olapLockRead and olapLockWrite. For more information, see
OlapLockTypes.

LockDescription

A string containing the description of the lock, available to other applications attempting to obtain a lock.

See Also

OlapLockTypes

UnlockObject

LockObject

Analysis Services Programming (SQL Server 2000)

SetPermissions (Role Interface)
SetPermissions (Role Interface)

The SetPermissions method of the Role interface sets role permissions for a given key.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Syntax

bRet = object.SetPermissions(ByVal Key As String, ByVal PermissionExpression As String)

bRet

A Boolean variable that receives the completion status of the operation: True if it was completed successfully, False otherwise.

object

The role object on which to set permissions.

Key

String containing the permission key.

PermissionExpression

String containing the permission expression for the corresponding key.

Remarks

The Permissions property contains nine permissions keys. The meaning of each key and its possible PermissionExpression
string values follow:

Access

The Access key indicates what type of access the users assigned to the Role object have to the entire cube. Valid
PermissionExpression values for the key are listed in the following table.

Value Description
R The members of this role have read-only access to the cube. (Default)
RW The members of this role have read/write access to the cube.

This key is for use only with objects of ClassType clsCubeRole.

AllowDrillThrough

The AllowDrillThrough key indicates whether the users assigned to the Role object can execute drillthrough queries on the
cube.

Value Description
True Drillthrough is allowed on this cube for members of this role.
False Drillthrough is not allowed on this cube for members of this role.

(Default)

This key is for use only with objects of ClassType clsCubeRole.

AllowLinking

The AllowLinking key indicates whether the users assigned to the Role object are allowed to link to the cube. Setting this
property to False prevents users from creating linked cubes based on the cube.

Value Description
True Linking is allowed to this cube for members of this role. (Default)
False Linking is not allowed to this cube for members of this role.

This key is for use only with objects of ClassType clsCubeRole.

AllowSQLQueries

The AllowSQLQueries key indicates whether the users assigned to the Role object are allowed to execute SQL SELECT queries
against the cube. Setting this property to False prevents users from creating local cubes based on the cube or viewing cube data
using an SQL SELECT statement.

Value Description
True SQL queries are allowed on this cube for members of this role. (Default)
False SQL queries are not allowed on this cube for members of this role.

This key is for use only with objects of ClassType clsCubeRole.

EnforcementLocation

The EnforcementLocation key indicates whether security for the users assigned to the Role object is enforced on the server or
on the client application.

Value Description
Client Security is enforced on the client application for members of this role.

(Default)
Server Security is enforced on the server for members of this role.

This key is for use only with objects of ClassType clsDatabaseRole and ClassType clsCubeRole. If set on a database role object,
the PermissionExpression value becomes the default value for all cube roles contained in the database.

CellRead

The CellRead key identifies visible, readable cells for the users assigned to the Role object. The PermissionExpression value
contains a logical Multidimensional Expressions (MDX) expression, to be evaluated against a cell.

This key is for use only with objects of ClassType clsCubeRole.

CellReadContingent

The CellReadContingent key identifies contingent-readable cells for the users assigned to the Role object. The
PermissionExpression value contains a logical MDX expression, to be evaluated against a cell.

This key is for use only with objects of ClassType clsCubeRole.

CellWrite

The CellWrite key identifies writable cells for the users assigned to the Role object. The PermissionExpression value contains a
logical MDX expression, to be evaluated against a cell. A writable cell is considered readable by default.

This key is for use only with objects of ClassType clsCubeRole.

Dimension:<dimension name>

This key is used to specify dimension security options on a dimension, using a string value containing XML syntax. The syntax for
the key includes the name of the dimension that will be secured by the role object. This key can be set for objects of ClassType
clsDatabaseRole and ClassType clsCubeRole. If set on a database role object, the PermissionExpression value becomes the
default value for all cube roles contained in the database.

The XML syntax for the PermissionExpression value is detailed here:

<MEMBERSECURITY
 [IsVisible="<Boolean_string>"]
 [DefaultMember="<allowed_member>"]
 [VisualTotalsLowestLevel="<level_expression>"
>
 <PERMISSION Access="Read"
 [UpperLevel="<level_expression>"]
 [LowerLevel="<level_expression>"]

 [AllowedSet="<set_expression>"]
 [DeniedSet="<set_expression>"]
 [Description="<desc>"]
 />
 <PERMISSION Access="Write"
 [UpperLevel="<level_expression>"]
 [AllowedSet="<set_expression>"]
 [Description="<desc>"]
 />
</MEMBERSECURITY>

The <Boolean_string> value can contain either "True" or "False". The <allowed_member> value contains the name of a single
read-enabled member. The <level_expression> contains an MDX expression that returns a single level. The <set_expression>
value contains an MDX expression that returns a set of members. The <desc> value contains a free-form text description of the
permission.

Example

Use the following code to set permissions on an object of ClassType clsCubeRole:

'Assume an object (dsoCubeRole) of ClassType clsCubeRole exists
'Set a read-only permission
dsoCubeRole.SetPermissions "Access", "R"
'Set a read-write permission
dsoCubeRole.SetPermissions "Access", "RW"

See Also

Role Interface

Dimension Security

Cell Security

Analysis Services Programming (SQL Server 2000)

UnlockObject (Role Interface)
UnlockObject (Role Interface)

The UnlockObject method of the Role interface releases a lock on a role object that has been previously established by the
LockObject method.

Applies To

clsDatabaseRole

Syntax

object.UnlockObject

object

The role object from which to remove a lock.

Remarks

If an application that created one or more locks terminates before freeing them with the UnlockObject method, the Analysis
server automatically releases the locks when the connection with the application is closed.

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Update (Role Interface)
Update (Role Interface)

The Update method of the Role interface updates the definition of the role object in the meta data repository.

Applies To

clsDatabaseRole

Syntax

object.Update

object

The role object to update.

Remarks

When you make a change to default permission settings on a database role and invoke the Update method on the role, Decision
Support Objects (DSO) finds all cubes that did not overwrite the default permission setting and then sends the new security
permissions to the server.

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Properties, Role Interface
Properties, Role Interface

The Role interface supports the following properties.

Property Description
ClassType Returns an enumeration constant that identifies the specific object

type
Description The description of a role
IsValid Indicates whether a role structure is valid
Name The name of a role
Parent Returns a reference to the parent MDStore object
ParentObject Returns a reference to the parent object that the current role object is

a child of
Permissions The role permissions for a given key
SubClassType Returns an enumeration constant that identifies the subclass type of

the object
UsersList A semicolon-delimited list of users

Access Cross-Reference

The following table shows whether the property is read/write (R/W), read-only (R), or not applicable (n/a) for different objects.

Property clsDatabaseRole clsCubeRole clsMiningModelRole
ClassType R R R
Description R/W R R
IsValid R R R
Name R/W (R after the

object has been
named)

R/W (R after the object
has been named)

R/W (R after the object
has been named)

Parent R R R
Permissions R R R
SubClassType R R R
UsersList R/W R R

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

ClassType (Role Interface)
ClassType (Role Interface)

The ClassType property of the Role interface contains an enumeration constant that identifies the specific class type.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

ClassTypes

ClassType is set to one of the following values:

clsDatabaseRole

clsCubeRole

clsMiningModelRole

Access

Read-only

Example

Use the following code to return the class type of a role object and determine which object class has been returned:

' Assume the existence of object RoleObject
Dim ClassTyp As DSO.ClassTypes
ClassTyp = RoleObject.ClassType
Select Case ClassTyp
 Case clsDatabaseRole
 ' Insert code for a database role.
 Case clsCubeRole
 ' Insert code for a cube role.
 Case clsMiningModelRole
 ' Insert code for mining model roles.
 Case Else
 ' Insert code for other objects.
End Select

See Also

ClassTypes

Role Interface

SubClassType

Analysis Services Programming (SQL Server 2000)

Description (Role Interface)
Description (Role Interface)

The Description property of the Role interface contains the description of the role object.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseRole R/W
ClsCubeRole R
ClsMiningModelRole R

Example

Use the following code to set a role object description:

RoleObject.Description = "Eastern Region Sales and Marketing"

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

IsValid (Role Interface)
IsValid (Role Interface)

The IsValid property of the Role interface indicates whether the role object structure is valid.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

Boolean

Access

Read-only

Remarks

A role object is valid if the Name and UsersList properties are not empty strings and if its Parent property is valid.

Example

Use the following code to return a role object validity status:

Dim bRet As Boolean
bRet = RoleObject.IsValid

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Name (Role Interface)
Name (Role Interface)

The Name property of the Role interface contains the name of the role object.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

String

Access

Read/write (read-only after the object has been named)

Example

Use the following code to set a role object name:

RoleObject.Name = "Sales and Marketing"

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Parent (Role Interface)
Parent (Role Interface)

The Parent property of the Role interface contains a reference to the parent MDStore object.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

MDStore

The ClassType value of the returned object depends on the value of the ClassType property of the object.

Class type Returned object class type
ClsDatabaseRole clsDatabase
ClsCubeRole clsCube
ClsMiningModelRole Nothing

Access

Read-only

Remarks

This property will return Nothing for mining model roles, because data mining models do not support the MDStore interface. To
obtain the parent object of a mining model role, use the ParentObject property.

Examples

Using the Parent and ClassType properties

The following example creates a database role and assigns it to the first cube in the database object's collection of cubes. It then
prints some of the properties of the parent object by using the role object's Parent property.

Dim dsoServer As New DSO.Server
Dim dsoDB As DSO.MDStore
Dim dsoCube As DSO.MDStore
Dim dsoDBRole As DSO.Role
Dim dsoCubeRole As DSO.Role

'Connect to the Analysis Server
 dsoServer.Connect "LocalHost"
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

'Get the first cube in the database's collection
 Set dsoCube = dsoDB.MDStores(1)
 Debug.Print "Cube.Name = " & dsoCube.Name

'Ensure the existence of TempRole in the database.
 Set dsoDBRole = dsoDB.Roles.AddNew("TempRole")

'Add the command to cube's collection of commands.
 Set dsoCubeRole = dsoCube.Roles.AddNew("TempRole")
 Debug.Print "Cube.Roles(""TempRole"").Name =" & _
 dsoCube.Roles("TempRole").Name

'Print the roles .ParentObject properties
 Debug.Print " .Parent properties" & vbCrLf & _
 " -----------"
 Debug.Print " TypeName(""dsoCubeRole.Parent"") = " & _
 TypeName(dsoCubeRole.Parent)

 If dsoCubeRole.Parent.ClassType = clsCube Then
 Debug.Print " .ClassType = clsCube"
 Else
 Debug.Print "This line should never be executed."
 End If
 Debug.Print " .Description = " & dsoCubeRole.Parent.Description
 Debug.Print " .Name = " & dsoCubeRole.Parent.Name

 dsoCube.Roles.Remove ("TempRole")
 dsoDB.Roles.Remove ("TempRole")

Analysis Services Programming (SQL Server 2000)

ParentObject (Role Interface)
ParentObject (Role Interface)

The ParentObject property returns a reference to the default interface of the parent object.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

Object

The default interface and ClassType value of the returned object depends on the value of the ClassType property of the object.

Class type Returned object interface Returned object class type
clsDatabaseRole MDStore clsDatabase
clsCubeRole MDStore clsCube
clsMiningModelRole MiningModel clsMiningModel

Access

Read-only

Examples

Using ParentObject and ClassType properties

The following example creates a database role and assigns it to the roles collection of the first data mining model in the databases
collection of mining models. It then prints some of the properties of that role's parent object by using the ParentObject property.

Dim dsoServer As New DSO.Server
Dim dsoDB As DSO.MDStore
Dim dsoDMM As DSO.MiningModel
Dim dsoDBRole As DSO.Role
Dim dsoDMMRole As DSO.Role

'Connect to the Analysis Server
 dsoServer.Connect "LocalHost"
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

'Get the first mining model
 Set dsoDMM = dsoDB.MiningModels(1)
 Debug.Print "MiningModel.Name = " & dsoDMM.Name

'Ensure the existence of TempRole in the database.
 Set dsoDBRole = dsoDB.Roles.AddNew("TempRole")

'Ensure the existence of a role.
 Set dsoDMMRole = dsoDMM.Roles.AddNew("TempRole")
 Debug.Print "MiningModel.Roles(""TempRole"").Name =" & _
 dsoDMM.Roles("TempRole").Name

'Print the roles .ParentObject properties
 Debug.Print " .ParentObject properties" & vbCrLf & _
 " -----------"
 Debug.Print " TypeName(""dsoDMMRole.ParentObject"") = " & _
 TypeName(dsoDMMRole.ParentObject)
 If dsoDMMRole.ParentObject.ClassType = clsMiningModel Then
 Debug.Print " .ClassType = clsMiningModel"
 Else
 Debug.Print "This line should never be executed."
 End If
 Debug.Print " .Description = " & dsoDMMRole.ParentObject.Description

 Debug.Print " .Name = " & dsoDMMRole.ParentObject.Name

 dsoDMM.Roles.Remove ("TempRole")
 dsoDB.Roles.Remove ("TempRole")

Analysis Services Programming (SQL Server 2000)

Permissions (Role Interface)
Permissions (Role Interface)

The Permissions property of the Role interface contains the role permissions for a specified key.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

String

Access

Read-only

Remarks

The Permissions property contains nine permissions keys. The meaning of each key and its possible return values follow:

Access

The Access key indicates what type of access the users assigned to the Role object have to the entire cube. Valid return values for
the key are listed in the following table.

Return value Description
R The members of this role have read-only access to the cube.
RW The members of this role have read/write access to the cube.

This key is for use only with objects of ClassType clsCubeRole.

AllowDrillThrough

The AllowDrillThrough key indicates whether the users assigned to the Role object can execute drillthrough queries on the
cube. Valid return values for the key are listed in the following table.

Return value Description
True Drillthrough is allowed on this cube for members of this role.
False Drillthrough is not allowed on this cube for members of this role.

(Default)

This key is for use only with objects of ClassType clsCubeRole.

AllowLinking

The AllowLinking key indicates whether the users assigned to the Role object are allowed to link to the cube. Setting this
property to False prevents users from creating linked cubes based on the cube.

Value Description
True Linking is allowed to this cube for members of this role. (Default)
False Linking is not allowed to this cube for members of this role.

This key is for use only with objects of ClassType clsCubeRole.

AllowSQLQueries

The AllowSQLQueries key indicates whether the users assigned to the Role object are allowed to execute SQL SELECT queries

against the cube. Setting this property to False prevents users from creating local cubes based on the cube or viewing cube data
using an SQL SELECT statement.

Value Description
True SQL queries are allowed on this cube for members of this role. (Default)
False SQL queries are not allowed on this cube for members of this role.

This key is for use only with objects of ClassType clsCubeRole.

EnforcementLocation

The EnforcementLocation key indicates whether security for the users assigned to the Role object is enforced on the server or
on the client application. Valid return values for the key are listed in the following table.

Return value Description
Client Security is enforced on the client application for members of this

role. (Default)
Server Security is enforced on the server for members of this role.

This key is for use only with objects of ClassType clsDatabaseRole and ClassType clsCubeRole.

CellRead

The CellRead key contains a logical Multidimensional Expressions (MDX) expression that identifies visible, readable cells for the
users assigned to the Role object. If no MDX expression is specified for the Role object, an empty string is returned.

This key is for use only with objects of ClassType clsCubeRole.

CellReadContingent

The CellReadContingent key contains a logical MDX expression that identifies contingent-readable cells for the users assigned
to the Role object. If no MDX expression is specified for the Role object, an empty string is returned.

This key is for use only with objects of ClassType clsCubeRole.

CellWrite

The CellWrite key contains a logical MDX expression that identifies writable cells for the users assigned to the Role object. If no
MDX expression is specified for the Role object, an empty string is returned.

This key is for use only with objects of ClassType clsCubeRole.

Dimension:<dimension name>

The Dimension key is used to specify dimension security options on a dimension, using a string value containing XML syntax.
The syntax for the key includes the name of the dimension that will be secured by the role object. The Dimension key contains
XML syntax that defines the read and write access of the members for the dimension. If no dimension security options are
specified for the Role object, an empty string is returned.

The XML syntax for the return value is detailed here:

<MEMBERSECURITY
 [IsVisible="<Boolean_string>"]
 [DefaultMember="<allowed_member>"]
 [VisualTotalsLowestLevel="<level_expression>"
>
 <PERMISSION Access="Read"
 [UpperLevel="<level_expression>"]
 [LowerLevel="<level_expression>"]
 [AllowedSet="<set_expression>"]
 [DeniedSet="<set_expression>"]
 [Description="<desc>"]
 />
 <PERMISSION Access="Write"
 [UpperLevel="<level_expression>"]
 [AllowedSet="<set_expression>"]
 [Description="<desc>"]
 />
</MEMBERSECURITY>

The <Boolean_string> value can contain either "True" or "False". The <allowed_member> value contains the name of a single

read-enabled member. The <level_expression> contains an MDX expression that returns a single level. The <set_expression>
value contains an MDX expression that returns a set of members. The <desc> value contains a free-form text description of the
permission.

This key is for use only with objects of ClassType clsDatabaseRole and ClassType clsCubeRole.

Example

Use the following code to return a role object's permission string:

Dim strPerms As String
strPerms = RoleObject.Permissions("Access")

See Also

Role Interface

SetPermissions

Dimension Security

Cell Security

Analysis Services Programming (SQL Server 2000)

SubClassType (Role Interface)
SubClassType (Role Interface)

The SubClassType property of the Role interface contains an enumeration constant identifying the subclass type of the object.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects that implement the Role interface, that is, those of ClassType clsCubeRole, clsDatabaseRole, or
clsMiningModelRole, can have a SubClassType property of sbclsRegular only.

See Also

ClassType

Role Interface

SubClassTypes

Analysis Services Programming (SQL Server 2000)

UsersList (Role Interface)
UsersList (Role Interface)

The UsersList property of the Role interface contains a semicolon-delimited list of users and/or groups assigned to the role.

Applies To

clsCubeRole

clsDatabaseRole

clsMiningModelRole

Data Type

String

Access

Access depends on the value of the ClassType property of the object.

Class type Access
ClsDatabaseRole R/W
ClsCubeRole R
ClsMiningModelRole R

Remarks

The name for a user list must be qualified with the appropriate domain name. The general format is <domain>\<user or group>.

Example

Use the following code to set the list of users of a role object:

RoleObject.UsersList = "Domain1\Ejones;Domain1\Analysts;Domain2\RGreen"

See Also

Role Interface

Analysis Services Programming (SQL Server 2000)

Events
 New Information - SQL Server 2000 SP3.

The only object in Decision Support Objects (DSO) that directly supports event trapping is the Database object. This object fires
events for all of its child objects including shared dimensions, cubes, partitions, aggregations, and data mining models.

The following table lists the events that this object supports.

Event Description
ReportAfter Called whenever a processing action on an object in the

database has finished executing
ReportBefore Called before a processing action on an object in the

database
ReportError Called whenever an error occurs during a processing action
ReportProgress Called to report the progress of an action during a

processing

Processing Actions

Each event reports the status of the processing action. This processing action is represented by integer constants. The tense for
each processing action depends on the event being trapped. For instance, the merge action (mdactMerge) reports that two
partitions or aggregations will be merged when trapped in the ReportBefore event. In contrast, this same action reports that two
partitions or aggregations have been merged when trapped in the ReportAfter event.

The following is a list of actions that are supported by the database object events:

Action Constant Description
Process mdactProcess Indicates that the object referred to by

obj has been processed.
Merge mdactMerge Reports that two

partitions/aggregations have been
merged.

Delete mdactDelete Indicates that an object has been
deleted.

Delete Old
Aggregations

mdactDeleteOldAggregations Indicates that the existing relational
OLAP (ROLAP) aggregations of a
partition have been deleted.

Rebuild mdactRebuild Indicates that the definitions of an
object have been rebuilt.

Commit mdactCommit Indicates that a transaction has been
committed on the database.

Rollback mdactRollback Reports that a transaction has been
rolled back on the database.

Create Indexes mdactCreateIndexes Indicates that indexes for a ROLAP
aggregation have been created.

Create Table mdactCreateTable Reports that the aggregation table for
the ROLAP aggregation has been
created.

Insert Into mdactInsertInto Indicates that the aggregation table
for the ROLAP partition has been
populated.

Transaction mdactTransaction Reports that a transaction has been
started, completed, or has
encountered an exception.

Initialize mdactInitialize Indicates that the object referred to by
the obj parameter has been initialized.

Create View mdactCreateView Reports that an aggregation view has
been created for the ROLAP
aggregation. This action is only valid
when processing a ROLAP cube with
Microsoft® SQL Server™ 2000 using
indexed views.

Write Data mdactWriteData Data has been written to the disk.
Read Data mdactReadData Data has been read from the disk.
Aggregate mdactAggregate Aggregations are being built.
Execute SQL mdactExecuteSQL An SQL statement has been executed.
Now Executing
SQL

mdactNowExecutingSQL An SQL statement is executing that
can be canceled.

Executing
Modified SQL

mdactExecuteModifiedSQL A modified SQL statement has been
executed.

Rows Affected mdactRowsAffected Reports number of rows affected by
an SQL statement.

Error mdactError Indicates that an error has occurred
during processing.

Write
Aggregations
and Indexes

mdactWriteAggsAndIndexes Indexes and aggregations will be
written to the disk.

Write Segment mdactWriteSegment Segments will be written to the disk.
Data Mining
Model
Processed
Percentage

mdactDataMiningProgress The status of the completion of
processing for a data mining model in
percentage terms.

For more information about the Database object, see clsDatabase.

Tutorial - Trapping Database Events

The following tutorial demonstrates trapping processing events. In examples A through C, a Microsoft Visual Basic® project file is
set up that contains all of the information needed to use the rest of the examples. Examples D through G demonstrate trapping
each of the events that are available from the database object.

A. Setting up the Project File

Start Visual Basic and create a new project called Project1.

1. In the Project References dialog box, select the Microsoft Decision Support Objects check box.

2. In the Project Components dialog box, click Microsoft Windows Common Controls 6.0 (SP3).

3. Create a new module called Module1.

4. Create a new form called Form1.

5. Add a text box to the form called Text1.

6. Add a button called Command1 to the form and label it "Process".

7. Add another button called Command2 to the form and label it "Cancel".

8. Add a progress bar control named ProgressBar1.

9. In the form's general declarations section, add the following code:

Option Explicit

'Declare a database object with events.

Public WithEvents dsoDb As DSO.Database

'Declare some useful variables and constants.
Public gCubeMaxRows As Long
Public gbCancel As Boolean
Private Const SERVER_NAME = "LocalHost"
Private Const DATABASE_NAME = "FoodMart 2000"

B. Adding the Button Click Events

Add the following code to the form:

Private Sub Command1_Click()
 gbCancel = False
 ProcessDatabase DATABASE_NAME
End Sub

Private Sub Command2_Click()
 gbCancel = True
End Sub

C. Adding the ProcessDatabase Subroutine

Add the following code to the form:

Private Sub ProcessDatabase(strDBName As String)
 Dim dsoServer As New DSO.Server
 Dim dsoDatabase As DSO.MDStore
 Dim dsoCube As DSO.MDStore

 Screen.MousePointer = vbArrowHourglass

 'Connect to the server.
 dsoServer.Connect (SERVER_NAME)

 'Get a reference to the database.
 Set dsoDatabase = dsoServer.MDStores(strDBName)
 'Copy the database reference.
 Set dsoDb = dsoDatabase

 'Process each of the cubes in the database.
 For Each dsoCube In dsoDatabase.MDStores
 Text1.Text = Text1.Text & "Processing Cube " & _
 dsoCube.Name & vbCrLf

 gCubeMaxRows = dsoCube.EstimatedRows
 dsoCube.Process

 Text1.Refresh
 Next

 Screen.MousePointer = vbNormal
End Sub

D. Adding the ReportBefore Event Handler

Add the following code to the form:

Private Sub dsoDb_ReportBefore(obj As Object, _
 ByVal Action As Integer, _
 Cancel As Boolean, _
 Skip As Boolean)

 Dim strNew As String

 'See if the user has canceled.
 Cancel = gbCancel

 If gbCancel = False Then
 strNew = strNew & " Beginning Action = " & _
 ConvertAction(Action) & " - on object "

 On Error Resume Next
 'Get the name of the object.
 strNew = strNew & obj.Name & "."

 Text1.Text = Text1.Text & vbTab & strNew & vbCrLf
 Form1.Refresh
 End If
End Sub

E. Adding the ReportAfter Event Handler

Add the following code to the form:

Private Sub dsoDb_ReportAfter(obj As Object, _
 ByVal Action As Integer, _
 ByVal success As Boolean)

 Dim strNew As String

 On Error Resume Next

 'Get the name of the object.
 strNew = "Processing object """ & obj.Name & """"

 strNew = strNew & " Action = " & _
 ConvertAction(Action) & " - "

 'Determine the success of the operation.
 If success = True Then
 strNew = strNew & " was successful."
 Else
 strNew = strNew & " was unsuccessful."
 End If

 Text1.Text = Text1.Text & vbTab & strNew & vbCrLf
 Form1.Refresh
End Sub

F. Adding the ReportProgress Event Handler

Add the following code to the form:

Private Sub dsoDb_ReportProgress(obj As Object, _
 ByVal Action As Integer, _
 Counter As Long, _
 Message As String, _
 Cancel As Boolean)

 Dim strNew As String

 'See if the user has canceled.
 Cancel = gbCancel

 If gbCancel = False Then
 strNew = strNew & vbTab & _
 " Progress of Action " & _
 ConvertAction(Action)

 On Error Resume Next

 'Get the name of the object.
 strNew = strNew & "on object " & obj.Name _
 & ". " & Counter & " - " & Message

 'Update the progress bar.
 ProgressBar1.Max = gCubeMaxRows
 ProgressBar1.Value = Counter

 Text1.Text = Text1.Text & vbTab & strNew & vbCrLf
 Form1.Refresh
 End If
End Sub

G. Adding the ReportError Event Handler

Add the following code to the form:

Private Sub dsoDb_ReportError(obj As Object, _
 ByVal Action As Integer, _
 ByVal ErrorCode As Long, _
 ByVal Message As String, _
 Cancel As Boolean)

 Dim strNew As String

 'See if the user has canceled.
 Cancel = gbCancel

 If gbCancel = False Then

 strNew = strNew & " ERROR #" & ErrorCode

 'What if the object doesn't have a name property?
 On Error Resume Next
 'Get the name of the object.
 strNew = strNew & " on object " & obj.Name & ". "

 strNew = strNew & " - " & Message

 Text1.Text = Text1.Text & strNew & vbCrLf
 Form1.Refresh
 End If
End Sub

H. Adding the ConvertAction function

Add the following code to the module:

Public Const mdactProcess = 1
Public Const mdactMerge = 2
Public Const mdactDelete = 3
Public Const mdactDeleteOldAggregations = 4
Public Const mdactRebuild = 5
Public Const mdactCommit = 6
Public Const mdactRollback = 7
Public Const mdactCreateIndexes = 8
Public Const mdactCreateTable = 9
Public Const mdactInsertInto = 10
Public Const mdactTransaction = 11
Public Const mdactInitialize = 12
Public Const mdactCreateView = 13

Public Const mdactWriteData = 101
Public Const mdactReadData = 102
Public Const mdactAggregate = 103
Public Const mdactExecuteSQL = 104
Public Const mdactNowExecutingSQL = 105
Public Const mdactExecuteModifiedSQL = 106
Public Const mdactConnecting = 107
Public Const mdactRowsAffected = 108
Public Const mdactError = 109
Public Const mdactWriteAggsAndIndexes = 110
Public Const mdactWriteSegment = 111
Public Const mdactDataMiningProgress = 112

' Warnings
Public Const mdwrnSkipped = 901
Public Const mdwrnCubeNeedsToProcess = 902
Public Const mdwrnCouldNotCreateIndex = 903
Public Const mdwrnTimeoutNotSetCorrectly = 904
Public Const mdwrnExecuteSQL = 905
Public Const mdwrnDeletingTablesOutsideOfTransaction = 906
Public Const mdwrnCouldNotProcessWithIndexedViews = 907

Public Function ConvertAction(ByVal Action As Integer) As String
 Dim strReturn As String

 Select Case Action
 Case mdactProcess
 strReturn = "Process"
 Case mdactMerge
 strReturn = "Merge"
 Case mdactDelete
 strReturn = "Delete"
 Case mdactDeleteOldAggregations
 strReturn = "Delete old aggregations"
 Case mdactRebuild
 strReturn = "Rebuild"
 Case mdactCommit
 strReturn = "Commit"
 Case mdactRollback
 strReturn = "Rollback"
 Case mdactCreateIndexes
 strReturn = "Create Indexes"
 Case mdactCreateTable
 strReturn = "Create Table"
 Case mdactInsertInto
 strReturn = "Insert Into"
 Case mdactTransaction
 strReturn = "Transaction"

 Case mdactInitialize
 strReturn = "Initialize"
 Case mdactCreateView
 strReturn = "Create View"
 Case mdactWriteData
 strReturn = "Write Data"
 Case mdactReadData
 strReturn = "Read Data"
 Case mdactAggregate
 strReturn = "Aggregate"
 Case mdactExecuteSQL
 strReturn = "Execute SQL"
 Case mdactNowExecutingSQL
 strReturn = "Now Executing SQL"
 Case mdactExecuteModifiedSQL
 strReturn = "Execute Modified SQL"
 Case mdactConnecting
 strReturn = "Connecting"
 Case mdactRowsAffected
 strReturn = "Rows Affected"
 Case mdactError
 strReturn = "Error"
 Case mdactWriteAggsAndIndexes
 strReturn = "Write aggregations & indexes"
 Case mdactWriteSegment
 strReturn = "Write segment"
 Case mdactDataMiningProgress
 strReturn = "Data mining progress"
 ' Warnings
 Case mdwrnSkipped
 strReturn = "Warning: action skipped"
 Case mdwrnCubeNeedsToProcess
 strReturn = "Warning: cube needs to process"
 Case mdwrnCouldNotCreateIndex
 strReturn = "Warning: could not create index"
 Case mdwrnTimeoutNotSetCorrectly
 strReturn = "Warning: timeout not set correctly"
 Case mdwrnExecuteSQL
 strReturn = "Warning: error while executing SQL"
 Case mdwrnDeletingTablesOutsideOfTransaction
 strReturn = "Warning: deleting tables outside of transaction"
 Case mdwrnCouldNotProcessWithIndexedViews
 strReturn = "Warning: could not process with indexed views"
 Case Else
 strReturn = "Unknown action or warning"
 End Select

 ConvertAction = strReturn
End Function

Analysis Services Programming (SQL Server 2000)

ReportAfter (clsDatabase)
ReportAfter (clsDatabase)

 New Information - SQL Server 2000 SP3.

This event is called after a processing action for the Database object has finished executing.

Applies To

clsDatabase

Syntax

ReportAfter(obj As Object, ByVal Action As Integer, ByVal success As Boolean)

obj

Refers to the object being processed or the target object of the action.

Caution This object is passed by reference. Changes to this object during processing can cause unpredictable results.

Action

Refers to the processing action that has been completed.

success

Indicates whether the action succeeded.

Remarks

This event is called whenever a processing action for a given Database object (referenced by obj) or any of its subordinate major
or minor objects has finished executing. The type of action can be determined from the value of Action. Whether or not the action
was successful can be determined by the value of success.

For more information about using this event, see Events.

Analysis Services Programming (SQL Server 2000)

ReportBefore (clsDatabase)
ReportBefore (clsDatabase)

 New Information - SQL Server 2000 SP3.

This event is called before a processing action for a given Database object (referenced by obj) starts to run.

Applies To

clsDatabase

Syntax

ReportBefore(obj As Object, ByVal Action As Integer, Cancel As Boolean, Skip As Boolean)

obj

Refers to the object being processed or the target object of the action.

Caution This object is passed by reference. Changes to this object during processing can cause unpredictable results.

Action

Refers to the processing action that has been completed.

Cancel

Allows the application to cancel an action by setting this parameter to True.

Skip

Reserved for future use.

Remarks

This event is called before a processing action for a given Database object (referenced by obj) or any of its subordinate major or
minor objects starts to run. The action can be determined from the value of Action.

For more information about using this event, see Events.

Analysis Services Programming (SQL Server 2000)

ReportError (clsDatabase)
ReportError (clsDatabase)

 New Information - SQL Server 2000 SP3.

This event is called whenever a processing error occurs.

Applies To

clsDatabase

Syntax

ReportError(obj As Object, ByVal Action As Integer, ByVal ErrorCode As Long, ByVal Message As String, Cancel As Boolean)

obj

Refers to the object being processed or the target object of the action.

Caution This object is passed by reference. Changes to this object during processing can cause unpredictable results.

Action

Refers to the processing action that has been completed.

ErrorCode

A value in the ErrorCodes enumeration.

Message

A user friendly message describing the error.

Cancel

Allows the application to cancel an action by setting this parameter to True.

Remarks

This event is called whenever an error occurs during processing.

For more information about using this event, see Events.

Analysis Services Programming (SQL Server 2000)

ReportProgress (clsDatabase)
ReportProgress (clsDatabase)

 New Information - SQL Server 2000 SP3.

This event is called to report progress during a processing action.

Applies To

clsDatabase

Syntax

ReportProgress(obj As Object, ByVal Action As Integer, Counter As Long, Message As String, Cancel as Boolean)

obj

Refers to the object being processed or the target object of the action.

Caution This object is passed by reference. Changes to this object during processing can cause unpredictable results.

Action

Refers to the processing action that has been completed.

Counter

Indicates the numerical progress of the operation referred to by Action. For cubes, this argument refers to the number of rows
that have been processed. For data mining models, this argument contains a number between 0 and 100 indicating the
percentage of the processing task that has been completed.

Message

A user-friendly message describing the progress made.

Cancel

Allows the application to cancel an action by setting this parameter to True.

Remarks

This event can be used to update a progress bar or counter in a user interface. When using a progress bar to track the progress of
a cube that is being processed, the maximum value of the progress bar is determined by the cube's EstimatedRows property. For
tracking the progress of a data mining model, set the maximum value of the progress bar to 100. When processing a cube this
event will be fired every 1000 rows. For data mining models this interval is inconsistent and cannot be determined in advance.

For more information about using this event, see Events.

See Also

EstimatedRows

Analysis Services Programming (SQL Server 2000)

Objects
In Decision Support Objects (DSO) there are two ways to classify objects: objects that can be accessed and managed directly, and
objects that implement a DSO interface.

Objects that can be accessed and managed directly have their own collections, methods and properties. They include the
following classes:

clsColumn

clsCubeAnalyzer

clsDataSource

clsMemberProperty

clsMiningModel

clsPartitionAnalyzer

clsServer

Note Class type designations that use the format clsClassType, such as clsServer, are used internally by the DSO ClassType
property and do not necessarily correspond to a particular class definition within Microsoft® Visual Basic®.

Objects that implement an interface use a subset of the collections, methods, and properties associated with the interface. The
DSO ClassType and SubClassType properties determine which features of an interface are implemented by a particular object.
Information about these features appears throughout this document.

Each collection, method, and property description contains the names of the objects in which it appears. Conversely, each object
description contains the names of the collections, methods, and properties that the object implements.

The following table lists the six DSO interfaces and the objects that implement them.

Interface Implemented by
Command clsDatabaseCommand

clsCubeCommand
Dimension clsDatabaseDimension

clsCubeDimension
clsPartitionDimension
clsAggregationDimension

Level clsDatabaseLevel
clsCubeLevel
clsPartitionLevel
clsAggregationLevel

MDStore clsDatabase
clsCube
clsPartition
clsAggregation

Measure clsCubeMeasure
clsPartitionMeasure
clsAggregationMeasure

Role clsDatabaseRole
clsCubeRole
clsMiningModelRole

For more information, see Interfaces.

Objects That Are Accessed Directly

The following objects do not implement a shared interface and are accessed directly.

Object ClassType
Column clsColumn
Cube analyzer clsCubeAnalyzer
Data mining model clsMiningModel
Data source clsDataSource
Member property clsMemberProperty
Partition analyzer clsPartitionAnalyzer
Server clsServer

Objects That Are Accessed Through an Interface

The DSO object model uses interfaces to simplify your interaction with groups of related objects, while maintaining parent-child
inheritance throughout the object model hierarchy. For more information about the complete hierarchy, see Introducing Decision
Support Objects.

Each DSO object that implements a DSO interface belongs to one of the following categories:

Aggregations

Commands

Cubes

Databases

Dimensions

Levels

Measures

Partitions

Roles

The uniqueness of multiple DSO objects within the same category is determined by where each is contained within the overall
DSO object model hierarchy. For example, a cube can contain several dimensions. These dimension objects are contained in the
Dimensions collection of the cube. Each of these dimension objects is a DSO object of ClassType clsCubeDimension.

Each cube also contains a collection of partition objects. Each of these partition objects also contains a collection of dimension
objects in its Dimensions collection. Each of these dimension objects is a DSO object of ClassType clsPartitionDimension.

Although the DSO objects of ClassType clsCubeDimension and clsPartitionDimension are both dimension objects, their
methods and properties are unique because of the parent objects in which their collections are contained. The DSO object model
groups such objects together and manages them by the implementation of a common interface.

Major and Minor Objects

In DSO, most child objects cannot commit their own changes to the Analysis server, but instead must rely on their parent object to
commit the changes of their child objects. Any object that can commit itself and its children is referred to in DSO terminology as a
major object. Any object that cannot commit itself, but must rely on a major object to perform such an action, is referred to as a
minor object.

Objects with the following ClassType property values are considered major objects:

clsCube

clsDatabase

clsDatabaseCommand

clsDatabaseDimension

clsDatabaseRole

clsDataSource

clsMiningModel

clsPartition

clsServer

All objects not included in the previous list are considered minor objects. To commit changes to major and minor objects, all
major objects in DSO support the Update method. Any change to a DSO minor object must be committed through the parent
DSO major object in order to be committed. For example, a change to a clsCubeRole object is committed only when the Update
method of its parent clsCube object is executed. Although most interfaces in the DSO hierarchy have an Update method,
attempting to use the Update method on a minor object in DSO will result in an error.

Analysis Services Programming (SQL Server 2000)

clsAggregation
clsAggregation

An object of ClassType clsAggregation provides a specific implementation of the Decision Support Objects (DSO) MDStore
interface. Each instance of a clsAggregation object represents a unique DSO aggregation. This object provides collections,
methods, and properties through the MDStore interface.

Example

Use the following code to list the aggregations contained within a partition:

'Assume an object (dsoServer) of ClassType clsServer exists
 Dim dsoDB As MDStore
 Dim dsoCube As MDStore
 Dim dsoPart As MDStore
 Dim dsoAgg As MDStore

 Set dsoDB = dsoServer.MDStores(1) 'Database
 Set dsoCube = dsoDB.MDStores(1) 'Cube
 Set dsoPart = dsoCube.MDStores(1) 'Partition

 'MDStores collection of a partition object
 'contains objects of ClassType clsAggregation
 Debug.Print " # Aggregations = " & dsoPart.MDStores.Count

Analysis Services Programming (SQL Server 2000)

Collections, clsAggregation
Collections, clsAggregation

An object of ClassType clsAggregation implements the following collections of the MDStore interface.

Collection Description
CustomProperties The collection of user-defined properties
Dimensions The collection of dimension objects associated with the

aggregation
Measures The collection of objects associated with the aggregation

See Also

clsAggregation

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsAggregation
Methods, clsAggregation

An object of ClassType clsAggregation implements the following methods of the MDStore interface.

Method Description
Clone Copies an aggregation object to an existing target object

of the same class type

See Also

clsAggregation

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsAggregation
Properties, clsAggregation

An object of ClassType clsAggregation implements the following properties of the MDStore interface.

Property Description
AggregationPrefix Contains the prefix associated with an aggregation in an

MDStore object
ClassType Returns an enumeration constant that identifies the

specific object type
Description The description of the aggregation
EnableRealTimeUpdates Indicates whether real-time updates are enabled for the

aggregation
EstimatedRows The estimated number of rows in the aggregation
EstimatedSize The estimated size (in bytes) of all rows in the

aggregation
FromClause The comma-separated list of source tables in the

aggregation
IsDefault Sets or returns True if the aggregation is the default

aggregation for the partition, False if otherwise
IsTemporary Indicates whether the aggregation should be persisted in

the repository
IsValid Returns True if the aggregation structure is valid, False if

otherwise
JoinClause The list of join conditions, separated by AND
LastProcessed The date and time when the partition containing the

aggregation was last processed
Name The name of the aggregation
OlapMode Returns an enumeration constant that identifies the type

of OLAP mode of the data store
Parent Returns a reference to the parent MDStore object
Server Returns a reference to the DSO.Server object
SourceTable The name of the fact table for the aggregation
SubClassType Returns an enumeration constant that identifies the

subclass type of the object

See Also

clsAggregation

MDStore Interface

Analysis Services Programming (SQL Server 2000)

clsAggregationDimension
clsAggregationDimension

An object of ClassType clsAggregationDimension allows you to specify the level of granularity an aggregation will have. This
object provides collections and properties through a specific implementation of the Decision Support Objects (DSO) Dimension
interface. There are no methods associated with an object of ClassType clsAggregationDimension.

Remarks

By default, an aggregation for a partition precalculates values based on the top-most levels within the partition. To specify a
different granularity, that is, the degree to which an aggregation is precalculated, add additional levels to the aggregation's
dimensions. For example, in a default scenario a cube (and consequently its partition) may contain a Time dimension that has the
levels (All) (default), Year, Quarter, and Month. An aggregation for this partition inherits all of the dimensions of the partition, but
only the top-most level or the default (All) level is precalculated. To precalculate a greater detail of data over the Time dimension,
add one or more of the levels Year, Quarter, and Month.

Example

The following example causes the aggregation for the Time dimension to include data for the Year, Quarter, and Month levels, in
addition to the default level (All):

'Assume an object (dsoAgg) of ClassType clsAggregation exists
Dim dsoAggDim as DSO.Dimension
Set dsoAggDim = dsoAgg.Dimensions("Time")
dsoAggDim.Levels.AddNew("Year")
dsoAggDim.Levels.AddNew("Quarter")
dsoAggDim.Levels.AddNew("Month")

See Also

Collections, clsAggregationDimension

Dimension Interface

Properties, clsAggregationDimension

Analysis Services Programming (SQL Server 2000)

Collections, clsAggregationDimension
Collections, clsAggregationDimension

An object of ClassType clsAggregationDimension implements the following collections of the Dimension interface.

Collection Description
CustomProperties The collection of user-defined properties
Levels The collection of Level objects in an aggregation

dimension

See Also

clsAggregationDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsAggregationDimension
Properties, clsAggregationDimension

An object of ClassType clsAggregationDimension implements the following properties of the Dimension interface.

Property Description
AllowSiblingsWithSameName Specifies whether sibling members of the same parent

within a dimension can have the same name.
AreMemberKeysUnique Indicates whether member keys are unique within a

particular level for the dimension.
AreMemberNamesUnique Indicates whether member names are unique within a

particular level for the dimension.
ClassType Returns an enumeration constant that identifies the

specific object type.
DataMemberCaptionTemplate Contains a template string that is used to create

captions for system-generated data members.
DataSource The name of the data source object.
DefaultMember Defines the default member of the dimension.
DependsOnDimension Names a dimension to which the current dimension is

related.
DimensionType Returns an enumeration constant that identifies the

specific type of dimension.
EnableRealTimeUpdates Indicates whether real-time updates are enabled for

the dimension.
FromClause A comma-separated list of the tables from which the

store data is obtained.
IsChanging Indicates whether members and/or levels are expected

to change on a regular basis.
IsReadWrite Indicates whether dimension writebacks are available

to clients with appropriate permissions.
IsShared Indicates whether the dimension is shared among

cubes.
IsTemporary Indicates whether the dimension is temporary.
IsValid Indicates whether the dimension structure is valid.
IsVirtual Indicates whether the dimension is virtual.
IsVisible Indicates whether the dimension is visible to the client.
JoinClause Contains the SQL JOIN clause for the dimension.
LastProcessed The date and time when the dimension was last

processed.
LastUpdated User-specified date. It is not used by Microsoft® SQL

Server™ 2000 Analysis Services.
MembersWithData Determines which members in a dimension can have

associated data in the fact table.
Name The dimension name.
OrdinalPosition Returns the ordinal position of the dimension object

within its parent object's Dimensions collection.
Parent Returns a reference to the parent MDStore object.
SourceTableFilter Restricts members included in a dimension.
StorageMode Determines the method of storing dimension contents.
SubClassType Returns an enumeration constant that identifies the

subclass type of the object.

See Also

clsAggregationDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

clsAggregationLevel
clsAggregationLevel

An object of ClassType clsAggregationLevel provides a specific implementation of the Decision Support Objects (DSO) Level
interface. It is used to maintain the level objects associated with an MDStore object that has a ClassType of clsAggregation.
This object provides collections and properties through the Level interface. There are no methods associated with an object of
ClassType clsAggregationLevel.

Remarks

Levels describe the dimension hierarchy from the highest (most aggregated) level to the lowest (most detailed) level of data. The
(All) level of a dimension is the top level of a dimension; it includes all the members of subordinate levels.

Example

Use the following code to reference a level of an existing aggregation:

' Assume the existence of an object (myAgg) of
' ClassType clsAggregationDimension
Dim myLev As DSO.Level
Set myLev = myAgg.Levels("Brand Name")

See Also

Collections, clsAggregationLevel

Level Interface

Properties, clsAggregationLevel

Analysis Services Programming (SQL Server 2000)

Collections, clsAggregationLevel
Collections, clsAggregationLevel

An object of ClassType clsAggregationLevel implements the following collection of the Level interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsAggregationLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsAggregrationLevel
Properties, clsAggregrationLevel

An object of ClassType clsAggregationLevel implements the following properties of the Level interface.

Property Description
AreMemberKeysUnique Indicates whether the members of a level are

uniquely identified by their member key column
AreMemberNamesUnique Indicates whether the members of a level are

uniquely identified by their member name column
ClassType Returns an enumeration constant that identifies the

specific object type
ColumnSize The size (in bytes) of the data in the

MemberKeyColumn property of the level
ColumnType The data type of the MemberKeyColumn property

of the level
CustomRollUpColumn Contains the name of the column that contains

member-specific rollup instructions
CustomRollUpExpression Contains a Multidimensional Expressions (MDX)

expression used to override the default rollup mode
CustomRollUpPropertiesColumn Contains the name of the column that supplies cell

properties for member-specific rollup instructions
Description The description of the level
EstimatedSize The estimated number of members in the level
FromClause Contains the SQL FROM clause for the level
Grouping Indicates the type of grouping used by the OLAP

server
HideMemberIf Indicates whether a member should be hidden from

client applications
IsDisabled Indicates whether the level is disabled
IsValid Indicates whether the level structure is valid
IsVisible Indicates whether the level is visible to client

applications
JoinClause Contains the SQL JOIN clause for the level
LevelNamingTemplate Defines how levels in a parent-child hierarchy are

named
LevelType Returns an enumeration constant that identifies the

specific type of level
MemberKeyColumn The name of the column that contains the member

key of the aggregation level
MemberNameColumn The name of the column that contains member

names.
Name The name of the level
Ordering Specifies the method to use when ordering the

members of a level
OrderingMemberProperty Specifies a member property used to determine the

ordering of members
OrdinalPosition Returns the ordinal position of the level in the

Levels collection of the parent object
Parent Returns a reference to the parent dimension object
ParentKeyColumn Identifies the parent of a member in a parent-child

hierarchy
RootMemberIf Determines how the root member or members of a

parent-child hierarchy are identified
SkippedLevelsColumn Identifies the column that holds the number of

empty levels between a member and its parent

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

UnaryOperatorColumn Contains the name of a column that stores
mathematical operators serving as member-specific
rollup instructions for the level

See Also

clsAggregationLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

clsAggregationMeasure
clsAggregationMeasure

An object of ClassType clsAggregationMeasure provides a specific implementation of the Decision Support Objects (DSO)
Measure interface. It is used to maintain the measure objects contained within an aggregation object. This object provides
collections and properties through the Measure interface. There are no methods associated with an object of ClassType
clsAggregationMeasure.

Remarks

When a cube is processed, measures are aggregated across the dimensions in the cube.

Example

Use the following code to reference a measure of an aggregation:

'Assume an object (dsoAggregation) of ClassType clsAggregation exists.
Dim dsoAggMeasure As DSO.Measure
Set dsoAggMeasure = dsoAggregation.Measures("Unit Sales")

See Also

Collections, clsAggregationMeasure

Measure Interface

Object Architecture

Properties, clsAggregationMeasure

Analysis Services Programming (SQL Server 2000)

Collections, clsAggregationMeasure
Collections, clsAggregationMeasure

An object of ClassType clsAggregationMeasure implements the following collection of the Measure interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsAggregationMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsAggregationMeasure
Properties, clsAggregationMeasure

An object of ClassType clsAggregationMeasure implements the following properties of the Measure interface.

Property Description
AggregateFunction A value corresponding to the type of aggregation

function used for the measure
ClassType Returns an enumeration constant that identifies the

specific object type
Description Contains the description of the measure
FormatString Contains the format used to display the measure values
IsValid Indicates whether the measure structure is valid
IsVisible Indicates whether the measure is visible to the client
Name Contains the measure name
OrdinalPosition Returns the ordinal position of the measure in the

Measures collection of the parent object
Parent Returns a reference to the parent aggregation object
SourceColumn Contains the name of the measure column in the

aggregated fact table
SourceColumnType Returns a Microsoft® ActiveX® Data Objects (ADO) DB

enumeration constant identifying the data type of the
column specified by the SourceColumn property

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

See Also

clsAggregationMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

clsCollection
clsCollection

A Decision Support Objects (DSO) collection is an object similar to a standard Microsoft® Visual Basic® Collection object. Unlike
typical Visual Basic collections, however, DSO collections can contain only objects of the same type, determined by the ClassType
property of the contained DSO objects. For example, the Dimensions collection can contain only objects of the object classes that
apply to dimensions, such as clsDatabaseDimension, clsCubeDimension, clsPartitionDimension, and
clsAggregationDimension. Collections are provided with methods and properties through their default interface, the
OlapCollection interface, for interacting with them.

Remarks

The ContainedClassType property of the clsCollection object can be used to determine the objects allowed in a collection.

See Also

Collections

ClassType

ContainedClassType

Analysis Services Programming (SQL Server 2000)

Methods, clsCollection
Methods, clsCollection

The following methods apply to Decision Support Objects (DSO) collections.

Method Description
Add Adds an existing object to a collection
AddNew Creates and adds a new object to a collection
Find Determines whether a specified object is in a collection
Item Retrieves an object from a collection
Remove Removes an object from a collection

Note These methods do not apply to CustomProperties collections. For more information, see CustomProperties.

See Also

Collections

Analysis Services Programming (SQL Server 2000)

Add (clsCollection)
Add (clsCollection)

The Add method of a Decision Support Objects (DSO) collection adds an object to the collection. This method does not apply to
CustomProperties collections.

Note It is recommended that you use the AddNew method when adding new objects. You should use the Add method only
when adding existing objects: for example, when you are adding aggregations to a partition after you have designed them. For
more information, see clsPartitionAnalyzer.

Syntax

object.Add(obj, [sKey As String], [Before])

object

An instance of a DSO collection object.

obj

An instance of a DSO object.

sKey

(Reserved) Defaults to Item.Name. If specified, it must contain the value of the item's Name property.

Before

(Optional) An expression that specifies a relative position in the collection. The member to be added is placed in the collection
before the member identified by the Before argument. The value of Before must be a number from 1 to the value of the
colCollection.Count property. If you omit this parameter, the item is appended at the last position in the collection. This argument
is ignored if the collection is sorted; the member to be added is placed in the position indicated by the sort order of the collection.

Note All collections in the DSO object model are one-based. That is, the first item in the collection has an index of 1 and the last
item has an index equal to the value of the Count property.

See Also

Collections

Analysis Services Programming (SQL Server 2000)

AddNew (clsCollection)
AddNew (clsCollection)

The AddNew method of a Decision Support Objects (DSO) collection creates and adds an object to a collection.

Syntax

Set vnt = object.AddNew(Name As String, [SubClassType As SubClassTypes])

vnt

A Variant variable that receives the instance of the new member. Instead of a variant, you can use a variable that has been
declared to match the object being retrieved from the collection. For example, a variable declared as type MDStore, with its
ClassType property value set to clsCube, can be used to retrieve an object from an MDStores collection of clsCube objects.

object

An instance of a DSO collection object.

Name

A string that specifies the name of the new object to add to the collection.

SubClassType

(Optional) One of the values enumerated by the SubClassTypes enumeration. For more information, see SubClassTypes.

Remarks

The ClassType property of the new object is set automatically and depends on the parent of the collection to which the object is
being added. For example, objects added to the MDStores collection of an object of ClassType clsDatabase automatically
receive a ClassType value of clsCube.

The AddNew method maintains hierarchical relationships and ordering within the collection.

Note The AddNew method should be used when adding new objects to a collection. You should use the Add method only when
adding existing objects: for example, when you are adding aggregations to a partition after you have designed them. For more
information, see clsPartitionAnalyzer.

Example

Use the following code to create a new cube and add it to the MDStores collection of cubes:

' Assume the existence of an object objDB
' of ClassType clsDatabase.
Dim objNewCube As MDStore
Set objNewCube = objDB.MDStores.AddNew("NewCube")

See Also

Collections

SubClassTypes

Analysis Services Programming (SQL Server 2000)

Find (clsCollection)
Find (clsCollection)

The Find method of a Decision Support Objects (DSO) collection locates an item in a collection. This method does not apply to
CustomProperties collections.

Syntax

bPresent = object.Find(vKey)

bPresent

A Boolean variable that receives the returned value: True if the item was found, False otherwise.

object

An instance of a DSO collection object.

vKey

The key or index of the item to be found.

Example

Use the following code to check for the existence of a partition named EastCoast in the MDStores collection of partitions for a
cube:

' Assume the existence of an object cubCube
' of ClassType clsCube.
Dim bPresent As Boolean
bPresent = cubCube.MDStores.Find("EastCoast")

See Also

Collections

Analysis Services Programming (SQL Server 2000)

Item (clsCollection)
Item (clsCollection)

The Item method of a Decision Support Objects (DSO) collection returns an instance of an item in the collection. This method
does not apply to CustomProperties collections.

Syntax

Set vnt = object.Item(vntIndexKey)

vnt

A Variant variable that receives the instance of the member. Instead of a variant, you can use a variable that has been declared to
match the object being retrieved from the collection. For example, a variable declared as type MDStore, with its ClassType
property value set to clsCube, can be used to retrieve an object from an MDStores collection of clsCube objects.

object

An instance of a DSO collection object.

vntIndexKey

Can be either the index (integer) or key (string) to the collection.

Note All collections in the DSO object model are one-based. That is, the first item in the collection has an index of 1 and the last
item has an index of Count.

Example

Use the following code to return the partition named EastCoast from the MDStores collection of partitions for a cube:

' Assume the existence of an object cubCube
' of ClassType clsCube.
Dim Temp_Partition As MDStore
' Retrieve using the key
Set Temp_Partition = cubCube.MDStores.Item("EastCoast")
' OR Retrieve using the Index
Set Temp_Partition = cubCube.MDStores.Item(2)

See Also

Collections

Analysis Services Programming (SQL Server 2000)

Remove (clsCollection)
Remove (clsCollection)

The Remove method of a Decision Support Objects (DSO) collection removes an item from the collection. This method does not
apply to CustomProperties collections.

Syntax

object.Remove(vntIndexKey)

object

An instance of a DSO collection object.

vntIndexKey

Either the index (integer) or key (string) to the collection.

Note All collections in the DSO object model are one-based. That is, the first item in the collection has an index of 1 and the last
item has an index of Count.

Remarks

The Remove method, by removing the selected member from the collection, removes the selected member from both the
Analysis server and the repository.

Example

Use the following code to remove the partition named EastCoast from the MDStores collection of partitions for a cube:

' Assume the existence of an object dsoCube
' of ClassType clsCube.
' Remove using the key
dsoCube.MDStores.Remove "EastCoast"
' OR Remove using the Index
dsoCube.MDStores.Remove 2

See Also

Collections

Analysis Services Programming (SQL Server 2000)

Properties, clsCollection
Properties, clsCollection

The following properties apply to Decision Support Objects (DSO) collections.

Property Description
ClassType The class type of a collection
ContainedClassType The class type of the items contained in a collection
Count The number of items in a collection

Note These properties do not apply to CustomProperties collections. For more information, see CustomProperties.

See Also

Collections

Analysis Services Programming (SQL Server 2000)

ClassType (clsCollection)
ClassType (clsCollection)

The ClassType property of a Decision Support Objects (DSO) collection returns the class type of the collection object. This
property does not apply to CustomProperties collections.

Data Type

ClassTypes

This property returns clsCollection for all collections, regardless of the value of the ClassType property for the objects contained
by the collection.

Access

Read-only

Remarks

Use the ContainedClassType property to determine the value of the ClassType objects accepted by the collection.

See Also

ContainedClassType (clsCollection)

ClassTypes

clsDataSource

Collections

Command Interface

Dimension Interface

Level Interface

MDStore Interface

Role Interface

Analysis Services Programming (SQL Server 2000)

ContainedClassType (clsCollection)
ContainedClassType (clsCollection)

The ContainedClassType property of a Decision Support Objects (DSO) collection returns the class type of the items contained
within the collection. This property does not apply to CustomProperties collections.

Data Type

ClassTypes

Access

Read-only

Remarks

The DSO object model uses the properties ClassType and SubClassType to identify the object. All DSO objects, with the
exception of those of ClassType clsCube, clsLevel, and clsMiningModel, return a SubClassType of sbclsRegular. In addition
to sbclsRegular, an object of ClassType clsCube or clsLevel can have a SubClassType of sbclsVirtual, which identifies the
object as a virtual cube or a virtual (calculated) level. Objects of ClassType clsMiningModel return a SubClassType of
sbclsOLAP or sbclsRelational, depending on the type of mining model defined by the object.

Example

Use the following code to return a collection object's ContainedClassType and determine which class type has been returned:

Dim ctVar As ClassTypes
ctVar = CollectionObject.ContainedClassType
Select Case ctVar
 Case clsCubeMeasure
 ' Insert code for a cube measure.
 Case clsCubeDimension
 ' Insert code for a cube dimension.
 Case clsCubeLevel
 ' Insert code for a cube level.
 Case clsCubeCommand
 ' Insert code for a cube command.
 Case clsCubeRole
 ' Insert code for a cube role.
 Case Else
 ' Insert code for other objects.
End Select

See Also

ClassTypes

clsDataSource

Collections

Command Interface

Dimension Interface

Level Interface

MDStore Interface

Role Interface

Analysis Services Programming (SQL Server 2000)

Count (clsCollection)
Count (clsCollection)

The Count property of a Decision Support Objects (DSO) collection returns the number of items in the collection. This property
does not apply to CustomProperties collections.

Data Type

Integer

Access

Read-only

Note All collections in the DSO object model are one-based. That is, the first item in the collection has an index of 1 and the last
item has an index of Count.

Example

Use the following code to return the number of cubes in an MDStores collection of cubes:

'Assume an object (dsoDB) of ClassType clsDatabase exists
Dim dsoCube As DSO.MDStore
Dim cubeCounter As Integer
For cubeCounter = 1 to dsoDB.MDStores.Count
 Set dsoCube = dsoDB.MDStores(cubeCounter)
 Debug.Print " Cube Name: " & dsoCube.Name
Next cubeCounter

See Also

Collections

Analysis Services Programming (SQL Server 2000)

clsColumn
clsColumn

Data mining column objects (that is, objects of ClassType clsColumn), along with data mining model objects, provide a
programmatic interface to data mining capabilities. Data mining automates data analysis by applying algorithms to reveal
historical and predictive patterns within large databases. The class type clsMiningModel is provided by Decision Support
Objects (DSO) to represent data mining models. Data mining models are the primary objects for predictive analysis, just as a cube
is the primary object for OLAP analysis. Objects of ClassType clsColumn are used to define the structure of mining model
objects through the Columns collection of the model. Columns are provided with collections and properties through their default
interface, the Column interface, for interacting with them. There are no methods associated with clsColumn objects.

Remarks

An object of ClassType clsColumn can have a SubClassType of sbclsRegular or sbclsNested. A column of SubClassType
sbclsRegular is an individual data column, whereas a column of SubClassType sbclsNested represents a nested table
composed of multiple individual data columns.

You create column objects by declaring a variable as a clsColumn data type and then creating an instance of the object and
adding it to the Columns collection of either a mining model object or another column object. The AddNew method of the
Columns collection creates the instance, sets the name of the object to the name you provide, adds the object to the collection,
establishes the SubClassType of the column, and sets its Parent property to reference the owner of the collection.

Examples

Adding a N ew Column to a Data M ining M odel

The following example demonstrates how to add a new column to a data mining model:

'--
' Add a new column to the mining model called Gender and relate this
' column to the Gender member property of the Name level of the
' Customers dimension. Declare that the data in this column is
' statistically discrete.
' Assume the existence of a DSO Level object, dsoLvl.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Gender")
 'Identify the member property of the Customers dimension
 'that this column is based on.
 Set dsoColumn.SourceOlapObject = dsoLvl.MemberProperties("Gender")
 'Identify its type.
 dsoColumn.DataType = adWChar
 'Make this column related to the Customer Id column.
 dsoColumn.RelatedColumn = "Customer Id"
 'Identify this column as one containing discrete data.
 dsoColumn.ContentType = "DISCRETE"

Analysis Services Programming (SQL Server 2000)

Collections, clsColumn
Collections, clsColumn

An object of ClassType clsColumn supports the following collections.

Collection Description
Columns The collection of column objects that defines a nested table in the

structure of a data mining model object. This collection applies
only to columns of SubClassType sbclsNested.

CustomProperties The collection of user-defined properties for the data mining
model.

Analysis Services Programming (SQL Server 2000)

Properties, clsColumn
Properties, clsColumn

An object of ClassType clsColumn supports the following properties.

Property Description Access
AreKeysUnique Indicates whether key columns defined in the

Columns collection uniquely identify
members in the case table.

R/W†

ClassType Returns an enumeration constant that
identifies the specific object type.

R

ContentType Describes the content type of a column's data. R/W*

DataType The data type of the column. R/W*

Description The description of the column. R/W
Distribution Identifies the statistical distribution of a

column's data.
R/W

Filter Filters the rows used in the nested table. R/W*

FromClause Specifies the FROM clause of the SQL query
that returns a nested table for a column.

R/W*

IsDisabled Specifies whether a column is disabled for
training purposes.

R/W

IsInput Indicates whether a column can accept input
values for training a mining model object. For
more information, see IsPredictable.

R/W

IsKey Indicates whether or not the column is a key
column in a case table or a nested table.

R/W*

IsParentKey Indicates whether the column is a foreign key
that relates to the case table.

R or R/W*

IsPredictable Indicates whether this column can be
predicted based on other input columns. For
more information, see IsInput.

R/W

JoinClause Specifies the JOIN clause of the SQL query
that returns a nested table for a column.

R/W*

ModelingFlags Specifies modeling options for a column. R/W
Name The name of the column. R/W
Num The ordinal position of the column. R/W
Parent The parent mining model or column object. R
RelatedColumn The column to which a column is related. R/W*

SourceColumn The name of the column's source column in a
relational table.

R/W*†

SourceOlapObject The name of a column's source Decision
Support Objects (DSO) object.

R/W††

SpecialFlag Identifies the statistical nature of a column's
data.

R/W

SubClassType Returns an enumeration constant that
identifies the subclass type.

R

* This property applies only to columns of SubClassType sbclsRegular.
† This property applies only to columns belonging to ClassType clsMiningModel objects of SubClassType sbclsRegular.
†† This property applies only to columns belonging to ClassType clsMiningModel objects of SubClassType sbclsOlap.

Analysis Services Programming (SQL Server 2000)

AreKeysUnique (clsColumn)
AreKeysUnique (clsColumn)

The AreKeysUnique property of a clsColumn object indicates whether key columns (that is, a clsColumn object with an IsKey
property set to True) defined in the Columns collection uniquely identify members in the case table.

Note This property applies only to columns that belong to mining model objects of SubClassType sbclsRelational.

Data Type

Boolean

Access

Read/write for columns with a SubClassType of sbclsNested, read-only for all others.

Remarks

The AreKeysUnique property determines whether the relational mining model adds the DISTINCT keyword to the SQL SELECT
query used to retrieve the training data set from the case tables. If the values for the key columns identified in the data mining
model are unique in the case tables, setting this property to True can improve performance when the relational data mining
model is trained.

For columns with a SubClassType of sbclsRegular, this property returns the AreKeysUnique property value of the parent,
either an object of ClassType clsColumn with a SubClassType of sbclsNested or an object of ClassType clsMiningModel.

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

ClassType (clsColumn)
ClassType (clsColumn)

The ClassType property of a clsColumn object returns an enumeration constant that identifies the specific class type.

Data Type

ClassTypes

Access

Read-only

Remarks

The ClassType property always returns clsColumn for column objects.

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

ContentType (clsColumn)
ContentType (clsColumn)

The ContentType property of an object of ClassType clsColumn describes the content type of a column's data.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey and IsParentKey properties are False, read-only for
all others.

Remarks

For columns whose IsKey or IsParentKey properties are set to True and columns with a SubClassType of sbclsNested, this
property returns an empty string.

This property suggests the column contents to the mining model. This suggestion is used to optimize the mining model's
MiningAlgorithm property and must be specified for each column.

Supported values for this property are listed in the MINING_SERVICES schema rowset in the SUPPORTED_TYPE_FLAGS column.

Examples

Identifying the Content Type of a M ining M odel Column

The following example demonstrates how to create a new column and set its ContentType property to CONTINUOUS:

'--
' Add a new column to the mining model called Unit Sales and relate
' this column to the Sales cube measure of the same name. Set the
' columns data type to Integer, and identify the data content in it as
' being continous and logarithmically normalized. Finally, identify this
' column as being predictable.
' Assume the existence of a DSO Cube object, dsoCb.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Unit Sales")
 'Identify this column as being based on the Unit Sales measure.
 Set dsoColumn.SourceOlapObject = dsoCb.Measures("Unit Sales")
 'Identify the column type.
 dsoColumn.DataType = adInteger
 'Identify this column's content as being continuous.
 dsoColumn.ContentType = "CONTINUOUS"
 'Identify the statistical distribution of this data.
 dsoColumn.Distribution = "LOG_NORMAL"
 'Identify the column as being predictable.
 dsoColumn.IsPredictable = True

Analysis Services Programming (SQL Server 2000)

DataType (clsColumn)
DataType (clsColumn)

The DataType property identifies the data type of an object of ClassType clsColumn. This property applies only to columns of
SubClassType sbclsRegular.

Data Type

ADODB.DataTypeEnum

Access

Read/write

Remarks

Values for the DataType property are supplied by the Microsoft® ActiveX® Data Objects (ADO) DataTypeEnum enumeration
constants. For more information, see the ADO documentation.

Examples

Setting the DataType Property

The following example adds a new column to a data mining model object. It then sets various properties, including the DataType
property.

'--
' Add a new column to the mining model called Unit Sales and relate
' this column to the Sales cube measure of the same name. Set the
' column's data type to Integer, and identify the data content in it as
' being continuous and logarithmically normalized. Finally, identify this
' column as being predictable.
' Assume the existence of a DSO Cube object, dsoCb.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Unit Sales")
 'Identify this column as being based on the Unit Sales measure.
 Set dsoColumn.SourceOlapObject = dsoCb.Measures("Unit Sales")
 'Identify the column type.
 dsoColumn.DataType = adInteger
 'Identify this column's content as being continuous.
 dsoColumn.ContentType = "CONTINUOUS"
 'Identify the statistical distribution of this data.
 dsoColumn.Distribution = "LOG_NORMAL"
 'Identify the column as being predictable.
 dsoColumn.IsPredictable = True

Analysis Services Programming (SQL Server 2000)

Description (clsColumn)
Description (clsColumn)

The Description property of an object of ClassType clsColumn sets or returns the description of the column. This property is
reserved for future reference in Decision Support Objects (DSO) and is not available to client applications.

Data Type

String

Access

Read/write

Examples

A. Setting the Description Property

Use the following code to set the Description property for a clsColumn object:

' Assume an object (dsoColumn) of ClassType clsColumn exists
dsoColumn.Description = "Number Sold"

Analysis Services Programming (SQL Server 2000)

Distribution (clsColumn)
Distribution (clsColumn)

The Distribution property of an object of ClassType clsColumn identifies the statistical distribution of the column's data.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey and IsParentKey properties are False, read-only for
all others.

Remarks

For columns whose IsKey or IsParentKey properties are set to True and columns with a SubClassType of sbclsNested, this
property returns an empty string.

Access

Read/write

Remarks

This property specifies the column's statistical distribution. This is used to optimize performance by the mining model's mining
algorithm and can be left unspecified.

This property applies only to columns of SubClassType sbclsRegular, if they are not used as key or parent key columns. (That is,
it applies only to regular columns whose IsKey and IsParentKey properties are False.) Supported values for this property are
listed in the MINING_SERVICES schema rowset in the SUPPORTED_DISTRIBUTION_FLAGS column.

Examples

Setting the Distribution Property

The following example creates a new column and sets its Distribution property, among others:

'--
' Add a new column to the mining model called Unit Sales and relate
' this column to the Sales cube measure of the same name. Set the
' column's data type to Integer, and identify the data content in it as
' being continous and logarithmically normalized. Finally, identify this
' column as being predictable.
' Assume the existence of a DSO Cube object, dsoCb.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Unit Sales")
 'Identify this column as being based on the Unit Sales measure.
 Set dsoColumn.SourceOlapObject = dsoCb.Measures("Unit Sales")
 'Identify the column type.
 dsoColumn.DataType = adInteger
 'Identify this column's content as being continuous.
 dsoColumn.ContentType = "CONTINUOUS"
 'Identify the statistical distribution of this data.
 dsoColumn.Distribution = "LOG_NORMAL"
 'Identify the column as being predictable.
 dsoColumn.IsPredictable = True

Analysis Services Programming (SQL Server 2000)

Filter (clsColumn)
Filter (clsColumn)

The Filter property of an object of ClassType clsColumn specifies a filter condition that is applied to the SQL query that returns
the cases for the mining model.

Note This property applies only to columns that belong to mining model objects of SubClassType sbclsRegular.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsNested, read-only for all others.

Remarks

For columns with a SubClassType of sbclsRegular, this property returns the Filter property of the parent object. Columns can
be nested, so the parent object can be either a clsMiningModel object or a clsColumn object.

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

FromClause (clsColumn)
FromClause (clsColumn)

The FromClause property of an object of ClassType clsColumn specifies the FROM clause of the SQL query that returns a
nested table.

Note This property applies only to columns that belong to mining model objects of SubClassType sbclsRegular.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsNested, read-only for all others.

Remarks

For columns with a SubClassType of sbclsRegular, this property returns the Filter property of the parent object. Columns can
be nested, so the parent object can be either a clsMiningModel object or a clsColumn object.

Examples

Creating a N ew N ested Column

The following code creates a new nested column called Products. It uses the FromClause and JoinClause properties to establish
the SQL joins to the parent table. It then creates a new column called CustomerID and establishes that this column contains key
values from the parent table by setting the IsParentKey property to TRUE. The clsColumn object that contains the keys in the
parent table is referred to by the value of the RelatedColumn property: KeyColumn.

' Create a new nested column.
Set dsoNestedCol = dsoDmm.Columns.AddNew("Products", sbclsNested)
dsoNestedCol.FromClause = """Sales"", ""SalesReps"", ""Products"""
dsoNestedCol.JoinClause = """Sales"".""SalesRep"" = ""SalesReps"".""Name""" & _
 " AND ""Sales"".""Product"" = ""Products"".""Product"""
dsoNestedCol.Filter = ""

' Create a new column that contains key values from the parent table.
Set dsoColumn = dsoNestedCol.Columns.AddNew("CustomerID")
dsoColumn.SourceColumn = """Products"".""CustId"""
dsoColumn.DataType = adInteger
dsoColumn.IsParentKey = True
' The RelatedColumn property is set to the clsColumn object used
' as the key column for the data mining model.
dsoColumn.RelatedColumn = "KeyColumn"

Analysis Services Programming (SQL Server 2000)

IsDisabled (clsColumn)
IsDisabled (clsColumn)

The IsDisabled property of an object of ClassType clsColumn specifies whether the column is included in the mining model or
is only used during training to specify joins between tables.

Data Type

Boolean

Access

Read/write

Remarks

Columns where the IsDisabled property has been set to True are ignored when a mining model is being created or trained on
the Analysis server. This property setting is useful for OLAP data mining models (that is, objects of ClassType clsMiningModel
and SubClassType sbclsOlap) when the Columns collection is created automatically by calling the Update method. After the
Update method is called, columns to be used by the data mining model can be enabled by setting the IsDisabled property to
False.

For columns of SubClassType sbclsNested, setting the IsDisabled property to True automatically disables descendant columns.
Setting the IsDisabled property to False automatically enables ancestor columns.

See Also

clsColumn

Update

Analysis Services Programming (SQL Server 2000)

IsInput (clsColumn)
IsInput (clsColumn)

The IsInput property of an object of ClassType clsColumn indicates whether the column can accept input values when carrying
out predictions.

Data Type

Boolean

Access

Read/write

Remarks

A column can have both the IsInput and the IsPredictable properties set to True.

Note All columns are considered as input columns when training a mining model unless they are disabled. It is only when
predictions are carried out against a mining model that the notions of IsInput or IsPredictable have any meaning.

The value of the IsInput property can be related to other properties of the object, as well as properties of the parent object.
Changing the property can also affect the properties of related objects, including parent objects.

For columns with a SubClassType of sbclsRegular, if the column is related to a column that is not a key column, the value of this
property is equal to the value of the IsInput property of the related column. If the parent of the column is a clsColumn object
(that is, the column is a child of a nested column) and the IsKey property is True, the value of this property is equal to the value of
the IsInput property of the parent column. If the parent of the column is a clsMiningModel object and the IsKey property is
True, the value of this property is False. If the IsParentKey property of this column is True, this property is False.

Changing the IsInput property to True for a column (other than a key column) whose parent is a clsColumn object (that is, the
column is a child of a nested column) changes the IsInput property of the parent column to True.

For columns with a SubClassType of sbclsNested, changing the IsInput property to False changes the IsInput property for all
child columns whose IsKey, IsParentKey, and IsRelated properties are all False.

See Also

clsColumn

IsDisabled

IsPredictable

Analysis Services Programming (SQL Server 2000)

IsKey (clsColumn)
IsKey (clsColumn)

The IsKey property of an object of ClassType clsColumn indicates whether the column is a key column in the case table or in a
nested table.

Data Type

Boolean

Access

Read/write for columns with a SubClassType of sbclsRegular that belong to a clsMiningModel object with a SubClassType of
sbclsRegular, read-only for all others.

Remarks

A key column is a column that uniquely identifies each row in the case table. There can be more than one key column in a row. For
example, to uniquely identify a customer it may be necessary to use both the name column and address column of a customer
record as the keys. In a nested table, the key column with a parent key column (using the IsParentKey property) is used to
uniquely identify the rows of the nested table and relate them to the case table.

The value of IsKey can vary based on the SubClassType property of the column and the properties of the parent object.

The IsKey property is always False for columns with a SubClassType of sbclsNested. If the parent object is an OLAP mining
model (a clsMiningModel object with a SubClassType of sbclsOlap), the IsKey property returns True only if the column is
associated with the lowest enabled level of the case dimension (that is, the SourceColumn property of the column matches the
CaseLevel property of the parent clsMiningModel object).

Examples

Adding a N ew Column

The following example adds a new column, Customer Id, to the Columns collection of a mining model object. It then sets the
IsKey property and other important properties.

'--
' Add a new column to the mining model called Customer Id and relate
' this column to the Name level of the Customers dimension.
' Describe the level's type and make it a key for the model.
' Assume that a DSO level object already exists, called dsoLvl.
'--
 'Add Customer Id as a new column in the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Customer Id")
 'Identify the level in Sales that this column is based on.
 Set dsoColumn.SourceOlapObject = dsoLvl
 'Identify the type of column this is.
 dsoColumn.DataType = adInteger ' This enumeration is from ADO.
 'Identify this column as a key.
 dsoColumn.IsKey = True

Analysis Services Programming (SQL Server 2000)

IsParentKey (clsColumn)
IsParentKey (clsColumn)

The IsParentKey property of an object of ClassType clsColumn indicates whether the column is a foreign key that relates to a
column in the case table. This property, when used with the IsKey property, serves to uniquely identify the rows in a nested table.

Data Type

Boolean

Access

Read/write for columns with a SubClassType of sbclsRegular that belong to a clsMiningModel object with a SubClassType of
sbclsRegular, read-only for all others.

Remarks

The IsParentKey property always returns False for columns with a SubClassType of sbclsNested and for columns belonging to
a mining model with a SubClassType of sbclsOlap.

The IsParentKey property indicates which column in the nested table contains the foreign key to the case table, and it assists in
creating the SQL JOIN clause used for the training query. For example, if a data mining model is constructed from the store table,
with a key column named Store ID based on the store_id field, and a nested column based on the sales_fact_1998 table is
added, a column related to the Store ID column (that is, a clsColumn object with a RelatedColumn property set to "Store ID") is
created with the source column set to the store_id field in the sales_fact_1998 table and the IsParentKey set to True.

Examples

Creating a Data M ining M odel With a N ested Column

The following code example creates a new relational data mining model named Test Model in the FoodMart 2000 database. Test
Model is based on the store table in the FoodMart data source. The nested column Sales Fact 1998, based on the
sales_fact_1998 table, contains a parent key column named Parent Store ID. The Parent Store ID column, defined from the
store_id column in the sales_fact_1998 table, is related to the Store ID column in the data mining model defined from the
store_id column in the store table.

Public Sub CreateDMMWithNestedColumn()
 Dim dsoServer As DSO.Server
 Dim dsoDB As DSO.Database
 Dim dsoDMM As DSO.MiningModel
 Dim dsoColumn As DSO.Column
 Dim dsoNestedColumn As DSO.Column

 ' Initialize server.
 Set dsoServer = New DSO.Server

 ' Connect to the local Analysis server.
 ' If a connection cannot be made, an error is raised.
 dsoServer.Connect "LocalHost"

 ' Connect to the FoodMart 2000 database.
 Set dsoDB = dsoServer.MDStores("FoodMart 2000")

 ' Create a new relational data mining model.
 Set dsoDMM = dsoDB.MiningModels.AddNew("Test Model", sbclsRelational)

 ' Set the properties for the data mining model.
 With dsoDMM
 .FromClause = """store"""
 .MiningAlgorithm = "Microsoft_Decision_Trees"
 .DataSources.Add dsoDB.DataSources("FoodMart")
 End With

 ' Create the key and predictable columns for the mining model.
 Set dsoColumn = dsoDMM.Columns.AddNew("Store ID", sbclsRegular)

 With dsoColumn
 .SourceColumn = """store"".""store_id"""

 .DataType = adInteger
 .IsKey = True
 End With

 Set dsoColumn = dsoDMM.Columns.AddNew("Store Type", sbclsRegular)

 With dsoColumn
 .SourceColumn = """store"".""store_type"""
 .DataType = adWChar
 .IsKey = False
 .IsInput = True
 .IsPredictable = True
 .ContentType = "DISCRETE"
 End With

 ' Create the nested column.
 Set dsoColumn = dsoDMM.Columns.AddNew("Sales Fact 1998", sbclsNested)

 With dsoColumn
 .FromClause = """sales_fact_1998"""
 .IsInput = True
 .IsPredictable = False
 End With

 ' Create the parent key column for the nested column.
 Set dsoNestedColumn = dsoColumn.Columns.AddNew("Store ID", sbclsRegular)

 ' Set the properties for the parent key column.
 With dsoNestedColumn
 .SourceColumn = """sales_fact_1998"".""store_id"""
 .DataType = adInteger
 .IsKey = False
 .IsInput = False
 .IsPredictable = False
 .IsParentKey = True
 .RelatedColumn = "Store ID"
 End With

 ' Create the key and predictable columns for the nested column.
 Set dsoNestedColumn = dsoColumn.Columns.AddNew("Product ID", sbclsRegular)

 With dsoNestedColumn
 .SourceColumn = """sales_fact_1998"".""product_id"""
 .DataType = adInteger
 .IsKey = True
 .IsInput = True
 .IsPredictable = False
 .IsParentKey = False
 End With

 Set dsoNestedColumn = dsoColumn.Columns.AddNew("Store Sales", sbclsRegular)

 With dsoNestedColumn
 .SourceColumn = """sales_fact_1998"".""store_sales"""
 .DataType = adInteger
 .ContentType = "CONTINUOUS"
 .IsKey = False
 .IsInput = True
 .IsPredictable = False
 .IsParentKey = False
 End With

 ' Save the new data mining model.
 dsoDMM.Update

 ' Process the data mining model.
 dsoDMM.Process

End Sub

Analysis Services Programming (SQL Server 2000)

IsPredictable (clsColumn)
IsPredictable (clsColumn)

The IsPredictable property of an object of ClassType clsColumn indicates whether the column's parent mining model object
can predict the column's value based on other input columns.

Data Type

Boolean

Access

Read/write

Remarks

A column can have both the IsPredictable and the IsInput properties set to True.

Note All columns are considered as input columns when training a mining model unless they are disabled. It is only when
predictions are carried out against a mining model that the notions of IsInput or IsPredictable have any meaning.

The value of the IsPredictable property can be related to other properties of the object, as well as properties of the parent object.
Changing the property can also affect the properties of related objects, including parent objects.

For columns with a SubClassType of sbclsRegular, if the column is related to a column that is not a key column, the value of this
property is equal to the value of the IsPredictable property of the related column. If the parent of the column is a clsColumn
object (that is, the column is a child of a nested column) and the IsKey property is True, the value of this property is equal to the
value of the IsPredictable property of the parent column. If the parent of the column is a clsMiningModel object and the IsKey
property is True, the value of this property is False. If the IsParentKey property of this column is True, this property is False.

Changing the IsPredictable property to True for a column (other than a key column) whose parent is a clsColumn object (that is,
the column is a child of a nested column) changes the IsPredictable property of the parent column to True.

For columns with a SubClassType of sbclsNested, changing the IsPredictable property to False changes the IsPredictable
property for all child columns whose IsKey, IsParentKey, and IsRelated properties are all False.

Examples

Adding a Column to the Columns Collection

The following example adds a column called Unit to a data mining model's Columns collection Sales. It then enables the column
by setting its IsDisabled property to False and makes the column predictable by setting its IsPredictable property to True.

'Make the Unit Sales measure predictable.
Set dsoColumn = dsoDmm.Columns("Unit Sales")
'Enable the column.
dsoColumn.IsDisabled = False
'Make the column predictable.
dsoColumn.IsPredictable = True

Analysis Services Programming (SQL Server 2000)

JoinClause (clsColumn)
JoinClause (clsColumn)

The JoinClause property of an object of ClassType clsColumn specifies the JOIN clause of the SQL query that returns a nested
table for the column. This property applies to columns that belong to mining model objects of SubClassType sbclsRegular.

Data Type

String

Access

Read/write

Remarks

This property is read/write only for nested columns (columns of SubClassType sbclsNested). For regular columns (columns of
SubClassType sbclsRegular), this property is read-only and returns the JoinClause property of the column's parent object.

Examples

Creating a N ested Column

The following example creates a nested column and establishes two joins to the parent columns based on the SalesRep column
and the Product column:

Set dsoNestedCol = dsoDmm.Columns.AddNew("Products", sbclsNested)
dsoNestedCol.FromClause = "Sales, SalesReps, Products"
dsoNestedCol.JoinClause = "Sales.SalesRep = SalesReps.Name AND Sales.Product = Products.Product"
dsoNestedCol.Filter = ""

Analysis Services Programming (SQL Server 2000)

ModelingFlags (clsColumn)
ModelingFlags (clsColumn)

The ModelingFlags property of an object of ClassType clsColumn specifies options for modeling a column's data in a mining
model.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey and IsParentKey properties are False, read-only for
all others.

Remarks

For columns whose IsKey or IsParentKey properties are set to True and columns with a SubClassType of sbclsNested, this
property returns an empty string.

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey and IsParentKey properties are False, read-only for
all others.

Remarks

This property is a comma-delimited list of modeling option values for the column, used to optimize the mining model algorithm
(specified by the MiningAlgorithm property of the clsMiningModel object) and can be left unspecified.

Supported values for this property are listed in the MINING_SERVICES schema rowset in the SUPPORTED_MODELING_FLAGS
column.

See Also

clsColumn

Data Mining Schema Rowsets

MiningAlgorithm

Analysis Services Programming (SQL Server 2000)

Name (clsColumn)
Name (clsColumn)

The Name property of an object of ClassType clsColumn contains the name of the column as it will appear in the mining model.

Data Type

String

Access

Read/write (read-only after object is named)

Example

Use the following code to return a level object name:

' Assume an object (dsoColumn) of ClassType clsColumn exists
Dim strName As String
strName = dsoColumn.Name

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

Num (clsColumn)
Num (clsColumn)

The Num property of a clsColumn object returns the ordinal position of the column in relation to its parent.

Data Type

Integer

Access

Read/write

Remarks

If a column belongs to the nested table of another column, the Num property indicates the ordinal position of the column within
the nested table of the parent column. For a column that is used to define a mining model, the Num property indicates the
ordinal position of the column within the mining model.

See Also

clsColumn

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Parent (clsColumn)
Parent (clsColumn)

The Parent property of a clsColumn returns a reference to the parent of the column.

Data Type

Object

Access

Read-only

Remarks

If a column belongs to another column's nested table, the Parent property returns a reference to a clsColumn object. For a
column that is used to define a mining model, the Parent property returns a reference to a clsMiningModel object.

See Also

clsColumn

clsMiningModel

Analysis Services Programming (SQL Server 2000)

RelatedColumn (clsColumn)
RelatedColumn (clsColumn)

The RelatedColumn property of a clsColumn identifies a column to which the column is related.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey property is False, read-only for all others.

Remarks

For columns with a SubClassType of sbclsRegular whose IsKey property is set to True and for columns with a SubClassType of
sbclsNested, this property returns an empty string.

The functionality of the RelatedColumn property differs depending on the context of its usage:

The RelatedColumn property is used to relate a column in a nested table to a column in the case table (that is, the parent
table) of the data mining model. In this case, the column's IsParentKey property is set to True.

The RelatedColumn property is used to define hierarchical relationships between columns. For example, you can use it to
define that the Region column is related to the State column, the State column is related to the City column, and so on.
For another example, consider a case set involving customer purchases. If ProductName is a column defined in the model,
a column called ProductType can have its RelatedColumn property set to the ProductName column to indicate that its
information is related to the ProductName column.

The SpecialFlag property is used with the RelatedColumn property. Consider the example in which a column is defined
using the SpecialFlag property to contain a probability. In this case, the RelatedColumn property is used to determine
which column the probability is based on. If a column is defined that is related to the CreditRisk column and contains a
probability, the column would contain the numeric probability of a given credit for a given case.

Examples

A. Creating a Key Column and Relating it to a Key in the Case Table

The following example creates a key column in the case table for a mining model. It then creates a nested table based on three
different tables and establishes the relationships between them (that is, their joins). Finally, it establishes a key column within this
nested table and relates it to the key column in the case table.

'Define the key column for the case table.
Set dsoColumn = dsoDmm.Columns.AddNew("KeyColumn")
dsoColumn.SourceColumn = "Key"
dsoColumn.DataType = adInteger
dsoColumn.IsKey = True

'Define a nested table and relate the tables it is based on in a join.
Set dsoNestedCol = dsoDmm.Columns.AddNew("Products", sbclsNested)
dsoNestedCol.FromClause = "Sales, SalesReps, Products"
dsoNestedCol.JoinClause = "Sales.SalesRep = SalesReps.Name " & _
 "AND Sales.Product = Products.Product"
dsoNestedCol.Filter = ""

'Create a parent key column for the nested table and relate it to a column in the case table.
Set dsoColumn = dsoNestedCol.Columns.AddNew("CustomerID")
dsoColumn.SourceColumn = "CustId"
dsoColumn.DataType = adInteger
dsoColumn.IsParentKey = True
dsoColumn.RelatedColumn = "KeyColumn"

Analysis Services Programming (SQL Server 2000)

SourceColumn (clsColumn)
SourceColumn (clsColumn)

The SourceColumn property of an object of ClassType clsColumn identifies the name of its source column in a relational table.
This property applies only to columns belonging to mining model objects of SubClassType sbclsRegular.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular, read-only for all others.

Remarks

For columns with a SubClassType of sbclsNested that belong to a mining model object of SubClassType of sbclsRegular, this
property returns an empty string.

To understand the function of this property, consider the relationships of columns in a model to an SQL query. If you use a
SELECT query to define the structure of a table when you create a mining model, the contents of this property for each column in
the model correspond to a column designation within the SELECT query. For example, consider the following query:

SELECT "Key" AS "CustId", "Age" AS "Age" FROM "People"

If a mining model were to be created using this SELECT statement, the SourceColumn properties for each column would be
"Key" and "Age" respectively.

Examples

Creating a Data M ining M odel

The following example creates a data mining model based upon the People table of a relational database. This table is specified
by the FromClause property. Because the model is based upon a single table, no joins are needed. It then creates and adds two
columns to the model's Columns collection. Each column is related to a field in the original relational table (that is to say, the
People table) by setting the SourceColumn property of each column to the appropriate value.

dsoDmm.Description = "Analyzes the purchasing behavior of customers"
dsoDmm.MiningAlgorithm = "Microsoft_Decision_Trees"
dsoDmm.FromClause = "People"
dsoDmm.JoinClause = "" ' None is needed because there is only a single table.
dsoDmm.Filter = ""
dsoDmm.TrainingQuery = "" 'Let DSO figure out the training query.

Set dsoColumn = dsoDmm.Columns.AddNew("CustId")
dsoColumn.SourceColumn = "People.Key"
dsoColumn.DataType = adInteger
dsoColumn.IsKey = True

Set dsoColumn = dsoDmm.Columns.AddNew("Age")
dsoColumn.SourceColumn = "People.Age"
dsoColumn.DataType = adDouble
dsoColumn.ContentType = "CONTINUOUS"

Analysis Services Programming (SQL Server 2000)

SourceOlapObject (clsColumn)
SourceOlapObject (clsColumn)

The SourceOlapObject property of an object of ClassType clsColumn identifies the source Decision Support Objects (DSO)
object for the column. This property only applies to columns that belong to mining model objects of SubClassType sbclsOlap.

Data Type

Object

Access

Read/write

Remarks

The SourceOlapObject property of a column represents the source object in DSO from which the Column object draws
information. The SourceOlapObject property can be set to an object with a ClassType property of:

clsCubeDimension

clsCubeLevel

clsCubeMeasure

clsMemberProperty

Any object specified in the SourceOlapObject property must be visible (that is, the IsVisible property of the object must be
True). If the IsVisible property of the object is False, an error is raised.

Examples

Adding a N ew Column to a Data M ining M odel

The following example adds a new column to a data mining model and sets its source to a level in an OLAP cube.

'Add Customer Id as a new column in the model.
Set dsoColumn = dsoDmm.Columns.AddNew("Customer Id")
'Identify the level in Sales that this column is based on.
Set dsoColumn.SourceOlapObject = dsoLvl
'Identify the type of column this is.
dsoColumn.DataType = adInteger ' This enumeration is from ADO.
'Identify this column as a key.
dsoColumn.IsKey = True

Analysis Services Programming (SQL Server 2000)

SpecialFlag (clsColumn)
SpecialFlag (clsColumn)

The SpecialFlag property assists the Distribution property in identifying the statistical nature of the column's data values for
model optimization purposes.

Data Type

String

Access

Read/write for columns with a SubClassType of sbclsRegular whose IsKey and IsParentKey properties are False, read-only for
all others.

Remarks

For columns whose IsKey or IsParentKey properties are set to True and columns with a SubClassType of sbclsNested, this
property returns an empty string.

This property suggests the column contents to the mining model. This suggestion is used to optimize the mining model's
MiningAlgorithm and can be left unspecified.

Supported values for this property are listed in the MINING_SERVICES schema rowset in the SUPPORTED_SPECIAL_FLAGS
column.

Examples

Building a N ew Column

The following example builds a new column and sets its SpecialFlag property to PROBABILITY:

Set dsoColumn = dsoNestedCol.Columns.AddNew("pOn Sale")
dsoColumn.SourceColumn = "Sales.pOnSale"
dsoColumn.DataType = adDouble
dsoColumn.RelatedColumn = "On Sale"
dsoColumn.SpecialFlag = "PROBABILITY"

Analysis Services Programming (SQL Server 2000)

SubClassType (clsColumn)
SubClassType (clsColumn)

The SubClassType property of an object of ClassType clsColumn returns an enumeration constant identifying the specific
subclass type.

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects of ClassType clsColumn can have a SubClassType property value of sbclsRegular or sbclsNested. A column has a
SubClassType value of sbclsRegular if it is an individual column. If a column contains a nested table, it has a SubClassType
value of sbclsNested.

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

clsCube
clsCube

An object of ClassType clsCube provides an implementation of the MDStore interface of the Decision Support Objects (DSO)
library specific to cubes. Each instance of clsCube provides collections, methods, and properties through the MDStore interface.

Example

Use the following code to create a cube object (that is, an object of ClassType clsCube):

' Assume an object (dsoServer) of ClassType clsServer exists
' and contains a database in its MDStores collection
Dim dsoDB As DSO.MDStore ' Create an interface for the database.
Dim dsoCube As DSO.MDStore ' Create an interface for the cube.

' Assign the database interface to the first database
' in the server's collection of databases.
Set dsoDB = dsoServer.MDStores(1)
' Next, create the new cube by using the AddNew method
' of the database object's MDStores collection of cubes.
Set myCube = dsoDB.MDStores.AddNew("MyCube")
'Set properties and add dimensions, levels, and measures
' . . .
' Next, create a virtual cube.
Dim dsoVCube as DSO.MDStore ' Create an interface for the virtual cube.
' Use the AddNew method of the MDStores collection,
' just as before, but specify that the cube is virtual
' using the SubClassType argument sbclsVirtual.
Set dsoVCube = dsoDB.MDStores.AddNew("MyVCube", sbclsVirtual)
'Add measures, set properties, and add dimensions

Analysis Services Programming (SQL Server 2000)

Collections, clsCube
Collections, clsCube

An object of ClassType clsCube implements the following collections of the MDStore interface.

Collection Description
Commands The collection of command objects defined in the cube
CustomProperties The collection of user-defined properties
DataSources The collection of data source objects used by the cube
Dimensions The collection of dimension objects defined in the cube
MDStores The collection of MDStore objects defined for the cube
Measures The collection of measure objects defined in the cube
Roles The collection of role objects defined for the cube

See Also

clsCube

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsCube
Methods, clsCube

An object of ClassType clsCube implements the following methods of the MDStore interface.

Method Description
Clone Copies an existing object to a target object of the same

class type. This method also creates a copy of the property
value and has the option of creating collections of major
and minor objects.

LockObject Locks the cube to prevent multiple users from
concurrently changing the object.

Process Processes the cube.
UnlockObject Releases a lock previously established by the LockObject

method.
Update Updates the cube's definition in the meta data repository.

See Also

clsCube

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCube
Properties, clsCube

An object of ClassType clsCube implements the following properties of the MDStore interface.

Property Description
AllowDrillThrough Indicates whether drillthrough is allowed on the

cube.
AggregationPrefix The prefix associated with an aggregation in a cube.
Analyzer The cube analyzer object for this cube.
ClassType Returns an enumeration constant that identifies the

specific object type.
DefaultMeasure The name of the default measure for the cube.
Description The description of the cube.
DrillThroughColumns List of columns that are included in a drillthrough

query.
DrillThroughFilter Statement restricting rows that are returned by a

drillthrough query.
DrillThroughFrom An SQL FROM clause with the names of the tables

used in drillthrough queries.
DrillThroughJoins An SQL JOIN clause with the names of the tables

used in drillthrough queries.
EnableRealTimeUpdates Indicates whether real-time updates are allowed on

the cube.
EstimatedRows The estimated number of rows in the cube.
EstimatedSize The estimated size of the cube (estimated total size

of all rows, in bytes).
FromClause Contains the SQL FROM clause defining the list of

tables used to define the cube's dimensions and
measures.

IsReadWrite Indicates whether the cube is read/write.
IsTemporary Indicates whether the cube should be stored in the

repository.
IsValid Indicates whether the cube structure is valid.
IsVisible Indicates whether the cube is visible to a client.
JoinClause The JOIN clause (list of join conditions, separated by

AND) for the cube.
LastProcessed The date and time when the cube was last

processed.
LastUpdated User-specified date. It is not used by Microsoft®

SQL Server™ 2000 Analysis Services.
Name The name of the cube.
OlapMode Returns an enumeration constant identifying the

type of OLAP storage mode.
Parent Returns a reference to the parent MDStore object.
ProcessingKeyErrorLimit Sets the number of allowable errors that cause

processing to cease.
ProcessingKeyErrorLogFileName The universal naming convention (UNC) path to a

file for logging dimension key errors encountered
during processing.

ProcessingMode Indicates whether the Analysis server should index
and aggregate during processing or afterward.

Server Returns a reference to the DSO.Server object.
SourceTable The name of the fact table of the cube.
SourceTableAlias The alias of the source table for the cube.

SourceTableFilter The SQL clause used to determine which fact table
rows are included in the cube.

State Returns an enumeration constant that indicates the
difference between the MDStore object referenced
by the client application and the corresponding
MDStore object on the Analysis server.

SubClassType Returns an enumeration constant that identifies the
subclass type.

See Also

clsCube

MDStore Interface

Analysis Services Programming (SQL Server 2000)

clsCubeAnalyzer
clsCubeAnalyzer

A Decision Support Objects (DSO) object of ClassType clsCubeAnalyzer contains a single method used to extract information
from the query log. The query log stores the descriptions of queries executed on the Analysis server. This object provides a
method through its own internal interface.

There are no collections or properties associated with an object of ClassType clsCubeAnalyzer.

Examples

Retrieving the Cube Query Log

The following code example retrieves the entire contents of a cube's query log from the Analysis server and prints the number of
records in the immediate window:

Option Explicit

Public dsoServer As DSO.Server
Public dsoDB As DSO.MDStore
Public dsoCube As DSO.MDStore
Public dsoCubeAnalyzer As DSO.CubeAnalyzer
Public ADODBRecSet As ADODB.Recordset

Public Sub AnalyzeCube()
 If dsoServer Is Nothing Then
 Set dsoServer = New DSO.Server
 'MyServer is the name of the Analysis server.
 dsoServer.Connect ("MyServer")
 End If

 'Get first database from server.
 Set dsoDB = dsoServer.MDStores(1)

 'Get first cube from database.
 Set dsoCube = dsoDB.MDStores(1)

 'Get analyzer object from cube.
 Set dsoCubeAnalyzer = dsoCube.Analyzer

 'Get recordset from log.
 Set ADODBRecSet = dsoCubeAnalyzer.OpenQueryLogRecordset _
 ("SELECT * FROM QueryLog")

 If ADODBRecSet.BOF And ADODBRecSet.EOF Then
 Debug.Print "<<No records in query log>>"
 Else
 ADODBRecSet.MoveLast
 Debug.Print " Record count: " & ADODBRecSet.RecordCount
 End If
End Sub

Analysis Services Programming (SQL Server 2000)

Methods, clsCubeAnalyzer
Methods, clsCubeAnalyzer

An object of ClassType clsCubeAnalyzer implements the following method.

Method Description
OpenQueryLogRecordset Opens a query log recordset

See Also

clsCubeAnalyzer

Analysis Services Programming (SQL Server 2000)

OpenQueryLogRecordset (clsCubeAnalyzer)
OpenQueryLogRecordset (clsCubeAnalyzer)

The OpenQueryLogRecordset method of an object of ClassType clsCubeAnalyzer returns a Microsoft® ActiveX® Data
Objects (ADO) recordset containing a record for each analysis query run on the Analysis server that satisfies the given SQL query.

Syntax

Set ADODBRecSet = object.OpenQueryLogRecordset(SQLString As String)

ADODBRecSet

An ADODB recordset.

object

The object of ClassType clsCubeAnalyzer used.

SQLString

The SQL query that returns the query log recordset. You can create an SQL statement using any of the fields in the query log. For
example:

"SELECT * FROM QueryLog WHERE Duration > 5"

The following columns are returned in ADODBRecSet. The ADO data types specified for each column can be found in the
ADODB.DataTypeEnum enumeration. For more information about the ADO data types, see the ADO documentation.

Column ADO data type Description
MSOLAP_Database adVarWChar The name of the database used in the query
MSOLAP_Cube adVarWChar The name of the cube used in the query
MSOLAP_User adVarWChar The name of the user that ran the query
Dataset adVarWChar A numeric string indicating the level from

each dimension used to satisfy the query
Slice adVarWChar A string indicating the data slice for the query.
StartTime adDate The time the query began
Duration adInteger The length of time (in seconds) of the query

execution
MOLAPPartitions adSmallInt The number of different multidimensional

OLAP (MOLAP) partitions that were used to
satisfy the query

ROLAPPartitions adSmallInt The number of different relational OLAP
(ROLAP) partitions that were used to satisfy
the query

SamplingRate adInteger The sampling rate at the time the query was
executed

Remarks

In order to create an instance of the ADODB Recordset object, you must add the Microsoft ActiveX Data Objects reference to
your Microsoft Visual Basic® project.

The Dataset column is of particular interest for designing aggregations. The values in the Dataset column can be used when
calling the AddGoalQuery method of the clsPartitionAnalyzer object to construct goal queries. Goal queries are used to fine-
tune the process of aggregation design for a partition.

See Also

clsCubeAnalyzer

clsPartitionAnalyzer

Using Decision Support Objects

Analysis Services Programming (SQL Server 2000)

clsCubeCommand
clsCubeCommand

 New Information - SQL Server 2000 SP3.

An object of ClassType clsCubeCommand provides a specific implementation of the Decision Support Objects (DSO)
Command interface. This object provides collections and properties through the Command interface. There are no methods
associated with an object of ClassType clsCubeCommand.

Remarks

An object of ClassType clsCubeCommand encapsulates a user-defined command automatically executed on the Microsoft®
SQL Server™ 2000 Analysis Services client when the cube containing the command is accessed. You add a command to a cube by
adding it to the cube's Commands collection. Such commands include calculated members, named sets, library references, and
others.

Security Note Commands can be the source of security vulnerabilities; they can invoke system or user-defined functions
without user knowledge or intervention and may contain security credentials stored in plain text. Before implementing
commands, review the command text for security issues.

For more information, see Introducing Decision Support Objects.

Examples

Creating an Object of ClassType clsCubeCommand

Use the following code to create an object of ClassType clsCubeCommand:

'Assume an object (dsoServer) of ClassType clsServer exists
'with existing database and cube
Dim dsoDB As DSO.MDStore 'Database
Dim dsoCube As DSO.MDStore 'Cube
Dim dsoCmd As DSO.Command 'Command

Set dsoDB = dsoServer.MDStores(1)
Set dsoCube = dsoDB.MDStores(1)
Set dsoCmd = dsoCube.Commands.AddNew("CubeCmd1")

Analysis Services Programming (SQL Server 2000)

Collections, clsCubeCommand
Collections, clsCubeCommand

An object of ClassType clsCubeCommand implements the following collection of the Command interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsCubeCommand

Command Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCubeCommand
Properties, clsCubeCommand

An object of ClassType clsCubeCommand implements the following properties of the Command interface.

Property Description
ClassType Returns an enumeration constant that identifies the

specific object type
CommandType Returns an enumeration constant that identifies the

specific command option
Description The description of the cube command
IsValid Indicates whether the Name and Statement properties

are empty and that the command object belongs to a
collection

Name The name of the cube command
OrdinalPosition Returns the ordinal position of the command object in

Commands collection of the parent MDStore object
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the

default interface of the parent object
Statement The text of the cube command statement, in

Multidimensional Expressions (MDX)
SubClassType Returns an enumeration constant that identifies the

subclass type of the object

See Also

clsCubeCommand

Command Interface

Analysis Services Programming (SQL Server 2000)

clsCubeDimension
clsCubeDimension

An object of ClassType clsCubeDimension provides an implementation of the Decision Support Objects (DSO) Dimension
interface that is specific to dimensions within a cube. This object provides collections and properties through the Dimension
interface. There are no methods associated with an object of ClassType clsCubeDimension.

Remarks

The primary difference between a database dimension and a cube dimension is that in a cube dimension, certain properties that
are inherited from the database dimension can be overridden by changing their values. For example, the IsVisible property can
be overridden on a cube dimension, but the StorageType property cannot.

To define a cube dimension, you add a reference to a dimension that exists within a database to the Dimensions collection of the
cube. A shared database dimension can be associated with multiple cube dimensions; a private database dimension can be
associated with only one cube dimension. In both cases, the database dimension is automatically associated with the cube's
partitions and aggregations, if there are any.

Example

Use the following code to create a clsCubeDimension object:

'Assume an object (dsoServer) of ClassType clsServer exists
'with an existing database and cube
Dim dsoDB As MDStore
Dim dsoCube As MDStore
Dim dsoCubeDim As DSO.Dimension
Set dsoDB = dsoServer.MDStores("FoodMart")
Set dsoCube = dsoDB.MDStores("Sales")
'"Employees" is an existing database dimension
Set dsoCubeDim = dsoCube.Dimensions.AddNew("Employees")

Analysis Services Programming (SQL Server 2000)

Collections, clsCubeDimension
Collections, clsCubeDimension

An object of ClassType clsCubeDimension implements the following collections of the Dimension interface.

Collection Description
CustomProperties The collection of user-defined properties
Levels The collection of level objects associated with the cube

dimension

See Also

clsCubeDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCubeDimension
Properties, clsCubeDimension

An object of ClassType clsCubeDimension implements the following properties of the Dimension interface.

Property Description
AggregationUsage Specifies how aggregations are to be designed for the

dimension.
AllowSiblingsWithSameName Indicates whether a parent-child dimension can

contain members with identical names.
AreMemberKeysUnique Indicates whether member keys are unique for the

dimension.
AreMemberNamesUnique Indicates whether member names are unique for the

dimension.
ClassType Returns an enumeration constant that identifies the

specific object type, which in this case is
clsCubeDimension.

DataMemberCaptionTemplate Contains a template string that is used to create
captions for system-generated data members.

DataSource A reference to the data source object used by the cube
dimension.

DefaultMember Defines the default member of the dimension.
DependsOnDimension Names a dimension to which the current dimension is

related.
Description The description of the cube dimension.
DimensionType Returns an enumeration constant that identifies the

specific type of dimension.
EnableRealTimeUpdates Indicates whether real-time updates are enabled for

the dimension.
FromClause The SQL FROM clause for the cube dimension.
IsChanging Indicates whether members and/or levels are expected

to change on a regular basis.
IsReadWrite Indicates whether dimension writebacks are available

to clients with appropriate permissions.
IsShared Indicates whether the cube dimension is shared.
IsTemporary Indicates whether the cube dimension is temporary.
IsValid Indicates whether the structure of the cube dimension

is valid.
IsVirtual Indicates whether a dimension is virtual.
IsVisible Indicates whether the dimension is visible to the client.
JoinClause The SQL JOIN clause for a cube dimension.
LastProcessed The date and time when the cube dimension was last

processed.
LastUpdated User-specified date. This is not used by Microsoft®

SQL Server™ 2000 Analysis Services.
MembersWithData Determines which members in a dimension can have

associated data in the fact table.
Name The name of the cube dimension.
OrdinalPosition Returns the ordinal position of the dimension object

within the Dimensions collection of its parent object.
Parent Returns a reference to the parent MDStore object.
SourceTable The name of the cube dimension's primary data

source table.
SourceTableAlias Returns the alias of the source table for the dimension.
SourceTableFilter Restricts members included in a dimension.

StorageMode Determines the method for storing dimension
contents.

SubClassType Returns an enumeration constant that identifies the
subclass type of the object.

See Also

clsCubeDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

clsCubeLevel
clsCubeLevel

An object of ClassType clsCubeLevel provides a specific implementation of the Decision Support Objects (DSO) Level interface.
This object provides collections and properties through the Level interface. There are no methods associated with an object of
ClassType clsCubeLevel.

Remarks

When a dimension within a database is assigned to a cube, the cube inherits all levels of the dimension. An object of ClassType
clsCubeLevel allows access to these levels. Because not all database dimensions necessarily apply to a given cube, one
advantage to accessing the levels of a cube directly is that you avoid traversing the dimensions and levels of the entire database
to determine which levels are used in a cube.

Example

Use the following code to create a dimension and levels for a database and apply them to a cube:

'Assume an object (dsoDB) of ClassType clsDatabase exists
'with an existing data source
Dim dsoDim As DSO.Dimension
Dim dsoLevel As DSO.Level
Dim dsoDS As DSO.Datasource

'Add a dimension and levels to the database
Set dsoDS = dsoDB.Datasources(1)
Set dsoDim = dsoDB.Dimensions.AddNew("Products")
Set dsoDim.DataSource = dsoDS 'Dimension DataSource
dsoDim.FromClause = "product" 'Source Table

'Add a Product Brand Name level
Set dsoLev = dsoDim.Levels.AddNew("Brand Name")
dsoLev.MemberKeyColumn = """product"".""brand_name"""
dsoLev.ColumnSize = 255
dsoLev.ColumnType = adWChar
dsoLev.EstimatedSize = 100

'Add a Product Name level
Set dsoLev = dsoDim.Levels.AddNew("Product Name")
dsoLev.MemberKeyColumn = """product"".""product_name"""
dsoLev.ColumnSize = 255
dsoLev.ColumnType = adWChar
dsoLev.EstimatedSize = 1560
dsoDim.Update
'Add additional dimensions and levels as required
...
'Add cube to database
Dim dsoCube As MDStore
Set dsoCube = dsoDB.MDStores.AddNew(strCubeName)

'Create and configure a DataSource object for the cube
Set dsoDS = dsoDB.DataSources(1)
dsoCube.DataSources.AddNew (dsoDS.Name)

'Set source fact table and estimated rows in fact table
dsoCube.SourceTable = """sales_fact_1998"""
dsoCube.EstimatedRows = 1000

'Add shared database dimensions
'Cube inherits dimension levels
dsoCube.Dimensions.AddNew ("Products")
'Add other shared or private dimensions

Analysis Services Programming (SQL Server 2000)

Collections, clsCubeLevel
Collections, clsCubeLevel

An object of ClassType clsCubeLevel implements the following collection of the Level interface.

Collection Description
CustomProperties The collection of user-defined properties
MemberProperties The collection of objects of ClassType

clsMemberProperty

See Also

clsCubeLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCubeLevel
Properties, clsCubeLevel

An object of ClassType clsCubeLevel implements the following properties of the Level interface.

Property Description
AreMemberKeysUnique Indicates whether the members of a level are

uniquely identified by their member key column
within the level itself

AreMemberNamesUnique Indicates whether the members of a level are
uniquely identified by their member name column
within the level itself

ClassType Returns an enumeration constant identifying the
specific object type which, in this case, is
clsCubeLevel

ColumnSize The size (in bytes) of the data in the
MemberKeyColumn property of the level

ColumnType The data type of the MemberKeyColumn property
of the level

CustomRollUpColumn Contains the name of the column that contains
member-specific rollup instructions

CustomRollUpExpression Contains a Multidimensional Expressions (MDX)
expression used to override the default rollup mode

CustomRollUpPropertiesColumn Contains the name of the column that supplies cell
properties for member-specific rollup instructions

Description The description of the cube level
EnableAggregations Specifies whether aggregations are to be enabled

for the level object
EstimatedSize The estimated number of rows of unique members

in the level
FromClause Contains the SQL FROM clause for the cube level
Grouping Indicates the type of grouping used by the Analysis

server
HideMemberIf Indicates whether a member should be hidden from

client applications
IsDisabled Indicates whether the cube level is disabled
IsValid Indicates whether the structure of the cube level is

valid
IsVisible Indicates whether the level is visible to client

applications
JoinClause The SQL JOIN clause of the cube level
LevelNamingTemplate Defines how levels in a parent-child hierarchy are

named
LevelType Returns an enumeration constant that identifies the

specific type of level
MemberKeyColumn The name of the column that contains the member

key of the cube level
MemberNameColumn The name of the column that contains member

names
Name The name of the cube level
Ordering Specifies the method to use when ordering the

members of a level
OrderingMemberProperty Specifies a member property used to determine the

ordering of members
OrdinalPosition Returns the ordinal position of the level in the

parent object's Levels collection

Parent Returns a reference to the parent Dimension object
ParentKeyColumn Identifies the parent of a member in a parent-child

hierarchy
RootMemberIf Determines how the root member or members of a

parent-child hierarchy are identified
SkippedLevelsColumn Identifies the column that holds the number of

empty levels between a member and its parent
SubClassType Returns an enumeration constant that identifies the

subclass type of the object
UnaryOperatorColumn Contains the name of a column that stores

mathematical operators serving as member-specific
rollup instructions for the level

See Also

clsCubeLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

clsCubeMeasure
clsCubeMeasure

An object of the ClassType clsCubeMeasure provides a specific implementation of the Decision Support Objects (DSO)
Measure interface. This object provides collections and properties through the Measure interface. There are no methods
associated with an object of ClassType clsCubeMeasure.

Remarks

A cube measure corresponds to a numeric column in a cube's fact table. When a cube is processed, its measures can be
precalculated across its dimensions. For example, the number of items sold is a measure that can be precalculated across the
dimensions of product, time, and geography.

For more information about the object model hierarchy, see Object Architecture.

Example

Use the following code to create an object of ClassType clsCubeMeasure:

'Assume an object (dsoCube) of ClassType clsCube exists
Dim dsoMeasure As DSO.Measure
Set dsoMeasure = dsoCube.Measures.AddNew("Salaries")
dsoMeasure.Description = "Employee salaries"
dsoMeasure.SourceColumn = """Employees"".""Salaries"""
dsoMeasure.SourceColumnType = adInteger
dsoMeasure.AggregateFunction = aggSum
dsoMeasure.FormatString = "#,###"

See Also

Working with Cubes

Collections, clsCubeMeasure

Measure Interface

Properties, clsCubeMeasure

Analysis Services Programming (SQL Server 2000)

Collections, clsCubeMeasure
Collections, clsCubeMeasure

An object of ClassType clsCubeMeasure implements the following collection of the Measure interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsCubeMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCubeMeasure
Properties, clsCubeMeasure

An object of ClassType clsCubeMeasure implements the following properties of the Measure interface.

Property Description
AggregateFunction A value corresponding to the type of aggregate function

used by the cube measure
ClassType Returns an enumeration constant that identifies the

specific object type
Description The description of the cube measure
FormatString The format used to display the values of the cube measure
IsValid Indicates whether the measure structure is valid
IsVisible Indicates whether the measure is visible to the client
Name The name of the cube measure
OrdinalPosition Returns the ordinal position of the measure in the parent

object's Measures collection
Parent Returns a reference to the parent cube object
SourceColumn The name of the source column (in the fact table) for the

cube measure
SourceColumnType Returns a Microsoft® ActiveX® (ADO) DB enumeration

constant that identifies the SourceColumn (in the fact
table) data type

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

See Also

clsCubeMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

clsCubeRole
clsCubeRole

An object of the ClassType clsCubeRole provides a specific implementation of the Decision Support Objects (DSO) Role
interface. This object provides collections, methods, and properties through the Role interface.

Remarks

You use objects of ClassType clsCubeRole to manage the set of users who can access a cube (of any type) and the manner in
which they can access it. A cube role has a name, a description, a parent object, a class type, a list of users, and a set of
permissions. Each permission has a key and a corresponding permission expression.

You create roles at the database level (database roles) and then assign them to cubes (cube roles) by adding them to the
collection of roles associated with the cube. The roles assigned to a cube automatically apply to its partitions and aggregations.

You can remove a database role by removing it from the database's collection of role objects. When you do so, the system
automatically removes the corresponding cube roles from the cube's collection of role objects.

You can remove a cube role by removing it from the cube's collection of role objects. When you do so, the corresponding
database role is not affected. However, the definition of the cube role remains in effect until you update or process the cube.

Example

Suppose you want to define roles named FinanceManagers, ProductionManagers, and SalesManagers at the database level.
Suppose also that you want to assign the appropriate vice-president to the list of users for each role and the company president
to the list of users for all three roles. Finally, suppose that you want to create a cube for each year's financial, production, and sales
data for the years 1995, 1996, and 1997.

Use the following code to define the appropriate database and cube roles for this situation.

Note User lists defined for database roles are automatically associated with the corresponding cube roles and cannot be
changed at the cube role level.

'Assume an object (dsoDB) of ClassType clsDatabase exists.
'Create database roles.
Dim DbRole_FinanceMgrs As DSO.Role
Dim DbRole_ProductionMgrs As DSO.Role
Dim DbRole_SalesMgrs As DSO.Role
Set DbRole_FinanceMgrs = dsoDB.Roles.AddNew("FinanceManagers")
Set DbRole_ProductionMgrs = dsoDB.Roles.AddNew("ProductionManagers")
Set SbRole_SalesMgrs = dsoDB.Roles.AddNew("SalesManagers")

'Define user lists for database roles.
'(In a real-world situation, actual user names would be
'used in place of titles like "President".)
DbRole_FinanceMgrs.UsersList = "President;VP_Finance"
DbRole_ProductionMgrs.UsersList = "President;VP_Production"
DbRole_SalesMgrs.UsersList = "President;VP_Sales"

'Update the repository for the database roles.
DbRole_FinanceMgrs.Update
DbRole_ProductionMgrs.Update
DbRole_SalesMgrs.Update

'Assume objects (Cube95, Cube96 and Cube97) of ClassType clsCube exist
'Create cube roles. Cube role names must be identical
'to the corresponding database role names.
Dim CubeRole_FinanceMgrs As DSO.Role
Dim CubeRole_ProductionMgrs As DSO.Role
Dim CubeRole_SalesMgrs As DSO.Role

'Add roles to Cube95.
Set CubeRole_FinanceMgrs = Cube95.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube95.Roles.AddNew("ProductionManagers")
Set CubeRole_SalesMgrs = Cube95.Roles.AddNew("SalesManagers")

'Add roles to Cube96.
Set CubeRole_FinanceMgrs = Cube96.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube96.Roles.AddNew("ProductionManagers")
Set CubeRole_SalesMgrs = Cube96.Roles.AddNew("SalesManagers")

'Add roles to Cube97.
Set CubeRole_FinanceMgrs = Cube97.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube97.Roles.AddNew("ProductionManagers")
Set CubeRole_SalesMgrs = Cube97.Roles.AddNew("SalesManagers")

'Update the repository for the cubes.
Cube95.Update
Cube96.Update
Cube97.Update

Analysis Services Programming (SQL Server 2000)

Collections, clsCubeRole
Collections, clsCubeRole

An object of ClassType clsCubeRole implements the following collection of the Role interface.

Collection Description
Commands The collection of commands for the role
CustomProperties The collection of user-defined properties

See Also

clsCubeRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsCubeRole
Methods, clsCubeRole

An object of ClassType clsCubeRole implements the following method of the Role interface.

Method Description
SetPermissions Sets the permissions for the cube role for a given key

See Also

clsCubeRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsCubeRole
Properties, clsCubeRole

An object of ClassType clsCubeRole implements the following properties of the Role interface.

Property Description
ClassType Returns an enumeration constant that identifies the

specific object type
Description The description of the cube role
IsValid Indicates whether the role structure is valid
Name The name of the cube role
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the

default interface of the parent object
Permissions The permissions for the cube role for a given key
SubClassType Returns an enumeration constant that identifies the

subclass type of the object
UsersList A semicolon-separated list of users of the cube role

See Also

clsCubeRole

Role Interface

Analysis Services Programming (SQL Server 2000)

clsDatabase
clsDatabase

An object of the ClassType clsDatabase provides a specific implementation of the Decision Support Objects (DSO) MDStore
interface. This object provides collections, methods, and properties through the MDStore interface.

Example

Use the following code to create an object of ClassType clsDatabase:

' Assume an object (dsoServer) of ClassType clsServer exists
Dim dsoDatabase As DSO.MDStore ' Create an interface for the database.
' Use the AddNew method of the server's MDStores collection to create
' the new database:
Set dsoDatabase = dsoServer.MDStores.AddNew("MyDatabase")

See Also

Collections, clsDatabase

Databases

MDStore Interface

Methods, clsDatabase

Properties, clsDatabase

Analysis Services Programming (SQL Server 2000)

Collections, clsDatabase
Collections, clsDatabase

An object of ClassType clsDatabase implements the following collections of the MDStore interface.

Collection Description
Commands The collection of command objects defined in the database
CustomProperties The collection of user-defined properties
DataSources The collection of data source objects used by the database
Dimensions The collection of dimension objects defined in the database
MDStores The collection of MDStore objects defined for the database
MiningModels The collection of mining model objects defined for the

database
Roles The collection of role objects defined for the database

See Also

clsDatabase

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Events, clsDatabase
Events, clsDatabase

 New Information - SQL Server 2000 SP3.

An object of ClassType clsDatabase implements the following methods of the Database interface.

Important In order to access these events, you must reference the Database interface, not the MDStore interface.

Event Description
ReportAfter Called whenever a processing action on an object in the

database has finished executing
ReportBefore Called before a processing action on an object in the

database
ReportError Called whenever an error occurs during a processing action
ReportProgress Called to report the progress of an action during processing

See Also

clsDatabase

Analysis Services Programming (SQL Server 2000)

Methods, clsDatabase
Methods, clsDatabase

 New Information - SQL Server 2000 SP3.

An object of ClassType clsDatabase implements the following methods of the MDStore interface.

Method Description
BeginTrans Begins the transaction on the database
Clone Copies the property values and (optionally) the collections

of major and minor objects from one database object to
another

CommitTrans Commits the transaction to the database
CommitTransEx Commits the transaction to the database, additionally

providing control over lazy processing.
LockObject The LockObject method of the Database interface locks an

object to prevent multiple users from concurrently changing
the object

Process Processes the database
Rollback Rolls back the transaction on the database
UnlockObject Releases a lock previously established by the LockObject

method
Update Updates the database definition in the meta data repository

See Also

clsDatabase

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsDatabase
Properties, clsDatabase

An object of ClassType clsDatabase implements the following properties of the MDStore interface.

Property Description
AggregationPrefix The common prefix that can be used for aggregation names

for all of the partitions in a database
ClassType Returns an enumeration constant that identifies the specific

object type
Description The description of the database
EstimatedSize The estimated size of the database
IsReadWrite Indicates the read/write access status of the database
IsValid Indicates whether the structure of the database is valid
IsVisible Indicates whether the database is visible to other client

applications
LastProcessed The date and time when the database was last processed
LastUpdated A user-specified date. Not used by Microsoft® SQL Server™

2000 Analysis Services
Name The name of the database
OlapMode Returns an enumeration constant that identifies the type of

OLAP storage mode
Parent Returns a reference to the parent server object
Server Returns a reference to the DSO.Server object
State Returns an enumeration constant that indicates the

difference between the database object referenced by the
client application and corresponding database on the
Analysis server

SubClassType Returns an enumeration constant that identifies the subclass
type

See Also

clsDatabase

MDStore Interface

Analysis Services Programming (SQL Server 2000)

clsDatabaseCommand
clsDatabaseCommand

An object of ClassType clsDatabaseCommand provides a specific implementation of the Decision Support Objects (DSO)
Command interface. This object provides collections, methods, and properties through the Command interface.

Remarks

An object of ClassType clsDatabaseCommand encapsulates a user-defined command that is automatically executed on the
Microsoft® SQL Server™ 2000 Analysis Services client when the database containing the command is accessed. You add a
command to a database by adding it to the database's Commands collection. Such commands include calculated members,
named sets, library references, and others.

Example

Use the following code to create an object of ClassType clsDatabaseCommand:

'Assume an object (dsoServer) of ClassType clsServer exists
'with an existing database
Dim dsoDB As DSO.MDStore 'Database
Dim dsoCmd As DSO.Command 'Command

Set dsoDB = dsoServer.MDStores(1)
Set dsoCmd = dsoDB.Commands.AddNew("DBCmd1")

See Also

Collections, clsDatabaseCommand

Command Interface

Commands

Methods, clsDatabaseCommand

Properties, clsDatabaseCommand

Analysis Services Programming (SQL Server 2000)

Collections, clsDatabaseCommand
Collections, clsDatabaseCommand

An object of ClassType clsDatabaseCommand implements the following collection of the Command interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsDatabaseCommand
Methods, clsDatabaseCommand

An object of ClassType clsDatabaseCommand implements the following methods of the Command interface.

Method Description
Clone Copies an existing object to a target object of the same

class type
LockObject Locks an object
UnlockObject Unlocks a previously locked object
Update Saves the definition of the command object in the meta

data repository

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsDatabaseCommand
Properties, clsDatabaseCommand

An object of ClassType clsDatabaseCommand implements the following properties of the Command interface.

Property Description
ClassType Returns an enumeration constant that identifies the specific

class type
CommandType Returns an enumeration constant that identifies the

command option
Description The description of the database command
IsValid Indicates whether the structure of the Command object is

valid
Name The name of the database command
OrdinalPosition Returns the ordinal position of the command object in the

Commands collection of the parent MDStore object
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the default

interface of the parent object
Statement The text of the database command statement, in

Multidimensional Expressions (MDX)
SubClassType Returns an enumeration constant that identifies the

subclass type of the object

See Also

Command Interface

Analysis Services Programming (SQL Server 2000)

clsDatabaseDimension
clsDatabaseDimension

An object of ClassType clsDatabaseDimension provides a specific implementation of the Decision Support Objects (DSO)
Dimension interface. This object provides collections, methods, and properties through the Dimension interface.

Remarks

Database dimensions can be shared or private. A shared database dimension can be associated with any number of cubes, but a
private database dimension can be associated with only a single cube. When a database dimension is associated with a cube, it is
automatically associated with the cube's partitions and aggregations, if there are any.

All dimensions, shared and private, are created in a database object and stored in the database object's Dimensions collection.
Private dimensions are identified by incorporating the names of the cubes to which they are private into the names of the
dimensions. For example, a dimension named Cube1^PrivateDimension is private to Cube1 because its name begins with Cube1
followed by the caret (^) character.

Example

Use the following code to create an object of ClassType clsDatabaseDimension:

' Assume an object (dsoDB) of ClassType clsDatabase exists
Dim dsoDim As DSO.Dimension
Set dsoDim = dsoDB.Dimensions.AddNew("MyDim")

See Also

Collections, clsDatabaseDimension

Dimension Interface

Dimensions

Methods, clsDatabaseDimension

Properties, clsDatabaseDimension

Analysis Services Programming (SQL Server 2000)

Collections, clsDatabaseDimension
Collections, clsDatabaseDimension

An object of ClassType clsDatabaseDimension implements the following collections of the Dimension interface.

Collection Description
CustomProperties The collection of user-defined properties
Levels The collection of objects of level objects associated with

the database dimension

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsDatabaseDimension
Methods, clsDatabaseDimension

An object of ClassType clsDatabaseDimension implements the following methods of the Dimension interface.

Method Description
Clone Copies an existing object to a target object of the same

class type
LockObject Locks the database dimension
Process Processes the database dimension
UnlockObject Unlocks the previously locked database dimension
Update Updates the definition of the database dimension in the

meta data repository

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsDatabaseDimension
Properties, clsDatabaseDimension

An object of ClassType clsDatabaseDimension implements the following properties of the Dimension interface.

Property Description
AllowSiblingsWithSameName Indicates whether a parent-child dimension can

contain members with identical names.
AreMemberKeysUnique Indicates whether member keys are unique within the

dimension.
AreMemberNamesUnique Indicates whether member names are unique within

the dimension.
ClassType Returns an enumeration constant that identifies the

specific object type.
DataMemberCaptionTemplate Contains a template string that is used to create

captions for system-generated data members.
DataSource The name of the object of ClassType clsDataSource

used by the database dimension.
DefaultMember Defines the default member of the dimension.
DependsOnDimension Names a dimension to which the current dimension is

related.
Description The description of the database dimension.
DimensionType Returns an enumeration constant identifying the

specific type of dimension.
EnableRealTimeUpdates Indicates whether real-time updates are enabled for

the dimension.
FromClause The SQL FROM clause for a database dimension.
IsChanging Indicates whether members and/or levels are expected

to change on a regular basis.
IsReadWrite Indicates whether end users that have appropriate

permissions can write back to dimensions.
IsShared Indicates whether the database dimension is shared.
IsTemporary Indicates whether the database dimension should be

permanently stored in the repository.
IsValid Indicates whether the structure of the database

dimension is valid.
IsVirtual Indicates whether the database dimension is virtual.
JoinClause The SQL JOIN clause for the dimension.
LastProcessed The date and time when the database dimension was

last processed.
LastUpdated A user-specified date. This property is not used by

Microsoft® SQL Server™ 2000 Analysis Services.
MembersWithData Determines which members in a dimension can have

associated data in the fact table.
Name The name of the database dimension.
OrdinalPosition Returns the ordinal position of the dimension object

within its parent object's Dimensions collection.
Parent Returns a reference to the parent MDStore object.
SourceTable The name of the primary table of the database

dimension.
SourceTableAlias Returns the alias of the source table for the database

dimension.
SourceTableFilter Restricts members that are included in a dimension.
State Indicates the difference between the dimension object

referenced by the client application and the
corresponding dimension on the Analysis server.

StorageMode Determines how the contents of a cube's dimensions
are stored.

SubClassType Returns an enumeration constant that identifies the
subclass type of the object.

See Also

Dimension Interface

Analysis Services Programming (SQL Server 2000)

clsDatabaseLevel
clsDatabaseLevel

An object of ClassType clsDatabaseLevel provides a specific implementation of the Decision Support Objects (DSO) Level
interface. This object provides collections and properties through the Level interface. There are no methods associated with an
object of ClassType clsDatabaseLevel.

Remarks

When you add a dimension to a cube, the cube inherits whatever levels you defined for the database dimension; that is, the
database levels you defined become cube levels, as well. Similarly, database levels are automatically inherited by the partitions
and aggregations you add to a cube.

Example

Use the following code to create an object of ClassType clsDatabaseLevel:

' Assume the existence of an object (myDim) of ClassType clsDimension
Dim myLev As DSO.Level
Set myLev = myDim.Levels.AddNew('Brand Name')

See Also

Collections, clsDatabaseLevel

Level Interface

Properties, clsDatabaseLevel

Analysis Services Programming (SQL Server 2000)

Collections, clsDatabaseLevel
Collections, clsDatabaseLevel

An object of ClassType clsDatabaseLevel implements the following collection of the Level interface.

Collection Description
CustomProperties The collection of user-defined properties
MemberProperties The collection of objects of ClassType

clsMemberProperty

See Also

clsDatabaseLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsDatabaseLevel
Properties, clsDatabaseLevel

An object of ClassType clsDatabaseLevel implements the following properties of the Level interface.

Property Description
AreMemberKeysUnique Indicates whether the members of a level are

uniquely identified by their member key column
AreMemberNamesUnique Indicates whether the members of a level are

uniquely identified by their member name column
ClassType Returns an enumeration constant that identifies the

specific object type
ColumnSize The size (in bytes) of the data in the member key

column of the level
ColumnType The data type of the member key column of the

level
CustomRollUpColumn Contains the name of the column that contains

member-specific rollup instructions
CustomRollUpExpression Contains a Multidimensional Expressions (MDX)

expression used to override the default rollup mode
CustomRollUpPropertiesColumn Contains the name of the column that supplies cell

properties for member-specific rollup instructions
Description The description of the database level
EstimatedSize The estimated number of rows in the database level
FromClause The SQL FROM clause for the database level
Grouping Indicates the type of grouping used by the OLAP

server
HideMemberIf Indicates whether a member should be hidden from

client applications
IsValid Indicates whether the structure of the database level

is valid
IsVisible Indicates whether the level is visible to client

applications
JoinClause The SQL JOIN clause for the database level
LevelNamingTemplate Defines how levels in a parent-child hierarchy are

named
LevelType Returns an enumeration constant that identifies the

specific type of level
MemberKeyColumn The name of the column that contains the member

keys of the database level
MemberNameColumn The name of the column that contains member

names
Name The name of the database level
Ordering Specifies the method to use when ordering the

members of a level
OrderingMemberProperty Specifies a member property used to determine the

ordering of members
OrdinalPosition Returns the ordinal position of the level in the

Levels collection of the parent object
Parent Returns a reference to the parent Dimension object
ParentKeyColumn Identifies the parent of a member in a parent-child

hierarchy
RootMemberIf Determines how the root member or members of a

parent-child hierarchy are identified
SkippedLevelsColumn Identifies the column that holds the number of

empty levels between a member and its parent

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

UnaryOperatorColumn Contains the name of a column that stores
mathematical operators serving as member-specific
rollup instructions for the level

See Also

clsDatabaseLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

clsDatabaseRole
clsDatabaseRole

An object of ClassType clsDatabaseRole provides a specific implementation of the Decision Support Objects (DSO) Role
interface. This object provides collections, methods, and properties through the Role interface.

Remarks

Objects of ClassType clsDatabaseRole are used to manage the set of users who can access a database and the manner in which
they can access it. As with cube roles and mining model roles, a database role has a name, a description, a parent object, a class
type, a list of users, and a set of permissions. Each permission has a key and a corresponding permission expression.

Unlike cube roles and mining model roles, however, a database role serves as the basis for cube and mining model roles. To
create roles for cubes and data mining models, create roles at the database level (database roles) and then assign them to cubes
or mining models by adding them to the collection of roles associated with the cube or mining model. The act of assigning
database roles to cubes or mining models creates corresponding cube roles and mining model roles based on the database role.
The roles assigned to a cube apply automatically to its partitions and aggregations.

You can remove a database role by removing it from the database's collection of role objects. When you do so, the system
automatically removes the corresponding cube and mining model roles from the cube's collection of role objects.

Example

Suppose you define roles named FinanceManagers, ProductionManagers, and SalesManagers at the database level. Suppose also
that you assign the appropriate vice president to the list of users for each role and the company president to the list of users for
all three roles.

Use the following code to define the appropriate database and cube roles for this situation. After the code has been executed, you
can assign the database roles to cubes (or virtual cubes) as needed. For more information, see clsCubeRole.

' Assume an object (dsoDB) of ClassType clsDatabase exists.
' Create database roles.
Dim DbRole_FinanceMgrs As DSO.Role
Dim DbRole_ProductionMgrs As DSO.Role
Dim DbRole_SalesMgrs As DSO.Role
Set DbRole_FinanceMgrs = dsoDB.Roles.AddNew("FinanceManagers")
Set DbRole_ProductionMgrs = dsoDB.Roles.AddNew("ProductionManagers")
Set DbRole_SalesMgrs = dsoDB.Roles.AddNew("SalesManagers")

' Define user lists for database roles.
' (In a real-world situation, actual user names would be
' used in place of titles like "President".)
DbRole_FinanceMgrs.UsersList = "President;VP_Finance"
DbRole_ProductionMgrs.UsersList = "President;VP_Production"
DbRole_SalesMgrs.UsersList = "President;VP_Sales"

' Update the repository for the database roles.
DbRole_FinanceMgrs.Update
DbRole_ProductionMgrs.Update
DbRole_SalesMgrs.Update

' Assume objects (Cube95, Cube96 and Cube97) of ClassType clsCube exist.
' Create cube roles. Cube role names must be identical
' to the corresponding database role names.
Dim CubeRole_FinanceMgrs As DSO.Role
Dim CubeRole_ProductionMgrs As DSO.Role
Dim CubeRole_SalesMgrs As DSO.Role

' Add roles to Cube95.
Set CubeRole_FinanceMgrs = Cube95.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube95.Roles.AddNew("ProductionManagers")
Set CubeRole_SalesMgrs = Cube95.Roles.AddNew("SalesManagers")

' Add Roles to Cube96.
Set CubeRole_FinanceMgrs = Cube96.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube96.Roles.AddNew("ProductionManagers")
Set CubeRole_SalesMgrs = Cube96.Roles.AddNew("SalesManagers")

' Add Roles to Cube97.
Set CubeRole_FinanceMgrs = Cube97.Roles.AddNew("FinanceManagers")
Set CubeRole_ProductionMgrs = Cube97.Roles.AddNew("ProductionManagers")

Set CubeRole_SalesMgrs = Cube97.Roles.AddNew("SalesManagers")

' Update the repository for the cubes.
Cube95.Update
Cube96.Update
Cube97.Update

Analysis Services Programming (SQL Server 2000)

Collections, clsDatabaseRole
Collections, clsDatabaseRole

An object of ClassType clsDatabaseRole implements the following collections of the Role interface.

Collection Description
Commands The collection of commands for the role
CustomProperties The collection of user-defined properties

See Also

clsDatabaseRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsDatabaseRole
Methods, clsDatabaseRole

An object of ClassType clsDatabaseRole implements the following methods of the Role interface.

Method Description
Clone Copies the properties of the role to a different role object
LockObject Locks the role object
SetPermissions Sets role permissions for a given key
UnlockObject Unlocks a previously locked object
Update Updates the definition of the database role in the meta

data repository

See Also

clsDatabaseRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsDatabaseRole
Properties, clsDatabaseRole

An object of ClassType clsDatabaseRole implements the following properties of the Role interface.

Property Description
ClassType Returns an enumeration constant that identifies the

specific object type
Description The description of a database role
IsValid Indicates whether the role structure is valid
Name The name of a database role
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the default

interface of the parent object
Permissions The permissions for the database role for a given key
SubClassType Returns an enumeration constant that identifies the

subclass type of the object
UsersList A semicolon-delimited list of users of the database role

See Also

clsDatabaseRole

Role Interface

Analysis Services Programming (SQL Server 2000)

clsDataSource
clsDataSource

 New Information - SQL Server 2000 SP3.

An object of ClassType clsDataSource specifies an external database that will be used as a source of data for an object of
ClassType clsDatabase, clsCube, or clsPartition. The object of ClassType clsDataSource provides collections, methods, and
properties though its own internal interface.

Remarks

Connections to data sources are initiated when Decision Support Objects (DSO) requires access to data or property information in
the source database. Data sources are only connected to when needed or when explicitly requested by the program. Executing the
IsConnected method of an object of ClassType clsDataSource causes the Analysis server to attempt to connect to the specified
data source.

An object of ClassType clsDatabase may contain multiple objects of ClassType clsDataSource in its DataSources collection.
Objects of ClassType clsCube and clsPartition can only contain a single object of ClassType clsDataSource in their respective
DataSources collection. An aggregation object (ClassType clsAggregation) does not implement the DataSources collection of
the MDStore interface.

Examples

A. Creating a N ew Database

The following example demonstrates how to connect to the Analysis server and create a new database, attach a data source, and
add a shared dimension and level. It uses the sample FoodMart 2000 database. After building and running the example code, you
should be able to view the new database using Analysis Manager.

Option Explicit
Public dsoServer As DSO.Server
Const strConnect = "Provider=MSDASQL.1;Persist Security Info=False;Data Source=FoodMart 2000;Connect
Timeout=15;Trusted_Connection=yes"

'Note: Add command control to form to enable
' the cmdCreateDatabase_Click method

Private Sub cmdCreateDatabase_Click()
 On Error GoTo CreateDatabase_Err

 Dim dsoDB As DSO.MDStore
 Dim dsoDS As DSO.Datasource

 'Create database and add connection string
 Set dsoDB = dsoServer.MDStores.AddNew("MyDatabase")
 Set dsoDS = dsoDB.Datasources.AddNew("NewSales")
 dsoDS.ConnectionString = strConnect
 dsoDS.Update

 'Create dimension and set data source
 Dim dsoDim As DSO.Dimension
 Set dsoDim = dsoDB.Dimensions.AddNew("Products")
 Set dsoDim.Datasource = dsoDS
 dsoDim.FromClause = "product"
 dsoDim.JoinClause = ""

 'Add levels
 Dim dsoLev As DSO.Level
 Set dsoLev = dsoDim.Levels.AddNew("Product Id")
 'Point to table and column
 dsoLev.MemberKeyColumn = """product_class"".""product_family"""
 dsoLev.ColumnSize = 4 'Width of column in bytes
 dsoLev.ColumnType = adInteger 'ADODB Data Type

 dsoDim.Update

 Debug.Print "<<success>>"

 Exit Sub

CreateDatabase_Err:

 Debug.Print "Error creating new database"
 Debug.Print Err.Description
 Err.Clear
End Sub

Private Sub Form_Load()
 On Error GoTo FormLoad_Err

 'Connect to the Analysis server
 Set dsoServer = New DSO.Server
 'MyServer is the name of the Analysis server
 dsoServer.Connect ("MyServer")
 Debug.Print ("Connected")
 Exit Sub

FormLoad_Err:
 Debug.Print ("Error connecting to server")
 Debug.Print Err.Description
 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

Collections, clsDataSource
Collections, clsDataSource

An object of ClassType clsDataSource implements the following collection.

Collection Description
CustomProperties The collection of user-defined properties

Access

Read/write

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

Methods, clsDataSource
Methods, clsDataSource

An object of ClassType clsDataSource implements the following methods.

Method Description
Clone Copies the properties and collections of a data source

object to another data source object.
IsConnected Connects to a data source. The method returns True if the

data source is connected, and False if it is not connected
and is unable to connect.

LockObject Locks a data source object.
UnlockObject Unlocks a previously locked data source object.
Update Updates the data source object definition in the meta data

repository.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

Clone (clsDataSource)
Clone (clsDataSource)

The Clone method of an object of ClassType clsDataSource copies the property values and the collections of a data source
object to a target data source object.

Syntax

object.Clone(ByVal TargetObject As ICommon, Optional ByVal Options As CloneOptions = cloneMajorChildren)

object

The object of ClassType clsDataSource to be copied.

TargetObject

An existing object of ClassType clsDataSource.

Options

One of the values in the CloneOptions enumeration. If no value is specified, the cloneMajorChildren option is used. Because
objects of ClassType clsDataSource contain no major or minor objects, the entire object is cloned regardless of the option
specified. For more information, see CloneOptions.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

IsConnected (clsDataSource)
IsConnected (clsDataSource)

 New Information - SQL Server 2000 SP3.

The IsConnected method of an object of ClassType clsDataSource verifies the connection to the data source specified by the
ConnectionString property. If the data source is not connected, the method attempts to connect to the source.

Syntax

bRet = object.IsConnected(ErrorMsg As String)

bRet

A Boolean variable that receives the returned value: True is returned if the data source is connected, False if the connection cannot
be established.

object

An object of ClassType clsDataSource.

ErrorMsg

An optional string variable that receives the error definition if the connection cannot be established.

Remarks

If the data source is already connected when the method is executed, the method returns True. If the data source is not connected,
the method attempts to connect to the data source, returning True if the connection is established or False if the connection
cannot be established.

It is not necessary to establish a connection to a data source before it can be used. Decision Support Objects (DSO) will
automatically establish the connection when necessary (for example, to read a property value from the source database or to
access data in the database).

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

Example

Use the following code to establish a connection to a data source with the IsConnected property:

'Assume an object (dsoDS) of ClassType clsDataSource exists
If Not dsoDS.IsConnected Then
 ' Code to handle connection error
Else
 ' Connection is established
End If

See Also

clsDataSource

ConnectionString

http://go.microsoft.com/fwlink/?LinkId=9504

Analysis Services Programming (SQL Server 2000)

LockObject (clsDataSource)
LockObject (clsDataSource)

The LockObject method of an object of ClassType clsDataSource locks a data source object to prevent actions of multiple users
of the object from colliding.

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

The data source object to lock.

LockType

One of the lock types defined in the OlapLockTypes enumeration. For more information, see OlapLockTypes.

LockDescription

A string containing the description of the lock, available to other applications attempting to obtain a lock.

Remarks

It is sometimes possible for an application to request an additional lock on an already locked object. For example, other
applications can request and receive an olapLockRead lock on an object already locked using the olapLockProcess lock.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

UnlockObject (clsDataSource)
UnlockObject (clsDataSource)

The UnlockObject method of an object of ClassType clsDataSource releases a lock on a data source object previously
established by the LockObject method.

Syntax

object.UnlockObject

object

The data source object from which to remove a lock.

Remarks

For a complete discussion of object locking, see LockObject.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

Update (clsDataSource)
Update (clsDataSource)

The Update method of an object of ClassType clsDataSource updates the definition of a data source object in the meta data
repository.

Syntax

object.Update

object

An object of ClassType clsDataSource.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

Properties, clsDataSource
Properties, clsDataSource

An object of ClassType clsDataSource implements the following properties. The table also shows whether the property is
read/write (R/W) or read-only (R).

Property Description Access
ClassType Returns an enumeration constant that

identifies the specific class type
R

CloseQuoteChar The right (closing) quote character used by
the source database

R

Connection A reference to a Microsoft® ActiveX® Data
Objects (ADO) Connection object, used to
connect to a relational database

R

ConnectionString A string containing the initialization
parameters for the source database

R/W

Description A description of the data source R/W
IsReadOnly Indicates whether the data source is read-

only
R

IsValid Indicates whether the structure of the data
source object is valid

R

Name The name of the data source object R/W (read-only
after the object has
been named)

OpenQuoteChar The left (opening) quote character used by
the source database

R

Parent Returns a reference to the parent MDStore
object

R/W

SubClassType Returns an enumeration constant that
identifies the subclass type of the object

R

SupportedTxnDDL Returns the value of the connection object's
Transaction DDL property, which indicates
the source database's ability to support data
definition language (DDL) statements in
transactions

R

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

ClassType (clsDataSource)
ClassType (clsDataSource)

The ClassType property of an object of ClassType clsDataSource object returns an enumeration constant that identifies the
specific class type.

Data Type

Integer representing a value from the ClassTypes enumeration. For more information, see ClassTypes.

Access

Read-only

Remarks

Most objects in Decision Support Objects (DSO) have a ClassType and a SubClassType property. The SubClassType property
uses an enumerated value to provide additional information about the object. This property supports the clsDataSource value
from the ClassTypes enumeration.

See Also

clsDataSource

SubClassType

Analysis Services Programming (SQL Server 2000)

CloseQuoteChar (clsDataSource)
CloseQuoteChar (clsDataSource)

The CloseQuoteChar property of an object of ClassType clsDataSource returns the right (closing) quote character used by the
source database.

Data Type

Variant

Access

Read-only

Remarks

To properly qualify a table or column name that contains white space, a data source may require the name be delimited or
enclosed using a quote character. The quote character is generally specific to the data source or data source driver.

Example

The following code specifies a FromClause in a dimension and uses the proper delimiter characters for the data source:

'Assume an object (dsoDimension) of
'ClassType clsDatabaseDimension exists and
'get the quoting characters from the data source
Dim sLQuote As String, sRQuote As String
sLQuote = dsoDimension.Datasource.OpenQuoteChar
sRQuote = dsoDimension.Datasource.CloseQuoteChar

'Set the comma separated list of the dimension tables
dsoDimension.FromClause = sLQuote & "store" & sRQuote

See Also

clsDataSource

FromClause

Analysis Services Programming (SQL Server 2000)

Connection (clsDataSource)
Connection (clsDataSource)

 New Information - SQL Server 2000 SP3.

The Connection property of an object of ClassType clsDataSource returns a reference to a Microsoft® ActiveX® Data Objects
(ADO) Connection object, used to connect to a relational database.

Data Type

ADODB.Connection

Access

Read-only

Remarks

You can use this ADO Connection object to access the source database directly. For more information, see the ADO
documentation.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

clsDataSource

http://go.microsoft.com/fwlink/?LinkId=9504

Analysis Services Programming (SQL Server 2000)

ConnectionString (clsDataSource)
ConnectionString (clsDataSource)

 New Information - SQL Server 2000 SP3.

The ConnectionString property of an object of ClassType clsDataSource returns a string containing the OLE DB initialization
parameters for the source database.

Data Type

String

Access

Read/write

Remarks

For more information about valid connection string parameters and format, see the OLE DB documentation or the source
database documentation.

Security Note When possible, use Windows Authentication.

Example

Use the following code to set the ConnectionString property for a clsDataSource object.

' Assume an object (dsoDatasource) of ClassType clsDataSource exists
' Set the OLE DB connection string.
' The connection string is used to establish the connection
' to the relational database that contains the dimension and
' fact tables. This example uses the
' "Microsoft OLE DB Provider for ODBC Drivers" provider.
dsoDatasource.ConnectionString = _
 "Provider=MSDASQL.1;Data Source=FoodMart;Connect Timeout=15"

'Save the datasource definition in the meta data repository
 dsoDatasource.Update

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

Description (clsDataSource)
Description (clsDataSource)

The Description property of an object of ClassType clsDataSource sets or returns the description of the data source.

Data Type

String

Access

Read/write

Remarks

You can use this property to provide a description of the data source, for example:

dsoDS.Description = "1997 Sales Data verified 2/1/1998"

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

IsReadOnly (clsDataSource)
IsReadOnly (clsDataSource)

The IsReadOnly property of an object of ClassType clsDataSource identifies whether the source database is read-only.

Data Type

Boolean

Access

Read-only

Remarks

This property returns True if the source database is read-only or False if the source database is read/write.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

IsValid (clsDataSource)
IsValid (clsDataSource)

The IsValid property of an object of ClassType clsDataSource identifies whether the structure of an object is valid.

Data Type

Boolean

Access

Read-only

Remarks

Validity checking consists of verifying that the object's Name and Parent properties are not empty and that the IsConnected
property is True. If all properties are valid, the IsValid property returns True. If any of the properties are invalid, the IsValid
property returns False.

See Also

clsDataSource

ConnectionString

Name

Parent

Analysis Services Programming (SQL Server 2000)

Name (clsDataSource)
Name (clsDataSource)

The Name property of an object of ClassType clsDataSource sets or returns the name of the object.

Data Type

String

Access

Read/write (read-only after the object has been named)

Remarks

The Name property contains the valid name of the Decision Support Objects (DSO) object when it was created. Typically, an
object cannot be renamed once a value has been supplied for the Name property.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

OpenQuoteChar (clsDataSource)
OpenQuoteChar (clsDataSource)

The OpenQuoteChar property of an object of ClassType clsDataSource contains the left (opening) quote character used by the
source database.

Data Type

Variant

Access

Read-only

Remarks

To properly qualify a table or column name that contains white space, a data source may require the name be delimited or
enclosed using a quote character. The quote character is generally specific to the data source or data source driver.

Example

The following code specifies a value for the FromClause property of a dimension and uses the proper delimiter characters for the
data source:

'Assume an object (dsoDimension) of
'ClassType clsDatabaseDimension exists and
'get the quoting characters from the data source
Dim sLQuote As String, sRQuote As String
sLQuote = dsoDimension.Datasource.OpenQuoteChar
sRQuote = dsoDimension.Datasource.CloseQuoteChar

'Set the comma-separated list of the dimension tables
dsoDimension.FromClause = sLQuote & "store" & sRQuote

See Also

clsDataSource

FromClause

Analysis Services Programming (SQL Server 2000)

Parent (clsDataSource)
Parent (clsDataSource)

The Parent property of an object of ClassType clsDataSource contains a reference to the parent MDStore object that contains
the DataSource object. For more information about MDStore objects, see MDStore Interface.

Data Type

MDStore

Access

Read-write

Remarks

You can only set this property to an object of ClassType clsDatabase. Attempting to set this property to an object of any other
class type returns an error.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

SubClassType (clsDataSource)
SubClassType (clsDataSource)

The SubClassType property of an object of ClassType clsDataSource contains an enumeration constant identifying the subclass
type of the object.

Data Type

SubClassTypes

Access

Read-only

Remarks

For objects of ClassType clsDataSource, the value of SubClassType is always sbclsRegular. For more information about the
SubClassTypes enumeration, see Enumerations.

See Also

clsDataSource

SubClassTypes

Analysis Services Programming (SQL Server 2000)

SupportedTxnDDL (clsDataSource)
SupportedTxnDDL (clsDataSource)

The SupportedTxnDDL property of an object of ClassType clsDataSource returns the value of the connection object's
Transaction DDL property, which indicates the source database's ability to support data definition language (DDL) statements in
transactions.

Data Type

Long

Access

Read-only

Remarks

The meaning of the value returned is specific to the database provider. For more information, see the Microsoft® ActiveX® Data
Objects (ADO) documentation and the OLE DB documentation.

See Also

clsDataSource

Analysis Services Programming (SQL Server 2000)

clsMemberProperty
clsMemberProperty

The member property object defines a property for a level member. Like level members, these properties are read from the
dimension table. A level can have any number of member properties. An object of ClassType clsMemberProperty provides
collections and properties through its own internal interface. There are no methods associated with this object class.
clsMemberProperty objects are contained in a parent level object's MemberProperties collection.

Remarks

Access to the properties of an object of ClassType clsMemberProperty depends on the context in which it is used.
clsMemberProperty objects are created and managed in the context of a database level and have read/write access. Cube and
partition levels inherit member properties from the database level. Member properties accessed through cube and partition level
objects are read-only.

Member properties are versatile objects that can be used to facilitate a number of different tasks. One task, for example, is that of
sorting the members of a level by a particular attribute. For example, consider the States level of the Geography dimension. A
member property can be defined that refers to the population of the state. Client applications can then sort on this population
property.

See Also

clsAggregationLevel

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

Collections, clsMemberProperty

Properties, clsMemberProperty

Analysis Services Programming (SQL Server 2000)

Collections, clsMemberProperty
Collections, clsMemberProperty

An object of ClassType clsMemberProperty implements the following collection.

Collection Description
CustomProperties The collection of user-defined Property objects

Access

Read/write

See Also

clsMemberProperty

Property Object

Analysis Services Programming (SQL Server 2000)

Properties, clsMemberProperty
Properties, clsMemberProperty

An object of ClassType clsMemberProperty implements the following properties. The table also shows whether the property is
read/write (R/W) or read-only (R).

Property Description Access
Caption The name of the column that contains the

member property in the members and axis
schema rowsets

R/W

ClassType Returns an enumeration constant that
identifies the specific object type

R

ColumnSize The size (in bytes) of the data stored in the
column referenced by the SourceColumn
property

R/W

ColumnType The data type of the source column on which
the member property is based

R/W

Description A description of the property R/W
IsVisible Indicates whether the member property is

visible to client applications
R/W

Language Identifies the language used R/W
Name The name of the member property R/W (R after the

object has been
named)

OrdinalPosition Returns the ordinal position of the
clsMemberProperty object in the
MemberProperties collection

R

Parent Returns a reference to the parent Level object R
PropertyType Categorizes the content of information

provided by the member property
R/W

SourceColumn The dimension table name and column that
contains values for the member property

R/W

SubClassType Returns an enumeration constant that
identifies the subclass type of the object

R

See Also

clsMemberProperty

MemberProperties

Analysis Services Programming (SQL Server 2000)

Caption (clsMemberProperty)
Caption (clsMemberProperty)

The Caption property of an object of ClassType clsMemberProperty contains the name of the column that contains the
member property in the members and axis schema rowsets. This is useful for creating language-specific versions of member
properties.

Data Type

String

Access

Read/write

Remarks

Individual member properties can have identical Caption values only if they have different values for Language. When a client
application requests the contents of a member property, the Analysis server compares the locale ID of the client application to the
Language property. The member property with the most appropriate Language value will be sent to the client application.

Two values for the Caption property are noteworthy: MEMBER_CAPTION and DESCRIPTION. The MEMBER_CAPTION schema
column should be used to define member captions. Under normal circumstances, a client application should use this schema
column for text when displaying members. Similarly, the DESCRIPTION column should be used to define textual member
descriptions. By combining these Caption values with specific Language values, the administrator can define localized member
captions and descriptions that will be used automatically by any client application.

The following schema column names are defined by OLE DB for OLAP and should not be used as values for the Name or
Caption properties of member properties.

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_UNIQUE_NAME

LEVEL_NUMBER

MEMBER_ORDINAL

MEMBER_NAME

MEMBER_UNIQUE_NAME

MEMBER_TYPE

MEMBER_GUID

CHILDREN_CARDINALITY

PARENT_LEVEL

PARENT_UNIQUE_NAME

PARENT_COUNT

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

ClassType (clsMemberProperty)
ClassType (clsMemberProperty)

The ClassType property of an object of ClassType clsMemberProperty contains an enumeration constant identifying the
specific class type of the clsMemberProperty object.

Data Type

ClassTypes

Access

Read-only

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

ColumnSize (clsMemberProperty)
ColumnSize (clsMemberProperty)

The ColumnSize property of a clsMemberProperty object identifies the size (in bytes) of the data stored in the column
referenced by the SourceColumn property.

Data Type

Integer

Access

Read/write

See Also

clsMemberProperty

SourceColumn (clsMemberProperty)

Analysis Services Programming (SQL Server 2000)

ColumnType (clsMemberProperty)
ColumnType (clsMemberProperty)

The ColumnType property of a clsMemberProperty object identifies the data type of the source column, specified in the
SourceColumn property, on which the member property is based.

Data Type

Integer representing a constant from the ADODB.DataTypeEnum enumeration.

Access

Read-write

Remarks

For more information about using the ADODB.DataTypeEnum enumeration, see the Microsoft® ActiveX® Data Objects (ADO)
documentation.

See Also

clsMemberProperty

SourceColumn (clsMemberProperty)

Analysis Services Programming (SQL Server 2000)

Description (clsMemberProperty)
Description (clsMemberProperty)

The Description property of an object of ClassType clsMemberProperty contains a description of the object.

Data Type

String

Access

Read/write

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

IsVisible (clsMemberProperty)
IsVisible (clsMemberProperty)

The IsVisible property of an object of ClassType clsMemberProperty indicates whether the member property is visible to client
applications.

Data Type

Boolean

Access

Read-write

Remarks

Member properties that are not visible are not listed in schema rowsets, but they are still accessible by name through
Multidimensional Expressions (MDX) expressions.

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

Language (clsMemberProperty)
Language (clsMemberProperty)

The Language property of an object of ClassType clsMemberProperty object identifies the client language for the object.

Data Type

LanguageValues

Access

Read/write

Remarks

When multiple member properties have the same Caption, the OLAP server returns the one whose Language property best
matches the locale ID of the client application. If no match is available, the server returns the member property with a Language
value of languageAny. For more information about the LanguageValues enumeration, see the Microsoft® Visual Basic®
documentation.

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

Name (clsMemberProperty)
Name (clsMemberProperty)

The Name property of an object of ClassType clsMemberProperty contains the name of the object.

Data Type

String

Access

Read/write (read-only after the object has been named)

Remarks

Decision Support Objects (DSO) uses some member property objects internally to manage each cube it creates. Setting the Name
property to one of the following reserved member property names raises an error:

CUSTOM_ROLLUP

KEY

NAME

PARENT

SKIPPED_LEVELS

ID

UNARY_OPERATOR

In addition, setting the Name property to the name of a schema rowset column also raises an error. For more information about
schema rowset column names, see Schema Rowsets.

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

OrdinalPosition (clsMemberProperty)
OrdinalPosition (clsMemberProperty)

The OrdinalPosition property of an object of ClassType clsMemberProperty contains the ordinal position of a
MemberProperty object within its parent object's collection.

Data Type

Integer

Access

Read-only

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

Parent (clsMemberProperty)
Parent (clsMemberProperty)

The Parent property of an object of ClassType clsMemberProperty contains a reference to the Level object to which the
clsMemberProperty object belongs.

Data Type

Level

Access

Read-only

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

PropertyType (clsMemberProperty)
PropertyType (clsMemberProperty)

The PropertyType property of an object of ClassType clsMemberProperty categorizes the content of information provided by
the member property.

Data Type

PropertyTypeValue

Access

Read/write

Remarks

This property is passed to the client application, which then determines how to interpret the data provided by the member
property. This allows client applications to create custom functions to process the data stored in member properties. For example,
if you define a custom member property called E-Mail Address for members of the Customer dimension, you can set this
property to propWebMailAlias. This would enable a client application to automatically display the member with a mailto URL
link whenever the other properties of the member were displayed.

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

SourceColumn (clsMemberProperty)
SourceColumn (clsMemberProperty)

The SourceColumn property of an object of ClassType clsMemberProperty contains a reference to the column in the
dimension table that contains values for the member property.

Data Type

String

Access

Read/write

Examples

Specifying the SourceColumn Property for a M ember Property Object

Use the following code to specify the SourceColumn for a new object of ClassType clsMemberProperty:

'Assume an object (dsoLevel) of ClassType clsDimensionLevel exists.
' Create a member property containing the name of the store manager.
Dim dsoMemProp As DSO.MemberProperty
Set dsoMemProp = dsoLevel.MemberProperties.AddNew("Store Manager")
'Set the column which contains the names of the managers.
dsoMemProp.SourceColumn = """store"".""store_manager"""

Analysis Services Programming (SQL Server 2000)

SubClassType (clsMemberProperty)
SubClassType (clsMemberProperty)

The SubClassType property of an object of ClassType clsMemberProperty contains an enumeration constant identifying the
subclass type of the object.

Data Type

SubClassTypes

Access

Read-only

Remarks

A member property object's SubClassType property can have a value of sbclsRegular only.

See Also

clsMemberProperty

Analysis Services Programming (SQL Server 2000)

clsMiningModel
clsMiningModel

Objects of ClassType clsMiningModel contain the definitions for data mining models that are contained in the MiningModels
collection of a clsServer object. Each model contains a collection, called the Columns collection, of data mining columns (that is,
objects of ClassType clsColumn) that correspond to the case table definition for the model. Each of these data mining columns
can, in turn, contain its own collection of data mining columns in the Columns collection. Such columns are referred to as nested
columns. In addition to the Columns collection, the mining model object also contains references to Roles, DataSources and
CustomProperties collections, which are used in the same manner as their counterparts under the cube object.

Remarks

After you create a mining model object by invoking the AddNew method of the server object's MiningModels collection, define
the structure of the mining model. The most important step in this process is to determine the model's subclass type by setting
this property to either sbclsOLAP or sbclsRelational. Data mining models whose SubClassType is sbclsOLAP (that is, OLAP
data mining models) are based on an OLAP cube. Data mining models whose SubClassType is sbclsRelational (that is,
relational data mining models) are based on a table from a relational database. The choice of the model's SubClassType
determines how the rest of the model's structure is defined. After that, you can determine other elements of the model design,
such as the data mining algorithm that the model will use and the roles that will be associated with the model.

OLAP Data M ining M odels

To establish the case set for an OLAP data mining model, set the CaseDimension property of the clsMiningModel object to a
dimension within a cube; this automatically defines the case level that provides case key columns for the mining model as the last
enabled and visible level in the selected dimension. Then set the individual columns in the Columns collection of the
clsMiningModel object to refer to dimensions, members, member properties, and measures in the cube to be used for input and
predictive information.

Relational Data M ining M odels

To establish the case set for a relational data mining model, select the key columns from a table or view in a relational database
and then add column objects to the Columns collection that refer to these key columns. Next, add columns that refer to other
columns in the table to the Columns collection, to supply input and predictable information to the data mining model.

Examples

A. Creating an OLAP M ining M odel M anually

The following example builds a mining model based on the Sales cube in the FoodMart 2000 sample database:

Public Sub CreateOlapMiningModel_1()
'--
' Declarations - Identify all of the variables that will be needed to
' create the data mining model.
'--
 Dim dsoSvr As New DSO.Server ' Server object
 Dim dsoDmm As DSO.MiningModel ' Note that because events are needed,
 ' this object is being invoked directly instead of through an MDStore interface..
 Dim dsoColumn As DSO.Column
 Dim dsoRole As DSO.Role
 Dim dsoNestedCol As DSO.Column
 Dim dsoCb As DSO.MDStore
 Dim dsoDim As DSO.Dimension
 Dim dsoLvl As DSO.Level

'--
' Connect to the server and walk through the schema for the cube that the
' data mining model will be based on. Save the references to the
' subordinate objects that will be needed later in this example.
'--
 'Connect to the server on this computer.
 dsoSvr.Connect "LocalHost"
 'Select the FoodMart database.
 Set dsoDb = dsoSvr.MDStores("Foodmart 2000")
 'Select the Sales cube.
 Set dsoCb = dsoDb.MDStores("Sales")
 'Select the Customers dimensions.

 Set dsoDim = dsoCb.Dimensions("Customers")
 'Select the Name level of the Customers dimension.
 Set dsoLvl = dsoDim.Levels("Name")

'--
' Before the model is created, check for a previous incarnation of it.
' If it exists, delete it. Then create a new one.
' Give the new model a new data source, and give it a role.
' Then describe the model for browsing the schema, and declare the
' algorithm that will be used to predict with.
' Finally, set up the OLAP properties that will be needed by the model.
'--
 'Check for the existence of the model on this computer.
 If Not dsoDb.MiningModels("CustSalesModel") Is Nothing Then
 'If this model exists, delete it.
 dsoDb.MiningModels.Remove "CustSalesModel"
 End If

 'Create a new mining model called CustSalesModel.
 Set dsoDmm = dsoDb.MiningModels.AddNew("CustSalesModel", sbclsOlap)

 'Designate FoodMart 2000 as the data source for this mining model.
 dsoDmm.DataSources.AddNew "Foodmart 2000"

 'Create a new mining model role called All Users.
 Set dsoRole = dsoDmm.Roles.AddNew("All Users")

 'Describe this new mining model.
 dsoDmm.Description = "Analyzes the purchasing behavior of customers"
 'use the Decision Trees algorithm in this model.
 dsoDmm.MiningAlgorithm = "Microsoft_Decision_Trees"
 'Declare that the Sales cube will be used as the source for this model.
 dsoDmm.SourceCube = "Sales"
 'Declare that the case dimension will be based on the Customers
 'dimension from the Sales cube.
 dsoDmm.CaseDimension = "Customers"
 'Use the Name level of the Customers dimension for cases.
 dsoDmm.CaseLevel = "Name"
 'Let DSO figure out the training query by leaving this property blank.
 dsoDmm.TrainingQuery = ""

'--
' Add a new column, Customer Id, to the mining model
' and relate this column to the Name level of the Customers dimension.
' Describe the level's type and make it a key for the model.
'--
 'Add Customer Id as a new column in the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Customer Id")
 'Identify the level in Sales that this column is based on.
 Set dsoColumn.SourceOlapObject = dsoLvl
 'Identify the type of column this is.
 dsoColumn.DataType = adInteger ' This enumeration is from ADO.
 'Identify this column as a key.
 dsoColumn.IsKey = True

'--
' Add a new column to the mining model called Gender and relate this
' column to the Gender member property of the Name level of the
' Customers dimension. Declare that the data in this column is
' statistically discrete.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Gender")
 'Identify the member property of the Customers dimension
 'that this column is based on.
 'Set the column's description for browsers of the schema.
 dsoColumn.Description = "Based on the Gender member property " & _
 "of the Name level of the Customers dimension."
 Set dsoColumn.SourceOlapObject = dsoLvl.MemberProperties("Gender")
 'Identify its type.
 dsoColumn.DataType = adWChar
 'Make this column related to the Customer Id column.
 dsoColumn.RelatedColumn = "Customer Id"
 'Identify this column as one containing discrete data.
 dsoColumn.ContentType = "DISCRETE"

'--
' Add a new column to the mining model called Unit Sales and relate
' this column to the Sales cube measure of the same name. Set the
' columns data type to Integer, and identify the data content in it as
' being continuous and logarithmically normalized. Finally, identify this

' column as being predictable.
'--
 'Add another column to the model.
 Set dsoColumn = dsoDmm.Columns.AddNew("Unit Sales")
 'Identify this column as being based on the Unit Sales measure.
 Set dsoColumn.SourceOlapObject = dsoCb.Measures("Unit Sales")
 'Identify the column type.
 dsoColumn.DataType = adInteger
 'Identify this column's content as being continuous.
 dsoColumn.ContentType = "CONTINUOUS"
 'Identify the statistical distribution of this data.
 dsoColumn.Distribution = "LOG_NORMAL"
 'Identofy the column as being predictable.
 dsoColumn.IsPredictable = True

'--
' Save the mining model and update its LastUpdated property.
'--
 'Set the date of last update to today's date.
 dsoDmm.LastUpdated = Now
 'Save the model definition.
 dsoDmm.Update

'--
' Lock the cube, process it, and then unlock it.
' Note: During processing a number of events will be fired. These events
' are trapped by the database object's ReportAfter, Report Before,
' ReportProgress, and ReportError events.
'--
 'Because the model is about to be processed, it must be locked.
 dsoDmm.LockObject olapLockProcess, "Processing the data mining model in sample code"
 'Fully process the model.
 dsoDmm.Process processFull
 'Unlock the model after processing is complete.
 dsoDmm.UnlockObject
End Sub

Analysis Services Programming (SQL Server 2000)

Collections, clsMiningModel
Collections, clsMiningModel

An object of ClassType clsMiningModel supports the following collections.

Collection Description
Columns The collection of Column objects that represent the

structure of the mining model. Each column may contain a
nested collection of columns. For more information, see
Data Mining Model Structure.

CustomProperties The collection of user-defined properties for the mining
model.

DataSources The collection of data source objects used by the mining
model.

Roles The collection of role objects defined for the mining model.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Methods, clsMiningModel
Methods, clsMiningModel

An object of ClassType clsMiningModel supports the following methods.

Method Description
Clone Copies an existing object to a target object of the same

class type. It also creates a copy of the property values and
provides the option of creating collections of major and
minor objects.

LockObject Locks the mining model.
Process Creates and trains the mining model on the server.
UnlockObject Releases a lock previously established by the LockObject

method.
Update Saves and updates the mining model's meta data.
ValidateStructure Validates the properties and structure of a mining model

object including the Columns collection. If it finds an
invalid structure it raises an error with an appropriate
message.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Clone (clsMiningModel)
Clone (clsMiningModel)

 New Information - SQL Server 2000 SP3.

The Clone method of an object of ClassType clsMiningModel copies the properties and levels of an existing object to a target
object of the same class type.

Syntax

object.Clone(ByVal TargetObject As MiningModel, [ByVal Options As CloneOptions = cloneMajorChildren])

object

The mining model object whose properties are to be copied.

TargetObject

A previously created object of the same class type.

Options

One of the values of the CloneOptions enumeration. If no value is specified, the cloneMajorChildren option is used. For more
information, see CloneOptions.

Remarks

The Clone method, depending on the clone option specified in Options, copies properties and objects to a new object with the
same ClassType property value.

Example

The following example copies the properties of the dsoDMMSource object variable to another object variable, which is named
dsoDMMTarget:

'Assume an object (dsoDB) of ClassType clsDatabase exists.
Dim dsoDMMSource As DSO.MiningModel
Set dsoDMMSource = dsoDB.MiningModels("Source")
...
'Create target mining model and clone just the properties.
Dim dsoDMMTarget As DSO.MiningModel
Set dsoDMMTarget = dsoDB.MiningModels.AddNew("Target")
dsoDMMSource.Clone dsoDMMTarget, cloneObjectProperties

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

LockObject (clsMiningModel)
LockObject (clsMiningModel)

The LockObject method of an object of ClassType clsMiningModel locks a mining model to prevent multiple users from
concurrently changing the object.

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

The object to lock.

LockType

One of the constants of the OlapLockTypes enumeration. For more information, see OlapLockTypes.

LockDescription

A string containing the description of the lock, available to other applications attempting to obtain a lock.

Remarks

It is sometimes possible for an application to request an additional lock on an already locked object. For example, other
applications can request and receive an olapLockRead lock on an object already locked using the olapLockProcess lock.

Example

The following example updates an existing mining model and saves it. It then locks the model with an informational message and
processes the model. After processing is complete, the model is unlocked.

dsoDmm.LastUpdated = Now
dsoDmm.Update
dsoDmm.LockObject olapLockProcess, "Processing the mining model in check-in test."
dsoDmm.Process processFull
dsoDmm.UnlockObject

See Also

clsMiningModel

LockObject

Analysis Services Programming (SQL Server 2000)

Process (clsMiningModel)
Process (clsMiningModel)

 New Information - SQL Server 2000 SP3.

The Process method of an object of ClassType clsMiningModel creates and trains a mining model on the Analysis server.

Syntax

object.Process([ByVal Options As ProcessTypes])

object

The mining model object to process.

Options

One of the constants in the ProcessTypes enumeration. For more information, see ProcessTypes.

The following ProcessTypes values are valid for processing a mining model.

Option Description
processFull Creates, updates, and trains the mining model on the

Analysis server
processRefreshData Retrains a mining model on the Analysis server

Remarks

If you set a value for the TrainingQuery property, the value is used to train the mining model. If you do not set a value for
TrainingQuery, the SHAPE query used to train the mining model is generated from the Columns collection of the model.

Example

The following example updates an existing mining model and saves it. It then locks the model with an informational message and
processes the model. After processing the model is complete it unlocks the model.

dsoDmm.LastUpdated = Now
dsoDmm.Update
dsoDmm.LockObject olapLockProcess, "Processing the mining model..."
dsoDmm.Process processFull
dsoDmm.UnlockObject

See Also

clsColumn

clsMiningModel

ProcessTypes

TrainingQuery

Analysis Services Programming (SQL Server 2000)

UnlockObject (clsMiningModel)
UnlockObject (clsMiningModel)

The UnlockObject method of an object of ClassType clsMiningModel releases a lock on a mining model object previously
established by the LockObject method.

Syntax

object.UnlockObject

object

The mining model object to unlock.

Remarks

If the UnlockObject method is called without first calling the LockObject method, an error is raised.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Update (clsMiningModel)
Update (clsMiningModel)

The Update method of an object of ClassType clsMiningModel saves the mining model along with its Columns collection to
the repository.

Syntax

object.Update

object

The mining model object to update.

Remarks

For mining models of SubClassType sbclsOlap, the Update method checks to see whether the Columns collection is empty. If it
is, the method automatically populates the Columns collection based on the structure of the source cube before saving to the
repository.

By default, only the Column object that corresponds to the CaseLevel property of the mining model is enabled; the CaseLevel is
the same as the level object from the SourceCube of the mining model, and it provides the cases for the model. Users can then
select and enable other columns by setting the IsDisabled property of the Column objects to False.

Examples

Creating an OLAP M ining M odel

The following example creates an OLAP mining model without explicitly assigning any columns to the model. The Update
method then automatically builds the structure of the Columns collection based upon the source cube's architecture and sets their
IsDisabled properties to True. The example then enables some of the columns and makes the UnitSales column predictable.

Public Sub CreateOlapMiningModel_2()
'--
' Declarations - Identify all of the variables that will be needed to
' create the data mining model.
'--
 Dim dsoSvr As New DSO.Server
 Dim dsoDmm As DSO.MiningModel
 Dim dsoColumn As DSO.Column
 Dim dsoRole As DSO.Role
 Dim dsoNestedCol As DSO.Column

'--
' Before the model is created, check for a previous incarnation of it.
' If it exists, delete it. Then create a new one.
' Give the new model a new data source, and give it a role.
' Then describe the model for browsing of the schema, and declare the
' algorithm that will be used to predict with.
' Lastly, set up the OLAP properties that will be needed by the model.
'--
 dsoSvr.Connect "LocalHost"
 Set dsoDb = dsoSvr.MDStores("Foodmart 2000")

 If Not dsoDb.MiningModels("CustSales_Olap2") Is Nothing Then
 dsoDb.MiningModels.Remove "CustSales_Olap2"
 End If

 Set dsoDmm = dsoDb.MiningModels.AddNew("CustSales_Olap2", sbclsOlap)

 'Create a new mining model role called All Users.
 Set dsoRole = dsoDmm.Roles.AddNew("All Users")

 dsoDmm.Description = "Analyzes the purchasing behavior of customers"
 dsoDmm.MiningAlgorithm = "Microsoft_Decision_Trees"
 dsoDmm.SourceCube = "Sales"
 dsoDmm.CaseDimension = "Customers"
 dsoDmm.CaseLevel = "Name"

 dsoDmm.TrainingQuery = "" 'Let DSO figure out the training query.

'--
' In the next step, the Update method checks to see whether there are any
' columns in the columns collection. In this case, because there aren't
' any, the update method will automatically add columns based on the
' structure of the Sales cube.
'--
 dsoDmm.Update 'Let DSO automatically populate the Columns collection.

 'Enable the Products dimension.
 'Set dsoColumn = dsoDmm.Columns("Products")
 'dsoColumn.IsDisabled = False

 'Make the Unit Sales measure predictable.
 Set dsoColumn = dsoDmm.Columns("Unit Sales")
 'Enable the column.
 dsoColumn.IsDisabled = False
 'Make the column predictable.
 dsoColumn.IsPredictable = True

 ' Set the last updated date to today's date.
 dsoDmm.LastUpdated = Now
 ' Save the model's meta data.
 dsoDmm.Update
'--
' Lock the cube, process it, and then unlock it.
' Note: During processing a number of events will be fired. These events
' are trapped by the database object's ReportAfter, Report Before,
' ReportProgress, and ReportError events.
'--
 'Because the model is about to be processed, it must be locked.
 dsoDmm.LockObject olapLockProcess, "Processing the data mining model in sample code"
 'Process the model.
 dsoDmm.Process processFull
 'Unlock the model.
 dsoDmm.UnlockObject
End Sub

Analysis Services Programming (SQL Server 2000)

ValidateStructure (clsMiningModel)
ValidateStructure (clsMiningModel)

The ValidateStructure method of an object of ClassType clsMiningModel validates the structure of the object, raising an error
if an invalid structure element is encountered.

Syntax

object.ValidateStructure

object

The mining model object whose structure is to be validated.

Remarks

The ValidateStructure method ensures that the following requirements are met for all data mining models:

The MiningAlgorithm property contains the name of a valid data mining algorithm.

At least one column exists in the Columns collection. A column is an object with a ClassType of clsColumn.

At least one column in the Columns collection must be enabled.

All columns in the Columns collection must be valid.

For clsMiningModel objects with a SubClassType of sbclsRelational, the following additional requirement must be met:

The FromClause property must not be empty.

For clsMiningModel objects with a SubClassType of sbclsOlap, the following additional requirements must be met:

The SourceCube property must contain the name of a valid cube in the same database as the OLAP mining model.

The cube named in the SourceCube property must be visible and cannot contain data mining dimensions.

The CaseDimension property must contain the name of a valid dimension in the same database as the OLAP mining
model.

The dimension named in the CaseDimension property must be visible and cannot be a virtual dimension created by
Microsoft® SQL Server™ 7.0 OLAP Services.

Example

The following example validates the OLAP data mining model Customer Pattern Discovery:

' Assume an object (dsoDB) of ClassType clsDatabase exists.
 Dim dsoDMM As DSO.MiningModel
 Set dsoDMM = dsoDB.MiningModels("Customer Pattern Discovery")

' Validate the data mining model.
 On Error Resume Next
 dsoDMM.ValidateStructure
 If Err.Number <> 0 Then MsgBox "An error occurred while" & _
 " validating the mining model:" & vbCrLf & _
 Err.Description

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Properties, clsMiningModel
Properties, clsMiningModel

An object of ClassType clsMiningModel supports the following properties.

Property Description Access
AreKeysUnique Indicates whether key columns defined in the

Columns collection uniquely identify members in
the case table.

R/W**

CaseDimension Identifies the dimension that contains cases for the
mining model.

R/W*

CaseLevel Identifies the level of the CaseDimension that
contains the cases for the mining model.

R*

ClassType Returns an enumeration constant that identifies the
specific object type.

R

Description The description of the mining model. R/W
Filter Filters the case rows used to train the mining model. R/W**

FromClause Specifies the FROM clause of the SQL query that
returns the cases for the mining model.

R/W**

IsVisible Indicates whether the mining model is visible to
client applications.

R/W

JoinClause Specifies the JOIN clause of the SQL query that
returns the cases for the mining model.

R/W**

LastProcessed The date and time when the mining model was last
processed.

R

LastUpdated A user-specified date. It is not used by Microsoft®
SQL Server™ 2000 Analysis Services.

R/W

MiningAlgorithm Identifies the mining algorithm used by the mining
model.

R/W

Name The name of the mining model. R/W
Parameters The string that contains parameter value settings for

the MiningAlgorithm property.
R/W

Parent Returns a reference to the parent MDStore object. R
SourceCube Returns a reference to the cube used to define a

mining model.
R/W*

State Indicates the status of the mining model. R
SubClassType Returns an enumeration constant that identifies the

subclass type.
R

TrainingQuery Identifies the query used for training the mining
model.

R/W

XML Returns the Extensible Markup Language (XML)
representation of a trained mining model.

R

* This property applies only to mining models of SubClassType sbclsOlap.
** This property applies only to mining models of SubClassType sbclsRelational.

Analysis Services Programming (SQL Server 2000)

AreKeysUnique (clsMiningModel)
AreKeysUnique (clsMiningModel)

The AreKeysUnique property of a clsMiningModel object indicates whether key columns (that is, a clsColumn object with an
IsKey property set to True) defined in the Columns collection uniquely identify members in the case table.

Note This property applies only to mining model objects of SubClassType sbclsRelational.

Data Type

Boolean

Access

Read/write

Remarks

The AreKeysUnique property determines whether the relational mining model adds the DISTINCT keyword to the SQL SELECT
query used to retrieve the training data set from the case tables. If the values for the key columns identified in the data mining
model are unique in the case tables, setting this property to True can improve performance when the relational data mining
model is trained.

See Also

clsColumn

Analysis Services Programming (SQL Server 2000)

CaseDimension (clsMiningModel)
CaseDimension (clsMiningModel)

The CaseDimension property of an object of ClassType clsMiningModel identifies the dimension that contains the cases for
the mining model. This property applies only to mining models of SubClassType sbclsOlap.

Data Type

String

Access

Read/write

Remarks

The CaseDimension property must be set to a visible shared or private dimension used by the source cube (that is, an object of
ClassType clsDatabaseDimension or clsCubeDimension whose IsVisible property is set to True). If the IsVisible property of
the shared or private dimension is set to False, or if the dimension is not used by the source cube specified in the SourceCube
property, an error is raised.

Examples

Building an OLAP M ining M odel

The following example builds an OLAP data mining model and sets its case dimension to Customers:

dsoDmm.Description = "Analyzes the purchasing behavior of customers"
dsoDmm.MiningAlgorithm = "Microsoft_Decision_Trees"
dsoDmm.SourceCube = "Sales"
dsoDmm.CaseDimension = "Customers"
dsoDmm.TrainingQuery = "" 'Let DSO figure out the training query.

Analysis Services Programming (SQL Server 2000)

CaseLevel (clsMiningModel)
CaseLevel (clsMiningModel)

The CaseLevel property of an object of ClassType clsMiningModel identifies the level of the CaseDimension that contains the
cases for the mining model. This property applies only to mining models of SubClassType sbclsOlap.

Data Type

String

Access

Read-only

Remarks

The value of the CaseLevel property represents the name of the lowest enabled and visible level of the dimension specified in the
CaseDimension property.

Example

The following example builds an OLAP data mining model and sets its case dimension to Customers. The lowest enabled and
visible level in the Customers dimension is Name, so the CaseLevel property is set to the Name level.

dsoDmm.Description = "Analyzes the purchasing behavior of customers"
dsoDmm.MiningAlgorithm = "Microsoft_Decision_Trees"
dsoDmm.SourceCube = "Sales"
dsoDmm.CaseDimension = "Customers"
' Save the changes to the data mining model. This also populates
' the Columns collection and sets the CaseLevel property.
dsoDmm.Update
' The dsoDmm.CaseLevel property should have a value of "Name",
' the lowest enabled level of the Customers dimension.
Debug.Print dsoDmm.CaseLevel

Analysis Services Programming (SQL Server 2000)

ClassType (clsMiningModel)
ClassType (clsMiningModel)

The ClassType property of an object of ClassType clsMiningModel returns an enumeration constant that identifies the specific
class type.

Data Type

ClassTypes

Access

Read-only

Remarks

The ClassType property always returns clsMiningModel for this object. To distinguish between relational and OLAP data mining
models, use the SubClassType property.

See Also

clsMiningModel

SubClassType (clsMiningModel)

Analysis Services Programming (SQL Server 2000)

Description (clsMiningModel)
Description (clsMiningModel)

The Description property of an object of ClassType clsMiningModel sets or returns the description of the mining model. This
property is used only by Decision Support Objects (DSO) and is not accessible by client applications.

Data Type

String

Access

Read/write

Example

Use the following code to set the Description property for a mining model object:

' Assume an object (dsoDMM) of ClassType clsMiningModel exists.
dsoDMM.Description = "1999 Sales Patterns"

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Filter (clsMiningModel)
Filter (clsMiningModel)

The filter property is an SQL filter expression that is used to restrict the cases that are used by mining model objects.

Data Type

String

Access

Read/Write

Remarks

This pass-through filter condition is applied to the SQL query that returns the cases for the mining model object.

This property applies only to objects with a ClassType of clsMiningModel and a SubClassType of sbclsRelational.

Example

The following filter restricts the cases to customers involved in the first million transactions:

"sales_fact_1997.transaction_id <= 1000000"

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

FromClause (clsMiningModel)
FromClause (clsMiningModel)

The FromClause property of an object of ClassType clsMiningModel specifies the FROM clause of the SQL pass-through query
that is used when training the mining model. This property applies only to mining models of SubClassType sbclsRelational.

Data Type

String

Access

Read/Write

Remarks

The FromClause property contains the string used by the data source provider to construct a FROM clause for the SQL pass-
through query that is used to return the training data set for the mining model.

Note You must separate the table and column names with the delimiters appropriate to the source database. You can use the
CloseQuoteChar and OpenQuoteChar properties of the DataSource object to determine the correct delimiters.

Example

The following code example shows the FromClause property being set use to two tables, sales_fact_1997 and customer, to
provide training data:

' Assume the existence of a clsMiningModel object named dsoDMM.
dsoDMM.FromClause = """sales_fact_1997"", ""customer"""

The previous code example sets the FromClause property to the following string:

"sales_fact_1997", "customer"

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

IsVisible (clsMiningModel)
IsVisible (clsMiningModel)

The IsVisible property of an object of ClassType clsMiningModel determines whether the mining model is visible to client
applications.

Data Type

Boolean

Access

Read/write

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

JoinClause (clsMiningModel)
JoinClause (clsMiningModel)

The JoinClause property of an object of ClassType clsMiningModel specifies the JOIN clause of the SQL query that returns the
cases for the mining model. This property applies only to mining models of SubClassType sbclsRelational.

Data Type

String

Access

Read/write

Remarks

This property specifies the INNER JOIN clause of the SQL pass-through query that is used to generate the training cases for the
mining model. Use this property when the case information is distributed in more than one table.

Note You must separate the table and column names with the delimiters appropriate to the source database. You can use the
CloseQuoteChar and OpenQuoteChar properties of the DataSource object to determine the correct delimiters.

Example

In the following code example, the JoinClause is used to join the sales_fact_1997 and customer tables:

' Assume the existence of a clsMiningModel object named dsoDMM.
dsoDMM.JoinClause = """sales_fact_1997"".""customer_id"" – " & _
 """customer"".""customer_id"""

The previous code example sets the JoinClause property to the following string:

"sales_fact_1997"."customer_id" = "customer"."customer_id".

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

LastProcessed (clsMiningModel)
LastProcessed (clsMiningModel)

The LastProcessed property of an object of ClassType clsMiningModel contains the date and time the mining model was last
processed.

Data Type

Date

Access

Read-only

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

LastUpdated (clsMiningModel)
LastUpdated (clsMiningModel)

The LastUpdated property of an object of ClassType clsMiningModel is not used by Microsoft® SQL Server™ 2000 Analysis
Services. You can set this to any date/time value you want. For example, you can use it to indicate when the source data was last
changed.

The LastUpdated property of an object of ClassType clsMiningModel is user controlled and not set by Analysis Services. That
is, the user controls the value and context of this property; the server does not set this value or change it at any time. This means
that you can use it to indicate the date when the data in a source was last changed, or the last time the mining model was
accessed.

Data Type

String

Access

Read/write

Remarks

The LastUpdated property is not automatically set by any method in the Decision Support Objects (DSO) object model. It is
provided as a means for client applications to specify a date or time that represents the validity of information. For example, a
date of 12/31/1997 may mean that the information stored in a data mining model is not valid after December 1997.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

MiningAlgorithm (clsMiningModel)
MiningAlgorithm (clsMiningModel)

The MiningAlgorithm property of an object of ClassType clsMiningModel identifies the mining algorithm used by the mining
model. Only algorithms listed in the MINING_SERVICES schema rowset can be used.

Data Type

String

Access

Read/write

Remarks

By default, Microsoft® SQL Server™ 2000 Analysis Services supports two algorithms, Microsoft_Clustering and
Microsoft_Decision_Trees. Because the list of mining algorithms may vary dynamically, the MiningAlgorithm property is a
string and not an enumeration.

See Also

clsMiningModel

Data Mining Schema Rowsets

Analysis Services Programming (SQL Server 2000)

Name (clsMiningModel)
Name (clsMiningModel)

The Name property of an object of ClassType clsMiningModel contains the name of the mining model.

Data Type

String

Access

Read/write (read-only after object is named)

Example

Use the following code to return the name of a mining model:

' Assume an object (dsoDMM) of ClassType clsMiningModel exists.
Dim strName As String
strName = dsoDMM.Name

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

Parameters (clsMiningModel)
Parameters (clsMiningModel)

The Parameters property of an object of ClassType clsMiningModel stores parameter value settings for the algorithm
specified in the MiningAlgorithm property of the mining model. Parameters can be combined within a string by separating each
one with a semicolon.

Data Type

String

Access

Read/write

Remarks

Settings for the Parameters property must conform to the parameters specified in the SERVICE_PARAMETERS schema rowset.
Decision Support Objects (DSO) does not validate the settings used in the property string. Therefore, the string is appended
without validation to the CREATE MINING MODEL (for relational data mining models) or CREATE OLAP MINING MODEL (for
OLAP data mining models) statement used to create the data mining model. The Analysis server, on the other hand, checks for
valid parameter settings and returns errors as appropriate.

Example

The following example sets the parameters for a data mining algorithm.

' Assume an object (dsoDMM) of ClassType clsMiningModel and
' SubClassType sbclsRelational exists.
' Set the MiningAlgorithm property to use Microsoft Decision Trees.
dsoDMM.MiningAlgorithm = "Microsoft Decision Trees"

' This algorithm supports the MINIMUM_LEAF_CASES mining parameter.
dsoDMM.Parameters = "MINIMUM_LEAF_CASES=15"

See Also

clsMiningModel

Data Mining Schema Rowsets

Analysis Services Programming (SQL Server 2000)

Parent (clsMiningModel)
Parent (clsMiningModel)

The Parent property of an object of ClassType clsMiningModel contains a reference to the parent database object of the
mining model.

Data Type

MDStore

Access

Read-only

Example

The following example will print the string "mining model is owned by database", where mining model is the name of the mining
model and database is the name of the database that owns the mining model:

' Assume the existence of a mining model object called dsoDMM.
Debug.Print dsoDMM.Name & " is owned by " & dsoDMM.Parent.Name

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

SourceCube (clsMiningModel)
SourceCube (clsMiningModel)

The SourceCube property of an object of ClassType clsMiningModel specifies the cube that provides the source data for the
mining model. This property applies only to mining models of SubClassType sbclsOlap.

Data Type

String

Access

Read/write

Remarks

The source cube of a mining model must reside in the same database as the mining model itself.The specified source cube must
be visible (that is, the IsVisible property of the clsCube object must be set to True). If the IsVisible property of the source cube is
set to False, an error is raised.

Note A mining model cannot use a virtual cube which already contains a mining dimension as a source cube.

Example

The following example specifies the City level of the Customer dimension be used to generate training cases for the mining
model from the Sales cube.

' Assume the existence of a mining model object named dsoDMM.
dsoDMM.SourceCube = "Sales"
dsoDMM.CaseDimension = "Customer"

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

State (clsMiningModel)
State (clsMiningModel)

The State property of an object of ClassType clsMiningModel returns an enumeration constant that indicates the processing
state of the object on the server.

Data Type

OlapStateTypes

Access

Read-only

Remarks

The supported OlapStateTypes enumeration constants for the State property are:

olapStateNeverProcessed

olapStateCurrent

olapStateStructureChanged

When a mining model is first created, the value for the State property is olapStateNeverProcessed. After processing, the value
becomes olapStateCurrent. If structural changes are made to the Columns collection of the model after processing, the value
becomes olapStateStructureChanged. If source mapping changes are made to the Columns collection after processing (that is,
if changes are made to the clsColumn SourceTable or SourceColumn properties), the value becomes
olapStateSourceMappingChanged.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

SubClassType (clsMiningModel)
SubClassType (clsMiningModel)

The SubClassType property of an object of ClassType clsMiningModel returns an enumeration constant identifying the
specific subclass type.

Data Type

SubClassTypes

Access

Read-only

Remarks

Objects of ClassType clsMiningModel can have a SubClassType property value of sbclsRegular, sbclsOlap, or
sbclsRelational. A mining model has a SubClassType value of sbclsRelational if it is defined on one or more relational tables.
If the mining model is defined on a cube residing in the same clsDatabase object, the SubClassType value is sbclsOlap. The
sbclsRelational constant is equivalent to the sbclsRegular value and is provided for convenience and readability in source code.

Example

The following example prints the types of each data mining model in the FoodMart 2000 database:

' Assume the existance of a server object, s, that has been connected to a server.
Dim db as DSO.DB ' declare an interface for the database.
Dim dmm as DSO.MiningModel
Dim sDmmType as String ' Description of each enumeration value.
set db = s.MDStores("FoodMart")
For each dmm in db.MiningModels
 Select Case dmm.subclasstype
 Case sbclsOlap
 sDmmType = "sbclsOlap"
 Case sbclsRelational
 sDmmType = "sbclsRelational"
 Case else
 sDmmType = "Unknown subclass type!"
 End Select
 debug.print dmm.name & " is type " & sDmmType
Next

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

TrainingQuery (clsMiningModel)
TrainingQuery (clsMiningModel)

The TrainingQuery property of an object of ClassType clsMiningModel identifies the SQL INSERT statement used to train the
mining model.

Data Type

String

Access

Read/write

Remarks

If the TrainingQuery property is not set, the SQL INSERT statement for this property is automatically created by Decision
Support Objects (DSO) based on the Columns collection of the mining model. TrainingQuery property values are not validated
beforehand; they are sent directly to the Analysis server for training the mining model.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

XML (clsMiningModel)
XML (clsMiningModel)

The XML property of an object of ClassType clsMiningModel returns the Extensible Markup Language (XML) representation of
the data mining model.

Data Type

String

Access

Read-only

Remarks

The XML property only returns the XML representation of a data mining model if the data mining model has been trained. If the
model has not been trained using the Process method, this property returns an empty string.

See Also

clsMiningModel

Analysis Services Programming (SQL Server 2000)

clsMiningModelRole
clsMiningModelRole

An object of the ClassType clsMiningModelRole provides a specific implementation of the Decision Support Objects (DSO)
Role interface for data mining models. This object provides collections, methods, and properties through the Role interface.

You use objects of ClassType clsMiningModelRole to manage the set of users who can access a mining model and the manner
in which they can access it. A mining model role has a name, a description, a parent object, a class type, a list of users, and a set of
permissions. Each permission has a key and a corresponding permission expression.

You create roles at the database level (database roles) and then assign them to mining models (mining model roles) by adding
them to the collection of roles associated with the mining model.

You can remove a database role by removing it from the database's collection of role objects. When you do so, the system
automatically removes the corresponding mining model roles from the mining model's collection of role objects.

You can remove a mining model role by removing it from the mining model's collection of role objects. When you do so, the
corresponding database role is not affected. However, the definition of the mining model role remains in effect until you update
or process the cube.

Examples

Using clsM iningM odelRole

If dsoDb.DataSources("DMTest") Is Nothing Then
 Set dsoDs = dsoDb.DataSources.AddNew("DMTest")
 dsoDs.ConnectionString = "provider=Microsoft.Jet.OLEDB.4.0;data source=d:dmtest2.mdb"
 dsoDs.Update
End If
'Create a new mining model role.
If dsoDb.Roles("DMDev") Is Nothing Then
 Set dsoRole = dsoDb.Roles.AddNew("DMDev")
 dsoRole.UsersList = "DOMAIN\SomeUser"
 dsoRole.Update
End If

'Check to see whether the mining model exists.
If Not dsoDb.MiningModels("CustSalesRel") Is Nothing Then
 'Delete it if it does.
 dsoDb.MiningModels.Remove "CustSalesRel"
End If
'Now create the model afresh.
Set dsoDmm = dsoDb.MiningModels.AddNew("CustSalesRel")
'Add a new datasource for the model
dsoDmm.DataSources.AddNew "DMTest"
'Add a data mining role to the new mining model.
Set dsoRole = dsoDmm.Roles.AddNew("DMDev")

Analysis Services Programming (SQL Server 2000)

Collections, clsMiningModelRole
Collections, clsMiningModelRole

An object of ClassType clsMiningModelRole implements the following collections of the Role interface.

Collection Description
Commands The collection of commands for the role
CustomProperties The collection of user-defined properties

See Also

clsMiningModelRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsMiningModelRole
Methods, clsMiningModelRole

An object of ClassType clsMiningModelRole implements the following method of the Role interface.

Method Description
SetPermissions Sets the permissions for the cube role for a given key

See Also

clsMiningModelRole

Role Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsMiningModelRole
Properties, clsMiningModelRole

An object of ClassType clsMiningModelRole implements the following properties of the Role interface.

Property Description
ClassType Returns an enumeration constant that identifies the

specific object type
Description The description of the mining model role
IsValid Indicates whether the role structure is valid
Name The name of the mining model role
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the

default interface of the parent object
Permissions The permissions for the mining model role for a given

key
SubClassType Returns an enumeration constant that identifies the

subclass type of the object
UsersList A semicolon-delimited list of users of the mining model

role

See Also

clsMiningModelRole

Role Interface

Analysis Services Programming (SQL Server 2000)

clsPartition
clsPartition

An object of ClassType clsPartition serves as a data store for multidimensional cubes. It provides an implementation of the
Decision Support Objects (DSO) MDStore interface specific to partitions. This object provides collections, methods, and
properties through the MDStore interface.

For more information about partitions, see Partitions.

Example

Use the following code to create an object of ClassType clsPartition:

'Assume an object (dsoCube) of ClassType clsCube exists
Dim dsoPartition As DSO.MDStore
Set dsoPartition = dsoCube.MDStores.AddNew("MyPartition")

See Also

MDStore Interface

Collections, clsPartition

Methods, clsPartition

Properties, clsPartition

Analysis Services Programming (SQL Server 2000)

Collections, clsPartition
Collections, clsPartition

An object of ClassType clsPartition implements the following collections of the MDStore interface.

Collection Description
CustomProperties The collection of user-defined properties for the partition
DataSources The collection of data source objects used by the

partition
Dimensions The collection of dimension objects defined in the

partition
MDStores The collection of aggregation objects defined in the

partition
Measures The collection of measure objects defined in the partition

See Also

clsPartition

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Methods, clsPartition
Methods, clsPartition

An object of ClassType clsPartition implements the following methods of the MDStore interface.

Method Description
Clone Copies the property values (and optionally) the

collections of major and minor objects from one
partition object to another

LockObject Locks an object to prevent multiple users from
concurrently changing the object

Merge Merges two partitions
Process Processes the partition
UnlockObject Releases a lock previously established by the

LockObject method
Update Updates the partition definition in the meta data

repository

See Also

clsPartition

MDStore Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsPartition
Properties, clsPartition

An object of ClassType clsPartition implements the following properties of the MDStore interface.

Property Description
AllowDrillThrough Indicates whether drillthrough is allowed on the

partition.
AggregationPrefix The aggregation prefix for the partition store.
Analyzer The partition analyzer object for this partition.
ClassType Returns an enumeration constant that identifies the

specific object type.
DefaultMeasure The name of the default measure for the partition.
Description The description of the partition.
DrillThroughColumns The list of columns that are included in a

drillthrough query.
DrillThroughFilter A statement restricting rows that are returned by a

drillthrough query.
DrillThroughFrom An SQL FROM clause with the names of the tables

used in drillthrough queries.
DrillThroughJoins An SQL JOIN clause with the names of the tables

used in drillthrough queries.
EnableRealTimeUpdates For relational OLAP (ROLAP) partitions, indicates

whether real-time update capability is enabled for
the partition.

EstimatedRows The estimated number of rows in the partition.
EstimatedSize The estimated size of all the rows in bytes.
FromClause Contains the SQL FROM clause from the list of

tables used to define the partition's dimensions and
measures.

IsDefault Indicates whether the partition is the default
partition.

IsTemporary Indicates whether the partition should be stored in
the repository.

IsReadWrite Indicates whether the partition object is writable.
IsValid Indicates whether the structure of the partition is

valid.
JoinClause The JOIN clause (list of join conditions, separated by

AND) for the partition.
LastProcessed The date and time the partition was last processed.
LastUpdated A user-specified date. It is not used by Microsoft®

SQL Server™ 2000 Analysis Services.
LazyOptimizationProgress Indicates the progress of lazy optimization

processing on a multidimensional OLAP (MOLAP)
partition.

Name The name of the partition.
OlapMode Returns an enumeration constant that identifies the

type of OLAP storage mode.
Parent Returns a reference to the parent MDStore object.
ProcessingKeyErrorLimit Sets the number of allowable errors that cause

processing to cease.
ProcessingKeyErrorLogFileName The UNC path to a file for logging dimension key

errors encountered during processing.
RemoteServer The name of the remote server where the data for

the partition is stored.
Server Returns a reference to the DSO.Server object.

SourceTable The name of the fact table for the partition.
SourceTableAlias The alias of the source table for the partition.
SourceTableFilter Contains the WHERE clause of the SQL statement

used to determine which source table rows are to
be included in the partition.

State Returns an enumeration constant that indicates the
difference between the partition object referenced
by the client application and corresponding
partition on the Analysis server.

SubClassType Returns an enumeration constant that identifies the
subclass type of the object.

See Also

clsPartition

MDStore Interface

Analysis Services Programming (SQL Server 2000)

clsPartitionAnalyzer
clsPartitionAnalyzer

 Topic last updated -- July 2003

In multidimensional database technology, you must balance precalculated aggregation storage requirements against online query
process performance. A high percentage of aggregations increases query speed but requires more storage space.

The number of aggregations that must be precalculated and stored increases proportionally to the level of query performance.

A Decision Support Objects (DSO) object of ClassType clsPartitionAnalyzer encapsulates an algorithm that automatically
designs a set of aggregations in a partition. It analyzes the schema of a partition and generates a collection of aggregations that
improves query performance. You can run the analysis without constraints, or you can constrain the analysis in either of the
following ways:

Specify one or more goal queries that you want to optimize.

Include existing aggregations or aggregations that should be preserved before the analysis is run.

To analyze a partition using DSO, follow these steps:

1. Initialize the analysis session using the InitializeDesign method.

2. Add one or more goal queries using the AddGoalQuery and PrepareGoalQueries methods. The resulting members of the
DesignedAggregations collection will be optimized for this set of goal queries. If no goal queries are specified, the
analysis will yield a generalized optimization.

3. Add one or more existing aggregations using the AddExistingAggregation method.

4. Perform an initial analysis using the NextAnalysisStep method.

The analysis generates new aggregations that are added to the DesignedAggregations collection. It also returns the
calculated percentage performance gain, aggregation storage requirements, and total number of aggregations created.

5. Review the results of the analysis step and determine whether you want to perform another analysis iteration. Running
subsequent analysis steps adds new aggregations to the DesignedAggregations collection and recalculates the
percentage performance gain, aggregation storage requirements, and total number of aggregations created.

6. Manually or programmatically determine the point at which you want to conclude the analysis.

7. Optionally, when the partition analyzer is finished running, replace the aggregations of the partition with the members of
the DesignedAggregations collection.

8. Close the analysis with the CloseAggregationsAnalysis method.

An object of ClassType clsPartitionAnalyzer provides collections, methods, and properties through its own internal interface.

Example

The following subroutine, given a valid reference to an object of ClassType clsCube, analyzes the default partition and designs
aggregations that can fulfill 20 percent of all possible queries without accessing the fact table:

Public Sub CreateAggregations(ByRef CubeToUse As DSO.MDStore)
 ' Aggregations are designed for each partition.
 ' This subroutine designs aggregations for
 ' the default partition of a specified cube.

 On Error GoTo ErrParameters

 Dim dsoPartition As DSO.MDStore
 Dim dsoAggregation As DSO.MDStore
 Dim dsoPartitionAnalyzer As DSO.PartitionAnalyzer

 Dim dblPctBenefit As Double
 Dim dblSize As Double
 Dim strSize As String
 Dim lngAggCount As Long
 Dim lngAggAdded As Long

 ' Check parameters to ensure that the subroutine
 ' receives a valid cube object reference.
 Set dsoPartition = Nothing
 If CubeToUse.ClassType = clsCube Then
 ' Ensure that the cube has partitions.
 If CubeToUse.MDStores.Count > 0 Then
 Set dsoPartition = CubeToUse.MDStores(1)
 Else
 ' The cube does not have any partitions.
 Err.Raise vbObjectError + 1, _
 "CreateAggregations", _
 "The specified cube does not contain any partitions."
 End If
 Else
 ' The MDStore object is not a cube.
 Err.Raise vbObjectError + 1, _
 "CreateAggregations", _
 "The specified MDStore object is not a cube."
 End If

 ' Now that a valid partition has been found, the
 ' subroutine uses the PartitionAnalyzer object to
 ' design and create aggregations.
 On Error GoTo ErrCreate

 ' Set the storage mode of the partition.
 ' This example sets the storage mode to MOLAP, so that facts
 ' and aggregations are loaded into
 ' multidimensional structures on the Analysis
 ' server.
 dsoPartition.OlapMode = olapmodeMolapIndex

 ' Get a PartitionAnalyzer object reference.
 Set dsoPartitionAnalyzer = dsoPartition.Analyzer

 With dsoPartitionAnalyzer
 ' Initialize the partition analyzer.
 .InitializeDesign

 ' The NextAnalysisStep method incrementally builds
 ' the optimal set of aggregations. The specified variables
 ' are used to determine the estimated performance
 ' improvement, storage size, and number of aggregations
 ' that are designed on each iteration.
 Do While .NextAnalysisStep(dblPctBenefit, _
 dblSize, _
 lngAggCount)

 ' Stop when the estimated performance improvement
 ' is greater than 20 percent.
 If dblPctBenefit > 20# Then
 ' Report on the designed aggregations.
 Debug.Print lngAggCount & _

 " aggregations have been designed."

 ' Format the AccumulatedSize parameter
 ' for readability.
 dblSize = dblSize \ 1024
 If dblSize > 1023 Then
 dblSize = dblSize \ 1024
 If dblSize > 1023 Then
 dblSize = dblSize \ 1024
 strSize = dblSize & " GB"
 Else
 strSize = dblSize & " MB"
 End If
 Else
 strSize = dblSize & " KB"
 End If

 Debug.Print "The aggregations require " & _
 "approximately " & strSize & _
 " of storage."
 Exit Do
 End If
 Loop

 ' Apply the aggregations to the partition.
 ' To prevent duplication of aggregations,
 ' either remove existing aggregations first
 ' or use the Find method of the clsCollection object
 ' to determine whether an aggregation already exists.
 For Each dsoAggregation In .DesignedAggregations
 If dsoPartition.MDStores.Find(dsoAggregation.Name) _
 = False Then

 dsoPartition.MDStores.Add dsoAggregation
 lngAggAdded = lngAggAdded + 1
 End If
 Next

 ' Close the partition analyzer.
 .CloseAggregationsAnalysis
 End With

 ' Save the partition definition in the meta data repository.
 On Error GoTo ErrUpdate
 dsoPartition.Update
 Debug.Print lngAggAdded & _
 " new aggregations added to partition."

EndRoutine:
 Set dsoPartitionAnalyzer = Nothing
 On Error GoTo 0
 Exit Sub

ErrParameters:
 ' A valid cube with one or more partitions was not
 ' provided to the subroutine.
 MsgBox "An error occurred while checking parameters:" & _
 vbCrLf & Err.Description, _
 vbExclamation Or vbOKOnly, Err.Source

 Resume EndRoutine

ErrCreate:
 ' An error occurred while the
 ' aggregations were being designed and created.
 MsgBox "An error occurred while designing aggregations:" & _
 vbCrLf & Err.Description, _
 vbExclamation Or vbOKOnly, Err.Source

 Resume EndRoutine

ErrUpdate:
 ' An error occurred while the partition was being updated.
 ' Possible reasons:
 ' - The meta data repository is unreachable.
 ' The location of the meta data repository is stored in
 ' the Repository Connection String value of the
 ' following registry entry in the HKEY_LOCAL_MACHINE
 ' registry hive:
 ' Software\Microsoft\OLAP Server\Server Connection Info
 ' - The parent cube is locked.

 ' Another DSO application or Analysis Manager has locked the
 ' cube pending the execution of the Update or Process method.
 MsgBox "An error occurred while updating the partition:" & _
 vbCrLf & Err.Description, _
 vbExclamation Or vbOKOnly, Err.Source

 Resume EndRoutine
End Sub

Analysis Services Programming (SQL Server 2000)

Collections, clsPartitionAnalyzer
Collections, clsPartitionAnalyzer

An object of ClassType clsPartitionAnalyzer implements the following collection.

Collection Description
DesignedAggregations The designed aggregations generated by the object of

ClassType clsPartitionAnalyzer

Access

Read-only

See Also

clsPartitionAnalyzer

Analysis Services Programming (SQL Server 2000)

DesignedAggregations (clsPartitionAnalyzer)
DesignedAggregations (clsPartitionAnalyzer)

The DesignedAggregations collection of an object of ClassType clsPartitionAnalyzer acts as a temporary container for
aggregation objects during the partition analyzer session.

Data Type

VBA.Collection

Access

Read-only

Remarks

This collection contains aggregations (that is, objects of ClassType clsAggregation) that were added manually using the
AddExistingAggregation method or were automatically generated using the NextAnalysisStep method. At the conclusion of
the partition analyzer session you can either save the aggregations to the partition (and make them available for client
applications) or discard them.

Example

Use the following code to repeatedly invoke the NextAnalysisStep method and then save the DesignedAggregations in a
Microsoft® Visual Basic® collection. The analysis continues until one of the following goals is reached:

Twenty or more aggregations are designed.

The storage requirements for the designed aggregations exceed 100,000 bytes.

For more information, see InitializeDesign.

'Assume the existence of objects (dsoPartAnalyzer) of ClassType
'clsPartitionAnalyzer and (dsoPartition) of ClassType clsPartition.

Private blnStopAdding As Boolean
Private colDesignedAggs As Collection

dsoPartAnalyzer.InitializeDesign

'Iterate through analysis until either goal is reached.
Do Until blnStopAdding
 If Not dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit, _
 dblAccumulatedSize, lngAggregationsCount) Then
 blnStopAdding = True 'No New Aggregations Designed
 Else
 blnStopAdding = (lngAggregationsCount >= 20) Or _
 (dblAccumulatedSize >= 100000)
 End If
Loop

'Save the designed aggregations to the partition.
Dim dsoAggregation As DSO.MDStore
For Each dsoAggregation In dsoPartAnalyzer.DesignedAggregations
 dsoPartition.MDStores.Add dsoAggregation
Next

Analysis Services Programming (SQL Server 2000)

Methods, clsPartitionAnalyzer
Methods, clsPartitionAnalyzer

An object of ClassType clsPartitionAnalyzer implements the following methods.

Method Description
AddExistingAggregation Adds an existing aggregation to the

DesignedAggregations collection
AddGoalquery Adds a specific query for the analyzer to optimize
CloseAggregationsAnalysis Closes the partition analyzer session and clears the

objects used during the analysis
InitializeDesign Checks the partition structure to ensure that the partition

analyzer can be run and initializes the objects necessary
to perform the analysis

NextAnalysisStep Adds new aggregations to the DesignedAggregations
collection and calculates the incremental performance
gain and the additional aggregation storage
requirements

PrepareGoalQueries Prepares the goal queries that were entered using the
AddGoalQuery method for use in this analysis session

See Also

clsPartitionAnalyzer

Analysis Services Programming (SQL Server 2000)

AddExistingAggregation (clsPartitionAnalyzer)
AddExistingAggregation (clsPartitionAnalyzer)

The AddExistingAggregation method of an object of ClassType clsPartitionAnalyzer adds an aggregation to the
DesignedAggregations collection. It examines the aggregation and returns the calculated percentage performance gain, the
total size of the aggregation, and the total number of aggregations in the partition that result from the inclusion of the
aggregation.

Syntax

object. AddExistingAggregation(ByVal agg As MDStore, PercentageBenefit As Double, AccumulatedSize As Double,
AggregationsCount As Long)

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

agg

An MDStore object, representing the aggregation to add.

PercentageBenefit

The estimated percentage performance improvement that would be realized using the current collection of
DesignedAggregations, as opposed to querying against the underlying fact table. This argument is used as an output
parameter.

AccumulatedSize

The estimated hard disk storage requirements (in bytes) for the current collection of DesignedAggregations. This argument is
used as an output parameter.

AggregationsCount

The number of aggregations contained in the current collection of DesignedAggregations. This argument is used as an output
parameter.

Remarks

This method allows you to evaluate the impact of a particular aggregation on query performance. Subsequent analysis steps
performed either by adding another existing aggregation or by using the NextAnalysisStep method include the added
aggregation.

Example

Use the following code to add an aggregation, named Agg123, from the MDStores collection, which contains objects of
ClassType clsAggregation of an existing partition to the DesignedAggregations collection, and then run several analysis
steps. The analysis continues until one of the following two goals is reached:

Twenty or more aggregations are designed.

The storage requirements for the designed aggregations exceed 100,000 bytes.

For more information, see InitializeDesign.

'Assume an object (dsoCube) of ClassType clsCube exists
'with two partitions referenced by partition objects
'dsoPart1 and dsoPart2.
Dim bStopAdding As Boolean
Dim dblPercentageBenefit As Double
Dim dblAccumulatedSize As Double
Dim lngAggregationsCount As Long

'Get existing aggregation "Agg123" from first partition.
Dim dsoExistAgg As DSO.MDStore
Set dsoExistAgg = dsoPart1.MDStores("Agg123")

'Add aggregation to second partition.

Dim dsoPartAnalyzer As DSO.PartitionAnalyzer
Set dsoPartAnalyzer = dsoPart2.Analyzer
dsoPartAnalyzer.AddExistingAggregation dsoExistAgg, _
 dblPercentageBenefit, dblAccumulatedSize, lngAggregationsCount

dsoPartAnalyzer.InitializeDesign

'Iterate through analysis until either goal is reached.
Do Until bStopAdding
 If Not dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit, _
 dblAccumulatedSize, lngAggregationsCount) Then
 bStopAdding = True 'No New Aggregations Designed
 Else
 bStopAdding = (lngAggregationsCount >= 20) Or _
 (dblAccumulatedSize >= 100000)
 End If
Loop

Analysis Services Programming (SQL Server 2000)

AddGoalQuery (clsPartitionAnalyzer)
AddGoalQuery (clsPartitionAnalyzer)

The AddGoalQuery method of an object of ClassType clsPartitionAnalyzer describes a specific aggregation that is to be
generated during a partition analyzer session.

Syntax

object. AddGoalQuery(ByVal DatasetName As String, ByVal Frequency As Double)

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

DatasetName

A numeric string that specifies which level from each dimension is to be included in the query. This string must have the same
number of characters as the number of dimensions in the partition. For example, the string "223" would refer to a query involving
three dimensions, using the second level from the first dimension, the second level from the second dimension, and the third level
from the third dimension.

Frequency

A weighting factor that corresponds to the number of times that an existing DatasetName query has previously been executed. If
this DatasetName is a new query, the value of Frequency that is entered is used to weight the partition analysis. As the frequency
becomes greater, the weight that is placed on the query during the analysis increases.

Remarks

The analysis performed by the partition analyzer can be constrained to optimize a particular subset of queries. Each of the queries
in this subset is called a goal query and is specified by picking a level from each of the dimensions of the partition. This method
adds the goal query to an internal collection that is used to generate the aggregations.

Goal queries can be obtained from the query log database maintained by the Analysis server. The clsCubeAnalyzer object can
retrieve query log recordsets containing the dataset names of logged queries for a specific cube. For more information about
query log recordsets, see OpenQueryLogRecordset (clsCubeAnalyzer).

You do not have to select goal queries before running the NextAnalysisStep method to generate aggregations. The
clsPartitionAnalyzer object will create a generic set of aggregations without guidance. However, if you do specify one or more
goal queries, the partition analyzer will create aggregations according to your requests only.

Different goal query subsets can be optimized with significantly different members of the DesignedAggregations collection. The
performance and storage requirements may warrant constructing separate partitions for each goal query subset.

The levels referenced in the DatasetName string are identified by matching each numeric value with a dimension. The order of
reference is determined by the order of levels in the Dimensions collection of the partition.

Example

Assume that a partition contains the following dimensions and levels.

 Customers
dimension

Products
dimension

Store Locations
dimension

Level #1 All All All
Level #2 Groups Brand Country
Level #3 Customer# SKU State
Level #4 City

A particular group of users needs to perform the following queries:

All customers (Level #1) by product SKU (Level #3) by city (Level #4)

This goal query aggregation is specified with DatasetName = "134"

Individual customers (Level #3) by all products (Level #1) by state (Level #3)

DatasetName = "313"

Customer groups (Level #2) by brand (Level #2) by country (Level #2)

DatasetName = "222"

Use the following code to add these goal queries. For more information, see InitializeDesign.

' Assume the existence of an object (dsoPartAnalyzer) of ClassType
' clsPartitionAnalyzer.
' First, call InitializeDesign.
dsoPartAnalyzer.InitializeDesign

' Add goal queries.
dsoPartAnalyzer.AddGoalQuery "134", 1
dsoPartAnalyzer.AddGoalQuery "313", 1
' Because the following goal query is executed more often than
' the other two, a higher frequency value is assigned to give
' it more weight when being considered for aggregation purposes.
dsoPartAnalyzer.AddGoalQuery "222", 5

' Required after all goal queries have been added.
dsoPartAnalyzer.PrepareGoalQueries

Analysis Services Programming (SQL Server 2000)

CloseAggregationsAnalysis (clsPartitionAnalyzer)
CloseAggregationsAnalysis (clsPartitionAnalyzer)

The CloseAggregationsAnalysis method of an object of ClassType clsPartitionAnalyzer closes the partition analyzer session
and clears the temporary objects used during the analysis.

Syntax

object. CloseAggregationsAnalysis

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

Remarks

This method does not permanently save the DesignedAggregations collection in the partition. It clears the temporary objects
used during the analysis. If you want to save the results from a partition analyzer session you must do so programmatically. The
sections in the following example show how to save the results of an analysis in the partition.

Example

Use the following code to run several analysis steps, save the results, and close the analysis. The analysis continues until one of
the following goals is reached:

Twenty or more aggregations are designed.

The storage requirements for the designed aggregations exceed 100,000 bytes.

For more information, see InitializeDesign.

' Assume the existence of an object (dsoPart) of ClassType
' clsPartition and an object (dsoPartAnalyzer) of ClassType
' clsPartitionAnalyzer.
Private blnStopAdding As Boolean
Dim dblPercentageBenefit As Double
Dim dblAccumulatedSize As Double
Dim lngAggregationsCount As Long

dsoPartAnalyzer.InitializeDesign

' Iterate through analysis until either goal is reached.
Do Until blnStopAdding
 If Not dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit, _
 dblAccumulatedSize, lngAggregationsCount) Then
 blnStopAdding = True ' No new aggregations designed.
 Else
 blnStopAdding = (lngAggregationsCount >= 20) Or _
 (dblAccumulatedSize >= 100000)
 End If
Loop

' Delete existing aggregations.
Do While dsoPart.MDStores.Count
 dsoPart.MDStores.Remove 1
Loop

' Add designed aggregations to partition.
For Each Agg In dsoPartAnalyzer.DesignedAggregations
 dsoPart.MDStores.Add Agg
Next Agg

dsoPartAnalyzer.CloseAggregationsAnalysis 'Close the analysis.

Analysis Services Programming (SQL Server 2000)

InitializeDesign (clsPartitionAnalyzer)
InitializeDesign (clsPartitionAnalyzer)

The InitializeDesign method of an object of ClassType clsPartitionAnalyzer checks the partition structure to ensure that
clsPartitionAnalyzer can be run on it and initializes the objects necessary for performing the analysis.

Syntax

object. InitializeDesign([ByVal OlapMode])

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

OlapMode

An optional Variant value representing an OlapStorageModes constant. If no value is supplied, the value supplied by the
AggregationsOLAPMode property of the parent object is used.

Remarks

The InitializeDesign method does not work on partitions associated with linked cubes, because no aggregations are allowed for
linked cubes.

Example

Use the following code to create an object of ClassType clsPartitionAnalyzer and initialize its design.

Note This example will fail if the first cube in the server's collection is a linked cube, because you cannot design aggregations for
linked cubes.

Dim dsoServer As DSO.Server
Dim dsoDB As DSO.MDStore
Dim dsoCube As DSO.MDStore
Dim dsoPart As DSO.MDStore
Dim dsoAgg As DSO.MDStore
Dim dsoPartAnalyzer As DSO.PartitionAnalyzer
Dim strErr As String

' Initialize server
' LocalHost defaults to your Windows 2000 or Windows NT 4.0 computer
' name.
Set dsoServer = New DSO.Server
dsoServer.Connect("LocalHost")
Set dsoDB = Server.MDStores(1) ' Get first database on server.
Debug.Print " Database Opened: " & dsoDB.Name
Set dsoCube = dsoDB.MDStores(1) ' Get first cube in database.
Debug.Print " Cube Opened: " & dsoCube.Name
Set dsoPart = dsoCube.MDStores(1) ' Get first partition in cube.
Debug.Print " Partition Opened: " & dsoPart.Name
Set dsoPartAnalyzer = dsoPart.Analyzer ' Instantiate an analyzer object.

dsoPartAnalyzer.InitializeDesign

Analysis Services Programming (SQL Server 2000)

NextAnalysisStep (clsPartitionAnalyzer)
NextAnalysisStep (clsPartitionAnalyzer)

The NextAnalysisStep method of an object of ClassType clsPartitionAnalyzer adds a set of aggregations to the
DesignedAggregations collection. It calculates the improved query performance and the storage requirements for the new
aggregations.

Syntax

bRet = object. NextAnalysisStep(PercentageBenefit As Double, AccumulatedSize As Double, AggregationsCount As Long)

bRet

This value is True if the method completed successfully, False otherwise.

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

PercentageBenefit

The estimated percentage performance improvement that would be realized using the current collection of
DesignedAggregations, as opposed to querying against the underlying fact table. This is an output parameter.

AccumulatedSize

The estimated hard disk storage requirements (in bytes) for the current collection of DesignedAggregations. This is an output
parameter.

AggregationsCount

The number of aggregations contained in the current collection of DesignedAggregations. This is an output parameter.

Remarks

NextAnalysisStep analyzes the schema of a partition and generates a collection of aggregations that improves query
performance. You can run the analysis without constraints. If no constraints are specified, the analysis yields a generalized
optimization. For more information, see AddGoalQuery and PrepareGoalQueries.

Example

Use the following code to run a series of analyses until either of the following two goals is reached:

Twenty or more aggregations are designed.

The storage requirements for the designed aggregations exceed 100,000 bytes.

For more information, see CloseAggregationsAnalysis and InitializeDesign.

Place the following code in your form's Declarations section:

' Assume the existence of an object (dsoPartAnalyzer) of ClassType
' clsPartitionAnalyzer.
Private blnStopAdding As Boolean
Private dblPercentageBenefit As Double
Private dblAccumulatedSize As Double
Private lngAggregationsCount As Long

' Iterate through analysis until either goal is reached.
Do Until blnStopAdding
 If Not dsoPartAnalyzer.NextAnalysisStep(dblPercentageBenefit, _
 dblAccumulatedSize, lngAggregationsCount) Then
 blnStopAdding = True 'No new aggregations designed.
 Else
 blnStopAdding = (lngAggregationsCount >= 20) Or _
 (dblAccumulatedSize >= 100000)
 End If
Loop

Analysis Services Programming (SQL Server 2000)

PrepareGoalQueries (clsPartitionAnalyzer)
PrepareGoalQueries (clsPartitionAnalyzer)

The PrepareGoalQueries method of an object of ClassType clsPartitionAnalyzer analyzes the goal queries that were added
using the AddGoalQuery method.

Syntax

object. PrepareGoalQueries

object

The object of ClassType clsPartitionAnalyzer used to perform the analysis.

Remarks

If you added any goal queries during the partition analyzer session, use this method before calling the NextAnalysisStep
method.

Example

For more information on examples using this method, see AddGoalQuery.

See Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis Services Programming (SQL Server 2000)

Properties, clsPartitionAnalyzer
Properties, clsPartitionAnalyzer

An object of ClassType clsPartitionAnalyzer implements the following properties.

Property Description
AggregationAnalysisInitialized Indicates whether the partition analyzer has been

initialized
Parent Contains a reference to the parent MDStore

(ClassType clsPartition) object

Access

Read-only

See Also

clsPartitionAnalyzer

Analysis Services Programming (SQL Server 2000)

AggregationAnalysisInitialized (clsPartitionAnalyzer)
AggregationAnalysisInitialized (clsPartitionAnalyzer)

The AggregationAnalysisInitialized property of an object of ClassType clsPartitionAnalyzer indicates the status of the last
invocation of the InitializeDesign method.

Data Type

Boolean

Access

Read-only

Remarks

The AggregationAnalysisInitialized property returns True if the InitializeDesign method was called successfully, False
otherwise.

Example

Use the following code to check the initialization status of an object of ClassType clsPartitionAnalyzer. For more information,
see InitializeDesign.

' Assume the existence of an object (dsoPartAnalyzer) of ClassType
' clsPartitionAnalyzer.
If dsoPartAnalyzer.AggregationAnalysisInitialized Then
 Debug.Print "Initialization OK"
Else
 Debug.Print "Not Initialized"
End If

See Also

clsAggregation

clsPartition

clsPartitionAnalyzer

InitializeDesign

Analysis Services Programming (SQL Server 2000)

Parent (clsPartitionAnalyzer)
Parent (clsPartitionAnalyzer)

The Parent property of an object of ClassType clsPartitionAnalyzer contains a reference to the parent MDStore (ClassType
clsPartition) object.

Data Type

MDStore

Access

Read-only

Example

Use the following code to refer to the parent object of the partition analyzer. For more information, see InitializeDesign.

' Assume the existence of an object (dsoPartAnalyzer) of ClassType
' clsPartitonAnalyzer.
' Print the name of the clsPartitionAnalyzer's parent partition.
Dim objParent As MDStore
Set objParent = dsoPartAnalyzer.Parent
Debug.Print objParent.Name

See Also

clsAggregation

clsPartition

clsPartitionAnalyzer

Analysis Services Programming (SQL Server 2000)

clsPartitionDimension
clsPartitionDimension

An object of ClassType clsPartitionDimension is used to maintain the dimension objects that a partition object contains. It
provides a specific implementation of the Decision Support Objects (DSO) Dimension interface for dimensions associated with a
specific partition. An object of ClassType clsPartitionDimension object provides collections and properties through the
Dimension interface. There are no methods associated with an object of ClassType clsPartitionDimension.

Remarks

A partition cannot have fewer dimensions than its parent cube.

Example

Use the following code to reference an object of ClassType clsPartitionDimension:

 ' Assume an object (dsoCube) of ClassType clsCube exists.
 Dim dsoPart As MDStore
 Dim dsoPartDim As DSO.Dimension

 ' Retrieve the default partition.
Set dsoPart = dsoCube.MDStore(1)

Analysis Services Programming (SQL Server 2000)

Collections, clsPartitionDimension
Collections, clsPartitionDimension

An object of ClassType clsPartitionDimension implements the following collections of the Dimension interface.

Collection Description
CustomProperties The collection of user-defined properties
Levels The collection of level objects

See Also

clsPartitionDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsPartitionDimension
Properties, clsPartitionDimension

An object of ClassType clsPartitionDimension implements the following properties of the Dimension interface.

Property Description
AggregationUsage Specifies how aggregations are designed for a

dimension.
AllowSiblingsWithSameName Indicates whether a dimension can contain members

that have the same name.
AreMemberKeysUnique Indicates whether member keys are unique for the

dimension.
AreMemberNamesUnique Indicates whether member names are unique for the

dimension.
ClassType Returns an enumeration constant that identifies the

specific object type.
DataMemberCaptionTemplate Contains a template string that is used to create

captions for system-generated data members.
DataSource Contains a reference to the data source object.
DefaultMember Defines the default member of the dimension.
DependsOnDimension Names a dimension on which the current dimension is

dependent.
Description Contains the description of the dimension.
DimensionType Returns an enumeration constant that identifies the

specific type of dimension.
EnableRealTimeUpdates Indicates whether real-time updates are enabled for

the dimension.
FromClause Contains the SQL FROM clause for a dimension.
IsChanging Indicates whether members and/or levels are expected

to change on a regular basis.
IsReadWrite Indicates whether dimension writebacks are available

to clients with appropriate permissions.
IsShared Indicates whether the dimension is shared among

cubes.
IsTemporary Indicates whether the dimension is temporary.
IsValid Indicates whether the dimension structure is valid.
IsVirtual Indicates whether the dimension is virtual.
IsVisible Indicates whether the dimension is visible to the client.
JoinClause Contains the SQL JOIN clause for a dimension.
LastProcessed Contains the date and time when the dimension was

last processed.
LastUpdated A user-specified date. It is not used by DSO. This

property can be used by client applications for their
own uses.

MembersWithData Determines which members in a dimension can have
associated data in the fact table.

Name The name of the dimension.
OrdinalPosition Returns the ordinal position of the dimension object

within its parent object's Dimensions collection.
Parent Returns a reference to the parent MDStore object.
SourceTable Contains the name of the source table of the

dimension.
SourceTableAlias Returns the alias of the source table for the dimension.
SourceTableFilter Restricts the members included in a dimension.
StorageMode Determines the method of storing dimension contents.

SubClassType Returns an enumeration constant that identifies the
subclass type of the object.

See Also

clsPartitionDimension

Dimension Interface

Analysis Services Programming (SQL Server 2000)

clsPartitionLevel
clsPartitionLevel

An object of ClassType clsPartitionLevel provides a specific implementation of the Decision Support Objects (DSO) Level
interface for levels associated with a partition. It is used to maintain the levels objects a partition object contains.

An object of ClassType clsPartitionLevel provides collections and properties through the Level interface. There are no methods
associated with this object.

Remarks

Levels describe the dimension hierarchy from the highest (most aggregated) level to the lowest (most detailed) level of data. The
(All) level of a dimension is the top level of a dimension, and includes all the members of all the levels.

Example

Use the following code to reference a clsPartitionLevel object:

' Assume an object (dsoPart) of ClassType clsPartition exists.
Dim dsoLev As DSO.Level
' Retrieve the first level associated with the partition.
Set dsoLev = dsoPart.Levels(1)

See Also

Collections, clsPartitionLevel

Level Interface

Levels and Members

Properties, clsPartitionLevel

SliceValue

Analysis Services Programming (SQL Server 2000)

Collections, clsPartitionLevel
Collections, clsPartitionLevel

An object of ClassType clsPartitionLevel implements the following collection of the Level interface.

Collection Description
CustomProperties The collection of user-defined properties
MemberProperties The collection of objects of ClassType

clsMemberProperty

See Also

clsPartitionLevel

Level Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsPartitionLevel
Properties, clsPartitionLevel

An object of ClassType clsPartitionLevel implements the following properties of the Level interface.

Property Description
AreMemberKeysUnique Indicates whether the members of a level are

uniquely identified by their member key column
AreMemberNamesUnique Indicates whether the members of a level are

uniquely identified by their member name column
ClassType Returns an enumeration constant that identifies the

specific object type
ColumnSize The size (in bytes) of the data in the member key

column of the level
ColumnType The data type of the member key column of the

level
CustomRollUpColumn Contains the name of the column that contains

member-specific rollup instructions
CustomRollUpExpression Contains a Multidimensional Expressions (MDX)

expression used to override the default rollup mode
CustomRollUpPropertiesColumn Contains the name of the column that supplies cell

properties for member-specific rollup instructions
Description Contains the level description
EnableAggregations Specifies whether aggregations are to be enabled

for the level object
EstimatedSize Contains the estimated number of members in a

level
FromClause Contains the SQL FROM clause for the level
Grouping Indicates the type of grouping used by the Analysis

server
HideMemberIf Indicates whether a member should be hidden from

client applications
IsDisabled Indicates whether the level is disabled
IsVisible Indicates whether the level is visible to client

applications
IsValid Indicates whether the level structure is valid
JoinClause Contains the SQL JOIN clause for the level
LevelNamingTemplate Defines how levels in a parent-child hierarchy are

named
LevelType Returns an enumeration constant that identifies the

specific type of level
MemberKeyColumn Returns the name of the column that contains

member keys of the partition level
MemberNameColumn Sets or returns the name of the column that

contains member names
Name Contains the name of the level
Ordering Specifies the method to use when ordering the

members of a level
OrderingMemberProperty Specifies a member property used to determine the

ordering of members
OrdinalPosition Returns the ordinal position of the level in the

Levels collection of the parent object
Parent Returns a reference to the parent dimension object
ParentKeyColumn Identifies the parent of a member in a parent-child

hierarchy

RootMemberIf Determines how the root member or members of a
parent-child hierarchy are identified

SkippedLevelsColumn Identifies the column that holds the number of
empty levels between a member and its parent

SliceValue Contains the level member name used to define the
partition slice

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

UnaryOperatorColumn Contains the name of a column that stores
mathematical operators serving as member-specific
rollup instructions for the level

See Also

clsPartitionLevel

Level Interface

MemberKeyColumn

Analysis Services Programming (SQL Server 2000)

clsPartitionMeasure
clsPartitionMeasure

An object of ClassType clsPartitionMeasure provides a specific implementation of the Decision Support Objects (DSO)
Measure interface. This object is used to maintain the measure objects a partition object contains.

An object of ClassType clsPartitionMeasure provides collections and properties through the Measure interface. There are no
methods associated with an object of ClassType clsPartitionMeasure.

Remarks

Measures are the quantitative, numerical columns from the fact table of a cube. When a cube is processed, all of the measures,
except for those based on the DistinctCount aggregate function, are aggregated across the dimensions in the cube.

Example

Use the following code to reference an object of ClassType clsPartitionMeasure:

' Assume an object (dsoPartition) of ClassType clsPartition exists.
Dim dsoPartMeasure As DSO.Measure
' Retrieve the first measure associated with the partition.
Set dsoPartMeasure = dsoPartition.Measures(1)

See Also

Measure Interface

Measures

Object Architecture

Partitions

Analysis Services Programming (SQL Server 2000)

Collections, clsPartitionMeasure
Collections, clsPartitionMeasure

An object of ClassType clsPartitionMeasure implements the following collection of the Measure interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsPartitionMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsPartitionMeasure
Properties, clsPartitionMeasure

An object of ClassType clsPartitionMeasure implements the following properties of the Measure interface.

Property Description
AggregateFunction Contains a value that corresponds to the type of

aggregate function used for a measure
ClassType Returns an enumeration constant that identifies the

specific object type
Description Contains the measure description
FormatString Contains the format used to display the measure values
IsValid Indicates whether the measure structure is valid
IsVisible Indicates whether the measure is visible to the client

application
Name Contains the measure name
OrdinalPosition Returns the ordinal position of the measure in the

Measures collection of the parent object
Parent Returns a reference to the parent clsPartition object
SourceColumn Contains the name of the measure column in the

aggregated fact table
SourceColumnType Returns a Microsoft® ActiveX® Data Objects (ADO) DB

enumeration constant that identifies the data type of the
column specified by the SourceColumn property

SubClassType Returns an enumeration constant that identifies the
subclass type of the object

See Also

clsPartitionMeasure

Measure Interface

Analysis Services Programming (SQL Server 2000)

clsRoleCommand
clsRoleCommand

An object of ClassType clsRoleCommand provides a specific implementation of the Command interface. These objects provide
collections and properties through the Command interface. There are no methods associated with an object of ClassType
clsRoleCommand.

Remarks

An object of ClassType clsRoleCommand encapsulates a user-defined command that is automatically executed on the
Microsoft® SQL Server™ 2000 Analysis Services client computer when a cube is accessed by members of the specified role. You
add a command to a role by adding it to the role's Commands collection. Such commands include calculated members, named
sets, library references, and others.

For example, you may want to grant access to a calculated member called SalesBonus to members of the Manager role but not to
members of the SalesPerson role. The command that builds the SalesBonus calculated member is automatically executed for
members of the Manager role when they access a cube that contains that role command.

Example

Use the following code to create an object of ClassType clsRoleCommand:

'Assume an object (dsoDB) of ClassType clsDatabase exists
Dim dsoRole As DSO.Role 'Role
Dim dsoCmd As DSO.Command 'Command

Set dsoRole = dsoDB.Roles(1)
Set dsoCmd = dsoRole.Commands.AddNew("RoleCmd1")

See Also

Collections, clsRoleCommand

Command Interface

Commands

Properties, clsRoleCommand

Analysis Services Programming (SQL Server 2000)

Collections, clsRoleCommand
Collections, clsRoleCommand

An object of ClassType clsRoleCommand implements the following collection of the Command interface.

Collection Description
CustomProperties The collection of user-defined properties

See Also

clsRoleCommand

Command Interface

Analysis Services Programming (SQL Server 2000)

Properties, clsRoleCommand
Properties, clsRoleCommand

An object of ClassType clsRoleCommand implements the following properties of the Command interface.

Property Description
ClassType Returns an enumeration constant that identifies the

specific object type
CommandType Returns an enumeration constant that identifies the

specific command option
Description Contains the description of the role command
IsValid Indicates whether the Name and Statement properties

are empty and whether the command object belongs to
a collection

Name Contains the name of the role command
OrdinalPosition Returns the ordinal position of the command object in

Commands collection of the parent role object
Parent Returns a reference to the parent object, using the

MDStore interface of the parent object
ParentObject Returns a reference to the parent object, using the

default interface of the parent object
Statement Contains the text of the role command statement, in

Multidimensional Expressions (MDX)
SubClassType Returns an enumeration constant that identifies the

subclass type of the object

See Also

clsRoleCommand

Command Interface

Analysis Services Programming (SQL Server 2000)

clsServer
clsServer

An object of ClassType clsServer provides methods and properties that enable you to control an Analysis server. This object is
the root of the Decision Support Objects (DSO) object model tree that specifies the databases, cubes, and user roles managed by
the server. With an object of ClassType clsServer you can:

Connect to a computer where the Analysis server service (MSSQLServerOLAPService) is running.

Start and stop the server.

Create and manage objects that define multidimensional data structures.

An object of ClassType clsServer provides collections, methods, and properties through its own internal interface.

Examples

A. Creating and In itializing a Server

Use the following code to create and initialize a server. You can use LocalHost to specify the Analysis server running on the same
computer as your DSO application.

'Create instance of server and connect
Public dsoServer As DSO.Server
Set dsoServer = New DSO.Server
'ServerName is the Windows NT 4.0 Server or Windows 2000 Server computer
'where the Analysis service is loaded and running.
'An error is raised if the connection attempt fails
dsoServer.Connect "ServerName"

This example accomplishes the same result:

DsoServer = New DSO.Server
dsoServer.Name = "ServerName"
dsoServer.Connect

Analysis Services Programming (SQL Server 2000)

Collections, clsServer
Collections, clsServer

An object of ClassType clsServer implements the following collections.

Collection Description
CustomProperties The collection of user-defined properties
MDStores The collection of databases that define the

multidimensional data managed by the server

Access

Read/write

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Methods, clsServer
Methods, clsServer

An object of ClassType clsServer implements the following methods.

Method Description
CloseServer Releases all server resources and sets the State property

of the object to stateUnknown
Connect Connects to the Analysis server service

(MSSQLServerOLAPService)
CreateObject Creates an object
LockObject Locks a clsServer object
Refresh Reads all current meta data from the repository and

modifies all objects in the object model of a session to
match the current repository state

UnlockAllObjects Removes all locks issued by the current session from
objects in the object hierarchy of the clsServer object

UnlockObject Removes a lock from the clsServer object
Update Updates an object definition in the meta data repository

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

CloseServer (clsServer)
CloseServer (clsServer)

The CloseServer method of an object of ClassType clsServer releases all server resources and sets the State property of the
object to stateUnknown.

Syntax

dsoServer.CloseServer

dsoServer

The Decision Support Objects (DSO) server object to be closed.

Example

The following example assumes that the server object exists and is connected to an Analysis server. The example closes a
previously created connection:

dsoServer.CloseServer

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Connect (clsServer)
Connect (clsServer)

The Connect method of an object of ClassType clsServer connects to the Analysis server service (MSSQLServerOLAPService).

Syntax

dsoServer.Connect([ByVal ServerName As String])

dsoServer

A Decision Support Objects (DSO) server object.

ServerName

The name of the computer on which the Analysis server is installed and running. You can use LocalHost to specify the Analysis
server running on the same computer as your DSO application.

Remarks

The Connect method sets the name of the server object. If you need to reconnect to the same server, do not specify the name on
subsequent executions of the method on the same object.

Important You cannot use an Internet Protocol (IP) address as the ServerName parameter to connect to a server. You must use
the network name of the computer that hosts the Analysis server.

Example

Use the following code example to connect to the Analysis server:

Public dsoServer As DSO.Server
Set dsoServer = New DSO.Server
'Assume "Server1" to be the name of the computer
'where the Analysis server service is installed and running.
dsoServer.Connect "Server1" 'Error is raised if unable to connect

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

CreateObject (clsServer)
CreateObject (clsServer)

The CreateObject method of an object of ClassType clsServer creates and returns an object of the specified ClassType and
SubClassType.

Syntax

objRet = object.CreateObject(ObjectType As ClassTypes, [SubClassType As SubClassTypes = sbclsRegular])

objRet

A Decision Support Objects (DSO) object of the type to be created.

objectr

An object of ClassType clsServer.

ObjectType

The class type of the object to be created. A member of the ClassTypes enumeration.

SubClassType

Optional. The subclass type of the object to be created. A member of the SubClassTypes enumeration. Default is sbclsRegular.

Remarks

When you are using DSO to construct major objects such as cubes, partitions, dimensions, and so on, use the AddNew method
instead. The AddNew method creates an object of the appropriate ClassType in a collection and initializes its Name and Parent
properties.

Example

Use the following code to create an object of type clsCube:

' Assume objServer is a server object and objDB is a database object
Dim objCube as New DSO.MDStore
Set objCube = objServer.CreateObject(clsCube)
objCube.Name = "NewCube"
objDB.MDStores.Add objCube

See Also

AddNew

ClassTypes

clsServer

MDStore Interface

SubClassTypes

Analysis Services Programming (SQL Server 2000)

LockObject (clsServer)
LockObject (clsServer)

The LockObject method of an object of ClassType clsServer locks the clsServer object to prevent multiple users from
concurrently changing the object.

Syntax

object.LockObject(ByVal LockType As OlapLockTypes, ByVal LockDescription As String)

object

An object of ClassType clsServer.

LockType

One of the constants defined in the OlapLockTypes enumeration. For more information, see OlapLockTypes.

sLockDescription

A string containing the description of the lock, available to other applications attempting to obtain a lock.

Remarks

For more information about object locking, see LockObject.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Refresh (clsServer)
Refresh (clsServer)

The Refresh method of an object of ClassType clsServer reads all current meta data from the repository and modifies all objects
in the session's object model to match the current repository state.

Syntax

object.Refresh

object

An object of ClassType clsServer.

Remarks

All objects in the session's object model are refreshed. This includes objects whose properties have not yet been saved to the
repository, as well as objects whose properties in the repository have been changed by other users.

Note Objects that are locked are not refreshed.

Example

The following example invokes the Refresh method:

' Assume dsoServer has already been connected to Analysis Services.
dsoServer.Refresh

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

UnlockAllObjects (clsServer)
UnlockAllObjects (clsServer)

The UnlockAllObjects method of an object of ClassType clsServer removes all locks issued by the current session from objects
in the server's object model.

Syntax

bRet = object.UnlockAllObjects

bRet

A Boolean variable. This value is set to True if the method is successful and False otherwise.

object

An object of ClassType clsServer.

Example

The following example removes all current locks:

' Assume dsoServer is connected to Analysis Services.
dsoServer.UnlockAllObjects

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

UnlockObject (clsServer)
UnlockObject (clsServer)

The UnlockObject method of an object of ClassType clsServer removes a lock from the clsServer object.

Syntax

object.UnlockObject

objServer

An object of ClassType clsServer.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Update (clsServer)
Update (clsServer)

The Update method of an object of ClassType clsServer updates an object definition in the meta data repository. This method
must be called after any attribute for the server object has been changed, or the affected meta data for the changes will not be
persistent past the server object scope.

Syntax

object.Update

object

An object of ClassType clsServer.

Remarks

Whenever a write-enabled server property is changed, its meta data in the repository must be updated with this method.
Subordinate objects are automatically updated when you update an object that contains other objects, such as a cube that
contains partitions, dimensions, and measures.

Example

The following example invokes the Update method after setting the server timeout property:

' Assume dsoServer is connected to Analysis Services.
dsoServer.Timeout = 30 ' = 30 seconds.
dsoServer.Update

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Properties, clsServer
Properties, clsServer

An object of ClassType clsServer implements the following properties. The table also shows whether the property is read/write
(R/W) or read-only (R).

Property Description Access
ClassType Returns an enumeration constant that identifies

the specific class type
R

ConnectTimeout The amount of time until a connection to an
Analysis server fails due to timeout

R/W

Description The description of the server object R/W
Edition The installed edition of Microsoft® SQL Server™

2000 Analysis Services
R

IsValid Indicates whether the server settings are valid R
LockTimeout The amount of time until a lock request fails due

to timeout
R/W

Name The name of the server R/W
Parent A reference to the App object R
ProcessingLogFileName A UNC path to a file for logging status messages

occurring during processing
R/W

ServiceState Contains the state of the Analysis server service
(MSSQLServerOLAPService)

R/W

State Returns an enumeration constant indicating the
status of the connection to the Analysis server

R

Timeout The amount of time until a timeout error occurs
during processing

R/W

Version The version of the Analysis server R/W

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

ClassType (clsServer)
ClassType (clsServer)

The ClassType property of a server object returns an enumeration constant that identifies the specific class type.

Data Type

Integer representing a value from the ClassTypes enumeration. For more information, see ClassTypes.

Access

Read-only

Remarks

The ClassType property returns the value clsServer for all server objects.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

ConnectTimeout (clsServer)
ConnectTimeout (clsServer)

The ConnectTimeout property of an object of ClassType clsServer sets or returns the maximum amount of time an idle
connection to an Analysis server is maintained before the server is considered to have timed out.

Data Type

Long

Access

Read/write

Remarks

The default value is zero (0) seconds; that is, the server connection never times out. The maximum allowed value is one million
(1,000,000) seconds, approximately 11 days and 14 hours. To have the server connected indefinitely, set the ConnectTimeout
property to zero (0).

Example

Use the following code to set the ConnectTimeout property for a server. You must call the Update method for your changes to
take effect.

Dim dsoS As New DSO.Server
dsoS.Connect "LocalHost" ' server name
dsoS.ConnectTimeout = 18000 ' timeout value, in seconds
dsoS.Update

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Description (clsServer)
Description (clsServer)

The Description property of an object of ClassType clsServer contains the server description.

Data Type

String

Access

Read/write

Example

The following code example prints the Description property of an object of ClassType clsServer to the Debug window.

Dim dsoServer As New DSO.Server

' Connect to the local Analysis server.
dsoServer.Connect "LocalHost"

' Print the Description property to the Debug window.
Debug.Print dsoServer.Description

Analysis Services Programming (SQL Server 2000)

Edition (clsServer)
Edition (clsServer)

The Edition property of an object of ClassType clsServer identifies which edition of Microsoft® SQL Server™ 2000 Analysis
Services is installed.

Data Type

OlapEditions

Access

Read-only

Remarks

The functionality of Analysis Services varies depending on the edition installed.

Example

The following code example checks the Edition property of a clsServer object to determine feature support.

Dim dsoServer As New DSO.Server

' Connect to the local Analysis server.
dsoServer.Connect "LocalHost"

' Check the Edition property.
Select Case dsoServer.Edition
 Case olapEditionUnlimited
 ' Insert code for Enterprise Edition features.
 Case olapEditionPivotOnly
 ' Reserved for future use.
 Case olapEditionNoPartitions
 ' Insert code for Standard Edition features.
 Case olapEditionError
 ' An error occurred while retrieving this information.
End Select

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

IsValid (clsServer)
IsValid (clsServer)

The IsValid property of an object of ClassType clsServer indicates whether the server name is valid.

Data Type

Boolean

Access

Read-only

Remarks

The validity check on the server object verifies that the server has a valid name.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

LockTimeout (clsServer)
LockTimeout (clsServer)

The LockTimeout property of an object of ClassType clsServer sets or returns the amount of time until a lock request fails due
to timeout.

Data Type

Long

Access

Read/write

Remarks

The value of this property must not be less than zero. The default is 20 seconds. For more information about locking a server, see
LockObject, UnlockObject, and UnlockAllObjects.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Name (clsServer)
Name (clsServer)

The Name property of an object of ClassType clsServer contains the name of the server object.

Data Type

String

Access

Read/write (read-only after the object has been named)

Remarks

You cannot use an Internet Protocol (IP) address for the Name property to connect to a server. You must use the network name
of the computer that hosts the Analysis server.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Parent (clsServer)
Parent (clsServer)

The Parent property of an object of ClassType clsServer contains a reference to the App object of the application.

Data Type

Object

Access

Read-only

Remarks

In an application using Decision Support Objects (DSO), an object of ClassType clsServer is the root of the object model tree. The
Microsoft® Visual Basic® App object is returned as its parent for convenience.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

ProcessingLogFileName (clsServer)
ProcessingLogFileName (clsServer)

The ProcessingLogFileName property of an object of ClassType clsServer stores a UNC path to a file for logging status
messages from processing events.

Data Type

String

Access

Read/write

Remarks

The log file is a text file that contains status and error messages that are raised during mining model, cube, partition, or dimension
processing events. The file also logs dimension key errors (that is, errors that are raised when rows in the fact table do not
correspond to rows in the dimension source table). However, the details of these errors are logged in the file specified by the
ProcessingKeyErrorLogFileName property of the parent MDStore interface.

See Also

clsServer

ProcessingKeyErrorLogFileName

Analysis Services Programming (SQL Server 2000)

ServiceState (clsServer)
ServiceState (clsServer)

The ServiceState property of an object of ClassType clsServer contains the execution state of the Analysis server service
(MSSQLServerOLAPService).

Data Type

Long

Values

The values of this property are different depending on whether the property is being read or set.

The following values are returned when reading this property.

Value Description
SERVICE_CONTINUE_PENDING A previous request to continue a paused

service is pending.
SERVICE_PAUSE_PENDING A previous request to pause a running service

is pending.
SERVICE_PAUSED The service is paused.
SERVICE_RUNNING The service is running.
SERVICE_START_PENDING The service is starting.
SERVICE_STOP_PENDING The service is stopping.
SERVICE_STOPPED The service is not running.

The following table describes the values used to control the Analysis server.

Value Requested action
SERVICE_PAUSED Pause the service.
SERVICE_RUNNING Start the service if stopped or paused.
SERVICE_STOP Stop the service.

Access

Read/write

Remarks

Read the property to query the status of the service. To change the execution state of the service, set the property to a value.
Decision Support Objects (DSO) partially implements the service control functions of the Microsoft® Win32® API.

If a requested action cannot be completed, such as attempting to pause a service that is not running, or the request times out
(within 60 seconds), an error occurs.

Example

Use the following code to set the execution state of MSSQLServerOLAPService:

' Analysis server service control constants
Const OLAP_SERVICE_RUNNING = &H4
Const OLAP_SERVICE_PAUSED = &H7
Const OLAP_SERVICE_STOP = &H1

' Analysis server status and error return constants
Const SERVICE_CONTINUE_PENDING = &H5
Const SERVICE_PAUSE_PENDING = &H6
Const SERVICE_PAUSED = &H7
Const SERVICE_RUNNING = &H4
Const SERVICE_START_PENDING = &H2

Const SERVICE_STOP_PENDING = &H3
Const SERVICE_STOPPED = &H1

' Additional error return constants
Const SERVICE_ACCEPT_PAUSE_CONTINUE = &H2
Const SERVICE_ACCEPT_SHUTDOWN = &H4
Const SERVICE_ACCEPT_STOP = &H1
Const SERVICE_ACTIVE = &H1
Const SERVICE_CHANGE_CONFIG = &H2
Const SERVICE_CONTROL_CONTINUE = &H3
Const SERVICE_CONTROL_INTERROGATE = &H4
Const SERVICE_CONTROL_PAUSE = &H2
Const SERVICE_CONTROL_SHUTDOWN = &H5
Const SERVICE_CONTROL_STOP = &H1
Const SERVICE_ENUMERATE_DEPENDENTS = &H8
Const SERVICE_INACTIVE = &H2
Const SERVICE_INTERROGATE = &H80
Const SERVICE_NO_CHANGE = &HFFFF
Const SERVICE_PAUSE_CONTINUE = &H40
Const SERVICE_QUERY_CONFIG = &H1
Const SERVICE_QUERY_STATUS = &H4
Const SERVICE_STATE_ALL = (SERVICE_ACTIVE Or SERVICE_INACTIVE)
Const SERVICE_USER_DEFINED_CONTROL = &H100

Const SERVICE_WAIT_MAX_SECONDS As Integer = 30
' ==
' OlapServiceControl function
' Returns True or False
' Calling parameters:
' - objServer is an object of ClassType clsServer
' that has been created and initialized
' - iCmdReq is one of the Analysis server service
' control constants
' - lngStatus receives the status (one of the Analysis
' server status constants)
' - lngErr receives status if function fails (one of the Analysis
' server status constants or one of the additional error constants)

Friend Function OlapServiceControl(objServer As Object, _
 ByVal iCmdReq As Integer, _
 ByRef lngStatus As Long, _
 ByRef lngErr As Long) As Boolean
Dim bRet As Boolean
Dim lngSrvStat As Long
Dim lngControlCmd As Long

lngSrvStat = objServer.ServiceState
bRet = False
lngControlCmd = iCmdReq
lngErr = 0

On Error GoTo Err_State

Select Case iCmdReq
 ' Caller wants to start the server
 Case SERVICE_RUNNING
 ' Check the current server status
 Select Case lngSrvStat
 ' If it is already running, return True
 Case SERVICE_RUNNING
 bRet = True
 Case SERVICE_PAUSED, SERVICE_STOPPED
 objServer.ServiceState = lngControlCmd
 bRet = True
 End Select

 Case SERVICE_PAUSED ' Caller wants to pause the server
 Select Case lngSrvStat
 Case SERVICE_PAUSED
 bRet = True
 Case SERVICE_RUNNING
 objServer.ServiceState = lngControlCmd
 bRet = True
 ' Trying to pause a stopped service
 ' raises an error from the Server object.
 Case SERVICE_STOPPED
 bRet = False
 End Select

 Case SERVICE_STOPPED ' Caller wants to stop the server
 Select Case lngSrvStat

 Case SERVICE_STOPPED
 bRet = True
 Case SERVICE_RUNNING
 objServer.ServiceState = lngControlCmd
 bRet = True
 ' Trying to stop a paused service
 ' raises an error from the Server object.
 Case SERVICE_PAUSED
 bRet = False
 End Select
End Select

' Put the current state of the service into lngStatus
lngStatus = objServer.ServiceState

OlapServiceControl = bRet

Exit Function

Err_State:
' Catch the error returned by the server object
' Some reasons that can cause an error:
' Server object unable to contact service control
' manager or Analysis service application
' Service does not respond to state change
' request within 60 seconds
' An invalid request is sent to the service (for example,
' trying to pause a stopped service)

lngStatus = objServer.ServiceState
lngErr = Err.Number
OlapServiceControl = False

End Function

Analysis Services Programming (SQL Server 2000)

State (clsServer)
State (clsServer)

The State property of an object of ClassType clsServer returns an enumeration constant that indicates the status of the
connection to the Analysis server.

Data Type

ServerStates

Access

Read-only

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Timeout (clsServer)
Timeout (clsServer)

The Timeout property of an object of ClassType clsServer sets or returns the maximum amount of time between reports from
the Analysis server before the server is considered to have timed out.

Data Type

Long

Access

Read/write

Remarks

The default value is 3600 seconds (1 hour). Under some conditions, the server may encounter long wait times, for example,
during the processing of large cubes or during queries to a source database. If you experience timeout errors under such
conditions, you can increase the default value. The maximum allowed value is one million (1,000,000) seconds. This is
approximately 11 days and 14 hours. To have the server wait indefinitely, set the Timeout property to zero (0).

Example

Use the following code to set the Timeout property for a server. You must call the Update method for your changes to take
effect.

Dim dsoS As New DSO.Server

' Connect to the local Analysis server.
dsoServer.Connect "LocalHost"

' Set the timeout to 4 hours.
dsoServer.Timeout = 14400
' Update the Analysis server.
dsoServer.Update

' Close the connection to the Analysis server.
dsoServer.CloseServer

See Also

clsServer

Update

Analysis Services Programming (SQL Server 2000)

Version (clsServer)
Version (clsServer)

The Version property of an object of ClassType clsServer returns a string representing the version information of the Analysis
server to which the object is connected.

Data Type

String

Access

Read-only

Remarks

The expected return values are listed in the following table.

Version Value
Microsoft® SQL Server™ 7.0 OLAP Services 7.0
SQL Server 2000 Analysis Services 8.0

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

Property Object
Property Object

Use the Property object to save user-defined items to a CustomProperties collection. You can define Property objects and add
them to the CustomProperties collection of any Decision Support Objects (DSO) object to store information you want to
associate with the DSO object. You provide a name, value, and data type for each Property object.

Remarks

The Property object has properties, but no collections or methods. The Property object is unlike other DSO objects in that it does
not implement any of the interfaces, methods, properties, or collections of other DSO objects.

Examples

Creating a N ew Custom Property

Use the following code to create a new custom property:

'Assume an object of ClassType clsDimension exists.
'Add a custom property.
Dim dsoProp As DSO.Property
Set dsoProp = dsoDim.CustomProperties.Add(55, "Age", vbInteger)

'Retrieve custom property values.
Dim dsoProp2 As DSO.Property
Set dsoProp2 = dsoDim.CustomProperties(1)
Debug.Print dsoProp2.Name, dsoProp2.Value

Analysis Services Programming (SQL Server 2000)

Properties, Property Object
Properties, Property Object

A Property object implements the following properties.

Property Description
DataType The Microsoft® Visual Basic® data type
Name The name of the Property object
Value The value of the Property object

Access

Read/write

See Also

Property Object

Analysis Services Programming (SQL Server 2000)

DataType (Property Object)
DataType (Property Object)

The DataType property of a Property object contains the Microsoft® Visual Basic® data type of the custom property defined by
the Property object.

Data Type

VBA.VbVarType

Access

Read/write

Remarks

For more information about the VBA.VbVarType enumeration, see the Visual Basic documentation.

See Also

CustomProperties

Property Object

Analysis Services Programming (SQL Server 2000)

Name (Property Object)
Name (Property Object)

The Name property of a Property object contains the unique user-assigned name of the custom property defined by the
Property object.

Data Type

String

Access

Read/write

See Also

CustomProperties

Property Object

Analysis Services Programming (SQL Server 2000)

Value (Property Object)
Value (Property Object)

The Value property of a Property object can contain any value that is valid for the DataType defined for the Property object.

Data Type

Variant

Access

Read/write

See Also

CustomProperties

Property Object

Analysis Services Programming (SQL Server 2000)

Enumerations
 New Information - SQL Server 2000 SP3.

The Decision Support Objects (DSO) object model provides a number of enumerations. The following table lists the public
enumerated types available through DSO. Click the name of an enumeration for a more detailed description.

Enumeration Description
AggregatesTypes Enumerates values for the AggregateFunction

property
ClassTypes Enumerates values for the ClassType property
CloneOptions Enumerates options for the Clone method
CommandTypes Enumerates values for the CommandType property
DimensionAggUsageTypes Enumerates values for the AggregationUsage

property
DimensionTypes Enumerates values for the DimensionType property
ErrorCodes Enumerates error codes
GroupingValues Enumerates options for level groups
HideIfValues Enumerates options for hidden level members
LanguageValues Enumerates the Language property of member

properties
LevelTypes Enumerates values for the LevelType property
MembersWithDataValues Enumerates values for the MembersWithData

property
OlapEditions Enumerates values for the Edition property
OlapLockTypes Enumerates values for the LockObject method
OlapStateTypes Enumerates values for the State property
OlapStorageModes Enumerates values for the OlapMode property
OrderTypes Enumerates values for the Ordering property
ProcessOptimizationModes Enumerates values for the

ProcessOptimizationMode property
ProcessTypes Enumerates values for the Process and

CommitTransEx methods
PropertyTypeValue Enumerates the values used in the PropertyType

property
RootIfValues Enumerates values for the RootMemberIf property
ServerStates Enumerates values for the State property
StorageModeValues Enumerates values for the StorageMode property
SubClassTypes Enumerates values for the SubClassType property

Examples

Using the ClassTypes Enumeration

The following code uses the ClassTypes enumeration to retrieve the class type of an object and determine whether the object is a
cube, a virtual cube, or some other object:

' Assume that the object dsoServer of ClassType clsServer exists.
Dim dsoDB as MDStore
Dim dsoCube as MDStore
Dim CubeCounter as Integer

Set dsoDB = dsoServer.MDStores(1)
For CubeCounter = 1 To dsoDB.MDStores.Count
 Set dsoCube = dsoDB.MDStores(CubeCounter)
 Debug.Print " Cube: " & dsoCube.Name
 If dsoCube.SubClassType = sbclsRegular Then
 Debug.Print " SubClassType: Regular"
 Debug.Print " SourceTable: " & dsoCube.SourceTable
 Else

 Debug.Print " SubClassType: Virtual"
 End If
Next CubeCounter

Analysis Services Programming (SQL Server 2000)

AggregatesTypes
AggregatesTypes

Enumerates values for the AggregateFunction property.

Constant Description
aggCount Uses the Count function for aggregation
aggDistinctCount Uses the Distinct Count function for aggregation
aggMax Uses the Max function for aggregation
aggMin Uses the Min function for aggregation
aggSum Uses the Sum function for aggregation

Analysis Services Programming (SQL Server 2000)

ClassTypes
ClassTypes

Enumerates values for the ClassType property used by objects in Decision Support Objects (DSO).

Constant Description
clsAggregation Provides a specific implementation of the MDStore

interface. Each instance is used to maintain a unique
aggregation data store.

clsAggregationDimension Provides a specific implementation of the Dimension
interface. Each instance reviews the dimension
collection of objects contained within an aggregation
object.

clsAggregationLevel Provides a specific implementation of the Level
interface. Each instance is used to maintain the level
objects within an aggregation dimension object.

clsAggregationMeasure Provides a specific implementation of the Measure
interface. Each instance is used to maintain the
measure objects contained within an aggregation
object.

clsCollection Similar to a standard Microsoft® Visual Basic®
collection; however, objects of ClassType
clsCollection can contain only objects of the same
type.

clsColumn Objects of ClassType clsColumn are used to
represent the structure of clsMiningModel objects.

clsCube Provides a specific implementation of the MDStore
interface. Objects of ClassType clsCube provide the
primary logical unit for representing collections of
multidimensional data.

clsCubeAnalyzer An object that contains a single method used to extract
information from the query log. The query log stores
the descriptions of queries executed on the Analysis
server.

clsCubeCommand Provides a specific implementation of the Command
interface. Each instance encapsulates a user-defined
command that is automatically executed at the client
when the cube containing the command is accessed.

clsCubeDimension Provides a specific implementation of the Dimension
interface. Cube dimensions are associated with the
dimensions (shared and private) of a database.

clsCubeLevel Provides a specific implementation of the Level
interface. Levels define the granularity of their parent
dimension.

clsCubeMeasure Provides a specific implementation of the Measure
interface. A cube measure corresponds to a numerically
valued column in a cube's fact table.

clsCubeRole Provides a specific implementation of the Role
interface. Objects of ClassType clsCubeRole are used
to manage the permissions a set of users has when
accessing a cube.

clsDatabase Provides a specific implementation of the MDStore
interface. Databases contain cubes, which in turn
contain partitions, which may in turn contain
dimensions, levels, measures, and aggregations. A
database may also contain virtual cubes.

clsDatabaseCommand Provides a specific implementation of the Command
interface. Each instance encapsulates a user-defined
command that is automatically executed at the client
when the cube containing the command is accessed.

clsDatabaseDimension Provides a specific implementation of the Dimension
interface. Database dimensions can be shared or
private. A shared database dimension can be
associated with any number of cubes; however, a
private dimension can be associated with only one
cube.

clsDatabaseLevel Provides a specific implementation of the Level
interface. Levels define the granularity of their parent
dimension. When you add a dimension to a cube, it
inherits whatever levels are defined for the database
dimension.

clsDatabaseRole Provides a specific implementation of the Role
interface. Objects of ClassType clsDatabaseRole are
used to manage the set of users who can access the
database.

clsDataSource Objects of ClassType clsDataSource are used to
specify an external database that will be used as a
source of data for Microsoft SQL Server™ 2000
Analysis Services databases, cubes, and partitions.

clsMemberProperty Provides the ability to assign properties to level
members.

clsMiningModel Provides methods and properties that enable you to
create and control data mining objects on the Analysis
server.

clsMiningModelRole Provides a specific implementation of the Role
interface. Objects of ClassType clsMiningModelRole
are used to manage the set of users who can access the
data mining model.

clsPartition Provides a specific implementation of the MDStore
interface. Partitions are common to large data
warehouses where massive amounts of data must be
managed efficiently. Partitions enable you to segment
your data in various storage modes and on various
servers.

clsPartitionAnalyzer Encapsulates an algorithm for automatically designing
a set of aggregations in a partition. Aggregations are
precalculated data for a cube. Aggregations support
rapid and efficient querying of an Analysis database.

clsPartitionDimension Provides a specific implementation of the Dimension
interface. Each instance is used to maintain the
dimension objects contained within a partition.

clsPartitionLevel Provides a specific implementation of the Level
interface. Each instance is used to maintain the level
objects that are contained within a partition dimension
object.

clsPartitionMeasure Provides a specific implementation of the Measure
interface. Each instance is used to maintain the
measure objects that are contained within a partition
object.

clsRoleCommand Provides a specific implementation of the Command
interface. Each instance encapsulates a user-defined
command that is automatically executed at the client
when the cube containing the command is accessed.

clsServer Provides methods and properties that enable you to
control the Analysis server. The object is the root of the
DSO object model tree.

Analysis Services Programming (SQL Server 2000)

CloneOptions
CloneOptions

Enumerates options for the Clone method.

Constant Description
cloneMajorChildren Clones the values of properties and all major and minor

objects contained in the source object's collections
cloneMinorChildren Clones the values of the properties and the minor objects

contained in the source object's collections
cloneObjectProperties Clones the values of the properties of the source object

Note The CustomProperties collection is always cloned, regardless of the CloneOption specified.

Analysis Services Programming (SQL Server 2000)

CommandTypes
CommandTypes

Enumerates values for the CommandType property.

Constant Description
cmdCreateAction Defines one or more actions.
cmdCreateCellCalculation Defines one or more calculated cells.
cmdCreateMember Defines one or more calculated members.
cmdCreateSet Defines one or more named sets of existing members.
cmdUnknown Defines statements not included in any of the other

command types in this table, such as DROP MEMBER
statements or new statements that may be added to
future versions.

cmdUseLibrary Specifies DLLs that contain functions to be registered for
use in Multidimensional Expressions (MDX) expressions.
A user can write a DLL containing some special
statistical functions, register this DLL with a USE
LIBRARY command, and then run queries using these
statistical functions.

Analysis Services Programming (SQL Server 2000)

DimensionAggUsageTypes
DimensionAggUsageTypes

Enumerates values for the AggregationUsage property.

Constant Description
DimAggUsageCustom Creates aggregations for dimension levels as

specified by level
dimAggUsageDetailsOnly Creates aggregations on only the lowest level

in the dimension
dimAggUsageStandard Creates aggregations as determined by the

aggregation design algorithm
dimAggUsageTopAndDetailsOnly Creates aggregations only for the top (All) and

lowest levels in the dimension
dimAggUsageTopOnly Creates aggregations only for the top (All)

level

Analysis Services Programming (SQL Server 2000)

DimensionTypes
DimensionTypes

Enumerates values for the DimensionType property.

Constant Description
DimAccounts Describes a dimension that contains an accounts structure

with parent-child relationships.
DimBillOfMaterials Describes a dimension that represents a material/component

breakdown. The parent-child relationship implies a parent
composed of its children.

DimChannel Describes a dimension that contains information about a
distribution channel.

DimCurrency Describes a dimension that contains currency information.
DimCustomers Describes a dimension that contains customer information.

The lowest level represents individual customers.
DimGeography Describes a dimension that contains a geographic hierarchy.
DimOrganization Describes a dimension that represents the reporting

structure of an organization.
DimProducts Describes a dimension that contains product information.

The lowest level represents individual products.
DimPromotion Describes a dimension that contains information about

marketing and advertising promotions.
DimQuantitative Describes a dimension that contains quantitative elements

(for example, income level, number of children, and so on).
DimRates Describes a dimension that contains different types of rates

(for example, buy, sell, discounted. and so on).
DimRegular The default dimension type, used for dimensions that are not

time-related.
DimScenario Describes a dimension that contains different business

scenarios.
DimTime Indicates that a dimension refers to time (year, month, week,

day, and so on). The only valid levels in a time dimension are
those that begin with "levTime" as defined in the LevelTypes
enumeration.

DimUtility Describes a dimension that contains only calculated
members. This type of dimension is usually used for data
visualization techniques.

See Also

LevelTypes

Analysis Services Programming (SQL Server 2000)

ErrorCodes
ErrorCodes

 New Information - SQL Server 2000 SP3.

Enumerates error codes. Use this enumerator to determine the meaning of a returned error code in Decision Support Objects
(DSO).

Constant Description
mderrAcceptError An internal error has occurred on the specified

Analysis server.
mderrAcquireCreditsError An internal error has occurred on the Analysis

server.
mderrAggregationUsageNotCustom The EnableAggregations property cannot be

set for levels in dimensions whose
AggregationUsage property is not
dimAggUsageCustom.

mderrBadParameterForServiceState Invalid service state parameter on the computer.
mderrBadRequest An internal request related error has occurred on

the Analysis server.
mderrBindError An internal bind related error has occurred on

the Analysis server.
mderrCalculateError An internal calculation related error has occurred

on the Analysis server.
mderrCanceled The specified transaction was canceled.
mderrCannotAddVirtualDimension Cannot add a virtual dimension because its

source dimension is not in the database.
mderrCannotChangeRemoteServer Cannot change the RemoteServer property after

it has been set.
mderrCannotCloneObjectIntoItself Cannot clone an object into itself.
mderrCannotCommitDatabase Unable to create a database on the Analysis

server.
mderrCannotCreatePartition No system partition is available for this

operation. System partitions have been
programmatically defined as user partitions.
User-defined partitions are available only if you
install Analysis Services for Microsoft® SQL
Server™ 2000 Enterprise Edition.

mderrCannotCreateVirtualDimensionFromAnother Cannot create a virtual dimension based on
another virtual dimension.

mderrCannotDeleteDataSource At least one object has a reference to the data
source, so the data source cannot be deleted.

mderrCannotDeleteDimension A dimension cannot be deleted because it is used
in a cube.

mderrCannotDeleteLastPartition Cannot delete the last partition in a cube. (A cube
must have at least one partition.)

mderrCannotDeleteLevel Cannot delete a level if it is used in a virtual
dimension.

mderrCannotDeleteMemberProperty Cannot delete a member property if it is used in
a virtual dimension.

mderrCannotEnableRealTimeUpdatesWithoutIndexedViews Cannot enable real time updates on the specified
partition without indexed views.

mderrCannotExecFuncError Cannot execute a function in a user-defined
function library.

mderrCannotModifySharedObject Cannot change a property of a shared dimension
(or subordinate level) used in a cube.

mderrCannotRemoveMeasureFromDefaultAggregation Cannot remove a measure from an aggregation
created by the partition analyzer.

mderrCannotRenameObject Only temporary objects can be renamed.
mderrCannotSaveInsideTransaction Cannot save objects inside a DSO transaction.
mderrCellCalculationsNotAvailable Calculated cells are available only if you install

Analysis Services for Microsoft SQL Server 2000
Enterprise Edition.

mderrChildProcessFailed A child process failed within a transaction.
mderrClassError An internal class error has occurred on the

Analysis server.
mderrCollectionItemNotFound Raised if you try to remove an item from a

collection that does not exist in the collection.
mderrCollectionReadOnly Cannot add an object to, or remove an object

from, a collection that is read-only.
mderrCOMError An internal COM error has occurred on the

Analysis server.
mderrCompatibilityError An internal compatibility related error has

occurred on the Analysis server.
mderrConnectError An error occurred while connecting to an

Analysis server.
mderrCorruptedProperty A corrupted property was found while merging

partitions.
mderrCorruptedRegistrySettings One or more registry settings in use by Analysis

Services has been corrupted.
mderrCouldInitiateCubeUpdate Could not initiate a cube update.
mderrCouldInitiateDimensionUpdate Could not initiate a dimension update.
mderrCouldNotLockObject Raised if you try to lock an object that is already

locked (by a different application).
mderrCouldNotLogMissingMemberKeyErrors Could not write errors regarding missing

member key errors to the log file.
mderrCouldNotOpenService The Analysis server runs as a Microsoft Windows

NT® 4.0 or Windows® 2000 service. This error
is raised if the service could not be opened. For
more information about the
mderrCouldNotOpenService error, see the
Microsoft Win32® API documentation.

mderrCouldNotOpenServiceControlManager The Analysis server runs as a Windows NT 4.0 or
Windows 2000 service. This error is raised if the
service control manager could not be opened.
For more information about the
mderrCouldNotOpenServiceControlManager
error, see the Microsoft Win32® API
documentation.

mderrCouldNotQueryTheService The Analysis server runs as a Windows NT 4.0 or
Windows 2000 service. This error is raised if the
service could not be queried. For more
information about the
CouldNotQueryTheService error, see the
Microsoft Win32 API documentation.

mderrCouldNotUnLockObject The specified object could not be unlocked.
mderrCubeDimHasNoDatabaseDim The specified dimension to be associated with a

cube does not have a corresponding database
dimension.

mderrCubeNotProcessed The specified cube has not yet been processed.
mderrCustomRollupsNotAvailable Custom rollups are available only if you install

Analysis Services for Microsoft SQL Server 2000
Enterprise Edition.

mderrDataError An internal data related error has occurred on
the Analysis server.

mderrDefinitionCannotBeEmpty An empty definition was found while merging
partitions.

mderrDefinitionDoesNotContainNameAndValue A definition which does not contain a name and
value was found while merging partitions.

mderrDeletingTablesOutsideOfTransaction Tables cannot be deleted outside of a transaction.
mderrDifferentAggregationDatasources Partitions cannot be merged because source and

target partitions have different relational data
sources.

mderrDifferentAggregationNumber Partitions cannot be merged because source and
target partitions have different numbers of
aggregations.

mderrDifferentAggregationOLAPMode Partitions cannot be merged because source and
target partitions have different storage modes.

mderrDifferentAggregationStructure Partitions cannot be merged because source and
target partitions have different structures or
storage modes.

mderrDifferentRemoteServers Cannot merge two partitions that are on different
servers.

mderrDimensionChangingCannotAddLevel The specified changing dimension is being used
in a cube, and either does not support adding a
new lowest level, or it has an
AggregationUsage property value other than
dimAggUsageDetailsOnly and
dimAggUsageStandard, and does not allow
changing the top level.

mderrDimensionLockedByCube Dimension is locked because it is currently being
used in a cube. Remove the dimension from the
cube to unlock the dimension.

mderrDimensionMemberNotFound A member was found in the fact table, but not in
the dimension.

mderrDimensionNotInUnderlyingCubes Cannot add to a virtual cube a dimension that is
not in any of the cubes on which the virtual cube
is based.

mderrDimensionWritebackNotAvailable Dimension writebacks are available only if you
install Analysis Services for Microsoft SQL
Server2000 Enterprise Edition.

mderrDuplicateKeyInCollection Cannot add to a collection an item with the same
name as an item already in the collection.

mderrExecuteSQL An error occurred while attempting to execute a
SQL statement against a data source.

mderrFileError An internal file system error has occurred on the
Analysis server.

mderrFormulaError An internal formula related error has occurred.
mderrFuncNotSupportedError An unsupported function was called by a

Multidimensional Expressions (MDX) statement.
mderrIllegalMeasureType Invalid measure data type found in returned SQL

rowset.
mderrIllegalObjectName Cannot assign an invalid name to an object.
mderrImpersonateError An internal error has occurred on the Analysis

server.
mderrInconsistentAggregations An inconsistency has been found in the

aggregations of a specified partition or partitions.
mderrInitializationFailed Processing could not be initialized on the

specified DSO object.
mderrInternal An internal error occurred within the DSO library.

mderrInternetError An error occurred with a linked cube that is
available through an HTTP connection.

mderrinvalidAggregateFunction An invalid aggregate function was specified.
mderrInvalidAggregationLevel An invalid aggregation level was specified.
mderrInvalidAggUsage The AggregationUsage property is

incompatible with current settings for the
dimension.

mderrInvalidCubeBadFactTableAlias The SourceTableAlias property is set
incorrectly.

mderrInvalidCubeDrillThroughNotProperlyDefined The drillthrough options for the cube are not
correctly defined.

mderrInvalidCubeInconsistentAggregations Cannot create a cube with a distinct count
measure and add aggregations that are not
compatible with the distinct count function.

mderrInvalidCubeMultipleDistinctCountMeasures Cannot create a cube with more than one
measure with an AggregateFunction value of
aggDistinctCount.

mderrInvalidCubeNoVisibleDimensions Cannot create a cube without at least one visible
dimension or visible calculated member.

mderrInvalidCubeNoVisibleMeasures Cannot create a cube without at least one visible
measure.

mderrInvalidDataType An invalid data type was specified.
mderrInvalidDimensionBadAreMemberKeysUnique The AreMemberKeysUnique property is set to

True on a dimension with at least one level with
AreMemberKeysUnique set to False.

mderrInvalidDimensionBadAreMemberNamesUnique The AreMemberNamesUnique property is set
to True on a dimension with at least one level
with AreMemberNamesUnique set to False.

mderrInvalidDimensionBadDependsOnDimension The DependsOnDimension property refers to a
nonexistent dimension.

mderrInvalidDimensionLevelsAfterHiddenMustBeUnique Must have nonunique keys in levels that are
below a hidden level.

mderrInvalidDimensionNoMemberValues Cannot create a dimension that is unrelated to
the fact table and has levels without custom
rollup expressions or custom rollup columns.

mderrInvalidDimensionNoVisibleLevels Cannot create a dimension without at least one
visible level.

mderrInvalidDimensionParentChildInvalidLevel Cannot create a parent-child dimension that
contains a non-parent-child level that is not an
(All) level.

mderrInvalidDimensionParentChildLevelMissing Cannot create a parent-child dimension without
a parent-child level.

mderrInvalidLevelBadCustomRollupColumn The level has an invalid value for its
CustomRollupColumn property.

mderrInvalidLevelBadOrderingMemberProperty The OrderingMemberProperty for the level
does not refer to a member property of the level.

mderrInvalidLevelBadParentKey A parent-child level has an invalid value for its
ParentKeyColumn property.

mderrInvalidLevelBadSkippedLevelsColumn A parent-child level has an invalid value for its
SkippedLevelsColumn property.

mderrInvalidLevelConflictingMemberProperties A member property has a Caption that is in use
by another member property with an identical
language setting.

mderrInvalidLevelGrouping The value of the Grouping property is invalid for
the current dimension.

mderrInvalidLevelNamingTemplate The LevelNamingTemplate property can lead
to conflicting level names and may cause
problems during processing.

mderrInvalidLockType The LockType argument value specified in the
LockObject method of a DSO object is invalid.
For more information about valid lock types, see
OlapLockTypes.

mderrInvalidMeasure An invalid measure was specified.
mderrInvalidParent An object that is not a member of a collection has

no parent.
mderrInvalidPartBadFactTableAlias The SourceTableAlias property is set

incorrectly.
mderrInvalidPermission An invalid member security attribute was

specified in the SetPermissions method of a
DSO Role object.

mderrInvalidProcessType An invalid process type was specified in the
Process method of a DSO object. For more
information about valid process types, see
ProcessTypes.

mderrInvalidPropertySetting Cannot add an object to, or remove an object
from, a collection that is read-only.

mderrInvalidRelatedColumn An invalid column name was specified in the
RelatedColumn property of a DSO clsColumn
object.

mderrInvalidRemotePartition The RemoteServer property is empty or
contains the name of a nonexistent partition.

mderrInvalidRemoteServerName The RemoteServer property is empty or
contains the name of a nonexistent server.

mderrInvalidSourceOlapObject An invalid object was specified in the
SourceOlapObject property of a DSO
clsColumn object.

mderrInvalidStructure The structure of the object that raised the error is
invalid.

mderrInvalidTransactionOperation Unable to begin, commit, or rollback a
transaction on a DSO clsDatabase object. In the
case of the BeginTrans method, another
transaction is in process. In the case of the
CommitTrans, CommitTransEx, or Rollback
methods, no transaction is currently in process.

mderrInvalidVirtualDimensionMustHaveAllLevel Cannot create a virtual dimension that does not
contain an (All) level.

mderrLastLevelMustBeUnique The settings for the dimension require the
AreMemberKeysUnique property of the last
level in the dimension to be True.

mderrLinkedCubeCannotChangeProperty Cannot change the values of the properties
ColumnType and AggregationFunction for a
measure in a linked cube.

mderrLinkedCubeInvalidConnectionString The ConnectionString property for the linked
cube object contains incorrect or incomplete
information. It must refer to a server in Microsoft
SQL Server 2000 Analysis Services.

mderrLinkedCubeInvalidServer The publishing and subscribing servers need to
be different when creating a linked cube.

mderrLinkedCubeInvalidSourceCube The name of the published cube is invalid, or the
user does not have adequate permissions to
query the cube.

mderrLinkedCubeNoAggregationsAllowed Aggregations are not allowed for linked cubes.
mderrLinkedCubeNotEnoughDimensions While creating a linked cube, no dimensions

were found in the specified source cube.
mderrLinkedCubesNotAvailable Linked cubes are available only if you install

Analysis Services for Microsoft SQL Server 2000
Enterprise Edition.

mderrLinkedCubeSynchronizationFailed Linked cube structure synchronization between
subscribing server and publishing server failed.

mderrListenError An internal error related to real-time updates has
occurred on the Analysis server.

mderrLoadDLLError An error occurred while loading a user-defined
function library.

mderrLockAccessError Unable to lock an object already locked.
mderrLockCannotBeObtained Unable to obtain a lock from the server.
mderrLockDescriptionTooLong Lock description is longer than permitted.
mderrLockFileCorrupted The server reported that the lock file is corrupted.
mderrLockFileMissing The server reported that the lock file is missing.
mderrLockNetworkDown Network error.
mderrLockNetworkNameNotFound Cannot find name on the network.
mderrLockNetworkPathNotFound Cannot find this network path.
mderrLockNotEnoughMemory There is not enough memory available to create

a lock on a DSO object using the LockObject
method.

mderrLockObjectNotLocked Cannot unlock an object that is not locked.
mderrLockSystemError A lock cannot be obtained because of an

unknown error.
mderrMeasureDoesNotHaveValidSourceColumn Cannot add a measure to a virtual cube if the

name of the measure's source column is not in
the correct format.

mderrMemberPropertyNotFound The member property was not found.
mderrMemoryError An internal memory related error has occurred

on the Analysis server.
mderrMergedPartitionsMustBothUseIndexedViewsOrTables Partitions to be merged must both use either

indexed views or aggregation tables.
mderrMiningModelNotProcessed The mining model cannot be updated because it

has not yet been processed.
mderrNameCannotBeChanged Cannot change a DSO object name unless the

object is a temporary object.
mderrNameCannotBeEmpty An object cannot have an empty name.
mderrNetworkError An internal network related error has occurred

on the Analysis server.
mderrNoConnectionToServer A connection cannot be opened on the specified

Analysis server.
mderrNoEntryPointError An entry point could not be found while loading

a user-defined function library.
mderrObjectCantBeProcessedWithItsDimensions A dimension used by the specified DSO object

has already been processed in the same
transaction.

mderrObjectChangedByAnotherApp Cannot save object because it was not locked and
was changed by another object.

mderrObjectIsNotWriteLocked Cannot update an object that is not write-locked.
mderrObsoleteError The reference to a DSO object has become

obsolete.
mderrODBC An internal error has occurred in an ODBC data

source provider.
mderrODBCError An internal ODBC related error has occurred on

the Analysis server.
mderrOSError An internal operating system related error has

occurred on the Analysis server.
mderrPartitionMustBeProcessed The partition associated with the specified DSO

object must first be processed.
mderrProcessError An internal processing error has occurred within

the DSO library.

mderrPropertyCannotBeChanged Property cannot be changed in this context.
mderrPropertyCollectionCannotBeChanged An internal error occurred while merging

partitions.
mderrRealTimeUpdatesNotAvailable Real-time updates are available only if you install

Analysis Services for Microsoft SQL Server 2000
Enterprise Edition.

mderrRegistryConnectFailed An error occurred while connecting to the
registry.

mderrRegistryOpenKeyFailed An error occurred while opening a registry key.
mderrRegistryQueryValueFailed An error occurred while retrieving a value from a

registry key.
mderrRemotePartitionCannotHaveWriteableDimension A remote partition cannot contain a write-

enabled dimension.
mderrRepositoryConnectionFailed Object repository may be read-only.
mderrRepositoryConnectionStringChanged Another application has changed the repository

connection string for the specified Analysis
Server. You need to close and reopen this server
connection in order to continue.

mderrRepositoryIncompatible Repository is incompatible with this version of
DSO. Verify that your DSO version is compatible
with your repository version.

mderrRepositoryUpgradeFailed An error occurred while attempting to update the
repository for the specified Analysis server.

mderrRevertError An internal error has occurred on the Analysis
server.

mderrROLAPDimensionsNotAvailable Relational OLAP (ROLAP) dimensions are
available only if you install Analysis Services for
Microsoft® SQL Server™ 2000 Enterprise
Edition.

mderrROLAPDimensionsRequireROLAPPartition Cannot add a relational OLAP (ROLAP)
dimension to a non-ROLAP partition.

mderrSecurityError An internal security error has occurred on the
Analysis server.

mderrSelectError An internal SQL error has occurred on the
Analysis server.

mderrServerInternal An internal error has occurred on the specified
Analysis server.

mderrServerObjectNotFound The specified Analysis server could not be found.
mderrServerObjectNotOpened The specified Analysis server was not opened

before attempting an action with an object
associated with the Analysis server.

mderrSkippedLevelsNotAvailable Skipped levels and ragged hierarchies are
available only if you install Analysis Services for
Microsoft SQL Server 2000 Enterprise Edition.

mderrSourceDoesNotExist Cannot merge partitions because the source
partition does not exist.

mderrStructureHasChanged The structure of the specified object has changed.
mderrTargetDoesNotExist Cannot merge partitions because the target

partition does not exist.
mderrTimeOut Connection to the Analysis server timed out.
mderrTimeoutError A timeout error has occurred on the Analysis

server.
mderrTooManyDimensionMembers More than the allowed maximum of 64,000

dimension member children for a single parent
member.

mderrTooManyLevelsInDimension The maximum number of ungrouped levels in a
dimension is 64, that is, 63 plus an (All) level.

mderrTooManyMissingMemberKeys The maximum number of dimension key
processing errors has been exceeded.

mderrUnexpectedError An unexpected internal error has occurred.
mderrUnsuccesfullServiceOperation The Analysis server service

(MSSQLServerOLAPService) is not running on
the specified computer.

mderrUserDefinedPartitionsNotAvailable User-defined partitions are available only if you
install Analysis Services for Microsoft SQL Server
2000 Enterprise Edition.

mderrValidateLastLevelMustBeUnique The AreMemberKeysUnique property is set to
False on the last level of a regular dimension
with IsChanging set to True.

Analysis Services Programming (SQL Server 2000)

GroupingValues
GroupingValues

Enumerates values for the Grouping property.

Constant Description
groupingAutomatic Level members are grouped automatically by the Analysis

server.
groupingNone Level members are not grouped.

Analysis Services Programming (SQL Server 2000)

HideIfValues
HideIfValues

Enumerates values for the HideMemberIf property.

Constant Description
hideIfBlankName A level member is hidden when its name is

empty.
hideIfOnlyChildAndBlankName A level member is hidden when it is the only

child of its parent and its name is null or an
empty string.

hideIfOnlyChildAndParentsName A level member is hidden when it is the only
child of its parent and its name is the same as
its parent's name.

hideIfParentsName A level member is hidden when its name is
identical to that of its parent.

hideNever Level members are never hidden.

Analysis Services Programming (SQL Server 2000)

LanguageValues
LanguageValues

Enumerates values for the Language property of a member property. These values are based on the PrimaryLangIDs defined in
Microsoft® Windows NT® 4.0 and Windows® 2000. PrimaryLangIDs can be derived directly from a LocaleID.

Constant Description
languageAfrikaans Property associated with Afrikaans
languageAlbanian Property associated with Albanian
languageAny Property associated with any language
languageArabic Property associated with Arabic
languageBasque Property associated with Basque
languageBulgarian Property associated with Bulgarian
languageByelorussian Property associated with Byelorussian
languageCatalan Property associated with Catalan
languageChinese Property associated with Chinese
languageCzech Property associated with Czech
languageDanish Property associated with Danish
languageDutch Property associated with Dutch
languageEnglish Property associated with English
languageEstonian Property associated with Estonian
languageFaeroese Property associated with Faeroese
languageFarsi Property associated with Farsi
languageFinnish Property associated with Finnish
languageFrench Property associated with French
languageGerman Property associated with German
languageGreek Property associated with Greek
languageHebrew Property associated with Hebrew
languageHungarian Property associated with Hungarian
languageIcelandic Property associated with Icelandic
languageIndonesian Property associated with Indonesian
languageItalian Property associated with Italian
languageJapanese Property associated with Japanese
languageKampuchean Property associated with Kampuchean
languageKorean Property associated with Korean
languageLaotian Property associated with Laotian
languageLatvian Property associated with Latvian
languageLithuanian Property associated with Lithuanian
languageMacedonian Property associated with Macedonian (FYRO)
languageMaltese Property associated with Maltese
languageMaori Property associated with Maori
languageNorwegian Property associated with Norwegian
languagePolish Property associated with Polish
languagePortuguese Property associated with Portuguese
languageRhaetoRomanic Property associated with RhaetoRomanic
languageRomanian Property associated with Romanian
languageRussian Property associated with Russian
languageSami Property associated with Sami
languageScotsGaelic Property associated with ScotsGaelic
languageSerboCroatian Property associated with SerboCroatian
languageSlovak Property associated with Slovak
languageSlovenian Property associated with Slovenian
languageSorbian Property associated with Sorbian

languageSpanish Property associated with Spanish
languageSutu Property associated with Sutu
languageSwedish Property associated with Swedish
languageThai Property associated with Thai
languageTsonga Property associated with Tsonga
languageTswana Property associated with Tswana
languageTurkish Property associated with Turkish
languageUkrainian Property associated with Ukrainian
languageUrdu Property associated with Urdu
languageVenda Property associated with Venda
languageVietnamese Property associated with Vietnamese
languageXhosa Property associated with Xhosa
languageZulu Property associated with Zulu

Analysis Services Programming (SQL Server 2000)

LevelTypes
LevelTypes

Enumerates values for the LevelType property.

Constant Description
levAccount Indicates that a level exists within an account dimension.
levAll Indicates the top (All) level of a dimension (the one that

precalculates all the members of all lower levels).
levBOMResource Indicates that a level is part of a bill of materials

dimension.
levChannel Indicates that a level exists within a distribution channel

dimension.
levCompany Indicates that a level contains information about a

company.
levCurrencyDestination Indicates that a level contains information about the

resulting currency after a foreign exchange conversion.
levCurrencySource Indicates that a level contains information about the

starting currency before a foreign exchange conversion.
levCustomer Indicates that a level contains information about an

individual customer.
levCustomerGroup Indicates that a level contains information about a

customer group.
levCustomerHousehold Indicates that a level contains information about an

entire household.
levGeoCity Indicates that a level refers to a city name.
levGeoContinent Indicates that a level refers to a continent name.
levGeoCountry Indicates that a level refers to a country or region name.
levGeoCounty Indicates that a level refers to a county name.
levGeoPoint Indicates that a level refers to a location type that does

not fit into the other geographic categories.
levGeoPostalCode Indicates that a level refers to a postal code.
levGeoRegion Indicates that a level refers to a custom-defined region.
levGeoStateOrProvince Indicates that a level refers to a state or province name.
levOrgUnit Indicates that a level refers to the name of a unit within a

larger organization.
levPerson Indicates that a level refers to an individual within a

larger organization.
levProduct Indicates that a level refers to an individual product.
levProductGroup Indicates that a level refers to a product group.
levPromotion Indicates that a level refers to a promotion.
levQuantitative Indicates that a level refers to a quantitative member

within a quantitative dimension.
levRegular Indicates that the level is not related to time.
levRepresentative Indicates that a level refers to a sales representative.
levScenario Indicates that a level refers to a scenario.
levTimeDays Indicates that a level refers to days. It must be used in a

dimension whose type is dimTime.
levTimeHalfYears Indicates that a level refers to half-years. It must be used

in a dimension whose type is dimTime.
levTimeHours Indicates that a level refers to hours. It must be used in a

dimension whose type is dimTime.
levTimeMinutes Indicates that a level refers to minutes. It must be used in

a dimension whose type is dimTime.

levTimeMonths Indicates that a level refers to months. Must be used in a
dimension whose type is dimTime.

levTimeQuarters Indicates that a level refers to (calendar) quarters. It must
be used in a dimension whose type is dimTime.

levTimeSeconds Indicates that a level refers to seconds. It must be used in
a dimension whose type is dimTime.

levTimeUndefined Indicates that a level refers to an indeterminate or
nonstandard measurement of time. It must be used in a
dimension whose type is dimTime.

levTimeWeeks Indicates that a level refers to weeks. It must be used in a
dimension whose type is dimTime.

levTimeYears Indicates that a level refers to years. It must be used in a
dimension whose type is dimTime.

levUtility Indicates that a level refers to a calculated member in a
utility dimension.

Analysis Services Programming (SQL Server 2000)

MembersWithDataValues
MembersWithDataValues

Enumerates values for the MembersWithData property.

Constant Description
DataforLeafMembersOnly Only leaf members can have data in the fact table.

A processing error occurs if data for a nonleaf
member appears in the fact table.

dataforNonLeafMembersHidden Any member (except the All member) can have
data in the fact table. Data for nonleaf members is
hidden (totals may not appear to add up
correctly).

dataforNonLeafMembersVisible Any member (except the All member) can have
data in the fact table. Data for nonleaf members is
visible in system-generated leaf members.

Analysis Services Programming (SQL Server 2000)

OlapEditions
OlapEditions

Enumerates values for the Edition property of objects of ClassType clsServer.

Constant Description
OlapEditionUnlimited The Analysis server supports full functionality. Typically

indicates Analysis Services for Microsoft® SQL Server™
2000 Enterprise Edition.

OlapEditionPivotOnly Reserved for future use.
OlapEditionNoPartitions The Analysis server does not support user-defined

partitions. Typically indicates Analysis Services for SQL
Server 2000 Standard Edition.

OlapEditionError The edition of the Analysis server cannot be determined.

Analysis Services Programming (SQL Server 2000)

OlapLockTypes
OlapLockTypes

Enumerates values for the LockType parameter of the LockObject method, implemented by most objects in the Decision Support
Objects (DSO) library.

Constant Description
OlapLockExtendedRead The object's properties can be read by other applications,

but they cannot be changed or processed. This lock is
used to prevent processing of dependent objects of an
object that is being processed, such as dimensions that
are shared by multiple cubes. Multiple
olapLockExtendedRead locks can be applied to an
object by multiple applications. However, no application
can lock the object for processing or updating until all
olapLockExtendedRead locks have been released.

OlapLockProcess The object's Process method can be initiated, and other
applications can read the object's properties only until the
lock is released. Only one olapLockProcess lock can be
applied to an object at a time, and other applications can
only apply olapLockRead locks while the
olapLockProcess lock is in place.

OlapLockRead The properties of the object can be read from the
repository and cannot be changed by another application
until the lock is released. Other applications can issue
olapLockRead, olapLockExtendedRead, and
olapLockProcess locks, but not olapLockWrite locks,
while the initial olapLockRead lock is in place.

OlapLockWrite The properties of the object can be modified in the
repository using the Update method, and they are not
available to other applications for any use until the lock is
released. No other locks of any type can be applied to the
object until the olapLockWrite lock is released.

See Also

LockObject

Analysis Services Programming (SQL Server 2000)

OlapStateTypes
OlapStateTypes

Enumerates values for the State property for objects other than server objects.

Constant Description
OlapStateCurrent The state of the object is current.
OlapStateMemberPropertiesChanged The member properties of the object have

changed.
OlapStateNeverProcessed The object has never been processed.
OlapStateSourceMappingChanged The source mapping for the object, such as

the MemberKeyColumn or
ParentKeyColumn properties of a
clsDatabaseDimension object, has
changed.

olapStateStructureChanged The structure of the object has changed.

See Also

ServerStates

Analysis Services Programming (SQL Server 2000)

OlapStorageModes
OlapStorageModes

Enumerates values for the OlapMode property.

Constant Description Applies to
olapmodeAggsMolapIndex Reserved for future use. n/a
olapmodeAggsRolap Reserved for future use. n/a
olapmodeHybridIndex Fact table data is stored in

relational OLAP (ROLAP), and
aggregations are stored in
multidimensional OLAP
(MOLAP).

Databases, cubes, and
partitions (excluding
virtual cubes and
linked cubes)

olapmodeMolapIndex Fact table data is stored in
MOLAP, and aggregations are
stored in MOLAP.

Databases, cubes, and
partitions (excluding
virtual cubes)

olapmodeRolap All data is stored in ROLAP. Databases, cubes, and
partitions (excluding
virtual cubes and
linked cubes)

See Also

OlapMode

Analysis Services Programming (SQL Server 2000)

OrderTypes
OrderTypes

Enumerates values for the Ordering property.

Constant Description
OrderKey Members are ordered in MemberKeyColumn sequence.
orderMemberProperty Members are ordered according to the instructions of a

member property.
orderName Members are ordered in MemberNameColumn

sequence.

For more information, see OrderingMemberProperty.

Analysis Services Programming (SQL Server 2000)

ProcessOptimizationModes
ProcessOptimizationModes

Enumerates values for the ProcessOptimizationMode property.

Constant Description
processOptimizationModeLazyOptimizations The object supports lazy

optimization processing. Data is
read from the data source and
stored within the processing
transaction. Indexing and
aggregating are performed
afterward.

ProcessOptimizationModeRegular The object uses normal processing.
Data is read from the data source
and stored, indexed, and
aggregated within the processing
transaction.

For more information, see ProcessOptimizationMode.

Analysis Services Programming (SQL Server 2000)

ProcessTypes
ProcessTypes

 New Information - SQL Server 2000 SP3.

Enumerates values for the Option parameter of the Process and CommitTransEx methods.

Constant Description
processBuildStructure Applies only to cubes. Processing a cube ordinarily

causes the Analysis server to read all source data
corresponding to the definition of the cube, create
the cube, and populate it with data.

This option causes the Analysis server to create the
cube (that is, build its structure) but not populate it
with data. Instead, the cube exists as an empty shell
on the server. A user can connect to the cube, but it
contains no data.

This option can have performance benefits. If you do
not use this option (see processDefault), the
partitions in a cube are processed sequentially. If
you do use it, you can process the partitions in
parallel.

processDefault The default option. It causes the system to decide
what processing method is best.

For the Process method, this typically means that
the system will try to refresh the object's data
(processRefreshData) unless its structure has
changed or it no longer exists. In the latter case, the
system will perform a full processing (processFull).

For the CommitTransEx method, this option causes
the CommitTransEx method to function identically
to the CommitTrans method.

processFull Causes the object to be fully processed or rebuilt.
The object's structure is changed if needed and its
data is refreshed (that is, discarded and
repopulated). This is the most complete type of
processing supported. See processRefreshData.

processFullReaggregate Causes the object to be fully processed or rebuilt,
and also causes the flexible aggregations and
indexes of dependent MDStore objects to be
recalculated.

For the Process method, this option applies only to
cubes. This option, when used within a transaction,
rebuilds the indexes and re-aggregates the flexible
aggregations of a cube—in effect, specifying that the
actions typically performed by lazy processing must
be completed within the scope of the transaction.

The cube must meet the following criteria to use the
processFullReaggregate option:

The cube must be a regular cube.

The State property of the cube must be set to
olapStateCurrent.

The cube cannot be previously referenced
within the same transaction.

If any of these criteria are not met, an error is
raised when the Process method is called. If
the cube meets the criteria, the Process
method creates a temporary copy of the cube,
a "shadow cube," and iterates through the
partitions of the shadow cube. If any partition
in the cube has been previously referenced
within the current transaction, an error is
raised. If a partition has never been processed
(its State property is set to
olapStateNeverProcessed), the partition is
ignored for the purposes of re-aggregation
but no error is raised. The flexible
aggregations and indexes for partitions that
qualify are then recalculated.

During the transaction, queries are resolved by
using the original cube, partitions, and dimensions
while processing is performed on the shadow cube.
If the transaction is successful, the original cube and
its subordinate objects are replaced with the shadow
cube. If the transaction fails, the original cube and its
subordinate objects remain and the shadow cube is
removed.

For the CommitTransEx method, this option causes
the method to iterate through all of the cubes in the
database. If any cube meets the following criteria, it
is processed as if the Process method was called as
described earlier:

The cube uses one or more changing
dimensions previously referenced within the
current transaction.

The cube itself has not been processed within
the current transaction.

None of the partitions for the cube have been
processed within the current transaction.

If the cube does not meet all of these criteria, an
error is raised. Also, if the processing of a dimension
invalidates the structure of a cube, the cube is
ignored for the purposes of re-aggregation but no
error is raised.

processReaggregate Applies only to cubes and partitions. This option is
similar to processRefreshData, except that it
instructs the Analysis server to rebuild maps, full
indexes, and aggregations for multidimensional
OLAP (MOLAP) partitions.

processRefreshData Causes the object data to be refreshed (that is,
discarded and repopulated), but does not change the
object's structure. This operation occurs inside a
transaction, allowing you to continue using current
data while the transaction takes place. When the
transaction is committed, the new data is available.
See processFull.

ProcessRefreshDataAndIndex Applies only to cubes and partitions. Similar to
processRefreshData, except this option instructs
the Analysis server to build full indexes for the
partitions.

processResume Directs the Analysis server to resume responding to
user queries against a cube that has had queries
suspended. The Analysis server will automatically
resume responding to queries after 5 minutes
unless processResume is received first.

processSuspend Directs the Analysis server to suspend responses to
user queries against a cube so your application can
perform operations such as merging fact tables. The
Analysis server automatically resumes responding
to queries after 5 minutes (earlier if you submit a
processResume request).

Suspend Timeout

The timeout value for the processResume and processSuspend constants can be changed by using the following registry key:

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\
Olap Manager Info\SuspendTimeout

The registry key stores the value as a long integer representing the timeout in milliseconds. For example, to change the timeout to
2 minutes, the value would be set to 120000. If the registry key is missing, the default value of 5 minutes (300000 milliseconds) is
used by Decision Support Objects (DSO).

Processing and Dependent Objects

The DSO hierarchy can be complex, involving objects that depend on other objects. This is particularly true of mining model
objects, which may have dependent virtual cube or mining dimension objects.

If the object to be processed depends on other objects, such as a mining dimension which, in turn, depends on an OLAP mining
model, processing the object will cause the objects on which it depends to be processed, but only if the State property of the
objects on which it depends is not set to olapStateCurrent.

If other objects depend on the object to be processed, such as an OLAP mining model with an associated mining dimension or a
virtual cube, processing the object causes the dependent objects to be processed, but only if the State property of the dependent
objects is not set to olapStateNeverProcessed.

See Also

Process

CommitTransEx

Analysis Services Programming (SQL Server 2000)

PropertyTypeValue
PropertyTypeValue

Enumerates the values used in the PropertyType property.

Constant Description
propAddress Address
propAddressBuilding Address - building number
propAddressCity Address – city
propAddressCountry Address – country or region
propAddressFax Address – facsimile number
propAddressFloor Address – floor number
propAddressHouse Address – house number
propAddressPhone Address – telephone number
propAddressQuarter Address – quarter
propAddressRoom Address – room number
propAddressStateorProvice Address – state or province
propAddressStreet Address – street name
propAddressZip Address – postal code
propCaption Caption
propCaptionAbreviation Caption – abbreviation
propCaptionDescription Caption – description
propCaptionShort Caption – short name
PropDate Date
propDateCanceled Date – canceled date
propDateDuration Date – duration date
propDateEnded Date – end date
propDateModified Date – modified date
propDateStart Date – start date
propFormattingColor Format – color
propFormattingFont Format – font name
propFormattingFontEffects Format – font effects
propFormattingFontSize Format – font size
propFormattingOrder Format – sort order
propFormattingSubTotal Format – subtotal
propGeoBoundaryBottom Geographical boundary – bottom
propGeoBoundaryFront Geographical boundary – front
propGeoBoundaryLeft Geographical boundary – left
propGeoBoundaryPolygon Geographical boundary – polygon
propGeoBoundaryRear Geographical boundary – rear
propGeoBoundaryRight Geographical boundary – right
propGeoBoundaryTop Geographical boundary – top
propGeoCentroidX Geographical boundary – X centroid
propGeoCentroidY Geographical boundary – Y centroid
propGeoCentroidZ Geographical boundary – Z centroid
propID Property – ID
propOrgTitle Property – organizational title
propPersonContact Person – contact person
propPersonDemographic Person – demographic information
propPersonFirstName Person – first name
propPersonFullName Person – full name
propPersonLastName Person – last name
propPersonMiddleName Person – middle name

propPhysicalColor Physical property – color
propPhysicalDensity Physical property – density
propPhysicalDepth Physical property – depth
propPhysicalHeight Physical property – height
propPhysicalSize Physical property – size
propPhysicalVolume Physical property – volume
propPhysicalWeight Physical property – weight
propPhysicalWidth Physical property – width
propQtyRangeHigh Quantity – high end of range
propQtyRangeLow Quantity – low end of range
propRegular Regular (default)
propRelationToParent Relationship to parent
propSequence Sequence
propVersion Version
propWebHTML HTML information
propWebMailAlias E-mail address
propWebURL URL address
propWebXMLorXSL XML or XSL information

Analysis Services Programming (SQL Server 2000)

RootIfValues
RootIfValues

Enumerates values for the RootMemberIf property.

Constant Description
rootifParentIsBlank Only members with a null, a zero, or an

empty string in their ParentKeyColumn are
treated as root members.

rootifParentIsBlankOrSelfOrMissing Members are treated as root members if they
meet one or more of the conditions specified
by rootifParentIsBlank, rootifParentIsSelf, or
rootifParentIsMissing.

rootifParentIsMissing Only members with parents that cannot be
found are treated as root members.

rootifParentIsSelf Only members with themselves as parents
are treated as root members.

Analysis Services Programming (SQL Server 2000)

ServerStates
ServerStates

Enumerates values for the State property of server objects.

Constant Description
stateConnected The attempt to connect to the server succeeded.
stateFailed The attempt to connect to the server failed.
stateUnknown The application has disconnected from the server or has not yet

connected to the server.

See Also

clsServer

Analysis Services Programming (SQL Server 2000)

StorageModeValues
StorageModeValues

Enumerates values for the StorageMode property of dimension objects.

Constant Description
storeasROLAP Dimension members are not read during processing and

are left in the relational data source.
storeasMOLAP Dimension members are read during processing and are

stored in the Analysis server.

Analysis Services Programming (SQL Server 2000)

SubClassTypes
SubClassTypes

Enumerates values for the SubClassType property.

Constant Description Applies to
sbclsRegular Indicates that the object is a regular

object.

In the case of a cube, it indicates that
the cube is neither linked nor virtual.

All objects

sbclsLinked Indicates that the cube is linked to
another cube on a remote Analysis
server.

clsCube
clsCubeDimension (only
for a private dimension of
a linked cube)

sbclsMining Indicates that the dimension is
based on the content of an OLAP
data mining model that has
processed against a cube.

clsCubeDimension

sbclsNested Indicates that the column contains a
nested table.

clsColumn

sbclsOLAP Indicates that the data mining
model or data mining column is
based on an OLAP cube.

clsMiningModel
clsColumn

sbclsParentChild Indicates that the level is a parent-
child level.

clsAggregationLevel
clsDatabaseLevel
clsCubeLevel
clsPartitionLevel

sbclsRelational Indicates that the data mining
model or data mining column is
based on a relational database.

clsMiningModel
clsColumn

sbclsRemote Indicates that the partition is located
on a remote Analysis server.

clsPartition

sbclsVirtual Indicates that the object is a virtual
cube.

clsCube

See Also

Virtual Cubes

Analysis Services Programming (SQL Server 2000)

Collections
Collections used in Decision Support Objects (DSO) generally operate the way standard Microsoft® Visual Basic® collections do.
However, there are several differences specific to DSO. DSO collections contain methods and properties that have
implementations specifically designed for the DSO object model.

Unlike typical Visual Basic collections, DSO collections can contain only objects of the same type. For example, a Dimensions
collection can contain only objects of the object classes that apply to dimensions, such as ClassType clsDatabaseDimension,
clsCubeDimension, clsPartitionDimension, and clsAggregationDimension. The parent object of a collection determines the
specific ClassType property value for the collection. For example, a Dimensions collection whose parent is of ClassType
clsDatabase can contain only objects of ClassType clsDatabaseDimension.

A collection is considered to be static for an object if the range of acceptable objects in the collection is restricted. For example, the
Roles collection for an object of ClassType clsCube is a static collection because it can only contain role objects that are defined
for the cube's parent database object.

The following table lists the collections used in the DSO object model. With the exception of CustomProperties, all collections
implement the methods and properties supported by the clsCollection object. For more information about the implemented
properties and methods for clsCollection objects, see clsCollection.

Collection Contains objects of ClassType
Commands clsCubeCommand

clsDatabaseCommand
Columns Column objects that make up a mining model's

structure
(ClassType does not apply)

CustomProperties Property Object
(ClassType does not apply)

DataSources clsDataSource
Dimensions clsAggregationDimension

clsCubeDimension
clsDatabaseDimension
clsPartitionDimension

Levels clsAggregationLevel
clsCubeLevel
clsDatabaseLevel
clsPartitionLevel

MDStores clsAggregation
clsCube
clsDatabase
clsPartition

Measures clsAggregationMeasure
clsCubeMeasure
clsPartitionMeasure

MemberProperties clsMemberProperty
MiningModels clsMiningModel
Roles clsCubeRole

clsDatabaseRole

See Also

Methods, clsCollection

Properties, clsCollection

Nested Collections

Analysis Services Programming (SQL Server 2000)

Nested Collections
Nested Collections

For members of a collection that is itself a collection of an object contained in another collection, you can use an intermediate
object to access each collection. For example, if object dsoObject has a collection Collection1 that contains objects of type
dsoObject1, and each of these has a collection Collection2 that contains objects of type dsoObject2, you can access properties
of dsoObject2 objects by setting a temporary object to the intermediate dsoObject1.

Dim TempObject, TempProp
' Retrieve the first level object.
Set TempObject = dsoObject.Collection1(i)
' Retrieve the property.
TempProp = TempObject.Collection2(j).property

Access to the property directly through nested collection references is not implemented in Decision Support Objects (DSO)
collections. For example, the following statement will produce an error:

TempProp = dsoObject.Collection1(i).Collection2(j).property

See Also

Collections

Analysis Services Programming (SQL Server 2000)

Commands Collection
Commands Collection

A Command object encapsulates a user-defined command or sequence of commands that are automatically executed on the
Microsoft® SQL Server™ 2000 Analysis Services client when the user accesses the cube or database. Such commands can include
calculated members, named sets, library references, and so on.

Each of the following objects contains a Commands collection:

clsCube

clsMiningModelRole

clsCubeRole

clsDatabaseRole

Each Commands collection contains command objects of the same class type. The ContainedClassType property of a
Commands collection specifies the class type of the contained objects.

Class type Contained class type
clsCube clsCubeCommand
clsCubeRole clsCubeCommand
clsDatabaseRole clsDatabaseCommand

Remarks

The relative position of commands within a Commands collection determines the order in which the commands are executed.
This is important because it is possible to write commands that depend on previous commands in the collection. For example, a
named set can contain a previously defined calculated member.

As with other Decision Support Objects (DSO) collections, the Add, AddNew, Find, and Remove methods of Commands
collections maintain all necessary parent-child relationships among the objects in the object model.

Note The Commands collection of objects of ClassType clsDatabase is reserved for future use.

See Also

Collections

Collection Methods

Collection Properties

Analysis Services Programming (SQL Server 2000)

CustomProperties Collection
CustomProperties Collection

The CustomProperties collection applies to all Decision Support Objects (DSO) objects and enables you to define unique
properties for DSO objects. The CustomProperties collection contains Property objects that you define to store information you
want to associate with a DSO object. For more information about defining custom properties, see Property Object.

Access

Read/write

Remarks

The CustomProperties collection implements its own methods and properties, which operate differently than those of other
DSO collections.

Example

Use the following code example to add and retrieve custom property objects:

' Assume the existence of an object of ClassType clsDimension.
' Add a custom property.
 Dim dsoProp As DSO.Property
 Set dsoProp = dsoDim.CustomProperties.Add(55, "Age", vbInteger)

' Retrieve custom property values.
 Dim dsoProp2 As DSO.Property
 Set dsoProp2 = dsoDim.CustomProperties(1)
 Debug.Print dsoProp2.Name, dsoProp2.Value

See Also

Collections

Methods, CustomProperties

Properties, CustomProperties

Analysis Services Programming (SQL Server 2000)

Methods, CustomProperties
Methods, CustomProperties

The following methods apply to the CustomProperties collection. They do not apply to other Decision Support Objects (DSO)
collections. For information about methods for other DSO collections, which implement the OlapCollection interface, see
Methods, clsCollection.

Method Description
Add Adds a Property object to a CustomProperties collection
Clear Clears all Property objects from a CustomProperties collection
Item Retrieves a Property object from a CustomProperties collection
Remove Removes a Property object from a CustomProperties collection

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Add (CustomProperties Collection)
Add (CustomProperties Collection)

The Add method of a CustomProperties collection creates a new Property object, adds it to the collection, and returns a
reference to the object. This method applies only to CustomProperties collections.

Syntax

Set vRet = object.Add(ByVal Value, [ByVal Name As String], [ByVal DataType As VBA.VbVarType)

vRet

A Variant variable that receives the instance of the new Property object. Instead of a variant, you can use a variable that has been
declared as type DSO.Property to match the object being retrieved from the collection.

object

An instance of a CustomProperties collection.

Value

A Variant that contains the value of the Property object.

Name

(Optional) A string that specifies the name of the Property object.

DataType

(Optional) The data type of the property. A Microsoft® Visual Basic® data type defined in the VBA.VbVarType enumeration.

See Also

CustomProperties Collection

Property Object

Analysis Services Programming (SQL Server 2000)

Clear (CustomProperties Collection)
Clear (CustomProperties Collection)

The Clear method of a CustomProperties collection clears the collection of all entries. This method applies only to
CustomProperties collections.

Syntax

Object.Clear

object

An instance of a CustomProperties collection.

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Item (CustomProperties Collection)
Item (CustomProperties Collection)

The Item method of a CustomProperties collection returns an instance of an item in the collection. This method applies only to
CustomProperties collections.

Syntax

Set vRet = object.Item(ByVal Index)

vRet

A Variant variable that receives the instance of the new Property object. Instead of a variant, you can use a variable that has been
declared as type DSO.Property to match the object being retrieved from the collection.

object

An instance of a CustomProperties collection.

Index

A Variant that specifies the name or index of the object to retrieve.

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Remove (CustomProperties Collection)
Remove (CustomProperties Collection)

The Remove method of a CustomProperties collection removes an item from the collection.

Syntax

object.Remove(ByVal Index)

object

An instance of a CustomProperties collection.

Index

A Variant that specifies the name or index of the object to remove.

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Properties, CustomProperties
Properties, CustomProperties

The following properties apply to the CustomProperties collection. They do not apply to other Decision Support Objects (DSO)
collections. For information about properties for other DSO collections, which implement the OlapCollection interface, see
Properties, clsCollection.

Property Description
Count The number of Property objects in a CustomProperties collection

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Count (CustomProperties Collection)
Count (CustomProperties Collection)

The Count property of a CustomProperties collection returns the number of items in the collection.

Data Type

Integer

Access

Read-only

Example

The following code example checks to see whether the CustomProperties collection of a database is empty:

Dim dsoServer As New DSO.Server
Dim dsoDB As DSO.Database

' Connect to local Analysis server.
dsoServer.Connect "LocalHost"

' Get reference to FoodMart 2000 database.
Set dsoDB = dsoServer.MDStores("FoodMart 2000")

' Check for custom properties.
If dsoDB.CustomProperties.Count > 0 Then
 ' There is at least one custom property in the
 ' CustomProperties collection.
End If

' Clean up.
Set dsoDB = Nothing
dsoServer.CloseServer

See Also

CustomProperties Collection

Analysis Services Programming (SQL Server 2000)

Columns Collection
Columns Collection

The Columns collection contains the column objects that are the foundation of a data mining model's structure.

The following object contains a Columns collection:

clsMiningModel

Remarks

In order to support nested tables, each column object in the collection also contains its own Columns collection. This collection is
contained by the mining model object (that is, objects whose ClassType property is clsMiningModel). In addition to the
Columns collection, the mining model object also contains other parameters that help to define a model's function.

For more information about nested columns, see Data Mining Columns.

See Also

clsMiningModel

clsColumn

Analysis Services Programming (SQL Server 2000)

DataSources Collection
DataSources Collection

A DataSources collection in a Decision Support Objects (DSO) object contains the data sources that are or can be used by the
subordinate objects in the object.

Each of the following objects contains a DataSources collection:

clsCube

clsDatabase

clsMiningModel

clsPartition

Each subordinate object (that is, a cube, a partition, or a shared dimension) can have a unique data source. For example, although
a cube can contain only one data source in its DataSources collection, each partition or shared dimension within the cube can
have a unique data source.

Regardless of the object in which it resides, each DataSources collection contains objects of ClassType clsDataSource.

Remarks

The DataSources collection contains the name, connection string, and other information used to attach to a data provider.

Note An object of ClassType clsDatabase may have more than one data source contained in the DataSources collection, while
an object of ClassType clsCube can contain only one data source in its DataSources collection. Objects of ClassType
clsMiningModel and SubClassType sbclsRegular will have an OLE DB provider as a data source. For objects of ClassType
clsMiningModel and SubClassType sbclsOlap, the data source is assumed to be the same as for the object where the mining
model is stored.

See Also

clsCube

clsDatabase

clsMiningModel

Collections

Collection Methods

Collection Properties

Analysis Services Programming (SQL Server 2000)

Dimensions Collection
Dimensions Collection

A Dimensions collection holds the dimension definitions for a Decision Support Objects (DSO) object. Each of the following
objects contains a Dimensions collection:

clsDatabase

clsCube

clsPartition

clsAggregation

Each Dimensions collection contains dimension objects of the same class type. The ContainedClassType property of a
Dimensions collection specifies the class type of the contained objects.

Class type Contained class type
clsAggregation clsAggregationDimension
clsCube clsCubeDimension
clsDatabase clsDatabaseDimension
clsPartition clsPartitionDimension

Remarks

As with other collections in the DSO object model, the AddNew, Find, and Remove methods of Dimensions collections
maintain all necessary parent-child relationships among the objects in the object model.

See Also

Collections

Collection Methods

Collection Properties

Analysis Services Programming (SQL Server 2000)

Levels Collection
Levels Collection

The Levels collection holds the level definitions for a Decision Support Objects (DSO) object. Each of the following objects
contains a Levels collection:

clsDatabaseDimension

clsCubeDimension

clsPartitionDimension

clsAggregationDimension

Each Levels collection contains level objects of the same class type. The ContainedClassType property of a Levels collection
specifies the class type of the contained objects.

Class type Contained class type
clsAggregationDimension clsAggregationLevel
clsCubeDimension clsCubeLevel
clsDatabaseDimension clsDatabaseLevel
clsPartitionDimension clsPartitionLevel

Remarks

As with other collections in the DSO object model, the AddNew, Find, and Remove methods of Levels collections maintain all
necessary parent-child relationships among the objects in the object model.

See Also

Collections

Collection Methods

Collection Properties

Dimension Interface

Analysis Services Programming (SQL Server 2000)

MDStores Collection
MDStores Collection

The MDStores collection holds objects that implement the MDStore interface. For example, a myDatabase.MDStores collection
contains objects of ClassType clsCube, and a myCube. MDStores collection contains objects of ClassType clsPartition. For
more information about this hierarchy, see Decision Support Objects.

Each of the following objects contains an MDStores collection:

clsServer

clsDatabase

clsCube

clsPartition

Each MDStores collection contains MDStore objects of the same class type, as noted in the following table. The
ContainedClassType property of an MDStores collection specifies the class type of the contained objects.

Class type Contained class type
clsCube clsPartition
clsDatabase clsCube
clsPartition clsAggregation
clsServer clsDatabase

Remarks

As with other collections in the Decision Support Objects (DSO) object model, the AddNew, Find, and Remove methods of
MDStores collections maintain all necessary parent-child relationships among the objects in the object model.

See Also

Collections

Collection Methods

Collection Properties

Analysis Services Programming (SQL Server 2000)

Measures Collection
Measures Collection

The Measures collection holds the measure definitions for a Decision Support Objects (DSO) object. Each of the following objects
contains a Measures collection:

clsCube

clsPartition

clsAggregation

Each Measures collection contains measure objects of the same class type. The ContainedClassType property of a Measures
collection specifies the class type of the contained objects.

Class type Contained class type
clsAggregation clsAggregationMeasure
clsCube clsCubeMeasure
clsPartition clsPartitionMeasure

Remarks

As with other DSO collections, the AddNew, Find, and Remove methods of Measures collections maintain all necessary parent-
child relationships among the objects in the object model.

See Also

Collections

Collection Methods

Collection Properties

MDStore Interface

Analysis Services Programming (SQL Server 2000)

MemberProperties Collection
MemberProperties Collection

The MemberProperties collection contains objects of ClassType clsMemberProperty. Each of the following objects contains a
MemberProperties collection:

clsDatabaseLevel

clsCubeLevel

clsPartitionLevel

See Also

clsAggregationLevel

clsCubeLevel

clsDatabaseLevel

clsMemberProperty

clsPartitionLevel

Collections

Collection Methods

Collection Properties

Level Interface

Analysis Services Programming (SQL Server 2000)

MiningModels Collection
MiningModels Collection

The MiningModels collection contains the data mining models within a database.

The following object contains a MiningModels collection:

clsDatabase

Each MiningModels collection contains the data mining model objects that make up the data mining models for the entire
database.

Remarks

The ContainedClassType property for this collection always returns clsMiningModel.

Example

The following example connects to an Analysis server and creates a data mining model in the FoodMart 2000 sample database
called FoodMartMiningModel:

Dim s as DSO.Server
Dim db as DSO.MDStores ' Create an interface for the FoodMart 2000
' database.
Dim dmm as DSO.MiningModel
' Connect to the server.
Set s = new DSO.Server
s.Connect ("LocalHost")
' Get a reference to the FoodMart 2000 database.
set db = s.MDStores("FoodMart 2000")
'Create the data mining model using the AddNew method.
set dmm = db.MiningModels.AddNew("FoodMartMiningModel")
' ... Continue by setting various properties for the new object...

See Also

clsMiningModel

clsDatabase

clsServer

Analysis Services Programming (SQL Server 2000)

Roles Collection
Roles Collection

The Roles collection holds the user role definitions for a Decision Support Objects (DSO) object. Each of the following objects
contains a Roles collection:

clsDatabase

clsCube

clsMiningModel

Each Roles collection contains role objects of the same class type. The ContainedClassType property of a Roles collection
specifies the class type of the contained objects.

Class type Contained class type
clsCube clsCubeRole
clsDatabase clsDatabaseRole
clsMiningModel clsMiningModelRole

Remarks

As with other DSO collections, the AddNew, Find, and Remove methods of Roles collections maintain all necessary parent-child
relationships among the objects in the object model.

Note The UsersList property is maintained by clsDatabaseRole, and the Permissions property is maintained by clsCubeRole.

See Also

Collection Methods

Collection Properties

Collections

Permissions

UsersList

Analysis Services Programming (SQL Server 2000)

Add-ins
In Microsoft® SQL Server™ 2000 Analysis Services, Analysis Manager supports the integration of custom programs, referred to
as add-ins, that can interact with and enhance the Analysis Manager user interface. You can create and register add-ins that will
be called by the Microsoft OLAP Services Add-Ins Manager library in response to user activity in the Analysis Manager user
interface. Your custom add-ins can optionally use Decision Support Objects (DSO) to manage server objects. Multiple add-ins can
be registered.

Topic Description
About Add-ins General information about add-in programs
Building Add-ins Step-by-step introduction to building an add-in

program
Programmer's Reference
(Add-ins)

References for the objects, properties, methods, and
collections used in implementing an add-in program

Analysis Services Programming (SQL Server 2000)

About Add-ins
Microsoft® Management Console (MMC) is used by Microsoft SQL Server™ 2000 Analysis Services and other server software
and services to offer a consistent user interface. Analysis Services provides a snap-in program that operates within MMC and calls
the Microsoft OLAP Services Add-ins Manager library, which in turn calls registered add-ins. The Analysis Manager user interface
is implemented as an add-in and is called by the Analysis Services Add-Ins Manager in the same way that your custom add-in will
be called. The functionality for the Analysis Services Add-In Manager is supplied by the Microsoft OLAP Services Add-Ins Manager
library, named Msmdadin.dll.

Your add-in can add nodes to the structure in the tree pane as the user selects or expands a node and can augment node menus
with items that will cause your program to be called when those items are selected. Analysis Manager allows multiple custom
add-ins to be registered and operating at the same time.

Some ideas for custom add-ins are:

Reporting tools

You can use custom add-ins to create reports on multidimensional meta data or usage-based analysis.

Scheduling tools

You can use custom add-ins to create scheduling tools that handle automatic routine administrative activities.

Maintenance tools

You can create custom add-ins to back up data and meta data.

Copying and transferring

You can create custom add-ins to transfer data from a multidimensional data source to a spreadsheet or other analysis tool.

Analysis Services Programming (SQL Server 2000)

Building Add-ins
To create a custom add-in, add Microsoft OLAP Services Add-ins Manager to the available references for your Microsoft®
Visual Basic® project. This library contains the classes, objects, methods, properties, enumerations, and collections you can use in
your program. For more information, see Tutorial - Creating a Sample Add-in and Programmer's Reference (Add-ins).

Decision Support Objects (DSO) can also be used in a custom add-in. To use DSO in an add-in, add Microsoft Decision Support
Objects to the available references for your project. For more information, see Using Decision Support Objects.

Your add-in can add nodes to the structure in the tree pane as the user selects or expands a node and can augment node menus
with items that will cause your program to be called when those items are selected.

The Microsoft OLAP Services Add-Ins Manager library calls your custom add-in to display the objects in the Analysis Manager
user interface and to respond to user activity. If your program does not implement the required IOlapAddIn interface as specified
here, Analysis Manager may fail to operate as designed.

To create a Microsoft SQL Server™ 2000 Analysis Services add-in, you must:

Create a Microsoft ActiveX® DLL project in Visual Basic, using the name of your custom add-in as the project name.

Create one publicly exposed class that implements the IOlapAddIn interface.

Provide your own implementation of each of the IOlapAddIn methods.

Register your custom add-in in the registry.

See Also

Decision Support Objects

IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

Tutorial - Creating a Sample Add-in
Step through the topics in this section to create a sample user interface add-in. If you work through these exercises in order, you
will create a project in Microsoft® Visual Basic® that performs the following functions:

Registers the custom add-in.

Initializes a Visual Basic project.

Adds code to implement a form and place new tree nodes within the Analysis Manager tree pane.

Adds menu items to the new tree nodes.

Registering a Custom Add-in

Add-ins are registered in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\Olap Manager Info\Addins

Each custom add-in contains a string value entry in this registry key and its own key in the registry as well. The string value in the
Addins key and the Addins key itself must have the same name.

Caution The registry keys DSOInfo and MoveRepository are default keys created when you install Microsoft SQL Server™
2000 Analysis Services. They should not be modified or deleted. Doing so will have adverse affects on the intended operation of
Analysis Manager and may result in the loss of data.

Analysis Services Programming (SQL Server 2000)

Example - Report Add-in
The following example shows how to create an add-in that incorporates Decision Support Objects (DSO) functionality. A pop-up
menu item named List is added to the server tree node with options to list Database, Cube, Dimension, and Level objects.
Before you can use this example code, perform the following steps:

1. In Microsoft® Visual Basic®, create a Microsoft ActiveX® DLL project. Name the project ReportAddIn and the publicly
exposed class ReportClass. Ensure that references have been added for Microsoft OLAP Services Add-Ins Manager and
Microsoft Decision Support Objects.

2. Register the add-in.

3. Add a form to the project and name it ReportForm. Include a ListBox control named ObjectList.

For more information, see Tutorial - Creating a Sample Add-in.

Place the following code into the ReportClass class:

Option Explicit
Implements IOlapAddIn

Private dsoServer As DSO.Server 'DSO Server object
Private frmReport As ReportForm
Const OLAPManagerName = "OLAP Manager"
Const ThisAddInName = "ReportAddIn"

Private Enum MenuItems
 mnuParentMenuItem = 1
 mnuListDatabase
 mnuListCube
 mnuListDimension
 mnuListLevel
 mnuObjList
End Enum

Private Sub Class_Initialize()
 Set frmReport = New ReportForm
End Sub

Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItem As DSSAddInsManager.OlapMenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 Dim dsoDB As DSO.MDStore 'Database
 Dim dsoCube As MDStore 'Cube
 Dim dsoDim As DSO.Dimension 'Dimension
 Dim dsoLev As DSO.Level 'Level
 Dim DBCounter As Integer
 Dim CubeCounter As Integer
 Dim DimCounter As Integer
 Dim LevCounter As Integer

 Select Case MenuItem.Key
 Case mnuListDatabase 'List database objects
 frmReport.Caption = "Database Objects"
 For DBCounter = 1 To dsoServer.MDStores.Count
 Set dsoDB = dsoServer.MDStores(DBCounter)
 frmReport.ObjectList.AddItem dsoDB.Name
 Next DBCounter

 Case mnuListCube 'List cube objects
 frmReport.Caption = "Cube Objects"
 For DBCounter = 1 To dsoServer.MDStores.Count
 Set dsoDB = dsoServer.MDStores(DBCounter)
 frmReport.ObjectList.AddItem dsoDB.Name
 For CubeCounter = 1 To dsoDB.MDStores.Count
 Set dsoCube = dsoDB.MDStores(CubeCounter)
 frmReport.ObjectList.AddItem " " & dsoCube.Name
 Next CubeCounter
 Next DBCounter

 Case mnuListDimension 'List dimension objects
 frmReport.Caption = "Dimension Objects"
 For DBCounter = 1 To dsoServer.MDStores.Count
 Set dsoDB = dsoServer.MDStores(DBCounter)

 frmReport.ObjectList.AddItem dsoDB.Name
 For CubeCounter = 1 To dsoDB.MDStores.Count
 Set dsoCube = dsoDB.MDStores(CubeCounter)
 frmReport.ObjectList.AddItem " " & dsoCube.Name
 For DimCounter = 1 To dsoCube.Dimensions.Count
 Set dsoDim = dsoCube.Dimensions(DimCounter)
 frmReport.ObjectList.AddItem " " & _
 dsoDim.Name
 Next DimCounter
 Next CubeCounter
 Next DBCounter

 Case mnuListLevel 'List level objects
 frmReport.Caption = "Level Objects"
 For DBCounter = 1 To dsoServer.MDStores.Count
 Set dsoDB = dsoServer.MDStores(DBCounter)
 frmReport.ObjectList.AddItem dsoDB.Name
 For CubeCounter = 1 To dsoDB.MDStores.Count
 Set dsoCube = dsoDB.MDStores(CubeCounter)
 frmReport.ObjectList.AddItem " " & dsoCube.Name
 For DimCounter = 1 To dsoCube.Dimensions.Count
 Set dsoDim = dsoCube.Dimensions(DimCounter)
 frmReport.ObjectList.AddItem " " & _
 dsoDim.Name
 For LevCounter = 1 To dsoDim.Levels.Count
 Set dsoLev = dsoDim.Levels(LevCounter)
 frmReport.ObjectList.AddItem _
 " " & dsoLev.Name
 Next LevCounter
 Next DimCounter
 Next CubeCounter
 Next DBCounter

 End Select

 'Display the form
 frmReport.Show

End Function

Private Function IOlapAddIn_GetObject(_
 LinkedNode As DSSAddInsManager.OlapTreeNode) As Object

End Function

Private Property Get IOlapAddIn_Name() As String
 IOlapAddIn_Name = ThisAddInName
End Property

Private Sub IOlapAddIn_ProvideChildNodes(_
 ParentNode As DSSAddInsManager.OlapTreeNode, _
 OlapTreeNodes As DSSAddInsManager.OlapTreeNodes)
 'No child nodes needed
End Sub

Private Sub IOlapAddIn_ProvideHTML(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 CurrentURL As String)
 ' If custom HTML pages are needed -
 ' CurrentURL = "{custom.htm}"
End Sub

Private Function IOlapAddIn_ProvideIcon(Index As Integer) _
 As stdole.OLE_HANDLE
 'No icons needed
End Function

Private Sub IOlapAddIn_ProvideMenuItems(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItems As DSSAddInsManager.OlapMenuItems)
 Dim iFlags As OlapMenuFlags

 If CurrentNode.OwnerAddInName = OLAPManagerName Then
 'Do we have as server?
 If CurrentNode.LinkedObject.ClassType = clsServer Then
 Set dsoServer = CurrentNode.LinkedObject

 'If not connected to server, disable menu item
 If dsoServer.State = stateConnected Then
 iFlags = mnuflagRegular + mnuflagPopup
 Else

 iFlags = mnuflagGrayed + mnuflagPopup
 End If

 'Add popup menu item
 MenuItems.Add mnuSeparator
 MenuItems.Add mnuStandard, "&List", _
 mnuParentMenuItem, , iFlags

 'Add popup menu child menu items
 MenuItems.Add mnuStandard, "&Database", _
 mnuListDatabase, mnuParentMenuItem, mnuflagSubmenu
 MenuItems.Add mnuStandard, "&Cube", _
 mnuListCube, mnuParentMenuItem, mnuflagSubmenu
 MenuItems.Add mnuStandard, "&Dimension", _
 mnuListDimension, mnuParentMenuItem, mnuflagSubmenu
 MenuItems.Add mnuStandard, "&Level", _
 mnuListLevel, mnuParentMenuItem, mnuflagSubmenu
 End If
 End If
End Sub

Analysis Services Programming (SQL Server 2000)

Programmer's Reference (Add-ins)
The Microsoft OLAP Services Add-Ins Manager library, Msmdadin.dll, contains the classes, objects, methods, properties,
enumerations, and collections you can use in your program.

Caution It is important that your program use only those elements of the Microsoft OLAP Services Add-Ins Manager library that
are documented here. The use of undocumented library elements that may be exposed in the Object Browser can cause
indeterminate results and possible loss of data.

The Microsoft OLAP Services Add-Ins Manager library calls your custom add-in as it displays objects, such as tree nodes and
menu items, in the Analysis Manager user interface, and in response to user activity with any object, including objects your
custom add-in did not create, in Analysis Manager. Therefore, your custom add-in must implement the required IOlapAddIn
interface, as specified in this section, or Analysis Manager may fail to operate as designed.

To create a custom add-in, add Microsoft OLAP Services Add-Ins Manager to the available references for your Microsoft®
Visual Basic® project.

The following topics further detail the elements of the Microsoft OLAP Services Add-Ins Manager library.

Topic Description
Interfaces Discusses the IOlapAddIn interface,

including its properties and methods
Objects Covers the OlapMenuItem and

OlapTreeNode objects, including their
properties

Enumerations Details several enumerations used by the
rest of the library

Collections Provides information on the properties
and methods of the OlapMenuItems and
OlapTreeNodes collections

Analysis Services Programming (SQL Server 2000)

Interfaces
Although the Microsoft OLAP Services Add-Ins Manager library includes several interfaces, only one needs to be implemented in
order for you to take advantage of the functionality offered by the library.

The IOlapAddIn interface is implemented by all custom applications for Analysis Manager. Many of the methods for the
IOlapAddIn interface involving menu items and tree nodes use the OlapMenuItem objects to supply access to the properties
associated with a menu item and the OlapTreeNode object to supply access to the properties associated with a tree node in
Analysis Manager.

See Also

IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

IOlapAddIn Interface
IOlapAddIn Interface

The IOlapAddIn interface supports the integration of custom add-in applications with Analysis Manager. You can use this
interface in conjunction with Decision Support Objects (DSO) to create customized applications for managing DSO objects and
controlling the server. This interface requires methods and properties. There are no collections exposed by this interface, although
several methods employ collections as arguments.

Caution This interface must be implemented as specified or your add-in (and other add-ins, including Analysis Manager) may
not operate correctly. It is possible for data to be corrupted or lost as a result of incorrect implementation of the IOlapAddIn
interface.

The Class_Initialize subroutine of the class module in which you have implemented the IOlapAddIn interface is called before
any methods of your program are called. After initialization, the Microsoft OLAP Services Add-Ins Manager library can call the
methods of your implementation of the IOlapAddIn interface any number of times and in any sequence.

See Also

Methods, IOlapAddIn Interface

Properties, IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

Methods, IOlapAddIn Interface
Methods, IOlapAddIn Interface

The IOlapAddIn interface requires you to implement the following methods.

Note The syntax descriptions for the methods of the IOlapAddIn interface are shown from the viewpoint of the interface, not
from the viewpoint of a class module implementing the interface. All code examples, however, are shown from the viewpoint of a
class module implementing the IOlapAddIn interface.

Method Description
ExecuteMenuItem Carries out a command in response to a user action
GetObject Returns a reference to the object that is represented by

an OlapTreeNode
ProvideChildNodes Populates an OlapTreeNodes collection so that these

nodes can be displayed in the Analysis Manager tree
pane

ProvideHTML Provides the URL for the HTML pane when the user
clicks a new node in the tree pane

ProvideIcon Specifies the numeric ID for the icons to display when
the user selects a node

ProvideMenuItems Populates a collection of OlapMenuItems for a node in
the tree pane

See Also

IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

ExecuteMenuItem (IOlapAddIn Interface)
ExecuteMenuItem (IOlapAddIn Interface)

The ExecuteMenuItem method of the IOlapAddIn interface is called when the user clicks a menu item. Provide code in this
method to respond to the user's actions.

Syntax

Function ExecuteMenuItem(CurrentNode As OlapTreeNode, MenuItem As OlapMenuItem) As RefreshTreeTypes

CurrentNode

The node that is currently selected in the Analysis Manager tree pane.

MenuItem

The menu item that the user clicked.

Remarks

By querying the properties of the CurrentNode and MenuItem objects, your application can determine which menu item the
user clicked and respond accordingly. The function returns a constant from the RefreshTreeTypes enumeration.

Example

The following example shows how to execute a menu item based upon the caption of the node that is currently selected in the
tree view:

Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItem As DSSAddInsManager.OlapMenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error GoTo ExecuteMenuItem_Err 'Handle errors
 Select Case CurrentNode.Caption
 Case "Add"
 Select Case MenuItem.Key
 Case mnuactAddItem1
 'Code to add item 1
 Case mnuactAddItem2
 'Code to add item 2
 Case mnuactAddItem3
 'Code to add item 3
 End Select

 Case "Edit"
 Select Case MenuItem.Key
 Case mnuactEditItem1
 'Code to edit item 1
 Case mnuactEditItem1
 'Code to edit item 2
 Case mnuactEditItem1
 'Code to edit item 3
 End Select
 End Select

 Exit Function
ExecuteMenuItem_Err:
 MsgBox "ExecuteMenuItem Failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

GetObject (IOlapAddIn Interface)
GetObject (IOlapAddIn Interface)

The GetObject method of the IOlapAddIn interface responds to a request that your add-in return a reference to the object that is
represented by an OlapTreeNode object.

Syntax

Function GetObject(LinkedNode As OlapTreeNode) As Object

LinkedNode

The OlapTreeNode object to be linked with an object.

Remarks

An OlapTreeNode object can have other objects linked to it. The GetLinkedObject method of the OlapTreeNode object can be
used to retrieve these linked objects.

Example

The following example retrieves an item from the OlapTreeNodes collection:

'm_MyObjects is a collection of objects that are represented
'in the Analysis Manager tree pane as members of the OlapTreeNodes
'collection. Your add-in will need to populate this
'collection with objects.

Private m_MyObjects As New Collection
Private Function IOlapAddIn_GetObject(_
 LinkedNode As DSSAddInsManager.OlapTreeNode) As Object
 On Error Resume Next ' Handle error when it happens
 Set IOlapAddIn_GetObject = m_MyObjects(LinkedNode.Caption)
 If Err Then Err.Clear 'Item was not found in the collection
End Function

Analysis Services Programming (SQL Server 2000)

ProvideChildNodes (IOlapAddIn Interface)
ProvideChildNodes (IOlapAddIn Interface)

The ProvideChildNodes method of the IOlapAddIn interface adds nodes under existing nodes to the Analysis Manager tree
pane.

Syntax

Sub ProvideChildNodes(ParentNode As OlapTreeNode, OlapTreeNodes As OlapTreeNodes)

ParentNode

The OlapTreeNode object that is currently selected or being expanded in the tree pane display.

OlapTreeNodes

An empty collection of OlapTreeNode objects. The add-in populates this collection with the child OlapTreeNode objects to be
created under ParentNode.

Remarks

This method responds to a request that the add-in populate an OlapTreeNodes collection. This collection is made of nodes that
belong to the OlapTreeNode object that is currently selected or being expanded. Your add-in uses this method to add nodes to
the tree pane. An add-in uses this method only if it needs to add OlapTreeNode objects to the tree pane.

Example

The following code illustrates how to use this method to add a node to the OlapTreeNodes collection based upon the caption of
the parent node:

'Declarations
Private Enum SampleIcons 'Icons for tree nodes
 icoForm1 = 1
 icoForm2
End Enum
'Other code

Private Sub IOlapAddIn_ProvideChildNodes(_
 ParentNode As DSSAddInsManager.IOlapTreeNode, _
 TreeNodes As DSSAddInsManager.OlapTreeNodes)
 On Error GoTo pc_Err 'Handle errors
 If ParentNode.Caption = "Analysis Servers" Then
 TreeNodes.Add "Sample Form1", icoForm1
 Else
 TreeNodes.Add "Sample Form2", icoForm2
 End If
 Exit Sub
pc_Err:
 MsgBox "ProvideChildNodes Failed"
 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

ProvideHTML (IOlapAddIn Interface)
ProvideHTML (IOlapAddIn Interface)

The ProvideHTML method of the IOlapAddin interface provides the URL for the HTML pane in Analysis Manager when the user
selects a new node in the tree pane.

Syntax

Sub ProvideHTML(CurrentNode As OlapTreeNode, CurrentURL As String)

CurrentNode

The OlapTreeNode that is currently selected

CurrentURL

The source URL

Remarks

The CurrentURL variable initially contains the URL for the HTML file that is currently displayed. If there is no need to display a
different HTML file, the method can exit. Otherwise, set the CurrentURL parameter to the URL for Analysis Manager to display.

Example

The following example uses this method to display the contents of a URL if the parent node's caption is Sample Forms:

Private Sub IOlapAddIn_ProvideHTML(CurrentNode As DSSAddInsManager.OlapTreeNode, CurrentURL As String)
 On Error GoTo IOlapAddIn_ProvideHTML_Err

 'Check to see whether the provided node is owned by another add-in
 If CurrentNode.OwnerAddInName <> ThisAddInName Then
 'Work with node owned by another add-in
 Exit Sub
 End If
'This add-in owns the node

 'Assume that the files form1.htm and form2.htm exist
 If CurrentNode.Caption = "Sample Forms" Then
 CurrentURL = App.Path & "\form1.htm"
 Else
 CurrentURL = App.Path & "\form2.htm"
 End If

 Exit Sub
IOlapAddIn_ProvideHTML_Err:
 Debug.Print Err.Number, Err.Description, Err.Source
 Debug.Assert False
 MsgBox "ProvideHTML method failed."
 Err.Clear
 Exit Sub
End Sub

Analysis Services Programming (SQL Server 2000)

ProvideIcon (IOlapAddIn Interface)
ProvideIcon (IOlapAddIn Interface)

The ProvideIcon method of the IOlapAddIn interface is called by the Microsoft OLAP Services Add-Ins Manager library to load
an available icon from a resource file.

Syntax

Function ProvideIcon(Index As Integer) As OLE_HANDLE

Index

The requested index for the icon resource.

Remarks

This method responds to a request for an OLE_HANDLE that contains the handle of an icon to be used for a tree node in Analysis
Manager. If an icon handle is supplied, the icon is then loaded for use in the tree pane. If no icon handle is supplied, the icon is
then loaded from a default resource file.

Example

The following code adds an icon to the tree pane:

Private Const FirstIconID = 1
Private Const LastIconID = 4
'Other code

Private Function IOlapAddIn_ProvideIcon(Index As Integer) _
 As stdole.OLE_HANDLE
 On Error GoTo ProvideIcon_Err 'Handle errors
 If Index >= FirstIconID Or Index <= LastIconID Then
 IOlapAddIn_ProvideIcon = LoadResPicture(Index, vbResIcon)
 End If
 Exit Function
ProvideIcon_Err:
 MsgBox "ProvideIcon failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

ProvideMenuItems (IOlapAddIn Interface)
ProvideMenuItems (IOlapAddIn Interface)

The ProvideMenuItems method of the IOlapAddIn interface enables default menu items and adds new menu items to the
current tree node.

Syntax

Sub ProvideMenuItems(CurrentNode As OlapTreeNode, MenuItems As OlapMenuItems)

CurrentNode

The OlapTreeNode object that is selected for menu display in the tree pane when users right-click.

MenuItems

A collection of OlapMenuItem objects.

Remarks

This method responds when the calling subroutine sends a request for default menu items to be enabled or for new menu items
to be added. When your add-in enables default menu items, it should also provide associated child menu items.

Note You should initialize the enumerations provided for menu items and menu actions added to MenuItems with a positive,
nonzero value. Enumerations initialized to zero may cause unpredictable results when this method provides menu items for a
custom add-in.

Example

The following example enables a new default menu item:

Private Enum MenuActions
 mnuActTop = 1
 mnuActMid
 mnuActBtm
 mnuActSpc
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(CurrentNode As _
 DSSAddInsManager.OlapTreeNode, MenuItems As _
 DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 If CurrentNode.Caption = "Node 1" Then
 'Enable default new menu item and add child menu items
 MenuItems.Add mnuStandard, "&Top", mnuActTop, , mnuflagNew
 MenuItems.Add mnuStandard, "&Mid", mnuActMid, , mnuflagNew
 MenuItems.Add mnuStandard, "&Btm", mnuActBtm, , mnuflagNew
 'Add regular menu item to root menu
 MenuItems.Add mnuStandard, "&Special", mnuActSpc, , mnuflagRegular
 End If
 Exit Sub

ProvideMenuItems_Err:
 MsgBox "ProvideMenuItems failed"
 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

Properties, IOlapAddIn Interface
Properties, IOlapAddIn Interface

The IOlapAddIn interface requires you to provide one property.

Property Description
Name The name of the add-in

See Also

IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

Name (IOlapAddIn Interface)
Name (IOlapAddIn Interface)

 New Information - SQL Server 2000 SP3.

The Name property of the IOlapAddIn interface returns the name of your add-in to the calling program. The value of this
property is used to identify the program that provides objects to the Microsoft OLAP Services Add-Ins Manager library.

Data Type

String

Remarks

Do not use OLAP Manager as the name of a custom add-in.

Example

The following example returns the name of the custom add-in:

Private ThisAddInName = "MySampleAddIn"
'More code

Private Property Get IOlapAddIn_Name() As String
 On Error Resume Next 'Defer errors
 IOlapAddIn_Name = ThisAddInName
 Err.Clear 'Clears errors if any occurred
End Property

Analysis Services Programming (SQL Server 2000)

Objects
The Microsoft OLAP Services Add-Ins Manager library includes several objects; only two are directly exposed by the IOlapAddIn
interface.

The OlapMenuItem object is used by several methods in the IOlapAddIn interface to provide access to the properties of menu
items in Analysis Manager. Similarly, the OlapTreeNode object is also used by several methods in the IOlapAddIn interface to
provide access to the properties of tree nodes in Analysis Manager.

The following topics detail the properties exposed by these two objects.

Topic Description
OlapMenuItem Details the properties available to the

OlapMenuItem object
OlapTreeNode Details the properties and events available

to the OlapTreeNode object

See Also

IOlapAddIn Interface

Analysis Services Programming (SQL Server 2000)

OlapMenuItem
OlapMenuItem

The OlapMenuItem object contains the properties of a menu item in Analysis Manager. There are no collections or methods
associated with this object.

See Also

Properties, OlapMenuItem

Analysis Services Programming (SQL Server 2000)

Properties, OlapMenuItem
Properties, OlapMenuItem

An OlapMenuItem object contains the following properties.

Property Description
Caption The menu item caption.
Disabled Indicates whether the menu item is disabled.
Flags Flags that describe the actual state of the

OlapMenuItem object.
HelpContextId The Help context ID (optional).
HelpFileName The Help file name (optional).
Key The user-defined value assigned to the menu item.
OwnerAddInName The name of the add-in associated with the menu item. It

is set automatically by the Microsoft OLAP Services Add-
Ins Manager library.

OwnerAddInProgId The program ID of the add-in associated with the menu
item. It is set automatically by the Microsoft OLAP
Services Add-Ins Manager library.

ParentKey The parent key value used to associate a child menu item
with a parent or owner pop-up menu item.

Analysis Services Programming (SQL Server 2000)

Caption (OlapMenuItem)
Caption (OlapMenuItem)

The Caption property of an OlapMenuItem object contains the caption exposed in the menu for the node in the tree pane.

Data Type

String

Access

Read/write

Example

The following example adds a Form menu item and tests the caption property of a selected item to determine whether it is this
same Form menu item:

'Custom add-in
Private Enum MenuActions
 mnuActAddNewForm
 mnuActRefreshForm
 mnuActDeleteForm
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(_
 CurrentNode Ad DSSAddInsManager.OlapTreeNode, _
 MenuItems As DSSAddInsManager.OlapMenuItems)
 On Error Resume Next 'Handle errors
 'MenuItems is a collection for MenuItem objects
 'Some more code...
 'Menu item Form is added as a child of the standard New menu item
 MenuItems.Add mnuStandard, "&Form", mnuActAddNewForm,,mnuflagNew
End Sub

'Later
Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.IOlapTreeNode, _
 MenuItem As DSSAddInsManager.IOlapmenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error GoTo ExecuteMenuItem_Err 'Handle errors
 'Some code
 If MenuItem.Caption = "Form" Then
 'Code to handle New/Form menu selection
 End If
 Exit Function
ExecuteMenuItem_Err:
 MsgBox "ExecuteMenuItem Failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

Disabled (OlapMenuItem)
Disabled (OlapMenuItem)

The Disabled property of an OlapMenuItem object determines whether the menu item is enabled or disabled.

Data Type

Boolean

Access

Read/write

Remarks

This property determines the visible state of the tree node menu item. If disabled, the menu item appears dimmed.

Example

The following example displays a message box if the selected menu item is disabled:

Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.IOlapTreeNode, _
 MenuItem As DSSAddInsManager.IOlapmenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error GoTo ExecuteMenuItem_Err 'Handle errors
 'Some more code
 If MenuItem.Disabled = TRUE Then
 MsgBox "Disabled: Cannot execute at this time"
 End If
 Exit Function
ExecuteMenuItem_Err:
 MsgBox "ExecuteMenuItem failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

Flags (OlapMenuItem)
Flags (OlapMenuItem)

The Flags property of an OlapMenuItem object determines the state of the menu item, such as whether the item is enabled, the
place of the item in the menu hierarchy, and so on.

Data Type

Integer representing a bitmask of constants in the OlapMenuFlags enumeration.

Access

Read/write

Remarks

Values can be combined from the OlapMenuFlags enumeration using a bitwise OR operator.

Example

The following example adds a menu item, marks it as new, and ensures that it is unchecked:

'Custom add-in
Private Enum MenuActions
 mnuActAddNewForm
 mnuActRefreshForm
 mnuActDeleteForm
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(_
 CurrentNode Ad DSSAddInsManager.OlapTreeNode, _
 MenuItems As DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 'MenuItems is a collection for MenuItem objects
 'Some more code
 'Menu item Form is added as a child of the standard New menu item
 MenuItems.Add mnuStandard, "&Form", mnuActAddNewForm, , _
 mnuflagNew + NOT mnuflagChecked
 Exit Sub
ProvideMenuItems_Err:
 MsgBox "ProvideMenuItems Failed"
 Err.Clear
End Sub

'Later
Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.IOlapTreeNode, _
 MenuItem As DSSAddInsManager.IOlapmenuItem) _
 As DSSAddInsManager.refreshTreeTypes
 On Error GoTo ExecuteMenuItem_Err 'Handle errors
 If MenuItem.Flag AND NOT mnuflagChecked Then
 'menu item unchecked, execute code
 End If
 Exit Function
ExecuteMenuItem_Err:
 MsgBox "ExecutemenuItem Failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

HelpContextId (OlapMenuItem)
HelpContextId (OlapMenuItem)

The HelpContextId property of an OlapMenuItem object contains the Help context ID number associated with the item.

Data Type

Long

Access

Read/write

Remarks

This property returns or sets an associated context ID number for an object. It is used to provide context-sensitive Help for your
application. You must provide the Help file and identify it using the HelpFileName property. For more information about the
HelpContextID property, see the Microsoft® Visual Basic® documentation.

Example

Private Enum MenuActions
 mnuActTop
 mnuActMid
 mnuActBtm
 mnuActSpc
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(CurrentNode _
 As DSSAddInsManager.OlapTreeNode, MenuItems _
 As DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 If CurrentNode.Caption = "Node 1" Then
 'Enable default New menu item and add child menu items
 MenuItems.Add mnuStandard, "&Top", mnuActTop, , mnuflagNew
 MenuItems.Add mnuStandard, "&Mid", mnuActMid, , mnuflagNew
 MenuItems.Add mnuStandard, "&Btm", mnuActBtm, , mnuflagNew
 'Add regular menu item to root menu
 MenuItems.Add mnuStandard, "&Special", mnuActSpc, , _
 mnuflagRegular
 MenuItems.HelpContextID = 100
 End If
 Exit Sub

ProvideMenuItems_Err:
 MsgBox "ProvideIcon failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

HelpFileName (OlapMenuItem)
HelpFileName (OlapMenuItem)

The HelpFileName property of an OlapMenuItem object specifies the name of the Help file that contains the Help topic
identified by the HelpContextID property. You must provide the Help file.

Data Type

String

Access

Read/write

See Also

HelpContextID

OlapMenuItem

Analysis Services Programming (SQL Server 2000)

Key (OlapMenuItem)
Key (OlapMenuItem)

The Key property of an OlapMenuItem object contains a value specified by your add-in that uniquely identifies the menu item.

Data Type

Long

Access

Read/write

Remarks

This property is a user-defined value assigned by the add-in.

Example

Private Enum MenuActions
 mnuActAddNewForm
 mnuActRefreshForm
 mnuActDeleteForm
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItems As DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 'MenuItems is a collection for MenuItem objects
 'Some more code
 'Menu item Form is added as a child of the standard New menu item
 'mnuActAddNewForm is our Key value
 MenuItems.Add mnuStandard, "&Form",mnuActAddNewForm,,mnuflagNew
 Exit Sub
ProvideMenuItems_Err:
 MsgBox "ProvideMenuItems Failed"
 Err.Clear
End Sub

'Later
Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.IOlapTreeNode, _
 MenuItem As DSSAddInsManager.IOlapmenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error GoTo ExecuteMenuItem_Err 'Handle errors
 'some code
 'Check the Key value
 If MenuItem.Key = mnuActAddNewForm Then
 'code to add a new form
 End If
 Exit Function
ExecuteMenuItem_Err:
 MsgBox "ExecutemenuItem Failed"
 Err.Clear
End Function

Analysis Services Programming (SQL Server 2000)

OwnerAddInName (OlapMenuItem)
OwnerAddInName (OlapMenuItem)

The OwnerAddInName property of an OlapMenuItem object contains the name of the add-in that owns the menu item.

Data Type

String

Access

Read/write

Remarks

This property is set automatically by the Microsoft OLAP Services Add-ins Manager library. You can use this property to identify
the items your program owns and the programs that own other items.

Example

The following example prints OwnerAddInName property in a message box:

Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItem As DSSAddInsManager.OlapMenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error Resume Next 'Handle errors
 If MenuItem.Caption = "&Special" Then
 MsgBox "OwnerAddInName is: " & MenuItem.OwnerAddInName
 End If
End Function

Analysis Services Programming (SQL Server 2000)

OwnerAddInProgID (OlapMenuItem)
OwnerAddInProgID (OlapMenuItem)

The OwnerAddInProgID property of an OlapMenuItem object contains the program ID of the add-in that owns the menu item.

Data Type

String

Access

Read/write

Remarks

This property is set automatically by the Microsoft OLAP Services Add-ins Manager library. The program ID is set in the registry
when the add-in is registered, and it consists of the program name of the add-in and the name of the class used to instantiate the
add-in. For example, the Report Add-In example uses the following program ID:

ReportAddIn.ReportClass

Example

The following example prints the OwnerAddInProgID property in a message box:

Private Function IOlapAddIn_ExecuteMenuItem(_
 CurrentNode As DSSAddInsManager.OlapTreeNode, _
 MenuItem As DSSAddInsManager.OlapMenuItem) _
 As DSSAddInsManager.RefreshTreeTypes
 On Error Resume Next 'Handle errors
 If MenuItem.Caption = "&Special" Then
 MsgBox "OwnerAddInProgID is: " & MenuItem.OwnerAddInProgID
 End If
End Function

Analysis Services Programming (SQL Server 2000)

ParentKey (OlapMenuItem)
ParentKey (OlapMenuItem)

The ParentKey property of an OlapMenuItem object contains the Key property of the parent of the menu item.

Data Type

Long

Access

Read/write

Remarks

The ParentKey property is used to associate a child menu item with a parent (or owner) pop-up menu item.

Example

The following example builds a menu item with child menu items underneath it:

Private Enum PopupItems
 mnuPopSpecial
 mnuPopAverage
 mnuPopPoor
End Enum

Private Enum MenuActions
 mnuAddNew
 mnuRefresh
 mnuDelete
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(_
 CurrentNode Ad DSSAddInsManager.OlapTreeNode, _
 MenuItems As DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 'MenuItems is a collection for MenuItem objects
 'Some more code
 '"Special" is displayed on the root menu as a pop-up
 '"New", "Refresh", and "Delete" are items on Special's child menu
 'flagged by the mnuPopSpecial enumeration
 MenuItems.Add mnuStandard, "&Special", mnuPopSpecial, , _
 mnuflagRegular + mnuflagPopup
 MenuItems.Add mnuStandard, _
 "&New", mnuAddNew, mnuPopSpecial, mnuflagSubmenu
 MenuItems.Add mnuStandard, _
 "&Refresh", mnuRefresh, mnuPopSpecial, mnuflagSubmenu
 MenuItems.Add mnuStandard, _
 "&Delete", mnuDelete, mnuPopSpecial, mnuflagSubmenu
 Exit Sub
ProvideMenuItems_Err:
 MsgBox "ProvideMenuItems Failed"
 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

OlapTreeNode
OlapTreeNode

The OlapTreeNode object provides the properties associated with a tree node in Analysis Manager. This object provides no
collections or methods.

Note Events for the OlapTreeNode object exposed in the Microsoft® Visual Basic® Object Browser are not appropriate for use
by add-ins.

See Also

Properties, OlapTreeNode

Analysis Services Programming (SQL Server 2000)

Properties, OlapTreeNode
Properties, OlapTreeNode

The OlapTreeNode object contains the following properties.

Property Description
Caption The OlapTreeNode caption.
HelpContextId The Help context ID (optional).
IconClosed The icon to display when the tree node is collapsed.
IconOpen The icon to display when the tree node is expanded.
LinkedObject The object linked to the OlapTreeNode object.
OwnerAddInName The name of the add-in associated with the tree node. It

is set automatically by the Microsoft OLAP Services Add-
ins Manager library.

OwnerAddInProgId The program ID of the add-in associated with the tree
node. It is set automatically by the Microsoft OLAP
Services Add-ins Manager library.

Parent The parent OlapTreeNode object of the current node.

See Also

OlapTreeNode

Analysis Services Programming (SQL Server 2000)

Caption (OlapTreeNode)
Caption (OlapTreeNode)

The Caption property of an OlapTreeNode object contains the value displayed in the tree node.

Data Type

String

Access

Read/write

See Also

OlapTreeNode

Analysis Services Programming (SQL Server 2000)

HelpContextId (OlapTreeNode)
HelpContextId (OlapTreeNode)

The HelpContextId property of an OlapTreeNode object contains the Help context ID number associated with the item.

Data Type

Long

Access

Read/write

See Also

OlapTreeNode

Analysis Services Programming (SQL Server 2000)

IconClosed (OlapTreeNode)
IconClosed (OlapTreeNode)

The IconClosed property of an OlapTreeNode object specifies the index of the icon to display when the node is collapsed.

Data Type

Long

Access

Read/write

Remarks

The ProvideIcon method of the IOlapAddIn interface is called when this tree node displays the icon used when the node is
collapsed. The value of the IconClosed property of the OlapTreeNode is used in the ProvideIcon method to indicate which icon
is to be referenced.

See Also

OlapTreeNode

ProvideIcon (IOlapAddIn Interface)

Analysis Services Programming (SQL Server 2000)

IconOpen (OlapTreeNode)
IconOpen (OlapTreeNode)

The IconOpen property of an OlapTreeNode object specifies the icon to display when the node is expanded.

Data Type

Long

Access

Read/write

Remarks

The ProvideIcon method of the IOlapAddIn interface is called when this tree node displays the icon used when the node is
expanded. The value of the IconOpen property of the OlapTreeNode is used in the ProvideIcon method to indicate which icon
is to be referenced.

See Also

OlapTreeNode

ProvideIcon (IOlapAddIn Interface)

Analysis Services Programming (SQL Server 2000)

LinkedObject (OlapTreeNode)
LinkedObject (OlapTreeNode)

The LinkedObject property of an OlapTreeNode object contains a reference to the object linked to the node. The linked object is
supplied by the add-in through the GetObject method of the IOlapAddIn interface, and it is used to store object references
associated with a tree node in Analysis Manager.

Data Type

Object

Access

Read-only

Remarks

This property is useful when combined with another object-based library, such as Decision Support Objects (DSO). Combining the
two allows this property to store object references that are relevant to the add-in for a given tree node in Analysis Manager.

In addition, tree nodes owned by Analysis Manager have DSO references to the appropriate object represented by the tree node.
For example, a tree node in Analysis Manager for an Analysis server has a DSO Server object associated with it.

The GetObject method of the IOlapAddIn interface is used to provide object references for other tree nodes in Analysis
Manager.

Example

The following example checks the LinkedObject property of the OlapTreeNode supplied by LinkedNode in the GetObject
method of the IOlapAddIn interface:

Private Function IOlapAddIn_GetObject(LinkedNode As _
 DSSAddInsManager.OlapTreeNode) As Object

 On Error Resume Next

 If Not (LinkedNode.LinkedObject Is Nothing) Then
 ' It already has a linked object
 Beep
 End If

End Function

Analysis Services Programming (SQL Server 2000)

OwnerAddInName (OlapTreeNode)
OwnerAddInName (OlapTreeNode)

The OwnerAddInName property of an OlapTreeNode object contains the name of the add-in that owns the object.

Data Type

String

Access

Read/write

Remarks

The add-in name for the current OlapTreeNode is set automatically by the Microsoft OLAP Services Add-ins Manager library.

See Also

OlapTreeNode

Analysis Services Programming (SQL Server 2000)

OwnerAddInProgID (OlapTreeNode)
OwnerAddInProgID (OlapTreeNode)

The OwnerAddInProgID property of an OlapTreeNode object contains the program ID of the add-in that owns the tree node.

Data Type

String

Access

Read/write

Remarks

This property is set automatically by the Microsoft OLAP Services Add-ins Manager library. The program ID is set in the registry
when the add-in is registered, and it consists of the program name of the add-in and the name of the class used to instantiate the
add-in. For example, the Report Add-In example uses the following program ID:

ReportAddIn.ReportClass

Example

The following example prints the OwnerAddInProgID property in a message box:

Private Function IOlapAddIn_GetObject(LinkedNode As _
 DSSAddInsManager.OlapTreeNode) As Object

 On Error Resume Next

 If LinkedNode.Caption = "Samples Forms" Then
 MsgBox "OwnerAddInProgID is: " & LinkedNode.OwnerAddInProgId
 End If

End Function

Analysis Services Programming (SQL Server 2000)

Parent (OlapTreeNode)
Parent (OlapTreeNode)

The Parent property of an OlapTreeNode object contains a reference to the parent tree node of the selected tree node.

Data Type

OlapTreeNode

Access

Read-only

See Also

OlapTreeNode

Analysis Services Programming (SQL Server 2000)

Enumerations
The Microsoft OLAP Services Add-ins Manager library includes the following enumerations.

Enumeration Description
errDSSAddinErrorNumbers Enumerates errors that can be raised by the Microsoft

OLAP Services Add-ins Manager library
OlapMenuFlags Enumerates flags that set characteristics of a menu

item
OlapMenuTypes Enumerates types of menu items
RefreshTreeTypes Enumerates values for the modes of refreshing the

Analysis Manager tree pane

Analysis Services Programming (SQL Server 2000)

errDSSAddinErrorNumbers
errDSSAddinErrorNumbers

The errDSSAddinErrorNumbers enumeration provides the following constants.

Constant Description
errCaptionRequired An error with this error code is raised if you attempt to

use the Add method of the OlapTreeNodes or
OlapMenuItems collections with a zero-length caption.

errInvalidMenuType An error with this error code is raised if you attempt to
use the Add method of the OlapMenuItems collection
with a MenuType value other than mnuStandard or
mnuSeparator.

Analysis Services Programming (SQL Server 2000)

OlapMenuFlags
OlapMenuFlags

The OlapMenuFlags enumeration provides constants for the modes of menu items in the Analysis Manager tree pane.

Constant Description
mnuflagChecked Indicates that a check mark is to be displayed next to a

menu item.
mnuflagDeleteKey Enables the Delete menu item. It also enables the

Delete button on the toolbar and the DELETE key on the
keyboard.

mnuflagDisabled Disables a menu item. However, it will appear to be
enabled. To fully disable a menu item, use the
mnuflagGreyed flag instead.

mnuflagDoubleClick Reserved.
mnuflagF1 Reserved.
mnuflagGrayed Disables a menu item.
mnuflagInsertKey Reserved.
mnuflagNew Enables the New menu item as a pop-up menu. Menu

items added with this flag appear as child menu items
when New is selected from the OlapTreeNode parent
menu.

mnuflagPopup Indicates that a newly defined menu item is a pop-up
menu. Child menu items are displayed when the menu
item is selected.

mnuflagRegular Places an item on the root menu of an OlapTreeNode.
mnuflagSeparator Indicates that the menu item is a separator bar.
mnuflagSubmenu Indicates that the menu item belongs to a child menu of

the parent pop-up menu item.
mnuflagTask Enables the Task menu item as a pop-up menu. Menu

items added with this flag appear as child menu items
when Task is selected from the OlapTreeNode parent
menu.

Remarks

These flags are commonly combined by adding them together using the addition operator or the logical OR operator.

Example

The following code identifies a menu item as a child menu item and then disables it, leaving its appearance unchanged:

mnuflagSubmenu OR mnuflagDisabled

Analysis Services Programming (SQL Server 2000)

OlapMenuTypes
OlapMenuTypes

The OlapMenuTypes enumeration provides constants for the types of menu items in the Analysis Manager tree pane.

Constant Description
mnuSeparator Indicates that the menu item is a separator bar
mnuStandard Indicates that the menu item is a standard menu item

Analysis Services Programming (SQL Server 2000)

RefreshTreeTypes
RefreshTreeTypes

The RefreshTreeTypes enumeration provides constants for refreshing the Analysis Manager tree pane by means of the pane's
Refresh method or an event that invalidates the pane's contents.

Member Description
reftreeNoRefresh Indicates that the tree pane will not be refreshed
reftreeParentAndBelow Indicates that the parent of the current node and all of

the children of the parent node will be refreshed
reftreeCurrentAndBelow Indicates that the current node and all of its child nodes

will be refreshed
reftreeAllTree Indicates that the entire tree pane is refreshed

Analysis Services Programming (SQL Server 2000)

Collections
Two collections, OlapMenuItems and OlapTreeNodes, are used by several methods of the IOlapAddIn interface to provide
collections of menu items and tree nodes, respectively, to Analysis Manager.

The following topics detail the properties and methods supplied by these collections.

Topic Description
OlapMenuItems Describes the properties and methods

associated with the OlapMenuItems
collection

OlapTreeNodes Details the properties and methods
associated with the OlapTreeNodes
collection

Analysis Services Programming (SQL Server 2000)

OlapMenuItems
OlapMenuItems

The OlapMenuItems collection contains OlapMenuItem objects.

This collection contains methods and properties. There are no collections associated with this object.

See Also

Methods, OlapMenuItems

OlapMenuItem

Properties, OlapMenuItems

Analysis Services Programming (SQL Server 2000)

Methods, OlapMenuItems
Methods, OlapMenuItems

The OlapMenuItems collection contains the following methods.

Method Description
Add Adds an item to the collection
Remove Removes an item from the collection

Analysis Services Programming (SQL Server 2000)

Add (OlapMenuItems)
Add (OlapMenuItems)

The Add method of the OlapMenuItems collection adds a new OlapMenuItem object to the collection. It returns an object of
type OlapMenuItem.

Syntax

Set vnt = object.Add(MenuType As OlapMenuTypes, [Caption As String], [Key As Long], [ParentKey As Long], [Flags As
OlapMenuFlags])

vnt

An instance of OlapMenuItem that receives the instance of the new member.

object

An instance of the OlapMenuItems collection.

MenuType

A constant from the OlapMenuTypes enumeration.

Caption

The string value to be displayed in the menu.

Key

User-defined key value to be used by the add-in.

ParentKey

Associates a child menu item with its parent. Used when the parent menu item is defined using the mnuflagPopup option in
MenuType.

Flags

A bitmask of values from the OlapMenuFlags enumeration.

Remarks

The Add method is used to populate the OlapMenuItems collection with menu items to be displayed when the user right-clicks
a tree node. Call this method for each menu item you want to add.

Example

The following example builds a menu with various menu items:

Private Enum MenuActions
 mnuActTop
 mnuActMid
 mnuActBtm
 mnuActSpc
End Enum

Private Sub IOlapAddIn_ProvideMenuItems(CurrentNode As DSSAddInsManager.OlapTreeNode, MenuItems As
DSSAddInsManager.OlapMenuItems)
 On Error GoTo ProvideMenuItems_Err 'Handle errors
 If CurrentNode.Caption = "Node 1" Then
 'Enable default New menu item and add child menu items
 MenuItems.Add mnuStandard, "&Top", mnuActTop, , mnuflagNew
 MenuItems.Add mnuStandard, "&Mid", mnuActMid, , mnuflagNew
 MenuItems.Add mnuStandard, "&Btm", mnuActBtm, , mnuflagNew
 'Add regular menu item to root menu
 MenuItems.Add mnuStandard, "&Special", mnuActSpc, , mnuflagRegular
 End If
 Exit Sub

ProvideMenuItems_Err:
 MsgBox "ProvideIcon failed"

 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

Remove (OlapMenuItems)
Remove (OlapMenuItems)

The Remove method of the OlapMenuItems collection removes an OlapMenuItem object from the collection.

Syntax

object.Remove(Index)

object

An instance of the OlapMenuItems collection.

Index

Specifies the index of the object to be removed from the collection. If it is an integer, Index specifies the ordinal position of the
item in the collection. If it is a string, Index specifies the key assigned to the item when it was added to the collection.

See Also

OlapMenuItem

OlapMenuItems

Analysis Services Programming (SQL Server 2000)

Properties, OlapMenuItems
Properties, OlapMenuItems

The OlapMenuItems collection contains the following properties.

Property Description
Count The number of OlapMenuItem objects in the

OlapMenuItems collection
Item The OlapMenuItem object to be returned from the

OlapMenuItems collection

See Also

OlapMenuItem

OlapMenuItems

Analysis Services Programming (SQL Server 2000)

Count (OlapMenuItems)
Count (OlapMenuItems)

The Count property of an OlapMenuItems collection returns the number of items in the collection.

Syntax

object.Count

object

An instance of the OlapMenuItems collection.

Data Type

Long

Remarks

Use this property to iterate through a collection of menu items.

See Also

OlapMenuItems

Analysis Services Programming (SQL Server 2000)

Item (OlapMenuItems)
Item (OlapMenuItems)

The Item property of an OlapMenuItems collection retrieves a specified item from the collection.

Syntax

object.Item(Index)

object

An instance of the OlapMenuItems collection.

Index

Specifies the index of the object to be retrieved from the collection. If it is an integer, Index specifies the ordinal position of the
item in the collection. If it is a string, Index specifies the key assigned to the item when it was added to the collection.

Data Type

OlapMenuItem

Remarks

Use this method to retrieve a specific OlapMenuItem reference from the collection.

See Also

OlapMenuItems

Analysis Services Programming (SQL Server 2000)

OlapTreeNodes
OlapTreeNodes

The OlapTreeNodes collection contains OlapTreeNode objects.

This collection contains methods and properties.

See Also

Methods, OlapTreeNodes

OlapTreeNode

Properties, OlapTreeNodes

Analysis Services Programming (SQL Server 2000)

Methods, OlapTreeNodes
Methods, OlapTreeNodes

The OlapTreeNodes collection contains the following methods.

Method Description
Add Adds an item to the collection
Remove Removes an item from the collection

See Also

OlapTreeNodes Collection

Analysis Services Programming (SQL Server 2000)

Add (OlapTreeNodes)
Add (OlapTreeNodes)

The Add method of the OlapTreeNodes collection adds a new OlapTreeNode object to the collection. This method returns an
object of type OlapTreeNode.

Syntax

Set vnt = object.Add(Caption As String, IconClosed As Integer, [IconOpen As Integer])

vnt

An instance of OlapTreeNode that receives the instance of the new member.

object

An instance of the OlapTreeNodes collection.

Caption

The string value to be displayed for the tree node.

IconClosed

The index of the icon resource displayed when the tree node is collapsed.

IconOpen

(Optional)The index of the icon resource displayed when the tree node is expanded.

Remarks

The Add method is used to populate the OlapTreeNodes collection with child nodes that are displayed in the tree. Call this
method for each OlapTreeNode object you want to add.

Example

Private Enum NodeIcons
 icoNode1 = 1
 icoNode2
 icoNode3
End Enum

Private Sub IOlapAddIn_ProvideChildNodes(_
 ParentNode As DSSAddInsManager. OlapTreeNode, _
 OlapTreeNodes As DSSAddInsManager.OlapTreeNodes)
 On Error GoTo ProvideChildNodes_Err 'Handle errors

 If ParentNode.Caption = "Analysis Servers" Then
 OlapTreeNodes.Add "Node 1", icoNode1
 OlapTreeNodes.Add "Node 2", icoNode2
 OlapTreeNodes.Add "Node 3", icoNode3
 End If

 Exit Sub
ProvideChildNodes_Err:
 Debug.Print Err.Number, Err.Description, Err.Source
 Debug.Assert False
 MsgBox "ProvideChildNodes Failed"
 Err.Clear
End Sub

Analysis Services Programming (SQL Server 2000)

Remove (OlapTreeNodes)
Remove (OlapTreeNodes)

The Remove method of the OlapTreeNodes collection removes an existing OlapTreeNode object from the collection.

Syntax

object.Remove(Index)

object

An instance of the OlapTreeNodes collection.

Index

Specifies the index of the object to be removed from the collection. If it is an integer, Index specifies the ordinal position of the
item in the collection. If it is a string, Index specifies the key assigned to the item when it was added to the collection.

See Also

OlapTreeNode

OlapTreeNodes Collection

Analysis Services Programming (SQL Server 2000)

Properties, OlapTreeNodes
Properties, OlapTreeNodes

The OlapTreeNodes collection provides the following properties.

Property Description
Count The number of OlapTreeNode objects in the

OlapTreeNodes collection
Item A specified OlapTreeNode object from the

OlapTreeNodes collection

See Also

OlapTreeNode

OlapTreeNodes Collection

Analysis Services Programming (SQL Server 2000)

Count (OlapTreeNodes)
Count (OlapTreeNodes)

The Count property of an OlapTreeNodes collection returns the number of objects in the collection.

Syntax

object.Count

object

An instance of the OlapTreeNodes collection.

Data Type

Long

Remarks

Use this property to iterate through the OlapTreeNodes collection.

See Also

OlapTreeNodes Collection

Analysis Services Programming (SQL Server 2000)

Item (OlapTreeNodes)
Item (OlapTreeNodes)

The Item property of an OlapTreeNodes collection retrieves a specified item from the collection.

Syntax

object.Item(Index)

object

An instance of the OlapTreeNodes collection.

Index

Specifies the index of the object to be retrieved from the collection. If it is an integer, Index specifies the ordinal position of the
item in the collection. If it is a string, Index specifies the key assigned to the item when it was added to the collection.

Data Type

OlapTreeNode

Remarks

Specifies the OlapTreeNode object when retrieving objects from this collection. If it is an integer, Index specifies the ordinal
position of the item in the collection. If it is a string, Index specifies the key assigned to the item when it was added to the
collection.

See Also

OlapTreeNodes

Analysis Services Programming (SQL Server 2000)

PivotTable Service
PivotTable® Service is the primary interface for applications interacting with Microsoft® SQL Server™ 2000 Analysis Services. It
is used to build client applications that interact with multidimensional data. PivotTable Service also provides methods for online
and offline data mining analysis of multidimensional data and relational data. PivotTable Service is included as part of Analysis
Services, and it can be redistributed by third-party client applications.

PivotTable Service is the primary method for interacting with Analysis Services in order to accomplish such tasks as connecting to
a cube or data mining model, querying a cube or data mining model, and retrieving schema information.

As a stand-alone provider, PivotTable Service provides client applications with the ability to create local cube files and mining
models from relational and multidimensional sources. Client applications can connect to a local cube and execute queries using
Multidimensional Expressions (MDX) without interacting with the full-scale Analysis server.

PivotTable Service can be used in a variety of development environments. Both Microsoft Visual Basic® and Visual C++®
developers can use either the Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) object library or the OLE DB for
OLAP Component Object Model (COM) interfaces to create client applications.

Intended Audience

This document is intended for developers who are interested in developing client applications that work with Analysis Services.
Readers should be familiar with online analytical processing (OLAP) and the structure of multidimensional data (cubes), and MDX.
Knowledge of data mining theory and practice is also helpful. Additionally, knowledge of either C++ or a COM Automation
language, such as Microsoft Visual Basic, is required.

COM Automation programmers should have some knowledge of programming using ActiveX components and ADO.
Programmers using C++ should be well versed in OLE DB and COM. All programmers should be able to work with SQL, including
the data definition language (DDL) and data manipulation language (DML) extensions defined by Transact-SQL.

Readers developing data mining applications should be familiar with the OLE DB for Data Mining specification, which includes
detailed information about standard mining models, OLE DB for Data Mining grammar, query syntax, schema rowsets, prediction
functions, special histogram nested table columns, and mining model XML format (PMML). The OLE DB for Data Mining
specification is available for download from the Microsoft OLE DB Web page at the Microsoft Web site.

Topic Description
Overview of PivotTable Service Overview of PivotTable Service capabilities and

uses
Key Concepts in PivotTable
Service

Information about installing, setting up, and
distributing PivotTable Service with custom client
applications

Client Operations in PivotTable
Service

Guide to common operations involving PivotTable
Service

PivotTable Service
Programmer's Reference

Reference material for PivotTable Service, including
properties and DDL

For more information about using ADO, see the ADO documentation.

For more information about using OLE DB in Microsoft Visual C++, see the OLE DB documentation.

For more information about Transact-SQL, see Transact-SQL Overview.

For more information about MDX, see MDX.

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services Programming (SQL Server 2000)

Overview of PivotTable Service
PivotTable® Service is an OLE DB provider for multidimensional data and data mining operations. This means that it provides
OLE DB functionality for applications that need access to multidimensional data and data mining services. By providing support
for a subset of SQL and Multidimensional Expressions (MDX), PivotTable Service enables applications to retrieve tabular and
multidimensional data. The data can be displayed, included in a local cube, analyzed using sophisticated data mining algorithms,
or updated.

The execution speed of these complex operations makes it possible to perform sophisticated analyses on the client computer
itself. This, in turn, allows remote client applications to function independent of a high-speed network, intranet connection, or
physical presence at a geographical location. For example, a sales representative can forecast profit margins at a potential
customer's site based on proposals by that customer even if her computer is not connected to her own company's network. She
can also repopulate her local cube with new data whenever she needs to do so, by using the Internet to connect to her corporate
Analysis server and refreshing her local data with any new or updated data.

PivotTable Service also supports data definition language (DDL) in the connection string of the client application so that offline
clients can create and modify local cubes at run time and define temporary multidimensional objects for use in analysis. This
ability allows client applications to be extensible in the face of changing business practices and across business boundaries. The
data for local cubes can be derived from either a multidimensional data source or a relational one such as Microsoft® SQL
Server™, Microsoft Access, or Oracle.

For more information about using PivotTable Service in various development environments, see Development Environments.

You can develop client applications that use PivotTable Service using a variety of techniques and environments. You can use
Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) to implement client applications in any Component Object Model
(COM) Automation language, such as Microsoft Visual Basic®, or as Active Server Pages (ASP) on a Web site. C++ programmers
can use PivotTable Service with COM and OLE DB to implement highly specialized custom applications.

Topic Description
What's New in PivotTable Service Describes new features for this release
Redistributing Components Contains information about redistributing

PivotTable components with third party
applications

Developing Client Applications Describes building client applications using
PivotTable Service

Development Environments Contains information about using PivotTable
Service in different development environments

Analysis Services Programming (SQL Server 2000)

What's New in PivotTable Service
PivotTable® Service supports the advanced data mining and analysis techniques that are introduced in Microsoft® SQL Server™
2000.

This release of PivotTable Service also includes new features that enhance communication with the Analysis server and the
management of local cubes.

Client applications can communicate with the Analysis server through Microsoft Internet Information Services (IIS) using HTTP;
clients do not need physical proximity to the Analysis server to take advantage of common Internet services such as Domain
Name System (DNS). The Analysis server also supports security features such as cube roles, member security, and cell security.

The ability to create and manage local cubes from the client application has been improved. Client applications can now alter the
structure of a cube, define default members, and sort by member properties by using the ALTER CUBE statement. The UPDATE
CUBE command supports writeback to members higher than those at the leaf level of a hierarchy.

Advanced Data Mining and Analysis

PivotTable Service supports data mining and analysis with the addition of the CREATE MINING MODEL statement and extensions
to the CREATE VIRTUAL CUBE statement. Two algorithms are included: Microsoft Decision Trees and Microsoft Clustering.

Data mining models can be created on the server, using Decision Support Objects (DSO), or locally, using the CREATE MINING
MODEL statement. The models can then be trained and used to produce predictions based on trends identified in the training
data.

The syntax for virtual cubes has also been extended to allow the inclusion of mining models.

For more information, see Data Mining Models, Advanced Data Mining and Analysis, CREATE MINING MODEL Statement, and
Decision Support Objects.

Analysis Services Programming (SQL Server 2000)

Redistributing Components
PivotTable® Service includes a number of dynamic-link libraries (DLLs) that you may need to ship with a client application. Any
individual client application may need a combination of these components, depending on the PivotTable Service features it uses.

File set Component files
1 Msolap80.dll, Msolui80.dll, Msolap80.rll, Olapuir.rll, and Microsoft®

Data Access Components (MDAC)
2 File Set 1 plus Msmdcb80.dll, Msmdgd80.dll, and an appropriate OLE

DB tabular data provider
3 File Set 1 plus Msdmine.dll, Msmdun80.dll, Msdmine.rll, and

Msdmeng.dll

The following table shows which file set to use based on which tasks you want your client application to perform.

Task File set
Communicate with the Analysis server using TCP/IP or HTTP and
read local cube files

1

Create and refresh local cubes 2
Read OLAP and relational data mining models 3

You must install MDAC before you install PivotTable Service. File sets 2 and 3 can be combined if the entire suite of components
is desired. If you install PivotTable Service with Microsoft Windows® 95, you must install distributed COM (DCOM) before you
install MDAC. For more information about distributing and installing MDAC, see the MSDN® Library at the Microsoft Web site.

Installing and Registering Components

You can create your own setup program to install and register the redistribution component files and prerequisite Microsoft®
Data Access Components (MDAC) files. Alternatively, you can use one of the setup programs provided on the SQL Server™ 2000
CD-ROM. These setup programs are described in Redistribution Setup Programs later in this topic.

The PivotTable Service files, with the exception of the resource files (files with an extension of .rll), must be installed to the
following location:

C:\Program Files\Common Files\System\OLE DB

After the required components have been installed, the following components must also be registered using Regsvr32.exe or
their own DLLSelfRegister functions:

Msolap80.dll

Msolui80.dll

Msmdgd80.dll

Msmdcb80.dll

Msmdun80.dll

Msdmine.dll

Msdmeng.dll

The English Language versions of the resource files, Msolap80.rll, Olapuir.rll and Msdmine.rll, must be installed to the following
location:

C:\Program Files\Common Files\System\OLE DB\Resources\1033

If you are shipping a localized product, you must install both the English and the localized versions of these files and place them in
their appropriate resource directories. For example, if you are shipping a German version of your product, you must install the

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

German versions of the resource files in the following directory:

C:\Program Files\Common Files\System\OLE DB\Resources\1046

When registering DLLs, observe the following dependencies:

Msolap80.dll depends on Msolap80.rll, Wininet.dll, and Oleaut32.dll version 2.3.0 or later.

Msolap80.rll is the resource file for Msolap.dll. Oleaut32 is the OLE Automation run-time library, and is also installed in
either the C:\Windows\System or C:\Winnt\System32 directories.

Msolui80.dll depends on Msolap80.dll, Msvbvm60.dll, and Oleaut32.dll version 2.3.0 or later.

Msvbvm60.dll is a Microsoft Visual Basic® run-time library, and Wininet.dll contains the Internet automation run-time library.
Both are installed in the C:\Windows\System or C:\Winnt\System32 directory.

Note You can use the Depends.exe utility to see the full set of external dependencies for these DLLs. This utility is available in
either the Windows NT® 4.0 Resource Kit or the Windows 2000 Server Resource Kit.

Installation Registry Settings

For the purposes of installing and uninstalling, all PivotTable Service files should be considered shared files. Create a registry
value for each PivotTable Service file under the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\SharedDLLs

If this registry value (known as the reference counter) already exists, it should be incremented by one during installation of the
PivotTable Service files. During removal of the PivotTable Service files, the reference counter should be decremented by one. The
PivotTable Service files should not be deleted if the corresponding reference counter is greater than zero.

Redistribution Setup Programs

Two setup programs, Ptslite.exe and Ptsfull.exe, are provided on the SQL Server 2000 CD-ROM, in the folder \Msolap\Install\Pts.
Ptslite.exe installs the PivotTable Service files only; Ptsfull.exe installs the PivotTable Service files and Microsoft Data Access
Components (MDAC).

In addition to two required parameters, both Ptslite.exe and Ptsfull.exe use the same optional command line parameters as the
Analysis Services Setup program. The required parameters, which must be the first parameters on the command line, are -s and -
a. Optional parameters follow these required parameters. For example, to use Ptslite.exe to perform a silent installation of the
PivotTable Service files, the command is:

Ptslite -s -a –s –f1Setup.iss ...

For more information, see Setup Parameters and Silent Installation.

Ptslite.exe

Ptslite.exe installs the following PivotTable Service files.

atl.dll msdmeng.dll msdmine.dll
msmdcb80.dll mdmdgd80.dll msolap80.dll
msolui80.dll msmdcube.dll msmdgdrv.dll
msolap.dll msolapui.dll msdmine.rll
msolap80.rll olapuir.rll msvbvm60.dll
msmdun80.dll msolapr.dll

Ptsfull.exe

Ptsfull.exe installs the same files as Ptslite.exe, and also the Microsoft Data Access Components (MDAC).

Analysis Services Programming (SQL Server 2000)

Developing Client Applications
PivotTable® Service is the primary method of communication between a client application and a multidimensional data source or
data mining model, such as Microsoft® SQL Server™ 2000 Analysis Services. It is used by applications provided by Microsoft
(such as the Microsoft Excel PivotTable and PivotChart® features) and by applications provided by third-party vendors.
Programmers who want to develop custom client applications for Analysis Services must use PivotTable Service.

PivotTable Service client applications can retrieve, display and manipulate data from multidimensional sources, such as OLAP
cubes, or from data mining models. PivotTable Service client applications can also create cube files and data mining models on
the local computer, and populate them with data derived from an OLE DB tabular provider such as SQL Server or an OLAP cube.
After a cube or mining model is created, client applications can use PivotTable Service to browse and analyze the data contained
in it. In the case of OLAP cubes, client applications can conduct what-if analyses using writeback and cell allocations. In the case of
local multidimensional OLAP (MOLAP) cubes, such analyses can be conducted even if the client application is not connected to the
original data source. In this case, PivotTable Service takes the place of the Analysis server by providing many of the functions of
the server on the local computer.

The data source for creating a local cube file or mining model can be any OLE DB data provider, such as SQL Server or Analysis
Services.

Overview of Client Applications

Client applications that need to access OLAP data can be implemented either in a Component Object Model (COM) Automation
language, such as Microsoft Visual Basic®, or in Microsoft Visual C++®. Client applications that are implemented in a COM
Automation language or in C++ may access PivotTable service using Microsoft ActiveX® Data Objects (Multidimensional) (ADO
MD), or they can use the COM interfaces provided by OLE DB for OLAP. For more information, see the OLE DB documentation.

Microsoft Office

Microsoft Excel and other Microsoft Office products work with PivotTable Service to provide access to OLAP cubes for creating
reports and charts. For more information, see the Excel documentation.

Analysis Services Programming (SQL Server 2000)

Development Environments
 New Information - SQL Server 2000 SP3.

You can use PivotTable® Service using either Microsoft® ActiveX® Data Objects (ADO) and a COM Automation language, such
as Microsoft Visual Basic®, or the COM interfaces provided by OLE DB for OLAP using Microsoft Visual C++®.

Microsoft SQL Server™ 2000 Analysis Services and PivotTable Service implement the OLE DB for OLAP 2.0 specification.. For
more information about OLE DB for OLAP, see the OLE DB documentation.

However, PivotTable Service is not fully compliant with OLE DB for OLAP and introduces new functionality that is not included in
the specification. For more information, see OLE DB Compliance.

Analysis Services Programming (SQL Server 2000)

Using Visual C++
Using Visual C++

In a COM and Visual C++® environment, you can interact with PivotTable® Service using OLE DB for OLAP. This extension to
OLE DB contains interfaces for issuing and retrieving Multidimensional Expressions (MDX) queries. The primary interface for
retrieving multidimensional data is IMDDataset, which returns cell values and column information. The OLE DB
IDBSchemaRowset interface is used to retrieve multidimensional schema information. OLE DB for OLAP defines the additional
schema rowsets you need to retrieve this information. For more information, see the OLE DB documentation.

In a COM and C++ environment, you can also use the Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) libraries
with late binding.

For more information, see Visual C++ and ADO.

Analysis Services Programming (SQL Server 2000)

Using Visual Basic
Using Visual Basic

In a COM Automation environment, you can interact with PivotTable® Service using the Microsoft® ActiveX® Data Objects
(ADO) library and the Microsoft ActiveX Data Objects (Multidimensional) (ADO MD) library.

These libraries can be used together or independently of each other.

See Also

Using ADO

Using ADO MD

Using Active Server Pages

Analysis Services Programming (SQL Server 2000)

Using ADO MD
Using ADO MD

The Microsoft® ActiveX® Data Objects (Multidimensional) (ADO MD) library contains a number of objects you can use with
PivotTable® Service. The Cellset object allows developers to issue Multidimensional Expressions (MDX) queries against cubes on
the Analysis server or local cube files. The CubeDef object enables you to retrieve multidimensional schema information.

To use the ADO MD library independently of the ADO library, use the ActiveConnection property of the Catalog or Cellset
objects. For more information, see the ADO MD documentation.

Example

The following code creates a Cellset object and sets the ActiveConnection property to the FoodMart 2000 sample database. It
then executes a query against the Sales cube.

Dim MyCellSet As New ADOMD.Cellset
MyCellSet.ActiveConnection = "Provider=msolap; Data Source=LocalHost; Initial Catalog=FoodMart 2000;"
MyCellSet.Source = "select {[Measures].[Unit Sales]} on columns," & _
 "order(except([Promotion Media].[Media Type].members," & _
 "{[Promotion Media].[Media Type].[No Media]}),[Measures].[Unit Sales],DESC) on rows " & _
 "From Sales"
MyCellSet.Open

See Also

Working with OLAP Data

Using ADO

Analysis Services Programming (SQL Server 2000)

Using ADO
Using ADO

This library contains objects that may be used to develop client applications that use PivotTable® Service. This library provides
objects such as the Connection object, which provides methods such as Open, OpenSchema, and Execute. For more
information, see the Microsoft® ActiveX® Data Objects (ADO) documentation.

It is not necessary to use the ActiveX Data Objects (Multidimensional) (ADO MD) library in conjunction with ADO to retrieve data
from PivotTable Service. Each library can be used independently of the other. For more information, see Working with OLAP Data.

Example

The following code creates a Command object:

Dim MyCommand As New ADODB.Command
MyCommand.ActiveConnection = "Provider=msolap; Data Source=LocalHost; Initial Catalog=FoodMart 2000;"
MyCommand.CommandText = "select {[Measures].[Unit Sales]} on columns," & _
 "order(except([Promotion Media].[Media Type].members," & _
 "{[Promotion Media].[Media Type].[No Media]}),[Measures].[Unit Sales],DESC) on rows " & _
 "From Sales"
MyCommand.Execute

See Also

Using ADO MD

Analysis Services Programming (SQL Server 2000)

Using Active Server Pages
Using Active Server Pages

PivotTable® Service can be used by Active Server Pages (ASP) Microsoft® Visual Basic® Scripting Edition (VBScript)
programmers by using the CreateObject method of the ASP Server object. This method can be used to create any needed object
from either the Microsoft® ActiveX® Data Objects (ADO) or ActiveX Data Objects (Multidimensional) (ADO MD) object libraries.

Example

The following example creates an ADO MD Cellset object using VBScript:

Dim MyCellset
Set MyCellset = Server.CreateObject("ADOMD.Cellset")

See Also

Using ADO

Using ADO MD

Analysis Services Programming (SQL Server 2000)

Key Concepts in PivotTable Service
The following topics may be helpful in understanding the concepts that are used when developing client applications for
Microsoft® SQL Server™ 2000 Analysis Services. Each topic is presented from the point of view of the client application. For more
information presented from the point of view of the server, see Analysis Services Architecture.

Topic Description
Context of Connections Describes how the different connection contexts

in PivotTable® Service define the features
available to the client application

Organization of Multidimensional
Data

Describes how multidimensional data is
organized within Analysis Services, and how
PivotTable Service uses that organization

Advanced Data Mining and
Analysis

Information about using data mining in client
applications

Working with OLAP Data Describes how OLAP data can be manipulated
and displayed

Calculated Members Describes how to create calculated members
Managing the Client Cache Information on using the client cache
Transactions in Analysis Services Describes how transactions affect features such

as writeback and allocations
Security in PivotTable Service Describes how PivotTable Service works with the

security features in Analysis Services

Analysis Services Programming (SQL Server 2000)

Context of Connections
The features and characteristics of PivotTable® Service are defined by the context of the connection that it is managing. There are
three connection contexts in PivotTable Service:

Connected to Microsoft® SQL Server™ 2000 Analysis Services

Connected to an OLE DB provider

Connected to a local cube or a local data mining model

When PivotTable Service is connected to an Analysis server, details such as the communication protocol between the client
application, server management, and the cache management are hidden from the client application. This simplifies
implementation of client applications. It is possible for the client application to interact with any type of cube on the Analysis
server, create local cubes based on server cubes (MOLAP cubes), create local cubes based on separate relational databases (that is,
ROLAP cubes), create a local data mining model, and interact with existing data mining models.

When connected to a ROLAP cube, PivotTable Service acts as a server for elements that reside in the local cube and as an interface
for elements of the cube that reside in the relational database.

When connected to a local MOLAP cube or data mining model, PivotTable Service takes on the role of the Analysis server.
PivotTable Service interprets commands from the client application and executes them against the local data source, without need
for communication with a separate Analysis server. PivotTable Service formats the results and passes them back to the client
application.

Topic Description
Connected to Analysis Services Describes how PivotTable Service gets data from

Microsoft® SQL Server™ 2000 Analysis Services,
builds cube slices based on cubes on the Analysis
server, works with data mining models on the
Analysis server, and connects to Analysis
Services over the Internet

Connected to an OLE DB Provider Describes how PivotTable Service retrieves data
from a local ROLAP cube and builds local cube
files

Connected to a Local Cube File or
Data Mining Model

Describes how PivotTable Service retrieves data
from a local cube file or a local mining model

Analysis Services Programming (SQL Server 2000)

Connected to Analysis Services
Connected to Analysis Services

There are a variety of connection contexts to be considered when connected to Microsoft® SQL Server 2000™ Analysis Services.
The context of the connection determines how the connection is established and which features and properties are available to
the client application. For example, when connecting over the Internet, using HTTP, you should consider whether the User ID and
Password properties will be needed to establish the connection. When connecting to an Analysis server, you may want to
optimize cache properties for better performance.

Retrieving Data from Analysis Services

When using PivotTable® Service to retrieve data from Analysis Services, PivotTable Service communicates with a remote Analysis
server through a network connection or through shared memory on the local computer. The network protocol is either TCP/IP or
HTTP. If a connection request is made that references a remote SQL provider or other tabular data provider, the request is
automatically routed to the provider in question. The caching of result sets and other optimizations is not visible to the client
application.

Deriving Local Cube Files from Server Cubes (Slicing)

It is possible to build local cubes, which are based upon cubes that reside on a server. This process is similar to creating a local
cube based on a fact table, except that the server cube itself is used as the data source. When a WHERE clause is specified as part
of the CREATE CUBE statement's WHERE clause, or when only a subset of the available dimensions or measures are specified, the
operation is referred to as a slice. For more information, see Building Local Cubes.

Building, Training, and Retrieving Data from a Data Mining Model

When connected to Analysis Services, it is possible to create, train (that is, process) and interact with mining models on the local
computer.

You can create a mining model on the server using Decision Support Objects (DSO). To create a mining model locally, use data
definition language (DDL).

For more information about creating data mining models on the Analysis server, see Data Mining Examples.

Connecting Using HTTP

This feature enables the user to connect to the Analysis server through Microsoft Internet Information Services (IIS). By setting the
Data Source connection string property to an HTTP or HTTPS URL, PivotTable Service is able to tunnel a connection to the
Analysis server through firewalls or proxy servers. This is accomplished by use of a special Active Server Pages (ASP) page,
Msolap.asp, which is installed by default to C:\Program Files\Microsoft Analysis Services\Bin.

The rest of the connection string is specified normally.

For more information about the ConnectionString property, see the ADO documentation.

See Also

Connecting Using HTTP

Analysis Services Programming (SQL Server 2000)

Connected to an OLE DB Provider
Connected to an OLE DB Provider

It is possible for PivotTable® Service to connect to a relational OLE DB provider directly:

When retrieving data from a relational OLAP (ROLAP) local cube file

When building a local cube file

Retrieving Data from a Local ROLAP Cube

When communicating with a local relational OLAP (ROLAP) cube file, you must have a connection to a relational data provider.
The local cube file stores the structural definition of the cube but not actual or precalculated data. To retrieve the data itself, the
connection to the tabular data provider is used. This process is transparent to the client application. This transparency results in
smaller cubes than are possible using a multidimensional OLAP (MOLAP) storage mode. However, the performance of such a
cube is less than that of a local MOLAP cube due to the processing requirements of calculating the aggregate function at run time.

Building Local Cube Files

You can also build a local ROLAP cube file that is based on a relational OLE DB provider by using the DEFER_DATA option in the
INSERT INTO statement. Queries that are used to define the local cube file are passed to the data source where they are resolved.
The resulting OLE DB recordsets are interpreted by PivotTable Service and used to build the local cube.

See Also

Building Local Cubes

Using DRILLTHROUGH to Retrieve Source Data

INSERT INTO Statement

Analysis Services Programming (SQL Server 2000)

Connected to a Local Cube File or Data Mining Model
Connected to a Local Cube File or Data Mining Model

The processes for connecting to a local cube file and a local mining model are almost identical.

Retrieving Data from a Local MOLAP Cube

PivotTable® Service connects to the local cube file in the same way that it connects to any other data source. PivotTable Service
processes queries against the local cube file and returns data to the application. The client application can access the dimensions,
levels, properties, and so on of a particular cube. No connection to a remote server is required, except to create the cube. This
diagram illustrates communication between PivotTable Service and a local MOLAP cube file.

Retrieving Data from a Local Data Mining Model

PivotTable Service connects to a data mining model in the same way it connects to any other data source. Prediction queries can
be passed to a local data mining model in the same fashion as they are made and passed to a server model. A connection to a
remote server is not required, except to create the mining model file.

See Also

Connecting to a Data Source

Analysis Services Programming (SQL Server 2000)

Organization of Multidimensional Data
PivotTable® Service supports three different hierarchy types. The following table contains links to the topics that discuss each
type, and how to address compatibility with existing client applications developed for Microsoft® SQL Server™ 7.0 OLAP Services.

Topic Description
Balanced Hierarchies Describes how SQL Server 2000 Analysis

Services implements dimension
hierarchies in which all leaf nodes of a
level are the same distance from the root
node

Ragged Hierarchies Describes how Analysis Services
implements dimension hierarchies in
which one or more levels do not contain
members in one or more branches of the
hierarchy

Unbalanced Hierarchies Describes how Analysis Services
implements dimension hierarchies in
which leaf nodes differ in their distances
from the root node

Using the MDX Compatibility Property Describes the use of this property to
address compatibility with existing client
applications

Analysis Services Programming (SQL Server 2000)

Balanced Hierarchies
Balanced Hierarchies

A balanced hierarchy is one in which the presence of children for any given member does not depend on its value. Instead, it
depends on the level of that member in the hierarchy. For example, a dimension based on time might have the following
structure.

This structure applies in most situations. Some natural variations may occur; for example, an application may use a Julian calendar
instead of a traditional one. In this case, you could use the Julian hierarchy exclusively or define multiple hierarchies for the
dimension containing time information.

See Also

Balanced and Unbalanced Hierarchies

Analysis Services Programming (SQL Server 2000)

Ragged Hierarchies
Ragged Hierarchies

A ragged hierarchy is one in which one or more levels are skipped in the members of the hierarchical structure. For example, a
Geography dimension might have the following structure.

For countries and regions that have states or provinces, such as Canada or Mexico, this dimension works well. Consider the case
of Washington, D.C.: The parent of this member of the City level is USA, which is not a member of the State level. However, other
siblings of Washington D.C., such as Los Angeles and New York, have parents that are members of the State level. This is an
example of a ragged hierarchy.

See Also

Ragged Hierarchies

Analysis Services Programming (SQL Server 2000)

Unbalanced Hierarchies
Unbalanced Hierarchies

An unbalanced hierarchy is one in which the children of a member may or may not have children themselves, depending on the
value of that child. PivotTable® Service supports parent-child structures to contain unbalanced hierarchies. Consider the case of
an organizational chart in a company. Executive assistants may report directly to the CEO, a director, or a manager. Technicians
may report to a lead technician, a manager, or a technical sales person. In these hierarchies, the level of the individual is less
important than the individual's relationship to the superior. Relationships of this type are often referred to as parent-child
relationships and are often defined in relational databases using self-referential joins.

See Also

Balanced and Unbalanced Hierarchies

Analysis Services Programming (SQL Server 2000)

Using the MDX Compatibility Property
Using the MDX Compatibility Property

Empty positions in a hierarchy can affect some functions in Microsoft® SQL Server™ version 7.0 OLAP Services. For example,
DrillDownLevel([Romania]) returns an empty set because Romania has no states or provinces. For this reason, a connection
string property, MDX COMPATIBILITY, is provided for backward compatibility with client applications developed using SQL
Server 7.0 OLAP Services. The following table describes this property.

MDX COMPATIBILITY
property value Description

0 (Default) The same as Value 1
1 Compatible with SQL Server 7.0 OLAP Services
2 Compatible with SQL Server 2000 Analysis Services

If the MDX COMPATIBILITY property value is set to 1, a client application using DrillDownLevel([Romania]) receives a single
dummy member for the States/provinces level of Romania, which can then be drilled down again, incrementally, to provide
access to the city members of the Romanian geography hierarchy. When this property is set to 2, PivotTable® Service returns an
empty set for this function. The following table shows which functions are affected by empty positions in a hierarchy.

Function called on
empty positions

Results
(MDX COMPATIBILITY=1)

Results
(MDX COMPATIBILITY=2)

AllMembers
Members
Descendants

Returns the name of the
empty level in the hierarchy

Ignores empty positions on
the resulting axis

Range (:) Returns the name of the
empty level in the hierarchy

Returns an error

Children Returns the name of the
empty level in the hierarchy

Returns all nonempty child
positions and all children of
any empty positions in the
hierarchy

DrillDownLevel
DrillDownLevelTop
DrillDownLevelBottom
DrillUpLevel

Returns the name of the
empty level in the hierarchy

Returns an empty set

DrillDownMember
DrillDownMemberTop
DrillDownMemberBottom
DrillUpMember

Returns the name of the
empty level in the hierarchy

Skips empty positions in the
hierarchy and returns the first
position that is not empty

LastPeriods
YTD
QTD
MTD
WTD

Returns the normal value of
the requested cell

Returns an error

AddCalculatedMembers
VisualTotals

Returns the normal value of
the requested cell

Skips empty positions in the
hierarchy and returns the first
position that is not empty

Parent
Ancestor
FirstChild
LastChild

Returns the normal value of
the requested cell

Skips empty positions in the
hierarchy

ClosingPeriod
OpeningPeriod
Cousin
ParallelPeriod

Returns the name of the
empty level in the hierarchy

Returns an error

PrevMember
NextMember
Lead
Lag

Returns the normal value of
the requested cell

Returns the resultant real
members at that level

See Also

MDX

MDX Compatibility Property

Analysis Services Programming (SQL Server 2000)

Advanced Data Mining and Analysis
In this release, Microsoft® SQL Server™ 2000 Analysis Services introduces a new feature, data mining, that integrates significant
data analysis and prediction capabilities into Analysis Services. PivotTable® Service enables clients to interact with these new data
mining features. For more information about data mining in Analysis Services, see Data Mining Models and Data Mining
Columns.

PivotTable Service supports data mining by providing support services that are very similar to the services it provides for online
analytical processing (OLAP). For example, PivotTable Service can create and maintain local data mining models just as it can
create and maintain local cubes. To create a data mining model on an Analysis server, you must use Decision Support Objects
(DSO). For more information about building mining models using DSO, see Data Mining Examples.

Two data mining algorithms are included with Analysis Services: Microsoft Decision Trees and Microsoft Clustering. The decision
trees algorithm is based on the notion of classification. The clustering algorithm uses an expectation-maximization method to
group records into clusters (or segments) that exhibit some similar, predictable characteristic. For more information, see Microsoft
Clustering.

The following table describes topics that contain information about data mining in PivotTable Service. For detailed information
about creating and using data mining models, including special functions for mining models, mining model XML format, and
examples, see the OLE DB for Data Mining specification, available on the Microsoft OLE DB Web page at the Microsoft Web site.

Topic Description
Building a Local Data Mining Model Describes the process of building local

data mining models
Training a Local Data Mining Model Describes how to process a local data

mining model with training data
Predictions and Results of Data Mining Describes how to run prediction queries

against a data mining model and how to
browse its contents

See Also

Data Mining Models

Data Mining Algorithms

http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=oledb

Analysis Services Programming (SQL Server 2000)

Building a Local Data Mining Model
Building a Local Data Mining Model

Conceptually, the structure of a local data mining model is similar to that of a table in a relational database. Like tables, data
mining models are defined by the column definitions they contain. However, unlike a table in Microsoft® SQL Server™ 2000, the
columns in a data mining model can contain nested tables. SQL Server 2000 Analysis Services supports two kinds of data mining
models: models that are based on OLAP cubes, and models that are based on relational tables (or, more accurately, a rowset from
an OLE DB provider).

The syntax for defining a mining model is also similar to that for defining a table. There are two different forms of the CREATE
MINING MODEL statement, one for OLAP mining models and one for relational mining models.

Building a Model Based on an OLAP Cube

To create a mining model that is based on an OLAP cube, use the CREATE OLAP MINING MODEL statement. The general form of
the statement is as follows:

CREATE OLAP MINING MODEL <Model Name> FROM <Case Cube Name> (<Cube Members>) USING <Algorithm Name>

The <Model Name> token specifies the name of the model that will be created. The physical location for this model will be the
directory specified by the Mining Location property. If the Mining Location property is not specified in the connection string,
the mining model created by this statement will have connection scope, and it will only exist for the duration of the session. The
<Case Cube Name> token is the name of the cube that contains the training cases for the model <Cube Members>. Finally, the
<Algorithm Name> token contains the name of the mining model algorithm that will be used to create the model. This token can
have one of two values: Microsoft_Decision_Trees or Microsoft_Clustering.

The following example creates an OLAP mining model that predicts the Member Card Type property for members of the
Customers dimension:

CREATE OLAP MINING MODEL [MyOlapModel] FROM [Sales]
 (
 CASE
 DIMENSION [Customers]
 LEVEL [Name]
 PROPERTY [Marital Status],
 PROPERTY [Education],
 PROPERTY [Member Card Type] PREDICT
)
USING Microsoft_Decision_Trees

The mining model that this example defines is based on the Sales cube in the current database (that is, the default database for
this session). The three columns that will be included in this mining model are defined next. Each column is based on a member
property that applies to each member contained in the Name level of the Customers dimension. The presence of the PREDICT
specifier in the definition for the last column, Member Card Type, indicates that the column is predictable.

Building a Model Based on a Relational Database Table

You define relational mining models (that is, models that are based on tables in a relational database) by specifying the columns
to be included in the model. Because the format and structure of the source data is not known in advance, each column is defined
by a name, the data type of its content, its statistical nature, and whether the column will be predictable in a query. The general
form of the statement that creates a relational mining model is as follows:

CREATE MINING MODEL <Model Name> (<Column Members>) USING <Algorithm Name>

For example, consider the following relational mining model definition:

CREATE MINING MODEL [MemberCards]
 (
 [customer Id] LONG KEY ,
 [Yearly Income] TEXT DISCRETE ,
 [Member Card Type] TEXT DISCRETE PREDICT,
 [Marital Status] TEXT DISCRETE
)
USING Microsoft_Decision_Trees

In this example, a mining model named MemberCards is defined using the CREATE MINING MODEL statement. The syntax of this
statement is similar to that of the CREATE TABLE statement in SQL. The columns that make up this mining model are named and

their types are defined with additional information concerning the content they contain. The Member Card Type column is
specified as being predictable by using the PREDICT specifier in its column definition.

Columns That Contain N ested Tables

You may want to create a mining model that contains a column with a nested table. In this case, use the TABLE type specifier in
the CREATE MINING MODEL statement:

 CREATE MINING MODEL [Age Prediction]
 (
 [Customer ID] LONG KEY,
 [Gender] TEXT DISCRETE,
 [Age] DOUBLE DISCRETIZED() PREDICT,
 [Product Purchases] TABLE
 (
 [Product Name] TEXT KEY,
 [Product Type] TEXT DISCRETE RELATED TO [Product Name],
 [Quantity] DOUBLE NORMAL CONTINUOUS
)
)
 USING [Decision Trees]

In this example, the Product Purchases column contains a nested table that contains three columns: Product Name, Quantity,
and Product Type. The first column in the nested table is a key column. The next column in the nested table, Product Type, is
related to the Product Name column in a hierarchical relationship. The last column, Quantity, contains a floating-point number
that is statistically normal and continuous across its domain (as opposed to having discrete values within the domain).

The last clause in the CREATE MINING MODEL states that the model should be built using the Microsoft Decision Trees data
mining algorithm.

For more information about the CREATE MINING MODEL statement, see CREATE MINING MODEL Statement.

For more information, see the OLE DB for Data Mining specification.

See Also

Data Mining Models

Data Mining Columns

Analysis Services Programming (SQL Server 2000)

Training a Local Data Mining Model
Training a Local Data Mining Model

 New Information - SQL Server 2000 SP3.

In data mining, training is the process that inserts the data into the model that will be used as the basis for making predictions.
The INSERT INTO statement is used to accomplish this task. The syntax of the statement depends on the kind of object on which
the model is to be based. Microsoft® SQL Server™ 2000 Analysis Services supports two different kinds of base objects for data
mining models: OLAP cubes and relational tables.

The process of training a mining model can be broken down into two parts. First, the columns that define the model's structure
are populated with content from the data source. Second, the content is analyzed using the algorithm specified in the CREATE
MINING MODEL statement. The results of this analysis are stored in the mining model as a collection of nodes. These nodes can
be browsed using the MINING_MODEL_CONTENT schema rowset or by executing a content query against the mining model.

Training an OLAP Data Mining Model

For OLAP mining models, the general form for the INSERT INTO statement is:

INSERT INTO <model Name>

No column names or other source data is needed to train the model. This is because the structure of the mining model is based
on a cube and is therefore known in advance. No other steps are necessary to complete the processing of the model.

Training a Relational Mining Model

Training a data mining model based on a table in a relational database is slightly more complicated than processing an OLAP
mining model. When training a relational data mining model, the columns to be populated must be specified explicitly along with
their data source. This is because the INSERT INTO command in the relational data mining model does not have the same
information available as an OLAP mining model. The general form of the command for training relational mining models is as
follows:

INSERT INTO <model name> (<Column Names>) <Data>

To understand the process of training a relational mining model, consider the example of a model with the columns Name, Age,
and Hair Color. The following statement can be used to populate this model:

INSERT INTO [MyModel]
 // Define the list of columns to be populated
 (
 [Name], [Age], [Hair Color]
)
 // Use the OPENROWSET command to pass a SELECT query to an SQL OLE DB provider
 OPENROWSET
 (
 'SQLOLEDB', 'Initial Catalog=FoodMart 2000',
 'Select [Name], [Age], [Hair Color] FROM [Customers]'
)

The OPEN ROWSET Statement

Analysis Services does not support the use of direct SQL SELECT queries to retrieve data rowsets for training data mining models.
Instead, it supports the OPENROWSET statement, which enables applications to specify an external query in place of actual data or
an SQL SELECT statement. The syntax of this command is as follows:

OPENROWSET ('<Provider Name>', '<Connection String>', '<Query Syntax>')

The <Provider Name> token must correspond to an OLE DB compliant data source, such as 'SQLOLEDB' or 'MSOLAP'. The
<Connection String> token must correspond to a valid connection string for the data source, minus the provider property. Finally,
the <Query Syntax> token should correspond to a valid query in the supported language of the provider that will return the
desires rowset. In this example, the provider used is the SQL Server 2000 OLE DB provider. The Connection String property
specifies that the FoodMart 2000 database is to be used as the default database for the query. Finally, the query itself is defined
as a standard Transact-SQL query that returns three columns from a table called Customers.

Security Note When possible, use Windows Authentication.

Training M odels That Include N ested Columns

The SHAPE command must be used to populate the columns in a nested table. The general format for this command is as follows:

SHAPE { <Rowset Query> }
APPEND
(
 { <Rowset Query> }
 RELATE <Parent Key Column> TO <Child Key Column>
)
AS <Nested Column Name>

The following example demonstrates populating a nested table by using the shape provider:

INSERT INTO [Age Prediction]
 (/* Define the columns of the case table */
 [Customer Id], [Gender], [Age],
 /* Define the columns of the nested table */
 [Product Purchases](SKIP, [Product Name], [Quantity], [Product Type])
)
SHAPE
 {
 OPENROWSET ('SQLOLEDB','INITIAL CATALOG=FoodMart 2000;',
 'SELECT [Customer Id], [Gender], [Age] FROM Customers ORDER BY [Customer ID]')
 }
 APPEND
 (
 {
 OPENROWSET ('SQLOLEDB','INITIAL CATALOG=FoodMart 2000;',
 SELECT [CustID], [Product Name], [Quantity], [Product Type] FROM Sales ORDER BY [CustID])
 }
 RELATE [Customer Id] To [CustID]
)
 AS [Product Purchases]

In this example, a column in the case table called [Product Purchases] is populated by a nested table. The names of the columns
in this nested table are defined inside the parentheses of the fourth line of the INSERT INTO statement. The SHAPE command is
then used to define the columns that will be used to populate the case table. The SHAPE clause defines columns that will be used
to populate the nested table as columns that are contained within the APPEND clause. The relationship between the case table and
the nested table is then defined by using the RELATE clause. The result of the SHAPE command is then aliased to be the same as
that of the original column that contained the nested tale.

When using the shape command it is important to use the ORDER BY clause to enforce the order of columns in the query. Failure
to use this clause may cause some or all data to be ignored in your nested tables.

See Also

Data Mining Models

Data Mining Columns

Analysis Services Programming (SQL Server 2000)

Predictions and Results of Data Mining
Predictions and Results of Data Mining

For retrieving information from a processed data mining model, Microsoft® SQL Server™ 2000 Analysis Services supports two
different kinds of queries.

Query type Definition
Prediction query Returns the predicted values of a set of columns, whose contents

are unknown, after applying the results contained within a
processed data mining model to them

Content query Returns information about the values and rules discovered by
training the mining model

Prediction Queries

Prediction queries allow the user to make predictions for unknown case sets using contents from a previously trained data mining
model. Prediction queries are run by means of the SELECT statement:

 SELECT [FLATTENED] <SELECT-expressions> FROM <mining model name>
 PREDICTION JOIN <source data query> ON <join condition>
 [WHERE <WHERE-expression>]

The <Source Data Query> token identifies the set of new cases that will be predicted. <Mining Model Name> identifies the
mining model that will be used to generate the predictions.

After the source data has been identified, a relationship between it and the data in the mining model must be defined. This is done
using the ON clause of the PREDICTION JOIN statement.

Example

The following example attempts to predict the age of customers using the Age Prediction data mining model and the Customers
and Sales cubes:

SELECT t.[Customer ID], [Age Prediction].[Age]
FROM [Age Prediction]
PREDICTION JOIN
(
 SHAPE
 {
 SELECT [Customer ID], [Gender], FROM Customers ORDER BY [Customer ID]
}
APPEND
 (
 {SELECT [CustID], [Product Name], [Quantity] FROM Sales ORDER BY [CustID]}
RELATE [Customer ID] To [CustID]
)
 AS [Product Purchases]
) as t
ON [Age Prediction] .Gender = t.Gender and
 [Age Prediction] .[Product Purchases].[Product Name] = t.[Product Purchases].[Product Name] and
 [Age Prediction] .[Product Purchases].[Quantity] = t.[Product Purchases].[Quantity]

Analysis Services Programming (SQL Server 2000)

Working with OLAP Data
When working with OLAP data, it is possible to retrieve that data in two different forms: datasets and flattened rowsets. Datasets
store the results of a query in an axis structure that is determined by the shape of the results. Flattened rowsets have only two
axes. In this case, the data in the additional axes are stored by mapping them onto the two existing axes.

Multidimensional DataSets

A dataset is a multidimensional representation of the results of a Multidimensional Expressions (MDX) query. Each dimension that
is returned by the query is represented in the dataset by an axis. The members of each dimension make up the coordinates on the
axis. The measures are returned in cells. Each cell is located at the intersection of the coordinates along each axis.

In OLE DB for OLAP, the Dataset object provides methods for interacting with the axes and cells the dataset contains. The primary
interface for working with the Dataset object is IMDDataset. Using this interface it is possible to retrieve the value of a cell
(IMDDataset::GetCellData), retrieve a pointer to the Command object interface that created the
cellset(IMDDataset::GetSpecification), or retrieve information about the axes(IMDDataset::FreeAxisInfo,
IMDDataset::GetAxisInfo, IMDDataset::GetAxisRowset). For more information, see the OLE DB documentation.

In Microsoft® ActiveX® Data Objects (Multimensional) (ADO MD), the Cellset object contains a collection of cells, axes and
properties. To access an individual cell in the cellset, use the Item() method. Cells can be specified by providing one of the
following:

The position numbers of the cell.

The member names (that is, the tuple) for the cell.

The ordinal position of the cell.

For more information, see the ADO MD documentation.

Flattened Rowsets

Whenever the results of an MDX query that returns data on more than two axes must be represented in two dimensions, such as
in an OLE DB Rowset object or an ADO Recordset object, the results must be mapped onto the two dimensions using a process
called flattening. For more information about flattening rowsets, see the OLE DB for OLAP documentation.

In OLE DB, the Rowset object exposes the results of a query (either MDX or SQL) in a tabular form. It is represented by a set of
rows. Each row contains a set of columns that contain the data returned from the query. The primary interface for interacting with
Rowset objects is the OLE DB IRowset interface. In addition to this interface, the following helper interfaces are used to navigate
through the rowsets: IAccessor, IColumnsInfo, IConvertType, and IRowsetInfo. For more information, see the OLE DB
documentation.

In ADO, the Recordset object represents the results of a query in tabular form. Each Recordset object consists of a collection of
Fields and Properties. The IMDDataset:: collection represents the columns in the query results. The Properties collection
contains the properties that describe the rowset. ADO provides numerous methods and objects for navigating through returned
recordsets.

Note Because recordsets that contain flattened rowsets are read-forward only, Recordset object methods such as MoveFirst,
MovePrevious, and RecordCount return the error 0x80004001 – Not Implemented.

For more information, see the ADO documentation.

Analysis Services Programming (SQL Server 2000)

Calculated Members
Calculated members are members whose values depend on an expression rather than the value of a cell.

You can define a calculated member using one of the following scopes:

Query scope

The calculated member can be used only within the query in which it is defined. Use the WITH clause in the SELECT statement.

Session scope

The calculated member can be used only within the session in which it is defined, but can be used by multiple queries. Use the
CREATE MEMBER statement.

A calculated member can be stored in a local cube if a CREATE MEMBER statement is specified in the COMMAND clause of the
CREATE CUBE statement.

Use the following code to create a calculated member:

CREATE CUBE MYWAREHOUSE (
DIMENSION . . .
. . . ,
COMMAND (CREATE MEMBER [MYWAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
AS '[MEASURES].[WAREHOUSE SALES] - [MEASURES].[WAREHOUSE COST]')
)

Note You must use single quotes (') to enclose the expression for the calculated member even though the OLE DB specification
does not require these quotes.

For more information, see CREATE CUBE Statement.

Custom Rollups

In addition to the standard rollup (that is, aggregate) functions Sum, Min, Max, and Count, more sophisticated custom rollup
functions can be defined for any given member in the CREATE CUBE statement. One common usage scenario is the inventory
problem where inventory levels are not summed along the Time dimension, as they might be for other dimensions. For example,
if you have one item in inventory on seven consecutive days, you do not have a total of seven items for the week. By using the
LastChild function in Multidimensional Expressions (MDX) to define a custom rollup formula, you can automatically roll up
closing balances along time.

See Also

Calculated Members

Analysis Services Programming (SQL Server 2000)

Managing the Client Cache
PivotTable® Service maintains a local cache on the client computer. When PivotTable Service executes a query, the cache is used
to store the data locally. If the data is used more than once, PivotTable Service does not need to request the data multiple times.
The contents of this cache and when they are updated changes with the value of the Default Isolation Mode property. The
following table describes this property's values.

Property
value Cache mode Description

TRUE ISOLATION The cache is invalidated when a query or a REFRESH
CUBE statement is executed. The cache is never
refreshed.

FALSE NON-ISOLATION The cache is invalidated when a REFRESH CUBE
statement is executed or when PivotTable Service
receives a refresh notification from Microsoft® SQL
Server™ 2000 Analysis Services.

The cache is refreshed when a query is executed.

Isolating the Client Application from External Updates

In isolation mode, the cache is populated with axis and cell data each time a query is executed. If the original source data is
changed, for example, as a result of a writeback by another user, the client cache is not updated. In OLE DB, this value is referred
to as Repeatable Read mode (ISOLATIONLEVEL_REPEATABLEREAD).

In nonisolation mode, the cache is populated with axis data each time a query is executed. However, the cell data for the query is
not populated. The cell data is populated only when the client application itself requests it (that is, refers to it). If the cell data is
never referred to, the cache never receives it. The cache may also be refreshed if Analysis Services sends a refresh notification to
PivotTable Service; in this case, PivotTable Service invalidates the existing cache. If the client application requests either axis or cell
data, PivotTable Service refreshes its cache from Analysis Services. In OLE DB, this value is referred to as Read Committed mode
(ISOLATIONLEVEL_READCOMMITTED).

In either mode, executing a REFRESH CUBE statement refreshes the cache.

See Also

Isolation Levels

Default Isolation Mode Property

Analysis Services Programming (SQL Server 2000)

Transactions in Analysis Services
PivotTable® Service supports transaction management for allocations and writebacks to cubes on the Analysis server. An
allocation or a writeback to a cube changes a cached copy of that cube in order to analyze the effects of the change. This
transaction process enables users to:

Perform what-if analysis on cubes that are not write-enabled (that is, that do not support writeback).

Perform what-if analysis on local cubes, which cannot be write-enabled.

Perform what-if analysis on cubes to which they have only read permission.

Perform what-if analysis without committing the updates.

Make multiple what-if changes and reverse or alter some before committing all changes at once.

PivotTable Service supports these transactions by supporting the use of the Microsoft® ActiveX® Data Objects (ADO) Connection
objects transaction methods.

Changes made during what-if analysis are visible only to the user who makes them; they are not committed to a shared cube until
a Commit transaction is performed. Therefore a user may make a change to a cube's displayed data transparently without
affecting other users. The changes are recorded in a writeback partition (that is, a table), separate from the cube's underlying
source tables. After a successful writeback, all users who are synchronized with the server see the effect of the writeback change
reflected in the cube.

In PivotTable Service, a new transaction is implicitly started whenever a session begins. Each transaction must either be explicitly
completed by executing the ADO Commit transaction method, or be rolled back using the rollback transaction method. If a
transaction is not completed properly, then the transaction and all the changes it contains are automatically rolled back when the
session ends. A new transaction begins implicitly when the preceding transaction is completed.

Automatic commits do not occur. Changes are not propagated to the cube's writeback table and will not be visible to other users
unless the Commit transaction method is used.

Topic Description
Updating Cubes Describes updating values in a cube
Transaction Scope Describes the effect of scope on a cube

transaction
Synchronization of Client and Server Contains information about synchronizing

client and server data
Cumulative Effect of Transactions on Data Describes how PivotTable Service handles

multiple users working with the same data
Isolation Levels Contains information about isolation

levels, which control when changes are
made visible to users

Committing a Transaction Describes the use of the ADO Commit
property in PivotTable Service

Commit Time-out Describes how PivotTable Service handles
commits that fail due to errors

Analysis Services Programming (SQL Server 2000)

Updating Cubes
Updating Cubes

There are three ways to update information in a cube:

Update the fact table and reprocess the cube.

Write back to leaf members of the cube.

Use cell allocation on nonleaf members.

Reprocessing a Cube

This method of updating a cube's contents depends on the context of the cube itself. If the cube resides on the Analysis server,
then the Decision Support Objects (DSO) Process method (of the MDStore interface) should be used to process the cube using
the existing dimensions, measures, aggregations and so on. For more information about DSO, see Decision Support Objects. For
more information about the Process method of the MDStore interface, see Process (MDStore Interface).

Local cubes can use the UPDATE CUBE statement for what-if analyses, but the allocations cannot be saved. That is, commit will fail
if it is executed for the UPDATE CUBE statement. Because local cubes cannot have a writeback partition, writeback always fails
against a local cube. Therefore, permanent changes to a local cube must be made by changing the local cube's fact table and
rebuilding.

For more information on creating local cubes, see Connected to an OLE DB Provider or Building Local Cubes.

Writeback

Writebacks (that is, updates) can be accomplished on atomic cell members of write-enabled cubes. These updates result in a new
aggregate value being propagated up through the cell's parent members.

Because data at higher levels is represented as a precalculation of data at lower levels, writebacks are permitted only on cells at
the lowest level (that is, atomic or leaf cells) of a cube's data. The atomic cells coming from the fact table are represented in the
cube by a single member in the lowest level of each dimension or measure in the cube. Updates at these levels are saved to a
writeback table that stores the deltas for each value. The updated value is then propagated up through the affected aggregate
members by PivotTable® Service.

If you want to update a higher-level member, use the UPDATE CUBE statement instead. This will assist you in preventing
inconsistent results from being entered into the cube.

Note You cannot write back to local cubes. You can reprocess them by executing their original CREATE CUBE and INSERT INTO
statements in a connection string.

Changes to a cube may not be immediately visible to other client applications that are connected to the cube, depending on their
cache settings. For more information, see Managing the Client Cache and Isolation Levels.

Allocations in a Cube

When the value of a nonatomic cell is changed, the cells that contribute to that cell need to be updated to avoid inconsistent data
within the cube. The UPDATE CUBE statement provides this facility. The new value of a nonatomic cell must be allocated among all
of its constituent cells. The developer determines the method by which this allocation is made at design time.

The following table describes the allocation methods that are available.

Allocation method Description
Equal allocation Each constituent cell is assigned an equal value
Equal increment Every constituent cell will be changed according to an

incremental value
Weighted allocation Each constituent cell will be assigned an equal value that

is weighted against a formula
Weighted increment Every constituent cell is changed incrementally according

to a weighting formula

Important When supplying expressions for the allocation of a value, the client application must ensure that the expression
assigns values whose aggregate value equals the originally allocated value. Additionally, the application must take into account
the allocation on all dimensions concurrently.

For the purpose of transactions management, all of the operations required to make a cell update are considered to be
monatomic. That is, if one atomic cell update fails, then all of them will fail, and the update itself will fail.

Note Allocations on local cubes cannot be saved by use of the transaction COMMIT method. Any allocations made on a local
cube are only present while the connection to the local cube is still active (that is, for the duration of the session).

See Also

UPDATE CUBE Statement

Updating Information in a Cube

Write-Enabled Cubes

Write-Enabled Dimensions

Using Writebacks

Analysis Services Programming (SQL Server 2000)

Transaction Scope
Transaction Scope

The scope of a transaction on the Analysis server is limited to a single cube. Transactions that contain updates to a single cube
either commit or fail on the cube as a complete atomic operation.

Important Transactions that contain updates to more than one cube are not guaranteed to be atomic. In the case when a
transaction contains updates that affect more than one write-enabled cube, it is possible for the updates to commit for some
cubes but fail for others. This includes the case when updates are being applied to a virtual cube that contains more than one
underlying write-enabled cube; it is possible for a transaction applied to the virtual cube to commit on one or more of the
underlying cubes but fail on others.

If a transaction that includes updates to multiple cubes fails due to time-out, it is safe to attempt to commit the same transaction
again. The transaction will be applied only to cubes that were not updated in the previous attempt. However, it is recommended
that client applications use a separate transaction for each cube when updating multiple cubes.

Analysis Services Programming (SQL Server 2000)

Synchronization of Client and Server
Synchronization of Client and Server

In writeback scenarios, the frequency of client/server synchronization determines when a user sees the most recent updates to a
cube. Some queries are resolved entirely from client cache; if the server cube has been updated since the last synchronization, the
results of such a query will not reflect the updates until the cache is refreshed from the server.

The frequency of client/server synchronization can be controlled with the Auto Synch Period property. For more information,
see Auto Synch Period Property.

For mining model queries, you can use the Mining Execution Location property to control synchronization of the client mining
model query cache. For more information, see Mining Execution Location Property.

Analysis Services Programming (SQL Server 2000)

Cumulative Effect of Transactions on Data
Cumulative Effect of Transactions on Data

When multiple users are connected to a cube and their changes are in conflict, the last changes made are the ones that take effect.
Updates recorded in the writeback table of a cube are cumulative, so the cube is displayed with the net effect of all changes in the
writeback table. The last user to commit an update to a cell determines the displayed values of the cell and all precalculated cells
that are derived from it.

The act of updating cells is performed atomically for each cube. That is, each committed update is recorded separately in the
writeback table.

Analysis Services Programming (SQL Server 2000)

Isolation Levels
Isolation Levels

PivotTable® Service supports the read-committed and repeatable-read isolation levels (that is, isolated and nonisolated cache
modes). By default, the visibility of changes made concurrently by others is read-committed, meaning that only committed
updates are visible to a command or query. That is, commits executed by other users are immediately available to PivotTable
Service. The repeatable-read isolation level provides a higher degree of isolation. In this mode, the client cache is frozen when a
command or query is opened, and remains frozen until the command or query is closed.

You can set the isolation level to isolated using the Default Isolation Mode property.

See Also

Default Isolation Mode Property

Analysis Services Programming (SQL Server 2000)

Committing a Transaction
Committing a Transaction

Use the Microsoft® ActiveX® Data Objects (ADO) Commit transaction method to commit updates to the writeback table of a
write-enabled cube. An error results if the transaction attempts to commit updates to a table other than the writeback table or if
the cube is not write-enabled.

If a transaction includes updates for multiple cubes, the updates may be successful for some cubes and unsuccessful for others.
Therefore, a transaction should only include updates for a single cube. For more information, see Transaction Scope.

Some possible causes of commit failure are commit time-out during a writeback attempt, attempting to commit to a cube that is
not write-enabled, or network errors. For more information about errors in transaction processing, see the ADO documentation.

See Also

Commit Time-out

Analysis Services Programming (SQL Server 2000)

Commit Time-out
Commit Time-out

If a commit is not successful because a client application's attempt to update a cube's writeback table times out (that is, the time
spent attempting the commit reached the value of the DBPROP_MSMD_WRITEBACK_TIMEOUT property), the following error
message is raised in the connection objects Errors collection:

Server unable to accept transaction at this time. Transaction pending on client.

In this case, the transaction's state is the same as it was immediately before the commit attempt. The client application can again
attempt to commit, attempt to roll back, or allow more what-if changes.

The preceding message is produced as a result of the following return code from the ITransaction::Commit method:
MSMD_E_TRANSACTION_COMMIT_TIMEOUT.

Increasing the value of the DBPROP_MSMD_WRITEBACK_TIMEOUT property can reduce the number of time-outs.

For more information, see Writeback Timeout Property.

Analysis Services Programming (SQL Server 2000)

Security in PivotTable Service
PivotTable® Service supports security in two ways: by providing security at various levels of the server object model, and by
supporting authentication of users.

Server Object Model Security

Different levels of the server object model handle security in different ways:

Database, cube, and mining model security

Database administrators (DBAs) can use roles to grant read and write permissions for the members of a database or an individual
cube. Roles that grant read permission can also be created for mining models. These roles are available in the database schema
rowset. For more information, see Roles.

Member security

Individual members of a cube or mining model can be secured independently from a level, dimension, and so on. Members that
are secured in this manner are invisible to client applications that do not have permission to access them. No errors are raised
and placeholders are not retuned.

Cell Security

Queries that involve these secured members will return an error. Updates to a secured member will also return an error. The
value of this error depends on the value of the Secured Cell Value property. For more information, see Cell Security.

Drillthrough security

Read permission for the Multidimensional Expressions (MDX) Drillthrough command can be granted for the entire cube using
the cube's role. Drillthrough requests against secured data return an error.

User Authentication

Authentication is the process by which a user is positively identified to determine the permissions the user has been granted.
Microsoft® SQL Server™ 2000 Analysis Services supports three authentication providers:

NTLM protocol (Windows authentication)

Kerberos

Negotiate

Anonymous user

After authentication for a user has been obtained, a user can connect to a database using any role of which he or she is a member
by using the Roles property in the connection string for the session, as long as that role has been granted access to the database.

See Also

Secured Cell Value Property

SSPI Property

Roles Property

Analysis Services Programming (SQL Server 2000)

Client Operations in PivotTable Service
The following topics describe common client operations that can be performed using PivotTable® Service.

Topic Description
Error and Exception Handling Describes recovering from multiple errors and

determining the original source of an error using
the Err object.

Connecting to a Data Source Illustrates the various methods for connecting a
client application to a data source.

Retrieving Schema Information Describes how OLE DB schema rowsets can be
retrieved.

Retrieving Data Shows how to execute queries and commands. It
also explains different methods for retrieving the
returned data.

Updating Information in a Cube Relates the different ways a cube or dimension can
be modified.

Building Local Cubes Illustrates how to build a local cube.

Analysis Services Programming (SQL Server 2000)

Error and Exception Handling
The first error trapped by Microsoft® Visual Basic® can be ambiguous if you are working with Microsoft ActiveX® Data Objects
(ADO), and if the error is displayed alone. You should retrieve any additional error information. ADO provides an additional layer
for handling exceptions that result from data operations. You can use the Errors collection of the Connection object to retrieve
information about more than one kind of error.

Examples

A. Using the ADO Connection Object

The following code example introduces an error into the connection string of the Connection object. This error induces two new
errors in addition to the standard error passed through by the Visual Basic Err object. These errors are assembled into a single
string.

 Dim sErrDesc As String
 Dim erCur As Error
 Dim cn As New ADODB.Connection

 ' Define a connection to an object that does not exist.
 cn.ConnectionString = "Provider=msolap; Datasource=NoSuchServer;"
 ' This provides two errors in the ADO errors collection.

 On Error GoTo found_error

 cn.Open

 ' Because a computer named NoSuchServer does not exist,
 ' you should never reach this point.
 Exit Function

found_error:

 ' Keep Visual Basic error description -- On Error Resume Next clears it.
 sErrDesc = Err.Description & vbCrLf

 On Error Resume Next

 ' Get the ADO errors.
 If cn.Errors.Count > 0 Then
 For Each erCur In cn.Errors
 sErrDesc = sErrDesc & erCur.Source & ": " & erCur.Description & vbCrLf
 Next erCur
 End If
 MsgBox sErrDesc

Analysis Services Programming (SQL Server 2000)

Connecting to a Data Source
The primary way to interact with PivotTable® Service is to connect to a data source using a Connection object or the
ActiveConnection property of a Catalog object. Parameters for this connection can be set using a connection string. For
example, the properties in the connection string of a Connection object determine whether a connection connects to an Analysis
server, creates a new cube, or connects to an existing local cube file. For more information about these data source properties, see
PivotTable Service Properties.

After a connection to an OLE DB for OLAP provider or a local cube has been established, queries can be issued against the data
source and the results displayed. Information about the schema of the data source can also be retrieved. For more information
about data sources in OLE DB, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

Using the Connection String
Using the Connection String

The primary way to interact with PivotTable® Service is to connect to a data source using a Connection object or the
ActiveConnection property of a Catalog object. Parameters for this connection can be set using a connection string. For
example, the properties in the connection string of a Connection object determine whether a connection connects to an Analysis
server, creates a new cube, or connects to an existing local cube file. For more information about these data source properties, see
PivotTable Service Properties.

After a connection to an OLE DB for OLAP provider or a local cube has been established, queries can be issued against the data
source and the results displayed. Information about the schema (that is, structure) of the data source can also be retrieved. For
more information about data sources in OLE DB, see the OLE DB documentation.

The ADO Connection Object

The Open method of the Connection object provides for the inclusion of connection parameters in its ConnectionString
property. A semicolon delineates each parameter. When this method is executed, a connection to the data source defined in the
connection string is created.

The syntax of the open method is:

connection.Open ConnectionString, UserID, Password, OpenOptions

Connecting to Analysis Services

To connect to Microsoft® SQL Server™ 2000 Analysis Services, the Datasource property must be set to the name or IP address
of the Analysis server to which you want to connect. The Provider property must also be set to "MSOLAP". Optionally, the Initial
Catalog property may be set to specify a connection to a specific database on the Analysis server.

Connecting to a Local Cube

Connecting to a local cube is identical to connecting to an Analysis server with one exception: The Datasource property is set to
the file location for the local cube instead of being set to the name of an Analysis server.

Setting the Connect Timeout Property

In OLE DB, the connection property that defines when a connection times out is DBPROP_INIT_TIMEOUT. In the connection string,
this property is referred to as Connect Timeout. If a connection to a data source cannot be established in the number of seconds
specified by this property, an error occurs.

The following example connects to an Analysis server on the local computer and sets the connect timeout property to 5 seconds:

Dim MyCon as ADODB.Connection
Set MyCon = new ADODB.Connection
MyCon.Open("provider=msolap; Datasource=LocalHost; Initial Catalog=FoodMart 2000; Connect Timeout=5")

Analysis Services Programming (SQL Server 2000)

Using the OLE DB Connection Dialog Box
Using the OLE DB Connection Dialog Box

OLE DB specifies that each provider must provide a dialog box for defining connections to its data sources. Microsoft® SQL
Server™ 2000 Analysis Services complies with this requirement by providing a dialog box that enables the client application to
connect to an Analysis server or a local cube.

To use this prompt, the Prompt property of the connection string must be set to 1:

Dim Conn As New ADODB.Connection
Conn.Open "Provider=msolap; Prompt=1;"

Analysis Services Programming (SQL Server 2000)

Connecting Using HTTP
Connecting Using HTTP

This feature enables a client application to connect to an Analysis server through Microsoft® Internet Information Services (IIS) by
specifying a URL in the Data Source property in the client application's connection string. This connection method allows
PivotTable® Service to tunnel through firewalls or proxy servers to the Analysis server. A special Active Server Pages (ASP) page,
Msolap.asp, enables the connection through IIS. The directory in which this file resides must be included as part of the URL when
connecting to the server (for example, http://www.myserver.com/myolap/).

The rest of the connection string is specified normally.

The port used during connection is defined by the default port of the Web site. In most cases, the default port of the web site is set
to 80 (or 443 if Secure Sockets Layer (SSL) is used).

For more information about the ConnectionString property, see the Microsoft ActiveX® Data Objects (ADO) documentation.

Examples

A. Using a URL as the Data Source

In this example, the Datasource property is set to the URL of a computer running IIS. From this point forward, the connection is
seamless from the point of view of the client application. The following code shows how to connect to the default Analysis server:

Dim cat as new ADOMD.Catalog
cat.ActiveConnection = "Provider = msolap;" & _
 " Datasource =" _ &
 " http://<URL>/;" & _
 " Initial Catalog = FoodMart 2000"

Analysis Services Programming (SQL Server 2000)

Retrieving Schema Information
You can use Microsoft® ActiveX® Data Objects (Multidimensional) (ADO MD), ADO, or OLE DB to retrieve schema rowsets using
PivotTable® Service.

To retrieve schema information for a cube, use the CubeDef object in ADO MD or the OpenSchema method in ADO. The
CubeDef object contains a hierarchy of collections describing a cube's structure. A CubeDef object for a particular cube can be
obtained from the Catalog object's CubeDef property. Its collections can then be iterated through to retrieve the desired schema
information. Some information about the cube is not contained in the CubeDef object, such as defined actions and cell formulas.
You must use the OpenSchema method to retrieve this information.

To retrieve schema rowsets, use ADO or OLE DB. In ADO, use the OpenSchema method of the Connection object to retrieve
schema information into an ADO Rowset object. These results can then be browsed using usual methods. In OLE DB, use the
IDBSchemaRowset COM interface to retrieve schema information.

See Also

Schema Rowsets

Using the CubeDef Object

Using the OpenSchema Method

Analysis Services Programming (SQL Server 2000)

Using the CubeDef Object
Using the CubeDef Object

To retrieve cube schema information, use the Microsoft® ActiveX® Data Objects (Multidimensional) (ADO MD) CubeDef object,
which exposes the dimensions of the local cube using its Dimensions collection. The Dimensions collection exposes the
individual Dimensions, which in turn expose the Hierarchies collection, and so on.

For more information about using the ADO MD CubeDef object to retrieve schema rowsets, see the ADO documentation.

The CubeDef Object Model

The following diagram illustrates the object model used by ADO MD.

Examples

Using ADO M D to Print M ember Properties

The following code uses ADO MD to print member properties. This code uses the local cube created by the sample code in
Building Local Cubes. This code prints the name and properties of every member of the [Product].[Product Name] level in the
cube to the immediate window.

Private Sub Form_Load()
Dim cn As ADODB.Connection
Dim ct As ADOMD.Catalog
Dim cb As ADOMD.CubeDef
Dim dm As ADOMD.Dimension
Dim hr As ADOMD.Hierarchy
Dim lv As ADOMD.Level
Dim mb As ADOMD.Member
Dim pr As ADODB.Property

Set cn = New ADODB.Connection
cn.Open "provider=msolap;data source=c:\warecube.cub"

Set ct = New ADOMD.Catalog
Set ct.ActiveConnection = cn

Set cb = ct.CubeDefs(0)
Set dm = cb.Dimensions("Product")
Set hr = dm.Hierarchies(0)
Set lv = hr.Levels("Product Name")

For Each mb In lv.Members
 Debug.Print mb.Name
 Debug.Print "----------------"
 For Each pr In mb.Properties
 Debug.Print pr.Name & ": " & pr.Value
 Next pr
 Debug.Print
Next mb
End Sub

Analysis Services Programming (SQL Server 2000)

Using the OpenSchema Method
Using the OpenSchema Method

In addition to the CubeDef object, Microsoft® ActiveX® Data Objects (ADO) provides the OpenSchema method for the
connection object. To use this method to get schema information about multidimensional and data mining meta data, use the
following query types:

AdSchemaCatalogs

AdSchemaCubes

adSchemaDimensions

adSchemaHierarchies

adSchemaLevels

adSchemaMeasures

adSchemaMembers

adProviderSpecific

Using Restriction Columns

Restriction columns enable the returned recordset of an OpenSchema function call to be filtered by certain constraints. For any
given schema rowset, a number of restrictions may be supported. For example, the MINING_MODELS schema rowset supports
the following restriction columns:

MODEL_CATALOG

MODEL_SCHEMA

MODEL_NAME

MODEL_TYPE

SERVICE_NAME

SERVICE_TYPE_ID

To use a particular column (or set of columns), build an array of strings that corresponds to the list of restriction column in their
order. For instance, to retrieve a list of all of the mining models in the FoodMart 2000 database that use the Microsoft Decision
Trees algorithm, construct the following array in Microsoft Visual Basic®:

Array("FoodMart 2000", Empty, Empty, Empty, Empty, "0")

Each element in the array corresponds to an element in the restriction columns list. The first, "FoodMart 2000," specifies that all of
the records returned should be members of the FoodMart 2000 database (that is, catalog). This is because the MODEL_CATALOG
is the first element in the restriction columns. The next four elements are built as empty and specify that no restrictions should be
placed on the returned records based upon their respective restriction columns. The last element of the array, "0", is in the
position reserved for the SERVICE_TYPE_ID restriction column. The value "0" is determined by looking up the allowed list of values
for this restrictions column in the OLE DB for Data Mining specification.

Use this array in the ADO OpenSchema method as the Criteria parameter.

Retrieving Rowsets Unsupported by ADO

To use a schema rowset that is not supported by the ADO SchemaEnum enumeration in the ADO OpenSchema method, use
the enumeration value adSchemaProviderSpecific with any restriction columns that are appropriate to the schema rowset. The
SchemaID parameter of the OpenSchema method will contain the schema's GUID in a string format. For more information, see
Schema Rowsets.

Examples

A. Retrieving a List of Cubes

The following code shows how to use ADO to retrieve a list of cubes in the current database. For more information about the
OpenSchema method, see the ADO documentation.

Dim cn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim szCubeName As String
Const CubeNamePosition =2

Set cn = New ADODB.Connection
cn.Open ("provider=msolap; Data Source=LocalHost; Initial Catalog=FoodMart 2000;")

Set rs = cn.OpenSchema(adSchemaCubes,Array("FoodMart 2000",Empty,Empty))

Do Until rs.EOF
 szCubeName = rs.Fields(CubeNamePosition).Value
 Debug.Print szCubeName
rs.MoveNext
Loop

Analysis Services Programming (SQL Server 2000)

Retrieving Data
There are two methods for retrieving data with Microsoft® Visual Basic using PivotTable® Service: you can use the Microsoft
ActiveX® Data Objects (Multidimensional) (ADO MD) Cellset object or the ADO DB Command and Recordset objects. The ADO
MD Cellset and Axes objects are used to retrieve the results of a Multidimensional Expressions (MDX) query. Using the ADO DB
Command and Recordset objects with an SQL or MDX statement retrieves the data into a flattened rowset.

You can also use OLE DB to retrieve data from a cube or data mining model. The primary interfaces for this are IMDDataSet and
IRowset interfaces. For more information, see the OLE DB documentation.

See Also

Using the Cellset Object

Using the Recordset Object

Analysis Services Programming (SQL Server 2000)

Using the Cellset Object
Using the Cellset Object

You can use Microsoft® ActiveX® Data Objects (Multidimensional) (ADO MD) to retrieve Multidimensional Expressions (MDX)
query results from a local cube using the Cellset object. To retrieve a tabular result set, use the ADO Command and Recordset
objects. For more information about the Cellset object, see the ADO MD documentation.

Examples

A. Using the Cellset Object

The following example uses a Connection object to define a connection to the Analysis server. The Source property of the
Cellset object is then set to an MDX query that returns all of the measures for product families and promotion media. The
ActiveConnection property of the Cellset object is then set to the ActiveConnection property of the Connection object, and
the Open method is called to retrieve the actual results.

The Cellset object contains a collection called Axes, which describes each axis returned by the MDX query. There is one Axis
object in this collection for each dimension you request. Each Axis object contains a Positions collection, which contains
information about the individual rows, columns, pages, and so on of the returned result set. In this example, a Microsoft FlexGrid
control is formatted to display the results of the query:

Dim conn As New ADODB.Connection
Dim cst As New ADOMD.Cellset
Dim axs As ADOMD.Axis
Dim pos As ADOMD.Position
Dim iCol As Integer, cCol As Integer
Dim iRow As Integer, cRow As Integer
Dim nFixedCols As Integer, nFixedRows As Integer

 'Set up the connection to the server.
 conn.ConnectionString = "Datasource=LocalHost; Provider=msolap; Initial Catalog=FoodMart 2000;"
 conn.Open
 Set cst.ActiveConnection = conn ' You must use Set.
 cst.Source = "Select CrossJoin([Product].[Product Family].Members, " & _
 "[Promotion Media].Members) on rows," & _
 "[Measures].Members on Columns " & _
 "From Sales"
 cst.Open

 'Set up the FlexGrid control.
 MSFlexGrid1.Clear
 nFixedCols = 2
 nFixedRows = 1
 cCol = cst.Axes(0).Positions.Count
 MSFlexGrid1.Cols = cCol + nFixedCols
 cRow = cst.Axes(1).Positions.Count
 MSFlexGrid1.Rows = cRow + nFixedRows
 MSFlexGrid1.FixedCols = nFixedCols
 MSFlexGrid1.FixedRows = nFixedRows
 MSFlexGrid1.MergeCol(0) = True
 MSFlexGrid1.MergeCol(1) = True

 'Add column headers.
 iCol = 2
 For Each pos In cst.Axes(0).Positions
 'The caption for each member is used as the header.
 MSFlexGrid1.TextMatrix(0, iCol) = pos.Members(0).Caption
 iCol = iCol + 1
 Next

 'Add row headers.
 iRow = 1
 For Each pos In cst.Axes(1).Positions
 'The CrossJoin function in MDX indicates that this axis will have two members per position.
 MSFlexGrid1.TextMatrix(iRow, 0) = pos.Members(0).Caption
 MSFlexGrid1.TextMatrix(iRow, 1) = pos.Members(1).Caption
 iRow = iRow + 1
 Next

 'Iterate through the cellset array values.
 For iCol = 0 To cCol - 1
 For iRow = 0 To cRow - 1
 ' Retrieve each value with the default method of the cst object.

 MSFlexGrid1.TextMatrix(iRow + nFixedRows, iCol + nFixedCols) = cst(iCol, iRow).Value
 Next
 Next

Analysis Services Programming (SQL Server 2000)

Using the Recordset Object
Using the Recordset Object

You can use the Command and Recordset objects to retrieve data from a multidimensional source as well as from a tabular
source. However, the data is returned in a flattened rowset. For more information about flattened rowsets, see Working with
OLAP Data.

Examples

A. Using the Recordset Object

The following example retrieves a list of products and their sales from the Sales cube in the FoodMart 2000 database and places
them in a Microsoft® FlexGrid control. The control is filled with the values retrieved by an SQL query using the Microsoft
ActiveX® Data Objects (ADO) Connection and Recordset objects.

A connection to the FoodMart 2000 database is declared, using MSOLAP as a provider. The connection is then opened. Next, an
SQL query is created inside a string variable. A Recordset object is then opened with this SQL query as its source.

A loop is then entered, which fills the FlexGrid control with the retrieved values until the end of the recordset is reached.

For more information about using the ADO Command and Recordset objects, see the ADO documentation. For more
information about the FlexGrid control, see the Microsoft Visual Basic® documentation.

 Dim cn As New ADODB.Connection
 Dim rs As New ADODB.Recordset
 Dim sql As String
 Dim fld As ADODB.Field

 cn.ConnectionString = "Provider=MSOLAP; Datasource=LocalHost; Initial Catalog=FoodMart 2000"
 cn.Open

 sql = "Select [Product:Product Name],[Measures:Store Sales] from Sales"
 set rs.ActiveConnection = cn
 rs.Open sql, cn, adOpenForwardOnly, adLockReadOnly
 MSFlexGrid1.Clear
 MSFlexGrid1.AddItem "Product" & Chr(9) & "Value"
 Do While (Not rs.EOF)
 MSFlexGrid1.AddItem rs.Fields(0).Value & Chr(9) & rs.Fields(1).Value
 rs.MoveNext
 Loop

Analysis Services Programming (SQL Server 2000)

Updating Information in a Cube
PivotTable® Service supports a number of methods of updating the contents of both server cubes and local cubes. Transaction
support for writeback operations is provided by the transaction methods of the Microsoft® ActiveX Data Objects® (ADO)
Connection object.

Topic Description
Writing a Value Back to a Cell Describes the different methods of updating the

value of a cell in the cube itself, rather than through
the cube's fact table

Transaction Processing Shows how to use the transaction methods provided
by the ADO Connection object

See Also

Transactions in Analysis Services

Analysis Services Programming (SQL Server 2000)

Writing a Value Back to a Cell
Writing a Value Back to a Cell

There are different methods for updating the value of a cell directly in the cube, depending on the level of that value. The first
method, called writeback, sets the value of a leaf level member directly, using the transaction methods of the Connection object.
The second method, cell allocation, sets the value of a nonleaf member and specifies how the change should be distributed
among the children of the member. For this method, it is not necessary to use the transaction methods of the Connection object.
You can indirectly update a value in a cube by modifying its fact table and reprocessing it.

Writing to a Local Cube

Because local cubes do not use individual partitions to store data, changes to their data cannot be stored permanently. All changes
made to the data of a local cube are stored only for the duration of the session scope. If you need to change the contents of a local
cube permanently, you must make changes to the source data, not the local cube, and then rebuild the local cube.

Writing Back to Leaf Cells

For cells that are at the lowest level of the hierarchy, you can use the writeback method. The choice of method for updating the
values of aggregate members within a server cube depends on the level depth of the member. For members that are at the lowest
level of a hierarchy (and are therefore nonaggregated and atomic), update the cell's value property in a matching set of
connection transaction methods.

Writing Back to Nonleaf Cells

For cells that are not at the lowest level of a hierarchy, use the UPDATE CUBE to execute a cell allocation. Using this method, an
application can make a change to a nonleaf member and describe how that change should be allocated to the children of that
member. It may be helpful to think of the UPDATE CUBE statement as a subroutine that automatically generates a series of
individual writeback operations to atomic cells that roll up into a specified sum.

Examples

A. Updating a Leaf Cell Using Transactions

The following transaction updates a cell in a Cellset object, using cell writeback and transactions:

'Assume the existence of an open ADO Connection object (cn) and a Cellset object (cs).
'Also assume that ix and iy are integers pointing to an updatable cell.
'txtNewValue is assumed to be a string containing a new value for the cell.
cn.BeginTrans ' Start a new transaction.
cs(ix, iy).Value = Val(txtnewValue.Text) ' Write the new value to the cell
cn.CommitTrans

Analysis Services Programming (SQL Server 2000)

Transaction Processing
Transaction Processing

Transaction support for PivotTable® Service client applications is provided by the Microsoft® ActiveX® Data Objects (ADO)
Connection object. This object provides three methods for conducting transactions against cubes and data mining models:
BeginTrans, CommitTrans, and Rollback. For more information, see Performing Transactions in ADO.

Setting the Writeback Timeout Property

The amount of time that will elapse before a writeback operation times out can be specified in seconds using the Writeback
Timeout Property. This property can be set by using the connection string of the ADO Connection property when a session is
established. After setting this value it cannot be changed for the duration of the session. The following code sets the value of this
property to 60 seconds:

dim cn as ADO.Connection
cn.Open "provider=msolap; Initial Catalog=FoodMart 2000; Datasource=LocalHost; Writeback Timeout=60;"

See Also

Writeback Timeout Property

Analysis Services Programming (SQL Server 2000)

Building Local Cubes
 New Information - SQL Server 2000 SP3.

The process of creating a local cube can be summarized in a few steps.

1. Define dimensions.

2. Define measures.

3. Define calculated members.

4. Define other objects such as levels, member properties, and so on.

5. Populate the dimensions.

6. Populate the measures and calculated members.

7. Map the dimensions and measures into the cube structure.

8. Process the cube by connecting to the source provider.

To accomplish steps 1 through 6, use strings that consist of data definition language (DDL) statements such as CREATE CUBE.
Assign each statement to its corresponding connection string and then assemble all the connection string properties into a single
connection string. The local cube is then created during the process of connecting to the data source.

Before creating a local cube, you must decide which storage mode to use. You can create local cubes in multidimensional OLAP
(MOLAP) or relational OLAP (ROLAP) storage mode. For more information about OLAP storage modes, see Flexible Data Model.

To create a MOLAP cube, use the CREATE CUBE statement in the connection string to define the cube's dimensions, levels,
members, and measures. The INSERT INTO statement is then used to populate the cube with data. The result is a local cube saved
on the client computer, which can then be connected to and analyzed offline.

To create a ROLAP cube, use the CREATE CUBE statement in the connection string to define the cube (as described in the previous
paragraph). Then use the INSERT INTO statement with the OPTIONS DEFER_DATA clause to populate its dimensions and
members. This saves the structural definition of the local cube (that is, the cube and dimension definitions) on the local computer,
but does not save the member data. The client application can then connect to the local cube and analyze its data (while
connected to its data source) without a connection to an Analysis server.

Local MOLAP cubes generally take longer to create than ROLAP cubes because the cube data must be added to the meta data.
These cubes are usually much larger than ROLAP cubes. However, local MOLAP cubes provide better performance during query
execution than local ROLAP cubes do.

PivotTable® Service can only be used to define local cubes. You cannot create cubes on an Analysis server using PivotTable
Service.

The source data used to create a local cube must be to a tabular data provider, such as a relational database, or from an Analysis
server, which can act as a tabular data provider.

Security Note The connection information for the tabular data provider is stored in the local cube file. Use the
Source_DSN_Suffix property to supply security credentials, such as a user name and password, that will not be stored as part of
the stored information. For more information, see Source_DSN_Suffix Property.

The name of the local cube file to be created is defined using the Datasource property in the connection string. The file extension
of the cube file is .cub. You cannot specify other extensions for files of this type.

Caution If the specified cube file already exists on the local computer, PivotTable Service overwrites this existing file with the new
local cube unless you set the UseExistingFile property of the Microsoft® ActiveX® Data Objects (ADO) Connection object to a
value that begins with Y (for YES), T (for TRUE), or a nonzero numerical value.

If the name of a cube is different from the name of a cube already in a cube file, this new cube is appended to the old one.

See Also

Building and Processing Cubes

CREATE CUBE Statement

Data Source Property

UseExistingFile Property

Flexible Data Model

INSERT INTO Statement

Analysis Services Programming (SQL Server 2000)

Using the CREATE CUBE Statement
Using the CREATE CUBE Statement

 New Information - SQL Server 2000 SP3.

The following topic describes the first two steps in creating a local cube: defining the local cube's dimensions, and defining the
local cube's measures.

Defining Dimensions

The first step in creating a local cube is to define its dimensions and levels.

The example code contained at the end of this topic creates a local cube called C:\Warecube.cub from the sample FoodMart 2000
database (FoodMart 2000.mdb), which is provided with Microsoft® SQL Server™ 2000 Analysis Services. The cube has the
following structure:

Store Dimension

Level Data Type
All Stores ALL
Store Country Default
Store State Default
Store City Default
Store Name Default

Store Type Dimension

Level Data Type
All Store Types ALL
Store Type Default

Time Dimension

Column Hierarchy

Level Data Type
Year YEAR
Quarter QUARTER
Month MONTH
Week WEEK
Day DAY

Formula Hierarchy

Level Data Type
Year YEAR
Quarter QUARTER
Month MONTH

Warehouse Dimension

Level Data Type
All Warehouse ALL
Country Default
State Province Default
City Default
Warehouse Name Default

Defining Measures

The next step in building a local cube is to define the measures that will be used by that cube. The following table describes the
measures used in the example at the end of this topic.

Measure Function Format
Store Invoice Sum #.#
Supply Time Sum #.#
Warehouse Cost Sum #.#
Warehouse Sales Sum #.#
Units Shipped Sum #.#
Units Ordered Sum #.#

After the dimensions and measures are defined, they must be populated. For more information about populating a cube's
dimensions and measures, see Using the INSERT INTO Statement.

Examples

A. Defin ing a Local Cube's Dimensions

Use the following code to define the dimensions of a local cube:

Dim cnCube As ADODB.Connection
Dim s As String
Dim strProvider As String
Dim strDataSource As String
Dim strSourceDSN As String
Dim strSourceDSNSuffix As String
Dim strCreateCube As String
Dim strInsertInto As String

On Error GoTo Error_cmdCreateCubeFromDatabase

'*---
'* Add the provider that will process the connection string.
'*---

strProvider = "PROVIDER=MSOLAP"

'*---
'* Add the data source and the name of the cube file (.cub)
'* that will be created.
'*---

strDataSource = "DATA SOURCE=c:\warecube.cub"

'*---
'* Add the source DSN, the connection string for where the data comes from.
'* Quote the value so it is parsed as one value.
'* This can be either an ODBC connection string or
'* an OLE DB connection string
'* (as returned by the Data Source Locator component).
'*
'* strSourceDSN = "SOURCE_DSN=""DRIVER=Microsoft Access Driver (*.mdb);DBQ=\\machue1\Samples\Sales.MDB"";"
'*
'*---

strSourceDSN = "SOURCE_DSN=FoodMart 2000"

'*---
'* There may be some other parameters that you want applied
'* at run time but not stored in the cube file
'* or returned in the output string.
'* SECURITY NOTE - When possible, use Windows Authentication.
'* Example:
'* strSourceDSNSuffix = "UID=;PWD="
'*---

'*---
'* Add CREATE CUBE. This defines the structure of the cube,
'* but not the data in it.

'* The BNF for this statement is in the
'* Analysis Services documentation.
'* Note: The names are quoted with square brackets.
'*---

strCreateCube = "CREATECUBE=CREATE CUBE Mycube("
strCreateCube = strCreateCube & "DIMENSION [Product],"
 strCreateCube = strCreateCube & "LEVEL [All Products] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Product Family] ,"
 strCreateCube = strCreateCube & "LEVEL [Product Department] ,"
 strCreateCube = strCreateCube & "LEVEL [Product Category] ,"
 strCreateCube = strCreateCube & "LEVEL [Product Subcategory] ,"
 strCreateCube = strCreateCube & "LEVEL [Brand Name] ,"
 strCreateCube = strCreateCube & "LEVEL [Product Name] ,"
strCreateCube = strCreateCube & "DIMENSION [Store],"
 strCreateCube = strCreateCube & "LEVEL [All Stores] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Store Country] ,"
 strCreateCube = strCreateCube & "LEVEL [Store State] ,"
 strCreateCube = strCreateCube & "LEVEL [Store City] ,"
 strCreateCube = strCreateCube & "LEVEL [Store Name] ,"
strCreateCube = strCreateCube & "DIMENSION [Store Type],"
 strCreateCube = strCreateCube & "LEVEL [All Store Type] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Store Type] ,"
strCreateCube = strCreateCube & "DIMENSION [Time] TYPE TIME,"
 strCreateCube = strCreateCube & "HIERARCHY [Column],"
 strCreateCube = strCreateCube & "LEVEL [All Time] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Year] TYPE YEAR,"
 strCreateCube = strCreateCube & "LEVEL [Quarter] TYPE QUARTER,"
 strCreateCube = strCreateCube & "LEVEL [Month] TYPE MONTH,"
 strCreateCube = strCreateCube & "LEVEL [Week] TYPE WEEK,"
 strCreateCube = strCreateCube & "LEVEL [Day] TYPE DAY,"
 strCreateCube = strCreateCube & "HIERARCHY [Formula],"
 strCreateCube = strCreateCube & "LEVEL [All Formula Time] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Year] TYPE YEAR,"
 strCreateCube = strCreateCube & "LEVEL [Quarter] TYPE QUARTER,"
 strCreateCube = strCreateCube & "LEVEL [Month] TYPE MONTH OPTIONS (SORTBYKEY) ,"
strCreateCube = strCreateCube & "DIMENSION [Warehouse],"
 strCreateCube = strCreateCube & "LEVEL [All Warehouses] TYPE ALL,"
 strCreateCube = strCreateCube & "LEVEL [Country] ,"
 strCreateCube = strCreateCube & "LEVEL [State Province] ,"
 strCreateCube = strCreateCube & "LEVEL [City] ,"
 strCreateCube = strCreateCube & "LEVEL [Warehouse Name] ,"

Analysis Services Programming (SQL Server 2000)

Using the INSERT INTO Statement
Using the INSERT INTO Statement

This topic describes the next three steps necessary to build a local cube: populate the local cube's dimensions, populate the local
cube's measures, and map the source data for the dimensions and measures onto the local cube's structure.

Populate the Dimensions

Populating a local cube with dimension members and measure data is accomplished using the INSERT INTO statement in the
connection string, which follows the CREATE CUBE statement.

Caution If the name of the cube file to be created does not exist (as defined by the DBPROP_INIT_DATASOURCE property), it is
created during the processing of this statement. If a cube file with that name already exists, it is overwritten with the new cube
structure and data. If the name is not specified, a temporary name is assigned.

Use the portion of the INSERT INTO statement before the SELECT clause to identify the elements of the cube that will be
populated from the data source. For more information, see INSERT INTO Statement.

Before using the INSERT INTO statement, the cube structure must be defined with a CREATE CUBE statement. For more
information, see Building Local Cubes.

Populate the Measures

The measures of a cube are populated in the same way the dimensions are populated.

Map the Dimensions and Measures into the Cube Structure

Use a SELECT clause within the INSERT INTO statement to populate the dimension and level structures. This clause identifies the
source tables and columns from the fact table.

If you are creating a local ROLAP cube:

Precede the SELECT clause with an OPTIONS DEFER_DATA clause. (If the OPTIONS DEFER_DATA clause is omitted, a local
MOLAP cube is created.)

Remove the AS Coln clauses.

Note The order of columns in the SELECT clause must match the order of cube elements in the preceding INSERT INTO
clause. So, the first column in the SELECT clause populates the first cube element in the INSERT INTO clause, the second
populates the second, and so on.

Examples

A. Populating the Dimensions

This example populates the elements of the cube defined in Building Local Cubes:

'*---
'* Note: In some circumstances the SELECT clause may be passed through
'* to the relational database: For example, a stored procedure
'* could be passed in.
'* Note: Columns in the SELECT can be in any order. Just
'* adjust the order of the list of level/measure names to
'* match the order of columns in the SELECT clause.
'*---
strInsertInto = strInsertInto & "INSERTINTO=INSERT INTO Mycube (Product.[Product Family], Product.[Product
Department],"
strInsertInto = strInsertInto & "Product.[Product Category], Product.[Product Subcategory],"
strInsertInto = strInsertInto & "Product.[Brand Name], Product.[Product Name],"
strInsertInto = strInsertInto & "Store.[Store Country], Store.[Store State], Store.[Store City],"
strInsertInto = strInsertInto & "Store.[Store Name], [Store Type].[Store Type], [Time].[Column],"
strInsertInto = strInsertInto & "[Time].Formula.Year, [Time].Formula.Quarter, [Time].Formula.Month.[Key],"
strInsertInto = strInsertInto & "[Time].Formula.Month.Name, Warehouse.Country, Warehouse.[State Province],"
strInsertInto = strInsertInto & "Warehouse.City, Warehouse.[Warehouse Name], Measures.[Store Invoice],"
strInsertInto = strInsertInto & "Measures.[Supply Time], Measures.[Warehouse Cost], Measures.[Warehouse Sales],"
strInsertInto = strInsertInto & "Measures.[Units Shipped], Measures.[Units Ordered])"

Analysis Services Programming (SQL Server 2000)

Processing a Local Cube
Processing a Local Cube

The final step in creating a local cube includes creating a Connection object from Microsoft® ActiveX® Data Objects (ADO) and
opening the data source connection with the ADO Open method. This causes PivotTable® Service to create the local cube and
populate it with data.

The code in this topic includes the Connection object and Open method. This code also completes the creation of the local cube
(.cub) file example provided in previous topics.

Examples

A. Connecting to the Data Source

The following code shows how to process a local cube:

'*---
'* Set a new ADO DB Connection object.
'* Create the cube by passing concatenated connection
'* string to Open method of the connection object.
'*---

Set cnCube = New ADODB.Connection
s = strProvider & ";" & strDataSource & ";" & strSourceDSN & ";" & strCreateCube & ";" & strInsertInto & ";"

Screen.MousePointer = vbHourglass
cnCube.Open s
Screen.MousePointer = vbDefault
Exit Sub

Error_cmdCreateCubeFromDatabase:
 Screen.MousePointer = vbDefault
 On Error Resume Next

 ' Get the ADO errors.
 Dim erCur as Error
 Dim sErrDesc as String
 If cnCube.Errors.Count > 0 Then
 For Each erCur In cnCube.Errors
 sErrDesc = sErrDesc & erCur.Source & ": " & erCur.Description & vbCrLf
 Next erCur
 End If
 MsgBox Err.Description & sErrDesc

Analysis Services Programming (SQL Server 2000)

Defining Calculated Members
Defining Calculated Members

Calculated members are members whose value is dependent on an expression rather than on the value of a cell.

You can define a calculated member using one of the following scopes:

Query scope

The calculated member can be used only within the query in which it is defined. Use the WITH clause in the SELECT statement.

Session scope

The calculated member can be used only within the session in which it is defined, but can be used by multiple queries. Use the
CREATE MEMBER statement.

Custom Rollups

In addition to the standard aggregate functions Sum, Min, Max, and Count and Distinct Count, more sophisticated custom
rollup functions can be defined for any given member in the CREATE CUBE statement. One common usage scenario is the
inventory problem where inventory levels are not summed along the Time dimension, as they would be for every other
dimension. That is, if you have one item for seven days of time, you do not have seven items for the week. By using the LastChild
function in Multidimensional Expressions (MDX) to define a custom rollup formula, you can automatically roll up closing balances
along time.

Examples

A. Creating a Calculated M ember

Use the following code to create a calculated member. You must use single quotes to enclose the expression for the calculated
member. The OLE DB specification, however, does not require these quotes.

CREATE CUBE MYWAREHOUSE (
DIMENSION . . .
. . . ,
COMMAND (CREATE MEMBER [MYWAREHOUSE].[MEASURES].[WAREHOUSEPROFIT]
AS '[MEASURES].[WAREHOUSE SALES] - [MEASURES].[WAREHOUSE COST]')
)

Analysis Services Programming (SQL Server 2000)

Refreshing Local Cubes
Refreshing Local Cubes

 New Information - SQL Server 2000 SP3.

Use the REFRESH CUBE statement to refresh the data in a local cube. The REFRESH CUBE statement rebuilds the local cube file
with the CREATE CUBE and INSERT INTO statements that were originally used to create the local cube. These statements and a
reference to the original source database are stored in the local cube file. The original data source must be available for this
statement to succeed.

Security Note The connection information for the original source database is stored in the local cube file. Use the
Source_DSN_Suffix property to supply security credentials, such as a user name and password, that will not be stored as part of
the stored information. For more information, see Source_DSN_Suffix Property.

For more information, see Managing the Client Cache.

See Also

CREATE CUBE Statement

INSERT INTO Statement

Analysis Services Programming (SQL Server 2000)

PivotTable Service Programmer's Reference
The Programmer's Reference contains reference pages necessary for working with PivotTable® Service. The following table
describes the information contained in each set of reference topics.

Topic Description
PivotTable Service Properties Description of properties that can be set in the

connection
Data Definition Language Statements for defining a local cube, creating a local

cube, and altering the structure of a server cube
Data Manipulation Language Information about data manipulation commands, such

as the SELECT and INSERT_INTO statements
Function Reference Details about available OLAP and data mining

functions
Schema Rowsets Additions to the schema rowsets defined by the OLAP

portion of the OLE DB specification and new schema
rowset restriction columns

Analysis Services Programming (SQL Server 2000)

PivotTable Service Properties
Properties in PivotTable® Service can be referred to by either property name or property ID. When setting or reading the value of
a property using Microsoft® ActiveX® Data Objects (ADO), use the property name. When setting or reading the value of a
property using OLE DB, use the property ID. The property ID is listed in the individual reference topic for each property.

Important Some property names contain embedded spaces; others do not. Use the property name exactly as it is listed under
the Property Name heading in the property detail topic.

The following table lists the property names and property IDs that PivotTable Service supports. For more information, see the
OLAP portion of the OLE DB specification.

Property name Description
ArtificialData Property Reserved for future use
Authenticated User Property Reserved for future use
Auto Synch Period Property Controls the frequency (in milliseconds) of

client/server synchronization
Cache Policy Property Reserved for future use
Cache Ratio Property Reserved for future use
Client Cache Size Property Controls the amount of memory used by

the client cache
CompareCaseNotSensitiveStringFlags
Property

Adjusts case-insensitive string
comparisons for a specified locale

CompareCaseSensitiveStringFlags
Property

Adjusts case-sensitive string comparisons
for a specified locale

Connect Timeout Property Determines the maximum amount of time
the client application will attempt to
connect to the server before timing out

CreateCube Property The CREATE CUBE statement to create a
local cube file

Data Source Property The name of the server computer or local
cube file

Datasource Connection Type Property Describes the type of connection that is
currently active

Default GUID Dialect Property Controls the precedence in which
language dialects are applied when
resolving queries

Default Isolation Mode Property Controls whether the isolation level is
isolated or determined by the cursor type
requested by the rowset properties

Default MDX Visual Mode Property Determines the default behavior of visual
totals

Distinct Measures By Key Property Reserved for future use
Do Not Apply Commands Property Reserved for future use
Execution Location Property Determines the location of query

resolution: the client application, server, or
a combination

Initial Catalog Property The name of the initial database (catalog)
InsertInto Property The INSERT INTO statement used to

populate a local cube file created with the
CREATE CUBE statement

Large Level Threshold Property Determines the definition of large level for
client/server handling of level members

Locale Identifier Property The locale ID of preference for the client
application

Log File Property Specifies a file name for logging queries
MDX Calculated Members Mode Property Reserved for future use

MDX Compatibility Property Determines how empty members are
treated for ragged and unbalanced
hierarchies

MDX Object Qualification Property Describes how object names are qualified
in Microsoft SQL Server™ 2000 Analysis
Services

MDX Unique Name Style Property Determines the technique for generating
unique names

Mining Execution Location Property Determines the location of query
resolution for data mining queries

Mining Location Property Determines the directory in which a local
data mining model will be created

Mining Persistence Format Property Determines how data mining models are
saved

OLE DB for OLAP Version Property Indicates the version of the OLE DB
provider

Password Property Specifies the password to use when
connecting using HTTP

Provider Property A predefined string containing other
initialization properties

Read Only Session Property Reserved for future use
Restricted Client Property Restricts PivotTable Service from creating

local cubes or running deeply recursive
queries.

Roles Property Specifies a comma-delimited string of the
role names by which a client application
connects to the server

Safety Options Property Determines how security for user-defined
functions is handled

Secured Cell Value Property Determines the type of return value that
results from a reference to a secured cell

Show Hidden Cubes Property Reserved for future use
Source_DSN Property The OLE DB connection string, ODBC

connection string, or ODBC data source
name (DSN) for the source relational
database; used only when creating a local
cube file

Source_DSN_Suffix Property Used to specify DSN properties for
creating local cubes that should not be
stored as part of the local cubes structure,
such as the user ID and password for the
local cube's data source

SQL Compatibility Property Reserved for future use
SSPI Property Determines the security package to use

during the session
UseExistingFile Property Determines whether a local cube file is

overwritten if the connection string
contains CREATE CUBE and INSERT INTO
statements

User ID Property Specifies a valid user name, such as a valid
domain logon or local logon

Writeback Timeout Property Determines the maximum amount of time
the client application will attempt to
communicate updates to a writeback table
on the server before timing out

Analysis Services Programming (SQL Server 2000)

ArtificialData Property
ArtificialData Property

Reserved for future use.

Property Name

ArtificialData

Property ID

DBPROP_MSMD_ARTIFICIALDATA

Analysis Services Programming (SQL Server 2000)

Authenticated User Property
Authenticated User Property

Reserved for future use.

Property Name

Authenticated User

Property ID

DBPROP_MSMD_AUTHENTICATED_USER

Analysis Services Programming (SQL Server 2000)

Auto Synch Period Property
Auto Synch Period Property

This property controls the frequency (in milliseconds) of client/server synchronization.

Property Name

Auto Synch Period

Property ID

DBPROP_MSMD_AUTOSYNCHPERIOD

Remarks

The default is 10,000 milliseconds (10 seconds).

When this property is set to a NULL value or 0 (zero), automatic synchronization is turned off. Synchronization occurs only when
you send a query to the server.

Because some client queries are resolved solely from the client cache, too high a value in this property can result in query results
that do not reflect recent updates in the data source. However, too low a value can impede performance. The lowest valid nonzero
value is 250 milliseconds. If a value between 1 and 249 (inclusive) is specified, a value of 250 milliseconds is used.

You will usually set the value of this property when you establish a session; however, you can change its value during the session
if necessary.

Analysis Services Programming (SQL Server 2000)

Cache Policy Property
Cache Policy Property

Reserved for future use.

Property Name

Cache Policy

Property ID

DBPROP_MSMD_CACHEPOLICY

Analysis Services Programming (SQL Server 2000)

Cache Ratio Property
Cache Ratio Property

Reserved for future use.

Property Name

Cache Ratio

Property ID

DBPROP_MSMD_CACHERATIO

Analysis Services Programming (SQL Server 2000)

Client Cache Size Property
Client Cache Size Property

This property controls the amount of memory used by the client cache.

Property Name

Client Cache Size

Property ID

DBPROP_MSMD_DATA_CACHE_SIZE

Remarks

If this property is set to 0 (zero), the client cache can use unlimited memory. If this property is set to a value between 1 and 99
(inclusive), the client cache can use the specified percentage of total available virtual memory (physical and page file). If this
property is set to 100 or more, the client cache can use up to the specified amount of memory, in kilobytes (KB).

This property's value is used when a session is established, and the value can be changed during the session.

Analysis Services Programming (SQL Server 2000)

CompareCaseNotSensitiveStringFlags Property
CompareCaseNotSensitiveStringFlags Property

This property adjusts case-insensitive string comparisons for a specified locale.

Property Name

CompareCaseNotSensitiveStringFlags

Property ID

DBPROP_MSMD_COMPARECASENOTSENSITIVESTRINGFLAGS

Remarks

Flags specified for this property are used in case-insensitive string comparisons. These flags control string comparisons and sort
order. This property controls how comparisons are made in character sets that do not support uppercase and lowercase
characters, such as Katakana (for Japanese) and Hindi. The default is the value of the CompareCaseNotSensitiveStringFlags
registry entry on the client computer.

The client application can override the registry entry for case-insensitive string comparisons by setting the
CompareCaseNotSensitiveStringFlags property in the connection string. PivotTable® Service can have only one value for this
property for each process.

The value of this property, as set in the first connection of the process thread, affects all subsequent connections in that process
thread.

It is an error for a subsequent connection to set the property to a value different from that established by the first connection. This
includes any scenario in which a first client application sets a nondefault value, and a second client application does not set any
value, expecting to use the default. It is the responsibility of the client application to manage these settings when there are
multiple sessions per process.

This property's value cannot be changed during the session.

Use the following table to determine which flags to use.

Name Value Description
NORM_IGNORECASE 0x00000001 Case is ignored.
Not applicable 0x00000002 Binary comparison. Characters are

compared based on their underlying value
in the character set, not on their order in
their particular alphabet.

NORM_IGNORENONSPACE 0x00000010 Nonspacing characters are ignored.
NORM_IGNORESYMBOLS 0x00000100 Symbols are ignored.
NORM_IGNOREKANATYPE 0x00001000 No differentiation is made between

Hiragana and Katakana characters.
Corresponding Hiragana and Katakana
characters, when compared, are considered
to be equal.

NORM_IGNOREWIDTH 0x00010000 No differentiation is made between single-
byte and double-byte versions of the same
character.

SORT_STRINGSORT 0x00100000 Punctuation is treated the same as
symbols.

For more information about comparing strings in OLE DB, search on "CompareString" in the Platform SDK section of the MSDN®
Library at the Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services Programming (SQL Server 2000)

CompareCaseSensitiveStringFlags Property
CompareCaseSensitiveStringFlags Property

This property adjusts case-sensitive string comparisons for a specified locale.

Property Name

CompareCaseSensitiveStringFlags

Property ID

DBPROP_MSMD_COMPARECASESENSITIVESTRINGFLAGS

Remarks

Flags specified for this property are used in case-sensitive string comparisons. These flags control string comparisons and sort
order. This property controls how comparisons are made in character sets that do not support uppercase and lowercase
characters, such as Katakana (for Japanese) and Hindi. The default is the value of the CompareCaseSensitiveStringFlags
registry entry on the client computer if this registry entry exists.

The client application can override the registry entry for case-insensitive string comparisons by setting the
CompareCaseSensitiveStringFlags property in the connection string. PivotTable® Service can have only one value for this
property for each process.

The value of this property, as set in the first connection of the process thread, affects all subsequent connections in that process
thread.

It is an error for a subsequent connection to set the property to a value different from that established by the first connection. This
includes any scenario in which a first client application sets a nondefault value, and a second client application does not set any
value, expecting to use the default. It is the responsibility of the client application to manage these settings when there are
multiple sessions per process.

This property's value cannot be changed during the session.

Use the following table to determine which flags to use.

Name Value Description
NORM_IGNORECASE 0x00000001 Case is ignored.
Not applicable 0x00000002 Binary comparison. Characters are

compared based on their underlying value
in the character set, not on their order in
their particular alphabet.

NORM_IGNORENONSPACE 0x00000010 Nonspacing characters are ignored.
NORM_IGNORESYMBOLS 0x00000100 Symbols are ignored.
NORM_IGNOREKANATYPE 0x00001000 No differentiation is made between

Hiragana and Katakana characters.
Corresponding Hiragana and Katakana
characters, when compared, are considered
to be equal.

NORM_IGNOREWIDTH 0x00010000 No differentiation is made between single-
byte and double-byte versions of the same
character.

SORT_STRINGSORT 0x00100000 Punctuation is treated the same as
symbols.

For more information about comparing strings in OLE DB, search on "CompareString" in the Platform SDK section of the MSDN®
Library at the Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services Programming (SQL Server 2000)

Connect Timeout Property
Connect Timeout Property

This property determines the amount of time that will elapse before an unsuccessful connection times out and returns an error.

Property Name

Connect Timeout

Property ID

DBPROP_INIT_TIMEOUT

Remarks

Indicates the amount of time (in seconds) to wait for initialization to complete.

For more information about DBPROP_INIT_TIMEOUT, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

CreateCube Property
CreateCube Property

This property contains the CREATE CUBE statement that is used in the connection string during creation of a local cube.

Property Name

CreateCube

Property ID

DBPROP_MSMD_CREATECUBE

Remarks

You must use this property with the InsertInto and Source_DSN properties. When these three properties are used, they are
always used together.

This property's value is used when a session is established, and it cannot be changed during the session.

Note The name of this property is formatted differently than the name for the CREATE CUBE statement with which it is
associated. When used in the connection string, it must be formatted as a single word: CreateCube.

See Also

CREATE CUBE Statement

InsertInto Property

Source_DSN Property

Analysis Services Programming (SQL Server 2000)

Data Source Property
Data Source Property

This property is used to set the name of the server computer or local cube file.

Property Name

Data Source

Property ID

DBPROP_INIT_DATASOURCE

Remarks

The property's value depends on the intended operation mode:

To work with the Analysis server, specify the name of the server computer, or LOCALHOST, or LOCAL, an IP address, or an
HTTP or HTTPS URL.

To create or work with a local cube file, specify the name of the cube file. Local cube files must have an extension of .cub.

To create a temporary local cube file that will be deleted when the session ends, specify a null value.

This property's value is used when a session is established, but the value cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

Datasource Connection Type Property
Datasource Connection Type Property

This property is a read-only property that describes the type of connection that is currently active.

Property Name

Datasource Connection Type

Property ID

DBPROP_DATASOURCE_CONNECTION_TYPE

Remarks

This property returns a bitmask that describes the type of connection that is currently active. The following table lists the values
this bitmask can contain.

Value Description
1 The connection is to an Analysis server.
2 The connection is to a local cube file.
4 The connection is to the Internet or an intranet through HTTP.

Analysis Services Programming (SQL Server 2000)

Default GUID Dialect Property
Default GUID Dialect Property

This property controls the precedence of language dialect parsers when the provider attempts to resolve query syntax.

Property Name

Default GUID Dialect

Property ID

DBPROP_MSMD_DEFAULT_GUID_DIALECT

Remarks

Because query syntax can be similar for language dialects such as data mining and SQL, the provider may not be able to infer the
dialect from the query syntax. The provider may attempt to execute the query a second time in a different dialect if the query fails
to execute in the first dialect. For example, if a data mining query fails, the provider may resubmit the query as SQL. If this second
attempt also fails, the provider returns an SQL error message instead of a data mining error message.

The Default GUID Dialect property establishes the dialect the provider will use first to attempt to execute the query and the
dialect of execution errors returned for query failures, even if the provider attempts to execute the query a second time in another
dialect. For example, if the Default GUID Dialect property is set to MDGUID_DM, the provider first attempts to execute the query
as a data mining query. If this attempt fails, the provider resubmits the query as an SQL query. However, because the value of this
property is MDGUID_DM, if the SQL query also fails, the data mining error message is returned, not the SQL error message.

This property can be used in situations in which queries are expected to be more prevalent in one dialect than another.

Note If the OLE DB parameter rguidDialect is set in ICommandText::SetCommandText, that setting takes precedence over
the Default GUID Dialect property setting and unequivocally specifies the dialect of the query. That is, the precedence algorithm
established by the Default GUID Dialect property does not apply.

The following table describes possible values for this property.

Property value Description
DBGUID_SQL The SQL parser has precedence (default)
MDGUID_DM The data mining dialect parser has precedence
MDGUID_MDX The MDX parser has precedence

Analysis Services Programming (SQL Server 2000)

Default Isolation Mode Property
Default Isolation Mode Property

This property controls the default transaction level isolation mode, which can override the transaction level determined by the
rowset cursor type.

Property Name

Default Isolation Mode

Property ID

DBPROP_MSMD_DEFAULT_ISOLATION_MODE

Remarks

If the first character of this string is Y, T, or a numeric digit other than 0 (zero), the isolation level is Serializable (also known as
Isolated). Otherwise, the cursor type requested by the rowset determines the isolation level. For more information about
isolation levels, see the OLE DB documentation.

Use this property to provide read repeatability.

This property's value is used when a session is established, and the value can be changed during the session.

Analysis Services Programming (SQL Server 2000)

Default MDX Visual Mode Property
Default MDX Visual Mode Property

This property determines the default behavior for visual totals.

Property Name

Default MDX Visual Mode

Property ID

DBPROP_MSMD_DEFAULT_MDX_VISUAL_MODE

Remarks

Use the following table to determine the function of this property.

Property value Description
DBPROPVAL_VISUAL_MODE_DEFAULT Provider-dependent. In Microsoft® SQL

Server™ 2000 Analysis Services, this is
equivalent to
DBPROPVAL_VISUAL_MODE_ORIGINAL.

DBPROPVAL_VISUAL_MODE_VISUAL Visual totals are enabled.
DBPROPVAL_VISUAL_MODE_ORIGINAL Visual totals are not enabled.

Analysis Services Programming (SQL Server 2000)

Distinct Measures By Key Property
Distinct Measures By Key Property

Reserved for future use.

Property Name

Distinct Measures By Key

Property ID

DBPROP_MSMD_DISTINCTMEASURESBYKEY

Analysis Services Programming (SQL Server 2000)

Do Not Apply Commands Property
Do Not Apply Commands Property

Reserved for future use.

Property Name

Do Not Apply Commands

Property ID

DBPROP_MSMD_DONOTAPPLYCOMMANDS

Analysis Services Programming (SQL Server 2000)

Execution Location Property
Execution Location Property

This property determines the location of query resolution: the client application, server, or a combination of both.

Property Name

Execution Location

Property ID

DBPROP_MSMD_EXECLOCATION

Remarks

The following values are available.

Value Description
0 Default. For compatibility with earlier versions, this means the same as

Value 1. The meaning of this default value is subject to change in future
versions.

1 PivotTable® Service selects the query execution location (client application
or server) that will provide the best performance.

2 Queries are executed on the client application.
3 Queries are executed on the server. (Queries that contain session-scoped

calculated members, user-defined sets, or user-defined functions are
exceptions.)

This property's value is used when a session is established, and the value can be changed during the session.

Analysis Services Programming (SQL Server 2000)

Initial Catalog Property
Initial Catalog Property

This property is used to set the name of the initial database (also known as the catalog) of a data source during connection.

Property Name

Initial Catalog

Property ID

DBPROP_INIT_CATALOG

Remarks

The value of this property is used when a session is established, but the value cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

InsertInto Property
InsertInto Property

This property contains the INSERT INTO statement that is used in the connection string during creation of a local cube.

Property Name

InsertInto

Property ID

DBPROP_MSMD_INSERTINTO

Remarks

You must use this property with the CreateCube property and the Source_DSN property. When these three properties are used,
they are always used together.

This property's value is used when a session is established, but the value cannot be changed during the session.

Note The name of this property is formatted differently than the name for the INSERT INTO statement with which it is associated.
When used in the connection string, it must be formatted as a single word: InsertInto.

See Also

INSERT INTO Statement

CreateCube Property

Source_DSN Property

Analysis Services Programming (SQL Server 2000)

Large Level Threshold Property
Large Level Threshold Property

This property determines the point at which a level is too large to be sent to the client application in a single piece.

Property Name

Large Level Threshold

Property ID

DBPROP_MSMD_LARGE_LEVEL_THRESHOLD

Remarks

Use this property to help manage client application memory usage. If the number of members in a level is below the threshold
you set in this property, it is sent to the client application in one piece. If the number of members in a level is equal to or more
than this threshold, the level is broken into smaller groups, which are sent as needed. Levels that contain a number of members
that is less than this property's value are sent to the client application. If a level contains a number of members that is greater than
or equal to the value of this property, the level is incrementally sent from the server to the client application.

The default value is set on the server in the Large level defined as box in the Properties dialog box for the server. The minimum
value for this property is 10. Setting this property to a value less than the minimum causes the value to be set to the minimum,
without error.

This property's value is used when a session is established, and it cannot be changed during the session.

The default value for this property is 1000.

See Also

Environment Tab (Properties Dialog Box)

Analysis Services Programming (SQL Server 2000)

Locale Identifier Property
Locale Identifier Property

This property is used to set the locale ID (LCID) of preference for the client application.

Property Name

Locale Identifier

Property ID

DBPROP_INIT_LCID

Remarks

The client application can modify the LCID by setting the Locale Identifier property. PivotTable® Service can have only one LCID
for each Microsoft® Windows® process. The LCID must be installed in Control Panel in Windows. If it is not, the attempt to set
the LCID fails. By default, the Locale Identifier property is reported as null.

When multiple connections are opened in the same process, connections subsequent to the first connection must specify the LCID
to be the same as that established by the first connection.

It is an error for a subsequent connection to set the LCID to a value that would be different from that established by the first
connection. This includes the scenario in which a first client application sets a nondefault value, and a second client application
does not set any value, expecting to use the default. It is the client application's responsibility to manage these settings in
scenarios that involve multiple sessions per process.

This property's value is used when a session is established, but the value cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

Log File Property
Log File Property

 New Information - SQL Server 2000 SP3.

This property sets or returns the name of the file used to log Multidimensional Expressions (MDX) queries.

Property Name

Log File

Property ID

DBPROP_MSMD_LOG_FILE

Remarks

Use this property to specify a file name for logging MDX queries. The specified file is opened for exclusive use by the connection;
subsequent attempts by other connections to open the same file will fail.

The Log File property accepts only valid file names with a file extension of .log or .txt. If an invalid file name is provided, the
connection attempt fails and an error is raised. If a valid file name is provided with a file extension other than .log or .txt, the file
extension .log is appended to the file name.

The format of the log file is as follows:

Process name : Process ID
Date
Time
Command type, one of the following:
 MDX - MDX query
 SQL - SQL query
 DM - Data mining query
Query text

Each field in the log file is separated by a space character and terminated by a carriage return/line feed character.

Analysis Services Programming (SQL Server 2000)

MDX Calculated Members Mode Property
MDX Calculated Members Mode Property

Reserved for future use.

Property Name

MDX Calculated Members Mode

Property ID

DBPROP_MSMD_MDX_CALC_MEMBERS_MODE

Analysis Services Programming (SQL Server 2000)

MDX Compatibility Property
MDX Compatibility Property

This property determines how missing members in the hierarchy are treated in ragged and unbalanced hierarchies.

Property Name

MDX Compatibility

Property ID

DBPROP_MSMD_MDXCOMPATIBILITY

Remarks

This property determines how placeholder members in a ragged or unbalanced hierarchy are treated. The following table
describes possible values for this property.

Value Description
0 Default. For compatibility with earlier versions, this is the same as Value 1.

The meaning of this default value is subject to change in future versions.
1 Default value. Placeholder members are exposed.
2 Placeholder members are not exposed.

This property overrides the following registry setting:

HKEY_CLASSES_ROOT\CLSID\{a07ccd0c-8148-11d0-87bb-00c04fc33942}

See Also

Ragged Hierarchies

Analysis Services Programming (SQL Server 2000)

MDX Object Qualification Property
MDX Object Qualification Property

This property provides a bitmask that specifies how multidimensional schema object names are qualified in
Multidimensional Expressions (MDX) expressions.

Property Name

MDX Object Qualification

Property ID

MDPROP_OBJQUALIFICATION

Remarks

This read-only property determines how a provider qualifies object names.

The following table describes the function of each bit in this property.

Bit Description
MDPROPVAL_MOQ_DATASOURCE Cubes are qualified by data source name.
MDPROPVAL_MCQ_CATALOG Cubes are qualified by catalog name.
MDPROPVAL_MCQ_SCHEMA Cubes are qualified by schema name. If the

MDPROPVAL_MOQ_DATASOURCEMDPROPVAL_MCQ_CATALOG
bits are not set, the provider does not support cube qualification.

MDPROPVAL_MOQ_CUBE_DIM Dimensions are qualified by cube name.
MDPROPVAL_MOQ_DIM_HIER Hierarchies are qualified by dimension name.
MDPROPVAL_MOQ_DIMHIER_LEVEL Levels are qualified by dimension name and/or hierarchy name.

This property applies only if the provider supports named levels.
The MDPROP_NAMED_LEVELS bit of this property indicates
whether named levels are supported.

MDPROP_NAMED_LEVELS This bit is set if named levels are not supported.
MDPROPVAL_MOQ_DIMHIER_MEMBER Members are qualified by dimension name and/or hierarchy

name.
MDPROPVAL_MOQ_LEVEL_MEMBER Members are qualified by level name.
MDPROPVAL_MOQ_MEMBER_MEMBER Members are qualified by ancestor name(s).

PivotTable® Service and Microsoft® SQL Server™ 2000 Analysis Services set the following bitmask for this property:

MDPROPVAL_MOQ_DIM_HIER
| MDPROPVAL_MOQ_DIMHIER_LEVEL
| MDPROPVAL_MOQ_DIMHIER_MEMBER
| MDPROPVAL_MOQ_LEVEL_MEMBER
| MDPROPVAL_MOQ_MEMBER_MEMBER

The client application cannot change the value of this property.

Analysis Services Programming (SQL Server 2000)

MDX Unique Name Style Property
MDX Unique Name Style Property

This property determines which algorithm is used to generate unique names.

Property Name

MDX Unique Name Style

Property ID

DBPROP_MSMD_MDXUNIQUENAMES

Remarks

Because members in Microsoft® SQL Server™ 2000 Analysis Services can change position in a dimension, the method for
generating unique names in SQL Server version 7.0 OLAP Services may result in an unstable unique name over time. To
accommodate this change, you can use this property to specify the algorithm for generating unique names. Use the following
table to specify which algorithm to use.

Value Description
0 Default. For compatibility with earlier versions, this is the same as Value 2.

The meaning of this default value is subject to change in future versions.
1 Key path algorithm: [dim].&[k1].&[k2]
2 Compatible with version 7.0, name path algorithm: [dim].[n1].[n2]
3 Compatible with SQL Server 2000 Analysis Services. The algorithm uses

guaranteed unique names, which are stable over time.

This property overrides the following registry setting:

HKEY_CLASSES_ROOT\CLSID\{a07ccd00-8148-11d0-87bb-00c04fc33942}

Analysis Services Programming (SQL Server 2000)

Mining Execution Location Property
Mining Execution Location Property

This property determines the location of data mining query resolution: the client application, server, or a combination of both.

Property Name

Mining Execution Location

Property ID

DBPROP_MSMD_MINING_EXECUTION_LOCATION

Remarks

The following table describes possible values.

Value Description
0 Default. For compatibility with earlier versions, this means the same as

Value 1. The meaning of this default value is subject to change in future
versions.

1 PivotTable® Service selects the query execution location (client application
or server) that will provide the best performance.

2 The server updates the mining model on the client, and then the query is
executed and resolved on the client.

3 Queries are executed and resolved on the server.

This property's value is used when a session is established; its value cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

Mining Location Property
Mining Location Property

This property specifies the directory location for local data mining models that will be used or created during the session.

Property Name

Mining Location

Property ID

DBPROP_MSMD_MINING_LOCATION

Remarks

Queries can reference more than one local data mining model during a session. This property determines the directory location
for all local data mining models that will be used during the session. This property also determines where local data mining
model files will be stored.

Caution If this property's value is not set during connection, local mining models will be created with connection scope. This
means that they will only last for the duration of the session, and they will be lost when the session ends.

Analysis Services Programming (SQL Server 2000)

Mining Persistence Format Property
Mining Persistence Format Property

This property determines how mining models are stored.

Property Name

Mining Persistence Format

Property ID

DBPROP_MSMD_MINING_PERSISTENCE_FORMAT

Remarks

Data mining models can be stored in two different formats: binary and XML. The value of this property determines which format
is used. The following table describes the possible values for this property.

Value Description
0 Default. This value is the same as Value 2.
1 Models are stored in XML.
2 Models are stored in binary format.

Analysis Services Programming (SQL Server 2000)

OLE DB for OLAP Version Property
OLE DB for OLAP Version Property

This property indicates the version of OLE DB supported by the provider.

Property Name

OLE DB for OLAP Version

Property ID

DBPROP_PROVIDEROLEDBOLAPVER

Remarks

The version is of the form ##.##, where the first two digits are the major version and the next two digits are the minor version. For
example, OLE DB for OLAP providers conforming to the 2.0 specification would return "02.00".

The OLE DB for OLAP specification was included as part of the version 2.6 OLE DB specification. This property has been retained
to ensure backward compatibility with client applications using earlier versions of PivotTable® Service, but it is not recommended
for current use. This property contains the same value as DBPROP_PROVIDEROLEDBVER for providers that comply with version
2.6 of the OLE DB specification.

Analysis Services Programming (SQL Server 2000)

Password Property
Password Property

 New Information - SQL Server 2000 SP3.

This property specifies a valid domain logon password.

Security Note When possible, use Windows Authentication.

Property Name

Password

Property ID

DBPROP_AUTH_PASSWORD

Remarks

This property is used only when the application is connecting to Microsoft® SQL Server™ 2000 Analysis Services using HTTP, and
only if Basic authentication is used. Its value must be set to a valid domain logon password. You can also use this property with
the Source_DSN_Suffix property when connecting to a relational data source to build a local cube.

Security Note The use of the Source_DSN_Suffix property is recommended.

See Also

User ID Property

Source_DSN_Suffix Property

Analysis Services Programming (SQL Server 2000)

Provider Property
Provider Property

This property is used to set a predefined string containing initialization properties specific to the provider.

Property Name

Provider

Property ID

DBPROP_INIT_PROVIDERSTRING

Remarks

This is a standard OLE DB property; however, it does not specify usage. Usage is specific to the providers that use it. For
connections to Microsoft® SQL Server™ 2000 Analysis Services, this property should be set to "MSOLAP;".

In PivotTable® Service, this property is used by Microsoft ActiveX® Data Objects (ADO) and ADO (Multidimensional) (ADO MD).
The property string is semicolon-delimited. Double quotation marks can be used to delimit individual values.

During initialization (IDBInit::Initialize), every recognized property from the Provider property is copied into its respective
property value, overwriting existing property values.

The Provider property is cleared after the initialization process is complete (that is, after a connection to the Analysis server is
established or a local cube is created).

It is the responsibility of the client application to store the connection string.

See Also

Connecting to a Data Source

Analysis Services Programming (SQL Server 2000)

Read Only Session Property
Read Only Session Property

Reserved for future use.

Property Name

Read Only Session

Property ID

DBPROP_MSMD_READ_ONLY_SESSION

Analysis Services Programming (SQL Server 2000)

Restricted Client Property
Restricted Client Property

Restricts PivotTable Service from creating local cubes or running deeply recursive queries.

Property Name

Restricted Client

Property ID

DBPROP_MSMD_RESTRICTEDCLIENT

Remarks

The Restricted Client property is used to prevent PivotTable Service from performing operations that are typically not done by a
middle-tier application. Specifically, the Restricted Client property prevents:

The creation of local cubes through the use of the CREATE CUBE statement.

Deeply recursive queries from causing the thread stack to overflow.

If this property is enabled, an error is raised if either of these conditions occurs.

The following table lists the possible values for this property.

Value Description
Any string value that starts with "Y", "y",
"T", or "t".

Any string value that can be converted to
a numeric value other than 0.

The property restricts local cube creation
and deeply recursive queries.

Any other string value or an empty string
("").

The property does not restrict local cube
creation and deeply recursive queries.

To ensure security and stability when PivotTable Service is used in a middle-tier application, you should use this property in
conjunction with the Safety Options property.

See Also

Safety Options Property

Analysis Services Programming (SQL Server 2000)

Roles Property
Roles Property

This property specifies a comma-delimited string of the role names under which a client application connects to the server.

Property Name

Roles

Property ID

DBPROP_MSMD_ROLES

Remarks

This property allows the user to connect using a role other than the one he or she is currently using. For example, a member of
the OLAP Administrators role may want to connect to a cube as a member of the Users role to test permissions granted to the
Users role. This user must be a member of the role specified in order to connect using this property.

Important Role names are case-sensitive, and spaces should not be used between the comma-delimited role names. Otherwise
errors and unexpected results may be returned as a result of queries to secured cell sets.

See Also

User ID Property

Password Property

Analysis Services Programming (SQL Server 2000)

Safety Options Property
Safety Options Property

 New Information - SQL Server 2000 SP3.

This property determines how security for user-defined functions and actions is handled.

Property Name

Safety Options

Property ID

DBPROP_MSMD_SAFETY_OPTIONS

Remarks

The value of the property determines whether unsafe libraries can be registered and loaded by PivotTable® Service or the server.
If an attempt is made to load an unsafe library or reference an unsafe user-defined function while safety checking is enabled, then
PivotTable Service will return the following error:
User defined function <function name> cannot be used, because the class that implements it is not safe for
initialization or scripting, which is required by client settings.

The value of the Safety Options property determines whether or not the PASSTHROUGH keyword is allowed in local cubes. If a
client application attempts to create a local cube with an INSERT INTO statement that contains the PASSTHROUGH keyword, or if
a client application attempts to refresh a local cube that contains an INSERT INTO statement which uses the PASSTHROUGH
keyword, an error is raised.

The following table lists the possible values for this property.

Value Description
DBPROPVAL_MSMD_SAFETY_OPTIONS_DEFAULT For connections to a local cube, or via an IIS server, this

value is the same as
DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_SAFE.

For all other connections, this value is the same as
DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_ALL.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_ALL This value enables all user-defined function libraries
without verifying that they are safe for initialization
and scripting and allows usage of the PASSTHROUGH
keyword in local cubes.

Security Note This option is not recommended.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_SAFE This value ensures that all classes for a particular user-
defined function library are checked to ensure that
they are safe for initialization and scripting and
prevents usage of the PASSTHROUGH keyword in
local cubes.

DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_NONE This value prevents user-defined functions from being
used during the session and prevents usage of the
PASSTHROUGH keyword in local cubes.

Analysis Services Programming (SQL Server 2000)

Secured Cell Value Property
Secured Cell Value Property

This property determines the value returned for secured cells.

Property Name

Secured Cell Value

Property ID

DBPROP_MSMD_SECURED_CELL_VALUE

Remarks

Depending on the value you set for the Secured Cell Value property, queries that attempt to access a secured cell can return a
specified error code and content for the Value and Formatted Value properties of the cell. The following table lists possible
values you can set for the Secured Cell Value property and the error code and cell property values returned as a result of each
setting.

Value Definition
0 Default. For compatibility with earlier versions, this means the same as

Value 1. The meaning of this default value is subject to change in future
versions.

1 Returns: HRESULT = NO_ERROR

The Value property of the cell contains the result as a variant data type. The
string "#N/A" is returned in the Formatted Value property.

2 An error is returned as the value of HRESULT.
3 NULL is returned in both the Value and Formatted Value properties.
4 A numerical zero (0) is returned in the Value property, and a formatted

zero is returned in the Formatted Value property. For example, 0.00 is
returned in the Formatted Value property for a cell whose format property
is "#.##".

5 The string "#SEC" is returned in both the Value and Formatted Value
properties.

For more information, see Security in PivotTable Service.

Important This property interacts with the execution location of the query. In some cases, the value of the Execution Location
property may override the Secured Cell Value connection string property. For example, if the Execution Location property is
set to Isolated Mode, a query that involves cells for which the user does not have read permissions will return #N/A even if the
Secured Cell Value property has been set to 2, 3, 4, or 5. For more information about isolation levels, see Isolation Levels and
the OLE DB documentation.

See Also

Execution Location Property

Analysis Services Programming (SQL Server 2000)

Show Hidden Cubes Property
Show Hidden Cubes Property

Reserved for future use.

Property Name

Show Hidden Cubes

Property ID

DBPROP_MSMD_SHOW_HIDDEN_CUBES

Analysis Services Programming (SQL Server 2000)

Source_DSN Property
Source_DSN Property

 New Information - SQL Server 2000 SP3.

This property contains the OLE DB connection string, ODBC connection string, or ODBC data source name (DSN) for the relational
database or cube that will be used as the source for creating a local cube.

Security Note When possible, use Windows Authentication.

Property Name

Source_DSN

Property ID

DBPROP_MSMD_SOURCE_DSN

Remarks

This property is used only when creating a local cube file.

You must use this property with the CreateCube property and the InsertInto property. When these three properties are used,
they are always used together.

This property's value is used when a session is established, but the value cannot be changed during the session.

When creating and accessing a local cube that is created from a relational database, use the Source_DSN_Suffix property to pass
security credentials, such as user name and password, to the relational database.

See Also

Source_DSN_Suffix Property

Analysis Services Programming (SQL Server 2000)

Source_DSN_Suffix Property
Source_DSN_Suffix Property

 New Information - SQL Server 2000 SP3.

This property contains a string that is appended to the Source_DSN property value when creating or connecting to a local cube.
This property's value is set when a session is established, and it can be reused but not changed during the session.

Security Note When possible, use Windows Authentication.

Property Name

Source_DSN_Suffix

Property ID

DBPROP_MSMD_SOURCE_DSN_SUFFIX

Remarks

This property is useful for separating data permanently stored in the local cube file from data used only for the session, such as
the user account and password, because this property's value is not stored in the local cube file. Its primary purpose is to specify a
user ID and password that the relational data source uses to create or access a local cube. If this property is used when you create
a local ROLAP cube, it may also be required when you later connect to the cube. For example, if you specify a user account and
password in this property when creating a local ROLAP cube, you must specify them in this property for each subsequent
connection to the local ROLAP cube file.

Security Note The use of this property is recommended.

Example

The following example demonstrates the use of the Source_DSN_Suffix property to pass user name and password information
to the OLE DB provider:

SOURCE_DSN_SUFFIX="UID=sa;PWD=sapassword";

See Also

Source_DSN Property

Analysis Services Programming (SQL Server 2000)

SQL Compatibility Property
SQL Compatibility Property

Reserved for future use.

Property Name

SQL Compatibility

Property ID

DBPROP_MSMD_SQLCOMPATIBILITY

Analysis Services Programming (SQL Server 2000)

SSPI Property
SSPI Property

This property determines the security package that will be used during the session.

Property Name

SSPI

Property ID

DBPROP_MSMD_SSPI

Remarks

The value of this property corresponds to the name of a security package. You can use the Security Support Provider Interface
(SSPI) EnumerateSecurityPackages function to enumerate the providers that are supported on a given computer.

Microsoft™ SQL Server® 2000 Analysis Services supports the following packages:

Negotiate

Kerberos

NTLM

Anonymous User

Example

Suppose that the Kerberos security provider is the security package used for authentication in the domain on which a particular
client application must run. The following code opens a connection using this provider and then displays a dialog box to complete
the connection:

Dim cn as New ADODB.Connection
cn="Provider=MSOLAP; SSPI=Negotiate; Prompt=1"
cn.open

Analysis Services Programming (SQL Server 2000)

UseExistingFile Property
UseExistingFile Property

This property determines whether an existing local cube file is overwritten when creating a local cube file of the same name.

Property Name

UseExistingFile

Property ID

DBPROP_MSMD_USEEXISTINGFILE

Remarks

This function of this property depends on the condition of the cube file being created. This table shows the interaction between
the condition of the cube file and the value to which this property is set.

Condition TRUE FALSE
File and cube do not
exist

Returns E_FAIL when you
open a new data source.

A new file is created when
the data source is opened.

File exists, cube does not The cube is created in the file. The cube is created in the file.
File and cube exist The existing cube is used. The existing cube is

overwritten.

This property's value is used when a session is established, but the value cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

User ID Property
User ID Property

 New Information - SQL Server 2000 SP3.

This property specifies a valid user name that will be recognized by the user's computer, such as a valid domain logon or local
logon.

Security Note When possible, use Windows Authentication.

Property Name

User ID

Property ID

DBPROP_AUTH_USERID

Remarks

This property is used only when the client application is connecting to Microsoft® SQL Server™ 2000 Analysis Services using
HTTP. Its value must be set to a valid domain logon. You can also use this property with the Source_DSN_Suffix property when
connecting to a relational data source to build a local cube.

Security Note The use of the Source_DSN_Suffix property is recommended.

See Also

Password Property

Source_DSN_Suffix Property

Analysis Services Programming (SQL Server 2000)

Writeback Timeout Property
Writeback Timeout Property

This property determines the maximum amount of time (in seconds) the client application will attempt to communicate updates
to a writeback table on the server.

Property Name

Writeback Timeout

Property ID

DBPROP_MSMD_WRITEBACK_TIMEOUT

Remarks

When a client application attempts to commit writeback changes to the server, PivotTable® Service begins a count in seconds.
The count continues until the commit is successful or the number of seconds specified in this property is reached. If the count
reaches the value of this property, the commit fails and the update does not occur. After a timeout failure, the client can roll back
the transaction or attempt to commit the transaction again.

This property's value is specified when a session is established, and it cannot be changed during the session.

Analysis Services Programming (SQL Server 2000)

Data Definition Language
The following topics describe the data definition language (DDL) used by PivotTable® Service.

Topic Description
ALTER CUBE Statement Allows client applications to control the structure of a

cube after it has been created.
CREATE ACTION Statement Allows the user to create action definitions that can be

associated with a member and executed when that
member is referenced.

CREATE CACHE Statement Populates the cache with a slice of cube data defined by
sets of members.

CREATE CELL CALCULATION
Statement

Creates a calculated cell formula for specified tuples
within a cube.

CREATE CUBE Statement Creates a local cube or virtual cube on the client
computer. The virtual cube can include dimensions
based on mining models.

CREATE MEMBER Statement Creates a calculated member.
CREATE MINING MODEL
Statement

Creates a local data mining model on the client
computer.

CREATE SET Statement Creates a user-defined set.
DROP_ACTION_Statement Deletes an action from the database.
DROP CUBE Statement Deletes a cube from the database.
CREATE CELL CALCULATION
Statement

Removes a calculated cell.

DROP LIBRARY Statement Removes a user-defined function library from use
during a session.

DROP MEMBER Statement Deletes a calculated member.
DROP MINING MODEL
Statement

Deletes a mining model.

DROP SET Statement Deletes a user-defined set.
REFRESH CUBE Statement Causes the memory cached on the client application to

be synchronized with the server.
USE LIBRARY Statement Loads a user-defined function library for use during a

session.

Analysis Services Programming (SQL Server 2000)

ALTER CUBE Statement
ALTER CUBE Statement

This statement allows client applications to control the structure of a cube after it has been created.

BNF

For updating the h ierarchy of a calculated member

ALTER CUBE <cube>

 UPDATE DIMENSION MEMBER <member> AS '<MDX rule>'

For updating user defined default members

ALTER CUBE <cube>

 UPDATE DIMENSION <dimension_name>, DEFAULT_MEMBER = '<MDX rule>'

For updating dimensions

<alter_statement> ::= <create_statement>|<remove_statement>|<move_statement>|<update_statement>

<create_statement> ::= CREATE DIMENSION MEMBER <parent_unique_name>.<member_name> [AS '<MDX expr.>'],
KEY='<key_value>' [, <property_name> = '<value>' [, <property_name> = '<value>' ...]]

<remove_statement> ::= DROP DIMENSION MEMBER <member_unique_name> [WITH DESCENDANTS]

<move_statement> ::= MOVE DIMENSION MEMBER <member_unique_name> [, SKIPPED_LEVELS = '<value>'] [WITH
DESCENDANTS] UNDER <member_unique_name>

<update_statement>::=UPDATE DIMENSION MEMBER <member_unique_name> {AS '<MDX expr.>' | ,<property_name> =
'<value>'} [, <property_name> = '<value>' ...]

<member_unique_name> ::= <dimension_name>.&[[]<key>[]]

Analysis Services Programming (SQL Server 2000)

CREATE ACTION Statement
CREATE ACTION Statement

 New Information - SQL Server 2000 SP3.

This statement allows the user to create action definitions that can be associated with a member and executed when that member
is referenced.

BNF

ALTER CUBE <cube name>
 CREATE ACTION <action name> <action body>

CREATE ACTION <cube name>.<action name> <action body>

<action body> ::=
FOR <target object>
AS '<MDX expression>'
[, TYPE = '<action type>']
[, INVOCATION = '<action invocation>']
[, APPLICATION = '<app name>']
[, DESCRIPTION = '<action description>']
[, CAPTION = '<MDX expression>']

<target object>:: CUBE
| <dimension name> [MEMBERS]
| <level_name> [MEMBERS]
| CELLS
| SET

<action type>:: URL | HTML | STATEMENT |
 DATASET | ROWSET | COMMANDLINE | PROPRIETARY

<action invocation>:: INTERACTIVE | ON_OPEN | BATCH

ALTER CUBE <cube name>
 DROP ACTION <action name>

DROP ACTION <cube name>.<action name>

Analysis Services Programming (SQL Server 2000)

CREATE CACHE Statement
CREATE CACHE Statement

This statement populates the cache with a slice of cube data defined by sets of members.

You can define cache for use by a single query with the WITH clause in the SELECT statement or for use by multiple queries in a
session with the CREATE CACHE statement. For more information, see Using WITH to Create Caches.

BNF

<create-cache-statement> ::= CREATE <optional-scope> <create-cache-subset> [<create-cache-subset>...]
<create-cache-subset> ::= CACHE FOR <cube-name> AS '(<set-expression> [,<set-expression>...])'
<optional-scope> ::= <empty> | SESSION
<cube name> ::= CURRENTCUBE | <Cube Identifier>

Analysis Services Programming (SQL Server 2000)

CREATE CELL CALCULATION Statement
CREATE CELL CALCULATION Statement

This statement creates a calculated cell formula for a specified set of tuples within a cube.

BNF

<create cell formula> ::= CREATE CELL CALCULATION
 <cube name>.<formula name> <formula body> [<conditions>]
 | ALTER CUBE <cube name> CREATE CELL CALCULATION
 <formula name> <formula body>

<with cell formula> ::= WITH CELL CALCULATION <formula name>
 <formula body>

<formula body> ::= FOR '(<set description clause>)' AS '<formula clause>'
 [, <cell property list>]

<cell property list> ::= <condition property> <disabled property> <description property>
 <pass number property> <pass depth property>

<condition property> ::=[CONDITION = '<Conditions Expression>']

<condition expression> = <boolean member expression> [& <condition expression>]

<disabled property> = [, DISABLED = {TRUE | FALSE}]

<description property> = [, DESCRIPTION = '<user-friendly description>']

<pass number property> ::= [, CALCULATION_PASS_NUMBER = <long integer>]

<pass depth property> ::= [, CALCULATION_PASS_DEPTH = <long integer>

Analysis Services Programming (SQL Server 2000)

CREATE CUBE Statement
CREATE CUBE Statement

 New Information - SQL Server 2000 SP3.

This statement defines the structure of a new local cube. This statement shares much of the syntax and semantics of SQL-92
syntax and shares the semantics of the CREATE TABLE statement. However, the CREATE CUBE statement contains syntax specific
to cubes.

The cube is not populated when the CREATE CUBE statement is executed. The cube is populated using the INSERT INTO statement
in a manner similar to the SQL-92 approach for creating and populating tables.

CREATE CUBE Statement (Local Cube)

BNF

<create-cube-statement > ::= CREATE CUBE <cube name> <open paren> <dimensions def> <measures def> [<command
expression>] <close paren>
<dimensions def> :: = DIMENSION <dimension name> [<time def>] [DIMENSION_STRUCTURE <sub_type>] [<hidden def>]
[DESCRIPTION <description expression>] <options def> <comma> <hierarchy def list>
<time def> ::= TIME | ...

<dimension name> ::= <legal name>
<sub_type>::= PARENT_CHILD
<hidden_def> ::= HIDDEN
<options def> ::= OPTIONS <open paren> <dim options list> <close paren>

<dim options list> ::= <dim option> [< comma> <dim options list>]

<dim option> ::= UNIQUE_NAME | UNIQUE_KEY | NOTRELATEDTOFACTTABLE | ALLOWSIBLINGSWITHSAMENAME

<hierarchy def list> ::= <hierarchy def> [<comma> <hierarchy def list>

<hierarchy def> ::= [HIERARCHY <hierarchy name> [<hidden_def>] <comma>] <level def>

<hierarchy name> ::= <legal name>
<level def > ::= <parent-child level def> | <normal level def list >

<parent-child level def> ::= [<all level def> <comma>] LEVEL <Template> //only if dimension is parent-child

<normal level def list> ::= <normal level def> [<comma> <normal level def list>]

<all level> ::= LEVEL <level name> TYPE ALL
<level name> ::= <legal name>
<normal level def> ::= [<all level> <comma>] LEVEL <level name> [TYPE <level type>] [<level format def>] [<level options
def>] [<hidden def>] [<hole def>] [<root member def>] [<custom_rollup_expr def>] [<comma> <level prop def list>]
<level type> ::= YEAR
| QUARTER
| MONTH
| WEEK
| DAY
| DAYOFWEEK
| DATE
| HOUR
| MINUTE
| SECOND
<level format def> ::= FORMAT_NAME <expression> [FORMAT_KEY <expression>]
<level options def> ::= OPTIONS ([<sort option> <comma>] <level option list> | [<level option list> <comma>] <sort option>)
<level option list> :: = <option> [<comma> <level option list>]
<sort option> ::= SORTBYNAME
| SORTBYKEY
| SORTBYPROPERTY <property name>
<option> ::= UNIQUE
| UNIQUE_NAME

| UNIQUE_KEY
| NOTRELATEDTOFACTTABLE
<hole def> ::= HIDE_MEMBER_IF <hide values>
<hide values> ::= ONLY_CHILD_AND_BLANK_NAME
| ONLY_CHILD_AND_PARENT_NAME
| BLANK_NAME
| PARENT_NAME

<root member def> ::= ROOT_MEMBER_IF <root values>

<root values> ::= ROOT_IF_PARENT_IS_BLANK
 | ROOT_IF_PARENT_IS_MISSING
 | ROOT_IF_PARENT_IS_SELF
 | ROOT_IF_PARENT_IS_BLANK_OR_SELF_OR_MISSING
<custom_rollup_exp> ::= CUSTOM_ROLLUP_EXPRESSION <MDX expression>
<level prop def list > ::= <level prop def > [<comma> <level prop def list>]

<level prop def> ::= PROPERTY <legal name> [<prop type def>] [<hidden def>] [<prop caption def>]

<prop type def> ::= TYPE <prop type value>

<property_type value>::= REGULAR
 | ID
 | RELATION_TO_PARENT
 | ORG_TITLE
 | CAPTION
 | CAPTION_SHORT
 | CAPTION_DESCRIPTION
 | CAPTION_ABREVIATION
 | WEB_URL
 | WEB_HTML
 | WEB_XML_OR_XSL
 | WEB_MAIL_ALIAS
 | ADDRESS
 | ADDRESS_STREET
 | ADDRESS_HOUSE
 | ADDRESS_CITY
 | ADDRESS_STATE_OR_PROVINCE
 | ADDRESS_ZIP
 | ADDRESS_QUARTER
 | ADDRESS_COUNTRY
 | ADDRESS_BUILDING
 | ADDRESS_ROOM
 | ADDRESS_FLOOR
 | ADDRESS_FAX
 | ADDRESS_PHONE
 | GEO_CENTROID_X
 | GEO_CENTROID_Y
 | GEO_CENTROID_Z
 | GEO_BOUNDARY_TOP
 | GEO_BOUNDARY_LEFT
 | GEO_BOUNDARY_BOTTOM
 | GEO_BOUNDARY_RIGHT
 | GEO_BOUNDARY_FRONT
 | GEO_BOUNDARY_REAR
 | GEO_BOUNDARY_POLYGON
 | PHYSICAL_SIZE
 | PHYSICAL_COLOR
 | PHYSICAL_WEIGHT
 | PHYSICAL_HEIGHT
 | PHYSICAL_WIDTH
 | PHYSICAL_DEPTH
 | PHYSICAL_VOLUME
 | PHYSICAL_DENSITY

 | PERSON_FULL_NAME
 | PERSON_FIRST_NAME
 | PERSON_LAST_NAME
 | PERSON_MIDDLE_NAME
 | PERSON_DEMOGRAPHIC
 | PERSON_CONTACT
 | QTY_RANGE_LOW
 | QTY_RANGE_HIGH
 | FORMATTING_COLOR
 | FORMATTING_ORDER
 | FORMATTING_FONT
 | FORMATTING_FONT_EFFECTS
 | FORMATTING_FONT_SIZE
 | FORMATTING_SUB_TOTAL
 | DATE
 | DATE_START
 | DATE_ENDED
 | DATE_CANCELED
 | DATE_MODIFIED
 | DATE_DURATION
 | VERSION

<prop caption def> ::= CAPTION <any string>

<measures def> :: = MEASURE <measure name> <measure function def> [<measure format def>] [<measure type def>]
[<hidden def>] [DESCRIPTION <description expression>] [<comma> <measures def>]
<measure function def> ::= FUNCTION <function name>
<function name> ::= SUM
| MIN
| MAX
| COUNT
<measure format def> ::= FORMAT <expression>
<measure type def> ::= TYPE <supported OLE DB numeric types>
<supported OLEDB numeric types> :: = DBTYPE_I1
| DBTYPE_I2
| DBTYPE_I4
| DBTYPE_I8
| DBTYPE_UI1
| DBTYPE_UI2
| DBTYPE_UI4
| DBTYPE_UI8
| DBTYPE_R4
| DBTYPE_R8
| DBTYPE_CY
| DBTYPE_DECIMAL
| DBTYPE_NUMERIC
| DBTYPE_DATE
<command expression> ::= COMMAND <expression> [<comma> <command expression>]

Analysis Services Programming (SQL Server 2000)

CREATE MEMBER Statement
CREATE MEMBER Statement

This statement creates a calculated member.

You can define a calculated member for use by a single query with the WITH clause in the SELECT statement, or for use in multiple
queries in a session with the CREATE MEMBER statement. For more information, see Using WITH to Create Calculated Members.

BNF

<create-member-statement> ::= CREATE <optional-scope> <create-member-subset> [<create-member-subset>...]
<create-member-subset> ::= MEMBER <cube-name>.<fully-qualified-member-name> AS '<expression>' [,<property-definition-
list>]
<cube name> ::= CURRENTCUBE | <Cube Identifier>
<property-definition-list> ::= <property-definition>
 | <property-definition>, <property-definition-list>
<property-definition> ::= <property-identifier> = <property-value>
<property-identifier> ::= VISIBLE | SOLVEORDER | FORMAT_STRING| <ole db member properties>
<property-value> ::= <string> | <number>
<optional-scope> ::= <empty> | SESSION

Analysis Services Programming (SQL Server 2000)

CREATE MINING MODEL Statement
CREATE MINING MODEL Statement

This statement creates a local data mining model on the client computer. You can create mining models from relational databases,
PMML, or OLAP cubes.

BNF (CREATE MINING MODEL)

<dm_create>::=CREATE MINING MODEL <identifier> (<col_def_list>) USING <algorithm> [(<algo_param_list>)]

<pmml_create>::= CREATE MINING MODEL <identifier> FROM PMML <string>

<select_into>::= SELECT * INTO <identifier> USING <algorithm> FROM <identifier>

<col_def_list>::= <col_def> |<col_def_list> , <col_def>
<col_def>::= <col_def_reg> | <col_def_tbl>
<col_def_reg>::= <identifier> <col_type> [<col_distribution>] [<col_binary>] [<col_content>] [<col_content_qual>]
[<col_qualif>] [<col_prediction>] [<relation_clause>]

<col_def_tbl> ::= <identifier> TABLE <col_prediction> (<col_def_list>)

<algorithm> ::= MICROSOFT_DECISION_TREES | MICROSOFT_CLUSTERING

<algo_param>::= <identifier> = <value>

<algo_param_list>::=<algo_param>

 | <algo_param>, <algo_param_list>

<col_type>::= LONG
 | BOOLEAN
 | TEXT
 | DOUBLE
 | DATE

<col_distribution>-> NORMAL
 | UNIFORM

<col_binary>::= MODEL_EXISTENCE_ONLY
 | NOT NULL

<col_content>::= DISCRETE
 | CONTINUOUS
 | DISCRETIZED([<disc_method> [, <numeric_const>]])
 | SEQUENCE_TIME

<disc_method>::= AUTOMATIC
 | EQUAL_AREAS
 | THRESHOLDS
 | CLUSTERS

<col_content_qual>-> ORDERED
 | CYCLICAL

<col_qualif>::= KEY
 | PROBABILITY
 | VARIANCE
 | STDEV
 | STDDEV
 | PROBABILITY_VARIANCE
 | PROBABILITY_STDEV
 | PROBABILITY_STDDEV
 | SUPPORT

<col_prediction> -> PREDICT
 | PREDICT_ONLY

<relation_clause> -> <related_to_clause>
 | <of_clause>

<related_to_clause>-> RELATED TO <identifier>
 | RELATED TO KEY

<of_clause>::= OF <identifier>
 | OF KEY

Analysis Services Programming (SQL Server 2000)

CREATE SET Statement
CREATE SET Statement

This statement creates user-defined sets.

You can define a set for use by a single query with the WITH clause in the SELECT statement or for use in multiple queries in a
session with the CREATE SET statement. For more information about WITH, see Using WITH to Create Named Sets.

BNF

<create-set-statement> ::= CREATE <optional-scope> <create-set-subset> [<create-set-subset>...]
<create-set-subset> ::= SET <cube-name>.<set-name> AS '<set-expression>'
<cube name> ::= CURRENTCUBE | <Cube Identifier>
<optional-scope> ::= <empty> | SESSION

Remarks

A named set is a set of dimension members (or an expression that defines a set) that is created to be used again. For example, by
using a named set it is possible to define a set of dimension members that consists of the set of top 10 stores by sales. This set
can be defined statically, or by means of a function like TOPCOUNT. This named set can then be used wherever the set of top 10
stores is needed.

The <expression> clause of the calculated member syntax can contain any function that supports Multidimensional Expressions
(MDX) syntax. Sets created with the CREATE SET statement that do not specify an <optional-scope> clause have session scope.

It is an error to specify a cube other than that to which it is currently connected. Therefore, you should use CURRENTCUBE in place
of a cube name to denote the current cube.

Scope

A user-defined set can occur within one of the following scopes:

Query scope

The visibility and lifetime of the set is limited to the query. The set is defined in an individual query. Query scope overrides session
scope. For more information, see Using WITH to Create Named Sets.

Session scope

The visibility and lifetime of the set is limited to the session in which it is created. (The lifetime is less than the session duration if a
DROP SET statement is issued on the set.) The CREATE SET statement is used to create a set with session scope.

Examples

A. Creating a N amed Set Using a Function Expression

The following example creates a named set consisting of the top ten stores, as ranked by their sales, in the Sales cube:

CREATE SET [Sales].[TopStores] as
 'TopCount([Store].Members,10,[Measures].[Store Sales])'

B. Creating a N amed Set Using a Set Expression

In this example, a named set is statically defined to consist of states in the Northwest region of the United States:

CREATE SET [Sales].[NorthwesternStores] as
 '{ [Store].[All Stores].[USA].[WA],
 [Store].[All Stores].[USA].[OR],
 [Store].[All Stores].[USA].[ID] }'

Analysis Services Programming (SQL Server 2000)

DROP ACTION Statement
DROP ACTION Statement

This statement deletes an action from the database.

BNF

<drop-action-statement> ::= DROP ACTION <action-name>

Example

The following example drops the action defined by the example in CREATE ACTION Statement:

DROP ACTION [Sales Cube].[Show Customer Details]

Analysis Services Programming (SQL Server 2000)

DROP CUBE Statement
DROP CUBE Statement

This statement deletes a virtual cube. The DROP CUBE statement is not currently supported against local cube files.

BNF

<drop-cube-statement> ::= DROP [SESSION] CUBE <cube-name>

Remarks

This statement deletes the cube or virtual cube specified in <cube-name>.

Example

The following example drops the cube created by the example in CREATE CUBE Statement:

DROP CUBE [Sales]

Analysis Services Programming (SQL Server 2000)

DROP CELL CALCULATION Statement
DROP CELL CALCULATION Statement

This statement removes the specified calculated cell.

BNF

<drop cell formula> ::= DROP CELL CALCULATION <cube name>.<formula name>
 | ALTER CUBE <cube name> DROP CELL CALCULATION <formula name>

Example

The following example deletes a cell formula from the Sales cube:

DROP CELL CALCULATION [Sales].[Budget Adjustment]

Analysis Services Programming (SQL Server 2000)

DROP LIBRARY Statement
DROP LIBRARY Statement

This statement unloads the specified libraries.

BNF

<drop_library> ::= DROP LIBRARY <lib_list> | ALL

 <lib_list> ::= <lib_def> [, <lib_list>]

 <lib_def> ::= <prog_id> | <lib_name>

Remarks

When used with the ALL flag, DROP LIBRARY unloads all libraries loaded for that user session. Either a program ID or a file name
is used to specify individual libraries.

Example

The following example removes MyLib.dll from use for the rest of the session.

DROP LIBRARY MyLib.MyClass

Analysis Services Programming (SQL Server 2000)

DROP MEMBER Statement
DROP MEMBER Statement

This statement deletes a calculated member that has been defined for the session.

BNF

<drop-member-statement> ::= DROP MEMBER <cube-name>.<fully-qualified-member-name>

Example

The following example drops a named set created by the first example in CREATE MEMBER Statement:

DROP MEMBER [Warehouse].[Measures].[warehouseprofit]

Analysis Services Programming (SQL Server 2000)

DROP MINING MODEL Statement
DROP MINING MODEL Statement

This statement deletes a mining model.

BNF

<drop-mining-model-statement> ::= DROP MINING MODEL <model-name>

Remarks

If the Mining Location property is set to a directory path, this statement deletes the model that resides in that directory. This
model is specified by <model-name>.

Analysis Services Programming (SQL Server 2000)

DROP SET Statement
DROP SET Statement

This statement deletes a user-defined set that has been defined for the session.

BNF

<drop-set-statement> ::= DROP SET <cube-name>.<set-name>

Example

The following examples drop the named set statements created by the examples in CREATE SET Statement:

DROP SET [Sales].[TopStores]
CREATE SET [Sales].[NorthwesternStores]

Analysis Services Programming (SQL Server 2000)

REFRESH CUBE Statement
REFRESH CUBE Statement

 New Information - SQL Server 2000 SP3.

This statement refreshes the client cache for a cube.

BNF

<refresh-cube-statement> ::= REFRESH CUBE <cube-name>

Remarks

For client applications connected to the Analysis server, this statement causes the memory cached on the client application to be
synchronized with the server.

For client applications connected to a local cube, the REFRESH CUBE statement causes the local cube file to be rebuilt.

Security Note The connection information for the original source database is stored in the local cube file. Use the
Source_DSN_Suffix property to supply security credentials, such as a user name and password, that will not be stored as part of
the stored information. For more information, see Source_DSN_Suffix Property.

Example

The following example refreshes the client cache that pertains to a cube called [Sales]:

REFRESH CUBE [Sales]

Analysis Services Programming (SQL Server 2000)

USE LIBRARY Statement
USE LIBRARY Statement

 New Information - SQL Server 2000 SP3.

This statement loads a function library for use during the session.

BNF

<Use-Library-statement> ::= USE LIBRARY <Library-Name-Clause>

Remarks

Use this statement to load a user-defined function library.

User-defined function libraries should be implemented as COM components. These libraries can be implemented as in-process
servers (in a .dll) or as local servers (in an .exe). Before loading a user-defined function library, ensure that the library contains a
type library. Additionally, all of the interfaces defined in the type library must be derived from IDISPATCH for automation. User-
defined function libraries can be developed in any environment capable of generating COM components.

When loading libraries with the USE LIBRARY statement, use absolute paths instead of relative paths. For example, to load the
user-defined function library named UDF.DLL, include the full path and file name of the library as shown in the following example:

USE LIBRARY "C:\SampleDirectory\UDF.DLL"

Security Note Avoid using relative paths when loading user-defined function libraries.

Examples

The following examples demonstrate defining and using a user-defined function library.

A. Creating a User-Defined Function

In the following example, a Microsoft® Visual Basic® function is defined that converts currency based upon the exchange rate of
a given country:

Public Function Convert(country As String, Value As Double) As Double
 Select Case country
 Case "USA"
 Convert = Value * 1
 Case "Canada"
 Convert = Value * 1.5486
 Case "Mexico"
 Convert = Value * 9.93
 End Select
End Function

Analysis Services Programming (SQL Server 2000)

Data Manipulation Language
The following topics describe the data manipulation language (DML) used by PivotTable® Service.

Topic Description
DRILLTHROUGH Statement Retrieves the source rowset(s) from the fact table (that

is, data source) for a specified tuple.
INSERT INTO Statement Describes the INSERT INTO statement, which populates

a local cube with dimension members.
SELECT Statement Describes the SELECT statement, which is used to create

queries that return multidimensional data, either in a
Microsoft® ActiveX® Data Objects (ADO) Cellset object
or in an OLE DB Dataset object.

UPDATE CUBE Statement Describes the UPDATE CUBE statement, which allocates
values from a nonleaf member cell update to all of the
children of that member.

Analysis Services Programming (SQL Server 2000)

DRILLTHROUGH Statement
DRILLTHROUGH Statement

This statement retrieves the source rowset(s) from the fact table (that is, data source) for a specified tuple.

BNF

<drillthrough> := DRILLTHROUGH [<Max_Rows>] [<First_Rowset>] <MDX select>

 < Max_Rows> := MAXROWS <positive number>

 <First_Rowset> := FIRSTROWSET <positive number>

Remarks

This statement allows the client application to retrieve the rowsets that were used to create a specified cell in a cube. A
Multidimensional Expressions (MDX) statement is used to specify the subject cell. If this cell is at an atomic level (that is, at the
lowest level of its hierarchy), only one rowset is returned. If this cube is not at an atomic level, all of the rowsets that make up the
source data of that cell are returned. The total number of rowsets returned can also be affected by use of the MAXROWS and
FIRSTROWSET modifiers.

The value specified by the MAXROWS modifier indicates the maximum number of rows that should be returned by the resulting
rowset. This modifier should only be used if the original source data's OLE DB provider supports the DBPROP_MAXROWS
property.

The value specified by the FIRSTROWSET modifier specifies the first rowset to return. Use of this modifier is not recommended
unless the client application designer does not wish to use the OLE DB IMultipleResults interface or the Microsoft® ActiveX®
Data Objects (ADO) NextRecordset method to navigate the returned rowsets.

For more information, see Using DRILLTHROUGH to Retrieve Source Data.

Analysis Services Programming (SQL Server 2000)

INSERT INTO Statement
INSERT INTO Statement

This statement has two functions: It populates local cubes with dimension members, and it trains data mining models. If the local
cube is stored in multidimensional OLAP (MOLAP), the INSERT INTO statement also populates the local cube with data.

BNF

<insert-into-statement> ::= INSERT INTO <target-clause> [<options-clause>] [<bind-clause>] <source-clause>
 |INSERT INTO <model> (<mapped model columns>) <source data query>
 |INSERT INTO <model> (<mapped model columns>) VALUES <constant list>
 |INSERT INTO <model>.COLUMN_VALUES(<mapped model columns>) <source data query>
<mapped model columns> ::= <column identifier> | <table identifier>(<column identifier> | SKIP), ...
<target-clause> ::= <cube-name> <open-paren> <target-element-list> <close-paren>
<target-element-list> ::= <target-element>[, <target-element-list>]
<target-element> ::= [<dim-name>.[<hierarchy-name>.]]<level-name>
 | <time-dim-name> | <parent-child-dim-name>
 | [Measures.]<measure-name>
 | SKIPONECOLUMN
<level-name> ::= <simple-level-name>
 | <simple-level-name>.NAME
 | <simple-level-name>.KEY
 | <simple-level-name>.Custom_Rollup
 | .parent
 | <simple-level-name>.SkipLevelColumn
<time-dim-name> ::= <dim-name-type-time>
 | <dim-name-type-time>.NAME
 | <dim-name-type-time>.KEY
<options-clause> ::= OPTIONS <options-list>
<options-list> ::= <option>[, <options-list>]
<option> ::= <defer-options>
 | < analysis-options>
<defer-options> ::= DEFER_DATA
 | ATTEMPT_DEFER
<analysis-options> ::= PASSTHROUGH
 | ATTEMPT_ANALYSIS
<bind-clause> ::= BIND (<bind-list>)
<bind-list> ::= <simple-column-name>[,<simple-column-name>]
<simple-column-name> ::= <identifier>
<source-clause> ::= SELECT <columns-list>
 FROM <tables-list>
 [WHERE <where-clause>]
 | DIRECTLYFROMCACHEDROWSET <hex-number> | DIRECTLYFROMMARSHALLEDROWSET <hex number>
<columns-list> ::= <column-expression> [, < columns-list>]
<column-expression> ::= <column-expression-name>
<column-expression-name> ::= <column-name> [AS <alias-name>]
 | <alias name> <column-name>
<column-name> ::= <table-name>.<column-name>
 | <column-function>
 | <ODBC scalar function>
 | <braced-expression>
<column function> ::= <identifier>(. . .)
<ODBC scalar function> ::= {FN<column-function>}
<braced-expression> ::= (. . .)
<tables -list> ::= <table-expression> [, <tables-list>]
<table-expression> ::= <table-name> [[AS] <table-alias>]
<table-alias> ::= <identifier>
<table-name> ::= <identifier>
<where-clause> ::= <where-condition> [AND <where-clause>]
<where-condition> ::= <join-constraint>

 | <application constraint>
<join-constraint> ::= <column-name> = <column-name>
 | <open-paren><column-name> = <column-name><close-paren>
<application-constraint> ::= (. . .)
 | NOT (. . .)
 | (. . .) OR (. . .)
<identifier> ::= <letter>{<letter>
 |<digit>
 |<underline>
 |<dollar>
 |<sharp>}. . .

Analysis Services Programming (SQL Server 2000)

SELECT Statement
SELECT Statement

This statement is used to create queries that return multidimensional data, either in a Microsoft® ActiveX® Data Objects (ADO)
Cellset object or in an OLE DB Dataset object.

BNF

BN F for SELECT (OLAP)

<select_statement> ::= [WITH <single_formula_specification>
[<single_formula_specification>...]]
SELECT [<axis_specification> [, <axis_specification>...]]
FROM <cube_specification>
[WHERE <slicer_specification>]
[<cell_props>]

<single_formula_specification> ::= <member_specification>
| <set_specification>
| <cache_specification>

<member_specification> ::= MEMBER <parent_of_member>.<member_name> AS '<value_expression>'
[, <solve_order_specification>]
[, <member_property_definition>...]

<solve_order_specification> ::= SOLVE_ORDER = <unsigned_integer>
<member_property_definition> ::= <member_property_name> = <value_expression>
<set_specification> ::= SET <set_name> AS '<set>'
<cache_specification> ::= CACHE AS '(<set> [,<set>])'
<axis_specification> ::= [NON EMPTY] <set> [<dim_props>] ON <axis_name>
<set> ::= member:member
| <set_value_expression>
| {<set> | <tuple> [,<set> | <tuple>...]}
| (<set>)

<tuple> ::= <member> | (<member>[,<member>...]) | <tuple_value_expression>
<axis_name> ::= COLUMNS | ROWS | PAGES | SECTIONS | CHAPTERS | AXIS(<index>)
<dim_props> ::= [DIMENSION] PROPERTIES <property> [, <property>...]
<property> ::= <dimension_property> | <level_property> | <member_property>
<dimension_property> ::= <dimension_name>.ID | <dimension_name>.KEY | <dimension_name>.NAME

<level_property> ::= [<dimension_name>.]<level_name>.ID
| [<dimension_name>.]<level_name>.KEY
| [<dimension_name>.]<level_name>.NAME

<member_property> ::= <level_name>.<member_property_name>
<cube_specification> ::= <cube_name>
<slicer_specification> ::= <tuple>
<cell_props> ::= [CELL] PROPERTIES <cell_property> [, <cell_property>...]

<cell_property> ::= <mandatory_cell_property>
| <optional_cell_property>
| <provider_specific_cell_property>

<mandatory_cell_property> ::= CELL_ORDINAL | VALUE | FORMATTED_VALUE
<optional_cell_property> ::= FORMAT_STRING | FORE_COLOR | BACK_COLOR | FONT_NAME | FONT_SIZE | FONT_FLAGS
<provider_specific_cell_property> ::= <identifier>

Analysis Services Programming (SQL Server 2000)

UPDATE CUBE Statement
UPDATE CUBE Statement

This statement portions out, according to a specified formula, the delta of an updated cell value to all of the children of that
member. This method of updating the contents of a cube is called allocation, and is only supported on measures using the SUM
aggregation type.

BNF

<update_statement> ::= UPDATE [CUBE] <cube_specification>

 SET

 <cell_update>

<cell update> ::= <tuple>.VALUE = <value>

 [USE_EQUAL_ALLOCATION |

 USE_EQUAL_INCREMENT |

 USE_WEIGHTED_ALLOCATION [BY < weight value_expression>]

 USE_WEIGHTED_INCREMENT [BY <weight value_expression>]]

Analysis Services Programming (SQL Server 2000)

Function Reference
PivotTable® Service has access to an extensive library of OLAP and data mining functions. The following topics cover the
functions available to PivotTable Service.

Topic Description
OLAP Functions Discusses OLAP functions detailed in the

MDX Function Reference and in the OLE
DB for OLAP specification.

Data Mining Functions Covers data mining functions detailed in
the OLE DB for Data Mining specification.

Analysis Services Programming (SQL Server 2000)

OLAP Functions
OLAP Functions

Microsoft® SQL Server™ 2000 Analysis Services supplies a wide variety of functions, through the use of Multidimensional
Expressions (MDX) function libraries.

For more information about OLAP functions, see MDX Function Reference.

Analysis Services Programming (SQL Server 2000)

Data Mining Functions
Data Mining Functions

Microsoft® SQL Server™ 2000 Analysis Services supplies a number of functions which retrieve and manipulate statistical
information from a data mining model.

The following topics discuss these functions in greater detail.

Function Description
BottomCount Returns a table containing a specified

number of bottommost rows in increasing
order of rank based on a rank expression.

BottomPercent Returns a table containing the smallest
number of bottommost rows, in
increasing order of rank based on a rank
expression, that meet a specified percent
expression.

BottomSum Returns a table containing the smallest
number of bottommost rows, in
increasing order of rank based on a rank
expression, that meet a specified sum
expression.

Cluster For clustering data mining models, returns
the cluster identifier containing the
highest probability of the input case.

ClusterDistance Returns the distance between the input
case and the center of the cluster that has
the highest probability.

ClusterProbability Returns the probability that the input case
belongs to the cluster that has the highest
probability.

Predict Performs a prediction based on a specified
column.

PredictAdjustedProbability Retrieves the adjusted probability of the
topmost histogram entry for a specified
column.

PredictHistogram Retrieves a table representing the
histogram for a specified column.

PredictProbability Retrieves the probability of the topmost
histogram entry for a specified column.

PredictStdev Retrieves the standard deviation value of
the topmost histogram entry for a
specified column.

PredictSupport Retrieves the support value of the
topmost histogram entry for a specified
column.

PredictVariance Retrieves the variance value of the
topmost histogram entry for a specified
column.

RangeMax Retrieves the upper value of the predicted
bucket discovered for a specified
discretized column.

RangeMid Retrieves the midpoint value of the
predicted bucket discovered for a
specified discretized column.

RangeMin Retrieves the lower value of the predicted
bucket discovered for a specified
discretized column.

Sub-SELECT Returns a table from a specified table
expression.

TopCount Returns a table containing a specified
number of topmost rows in a decreasing
order of rank based on a rank expression.

TopPercent Returns a table containing the smallest
number of topmost rows, in a decreasing
order of rank based on a rank expression,
that meet a specified percent expression.

TopSum Returns a table containing the smallest
number of topmost rows, in a decreasing
order of rank based on a rank expression,
that meet a specified sum expression.

Analysis Services Programming (SQL Server 2000)

BottomCount
BottomCount

The BottomCount function returns the specified number of bottommost rows in increasing order of rank as specified by an
expression.

Syntax

BottomCount(<table expression>, <rank expression>, <count>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The value supplied by the <rank expression> argument is used to determine the increasing order of rank for the rows supplied in
the <table expression> argument, and the number of bottommost rows specified in the <count> argument is returned.

For more information, see TopCount.

Analysis Services Programming (SQL Server 2000)

BottomPercent
BottomPercent

The BottomPercent function returns, in order of increasing rank, the bottommost rows of a table whose cumulative total is at
least a specified percentage.

Syntax

BottomPercent(<table expression>, <rank expression>, <percent>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The BottomPercent function returns the bottommost rows in increasing order of rank based on the evaluated value of the <rank
expression> argument for each row, such that the sum of the <rank expression> values is at least the given percentage specified
by the <percent> argument. BottomPercent returns the smallest number of elements possible while still meeting the specified
percent value.

For more information, see TopPercent.

Analysis Services Programming (SQL Server 2000)

BottomSum
BottomSum

The BottomSum function returns, in order of increasing rank, the bottommost rows of a table whose cumulative total is at least a
specified value.

Syntax

BottomSum(<table expression>, <rank expression>, <sum>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The BottomSum function returns the bottommost rows in increasing order of rank based on the evaluated value of the <rank
expression> argument for each row, such that the sum of the <rank expression> values is at least the given total specified by the
<sum> argument. BottomSum returns the smallest number of elements possible while still meeting the specified sum value.

For more information, see TopSum.

Analysis Services Programming (SQL Server 2000)

Cluster
Cluster

The Cluster function identifies the cluster to which the input case belongs with the highest probability.

Syntax

Cluster

Applies to

This function does not require any parameter, but it can be used only when the underlying data mining model supports
clustering.

Return Type

This function returns a scalar value of a cluster identifier, referred to in other data mining functions as a clusterID. However, if this
function is used as an argument of other functions, it must be regarded as a <cluster column reference>.

Remarks

Cluster can also be used as a <cluster column reference> for a PredictHistogram function.

See Also

ClusterDistance

ClusterProbability

Analysis Services Programming (SQL Server 2000)

ClusterDistance
ClusterDistance

The ClusterDistance function returns the distance between the input case and the center of the cluster that has the highest
probability.

Syntax

ClusterDistance([<ClusterID expression>])

Applies to

This function can be used only when the underlying data mining model supports clustering.

Return Type

Scalar value

Remarks

If <ClusterID expression> is specified, the cluster is identified by the evaluation of the expression.

See Also

Cluster

ClusterProbability

Analysis Services Programming (SQL Server 2000)

ClusterProbability
ClusterProbability

The ClusterProbability function returns the probability that the input case belongs to the cluster that has the highest probability.

Syntax

ClusterProbability([<ClusterID expression>])

Applies to

This function can be used only when the underlying data mining model supports clustering.

Return Type

Scalar value

Remarks

If <ClusterID expression> is specified, the cluster is identified by the evaluation of the expression.

See Also

Cluster

ClusterDistance

Analysis Services Programming (SQL Server 2000)

Predict
Predict

The Predict function is a general prediction function that modifies the behavior of a prediction such as missing value control,
association control, and so on.

Syntax

Predict(<scalar column reference>, option1, option2, ...)

Predict(<table column reference>, option1, option2, ...)

Applies to

Either a scalar column or table column reference.

Return Type

<scalar column reference>

or

<table column reference>

The return type depends on the type of column to which this function is applied.

Remarks

Possible options include EXCLUDE_NULL (default), INCLUDE_NULL, INCLUSIVE, EXCLUSIVE (default), INPUT_ONLY, and
INCLUDE_STATISTICS.

Note INCLUSIVE, EXCLUSIVE, INPUT_ONLY, and INCLUDE_STATISTICS are applicable only for a table column reference, and
EXCLUDE and INCLUDE_NULL apply only for scalar values columns.

The following alternative abbreviated forms are often used:

[Gender] is shorthand for Predict([Gender], EXCLUDE_NULL).

[Products Purchases] is an alternative for Predict([Products Purchases], EXCLUDE_NULL, EXCLUSIVE_ASSOCIATION).

Note The return type of this function is itself regarded as a column reference. This means that this function can be used as
an argument in other functions that take a column reference as an argument (except the Predict function itself).

Passing INCLUDE_STATISTICS to a prediction on a TABLE-valued column will add the metacolumns $Probability and $Support
to the resulting table. These columns describe the likelihood of existence for the associated nested table record.

Analysis Services Programming (SQL Server 2000)

PredictAdjustedProbability
PredictAdjustedProbability

The PredictAdjustedProbability function returns the adjusted probability for the histogram entry that has the highest
probability.

Syntax

PredictAdjustedProbability(<scalar column reference>)

Applies to

Scalar column

Return Type

Scalar value

Remarks

PredictAdjustedProbability returns the top row in the histogram obtained by PredictHistogram(<column reference>).

The PredictAdjustedProbability function is a Microsoft® SQL Server™ 2000 Analysis Services extension to the OLE DB for Data
Mining specification.

Analysis Services Programming (SQL Server 2000)

PredictHistogram
PredictHistogram

The PredictHistogram function returns a table representing a histogram for prediction of the given column.

Syntax

PredictHistogram(<scalar column reference> | <cluster column reference>)

Applies to

A scalar or cluster column reference.

Return Type

Table

Remarks

A histogram generates statistics columns. The column structure of the returned histogram depends on the type of column
reference used with the PredictHistogram function.

Scalar Columns

For a <scalar column reference>, the histogram returned by the PredictHistogram function consists of the following seven
columns:

The column being predicted

$Support

$Variance

$Stdev (standard deviation)

$Probability

$ProbabilityVariance

Microsoft® SQL Server™ 2000 Analysis Services data mining algorithms do not support $ProbabilityVariance. This
column always contains 0.

$ProbabilityStdev

Analysis Services data mining algorithms do not support $ProbabilityStdev. This column always contains 0.

$AdjustedProbability

The $AdjustedProbability column is an Analysis Services extension to the OLE DB for Data Mining specification.

Cluster Columns

The histogram returned by the PredictHistogram function for a <cluster column reference> consists of the following columns:

Cluster (represents the cluster identifier)

$Distance

$Probability

$Support

See Also

Cluster

ClusterDistance

ClusterProbability

PredictAdjustedProbability

PredictProbability

PredictStdev

PredictSupport

PredictVariance

Analysis Services Programming (SQL Server 2000)

PredictProbability
PredictProbability

The PredictProbability function returns the probability for the histogram entry that has the highest probability, which is the top
row in the histogram obtained by PredictHistogram(<column reference>).

Syntax

PredictProbability(<scalar column reference>)

Applies to

Scalar column

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

PredictStdev
PredictStdev

The PredictStdev function returns the standard deviation for the histogram entry that has the highest probability, which is the
top row in the histogram obtained by PredictHistogram(<column reference>).

Syntax

PredictStdev(<scalar column reference>)

Applies to

Scalar column

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

PredictSupport
PredictSupport

The PredictSupport function returns the support value for the histogram entry that has the highest probability, which is the top
row in the histogram obtained by PredictHistogram(<column reference>).

Syntax

PredictSupport(<scalar column reference>)

Applies to

Scalar column

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

PredictVariance
PredictVariance

The PredictVariance function returns the variance value for the histogram entry that has the highest probability, which is the top
row in the histogram obtained by PredictHistogram(<column reference>).

Syntax

PredictVariance(<scalar column reference>)

Applies to

Scalar column

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

RangeMax
RangeMax

The RangeMax function returns the upper end of the predicted bucket that was discovered for a discretized column.

Syntax

RangeMax(<scalar column reference>)

Applies to

Discretized scalar columns

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

RangeMid
RangeMid

The RangeMid function returns the midpoint of the predicted bucket that was discovered for a discretized column.

Syntax

RangeMid(<scalar column reference>)

Applies to

Discretized scalar columns

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

RangeMin
RangeMin

The RangeMin function returns the lower end of the predicted bucket that was discovered for a discretized column.

Syntax

RangeMin(<scalar column reference>)

Applies to

Discretized scalar columns

Return Type

Scalar value

Analysis Services Programming (SQL Server 2000)

Sub-SELECT
Sub-SELECT

A Sub-SELECT selects columns (or expressions containing columns) from the given table-returning expression.

Syntax

(SELECT <SELECT-expressions> FROM <table expression> [WHERE <WHERE-clause>])

Applies to

A table-returning expression that includes <table column reference> and functions that return a table.

Return Type

<table expression>

Remarks

An optional WHERE clause can be used to filter returned rows.

Analysis Services Programming (SQL Server 2000)

TopCount
TopCount

The TopCount function returns the specified number of topmost rows in a decreasing order of rank as specified by an
expression.

Syntax

TopCount(<table expression>, <rank expression>, <count>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The value supplied by the <rank expression> argument is used to determine the decreasing order of rank for the rows supplied in
the <table expression> argument, and the number of topmost rows specified in the <count> argument is returned.

For example, assume that this Sub-SELECT contains the following table:

(SELECT [Product Name], $Probability AS [Probability] FROM Predict([Products Purchases], INCLUDE_STATISTICS))

Product Name Probability
Apples 0.4
Kiwi 0.1
Oranges 0.5
Lemons 0.2

Using the TopCount function with the Sub-SELECT as a parameter as shown yields the following results:

TopCount((SELECT [Product Name], $Probability AS [Probability] FROM Predict([Products Purchases],
INCLUDE_STATISTICS)), [Probability], 2)

Product Name Probability
Oranges 0.5
Apples 0.4

Analysis Services Programming (SQL Server 2000)

TopPercent
TopPercent

The TopPercent function returns, in order of decreasing rank, the topmost rows of a table whose cumulative total is at least a
specified percentage.

Syntax

TopPercent(<table expression>, <rank expression>, <percent>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The TopPercent function returns the topmost rows in decreasing order of rank based on the evaluated value of the <rank
expression> argument for each row, such that the sum of the <rank expression> values is at least the given percentage specified
by the <percent> argument. TopPercent returns the smallest number of elements possible while still meeting the specified
percent value.

For example, assume that a table column named [Products] contains this table:

Product Name Unit Sales
Apples 30
Kiwi 10
Oranges 40
Lemons 20

TopPercent([Products], [Unit Sales], 60) function returns the following table:

Product Name Unit Sales
Oranges 40
Apples 30

Note that Apples was selected instead of Lemons.

Analysis Services Programming (SQL Server 2000)

TopSum
TopSum

The TopSum function returns, in order of decreasing rank, the topmost rows of a table whose cumulative total is at least a
specified value.

Syntax

TopSum(<table expression>, <rank expression>, <sum>)

Applies to

An expression that returns a table, such as a <table column reference> or a function that returns a table.

Return Type

<table expression>

Remarks

The TopSum function returns the topmost rows in decreasing order of rank based on the evaluated value of the <rank
expression> argument for each row, such that the sum of the <rank expression> values is at least the given total specified by the
<sum> argument. TopSum returns the smallest number of elements possible while still meeting the specified sum value.

For example, assume that a table column named [Products] contains this table:

Product Name Unit Sales
Apples 1200
Kiwi 500
Oranges 1500
Lemons 750

TopSum([Products], [Unit Sales], 2500) returns the following table:

Product Name Unit Sales
Oranges 1500
Apples 1200

Analysis Services Programming (SQL Server 2000)

Schema Rowsets
In OLE DB, the schema for an object is a description of the object's structure (that is, the contents of that object's meta data). A
schema rowset is an OLE DB rowset that encapsulates that description for all objects of particular type within the database. Each
row in the rowset corresponds to an individual object. The individual properties of the objects contained in the rowset are
contained within the columns of the rowset.

In addition to the columns returned by the schema rowset, OLE DB provides a mechanism, called a restriction column, for filtering
these schema rowsets based upon the content of certain columns. For each schema rowset, a set of restriction columns is
specified; the client application can use these columns to filter the results of the schema rowset. When more than one restriction
column is specified for a schema rowset, the columns are combined using a logical AND statement. For instance, if a user is
interested only in dimensions that are contained within the Sales cube of the FoodMart 2000 database, the client application can
set the CATALOG_NAME restriction column to equal "FoodMart 2000" and the CUBE_NAME restriction column to equal "Sales".

Schema rowsets used for online analytical processing (OLAP) are documented in the OLE DB specification. Microsoft® SQL
Server™ 2000 Analysis Services provides additional rowsets and additional columns for some specified rowsets to provide
functionality beyond that addressed in the OLE DB specification. For information about the schema rowsets used by Analysis
Services for OLAP, see the OLE DB documentation and OLAP Schema Rowsets.

Schema rowsets used for data mining are documented in the OLE DB for Data Mining specification. All data mining schema
rowsets implemented by Analysis Services in this release are described in this documentation, regardless of whether they are also
documented in the new OLE DB for Data Mining specification. For information about the schema rowsets used by Analysis
Services for data mining, see Data Mining Schema Rowsets.

A C++ header file, Msmd.h, contains the GUIDs for the schema rowsets that are supported in Analysis Services beyond those
defined in OLE DB. Msmd.h is installed with Analysis Services samples. The default installation folder is C:\Program Files\Analysis
Services\Samples\Include.

For more information about OLE DB schema rowsets, search on "OLE DB schema rowsets" in the Platform SDK portion of the
MSDN® library at Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Analysis Services Programming (SQL Server 2000)

OLAP Schema Rowsets
OLAP Schema Rowsets

 New Information - SQL Server 2000 SP3.

The following table describes the schema rowsets that are used by Microsoft® SQL Server™ 2000 Analysis Services for online
analytical processing (OLAP).

Topic Description
MDSCHEMA_ACTIONS Contains information about the

actions schema rowset, which describes
the actions that may be available to the
client application

MDSCHEMA_CELL_FORMULAS Contains information about the calculated
cells schema rowset, which describes the
calculated cells that may be contained
within a database

MDSCHEMA_CUBES Contains information about the cubes
schema rowset, which describes the
structure of cubes that are contained
within a database

MDSCHEMA_DIMENSIONS Contains information about the
dimensions schema rowset, which
describes the shared and private
dimensions that are contained within a
database

MDSCHEMA_FUNCTIONS Contains information about the
functions schema rowset, which describes
the functions that are available to client
applications connected to the database

MDSCHEMA_HIERARCHIES Contains information about the hierarchies
schema rowset, which describes each
hierarchy that is contained within a
particular dimension

MDSCHEMA_LEVELS Contains information about the levels
schema rowset, which describes each level
that is contained within a particular
hierarchy

MDSCHEMA_MEASURES Contains information about the
measures schema rowset, which describes
each measure contained within a cube

MDSCHEMA_MEMBERS Contains information about the members
schema rowset, which describes the
members contained within a database

MDSCHEMA_PROPERTIES Contains information about the
properties schema rowset, which describes
the properties of members contained
within a database

MDSCHEMA_SETS Contains information about the sets
schema rowset, which describes any sets
that are currently defined

Other Supported OLE DB Schema Rowsets

The following table describes the schema rowsets that are used by Analysis Services for general OLE DB support. For more
information, see the OLE DB documentation.

Topic Description

CATALOGS Contains information about the catalogs
schema rowset, which describes any
databases that are currently defined.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_ACTIONS
MDSCHEMA_ACTIONS

This schema rowset describes the actions that may be available to the client application.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the MDSCHEMA_ACTIONS
schema rowset. The following table describes this schema rowset.

Column name Type
indicator

Description

CATALOG_NAME DBTYPE_WSTR The name of the catalog to which this action
belongs.

SCHEMA_NAME DBTYPE_WSTR This column is not supported by Analysis
Services; it always contains VT_NULL.VT_NULL.

CUBE_NAME DBTYPE_WSTR The name of the cube to which this action
belongs.

ACTION_NAME DBTYPE_WSTR The name of this action.
ACTION_TYPE DBTYPE_I4 A bitmap that is used to specify the action's

triggering method. The following bit value
constants are defined in Msmd.h for this bitmap:

MDACTION_TYPE_URL

MDACTION_TYPE_HTML

MDACTION_TYPE_STATEMENT

MDACTION_TYPE_DATASET

MDACTION_TYPE_ROWSET

MDACTION_TYPE_COMMANDLINE

MDACTION_TYPE_PROPRIETARY

COORDINATE DBTYPE_WSTR A Multidimensional Expressions (MDX)
expression that specifies an object or a
coordinate in the multidimensional space in
which the action is executed. It is the
responsibility of the client application to provide
the value of this restriction column.

COORDINATE_TYPE DBTYPE_I4 A bitmap that specifies how the COORDINATE
restriction column is interpreted. The following
bit value constants are defined in Msmd.h for this
bitmap:

MDACTION_COORDINATE_CUBE

MDACTION_COORDINATE_DIMENSION

MDACTION_COORDINATE_LEVEL

MDACTION_COORDINATE_MEMBER

MDACTION_COORDINATE_SET

MDACTION_COORDINATE_CELL

ACTION_CAPTION DBTYPE_WSTR The label or a caption associated with this action.
DESCRIPTION DBTYPE_WSTR A user-friendly description of the action.
CONTENT DBTYPE_WSTR The expression or content of the action that is to

be executed.
APPLICATION DBTYPE_WSTR The name of the application that is to be used to

execute the action.
INVOCATION DBTYPE_I4 Provides information about how the action

should be invoked:

MDACTION_INVOCATION_INTERACTIVE

Regular action used during normal
operations. This is the default value for this
column.

MDACTION_INVOCATION_ON_OPEN

Action should be executed when the cube is
first opened.

MDACTION_INVOCATION_BATCH

Action executes as part of a batch operation
or DTS task.

These enumeration values are defined in
MSMD.h.

The sort order for this schema rowset is the same as the definition for this schema rowset.

Note Actions of MDACTION_TYPE_PROPRIETARY type must provide a value for the APPLICATION column.

Restriction Columns

The actions schema rowset contains three mandatory restrictions that must be specified when retrieving a schema rowset. Failing
to specify a mandatory restriction column results in an error. The following table contains a list of restriction columns and
describes whether they are mandatory.

Column name Restriction state
CATALOG_NAME Optional
SCHEMA_NAME Optional
CUBE_NAME Mandatory
ACTION_NAME Optional
ACTION_TYPE Optional

COORDINATE Mandatory
COORDINATE_TYPE Mandatory
INVOCATION Optional

Important The INVOCATION restriction column has a default value of MDACTION_INVOCATION_INTERACTIVE. Any schema
rowset that does not explicitly specify a value for this column contains only rows with this value. If you want the rowset to contain
the entire set of actions, use the MDACTION_INVOCATION_ALL constant in the INVOCATION restriction column.

Client applications can define more than one ACTION_TYPE by using the OR operator.

See Also

Actions

CREATE ACTION Statement

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_CELL_FORMULAS
MDSCHEMA_CELL_FORMULAS

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the
MDSCHEMA_CELL_FORMULAS schema rowset. The following table describes this schema rowset.

Column name Type Description
CATALOG_NAME DBTYPE_WSTR The name of the catalog to

which a set belongs. If the
provider does not support
catalogs, this column
contains VT_NULL.

SCHEMA_NAME DBTYPE_WSTR The name of the schema to
which a calculated cell
formula belongs. This
column is not supported by
Analysis Services. It always
contains VT_NULL.

CUBE_NAME DBTYPE_WSTR The name of the cube to
which the calculated cell
formula belongs.

FORMULA_NAME DBTYPE_WSTR The name of the calculated
cell formula, as specified in
the CREATE CELL FORMULA
statement.

SCOPE DBTYPE_I4 The scope of the calculated
cell formula. Only
MDSET_SCOPE_SESSION
is supported. The calculated
cell formula lasts only as
long as the current session
is active.

DESCRIPTION DBTYPE_WSTR A user-friendly description
of the calculated cell
formula. This column is not
supported by Analysis
Services. It always contains
VT_NULL.

EXPRESSION DBTYPE_WSTR The Multidimensional
Expressions (MDX)
expression specified in the
<formula body> clause of
the CREATE CELL FORMULA
statement.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
FORMULA_NAME
SCOPE

See Also

Calculated Cells

CREATE CELL CALCULATION Statement

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_CUBES
MDSCHEMA_CUBES

This schema rowset describes the structure of cubes that are contained in a database.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
IS_DRILLTHROUGH_ENABLED DBTYPE_BOOL Describes whether

DRILLTHROUGH can be
performed on the members
of a cube

IS_WRITE_ENABLED DBTYPE_BOOL Describes whether a cube is
write-enabled

IS_LINKABLE DBTYPE_BOOL Describes whether a cube
can be used in a linked cube

IS_SQL_ALLOWED DBTYPE_BOOL Describes whether or not
SQL can be used on the
cube

In Analysis Services, the CUBE_TYPE column can contain one the following string values: "CUBE", "VIRTUAL CUBE", or "LINKED
CUBE". The value of the column depends on the type of cube the row is describing.

For local cubes, this column contains "CUBE".

For more information about the variety of cubes supported by Analysis Services, see Introduction to Cubes.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME

See Also

Regular Cubes

Virtual Cubes

Linked Cubes

Local Cubes

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_DIMENSIONS
MDSCHEMA_DIMENSIONS

This schema rowset describes the shared and private dimensions that are contained within a database.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
IS_READWRITE DBTYPE_BOOL Contains TRUE if the dimension is write-enabled.
DIMENSION_UNIQUE_SETTINGS DBTYPE_I4 If the dimension contains only members with unique

names or keys, this column contains a bitmap that
specifies which columns contain unique values. The
following bit value constants are defined in Msmd.h
for this bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE

MDDIMENSIONS_MEMBER_NAME_UNIQUE

DIMENSION_MASTER_UNIQUE_NAME DBTYPE_WSTR If the value in the IS_VIRTUAL column of a
dimension row in the schema rowset is set to TRUE
(that is, if the dimension is virtual), this column
contains the dimension on which that virtual
dimension is based.

DIMENSION_IS_VISIBLE DBTYPE_BOOL Contains TRUE if the dimension is visible.

The meaning of the following column has changed since SQL Server version 7.0 OLAP Services.

Column name Type indicator Description
DEFAULT_HIERARCHY DBTYPE_WSTR Contains the unique name of the

hierarchy regardless of the number of
hierarchies in the dimension. In earlier
releases, this column contained
VT_NULL if the dimension had only
one hierarchy.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_NAME
DIMENSION_UNIQUE_NAME

For more information about the MDSCHEMA_DIMENSIONS schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_FUNCTIONS
MDSCHEMA_FUNCTIONS

This schema rowset describes the functions that are available to client applications connected to the database.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
FUNCTION_NAME DBTYPE_WSTR The name of the function.
DESCRIPTION DBTYPE_WSTR A user-friendly description of the function.
PARAMETER_LIST DBTYPE_WSTR Reserved for future use.
RETURN_TYPE DBTYPE_I4 The VARTYPE of the return data type of the function.
ORIGIN DBTYPE_I4 For Multidimensional Expressions (MDX) functions,

returns
MSMD_SCHEMA_FUNCTIONS_ORIGIN_MSOLAP.
For user-defined functions, returns
MSMD_FUNCTIONS_ORIGIN_UDF.

INTERFACE_NAME DBTYPE_WSTR The name of the interface for user-defined functions
and the group name for the MDX functions.

LIBRARY_NAME DBTYPE_WSTR (Optional.) For user-defined functions, returns the
name of the type library. For MDX functions, returns
VT_NULL.

DLL_NAME DBTYPE_WSTR (Optional.) For user-defined functions, this column
contains the name of the .dll or .exe file in which a
function is implemented. For MDX functions, it
contains VT_NULL.

HELP_FILE DBTYPE_WSTR (Optional.) Contains the name of the file that
contains this function's documentation. For MDX
functions, it returns VT_NULL .

HELP_CONTEXT DBTYPE_WSTR (Optional.) Returns the Help context ID for this
function.

OBJECT DBTYPE_WSTR (Optional). The generic name of the object class to
which a function applies. For example, the rowset
for the <Level_Name>.Members function returns
"Level". This column contains VT_NULL if the
function is a user-defined function or if it is not a
property.

The default sort order for this schema rowset is ORIGIN, INTERFACE_NAME, and FUNCTION_NAME.

Restriction Columns

LIBRARY_NAME
INTERFACE_NAME
FUNCTION_NAME
ORIGIN

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_HIERARCHIES
MDSCHEMA_HIERARCHIES

This schema rowset describes each hierarchy that is contained within a particular dimension.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
STRUCTURE DBTYPE_I2 The type of hierarchy. It can be one of the following

values:

MD_STRUCTURE_FULLYBALANCED

MD_STRUCTURE_RAGGEDBALANCED

MD_STRUCTURE_UNBALANCED

MD_STRUCTURE_NETWORK

IS_VIRTUAL DBTYPE_BOOL Returns TRUE if this hierarchy represents a virtual
dimension.

IS_READWRITE DBTYPE_BOOL Returns TRUE if the Write Back to dimension
column that represents this hierarchy is enabled.

HIERARCHY_UNIQUE_SETTINGS DBTYPE_I4 A bitmap that specifies which columns contain
unique values, if the hierarchy only has members
with unique names or keys. The following bit value
constants are defined in Msmd.h for this bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE

MDDIMENSIONS_MEMBER_NAME_UNIQUE

HIERARCHY_MASTER_UNIQUE_NAME DBTYPE_WSTR If the value in the IS_VIRTUAL schema rowset
column is set to TRUE (that is, if the dimension is
virtual), this column contains the dimension on which
the virtual dimension is based.

HIERARCHY_IS_VISIBLE DBTYPE_BOOL Returns TRUE if dimension is visible.
HIERARCHY_ORDINAL DBTYPE_UI4 Returns the ordinal number of the hierarchy across

all hierarchies of the cube.
DIMENSION_IS_SHARED DBTYPE_BOOL Returns TRUE if the parent dimension is shared.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_NAME
HIERARCHY_UNIQUE_NAME

For more information about the MDSCHEMA_HIERARCHIES schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_LEVELS
MDSCHEMA_LEVELS

This schema rowset describes each level that is contained within a particular hierarchy.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
LEVEL_UNIQUE_SETTINGS DBTYPE_I4 A bitmap that specifies which columns contain

unique values, if the level only has member with
unique names or keys. The following bit value
constants are defined in Msmd.h for this bitmap:

MDDDIMENSIONS_MEMBER_KEY_UNIQUE

MDDIMENSIONS_MEMBER_NAME_UNIQUE

LEVEL_IS_VISIBLE DBTYPE_BOOL Returns TRUE if the dimension is visible.
LEVEL_ORDERING_PROPERTY DBTYPE_WSTR If the level is sorted by member property, this

column returns the name of that property.
LEVEL_DBTYPE DBTYPE_I4 The DBType enumeration of the member key

column that was used to build members for the level.
LEVEL_MASTER_UNIQUE_NAME DBTYPE_WSTR For levels that are members of a virtual dimension

but not (All) levels, specifies the unique name of the
level.

LEVEL_NAME_SQL_COLUMN_NAME DBTYPE_WSTR The name of the column in the SQL query that
corresponds to the level's name.

LEVEL_KEY_SQL_COLUMN_NAME DBTYPE_WSTR The name of the column in the SQL query that
corresponds to the level's key.

LEVEL_UNIQUE_NAME_SQL_COLUMN_NAME DBTYPE_WSTR The name of the column in the SQL query that
corresponds to the level's unique name.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_NAME
LEVEL_UNIQUE_NAME

For more information about the MDSCHEMA_LEVELS schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_MEASURES
MDSCHEMA_MEASURES

This schema rowset describes each measure contained within a cube.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type Description
MEASURE_IS_VISIBLE DBTYPE_BOOL Returns TRUE if

dimension is visible.
LEVELS_LIST DBTYPE_WSTR Returns a comma-

delimited list of unique
names of the levels that
are used in this measure.
This column can be used
for writeback when the
end user needs to find out
which levels can be
written to for a virtual
cube. If the measure is
calculated, this column
returns VT_NULL.

MEASURE_NAME_SQL_COLUMN_NAME DBTYPE_WSTR Returns the name of the
column in the SQL query
that corresponds to the
measure's name.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
MEASURE_NAME
MEASURE_UNIQUE_NAME

For more information about the MDSCHEMA_MEASURES schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_MEMBERS
MDSCHEMA_MEMBERS

This schema rowset describes the members contained in a database.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type indicator Description
MEMBER_KEY DBTYPE_WSTR Contains the key property for the

member.
IS_PLACEHOLDERMEMBER DBTYPE_BOOL Indicates whether a member is a

placeholder member for an empty
position in a dimension hierarchy. It is
valid only if the MDX Compatibility
property has been set to 1.

IS_DATAMEMBER DBTYPE_BOOL Contains TRUE if the member is a
data member.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAMEDIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
IS_EMPTYMEMBER
IS_DATAMEMBER
LEVEL_UNIQUE_NAME
LEVEL_NUMBER
MEMBER_NAME
MEMBER_UNIQUE_NAME
MEMBER_CAPTION
MEMBER_TYPE
Tree operator

For more information about the MDSCHEMA_MEMBERS schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_PROPERTIES
MDSCHEMA_PROPERTIES

This schema rowset describes the properties of members contained in a database.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following column to
this schema rowset.

Column name Type Description
PROPERTY_CONTENT_TYPE DBTYPE_I2 Property type

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
DIMENSION_UNIQUE_NAME
HIERARCHY_UNIQUE_NAME
LEVEL_UNIQUE_NAME
MEMBER_UNIQUE_NAME
PROPERTY_NAME
PROPERTY_TYPE

For more information about the MDSCHEMA_PROPERTIES schema rowset, see the OLE DB documentation.

Analysis Services Programming (SQL Server 2000)

MDSCHEMA_SETS
MDSCHEMA_SETS

This schema rowset describes any sets that are currently defined within a database, including session-scoped sets.

Microsoft® SQL Server™ 2000 Analysis Services extends the OLE DB specification with the addition of the following columns to
this schema rowset.

Column name Type indicator Description
CATALOG_NAME DBTYPE_WSTR The name of the catalog to which this set

belongs. This column contains VT_NULL if
the provider does not support catalogs.

SCHEMA_NAME DBTYPE_WSTR This column is not supported by Analysis
Services. It always contains VT_NULL.

CUBE_NAME DBTYPE_WSTR The name of the cube to which the set
belongs. This column always contains a
value and can never be VT_NULL.

SET_NAME DBTYPE_WSTR The name of the set, as specified in the
CREATE SET statement.

SCOPE DBTYPE_I4 The scope of the set. Only
MDSET_SCOPE_SESSION is
supported.

DESCRIPTION DBTYPE_WSTR This column is not supported by Analysis
Services. It always contains VT_NULL.

EXPRESSION DBTYPE_WSTR The expression for this set.
DIMENSIONS DBTYPE_WSTR A comma-delimited list of dimensions used

by the set.

The default sort order for this schema rowset is: CATALOG_NAME, SCHEMA_NAME, CUBE_NAME, SET_NAME, and SCOPE.

Restriction Columns

CATALOG_NAME
SCHEMA_NAME
CUBE_NAME
SET_NAME
SCOPE

Analysis Services Programming (SQL Server 2000)

Data Mining Schema Rowsets
Data Mining Schema Rowsets

The following table describes the schema rowsets that are used by Microsoft® SQL Server™ 2000 Analysis Services for browsing
data mining models. Unlike the OLAP schema rowsets defined in previous topics, these rowsets are described in their entirety. For
more information about these schema rowsets, see the OLE DB for Data Mining specification.

Schema rowset Description
MINING_COLUMNS Describes the individual columns of all defined data

mining models known to the provider
MINING_MODEL_CONTENT Allows browsing of the content of a data mining

model
MINING_MODEL_PMML Stores the Predictive Model Markup Language

(PMML) standard XML representation of the mining
model

MINING_MODELS Exposes data mining models
MINING_SERVICE_PARAMETERS Provides a list of parameters that can be supplied

when generating a mining model using the CREATE
MINING MODEL statement

MINING_SERVICES Provides a description of each data mining
algorithm that is supported by that provider

Analysis Services Programming (SQL Server 2000)

MINING_COLUMNS
MINING_COLUMNS

The individual columns in a data mining model are exposed in the MINING_COLUMNS schema rowset for every mining model in
the database. Structurally, this rowset is similar to the COLUMNS schema rowset and can be used in the same manner. For
example, if you provide a MODEL_NAME restriction, you can obtain all of the columns for a particular model.

Column name Type
indicator

Description

MODEL_CATALOG DBTYPE_WSTR The catalog name. Microsoft®
SQL Server™ 2000 Analysis
Services populates this column
with the name of the database
that the model is a member of.

MODEL_SCHEMA DBTYPE_WSTR The unqualified schema name.
This column is not supported by
Analysis Services; it always
contains VT_NULL.

MODEL_NAME DBTYPE_WSTR The mining model name. This
column contains the name of the
mining model with which a
column is associated, and it is
never empty.

COLUMN_NAME DBTYPE_WSTR The name of the column.
COLUMN_GUID DBTYPE_GUID The column GUID. This column is

not supported by Analysis
Services; it always contains
VT_NULL.

COLUMN_PROPID DBTYPE_UI4 The column property ID. This
column is not supported by
Analysis Services; it always
contains VT_NULL.

ORDINAL_POSITION DBTYPE_UI4 The ordinal position of the
column. Columns are numbered
starting from 1. This column
contains VT_NULL if there is no
stable ordinal value for the
column.

COLUMN_HASDEFAULT DBTYPE_BOOL Contains VARIANT_TRUE if the
column has a default value,
otherwise VARIANT_FALSE.

COLUMN_DEFAULT DBTYPE_WSTR The default value of the column.

If the default value is the NULL
value, COLUMN_HASDEFAULT
contains VARIANT_TRUE, and this
column contains VT_NULL.

COLUMN_FLAGS DBTYPE_UI4 A bitmask that describes
characteristics of the column. The
DBCOLUMNFLAGS enumerated
type specifies the bits in the
bitmask. This column is never
empty.

IS_NULLABLE DBTYPE_BOOL Contains VARIANT_FALSE if the
column is known not to be
nullable, otherwise
VARIANT_TRUE.

DATA_TYPE DBTYPE_UI2 The indicator of the column's data
type, for example:

"TABLE" =
DBTYPE_HCHAPTER

"TEXT" = DBTYPE_WCHAR

"LONG" = DBTYPE_I8

"DOUBLE" = DBTYPE_R8

"DATE" = DBTYPE_DATE

TYPE_GUID DBTYPE_GUID The GUID of the column's data
type. This column is not supported
by Analysis Services; it always
contains VT_NULL.

CHARACTER_MAXIMUM_LENGTH DBTYPE_UI4 The maximum possible length of a
value in the column. For character,
binary, or bit columns, this is one
of the following:

The maximum length of the
column in characters, bytes,
or bits, respective to the
column type, if a length is
defined. For example, a
CHAR(5) column in an SQL
table has a maximum length
of 5.

The maximum length of the
data type in characters,
bytes, or bits, respective to
the column type, if the
column does not have a
defined length.

0 if neither the column nor
the data type has a defined
maximum length.

NULL for all other types of
columns.

CHARACTER_OCTET_LENGTH DBTYPE_UI4 The maximum length in octets
(bytes) of the column, if the type
of the column is character or
binary. A value of 0 means the
column has no maximum length.
This column contains VT_NULL
for all other types of columns.

NUMERIC_PRECISION DBTYPE_UI2 If the column's data type is of a
numeric data type other than
VARNUMERIC, this column
contains the maximum precision
of the column. The precision of
columns with a data type of
DBTYPE_DECIMAL or
DBTYPE_NUMERIC depends on
the column definition.

If the column's data type is not
numeric or is VARNUMERIC, this
column contains VT_NULL.

NUMERIC_SCALE DBTYPE_I2 If the column's type indicator is
DBTYPE_DECIMAL,
DBTYPE_NUMERIC, or
DBTYPE_VARNUMERIC, this
column contains the number of
digits to the right of the decimal
point. Otherwise, this column
contains VT_NULL.

DATETIME_PRECISION DBTYPE_UI4 The date/time precision (number
of digits in the fractional seconds
portion) of the column if the
column data type is a datetime or
interval type, otherwise NULL.

CHARACTER_SET_CATALOG DBTYPE_WSTR The catalog name in which the
character set is defined. This
column is not supported by
Analysis Services; it always
contains VT_NULL.

CHARACTER_SET_SCHEMA DBTYPE_WSTR An unqualified schema name in
which the character set is defined.
This column is not supported by
Analysis Services; it always
contains VT_NULL.

CHARACTER_SET_NAME DBTYPE_WSTR The character set name. This
column is not supported by
Analysis Services; it always
contains VT_NULL.

COLLATION_CATALOG DBTYPE_WSTR The catalog name in which the
collation is defined. This column is
not supported by Analysis
Services; it always contains
VT_NULL.

COLLATION_SCHEMA DBTYPE_WSTR An unqualified schema name in
which the collation is defined. This
column is not supported by
Analysis Services; it always
contains VT_NULL.

COLLATION_NAME DBTYPE_WSTR The collation name. This column is
not supported by Analysis
Services; it always contains
VT_NULL.

DOMAIN_CATALOG DBTYPE_WSTR The catalog name in which the
domain is defined. This column is
not supported by Analysis
Services; it always contains
VT_NULL.

DOMAIN_SCHEMA DBTYPE_WSTR The unqualified schema name in
which the domain is defined. This
column is not supported by
Analysis Services; it always
contains VT_NULL.

DOMAIN_NAME DBTYPE_WSTR The domain name. This column is
not supported by Analysis
Services; it always contains
VT_NULL.

DESCRIPTION DBTYPE_WSTR A user-friendly description of the
column This column is not
supported by Analysis Services; it
always contains VT_NULL.

DISTRIBUTION_FLAG DBTYPE_WSTR A description of the statistical
distribution of the column. This
column contains one of the
following:

"NORMAL"

"LOG NORMAL"

"UNIFORM"

CONTENT_TYPE DBTYPE_WSTR A description of the content of the
column. This column contains one
of the following:

"KEY"

"DISCRETE"

"CONTINUOUS"

"DISCRETIZED([arguments])"

"ORDERED"

"SEQUENCE_TIME"

"CYCLICAL"

"PROBABILITY"

"VARIANCE"

"STDEV"

"SUPPORT"

"PROBABILITY_VARIANCE"

"PROBABILITY_STDEV"

"ORDER"

"SEQUENCE"

Provider-specific flags can also be
defined.

MODELING_FLAG DBTYPE_WSTR A comma-delimited list of flags.
The defined flags are:

"MODEL_EXISTENCE_ONLY"

"NOT NULL"

Provider-specific flags can also be
defined.

IS_RELATED_TO_KEY DBTYPE_BOOL This column contains
VARIANT_TRUE if this column is
related to the key. If the key is a
single column, the
RELATED_ATTRIBUTE field can
optionally contain its column
name.

RELATED_ATTRIBUTE DBTYPE_WSTR The name of the target column
that the current column either
relates to or is a special property
of.

IS_INPUT DBTYPE_BOOL This schema column contains
VARIANT_TRUE if this is an input
column.

IS_PREDICTABLE DBTYPE_BOOL This schema column contains
VARIANT_TRUE if the column is
predictable.

CONTAINING_COLUMN DBTYPE_WSTR The name of the TABLE column
that contains this column. This
column contains VT_NULL if the
column is not contained in
another column.

PREDICTION_SCALAR_FUNCTIONS DBTYPE_WSTR A comma-delimited list of scalar
functions that can be performed
on the column.

PREDICTION_TABLE_FUNCTIONS DBTYPE_WSTR A comma-delimited list of
functions that can be applied to
the column. The functions should
return a table. The list has the
following format:

<function name>(<column1> [,
<column2>], ...)

The format allows the client
application to determine which
columns will be present in the
table the function returns.

IS_POPULATED DBTYPE_BOOL Contains TRUE if the column has
been trained with a set of possible
values.

Contains FALSE if the column is
not populated.

PREDICTION_SCORE DBTYPE_UI4 Reserved for future use.

Default Sort Order

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
COLUMN_NAME

Restriction Columns

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
COLUMN_NAME

Analysis Services Programming (SQL Server 2000)

MINING_MODEL_CONTENT
MINING_MODEL_CONTENT

This schema rowset allows the client application to browse the content of a data mining model. Client applications can use the
special tree operation restrictions described at the end of this topic to navigate the content of the mining model.

Column name Type indicator Description
MODEL_CATALOG DBTYPE_WSTR The catalog name. Microsoft® SQL

Server™ 2000 Analysis Services
populates this column with the name of
the database of which the model is a
member.

MODEL_SCHEMA DBTYPE_WSTR The unqualified schema name. This
column is not supported by Analysis
Services; it always contains VT_NULL.

MODEL_NAME DBTYPE_WSTR The name of the model with which the
content described by this row is
associated.

ATTRIBUTE_NAME DBTYPE_WSTR The name(s) of the attribute(s)
corresponding to this node. For a model
node, this is a list of predictable
attributes. For a leaf distribution node,
this is an attribute to which the
distribution corresponds.

NODE_NAME DBTYPE_WSTR The name of the node. Currently, this
column contains the same value as
NODE_UNIQUE_NAME, though this may
change in future releases.

NODE_UNIQUE_NAME DBTYPE_WSTR The unique name of the node.
NODE_TYPE DBTYPE_I4 The type of the node. It can be one of the

following values:

DM_NODE_TYPE_MODEL

DM_NODE_TYPE_TREE

DM_NODE_TYPE_INTERIOR

DM_NODE_TYPE_DISTRIBUTION

DM_NODE_TYPE_CLUSTER

DM_NODE_TYPE_UNKNOWN

NODE_GUID DBTYPE_GUID The node GUID. This column is not
supported by Analysis Services; it always
contains VT_NULL.

NODE_CAPTION DBTYPE_WSTR A label or a caption associated with the
node. This property is used primarily for
display purposes. If a caption does not
exist, the contents of the NODE_NAME
column is returned.

CHILDREN_CARDINALITY DBTYPE_UI4 An estimate of the number of children
that the node has.

PARENT_UNIQUE_NAME DBTYPE_WSTR The unique name of the node's parent.
VT_NULL is returned for any nodes at
the root level.

NODE_DESCRIPTION DBTYPE_WSTR A user-friendly description of the node.
NODE_RULE DBTYPE_WSTR An XML description of the rule that is

embedded in the node.
MARGINAL_RULE DBTYPE_WSTR An XML description of the rule that is

moving to the node from the parent
node.

NODE_PROBABILITY DBTYPE_R8 The probability associated with this
node.

MARGINAL_PROBABILITY DBTYPE_R8 The probability of reaching the node
from the parent node.

NODE_DISTRIBUTION DBTYPE_HCHAPTER A table that contains the probability
histogram of the node.

NODE_SUPPORT DBTYPE_R8 The number of cases that support this
node.

MSOLAP_MODEL_COLUMN DBTYPE_WSTR The name of the column from the model
definition that this node pertains to.

MSOLAP_NODE_SCORE DBTYPE_R8 The score that was computed for this
node.

MSOLAP_NODE_SHORT_CAPTION DBTYPE_WSTR A short caption for the node that can be
used for display purposes to improve
readability.

Default Sort Order

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
ATTRIBUTE_NAME

Restriction Columns

The MINING_MODEL_CONTENT schema rowset can have ten restrictions. The first nine are columns in the rowset described in
the table.

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
ATTRIBUTE_NAME
NODE_NAME
NODE_UNIQUE_NAME
NODE_TYPE
NODE_GUID
NODE_CAPTION

The tenth restriction, TREE_OPERATION, is not on any particular column of the MINING_MODEL_CONTENT rowset; rather, it
specifies a tree operator. The consumer can specify a NODE_UNIQUE_NAME restriction and the tree operator (ANCESTORS,
CHILDREN, SIBLINGS, PARENT, DESCENDANTS, SELF) to obtain the requested set of members. The SELF operator includes the
row for the node itself in the list of returned rows. The following table describes the constants that make up the bitmap definition
for the TREE_OPERATION restriction. They can be combined using the logical OR operator.

Constant Value
DMTREEOP_ANCESTORS 0x00000020
DMTREEOP_CHILDREN 0x00000001
DMTREEOP_SIBLINGS 0x00000002
DMTREEOP_PARENT 0x00000004
DMTREEOP_SELF 0x00000008
DMTREEOP_DESCENDANTS 0x00000010

See Also

Data Mining Columns

Analysis Services Programming (SQL Server 2000)

MINING_MODEL_CONTENT_PMML
MINING_MODEL_CONTENT_PMML

This schema rowset stores the Extensible Markup Language (XML) structure of the mining model. The format of the XML string
follows the Predictive Model Markup Language (PMML) standard.

Column name Type indicator Description
MODEL_CATALOG DBTYPE_WSTR The catalog name.

Microsoft® SQL Server™
2000 Analysis Services
populates this column with
the name of the database of
which the model is a
member.

MODEL_SCHEMA DBTYPE_WSTR The unqualified schema
name. This column is not
supported by Analysis
Services; it always contains
VT_NULL.

MODEL_NAME DBTYPE_WSTR Model name. This column
cannot contain VT_NULL.

MODEL_TYPE DBTYPE_WSTR The model type. It is a
provider-specific string. It
can be VT_NULL.

MODEL_GUID DBTYPE_GUID The GUID that identifies the
model. Providers that do not
use GUIDs to identify tables
return VT_NULL.

MODEL_PMML DBTYPE_WSTR An XML representation of
the model's content in
PMML format.

SIZE DMTYPE_UI4 Number of bytes in the XML
string.

LOCATION DMTYPE_WSTR The location of the XML file.
It is VT_NULL if the file is
stored in the default
directory.

Default Sort Order

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME

Restriction Columns

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
MODEL_TYPE

Analysis Services Programming (SQL Server 2000)

MINING_MODELS
MINING_MODELS

Data mining models are exposed in the MINING_MODELS schema rowset. This schema rowset is very similar to the TABLES
schema rowset and can be used the same way. Use this rowset to obtain information about the mining models contained within a
database. This rowset can include information such as the names, types and mining algorithms associated with each mining
model.

Column name Type
indicator

Description

MODEL_CATALOG DBTYPE_WSTR The catalog name. Microsoft® SQL Server™
2000 Analysis Services populates this
column with the name of the database of
which the model is a member.

MODEL_SCHEMA DBTYPE_WSTR The unqualified schema name. This column
is not supported by Analysis Services; it
always contains VT_NULL.

MODEL_NAME DBTYPE_WSTR The mining model name. This column
contains the name of the mining model, and
it is never empty.

MODEL_TYPE DBTYPE_WSTR The model type. This value is set to "OLAP"
if the mining model is an OLAP model and
VT_NULL if the model is relational.

MODEL_GUID DBTYPE_GUID The GUID of the model.
DESCRIPTION DBTYPE_WSTR A user-friendly description of the model.

This column is not supported by Analysis
Services; it always contains VT_NULL.

MODEL_PROPID DBTYPE_UI4 The property ID of the model. This column is
not supported by Analysis Services; it
always contains VT_NULL.

DATE_CREATED DBTYPE_DATE The date on which the model was created.
DATE_MODIFIED DBTYPE_DATE The date on which the model definition was

last modified.
SERVICE_TYPE_ID DBTYPE_UI4 Contains an enumerated type that identifies

the data mining algorithm used by the
model. This enumerated type may be one of
the following values:

DM_SERVICETYPE_CLASSIFICATION

DM_SERVICETYPE_SEGMENTATION

SERVICE_NAME DBTYPE_WSTR A string that contains the provider-specific
name for the data mining algorithm used by
the model.

CREATION_STATEMENT DBTYPE_WSTR Contains a string that contains the
statement that was used to create the
mining model.

PREDICTION_ENTITY DBTYPE_WSTR A string that contains a comma-delimited
list indicating which mining columns can be
predicted.

IS_POPULATED DBTYPE_BOOL Contains VARIANT_TRUE if the model is
populated. Otherwise it contains
VARIANT_FALSE.

MSOLAP_MODEL_SOURCE DBTYPE_WSTR For OLAP mining models, this column
contains the name of the cube on which the
model is based.

Default Sort Order

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME

Restrictions

MODEL_CATALOG
MODEL_SCHEMA
MODEL_NAME
MODEL_TYPE
SERVICE_NAME
SERVICE_TYPE_ID

See Also

Data Mining Models

Analysis Services Programming (SQL Server 2000)

MINING_SERVICE_PARAMETERS
MINING_SERVICE_PARAMETERS

This schema rowset provides a list of parameters that can be supplied when you are generating a mining model using the CREATE
MINING MODEL statement. The client application will often restrict by SERVICE_NAME to obtain the parameters that are
supported by the provider and are applicable to the type of mining model being generated.

Column name Type indicator Description
SERVICE_NAME DBTYPE_WSTR The name of the algorithm.
PARAMETER_NAME DBTYPE_WSTR The name of the parameter.
PARAMETER_TYPE DBTYPE_WSTR The OLE DB data type of the parameter.
IS_REQUIRED DBTYPE_BOOL TRUE if the parameter is required.
PARAMETER_FLAGS DBTYPE_UI4 A bitmap that describes parameter

characteristics. The following bit value
constants are defined in Msmd.h for this
bitmap:

DM_PARAMETER_TRAINING
(0x0000001)
For training

DM_PARAMETER_PREDICTION
(0x00000002)
For prediction

DESCRIPTION DBTYPE_WSTR Text that describes the purpose and format of
the parameter.

Default Sort Order

SERVICE_NAME
PARAMETER_NAME

Restriction Columns

SERVICE_NAME
PARAMETER_NAME

Analysis Services Programming (SQL Server 2000)

MINING_SERVICES
MINING_SERVICES

This schema rowset provides a description of each data mining algorithm the provider supports.

Column name
Type
indicator Description

SERVICE_NAME DBTYPE_WSTR The name of the algorithm. This column is provider-
specific.

SERVICE_TYPE_ID DBTYPE_UI4 This column contains a bitmap that describes the
mining service. Microsoft® SQL Server™ 2000
Analysis Services populates this column with one of
the following values:

DM_SERVICETYPE_CLASSIFICATION
(0x0000001)

DM_SERVICETYPE_CLUSTERING(0x0000002)

SERVICE_DISPLAY_NAME DBTYPE_WSTR A localizable display name for the algorithm.
SERVICE_GUID DBTYPE_GUID The GUID for the algorithm.
DESCRIPTION DBTYPE_WSTR A user-friendly description of the algorithm.
PREDICTION_LIMIT DBTYPE_UI4 The maximum number of predictions the model and

algorithm can provide.
SUPPORTED_DISTRIBUTION_FLAGS DBTYPE_WSTR A comma-delimited list of flags that describe the

statistical distributions supported by the algorithm.
This column contains one or more of the following
values:

"NORMAL"

"LOG NORMAL"

"UNIFORM"

Provider-specific flags can also be defined.

SUPPORTED_INPUT_CONTENT_TYPES DBTYPE_WSTR A comma-delimited list of flags that describe the
input content types that are supported by the
algorithm. This column contains one or more of the
following values:

"KEY"

"DISCRETE"

"CONTINUOUS"

"DISCRETIZED"

"ORDERED"

"SEQUENCE TIME"

"CYCLICAL"

"PROBABILITY"

"VARIANCE"

"STDEV"

"SUPPORT"

"PROBABILITY VARIANCE"

"PROBABILITY STDEV"

"ORDER"

Provider-specific flags can also be defined.

SUPPORTED_PREDICTION_CONTENT_TYPES DBTYPE_WSTR A comma-delimited list of flags that describe the
prediction content types that are supported by the
algorithm. This column contains one or more of the
following values:

"KEY"

"DISCRETE"

"CONTINUOUS"

"DISCRETIZED"

"ORDERED"

"SEQUENCE TIME"

"CYCLICAL"

"PROBABILITY"

"VARIANCE"

"STDEV"

"SUPPORT"

"PROBABILITY VARIANCE"

"PROBABILITY STDEV"

Provider-specific flags can also be defined.

SUPPORTED_MODELING_FLAGS DBTYPE_WSTR A comma-delimited list of the modeling flags that are
supported by the algorithm. This column contains
one or more of the following values:

"MODEL_EXISTENCE_ONLY"

"NOT NULL"

Provider-specific flags can also be defined.

SUPPORTED_SOURCE_QUERY DBTYPE_WSTR The <source_data_query> types that the provider
supports. This is a comma-delimited list of one or
more of the following syntax descriptions. These
descriptions can be used as the source of data for
INSERT INTO, or can be joined using a PREDICTION
JOIN to a mining model for SELECT. The following
values are available:

"SINGLETON CONSTANT"

"SINGLETON SELECT"

"OPENROWSET"

"SELECT"

"SHAPE"

TRAINING_COMPLEXITY DBTYPE_I4 Indicates the length of time training is expected to
take:

DM_TRAINING_COMPLEXITY_LOW

Running time is relatively short, and it is
proportional to input.

DM_TRAINING_COMPLEXITY_MEDIUM

Running time may be long, but it is generally
proportional to input.

DM_TRAINING_COMPLEXITY_HIGH

Running time is long and it may grow
exponentially in relationship to the number of
training cases.

PREDICTION_COMPLEXITY DBTYPE_I4 Indicates the length of time prediction is expected to
take:

DM_PREDICTION_COMPLEXITY_LOW

Running time is relatively short, and it is
proportional to input.

DM_PREDICTION_COMPLEXITY_MEDIUM

Running time may be long, but it is generally
proportional to input.

DM_PREDICTION_COMPLEXITY_HIGH

Running time is long and it may grow
exponentially in relationship to the number of
training cases.

EXPECTED_QUALITY DBTYPE_I4 Indicates the expected quality the of model produced
with this algorithm:

DM_EXPECTED_QUALITY_LOW

DM_EXPECTED_QUALITY_MEDIUM

DM_EXPECTED_QUALITY_HIGH

SCALING DBTYPE_I4 Indicates the scalability of the algorithm:

DM_SCALING_LOW

DM_SCALING_MEDIUM

DM_SCALING_HIGH

ALLOW_INCREMENTAL_INSERT DBTYPE_BOOL Contains VARIANT_TRUE if additional INSERT INTO
statements are allowed after the initial training.

ALLOW_PMML_INITIALIZATION DBTYPE_BOOL Contains VARIANT_TRUE if the mining models
(including structure and content) can be created
based on an XML string.

CONTROL DBTYPE_I4 Contains one of the following values, which
determine whether the service supports training
interruption:

DM_CONTROL_NONE

The algorithm cannot be canceled after it starts
to train the model.

DM_CONTROL_CANCEL

The algorithm can be canceled after it starts to
train the model, but must be restarted to
resume training.

DM_CONTROL_SUSPENDRESUME

The algorithm can be canceled and resumed at
any time, but results are not available until
training is complete.

DM_CONTROL_SUSPENDWITHRESULT

The algorithm can be canceled and resumed at
any time, and any incremental results can be
obtained.

ALLOW_DUPLICATE_KEY DBTYPE_BOOL Contains VARIANT_TRUE if cases are allowed to
contain duplicate keys.

Default Sort Order

SERVICE_NAME

Restriction Columns

SERVICE_NAME
SERVICE_TYPE_ID

Analysis Services Programming (SQL Server 2000)

Analysis Services Programming Samples
The following samples illustrate Microsoft® SQL Server™ 2000 Analysis Services application development in Microsoft Visual
Basic® Scripting Edition (VBScript), Microsoft Visual C++®, and Visual Basic.

Each sample demonstrates a different technique for working with cube data. Prerequisites for viewing or running each sample
vary depending on the development tool and methodology used to create the code.

Installing Sample Files

The sample applications are installed with the optional Samples component of Analysis Services. They are located in the Samples
folder under Microsoft Analysis Services (installed by default to C:\Program Files\Microsoft Analysis Services\Samples). Each
sample program is contained in a subfolder at this location.

General Requirements

Many samples require a SQL Server database that provides cube data. For testing purposes, you can use the cubes in the
FoodMart 2000 database. You can modify sample source files to point to this database or to specific cubes.

Sample Scripts and Programs

The following table lists and describes the categories of samples you can work with. Sample source code has comments to help
you learn how the application works.

Sample category Description
Simple Cube Creation A set of samples that demonstrate how to create cubes

from client and server applications.
Cube Query and Result
Set Manipulation

A set of samples that demonstrate how to query a cube
and manipulate the result set. Samples are provided for
both client and server applications.

Cube Schema Retrieval
and Manipulation

A set of samples that demonstrate how to obtain cube
schema data and manipulate the data. Samples are
provided for both client and server applications.

Complex Cube Creation
and Manipulation

A three-part integrated sample that demonstrates how to
create a cube, write-enable the cube, and write back to the
cube.

In addition, a different sample shows how to retrieve cube
data and schema information and then manipulate the
results using dynamic HTML (DHTML).

Analysis Services Programming (SQL Server 2000)

Simple Cube Creation
Sample code for creating a cube is provided in two different samples. Each sample illustrates a different implementation,
depending on whether the cube is created by a client or a server application.

Sample Programs

The following table lists and describes the samples in this section. For more information about installation and general
requirements, see Analysis Services Programming Samples.

Sample Description
VbAdoCreateCube This Microsoft® Visual Basic® project creates a client-side

cube using Microsoft ActiveX® Data Objects (ADO) and
ActiveX Data Objects (Multidimensional) (ADO MD).

This sample requires Visual Basic 5.0 (with Service Pack 3) or
Visual Basic 6.0, ADO, and ADO MD.

This sample is located in the VbAdoCreateCube folder. It
consists of the FrmVbAdoCreateCube.frm,
VbAdoCreateCube.vbp, and VbAdoCreateCube.vbw files.

VbDSOExample This Visual Basic project creates a server-side cube and
demonstrates much of the available Decision Support Objects
(DSO) functionality.

This sample requires Visual Basic 5.0 (with Service Pack 3) or
Visual Basic 6.0, and DSO.

This sample is located in the VbDSOExample folder. It consists
of the FrmMain.frm, AdvancedSampleCode.bas, Writeback.bas,
DSOSample.vbp, and DSOSample.vbw files.

Analysis Services Programming (SQL Server 2000)

Cube Query and Result Set Manipulation
Sample code for creating and manipulating a query-based cube is provided in five different samples. Each sample illustrates a
different implementation, depending on the development tool and whether the cube is created by a client application or a server
application.

Sample Programs

The following table provides the names of and details about the samples in this section. For more information about installation
and general requirements, see Analysis Services Programming Samples.

Sample Description
AspAdoSimple This Microsoft® Visual Basic® Scripting Edition (VBScript)

sample executes a Multidimensional Expressions (MDX) query
using the Sales cube on the local computer and displays the
results in a simple table format. The sample demonstrates the
basic steps for querying a database and displaying the results.

This sample requires Microsoft Internet Information Server 4.0
or Microsoft Internet Information Services (IIS) 5.0 or later,
ADO, and ADO MD.

This sample is located in the AspAdoSimple folder. It consists of
the AspAdoSimple.asp file.

AspAdoComplex This VBScript sample executes an MDX query using the server,
database, and cube the user specifies in fields of the form
provided by an Active Server Pages (ASP) page. The sample
uses the HTML COLSPAN attribute to present the resulting
cellset as a table on the same HTML pane as the form.

This sample requires IIS 4.0 or later, Microsoft ActiveX® Data
Objects (ADO), and ADO Multidimensional (ADO MD).

This sample is located in the AspAdoComplex folder. It consists
of the AspAdoComplex.asp file.

VbAdoSimple This Visual Basic project executes a query using ADO MD. The
sample displays the result set in the Immediate window.

This sample requires Visual Basic 5.0 (with Service Pack 3) or
Visual Basic 6.0, and ADO MD.

This sample is located in the VbAdoSimple folder. It consists of
the FrmVbAdoSimple.frm, VbAdoSimple.vbp, and
VbAdoSimple.vbw files.

VbAdoComplex This VBScript sample executes an MDX query. The sample
displays the resulting cellset in a Microsoft Excel spreadsheet.

This sample requires Visual Basic 5.0 (with Service Pack 3) or
Visual Basic 6.0, ADO, and Excel.

This sample is located in the VbAdoComplex folder. It consists
of the FrmVbAdoComplex.frm, VbAdoComplex.vbp, and
VbAdoComplex.vbw files.

CppOlapDemo This Microsoft Visual C++® project creates a server-side cube
based on a query, using OLE DB for OLAP to connect to
Microsoft SQL Server™ 2000 Analysis Services.

This sample requires Visual C++ 5.0 or later, Msmd.h (which is
located in the C:\Program Files\Microsoft Analysis
Services\Samples\Include folder), and the Microsoft Data
Access Software Development Kit (SDK) version 2.1 or later.

This sample is located in the CppOlapDemo folder. It consists of
the OLAPApp.cpp, OLAPDemo.cpp, OLAPTab.cpp,
OLAPDemo.dsp, OLAPApp.hpp, and OLAPTab.hpp files.

Analysis Services Programming (SQL Server 2000)

Cube Schema Retrieval and Manipulation
Sample code for retrieving and manipulating a cube schema is provided in three different samples. Each sample illustrates a
different implementation, depending on the development tool and whether the cube is created by a client application or a server
application.

Sample Programs

The following table provides the names of and details about the samples in this section. For more information about installation
and general requirements, see Analysis Services Programming Samples.

Sample Description
AspAdoCubeDoc This Microsoft® Visual Basic® Scripting Edition (VBScript)

sample retrieves a cube schema and displays the data on a
Web page.

This sample requires Microsoft Internet Information Server 4.0
or Microsoft Internet Information Services (IIS) 5.0 or later,
Microsoft ActiveX® Data Objects (ADO) and ADO
(Multidimensional) (ADO MD).

This sample is located in the AspAdoCubeDoc folder. It consists
of the AspAdoCubeDoc.asp file.

AspAdoCubeTree This VBScript and JScript client application retrieves a cube
schema and displays the data on a Web page using dynamic
HTML (DHTML).

This sample requires IIS 4.0 or later, ADO, and ADO MD.

This sample is located in the AspAdoCubeTree folder. It
consists of AspAdoCubeTree.asp, DimensionDrop.js, and
fourteen image files.

VbAdoCubeDoc This Visual Basic project retrieves cube schema information
and stores it in a Microsoft Word document.

This sample requires Visual Basic 5.0 (with Service Pack 3) or
Visual Basic 6.0, ADO MD, and Microsoft Excel.

This sample is located in the VbAdoCubeDoc folder. It consists
of the FrmVbAdoCubeDoc.frm, VbAdoCubeDoc.vbp,
VbAdoCubeDoc.vbw files.

Analysis Services Programming (SQL Server 2000)

Complex Cube Creation and Manipulation
Sample code for creating and manipulating a complex cube is provided in a three-part integrated sample and a stand-alone
sample that demonstrates manipulation in dynamic HTML (DHTML).

Sample Programs

The following table provides the names of and details about the samples in this section. For more information about installation
and general requirements, see Analysis Services Programming Samples.

Sample Description
VbDsoCreateSmallCube
(part 1 of 3)

This Microsoft® Visual Basic® project uses Decision
Support Objects (DSO) to create a server-side cube that can
be used in other applications (specifically, VbAdoWriteback).

This sample requires Visual Basic 5.0 (with Service Pack 3)
or Visual Basic 6.0, and Decision Support Objects (DSO).

This sample is located in the VbDsoCreateSmallCube folder.
It consists of the FrmMain.frm and DsoMakeCube.vbp files.

VbDsoWriteEnableCube
(part 2 of 3)

This Visual Basic project demonstrates the steps involved in
creating a writeback partition table and write-enabling a
cube.

This sample requires Visual Basic 5.0 (with Service Pack 3)
or Visual Basic 6.0, and DSO. It also requires that you run
VbDsoCreateSmallCube before running this sample.

This sample is located in the VbDsoWriteEnableCube folder.
It consists of the FrmMain.frm and WriteEnable.vbp files.

VbAdoWriteBack (part 3
of 3)

This Visual Basic project populates a client-side cube using
the writeback cube defined by VbDsoCreateSmallCube.

This sample requires Visual Basic 5.0 (with Service Pack 3)
or Visual Basic 6.0, ADO, and ADO MD. You must run
VbDsoCreateSmallCube and VbDsoWriteEnableCube before
you run this sample.

This sample is located in the VbAdoWriteBack folder. It
consists of the FrmMain.frx, FrmMain.frm, and
SimpleWriteback.vbp files.

VbMdHTMLdll This Visual Basic project creates MdHtml.dll, which displays
cube data on a Web page.

This sample requires Visual Basic 6.0 and Microsoft Internet
Information Server 4.0 or Microsoft Internet Information
Services (IIS) 5.0 or later.

This sample is located in the VbMdHTMLdll folder. It consists
of the MdHtmlDll.asp, MdHtmlDll.dll, MdHtmlDll.exp,
MdHtmlDll.lib, Table.cls, MdHtmlDll.vbp, and MdHtmlDll.vbw
files.

Meta Data Services Programming (SQL Server 2000)

Programming Meta Data Services Applications
Microsoft® SQL Server™ 2000 Meta Data Services is an object-oriented repository technology that stores and manages meta
data for SQL Server and its components.

Meta Data Services is intended to store meta data, and it is designed to be integrated with other tools and applications. It provides
a solution for storing and managing data warehousing definitions, OLAP definitions, design data used in development tools, and
any other type of meta data used in a programming environment.

For tool and application developers, Meta Data Services provides an application programming interface (API) that exposes the
repository engine and meta model definitions that the engine can manipulate.

With the repository API, you can create tools and applications that use or manipulate data already stored in your repository. You
can also add new meta data to accomplish new programming objectives that you define.

Meta Data Services relies on information models to provide meta data definitions. For more information about information
models, see Information Model Fundamentals and Information Models.

The following topics provide more information about how to deploy Meta Data Services in a programming environment.

Topic Description
Repository Object Architecture Describes repository engine objects and

repository type information objects used
to define and manage meta data.

Getting Started with Meta Data Services Describes the programming environment
requirements and provides basic
information you should know before you
start.

Connecting to and Configuring a
Repository

Explains how to create and open a
repository database.

Defining Information Models Describes how to define an information
model.

Installing Information Models Explains how to install an information
model in a repository database.

Programming Information Models Describes how to program against an
information model in a repository
database.

Storage Strategy in a Repository Database Explains how Meta Data Services stores
data in a repository database.

Using OLE DB Scanner Describes how to use the OLE DB Scanner
utility that imports relational data into a
repository database.

Using XML Encoding Describes how to use the Meta Data
Coalition (MDC) Extensible Markup
Language (XML) Encoding feature for
interchanging meta data in XML.

See Also

Meta Data Services Architecture

Meta Data Services Overview

Repository API Reference

Model Installer Reference

Meta Data Services Programming (SQL Server 2000)

Repository Object Architecture
The repository object architecture shows how the repository application programming interfaces relate and intersect. The object
model is organized into two parts: one that shows the repository engine objects, and another that shows the Repository Type
Information Model (RTIM).

Because the repository engine can accommodate data for any tool, its object model reflects a simple, fundamental view of data.
This section describes the fundamental object model of a repository and introduces the classes and interfaces that you use to
implement the object model in your code.

The following topics provide more information about the repository object architecture.

Topic Description
Repository Engine Model Describes the classes and interfaces that

drive the repository engine.
Repository Type Information Model Describes the classes and interfaces that

define information models.
Understanding the RTIM Through
Examples

Describes the components of an
information model using examples.

See Also

Designing Information Models

Repository API

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

Repository Engine Model
The repository engine model represents the classes and interfaces that drive the repository engine. Together with the Repository
Type Information Model (RTIM), the repository engine model makes up the complete repository object architecture.

The repository engine model includes the following objects.

Object Description
Repository Objects and Object Versions An object that is known by a Microsoft®

SQL Server™ 2000 Meta Data Services
repository and managed by the repository
engine

Repository Session Objects An object that represents a repository
instance

Repository Transaction Objects An object that provides transaction
services to a repository database

Repository Root Objects An object that provides a starting point for
information model navigation

Repository Relationship Objects An object that defines characteristics of a
repository relationship

Repository Collections A collection that contains objects of a
similar type

Repository Property Objects An object that defines characteristics of a
repository property

Repository Workspace Objects An object that represents a workspace in a
repository

See Also

Repository Object Architecture

Repository Type Information Model

Meta Data Services Programming (SQL Server 2000)

Repository Objects and Object Versions
Repository Objects and Object Versions

A repository object and a repository object version are either COM or Automation objects known to a Microsoft® SQL Server™
2000 Meta Data Services repository and managed by the repository engine. When you instantiate any object, whether it is a
repository engine object or an object from your information model, the repository engine instantiates it as a repository object or
repository object version.

You can manipulate a repository object or object version instance from Automation or COM programs using RepositoryObject
and RepositoryObjectVersion classes, objects, and interfaces. You can also use the ObjectCol or VersionCol collections.

Working with RepositoryObject Objects

Repository Type Information Model (RTIM) objects and repository engine objects are instantiated as RepositoryObject objects.

Working with RepositoryObjectVersion Objects

All object instances that are defined by your information model can be instantiated as RepositoryObjectVersion objects. Doing
so enables you to create and manipulate historical or alternate versions of an object instance. In previous releases of the
repository engine, both versioned and nonversioned objects were supported. The nonversioned repository object is maintained
for backward compatibility purposes. In SQL Server 2000 Meta Data Services, object instances that you instantiate as either
repository objects or repository object versions are functionally equivalent.

By default, most repository interfaces work with the latest version of an object. A few interfaces, such as
IRepositoryObjectVersion, work with specific versions that you specify.

See Also

IObjectCol Interface

IRepositoryObject Interface

IRepositoryObjectVersion Interface

IVersionCol Interface

Repository Object Architecture

RepositoryObject Class

RepositoryObject Object

RepositoryObjectVersion Class

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

Repository Session Objects
Repository Session Objects

The repository session object represents an instance of a single repository. Within a single repository, you can have multiple
information models. Each repository instance is associated with one repository database.

The repository session object supports a database connection, transactions, error handling, workspaces, and object instantiation. A
repository session object is created and managed by the repository engine. It is part of the repository engine model.

You can manipulate a repository instance from Automation or COM programs using the Repository object, IRepository
interface, or the Repository class.

See Also

IRepository Interface

Repository Class

Repository Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Repository Transaction Objects
Repository Transaction Objects

A repository transaction object handles all transactions between a Microsoft® SQL Server™ 2000 Meta Data Services repository
instance and a repository database. Whenever you insert, delete, or update data in your repository database, you do so by way of
a transaction object. The repository transaction object also tracks the status of a transaction, and it supports options that allow
you to instruct repository engine operations.

A transaction object is created and managed by the repository engine. It is part of the repository engine model.

You can manipulate a repository transaction from Automation or COM programs using the RepositoryTransaction object, the
Repository class, or the IRepositoryTransaction and IRepositoryTransaction2 interfaces.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction2 Interface

Repository Class

Repository Object Architecture

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

Repository Root Objects
Repository Root Objects

The root object is the top-level object in a repository. There is one root object for each repository instance. It is the object from
which all navigation begins. All information models and workspaces in a repository are associated with the root object.

As with any repository object, the root object can have any number of relationships with other objects. Each relationship
connecting the root object to other objects must conform to a relationship type. The relationship type to which these relationships
conform is created by the information model creator. The following figure shows seven such relationships.

The root object occupies a special role that spans both parts of the repository object architecture. In the Repository Type
Information Model (RTIM), it is the starting point for navigating to your information models. However, it also belongs to the
Repository Engine Object model because it services the repository engine. In addition, it does not describe type information to the
same extent that other RTIM objects do. Although you are not prohibited from doing so, it is better to avoid setting properties on
the repository root object.

You can access a repository root object from Automation or COM programs using the ReposRoot object, the ReposRoot class,
or the IReposRoot interface.

See Also

Repository Object Architecture

ReposRoot Class

ReposRoot Object

Meta Data Services Programming (SQL Server 2000)

Repository Relationship Objects
Repository Relationship Objects

A relationship is an association between two objects. Relationships bind objects together and give structure to a repository and an
information model.

In a repository and in all subsequent information models, objects are connected to each other through a network of relationships.
For example, in a model that depicts a database application, the association between a schema and its table is a relationship.
Furthermore, the association between a table and its columns, and a column and its data type, are also relationships. In a
repository, the connection between one information model and another is also a relationship.

All relationships are accessed by way of a collection. You can only access a relationship through its collections. Understanding
how collections and relationships correspond is an important prerequisite to programming an information model. For more
information about collections, see Repository Collections.

The following topics provide more detail about the roles that a relationship assumes.

Topic Description
Relationship Structure: Origin and
Destination

Explains how origin and destination
objects provide the structure of a
relationship.

Relationship Navigation: Source and
Target

Explains how source and target objects
provide the navigation of a relationship.

You can manipulate repository relationship objects from Automation or COM programs using the Relationship object, the
Relationship class, or the IRelationship and IRelationshipCol interfaces.

See Also

Example: Associating Data with RTIM

IRelationship Interface

IRelationshipCol Interface

Relationship Class

Relationship Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Relationship Structure: Origin and Destination
Relationship Structure: Origin and Destination

In every relationship, one object participates as the origin and one object participates as the destination. The terms origin and
destination refer to the relative roles of the two objects. Together, they define the primary direction of the relationship. For any
given relationship, the assignment of one particular role as the origin and the other role as the destination is arbitrary to the
repository engine. In practice, however, the developer typically assigns the origin role to the object that acts or operates on the
other object.

For example, in a relationship of the type schema has tables, Schema is the origin and Tables is the destination. In the
relationship table has columns, Tables is origin and Columns is the destination. Notice that Tables can be both destination and
origin, depending on its role in each relationship.

Origin and destination assignments create the structure of an information model. Within a single origin-destination pairing, the
origin and destination assignments of the two objects are fixed after the assignments are made.

See Also

Relationship Navigation: Source and Target

Repository Object Architecture

Repository Relationship Objects

Meta Data Services Programming (SQL Server 2000)

Relationship Navigation: Source and Target
Relationship Navigation: Source and Target

You use relationships to navigate through repository contents. From within a relationship, you can retrieve either of the two
repository objects that form the relationship.

In a relationship, navigation always moves from a source object towards a target object. Unlike origin and destination, source and
target assignments are dynamic; the assignments vary depending on where you want to go. Because you can navigate back and
forth across a network of objects, the source object is simply where navigation starts, and the target is where navigation
concludes.

Source and target assignments apply to instantiated objects for the duration of a navigation step. Where origin and destination
tend to reflect an enduring, real-world relationship that is represented in a model, source and target assignments exist only to
provide navigation direction from one object to the next.

See Also

Navigation Overview

Relationship Structure: Origin and Destination

Repository Object Architecture

Repository Relationship Objects

Meta Data Services Programming (SQL Server 2000)

Repository Collections
Repository Collections

A repository collection is a set of one or more objects that implement the same interface. Repository collections are instantiated
by the repository engine. State information about a collection is stored in a repository so that you can call the object in the same
state in which you last left it.

Collections are used to define a relationship between two or more objects, to support navigation, and to manipulate a set of
similar objects as a unit.

Collections always reflect information about some kind of relationship. An object typically has multiple collections, reflecting its
association with many kinds of objects. Furthermore, because an information model is a network of objects, navigation follows a
series of relationships by traversing collections.

All collections are fundamentally the same. However, the repository API provides support for creating a variety of general-
purpose and special-purpose collections. The kind of collection that you create is determined by the COM interfaces and
Automation objects you use to materialize the collection. Each collection exposes a set of methods and properties designed to
support the purpose of the collection type.

For more information about collections, see Defining Relationships and Collections and Understanding Collections.

See Also

ITargetObjectCol Interface

ObjectCol Class

ObjectCol Object

RelationshipCol Class

RelationshipCol Object

Repository Object Architecture

TransientObjectCol Class

TransientObjectCol Object

VersionCol Class

VersionCol Object

Meta Data Services Programming (SQL Server 2000)

Repository Property Objects
Repository Property Objects

A repository property object stores the persistent state of a repository object or a repository object version.

You can use a repository property object to access or manipulate any repository object in a generic way. For example, if you are
creating a browsing tool, you can use repository property objects to populate the browser. The data that is returned to you is not
tied to specific object instances. However, by using the information that is returned, you can retrieve more specific data about an
object.

You can access a repository property object from Automation or COM programs using the ReposProperty object, the
ReposProperty class, or the IReposProperty or IReposProperty2 interfaces.

To associate or access multiple properties of a repository object or repository object version, use the ReposProperties collection.

To work with large text or image files, use IReposPropertyLarge.

See Also

IReposProperty Interface

Repository Object Architecture

ReposProperty Class

ReposProperty Object

ReposProperties Class

ReposProperties Object

Meta Data Services Programming (SQL Server 2000)

Repository Workspace Objects
Repository Workspace Objects

A repository workspace is a subset of a shared, central repository. You can define workspaces to materialize an information model
as it existed at a specific point in time, or to create a new space for furthering application development without impacting the
current code base.

A workspace object exposes methods that allow you to allocate, populate, and manage a workspace. You can only have one
version of each object assigned to a workspace at a time.

A workspace object is created and managed by the repository engine. It is part of the repository engine model.

You can access a workspace object from Automation or COM programs using the Workspace object, the Workspaces collection
of the ReposRoot object, the Workspace class, or the IWorkspace or IWorkspaceItem interfaces.

See Also

IWorkspace Interface

IWorkspaceItem Interface

Managing Workspaces

Repository Object Architecture

Workspace Class

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Repository Type Information Model
The Repository Type Information Model (RTIM) is the object model that defines how information models are stored in a
repository.

RTIM objects define the object classes of an information model. RTIM objects are instantiated by the repository engine as
repository objects or repository object versions. RTIM objects can also be instantiated as members of a repository collection.

When you model a tool or application in an information model, the definitions must conform to the RTIM objects described in this
section. Together with the repository engine model, the RTIM makes up the complete repository object architecture.

The following topics describe the parts of the RTIM model.

Object Description
Repository Type Library Objects An object that defines the scope of a

single information model
Class Definition Objects An object that defines a class
Interface Definition Objects An object that defines an interface
Property Definition Objects An object that defines a property
Method Definition Objects An object that defines a method
Parameter Definition Objects An object that defines a parameter of a

method
Relationship Definition Objects An object that defines a relationship type
Collection Definition Objects An object that defines a collection type
Alias Objects An object that defines an alias for any

named object
Enumeration Definition Objects An object that defines an enumeration
Script Definition Objects An object that defines a script

See Also

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Repository Type Library Objects
Repository Type Library Objects

A repository type library object defines the scope of an information model. If you are working with a predefined information
model or a modeling tool, repository type library objects are created for you when you install the information model. If you are
creating type information programmatically, you must create a repository type library object to contain your type definitions.

You can access a repository type library object from Automation or COM programs using the ReposTypeLib object, the
ReposTypeLib class, or the IReposTypeLib or IReposTypeLib2 interfaces.

See Also

IReposTypeLib Interface

Repository Object Architecture

ReposTypeLib Class

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

Class Definition Objects
Class Definition Objects

A class definition object defines a class. In a Microsoft® SQL Server™ 2000 Meta Data Services repository, a class definition object
exposes properties, a collection of interfaces, and a collection of scripts.

The following figure shows some classes and the interfaces they implement. In the figure, the Chapter class implements two
interfaces, ISpellingChecker and IPagination. Both the Paragraph class and the Chapter class implement the
ISpellingChecker interface.

You can access a class definition object from Automation or COM programs using the ClassDef object, the ClassDef class, or the
IClassDef or IClassDef2 interfaces.

See Also

ClassDef Class

ClassDef Object

IClassDef Interface

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Interface Definition Objects
Interface Definition Objects

In Automation programs, each object exposes its properties, collections, and behaviors through interfaces. To have the instances
of a class exhibit certain behaviors or have certain properties or collections, you implement the appropriate interface for that class.

The Repository Type Information Model (RTIM) accommodates such data by letting you describe interfaces. Each interface can
have a set of classes that implements it, and each class can have a set of interfaces that it implements.

In a Microsoft® SQL Server™ 2000 Meta Data Services repository, an interface definition object exposes properties, an ancestors
collection, a descendants collection, and a members collection. It also provides for interface implication and script support.

You can access an interface definition object from Automation or COM programs using the InterfaceDef object, the
InterfaceDef class, or the IInterfaceDef or IInterfaceDef2 interfaces.

See Also

IInterfaceDef Interface

InterfaceDef Class

InterfaceDef Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Alias Objects
Alias Objects

An alias object is a derived member of an interface. This object provides support for delegating members of an interface to other
interfaces.

You can access an alias object from Automation or COM programs using the Alias object, the Alias class, or the
IInterfaceMember2 interface.

See Also

Alias Class

Alias Object

IInterfaceMember2 Interface

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Relationship Definition Objects
Relationship Definition Objects

A relationship definition object defines a relationship type. You can define a relationship type for relationship characteristics that
repeat. For example, table has columns represents a type of relationship that repeats for every table that has columns. This
relationship can be used to describe how LoanTable relates to LoanID, how CustomerTable relates to CustomerName, and
how OrderTable relates to OrderDate.

If you are creating an information model programmatically, you should create a relationship definition object for every
relationship that you implement. For more information, see Defining a Relationship.

If you have relationship definition objects that conform to the same template, you can define a relationship collection to represent
the set. For more information, see Collection Definition Objects.

You can access a relationship definition object from Automation or COM programs using the RelationshipDef object, the
RelationshipDef class, or the IReposTypeInfo interface.

See Also

Example: Associating Data with RTIM

IReposTypeInfo Interface

RelationshipDef Class

RelationshipDef Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Collection Definition Objects
Collection Definition Objects

A collection definition is meta data about specific kinds of collections. The collection definition object defines the characteristics of
a collectionand provides a template to which a collection conforms.

Typically, a collection contains a set of identically structured objects. You can use a collection definition object to create object and
relationship collections that provide your tool or application with a way to manipulate sets of objects and relationships as a single
unit. An object collection is a set of similar objects. A relationship collection is a set of similar relationships.

In the following example, the right column (Data) lists some collections by name, while the kinds of collections are in the left
column under Kind of Data. The Kind of Data column indicates the templates to which the items in the Data column must
conform. Because the items in the Data column are collections, the items in the Kind of Data column are called collection types
and they conform to a collection definition.

The most important way that a collection can conform to a collection definition is in its size. That is, a collection definition
describes the size limitations on any collection conforming to it. In the following table, each instance of the collection definition
publisher-of-book describes the collection of publishers of a particular book. A typical instance of this collection definition is
publisher-of-Inside-OLE. In the table, each book has only one publisher.

The collection definition can define this restriction. That is, the publisher-of-book collection definition can impose a maximum size
of one on each collection conforming to it. Similarly, the collection type can define a minimum size restriction.

The following list contains some other examples:

Publisher-of-book (zero, one).

The minimum size is zero because not every book has a publisher. The maximum size is one because no book can have two
or more publishers.

Books-of-publisher (zero, many).

The minimum size is zero because a publisher can exist before it actually publishes any books. The maximum size is many
because some publishers can publish more than one book.

Books-of-person (zero, many).

The minimum size is zero because not every person is an author. The maximum size is many because some people can
write more than one book.

Authors-of-book (zero, many).

The minimum size is zero because the authors of some books are anonymous. The maximum size is many because more
than one person can coauthor a book.

You can access a collection definition object from Automation or COM programs using the CollectionDef object, the
CollectionDef class, or the ICollectionDef interface.

See Also

CollectionDef Class

CollectionDef Object

Defining a Collection

ICollectionDef Interface

Repository Object Architecture

Understanding Collections

Meta Data Services Programming (SQL Server 2000)

Property Definition Objects
Property Definition Objects

A property definition object defines a property. Each property has an interface that exposes it, and each interface can expose many
properties.

In a Microsoft® SQL Server™ 2000 Meta Data Services repository, a property definition object exposes properties, a collection of
enumeration objects, a collection of scripts, and a collection of aliases.

You can define properties that provide enumerated values or that use script to validate a property value. You can also reuse a
property in a new context by assigning it an alias.

In the following example, the IParagraph interface exposes two properties, Left Margin and Right Margin. Both Left Margin
and Right Margin are represented in a repository as property definition objects.

You can access a property definition object from Automation or COM programs using the PropertyDef object, the PropertyDef
class, or the IPropertyDef and IPropertyDef2 interfaces.

See Also

IPropertyDef Interface

PropertyDef Class

PropertyDef Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Enumeration Definition Objects
Enumeration Definition Objects

An enumeration definition object exposes a fixed set of constant values. You can use an enumeration definition object to create a
property that supports a predefined set of values to select from, or a selection list that provides data values to a user (for example,
a selection of countries or regions to choose from).

To define a value list, you use the EnumerationValueDef object.

You can access an enumeration definition object from Automation or COM programs using the EnumerationDef object, the
EnumerationDef class, or the IEnumerationDef interface.

See Also

EnumerationDef Class

EnumerationDef Object

EnumerationValueDef Object

IEnumerationDef Interface

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Method Definition Objects
Method Definition Objects

An interface can expose one or more methods. A method definition object defines a method that you can attach to an interface.
You can enumerate the methods for each interface of an information model. Each method can have one interface that exposes it,
and each interface can expose many methods. After you define a method, you can define parameters and scripts to associate with
the method.

The following figure shows that the IParagraph interface exposes the Reformat and ConvertIndentation methods.

You can access a method definition object from Automation or COM programs using the MethodDef object, the MethodDef
class, or the IMethodDef interface.

See Also

Defining Methods

IMethodDef Interface

MethodDef Class

MethodDef Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Parameter Definition Objects
Parameter Definition Objects

A parameter definition object defines a parameter of a method. You can associate multiple parameters with a single method. You
can also reuse a parameter on multiple methods.

You can access a parameter definition object from Automation or COM programs using the ParameterDef object, the
ParameterDef class, or the IParameterDef interface.

See Also

Defining a Parameter

IParameterDef Interface

ParameterDef Class

ParameterDef Object

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Script Definition Objects
Script Definition Objects

A script definition object defines an implementation of a script in an information model.

You can access a script definition object from Automation or COM programs using the ScriptDef object, the ScriptDef class, or
the IScriptDef interface.

See Also

Defining Script Objects

IScriptDef Interface

Repository Object Architecture

ScriptDef Class

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

Understanding the RTIM Through Examples
This section uses examples to illustrate the objects of the Repository Type Information Model (RTIM).

In addition to the examples provided here, you can review additional topics to further your understanding of information model
design. For more information, see Designing Information Models.

Topic Description
Example: Associating Data with RTIM Describes how real-world data

corresponds to RTIM objects.
Example: A Finished Information Model Provides a description of a finished

information model.

See Also

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Example: Associating Data with RTIM
Example: Associating Data with RTIM

A Microsoft® SQL Server™ 2000 Meta Data Services repository contains data expressed as objects and relationships, along with
their respective property values. The following figure shows some typical data for employees, projects, and subprojects. More
details about this figure are provided later in this topic.

Mapping Real-World Data to RTIM objects

The preceding figure includes all the typical kinds of data you will find in a Meta Data Services repository. You can use the figure
to understand the classes in the repository object architecture. In the figure, you can see instances of the following classes.

Class Description
Repository Describes a repository session. The figure as a whole

represents an instance of the Repository class.
RepositoryObject Describes a repository object. The figure shows 12 objects, one

of which is the root object; each additional instance is a dot.
ReposRoot Describes the root object. The root object is the top-level object

in a repository from which navigation begins. The root object
can have any number of relationships with other objects. The
figure shows seven such relationships.

Relationship Describes an association between two objects. The figure
shows 15 relationships; each relationship is an arrow.

RelationshipCol Describes a set of similar relationships. The items in a
relationship collection must have the same source, and the
relationships must be the same type

For example, consider the relationships between Projects and
Subprojects. The Genome project is related to Research Design
and to Splicing Algorithms. Both relationships have the same
source (Genome) and the same type (includes), thereby
meeting the criteria for a relationship collection.

Consider a second relationship collection: the set of Mike's
assignments to subprojects. In the figure, this relationship
collection appears as a pair of arrows emerging from the dot
representing Mike.

TargetObjectCol Describes a set of objects. For example, one set of objects is the
set of subprojects on which Mike works; the set contains two
items.

Drilling Down into Relationship Roles

Understanding roles in a relationship is one of the more difficult aspects to information modeling. The following section draws
out some of the complexity of relationships by expanding on the example.

Same Object in Same Role

In the relationship collection shown in the following figure, every relationship uses the object describing Mike as the performer of
the work on a subproject. The object describing Mike is the origin object in this relationship.

In contrast, the set of relationships shown in the following figure does not constitute a collection because there is no object that all
the relationships use in the same role. In fact, the relationships have no object in common, regardless of role.

Common Object in Different Roles

The following figure shows employees and their managers.

The set of relationships shown in the following figure does not constitute a valid relationship collection.

Every relationship in the preceding figure is of the same relationship type, the manages type. All the relationships have an object
in common: the object describing Frank. One relationship, however, has Frank in the role of person being managed, whereas the
other relationships have Frank in the role of person who is managing someone else. Because the relationships do not all use the
same object in the same role, they do not constitute a valid relationship collection.

The three relationships in the following figure do constitute a valid collection because Frank is in the manager role for all three
relationships.

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming (SQL Server 2000)

Example: A Finished Information Model
Example: A Finished Information Model

The following figure shows a complete information model that illustrates the various parts of the Repository Type Information
Model (RTIM). Details about this figure are provided later in this topic.

The information model in the preceding figure maintains data about files and directories. Thus, there are two classes, File and
Directory.

There are three interfaces:

IFile exposes behavior unique to files. Thus, only the File class implements the IFile interface.

IDirectory exposes behavior unique to directories. Thus, only the Directory class implements the IDirectory interface.

IDirectoryItem exposes behavior appropriate to any object that can appear as an item within a directory. Since files can be
contained in directories, the File class implements IDirectoryItem. Similarly, because directories can be contained within
directories, the Directory class implements IDirectoryItem.

There is one relationship type: the Containment relationship type.

There are two collection types associated with the Containment relationship:

Collections that conform to the items-of-directory collection type are origin collections for Containment relationships. The
IDirectory interface exposes this collection.

Collections that conform to the directory-of-item collection type are destination collections for Containment relationships.
The IDirectoryItem interface exposes this collection.

The IFile interface exposes one property: the Size property.

The IDirectoryItem interface exposes one property: the ModificationDate property.

The IDirectory interface exposes one property: the ChildCount property.

In this example, the information model exposes no methods through any of its interfaces.

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming (SQL Server 2000)

Designing Information Models
When you design a software tool, you must articulate the kinds of data that the tool will manipulate. You can store the definitions
of these kinds of data, called types, in the repository by creating an information model. Each information model is, in effect, an
object model represented in the repository as data.

This section uses the example of a bookseller's database to introduce information models and it describes how the repository
engine can represent them as data. You can use this example as a way to understand how to design an information model.

Topic Description
Understanding Application Data Describes how to formulate application structures

based on application data
Visualizing Data and Meta Data Describes techniques you can use to understand

application structures
Depicting Relationships Between
Objects

Describes how to identify relationships

How Relationships Conform to
Relationship Types

Describes how relationships conform to
relationship types

Understanding Collections Discusses collection types and how they relate
Understanding Relationship Roles Discusses the distinctions in relationship roles and

how those distinctions determine relationship
collections

See Also

Repository Object Architecture

Understanding the RTIM Through Examples

Meta Data Services Programming (SQL Server 2000)

Understanding Application Data
Understanding Application Data

You can begin planning your information model by answering these questions:

What kinds of objects will the tool store? That is, what are the classes to which the tool's objects must conform?

What kinds of relationships will the tool store? That is, what are the relationship types that describe how objects can be
related?

What properties apply to the objects of each class or the relationships of each relationship type?

You can think of any application structure as objects, properties, and relationships. When you store data about your tool or
application in a repository, you can create objects, indicate how those objects are related to each other, and define properties for
each of those objects or relationships. To create the hypothetical bookseller's tool, you can do the following:

Create objects such as:
Book, to store instance data like Moby Dick (a book) and Inside OLE (a book)

Publisher, to store instance data like Microsoft Press® (a publisher)

Person, to store instance data like Kraig Brockschmidt (a person) or Herman Melville (a person)
Indicate how those objects are related:

Herman Melville (a person) wrote Moby Dick (a book). Kraig Brockschmidt (a person) wrote Inside OLE (a book).
These relationships are the same and can be described as Authorship.

Microsoft Press (a publisher) published Inside OLE (a book). This relationship can be described as Publication.
Decide which properties you need to capture additional information for each object:

Birthday is a property that can describe a person. (The birthday of Herman Melville is November 12, 1819.)

Address is a property that can describe a publisher. (The address of Microsoft Press is One Microsoft Way.)
You can also decide which properties you need for relationships:

Year of Publication is a property that can describe the Publication relationship. (The year of publication for Inside
OLE is 1995.)

The following figure summarizes this data. The figure shows typical data about specific books, authors, and publishers. Because
the data is typical, it helps you visualize the kinds of data that your model must accommodate.

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Visualizing Data and Meta Data
Visualizing Data and Meta Data

This section presents tabular and graphic techniques for visualizing data.

After you identify the objects, property values, and relationships in your tool or application, you can use tabular and graphic
techniques to visualize your data. These powerful techniques can help you understand the types of data you need. The following
topics describe how to visualize data and meta data.

Topic Description
Ways to List Data Describes visualization techniques for understanding

tool and application data
Ways to List Meta Data Describes visualization techniques for transforming your

understanding of tool and application data into an
information model design

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Ways to List Data
Ways to List Data

The following table lists data about books, people, and publishers. The first column (Kind of Data) provides labels for groups of
data: books, people, and publishers. The actual data appears in the table's second column (Data).

Expressed graphically, the data in the table is shown in the following figure.

The following table expands the preceding table to include relationships. Again, the table uses a convenient grouping of the data.
The first column labels each group.

The labels in the left column (Kind of Data) are one example of how the object model can store the bookseller's data. The labels
identify three classes (Book, Person, and Publisher) and two relationship types (Authorship and Publication). Because it is a
list, you can think of the entries in the Kind of Data column as data. Because it is data, you can create another table in which this
information appears in the Data column.

In the Data column, each entry describes exactly one thing, either an object or a relationship. Each entry in the Data column
describes a particular book, author, publisher, authorship, or publication.

The following figure contains arrows to show the relationships in the preceding table.

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Ways to List Meta Data
Ways to List Meta Data

The repository engine stores meta data as data. This section uses data visualization techniques to demonstrate how to model
meta data.

The following table lists and organizes the types of the bookseller's object model. The left column contains convenient groupings
of like information, and the right column (Data) contains the information itself. The Data column describes particular classes
(such as Book and Person) and particular relationship types (such as Authorship and Publication). The Kind of Data column
thus reveals a portion of the object model for storing classes and relationship types.

The following table enlarges the preceding table to include properties.

In the preceding table, the information in the Data column is equivalent to the information in the following figure. The following
figure shows typical data about a typical object model, the bookseller's object model.

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Depicting Relationships Between Objects
Depicting Relationships Between Objects

To depict relationships between objects, use arrows as shown in the following figure.

Diagrams of meta data use these standard conventions:

Show objects as dots.

Show relationships as arrows.

Show kinds of objects as labeled rectangles.

The tabular equivalent of this graphical presentation of data is shown in the following table.

The labels in the Kind of Data column constitute a portion of an object model for storing object models. The object model for
storing object models is called the Repository Type Information Model (RTIM).

Note Each entry in the Data column describes only one thing: either an object or a relationship. The 23 entries in the Data
column correspond to the 23 dots and arrows in the preceding figure.

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

How Relationships Conform to Relationship Types
How Relationships Conform to Relationship Types

When you store a relationship, the meaning of what you store answers three questions:

Which two objects are related to each other?

For example, when you store the relationship indicating that Herman Melville wrote Moby Dick, you relate the object
describing Herman Melville and the object describing Moby Dick.

How are the two objects related?

For example, when you store the relationship indicating that Herman Melville wrote Moby Dick, you indicate that Melville
wrote the book, not that he reads it or criticizes it. You indicate that Melville wrote the book by creating a relationship that
conforms to the Authorship relationship type.

What role does each object play in the relationship?

For example, when you store the relationship indicating that Herman Melville wrote Moby Dick, you indicate that Melville
wrote Moby Dick, not that Moby Dick wrote Melville. The object representing Melville plays the role of the writer and the
object representing Moby Dick plays the role of the thing that was written.

The following figures evaluate whether potential relationships conform to the two relationship types: Authorship (of book by
person) and Publication (of book by publisher).

Potential relationship

The following diagram shows the potential relationship based on relationship type.

Does the relationship conform?

Microsoft Press® publishes Inside OLE: Yes, the relationship conforms to the Publication relationship type.

Potential relationship

The following diagram shows a potential relationship that does not conform to relationship type.

Does the relationship conform?

Kraig Brockschmidt publishes Inside OLE: No, the relationship does not conform to either relationship type. The Publication
relationship type allows you to save a relationship indicating that a publisher publishes a book. This data indicates that a person
publishes a book.

Potential relationship

The following diagram shows the potential relationship based on relationship type.

Does the relationship conform?

Kraig Brockschmidt wrote Inside OLE: Yes, the relationship conforms to the Authorship relationship type.

Potential relationship

The following diagram shows a potential relationship that does not conform to relationship type.

Does the relationship conform?

Inside OLE publishes Microsoft Press: No, the relationship does not conform to either relationship type. Although this relationship
uses two objects of the correct type, it does not conform because it places those objects in the wrong roles.

Potential relationship

The following diagram shows the potential relationship based on relationship type.

Does the relationship conform?

Microsoft Press publishes Moby Dick: Yes, the relationship conforms to the Publication relationship type. The relationship
conforms, even though the data is inaccurate. (Microsoft Press does not publish Moby Dick.)

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Understanding Collections
Understanding Collections

You can read any relationship in two directions. For example, you can say Herman Melville wrote Moby Dick or Moby Dick was
written by Herman Melville. You can paraphrase each of these two statements as follows:

Herman Melville is in the set of persons who wrote Moby Dick.

Moby Dick is in the set of books written by Herman Melville.

Although awkward, this way of articulating relationships highlights the existence of collections. The following two figures show
various collections.

The collection of books written by Herman Melville:

The collection of persons who wrote Moby Dick:

You can think of collections as collections of objects or as collections of relationships, each with a source and a target object. The
following figures show the ways to think of collections.

The collection of books written by Herman Melville:

The figure to the left shows the collection of books written by Herman Melville as an object collection, while the figure to the right
shows the same collection as a relationship collection.

The collection of authors of Moby Dick:

The figure on the left shows the collection of authors of Moby Dick as an object collection, while the figure to the right shows the
same collection as a relationship collection.

The preceding figures make clear that object collections and relationship collections are fundamentally equivalent. They both
accommodate the same data. However, when you manipulate a relationship collection from a COM program, you can manipulate
it either with an interface called ITargetObjectCol or with an interface called IRelationshipCol. The first interface lets you
manipulate a collection as if it contains objects. The second interface lets you manipulate a collection as if it contains relationships.
In Automation, if you do not specify an interface, you implicitly manipulate relationships as object collections because the
RelationshipCol class implements ITargetObjectCol as its default interface.

See Also

Defining a Target Object Collection

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Understanding Relationship Roles
Understanding Relationship Roles

Each relationship belongs to two relationship collections, one that describes the relationship from the perspective of the origin,
and another that describes it from the perspective of the destination.

For example, the relationship Herman Melville wrote Billy Budd is a member of two different collections:

The set of books written by Herman Melville; or, expressed in terms of a relationship collection, the set of authorships for
which Herman Melville is the writer

The set of authors of Billy Budd; or, expressed in terms of a relationship collection, the set of authorships for which Billy
Budd is the written thing

There is a relationship between collection type and relationship type. The following figure shows some relationship types and
their attendant collection types.

In the figure, each relationship type has exactly two collection types. The following are true for every relationship:

Each relationship is a member of two relationship collections.

Each relationship relates two objects, an origin object and a destination object.

You can read each relationship in two directions.

In any relationship, the related objects participate in two separate roles. For example, the roles in the relationship Kraig
Brockschmidt wrote Inside OLE, are:

The role of writing thing, filled by the object describing Kraig Brockschmidt.

The role of written thing, filled by the object describing Inside OLE.

The two roles correspond to the two collection types.

See Also

Designing Information Models

Meta Data Services Programming (SQL Server 2000)

Getting Started with Meta Data Services
This section provides information that prepares you for programming Microsoft® SQL Server™ 2000 Meta Data Services
applications. You can learn about programming environment requirements, and how to get started with information model
definition and programming. For more information about upgrading repository components from previous releases, see
Upgrading from Earlier Versions.

The following topics can help you get started.

Topic Description
Programming Environment Describes the requirements of your programming

environment.
Accessing Automation Object
Members

Explains how to access a nondefault member on an
Automation object.

Visual C++ Wrappers with Meta
Data Services

Explains how to generate and use wrappers on a
COM interface.

Using Meta Data Services to
Define Information Models

Explains information model definition in Meta Data
Services. It also explains how information models
enable subsequent application development.

Using Meta Data Services to
Program Information Models

Provides basic information for programmers,
providing a big picture overview of what
programming an information model entails.

See Also

Repository API Reference

Repository Object Architecture

What's New in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

Programming Environment
Programming a Microsoft® SQL Server™ 2000 Meta Data Services application requires software and operating systems.
Required software works together in an integrated manner. For this reason, the software that you use to build a Meta Data
Services application must be installed on the same PC.

The Automation server distributed with Meta Data Services is Repodbc.dll. If you require more server functionality than
Repodbc.dll provides, you can create your own Automation server. For more information, see Choosing an Automation Server for
a Class.

Additional programming resources are provided through the Meta Data Services Software Development Kit (SDK). The Meta Data
Services SDK provides tools that complete your repository environment. Whether you are using COM or Automation interfaces to
define or manipulate an information model, be sure to download the Meta Data Services SDK so that you can take advantage of
the additional utilities and documentation that it provides.

The following software details the required and optional software you need.

Software Description
Microsoft Windows®
operating system

You can use Windows 98, Windows NT® 4.0, or Windows
2000.

SQL Server or Microsoft
Jet, and ODBC

You can use SQL Server 6.5, SQL Server 7.0, and SQL Server
2000, or Microsoft Jet 3.5 and later. You also need ODBC 2.0
or later.

A DBMS is required to manage the repository database. For
more information, see Repository Databases.

The DBMS you use can affect the performance of a
repository database and the availability of some features.
For more information, see Using Repository Engine Features
with Older Databases.

Meta Data Services Meta Data Services installs with SQL Server 2000. Meta Data
Services provides the repository engine.

You can also obtain Meta Data Services from the Microsoft
Repository web site. To install from the Web, a licensed copy
of SQL Server 6.5, SQL Server 7.0, SQL Server 2000, or
Microsoft Visual Studio® 6.0 must already be installed on
your PC.

Modeling tool (Optional.) A modeling tool is strongly recommended.
Rational Rose is the preferred modeling tool for use with
this release of Meta Data Services.

The Meta Data Services
SDK

(Optional.) The Meta Data Services SDK contains
programming and modeling resources.

You can obtain the Meta Data Services SDK from the Meta
Data Services web site. For more information, see Meta Data
Services SDK.

Development tool (Optional.) COM support is a programming requirement.
You can use Microsoft Visual Studio or another
development tool that supports COM Automation
development.

See Also

Accessing Automation Object Members

Automation Reference

COM Reference

Meta Data Services SDK

Specifications and Limits

Visual C++ Wrappers with Meta Data Services

Meta Data Services Programming (SQL Server 2000)

Accessing Automation Object Members
Accessing Automation Object Members

The repository API exposes a number of Automation objects that support multiple interfaces. For each Automation object, one
interface is defined to be the default interface, and the members (the properties, methods, and collections) that are attached to
that interface are accessible through the standard Microsoft® Visual Basic® mechanisms.

When accessing members that are attached to an interface that is not the default interface for an Automation object, a different
access technique must be used. An additional reference to the object must be declared that explicitly calls for the nondefault
interface. The nondefault interface members can then be accessed through the new object reference.

The following example illustrates how to access a property that is attached to an interface that is not the default interface for an
Automation object. In this example, the connection string that is used to connect to the repository database is retrieved.
Repository objects implement the IRepositoryODBC interface; this interface is not the default interface. The ConnectionString
property is attached to the IRepositoryODBC interface. The ConnectionString property is the ODBC connection string that
Microsoft SQL Server™ 2000 Meta Data Services uses when connecting to a database server.

Dim myRepos As Repository
Dim nonDefIfc As IRepositoryODBC
' Initialize myRepos by opening a connection to a repository database.
Set nonDefIfc = myRepos
connect$ = nonDefIfc.ConnectionString

In this example, the nonDefIfc object does not use additional resources; rather, it is an alternate view of the myRepos object.

See Also

Automation Reference

Repository ConnectionString Property

Repository Object

Meta Data Services Programming (SQL Server 2000)

Visual C++ Wrappers with Meta Data Services
Visual C++ Wrappers with Meta Data Services

 New Information - SQL Server 2000 SP3.

The repository API is based on dispatch interfaces. This means that all properties are manipulated through the Invoke method
that the IDdispatch interface exposes. Using dispatch interfaces from programming languages that are v-table based, such as
Microsoft® Visual C++®, can be cumbersome.

Visual C++ version 6.0 provides support for using dispatch interfaces in an easier way than before. It does this through the
#import directive. The #import directive instructs the Visual C++ compiler to read the type library given as a parameter to the
directive, and to create v-table based wrappers for the type library. The compiler does this on the fly, and it also updates the
wrappers if the type library is updated.

The compiler generates the following two header files with the same name as the type library:

A .tlh header file that contains definitions of all interfaces and identifiers.

A .tli header file that contains inline wrapper functions, which convert properties from their respective data types to the
variant data type that the Invoke method expects. The .tli file is automatically included inside the .tlh file.

Generating the Wrappers

In order to make use of the dispatch support in Visual C++, add the following statement at the top of one of the .cpp files:

#include <atlbase.h>
// Required for smart pointer support
#import "rtim.tlb" named_guids
// The following using-directive allows other type libraries to
// reference repository engine objects:
using namespace RepositoryTypeLib;
#import "uml.tlb" named_guids
using namespace UML;

The Atlbase.h header file is required to support smart pointers. The next two lines instruct the compiler to generate wrapper
classes for the main interfaces defined by the repository engine. The compiler automatically wraps type libraries into namespaces
that have the same name as the type library. This is done to limit the possibility of name clashes between type libraries.
Unfortunately, the wrapper generator does not support references between type libraries. Therefore, the using namespace
directive is required to automatically map the repository engine interfaces into the default namespace.

After the compiler generates wrappers for the repository engine interfaces, you can use the mechanism mentioned previously to
import any required type library. Make sure that the type libraries are imported in a correct dependency order.

When the wrapper is generated, the compiler creates the following two functions for each interface member (such as property or
collection):

GetmemberName

PutmemberName

where memberName is replaced by the member name.

For example, the Visibility method on the IUMLModelElement interface (IUMLModelElement.Visibility) will be wrapped into
the following methods:

GetVisibility()

PutVisibility()

Using the Wrappers

After the compiler generates wrappers for dispatch-based interfaces, smart pointer templates can be used to manipulate these
objects. To define a smart pointer for an interface, use a declaration similar to the following:

CComPtr<IRepository> pRep;

This defines a smart pointer for the IRepository interface. To instantiate a repository and assign it to the smart pointer, use the
CoCreateInstance method of the smart pointer, as shown here:

hr = pRep.CoCreateInstance(CLSID_Repository,NULL);

After instantiating the repository, it is possible to use methods defined on the IRepository interface to open a repository
database as follows:

CComPtr<IRepositoryObject> pRootRO;
pRootRO = pRep->Open("C:\\test.mdb","MyUserID","MyPassword",0);

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

The methods defined on the dispatch interface are accessed using the -> operator, while helper functions such as
CoCreateInstance are accessed using the dot (.) operator.

After opening a repository database, it is possible to use the wrappers and the smart pointers to access any object in the
repository. For example:

CComPtr<IUmlPackage> pPackage;
CComPtr<IRepositoryObject> pRO;
hr = pRootRO.QueryInteface(&pPackage);
for (long n=1;n<pPackage->GetElements()->GetCount();n++)
{

pRO = pPackage->GetElements()->GetItem(n); // Get the element # n
// Use the element pRO

See Also

COM Reference

Meta Data Services Programming (SQL Server 2000)

Using Meta Data Services to Define Information Models
Information models define the meta data types that you can store and subsequently manipulate in and from another tool or
application. The information model that you create and install determines the physical storage in a repository database.

The information model is a meta model, and it defines the meta data types that programmers can use and otherwise manipulate.
The information model that is recommended for use with Microsoft® SQL Server™ 2000 Meta Data Services is the Open
Information Model (OIM). This model is recommended because it contains generic meta data that is supported by a variety of
third-party vendors, providing instant integration with tools and platforms that you may already be using in your development
environment. Although this model is predefined, it can be extended to accommodate meta data that you require.

Typically, you define an information model using a modeling tool. However, you can also create an information model
programmatically using the repository API and the COM or Automation interfaces it exposes.

Information Model as a Framework

You can think of an information model as a framework or structure for storing meta data definitions. For example, suppose you
want to create design data that programmers can subsequently use to create Microsoft Visual Basic®, Microsoft Visual C++®,
and Microsoft Visual J++® applications. In your information model, you define the basic elements of your application once by
specifying the objects, defining relationships that associate the objects, and setting properties. Programmers can then use your
model definitions in each development environment to program the implementation strategy that each language requires. Using
a single information model provides a way to use the same design for multiple implementations.

The following topics provide model designers with information needed to build and deploy an information model.

Topic Description
Repository Object Architecture Explains the object architecture that exposes

repository engine functionality and the information
model objects that the engine can manipulate.

This topic includes examples that can help you
understand information model definition.

Defining Information Models Provides detailed information about alternate ways
of creating an information model and defining
elements of an information model.

Installing Information Models Explains how to install an information model into a
repository database. Installing an information
model makes the information model available for
programming.

See Also

Repository API Reference

Using Meta Data Services to Program Information Models

Meta Data Services Programming (SQL Server 2000)

Using Meta Data Services to Program Information Models
You can program against an information model that is installed in a repository database. Programming against an information
model adds, updates, removes, and retrieves data from a repository database.

Typically, the data that you add and otherwise manipulate is design data about a tool or application that you create. Furthermore,
the data that you can add and manipulate is defined by the information model. You can think of the information model as a
template to which the data you add must conform. For example, to create an application that manipulates a schema, tables, and
columns, you need an information model that defines what a schema is, what a table is, and what a column is.

As a programmer who is coding such an application, you populate the schema, table, and column types with meta data instances
to be used by the tools and applications you create. The following example provides a simplistic look at how you can program
elements of a database application using the Open Information Model (OIM).

What OIM defines What you create
Schema A schema for a Microsoft® SQL Server™ database, a

Microsoft Jet database, or a new version of each database. In
this case, four instances of Schema are stored in your
information model.

Tables Tables for Customers, Orders, and Products. For example,
you can vary the table definitions based on the schema types,
or you can reuse the tables for each schema. Creating
separate tables for each schema results in twelve instances of
tables in your information model.

Columns Columns for Customer, Order, and Product tables.
Assuming no reuse strategy, you can have a separate column
instance for each table and for each schema.

Notice that the instance data you store is all about definitions. Instead of storing "Joe Smith" customer name, you store data about
the CustomerName column.

Meta data is, by definition, unbiased. The following suggestions describe different ways to reuse meta data.

Use the meta data objects in two development environments (Microsoft Visual C++® for a desktop application and
Microsoft Visual J++® for a Web application), using the syntax of each language to call the same object. For more
information about declaring objects, see Programming Fundamentals: Declaring Objects.

Use the meta data objects in development projects in the same environment (one project for an application you are
maintaining for an existing customer, one project for new development). You can use versioned objects and workspaces to
isolate changes.

Export the meta data as Extensible Markup Language (XML) to a different repository.

See Also

Information Models

OIM in Meta Data Services

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

Programming Fundamentals: Declaring Objects
Programming Fundamentals: Declaring Objects

When you program, you instantiate repository objects. Repository objects are COM objects that the repository engine creates on
the fly using the type information and object instance data provided in your information model.

The repository object architecture divides objects into engine objects and information model objects. Programming against an
information model typically requires that you invoke repository objects that are described by the repository engine object model.
In contrast, when a model designer creates the type information, he or she typically uses Repository Type Information Model
(RTIM) objects.

Declaring SpellChecker as RTIM Objects

For example, before you can use the following SpellChecker structure in your application code, the following declarations for
SpellChecker must be predefined in your information model in some way that is compatible with the repository API. The
following code example shows a hypothetical information model, MyTypeLib, and shows some additional definitions for
SpellChecker that you can work with:

DIM oTypeLib as ReposTypeLib
DIM oCSpellChecker as ClassDef
DIM oISpellChecker as InterfaceDef
DIM oPLanguage as PropertyDef
Set oCSpellChecker = oTypeLib.CreateClassDef(CSC_objid, CSpellCheck, CSC_clsid)
Set oISpellChecker = oCSpellChecker.CreateInterfaceDef(ISC_objid, ISpellCheck, ISC_iid)
Set oPLanguage = oISpellChecker.CreatePropertyDef(PLang_objid, PLanguage, PLang_iid)

Declaring SpellChecker in Application Code

At a minimum, to retrieve meta data in your application code, you invoke a repository object that represents a repository session,
another repository object that represents the repository type library containing your information model definitions, and
additional repository objects that represent specific meta data instances.

Typically, to support versioning, you should use RepositoryObjectVersion. However, you can also use RepositoryObject as an
alternative.

DIM oTypeLib as RepositoryObjectVersion
DIM oCSpellChecker as RepositoryObjectVersion
Dim oISpellChecker As ISpellChecker
oSpellChecker(oISpellChecker).Properties("Language")=French

See Also

Programming Fundamentals: Populating a Collection

Using Meta Data Services to Program Information Models

Meta Data Services Programming (SQL Server 2000)

Programming Fundamentals: Populating a Collection
Programming Fundamentals: Populating a Collection

Collections provide navigation and a way to handle a set of objects as a unit. When programming against an information model,
you write code that materializes a collection so that you can access and otherwise manipulate its objects at run time.

The following example provides a simple illustration for adding objects to a collection. Suppose your information model contains
a Schema object that has a collection of Tables attached to it. You can populate the Tables collection by writing code that adds
specific instances (such as a Customer table and an Order table) to the collection.

You can populate the Tables collection with specific table instances using code like the following. Note that the relationships you
can create are possible because the information model already contains definitions for collections.

Dim oSchema As RepositoryObject
Dim oCTable As RepositoryObject
Dim oISchema As ISchema
Set oSchema=oRepos.GetObject(ObjID_oSchema)
Set oTable=oRepos.GetObject(ObjID_oTable)
Set oISchema=oSchema
oISchema.Tables.Add(table)

See Also

Programming Fundamentals: Declaring Objects

Using Meta Data Services to Program Information Models

Meta Data Services Programming (SQL Server 2000)

Connecting to and Configuring a Repository
The repository engine can access repository databases that are managed by either Microsoft® Jet, Microsoft SQL Server™, or SQL
Server Runtime Engine.

The repository engine accesses a database through an ODBC driver (version 2.0 or later). You must have ODBC installed on the
server hosting the database and on the client from which you are accessing the repository engine.

The ODBC connection string that is used to specify the location of the repository database varies, depending upon which database
server is managing the repository database. The ODBC connection string contains keyword=keyValue pairs, separated by
semicolons. If you do not specify a connection string, the repository engine creates a default repository database.

Before you can connect to a database, you must first instantiate a repository session. After you create a repository instance, you
can open an existing database or create a new database. Note that how a database is created varies depending on the DBMS you
use.

The following table lists topics that tell you more about database connections and configuration.

Topic Description
Connecting to a SQL Server Repository
Database

Describes how to open or create a SQL
Server database connection

Connecting to a Jet Repository Database Describes how to open or create a Jet
database connection

Connecting Through a DSN Describes how to connect to a repository
database through a data source name
(DSN)

Default Repository Databases Explains how the repository engine
resolves an unspecified connection string
by creating a default database

Replicating Repository Databases Describes replication behavior for SQL
Server repository databases

See Also

IRepository::Create

Repository Create Method

Repository Databases

Storage Strategy in a Repository Database

Upgrading and Migrating a Repository Database

Using Repository Engine Features with Older Databases

Meta Data Services Programming (SQL Server 2000)

Connecting to a SQL Server Repository Database
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 is the DBMS recommended for repository databases. Using a SQL Server database yields
maximum performance from the repository engine and provides a layer of security that is otherwise unavailable. If you do not
own a licensed copy of SQL Server, you can use the SQL Server Runtime Engine that is freely distributed by Microsoft. The SQL
Server Runtime Engine can be used to create or open a SQL Server repository database.

When you use a SQL Server repository database, you must either use (that is, open) an existing repository database, or create an
empty database. The repository engine cannot automatically create a SQL Server database for you. To the repository engine,
creating a new SQL Server database means populating an empty database with the repository SQL tables it needs to store and
manage repository data. If you already have a repository database (that is, a database that contains repository SQL tables), you
can connect to it through an open statement.

When you create a new, empty SQL Server database, be sure to specify which users can access the database. You must also create
the necessary login and user accounts for people who will be accessing the database, and you must assign the appropriate
permissions to these accounts. If you want to grant full permissions to everyone, you can use this SQL command to set database
access permissions:

GRANT ALL TO PUBLIC

Security Note In most circumstances, you should avoid granting full permissions to every user. In addition, use Windows
Authentication whenever possible.

Creating a New Database

To create a new repository database, use the following syntax. Notice that the first statement creates a repository session. In
Microsoft Visual Basic®, be sure to reference Repodbc.dll so that it is available to your program. By default, Repodbc.dll is located
in C:\Program Files\Common Files\Microsoft Shared\Repostry.

Use the following code to create a new database in Microsoft Visual C++®:

CoCreateInstance(CLSID_Repository, NULL, CLSCTX_INPROC_SERVER, IID_IREPOSITORY, (LPVOID *) &m_pIRepos)))
m_pIRepos->Create(CCOMVariant(SERVER="MyServer";DATABASE="MyDatabase"), CCOMVariant("MyUserID"),
CCOMVariant("MyPassword"), 0, &m_pIRootObj))

Use the following code to create a new database using Visual Basic:

DIM oRepos as New Repository
oRepos.Create "SERVER=MyServer;DATABASE=MyDatabase", "MyUserID", "MyPassword"

Note Invoking the Create method on an existing repository database simply opens it.

Opening an Existing Database

To connect to an existing SQL Server repository database such as msdb, use the SERVER keyword to specify the SQL Server name
and the database name. If the database name is not specified, the default database for the user who is opening the database is
used. You can also use a data source name (DSN) to connect to a database.

CoCreateInstance(CLSID_Repository, NULL, CLSCTX_INPROC_SERVER, IID_IREPOSITORY, (LPVOID *) &m_pIRepos)
m_pIRepos->Open(CCOMVariant(SERVER="MyServer";DATABASE="MyDatabase"), CCOMVariant("MyUserID"),
CCOMVariant("MyPassword"), CCOMVariant(""), CCOMVariant(""), 0, &m_pIRootObj)

Administering a SQL Server Database

You can use the utilities and tools that come with SQL Server to administer the repository database (at the database level). For
example, if your repository database is damaged due to a power outage or system failure, you should use the recovery tools that
are provided with SQL Server to repair the damage. Similarly, if your repository database requires periodic defragmentation, you
should use the defragmentation tools that are provided with SQL Server.

Caution SQL Server and its components store private meta data in the msdb database. While you are encouraged to use and
add to existing data, be aware that modifying or deleting it can cause unexpected results. If you introduce a modification that
breaks the functionality of SQL Server or its components, you must reinstall the software.

See Also

Connecting Through a DSN

Default Repository Databases

IRepository::Create

IRepository::Open

Repository Create Method

Repository Open Method

Repository SQL Tables

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

Connecting to a Jet Repository Database
 New Information - SQL Server 2000 SP3.

If you choose to use a Microsoft® Jet database, you can create it programmatically using the IRepository Create method. If you
do not specify a complete path, the repository engine uses the default path. For more information, see Default Repository
Databases.

You can create a new database using the syntax provided in the following example. Notice that the first statement creates a
repository session.

Use the following code to connect to a Jet database in Microsoft Visual C++®:

CoCreateInstance(CLSID_Repository, NULL, CLSCTX_INPROC_SERVER, IID_IREPOSITORY, (LPVOID *) &m_pIRepos)
m_pIRepos->Create(CCOMVariant(DBQ="MyDB.mdb"), CCOMVariant("MyUserID"), CCOMVariant("MyPassword"), 0,
&m_pIRootObj)

Use the following code to connect to a Jet database in Microsoft Visual Basic®:

DIM m_pIRepos as New Repository
m_pIRepos.Create(DBQ="MyDB.mdb")

Security Note Repository databases using the Jet engine and containing sensitive information should be secured with a user
name and password.

To connect to a Jet repository database, use the DBQ keyword to specify the path to the database file. The DBQ keyword must be
the first keyword in the connection string, if it is present. If the DBQ keyword is not present, the connection string is assumed to
contain only a database path specification. In this case, the repository will add the DBQ keyword to the front of the ODBC
connection string before passing it on to the database server. If the Jet database file specified by the DBQ keyword does not exist,
the repository engine will create it.

CoCreateInstance(CLSID_Repository, NULL, CLSCTX_INPROC_SERVER, IID_IREPOSITORY, (LPVOID *) &m_pIRepos)))
m_pIRepos->Open(CCOMVariant(DBQ="MyDB.mdb"), CCOMVariant("MyUserID"), CCOMVariant("MyPassword"), 0,
&m_pIRootObj))

See Also

Connecting to a SQL Server Repository Database

Default Repository Databases

Meta Data Services Programming (SQL Server 2000)

Connecting Through a DSN
 New Information - SQL Server 2000 SP3.

You can use the DSN keyword to specify a data source name (DSN) to connect to an existing Microsoft® Jet or Microsoft SQL
Server™ repository database. The DSN keyword specifies a data source name that has been configured using the ODBC Data
Source Administrator.

If you are connecting to a SQL Server database, you must explicitly specify the user ID and password in the connection string,
even if the values are part of the ODBC registration.

You can connect to a database using the syntax provided in the following example. Notice that the first statement creates a
repository session.

CoCreateInstance(CLSID_Repository, NULL, CLSCTX_INPROC_SERVER, IID_IREPOSITORY, (LPVOID *) &m_pIRepos)))
m_pIRepos->Open(CCOMVariant(DSN="MyDataSourceName"), CCOMVariant("MyUserID"), CCOMVariant("MyPassword"))

Security Note When possible, prompt users to enter their credentials at run time. Avoid storing credentials in a file. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

Connecting to a Jet Repository Database

Connecting to a SQL Server Repository Database

Default Repository Databases

http://go.microsoft.com/fwlink/?LinkId=9504

Meta Data Services Programming (SQL Server 2000)

Default Repository Databases
 New Information - SQL Server 2000 SP3.

If you do not specify the repository database explicitly, a connection will be established to the default repository database. This
database is managed by Microsoft® Jet. Its location is determined by the default value of the Current Location registry key.

If you are using the Create method and an unspecified connection string, and if the default database does not exist, the repository
engine creates the database. If you are using the Connection method (or the Create method on an existing database) and an
unspecified connection string, the repository engine looks for the database at the default location.

Security Note When possible, specify a connection string when using the Create method. Do not use a blank password. Use a
strong password. For more information, see Security Rules.

The location of the default repository database is stored in the system registry in this registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Repository\Current Location

This registry key must contain a DBQ keyword-value pair, SERVER keyword-value pair, DSN keyword-value pair, or just the path
to a Jet repository database. The default value for this registry key is:

windowsDirectory\MsApps\Repostry\Repostry.mdb

Replace windowsDirectory with the path specification for the directory that contains the Microsoft Windows installation. Unless
you change this registry key value after installing Microsoft SQL Server™ 2000 Meta Data Services, your default database server
is Jet.

See Also

Connecting Through a DSN

Connecting to a Jet Repository Database

Connecting to a SQL Server Repository Database

Meta Data Services Programming (SQL Server 2000)

Replicating Repository Databases
Microsoft® SQL Server™ 2000 repository databases can take advantage of the replication features provided by SQL Server to
publish a repository to other subscriber repositories.

You can use either transactional or snapshot replication to replicate a repository database. If you implement transactional
replication, you can choose whether to support synchronization. Synchronization automatically updates your subscriber
databases so that they contain the same content as the publisher. For more information, see Replication Overview.

Replication Requirements for Repository Databases

For repository databases, additional steps beyond those required by SQL Server should be followed to ensure successful
replication.

Publish ing a Repository Database

Install information models into a repository database. Before you begin replication, you must install information models
into the repository database that you want to publish, and then allow replication to propagate the content across all
subscriber databases.

Installing new or revised information models after replication is enabled can produce unexpected results. In this case, new
tables that are associated with new or revised information models are not automatically enabled for replication. If you are
updating an existing publisher with newer models, you must manually select the additional tables as articles so that updates
to those tables will propagate to subscriber databases.

Note that you cannot publish msdb, the default repository database in SQL Server. You must create an alternate repository
database to enable replication.

Verify that all repository SQL tables and information model tables are selected as articles in the publication. Repository SQL
table names have an rtbl prefix. Information model table names are typically prefixed with the name of the model (for
example, UML, UMX, GEN, and so on).

You cannot publish a subset of the tables in a repository database. A repository database stores type information in multiple
tables. If you omit some tables from the publication, you may not get a complete definition for each repository object.

Verify that repository stored procedures are not included in your publication. Repository stored procedures are part of the
publisher database, but cannot be part of a subscriber database. Repository stored procedure names have an r_iRtbl prefix.

Stored procedures are used by the repository engine to install and update information models in a SQL Server repository
database. Replicating a stored procedure can result in an attempt to reinstall an information model that is already installed
on a subscriber database.

Avoid creating data filters or enabling autonomous subscriptions.

Defining Subscriber Databases

After you create a publication, you can create one or more push subscriptions that propagate repository data from the publisher.

Avoid updating subscriber objects from any nonpublisher source. Only the publisher should be allowed to update subscriber
objects.

Repository subscriber databases must be read-only. Furthermore, each subscriber can receive content from only one publisher.
Repository databases use internal identifiers to store and manipulate meta data. While internal identifiers are unique within a
specific repository, they may not be unique across multiple repositories. To avoid duplicate internal identifiers, you must require
that each subscriber is read-only and receives all of its updates from a single publisher. To do this, specify that a publication for
the publisher database has all of the repository tables as articles, then add read-only repository databases as subscribers.

See Also

Connecting to a SQL Server Repository Database

Repository Databases

Repository Identifiers

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

Defining Information Models
The part of a Microsoft® SQL Server™ 2000 Meta Data Services repository that stores type information is defined by the
information models you create and install.

The following topics explain how to create and specify the parts of an information model. For more information about creating
and populating a repository database, see Connecting to and Configuring a Repository.

Topic Description
Repository Identifiers Describes identifiers that are used to retrieve and

manage repository objects
Naming Objects, Collections,
and Relationships

Describes naming conventions, name reuse, aliasing,
and ways names are created by the repository
engine

Creating and Extending Type
Information

Describes alternate approaches for creating and
extending information models

Defining Inheritance Explains how inheritance works and how you can
implement it for your interfaces

Defining Relationships and
Collections

Explains how to define general-purpose and special-
purpose relationships and collections

Defining Properties Explains how to define property definition objects
Defining Methods Explains how to define methods, parameters, and

scripted objects
Generating Views Describes how to generate SQL views that

correspond to your information model

See Also

Information Models

Installing Information Models

Meta Data Services Programming (SQL Server 2000)

Repository Identifiers
The repository engine uses identifiers to distinguish objects and object versions from each other.

There is an object identifier for every object in a repository database. When you add an object to a repository (programmatically
or by installing a model), the object identifier is created as part of the object definition. This identifier remains with the object until
you delete the object from a repository. When you program a repository object, you can use the object identifier to retrieve the
object you want.

The repository engine maintains two sets of identifiers: object identifiers (ObjID) and internal identifiers (IntID). One set, the object
identifiers, is public. The second set, the internal identifiers, is used by the repository engine. A repository SQL table maps the two
sets, and the repository engine maintains the correspondence.

Functionally, object identifiers and internal identifiers are similar. However, the values of internal identifiers are smaller and more
efficient for the engine to handle and the database to store. When the repository engine receives a call for an object identifier, it
converts the internal identifier into an object identifier that your program can use.

In some cases it is desirable to use the internal identifiers. For example, if you want to query the database directly, you can use the
smaller internal identifier that the repository engine uses to store object data. However, when you program with repository
objects, you should always use the longer object identifier.

The following table lists topics that provide more information about repository identifiers.

Topic Description
Object Identifiers and Internal Identifiers Compares object identifiers and internal

identifiers, and provides details about
their composition.

Object-Version Identifiers and Internal
Object-Version Identifiers

Describes the portion of a repository
identifier that stores version information,
and compares how version identifiers are
represented in object identifiers and
internal identifiers.

How Repository Identifiers and Stored and
Instantiated

Details how internal identifiers are stored
and how object identifiers are created
from internal identifiers.

Repository Identifier Data Structures Explains the data structure of repository
identifiers. Knowing about internal
identifier data structures can help you
build a query.

Assigning Object Identifiers Explains how to assign object identifiers.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Object Identifiers and Internal Identifiers
Object Identifiers and Internal Identifiers

Each RepositoryObject instance has two identifiers: an object identifier and an internal identifier.

An object identifier is global in scope. It uniquely distinguishes a repository object from all other repository objects represented in
all other repository databases.

Internal identifiers correspond to object identifiers, except that internal identifiers are used by the engine.

Both object identifiers and internal identifiers are explained in this topic. Another kind of repository identifier is used for a
RepositoryObjectVersion instance. For more information, see Object-Version Identifiers and Internal Object-Version Identifiers.

About Object Identifiers

Object identifiers have the following format.

The first 16 bytes of each object identifier constitute a globally unique identifier (or GUID). The next 4 bytes constitute a local
identifier.

RepositoryObjects do not include version information. When you are working with RepositoryObject instances, the repository
engine follows a resolution strategy to select a specific version of a RepositoryObject instance. The resolution strategy, not the
version indicator, determines which object is selected.

About Internal Identifiers

Each RepositoryObject instance also has an internal identifier that distinguishes it from every other object within the same
repository database. The internal identifier is used by the repository engine to manipulate the object specified by the object
identifier. The internal identifier is an 8-byte quantity of the following form.

The first 4 bytes constitute a site identifier (site ID). For more information about site IDs, see How Repository Identifiers are Stored
and Instantiated.

The last 4 bytes constitute the local identifier (local ID). For a RepositoryObject instance, the local identifier portion of the
internal identifier and the object identifier is the same. That is, each repository object has a single 4-byte local identifier, regardless
of whether you are using an object identifier or an internal identifier.

See Also

Assigning Object Identifiers

How Repository Identifiers are Stored and Instantiated

Repository Identifier Data Structures

Repository Identifiers

RepositoryObject Object

RTblSites SQL Table

Meta Data Services Programming (SQL Server 2000)

Object-Version Identifiers and Internal Object-Version
Identifiers
Object-Version Identifiers and Internal Object-Version Identifiers

Each RepositoryObjectVersion instance has two identifiers: an object-version identifier and an internal object-version identifier.

An object-version identifier uniquely distinguishes a repository object from all other repository object versions represented in all
other repository databases.

Internal object-version identifiers correspond to object-version identifiers, except that internal object-version identifiers are used
by the repository engine. Object-version identifiers and internal object-version identifiers are described in this topic. Another kind
of repository identifier identifies a RepositoryObject instance. To use identifiers, you need to know about both kinds. For more
information about other repository identifiers, see Object Identifiers and Internal Identifiers.

About Object-Version Identifiers

The object-version identifier has the following format.

The first 16 bytes of each object-version identifier constitute a globally unique identifier (or GUID).

The next 4 bytes constitute a local identifier. Note that the local identifier of a repository object version does not equal the local
identifier of a RepositoryObject instance.

The next 8 bytes constitute a version indicator. Each object version gets a unique value that identifies a specific version of a
particular object (for example, version 3 of an Employee object). To get a specific version of an object, you have to traverse the
version tree of an object.

About Internal Object-Version Identifiers

Each RepositoryObjectVersion instance also has an internal object-version identifier that distinguishes it from every other
object version within the same repository database. The internal object-version identifier is a 16-byte quantity of the following
form.

The first 4 bytes constitute a site identifier (site ID). For more information about site IDs, see How Repository Identifiers are Stored
and Instantiated.

The first 4 bytes constitute the local identifier (local ID) of the repository object. The second 4 bytes constitute a branch identifier
(branch ID); a branch is a portion of a version graph. The third 4 bytes constitute a version-within-branch identifier.

The first 8 bytes make up the internal identifier of the repository object version. The next 8 bytes make up a version identifier.

See Also

Branches in the Version Graph

Repository Identifier Data Structures

Repository Identifiers

RepositoryObjectVersion Object

Version Graph

Meta Data Services Programming (SQL Server 2000)

How Repository Identifiers are Stored and Instantiated
How Repository Identifiers are Stored and Instantiated

A site identifier (site ID) is a portion of the internal identifier (or internal object-version identifier) of a repository object. A globally
unique identifier (GUID) is a portion of an object identifier (or object-version identifier).

There is a one-to-one correspondence between a site ID and its GUID, and each repository database includes a table (RTblSites)
that maintains this correspondence. Each row of the table associates one GUID with one site ID.

The repository engine uses the one-to-one correspondence between the site identifiers and GUIDs to conserve space in the
repository database. When the repository engine stores a repository object, it stores the internal identifier with the object. The
engine does not store the GUID or the object identifier with the repository object. When you need to retrieve the object identifier
of an object, the repository engine constructs the object identifier by reading the internal identifier stored with the object,
matching the site identifier to the appropriate row of the RTblSites table, and reading the GUID from that row.

See Also

Object Identifiers and Internal Identifiers

Object-Version Identifiers and Internal Object-Version Identifiers

Repository Identifiers

RTblSites SQL Table

Meta Data Services Programming (SQL Server 2000)

Repository Identifier Data Structures
Repository Identifier Data Structures

The following data structures describe object identifiers, object-version identifiers, internal identifiers, and internal object-version
identifiers.

If you are querying the database by building a query against the repository tables, you need to know about internal identifier data
structures to form the query. Information in this topic about object identifier and object-version identifier data structures is
provided for completeness. Only internal identifiers and internal object-version identifiers are used to build queries.

Internal Identifier

struct INTID {
ULONG iSiteID;
ULONG iLocalID;
};
typedef const INTID &REFINTID;

An INTID or a REFINTID variable is an internal identifier for a specific repository object that uniquely identifies the object within a
particular repository database. An internal identifier is not unique across all repositories. Note that an internal identifier is not the
same thing as the interface identifier for an interface, or the class identifier that is used to create an instance of a class.

The internal identifier is composed of an internal site identifier (iSiteID) and an internal local identifier (iLocalID).

Internal Object-Version Identifier

struct VERSIONID {
INTID sIntID;
BRANCHID iBranchID;
VERSIONNUM iVersionStart;
};
typedef const VERSIONID &REFVERSIONID;

A VERSIONID or a REFVERSIONID variable is an internal identifier for a specific repository object version that uniquely identifies
the object version within a particular repository database. It is not unique across all repositories.

The internal identifier is composed of an internal identifier (sIntID), a branch identifier (iBranchID), and a version-within-branch
identifier (iVersionStart).

Object Identifiers and Object-Version Identifiers

typedef const OBJECTID OBJID;
typedef const OBJID &REFOBJID;

An OBJID or a REFOBJID variable can be used in either of two ways:

It can be an object identifier for a specific repository object in a particular repository database. An object identifier is unique
across all repositories.

It can be an object-version identifier for a specific version of a repository object in a particular repository database. An
object-version identifier is unique across all repositories.

An OBJID or a REFOBJID variable is composed of a global unique identifier (GUID) and a 4-byte local identifier appended to the
GUID. The GUID portion of the variable specifies where the identifier was created, and the local identifier has a value that is unique
within the repository database. When you use an OBJID or a REFOBJID variable to contain an object-version identifier, the 4-byte
local identifier is not the branch identifier or the version-within-branch identifier of the object version.

See Also

Branches in the Version Graph

Object Identifiers and Internal Identifiers

Object-Version Identifiers and Internal Object-Version Identifiers

Repository Identifiers

Version Graph

Meta Data Services Programming (SQL Server 2000)

Assigning Object Identifiers
Assigning Object Identifiers

When you install an information model in a repository, the repository engine creates a number of objects to represent the classes,
interfaces, collection types, properties, and relationship types of that model. The assignment of an object identifier to an object
occurs when the object definition is inserted into a repository database. If you are installing an information model using the
model installer, the repository engine assigns the identifier.

If you are inserting an information model programmatically, you can still let the repository engine assign an identifier
automatically, or you can provide an object identifier manually. To let the repository engine assign an identifier for a
programmatically inserted object, set the input parameter for the object identifier to OBJID_NULL.

In most cases, you should let the repository engine assign object identifiers. The exception is when you are inserting a replica of
an object represented in one Microsoft® SQL Server™ 2000 Meta Data Services repository database into another Meta Data
Services repository. For each type definition object that you copy to the new repository, you should use the object identifier that
was assigned to that object in the existing repository. This will ensure that the type definition has the same identity in both
repositories.

If you explicitly assign object identifiers for your definition objects, you must ensure that the object identifiers are unique across
all repositories. The following steps are recommended to guarantee such uniqueness:

1. Generate a single unused GUID and use it for the GUID portion (the first 16 bytes) of all definition object identifiers for the
information model.

2. Using the CreateObject method, manually assign unique local identifiers for each definition object in the information
model.

Using Guidgen

When creating object identifiers for your information model, you can use the Guidgen.exe program to create an unused GUID,
and use the DEFINE_OBJID macro to create the object identifiers. Given a GUID and a unique number for an object, the macro
will equate the symbolic name to the value for the object identifier. Use the DEFINE_OBJID macro (which is provided for both
Microsoft Visual C++® and Microsoft Visual Basic® programmers) to avoid incompatibility problems later.

See Also

Installing Information Models

IRepository::CreateObject

Object-Version Identifiers and Internal Object-Version Identifiers

Repository CreateObject Method

Repository Identifiers

Meta Data Services Programming (SQL Server 2000)

Naming Objects, Collections, and Relationships
This section provides guidelines for identifying objects, collections, and relationships by name. Different naming guidelines apply
depending on whether you are naming objects of an information model, or naming object instances in a repository.

Naming Information Model Elements

When you create ClassDef, RelationshipDef, and CollectionDef objects in an information model, you specify a name that you
can use later to reference that meta data type. You can provide this name by specifying the Name parameter in a creation method
(for example, CreateClassDef, CreateInterfaceDef, CreateRelationColDef, and so on).

Depending on how you define a relationship collection, you can determine how objects of that collection are subsequently named
(this naming occurs when you populate an information model). Specifically, you can specify that object names are explicitly
named through the INamedObject interface. If you are accustomed to assigning object names yourself, or if your information
model is structured in such a way that the destination of a naming relationship collection is not obvious, you can use this interface
to attach a Name property to an information model object. You can then provide a name when creating an instance of that object.

The following example shows an incomplete code sample that gives you a basic idea about how to implement INamedObject for
a repository object. When you use this interface, be sure to set the COLLECTION_OBJECTNAMING flag on the collection.

Dim oRepository as Repository
Dim oCObject as ClassDef
Dim oINamedObject as InterfaceDef
Dim oIObject as InterfaceDef
Dim oRContains as RelationshipDef
Dim oColObjectContains as CollectionDef
...
Set oINamedObject = oRepository.object(OBJID_INamedObject)
oCObject.AddInterface oINamedObject
...
Set oColObjectContains = oIObject.CreateRealtionshipColDef(objid_null, name_collection, dispid_collection, True,
COLLECTION_NAMING, oRContains)

Naming Object Instances

When you populate an information model with meta data instances, you can allow the repository engine to name the object for
you, or you can provide a name.

How the Repository Engine N ames Object Instances

The repository engine uses relationship collections to create names for objects. Specifically, the relationship collection that
determines an object instance name is the target object collection. When the target object collection contains uniquely named
objects, and when it is the sole target of the source object, the identity of the target object is unambiguous. However, if more than
one target is possible, you should assign an explicit name to avoid having the repository engine select one for you.

You can choose to let objects assume different names when accessed through a relationship, as opposed to the single name that
it assumes when it is accessed through the object. Naming an object through a relationship has the benefit of referring to the
same object through different names depending on the context in which it is used. In this case, the relationship collection provides
the context.

For more information, see Naming and Unique-naming Collections.

How to Explicitly N ame an Object Instance

If an object supports the INamedObject interface in the information model, you can call an object by its INamedObject::Name
property. You can also use IRepositoryItem::Name to supply a name.

See Also

Changing an Object Version's Name

Changing a Destination Relationship's Name

INamedObject Interface

Naming Conventions

Retrieving an Object Version's Name

Selecting Items in a Collection

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

Type Information Aliasing
Type Information Aliasing

The information model elements that you create support type information aliasing. This form of aliasing enables you to define an
alternate name for the meta data type so that you can reuse an existing definition in a new context. You can also use type
information aliases to preserve existing work when information model names change. For example, Open Information Model
(OIM) or Unified Modeling Language (UML) name changes that result from new versions of a model can be accommodated by
applying aliases to a changed name.

To define a type information alias, use the following interfaces:

IReposTypeInfo2 defines aliases for Classdef, Interfacedef, Relationshipdef, and Enumerationdef objects.

IInterfaceMember2 defines aliases for Propertydef, Methoddef, Alias, and Collectiondef objects.

To use the alias, specify it just as you would the meta data type name. The repository engine keeps track of type information
aliases. When you invoke a type information alias, the repository engine returns the appropriate class, interface, or property to
which the alias is mapped.

Note Aliasing provides additional functionality when it is applied to interface members. For more information, see Derived
Members.

See Also

IInterfaceMember2 Interface

IReposTypeInfo2 Interface

Member Delegation

Naming Conventions

Naming Objects, Collections, and Relationships

Meta Data Services Programming (SQL Server 2000)

Naming Conventions
Naming Conventions

Names must always be unique within a scope. The scope varies depending on the object. Within a repository, information model
names (that is, repository type library names) cannot repeat. Within an information model, class, interface, and relationship names
cannot repeat. Similarly, within an interface, property, collection, and method names cannot repeat. Also, within a collection that
supports unique naming, object names cannot repeat.

When you create a new information model, choose your names carefully. Otherwise, you may encounter name duplication
problems later on if you decide to share information models. One way to avoid name confusion is by using a distinctive prefix on
all of your names. An information model name provides an obvious solution. For example, if you are using the Open Information
Model (OIM), you can use the subject area names such as Database Schema (or DBSchema) as a prefix.

In addition to unique constraints, the following naming conventions apply to Repository Type Information (RTIM) objects and
relationships:

The name cannot be a reserved SQL or MIDL keyword. Generally, you should avoid any word that is reserved by a DBMS.

Names can be a maximum of 249 characters in length.

Any alphanumeric character can be used in the name.

For object instance names, you can define a name that contains leading or trailing spaces. It can also be an empty string. If
the name is all spaces, it is treated as an empty string.

Spaces within a name are allowed because COM supports it. However, if you include spaces in an interface definition name,
you will get an error when you subsequently define properties on that interface.

See Also

Naming and Unique-Naming Collections

Naming Conventions for Generated Views

Naming Objects, Collections, and Relationships

Meta Data Services Programming (SQL Server 2000)

Naming and Unique-Naming Collections
Naming and Unique-Naming Collections

Certain relationships can provide a name by which the origin object refers to the destination object. Such a relationship is called a
naming relationship. A collection of naming relationships is a naming collection.

Certain naming collections require that all destination objects in the collection have unique names. Such a collection is referred to
as a unique-naming collection.

User requirements may require objects to support multiple names. For example, consider a system in which a single program can
have two different file names, because there are two different file systems that allow and disallow long names, respectively. The
following figure illustrates this case.

The figure shows four relationships. Each relationship specifies a name by which one of the objects (the origin object) refers to the
other object (the destination object). In particular, notice that the object representing the error-handling program file has two
different names, ErrHndl and ErrorHandler.

In order to support this kind of capability, the Repository Type Information Model (RTIM) attaches the Name property to the
relationship type, not to the object class. This enables an object to have as many names as it has relationships (that is,
relationships for which it is the destination).

Object Naming Collections

If the COLLECTION_OBJECTNAMING flag is set, there is no relation-specific naming of this object. The object has the same name
in the relationship as specified by the INamedObject::Name property on the object. Specifying a name during the collection's
Add operation or attempting to set the IRepositoryItem:Name property on the relationship object will return the error
EREP_COL_OBJECTNAMING. If you attempt to add an object that does not support INamedObject to the collection, the error
EREP_COL_OBJECTNOTNAMED is returned.

See Also

CollectionDefFlags Enumeration

INamedObject Interface

Naming Objects, Collections, and Relationships

Repository Errors (alphabetical order)

Meta Data Services Programming (SQL Server 2000)

Retrieving an Object Version's Name
Retrieving an Object Version's Name

When you try to retrieve the name of an object version, the repository engine can search in several places for the name:

If the object version implements the INamedObject interface, the repository engine retrieves the Name property exposed
by that interface.

If the object version does not implement the INamedObject interface, the repository engine seeks a destination naming
relationship for the object version. With that destination naming relationship, the repository engine performs object-version
resolution, yielding a particular origin object version from the relationship's TargetVersions collection. The repository
engine retrieves the name by which that origin object version refers to the destination object.

See Also

Changing a Destination Relationship's Name

Changing an Object Version's Name

INamedObject Interface

Naming Objects, Collections, and Relationships

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

Changing an Object Version's Name
Changing an Object Version's Name

When you change the name of an object version, the repository engine might try to change several names as follows:

If the object version implements the INamedObject interface, the repository engine changes the Name property exposed
by INamedObject unless the object version is unchangeable.

If the object version has one or more destination naming relationships, the repository engine tries to change a name for
each of those relationships. For more information, see Changing a Destination Relationship's Name.

See Also

IRepositoryItem Interface

Repository Object

Repository ConnectionString Property

Retrieving an Object Version's Name

Meta Data Services Programming (SQL Server 2000)

Changing a Destination Relationship's Name
Changing a Destination Relationship's Name

A name associated with a naming relationship is the origin object version's name for the destination object. When you change the
name of a destination naming relationship, you simultaneously change an origin version's name for the destination object. If the
destination relationship has multiple items in its TargetVersions collection, each of those origin versions could have a different
name for the destination object. The repository engine follows a resolution strategy to choose a particular origin object version
from the destination relationship's TargetVersions collection. Next, the repository engine changes the origin object version's
name for the destination object, unless the origin object version is unchangeable.

See Also

Changing an Object Version's Name

Resolution Strategy for Objects and Object Versions

Retrieving an Object Version's Name

Meta Data Services Programming (SQL Server 2000)

Naming Stored Procedures
Naming Stored Procedures

When you use a Microsoft® SQL Server™ database for your repository, the repository engine creates stored procedures for the
insertion of rows into the repository SQL tables. This topic describes how these stored procedures are named.

The stored procedure name for a table is generated by prefixing the table name with the string "R_i". Because table names are
unique, this naming convention will generate unique stored procedure names. If the length of the table name is greater than
MaxIdentifierLength-3, however, the table name generation algorithm fails. For this reason, a user may not supply a table name
longer than MaxIdentifierLength-3. Supplying a longer name causes the error EREP_BADNAME.

When the user does not provide a table name for an interface, the engine automatically generates the table name from the
interface name. If the interface name, with the leading "I" stripped off, is less than MaxIdentifierLength-4, the interface name
will be used as the table name. Otherwise, the interface name is truncated to MaxIdentifierLength-7, and a 4-character number
is appended to the name to make it unique, before prefixing "R_i.

The engine uses named arguments to call the stored procedures. A named argument starts with the at sign (@) character and is
no longer than MaxIdentifierLength. Therefore, the property names, which are also column names, must be no longer than
MaxIdentifierLength-1.

MaxIdentifierLength values are 30 characters for SQL Server version 6.5 and 128 characters for SQL Server version 7.0 and
SQL Server 2000.

See Also

Naming Objects, Collections, and Relationships

Repository Errors (Alphabetical Order)

Repository SQL Schema

Meta Data Services Programming (SQL Server 2000)

Creating and Extending Type Information
Information models contain type information about the tools and applications you develop. Creating an information model is the
first step in developing tools and applications with the Microsoft® SQL Server™ 2000 Meta Data Services repository.

You can build custom information models, or use the predefined information model distributed with SQL Server 2000. SQL
Server distributes the Open Information Model (OIM). You can obtain a more recent version of the OIM from the Meta Data
Coalition (MDC) or the Meta Data Services Software Development Kit (SDK).

If you are using a predefined information model, the information model is created for you. However, you can extend a predefined
information model if you want to add elements that further describe the tool or application you want to develop. Extending an
information model is equivalent to creating a new model.

The following topics detail different strategies for creating an information model.

Topic Description
Creating Type Information Using
Modeling Tools

Describes the advantages of creating an
information model with modeling tools

Information Model Creation Issues Identifies choices you can make about a
model you create, and identifies some
basic requirements for creating a
navigable information model

Creating Type Information
Programmatically

Details the steps to follow when creating
an information model through code

See Also

Getting Started with Meta Data Services

Information Models

OIM in Meta Data Services

Meta Data Services SDK

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

Creating Type Information Using Modeling Tools
Creating Type Information Using Modeling Tools

Using a third-party tool to create an information model in a visual modeling environment is strongly recommended. Information
models are complex to design and difficult to get right the first time. Unless you are creating the simplest of models, or making
small changes to an existing model, you should invest in a tool to develop your design.

In addition to providing a visual modeling environment, modeling tools provide support for multiple users, version control, report
generation, and integration with application programming environments.

The Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK) includes utilities for creating and
extending an information model. You can access these utilities from within third-party modeling tools by way of extensions.

See Also

Creating and Extending Type Information

Information Models

Meta Data Services SDK

Meta Data Services Programming (SQL Server 2000)

Information Model Creation Issues
Information Model Creation Issues

When you insert an information model into a repository, you have the following choices and decisions to consider:

How much of the tool information will you store in the repository database and how much will you store in other files?

For each class you define in your information model, what Automation server will create instances of that class?

Can you tune the database schema to improve performance?

Should you create a new information model or extend an existing one?

Should you assign object identifiers, or let the repository engine do this for you?

How will your information model accommodate navigation from one object to another?

The following topics discuss each of these questions.

Topic Description
Extending vs. Creating Information
Models

Provides guidelines to help you decide whether
to create or extend an information model

Choosing Which Information Belongs
in the Repository

Provides guidelines to help you decide where a
Microsoft® SQL Server™ 2000 Meta Data
Services repository fits into your development
environment

Choosing an Automation Server for a
Class

Explains how to instantiate an Automation
server in your application code

Tuning the Database Schema of an
Information Model

Provides tips that can help you determine how
the repository database is created

Accommodating Navigation Within
an Information Model

Explains the core requirements for building a
navigable information model

Assigning Object Identifiers Explains the ways in which a repository
identifier can be assigned to an object

See Also

Creating Type Information Programmatically

Meta Data Services Programming (SQL Server 2000)

Extending vs. Creating Information Models
Extending vs. Creating Information Models

You can create a new information model or extend an existing one. In general, each information model should accommodate the
data about a particular area of your application environment.

When faced with the decision of whether to extend an existing information model or build a new one, you can follow these
guidelines to determine a course of action.

To accommodate data or structures that are unrelated or only minimally related to existing type information, create a new
information model.

To accommodate additional kinds of data that are closely related to existing type information model, extend an existing
information model.

After you decide that extending an information model is the right choice, you must decide whether to extend it through a
modeling tool or through the repository API. If you do not own a modeling tool or if the change is small, you can use the
repository API to create type information programmatically.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming (SQL Server 2000)

Choosing Which Information Belongs in the Repository
Choosing Which Information Belongs in the Repository

You do not need to store all of the information for your tool in a Microsoft® SQL Server™ 2000 Meta Data Services repository.
For example, suppose your tool helps application developers and systems engineers keep track of the bugs on their software
systems. Your tool maintains modules, bug reports, and test suites. Each module has a name, an author, source code, and one or
more bugs reported on it. Each bug can have a description, a module on which it is reported, and a test suite used to reproduce
the bug. Each test suite can have one or more bugs that it can reproduce. Because your tool maintains each test suite in a file
format, you decide not to explicitly insert each test suite into a repository. Instead, you store in the repository only the name of a
file containing the test suite.

To decide which information belongs in the repository, consider the following questions:

Do you want to perform impact analysis on the data?

The more information you store in the repository, the more impact analysis questions you can answer. Consider the
example described previously. Because the information model includes a class describing test suites, you can learn which
test suite generates the most bugs.

Conversely, because the information model does not include a class accommodating individual tests or the persons
responsible for them, you cannot use the repository to learn which person discovers the most bugs.

Is there another file format that is more appropriate for the fine details of the definitions that describe your tool?

There are two aspects to consider:

If a tool manipulates objects whose fundamental units of storage and manipulation are large, a file format can be
more efficient than the repository. In this case, it is probably more effective to store the data objects in their native
file format, and to store in the repository a description of each data object.

If an existing tool already stores its data in a file format, switching to Meta Data Services would require rewriting the
tool. To save time, you can choose to retain the existing file format and replicate some subset of the tool data in the
repository.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming (SQL Server 2000)

Choosing an Automation Server for a Class
Choosing an Automation Server for a Class

After you add your information model to a repository, you can run your tool. Periodically, your tool will invoke the CreateObject
method to create an instance of one of the classes of your information model. CreateObject must create a run-time object (that
is, an Automation object). To create the run-time object, the repository engine calls CoCreateInstance, using as a parameter the
ClassID you provided as a property of the class.

When the engine calls CoCreateInstance with the ClassID, the system registry is checked to determine which Automation server
contains the required class factory. For most classes in your information model, a generic Automation server for repository
objects, Repodbc.dll, suffices. To use the generic server as the Automation server for a class, you can either do nothing, or you can
specify Repodbc.dll in the entry for that class in the registry.

Although Repodbc.dll suffices as the Automation server for most repository classes, you will occasionally create a class whose
instances require special treatment. For example:

A class of your information model requires input validation.

You can validate the property values or collections of each instance of a class by writing a special Automation server for that
class.

A class of your information model replicates some properties retained in another file format outside the repository.

Suppose your information model includes a class whose instances describe Microsoft® Word documents. Each instance
describes a Word document, indicating specifically its title, subject, and author. Your class-specific Automation server must
include special code to ensure that the values of the repository properties match the values of title, subject, and author
stored in the Word file.

A class of your information model requires some class-specific behavior that you implement in a method.

Suppose your information model includes a class whose instances describe modem pools. Each instance describes a
particular modem pool, including its phone number. Your class-specific Automation server can include a method to
automatically dial the number and establish a connection.

Note At this time, the repository engine supports in-process Automation servers only (that is, dynamic-link libraries).

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming (SQL Server 2000)

Tuning the Database Schema of an Information Model
Tuning the Database Schema of an Information Model

The repository engine stores data in a relational database. When you add an information model, the repository engine enlarges
this database by creating new tables and columns to accommodate your tool information. Generally, each interface corresponds
to a table, and each property corresponds to a column. When you populate your information model, the repository engine inserts
rows into these tables.

You have some control over the database schema that accommodates your tool information. For example, you can:

Use a single table to contain the interface-specific properties of more than one interface.

To do this, set the TableName property for each interface definition object to the same name before you commit the
transaction that is used to create your information model.

Create an additional index for a table.

To do this, open the database directly and use the SQL CREATE INDEX command after you commit the transaction that is
used to create your information model.

Note You cannot completely control the database schema. In particular, each table must include the columns IntID,
Z_BrID_Z, and Z_VS_Z, and must define the primary key on those columns. Furthermore, you cannot drop columns that
your information model uses to store properties.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming (SQL Server 2000)

Accommodating Navigation within an Information Model
Accommodating Navigation within an Information Model

Because the objects in your information model are associated through a network of relationships, you can navigate to each part of
an information model through the relationships you define.

To support programming against the information model, you must build in navigation support by way of relationships.

The first relationship must be between the repository root object and an object in your information model. To enable this first
navigation step, include in your information model a relationship type whose instances will associate the root object with objects
stored in your information model.

Create a relationship type with these characteristics:

The origin collection type of the relationship type is a member of an interface implemented by the ReposRoot class.

The destination collection type of the relationship type is a member of an interface implemented by a class of the
information model.

To create this relationship type

1. Create a new interface and add it to the set of interfaces implemented by the ReposRoot class.

2. Create a relationship type associating the newly created interface with some interface implemented by a class of your
information model. Choose an interface implemented by a fundamental class, a class whose instances are good objects
from which to begin moving to other objects of the information model.

For more information about moving through a repository, see Navigating a Repository.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

Meta Data Services Programming (SQL Server 2000)

Creating Type Information Programmatically
Creating Type Information Programmatically

If you do not have a modeling tool, you can create a new information model or extend an existing one programmatically. This
section explains the steps you need to follow when creating an information model, and discusses some issues to consider in
designing and inserting information models into a Microsoft® SQL Server™ 2000 Meta Data Services repository.

When you insert an information model into a repository, you populate the Repository Type Information Model (RTIM). That is, you
create instances of the classes, interfaces, properties, methods, and relationship types of the RTIM.

The following topics describe the steps in creating type information programmatically.

Topic Description
Begin a Transaction Explains how to begin a transaction that

brackets the information model definitions
Create a Repository Type Library Describes how to create an empty information

model to store subsequent definition
Define Dependencies Between Type
Libraries

Explains how to define dependencies between
multiple information models

Add Classes to the Repository Type
Library

Details how to add class definitions to an
information model

Add Interfaces to Each Class Details how to add interface definitions to an
information model

Add Properties to Each Interface Details how to add property definitions to an
interface

Add Methods to Each Interface Details how to add method definitions to an
interface

Add Relationship Types and Pairs of
Collection Types

Details how to add relationship and collection
definitions to an interface

Commit the Transaction Describes how to commit the transaction that
inserts your definitions into a Meta Data
Services repository

See Also

Creating and Extending Type Information

Information Model Creation Issues

Information Models

Repository API Reference

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Begin a Transaction
Begin a Transaction

To write data to a repository, bracket your interactions within the scope of a transaction.

To begin a transaction

1. Open or create the repository into which you want to insert the information model. To open an existing repository, use the
Open method of the IRepository interface or the Repository object.

-or-

To create a new repository, use the Create method of the IRepository interface.

Both of these methods return the root object for the open repository.

2. Invoke the Begin method of the IRepositoryTransaction interface or RepositoryTransaction object.

The IRepositoryTransaction interface is accessible through the Transaction property of the object that represents your
connection to the repository.

See Also

Creating Type Information Programmatically

Create a Repository Type Library

Commit the Transaction

Connecting to and Configuring a Repository

IRepository Interface

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

Create a Repository Type Library
Create a Repository Type Library

The Repository Type Information Model (RTIM) includes a class named ReposTypeLib; each instance of this class corresponds to
a repository type library. Each repository type library describes an information model.

To create an instance of the ReposTypeLib class

Use the CreateTypeLib method of the root object's IManageReposTypeLib interface or the ReposRoot object.

Note Each instance of ReposTypeLib has a collection of types, where each type is either a class, an interface, or a
relationship type. The collection is called ReposTypeInfos, and is used to ensure that unique names are used for all classes,
interfaces, and relationship types in your information model.

See Also

Creating Type Information Programmatically

Define Dependencies Between Type Libraries

IManageReposTypeLib Interface

ReposRoot Object

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

Define Dependencies Between Type Libraries
Define Dependencies Between Type Libraries

The Repository Type Information Model (RTIM) allows model developers to define dependencies between type libraries. You can
define dependencies if you want to share information models, or leverage an existing information model within a new context.

To define a dependency

Use the DependsOn collection on the IReposTypeLib2 interface to define a dependency between two type libraries. For
example, in order to define a dependency between file allocation table (FAT) and FileSys type libraries:

Use the following code to define a dependency in Automation:

FAT.DependsOn("IReposTypeLib2").Add FileSys

Use the following code to define a dependency in COM:

pFATCol -> Add(pFileSys, RelShipName, &pRelShipName);

pFATCol

A pointer to the FAT type library DependsOn collection on the IReposTypeLib2 Interface.
pFileSys

A pointer to the FileSys type library.
RelShipName

The name of the relationship between the FAT and the FileSys type libraries.
pRelShipName

A pointer to the relationship between the FAT and the FileSys type libraries.

See Also

Add Classes to the Repository Type Library

Creating Type Information Programmatically

IReposTypeLib2 DependsOn Collection

Meta Data Services Programming (SQL Server 2000)

Add Classes to the Repository Type Library
Add Classes to the Repository Type Library

According to the Repository Type Information Model (RTIM), you define a new object class by creating an instance of the
ClassDef class.

To create a new class definition

Use the CreateClassDef method of the IReposTypeLib interface that is exposed by your ReposTypeLib object.

Be sure the class identifier that you supply as an input parameter to this method matches the globally unique identification
(GUID) of that class in the system registry.

Note Within the system registry, you can indicate which Automation server the repository engine uses to create instances
of your new class. You can use the Automation server that the repository engine provides for all repository objects, or you
can use your own server. For more information about deciding which kind of Automation server to use, see Information
Model Creation Issues.

See Also

Add Interfaces to Each Class

Creating Type Information Programmatically

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

Add Interfaces to Each Class
Add Interfaces to Each Class

Each of the classes in your information model exposes one or more interfaces. Add a new interface to a class by creating an
instance of the InterfaceDef class.

When you create a custom interface, you must avoid assigning a dispatch ID of 1000 to the interface.
IRepositoryDispatch::get_Properties reserves this value for itself.

To create a new interface definition

Use the CreateInterfaceDef method of the IClassDef interface that is exposed by your ClassDef object.

Be sure the interface identifier that you supply as an input parameter to this method matches the globally unique
identification (GUID) that has been assigned to the interface.

Note Among the interfaces you create for your information model, you must include an interface that the ReposRoot class
implements. You need this interface and an attendant relationship type to enable navigation to the objects that will populate
your information model. For more information about why you need this interface, see Information Model Creation Issues.

See Also

Add Methods to Each Interface

Add Properties to Each Interface

Add Relationship Types and Pairs of Collection Types

ClassDef Object

Creating Type Information Programmatically

IClassDef Interface

Meta Data Services Programming (SQL Server 2000)

Add Properties to Each Interface
Add Properties to Each Interface

Each interface in your information model can expose properties. Attach a new property to an interface by creating an instance of
the PropertyDef class.

To create a new property definition

Use the CreatePropertyDef method of the IInterfaceDef interface that is exposed by your InterfaceDef object.

See Also

Add Methods to Each Interface

Add Relationship Types and Pairs of Collection Types

Creating Type Information Programmatically

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

Add Methods to Each Interface
Add Methods to Each Interface

Each of the interfaces in your information model can expose methods. Attach a new method to an interface by creating an
instance of the MethodDef class.

To create a new method definition

Use the CreateMethodDef method of the IInterfaceDef interface that is exposed by your InterfaceDef object.

Note If your interface has methods, you must provide your own Automation server for classes that implement this
interface. For more information about deciding which kind of Automation server to use, see Information Model Creation
Issues.

See Also

Add Properties to Each Interface

Add Relationship Types and Pairs of Collection Types

Creating Type Information Programmatically

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

Add Relationship Types and Pairs of Collection Types
Add Relationship Types and Pairs of Collection Types

Relationships connect objects to each other in a Microsoft® SQL Server™ 2000 Meta Data Services repository. When you define a
new relationship type, you also define an origin collection type and a destination collection type. The origin collection type
connects the relationship type to one interface; the destination collection type connects the relationship type to a second interface.
The classes that implement those interfaces are now related in your information model.

To create a new relationship type (and its corresponding pair of collection types) and attach it to two interfaces

Use the CreateRelationshipDef method of the IReposTypeLib interface that is exposed by your ReposTypeLib object.
Then, use the CreateRelationshipCol method to create the collection. For more information, see Defining a Collection.

Note One of the relationship types that you create for your information model must enable navigation from the root object
of the repository to some objects of your information model. For more information about why you need this interface, see
Information Model Creation Issues.

See Also

Add Properties to Each Interface

Add Methods to Each Interface

Creating Type Information Programmatically

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

Commit the Transaction
Commit the Transaction

When you have added all of the type definition objects to your information model, use the Commit method of the
IRepositoryTransaction interface to commit your additions to the repository database.

See Also

Creating Type Information Programmatically

Information Model Creation Issues

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

Defining Relationships and Collections
Relationships and collections provide the structure and navigation of your information model. After you define the objects you
require, you need to associate the objects by defining relationships. The relationships that you create must be defined as
collections. You can also create collections that do not contain relationships.

The following collection types are possible.

Collection Description
Object collection Contains multiple instances of the same type of object (for

example, a set of StoredProcedure objects).

Object collections are only used in an ObjectInstances
collection on ClassDef and InterfaceDef objects. For more
information, see Defining a Collection and ObjectCol Object.

Version collection Contains versioned objects. There are seven kinds of version
collections. For more information, see Kinds of Version
Collections.

Relationship collection Contains relationship objects. Each relationship object pairs
one source object to one target object. Relationship
collections can be used for navigation. For more information,
see Defining a Relationship and Defining a Relationship
Collection.

Target object collection Contains all of the target objects of a specific source object.
For example, the target object collection of a Table source
object can be a collection of Column objects.

A target object collection is represented as a property that
returns a TargetObjectCol object.

For more information, see Defining a Target Object
Collection and ITargetObjectCol Interface.

Transient object collection Contains objects that are populated by code. A transient
object collection is a special case of collection type. Where
the other collection types are formed from persistent object
data, a transient object collection is instantiated from your
code. This collection is populated dynamically and does not
rely on persistent data to determine its contents. For more
information about defining transient object collections, see
Programming Transient Object Collections.

See Also

Navigating a Repository

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Defining a Relationship
Defining a Relationship

Relationships are used to navigate. At a minimum, you need to know how to traverse relationships to get from one object to
another. Furthermore, the repository engine supports complex behavior that varies based on relationships: namely, delete
propagation, version propagation, view generation, version resolution, and naming relationships. To understand how the
repository engine responds to these cases, you need to know about relationships and how they are structured.

Origin and Destination Collections

All relationships are accessed by way of a collection. For this reason, you must always associate objects through a relationship
definition. When an origin object accesses a destination object, the origin object accesses a relationship collection that contains
destination objects. When a destination object accesses an origin object, the destination object accesses a relationship collection
that contains the origin object.

To support access in both directions, you must always provide two collections. From the perspective of the origin object, the
relationship collection to which it is attached is a destination collection. Similarly, from the perspective of the destination object,
the relationship collection to which it is attached is an origin collection.

When you define a relationship type and its attendant collection types, you must declare one collection type as the origin. To do
this, you must set the IsOrigin property on the collection.

In addition to providing access, the distinction between origin and destination collections is important because naming
collections, unique-naming collections, and sequenced collections can only be defined on origin collections.

The following example illustrates how to create an origin collection that supports unique-naming and sequencing. In this example,
objid_null is the object identifier, name_ is the string that defines a name, and dispid_ indicates a dispatch identifier (a constant
not shown in this example).

Rem ** Declare interface, collection, and relationship
Dim oTypeLib as RepositoryTypeLib
Dim oRContains as RelationshipDef
Dim oCTableContains as CollectionDef

Rem ** Create the oRContains relationship on oTypeLib
Set oRContains = oTypeLib.CreateRelationshipDef(objid_null, name_Contains)

Rem ** Create the relationship collection for oRContains
Rem ** IsOrigin is set to True
Rem ** 10 is the combined bits for CollectionDef flags (2 for uniquenaming, 8 for sequenced)
Set oCTableContains = oTypeLib.CreateRelationshipColDef(objid_null, name_CTableContains, dispid_TableContains,
True, 10, oRContains)

See Also

CollectionDef IsOrigin Property

Defining Relationships and Collections

Defining a Collection

ICollectionDef IsOrigin Property

IRelationship Interface

Relationship Class

Relationship Object

Meta Data Services Programming (SQL Server 2000)

Defining a Collection
Defining a Collection

Collections are a kind of property that provide a way to relate and group objects. Each object can support multiple collections.

Collections are materialized at run time, using interfaces that you call. The kind of collection that is materialized depends on the
interface you use. Because the repository stores data, the collections that you materialize assume the state that they had the last
time the collection was instantiated. For example, a collection that contains three objects at the end of one repository session will
still contain those three objects the next time you run a repository session.

The rule for an object-collection association is object to collection to object. In an information model, objects are never related to
each other directly. Objects are always associated through a collection. For example, if the relationship between two objects is
strictly one-to-one, the collections that associate the objects each contain one object.

To define a collection, use the CollectionDef class or ICollectionDef interface for COM programs, or CollectionDef object for
Automation programs.

The following example illustrates how to define two collections for a single relationship. The pattern of two collections for each
relationship holds for all relationships that you create. In this example, objid_null is the object identifier, name_ is the string that
defines a name, and dispid_ indicates a dispatch identifier (a constant not shown in this example).

Rem ** Declare interfaces, relationship, and collections
Dim oTypeLib as RepositoryTypeLib
Dim oRContains as RelationshipDef
Dim oCTableContains as CollectionDef
Dim oCTableContainedBy as CollectionDef

Rem ** Create the relationship oContains on oTypeLib
Set oRContains = oTypeLib.CreateRelationshipDef(objid_null, name_Contains)

Rem ** Create the Contains and ContainedBy collections
Set oCTableContains = oITypeLib.CreateRelationshipColDef(objid_null, name_TableContains, dispid_TableContains,
True, oRContains)
Set oCTableContainedBy = oTypeLib.CreateRelationshipColDef(objid_null, name_TableContainedBy,
dispid_TableContainedBy, False, oRContains)

See Also

CollectionDef Class

CollectionDef Object

Defining Relationships and Collections

ICollectionDef Interface

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Sequenced Collections
Sequenced Collections

Some information models require the tool or application be able to set the sequence of items in a collection. This requirement
occurs when the sequence itself is significant in some way.

A collection that supports the sequencing of its items is referred to as a sequenced collection. Relationships contained within such
a collection are sequenced relationships. The Repository Type Information Model (RTIM) supports the definition of collection
types for sequenced collections.

For example, consider a report generator tool that displays tables of data where the data is displayed in rows and columns. Each
table is represented by an object that conforms to the Table class. The columns of the table are represented by objects that
conform to the Column class. Each table has a collection of columns that are included in it (the relationship that relates a Table
object to a Column object is the includes relationship). The following figure illustrates this example.

To determine the order in which the columns will appear when the table is displayed or printed, the report generator tool relies
on the sequence of the column items. For the Student table, the report is displayed with the Student ID column leftmost, the
Last Name column next, and the First Name column on the right-hand side.

To define a sequenced collection, set the COLLECTION_SEQUENCED flag on a collection definition object.

See Also

CollectionDefFlags Enumeration

Defining Relationships and Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Heterogeneous Collections of Objects
Heterogeneous Collections of Objects

Every collection of relationships is homogeneous. In any relationship collection, each item is a relationship of the same
relationship type. Collections of objects, however, can be either homogenous or heterogeneous (that is, the items can have
different classes).

A collection of objects can be heterogeneous for the following reasons:

The Repository Type Information Model (RTIM) allows each interface to be implemented by many classes.

The RTIM expresses each relationship type as an association between two interfaces rather than as an association between
two classes.

Each relationship type describes how the objects of classes implementing particular interfaces can be related. Thus, if several
classes implement a particular interface, some relationship types involving that interface can yield collections whose target
objects span several classes. As you prepare programs that manipulate such collections, do not assume that the collections will
contain homogeneous sets of objects.

Note Plan for change; do not assume that your information model will remain unchanged. Although a particular relationship
type of your information model might associate two interfaces that are implemented by exactly one class each, you might
someday create other classes that implement those same interfaces. Any user who enlarges the number of classes implementing
either of those interfaces introduces the possibility for heterogeneous collections of objects. If your programs that use those
collections are dependent upon homogeneous collections, you must rewrite them as soon as you implement the interfaces with
several classes. To protect your programs from this cause of obsolescence, write them assuming that any collection of objects can
be heterogeneous.

See Also

Defining Relationships and Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Defining a Relationship Collection
Defining a Relationship Collection

Tools and applications can sometimes manipulate sets of relationships as a single unit. To represent this functionality in your
information model, you can use relationship collections. The Repository Type Information Model (RTIM) lets you describe
relationship collection types as templates to which relationship collections must conform.

A relationship collection is a set of similar relationships. To be part of a relationship collection, the relationships must be similar in
these two ways:

They must be of the same relationship type. All the relationships in a collection must conform to the same relationship type.

They must have the same object in the same role. One object must be common to all relationships in the collection. That
object must play the same role (either origin or destination) for all relationships in the collection.

To define a relationship collection, use the RelationshipCol class or IRelationshipCol interface for COM programs, or
Relationship object for Automation programs.

See Also

Defining Relationships and Collections

Naming and Unique-Naming Collections

Heterogeneous Collections of Objects

IRelationshipCol Interface

RelationshipCol Class

RelationshipCol Object

Sequenced Collections

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Defining a Target Object Collection
Defining a Target Object Collection

A target object collection is a kind of special-purpose collection that is designed for navigation. Since target object collections
reduce navigation to a one-step operation, you should use target object collections for most of your navigation.

About Target Object Collections

A target object collection is the set of target objects that are associated with the relationships in a particular relationship collection.
The relationship collection in the following figure is one example.

This relationship corresponds to this target object collection.

These associations are valid because the underlying data looks like this.

The object that is common to all of the relationships in the corresponding relationship collection is referred to as the source
object. In the preceding figure, the object describing Frank is the source object. The objects describing Kim, Iola, and Fenton are
target objects.

Implementing a Target Object Collection

A target object collection is represented as a property, which returns an ITargetObjectCol object. On this object, you can invoke
QueryInterface to access the IRelationshipCol and IVersionCol interfaces.

To define a target object collection, use the ITargetObjectCol interface.

See Also

Defining Relationships and Collections

ITargetObjectCol Interface

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Defining a Version Collection
Defining a Version Collection

Version collections provide a way to manipulate sets of versioned objects.

To define a versioned collection, use the VersionCol class or IVersionCol interface for COM programs, or VersionCol object for
Automation programs.

You can also define a versioned relationship. To define a versioned relationship, use the VersionRelationship class or
IVersionRelationship interface for COM programs, or use the VersionRelationship object for Automation programs.

See Also

Defining Relationships and Collections

IVersionCol Interface

IVersionedRelationship Interface

Kinds of Version Collections

Understanding Collections

Understanding Relationship Roles

VersionCol Class

VersionCol Object

VersionedRelationship Class

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

Defining Properties
You can create a property definition object to represent properties in an information model. Properties can include enumerated
values. You can also specify a property as a virtual member if you want to provide a property value from a source other than the
repository.

To define a property definition object, you can use the PropertyDef class or the IPropertyDef interface for COM programs, or
the PropertyDef object for Automation programs.

The following topics provide more information about defining properties.

Topic Description
Virtual Members Describes how to implement a virtual

member in your information model
Repository Enumeration Definition Explains how to provide an enumerated

list of values for a property

See Also

Defining Relationships and Collections

IPropertyDef Interface

PropertyDef Class

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

Virtual Members
Virtual Members

Virtual members are properties and collections that are not allocated storage in a repository database. Creating a virtual member
is useful if you want to store property values or collection items somewhere other than the repository.

Virtual members are defined on interfaces. You can define nonpersistent members by setting the flag VIRTUAL_MEMBER in the
InterfaceMemberFlags enumeration. If this flag is set, the repository engine returns an error if an attempt is made to access this
member.

A COM aggregation object must be used to implement the transient storage.

See Also

IInterfaceMember Flags Property

InterfaceMemberFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

Repository Enumeration Definition
Repository Enumeration Definition

The repository enumeration definition is used to specify a fixed set of constant strings or integer values that correspond to real-
world concepts as an enumeration. With the following interfaces you can specify an EnumerationDef object and associated
EnumerationValue objects, and associate these objects with PropertyDef objects.

IEnumerationDef interface

The IEnumerationDef interface is the default interface for enumeration objects. Use this interface to define new
enumeration values.

IEnumerationValueDef interface

The IEnumerationValueDef interface contains a value that can be stored in the Property value of an object.

IPropertyDef2 interface

The IPropertyDef2 interface has a relationship collection called EnumerationDef. It contains an optional relationship to a
single EnumerationDef object.

The following table identifies enumeration objects that support interfaces.

Objects Interfaces
All Enumeration objects IenumerationDef
 IrepositoryObject
 IRepositoryObjectStorage
 IreposTypeInfo
 IVersionAdminInfo2
 InamedObject
 ISummaryInformation
EnumerationValue objects IEnumerationValue
 IrepositoryObject
 IRepositoryObjectStorage
 InamedObject
 ISummaryInformation
 IVersionAdminInfo2

See Also

IEnumerationDef Interface

IEnumerationValueDef Interface

IPropertyDef2 Interface

Meta Data Services Programming (SQL Server 2000)

Defining Methods
You can define a method definition object to represent methods in an information model. In addition to specifying methods, you
can define parameters on a method and on script objects.

To define a method definition object, you can use the MethodDef class or the IMethodDef interface for COM programs, or the
MethodDef object for Automation programs.

The following topics provide more information about defining methods and scripts.

Topic Description
Defining a Parameter Explains how to define a parameter
Defining Script Objects Explains how to define a script object that

provides the implementation code for a
method

See Also

IMethodDef Interface

MethodDef Class

MethodDef Object

Meta Data Services Programming (SQL Server 2000)

Defining a Parameter
Defining a Parameter

Parameter definitions specify a parameter that is attached to a method. With parameter definitions, you can support an ordered
collection of parameters that a method uses.

To define a parameter, use the IMethodDef and IParameterDef interfaces for COM programs, or use the MethodDef or
ParameterDef objects for Automation programs.

The IMethodDef interface provides a way to define an ordered list of parameters for that method. IMethodDef is the default
interface of the CMethodDef object that the IInterfaceDef::CreateMethodDef method returns.

The IParameterDef interface enables you to define in detail each parameter of a method.

These two interfaces, along with the relationships to other classes and interfaces, are shown in the following figure.

Parameter definitions are stored in a table in the repository database called RTblParameterDef.

For more information about model graphs and conventions, see the Microsoft® SQL Server™ 2000 Meta Data Services Software
Development Kit (SDK).

See Also

Defining Methods

IMethodDef Interface

IParameterDef Interface

RtblParameterDef SQL Table

Meta Data Services SDK

Meta Data Services Programming (SQL Server 2000)

Defining Script Objects
Defining Script Objects

 New Information - SQL Server 2000 SP3.

You can assign Microsoft® ActiveX® scripts to method and property definitions in an information model. The repository engine
exposes these methods and properties, and invokes the associated script at run time. You can also use scripts to program
transient object collections.

You can create script using Microsoft JScript® and Microsoft Visual Basic® Scripting Edition (VBScript). To define scripts in your
information model, use the IScriptDef interface for COM programs or the ScriptDef object for Automation programs. Only one
script definition can be associated for each method or property.

Attaching scripts to properties that are defined as BLOBs (that is, PropertyDef objects that have SQLType set to
SQL_LONGVARBINARY or SQL_LONGVARCHAR) is not supported. Attaching scripts to large property objects does not result in
an error or warning; the script is not invoked.

IScriptDef properties do not reside on the IMethodDef or IPropertyDef interfaces by design. Associating a script at the
interface or class level allows you to implement the same method in a variety of contexts.

Security Note By default, script support in information models is disabled to prevent attackers from adding malicious script to
an information model or modifying existing script so that it damages the system or data. If malicious script is added to an
information model, it runs whenever a client accesses the properties or methods that are associated with the script.

To use script, you can create a registry setting that enables script support, and then secure the information models and repository
database to prevent unauthorized access.

To create the registry setting, open Registry Editor and navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft.
Create a registry key for Repository, and then create a subkey for Engine so that the path equals Repository\Engine. On the
Engine registry key, add a new DWORD value, name the value AllowScripting, and set the value to 1. If you want to disable
scripting later, you can set the value to 0.

The following topics provide more information about script implementation.

Topic Description
Binding Scripts Explains the binding algorithm that links

scripts to specific methods and properties
Accessing a Script Describes how to access a script
Predefined Script Variables Describes variables that you can use when

creating a script
Method Invocation for Scripted Methods Describes requirements and

considerations for invoking a scripted
method

Get Method for Scripted Properties Describes requirements and
considerations for creating the Get
function of a scripted property

Put Method for Scripted Properties Describes requirements and
considerations for creating the Put
function of a scripted property

See Also

Defining Methods

IMethodDef Interface

IScriptDef Interface

Programming Transient Object Collections

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

Binding Scripts
Binding Scripts

ScriptDef objects are bound to method and property definitions through relationships. The repository engine uses an algorithm
to support the binding.

To support scripting for both method and property interface members, a ScriptDef object is associated at the interface member
level. Because method and property definitions inherit from interface member objects, an interface member object provides the
common ground where an association between script and interface members can be made.

Because interfaces can be aliased, derived, or otherwise reused, script definitions are linked through association to support the
levels of indirection that are customary in COM programming. Associations are established through collections of classes,
interfaces, and members that you define for each ScriptDef object.

During script invocation, the repository engine reads the collections to select a script definition most closely related to the
interface. When the repository engine selects the closest script definition, it determines which method calls the script, on which
interface, and on what class. The selection process enables support for two conditions that are common to C++ programming:
inheriting a method or property implementation, and overriding a default implementation.

A method or property can be associated with the class and interface being executed, the interface being executed, or the closest
ancestor that has the script. If a script cannot be selected, then the repository engine returns an error in the case of methods.

You can implement script for methods and property validation rules that apply to:

All classes that implement the interface.

A specific class that implements the interface.

A derived interface that can override the implementation of a base interface method or property validation rule.

Each method or property can be associated with only one script definition. However, the same script definition can be associated
with multiple methods and properties.

The IScriptDef interface, along with its relationships to other classes and interfaces, is shown in the following figure.

See Also

Accessing a Script

Defining Script Objects

IScriptDef Interface

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

Accessing a Script
Accessing a Script

A script must run within the transaction of the calling program. When scripts encounter an unhandled error or exception, the
repository engine reads the error information and populates the repository error queue appropriately. To minimize syntax errors
in the script, you can use the ValidateScript method to perform a syntax check prior to script invocation.

To execute the script, the repository engine uses the Microsoft® ActiveX® Scripting Engine (VBScript) by default. If you require a
more powerful scripting engine, you must instantiate that service from within your script.

There are three different ways to access a script. The first invokes a method; the other two get or put a property.

Invoking a Method

When a script provides the implementation code for a method definition object, you must access the script through method
invocation.

When you invoke the method, the repository engine automatically executes the associated script. If there is no associated script,
the repository engine returns the error message E_NOTIMPL.

Getting and Putting Properties

You can create a script that validates a property before inserting the value of that property into the repository database. In this
case, your script (rather than the repository engine) validates the value, gets the value, and puts the value. If you are accessing
script to validate a property before storing it in a repository database, you must create Get and Put methods that are associated
with a property.

When you create scripts to retrieve and assign properties, you must always define both Get and Put operations in the same
script.

When you access any property definition object, the repository engine calls the Get portion of the script. You can use a Get
method with a property to present properties in your application differently from the way they are stored in the repository
engine. If there is no associated script, the property is returned as it is in the repository database.

When you assign a value to any property definition object, the repository engine executes the Put portion of the script. The
Put portion of the script is used to validate the value. If there is no associated script, the repository engine stores the
unvalidated value.

See Also

Defining Script Objects

Get Method for Scripted Properties

Handling Errors

Method Invocation for Scripted Methods

Put Method for Scripted Properties

Meta Data Services Programming (SQL Server 2000)

Predefined Script Variables
Predefined Script Variables

The following table lists variables that are predefined for use in scripts. Some variables are initialized as part of the repository
session.

Variable Description
ReposErr Represents an object that contains two properties:

ReposErr.Result, which is an HRESULT value that is
returned as a result of the IDispatch::Invoke call.

ReposErr.Description, which is a string that describes the
error. This value is guaranteed to exist only for errors
generated by the repository or the script engine itself.

CurRepos Represents the current repository session as an IDispatch object.
CurReposODBC Represents the IReposODBC interface on the current repository

session.
CurReposObj Represents a pointer to the IRepositoryObject2 interface. Use

this interface to represent the repository object instance on which
the method or validation is being executed.

NestedScripts Represents a Boolean variable that is stored as a thread-level
object. This Boolean variable determines whether nested scripts
are called for in the current script. If the user-set Boolean variable
does not accept nested scripts, this variable is set to FALSE. After
the operation is complete, the system sets it back to TRUE (the
default value).

See Also

Accessing a Script

Defining Script Objects

Handling Errors

IRepositoryObject2 Interface

Meta Data Services Programming (SQL Server 2000)

Method Invocation for Scripted Methods
Method Invocation for Scripted Methods

When you provide a script-based implementation for a method, the repository engine selects the script object for the method
using a binding algorithm, then invokes the script using the default script engine.

For method invocation to succeed, you must make sure that references in the script correspond to references in the method
definition. Specifically, the method name, signature, and returned values that are used to implement the script must be the same
as the name and signature of the associated method definition.

When you execute the method, it returns an HRESULT value that is copied into the error object. The method invocation returns
this value to the caller.

The method can invoke other methods, including itself. You should exercise caution when invoking a method on itself. Doing so
may create a recursive condition that can cause a failure in your application.

See Also

Accessing a Script

Defining Script Objects

Get Method for Scripted Properties

Handling Errors

Predefined Script Variables

Put Method for Scripted Properties

Meta Data Services Programming (SQL Server 2000)

Get Method for Scripted Properties
Get Method for Scripted Properties

A script-based implementation for a property requires the creation of a Get method to retrieve a property value from the
repository database.

A Get method that you provide substitutes for the get functionality that is typically provided by the repository engine. When your
script (rather than the repository engine) provides the implementation, you must handle the retrieval of a property value from the
repository database.

For a Get method to succeed, the script body must contain a function with the same name as the property, and it must be prefixed
with Get. For example, if the property name is ExtendedPrice, your script must include a function named GetExtendedPrice.

When executing the function, the repository engine first performs a lookup to find the property associated with the script. If the
property cannot be found, a repository error is returned. Otherwise, the function returns S_OK.

In addition to a Get method, you must also define a corresponding Put method within the same script. For more information, see
Put Method for Scripted Properties.

See Also

Accessing a Script

Defining Script Objects

Handling Errors

IScriptDef Interface

Method Invocation for Scripted Methods

Put Method for Scripted Properties

Meta Data Services Programming (SQL Server 2000)

Put Method for Scripted Properties
Put Method for Scripted Properties

A script-based implementation for a property requires the creation of a Put method to validate and set a property value in the
repository database.

A Put method that you provide substitutes for the set functionality that is typically provided by the repository engine. A Put
method is also the only way to validate a property value prior to saving it in the database. When your script (rather than the
repository engine) provides the implementation, you must handle setting and validation of a property value from the repository
database.

For a Put method to succeed, the script body must contain a function with the same name as the property, and it must be prefixed
with Put. For example, if the property name is ExtendedPrice, your script must include a function named PutExtendedPrice.

When the Put function is executed, the repository engine returns an error if the new value is invalid. If an error is returned, the
repository engine does not store the new value in the repository database. If the function returns S_OK, the value passed to the
function is stored in the repository database.

In addition to a Put method, you must also define a corresponding Get method within the same script. For more information, see
Get Method for Scripted Properties.

Validating Multiple Properties Simultaneously

Sometimes two properties are so intertwined that it does not make sense to validate them separately. Instead, you can validate
both properties at the same time by following these steps:

1. Set the Put method for both properties to return a descriptive error that tells the user the property cannot be set. This step
makes the property effectively read-only.

2. Create a method that accepts the values of both properties as parameters. This method validates the property combination.
You can then set each property individually.

See Also

Accessing a Script

Defining Script Objects

Handling Errors

IScriptDef Interface

Method Invocation for Scripted Methods

Predefined Script Variables

Meta Data Services Programming (SQL Server 2000)

Defining Inheritance
Inheritance enables you to share and reuse an interface or its members in new ways. The following topics discuss the inheritance
techniques that are available.

Topic Description
Interface Implication Describes the support of inheritance for

interfaces
Member Delegation Describes the support of inheritance for

interface members, specifically
relationships

Type Information Aliasing Describes how you can reuse an object by
creating a type information alias

See Also

Defining Information Models

Defining Relationships and Collections

Interface Definition Objects

Meta Data Services Programming (SQL Server 2000)

Interface Implication
Interface Implication

Interface implication enables a client application to define a correspondence between two interfaces in an information model such
that all of the members on one interface are available to members of another interface. Interface implication offers some of the
functionality of multiple inheritance, which is not allowed in COM.

Interface implication supports information model definitions of the form Interface-I1-implies Interface I2, which means that
any class that implements I1 also implements I2. Consequently, if I1 is added to the list of implemented interfaces on a class, I2
will be added to the list automatically. The engine supports implication for such classes, whether the interfaces exist at the time of
the implication definition, or are installed into the repository at a later time.

Extending an Information Model Using Interface Implication

Interface implication facilitates information model extension. By using interface implication, you can define a new interface and
require that all new and existing classes support it. Interface implication eliminates the need to write a custom procedure that
updates existing classes so that they support the new interface.

For example, consider the two interfaces IA and IB shown in the following figure. Suppose that all classes implementing IA now
need to implement IB as well. By using interface implication, you can define IA-implies-IB, as shown in the following figure. This
ensures that any class that implements IA, such as C, will also implement IB, even if class C is installed after the implication has
been defined.

Note In previous versions of the repository engine, interface implication was accomplished only by using the Model
Development Kit (MDK). With this release, this restriction no longer applies.

For more information about creating information models by using the MDK, see the Microsoft® SQL Server™ 2000 Meta Data
Services Software Development Kit (SDK).

See Also

Adding an Interface Implication

Defining Inheritance

Simulating Multiple Inheritance

Meta Data Services Programming (SQL Server 2000)

Adding an Interface Implication
Adding an Interface Implication

Interface implication is defined through IInterfaceDef2. This interface supports two collections that determine implication:
Implies and ImpliedBy. These collections allow you to define both directions of an implication.

During a commit of any transaction that includes an interface that has an Implies collection attached to it, the repository engine
adds all implied interfaces to an existing class and then recalculates the class. The result of the recalculation is the same as if the
class implemented the implied interface directly.

See Also

Defining Inheritance

Interface Implication

IInterfaceDef2 Interface

Meta Data Services Programming (SQL Server 2000)

Member Delegation
Member Delegation

Member delegation supports the assignment of members on one interface to base members on another interface. Delegation can
be used to support relationship inheritance.

The following topics provide more information.

Topics Description
Derived Members Describes derived members and strategies

for using derived members in your
information model

Derived Member Requirements Explains the conditions and requirements
that support member derivation

Creating a Derived Member Describes how to create a derived
member and how to add a derived
member to an existing class

Derivation Behavior Explains how the repository engine stores,
retrieves, and updates derived members

Example: Basic Member Delegation Provides sample code that illustrates
member delegation

Example: Member Delegation with
Filtering

Provides sample code that illustrates
filtering on derived collections

See Also

Defining Inheritance

Interface Implication

IInterfaceDef2 Interface

Meta Data Services Programming (SQL Server 2000)

Derived Members
Derived Members

Derived members is a capability that can be used to delegate the implementation of members of one interface to members of
another interface, where both interfaces are implemented by the same class.

Aliasing is a simplified form of member delegation, where a member of one interface is derived from a member of another
without modifying its underlying semantics. Through aliasing, you can overlap functionality for multiple interfaces.

For example, when interfaces evolve, you can rename properties and methods, place them on different interfaces, and still
maintain the naming scheme of the original interface. Similarly, aliasing provides a way to flatten multiple interfaces into a single
interface that contains members from all of them. The advantage to flattening a set of interfaces is that it simplifies navigation.
Also, aliasing simulates multiple inheritance.

Note You can define aliases for type information elements other than members. For more information about type information
aliasing, see Type Information Aliasing.

The following topics discuss how member derivation aliasing enables these scenarios.

Topic Description
Supporting Multiple Interfaces With
Overlapping Functionality

Describes how you can reuse interface
definitions through derived members.

Flattening Interfaces Describes how you can combine interface
members into one interface to simplify
navigation.

Simulating Multiple Inheritance Explains how you can simulate multiple
inheritance using derived members.

A semantically richer variant of derived members allows a collection on one interface to be derived from a collection on another
interface while, at the same time, filtering out some of the base collection members.

The following topics discuss how member derivation enables these scenarios.

Topic Description
Specializing Relationship Collections Describes how you can create special-

purpose collections that are based on a
general-purpose collection.

Filtering Derived Collections Describes how you can apply filtering
techniques to a derived collection.

See Also

Creating a Derived Member

Defining Inheritance

Derived Member Requirements

Meta Data Services Programming (SQL Server 2000)

Supporting Multiple Interfaces With Overlapping Functionality
Supporting Multiple Interfaces With Overlapping Functionality

As an information model changes to accommodate new functionality, it is common to create a new interface by evolving an
existing interface. In this situation, the two interfaces (the old and new versions) have overlapping functionality. The two interfaces
can exist together when the old version of the interface must still be supported. In this case, properties can be renamed and
placed on different interfaces while keeping the underlying semantics synchronized between the interfaces.

The following graph shows an object exposing the two interfaces:

I1: An interface with a base member M1.

I2: An interface with a derived member M2.

By using member delegation from I2 to I1, the user can either call the base member (that is, I1::M1), or call the derived member
(that is, I2::M2), which will be delegated to I1::M1.

For more information about other ways of combining interface members, see Flattening Interfaces and Simulating Multiple
Inheritance.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming (SQL Server 2000)

Flattening Interfaces
Flattening Interfaces

You can use derived members to flatten a set of interfaces of a class into a single interface. In this case, the new interface contains
all of the combined members of the flattened interfaces. This simplifies the use of the class, because your application does not
need to navigate between interfaces of the class.

In the following figure, an object exposes two interfaces, I1 and I2, whose members are M1 and M2. By delegation, the two
interfaces could be flattened into one interface I3 that contains the derived members Md1 and Md2. In this case the call I3::Md1
will be mapped to I1::M1, and the call I3:Md2 will be mapped to I2::M2.

For more information about other ways of combining interface members, see Supporting Multiple Interfaces With Overlapping
Functionality and Simulating Multiple Inheritance.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming (SQL Server 2000)

Simulating Multiple Inheritance
Simulating Multiple Inheritance

In COM, multiple inheritance between interfaces is not supported. However, by using the derived members capability, multiple
inheritance can be simulated.

For example, the following figure shows an interface IA that inherits from IB, and implies IC (meaning that any class that supports
IA must also support IC). According to COM, IA cannot inherit from IC because it already inherits from IB. However, with
delegation, the members of IC could be made available on IA. This is not inheritance, because IC members are not explicitly
mapped into IA. Nevertheless, the result is the same because IA now includes members of both IB and IC.

For more information about other ways of combining interface members, see Flattening Interfaces and Supporting Multiple
Interfaces With Overlapping Functionality.

See Also

Creating a Derived Member

Derived Members

Interface Implication

Meta Data Services Programming (SQL Server 2000)

Specializing Relationship Collections
Specializing Relationship Collections

Using derived members makes it possible to create a subset or specialize a relationship collection.

For example, in the following figure, Vehicle is related to Engine through the relationship vehicle has engine. Because the Motor
Vehicle uses an Internal Combustion Engine, it requires specializing the general relationship vehicle has engine to
motorVehicle has internalCombustionEngine. The last relationship is specialized in Truck to truck has dieselEngine.

For more information about other ways of specializing a collection, see Filtering Derived Collections.

See Also

Creating a Derived Member

Derived Members

Meta Data Services Programming (SQL Server 2000)

Filtering Derived Collections
Filtering Derived Collections

By using filtering, it is possible to derive specific collections from a general collection. Filtered collections apply to inherited
interfaces.

The following example illustrates the basic concept of filtering. In the figure, IDoc1 interface has the Elements collection
definition, which contains figures and text. You may find it useful to access only the text or only the figures. With the derivation
mechanism that uses filtering, the IDoc2 interface can have two collection definitions, Figures and Text. The first contains only
figures, and the second contains only text.

Architecture of Filtered Derived Collections

To create a filtered derived collection, you must set up parallel collections that correspond to the base collections. You must define
a derived origin collection for the base origin collection, a derived destination collection for the base destination collection, and a
derived relationship collection for the base relationship collection. The following example provides an illustration.

The following figure shows two base objects and the collections that relate them.

In the next figure, Table object inherits from Package object and Column object inherits from Element object. Derived
collections include the Table collection, the Column collection, and the Relationship collection that joins them.

In this example and in all cases where filtering applies, the derived collection is a subset of the base collection. The Table
collection is made up of a subset of the items in the Package collection. The derived relationship matches the items in the Table
subset with the items in the Column subset.

For more information about other ways of specializing a collection, see Specializing Relationship Collections.

See Also

Derived Members

Example: Member Delegation with Filtering

Filtering Collections

Meta Data Services Programming (SQL Server 2000)

Derived Member Requirements
Derived Member Requirements

Before you define a derived member, verify that conditions supporting the implementation are in place.

General Requirements

The following requirements apply to all derived members.

A class that supports an interface with a derived member must also support the interface on which the corresponding base
member is defined. In other words, the interface with the derived member must either inherit or imply the interface with the
base member.

A derived member can be on the same or a different interface as its base member.

A derived member can be derived from another derived member. An interface member must ultimately derive from a
member that is not derived. In other words, cyclic derivations are not allowed.

Derived members can be defined for any interface that is an instance of InterfaceDef, including built-in repository engine
interfaces, such as IRepositoryObject.

Derived Property Definition Requirements

For property definitions, storage data types and lengths of derived properties must be the same as those of the base property.

Derived Collection Definition Requirements

Because a derived collection must map to a base collection, the derived collection and base collection must have correspondent
characteristics.

The following requirements apply to derived collections.

Collection Type

A derived origin collection must map to a base origin collection, and a derived destination collection must map to a base
destination collection.

Relationship Type

A derived collection can be connected by way of a relationship only to another derived collection. However, a derived collection
cannot be connected to a base (stored) collection.

A derived collection definition must be defined in the same transaction as the collection from which it was derived, on the same
relationship.

Two derived relationships can specialize the same base relationship and have their collections on the same pair of interfaces.
However, because only the generalized relationship is stored in the relationship table (RTblRelships), instances of the two
specialized relationships are indistinguishable.

N aming

A derived collection must be identical to the base collection with regard to naming characteristics. If the base collection specifies
unique naming, the derived collection must also contain uniquely named items. Furthermore, if you add items to a base collection
by way of the derived collection, you must verify that the items you add do not break the unique naming constraints of the base
collection. For more information, see Naming and Unique-Naming Collections.

Sequencing

A derived collection must be identical to the base collection with regard to sequencing characteristics. Inserting an item into a
derived sequenced collection inserts the new relationship into the base collection immediately after its predecessor in the derived
collection. Also, moving an item in the derived collection moves the item in the base collection immediately after its predecessor

in the derived collection. For more information, see Sequenced Collections.

Delete Propagation

The delete propagation semantics of a derived collection must be the same as the base collection. For more information, see
Propagating Deletes.

Version Propagation

The version propagation semantics of a derived collection must be the same as the base collection. For more information, see
Propagating Versions.

See Also

Creating a Derived Member

Defining Inheritance

Example: Basic Member Delegation

Example: Member Delegation with Filtering

IInterfaceMember2 interface

InterfaceMemberFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

Creating a Derived Member
Creating a Derived Member

Interface members are either base members or derived members. A derived member is mapped to another interface base
member through a relationship. Member derivation supports mapping of the form MemberB Is-Derived-From MemberA,
which means that MemberA provides implementation for MemberB.

How to Define a Derived Member

Before you can define a derived member, you must verify that the interface that includes the derived member and the interface
that contributes the base member are implemented by the same class. For more information about conditions and constraints
that apply to derived member definition, see Derived Member Requirements.

To define a derived member, use the IInterfaceDef2::CreateAlias method to create an alias that represents the derived member.
Aliases are created from the interface on which you add the derived member.

If you use CreateAlias, the derived member is automatically mapped to the base member providing implementation details.
Mapping is achieved by adding the derived member and the base member to collections. The base member is added to the
ServicedByBaseMember (the origin) collection, and the alias to the ServicesDerivedMembers (the destination) collection. The
two collections are the two sides of the BaseMemberServicesDerivedMembers relationship class. IInterfaceMember2
provides these collections.

After you create a derived member, you can add a property definition object to the derived member to enhance its definition.

Adding a Derived Member to an Existing Class

You can add an interface containing derived members to an existing class. No modification of the instances is required as long as
both the derived members and the existing instances of the class have valid data for the properties and collections.

However, in one case some existing instances of the class may be undesirable, although they're technically valid. In this case, an
interface with a derived collection, for example, may be added to a class that already has instances, and the base member may be
read-only. This means that new relationships on instances of this class can be added to the derived collection but not (directly) to
the base collection. Thus, all new relationships in the base collection will conform to the definition of the derived collection.
However, at the time the derived collection definition was added, there may have been existing instances of the class with
relationships on the base collection that do not conform to the derived collection.

Updating a Derived Member

You can define whether a derived member can be updated. Update capability is enabled by default. To prohibit updating, set the
INTERFACEMEMBER_READONLY flag to TRUE. For more information, see Derivation Behavior and InterfaceMemberFlags
Enumeration.

See Also

Defining Inheritance

Example: Basic Member Delegation

Example: Member Delegation with Filtering

IInterfaceDef2::CreateAlias

IInterfaceMember2 interface

Meta Data Services Programming (SQL Server 2000)

Derivation Behavior
Derivation Behavior

The following are detailed rules for derivations that apply to storage, retrievals, updating collections, and adding derived
members to an existing class.

Storage

A property or relationship is always stored by the repository engine on the base interface. That is, there are no instances of
derived relationships in RTblRelships and there are no columns allocated for derived properties in the repository SQL table of
their interface.

Retrievals

When a derived collection is referenced, the repository engine materializes the derived collection by applying a filter to the base
collection. For each instance in the base collection, the engine determines whether the target object supports the target interface
of the derived collection. The effect for a relationship collection is that all instances are visible at the general level in the base
collection, and subsets of the generalized relationship instance collection are visible at the more specialized levels in the derived
collections.

Updates to Collections

Use IInterfaceMember::Flags to determine whether a derived or base member is updateable.

Add, remove, insert, and move methods on the derived collection are delegated to the corresponding operation on the
corresponding item in the base collection. An insert or move method on a sequenced collection places the item relative to the
derived collection. For more information about sequencing, see Derived Member Requirements.

The count, enumeration, and type methods on a derived collection are specific to that collection.

See Also

Creating a Derived Member

Defining Inheritance

Example: Basic Member Delegation

Example: Member Delegation with Filtering

IInterfaceMember2 interface

InterfaceMemberFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

Example: Basic Member Delegation
Example: Basic Member Delegation

This example includes sample code for creating a derived property and a derived collection. This example illustrates how to create
a new interface and define the derived property. Creating a relationship with a predefined base property declares that this
property is derived. Similarly, this example also illustrates how to define a derived collection. The same procedure is used for
method definitions. There is no change in the programming logic of setting and getting properties or manipulating collections.

The following table identifies the Repository Type Information (RTIM) objects and the corresponding pointers that appear in the
sample code.

RTIM object Pointer
IinterfaceDef *pINewIface;
IclassDef *pIClassDef;
IpropertyDef *pIBaseProp, *pIDerivedProp;
IrelationshipDef *pINewRelshipDef;
IrelshipColDef *pIBaseCol, *pIDerivedCol;
IreposTypeLib *pITypeLib;

In order to run this sample, you must create a type library and a class definition for a new interface. Also, the collection pIBaseCol
(a collection that is the same type as the one being delegated) and the property pIBaseProp (a property that is the same type as
the one being delegated) must have been defined earlier. The pointers pIBaseCol and pIBaseProp are assumed to have been
already set before running this example.

// Create a new interface:
pIClassDef->CreateInterfaceDef(CRepVariant(OBJID_INewOrgIface),
CVariant("INewIface"), CRepVariant(IID_INewIface), pIIReposDispatch,
CVariant("Default"), &pINewIface);

// Create an alias property:
pINewIface->CreateAlias(CRepVariant(OBJID_ALongDerived),
CVariant("ALongDerived"), DISPID_ALongDerived, pIBaseProp,
&pIDerivedProp);

// Create an alias collection:
pINewIface->CreateAlias(CRepVariant(OBJID_CollectionDerived),
CVariant("CollectionDerived"), DISPID_CollectionDerived,
pIBaseCol, &pIDerivedCol);

See Also

Creating a Derived Member

Defining Inheritance

Example: Member Delegation with Filtering

Meta Data Services Programming (SQL Server 2000)

Example: Member Delegation with Filtering
Example: Member Delegation with Filtering

The repository stores information that determines whether a derived collection can be filtered for objects that support a certain
target interface.

To filter a derived collection, you must create two derived collection definitions and a new relationship to connect them. One
derived collection contains the target objects of interest (that is, the set of target objects, minus those that do not match your filter
criteria). The second derived collection contains the origin object. You need a derived origin collection whenever you want to
create a relationship that includes a derived destination collection. The new relationship type is used to match the collections.

Note If the derived collections were connected by the relationship type as the base collections, there would be two collections on
each side of the relationship type, and the matching of origin and destination collections would not be well defined.

The following table identifies the Repository Type Information (RTIM) objects that are used to create derived collections and
shows the corresponding pointers that appear in the example code.

RTIM object Pointer
IInterfaceDef *pINewOrgIface, *pIDestIface, *pIIReposDispatch;
IClassDef *pIClassDef;
IPropertyDef *pIBaseProp, *pIDerivedProp;
IRelationshipDef *pINewRelshipDef
IRelshipColDef *pIBaseOrgCol, *pIDerivedOrgCol;
IRelshipColDef *pIBaseDstCol, *pIDerivedDstCol;
IReposTypeLib *pITypeLib;

In order to run this sample, you must create a type library and a class definition for a new interface. Also, the interface
pIDestIface must exist, as well as a relationship from this interface with two collections, pIBaseOrgCol and pIBaseDstCol. The
pointers pIDestIface, pIBaseOrgCol, and pIBaseDstCol are assumed to have been already set before running this example.

// Create interfaces for a given class:
pIClassDef->CreateInterfaceDef(CRepVariant(OBJID_INewOrgIface),
CVariant("INewOrgIface"), CRepVariant(IID_INewOrgIface),
IIReposDispatch, CVariant("Default"), &pINewOrgIface);

// Create a new relationship type:
/* Notice that CVariant is a wrapper of the VARIANT class defined
 in the header file "oleutil.h" */
pITypeLib->CreateRelationshipDef(CRepVariant(OBJID_NULL),
CVariant("A_Relationship"), &pINewRelshipDef);

// Create an origin collection definition:
pINewOrgIface->CreateRelationshipColDef(CRepVariant(OBJID_Members),
CVariant("Members"), DISPID_Members, TRUE, COLLECTION_NAMING,
pINewRelshipDef, &pIDerivedOrgCol);

// Get the ServicedBy collection and add the base origin collection:
pIDerivedOrgCol->Interface("IInterfaceMember2")
 .ServicedBy.Add(pIBaseOrgCol);

// Create the destination collection:
pIDestIface->CreateRelationshipColDef(CRepVariant(OBJID_NULL),
CVariant("Parent"), DISPID_Parent, FALSE, NULL, pINewRelshipDef,
pIDerivedDstCol);
// Get the ServicedBy collection and add the base destination collection:
pIDerivedDstCol->Interface("IInterfaceMember2")
 .ServicedBy.Add(pIBaseDstCol);

In this example code, the derived origin collection will filter the objects that support the IDestIface interface. Note that a new
relationship type is defined. The relationship instances, however, will not use this relationship type. All of the collections will
continue to use the base relationship type instead. The new relationship type will be used to identify the matching collections in
RTblRelColDefs.

See Also

Creating a Derived Member

Defining Inheritance

Example: Basic Member Delegation

Filtering Derived Collections

Meta Data Services Programming (SQL Server 2000)

Generating Views
A repository database stores classes, properties, and relationships in a table structure that does not reflect the composition of an
information model. While this arrangement is optimal for the repository engine, it can be difficult to work with if you want to
query the database.

To simplify querying, you can generate SQL views of your repository database that correspond to an information model. An SQL
view provides a mechanism for gathering elements from the repository tables and assembling them into a virtual table that
resembles a specific class, interface, or relationship in your information model. Generated views simplify database queries by
eliminating the need to understand the underlying structure of a repository database. In addition, views allow you to represent
any relationship, including a many-to-many relationship, as a junction table view, which is something you cannot specify in an
information model. Views also provide a way to represent each many-to-one relationship as a foreign key.

View Types

You can define three kinds of SQL views for each class, interface, and relationship. For more information about each view type,
see Defining Views in an Information Model and Kinds of SQL Views.

Performance varies for each kind of view. For more information about how to improve view performance, see View Hints.

How to Generate Views

View generation requires Microsoft® SQL Server™ 2000 and repository engine 3.0. The 3.0 repository database format provides
storage for the view definitions you add to an information model. For more information about upgrading to a 3.0 database, see
Upgrading and Migrating a Repository Database.

View generation is performed by the repository engine in response to flags that you set in the information model. If, while
creating a model, the repository engine finds one of these flags set to True, it generates an SQL view from your view definitions.

By default, view generation flags are set to False. To generate a SQL view after an information model is installed, you can write
code that sets the flags to True. You can also set the flags in an information model, then reinstall it.

The repository engine synchronizes your generated views with subsequent changes you make to an information model (for
example, adding an interface to a class or adding an interface implication). As long as view generation flags remain set to True,
synchronization occurs automatically.

Storing SQL Views

View definitions are stored in the repository SQL tables. Class view definitions are stored in the RTblClassDefs table. Interface
view definitions are stored in the RTblIfaceDefs table. Junction table view definitions are stored in the RTblRelshipDefs table.

Generated views are stored by your DBMS in the same catalog and schema that contains your information model.

See Also

Repository Databases

RTblClassDefs SQL Tables

RTblIfaceDefs SQL Tables

RTblRelshipDefs SQL Tables

Meta Data Services Programming (SQL Server 2000)

Defining Views in an Information Model
Defining Views in an Information Model

Before you can generate a view, you must add view definitions to your information model using IViewClassDef,
IViewInterfaceDef, or IViewRelationshipDef.

You must set at least one of the following flags to cause view generation: GENERATE_RESOLVED_VIEW,
GENERATE_NORESOLUTION_VIEW, or GENERATE_WORKSPACE_VIEW. Each one of these flags generates a different kind of view.

You can add view definitions using the Model Development Kit (MDK) or the repository API. The following topics describe the
kinds of SQL views you can generate.

Topic Description
Kinds of SQL Views Describes the scope and attributes of

generated views.
Defining a Class View Provides information about SQL views that are

based on a class.
Defining an Interface View Provides information about SQL views that are

based on an interface.
Defining a Junction Table View Provides information about SQL views that are

based on a relationship class.
Defining View Columns Provides information about customizing a

view column.

MDC OIM SQL Views

The Meta Data Coalition (MDC) Open Information Model (OIM) is distributed with predefined SQL views that are ready to use.
These views are added to the views folder of your Microsoft® SQL Server™ 2000 repository database when the MDC OIM is
installed.

See Also

Generating Views

Naming Conventions for Generated Views

Meta Data Services Programming (SQL Server 2000)

Kinds of SQL Views
Kinds of SQL Views

View definitions can be defined for a shared repository and for workspaces. Flags that you specify on each interface determine the
number and type of views that are generated and whether implied interfaces are included in the view.

For each class, interface, and relationship class, you can define three kinds of views.

Kind of view Description
Workspace A view that is scoped by a workspace, so it includes only

objects that are contained by the workspace. This view is
defined when you set GENERATE_WORKSPACE_VIEW.

Version Resolved A view that supports version resolution, so it includes only the
latest version of each object in the shared repository. This view
is defined when you set the GENERATE_RESOLVED_VIEW. For
more information, see Version Resolution for Generated Views.

Unresolved A view that does not support resolution, to be used only when
the repository is not versioned or when you know that version
information does not exist or is unimportant. This view is
defined when you set the GENERATE_NORESOLUTION_VIEW.

Running an unresolved view against a versioned repository
returns multiple entries (that is, all versions of all meta data
instances are returned).

Note These views are not mutually exclusive; you can create all three, depending on your requirements.

Choosing one kind of view over another can have an effect on performance. For more information, see View Hints.

See Also

Defining a Class View

Defining an Interface View

Defining a Junction Table View

Generating Views

Versioning Objects

Workspace Management Overview

Meta Data Services Programming (SQL Server 2000)

Defining a Class View
Defining a Class View

You can direct the repository engine to create a class-oriented view for a class definition object. The generated view includes all
the properties (one column for each property) of every interface that is implemented by the class, including those that are implied
and inherited. It also includes all many-to-one relationships on those interfaces, representing each one as a foreign key.

When defining a class view, you should verify that the combination of interfaces does not produce a duplicate column name (for
example, a Name property on two separate interfaces). To ensure that column names are unique, you can create a view column
name. For more information, see IViewPropertyDef Interface, Defining View Columns, and Naming Conventions for Generated
Views.

To create a class view, use IViewClassDef in a way that is similar to the following example:

Dim oTypeLib as ReposTypeLib
Dim oTable as ClassDef
Dim oViewTable as IViewClassDef
set oTable = oTypeLib.CreateClassDef(objid_null, oTypeLib_name, oTypeLib_clsID)
set oViewTable=oTable
// Generate a workspace-scoped view by specifying bit=4
oViewTable.flags=4

For more information about properties and flags that you can specify, see Defining Views in an Information Model and
IViewClassDef Interface.

See Also

Defining a Junction Table View

Defining an Interface View

RTblClassDefs SQL Tables

Meta Data Services Programming (SQL Server 2000)

Defining an Interface View
Defining an Interface View

You can direct the repository engine to create an interface-oriented view for an interface definition object. The generated view
includes all properties, including those that are available by way of inheritance, implication, or derivation. It also includes all
many-to-one relationships on those interfaces, representing each one as a foreign key.

Interface views are useful for abstract interfaces that are further specialized by other interfaces or that are implemented by
different classes. For example, suppose that IStudent and IEmployee both inherit from IPerson. Assume that IStudent and
IEmployee are implemented by classes, but that no class exists for IPerson. By generating a view for IPerson, you can include
instances of both IStudent and IEmployee using one view.

To create an interface view, use IViewInterfaceDef. For more information about properties and flags that you can specify, see
Defining Views in an Information Model and IViewInterfaceDef Interface.

See Also

Defining a Class View

Defining a Junction Table View

RTblIfaceDefs SQL Tables

Meta Data Services Programming (SQL Server 2000)

Defining a Junction Table View
Defining a Junction Table View

You can direct the repository engine to create a junction-table view for a relationship class. This is the only way to represent a
many-to-many relationship. You can also create a junction-table view for a many-to-one relationship, although you can express
this kind of relationship using a foreign key instead.

For more information, see IViewRelationshipDef Interface.

See Also

Defining a Class View

Defining an Interface View

Defining Views in an Information Model

IReposQuery Interface

RTblRelshipDefs SQL Tables

Meta Data Services Programming (SQL Server 2000)

Defining View Columns
Defining View Columns

Column names are generated from property interface members. There is one column for each property.

You can create custom names for view columns. Creating custom names can eliminate duplicate names in cases where columns
from multiple interfaces are defined in the same view. For more information about defining column names, see IViewPropertyDef
Interface.

Using Prefixes to Distinguish Between Names

When necessary, the repository engine adds prefixes to disambiguate identical names. Duplicate names are most likely to occur
when you generate a class view on a class that implements interfaces that contain members of the same name.

To resolve duplicate column names, the repository engine attaches the interface name as a prefix to each occurrence of the
column name.

For example, consider the following two interface members, ISpellchecker::Name and IThesaurus::name. When creating a view
that combines both members, one item will be called ISpellchecker.Name and the item will be called IThesaurus.name.

The combined name of base, interface prefix, and view type prefix cannot exceed the maximum length of 118 characters for view
columns. For more information, see Naming Conventions for Generated Views.

See Also

Defining a Class View

Defining a Junction-Table View

Defining an Interface View

Meta Data Services Programming (SQL Server 2000)

Version Resolution for Generated Views
Version Resolution for Generated Views

Version resolution determines which version of the repository object is included in a view when there are multiple versions to
choose from. Version resolution does not apply to Workspace views. A Workspace view contains whatever version of the object is
included in the workspace.

Version Resolution Strategy

When generating a view, the repository engine selects the last version of every object. Depending on the combination of versions
and relationships that exist, this strategy can exclude some versions from the view, even if they are related to a version that is in
the view.

For example, suppose you define a view that contains version one of ObjectA (VersionA1), which is related to version one of
ObjectB (VersionB1). If VersionB1 has a successor, VersionB2, the repository engine selects VersionA1 and VersionB2 for the
view. Because there is no relationship between VersionA1 and VersionB2, the generated view does not reflect the relationship.

Because view definitions resolve to a single version, version identifiers are not usually included in a view. However, views that use
IRepositoryODBC::ExecuteQuery to run directly against the underlying database system may need the VersionID column for a
subsequent GetObject operation. To handle this case, you can include the VersionID column in the view. This column indicates
which version of an object is selected by version resolution. You can include the VersionID column by setting the
USE_VERSIONID_COLUMN flag on the view definition interface.

See Also

Defining Views in an Information Model

Filtering Collections

IRepositoryODBC Interface

IReposQuery Interface

Meta Data Services Programming (SQL Server 2000)

Naming Conventions for Generated Views
Naming Conventions for Generated Views

When you generate views, you can either specify a name through your application code or you can allow the repository engine to
specify a default view name. View names must conform to certain guidelines.

View names can have a maximum length of 128 characters. View column names can have a maximum length of 118 characters.

SQL keywords are allowed for view names and view column names.

Note If a view name exceeds 128 characters and it is not prefixed, the view name will be truncated to 128 characters.

Name Composition

View names are composite names, formed from a base view name and a prefix.

The base view name can be provided by your application code and stored in a repository database. If no view name is provided, a
default base name is created from the name of the class, interface, or relationship on which the view is based. Default names are
not stored in a repository database.

If you generate two or more kinds of view, the repository engine adds a prefix to distinguish the kind of view (class, interface, or
junction-table) and whether it is resolved.

Prefix Composition

Prefixes are six characters in length, composed of view type and view resolution indicators. Prefixes are added only when it is
necessary to distinguish between kinds of views. If you generate one view for each class, interface, or relationship, no prefix is
created. If you generate two views for each class, interface, or relationship, one of the views will be prefixed. If you generate three
views, two of the views will be prefixed.

Prefixes are assigned based on priority. The following table indicates how priority rotates depending on the kinds of views that
are generated. A Workspace view is always priority 1 if it is generated, and it is never prefixed. If a Workspace view is not
generated, priority 1 shifts to Version Resolved. If neither a Workspace view nor a Version Resolved view is generated, priority 1
shifts to Version Unresolved.

Workspace Version Resolved Version Unresolved
Priority 1 (not prefixed) Priority 2 (prefixed) Priority 3 (prefixed)
Priority 1 (not prefixed) Priority 2 (prefixed)
 Priority 1 (not prefixed) Priority 2 (prefixed)
 Priority 1 (not prefixed)

The following table describes each component of the prefix.

Prefix component Description
RVw Indicates a repository view.
C, I, or J Indicates a class view, interface view, or junction-table view.
R or N Indicates whether a view is resolved (R) for multiple versions,

or not resolved (N).
_ Separates the prefix from the base name.

View Name Example

The following table shows the combined base name and prefix for each view type, for each kind of view you can generate.

View
type

Workspace Version Resolved Version Unresolved

Class MyClassViewName RVwCR_MyClassViewName RVwCN_MyClassViewName
Interface MyIFaceViewName RVwIR_MyIFaceViewName RVwIN_MyIFaceViewName
Junction-
Table

MyRelshipViewName RVwJR_MyRelshipViewName RVwJN_MyRelshipViewName

See Also

Generating Views

Defining Views in an Information Model

RTblIfaceDefs SQL Tables

RTblRelshipDefs SQL Tables

Meta Data Services Programming (SQL Server 2000)

Querying a Repository Database Using SQL Views
Querying a Repository Database Using SQL Views

 New Information - SQL Server 2000 SP3.

To query a database using a view, you can use the IRepositoryODBC::ExecuteQuery method or you can run queries using SQL
commands. The following example illustrates one approach. Other query syntax is required for querying Workspace views.

dim oRepos as Repository
dim ODBC as IRepositoryODBC
set ODBC=oRepos
ODBC.ExcecuteQuery("select intID from cTable where TableName="Customer")

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

The addition of a SQL view makes it easier to build select statements that correspond to your information model.

To perform a query, the object that you specify must implement IRepositoryODBC, which provides the ExecuteQuery method.

Instead of referencing the generated view in your SELECT statement, you specify the class, interface, or relationship object for
which you defined a view definition and generated the corresponding view. In this case, cTable is a class that has a corresponding
IViewClassDef defined for it, and a generated view that is available to it. Microsoft® SQL Server™ 2000 uses the generated SQL
view transparently to process the query. You do not need to specify the name of the view when creating the query.

Note Collection filters can also be used to facilitate querying. For more information, see Filtering Collections.

Querying Workspace Views

Workspace views are created as user-defined functions. The name of the user-defined function is the view name that you specify.
When querying a workspace, you must pass in the workspace IntID.

The following example illustrates one way to query a Workspace view. In this example, MyUDF is the view name.

dim oRepos as Repository
dim ODBC as IRepositoryODBC
set ODBC=oRepos
ODBC.ExcecuteQuery("select * from MyUDF(IntID)")

See Also

Generating Views

IReposQuery Interface

Meta Data Services Programming (SQL Server 2000)

Installing Information Models
Installing a model is the process of defining an information model in a repository database. When you install an information
model, the repository engine adds entries to the repository SQL schema. After a model is installed, it is available for tools and
applications. You can program against an installed information model using the repository API.

Before you can install a model, you must compile it using the Modeling Development Kit (MDK) in the Microsoft® SQL Server™
2000 Meta Data Services Software Development Kit (SDK). Compiled models have an .rdm file extension.

Note If you are using Open Information Model (OIM) models, Meta Data Services distributes ready-to-install .rdm files for each
model.

The following table lists four approaches to installing a model.

Installation approach Description
Meta Data Browser Provides a dialog box so that you can browse to

the file you want. For more information, see Using
Meta Data Browser.

Command line utility Enables you to run a model installation from a
command line. For more information, see Using
the Model Installer from the Command Line.

Microsoft® ActiveX® component Enables you to install an information model from
your application code using a program that Meta
Data Services provides. For more information, see
Using the Model Installer ActiveX Component.

Repository API Enables you to install an information model
programmatically using methods. For more
information, see
IManageReposTypeLib::CreateTypeLib and
ReposRoot CreateTypeLib Method.

See Also

Information Models

Information Model Fundamentals

Meta Data Services Programming (SQL Server 2000)

Using the Model Installer from the Command Line
The model installer can be executed through the command-line utility Insrepim.exe. By default, this utility is located in the folder
C:\Program Files\Common Files\Microsoft Shared\Repository. It reads an .rdm file produced by or distributed with the
Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK). From the .rdm file, the utility extracts meta
data from the information model and stores it in a repository database. You use command-line arguments to specify the
repository database.

Syntax

InsRepIM.exe /f[Model File] /r[Repository Connection String] /u[User] /p[Password]

Parameters

Value Description
[Model File] The compiled information model (.rdm)

file
[Repository Connection String] The repository database file, either a Data

Source Name (DSN) or database and
authentication information

[User] The user name
[Password] The user password

See Also

Connecting to and Configuring a Repository

Meta Data Services SDK

Meta Data Services Programming (SQL Server 2000)

Using the Model Installer ActiveX Component
The file Insrepim.dll is a Microsoft® ActiveX® DLL located in the folder C:\Program Files\Common Files\Microsoft
Shared\Repository. It can be used from either a Microsoft Visual Basic® application or a Microsoft Visual C++® application to
programmatically install a model file into a repository database.

The component supports the following method:

HRESULT InstallRDM(

BSTR Connect,

BSTR RdmFile,

BSTR UserName,

BSTR Password

);

Parameters

Connect
[in]
The repository connection string used to access the database server that hosts the repository database.

RdmFile
[in]
The compiled information model (.rdm) file.

UserName
[in]
The user's name.

Password
[in]
The user's password.

Return Value

S_OK
The method completed successfully.

Error Code
The method failed to complete successfully.

See Also

Connecting to and Configuring a Repository

Repository Errors (Alphabetical Order)

Meta Data Services Programming (SQL Server 2000)

Programming Information Models
After you define and install an information model in a Microsoft® SQL Server™ 2000 Meta Data Services repository, you can use
the object definitions in the repository in your application code.

The following topics provide information about accessing and manipulating objects in a repository.

Topic Description
Navigating a Repository Describes how to access objects through

collection navigation, and identifies the
repository API objects that perform object
manipulation

Versioning Objects Explains how to version objects,
manipulate object versions, and merge
versions

Programming BLOBs and Large Text
Fields

Describes programming support for
binary large objects (BLOBs) and large text
fields

Programming Transient Object Collections Explains how to program a transient
object collection

Managing Transactions and Threads Describes how to set up a transaction, and
how the repository engine processes a
transaction in single and multiple threads

Managing Workspaces Explains how to set up and manage a
workspace, and how to manipulate
workspace contents

Handling Errors Describes how to handle errors
Optimizing Repository Performance Describes optimization techniques that

you can use to improve repository
performance

See Also

Defining Information Models

Information Models

Meta Data Services Programming (SQL Server 2000)

Navigating a Repository
Because the objects represented in a Microsoft® SQL Server™ 2000 Meta Data Services repository are connected through
relationships, you can navigate from one object to any related object. Relationships are implemented through collections. To
navigate, you must traverse a collection.

This section describes the process of retrieving objects related to a given object. This section requires an understanding of the
information presented in the Repository Type Information Model (RTIM).

The following topics describe how to navigate a repository.

Topic Description
Navigation Overview Provides basic information about navigation

elements and strategies
Accessing a Repository Identifies the methods you can use to create or

open a repository database, handle errors, and set
up a transaction

Accessing Repository Objects Identifies the methods you can use to manipulate a
repository object

Accessing Properties Identifies interfaces you can use to acquire
information about an object

Accessing Relationships Identifies the methods you can use to manipulate a
relationship

Accessing Relationship
Collections

Identifies the methods you can use to manipulate a
relationship collection

Accessing Target Object
Collections

Identifies the methods you can use to manipulate a
target object collection

Selecting Items in a Collection Explains how to select items in a collection and
how to work with enumerated items in a collection

Propagating Deletes Describes how deleting one object can cause the
automatic deletion of subsequent objects

See Also

Repository Object Architecture

Repository Type Information Model

Meta Data Services Programming (SQL Server 2000)

Navigation Overview
Navigation Overview

The information in a Microsoft® SQL Server™ 2000 Meta Data Services repository is a network of objects and relationships. You
navigate through this network using collections. Depending on your objective, you can retrieve an object collection, a relationship
collection, or some other special-purpose collection.

Typically, you navigate to an object because you want to manipulate it. Manipulations include retrieving or setting a property,
deleting an object, deleting a relationship between two objects, or adding a relationship between two objects.

The following figure represents a relationship between a Table origin object and a Column destination object. The relationship
type is table has columns. In this relationship, one table can have many columns.

Subsequent topics explore the navigable relationships and strategies that you can implement based on this single origin-
destination pairing of Table to Column.

The following topics provide this information.

Topic Description
Navigating a Relationship from Two
Directions

Describes how you can navigate a relationship
from either object in the relationship

Navigating a Relationship Using
Two Approaches

Describes alternate approaches for navigating

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Navigating a Relationship from Two Directions
Navigating a Relationship from Two Directions

You can navigate a relationship from the direction of either the origin or destination object. As such, there are always two ways to
navigate every relationship.

In the following example, you can navigate from Table to Column, or you can navigate from Column to Table. This figure
shows the direction of navigation from the Table object to a Column object, using a Columns collection. When navigating from
a Table object to a Column object, you use a Columns collection. The navigation and subsequent manipulation is always
through the collection. For example, from the Columns collection, you can select a column, retrieve or set a column property, add
or delete a new column, and so on.

In the next figure, the direction of the navigation is from a Column object to the Table object. Each Column object accesses a
separate Table collection to navigate back to the Table. The same origin-destination relationship between the Table origin object
and the Column destination object supports this alternate approach to navigation. Typically, a relationship from a destination
object to an origin object is called a reverse relationship. Furthermore, you can treat this relationship as a separate entity (for
example, as a column containedBy table relationship).

See Also

Navigating a Relationship Using Two Approaches

Navigating a Repository

Navigation Overview

Meta Data Services Programming (SQL Server 2000)

Navigating a Relationship Using Two Approaches
Navigating a Relationship Using Two Approaches

After you know the direction of navigation that you want to follow, you can choose between two different approaches to
implement the navigation.

You can navigate directly through a relationship collection using the IRelationshipCol interface, or you can use a specialized
collection that is designed to simplify navigation. This specialized collection is a target object collection. You instantiate an object
collection using the ITargetObjCol interface.

The following figure shows two different approaches for navigating the same path. In this example, the navigation moves from
the Table object to a Column object.

In this figure, you can navigate through the Relationship collection (a two-step approach) or through the Columns collection (a
one-step approach). Instantiating the Columns collection through ITargetObjectCol makes this collection a target object
collection.

See Also

Navigating a Relationship from Two Directions

Navigating a Repository

Navigation Overview

Meta Data Services Programming (SQL Server 2000)

Source Objects and Target Objects
Source Objects and Target Objects

A relationship collection associates a source object with one or more target objects. The objects are attached to the relationship
collection through interfaces.

The words source and target convey the potential for browsing. Typically, the source object of a relationship is the object for
which you retrieve a collection. The target object of a relationship is the object that can become the target of a step that proceeds
from the source object, through the relationship, to the target object.

Source-and-target terminology differs from origin-and-destination terminology. The origin and destination do not change based
upon which collection is being used to access a relationship. For example, suppose Table is an origin object and Column is a
destination object. When navigation proceeds from Table to Column, Table is the source object. When navigation proceeds in
the reverse direction, Column is the source object.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Accessing a Repository
Accessing a Repository

Access to repository methods and properties is supported at both the COM and Automation level.

For more information about creating and opening a repository database, see Connecting to and Configuring a Repository.

To Use
Create a new repository database
and open it

The Create method of the Repository object, or
use IRepository::Create.

Open an existing repository
database

The Open method of the Repository object, or
use IRepository::Open.

Retrieve repository error
information

The standard Err Automation object, or use the
methods of IRepositoryErrorQueueHandler,
IRepositoryErrorQueue, and
IEnumRepositoryErrors.

Manage transactions in the
repository

The methods of the RepositoryTransaction
object or the IRepositoryTransaction interface.
To retrieve an interface pointer to the
IRepositoryTransaction interface, use the
Transaction property of the IRepository
interface.

See Also

Handling Errors

IRepository Interface

IRepositoryTransaction Interface

Repository Class

Repository Databases

Repository Object

Repository Object Architecture

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

Accessing Repository Objects
Accessing Repository Objects

Access to repository objects is supported at both the COM and Automation level, as shown in the following table.

To Use
Create an object The CreateObject method of the IRepository interface.
Retrieve an object The Object property of the IRepository interface.
Delete an object The Delete method of the IRepositoryItem interface.
Obtain the value of an
early-bound object
property

(Automation) The syntax variable = object.property, as
for any Automation object property.

(COM) The get_PropertyName method of the COM
interface to which the property is attached, where
PropertyName is the name of the property to be
retrieved. You can also use the late-bound property
access method.

Obtain the value of a late-
bound object property (that
is, the object class is not in
an available type library)

(Automation) The syntax variable = object.property, as
for any Automation object property.

(COM) The standard Automation method-invocation
technique to invoke the get_PropertyName method,
where PropertyName is the name of the property to be
retrieved. Because all Microsoft® SQL Server™ 2000
Meta Data Services interfaces that expose late-bound
properties are indirectly derived from the IDispatch
interface, the GetIDsOfNames and Invoke methods are
available for use.

Set the value of an early-
bound object property

(Automation) The syntax object.property = value, as for
any Automation object property.

(COM) The put_PropertyName method of the COM
interface to which the property is attached, where
PropertyName is the name of the property to be set.
You can also use the late-bound property access method.

Set the value of a late-
bound object property (that
is, the object class is not in
an available type library)

(Automation) The syntax object.property = value, as for
any Automation object property.

(COM) The standard Automation method-invocation
technique to invoke the put_PropertyName method,
where PropertyName is the name of the property to be
set. Because all Meta Data Services interfaces that expose
late-bound properties are indirectly derived from the
IDispatch interface, the GetIDsOfNames and Invoke
methods are available for use.

Retrieve the object
identifier of an object

The ObjectID property of the IRepositoryObject
interface.

Retrieve the version
identifier of an object

The VersionID property of the IRepositoryVersion
interface.

Set the object identifier of
an object

The object identifier, which is passed as a parameter
when creating the object.

Retrieve the internal
identifier of an object

The InternalID property of the IRepositoryObject
interface.

See Also

Accessing Properties

Navigating a Repository

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Accessing Properties
Accessing Properties

Repository properties store state information about an object. You can access a repository property to acquire information about
an unknown object, and then use the property data that is returned to you to acquire more specific information.

The following interfaces are available for manipulating properties: IReposProperty, IReposProperty2, IReposPropertyLarge,
and IReposProperties.

To Use
Retrieve generic data about
an unknown object

The IReposProperty property, which exposes methods
that enable you to retrieve generic information about an
object. You can determine an object type (for example,
whether it is a class or interface), retrieve an object
identifier, or set and retrieve property values.

Retrieve additional data
about a specific object

The IReposProperty2 property, which exposes
additional data about an object, such as whether it is a
base member or a derived member, whether it is read-
only or an origin collection, and so on. You can use this
interface to retrieve meta data about the interface
without incurring an additional round trip to the
database. You can also use this interface to get the
PropertyDef object that represents the property.

Retrieve all properties of an
interface

The IReposProperties property, which exposes all
properties of a particular interface as a single collection.

Retrieve all properties of a
class

The IRepositoryObject2 property, which exposes a
Properties collection that you can use to access all
properties of all interfaces that are implemented by a
class.

Retrieve, set, and navigate a
property object that
exceeds 64 kilobytes (KB)

The IReposPropertyLarge property, which provides
methods for manipulating binary large objects (BLOBs)
and large text fields that exceed 64 KB. For more
information, see Programming BLOBs and Large Text
Fields.

See Also

Accessing Repository Objects

IReposProperty Interface

IReposProperty2 Interface

IReposPropertyLarge Interface

IReposProperties Interface

Meta Data Services Programming (SQL Server 2000)

Accessing Relationships
Accessing Relationships

Access to relationships is supported at both the COM and Automation level.

To Use
Create a relationship The Add method of the IRelationshipCol interface.
Delete a relationship The Remove method of the IRelationshipCol interface.
Retrieve a relationship (Automation) The syntax relationshipCollection(index),

as for retrieving an item from any Automation collection.

(COM) The get_Item method of the IRelationshipCol
interface, specifying the relationship to be retrieved.

Retrieve an object that
participates in a given
relationship

The Origin or Destination property of the
IRelationship interface.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Accessing Relationship Collections
Accessing Relationship Collections

Access to relationship collections is supported at both the COM and Automation level.

You cannot add or delete a relationship collection after it is created. Sometimes a relationship collection contains no relationships,
but the collection still exists. If you retrieve such an empty relationship collection, the repository engine returns an interface
pointer to a relationship collection, just as it would for any other relationship collection.

Loading object instance collections can be asynchronous. The calling thread should check to determine whether the load is
complete. If the calling thread tries to read data, refresh the collection, or construct an enumerator while loading is in progress, it
will be blocked until the load is complete.

Note You can use IRepositoryObject2 to access specific collections, even if the collections share the same name through an
inherited interface. For more information, see IRepositoryObject2 Interface.

To Use
Add a relationship to a
relationship collection

The Add method of the IRelationshipCol interface.

Remove a relationship from
a relationship collection

The Remove method of the IRelationshipCol
interface.

Enumerate the relationships
within a relationship
collection

(Automation) The syntax
relationshipCollection(index), as for retrieving an
item from any Automation collection.

(COM) The get_Count and get_Item methods of the
IRelationshipCol interface. You can also use the
_NewEnum method of the IRelationshipCol interface
to obtain a standard enumerator interface for the
collection.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Retrieving Relationship Collections
Retrieving Relationship Collections

Relationship collections can be retrieved at both the COM and Automation level.

Retrieving Relationship Collections Using Automation Interfaces

To retrieve a relationship, first declare a variable as a RelationshipCol object (that is, an object that implements the
IRelationshipCol interface). Next, set the variable equal to the object member that is the collection you want to retrieve.

For example, the following Microsoft® Visual Basic® code retrieves a collection of bug discoveries (a relationship collection)
belonging to a particular person into the variable called DiscoveryCollection:

DIM DiscoveryCollection As RelationshipCol
DIM Person As RepositoryObjectVersion
REM Retrieve the source object into the Person variable
Set DiscoveryCollection = Person.bugs

In this example, DiscoveryCollection(1) refers to the first relationship in the collection.

Retrieving Relationship Collections Using COM Interfaces

To retrieve a relationship, you can perform the following steps:

Call the Invoke method of the interface to which the collection is attached.

Pass in DISPATCH_PROPERTYGET to specify that this is a property-get operation.

Pass in the dispatch identifier for the collection to be retrieved.

The Invoke method will pass an IDispatch interface pointer for the collection back to you.

Invoke the QueryInterface method of the IDispatch interface to retrieve an IRelationshipCol interface pointer for the
relationship collection.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Accessing Target Object Collections
Accessing Target Object Collections

Access to target object collections is supported at both the COM and Automation level.

Note You can use IRepositoryObject2 to access specific collections, even if the collections share the same name through an
inherited interface. For more information, see IRepositoryObject2 Interface.

To Use
Include an object in a
collection

The Add method of the ITargetObjectCol interface.

Exclude an object from a
collection

The Remove method of the ITargetObjectCol interface.

Enumerate the objects
within a target object
collection

(Automation) The syntax
targetObjectCollection(index), as for retrieving an item
from any Automation collection.

(COM) The get_Count and get_Item methods of the
ITargetObjectCol interface, or use the _NewEnum
method of the ITargetObjectCol interface to obtain a
standard enumerator interface for the collection.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Using TargetObjectCol with Relationship Collections
Using TargetObjectCol with Relationship Collections

The TargetObjectCol class provides a convenient way to manipulate relationship collections. When you manipulate a target
object collection, you actually manipulate the corresponding relationship collection.

For example, suppose you are manipulating the target object collection describing the employees managed by Frank, shown in
the following figure.

Now suppose you want to add Louise, an existing employee, to the collection. To do so, use the Add method, extending the
collection to look like the collection in the following figure.

When you call the Add method, the repository engine actually adds a relationship to the corresponding relationship collection.
Before adding the new relationship, the relationship collection appeared as follows.

Using the Add method changed the relationship collection to the following.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Retrieving Target Object Collections
Retrieving Target Object Collections

Object collections can be retrieved at both the COM and Automation level.

Retrieving Object Collections Using Automation Interfaces

To retrieve a relationship, first declare a variable as an object that implements the ITargetObjectCol interface. Next, set the
variable equal to the object member that is the collection you want to retrieve.

Note All collections in a Microsoft® SQL Server™ 2000 Meta Data Services repository are attached to repository objects as
members.

For example, the following Microsoft Visual Basic® code retrieves a collection of bugs (a target object collection) discovered by a
particular person into the variable called BugCollection:

DIM BugCollection As ITargetObjectCol
DIM Person As RepositoryObject
REM Retrieve the source object into the Person variable
Set BugCollection = Person.bugs

In this example, BugCollection(1) can refer to the first object in the collection.

Retrieving Relationship Collections Using COM Interfaces

To retrieve a relationship, you can perform the following steps:

1. Call the Invoke method of the interface to which the collection is attached.

2. Pass in DISPATCH_PROPERTYGET to specify that this is a property-get operation.

3. Pass in the dispatch identifier for the collection to be retrieved.

4. The Invoke method will pass an IDispatch interface pointer for the collection back to you.

5. Invoke the QueryInterface method of the IDispatch interface to retrieve an ITargetObjectCol interface pointer for the
collection of target objects.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Selecting Items in a Collection
Selecting Items in a Collection

You can select the items of a collection by index, by sequence, by enumerator, or by name. If you get a collection for an origin
object, or plan to move from an origin object to a destination object, all of these selection options are available. If you get a
collection for a destination object, or plan to move from a destination object to an origin object, you have fewer selection options.
The availability of a selection option is described in each approach.

You can select collection items in the following ways:

By index. Choose the nth item in the collection, where n is a number between one and the size of the collection.

COM: Use the get_Item method of the IRelationshipCol interface or the ITargetObjectCol interface.

Automation: Use the syntax collection(index), as for any Automation collection.

By sequence. Use the same programming statements to select by sequence as you use to select by index. The distinction
between the two depends only on how the repository orders the items in the collection. In most cases, the repository uses
an arbitrary order. But if the collection is a sequenced collection, the repository orders the collection items according to the
defined sequence.

This approach is valid when the origin object and the source object are the same. You cannot select by sequence from a
collection belonging to a destination object, because the repository does not sequence collections belonging to destination
objects.

With an enumerator. At the COM level you can get an enumerator object for a collection, and then use the standard
enumerator functions (Next, Skip, Reset, and Clone). Use the _NewEnum method of the IRelationshipCol interface or
the ITargetObjectCol interface to obtain an interface pointer to an enumerator object.

For more information, see Using Enumerators to Work with Items in a Collection.

By name. If the collection is a collection of names, you can select the item whose name matches the name you supply.

COM: Use the get_Item method of the IRelationshipCol interface or the ITargetObjectCol interface.

Automation: Use the syntax myCollection("name").

Note You cannot select by name from a collection belonging to a destination object, because a Microsoft® SQL Server™
2000 Meta Data Services repository does not support the naming of origin objects.

If a name within the collection of names is not unique, the repository will return the first item that it finds with the specified
name.

See Also

Navigating a Repository

Meta Data Services Programming (SQL Server 2000)

Using Enumerators to Work with Items in a Collection
Using Enumerators to Work with Items in a Collection

You can use enumerators to select items from a collection. When the repository engine establishes an enumerator for you, it
reads the repository database to determine which items should appear in the list, and the order in which those items should
appear. The enumerator does not, however, contain repository items. Rather, each element of an enumerator identifies a
repository item. To retrieve a particular item identified by the next element of an enumerator, use the Next method of the
enumerator interface.

The elements in an enumerator identify the items in a collection as described by the repository database when the enumerator
was instantiated. After you instantiate the enumerator, the collection in the database can change. Specifically, you change a
collection in these ways:

Add an item.

Your enumerator will not refer to the newly added item. To see the new item, you must instantiate the enumerator again.

Remove an item.

Your enumerator will continue to refer to the deleted item. That is, your enumerator will retain an element that refers to the
deleted item by its internal identifier. When you call the Next method to retrieve the item, the method returns an error.

Reorder the collection.

Your enumerator will reflect the old order. To see the new order, you must reinstantiate the enumerator.

See Also

Navigating a Repository

Selecting Items in a Collection

Meta Data Services Programming (SQL Server 2000)

Filtering Collections
Filtering Collections

You can filter collections to determine which items to include in a collection based on criteria you provide. Filters can be used to
define queries, or to work with a subset of all available items that match criteria you define.

Filters that you create can be applied to target object collections, relationship collections, object instance collections, workspaces,
and to the repository as a whole. You can also create filters on derived collections.

To create a filter, use the IReposQuery interface. IReposQuery is implemented by the Repository class, the Workspace class,
and the RelationshipCol class.

To create your criteria, you must create a filter in the form of a SQL WHERE clause. You can then attach this filter as a parameter
to the IReposQuery::GetCollection method.

Filtering only occurs at run time. Filter definitions are not stored in a repository database.

See Also

Filtering Derived Collections

IReposQuery::GetCollection

Navigating a Repository

RelationshipCol Class

Repository Class

Workspace Class

Meta Data Services Programming (SQL Server 2000)

Propagating Deletes
Propagating Deletes

When you delete an object version or relationship, the repository engine can sometimes automatically delete other object
versions and their attendant relationships. The automatic removal of an object version is called a propagated deletion. The
process by which the repository engine first determines which propagated deletions are necessary and then performs those
propagated deletions is called delete propagation.

Delete propagation is very useful for removing orphan objects that are no longer associated with other objects or collections in
your information model. Delete propagation does not occur by default. The repository engine performs propagated deletions only
when you remove a relationship whose corresponding origin collection type has the COLLECTION_PROPAGATEDELETE flag set.
Such relationships are called delete-propagating relationships. This flag must be set in the information model on the collection.

A single delete propagation can result in the removal of many object versions. There are several reasons for this:

A delete-propagating relationship can have a TargetVersions collection containing many items. As a result, deleting the
relationship causes the deletion of all objects in the TargetVersions collection.

An object version that you delete can have many delete-propagating origin relationships.

An object version to be removed automatically (that is, by propagated deletion) can itself have delete-propagating origin
relationships.

The following table provides specific topics for each of the actions that trigger delete propagation.

Topic Description
Delete Propagation After Removing an
Origin Relationship

Removing an origin relationship that has
the COLLECTION_PROPAGATEDELETE set
causes delete propagation.

Delete Propagation After Removing a
Destination Relationship

Removing a destination relationship that
has the COLLECTION_PROPAGATEDELETE
set causes delete propagation.

Delete Propagation After Removing a
Destination Target Version

Removing an item from the
TargetVersions collection of an origin
relationship that has the
COLLECTION_PROPAGATEDELETE set
causes delete propagation.

Delete Propagation After Removing an
Origin Target Version

Removing an item from the
TargetVersions collection of a
destination relationship that has the
COLLECTION_PROPAGATEDELETE set
causes delete propagation.

Delete Propagation After Removing an
Object Version

Removing an object version that has
origin relationships that have the
COLLECTION_PROPAGATEDELETE set
causes delete propagation.

See Also

CollectionDefFlags Enumeration

Navigating a Repository

Requirements for Changing an Object Version

Requirements for Object-Version Deletion

Meta Data Services Programming (SQL Server 2000)

Requirements for Object-Version Deletion
Requirements for Object-Version Deletion

The following restrictions apply to object-version deletion:

If the object version has any successor, it cannot be deleted.

If the object version is a member of a TargetVersions collection of an origin relationship, and that relationship's source
object version is unchangeable, it cannot be deleted. For more information, see Requirements for Changing an Object
Version.

If a to-be-deleted object version does not satisfy these requirements, the repository engine does not necessarily return an error. If
you are explicitly deleting the object version with the Delete method, the method fails and returns an error. However, if the
repository engine is automatically attempting to delete the object version during delete propagation, it does not return an error.
Instead, the engine continues to evaluate other object versions as candidates for propagated deletions.

See Also

Navigating a Repository

Propagating Deletes

Meta Data Services Programming (SQL Server 2000)

Requirements for Changing an Object Version
Requirements for Changing an Object Version

An object version is unchangeable if it is frozen or if it is checked out to a workspace and the attempt to change it does not occur
within the context of that workspace.

Note This restriction applies when the repository engine automatically attempts to change an object version for you. The
repository engine can automatically change an object during delete propagation. This occurs when a propagated deletion of a
destination object version reduces the TargetVersions collection of a corresponding origin object version's origin relationship. In
effect, the origin object version has been modified automatically by the repository engine.

This restriction also applies when you attempt explicitly to modify an object, for example, by setting one of its properties.

See Also

Navigating a Repository

Propagating Deletes

Requirements for Object-Version Deletion

Meta Data Services Programming (SQL Server 2000)

Delete Propagation After Removing an Origin Relationship
Delete Propagation After Removing an Origin Relationship

If you delete a delete-propagating origin relationship, or if the repository engine automatically removes one after deleting its
attendant origin object version, delete propagation can occur. The repository engine considers performing a propagated deletion
on each destination version of the relationship (that is, the repository engine considers performing a propagated deletion on each
object version from the TargetVersions collection of the deleted origin relationship).

The repository engine considers deleting the target versions in reverse order of their creation (not in the reverse order of their
inclusion in the TargetVersions collection). In effect, the repository engine works backward through the version graph,
attempting to delete leaf nodes before attempting to delete their predecessors.

The repository engine performs a propagated deletion on an object version only if the object version satisfies the requirements
for object-version deletion. If the object version does not satisfy the requirements, the repository engine does not perform the
propagated deletion on that object version.

Even if the repository engine encounters a candidate for propagated deletion that does not satisfy the requirements for object-
version deletion, it continues to evaluate the other candidates. Thus, the entire delete propagation operation can result in the
deletion of some of the TargetVersions, but not others.

See Also

Propagating Deletes

Requirements for Object-Version Deletion

Version Graph

Meta Data Services Programming (SQL Server 2000)

Delete Propagation After Removing a Destination Relationship
Delete Propagation After Removing a Destination Relationship

Deleting a destination relationship is similar to removing an item from the TargetVersions collection of a destination
relationship. Thus, the delete propagation that occurs after such a deletion is equal to the delete propagation occurring after such
a removal from a TargetVersions collection. For more information, see Delete Propagation After Removing an Origin Target
Version.

See Also

Propagating Deletes

Meta Data Services Programming (SQL Server 2000)

Delete Propagation After Removing a Destination Target
Version
Delete Propagation After Removing a Destination Target Version

If you remove an object version from the TargetVersions collection of a delete-propagating origin relationship, the repository
engine considers performing a propagated deletion on that object version. The repository engine performs a propagated deletion
on the destination object version if both of the following conditions hold:

The destination object version has no other destination relationship of the same type as the deleted relationship.

The source object satisfies the basic requirements for object-version deletion. For more information, see Requirements for
Object-Version Deletion.

See Also

Propagating Deletes

Meta Data Services Programming (SQL Server 2000)

Delete Propagation After Removing an Origin Target Version
Delete Propagation After Removing an Origin Target Version

If you remove an object version from the TargetVersions collection of a delete-propagating destination relationship, the
repository engine considers performing a propagated deletion.

Delete propagation always occurs from the origin object toward a destination object. Thus, in this situation, the repository engine
considers performing a propagated deletion on the object version that was the source of the relationship whose TargetVersions
collection you modified. The repository engine performs a propagated deletion on the source object version if all of the following
conditions hold:

The item you removed was the last item in its TargetVersions collection.

The source object version has no other destination relationship of the same type as the destination relationship whose
TargetVersions collection you modified.

The source object satisfies the basic requirements for object-version deletion. For more information, see Requirements for
Object-Version Deletion.

See Also

Propagating Deletes

Meta Data Services Programming (SQL Server 2000)

Delete Propagation After Removing an Object Version
Delete Propagation After Removing an Object Version

You can explicitly delete an object version using the Delete method. Similarly, the repository engine can automatically delete an
object version by performing a propagated deletion operation on it. In either case, the object version is deleted only if it satisfies
the basic requirements for object-version deletion.

If an object version you are trying explicitly to delete does not satisfy these requirements, the Delete method returns an error. If
an object version that the repository engine is trying to delete through propagation does not satisfy these requirements, the
repository engine does not return an error. Instead, it continues with the delete propagation operation. That is, the repository
engine continues to consider performing propagated deletion operations on other object versions.

Whether an explicit deletion or a propagated deletion is attempted, the repository engine deletes the object version and any of its
relationships if the object version satisfies the requirements for object-version deletion.

Note Some of these deleted relationships can be delete-propagating origin relationships. The repository engine considers
performing one or more propagated deletions for each. For more information, see Delete Propagation After Removing an Origin
Relationship.

See Also

Propagating Deletes

Requirements for Object-Version Deletion

Meta Data Services Programming (SQL Server 2000)

Versioning Objects
Information models that you create for use with Microsoft® SQL Server™ 2000 Meta Data Services contain instance data relevant
to the tools and applications you build and support. As you continue to develop and maintain these software tools, this instance
data is accessed and modified. The ability to view past versions of this instance data can be useful. For example, you can use this
information to:

Reproduce old versions of a software component.

Analyze differences between two versions of a software component.

Determine how the relationships between various software components have changed from one release of a software tool
to the next.

Meta Data Services maintains past versions of your instance data. These past versions are accessible through version
management and workspace management interfaces.

The following topics describe the version management capabilities of Meta Data Services.

Topic Description
Versioning Overview Explains basic concepts of object and collection

versioning.
Manipulating Object Versions Explains how you can manipulate an object

version programmatically, including how to
create, propagate, and freeze object versions.

Manipulating Versioned
Relationships

Explains how you can manipulate versioned
relationships programmatically.

Resolution Strategy for Objects
and Object Versions

Explains how to select an object. You can select a
specific version, or allow the repository engine to
select an object for you.

Version Graph Describes the version graph and explains how to
navigate a network of versioned objects.

Merging Object Versions Explains how to merge multiple object versions
together.

See Also

IRepositoryObjectVersion Interface

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

Versioning Overview
Versioning Overview

Versioning provides a way to define and redefine objects at specific points in time. This topic uses an example to explain
versioning behavior in Microsoft® SQL Server™ 2000 Meta Data Services.

How Versioning Works in Meta Data Services

Objects in a Meta Data Services repository conform to classes. The following figure shows two objects that conform to the File
class.

An individual object can change whenever any of its property values or collections change. Sometimes the new property values or
collections simply replace the preceding ones. Other times, you may want to retain both the old values and the new values. The
repository engine can retain the old property values and collections with an old version of the object. The following figure shows
three versions of the Main file and two versions of the Header file.

The different versions of an object can have different property values. The following figure includes property values for the
properties X, Y, and Z, properties that the File class exposes through its various interfaces. In the figure, individual versions have
different values for the properties. The picture shows the property values as ordered X-Y-Z triplets. "(22,3,4)" means X=22, Y=3,
and Z=4.

Note how this works: the repository engine does not store multiple values for a particular property of an object. Instead, it stores
multiple versions of an object such that each individual version can contain its own individual property values.

The different versions of an object can also have different collections. The following figure shows one collection (of the Persons-
of-File collection type) for each of the five object versions of the File class. (To save space, the X-Y-Z triplets are not shown.)

Here are the collections of the five object versions of the File class:

Persons-of-Version 1-of-Main: {Alexandra, Bruce}

Persons-of-Version 2-of-Main: { } (The empty set)

Persons-of-Version 3-of-Main: {Bruce, Christoph}

Persons-of-Version 1-of-Header: { } (The empty set)

Persons-of-Version 2-of-Header: {Christoph}

Although the preceding figure shows that the three different versions of Main have three different values for the collection type
Persons-of-File, things are much simpler at run time. At run time, when your program manipulates an object, it manipulates a
particular version of that object. In other words, whenever you secure a reference to an object, the repository engine actually gives
you a reference to a specific version of an object. No matter how your program obtains the reference, through
IRepository::get_Object, through navigation, or through any other technique, the repository engine provides you a reference to
one version of that object.

For example, suppose your program has a reference to Version 3-of-Main and Version 2-of-Header. The following figure
distinguishes between object versions to which your program has current references (filled-in circles) and the other object
versions (blank circles).

The preceding figure indicates that your program does not currently have a reference to any person. Your program merely has
references to some collections that include persons. To get a reference to a specific person (for example, Bruce), your program
can navigate to it.

The preceding figure is simplified; it shows only one version of each person. The following figure is more realistic.

The preceding figure shows two collections. One collection is Persons-of-Version 3-of-Main, which contains Version 2-of-Bruce
and Version 2-of-Christoph. The other collection is Persons-of-Version 2-of-Header; it contains Version 2-of-Christoph. The
figure also shows that your program already has references to Version 2-of-Bruce and Version 2-of-Christoph (because the
corresponding dots are filled in).

The preceding figure reflects that when you navigate along a relationship to a target object, you navigate to a specific version of
that object. The figure reflects this by showing each arrow pointing to a specific version of an object to which you have already
navigated (a filled-in circle in the set of versions of persons).

In most situations, this view is adequate. For example, you can think of a target object collection as containing a particular version
of each target object. A more detailed view, shown in the following figure, is sometimes useful.

The preceding figure shows a single collection, Persons-of-Version 3-Of-Main. It contains two items: Bruce and Christoph. The
figure does not indicate which particular version of Bruce is in the collection, because your program has not yet navigated from
Version 3-of-Main to Bruce. But it does indicate that when you do navigate to Bruce, the repository engine can return a
reference to any of the three versions. Similarly, the picture does not indicate which version of Christoph is in the collection, but it
does indicate that when you navigate to Christoph, the repository engine returns a reference to Version 1 or to Version 2, but
not to Version 3.

See Also

Repository Object Architecture

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Kinds of Version Collections
Kinds of Version Collections

Version collections are used to access repository object versions. There are seven kinds of version collections. All version
collections inherit from the IVersionCol interface.

ObjectVersions Collection

RepositoryObjectVersion implements the ObjectVersions collection. The ObjectVersions collection contains all the versions
of a particular repository object. For example, if you have multiple versions of the Column object, you can access all of them
through the ObjectVersions collection. To establish this collection, use the get_ObjectVersions method of the
IRepositoryObjectVersion interface.

Predecessor Collection

RepositoryObjectVersion implements the Predecessor collection. The Predecessor collection contains all the immediate
predecessors of an object version. Although only one predecessor is the creation version, multiple predecessors can exist. For
example, when you merge an object version into another, existing object version, the object version that you merge becomes a
new, noncreation predecessor. To establish this collection, use the get_PredecessorVersions method of the
IRepositoryObjectVersion interface.

Successor Collection

RepositoryObjectVersion implements the Successor collection. The Successor collection contains all the immediate successors
of an object version. An immediate successor is an object that is one step away in the version graph. For example, if LoanTable_1
is versioned into two more loan tables (LoanTable_2 and LoanTable_3), both LoanTable_2 and LoanTable_3 are immediate
successors. Subsequent versioning of LoanTable_2 and LoanTable_3 results in successors that are not part of the Successor
collection of LoanTable_1. To establish this collection, use the get_SuccessorVersions method of the
IRepositoryObjectVersion interface.

TargetVersions Collection

VersionedRelationship implements the TargetVersions collection. The TargetVersions collection contains the specific
versions of a target object that are related to a particular version of a source object. For example, if a Table object is related to two
versions of the same Column object, you can access both versions of the Column object through a TargetVersions collection.
To establish this collection, use the get_TargetVersions method of the IVersionedRelationship interface.

Contents Collection

Workspace implements the Contents collection. The Contents collection contains all the object versions present in a workspace.
Remember that, at most, one version of each object can appear in a workspace. So, at most, you will have only one instance of
each object in a Contents collection. For example, if a workspace contains a Schema, Table, and a Tables collection, the
Contents collection includes a Schema object, a Table object, and the Tables collection object. To establish this collection, use
the get_Contents method of the IWorkspace interface.

Workspaces Collection

RepositoryObjectVersion implements the Workspaces collection. The Workspaces collection contains all the workspaces in
which a particular object version is present. A repository object version can exist in multiple workspaces. For example, if you have
one workspace for testing purposes and another workspace for production, both Workspaces can contain the same version of
the same repository object. In this case, the Workspaces collection contains references to both workspaces. To establish this
collection, use the get_Workspaces method of the IWorkspaceItem interface.

Checkouts Collection

Workspace implements the Checkouts collection. The Checkouts collection contains all the object versions checked out to a
particular workspace (that is, all object versions that can be modified or removed within the context of a workspace). For more
information, see Objects Within Workspaces. To establish this collection, use the get_Checkouts method of the IWorkspace
interface.

See Also

IRepositoryObjectVersion Interface

IVersionCol Interface

IVersionedRelationship Interface

IWorkspace Interface

Navigating a Repository

Navigating the Version Graph

Retaining Workspace Context

Version Graph

Meta Data Services Programming (SQL Server 2000)

Version Graph
Version Graph

Each repository object has a version graph, which indicates how the various versions relate to each other. An object's version
graph consists of nodes and arrows. Each node represents a version of the object and each arrow points from one object version
to a successor of that object version. The following figure shows a typical version graph for an object with 11 versions.

There are two kinds of arrows. A solid arrow indicates the creation of one object version based on another. For example, the solid
arrow from Version 6 to Version 7 indicates that Version 7 was created based on Version 6. That is, Version 7 was created
when a program invoked the CreateVersion method on an IRepositoryObjectVersion interface pointer to Version 6.

A dashed arrow indicates the merging of property values and collections from one object into another. For example, the dashed
arrow from Version 10 to Version 11 indicates that property values and collections from Version 10 were merged into Version
11. That is, the dashed arrow was created when a program invoked the MergeVersion method with an
IRepositoryObjectVersion interface pointer to Version 11 (and the invoking program provided an interface pointer to Version
10 as an input parameter i).

See Also

Branches in the Version Graph

Creating Object Versions

Merging Object Versions

Navigating the Version Graph

Meta Data Services Programming (SQL Server 2000)

Navigating the Version Graph
Navigating the Version Graph

You can navigate a version graph by traversing collections. For more information about the kinds of collections that contain
versioned objects, see Kinds of Version Collections.

The repository engine supports navigation of the version graph in the following ways:

Every object version has a collection of successor versions, the other versions of the same object that immediately follow in
the version graph. In the following figure, Version 5 has two successor versions, Version 9 and Version 7. An object
version's set of successor versions can be null. For example, Version 11 has no successors.

Every object version has a collection of predecessor versions, the other versions of the same object that immediately
precede it in the version graph. In the preceding figure, for example, Version 11 has three predecessor versions: Version 9,
Version 7, and Version 10.

Every object version (except Version 1) has a predecessor creation version, the predecessor version from which the current
object version was created. For example, of Version 11's three predecessor versions, only Version 9 is its predecessor
creation version.

Every object version has a collection of object versions, the entire set of versions of the object.

See Also

Branches in the Version Graph

Navigating a Repository

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Manipulating Versioned Relationships
Manipulating Versioned Relationships

Access to relationships is supported at both the COM level and the Automation level. Given a versioned relationship that connects
two repository object versions, you can perform the operations listed in the following table. These operations are performed
relative to a specific version of the source object.

To Use
Pin the destination object version The Pin method of the

IVersionedRelationship interface.
Unpin the destination object version The Unpin method of the

IVersionedRelationship interface.
Retrieve (a version of) the target object The Target property of the IRelationship

interface.
Retrieve the source object version The Source property of the IRelationship

interface.
Create a new relationship to relate a new
target object to a source object

The Add method of the IRelationshipCol
or ITargetObjectCol interface.

Relate a subsequent target object
version to a source object

The Add method for the TargetVersions
collection. This collection is accessible
through the IVersionedRelationship
interface.

For more information, see the Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK).

See Also

Changing a Destination Relationship's Name

Repository API Reference

Versioning Objects

Version-to-Version Relationships

Meta Data Services Programming (SQL Server 2000)

Version-to-Version Relationships
Version-to-Version Relationships

A version-to-version relationship is a relationship that associates a particular version of the origin object with a particular version
of the destination object. At run time, the repository object model never presents an individual version-to-version relationship to
you. That is, from within a COM or Automation program, you cannot materialize an object corresponding to a version-to-version
relationship. Instead, you can materialize an object corresponding to a versioned relationship using the IVersionedRelationship
interface or VersionedRelationship object.

After you materialize the versioned relationship, you can select a specific version-to-version relationship by allowing the
repository engine to follow a resolution strategy that picks one for you, or by selecting a specific version from a TargetVersions
collection.

The following figure shows versioned relationships.

The preceding figure shows two versioned relationships; however, five version-to-version relationships are evident, as shown in
the following figure.

In the preceding figure, each line is a version-to-version relationship. The top line indicates that Version 1-of-Bruce is in the
TargetVersions collection of the versioned relationship owned by Version 3-of-Main. It also indicates that Version 3-of-Main is in
the TargetVersions collection of the versioned relationship owned by Version 1-of-Bruce. The complete TargetVersions
collection of the versioned relationship owned by Version 1-of-Bruce might include other items. That is, there might be other
version-to-version relationships between Version 1-of-Bruce and individual versions of Main.

The following figure shows that Version 1-of-Bruce has version-to-version relationships to Version 1-of-Main, Version 2-of-Main,
and Version 3-of-Main.

The preceding figure shows a total of seven version-to-version relationships.

See Also

IVersionedRelationship Interface

Manipulating Versioned Relationships

Resolution Strategy for Objects and Object Versions

Selecting Items in a Collection

VersionedRelationship Object

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Manipulating Object Versions
Manipulating Object Versions

Access to repository object versions is supported at both the COM level and the Automation level. Given a specific version of a
repository object, you can perform the operations listed in the following table. For more information about retrieving or changing
object version names, see Retrieving an Object Version's Name and Changing an Object Version's Name.

To Use
Create the first object version The CreateObject method of the IRepository

interface.
Create subsequent object versions The CreateVersion method of the

IRepositoryObjectVersion interface.
Determine which predecessor
version was the creation version

The PredecessorCreationVersion method of
the IRepositoryObjectVersion interface.

Determine how this version of the
current object was resolved

The ResolutionType method of the
IRepositoryObjectVersion interface.

Freeze an object version The FreezeVersion method of the
IRepositoryObjectVersion interface.

Retrieve the object-version identifier
of an object version

The VersionID property of the
IRepositoryObjectVersion interface.

Retrieve the state of an object
version

The IsFrozen method of the
IRepositoryObjectVersion interface and the
IsCheckedOut method of the IWorkspaceItem
interface.

Merge the contents of another
object version into the current
object version

The MergeVersion method of the
IRepositoryObjectVersion interface.

For more information, see the Microsoft® SQL Server™ 2000 Meta Data Services Software Development Kit (SDK).

See Also

IRepository Interface

IRepositoryObjectVersion Interface

IWorkspaceItem Interface

Repository API Reference

Repository Object

RepositoryObjectVersion Object

Versioning Objects

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Creating Object Versions
Creating Object Versions

Whenever you want to continue modifying an object without overwriting the nonannotational property values and origin
collections of the existing object versions, you create a new version of the object. When you create a new object version, you must
use an existing, frozen version of the object as the creation version of the to-be-created version. To create the new version, you
invoke the CreateVersion method with an IRepositoryObjectVersion interface pointer to the creation version. The repository
engine creates a new, unfrozen version of the object. The new version has property values identical to those of the creation
version. The collections of the new version are based on the creation version's collections, as follows:

The repository engine copies each origin collection whose type has the COLLECTION_NEWORGVERSIONSPARTICIPATE flag
set. If this flag is not set, the origin collection is not copied.

By default, the repository engine does not copy the creation version's destination collections into the newly created version.
Your application might, however, include custom behavior for the CreateVersion method that does copy some or all
destination collections.

When you create a new version of an object, the repository engine modifies the version graph accordingly.

See Also

Branches in the Version Graph

Freezing an Object Version

IRepositoryObjectVersion Interface

Merging Object Versions

Propagating Versions

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Propagating Versions
Propagating Versions

The repository engine can sometimes create a new versioned object automatically, in response to the versioning of another,
related object. More specifically, you can create a new version of an origin object automatically when you purposely create a new
version of a destination object. The automatic creation of an object version is called a propagated version. Version propagation is
the process by which the repository determines which propagated versions are necessary and then performs those propagated
version.

You can implement version propagation for collections that contain versioned objects and versioned relationships. The
occurrence of version propagation depends on flags you set for the collection that contains the versioned items.

To implement version propagation, you must set the COLLECTION_NEWDESTVERSIONPROPAGATE flag on the collection. When
this flag is set, invoking the CreateVersion method on a destination object propagates versioning to origin objects related
through collections of this type.

After version propagation is in progress, it can continue to propagate origin-destination pairs. This occurs when a newly
versioned origin object is simultaneously a destination object of another relationship. In this case, its origin object is also
versioned. The versioning of paired objects continues up the version graph until a frozen origin object is encountered. This
behavior occurs only while the origin object is unfrozen, and it occurs only for relationships that are created within the same
transaction.

Version propagation creates a new, unfrozen version that has property values that are identical to the property values of the
creation version. You can set additional CollectionDefFlags to further determine how object versions are propagated.

The following CollectionDefFlags can be set to determine how and whether version propagation occurs.

Flag Result
COLLECTION_NEWDESTVERSIONPROPAGATE Version propagation occurs

when the CreateVersion
method is invoked on a
destination object that is
related to an unfrozen origin
object.

COLLECTION_NEWDESTVERSIONADD The origin object always
links to the latest version of
a destination object,
eliminating manual
versioning of an origin
object in response to a
newly versioned destination
object.

COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE The origin collection is not
copied from the creation
origin object to the newly
versioned origin object, even
if other flags support
version propagation.

COLLECTION_NEWDESTVERSIONSDONOTPARTICIPATE The destination collection is
not copied from the creation
destination object to the
newly versioned destination
object, even if other flags
support version
propagation.

Usage Scenarios

The version propagation functionality supports the following scenarios:

The first scenario, shown in the following figure, demonstrates the case when the origin object should be linked to the latest

version of the destination object. In this case, the new version of Dest, Dest1, is added to the TargetVersions collection of the
relationship. In this scenario, the COLLECTION_NEWDESTVERSIONADD flag is set, and the origin object is not frozen.

The second scenario, as shown in the following figure, demonstrates the case when the origin object needs to be versioned when
the destination object is versioned. In this scenario, the COLLECTION_NEWDESTVERSIONPROPAGATE flag must be set, and the
origin object must be frozen.

In this example, a new version of Dest0, Dest1 is created. A new version of Org0, Org1 is then created. Because, by default, the
COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE flag is not set, the new version of Org1 includes a relationship to Dest0.
This relationship is deleted, and a new relationship with Dest1 is created. Note that this behavior happens only if the origin object
is frozen. If it is not frozen, the origin object is not versioned.

This behavior can propagate. That is, any object for which Org is a destination will also be versioned. The behavior will propagate
until the engine reaches an object that is not frozen, or is not the destination of any relationships or any relationships for which
the propagation flag is not set.

The third scenario, as shown in the following figure, demonstrates the case when an origin object has multiple relationships with
destination objects that must be versioned. In this scenario, the COLLECTION_NEWDESTVERSIONPROPAGATE flag is set.

In this example, Org0 is the origin of relationships with both DestA0 and DestB0. A new version of DestA0 is created, DestA1,
and the version is propagated to Org0, as described in the previous example. Both the Org0 and Org1 have relationships to the

existing DestB0. When a new version of DestB0, DestB1, is created, a new relationship to the already versioned Org1 is added,
and the relationship between Org1 and DestB0 is deleted.

To summarize, propagating relationships during a transaction creates only a single version of an origin object.

See Also

CollectionDefFlags Enumeration

Propagating Deletes

IRepositoryObjectVersion::CreateVersion

RepositoryObjectVersion CreateVersion Method

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Freezing an Object Version
Freezing an Object Version

In the version graph, each object version with an emerging (solid or dashed) arrow must be frozen. The other object versions can
be frozen or unfrozen. One purpose of the repository engine's versioning capability is to let you maintain multiple versions of an
object so that you can remember what the object was like at different times. After you decide that a particular version of an object
is worth remembering, you must protect that version of the object from further modification. You do this by freezing the object
version. To freeze the object version, invoke the FreezeVersion method with an IRepositoryObjectVersion interface pointer to
the version you want to preserve.

When you freeze a version of an object, you prevent any program from modifying any of its origin collections or any of its
nonannotational property values. A program can, however, modify a frozen object version in the following ways:

Modify a frozen object version's destination collections. By allowing such modifications, the repository engine lets you
protect an object (such as a text formatting template) from further modification, yet allows other, newly created objects
(such as text files) to include the frozen object version in their origin collections.

Modify an object's annotational properties. If a class exposes (through one of its interfaces) an annotational property, the
repository engine stores one value of that property for each object (not one property value for each object version). Thus, if
you change an annotational property value on an unfrozen version of an object, the change affects all versions of that
object, including the frozen versions.

The repository engine provides two methods for you to manage the frozen status of an object version:

FreezeVersion freezes a version of an object.

IsFrozen (exposed by IRepositoryObjectVersion) determines whether an object version is frozen or unfrozen.

See Also

Branches in the Version Graph

Creating Object Versions

IRepositoryObjectVersion Interface

Merging Object Versions

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Resolution Strategy for Objects and Object Versions
Resolution Strategy for Objects and Object Versions

When you retrieve an object or navigate to an object, the repository engine returns an interface pointer to a specific version of
that object. You can explicitly ask for a particular version, or you can rely on the repository engine to choose a version of the
object for you. For example, you may have repository objects that do not explicitly provide version information (instances of
RepositoryObject do not provide version information). When objects lack specific version information, the repository engine can
choose an instance for you.

If the repository engine chooses for you, it can choose any of the following:

The most recently created object version.

The object version present in the workspace in which you are operating.

The pinned target object version of the relationship that you are navigating along.

You can predict how the repository engine selects an object version to return to you:

If you explicitly request a specific version of an object, the repository engine retrieves that version; if for any reason it cannot
retrieve that version, it returns an error.

If you are operating within a workspace, the repository engine retrieves the version that is in the workspace; if for any
reason it cannot return the in-workspace version of the object, it returns an error.

If you do not request a specific version and you are not operating within a workspace, the repository engine returns either
the most recently created version or (if applicable) the pinned version.

The following topics discuss how the repository engine chooses among versions of an item.

Topic Description
Requesting a Specific Version Explains how to select a specific version
Resolution While Operating Within a
Workspace

Explains how the repository engine selects an
object from a workspace

Resolution While Operating Outside a
Workspace

Explains how the repository engine selects an
object from a centralized, shared repository

See Also

IRepositoryObject Interface

IRepositoryObjectVersion Interface

Navigating a Repository

RepositoryObject Object

RepositoryObjectVersion Object

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Requesting a Specific Version
Requesting a Specific Version

In some situations, you can request a specific version of an object. For example, the get_Version method of the IRepository2
interface retrieves the specific object version whose object-version identifier you supply. If the repository engine cannot return
this particular object version to you, it returns an error. For example, it returns an error if the specific version you requested does
not exist, or if the specific version you requested is not present in the workspace in which you are operating.

See Also

IRepository2 Interface

Object-Version Identifiers and Internal Object-Version Identifiers

Resolution Strategy for Objects and Object Versions

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Resolution While Operating Within a Workspace
Resolution While Operating Within a Workspace

If you are operating within a workspace, the repository engine returns the version of the object that is present in the workspace. If
the repository engine cannot return the in-workspace object to you, it returns an error. The repository engine may fail to return an
in-workspace version of the object you requested in the following situations:

If the workspace contains no version of the requested object, the repository engine returns an error.

If the workspace contains a version other than the specific version you explicitly requested, the repository engine returns an
error.

If you navigate to a target object along a relationship that is a member of a relationship collection, but the specific version of
the target object in your workspace is not among the specific versions of the target object that participate in the
relationship, the repository engine returns an error.

For example, the following figure shows one item in the collection Persons-of-V3-of-Main. The target object of the item is
Christoph. Because you have not yet navigated along the relationship, the figure does not show which particular version of
Christoph will be returned to you; it shows only that it will be Version 2-of-Christoph or Version 3-of-Christoph.

If you are operating in a workspace that contains Version 1-of-Christoph, the repository engine returns an error. When you
invoke the get_Target method of the IRelationship interface, the repository engine cannot find a suitable version of Christoph
to return to you. It cannot return Version 1 because Version 1-of-Christoph is not related to the source of the navigation. It
cannot return Version 2 or Version 3 because neither Version 2-of-Christoph nor Version 3-of-Christoph is in the workspace
in which you are operating. (The workspace contains object versions and a workspace can contain only one version of each
object.)

In your programs, you can avoid this error by manipulating target object collections rather than relationship collections. This error
occurs only when a collection includes an item that the repository engine cannot resolve to an in-workspace object. The only
situation in which this occurs is described in the preceding example: the collection is a relationship collection, and none of its
items refers to the specific version of the target object that is in the workspace. When you establish a target object collection,
however, each item in the collection is a repository object (rather than a relationship to a repository object). If you establish the
collection while operating within a workspace, each item in the collection is a version of the target object that is present in the
workspace.

See Also

Resolution Strategy for Objects and Object Versions

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Resolution While Operating Outside a Workspace
Resolution While Operating Outside a Workspace

If you do not request a specific version and you are not operating within a workspace, the repository engine generally returns the
most recently created version of an object. In one situation, however, the repository engine first tries to find another, preferable
version of the requested object. If you are navigating from an origin object to a destination object, and there is a pinned version of
the target object, the repository engine returns an interface pointer to the pinned version. If there is no pinned version, the
repository engine simply returns an interface pointer to the most recently created version of the target object that participates in
the relationship.

Following are some basic facts about pinning:

The repository engine can return a pinned version (see Example One).

If there is not a pinned version, the repository engine can return the most recent version (see Example Two).

A destination object version can be pinned to several origin object versions (see Example Three).

If a target object version is pinned for one versioned relationship, it is not necessarily pinned for others (see Example Four).

You can pin at most one version of the destination object for each relationship.

You can pin a version of the destination object only; you cannot pin an item within the target versions collection of a
destination relationship.

Pinning Example One

The following figure shows a two-item collection: TestSuites-of-Version 3-of-Main. The two items are SuiteB and SuiteC. If
you are not operating in a workspace and you navigate to SuiteB, the repository engine discovers a pinned version of the target
object. (The figure shows the pinned version with a dashed arrow.) Thus, the repository engine returns Version 2-of-SuiteB to
your program, even though Version 3-of-SuiteB was created more recently and is related to the source object version.

Pinning Example Two

The following figure shows a two-item collection: TestSuites-of-Version 3-of-Main. The two items are SuiteB and SuiteC. If
you are not operating in a workspace and you navigate to SuiteC, the repository engine finds no pinned version, so it returns
Version 2-of-SuiteC.

Note Although Version 3-of-SuiteC was created more recently, the repository engine does not return it because there is no
relationship between it and the source object version (Version 3-of-ProductX). The repository engine returns Version 2-of-
SuiteC because, among the versions related to the source object version, Version 2-of-SuiteC is the most recently created
version.

Pinning Example Three

A destination object version can be pinned to any number of origin object versions. For example, the following figure shows that
Version 3-of-SuiteD is the pinned destination object version of two different items.

Pinning Example Four

If a target object version is pinned for one versioned relationship, it is not necessarily pinned for others. For example, the
following figure simultaneously shows three versions of Product Z, each of which has a collection containing Suite D. All three
versions of Product Z use SuiteD as the target object. The top item uses Version 3-of-SuiteD as the pinned version of the
target object. The middle item, even though it includes the same version (Version 3) of the target object, does not have it pinned;
it uses Version 5-of-SuiteD as the pinned version of the target object. The bottom item includes both Version 3 and Version 5
of SuiteD, but it includes no pinned version at all.

See Also

Resolution Strategy for Objects and Object Versions

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Merging Object Versions
Merging Object Versions

The version management feature of the repository engine supports branching. A branch results when you create a new object
version whose predecessor version already has one or more successor versions. Common branching scenarios are:

When two concurrent development efforts must change the same object.

When a maintenance change is required on an older version of an already released object.

In scenarios like these, it is sometimes necessary to merge branched lines of development back together. You can merge one
object version into another with the MergeVersion method of the IRepositoryObjectVersion interface. You can merge several
branches together by successively merging two branches at a time until all branches have been merged.

The following topics describe the merging process in more detail.

Topic Description
Merge Overview Provides basic information about merge

behavior
Invoking MergeVersion Explains prerequisite steps for invoking the

MergeVersion method
Resolving Merge Conflicts for
Properties

Describes how conflicts between property
values are resolved

Resolving Merge Conflicts for
Collections

Describes how conflicts between collections
are resolved

Examples of Merging Versions Provides before and after examples of
merged objects

See Also

Branches in the Version Graph

IRepositoryObjectVersion Interface

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Merge Overview
Merge Overview

To perform a merge operation, you use the MergeVersion method of the RepositoryObjectVersion object.

You can predict how the property values and collections in a successor version will change. The MergeVersion method modifies
one object version, the successor, by combining its property values and collections with those of another version, the predecessor.
MergeVersion compares the property values and collections of the predecessor version and the successor version to a third
version, called the basis version.

MergeVersion does not combine two versions into a third, newly created version. Rather, it merges the property values and
collections of one version into another version. After the operation is complete, the modified version becomes a successor of the
other version. MergeVersion modifies the version graph accordingly.

Calculating the Basis Version

When you invoke the MergeVersion method, the repository engine uses the version graph to compare version data. The
MergeVersion method compares each object version to be merged to a basis version of the same object. The basis version of the
two to-be-merged object versions is the most recently created object version that is on the creation path of both the primary
object version and the secondary object version of the merge. The creation path of an object version is a path through the version
graph leading from the object version directly to Version 1 of the object. Each step of the path leads from an object version to its
predecessor creation version.

You can easily follow an object version's creation path backward from it to Version 1 by following the solid arrows in reverse. For
example, the version graph in the following figure shows that the creation path of Version 11 goes through these other versions:
9, 5, 4, 2, and 1.

Comparing Collections

As it works, the MergeVersion method must compare collections to each other. It compares each collection in the basis version
to its corresponding collection in the primary version and in the secondary version. MergeVersion considers two collections to
be different if either of the following is true:

One collection contains different objects from the other collection.

A corresponding pair of items from the two collections differs from each other.

Comparing Versioned Relationships

The MergeVersion method compares each collection of the basis version of an object to the corresponding collections of the
primary version and of the secondary version. As part of these comparisons, the method must compare the versioned
relationships of these collections. An item from the basis object version's collection corresponds to an item in the primary or
secondary object version's collection if the two items use the same target object. Even if two items correspond, however, they can
still differ in important ways. The repository engine considers two versioned relationships to differ if any of the following is true:

The collection type is a sequenced collection and the two items have different sequence numbers.

The collection type is a naming collection and the two items have different names.

The two items refer to different versions of the target object.

The two items use a different version of the target object as pinned version.

One item has a pinned target object version and the other does not.

For example, the following figure shows two items that differ in one respect only; the top item refers to Versions 1 and Version
3. The corresponding item of the second collection refers to Versions 3 and Version 5.

Meta Data Services Programming (SQL Server 2000)

Invoking MergeVersion
Invoking MergeVersion

When you invoke MergeVersion, the object version you will use as predecessor of the merge must already be frozen. The object
version to be modified, the successor of the merge, cannot be frozen.

Briefly, the merge operation has these results:

The object's version graph is updated to indicate that the merge operation occurred.

The successor object can have different property values or collections.

You invoke MergeVersion on the successor version of the merge; you pass a reference to the predecessor as an input parameter.
You also pass an indication of which version is to be considered the primary version. The primary version is the version whose
member values are given priority when there are merge conflicts between the two versions.

See Also

IRepositoryObjectVersion::MergeVersion

Merge Overview

Merging Object Versions

Resolving Merge Conflicts for Collections

Resolving Merge Conflicts for Properties

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Resolving Merge Conflicts for Properties
Resolving Merge Conflicts for Properties

For each property, MergeVersion uses this rule to resolve merge conflicts:

If the primary version differs from the basis version, the repository engine uses the property value from the primary
version.

If only the secondary version differs from the basis version, the repository engine uses the property value from the
secondary version.

If neither version differs from the basis version, the repository engine leaves the property value in the current version
unchanged.

See Also

IRepositoryObjectVersion::MergeVersion

Merging Object Versions

Resolving Merge Conflicts for Collections

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Resolving Merge Conflicts for Collections
Resolving Merge Conflicts for Collections

For each collection, MergeVersion uses flags and rules to resolve merge conflicts. CollectionDefFlags that you set for a
collection can determine how that collection is merged.

Setting the COLLECTION_MERGEWHOLE Flag

For each origin collection type whose COLLECTION_MERGEWHOLE flag is set, MergeVersion uses this rule:

If the primary version's collection differs from the basis version's collection, the repository engine uses the collection from
the primary version. For more information, see the Comparing Collections section of Merge Overview.

If only the secondary version's collection differs from the basis version's collection, the repository engine uses the collection
from the secondary version.

If neither version differs from the basis version, the repository engine leaves the collection in the current version
unchanged.

Not Setting the COLLECTION_MERGEWHOLE Flag

For each origin collection type whose COLLECTION_MERGEWHOLE flag is not set, MergeVersion combines the items in the two
collections as follows:

MergeVersion includes in the resulting collection each item in the basis version not changed in or deleted from either the
primary version or secondary version. For more information, see the Comparing Versioned Relationships section of Merge
Overview.

MergeVersion includes in the resulting collection each item in the primary version's collection that differs from the basis
version.

MergeVersion includes in the resulting collection each item in the secondary version's collection that differs from the basis
version, provided the corresponding items in the primary version and basis version do not differ from each other.

Note The resulting collection can exclude some items found in the basis object version's collection. For example, if the primary
version's collection excludes the item, the resulting collection will exclude the item. Similarly, if the primary version's collection
includes an item that is identical to an item in the basis version's collection, but the secondary object version excludes the item,
the resulting collection will exclude the item.

For more information about merge behavior, see Examples of Merging Versions.

See Also

CollectionDefFlags Enumeration

IRepositoryObjectVersion::MergeVersion

Merge Overview

Merging Object Versions

Resolving Merge Conflicts for Properties

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Examples of Merging Versions
Examples of Merging Versions

A typical version graph for an object is shown in the following figure. The object has three properties: Size, Color, and Quantity.
For selected versions of the object, the figure shows the values of these properties as ordered triplets.

If you merge Version 4 into Version 8 (using Version 4 as the primary version), the repository engine uses Version 2 as the
basis version.

The resulting version graph looks like the following.

In the resulting version graph, notice the following:

Version 4 is now a noncreation predecessor of Version 8.

In Version 8, the value of the Size property is medium. The change in the primary version, from small to medium, prevails
over the change in the secondary version, from small to large.

In Version 8, the value of the Color property is red. The change in the secondary version's value prevails because the
corresponding value in the primary version did not change.

In Version 8, the value of the Quantity property is null. The change in the secondary version's value prevails because the
corresponding value in the primary version did not change.

Later, you merge Version 6 into Version 8, using Version 8 as the primary version. The repository engine uses Version 1 as the
basis version. Before the merge, the version graph (with important property values shown) looks like the following.

The resulting version graph is shown in the following figure.

In the resulting version graph in the preceding figure, notice the following:

Version 6 is now a noncreation predecessor of Version 8.

In Version 8, the value of the Size property is medium. Neither the primary nor secondary version's value had changed
from the basis version's value.

In Version 8, the value of the Color property is red. The change in the primary version's value, from green to red, prevails
over the change in the secondary version's value, from green to null.

In Version 8, the value of the Quantity property is 555. The change in the secondary version's value, from null to 555,
prevails because the corresponding value in the primary version did not change.

See Also

Merge Overview

Version Graph

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Programming Objects
This section provides information about programming special-purpose objects and collections.

Topic Description
Programming BLOBs and Large Text Fields Describes the binary large object (BLOB)

and large text field support that is
available through the repository API

Programming Transient Object Collections Describes how to instantiate a transient
object collection

See Also

Accessing Repository Objects

Accessing Target Object Collections

Programming Information Models

Meta Data Services Programming (SQL Server 2000)

Programming BLOBs and Large Text Fields
Programming BLOBs and Large Text Fields

Repository engine provides interfaces to handle properties that are binary large objects (BLOBs) and large text fields. BLOBs are
properties that have values containing text or image data that can be in excess of 64 kilobytes (KB). You can use BLOBs to perform
database operations that require you to work with large segments of data at a time.

To define a BLOB, create a PropertyDef object, and then do the following:

1. Set the SQLType property to SQL_LONGVARBINARY or SQL_LONGVARCHAR.

2. Set the SQLBlobSize property to a value greater than 64 KB.

When SQLType is set to either SQL_LONGVARBINARY or SQL_LONGVARCHAR, SQLBlobSize (rather than SQLSize) determines
the maximum size.

To work with a BLOB, use the IReposPropertyLarge interface. This interface provides methods that support BLOB manipulation.
Specifically, it can be used to read, write, move, and seek information about a BLOB.

The locking behavior for the methods on this interface varies from the locking behavior used by other repository interfaces.
Specifically, as soon as you invoke the Write and WriteToFile methods, the repository engine locks the database row until you
commit the transaction. In contrast, locking for other rows only occurs for the duration of the commit.

When you use IReposPropertyLarge to manipulate an object, avoid using other repository property interfaces (such as
IReposProperty or IReposProperty2) on the same property. These interfaces only work with properties that contain up to 64 KB
of data. If your property exceeds 64 KB, you will only get the first 64 KB of it.

When you version a BLOB or large text field property, you can use CreateVersion to create the version and MergeVersion to
combine versions. MergeVersion always selects the primary version of the BLOB or large text field. The new values are inserted
directly into the database (rather than cached). For this reason, atomic operations are not supported for versioning these kinds of
properties. For more information about atomicity of operations, see Transaction Management Overview.

For more information about other repository property interfaces, see Accessing Properties.

Note IReposPropertyLarge is basically a dispatch-based version of the IStream OLE 2.0 interface.

For more information about handling BLOBs, search on "Stream Objects" and "IStream Interface" in the MSDN® Library at the
Microsoft Web site.

See Also

Accessing Repository Objects

IPropertyDef2 Interface

IRepositoryObjectVersion::CreateVersion

IRepositoryObjectVersion::MergeVersion

IReposProperty Interface

IReposProperty2 Interface

IReposPropertyLarge Interface

PropertyDef Object

RepositoryObjectVersion CreateVersion Method

RepositoryObjectVersion MergeVersion Method

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Meta Data Services Programming (SQL Server 2000)

Programming Transient Object Collections
Programming Transient Object Collections

Transient object collections are not stored in a repository database. This means that you can populate a transient object collection
dynamically, using application code to determine the criteria for including objects.

Transient object collections extend your ability to create collections by providing a way to create collections at run time. Typically,
the way you do this is through script. In this case script, instead of stored repository data, is used to dynamically populate a
transient object collection. After a transient object collection is instantiated, you can use the collection in your application code just
as you would any other repository collection.

Because it is based on script, a transient object collection can contain any combination of objects that you want. It is not subject to
the conformance constraints that apply to other kinds of repository object collections.

Transient object collections are exposed through the ITransientObjCol interface.

The following example illustrates how you can use script to populate a transient object collection. Suppose you have an
information model that defines a catalog, schemas, and tables. Script that creates a collection of all tables for all schemas in the
catalog can be something like the following:

Function GetTables()
Set ObjCol = CreateObject("Repository.TransientObjectCol")
Set reposCatalog = CurReposObject
For each reposSchema in reposCatalog.Interface("Catalog").Schemas
 For each reposTable in reposSchema.Interface("Schema").Tables
 ObjCol.Add reposTable
 Next
Next
Set GetTables = ObjCol
End Function

See Also

Accessing Repository Objects

Accessing Target Object Collections

Defining Script Objects

ITransientObjectCol Interface

Understanding Collections

Understanding Relationship Roles

Meta Data Services Programming (SQL Server 2000)

Managing Transactions and Threads
When you make changes to a repository database, the updates are done within the scope of a transaction. You use repository
transaction management methods to ensure that changes to a repository database always leave the database in a consistent state.
This section discusses the transaction management support provided by the repository engine, and the threading model that is
supported by repository objects.

Knowing how to perform a transaction is necessary if you are creating or extending information models programmatically, or
writing programs that populate or update an information model.

Transactions are not required for programming to retrieve data through the repository engine.

The following topics provide more information about transactions.

Topic Description
Transaction Management Overview Explains when you should use a

transaction and how transactions are
implemented by the repository engine.

Design Issues and Transaction
Management

Describes design issues that you should
consider when implementing transaction
behavior in an application.

Repository Objects and Multithreading Explains transaction behavior and issues
that apply when running multiple
instances of a repository.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction2 Interface

Repository Class

Repository Databases

Repository Transaction Objects

Meta Data Services Programming (SQL Server 2000)

Transaction Management Overview
Transaction Management Overview

Transactions can be used to bracket multiple interactions with the repository engine. Changes to a repository that are a result of
such interactions are either all committed or all undone, depending on the way that the transaction is completed. Repository
methods that write data to a repository can be executed only within a transaction. Methods that read data from a repository can
be executed without a transaction (although such reads can be done against partially updated data).

A repository database can have multiple repository instances connected to it simultaneously, from the same or from different
processes. Each repository instance can have at most one transaction active at a time.

As a rule, the repository engine never implicitly cancels transactions. If a failure occurs, you must explicitly terminate the
transaction. There is one exception to this rule: If you start a transaction, and then release the repository instance to which the
transaction belongs, your transaction will be canceled.

Atomicity of Operations

OPT_ATOMICOP_MODE is an IReposOption option that you can set to enable or disable atomicity of operations. If this option is
enabled, all operations, except commit, are executed atomically. If this option is disabled, the entire transaction is terminated in
cases where an operation fails.

Atomicity of operations creates a backup copy of each row in cache just before an update and restores it in case the operation
fails. If the operation is successful, the backup copy is discarded.

The following topics provide more information about defining a transaction.

Topic Description
Managing Transactions Explains the steps used to set up a

transaction.
Nesting Transactions Describes the scope and implementation

of nesting transactions.
Transactions and Caching Describes caching behavior as it relates to

transactions.
Integration with Distributed Transaction
Coordinator

Explains how to use Microsoft®
Distributed Transaction Coordinator (MS
DTC), a component of Microsoft SQL
Server™ 2000, to coordinate multiple
transactions.

See Also

Design Issues and Transaction Management

Managing Transactions and Threads

Repository Objects and Multithreading

IRepositoryTransaction::abort

Meta Data Services Programming (SQL Server 2000)

Managing Transactions
Managing Transactions

Each instance of the Repository class implements the IRepositoryTransaction interface, which supports these methods and
properties:

The Begin method, which marks the beginning of a transaction

The Commit method, which marks the end of a transaction

The Abort method, which cancels a transaction and undoes all updates performed by the transaction

The GetOption and SetOption methods, which get and set transaction options that control:
Whether other transactions are permitted to open the repository database from within the same process.

Whether updates are cached until the Commit is performed.

How long to wait for a transaction to start.

How long to wait for a query to complete.

How long to wait for a lock on a repository object.
The Status property, which indicates whether or not a transaction is currently active

For each open repository instance, the pointer to the IRepositoryTransaction interface is available through the Transaction
property. For more information about the transaction options you can set, see TransactionFlags Enumeration.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction2 Interface

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

Nesting Transactions
Nesting Transactions

The repository engine permits nesting of Begin and Commit method invocations, but no actual transaction nesting occurs. A
nested transaction count is maintained for each open repository instance.

Invoking the Begin method during an active transaction increments the nested transaction count by one, but has no other effect.

Invoking the Commit method during an active transaction decrements the nested transaction count by one. If, and only if, this
decrement reduces the nested transaction count to zero, all updates are committed to the repository database.

Invoking the Abort method during an active transaction undoes all changes made during that transaction. Changes made during
any nested transactions are also undone, even if the Commit method has already been invoked for those transactions. The nested
transaction count is set to zero.

See Also

IRepositoryTransaction::abort

IRepositoryTransaction::begin

IRepositoryTransaction::commit

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

Transactions and Caching
Transactions and Caching

The repository engine changes are cached to improve performance. Guaranteed updates to a repository are written to persistent
storage only when the active transaction is committed.

By default, multiple repository instances within the same process share a repository cache. Within the same process, when a
transaction for one repository instance commits, its updates are immediately visible to transactions executing for other repository
instances. These updates are not visible to open repository instances in other processes if those processes already have the
preupdate data cached. Explicit refreshes are required to view updates from transactions that have completed in other processes.

You can override the default sharing behavior by setting a flag that allocates a new cache for each repository instance. For more
information about REPOS_CONN_NEWCACHE, see ConnectionFlags Enumeration.

You can customize cache behavior by defining different age out strategies for different kinds of rows. For more information about
age out strategies and caching behavior, see Optimizing Repository Performance.

To refresh a cache

Refresh an individual repository item by invoking the Refresh method for the repository item.

This method invalidates unchanged cache data for the repository item. Subsequent requests for that data will be fulfilled by
retrieving the data from the repository database.

-or-

Refresh all repository items currently cached for an open repository instance by invoking the Refresh method associated
with that repository instance.

This method invalidates unchanged cache data for all repository items. Subsequent requests for that data will be fulfilled by
retrieving the data from the repository database.

In addition to explicit refreshes, repository items may be refreshed implicitly at any time by the repository engine, due to
execution of internal repository caching algorithms.

See Also

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

Integration with Distributed Transaction Coordinator
Integration with Distributed Transaction Coordinator

You can design an application that runs a distributed transaction on Microsoft® SQL Server™ 2000 running on Microsoft
Windows® 2000.

Before you use Microsoft Distributed Transaction Coordinator (MS DTC) with a SQL Server 2000 Meta Data Services repository,
you must install the Windows 2000 Service Pack 1. This service pack fixes an intermittent bug that causes MS DTC to stop
responding when committing changes to a repository database.

The protocol for coordinating transaction atomicity across multiple resource managers is a two-phase commit. The Microsoft
facility for a two-phase commit is MS DTC. You can enable distributed transactions to support the following scenarios:

Create an application that updates data in two repositories within the same transaction.

Create an application that updates data in a repository and in another database within the same transaction.

Create an application that runs a Microsoft Transaction Server (MTS) to update a repository, while running the application
within the transaction that called it.

Create an information model that aggregates a repository object class and updates another database within the aggregation
wrapper.

The distributed transaction must be atomic; that is, it must either commit at all resource managers or terminate at all of them. For
more information about supporting atomic operations, see Transaction Management Overview.

The Transaction Protocol

To support MS DTC in your application, you must set the TXN_USE_DTC transaction flag. IRepositoryTransaction supports the
TXN_USE_DTC flag on the GetOption and SetOption methods. The bit value for TXN_USE_DTC is 10. The default value of this
option is FALSE. If the value is set to TRUE, each call to IRepositoryTransaction::Begin will create an MS DTC transaction.

IRepositoryTransaction::SetOption(10, 1)
IRepositoryTransaction::Begin

MS DTC requires that the participant who started the transaction be the only party who can call Commit.

Programming in Visual C++

If you are a Microsoft Visual C++® programmer, you can use the ITransactionJoin::JoinTransaction method. You can use this
method to cause a repository instance that is not currently running a transaction to become part of an existing MS DTC
transaction. The active MS DTC transaction object is passed in as an input argument. For more information about the
ITransactionJoin interface, see SQL Server Books Online.

Programming in M icrosoft Visual Basic

Microsoft Visual Basic® applications must use the following API to enlist an MS DTC transaction:

HRESULT IRepositoryTransaction2::JoinTransaction ([in]VARIANT sVArTxn);

where sVArTxn is an IUnknown pointer to the distributed transaction coordinator.

See Also

IRepositoryTransaction::begin

IRepositoryTransaction::commit

IRepositoryTransaction::getOption

IRepositoryTransaction::setOption

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

Design Issues and Transaction Management
Design Issues and Transaction Management

When you design an application that writes or updates data in a repository database, you must consider these transaction
management issues:

What are the implications of reading repository data outside the scope of a transaction?

Is a locking protocol necessary for the application?

Are repository cache overflows likely to occur, and what can be done to avoid cache overflows?

The following topics provide more information about these issues.

Topic Description
Reading Repository Data Outside of a
Transaction

Explains strategies for successfully reading
data outside a transaction.

Using a Lock Protocol Describes how and why you should use
lock protocols.

Avoiding Repository Cache Overflows Explains how to avoid and correct for
cache overflows.

See Also

Managing Transactions and Threads

Repository Objects and Multithreading

Meta Data Services Programming (SQL Server 2000)

Reading Repository Data Outside of a Transaction
Reading Repository Data Outside of a Transaction

A repository engine method that reads data can execute outside a transaction. However, repository data that is read in this way
can include partial updates from an active transaction.

To ensure that the data read from a repository does not include partial updates from active transactions, put read requests into a
transaction. Otherwise, if you bracket your reads within a transaction and your repository database is a Microsoft® Jet database,
you risk overloading the cache.

Microsoft Jet uses an in-memory cache to speed up query processing. Cached data is not released until the transaction is
committed. If your repository application is reading a large amount of data, and you are performing the reads within the scope of
a transaction to isolate them from the uncommitted changes of other applications, the Jet cache can grow so large that it causes
the application to fail. To avoid this, commit your transaction periodically (even though it is a read-only transaction).

See Also

Managing Transactions and Threads

Restrictions for Microsoft Jet Repository Databases

Meta Data Services Programming (SQL Server 2000)

Using a Lock Protocol
Using a Lock Protocol

Executing transactions concurrently can adversely affect the integrity of repository data if a locking protocol is not used. For
example, consider two concurrently executing transactions that both increment an integer property of a repository object. This
property represents a sequential counter.

1. Transaction A reads the value of the property. The current value is six.

2. Transaction B reads the same current value of the property.

3. Transaction A increments the retrieved property value by one and writes it back to the repository database. The value in the
database is now seven.

4. Transaction B increments its copy of the retrieved property value by one and writes it back to the repository database. The
value in the database is still seven. It should be eight.

To avoid this problem, use the Lock method in concurrently executing transactions to serialize access to a repository item. The
Lock method sets an exclusive lock on the item, and refreshes any unchanged cache data for the item. The lock is effective across
processes and across computers. If the repository item is already locked, the lock request waits until the lock becomes available.
The item is unlocked when the transaction is ended, either by the Abort method or by the final invocation of the Commit method
for the transaction.

By invoking the Lock method, the caller has exclusive access to a repository item, as long as all other concurrently executing
transactions also obtain a lock on that repository item before updating it.

By default, the repository engine will wait up to 20 seconds to get a lock on a repository object. If this lock time-out value is
insufficient, you can increase it by setting a transaction flag. For more information, see TransactionFlags Enumeration.

Caution Calling the Lock method on a repository item only prevents other transactions from executing the Lock method on the
item. It does not block other transactions that are not using the locking protocol from changing the item.

See Also

IRepositoryItem::Lock

IRepositoryTransaction::abort

Managing Transactions and Threads

RepositoryObjectVersion Lock Method

Workspace Lock Method

VersionedRelationship Lock Method

Meta Data Services Programming (SQL Server 2000)

Avoiding Repository Cache Overflows
Avoiding Repository Cache Overflows

To enhance performance, repository transactions typically run in writeback mode. In writeback mode, the updates for a
transaction are held in the repository cache until the transaction is committed. If a single transaction performs a large number of
updates, it can cause the repository cache for the process to overflow.

By setting transaction options through the SetOption method, a repository instance can operate in exclusive writeback mode,
where it allows no more than one active transaction at a time for a given process and repository database. Using exclusive
writeback mode will reduce, but not eliminate, the possibility of a cache overflow. For a very large number of updates within a
single transaction, or if memory is limited, the repository cache can still overflow.

To guarantee that cache overflows will not cause transactions to fail, set the exclusive writethrough mode transactional option. In
exclusive writethrough mode, updates are immediately flushed from the repository cache. Exclusive writethrough mode does not
affect your ability to cancel an active transaction by using the Abort method.

See Also

IRepositoryTransaction::Abort

IRepositoryTransaction::SetOption

Managing Transactions and Threads

TransactionFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

Repository Objects and Multithreading
Repository Objects and Multithreading

A process can create multiple instances of the Repository class, with each instance connected to the same or to different
repository databases. Instances of the Repository class, as well as instances of other repository-supplied classes, can be
instantiated as either COM or Automation objects. With regard to multiple threads executing within a single process, these
objects:

Support multithread processing.

Use the free-threaded model.

Are thread-safe objects.

The following topics provide more information about each of these issues.

Topic Description
Restrictions for Microsoft Jet Repository
Databases

Explains how multithreading affects cache
behavior in Microsoft® Jet databases.

Synchronizing Commit Operations Identifies which methods require
synchronization between application
threads.

See Also

Design Issues and Transaction Management

Managing Transactions and Threads

Repository Class

Transaction Management Overview

Meta Data Services Programming (SQL Server 2000)

Restrictions for Microsoft Jet Repository Databases
Restrictions for Microsoft Jet Repository Databases

When Microsoft® Jet manages a repository database, a special restriction applies to the use of multiple threads. Only the Jet-
managed thread that created an open repository instance to a repository database can use the instance. In other words, if your
repository database is managed by Jet, construct your application as if the repository were using the apartment thread model.

For more information about using Jet repository databases, see Reading Repository Data Outside of a Transaction.

See Also

Managing Transactions and Threads

Synchronizing Commit Operations

Meta Data Services Programming (SQL Server 2000)

Synchronizing Commit Operations
Synchronizing Commit Operations

When programming a multithreaded repository application, synchronize repository commit operations between application
threads. Specifically, synchronize the use of the following methods:

The Count method of the IRelationshipCol interface

The ObjectInstances method of the IClassDef interface

The ObjectInstances method of the IInterfaceDef interface

The ExecuteQuery method of the IRepositoryODBC interface

See Also

IClassDef::ObjectInstances

IInterfaceDef::ObjectInstances

IRelationshipCol::get_Count

IRepositoryODBC::ExecuteQuery

Managing Transactions and Threads

Restrictions for Microsoft Jet Repository Databases

Meta Data Services Programming (SQL Server 2000)

Managing Workspaces
A workspace is a restricted view of the contents of a Microsoft® SQL Server™ 2000 Meta Data Services repository. You define
which objects are contained in the workspace. You also define which version of each object is used. You can only have one version
of any object checked out to a workspace at one time.

The following topics describe workspace management capabilities.

Topic Description
Workspace Management Overview Introduces a workspace and explains the reasons

for using one.
Objects Within Workspaces Describes how objects can be used within a

workspace.
Workspace Context Describes the scope of a workspace, and

provides basic information about navigation.
Workspace Context also details the operational
differences between a repository instance and a
workspace.

Accessing Objects in a Workspace Explains the various ways in which an object can
be retrieved within a workspace.

Manipulating Workspaces Describes how to manipulate a workspace object.
Manipulating Objects in a
Workspace

Describes how to manipulate an object within a
workspace.

See Also

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

Workspace Management Overview
Workspace Management Overview

Each repository can contain multiple workspaces. A workspace is a restricted view of the contents of a repository. The view is
restricted for two reasons:

A workspace can contain only those repository object versions that you explicitly include in it. Thus, if you set up a
workspace to apply to a functional area, you can include in that workspace only objects that pertain to that area.

A workspace can contain only one version of any repository object. Thus, the workspace provides a simple view of the
repository's data in which only one version of each object exists. In effect, operating within a workspace simplifies your
environment because you do not need to choose among several versions of the same object. When you retrieve an object
from a workspace, the repository engine returns the specific version of that object that is present in the workspace.

Although the view of repository data in a workspace is restricted, operating in the context of a workspace is liberating for two
reasons:

A workspace reveals only the objects that are important to you, effectively yielding a custom view of the repository.

Because a workspace contains at most one version of any object, your within-workspace operations can avoid much of the
complexity of a multiversion environment.

See Also

IRepositoryObjectVersion Interface

Managing Workspaces

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

Objects Within Workspaces
Objects Within Workspaces

An object version can participate in a workspace in two ways:

An object version can be present in the workspace. That is, the workspace can contain the object version.

Each workspace has a Versions collection containing the object versions present in the workspace. Use the Add method to
include an object version in a workspace; use Remove to exclude an object version.

Note An object version can be present in more than one workspace. Each object version has a Workspaces collection
containing the workspaces in which the object is present.

An object version can be checked out to a workspace.

When an object version is checked out to a workspace, you can modify that object version only while operating in the
workspace. Each workspace has a Checkouts collection containing the object versions checked out to the workspace. Use
the Checkout and Checkin methods to control the contents of the Checkouts collection.

Note An object version can be checked out to no more than one workspace, and it can be checked out only to a workspace
in which it is already present. Even when you check out an object version to a workspace, that object version can remain
present in many other workspaces.

Workspaces support various kinds of collections that determine the scope of a workspace. For more information about the
collections you can access in a workspace, see Retaining Workspace Context.

See Also

Managing Workspaces

Workspace Context

Meta Data Services Programming (SQL Server 2000)

Workspace Context
Workspace Context

When you operate within a workspace, the workspace provides a specific context for your work. That context includes both the
Versions collection and the Checkouts collection for that workspace. If an object version is not part of either of these collections,
it is not part of the context for that workspace.

The behavior of a repository method can vary depending on whether you invoked the method from within the context of a
workspace or from within the more general context of a repository instance. For example, if you materialize the ObjectInstances
collection for a class, the collection can consist of two different sets of items:

If you are operating within the context of a workspace, the collection contains one item for each object in that workspace
conforming to that class.

If you are operating within the more general context of a repository instance, the collection contains one item for each
object in the repository conforming to that class.

Similarly, if you invoke get_Object, two different things can happen:

If you are operating within the context of a workspace, the repository engine follows a resolution strategy to yield the
version of the object present in the workspace.

If you are operating within the more general context of a repository instance, the resolution strategy yields the latest version
of the object.

See Also

Establishing Workspace Context

Kinds of Version Collections

Managing Workspaces

Resolution Strategy for Objects and Object Versions

Retaining Workspace Context

Meta Data Services Programming (SQL Server 2000)

Establishing Workspace Context
Establishing Workspace Context

When you create or open a repository instance, the repository engine returns a reference to the repository root object. From
there, you can immediately begin to manipulate other repository objects. For example, you can invoke get_Object to materialize
a reference to a specific repository object, or you can navigate from the root object to other repository objects. In either of these
cases, the resulting references refer to run-time objects that exist within the general context of the open repository instance. Thus,
if you invoke methods exposed by this object, the methods perform their work within that context.

On the other hand, you can first establish a workspace context before manipulating any repository objects. To establish a
workspace context, you must materialize a workspace object in any of these ways:

From the root object, you can materialize the Workspaces collection and then retrieve a particular workspace from the
resulting collection.

You can invoke the get_Object method to explicitly retrieve a reference to the workspace object in whose context you want
to operate.

From the workspace definition object you can use the ObjectInstances method to establish a collection of all workspaces
in the repository. You can then retrieve a particular workspace from that collection.

After you have a reference to the workspace object, you can operate within the context of that workspace.

To retrieve an object directly within the context of the workspace, you can invoke the get_Object method as exposed by the
workspace object. The Workspace class implements IRepository2, making methods like get_Object and get_RootObject
equally available to a repository instance and the workspaces it contains.

To navigate to an object within the context of a workspace, start by invoking the get_RootObject method exposed by the
workspace object, then navigate to other objects that are related to the root.

Important differences exist between workspaces and repository instances. For more information about how these differences
affect programming within a workspace context, see Workspaces and Repository Instances.

See Also

Managing Workspaces

Navigating a Repository

Retaining Workspace Context

Workspace Context

Meta Data Services Programming (SQL Server 2000)

Retaining Workspace Context
Retaining Workspace Context

As you navigate the objects present in the workspace, the repository engine retains the workspace context. In other words, if you
retrieve an item from a relationship collection or a target object collection, the retrieved target item has the same context as the
source item of that relationship.

However, only relationship collections and target object collections retain workspace context. If you retrieve an item from any
VersionCol object, the reference that the repository engine returns to you has the context of the open repository instance in
which you are operating. The object reference does not have an in-workspace context.

For example, suppose that within the context of a workspace, you have a reference to the root object, and you perform these
steps:

1. From the root object, you navigate to a particular repository object.

As you navigate to each object along the navigation path, the repository engine returns whichever object version is present
in the workspace. At each step, the reference that the repository engine returns preserves the workspace context.

2. At some point along the navigation path, you materialize the PredecessorVersions collection of an object version. Then,
you retrieve the first item in that collection.

The repository engine returns a reference to the oldest predecessor of the object version. Because the
PredecessorVersions collection is a VersionCol object rather than a relationship collection or a target object collection,
this reference does not preserve the workspace context. All subsequent manipulations of and navigations from this object
occur within the general context of the open Repository instance.

See Also

Establishing Workspace Context

Kinds of Version Collections

Managing Workspaces

Navigating a Repository

Workspace Context

Meta Data Services Programming (SQL Server 2000)

Workspaces and Repository Instances
Workspaces and Repository Instances

In many respects, operating within a workspace is just like operating within a larger repository instance. Both the Workspace
class and the Repository class implement the IRepository2 interface. There are, however, some important differences:

Some methods exposed by the IRepository2 interface apply only to Repository instances, not to workspaces. You cannot
call Open or Create on a workspace object.

Unlike repository connections, workspaces are named persistent repository objects. Thus, workspaces can be created, used
across multiple sessions, and deleted, if necessary.

See Also

Establishing Workspace Context

IRepository2 Interface

Managing Workspaces

Retaining Workspace Context

Workspace Context

Meta Data Services Programming (SQL Server 2000)

Accessing Objects in a Workspace
Accessing Objects in a Workspace

You can retrieve a repository object in the context of a workspace by doing one of the following:

Retrieving the object using the Object property that the workspace object exposes.

Retrieving the root object using the RootObject property that the workspace object exposes, and then navigating to other
objects by traversing relationship collections.

Retrieving the object from the workspace Versions collection.

When you retrieve an object using any of these alternatives, you retrieve the specific object version that is included in the
workspace. For more information, see Workspace Context.

See Also

Establishing Workspace Context

Managing Workspaces

Retaining Workspace Context

Meta Data Services Programming (SQL Server 2000)

Manipulating Workspaces
Manipulating Workspaces

Operations on workspaces are supported at both the COM level and the Automation level. You can perform the following
operations on a workspace.

To Use
Enumerate the workspaces in a
repository instance

The Workspaces collection of the
IWorkspaceContainer interface that is exposed
by the root repository object.

Create a workspace The CreateObject method of the IRepository
interface that is exposed by the open repository
instance. Use the Add method for the
Workspaces collection to add the workspace to
the collection of workspaces.

Delete a workspace The Delete method of the IRepositoryItem
interface that is exposed by the workspace object.
If you attempt to delete a workspace that
contains checked out objects, the delete will fail.

Retrieve the root object in a
workspace

The RootObject property of the IRepository
interface that is exposed by the workspace object.

Enumerate the repository objects
contained in a workspace

The Contents collection of the IWorkspace
interface that is exposed by the workspace object.

Enumerate the checked out objects
in a workspace

The Checkouts collection of the IWorkspace
interface that is exposed by the workspace object.

See Also

Managing Workspaces

Manipulating Objects in a Workspace

Meta Data Services Programming (SQL Server 2000)

Manipulating Objects in a Workspace
Manipulating Objects in a Workspace

Repository objects implement the IWorkSpaceItem interface in order to support workspace-related capabilities. The
IWorkSpaceItem interface is available at both the COM level and the Automation level. Given a specific version of a repository
object, you can perform the workspace-related operations listed in the following table.

To Use
Determine whether an object
version is checked out to a
workspace

The CheckedOutToWorkspace property of the
IWorkSpaceItem interface.

Determine which workspaces
contain a particular object version

The Workspaces collection of the
IWorkSpaceItem interface that is exposed by
the object version.

Add an object version to a
workspace

The IWorkspace interface to obtain access to the
Contents collection. Then use the Add method
of the Contents collection to add an object
version to the workspace.

Remove an object version from a
workspace

The IWorkspace interface to obtain access to the
Contents collection. Then use the Remove
method of the Contents collection to remove the
object version from the workspace.

Check an object version out to a
workspace

The CheckOut method of the IWorkSpaceItem
interface that is exposed by the object version.

Check an object version in from a
workspace

The CheckIn method of the IWorkSpaceItem
interface that is exposed by the object version.

See Also

Managing Workspaces

Manipulating Workspaces

Meta Data Services Programming (SQL Server 2000)

Handling Errors
Error information is available to programs that use repository engine COM or Automation interfaces. This section gives an
overview of repository error handling and presents techniques for accessing repository error information.

Topic Description
Error Handling Overview Describes how the repository engine implements

error queue and error handling
Accessing Error Information at the
Automation Level

Explains how to access repository interfaces at
the Automation level

Accessing Error Information at the
COM Level

Explains how to access repository interfaces at
the COM level

Persisting Error Queue Information Describes how to retain error queue information
Repository Errors Documents repository engine error codes and

messages in alphabetical or numerical format

Meta Data Services Programming (SQL Server 2000)

Error Handling Overview
Error Handling Overview

If you are programming with COM interfaces, you can use interfaces to work with the error queue and handle errors. Equivalent
functionality is not available to Automation objects. You cannot manage the error queue or its contents from an Automation
object.

Error Handling

Error handling applies to methods on repository engine objects. In the repository API, COM interface members return an
HRESULT return value that indicates whether a method completed successfully. If a repository interface member fails to complete
successfully, an error object that contains details about the failure is created.

Error objects conform to the REPOSERROR data structure. For more information about the data structure of repository errors, see
REPOSERROR Data Structure.

Error Queues

An error queue is a collection of error objects. Each repository instance maintains a single error queue. When an error is
generated by a repository interface method, the error is added to the error queue of the current repository instance. If multiple
errors occur as a result of a single member invocation, all of the errors are added to the error queue of the current repository
instance.

You can have multiple repository instances and associated error queues active at one time. Multiple repository instances can be
connected to the same repository database. Repository instances can originate from the same or from different processes. A
single process can create multiple repository instances.

The repository error queue is a transient object; that is, the contents of the queue are valid only within the same operation in
which the error occurred. Subsequent interactions with any repository object will automatically clear the error queue.

To work with the queue, use IRepositoryErrorQueueHandler to create an error queue, assign an error queue to a thread of
execution, or retrieve an interface pointer to a thread's currently assigned error queue.

To manage errors within a queue, use IRepositoryErrorQueue for repository objects and IEnumRepositoryErrors enumeration
objects.

See Also

Accessing Error Information at the COM Level

IEnumRepositoryErrors Interface

IRepositoryErrorQueue Interface

IRepositoryErrorQueueHandler Interface

Persisting Error Queue Information

Repository Class

Meta Data Services Programming (SQL Server 2000)

Accessing Error Information at the Automation Level
Accessing Error Information at the Automation Level

When a repository interface member generates an error, Automation programs can access the repository error object to obtain
error information. For more information about the repository error object, see REPOSERROR Data Structure.

Visual Basic

In Microsoft® Visual Basic®, you use the global Err object to handle errors. The first error in a repository error queue is the error
that is placed into the Err object. For each error, you can use the On Error statement to invoke an error handler when an error is
encountered. In the error handler, access the properties of the global Err object to retrieve the error information. Only the first
error in the repository error queue is accessible through the Err object. For more information about the global Err object, see the
Visual Basic documentation.

Script Objects

A predefined variable for script objects, ReposErr, can be used to report a result and an error description that you provide.
ReposErr enables you to create an error to return to the calling application.

See Also

Accessing Error Information at the COM Level

Handling Errors

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

Accessing Error Information at the COM Level
Accessing Error Information at the COM Level

COM programs can access all of the errors in a repository error queue. You can use IRepositoryErrorQueue to select, insert, or
remove errors in a repository error queue. You can also persist queue information if you want to return to it after working with
other error queues or repository objects.

To access the errors in a COM program

Use the QueryInterface method on any repository object interface to obtain an IReposErrorQueueHandler interface
pointer. There is an IRepository interface pointer associated with each instance of the Repository class.

-or-

Call the GetErrorQueue method of the IReposErrorQueueHandler interface to obtain an IRepositoryErrorQueue
interface pointer.

-or-

Use the Count method of the IRepositoryErrorQueue interface to get the number of elements in the error queue, and the
Item method to retrieve the error information for each error in the queue.

The repository engine also provides an enumeration interface for errors called IEnumRepositoryErrors.

See Also

Error Handling Overview

IEnumRepositoryErrors Interface

IRepositoryErrorQueue Interface

IReposErrorQueueHandler Interface

Persisting Error Queue Information

Repository Class

Meta Data Services Programming (SQL Server 2000)

Persisting Error Queue Information
Persisting Error Queue Information

If you are programming with COM interfaces, you can retain error queue information while you switch to other error queues or
work with other repository objects.

You can access only one repository error queue at a time. When you switch from one error queue to another, several things occur
automatically:

The IRepositoryErrorQueue interface reference to the first error queue is automatically released.

If that reference is the only remaining reference to the interface, the error queue is destroyed.

An IRepositoryErrorQueue interface reference to the second error queue is automatically added.

Consequently, if you switch from one error queue to a second error queue and then back to the first error queue, the first error
queue is destroyed and then re-created as an empty queue.

To switch between multiple error queues and retain all error queue information

1. Obtain an IRepositoryErrorQueue interface pointer for the error queue.

2. Explicitly increment the interface reference count using the AddRef method that is associated with the error queue.

Note You must repeat these steps for each error queue.

The error queues will be retained as long as you hold these explicit interface references.

To switch back and forth between error queues

Use the SetErrorQueue method of the IReposErrorQueueHandler interface. When the error queue information is no
longer needed, use the Release method to remove the explicit interface references.

See Also

Accessing Error Information at the COM Level

Error Handling Overview

IRepositoryErrorQueue Interface

IReposErrorQueueHandler Interface

Meta Data Services Programming (SQL Server 2000)

Optimizing Repository Performance
The biggest factor that affects repository engine performance is the number of round trips the repository engine makes to the
underlying database system. As a result, reducing the number of round trips is the single best solution to improving repository
engine performance. To be able to minimize the number of round trips, you must understand the repository engine data access
strategy. Once you understand this strategy, you can use the tips and hints listed here to improve repository performance.

Data Access Strategy

The repository engine maintains a cache of repository objects. When accessing an object by object identifier or by way of a
relationship, the engine first looks in its cache. Similarly, the engine maintains a cache of relationship collections. When accessing
a collection on a repository object, the engine first looks in its cache.

Because round trips to the database are expensive, the engine fetches and updates data in batches. For example, when you access
a relationship collection, the engine fetches all the relationships in the collection. The engine caches the updates that a transaction
performs, and (unless the cache overflows) sends them to the database only when the transaction commits. There are many other
cases, too numerous to mention here, where the engine performs batching.

Many of the engine's caching and batching strategies are universally beneficial and require no special consideration when writing
an application. However, sometimes the application's usage pattern can have a significant performance effect. The benefits of the
caching and batching strategies often require a tradeoff of functional flexibility; consequently, none of the hints can be blindly
applied without consideration of possible tradeoffs.

Tips and Hints

The following table lists the tips and hints that you can use to improve repository engine performance.

Topic Description
General Hints to Improve Performance Provides general hints about using cached

data and storing data
Retrieval Hints Discusses alternate ways of retrieving data

from a repository database
Update Hints Provides information about update

behavior that you can use to improve
engine performance

Versioning Hints Offers a versioning tip that improves
performance

Run-Time Tuning Discusses options that you can set to
improve run-time performance

Adjusting Cache Aging for Repository
Objects

Explains how you can adjust ageout
behavior for specific kinds of rows

View Hints Offers hints that improve the performance
of views when querying a database

See Also

Repository Engine

Repository Databases

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

General Hints to Improve Performance
General Hints to Improve Performance

The following hints cover cache reuse and model storage strategies.

Reusing Cached Rows

An application can have multiple repository instances (for example, database sessions) open at the same time. Although objects
are not shared between sessions, cached rows are shared. This offers some opportunities for increased parallelism.

The repository engine shares a cache by default, so this optimization tip is already at work. Be aware that if you set the connection
flag REPOS_CONN_NEWCACHE you will lose the benefit of this optimization technique.

Reusing an Interface Instance

It is more efficient to cache the result of IRepositoryItem::Interface than to call it many times in a row on the same object and
interface. This avoids the cost of a COM object creation and type information lookup.

Storing an Information Model

If you are creating or extending an information model programmatically, you can improve performance by minimizing the
number of tables that you use to store properties. You can minimize the number of tables by mapping multiple interfaces to the
same table. To do this, before you commit the transaction that is used to create your information model, set the TableName
property for each interface definition object to the same name. Since the engine must issue a separate SQL query for each table it
accesses, when you reduce the number of tables, you reduce the number of database round trips. However, this may cost some
space for objects that do not support or populate all the interfaces.

See Also

Optimizing Repository Performance

Meta Data Services Programming (SQL Server 2000)

Retrieval Hints
Retrieval Hints

A fast way to access an object is to use its object identifier. This kind of retrieval is only possible for well-known objects that your
application expects to find, such as a container (that is, folder or package) object that is the root of a container hierarchy.

Using Relationships to Fetch Objects

If a given set of objects is usually loaded together, it is helpful to have a relationship collection that points to those objects. If you
access the objects through that collection, the engine will load them in one round trip.

Think twice before navigating to a collection that contains only one or two objects of interest. Navigating to the collection loads
the entire collection. Instead, try to find another way to navigate to those objects. ExecuteQuery to fetch objects provides one
such alternative.

Collection Loading Hints

When loading or exporting objects, specify the maximum number of objects in each collection. This is an effective way to allow
the repository engine to preload all the object collections for each repository object.

You can also set the IReposOptions OPT_PRELOAD_COL_MODE and OPT_EXPORT_MODE options to preload objects in a
collection. For more information about option values and descriptions, see IReposOptions Options Table.

Using ExecuteQuery to Fetch Objects

When you know the exact set of objects you want, IRepositoryODBC::ExecuteQuery is often a faster way to find the objects
than navigating to them by way of collections, because it usually requires many fewer round trips. For convenience, consider
writing some view definitions to insulate application programmers from the complexity of the relationship table
(RTblRelationships) and type definitions (for example, those stored in RTblClassDefs and RTblIfaceDefs). If the query-update
ratio warrants it, consider adding indexes to the repository SQL interface tables (the ones to which the properties associated with
that interface are mapped).

ExecuteQuery can be run asynchronously, in which case the call returns immediately. Later, you use IObjectCol2 to determine
whether the collection that is being loaded is ready to read.

You can use ExecuteQuery to explicitly tell the repository engine to prefetch certain objects. However, in addition to calling
ExecuteQuery for at least one object in the ObjectCollection that the query returns, you must access a property on each
interface you want to access. This tells the engine to prefetch the properties on those interfaces for all the objects in the collection.
As an aside, the engine flushes all updates to the database before running ExecuteQuery, so the query is reading exactly the
current database state.

Using Named Relationships to Fetch Objects

If an object has the same name in all contexts, make sure its class supports INamedObject. This makes it more efficient to fetch
the name. That is, the engine fetches the name from INamedObject::Name instead of a name from any of the incoming
relationships. Note that an update of the name causes an update to all naming relationships pointing to the name.

If an object supports INamedObject, the most efficient way to set the Name property on the object only (and not on any of its
incoming relationships) is to explicitly QueryInterface for INamedObject and set its Name property. For example:

Dim oReposObj as RepositoryObject
Set oReposObj.Interface("INamedObject").Name = "Any Name"

Note that since the names of the relationships to the object are not updated here, you cannot later fetch by name from the
collection. Rather, you have to enumerate the collection and check each object's name. Also note that the property Name
corresponds to the dispatch ID DISPID_ObjName (not DISPID_Name).

It is more efficient to follow a relationship in the origin-to-destination direction than vice versa. This is because the physical
representation of relationships in the relationship table is biased in this direction. So, traverse relationships in this direction
whenever you have a choice.

See Also

IReposOptions Interface

Optimizing Repository Performance

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

Update Hints
Update Hints

Because the repository engine sends updates to the database in a batch at transaction commit time, a single long transaction is
preferable to many small ones. This is true for any combination of inserts, deletes, and updates. For moderate-sized objects, you
should be able to update 25,000 objects within one transaction without hitting cache size limitations.

Use the automatic delete propagation feature of relationships wherever possible. This allows the engine to delete objects in a
batch.

See Also

Propagating Deletes

Optimizing Repository Performance

Meta Data Services Programming (SQL Server 2000)

Versioning Hints
Versioning Hints

Do not freeze a version until it is necessary. The engine knows that an unfrozen version can have no successors, and it exploits
this knowledge in its access strategies.

See Also

Optimizing Repository Performance

Meta Data Services Programming (SQL Server 2000)

Run-Time Tuning
Run-Time Tuning

The repository engine provides excellent performance for typical applications. Some of these optimizations, because they are
generic in nature, may not be well tuned for certain applications and may even be detrimental to their performance. The
repository engine allows run-time performance tuning that is specific to each application.

The IReposOptions interface has the following methods.

Method Description
SetOption Sets numerous options, all of which impact repository engine

performance in some way. For more information about option
values and descriptions, see IReposOptions Options Table.

GetOption Retrieves a current option value.
ResetOptions Resets all options to their default values.

See Also

IReposOptions Interface

Optimizing Repository Performance

Meta Data Services Programming (SQL Server 2000)

Adjusting Cache Aging for Repository Objects
Adjusting Cache Aging for Repository Objects

The repository engine cache aging mechanism ensures that the engine's client cache is automatically refreshed periodically so
that clients can see up-to-date values. The mechanism also affects performance, because the next access to an aged-out entry
must be fetched again from the database system.

A new mechanism for aging out rows of different types in the repository engine is used in version 3.0. Different strategies are
offered for rows that are referenced, recently used, cached, and static. Ageout strategies are specified based on IReposOptions
options that you set. These options include OPT_AGEOUT, OPT_TIM_AGEOUT, and OPT_PRELOAD_AGEOUT. For more
information about option values and descriptions, see IReposOptions Options Table.

See Also

IReposOptions Interface

Optimizing Repository Performance

Meta Data Services Programming (SQL Server 2000)

View Hints
View Hints

View definitions can affect performance in two ways: during SQL view generation and when Microsoft® SQL Server™ 2000
compiles a SQL view before executing it. The following hints can help you achieve better performance along these two
dimensions.

Choose an unresolved view (a view that does not support version resolution) if version information is unimportant (for
example, when you know that all objects are version one). The repository engine does not perform version resolution if the
SQL view is flagged as unresolved.

When you have a choice between using a class-based view or an interface-based view, choose the class-based view.
Interface-based views have an extra join that determines which classes implement the interface. Using a class-based view
avoids the performance hit of processing the extra join.

Choose an interface-based view over a class-based view when querying a small set of interfaces where the key (IntID) is
specified. This choice is often preferable because the compilation time can be so much smaller for interface-based views.

When navigating a relationship, performing the query on a junction view often runs faster than when you represent the
relationship as a foreign key on a class or interface view. Using a junction view yields faster performance on average.

If you have a view that includes a text field, and you reference the text field in a SELECT clause, then you are not allowed to
use SELECT DISTINCT. As a result, the query optimizer cannot eliminate certain redundant joins. A solution is to use a nested
query on two interface-based views. The inner query uses DISTINCT and includes IntID in the SELECT clause, but does not
reference the text field. This causes the inner query to reference a presumably smaller number (specifically, the IntID), which
then joins with the interface-based view that contains the text field.

See Also

Generating Views

Optimizing Repository Performance

Repository Identifiers

Meta Data Services Programming (SQL Server 2000)

Storage Strategy in a Repository Database
The database storage model in Microsoft® SQL Server™ 2000 Meta Data Services differs from the run-time object model. While
the run-time object model is designed to accommodate run-time operations conveniently, the database model is designed to
accommodate storage efficiently.

To save space in the database, Meta Data Services can sometimes store a single copy of a property value, even if that property
value describes many object versions. Similarly, Meta Data Services can sometimes store a single copy of a relationship, even if
many different object versions have that relationship.

Meta Data Services anticipates which object versions are especially likely to share property values and relationships and which
object versions are less likely to. The repository engine uses these guidelines:

Two versions of the same object are likely to share property values and collections, but two versions of different objects are
less likely to do so. In other words, if two object versions are not on the same version graph, they are not especially likely to
share property values or relationships. For more information, see Version Graph.

Within a version graph, two versions that are near each other are more likely to share values; two versions that are far apart
are less likely to share values. The repository engine arranges each version graph into branches. For more information, see
Branches in the Version Graph. Each branch contains versions that are especially likely to share values.

Although property values and collections can change, they do not change back and forth frequently. More commonly, a
value holds for a few consecutive versions of an object, and then that value changes to a new value, which holds for a few
more versions of the object. Thus, when Meta Data Services stores a property value, it stores the property value for an entire
range of object versions. For more information, see Ranges in the Version Graph.

Similarly, in a single row of the RTblRelships table, Meta Data Services can indicate that every object version in a range (of
origin object versions) has a relationship to every object version in a range (of destination object versions).

The repository SQL tables store the physical data of a repository. For more information about object and object version storage,
see RTblVersions SQL Table and Interface-Specific Tables

See Also

Connecting to and Configuring a Repository

Repository Databases

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

Branches in the Version Graph
Branches in the Version Graph

Within the database, the repository engine partitions each version graph into branches. Each branch contains object versions that
are especially likely to share property values and target object versions with each other.

A branch of a version graph is a sequence S of n (n > 0) object versions such that:

S = x1, x2, x3, ..., xn

and x1 is the creation predecessor of x2
and xk is the creation predecessor of xk+1 (1 < k < n-2)
and xn-1 is the creation predecessor of xn.

According to this definition, each object version can be in the same branch with at most one of its creation successors. For
example, in the following version graph, Version 3 and Version 4 cannot be in the same branch, because they are both creation
successors of Version 2.

In fact, this version graph has four branches, as shown in the following figure.

Every version graph has at least one branch, the branch beginning with the first version of the object.

Each object version is a member of a single branch; branches do not overlap.

When you create a new version of an object, the repository engine tries to add the newly created version to the same branch as its
predecessor. If that branch already includes a successor to the creation version, the repository engine creates a new branch. The
newly created object version is the only element of the new branch.

For example, if you create a new version from Version 8, the repository engine creates the new version and adds it to the branch
containing Version 8. But if you create a new version from Version 3, the repository engine creates a new branch for the new
version, because Version 3's branch already includes a creation successor of Version 3.

Each branch represents a set of object versions that are especially likely to share property values and have identical relationships.
If two object versions exist on separate branches, the repository does not save any space in the database even if those versions
share values for all of their properties and have identical collections for all of their collection types. For the repository engine to

save space, the similar objects must exist on the same branch. For this reason, the repository engine attempts during
CreateVersion to assign the new version to an existing branch. The fewer the branches, the higher the likelihood that space can
be saved in the database.

The repository engine never moves an object version from one branch to another. After assigning an object version to a branch
during the CreateVersion method, that object version remains on that branch until the object version is deleted.

See Also

IRepositoryObjectVersion::CreateVersion

RepositoryObjectVersion CreateVersion Method

Storage Strategy in a Repository Database

Version Graph

Meta Data Services Programming (SQL Server 2000)

Ranges in the Version Graph
Ranges in the Version Graph

To save space in the database, the repository engine can associate a property value or relationship with an entire range of object
versions. A range of object versions is a set of consecutive elements of a branch. For more information, see Branches in the
Version Graph.

To refer to a range, a row of a repository SQL table must include the following four values:

The Version Graph. That is, the row must refer to the repository object. Use the internal identifier of the object.

The Branch. This is the portion of the version graph containing the range. Use the branch identifier of the branch.

The Range Start. This is the element within the branch where the range starts. Use the version-within-branch identifier of
the object version.

The Range End. This is the element within the branch where the range ends. Use the version-within-branch identifier of the
object version, or use the special constant VERINFINITY (hex 7fffffff), to indicate an unbounded range.

The repository engine uses unbounded ranges to indicate that properties apply to a set of object versions that can grow as you
make new object versions using CreateVersion.

For more information about how the repository engine uses unbounded ranges, see Interface-Specific Tables.

See Also

IRepositoryObjectVersion::CreateVersion

Repository SQL Schema

Repository SQL Tables

RepositoryObjectVersion CreateVersion Method

Storage Strategy in a Repository Database

Version Graph

Meta Data Services Programming (SQL Server 2000)

Storing Relationships
Storing Relationships

The run-time object model and the storage schema differ significantly. These differences are most apparent when you query a
repository database for information about relationships. In fact, the storage of relationships and the run-time manipulation of
relationships differ significantly.

The repository engine uses the RTblRelships table to store information about relationships. An individual row of the table can be
any of the following:

A description of an individual version-to-version relationship

A description of a set of version-to-version relationships

A description of sequencing and pinning information for a single origin-versioned relationship

See Also

Repository SQL Schema

Repository SQL Tables

RTblRelships SQL Table

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

Interface-Specific Tables
Interface-Specific Tables

When you create an information model, the repository engine enlarges the database schema to accommodate the new kinds of
data. The additional tables that the repository engine adds are called the extended schema. Generally, the repository engine
creates one table for each new interface you create. Several interfaces, however, can share a table. For more information, see
Information Model Creation Issues.

Each row of an interface-specific table indicates that a set of property values applies to a particular range of object versions. For
more information, see Ranges in the Version Graph.

The primary key of any interface-specific table consists of three columns: IntID, Z_BranchID_Z, and Z_VS_Z, as shown in the
following table.

Column name Data type Description
IntID RTIntID The internal identifier for the object
Z_BranchID_Z RTBrID Indicates the branch of the version graph

containing the range to whose items the
property values in this row apply

Z_VS_Z RTVerID A version-within-branch identifier indicating
the lower bound of the range to whose items
the property values in this row apply

Z_VE_Z RTVerID A version-within-branch identifier indicating
the upper limit of the range to whose items
the property values in this row apply

(User-supplied column
name for Interface-
Specific Property 1)

(User-supplied
data type)

A column that corresponds to a property you
defined in your information model

(User-supplied column
name for Interface-
Specific Property n...)

(User-supplied
data type)

Other columns that correspond to other
properties you defined in your information
model

Each row indicates a range and a set of property values. Every object version in the range is described by every property value.

See Also

Branches in the Version Graph

Example: Rows of Interface-Specific Tables

Repository SQL Schema

Repository SQL Tables

Storage Strategy in a Repository Database

Version Graph

Meta Data Services Programming (SQL Server 2000)

Example: Rows of Interface-Specific Tables
Example: Rows of Interface-Specific Tables

Consider the version graph for a typical object. Suppose the object is part of a user-installed information model; it conforms to
the CParagraph class. Suppose further that the CParagraph class implements two interfaces:

IFont exposes the properties Color, Style, and PointSize.

IParagraph exposes the properties Alignment and Spacing.

The following figure shows a portion of the version graph, along with properties for each version of the object.

Assume that the object's internal identifier is 7. Assume that Version 7 and Version 9 are leaf nodes; they have no successors. Also
assume that there are two branches containing these object versions, as shown in the following figure.

The properties for these object versions are stored in two separate interface-specific tables. The table for the properties of the
IFont interface includes the following rows.

IntID Z_BranchID_Z Z_VS_Z Z_VE_Z Color Style Point Size
7 2 0 1 Blue Italic 10
7 2 3 VERINFINITY Blue Italic 10
7 2 0 VERINFINITY Blue Italic 10

The first row in the preceding table indicates that the properties (Blue, Italic, 10-point) apply to each object version in a range
within Branch 2 that begins at Version 4 and ends at Version 5.

The second row indicates that the properties (Blue, Italic, 12-point) apply to each object version in a range within Branch 2 that
begins at Version 9 and ends at the end of the branch.

Similarly, the third row indicates that the properties (Blue, Italic, 10-point) apply to each object version in a range within Branch 3
that begins at Version 6 and ends at the end of the branch.

The following table for the properties of the IParagraph interface includes the following rows.

IntID Z_BranchID_Z Z_VS_Z Z_VE_Z Alignment Spacing
7 2 0 0 Center Single
7 2 1 VERINFINITY Center Double
7 3 0 VERINFINITY Center Double

The first row of the preceding table indicates that the properties (Center, Single) apply to each object version in a range within
Branch 2 that begins at Version 4 and ends at Version 4, a single-version range.

The second row indicates that the properties (Center, Double) apply to each object version in an unbounded range within Branch

2 that begins at Version 5.

Similarly, the third row indicates that the properties (Center, Double) apply to each object version in an unbounded range within
Branch 3 that begins at Version 6.

Within the Z_VE_Z column, VERINFINITY indicates that the range has no upper bound. Thus, if you enlarge a branch (by invoking
the CreateVersion method on the branch's newest object version) the creation predecessor's property values will automatically
apply to the newly created version.

For example, suppose you invoke the CreateVersion method on Version 9, yielding a version graph, as shown in the following
figure.

In the preceding figure, the new object version is on the same branch as its predecessor, and has the same properties as its
predecessor. To apply these existing property values to the newly created object, the CreateVersion method does not need to
modify the IFont-specific property table or the IParagraph-specific property table, because those tables contained rows that
applied those property values to ranges with no upper bound.

See Also

Branches in the Version Graph

Ranges in the Version Graph

Repository SQL Schema

Repository SQL Tables

Storage Strategy in a Repository Database

Version Graph

Meta Data Services Programming (SQL Server 2000)

Using OLE DB Scanner
OLE DB Scanner is a feature of Microsoft® SQL Server™ 2000 Meta Data Services that imports relational database schema
information from an OLE DB data source and populates instances of the Open Information Model (OIM) Database Schema model
in a repository database. This section describes the OLE DB Scanner for Meta Data Services. The following topics provide more
detailed information about OLE DB Scanner.

Topic Description
OLE DB Scanner Overview Describes OLE DB Scanner and how to apply it.
Supported OLE DB Schema
Rowsets in OLE DB Scanner

Lists the OLE DB rowsets and indicates which are
supported by OLE DB Scanner.

Navigating the Schema in OLE DB
Scanner

Shows a Microsoft® Visual Basic® code example
that navigates an OLE DB rowset using the
repository API.

Schema Versioning in OLE DB
Scanner

Explains versioning behavior for rowsets
imported by OLE DB Scanner into a repository
database.

Data Type Mappings in OLE DB
Scanner

Lists data type equivalents for OLE DB data types
and repository data types.

OLE DB Scanner Reference Provides API reference topics for OLE DB Scanner
interfaces.

Meta Data Services Programming (SQL Server 2000)

OLE DB Scanner Overview
OLE DB Scanner imports database schema information from an OLE DB data source and populates instances of the Open
Information Model (OIM) Database Schema model in a repository database. OLE DB Scanner works with OLE DB providers. When
you pass an OLE DB provider to the scanner, it examines the schema and creates a set of corresponding instance objects in the
repository database.

OLE DB Scanner is written as a Microsoft® ActiveX® DLL. The scanner provides one dual interface, IRepOLEDBScanner. The
provided interface is declared as dual so that it can be called from both COM and Automation clients.

IRepOLEDBScanner supports initial scans and rescans. It also supports clients that already have an initialized OLE DB connection.
For more information, see OLE DB Scanner Reference.

Meta Data Services Programming (SQL Server 2000)

Supported OLE DB Schema Rowsets in OLE DB Scanner
Thirty types of database schema information can be fetched from an OLE DB data source. The Database object name column in
the following table shows the name of the database objects that can be fetched. The Supported column indicates whether the item
is supported by OLE DB Scanner. If an item is not supported, there is no corresponding item in the Open Information Model (OIM)
to capture it. For more information about property descriptions and OLE DB type information, see the OLE DB documentation.

Database object name Supported
ASSERTIONS Yes
CATALOGS Yes
CHARACTER_SETS No
CHECK_CONSTRAINTS Yes
COLLATIONS No
COLUMN_DOMAIN_USAGE Yes
COLUMN_PRIVILEGES No
COLUMNS Yes
CONSTRAINT_COLUMN_USAGE Yes
CONSTRAINT_TABLE_USAGE Yes
FOREIGN_KEYS Yes
INDEXES Yes
KEY_COLUMN_USAGE Yes
PRIMARY_KEYS Yes
PROCEDURE_COLUMNS Yes
PROCEDURE_PARAMETERS Yes
PROCEDURES Yes
PROVIDER_TYPES Yes
REFERENTIAL_CONSTRAINTS Yes
SCHEMATA Yes
SQL_LANGUAGES No
STATISTICS No
TABLE_CONSTRAINTS Yes
TABLE_PRIVILEGES No
TABLES Yes
TRANSLATIONS No
USAGE_PRIVILEGES No
VIEW_COLUMN_USAGE No
VIEW_TABLE_USAGE No
VIEWS Yes

Meta Data Services Programming (SQL Server 2000)

Navigating the Schema in OLE DB Scanner
After the database schema has been scanned into a repository database, the schema can be easily navigated from Microsoft®
Visual Basic® or Microsoft Visual C++® using the repository API. For example, the following Visual Basic code navigates in the
following order: DataSource, Catalog, Schema, Table, Column, DataType.

Set IfD = Repos.object(OBJID_IDbmDataSource)
For Each datasource In IfD.ObjectInstances
 ...
 For Each catalog In datasource("_DataSource").DeployedCatalogs
 ...
 For Each schema In catalog("_Catalog").Schemas
 ...
 For Each table In schema("_Schema").Tables
 If QI(table, "IDbmTable") Then
 ...
 For Each column In table("_Table").Columns
 ...
 Set datatype = column("_Column").Attribute.Item(1)
 Next
 End If
 Next
 Next
 Next
Next

Private Function QI(o As RepositoryObject, name As String) As Boolean
On Error GoTo Fail
 Dim r As RepositoryObject
 Set r = o.Interface(name)
 QI = True
 Exit Function
Fail:
 QI = False
End Function

Meta Data Services Programming (SQL Server 2000)

Schema Versioning in OLE DB Scanner
When scanning a database catalog that is already in a repository database (identified by identical catalog names), the scanner
versions the schema at the lowest granularity of change. For example, take the following example data model of an Authors table
with two columns.

Name Data type Size
au_lname Varchar 20
au_fname Varchar 40

Changing the data type of the au_lname column results in a new version of the column object and a relationship to the new data
type object.

In general, adding or removing an element of a relationship collection requires that you create a new version of the origin object.
For example, adding a column to the table results in a new version of the table with the new column object added to the elements
collection. Relationships to existing columns are propagated.

Removing a column from the table results in a new version of the table with the column object removed from elements collection.
Relationships to existing columns are propagated.

Name Data type Size
au_lname Varchar 40
au_mname Varchar 10

The following diagram shows the model for the revised table schema.

Meta Data Services Programming (SQL Server 2000)

Data Type Mappings in OLE DB Scanner
Each OLE DB column has an enumerated indicator that must be mapped to a DBMS data type instance. These instances, which are
implemented by a class that supports the IDbmDBMSDataType interface, are created using the following mapping table and are
assigned to columns using the PROVIDER_TYPES rowset.

OLE DB type indicator Repository mapping Remarks
DBTYPE_EMPTY DbmDBMSDataType None
DBTYPE_NULL DbmDBMSDataType None
DBTYPE_RESERVED DbmDBMSDataType None
DBTYPE_I1 DbmTinyInt None
DBTYPE_I2 DbmSmallInt None
DBTYPE_I4 DbmInteger None
DBTYPE_I8 DbmQuadInt None
DBTYPE_UI1 DbmTinyInt OLE DB Scanner sets

IDtmNumeric.IsSigned to
False

DBTYPE_UI2 DbmSmallInt OLE DB Scanner sets
IDtmNumeric.IsSigned to
False

DBTYPE_UI4 DbmInteger OLE DB Scanner sets
IDtmNumeric.IsSigned to
False

DBTYPE_UI8 DbmQuadInt OLE DB Scanner sets
IDtmNumeric.IsSigned to
False

DBTYPE_R4 DbmReal OLE DB Scanner sets
IDtmNumeric.IsSigned to
True

DBTYPE_R8 DbmDouble OLE DB Scanner sets
IDtmNumeric.IsSigned to
True

DBTYPE_CY DbmMoney None
DBTYPE_DECIMAL DbmDecimal OLE DB Scanner sets

IDtmNumeric.IsSigned to
True

DBTYPE_NUMERIC DbmNumeric OLE DB Scanner sets
IDtmNumeric.IsSigned to
True

DBTYPE_DATE DbmDate None
DBTYPE_BOOL DbmBit None
DBTYPE_BYTES DbmBinary or

DbmVarBinary
If IsVariable is set to True, OLE
DB Scanner uses
DbmVarBinary and sets
IDtmBinary.IsVariable and
IDtmBinary.Length to True

DBTYPE_BSTR DbmDBMSDataType OLE DB Scanner sets
IDtmString.Length and
IDtmString.IsVariable to
True

DBTYPE_STR DbmChar or
DbmVarChar

If IsVariable is set to True, OLE
DB Scanner uses
DbmVarChar and sets
IDtmString.IsVariable and
IDtmString.Length to True

DBTYPE_WSTR DbmNChar or
DbmNVarChar

If IsVariable is set to True, OLE
DB Scanner uses
DbmVarChar and sets
CharacterType equal to
DTM_CHARACTER_TYPE_
UNICODE and
IDtmString.IsVariable and
IDtmString.Length to True

DBTYPE_VARIANT DbmDBMSDataType None
DBTYPE_IDISPATCH DbmDBMSDataType None
DBTYPE_IUNKNOWN DbmDBMSDataType None
DBTYPE_GUID DbmDBMSDataType None
DBTYPE_ERROR DbmDBMSDataType None
DBTYPE_BYREF DbmDBMSDataType None
DBTYPE_ARRAY DbmDBMSDataType None
DBTYPE_VECTOR DbmDBMSDataType None
DBTYPE_UDT DbmDBMSDataType None
DBTYPE_DBDATE DbmDate None
DBTYPE_DBTIME DbmTime None
DBTYPE_DBTIMESTAMP DbmTimeStamp None

Meta Data Services Programming (SQL Server 2000)

Using XML Encoding
Extensible Markup Language (XML) interchange is supported by MSMDCXML.dll, which is installed with Microsoft® SQL Server™
2000 Meta Data Services.

Meta Data Services supports exporting and importing of meta data through the Meta Data Coalition (MDC) Open Information
Model (OIM) XML Encoding format. XML Encoding defines rules for generating XML elements that map to information model
elements. The XML Encoding format is published by the MDC and implemented in Meta Data Services to support the exchange of
meta data. In Meta Data Services, exporting and importing using XML enables you to exchange meta data with other repositories
or tools.

Export and import using XML is supported through a dual interface. You can use the objects separately or together to perform a
seamless exchange:

The export process generates an XML document that contains XML-tagged meta data. The XML document can be expressed
in memory or stored in a file.

The import process converts XML documents to object instance data in a repository database. You can import an XML
document from memory or from a file.

The exchange of meta data is directed by your application code. By instantiating export and import objects and calling the
methods supported by the objects, you can complete the entire exchange programmatically.

Backward Compatibility

Meta Data Services still recognizes models that are based on earlier versions of the OIM. If you have been using XML Interchange
Format (XIF) to import and export repository data, you can still do so. You can also use MDC XML Encoding to achieve the same
objective. However, you cannot combine XIF and MDC XML Encoded formats. You must use either XIF or MDC XML Encoding to
perform an import and export. You cannot use both in the same exchange.

Although MDC XML Encoding supports an XML format that most closely corresponds to the most recent version of the OIM, the
import and export features of MDC XML Encoding can map previous versions of OIM-based models to the newest version of OIM.
This mapping occurs automatically during an import or export operation, and it does this without modifying your information
model. The advantage of this mapping is that you can exchange data between information models that are based on different
versions of the OIM.

The only exception to this mapping correspondence occurs for new Unified Modeling Language (UML) and OIM elements that are
not defined by older versions of the OIM. If your objective is to transfer repository data from information models that use new
definitions to information models that use older definitions, you will experience some data loss in the conversion. Specifically, the
portion of data from the new model that cannot be accommodated by the older model is logged to an error file.

For more information about XML interchange formats and information models, see Upgrading an Information Model.

Additional Topics

The following topics provide more detailed information about XML encoding.

Topic Description
XML in Meta Data Services Describes XML Encoding as an extension of OIM

and how it is supported in Meta Data Services.
Exporting XML Explains how to perform an export.
Export Automation Object Example Shows examples of Microsoft Visual Basic® code

that instantiate an Export object.
Importing XML Explains how to perform an import.
Import Automation Object Example Shows examples of Visual Basic code that

instantiate an Import object.
XML Encoding Reference Contains reference topics for the XML Encoding

API.

See Also

Meta Data Coalition

OIM in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

Exporting XML
In Microsoft® SQL Server™ 2000 Meta Data Services, exporting Extensible Markup Language (XML) is the process of creating an
XML document and populating it with meta data tagged as XML elements. You can export data as an XML file or as a string that is
stored in memory. After you export the data, you must import it into a repository database or make it available to another tool.

Exporting is implemented by a dual interface. Automation and COM programmers can use the Export object and IExport
interface provided by Meta Data Services.

You can export instance data for specific objects, or recursively through a set of related objects. The XML document is created
automatically by the export process. At minimum, you must instantiate the Export object and define the repository objects for
which you want to export instance data. The methods you invoke determine whether the XML document is stored in memory or
as an XML file that you specify.

You can generate an XML Document Type Definition (DTD) that precisely describes the XML that is produced. You can refer to the
XML DTD to find out which XML structures you must support. The XML DTD that you generate is based on an information model.
The information model can be a version of the OIM or some other information model that you create. XML DTD generation is
provided through the Meta Data Services Software Development Kit (SDK).

Exporting Objects

To export object data, use the Export object and the IExport interface to specify the objects you want. The object can be any
repository object. You can specify multiple objects in your application code.

Exporting a Set of Related Objects

You can also export data for related objects within an information model object. The export process will automatically add all
target objects recursively as long as you set the COLLECTION_CONTAINING flag for the collection. You must set this flag on the
relationship collection in the information model.

To avoid having to manually relate your exported data with the data in the target database, you may need to include the root
object as part of your export definition.

See Also

Export Automation Object Example

Importing XML

XML Encoding Errors

XML Encoding Reference

XML IExport Interface Overview

XML IImport Interface Overview

Meta Data Services Programming (SQL Server 2000)

Export Automation Object Example
The following examples show how to use the Export object in Microsoft® Visual Basic®.

Exporting to a File

The following example shows how to export object instance data for two repository objects. You do not need to bracket an export
within a transaction. To release the objects after the export concludes, set the objects to nothing.

dim oExp as new Export
dim oMyObj1 as RepositoryObject
dim oMyObj2 as RepositoryObject
dim oRep as new Repository
dim oRoot as RepositoryObject

set oRoot=oRep.Open "SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set oMyObj1=oRep.Object(objid1)
set oMyObj2=oRep.Object(objid2)
oExp.add oMyObj1
oExp.add oMyObj2
oExp.Export "c:\temp\myXmlFile.xml", INDENTATION
Set oMyObj1=Nothing
Set oMyObj2=Nothing
Set oRoot=Nothing
Set oRep=Nothing
Set oExp=Nothing

Exporting Multiple Objects in a Relationship

In the following example, oMyObj1 is a collection object that relates multiple objects. The COLLECTION_CONTAINING flag, which
is set on the collection object, makes exporting a relationship possible. This flag is set in the information model and does not
appear in your export code. Another flag, ADDCONTAINING_BASE (you can also use ADDCONTAINING_MOSTDERIVED) does
appear in your export code. This flag supports the selection of objects in a relationship for the export process. This flag depends
on the COLLECTION_CONTAINING flag to enable the selection.

dim oExp as new Export
dim oMyObj1 as RepositoryObject
dim oRep as new Repository
dim oRoot as RepositoryObject

set oRoot=oRep.Open "SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set oMyObj1=oRep.Object(objid1)
oExp.add oMyObj1, ADDCONTAINING_BASE
oExp.Export "c:\temp\myXmlFile.xml", INDENTATION
Set oMyObj1=Nothing
Set oRoot=Nothing
Set oRep=Nothing
Set oExp=Nothing

Exporting to a String

The following example shows how to export the same object instance data to a string stored in memory:

dim oExp as new Export
dim oMyObj1 as RepositoryObject
dim oMyObj2 as RepositoryObject
dim oRep as new Repository
dim oRoot as RepositoryObject

set oRoot=oRep.Open "SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set oMyObj1=oRep.Object(objid1)
set oMyObj2=oRep.Object(objid2)
oExp.add oMyObj1
oExp.add oMyObj2
set sXMLStr=Export.GetXML, INDENTATION
Set oMyObj1=Nothing
Set oMyObj2=Nothing
Set oRoot=Nothing
Set oRep=Nothing
Set oExp=Nothing

See Also

Exporting XML

Import Automation Object Example

XML IExport Interface Overview

Meta Data Services Programming (SQL Server 2000)

Importing XML
Importing an XML document is the process of adding meta data to a target repository. You can import meta data that was
previously exported through the IExport interface, the Export object, or some other mechanism that you define.

To import object data, you can use the IImport interface and the Import object. You can handle the XML document as a string to
import it from memory. More likely, however, you will want to import an XML document from a file.

Import requires the following conditions:

The XML documents you import must be structured in the format described by Meta Data Coalition (MDC) Open
Information Model (OIM) XML Encoding.

The type information of the target repository or tool must be identical to the type information of the source objects or
model. For example, if you export objects from a Unified Modeling Language (UML) information model, you must install an
identical UML information model in the target repository database prior to importing. If the information models do not
correspond exactly, you will lose data during the import. Rows that fail to import are logged to an error file. This file is
named MSMDCXML.log and it is created in your Temp directory.

You can set flags on an import object to determine import behavior. For more information, see IImport::ImportXMLString Method
and IImport::ImportXML Method.

Import returns a collection of top-level objects that your application can manipulate. To view and manipulate imported data in a
repository database, the imported data must be related to the repository root object. When the information model in the target
database corresponds to the information model in the source database, a relationship to the root object may be established
automatically. However, whether this linkage occurs depends on the structure and content of the imported data. If your imported
data is not related to the root object, you must programmatically add an object from the imported data to a collection of the root
object. This step is necessary to support navigation and to define relationships with objects in other information models.

See Also

Exporting XML

Import Automation Object Example

Installing Information Models

Using the Model Installer ActiveX Component

XML Encoding Errors

Using XML Encoding

XML Encoding Reference

XML IImport Interface Overview

Meta Data Services Programming (SQL Server 2000)

Import Automation Object Example
The following examples show how to use the Import object in Microsoft® Visual Basic®.

Importing from a File

The following example shows how to import object instance data from a file that contains exported data. The ImportXML method
returns a collection. After you get the collection, you can enumerate the objects. To release the objects after the import concludes,
set the objects to nothing.

dim oImp as new Import
dim oRep as new Repository
dim oRoot as RepositoryObject
dim ObjCol as TransientObjCol
set oRoot=oRep.Open "SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
set ObjCol = oImp.ImportXML(oRep, "c:\temp\myXmlFile.xml",NEWVERSION)
for each obj in ObjCol
. . .
next
Set oRoot=Nothing
Set oRep=Nothing
Set oImp=Nothing

Importing from a String

The following example shows how to import object instance data from a string stored in memory:

dim oImp as new Import
dim oRep as new Repository
dim oRoot as RepositoryObject

set oRoot=oRep.Open "SERVER=MyServer;DATABASE=MyDB;UID=sa;PWD=MyPassword;"
oImp.ImportXMLString oRep, sXMLStr, NEWVERSION
Set oRoot=Nothing
Set oRep=Nothing
Set oImp=Nothing

See Also

Export Automation Object Example

Importing XML

XML IImport Interface Overview

Meta Data Services Programming (SQL Server 2000)

Repository API Reference
The application programming interface (API) for information models and the repository engine is the Repository API. The
Repository API is composed of interfaces that define information models, and interfaces that expose the functionality of the
repository engine. The interfaces that define information models are collectively known as the Repository Type Information Model
(RTIM).

The Repository API Reference contains the definitions for all the core engine APIs for Microsoft® SQL Server™ 2000 Meta Data
Services. These interfaces are documented at the Automation level for the Microsoft Visual Basic® programmer and at the
Component Object Model (COM) level for the Microsoft Visual C++® programmer.

This table describes the sections of the Repository API reference documentation.

Section Description
Automation Reference Introduces the reference documentation for COM

Automation objects and members.
COM Reference Introduces the reference documentation for COM

classes, interfaces, and members.
Constants and Data Types Documents the constant and data types that you can use

when programming with the repository API.
Enumerations Documents the enumerated values for a variety of flags.
Repository Errors Documents the errors generated by the repository

engine.
Repository SQL Schema Documents the schema of the underlying SQL tables.

The schema of the underlying SQL tables is documented
to facilitate querying repository data directly through
SQL.

For more information about programming against information models and the repository engine, see Programming Meta Data
Services Applications.

For more information about other programming interfaces that you can use in Meta Data Services, see XML Encoding Reference
and OLE DB Scanner Reference.

See Also

Getting Started with Meta Data Services

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Automation Reference
The Automation Reference documents the Automation objects of the repository API. An equivalent reference is available for COM
classes and interfaces.

In this documentation, Automation objects are organized into two sections.

Section Description
Repository Engine Automation Objects Describes the Automation objects that

expose the functionality of the repository
engine.

RTIM Automation Objects Describes the Repository Type
Information Model (RTIM) Automation
objects. These objects define the abstract
classes to which an information model
must conform.

See Also

Accessing Automation Object Members

COM Reference

Information Models

Repository API Reference

Repository Engine

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Repository Engine Automation Objects
This topic introduces the repository engine objects, which are used to add, retrieve, and change information model data in a
repository database.

These objects complement the Repository Type Information Model (RTIM) automation objects that define an information model.
The RTIM objects are listed separately. For more information, see RTIM Automation Objects.

The following table lists the repository engine Automation objects in alphabetical order.

Object Description
ObjectCol Object Defines a set of repository objects that can

be enumerated
Relationship Object Connects two objects in a repository

database
RelationshipCol Object Defines a set of relationships that are

attached to a particular source object
Repository Object Defines an instance of a single repository

session
RepositoryObject Object Defines an object that is stored in a

repository database and managed by the
repository engine

RepositoryObjectVersion Object Defines a versioned object that is stored in
the repository database and managed by
the repository engine

RepositoryTransaction Object Defines a transaction
ReposProperties Object Defines a set of persistent properties and

collections that are attached to a
repository object or relationship

ReposProperty Object Defines a persistent property or collection
that is attached to an object instance

TransientObjectCol Object Defines an object collection that you can
create and dynamically populate at run
time using script and object methods
rather than persisted data in a repository
database

VersionCol Object Defines a versioned collection of object
versions

VersionedRelationship Object Defines a connection between two
repository objects in a repository database

Workspace Object Defines a subset of a larger, shared
repository

See Also

Automation Reference

Information Models

Repository API Reference

Repository Engine

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

ObjectCol Object
ObjectCol Object

An object collection is a set of repository objects that can be enumerated. Two kinds of object collections are supported by the
repository engine:

The collection of destination objects that correspond to the relationships in a relationship collection. Use the
RelationshipCol object to manage this kind of collection.

The collection of all objects in a repository that conform to a particular class or expose a particular interface. You can
instantiate a collection by using the ObjectInstances method.

When to Use

Use the ObjectCol object to enumerate the collection of repository objects that conform to a particular class or expose a
particular interface. With this object, you can:

Get a count of the number of objects in the collection.

Retrieve one of the objects in the collection.

Refresh the cached image of the object collection.

Properties

Property Description
Count The count of the number of items in the

collection
Item Retrieves the specified object from the collection

Methods

Method Description
Cancel Cancels an in-progress load operation
LoadStatus Obtains the load status of the collection
Refresh Refreshes the cached image of the

collection

See Also

ClassDef ObjectInstances Method

InterfaceDef ObjectInstances Method

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

ObjectCol Count Property
ObjectCol Count Property

A long integer that contains the count of the number of items in the collection. This is a read-only property.

Syntax

object.Count

The Count property syntax has the following parts.

Part Description
object An object expression that evaluates to an ObjectCol

object

See Also

ObjectCol Object

Meta Data Services Programming (SQL Server 2000)

ObjectCol Item Property
ObjectCol Item Property

This property retrieves an object from the collection. This is a read-only property. There are two variations of this property.

Syntax

Set variable = object.Item(index)
Set variable = object.Item(objId)

The Item property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion. It receives the specified repository object.
object An object expression that evaluates to an ObjectCol object.
index The index of the repository object to be retrieved from the collection.
objId The object identifier of the repository object to be retrieved from the collection.

Remarks

This property yields the latest version of a repository object. The repository engine uses a version resolution strategy to select a
specific version to include in the collection. For more information, see Resolution Strategy for Objects and Object Versions.

See Also

ObjectCol Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

ObjectCol Cancel Method
ObjectCol Cancel Method

The Cancel method requests the cancellation of the ongoing load operation. This method only works when the ExecuteQuery
method is used and you specify whether you want the resulting object collection to be loaded asynchronously. For other object
collections, this method has no effect.

This method is not attached to the default interface for the repository Automation object; it is attached to the IObjectCol2
interface, which inherits from IObjectCol. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.Cancel

The Cancel method syntax has the following parts.

Part Description
object An object expression that evaluates to an ObjectCol

object

See Also

IObjectCol2 Interface

ObjectCol Object

ObjectCol LoadStatus Method

Repository ExecuteQuery Method

Meta Data Services Programming (SQL Server 2000)

ObjectCol LoadStatus Method
ObjectCol LoadStatus Method

The LoadStatus method is used to obtain the load status of the collection. This method only works when the ExecuteQuery
method is used and you specify whether you want the resulting object collection to be loaded asynchronously. For other object
collections, this method has no effect.

This method is not attached to the default interface for an ObjectCol; it is attached to the IObjectCol2 interface, which inherits
from IObjectCol. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.LoadStatus

The LoadStatus method syntax has the following parts.

Part Description
variable A variable declared as long. It receives the load status

value.
object An object expression that evaluates to an ObjectCol object.

See Also

ObjectCol Object

ObjectCol Cancel Method

Repository ExecuteQuery Method

Meta Data Services Programming (SQL Server 2000)

ObjectCol Refresh Method
ObjectCol Refresh Method

This method refreshes the cached image of the object collection. Only cached data that has not been changed by the current
process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object An object expression that evaluates to an ObjectCol

object.
milliSecs This value is ignored. It is kept for backward compatibility.

See Also

ObjectCol Object

Meta Data Services Programming (SQL Server 2000)

Relationship Object
Relationship Object

A relationship connects two objects in a repository database.

All repository relationships are versioned. You can version a relationship explicitly by using VersionedRelationship, or you can
allow the repository engine to version a relationship automatically. The repository engine automatically versions a relationship in
cases where version information is unspecified or where legacy relationship objects that were created prior to version support
exist.

A versioned relationship can connect a particular version of a repository object to one or more specific versions of the target
object. Because every relationship is a VersionedRelationship object, you can declare any relationship with the following line,
where myVersionedRship is the object you are defining:

Dim myVersionedRship As VersionedRelationship

In earlier releases of the repository engine, the object model included the Relationship object, but not the
VersionedRelationship object. If you have Microsoft® Visual Basic® programs written against earlier releases of the repository
engine, those programs might include declarations like the following, where oldRship is the object you are defining:

Dim oldRship As Relationship

These programs will continue to work with Microsoft SQL Server™ 2000 Meta Data Services because the repository API still
includes the Relationship object. For this reason, the preceding declaration remains valid in Visual Basic. However, because every
relationship is a versioned relationship, the object oldRship has the same members as any versioned relationship. In effect, the
following two lines of code are equivalent:

Dim oldRship As Relationship
Dim myVersionedRship As VersionedRelationship

Even though all relationships are now versioned relationships, the repository API includes the Relationship object so that you do
not need to rewrite your Visual Basic programs that declare objects as Relationship objects.

See Also

Repository API

RepositoryObjectVersion Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Object
RelationshipCol Object

A relationship collection is the set of relationships that are attached to a particular source repository object. All of the relationships
in the collection must conform to the same relationship type.

When to Use

Use this object to manage the relationships that belong to a particular relationship collection. With this object, you can:

Get a count of the number of relationships in the collection.

Add and remove relationships to and from the collection.

If the collection is sequenced, place a relationship in a specific place in the collection sequence.

Retrieve a specific relationship or target object from the collection.

Refresh the cached image of the collection.

Obtain the type of the collection.

Properties

Property Description
Count The count of the number of items in the collection
Item Retrieves the specified relationship or target object from the

collection
Source The source object for the relationship collection
Type The object identifier for the definition object of the collection

Methods

Method Description
Add Adds a relationship to the collection
Insert Inserts a relationship into a specific place in a sequenced collection
Move Moves a relationship from one place to another in a sequenced

collection
Refresh Refreshes the cached image of the collection
Remove Removes a relationship from the collection

See Also

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Count Property
RelationshipCol Count Property

This property is a long integer that contains the count of the number of items in the collection. This is a read-only property.

Syntax

object.Count

The Count property syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipCol object

See Also

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Item Property
RelationshipCol Item Property

This property retrieves a target object or relationship from the collection. This is a read-only property. There are three variations
of this property.

Syntax

Set variable = object.Item(index)
Set variable = object.Item(objName)
Set variable = object.Item(objId)

The Item property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject class. It receives the target object of the specified

relationship or the VersionedRelationship object.
object An object expression that evaluates to a RelationshipCol object.
index The index of the relationship to be retrieved from the collection.
objName The name that the relationship uses to refer to its destination object. This variation can be used

only when the target object is also the destination object, and when the collection requires
names for destination objects.

objId The object identifier for the target object to be retrieved from the collection.

Remarks

This property is available on two interfaces: the default interface, ITargetObjectCol, and a second interface, IRelationshipCol. If
you choose to access the property that is exposed by the IRelationshipCol interface, your variable receives the specified
VersionedRelationship object instead of the relationship's target object. In this case, you should declare your variable as a
VersionedRelationship, instead of as a RepositoryObject. Each item in the collection is a versioned relationship; each item has
a TargetVersions collection. When you obtain a reference to the target object of a particular item (with the get_Target method
of the IRelationship interface), the repository engine chooses a particular version of the target object from the items in the
versioned relationship's TargetVersions collection.

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

IRelationshipCol Interface

ITargetObjectCol Interface

RelationshipCol Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Source Property
RelationshipCol Source Property

This property retrieves the source object for the relationship collection. This is a read-only property.

Syntax

Set variable = object.Source

The Source property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion object. It receives the source object version of

the relationship collection.
object An object expression that evaluates to a RelationshipCol object.

See Also

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Type Property
RelationshipCol Type Property

This property specifies the type of the collection. More specifically, it is the object identifier of the CollectionDef object for the
collection. The Type property is a read-only property. To copy this property to another variable, use a variable that is declared as a
Variant.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a RelationshipCol object

See Also

CollectionDef Object

Object Identifiers and Internal Identifiers

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Add Method
RelationshipCol Add Method

This method adds a new item to a relationship collection, when the sequencing of relationships in the collection is not important.
The new relationship connects the RepositoryObjectVersion to the source object version of the collection. The new relationship
is passed back to the caller.

Syntax

Set variable = object.Add(reposObj, objName)

The Add method syntax has the following parts.

Part Description
variable A variable declared as a VersionedRelationship object. It receives the new relationship that is

created for the reposObj RepositoryObjectVersion.
object An object expression that evaluates to a RelationshipCol object.
reposObj The RepositoryObjectVersion whose relationship is to be added to the collection.
objName The name that the new relationship is to use for reposObj. This parameter is optional.

Remarks

You can add a relationship to a collection only when the collection's source object is also the collection's origin object.

When you call this method, the origin version must be unfrozen.

You can use this method to create a new versioned relationship between the source object version and a version of the target
object. You cannot use it to add to a versioned relationship. If the source object version is already related to any version of the
target object, this method fails. You can include another version of the target object in the versioned relationship by adding an
item to the versioned relationship's TargetVersions collection.

The value of plReposObj is the specific version of the target object.

If you are operating within the context of a workspace, the target object version you specify with plReposObj must be present in
the workspace.

See Also

RelationshipCol Object

RelationshipCol Insert Method

RepositoryObjectVersion Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Insert Method
RelationshipCol Insert Method

This method adds a relationship to the collection at a specified point in the collection sequence. The new relationship connects the
repository object to the source object of the collection. The new relationship is passed back to the caller.

Syntax

Set variable = object.Insert(reposObj, index, objName)

The Insert method syntax has the following parts.

Part Description
variable A variable declared as a relationship. It receives the new relationship that is created for the

reposObj repository object.
object An object expression that evaluates to a RelationshipCol object.
reposObj The repository object whose relationship is to be added to the collection.
index The index of the sequence location where the relationship is to be inserted. If another

relationship is already present at this sequence location, the new relationship is inserted before
the existing relationship.

objName The name that the new relationship is to use for the reposObj object. This parameter is optional.

Remarks

Relationships may be inserted into a collection only if the collection's source object is also the collection's origin object.

This method can be used only for collections that are sequenced.

When you call this method, the origin version must be unfrozen.

You can use this method to insert a new versioned relationship between the source object version and a version of the target
object. You cannot use it to enlarge a versioned relationship. If the source object version already has a relationship to any version
of the target object, this method fails. You can include another version of the target object in the versioned relationship by adding
an item to the versioned relationship's TargetVersions collection.

The value of plReposObj is the specific version of the target object.

If you are operating within the context of a workspace, the target object version you specify with plReposObj must be present in
the workspace.

See Also

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Move Method
RelationshipCol Move Method

This method moves a VersionedRelationship object from one point in the collection sequence to another point.

Syntax

Call object.Move(indexFrom, indexTo)

The Move method syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipCol object
indexFrom The index of the VersionedRelationship object to be moved in the collection sequence
indexTo The index of the sequence location to which the VersionedRelationship object is to be

moved

Remarks

This method can be used only with sequenced collections. When you call this method, the origin object version must be unfrozen.

See Also

RelationshipCol Object

Selecting Items in a Collection

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Refresh Method
RelationshipCol Refresh Method

This method refreshes the cached image of the object collection. Only cached data that has not been changed by the current
process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipCol object.
milliSecs This value is ignored.

See Also

RelationshipCol Object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Remove Method
RelationshipCol Remove Method

This method deletes a relationship from its relationship collection. The exact behavior of this method depends on whether the
relationship collection is an origin collection or a destination collection.

If the relationship collection is an origin collection, this method deletes the versioned relationship.

If the relationship collection is a destination collection, this method first performs object-version resolution to yield a single
target-object version, and then it removes that target-object version from the relationship's TargetVersions collection.

Syntax

Call object.Remove(index)
Call object.Remove(objID)
Call object.Remove(objName)

The Remove method syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipCol object
index The index of the relationship to be removed from the collection
objID The object identifier for the relationship object to be removed from the collection
objName The relationship that uses this name for its destination object is to be removed from the

collection

Remarks

A relationship can be removed by name only if it is a unique-naming relationship.

If the source is the origin, the origin version must be unfrozen.

If the relationship is a destination relationship and the resolution strategy yields a target object version that is frozen, this method
fails.

Removal from a sequenced collection does not update the collection sequence order.

See Also

Naming and Unique-Naming Collections

RelationshipCol Object

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

Repository Object
Repository Object

A Repository object is an instance of a single repository session. The scope of a repository object is a repository database.
Because you can have multiple repository databases, you use the Repository object to connect and interact with a specific
database.

When to Use

You can use a repository instance to:

Create a new repository database or connect to an existing repository database.

Access the root repository object, ReposRoot.

Retrieve a RepositoryObject or RepositoryObjectVersion.

Create the initial version of a RepositoryObject or RepositoryObjectVersion.

Refresh cached repository data.

Manage repository transactions.

Properties

Property Description
ConnectionString The ODBC connection string that the repository engine uses to obtain an ODBC connection.

This property is not a default interface member.
MajorDBVersion The major version number of the first repository engine version that introduced this database

format. This property is not a default interface member.
MinorDBVersion The minor version number of the first repository engine version that introduced this database

format. This property is not a default interface member.
Object Retrieves the specified RepositoryObject.
ReposConnection The ODBC connection handle that the repository engine uses to access the repository database.

This property is not a default interface member.
RootObject The ReposRoot object of the open repository database.
Transaction The transaction processing interface.
Version Retrieves the specified RepositoryObjectVersion.

Methods

Method Description
Create Creates a new repository database.
CreateObject Creates a new instance of a RepositoryObject or

RepositoryObjectVersion in the open repository database.
CreateObjectEx Creates the first version of a new repository object instance of

the specified type and explicitly assigns the object-version
identifier that is passed in as an argument. This is unlike
CreateObject method, in which the repository engine assigns
the version ID.

ExecuteQuery Executes an SQL query against the repository database. This
method is not a default interface member.

FreeConnection Releases an ODBC connection handle. This method is not a
default interface member.

GetCollection Returns a result set of objects in a collection based on
selection criteria.

GetNewConnection Obtains a new ODBC connection handle using the same
connection settings that the repository engine is using to
access the repository database. This method is not a default
interface member.

GetOption Gets an option that supports performance optimization at run
time.

InternalIDToObjectID Converts an internal identifier into an object identifier.
InternalIDToVersionID Converts an internal object-version identifier into an object-

version identifier.
ObjectIDToInternalID Converts an object identifier into an internal identifier.
Open Opens the specified repository database.
Refresh Refreshes the cached image of all data for the open repository

database.
ResetOption Resets a run-time performance option to its default value.
SetOption Sets an option that supports performance optimization at run

time.
VersionIDToInternalID Converts an object-version identifier into an internal object-

version identifier.

See Also

Connecting to and Configuring a Repository

Meta Data Services Programming (SQL Server 2000)

Repository ConnectionString Property
Repository ConnectionString Property

This property contains the ODBC connection string that the repository engine uses to connect to a repository database. This is a
read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryODBC
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.ConnectionString

The ConnectionString property syntax has the following part.

Part Description
object The object that represents the open repository instance through which application code or a tool

interacts with a repository

Remarks

The ODBC connection string can contain user identification and password information. Be sure to protect this information to
prevent unauthorized access.

See Also

Connecting to and Configuring a Repository

IRepositoryODBC Interface

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository MajorDBVersion Property
Repository MajorDBVersion Property

This property returns the database version. The database version is created from the version number of the repository engine that
created the database. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.MajorDBVersion

The MajorDBVersion property syntax has the following parts.

Part Description
variable Declared as long. It receives the database major

version.
object The object that represents the open repository instance.

Remarks

Database version information is stored in the RTblDatabaseVersion SQL Table. The value will be 2.0 if the database was created
or upgraded by repository engine 2.0, or 3.0 if the database was created or upgraded by repository engine 3.0.

Additional version information is available through the MinorDBVersion property.

See Also

IRepository2 Interface

Repository MinorDBVersion Property

Repository Object

RTblDatabaseVersion SQL Table

Upgrading and Migrating a Repository Database

Meta Data Services Programming (SQL Server 2000)

Repository MinorDBVersion Property
Repository MinorDBVersion Property

This property returns the minor version number of the first repository engine version that introduced this database format. This is
a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.MinorDBVersion

The MinorDBVersion property syntax has the following parts.

Part Description
variable Declared as long. It receives the database minor

version.
object The object that represents the open repository instance.

Remarks

Database version information is stored in the RTblDatabaseVersion SQL Table. Major version information can be retrieved
using the MajorDBVersion property.

See Also

IRepository2 Interface

Repository MajorDBVersion Property

Repository Object

RTblDatabaseVersion SQL Table

Upgrading and Migrating a Repository Database

Meta Data Services Programming (SQL Server 2000)

Repository Object Property
Repository Object Property

Use this property to retrieve a particular instance of a RepositoryObject. This property is read-only.

Syntax

Set variable = object.Object(objectId)

The Object property syntax has the following parts.

Part Description
variable Declared as a RepositoryObject. It receives the repository object.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
objectId The object identifier for the repository object to be retrieved.

Remarks

The repository returns the latest version of a repository object. For more information about how the repository engine selects a
specific version, see Resolution Strategy for Objects and Object Versions.

See Also

Object Identifiers and Internal Identifiers

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository ReposConnection Property
Repository ReposConnection Property

This property contains the ODBC connection handle that the repository engine is using to access the repository database. This is a
read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryODBC
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.ReposConnection

The ReposConnection property syntax has the following part.

Part Description
object The object that represents the open repository instance through which application code or a tool

interacts with a repository

Remarks

Using the repository engine ODBC connection handle does not isolate you from changes made by the repository engine. For
example, uncommitted changes made by the repository engine will be visible to your application.

When using the repository engine's ODBC connection handle, you must not change the state of the handle in a way that is
incompatible with the repository engine. Specifically, do not:

Change any ODBC connection options.

Perform any access operations that are concurrent with repository method invocations.

Directly commit or rollback a database transaction. The IRepositoryTransaction interface must always be used to manage
transactions.

Be sure to free the handle obtained through this method before releasing your open repository instance. To free the connection
handle, use the FreeConnection method.

See Also

Connecting to and Configuring a Repository

IRepositoryODBC Interface

IRepositoryTransaction Interface

Repository FreeConnection Method

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository RootObject Property
Repository RootObject Property

This property is the repository root object for the open repository. The root object provides a starting location for all subsequent
navigation through the information models you have installed. This is a read-only property.

Syntax

Set variable = object.RootObject

The RootObject property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject. It receives the root repository object (ReposRoot).
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.

See Also

Repository Object

ReposRoot Object

Meta Data Services Programming (SQL Server 2000)

Repository Transaction Property
Repository Transaction Property

This property is the RepositoryTransaction object for the open repository instance. This is a read-only property.

Syntax

Set variable = object.Transaction

The Transaction property syntax has the following parts.

Part Description
variable A variable declared as an object. It receives the RepositoryTransaction object for this

repository instance.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.

Remarks

You can gain access to the RepositoryTransaction object by using this syntax. After you access the RepositoryTransaction
object, you can access the properties and methods of the RepositoryTransaction object through standard variable.method and
variable.property syntax. You can also access the properties and methods of the RepositoryTransaction object directly by using
syntax like the following:

Call object.Transaction.method

-or-

variable = object.Transaction.property

See the RepositoryTransaction object for details on the methods and properties that it provides.

See Also

Repository Object

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

Repository Version Property
Repository Version Property

This property retrieves a particular instance of a RepositoryObjectVersion from the repository. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Version(versionId, integer)

The Version property syntax has the following parts.

Part Description
variable Declared as a RepositoryObjectVersion. It receives the repository object version.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
versionId The object-version identifier for the repository object to be retrieved.
integer An integer indicates the strategy used by the repository engine to select a specific object.

1=SPECIFIEDVERSION. This value appears when you explicitly select a specific object version.
2=LATESTVERSION. This value appears when the most recently created version is selected.
3=VERSIONINWORKSPACE. This value appears when the object version in the workspace is
selected.
4=PINNEDVERSION. This value appears when the pinned target object version of the relationship
that you are currently navigating is selected.

See Also

Repository Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

Repository Create Method
Repository Create Method

Use this method to create a new repository database or to populate an empty database with repository SQL schema. Standard
repository SQL tables are automatically created. The root repository object of the new repository is passed back to the calling
program.

Syntax

Set variable = object.Create(connect, user, password, flags)

The Create method syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject that evaluates to a ReposRoot object.
object The instance of the Repository class that you are using to create the new repository database.
connect The ODBC connection string to be used for accessing the database server that will host your new

repository.
user The user name to use for identification to the database server.
password The password that matches the user input parameter.
flags Flags that determine database access and caching behavior for the open repository. For more

information, see the ConnectionFlags Enumeration.

Remarks

If the connection string indicates a Microsoft® JET database, the repository engine creates the database and populates it with the
repository SQL schema. If the connection string indicates a Microsoft SQL Server™ 6.5, SQL Server 7.0, or SQL Server 2000, or the
SQL Server Runtime Engine, the repository engine populates an empty database with the standard SQL schema. In this case, you
must create an empty database before invoking this method.

See Also

Connecting to and Configuring a Repository

Repository Object

RepositoryObject Object

Repository SQL Schema

ReposRoot Object

Meta Data Services Programming (SQL Server 2000)

Repository CreateObject Method
Repository CreateObject Method

This method creates a new repository object of a certain type. You can specify this method in application code to create an
instance of a class defined in an information model.

Syntax

Set variable = object.CreateObject(typeId, objectId)

The CreateObject method syntax has the following parts.

Part Description
variable Declared as a RepositoryObject or RepositoryObjectVersion. It receives the new

RepositoryObject or RepositoryObjectVersion.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
typeId The object identifier of the class to which the new object conforms. For example, to create an

instance of a Storage class, specify the object identifier of the Storage class.
objectId The object identifier to be assigned to the new object. Either pass in ObjID_NULL, or leave it

unspecified to have an object identifier assigned automatically.

Remarks

Use this method to create the first version of a new RepositoryObject. To create subsequent versions, use the CreateVersion
method of the RepositoryObjectVersion object.

This method can be called from a shared repository but not from a workspace. The workaround is to create the object through the
central repository and include it in the workspace.

See Also

Choosing an Automation Server for a Class

Object Identifiers and Internal Identifiers

Repository Object

RepositoryObject Object

RepositoryObjectVersion CreateVersion Method

Meta Data Services Programming (SQL Server 2000)

Repository CreateObjectEx Method
Repository CreateObjectEx Method

This method creates the first version of a new repository object instance of the specified type and explicitly assigns the object-
version identifier that is passed in as an argument. This is unlike the CreateObject method, in which the repository engine
assigns the version ID.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

set variable = object.CreateObjectEx(typeID, objID, extVersionID)

The CreateObjectEx method syntax has the following parts.

Part Description
variable Declared as a RepositoryObjectVersion. It receives the new RepositoryObjectVersion.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
typeId The object identifier of the class to which the new object conforms. For example, to create an

instance of a Storage class, specify the object identifier of the Storage class.
objectId The object identifier to be assigned to the new object. Either pass in ObjID_NULL, or leave

unspecified to have an object identifier assigned automatically.
extVersionID The external object-version identifier.

Remarks

This method provides an alternate approach for creating an object instance. To allow the repository engine to create an object
identifier for you, use the CreateObject method.

See Also

Repository CreateObject Method

Repository Object

Assigning Object Identifiers

Meta Data Services Programming (SQL Server 2000)

Repository ExecuteQuery Method
Repository ExecuteQuery Method

 New Information - SQL Server 2000 SP3.

This method executes the specified SQL query against the repository database, and returns a collection of repository object
instances. The columns that are returned by the query must be either just the internal identifier (IntID) column, or the internal
identifier and the type identifier (IntID and TypeID) columns of the RTblVersions table.

The ExecuteQuery method returns all objects based on the identifier. To create a query that applies selection criteria to an object
collection, use the GetCollection method.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryODBC
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Syntax

Set variable = object.ExecuteQuery(queryString)

The ExecuteQuery method syntax has the following parts.

Part Description
variable Declared as an ObjectCol object. It receives the collection of objects that meet the selection

criteria of the SQL query.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
queryString A string that contains the SQL Query or the name of a stored procedure to be executed.

See Also

Object Identifiers and Internal Identifiers

ObjectCol Object

Repository Object

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

Repository FreeConnection Method
Repository FreeConnection Method

This method frees an ODBC connection handle.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryODBC
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.FreeConnection(hdbc)

The FreeConnection method syntax has the following parts.

Part Description
object The object that represents the open repository instance through which application code or a tool

interacts with a repository
hdbc The ODBC connection handle to be released

Remarks

Use this method to free the handle obtained via either the ReposConnection property or the GetNewConnection method
before releasing the open repository instance.

See Also

IRepositoryODBC Interface

Repository Object

Repository GetNewConnection Method

Repository ReposConnection Property

Meta Data Services Programming (SQL Server 2000)

Repository GetCollection Method
Repository GetCollection Method

This method returns a result set based on selection criteria. The result set is a collection of repository objects. When you use this
method on the repository session object, the repository engine filters the collection of all objects in the repository database.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposQuery
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

set variable = object.GetCollection(filter)

The GetCollection method syntax has the following parts.

Part Description
variable Declared as an object collection. It receives the new ObjectCol instance.
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
filter The query string that selects a result set. For more information about query syntax and

arguments, see IReposQuery Interface.

See Also

ObjectCol Object

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository GetNewConnection Method
Repository GetNewConnection Method

This method obtains a new ODBC connection handle using the same ODBC connection string that the repository engine uses to
access the repository database. Using a new ODBC connection handle isolates you from changes made by the repository engine.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryODBC
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.GetNewConnection

The GetNewConnection method syntax has the following parts.

Part Description
variable Receives the new connection handle
object The object that represents the open repository instance through which application code or a tool

interacts with a repository

Remarks

Be sure to free the handle obtained via this method before releasing your open repository instance. To free the connection handle,
use the FreeConnection method.

See Also

IRepositoryODBC Interface

Repository FreeConnection Method

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository GetOption Method
Repository GetOption Method

This method gets an option that supports the implementation of performance optimization at run time.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposOptions
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.GetOption(optionIdentifier)

The GetOption method syntax has the following parts.

Part Description
object An expression that evaluates to a Repository session object.
optionIdentifier An option expressed as a Variant. You can specify an option name or an option value. For more

information about option names and values, see IReposOptions Options Table.

See Also

IReposOptions Interface

Optimizing Repository Performance

Repository Object

Repository ResetOption Method

Repository SetOption Method

Meta Data Services Programming (SQL Server 2000)

Repository InternalIDToObjectID Method
Repository InternalIDToObjectID Method

This method translates an internal identifier into an object identifier. The repository engine uses internal identifiers to identify
instances of RepositoryObject or RepositoryObjectVersion.

Syntax

variable = object.InternalIDToObjectID(internalId)

The InternalIDToObjectID method syntax has the following parts.

Part Description
variable Receives the object identifier
object The object that represents the open repository instance through which application code or a tool

interacts with a repository
internalId The internal identifier to be converted

Remarks

Object identifiers are globally unique, and are the same across repositories for the same object. Internal identifiers are unique
only within the scope of a single repository.

The translation performed by this method is accomplished without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository InternalIDToVersionID Method
Repository InternalIDToVersionID Method

This method translates an internal object-version identifier into a repository object-version identifier. The repository engine uses
internal object-version identifiers to identify RepositoryObjectVersions.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.InternalIDToVersionID(intVersionId)

The InternalIDToVersionID method syntax has the following parts.

Part Description
variable Receives the object-version identifier
object The object that represents the open repository instance through which application code or a

tool interacts with a repository
intVersionId The internal object-version identifier to be converted

Remarks

Object-version identifiers are globally unique, and are the same across repositories for the same object. Internal object-version
identifiers are unique only within the scope of a single repository.

The translation performed by this method is accomplished without loading the object version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

Repository Object

Repository ObjectIDToInternalID Method

Meta Data Services Programming (SQL Server 2000)

Repository ObjectIDToInternalID Method
Repository ObjectIDToInternalID Method

This method translates an object identifier into an internal identifier. Internal identifiers are used by the repository engine to
identify repository objects.

Syntax

variable = object.ObjectIDToInternalID(objectId)

The ObjectIDToInternalID method syntax has the following parts.

Part Description
variable Receives the internal identifier
object The object that represents the open repository instance through which application code or a tool

interacts with a repository
objectId The object identifier to be converted

Remarks

Object identifiers are globally unique, and are the same across repositories for the same object. Internal identifiers are unique
only within the scope of a single repository.

The translation performed by this method is accomplished without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

Repository InternalIDToObjectID Method

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository Open Method
Repository Open Method

Use this method to open (connect to) a repository. The root repository object is passed back to the caller.

Syntax

Set variable = object.Open(connect, user, password, flags)

The Open method syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject. It receives the root repository object (ReposRoot)

for the repository.
object The instance of the Repository class that you are using to connect to the repository.
connect The ODBC connection string to be used for accessing the database server that hosts your

repository.
user The user name to use for identification to the database server.
password The password that matches the user input parameter.
flags Flags that determine database access and caching behavior for the open repository. For more

information, see ConnectionFlags Enumeration.

See Also

Connecting to and Configuring a Repository

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository Refresh Method
Repository Refresh Method

This method refreshes all of the cached data for this open repository instance. Only cached data that has not been changed by the
current process is refreshed.

Syntax

Call object.Refresh(milliSeconds)

The Refresh method syntax has the following parts.

Part Description
object The object that represents the open repository instance through which application code or a tool

interacts with a repository.
milliSecs This value is ignored. It is kept for backward compatibility.

See Also

Repository Object

Meta Data Services Programming (SQL Server 2000)

Repository ResetOption Method
Repository ResetOption Method

This method resets an option that supports performance optimization at run time to its default value.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposOptions
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.ResetOption(optionIdentifier, value)

The ResetOption method syntax has the following parts.

Part Description
object An expression that evaluates to a Repository session object.
optionIdentifier An option expressed as a Variant. You can specify an option name or an option value. For more

information about option names and values, see IReposOptions Options Table.

See Also

IReposOptions Interface

Optimizing Repository Performance

Repository GetOption Method

Repository Object

Repository SetOption Method

Meta Data Services Programming (SQL Server 2000)

Repository SetOption Method
Repository SetOption Method

This method sets an option that supports performance optimization at run time.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposOptions
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.SetOption(optionIdentifier, value)

The SetOption method syntax has the following parts.

Part Description
object An expression that evaluates to a Repository session object.
optionIdentifier An option expressed as a Variant. You can specify an option name or an option value.
value The value of the option. The value must be paired with the corresponding optionIdentifier. For

more information about option names and values, see IReposOptions Options Table.

See Also

IReposOptions Interface

Optimizing Repository Performance

Repository GetOption Method

Repository Object

Repository ResetOption Method

Meta Data Services Programming (SQL Server 2000)

Repository VersionIDToInternalID Method
Repository VersionIDToInternalID Method

This method translates a repository object-version identifier into an internal object-version identifier. Internal object-version
identifiers are used by the repository engine to identify specific instances of a RepositoryObjectVersion.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.VersionIDToInternalID(versionId)

The VersionIDToInternalID method syntax has the following parts.

Part Description
variable Receives the internal object-version identifier
object The object that represents the open repository instance through which application code or a tool

interacts with a repository
objectId The object-version identifier to be converted

Remarks

Object-version identifiers are globally unique, and are the same across repositories for the same object version. Internal object-
version identifiers are unique only within the scope of a single repository.

The translation performed by this method is accomplished without loading the object version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

Repository InternalIDToObjectID Method

Repository Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Object
RepositoryObject Object

A RepositoryObject is an object that is stored in a repository database and managed by the repository engine.

All repository objects are versioned. You can create new object versions explicitly using the RepositoryObjectVersion. The
repository engine can create version information implicitly in cases where version information is unspecified or where legacy
objects that were created prior to version support exist.

A RepositoryObjectVersion is a particular rendition of a RepositoryObject. Each version of an object can differ from other
versions of that object in its property values and collections. When you manipulate a repository object within a Microsoft® Visual
Basic® program, for example, you are actually manipulating a particular version of that object. That is, you manipulate a
RepositoryObjectVersion.

You can declare any repository object version with the following line:

Dim newVersionedReposObject As RepositoryObjectVersion

In earlier releases of the repository engine, the object model included the RepositoryObject but not the
RepositoryObjectVersion. If you have Visual Basic programs written against earlier releases, those programs might include
declarations like the following:

Dim oldReposObject As RepositoryObject

These programs will continue to work with Microsoft SQL Server™ 2000 Meta Data Services because the repository object model
still includes the RepositoryObject. As a result, the preceding declaration remains valid in Visual Basic. Whenever you
manipulate an object, you actually manipulate a specific version of that object. So the object oldReposObject has the same
members as any repository object version has. In effect, the following two lines of code are equivalent:

Dim myVersionedReposObject As RepositoryObjectVersion
Dim oldReposObject As RepositoryObject

Even though repository objects are now versioned, the repository object model includes the RepositoryObject so that you do
not need to rewrite your Visual Basic programs that declare an object as a RepositoryObject.

When to Use

The RepositoryObjectVersion object supersedes RepositoryObject. However, if you already have application code that
includes RepositoryObject, you can maintain that code using RepositoryObject. You can also use RepositoryObject to work
with meta data that is not versioned.

Use the RepositoryObject object to manipulate the properties of a repository object, to delete a repository object, or to refresh
the cached image of a repository object.

To create a new RepositoryObject, use the CreateObject method of the Repository session object.

Properties

Property Description
ClassName The name of a class that defines a repository object, as defined in an information model.

This property is not a default interface member.

ClassType The type of a class that defines a repository object, as defined in an information model.

This property is not a default interface member.

Interface The specified object interface.
InternalID The internal identifier that a repository instance uses to refer to a repository object.
Name The name of the repository object.
ObjectID The object identifier for the repository object.
Repository The open a repository instance through which this repository object was instantiated.
Type The type of the repository object.

Methods

Method Description
Delete Deletes a repository object
Lock Locks the repository object
Refresh Refreshes the cached image of a repository

object

Collections

Collection Description
Properties The collection of all persistent properties that are attached to a

RepositoryObject

See Also

Repository CreateObject Method

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject ClassName Property
RepositoryObject ClassName Property

This property specifies the name of a class that defines a repository object. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

string=object.ClassName

The ClassName property syntax has the following parts.

Part Description
string A variable length string that can be a maximum of 255

characters
object An object expression that evaluates to a RepositoryObject

Remarks

This property can be used to display the name of the class that defines the object. For example, if you create multiple repository
object instances of a ClassDef named StoredProcedure, the class name associated with each of these repository object instances
is StoredProcedure.

In Meta Data Browser, ClassName values are included with object property information to provide additional information about
an object. For example, the ClassName of Model is Model.

See Also

IRepositoryObject2 Interface

RepositoryObject ClassType Property

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject ClassType Property
RepositoryObject ClassType Property

This property specifies the type of a class as defined by its object identifier. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Set variable = object.ClassType

The ClassType property syntax has the following parts.

Part Description
variable An object expression that evaluates to a ClassDef object
object An object expression that evaluates to a

RepositoryObject

Remarks

This property can be used to retrieve the abstract class in the information model that defines the object instance. For example, if
you create multiple repository object instances of a ClassDef named StoredProcedure that has an object identifier of
StoredProc_objid, the class type associated with each of these repository object instances is StoredProc_objid.

See Also

IRepositoryObject2 Interface

Repository Identifiers

RepositoryObject ClassName Property

RepositoryObject Object

Using Meta Data Browser

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Interface Property
RepositoryObject Interface Property

Use this property to obtain a view of the repository object that uses an interface other than the default interface. This is a read-
only property. There are three variations of this property.

Syntax

Set variable = object.Interface(interfaceId)
Set variable = object.Interface(objectId)
Set variable = object.Interface(interfaceName)

The Interface property syntax has the following parts.

Part Description
variable An object variable. It receives the repository object with the specified interface as the default

interface.
object An object expression that evaluates to a RepositoryObject.
interfaceId The interface identifier for the interface to be retrieved.
objectId The object identifier for the interface definition to which the interface to be retrieved conforms.
interfaceName A string containing the name of the interface to be retrieved.

See Also

Assigning Object Identifiers

InterfaceDef Object

Object Identifiers and Internal Identifiers

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject InternalID Property
RepositoryObject InternalID Property

This property is the internal identifier that the repository engine uses to refer to this object. The internal identifier is unique within
the repository, but is not unique across repositories. This is a read-only property. To copy this property to another variable, use a
variable declared as a Variant.

Syntax

object.InternalID

The InternalID property syntax has the following part.

Part Description
object An object expression that evaluates to a

RepositoryObject

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

RepositoryObject Object

RepositoryObject ObjectID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Name Property
RepositoryObject Name Property

This property is a character string that contains the name of the repository object.

The Name property is normally derived from the relationship for which this repository object is the destination object. When the
name is retrieved, the name from the first naming relationship found is returned. If the object is not the destination of any naming
relationship, a null name is returned. However, you can set a name property explicitly. When the name is set, the new name is
used for all naming relationships for which the object is the destination.

Syntax

string=object.Name

The Name property syntax has the following parts.

Part Description
string A variable length string that can be a maximum of 255

characters
object An object expression that evaluates to a RepositoryObject

Remarks

If the repository object exposes the INamedObject interface, the name that is retrieved is always the Name property of the
INamedObject interface. Likewise, when this property is set, the Name property of the INamedObject interface and the name
associated with all naming relationships are set to the new value.

See Also

INamedObject Interface

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject ObjectID Property
RepositoryObject ObjectID Property

This property is the object identifier for the repository object. The object identifier is unique across all repositories. This is a read-
only property. To copy this property to another variable, use a variable declared as a Variant.

Syntax

object.ObjectID

The ObjectID property syntax has the following part.

Part Description
object An object expression that evaluates to a

RepositoryObject

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

Repository Object

RepositoryObject Object

RepositoryObject InternalID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Repository Property
RepositoryObject Repository Property

The Repository property is the open repository instance through which a repository object is instantiated. This is a read-only
property.

Syntax

Set variable = object.Repository

The Repository property syntax has the following parts.

Part Description
variable A variable declared as an instance of the Repository class. It receives the object that represents

the open repository instance.
object An object expression that evaluates to a RepositoryObject object.

See Also

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Type Property
RepositoryObject Type Property

This property specifies the type of the repository object. More specifically, it is the object identifier of the class definition object
that defines the repository object. This property is read-only. To copy this property to another variable, use a variable declared as
a Variant.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a

RepositoryObject

Remarks

The Type property is the object identifier of the class to which the new object conforms. For example, to manipulate an object
instance of a Storage class, specify the object identifier of the Storage class definition object upon which the object instance is
based.

For example, if you define three object instances of the Storage class (testStorage1, testStorage2, and finalStorage1), all three
object instances will have the same Type property value.

See Also

Object Identifiers and Internal Identifiers

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Delete Method
RepositoryObject Delete Method

This method deletes a repository object from the repository. Any relationships that connect the object to other objects are deleted.
If the repository object is an origin object of a relationship collection, and the relationship type indicates that deletes are to be
propagated, all of the destination objects are also deleted.

Syntax

Call object.Delete

The Delete method syntax has the following part.

Part Description
object An object expression that evaluates to a

RepositoryObject

See Also

Propagating Deletes

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Lock Method
RepositoryObject Lock Method

Use this method to lock the repository object. Locking the object prevents other processes from updating the object while you are
working with it. The lock is released when you end the current transaction.

Syntax

Call object.Lock

The Lock method syntax has the following part.

Part Description
object An object expression that evaluates to a

RepositoryObject

See Also

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Refresh Method
RepositoryObject Refresh Method

This method refreshes the cached image of the repository object. Only cached data that has not been changed by the current
process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object An object expression that evaluates to a

RepositoryObject.
milliSecs This value is ignored. It is kept for backward compatibility.

See Also

Repository Object

RepositoryObject Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Properties Collection
RepositoryObject Properties Collection

The Properties collection returns a list of all properties defined on every interface that the class supports.

Property names must be unique within the collection. To distinguish between identically named properties, the repository engine
first adds the interface name (for example, myInterfaceName.myPropertyName). If the name is still a duplicate, the prefix of
the information model is assigned (for example, myTypeLibPrefix:myInterfaceName.myPropertyName). In this case, the
prefix is provided by the ReposTypeLib object.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Set variable = object.Properties(index)
Set variable = object.Properties(objID)
Set variable = object.Properties(objName)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression that evaluates to a RepositoryObject.
index An integer index that identifies which property in the collection to address. For an integer index,

the valid range is from one to the total number of elements in the collection. The number of
elements in the collection is specified by object.Properties.Count.

For more information, see Selecting Items in a Collection.

objID An object identifier that identifies which property in the collection to address.
objName An object name that identifies which property in the collection to address.

See Also

IRepositoryObject Interface

IRepositoryObject2 Interface

Repository Object

RepositoryObject Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Object
RepositoryObjectVersion Object

A Repository object is an object that is stored in the repository database, and is managed by the repository engine. A
RepositoryObjectVersion object is a specific rendition of a RepositoryObject. Microsoft® SQL Server™ 2000 Meta Data
Services can retain multiple renditions of a RepositoryObject so that you can reestablish historical states of a particular instance.

When to Use

Use the RepositoryObjectVersion object to manipulate the properties of a repository object version, to delete a repository
object version, or to refresh the cached image of a repository object version.

Properties

Property Description
CheckOutWorkspace The workspace to which the object version is checked

out.

This property is not a default interface member.

ClassName The name of a class that defines a repository object, as
defined in an information model.

This property is not a default interface member.

ClassType The type of a class that defines repository objects, as
defined in an information model.

This property is not a default interface member.

Interface The specified object interface.

This property is not a default interface member.

InternalID The internal object identifier that the repository engine
uses to refer to the repository object.

This property is not a default interface member.

IsCheckedOut A flag that indicates whether the object version is
checked out to a workspace.

This property is not a default interface member.

IsFrozen Indicates whether the object version is frozen.
Name The name of the repository object version.

This property is not a default interface member.

ObjectID The object identifier for the repository object.

This property is not a default interface member.

PredecessorCreationVersion The object version from which the current object
version was originally created.

Repository The open repository instance through which this
repository object was instantiated.

This property is not a default interface member.

ResolutionType An enumerated property that identifies which criteria
was used to select a repository object version.

This property is not a default interface member.

Type The type of the repository object.

This property is not a default interface member.

VersionID The object-version identifier for the repository object
version.

VersionInternalID The internal object-version identifier that the repository
uses to refer to the repository object version.

Methods

Method Description
CreateVersion Creates a new version of the current object, based on

the current object version.
Delete Deletes a repository object.

This method is not a default interface member.

FreezeVersion Fixes object version property values and origin
collections, permanently preventing further
modification to a specific version.

Lock Locks the repository object.

This method is not a default interface member.

MergeVersion Modifies the current object version by combining its
property values and collection with those of another
version of the same repository object.

Refresh Refreshes the cached image of a repository object.

This method is not a default interface member.

Collections

Collection Description
ObjectVersions The collection of all the versions of the current

repository object.
PredecessorVersions The collection of all immediate predecessor versions of

the current repository object version.
Properties The collection of all of the properties that are attached

to the repository object.

This collection is not a default interface member.

SuccessorVersions The collection of all immediate successor versions of the
current repository object version.

Workspaces The collection of all workspaces in which the current
object version is present.

This collection is not a default interface member.

See Also

RepositoryObject Object

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion ClassName Property
RepositoryObjectVersion ClassName Property

This property specifies the name of a class that defines a repository object. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

string=object.ClassName

The ClassName property syntax has the following parts.

Part Description
string A variable length string that can be a maximum of 255 characters
object An object expression that evaluates to a

RepositoryObjectVersion

Remarks

This property can be used to display the name of the class that defines the object. For example, if you create multiple repository
object instances of a ClassDef named StoredProcedure, the class name associated with each of these repository objects instance
is StoredProcedure.

In Meta Data Browser, ClassName values are included with object property information to provide additional information about
an object. For example, the ClassName of Model is Model.

See Also

IRepositoryObject2 Interface

RepositoryObjectVersion ClassType Property

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion ClassType Property
RepositoryObjectVersion ClassType Property

This property specifies the type of a class as defined by its object identifier. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Set variable = object.ClassType

The ClassType property syntax has the following parts.

Part Description
variable An object expression that evaluates to a ClassDef object
object An object expression that evaluates to a

RepositoryObjectVersion

Remarks

This property can be used to retrieve the abstract class in the information model that defines the object instance. For example, if
you create multiple repository object instances of a ClassDef named StoredProcedure that has an object identifier of
StoredProc_objid, the class type associated with each of these repository objects instance is StoredProc_objid.

See Also

IRepositoryObject2 Interface

RepositoryObjectVersion ClassName Property

RepositoryObjectVersion Object

Using Meta Data Browser

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion CheckOutWorkspace Property
RepositoryObjectVersion CheckOutWorkspace Property

This property identifies the workspace to which the repository object version is currently checked out. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IWorkspaceItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.CheckOutWorkspace

The CheckOutWorkspace property syntax has the following parts.

Part Description
variable A variable declared as an instance of the Workspace class. It receives the object that represents the

workspace to which the object version is checked out.
object An object expression that evaluates to a RepositoryObjectVersion object.

Remarks

A workspace is a repository object. The CheckOutWorkspace property identifies the workspace object by object identifier or
object name.

See Also

IWorkspaceItem Interface

RepositoryObjectVersion Object

Workspace Checkin Method

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Interface Property
RepositoryObjectVersion Interface Property

Use this property to obtain a view of the repository object version that uses an alternate interface as the default interface. There
are three variations of this property. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Interface(interfaceId)
Set variable = object.Interface(objectId)
Set variable = object.Interface(interfaceName)

The Interface property syntax has the following parts.

Part Description
variable An object variable. It receives the repository object with the specified interface as the default

interface.
object An object expression that evaluates to a RepositoryObjectVersion instance.
interfaceId The interface identifier for the interface to be retrieved.
objectId The object identifier for the interface definition to which the interface to be retrieved conforms.
interfaceName A string containing the name of the interface to be retrieved.

See Also

InterfaceDef Object

IRepositoryItem Interface

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion InternalID Property
RepositoryObjectVersion InternalID Property

This property is the internal identifier that the repository engine uses to refer to this object. The internal identifier is unique within
a repository instance, but not unique across all repositories. To copy this property to another variable, use a variable declared as a
Variant. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryObject
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variant=object.InternalID

The InternalID property syntax has the following parts.

Part Description
variant A string, Boolean, or integer that receives the value of an internal identifier
object An object expression that evaluates to a RepositoryObjectVersion

object

Remarks

This property yields the internal object identifier, not the internal object-version identifier.

See Also

IRepositoryObject Interface

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

RepositoryObjectVersion ObjectID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion IsCheckedOut Property
RepositoryObjectVersion IsCheckedOut Property

This property indicates whether the object version is currently checked out to any workspace. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IWorkspaceItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.IsCheckedOut

The IsCheckedOut property syntax has the following parts.

Part Description
variable A Boolean variable
object An object expression that evaluates to a RepositoryObjectVersion object

See Also

IWorkspaceItem Interface

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion IsFrozen Property
RepositoryObjectVersion IsFrozen Property

This property indicates whether the object version is frozen. This property is read-only.

Syntax

variable = object.IsFrozen

The IsFrozen property syntax has the following parts.

Part Description
variable A Boolean variable
object An object expression that evaluates to a RepositoryObjectVersion object

See Also

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Name Property
RepositoryObjectVersion Name Property

This property is a character string that contains the name of the repository object version.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Name=string

The Name property syntax has the following parts.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

instance
string A variable length string that can be a maximum of 255 characters

Remarks

When you retrieve an object version name, there are several places the repository engine can look for a name.

When you change the value of this property, there may be several names the repository engine tries to change.

Note that when you change this property, the repository engine can, in some circumstances, change some names but not change
others. For example, if an object version is the destination of three naming relationships and also implements the INamedObject
interface, this method will try to change four names. The method returns success if any of the four attempts succeeds.

See Also

Changing an Object Version's Name

INamedObject Interface

IRepositoryItem Interface

Naming Objects, Collections, and Relationships

RepositoryObjectVersion Object

Retrieving an Object Version's Name

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion ObjectID Property
RepositoryObjectVersion ObjectID Property

This property is the object identifier for the repository object version. The object identifier is unique across all repositories. To
copy this property to another variable, use a variable declared as a Variant. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryObject
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.ObjectID

The ObjectID property syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObject

object

Remarks

This property yields the object identifier, not the object-version identifier.

See Also

Assigning Object Identifiers

IRepositoryObject Interface

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

RepositoryObject Object

RepositoryObjectVersion InternalID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion PredecessorCreationVersion Property
RepositoryObjectVersion PredecessorCreationVersion Property

The PredecessorCreationVersion property is the RepositoryObjectVersion instance from which this repository object version
was created. This property is read-only.

Syntax

Set variable = object.PredecessorCreationVersion

The PredecessorCreationVersion property syntax has the following parts.

Part Description
variable A variable declared as RepositoryObjectVersion object. It receives the object version from which the

current object version was created.
object An object expression that evaluates to a RepositoryObjectVersion instance.

Remarks

This property applies to object versions that are subsequently created from an existing object version. If you invoke this method
for the first version of an object, it returns an error.

The PredecessorCreationVersion property identifies the RepositoryObjectVersion by object identifier or object name.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Repository Property
RepositoryObjectVersion Repository Property

The Repository property is the open repository instance or workspace through which this repository object was instantiated. This
is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryObject
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Repository

The Repository property syntax has the following parts.

Part Description
variable A variable declared as a reference to any object implementing the IRepository interface. It receives the

object that represents the open Repository instance or the workspace.
object An object expression that evaluates to a RepositoryObjectVersion object.

Remarks

The returned reference can refer to either a repository instance or a workspace. If it refers to a workspace, you manipulate the
item within the context of that workspace. If it refers to a repository object, you manipulate the item within the context of a shared
repository instance.

See Also

IRepositoryObject Interface

Repository Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion ResolutionType Property
RepositoryObjectVersion ResolutionType Property

This property indicates the resolution technique by which the repository engine selected a reference to the current version (rather
than a reference to some other version of the same object). This is a read-only property.

Syntax

integer = object.ResolutionType

The ResolutionType property syntax has the following parts.

Part Description
integer An integer that indicates the strategy used by the repository engine to select a specific object.

1= SPECIFIEDVERSION. This value appears when you explicitly select a specific object version.
2=LATESTVERSION. This value appears when the most recently created version is selected.
3=VERSIONINWORKSPACE. This value appears when the object version in the workspace is selected.
4=PINNEDVERSION. This value appears when the pinned target object version of the relationship that you
are currently navigating is selected.

object An object expression that evaluates to a RepositoryObjectVersion object.

Remarks

The repository engine automatically sets the value of the ResolutionType property whenever you retrieve an object version. For
more information about how the repository engine selects object versions, see Resolution Strategy for Objects and Object
Versions.

See Also

RepositoryObjectVersion Object

RepositoryObjectVersion InternalID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Type Property
RepositoryObjectVersion Type Property

This property specifies the type of the RepositoryObjectVersion instance. More specifically, it is the object identifier of the object
definition object for the repository object. To copy this property to another variable, use a variable declared as a Variant. This
property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

object

Remarks

The Type property is the object identifier of the class to which the new object conforms. For example, to manipulate an object
instance of a Storage class, specify the object identifier of the Storage class upon which the object instance is based.

An object in the repository is simultaneously a repository object, an Automation object, and an object of a specific type, as defined
by an information model. The Type property identifies a specific object in an information model. The model-specific object is
identified by its object identifier. The value of an object identifier is used as the value of the Type property for all repository
objects that conform to that object definition.

See Also

IRepositoryItem Interface

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion VersionID Property
RepositoryObjectVersion VersionID Property

This property is the object-version identifier for the RepositoryObjectVersion instance. The object-version identifier is unique
across all repositories. To copy this property to another variable, use a variable declared as a Variant. This property is read-only.

Syntax

object.VersionID

The VersionID property syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

object

Remarks

This property yields the object-version identifier, not the object identifier.

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion VersionInternalID Property
RepositoryObjectVersion VersionInternalID Property

This property is the internal object-version identifier that the repository engine uses to refer to this object. The internal object-
version identifier is unique within the repository instance, but not unique across all repositories. To copy this property to another
variable, use a variable declared as a Variant. This property is read-only.

Syntax

object.VersionInternalID

The VersionInternalID property syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

object

Remarks

This property yields the internal object-version identifier, not the internal object identifier.

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

RepositoryObjectVersion ObjectID Property

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion CreateVersion Method
RepositoryObjectVersion CreateVersion Method

This method creates a new version of a repository object, based on the current version.

Syntax

set variable = object.CreateVersion(versionID)

The Refresh method syntax has the following parts.

Part Description
variable An object expression that evaluates to a RepositoryObjectVersion object. It receives a reference to the

newly created object version.
object An object expression that evaluates to a RepositoryObjectVersion object.
versionID The value you want the repository to use as an object-version identifier for the newly created object

version. If you want the repository to choose a value for you, set this parameter to
EXTVERSIONID_NULL, or you can leave it blank.

Remarks

The current object version must be frozen.

The repository engine creates the new version as unfrozen. Its property values are identical to the property values of the current
object version.

For each of the predecessor version's origin relationship collections, the repository engine takes this action:

If the corresponding relationship type has the COLLECTION_NEWORGVERSIONSPARTICIPATE flag set, the repository
engine copies the collection to the newly created version.

If the corresponding relationship type does not have the COLLECTION_NEWORGVERSIONSPARTICIPATE flag set, the
repository engine does not copy the collection to the new version.

You cannot invoke this method while operating in a workspace.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Delete Method
RepositoryObjectVersion Delete Method

This method deletes the repository object version from the repository.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.Delete

The Delete method syntax has the followings part:

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

instance

Remarks

A delete operation succeeds only under certain conditions.

If an object version has a successor, it cannot be deleted. To delete an object version that has successors, you must delete all
successors first.

If an object is checked out to a workspace, you must invoke Delete from within that workspace.

If the object version satisfies both of these restrictions, the repository engine deletes it and any of its relationships, including any
delete-propagating origin relationships. For each relationship, the repository engine considers performing one or more
propagated deletions.

See Also

IRepositoryItem Interface

Delete Propagation After Removing an Origin Relationship

RepositoryObjectVersion Object

Requirements for Object-Version Deletion

Workspace Context

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion FreezeVersion Method
RepositoryObjectVersion FreezeVersion Method

This method freezes the current RepositoryObjectVersion object.

Syntax

Call object.FreezeVersion

The FreezeVersion method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

object

Remarks

To freeze an object version, the object version must be unfrozen. You can only freeze an object version that is contained by a
shared repository. You cannot freeze an object version that is checked out to a workspace.

Freezing an object version prevents changes to property values, collection attributes, and versioned relationships. Specifically, you
cannot resize or resequence origin collections. Furthermore, you cannot change the versioned relationships of origin collections.
That is, you cannot enlarge or shrink a TargetVersions collection of an origin versioned relationship; and you cannot pin or unpin
a target object version. However, you can change the name by which the origin object version refers to the target object.

Note Annotational properties are an exception. You can modify the annotational properties of a frozen object version.

The FreezeVersion method fails in the following conditions:

If you call this method for an item currently checked out to any workspace (including the workspace in which you are
working), it returns an error.

If the to-be-frozen object version includes any nonnull origin collection whose corresponding collection type has the
COLLECTION_REQUIRESFREEZE flag set, and that nonnull collection includes an item whose TargetVersions collection
contains an unfrozen object version, the method fails.

See Also

RepositoryObjectVersion Object

RepositoryObjectVersion IsFrozen Property

Workspace CheckIn Method

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Lock Method
RepositoryObjectVersion Lock Method

Use this method to lock the repository object version. Locking the object version prevents other processes from locking it while
you are working with it. The lock is released when you end the current transaction.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.Lock

The Lock method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

instance

See Also

IRepositoryItem Interface

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion MergeVersion Method
RepositoryObjectVersion MergeVersion Method

This method changes the current object version by combining its property values and origin collections with the property values
and origin collections of another version of the same object.

Syntax

Call object.MergeVersion(otherVersion , flags)

The MergeVersion method syntax has the following parts.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion object.
otherVersion An object expression that evaluates to a RepositoryObjectVersion object. It is the object version that

has values that you want to merge into the current object version.
flags A flag indicating which version (the current version or the other version) the repository should use as

the primary version of the merge operation.

Primary=1 indicates that the predecessor object is primary and the current object is secondary.

Secondary=2 indicates that the predecessor object is secondary and the current object is primary.

Remarks

Merging two object versions requires that the current object version is unfrozen, and the other object version is frozen.
Furthermore, the two object versions must be versions of the same object.

Depending on how you set flags, one object version is the Primary Version and the other object version is the Secondary Version.
MergeVersion compares the property values and collections of each object version to a third version, called the Basis Version.
During the merge, the repository engine considers each property and origin collection type in turn. Relationships are inserted at
the end of the sequenced collection.

Merging object versions is a complex process. For more information about the merge process and how the repository engine
selects values, see Merge Overview.

See Also

Merging Object Versions

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Refresh Method
RepositoryObjectVersion Refresh Method

This method refreshes the cached image of the repository object version. Only cached data that has not been changed by the
current process is refreshed.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryObject
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object An object expression that evaluates to a RepositoryObjectVersion

object.
milliSecs This value is ignored. It is kept for backward compatibility.

See Also

IRepositoryObject Interface

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion ObjectVersions Collection
RepositoryObjectVersion ObjectVersions Collection

An ObjectVersions collection contains all of the RepositoryObjectVersion objects that are versions of the same repository
object.

Syntax

Set variable = object.ObjectVersions(index)

The ObjectVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the Versions-of-Object collection.
object An object expression that evaluates to a RepositoryObjectVersion object.
index An integer index that identifies which property in the collection to address. The valid range is from one

to the total number of elements in the collection. The number of elements in the collection is specified
by object.Properties.Count. For more information, see Selecting Items in a Collection.

Remarks

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first.

You cannot modify the collection. To add a new object version, use the CreateVersion method of the RepositoryObjectVersion
object.

See Also

RepositoryObjectVersion Object

RepositoryObject Object

Relationship Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion PredecessorVersions Collection
RepositoryObjectVersion PredecessorVersions Collection

A PredecessorVersions collection contains all of the RepositoryObjectVersion objects that are immediate predecessors of the
current object version.

Syntax

Set variable = object.PredecessorVersions(index)

The PredecessorVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the Predecessor-Versions collection.
object An object expression that evaluates to a RepositoryObjectVersion instance.
index An integer index that identifies which property in the collection to address. The valid range is from one to

the total number of elements in the collection. For more information, see Selecting Items in a Collection.

Remarks

This method returns only the immediate predecessors of the current object version. If you invoke this method for the first version
of an object, it returns an empty collection.

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first. Objects are indicated by object identifier or object name.

You cannot modify the collection directly. To enlarge the set of predecessor versions of an object, use the MergeVersion method
of the RepositoryObjectVersion object.

See Also

Assigning Object Identifiers

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Version Graph

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Properties Collection
RepositoryObjectVersion Properties Collection

The Properties collection contains all of the persistent properties on all of the interfaces that are attached to the repository object
version.

This collection is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObject2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression that evaluates to a RepositoryObjectVersion object.
index An integer index or a property name that identifies which property in the collection is to be addressed.

For an index, the valid range is from one to the total number of elements in the collection. The number
of elements in the collection is specified by object.Properties.Count.

For property names, unique-naming constraints may apply.

For more information, see Selecting Items in a Collection.

See Also

IRepositoryObject2 Interface

Naming and Unique-Naming Collections

RepositoryObjectVersion Object

Relationship Object

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion SuccessorVersions Collection
RepositoryObjectVersion SuccessorVersions Collection

A SuccessorVersions collection contains all of the RepositoryObjectVersion objects that are immediate successors of the
current object version.

Syntax

Set variable = object.SuccessorVersions(index)

The SuccessorVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the SuccessorVersions collection.
object An object expression that evaluates to a RepositoryObjectVersion instance.
index An integer index that identifies which property in the collection to address. The valid range is from one

to the total number of elements in the collection. For more information, see Selecting Items in a
Collection.

Remarks

This method returns only the immediate successors of the current object version. If the current object version has no successors,
this method returns an empty collection.

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first. Objects are indicated by object identifier or object name.

You cannot modify the collection directly. To enlarge the set of successor versions of an object, use the CreateVersion method of
the RepositoryObjectVersion object.

See Also

RepositoryObjectVersion Object

Version Graph

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Workspaces Collection
RepositoryObjectVersion Workspaces Collection

The Workspaces collection contains all of the workspaces in which the object version is present.

This collection is not attached to the default interface for the repository Automation object; it is attached to the IWorkspaceItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Workspaces(index)

The Workspaces collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the WorkspacesOfVersion

collection.
object An object expression that evaluates to a RepositoryObjectVersion object.
index An integer index that identifies which member in the collection is to be addressed. The valid range is

from one to the total number of members in the collection. For more information, see Selecting Items in
a Collection.

Remarks

A workspace is a repository object. Within the Workspaces collection, workspaces are identified by object identifier or object
name.

See Also

IWorkspaceItem Interface

RepositoryObjectVersion Object

Relationship Object

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Object
RepositoryTransaction Object

The repository engine supports the bracketing of multiple changes within the scope of a transaction. Changes to a repository that
are bracketed within a transaction are either all committed or all undone, depending on the way that the transaction is completed.
Repository methods that are reading data from the repository may be executed outside of a transaction, but methods that write
data must be bracketed within a transaction.

You cannot directly instantiate a RepositoryTransaction object. When you connect to a repository, a RepositoryTransaction
object is created for you. It is accessible through the Repository Transaction property.

When to Use

Use the RepositoryTransaction object to manage repository transactions.

Properties

Property Description
Status The transaction status of the repository

Methods

Method Description
Abort Cancels the current transaction
Begin Begins a new transaction
Commit Commits the current transaction
Flush Flushes uncommitted changes to the repository

database
GetOption Retrieves various transaction options
SetOption Sets various transaction options

Remarks

Only one transaction can be active at a time for each opened Repository instance. Nesting of Begin or Commit method
invocations is permitted, but no actual nesting of transactions occurs.

See Also

Repository Object

Repository Transaction Property

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Status Property
RepositoryTransaction Status Property

This property indicates what the current transaction status is for the Repository instance. If the value is zero, no transaction is
active. If the value is nonzero, a transaction is active. To copy this property to another variable, use a variable that is declared as a
Variant. This is a read-only property.

Syntax

object.Status

The Status property syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the open

Repository instance

Remarks

A transaction is considered active until the Commit method has successfully executed and the nested transaction count has been
decremented to zero. Depending upon the data-flushing capabilities of the underlying database server, the data associated with a
committed transaction may or may not be written to the physical storage device when the Commit method returns control to its
caller.

See Also

Repository Transaction Property

RepositoryTransaction Commit Method

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Abort Method
RepositoryTransaction Abort Method

This method cancels the currently active transaction for an open repository instance. All updates made during the transaction are
rolled back. The nested transaction count is set to zero.

Syntax

Call object.Abort

The Abort method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the currently open

Repository instance

See Also

Repository Transaction Property

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Begin Method
RepositoryTransaction Begin Method

This method increments the nested transaction count by one. If there is no active transaction, this method begins a transaction for
the open Repository instance.

Syntax

Call object.Begin

The Begin method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the currently open

Repository instance

See Also

Repository Transaction Property

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Commit Method
RepositoryTransaction Commit Method

This method decrements the nested transaction count for an open Repository instance. If the currently active transaction is not
nested, all changes made to repository data within the transaction are committed to the repository database. A transaction is not
nested if the nested transaction count equals one.

Syntax

Call object.Commit

The Commit method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the currently open

Repository instance

See Also

Repository Transaction Property

RepositoryTransaction Object

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction Flush Method
RepositoryTransaction Flush Method

This method flushes cached changes to the repository database.

Syntax

Call object.Flush

The Flush method syntax has the following part.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the currently open

Repository instance

Remarks

You can set flags that determine what happens to data during a transaction. Changes are not written to the database until the
transaction is committed. If a concurrent SQL query is run against the repository database, the result of the query will not reflect
the uncommitted changes. (This is usually the desired behavior.)

If your tool or application must be able to see uncommitted changes in SQL queries, you can use the Flush method to write
uncommitted changes to the repository database. All changes made within the scope of the current transaction are flushed.
Flushing uncommitted changes does not affect your ability to cancel a transaction using the Abort method.

To get and set flags, use the GetOption and SetOption methods.

See Also

Repository Transaction Property

RepositoryTransaction Object

RepositoryTransaction GetOption Method

RepositoryTransaction SetOption Method

TransactionFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction GetOption Method
RepositoryTransaction GetOption Method

This method is used to retrieve various transaction options.

Syntax

variable = object.GetOption(whichOption)

The GetOption property syntax has the following parts.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the currently open

Repository instance.
whichOption A parameter that specifies which option to retrieve. For more information about flag values and

descriptions, see TransactionFlags Enumeration.
variable A variable declared as a Variant. It receives the value of the specified option.

Remarks

You can only get an option that is already set. You can set an option using the SetOption method.

See Also

Repository Transaction Property

RepositoryTransaction Object

RepositoryTransaction SetOption Method

Meta Data Services Programming (SQL Server 2000)

RepositoryTransaction SetOption Method
RepositoryTransaction SetOption Method

This method is used to set various transaction options.

Syntax

Call object.SetOption(whichOption, optionValue)

The SetOption method syntax has the following parts.

Part Description
object An object expression that evaluates to a RepositoryTransaction object for the open

Repository instance.
whichOption A parameter that specifies which option to set. For more information about flag values and

descriptions, see TransactionFlags Enumeration.
optionValue The new value for the option.

Remarks

After you set an option, you can retrieve it using the GetOption method.

See Also

Repository Transaction Property

RepositoryTransaction Object

RepositoryTransaction GetOption Method

Meta Data Services Programming (SQL Server 2000)

ReposProperties Object
ReposProperties Object

A Properties collection is the set of persistent properties and collections that are attached to a repository object or relationship
through a particular interface.

When to Use

Use the ReposProperties object to enumerate the collection of repository properties that are attached to a particular repository
object or relationship.

Properties

Property Description
Count The count of the number of items in the collection
Item Retrieves the specified property from the collection
Type Retrieves the type of the interface to which these properties are

attached

See Also

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperties Count Property
ReposProperties Count Property

This property is a long integer that contains the count of the number of properties in the collection. This is a read-only property.

Syntax

object.Count

The Count property syntax has the following part.

Part Description
object The repository property

collection

See Also

ReposProperties Object

Meta Data Services Programming (SQL Server 2000)

ReposProperties Item Property
ReposProperties Item Property

This property is used to retrieve a specific repository property from a Properties collection. This is a read-only property. There are
three variations of this property.

Syntax

Set variable = object.Item(index)
Set variable = object.Item(objName)
Set variable = object.Item(objId)

The Item property syntax has the following parts.

Part Description
variable An object expression that evaluates to a ReposProperty object.
object The repository property collection.
index The index of the repository property to be retrieved from the collection.
objName The name associated with the repository property to be retrieved from the collection.
ObjId The object identifier of the property definition object for this property.

See Also

ReposProperties Object

Meta Data Services Programming (SQL Server 2000)

ReposProperties Type Property
ReposProperties Type Property

This property retrieves the object identifier for the interface definition of the interface to which these properties are attached. This
object identifier is referred to as the type of the interface. This is a read-only property.

Syntax

variable = object.Type

The Type property syntax has these parts.

Part Description
variable A Variant that receives the object identifier for the interface

definition
object The repository property collection

See Also

ReposProperties Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty Object
ReposProperty Object

A repository property is a persistent property or collection that is attached to an object instance. It provides generic access to the
properties of repository objects.

When to Use

Use the ReposProperty object to access generic meta data about a repository property, or to set the value of a repository
property. ReposProperty retrieves meta data type information from the repository object instance itself. This eliminates the need
to access the information model to obtain data from the ClassDef, InterfaceDef, PropertyDef, or CollectionDef that defines
the object.

If you are providing browsing functionality in a tool or application, you can use ReposProperty to retrieve data about an object.
Based on the values you obtain through ReposProperty, you can access more specific meta data about the object instance.

ReposProperty retrieves meta data about an object by accessing cached data. It also provides properties and methods for
handling special case scenarios when accessing binary large objects (BLOBs) or large text fields.

Properties

Property Description
APIType The C data type of the property. It returns an API type enumeration value for the property.

This property is not a default interface member.

CurrentPosition A position within a BLOB or large text field. It establishes a starting point anywhere within a
BLOB or large text field for performing Read and Write operations.

This property is not a default interface member.

Flags Flags that specify attributes of an interface member, such as whether it is hidden, read-only,
virtual, or derived.

This property is not a default interface member.

IsBaseMember A flag that indicates whether the property is a base member.

This property is not a default interface member.

IsMostDerived A flag that indicates whether the property is the most recently derived member of a base
member.

This property is not a default interface member.

IsOriginCollection A flag that indicates whether the collection is the origin of the relationship.

This property is not a default interface member.

IsReadOnly A flag that, when set to TRUE, returns a value associated with the current property.

This property is not a default interface member.

Name The name of the property.
PropType An in-memory pointer to an object instance.

This property is not a default interface member.

Size The size of a BLOB or large text field.

This property is not a default interface member.

Type The type of the property, expressed as an object name or object identifier.
Value The value of the property.

Methods

Property Description
Close Directs the repository engine to stop reading from or writing to a BLOB or large text field.

This method is not a default interface member.

Read Reads a large property value provided through a BLOB or large text field, starting at the current
position.

This method is not a default interface member.

ReadFromFile Reads the contents of a BLOB or large text field from a file.

This method is not a default interface member.

Write Writes a large property value to a BLOB or large text field, starting at the current position.

This method is not a default interface member.

WriteToFile Stores the contents of a BLOB or large text field as a file.

This method is not a default interface member.

See Also

ReposProperties Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty APIType Property
ReposProperty APIType Property

This property returns the C data type of the property. The value is an API type enumeration value for the property. This property is
read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.APIType

The APIType property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposProperty2 Interface

ReposProperty Object

SQL and API Types Used in Property Definitions

Meta Data Services Programming (SQL Server 2000)

ReposProperty CurrentPosition Property
ReposProperty CurrentPosition Property

This property stores a position within a binary large object (BLOB) or large text field. It establishes a starting point anywhere
within a BLOB or large text field for performing Read and Write operations without loading the BLOB or large text field in
memory. You can set and retrieve this property.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

object.CurrentPosition

The CurrentPosition property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposPropertyLarge Interface

Programming BLOBs and Large Text Fields

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty Flags Property
ReposProperty Flags Property

This property returns enumerated values that specify attributes of an interface member, such as whether it is hidden, read-only,
virtual, or derived. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Flags=(integer)

The Flags property syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty

object.
integer Flag values are bit flags, and they can be combined to set

multiple options. For more information about flag values and
descriptions, see the InterfaceMemberFlags Enumeration.

See Also

IReposProperty2 Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty IsBaseMember Property
ReposProperty IsBaseMember Property

This Boolean property returns a flag that indicates whether the property is a base member. For more information about base and
derived members, see Member Delegation. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.IsBaseMember

The IsBaseMember property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposProperty2 Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty IsMostDerived Property
ReposProperty IsMostDerived Property

This Boolean property returns a flag that indicates whether the property is the most derived member of a base member. Member
derivations are scoped to branches in the version graph. For example, if there are two branches and each one has derived
members, the IsMostDerived property returns True for each branch. For more information about base and derived members, see
Member Delegation. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.IsMostDerived

The IsMostDerived property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposProperty2 Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty IsOriginCollection Property
ReposProperty IsOriginCollection Property

This Boolean property returns a flag that indicates whether the collection is the origin of the relationship. This property is read-
only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.IsOriginCollection

The IsOriginCollection property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposProperty2 Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty IsReadOnly Property
ReposProperty IsReadOnly Property

This Boolean property returns True if the current property is read-only. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.IsReadOnly

The IsReadOnly property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

Remarks

A property value is stored as a Value property.

See Also

IReposProperty2 Interface

ReposProperty Object

ReposProperty Value Property

Meta Data Services Programming (SQL Server 2000)

ReposProperty Name Property
ReposProperty Name Property

This property stores the name of the repository property. This property is read-only.

Syntax

string=object.Name

The Name property syntax has the following parts.

Part Description
string A variable length string that can be a maximum of 255

characters
object An object expression that evaluates to a ReposProperty object

See Also

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty PropType Property
ReposProperty PropType Property

This property returns an in-memory pointer to a PropertyDef instance. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposProperty2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.PropType

The PropType property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

Remarks

After you obtain an in-memory pointer to an object instance, you have the PropertyDef object upon which the instance is based.

See Also

IReposProperty2 Interface

Object Identifiers and Internal Identifiers

ReposProperty Object

Assigning Object Identifiers

Meta Data Services Programming (SQL Server 2000)

ReposProperty Size Property
ReposProperty Size Property

This property returns the size of a binary large object (BLOB) or large text field. This property is read-only.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

object.Size

The Size property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

See Also

IReposPropertyLarge Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ReposProperty Type Property
ReposProperty Type Property

This property is the type of the repository property; that is, it is the object identifier of the PropertyDef or CollectionDef object
to which this repository property conforms. You use a Variant variable to receive the Type property. This property is read-only.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty

object

See Also

Object Identifiers and Internal Identifiers

ReposProperty Object

ReposProperty PropType Property

Meta Data Services Programming (SQL Server 2000)

ReposProperty Value Property
ReposProperty Value Property

This property is the value of the repository property. You use a Variant variable to receive this property value.

Syntax

object.Value
object.Value = newValue

The Value property syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty object
newValue An expression that evaluates to a value of the appropriate type for the repository

property

See Also

ReposProperty Object

ReposProperty PropType Property

Meta Data Services Programming (SQL Server 2000)

ReposProperty Close Method
ReposProperty Close Method

This method directs the repository engine to stop reading from or writing to a binary large object (BLOB) or large text field.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Call object.Close

The Close method syntax has the following part.

Part Description
object An object expression that evaluates to a ReposProperty object

Remarks

When you release a property object, the repository engine automatically closes a BLOB or large text field for you. However, if you
want to free up memory or terminate a read-write operation before releasing an object, you can use Close to do so.

Be aware that if you keep an object in memory and you have not called Close before committing a transaction, a Write operation
will not be committed during the transaction.

See Also

IReposPropertyLarge Interface

ReposProperty Object

ReposProperty Read Method

ReposProperty Write Method

Meta Data Services Programming (SQL Server 2000)

ReposProperty Read Method
ReposProperty Read Method

This method reads into memory a large property value provided through a binary large object (BLOB) or large text field, starting
at the current position.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Call object.Read(sizeToRead, pSizeRead, psBlob)

The Read method syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty object
sizeToRead The amount of memory you allocate in advance to store the data to

be read
pSizeRead The actual size of the data that is read
psBlob A Variant pointer to a location that stores the data to be read. The

location you specify must be able to accommodate the amount of
preallocated memory

Remarks

After you read data, you can use the Close method to release memory and resources.

See Also

IReposPropertyLarge Interface

ReposProperty Close Method

ReposProperty CurrentPosition Property

ReposProperty Object

ReposProperty ReadFromFile Method

ReposProperty Write Method

Meta Data Services Programming (SQL Server 2000)

ReposProperty ReadFromFile Method
ReposProperty ReadFromFile Method

This method sets a binary large object (BLOB) or large text field property value to the contents of a file. This method does not
support the CurrentPosition property. If content exists within the BLOB or large text field, the ReadFromFile method will
overwrite it.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Call object.ReadFromFile(BSTR filename)

The ReadFromFile method syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty object
BSTR filename The fully qualified path and file name that provides content to the

BLOB or large text field

Remarks

After you read data, you can use the Close method to release memory and resources.

See Also

IReposPropertyLarge Interface

ReposProperty Close Method

ReposProperty Object

ReposProperty Read Method

ReposProperty Write Method

Meta Data Services Programming (SQL Server 2000)

ReposProperty Write Method
ReposProperty Write Method

This method takes data and writes it to a binary large object (BLOB) or large text field, starting at the current position.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Call object.Write(psBlob)

The Write method syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty object
psBlob A Variant pointer to the location where data is to be written. The

location you specify must contain the amount of preallocated
memory

Remarks

After you write data, you can use the Close method to release memory and resources.

See Also

IReposPropertyLarge Interface

ReposProperty Close Method

ReposProperty CurrentPosition Property

ReposProperty Object

ReposProperty WriteToFile Method

Meta Data Services Programming (SQL Server 2000)

ReposProperty WriteToFile Method
ReposProperty WriteToFile Method

This method stores the contents of a binary large object (BLOB) or large text field to a file. You must specify a fully qualified path
and file name.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IReposPropertyLarge interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

Call object.WriteToFile(BSTR filename)

The WriteToFile method syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposProperty object
BSTR filename The fully-qualified path and file name that stores the value of a

BLOB or large text field

Remarks

After you write data, you can use the Close method to release memory and resources.

See Also

IReposPropertyLarge Interface

ReposProperty Close Method

ReposProperty Object

ReposProperty Write Method

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Object
TransientObjectCol Object

The TransientObjectCol object is an object collection that you can create and dynamically populate at run time using script and
object methods rather than stored data in a repository database. TransientObjectCol simulates a standard, stored repository
object collection.

You can have multiple transient object collections at one time. The object collection can contain only repository objects. Although
enumeration is supported, sequencing is not. Except for the fact that the object collection is not saved to a repository database, it
is identical in functionality to the ObjectCol object.

TransientObjectCol is instantiated by application code. Applications that use TransientObjectCol can treat the object collection
exactly the same way as any other repository object collection.

Objects represented in TransientObjectCol are not versioned.

When to Use

Use this object to create an object collection that is instantiated by application code and populated dynamically at run time. With
this object, you can:

Create an object collection that is not stored in a repository database.

Get a count of the number of objects in the collection.

Add and remove objects to and from the collection.

Properties

Property Description
Count The count of the number of objects in the collection
Item Retrieves a specific object from the collection

Methods

Method Description
Add Adds an object to the collection.
Refresh Supports backward compatibility of the Refresh method. This

method is not used.
Remove Removes an object from the collection.

See Also

ITargetObjectCol Interface

MethodDef Object

ObjectCol Class

ScriptDef Object

TransientObjectCol Class

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Count Property
TransientObjectCol Count Property

This property is a long integer that contains the count of the number of items in the collection. This is a read-only property.

Syntax

Object.Count

The Count property syntax has the following part.

Part Description
object The object collection created by TransientObjectCol

See Also

TransientObjectCol Object

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Add Method
TransientObjectCol Add Method

This method is used to add target objects to an object collection.

Syntax

object.Add(reposObj, objName)

The Add method syntax has the following parts.

Part Description
object The object collection created by TransientObjectCol.
reposObj The repository object to be added to the collection.
objName The name that the new collection is to use for reposObj. This parameter is optional.

Remarks

Populating a TransientObjectCol is done using the Add method for each object that you want to add to the collection.

See Also

TransientObjectCol Object

TransientObjectCol Remove Method

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Refresh Method
TransientObjectCol Refresh Method

This method has no effect. It is included for backward compatibility only.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object The object collection created by TransientObjectCol.
milliSecs This value is ignored. It is kept for backward compatibility.

See Also

TransientObjectCol Object

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Remove Method
TransientObjectCol Remove Method

This method removes a specified object from a transient object collection.

Syntax

Call object.Remove(index)
Call object.Remove(objName)
Call object.Remove(objID)

The Remove method syntax has the following parts.

Part Description
object The object collection created by TransientObjectCol.
index The index of the object to be removed from the collection. For more information, see Selecting

Items in a Collection.
objName The object that uses this name for its destination object is to be removed from the collection.
objID The object identifier of the object to be removed from the collection.

Remarks

This property removes a specific repository object from the collection. You can identify an object by its position in the collection
(as indicated by the index) or by identifier.

See Also

Object Identifiers and Internal Identifiers

TransientObjectCol Object

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Item Collection
TransientObjectCol Item Collection

Use this property to retrieve an object from the collection. This is a read-only property. There are two variations of this property.

Syntax

Set variable = object.Item(index)
Set variable = object.Remove(objName)
Set variable = object.Item(objId)

The Item property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject or RepositoryObjectVersion. It receives the

specified repository object.
object The object collection created by TransientObjectCol.
index The index of the repository object to be retrieved from the collection.
objName The name of the object to be retrieved from the collection.
objId The object identifier of the repository object to be retrieved from the collection.

Remarks

This property retrieves a specific repository object from the collection by its position in the collection (as indicated by the index) or
by identifier.

See Also

Object Identifiers and Internal Identifiers

RepositoryObject Object

RepositoryObjectVersion Object

TransientObjectCol Object

Meta Data Services Programming (SQL Server 2000)

Workspace Object
Workspace Object

A workspace is a repository object that can provide a context for your work that is separate from other work occurring in the
repository. A workspace is a subset of a larger, shared repository. Within a workspace, you can have only one version of any given
repository object at a time.

When to Use

Use the Workspace object to control the contents of a workspace.

Properties

Property Description
CheckedOutToWorkspace Always null, because a workspace cannot be contained in or checked out to

another workspace.

This property is not a default interface member.

Interface The specified object interface.

This property is not a default interface member.

InternalID The internal object identifier of the workspace.

This property is not a default interface member.

IsCheckedOut Always FALSE, because a workspace cannot be present in (or checked out to)
another workspace.

This property is not a default interface member.

IsFrozen Always FALSE, because you cannot freeze a workspace.

This property is not a default interface member.

Name The name of the workspace.

This property is not a default interface member.

Object A property used to retrieve a particular repository object.

This property is not a default interface member.

ObjectID The object identifier of the workspace.

This property is not a default interface member.

MajorDBVersion The major version number of the first repository engine version that introduced
this database format.

This property is not a default interface member.

MinorDBVersion The minor version number of the first repository engine version that introduced
this database format.

This property is not a default interface member.

PredecessorCreationVersion Always null, because each workspace has only one version.

This property is not a default interface member.

Repository The open repository instance through which this workspace was instantiated.

This property is not a default interface member.

ResolutionType Always LATEST_VERSION, because each workspace has only one version.

This property is not a default interface member.

RootObject The root repository object of the open repository.

This property is not a default interface member.

Transaction The transaction-processing interface.

This property is not a default interface member.

Type An object identifier of the type to which this workspace conforms. The property is
always the object identifier of the workspace definition object of the Repository
Type Information Model (RTIM).

This property is not a default interface member.

Version Retrieves the specified object version.

This property is not a default interface member.

VersionID The object-version identifier of the workspace.

This property is not a default interface member.

VersionInternalID The internal object-version identifier of the workspace.

Methods

Method Description
Checkin Returns an error, because a workspace cannot be present in (or checked out to)

another workspace.

This method is not a default interface member.

Checkout Returns an error, because a workspace cannot be present in (or checked out to)
another workspace.

This method is not a default interface member.

Create Returns an error, because you cannot create a new repository database from
within a workspace.

This method is not a default interface member.

CreateObject Creates a new repository object in the open repository.

This method is not a default interface member.

CreateVersion Returns an error, because each workspace has only one version.

This method is not a default interface member.

Delete Deletes a workspace.

This method is not a default interface member.

FreezeVersion Returns an error, because you cannot freeze a workspace.

This method is not a default interface member.

InternalIDToObjectID Converts an internal identifier into an object identifier.
InternalIDToVersionID Converts an internal object-version identifier into an object-version identifier.

This method is not a default interface member.

Lock Locks the workspace.

This method is not a default interface member.

MergeVersion Returns an error, because each workspace has only one version.

This method is not a default interface member.

ObjectIDToInternalID Converts an object identifier into an internal identifier.

This method is not a default interface member.

Open Returns an error, because you cannot open a new repository database from
within a workspace.

This method is not a default interface member.

Refresh Supports backward compatibility of the Refresh method. This method is not
used.

This method is not a default interface member.

Refresh (from IRepositoryObjectVersion) Supports backward compatibility of the Refresh method. This method is not
used.

This method is not a default interface member.

VersionIDToInternalID Converts an object-version identifier into an internal object-version identifier.

This method is not a default interface member.

Collections

Collection Description
Checkouts The collection of object versions checked out to the workspace.
Containers A collection that contains this workspace. The collection has only one item, the

root object.

This collection is not a default interface member.

Contents The collection of object versions present in the workspace.
ObjectVersions The collection of all the versions of the repository object representing the

workspace. It always contains one item, because you cannot invoke
CreateVersion on a workspace.

This collection is not a default interface member.

PredecessorVersions Always null, because you cannot invoke CreateVersion on a workspace.

This collection is not a default interface member.

Properties The collection of all properties that are attached to the workspace.
SuccessorVersions Always null, because you cannot invoke CreateVersion on a workspace.

This collection is not a default interface member.

Workspaces Always null, because a workspace cannot be contained in other workspaces.

This collection is not a default interface member.

Meta Data Services Programming (SQL Server 2000)

Workspace CheckedOutToWorkspace Property
Workspace CheckedOutToWorkspace Property

The property is always null, because a workspace cannot be present in (or checked out to) another workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Interface Property
Workspace Interface Property

This property obtains an alternate interface for the default interface of the workspace. This is a read-only property. There are three
variations of this property.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Set variable = object.Interface(interfaceId)
Set variable = object.Interface(objectId)
Set variable = object.Interface(interfaceName)

The Interface property syntax has the following parts.

Part Description
variable An object variable. It receives the workspace with the specified interface as the default interface.
object An object expression that evaluates to a Workspace object.
interfaceId The interface identifier for the interface to be retrieved.
objectId The object identifier for the interface definition to which the interface you want to retrieve

conforms.
interfaceName A string that contains the name of the interface to be retrieved.

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace InternalID Property
Workspace InternalID Property

This property is the internal identifier that the repository engine uses to refer to this workspace. Each workspace has an internal
identifier that is unique within the repository, but not unique across repositories. To copy this property to another variable, use a
variable declared as a Variant. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.InternalID

The InternalID property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

Object Identifiers and Internal Identifiers

RepositoryObject ObjectID Property

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace IsCheckedOut Property
Workspace IsCheckedOut Property

The property is always FALSE because a workspace cannot be present in (or checked out to) another workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace IsFrozen Property
Workspace IsFrozen Property

The property is always FALSE, because you cannot freeze a workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace MajorDBVersion Property
Workspace MajorDBVersion Property

This property retrieves the major version number of the first repository engine version that introduced this database format. This
is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.MajorDBVersion

The MajorDBVersion property syntax has the following parts.

Part Description
variable Declared as long. It receives the database major version.
object The object that represents the open repository instance.

See Also

IRepository2 Interface

RepositoryObjectVersion Object

Workspace MinorDBVersion Property

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace MinorDBVersion Property
Workspace MinorDBVersion Property

This property retrieves the minor version number of the first repository engine version that introduced this database format. This
is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.MinorDBVersion

The MinorDBVersion property syntax has the following parts.

Part Description
variable Declared as long. It receives the database minor

version.
object The object that represents the open repository instance.

See Also

IRepository2 Interface

Workspace MajorDBVersion Property

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Name Property
Workspace Name Property

This property is a character string that contains the name of the workspace.

The Name property is normally a property of the relationship for which this repository object is the destination object. However,
because the Workspace object exposes the INamedObject interface, the name retrieved is the value of the Name property
exposed by this interface. When you set this property, the repository engine sets two things: the name property of the
INamedObject interface, and the name associated with every naming relationship in which this workspace participates as the
destination object.

This property is not attached to the default interface for the repository Automation object; it is attached to the INamedObject
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Name

The Name property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

Remarks

In addition to the Name property exposed by the INamedObject interface, each workspace can have other names, because each
workspace has a destination naming relationship to the root object. When you retrieve the name of a workspace, the repository
engine retrieves the value of the name as exposed by the INamedObject interface. When you set the name, the engine attempts
to change some or all of the names of the workspace.

See Also

Changing an Object Version's Name

INamedObject Interface

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Object Property
Workspace Object Property

This property retrieves a particular repository object. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Set variable = object.Object(objectId)

The Object property syntax has the following parts.

Part Description
variable Declared as a RepositoryObject. It receives the repository object.
object The object that represents the workspace through which this program is interacting with the

repository.
objectId The object identifier for the repository object to be retrieved.

Remarks

The repository engine returns the specific version of the repository object that is present in the workspace. If no version of the
object is present in the workspace, this property returns an error.

See Also

RepositoryObject Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace ObjectID Property
Workspace ObjectID Property

This property is the object identifier for the workspace. Each workspace has an object identifier that is unique across all
repositories. This is a read-only property. To copy this property to another variable, use a variable declared as a Variant.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.ObjectID

The ObjectID property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Repository ObjectIDToInternalID Method

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace PredecessorCreationVersion Property
Workspace PredecessorCreationVersion Property

The property is always null, because each workspace has only one version.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Repository Property
Workspace Repository Property

This property is the open repository instance through which this workspace was instantiated. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Set variable = object.Repository

The Repository property syntax has the following parts.

Part Description
variable A variable declared as an instance of the Repository class. It receives the object that represents the

open repository instance.
object An object expression that evaluates to a Workspace object.

See Also

Repository Object

RepositoryObjectVersion Object

ReposProperty Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace ResolutionType Property
Workspace ResolutionType Property

The property is always LATEST_VERSION, because each workspace has only one version.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace RootObject Property
Workspace RootObject Property

This property is the root repository object for the open repository. This is a read-only property. The returned reference to the root
object has the context of the current workspace.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.RootObject

The RootObject property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObject. It receives the root repository object.
object The object that represents the workspace through which this program is interacting with the

repository.

See Also

ReposRoot Object

RepositoryObject Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Transaction Property
Workspace Transaction Property

This property is the RepositoryTransaction object for the open repository instance. This is a read-only property.

Syntax

Set variable = object.Transaction

The Transaction property syntax has the following parts.

Part Description
variable A variable declared as an object. It receives the RepositoryTransaction object for this

repository instance.
object The object that represents the workspace through which this program is interacting with the

repository.

Remarks

You can gain access to the RepositoryTransaction object by using this syntax. Then you can access the properties and methods
of the RepositoryTransaction object by using the variable.method and variable.property syntax. You can also access the
properties and methods of the RepositoryTransaction object directly, using syntax similar to that shown here:

Call object.Transaction.method

-or-

variable = object.Transaction.property

For more information about the RepositoryTransaction object and the methods and properties that it provides, see
RepositoryTransaction Object.

See Also

Repository Transaction Property

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Type Property
Workspace Type Property

This property specifies the type of the workspace. More specifically, it is the object identifier of the workspace definition object of
the type information model. Type is a read-only property. To copy this property to another variable, use a variable declared as a
Variant.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

Remarks

An object in an information model is identified by its object identifier. The value of an ObjectID property is used as the value of
the Type property for all repository objects that conform to that object definition.

See Also

Object Identifiers and Internal Identifiers

RepositoryObject Object

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Version Property
Workspace Version Property

This property retrieves a particular repository object version from the workspace. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Version(versionId)

The Version property syntax has the following parts.

Part Description
variable Declared as a RepositoryObjectVersion. It receives the repository object version.
object The object that represents the workspace through which this program is interacting with the

repository.
versionId The object-version identifier for the repository object to be retrieved.

Remarks

This method returns an error if the requested version is not present in the workspace.

See Also

IRepository2 Interface

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace VersionID Property
Workspace VersionID Property

This property is the object-version identifier for the workspace. Each workspace has an object-version identifier that is unique
across all repositories. This is a read-only property. To copy this property to another variable, use a variable declared as a Variant.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.VersionID

The VersionID property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

RepositoryObject InternalID Property

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace VersionInternalID Property
Workspace VersionInternalID Property

This property is the internal object-version identifier that the repository engine uses to refer to this workspace. Each workspace
has an internal object-version identifier that is unique within the repository, but not unique across repositories. This is a read-only
property. To copy this property to another variable, use a variable declared as a Variant.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

object.VersionInternalID

The VersionInternalID property syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

Object Identifiers and Internal Identifiers

RepositoryObject ObjectID Property

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Checkin Method
Workspace Checkin Method

This method always returns an error, because a workspace cannot be present in (or checked out to) another workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Checkout Method
Workspace Checkout Method

This method always returns an error, because a workspace cannot be present in (or checked out to) another workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Create Method
Workspace Create Method

This method creates a new repository instance. When operating on a workspace, this method always fails. To create a new
repository database, use the Create method of the Repository object.

See Also

Repository Object

Repository Create Method

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace CreateObject Method
Workspace CreateObject Method

This method creates a new RepositoryObject of the specified type. After you create a new object, you must include it in the
workspace.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Set variable = object.CreateObject(typeId, objectId)

The CreateObject method syntax has the following parts.

Part Description
variable Declared as a RepositoryObject. It receives the new repository object.
object The object that represents the workspace through which this program is interacting with the repository.
typeId The type of the new object; that is, the object identifier of the object definition to which the new object

conforms.
objectId The object identifier to be assigned to the new object. To have the repository engine assign an object

identifier for you, pass in ObjID_NULL or do not supply this optional parameter.

Remarks

This method creates a new object in the repository, but it does not insert the newly created object into the workspace in whose
context you are operating.

This method can only be called from the shared repository but not from a workspace. The workaround is to create the object
through the central repository and include it in the workspace.

See Also

RepositoryObject Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace CreateVersion Method
Workspace CreateVersion Method

This method always returns an error, because each workspace has only one version.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Delete Method
Workspace Delete Method

This method deletes the workspace from the repository. Any relationships that connect the workspace to other objects are
deleted. If the workspace is an origin object of a relationship collection, and the relationship type indicates that deletes are to be
propagated, all destination objects are also deleted.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Call object.Delete

The Delete method syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

Propagating Deletes

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace FreezeVersion Method
Workspace FreezeVersion Method

This method always returns an error, because you cannot freeze a workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace InternalIDToObjectID Method
Workspace InternalIDToObjectID Method

This method translates an internal identifier into an object identifier. Internal identifiers are used by the repository engine to
identify repository objects.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepository
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.InternalIDToObjectID(internalId)

The InternalIDToObjectID method syntax has the following parts.

Part Description
variable Receives the object identifier
object The object that represents the workspace through which this program is interacting with the

repository
internalId The internal identifier to be converted

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same object. Internal identifiers are
unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Object Identifiers and Internal Identifiers

Repository ObjectIDToInternalID Method

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace InternalIDToVersionID Method
Workspace InternalIDToVersionID Method

This method translates an internal object-version identifier into an object-version identifier.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepository
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.InternalIDToVersionID(internalVersionId)

The InternalIDToVersionID method syntax has the following parts.

Part Description
variable Receives the object-version identifier
object The object that represents the current workspace through which this program is interacting

with the repository
internalVersionId The internal object-version identifier to be converted

Remarks

Repository object-version identifiers are globally unique, and they are the same across repositories for the same object version.
Internal object-version identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object-version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Object Identifiers and Internal Identifiers

Repository ObjectIDToInternalID Method

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Lock Method
Workspace Lock Method

This method locks the workspace. Locking the workspace prevents other processes from locking the object describing the
workspace while you are working with it. The lock is released when you end the current transaction.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Call object.Lock

The Lock method syntax has the following part.

Part Description
object An object expression that evaluates to a Workspace

object

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace MergeVersion Method
Workspace MergeVersion Method

This method always returns an error, because there is only one version of each workspace.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace ObjectIDToInternalID Method
Workspace ObjectIDToInternalID Method

This method translates an object identifier into an internal identifier. Internal identifiers are used by the repository engine to
identify repository objects.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

variable = object.ObjectIDToInternalID(objectId)

The ObjectIDToInternalID method syntax has the following parts.

Part Description
variable Receives the internal identifier
object The object that represents the workspace through which this program is interacting with the

repository
objectId The object identifier to be converted

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same object. Internal identifiers are
unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

Object Identifiers and Internal Identifiers

Repository InternalIDToObjectID Method

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Open Method
Workspace Open Method

This method connects to a repository database. When operating on a workspace, this method always fails.

To open (connect to) a repository, use the Open method of the Repository object.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

Repository Create Method

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Refresh Method
Workspace Refresh Method

This method refreshes all cached data for the open repository instance. Only cached data that has not been changed by the
current process is refreshed. Even though you are operating within the context of a workspace, this method refreshes all cached
data for the open repository instance, including cached data not present in the workspace.

Syntax

Call object.Refresh(milliseconds)

The Refresh method syntax has the following parts.

Part Description
object The object that represents the workspace through which this program is interacting with the

repository
milliseconds This value is ignored

See Also

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Refresh (from IRepositoryObjectVersion) Method
Workspace Refresh (from IRepositoryObjectVersion) Method

This method refreshes the cached image of the repository object that describes the workspace. Only cached data that has not
been changed by the current process is refreshed.

This method is not attached to the default interface for the repository Automation object; it is attached to the
IRepositoryObjectVersion interface. For more information about accessing a member of an interface that is not the default
interface, see Accessing Automation Object Members.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object An object expression that evaluates to a Workspace

object
milliSecs This value is ignored

See Also

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace VersionIDToInternalID Method
Workspace VersionIDToInternalID Method

This method translates an object-version identifier into an internal object-version identifier. Internal object-version identifiers are
used by the repository engine to identify repository object versions.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepository2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

variable = object.VersionIDToInternalID(versionId)

The VersionIDToInternalID method syntax has the following parts.

Part Description
variable Receives the internal identifier
object The object that represents the workspace through which this program is interacting with the

repository
versionId The object-version identifier to be converted

Remarks

Repository object-version identifiers are globally unique, and they are the same across repositories for the same object version.
Internal object-version identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

IRepository2 Interface

Object Identifiers and Internal Identifiers

Repository InternalIDToObjectID Method

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Checkouts Collection
Workspace Checkouts Collection

This collection contains all repository object versions checked out to the workspace.

Syntax

Set variable = object.Checkouts(index)
Set variable = object.Checkouts(objectID)

The Checkouts collection syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion object. It receives the specified object version.
object An object expression that evaluates to a Workspace object.
index An integer index that identifies which item in the collection is to be addressed. The valid range is from one

to the number of elements in the collection. The number of elements in the collection is specified by
object.Checkouts.Count. For more information, see Selecting Items in a Collection.

objectID An object identifier of the object version checked out to the workspace.

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Containers Collection
Workspace Containers Collection

This collection specifies the root object that contains this workspace. Although the maximum size of the collection is defined as
unlimited, the collection always contains one object. This is because there is only one root object, and only the root object can
contain workspaces.

Syntax

Set variable = object.Containers(index)

The Containers collection syntax has the following parts.

Part Description
variable A variable declared as a ReposRoot object or as any object that supports the IWorkspaceContainer

interface. It receives the object containing the interface.
object The object that represents a Workspace object.
index An integer index that identifies which element in the collection is to be addressed. This value must be one,

because in this release, the root object is the only object that implements the IWorkspaceContainer
interface. For more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship
Type

WsContainer_Contains_Workspace This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the same as
the origin object.

Minimum
Collection Size

One The minimum number of items
that must be contained in the
collection is one.

Maximum
Collection Size

Many The maximum number of
items that can be contained in
the collection is unlimited.

Sequenced
Collection

No As a destination collection, this
does not have an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes
Propagated

No Deleting an origin object or a
relationship in the collection
does not cause the deletion of
a corresponding destination
object.

Destinations
Named

No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive
Names

Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

ClassDef Object

InterfaceDef Object

ReposRoot Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Contents Collection
Workspace Contents Collection

This collection contains all repository object versions present in the workspace.

Syntax

Set variable = object.Contents(index)
Set variable = object.Contents(objectID)

The Contents collection syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion object. It receives the specified object version.
object An object expression that evaluates to a Workspace object.
index An integer index that identifies which item in the collection is to be addressed. The valid range is

from one to the number of elements in the collection. The number of elements in the collection is
specified by object.Contents.Count. For more information, see Selecting Items in a Collection.

objectID An object identifier of the object version present in the workspace.

See Also

Object Identifiers and Internal Identifiers

RepositoryObjectVersion

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace ObjectVersions Collection
Workspace ObjectVersions Collection

This collection contains all RepositoryObjectVersion objects that are versions of the same repository object.

Syntax

Set variable = object.ObjectVersions

The ObjectVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the Versions-of-Object

collection.
object An object expression that evaluates to a Workspace object.

Remarks

Each Workspace object has only one version (because you cannot invoke the CreateVersion method on a workspace). Thus, this
collection always contains only one item.

See Also

Relationship Object

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace PredecessorVersions Collection
Workspace PredecessorVersions Collection

This collection contains all RepositoryObjectVersion objects that are immediate predecessors of the current object version.

Syntax

Set variable = object.PredecessorVersions

The PredecessorVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the Predecessor-

Versions collection.
object An object expression that evaluates to a Workspace object.

Remarks

Each Workspace object has only one version (because you cannot invoke the CreateVersion method on a workspace). Thus, this
collection is always null.

See Also

RepositoryObjectVersion Object

Version Graph

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Properties Collection
Workspace Properties Collection

This collection contains all persistent properties and collections that are attached to an object through a particular interface. The
Workspace object exposes three separate Properties collections. These collections are exposed by:

The IWorkspace interface (the default).

The IRepositoryObjectVersion interface.

The INamedObject interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression; it evaluates to an object that exposes IWorkspace, IRepositoryObjectVersion,

or INamedObject as the default interface.
index An integer index that identifies which property in the collection is to be addressed. The valid range is

from one to the number of elements in the collection. The number of elements in the collection is
specified by object.Properties.Count.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

INamedObject Interface

RepositoryObjectVersion Object

ReposProperty Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace SuccessorVersions Collection
Workspace SuccessorVersions Collection

This collection contains all RepositoryObjectVersion objects that are immediate predecessors of the current object version.

Syntax

Set variable = object.SuccessorVersions

The SuccessorVersions collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the Predecessor-Versions

collection.
object An object expression that evaluates to a Workspace object.

Remarks

Each Workspace object has only one version (because you cannot invoke the CreateVersion method on a workspace). Thus, this
collection is always null.

See Also

Relationship Object

RepositoryObjectVersion Object

Version Graph

VersionCol Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

Workspace Workspaces Collection
Workspace Workspaces Collection

This collection is always empty, because workspaces are not contained by other workspaces.

Remarks

This member is exposed by the IRepositoryObjectVersion interface, which is a nondefault interface for this object. Because of
how interface inheritance works, this member is made available to the Workspace object by convention.

See Also

RepositoryObjectVersion Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

VersionCol Object
VersionCol Object

A version collection is a collection of object versions. You can establish several different kinds of version collections.

When to Use

Use the VersionCol object to manage the contents of a workspace, to manage the target object versions of a versioned
relationship, to navigate an object's version graph, or to manipulate all the versions of a particular object.

Properties

Property Description
Count The count of the number of object versions in the

collection
Item Retrieves the specified object version from the collection

Methods

Method Description
Add Adds an object version to the collection
Refresh Refreshes the cached image of the collection
Remove Removes an object version from the

collection

See Also

Kinds of Version Collections

RelationshipCol Insert Method

RelationshipCol Move Method

RelationshipCol Source Property

RelationshipCol Type Property

Meta Data Services Programming (SQL Server 2000)

VersionCol Count Property
VersionCol Count Property

This property is a long integer that contains the count of the number of items in the collection. This is a read-only property.

Syntax

object.Count

The Count property syntax has the following part.

Part Description
object The version

collection

See Also

VersionCol Object

Meta Data Services Programming (SQL Server 2000)

VersionCol Item Property
VersionCol Item Property

This property retrieves an item from the collection. This is a read-only property. There are three variations of this property.

Syntax

Set variable = object.Item(index)
Set variable = object.Item(objectId)
Set variable = object.Item(objectVersionId)

The Item property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion, or as any object that implements the

IrepositoryObjectVersion interface. It receives the item.
object The version collection.
index The index of the item to be retrieved from the collection.
objectId The object identifier for the object version or workspace to be retrieved from the collection. You

can supply an objectID only for the Versions-of-Workspace collection, the Workspaces-of-
Version collection, or the Checkouts-of-Workspace collection.

objectVersionId The object-version identifier for the item to be retrieved from the collection. You can supply an
objectVersionID for any version collection.

See Also

Accessing Automation Object Members

Kinds of Version Collections

VersionCol Object

Meta Data Services Programming (SQL Server 2000)

VersionCol Add Method
VersionCol Add Method

This method adds a new item to a relationship collection, when the sequencing of relationships in the collection is not important.
The new relationship connects the reposObj object version to the source object version of the collection. The new relationship is
passed back to the caller.

Syntax

Set variable = object.Add(reposVersion)

The Add method syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion object. It receives the object version that is

added to the collection.
object The version collection.
reposVersion The Repository object version to be added to the collection.

Remarks

There are many different kinds of object-version collections. You can apply the Add method to some of them, but not to others.
This method succeeds for:

TargetVersions collections. You can use this method to enlarge the set of versions of a particular target object that are
related to a particular source object.

Contents collections. You can use this method to add an object version to the set of items contained in the workspace.

This method fails for:

Predecessors collection. To enlarge an object version's set of predecessors, use the MergeVersion method of the
RepositoryObjectVersion object.

Successors collection. To enlarge an object version's set of successors, use the CreateVersion method of the
RepositoryObjectVersion object.

ObjectVersions collection. To enlarge an object's set of versions, use the CreateVersion method of the
RepositoryObjectVersion object.

Workspaces collection. To enlarge the set of workspaces to which an item belongs, you add the object version to a
workspace, rather than add a workspace to an object version. In other words, you use the Add method of the VersionCol
object, but the version collection you are manipulating is the Versions-of-Workspace collection, not the Workspaces-of-
Version collection.

Checkouts collection. To check out another item to a workspace, use the Checkout method of the Workspace object.

See Also

Kinds of Version Collections

Meta Data Services Programming (SQL Server 2000)

VersionCol Refresh Method
VersionCol Refresh Method

This method refreshes the cached image of the version collection. Only cached data that has not been changed by the current
process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has the following parts.

Part Description
object The version collection.
milliSecs This value is ignored.

See Also

VersionCol Object

Meta Data Services Programming (SQL Server 2000)

VersionCol Remove Method
VersionCol Remove Method

This method deletes an object version from a version collection.

Syntax

Call object.Remove(index)
Call object.Remove(objectId)
Call object.Remove(objectVersionId)

The Remove method syntax has the following parts.

Part Description
object The version collection.
index The index of the item to be removed from the collection.
objectID The object identifier for the object version or workspace to be removed from the collection. You

can supply an objectID only for the Versions-of-Workspace collection, the Workspaces-of-
Version collection, or the Checkouts-of-Workspace collection.

objectVersionID The object-version identifier for the item to be removed from the collection. You can supply an
objectVersionID for any version collection.

Remarks

There are many different kinds of object-version collections. You can apply this method to some of them, but not to others. The
Remove method works for:

Target-Versions collections. You can use this method to reduce the set of versions of a particular target object that are
related to a particular source object.

Versions-of-Workspace collections. You can use this method to remove an object version to the set of items contained in
the workspace.

This method fails for:

Predecessor-Versions collections. To enlarge an object version's set of predecessors, use the MergeVersion method of
the RepositoryObjectVersion object.

Successor-Versions collections. To enlarge an object version's set of successors, use the CreateVersion method of the
RepositoryObjectVersion object.

Versions-of-Object collections. To enlarge an object's set of versions, use the CreateVersion method of the
RepositoryObjectVersion object.

Workspaces-of-Version collections. To remove a workspace from the set of workspaces in which an object version is
present, you must explicitly remove the object version from that workspace's Versions-of-Workspace collection.

Checkouts-of-Workspace collections. To reduce the number of items checked out to a workspace, use the Checkin
method of the Workspace object.

See Also

Kinds of Version Collections

VersionCol Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Object
VersionedRelationship Object

A relationship connects two repository objects in a repository database. A relationship has an origin object, a destination object,
and a set of properties. Each relationship conforms to a particular relationship type. You can version a relationship using this
object.

When to Use

Use the VersionedRelationship object to manipulate the properties of a versioned relationship, to delete a versioned
relationship, or to refresh the cached image of a versioned relationship.

Properties

Property Description
Destination The destination object of the relationship
Interface The specified object interface
Name The name of the relationship's destination object
Origin The origin object of the relationship
Repository The open repository instance through which this relationship was

instantiated
Source The source object of the relationship
Target The target object of the relationship
Type The type of the relationship

Methods

Method Description
Delete Deletes a relationship
Lock Locks the relationship
Pin Establishes a particular item in the TargetVersions collection

as the pinned target version of the relationship
Unpin Ensures that no item in the TargetVersions collection is

pinned

Collections

Collection Description
Properties The collection of all of the properties that are attached to the relationship
TargetVersions The collection of all versions of the target object that are related to the source object version of

the relationship

See Also

Relationship Object

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Destination Property
VersionedRelationship Destination Property

This property is the destination object of the current version of the relationship. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRelationship
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Destination

The Destination property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion. It receives the destination object for the

relationship.
object An object expression that evaluates to a VersionedRelationship object.

Remarks

If the object is a destination versioned relationship, this property is equivalent to the Source property. If the object is an origin
versioned relationship, this property is equivalent to the Target property.

See Also

IRelationship Interface

Relationship Object

VersionedRelationship Object

VersionedRelationship Source Property

VersionedRelationship Target Property

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Interface Property
VersionedRelationship Interface Property

This property obtains a view of the VersionedRelationship object that uses an alternate interface as the default interface. This is
a read-only property. There are three variations of this property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Interface(interfaceId)
Set variable = object.Interface(objectId)
Set variable = object.Interface(interfaceName)

The Interface property syntax has the following parts.

Part Description
variable An object variable. It receives the relationship object with the specified interface as the default

interface.
object An object expression that evaluates to a VersionedRelationship object.
interfaceId The interface identifier for the interface to be retrieved.
objected The object identifier for the interface definition to which the interface to be retrieved conforms.
interfaceName A string containing the name of the interface to be retrieved.

Remarks

Because the VersionedRelationship class implements a limited set of interfaces, the input parameter you supply must specify
one of the following interfaces: IVersionedRelationship, IRelationship, IRepositoryItem, IRepositoryDispatch, or
IAnnotationalProperties.

See Also

IAnnotationalProps Interface

IRelationship Interface

IRepositoryDispatch Interface

IRepositoryItem Interface

IVersionedRelationship Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Name Property
VersionedRelationship Name Property

This property is a character string that contains the name that the relationship assigns to the destination object.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Name

The Name property syntax has the following part.

Part Description
object An object expression that evaluates to a VersionedRelationship

object

Remarks

A relationship's name is the name by which the origin object version refers to every destination object version in its
TargetVersions collection. When you access or set the Name property for an origin versioned relationship, it is this name that
the repository engine retrieves or sets for you.

When you access or set the Name property for a destination versioned relationship, the repository engine takes a different action.
For more information, see Changing a Destination Relationship's Name.

See Also

INamedObject Interface

IRepositoryItem Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Origin Property
VersionedRelationship Origin Property

This property is the origin object of the current version of the relationship. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRelationship
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Origin

The Origin property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion object. It receives the origin object version for

the relationship.
object An object expression that evaluates to a VersionedRelationship object.

Remarks

If the object is an origin versioned relationship, this property is equivalent to the VersionedRelationship Source property. If the
object is a destination versioned relationship, this property is equivalent to the VersionedRelationship Target property.

See Also

IRelationship Interface

Relationship Object

VersionedRelationship Object

VersionedRelationship Source Property

VersionedRelationship Target Property

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Repository Property
VersionedRelationship Repository Property

This property is the open repository instance or workspace through which this relationship was instantiated. This is a read-only
property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Repository

The Repository property syntax has the following parts.

Part Description
variable A variable declared as a reference to any object implementing the IRepository interface. It

receives the object that represents the open repository instance or the workspace.
object An object expression that evaluates to a VersionedRelationship object.

Remarks

This method returns a reference to either a Repository object or a Workspace object. If it returns a Workspace object, you are
manipulating the item within the context of that workspace. If it returns a Repository object, you are manipulating the item not
within the context of a workspace, but within the context of a shared Repository instance.

See Also

IRepositoryItem Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Source Property
VersionedRelationship Source Property

This property is the source object of the current version of the relationship. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRelationship
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Source

The Source property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion. It receives the source object version for the

relationship.
object An object expression that evaluates to a VersionedRelationship object.

See Also

IRelationship Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Target Property
VersionedRelationship Target Property

This property is the target object of the current version of the relationship. This is a read-only property.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRelationship
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Set variable = object.Target

The Target property syntax has the following parts.

Part Description
variable A variable declared as a RepositoryObjectVersion. It receives the target object version for the

relationship.
object An object expression that evaluates to a VersionedRelationship object.

Remarks

A versioned relationship can have a TargetVersions collection containing the set of object versions related (through the
versioned relationship) to the source object version. The repository engine follows a resolution strategy to select a specific object
version to return.

See Also

IRelationship Interface

Relationship Object

Resolution Strategy for Objects and Object Versions

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Type Property
VersionedRelationship Type Property

This property specifies the type of the versioned relationship. More specifically, it is the object identifier of the relationship
definition object for the versioned relationship. Type is a read-only property. To copy this property to another variable, use a
variable that is declared as a Variant.

This property is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Type

The Type property syntax has the following part.

Part Description
object An object expression that evaluates to a VersionedRelationship

object

See Also

IRepositoryItem Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Delete Method
VersionedRelationship Delete Method

This method deletes a relationship from its relationship collection.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.Delete

The Delete method syntax has the following part.

Part Description
object An object expression that evaluates to a VersionedRelationship

object

Remarks

If the item to be deleted is an origin versioned relationship, this method fails unless the source object version satisfies the basic
requirements for changing an object version. Assuming the source object version can be changed, the repository engine deletes
the entire relationship (rather than merely removing one item from the TargetVersions collection of the relationship). In other
words, after this method finishes, no version of the destination object remains related to the origin object version. Furthermore, if
the relationship is a delete-propagating relationship, the repository engine considers performing one or more propagated
deletions.

If the item to be deleted is a destination versioned relationship, the repository engine follows a resolution strategy to yield a
single origin object version from the TargetVersions collection of the relationship. If that origin object version cannot be
changed (that is, if it does not satisfy the requirements for changing an object version), this method fails. Assuming that the origin
object version can be changed, the repository engine removes it from the TargetVersions collection of the relationship.
Furthermore, if the relationship is a delete-propagating relationship, the repository engine considers performing one or more
propagated deletions.

For more information, see Propagating Deletes.

See Also

IRepositoryItem Interface

Relationship Object

Requirements for Changing an Object-Version

Resolution Strategy for Objects and Object Versions

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Lock Method
VersionedRelationship Lock Method

This method locks the versioned relationship. Locking the relationship prevents other processes from locking the relationship
while you are working with it. The lock is released when you end the current transaction.

This method is not attached to the default interface for the repository Automation object; it is attached to the IRepositoryItem
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

Call object.Lock

The Lock method syntax has the following part.

Part Description
object An object expression that evaluates to a VersionedRelationship

object

See Also

IRepositoryItem Interface

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Pin Method
VersionedRelationship Pin Method

This method marks a particular version of the target object as the pinned version.

Syntax

Call object.Pin(objectVersion)

The Pin method syntax has the following parts.

Part Description
object An object expression that evaluates to a VersionedRelationship

object
objectVersion The Repository object version to be pinned

Remarks

The objectVersion you supply must be a member of the versioned relationship's TargetVersions collection.

Remember that no versioned relationship can have more than one pinned target object version. If the relationship already has a
pinned target object version, it becomes unpinned when you call this method, and the objectVersion you supply becomes the
pinned target object version.

If the relationship is a destination relationship, the Pin method fails.

If the origin of the relationship is unchangeable, the Pin method fails.

See Also

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Unpin Method
VersionedRelationship Unpin Method

This method ensures that the versioned relationship has no pinned version.

Syntax

Call object.Unpin

The Unpin method syntax has the following part.

Part Description
object An object expression that evaluates to a Versioned Relationship

object

Remarks

If the relationship is a destination relationship, the Unpin method fails.

If the origin of the relationship is unchangeable, the Pin method fails.

See Also

Relationship Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Properties Collection
VersionedRelationship Properties Collection

This collection contains all of the stored properties and collections that are attached to an object through a particular interface.
The VersionedRelationship object exposes two separate properties collections. These collections are exposed by:

The IVersionedRelationship interface (the default).

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression. It evaluates to an object that exposes IVersionedRelationship or

IAnnotationalProps as the default interface.
index An integer index that identifies which property in the collection is to be addressed. The valid range

is from one to the number of elements in the collection. The number of elements in the collection
is specified by object.Properties.Count.

Remarks

For more information about how to access a member of an interface that is not the default interface, see Accessing Automation
Object Members.

See Also

Relationship Object

ReposProperty Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship TargetVersions Collection
VersionedRelationship TargetVersions Collection

This collection contains all of the RepositoryObjectVersion objects that are related to the source object version through the
versioned relationship.

Syntax

Set variable = object.TargetVersions

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a VersionCol object. It receives a reference to the TargetVersions

collection.
object An object expression that evaluates to a VersionedRelationship object.

See Also

Relationship Object

ReposProperty Object

VersionedRelationship Object

Meta Data Services Programming (SQL Server 2000)

RTIM Automation Objects
This section introduces the Repository Type Information Model (RTIM) objects, which are used to create or extend information
models.

These objects work with the repository engine automation objects that are used to drive the repository engine. The repository
engine objects are listed separately. For more information, see Repository Engine Automation Objects.

The following table lists RTIM Automation objects in alphabetical order.

Object Description
Alias Object Defines a derived property that is based

on another property without changing the
meaning of underlying property

ClassDef Object Adds interfaces to a class
CollectionDef Object Defines how instances of a particular type

of collection will behave
EnumerationDef Object Represents an association of enumerated

values
EnumerationValueDef Object Represents a single member of an

enumeration value set
InterfaceDef Object Defines an interface object, including its

properties and members
MethodDef Object Defines a method object
ParameterDef Object Defines a parameter object
PropertyDef Object Defines a property object
RelationshipDef Object Defines a relationship object
ReposRoot Object Defines the starting point in a repository

for both type information and object
instance data navigation

ReposTypeLib Object Defines an information model in a
repository database

ScriptDef Object Represents a Microsoft® ActiveX® script
that you can associate with a method or
property definition

See Also

Automation Reference

Information Models

Repository API Reference

Repository Engine

Repository Object Architecture

Meta Data Services Programming (SQL Server 2000)

Alias Object
Alias Object

An Alias object supports member delegation of property definitions. You can use the Alias object to define a derived property
that is based on another property without changing the meaning of underlying property.

An Alias object is also a RepositoryObject and a RepositoryObjectVersion object. In addition to the members described here,
you can access members that are defined for those objects as well as members of IReposTypeInfo. For more information about
accessing a member of an interface that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the Alias object to rename an existing property.

Properties

Property Description
Name Stores the name of the alias.
MemberSynonym Stores a synonym of an alias name. This property is optional.

Collections

Collection Description
ServicedByMember Identifies the base property to which an alias name is mapped.

See Also

Member Delegation

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

Alias Name Property
Alias Name Property

This property is a string that stores the alias name of a property.

Syntax

Object.Name=string

The Name property syntax has the following parts.

Part Description
object An Alias object
string A variable length string that can be a maximum of 200

characters in length

Remarks

The alias name that you provide is an alternate name of a property that is identified in the ServicedByMember collection.

See Also

Alias Object

Alias ServicedByMember Collection

Meta Data Services Programming (SQL Server 2000)

Alias MemberSynonym Property
Alias MemberSynonym Property

This property is a string used as a synonym for an alias name. It applies to MethodDef, PropertyDef, and CollectionDef
objects. The value that you specify must be unique.

Syntax

Object.MemberSynonym=string

The MemberSynonym property syntax has the following parts.

Part Description
object An Alias object
string A variable length string that can be a maximum of 255

characters in length

See Also

Alias Object

Alias Name Property

Meta Data Services Programming (SQL Server 2000)

Alias ServicedByMember Collection
Alias ServicedByMember Collection

This collection contains the base property for which you are creating an alias. Each alias can only have one item in its
ServicedByMember collection.

Syntax

Set variable=object.ServicedByMember(index)

The ServicedByMember syntax has the following parts.

Part Description
variable Variable declared as an object.
object An Alias object.
index An integer index that identifies the member in the collection to

be addressed. The valid range is from one. For more
information, see Selecting Items in a Collection.

See Also

Alias Object

Alias Name Property

Meta Data Services Programming (SQL Server 2000)

ClassDef Object
ClassDef Object

The ClassDef object helps you create information models by adding interfaces to a class. To insert a new class definition into an
information model, use the ReposTypeLib object.

Once you have added all of the interfaces, you complete a class definition by committing the transaction that brackets your class
definition modifications.

A ClassDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that are
defined for those objects and members of IViewClassDef and IVersionAdminInfo. For more information about accessing a
member of an interface that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the ClassDef object to:

Add a new or existing interface to a class definition.

Retrieve the global identifier for the class.

Access the collection of interfaces that are part of a class definition.

Properties

Property Description
ClassID The global identifier of the class
Name The name of a ClassDef object
Synonym A synonym of the name of the ClassDef object

Methods

Method Description
AddInterface Adds an existing interface to the class definition
CreateInterfaceDef Creates a new interface and adds it to the class definition
ObjectInstances Materializes an object collection containing all of the objects in

the repository that conform to this class

Collections

Collection Description
Interfaces The collection of all interfaces that are implemented by the

class.
ItemInCollections This collection is empty for class definitions. It is reserved for

future use.
Properties The collection of all persistent properties that are attached to

the ClassDef object.
ReposTypeLibScopes The collection of all repository type libraries that contain this

class.
ScriptsUsedByClass The collection of all ScriptDef objects that are implemented by

this class.

See Also

RepositoryObject Object

RepositoryObjectVersion Object

ReposTypeLib Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ClassDef ClassID Property
ClassDef ClassID Property

This property contains the global identifier (ClsID) that is assigned to this class. If you copy this property to a variable, declare the
variable as a Variant.

Syntax

object.ClassID

The ClassID property syntax has the following parts.

Part Description
object An object expression that evaluates to a ClassDef object

See Also

ClassDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

ClassDef Name Property
ClassDef Name Property

This property stores the name of the ClassDef object. The Name property is made available through the INamedObject
interface. To use the Name property, the class definition object that you create must implement INamedObject.

Syntax

Object.Name=string

The Name property syntax has the following parts.

Part Description
object An object expression that evaluates to a ClassDef object
string A variable length string that can be a maximum of 200

characters in length

See Also

ClassDef Object

INamedObject Interface

Meta Data Services Programming (SQL Server 2000)

ClassDef Synonym Property
ClassDef Synonym Property

This property stores a synonym of the name of the ClassDef object. The Synonym property is made available through the
IReposTypeInfo2 interface. To use the Synonym property, the class definition object that you create must implement
IReposTypeInfo2.

Syntax

Object.Synonym=string

The Synonym property syntax has the following parts.

Part Description
object An object expression that evaluates to a ClassDef object.
string A variable length string that can be a maximum of 200

characters in length.

Synonym values must be unique for ClassDef objects.

See Also

ClassDef Name Property

ClassDef Object

IReposTypeInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

ClassDef AddInterface Method
ClassDef AddInterface Method

The AddInterface method adds an existing interface to the collection of interfaces that are implemented by a particular class.

Syntax

Call object.AddInterface(interfaceDef, flag)

The AddInterface method syntax has the following parts.

Part Description
object An object expression that evaluates to a ClassDef object.
interfaceDef The InterfaceDef definition object for the interface that is to be

added to the collection of interfaces that are implemented by
this class.

flag Determines whether the interface is the default interface. If the
interface that you are adding is the default interface, pass in the
string "Default". Otherwise, pass in a null string.

Remarks

When you indicate that an interface is the default interface for a class, you are actually setting the value of the
ImplementsOptions annotational property on the Class_Implements_Interface relationship to TRUE.

See Also

Accessing Automation Object Members

ClassDef Object

ClassDef CreateInterfaceDef Method

IAnnotationalProps Interface

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

ClassDef CreateInterfaceDef Method
ClassDef CreateInterfaceDef Method

The CreateInterfaceDef method creates a new interface definition and adds the interface to the collection of interfaces that are
implemented by the class.

Syntax

Set variable = object.CreateInterfaceDef(sObjId, name, interfaceId, [ancestor], [flag])

The CreateInterfaceDef method syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

new interface definition.
object An object expression that evaluates to a ClassDef object
sObjId The object identifier to be assigned to the new interface

definition object. If this parameter is set to OBJID_NULL, the
repository engine assigns an object identifier for you.

name The name of the interface that is to be created.
interfaceId The interface identifier for this interface. If there is none, set this

parameter to zero.
ancestor The InterfaceDef definition object for the interface that is the

base interface from which the interface being created is derived.
This parameter is optional.

flag Determines whether the interface is the default interface. If the
interface that you are adding is the default interface, pass in the
string "Default". Otherwise, pass in a null string. This parameter
is optional.

Remarks

When you indicate that an interface is the default interface for a class, you are actually setting the value of the
ImplementsOptions annotational property on the Class Implements Interface relationship to TRUE.

See Also

Accessing Automation Object Members

ClassDef Object

IAnnotationalProps Interface

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

ClassDef ObjectInstances Method
ClassDef ObjectInstances Method

This method materializes an object collection containing all of the objects in a repository that conform to this class.

Syntax

Set variable = object.ObjectInstances

The ObjectInstances method syntax has the following parts.

Part Description
variable A variable declared as an ObjectCol object. It receives the

collection of objects that conform to this class.
object An object expression that evaluates to a ClassDef object.

Remarks

The collection contains one version of each object that conforms to the class. For each such object, the repository engine uses
criteria to select which version to include in the collection. For more information, see Resolution Strategy for Objects and Object
Versions.

ObjectInstances is not scoped to a workspace. All information models in a repository are included in the scope.

See Also

ClassDef Object

ObjectCol Object

Meta Data Services Programming (SQL Server 2000)

ClassDef Interfaces Collection
ClassDef Interfaces Collection

The Interfaces collection contains all interfaces that are implemented by this class.

Syntax

Set variable = object.Interfaces(index)

The Interfaces collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified interface.
object An object expression that evaluates to a ClassDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by the object Interfaces.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Class_Implements_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Many The maximum number of items
that can be contained in the
collection is unlimited.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of a
corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive Names Not Applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not Applicable Unique naming is not
applicable for this collection.

See Also

ClassDef Object

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

ClassDef Properties Collection
ClassDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to a ClassDef object through a
particular interface. The ClassDef object exposes four separate Properties collections. These collections are exposed by:

The IClassDef2 interface (the default) or IClassDef interface.

The IReposTypeInfo or IReposTypeInfo2 interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the

specified property.
object An object expression; it evaluates to an object that exposes

IClassDef or IClassDef2, IReposTypeInfo or
IReposTypeInfo2, IRepositoryObject or
IRepositoryObject2, or IAnnotationalProps as the default
interface.

index An integer index that identifies which property in the collection
is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by the object Properties.Count.
For more information, see Selecting Items in a Collection.

Remarks

Additional steps are required for accessing members that are not part of the default interface. For more information about
accessing a member of an interface that is not the default interface, see Accessing Automation Object Members.

See Also

ClassDef Object

IAnnotationalProps Interface

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ClassDef ReposTypeLibScopes Collection
ClassDef ReposTypeLibScopes Collection

This is the collection of repository type libraries that contain this definition.

Syntax

Set variable = object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has the following parts.

Part Description
variable A variable declared as a ReposTypeLib object. It receives the

specified repository type library object.
object An object expression that evaluates to a ClassDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by the object
TypeLibScopes.Count. For more information, see Selecting
Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of
relationship by which
all items of the
collection are connected
to a common source
object.

Source is Origin No The source object for
the collection is not the
same as the origin
object.

Minimum
Collection Size

One The minimum number
of items that must be
contained in the
collection is one.

Maximum
Collection Size

Many The maximum number
of items that can be
contained in the
collection is unlimited.

Sequenced
Collection

No As a destination
collection, this does not
have an explicitly
defined sequence.
Collections of origin
objects are never
sequenced.

Deletes
Propagated

Yes The deletion of an
origin object or
relationship in the
collection causes the
deletion of the
corresponding
destination object.

Destinations
Named

Yes The relationship type
for the collection
permits the naming of
destination objects.

Case-sensitive
Names

No The relationship type
for the collection does
not permit the use of
case-sensitive names
for destination objects.

Unique Names Yes The relationship type
for the collection
requires that the name
of a destination object
be unique within the
collection of destination
objects. This applies to
collections whose
relationship type
permits destination
objects to be named.

See Also

ClassDef Object

Naming and Unique-Naming Collections

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ClassDef ScriptsUsedByClass Collection
ClassDef ScriptsUsedByClass Collection

 New Information - SQL Server 2000 SP3.

This is the collection of ScriptDef objects that are implemented by this class.

Syntax

Set variable = object.ScriptsUsedByClass(index)

The ScriptsUsedByClass collection syntax has the following parts.

Part Description
variable A variable declared as a ScriptDef object. Receives the specified

script definition.
object An object expression that evaluates to a ClassDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by the object
ScriptsUsedByClass.Count. For more information, see
Selecting Items in a Collection.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects.

See Also

ClassDef Object

ReposTypeLib Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef Object
CollectionDef Object

A collection type (or collection definition) defines how instances of a particular type of collection will behave. The properties of the
collection type determine:

The minimum and maximum number of items in a collection.

Whether the collection type is an origin collection type.

Whether the collection type permits the naming of destination objects, and if so, whether those names are case-sensitive,
and required to be unique.

Whether the collection type permits the explicit sequencing of items in the collection.

What happens to related objects when objects or relationships in the collection are deleted.

Whether origin collections of this type are automatically copied to new object versions by the CreateVersion method.

Whether the MergeVersion method combines origin collections of this type as a whole, or item-by-item.

Whether the FreezeVersion method requires that destination object versions of relationships of this type be frozen before
the attendant origin object versions can be frozen.

The kind of relationship that a particular collection type uses to relate objects to each other is determined by its CollectionItem
collection. The CollectionItem collection associates a single relationship type to the collection type. To add a new collection type,
use the InterfaceDef object.

A CollectionDef object is also a RepositoryObject and a RepositoryObjectVersion object. In addition to the members
described here, you can access members that are defined for those objects as well as members of IInterfaceMember2 and
IVersionAdminInfo. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

When to Use

Use the CollectionDef object to retrieve or modify the properties of a collection type, to determine the kind of relationship that
the collection implements, or to determine the interface to which the collection is attached.

Properties

Property Description
DispatchID The dispatch identifier to use when accessing an instance of

this type of collection
Flags Flags that specify details about this collection definition
IsOrigin Indicates whether collections of this type are origin collections
MemberSynonym Stores a synonym of the collection name
MaxCount The maximum number of target objects that can be contained

in a collection of this type
MinCount The minimum number of target objects that must be contained

in a collection of this type
Name Stores the name of a collection

Collections

Collection Description

CollectionItem The collection of one relationship type that defines the
relationship between target objects of this type of collection
and a single source object

Interface The interface to which this collection definition is attached
Properties The collection of all persistent properties that are attached to

the CollectionDef object

See Also

IInterfaceMember2 Interface

InterfaceDef Object

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef DispatchID Property
CollectionDef DispatchID Property

This property contains the dispatch identifier to use when accessing a collection of this type.

This property is not attached to the default interface for the CollectionDef Automation object; it is attached to the
IInterfaceMember interface. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

object.DispatchID

The DispatchID property syntax has the following part.

Part Description
object An object expression; evaluates to an object that exposes

IInterfaceMember as the default interface

See Also

CollectionDef Object

IInterfaceMember Interface

Meta Data Services Programming (SQL Server 2000)

CollectionDef Flags Property
CollectionDef Flags Property

The CollectionDef object exposes two separate Flags properties. One of these properties is exposed by the default interface
ICollectionDef, and the other is exposed by the IInterfaceMember interface. The Flags property of both interfaces is described
here.

The default ICollectionDef Flags property determines:

Whether the collection type permits the naming of destination objects, and if so, whether those names are case-sensitive,
and required to be unique.

Whether the collection type permits the explicit sequencing of items in the collection.

What happens to related objects when objects or relationships in the collection are deleted.

Whether origin collections of this type are automatically copied to new object versions by the CreateVersion method.

Whether the MergeVersion method combines origin collections of this type as a whole, or item by item.

Whether the FreezeVersion method requires that destination object versions of relationships of this type be frozen before
the attendant origin object versions can be frozen.

The IInterfaceDef Flags property is a flag that specifies whether the interface member should be visible to Automation queries.
For more information about flag values and their specific purposes, see InterfaceMemberFlags Enumeration.

Syntax

object.Flags=(integer)

The Flags property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object,

for the default Flags property.

-or-

An object expression that evaluates to an object that exposes
IInterfaceMember as the default interface, for the alternate
Flags property.

integer Flag values are bit flags, and may be combined to set multiple
options. For more information about flag values and their
specific purposes, see CollectionDefFlags Enumeration.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

CollectionDef Object

IInterfaceMember Interface

Meta Data Services Programming (SQL Server 2000)

CollectionDef IsOrigin Property
CollectionDef IsOrigin Property

This property indicates whether collections of this type are origin collections. If you copy this property to a variable, declare the
variable as a Boolean.

Syntax

object.IsOrigin

The IsOrigin property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object

See Also

CollectionDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef MaxCount Property
CollectionDef MaxCount Property

This property specifies the maximum number of target objects that a collection of this type can contain. This property is
maintained for informational purposes, and is not enforced by the repository engine.

Syntax

object.MaxCount

The MaxCount property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object

See Also

CollectionDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef MemberSynonym Property
CollectionDef MemberSynonym Property

This property is a string used as a synonym for a collection name. The value that you specify must be unique.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IInterfaceMember2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

object.MemberSynonym=(string)

The MemberSynonym property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object
string A variable length string that can be a maximum of 255

characters in length

See Also

CollectionDef Object

IInterfaceMember2 Interface

Meta Data Services Programming (SQL Server 2000)

CollectionDef MinCount Property
CollectionDef MinCount Property

This property specifies the minimum number of target objects that a collection of this type can contain. This property is
maintained for informational purposes, and is not enforced by the repository engine.

Syntax

object.MinCount

The MinCount property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object

See Also

CollectionDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef Name Property
CollectionDef Name Property

This property is a string that stores the name of a collection.

Syntax

object.Name=(string)

The Name property syntax has the following parts.

Part Description
object An object expression that evaluates to a CollectionDef object
string A variable length string that can be a maximum of 200

characters in length

See Also

CollectionDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef CollectionItem Collection
CollectionDef CollectionItem Collection

Every RelationshipDef object has two CollectionDef objects. You can navigate a relationship definition instance from either of
two directions. That is, from a RelationshipDef object, you can navigate to its collection of CollectionDef objects. Conversely,
you can navigate from a CollectionDef object to the associated RelationshipDef object. To do this, use the CollectionItem
collection on the ICollectionDef interface. For more information about collections and relationships, see Repository Object
Architecture.

Syntax

Set variable = object.CollectionItem(index)

The CollectionItem collection syntax has the following parts.

Part Description
variable A variable declared as a RelationshipDef object. It receives

the specified relationship definition object.
object An object expression that evaluates to a CollectionDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the number
of elements in the collection. The number of elements in the
collection is specified by object.CollectionItem.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Collection_Contains_Items This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

One The maximum number of items
that can be contained in the
collection is one.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of a
corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive Names Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

CollectionDef Object

RelationshipDef ItemInCollections Collection

RelationshipDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef Interface Collection
CollectionDef Interface Collection

For a particular collection definition, the interface collection specifies which interface exposes a member of the collection type.

This collection is not attached to the default interface for the CollectionDef Automation object; it is attached to the
IInterfaceMember interface. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

Set variable = object.Interface(index)

The Interface collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. Receives the

specified interface definition.
object An object expression; evaluates to an object that implements

IInterfaceMember as the default interface.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the number
of elements in the collection. The number of elements in the
collection is specified by object.Interface.Count. For more
information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_Has_Members This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the same as the
origin object.

Minimum Collection
Size

One The minimum number of items
that must be contained in the
collection is one.

Maximum Collection
Size

One The maximum number of items
that can be contained in the
collection is one.

Sequenced Collection Yes As a destination collection, this
collection permits an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated Yes Deleting an origin object or a
relationship in the collection
causes the deletion of a
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the naming
of destination objects.

Case-sensitive Names No The relationship type for the
collection does not permit the
use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the
collection requires that the
name of a destination object be
unique within the collection of
destination objects. This applies
to collections whose
relationship type permits
destination objects to be
named.

See Also

CollectionDef Object

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

CollectionDef Properties Collection
CollectionDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object through a particular
interface. The CollectionDef object exposes four separate Properties collections. These collections are exposed by:

The ICollectionDef interface (the default).

The IInterfaceMember or IInterfaceMember2 interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. Receives the

specified property.
object An object expression; evaluates to an object that exposes

ICollectionDef, IInterfaceMember or IInterfaceMember2,
IRepositoryObject or IRepositoryObject2, or
IAnnotationalProps as the default interface.

index An integer index that identifies which property in the collection
is to be addressed. The valid range is from one to the number of
elements in the collection. The number of elements in the
collection is specified by object.Properties.Count. For more
information, see Selecting Items in a Collection.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

CollectionDef Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

EnumerationDef Object
EnumerationDef Object

An enumeration definition object represents an association of enumerated values. The enumerated values that you provide to an
enumeration definition are defined through a series of EnumerationValueDef objects. The enumeration definition itself can be
associated with a PropertyDef object.

You can combine enumeration definition objects in collections. Collections allow you to limit the number or filter the range of
values that appear to the end user. You can also allow a property definition object to reference an enumeration definition object
that is defined in another information model.

Note The repository engine does not restrict objects to the enumeration values associated with a property. Specifying a value
that is not in the enumeration value set does not produce an error.

An EnumerationDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members
that are defined for these objects and members of IRepositoryObjectStorage, IReposTypeInfo2, and IVersionAdminInfo2.
For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

When to Use

Use an EnumerationDef object to define a property that uses enumerated values comprised of a fixed set of constant string or
integer values.

Properties

Property Description
Name Contains the name of the EnumerationDef object. The name

must be unique within the information model.
Description Contains a description of the enumeration.
IsFlag Indicates that the enumeration defines a logical flag. The

selected enumeration values should be combined logically
using OR. This only applies to numeric enumeration values.

Collections

Collection Description
Values Collection of EnumerationValueDef

objects

See Also

EnumerationValueDef Object

Filtering Collections

IRepositoryObjectStorage Interface

IVersionAdminInfo2 Interface

PropertyDef Object

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

EnumerationDef Name Property
EnumerationDef Name Property

This property stores the name of the EnumerationDef object.

Syntax

Object.Name=string

The Name property syntax has the following parts.

Part Description
object The EnumerationDef object.
string A variable length string that can be a maximum of 255

characters in length.

The name must be unique within the information model.

See Also

EnumerationDef Object

EnumerationValueDef Object

Meta Data Services Programming (SQL Server 2000)

EnumerationDef Description Property
EnumerationDef Description Property

This property stores a description of the EnumerationDef object for documentation purposes. This property is not processed by
the repository engine.

Syntax

Object.Description=string

The Description property syntax has the following parts.

Part Description
object The EnumerationDef object
string A variable length string that can be a maximum of 255

characters in length

See Also

EnumerationDef Object

EnumerationValueDef Object

Meta Data Services Programming (SQL Server 2000)

EnumerationDef IsFlag Property
EnumerationDef IsFlag Property

This Boolean property indicates whether the enumeration definition object defines a logical flag. The selected enumeration values
should be combined logically using OR. This only applies to numeric enumeration values.

Syntax

Object.IsFlag

The IsFlag property syntax has the following part.

Part Description
object The EnumerationDef object

Remarks

If you need an object to represent a flag structure, and you want that flag to support a series of bit flags that can be combined to
set multiple options, you can create an EnumerationDef object and set the IsFlag property to True.

See Also

EnumerationDef Object

EnumerationValueDef Object

Meta Data Services Programming (SQL Server 2000)

EnumerationDef Values Collection
EnumerationDef Values Collection

This collection contains EnumerationValuesDef objects.

Syntax

Set variable=object.Values(index)

The Values syntax has the following parts.

Part Description
variable Variable declared as an object.
object An EnumerationDef object.
index An integer index that identifies which member in the collection

is to be addressed. The valid range is from one to the total
number of members in the collection. For more information,
see Selecting Items in a Collection.

See Also

Filtering Collections

EnumerationDef Object

EnumerationValueDef Object

Meta Data Services Programming (SQL Server 2000)

EnumerationValueDef Object
EnumerationValueDef Object

An enumeration value definition object defines a single member of an enumeration value set. An EnumeratedValueDef object is
owned by an EnumerationDef object. You can define multiple EnumerationValueDef objects to create an array of values for a
property definition that uses enumerated values.

An EnumerationValueDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access
members that are defined for these objects and members of IRepositoryObjectStorage and IVersionAdminInfo2. For more
information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

When to Use

Use an EnumerationValueDef object to associate real-world, constant data values with a property definition.

Properties

Property Description
EnumerationValueDef
EnumValue Property

A string value included in an enumerated set of values for a
specified property definition object

See Also

EnumerationDef Object

IRepositoryObjectStorage Interface

IVersionAdminInfo2 Interface

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

EnumerationValueDef EnumValue Property
EnumerationValueDef EnumValue Property

This property is a string containing a value that may be stored as the property value of an object.

Syntax

Object.EnumValue=string

The EnumValue property syntax has the following parts.

Part Description
object The EnumerationValueDef object.
string A variable length string that can be a maximum of 255

characters in length.

This value can be numeric. If you are using the IsFlag property
of an EnumerationDef object to create a series of bit flags, this
value must be numeric.

See Also

EnumerationValueDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Object
InterfaceDef Object

The properties, methods, and collections that a class implements are organized into functionally related groups. Each group is
implemented as a repository interface. The properties, methods, and collections of each interface are members of the interface. An
interface definition is the template to which an interface conforms.

To add a new interface to a repository, use the ClassDef object or the ReposTypeLib object.

An InterfaceDef object is also a RepositoryObject and a RepositoryObjectVersion object. In addition to the members
described here, you can access members that are defined for those objects. For more information about accessing a member of
an interface that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the InterfaceDef class to:

Retrieve or modify properties of an interface definition.

Determine which members are attached to an interface definition.

Determine which classes implement an interface.

Determine the base interface from which an interface derives.

Determine which interfaces derive from a particular interface.

Determine which repository objects expose a particular interface.

Add a new property, method, or collection type to an interface definition.

Properties

Property Description
Flags Flags that specify whether the interface is extensible,

and whether the interface should be visible to
Automation interface queries

InterfaceID The global interface identifier for the interface
Synonym Stores a synonym of the interface name
TableName The name of the SQL table that is used to store

instance information for the properties of the interface

Methods

Method Description
CreateAlias Creates a new alias definition, and attaches it to the

interface definition.
CreateMethodDef Creates a new method definition, and attaches it to the

interface definition.
CreatePropertyDef Creates a new property definition, and attaches it to the

interface definition.
CreateRelationshipColDef Creates a relationship collection type. The collection

type is attached to the interface definition.
ObjectInstances Materializes an ObjectCol collection of all objects in

the repository that expose this interface.

Collections

Collection Description
Ancestor The collection of one base interface from which this

interface derives
Classes The collection of classes that implement the interface
Descendants The collection of other interfaces that derive from this

interface
Members The collection of members that are exposed by the

interface
Properties The collection of all persistent properties that are

attached to the InterfaceDef object
ReposTypeLibScopes The collection of all repository type libraries that

contain this definition
Implies The collection of InterfaceDef objects that are also

implemented by this interface
ImpliedBy The collection of InterfaceDef objects that also

implement this interface
ScriptsUsedByInterface The collection of script definition object used by this

interface

See Also

ClassDef Object

InterfaceDef Object

PropertyDef Object

RepositoryObject Object

RepositoryObjectVersion Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Flags Property
InterfaceDef Flags Property

This property contains flags that specify whether the interface is extensible, and whether the interface should be visible to
Automation interface queries.

Syntax

object.Flags=(integer)

The Flags property syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object.
Integer A byte that stores a flag value (either 1, 2, or 3). For more

information about flag values, see InterfaceDefFlags
Enumeration.

See Also

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef InterfaceID Property
InterfaceDef InterfaceID Property

This property is the global interface identifier for the interface. If you copy this property to a variable, declare the variable as a
Variant.

Syntax

object.InterfaceID

The InterfaceID property syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object

See Also

InterfaceDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Synonym Property
InterfaceDef Synonym Property

This property is a string used as a synonym for an interface name. The value that you specify must be unique.

This property is not attached to the default interface for the repository Automation object; it is attached to the IReposTypeInfo2
interface. For more information about accessing a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Syntax

object.Synonym=string

The Synonym property syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object
string A variable length string that can be a maximum of 255

characters in length

See Also

InterfaceDef Object

IReposTypeInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

InterfaceDef TableName Property
InterfaceDef TableName Property

This character string property contains the name of the SQL table that is used to store instance information for the properties of
the interface.

Syntax

object.TableName=(string)

The TableName property syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object
string A variable length string that can be a maximum of 30 characters

See Also

InterfaceDef Object

Repository SQL Schema

Meta Data Services Programming (SQL Server 2000)

InterfaceDef CreateAlias Method
InterfaceDef CreateAlias Method

This method creates a new alias and attaches it to the interface definition.

Syntax

Set variable = object.CreateAlias(sObjId, name, dispId, base)

The CreateAlias method syntax has the following parts.

Part Description
variable A variable declared as an Alias object. It receives the new alias

definition.
object An object expression that evaluates to an InterfaceDef object.
sObjId The object identifier to be used for the new alias object. The

repository engine will assign an object identifier if you set this
parameter to OBJID_NULL.

name A string that stores the name of the new alias. Also, the name of
the InterfaceDef object containing the base member.

dispId The dispatch identifier to be used for accessing the new alias.
base A string that stores the name of the interface member upon

which the alias is based.

See Also

Alias Object

InterfaceDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

InterfaceDef CreateMethodDef Method
InterfaceDef CreateMethodDef Method

This method creates a new method definition and attaches it to the interface definition.

Syntax

Set variable = object.CreateMethodDef(sObjId, name, dispId)

The CreateMethodDef method syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object.
variable A variable declared as a MethodDef object. It receives the new

method definition.
sObjId The object identifier to be used for the new method definition

object. The repository engine will assign an object identifier if
you set this parameter to OBJID_NULL.

name The name of the new method.
dispId The dispatch identifier to be used for accessing the new

method.

See Also

InterfaceDef Object

MethodDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

InterfaceDef CreatePropertyDef Method
InterfaceDef CreatePropertyDef Method

This method creates a new property definition and attaches it to the interface definition.

Syntax

Set variable = object.CreatePropertyDef(sObjId, name, dispId, CType)

The CreatePropertyDef method syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object.
variable A variable declared as a PropertyDef object. It receives the new

property definition.
sObjId The object identifier to be used for the new property definition

object. The repository engine will assign an object identifier if
you set this parameter to OBJID_NULL.

name The name of the new property.
dispId The dispatch identifier to be used for accessing the new

property.
CType The C data type of the property. For a definition of valid values,

see the ODBC documentation.

See Also

InterfaceDef Object

Object Identifiers and Internal Identifiers

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef CreateRelationshipColDef Method
InterfaceDef CreateRelationshipColDef Method

This method creates a new collection type, attaches it to this interface, and associates it with the specified relationship type.

Syntax

Set variable = object.CreateRelationshipColDef(sObjId, name, dispId, isOrigin, flags, relshipDef)

The CreateRelationshipColDef method syntax has the following parts.

Part Description
object An object expression that evaluates to an InterfaceDef object.
variable A variable declared as a CollectionDef object. It receives the

new collection definition.
sObjId The object identifier for the collection type. The repository

engine will assign an object identifier if you set this parameter
to OBJID_NULL.

name The name of the new collection type.
dispId The dispatch identifier to be used for Automation access to

collections of this type.
isOrigin Specifies whether collections of this type are origin collections.

This is a Boolean parameter.
flags Flags that specify naming, sequencing, and delete propagation

behavior for the collection type. For more information about
flag values, see CollectionDefFlags Enumeration.

RelshipDef The relationship definition object to which this collection type is
connected.

Remarks

By default, the collection definition specifies that zero to many items are permitted in collections of this type. To specify a different
minimum and maximum item count for the new collection type, change the MinCount and MaxCount properties before
committing the transaction that contains this method invocation.

See Also

CollectionDef Object

CollectionDefFlags Enumeration

InterfaceDef Object

Object Identifiers and Internal Identifiers

RelationshipDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef ObjectInstances Method
InterfaceDef ObjectInstances Method

This method materializes an ObjectCol collection of all objects in the repository that expose this interface.

Syntax

Set variable = object.ObjectInstances

The ObjectInstances method syntax has the following parts.

Part Description
variable A variable declared as an ObjectCol object. It receives the

collection of objects that expose this interface.
object An object expression that evaluates to an InterfaceDef object.

Remarks

The retrieved collection contains one version of each object that conforms to a class exposing this interface. For each such object,
the repository engine uses criteria to select which version to include in the collection. For more information, see Resolution
Strategy for Objects and Object Versions.

ObjectInstances is not scoped to a workspace. All information models in a repository are included in the scope.

See Also

InterfaceDef Object

ObjectCol Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Ancestor Collection
InterfaceDef Ancestor Collection

This collection specifies the one base interface from which this interface derives. You use Ancestor collections to define
inheritance.

Syntax

Set variable = object.Ancestor(index)

The Ancestor collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified base interface definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the number of
elements in the collection. The number of elements in the
collection is specified by object.Ancestor.Count. For more
information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_InheritsFrom_Interface This is the type of
relationship by which all
items of the collection are
connected to a common
source object.

Source is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

One The minimum number of
items that must be
contained in the collection is
one.

Maximum Collection
Size

One The maximum number of
items that can be contained
in the collection is one.

Sequenced
Collection

No As a destination collection,
this does not have an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated No Deleting an origin object or
a relationship in the
collection does not cause the
deletion of a corresponding
destination object.

Destinations Named No The relationship type for the
collection does not permit
the naming of destination
objects.

Case-sensitive
Names

Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Classes Collection
InterfaceDef Classes Collection

This collection specifies which classes implement the interface.

Syntax

Set variable = object.Classes(index)

The Classes collection syntax has the following parts.

Part Description
variable A variable declared as a ClassDef object. It receives the

specified class definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Classes.Count. For more
information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Class_Implements_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Many The maximum number of items
that can be contained in the
collection is unlimited.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of
a corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive Names Not Applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not Applicable Unique naming is not
applicable for this collection.

See Also

ClassDef Object

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Descendants Collection
InterfaceDef Descendants Collection

This collection specifies other interfaces that derive from this interface.

Syntax

Set variable = object.Descendants(index)

The Descendants collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified interface definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Descendants.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Types Interface_InheritsFrom_Interface This is the type of
relationship by which all
items of the collection are
connected to a common
source object.

Source is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection
Size

Zero The minimum number of
items that must be
contained in the collection is
zero.

Maximum Collection
Size

Many The maximum number of
items that can be contained
in the collection is unlimited.

Sequenced
Collection

No As a destination collection,
this does not have an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated No Deleting an origin object or
a relationship in the
collection does not cause the
deletion of a corresponding
destination object.

Destinations Named No The relationship type for the
collection does not permit
the naming of destination
objects.

Case-sensitive
Names

Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

InterfaceDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Implies Collection
InterfaceDef Implies Collection

This is the collection of InterfaceDef objects that are made available to another interface through implication.

Syntax

Set variable = object.Implies(index)

The Implies collection syntax has the following parts.

Part Description
variable A variable declared as a InterfaceDef object. It receives the

specified interface definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. For more information, see
Selecting Items in a Collection.

Remarks

You can define an implication between two interface definition objects of the form Interface1 implies Interface2. For each such
implication, the repository engine guarantees that every class that implements Interface1 also implements the members of
Interface2.

The Implies collection contains the interface definition objects that are automatically implemented whenever the current interface
definition object is implemented. To define an implication in the opposite direction, use the ImpliedBy collection.

For example, if you extend an information model by creating a new version of an interface (Interface1a), you can add Interface2
to the Implies collection of Interface1a to guarantee that Interface2 members are always available.

See Also

Interface Implication

InterfaceDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef ImpliedBy Collection
InterfaceDef ImpliedBy Collection

This is the collection of InterfaceDef objects that have been made available to another interface through implication.

Syntax

Set variable = object.ImpliedBy(index)

The ImpliedBy collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified interface definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. For more information, see
Selecting Items in a Collection.

Remarks

You can define an implication between two interface definition objects of the form Interface2 is implied by Interface1. For
example, if Interface2 is implied by Interface1, the ImpliedBy collection for Interface2 can include the Interface1 object.

The ImpliedBy collection provides a way to define which interfaces are part of an implication relationship. This collection reflects
the opposite direction of a relationship that is defined by the Implies collection.

See Also

Interface Implication

InterfaceDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Members Collection
InterfaceDef Members Collection

This collection specifies which members are attached to the interface.

Syntax

Set variable = object.Members(index)

The Members collection syntax has the following parts.

Part Description
variable A variable declared as an object. It receives the specified

property definition, method definition, or collection definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Members.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_Has_Members This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Many The maximum number of items
that can be contained in the
collection is unlimited.

Sequenced Collection Yes As a destination collection, this
collection permits an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes Propagated Yes The deletion of an origin object
or relationship in the collection
causes the deletion of the
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the naming
of destination objects.

Case-sensitive Names No The relationship type for the
collection does not permit the
use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the
collection requires that the
name of a destination object be
unique within the collection of
destination objects. This applies
to collections whose
relationship type permits
destination objects to be
named.

See Also

CollectionDef Object

InterfaceDef Object

MethodDef Object

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Properties Collection
InterfaceDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object through a particular
interface. The InterfaceDef object exposes four separate Properties collections. These collections are exposed by:

The IInterfaceDef2 interface (the default) or IInterfaceDef interface.

The IReposTypeInfo or IReposTypeInfo2 interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the

specified property.
object An object expression; it evaluates to an object that exposes

IInterfaceDef or IInterfaceDef2, IReposTypeInfo or
IReposTypeInfo2, IRepositoryObject or
IRepositoryObject2, or IAnnotationalProps as the default
interface.

index An integer index that identifies which property in the collection
is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Properties.Count.

Remarks

Additional steps are required for accessing members that are not part of the default interface. For more information about
accessing a member of an interface that is not the default interface, see Accessing Automation Object Members.

See Also

InterfaceDef Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef ReposTypeLibScopes Collection
InterfaceDef ReposTypeLibScopes Collection

This is the collection of repository type libraries that contain this definition.

Syntax

Set variable = object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has the following parts.

Part Description
variable A variable declared as a ReposTypeLib object. It receives the

specified repository type library object.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the number of
elements in the collection. The number of elements in the
collection is specified by object.TypeLibScopes.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of
relationship by which
all items of the
collection are
connected to a
common source
object.

Source is Origin No The source object for
the collection is not
the same as the origin
object.

Minimum
Collection Size

One The minimum number
of items that must be
contained in the
collection is one.

Maximum
Collection Size

Many The maximum number
of items that can be
contained in the
collection is unlimited.

Sequenced
Collection

No As a destination
collection, this does
not have an explicitly
defined sequence.
Collections of origin
objects are never
sequenced.

Deletes
Propagated

Yes The deletion of an
origin object or
relationship in the
collection causes the
deletion of the
corresponding
destination object.

Destinations
Named

Yes The relationship type
for the collection
permits the naming of
destination objects.

Case-sensitive
Names

No The relationship type
for the collection does
not permit the use of
case-sensitive names
for destination objects.

Unique Names Yes The relationship type
for the collection
requires that the name
of a destination object
be unique within the
collection of
destination objects.
This applies to
collections whose
relationship type
permits destination
objects to be named.

See Also

InterfaceDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

InterfaceDef ScriptsUsedByInterface Collection
InterfaceDef ScriptsUsedByInterface Collection

 New Information - SQL Server 2000 SP3.

This is the collection of ScriptDef objects that are implemented by this interface.

This collection is not attached to the default interface for this Automation object; it is attached to the IClassDef2 interface. For
more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

Syntax

Set variable = object.ScriptsUsedByInterface(index)

The ScriptsUsedByInterface collection syntax has the following parts.

Part Description
variable A variable declared as a ScriptDef object. It receives the

specified script definition.
object An object expression that evaluates to an InterfaceDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.ScriptDef.Count. For
more information, see Selecting Items in a Collection.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects.

See Also

IClassDef2 Interface

InterfaceDef Object

ReposTypeLib Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

MethodDef Object
MethodDef Object

When you define a class for an information model, you specify the interfaces that the class implements. For each of those
interfaces, you specify the members (properties, methods, and collections) that are attached to the interface. To attach a new
method to an interface, use the CreateMethodDef method of the InterfaceDef object.

The definition of a method as a member of an interface does not result in the storage of method implementation logic in the
repository. However, the method name is added to the set of defined member names for that interface. It also reserves the
dispatch identifier of the method in the set of defined dispatch identifier values for the interface.

A MethodDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that are
defined for those objects and members of IInterfaceMember2 and IVersionAdminInfo2. For more information about
accessing a member of an interface that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the MethodDef object to access or modify the characteristics of a method definition, or to determine the interface definition
to which a particular method is attached.

Properties

Property Description
DispatchID The dispatch identifier to use when invoking a method that

conforms to this method definition
Flags Flags that specify details about this method definition
MemberSynonym Stores a synonym of the method name

Methods

Method Description
CreateParameterDef Defines a ParameterDef object for this method definition

Collections

Collection Description
Interface The interface to which this method definition is attached
Properties The collection of all persistent properties that are attached to

the MethodDef object

See Also

InterfaceDef CreateMethodDef Method

IInterfaceMember2 Interface

IVersionAdminInfo2 Interface

ParameterDef Object

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

MethodDef DispatchID Property
MethodDef DispatchID Property

This property contains the dispatch identifier that is used to invoke a method that conforms to this method definition.

Syntax

object.DispatchID

The DispatchID property syntax has the following part.

Part Description
object An object expression that evaluates to a MethodDef object

See Also

MethodDef Object

Meta Data Services Programming (SQL Server 2000)

MethodDef Flags Property
MethodDef Flags Property

This property is a flag that specifies whether the interface member should be visible to Automation queries.

Syntax

object.Flags=(integer)

The Flags property syntax has the following parts.

Part Description
object An object expression that evaluates to a MethodDef object.
integer Flag values are bit flags, and may be combined to set multiple

options. For more information about flag values and
descriptions, see the InterfaceMemberFlags Enumeration.

See Also

MethodDef Object

Meta Data Services Programming (SQL Server 2000)

MethodDef MemberSynonym Property
MethodDef MemberSynonym Property

This property is a string used as a synonym for a method name. The value that you specify must be unique.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IInterfaceMember2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

object.MemberSynonym=string

The MemberSynonym property syntax has the following parts.

Part Description
object An object expression that evaluates to a MethodDef object
string A variable length string that can be a maximum of 255

characters in length

See Also

MethodDef Object

IInterfaceMember2 Interface

Meta Data Services Programming (SQL Server 2000)

MethodDef CreateParameterDef Method
MethodDef CreateParameterDef Method

This method creates a ParameterDef object for a method definition.

Syntax

Set variable = object.CreateParameterDef(sObjID, Name, Type, Flags, Description, Default)

The CreateParameterDef method syntax has the following parts.

Part Description
variable A variable declared as a ParameterDef object. It receives the

new parameter definition.
object An object expression that evaluates to a MethodDef object.
sObjId The object identifier to be used for the new parameter definition

object. The repository engine will assign an object identifier if
you set this parameter to OBJID_NULL.

name The name of the new parameter.
type The data type of the new parameter.
flags The attributes of the new parameter. For more information

about flag values and descriptions, see ParameterDef Flags
Property.

description An alternate description of the parameter that replaces the
generic, default string that is generated by the Microsoft® SQL
Server™ 2000 Meta Data Services Software Development Kit
(SDK). This string is placed into an IDL file.

default A string denoting the default value for the new parameter.

See Also

Assigning Object Identifiers

MethodDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

MethodDef Interface Collection
MethodDef Interface Collection

For a particular method definition, the Interface collection specifies which interface exposes a member of this type.

Syntax

Set variable = object.Interface(index)

The Interface collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified interface definition.
object An object expression that evaluates to a MethodDef object.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Interface.Count. For
more information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_Has_Members This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection
Size

One The minimum number of items
that must be contained in the
collection is one.

Maximum Collection
Size

One The maximum number of items
that can be contained in the
collection is one.

Sequenced Collection Yes As a destination collection, this
collection permits an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes Propagated Yes Deleting an origin object or a
relationship in the collection
causes the deletion of a
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the naming
of destination objects.

Case-sensitive Names No The relationship type for the
collection does not permit the
use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the
collection requires that the
name of a destination object be
unique within the collection of
destination objects. This applies
to collections whose
relationship type permits
destination objects to be
named.

See Also

InterfaceDef Object

MethodDef Object

Meta Data Services Programming (SQL Server 2000)

MethodDef Properties Collection
MethodDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object via a particular
interface. The MethodDef object exposes three separate Properties collections. These collections are exposed by:

The IInterfaceMember2 interface (the default) or IInterfaceMember interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the

specified property.
object An object expression; evaluates to an object that exposes

IInterfaceMember2 or IInterfaceMember,
IRepositoryObject or IRepositoryObject2, or
IAnnotationalProps as the default interface.

index An integer index that identifies which property in the collection
is to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Properties.Count. For
more information, see Selecting Items in a Collection.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

MethodDef Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

ParameterDef Object
ParameterDef Object

A parameter definition object represents the parameter of a method.

A ParameterDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that
are defined for these objects and members of IReposTypeInfo. For more information about accessing a member of an interface
that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the ParameterDef object to create parameters for a method definition object that you define.

Properties

Property Description
Flags A flag that defines attributes of the parameter value. You can

define whether a parameter is the default parameter of the
method, is optional, or is passed by reference or by value.

Default A string denoting the default value for the parameter.
Description A descriptive string placed into an Interface Definition

Language (IDL) file that substitutes for the generic default text
for the parameter type.

GUID A globally unique identifier (GUID) that defines the interface
identifier of a COM-based interface parameter.

Type The data type of the parameter expressed as a constant value.

See Also

MethodDef Object

Object Identifiers and Internal Identifiers

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

ParameterDef Default Property
ParameterDef Default Property

This property is a string denoting the default value for the parameter.

Syntax

Object.Default=string

The Default property syntax has the following parts.

Part Description
object The ParameterDef object
string A variable length string that can be a maximum of 255

characters

See Also

ParameterDef Object

Meta Data Services Programming (SQL Server 2000)

ParameterDef Description Property
ParameterDef Description Property

This property is a string placed into an IDL file that provides more descriptive information about a parameter, that is, for example,
a DISPATCH interface. When you generate an Interface Definition Language (IDL) file, the Description property can be used
instead of the generic default text to identify the parameter. For example, instead of the default text DISPATCH *, you can specify
something like IUMLCLass *.

Syntax

Object.Description=string

The Description property syntax has the following parts.

Part Description
object The ParameterDef object
string A variable length string that can be a maximum of 255

characters

See Also

ParameterDef Object

Meta Data Services Programming (SQL Server 2000)

ParameterDef Flags Property
ParameterDef Flags Property

This property is an integer that determines the attributes of a parameter. The sum total of the flag values determines the
combination of flags that apply.

Syntax

Object.Flags=integer

The Flags property syntax has the following parts.

Part Description
object The ParameterDef object
integer A single flag name value, or an aggregated value that results

from combining flag values

Remarks

Parameter definition flags, values, and descriptions are provided in the following table.

Flag Name and Value Description
PARAMFLAGS_IN = 1 The parameter accepts a value passed to it as

input.
PARAMFLAGS_OUT = 2 The parameter passes an output value by

reference.
PARAMFLAGS_RETVAL = 4 The parameter passes a return value. Only one

parameter for each method can be marked as a
return value.

PARAMFLAGS_OPTIONAL = 8 An optional parameter. Once you define a
parameter as optional, all subsequent
parameters that follow must also be optional.

See Also

ParameterDef Object

Meta Data Services Programming (SQL Server 2000)

ParameterDef GUID Property
ParameterDef GUID Property

This property is a string that stores the globally unique identifier (GUID) that defines the COM-based interface to which the
parameter refers.

Syntax

Object.GUID

The GUID property syntax has the following part.

Part Description
object The ParameterDef object

Remarks

You cannot set GUID using the CreateParameterDef method. Setting the GUID property is useful when you have a dispatch-
based interface (for example, ITransactionObjectCol object that has a data type of vt_dispatch). You can set a GUID as a
parameter for a TransactionObjectCol object, even though the object is not a method.

See Also

ParameterDef Object

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

ParameterDef Type Property
ParameterDef Type Property

This property is the data type of the parameter. You can specify most data types that are supported by Automation objects. The
value that you specify must be an integer.

Syntax

Set object.Type=(integer)

The Type property syntax has the following parts.

Part Description
object The ParameterDef object
integer The integer associated with a Variant data type

Remarks

Automation Variant data types and integers are provided in the following table.

Variant data type Integer
VT_ARRAY 0x2000
VT_UI1 (BYTE) 18
VT_BOOL 11
VT_BSTR 8
VT_CY (CURRENCY) 6
VT_DATE 7
VT_I2 (SHORT) 2
VT_14 (LONG) 3
VT_R4 (SINGLE) 4
VT_R8 (DOUBLE) 5
VT_DISPATCH 9
VT_UNKNOWN 13
VT_VARIANT 12

See Also

ParameterDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef Object
PropertyDef Object

When you define a class for an information model, you specify the interfaces that the class implements. For each of those
interfaces, specify the members (properties, methods, and collections) that are attached to the interface.

Before you can attach a property to an interface, a property definition object must exist for the property. The characteristics of the
property (its name, dispatch identifier, data type, and various storage details) are stored in the property definition object. These
characteristics are defined by the properties of the property definition object.

To create a new property definition

1. Use the CreatePropertyDef method of the InterfaceDef object.

2. Define any non-default characteristics of your new property definition by manipulating the properties of the property
definition object.

3. Commit your changes to a repository database.

A PropertyDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that
are defined for these objects, and members of IInterfaceMember2, IViewPropertyDef and IVersionAdminInfo2. For more
information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

When to Use

Use the PropertyDef object to retrieve or modify the characteristics of a property definition, or to determine which interface
exposes a particular property.

Properties

Property Description
APIType The C data type of the property
ColumnName The name of the column in the SQL table for this property
DispatchID The dispatch identifier to use when accessing an instance of

this type of property
Flags Flags that specify details about this property definition
MemberSynonym Stores a synonym of the property name
SQLBlobSize The SQL BLOB size of the property
SQLScale The number of digits to the right of the decimal point for a

numeric property
SQLSize The size in bytes of the property
SQLType The SQL data type of the property

Collections

Collection Description
EnumerationDef The collection of EnumerationDef objects to which this

property definition is attached
Interface The interface to which this property definition is attached
Properties The collection of all persistent properties that are attached to

the PropertyDef object

See Also

EnumerationDef Object

InterfaceDef CreateProperty Method

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef APIType Property
PropertyDef APIType Property

The C data type of the property. For a definition of valid values, see the ODBC documentation.

Syntax

object.APIType

The APIType property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object

See Also

PropertyDef Object

SQL and API Types Used in Property Definitions

Meta Data Services Programming (SQL Server 2000)

PropertyDef ColumnName Property
PropertyDef ColumnName Property

An SQL table is used to store instance information for the properties of an interface. By default, there is a column in this table for
each property that is defined as a member of the interface. The ColumnName string property specifies the name of the column
in the SQL table for the property definition.

Syntax

object.ColumnName=(string)

The ColumnName property syntax has the following parts.

Part Description
object An object expression that evaluates to a PropertyDef object
string A variable length string that can be a maximum of 30 bytes

See Also

PropertyDef Object

Repository SQL Schema

Meta Data Services Programming (SQL Server 2000)

PropertyDef DispatchID Property
PropertyDef DispatchID Property

This property contains the dispatch identifier to use when accessing an instance of this type of member.

This property is not attached to the default interface for the PropertyDef Automation object; it is attached to the
IInterfaceMember interface. For details on how to access a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

object.DispatchID

The DispatchID property syntax has the following part.

Part Description
object An object expression; evaluates to an object that exposes

IInterfaceMember as the default interface

See Also

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef Flags Property
PropertyDef Flags Property

The PropertyDef object exposes two separate Flags properties. Both the default interface, IPropertyDef, and a non-default
interface, IInterfaceMember, expose a Flags property that you can set.

The IPropertyDef Flags property is ignored. It is preserved for backward compatibility. Originally, this flag specified
whether to create a column for the property. Column creation would occur in the SQL table providing persistent storage for
the interface to which the property is attached. Without a column, instances of the property only attached to individual
objects when setting the property value for that particular object.

The IInterfaceMember Flags property specifies whether the interface member should be visible to Automation queries.
For more information about flag values, see the InterfaceMemberFlags Enumeration.

Syntax

object.Flags

The Flags property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object,

for the default Flags property

-or-

An object expression that evaluates to an object that exposes
IInterfaceMember as the default interface, for the alternate
Flags property

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

IInterfaceMember Interface

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef MemberSynonym Property
PropertyDef MemberSynonym Property

This property is a string used as a synonym for a property name. The value that you specify must be unique.

This property is not attached to the default interface for the repository Automation object; it is attached to the
IInterfaceMember2 interface. For more information about accessing a member of an interface that is not the default interface,
see Accessing Automation Object Members.

Syntax

object.MemberSynonym=(string)

The MemberSynonym property syntax has the following parts.

Part Description
object An object expression that evaluates to a PropertyDef object
string A variable length string that can be a maximum of 255

characters in length

See Also

PropertyDef Object

IInterfaceMember2 Interface

Meta Data Services Programming (SQL Server 2000)

PropertyDef SQLBlobSize Property
PropertyDef SQLBlobSize Property

The SQL Binary Large Object (BLOB) size of the property. For a definition of valid values, see the ODBC documentation.

This property is not attached to the default interface for the PropertyDef Automation object; it is attached to the IPropertyDef2
interface. For details on how to access a member of an interface that is not the default interface, see Accessing Automation Object
Members.

Syntax

object.SQLBlobSize

The SQLBlobSize property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object

See Also

IPropertyDef2 Interface

Programming BLOBs and Large Text Fields

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef SQLScale Property
PropertyDef SQLScale Property

The number of digits to the right of the decimal point for a numeric property. This parameter is ignored unless the SQLType
property specifies a SQL_NUMERIC, SQL_DECIMAL, or SQL_TIME data type.

Syntax

object.SQLScale

The SQLScale property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object

See Also

PropertyDef Object

SQL and API Types Used in Property Definitions

Meta Data Services Programming (SQL Server 2000)

PropertyDef SQLSize Property
PropertyDef SQLSize Property

The size in bytes of the property. This parameter is ignored when the data type of the property inherently specifies the size of the
property.

Syntax

object.SQLSize

The SQLSize property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object

Note If a SQLSize is set to a value greater than 65535, the engine divides the entered number by 65536 and sets SQLSize to the
value of the remainder of the division, but no error is returned.

See Also

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef SQLType Property
PropertyDef SQLType Property

The SQL data type of the property. For a definition of valid values, see the ODBC documentation.

Syntax

object.SQLType

The SQLType property syntax has the following part.

Part Description
object An object expression that evaluates to a PropertyDef object

See Also

PropertyDef Object

SQL and API Types Used in Property Definitions

Meta Data Services Programming (SQL Server 2000)

PropertyDef EnumerationDef Collection
PropertyDef EnumerationDef Collection

An EnumerationDef collection specifies which EnumerationDef objects use the property.

Syntax

Set variable = object.EnumerationDef(index)

The EnumerationDef collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the

specified property.
object An object expression that evaluates to PropertyDef object.
index An integer index that identifies which object in the collection is

to be addressed. The valid range is from one to the total
number of elements in the collection. The number of elements
in the collection is specified by object.Count. For more
information, see Selecting Items in a Collection.

See Also

PropertyDef Object

EnumerationDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef Interface Collection
PropertyDef Interface Collection

For a particular property definition, the Interface collection specifies which interface exposes a member of this type.

This collection is not attached to the default interface for the PropertyDef Automation object; it is attached to the
IInterfaceMember interface. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

Set variable = object.Interface(index)

The Interface collection syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the

specified interface definition.
object An object expression; evaluates to an object that implements

IInterfaceMember as the default interface.
index An integer index that identifies which element in the collection

is to be addressed. The valid range is from one to the number
of elements in the collection. The number of elements in the
collection is specified by object.Interface.Count. For more
information, see Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_Has_Members This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection
Size

One The minimum number of items
that must be contained in the
collection is one.

Maximum Collection
Size

One The maximum number of items
that can be contained in the
collection is one.

Sequenced Collection Yes As a destination collection, this
collection permits an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes Propagated Yes The deletion of an origin object
or relationship in the collection
causes the deletion of the
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the naming
of destination objects.

Case-sensitive Names No The relationship type for the
collection does not permit the
use of case-sensitive names for
destination objects.

Unique Names No The relationship type for the
collection requires that the
name of a destination object be
unique within the collection of
destination objects. This applies
to collections whose
relationship type permits
destination objects to be
named.

See Also

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

PropertyDef Properties Collection
PropertyDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object through a particular
interface. The PropertyDef object exposes four separate Properties collections. These collections are exposed by:

The IPropertyDef2 interface (the default) or IPropertyDef interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IInterfaceMember or IInterfaceMember2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the

specified property.
object An object expression; evaluates to an object that exposes

IPropertyDef2 or IPropertyDef, IRepositoryObject or
IRepositoryObjectVersion, IInterfaceMember or
IInterfaceMember2, or IAnnotationalProps as the default
interface.

index An integer index that identifies which property in the collection
is to be addressed. The valid range is from one to the number
of elements in the collection. The number of elements in the
collection is specified by object.Properties.Count.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

PropertyDef Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

RelationshipDef Object
RelationshipDef Object

When you define an information model according to the repository API, you define classes of objects, types of relationships that
can exist between objects, and various properties that are attached to these object classes and relationship types. The relationship
types that you define in your information model are represented by instances of the RelationshipDef class. To add a new
relationship type (also referred to as a relationship definition) to an information model, use the CreateRelationshipDef method
of the ReposTypeLib object.

A RelationshipDef object is also a RepositoryObject and a RepositoryObjectVersion object. In addition to the members
described here, you can access members that are defined for those objects. For more information about accessing a member of
an interface that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the RelationshipDef object to:

Access persistent properties that are attached to a relationship definition.

Determine which collection types are associated with a relationship definition.

Determine which information models contain a relationship definition.

Properties

Property Description
Name The name of a RelationshipDef object
Synonym A synonym of the name of the RelationshipDef

object

Collections

Collection Description
ItemInCollections The collection of two collection types that are associated with

this relationship definition
Properties The collection of all persistent properties that are attached to

the RelationshipDef object
ReposTypeLibScopes The collection of all repository type libraries that contain this

definition

See Also

RepositoryObject Object

RepositoryObjectVersion Object

ReposTypeLib CreateRelationshipDef Method

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

RelationshipDef Name Property
RelationshipDef Name Property

This property stores the name of the RelationshipDef object.

Syntax

Object.Name=(string)

The Name property syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipDef

object
string A variable-length string that can be a maximum of 200

characters in length

See Also

RelationshipDef Object

INamedObject Interface

Meta Data Services Programming (SQL Server 2000)

RelationshipDef Synonym Property
RelationshipDef Synonym Property

This property stores a synonym of the name of the RelationshipDef object. Synonym values are not unique for relationship
definition objects.

This property is not attached to the default interface for the RelationshipDef Automation object; it is attached to the
IReposTypeInfo2 interface. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

Object.Synonym=(string)

The Synonym property syntax has the following parts.

Part Description
object An object expression that evaluates to a RelationshipDef

object
string A variable-length string that can be a maximum of 200

characters in length

See Also

INamedObject Interface

IReposTypeInfo2 Interface

RelationshipDef Name Property

RelationshipDef Object

Meta Data Services Programming (SQL Server 2000)

RelationshipDef ItemInCollections Collection
RelationshipDef ItemInCollections Collection

A relationship type is associated with two collection types. Origin collections conform to one collection type (the origin collection
type), and destination collections conform to the other collection type (the destination collection type). The ItemInCollections
collection contains the two collection definition objects that represent the origin and destination collection types.

If the relationship type has not yet been connected to its origin and destination collection types, this collection can contain less
than two collection types.

Syntax

Set variable = object.ItemInCollections(index)

The ItemInCollections collection syntax has the following parts.

Part Description
variable A variable declared as a CollectionDef object. It receives the specified collection definition.
object An object expression that evaluates to a RelationshipDef object.
index An integer index that identifies which element in the collection is to be addressed. The valid

range is from one to the total number of elements in the collection. The number of elements in
the collection is specified by object.ItemInCollections.Count. For more information, see
Selecting Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type Collection_Contains_Items This is the type of relationship by which all items

of the collection are connected to a common
source object.

Source Is Origin No The source object for the collection is not the
same as the origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Two The maximum number of items that can be
contained in the collection is two.

Sequenced Collection No As a destination collection, this does not have an
explicitly defined sequence. Collections of origin
objects are never sequenced.

Deletes Propagated No Deleting an origin object or a relationship in the
collection does not cause the deletion of a
corresponding destination object.

Destinations Named No The relationship type for the collection does not
permit the naming of destination objects.

Case-sensitive Names Not applicable Case-sensitive naming is not applicable for this
collection.

Unique Names Not applicable Unique naming is not applicable for this
collection.

See Also

CollectionDef Object

RelationshipDef Object

Meta Data Services Programming (SQL Server 2000)

RelationshipDef Properties Collection
RelationshipDef Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object through a particular
interface. The RelationshipDef object exposes three separate Properties collections. These collections are exposed by:

The IReposTypeInfo2 interface (the default) or IReposTypeInfo interface.

The IRepositoryObject or IRepositoryObject2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression. It evaluates to an object that exposes IReposTypeInfo2 or

IReposTypeInfo, IRepositoryObject or IRepositoryObject2, or IAnnotationalProps as the
default interface.

index An integer index that identifies which property in the collection is to be addressed. The valid range
is from one to the total number of elements in the collection. The number of elements in the
collection is specified by object.Properties.Count. For more information, see Selecting Items in a
Collection.

Remarks

For more information about accessing a member of an interface that is not the default interface, see Accessing Automation Object
Members.

See Also

RelationshipDef Object

ReposProperty Object

Meta Data Services Programming (SQL Server 2000)

RelationshipDef ReposTypeLibScopes Collection
RelationshipDef ReposTypeLibScopes Collection

This is the collection of repository type libraries that contain the current RelationshipDef object. .

Syntax

Set variable = object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has the following parts.

Part Description
variable A variable declared as a ReposTypeLib object. It receives the specified repository type library

object.
object An object expression that evaluates to a RelationshipDef object.
index An integer index that identifies which element in the collection is to be addressed. The valid range

is from one to the number of elements in the collection. The number of elements in the collection
is specified by object.TypeLibScopes.Count. For more information, see Selecting Items in a
Collection.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of relationship by which all items

of the collection are connected to a common
source object.

Source Is Origin No The source object for the collection is not the
same as the origin object.

Minimum Collection Size One The minimum number of items that must be
contained in the collection is one.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have an
explicitly defined sequence. Collections of origin
objects are never sequenced.

Deletes Propagated Yes The deletion of an origin object or relationship in
the collection causes the deletion of the
corresponding destination object.

Destinations Named Yes The relationship type for the collection permits
the naming of destination objects.

Case-sensitive Names No The relationship type for the collection does not
permit the use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the collection requires
that the name of a destination object be unique
within the collection of destination objects. This
applies to collections whose relationship type
permits destination objects to be named.

See Also

RelationshipDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposRoot Object
ReposRoot Object

There is one root object in each repository. The root object is the starting point for navigating to other objects in the repository.
The root object is also the starting point for two kinds of data navigation: type data navigation and instance data navigation.

Type data navigation

When you create an information model, the corresponding repository type library is attached to the root object through the
ReposTypeLibs collection. This collection can be used to enumerate all of the information models that are contained in a
repository database.

Instance data navigation

After an information model is installed, a repository database can be populated with object instance data. This instance data
consists of objects and relationships that conform to the classes and relationship types of the information model.

Because the objects are connected through relationships, you can navigate through this data. However, to enable general-
purpose repository browsers to navigate this data, the first navigational step must be from the root object of the repository
through a root relationship collection to the primary objects of your information model. Primary objects are objects that
make a good starting point for navigating to other objects of your information model.

Because this root relationship collection is different for each information model, the information model must define it. There
are two options for attaching this relationship collection to the root object:

The ReposRoot class implements the IReposRoot interface. This interface is provided to information model
creators as a connection point. You can add your connecting relationship collection to this interface.

You can extend the ReposRoot class to implement a new interface that is defined in your information model. This
interface implements a relationship collection that attaches the root object to the primary objects in your
information model.

To facilitate navigation, the root object in all repositories always has the same object identifier. The symbolic name for this object
identifier is OBJID_ReposRootObj.

A ReposRoot object is also a RepositoryObject and a RepositoryObjectVersion object. In addition to the members described
here, you can access members that are defined for those objects. For more information about accessing a member of an interface
that is not the default interface, see Accessing Automation Object Members.

When to Use

Use the ReposRoot object to:

Obtain a starting point for navigating to objects in a repository database.

Create a new information model container.

Attach a relationship collection to the root object of the repository that connects to the primary objects of your information
model.

Determine which information models are currently stored in a repository database.

Methods

Method Description
CreateTypeLib Creates an empty repository type library that you can use to define a new information

model

Collections

Collection Description
ReposTypeLibs The collection of repository type libraries that are currently stored in the repository
Properties The collection of all persistent properties that are attached to the ReposRoot object
Workspaces The collection of all workspaces present in the repository

See Also

IReposRoot Interface

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

ReposRoot CreateTypeLib Method
ReposRoot CreateTypeLib Method

This method creates an empty repository type library and attaches it to the root of the repository. Each repository type library
represents an information model. After you create an empty information model, you can populate it with classes, interfaces,
properties, and so on.

Syntax

Set variable = object.CreateTypeLib(sObjId, Name, TypeLibId)

The CreateTypeLib method syntax has the following parts.

Part Description
variable A variable declared as a ReposTypeLib object. It receives the new repository type library.
object An object expression that evaluates to a ReposRoot object.
sObjId The object identifier to be used for the new repository type library object. The repository engine

will assign an object identifier if you set this parameter to OBJID_NULL.
Name The name of the new repository type library.
TypeLibId The global identifier by which this repository type library is referenced.

Remarks

This method does not create an external type library; it creates a ReposTypeLib object in a repository database.

You use this method only when you are creating an information model programmatically. If you are using the model installer to
add a predefined information model to a repository, you do not need this method.

See Also

Object Identifiers and Internal Identifiers

ReposRoot Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposRoot ReposTypeLibs Collection
ReposRoot ReposTypeLibs Collection

This collection contains the repository type libraries currently stored in a repository database. Each repository type library
represents an information model.

Syntax

Set variable = object.ReposTypeLibs(index)

The ReposTypeLibs collection syntax has the following parts.

Part Description
variable A variable declared as a ReposTypeLib object. It receives the specified repository type library.
object An object expression that evaluates to a ReposRoot object.
index An integer index that identifies which element in the collection is to be addressed. The valid range

is from one to the total number of elements in the collection. The number of elements in the
collection is specified by object.ReposTypeLibs.Count.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type TlbManager_ContextFor_ReposTypeLibs This is the type of relationship by which all

items of the collection are connected to a
common source object.

Source Is Origin Yes The source object for the collection is also the
origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have
an explicitly defined sequence. Collections of
origin objects are never sequenced.

Deletes Propagated Yes The deletion of an origin object or relationship
in the collection causes the deletion of the
corresponding destination object.

Destinations Named Yes The relationship type for the collection permits
the naming of destination objects.

Case-sensitive Names No The relationship type for the collection does
not permit the use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the collection requires
that the name of a destination object be unique
within the collection of destination objects. This
applies to collections whose relationship type
permits destination objects to be named.

See Also

ReposRoot Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposRoot Properties Collection
ReposRoot Properties Collection

This collection contains all of the persistent properties and collections that are attached to an object through a particular interface.
The ReposRoot object exposes four separate Properties collections. These collections are exposed by:

The IManageReposTypeLib interface (the default).

The IReposRoot interface.

The IRepositoryObject interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression. It evaluates to an object that exposes IManageReposTypeLib,

IReposRoot, IRepositoryObject, or IAnnotationalProps as the default interface.
index An integer index that identifies which property in the collection is to be addressed. The valid

range is from one to the total number of elements in the collection. The number of elements in
the collection is specified by object.Properties.Count.

Remarks

Additional steps are required for accessing members that are not part of the default interface. For more information about how to
access a member of an interface that is not the default interface, see Accessing Automation Object Members.

See Also

ReposRoot Object

Meta Data Services Programming (SQL Server 2000)

ReposRoot Workspaces Collection
ReposRoot Workspaces Collection

This collection is the set of object versions checked out to a workspace.

Syntax

Set variable = object.Workspaces(index)

The Workspaces collection syntax has the following parts.

Part Description
variable A variable declared as a Workspace object. It receives the specified item in the collection.
object An object expression that evaluates to a ReposRoot object.
index An integer index that identifies which element in the collection is to be addressed. The valid range

is from one to the number of elements in the collection. The number of elements in the collection
is specified by object.Workspaces.Count.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type WsContainer_Contains_Workspaces This is the type of relationship by which all

items of the collection are connected to a
common source object.

Source Is Origin Yes The source object for the collection is also the
origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have
an explicitly defined sequence. Collections of
origin objects are never sequenced.

Deletes Propagated No Deleting an origin object or a relationship in
the collection does not cause the deletion of a
corresponding destination object.

Destinations Named No The relationship type for the collection does
not permit the naming of destination objects.

Case-sensitive Names No The collection does not permit the use of case-
sensitive names for destination objects.

Unique Names No The relationship type for the collection does
not require that the name of a destination
object be unique within the collection of
destination objects.

See Also

ReposRoot Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib Object
ReposTypeLib Object

Repository type libraries are represented by ReposTypeLib objects. There is one repository type library for every information
model contained in a repository database. Each information model provides a logical grouping of all of the type definitions.

ReposTypeLib objects are often used to support navigation when traversing an information model. However, you can also use
ReposTypeLib objects to define or extend information models programmatically. To insert a new information model into the
repository database, use the ReposRoot object.

A ReposTypeLib object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that
are defined for those objects. For more information about how to access a member of an interface that is not the default interface,
see Accessing Automation Object Members.

When to Use

Use a ReposTypeLib object to:

Define new classes, relationship types, and interfaces for an information model to create or extend an information model
programmatically.

Retrieve or modify the global identifier associated with a repository type library.

Determine which type definitions are associated with a particular repository type library.

Properties

Property Description
Name The name of the ReposTypeLib object
Prefix The prefix of an interface name that distinguishes an

interface from other identically named interfaces
TypeLibID The global identifier for the repository type library

Methods

Method Description
CreateClassDef Creates a new class definition object
CreateInterfaceDef Creates a new interface definition object
CreateRelationshipDef Creates a new relationship definition object

Collections

Collection Description
ReposTypeInfos The collection of all classes, interfaces, and relationship types that are defined in the

repository type library
ReposTypeLibContexts The collection of one repository root object that is the context for the repository type

library
Properties The collection of all persistent properties that are attached to the ReposTypeLib object

See Also

RepositoryObject Object

RepositoryObjectVersion Object

ReposRoot Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib Name Property
ReposTypeLib Name Property

This property stores the name of the ReposTypeLib object.

Syntax

object.Name=string

The Name property syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposTypeLib object
string A variable length string that can be a maximum of 255

characters

See Also

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib Prefix Property
ReposTypeLib Prefix Property

This property stores a prefix for the information model that distinguishes it from all other information models in a repository.

This property is not attached to the default interface for the ReposTypeLib Automation object; it is attached to the
IReposTypeLib2 interface. For more information about accessing a member of an interface that is not the default interface, see
Accessing Automation Object Members.

Syntax

object.prefix=(string)

The prefix property syntax has the following parts.

Part Description
object An object expression that evaluates to a ReposTypeLib object.
string A variable length string that can be a maximum of 255 characters.

Prefix values are added during model installation. If no prefix is specified, the first three letters of
the information model name are applied as a default value.

Remarks

The prefix is also used in XML for identifying namespaces (for example, "Uml" in UmlElement).

Attaching a prefix guarantees that a class that implements interfaces from different information models does not introduce a
name conflict when both interfaces share the same name. The prefix is also used in XML for identifying namespaces (for example,
"Uml" in UmlElement).

For the Open Information Model (OIM), prefix values are added during model installation. If no prefix is specified, the first three
letters of the information model name are applied as a default value.

For the latest version of the MDC (Meta Data Coalition) OIM, prefix values must be added programmatically. Prefix values are not
added during model installation.

See Also

IReposTypeLib2 Interface

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib TypeLibID Property
ReposTypeLib TypeLibID Property

This property is the global identifier for the repository type library. If you copy this property to a variable, declare the variable as a
Variant.

Syntax

object.TypeLibID

The TypeLibID property syntax has the following part.

Part Description
object An object expression that evaluates to a ReposTypeLib object

See Also

Object Identifiers and Internal Identifiers

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib CreateClassDef Method
ReposTypeLib CreateClassDef Method

This method creates a new class definition object. No interfaces are attached to the class. After you create a class definition object,
you can define it using the ClassDef object.

Syntax

Set variable = object.CreateClassDef(sObjId, Name, sClsId)

The CreateClassDef method syntax has the following parts.

Part Description
variable A variable declared as a ClassDef object. It receives the new class definition.
object An object expression that evaluates to a ReposTypeLib object.
sObjId The object identifier to be used for the new class definition object. The repository engine will

assign an object identifier if you set this parameter to OBJID_NULL.
Name The name of the new class.
sClsId The global identifier by which this class is referenced.

See Also

ClassDef Object

Object Identifiers and Internal Identifiers

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib CreateInterfaceDef Method
ReposTypeLib CreateInterfaceDef Method

The CreateInterfaceDef method creates a new interface definition object. Use the AddInterface method of the ClassDef object
to attach the interface to a class definition object.

Syntax

Set variable = object.CreateInterfaceDef(sObjId, Name, sIId, Ancestor)

The CreateInterfaceDef method syntax has the following parts.

Part Description
variable A variable declared as an InterfaceDef object. It receives the new interface definition.
object An object expression that evaluates to a ReposTypeLib object.
sObjId The object identifier to be assigned to the new interface definition object. If this parameter is set to

OBJID_NULL, the repository engine assigns an object identifier for you.
Name The name of the interface that is to be created.
sIId The interface identifier associated with the signature for this interface. If there is none, set this

parameter to zero.
Ancestor The base interface from which the new interface is derived.

See Also

ClassDef AddInterface Method

InterfaceDef Object

Object Identifiers and Internal Identifiers

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib CreateRelationshipDef Method
ReposTypeLib CreateRelationshipDef Method

This method creates a relationship definition object for a new relationship type. Once the relationship definition is created, use the
CreateRelationshipColDef method of the InterfaceDef object to create origin and destination collection definitions for the new
relationship type.

Syntax

Set variable = object.CreateRelationshipDef(sObjId, Name)

The CreateRelationshipDef method syntax has the following parts.

Part Description
variable A variable declared as a RelationshipDef object. It receives the new relationship definition.
object An object expression that evaluates to a ReposTypeLib object.
sObjId The object identifier for the new relationship type. The repository engine will assign an object

identifier if you set this parameter to OBJID_NULL.
Name The name of the new relationship type.

See Also

InterfaceDef CreateRelationshipColDef Method

InterfaceDef Object

Object Identifiers and Internal Identifiers

RelationshipDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib ReposTypeInfos Collection
ReposTypeLib ReposTypeInfos Collection

This collection contains all classes, interfaces, and relationship types that are associated with a repository type library. The
repository engine uses this collection to enforce the unique naming of all classes, interfaces, and relationship types for a
repository type library.

Syntax

Set variable = object.ReposTypeInfos(index)

The ReposTypeInfos collection syntax has the following parts.

Part Description
variable A variable declared as an object. It receives the specified class definition, interface definition, or

relationship definition.
object An object expression that evaluates to a ReposTypeLib object.
index An integer index that identifies which element in the collection is to be addressed. The valid range

is from one to the total number of elements in the collection. The number of elements in the
collection is specified by object.ReposTypeInfos.Count. For more information, see Selecting
Items in a Collection.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of relationship by which all items

of the collection are connected to a common
source object.

Source Is Origin Yes The source object for the collection is also the
origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have an
explicitly defined sequence. Collections of origin
objects are never sequenced.

Deletes Propagated Yes Deleting an origin object or a relationship in the
collection causes the deletion of a corresponding
destination object.

Destinations Named Yes The relationship type for the collection permits
the naming of destination objects.

Case-sensitive Names No This collection does not use case-sensitive
names for destination objects.

Unique Names Yes The collection requires that the name of a
destination object be unique within the
collection of destination objects.

See Also

ClassDef Object

InterfaceDef Object

Naming and Unique-Naming Collections

RelationshipDef Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib ReposTypeLibContexts Collection
ReposTypeLib ReposTypeLibContexts Collection

This collection contains one repository root object that is the context for a repository type library.

Syntax

Set variable = object.ReposTypeLibContexts(index)

The ReposTypeLibContexts collection syntax has the following parts.

Part Description
variable A variable declared as a ReposRoot object. It receives the repository root object.
object An object expression that evaluates to a ReposTypeLib object.
Index An integer index that identifies which element in the collection is to be addressed. The valid range

is from one to the number of elements in the collection. The number of elements in the collection
is specified by object.ReposTypeLibContexts.Count. For more information, see Selecting Items
in a Collection.

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type TlbManager_ContextFor_ReposTypeLibs This is the type of relationship by which all items

of the collection are connected to a common
source object.

Source Is Origin No The source object for the collection is not the
origin object.

Minimum Collection Size One The minimum number of items that must be
contained in the collection is one.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have an
explicitly defined sequence. Collections of origin
objects are never sequenced.

Deletes Propagated Yes Deleting an origin object or a relationship in the
collection causes the deletion of a corresponding
destination object.

Destinations Named Yes The relationship type for the collection permits
the naming of destination objects.

Case-sensitive Names No The collection does not permit the use of case-
sensitive names for destination objects.

Unique Names Yes The relationship type for the collection requires
that the name of a destination object be unique
within the collection of destination objects.

See Also

Naming and Unique-Naming Collections

ReposRoot Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib Properties Collection
ReposTypeLib Properties Collection

A Properties collection contains all of the persistent properties and collections that are attached to an object through a particular
interface. The ReposTypeLib object exposes three separate Properties collections. These collections are exposed by:

The IReposTypeLib2 interface (the default) and the IReposTypeLib interface.

The IReposTypeInfo or IReposTypeInfo2 interface.

The IAnnotationalProps interface.

Syntax

Set variable = object.Properties(index)

The Properties collection syntax has the following parts.

Part Description
variable A variable declared as a ReposProperty object. It receives the specified property.
object An object expression. It evaluates to an object that exposes:

IReposTypeLib or IReposTypeLib2

IRepositoryObject or IRepositoryObject2

-or-

IAnnotationalProps

as the default interface.

index An integer index that identifies which property in the collection is to be addressed. The valid range
is from one to the number of elements in the collection. The number of elements in the collection
is specified by object.Properties.Count. For more information, see Selecting Items in a Collection.

Remarks

Additional steps are required for accessing members that are not part of the default interface. For more information about
accessing a member of an interface that is not the default interface, see Accessing Automation Object Members.

See Also

ReposProperty Object

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef Object
ScriptDef Object

 New Information - SQL Server 2000 SP3.

A script definition object represents Microsoft® ActiveX® script that you can associate with a method or property definition. A
ScriptDef object provides a way to store the implementation of a method in an information model. You can also use ScriptDef
to validate properties before storing them in a repository database.

A ScriptDef object is also a RepositoryObject and a RepositoryObjectVersion object. You can also access members that are
defined for those objects and members of IReposTypeInfo. For more information about accessing a member of an interface that
is not the default interface, see Accessing Automation Object Members.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects.

When to Use

Use the ScriptDef object to define a method or a property validation rule.

Properties

Property Description
Body Contains the body of a script.
Language Contains a string that identifies the language in which the

script is written. You can provide script in Microsoft Visual
Basic® Scripting Edition (VBScript) and Microsoft JScript®.

Name The name of a ScriptDef object.

Methods

Method Description
ValidateScript Validates script syntax

Collections

Collection Description
UsingClasses Class collections for which the script applies
UsingInterfaces Interface collections for which the script applies
UsingMembers Member collections for which the script applies

See Also

Defining Script Objects

MethodDef Object

RepositoryObject Object

RepositoryObjectVersion Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef Body Property
ScriptDef Body Property

This property stores the body of a script.

Syntax

Object.Body=string

The Body property syntax has the following parts.

Part Description
object The ScriptDef object
string A variable length string that can be a maximum of 64 KB in

length

Remarks

You can provide validation using the ValidateScript method.

See Also

ScriptDef Object

ScriptDef ValidateScript Method

Meta Data Services Programming (SQL Server 2000)

ScriptDef Language Property
ScriptDef Language Property

This property stores the name of the language in which the script is written.

Syntax

Object.Language=string

The Language property syntax has the following parts.

Part Description
object The ScriptDef object.
string A variable length string that can be a maximum of 255

characters in length.

Valid values are Microsoft® Visual Basic® Scripting Edition
(VBScript) and Microsoft JScript®.

See Also

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef Name Property
ScriptDef Name Property

This property stores the name of the ScriptDef object.

Syntax

Object.Name=string

The Name property syntax has the following parts.

Part Description
object The ScriptDef object
string A variable length string that can be a maximum of 200

characters in length

See Also

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef ValidateScript Method
ScriptDef ValidateScript Method

This method validates script provided through the Body property. Validation is performed by the Microsoft® ActiveX® Scripting
Engine for the specified language.

Syntax

Object.ValidateScript

The ValidateScript method syntax has the following part.

Part Description
object The ScriptDef object

Remarks

The ValidateScript method returns S_OK if the script can be executed; otherwise it returns an error generated by the script
engine.

The syntax of the script is checked by instantiating the script. For more information, see Defining Script Objects.

See Also

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef UsingClasses Collection
ScriptDef UsingClasses Collection

This collection contains classes that use the script.

This collection is the origin collection of a relationship that associates a script with a class. The destination collection of this
relationship is the ScriptsUsedByClass collection.

Syntax

Set variable=object.UsingClasses(index)

The UsingClasses syntax has the following parts.

Part Description
variable Variable declared as an object.
object A ClassDef object.
index An integer index that identifies which class in the collection is

to be addressed. The valid range is from one to the total
number of classes in the collection. For more information, see
Selecting Items in a Collection.

See Also

ClassDef Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef UsingInterfaces Collection
ScriptDef UsingInterfaces Collection

This collection contains interfaces that use the script.

This collection is the origin collection of a relationship that associates a script with an interface. The destination collection of this
relationship is the ScriptsUsedByInterface collection.

Syntax

Set variable=object.UsingInterfaces(index)

The UsingInterfaces syntax has the following parts.

Part Description
variable Variable declared as an object.
object An InterfaceDef object.
index An integer index that identifies which interface in the collection

is to be addressed. The valid range is from one to the total
number of interfaces in the collection. For more information,
see Selecting Items in a Collection.

See Also

InterfaceDef Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

ScriptDef UsingMembers Collection
ScriptDef UsingMembers Collection

This collection contains interface members (methods or properties) that use the script.

This collection is the origin collection of a relationship that associates a script with an interface member. The destination collection
of this relationship is the ScriptsUsedByMember collection.

Syntax

Set variable=object.UsingMembers(index)

The UsingMembers syntax has the following parts.

Part Description
variable Variable declared as an object.
object A MethodDef or PropertyDef object.
index An integer index that identifies which member in the collection

is to be addressed. The valid range is from one to the total
number of members in the collection. For more information,
see Selecting Items in a Collection.

See Also

MethodDef Object

PropertyDef Object

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

COM Reference
The COM Reference documents the COM classes and interfaces of the repository API. An equivalent reference is available for
Automation objects.

In this documentation, classes and interfaces are organized into four categories.

Section Description
Repository Engine Classes Describes the classes that expose the

functionality of the repository engine.
RTIM Classes Describes the Repository Type

Information Model (RTIM) classes. These
are the abstract classes to which an
information model must conform.

Repository Engine COM Interfaces Describes the interfaces that expose the
functionality of the repository engine.

RTIM COM Interfaces Describes the interfaces that define the
RTIM.

See Also

Automation Reference

Information Models

Repository API Reference

Repository Engine

Repository Object Architecture

Visual C++ Wrappers with Meta Data Services

Meta Data Services Programming (SQL Server 2000)

Repository Engine Classes
Repository engine classes are used to add, retrieve, and change information model data in a repository. To create a new
information model, or extend an existing one, use the Repository Type Information Model (RTIM) classes. For more information,
see RTIM Classes.

All repository engine classes expose the standard IUnknown and IDispatch interfaces that provide fundamental COM and
Automation support.

The following table lists the repository engine classes in alphabetical order.

Class Description
ObjectCol Defines a set of repository objects that can

be enumerated
Relationship Connects two repository objects in a

repository database
RelationshipCol Defines a set of relationships that connect

a particular source object to a set of one
or more target objects

Repository Defines a connection to a particular
repository

RepositoryObject Defines an object that is stored in a
repository database and managed by the
repository engine

RepositoryObjectVersion Defines a versioned object that is stored in
a repository database and is managed by
the repository engine

ReposProperties Provides access to the Properties
collection

ReposProperty Provides access to a persistent member (a
property or collection) of an information
model interface

TransientObjectCol Defines an object collection that you can
create and dynamically populate at run
time using script and object methods
rather than persisted data in a repository
database

VersionCol Defines a collection of object versions
VersionedRelationship Defines a connection between two

versioned objects in a repository database
Workspace Defines a subset of a central, shared

repository

See Also

COM Reference

Repository API Reference

Repository Engine

Meta Data Services Programming (SQL Server 2000)

ObjectCol Class
ObjectCol Class

An object collection is a set of repository objects that can be enumerated. Two kinds of object collections are supported by the
repository engine:

The collection of destination objects that correspond to the relationships in a relationship collection. Use the
RelationshipCol class to manage this kind of collection.

The collection of all objects in the repository that implement a particular interface. Use the ObjectCol class to enumerate
objects in this kind of object collection.

Use the IInterfaceDef::ObjectInstances method to materialize an instance of this class.

When to Use

Use the ObjectCol class to access the collection of repository objects that expose a particular interface.

Interfaces

Interface Description
IObjectCol Manages objects in a collection
IObjectCol2 Exposes methods for controlling the load status of an object

collection

See Also

IInterfaceDef::ObjectInstances

IRepositoryDispatch Interface

RelationshipCol Class

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

Relationship Class
Relationship Class

A relationship connects two repository objects in a repository database. In this release of the repository engine, relationships are
versioned. That is, every relationship is a VersionedRelationship object. A versioned relationship can connect a particular
version of a repository object to one or more specific versions of the target object. Because every relationship is a
VersionedRelationship object, you can declare any relationship with the following line of Microsoft® Visual Basic®:

Dim myVersionedRship As VersionedRelationship

In earlier releases of the repository engine, the object model included the Relationship class, but not the
VersionedRelationship class. If you have Visual Basic programs written against earlier releases of the repository engine, those
programs might include declarations like the following:

Dim oldRship As Relationship

These programs will work, because the repository object model still includes the Relationship class. Visual Basic recognizes the
Relationship declaration as valid. But in this release, every relationship is a versioned relationship. So the object oldRship, even
though it is declared as a Relationship, must conform to the VersionedRelationship class.

To ensure that objects declared as Relationship conform to the VersionedRelationship class, the repository engine uses the
same Class Factory for both classes. In this way, any object that you declare as a Relationship implements the exact same
methods as any object that you declare as a VersionedRelationship. In effect, the following two lines of Visual Basic code are
identical:

Dim oldRship As Relationship
Dim myVersionedRship As VersionedRelationship

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IRelationship Connects two objects in an information

model

See Also

IAnnotationalProps Interface

IRelationship Interface

IRepositoryDispatch Interface

IRepositoryItem Interface

RelationshipCol Class

Repository Engine Classes

VersionedRelationship object

Meta Data Services Programming (SQL Server 2000)

RelationshipCol Class
RelationshipCol Class

A relationship collection is the set of relationships that connect a particular source repository object to a set of one or more target
objects. All of the relationships in the collection must conform to the same relationship type.

When to Use

Use the RelationshipCol class to manage a collection of relationships in a repository database.

Interfaces

Interface Description
IObjectCol Manages objects in a collection
IRelationshipCol Manages a collection of relationships
IReposQuery Provides filters on collections to control how objects appear in an object

collection
ITargetObjectCol Manages objects in a target object collection

See Also

IRepositoryDispatch Interface

Relationship Class

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

Repository Class
Repository Class

When you populate an information model, the objects and relationships that conform to the model are stored in a repository.
Multiple information models may be stored in the same repository. The Repository class represents your connection to a
particular repository.

When to Use

You can use the Repository class to connect to a repository, retrieve the root object of the repository, create new repository
objects, and manage repository transactions and error handling.

Interfaces

Interface Description
IRepository Creates and populates a repository
IRepository2 Manages individual versions of repository objects
IReposErrorQueueHandler Creates and assigns error queues
IRepositoryODBC Provides access to repository database connection information
IRepositoryODBC2 Exposes methods that enable you to set or get options for retrieving object collections

asynchronously
IRepositoryTransaction Controls repository transactions
IRepositoryTransaction2 Supports distributed, atomic transactions
IReposOptions Exposes methods for getting, setting, or resetting engine options
IReposQuery Provides filters on collections to control how objects appear in an object collection

See Also

IRepositoryDispatch

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

RepositoryObjectVersion Class
RepositoryObjectVersion Class

An object version is a specific state of a repository object at a given point in time. Each object version consists of a state that can
be permanently fixed (protected from further modification) plus another, always modifiable, aspect. The state of an object version
consists of its nonannotational property values and its origin collections. The other, always modifiable, aspect of an object version
consists of its annotational properties and its destination collections.

When to Use

Use the RepositoryObjectVersion class to manipulate a particular version of a repository object.

Interfaces

Interface Description
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IRepositoryObjectVersion Manages repository object versions
IWorkspaceItem Manages repository object versions in a workspace

See Also

RepositoryObject Class

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

RepositoryObject Class
RepositoryObject Class

A repository object is an object that is stored in a repository database and is managed by the repository engine.

In this release of the repository engine, objects can be versioned. A repository object version is a particular edition of a repository
object. Each version of an object can differ from other versions of that object in its property values and collections. When you
obtain a reference to a repository object, you are actually manipulating a particular version of that object. That is, you manipulate
a RepositoryObjectVersion object. Because you manipulate particular versions of objects, you can declare any object with the
following line of Microsoft® Visual Basic® code:

Dim myVersionedReposObject As RepositoryObjectVersion

In earlier releases of the repository engine, the object model included the RepositoryObject class, but not the
RepositoryObjectVersion class. If you have Visual Basic programs written against earlier releases, those programs might
include declarations like the following:

Dim oldReposObject As RepositoryObject

These programs will work because the repository object model still includes the RepositoryObject object. Visual Basic
recognizes the preceding declaration as valid. But whenever you manipulate an object, you actually manipulate a specific version
of that object. So the object oldReposObject, even though it is declared as a RepositoryObject, must conform to the
RepositoryObjectVersion class.

To ensure that objects declared as RepositoryObject conform to the RepositoryobjectVersion class, the repository engine uses
the same Class Factory for both classes. In this way, any object that you declare as a Relationship implements the exact same
methods as any object you declare as a VersionedRelationship. In effect, the following two lines of Visual Basic code are
identical:

Dim myVersionedReposObject As RepositoryObjectVersion
Dim oldReposObject As RepositoryObject

Interfaces

Interface Description
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObject2 Provides binary large object (BLOB) and large text file support, and exposes additional

meta data about an object
IRepositoryObjectStorage Creates and loads repository objects

See Also

IRepositoryDispatch Interface

IRepositoryItem Interface

IRepositoryObject Interface

IRepositoryObjectStorage Interface

Repository Engine Classes

RepositoryObjectVersion

Meta Data Services Programming (SQL Server 2000)

ReposProperties Class
ReposProperties Class

The ReposProperties class provides access to the Properties collection. The Properties collection gives you a convenient
mechanism for enumerating through all of the persistent properties and collections of an interface. The ReposProperty class can
be used to access the individual members in the Properties collection.

When to Use

Use the ReposProperties class to access the properties and collections of a repository object, when no custom implementation is
available, and you do not already know what members are exposed by the object's interface.

Interfaces

Interface Description
IReposProperties Provides access to the members that are attached to an

interface

See Also

IReposProperty Interface

IRepositoryDispatch Interface

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

ReposProperty Class
ReposProperty Class

The ReposProperty class provides access to a persistent member (a property or collection) of an information model interface.

When to Use

Use the ReposProperty class to access a persistent interface member, when a custom implementation is not available and you
do not already know the type or name of the member.

Interfaces

Interface Description
IReposProperty Provides access to the members that are attached to an

interface

See Also

IReposProperties Interface

IRepositoryDispatch Interface

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

TransientObjectCol Class
TransientObjectCol Class

This class defines an object collection that you can create and dynamically populate at run time using script and object methods
rather than persisted data in a repository database. It simulates a standard, persisted object collection.

When to Use

Use this class to create an object collection that is instantiated by application code and populated dynamically at run time. With
this object, you can:

Create an object collection that is not stored in a repository database.

Get a count of the number of objects in the collection.

Add and remove objects to and from the collection.

Interfaces

Interface Description
ITransientObjectCol Defines a set of repository objects that can be instantiated by an application and

populated at run time
IObjectCol Manages objects in a collection

See Also

Repository Engine Classes

TransientObjectCol Object

Meta Data Services Programming (SQL Server 2000)

VersionCol Class
VersionCol Class

A version collection is a collection of object versions.

When to Use

Use the VersionCol class to manage a collection of object versions.

Interfaces

Interface Description
IVersionCol Manages object versions in a

collection

See Also

RepositoryObjectVersion Class

RepositoryObjectVersion Object

Repository Engine Classes

Meta Data Services Programming (SQL Server 2000)

VersionedRelationship Class
VersionedRelationship Class

A relationship connects two repository objects in a repository database. In this release of the repository engine, relationships are
versioned. That is, every relationship is a VersionedRelationship object. A versioned relationship can connect a particular
version of a repository object to one or more specific versions of the target object.

When to Use

Use the VersionedRelationship class to manipulate a relationship, or to retrieve the source, target, origin, or destination object
for a relationship.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IRelationship Retrieves information about a relationship
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IVersionedRelationship Manages the TargetVersions collection of a versioned

relationship

See Also

RelationshipCol Class

Repository Engine Classes

VersionedRelationship object

Meta Data Services Programming (SQL Server 2000)

Workspace Class
Workspace Class

A workspace is a subset of the repository within which you can operate on tool data in isolation from other repository activity.

To insert a new workspace into a repository database, use any class that implements the IWorkspaceContainer interface. The
ReposRoot class is one such class.

When to Use

Use the Workspace class to perform any operation you would perform within the repository, when you want to perform the
operation in isolation from other repository activity.

Interfaces

Interface Description
INamedObject Manages object names
IRepository Creates and populates a repository
IRepository2 Creates and manages subsequent versions of repository objects
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectVersion Manages individual versions of objects, and the relationships among individual

versions of the same object
IRepositoryODBC Provides access to a repository database through an ODBC connection
IRepositoryODBC2 Exposes methods that enable you to set or get options for retrieving object collections

asynchronously
IReposQuery Provides filters on collections to control how objects appear in an object collection
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IWorkspace Manages workspaces
IWorkspaceItem Manages the participation of object versions in workspaces

See Also

IAnnotationalProps Interface

IRepositoryObjectStorage Interface

IReposTypeLib Interface

Repository Engine Classes

ReposRoot Class

Meta Data Services Programming (SQL Server 2000)

Repository Engine COM Interfaces
The repository engine interfaces expose the properties and methods that are used to add, retrieve, and change information model
data in a repository database.

These interfaces work with the interfaces that describe an information model. The Repository Type Information Model (RTIM)
interfaces are listed separately. For more information, see RTIM COM Interfaces.

All repository engine interfaces inherit from the standard IUnknown and IDispatch interfaces, which provide fundamental COM
and Automation support.

The following repository engine interfaces are listed alphabetically.

Interfaces Description
IannotationalProps Interface Accesses the annotational properties of a

repository object or relationship
IEnumRepositoryErrors Interface Provides enumeration capabilities for the

set of errors that have been placed on the
repository error queue

INamedObject Interface Accesses the Name property of a
repository object that exposes this
interface

IObjectCol Interface Enumerates the collection of repository
objects that conform to a particular class
or expose a particular interface

IObjectCol2 Interface Controls the load status of an object
collection

IRelationship Interface Connects two repository objects in a
repository database

IRelationshipCol Interface Manages the relationships that belong to
a particular relationship collection

IReposErrorQueueHandler Interface Creates a repository error queue and
retrieves an interface pointer to an error
queue

IRepository Interface Creates and accesses a repository session
IRepository2 Interface Manipulates versioned objects within a

repository session
IRepositoryDispatch Interface Accesses the properties and collections of

a repository object, when no custom
implementation is available

IRepositoryErrorQueue Interface Manages the errors that belong to a
particular repository error queue

IRepositoryItem Interface Defines general purpose methods that are
used to manage repository items

IRepositoryObject Interface Provides methods to manage repository
objects

IRepositoryObject2 Interface Supports Meta Data Browser by accessing
meta data about information models

IRepositoryObjectStorage Interface Initializes the memory image for a
repository object

IRepositoryObjectVersion Interface Manipulates any version of an object
IRepositoryODBC Interface Obtains or releases an ODBC connection

handle, or retrieves the ODBC connection
IRepositoryODBC2 Interface Sets or gets options when loading object

collections asynchronously
IRepositoryTransaction Interface Begins, commits, stops, or sets options on

a repository transaction, or obtains
information about a transaction state

IRepositoryTransaction2 Interface Begins, commits, or stops a distributed
repository transaction

IReposOptions Interface Gets, sets, or resets engine options
IReposProperties Interface Accesses a Properties collection
IReposProperty Interface Provides access to a stored member (a

property or collection) of an information
model interface

IReposProperty2 Interface Supports Meta Data Browser by retrieving
meta data for an interface without having
to query the database

IReposPropertyLarge Interface Handles binary large objects (BLOBs) and
large text fields

IReposQuery Interface Filters on collections for the purpose of
controlling how objects appear in an
object collection

ISummaryInformation Interface Maintains Comments and
ShortDescription properties

ITargetObjectCol Interface Manages the repository objects that
belong to a particular relationship
collection

ITransientObjectCol Interface Creates and dynamically populates an
object collection at run time using script
and object methods rather than stored
data in a repository database

IVersionAdminInfo Interface Retains and manipulates administrative
information about object versions

IVersionAdminInfo2 Interface Retains version string, comment, and
description data

IVersionCol Interface Manages a collection of versioned objects
IVersionedRelationship Interface Manages a collection of versioned

relationship objects
IWorkspace Interface Manages the object versions present in

the workspace and the workspace
container

IWorkspaceContainer Interface Retrieves the collection of workspaces in a
repository

IWorkspaceItem Interface Manages the participation of object
versions within workspaces

See Also

COM Reference

Information Models

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

IAnnotationalProps Interface
IAnnotationalProps Interface

Annotational properties are repository properties that can be associated with individual repository objects or relationships. Before
an annotational property value can be attached to a repository object, two requirements must be met:

The object must conform to an object class that exposes the IAnnotationalProps interface.

A property definition object must exist for an IAnnotationalProps interface property. The name of the property definition
object must match the name of your annotational property.

If these two requirements are met, you can attach an annotational property value to an object using the
IReposProperty::put_Value method to set the value of the annotational property for that particular object.

When to Use

Annotational properties are not recommended. Support for annotational properties will not be included in future releases of the
repository engine.

Version 3.0 of the repository engine still supports annotational properties. If you are already using annotational properties, you
can use the IAnnotationalProps interface to access the annotational properties of a repository object or relationship.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

Remarks

Annotational properties are maintained by the repository engine as string data. The creator and users of the annotational
property must get and set the property value using the appropriate data type through the VARIANT structure. If a data type other
than string is used, the repository engine performs the appropriate data conversion.

Because all annotational properties in the repository must be defined as interface members of the IAnnotationalProps interface,
all annotational property names share the same name space. When you choose a name for an annotational property, make the
name as specific and unique as possible.

See Also

ClassDef Class

CollectionDef Class

InterfaceDef Class

IReposProperty::put_Value

MethodDef Class

PropertyDef Class

Relationship Class

RelationshipDef Class

ReposTypeLib Class

ReposRoot Class

Meta Data Services Programming (SQL Server 2000)

IEnumRepositoryErrors Interface
IEnumRepositoryErrors Interface

This interface provides enumeration capabilities for the set of errors that have been placed on the repository error queue.

When to Use

Use the IEnumRepositoryErrors interface to access the queue of repository errors.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IEnumRepositoryErrors method Description
Clone Clones the current enumerator
Next Returns the next one or more elements
Reset Resets the enumerator to the beginning
Skip Skips over the next one or more elements

See Also

Error Handling Overview

IRepositoryErrorQueue:: _NewEnum

Repository Errors

Meta Data Services Programming (SQL Server 2000)

IEnumRepositoryErrors::Clone
IEnumRepositoryErrors::Clone

Use this method to create a clone of the COM enumerator object. After cloning, the two enumerators operate independently of
each other.

HRESULT Clone(IEnumRepositoryErrors **ppIEnum)

Parts

*ppIEnum

[out]
The interface pointer for the new enumerator object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IEnumRepositoryErrors Interface

Meta Data Services Programming (SQL Server 2000)

IEnumRepositoryErrors::Next
IEnumRepositoryErrors::Next

Use this method to retrieve the next one or more elements from the enumeration. There are two variations of this method.

HRESULT Next(
 ULONG iCount,
 REPOSERR *psErrors,
 ULONG *piFetched
)

HRESULT Next(IErrorInfo **ppIErrorInfo);

Parts

iCount

[in]
The number of elements the caller is requesting.

*psErrors

[out]
The array of REPOSERROR structures for the retrieved items.

*ppIErrorInfo

[out]
The interface pointer to the error information object for the first element in the error queue.

*piFetched

[out]
The number of elements actually fetched for the caller.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IEnumRepositoryErrors Interface

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IEnumRepositoryErrors::Reset
IEnumRepositoryErrors::Reset

Use this method to reset the enumerator to the beginning of the enumeration sequence.

HRESULT Reset(void)

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IEnumRepositoryErrors Interface

Meta Data Services Programming (SQL Server 2000)

IEnumRepositoryErrors::Skip
IEnumRepositoryErrors::Skip

Use this method to skip over the next one or more elements in the enumeration.

HRESULT Skip(ULONG iCount)

Parts

iCount

[in]
The number of elements to be skipped.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IEnumRepositoryErrors Interface

Meta Data Services Programming (SQL Server 2000)

INamedObject Interface
INamedObject Interface

Typically, a name is associated with a repository object through a naming relationship. The collection for such a relationship
provides the scope for the name, and can require that all names in the collection be unique. This is the preferred method for
naming objects, when a given object will be the destination of only one naming relationship.

If your information model contains a class that is not the destination of a naming relationship type, or is the destination of
multiple relationship types, but no single relationship type is the obvious choice to be the naming relationship type, you can
attach the Name property to the class. This is accomplished by defining your class to implement the INamedObject interface. If
your class implements the INamedObject interface, the repository engine will use that interface when asked to retrieve or set an
object name.

When to Use

Use the INamedObject interface to access the Name property of a repository object that exposes this interface.

Properties

Property Description
Name The name of the

object

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the persistent members exposed by the
INamedObject interface.

Remarks

None of the standard repository engine classes implement the INamedObject interface by default. However, the repository
engine does use the INamedObject interface, if the interface is exposed by a repository object.

When the IRepositoryItem::get_Name method is invoked for a repository object, the repository engine will perform these steps
to retrieve the name:

1. If the object exposes the INamedObject interface, the repository engine returns the value of the Name property on the
INamedObject interface.

2. Otherwise, the repository engine searches for a naming relationship for which the current object is the destination object,
taking the workspace context into consideration.

3. If such a relationship is found, the repository engine returns the name associated with that relationship.

4. If the object is not the destination of a naming relationship, the repository engine returns a null name.

When the IRepositoryItem::put_Name method is invoked for a repository object, the repository engine will perform these steps
to set the name:

1. The repository engine sets the value of the Name property of all naming relationships for which the object is the
destination.

2. If the object exposes the INamedObject interface, the repository engine also sets the value of the Name property attached
to that interface.

See Also

IRepositoryItem get_Name

IRepositoryItem put_Name

Naming and Unique-Naming Collections

Naming Objects, Collections, and Relationships

Workspace Context

Meta Data Services Programming (SQL Server 2000)

INamedObject Name Property
INamedObject Name Property

This property contains the name of an object that exposes the INamedObject interface. The name can be up to 200 bytes in
length.

Dispatch Identifier: DISPID_ObjName (68)

Property Data Type: string

See Also

INamedObject Interface

Meta Data Services Programming (SQL Server 2000)

IObjectCol Interface
IObjectCol Interface

An object collection is a set of repository objects that can be enumerated. Two kinds of object collections are supported by the
repository engine:

The collection of destination objects that correspond to the relationships in a relationship collection. Use the
ITargetObjectCol interface to manage this kind of collection.

The collection of all objects in the repository that conform to a particular class or expose a particular interface.

When to Use

Use the IObjectCol interface to enumerate the collection of repository objects that conform to a particular class or expose a
particular interface. With this interface, you can:

Get a count of the number of objects in the collection.

Enumerate the objects in the collection.

Retrieve an IRepositoryObject pointer to one of the objects in the collection.

Refresh the cached image of the object collection.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IobjectCol method Description
Get_Count Retrieves a count of the number of objects in the collection.
Get_Item Retrieves an IRepositoryObject interface pointer for the specified collection

object.
_NewEnum Retrieves an enumeration interface pointer for the collection.
Refresh Refreshes the cached image of the object collection.

See Also

IRepositoryObject Interface

ITargetObjectCol Interface

ObjectCol Class

Meta Data Services Programming (SQL Server 2000)

IObjectCol::get_Count
IObjectCol::get_Count

This method retrieves a count of the number of repository objects that are in the object collection.

HRESULT get_Count(long *piCount)

Parameters

*piCount

[out]
The number of objects in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

IObjectCol::_NewEnum
IObjectCol::_NewEnum

This method retrieves an enumeration interface pointer for the object collection. This interface is a standard Automation
enumeration interface. It supports the Clone, Next, Reset, and Skip methods. You can use the enumeration interface to step
through the objects in the collection.

HRESULT _NewEnum(
 IUnknown **ppIEnumObjects
)

Parameters

*ppIEnumObjects

[out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

IObjectCol::get_Item
IObjectCol::get_Item

This method retrieves the specified object from the collection.

HRESULT get_Item(
 VARIANT sItem,
 IRepositoryObject **ppIReposObj
)

Parameters

sItem

[in]
Identifies the item to be retrieved from the collection. This parameter can be either the index or the object identifier of the item.

*ppIReposObj

[out]
The IRepositoryObject interface pointer for the version of the specified object from the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

When this method is invoked through the ITargetObjectCol interface (which inherits this method from the IObjectCol
interface), an object can also be retrieved by name, but only if it is the destination object of a naming relationship.

This method returns a specific version of the item. To choose which version, the repository engine follows a resolution strategy.

See Also

IObjectCol Interface

IRepositoryObject Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IObjectCol::Refresh
IObjectCol::Refresh

This method refreshes the cached image of the collection. All unchanged data for objects in the collection is flushed from the
cache.

HRESULT Refresh(long iMilliseconds)

Parameters

iMilliseconds

[in]
This value is ignored.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Note The Refresh() method asynchronously refreshes the object collection (reloads the object collection and refreshes target
objects) when the asynchronous mode is in effect. The calling thread should check to determine whether refresh is complete. If
the calling thread tries to read data, refresh the collection, or construct an enumerator while refresh is in progress, it will be
blocked until refresh is complete.

See Also

IObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

IObjectCol2 Interface
IObjectCol2 Interface

This interface exposes methods that enable you to control the load status of an object collection. The IObjectCol2 interface also
inherits the methods of the IObjectCol interface.

When to Use

Use the IObjectCol2 interface to:

Obtain the load status of an object collection.

Cancel the load operation of an object collection.

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or

1).
Invoke Provides access to properties and methods exposed by an Automation object.

IObjectCol Method Description
get_Count Retrieves a count of the number of objects in the collection.
get_Item Retrieves an IRepositoryObject interface pointer for the specified collection

object.
_NewEnum Retrieves an enumeration interface pointer for the collection.
Refresh Refreshes the cached image of the object collection.

IObjectCol2 Method Description
get_LoadStatus Obtains the load status of the collection.
Cancel Requests the cancellation of the ongoing load

operation.

See Also

IObjectCol

IRepositoryObject Interface

ITargetObjectCol Interface

ObjectCol Class

Meta Data Services Programming (SQL Server 2000)

IObjectCol2::get_LoadStatus
IObjectCol2::get_LoadStatus

This method is used to obtain the load status of the object collection.

HRESULT get_LoadStatus(
 long *piStatus
)

Parts

piStatus

[out, retval]

One of the constant values: READY, INPROGRESS, CANCELLED, or FAILED.

Return Value

S_OK

The method completed successfully.

ErrorValues

The method failed to complete successfully.

See Also

IObjectCol2 Interface

IObjectCol2::Cancel

Meta Data Services Programming (SQL Server 2000)

IObjectCol2::Cancel
IObjectCol2::Cancel

This method requests the cancellation of the ongoing load operation of the object collection.

HRESULT Cancel ();

Return Value

S_OK

The method completed successfully.

ErrorValues

The method failed to complete successfully.

See Also

IObjectCol2 Interface

IObjectCol2::get_LoadStatus

Meta Data Services Programming (SQL Server 2000)

IRelationship Interface
IRelationship Interface

A relationship connects two repository objects in the repository database. A relationship has an origin object, a destination object,
and a set of properties. Each relationship conforms to a particular relationship type.

When to Use

Use the IRelationship interface to manipulate a relationship, or to retrieve the source, target, origin, or destination object for a
relationship.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IRepositoryItem method Description
Delete Deletes a repository item
get_Interface Retrieves an interface pointer to the specified item interface
get_Name Retrieves the name associated with an item
get_Repository Retrieves the IRepository interface pointer for an open repository instance of

an item
get_Type Retrieves the type of an item
Lock Locks the item
put_Name Sets the name associated with an item

IRelationship method Description
get_Destination Retrieves an interface pointer to the destination

object
get_Origin Retrieves an interface pointer to the origin object
get_Source Retrieves an interface pointer to the source object
get_Target Retrieves an interface pointer to the target object

See Also

IRepository::Refresh

Relationship Class

Meta Data Services Programming (SQL Server 2000)

IRelationship::get_Destination
IRelationship::get_Destination

This method retrieves an IRepositoryObject interface pointer to the destination object version of a relationship.

HRESULT get_Destination(
 IRepositoryObject **ppIReposObj
)

Parameters

*ppIRepObj

[out]
The IRepositoryObject interface pointer for the destination object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the relationship is a destination versioned relationship, this method is equivalent to the get_Source method. If it is an origin
versioned relationship, this method is equivalent to the get_Target method.

See Also

IRelationship::get_Source

IRelationship::get_Target

IRelationship::get_Origin

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRelationship::get_Origin
IRelationship::get_Origin

This method retrieves an IRepositoryObject interface pointer to the origin object version of a relationship.

HRESULT get_Origin(
 IRepositoryObject **ppIRepObj
)

Parameters

*ppIRepObj

[out]
The IRepositoryObject interface pointer for the origin object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the relationship is an origin versioned relationship, this method is equivalent to the get_Source method. If the relationship is a
destination versioned relationship, this method is equivalent to the get_Target method.

See Also

IRelationship::get_Source

IRelationship::get_Target

IRelationship::get_Destination

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRelationship::get_Source
IRelationship::get_Source

This method retrieves an IRepositoryObject interface pointer to the source object version of a relationship.

HRESULT get_Source(
 IRepositoryObject **ppIRepObj
)

Parameters

*ppIRepObj

[out]
The IRepositoryObject interface pointer for the source object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationship::get_Target

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRelationship::get_Target
IRelationship::get_Target

This method retrieves an IRepositoryObject interface pointer to a target object version of a relationship.

HRESULT get_Target(
 IRepositoryObject **ppIRepObj
)

Parameters

*ppIRepObj

[out]
The IRepositoryObject interface pointer for the target object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The repository engine uses follows a resolution strategy to choose a specific target object version to return.

There is one situation in which the repository engine can fail to return a version of the target object: If you are operating within a
workspace, and the collection of TargetVersions of the versioned relationship does not include the object version that is present
in the workspace, this method fails.

See Also

IRelationship::get_Source

IRelationship Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol Interface
IRelationshipCol Interface

A relationship collection is the set of versioned relationships that connect a particular source object version to a set of one or
more target objects. All of the relationships in the collection must conform to the same relationship type.

When to Use

Use the IRelationshipCol interface to manage the repository relationships that belong to a particular relationship collection.
With this interface, you can:

Get a count of the number of relationships in the collection.

Enumerate the relationships in the collection.

Add and remove relationships to and from the collection.

If the collection is sequenced, place a relationship in a specific spot in the collection sequence.

Retrieve an IRelationship pointer to one of the relationships in the collection.

Obtain the identifier of the definition object of the collection.

Retrieve an interface pointer for the source object of the collection.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRelationshipCol method Description
Add Adds a relationship to the collection
get_Count Retrieves a count of the number of relationships in the collection
_NewEnum Retrieves an enumeration interface pointer for the collection
get_Source Retrieves an interface pointer for the collection's source object
get_Type Retrieves the object identifier for the collection's definition object
Insert Inserts a relationship into a specific spot in a sequenced collection
get_Item Retrieves an IRelationship interface pointer for the specified

relationship
Move Moves a relationship from one spot to another in a sequenced collection
Refresh Refreshes the cached image of the relationship collection
Remove Removes a relationship from the collection

Remarks

The IRelationshipCol interface is similar to the ITargetObjectCol interface. Use the IRelationshipCol interface when you are
primarily interested in working with relationships. Use the ITargetObjectCol interface when you are primarily interested in
working with objects.

See Also

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::Add
IRelationshipCol::Add

This method is used to add a new item to a repository relationship collection when the sequencing of relationships in the
collection is not important. An interface pointer for the new relationship is passed back to the caller.

HRESULT Add(
 IDispatch *plReposObj,
 BSTR Name,
 IRelationship **pplRelship
);

Parts

*plReposObj

[in]
The object for which a relationship is to be added to the relationship collection. The value of plReposObj is the specific version of
the target object. If you are operating within the context of a workspace, the target object version you specify with plReposObj
must be present in the workspace.

Name

[in]
The name of the new relationship.

*pplRelship

[out]
The IRelationship interface pointer of the newly added relationship.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

You can add a relationship to a collection only when the collection source object is also the collection origin object.

When you call this method, the origin version must be unfrozen.

You can use this method to create a new versioned relationship between the source object version and a version of the target
object. You cannot use it to enlarge a versioned relationship. If the source object version already has a relationship to any version
of the target object, this method will fail. You can include another version of the target object in the versioned relationship by
adding an item to the TargetVersions collection of the versioned relationship.

See Also

IRelationship Interface

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::get_Count
IRelationshipCol::get_Count

This method retrieves a count of the number of relationships that are in the relationship collection.

HRESULT get_Count(
 long *piCount
);

Parts

*piCount

[out]
The number of relationships in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Each item in the collection is a versioned relationship. Thus, the returned count indicates how many objects are in the collection,
not the number of object versions.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::_NewEnum
IRelationshipCol::_NewEnum

This method retrieves an enumeration interface pointer for the relationship collection. This interface is a standard Automation
enumeration interface. It supports the Clone, Next, Reset, and Skip methods. You can use the enumeration interface to step
through the relationships in the collection.

HRESULT _NewEnum(
 IUnknown **ppIEnumRelships
);

Parts

*ppIEnumRelships

[out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::get_Source
IRelationshipCol::get_Source

This method retrieves an interface pointer for the source object version of the collection.

HRESULT get_Source(
 IRepositoryObject **ppIInterface
);

Parts

*ppIInterface

[out]
The interface pointer of the interface for the source object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::get_Type
IRelationshipCol::get_Type

This method retrieves the type of the collection; that is, it returns the object identifier for the definition object of the collection.

HRESULT get_Type(
 VARIANT *pColDefObjId
);

Parts

*pColDefObjId

[out]
The object identifier of the definition object of the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::Insert
IRelationshipCol::Insert

This method adds a relationship to the collection at a specified point in the collection sequence. An interface pointer for the new
relationship is passed back to the caller.

HRESULT Insert(
 IDispatch *pIReposObj,
 long iIndex,
 BSTR Name,
 IRelationship **ppIRelship
);

Parts

*pIReposObj

[in]
The repository object to be inserted into the collection sequence through the new relationship. The value of plReposObj is the
specific version of the target object. If you are operating within the context of a workspace, the target object version you specify
with plReposObj must be present in the workspace.

iIndex

[in]
The index of the sequence location where the relationship is to be inserted. If another relationship is already present at this
sequence location, the new relationship is inserted in front of the existing relationship.

Name

[in]
The name you supply for the object to which the new relationship connects.

*ppIRelship

[out]
The IRelationship interface pointer for the new relationship.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Relationships can be inserted into a collection only if the collection source object is also the collection origin object.

This method can only be used for collections that are sequenced.

When you call this method, the origin version must be unfrozen.

You can use this method to insert a new versioned relationship between the source object version and a target object version. You
cannot use it to enlarge a versioned relationship. If the source object version already has a relationship to any version of the
target object, this method will fail. You can include another version of the target object in the versioned relationship by adding an
item to the TargetVersions collection of the versioned relationship.

See Also

IRelationshipCol Interface

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::get_Item
IRelationshipCol::get_Item

This method retrieves the specified relationship from the collection.

HRESULT get_Item(
 VARIANT sItem,
 IRelationship **ppIRelship
);

Parts

sItem

[in]
Identifies the item to be retrieved from the collection. This parameter can be the index, the name, or the object identifier of the
item.

*ppIRelship

[out]
The IRelationship interface pointer for the specified relationship from the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Each item in the collection is a versioned relationship. That is, it has a collection of TargetVersions. When you obtain a reference
to the target object of a particular item (with the get_Target method of the IRelationship interface), the repository engine
chooses a particular version of the target object from the items in the TargetVersions collection of the versioned relationship.

Using the sItem parameter to specify the relationship by destination object name is supported only for naming collections.

See Also

IRelationshipCol Interface

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::Move
IRelationshipCol::Move

This method moves a relationship from one point in the collection sequence to another point.

HRESULT Move(
 long iIndexFrom,
 long iIndexTo
);

Parts

iIndexFrom

[in]
The index of the relationship to be moved in the collection sequence.

iIndexTo

[in]
The index of the sequence location to which the relationship is to be moved.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method can be used only for collections that are sequenced.

The origin object version must be unfrozen.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::Refresh
IRelationshipCol::Refresh

This method refreshes the cached image of the collection. All unchanged data for relationships in the collection is flushed from
the cache.

HRESULT Refresh(long iMilliseconds);

Parts

iMilliseconds

[in]
This value is ignored.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IRelationshipCol::Remove
IRelationshipCol::Remove

This method deletes a relationship from its relationship collection. The exact behavior of this method depends on whether the
relationship collection is an origin collection or a destination collection.

If the relationship collection is an origin collection, this method deletes the versioned relationship.

If the relationship collection is a destination collection, this method first performs object-version resolution to yield a single
target-object version, and then it removes that target-object version from the TargetVersions collection of the relationship.

HRESULT Remove(
VARIANT sItem
);

Parts

sItem

[in]
Identifies the item to be removed from the collection. This parameter can be either the index or the name associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A relationship can be removed by name only if it is a unique-naming relationship.

If the source is the origin, the origin version must be unfrozen.

If the relationship is a destination relationship and the resolution strategy yields a target object version that is frozen, this method
fails.

Removing an item from a sequenced collection does not update the collection sequence order.

See Also

IRelationshipCol Interface

Meta Data Services Programming (SQL Server 2000)

IReposErrorQueueHandler Interface
IReposErrorQueueHandler Interface

Errors that occur while accessing a repository are saved on a repository error queue. A repository error queue is a collection of
REPOSERROR structures. Each thread of execution with an open repository instance can access one active error queue at a time.

When to Use

Use the IReposErrorQueueHandler interface to create a repository error queue, assign an error queue to a thread of execution,
or retrieve an interface pointer to a thread's currently assigned error queue.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IReposErrorQueueHandler method
Description

CreateErrorQueue Creates a new repository error queue
SetErrorQueue Sets the active error queue for a thread
GetErrorQueue Retrieves an interface pointer to the currently active error queue for a

thread

See Also

Handling Errors

Repository Class

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IReposErrorQueueHandler::CreateErrorQueue
IReposErrorQueueHandler::CreateErrorQueue

This method creates a repository error queue. After it has been created, the error queue is available to be assigned to a thread
context.

HRESULT CreateErrorQueue(
 IRepositoryErrorQueue **ppIErrorQueue
);

Parameters

*ppIErrorQueue

[out]
The interface pointer for the newly created repository error queue.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposErrorQueue Interface

IReposErrorQueueHandler Interface

Meta Data Services Programming (SQL Server 2000)

IReposErrorQueueHandler::GetErrorQueue
IReposErrorQueueHandler::GetErrorQueue

This method retrieves the repository error queue that is assigned to the current thread.

HRESULT GetErrorQueue(
 IRepositoryErrorQueue **ppIErrorQueue
);

Parameters

*ppIErrorQueue

[out]
The interface pointer for the error queue that is currently assigned to this thread.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposErrorQueue Interface

IReposErrorQueueHandler Interface

Meta Data Services Programming (SQL Server 2000)

IReposErrorQueueHandler::SetErrorQueue
IReposErrorQueueHandler::SetErrorQueue

This method assigns the specified repository error queue to the current thread context.

HRESULT SetErrorQueue(
 IRepositoryErrorQueue *pIErrorQueue
);

Parameters

pIErrorQueue

[in]
The interface pointer for the error queue to be assigned to this thread.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposErrorQueue Interface

IReposErrorQueueHandler Interface

Meta Data Services Programming (SQL Server 2000)

IRepository Interface
IRepository Interface

When you define an information model, the classes, relationships, properties, and collections for the model are stored in a
repository database. Multiple information models can be stored in the same repository.

When to Use

Use the repository interface to create and access repository databases. You can also use the repository interface to create and
access repository objects in a repository database.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepository method Description
Create Creates a repository database.
CreateObject Creates a new repository object.
get_Object Retrieves the IRepositoryObject interface pointer for a repository object.
get_RootObject Retrieves the IRepositoryObject interface pointer for the root repository object.
get_Transaction Retrieves the IRepositoryTransaction interface pointer for this repository

instance.
InternalIDToObjectID Translates an internal identifier to an object identifier.
ObjectIDToInternalID Translates an object identifier to an internal identifier.
Open Opens a repository database.
Refresh Refreshes unchanged cached repository data.

See Also

Connecting to and Configuring a Repository

IRepository2 Interface

Repository Class

Repository Databases

Meta Data Services Programming (SQL Server 2000)

IRepository::Create
IRepository::Create

This method creates a new repository. The fundamental repository tables are automatically created in the new repository. An
IRepositoryObject interface pointer to the repository root object is passed back to the caller.

HRESULT Create(
 BSTR Connect,
 BSTR User,
 BSTR Password,
 long fFlags,
 IRepositoryObject **ppIRootObj
);

Parts

Connect

[in]
The ODBC connection string to be used for accessing the database server that will host your new repository.

User

[in]
The user name to use for identification to the database server.

Password

[in]
The password that matches the User input parameter.

fFlags

[in]
Flags that determine database access and caching behavior for the open repository. For more information, see ConnectionFlags
Enumeration.

*ppIRootObj

[out]
The IRepositoryObject interface pointer for the root repository object of the new repository.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

Connecting to and Configuring a Repository

IRepository Interface

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepository::CreateObject
IRepository::CreateObject

This method creates the first version of a new repository object. The specified COM interface pointer to the new object is passed
back to the caller.

HRESULT CreateObject(
 VARIANT sTypeId,
 VARIANT sObjId,
 IRepositoryObject **ppIReposObj
);

Parts

sTypeId

[in]
The type of the new object; that is, the object identifier of the class definition to which the new object conforms.

sObjId

[in]
The object identifier to be assigned to the new object. Pass in OBJID_NULL to have the repository engine assign an object
identifier for you.

*ppIReposObj

[out]
The IRepositoryObject interface pointer for the new repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The new object will automatically create persistent storage for itself.

You can use this method only to create the first version of a repository object. To create subsequent versions of the object, use
IRepositoryObjectVersion::CreateVersion.

This method can only be called from the shared repository. It cannot be called from a workspace. The workaround is to create the
object through the central repository and include it in the workspace.

See Also

IRepository Interface

IRepository2 Interface

Meta Data Services Programming (SQL Server 2000)

IRepository::get_Object
IRepository::get_Object

This method retrieves an IRepositoryObject interface pointer to the specified repository object.

HRESULT get_Object(
 VARIANT sObjectId,
 IRepositoryObject **ppIReposObj
);

Parts

sObjectId

[in]
The object identifier of the repository object to be retrieved.

*ppIReposObj

[out]
The IRepositoryObject interface pointer for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The returned IRepositoryObject interface pointer refers to a specific version of the repository object. The repository engine
follows a resolution strategy to choose a specific version.

See Also

IRepository Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IRepository::get_RootObject
IRepository::get_RootObject

This method obtains a pointer to the root object of the repository that is currently open. The root object is the repository object to
which all other repository objects are (either directly or indirectly) connected.

HRESULT get_RootObject(
 IRepositoryObject **ppIRootObj
);

Parts

*ppIRootObj

[out]
The IRepositoryObject interface pointer for the root repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepository::get_Transaction
IRepository::get_Transaction

This method retrieves the IRepositoryTransaction interface pointer for this repository instance. Use the
IRepositoryTransaction interface to manage repository transactions for this repository instance.

HRESULT get_Transaction(
 IRepositoryTransaction **ppIRepTrans
);

Parts

*ppIRepTrans

[out]
The IRepositoryTransaction interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

Meta Data Services Programming (SQL Server 2000)

IRepository::InternalIDToObjectID
IRepository::InternalIDToObjectID

This method translates an internal identifier into an object identifier. Internal identifiers are used by the repository engine to
identify repository objects.

HRESULT InternalIDToObjectID(
 VARIANT sInternalID,
 VARIANT *sObjectId
);

Parts

sInternalID

[in]
The internal identifier for the repository object.

*sObjectId

[out]
The object identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Repository object identifiers are globally unique, and they are the same across repositories for the same object. Repository
internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

IRepository Interface

IRepository::ObjectIDToInternalID

Meta Data Services Programming (SQL Server 2000)

IRepository::ObjectIDToInternalID
IRepository::ObjectIDToInternalID

This method translates an object identifier into an internal identifier. Internal identifiers are used by the repository engine to
identify repository objects.

HRESULT ObjectIDToInternalID(
 VARIANT sObjectID,
 VARIANT *sInternalId
);

Parts

sObjectID

[in]
The object identifier for the repository object.

*sInternalId

[out]
The internal identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Repository object identifiers are globally unique, and they are the same across repositories for the same object. Repository
internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This enables database queries
involving an object or relationship type identifier to be constructed without loading the definition object.

See Also

IRepository Interface

IRepository::InternalIDToObjectID

Meta Data Services Programming (SQL Server 2000)

IRepository::Open
IRepository::Open

This method opens a repository. An IRepositoryObject interface pointer to the root object is passed back to the caller.

HRESULT Open(
 BSTR Connect,
 BSTR User,
 BSTR Password,
 long fFlags,
 IRepositoryObject **ppIRootObj
);

Parts

Connect

[in]
The ODBC connection string to be used for accessing the database server that hosts your repository.

User

[in]
The user name to use for identification to the database server.

Password

[in]
The password that matches the User input parameter.

fFlags

[in]
Flags that determine database access and caching behavior for the open repository. For more information, see ConnectionFlags
Enumeration.

*ppIRootObj

[out]
The IRepositoryObject interface pointer for the root Repository object of the open repository.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepository::Refresh
IRepository::Refresh

This method refreshes all of the cached data for this repository instance. Only cached data that has not been changed by the
current process is refreshed.

HRESULT Refresh(long iMilliseconds);

Parts

iMilliseconds

[in]
This value is ignored.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

Meta Data Services Programming (SQL Server 2000)

IRepository2 Interface
IRepository2 Interface

This interface exposes methods for manipulating object-version identifiers, plus other methods inherited from the IRepository
interface.

When to Use

Use the IRepository2 interface to create and access repository databases. You can also use this interface to create and access
repository objects in a repository database, and to manipulate repository object versions.

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepository Method Description
Create Creates a repository database
CreateObject Creates a new repository object
get_Object Retrieves the IRepositoryObject interface pointer for a repository object
get_RootObject Retrieves the IRepositoryObject interface pointer for the root repository object
get_Transaction Retrieves the IRepositoryTransaction interface pointer for this repository

instance
InternalIDToObjectID Translates an internal identifier to an object identifier
ObjectIDToInternalID Translates an object identifier to an internal identifier
Open Opens a repository database
Refresh Refreshes unchanged cached repository data

IRepository2 Method Description
InternalIDToVersionID Translates an internal object-version identifier to an object-version identifier
get_Version Retrieves the IRepositoryObjectVersion interface pointer for a Repository object version
VersionIDToInternalID Translates an object-version identifier to an internal object-version identifier
CreateObjectEx Creates the first version of a new repository object of the specified type
get_MajorDBVersion Retrieves the major version number of the first repository engine version that introduced

this database format
get_MinorDBVersion Retrieves the minor version number of the first repository engine version that introduced

this database format

See Also

Repository Class

Meta Data Services Programming (SQL Server 2000)

IRepository2::get_Version
IRepository2::get_Version

Retrieves an IRepositoryObjectVersion interface pointer to the specified repository object version.

HRESULT get_Version(
 VARIANT sVersionId,
 IRepositoryObjectVersion **ppIReposVersion
 Long **fFlags
);

Parts

sVersionId

[in]
The object-version identifier of the repository object version to be retrieved.

ppIReposVersion

[out]
A pointer to the IRepositoryObjectVersion interface pointer for the repository object.

fFlag

[out]
Long integer specifying the resolution strategy used to select a specific version of the repository object. fFlag can be one of these.

Constant Value Description
SPECIFIEDVERSION 1 A specific version explicitly selected
LATESTVERSION 2 The version most recently created
VERSIONINWORKSPACE 3 The version in the workspace
PINNEDVERSION 4 A version that is pinned

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

See Also

IRepository Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IRepository2::InternalIDToVersionID
IRepository2::InternalIDToVersionID

This method translates an internal object-version identifier into an object-version identifier. Internal object-version identifiers are
used by the repository engine to identify repository object versions.

HRESULT InternalIDToObjectID(
 VARIANT sIntVersionID,
 VARIANT *psExtVersionID
);

Parts

sIntVersionID

[in]
The internal object-version identifier for the repository object.

psExtVersionID

[out]
A pointer to the object-version identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

Remarks

Repository object-version identifiers are globally unique, and are the same across repositories for the same object. Repository
internal object-version identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

IRepository::ObjectIDToInternalID

IRepository Interface

Meta Data Services Programming (SQL Server 2000)

IRepository2::VersionIDToInternalID
IRepository2::VersionIDToInternalID

This method translates an object-version identifier into an internal object-version identifier. Internal object-version identifiers are
used by the repository engine to identify repository object versions.

HRESULT ObjectIDToInternalID(
 VARIANT sExtVersionID,
 VARIANT *psIntVersionID
);

Parts

sExtVersionID

[in]
The object-version identifier for the repository object.

psIntVersionID

[out]
A pointer to the internal object-version identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same object. Repository internal
identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object version in question. This enables database
queries involving an object or relationship type identifier to be constructed without having to load the definition object.

See Also

IRepository::InternalIDToObjectID

IRepository Interface

Meta Data Services Programming (SQL Server 2000)

IRepository2::CreateObjectEx
IRepository2::CreateObjectEx

This method creates the first version of a new repository object of the specified type. The newly created version is assigned the
object-version identifier passed in as an argument. This is unlike IRepository::CreateObject(), in which the repository engine
assigns the version ID.

HRESULT IRepository2::CreateObjectEx(
VARIANT sTypeID,
VARIANT sObjectID,
VARIANT ExtVersionID,
IRepositoryObjectVersion **ppRepObjVer
);

Parts

sTypeID

[in]
The type of the new object; that is, the object identifier of the class definition to which the new object conforms.

sObjectID

[in]
The object identifier to be assigned to the new object. Pass in OBJID_NULL to have the repository engine assign an object
identifier for you.

ExtVersionID

[in]
The object-version identifier (20 bytes) to be assigned to the first version of the object.

ppRepObjVer

[out]
The IRepositoryObjectVersion pointer to the newly created version.

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

See Also

IRepository::CreateObject

Meta Data Services Programming (SQL Server 2000)

IRepository2::get_MajorDBVersion
IRepository2::get_MajorDBVersion

This method retrieves the major version number of the first repository engine version that introduced this database format.

HRESULT get_MajorDBVersion(
long *piMajorDBVersion
);

Parts

piMajorDBVersion

[out, retval]
A pointer to the major version number of the first repository engine version that introduced this database format.

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

See Also

IRepository2::get_MinorDBVersion

Meta Data Services Programming (SQL Server 2000)

IRepository2::get_MinorDBVersion
IRepository2::get_MinorDBVersion

This method retrieves the minor version number of the first repository engine version that introduced this database format.

HRESULT get_MinorDBVersion(
long *piMinorDBVersion
);

Parts

piMinorDBVersion

[out, retval]
A pointer to the minor version number of the first repository engine version that introduced this database format.

Return Value

S_OK

The method completed successfully.

Error Values

The method failed to complete successfully.

See Also

IRepository2::get_MajorDBVersion

Meta Data Services Programming (SQL Server 2000)

IRepositoryDispatch Interface
IRepositoryDispatch Interface

The IRepositoryDispatch interface is an enhanced IDispatch interface. In addition to all of the standard IDispatch methods,
IRepositoryDispatch also provides access to the Properties collection. The Properties collection gives you a convenient
mechanism to enumerate through all of the persistent properties and collections of an interface.

When you instantiate an Automation object that represents an object from your information model, and that object conforms to a
class for which there is no custom implementation (in other words, you have not provided a software implementation of the
class), the repository engine will provide an interface implementation for you. This interface implementation uses
IRepositoryDispatch as its dispatch interface.

When to Use

Use the IRepositoryDispatch interface to access the properties and collections of a repository object, when no custom
implementation is available.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

Remarks

The repository engine will supply an interface implementation only if your interface is defined to inherit from IDispatch or
IRepositoryDispatch.

See Also

IAnnotationalProps Interface

IClassDef Interface

ICollectionDef Interface

IInterfaceDef Interface

IInterfaceMember Interface

IManageReposTypeLib Interface

IPropertyDef Interface

IReposProperties Interface

IReposTypeInfo Interface

IReposTypeLib Interface

IReposRoot Interface

ISummaryInformation Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryDispatch::get_Properties Method
IRepositoryDispatch::get_Properties Method

This method retrieves the IReposProperties interface pointer. The IReposProperties interface provides methods to access the
Properties collection. The Properties collection gives you a convenient mechanism to enumerate through all of the persistent
properties and collections of an interface.

HRESULT get_Properties(IReposProperties **ppIReposProps);

Parts

*ppIReposProps

[out]
The IReposProperties interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryDispatch Interface

IReposProperties Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue Interface
IRepositoryErrorQueue Interface

Errors that occur while accessing a repository are saved on a repository error queue. A repository error queue is a collection of
REPOSERROR structures. Individual elements on a repository error queue can be managed in much the same way that elements
can be managed in other repository collections. This interface provides those management capabilities.

When to Use

Use the IRepositoryErrorQueue interface to manage the errors that belong to a particular repository error queue. With this
interface, you can:

Get a count of the number of error elements in the collection.

Enumerate the elements in the collection.

Insert and remove error elements to and from the collection.

Retrieve one of the error elements in the collection.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IRepositoryErrorQueue method Description
Count Returns a count of the number of errors on the queue
Insert Inserts a new error onto the error queue, in the specified location
Item Retrieves the specified error from the error queue
Remove Removes the specified error from the error queue
_NewEnum Creates an enumerator object for the error queue

See Also

Error Handling Overview

Handling Errors

IReposErrorQueueHandler Interface

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue::Count
IRepositoryErrorQueue::Count

This method returns the number of errors that are currently on the error queue.

ULONG Count(void);

Return Value

The number of error elements on the queue.

See Also

IRepositoryErrorQueue

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue::Insert
IRepositoryErrorQueue::Insert

This method inserts a new element into the error queue. The element can either be inserted at a specific location in the queue, or
it can be appended to the end of the queue.

HRESULT Insert(
 ULONG iIndex,
 REPOSERROR *psError
);

Parameters

iIndex

[in]
The index of the location in the error queue where this element is to be inserted. To insert an element at the beginning of the error
queue, set this parameter to one. To append the element to the end of the error queue, set this parameter to zero.

*psError

[in]
The error information for the element to be inserted. The information from this structure is copied, and the copy is placed on the
error queue.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryErrorQueue

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue::Item
IRepositoryErrorQueue::Item

This method retrieves the specified element from the error queue. There are two variations of this method.

HRESULT Item(
 ULONG iIndex,
 REPOSERROR *psError
);

HRESULT Item(
 ULONG iIndex,
 IErrorInfo **ppIErrorInfo
);

Parameters

iIndex

[in]
The index of the location in the error queue of the element to be retrieved.

*ppError

[out]
The repository error information structure with information from the retrieved element.

*ppIErrInfoObj

[out]
The interface pointer to an error information object for the retrieved element.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryErrorQueue

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue::Remove
IRepositoryErrorQueue::Remove

This method removes the specified element from the error queue.

HRESULT Remove(
 ULONG iIndex
);

Parameters

iIndex

[in]
The index of the location in the error queue of the element to be removed.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryErrorQueue

Meta Data Services Programming (SQL Server 2000)

IRepositoryErrorQueue::_NewEnum
IRepositoryErrorQueue::_NewEnum

This method creates an enumeration object for the error queue. An interface pointer for the enumeration object is passed back to
the caller.

HRESULT _NewEnum(
 IEnumRepositoryErrors **ppIEnum
);

Parameters

*ppIEnum

[out]
The interface pointer to the enumeration object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryErrorQueue

IEnumRepositoryErrors Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem Interface
IRepositoryItem Interface

The IRepositoryItem interface contains methods that are common to both repository objects and relationships. It contains all of
the general-purpose methods that are used to manage repository items.

When to Use

Use the IRepositoryItem interface to:

Retrieve an item type or name.

Obtain a lock on an item.

Change the name of an item.

Delete an item.

Get a pointer to an alternate interface that the item exposes.

Get the open repository instance through which the item is accessed.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IRepositoryItem method Description
Delete Deletes a repository item
get_Interface Retrieves an interface pointer to the specified item interface
get_Name Retrieves the name associated with an item
get_Repository Retrieves the IRepository interface pointer for an item's open repository

instance
get_Type Retrieves the type of an item
Lock Locks the item
put_Name Sets the name associated with an item

See Also

IRepositoryObject Interface

IRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::Delete
IRepositoryItem::Delete

This method deletes a repository item.

HRESULT Delete(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the item to be deleted is a repository object version, this method fails unless the object version satisfies the basic requirements
for object-version deletion.

Furthermore, if the object version is checked out to a workspace, the Delete method fails unless you invoke it from within the
context of that workspace. If the object version satisfies both of these restrictions, the repository engine deletes it and its
relationships, including any delete-propagating origin relationships. For each of these relationships, the repository engine
considers performing one or more propagated deletions.

If the item to be deleted is an origin versioned relationship, this method fails unless the source object version satisfies the basic
requirements for changing an object version.

If the source object version is changeable, the repository engine deletes the entire relationship (rather than merely removing one
item from the TargetVersions collection of the relationship). That is, after this method finishes, no version of the destination
object remains related to the origin object version. Then, if the relationship is a delete-propagating relationship, the repository
engine considers performing one or more propagated deletions.

If the item to be deleted is a destination versioned relationship, the repository engine performs object-version resolution strategy
to yield a single origin object version from the TargetVersions collection of the relationship. If that origin object version does not
satisfy the basic requirements for changing an object version, this method fails.

If that origin object version is changeable, the repository engine removes it from the TargetVersions collection of the
relationship. Then, if the relationship is a delete-propagating relationship, the repository engine considers performing one or
more propagated deletions.

See Also

Propagating Deletes

IRepositoryItem Interface

Requirements for Changing an Object-Version

Requirements for Object-Version Deletion

Resolution Strategy for Objects and Object Versions

Workspace Context

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::get_Interface
IRepositoryItem::get_Interface

This method retrieves the interface pointer for an alternate interface that the item exposes. The specified interface must be an
Automation interface; that is, it must support the methods of the IDispatch interface.

HRESULT get_Interface(
 VARIANT whichInterface,
 IDispatch **ppInterface
);

Parameters

whichInterface

[in]
Specifies the interface you want to access. This parameter can be the name of the interface, the interface identifier, or the object
identifier of the interface definition object in the repository.

*ppInterface

[out]
The interface pointer for the Automation interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Some objects expose multiple interfaces. This method is provided as a mechanism so that the Automation programmer can easily
access alternate interfaces for those cases where no type library is available for the class of the item.

See Also

IRepositoryItem Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::get_Name
IRepositoryItem::get_Name

This method retrieves the name associated with a repository item. For repository relationships, this is the name defined by the
relationship. For repository objects, this is either:

The Name property of the INamedObject interface, if the object exposes that interface.

The name defined by a relationship for which the object is the destination object.

HRESULT get_Name(BSTR *pName);

Parameters

*pName

[out]
The name associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

When you try to retrieve the name of an object version, the repository engine can look in several places for the name.

See Also

INamedObject Interface

IRepositoryItem Interface

IRepositoryItem::put_Name

Retrieving an Object Version's Name

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::get_Repository
IRepositoryItem::get_Repository

This method retrieves an IRepository interface pointer for the open repository instance or workspace through which this
repository item was instantiated.

HRESULT get_Repository(IRepository **ppIRepository);

Parameters

*ppIRepository

[out]
The IRepository interface pointer for the open repository instance or workspace.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The returned IRepository interface pointer can refer to either a Repository object or a Workspace object. If it refers to a
Workspace object, you are manipulating the item within the context of that workspace. If it refers to a Repository object, you are
manipulating the item not within the context of a workspace, but within the context of a shared repository instance.

See Also

IRepositoryItem Interface

IRepository Interface

Repository Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::get_Type
IRepositoryItem::get_Type

This method obtains the object identifier of the repository definition object to which the repository item conforms. This is the type
of the repository item.

HRESULT get_Type(VARIANT *psTypeId);

Parameters

*psTypeId

[out]
The object identifier of the definition object of the repository item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryItem Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::Lock
IRepositoryItem::Lock

This method locks a particular repository item. Locking the item prevents other processes from locking the item while you are
working with it. The lock is released when you end the current transaction.

HRESULT Lock(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryItem Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryItem::put_Name
IRepositoryItem::put_Name

This method changes one or more names of an item.

HRESULT put_Name(BSTR Name);

Parameters

Name

[in]
The name to be associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The behavior of this method depends on whether the to-be-named item is an object version, an origin versioned relationship, or a
destination versioned relationship. For more information, see Changing an Object Version's Name and Changing a Destination
Relationship's Name.

Note In some circumstances, this method may attempt to change several names. For example, an object version that implements
the INamedObject interface is the destination of three naming relationships. If you rename the object, this method will attempt
to change four names. The method returns S_OK if any of the four attempts succeeds.

See Also

IRepositoryItem Interface

INamedObject Interface

IRepositoryItem::get_Name

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject Interface
IRepositoryObject Interface

The IRepositoryObject interface provides methods to manage repository objects.

When to Use

Use the IRepositoryObject interface to:

Retrieve the object identifier or the internal identifier for a repository object.

Retrieve a repository object type or name.

Obtain a lock on a repository object.

Change the name of a repository object.

Refresh the cached image of a repository object.

Delete a repository object.

Get a pointer to an alternate interface that the object exposes.

Get the open instance of the repository session object through which the object is accessed.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IRepositoryItem method Description
Delete Deletes a repository item
get_Interface Retrieves an interface pointer to the specified item interface
get_Name Retrieves the name associated with an item
get_Repository Retrieves the IRepository interface pointer for an open repository instance

of an item
get_Type Retrieves the type of an item
Lock Locks the item
put_Name Sets the name associated with an item

IRepositoryObject method Description
get_InternalID Retrieves the internal identifier for a repository

object
get_ObjectID Retrieves the object identifier for a repository object
Refresh Refreshes the cached image of the object

See Also

ClassDef Class

CollectionDef Class

InterfaceDef Class

MethodDef Class

PropertyDef Class

RelationshipDef Class

RepositoryObject Class

ReposRoot Class

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject::get_InternalID
IRepositoryObject::get_InternalID

This method obtains the internal identifier for a repository object.

HRESULT get_InternalID(VARIANT *psInternalId);

Parameters

*psInternalId

[out]
The internal identifier of the current repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method retrieves the internal object identifier, not the internal object-version identifier.

See Also

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject::get_ObjectID
IRepositoryObject::get_ObjectID

This method retrieves the object identifier for a repository object.

HRESULT get_ObjectID(VARIANT *psObjectId);

Parameters

*psObjectId

[out]
The object identifier of the current repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method retrieves the object identifier, not the object-version identifier.

See Also

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject::Refresh
IRepositoryObject::Refresh

This method refreshes the cached image of a particular repository object version. Only unchanged cache data is refreshed.

HRESULT Refresh(long iMilliseconds);

Parameters

iMilliseconds

[in]
This value is ignored.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryItem Interface

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject2 Interface
IRepositoryObject2 Interface

This interface is implemented by all repository objects. It inherits the properties, methods, and collections of IRepositoryObject.

When to Use

Use IRepositoryObject2 to retrieve information about an object, without having to make a roundtrip to the repository database.

You can also use the Properties property on this interface to explicitly define which interfaces and collections to work with. If you
are working with inherited interfaces, a collection on the derived interface may assume the same name as the base collection on
the base interface. When both collections share the same name, using the IRepositoryObject interface can return either
collection, even though the collections may be fundamentally different in other ways. Using IRepositoryObject2 instead of
IRepositoryObject allows you to explicitly identify the collection you want, eliminating the possibility that the repository engine
will return the wrong collection.

The following example illustrates how to work with same name collections on specific interfaces using IRepositoryObject2. In
this case, a base interface and an inherited interface each have a collection named Contains.

Dim MyObject as IRepositoryObject2
MyObject.Properties(IBaseIFace + ".Contains").Value.Add oFile1
MyObject.Properties(IBaseIFace + ".Contains").Value.Add oFile2
MyObject.Properties(IInheritIFace + ".Contains").Value.Add oFile1

Properties

Property Description
ClassName Contains the name of the class where the property is used
ClassType Returns the ClassDef object that represents this property
Properties Allows the application to obtain all properties for the

object

See Also

ClassDef Object

IRepositoryObject Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject2 ClassName Property
IRepositoryObject2 ClassName Property

The ClassName property identifies the name of the class where the property is used.

Syntax

HRESULT ClassName (

 BSTR *pClassName

);

Dispatch Identifier: DISPID_IRepositoryObject2_ClassName = 31

Parameters

*pClassName

[out, retval]
A pointer to the string that contains the name of the class.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryObject2 Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject2 ClassType Property
IRepositoryObject2 ClassType Property

The ClassType property returns an in-memory pointer to a ClassDef object. An object type is identified by its object identifier.

Syntax

HRESULT ClassDef (

 VARIANT *plClassDef

);

Dispatch Identifier: DISPID_IRepositoryObject2_ClassType = 30

Parameters

*plClassDef

[out]
A pointer to the ClassDef object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryObject2 Interface

Repository Identifiers

Meta Data Services Programming (SQL Server 2000)

IRepositoryObject2 Properties Property
IRepositoryObject2 Properties Property

The Properties property allows the application to obtain all properties for the object, regardless of which interface they are
defined on.

Syntax

HRESULT Size (

 VARIANT *pIReposProps

);

Dispatch Identifier: DISPID_IRepositoryObject2_Properties = 1000

Parameters

*pIReposProps

[out]

Return Value

S_OK

The method completed successfully.

Error Values

None.

See Also

IRepositoryObject2 Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectStorage Interface
IRepositoryObjectStorage Interface

The IRepositoryObjectStorage interface initializes the memory image for a repository object. New repository objects are
initialized as empty objects. For existing repository objects, the state of the object is retrieved from the repository database.

When to Use

The IRepositoryObjectStorage interface is used by the repository engine to materialize repository objects in memory. It is not
intended for use by repository applications.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information

for an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either

0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryObjectStorage method Description
get_PropertyInterface Retrieves an IRepositoryDispatch interface pointer for accessing the persistent

members of one of the supported interfaces of an item.
InitNew Initializes memory for a new repository object.
Load Initializes memory for an existing repository object.

See Also

ClassDef Class

CollectionDef Class

InterfaceDef Class

MethodDef Class

PropertyDef Class

RelationshipDef Class

RepositoryObject Class

ReposRoot Class

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectStorage::get_PropertyInterface
IRepositoryObjectStorage::get_PropertyInterface

This method retrieves an IRepositoryDispatch interface pointer for accessing the persistent members of one of the object's
supported Automation interfaces.

The IRepositoryDispatch interface can be used to get and set member values for the interface specified by the InterfaceId input
parameter. The interface must be one that is exposed by this object.

HRESULT get_PropertyInterface(
 VARIANT InterfaceId,
 IRepositoryDispatch **ppInterface
);

Parameters

InterfaceId

[in]
The interface identifier of the interface whose properties are to be accessed.

*ppInterface

[out]
The IRepositoryDispatch interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

IRepositoryDispatch does not perform any parameter validation, and it cannot be used to access custom methods or
nonpersistent properties. It is intended for use by custom class implementers.

See Also

IRepositoryDispatch Interface

IRepositoryObjectStorage Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectStorage::InitNew
IRepositoryObjectStorage::InitNew

The repository engine uses this method to initialize a new repository object in memory.

HRESULT InitNew(
 IRepository *pIRepository,
 INTID sInternalId
);

Parameters

*pIRepository

[in]
The repository that contains this object.

sInternalId

[in]
The internal identifier for the new object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

IRepositoryObjectStorage Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectStorage::Load
IRepositoryObjectStorage::Load

The repository engine uses this method to load the state information of a repository object into memory from the repository
database.

HRESULT Load(
 IRepository *pIRepository,
 INTID sInternalId
);

Parameters

*pIRepository

[in]
The repository that contains this object.

sInternalId

[in]
The internal identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepository Interface

IRepositoryObjectStorage Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion Interface
IRepositoryObjectVersion Interface

A repository object version is a particular version of a repository object. Each version of an object can differ from other versions of
that object in its property values and collections.

When to Use

Use the IRepositoryObjectVersion interface to manipulate any version of an object, including the original version established
with IRepository::CreateObject.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IRepositoryItem method Description
Delete Deletes a repository item
Get_Interface Retrieves an interface pointer to the specified item interface
Get_Name Retrieves the name associated with an item
Get_Repository Retrieves the IRepository interface pointer for an item's open Repository

instance
Get_Type Retrieves the type of an item
Lock Locks the item
Put_Name Sets the name associated with an item

IRepositoryObject method Description
get_InternalID Retrieves the internal identifier for a Repository object
get_ObjectID Retrieves the object identifier for a Repository object

IRepositoryObjectVersion method Description
CreateVersion Creates a new version of an object as a successor to the current object

version
FreezeVersion Disallows further modification of the (nonannotational) property values or

origin collections of the current object version
get_IsFrozen Determines whether the current object version is frozen
get_ObjectVersions Retrieves an interface pointer to the collection of all versions of the current

object
get_PredecessorCreationVersion Retrieves an interface pointer to the predecessor object version from which

the current object version was created

get_PredecessorVersions Retrieves an interface pointer to the collection of all predecessor versions of
the current object version

get_ResolutionType Returns an indication of which resolution technique the repository engine
used in returning the particular version of the current object

get_SuccessorVersions Retrieves an interface pointer to the collection of all successor versions of the
current object version

get_VersionID Retrieves the object-version identifier of the current object version
get_VersionInternalID Retrieves the internal object-version identifier of the current object version
MergeVersion Changes the current object version by combining its property values and

collections with another object version

See Also

IRepository::CreateObject

RepositoryObjectVersion Class

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::CreateVersion
IRepositoryObjectVersion::CreateVersion

This method creates a new version of an object as a successor to the current object version.

HRESULT CreateVersion(
 VARIANT sVersionID
 IRepositoryObjectVersion **ppCreatedVersion
);

Parameters

sVersionID

[in]
The object-version identifier to be assigned to the new object version. If you want the repository engine to assign an object-
version identifier, use a value of EXTVERSIONID_NULL.

**ppCreatedVersion

[out]
The IRepositoryObjectVersion interface pointer for the newly created object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The current object version must be frozen.

The repository engine creates the new version as unfrozen. Its property values are identical to the current object version's
property values.

For each of the predecessor version's origin relationship collections, the repository engine takes this action:

If the corresponding relationship type has the COLLECTION_NEWORGVERSIONSPARTICIPATE flag set, the repository
engine copies the collection to the newly created version.

If the corresponding relationship type does not have the COLLECTION_NEWORGVERSIONSPARTICIPATE flag set, the
repository engine does not copy the collection to the new version.

You cannot invoke this method while operating in a workspace.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::FreezeVersion
IRepositoryObjectVersion::FreezeVersion

This method allows further modification of the property values or origin collections of the current object version. You cannot use
this method for annotational properties.

HRESULT FreezeVersion(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

After you freeze an object version, you cannot change its nonannotational property values. However, you can change the value of
any of its annotational properties.

After you freeze an object, you cannot enlarge or shrink any of its origin collections. You cannot pin, unpin, rename, or resequence
any of the items in any of its origin collections. Furthermore, you cannot change any of the individual versioned relationships in
any of the origin collections. That is, you cannot enlarge an item's set of target object versions; pin a target object version, and you
cannot unpin the pinned target object version.

If you call this method for an item currently checked out to any workspace (including the workspace in which you are working), it
returns an error.

If the to-be-frozen object version includes any nonnull origin collection whose corresponding collection type has the
COLLECTION_REQUIRESFREEZE flag set, and that nonnull collection includes an item whose TargetVersions collection contains a
nonfrozen object version, the method fails.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_IsFrozen
IRepositoryObjectVersion::get_IsFrozen

This method determines whether the current object version is frozen.

HRESULT get_IsFrozen(
 VARIANT_BOOL *pbFrozen
);

Parameters

*pbFrozen

[out]
TRUE if the current object version is frozen; FALSE if it is not frozen.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_ObjectVersions
IRepositoryObjectVersion::get_ObjectVersions

This method retrieves an interface pointer to the collection of all versions of the current object.

HRESULT get_ObjectVersions(
 IVersionCol **ppObjVersions
);

Parameters

**ppObjVersions

[out]
The IVersionCol interface pointer for the collection of object versions.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first.

You cannot modify the collection. To add a new object version, use IRepositoryObjectVersion::CreateVersion.

See Also

IRepositoryObjectVersion Interface

IRepositoryObjectVersion::CreateVersion

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_PredecessorCreationVersion
IRepositoryObjectVersion::get_PredecessorCreationVersion

This method retrieves an interface pointer to the predecessor object version from which the current object version was created.

HRESULT get_PredecessorCreationVersion(
 IRepositoryObjectVersion **ppPredCreationVersion
);

Parameters

**ppPredCreationVersion

[out]
The IRepositoryObjectVersion interface pointer for the object version from which the current object version was created.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If you invoke this method for the first version of an object, it returns an error.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_PredecessorVersions
IRepositoryObjectVersion::get_PredecessorVersions

This method retrieves an interface pointer to the collection of all predecessor versions of the current object version.

HRESULT get_PredecessorVersions(
 IVersionCol **ppPredVersions
);

Parameters

**ppPredVersions

[out]
The IVersionCol interface pointer for the collection of predecessor object versions.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method returns only the immediate predecessors of the current object version.

If you invoke this method for the first version of an object, it returns an empty collection.

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first.

You cannot modify the collection.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_ResolutionType
IRepositoryObjectVersion::get_ResolutionType

This method returns an indication of the resolution technique by which the repository engine chose to give you a reference to the
current version (rather than a reference to any other version of the same object).

HRESULT get_ResolutionType(
 LONG *pResolutionType
);

Parameters

*pResolutionType

[out]
One of four possible values. The following table lists the values.

Constant Value Description
SPECIFIEDVERSION 1 Indicates that a specific object version was

selected
LATESTVERSION 2 Indicates that the most recently created object

version was selected
VERSIONINWORKSPACE 3 Indicates that the version in the workspace was

selected
PINNEDVERSION 4 Indicates that a pinned object version was

selected

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The repository engine automatically sets the value of the ResolutionType property whenever you retrieve an object version.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_SuccessorVersions
IRepositoryObjectVersion::get_SuccessorVersions

This method retrieves an interface pointer to the collection of all successor versions of the current object version.

HRESULT get_SuccessorVersions(
 IVersionCol **ppSuccVersions
);

Parameters

**ppTargetVersions

[out]
The IVersionCol interface pointer for the collection of successor object versions.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method returns only the immediate successors of the current object version.

If the current object version has no successors, this method returns an empty collection.

Within the returned collection, the repository engine sequences the items in order of their creation, with the oldest object version
first.

You cannot modify the collection. To add a new successor to the current object version, use
IRepositoryObjectVersion::CreateVersion.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_VersionID
IRepositoryObjectVersion::get_VersionID

This method retrieves the object-version identifier of the current object version.

HRESULT get_VersionID(
 VARIANT *psVersionID
);

Parameters

*psVersionID

[out]
The object-version identifier of the current object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::get_VersionInternalID
IRepositoryObjectVersion::get_VersionInternalID

This method retrieves the internal object-version identifier of the current object version.

HRESULT get_VersionInternalID(
 VARIANT *psVersionID
);

Parameters

*psVersionID

[out]
The internal object-version identifier of the current object version.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryObjectVersion::MergeVersion
IRepositoryObjectVersion::MergeVersion

This method changes the current object version by combining its property values and origin collections with the property values
and origin collections of another version of the same object.

HRESULT MergeVersion(
 IRepositoryObjectVersion *pOtherVersion
 long fFlags
);

Parameters

*pOtherVersion

[in]
The IRepositoryObjectVersion interface pointer for the predecessor of the merge. That is, the object version whose property
values and collections should be merged into the current version.

fFlags

[in]
Long integer specifying which object version is the primary and which is secondary in the merge.

Constant Value Description
PRIMARY 1 The predecessor object is primary and the

current object is secondary.
SECONDARY 2 The predecessor object is secondary and the

current object is primary.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Relationships are inserted at the end of the sequenced collection.

The two object versions must be versions of the same object.

The current object version must be unfrozen. The other object version must be frozen.

MergeVersion compares the property values and collections of each object version to a third version, called the Basis Version.

The repository engine considers one of the two to-be-merged object versions as the primary version, and the other to be the
secondary version, according to the value of fFlags you supply. During the merge, the repository engine considers each property
and origin collection type in turn. For each property, MergeVersion uses this rule:

If the primary version differs from the Basis Version, the repository engine uses the property value from the primary
version. If only the secondary version differs from the Basis Version, the repository engine uses the property value from the
secondary version. If neither version differs from the Basis Version, the repository engine leaves the property value in the
current version unchanged.

For each origin collection type whose COLLECTION_MERGEWHOLE flag is set, MergeVersion uses this rule:

If the primary version's collection differs from the Basis Version's collection, the repository engine uses the collection from
the primary version. If only the secondary version's collection differs from the Basis Version's, the repository engine uses
the collection from the secondary version. If neither version differs from the Basis Version, the repository engine leaves the

property value in the current version unchanged.

For each origin collection type whose COLLECTION_MERGEWHOLE flag is not set, MergeVersion combines the items in the two
collections as follows:

1. MergeVersion includes in the resulting collection each item in the Basis Version not changed in or deleted from either the
primary version or secondary version.

2. MergeVersion includes in the resulting collection each item in the primary version's collection that differs from the Basis
Version.

3. MergeVersion includes in the resulting collection each item in the secondary version's collection that differs from the Basis
Version, provided the corresponding items in the primary version and the Basis Version do not differ from each other.

The resulting collection can exclude some items found in the basis object version's collection. For example, if the primary version's
collection excludes the item, the resulting collection excludes the item. Similarly, if the primary version's collection includes an
item that is identical to an item in the Basis Version's collection, but the secondary object version excludes the item, the resulting
collection excludes the item.

See Also

IRepositoryObjectVersion Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC Interface
IRepositoryODBC Interface

The repository engine stores information in an SQL database. The repository engine connects to the database server through an
ODBC connection. The IRepositoryODBC interface provides you with access to the database through the same (or a similar)
ODBC connection.

Care should be taken when accessing the repository database directly, especially when sharing the repository ODBC connection.
Specific restrictions are defined in the detailed information for each interface method. Directly accessing the repository database
in a read-only manner is generally considered safe; however, if you tune your repository application to be dependent upon
specific features of your database server, you limit the portability of your application.

When to Use

Use the IRepositoryODBC interface to obtain or release an ODBC connection handle, or to retrieve the ODBC connection string
used by the repository engine.

To obtain a pointer to this interface, use the IRepository::QueryInterface method.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryODBC method Description
ExecuteQuery Executes the specified SQL query against the repository database.
FreeConnection Releases an ODBC connection handle.
get_ConnectionString Retrieves the ODBC connection string that the repository engine uses to obtain

an ODBC connection.
GetNewConnection Obtains a new ODBC connection handle using the same connection settings that

the repository engine is using to access the repository database.
get_ReposConnection Retrieves the ODBC connection handle that the repository engine is using to

access the repository database.

See Also

IRepositoryODBC2 Interface

Repository Class

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC::ExecuteQuery
IRepositoryODBC::ExecuteQuery

 New Information - SQL Server 2000 SP3.

This method executes the specified SQL query against the repository database, and returns a collection of repository objects. The
columns that are returned by the query must be either the internal identifier (IntID) column, or a combination of the internal
identifier and the type identifier (IntID, TypeID) columns of the RTblVersions table.

HRESULT ExecuteQuery(BSTR queryString, IObjectCol **ppICol);

Parameters

queryString

[in]
The SQL query, or the name of a stored procedure.

**ppICol

[out]
The collection of objects that meet the selection criteria of the SQL query.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

See Also

IRepositoryODBC Interface

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC::FreeConnection
IRepositoryODBC::FreeConnection

This method frees an ODBC connection handle.

HRESULT FreeConnection(long Hdbc);

Parameters

Hdbc

[in]
The ODBC connection handle to be released.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Use this method to free the handle obtained through either the get_ReposConnection method or the GetNewConnection
method before releasing an open repository instance.

See Also

IRepositoryODBC Interface

IRepositoryODBC::GetNewConnection

IRepositoryODBC::get_ReposConnection

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC::get_ConnectionString
IRepositoryODBC::get_ConnectionString

This method retrieves the ODBC connection string that the repository engine uses to obtain an ODBC connection to the repository
database.

HRESULT get_ConnectionString(BSTR szString);

Parameters

szString

[out]
The ODBC connection string.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The ODBC connection string can contain user identification and password information. Take care to protect this information from
exposure to unauthorized access.

See Also

IRepositoryODBC Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC::GetNewConnection
IRepositoryODBC::GetNewConnection

This method obtains a new ODBC connection handle using the same ODBC connection string that the repository engine is using
to access the repository database. Using a new ODBC connection handle isolates you from changes made by the repository
engine.

HRESULT GetNewConnection(long *pHdbc);

Parameters

*pHdbc

[out]
A new ODBC connection handle.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Be sure to free the handle obtained through this method before releasing your open repository instance. To free the connection
handle, use the FreeConnection method.

See Also

IRepositoryODBC Interface

IRepositoryODBC::FreeConnection

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC::get_ReposConnection
IRepositoryODBC::get_ReposConnection

This method retrieves the ODBC connection handle that the repository engine is using to access the repository database.

HRESULT get_ReposConnection(long *pHdbc);

Parameters

*pHdbc

[out]
A copy of the repository engine ODBC connection handle.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If you use the repository engine ODBC connection handle, you are not isolated from changes made by the repository engine. For
example, uncommitted changes made by the repository engine will be visible to your application.

When using the ODBC connection handle of the repository engine, you must not change the state of the handle in a way that is
incompatible with the repository engine. Specifically, do not:

Change any ODBC connection options.

Perform any accesses concurrent with repository method invocations.

Directly commit or roll back a database transaction. The IRepositoryTransaction interface must always be used to manage
transactions.

Be sure to free the handle obtained through this method before releasing your open repository instance. To free the connection
handle, use the FreeConnection method.

See Also

IRepositoryODBC Interface

IRepositoryODBC::FreeConnection

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC2 Interface
IRepositoryODBC2 Interface

This interface exposes methods that enable you to set or get options for retrieving object collections asynchronously, plus other
methods inherited from the IRepositoryODBC interface.

When to Use

Use the IRepositoryODBC2 interface to obtain or release an ODBC connection handle, or to retrieve the ODBC connection string
used by the repository engine. It is also used to set or get options when loading object collections asynchronously.

To obtain a pointer to this interface, use the IRepository::QueryInterface method.

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryODBC Method Description
ExecuteQuery Executes the specified SQL query against the repository database
FreeConnection Releases an ODBC connection handle
get_ConnectionString Retrieves the ODBC connection string that the repository engine uses to obtain

an ODBC connection
GetNewConnection Obtains a new ODBC connection handle using the same connection settings that

the repository engine is using to access the repository database
get_ReposConnection Retrieves the ODBC connection handle that the repository engine is using to

access the repository database

IRepositoryODBC2 Method Description
GetOption Obtains the value of the load option
SetOption Sets the option for loading the collection

See Also

IRepositoryODBC Interface

Repository Class

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC2::GetOption
IRepositoryODBC2::GetOption

This method obtains the value of the load option.

Syntax

HRESULT GetOption(
 long iOption,
 VARIANT *psValue);

Parameters

iOption

[in]
RODBC_ASYNCH.

psValue

[out, retval]
VARIANT_TRUE or VARIANT_FALSE, depending upon whether the RODBC_ASYNCH option has been set.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryODBC Interface

IRepositoryODBC2 Interface

IRepositoryODBC2::SetOption

Meta Data Services Programming (SQL Server 2000)

IRepositoryODBC2::SetOption
IRepositoryODBC2::SetOption

This method sets the option for loading the collection. The RODBC_ASYNCH flag can be set only if the underlying database
system supports asynchronous operations.

Syntax

HRESULT SetOption(
 long iOption,
 VARIANT sValue);

Parameters

iOption

[in]
Specifies the option to set. You can set either RODBC_ASYNCH or RODBC_RESET_OPTIONS.

RODBC_ASYNCH takes an sValue.

RODBC_RESET_OPTIONS does not take an sValue.

sValue

[in]
TRUE sets the asynchronous mode of load.

FALSE clears the asynchronous mode of load.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryODBC Interface

IRepositoryODBC2 Interface

IRepositoryODBC2::GetOption

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction Interface
IRepositoryTransaction Interface

The repository engine supports transactional processing. Repository engine methods that are reading data from a repository
database may be executed outside of a transaction, but methods that write data must be bracketed within a transaction. Only one
transaction can be active at a time for each opened repository instance. Nesting of Begin or Commit method invocations is
permitted, but no actual nesting of transactions occurs.

When to Use

Use the IRepositoryTransaction interface to begin, commit, or cancel a repository transaction. You can also use this interface to
retrieve the information about the transactional state of an open repository instance, and to set transaction options.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryTransaction method Description
Abort Cancels a currently active transaction.
Begin Begins a new transaction.
Commit Commits an active transaction.
Flush Flushes uncommitted changes to the repository database.
GetOption Retrieves a transaction option.
get_Status Indicates whether there is a currently active transaction.
SetOption Sets a transaction option.

See Also

Managing Transactions and Threads

Repository Class

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::Abort
IRepositoryTransaction::Abort

This method cancels the currently active transaction for an open repository. All updates made during the transaction are undone.
The nested transaction count is set to zero.

Syntax

HRESULT Abort(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::Begin
IRepositoryTransaction::Begin

This method increments the nested transaction count by one. If there is no active transaction, this method begins a transaction for
the open repository instance.

Syntax

HRESULT Begin(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::Commit
IRepositoryTransaction::Commit

This method decrements the nested transaction count for an open repository instance. If the currently active transaction is not
nested, all changes made to repository data within the transaction are committed to the repository database. A transaction is not
nested if the nested transaction count equals one.

Syntax

HRESULT Commit(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::Flush
IRepositoryTransaction::Flush

This method flushes cached changes to the repository database.

Unless you have set the exclusive-write-through-mode transaction option, changes that you make within the scope of a
transaction are cached, and they are not written to the database until the transaction is committed. If a concurrent SQL query is
run against the repository database, the result of the query will not reflect the uncommitted changes. Typically, this is the desired
behavior.

If your repository application must be able to see uncommitted changes in SQL queries, you can use the Flush method to write
uncommitted changes to the repository database. All changes made within the scope of the current transaction are flushed.
Flushing uncommitted changes does not affect your ability to cancel a transaction through the Abort method.

Syntax

HRESULT Flush(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction::Abort

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::GetOption
IRepositoryTransaction::GetOption

This method retrieves the value of a transaction option for an open Microsoft® SQL Server™ 2000 Meta Data Services instance.

Syntax

HRESULT GetOption(
 long iOption,
 VARIANT *psValue
);

Parameters

iOption

[in]
The transaction option to retrieve. For more information about valid values and their meanings, see TransactionFlags
Enumeration.

*psValue

[out]
The value of the specified transaction option.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction::Abort

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::get_Status
IRepositoryTransaction::get_Status

This method determines whether there is a currently active transaction.

Syntax

HRESULT get_Status(long *piStatus);

Parameters

*piStatus

[out]
The current transaction status. If the value is zero, no transaction is active. If the value is nonzero, a transaction is active.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A transaction is considered active until the Commit method has successfully executed and the nested transaction count has been
decremented to zero. Depending on the data-flushing capabilities of the underlying database server, the data associated with a
committed transaction may or may not be written to the physical storage device when the Commit method returns control to its
caller.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction::Commit

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction::SetOption
IRepositoryTransaction::SetOption

This method sets one of the transaction options for an open Microsoft® SQL Server™ 2000 Meta Data Services instance. You
cannot set a transaction option while a transaction is active.

Syntax

HRESULT SetOption(
 ULONG iOption,
 VARIANT sValue
);

Parameters

iOption

[in]
The transaction option to set. For more information about valid values and their meanings, see TransactionFlags Enumeration.

sValue

[in]
The value of the specified transaction option.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRepositoryTransaction Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction2 Interface
IRepositoryTransaction2 Interface

This interface supports distributed transactions on Microsoft® SQL Server™ 6.5, SQL Server 7.0, and SQL Server 2000. However,
the operating system must be Microsoft Windows® 2000. This feature ensures that the distributed transaction is atomic; that is, it
either commits at all resource managers or aborts at all of them.

When to Use

Use the IRepositoryTransaction2 interface to begin, commit, or abort a distributed repository transaction.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryTransaction method Description
Abort Cancels a currently active transaction
Begin Begins a new transaction
Commit Commits an active transaction
Flush Stores uncommitted changes to the repository database
GetOption Retrieves a transaction option
get_Status Indicates whether there is a currently active transaction
SetOption Sets a transaction option

IRepositoryTransaction2 method Description
get_DTCTransaction Retrieves a pointer to the active Microsoft Distributed Transaction Coordinator (MS

DTC) transaction

See Also

Integration with Distributed Transaction Coordinator

IRepositoryTransaction Interface

Managing Transactions and Threads

Meta Data Services Programming (SQL Server 2000)

IRepositoryTransaction2::get_DTCTransaction
IRepositoryTransaction2::get_DTCTransaction

This method returns a pointer to the active Microsoft® Distributed Transaction Coordinator (MS DTC) transaction. If it is not
running inside an MS DTC transaction, this method returns NULL. It allows the caller to enlist other resource managers in the
same transaction that is being used to access the repository database. For example, you can use the pointer as a parameter of
IJoinTransaction::JoinTransaction to instantiate another repository session or an OLE DB provider, which you then can enlist in
the MS DTC transaction. Similarly, you can use the pointer in an aggregation wrapper that accesses another resource manager.
The wrapped object can get the MS DTC transaction in the transaction that accessed it, so it can enlist the other resource manager
in the same transaction.

Syntax

HRESULT get_DTCTransaction (
 VARIANT *UnKTransaction
);

Parameters

UnKTransaction

[out]
A pointer to the IUnknown interface on the transaction object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

For more information about the ITransactionJoin interface, see the MSDN® Library.

See Also

IRepositoryTransaction Interface

IRepositoryTransaction2 Interface

Meta Data Services Programming (SQL Server 2000)

IReposOptions Interface
IReposOptions Interface

This interface exposes methods for getting, setting, or resetting engine options. These options are used to change the default
engine behavior and to enable the application to override some of the engine optimizations.

When to use

Use the IReposOptions interface to:

Let the application exercise some control over the execution.

Change the engine's default parameters.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

Method Description
GetOption Retrieves the value of an engine's

option
SetOption Sets the value of an engine's option
ResetOptions Resets the engine's options

See Also

IReposOptions Options Table

Meta Data Services Programming (SQL Server 2000)

IReposOptions::GetOption
IReposOptions::GetOption

Use this method to retrieve the value of an engine's option.

Syntax

HRESULT GetOption(
 BSTR OptionName,
 VARIANT *OptionValue
);

Parameters

OptionName

[in]
One of the string identifiers described in the IReposOptions Options Table. For more information about option values and
descriptions, see IRepoOptions Options Table.

OptionValue

[out, retval]
A pointer to one of the values shown in the options table.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposOptions::SetOption

IReposOptions::ResetOptions

Meta Data Services Programming (SQL Server 2000)

IReposOptions::SetOption
IReposOptions::SetOption

Use this method to set the value of an engine's option.

Syntax

HRESULT SetOption(
 BSTR OptionName,
 VARIANT OptionValue
);

Parameters

OptionName

[in]
One of the string identifiers shown in the IReposOptions Options Table. For more information about option values and
descriptions, see IRepoOptions Options Table.

OptionValue

[out, retval]
One of the values described in the options table.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposOptions::GetOption

IReposOptions::ResetOptions

Meta Data Services Programming (SQL Server 2000)

IReposOptions::ResetOptions
IReposOptions::ResetOptions

Use this method to reset the values to the repository engine default option values.

Syntax

HRESULT ResetOptions();

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposOptions::GetOption

IReposOptions::SetOption

Meta Data Services Programming (SQL Server 2000)

IReposOptions Options Table
IReposOptions Options Table

The following table shows the options that can be used as parameters for the SetOption and GetOption methods.

OptionName
OptionValue

Default Type Description
OPT_RELEASENOREF
ROW_MODE

FALSE boolean When set to TRUE, this option
causes cache rows to be
immediately released when the
reference count goes to zero.
This is the same as setting the
age-out time to zero, except that
the value will not be used by the
background thread.

OPT_AGEOUT 1000 ulong The number of milliseconds after
a repository object pointer gets
released until it is outdated.
0xFFFFFFFF (-1) indicates that
the object never ages out.

OPT_TIM_AGEOUT 0xFFFFFFFF ulong The number of milliseconds after
a pointer to a type information
model object gets released until
it is outdated. 0xFFFFFFFF (-1)
indicates that the object never
ages out.

OPT_PRELOAD_AGEOUT 60000 ulong The number of milliseconds after
an object is prefetched until it is
marked as outdated and ready
to be cleaned up by the
background thread. 0xFFFFFFFF
(-1) indicates that the object
never ages out.

OPT_ATOMICOP_MODE FALSE boolean Indicates whether atomic
operations are enabled. A value
of TRUE indicates that atomic
operations are enabled, while
the value of FALSE indicates that
atomic operations are disabled.

OPT_PRELOAD_COL
_MODE

0 long The number indicates the
maximum number of objects in
a collection C such that when a
destination object collection D is
accessed, for any object in C,
then the repository engine will
preload D for all objects in C.
Zero means this preloading is
disabled.

OPT_EXPORT_MODE FALSE boolean Loads all origin collections on an
object at object creation.

OPT_NOPROPERTYPRE
FETCH_MODE

FALSE boolean If this option is set to TRUE, it
does not prefetch properties on
objects in any of the collections.

OPT_LCID 1033
(US English)

ulong The engine allows its clients to
change the locale at run-time.
This is done by using the
SetOption method and setting
LCID (locale identifier) as value.

See Also

IReposOptions::ResetOptions

Meta Data Services Programming (SQL Server 2000)

IReposProperties Interface
IReposProperties Interface

The IReposProperties interface provides access to the Properties collection. The Properties collection gives you a convenient
mechanism for enumerating through all of the persistent properties and collections of an interface, when you do not already
know the names of all of the interface members.

When you instantiate an Automation object that represents an object from your information model, and that object conforms to a
class for which there is no custom implementation (in other words, you have provided no software implementation of the class),
the repository engine provides an interface implementation for you. This interface implementation uses IRepositoryDispatch as
its dispatch interface. This dispatch interface contains one additional method, the get_Properties method, which returns an
IReposProperties interface pointer.

This support enables the Automation programmer to use syntax like the following:

Dim firstProperty As ReposProperty
Set firstProperty = repObject.Properties(1)

The second statement is resolved in the following way:

In this example, repObject is an Automation instantiation of a repository object where the default implementation has been
used.

The Properties term is the Automation level name for the get_Properties method that is supplied by the
IRepositoryDispatch dispatch interface.

The get_Properties method returns the interface pointer to the IReposProperties interface.

The default method of the IReposProperties interface is the get_Item method, which returns an IReposProperty interface
pointer for the specified property object in the Properties collection.

At this point, the Automation programmer has access to the first property in the collection through the firstProperty object
variable.

When to Use

Use the IReposProperties interface to access the properties and collections of a repository object when no custom
implementation is available, and you do not already know what members are exposed by the object's interface. With the
IReposProperties interface, you can:

Get a count of the number of members in the collection.

Retrieve an IReposProperty interface pointer to one of the members in the collection.

Enumerate the members in the collection.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface

GetTypeInfoCount Retrieves the number of type information interfaces that an object provides
(either 0 or 1)

Invoke Provides access to properties and methods exposed by an Automation object

IReposProperties method Description
get_Count Retrieves the count of the number of members in the collection
get_Item Retrieves the IReposProperty interface pointer for the specified member of the

collection
get_Type Retrieves the type of the interface to which these properties are attached
_NewEnum Retrieves a standard Automation enumeration interface pointer for the collection

Remarks

Only persistent members (that is, members that are stored in the repository) are represented in the Properties collection.

See Also

ReposProperties Class

IRepositoryDispatch Interface

IReposProperty

Meta Data Services Programming (SQL Server 2000)

IReposProperties::get_Count
IReposProperties::get_Count

This method retrieves a count of the number of persistent members (properties and collections) that are in the Properties
collection.

HRESULT get_Count(long *piCount);

Parameters

*piCount

[out]
The number of members in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperties Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperties::get_Item
IReposProperties::get_Item

This method retrieves the specified member from the Properties collection.

HRESULT get_Item(
 VARIANT sItem,
 IReposProperty **ppIReposProperty
);

Parameters

sItem

[in]
Identifies the item to be retrieved from the collection. This parameter can be either the index or the name of the member, or the
object identifier of the property definition object for the member.

*ppIReposProperty

[out]
The IReposProperty interface pointer for the specified collection member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperties Interface

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperties::get_Type
IReposProperties::get_Type

This method retrieves the object identifier for the interface definition of the interface to which these properties are attached. This
object identifier is referred to as the type of the interface.

HRESULT get_Type(VARIANT *psTypeId);

Parameters

*psTypeId [out]

The object identifier for the interface definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperties Interface

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperties::_NewEnum
IReposProperties::_NewEnum

This method retrieves an enumeration interface pointer for the Properties collection. This interface is a standard Automation
enumeration interface. It supports the Clone, Next, Reset, and Skip methods. You can use the enumeration interface to step
through the members in the collection.

HRESULT _NewEnum(IUnknown **ppIEnumProps);

Parameters

*ppIEnumProps

[out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperties Interface

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty Interface
IReposProperty Interface

The IReposProperty interface provides access to a persistent member (a property or collection) of an information model
interface.

When you instantiate an Automation object that represents an object from your information model, and that object conforms to a
class for which there is no custom implementation (in other words, you have provided no software implementation of the class),
the repository engine provides an interface implementation for you. This interface implementation uses IRepositoryDispatch as
its dispatch interface.

The IRepositoryDispatch interface is an enhanced IDispatch interface; in addition to all of the standard IDispatch methods,
IRepositoryDispatch also provides access to the Properties collection. The Properties collection gives you a convenient
mechanism to enumerate through all of the persistent properties and collections of an interface. The IReposProperty interface
can be used to access the individual members in the Properties collection.

This support enables the Automation programmer to use syntax like the following:

Dim firstPropName As String
Let firstPropName = repObject.Properties(1).Name

The second statement resolves in the following way:

In this example, repObject is an Automation instantiation of a repository object where the default implementation has been
used.

The Properties term is the Automation level name for the get_Properties method that is supplied by the
IRepositoryDispatch interface.

The get_Properties method returns the interface pointer to the IReposProperties interface.

The default method of the IReposProperties interface is the get_Item method, which returns an IReposProperty interface
pointer for the specified property object in the Properties collection.

The Name term is the Automation level name for the get_Name method that is supplied by the IReposProperty interface.

At this point, the Automation programmer has access to the name of the first property in the collection through the
firstPropName variable.

When to Use

Use the IReposProperty interface to access a persistent interface member, when no custom implementation is available, and you
do not already know the type or name of the member. With this interface, you can:

Retrieve the name of a property or collection.

Retrieve the type of a property or collection.

Get or set the value of a property.

Methods

IUnknown methods Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch methods Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers.

GetTypeInfo Retrieves a type information object, which can be used to get the type information
for an interface.

GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0
or 1).

Invoke Provides access to properties and methods exposed by an Automation object.

IReposProperty methods Description
get_Type Retrieves the type of a persistent interface member.
get_Name Retrieves the name of a persistent interface member.
get_Value Retrieves the value of a persistent interface member.
put_Value Sets the value of a persistent property.

Remarks

Only persistent members (that is, members that are stored in the repository database) can be accessed by the IReposProperty
interface.

See Also

ReposProperty Class

IReposProperties Interface

IRepositoryDispatch Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty::get_Name
IReposProperty::get_Name

This method retrieves the name of a persistent interface member (a property or collection).

HRESULT get_Name(BSTR *pName);

Parameters

*pName

[out]
The name of the member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty::get_Type
IReposProperty::get_Type

This method retrieves the type of a persistent property or collection; that is, it returns the object identifier of the definition object
to which the member conforms.

HRESULT get_Type(VARIANT *psTypeId);

Parameters

*psTypeId

[out]
The object identifier of the member's definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty::get_Value
IReposProperty::get_Value

This method retrieves the value of a persistent interface member (a property or collection). If the member is a collection, the
retrieved value is a pointer to the interface that supports that type of collection.

HRESULT get_Value(VARIANT *psValue);

Parameters

*psValue

[out]
The property value.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty::put_Value
IReposProperty::put_Value

This method sets the value of a persistent interface property. The type of the input parameter is converted to the storage data type
of the property. If the type of the input parameter cannot be successfully converted to the storage data type, this method will
return an error.

HRESULT put_Value(VARIANT sValue);

Parameters

sValue

[in]
The property value to be set.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

You cannot set the value of a read-only property or a collection.

See Also

IReposProperty Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 Interface
IReposProperty2 Interface

This interface is used by applications such as the Meta Data Browser to retrieve meta data for an interface without having to query
the database.

Properties

Properties Description
APIType An API type enumeration constant that identifies the API type of the

object.
IsBaseMember Indicates whether the property is a base member.
IsOriginCollection Indicates whether the collection is the origin of the relationship.
PropType Returns the IIFaceMember object that represents this property.
IsReadOnly Returns the meta data information that represents this property.

See Also

IReposProperty Interface

Using Meta Data Browser

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 APIType Property
IReposProperty2 APIType Property

The APIType property contains the data type of the property.

Syntax

HRESULT APIType (

 LONG *pAPIType

);

Dispatch Identifier: DISPID_IReposProperty2_APIType = 42

Parameters

*pAPIType

[out]
The data type of the property.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty2 Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 IsBaseMember Property
IReposProperty2 IsBaseMember Property

The IsBaseMember property indicates whether the property is a base member.

Syntax

HRESULT IsBaseMember (

 VARIANT_BOOL *pIsBase

);

Dispatch Identifier: DISPID_IReposProperty2_IsBaseMember = 41

Parameters

*pIsBase

[out]
TRUE if the property is a base member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty2 Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 IsOriginCollection Property
IReposProperty2 IsOriginCollection Property

The IsOriginCollection property indicates whether the collection is the origin of the relationship.

Syntax

HRESULT IsOriginCollection (

 VARIANT_BOOL *pIsOrigin

);

Dispatch Identifier: DISPID_IReposProperty2_IsOriginCollection = 43

Parameters

*pIsOrigin

[out]
TRUE if the collection is the origin of the relationship.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty2 Interface

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 PropType Property
IReposProperty2 PropType Property

The PropType property returns the IIFaceMember of the PropertyDef, CollectionDef, or Alias object that represents this
property.

Syntax

HRESULT PropType (

 VARIANT *pIIfaceMember

);

Dispatch Identifier: DISPID_IReposProperty2_PropType = 40

Parameters

*pIIfaceMember

[out]
A pointer to the IIFaceMember interface of this object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

Alias Object

CollectionDef Object

IReposProperty2 Interface

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

IReposProperty2 IsReadOnly Property
IReposProperty2 IsReadOnly Property

The IsReadOnly property indicates whether a property is read-only.

Syntax

HRESULT IsReadOnly(

VARIANT_BOOL *pIsReadOnly

);

Dispatch Identifier: DISPID_IReposProperty2_IsReadOnly = 44

Parameters

*pIsReadOnly

[out]
TRUE if the property is a derived member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposProperty2 Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge Interface
IReposPropertyLarge Interface

This interface is used to handle binary large objects (BLOBs) and large text fields. The IReposPropertyLarge is only available to
BLOB and text data. Attempting to use it with other kinds of data will fail.

This interface is intended to be an IDispatch version of some IStream methods.

When to Use

All text and binary fields can publish this interface, regardless of their size.

Properties

Property Description
Size The size of a BLOB in bytes.
CurrentPosition Used to get and set the current position.

Methods

Methods Description
Read Reads a chunk of data from the BLOB or large text field.
ReadFromFile Sets the value of the BLOB or large text field to be the contents of a file.
Close Notifies the engine that no additional data is to be read from or written to the BLOB or large text

field.
Write Writes a chunk of data to the BLOB or large text field.
WriteToFile Stores the contents of a BLOB or large text field in a file.

See Also

IReposProperty Interface

Programming BLOBs and Large Text Fields

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::Size
IReposPropertyLarge::Size

The Size property contains the size (in bytes) of a binary large object (BLOB) or large text field.

Syntax

HRESULT Size (

 LONG........*plSize

);

Dispatch Identifier: DISPID_IReposPropertyLarge_Size = 32

Parameters

*plSize

[out]
The size of the BLOB.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::CurrentPosition
IReposPropertyLarge::CurrentPosition

The CurrentPosition property is used to get and set a position for a large BLOB.

Syntax

HRESULT CurrentPosition (

 LONG........*plCurrentPosition

);

Dispatch Identifier: DISPID_IReposPropertyLarge_CurrentPosition = 34

Parameters

*plCurrentPosition

[out]
Moves the read pointer to a position in the BLOB.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::Read
IReposPropertyLarge::Read

This method reads a chunk of data from a BLOB or large text field.

Syntax

HRESULT Read (

 LONG SizeToRead,

 LONG *pSizeRead,

 VARIANT * psBlob

);

Dispatch Identifier: DISPID_IReposPropertyLarge_Read = 30

Parameters

SizeToRead

[in]
A request for the amount of data to read.

*plSizeRead

[out]
The actual amount of data read.

*psBlob

[out]
A pointer to a location where the retrieved data will be stored. It must be large enough to contain the amount of data requested.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::ReadFromFile
IReposPropertyLarge::ReadFromFile

This method configures the object to use a file for the BLOB value.

Syntax

HRESULT ReadFromFile (

 BSTR FileName

);

Dispatch Identifier: DISPID_IReposPropertyLarge_ReadFromFile = 35

Parameters

FileName

[in]
The path of the file to read.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Existing data in the BLOB value is overwritten, and the seek position is reset.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IRepositoryPropetyLarge::Close
IRepositoryPropetyLarge::Close

Moves the read pointer to a position in the BLOB.

Syntax

HRESULT Close (

 LONG IPosition

);

Dispatch Identifier: DISPID_IReposPropertyLarge_Close = 33

Parameters

IPosition

[in]
A byte offset relative to the start of the BLOB.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method tells the engine that no more data is to be read from or written to the BLOB.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::Write
IReposPropertyLarge::Write

This method writes a chunk of data to a BLOB or large text field.

Syntax

HRESULT Write (

 VARIANT sBlob

);

Dispatch Identifier: DISPID_IReposPropertyLarge_Write = 31

Parameters

sBlob

[in]
A pointer to the data to be written.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposPropertyLarge::WriteToFile
IReposPropertyLarge::WriteToFile

This method configures the object to write the contents of the BLOB to a file.

Syntax

HRESULT WriteToFile (

 BSTR FileName

);

Dispatch Identifier: DISPID_IReposPropertyLarge_WriteToFile = 36

Parameters

FileName

[in]
The path of the file where the data is written.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IReposPropertyLarge Interface

Meta Data Services Programming (SQL Server 2000)

IReposQuery Interface
IReposQuery Interface

This interface allows you to use filters on collections in order to give you control over the objects that appear in an object
collection.

When to use

The IReposQuery interface is implemented by the following objects to enable you to apply different queries with given filter
conditions:

The Repository object: This allows you to query the whole repository.

The Workspace object: This allows you to query the workspace.

The relationship collection objects: This allows you to query all instances in the given relationship collection. (Notice that the
ITargetObjectCol interface implies IReposQuery; therefore, all the objects that implement this interface also implement
IReposQuery.)

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IReposQuery Method Description
GetCollection Filters relationship collections in a workspace or in the whole

repository

See Also

Filtering Collections

Repository Object

Workspace Object

Meta Data Services Programming (SQL Server 2000)

IReposQuery::GetCollection
IReposQuery::GetCollection

This method is used to filter relationship collections in a workspace or in the whole repository.

Syntax

HRESULT GetCollection(
 BSTR Filter,
 long Flags
 IObjectCol2 **ppObjCol

);

Parameters

Filter

[in]
A text string that limits the objects that appear in the collection. This string can be a maximum of 255 characters in length.

Flags

[in]
An optional parameter to control the synchronicity of the query (default = 0). The following flag values are supported.

Flag enumerator Value Description
FILTERCOL_SYNCH 0 The collection is fetched synchronously (default).
FILTERCOL_ASYNCH 2 The collection is fetched asynchronously. The

collection pointer returned is an IObjectCol2
interface, which can be used to query the status of
the asynchronous fetch.

*ppObjCol

[out, retval]
A pointer to the object collection.

Filter Text String

The text string of the Filter parameter is case insensitive. The engine will return an error code if the syntax of the Filter parameter
is wrong. The Filter parameter obeys these rules:

1. The string format is based on the SQL WHERE clause format. For example,

[PROPA] = 'employee' AND [PROPB]>10.

2. Property names are provided in the format:

[property identifier]

where the property identifier can either be the object identifier of the property definition, or in the format:

typelib.interface.property.

As a result, any occurrence of the character [has to be escaped if it is not marking the start of a property identifier. The
escape sequence is \ (that is, you must use \[whenever you want to specify [).

If the typelib or the interface part is omitted, the following rules apply:

If the filtering applies to a relationship collection, the omitted type library is assumed to be the same as the type
library in which the relationship collection was defined. In addition, the omitted interface name is assumed to be the
same as the target

If filtering applies to the repository session, an E_REP_UNKNOWNPROPERTY error is returned.

3. The following operators are supported:

The Boolean operators AND, OR, and NOT.

The comparison operators =, <, <=, >, >=, IN, and LIKE.

Grouping of conditions by parentheses.

4. The following special, case-insensitive clauses are supported:

InstanceOf (class definition list)

The class definition list is a comma-delimited list of class definition object identifiers. The collection returned contains
those objects that are instances of these class definitions. The list elements are considered to be connected together by
the OR logical operator.

Implements (interface definition list)

The interface definition list is a comma-delimited list of interface definition object identifiers. The collection returned
contains those objects that support the interfaces given. The list elements are considered to be connected together by
the OR logical operator.

5. If the Filter parameter is empty, all objects in the collection are returned.

The Filter parameter can include an Order By clause that accepts a comma-separated list of property names. The property
names follow the same rules as property names in the selection part of the Filter parameter.

The following is an example of a valid Filter parameter:

[FirstName]='Jason' AND [Age]>20 ORDER BY [LastName]

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

Filtering Collections

Filtering Derived Collections

IReposQuery Interface

Meta Data Services Programming (SQL Server 2000)

ISummaryInformation Interface
ISummaryInformation Interface

The ISummaryInformation interface maintains Comments and ShortDescription properties for objects that expose this
interface.

When to Use

Use the ISummaryInformation interface to access the Comments and ShortDescription properties of a repository object.

Properties

Property Description
Comments General comments about the

object
ShortDescription A brief description of the object

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface

provides access to the properties exposed by the ISummaryInformation interface.

Meta Data Services Programming (SQL Server 2000)

ISummaryInformation Comments Property
ISummaryInformation Comments Property

This property contains general comments about an object. Up to 65,536 bytes of information can be stored in this property.

Dispatch Identifier: DISPID_Comments (66)

Property Data Type: long varchar

See Also

ISummaryInformation Interface

Meta Data Services Programming (SQL Server 2000)

ISummaryInformation ShortDescription Property
ISummaryInformation ShortDescription Property

This property contains a short description of an object. Up to 255 bytes of information can be stored in this property.

Dispatch Identifier: DISPID_ShortDesc (67)

Property Data Type: varchar

See Also

ISummaryInformation Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol Interface
ITargetObjectCol Interface

A target object collection is a set of repository object versions that are attached to a particular source object version through a
relationship collection. At most, one version of each repository object is present in any target object collection.

When to Use

Use the ITargetObjectCol interface to manage the repository objects that belong to a particular relationship collection. With this
interface, you can:

Get a count of the number of objects in the collection.

Enumerate the objects in the collection.

Add and remove objects to and from the collection.

If the collection is sequenced, place an object in a specific spot in the collection sequence.

Retrieve an IRepositoryObject pointer to one of the objects in the collection.

Obtain the type of the collection.

Retrieve an interface pointer for the collection's source object.

Refresh the cached image of the target object collection.

Methods

IUnknown methods Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IObjectCol method Description
get_Count Retrieves a count of the number of objects in the collection.
_NewEnum Retrieves an enumeration interface pointer for the collection. This interface is a standard

Automation enumeration interface. It supports the Clone, Next, Reset, and Skip methods.
get_Item Retrieves an IRepositoryObject interface pointer for the specified collection object.
Refresh Refreshes the cached image of the target object collection.

ITargetObjectCol method Description
Add Adds an object to the collection
get_Source Retrieves an interface pointer for the collection's source object
get_Type Retrieves the object identifier for the collection's definition object
Insert Inserts an object into a specific spot in a sequenced collection
Move Moves an object from one spot to another in a sequenced collection

Remove Removes an object from the collection

Remarks

The ITargetObjectCol interface is similar to the IRelationshipCol interface. Use the ITargetObjectCol interface when you are
primarily interested in working with objects. Use the IRelationshipCol interface when you are primarily interested in working
with relationships between objects.

See Also

IRelationshipCol Interface

RelationshipCol Class

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::Add
ITargetObjectCol::Add

This method is used to add a new item to an object collection, when the sequencing of objects in the collection is not important.
An interface pointer for the new relationship is passed back to the caller.

HRESULT Add(
 IDispatch *plReposObj,
 BSTR Name,
 IRelationship **pplRelship
);

Parameters

*plReposObj

[in]
The repository object version to be added to the collection.

Name

[in]
The name to be assigned to the object that is being added to the collection.

*pplRelship

[out]
The newly added object's relationship interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Objects may only be added to a collection when the collection's source object is also the collection's origin object.

When you call this method, the origin version must be unfrozen.

You can use this method to create a new versioned relationship between the source object version and a version of the target
object. You cannot use it to enlarge a versioned relationship. If the source object version already has a relationship to any version
of the target object, this method will fail. You can include another version of the target object in the versioned relationship by
adding an item to the versioned relationship's TargetObjects collection.

The value of plReposObj is the specific version of the target object.

See Also

IRelationship Interface

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::get_Source
ITargetObjectCol::get_Source

This method retrieves the IRepositoryObject interface pointer for the collection's source object version.

HRESULT get_Source(IRepositoryObject **ppIInterface);

Parameters

*ppIInterface

[out]
The interface pointer of the IRepositoryObject interface for the source object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::get_Type
ITargetObjectCol::get_Type

This method retrieves the type of the collection; that is, it returns the object identifier for the collection's definition object.

HRESULT get_Type(VARIANT *pColDefObjId);

Parameters

*pColDefObjId

[out]
The object identifier of the collection's definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::Insert
ITargetObjectCol::Insert

This method adds an object to the collection at a specified point in the collection sequence. An interface pointer for the new
relationship is passed back to the caller.

HRESULT Insert(
 IDispatch *pIReposObj,
 long iIndex,
 BSTR Name,
 IRelationship **ppIRelship
);

Parameters

*pIReposObj

[in]
The repository object to be inserted into the collection sequence.

iIndex

[in]
The index of the sequence location where the object is to be inserted. If another object is already present at this sequence location,
the new object is inserted before the existing object.

Name

[in]
The name of the object. Set this parameter to a null string if the object is not referred to by name.

*ppIRelship

[out]
The IRelationship interface pointer for the new object's relationship with the collection's origin object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Objects may only be inserted into a collection when the collection's source object is also the collection's origin object.

This method can only be used for collections that are sequenced.

When you call this method, the origin version must be unfrozen.

You can use this method to insert a new versioned relationship between the source object version and a version of the target
object. You cannot use it to enlarge a versioned relationship. If the source object version already has a relationship to any version
of the target object, this method will fail. You can include another version of the target object in the versioned relationship by
adding an item to the versioned relationship's TargetObjects collection.

The value of plReposObj is the specific version of the target object.

See Also

IRelationship Interface

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::Move
ITargetObjectCol::Move

This method moves an object from one point in the collection sequence to another point.

HRESULT Move(
 long iIndexFrom,
 long iIndexTo
);

Parameters

iIndexFrom

[in]
The index of the object to be moved in the collection sequence.

iIndexTo

[in]
The index of the sequence location to which the object is to be moved.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method can only be used for collections that are sequenced.

The origin object version must be unfrozen.

See Also

ITargetObjectCol Interface

Meta Data Services Programming (SQL Server 2000)

ITargetObjectCol::Remove
ITargetObjectCol::Remove

This method removes the specified object from the collection. The exact behavior of this method depends on whether the
relationship collection is an origin collection or a destination collection.

If the relationship collection is an origin collection, this method deletes the versioned relationship.

If the relationship collection is a destination collection, this method first performs object-version resolution to yield a single
target-object version, and then it removes that target-object version from the relationship's TargetVersions collection.

HRESULT Remove(
VARIANT sItem
);

Parameters

sItem

[in]
Identifies the item to be retrieved from the collection. This parameter can be the index, the name, or the object identifier of the
item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

An object can be removed by name only if it is the destination object of a naming relationship.

If the source is the origin, the origin version must be unfrozen.

If the relationship is a destination relationship, and the resolution strategy yields a target object version that is frozen, this method
fails.

Removal from a sequenced collection does not update the collection sequence order.

See Also

ITargetObjectCol Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

ITransientObjectCol Interface
ITransientObjectCol Interface

This interface provides transient object collections that you can create and dynamically populate at run time using script and
object methods rather than persisted data in a repository database.

ITransientObjectCol inherits from IObjectCol. Except for the fact that a transient object collection is not saved to a repository
database, it is identical in functionality to the ObjectCol object.

You can have multiple transient object collections at one time. The object collection can contain only repository objects. Although
enumeration is supported, sequencing is not. Objects and object collections represented by TransientObjectCol are not
versioned.

When to Use

Use this interface to create an object collection that is instantiated by application code and populated dynamically at run time.
With this interface, you can add and remove objects to and from the collection

Methods

Method Description
Add Adds an object to the collection.
Remove Removes an object from the collection.

See Also

ObjectCol Class

TransientObjectCol Class

Meta Data Services Programming (SQL Server 2000)

ITransientObjectCol::Add
ITransientObjectCol::Add

Use this method to add target objects to an object collection.

Syntax

HRESULT Add([in] IDispatch *pIReposObj)

Parts

*pIReposObj

[in]
The repository object version to be added to the collection

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Populating a TransientObjectCol is done using the Add method for each object that you want to add to the collection.

See Also

ITransientObjectCol Interface

ITransientObjectCol::Remove

Meta Data Services Programming (SQL Server 2000)

ITransientObjectCol::Remove
ITransientObjectCol::Remove

Use this method to remove a specified object from a transient object collection.

Syntax

HRESULT Remove([in] VARIANT sItem)

Parts

sItem

[in]
Identifies the item to be removed from the collection. This parameter can be the index, the object identifier, or the Object-
Version identifier of the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This property method a specific repository object from the collection. You can identify an object by its position in the collection (as
indicated by the index) or by identifier.

See Also

ITransientObjectCol Interface

Object Identifiers and Internal Identifiers

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo Interface
IVersionAdminInfo Interface

Use this interface to retain and manipulate administrative information about repository object versions.

When to Use

By default, no class implements this interface. But within information models, any class can implement this interface, thereby
ensuring that for each object conforming to that class, the repository automatically retains the properties listed here.

Properties

Property Description
CreateByUser The user who created the object version.
ModifyByUser The user who made the most recent modification to the object version.
VersionCreateTime The date and time the object version was created.
VersionModifyTime The date and time of the most recent modification to the object

version.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

See Also

IVersionAdminInfo2 Interface

IVersionCol Interface

IVersionedRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo CreateByUser Property
IVersionAdminInfo CreateByUser Property

This property indicates the user who created the object version.

Dispatch Identifier: DISPID_CreateByUser (83)

Property Data Type: string

See Also

IVersionAdminInfo Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo ModifyByUser Property
IVersionAdminInfo ModifyByUser Property

This property indicates the user who most recently modified the object version. If the object version is frozen, this property
indicates the user who froze the object version.

Dispatch Identifier: DISPID_ModifyByUser (84)

Property Data Type: string

Remarks

ModifyByUser does not change when an origin relationship or target object collection is modified.

See Also

IVersionAdminInfo Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo VersionCreateTime Property
IVersionAdminInfo VersionCreateTime Property

This property contains the date and time at which the object version was created.

The default value is set to 9999-12-31-00:00:0000 after the object is created but before it is committed. The current date and time
are set only after the commit is successful.

Dispatch Identifier: DISPID_VersionCreateTime (81)

Property Data Type: datetime

See Also

IVersionAdminInfo Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo VersionModifyTime Property
IVersionAdminInfo VersionModifyTime Property

This property contains the date and time at which the object version was most recently modified. If the object version is frozen,
this property is the date and time at which the object version was frozen.

The default value is set to 9999-12-31-00:00:0000 after the object is created but before it is committed. The current date and time
are set only after the commit is successful.

Dispatch Identifier: DISPID_VersionModifyTime (82)

Property Data Type: string

Remarks

VersionModifyTime does not change when an origin relationship or target object collection is modified.

See Also

IVersionAdminInfo Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo2 Interface
IVersionAdminInfo2 Interface

Use this interface to set and retrieve the description of repository object versions. This interface inherits from the
IVersionAdminInfo interface.

When to Use

By default, no class except for Repository Type Information Model (RTIM) classes implements this interface. But within
information models, any class can implement this interface. Use this interface to ensure that the repository automatically retains
the properties inherited from IVersionAdminInfo. You can also use this interface to set or retrieve the version comments
properties on IVersionAdminInfo2.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1)
Invoke Provides access to properties and methods exposed by an Automation object

Properties

IVersionAdminInfo property Description
CreateByUser The name of the user who created the object version
ModifyByUser The name of the user who made the most recent modification to the object

version
VersionCreateTime Date and time the object version was created
VersionModifyTime Date and time of the most recent modification to the object version

IVersionAdminInfo2 property Description
VersionLabel The version string property. It is an application-supplied version label.
VersionComments The version comment property. It corresponds to the comments added when a file is

checked into a version control system.
VersionShortDesc The short description property. It is a short summary of the version comments.

See Also

Repository Type Information Model

IVersionAdminInfo Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo2 VersionLabel Property
IVersionAdminInfo2 VersionLabel Property

This property indicates the version label supplied by the application.

Dispatch Identifier: DISPID_ VersionLabel (90)

Property Data Type: string

See Also

IVersionAdminInfo Interface

IVersionAdminInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

IVersionAdminInfo2 VersionComments Property
IVersionAdminInfo2 VersionComments Property

This property contains user-defined comments about the version.

Dispatch Identifier: DISPID_ VersionComments (92)

Property Data Type: string

See Also

IVersionAdminInfo Interface

IVersionAdminInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

IversionAdminInfo2 VersionShortDesc Property
IversionAdminInfo2 VersionShortDesc Property

This property is used to add a short description comment.

Dispatch Identifier: DISPID_ VersionShortDesc (91)

Property Data Type: string

See Also

IVersionAdminInfo Interface

IVersionAdminInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol Interface
IVersionCol Interface

A version collection is a collection of object versions. The repository API supports multiple collection types. For more information
about each one, see Kinds of Version Collections.

When to Use

Use the IVersionCol interface to manage the contents of a workspace, to manage the target object versions of a versioned
relationship, to navigate an object's version graph, or to manipulate all the versions of a particular object.

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IVersionCol Method Description
Add Adds an object version to the collection.
get_Count Returns the number of items in the collection.
get_Item Returns an interface pointer to an item of the collection.
_NewEnum Retrieves an enumeration interface pointer for the

collection.
Refresh Refreshes the cached image of the collection.
Remove Removes an object version from the collection.

See Also

VersionCol Class

Meta Data Services Programming (SQL Server 2000)

IVersionCol::Add
IVersionCol::Add

Adds an object version to the collection.

Syntax

HRESULT Add(
 IRepositoryObjectVersion *pIReposVersion
 IRepositoryObjectVersion **ppIAddedVersion
);

Parts

*pIReposVersion

[in]
The IRepositoryObjectVersion interface pointer to the object version to be added to the collection.

**ppIAddedVersion

[in]

1. For Target-Versions, ppIAddedVersion is the same as the first parameter: pIReposVersion.

2. For Versions-of-Workspace, ppIAddedVersion is the workspace-scoped version of pIReposVersion.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

There are many different kinds of object version collections. You can apply this method to some of them, but not to others. This
method works for:

TargetVersions collection. You can use this method to enlarge the set of versions of a particular target object that are
related to a particular source object.

Contents collection. You can use this method to add an object version to the set of items contained in the workspace.

This method does not work for:

Predecessor collection. To enlarge an object version's set of predecessors, use the MergeVersion method of the
IRepositoryObjectVersion interface.

Successor collection. To enlarge an object version's set of successors, use the CreateVersion method of the
IRepositoryObjectVersion interface.

ObjectVersions collection. To enlarge an object's set of versions, use the CreateVersion method of the
IRepositoryObjectVersion interface.

Workspaces collection. To enlarge the set of workspaces to which an object version belongs, you do not add a workspace
to an object version—rather you add the object version to a workspace. In other words, you use the Add method of the
IVersionCol interface. In this case, the version collection you are manipulating is the Contents collection, not the
Workspaces collection.

Checkouts collection. To check out another item to a workspace, use the Checkout method of the IWorkspaceItem
interface.

See Also

IVersionCol Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol::get_Count
IVersionCol::get_Count

Retrieves count of the number of items in the collection.

Syntax

HRESULT get_Count(
 long *piCount
);

Parts

*piCount

[out]
The number of items in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IVersionCol Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol::get_Item
IVersionCol::get_Item

Retrieves the specified object version from the collection.

Syntax

HRESULT get_Item(
 VARIANT sItem
 IRepositoryObjectVersion **ppIReposVersion
);

Parts

sItem

[in]
Identifies the item to be retrieved from the collection. This parameter can be the index, the object identifier, or the object-version
identifier of the item.

**ppIReposVersion

[out]
The IRepositoryObjectVersion interface pointer for the retrieved object versions.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

There are many different kinds of version collection. The sItem parameter can be an object identifier for some version collections,
but not for others. It can be an object identifier only for the ObjectVersions collection, the Workspaces collection, or the
Checkouts collection.

See Also

IVersionCol Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol::_NewEnum
IVersionCol::_NewEnum

This method retrieves an enumeration interface pointer for the relationship collection. This interface is a standard Automation
enumeration interface. It supports the Clone, Next, Reset, and Skip methods. You can use the enumeration interface to step
through the relationships in the collection.

Syntax

HRESULT _NewEnum(
 IUnknown **ppIEnum
);

Parts

**ppIEnum

[out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IVersionCol Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol::Refresh
IVersionCol::Refresh

This method refreshes the cached image of the collection. All unchanged data for items in the collection is flushed from the cache.

Syntax

HRESULT Refresh(
 long iMilliseconds
);

Parts

iMilliseconds

[in]
This value is ignored.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IVersionCol Interface

Meta Data Services Programming (SQL Server 2000)

IVersionCol::Remove
IVersionCol::Remove

Removes an object version from the collection.

Syntax

HRESULT Remove(
 VARIANT sItem
);

Parts

sItem

[in]
Identifies the item to be removed from the collection. This parameter can be the index, the object identifier, or the Object-
Version identifier of the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

There are many different kinds of Object-Version collections. You can apply this method to some of them, but not to others. This
method works for:

TargetVersions collections. You can use this method to reduce the set of versions of a particular target object that are
related to a particular source object.

ObjectVersions collections. You can use this method to remove an object version from the set of items contained in the
workspace.

This method fails for:

Predecessor collections. To enlarge an object version's set of predecessors, use MergeVersion.

Successor collections. To enlarge an object version's set of successors, use the CreateVersion method of the
IRepositoryObjectVersion interface.

ObjectVersions collections. To enlarge an object's set of versions, use the CreateVersion method of the
IRepositoryObjectVersion interface.

Workspaces collections. To remove a workspace from the set of workspaces in which an object version is present, you
must explicitly remove the object version from that workspace's ObjectVersions collection.

Checkouts collections. To reduce the number of items checked out to a workspace, use the Checkin method of the
IWorkspaceItem interface.

The sItem parameter can be an object identifier for some version collections, but not for others. It can be an object identifier only
for the ObjectVersions collection, the Workspaces collection, or the Checkouts collection.

See Also

IVersionCol Interface

Kinds of Version Collections

Meta Data Services Programming (SQL Server 2000)

IVersionedRelationship Interface
IVersionedRelationship Interface

A versioned relationship connects one source object version to any number of versions of a destination object. Versioned
relationships are items within relationship collections.

When to Use

Use the IVersionedRelationship interface to manipulate a relationship, or to retrieve the source, target, origin, or destination
object for a relationship.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
Get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IRepositoryItem methods Description
Delete Deletes a repository item
Get_Interface Retrieves an interface pointer to the specified item interface
Get_Name Retrieves the name associated with an item
Get_Repository Retrieves the IRepository interface pointer for an item's open repository

instance
Get_Type Retrieves the type of an item
Lock Locks the item
Put_Name Sets the name associated with an item

IRelationship method Description
Get_Destination Retrieves an interface pointer to the destination

object
Get_Origin Retrieves an interface pointer to the origin object
Get_Source Retrieves an interface pointer to the source object
Get_Target Retrieves an interface pointer to the target object

IVersionedRelationship method Description
Get_TargetVersions Returns an interface pointer to the set of target versions of the relationship
Pin Establishes one target version as the pinned target version
Unpin Unpins all target versions

See Also

IRelationship Interface

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

IVersionedRelationship::get_TargetVersions
IVersionedRelationship::get_TargetVersions

Retrieves an IVersionCol interface pointer to a collection of object versions. Each item in the collection is a particular version of
the target object to which a versioned relationship refers.

HRESULT get_TargetVersions(
 IVersionCol **ppTargetVersions
);

Parameters

**ppTargetVersions

[out]
The IVersionCol interface pointer for the collection of target object versions.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IRelationship Interface

IVersionedRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IVersionedRelationship::Pin
IVersionedRelationship::Pin

Identifies which target object version of an origin relationship is the pinned version.

HRESULT Pin(
 IRepositoryObjectVersion *pIReposVersion
);

Parameters

*pIReposVersion

[in]
The IRepositoryObjectVersion interface pointer for the object version to be pinned.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

You can use this method only for origin relationships. The origin object of the versioned relationship must be unfrozen.

If the origin object of the relationship is checked out to a workspace, the Pin method will work only from within that workspace.

When you pin a target object version for versioned relationship, any previously pinned target object version of the relationship
becomes unpinned.

The target object version to be pinned must already participate in the relationship.

See Also

IRelationship Interface

IRelationship::Get_Destination

IVersionedRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IVersionedRelationship::Unpin
IVersionedRelationship::Unpin

Declares that no target object version of an origin versioned relationship is pinned.

HRESULT Unpin(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

You can use this method only for origin relationships. The origin object of the versioned relationship must be unfrozen.

If the origin object of the versioned relationship is checked out to a workspace, the Unpin method will work only from within that
workspace.

See Also

IRelationship Interface

IRelationship::Get_Target

IVersionedRelationship Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspace Interface
IWorkspace Interface

A workspace is a subset of the repository within which you can operate on tool data in isolation from other repository activity. The
IWorkspace interface provides methods for operating on workspaces.

When to Use

Use the IWorkspace interface to manage the object versions present in the workspace, the object versions checked out to the
workspace, and to manage the workspace containers in which the workspace is present. (In Microsoft® SQL Server™ 2000 Meta
Data Services, there is only one workspace container, the root object.)

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface

provides access to the Properties collection.

IWorkspace method Description
get_Checkouts Returns the collection of object versions checked out to the

workspace.
get_Contents Returns the collection of object versions present in the workspace.

Collections

Collection Description
Containers The collection of objects containing the current

workspace.

See Also

Workspace Class

Meta Data Services Programming (SQL Server 2000)

IWorkspace Containers Collection
IWorkspace Containers Collection

This collection specifies the containers of this workspace. The collection contains exactly one item, the root object.

Dispatch Identifier: DISPID_WorkspaceContainers (85)

Remarks

Although the collection's maximum size is defined as many, the collection always contains exactly one object, because
CReposRoot is the only class that implements IWorkspaceContainer, and there is only one object (the root object) conforming
to the CReposRoot class.

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type WsContainer_Contains_Workspace This is the type of
relationship by which all
items of the collection
are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the
same as the origin
object.

Minimum Collection
Size

One The minimum number of
items that must be
contained in the
collection is one.

Maximum Collection
Size

Many The maximum number
of items that can be
contained in the
collection is unlimited.

Sequenced Collection No As a destination
collection, this does not
have an explicitly defined
sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object
or a relationship in the
collection does not cause
the deletion of a
corresponding
destination object.

Destinations Named No The relationship type for
the collection does not
permit the naming of
destination objects.

Case-Sensitive Names Not applicable Case-sensitive naming is
not applicable for this
collection.

Unique Names Not applicable Unique naming is not
applicable for this
collection.

See Also

IWorkspace Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspace::get_Checkouts
IWorkspace::get_Checkouts

This method returns an IVersionCol interface pointer to a collection of object versions currently checked out to the workspace.

HRESULT get_Checkouts(
 IVersionCol **ppWSVersions
);

Parameters

**ppWSVersions

[out]
The IVersionCol interface pointer to the collection of object versions checked out to the workspace.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

For each repository object, one version at most can be checked out to the current workspace.

See Also

IInterfaceDef Interface

IWorkspace Interface

IWorkspace::get_Contents

Meta Data Services Programming (SQL Server 2000)

IWorkspace::get_Contents
IWorkspace::get_Contents

This method returns an IVersionCol interface pointer to a collection of object versions currently present in the workspace.

HRESULT get_Contents(
 IVersionCol **ppWSVersions
);

Parameters

**ppWSVersions

[out]
The IVersionCol interface pointer to the collection of object versions present in the workspace.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

For each repository object, one version at most can be present in the current workspace.

See Also

IInterfaceDef Interface

IWorkspace Interface

IWorkspace::get_Checkouts

Meta Data Services Programming (SQL Server 2000)

IWorkspaceContainer Interface
IWorkspaceContainer Interface

The IWorkspaceContainer interface contains methods for managing the collection of workspaces within a repository.

When to Use

Use the IWorkspaceContainer interface to retrieve the collection of workspaces in a repository.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface

provides access to the Properties collection.

Collections

Collection Description
Workspaces The collection of workspaces contained by this repository

object

See Also

IWorkspaceItem::get_Workspaces

ReposRoot Class

Meta Data Services Programming (SQL Server 2000)

IWorkspaceContainer Workspaces Collection
IWorkspaceContainer Workspaces Collection

This collection specifies the workspaces contained in the workspace container. Only the root object can be a workspace container.

Dispatch Identifier: DISPID_ContainedWorkspaces (84)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type WsContainer_Contains_Workspace The type of relationship by
which all items of the
collection are connected to
a common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

Zero The minimum number of
items that must be
contained in the collection
is zero.

Maximum Collection
Size

Many The maximum number of
items that can be
contained in the collection
is unlimited.

Sequenced Collection No As a destination collection,
this does not have an
explicitly defined
sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated Yes Deleting an origin object
or a relationship in the
collection causes the
deletion of a
corresponding destination
object.

Destinations Named Yes The relationship type for
the collection permits the
naming of destination
objects.

Case-Sensitive
Names

No The collection does not
permit the use of case-
sensitive names for
destination objects.

Unique Names Yes The relationship type for
the collection requires that
the name of a destination
object be unique within
the collection of
destination objects.

See Also

IWorkspaceContainer Interface

IWorkspaceItem::get_Workspaces

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem Interface
IWorkspaceItem Interface

The IWorkspaceItem interface contains methods for managing workspace items, that is, object versions that can be present in or
checked out to a workspace.

When to Use

Use the IWorkspaceItem interface to manage the participation of object versions within workspaces.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0

or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface

provides access to the Properties collection.

IWorkspaceItem method Description
Checkin Terminates the ability to modify the current object version from within the current

workspace
Checkout Establishes the current workspace as the only workspace within which the current

object version can be modified
get_CheckedOutToWorkspace Returns the workspace to which the current object version is checked out
get_IsCheckedOut Indicates whether any workspace has the current object version checked out
get_Workspaces Returns the collection of workspaces in which the current object version is present

See Also

Workspace Object

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem::Checkin
IWorkspaceItem::Checkin

This method terminates the ability to modify the current object version from within the current workspace.

HRESULT Checkin();

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

When you call this method, you must be operating within the workspace to which the object version is checked out.

See Also

IWorkspaceItem Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem::Checkout
IWorkspaceItem::Checkout

This method establishes the current workspace as the only workspace within which the current object version can be modified.

HRESULT Checkout();

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the object version is already checked out to a workspace, this method returns an error.

See Also

IWorkspaceItem Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem::get_CheckedOutToWorkspace
IWorkspaceItem::get_CheckedOutToWorkspace

This method returns an IWorkspace interface pointer of the workspace to which the current object version is checked out.

HRESULT get_CheckedOutToWorkspace(
 IWorkspace **ppIWorkspace
);

Parameters

**ppIWorkspace

[out]
The IWorkspace interface pointer of the workspace.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the object version is not currently checked out to any workspace, this method returns an error.

See Also

IWorkspaceItem Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem::get_IsCheckedOut
IWorkspaceItem::get_IsCheckedOut

This method determines whether the current workspace item is checked out to a workspace.

HRESULT get_IsCheckedOut(
 VARIANT_BOOL *pbCheckedOut
);

Parameters

*pbCheckedOut

[out]
TRUE if the object version is checked out to a workspace; FALSE if the object version is not checked out to any workspace.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IWorkspaceItem Interface

Meta Data Services Programming (SQL Server 2000)

IWorkspaceItem::get_Workspaces
IWorkspaceItem::get_Workspaces

This method returns the collection of workspaces in which the current object version is present.

HRESULT get_Workspaces(
 IVersionCol **ppIWorkspaces
);

Parameters

**ppIWorkspaces

[out]
The IVersionCol interface pointer to the collection of workspaces in which the object version is present.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If the current object version is not present in any workspaces, this method returns an empty collection.

See Also

IWorkspaceItem Interface

Meta Data Services Programming (SQL Server 2000)

RTIM Classes
The Repository Type Information Model (RTIM) is the object model that the repository engine uses to define and store
information models. Use the RTIM classes to programmatically create or extend an information model. These classes build upon
the fundamental repository engine classes. For more information, see Repository Engine Classes.

All repository classes expose the standard IUnknown and IDispatch interfaces that provide fundamental COM and Automation
support.

Class Description
Alias Defines property classes of a derived

property without changing the meaning of
the underlying property.

ClassDef Defines object classes in an information
model.

CollectionDef Defines collection classes of object
relationships.

EnumerationDef Defines object classes of enumeration
objects.

EnumerationValueDef Defines object classes of enumeration
value objects.

InterfaceDef Defines interface classes.
MethodDef Defines method classes.
ParameterDef Defines parameter classes.
PropertyDef Defines property classes.
RelationshipDef Defines relationship classes.
ReposRoot Defines an object class of the repository

root object. This is the starting point for all
repository navigation.

ReposTypeLib Defines an object class of an information
model.

ScriptDef Defines script definition classes.

See Also

COM Reference

Information Models

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

Alias Class
Alias Class

The Alias class supports member delegation. This class defines a derived property that is based on another property without
changing the meaning of the underlying property.

When to Use

Use the Alias class to rename an existing property.

Interfaces

Interface Description
IInterfaceMember2 Creates simple, derived members as instances from the Alias

class.
IRepositoryDispatch Provides enhanced dispatch support.
IRepositoryItem Manages repository objects and relationships.

See Also

Alias Object

Member Delegation

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

ClassDef Class
ClassDef Class

When you define an information model in Microsoft® SQL Server™ 2000 Meta Data Services, you define classes of objects, types
of relationships that can exist between objects, and various properties that are attached to these object classes and relationship
types. The object classes that you define in your information model are represented by instances of the ClassDef class.

To insert a new class definition into an information model, use the ReposTypeLib class.

When to Use

Use the ClassDef class to complete the definition of a new repository class. You can define new interfaces and attach them to the
class definition. You can also attach existing interfaces to the class definition.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IClassDef Manages class definitions
IClassDef2 Manipulates the ScriptsUsedByClass collection
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IReposTypeInfo Contains the collection of definition objects that are associated with an information

model's repository type library
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IViewClassDef Defines database views for a class

See Also

ClassDef Object

ReposTypeLib Class

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

CollectionDef Class
CollectionDef Class

Repository objects are related to each other through relationships. The set of relationships, all of the same type, that relate one
object to zero or more other objects, is a relationship collection.

A collection type (also referred to as a collection definition) defines how instances of a particular collection type will behave. The
characteristics of the collection type determine:

The minimum and maximum number of items in a collection.

Whether the collection type is an origin collection type.

Whether the collection type permits the naming of destination objects, and if so, whether those names are case sensitive
and required to be unique.

Whether the collection type permits the explicit sequencing of items in the collection.

What happens to related objects when objects or relationships in the collection are deleted.

The kind of relationship that a particular collection type uses to relate objects to each other.

A collection is attached to an interface as a member of the interface. To add a new collection type to an interface definition, use the
InterfaceDef class.

When to Use

Use the CollectionDef class to retrieve or modify the properties of a collection type, or to determine the kind of relationship that
the collection implements.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
ICollectionDef Manages collection definitions
IInterfaceMember Relates a member to an interface
IInterfaceMember2 Creates simple, derived members as instances of the Alias class, and creates

semantically rich derived members as instances of the CollectionDef class
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments

See Also

CollectionDef Object

InterfaceDef Class

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

EnumerationDef Class
EnumerationDef Class

The EnumerationDef class defines objects that contain enumerated values.

When to Use

Use the EnumerationDef class to create an enumeration object.

Interfaces

Interface Description
IEnumerationDef Creates an enumeration object

See Also

EnumerationDef Object

EnumerationValueDef Class

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

EnumerationValueDef Class
EnumerationValueDef Class

The EnumerationValueDef class defines objects that represent a specific enumerated value. Each enumerated value is a
separate instance of the EnumerationValueDef object.

When to Use

Use the EnumerationValueDef class to create an enumeration value.

Interfaces

Interface Description
IEnumerationValueDef Creates an enumeration value

See Also

EnumerationDef Class

EnumerationValueDef Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

InterfaceDef Class
InterfaceDef Class

The properties, methods, and collections that a class implements are organized into functionally related groups. Each group is
implemented as a COM interface. The properties, methods, and collections of each interface are members of the interface. An
interface definition is the template to which an interface conforms. Interface definitions are instances of the InterfaceDef class.

To create a new interface definition, use the ClassDef class or the ReposTypeLib class.

When to Use

Use the InterfaceDef class to:

Retrieve or modify properties of an interface definition.

Determine which members are attached to an interface definition.

Determine which classes implement an interface.

Determine the base interface from which an interface derives.

Determine what interfaces derive from a particular interface.

Determine which repository objects expose a particular interface.

Add a new property, method, or collection type to an interface definition.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IInterfaceDef Manages interface definitions
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IReposTypeInfo Contains the collection of definition objects that are associated with an information

model's repository type library
IReposTypeInfo2 Allows classes, interfaces and relationships to be referred to by multiple names as

aliases
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IViewInterfaceDef Defines a database view for all objects that implement a specific interface

See Also

ClassDef Class

InterfaceDef Object

ReposTypeLib Class

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

MethodDef Class
MethodDef Class

When you define a class for an information model, you specify the interfaces that the class implements. For each of those
interfaces, you specify the members (properties, methods, and collections) that are attached to the interface.

The definition of a method as a member of an interface does not result in the method's implementation logic being stored in the
repository. However, it does add the method name to the set of defined member names for that interface. It also reserves the
method's dispatch identifier in the set of defined dispatch identifier values for the interface.

Instances of the MethodDef class represent method definitions.

To attach a new method to an interface, use the InterfaceDef class.

When to Use

Use the MethodDef class to access or modify the characteristics of a method definition, or to determine the interface definition
to which a particular method is attached.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IInterfaceMember Relates a member to an interface
IInterfaceMember2 Creates simple, derived members as instances of the Alias class, and creates

semantically rich derived members as instances of the CollectionDef class
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments

See Also

InterfaceDef Class

MethodDef Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

ParameterDef Class
ParameterDef Class

When you define a method for an information model, you can specify parameters that the method implements. Instances of the
ParameterDef class represent parameters of method definitions.

When to Use

Use the ParameterDef class to create parameters for a method definition object that you define.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments

See Also

MethodDef Object

ParameterDef Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

PropertyDef Class
PropertyDef Class

When you define a class for an information model, you specify the interfaces that the class implements. For each of those
interfaces, you specify the members (properties, methods, and collections) that are attached to the interface.

In order to attach a property to an interface, a property definition must exist for the property. The characteristics of the property
(its name, dispatch identifier, data type, and various storage details) are stored in the property definition. Property definitions are
instances of the PropertyDef class.

To attach a new property to an interface, use the InterfaceDef class.

When to Use

Use the PropertyDef class to access or modify the characteristics of a property definition, or to determine the interface definition
to which a particular property is attached.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IInterfaceMember Relates a member to an interface
IInterfaceMember2 Creates simple, derived members as instances of the Alias class, and creates

semantically rich derived members as instances of the CollectionDef class
INamedObject Retrieves or sets the class name
IPropertyDef Retains property characteristics
IPropertyDef2 Contains an optional relationship to a single EnumerationDef object
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IViewPropertyDef Defines the column name of a property in a view

See Also

InterfaceDef Class

PropertyDef Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

RelationshipDef Class
RelationshipDef Class

When you define an information model in a repository, you define classes of objects, types of relationships that can exist between
objects, and various properties that are attached to these object classes and relationship types. The relationship types that you
define in your tool information model are represented by instances of the RelationshipDef class.

When to Use

Use the RelationshipDef class to access the properties of a relationship definition (also referred to as a relationship type).

To insert a new relationship type into an information model, use the ReposTypeLib class.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IClassDef Manages class definitions
IClassDef2 Manipulates the ScriptsUsedByClass collection
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IReposTypeInfo Contains the collection of definition objects that are associated with an information

model's repository type library
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IViewRelationshipDef Defines a junction table view of a relationship class

See Also

RelationshipDef Object

ReposTypeLib Class

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

ReposRoot Class
ReposRoot Class

There is one root object in each repository. The root object is the starting point for navigating to other objects in the repository.
The root object serves as the starting point for both type data navigation and instance data navigation.

Type data navigation

When you create an information model, the corresponding repository type library is attached to the root object through the
ReposTypeLibs collection. This collection can be used to enumerate all of the information models (type data) that are
contained in a repository.

Instance data navigation

Once an information model is defined, the repository can be populated with instance data. This instance data consists of
objects and relationships that conform to the classes and relationship types of the information model.

Because the objects are connected via relationships, you can navigate through this data. However, to enable general
purpose repository browsers to navigate this data, the first navigational step must be from the root object of the repository
through a root relationship collection to the primary objects of your information model. Primary objects are objects that
make a good starting point for navigating to other objects of your information model.

Because this root relationship collection is different for each information model, it must be defined by the information
model. There are two options for attaching this relationship collection to the root object:

1. The ReposRoot class implements the IReposRoot interface. This interface is provided to information model creators
as a connection point. You can add your connecting relationship collection to this interface.

2. You can extend the ReposRoot class to implement a new interface that is defined in your information model. This
interface implements a relationship collection that attaches the root object to the primary objects in your information
model.

To facilitate navigation, the root object in all repositories always has the same object identifier. The symbolic name for this object
identifier is OBJID_REPOSROOTOBJ.

When to Use

Use the ReposRoot class to:

Obtain a starting point for navigating to objects in the repository.

Create a new information model.

Attach a relationship collection to the root object of the repository that connects to the primary objects of your information
model.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
IManageReposTypeLib Adds information models (repository type libraries) to a repository
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IReposRoot Provides an attachment point for information model instance data
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments
IWorkspaceContainer Manages the set of workspaces in a repository

See Also

IManageReposTypeLib Interface

ReposRoot Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

ReposTypeLib Class
ReposTypeLib Class

There is one repository type library for every information model contained in a repository database. Each information model
provides a logical grouping of all of the type definitions related to a particular application, tool, or tool set that you are developing.
Repository type libraries are instances of the ReposTypeLib class.

To insert a new information model into a repository database, use the ReposRoot class.

When to Use

Use the ReposTypeLib class to:

Define new classes, relationship types, and interfaces for an information model.

Retrieve or modify the global identifier associated with a repository type library.

Determine which type definitions are associated with a particular repository type library.

Interfaces

Interface Description
IAnnotationalProps Gets and sets annotational properties
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IRepositoryObject Retrieves repository object identifiers
IRepositoryObjectStorage Creates and loads repository objects
IReposTypeLib Creates class, interface, and relationship definitions for a repository type library
IReposTypeLib2 Defines dependencies between information models
IVersionAdminInfo2 Retains properties inherited from IVersionAdminInfo and sets or retrieves version

comments

See Also

ReposRoot Class

ReposTypeLib Object

RTIM Classes

Meta Data Services Programming (SQL Server 2000)

ScriptDef Class
ScriptDef Class

 New Information - SQL Server 2000 SP3.

A script definition object represents Microsoft® ActiveX® script that you can associate with a method or property definition.

To support scripting for both method and property interface members, a ScriptDef object is associated at the interface member
level. Because method and property definitions inherit from interface member objects, an interface member object provides the
common ground where an association between script and interface members can be made.

Because interfaces can be aliased, derived, or otherwise reused, script definitions are linked through association to support the
levels of indirection that are customary in COM programming. Associations are established through collections of classes,
interfaces, and members that you define for each ScriptDef object.

During script invocation, the repository engine reads the collections to select a script definition most closely related to the
interface. When the repository engine selects the closest script definition, it determines which method calls the script, on which
interface, and on what class. The selection process enables support for two conditions that are common to C++ programming:
inheriting a method or property implementation, and overriding a default implementation.

A method or property can be associated with the class and interface being executed, the interface being executed, or the closest
ancestor that has the script. If a script cannot be selected, then the repository engine returns an error in the case of methods.

When to Use

Use a ScriptDef object to store the implementation of a method in an information model. You can also use ScriptDef to validate
properties before storing them in a repository database.

You can implement methods or property validation rules that apply to:

All classes that implement the interface.

A specific class that implements the interface.

A derived interface for those cases in which you want to override the implementation of a base interface method or
property validation rule.

Each method or property can be associated with only one script definition. However, the same script definition can be associated
with multiple methods and properties.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects.

Interfaces

Interface Description
INamedObject Retrieves or sets the class name
IRepositoryDispatch Provides enhanced dispatch support
IRepositoryItem Manages repository objects and relationships
IReposTypeInfo Relates class, interface, and relationship definition objects to information

models
IScriptDef Associates a Microsoft ActiveX script definition with a method

See Also

RTIM Classes

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

RTIM COM Interfaces
The Repository Type Information Model (RTIM) is the object model the repository engine uses to store information models. The
RTIM interfaces expose the properties and methods that are used to programmatically create or extend an information model.

These interfaces build upon the interfaces that drive the repository engine. The repository engine interfaces are listed separately.

All RTIM interfaces expose the standard IUnknown and IDispatch interfaces, which provide fundamental COM and Automation
support.

The following table lists RTIM interfaces alphabetically.

Interfaces Description
IClassDef Interface Adds interfaces to a class.
IClassDef2 Interface Manages the collection of scripts that a

class uses.
ICollectionDef Interface Defines how instances of a particular type

of collection will behave.
IEnumerationDef Interface Defines enumeration objects.
IEnumerationValueDef Interface Defines enumeration values.
IInterfaceDef Interface Defines interface objects.
IInterfaceDef2 Interface Supports interface implication between

any two interfaces and aliasing.
IInterfaceMember Interface Accesses the common properties of an

interface member.
IInterfaceMember2 Interface Allows classes, interfaces and

relationships to be referred to by a second
name or alias.

IManageReposTypeLib Interface Creates a type library for storing
information models.

IMethodDef Interface Defines a list of parameters for a method
definition.

IParameterDef Interface Defines in detail each parameter of the
method.

IPropertyDef Interface Defines a property definition object.
IPropertyDef2 Interface Contains an optional relationship to a

single EnumerationDef object.
IReposRoot Interface Provides a starting point to navigate to

other objects in a repository.
IReposTypeInfo Interface Determines which information models

contain a particular class, interface, or
relationship type.

IReposTypeInfo2 Interface Allows classes, interfaces and
relationships to be referred to by aliases.

IReposTypeLib Interface Defines new classes, relationship types,
and interfaces for an information model,
and accesses the global identifier of
repository type libraries.

IReposTypeLib2 Interface Defines dependencies between
information models for sharing model
information.

IScriptDef Interface Defines a script definition object.
IViewClassDef Interface Defines database views for a class.
IViewInterfaceDef Interface Defines a database view for all objects that

implement a specific interface.
IViewPropertyDef Interface Defines the column name of a property in

the view.

IViewRelationshipDef Interface Defines a junction table view of a
relationship class. This is used for views
that have many-to-many relationships.

See Also

COM Reference

Repository API Reference

Repository Engine

Repository Engine COM Interfaces

Meta Data Services Programming (SQL Server 2000)

IClassDef Interface
IClassDef Interface

The IClassDef interface helps you create information models by adding interfaces to a class. To insert a new class definition into
an information model, use the IReposTypeLib interface.

After you add all of the interfaces, you can complete a class definition by committing the transaction that brackets your class
definition modifications.

When to Use

Use the IClassDef interface to:

Add a new or existing interface to a class definition.

Retrieve the global identifier for the class.

Access the collection of interfaces that are part of a class definition.

Properties

Property Description
ClassID The global identifier of the

class

Methods

IUnknown method Description
QueryInterface Returns pointers to supported

interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of

dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IClassDef method Description
AddInterface Adds an existing interface to the class definition
CreateInterfaceDef Creates a new interface and adds it to the class definition
ObjectInstances Materializes an IObjectCol interface pointer for the collection of all objects in

the repository that conform to this class

Collections

Collection Description

Interfaces The collection of all interfaces that are implemented by a
class

See Also

ClassDef Class

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IClassDef::AddInterface
IClassDef::AddInterface

The AddInterface method adds an existing interface to the collection of interfaces that are implemented by a particular class.

HRESULT AddInterface(
 IInterfaceDef *plInterfaceDef,
 BSTR Flags
);

Parts

plInterfaceDef

[in]
The interface pointer for the interface that is to be added to the collection of interfaces implemented by this class.

Flags

[in]
If the interface that you are adding is the default interface for the class, pass in the string "Default". Otherwise, pass in a null string.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

When you indicate that an interface is the default interface for a class, you are actually setting the value of the
ImplementsOptions annotational property on the Class_Implements_Interface relationship to TRUE.

See Also

IClassDef Interface

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IClassDef ClassID Property
IClassDef ClassID Property

The global identifier that is assigned to this class.

Dispatch Identifier: DISPID_ClassID

Property Data Type: GUID

See Also

IClassDef Interface

Meta Data Services Programming (SQL Server 2000)

IClassDef::CreateInterfaceDef
IClassDef::CreateInterfaceDef

The CreateInterfaceDef method creates a new interface definition and adds the interface to the collection of interfaces
implemented by the class.

HRESULT CreateInterfaceDef(
 VARIANT sObjId,
 BSTR Name,
 VARIANT sIID,
 IInterfaceDef *pIAncestor,
 BSTR Flags,
 IInterfaceDef **ppIInterfaceDef
);

Parts

sIObjId

[in]
The object identifier to be assigned to the new interface definition object. If this parameter is set to OBJID_NULL, the repository
engine assigns an object identifier for you.

Name

[in]
The name of the interface you are creating.

sIID

[in]
The global identifier associated with the signature for this interface. If there is none, set this parameter to zero.

*pIAncestor

[in]
The interface pointer to the base interface from which the interface being added is derived.

Flags

[in]
If the interface that you are adding is the default interface for the class, pass in the string "Default". Otherwise, pass in a null string.

*pplInterfaceDef

[out]
The interface pointer for the new interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

When you indicate that an interface is the default interface for a class, you are actually setting the value of the
ImplementsOptions annotational property on the Class_Implements_Interface relationship to TRUE.

See Also

IClassDef Interface

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IClassDef Interfaces Collection
IClassDef Interfaces Collection

The collection of all interfaces that are implemented by this class.

Dispatch Identifier: DISPID_Ifaces (32)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Class_Implements_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection Size Zero The minimum number of
items that must be contained
in the collection is zero.

Maximum Collection Size Many The maximum number of
items that can be contained in
the collection is unlimited.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections
of origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of
a corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive Names Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

IClassDef Interface

Meta Data Services Programming (SQL Server 2000)

IClassDef::ObjectInstances
IClassDef::ObjectInstances

This method materializes an IObjectCol interface pointer for the collection of all objects in the repository that conform to this
class.

HRESULT ObjectInstances(
IObjectCol **ppIObjectCol
);

Parts

*ppIObjectCol

[out]
The interface pointer for the object collection.

Return Value

S_OK

The method completed successfully.

ErrorValues

This method failed to complete successfully.

Remarks

The retrieved collection contains one version of each object that conforms to the class. For each such object, the repository engine
uses its resolution strategy to choose which version appears in the collection.

ObjectInstances is not workspace-scoped.

See Also

IClassDef Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IClassDef2 Interface
IClassDef2 Interface

The IClassDef2 interface is derived from IClassDef, IDepositoryDispatch, and IDispatch.

This interface is used to manage the collection of scripts that a class uses.

When to Use

Use the IClassDef derived methods to manipulate the ScriptsUsedByClass collection.

Properties

None

Methods

None

Collections

Collection Description
ScriptsUsedByClass The collection of scripts that are used by this

class

For more information about methods and properties for the functionality this interface provides, see IClassDef Interface.

Meta Data Services Programming (SQL Server 2000)

ScriptsUsedByClass Collection
ScriptsUsedByClass Collection

The collection of scripts being used by this class definition.

Dispatch Identifier: DISPID_IclassDef2_ScriptsUsedByClass (350)

Meta Data Services Programming (SQL Server 2000)

ICollectionDef Interface
ICollectionDef Interface

A collection type (also referred to as a collection definition) defines how instances of a particular type of collection behave. The
properties of the collection type determine:

The minimum and maximum number of items in a collection.

Whether the collection type is an origin collection type.

Whether the collection type permits the naming of destination objects and, if so, whether those names are case-sensitive
and required to be unique.

Whether the collection type permits the explicit sequencing of items in the collection.

What happens to related objects when objects or relationships in the collection are deleted.

Whether origin collections of this type are automatically copied to new object versions by the CreateVersion method.

Whether the MergeVersion method combines origin collections of this type as a whole, or item by item.

Whether the FreezeVersion method requires destination object versions of relationships of this type to be frozen before
their origin object versions can be frozen.

The kind of relationship that a particular collection type uses to relate objects to each other is determined by its CollectionItem
collection. The CollectionItem collection associates a single relationship type to the collection type.

To add a new collection type, use the IInterfaceDef interface.

When to Use

Use the ICollectionDef interface to retrieve or modify the properties of a collection type or to determine the kind of relationship
that the collection implements.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

Properties

Property Description
Flags Flags that determine the behavior of this type of collection
IsOrigin The indicator of whether collections of this type are origin collections
MaxCount The maximum number of target objects that can be contained in a collection

of this type
MinCount The minimum number of target objects that must be contained in a collection

of this type

Collections

Collection Description
CollectionItem The collection of one relationship type that defines the relationship between

target objects of this type of collection and a single source object

See Also

CollectionDef Class

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

ICollectionDef Flags Property
ICollectionDef Flags Property

For a particular type of collection, the Flags property determines:

Whether the collection type permits the naming of destination objects and, if so, whether those names are case-sensitive
and required to be unique.

Whether the collection type permits the explicit sequencing of items in the collection.

What happens to related objects when objects or relationships in the collection are deleted.

Whether origin collections of this type are automatically copied to new object versions by the CreateVersion method.

Whether the MergeVersion method combines origin collections of this type as a whole, or item by item.

Whether the FreezeVersion method requires that destination object versions of relationships of this type be frozen before
the attendant origin object versions can be frozen.

For more information about flag values and descriptions, see CollectionDefFlags Enumeration.

Dispatch Identifier: DISPID_ColFlags (54)

Property Data Type: long

See Also

ICollectionDef Interface

Meta Data Services Programming (SQL Server 2000)

ICollectionDef IsOrigin Property
ICollectionDef IsOrigin Property

This property indicates whether collections of this type are origin collections.

Dispatch Identifier: DISPID_IsOrigin (57)

Property Data Type: Boolean

See Also

ICollectionDef Interface

Meta Data Services Programming (SQL Server 2000)

ICollectionDef MaxCount Property
ICollectionDef MaxCount Property

This property specifies the maximum number of target objects that can be contained in a collection of this type. This property is
maintained for informational purposes. It is not enforced by the repository engine.

Dispatch Identifier: DISPID_MaxCount (56)

Property Data Type: short

See Also

ICollectionDef Interface

Meta Data Services Programming (SQL Server 2000)

ICollectionDef MinCount Property
ICollectionDef MinCount Property

This property specifies the minimum number of target objects that must be contained in a collection of this type. This property is
maintained for informational purposes. It is not enforced by the repository engine.

Dispatch Identifier: DISPID_MinCount (55)

Property Data Type: short

See Also

ICollectionDef Interface

Meta Data Services Programming (SQL Server 2000)

ICollectionDef CollectionItem Collection
ICollectionDef CollectionItem Collection

Every RelationshipDef object has two CollectionDef objects. Therefore, every relationship definition instance can be navigated
in one of two directions. That is, from a RelationshipDef object, you can navigate to its collection of CollectionDef objects.
Conversely, you can navigate in the opposite direction; that is, from a CollectionDef object to the associated RelationshipDef
object. To navigate in the opposite direction, use the CollectionItem collection on the ICollectionDef interface. For more
information about relationships and collections, see Repository Object Architecture.

Dispatch Identifier: DISPID_CollectionItem (38)

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type Collection_Contains_items This is the type of

relationship by which all
items of the collection are
connected to a common
source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection Size Zero The minimum number of
items that must be contained
in the collection is zero.

Maximum Collection Size One The maximum number of
items that can be contained
in the collection is one.

Sequenced Collection No As a destination collection,
this does not have an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion
of a corresponding
destination object.

Destinations Named No The relationship type for the
collection does not permit
the naming of destination
objects.

Case-sensitive Names Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

ICollectionDef Interface

RelationshipDef ItemInCollections Collection

Meta Data Services Programming (SQL Server 2000)

IEnumerationDef Interface
IEnumerationDef Interface

The IEnumerationDef interface is derived from IRepositoryDispatch, which inherits from IDispatch. The IEumerationDef
interface is implemented by the EnumerationDef class.

When to Use

IEnumerationDef is the default interface for Enumeration objects. Use this interface for defining new enumeration values.

Properties

Property Description
IsFlag Indicates that the enumeration defines a logical flag. The selected enumeration values should be combined

logically using OR. This property applies only to numeric enumeration values.

There are no methods associated with this interface.

Collections

Property Description
Values The collection of EnumerationValue objects

See Also

IEnumerationValueDef Interface

IPropertyDef2 Interface

IRepositoryDispatch

Repository Enumeration Definition

Meta Data Services Programming (SQL Server 2000)

IEnumerationDef Values Collection
IEnumerationDef Values Collection

A collection of EnumerationValue objects.

Dispatch Identifier: DISPID_IEnumerationDefIsFlag (365)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship
Type

EnumerationDef_Valuesof_EnumerationValueDef This is the type
of relationship
by which all
items of the
collection are
connected to a
common source
object.

Source Is Origin Yes The source
object for the
collection is also
the origin
object.

Minimum
Collection Size

One The minimum
number of
items that must
be contained in
the collection is
one.

Maximum
Collection Size

Many The maximum
number of
items that can
be contained in
the collection is
unlimited.

Sequenced
Collection

No Because it is a
destination
collection, this
collection does
not have an
explicitly
defined
sequence.
Collections of
origin objects
are never
sequenced.

Deletes
Propagated

Yes Deleting an
origin object or
a relationship in
the collection
causes the
deletion of a
corresponding
destination
object.

Destinations
Named

Yes The relationship
type for the
collection
permits the
naming of
destination
objects.

Case-sensitive
Names

No The collection
does not permit
the use of case-
sensitive names
for destination
objects.

Unique Names Yes The relationship
type for the
collection
requires that
the name of a
destination
object be
unique within
the collection of
destination
objects.

See Also

IEnumerationValueDef Interface

Repository Enumeration Definition

Meta Data Services Programming (SQL Server 2000)

IEnumerationValueDef Interface
IEnumerationValueDef Interface

The IEnumerationValueDef interface is derived from IRepositoryDispatch and IDispatch, and is implemented by the
EnumerationValue class.

Properties

Property Description
EnumValue A string containing a value that may be stored in the property value of an

object.

There are no methods or collections associated with this interface.

See Also

IEnumerationDef Interface

IPropertyDef2 Interface

IRepositoryDispatch

Repository Enumeration Definition

Meta Data Services Programming (SQL Server 2000)

IEnumerationValueDef::EnumValue
IEnumerationValueDef::EnumValue

The EnumValue property contains a value that may be stored as the property value of an object.

Dispatch Identifier: DISPID_IEnumerationValueDefValue (371)

See Also

IEnumerationValueDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Interface
IInterfaceDef Interface

The properties, methods, and collections that a class implements are organized into functionally related groups. Each group is
implemented as a COM interface. Each COM interface that you create can have members consisting of properties, methods, and
collections. An interface definition is the template to which that interface conforms.

To add a new interface to the repository, use the IClassDef interface or the IReposTypeLib interface.

When to Use

Use the IInterfaceDef interface to:

Retrieve or modify properties of an interface definition.

Determine which members are attached to an interface definition.

Determine which classes implement an interface.

Determine the base interface from which an interface derives.

Determine which interfaces derive from a particular interface.

Determine which repository objects expose a particular interface.

Add a new property, method, or collection type to an interface definition.

Properties

Property Description
Flags The flags that specify whether the interface is extensible, and whether the

interface should be visible to Automation interface queries.
InterfaceID The global interface identifier for the interface.
TableName The name of the SQL table that is used to store instance information for the

properties of the interface.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IInterfaceDef method Description
CreateMethodDef Creates a new method definition, and attaches it to the interface definition.
CreatePropertyDef Creates a new property definition, and attaches it to the interface definition.
CreateRelationshipColDef Creates a relationship collection type. The collection type is attached to the

interface definition.
ObjectInstances Materializes an IObjectCol interface pointer for the collection of all objects in

a repository that expose this interface.

Collections

Collection Description
Ancestor The collection of one base interface from which this interface inherits.
Classes The collection of classes that implement the interface.
Descendants The collection of other interfaces that derive from this interface.
Members The collection of members that are attached to the interface

definition.

See Also

IClassDef Interface

IInterfaceDef Interface

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Flags Property
IInterfaceDef Flags Property

This property contains flags that specify whether the interface is extensible, and whether the interface should be visible to
Automation interface queries. For more information about flag values and descriptions, see InterfaceDefFlags Enumeration.

Dispatch Identifier: DISPID_IfaceFlags (50)

Property Data Type: long

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef InterfaceID Property
IInterfaceDef InterfaceID Property

This property is the global interface identifier for the interface.

Dispatch Identifier: DISPID_InterfaceID (48)

Property Data Type: GUID

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef TableName Property
IInterfaceDef TableName Property

This property is the name of the SQL table that is used to store instance information for the properties of the interface. The length
of the name must be 30 characters or less.

Dispatch Identifier: DISPID_TableName (49)

Property Data Type: string

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef::CreateMethodDef
IInterfaceDef::CreateMethodDef

This method creates a new method definition and attaches it to the interface definition.

HRESULT CreateMethodDef(
 VARIANT sObjId,
 BSTR Name,
 long iDispId,
 IInterfaceMember **ppIMethodDef
);

Parts

sObjId

[in]
The object identifier to be used for the new method definition object. The repository engine will assign an object identifier if you
set this parameter to OBJID_NULL.

Name

[in]
The name of the new method.

iDispId

[in]
The dispatch identifier to be used for accessing the new method.

*ppIMethodDef [out]

The interface pointer for the newly created method definition.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IInterfaceDef Interface

IInterfaceMemberInterface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef::CreatePropertyDef
IInterfaceDef::CreatePropertyDef

This method creates a new property definition and attaches it to the interface definition.

HRESULT CreatePropertyDef (
 VARIANT sObjId,
 BSTR Name,
 long iDispId,
 short iCType,
 IPropertyDef **ppIPropertyDef
);

Parts

sObjId

[in]
The object identifier to be used for the new property definition object. The repository engine will assign an object identifier if you
set this parameter to OBJID_NULL.

Name

[in]
The name of the new property.

iDispId

[in]
The dispatch identifier to be used for accessing the new property.

iCType [in]

The C data type of the property. For more information, including a definition of valid values, see the ODBC documentation.

*ppIPropertyDef [out]

The interface pointer for the newly created property definition.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IInterfaceDef Interface

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef::CreateRelationshipColDef
IInterfaceDef::CreateRelationshipColDef

This method creates a new collection type, attaches it to this interface, and associates it with the specified relationship type.

HRESULT CreateRelationshipColDef(
 VARIANT sObjId,
 BSTR Name,
 long iDispId,
 boolean IsOrigin,
 short fFlags,
 IReposTypeInfo *pIRelshipDef,
 ICollectionDef **pICollectionDef
);

Parts

sObjId [in]
The object identifier for the collection type. The repository engine will assign an object identifier if you set this parameter to
OBJID_NULL.

Name

[in]
The name of the new collection type.

iDispId [in]

The dispatch identifier to be used for Automation access to collections of this type.

IsOrigin [in]

Specifies whether collections of this type are origin collections.

fFlags

[in]
Flags that specify naming, sequencing, and delete propagation behavior for the collection type. For more information about flag
values and descriptions, see CollectionDefFlags Enumeration.

*pIRelshipDef [in]

The interface pointer for the relationship definition object to which this collection type is connected.

*ppICollectionDef

[out]
The interface pointer for the new collection definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

By default, the collection definition specifies that zero to many items are permitted in collections of this type. To specify a different
minimum and maximum item count for the new collection type, change the MinCount and MaxCount properties before
committing the transaction that contains this method invocation.

See Also

ICollectionDef Interface

IInterfaceDef Interface

RelationshipDef Class

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef::ObjectInstances
IInterfaceDef::ObjectInstances

This method materializes an IObjectCol interface pointer for the collection of all objects in the repository that expose the current
interface.

HRESULT ObjectInstances(
IObjectCol **ppIObjectCol
);

Parts

*ppIObjectCol [out]

The interface pointer for the object collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The retrieved collection contains one version of each object that conforms to a class that exposes the current interface. For each
such object, the repository engine uses its resolution strategy to choose which version appears in the collection.

ObjectInstances is not workspace scoped.

See Also

IInterfaceDef Interface

Resolution Strategy for Objects and Object Versions

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Classes Collection
IInterfaceDef Classes Collection

This collection specifies which classes implement the interface.

Dispatch Identifier: DISPID_Classes (33)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Class_Implements_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the origin
object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Many The maximum number of items
that can be contained in the
collection is unlimited.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of a
corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-sensitive Names Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Members Collection
IInterfaceDef Members Collection

This collection specifies which members are attached to the interface.

Dispatch Identifier: DISPID_Members (36)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_Has_Members This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Many The maximum number of items
that can be contained in the
collection is unlimited.

Sequenced Collection Yes As a destination collection, this
collection permits an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated Yes The deletion of an origin object
or relationship in the collection
causes the deletion of the
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the naming
of destination objects.

Case-Sensitive Names No The relationship type for the
collection does not permit the
use of case-sensitive names for
destination objects.

Unique Names Yes The relationship type for the
collection requires that the
name of a destination object be
unique within the collection of
destination objects. This applies
to collections whose
relationship type permits
destination objects to be
named.

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Ancestor Collection
IInterfaceDef Ancestor Collection

This collection specifies the one base interface from which this interface derives. You use Ancestor collections to define
inheritance.

Dispatch Identifier: DISPID_Ancestor (34)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_InheritsFrom_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin Yes The source object for the
collection is also the origin
object.

Minimum Collection
Size

One The minimum number of
items that must be contained
in the collection is one.

Maximum Collection
Size

One The maximum number of
items that can be contained in
the collection is one.

Sequenced
Collection

No As a destination collection,
this does not have an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of
a corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination
objects.

Case-Sensitive
Names

Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef Descendants Collection
IInterfaceDef Descendants Collection

This collection specifies other interfaces that derive from this interface.

Dispatch Identifier: DISPID_Descendants (35)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Interface_InheritsFrom_Interface This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection
Size

Zero The minimum number of
items that must be contained
in the collection is zero.

Maximum Collection
Size

Many The maximum number of
items that can be contained in
the collection is unlimited.

Sequenced
Collection

No As a destination collection,
this does not have an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of
a corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination
objects.

Case-Sensitive
Names

Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

IInterfaceDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef2 Interface
IInterfaceDef2 Interface

The IInterfaceDef2 interface inherits from IInterfaceDef. It helps you define implication between two interfaces in the form of
"Interface I1 implies Interface I2," which means that any class that implements I1 also implements I2. There is a many-to-many
relationship named Interface_Implies_Interface that relates multiple instances of IInterfaceDef2 to other instances of itself.
Therefore, IInterfaceDef2 has two collections, Implies and ImpliedBy, which are the two sides of the relationship.

IInterfaceDef2 also provides the CreateAlias method, which adds an alias member to the interface definition.

When to use

Use the IInterfaceDef2 interface to:

Define implication between two interfaces.

Create and add alias members to the interface definition.

Properties

IInterfaceDef property Description
Flags Flags that specify whether the interface is extensible, and whether the

interface should be visible to Automation interface queries
InterfaceID The global interface identifier for the interface
TableName The name of the SQL table that is used to store instance information for the

properties of the interface

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IInterfaceDef method Description
CreateMethodDef Creates a new method definition, and attaches it to the interface definition.
CreatePropertyDef Creates a new property definition, and attaches it to the interface definition.
CreateRelationshipColDef Creates a relationship collection type. The collection type is attached to the

interface definition.
ObjectInstances Materializes an IObjectCol interface pointer for the collection of all objects in

a repository that expose this interface.

IInterfaceDef2 method Description

CreateAlias Adds an alias member to the interface
definition

Collections

IInterfaceDef collection Description
Ancestor The collection of one base interface from which this interface derives
Classes The collection of classes that implement the interface
Descendants The collection of other interfaces that derive from this interface
Members The collection of members that are attached to the interface

definition

IInterfaceDef2 collection Description
Implies The collection of one interface that implies other

interfaces
ImpliedBy The collection of interfaces implied by another interface

See Also

IClassDef Interface

IInterfaceDef Interface

InterfaceDef Class

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef2 Implies Collection
IInterfaceDef2 Implies Collection

The collection of one interface that implies other interfaces.

Dispatch Identifier: DISPID_Implies (95)

See Also

IInterfaceDef2 Interface

IInterfaceDef2 ImpliedBy Collection

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef2 ImpliedBy Collection
IInterfaceDef2 ImpliedBy Collection

The collection of interfaces implied by another interface.

Dispatch Identifier: DISPID_ImpliedBy (96)

See Also

IInterfaceDef2 Interface

IInterfaceDef2 Implies Collection

Meta Data Services Programming (SQL Server 2000)

IInterfaceDef2::CreateAlias
IInterfaceDef2::CreateAlias

The CreateAlias method is used in member delegation to add an alias member to the interface definition. The repository engine
does not prevent the creation of duplicate alias names. If you want to avoid duplicate aliases, you must verify that the alias name
is unique.

This method has the following syntax:

HRESULT CreateAlias(
 VARIANT sObjID,
 BSTR Name,
 long iDispID,
 IInterfaceMember *pIIfaceMemBase,
 IInterfaceMember2 **ppIIfaceMem2);

Parts

sObjID

[in]
The object identifier to be used with the new alias member.

Name

[in]
The name of the new alias member.

iDispID

[in]
The dispatch identifier to be used for accessing the new alias member.

pIIfaceMemBase

[in]
The interface pointer for the base member.

*ppIIfaceMem2

[out, retval]
The interface pointer for the derived member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IInterfaceDef2 Interface

Member Delegation

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember Interface
IInterfaceMember Interface

The properties, methods, and collections that a class implements are organized into functionally related groups. Each group is
implemented as a COM interface. The properties, methods, and collections of each interface are members of the interface.

The IInterfaceMember interface maintains this information for an interface member:

The member dispatch identifier.

Information about member visibility.

The relationship to the interface that exposes a particular interface member.

This information is common to properties, methods, and collection types. The PropertyDef, MethodDef, and CollectionDef
classes all implement this interface.

When to Use

Use the IInterfaceMember interface to access the common properties of an interface member, or to determine which interface
definition has a member of a particular property, method, or collection type.

Properties

Properties Description
DispatchID The dispatch identifier to use when accessing an instance of this type of

member
Flags The flags that specify details about this type of member

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

Collections

Collection Description
Interface The collection of one interface that exposes this type of member

See Also

CollectionDef Class

IInterfaceMember2 Interface

MethodDef Class

PropertyDef Class

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember DispatchID Property
IInterfaceMember DispatchID Property

This property contains the dispatch identifier to use when accessing an instance of this type of member.

Dispatch Identifier: DISPID_DispID (51)

Property Data Type: long

See Also

IInterfaceMember Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember Flags Property
IInterfaceMember Flags Property

This property contains a flag that specifies whether or not the interface member should be visible to Automation queries. For
more information about flag values and descriptions, see InterfaceMemberFlags Enumeration.

Dispatch Identifier: DISPID_IfaceMemFlags (52)

Property Data Type: long

See Also

IInterfaceMember Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember Interface Collection
IInterfaceMember Interface Collection

For a particular property, method, or collection definition, the Interface collection specifies which interface exposes a member of
this type.

Dispatch Identifier: DISPID_Iface (37)

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type Interface_Has_Members This is the type of

relationship by which all
items of the collection are
connected to a common
source object.

Source Is Origin No The source object for the
collection is not the same as
the origin object.

Minimum Collection Size One The minimum number of
items that must be
contained in the collection is
one.

Maximum Collection Size One The maximum number of
items that can be contained
in the collection is one.

Sequenced Collection Yes As a destination collection,
this collection permits an
explicitly defined sequence.
Collections of origin objects
are never sequenced.

Deletes Propagated Yes The deletion of an origin
object or relationship in the
collection causes the
deletion of the
corresponding destination
object.

Destinations Named Yes The relationship type for the
collection permits the
naming of destination
objects.

Case-Sensitive Names No The relationship type for the
collection does not permit
the use of case-sensitive
names for destination
objects.

Unique Names Yes The relationship type for the
collection requires that the
name of a destination object
be unique within the
collection of destination
objects. This applies to
collections whose
relationship type permits
destination objects to be
named.

See Also

IInterfaceMember Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember2 Interface
IInterfaceMember2 Interface

This interface is used to support aliasing. You can use this interface to allow PropertyDef, MethodDef, Alias, and CollectionDef
objects to be referred to by a second name or alias.

The Alias class implements IInterfaceMember2 as its default interface. Instances of the Alias class are simple, derived members.
The CollectionDef class also implements IInterfaceMember2 in order to support the semantically richer kind of derived
member.

This interface inherits from IInterfaceMember. It also uses methods exposed through IRepositoryDispatch. For more
information, see IRepositoryDispatch Interface.

When to Use

Use the IInterfaceMember2 interface to:

Create simple, derived members as instances from the Alias class.

Create semantically rich derived members as instances from the CollectionDef class.

Properties

Property Description
MemberSynonym A string used as an alias.

Collections

Collection Description
ScriptsUsedByMember A collection that contains a script

definition object.
ServicedByBaseMember The base member that provides

implementation to a derived member.
ServicesDerivedMembers The derived interface member that

receives its implementation from a base
member on another interface.

See Also

Creating a Derived Member

IInterfaceMember Interface

IReposTypeInfo2 Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember2 MemberSynonym Property
IInterfaceMember2 MemberSynonym Property

Use this property to create an alias of an interface member. If this property is set, the alias name can reference the InterfaceDef,
PropertyDef, CollectionDef, MethodDef and Alias classes.

The maximum length of this string is 255 characters.

Dispatch Identifier: DISPID_MemberSynonym (394)

Remarks

The repository engine does not allow duplicate synonym values for InterfaceDef, PropertyDef, CollectionDef, MethodDef, or
Alias classes.

See Also

IInterfaceMember2 Interface

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember2 ScriptsUsedByMember Collection
IInterfaceMember2 ScriptsUsedByMember Collection

A ScriptsUsedByMember collection contains the interface member (either a method definition or a property definition) that uses
a script for its implementation.

This collection is the destination collection of a relationship that associates a script with an interface member. The origin collection
of this relationship is the UsingMembers collection of the ScriptDef object.

Dispatch Identifier: DISPID_IInterfaceMember2ScriptsUsedByMember (356)

See Also

Defining Script Objects

IInterfaceMember2 Interface

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember2 ServicedByBaseMember Collection
IInterfaceMember2 ServicedByBaseMember Collection

A ServicedByBaseMember collection contains the base member that provides the implementation for a member on another
interface.

This collection can contain one interface member object. This collection is the origin of a relationship collection that maps the
correspondence between the base member and an alias. When you populate this collection, you must also populate the
ServicesDerivedMember collection to complete the relationship.

Dispatch Identifier: DISPID_IInterfaceMember2ServicedByBaseMember (100)

See Also

Creating a Derived Member

IInterfaceMember2 Interface

IInterfaceMember2 ServicesDerivedMembers Collection

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

IInterfaceMember2 ServicesDerivedMembers Collection
IInterfaceMember2 ServicesDerivedMembers Collection

A ServicesDerivedMember collection contains the derived interface member that receives its implementation from a base
member on another interface.

This collection can contain one interface member object. This collection is the destination of a relationship collection that maps the
correspondence between the base member and an alias. When you populate this collection, you must also populate the
ServicedByBaseMember collection to complete the relationship.

Dispatch Identifier: DISPID_IInterfaceMember2ServicesDerivedMembers (99)

See Also

Creating a Derived Member

IInterfaceMember2 Interface

IInterfaceMember2 ServicedByBaseMember Collection

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

IManageReposTypeLib Interface
IManageReposTypeLib Interface

Each information model that is stored in the repository is represented by a repository type library.

When to Use

Use the IManageReposTypeLib interface to:

Create a repository type library for a new information model.

Determine which information models are currently stored in the repository.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IManageReposTypeLib method Description
CreateTypeLib Creates a repository type library for a new information

model

Collections

Collection Description
ReposTypeLibs The collection of repository type libraries that are currently stored in a

repository database

See Also

ReposRoot Class

Meta Data Services Programming (SQL Server 2000)

IManageReposTypeLib::CreateTypeLib
IManageReposTypeLib::CreateTypeLib

This method creates a new repository type library and attaches it to the root of the repository. Each repository type library
represents an information model.

HRESULT CreateTypeLib(
 VARIANT sObjId,
 BSTR Name,
 VARIANT TypeLibId,
 IReposTypeLib **ppIRepTypeLib
);

Parts

sObjId

[in]
The object identifier to be used for the new repository type library object. The repository engine will assign an object identifier if
you set this parameter to OBJID_NULL.

Name

[in]
The name of the new repository type library.

TypeLibId

[in]
The global identifier by which this repository type library is referenced.

*ppIRepTypeLib [out]
The IReposTypeLib interface pointer to the new repository type library object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IManageReposTypeLib ReposTypeLibs Collection
IManageReposTypeLib ReposTypeLibs Collection

The collection of repository type libraries that are currently stored in the repository database. Each repository type library
represents an information model.

Dispatch Identifier: DISPID_ReposTypeLibs (40)

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type TblManager_ContextFor_ReposTypeLibs This is the type of relationship by which all

items of the collection are connected to a
common source object.

Source Is Origin Yes The source object for the collection is also the
origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have
an explicitly defined sequence. Collections of
origin objects are never sequenced.

Deletes Propagated Yes Deleting an origin object or a relationship in
the collection causes the deletion of a
corresponding destination object.

Destinations Named Yes The relationship type for the collection
permits the naming of destination objects.

Case-Sensitive Names No This collection does not use case-sensitive
names for destination objects.

Unique Names Yes The collection requires that the name of a
destination object be unique within the
collection of destination objects.

See Also

IManageReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IMethodDef Interface
IMethodDef Interface

The IMethodDef interface, which inherits from IInterfaceMember, allows the model creator to define an ordered list of
parameter definitions for a method. The IMethodDef interface is the default interface of the MethodDef class returned by the
IInterfaceDef::CreateMethodDef method.

When to use

Use the IMethodDef interface to:

Define a list of parameter definitions for a method.

Generate fully descriptive Interface Definition Language (IDL) files from the information model.

Properties

IInterfaceMember property Description
DispatchID The dispatch identifier to use when accessing a MethodDef

instance
Flags Flags that specify details about a MethodDef instance

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

IMethodDef method Description
CreateParameterDef Creates a new parameter definition and attaches it to the end of the

parameter list for the particular method

Collections

IInterfaceMember collection Description
Interface The collection of one interface that exposes this type of member

IMethodDef collection Description
Parameters The collection of parameter definition objects that provide parameters to this

method

See Also

CollectionDef Class

IParameterDef Interface

MethodDef Class

PropertyDef Class

Meta Data Services Programming (SQL Server 2000)

IMethodDef::CreateParameterDef
IMethodDef::CreateParameterDef

This method creates a new parameter definition and attaches it to the end of the parameter list for the particular method.

HRESULT CreateParameterDef (
 VARIANT sObjID,
 BSTR Name,
 long Type,
 long Flags,
 BSTR Description,
 BSTR Default,
 IParameterDef **pParamDef
);

Parts

sObjID

[in]
Object ID for the parameter.

Name

[in]
Name of the parameter.

Type

[in]
Type of the parameter. This should be one of the VT_XXXX values defined by OLE Automation.

Flags

[in]
A flag that can take one of the following values. Enumerated values are defined through the IParameterDef Flags property.

PARAMFLAGS_IN = 1
PARAMFLAGS_OUT = 2
PARAMFLAGS_RETVAL = 4
PARAMFLAGS_OPTIONAL = 8

Description

[in]
Text inserted into the type library to define the parameter type.

Default

[in]
This is inserted into the type library to define the default value of the parameter.

*ppParamDef

[out]
A pointer to the IParameterDef interface that returns the newly created parameter definition.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IMethodDef Interface

IParameterDef Flags Property

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IMethodDef Parameters Collection
IMethodDef Parameters Collection

This collection contains the parameter definition objects that you define for the current method definition.

If you use CreateParameterDef method to create the parameter, the parameter is automatically added to this collection for the
current method definition.

This collection is sequenced and it must contain only uniquely named items.

See Also

IMethodDef Interface

IMethodDef::CreateParameterDef

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IParameterDef Interface
IParameterDef Interface

The IParameterDef interface allows the model creator to define, in detail, each parameter of the method that uses the interface
properties listed in this topic. Parameter definitions are stored in a RTblParameterDef table in the repository database.

When the engine receives a call to a method defined through these interfaces, it returns E_NOTIMPL.

Properties

Property Description
Type The data type of the parameter.
Flags A flag that defines whether the parameter is the default

parameter. It also defines whether it is passed by reference
or by value.

Description A string (of 255 characters maximum) to be placed into the
IDL file instead of the default text for the parameter type.

Default A string (of 255 characters maximum) that denotes the
default value for the parameter.

GUID A GUID that defines the interface ID of a VT_DISPATCH or
VT_UNKNOWN object.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch emthod Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

See Also

CollectionDef Class

IInterfaceMember DispatchID Property

IInterfaceMember Flags Property

IInterfaceMember Interface Collection

IMethodDef Interface

IParameterDef Interface

MethodDef Class

PropertyDef Class

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

IParameterDef Type Property
IParameterDef Type Property

This property is the data type of the parameter, which can be any variable type supported by Automation.

Dispatch Identifier: DISPID_ParDefType (104)

Property Data Type: long

See Also

IMethodDef Interface

IParameterDef Interface

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IParameterDef Flags Property
IParameterDef Flags Property

This property supports flags that define whether the parameter is an optional parameter. It also defines whether it is passed by
reference or value, and specifies which of the parameters is a return value.

The trailing parameters are optional. Only one parameter can be marked as a return value.

Dispatch Identifier: DISPID_ParDefFlags (103)

Property Data Type: long

The flag can take one of the following values.

Flag value Description
PARAMFLAGS_IN = 1 Passed by value
PARAMFLAGS_OUT = 2 Passed by reference
PARAMFLAGS_RETVAL = 4 A return value
PARAMFLAGS_OPTIONAL = 8 Optional parameter

See Also

IMethodDef Interface

IParameterDef Interface

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IParameterDef Description Property
IParameterDef Description Property

This property is a string (of 255 characters maximum) that can be placed in an IDL file, providing a more meaningful description
than that provided through the default text for the parameter type. This allows parameters of the type VT_DISPATCH to be
defined, even though the IDL file contains text like "IRepositoryObject *".

Dispatch Identifier: DISPID_ParDefDesc (105)

Property Data Type: string

See Also

IMethodDef Interface

IParameterDef Interface

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IParameterDef Default Property
IParameterDef Default Property

This property is a string (of 255 characters maximum) that denotes the default value for the parameter.

Dispatch Identifier: DISPID_ParDefDefault (106)

Property Data Type: string

See Also

IMethodDef Interface

IParameterDef Interface

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IParameterDef GUID Property
IParameterDef GUID Property

This property is a GUID that defines the interface ID of a VT_DISPATCH or VT_UNKNOWN object. This cannot be set through the
CreateParameterDef method.

Dispatch Identifier: DISPID_ParDefGUID (107)

Property Data Type: string

See Also

IParameterDef Interface

IMethodDef Interface

MethodDef Class

Meta Data Services Programming (SQL Server 2000)

IPropertyDef Interface
IPropertyDef Interface

A property definition object specifies the characteristics of a particular type of property. These characteristics are defined by the
properties of the property definition object.

To create a new property definition

1. Use the CreatePropertyDef method of the IInterfaceDef interface.

2. Define any non-default characteristics of your new property definition by manipulating the properties of the property
definition object.

3. Commit your changes to the repository database.

Use the IPropertyDef interface to retrieve or modify the characteristics of a property definition.

Properties

Property Description
APIType The C data type of the property
ColumnName The name of the column in the SQL table for this property
Flags Specifies details about the property
SQLScale The number of digits to the right of the decimal point for a numeric

property
SQLSize The size in bytes of the property
SQLType The SQL data type of the property

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type information for an

interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface provides

access to the Properties collection.

See Also

IInterfaceDef CreatePropertyDef Method

PropertyDef Class

Meta Data Services Programming (SQL Server 2000)

IPropertyDef APIType Property
IPropertyDef APIType Property

This property contains the C data type of the property definition object. For a definition of valid values, see the ODBC
documentation.

Dispatch Identifier: DISPID_APIType (59)

Property Data Type: short

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef ColumnName Property
IPropertyDef ColumnName Property

This property specifies the name of the column in the SQL table for the property definition object. A SQL table is used to store
instance information for the properties of an interface. By default, there is a column in this table for each property that is defined
as a member of the interface. The length of the column name must be 30 bytes or less.

Dispatch Identifier: DISPID_ColumnName (58)

Property Data Type: string

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef Flags Property
IPropertyDef Flags Property

This property supports a flag that is used to create annotational properties. In this release, the repository engine ignores this flag.
By default, a column is created for each property. This flag is preserved for backward compatibility.

In earlier versions, this flag specified whether to create a column for the property. Column creation occurred in the SQL table that
provided persistent storage for the interface to which the property was attached. Without a column, instances of the property
attached only to individual objects when setting the property value for that particular object.

Dispatch Identifier: DISPID_ColFlags (54)

Property Data Type: long

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef SQLScale Property
IPropertyDef SQLScale Property

This property sets the number of digits to the right of the decimal point for a numeric property definition object. This parameter is
ignored unless the SQLType property specifies an SQL_NUMERIC, SQL_DECIMAL, or SQL_TIME data type.

Dispatch Identifier: DISPID_SQLScale (62)

Property Data Type: short

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef SQLSize Property
IPropertyDef SQLSize Property

This property sets the size in bytes of the property definition object. This property is ignored when the data type of the property
inherently specifies the size of the property.

Dispatch Identifier: DISPID_SQL_Size (61)

Property Data Type: short

Note If SQLSize is set to a value greater than 65535, the repository engine divides the entered number by 65536 and sets
SQLSize to the value of the remainder of the division, but no error is returned.

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef SQLType Property
IPropertyDef SQLType Property

This property sets the SQL data type of the property definition object. For more information, including a definition of valid values,
see the ODBC documentation.

Dispatch Identifier: DISPID_SQLType (60)

Property Data Type: short

See Also

IPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IPropertyDef2 Interface
IPropertyDef2 Interface

The IPropertyDef2 interface is derived from IRepositoryDispatch, which inherits from IDispatch, and is implemented by the
PropertyDef class.

IPropertyDef2 supports the definition of enumerated properties. When you create an enumerated object, you can associate it
with a PropertyDef object through the IPropertyDef2 interface.

When to Use

The IPropertyDef2 interface contains an optional relationship to a single EnumerationDef object.

There are no methods or properties associated with this interface. For more information, see IRepositoryDispatch.

Properties

Property Description
SQLBlobSize The SQL binary large object (BLOB) size of the property

Collections

IPropertyDef2 collection Description
EnumerationDef The collection of enumerated objects that are associated

with a property definition object

Meta Data Services Programming (SQL Server 2000)

IPropertyDef2 SQLBlobSize Property
IPropertyDef2 SQLBlobSize Property

This property contains the SQL Binary Large Object (BLOB) size. When SQLType is set to SQL_LONGVARBINARY or
SQL_LONGVARCHAR, the SQLBlobSize (rather than SQLSize) determines the size of a property that is a BLOB. For a definition of
valid values, see the ODBC documentation.

Dispatch Identifier: DISPID_SQLBlobSize (87)

Property Data Type: long

See Also

IPropertyDef SQLSize Property

IPropertyDef SQLType Property

IPropertyDef2 Interface

Programming BLOBs and Large Text Fields

Meta Data Services Programming (SQL Server 2000)

IPropertyDef2 EnumerationDef Collection
IPropertyDef2 EnumerationDef Collection

This is a collection of EnumerationDef objects.

Dispatch Identifier: DISPID_IPropertyDef2_EnumerationDef = 373

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship
Type

PropertyDef_EnumerationFor_EnumerationDef This is the type of
relationship by
which all items of
the collection are
connected to a
common source
object.

Source Is Origin Yes The source object
for the collection
is also the origin
object.

Minimum
Collection Size

Zero The minimum
number of items
that must be
contained in the
collection is zero.

Maximum
Collection Size

One The maximum
number of items
that can be
contained in the
collection is one.

Sequenced
Collection

No As a destination
collection, this
does not have an
explicitly defined
sequence.
Collections of
origin objects are
never sequenced.

Deletes
Propagated

No Deleting an origin
object or a
relationship in
the collection
does not cause
the deletion of a
corresponding
destination
object.

Destinations
Named

Yes The relationship
type for the
collection permits
the naming of
destination
objects.

Case-sensitive
Names

No The collection
does not permit
the use of case-
sensitive names
for destination
objects.

Unique Names Yes The relationship
type for the
collection
requires that the
name of a
destination object
be unique within
the collection of
destination
objects.

See Also

IEnumerationDef Interface

IEnumerationValueDef Interface

IPropertyDef2 Interface

Repository Enumeration Definition

Meta Data Services Programming (SQL Server 2000)

IReposRoot Interface
IReposRoot Interface

The IReposRoot interface is a placeholder interface; it contains no properties, methods, or collections beyond Automation
dispatch methods. It is provided as a convenient connection point to the root object. When you create an information model, you
can attach to this interface a relationship collection that provides a navigational connection to the primary objects of your
information model.

When to Use

Use the IReposRoot interface as a starting point to navigate to other objects in the repository.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set

of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to get the type

information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides

(either 0 or 1)
Invoke Provides access to properties and methods exposed by an Automation object

IRepositoryDispatch method Description
get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties

interface provides access to the Properties collection.

See Also

ReposRoot Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeInfo Interface
IReposTypeInfo Interface

This interface relates class, interface, and relationship definition objects to repository type libraries.

When to Use

Use the IReposTypeInfo interface to:

Determine which repository type libraries contain a particular class, interface, or relationship type.

Determine what collection types are associated with a particular relationship type.

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a corresponding set of dispatch

identifiers.
GetTypeInfo Retrieves a type information object, which can be used to get the type information for

an interface.
GetTypeInfoCount Retrieves the number of type information interfaces that an object provides (either 0 or

1).
Invoke Provides access to properties and methods exposed by an Automation object.

IRepositoryDispatch method
Description

get_Properties Retrieves the IReposProperties interface pointer. The IReposProperties interface
provides access to the Properties collection.

Collections

Collection Description
ItemInCollections The origin and destination collection types that are connected to a relationship

definition object.
ReposTypeLibScopes The collection of repository type libraries that contain a particular class, interface, or

relationship type.

See Also

ClassDef Class

InterfaceDef Class

RelationshipDef Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeInfo ItemInCollections Collection
IReposTypeInfo ItemInCollections Collection

This collection contains the origin and destination collection types that are associated with a particular relationship type. This
collection is empty for definition objects that are not relationship definitions.

Dispatch Identifier: DISPID_Collection (39)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type Collection_Contains_items This is the type of relationship
by which all items of the
collection are connected to a
common source object.

Source Is Origin No The source object for the
collection is not the same as the
origin object.

Minimum Collection
Size

Zero The minimum number of items
that must be contained in the
collection is zero.

Maximum Collection
Size

Two. The maximum number of items
that can be contained in the
collection is two.

Sequenced Collection No As a destination collection, this
does not have an explicitly
defined sequence. Collections of
origin objects are never
sequenced.

Deletes Propagated No Deleting an origin object or a
relationship in the collection
does not cause the deletion of a
corresponding destination
object.

Destinations Named No The relationship type for the
collection does not permit the
naming of destination objects.

Case-Sensitive Names Not applicable Case-sensitive naming is not
applicable for this collection.

Unique Names Not applicable Unique naming is not
applicable for this collection.

See Also

IReposTypeInfo Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeInfo ReposTypeLibScopes Collection
IReposTypeInfo ReposTypeLibScopes Collection

The collection of repository type libraries that contain a particular class, interface, or relationship type.

Dispatch Identifier: DISPID_ReposTypeLibScopes (43)

Collection
characteristic

Value Description

Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of
relationship by which
all items of the
collection are connected
to a common source
object.

Source Is Origin No The source object for
the collection is not the
same as the origin
object.

Minimum
Collection Size

One The minimum number
of items that must be
contained in the
collection is one.

Maximum
Collection Size

Many The maximum number
of items that can be
contained in the
collection is unlimited.

Sequenced
Collection

No As a destination
collection, this does not
have an explicitly
defined sequence.
Collections of origin
objects are never
sequenced.

Deletes
Propagated

Yes Deleting an origin
object or a relationship
in the collection causes
the deletion of a
corresponding
destination object.

Destinations
Named

Yes The relationship type
for the collection
permits the naming of
destination objects.

Case-Sensitive
Names

No The collection does not
permit the use of case-
sensitive names for
destination objects.

Unique Names Yes The relationship type
for the collection
requires that the name
of a destination object
be unique within the
collection of destination
objects.

See Also

IReposTypeInfo Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeInfo2 Interface
IReposTypeInfo2 Interface

This interface exposes methods that allow you to create synonyms for an existing class, interface, relationship, or enumeration
definition object. The IReposTypeInfo2 interface inherits from the IReposTypeInfo interface.

When to Use

Use the IReposTypeInfo2 interface to allow classes, interfaces, and relationships to be referred to by multiple names as aliases.

Properties

Property Description
Synonym A string used as an alias name

See Also

IInterfaceMember2 Interface

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

IReposTypeInfo2 Synonym Property
IReposTypeInfo2 Synonym Property

This property contains a string that is used as an alias name. You can use this property to define an alias for ClassDef,
RelationshipDef, InterfaceDef, and EnumerationDef classes. The maximum length of this string is 255 characters.

Dispatch Identifier: DISPID_Synonym (393)

Remarks

The repository engine does not check for duplicate synonym values. If you want unique synonyms, you must check for duplicate
values first.

This interface uses methods exposed through IRepositoryDispatch. For more information, see IRepositoryDispatch Interface.

See Also

IReposTypeInfo2 Interface

Type Information Aliasing

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib Interface
IReposTypeLib Interface

There is one repository type library for every information model contained in the repository. Each information model provides a
logical grouping of all of the type definitions related to a particular tool (or tool set).

To add a new repository type library to the repository, use the IManageReposTypeLib interface.

When to Use

Use the IReposTypeLib interface to:

Define new classes, relationship types, and interfaces for an information model.

Retrieve or modify the global identifier associated with a repository type library.

Determine which type definitions are associated with a particular repository type library.

Properties

Property Description
TypeLibID The global identifier for the repository type library

Methods

IUnknown method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch method Description
GetIDsOfNames Maps a single member and a set of argument names to a

corresponding set of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to

get the type information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that

an object provides (either 0 or 1)
Invokes Provides access to properties and methods exposed by

an Automation object

IRepositoryDispatch
method Description

get_Properties Retrieves the IReposProperties interface pointer. The
IReposProperties interface provides access to the
Properties collection.

IReposTypeLib method Description
CreateClassDef Creates a new class definition object
CreateInterfaceDef Creates a new interface definition object
CreateRelationshipDef Creates a new relationship definition object

Collections

Collection Description

ReposTypeInfos The collection of all classes, interfaces, and relationship
types that are defined in the repository type library

ReposTypeLibContexts The collection of one repository root object that is the
context for the repository type library

See Also

IManageReposTypeLib Interface

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib TypeLibID Property
IReposTypeLib TypeLibID Property

This property is the global identifier for the repository type library.

Dispatch Identifier: DISPID_TypeLibID (64)

Property Data Type: GUID

See Also

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib::CreateClassDef
IReposTypeLib::CreateClassDef

This method creates a new class definition object. No interfaces are attached to the class.

HRESULT CreateClassDef(
 VARIANT sObjId,
 BSTR Name,
 VARIANT sClsId,
 IClassDef **ppIClassDef
);

Parameters

sObjId

[in]
The object identifier to be used for the new class definition object. The repository engine will assign an object identifier if you set
this parameter to OBJID_NULL.

Name

[in]
The name of the new class.

sClsId

[in]
The global identifier by which this class is referenced.

*ppIClassDef [out]

The interface pointer to the new class definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IClassDef Interface

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib::CreateInterfaceDef
IReposTypeLib::CreateInterfaceDef

This method creates a new interface definition object. Use the IClassDef::AddInterface method to attach the interface to a class
definition object.

HRESULT CreateInterfaceDef(
 VARIANT sObjId,
 BSTR Name,
 VARIANT sIId,
 IInterfaceDef *pIAncestor,
 IInterfaceDef **ppIInterfaceDef
);

Parameters

sObjId

[in]
The object identifier to be assigned to the new interface definition object. If this parameter is set to OBJID_NULL, the repository
engine assigns an object identifier for you.

Name

[in]
The name of the interface that is to be created.

sIId

[in]
The interface identifier associated with the signature for this interface. If there is none, set this parameter to zero.

*pIAncestor

[in]
The IInterfaceDef interface pointer for the base interface from which the new interface is derived.

*pplInterfaceDef

[out]
The interface pointer for the new interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IClassDef::AddInterface

IInterfaceDef Interface

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib::CreateRelationshipDef
IReposTypeLib::CreateRelationshipDef

This method creates a relationship definition object for a new relationship type. After the relationship definition is created, use the
IInterfaceDef::CreateRelationshipColDef method to create origin and destination collection definitions for the new
relationship type.

HRESULT CreateRelationshipDef(
 VARIANT sObjId,
 BSTR Name,
 IReposTypeInfo **ppIRelshipDef
);

Parameters

sObjId [in]
The object identifier for the new relationship type. The repository engine assigns an object identifier if you set this parameter to
OBJID_NULL.

Name

[in]
The name of the new relationship type.

*ppIRelshipDef

[out]
The COM interface pointer to the new relationship definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

See Also

IInterfaceDef::CreateRelationshipColDef

IReposTypeLib Interface

RelationshipDef Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib ReposTypeInfos Collection
IReposTypeLib ReposTypeInfos Collection

This collection contains all classes, interfaces, and relationship types that are associated with a repository type library. The
repository engine uses this collection to enforce the unique naming of all classes, interfaces, and relationship types for a
repository type library.

Dispatch Identifier: DISPID_ReposTypeInfos (42)

Remarks

The following characteristics are true for this collection.

Collection characteristic Value Description
Relationship Type ReposTypeLib_ScopeFor_ReposTypeInfo This is the type of relationship by which all items

of the collection are connected to a common
source object.

Source Is Origin Yes The source object for the collection is also the
origin object.

Minimum Collection Size Zero The minimum number of items that must be
contained in the collection is zero.

Maximum Collection Size Many The maximum number of items that can be
contained in the collection is unlimited.

Sequenced Collection No As a destination collection, this does not have an
explicitly defined sequence. Collections of origin
objects are never sequenced.

Deletes Propagated Yes Deleting an origin object or a relationship in the
collection causes the deletion of a corresponding
destination object.

Destinations Named Yes The relationship type for the collection permits
the naming of destination objects.

Case-Sensitive Names No This collection does not use case-sensitive
names for destination objects.

Unique Names Yes The collection requires that the name of a
destination object be unique within the
collection of destination objects.

See Also

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib ReposTypeLibContexts Collection
IReposTypeLib ReposTypeLibContexts Collection

This is the collection of one repository root object that is the context for an information model.

Dispatch Identifier: DISPID_ReposTLBContexts (41)

Remarks

The following characteristics are true for this collection.

Collection
characteristic

Value Description

Relationship Type TlbManager_ContextFor_ReposTypeLibs This is the type of
relationship by which
all items of the
collection are
connected to a
common source object.

Source Is Origin No The source object for
the collection is not the
same as the origin
object.

Minimum
Collection Size

One The minimum number
of items that must be
contained in the
collection is one.

Maximum
Collection Size

Many The maximum number
of items that can be
contained in the
collection is unlimited.

Sequenced
Collection

No As a destination
collection, this does not
have an explicitly
defined sequence.
Collections of origin
objects are never
sequenced.

Deletes
Propagated

Yes Deleting an origin
object or a relationship
in the collection causes
the deletion of a
corresponding
destination object.

Destinations
Named

Yes The relationship type
for the collection
permits the naming of
destination objects.

Case-Sensitive
Names

No The collection does not
permit the use of case-
sensitive names for
destination objects.

Unique Names Yes The relationship type
for the collection
requires that the name
of a destination object
be unique within the
collection of
destination objects.

See Also

IReposTypeLib Interface

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib2 Interface
IReposTypeLib2 Interface

The IReposTypeLib2 interface inherits from the IReposTypeLib interface. It allows model creators to define dependencies
between information models that are stored in a repository.

The interface IReposTypeLib2 adds two collections, DependsOn and UsedBy, which are connected through the
ReposTypeLibDependency relationship. When an installation script for a repository type library is inserted into a repository
database, the repository engine stores this information by using the DependsOn collection.

Note The engine does not automatically calculate the dependency information for models created using the repository API.

When to Use

Use the IReposTypeLib2 interface to define dependencies between type libraries in information models.

Properties

IReposTypeLib Property Description
TypeLibID The global identifier for the repository type library

IReposTypeLib2 Property Description
Prefix Stores the prefix of an interface name to distinguish an

interface from other identically named interfaces

Methods

IUnknown Method Description
QueryInterface Returns pointers to supported interfaces
AddRef Increments the reference count
Release Decrements the reference count

IDispatch Method Description
GetIDsOfNames Maps a single member and a set of argument names to a

corresponding set of dispatch identifiers
GetTypeInfo Retrieves a type information object, which can be used to

get the type information for an interface
GetTypeInfoCount Retrieves the number of type information interfaces that

an object provides (either 0 or 1)
Invoke Provides access to properties and methods exposed by

an Automation object

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties interface pointer. The
IReposProperties interface provides access to the
Properties collection.

IReposTypeLib Methods Description
CreateClassDef Creates a new class definition object
CreateInterfaceDef Creates a new interface definition object
CreateRelationshipDef Creates a new relationship definition object

Collections

IReposTypeLib Collection Description

ReposTypeInfos The collection of all classes, interfaces, and relationship
types that are defined in the repository type library

ReposTypeLibContexts The collection of one Repository root object that is the
context for the repository type library

IReposTypeLib2
Collection

Description

DependsOn The collection that relates type libraries that depend on
other type libraries

UsedBy The collection that relates type libraries used by other
type libraries

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib2 Prefix Property
IReposTypeLib2 Prefix Property

This property stores the prefix of an interface name to distinguish an interface from other identically named interfaces. Attaching
a prefix guarantees that a class that implements interfaces from different information models does not introduce a name conflict
when both interfaces share the same name. The prefix is also used in XML for identifying namespaces (for example, "Uml" in
UmlElement).

The maximum length for this prefix is 255 characters.

For the Open Information Model (OIM), prefix values are added during model installation. If no prefix is specified, the first three
letters of the information model name are applied as a default value.

For the latest version of the Meta Data Coalition (MDC) OIM, prefix values must be added programmatically. Prefix values are not
added during model installation.

Dispatch Identifier: DISPID_IReposTypeLib2Prefix

Property Data Type: string

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib2 DependsOn Collection
IReposTypeLib2 DependsOn Collection

This is the collection that relates repository type libraries that, in turn, depend on other repository type libraries.

Dispatch Identifier: DISPID_IReposTypeLib2DependsOn (330)

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IReposTypeLib2 UsedBy Collection
IReposTypeLib2 UsedBy Collection

This is the collection that relates repository type libraries used by other repository type libraries.

Dispatch Identifier: DISPID_IReposTypeLib2UsedBy (331)

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

Model Dependency Example
Model Dependency Example

The following example demonstrates the use of both the DependsOn and UsedBy collections. These examples are written in
Microsoft® Visual Basic®.

This example requires the Microsoft SQL Server™ 2000 Meta Data Services Software Development Kit (SDK).

To run this example:

1. Create an information model FileSys.mdl that contains three packages: FileSys, FAT, and NTFS.

2. Create three type libraries: FileSys, FAT, and NTFS.

3. Populate the repository database (FileSys.mdb) with the type libraries by using the SDK component Inrepim.exe.

In this example the type library FileSys is used by FAT and NTFS. Also, both of the type libraries FAT and NTFS depend on the
FileSys type library.

The Visual Basic Module

'----------------------- Model Dependency Example -----------------------
'Declare OBJIDs assigned to type libraries:
Public Const OBJID_TypeLib_FILESYS = "{{992CF8AC-BD64-11d2-ACBD-00C04FC2F637},0000000E}"
Public Const OBJID_TypeLib_NTFS = "{{992CF8B1-BD64-11d2-ACBD-00C04FC2F637},00000005}"
Public Const OBJID_TypeLib_FAT = "{{992CF8AF-BD64-11d2-ACBD-00C04FC2F637},00000006}"
'----------------------------- Declarations -----------------------------
Public Rep As New Repository
Dim FileSys As RepositoryObject
Dim FAT As RepositoryObject
Dim NTFS As RepositoryObject
Dim Root As RepositoryObject
Private Sub Main()
'-----------Open Repository database and set OBJIDs to objects ----------
 Set Root = Rep.Open("FileSys.mdb")
 Set FileSys = Rep.Object(OBJID_TypeLib_FILESYS)
 Set FAT = Rep.Object(OBJID_TypeLib_FAT)
 Set NTFS = Rep.Object(OBJID_TypeLib_NTFS)
'------------------------------ Transaction -----------------------------
 Rep.Transaction.Begin
 FileSys("IReposTypeLib2").UsedBy.Add FAT
 NTFS("IReposTypeLib2").DependsOn.Add FileSys
 Rep.Transaction.Commit
'-------------------------------- Cleanup -------------------------------
 Set FileSys = Nothing
 Set FAT = Nothing
 Set NTFS = Nothing
 Set Rep = Nothing
End Sub
'-------------------- End of Model Dependency Example -------------------

See Also

IManageReposTypeLib Interface

IReposTypeLib Interface

Meta Data Services SDK

ReposTypeLib Class

Meta Data Services Programming (SQL Server 2000)

IScriptDef Interface
IScriptDef Interface

 New Information - SQL Server 2000 SP3.

IScriptDef is derived from IUnknown, IDispatch, and IRepositoryDispatch.

The IScriptDef interface allows the user to associate a Microsoft® ActiveX® script definition with a method without requiring the
user to create an aggregation wrapper.

When to Use

Use the IScriptDef interface to:

Define a method on an interface.

Define a method on a base interface, overriding the base interface method.

Define a validation rule for a property on an interface.

Define a validation rule for a property on a base interface, overriding the base interface validation rule.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects

Properties

Properties Description
Body The storage for the body of the script. A variable length string, not to exceed 64 KB in length.
Language The storage for the language the script is written in. Valid values are Microsoft JScript® and

Microsoft Visual Basic® Scripting Edition (VBScript).

This string is a maximum of 255 characters.

Methods

Method Description
ValidateScript Validates a script's syntax. It returns S_OK if the script can be executed; otherwise it returns a

script engine specific error.

Collections

Collection Description
UsingClasses Collection of classes for which this script is used
UsingInterfaces Collection of interfaces for which this script is

used
UsingMembers Collection of members for which this script is used

See Also

Defining Script Objects

MethodDef Object

Meta Data Services Programming (SQL Server 2000)

IScriptDef::ValidateScript
IScriptDef::ValidateScript

The ValidateScript method syntactically validates the script.

HRESULT ValidateScript();

Dispatch Identifier: DISPID_IScriptDef_ValidateScript = 347

Parameters

None.

Return Value

S_OK

The method completed successfully.

Error Values

This method returns a Script Engine specific error if the script engine is unable to instantiate the script.

Remarks

The syntax of the script is checked by instantiating the script.

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IScriptDef Body Property
IScriptDef Body Property

Contains the body of a script.

Dispatch Identifier: DISPID_IScriptDef_Body = 346

Property Data Type: string

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IScriptDef Language Property
IScriptDef Language Property

Contains a string describing the language the script is written in. Valid values are:

VBScript

JScript

Dispatch Identifier: DISPID_IScriptDef_Language = 345

Property Data Type: string

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IScriptDef UsingClasses Collection
IScriptDef UsingClasses Collection

The collection of classes being used by this script.

Dispatch Identifier: DISPID_IScriptDef_UsingClasses (349)

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IScriptDef UsingInterfaces Collection
IScriptDef UsingInterfaces Collection

The collection of interfaces being used by this script.

Dispatch Identifier: DISPID_IScriptDef_UsingClasses (352)

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IScriptDef UsingMembers Collection
IScriptDef UsingMembers Collection

The collection of members using this script.

Dispatch Identifier: DISPID_IScriptDef_UsingMembers (355)

See Also

IScriptDef Interface

Meta Data Services Programming (SQL Server 2000)

IViewClassDef Interface
IViewClassDef Interface

The IViewClassDef interface is derived from IRepositoryDispatch, which inherits from IDispatch and is implemented by the
ClassDef class.

When to Use

Use this interface to define database views for a class.

Properties

Property Type Description
ViewName string Customized view name for better

readability and to help prevent name-
space collisions

ViewFlags long Bit flags that determine the characteristics
of the view generated for the class

Dispatch Identifier: DISPID_IViewClassDef (375)

See Also

Defining a Class View

IRepositoryDispatch Interface

IViewInterfaceDef Interface

IViewPropertyDef Interface

IViewRelationshipDef Interface

Meta Data Services Programming (SQL Server 2000)

IViewClassDef ViewName Property
IViewClassDef ViewName Property

This property contains a custom view name for the class-based view. This property overrides the default name. The maximum
length for ViewName is 128 characters.

Dispatch Identifier: DISPID_IViewClassDefViewName (377)

Property Data Type: string

See Also

IViewInterfaceDef Interface

Naming Conventions for Generated Views

ViewFlags Property

Meta Data Services Programming (SQL Server 2000)

IViewClassDef ViewFlags Property
IViewClassDef ViewFlags Property

This property contains flags that determine the characteristics of a generated view that is based on a ClassDef object.

Dispatch Identifier: DISPID_IViewClassDefViewFlags (376)

Property Data Type: long

The following table describes the bit flags allowed for the ViewFlags property.

Name Bit
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies whether to generate a
view that supports version
resolution.

GENERATE_NORESOLUTION_VIEW 2 0 Specifies whether to generate a
view that does no version
resolution. This flag should only
be used on non-versioned
repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies whether to generate a
view that is scoped for a
workspace.

USE_VERSIONID_COLUMN 8 0 Specifies that the
GENERATE_RESOLVED_VIEW
view for this class includes a
VersionID column to identify the
version to which this object
resolves.

USE_VERSION_FLAGS_COLUMN 16 0 Specifies whether to include
Z_VState_Z of RTblVersion in
the GENERATE_RESOLVED_VIEW
view, indicating whether the
version is frozen or checked out
to a workspace.

See Also

Defining a Class View

IViewInterfaceDef Interface

ViewName Property

Meta Data Services Programming (SQL Server 2000)

IViewInterfaceDef Interface
IViewInterfaceDef Interface

The IViewInterfaceDef interface is derived from IRepositoryDispatch, which inherits from IDispatch and is implemented by
the InterfaceDef class.

When to Use

Use this interface to define a database view for all objects that implement a specific interface.

Properties

Property Type Description
ViewName string Customized view name for better readability and

to help prevent name-space collisions.
ViewFlags long Bit flags that determine the characteristics of the

view generated for the class

Dispatch Identifier: DISPID_IViewInterfaceDef (378)

See Also

Defining an Interface View

InterfaceDef Object

IRepositoryDispatch Interface

IViewClassDef Interface

IViewPropertyDef Interface

IViewRelationshipDef Interface

Meta Data Services Programming (SQL Server 2000)

IViewInterfaceDef ViewName Property
IViewInterfaceDef ViewName Property

This is a custom view name that overrides the default view. The ViewName can be no longer than 128 characters.

Dispatch Identifier: DISPID_IViewInterfaceDefViewName (380)

Property Data Type: string

See Also

IViewInterfaceDef Interface

Naming Conventions for Generated Views

Meta Data Services Programming (SQL Server 2000)

IViewInterfaceDef ViewFlags Property
IViewInterfaceDef ViewFlags Property

This property contains flags that determine the characteristics of a generated view that is based on an InterfaceDef object.

Dispatch Identifier: DISPID_IViewInterfaceDefFlags (379)

Property Data Type: long

The following table describes the bit flags for the ViewFlag property.

Flag Name Position
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies whether to generate
a view that supports version
resolution.

GENERATE_NORESOLUTION_VIEW 2 0 Specifies whether to generate
a view that does no version
resolution. This flag should
only be used on nonversioned
repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies whether to generate
a view that is scoped for a
workspace.

USE_VERSIONID_COLUMN 8 0 Specifies that the
GENERATE_RESOLVED_VIEW
view for this interface includes
a VersionID column to
identify the version to which
this object resolves.

USE_VERSION_FLAGS_COLUMN 16 0 Specifies whether to include
Z_VState_Z of RTblVersion
in the
GENERATE_RESOLVED_VIEW
view. Z-VState_Z indicates
whether the version is frozen
or checked out to a
workspace.

EXCLUDE_IMPLIED_INTERFACES 32 0 Specifies whether to include
the properties of interfaces
that are directly or indirectly
implied by this interface but
are not supertypes of this
interface.

See Also

Defining an Interface View

IViewInterfaceDef Interface

ViewName Property

Meta Data Services Programming (SQL Server 2000)

IViewPropertyDef Interface
IViewPropertyDef Interface

The IViewPropertyDef interface defines a custom name that you can use to override the default column name of a view. This
interface is derived from IRepositoryDispatch, which inherits from IDispatch and is implemented by the PropertyDef class.

The same view column can appear in multiple views. In each case, the view column name that you define is the same for all
occurrences. For example, a view that supports implied interfaces or that is based on an inherited interface includes members
from multiple interfaces, creating a case where a single column can appear more than once.

When to Use

Use this interface to define the column name of a property in the view. This prevents name-space collisions and allows for column
renaming for better readability in an SQL query statement.

Properties

Property Type Description
ViewColumnName string Customized view name for better readability and

to help prevent name-space collisions.

A view column name can be a maximum of 128
characters in length. The default value is null.

Dispatch Identifier: DISPID_IViewInterfaceDef (385)

See Also

IViewClassDef Interface

IViewInterfaceDef Interface

IViewRelationshipDef Interface

PropertyDef Object

Meta Data Services Programming (SQL Server 2000)

IViewPropertyDef ViewColumnName Property
IViewPropertyDef ViewColumnName Property

Use this property to create a customized column name for a property. The maximum length for this property is 128 characters.

Dispatch Identifier: DISPID_IViewInterfaceDefViewColumnName (386)

Property Data Type: string

See Also

IViewPropertyDef Interface

Meta Data Services Programming (SQL Server 2000)

IViewRelationshipDef Interface
IViewRelationshipDef Interface

The IViewRelationshipDef interface is derived from IRepositoryDispatch, which inherits from IDispatch and is implemented
by the RelationshipDef class.

When to Use

Use this interface to define a junction table view of a relationship class. This is used for views that have many-to-many
relationships.

Properties

Property Type Description
ViewFlags long Bit flags that determine the characteristics of the

view generated for the class
ColumnNamePrefix string This string is prefixed to the column names

NAME, PrevDstID, and RelTypeID. The string is
used in all views where the corresponding
column appears.

JunctionViewName string A custom view name that overrides the default
view. It applies specifically to a many-to-many
relationship or a relationship that has the
GENERATE_VIEW flag set.

Dispatch Identifier: DISPID_IViewRelationship (381)

See Also

Defining a Junction Table View

IRepositoryDispatch Interface

IViewInterfaceDef Interface

IViewPropertyDef Interface

IViewClassDef Interface

Meta Data Services Programming (SQL Server 2000)

IViewRelationshipDef ViewFlags Property
IViewRelationshipDef ViewFlags Property

This property contains flags that determine the characteristics of a generated view that is based on a RelationshipDef object.

Property Data Type: long

This table describes the flags property for the IViewRelationshipDef interface.

Flag name Position
Default
value Description

GENERATE_RESOLVED_VIEW 1 0 Specifies whether to generate a
junction table view that supports
version resolution.

GENERATE_NORESOLUTION_VIEW 2 0 Specifies whether to generate a
junction table view that does no
version resolution. This flag should
only be used on nonversioned
repositories.

GENERATE_WORKSPACE_VIEW 4 0 Specifies whether to generate a
junction table view that is scoped
for a workspace.

INCLUDE_PREVDSTID 64 0 Specifies that the internal identifier
of the previous element in a
sequential collection be included as
a column in the view containing the
relationship.

This flag applies only to sequenced
relationship types.

INCLUDE_RELTYPEID 128 0 Specifies that the view containing
this relationship should have a
column containing the relationship
type to enable joins with
RTblRelshipProps.

CHOOSE_ORIGIN 256 0 If a relationship is one-to-one,
specifies storage in views
containing the relationship type's
origin interface.

GENERATE_RESOLVED_VIEW,
GENERATE_NORESOLUTION_VIEW,
and
GENERATE_WORKSPACE_VIEW
have precedence over this flag.

INCLUDE_LONGNAMES 512 0 Specifies that long names should
be included in junction table views.

Dispatch Identifier: DISPID_IViewRelationshipDefFlags (382)

See Also

Defining Views in an Information Model

IViewRelationshipDef ColumnNamePrefix Property

IViewRelationshipDef Interface

IViewRelationshipDef JunctionViewName Property

RTblRelshipProps SQL Table

Meta Data Services Programming (SQL Server 2000)

IViewRelationshipDef ColumnNamePrefix Property
IViewRelationshipDef ColumnNamePrefix Property

This string is prefixed to the column names NAME, PrevDstID, and RelTypeID. The string is used in all views in which the
corresponding column appears. The maximum length of this string is 118 characters.

This string is used as the foreign key column (if the relationship is stored as a foreign key), and is attached to all columns that are
scoped to the relationship.

Note In a view that involves multiple relationship types, use this property to enhance the readability of column names.

Dispatch Identifier: DISPID_IViewRelationshipDefColumnNamePrefix (383)

Property Data Type: string

See Also

IViewRelationshipDef Interface

JunctionViewName Property

Naming Conventions for Generated Views

ViewFlags Property

Meta Data Services Programming (SQL Server 2000)

IViewRelationshipDef JunctionViewName Property
IViewRelationshipDef JunctionViewName Property

This property is a custom view name that overrides the default view name. It applies only to many-to-many relationships or those
that have the GENERATE_RESOLVED_VIEW, GENERATE_NORESOLUTION_VIEW, or GENERATE_WORKSPACE_VIEW flag set. The
maximum length of this string is 128 characters.

Dispatch Identifier: DISPID_IViewRelationshipDefJunctionViewName (384)

Property Data Type: string

See Also

ColumnNamePrefix Property

Defining a Junction Table View

IViewRelationshipDef Interface

Naming Conventions for Generated Views

ViewFlags Property

Meta Data Services Programming (SQL Server 2000)

Constants and Data Types
 New Information - SQL Server 2000 SP3.

This section contains information about the constants you can use when programming against the repository API. It also contains
reference topics about data types, which provide information that supports conversion, migration, or cross-tool integration.
Header files provide additional definitions.

Topic Description
Repository Constants Defines the constants used for repository engine

classes, interfaces, and objects
SQL and API Types Used in
Property Definitions

Maps the API types and SQL types recognized by
the repository engine

Repository SQL Data Types Maps repository data types to SQL data types
supported by the underlying database server

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Header Files

Various declarations and definitions for the repository API can be found in the following files. The repository API is organized by
repository engine classes, interfaces, and objects, and by type information model classes, interfaces, and objects.

The Repapi.h source file contains Microsoft® Visual C++® definitions specific to the repository engine classes, interfaces,
and objects.

The Reptim.h, Reptim2.h, and Reptim3.h source files contain the constant definitions specific to the type information model
classes, interfaces, and objects. Most of the various identifiers (class, interface, object, local, internal, and dispatch) that you
may find useful are defined in this file.

The Repauto.h file contains the definitions of the external enumerations, classes, and interfaces of the repository engine and
of the type information model. All of the interfaces found in this file support Automation-level access.

See Also

Programming Information Models

Repository API

Repository API Reference

Meta Data Services Programming (SQL Server 2000)

Repository Constants
These constants are defined for repository engine classes, interfaces, and objects.

Constant Value Description
CARD_NOLIMIT 0xFFFF Specifies that a collection can have an unlimited number of

items.
COLUMNNAMESIZE 32 or 255 The maximum length, in bytes, of an SQL column name.

Microsoft® SQL Server™ version 6.5 allows 32 bytes. SQL
Server 7.0 and SQL Server 2000 allow 255 bytes.

INTID_NULL 0xFFFFFFFF The null internal identifier.
MEMBERNAMESIZE 64 or 128 The maximum length, in bytes, of a property, method, or

collection type name.

SQL Server 6.5 allows 64 bytes. SQL Server 7.0 and SQL
Server 2000 allow 128 bytes.

OBJID_NULL See Reptim.h The null object identifier. Use this value when you want the
repository engine to assign an object identifier for you.

PASSWORDSIZE 64 The maximum length, in bytes, of the password string that
is used to connect to the repository database.

PROPVALSIZE 220 The maximum length, in bytes, of an annotational property
string.

RELSHIPNAMESIZE 249 or 260 The maximum length, in bytes, of a name that a
relationship assigns to its destination object.

SQL Server 6.5 allows 249 bytes. SQL Server 7.0 and SQL
Server 2000 allow 260 bytes.

REPOSERROR_OBJKNOWN 0x00000001L Returned in the fFlags field of the REPOSERROR structure.
It indicates that the object identifier is known.

REPOSERROR_SQLINFO 0x00000002L Returned in the fFlags field of the REPOSERROR structure.
It indicates that the SQL error information is valid.

REPOSERROR_HELPAVAIL 0x00000004L Returned in the fFlags field of the REPOSERROR structure.
It indicates that the rcHelpFile and dwHelpContext fields
are valid.

REPOSERROR_MSG_SIZE 256 The maximum length, in bytes, of the message in the
rcMsg field of the REPOSERROR structure.

TABLENAMESIZE 32 or 255 The maximum length, in bytes, of an SQL table name.

SQL Server 6.5 allows 32 bytes. SQL Server 7.0 and SQL
Server 2000 allow 255 bytes.

TIMESTAMP_NULL {9999, 12, 31, 0, 0, 0, 0} The null timestamp value.
TYPEINFONAMESIZE 64 or 128 The maximum length, in bytes, of a class, interface, or

relationship type name.

SQL Server 6.5 allows 64 bytes. SQL Server 7.0 and SQL
Server 2000 allow 128 bytes.

TYPELIBNAMESIZE 64 or 128 The maximum length, in bytes, of a repository type library
name.

SQL Server 6.5 allows 64 bytes. SQL Server 7.0 and SQL
Server 2000 allow 128 bytes.

USERSIZE 64 or 128 The maximum length, in bytes, of the user name that is
used to connect to the repository database.

SQL Server 6.5 allows 64 bytes. SQL Server 7.0 and SQL
Server 2000 allow 128 bytes.

VIEWNAMESIZE 128 The maximum length, in bytes, of a user-defined view
name.

COLPREFIXSIZE 119 The maximum length, in bytes, of a prefix that identifies a
relationship in a generated view.

See Also

CollectionDefFlags Enumeration

ConnectionFlags Enumeration

Generating Views

InterfaceDefFlags Enumeration

InterfaceMemberFlags Enumeration

REPOSERROR Data Structure

TransactionFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

SQL and API Types Used in Property Definitions
The following tables show the API types recognized by the repository engine, as well as the SQL types. These values appear in the
APIType and SQLType properties of a PropertyDef object. For more information about conversion between SQL and API types,
see the Microsoft® ODBC documentation. For more information about API and SQL data type descriptions, see Data Types.

The following table identifies API types that map to Transact-SQL. It is recommended that you not use unlisted API types.

API Types

API type VALUE Maps to (T-SQL)
SQL_C_BINARY* -2 Binary or varbinary
SQL_C_TINYINT -6 tinyint
SQL_C_BIT -7 bit
SQL_C_CHAR 1 char or varchar
SQL_C_LONG 4 int
SQL_C_SHORT 5 int
SQL_C_FLOAT 7 real
SQL_C_DOUBLE 8 float
SQL_C_DATE 9 datetime
SQL_C_TIME 10 datetime
SQL_C_TIMESTAMP 11 datetime

Note For SQL_C_BINARY use an array of unsigned characters. C++ programmers must use VT-UI1.

SQL Types

SQL type VALUE Maps to
SQL_LONGVARCHAR -1 text
SQL_BINARY -2 binary
SQL_VARBINARY -3 varbinary
SQL_LONGVARBINARY -4 image
SQL_TINYINT -6 tinyint
SQL_BIT -7 bit
SQL_CHAR 1 char
SQL_NUMERIC 2 numeric
SQL_DECIMAL 3 decimal
SQL_INTEGER 4 integer
SQL_SMALLINT 5 smallint
SQL_FLOAT 6 float
SQL_REAL 7 real
SQL_DOUBLE 8 real
SQL_DATE 9 datetime
SQL_TIME 10 datetime
SQL_TIMESTAMP 11 datetime
SQL_VARCHAR 12 varchar

The following table identifies API types that are not supported by repository Automation. You can only store and retrieve
unsigned integers. It is recommended that you not use these API types.

API Types - Not Supported

API type VALUE
SQL_C_UTINYINT -28
SQL_C_STINYINT -26

SQL_C_ULONG -18
SQL_C_USHORT -17
SQL_C_SLONG -16
SQL_C_SSHORT -15

See Also

Constants and Data Types

PropertyDef object

Repository SQL Data Types

Meta Data Services Programming (SQL Server 2000)

Repository SQL Data Types
Because data types can vary between database management systems, the repository engine maps its own set of repository data
types to the SQL data types that are supported by the underlying database server.

This table translates repository data types into SQL data types known by the database server. For data types that vary between
different database servers, the data type used for each database server is shown. In these cases, the Microsoft® SQL Server™ data
type is shown with (S) appended to it, and the Microsoft Jet server data type is shown with (J) appended to it.

Repository SQL data types appear in repository SQL tables that compose the repository SQL schema.

Repository
data type

Database
data type Description

RTBoolean bit (S)
boolean (J)

A true/false value

RTBrID 4-byte integer A branch identifier
RTCount 2-byte integer The count (that is, cardinality) of a collection
RTDBVersion 40-byte varchar A string that indicates the engine version that

created the database
RTDispID 4-byte integer An Automation dispatch identifier
RTFlags 2-byte integer Flag bits that define the behavior of an entity

or indicate what kind of row exists in a table
RTGUID 16-byte binary A globally unique identifier
RTIntID 8-byte binary An internal identifier
RTLClock 4-byte integer Logical clock value
RTLocalID 4-byte binary A local identifier; part of an internal identifier
RTLongBinary image (S)

longbinary (J)
A long binary stream of data

RTLongString text (S)
memo (J)

A string with a maximum length of
approximately 1 gigabyte (GB)

RTNameString 200-byte varchar A special truncated name string used for
indexing

RTScale 2-byte integer Scale for numeric data; the number of digits
after the decimal point

RTShortString 220-byte varchar A special shortened string value used for
indexing

RTSiteID 4-byte binary A site identifier; part of an object identifier
RTSize 2-byte integer The size of a data type, in bytes
RTSQLName 30-byte varchar An SQL identifier; a table or column name
RTSQLType 2-byte integer The ODBC representation of an SQL data type
RTVerID 4-byte integer A version-within-branch identifier

See Also

Constants and Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

Enumerations
Enumerations are a fixed set of values that share the same context. Through the repository API, you can set predefined
enumerations on flags to control repository engine behavior for object definitions and some aspects of load operations.

Enumeration values for flags are not the same as EnumerationDef objects that you create using the repository API. For more
information about enumeration objects, see EnumerationDef Object.

You can set enumeration values for the following flags.

Flags Description
CollectionDefFlags Enumeration Defines the behavior of relationship collections
ConnectionFlags Enumeration Defines the characteristics of a repository

database connection
InterfaceDefFlags Enumeration Defines specific characteristics of an interface

definition
InterfaceMemberFlags
Enumeration

Defines specific characteristics of an interface
member

TransactionFlags Enumeration Defines which transaction option is to be
retrieved or set

LoadStatus Enumeration Reports on the loading status of an object
RepODBCFlags Enumeration Enables asynchronous operations for loading

object collections

Meta Data Services Programming (SQL Server 2000)

CollectionDefFlags Enumeration
This enumeration defines the behavior of a Relationship collection. These flags are bit flags, and they can be combined to set
multiple options. The absence of a flag indicates that the option is not set.

enum {
COLLECTION_NAMING = 1,
COLLECTION_UNIQUENAMING = 2,
COLLECTION_CASESENSITIVE = 4,
COLLECTION_SEQUENCED = 8,
COLLECTION_PROPAGATEDELETE = 16,
COLLECTION_NEWORGVERSIONSPARTICIPATE = 32,
COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE = 64,
COLLECTION_MERGEWHOLE = 128,
COLLECTION_CONTAINING = 256,
COLLECTION_OBJECTNAMING = 512,
COLLECTION_NEWDESTVERSIONADD = 1024,
COLLECTION_NEWDESTVERSIONPROPAGATE = 2048
} CollectionDefFlags;

Value Description
COLLECTION_UNIQUENAMING If this flag is set, the relationship type for the collection requires the

name of a destination object to be unique within the collection of
destination objects. This flag applies to collections of a relationship type
that permits the naming of destination objects.

COLLECTION_CASESENSITIVE If this flag is set, the relationship type for the collection permits the use
of case-sensitive names for destination objects. This flag applies to
collections of a relationship type that permits the naming of destination
objects.

COLLECTION_SEQUENCED If this flag is set, the destination objects in the collection have an
explicitly defined sequence. Collections of origin objects are never
sequenced.

COLLECTION_NAMING If this flag is set, the relationship type for the collection permits the
naming of destination objects.

COLLECTION_PROPAGATEDELETE If this flag is set, the relationship type for the collection requires that
deletes be propagated to destination objects. The destination object is
only deleted if it is the last relationship of this type that is connected to
the object.

COLLECTION_NEWORGVERSIONSPARTICIPATE If this flag is set, the CreateVersion method copies origin collections of
this type from the predecessor creation version to the newly created
successor version.

COLLECTION_NEWORGVERSIONSDONOTPARTICIPATE If this flag is set, origin collections cannot be copied to a new object
version. This flag is the opposite of the
COLLECTION_NEWORGVERSIONSPARTICIPATE flag. You cannot set
both flags at the same time. However, by default, both flags are not set.
When neither flag is set, the repository engine operates as if the
COLLECTION_NEWORGVERSIONSPARTICIPATE flag were set. That is,
during the creation of a new version of a repository object, the
repository engine copies new origin collections from a predecessor
creation version to a successor version.

COLLECTION_MERGEWHOLE Setting this flag determines the behavior of the MergeVersion method.
If this flag is set, this flag causes the successor version to match the
primary version. If the successor and primary versions already match,
the successor version is matched to the secondary version. If this flag is
not set, the combined differences from both the primary and secondary
versions are merged into the successor version. For more information,
see Merge Overview.

COLLECTION_CONTAINING If this flag is set, the destination object (for example, a column) will be
contained in the origin object (for example, a table). In other words, the
destination cannot exist outside the origin. XML Encoding uses this flag
to determine which objects to nest. For more information, see Using
XML Encoding.

COLLECTION_OBJECTNAMING If this flag is set, it specifies that the collection uses the name specified by
the INamedObject Name property as its relationship name. For more
information, see INamedObject Interface.

COLLECTION_NEWDESTVERSIONADD If this flag is set, the CreateVersion method on a destination object and
a new version of the destination object is created, then a relationship
between the related origin object and the new destination object is
created. The new relationship overrides the relationship between the
origin object and the original destination object.

COLLECTION_NEWDESTVERSIONPROPAGATE If this flag is set, the CreateVersion method on a destination object
propagates versioning to origin objects related through collections of
that match the current collection type.

This behavior occurs in response to the versioning of a destination
object. When the destination object is versioned, its origin object is also
versioned.

This behavior can propagate backwards through a version graph. If the
newly versioned origin object is simultaneously a destination object of
another relationship, its origin object is also versioned. The versioning of
paired objects continues up the version graph until an unfrozen origin
object is encountered. This behavior occurs continues to occur until a
frozen origin object is encountered. It also continues to occur for a series
of relationships that are created within the same transaction.

See Also

CollectionDef Flags Property

ICollectionDef Flags Property

IInterfaceDef::CreateRelationshipColDef

InterfaceDef CreateRelationshipColDef Method

Meta Data Services Programming (SQL Server 2000)

ConnectionFlags Enumeration
This enumeration defines the characteristics of a connection to a repository database. These flags are bit flags, and may be
combined to set multiple options. The absence of a flag indicates that the option is not set.

enum {
REPOS_CONN_NEWCACHE = 2
REPOS_CONN_UPGRADE = 4
REPOS_CONN_RECOMPUTE = 8
} ConnectionFlags;

Value Description
REPOS_CONN_NEWCACHE Creates a new cache when you open or create a repository instance. This

consumes additional resources.
REPOS_CONN_UPGRADE Upgrades the repository database tables to the most recent version. Standard

repository SQL tables are replaced. Custom repository tables that you create
by way of schema extensions are unchanged.

REPOS_CONN_RECOMPUTE Recomputes all class definitions, and regenerates views and stored
procedures.

See Also

IRepository::Create Method

IRepository::Open Method

Repository Create Method

Repository Open Method

Meta Data Services Programming (SQL Server 2000)

InterfaceDefFlags Enumeration
This enumeration defines specific characteristics of an interface definition. These flags are bit flags, and you can combine them to
set multiple options. The absence of a flag indicates that the option is not set.

enum {
INTERFACE_EXTENSIBLE = 1
INTERFACE_HIDDEN = 2
} InterfaceDefFlags;

Value Description
INTERFACE_EXTENSIBLE Specifies that the interface supports extensions
INTERFACE_HIDDEN Specifies that the interface is not visible to Automation

queries

See Also

IInterfaceDef Flags Property

InterfaceDef Flags Property

Meta Data Services Programming (SQL Server 2000)

InterfaceMemberFlags Enumeration
This enumeration defines specific characteristics of an interface member. The absence of the flag indicates that the option is not
set.

enum {
INTERFACEMEMBER_HIDDEN = 1
INTERFACEMEMBER_READONLY = 2
INTERFACEMEMBER_VIRTUAL = 4
INTERFACEMEMBER_DERIVED = 0x8000
} InterfaceMemberFlags;

Value Description
INTERFACEMEMBER_HIDDEN Specifies that the interface member is not visible to Automation queries.
INTERFACEMEMBER_READONLY Specifies that the interface member cannot be updated by an application.
INTERFACEMEMBER_VIRTUAL Supports members that are not stored. If this flag is set and the member is a

property, the repository engine will not allocate a column for it in the table for
the interface. The repository engine will return an error if an attempt is made
to access this member. A COM aggregation must be used to implement the
member. For more information, see Virtual Members.

INTERFACEMEMBER_DERIVED Specifies that the interface member is derived from a base member. By
default, a member is a base member.

See Also

CollectionDef Flags Property

IInterfaceMember Flags Property

MethodDef Flags Property

PropertyDef Flags Property

Meta Data Services Programming (SQL Server 2000)

TransactionFlags Enumeration
This enumeration specifies which transaction option is to be retrieved or set.

enum {
TXN_RESET_OPTIONS = 1
TXN_NORMAL = 2
TXN_EXCLUSIVE_WRITEBACK = 3
TXN_EXCLUSIVE_WRITETHROUGH = 4
TXN_TIMEOUT_DURATION = 5
TXN_START_TIMEOUT = 6
TXN_QUERY_TIMEOUT = 7
TXN_DBMS_READONLY = 8
TXN_USE_DTC = 10
} TransactionFlags;

Value Description
TXN_RESET_OPTIONS Specifies that all options must be reset to their default values. Any

associated option value is ignored. It is valid only for setting transaction
options.

TXN_NORMAL Specifies the nonexclusive writeback mode transaction option.

Nonexclusive writeback mode allows transactions for other repository
instances to execute concurrently. Updates are cached for each session
until a transaction is committed.

TXN_NORMAL, TXN_EXCLUSIVE_WRITEBACK, and
TXN_EXCLUSIVE_WRITETHROUGH are write modes. Write modes are
mutually exclusive. Only one write mode can be specified for each
transaction.

TXN_EXCLUSIVE_WRITEBACK This flag was created for use with version 1 of the repository engine. This
flag is no longer valid.

TXN_EXCLUSIVE_WRITETHROUGH This flag was created for use with version 1 of the repository engine. This
flag is no longer valid.

TXN_TIMEOUT_DURATION Specifies the transaction option that determines the maximum time to wait
for a lock. The default value for this option is 20000 milliseconds.

TXN_START_TIMEOUT Specifies the transaction option that determines the maximum time to wait
before starting a transaction.

TXN_START_TIMEOUT is the timeout duration if there are any conflicts in
starting a transaction (for example, when two transactions want to use a
shared cache in exclusive mode).

Setting TXN_START_TIMEOUT to zero means that there is no timeout. As a
result, the repository engine will continuously try to start the transaction
until it succeeds.

The default value for this option is 0 milliseconds.

TXN_QUERY_TIMEOUT Specifies the transaction option that determines the maximum number of
seconds to wait while a database query is executing.

If multiple applications are performing transactions on the same cache,
you may want to increase this value. Doing so gives a transaction from
one application more time to complete before a second transaction (from
another application) begins.

The default value for this option is 10 seconds.

TXN_DBMS_READONLY Specifies whether you can make changes to the repository database. If the
value is zero, you can make changes. If the value is nonzero, the database
is read-only. You can read the value of this option, but you cannot set it.

TXN_USE_DTC Specifies whether to use Microsoft® Distributed Transaction Coordinator
(MS DTC) transactions.

See Also

IRepositoryTransaction::Get Option

IRepositoryTransaction::Set Option

RepositoryTransaction Get Option Method

RepositoryTransaction Set Option Method

Meta Data Services Programming (SQL Server 2000)

LoadStatus Enumeration
This enumeration contains the flags for the asynchronous loading status of a collection.

enum {
READY = 1,
INPROGRESS = 2,
CANCELLED = 3,
FAILED = 4
} LoadStatus;

Value Description
READY Loading is complete.
INPROGRESS Loading in progress.
CANCELLED Loading has been canceled (by

caller).
FAILED Loading failed (reason unknown).

See Also

RepODBCFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

RepODBCFlags Enumeration
This enumeration sets or clears the ASNYCH option of ExecuteQuery.

enum {
RODBC_RESET_OPTIONS = 1,
RODBC_ASYNCH = 2
} RepODBCFlags;

Value Description
RODBC_RESET_OPTIONS Reset all options on the ODBC

connection.
RODBC_ASYNCH Execute queries asynchronously.

See Also

IRepositoryODBC::ExecuteQuery

LoadStatus Enumeration

Meta Data Services Programming (SQL Server 2000)

Repository Errors
Repository errors are errors returned by the methods of repository interfaces. Repository error objects are described as
REPOSERROR data structures.

All methods of repository interfaces return an HRESULT value that indicates whether the method successfully performed its
function. The facility field of these HRESULT values is always set to FACILITY_ITF; this indicates that the meaning for any given
error code value is specific to the interface from which the error is being reported. All of the standard repository interfaces (that is,
interfaces that are automatically supplied with the repository API) use the same set of error codes. These codes are listed in
numerical order and in alphabetical order. For more information, see Repository Errors (Numerical Order) and Repository Errors
(Alphabetical Order).

See Also

Error Handling Overview

Handling Errors

REPOSERROR Data Structure

Meta Data Services Programming (SQL Server 2000)

REPOSERROR Data Structure
Repository engine methods return an HRESULT value that indicates whether or not the method completed successfully. If a
repository engine method fails to complete successfully, an error object is created that contains details about the failure.

The REPOSERROR data structure contains the following details:

struct REPOSERROR {
ULONG iSize;
ULONG fFlags;
HRESULT hr;
TCHAR rcMsg[REPOSERROR_MSG_SIZE];
TCHAR rcHelpFile[_MAX_PATH];
ULONG dwHelpContext;
long iNativeError;
TCHAR rcSqlState[6];
short iReserved;
OBJID sObjID;
GUID clsid;
GUID iid;
};

iSize

The size in bytes of this data structure.

fFlags

Bit flags that define the validity of certain members of this data structure. Valid values are REPOSERROR_OBJKNOWN,
REPOSERROR_SQLINFO, and REPOSERROR_HELPAVAIL. For more information about the meaning of these constants, see
Repository Constants.

hr

The HRESULT return value that was returned from the method that logged this error.

rcMsg

The text message that is associated with this error. The message can be a maximum of 256 characters.

rcHelpFile

The name of the Help file that contains more information about this error.

dwHelpContext

The Help context identifier that is associated with this error.

iNativeError

The error code that was returned from the database engine. The value of this member is only valid if the fFlags member indicates
that SQL information is present.

rcSqlState

SQL state information supplied by the database engine. The value of this member is only valid if the fFlags member indicates that
SQL information is present.

iReserved

This parameter is reserved for use by the repository engine.

sObjID

The object identifier of the object that is associated with this error. The value of this member is only valid if the fFlags member
indicates that the object is known.

clsid

The class identifier of the object that is associated with this error. The value of this member is only valid if the fFlags member
indicates that the object is known.

iid

The interface identifier of the interface that is associated with this error. If the interface is not known, or not applicable, the value

of this member is set to GUID_NULL.

See Also

IEnumRepositoryErrors::Next

Meta Data Services Programming (SQL Server 2000)

Repository Errors (Numerical Order)
 New Information - SQL Server 2000 SP3.

The error codes that can be returned as a part of the HRESULT return value by repository engine methods are listed here in
numerical order. These codes are also listed in alphabetical order. For more information, see Repository Errors (Alphabetical
Order).

All error codes are of the form 0x8004nnnn. The prefix 8004 is omitted in the following errors to make the code more readable.

(0x1000) EREP_BADPARAMS

(0x1001) EREP_BADNAME

(0x1002) EREP_BADDRIVER

(0x1003) EREP_BADERROR

(0x1004) EREP_BUFFER_OVERFLOW

(0x1005) EREP_NAMETOOLONG

(0x1011) EREP_NOROWSFOUND

(0x1012) EREP_ODBC_CERROR

(0x1013) EREP_ODBC_MDBNOTFOUND

(0x1014) EREP_NEED_DATA

(0x1015) EREP_ODBC_UNKNOWNDRIVER

(0x1016) EREP_ODBC_CREATEFAILED

(0x1017) EREP_ODBC_WARNINGS

(0x1018) EREP_STILL_EXECUTING

(0x1019) EREP_ODBC_NOTCAPABLE

(0x1030) EREP_DB_EXISTS

(0x1031) EREP_DB_NOTCONNECTED

(0x1032) EREP_DB_ALREADYCONNECTED

(0x1033) EREP_DB_DBMSONETHREAD

(0x1034) EREP_DB_CORRUPT

(0x1035) EREP_DB_NOSCHEMA

(0x1036) EREP_DB_DBMSOLD

(0x1037) EREP_DB_READONLY

(0x1038) EREP_DB_INCOMPATIBLEVERSION

(0x1039) EREP_DB_UPGRADE

(0x1041) EREP_TXN_NOTXNACTIVE

(0x1042) EREP_TXN_AUTOABORT

(0x1043) EREP_TXN_TOOMANY

(0x1044) EREP_TXN_TIMEOUT

(0x1045) EREP_TXN_NODATA

(0x1046) EREP_TXN_NOSETINTXN

(0x1047) EREP_TXN_OBJABORTED

(0x1048) EREP_TXN_COLABORTED

(0x1070) EREP_REPOS_CACHEFULL

(0x1071) EREP_REPOS_NONEXTDISPID

(0x1072) EREP_DUPEDISPID

(0x1100) EREP_RELSHIP_EXISTS

(0x1101) EREP_RELSHIP_INVALID_PAIR

(0x1102) EREP_RELSHIP_NOTFOUND

(0x1105) EREP_RELSHIP_ORGONLY

(0x1106) EREP_RELSHIP_OUTOFDATE

(0x1107) EREP_RELSHIP_INVALIDFLAGS

(0x1108) EREP_RELSHIP_NAMEINVALID

(0x1109) EREP_RELSHIP_DUPENAME

(0x1110) EREP_RELSHIP_NONNAMINGCOL

(0x1120) EREP_TYPE_TABLEMISMATCH

(0x1121) EREP_TYPE_COLMISMATCH

(0x1122) EREP_TYPE_NOTNULLABLE

(0x1123) EREP_TYPE_MULTIDEFIFACES

(0x1124) EREP_TYPE_INVERTEDNOTALLOWED

(0x1125) EREP_TYPE_INVALIDSCALE

(0x1126) EREP_TYPE_BADTABLENAME

(0x1127) EREP_TYPE_MULTIPLEANCESTORS

(0x1200) EREP_LOCK_TIMEOUT

(0x1250) EREP_QRY_BADCOLUMNS

(0x1300) EREP_OBJ_NOTINITIALIZED

(0x1301) EREP_OBJ_NOTFOUND

(0x1302) EREP_OBJ_NONAMINGRELSHIP

(0x1303) EREP_OBJ_EXISTS

(0x1304) EREP_VERSION_NOTFOUND

(0x1400) EREP_PROP_MISMATCH

(0x1401) EREP_PROP_SETINVALID

(0x1402) SREP_PROP_TRUNCATION

(0x1403) EREP_PROP_CANTSETREPTIM

(0x1404) EREP_PROP_READONLY

(0x1405) EREP_PROP_NOTEXISTS

(0x1500) EREP_TIM_INVALIDFLAGS

(0x1501) EREP_TIM_FLAGSDEST

(0x1502) EREP_TIM_RELTYPEINVALID

(0x1503) EREP_TIM_CTYPEINVALID

(0x1504) EREP_TIM_TOOMANYCOLS

(0x1505) EREP_TIM_SQLTYPEINVALID

(0x1506) EREP_TIM_SQLSIZEINVALID

(0x1600) EREP_VM_CANTSETFROZEN

(0x1601) EREP_VM_MERGETOFROZEN

(0x1602) EREP_VM_MERGEFROMUNFROZEN

(0x1603) EREP_VM_UNFROZENVERSION

(0x1604) EREP_VM_FROZENVERSION

(0x1605) EREP_VM_CHECKEDOUTVERSION

(0x1606) EREP_VM_DUPBRANCHID

(0x1607) EREP_VM_SUCCESSOREXISTS

(0x1800) EREP_WKS_ITEMEXISTS

(0x1801) EREP_WKS_ITEMNOTEXISTS

(0x1802) EREP_NOTWORKSPACEITEM

(0x1803) EREP_ITEMNOTCHECKEDOUT

(0x1A01) EREP_BLOB_SEEKPASTEND

(0x1A02) EREP_BLOB_TEMPFILE

(0x1A03) EREP_BLOB_USERFILE

(0x1A04) EREP_BLOB_CANNOTSETPOS

(0x1B05) EREP_MEMDEL_DELCOLINVALID

(0x1C00) EREP_COL_OBJECTNAMING

(0x1C01) EREP_COL_OBJECTNOTNAMED

(0x1D00) EREP_UNKNOWNPROPERTY

(0x1D01) EREP_MISSINGLEFTBRACKET

(0x1D02) EREP_MISSINGRIGHTBRACKET

(0x1D03) EREP_MISSINGLEFTPARENTHESIS

(0x1D04) EREP_MISSINGRIGHTPARENTHESIS

(0x1D05) EREP_MISSINGCOMMA

(0x1D06) EREP_PROPERTYNOTFOUND

(0x1D07) EREP_INVALIDFILTER

(0x1D08) EREP_SCRIPT_NESTEDCALL

(0x1D09) EREP_SCRIPT_NOTFOUND

(0x1D0A) EREP_SCRIPT_INVALIDLANGUAGE

(0x1D0B) EREP_VIRTUAL_ALIAS

(0x1D0C) EREP_VIRTUAL_CALL

(0x1E00) EREP_CLASS_TOOCOMPLEX

(0x1E02) EREP_RTIM_CLASS_IS_NOT_CREATEABLE

(0x1F00) EREP_SCRIPTS_NOTENABLED

(0x2000) EREP_VM_DIFFERENTTYPES

(1x1700) EREP_REL_ORGFROZEN

(1x1701) EREP_REL_ORGCLONE

(1x1702) EREP_REL_NONSEQONLY

(1x1703) EREP_REL_ORGPIN

(1x1704) EREP_REL_NOTPINNED

(1x1900) EREP_VCOL_VERSIONNOTMEMBER

(1x1901) EREP_VCOL_INVALIDOP

(1x1950) EREP_COL_NOTSEQUENCED

(1x1B00) EREP_MEMDEL_COLNOTDEFINED

(1x1B01) EREP_MEMDEL_BASEIFACENOTIMPL

(1x1B02) EREP_MEMDEL_BASECOLVIRTUAL

(1x1B03) EREP_MEMDEL_MULTIPLEBASES

(1x1B04) EREP_MEMDEL_CIRCULARCOLS

(1x1E03) EREP_NAME_NOTUNIQUE

See Also

Repository Errors

Meta Data Services Programming (SQL Server 2000)

Repository Errors (Alphabetical Order)
 New Information - SQL Server 2000 SP3.

The error codes that can be returned as a part of the HRESULT return value by repository engine methods are listed here in
alphabetical order, according to the symbolic name for each error code. These codes are also listed in numerical order. For more
information, see Repository Errors (Numerical Order).

EREP_BADDRIVER (0x1002)

EREP_BADERROR (0x1003)

EREP_BADNAME (0x1001)

EREP_BADPARAMS (0x1000)

EREP_BLOB_CANNOTSETPOS (0x1A04)

EREP_BLOB_SEEKPASTEND (0x1A01)

EREP_BLOB_TEMPFILE (0x1A02)

EREP_BLOB_USERFILE (0x1A03)

EREP_BUFFER_OVERFLOW (0x1004)

EREP_CLASS_TOOCOMPLEX (0x1E00)

EREP_COL_NOTSEQUENCED (1x1950)

EREP_COL_OBJECTNAMING (0x1C00)

EREP_COL_OBJECTNOTNAMED (0x1C01)

EREP_DB_ALREADYCONNECTED (0x1032)

EREP_DB_CORRUPT (0x1034)

EREP_DB_DBMSOLD (0x1036)

EREP_DB_DBMSONETHREAD (0x1033)

EREP_DB_EXISTS (0x1030)

EREP_DB_INCOMPATIBLEVERSION (0x1038)

EREP_DB_NOSCHEMA (0x1035)

EREP_DB_NOTCONNECTED (0x1031)

EREP_DB_READONLY (0x1037)

EREP_DB_UPGRADE (0x1039)

EREP_DUPEDISPID (0x1072)

EREP_INVALIDFILTER(0x1D07)

EREP_ITEMNOTCHECKEDOUT (0x1803)

EREP_LOCK_TIMEOUT (0x1200)

EREP_MEMDEL_BASECOLVIRTUAL (1x1B02)

EREP_MEMDEL_BASEIFACENOTIMPL (1x1B01)

EREP_MEMDEL_CIRCULARCOLS (1x1B04)

EREP_MEMDEL_COLNOTDEFINED (1x1B00)

EREP_MEMDEL_DELCOLINVALID (0x1B05)

EREP_MEMDEL_MULTIPLEBASES (1x1B03)

EREP_MISSINGLEFTBRACKET (0x1D01)

EREP_MISSINGRIGHTBRACKET (0x1D02)

EREP_MISSINGLEFTPARENTHESIS (0x1D03)

EREP_MISSINGRIGHTPARENTHESIS (0x1D04)

EREP_MISSINGCOMMA (0x1D05)

EREP_NAME_NOTUNIQUE (1x1E03)

EREP_NAMETOOLONG (0x1005)

EREP_NEED_DATA (0x1014)

EREP_NOROWSFOUND (0x1011)

EREP_NOTWORKSPACEITEM (0x1802)

EREP_OBJ_EXISTS (0x1303)

EREP_OBJ_NONAMINGRELSHIP (0x1302)

EREP_OBJ_NOTFOUND (0x1301)

EREP_OBJ_NOTINITIALIZED (0x1300)

EREP_ODBC_CERROR (0x1012)

EREP_ODBC_CREATEFAILED (0x1016)

EREP_ODBC_MDBNOTFOUND (0x1013)

EREP_ODBC_NOTCAPABLE (0x1019)

EREP_ODBC_UNKNOWNDRIVER (0x1015)

EREP_ODBC_WARNINGS (0x1017)

EREP_PROP_CANTSETREPTIM (0x1403)

EREP_PROP_MISMATCH (0x1400)

EREP_PROP_NOTEXISTS (0x1405)

EREP_PROP_READONLY (0x1404)

EREP_PROP_SETINVALID (0x1401)

EREP_PROPERTYNOTFOUND(0x1D06)

EREP_QRY_BADCOLUMNS (0x1250)

EREP_REL_NONSEQONLY (1x1702)

EREP_REL_NOTPINNED (1x1704)

EREP_REL_ORGCLONE (1x1701)

EREP_REL_ORGFROZEN (1x1700)

EREP_REL_ORGPIN (1x1703)

EREP_RELSHIP_DUPENAME (0x1109)

EREP_RELSHIP_EXISTS (0x1100)

EREP_RELSHIP_INVALIDFLAGS (0x1107)

EREP_RELSHIP_INVALID_PAIR (0x1101)

EREP_RELSHIP_NAMEINVALID (0x1108)

EREP_RELSHIP_NONNAMINGCOL (0x1110)

EREP_RELSHIP_NOTFOUND (0x1102)

EREP_RELSHIP_ORGONLY (0x1105)

EREP_RELSHIP_OUTOFDATE (0x1106)

EREP_REPOS_CACHEFULL (0x1070)

EREP_REPOS_NONEXTDISPID (0x1071)

EREP_RTIM_CLASS_IS_NOT_CREATEABLE (0x1E02)

EREP_SCRIPT_INVALIDLANGUAGE (0x1D0A)

EREP_SCRIPT_NESTEDCALL (0x1D08)

EREP_SCRIPT_NOTFOUND (0x1D09)

EREP_SCRIPTS_NOTENABLED (0x1F00)

EREP_STILL_EXECUTING (0x1018)

EREP_TIM_CTYPEINVALID (0x1503)

EREP_TIM_FLAGSDEST (0x1501)

EREP_TIM_INVALIDFLAGS (0x1500)

EREP_TIM_RELTYPEINVALID (0x1502)

EREP_TIM_SQLSIZEINVALID (0x1506)

EREP_TIM_SQLTYPEINVALID (0x1505)

EREP_TIM_TOOMANYCOLS (0x1504)

EREP_TXN_AUTOABORT (0x1042)

EREP_TXN_COLABORTED (0x1048)

EREP_TXN_NODATA (0x1045)

EREP_TXN_NOSETINTXN (0x1046)

EREP_TXN_NOTXNACTIVE (0x1041)

EREP_TXN_OBJABORTED (0x1047)

EREP_TXN_TIMEOUT (0x1044)

EREP_TXN_TOOMANY (0x1043)

EREP_TYPE_BADTABLENAME (0x1126)

EREP_TYPE_COLMISMATCH (0x1121)

EREP_TYPE_INVALIDSCALE (0x1125)

EREP_TYPE_INVERTEDNOTALLOWED (0x1124)

EREP_TYPE_MULTIDEFIFACES (0x1123)

EREP_TYPE_MULTIPLEANCESTORS (0x1127)

EREP_TYPE_NOTNULLABLE (0x1122)

EREP_TYPE_TABLEMISMATCH (0x1120)

EREP_UNKNOWNPROPERTY (0x1D00)

EREP_VCOL_INVALIDOP (1x1901)

EREP_VCOL_VERSIONNOTMEMBER (1x1900)

EREP_VERSION_NOTFOUND (0x1304)

EREP_VIRTUAL_ALIAS (0x1D0B)

EREP_VIRTUAL_CALL (0x1D0C)

EREP_VM_CANTSETFROZEN (0x1600)

EREP_VM_CHECKEDOUTVERSION (0x1605)

EREP_VM_DIFFERENTTYPES (0x2000)

EREP_VM_DUPBRANCHID (0x1606)

EREP_VM_FROZENVERSION (0x1604)

EREP_VM_MERGEFROMUNFROZEN (0x1602)

EREP_VM_MERGETOFROZEN (0x1601)

EREP_VM_SUCCESSOREXISTS (0x1607)

EREP_VM_UNFROZENVERSION (0x1603)

EREP_WKS_ITEMEXISTS (0x1800)

EREP_WKS_ITEMNOTEXISTS (0x1801)

SREP_PROP_TRUNCATION (0x1402)

See Also

Repository Errors

Meta Data Services Programming (SQL Server 2000)

EREP_BADDRIVER
EREP_BADDRIVER (0x1002)

The currently installed ODBC driver is too old, and it is incompatible with the repository engine. To continue, update your ODBC
driver.

Meta Data Services Programming (SQL Server 2000)

EREP_BADERROR
EREP_BADERROR (0x1003)

An internal error has occurred. To continue, stop and then restart the repository engine.

Meta Data Services Programming (SQL Server 2000)

EREP_BADNAME
EREP_BADNAME (0x1001)

The name that you have supplied for a table, view, or column name contains characters that are not valid, or it is a reserved word
for the database management system (DBMS). To continue, change the name, and then try your request again.

Meta Data Services Programming (SQL Server 2000)

EREP_BADPARAMS
EREP_BADPARAMS (0x1000)

One or more invalid parameters have been passed to a repository engine method. To continue, correct the input parameters, and
then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_BLOB_SEEKPASTEND
EREP_BLOB_SEEKPASTEND (0x1A01)

You have attempted a seek operation that is defined outside of the range of the data. To continue, verify the location of your data,
and then reset the CurrentPosition property.

Meta Data Services Programming (SQL Server 2000)

EREP_BLOB_TEMPFILE
EREP_BLOB_TEMPFILE (0x1A02)

The repository engine cannot create or access a temporary file to read or write the data from a binary large object (BLOB) or large
text field.

Meta Data Services Programming (SQL Server 2000)

EREP_BLOB_USERFILE
EREP_BLOB_USERFILE (0x1A03)

The repository engine cannot access the specified file.

Meta Data Services Programming (SQL Server 2000)

EREP_BLOB_CANNOTSETPOS
EREP_BLOB_CANNOTSETPOS (0x1A04)

The repository engine cannot set the seek pointer to the specified position. As a result, the current position is unchanged.

Meta Data Services Programming (SQL Server 2000)

EREP_BUFFER_OVERFLOW
EREP_BUFFER_OVERFLOW (0x1004)

An overflow error occurred while building an SQL statement. To continue, reduce the number of changed properties or repository
objects in the operation, and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_CLASS_TOOCOMPLEX
EREP_CLASS_TOOCOMPLEX (0x1E00)

You have specified a class that is too complex.

Meta Data Services Programming (SQL Server 2000)

EREP_COL_NOTSEQUENCED
EREP_COL_NOTSEQUENCED (1x1950)

This operation cannot be performed on a nonsequenced collection.

Meta Data Services Programming (SQL Server 2000)

EREP_COL_OBJECTNAMING
EREP_COL_OBJECTNAMING (0x1C00)

Although the COLLECTION_OBJECTNAMING flag is set, a name that is specific to the relationship cannot be found for objects
within this collection. Most likely, a specific name does not exist.

Meta Data Services Programming (SQL Server 2000)

EREP_COL_OBJECTNOTNAMED
EREP_COL_OBJECTNOTNAMED (0x1c01)

You have attempted to add an object that does not support the INamedObject interface to a collection that requires all objects to
support the INamedObject interface.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_ALREADYCONNECTED
EREP_DB_ALREADYCONNECTED (0x1032)

You have attempted to connect to a repository database that is already open. To continue, skip the redundant Open or Create
method invocation and proceed with the repository interactions that follow that Open invocation.

See Also

Repository Create Method

Repository Open Method

Meta Data Services Programming (SQL Server 2000)

EREP_DB_CORRUPT
EREP_DB_CORRUPT (0x1034)

The repository database has been damaged. For more information about available facilities for restoring or rebuilding the
database, see your database server documentation.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_DBMSOLD
EREP_DB_DBMSOLD (0x1036)

This version of Microsoft® SQL Server™ is not supported by the repository engine. To use version 2.0 of the repository engine,
you must upgrade to SQL Server version 6.5, SQL Server 7.0, or SQL Server 2000.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_DBMSONETHREAD
EREP_DB_DBMSONETHREAD (0x1033)

The repository database that you have attempted to access is managed by a database server that does not support multithreaded
access. The thread attempting the access is not the same as the thread that currently has the open repository instance for the
database. To continue, either move your repository database to a database server that supports multithreaded access, or modify
the logic of your program to use a single thread for repository database access.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_EXISTS
EREP_DB_EXISTS (0x1030)

You have requested that a repository database be created with a name that is already in use for an existing database. If you want
to use the existing database, use the Open method instead of the Create method. If the existing database is no longer needed,
delete it. Otherwise, choose a different name, and then try again.

See Also

Repository Create Method

Repository Open Method

Meta Data Services Programming (SQL Server 2000)

EREP_DB_INCOMPATIBLEVERSION
EREP_DB_INCOMPATIBLEVERSION (0x1038)

The version of the database that you are using as a repository database is not supported by the repository engine.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_NOSCHEMA
EREP_DB_NOSCHEMA (0x1035)

The repository database does not contain the type information model schema. If your repository has not yet been populated with
data, install the type information model schema by using the Create method to open the repository database. If your repository
has been populated with data, restore the database from a backup copy.

See Also

Repository Create Method

Meta Data Services Programming (SQL Server 2000)

EREP_DB_NOTCONNECTED
EREP_DB_NOTCONNECTED (0x1031)

You have requested an operation that requires a connection to an open repository database, and you do not currently have such a
connection. To continue, use the Open method on the appropriate repository and try your request again.

See Also

Repository Open Method

Meta Data Services Programming (SQL Server 2000)

EREP_DB_READONLY
EREP_DB_READONLY (0x1037)

You have attempted to change a read-only database management system (DBMS). To continue, contact the system administrator.

Meta Data Services Programming (SQL Server 2000)

EREP_DB_UPGRADE
EREP_DB_UPGRADE (0x1039)

The repository engine was unable to complete the upgrade operation. The repository SQL schema has not been updated.

Meta Data Services Programming (SQL Server 2000)

EREP_DUPEDISPID
EREP_DUPEDISPID (0x1072)

Duplicate dispatch identifiers have been found.

Meta Data Services Programming (SQL Server 2000)

EREP_INVALIDDEPENDENCY
EREP_INVALIDDEPENDENCY (0x1C02)

You have attempted to define a dependency between a model and itself. You can define dependencies only between separate and
distinct models.

Meta Data Services Programming (SQL Server 2000)

EREP_INVALIDFILTER
EREP_INVALIDFILTER (0x1D07)

The filter could not be parsed. To continue, check the filter syntax and try again.

Meta Data Services Programming (SQL Server 2000)

EREP_ITEMNOTCHECKEDOUT
EREP_ITEMNOTCHECKEDOUT (0x1803)

This operation was performed on an item that was not checked out to a workspace.

Meta Data Services Programming (SQL Server 2000)

EREP_LOCK_TIMEOUT
EREP_LOCK_TIMEOUT (0x1200)

An attempt to obtain a lock on a repository item has timed out. To continue, either increase the lock time-out value and try again,
or wait for the item to become available and then try again. For more information about changing the lock time-out value, see
RepositoryTransaction SetOption Method.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_DELCOLINVALID
EREP_MEMDEL_DELCOLINVALID (0x1B05)

The structure of a delegated collection is not valid.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_COLNOTDEFINED
EREP_MEMDEL_COLNOTDEFINED (1x1B00)

You have delegated a member in a different transaction in which the collection was created. To delegate a member, you must do
so within the transaction in which the collection was instantiated.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_BASEIFACENOTIMPL
EREP_MEMDEL_BASEIFACENOTIMPL (1x1B01)

This class does not support the interface that is the base interface for a delegated member.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_BASECOLVIRTUAL
EREP_MEMDEL_BASECOLVIRTUAL (1x1B02)

A base member of the delegated collection is virtual.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_MULTIPLEBASES
EREP_MEMDEL_MULTIPLEBASES (1x1B03)

A delegated member has more than one base member.

Meta Data Services Programming (SQL Server 2000)

EREP_MEMDEL_CIRCULARCOLS
EREP_MEMDEL_CIRCULARCOLS (1x1B04)

A circular dependency has been created from delegated collections.

Meta Data Services Programming (SQL Server 2000)

EREP_MISSINGCOMMA
EREP_MISSINGCOMMA (0x1D05)

The INSTANCEOF or IMPLEMENTS clause is missing a comma.

Meta Data Services Programming (SQL Server 2000)

EREP_MISSINGLEFTBRACKET
EREP_MISSINGLEFTBRACKET (0x1D01)

The filter string is missing a left bracket.

Meta Data Services Programming (SQL Server 2000)

EREP_MISSINGLEFTPARENTHESIS
EREP_MISSINGLEFTPARENTHESIS (0x1D03)

There is no left parenthesis following the INSTANCEOF or IMPLEMENTS clause.

Meta Data Services Programming (SQL Server 2000)

EREP_MISSINGRIGHTBRACKET
EREP_MISSINGRIGHTBRACKET (0x1D02)

The filter string is missing a right bracket.

Meta Data Services Programming (SQL Server 2000)

EREP_MISSINGRIGHTPARENTHESIS
EREP_MISSINGRIGHTPARENTHESIS (0x1D04)

There is no right parenthesis following the INSTANCEOF or IMPLEMENTS clause.

Meta Data Services Programming (SQL Server 2000)

EREP_NAME_NOTUNIQUE
EREP_NAME_NOTUNIQUE (1x1E03)

The name you have specified is not unique in the class.

Meta Data Services Programming (SQL Server 2000)

EREP_NAMETOOLONG
EREP_NAMETOOLONG (0x1005)

The name you have specified exceeds the maximum length allowed for this string.

Meta Data Services Programming (SQL Server 2000)

EREP_NEED_DATA
EREP_NEED_DATA (0x1014)

An ODBC error occurred indicating that a variable-length data item (such as a name) was needed at run time, and was never
supplied. To continue, check input parameters.

Meta Data Services Programming (SQL Server 2000)

EREP_NOROWSFOUND
EREP_NOROWSFOUND (0x1011)

A query operation against the repository database yielded no rows. If you expected data to be returned, verify that your query is
correctly constructed.

Meta Data Services Programming (SQL Server 2000)

EREP_NOTWORKSPACEITEM
EREP_NOTWORKSPACEITEM (0x1802)

This item is not a workspace item.

Meta Data Services Programming (SQL Server 2000)

EREP_OBJ_EXISTS
EREP_OBJ_EXISTS (0x1303)

You have attempted to create a repository object that already exists in the repository. This situation can occur if multiple users are
attempting to add the same object to the repository concurrently. If this is not the case, eliminate the redundant Add,
CreateObject, or Insert method invocation from your program.

See Also

RelationshipCol Add Method

RelationshipCol Insert Method

Repository CreateObject Method

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_NOTCAPABLE
EREP_ODBC_NOTCAPABLE (0x1019)

The ODBC driver does not support the current operation.

Meta Data Services Programming (SQL Server 2000)

EREP_OBJ_NONAMINGRELSHIP
EREP_OBJ_NONAMINGRELSHIP (0x1302)

You have attempted to add an object to a collection using the object name, but the collection is not a naming collection.

Meta Data Services Programming (SQL Server 2000)

EREP_OBJ_NOTFOUND
EREP_OBJ_NOTFOUND (0x1301)

You have attempted to retrieve a repository object that does not exist. If multiple users are accessing the repository database
concurrently, this error can occur if one user deletes a repository object while a second user is attempting to retrieve the object. It
can also occur if you are using an object identifier that has been saved from prior interactions with the repository, and the object
has been deleted between the time that you obtained the object identifier and the time that you attempted to retrieve the
repository object. Consider handling this exception with special processing for the case where a repository object no longer exists.

Meta Data Services Programming (SQL Server 2000)

EREP_OBJ_NOTINITIALIZED
EREP_OBJ_NOTINITIALIZED (0x1300)

An attempt has been made to interact with a repository object that has not been initialized with valid data from the repository
database. To continue, ensure that all repository objects in your program are initialized before you attempt to interact with them.

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_CERROR
EREP_ODBC_CERROR (0x1012)

A database error has occurred. To continue, check the error queue for more information. You may be able to determine the source
of the problem and correct it before trying again.

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_CREATEFAILED
EREP_ODBC_CREATEFAILED (0x1016)

The creation of an .mdb file has failed. Most likely, you either supplied a wrong path, or you tried to create an .mdb file that
already existed. To continue, check the path or delete the .mdb file, and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_MDBNOTFOUND
EREP_ODBC_MDBNOTFOUND (0x1013)

You have specified a repository database that does not exist or is not accessible. To continue, make sure that the database exists
and the name is correct, and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_UNKNOWNDRIVER
EREP_ODBC_UNKNOWNDRIVER (0x1015)

The specified ODBC driver is not a valid driver, or is not known to the repository engine. To continue, obtain an ODBC driver (2.0
or later) that is compatible with the repository engine.

Meta Data Services Programming (SQL Server 2000)

EREP_ODBC_WARNINGS
EREP_ODBC_WARNINGS (0x1017)

The ODBC driver issued warnings. To continue, check the error queue for the error text.

Meta Data Services Programming (SQL Server 2000)

EREP_PROP_CANTSETREPTIM
EREP_PROP_CANTSETREPTIM (0x1403)

You have attempted to modify a property of a definition object that is part of the type information model. Modifying type
information model properties is not supported.

Meta Data Services Programming (SQL Server 2000)

EREP_PROP_MISMATCH
EREP_PROP_MISMATCH (0x1400)

An attempt to update a property value in the repository has failed. The data type of the input property cannot be converted to the
storage data type. To continue, correct the data type of the input property, and then try the update again.

Meta Data Services Programming (SQL Server 2000)

EREP_PROP_NOTEXISTS
EREP_PROP_NOTEXISTS (0x1405)

You have attempted to reference a property that does not exist. For repository 2.0 databases, this error is returned if you call
get_VersionID on any Repository Type Information Model (RTIM) object, including the root object. For repository 3.0 databases,
this error is returned if you call get_VersionID on any RTIM object, except the root object. To continue, check the property
reference (name or dispatch identifier), and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_PROP_READONLY
EREP_PROP_READONLY (0x1404)

Your request to set the value of a property has failed because the property is a read-only property.

Meta Data Services Programming (SQL Server 2000)

EREP_PROP_SETINVALID
EREP_PROP_SETINVALID (0x1401)

You have attempted to modify a collection as if it were a property. The repository engine does not support this type of operation.

Meta Data Services Programming (SQL Server 2000)

EREP_PROPERTYNOTFOUND
EREP_PROPERTYNOTFOUND (0x1D06)

No property was found between two brackets ([]). Check the syntax, and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_QRY_BADCOLUMNS
EREP_QRY_BADCOLUMNS (0x1250)

An ad-hoc query is missing the IntID column or TypeID column.

Meta Data Services Programming (SQL Server 2000)

EREP_REL_ORGFROZEN
EREP_REL_ORGFROZEN (1x1700)

This operation cannot be performed on a frozen origin object.

Meta Data Services Programming (SQL Server 2000)

EREP_REL_ORGCLONE
EREP_REL_ORGCLONE (1x1701)

A relationship can be cloned only by a version of the origin object.

Meta Data Services Programming (SQL Server 2000)

EREP_REL_NONSEQONLY
EREP_REL_NONSEQONLY (1x1702)

This operation cannot be performed on a sequenced relationship.

Meta Data Services Programming (SQL Server 2000)

EREP_REL_ORGPIN
EREP_REL_ORGPIN (1x1703)

You cannot pin or unpin an origin version.

Meta Data Services Programming (SQL Server 2000)

EREP_REL_NOTPINNED
EREP_REL_NOTPINNED (1x1704)

You cannot unpin a relationship that is not pinned.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_DUPENAME
EREP_RELSHIP_DUPENAME (0x1109)

You have attempted to add a relationship with a name that is not unique within the collection. The collection requires unique
names. To continue, either choose a different name for the relationship or delete the existing relationship with the same name if it
is no longer needed.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_EXISTS
EREP_RELSHIP_EXISTS (0x1100)

You have attempted to create a relationship that already exists in the repository. To continue, either ignore this error, or eliminate
the redundant Add or Insert method invocation from your program.

See Also

RelationshipCol Add Method

RelationshipCol Insert Method

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_INVALIDFLAGS
EREP_RELSHIP_INVALIDFLAGS (0x1107)

Your attempt to add or modify a Relationship collection has failed. Either the combinations of flags are invalid, or you are
attempting to set flag values on a destination collection. To continue, verify that the origin collection is being used for the
operation, and that the flag combinations are valid. For more information about relationship flags, see
CollectionDefFlags_Enumeration.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_INVALID_PAIR
EREP_RELSHIP_INVALID_PAIR (0x1101)

An attempt to add a new relationship between two objects has failed. One or both of the classes to which these objects conform
does not support this type of relationship. To continue, verify that the relationship type and the object classes are correct, and then
check your information model to verify that it supports the type of relationship that you are trying to create.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_NAMEINVALID
EREP_RELSHIP_NAMEINVALID (0x1108)

You have attempted to add a relationship that has an invalid name specified for the destination object. To continue, verify that the
name is nonnull and is shorter than the maximum allowed length. For more information about repository text string lengths, see
Repository Constants.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_NONNAMINGCOL
EREP_RELSHIP_NONNAMINGCOL (0x1110

The repository engine is unable to perform the current operation on a nonnaming collection.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_NOTFOUND
EREP_RELSHIP_NOTFOUND (0x1102)

You have attempted to retrieve a specific relationship that does not exist, or you have attempted to retrieve a relationship from an
empty collection. If multiple users are accessing the repository concurrently, this error can occur if one user deletes a relationship
while a second user is attempting to retrieve the relationship. Consider handling this exception with special processing for the
case where a collection is empty or a specific relationship no longer exists.

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_ORGONLY
EREP_RELSHIP_ORGONLY (0x1105)

An attempt to move or insert a relationship in a sequenced collection has failed because the Move or Insert method was invoked
through the destination object instead of the origin object. To continue, use the origin object to move or insert a relationship in a
sequenced collection.

See Also

RelationshipCol Insert Method

RelationshipCol Move Method

Meta Data Services Programming (SQL Server 2000)

EREP_RELSHIP_OUTOFDATE
EREP_RELSHIP_OUTOFDATE (0x1106)

Your request has failed because the sequenced Relationship collection that you are attempting to update has been changed by
another process. To continue, refresh the collection, and then try the update again.

Meta Data Services Programming (SQL Server 2000)

EREP_REPOS_CACHEFULL
EREP_REPOS_CACHEFULL (0x1070)

The repository engine cache is full. If you are writing new and changed data to the repository, and you cannot reduce the number
of steps in the transaction, consider releasing some object references to create additional free space.

See Also

TransactionFlags Enumeration

Meta Data Services Programming (SQL Server 2000)

EREP_REPOS_NONEXTDISPID
EREP_REPOS_NONEXTDISPID (0x1071)

You have attempted to add a member to an interface that is defined in the repository engine, but there are no more dispatch
identifier values available. To continue, factor the interface into several smaller interfaces.

Meta Data Services Programming (SQL Server 2000)

EREP_RTIM_CLASS_IS_NOT_CREATEABLE
EREP_RTIM_CLASS_IS_NOT_CREATEABLE (0x1E02)

The repository type class that you defined cannot be created for the information model.

Meta Data Services Programming (SQL Server 2000)

EREP_SCRIPT_INVALIDLANGUAGE
EREP_SCRIPT_INVALIDLANGUAGE (0x1D0A)

The script engine is not installed.

Meta Data Services Programming (SQL Server 2000)

EREP_SCRIPT_NESTEDCALL
EREP_SCRIPT_NESTEDCALL (0x1D08)

The repository engine detected a nested call in a script. This error occurs when you nest a call within script while the
NESTEDSCRIPT flag is set to FALSE.

Meta Data Services Programming (SQL Server 2000)

EREP_SCRIPT_NOTFOUND
EREP_SCRIPT_NOTFOUND (0x1D09)

The script object associated with this method or property is either undefined, or it is unrelated. For more information about how
the repository engine selects script objects, see ScriptDef Object.

Meta Data Services Programming (SQL Server 2000)

EREP_SCRIPTS_NOTENABLED
EREP_SCRIPTS_NOTENABLED (0x1F00)

 New Information - SQL Server 2000 SP3.

Scripts are not enabled. Scripting support is disabled by default. To enable scripting, you must create a registry setting. For more
information, see Defining Script Objects.

Meta Data Services Programming (SQL Server 2000)

EREP_STILL_EXECUTING
EREP_STILL_EXECUTING (0x1018)

A statement you have executed is still in progress.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_CTYPEINVALID
EREP_TIM_CTYPEINVALID (0x1503)

You have chosen an invalid C data type for a property. To continue, use a valid C data type.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_FLAGSDEST
EREP_TIM_FLAGSDEST (0x1501)

You have attempted to set a collection flag on a destination collection.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_INVALIDFLAGS
EREP_TIM_INVALIDFLAGS (0x1500)

You have specified an invalid combination of CollectionDef bit flags.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_RELTYPEINVALID
EREP_TIM_RELTYPEINVALID (0x1502)

The type of a RelationshipDef object for a collection is incorrect.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_SQLTYPEINVALID
EREP_TIM_SQLTYPEINVALID (0x1505)

You have chosen an invalid SQL data type for a property. To continue, use a valid SQL data type.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_SQLSIZEINVALID
EREP_TIM_SQLSIZEINVALID (0x1506)

You have chosen an invalid SQL size for a property data type. To continue, use a valid SQL size.

Meta Data Services Programming (SQL Server 2000)

EREP_TIM_TOOMANYCOLS
EREP_TIM_TOOMANYCOLS (0x1504)

The number of collections in use exceeds the maximum allowed for the RelationshipDef object. To continue, release the
collections that are not in use.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_AUTOABORT
EREP_TXN_AUTOABORT (0x1042)

Resources for an open repository instance were released while a transaction was in progress. The transaction has been canceled;
all changes associated with the transaction will be rolled back. To prevent this error in the future, complete an active transaction
(through either the Commit or the Abort method) before releasing an open repository instance.

See Also

RepositoryTransaction Abort Method

RepositoryTransaction Commit Method

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_COLABORTED
EREP_TXN_COLABORTED (0x1048)

The collection has been deleted, or the last transaction that updated the collection has been stopped. In the latter case, release all
the pointers to the collection, and then reinstantiate it.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_NODATA
EREP_TXN_NODATA (0x1045)

You have attempted to retrieve the value of a property that is null or does not exist. The action you decide to take depends on the
requirements of your task. If the property has a null value, consider handling this exception with special processing.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_NOSETINTXN
EREP_TXN_NOSETINTXN (0x1046)

You have attempted to modify the current transaction option settings for an active transaction. To continue, either complete the
current transaction and then modify the transaction options or set the transaction options before beginning the transaction.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_NOTXNACTIVE
EREP_TXN_NOTXNACTIVE (0x1041)

You have attempted to update the repository database, but no transaction is active. To continue, bracket your repository updates
between Begin and Commit transaction method invocations.

See Also

RepositoryTransaction Begin Method

RepositoryTransaction Commit Method

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_OBJABORTED
EREP_TXN_OBJABORTED (0x1047)

The object was created during a transaction that was stopped. To continue, release all the pointers to the object, and then
reinstantiate it.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_TIMEOUT
EREP_TXN_TIMEOUT (0x1044)

This error occurs for query time-outs and transaction time-outs. If you are querying a repository database, the amount of time
that the repository engine waits for a query to complete elapsed before the query returned a result. To continue, increase the
query time-out value.

If you are attempting to start a transaction, your transaction timed out while waiting to begin. To continue, either increase the start
transaction time-out value and retry the transaction or wait for the item to become available and then retry the transaction.

For more information about transaction options, see TransactionFlags Enumeration. For more information about changing the
transaction time-out values, see RepositoryTransaction SetOption Method or IRepositoryTransaction::SetOption.

Note DTS users and other tool users who issue queries for large amounts of data can set a registry key to workaround this error.
In this case, create a new entry for HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Repository\Engine\ODBCQueryTimeout and
set it to large value. Query time-out values are measured in seconds.

Meta Data Services Programming (SQL Server 2000)

EREP_TXN_TOOMANY
EREP_TXN_TOOMANY (0x1043)

A new transaction cannot be started because the maximum number of concurrent transactions has been exceeded. To continue,
reduce the number of transactions that are concurrently executing within the same process.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_BADTABLENAME
EREP_TYPE_BADTABLENAME (0x1126)

The string specified for the table name is invalid. Most likely, it contains invalid characters.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_COLMISMATCH
EREP_TYPE_COLMISMATCH (0x1121)

The conversion of a property value between the stored data type and the data type as specified by the caller has failed. To
continue, check the caller-specified data type to verify that it can be converted to the storage data type, as defined by the
associated property definition object.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_INVALIDSCALE
EREP_TYPE_INVALIDSCALE (0x1125)

You have attempted to set the PropertyDef SQLScale property of a property definition to an invalid value. To continue, correct
the value that you are using, and then try the operation again.

See Also

PropertyDef SQLScale Property

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_INVERTEDNOTALLOWED
EREP_TYPE_INVERTEDNOTALLOWED (0x1124)

You have attempted to add a property to an interface using the PROPERTY_INVERTED option, and the option is not permitted for
the interface. To continue, correct either the property definition or the interface definition.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_MULTIDEFIFACES
EREP_TYPE_MULTIDEFIFACES (0x1123)

You have attempted to set more than one interface as the default interface for a class definition. To continue, choose one of the
interfaces to be the default interface.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_MULTIPLEANCESTORS
EREP_TYPE_MULTIPLEANCESTORS (0x1127)

There is more than one ancestor specified for the current interface.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_NOTNULLABLE
EREP_TYPE_NOTNULLABLE (0x1122)

You have attempted to set a property value to the null value, and the property definition does not allow this. To continue, choose
one of the permitted property values, and then try the update operation again.

Meta Data Services Programming (SQL Server 2000)

EREP_TYPE_TABLEMISMATCH
EREP_TYPE_TABLEMISMATCH (0x1120)

An attempt to extend an interface for an information model has failed. The SQL table that is designated as the table to be used for
storing property values for the interface does not contain the expected columns. To continue, check the table to determine
whether it has been damaged or whether columns have been dropped from the table. You can then restore the table to its prior
state and try the request again.

Meta Data Services Programming (SQL Server 2000)

EREP_UNKNOWNPROPERTY
EREP_UNKNOWNPROPERTY (0x1D00)

The property name inside the brackets ([]) could not be resolved. To continue, check the property name, and then try again.

Meta Data Services Programming (SQL Server 2000)

EREP_VCOL_INVALIDOP
EREP_VCOL_INVALIDOP (1x1901)

This is not a valid operation for collections.

Meta Data Services Programming (SQL Server 2000)

EREP_VCOL_VERSIONNOTMEMBER
EREP_VCOL_VERSIONNOTMEMBER (1x1900)

This version is not a member of the version collection.

Meta Data Services Programming (SQL Server 2000)

EREP_VERSION_NOTFOUND
EREP_VERSION_NOTFOUND (0x1304)

The version of the repository object you selected cannot be found.

Meta Data Services Programming (SQL Server 2000)

EREP_VIRTUAL_ALIAS
EREP_VIRTUAL_ALIAS (0x1D0B)

You cannot specify an alias as a virtual property.

Meta Data Services Programming (SQL Server 2000)

EREP_VIRTUAL_CALL
EREP_VIRTUAL_CALL (0x1D0C)

The virtual member you specified cannot be called.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_CANTSETFROZEN
EREP_VM_CANTSETFROZEN (0x1600)

You cannot set a property on an object that has been frozen.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_MERGETOFROZEN
EREP_VM_MERGETOFROZEN (0x1601)

You cannot perform a merge operation on an object that has been frozen.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_MERGEFROMUNFROZEN
EREP_VM_MERGEFROMUNFROZEN (0x1602)

You cannot perform a merge operation with an unfrozen, secondary version.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_UNFROZENVERSION
EREP_VM_UNFROZENVERSION (0x1603)

This operation cannot be performed on an unfrozen version.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_FROZENVERSION
EREP_VM_FROZENVERSION (0x1604)

This operation cannot be performed on a frozen version.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_CHECKEDOUTVERSION
EREP_VM_CHECKEDOUTVERSION (0x1605)

This operation cannot be performed on a checked-out version.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_DUPBRANCHID
EREP_VM_DUPBRANCHID (0x1606)

A duplicate branch ID was generated for this object.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_SUCCESSOREXISTS
EREP_VM_SUCCESSOREXISTS (0x1607)

A successor of the version exists. You cannot delete an object version if a successor exists.

Meta Data Services Programming (SQL Server 2000)

EREP_VM_DIFFERENTTYPES
EREP_VM_DIFFERENTTYPES (0x2000)

You cannot perform a merge operation on objects of different types.

Meta Data Services Programming (SQL Server 2000)

EREP_WKS_ITEMEXISTS
EREP_WKS_ITEMEXISTS (0x1800)

This item already exists in the workspace. You can have only one version of each object in a workspace.

Meta Data Services Programming (SQL Server 2000)

EREP_WKS_ITEMNOTEXISTS
EREP_WKS_ITEMNOTEXISTS (0x1801)

The item that you selected does not exist in the workspace.

Meta Data Services Programming (SQL Server 2000)

SREP_PROP_TRUNCATION
SREP_PROP_TRUNCATION (0x1402)

Your request to set the value of a property has succeeded; however, the value of the property has been truncated because the
input property value was too long.

Meta Data Services Programming (SQL Server 2000)

Repository SQL Schema
The repository SQL schema is a mapping of information model elements to SQL schema elements. The repository engine uses
data in these tables to instantiate and manage COM objects. The repository SQL schema consists of a standard schema and an
extended schema.

The standard schema consists of tables that contain the core information needed to manage all repository objects,
relationships, and collections. The standard schema also contains tables that are used by Microsoft® SQL Server™ 2000
Meta Data Services to store the definition information for information models. Standard schema tables are prefixed with
RTbl.

If you obtained Meta Data Services through SQL Server, repository SQL schema tables are located in the msdb system database.

The extended schema consists of tables that are automatically generated by the repository engine when you create or
extend an information model. An interface is mapped to at most one table in a repository database. The table contains the
instance data for persistent properties that are attached to the interface. One column in the table is created for each
property. If an interface is defined that has no member properties, no table is created.

Adding Data to Repository SQL Schema

You can add data to the repository SQL schema when you install an information model or create an information model
programmatically. When you use a SQL Server database for your repository storage, the repository engine creates stored
procedures to insert the data. For more information about how these stored procedures are named, see Naming Stored
Procedures.

Tuning the Extended Schema

Although the extended schema is automatically generated, experienced model designers can tune the extended schema to
optimize performance and data retrieval. For example, by default, the properties of each interface are stored in a separate SQL
table. You can map the properties of multiple interfaces to a single table. You can also specify the column names and data types to
be used for property data. You can add indexes to tables, but you must not remove indexes that have been automatically defined
by Meta Data Services. For more information, see Tuning the Database Schema of an Information Model.

Querying the Repository

You can construct an SQL query to extract specific information from a repository. Although it is simpler to perform queries
through generated views, you can manually build an SQL query against the repository SQL schema if you want a result set that
covers more than one information model. To build such a query, you must be familiar with the repository tables. For more
information about querying, see Repository SQL Tables and Generating Views.

See Also

Repository Databases

Repository SQL Data Types

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

Repository SQL Tables
The set of SQL tables that make up the standard schema is shown in the following table. For more information about the standard
schema, see Repository SQL Schema.

SQL table name Description
RTblClassDefs Stores ClassDef instance data
RTblDatabaseVersion Stores the version and the build of the engine that created

the repository database
RTblEnumerationDef Stores EnumerationDef instance data
RTblEnumerationValueDef Stores property values of enumerated properties
RTblIfaceDefs Stores InterfaceDef instance data
RTblIfaceHier Contains information about interface hierarchies
RTblIfaceMem Contains information about interface members
RTblNamedObj Contains values of the Name property exposed by the

INamedObject interface
RTblParameterDef Stores ParameterDef instance data
RTblPropDefs Stores PropertyDef instance data
RTblProps Stores property values of annotational properties that are

attached to repository objects
RTblRelColDefs Stores CollectionDef instance data
RTblRelshipDefs Stores RelationshipDef instance data
RTblRelshipProps Stores property values of annotational properties that are

attached to relationships
RTblRelships Stores instance data for each version combination present

in a two-way versioned relationship
RTblScriptDefs Stores ScriptDef instance data
RTblSites Stores translations of local site identifiers to global site

identifiers
RTblSumInfo Contains values of the properties exposed by the

ISummaryInformation interface
RTblTypeInfo Contains information about type information
RTblTypeLibs Contains information about repository type libraries
RTblVersionAdminInfo Contains information about the properties exposed by the

IVersionAdminInfo interface
RTblVersions Contains information about repository object versions
RTblWorkspaceItems Contains information about the inclusion of object

versions in workspaces

See Also

Repository SQL Data Types

Repository Databases

Storage Strategy in a Repository Database

Meta Data Services Programming (SQL Server 2000)

RTblClassDefs SQL Table
RTblClassDefs contains one row for each class that is defined in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the class object.
Z_BranchID_Z RTBrID The branch identifier for repository API versioning. It

is reserved for proprietary use by the repository
engine. The value of this column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository engine.
The value of this column is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository engine.
The value of this column is always VERINFINITY.

ClassID RTGUID The global identifier of the class, as recorded in the
system registry.

VerPropDescs Image,
16 bytes

Definition information for the class. It is reserved for
proprietary use by the repository engine. This field
can be NULL. The maximum length for this value is
16 bytes.

PropDescs Image,
16 bytes

This column supports backward compatibility with
RTblClassDefs in version 1.0. In version 2.0 and later,
the value of this column is always NULL. The
maximum length for this value is 16 bytes.

ViewName Varchar,
128 bytes

Specifies a user-defined view name for an SQL view
based on the class. View generation is supported on
Microsoft® SQL Server™ 2000 databases only. The
maximum length for this value is 128 bytes. For more
information, see IViewClassDef Interface.

ViewFlags Integer,
4 bytes

Specifies whether view generation is supported by
the class. This value is provided by the ViewFlags
property. The maximum length for this value is 4
bytes.

Remarks

The RTblClassDefs table stores instance data for ClassDef objects that you define.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns. A unique index is defined on the
same set of columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions. At this time,
there is only one version of ClassDef.

See Also

ClassDef Class

ClassDef Object

Defining a Class View

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblDatabaseVersion SQL Table
RTblDatabaseVersion contains the version and the build of the repository engine that created the repository database.

Column name Data type Description
DatabaseVersion RTDBVersion The version and the build of the engine in the

following format:

V1.V2.B1.B2

where:

V1: major version number.
V2: minor version number.
B1: major build number.
B2: minor build number.

For example, 3.0.6019.0 means that the
repository database was created using the
engine 3.0 and the build 6019.0.

See Also

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblEnumerationDef SQL Table
RTblEnumationDef contains one row for each enumeration definition that is defined in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the interface

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always VERINFINITY.

IsFlag RTBoolean A TRUE/FALSE value that indicates whether
the enumeration defines a logical flag. This
flag applies to numeric enumeration values
only.

Remarks

The RTblEnumationDef table stores instance data for EnumerationDef objects that you define. Enumeration values for an
enumeration object are stored in RTblEnumerationValueDef.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions. At this time,
there is only one version of EnumerationDef.

See Also

EnumerationDef Class

EnumerationDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblEnumerationValueDef SQL Table

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblEnumerationValueDef SQL Table
RTblEnumationValueDef stores enumeration values associated with an enumeration definition object.

Column name Data type Description
IntID RTIntID The internal identifier for the interface

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

EnumValue Text,
16 bytes

A string containing a value that can be
stored in the property value of an object. The
maximum length for this value is 16 bytes.

RTblEnumationValueDef table stores instance data for EnumerationValueDef objects that you define.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

EnumerationValueDef Class

EnumerationValueDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblEnumerationDef SQL Table

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblIfaceDefs SQL Table
RTblIfaceDefs contains one row for each interface that is defined in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the interface

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

InterfaceID RTGUID The global identifier of the interface, as
recorded in the system registry.

SQLTableName Varchar,
255 bytes

The name of the SQL table used to store
property instance data for the interface. This
field can be NULL. The maximum length for
this value is 255 bytes.

Flags RTFlags Flags that determine interface behavior. This
value is provided by the InterfaceDef Flags
property. For more information, see
InterfaceDefFlags Enumeration.

ViewName Varchar,
128 bytes

Specifies a user-defined view name for an
SQL view based on the interface. View
generation is supported on Microsoft® SQL
Server™ 2000 databases only. The maximum
length for this value is 128 bytes. For more
information, see IViewInterfaceDef Interface.

ViewFlags Integer,
4 bytes

Specifies whether view generation is
supported by the interface. This value is
provided by the ViewFlags property. The
maximum length for this value is 4 bytes.

Remarks

The RTblIfaceDefs table stores instance data for InterfaceDef objects that you define.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns. A unique index is defined on the
same set of columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions. At this time,
there is only one version of InterfaceDef.

See Also

Defining an Interface View

InterfaceDef Class

InterfaceDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblIfaceHier SQL Table
RTblIfaceHier stores the transitive closure of the interface hierarchy.

Column name Data type Description
BaseID RTIntID The internal identifier for a base

InterfaceDef object
AncestorID RTIntID The internal identifier for an InterfaceDef

object that is an ancestor of the base
InterfaceDef object

Remarks

The RTblIfaceHier table maintains mapping information that supports circular and extended interface relationships. In this table,
complex chains of inheritance are broken down into a series of BaseID and AncestorID pairs until the complete inheritance
relationship is expressed as isolated pairs of interfaces.

Interface inheritance represents a many-to-many relationship. An interface identifier can be an AncestorID column in one pairing
and a BaseID column in another pairing. All combinations of interface pairs, whether implicitly or explicitly related, are expressed
in the RTblIfaceHier table.

The primary key for this table is formed by the BaseID and AncestorID columns.

See Also

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblIfaceMem SQL Table
RTblIfaceMem contains one row for each member of an interface. Interface members include property definitions, method
definitions, and collection definitions stored in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the member definition

object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use by
the repository engine. The value of this column
is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository
engine. The value of this column is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository
engine. The value of this column is always
VERINFINITY.

DispID RTDispID The Automation dispatch identifier for the
member. This field can be NULL.

Flags RTFlags Flags that determine member behavior. For
more information about flag values, see
InterfaceMemberFlags Enumeration.

MemberSynonym Varchar,
255 bytes

A string used as an alias name. The maximum
length for this data type is 255 bytes.

Remarks

The RTblIfaceMem table stores instance data for members of interfaces. The information contained in this table is used by the
repository engine to create an extended schema (or one or more interface-specific SQL tables) when an interface is added.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

CollectionDef Class

CollectionDef Object

MethodDef Class

MethodDef Object

PropertyDef Class

PropertyDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblNamedObj SQL Table
RTblNamedObj stores instance data of the Name property exposed through the INamedObject interface of a repository object.

Column name Data type Description
IntID RTIntID The internal identifier of the class
Z_BranchID_Z RTBrID Indicates the branch of the version graph

containing the range to whose items the
property values in this row apply

Z_VS_Z RTVerID A version-within-branch identifier indicating
the lower limit of the range to whose items
the property values in this row apply

Z_VE_Z RTVerID A version-within-branch identifier indicating
the upper limit of the range to whose items
the property values in this row apply

Name Text The name of the object, as specified by the
Name property of the INamedObject
interface

Remarks

The RTblNamedObj table is an interface-specific table; its columns correspond to the properties exposed by the INamedObject
interface. If you create a custom interface, you must implement INamedObject if you want to use the Name property to refer to
an object.

See Also

INamedObject Interface

InterfaceDef Class

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblSumInfo SQL Table

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblParameterDef SQL Table
RTblParameterDef stores parameter data associated with method definitions.

Column name Data type Description
IntID RTIntID The internal identifier for the member

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always VERINFINITY.

ParamFlags RTFlags A flag that defines whether the parameter is
optional, passed by reference or value, or has
a return value. For more information about
flag values, see IParameterDef Flags Property.

ParamType RTFlags The data type of the parameter, which can be
any variable type supported by an
Automation interface.

ParamDesc Varchar,
255 bytes

A string placed into an Interface Definition
Language (IDL) file instead of the default text
for the parameter type. The maximum length
for this value is 255 bytes.

ParamDefault Varchar,
255 bytes

A string that denotes the default value for the
parameter. The maximum length for this
value is 255 bytes.

ParamGUID RTGUID A GUID that defines the interface ID of a
VT_DISPATCH or VT_UNKNOWN object.

Remarks

The RTblIParameterDef table stores parameter definitions associated with MethodDef objects.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions. At this time,
there is only one version of ParameterDef.

See Also

Defining a Parameter

IParameterDef Interface

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblPropDefs SQL Table
RTblPropDefs contains one row for each property definition object that is stored in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the property

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column is
always VERINFINITY.

SQLColName Varchar,
255 bytes

The name of the column in the SQL table for
this property. This field can be NULL. The
maximum length for this value is 255 bytes.

APIType RTSQLType The C language data type for the property.
This is the type of the property when it is
passed through a repository programming
interface.

SQLType RTSQLType The SQL data type for the property.
SQLSize RTSize The length in bytes of the property in terms

of its SQL data type.
SQLScale RTScale The scale for a numeric property; the number

of digits after the decimal point. This field can
be NULL.

Flags RTFlags Flags that determine property behavior. For
more information about flag values, see
PropertyDef Flags Property.

ViewColumnName Varchar, 128
bytes

A user-defined name applied to a view
column. The maximum length for this value is
128 bytes.

SQLBlobSize Integer, 4 bytes The maximum size of a property definition.
The maximum length for this value is 4 bytes.

Remarks

The RTblPropDefs table stores instance data for PropertyDef objects you create. The repository engine uses information
contained in this table to create an extended schema (or interface-specific SQL tables) when an interface is added.

Note Annotational properties are not version-specific. Annotational properties that you create apply to the repository object as a
whole.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions. At this time,
there is only one version of PropertyDef.

See Also

IViewPropertyDef Interface

PropertyDef Class

PropertyDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

RTblVersions SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblProps SQL Table
RTblProps stores one row for each annotational property instance that is attached to a repository object.

Column name Data type Description
IntID RTIntID The internal identifier for the object to which

this annotational property is attached.
PropID RTIntID The internal identifier of a property definition

object. A PropertyDef object is a prerequisite
to using annotational properties.

PropValue RTShortString The value of the annotational property
instance.

Remarks

The RTblProps table stores instances of annotational properties that you define for a repository object. An annotational property
associates a user-defined text string with a specific repository object. User-defined text strings are stored in this table. A similar
table stores data for relationships. For more information, see RTblRelshipProps SQL Table.

The primary key for this table is formed from the IntID and PropID columns. A nonunique index is defined on concatenated
values from the PropID and PropValue columns.

See Also

PropertyDef Class

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblRelColDefs SQL Table
RTblRelColDefs stores one row for each collection type defined in the repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the collection

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

RelTypeID RTIntID Internal identifier of the relationship
definition object.

Flags RTFlags Flags that determine the behavior of
collections that conform to this collection
type.

MinCount RTCount The minimum number of repository items
that can occur in a collection of this type.
This field can be NULL. This property is not
enforced by the repository engine.

MaxCount RTCount The maximum number of repository items
that can occur in a collection of this type.
This field can be NULL. This property is not
enforced by the repository engine.

IsOrigin RTBoolean Determines whether collections that
conform to this collection type are origin
collections (True), or destination collections
(False).

Remarks

The RTblRelColDefs associates relationship objects with a collection type. Collection types are distinguished by the
CollectionDefFlag value. Flag values determine collection characteristics, while IsOrigin determines the collection type.

Each relationship in a repository is associated with two relationship collections: an origin collection and a destination collection.
Each relationship collection conforms to a collection type. The collection type defines the role that the collection plays in the
relationship.

The primary key for this table is formed from the IntID and PropID columns. A nonunique index is defined on concatenated
values of the PropID and PropValue columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

CollectionDef Class

CollectionDef Object

CollectionDefFlags Enumeration

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblRelshipDefs SQL Table
RTblRelshipDefs stores persistent properties associated with relationship definitions defined in the repository database.

Column name Data type Description
IntID RTIntID The internal identifier for the relationship

definition object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

ViewFlags Integer,
4 bytes

A set of flags that determine the view
generation behavior for relationship
definitions. The maximum length for this
value is 4 bytes. For more information about
flag values, see ViewFlags Property.

ColumnNamePrefix Varchar,
118 bytes

A string prefixed to the column name
NAME, PrevDstID, and RelTypeID. The
string is used in all views where the
corresponding columns appear. The
maximum length for this value is 118 bytes.

JunctionViewName Varchar,
128 bytes

Specifies a user-defined view name for an
SQL view based on the relationship. View
generation is supported on Microsoft® SQL
Server™ 2000 databases only. The maximum
length for this value is 128 bytes. For more
information, see IViewRelationshipDef
Interface.

Remarks

The RTblRelshipDefs table stores values that direct view generation behavior for relationship definitions and indicate whether to
create a junction-table view of a relationship. Another SQL table stores relationship instance data. For more information, see
RTblRelships SQL Table.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

Defining a Junction Table View

Generating Views

RelationshipDef Class

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblRelshipProps SQL Table
RTblRelshipProps stores one row for each annotational property instance that is attached to a relationship definition.

Column name Data type Description
OrgID RTIntID The internal identifier for the origin object

of the relationship.
RelTypeID RTIntID The internal identifier for the relationship

type.
DstID RTIntID The internal identifier for the destination

object of the relationship.
PropID RTIntID The internal identifier of a property

definition object. A PropertyDef object is a
prerequisite to using annotational
properties.

PropValue RTShortString The value of the annotational property
instance.

Remarks

The RTblRelshipProps table stores instances of annotational properties that you define for a relationship definition. An
annotational property associates a user-defined text string with a specific relationship definition. User-defined text strings are
stored in this table. A similar table stores data for repository objects. For more information, see RTblProps SQL Table.

Note Annotational properties are not version-specific. Annotational properties that you create apply to the repository object as a
whole.

The primary key for this table is formed from the OrgID, RelTypeID, DstID, and PropID columns. A single nonunique index is
defined on the concatenation of the PropID and PropValue columns.

See Also

PropertyDef Class

PropertyDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblRelships SQL Table
RTblRelships stores instance data for each version combination present in a two-way versioned relationship.

Column name Data type Description
OrgID RTIntID The internal identifier for the origin object of

the relationship.
Z_OrgBrID_Z RTBrID Indicates the branch of the version graph

containing the origin object version.
Z_OrgVS_Z RTVerID Indicates the lower limit of the range of

origin object versions that have version-to-
version relationships described by this row.

Z_OrgVE_Z RTVerID Indicates the upper limit of the range of
origin object versions that have version-to-
version relationships described by this row.
It can be a special value indicating that the
range is unlimited.

Z_OrgLClock_Z RTLClock For internal use only.
DstID RTIntID The internal identifier for the destination

object of the relationship.
Z_DstBrID_Z RTBrID For relationship rows, indicates the branch of

the version graph containing the destination
object version.

For auxiliary rows, it can indicate the branch
containing the pinned object version of an
origin versioned relationship.

Z_DstVS_Z RTVerID For relationship rows, indicates the lower
limit of the range of destination object
versions that have version-to-version
relationships described by this row.

For auxiliary rows, it can indicate the pinned
object version of an origin versioned
relationship.

Z_DstVE_Z RTVerID Indicates the upper limit of the range of
destination object versions having version-
to-version relationships described by this
row.

Z_DstLClock_Z RTLClock For internal use only.
OrgTypeID RTIntID The internal identifier for the class to which

the origin object conforms. It is redundantly
stored in this table for performance reasons.

RelTypeID RTIntID The internal identifier for the relationship
type.

DstTypeID RTIntID The internal identifier for the class to which
the destination object conforms. It is
redundantly stored in this table for
performance reasons.

PrevDstID RTIntID This property is NULL for every relationship
row and any auxiliary row of a
nonsequenced relationship. For an auxiliary
row describing an item in a sequenced
relationship collection, this column has a
nonNULL value that refers to the previous
relationship in the sequenced collection.
Specifically, the value is the internal identifier
of the previous relationship; that is, the value
in the DstID column of the relationship row
describing that previous relationship.

DstName RTNameString The name of the destination object. More
precisely, the name (as defined by this
naming relationship) by which each origin
version (in the range of origin versions)
refers to each destination version (in the
range of destination versions). If the
relationship is not a naming relationship,
then this field is NULL.

DstNameLong Text,
16 bytes

If the name of the destination object is too
long for the DstName field, this field
contains the full name. Otherwise, this field
is NULL. The maximum length for this value
is 16 bytes.

Z_RelFlags_Z RTFlags A value of 2 indicates that the row is a
relationship row; a value of 1 indicates it is
an auxiliary row.

Remarks

The RTblRelships table stores information about each object version combination that exists in a two-way versioned relationship.
Within a relationship where both objects are versioned, multiple versions can exist for each object pairing. For example, one
instance of a relationship may associate Object_X version 3 with Object_Y version 2, a second instance may associate Object_X
version 4 with Object_Y version 5, and so on. This table tracks data about each combination of versioned objects.

Another SQL table stores relationship definition properties. For more information, see RTblRelshipDefs SQL Table.

The primary key for this table is formed from the OrgID, Z_OrgBrID_Z, Z_OrgVS_Z, DstID, Z_DstBrID_Z, Z_DstVS_Z,
RelTypeID, and Z_RelFlags_Z columns.

Examples

The RTblRelships table stores two kinds of rows: relationship rows and auxiliary rows. Relationship rows store data about
specific combinations of versioned objects. Auxiliary rows contain pinning and sequence information for an origin versioned
relationship. Examples illustrate each case and explain how to interpret instance data in the table.

Relationship Row Examples

In the simplest case, a relationship row describes exactly one version-to-version relationship. For more information, see
RTblRelships Example One RTblRelships Example One.

In the ideal case, a relationship row describes as large a range as possible. For more information, see RTblRelships Example
Two.

A relationship row can describe an unbounded range. For more information, see RTblRelships Example Three.

In some situations, several relationship rows exist when one would theoretically suffice. For more information, see
RTblRelships Example Four.

Auxiliary Row Examples

An auxiliary row can contain sequencing information. For more information, see RTblRelships Example Five.

An auxiliary row can contain pinning information. For more information, see RTblRelships Example Six.

An auxiliary row can contain both pinning and sequencing information. For more information, see RTblRelships Example
Seven.

Not every origin versioned relationship has a corresponding auxiliary row. If the origin versioned relationship is not part of a
sequencing collection and does not have any member of its TargetVersions collection pinned, it does not have an auxiliary row.

See Also

Relationship Class

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example One
RTblRelships Example One

This example shows exactly one version-to-version relationship. This is the simplest case.

If Z_OrgVS_Z = Z_OrgVE_Z, the range of origin versions contains exactly one item. Similarly, if Z_DstVS_Z = Z_DstVE_Z, the
range of destination versions contains exactly one item. If both these equalities hold, the row describes exactly one version-to-
version relationship.

For example, if a row has the following values, it indicates that there is a version-to-version relationship between a version of the
object whose internal identifier is 7 and a version of the object whose internal identifier is 888:

OrgID = 7
Z_OrgBrID_Z = 1
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

Note that some column values are not shown here.

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Two
RTblRelships Example Two

This example shows how multiple versions of an origin object can be related to one version of a destination object. Multiple
versions of an origin object are indicated by the inequality between the two endpoints of a range of origin object versions.

Within a relationship row, if Z_OrgVS_Z < Z_OrgVE_Z, the row describes more than one version-to-version relationship. For
example, suppose that Z_DstVS_Z = Z_DstVE_Z, but that Z_OrgVS_Z < Z_OrgVE_Z. The set of destination versions referred to
by this row includes exactly one item, but the set of origin versions referred to by this row includes n (n > 1) items. In this
situation, this row of the table indicates the existence of n different version-to-version relationships.

For example, if a row contains the following values, it describes three version-to-version relationships, where versions 3, 4, and 5
of an origin object are related to one versioned destination object:

OrgID = 7
Z_OrgBrID_Z = 1
Z_OrgVS_Z = 3
Z_OrgVE_Z = 5
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Three
RTblRelships Example Three

This example shows how the version graph defines an unbounded range for an origin object that is related to one versioned
destination object.

Within a relationship row, if Z_OrgVE_Z = VERINFINITY, the row describes one or more version-to-version relationships,
depending on the shape of the version graph.

For example, consider the following two rows and the accompanying version graph of the origin object. Compare the row data to
the diagram at the end of this topic.

OrgID = 7
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 5
Z_OrgVE_Z = VERINFINITY
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

OrgID = 7
Z_OrgBrID_Z = 3
Z_OrgVS_Z = 4
Z_OrgVE_Z = VERINFINITY
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

The first row describes exactly three version-to-version relationships, because within Branch 2, there are three object versions
whose version-within-branch identifiers are 5 or higher.

The second row describes exactly one version-to-version relationship, because within Branch 3, there is exactly one object version
whose version-within-branch identifier is 4 or higher.

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Four
RTblRelships Example Four

This example shows a data set that can be consolidated to remove extraneous values.

In some situations, several relationship rows exist where one would theoretically suffice. For example, consider a row that includes
these values:

OrgID = 7
Z_OrgBrID_Z = 4
Z_OrgVS_Z = 3
Z_OrgVE_Z = 8
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

The row indicates that a version-to-version relationship (to a specific version of the destination object) exists from every Branch 4
version of the origin object whose version-within-branch identifier is between 3 and 8.

Compare the preceding row to the following rows. In particular, notice that the following two rows are effectively equivalent to
the preceding row. Taken together, the following two rows indicate exactly what the preceding single row indicates. In other
words, given two instances of the same origin-destination object pair, combining the lowest of the Z_OrgVS_Z values and the
highest of the Z_OrgVE_Z values fully represents all version possibilities between this origin-destination object pair.

OrgID = 7
Z_OrgBrID_Z = 4
Z_OrgVS_Z = 3
Z_OrgVE_Z = 5
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

OrgID = 7
Z_OrgBrID_Z = 4
Z_OrgVS_Z = 6
Z_OrgVE_Z = 8
DstID = 888
Z_DstBrID_Z = 4
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 465
Z_RelFlags_Z = 2

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Five
RTblRelships Example Five

This example shows sequence data in an auxiliary row. When Z_RelFlags_Z is equal to 1, the row is an auxiliary row. When equal
to 2, it is a relationship row.

For each item in a sequenced origin versioned relationship, an auxiliary row in RTblVersions exists. For example, consider the
following sequenced origin versioned relationship.

The figure shows a sequenced origin versioned relationship. Because the versioned relationship has two items, there are two sets
of rows in the RTblVersions table. One set consists of one relationship row and one auxiliary row, with these values:

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 5
Z_DstVE_Z = 5
RelTypeID = 522
PrevDstID = NULL
Z_RelFlags_Z = 2

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 5
Z_DstVE_Z = 5
RelTypeID = 522
PrevDstID = SEQUENCE_END
Z_RelFlags_Z = 1

The other item has two version-to-version relationships. The RTblVersions table expresses this as a set of three rows with the
following values:

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 777
Z_DstBrID_Z = 2
Z_DstVS_Z = 2
Z_DstVE_Z = 2
RelTypeID = 522
PrevDstID = NULL
Z_RelFlags_Z = 2

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3

DstID = 777
Z_DstBrID_Z = 2
Z_DstVS_Z = 3
Z_DstVE_Z = 3
RelTypeID = 522
PrevDstID = NULL
Z_RelFlags_Z = 2

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 777
Z_DstBrID_Z = NULLBRANCH
Z_DstVS_Z = NULLVERSION
Z_DstVE_Z = NULL
RelTypeID = 522
PrevDstID = 984
Z_RelFlags_Z = 1

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Six
RTblRelships Example Six

This example shows pinning information.

If an origin versioned relationship has a pinned target version, the RTblVersions table includes an auxiliary row to indicate which
target version is pinned. For example, the following figure shows an origin versioned relationship with a pinned target version.

To accommodate this origin versioned relationship, RTblVersions includes four rows with the following values, where the four
rows correspond to the four arrows (counting the double arrow as two):

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 4
Z_DstVE_Z = 4
RelTypeID = 522
Z_RelFlags_Z = 2

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 5
Z_DstVE_Z = 5
RelTypeID = 522
Z_RelFlags_Z = 2

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 5
Z_DstVE_Z = NULL
RelTypeID = 522
Z_RelFlags_Z = 1

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 6
Z_DstVE_Z = 6
RelTypeID = 522

Z_RelFlags_Z = 2

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblRelships Example Seven
RTblRelships Example Seven

This example shows a combination of sequencing and pinning information.

An auxiliary row can include both sequencing and pinning information. For example, if a sequenced origin collection includes an
origin versioned relationship with a pinned target version, the RTblVersions table includes an auxiliary row that indicates which
target version is pinned and which item in the sequenced origin collection precedes the current one. For example, the following
figure shows a sequences origin collection, one of whose items has a pinned target version.

To accommodate this relationship collection, RTblVersions includes:

Five relationship rows, one for each version-to-version relationship

Two auxiliary rows, one for each origin versioned relationship.

The auxiliary rows have the following values:

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 984
Z_DstBrID_Z = 0
Z_DstVS_Z = 5
Z_DstVE_Z = NULL
RelTypeID = 522
PrevDstID = SEQUENCE_END
Z_RelFlags_Z = 1

OrgID = 008
Z_OrgBrID_Z = 2
Z_OrgVS_Z = 3
Z_OrgVE_Z = 3
DstID = 777
Z_DstBrID_Z = NULLBRANCH
Z_DstVS_Z = NULLVERSION
Z_DstVE_Z = NULL
RelTypeID = 522
PrevDstID = 984
Z_RelFlags_Z = 1

See Also

RTblRelships SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblScriptDefs SQL Table
 New Information - SQL Server 2000 SP3.

RTbleScriptDefs stores one row for each script definition object stored in a repository database.

Column name Data type Description
IntID RTIntID The internal identifier of the class.
Z_BranchID_Z RTBrID Indicates the branch of the version graph

that contains the range to whose items the
property values in this row apply.

Z_VS_Z RTVerID A version-within-branch identifier that
indicates the lower limit of the range to
whose items the property values in this row
apply.

Z_VE_Z RTVerID A version-within-branch identifier that
indicates the upper limit of the range to
whose items the property values in this row
apply.

ScriptLanguage Varchar,
255 bytes

The name of the scripting language to be
used. The maximum length for this value is
255 bytes.

Body Text,
64 kilobytes (KB)

A string that contains the script body. The
maximum length for this value is 64
kilobytes.

Remarks

The RTblScriptDefs table stores instances of ScriptDef objects associated with MethodDef objects. Script instance data includes
the script string and the language that supports it.

The primary key for this table is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

Security Note Scripts are disabled by default. As a security precaution, you should not allow scripts to run unless you have a
specific reason to do so. For more information, see Defining Script Objects.

See Also

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

ScriptDef Class

ScriptDef Object

Meta Data Services Programming (SQL Server 2000)

RTblSites SQL Table
RTblSites contains translation data that maps a global site identifier to a local site identifier. There is one row for each repository
site known to this repository database.

Column name Data type Description
SiteID RTSiteID The site identifier for a repository site that is

known to this repository database
SiteGUID RTGUID The global identifier for the site

Remarks

The RTblSites table provides a translation capability between the global site identifier that uniquely identifies a site across all
repositories and the local site identifier, which is unique only within the current repository database. The smaller local site
identifier is a part of the internal identifier that is used to identify a repository object within the repository database.

The primary key for this table is the SiteID column. A unique index is defined on the SiteGUID column.

See Also

Object Identifiers and Internal Identifiers

Repository Identifiers

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblSumInfo SQL Table
RTblSumInfo stores user-defined descriptive data about ISummaryInformation interfaces.

Column name Data type Description
IntID RTIntID The internal identifier of the class.
Z_BranchID_Z RTBrID Indicates the branch of the version graph that

contains the range to whose items the
property values in this row apply.

Z_VS_Z RTVerID A version-within-branch identifier that
indicates the lower limit of the range to
whose items the property values in this row
apply.

Z_VE_Z RTVerID A version-within-branch identifier that
indicates the upper limit of the range to
whose items the property values in this row
apply.

Comments RTLongString A field used for comments.
ShortDesc Varchar,

255 bytes
The description of the object. The maximum
length for this value is 255 bytes.

HelpContext Varchar,
255 bytes

A context-sensitive Help string. The maximum
length for this value is 255 bytes.

DescriptionContext RTLongString A context-sensitive description of the object.
OwnerInformation Varchar,

255 bytes
The name of the current owner. The
maximum length for this value is 255 bytes.

Status Varchar,
255 bytes

The current status of the object. The
maximum length for this value is 255 bytes.

Author Varchar,
255 bytes

The name of the original author. The
maximum length for this value is 255 bytes.

Caption Varchar, 255
bytes

A caption that provides a more descriptive
name. The maximum length for this value is
255 bytes.

Remarks

The RTblSumInfo table is an interface-specific table; its columns correspond to the properties exposed by the
ISummaryInformation interface. The repository engine creates and populates this table when you invoke the
ISummaryInformation interface and insert summary data.

The primary key for this table is formed from the InitID, Z_BranchID_Z, and Z_VS_Z columns.

See Also

InterfaceDef Class

ISummaryInformation Interface

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

Meta Data Services Programming (SQL Server 2000)

RTblTypeInfo SQL Table
RTblTypeInfo stores aliases of class, interface and relationship objects.

Column name Data type Description
IntID RTIntID The internal identifier for the member definition

object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use by
the repository engine. The value of this column
is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository
engine. The value of this column is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It is
reserved for proprietary use by the repository
engine. The value of this column is always
VERINFINITY.

Synonym Varchar,
127 bytes

A string used as an alias name. The maximum
length for this value is 127 bytes.

Remarks

The RTblTypeInfo table extends the repository API to allow classes, interfaces and relationships to be referred to by multiple
names as aliases.

The primary key for this table is formed by the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

CollectionDef Class

CollectionDef Object

MethodDef Class

MethodDef Object

PropertyDef Class

PropertyDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

RTblTypeLibs SQL Table
RTblTypeLibs stores a global identifier for each information model object.

Column name Data type Description
IntID RTIntID The internal identifier for the information

model (repository type library).
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

TypeLibID RTGUID The global identifier for the repository type
library, as recorded in the system registry.

Prefix Varchar,
255 bytes

A string containing the prefix that identifies
an object with an information model. The
first three characters of the information
model provide a default prefix (for example,
UML for the generic Unified Modeling
Language (UML) model of the Open
Information Model (OIM)). The maximum
length for this value is 255 bytes.

Remarks

The RTblTypeLibs table relates the internal object identifiers of ReposTypeLib objects (information models) to their
corresponding global identifiers.

The primary key for this table is formed by the IntID, Z_BranchID_Z, and Z_VS_Z columns.

Z_BranchID_Z, Z_VS_Z, and Z_VE_Z are included to provide future support for versioning repository API definitions in case more
than one version of this repository API structure is created.

See Also

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

ReposTypeLib Class

ReposTypeLib Object

Meta Data Services Programming (SQL Server 2000)

RTblVersionAdminInfo SQL Table
RTblVersionAdminInfo stores version information for objects created through custom interfaces.

Column name Data type Description
IntID RTIntID The internal identifier of the class.
Z_BranchID_Z RTBrID Indicates the branch of the version graph

that contains the range to whose items the
property values in this row apply.

Z_VS_Z RTVerID A version-within-branch identifier that
indicates the lower limit of the range to
whose items the property values in this row
apply.

Z_VE_Z RTVerID A version-within-branch identifier that
indicates the upper limit of the range to
whose items the property values in this row
apply.

VersionCreateTime Datetime,
8 bytes

The time the version was created. The
maximum length for this value is 8 bytes.

VersionModifyTime Datetime,
8 bytes

The time the version was modified. The
maximum length for this value is 8 bytes.

CreateByUser RTLongString The user who created the version.
ModifyByUser RTLongString The user who modified the version.
VersionLabel Varchar,

255 bytes
A string provided by an application to
indicate a version label. The maximum
length for this value is 255 bytes.

VersionShortDesc Varchar,
255 bytes

A short summary of the version comments.
The maximum length for this value is 255
bytes.

VersionComments Text,
16 bytes

Comments added when a file is checked in a
version control system. The maximum length
for this value is 16 bytes.

Remarks

The RTblVersionAdminInfo table is an interface-specific table; its columns correspond to the properties exposed by the
IVersionAdminInfo interface. By default, no class of the repository API implements IVersionAdminInfo. However, as soon as
you insert any class that implements IVersionAdminInfo, the engine creates the table.

Each row of this table is either a version row or a merge row. Each version row describes an object version. Each merge row
indicates that one or more merge operations occurred between the same pair of object versions. For more information, see
RTblVersions SQL Table.

The primary key is formed from the IntID, Z_BranchID_Z, and Z_VS_Z columns.

See Also

InterfaceDef Class

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblNamedObj SQL Table

RTblSumInfo SQL Table

Storage Strategy in a Repository Database

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

RTblVersions SQL Table
RTblVersions stores version information about repository objects.

Column name Data type Description
IntID RTIntID The internal identifier for the object.
Z_BranchID_Z RTBrID A branch identifier. It indicates the branch of

the version graph that contains this object
version.

Z_VS_Z RTVerID A version-within-branch identifier. It
differentiates the version described by this
row from other versions on the same branch.

Z_PredBr_Z RTBrID A branch identifier. For a version row, this
column indicates the branch containing the
predecessor creation version of the current
object version. For a merge row, this column
indicates the branch containing the object
version that was the predecessor of the
merge operation.

Z_PredVer_Z RTVerID A version-within-branch identifier. For a
version row, this column indicates the
predecessor creation version of the current
object version. For a merge row, this column
indicates the object version that was the
predecessor of the merge operation.

TypeID RTIntID The internal identifier of the class to which
the version conforms.

VerIntID RTIntID The internal identifier of this version.
Z_VState_Z RTFlags Indicates whether the object version is frozen

and whether it is checked out. The object
version is frozen only if the last (least
significant) bit is set. The object version is
checked out only if the second-last bit is set.

Z_PredFlags_Z RTFlags Indicates whether this row is a version row or
a merge row. A value of 1 indicates that this is
a version row. A value of 2 indicates that this
is a merge row.

Z_SuccInc_Z RTSuccInc For internal use only.
Z_LClock_Z RTLClock For internal use only.

Remarks

The RTblVersions table stores two row types: version rows and merge rows. Each row is either one type or the other. Version
rows describe an object version. Merge rows indicate that one or more merge operations occurred between the same pair or
object versions.

Because a repository object can have many versions, it can have multiple version rows to store information about each version.
For each object, there is exactly one version row that describes the initial version of the object. Within the initial version row, the
values of Z_PredBrID_Z and Z_PredVer_Z are special constants indicating that the first version has no predecessor.

Because an object version can have zero, one, or many non-creation predecessors, each object version can have zero, one, or
many merge rows.

The primary key is formed from the IntID, Z_BranchID_Z, Z_VS_Z, Z_PredBrID_Z, and Z_PredVer_Z columns.

See Also

InterfaceDef Class

InterfaceDef Object

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

RTblVersionAdminInfo SQL Table

Storage Strategy in a Repository Database

Versioning Objects

Meta Data Services Programming (SQL Server 2000)

RTblWorkspaceItems SQL Table
RTblWorkspaceItems stores information about which repository object versions are included within a workspace.

Column name Data type Description
IntID RTIntID The internal identifier for the workspace

object.
Z_BranchID_Z RTBrID The branch identifier for repository API

versioning. It is reserved for proprietary use
by the repository engine. The value of this
column is always zero.

Z_VS_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always zero.

Z_VE_Z RTVerID An identifier for repository API versioning. It
is reserved for proprietary use by the
repository engine. The value of this column
is always VERINFINITY.

Z_ItemIntID_Z RTIntID The internal identifier of the object version
present in the workspace.

Z_ItemBranchID_Z RTBrID The branch identifier of the object version
present in the workspace.

Z_ItemVS_Z RTVerID The version-within-branch identifier of the
object version present in the workspace.

Z_ItemFlag_Z RTFlags A set of flags indicating whether the object
version is checked out to the workspace. A
value of 0 indicates that the object version is
not checked out. A value of 2 indicates that
the object version is checked out.

Remarks

The RTblWorkspaceItems table tracks which object version is part of a workspace. A workspace can have only a single version
of any given object.

The primary key is formed from the IntID, Z_BranchID_Z, Z_VS_Z, Z_ItemIntID_Z, Z_ItemBranchID_Z, and Z_ItemVS_Z
columns.

See Also

Repository SQL Data Types

Repository SQL Schema

Repository SQL Tables

Meta Data Services Programming (SQL Server 2000)

XML Encoding Reference
This section describes the format for exchanging instances of the Open Information Model (OIM) through the use of Extensible
Markup Language (XML). The XML encoding format works for any information model that is based on the Meta Data Coalition
(MDC) OIM framework. A set of rules governs the encoding of meta data objects by OIM in XML. The XML encoding of OIM types
enables the interchange of meta data between heterogeneous repositories. The encoding format defined in this specification is
completely driven by the abstract model. The names of the element and attribute tags used in the representation are derived from
the model. Documents can be generated and parsed automatically by any implementation of OIM, regardless of technology.

XML DTD

Accompanying this section is a set of XML Document Type Definitions (DTDs) that together form a grammar to express the
structure of XML instances. DTDs are currently the only approved mechanism for describing the structure of XML documents. In
its current form, DTDs are not expressive enough to cover the semantics of OIM completely. A correct interpretation of an XML
document is only possible based on the OIM specification. However, DTDs have been supplied to make understanding the XML
documents easier and to help with the development of XML import/export functionality based on this encoding format.

The following topics are discussed in this section.

Topic Description
XML Encoding Definition Explains the XML encoding format rules for OIM
OIM-to-XML Mapping Shows the mapping of the core concepts, which

include diagrams and example code
Sample Encoding Provides an example code of an XML OIM transfer
EBNF Representation Shows an example of an OIM XML encoding in

Extended Backus-Naur Form (EBNF)
Namespaces in OIM Shows a table of unique namespaces of each OIM

information model
DTD for the OIM Namespace Shows an example of OIM Namespace Definition
XML Import Export Describes the import and export interfaces for XML

in the OIM
XML Encoding Errors Lists the XML encoding error messages

It is assumed that the reader is familiar with the concepts represented by the OIM. A basic knowledge of XML, COM, and
Microsoft® SQL Server™ 2000 Meta Data Services is also assumed throughout this section. This section is based on XML
standards as defined by the World Wide Web Consortium (W3C), and XML Namespaces provide a simple method for qualifying
names in XML documents. The implementation of namespaces in this section is based on the W3C recommendation Namespaces
in XML.

For more information about COM, XML, and OIM, see the MSDN® Library at the Microsoft Web site and the Meta Data Coalition
Web site at http://www.mdcinfo.com.

For more information about XML standards, see the W3C Web site http://www.w3.org/.

See Also

Using XML Encoding

XML in Meta Data Services

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.mdcinfo.com/
http://www.w3.org/

Meta Data Services Programming (SQL Server 2000)

XML Encoding Definition
Extensible Markup Language (XML) encodes information as content enclosed in nested begin/end tag elements and name/value
pair attributes on these elements. The XML encoding format defined in this section is based on this encoding rule.

XML provides the following basic concepts to encode information.

Topic Description
Character Set and Data
Types

Describes the character set and data types for encoding
used in an XML document

Top-Level Element Describes the element that encapsulates all transfer
information in an XML document

Elements and Attributes Describes the begin/end tag pairs and the content
encapsulated between them

Namespaces Shows the basic structure of the Open Information Model
(OIM) namespace hierarchy to ensure unique elements in
an XML document

Nested Lists Shows, by example, the ordered or unordered sets of
elements that can be used to represent hierarchies of
elements

Element References Describes connections between elements to represent
network structures of elements

Extensibility Describes extended vendor-specific meta data types

See Also

Using XML Encoding

XML Encoding Errors

XML Encoding Reference

XML in Meta Data Services

XML Import Export

Meta Data Services Programming (SQL Server 2000)

Character Set and Data Types
The Extensible Markup Language (XML) encoding relies on the native XML character set handling based on Unicode.

Values appear as attribute-tagged values. They are represented using the following rules.

Data type Encoding
String Any occurrence of & must be replaced by &

Any occurrence of < must be replaced by <
Any occurrence of > must be replaced by >
Any occurrence of " (double quote) must be replaced by "

Date Must follow the ISO 8601 format.
Numbers Punctuation must use US English rules (for example, they must use

a period as a decimal separator). Numbers can include exponents.
Boolean False = -1, True = 1.
BLOB Use MIME Base64 encoding.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Top-Level Element
The Extensible Markup Language (XML) requires a top-level element (begin/end tag) that encapsulates all information contained
in an XML document. Any Document Type Definitions (DTDs) defined or referenced in the document apply to the content of the
top-level element.

The Open Information Model (OIM) to XML mapping defines a transfer element as the top-level structure. This element
encapsulates all structured information that is described in the XML document. Additional features of the transfer element can be
nested. The top-level element also maintains administrative information, such as what exporter generated the data and version.

Example

<?xml version="1.0"?>
<oim:Transfer version="1.0"
 xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd">
 <oim:TransferHeader
 Exporter="MSMDCXML"
 ExporterVersion="2.0"
 TransferDateTime="19980804T08:15:00"
 >
 . . . user-defined information . . .
 </oim:TransferHeader>
 . . . objects . . .
</oim:Transfer>

All structures defined within the remainder of this section are valid only within the begin (<oim:Transfer>) and end
(</oim:Transfer>) tags of the transfer element. The TransferHeader element is used to contain information about the
component that generated the transfer.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Elements and Attributes
Elements in Extensible Markup Language (XML) are enclosed within a pair of tags. Each pair includes an opening tag and a closing
tag. The content can be either a structure of sub-elements or an unstructured data representation. The following table shows how
the meta data element types, which are used to describe the Open Information Model (OIM), are mapped into XML.

Element XML representation
Information Model No mapping. For more information, see Namespaces.
Concrete Class <class_name>...</class_name>
Attribute Included as an XML attribute on an XML element, for

example, attribute=value.
Association <association_name>...</association_name>

The tag identifies the type of an element. Additional meta information about the element can be represented by predefined
attributes. The following table lists attributes that are currently predefined.

Attribute
name Defined for

Mandatory/optional
Description

OIM:id Object,
association

Optional Transfer identifier (ID) used to
uniquely identify an element in
an XML document. The id has
no meaning outside of a
transfer. The id is mandatory
on objects, but optional on
object references.

OIM:objid Object,
association

Optional Unique identifier of an element
in the source or target
repository.

OIM:href Objects Optional Hyperlink mechanism to
reference objects.

OIM:label Objects Optional The name of an object within
the encapsulating association.

OIM:supertype Object Optional Used by extensions to indicate
the OIM type that can be used
for importing an object.

The OIM-to-XML mapping separates the transfer ID and object ID and treats the object ID as an attribute of the element. This XML
encoding is designed to enable the interchange of objects between heterogeneous repositories. There is no common format for
object identifiers; furthermore, there is no agreement on how to implement object identity (name based, GUID, disk pointer, and
so on).

To provide a generic solution, a uniquely defined ID identifies an object within a transfer; that is, an ID can serve as the target of a
reference in the transfer. The structure of the ID is unspecified, but it must be unique in a transfer and it must contain an
underscore as the first character. Examples of valid transfer IDs are a running number ("_007") or the name of an object
("_Invoice007").

Note that object identity is necessary to allow a meaningful synchronization of objects between repositories. In a heterogeneous
environment, this requires the XML encoding to maintain a cross-reference between the globally unique identifiers (GUIDs) of
objects maintained by different repository products. To exchange object IDs as attributes of objects, exchanging repositories must
agree on the semantics of the exchange mechanism. To simplify this process, the attribute objid is included in the encoding
format. If necessary, the first source of a transfer can generate the object ID. Each successive transfer step must maintain the
whole object ID and pass it on.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Namespaces
In the Open Information Model (OIM), classes and associations share the same namespace for a single information model. This
means that more than one class and/or association within the same information model cannot share the same name. The
following table shows the basic structure of the OIM namespace hierarchy.

Level 1 Level 2 Description
Information Model Corresponds to an information model
 Class Class name and the associated attributes
 Association A collection of nested or linked classes

The OIM-to-Extensible Makeup Language (XML) mapping combines XML Namespaces and a naming convention to provide the
following solution.

< Namespace : Name >
< Information Model Prefix : Class Name >
< Information Model Prefix : Association Name >

For example, <x:y> is an element tag for an object of class y in submodel x. Note that because attributes are represented as XML
attributes they are scoped as part of the element. Therefore, the attribute names need to be unique only within the class, not the
whole subject area of the model.

If attributes in the inheritance chain of the class share the same name, the names of the attributes are expanded to
ClassName.AttributeName. If the class name is not unique, it is prefixed with the same information model prefix as the
namespace.

See Also

XML Encoding Reference

Namespaces in OIM

Meta Data Services Programming (SQL Server 2000)

Nested Lists
Extensible Markup Language (XML) represents information as nested lists of elements or references to elements. Lists can be
either ordered or unordered; the occurrence of element types is optional or mandatory.

The following diagram shows the representation of the Open Information Model (OIM) "class has associations" and "associations
contain objects" in XML.

Example

<object attribute="_">
 <association>
 <object label="C" name="Lisa" seqno="1">
 ...
 </object>
 <object label="A" name="John" seqno="2">
 ...
 </object>
 <object label="B" name="Tom" seqno="3">
 ...
 </object>
 </association>
 ...
</object>

Object elements contain lists of association elements, which, in turn, contain lists of object elements.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Element References
Nested lists of Extensible Markup Language (XML) elements enable the representation of hierarchical structures of objects.
References are used to link objects into a general network of associations. The XML hyperlink mechanism is used to reference
objects defined internal to a transfer. An internal object is simply referenced by its transfer identifier (ID).

An object reference is represented by the href attribute of the element tag:

 <object_type_name href="#_123"/ >

The object reference indicates the type of the object referred to. To learn the object type, you do not need to navigate the object
reference to the target object.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Extensibility
The Open Information Model (OIM) can be extended with vendor-specific meta data types. New classes, attributes, and
associations are added using the Universal Modeling Language (UML) representation of the OIM. New elements may be either
created from scratch or based on existing OIM types using specialization (inheritance). A vendor may choose to publish the model
extensions in order to share the meta data with other vendors, or treat the extension as tool specific (private).

Using the OIM to Extensible Markup Language (XML) mapping rules described in this document, an XML Document Type
Definition (DTD) for the model extension can be created from its UML representation. However, the XML DTD does not provide
enough information for other vendors to interpret the model. This is a limitation of the current XML standard with DTD as schema
description language. DTDs do not capture type inheritance and other sophisticated modeling structures. The World Wide Web
Consortium (W3C), as XML standard body, is standardizing a new schema definition language called XML Schema.

Until the XML Schema specification is available, the OIM XML encoding format will support the use of the optional supertype
attribute. This attribute is used to define which OIM type a new meta data type specializes. In the case where multiple OIM types
are specialized, it is the responsibility of the exporting tool to choose one of the types.

The following example shows an instance of a new meta data type that extends the table class in the Database Schema Model.

Example

<Ext:MyTable supertype="DBM:Table" name="xxx" size="yyy" myVal="123"/>

An importer can decode the element structure even if the new subtype is unknown. It simply uses the schema of the known OIM
type specified by the supertype attribute. Note that the attribute must contain a fully qualified class name (including namespace).
It is also necessary to resolve attribute name conflicts using the rules described in the following sections.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

OIM-to-XML Mapping
This section provides a set of basic diagrams that show the mapping of the core concepts Class, Attribute, and Association, as well
as class inheritance from Open Information Model (OIM) into Extensible Markup Language (XML). The Universal Modeling
Language (UML) diagram that represents the OIM concepts is provided with the XML encoding.

The following topics include diagrams with examples.

Topic Description
Classes and Attributes Shows how the attributes of an OIM class are

mapped into XML
Attribute Name Expansion Shows how attributes that are typed as

classes are mapped into XML
Classes and Single Inheritance Shows how attributes and inherited attributes

of a class are mapped into XML
Classes and Multiple Inheritance Shows a class that inherits attributes from

multiple other classes
Associations with XML Shows how associations are encoded in XML
Object References with XML Shows an association structure in which the

destination object has already been defined
Association Classes (Many-to-Many) Shows how a many-to-many association

class is represented in XML
Association Classes (One-to-Many or
One-to-One)

Shows how a one-to-many or one-to-one
association class is represented in XML

See Also

XML Encoding Errors

XML Encoding Reference

XML Import Export

Meta Data Services Programming (SQL Server 2000)

Classes and Attributes
The following example shows how the attributes of an Open Information Model (OIM) class are mapped into Extensible Markup
Language (XML).

Example

<Class Attribute1="..." Attribute2="...">
 ...
</Class>

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Attribute Name Expansion
The following example shows how attributes that are typed as classes are mapped into Extensible Markup Language (XML).

Example

<Class1 Attribute1Attribute2="..."
 Attribute1Attribute3="...">
 ...
</Class1>

In general, given a class A with an attribute B of type C, for each attribute D(n) on C, create a new attribute on A called BD(n). The
name of the new attribute on A is appended with the name of D(n) unless the ExpandName tagged value on the attribute
definition is set to false.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Classes and Single Inheritance
The following example shows how attributes and inherited attributes of a class are mapped into Extensible Markup Language
(XML).

Example

<Class2 Attribute1="..." Attribute2="...">
 ...
</Class2>

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Classes and Multiple Inheritance
A class can inherit attributes from multiple other classes. The following example shows how such a class is represented.

Example

<Class4 oim:id = "_123"
 Class4.Attribute1="..."
 Class1.Attribute1="..."
 Attribute2="..."
 Attribute3="...">
 ...
</Class4>

Note Because there is a naming conflict between the two attributes called Attribute1, the name of the class they are defined on is
added as a prefix.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Associations with XML
The following example shows how Open Information Model (OIM) associations are encoded in Extensible Markup Language
(XML).

Example

<Class1 oim:id="_1" attrib1="...">
 <Class1OriginAssocEnd> <!-- assoc starts -->
 <Class2 oim:id="_2" oim:seqno="1" label="A"
 name="Alpha" Attribute2="..."/>
 <Class2 oim:id="_3" oim:seqno="2" oim:label="B"
 name="Beta" Attribute2="..."/>
 </Class1OriginAssocEnd> <!-- assoc ends -->
</Class1>

If an association name is not specified, the name is generated using the following rule:

OriginClassName + OriginAssociationEndName

Given this rule, the association in the preceding example is named <Class1OriginAssocEnd>.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Object References with XML
The following example shows an association structure in which the destination object has already been defined and therefore
needs to be referenced.

Example

<Class2 oim:id="_2">
 ...
</Class2>
<Class1 oim:id="_1">
 <Class1OriginAssocEnd>
 <Class2 oim:href="#_2"/>
 ...
 </Class1OriginAssocEnd>
</Class1>

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Association Classes (Many-to-Many)
The following example shows how a many-to-many association class is represented in Extensible Markup Language (XML).

Example

<Class1 oim:id="_2">
 <Class1OriginAssocEnd>
 <AssocClass AttributeA="...">
 <AssocClassDestAssocEnd>
 <Class2 oim:id="_3"/>
 </AssocClassDestAssocEnd>
 </AssocClass />
 </Class1OriginAssocEnd>
</Class1>

This example encodes the association element into a junction class between the other two classes and uses the association name
generation rule to establish the two association names.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Association Classes (One-to-Many or One-to-One)
The following example shows how a one-to-many or one-to-one association class is represented in Extensible Markup Language
(XML).

Example

<Class1 oim:id="_2" attribute1="..."
 <Class1OriginAssocEnd>
 <Class2 attributeA="..."
 Attribute2=oim:id="_3"

 </Class1OriginAssocEnd>
</Class1>

This mapping represents all the attributes of the association class as attributes on the destination class.

See Also

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

Sample Encoding
<?xml version="1.0" ?>
 <oim:Transfer xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd"
xmlns:dbm="http://www.mdcinfo.com/oim/dbm.dtd">
 <dbm:Catalog oim:id="_1" name="sales" comments="Sample catalog">
 <dbm:CatalogSchemas>
 <dbm:Schema oim:id="_2" name="dbo">
 <dbm:SchemaTables>
 <dbm:Table oim:id="_3" name="Customer">
 <dbm:ColumnSetColumns>
 <dbm:Column oim:id="_6" name="CustomerID" IsNullable="0" />
 <dbm:Column oim:id="_7" name="Name" IsNullable="0" />
 <dbm:Column oim:id="_8" name="Address" IsNullable="1" />
 <dbm:Column oim:id="_9" name="Phone" IsNullable="1" />
 </dbm:ColumnSetColumns>
 </dbm:Table>
 <dbm:Table oim:id="_4" name="Order" EstimatedRows="10000">
 <dbm:ColumnSetColumns>
 <dbm:Column oim:id="_10" name="CustomerID" IsNullable="0" />
 <dbm:Column oim:id="_11" name="OrderID" IsNullable="0" />
 <dbm:Column oim:id="_12" name="Date" IsNullable="1" />
 </dbm:ColumnSetColumns>
 </dbm:Table>
 <dbm:Table oim:id="_5" name="OrderItem" EstimatedRows="100000">
 <dbm:ColumnSetColumns>
 <dbm:Column oim:id="_13" name="CustomerID" IsNullable="0" />
 <dbm:Column oim:id="_14" name="OrderID" IsNullable="0" />
 <dbm:Column oim:id="_15" name="LineNo" IsNullable="0" />
 <dbm:Column oim:id="_16" name="Description" IsNullable="1" />
 <dbm:Column oim:id="_17" name="Quantity" IsNullable="0" />
 <dbm:Column oim:id="_18" name="UnitPrice" IsNullable="0" />
 </dbm:ColumnSetColumns>
 <dbm:TableUniqueKeys>
 <dbm:UniqueKey oim:id="_19" name="PK_OrderItem" IsPrimary="1">
 <dbm:KeyColumns>
 <dbm:Column oim:href="#_14" />
 <dbm:Column oim:href="#_15" />
 </dbm:KeyColumns>
 </dbm:UniqueKey>
 </dbm:TableUniqueKeys>
 </dbm:Table>
 </dbm:SchemaTables>
 </dbm:Schema>
 </dbm:CatalogSchemas>
 </dbm:Catalog>
 </oim:Transfer>

See Also

Using XML Encoding

XML Encoding Reference

XML in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

EBNF Representation
The following defines the grammar of the Open Information Model (OIM) Extensible Markup Language (XML) encoding in
Extended Backus-Naur Form (EBNF).

xmlHdr::='<?xml version="1.0">'
oimDoc::=xmlHdr S Transfer
Transfer::='<oim:Transfer' [S 'version="1.0"'] NameSpaceDecl '>' S
 [TransferHeader]
 (Object | Transfer)*
 '</oim:Transfer>'
TransferHeader::='<oim:TransferHeader'
 ['Exporter="' ExporterName '"']
 ['ExporterVersion="' ExporterVersion '"']
 ['TransferDateTime="' CurrentDate '"']
 '/>'
oimNameSpace::='xmlns:oim="http://www.mdcinfo.com/oim/oim.dtd"'
oimPrefix::='oim:'
NameSpaceDecl::=oimNameSpace (S ModelSpaceDecl)*
ModelSpaceDecl::= 'xmlns:' modelAbbr '="http://www.mdcinfo.com/oim/' nsPrefix '.dtd"'
nsPrefix::=modelAbbr (for the information model that the class is defined in)
objTransID::= '_' uniquifier (where uniquifier is a running number)
objID::= unique identifier for the element (repository dependent)
seqno::= sequence number within an association
label::= name of object within the association
object::='<' nsPrefix ':' elementName S
'oim:id="' objTransID '"'
 [S 'oim:objid="' objID '"']
 [S 'oim:seqno="' seqno '"']
 [S 'oim:label="' label '"']
 [(S Attribute)*]
 '>'
 [(S Association)*]
 '</' nsPrefix ':' elementName '>'
Attribute::=[[nsPrefix ':'] ClassName '.'] AttributeName S? '="' S?
 attributeValue S? '"'
Association ::= '<' [nsPrefix ':'] AssociationName '>' S?
 (Object S)*
 </' [nsPrefix ':'] AssociationName '>'

See Also

Using XML Encoding

XML Encoding Reference

XML in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

Namespaces in OIM
Using Extensible Markup Language (XML) Namespaces, each information model of the Open Information Model (OIM) encoding
defines a separate namespace for its XML tags; that is, an individual Document Type Definition (DTD) describes each information
model. Information models depend on each other and form a well-defined (acyclic) dependency graph. Meta Data Coalition
(MDC) OIM has the following information models.

OIM groupings by subject areas OIM information models
Namespace

identifier
Analysis and Design Model Unified Modeling Language uml
 UML Extensions umx
 Common Data Types dtm
 Generic Elements gen
Object and Component Description
Model

Component Descriptions cde

Database and Data Warehousing Database Schema Elements dbm
 Data Transformation Elements tfm
 OLAP Schema Elements olp
 Record Oriented Legacy rec
Knowledge Management Model Semantic Definition Elements sim

The XML namespaces respect the extensibility mechanism of OIM. Users are able to add information models with new elements
without causing name conflicts with existing information models or future extensions.

See Also

Using XML Encoding

XML Encoding Reference

XML in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

DTD for the OIM Namespace
This is a sample Document Type Definition (DTD) for the Open Information Model (OIM) namespace used by the encoding.

<!-- ___ -->
<!-- XML Encoding -->
<!-- for the Open Information Model -->
<!-- ___ -->

<!-- ___ -->
<!-- Transfer -->
<!-- ___ -->
<!-- A transfer is a unit of exchange in OIM. Transfers might be -->
<!-- nested. -->
<!ELEMENT Transfer (TransferHeader?, (ANY | Transfer)*) >
<!ATTLIST Transfer
 version CDATA #FIXED "1.0"
>
<!-- ___ -->
<!-- TransferHeader -->
<!-- ___ -->
<!-- A transfer header is used to specify all necessary information -->
<!-- to define the origin of a transfer in a structured way. -->
<!-- Exporter Name of software that generated the transfer -->
<!-- ExporterVersion Version of software that generated transfer -->
<!-- TransferDateTime Date and time that the transfer was created -->
<!ELEMENT TransferHeader (ANY)>
<!ATTLIST TransferHeader
 Exporter CDATA #IMPLIED
 ExporterVersion CDATA #IMPLIED
 TransferDateTime CDATA #IMPLIED
>
<!-- ___ -->
<!-- Classes -->
<!-- ___ -->
<!-- Classes are output as XML elements. They should all have id, -->
<!-- objid, href and sequence number as predefined XML attributes. -->
<!-- Unfortunately the DTD grammar does not specify this. -->
<!-- so these attributes are shown here as an example. The oim: -->
<!-- namespace qualifier for the predefined attribute is only -->
<!-- included when one of the predefined attribute has a naming -->
<!-- conflict with the attributes on the class -->
<!-- <!ATTLIST typename -->
<!-- [oim:]id ID #REQUIRED -->
<!-- [oim:]objid CDATA #IMPLIED -->
<!-- [oim:]href CDATA #IMPLIED -->
<!-- [oim:]seqno CDATA #IMPLIED -->
<!-- [oim:]label CDATA #IMPLIED -->
<!-- [oim:]supertype CDATA #IMPLIED -->
<!-- -->
<!-- End of DTD __ -->

See Also

Using XML Encoding

XML Encoding Reference

XML in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

XML Import Export
This section describes the methods used for importing, exporting, and transferring data from one Microsoft® SQL Server™ 2000
Meta Data Services repository to another.

XML Exporter is a utility that exports objects from a Microsoft repository by using Open Information Model (OIM) XML Encoding.
The export is handled by a COM component that has the MSMDCXML.IExport program identifier (ID). The component publishes
one interface, IExport. Through this interface, the client can specify which repository objects to export and initiate the export
process. Because it is a dual interface, it can be used by both COM and Automation.

Topic Description
XML IExport Interface Overview Describes the IExport interface and shows the

Interface Definition Language (IDL) definition
IExport::_NewEnum Method Explains the NewEnum method of the IExport

interface and provides Automation syntax
IExport::Add Method Explains the Add method of the IExport

interface and provides Automation syntax
IExport::Clear Method Explains the Clear method of the IExport

interface and provides Automation syntax
IExport::Count Property Explains the Count property of the IExport

interface and provides Automation syntax
IExport::Export Method Explains the Export method of the IExport

interface and provides Automation syntax
IExport::GetXML Method Explains the GetXML method of the IExport

interface and provides Automation syntax
IExport::Item Method Explains the Item method of the IExport

interface and provides Automation syntax
IExport::Remove Method Explains the Remove method of the IExport

interface and provides Automation syntax

The import process uses an Extensible Markup Language (XML) document to create OIM instances in a Meta Data Services
repository. The OIM describes the structure as well as the semantics of the transferred elements. The COM component is used for
XML importing MSMDCXML.IImport program ID. The component publishes one interface, IImport. Through this interface, the
client can specify which objects to import and initiate the import process. Because it is a dual interface, it can be used by both
COM and Automation.

Topic Description
XML IImport Interface Overview Describes the IExport interface and IDL

definition
IImport::ImportXML Method Explains the ImportXML method of the IImport

interface and provides Automation syntax
IImport::ImportXMLString Method Explains the ImportXMLString method of the

IImport interface and provides Automation
syntax

See Also

Using XML Encoding

XML Encoding Errors

XML Encoding Reference

Meta Data Services Programming (SQL Server 2000)

XML IExport Interface Overview
Using Extensible Markup Language (XML) to export objects from Microsoft® SQL Server™ 2000 Meta Data Services is a two-step
process:

1. Mark objects for export.

2. Generate the XML file.

Marking Objects for Export

The client marks objects for export by using the IExport::Add method to create an object list. Using this method, the client passes
a handle of the repository object to be exported.

The export process creates a collection of all objects that have been added to the export list. The order in which objects are added
determines the order in which the objects will appear in the XML document.

After the collection has been created, a client can enumerate through this collection and get information, such as the number of
objects, as in a normal collection.

Generating the XML File

The client starts the export by invoking the IExport::Export method. The client passes the name of the file into which the XML
document should be exported as a parameter of this method. XML Exporter will overwrite the file if it already exists. The client can
specify flags that control the way objects are handled in the output. The allowed flags can be combined using a bitwise logical OR
operation. For more information about the effect of each flag, see IExport::Export Method.

IDL Definition

The following expandable text is the part of the Interface Definition Language (IDL) file that describes the methods and the
properties on the IExport Interface. In Automation, properties and methods are attached to the IExport object.

IDL Segment

interface IExport : IDispatch
{
 [id(0), helpstring("method Item")] HRESULT Item([in] VARIANT Index, [out,retval] IRepositoryObject **ppRO);
 [id(1), helpstring("method Export")] HRESULT Export([in] BSTR XMLFileName,[in,optional] long Flags);
 [id(2), helpstring("method GetXML")] HRESULT GetXML([in,optional] long Flags,[out,retval] BSTR *XML);
 [id(3), helpstring("method Add")] HRESULT Add([in] IRepositoryObject *pIRO, [in, optional, defaultvalue(0)]
long Flags);
 [id(-4), helpstring("method _NewEnum")] HRESULT _NewEnum([out, retval] IUnknown **ppVal);
 [propget, id(6), helpstring("property Count")] HRESULT Count([out, retval] long *pVal);
 [id(7), helpstring("method Remove")] HRESULT Remove([in] VARIANT Index);
 [id(8), helpstring("method Clear")] HRESULT Clear();
};

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::_NewEnum Method
This method is used to obtain an enumerator property that can be used to enumerate through the list of the exported objects.

COM Syntax

HRESULT _NewEnum(
 IUnknown **ppVal
);

Parameters

ppVal [out, retval]

A pointer that points to a location that stores the enumerator of objects in the export list.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

The _NewEnum property is used by Automation-based programming languages to enumerate through collections. It is never
used directly; instead, enumeration constructs use it internally. In Microsoft® Visual Basic®, this enables the following example:

For each item in the collection.

 ...

Next item

In the example, Collection is an object that contains the _NewEnum property.

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Add Method
This method allows the client to add an object to the list of objects to be exported.

COM Syntax

HRESULT Add(
 IRepositoryObject *pIRO
 Long Flags
);

Parameters

pIRO [in]

A pointer to the repository object to be added to the exported objects list.

Flags [in]

The following table describes the flag.

Enumerator Value Description
ADDCONTAINING_BASE 1 Only objects that are contained in

base collections of the current
object are added.

ADDCONTAINING_MOSTDERIVED 2 Only objects that are in the most
derived collections of the current
object are added.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, this method has the following syntax:

 object.Add pIRO [,Flags]

The Add method syntax has the following parts.

Parameter Description
object An object declared as MSMDCXML.Export
pIRO An object expression that evaluates to RepositoryObject
Flags ADDCONTAINING

See Also

Member Delegation

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Clear Method
This method removes all objects from the export collection.

COM Syntax

HRESULT Clear(
);

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, this method has the following syntax:

 Call Object.Clear

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Count Property
This method is used to obtain the number of objects that have been added to the export list. In COM, it is called as a method that
returns a property. In Automation, it is used as the read-only property of an object.

COM Syntax

HRESULT get_Count(
 long *pVal
);

Parameters

pVal [out, retval]

A pointer to the location of the number of objects in the export list is stored.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, this property has the following syntax:

 variable = object.Count

The Count property syntax has the following parts.

Parameter Description
object An object declared as MSMDCXML.Export
variable A long variable that contains the value of the Count property

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Export Method
This method exports the marked objects into the file specified by the file name parameter.

COM Syntax

HRESULT Export(
 BSTR XML,
 long Flags
);

Parameters

XML [in]

The file name of the Extensible Markup Language (XML) document or XML string.

Flags [in]

Flag values that can be combined in a bitwise OR operation to control the way exported objects are handled in the output. The
following table describes the flags.

Enumerator Value Description
NOOBJID 1 If this bit is set, no object identifiers (OBJID) are

returned for the objects being exported.
NOHEADER 2 If this bit is set, the XML file does not include a

transfer header.
INDENTATION 4 If this bit is set, the system indents the XML.
UNICODE 8 If this bit is set, the system output is Unicode.
EXPORTBASE 16 If this bit is set, the system exports only base

properties and collections.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, the Export method has the following syntax:

 object.Export XMLFilename [,Flags]

The Export method syntax has the following parts.

Parameter Description
object An object declared as MSMDCXML.Export.
XMLFilename The XML file name declared as string.
Flags Flag values that can be combined in a bitwise OR operation

to control the way exported objects are handled in the
output. The values are declared as long.

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::GetXML Method
This method exports the marked objects into the Extensible Markup Language (XML) string.

COM Syntax

HRESULT GetXML(
 long Flags
 BSTR XML,
);

Parameters

XML [out]

The XML output string.

Flags [in]

Flag values that can be combined in a bitwise OR operation to control the way exported objects are handled in the output. The
following table describes the flags.

Enumerator Value Description
NOOBJID 1 If this bit is set, no object identifiers (OBJID) are for

the objects being exported.
NOHEADER 2 If this bit is set, the XML file does not include a

transfer header.
INDENTATION 4 If this bit is set, the system indents XML.
UNCLODE 8 If this bit is set, the output is Unicode.
EXPORTBASE 16 If this bit is set, the system exports only base

properties and collections.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, the GetXML method has the following syntax:

 object.GetXML [,Flags]

The GetXML method syntax has the following parts.

Parameter Description
object An object declared as MSMDCXML.Export.
XML The XML output string.
Flags Flag values that can be combined in a bitwise OR operation to

control the way exported objects are handled in the output.
This part is declared as long.

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Item Method
This method allows the client to access elements within the list of objects to be exported.

COM Syntax

HRESULT Item(
 VARIANT Index,
 IRepositoryObject **ppRO
);

Parameters

Index [in]

A variable that contains the object sequence in the object list. This parameter can be a zero-based numeric index, an object
identifier (OBJID), or a string-based OBJID.

ppRO [out, retval]

A pointer to a repository object.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, the Item method is attached to the IExport object and has the following syntax:

 Set variable = object.Item(index)

The Item method syntax has the following parts.

Parameter Description
object An object declared as MSMDCXML.Export.
variable An object expression that evaluates to a RepositoryObject object.
Index A variable declared as variant. It contains the object sequence number,

string ObjectId, or OBJID in the object list.

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IExport::Remove Method
This method removes the selected object from the export collection.

COM Syntax

HRESULT Item(
 VARIANT Index,
);

Parameters

Index [out, retval]

A variable that contains the object sequence in the object list. This parameter can be a zero-based numeric index, an object
identifier (OBJID), or a string-based OBJID.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

The following syntax is used in automation:

 object.Remove(Index)

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

XML IImport Interface Overview
Extensible Markup Language (XML) can be used to import XML documents into a Microsoft® SQL Server™ 2000 Meta Data
Services repository.

If importing an object that already exists, and this object is marked as versioned, the following rules apply:

If the version flag is set, the system will freeze the original object and create a new version.

If the version flag is not set, the system will overwrite the original object to the defined pointer.

IDL Definition

The following expandable text is the part of the Interface Definition Language (IDL) file that describes the methods on the IImport
interface. In Automation, properties and methods are attached to the import object.

IDL Segment

interface IImport : IDispatch
{
 [id(1), helpstring("method ImportXML")] HRESULT ImportXML([in] IRepository *pRepository, [in] BSTR XMLFile,
[in] long Flag,[out,retval] ITransientObjectCol** ppITOC);
 [id(2), helpstring("method ImportXMLString")] HRESULT ImportXMLString([in] IRepository *pRepository, [in]
BSTR XML, [in] long Flag,[out,retval] ITransientObjectCol** ppITOC);
};

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IImport::ImportXML Method
This method is used to import objects from an Extensible Markup Language (XML) document. The document file name and the
repository pointer are passed to the method as parameters. The repository this method uses must be opened in the exclusive
mode.

COM Syntax

HRESULT ImportXML(
 IRepository *pRepository,
 BSTR XMLFile,
 ITransientObject **pp ITOL
 long Flags
);

Parameters

pRepository [in]

A pointer to the IRepository interface.

XMLFile [in]

The XML document file name.

**pp ITOL [out]

A collection of top-level objects to be imported.

Flags [in]

Flag values that control the way XML Importer works.

Enumerator Bit Description
NOOVERWRITE 1 If this bit is set, the system generates an error

if an object in the file already exists in the
target repository.

NEWVERSION 2 If this bit is set, the system automatically
creates a new version of any object that
already exists.

NOOBJECTCHECK 4 If this bit is set, the system does not check for
object existence. If the object exists, an error
occurs when the object is created or
committed.

IGNOREUNKNOWNTAGS 8 If this bit is set, the system ignores
unrecognized tags.

LOGUNKNOWNTAGS 16 If this bit is set, the system creates a file called
Msmdcxml.log in the Temp directory. The file
contains all ignored tags and attributes.

LOGUNMAPPED 32 If this bit is set, the system logs everything
that is not mapped during the import from
Open Information Model (OIM) 1.0 to the
Meta Data Coalition (MDC) OIM.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, the ImportXML method is attached to the Import object and has the following syntax:

 Set TransientCol = object.ImportXML (pRepository, XMLFile [, Flags])

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

IImport::ImportXMLString Method
This method is used to import objects from an Extensible Markup Language (XML) document provided as a string. The document
file name and the repository pointer are passed to the method as parameters. The repository used by this method must be
opened in the exclusive mode.

COM Syntax

HRESULT ImportXML(
 IUnknown *pRepository,
 BSTR XML,
 ITransientObject **pp ITOL
 long Flags
);

Parameters

pRepository [in]

A pointer to the IUnknown interface used as a repository interface pointer.

XML [in]

The XML string to import from.

**pp ITOL [out]

A collection of top-level objects.

Flags [in]

Flag values that control the way XML Importer works. These flags, defined in the following table, are mutually exclusive.

Enumerator Bit Description
NOOVERWRITE 1 If this bit is set, the system generates an

error if an object in the file already exists in
the target repository.

NEWVERSION 2 If this bit is set, the system automatically
creates a new version of any object that
already exists.

NOOBJECTCHECK 4 If this bit is set, the system does not check
for object existence. If the object exists, an
error occurs when the object is created or
committed.

IGNOREUNKNOWNTAGS 8 If this bit is set, the system ignores any tags
that are not recognized.

LOGUNKNOWNTAGS 16 If this bit is set, the system creates a file
called Msmdcxml.log in the Temp directory.
This file contains all ignored tags and
attributes.

LOGUNMAPPED 32 If this bit is set, the system logs everything
that is not mapped during the import from
Open Information Model (OIM) 1.0 to the
Meta Data Coalition (MDC) OIM.

Return Value

S_OK indicates successful completion.

An error value indicates that the method failed to complete successfully. For more information, see XML Encoding Errors.

Automation Syntax

In Automation, the ImportXMLString method is attached to the Import object and has the following syntax:

 Set Col = object.ImportXMLString (pRepository, XML, [,Flags])

See Also

XML Import Export

Meta Data Services Programming (SQL Server 2000)

XML Encoding Errors
The following table lists the error codes and messages returned by the XML Interchange Format methods. A workaround or an
explanation follows each error.

Error number Error text Description
0x80042000 E_REPXML_REPNOTINITIALIZED Repository is not initialized.
0x80042001 E_REPXML_INVALIDFILE XML format for the importer is

not valid.
0x80042002 E_REPXML_LIBNOTFOUND Could not find type library

associated with tag - (%s).
0x80042003 E_REPXML_TXNCREATE Could not create a

transaction.
0x80042004 E_REPXML_OBJNOTFOUND Object was not found.
0x80042005 E_REPXML_IMPORT_INVALIDFLAG Invalid flag or combination of

import flags was used.
0x80042006 E_REPXML_EXPORT_INVALIDFLAG Invalid flag or combination of

export flags was used.
0x80042007 E_REPXML_INVALIDFILENAME File name "%s" is not valid.
0x80042008 E_REPXML_CANTCREATEFILE Error creating file.
0x80042009 E_REPXML_ITEMEXISTS Item with transfer ID %s

already exists in database and
overwrite is not allowed.

0x8004200a E_REPXML_ERRORPARSING Error parsing XML file.
0x8004200b E_REPXML_ERROREXPORTING Error occurred while exporting

XML.
0x8004200c E_REPXML_ERRORADDINGOBJ Error occurred while adding an

object.
0x8004200d E_REPXML_ERRORGETITEM Error occurred while getting

an object.
0x8004200e E_REPXML_ERRORREMOVEOBJ Error occurred when removing

an object.
0x8004200f E_REPXML_INVALIDBINARY Binary property %s of object

with transfer ID %s contains a
character that is not valid.

0x80042010 E_REPXML_COLADDERROR Error adding to collection
with relationship name %s.

0x80042011 E_REPXML_IMPORTOBJECT Error creating new
object/version of object with
transfer ID %s.

0x80042012 E_REPXML_NOTRANSID Object does not contain a
transfer ID. (oim:ID)

0x80042013 E_REPXML_ERRORSETTINGPROP Error setting property %s of
object with transfer ID %s.

0x80042014 E_REPXML_EXPORTOBJEXIST Object already exists in
export collection.

0x80042015 E_REPXML_DUPEPREFIX Prefix %s of model %s already
exists in the export list.

0x80042016 E_REPXML_WRITEFILE Error writing file.
0x80042017 E_REPXML_RETURNCOLERROR Error occurred adding to

return collection.
0x80042018 E_REPXML_READINGTIM An error occurred reading

information model.
0x80042019 E_REPXML_CANTGETCOL Error getting collection off

relationship %s.
0x8004201a E_REPXML_ERROROPENFILE Error opening file %s.
0x8004201b E_REPXML_ERROROPENTEMPFILE Error opening temporary log

file.
0x8004201c E_REPXML_ERRORWRITETEMPFILE Error writing to temp file.
0x8004201d E_REPXML_UNMAPPEDOBJECT Name %s is unmapped.
0x8004201e E_REPXML_NOOBJECSTTOEXPORT No objects to export.

See Also

Using XML Encoding

XML Encoding Reference

XML in Meta Data Services

Meta Data Services Programming (SQL Server 2000)

OLE DB Scanner Reference
The scanner provides one dual interface, IRepOLEDBScanner. This interface supports two methods, ScanDB and
ScanConnection.

Topic Description
IRepOLEDBScanner::ScanDB Copies the schema into the repository.
IRepOLEDBScanner::ScanConnection Copies the schema from the OLE DB

session into the repository.

See Also

Using OLE DB Scanner

Meta Data Services Programming (SQL Server 2000)

IRepOLEDBScanner::ScanDB
IRepOLEDBScanner::ScanDB copies the schema from the specified OLE DB data source object into a specified repository. If the
catalog is already in the specified repository, the systemwill version and store the original schema.

Syntax

HRESULT ScanDB (
 IRepository * pRepository,
 IRepositoryObject **pDbmDataSource,
 BSTR szProviderName,
 BSTR szProviderString,
 BSTR szDataSource,
 BSTR szCatalog,
 BSTR szUserName,
 BSTR szPassword
);

Parameters

pRepository [in]

A pointer to an IRepository interface that represents the repository where the class instances will be stored.

pDbmDataSource [in, out]

A pointer to an interface for a repository data source object. If the object does not support the IDbmDataSource interface, the
scanner will create the data source object and assign the pointer to the newly created object.

szProviderName [in]

The OLE DB provider name or program identifier.

szProviderString [in, optional]

A provider-specific connection string for the scanner to use during provider initialization.

szDataSource [in, optional]

A provider-specific location of the data source. Typically, this will be a server name or the path of the database file.

szCatalog [in, optional]

A provider-specific database name. If the database name is not specified, the default catalog in the data source will be scanned.

szUserName [in, optional]

The database user name for login. If the user name is specified in the connect string, this parameter is not required.

szPassword [in, optional]

The user password for authentication. If the user name is specified in the connect string, this parameter is not required.

Return Value

S_OK

The method succeeded.

E_FAIL

A provider-specific error occurred.

E_INVALIDARG

Either pRepository or pDbmDataSource is a null pointer.

Meta Data Services Programming (SQL Server 2000)

IRepOLEDBScanner::ScanConnection
IRepOLEDBScanner::ScanConnection copies the schema from the connected OLE DB session object into the specified repository. If
the catalog is already in the specified repository, the system will create a versioned copy of the original schema.

Syntax

HRESULT ScanConnection (
 IRepository * pRepository,
 IRepositoryObject **pDbmDataSource,
 IUnknown * pSession,
 BSTR szCatalog
);

Parameters

pRepository [in]

A pointer to an IRepository interface that represents the repository where the class instances will be stored.

pDbmDataSource [in, out]

A pointer to an interface for a repository data source object. If the object does not support the IDbmDataSource interface, the
scanner will create the data source object and assign the pointer to the newly created object.

pSession [in]

An interface pointer to an initialized OLE DB session object. The scan is not possible if the session does not support schema
information through the IDBSchemaRowset interface. Appropriate initialization properties should already be set on the session.

szCatalog [in, optional]

A provider-specific database name. If the database name is not specified, the current or default catalog in the data source will be
scanned.

Return Value

S_OK

The method succeeded.

E_FAIL

A provider-specific error occurred.

E_INVALIDARG

Either pRepository, pDbmDataSource, or pSession was a null pointer.

Meta Data Services Programming (SQL Server 2000)

Model Installer Reference
 New Information - SQL Server 2000 SP3.

The Microsoft® SQL Server™ 2000 Meta Data Services information model installer reads a binary information model RDM file
and installs the information model in the specified repository database. The installer can be used to install either prebuilt
information model installation files, such as those provided with the Meta Data Coalition (MDC) Open Information Model (OIM),
or user information model files generated by the Model Development Kit (MDK). A user model must be successfully compiled by
the MDK before it can be installed on a repository database. The compiling process creates the .rdm input string for the model
installer.

The model installer has a dependency on the repository engine DLL. It will read the installation script and create the information
model in the specified repository.

The installer is compatible with earlier versions of the Meta Data Services repository .rdm files and handles them correctly.

When the model installer recognizes that the model already exists, it will check to see whether any additions have been made
(classes, interfaces, properties, collections, relationships, methods, and so on) and reinstall them as required.

Command Line Installer

The command line installer uses the Installer COM server DLL to perform the actual installation or deletion of model files. It
outputs any error message to the console window.

The syntax of the two possible command lines are:

 InsRepIM.exe /f[Model File] /r[Repository connect string] /u[User] /p[Password]

-or-

 InsRepIM.exe /d /r[Repository connect string] /u[User] /p[Password]

Warning Using the flag /d deletes all repository tables and property tables from the repository database that are specified by the
connection string using the user ID and password.

Note If a user name and password are not provided, integrated security is used for authentication.

Security Note When possible, use Windows Authentication.

The following table lists the parameters.

Parameter Description
Model File The information model data file (with a file

extension of .rdm)
Repository connect string The repository database file data source

name (DSN) or a Microsoft Access
database file (with a file extension of
.mdb)

User The user's name
Password The user's password

Example

The following examples show how you can use either the DSN or the .mdb to identify the file name:

 InsRepIM /f C:\MyRdmFolder\Mar.rdm /r DSN=Mar /u MyName /p MyPassword

 InsRepIM /f C:\MyRdmFolder\Mar.rdm /r C:\MyMdbFolder\Mar.mdb /u MyName /p MyPassword

Installer COM API

The model installer API is the same as in Microsoft Repository version 2.0. The IMInstall COM server publishes the IMInstall
interface.

The file Insrepim.dll is a Microsoft ActiveX® DLL located in C:\Program Files\Common Files\Microsoft Shared\Repository. It can
be used either from a Microsoft Visual Basic® application or a Microsoft Visual C++® application to programmatically install a

model file into a repository database.

Topic Description
IIMInstall::InstallRDM Method Describes the method that is used to

install the model by DSN or connection
name

IIMInstall2::InstallRDM Method Describes the method that is used to
install the model by repository pointer

Model Installer Errors Lists the model installer error messages

The model installer uses the following sample Interface Definition Language (IDL) definition to install models into a Meta Data
Services repository.

IDL Definition

IDL Segment

 [
 object,
 uuid(D24FD4A4-BEBC-11D1-8CB9-00C04FC2F51A),
 dual,
 helpstring("IIMInstall Interface"),
 pointer_default(unique)
]
 interface IIMInstall : IDispatch
 {
 [id(1), helpstring("method InstallRDM")] HRESULT InstallRDM([in] BSTR DSN, [in] BSTR RDMFile, [in] BSTR
UserName, [in] BSTR Password);
 };

 [
 object,
 uuid(AF7F843B-FB34-4ff2-BD7D-81DDB284D2A9),
 dual,
 helpstring("IIMInstall2 Interface"),
 pointer_default(unique)
]
 interface IIMInstall2 : IDispatch
 {
 [id(1), helpstring("method InstallRDM")] HRESULT InstallRDM([in] IRepository *pRepos, [in] BSTR RDMFile);
 };

See Also

Installing Information Models

Model Installer Errors

Meta Data Services Programming (SQL Server 2000)

IIMInstall::InstallRDM Method
 New Information - SQL Server 2000 SP3.

IIMInstall supports the following method:

HRESULT InstallRDM(

 BSTR DSN,

 BSTR RdmFile,

 BSTR UserName,

 BSTR Password

);

Parameters

DSN [in]

The data source name (DSN) of the repository database.

RdmFile [in]

The information model data file .rdm.

UserName [in]

The user's name.

Password [in]

The user's password.

Security Note When possible, use Windows Authentication for connecting to a repository database. If Windows Authentication
is not available, prompt users to enter their credentials at run time. Avoid storing credentials in a file. If you must persist
credentials, you should encrypt them with the Win32 cryptoAPI.

Return Value

S_OK

The method is successfully completed.

Error Value

The method failed to complete successfully.

See Also

Model Installer Errors

Model Installer Reference

http://go.microsoft.com/fwlink/?LinkId=9504

Meta Data Services Programming (SQL Server 2000)

IIMInstall2::InstallRDM Method
IIMInstall supports the following method:

HRESULT InstallRDM(

 IRepository *pRepos,

 BSTR RdmFile,

);

Parameters

*pRepos [in]

Points to a repository database where the model is to be installed.

RdmFile [in]

The information model data file (with an extension of .rdm).

Return Value

S_OK

The method is successfully completed.

Error Value

The method failed to complete successfully.

See Also

Model Installer Reference

Model Installer Errors

Meta Data Services Programming (SQL Server 2000)

Model Installer Errors
The following errors may occur when you install a model into a Microsoft® SQL Server™ 2000 Meta Data Services repository.

Error number Error text
0x80045001 E_INSREP_BAD_ARGUMENTS
0x80045002 E_INSREP_CANT_OPEN_MODEL_FILE
0x80045003 E_INSREP_CANT_INITIALIZE_COM
0x80045004 E_INSREP_CANT_CREATE_IREPOSITORY
0x80045005 E_INSREP_REPOSITORY_CREATE_FAILS
0x80045006 E_INSREP_PREMATURE_EOF
0x80045007 E_INSREP_WRONG_FILE_TYPE
0x80045008 E_INSREP_UNEXPECTEDERROR
0x80045009 E_INSREP_CANTINSTALLTYPELIB
0x8004500A E_INSREP_INCOMPATIBLERDMVERSION
0x8004500B E_INSREP_CANTINSTALLINTERFACEDEF
0x8004500C E_INSREP_CANTINSTALLPROPERTYDEF
0x8004500D E_INSREP_CANTINSTALLRELATIONSHIPDEF
0x8004500E E_INSREP_CANTINSTALLROLEDEF
0x8004500F E_INSREP_CANTINSTALLCLASSDEF
0x80045010 E_INSREP_TRANSACTIONERROR
0x80045011 E_INSREP_CANTCREATEENUMDEF
0x80045012 E_INSREP_CANTCREATEENUMLITERAL
0x80045013 E_INSREP_CANTCREATEOPERATION
0x80045014 E_INSREP_CANTCREATEALIAS
0x80045015 E_INSREP_IMPLIESFAILED
0x80045016 E_INSREP_ERRORADDINGIFACE
0x80045017 E_INSREP_ERRORGETTINGREPOSROOT
0x80045018 E_INSREP_CANTCREATEPARAMDEF
0x80045019 E_INSREP_INCOMPREPOSVERSION

See Also

Model Installer Reference

Meta Data Services Programming (SQL Server 2000)

E_INSREP_BAD_ARGUMENTS
One or more of the arguments passed are not valid.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANT_CREATE_IREPOSITORY
Microsoft® SQL Server™ 2000 Meta Data Services is not registered on this computer.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANT_INITIALIZE_COM
The installer failed to initialize COM.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANT_OPEN_MODEL_FILE
The installer cannot open the model file.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTCREATEALIAS
The installer failed to create an alias.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTCREATEENUMDEF
The installer failed to create an enumeration.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTCREATEENUMLITERAL
The installer failed to create an enumeration literal.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTCREATEOPERATION
The installer failed to create a MethodDef class.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTCREATEPARAMDEF
The installer failed to install a parameter definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLCLASSDEF
The installer failed to install a class definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLINTERFACEDEF
The installer failed to install an interface definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLPROPERTYDEF
The installer failed to install a property definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLRELATIONSHIPDEF
The installer failed to install a relationship definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLROLEDEF
The installer failed to install a relationship collection definition.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_CANTINSTALLTYPELIB
The installer failed to install a type library.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_ERRORADDINGIFACE
An error occurred while adding an interface.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_ERRORGETTINGREPOSROOT
An error occurred while getting the repository root.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_IMPLIESFAILED
An error occurred while adding an implication.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_INCOMPATIBLERDMVERSION
The RDM file version is incompatible with the installer.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_INCOMPREPOSVERSION
The installer requires Microsoft® SQL Server™ 2000 Meta Data Services.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_PREMATURE_EOF
The installer ended unexpectedly.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_REPOSITORY_CREATE_FAILS
The installer failed while creating a repository.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_TRANSACTIONERROR
An error occurred while creating or committing a transaction.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_UNEXPECTEDERROR
An unexpected error occurred.

Meta Data Services Programming (SQL Server 2000)

E_INSREP_WRONG_FILE_TYPE
File type is unknown.

Replication Programming (SQL Server 2000)

Getting Started with Replication Programming
Replication programming contains the following sections.

Topic Description
Introducing Replication Programming Describes the benefits and planning

required to program replication.
Developing Replication Applications Using
ActiveX Controls

Describes the Microsoft® ActiveX®
controls, with code samples for each
control showing various pieces of
functionality.

Replication ActiveX Control Reference Describes the objects, collections,
properties, methods, events, and constants
available to the ActiveX controls.

Developing Replication Merge Conflict
Resolvers Through a Custom Resolver

Provides an overview of the methods
available for creating a merge conflict
resolver

Programming Replication from
Heterogeneous Data Sources

Provides an overview of the methods
available for making a heterogeneous
data source a Publisher.

Replication Distributor Interface Reference Describes the objects, properties,
methods, and interface structures
available for the Replication Distributor
Interface.

Replication Programming Samples Describes the replication samples that are
included with Microsoft SQL Server™
2000.

For more information about replication applications that use SQL-DMO, see Developing SQL-DMO Applications and SQL-DMO
Reference.

Replication Programming (SQL Server 2000)

Introducing Replication Programming
As an alternative to using SQL Server Enterprise Manager, you can use the following programming interfaces to implement,
administer, and monitor replication:

Microsoft® ActiveX® controls, when used within custom applications that employ Microsoft Visual Basic® or Microsoft
Visual C++®, provide programmable controls for administering and controlling the Snapshot Agent, the Distribution Agent,
and the Merge Agent. These controls can be used to program activities needed to operate replication. Using ActiveX
replication controls, you can build custom applications to configure and administer replication. Benefits include:

Installing a smaller portion of Microsoft SQL Server™ 2000. Because the client has no dependency on the full SQL
Server 2000 installation, the user only needs to install Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).

Controlling when replication activity occurs. For example, for an application that provides online and offline
capabilities, you may want to expose a Synchronize button. That button can be associated with the merge ActiveX
control so that whenever users click the button, the merge ActiveX control connects to the Publisher and activates
the Merge Agent for the specified publication, which then merges and synchronizes the data. For more information,
see Programming Replication with ActiveX Controls.

SQL Distributed Management Objects (SQL-DMO) allow you to create custom applications using Visual Basic or C++, which
allows you to configure, implement, or maintain your replication topology. SQL-DMO can be used to program replication
administration such as configuring distribution and creating subscriptions. The SQL-DMO objects can be used in
programming languages such as Visual C++ or Visual Basic.

The Replication Distributor Interface allows you to replicate data from heterogeneous data sources such as Microsoft Access
or Oracle. The Replication Distributor Interface is an OLE DB service provider that allows heterogeneous data sources to
publish data to SQL Server Subscribers using snapshot replication or read-only transactional replication. It can be used to
develop a custom replication application based on proprietary data sources. For more information, see Programming
Replication from Heterogeneous Data Sources.

Transact-SQL system stored procedures allow you automate some replication tasks, configure replication, and implement
subscriptions on multiple servers. Stored procedures are frequently used in scripts that can be run when configuring
replication on multiple servers (for example, creating subscriptions to a publication on multiple Subscribers). In most cases,
you are better served by using the programming interfaces SQL-DMO and ActiveX replication controls for programming
replication rather than writing direct calls to the system stored procedures.

Replication Programming (SQL Server 2000)

Benefits of Programming Replication
Programming replication allows you to create custom applications with which you can configure and maintain a replication
topology. Some benefits of using custom applications include:

Making it easier for mobile or occasionally connected users to modify data offline and propagate those changes to other
locations when they reconnect to the network. The users can enter their changes to the data, and then when connected to
the network, use an application to upload and download data changes. The users do not need to have knowledge of
Microsoft® SQL Server™ or replication to perform these actions.

Allowing you to program heterogeneous data sources, such as Publishers of data, to SQL Server Subscribers. The
Replication Distributor Interface can be programmed to support heterogeneous Publishers for snapshot replication and
transactional replication.

Allowing you to save the initial snapshot on removable media (such as a CD-ROM) and apply the snapshot at the Subscriber
from the media, rather than applying the initial snapshot over a slow link.

Simplifying replication by separating functionality into smaller, reusable pieces that manage and administer the replication
process easily from a central location.

Allowing heterogeneous applications to inherit replication features and act as Publishers so SQL Server Subscribers can
gain access to data that is stored on a variety of data sources, including legacy data sources and proprietary data sources.

Storing replication SQL statements, scripts, and .bcp files (in addition to transactions), and forwarding them to the
Subscriber.

Writing custom applications to resolve merge conflicts that can occur when the same data is modified at multiple places
allow the developer to implement specific data or business-decision rules to resolve the conflict. Custom resolvers can be
built either as stored procedures or as COM objects written in languages such as Microsoft Visual C++® or Microsoft Visual
Basic®. By using merge replication custom conflict resolvers, you can resolve unique business conflicts by writing scripts
that can handle any logic required to resolve complex conflict scenarios. For more information, see Merge Replication
Conflict Detection and Resolution.

Replication Programming (SQL Server 2000)

Planning for Replication Programming
When planning to program an application used in replication, decide what replication topology you will use, which replication
actions need to be performed programmatically, and which actions will be performed using other Microsoft® SQL Server™ 2000
tools.

For the actions that are being controlled programmatically, determine what functionality in your business application will be
performed only one time (such as creating the databases, configuring a Publisher, or creating a publication), and what
functionality will be performed repeatedly (such as creating subscriptions, synchronizing data between the Publisher and
Subscribers, and validating replicated data).

Example

At Northwind Traders, data needs to be published to 200 sales representatives around the world. The sales representatives travel
often and will need to use laptop computers to change customer data and add new orders. The changes will then need to be
synchronized with the Publisher when the sales representative connects the laptop to the network. To set up each laptop with a
subscription to the corporate Northwind database, developers decide to program an application that uses Microsoft ActiveX®
replication controls to configure the laptop with a subscription. The sales representatives install and run the application, and are
then ready to add new customers and orders, and to modify existing data for their customers.

See Also

Planning for Application Development

Replication Programming (SQL Server 2000)

Developing Replication Applications Using ActiveX Controls
Microsoft® SQL Server™ 2000 provides Microsoft ActiveX® controls that allow custom applications to embed replication
functionality. These controls support synchronization and limited administration of push, pull, and anonymous subscriptions. In
addition, these controls can be programmed to add, copy, and delete both pull and anonymous subscriptions; create or attach
subscription databases; and create new subscriptions to be synchronized. The activity of these controls can be monitored using
Replication Monitor in SQL Server Enterprise Manager.

Software developers can use ActiveX replication controls like any standard built-in control. They have been implemented as in-
process components and do not have visible user interfaces. The ActiveX replication controls provided are:

SQL Snapshot control

SQL Distribution control

SQL Merge control

These controls are comparable to the replication agents of the same name. The SQL Snapshot control has functions similar to the
Snapshot Agent, the SQL Distribution control has functions similar to the Distribution Agent, and the SQL Merge control has
functions similar to the Merge Agent.

The Microsoft SQL Server CD-ROM ships with some ActiveX replication control samples. For more information, see Replication
ActiveX Control Samples.

See Also

Replication ActiveX Control Reference

Replication Programming (SQL Server 2000)

Requirements for Using Replication ActiveX Controls in
Development Environments
This section explains how to use the SQL Distribution control, SQL Merge control, and SQL Snapshot control in Microsoft® Visual
Basic® and Microsoft Visual C++® development environments.

Microsoft Visual Basic

To use one or more Microsoft ActiveX® replication controls in a Microsoft Visual Basic program: on the Project/References
menu in the Visual Basic Development Environment, in the References dialog box, select the .dll references for the controls you
plan to use.

Component Reference Library
SQL Distribution Control Microsoft SQL Distribution Control 8.0 sqldistx.dll
SQL Merge Control Microsoft SQL Merge Control 8.0 sqlmergx.dll
SQL Snapshot Control Microsoft SQL Snapshot Control 8.0 sqlinitx.dll
Replication Errors Microsoft SQL Replication Errors 8.0 replerrx.dll

If Microsoft SQL Server™ 2000 was installed to the default locations, these component .dlls are located in C:\Program
Files\Microsoft SQL Server\80\COM\.

Microsoft Visual C++

To use the one or more replication controls in a Microsoft Visual C++ program, include the files from the Include Files column of
the following table in the appropriate source files of your project. These files are installed on your computer only if Headers and
Libraries was selected in Development Tools during a custom installation of the SQL Server 2000 client tools.

Reference the files from the Libraries column of the table in your project or NMAKE file. These files are installed automatically
during a typical installation of the SQL Server 2000 client tools.

Component Include Files Libraries
SQL Distribution Control sqldistx.h

repldstx.c
sqldistx.dll

SQL Merge Control sqlmergx.h
replmrgx.c

sqlmergx.dll

SQL Snapshot Control sqlinitx.h
replinix.c

sqlinitx.dll

Replication Errors replerrx.h replerrx.dll

If SQL Server 2000 was installed to the default locations, the files in the Include Files column are located in C:\Program
Files\Microsoft SQL Server\80\Tools\DevTools\Include\. The files in the Libraries column are located in C:\Program
Files\Microsoft SQL Server\80\COM\.

After the controls are referenced, they can be included in the Components toolbar; however, these controls are not user interface
controls. Drawing the controls on the form will not instantiate them. The controls need to be instantiated with the NEW keyword.
In addition, a variable of the ActiveX object's class can be declared using the WithEvents keyword. This enables the program to
receive callbacks from the agents, and the application can cancel the ActiveX object in this callback function. The callback is also
available with the ReplErr object, although it is a notify callback and not a status callback.

See Also

Replication ActiveX Control Reference

Replication Programming (SQL Server 2000)

Requirements for Deploying Replication ActiveX Controls
When deploying the Microsoft® ActiveX® replication controls independently of Microsoft SQL Server™ 2000, you must include
additional files in the installation kit that you use to distribute your application. If you deploy your application using these ActiveX
replication controls on a computer where SQL Server 2000 Desktop Engine (MSDE 2000) or SQL Server 2000 client software is
also installed, these files will already be present.

If you use Microsoft Visual Studio® and the Deployment Wizard to prepare your installation kit, the wizard will recognize that the
files from the Referenced Libraries column in the following table are needed, and will include them in the installation kit. The
wizard will also indicate that dependency information for these files is not available. Include the files from the Dependent
Libraries column of the table in your installation kit (click the Add button on the Included Files page of the wizard). The paths
shown in this table assume SQL Server 2000 was installed to the default locations.

Replication Control
Referenced

Libraries Dependent Libraries
SQL Distribution
Control

Sqldistx.dll
Replerrx.dll

C:\Program Files\Microsoft SQL
Server\80\COM\Rdistcom.dll

C:\Program Files\Microsoft SQL
Server\MSSQL\Binn\Sqlrepss.dll

$(WinSysPath)\Sqlwoa.dll

SQL Merge Control Sqlmergx.dll
Replerrx.dll

C:\Program Files\Microsoft SQL
Server\80\COM\Replprov.dll

C:\Program Files\Microsoft SQL
Server\80\COM\Replrec.dll

$(WinSysPath)\Sqlwoa.dll

SQL Snapshot
Control

Sqlinitx.dll
Replerrx.dll

C:\Program Files\Microsoft SQL
Server\80\COM\Rinitcom.dll

$(WinSysPath)\Sqlwoa.dll

See Also

Replication ActiveX Control Reference

Replication Programming (SQL Server 2000)

Programming the SQL Snapshot ActiveX Control
 New Information - SQL Server 2000 SP3.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

The SQL Snapshot control is implemented as a Microsoft® ActiveX® in-process component. It provides a way to create
snapshots, and is used by all types of replication. The control is comparable to the Snapshot Agent. Its primary class, the
SQLSnapshot object, creates a snapshot of the specified publication on the specified Distributor.

Dynamic snapshots are supported. There are properties to provide values for the HOST_NAME() and SUSER_SNAME() functions
when they appear in the filter criteria of dynamic publications, and to specify the location where the dynamic snapshots are
written.

Instantiating the SQL Snapshot Control

This example is a Microsoft® Visual Basic® Sub procedure that creates a snapshot from a publication named
FullSnapPublication using the database UE_PublisherDB on Publisher UE_PUBLISHER and saves it on Distributor
UE_DISTRIBUTOR. Windows Authentication is used for both the Publisher and Distributor connections. The example shows the
snapshot code for a snapshot publication. The code for a merge publication requires the ReplicationType property to be set.

Sub Main()
 Dim oSnapCtl As SQLINITXLib.SQLSnapshot

 Set oSnapCtl = New SQLINITXLib.SQLSnapshot
 oSnapCtl.Publisher = "UE_PUBLISHER"
 oSnapCtl.PublisherDatabase = "UE_PublisherDB"
 oSnapCtl.PublisherSecurityMode = NT_AUTHENTICATION
 oSnapCtl.Publication = "FullSnapPublication"
 oSnapCtl.Distributor = "UE_DISTRIBUTOR"
 oSnapCtl.DistributorSecurityMode = NT_AUTHENTICATION
 oSnapCtl.Initialize
 oSnapCtl.Run
 oSnapCtl.Terminate
End Sub

Note Include the call to the Terminate method to close connections and release allocated memory.

See Also

SQLSnapshot Object

Replication Programming (SQL Server 2000)

Programming the SQL Distribution ActiveX Control
 New Information - SQL Server 2000 SP3.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

The SQL Distribution control is implemented as a Microsoft® ActiveX® in-process component. It provides a way to move schema
and data to Subscribers for snapshot replication and to control the synchronization of subscriptions for transactional replication.
The control is comparable to the Distribution Agent. Its primary class, the SQLDistribution object, includes the ability to:

Add, drop, copy, and register subscriptions for synchronization using Windows Synchronization Manager. For more
information, see Common SQL Distribution Control and SQL Merge Control Functionality.

Specify an alternate snapshot folder from which the initial snapshot for a subscription can be applied.

Specify a working directory to which snapshot files are copied when File Transfer Protocol (FTP) is used to retrieve the initial
snapshot.

Generate a specially formatted subscription file (usually an .msf) in a specified location. These files can be attached to create
a synchronized subscription that is registered at the Publisher as part of an attachable subscription database.

Specify a Data Transformation Services (DTS) package that transforms command rowsets before applying them to a
Subscriber.

Set the Subscriber options to immediate updating or queued updating for changes made at the Subscriber.

Synchronize push, pull, or anonymous subscriptions in a transactional publication.

For more information, see SQLDistribution Object.

Instantiating the SQL Distribution Control

This code segment demonstrates how a Microsoft Visual Basic® program configures the SQLDistribution object to synchronize
data with an anonymous SQL Server Subscriber.

In the example, Distributor properties are not set, so the Publisher is also the Distributor. The SubscriberDatabase must already
exist when this code is executed. Replace the fields in italic with appropriate values.

'SQLDistribution control declaration.
Private mobjDistr As SQLDISTXLib.SQLDistribution
. . .

Set mobjDistr = New SQLDISTXLib.SQLDistribution

With mobjDistr
 'Set up the Publisher
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = NT_AUTHENTICATION

 'Set up the Subscriber.
 .Subscriber = "SubscriberServer"
 .SubscriberDatabase = "SubscriberDatabase"
 .SubscriberDatasourceType = SQL_SERVER
 .SubscriberSecurityMode = NT_AUTHENTICATION

 'Set up the Subscription.
 .SubscriptionType = ANONYMOUS
 .SynchronizationType = AUTOMATIC

 'Synchronize the data.
 .Initialize
 .Run
 .Terminate

End With

Note When adding an anonymous subscription, you do not have to call the AddSubscription method of the SQLDistribution
object. If the anonymous subscription does not exist, it will be added automatically when the first synchronization is performed, as
in the previous sample.

When using a merge publication, the same example can be used for programming anonymous subscriptions with the SQLMerge
object. Replace references to the SQLDistribution object with references to the SQLMerge object.

Creating Anonymous Internet Subscriptions Sample

ActiveX replication controls can be programmed to synchronize data over the Internet. After the Publisher and Distributor are
configured for publishing over the Internet and a publication enabled for anonymous subscriptions is created, an application
using an ActiveX replication control can synchronize with the publication data. FTP is used for the snapshot download, both
during the initial application and when the subscription is re-initialized. All other synchronizations use SQL packets over TCP/IP to
transfer data between Publisher and Subscriber.

Examples

Distribution Control Using IP Address

This code segment demonstrates how a Visual Basic program configures the SQL Distribution control to create a Subscriber
database and synchronize data with an anonymous SQL Server Subscriber over the Internet. The Distributor and Publisher are
reached using an IP address.

In this example, no distributor properties are set, so the Publisher is also used as the Distributor. Replace the fields in italic with
appropriate values. The port numbers shown are the numbers that are typically used, but they may also need to be
changed.'SQLDistribution control declaration.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

Private mobjDistr As SQLDISTXLib.SQLDistribution
. . .

Set mobjDistr = New SQLDISTXLib.SQLDistribution

With mobjDistr
 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = DB_AUTHENTICATION
 .PublisherLogin = "PublisherUserID"
 .PublisherPassword = "PublisherPassword"
 .PublisherAddress = "157.56.17.27,1433"
 .PublisherNetwork = TCPIP_SOCKETS

 'Set up the Subscriber.
 .Subscriber = "SubscriberServer"
 .SubscriberDatabase = "SubscriberDatabase"
 .SubscriberDatasourceType = SQL_SERVER
 .SubscriberSecurityMode = NT_AUTHENTICATION

 'Set up the Subscription.
 .SubscriptionType = ANONYMOUS
 .SynchronizationType = AUTOMATIC

 'Synchronize subscription.
 .Initialize
 .Run
 .Terminate
End With

When using a merge publication, the same example can be used for programming anonymous subscriptions with the SQL Merge
control. Replace references to the SQLDistribution object with references to the SQLMerge object.

Creating Pull Subscriptions to an ODBC Data Source Sample

The SQL Distribution control can be programmed to synchronize Publishers with ODBC data sources. This feature is one method
by which applications can synchronize subscriptions to heterogeneous data sources.

http://go.microsoft.com/fwlink/?LinkId=9504

Before using the SQL Distribution control, an ODBC data source name (DSN) must be created at the client computer on which the
application hosting the SQL Distribution control is running. If a pull subscription is to be created, the ODBC DSN must also be
created at the Distributor if it is a different computer from the client. The DSN at the Distributor must be configured as a
Subscriber (for example, by using the sp_addsubscriber stored procedure).

This code segment demonstrates how a Visual Basic program configures the SQL Distribution control to create a pull subscription
and synchronize data with an ODBC Subscriber. If an anonymous subscription is used, it is not necessary to call AddSubscription
or to create the DSN at the Distributor. Replace the fields in italic with appropriate values.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

'SQLDistribution object declaration.
Private mobjDistr As SQLDISTXLib.SQLDistribution
. . .

'Configure the control for an ODBC subscription.
Set mobjDistr = New SQLDISTXLib.SQLDistribution

With mobjDistr
 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = NT_AUTHENTICATION

 'Set up the Distributor.
 .Distributor = "DistributorServer"
 .DistributorSecurityMode = NT_AUTHENTICATION

 'Set up the Subscriber.
 .Subscriber = "The_ODBC_DSN"
 .SubscriberDatasourceType = ODBC_DSN
 .SubscriberSecurityMode = DB_AUTHENTICATION

 'Subscriber login information needed only if the
 ' ODBC DSN does not contain login information.
 .SubscriberLogin = "SubscriberUserID"
 .SubscriberPassword = "SubscriberPassword"

 'Set up the subscription.
 .SubscriptionName = "SubscriptionName"
 .SubscriptionType = PULL
 .SynchronizationType = AUTOMATIC

 'Create and synchronize the subscription.
 .AddSubscription EXISTING_DATABASE, NONE
 .Initialize
 .Run
 .Terminate
End With

Creating Pull Transactional Subscriptions to an OLE DB Data Source Sample

You can program the SQL Distribution control to synchronize data with OLE DB data sources. This feature is one method by which
applications can synchronize subscriptions to heterogeneous data sources.

Before running the control, a linked server to the OLE DB database must be created at the Distributor. This can be done in SQL
Server Enterprise Manager or by using the sp_addlinkedserver stored procedure. A heterogeneous Subscriber using the linked
server must be created at the Publisher (for example, by using the sp_addsubscriber stored procedure).

SQL Server 2000 does not support anonymous subscriptions using OLEDB_DATASOURCE with the SubscriberDatasourceType
property. You can create OLE DB anonymous subscriptions to instances of SQL Server by setting SubscriberDatasourceType to
SQL_SERVER.

This code segment demonstrates how a Visual Basic program can configure the SQL Distribution control to create a pull
subscription and synchronize data with an OLE DB Subscriber.Replace the fields in italic with appropriate values.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

'Declare the SQLDistribution object.
Private mobjDistr As SQLDISTXLib.SQLDistribution
. . .

http://go.microsoft.com/fwlink/?LinkId=9504
http://go.microsoft.com/fwlink/?LinkId=9504

'Configure the control for an OLE DB subscription.
Set mobjDistr = New SQLDISTXLib.SQLDistribution

With mobjDistr
 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = NT_AUTHENTICATION

 'Set up the Subscriber.
 .Subscriber = "LinkedServerName"
 .SubscriberDatasourceType = OLEDB_DATASOURCE
 .SubscriberSecurityMode = DB_AUTHENTICATION

 'Subscriber login information is needed only if the OLE DB
 ' linked server definition does not include login information.
 .SubscriberLogin = "SubscriberUserID"
 .SubscriberPassword = "SubscriberPassword"

 'Set up the subscription.
 .SubscriptionName = "SubscriptionName"
 .SubscriptionType = PULL
 .SynchronizationType = AUTOMATIC

 'Create and synchronize the subscription.
 .AddSubscription EXISTING_DATABASE, NONE
 .Initialize
 .Run
 .Terminate
End With

See Also

Replication and Heterogeneous Data Sources

sp_addlinkedserver

sp_addsubscriber

SubscriberDatasourceType Property

Replication Programming (SQL Server 2000)

Programming the SQL Merge ActiveX Control
 New Information - SQL Server 2000 SP3.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

The SQL Merge control is implemented as a Microsoft® ActiveX® in-process component. It provides a way to synchronize data in
merge subscriptions. It is not used in snapshot replication or transactional replication. Its primary class, the SQLMerge object,
provides the functionality of the Merge Agent and supports synchronization of push, pull, or anonymous subscriptions to a merge
publication. It also includes the options to:

Add, drop, copy, and register subscriptions for synchronization using Windows Synchronization Manager. For more
information, see Common SQL Distribution Control and SQL Merge Control Functionality.

Apply the initial snapshots to the Subscriber.

Merge incremental changes that occurred at the Publisher or Subscribers after the initial snapshot was created.

Reconcile conflicts according to the rules configured, through a COM component custom conflict resolver, or interactively
by setting the UseInteractiveResolver property.

Specify the direction of the synchronization so that it executes only the upload phase, the download phase, or both the
upload and download phases.

Specify an alternate snapshot folder from which the snapshot for a subscription can be applied.

Specify a client-side working folder to which snapshot files can be copied using FTP.

Copy a subscription database by generating a specially formatted subscription file in a specified location. These files can be
attached to create a synchronized subscription, registered at the Publisher as part of an attachable subscription database.

Synchronize with a Publisher other than the one at which its subscription originated. This alternate synchronization partner
must contain the same schema and data set as the original Publisher.

Attach a subscription database by specifying Subscriber-side properties only. The Publisher, PublisherDatabase,
Distributor, and Publication properties do not need to be set while adding attachable subscription databases.

Instantiating the SQL Merge Control

The SQL Distribution and SQL Merge controls can be used to create a subscription database and a pull subscription, as well as
synchronize with the publication data.

This code segment demonstrates how a Microsoft Visual Basic® program can configure the SQLMerge object to create a
Subscriber database and subscription using the AddSubscription method, and then synchronizes data with the SQL Server
Publisher.

In the example, Microsoft SQL Server™ 2000 generates the subscription name. Replace the fields in italic with appropriate values.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

'SQLMerge control declaration.
Private mobjMerge As SQLMERGXLib.SQLMerge

Set mobjMerge = New SQLMERGXLib.SQLMerge

With mobjMerge
 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"

http://go.microsoft.com/fwlink/?LinkId=9504

 .PublisherSecurityMode = NT_AUTHENTICATION

 'Set up the Distributor.
 .Distributor = "DistributorServer"
 .DistributorSecurityMode = NT_AUTHENTICATION

 'Set up the Subscriber.
 .Subscriber = "SubscriberServer"
 .SubscriberDatabase = "SubscriberDatabase"
 .SubscriberDatasourceType = SQL_SERVER
 .SubscriberSecurityMode = DB_AUTHENTICATION
 .SubscriberLogin = "SubscriberUserID"
 .SubscriberPassword = "SubscriberPassword"

 'Set up the subscription.
 .SubscriptionType = PULL
 .SynchronizationType = AUTOMATIC

 'Create the database and subscription.
 .AddSubscription CREATE_DATABASE, NONE

 'Synchronize the subscription.
 .Initialize
 .Run
 .Terminate
End With

Note Subscriptions other than anonymous subscriptions that are added using the SQLDistribution or SQLMerge objects must
be added by explicitly calling the AddSubscription method before attempting to initialize and synchronize the subscription for
the first time.

Both SQLDistribution and SQLMerge objects can be used to create a subscription database and a pull subscription, as well as
synchronize with the publication data. When using a transactional publication, the previous sample code can be used for creating
a Subscriber database and pull subscriptions with the SQLDistribution control. Replace references to the SQLMerge object with
references to the SQLDistribution object. For more information about the merge object, see SQLMerge Object.

Creating Anonymous Internet Subscriptions Sample

ActiveX replication controls can be programmed to synchronize data over the Internet. After the Publisher and Distributor are
configured for publishing over the Internet and a publication enabled for anonymous subscriptions is created, an application
using an ActiveX replication control can synchronize with the publication data. FTP is used for the snapshot download, both
during the initial application and when the subscription is re-initialized. All other synchronizations use SQL packets over TCP/IP to
transfer data between Publisher and Subscriber.

This example demonstrates how a Visual Basic program configures the SQL Merge Control to synchronize data for an anonymous
subscription over the Internet. The Distributor and Publisher are reached using a Uniform Resource Locator (URL).

The SubscriberDatabase must already exist when this code is executed. Because the FTP information has not been provided, the
specification of FILETRANSFERFTP for the FileTransferType property causes the control to request the FTP information from the
Distributor.

A handler for the Status event is included. It displays the most recent status message in a label. Replace the fields in italic with
appropriate values.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

'SQLMerge control declaration.
Private WithEvents mobjMerge As SQLMERGXLib.SQLMerge
. . .

Private Sub RunReplMerge()

 'Create SQLMerge control.
 Set mobjMerge = New SQLMERGXLib.SQLMerge

 With mobjMerge
 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherAddress = "publisher.company.com"
 .PublisherNetwork = TCPIP_SOCKETS
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = DB_AUTHENTICATION
 .PublisherLogin = "PublisherUserID"

http://go.microsoft.com/fwlink/?LinkId=9504

 .PublisherPassword = "PublisherPassword"

 'Set up FTP.
 .FileTransferType = FILETRANSFERFTP

 'Set up the Distributor.
 .Distributor = "DistributorServer"
 .DistributorAddress = "distributor.company.com"
 .DistributorNetwork = TCPIP_SOCKETS
 .DistributorSecurityMode = DB_AUTHENTICATION
 .DistributorLogin = "DistributorUserID"
 .DistributorPassword = "DistributorPassword"

 'Set up the Subscriber.
 .Subscriber = "SubscriberServer"
 .SubscriberDatabase = "SubscriberDatabase"
 .SubscriberDatasourceType = SQL_SERVER
 .SubscriberSecurityMode = NT_AUTHENTICATION

 'Set up the subscription.
 .SubscriptionType = ANONYMOUS
 .SynchronizationType = AUTOMATIC

 'Synchronize the Subscriber.
 .Initialize
 .Run
 .Terminate
 End With
 Exit Sub

End Sub

Private Function mobjMerge_Status(ByVal Message As String, ByVal Percent As Long) _
 As SQLMERGXLib.STATUS_RETURN_CODE
'Display most recent status message.
 Label1 = Message
 DoEvents
End Function

Note The URLs publisher.company.com and distributor.company.com need to be resolvable by an external DNS server. If a
listening port other than the default port 1433 is used, it must be explicitly coded. For example, if port 1430 is to be used:

.PublisherAddress = "publisher.company.com,1430"

When using a transactional publication, the same example can be used for synchronizing a Subscriber database with the SQL
Distribution control. Replace references to the SQLMerge object with references to the SQLDistribution object.

Creating and Synchronization Subscriptions to a Jet 4.0 Database

ActiveX replication controls can be programmed to synchronize data with a Microsoft Jet 4.0 database. This enables applications
to synchronize subscriptions to Jet 4.0 databases without having to create an OLE DB data source. The publication must be
configured to accept heterogeneous data source Subscribers. The Subscriber does not need to be configured as a linked server.

This code segment demonstrates how a Visual Basic program configures the SQL Merge control to create a Jet 4.0 database and
synchronizes data with it. The AddSubscription method need not be used if the database already exists.

Note If the publication has not been enabled for heterogeneous Subscribers, the Jet database will be created and the Publisher
schema applied, but no data will be copied. No error message or warning is given.

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

'SQLMerge control declaration.
Private WithEvents mobjMerge As SQLMERGXLib.SQLMerge
. . .

'Configure the control for a Jet 4.0 database subscription.
Set mobjMerge = New SQLMERGXLib.SQLMerge

With mobjMerge

 'Set up the Publisher.
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .Publication = "PublicationName"
 .PublisherSecurityMode = NT_AUTHENTICATION

http://go.microsoft.com/fwlink/?LinkId=9504

 'Set up the Subscriber.
 .Subscriber = "SubscriberServer"
 ' MDBFileSpecification would be something like C:\ReplDBs\JetPubs.mdb
 .SubscriberDatabasePath = "MDBFileSpecification"
 .SubscriberDatasourceType = JET4_DATABASE
 .SubscriberSecurityMode = DB_AUTHENTICATION
 ' JetDatabaseUserID would be something like "Admin"
 .SubscriberLogin = "JetDatabaseUserID"
 .SubscriberPassword = "JetDatabasePassword"

 'Set up the subscription.
 .SubscriptionType = ANONYMOUS
 .SynchronizationType = AUTOMATIC

 'Synchronize the subscription.
 .Initialize
 .Run
 .Terminate
End With

When using a transactional publication, the same example can be used for synchronizing a Subscriber database with the SQL
Distribution control. Replace references to the SQLMerge object with references to the SQLDistribution object.

Providing Status and Handling Cancel Requests

ActiveX replication controls provide a Status event that provides status messages and percent complete during Initialize, Run,
and other replication control methods. These messages can be displayed in the user interface of the application (for example, a
label and a progress bar). The event also supports the ability to cancel the control process.

Assume the application hosts a SQL Merge control, and its visible user interface includes these controls.

Control Type Control Name
Label lblStatus
Progress Bar prgStatus
Command Button cmdCancel

The Status event handler updates lblStatus and prgStatus with the status information. When cmdCancel is clicked, a Boolean
variable is set. The handler returns a CANCEL notification when it finds the variable set. The DoEvents call should be included to
update the visible controls.

If you use a mechanism similar to this, be sure to inhibit subsequent calls to control methods after the cancel request is received.

This code segment demonstrates how a Visual Basic program displays status information and handles a cancel request. Note that
the Status callback might be called again after being cancelled. Some operations cannot be cancelled immediately.

Private WithEvents mobjMerge As SQLMERGXLib.SQLMerge
Private mblnCancel As Boolean
. . .

Private Sub cmdCancel_Click()
'Set flag when the Cancel button is clicked.
 mblnCancel = True
End Sub

Private Function mobjMerge_Status(ByVal Message As String, _
 ByVal Percent As Long) As SQLMERGXLib.STATUS_RETURN_CODE
 'Display progress and status message.
 lblStatus.Caption = Message
 prgStatus.Value = Percent

 'Cancel if the button was clicked.
 If mblnCancel Then mobjMerge_Status = CANCEL

 'Allow screen to update.
 DoEvents
End Function

Using Error Handling Sample

ActiveX replication controls provide detailed information about method failures through these mechanisms:

Returning an error code to the caller of the method. In Microsoft Visual Basic, this is done by raising a runtime error that

you can trap in an error handler. In Microsoft Visual C++®, the error code is an HRESULT function return value.

Referencing a SQLReplErrors collection. Each control has an ErrorRecords property that references a SQLReplErrors
collection. To retrieve error information, you can enumerate through each SQLReplError object in the collection.

Usually, any error that is returned to the caller is added to the collection. Collection elements that have an error code equal to 0
are supplemental information such as a stored procedure reference with actual arguments substituted, which applies to the
previous collection element. The collection is cleared at each new call to a replication control method to ensure that all elements
apply to the most recent call.

This example demonstrates how a Visual Basic program reports detailed error information that might be generated by an ActiveX
replication control. Most of the code to set up the control is omitted. The error handler displays the error code and description for
the raised error and for each error in the errors collection. When the raised error description is the same as the description of one
of the collection elements, it is not duplicated in the display. Both the raised error codes and the duplicate collection element error
code are displayed.

Private WithEvents mobjMerge As SQLMERGXLib.SQLMerge
Private mobjReplErr As REPLERRXLib.SQLReplError
. . .

Private Sub RunReplMerge()
 Dim strPhase As String 'setup/initialize/run/terminate

On Error GoTo ErrorHandler

 Set mobjMerge = New SQLMERGXLib.SQLMerge

 With mobjMerge
 'Set up the SQL Merge control.
 strPhase = "Setup"
 .Publisher = "PublisherServer"
 .PublisherDatabase = "PublisherDatabase"
 .PublisherSecurityMode = NT_AUTHENTICATION
 .SubscriberSecurityMode = NT_AUTHENTICATION
 '<Remainder of properties set here.>

 'Synchronize the subscription.
 strPhase = "Initialize"
 .Initialize
 strPhase = "Run"
 .Run
 strPhase = "Terminate"
 .Terminate
 End With
 Exit Sub

ErrorHandler:
 Dim blnMsgDupl As Boolean 'True: duplicate found in collection
 Dim strErrMsg As String 'Message buffer

 'Iterate through errors collection.
 For Each mobjReplErr In mobjMerge.ErrorRecords

'The raised error is the same as the collection element; add error code.
 If Err.Description = mobjReplErr.Description Then
 strErrMsg = strErrMsg & vbCrLf & vbCrLf & _
 mobjReplErr.Description & vbCrLf & _
 "Error " & strErrorNumConv(Err.Number)
 blnMsgDupl = True

'The raised error is not the same as the collection element; add 'description.
 Else
 strErrMsg = strErrMsg & vbCrLf & vbCrLf & _
 mobjReplErr.Description
 End If

 'Append error code from collection.
 strErrMsg = strErrMsg & vbCrLf & "Coll. " & _
 strErrorNumConv(mobjReplErr.ErrorNumber)
 Next mobjReplErr

 'Format message, include raised error if duplicate not found.
 strErrMsg = "Error during Merge control " & _
 strPhase & " phase:" & _
 IIf(blnMsgDupl, "", _
 vbCrLf & vbCrLf & Err.Description & vbCrLf & _
 "Error " & strErrorNumConv(Err.Number)) & _

 strErrMsg

 MsgBox strErrMsg, vbExclamation
End Sub

Private Function strErrorNumConv(ByVal lngErrNum As Long) As String
'Convert error number into readable forms,
' hex, and decimal for the low-order word.
 Dim strErrNums As String

 If lngErrNum < 16 And lngErrNum > -16 Then
 strErrNums = CStr(lngErrNum)
 ElseIf lngErrNum < 65536 And lngErrNum > -65536 Then
 strErrNums = "x" & Hex(lngErrNum) & _
 " = " & CStr(lngErrNum)
 Else
 strErrNums = "x" & Hex(lngErrNum) & _
 " = x" & Hex(lngErrNum And -65536) & _
 " + " & CStr(lngErrNum And 65535)
 End If

 strErrorNumConv = "Code: " & strErrNums
End Function

If this example is run as shown, with part of the control setup missing, the following error is displayed.

Error during Merge control Initialize phase:

'The property 'Publication' must be set before initializing the SQL Merge 'ActiveX Control.
Error Code: x80004005 = x80000000 + 16389
Coll. Code: x7918 = 31000

'The property 'Subscriber' must be set before initializing the SQL Merge 'ActiveX Control.
Coll. Code: x7918 = 31000

See Also

ErrorRecords Property

SQLReplError Object

SQLReplErrors Collection

Replication Programming (SQL Server 2000)

Common SQL Distribution Control and SQL Merge Control
Functionality
The SQL Distribution control and SQL Merge control have common functionality. This functionality includes:

Adding subscriptions.

Registering subscriptions in Microsoft® Windows Synchronization Manager.

Copying subscriptions.

Dropping subscriptions.

Note This functionality applies only to existing pull and anonymous subscriptions. It cannot be used for push subscriptions.

Adding Subscriptions

The SQLDistribution and SQLMerge objects can be configured to add subscriptions using the AddSubscription method. When
adding a subscription, you can specify to create the Subscriber database, use an existing database, attach a database .mdf file,
register an existing subscription, or attach a subscription .msf file.

To add a pull subscription, the Subscriber must already be defined at the Publisher.

Explicitly adding a subscription for an anonymous Subscriber is optional.

Registering Subscriptions

In addition to adding the subscription, the subscription can be registered in Microsoft Windows Synchronization Manager using
the AddSubscription method. After being registered, there is no need to use the Microsoft ActiveX® replication controls to
synchronize the Subscriber because you can perform this operation using the Microsoft Windows Synchronization Manager. The
Windows Synchronization Manager can be accessed from the Start menu by clicking Programs, clicking Accessories, then
clicking Synchronize.

To register a subscription in Windows Synchronization Manager, specify SYNC_MANAGER (instead of the default NONE) for the
second argument of AddSubscription.

Copying Subscriptions

The SQLDistribution and SQLMerge objects can be used to copy a specially prepared database subscription file (typically with
an .msf extension) to a Subscriber, attach the subscription, and receive an immediately synchronized subscription at the original
Publisher. The CopySubscription method creates the .msf file. The AddSubscription method with the ATTACH_SUBSCRIPTION
option creates the new subscription from the .msf file.

Dropping Subscriptions

The SQLDistribution and SQLMerge objects can be programmed to drop subscriptions using the DropSubscription method.
When removing the subscription, you can specify if the Subscriber database should be dropped. You can also specify that the
subscription be unregistered from Microsoft Windows Synchronization Manager, but not dropped by specifying
UNREGISTER_SUBSCRIPTION for the parameter of DropSubscription.

See Also

AddSubscription Method

CopySubscription Method

DBADDOPTION

DBDROPOPTION

DropSubscription Method

SUBSCRIPTION_HOST

Replication Programming (SQL Server 2000)

Programming Replication ActiveX Controls Using VBScript
 New Information - SQL Server 2000 SP3.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

Using the Microsoft® ActiveX® replication controls with Microsoft Visual Basic® Scripting Edition is supported with the following
limitations:

Named constants are not supported. You must specify the actual value represented by the constant; for example,
AddSubscription(0, 1) instead of coding AddSubscription(EXISTING_DATABASE, SYNC_MANAGER).

The error handler is not supported. You must use the ErrorRecords.Count method to determine if there are failures.

This example demonstrates how an HTML page using Visual Basic Scripting Edition configures the SQL Distribution control to
synchronize data for an anonymous subscription over the Internet:

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>New Page 1</title>
</head>

<body>
<p>This is only a test.</p>
<p>
<object classid="clsid:08B0B2E6-3FB3-11D3-A4DE-00C04F610189" id="oSQLDistribution" data="DATA:application/x-
oleobject;BASE64,5rKwCLM/0xGk3gDAT2EBiQADAADYEwAA2BMAAA==" width="240" height="240">
</object>
</p>

<script LANGUAGE="VBScript">
<!--
Sub window_onload()
 Call DoSync()
End Sub

Sub DoSync()
 Dim oErrorObject
 On Error Resume Next

 ' Configure the control for an anonymous subscription.
 oSQLDistribution.Publisher = "PublisherName"
 oSQLDistribution.PublisherDatabase = "PublishedDBName"
 oSQLDistribution.Publication = "PublicationName"
 oSQLDistribution.PublisherSecurityMode = 0 ' DB_AUTHENTICATION
 oSQLDistribution.PublisherLogin = "PublisherUserLoginID"
 oSQLDistribution.PublisherPassword = "PublisherLoginPassword"
 oSQLDistribution.SubscriberDatasourceType = 0 ' SQL_SERVER
 oSQLDistribution.Subscriber = "SubscriberName"
 oSQLDistribution.SubscriberDatabase = "SubscribingDBName"
 oSQLDistribution.SubscriptionType = 2 ' ANONYMOUS
 oSQLDistribution.SubscriberSecurityMode = 0 ' DB_AUTHENTICATION
 oSQLDistribution.SubscriberLogin = "SubscriberLogin"
 oSQLDistribution.SubscriberPassword = "SubscriberLoginPassword"

'Configure the control to access Publisher over the Internet using TCP/IP.
 oSQLDistribution.PublisherNetwork = 1 ' TCPIP_SOCKETS

 ' Replace 000.00.00.00 with the correct IP address
 oSQLDistribution.PublisherAddress = "000.00.00.00,1433"
 oSQLDistribution.FileTransferType = 1 ' FILETRANSFERFTP
 ' Synchronize the data.
 oSQLDistribution.Initialize

 If (oSQLDistribution.ErrorRecords.Count > 0) Then

http://go.microsoft.com/fwlink/?LinkId=9504

 ' Display each error message.
 For Each oErrorObject in oSQLDistribution.ErrorRecords
 MsgBox oErrorObject.Description, vbCritical, "SQLDist Failure"
 Next
 Else
 oSQLDistribution.Run
 If (oSQLDistribution.ErrorRecords.Count > 0) Then
 ' Display each error message.
 For Each oErrorObject in oSQLDistribution.ErrorRecords
 MsgBox oErrorObject.Description, vbCritical, "SQLDist Failure"
 Next
 Else
 oSQLDistribution.Terminate
 If (oSQLDistribution.ErrorRecords.Count > 0) Then
 ' Display each error message.
 For Each oErrorObject in oSQLDistribution.ErrorRecords
 MsgBox oErrorObject.Description, vbCritical, "SQLDist Failure"
 Next
 End If
 End If
 End If
End Sub

Sub oSQLDistribution_Status(Message, Percent)
 'Display message here.
End Sub
</script>
</body>
</html>

Note The properties in this example are the same for both the SQL Merge and SQL Distribution controls. You can replace
references to the SQLDistribution object with references to the SQLMerge object.

Replication Programming (SQL Server 2000)

Replication ActiveX Control Reference
Microsoft® ActiveX® replication controls provide a means of programmatically controlling Merge Agent, Distribution Agent, and
Snapshot Agent activity using a program written in Microsoft Visual Basic®, Microsoft Visual C++®, or other development
languages that support COM.

The Microsoft ActiveX replication controls include:

SQL Snapshot controls

SQL Distribution controls

SQL Merge controls

See Also

Developing Replication Applications Using ActiveX Controls

Object Model for ActiveX Controls

Other Replication Control Objects and Collections

Replication ActiveX Control Properties

Replication ActiveX Control Methods

Replication ActiveX Control Events

Replication ActiveX Control Constants

Replication Programming (SQL Server 2000)

Object Model for ActiveX Controls
The table shows the Microsoft® ActiveX® controls and lists and describes their associated objects and collections.

ActiveX control Object Description
SQL Distribution
Control

SQLDistribution Object Provides the functionality of the
Distribution Agent and supports
synchronization of push, pull, or
anonymous subscriptions to a
transactional publication.

 SQLReplError Object Defines an error that occurred
during processing by an ActiveX
replication control.

 SQLReplErrors
Collection

Contains a SQLReplError object for
each error that has occurred during
the most recent method execution
of an ActiveX replication control.

SQL Merge Control SQLMerge Object Provides the functionality of the
Merge Agent and supports
synchronization of push, pull, or
anonymous subscriptions to a
merge publication.

 AlternateSyncPartners
Property

Returns a reference to the
AlternateSyncPartners collection.

 AlternateSyncPartners
Collection

Contains all of the
AlternateSyncPartner objects.

 AlternateSyncPartner
Object

Defines an alternate
synchronization partner that a
subscription (referenced by the
SQLMerge object) can use if the
primary Publisher is not available,
or if use of the alternate
synchronization partner is
preferable.

 SQLReplError Object Defines an error that occurred
during processing by an ActiveX
replication control.

 SQLReplErrors
Collection

Contains a SQLReplError object for
each error that has occurred during
the most recent method execution
of an ActiveX replication control.

SQL Snapshot Control SQLSnapshot Object Creates a snapshot of the specified
publication on the specified
Distributor.

 SQLReplError Object Defines an error that occurred
during processing by an ActiveX
replication control.

 SQLReplErrors
Collection

Contains a SQLReplError object for
each error that has occurred during
the most recent method execution
of an ActiveX replication control.

See Also

How Snapshot Replication Works

How Transactional Replication Works

Replication Programming (SQL Server 2000)

SQLSnapshot Object
The SQL Snapshot control is implemented as a Microsoft® ActiveX® in-process component. It provides an alternate way, in
addition to the Snapshot Agent, to create snapshots. The primary class of the SQLSnapshot, the SQLSnapshot object, creates a
snapshot of the specified publication on the specified Distributor.

Dynamic snapshots are supported. There are properties to provide values for the HOST_NAME() and sp_repl_suser_sname()
functions when they appear in the filter criteria of dynamic publications, and to specify the location where the dynamic snapshots
are written.

Properties

Distributor Property

DistributorLogin Property

DistributorPassword Property

DistributorSecurityMode Property

DynamicFilterHostName Property

DynamicFilterLogin Property

DynamicSnapshotLocation Property

ErrorRecords Property

LoginTimeout Property

ProfileName Property

Publication Property

Publisher Property

PublisherDatabase Property

PublisherLogin Property

PublisherPassword Property

PublisherSecurityMode Property

QueryTimeout Property

ReplicationType Property

Methods

Initialize Method

Run Method

Terminate Method

Events

Status Event

Remarks

To refer to the elements of this object from a Microsoft Visual Basic® application, in the Project/References dialog box, select
Microsoft SQL Snapshot Control 8.0. In a C++ application, include Replinix.c and Sqlinitx.h, and reference Sqlinitx.dll from the
project/NMAKE file.

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

SQLDistribution Object
The SQL Distribution control is implemented as a Microsoft® ActiveX® in-process component. The SQL Distribution control
provides an alternate way, in addition to the Distribution Agent, to control synchronization of transactional replication
subscriptions. Its primary class, the SQLDistribution object, provides the functionality of the Distribution Agent and supports
synchronization of push, pull, or anonymous subscriptions to a transactional publication. The SQLDistribution object also
includes options to:

Add or drop subscriptions and register them for synchronization using Windows Synchronization Manager.

Specify an alternate snapshot folder, from which the initial snapshot for a subscription can be applied.

Specify a working directory to which snapshot files are copied using FTP.

Generate a specially formatted subscription file in a specified location. These files can then be attached to create a
synchronized subscription registered at the Publisher, as part of the attach-and-go functionality.

Specify a Data Transformation Services (DTS) package that transforms command rowsets before applying them to a
Subscriber.

Set the Subscriber update mode to use immediate or queued updating for changes made at the Subscriber.

Properties

AltSnapshotFolder Property

Distributor Property

DistributorAddress Property

DistributorLogin Property

DistributorNetwork Property

DistributorPassword Property

DistributorSecurityMode Property

DTSPackageFileName Property

DTSPackagePassword Property

ErrorRecords Property

FileTransferType Property

FTPAddress Property

FTPLogin Property

FTPPassword Property

FTPPort Property

LoginTimeout Property

MaxDeliveredTransactions Property

ProfileName Property

Publication Property

Publisher Property

PublisherAddress Property

PublisherDatabase Property

PublisherLogin Property

PublisherNetwork Property

PublisherPassword Property

PublisherSecurityMode Property

QueryTimeout Property

SkipErrors Property

Subscriber Property

SubscriberDatabase Property

SubscriberDatabasePath Property

SubscriberDatasourceType Property

SubscriberLogin Property

SubscriberPassword Property

SubscriberSecurityMode Property

SubscriptionName Property

SubscriptionType Property

SynchronizationType Property

UndeliveredCommands Property

UndeliveredTransactions Property

WorkingDirectory Property

Methods

AddSubscription Method

CopySubscription Method

DropSubscription Method

Initialize Method

ReinitializeSubscription Method

Run Method

SetFailoverMode Method

Terminate Method

Events

Status Event

Remarks

To refer to the elements of this object from a Microsoft Visual Basic® application, in the Project/References dialog box, select
Microsoft SQL Distribution Control 8.0. In a C++ application, include Repldstx.c and Sqldistx.h, and reference Sqldistx.dll from
the project/NMAKE file.

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

SQLMerge Object
The SQL Merge control is implemented as a Microsoft® ActiveX® in-process component. The SQL Merge control provides an
alternate way, in addition to the Merge Agent, to synchronize merge subscriptions. Its primary class, the SQLMerge object,
provides the functionality of the Merge Agent and supports synchronization of push, pull, or anonymous subscriptions to a merge
publication. The SQLMerge object also includes the options to:

Add or drop subscriptions and register them for synchronization using Windows Synchronization Manager.

Specify whether only the upload phase, the download phase, or both phases are run.

Specify an alternate snapshot folder, from which the initial snapshot for a subscription can be applied.

Specify a client-side working directory to which snapshot files can be copied using FTP.

Copy a subscription database by generating a specially formatted subscription file in a specified location. These files can
then be attached to create a synchronized subscription registered at the Publisher, as part of the attach-and-go functionality.

Synchronize with a Publisher other than the one at which its subscription originated. Alternate Publishers must contain the
same schema and data set as the original Publisher.

Access an alternate sync partner when the primary Publisher of the data for the Subscriber is temporarily unavailable, or
select an alternate sync partner to use the fastest available connection speed.

Attach a subscription database by specifying only Subscriber-side properties. The Publisher, PublisherDatabase,
Distributor, and Publication properties no longer need to be set while adding attach-and-go subscriptions.

Validate that a subscription has the expected data.

Properties

AlternateSyncPartners Property

AltSnapshotFolder Property

Distributor Property

DistributorAddress Property

DistributorLogin Property

DistributorNetwork Property

DistributorPassword Property

DistributorSecurityMode Property

DynamicSnapshotLocation Property

ErrorRecords Property

ExchangeType Property

FileTransferType Property

FTPAddress Property

FTPLogin Property

FTPPassword Property

FTPPort Property

HostName Property

LoginTimeout Property

ProfileName Property

Publication Property

Publisher Property

PublisherAddress Property

PublisherChanges Property

PublisherConflicts Property

PublisherDatabase Property

PublisherLogin Property

PublisherNetwork Property

PublisherPassword Property

PublisherSecurityMode Property

QueryTimeout Property

Subscriber Property

SubscriberChanges Property

SubscriberConflicts Property

SubscriberDatabase Property

SubscriberDatabasePath Property

SubscriberDatasourceType Property

SubscriberLogin Property

SubscriberPassword Property

SubscriberSecurityMode Property

SubscriptionName Property

SubscriptionPriority Property

SubscriptionPriorityType Property

SubscriptionType Property

SynchronizationType Property

SyncToAlternate Property

UseInteractiveResolver Property

Validate Property

WorkingDirectory Property

Methods

AddSubscription Method

CopySubscription Method

DropSubscription Method

Initialize Method

ReinitializeSubscription Method

Run Method

Terminate Method

Events

Status Event

Remarks

To refer to the elements of this object from a Microsoft Visual Basic® application, in the Project/References dialog box, select
Microsoft SQL Merge Control 8.0. In a C/C++ application, include Replmrgx.c and Sqlmergx.h, and reference Sqlmergx.dll from
the project/NMAKE file.

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

Other Replication Control Objects and Collections
The table lists the objects and collections that are used to implement features of the Microsoft® ActiveX® replication controls.

Object/Collection Description
AlternateSyncPartner Object Defines an alternate Publisher that a

subscription can use.
AlternateSyncPartners Collection Contains the alternate Publishers that a

subscription can use.
SQLReplError Object Defines an error that occurred during

processing by a replication control.
SQLReplErrors Collection Contains the error objects for a replication

control.

Replication Programming (SQL Server 2000)

AlternateSyncPartner Object
An AlternateSyncPartner object defines an alternate Publisher that a subscription referenced by a SQLMerge object can use if
the primary Publisher is not available, or if use of the alternate Publisher is preferable (for example, it is reachable by a faster or
more reliable network connection).

Properties

Distributor Property

FriendlyName Property

Publication Property

Publisher Property

PublisherDatabase Property

Remarks

To select an alternate synchronization partner, the Publisher, PublisherDatabase, Publication, and Distributor properties of
the SQLMerge object should be set to the corresponding property values of the AlternateSyncPartner object before the Run
method of the SQLMerge object is called.

See Also

AlternateSyncPartners Collection

SQLMerge Object

Replication Programming (SQL Server 2000)

AlternateSyncPartners Collection
The AlternateSyncPartners collection contains the AlternateSyncPartner objects, which define the alternate Publishers that a
subscription referenced by a SQLMerge object can use if the primary Publisher is not available, or if use of the alternate Publisher
is preferable.

Applies To

SQLMerge Object

Properties

Count Property

Remarks

The AlternateSyncPartners property of a SQLMerge object is used to return a reference to the AlternateSyncPartners
collection.

See Also

AlternateSyncPartner Object

AlternateSyncPartners Property

Replication Programming (SQL Server 2000)

SQLReplError Object
A SQLReplError object defines an error that occurred during processing by a Microsoft® ActiveX® replication control.

Properties

Description Property

ErrorNumber Property

ErrorNumberString Property

Source Property

SourceType Property

Remarks

SQLReplError objects are referenced from the SQLReplErrors collection. A reference to this collection is obtained from the
ErrorRecords property of replication ActiveX controls.

To refer to the elements of this object from a Microsoft Visual Basic® application, in the Project/References dialog box, select
Microsoft SQL Replication Errors 8.0. In a C++ application, include Replerrx.h and reference Replerrx.dll from the
project/NMAKE file.

An interface ISQLReplError is available directly from the replication ActiveX control components; however, use of the
SQLReplError object is recommended.

See Also

SQLDistribution Object

SQLMerge Object

SQLReplErrors Collection

SQLSnapshot Object

Replication Programming (SQL Server 2000)

SQLReplErrors Collection
The SQLReplErrors collection contains an SQLReplError object for each error that has occurred during the most recent method
execution of a Microsoft® ActiveX® replication control.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Properties

Count Property

Methods

Add Method

AddReplError Method

Events

Notify Event

Remarks

A reference to the SQLReplErrors collection is obtained from the ErrorRecords property of replication ActiveX controls. The
collection is cleared before the execution of each control method.

To refer to the elements of this collection from a Microsoft Visual Basic® application, in the Project/References dialog box,
select Microsoft SQL Replication Errors 8.0. In a C++ application, include Replerrx.h and reference Replerrx.dll from the
project/NMAKE file.

An interface ISQLReplErrors is available directly from the replication ActiveX control components; however, using the
SQLReplErrors collection is recommended.

See Also

ErrorRecords Property

SQLReplError Object

Replication Programming (SQL Server 2000)

Replication ActiveX Control Properties
The topics in this section define the properties of the Microsoft® ActiveX® replication control objects and collections.

Properties

AlternateSyncPartners Property PublisherChanges Property
AltSnapshotFolder Property PublisherConflicts Property
Count Property PublisherDatabase Property
Description Property PublisherLogin Property
Distributor Property PublisherNetwork Property
DistributorAddress Property PublisherPassword Property
DistributorLogin Property PublisherRPCLogin Property
DistributorNetwork Property PublisherRPCPassword Property
DistributorPassword Property PublisherRPCSecurityMode Property
DistributorSecurityMode Property PublisherSecurityMode Property
DTSPackageFileName Property QueryTimeout Property
DTSPackagePassword Property ReplicationType Property
DynamicFilterHostName Property SkipErrors Property
DynamicFilterLogin Property Source Property
DynamicSnapshotLocation Property SourceType Property
ErrorNumber Property Subscriber Property
ErrorNumberString Property SubscriberChanges Property
ErrorRecords Property SubscriberConflicts Property
ExchangeType Property SubscriberDatabase Property
FileTransferType Property SubscriberDatabasePath Property
FriendlyName Property SubscriberDatasourceType Property
FTPAddress Property SubscriberLogin Property
FTPLogin Property SubscriberPassword Property
FTPPassword Property SubscriberSecurityMode Property
FTPPort Property SubscriptionName Property
HostName Property SubscriptionPriority Property
LoginTimeout Property SubscriptionPriorityType Property
MaxDeliveredTransactions Property SubscriptionType Property
ProfileName Property SynchronizationType Property
Publication Property SyncToAlternate Property
Publisher Property UndeliveredCommands Property
PublisherAddress Property UndeliveredTransactions Property
 UseInteractiveResolver Property
 Validate Property
 WorkingDirectory Property

Replication Programming (SQL Server 2000)

AlternateSyncPartners Property
The AlternateSyncPartners property returns a reference to the AlternateSyncPartners collection maintained by the
SQLMerge object.

Applies To

SQLMerge Object

Syntax

object.AlternateSyncPartners

Part Description
object Expression that evaluates to a SQLMerge object.

Remarks

The AlternateSyncPartners collection contains the AlternateSyncPartner objects, which define the alternate Publishers that a
subscription referenced by a SQLMerge object can employ if the primary Publisher is not available, or if the use of the alternate
Publisher is preferable.

The alternate Publishers must be defined in the publication for the AlternateSyncPartners collection to be populated.

Data Type

AlternateSyncPartners Collection

Modifiable

Read-only

Prototype (C/C++)

HRESULT AlternateSyncPartners(IAlternateSyncPartners** pVal);

Replication Programming (SQL Server 2000)

AltSnapshotFolder Property
The AltSnapshotFolder property returns or sets the path to the folder that contains the initial snapshot for a subscription.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.AltSnapshotFolder [= path]

Part Description
object Expression that evaluates to an object in the Applies To list.
path Path to alternate snapshot folder.

Remarks

The snapshot folder path must include a UNC or FTP designator, for example:

 objMerge.AltSnapshotFolder = "file:\\Distributor\Backup\Snapshots"
 objDistr.AltSnapshotFolder = _
 "ftp://distributor.company.com/backup/snapshots,1433"

It is recommended you use the sp_copysnapshot stored procedure to copy a subscription manually.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT AltSnapshotFolder(BSTR pVal);

HRESULT AltSnapshotFolder(BSTR* pVal);

See Also

How to Browse and Copy Snapshot Files (Transact-SQL)

Replication Programming (SQL Server 2000)

Count Property
The Count property specifies the number of objects in a collection.

Applies To

AlternateSyncPartners Collection

SQLReplErrors Collection

Syntax

object.Count

Part Description
object Expression that evaluates to an object in the Applies To list.

Data Type

Long

Modifiable

Read-only

Prototype (C/C++)

HRESULT Count(long* cMembers);

Replication Programming (SQL Server 2000)

Description Property
The Description property returns a string that describes the error defined by a SQLReplError object.

Applies To

SQLReplError Object

Syntax

object.Description

Part Description
object Expression that evaluates to a SQLReplError object.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT Description(BSTR pVal);

HRESULT Description(BSTR* pVal);

See Also

ErrorNumber Property

ErrorNumberString Property

Source Property

SourceType Property

Replication Programming (SQL Server 2000)

Distributor Property
The Distributor property sets or returns the name of the Distributor server.

Applies To

AlternateSyncPartner Object

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Distributor [= name]

Part Description
object Expression that evaluates to an object in the Applies To list.
name Name of the Distributor used by the Publisher.

Remarks

Distributor is a required property for the SQLSnapshot object but optional for the other controls.

The Distributor is the instance of Microsoft® SQL Server™ on which the snapshots are stored by default, and on which replication
history and statistics are logged. For the SQL Distribution control, it is also the location of the store-and-forward database that
contains the replicated transactions.

If the DistributorNetwork and DistributorAddress properties are specified, they will be used instead of the Distributor
property when connecting to the Distributor.

If Distributor connection properties are not specified, it is assumed the Publisher and Distributor are on the same instance of SQL
Server, and Publisher connection properties will be used when connecting to the Distributor.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT Distributor(BSTR pVal);

HRESULT Distributor(BSTR* pVal);

See Also

DistributorAddress Property

DistributorNetwork Property

Replication Programming (SQL Server 2000)

DistributorAddress Property
The DistributorAddress property specifies the network address used for connecting to the Distributor when the
DistributorNetwork property is specified.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.DistributorAddress [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Network address used when connecting to the Distributor.

Remarks

This is a required property only when DistributorNetwork is set to a value other than DEFAULT_NETWORK.

This property is useful when configuring the control to connect to the Distributor without having to use SQL Server Client
Network Utility.

For example, if the Distributor is accessed over the Internet, DistributorNetwork can be set to TCPIP_SOCKETS and
DistributorAddress can be set to a specific IP address.

If the DistributorNetwork is TCP/IP_SOCKETS or MULTI_PROTOCOL using TCP/IP, the value is in the form of:

'IP address,socket' (i.e. '111.11.11.11,1433")

If the Distributor connection properties are not specified, it is assumed that the Publisher and Distributor are the same instance of
Microsoft® SQL Server™ and the Publisher connection properties will be used when connecting to the Distributor.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DistributorAddress(BSTR *pVal);

HRESULT put_DistributorAddress(BSTR newVal);

See Also

Distributor Property

DistributorNetwork Property

Replication Programming (SQL Server 2000)

DistributorLogin Property
The DistributorLogin property specifies the login name used when connecting to the Distributor.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.DistributorLogin [= name]

Part Description
object Expression that evaluates to an object in the Applies To list.
name Name used to log in to the Distributor.

Remarks

This is a required property if DistributorSecurityMode is set to DB_AUTHENTICATION.

If the Distributor connection properties are not specified, it is assumed that the Publisher and Distributor are the same instance of
Microsoft® SQL Server™, and that the Publisher connection properties are used when connecting to the Distributor.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DistributorLogin(BSTR *pVal);

HRESULT put_DistributorLogin(BSTR newVal);

See Also

DistributorPassword Property

DistributorSecurityMode Property

Replication Programming (SQL Server 2000)

DistributorNetwork Property
The DistributorNetwork property specifies the client Net-Library used when connecting to the Distributor.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.DistributorNetwork [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value NETWORK_TYPE constant that specifies the client Net-Library

used when connecting to the Distributor.

Remarks

This option is useful when configuring the control to connect to the Distributor without having to use SQL Server Client Network
Utility.

If the value is not DEFAULT_NETWORK (default), the DistributorAddress property must be specified.

Data Type

NETWORK_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_DistributorNetwork(NETWORK_TYPE *pVal);

HRESULT put_DistributorNetwork(NETWORK_TYPE newVal);

See Also

DistributorAddress Property

Replication Programming (SQL Server 2000)

DistributorPassword Property
The DistributorPassword property sets or returns the login password used when connecting to the Distributor.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.DistributorPassword [= string]

Part Description
object Expression that evaluates to an object in the Applies To list.
string Password string used when connecting to the Distributor.

Remarks

This property is used only when DistributorSecurityMode is set to DB_AUTHENTICATION.

If the Distributor connection properties are not specified, it is assumed that the Publisher and Distributor are the same instance of
Microsoft® SQL Server™, and that Publisher connection properties will be used when connecting to the Distributor.

The default is no password.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DistributorPassword(BSTR *pVal);

HRESULT put_DistributorPassword(BSTR newVal);

See Also

DistributorLogin Property

DistributorSecurityMode Property

Replication Programming (SQL Server 2000)

DistributorSecurityMode Property
The DistributorSecurityMode property sets or returns the security mode used when connecting to the Distributor.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.DistributorSecurityMode [= value]

Part Description
object Expression that evaluates to an object in the Applies To list
value SECURITY_TYPE constant that specifies the mode of security

enforced at the Distributor

Remarks

If the value is DB_AUTHENTICATION (default), DistributorLogin and DistributorPassword will be used when connecting to the
Distributor.

NT_AUTHENTICATION is not supported for DistributorSecurityMode unless the Distributor uses the Microsoft® Windows NT®
4.0 or Microsoft Windows® 2000 operating system. NT_AUTHENTICATION is not supported for any of
DistributorSecurityMode, PublisherSecurityMode, and SubscriberSecurityMode unless the computer on which the
replication control is running uses the Windows NT 4.0 or Windows 2000 operating system.

Data Type

SECURITY_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_DistributorSecurityMode(SECURITY_TYPE *pVal);

HRESULT put_DistributorSecurityMode(SECURITY_TYPE newVal);

See Also

DistributorLogin Property

DistributorPassword Property

Replication Programming (SQL Server 2000)

DTSPackageFileName Property
The DTSPackageFileName property returns or sets the name and path of a DTS package used to transform command rowsets
before they are applied to a Subscriber.

Applies To

SQLDistribution Object

Syntax

object.DTSPackageFileName [= PackageSpec]

Part Description
object Expression that evaluates to a SQLDistribution object.
PackageSpec Fully qualified path to a DTS package.

Remarks

If the DTS package is stored in Microsoft® SQL Server™ or Meta Data Services, the value of this property is the package name. If
the package is stored in a file, the property value is the file specification.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT DTSPackageFileName(BSTR pVal);

HRESULT DTSPackageFileName(BSTR* pVal);

See Also

DTSPackagePassword Property

Replication Programming (SQL Server 2000)

DTSPackagePassword Property
The DTSPackagePassword property returns or sets the owner password used to access the DTS package specified by the
DTSPackageFileName property.

Applies To

SQLDistribution Object

Syntax

object.DTSPackagePassword [= string]

Part Description
object Expression that evaluates to a SQLDistribution object.
string Password needed to access the specified DTS package.

Remarks

The DTS owner password must be provided for this property. The required access cannot be obtained with the user password.

This property returns the value to which the property was most recently set. It cannot be used to return the actual owner
password of the DTS package specified by DTSPackageFileName, unless it was set to that value previously.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT DTSPackagePassword(BSTR pVal);

HRESULT DTSPackagePassword(BSTR* pVal);

See Also

DTSPackageFileName Property

Replication Programming (SQL Server 2000)

DynamicFilterHostName Property
The DynamicFilterHostName property returns or sets the host name used when creating a dynamic snapshot. This property
provides a value used when the publication is dynamically filtered using the HOST_NAME() function.

Applies To

SQLSnapshot Object

Syntax

object.DynamicFilterHostName [= value]

Part Description
object Expression that evaluates to a SQLSnapshot object.
value Value to be returned by HOST_NAME() in filter clauses when

creating a dynamic snapshot.

Remarks

Use the DynamicFilterHostName property to set a value for HOST_NAME() in filtering when a dynamic snapshot is created.
For example, if the subset filter clause "rep_id = HOST_NAME()" has been specified for an article, and if you set the
DynamicFilterHostName property to "FBJones" before calling the Run method of the SQLSnapshot object, only rows having
"FBJones" in the rep_id column will be included in the snapshot.

The DynamicFilterHostName property applies only to snapshots created for merge publications.

By default, HOST_NAME() evaluates to the name of the computer on which the merge control is executing, unless it is overridden
by setting the DynamicFilterHostName property.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DynamicFilterHostName(BSTR *pVal);

HRESULT put_DynamicFilterHostName(BSTR newVal);

See Also

HOST_NAME

Replication Programming (SQL Server 2000)

DynamicFilterLogin Property
The DynamicFilterLogin property returns or sets the user name used when creating a dynamic snapshot. This property provides
a value used when the publication is dynamically filtered using the SUSER_SNAME() function.

Applies To

SQLSnapshot Object

Syntax

object.DynamicFilterLogin [= value]

Part Description
object Expression that evaluates to a SQLSnapshot object.
value Value to be returned by SUSER_NAME() in filter clauses when

creating a dynamic snapshot.

Remarks

Use the DynamicFilterLogin property to set a value for SUSER_SNAME() in filtering when a dynamic snapshot is created. For
example, if the subset filter clause "user_id = SUSER_SNAME()" has been specified for an article, and if you set the
DynamicFilterLogin property to "rsmith" before calling the Run method of the SQLSnapshot object, only rows having "rsmith"
in the user_id column will be included in the snapshot.

The DynamicFilterLogin property applies only to snapshots created for merge publications.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DynamicFilterLogin(BSTR *pVal);

HRESULT put_DynamicFilterLogin(BSTR newVal);

See Also

SUSER_NAME

Replication Programming (SQL Server 2000)

DynamicSnapshotLocation Property
The DynamicSnapshotLocation property returns or sets the path to a folder to which the files are to be written when a dynamic
snapshot is created.

Applies To

SQLSnapshot Object

Syntax

object.DynamicSnapshotLocation [= path]

Part Description
object Expression that evaluates to a SQLSnapshot object.
path Path of the folder to which the files of a dynamic snapshot are

to be written.

Remarks

The DynamicSnapshotLocation property applies only to snapshots created for Merge publications.

The snapshot folder path must include a UNC or FTP designator, for example:

 objMerge.DynamicSnapshotLocation = _
 "file:\\Distributor\Backup\Snapshots"
 objDistr.DynamicSnapshotLocation = _
 "ftp://distributor.company.com/backup/snapshots,1433"

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_DynamicSnapshotLocation(BSTR *pVal);

HRESULT put_DynamicSnapshotLocation(BSTR newVal);

Replication Programming (SQL Server 2000)

ErrorNumber Property
The ErrorNumber property returns the numeric code that identifies the error.

Applies To

SQLReplError Object

Syntax

object.ErrorNumber [= pVal]

Part Description
object Expression that evaluates to a SQLReplError object.
pVal Error number.

Remarks

The error number is the value assigned by the error source.

Data Type

Long

Modifiable

Read/write

Prototype (C/C++)

HRESULT ErrorNumber(long pVal);

HRESULT ErrorNumber(long* pVal);

See Also

Description Property

ErrorNumberString Property

Source Property

SourceType Property

https://msdn.microsoft.com/en-us/library/ms965343(v=sql.80).aspx

Replication Programming (SQL Server 2000)

ErrorNumberString Property
The ErrorNumberString property returns or sets a string representation of the error number.

Applies To

SQLReplError Object

Syntax

object.ErrorNumberString [= string]

Part Description
object Expression that evaluates to a SQLReplError object.
string String representation of the error number.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT ErrorNumberString(BSTR pVal);

HRESULT ErrorNumberString(BSTR* pVal);

See Also

Description Property

ErrorNumber Property

Source Property

SourceType Property

https://msdn.microsoft.com/en-us/library/ms965343(v=sql.80).aspx

Replication Programming (SQL Server 2000)

ErrorRecords Property
The ErrorRecords property returns a reference to the SQLReplErrors collection maintained by the replication control.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.ErrorRecords

Part Description
object Expression that evaluates to an object in the Applies To list.

Remarks

The SQLReplErrors collection is loaded when a control method fails. The error records in the collection are available until the next
replication control method is called.

Data Type

SQLReplErrors Collection

Modifiable

Read-only

Prototype C/C++

HRESULT ErrorRecords(ISQLReplErrors** pVal);

See Also

SQLReplError Object

SQLReplErrors Collection

Replication Programming (SQL Server 2000)

ExchangeType Property
The ExchangeType property specifies whether data merges up to the Publisher, down to the Subscriber, or in both directions.

Applies To

SQLMerge Object

Syntax

object.ExchangeType [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value EXCHANGE_TYPE constant that specifies the direction in which

data can be merged.

Remarks

The ExchangeType property is typically used first to upload all the changes from several Subscribers to a Publisher, and then to
download the changes to the Subscribers only after all the uploads have been completed.

BIDIRECTIONAL is the default. You should use a BIDIRECTIONAL synchronization unless you have a specific reason for separating
the UPLOAD and DOWNLOAD phases.

Data Type

EXCHANGE_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_ExchangeType(EXCHANGE_TYPE *pVal);

HRESULT put_ExchangeType(EXCHANGE_TYPE newVal);

Replication Programming (SQL Server 2000)

FileTransferType Property
The FileTransferType property returns or sets how the snapshot file is transferred.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.FileTransferType [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Value from the FILE_TRANSFER_TYPE enumeration.

Remarks

The file transfer options are FTP and UNC (network file copy).

Data Type

FILE_TRANSFER_TYPE

Modifiable

Read/write

Prototype (C/C++)

HRESULT FileTransferType(FILE_TRANSFER_TYPE pVal);

HRESULT FileTransferType(FILE_TRANSFER_TYPE* pVal);

Replication Programming (SQL Server 2000)

FriendlyName Property
The FriendlyName property returns or sets a display name by which the association of Publisher, publication, and Distributor
that makes up an alternate sync partner can be identified.

Applies To

AlternateSyncPartner Object

Syntax

object.FriendlyName [= name]

Part Description
object Expression that evaluates to an AlternateSyncPartner object.
name Friendly name for alternate sync partner.

Remarks

An AlternateSyncPartner object defines an alternate Publisher that a subscription referenced by the SQLMerge object can use if
the primary Publisher is not available.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT FriendlyName(BSTR pVal);

HRESULT FriendlyName(BSTR* pVal);

See Also

SQLMerge Object

Replication Programming (SQL Server 2000)

FTPAddress Property
The FTPAddress property specifies the IP address of the FTP site where publication snapshot files are stored.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.FTPAddress [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Network address of the FTP site.

Remarks

FTPAddress is an optional property.

If specified, the FTPLogin, FTPPassword, and FTPPort properties are also used.

This option is useful when configuring the control to connect to a Distributor over the Internet, where the Distributor working
directory is not directly accessible. Setting this property forces the control to download all publication snapshot files using File
Transfer Protocol (FTP) before applying them at the Subscriber.

These properties should not be required when you dynamically determine the FTP login properties by querying the publication.
Provided for backward compatibility only: these properties will not be effective when used against Microsoft® SQL Server™ 2000
publications unless the Subscriber is a Microsoft SQL Server version 7.0 Subscriber.

Note The publication must be enabled for the Internet.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_FTPAddress(BSTR *pVal);

HRESULT put_FTPAddress(BSTR newVal);

See Also

Distributor Property

DistributorAddress Property

Implementing Replication Over the Internet

Replication Programming (SQL Server 2000)

FTPLogin Property
The FTPLogin property specifies the user name of the FTP site where the publication snapshot files are stored.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.FTPLogin [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value FTP user name of the FTP site.

Remarks

The default is anonymous. These properties should not be required when you dynamically determine the FTP login properties by
querying the publication. Provided for backward compatibility only: these properties will not be effective when used against
Microsoft® SQL Server™ 2000 publications unless the Subscriber is a Microsoft SQL Server version 7.0 Subscriber.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_FTPLogin(BSTR *pVal);

HRESULT put_FTPLogin(BSTR newVal);

See Also

FTPAddress Property

FTPPassword Property

FTPPort Property

Replication Programming (SQL Server 2000)

FTPPassword Property
The FTPPassword property specifies the password of the FTP site where the publication snapshot files are stored.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.FTPPassword [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Password of the FTP site.

Remarks

The default is no password. Typically, an e-mail address of the form user@company.com is used for FTP passwords.

These properties should not be required when you dynamically determine the FTP login properties by querying the publication.
Provided for backward compatibility only: these properties will not be effective when used against Microsoft® SQL Server™ 2000
publications unless the Subscriber is a Microsoft SQL Server version 7.0 Subscriber.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_FTPPassword(BSTR *pVal);

HRESULT put_FTPPassword(BSTR newVal);

See Also

FTPAddress Property

FTPLogin Property

FTPPort Property

Replication Programming (SQL Server 2000)

FTPPort Property
The FTPPort property specifies the TCP port number of the FTP site where the publication snapshot files are stored.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.FTPPort [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value TCP port number of the FTP site.

Remarks

The default value is 21.

These properties should not be required when you dynamically determine the FTP login properties by querying the publication.
Provided for backward compatibility only: these properties will not be effective when used against Microsoft® SQL Server™ 2000
publications unless the Subscriber is a Microsoft SQL Server version 7.0 Subscriber.

Data Type

Long

Modifiable

Read/write

Prototype C/C++

HRESULT get_FTPPort(long *pVal);

HRESULT put_FTPPort(long newVal);

See Also

FTPAddress Property

Replication Programming (SQL Server 2000)

HostName Property
The HostName property returns or sets the host name used when connecting to the Publisher. This property provides a value
used when the publication is dynamically filtered using the SQL Server HOST_NAME() function.

Applies To

SQLMerge Object

Syntax

object.HostName [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value Value to be returned by HOST_NAME() in filter clauses.

Remarks

Use the HostName property to set a value for HOST_NAME() in dynamic filtering. For example, if the subset filter clause "rep_id
= HOST_NAME()" has been specified for an article, and if you set the HostName property to "FBJones" before calling the Run
method of the SQLMerge object, only rows having "FBJones" in the rep_id column will participate in the replication of that
article.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_HostName(BSTR *pVal);

HRESULT put_HostName(BSTR newVal);

See Also

HOST_NAME

Replication Programming (SQL Server 2000)

LoginTimeout Property
The LoginTimeout property specifies the maximum number of seconds to wait for connections to be established.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.LoginTimeout [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Number of seconds for connections to be established.

Remarks

The default is 15 seconds. A value of 0 specifies an indefinite wait.

Data Type

Integer

Modifiable

Read/write

Prototype C/C++

HRESULT get_LoginTimeout(short *pVal);

HRESULT put_LoginTimeout(short newVal);

Replication Programming (SQL Server 2000)

MaxDeliveredTransactions Property
The MaxDeliveredTransactions property sets or returns the maximum number of transactions to be downloaded to
Subscribers during each Run operation.

Applies To

SQLDistribution Object

Syntax

object.MaxDeliveredTransactions [= value]

Part Description
object Expression that evaluates to a SQLDistribution object.
value Maximum number of transactions to be downloaded.

Remarks

The default is 0, which means that all available transactions are delivered. Other values can be used to control the number of
transactions downloaded during a Run operation.

Data Type

Integer

Modifiable

Read/write

Prototype C/C++

HRESULT get_MaxDeliveredTransactions(long *pVal);

HRESULT put_MaxDeliveredTransactions(long newVal);

See Also

UndeliveredCommands Property

UndeliveredTransactions Property

Replication Programming (SQL Server 2000)

ProfileName Property
The ProfileName property returns or sets the name of the agent profile at the Distributor to be used by the replication control.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.ProfileName [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Agent profile name.

Remarks

If not specified, the default profile for the agent type is used.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_ProfileName(BSTR *pVal);

HRESULT put_ProfileName(BSTR newVal);

See Also

Agent Profiles

How to create a replication agent profile (Enterprise Manager)

Replication Programming (SQL Server 2000)

Publication Property
The Publication property returns or sets the name of the publication.

Applies To

AlternateSyncPartner Object

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Publication [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Publication name.

Remarks

This is a required property. An error is raised if it is set to an empty string.

If using the SQL Distribution Control to synchronize multiple publications configured to use a shared agent, the value must be
ALL. For more information about shared agents, see sp_addpublication.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_Publication(BSTR *pVal);

HRESULT put_Publication(BSTR newVal);

See Also

Publisher Property

PublisherDatabase Property

Replication Programming (SQL Server 2000)

Publisher Property
The Publisher property returns or sets the Publisher name where the publication resides.

Applies To

AlternateSyncPartner Object

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Publisher [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Publisher name.

Remarks

If the PublisherNetwork and PublisherAddress properties are specified, they will be used instead of the Publisher property
when connecting to the Publisher; otherwise, Publisher is a required property.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_Publisher(BSTR *pVal);

HRESULT put_Publisher(BSTR newVal);

See Also

Publication Property

PublisherDatabase Property

Replication Programming (SQL Server 2000)

PublisherAddress Property
The PublisherAddress property specifies the network address used when connecting to the Publisher when the
PublisherNetwork property is specified.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.PublisherAddress [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Network connection string.

Remarks

This is a required property when PublisherNetwork is set to a value other than DEFAULT_NETWORK.

This property is useful when configuring the control to connect to the Publisher without having to use SQL Server Client Network
Utility.

For example, if the Publisher is to be accessed over the Internet, PublisherNetwork can be set to TCPIP_SOCKETS and
PublisherAddress can be set to a specific IP address.

If the PublisherNetwork is TCP/IP_SOCKETS or MULTI_PROTOCOL over TCP/IP, the value is in the form of:

'IP address, socket' (i.e. '111.11.11.11,1433")

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherAddress(BSTR *pVal);

HRESULT put_PublisherAddress(BSTR newVal);

See Also

PublisherNetwork Property

Replication Programming (SQL Server 2000)

PublisherChanges Property
The PublisherChanges property returns the total number of Publisher changes applied to the Subscriber during the last Run
operation.

Applies To

SQLMerge Object

Syntax

object.PublisherChanges [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value Total number of Publisher rows inserted, deleted, and

updated.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_PublisherChanges(long *pVal);

See Also

PublisherConflicts Property

SubscriberChanges Property

Replication Programming (SQL Server 2000)

PublisherConflicts Property
The PublisherConflicts property specifies the total number of conflicts that occurred at the Publisher during the last Run
operation.

Applies To

SQLMerge Object

Syntax

object.PublisherConflicts [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value Number of conflicts that occurred.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_PublisherConflicts(long *pVal);

See Also

SubscriberConflicts Property

PublisherChanges Property

Replication Programming (SQL Server 2000)

PublisherDatabase Property
The PublisherDatabase property returns or sets the name of the publication database.

Applies To

AlternateSyncPartner Object

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.PublisherDatabase [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Publication database name.

Remarks

This is a required property. An error is raised if it is set to an empty string.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherDatabase(BSTR *pVal);

HRESULT put_PublisherDatabase(BSTR newVal);

See Also

Publication Property

Publisher Property

Replication Programming (SQL Server 2000)

PublisherLogin Property
The PublisherLogin property sets or returns the login name used when connecting to the Publisher.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.PublisherLogin [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value User name used to log in to the Publisher.

Remarks

This is a required property if PublisherSecurityMode is set to DB_AUTHENTICATION.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherLogin(BSTR *pVal);

HRESULT put_PublisherLogin(BSTR newVal);

See Also

PublisherPassword Property

PublisherSecurityMode Property

Replication Programming (SQL Server 2000)

PublisherNetwork Property
The PublisherNetwork property specifies the client Net-Library used when connecting to the Publisher.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.PublisherNetwork [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value NETWORK_TYPE constant that specifies the client Net-Library

to use.

Remarks

This option is useful when configuring the control to connect to the Publisher without having to use SQL Server Client Network
Utility.

If the value is not DEFAULT_NETWORK (default), the DistributorAddress property must be specified.

Data Type

NETWORK_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherNetwork(NETWORK_TYPE *pVal);

HRESULT put_PublisherNetwork(NETWORK_TYPE newVal);

See Also

Publisher Property

PublisherAddress Property

Replication Programming (SQL Server 2000)

PublisherPassword Property
The PublisherPassword property sets or returns the login password used when connecting to the Publisher.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.PublisherPassword [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Password used to connect to the Publisher.

Remarks

The default is no password.

This is a required property if PublisherSecurityMode is set to DB_AUTHENTICATION.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherPassword(BSTR *pVal);

HRESULT put_PublisherPassword (BSTR newVal);

See Also

PublisherLogin Property

PublisherSecurityMode Property

Replication Programming (SQL Server 2000)

PublisherRPCLogin Property
The PublisherRPCLogin property determines the login name used by the immediate-updating Subscriber trigger RPC when
connecting to the Publisher.

Applies To

SQLDistribution Object

Syntax

object.PublisherRPCLogin [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Login to be used when connecting to the Publisher.

Remarks

This property is relevant only to immediate-updating subscriptions.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherRPCLogin(BSTR *pVal);

HRESULT put_PublisherRPCLogin(BSTR newVal);

See Also

PublisherRPCPassword

PublisherRPCSecurityMode

Replication Programming (SQL Server 2000)

PublisherRPCPassword Property
The PublisherRPCPassword property determines the password used by the immediate-updating Subscriber trigger RPC when
connecting to the Publisher.

Applies To

SQLDistribution Object

Syntax

object.PublisherRPCPassword [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Password string used when connecting to the Publisher.

Remarks

This property is relevant only to immediate-updating subscriptions.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherRPCPassword(BSTR *pVal);

HRESULT put_PublisherRPCPassword(BSTR newVal);

See Also

PublisherRPCLogin

PublisherRPCSecurityMode

Replication Programming (SQL Server 2000)

PublisherRPCSecurityMode Property
The PublisherRPCSecurityMode property determines the security mode used by the immediate-updating Subscriber trigger
RPC when connecting to the Publisher.

Applies To

SQLDistribution Object

Syntax

object.PublisherRPCPassword [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Specifies the mode of security enforced during immediate-

updating Subscriber RPC login at the Publisher. The value is
from the REPLRPC_SECURITY_TYPE enumeration.

Remarks

This property is relevant only to immediate-updating subscriptions.

Data Type

Long, enumerated.

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherRPCPassword(REPLRPC_SECURITY_TYPE *pVal);

HRESULT put_PublisherRPCPassword(REPLRPC_SECURITY_TYPE newVal);

See Also

PublisherRPCLogin

PublisherRPCPassword

Replication Programming (SQL Server 2000)

PublisherSecurityMode Property
The PublisherSecurityMode property sets or returns the security mode when connecting to the Publisher.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.PublisherSecurityMode [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value SECURITY_TYPE constant that specifies the Publisher security

mode.

Remarks

If the value is DB_AUTHENTICATION (default), PublisherLogin and PublisherPassword will be used when connecting to the
Publisher.

NT_AUTHENTICATION is not supported for PublisherSecurityMode unless the Publisher runs on the Microsoft® Windows NT®
4.0 or Microsoft Windows® 2000 operating system. NT_AUTHENTICATION is not supported for any of
DistributorSecurityMode, PublisherSecurityMode, and SubscriberSecurityMode unless the computer on which the
replication control is running uses the Windows NT 4.0 or Windows 2000 operating system.

Data Type

SECURITY_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_PublisherSecurityMode(SECURITY_TYPE *pVal);

HRESULT put_PublisherSecurityMode(SECURITY_TYPE newVal);

See Also

PublisherLogin Property

PublisherPassword Property

Replication Programming (SQL Server 2000)

QueryTimeout Property
The QueryTimeout property returns or sets the number of seconds allowed for internal queries to complete.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.QueryTimeout [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Number of seconds allowed for internal queries to be

returned.

Remarks

The default value is 300.

A value of 0 means to wait indefinitely.

Data Type

Integer

Modifiable

Read/write

Prototype C/C++

HRESULT get_QueryTimeout(short *pVal);

HRESULT put_QueryTimeout(short newVal);

Replication Programming (SQL Server 2000)

ReplicationType Property
The ReplicationType property returns or sets the type of replication for which the snapshot is to be used.

Applies To

SQLSnapshot Object

Syntax

object.ReplicationType [= value]

Part Description
object Expression that evaluates to a SQLSnapshot object.
value Value from the REPLICATION_TYPE enumeration.

Remarks

The types of replication are transactional replication and merge replication.

Data Type

REPLICATION_TYPE

Modifiable

Read/write

Prototype (C/C++)

HRESULT ReplicationType(REPLICATION_TYPE pVal);

HRESULT ReplicationType(REPLICATION_TYPE* pVal);

Replication Programming (SQL Server 2000)

SkipErrors Property
The SkipErrors property returns or sets a list of the errors to be skipped.

Applies To

SQLDistribution Object

Syntax

object.SkipErrors [= list]

Part Description
object Expression that evaluates to a SQLDistribution object.
list List of the errors that are to be skipped by the control.

Remarks

The SkipErrors list has this format:

<native_error_id1>:<native_error_id2>:<native_error_id3>....

Native error IDs are the error numbers from the underlying database. Only the errors that are encountered when applying
replication transactions at the Subscriber can be skipped.

Data Type

String

Modifiable

Read/Write

Prototype C/C++

HRESULT get_SkipErrors(BSTR *pList);

HRESULT put_SkipErrors(BSTR pList);

See Also

Handling Errors and Messages in Applications

Replication Programming (SQL Server 2000)

Source Property
The Source property returns or sets the name of the source where the error occurred.

Applies To

SQLReplError Object

Syntax

object.Source [= pVal]

Part Description
object Expression that evaluates to a SQLReplError object.
pVal Name of the source where the error occurred.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT Source(BSTR pVal);

HRESULT Source(BSTR* pVal);

See Also

Description Property

ErrorNumber Property

ErrorNumberString Property

SourceType Property

https://msdn.microsoft.com/en-us/library/ms965343(v=sql.80).aspx

Replication Programming (SQL Server 2000)

SourceType Property
The SourceType property specifies the type of the source of the error information.

Applies To

SQLReplError Object

Syntax

object.SourceType [= value]

Part Description
object Expression that evaluates to a SQLReplError object.
value Value from the ERRORSOURCE_TYPE enumeration.

Data Type

ERRORSOURCE_TYPE

Modifiable

Read/write

Prototype (C/C++)

HRESULT SourceType(ERRORSOURCE_TYPE pVal);

HRESULT SourceType(ERRORSOURCE_TYPE* pVal);

See Also

Description Property

ErrorNumber Property

ErrorNumberString Property

Source Property

https://msdn.microsoft.com/en-us/library/ms965343(v=sql.80).aspx

Replication Programming (SQL Server 2000)

Subscriber Property
The Subscriber property specifies the name of the Subscriber.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.Subscriber [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Subscriber name.

Remarks

This is a required property.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_Subscriber(BSTR *pVal);

HRESULT put_Subscriber(BSTR newVal);

See Also

SubscriberDatasourceType Property

Replication Programming (SQL Server 2000)

SubscriberChanges Property
The SubscriberChanges property specifies the total number of Subscriber changes applied at the Publisher during the last Run
operation.

Applies To

SQLMerge Object

Syntax

[value =] object.SubscriberChanges

Part Description
object Expression that evaluates to a SQLMerge object.
value Total number of rows inserted, deleted, and updated.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_SubscriberChanges(long *pVal);

See Also

PublisherChanges Property

SubscriberConflicts Property

Replication Programming (SQL Server 2000)

SubscriberConflicts Property
The SubscriberConflicts property specifies the total number of conflicts that occurred during the upload operation from the
Subscriber.

Applies To

SQLMerge Object

Syntax

object.SubscriberConflicts

Part Description
object Expression that evaluates to a SQLMerge object.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_SubscriberConflicts(long *pVal);

See Also

PublisherConflicts Property

SubscriberChanges Property

Replication Programming (SQL Server 2000)

SubscriberDatabase Property
The SubscriberDatabase property specifies the name of the Subscriber database.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberDatabase [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Subscriber database name.

Remarks

This is a required property if SubscriberDatasourceType is SQLSERVER.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberDatabase(BSTR *pVal);

HRESULT put_SubscriberDatabase(BSTR newVal);

See Also

SubscriberDatabasePath Property

Replication Programming (SQL Server 2000)

SubscriberDatabasePath Property
The SubscriberDatabasePath property specifies the path to a Microsoft® Jet 4.0 database or Microsoft SQL Server™ detached
database or subscription file.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberDatabasePath [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Path to a Jet database or SQL Server detached database or

subscription file.

Remarks

This is a required property if SubscriberDatasourceType is JET4_DATABASE, or if you are using the DBADDOPTION constants
ATTACH_DATABASE or ATTACH_SUBSCRIPTION when calling AddSubscription.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberDatabasePath(BSTR *pVal);

HRESULT put_SubscriberDatabasePath(BSTR newVal);

See Also

AddSubscription Method

DBADDOPTION

SubscriberDatasourceType Property

Replication Programming (SQL Server 2000)

SubscriberDatasourceType Property
The SubscriberDatasourceType property specifies the type of Subscriber data source.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberDatasourceType [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value DATASOURCE_TYPE constant that specifies the type of

database at the Subscriber.

Remarks

The default is SQL_SERVER.

Data Type

DATASOURCE_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberDatasourceType(
DATASOURCE_TYPE *pVal);

HRESULT put_SubscriberDatasourceType(
DATASOURCE_TYPE newVal);

See Also

SubscriberDatabasePath Property

Replication Programming (SQL Server 2000)

SubscriberLogin Property
The SubscriberLogin property specifies the login name used connecting to the Subscriber.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberLogin [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Subscriber login name.

Remarks

This is a required property if SubscriberSecurityMode is set to DB_AUTHENTICATION.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberLogin(BSTR *pVal);

HRESULT put_SubscriberLogin(BSTR newVal);

See Also

SubscriberPassword Property

SubscriberSecurityMode Property

Replication Programming (SQL Server 2000)

SubscriberPassword Property
The SubscriberPassword property specifies the login password used when connecting to the Subscriber.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberPassword [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Subscriber password string.

Remarks

This property is used only when SubscriberSecurityMode is set to DB_AUTHENTICATION.

The default is no password.

Data Type

String

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberPassword(BSTR *pVal);

HRESULT put_SubscriberPassword(BSTR newVal);

See Also

SubscriberLogin Property

SubscriberSecurityMode Property

Replication Programming (SQL Server 2000)

SubscriberSecurityMode Property
The SubscriberSecurityMode property specifies the security mode used when connecting to the Publisher.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriberSecurityMode [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value SECURITY_TYPE constant that specifies the security mode

enforced at the Subscriber.

Remarks

If the value is DB_AUTHENTICATION (default), SubscriberLogin and SubscriberPassword will be used when connecting to the
Subscriber.

NT_AUTHENTICATION is not supported for SubscriberSecurityMode unless the Subscriber runs on the Microsoft® Windows
NT® 4.0 or Microsoft Windows® 2000 operating systems. NT_AUTHENTICATION is not supported for any of
DistributorSecurityMode, PublisherSecurityMode, and SubscriberSecurityMode unless the computer on which the
replication control is running uses the Windows NT 4.0 or Windows 2000 operating system.

Data Type

SECURITY_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriberSecurityMode(SECURITY_TYPE *pVal);

HRESULT put_SubscriberSecurityMode(SECURITY_TYPE newVal);

See Also

SubscriberLogin Property

SubscriberPassword Property

Replication Programming (SQL Server 2000)

SubscriptionName Property
The SubscriptionName property specifies a display name for the subscription. This name is used in the Windows
Synchronization Manager user interface.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.Subscription [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value Name of the Subscription.

Remarks

If SubscriptionName is not specified, a subscription name is set using Subscriber name, Subscriber database, and publication.

The SubscriptionName property is not persisted anywhere except in the operating system registry for the current user
Synchronization manager settings. All subsequent merges will show the property to be formatted:

subscribername:subscriberdatabase

This is consistent with the way subscription names are shown in SQL Server Enterprise Manager.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT get_SubscriptionName(BSTR *pVal);

HRESULT put_SubscriptionName(BSTR newVal);

Replication Programming (SQL Server 2000)

SubscriptionPriority Property
The SubscriptionPriority returns or sets the priority of the subscription.

Applies To

SQLMerge Object

Syntax

object.SubscriptionPriority [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value Subscription priority value from 0.0 through 100.0, inclusive.

Remarks

If the SubscriptionPriorityType property has the value GLOBAL_PRIORITY, use this property to set the priority.

Data Type

Single/Float

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriptionPriority(float *pVal);

HRESULT put_SubscriptionPriority(float newVal);

See Also

Subscriber Types and Conflicts

SUBSCRIPTION_PRIORITY_TYPE

SubscriptionPriorityType Property

Replication Programming (SQL Server 2000)

SubscriptionPriorityType Property
The SubscriptionPriorityType property specifies how the subscription priority is determined.

Applies To

SQLMerge Object

Syntax

object.SubscriptionType [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value SUBSCRIPTION_PRIORITY_TYPE constant that specifies how

the subscription priority is determined.

Remarks

The subscription priority can be assigned or assume the priority value of the Publisher. If the value of the property is
GLOBAL_PRIORITY, use the SubscriptionPriority property to set the priority.

Data Type

SUBSCRIPTION_PRIORITY_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriptionPriorityType(SUBSCRIPTION_PRIORITY_TYPE *pVal);

HRESULT put_SubscriptionPriorityType(SUBSCRIPTION_PRIORITY_TYPE newVal);

See Also

Subscriber Types and Conflicts

SubscriptionPriority Property

Replication Programming (SQL Server 2000)

SubscriptionType Property
The SubscriptionType property specifies whether the subscription is push, pull, or anonymous.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriptionType [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value SUBSCRIPTION_TYPE constant that specifies the type of

subscription.

Remarks

The publication must be configured to support the specified subscription type.

The default is ANONYMOUS.

Data Type

SUBSCRIPTION_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_SubscriptionType(SUBSCRIPTION_TYPE *pVal);

HRESULT put_SubscriptionType(SUBSCRIPTION_TYPE newVal);

Replication Programming (SQL Server 2000)

SynchronizationType Property
The SynchronizationType property specifies whether the subscription needs to be initially synchronized.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.SubscriptionType [= value]

Part Description
object Expression that evaluates to an object in the Applies To list.
value SYNCHRONIZATION_TYPE constant that specifies whether

initial synchronization will occur.

Remarks

The default is AUTOMATIC.

Data Type

SYNCHRONIZATION_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_SynchronizationType(SYNCHRONIZATION_TYPE *pVal);

HRESULT put_SynchronizationType(SYNCHRONIZATION_TYPE newVal);

Replication Programming (SQL Server 2000)

SyncToAlternate Property
The SyncToAlternate property returns or sets whether the synchronization is to an alternate synchronization partner.

Applies To

SQLMerge Object

Syntax

object.SyncToAlternate [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value If set to True, an alternate synchronization partner is used.

Remarks

To select an alternate synchronization partner, the Publisher, PublisherDatabase, Publication, and Distributor properties of
the SQLMerge object should be set to the corresponding property values of an AlternateSyncPartner object before the Run
method of the SQLMerge object is called.

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT SyncToAlternate(VARIANT_BOOL pVal);

HRESULT SyncToAlternate(VARIANT_BOOL* pVal);

See Also

AlternateSyncPartner Object

AlternateSyncPartners Collection

Distributor Property

Publication Property

Publisher Property

PublisherDatabase Property

Replication Programming (SQL Server 2000)

UndeliveredCommands Property
The UndeliveredCommands property specifies the number of commands currently available to download to the Subscriber.

Applies To

SQLDistribution Object

Syntax

object.UndeliveredCommands

Part Description
object Expression that evaluates to a SQLDistribution object.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_UndeliveredCommands(long *pVal);

See Also

MaxDeliveredTransactions Property

UndeliveredTransactions Property

Replication Programming (SQL Server 2000)

UndeliveredTransactions Property
The UndeliveredTransactions property returns the number of transactions currently available to download to the Subscriber.

Applies To

SQLDistribution Object

Syntax

object.UndeliveredTransactions

Part Description
object Expression that evaluates to a SQLDistribution object.

Data Type

Long

Modifiable

Read-only

Prototype C/C++

HRESULT get_UndeliveredTransactions(long *pVal);

See Also

MaxDeliveredTransactions Property

UndeliveredCommands Property

Replication Programming (SQL Server 2000)

UseInteractiveResolver Property
The UseInteractiveResolver property returns or sets whether the interactive resolver is used during reconciliation.

Applies To

SQLMerge Object

Syntax

object.UseInteractiveResolver [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value If set to True, the interactive resolver is used.

Remarks

The interactive resolver is displayed for each row in which a conflict is detected. If the property is changed from True to False
during a merge replication, all subsequent conflicts will be handled by the default resolver or the resolver specified when the
article was created.

Data Type

Boolean

Modifiable

Read/write

Prototype (C/C++)

HRESULT UseInteractiveResolver(VARIANT_BOOL pVal);

HRESULT UseInteractiveResolver(VARIANT_BOOL* pVal);

Replication Programming (SQL Server 2000)

Validate Property
The Validate property specifies the type of data validation to perform on the Subscriber data at the end of the Run.

Applies To

SQLMerge Object

Syntax

object.Validate [= value]

Part Description
object Expression that evaluates to a SQLMerge object.
value VALIDATE_TYPE constant that specifies the type of data

validation to perform.

Data Type

VALIDATE_TYPE

Modifiable

Read/write

Prototype C/C++

HRESULT get_Validate(VALIDATE_TYPE newVal);

HRESULT put_Validate(VALIDATE_TYPE* pVal);

Replication Programming (SQL Server 2000)

WorkingDirectory Property
The WorkingDirectory property returns or sets the working directory to which snapshot files are transferred using FTP when
that option is specified.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.WorkingDirectory [= path]

Part Description
object Expression that evaluates to an object in the Applies To list.
path Fully qualified path to the working directory for copied

snapshots.

Data Type

String

Modifiable

Read/write

Prototype (C/C++)

HRESULT WorkingDirectory(BSTR pVal);

HRESULT WorkingDirectory(BSTR* pVal);

Replication Programming (SQL Server 2000)

Replication ActiveX Control Methods
This section defines the methods of the replication Microsoft® ActiveX® control objects and collections.

Methods

Add Method

AddReplError Method

AddSubscription Method

CopySubscription Method

DropSubscription Method

Initialize Method

ReinitializeSubscription Method

Run Method

SetFailoverMode Method

Terminate Method

Replication Programming (SQL Server 2000)

Add Method
The Add method adds a SQLReplError object to a SQLReplErrors collection.

Applies To

SQLReplErrors Collection

Syntax

collection.Add object

Part Description
collection Expression that evaluates to a SQLReplErrors collection.
object Expression that evaluates to a SQLReplError object.

Remarks

The AddReplError method can be used to add an error to a SQLReplErrors collection without creating a SQLReplError object
first.

Prototype (C/C++)

HRESULT Add(
 ISQLReplError* pISQLReplError);

See Also

AddReplError Method

SQLReplError Object

Replication Programming (SQL Server 2000)

AddReplError Method
The AddReplError method adds a new error to a SQLReplErrors collection.

Applies To

SQLReplErrors Collection

Syntax

collection.AddReplError Description, Source, ErrorNumber, _
 ErrorSourceType, ErrorNumberString

Part Description
collection Expression that evaluates to a SQLReplErrors collection.
Description String that describes the error.
Source String that describes the component that generated the error.
ErrorNumber Long integer code for the error.
ErrorSourceType Value from the ERRORSOURCE_TYPE enumerating the type of

error source.
ErrorNumberString String representation of the error number.

Remarks

The AddReplError method adds an error to a SQLReplErrors collection without the caller explicitly creating a SQLReplError
object. The Add method can be used to add a SQLReplError object to a SQLReplErrors collection.

Prototype (C/C++)

HRESULT AddReplError(
 BSTR bstrDescription,
 BSTR bstrSource,
 long lErrorNumber,
 ERRORSOURCE_TYPE ErrorSourceType,
 BSTR bstrErrorNumberString);

See Also

Add Method

ERRORSOURCE_TYPE

SQLReplError Object

Replication Programming (SQL Server 2000)

AddSubscription Method
The AddSubscription method adds a new or existing subscription based on the specified control properties.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.AddSubscription DBAddOption, SubscriptionHost

Part Description
object Expression that evaluates to an object in the Applies To list.
DBAddOption Option to add; use a value from DBADDOPTION.
SubscriptionHost Subscription host; use a value from SUBSCRIPTION_HOST.

Remarks

Push subscriptions are not currently supported by this method.

If DBAddOption is set to ATTACH_DATABASE and SubscriberDatasourceType is set to SQL_SERVER, AddSubscription can
work only with single-file databases. Use the SubscriberDatabasePath property to specify the name and path of the .mdf file to
attach.

If DBAddOption is ATTACH_SUBSCRIPTION, use SubscriberDatabasePath to specify the name and path of the Microsoft
Subscription File (.msf). This file can be created with the CopySubscription method.

AddSubscription also supports creating a new Subscriber database, creating a new subscription for an existing database, and
registering an existing subscription with Windows Synchronization Manager.

In Microsoft® Visual Basic®, AddSubscription is a Sub method and does not return a value.

Prototype C/C++

HRESULT AddSubscription(
 DBADDOPTION DBAddOption,
 SUBSCRIPTION_HOST SubscriptionHost);

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for

detailed information.
REPLX_E_DBEXISTS Specified database already exists.
REPLX_E_DBNOTFOUND Specified database does not exist.
REPLX_E_SUBEXISTS Specified subscription already exists.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the last

operation.

See Also

CopySubscription Method

DropSubscription Method

SubscriberDatasourceType Property

SubscriberDatabasePath Property

Replication Programming (SQL Server 2000)

CopySubscription Method
The CopySubscription method copies the entire subscription database to the file location specified by the parameter.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.CopySubscription filespec

Part Description
object Expression that evaluates to an object in the Applies To list.
filespec File name and path to which subscription database is copied.

Remarks

CopySubscription copies a specially prepared database subscription file (typically with an .msf extension) to a Subscriber,
attaches it, and receives an immediately synchronized subscription at the original Publisher. CopySubscription creates the .msf
file. Use the AddSubscription method with the ATTACH_SUBSCRIPTION option to create the new subscription from the .msf file.

You can use the CopySubscription method to copy a subscription database that contains more than one subscription.

Prototype (C/C++)

HRESULT CopySubscription(BSTR bstrSubscriptionFileName);

See Also

AddSubscription Method

DropSubscription Method

Replication Programming (SQL Server 2000)

DropSubscription Method
The DropSubscription method drops the subscription having the specified control properties.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.DropSubscription DBDropOption

Part Description
object Expression that evaluates to an object in the Applies To list.
DBDropOption Option to drop; use a value from DBDROPOPTION.

Remarks

Push subscriptions are not currently supported by this method.

If DROP_DATABASE is specified, the database is dropped even when the subscription specified by the SubscriptionName
property does not exist. Error notification is not provided.

DropSubscription also supports dropping the subscription without dropping the database and unregistering the subscription
from Windows Synchronization Manager.

In Microsoft® Visual Basic®, DropSubscription is a Sub method and does not return a value.

Prototype C/C++

HRESULT DropSubscription(
 DBDROPOPTION DBDropOption);

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for

detailed information.
REPLX_E_SUBNOTFOUND Specified subscription does not exist.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the last

operation.

See Also

AddSubscription Method

CopySubscription Method

DBDROPOPTION

SubscriptionName Property

Replication Programming (SQL Server 2000)

Initialize Method
The Initialize method validates the control properties and establishes all database connections.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Initialize

Part Description
object Expression that evaluates to an object in the Applies To list.

Remarks

Control properties that define the Publisher, publication, Distributor, and Subscriber (for the Distribution and Merge controls)
must be set before calling Initialize.

In Microsoft® Visual Basic®, Initialize is a Sub method and does not return a value.

Initialize should not be called prior to using the AddSubscription method to add a new subscription, or prior to using the
DropSubscription method to drop an existing subscription.

Prototype (C/C++)

HRESULT Initialize();

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for

detailed information.
REPLX_E_DBNOTFOUND Specified database does not exist.
REPLX_E_SUBNOTFOUND Specified subscription does not exist

(SQLDistribution and SQLMerge objects only).
REPLX_E_SUBEXPIRED Subscription has expired (SQLDistribution and

SQLMerge objects only).
REPLX_E_PROFILENOTFOUND Specified profile does not exist.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the

last operation.

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

ReinitializeSubscription Method
The ReinitializeSubscription method configures a subscription to reapply the initial snapshot and subsequent changes during
the next Run operation.

Applies To

SQLDistribution Object

SQLMerge Object

Syntax

object.ReinitializeSubscription [bUploadBeforeReinit]

Part Description
object Expression that evaluates to a SQLMerge object.
bUploadBeforeReinit If True, the changes in the subscription database are uploaded

to the Publisher before the snapshot is applied at the
Subscriber. The default is False.

Remarks

ReinitializeSubscription is a method of both the SQLDistribution and SQLMerge objects. ReinitializeSubscription for the
SQLMerge object has the bUploadBeforeReinit parameter. For the SQLDistribution object, ReinitializeSubscription has no
parameters.

In Microsoft® Visual Basic®, ReinitializeSubscription is a Sub method and does not return a value.

Prototype (C/C++)

HRESULT ReinitializeSubscription(VARIANT_BOOL bUploadBeforeReinit);

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for

detailed information.
REPLX_E_DEADLOCK Deadlock occurred.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the last

operation.

Replication Programming (SQL Server 2000)

Run Method
The Run method executes the replication process using the control properties.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Run

Part Description
object Expression that evaluates to an object in the Applies To list.

Remarks

The control must call Initialize before calling the Run method.

In Microsoft® Visual Basic®, Run is a Sub method and does not return a value.

Prototype (C/C++)

HRESULT Run();

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for

detailed information.
REPLX_E_DEADLOCK Deadlock occurred.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the

last operation.
REPLX_S_VALIDATIONFAILED Validation failure occurred.
REPLX_S_CONFLICTSOCCURRED Conflicts occurred while merging changes

(SQLMerge object only).

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

SetFailoverMode Method
The SetFailoverMode method sets the Subscriber update mode when adding subscriptions to use immediate (DTC) updates or
queued updates, or support immediate updating with a queued updating failover.

Applies To

SQLDistribution Object

Syntax

object.SetFailoverMode FailoverMode

Part Description
object Expression that evaluates to a SQLDistribution object.
FailoverMode Value from the REPL_FAILOVER_MODE enumeration.

Prototype (C/C++)

HRESULT SetFailoverMode(REPL_FAILOVER_MODE FailoverMode);

See Also

REPL_FAILOVER_MODE

Replication Programming (SQL Server 2000)

Terminate Method
The Terminate method terminates the replication process and closes all database connections.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Syntax

object.Terminate

Part Description
object Expression that evaluates to an object in the Applies To list.

Remarks

After using Terminate, the control host must call Initialize before again calling Run.

In Microsoft® Visual Basic®, Terminate is a Sub method and does not return a value.

Prototype (C/C++)

HRESULT Terminate();

Return code Description
S_OK Method succeeded.
E_FAIL General failure occurred. Check error records for detailed

information.
REPLX_E_RETRYFAILURE Failure occurred that might require retrying the last

operation.

See Also

Developing Replication Applications Using ActiveX Controls

Replication Programming (SQL Server 2000)

Replication ActiveX Control Events
This section defines the events of the replication Microsoft® ActiveX® control objects and collections.

Events

Notify Event

Status Event

Replication Programming (SQL Server 2000)

Notify Event
The Notify event is raised when an error is added to the SQLReplErrors collection by a replication Microsoft® ActiveX® control.

Applies To

SQLReplErrors Collection

Prototype (Visual Basic)

Sub Objectvar_Notify(_
 ByVal Status As REPLERRXLib.AGENT_STATUS _
 ByVal Message As String)

Part Description
Objectvar Expression that evaluates to a SQLReplErrors collection.
Status Value that indicates the type of error from the AGENT_STATUS

enumeration.
Message Description of the error.

Remarks

To receive the Notify event, the program must declare Objectvar WithEvents of type REPLERRXLib.SQLReplErrors.

This event is not available through the ISQLReplErrors interface of the replication ActiveX controls.

Prototype (C/C++)

HRESULT Notify(
 AGENT_STATUS Status,
 BSTR Message);

See Also

AGENT_STATUS

Replication Programming (SQL Server 2000)

Status Event
The Status event returns information about significant occurrences in the operation of a replication Microsoft® ActiveX® control.

Applies To

SQLDistribution Object

SQLMerge Object

SQLSnapshot Object

Prototype (Visual Basic)

Function Objectvar_Status(_
 ByVal Message As String, _
 ByVal Percent As Long) _
 As STATUS_RETURN_CODE

Part Description
Objectvar Expression that evaluates to an object in the Applies To list.
Message Description of the significant occurrence.
Percent Percentage of the operation completed successfully, from 0

through 100.

Remarks

To receive the Status event, a Microsoft Visual Basic® program must declare Objectvar WithEvents of the appropriate type.

STATUS_RETURN_CODE is an enumeration that specifies the values that can be returned from the Status callback function
(event).

Prototype (C/C++)

HRESULT Status(
 BSTR Message,
 Long Percent,
 STATUS_RETURN_CODE *pReturnCode);

See Also

Developing Replication Applications Using ActiveX Controls

STATUS_RETURN_CODE

Replication Programming (SQL Server 2000)

Replication ActiveX Control Constants
This section defines the enumerated data types that are used as parameters and return values in Microsoft® ActiveX® replication
control properties, methods, and events.

Replication Programming (SQL Server 2000)

AGENT_STATUS
The AGENT_STATUS constants provide agent status codes that are returned by the Notify event of the SQLReplErrors
collection.

Constant Value Description
REPLAGENT_FAIL 4 Agent operation failed.
REPLAGENT_IN_PROGRESS 1 Agent operation in progress.
REPLAGENT_RETRY 3 Agent operation failed.
REPLAGENT_SUCCEED 2 Agent operation completed successfully.

Remarks

REPLAGENT_RETRY indicates the agent operation failed with errors that may not recur if the operation is retried at a later time.
The control does not retry the operation unless the calling program directs it to do so.

See Also

Notify Event

SQLReplErrors Collection

Replication Programming (SQL Server 2000)

DATASOURCE_TYPE
The DATASOURCE_TYPE constants provide data source type values for the SubscriberDatasourceType property.

Constant Value Description
DB2_UNIVERSAL 6 DB2 Universal database Subscriber
EXCHANGE 4 Microsoft® Exchange Subscriber
JET4_DATABASE 2 Microsoft Jet 4.0 database Subscriber
ODBC_DSN 1 ODBC data source Subscriber
OLEDB_DATASOURCE 3 OLE DB data source Subscriber
ORACLE 5 Oracle database Subscriber
SQL_SERVER 0 Microsoft SQL Server™ Subscriber

See Also

SubscriberDatasourceType Property

Replication Programming (SQL Server 2000)

DBADDOPTION
The DBADDOPTION constants specify if the Subscriber database exists or if it must be created or attached, or if the subscription
must be attached, when calling the AddSubscription method of the SQLDistribution and SQLMerge objects.

Constant Value Description
ATTACH_DATABASE 2 Attaches a Subscriber database file, typically an

.mdf (Microsoft® SQL Server™ Subscribers
only).

ATTACH_SUBSCRIPTION 3 Attaches a subscription file, typically an .msf
(Microsoft Subscription File).

CREATE_DATABASE 1 Creates the Subscriber database (SQL Server
Subscribers only).

EXISTING_DATABASE 0 Uses an existing Subscriber database.
REGISTER_SUBSCRIPTION 4 Registers the existing subscription with

Windows Synchronization Manager.

See Also

AddSubscription Method

Replication Programming (SQL Server 2000)

DBDROPOPTION
The DBDROPOPTION constants specify whether the Subscriber database should be dropped when calling the
DropSubscription method of the SQLDistribution and SQLMerge objects.

Constant Value Description
DROP_DATABASE 1 Drops the Subscriber database and the

subscription, if specified.
LEAVE_DATABASE 0 Drops the subscription without dropping

the Subscriber database.
UNREGISTER_SUBSCRIPTION 2 Unregisters, but does not drop, the

subscription.

See Also

DropSubscription Method

Replication Programming (SQL Server 2000)

ERRORSOURCE_TYPE
The ERRORSOURCE_TYPE constants provide values for the SourceType property of the SQLReplError object.

Constant Value Description
INVALID_SOURCE_TYPE 0 Error source type is invalid.
MERGE_PROCESS 9 Merge process error.
MERGE_PROVIDER 8 Merge replication provider error.
NET_LIBRARY 6 Net-Library error.
ODBC_API 4 ODBC API error.
OPERATING_SYSTEM 3 Operating system error.
REPL_CONTROL 2 Replication ActiveX® control error.
SQL_COMMAND 1 SQL command error.
SQLDMO 7 SQL DMO error.
SQLSERVER_ENGINE 5 Microsoft® SQL Server™ error.

See Also

SourceType Property

Replication Programming (SQL Server 2000)

EXCHANGE_TYPE
The EXCHANGE_TYPE constants are used with the ExchangeType property of the SQLMerge object to specify whether merge
replication changes should be uploaded to the Publisher, downloaded to the Subscriber, or both (uploaded and then
downloaded).

Constant Value Description
UPLOAD 1 Only merge Subscriber changes with the Publisher.
DOWNLOAD 2 Only merge Publisher changes with the Subscriber.
BIDIRECTIONAL 3 Merge all changes between the Publisher and Subscriber

(default).

Remarks

You should use a BIDIRECTIONAL synchronization unless you have a specific reason for separating the UPLOAD and DOWNLOAD
phases.

See Also

ExchangeType Property

Replication Programming (SQL Server 2000)

FILE_TRANSFER_TYPE
The FILE_TRANSFER_TYPE constants specify the type of transfer for snapshot files.

Constant Value Description
FILETRANSFERFTP 1 Download snapshot files using FTP.
FILETRANSFERUNC 0 Apply snapshot from a UNC network share.

See Also

FileTransferType Property

Replication Programming (SQL Server 2000)

NETWORK_TYPE
The NETWORK_TYPE constants provide network protocol type values for the DistributorNetwork and PublisherNetwork
properties.

Constant Value Description
DEFAULT 0 Use the current configured client Net-Library

(default).
MULTI_PROTOCOL 2 Multiprotocol Net-Library.
TCPIP_SOCKETS 1 TCP/IP Sockets Net-Library.

See Also

DistributorNetwork Property

PublisherNetwork Property

Replication Programming (SQL Server 2000)

REPL_FAILOVER_MODE
The REPL_FAILOVER_MODE enumeration specifies the Subscriber update mode when adding subscriptions to use immediate
updating or queued updating options with transactional replication.

Constant Value Description
FAILOVER_IMMEDIATE 1 Immediate updating.
FAILOVER_NONE 0 No updating from Subscriber.
FAILOVER_QUEUED 2 Queued updating.

See Also

SetFailoverMode Method

Replication Programming (SQL Server 2000)

REPLICATION_TYPE
The REPLICATION_TYPE enumeration specifies the type of replication for which the snapshot is to be used.

Constant Value Description
MERGE 2 Specifies merge replication.
TRANSACTIONAL 1 Specifies transactional replication or snapshot

replication.

See Also

ReplicationType Property

Replication Programming (SQL Server 2000)

REPLRPC_SECURITY_TYPE
The REPLRPC_SECURITY_TYPE constants provide data source type values for the PublisherRPCSecurityMode property.

Constant Value Description
RPC_STANDARD_MODE 0 Dynamic RPC connection is used.
RPC_STATIC_MODE 2 Static sysservers entry is used for RPC.

See Also

PublisherRPCSecurityMode

Replication Programming (SQL Server 2000)

SECURITY_TYPE
The SECURITY_TYPE specifies security type values for the DistributorSecurityMode, PublisherSecurityMode, and
SubscriberSecurityMode properties.

Constant Value Description
DB_AUTHENTICATION 0 Specifies SQL Server Authentication for the

connection.
NT_AUTHENTICATION 1 Specifies Windows Authentication for the

connection (supported by Microsoft® SQL
Server™ on Microsoft Windows NT® 4.0 and
Microsoft Windows® 2000 operating systems
only).

Remarks

If the computer on which the Microsoft ActiveX® replication control is hosted is not running the Windows NT 4.0 or Windows
2000 operating system, NT_AUTHENTICATION cannot be used on the Publisher, Distributor, or Subscriber.

See Also

DistributorSecurityMode Property

SubscriberSecurityMode Property

PublisherSecurityMode Property

Replication Programming (SQL Server 2000)

STATUS_RETURN_CODE
The STATUS_RETURN specifies the return code values that can be returned from the status callback functions.

Constant Value Description
SUCCESS 0 Operation is successful.
CANCEL 1 Operation is canceled.

See Also

Status Event

Replication Programming (SQL Server 2000)

SUBSCRIPTION_HOST
The SUBSCRIPTION_HOST specifies subscription host codes for the SubscriptionHost parameter of the AddSubscription
method of the SQLMerge and SQLDistribution objects.

Constant Value Description
NONE 0 Subscription is not registered under other hosts.
SYNC_MANAGER 1 Subscription is to be registered in Windows

Synchronization Manager.

See Also

AddSubscription Method

Replication Programming (SQL Server 2000)

SUBSCRIPTION_PRIORITY_TYPE
The SUBSCRIPTION_PRIORITY_TYPE constants specify subscription priority type values for the SubscriptionPriorityType
property of the SQLMerge object.

Constant Value Description
GLOBAL_PRIORITY 1 Subscription has an assigned priority value.
LOCAL_PRIORITY 2 Subscription uses the priority value of the Publisher.

See Also

SubscriptionPriorityType Property

Replication Programming (SQL Server 2000)

SUBSCRIPTION_TYPE
The SUBSCRIPTION_TYPE specifies subscription type values for the SubscriptionType property of the SQLMerge and
SQLDistribution objects.

Constant Value Description
ANONYMOUS 2 Anonymous subscription.
PULL 1 Pull subscription.
PUSH 0 Push subscription.

See Also

SubscriptionType Property

Replication Programming (SQL Server 2000)

SYNCHRONIZATION_TYPE
The SYNCHRONIZATION_TYPE specifies subscription synchronization type codes for the SynchronizationType property of the
SQLMerge and SQLDistribution objects.

Constant Value Description
AUTOMATIC 1 Initial synchronization is to be provided to the Subscriber.
NOSYNC 2 No initial synchronization is needed by the Subscriber.

See Also

SynchronizationType Property

Replication Programming (SQL Server 2000)

VALIDATE_TYPE
The VALIDATE_TYPE constants specify the type of data validation to perform on the Subscriber data at the end of the run.
VALIDATE_TYPE is used with the Validate property of the SQLMerge object.

Constant Value Description
FAST_ROWCOUNT_AND_CHECKSUM 4 Perform a fast row count and

checksum validation of the
Subscriber data.

FAST_ROWCOUNT_AND_BINARYCHECKSUM 6 Perform a fast row count and
binary checksum validation of
the Subscriber data.
BINARYCHECKSUM is not
supported by Microsoft® SQL
Server™ 2000 Subscribers.

FAST_ROWCOUNT_ONLY 3 Perform only a fast row count
validation of the Subscriber
data.

NO_VALIDATION 0 Do not validate the Subscriber
data (default).

ROWCOUNT_AND_CHECKSUM 2 Perform a full row count and
checksum validation of the
Subscriber data.

ROWCOUNT_AND_BINARYCHECKSUM 5 Perform a full row count and
binary checksum validation of
the Subscriber data.
BINARYCHECKSUM is not
supported by SQL Server 2000
Subscribers.

ROWCOUNT_ONLY 1 Perform only a full row count
validation of the Subscriber
data.

See Also

Help with Replication

Validate Property

Replication Programming (SQL Server 2000)

Developing Replication Merge Conflict Resolvers Through a
Custom Resolver
Microsoft® SQL Server™ 2000 supports two types of user-implemented conflict resolvers:

Custom conflict resolvers built as COM components and compiled into dynamic-link libraries (.dll) through products such as
Microsoft Visual Basic® and Microsoft Visual C++®. The COM custom conflict resolver is a DLL that implements the
ICustomResolver interface, methods, and properties. There are interfaces and type definitions designed specially for
conflict resolution. For information about the required header file, see COM Conflict Resolver Header File.

To use a COM object resolver, make sure the DLL is registered at the computer where the Merge Agent runs. For a push
subscription, this is the Distributor computer, and for a pull subscription, it is the Subscriber computer. When using Visual
C++ or Visual Basic, the name of the project becomes the name of the .DLL. The DLL name must be a unique resolver name.
Run the sp_enumcustomresolvers stored procedure to ensure uniqueness. sp_enumcustomresolvers displays all the
resolvers currently registered on the system.

User-built Transact-SQL stored procedures can be used instead of a COM component. The stored procedures must
implement a specific set of parameters required for a conflict resolver. For more information about the use of each field
defined, see Custom Stored Procedure Conflict Resolver.

The Microsoft SQL Server 2000 CD-ROM ships with some resolver samples. For more information, see Replication Resolver
Samples.

See Also

Custom Stored Procedure Conflict Resolver

Merge Replication Conflict Detection and Resolution

Other Microsoft Resolvers

Replication Architecture

Replication Programming (SQL Server 2000)

COM Conflict Resolver Header File
A file named sqlres.h is located in C:\Program Files\Microsoft SQL Server\80\ Dev Tools\include, if the replication sample
programs were installed to the default folder. The file, sqlres.h, contains several important definitions with which you should be
familiar. Do no modify this file.

The custom resolver must implement the interface ICustomResolver, which is defined in this file.

#undef INTERFACE
#define INTERFACE ICustomResolver
DECLARE_INTERFACE_(ICustomResolver, Iunknown)
{
 //** IUnknown methods
 STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID *ppvObj) PURE;
 STDMETHOD_(ULONG,AddRef) (THIS) PURE;
 STDMETHOD_(ULONG,Release) (THIS) PURE;

 //** ICustomResolver methods
 STDMETHOD(Reconcile) (THIS_
 IReplRowChange *pRowChange,
 DWORD dwFlags,
 PVOID pvReserved) PURE;
 STDMETHOD(GetHandledStates) (THIS_
 DWORD *pResolverBm) PURE;
};

ICustomResolver inherits from IUnknown, similar to all COM classes. The IUnknown methods usually do not need to be
modified from the supplied resolver, but the ICustomResolver methods Reconcile and GetHandledStates must be
implemented. Reconcile is the method called for each table row that contains a conflict. GetHandledStates defines the conflict
conditions that the resolver will handle.

The important parameter for Reconcile is a reference to an IReplRowChange object; IReplRowChange is defined in this
include file. Through the method of IReplRowChange, the resolver determines the columns in conflict, examines the conflicting
data, and then copies the appropriate data to the result row.

Other definitions in the file include IConnectionInfo, which is used when a resolver needs to access a stored procedure, and
ITranDataChange, which is used in a transactional resolver. Only the Get<xxx> methods in IConnectionInfo are accessible to
user-implemented resolvers.

Several enumerations are defined in sqlres.h. Symbols from these enumerations should be used wherever possible instead of
using hard-coded constants.

Enumeration Name Description
REPOLE_CHANGE_TYPE Codes for the database operation (insert, update,

delete), whether there is a conflict, and whether column
tracking is active. Many symbolic definitions of
aggregates of these change types are also available.

REPOLE_CONFLICT_TYPE Codes for the database operation and whether the
failure occurred at upload or download.

REPOLE_COLSTATUS_TYPE Codes for the conflict status of an individual column.
REPOLE_PRIORITY_TYPE Codes for what have higher priority (source, destination,

neither source nor destination).

Replication Programming (SQL Server 2000)

Programming Replication from Heterogeneous Data Sources
Microsoft® SQL Server™ enables third-party products to become Publishers within the SQL Server replication framework. The
Replication Distributor Interface allows replication from heterogeneous databases that provide 32-bit OLE DB drivers to
Subscribers running SQL Server 2000. Heterogeneous data sources include:

Oracle databases

DB2 databases

Microsoft Access databases

Other databases that comply with SQL Server ODBC or OLE DB Subscriber requirements.

When integrated, the Replication Distributor Interface exposes the SQL Distributor, and allows heterogeneous data sources to
store meta data and replicated transactions in the SQL Server Distributor database. The Replication Distributor Interface is an OLE
DB service provider that allows users to store replicated SQL statements, scripts, and .bcp files in the Distributor store-and-
forward database. The Replication Distributor Interface is based on the OLE DB connection model and supports a subset of the
DataSource, Session, and Error objects. An additional Distribution object is added to the Session object and is used to store
transactions marked for replication in a SQL Server distribution database.

Note The Replication Distributor Interface is a special purpose OLE DB service that is used only to distribute replicated SQL
Server transactions. It does not support the minimal set of interfaces necessary to be considered a standard OLE DB data provider.

The Replication Distributor Interface cannot be used with replication types that need updates to be made at the Subscriber. The
only types of replication that can be used with the Replication Distributor Interface are snapshot replication and transactional
replication that has read-only Subscribers. Merge replication, and transactional replication with immediate updating, queued
updating, or immediate updating with queued updating as failover are not available from heterogeneous Publishers to SQL
Server Subscribers.

Here are the steps to using the Replication Distributor Interface.

1. This step uses Microsoft Visual Basic® or Microsoft Visual C++® and the replication SQL-DMO objects, makes calls for
setting up the publication, articles, and subscription information. These calls differ from the typical SQL-DMO setup calls
because they are made on the distribution server and not at the Publisher. A third-party replication tool can also be used to
implement this first step

2. This step takes the place of the Snapshot Agent and Log Reader Agent. The Replication Distributor Interface is used to store
the replication transactions on a server that is currently acting as the Distributor, which will then be distributed by the
Distribution Agent. The following C++ code is a sample of an object that is used to place commands into the distribution
database.

// Instantiate a data source object for the SQL Server Publishing
// provider.
hr = CoCreateInstance(CLSID_SQLDistribution, NULL, CLSCTX_INPROC_SERVER, IID_IDBInitialize,
(void**) &pIDBInit);

Using the Replication Distributor Interface leaves the responsibility of data modification detection to the developers because the
Log Reader Agent is not available. The use of the monitoring and troubleshooting tools, alerts, and notifications are still available
in SQL Server Enterprise Manager.

The Microsoft SQL Server CD-ROM ships with some Replication Distributor Interface samples. For more information, see
Replication Distributor Interface Samples.

When deploying an application using the Replication Distributor Interface independently of SQL Server 2000, you must include
additional files in the installation kit you use to distribute your application. If you will be deploying your application to a computer
where SQL Server 2000 will also be installed, these files will already be present.

Replication Programming (SQL Server 2000)

SQL-DMO Replication Objects
SQL-DMO provides a set programming interface for administering and monitoring Microsoft® SQL Server™ replication,
including the ability to administer replication from heterogeneous computers. Here are the SQL-DMO objects used in replication:

Distributor object

DistributionDatabase object

DistributionPublisher object

DistributionPublication object

DistributionSubscription object

DistributionArticle object

RegisteredSubscriber object

Replication object

The SQL-DMO replication objects are a subset of the SQL-DMO COM object model. For information about how these object fit
into the larger replication object model, see Developing SQL-DMO Applications.

See Also

Distributor Object

DistributionArticle Object

DistributionDatabase Object

DistributionPublication Object

DistributionPublisher Object

DistributionSubscription Object

RegisteredSubscriber Object

Replication Object

Replication Programming (SQL Server 2000)

Replication Distributor Interface Reference
The Replication Distributor Interface can be used to enable Microsoft® SQL Server™ 2000 replication services on heterogeneous
databases. The Replication Distributor Interface is based on the OLE DB connection model. The objects are available using
Microsoft Visual C++® and the OLE library.

The Replication Distributor Interface exposes a Distribution object that is generated from a Session object. The Distribution
object is used to store replicated transactions in the distribution database on the SQL Server Distributor, and is used to log history
and error information.

The Replication Distributor Interface is implemented using these files:

Repldist.dll

Repldist.h

The Replication Distributor Interface objects, methods, properties, events, and structures can be found in the following topics.

Topic Description
Replication Distributor Interface Objects Description of Replication Distributor

Interface Distribution objects.
Replication Distributor Interface
Properties

Description of Replication Distributor
Interface properties.

Replication Distributor Interface Methods Description of Replication Distributor
Interface methods.

Replication Distributor Interface
Structures

Description of Replication Distributor
Interface structures.

See Also

Replication Distributor Interface Samples

Replication Programming (SQL Server 2000)

Replication Distributor Interface Objects
The Replication Distributor Interface exposes these objects.

Topic Description
DistributionLog Object Stores history and error information

about the Replication Distributor Interface.
DistributionStore Object Stores transactions in a Distributor.

Replication Programming (SQL Server 2000)

DistributionLog Object
The DistributionLog object stores history and error information about the Replication Distributor Interface. This information is
used to monitor replication.

Methods

AddLog Method

Replication Programming (SQL Server 2000)

DistributionStore Object
The DistributionStore object stores transactions in a Distributor. This is a custom interface supported only by the Distributor.

Methods

Abort Method

AddTransactionCommands Method

Commit Method

GetLastTransaction Method

StartTransaction Method

Replication Programming (SQL Server 2000)

Replication Distributor Interface Properties
This section defines the properties of the Replication Distributor Interface.

Replication Programming (SQL Server 2000)

DBPROP_APPLICATION_NAME Property
The DBPROP_APPLICATION_NAME property specifies the name of the application.

Applies To

DistributionStore Object

Syntax

object.DBPROP_APPLICATION_NAME

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_APPLICATION_TYPE Property
The DBPROP_APPLICATION_TYPE property specifies the Publisher application type. The application type can be either snapshot
or transactional (incremental updates).

Applies To

DistributionStore Object

Syntax

object.DBPROP_APPLICATION_TYPE

Data Type

VT_I1

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_AUTH_PASSWORD Property
The DBPROP_AUTH_PASSWORD property specifies the password used when connecting to the data source.

Applies To

DistributionStore Object

Syntax

object.DBPROP_AUTH_PASSWORD

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_AUTH_USERID Property
The DBPROP_AUTH_USERID property specifies the user ID used when connecting to the data source.

Applies To

DistributionStore Object

Syntax

object.DBPROP_AUTH_USERID

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_DBMSNAME Property
The DBPROP_DBMSNAME property specifies the name of the product accessed by the provider.

Applies To

DistributionStore Object

Syntax

object.DBPROP_DBMSNAME

Data Type

VT_BSTR

Modifiable

Read-only

Replication Programming (SQL Server 2000)

DBPROP_DBMSVER Property
The DBPROP_DBMSVER property specifies the version of the product accessed by the provider.

Applies To

DistributionStore Object

Syntax

object.DBPROP_DBMSVER

Data Type

VT_BSTR

Modifiable

Read-only

Replication Programming (SQL Server 2000)

DBPROP_INIT_DATASOURCE Property
The DBPROP_INIT_DATASOURCE property specifies the name of the distribution database to which to connect.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_DATASOURCE

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_LOCATION Property
The DBPROP_INIT_LOCATION property specifies the location of the Distributor to which to connect (typically, the server name).

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_LOCATION

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_PUBLISHERDATASOURCE Property
The DBPROP_INIT_PUBLISHERDATASOURCE property specifies the name of the Publisher database on whose behalf the
connection is made.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_PUBLISHERDATASOURCE

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_PUBLISHER_NAME Property
The DBPROP_INIT_PUBLISHER_NAME property specifies the name of the Publisher on whose behalf the connection is made.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_PUBLISHERNAME

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_TIMEOUT Property
The DBPROP_INIT_TIMEOUT property specifies the connection time-out.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_TIMEOUT

Data Type

VT_I4

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_XACT_SEQNO_SIZE Property
The DBPROP_INIT_XACT_SEQNO_SIZE property specifies the size of the transaction sequence number.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_XACT_SEQNO_SIZE

Data Type

VT_I1

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_INIT_XACTID_SIZE Property
The DBPROP_INIT_XACTID_SIZE property specifies the size of the transaction ID.

Applies To

DistributionStore Object

Syntax

object.DBPROP_INIT_XACTID_SIZE

Data Type

VT_I1

Modifiable

Read/write

Replication Programming (SQL Server 2000)

DBPROP_PUBLICATION_NAME Property
The DBPROP_PUBLICATION_NAME property specifies the name of the publication serviced by the application.

Applies To

DistributionStore Object

Syntax

object.DBPROP_PUBLICATION_NAME

Data Type

VT_BSTR

Modifiable

Read/write

Replication Programming (SQL Server 2000)

Replication Distributor Interface Methods
This section defines the methods of the Replication Distributor Interface.

Replication Programming (SQL Server 2000)

Abort Method
The Abort method rolls back the storage of transaction commands.

Applies To

DistributionStore Object

Syntax

HRESULT Abort();

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

Replication Programming (SQL Server 2000)

AddLog Method
The AddLog method adds history and error information to a distribution store.

Applies To

DistributionLog Object

Syntax

HRESULT AddLog(
DWORD dwStatusID,
LPSTR szComment,
BYTE* pXactSeqno,
ULONG ulTransactions,
ULONG ulCommands,
ULONG cErrorDescs,
const DISTERRORDESC rgErrorDescs[]);

Part Description
dwStatusID Status of the log message:

1 = STARTUP

2 = SUCCESS

3 = INPROGRESS

4 = RETRY

5 = FAILURE

szComment Log message text
XactSeqno Transaction sequence number
ulTransactions Number of transactions associated with this message
ulCommands Number of commands associated with this message
cErrorDescs Number of DISTCOMMANDDESC structures in the

rgCommandDesc array
rgErrorDescs Array of DISTERRORDESC structures that describe the replicated

command

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

See Also

DISTERRORDESC Structure

Replication Programming (SQL Server 2000)

AddTransactionCommands Method
The AddTransactionCommands method stores a group of replicated transaction commands. If the StartTransaction method is
not called before this method, AddTransactionsCommands uses an implicit transaction.

Applies To

DistributionStore Object

Syntax

HRESULT AddTransactionCommands(
ULONG cCommandDescs,
const DISTCOMMANDDESC rgCommandDescs []);

Part Description
cCommandDescs Number of DISTCOMMANDDESC structures in the

rgCommandDescs array
rgCommandDescs Array of DISTCOMMANDDESC structures that describe the

replicated command

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

See Also

DISTCOMMANDDESC Structure

Replication Programming (SQL Server 2000)

Commit Method
The Commit method commits the storage of the transaction commands.

Applies To

DistributionStore Object

Syntax

HRESULT Commit();

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

Replication Programming (SQL Server 2000)

GetLastTransaction Method
The GetLastTransaction method retrieves information about the last stored transaction.

Applies To

DistributionStore Object

Syntax

HRESULT GetLastTransaction(
BYTE* pXactID,
BYTE* pXactSeqno);

Part Description
XactID Transaction identifier that uniquely identifies the transaction. It can be

up to 255 bytes. The default is NULL.
XactSeqno Transaction sequence number that identifies the sequence in which

transactions are committed (in big-endian format). Transactions with
lower sequence numbers are committed first.

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

Replication Programming (SQL Server 2000)

StartTransaction Method
The StartTransaction method begins a transaction.

Applies To

DistributionStore Object

Syntax

HRESULT StartTransaction();

Remarks

The method returns S_OK if it succeeds and DB_E_ERROROCCURRED if it fails.

Replication Programming (SQL Server 2000)

Replication Distributor Interface Structures
This section defines the structures exposed by the Replication Distributor Interface.

Replication Programming (SQL Server 2000)

DISTCOMMANDDESC Structure
This is the definition of the DISTCOMMANDDESC structure.

Syntax

typedef struct tagDISTCOMMANDDESC{
INT PublicationID;
INT ArticleID;
INT CommandID;
DISTCMDTYPE CommandType;
BOOL fPartialCommand;
LPSTR szCommand;
BYTE* pXactID;
BYTE* pXactSeqno;
LPSTR szOriginator;
LPSTR szOriginatorDB;
} DISTCOMMANDDESC;

Part Description
PublicationID Publication ID.
ArticleID Article ID.
CommandID Uniquely identifies commands within a transaction. Each

command added to a transaction should have a unique,
monotonically increasing command ID.

CommandType Identifies the type of the command. The Microsoft® SQL Server™
Distribution Agent can handle the following command types:

SQL_CMDTYPE_SQL = Transact-SQL command.

SQL_CMDTYPE_SCRIPT = File path to a Transact-SQL script
file.

SQL_CMDTYPE_NATIVE_BCP = File path to a .bcp file in
native format.

SQL_CMDTYPE_CHAR_BCP = File path to a .bcp file in
character format.

SQL_CMDTYPE_WORKINGDIR = File path to the directory
in which snapshot files are stored. Used by the Distribution
Cleanup Agent.

fPartialCommand Determines whether the command wraps more than one row.
szCommand Command text.
pXactID Pointer to the transaction ID.
pXactSeqno Pointer to the transaction sequence number.
szOriginator Name of the originating server.
szOriginatorDB Name of the originating database.

Replication Programming (SQL Server 2000)

CommandType Text Formats
CommandType Text Formats

 New Information - SQL Server 2000 SP3.

The CommandType member of the DISTCOMMANDDESC structure requires specific text formatting when specifying these items

Transact-SQL data types

Working directories

Schema files

bcp files

Transact-SQL Data Types

When using DISTCMDTYPE_SQL, data types in Transact-SQL statements have these formats.

Data type Format Comment
Datetime
 datetime
 smalldatetime

{ts 'yyyy'mm'dd
hh'mm'ss[.mmm]'}

Milliseconds are optional.

Binary
 binary
 varbinary

{b 'data'} Where data is one or more characters
within the range: [0-9a-f]. It should not
contain a leading 0x.

Long Binary
 image

{lb 'data'} Where data is one or more characters
within the range: [0-9a-f]. It should not
include a leading 0x.

Character
 char
 varchar

'data' Where data is any sequence of characters.
Single quotation marks within the data
portion must be expanded to two
adjacent single quotation marks.

Long Character
 text

{lc 'data'} Where data is any sequence of characters.
Single quotation marks within the data
portion must be expanded to two
adjacent single quotation marks.

Working Directories

When using DISTCMDTYPE_SQL_WORKINGDIR, include escape characters (\) in the file paths.

const char szWorkingDir[] = "c:\\Program Files\\Microsoft SQL Server\\mssql\\repldata\\unc\\samppub\\";
DISTCOMMANDDESC aCommand[60];
INT NumCommands = 0;
DistByteArray XactId;
DistByteArray XactSeqno;

// Initialize command array
memset(aCommand, 0, sizeof(DISTCOMMANDDESC) * 60);

// Set working directory.
NumCommands++;
aCommand[0].PublicationId = 1;
aCommand[0].ArticleId = 1;
aCommand[0].CommandId = NumCommands;
aCommand[0].CommandType = DISTCMDTYPE_SQL_WORKINGDIR;
aCommand[0].fPartialCommand = FALSE;
aCommand[0].pXactId = (BYTE *)&XactId;
aCommand[0].pXactSeqno = (BYTE *)&XactSeqno;
aCommand[0].szOriginator = NULL;
aCommand[0].szOriginatorDB = NULL;
aCommand[0].szCommand = (LPSTR)szWorkingDir;

Schema Files

When using DISTCMDTYPE_SCRIPT, include escape characters (\) in file paths.

const char szScriptCmd[] = "c:\\Program Files\\Microsoft SQL
Server\\mssql\\repldata\\unc\\samppub\\samptab.sch";
DISTCOMMANDDESC aCommand[60];
char pszCmdBuf[60][255];
INT NumCommands = 0;
DistByteArray XactId;
DistByteArray XactSeqno;

// Initialize command array
memset(aCommand, 0, sizeof(DISTCOMMANDDESC) * 60);

// Execute script - table schema.
NumCommands++;
aCommand[0].PublicationId = 1;
aCommand[0].ArticleId = 1;
aCommand[0].CommandId = NumCommands;
aCommand[0].CommandType = DISTCMDTYPE_SCRIPT;
aCommand[0].fPartialCommand = FALSE;
aCommand[0].pXactId = (BYTE *)&XactId;
aCommand[0].pXactSeqno = (BYTE *)&XactSeqno;
aCommand[0].szOriginator = NULL;
aCommand[0].szOriginatorDB = NULL;

strncpy(pszCmdBuf[0], szScriptCmd, 255);
aCommand[0].szCommand = pszCmdBuf[0];

Use this format in .sch files:

SET QUOTED IDENTIFIER ON
GO
SET ANSI_PADDING OFF
GO
CREATE TABLE [Samptbl1] (C1 INT, C2 VARCHAR(20))
GO

bcp Files

When using DISTCMDTYPE_CHAR_BCP or DISTCMDTYPE_NATIVE_BCP, you can use these switches with the sync command.

Switch Description
-t Destination table.
-o Destination owner.
-d Data file.
-f Field delimiter. Default field delimiter: \n<x$3>\n
-r Row delimiter. Default row delimiter: \n<,@g>\n
-u Unicode. This switch applies only when using DISTCMDTYPE_NATIVE_BCP

type bcp files.
-m Denotes that the file is a character bcp file with a Unicode marker at the

beginning of the file.

Include escape characters (\) in file paths. Begin switch arguments with quotation marks (") and end the arguments with a
backslash and quotation marks (\").

const char szBCPCmd[] = "sync -t\"SampTable1\" -d\"c:\\Program Files\\Microsoft SQL
Server\\mssql\\repldata\\unc\\samppub\\samptab.bcp\" -u";
DISTCOMMANDDESC aCommand[60];
char pszCmdBuf[60][255];
INT NumCommands = 0;
DistByteArray XactId;
DistByteArray XactSeqno;

// Initialize command array
memset(aCommand, 0, sizeof(DISTCOMMANDDESC) * 60);

// Import data - char bcp.
NumCommands++;
aCommand[0].PublicationId = 1;
aCommand[0].ArticleId = 1;
aCommand[0].CommandId = NumCommands;

aCommand[0].CommandType = DISTCMDTYPE_CHAR_BCP;
aCommand[0].fPartialCommand = FALSE;
aCommand[0].pXactId = (BYTE *)&XactId;
aCommand[0].pXactSeqno = (BYTE *)&XactSeqno;
aCommand[0].szOriginator = NULL;
aCommand[0].szOriginatorDB = NULL;

strncpy(pszCmdBuf[0], szBCPCmd, 255);
aCommand[0].szCommand = pszCmdBuf[0];

Replication Programming (SQL Server 2000)

DISTERRORDESC Structure
This is the definition of the DISTERRORDESC structure.

Syntax

typedef struct tagDISTERRORDESC{
INT SourceType;
CHAR szSourceName[31];
CHAR szErrorCode[31];
BSTR bstrErrorText;
} DISTERRORDESC;

Part Description
SourceType Identifies the type of the command. Microsoft® SQL Server™ 2000

supports the following command types:

APPLICATION

DISTOLE

OS

szSourceName Name of the component responsible for the error (for example,
ODBC).

szErrorCode Error code string of the source.
bstrErrorText Error text.

Replication Programming (SQL Server 2000)

Replication Programming Samples
The following samples illustrate Microsoft® SQL Server™ 2000 replication application development in various environments and
languages, including Transact-SQL , Microsoft Visual C++®, and Microsoft Visual Basic®. The samples and associated headers
and libraries are required for successful execution of several sample applications.

To install the samples and related headers and libraries using the SQL Server Installation Wizard

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

3. In the Select Sub-Components dialog box, select Replication.

4. On the Select Components page, under Components, select Development Tools.

5. In the Select Sub-Components dialog box, select Headers and Libraries.

After installation is complete, if you have accepted the default installation location, the path C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\sqlrepl will be on your computer. The sqlrepl directory contains an executable file,
unzip_sqlrepl.exe, which expands the samples into useable files. Double-click unzip_sqlrepl.exe, and you will be prompted to
enter that path to the folder where you want the samples stored. The samples assume that the default is selected, and samples are
not installed to an alternate location. The expansion adds several subdirectories to sqlrepl.

The Visual C++ samples were tested with Visual C++ version 6.0, Service Pack 3. The Visual Basic samples were tested with Visual
Basic version 6.0, Service Pack 3. The samples have been run on Microsoft Windows NT® version 4.0, Service Pack 6, and on
Microsoft Windows® 2000 operating systems. They have not been compiled or tested on any other hardware platform supported
by any other compiler.

For Visual C++ samples to compile, header and libraries file paths must be set properly to obtain the required replication files.
After installation, set your project options for include files to C:\Microsoft SQL Server\80\Tools\Devtools\Include, and set your
options for the library files to C:\Microsoft SQL Server\80\Tools\Devtools\Lib.

Replication Programming (SQL Server 2000)

Replication Syntax Conventions
Replication programming samples use the following conventions to distinguish elements of text.

Convention Used for
UPPERCASE Constants and enumerated data types.
courier new Sample command lines and program code.
italic Information that the user or the application must provide.
bold Replication component objects; object events, methods or

properties; data types; and other syntax that must be typed
exactly as shown.

Replication Programming (SQL Server 2000)

Replication ActiveX Control Samples
Microsoft® SQL Server™ 2000 comes with the following sample applications to help you use Microsoft ActiveX® replication
controls in your application.

Sample Description
Using SQL Merge and SQL
Distribution Controls in a
Custom Visual Basic
Application

Microsoft Visual Basic® sample that demonstrates
how to include the SQL Distribution and SQL Merge
controls in a custom application.

Using SQL Merge and SQL
Distribution Controls in a
Custom Visual C++
Application

Microsoft Visual C++® sample that demonstrates
how to include the SQL Distribution and SQL Merge
controls in a custom application.

Using SQL Merge and SQL
Distribution Controls in a
Custom Web Application

HTML sample that demonstrates how to include the
SQL Distribution and SQL Merge controls in a custom
application.

Creating a Transformable
Subscription Using Visual Basic

Visual Basic sample that creates and saves a Data
Transformation Services (DTS) package to DTS
LocalPackages. The package contains Data Driven
Query code to synchronize a subscription, and
ActiveX code to transform the data before it is
entered into the subscription database.

Replication Programming (SQL Server 2000)

Using SQL Merge and SQL Distribution Controls in a Custom
Visual Basic Application
The programs in the replctrl folder are samples of how to include the SQL Merge and SQL Distribution controls in a custom
application. This sample is located in C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To run the sample programs

1. On the computer that will be a Publisher with a local Distributor, verify that the SQL Server Agent is running. If it is not
running, start it.

2. Open SQL Query Analyzer, open \Samples\sqlrepl\replctrl\instsamp.sql, and then run instsamp.sql. This SQL script
configures the computer for publishing and distribution, enables the computer as a Subscriber, adds a distribution database
with the name distributor, creates a transactional publication named SampleTransactionalPublication, and creates a merge
publication named SampleMergePublication.

3. The instsamp.sql script creates pull and push subscriptions for each publication and creates and configures a database
called Northwind_replica as the subscription database. Any warnings from the script regarding tables that have been
created with a maximum row size that exceeds the maximum number of bytes per row can be ignored. The computer is now
configured as a Publisher with a local Distributor and enabled as a Subscriber.

The Northwind publication database will have two publications: SampleTransactionalPublication and
SampleMergePublication. The instance of SQL Server contains a new subscription database, Northwind_replica.

4. After the instsamp.sql script has completed successfully, in SQL Server Enterprise Manager, expand Replication Monitor,
expand the Agents folder, and then click the Snapshot Agents folder. In the right pane, for each agent listed, right-click,
and then click Start Agent. This starts the Snapshot Agents for each publication and creates a snapshot for each publication.

5. Start Visual Basic, and then open \Samples\sqlrepl\replctrl\VB\replsamp.vbp.

6. On the Project menu, click References, and then in the Available References list, verify that the following controls are
selected:

Microsoft SQL Distribution Control 8.0

Microsoft SQL Merge Control 8.0

Microsoft SQL Snapshot Control 8.0

Microsoft SQL Replication Errors 8.0

7. On the File menu, click Make ReplSamp.exe, and then save the executable to a directory.

8. Run replsamp.exe. The following options will be displayed:

Generate Snapshot for Transactional Publication

Creates a snapshot for the Northwind transactional publication. The snapshot activity can be monitored interactively in SQL
Server Enterprise Manager using Replication Monitor and the Agents folder.

Generate Snapshot for Merge Publication

Creates a snapshot for the Northwind merge publication. The snapshot activity can be monitored interactively in SQL Server
Enterprise Manager using Replication Monitor and the Agents folder.

Update Transactional Subscription Tables

Runs the Distribution Agent and applies the snapshot and schema at the subscription database, Northwind_replica. After
the SQL Replication Sample dialog box shows that the task has completed, the Northwind_replica subscription database
shows the new tables. The distribution activity can be monitored interactively in SQL Server Enterprise Manager using
Replication Monitor and the Agents folder.

Update Merge Subscription Tables

Runs the Merge Agent and applies the snapshot data and schema at the merge subscription database, Northwind_replica.
After the SQL Replication Sample dialog box shows that the task has completed, the Northwind_replica subscription
database shows the new tables. The merge activity can be monitored interactively in SQL Server Enterprise Manager using
Replication Monitor and the Agents folder.

Replication Programming (SQL Server 2000)

Using SQL Merge and SQL Distribution Controls in a Custom
Visual C++ Application
The programs in the replctrl folder are samples of how to include the SQL Merge control and the SQL Distribution control in a
custom application. This sample is located in C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To run the sample programs

1. On the computer that will be a Publisher with a local Distributor, verify that the SQL Server Agent is running. If it is not
running, start it.

2. Open SQL Query Analyzer, open \Samples\sqlrepl\replctrl\instsamp.sql, and then run instsamp.sql. This SQL script
configures the computer for publishing and distribution, enables the computer as a Subscriber, adds a distribution database
with the name distributor, creates a transactional publication named SampleTransactionalPublication, and creates a merge
publication named SampleMergePublication.

3. The instsamp.sql script creates pull and push subscriptions for each publication and creates and configures a database
called Northwind_replica as the subscription database. Any warnings from the script regarding tables that have been
created with a maximum row size that exceeds the maximum number of bytes per row can be ignored. The computer is now
configured as a Publisher with a local Distributor and is enabled as a Subscriber. The Northwind database will have two
publications: SampleTransactionalPublication and SampleMergePublication. The instance of SQL Server contains a new
subscription database, Northwind_replica.

4. After the instsamp.sql script has completed successfully, in SQL Server Enterprise Manager, expand Replication Monitor,
expand the Agents folder, and then click the Snapshot Agents folder. In the right pane, for each agent listed, right-click,
and then click Start Agent. This starts the Snapshot Agent and creates a snapshot for each publication.

To use the Microsoft Visual C++® sample code that demonstrates how to include the SQL Distribution control and the SQL
Merge control in a custom application, the two programs must first be built into executables.

To build the distribution sample executable using Visual C++

1. Open Visual C++. On the main menu, click File, click Open Workspace, navigate to the C:\Program Files Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp directory, and then open distsamp.dsw.

2. On the Tools menu, click Options, and then on the Directories tab, in the Show directories for drop-down list, select
Include files. Add the path C:\Program Files Microsoft SQL Server\80\Tools\Devtools\Include. This path assumes the
samples were installed to the default directory. If this path does not exist, navigate to the path where the include files were
installed.

3. On the Directories tab, in the Show directories for drop-down list, click Library files, and then add the path C:\Program
Files Microsoft SQL Server\80\Tools\Devtools\Lib.

This path assumes the samples were installed to the default directory. If this path does not exist, navigate to the path where
the Lib files were installed.

4. On the Build menu, click Build distsamp.exe. The default location of the resulting distsamp.exe will be in C:\Program Files
Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Debug or C:\Program Files Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Release, depending on the build configuration.

To build the distribution sample executable using a batch command

1. Open a command prompt window.

2. Navigate to C:\Program Files Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp.

3. Run the batch file builddst.cmd with the following parameters:

builddst.cmd [x86] [debug|retail] [clean]

Enter builddst.cmd /? for help.

To run the sample, run the executable from its location using a command prompt window.

The distsamp.exe sample activates the Distribution Agent and moves the data from the snapshot into the tables defined as
articles for the transactional subscription in the database Northwind_replica.

To build the merge sample executable using Microsoft Visual C++

1. Open Visual C++. On the main menu, click File, click Open Workspace, and then navigate to the C:\Program Files
Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp directory and open mergsamp.dsw.

2. On the Tools menu, click Options, and then on the Directories tab, in the Show directories for drop-down list, click
Include files. Add the path C:\Program Files Microsoft SQL Server\80\Tools\Devtools\Include.

This path assumes the samples were installed to the default directory. If this path does not exist, navigate to the path where
the include files were installed.

3. On the Directories tab, in the Show directories for drop-down list, click Library files, and then add the path C:\Program
Files Microsoft SQL Server\80\Tools\Devtools\Lib.

This path assumes the samples were installed to the default directory. If this path does not exist, navigate to the path where
the Lib files were installed.

4. On the Build menu, click Build mergsamp.exe. The default location of the resulting mergsamp.exe will be in C:\Program
Files Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Debug or C:\Program Files Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp\Release, depending on the build configuration.

To build the merge sample executable using a batch command

1. Open a command prompt window.

2. Navigate to C:\Program Files Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\replctrl\cpp.

3. Run the batch file buildmrg.cmd with the following parameters:

buildmrg.cmd [x86] [debug|retail] [clean]

Enter buildmrg.cmd /? for help.

To run the sample, run the executable from its location using a command prompt window.

The mergsamp.exe sample activates the Merge Agent and moves data from the snapshot into the tables defined as articles for
the merge subscription in the Northwind_replica_html database.

Replication Programming (SQL Server 2000)

Using SQL Merge and SQL Distribution Controls in a Web
Application
The programs in the replctrl folder are samples of how to include the SQL Merge control and the SQL Distribution control in a
custom application. This sample is located in C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\sqlrepl\replctrl.

To run the sample programs

1. On the computer that will be a Publisher with a local Distributor, verify that the SQL Server Agent is running. If it is not
running, start it.

2. Open SQL Query Analyzer, open \Samples\sqlrepl\replctrl\instsamp.sql, and then run instsamp.sql. This SQL script
configures the computer for publishing and distribution, enables the computer as a Subscriber, adds a distribution database
with the name distributor, creates a transactional publication named SampleTransactionalPublication and a merge
publication named SampleMergePublication. instsamp.sql creates a Snapshot Agent for both publications.

3. The instsamp.sql creates pull and push subscriptions for each publication and creates and configures a database called
Northwind_replica as the subscription database. Any warnings from the script regarding tables that have been created
with a maximum row size that exceeds the maximum number of bytes per row can be ignored.

The Northwind database will have two publications: SampleTransactionalPublication and SampleMergePublication. The
SQL Server contains a new subscription database, Northwind_replica.

4. After the instsamp.sql script has completed successfully, in SQL Server Enterprise Manager, expand Replication Monitor,
expand the Agents folder, and then click the Snapshot Agents folder. In the right pane, for each agent listed, right-click,
and then click Start Agent. This starts the Snapshot Agent and creates a snapshot for each publication.

To modify the HTML sample program

1. Open the \Samples\sqlrepl\replctrl\html\replsamp.htm file in Notepad or other HTML editor. There are comments in the file
noting that the local computer name needs to be specified in the line of code following the comment.

2. Save and the file.

To execute the HTML sample program

Using Microsoft Internet Explorer or another Internet browser, open the replsamp.htm file. These options are available:

Synchronize Transactional Subscription

Runs the Distribution Agent and applies the snapshot data and schema at the subscription database, Northwind_replica. After
the HTML page has completed, the snapshot will be applied, and the Northwind_replica database will show the new tables, with
each table corresponding to an article from the publication. The distribution activity can be monitored interactively in SQL Server
Enterprise Manager using Replication Monitor and the Agents folder.

Synchronize Merge Subscription

Runs the Merge Agent and applies the snapshot data and schema at the subscription database, Northwind_replica. After the
HTML Page has completed, the snapshot will be replicated, and the Northwind_replica database will show the new tables, with
each table corresponding to an article from the publication. The merge activity can be monitored interactively in SQL Server
Enterprise Manager using Replication Monitor and the Agents folder.

Replication Programming (SQL Server 2000)

Creating a Transformable Subscription Using Visual Basic
 New Information - SQL Server 2000 SP3.

Advanced users familiar with the Data Transformation Services (DTS) object model can build their own transformable
subscription DTS packages in Microsoft® Visual Basic™. For information about programming to the DTS object model, see DTS
Programming Reference.

A transformable subscription is a subscription in which the data is modified as it flows from Publisher to Subscriber. In replication
programming, a Visual Basic program for a transformable subscription closely resembles that of a DTS Visual Basic program used
outside of replication. This sample is located in C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\sqlrepl\repldts.

How to Run the Transformable Subscription Sample

The program in the repldts folder is a sample of how to write a transformable subscription using Visual Basic.

To run the sample program

1. On the computer that will be a Publisher with a local Distributor, verify that the SQL Server Agent is running. If it is not, start
it.

2. Open Visual Basic 6.0. Open ReplDTS.vbp, and then open the code window for ModReplDTS (ReplDTS.bas).

3. Select the following Project / References:

Microsoft DTSPackage Object Library (required)

Microsoft DTSDataPump Scripting Object Library (required to use a Microsoft ActiveX® script or custom
transformation)

Microsoft DTS Custom Tasks Object Library (required to use one of the DTS custom tasks)

4. Edit the following line of code to include your own connection information:

goPackage.SavetoSQLServer "MyServerName", "MyLoginName", "MyPassword"

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

5. In Visual Basic, start the ReplDTS program.

6. When the program is finished executing, you should receive a message indicating the Employees package was saved
successfully. When you receive this message, save the project, and then close Visual Basic.

7. In SQL Server Enterprise Manager, ensure that your server is configured for replication.

8. In SQL Server Enterprise Manager, click Data Transformation Services, click Local Packages, and then on the Action
menu, click Refresh to refresh the view. The package Employees should appear in the right pane.

9. Open SQL Query Analyzer, open the repldts.sql script supplied with sample, and then edit the @subscriber parameter of
sp_addsubscription so that it contains your server name. The sp_addsubscription stored procedure is the last SQL
statement in the file.

10. Run the repldts.sql script. You can run the entire script at once, or you can run the script a block at a time and check each
message.

11. After the repldts.sql script has completed successfully, in SQL Server Enterprise Manager, expand Replication Monitor,
expand the Agents folder, and then click the Snapshot Agent folder.

http://go.microsoft.com/fwlink/?LinkId=9504

12. In the right pane, right-click the Snapshot Agent for the Employees publication, and then click Start Agent.

13. When the Snapshot Agent has completed, view or query the data in MyEmployees table of the subscription database
ReplDTS_SubDB, and then compare it to the data in the Employees table of the publication database ReplDTS_PubDB.

14. The Address column of the MyEmployees table in the subscription database, ReplDTS_subDB, contains data
concatenated from several columns of the Employees table of the publication database.

Examining the Sample Code

This section describes key parts of the sample Visual Basic program.

The Publisher connection is always set to the Microsoft SQL Server Replication OLE DB Provider for DTS. This is specified in
the section of code where the connections are created. In addition, a required property specified for this provider is the
column list for ConnectionProperties, which provides DTS Designer with the number and names of the source columns in
the package. The Subscriber connection (not shown here) is set to the Microsoft OLE DB Provider for SQL Server.

Dim oConnection As DTS.Connection
Set Connection = goPackage.Connections.New("SQLReplication.OLEDB")
oConnection.Name = "Publisher article 'Employees'"
oConnection.ID = 1
oConnection.ConnectImmediate = False
oConnection.ConnectionProperties("Column List") = _
 "[EmployeeID],[LastName],[FirstName],[Title],
 [BirthDate],[HireDate],[Address],[City],[Region],
 [PostalCode],[Country],[HomePhone],[Extension]
 [ReportsTo]"
goPackage.Connections.Add oConnection
Set oConnection = Nothing

If the destination table schema is not defined, use an Execute SQL custom task containing an SQL statement to generate the
schema for the destination (Subscriber) table.

Use additional Execute SQL custom tasks to define SQL scripts to be applied after the data has been copied to the
destination (for example, a script containing index generation statements (not shown)).

Use the following conventions when naming tasks in a replication DTS program (required by the replication agents):

For a Data Driven Query task, the task name is the same as the article name.

For custom tasks, such as an Execute SQL task, the name is a concatenated string consisting of the article name, the
prefix "pre" (if the task executes before the snapshot data is copied) or "post" (if the task executes after the snapshot
data is copied), and an optional part ("ignore_error") if an instruction is given to continue program execution when a
query script error is encountered. To determine what the name should be, run sp_helparticledts in SQL Query
Analyzer. For more information, see sp_helparticledts.

In the following code sample, the Execute SQL task name "Employees_pre_ignore_error" (line 5) means that the article name
is Employees, the task occurs before the snapshot data is copied, and that program execution should continue if a script
error is encountered.

Dim oTask As DTS.Task
Dim oCustomTask0 As DTS.ExecuteSQLTask
Set oTask = goPackage.Tasks.New("DTSExecuteSQLTask")
Set oCustomTask0 = oTask.CustomTask
oCustomTask0.Name = "Employees_pre_ignore_error"
oCustomTask0.Description = "Pre script for article employees"
oCustomTask0.SQLStatement = _
 "If object_id('MyEmployees') is NOT NULL _
 BEGIN Drop Table MyEmployees END _
 Create Table MyEmployees _
 ([EmployeeID] [int] NOT NULL,
 [LastName] [nvarchar] (20) NOT NULL,

 [FirstName] [nvarchar] (10) NOT NULL,
 [Title] [nvarchar] (30) NULL,
 [Birthdate] [datetime] NULL,
 [HireDate] [datetime] NULL,
 [Address] [nvarchar] (255) NULL,
 [HomePhone] [nvarchar] (24) NULL,
 [Extension] [nvarchar] (4) NULL,
 [ReportsTo] [int] NULL,
 CONSTRAINT [PK_Employees] PRIMARY KEY _
 CLUSTERED([EmployeeID]))"
CustomTask0.ConnectionID = 2
goPackage.Tasks.Add oTask
Set CustomTask0 = Nothing
Set oTask = Nothing

With transformable subscriptions, data movement is always done with a Data Driven Query task, never with a Transform
Data task, which is commonly used in DTS packages that do not use replication. Therefore, you must define a Data Driven
Query custom task:

Dim oTransformation As DTS.Transformation
Dim oTransProps As DTS.Properties
Dim oColumn As DTS.Column
Dim oCustomTask1 As DTS.DataDrivenQueryTask
Set oTask = goPackage.Tasks.New("DTSDataDrivenQueryTask")
Set oCustomTask1 = oTask.CustomTask
oCustomTask1.Name = "Employees"
oCustomTask1.Description = "Transformations for article Employees"
oCustomTask1.SourceConnectionID = 1
oCustomTask1.SourceObjectName = "nothing" 'Experiment
oCustomTask1.DestinationConnectionID = 2
oCustomTask1.DestinationObjectName = "MyEmployees"

Among the properties you need to define for the Data Driven Query task are the parameterized queries associated with
each type of incremental update (INSERT, UPDATE, and DELETE). The parameterized query works by selecting for data
movement source rows that satisfy the conditions in the query statement.

oCustomTask1.InsertQuery = "INSERT INTO _
 MyEmployees values (?,?,?,?,?,?,?,?,?,?)"
oCustomTask1.UpdateQuery = "UPDATE _MyEmployees _
 SET LastName=?, FirstName=?, Title=?, Birthdate=?, _
 HireDate=?, Address=?, HomePhone=?, Extension=?, _
 ReportsTo=? where EmployeeID=?"
oCustomTask1.DeleteQuery = "DELETE MyEmployees _
 WHERE EmployeeID = ?"

Another essential set of operations is setting the source and destination column collections. Because one of the transform
operations performed by the DTS package is a concatenation of several of the source columns, the number of destination
columns added to the destination collection is fewer than the number of source columns added to the source collection. An
example of one source column and one destination column added to their respective collections is shown here. The column
"Address" for the destination is actually the concatenation of the source columns "Address", "City", "Region", and "Postal
Code".

Set oColumn = oTransformation.DestinationColumns.New("HireDate", 6)
oColumn.Name = "HireDate"
oColumn.Ordinal = 6
oTransformation.DestinationColumns.Add oColumn
Set oColumn = Nothing
...

Set oColumn = oTransformation.DestinationColumns.New("Address", 7)
oColumn.Name = "Address"

oColumn.Ordinal = 7
oTransformation.DestinationColumns.Add oColumn
Set oColumn = Nothing
...

To complete the Data Driven Query task transformation, add column definitions (in sequential order) to each of the
incremental update operations described earlier. For example, because an INSERT operation was defined with parameters
for the 10 destination columns of the article, INSERT column definition code for each of the 10 columns is required (only the
first two are shown here):

Set oColumn = oCustomTask1.InsertQueryColumns.New("EmployeeID", 1)
oColumn.Name = "EmployeeID"
oColumn.Ordinal = 1
oCustomTask1.InsertQueryColumns.Add oColumn
Set oColumn = Nothing

Set oColumn = oCustomTask1.InsertQueryColumns.New("LastName", 2)
oColumn.Name = "LastName"
oColumn.Ordinal = 2
oCustomTask1.InsertQueryColumns.Add oColumn
Set oColumn = Nothing
...

Similar code is used for the UPDATE and DELETE queries. When defining the columns for those queries, remember that the
order of the columns must follow the order of the parameters specified by the question mark (?) characters in the
InsertQuery and DeleteQuery definitions. For example, in this sample, the DELETE query uses only the EmployeeId
column; therefore, only code for that column is used.

Set oColumn = oCustomTask1.DeleteQueryColumns.New("EmployeeID", 1)
oColumn.Name = "EmployeeID"
oColumn.Ordinal = 1
oCustomTask1.DeleteQueryColumns.Add oColumn
Set oColumn = Nothing

In the example, a Microsoft ActiveX® script performs the actual transformation of data, which is the concatenation of
several columns. The entire ActiveX script code should be viewed in the sample. This example shows how to set the
transform server property to handle scripts, and how to set the line of script code used to perform the column
concatenation.

Set oTransProps = oTransformation.TransformServerProperties
...
oTransProps("Text") = oTransProps("Text") &
 " DTSDestination(""Address"") = DTSSource(""Address"") _
 & "","" & DTSSource(""City"") &"",""& DTSSource(""Region"") _
 &"",""& DTSSource(""PostalCode"")" & vbCrLf
...

Transformable subscription DTS packages are typically saved to an instance of SQL Server. They can also be saved as a .dts
structured storage file, but cannot be saved to the repository. In the following line of code, the package is saved to an
instance of SQL Server:

Security Note Avoid storing credentials in a file. If possible, prompt users to enter their credentials at run time. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

GoPackage.SaveToSQLServer "myServerName", "myUserName", "myPassword"
...

DTS includes several options for handling data conversions. These options are handled by a set of transformation flags
whose values can be viewed in the Visual Basic Object Browser under the DTSPump component, DTSTransformFlags
enumeration. When building a replication DTS package in Visual Basic, if an ActiveX script transformation is used, as in this
sample, the transformation flags do not need to be explicitly set. If you build a replication DTS package without ActiveX
scripts (using only Copy Column mappings), the TransformFlags property must be explicitly set to

http://go.microsoft.com/fwlink/?LinkId=9504

DTSTransformFlag_Default (a value of 63).

oTransformation.TransformFlags = 63

Replication Programming (SQL Server 2000)

Merge Replication Samples
Microsoft® SQL Server™ 2000 comes with the following samples to help you implement merge replication in your application.

Sample Description
Subscriber-Based Resolver using C++ and
a Stored Procedure

Microsoft Visual C++ language sample
that builds a stored procedure custom
resolver to use in merge replication.

Transact-SQL Custom Stored Procedure
Resolver

Transact-SQL stored procedure that is the
custom resolver used in a merge
replication.

Generating Merge Dynamic Snapshot
Jobs

The procedures in this sample show how
to enumerate a list of users from within a
Microsoft Windows® group and generate
dynamic snapshot jobs for each user.

Replication Programming (SQL Server 2000)

Subscriber-Based Resolver Using C++ and a Stored Procedure
This sample application builds a custom stored procedure resolver that executes the stored procedure at the Subscriber. It
contains a sample script to set up a publication on Northwind, and install the sample resolver that calls sp_authority_resolver.
sp_authority_resolver retrieves the 'authority' value from the table at the Publisher and Subscriber, and the row with the highest
authority will win and be returned to the merge process to be applied to both servers. If both rows have the same authority, the
source table will win. The Microsoft® Visual C++ sample code is located in the \Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\resolver\subspres directory.

To run the sample program

1. On the computer that will be the Publisher, verify that the SQL Server Agent is running. If it is not running, start it.

2. Verify that the computer is configured for publishing and distribution If it is not configured, configure it using the Configure
Publishing and Distribution Wizard. The defaults given in the wizard are all acceptable for this sample.

Enterprise Manager

Enterprise Manager
3. Compile and register the Visual C++ program by running the build.cmd file, located in the resolver\subspres directory.

After successful build and registration, the message "DllRegisterServer in C:\Program Files\Microsoft SQL
Server\80\COM\subspres.dll succeeded" is shown.

4. Run the subspres.bat file.

This batch:

Creates a publication database named pubdb.

Creates a subscription database named subdb.

Creates tables in the publication and subscription databases that are required for replication.

Creates a merge publication that includes the testdata table as a table article.

Creates the resolver stored procedure, sp_authority_resolver, in the subscription database, subdb.

Sets the stored procedure, sp_authority_resolver, as the article resolver.

The command prompt window provides messages as the subspres.bat file executes. The messages show that a record is being
updated at the Publisher and Subscriber with the same authority, so the Publisher record wins. The next update has an authority
of 9 at the Publisher and an authority of 10 at the Subscriber, so the Subscriber update wins. The last update is with the
Subscriber authority set to 9 and the Publisher authority set to 10, so the Publisher wins.

See Also

Custom Stored Procedure Conflict Resolver

Merge Replication Conflict Detection and Resolution

Replication Programming (SQL Server 2000)

Transact-SQL Custom Stored Procedure Resolver
The program in the C:\Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\deflt_sp directory is a sample application, which
builds a custom stored procedure resolver that executes at the Publisher. The resolver uses the Northwind sample database, a
distributed query to obtain information from the Subscriber, and then computes the average price if the values between the
Publisher and Subscriber are different. The resolver then makes the average price the resolved value, and logs the conflict at the
Publisher so it can be viewed, and if necessary, changed. Finally, the application sends an e-mail stating that the price was
changed to an average due to a conflict. If any columns other than price have changed, the resolver uses the values from the
Publisher.

The resolver is designed to run on the Products table in Northwind sample database. It is assumed that the sample code was
saved to the default directory offered during installation, and that the files can be found in C:\Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\deflt_sp.

Note To run this sample, two computers are required. For the distributed query to work, the two computers must both be
running the Microsoft Windows NT 4.0 or Windows 2000 operating system, or the Publisher must be running on Windows 2000
with the linked server running on Windows NT 4.0.

To run the sample program

1. On the computer that will be the Publisher, verify that the SQL Server Agent is running. If it is not running, start it.

2. Using the Create Publication Wizard, create a merge publication based on the Northwind database, and then select the
Products table as an article in the publication.

How to create publications and define articles

Enterprise Manager

Enterprise Manager

1. On the Publisher, in SQL Query Analyzer, open \Samples\sqlrepl\deflt_sp\avgprice.sql. The script contains parameters that
are required in a conflict resolver. For more information about the use of each field defined, see Custom Stored Procedure
Conflict Resolver. In the script, modify the sendmail @recipients variable and uncomment all the comment blocks for the e-
mail if the stored procedure is to send e-mail when executed.

2. In SQL Query Analyzer, on the Query menu, click Execute to run the script and create a new stored procedure named
sp_avgprice in the Northwind database. To view the results of the execution, in the Northwind database, click Stored
Procedures in the left pane, and then double-click sp_avgprice in the right pane.

3. Using SQL Server Enterprise Manager, set the publication to use the custom resolver sp_avgprice. Expand the Replication
folder, expand the Publications folder, right-click the publication name in the left pane, and then select Properties.

4. On the Articles tab, select the article properties button (...) for the Products table article. In the Table Article Properties
dialog box, click the Resolver tab, and then click Use this custom resolver (registered at the Distributor). In the list box,
click Microsoft SQL Server stored procedure resolver, and in Enter information needed by the resolver , enter
sp_avgprice. You will receive a warning message that the Products table has references to other tables; close this message.

5. Set up a linked server for the Subscriber and enable the server to allow distributed query access. To set up the linked server,
use SQL Server Enterprise Manager at the Publisher. Expand the appropriate SQL Server group, expand the Publisher, and
then expand Security folder. Right-click Linked Servers, and then click New Linked Server. On the General tab, type the
name of the computer that will be the Subscriber, and then select the correct server type.

6. In the Linked Server Properties dialog box, on the Security tab, select Be made using the login's current security
context.

-or-

7. If there is a remote userID and password that the user at the Publisher can use to access the linked server, in the Local
Login field, enter the Publisher userID, and then in the Remote User and Remote Password fields, enter the remote
userID and password.

8. Copy and paste the following Transact-SQL into SQL Query Analyzer, replace the subserver variable with the name of the
Subscriber and execute it. The Linked Server Properties dialog box created the linked server with the name in uppercase
letters, so enter the value for subserver in uppercase letters.

EXEC sp_serveroption 'SUBSERVER', 'data access', 'true'

9. Ensure that the servers are linked and that a distributed query works. One way to test the connection is to copy the
following Transact-SQL statement into SQL Query Analyzer at the Publisher. If this distributed query does not work, the
sample resolver will not work. Replace the subserver variable with the name of the Subscriber.

SELECT * FROM OPENQUERY ([SUBSERVER], 'SELECT * from Northwind.dbo.Products')

This SELECT statement should return all columns in the Products table from the linked subserver.

10. The custom stored procedure can send e-mail. Optionally, execute the following Transact-SQL statement in SQL Query
Analyzer to start the mail service. If you do not want the e-mail to be sent or do not currently have an e-mail server installed,
this step can be skipped.

EXEC master..xp_startmail

11. Set up a subscription between the Publisher and the linked server. On the Publisher, expand the Replication folder, expand
the Publications folder, and then on the Northwind publication, right-click and select Push New Subscription. The
Subscriber will be the linked server, the subscription database will be Northwind, and the Merge Agent should update
continuously. On the Initialize Subscription page, select No. The Subscriber already has the schema and data because the
Northwind database and data already exists at the linked server.

Note If the linked server name does not appear in the list of possible Subscribers, exit the Push Subscription Wizard, right-
click the Replication folder, and then select Configure Publishing, Subscribers, and Distribution. On the Publisher
and Distributor Properties dialog box, on the Subscribers tab, select New, and then enter the requested data. After
closing Publisher and Distributor Properties, and then start the Push Subscription Wizard again.

12. To see if a price change has occurred, in SQL Query Analyzer on the Publisher in the Northwind database, run the
following Transact-SQL statement:

UPDATE Products
SET UnitPrice = 18.95
WHERE ProductName = 'Chang'

13. In SQL Server Enterprise Manager, expand Replication Monitor, expand the Agents folder, and then click the Merge Agents
folder. In the right pane, right-click the agent for the publication, and then select Start Synchronizing.

For each product in the Products table at the Subscriber, with a price equivalent to the price in the Products table at the
Publisher, there will be no change in price. If the prices are different, which will be the case for the 'Chang' product, the price will
become the average of the two prices. An e-mail will be sent for notification that the price has changed, if e-mail was enabled, and
the Conflict Viewer will show the log of the conflict.

Replication Programming (SQL Server 2000)

Generating Merge Dynamic Snapshot Jobs
This sample generates multiple merge dynamic snapshot jobs for a set of Windows Group users. After you create a merge
publication with a dynamic filter and generate a standard snapshot, you can run the extended stored procedure and stored
procedures included with this sample to generate dynamic snapshot jobs.

The sample extended stored procedure enumerates a Windows group and identifies the members for which dynamic snapshot
jobs will be created. After the members are identified, you can execute the sample stored procedure that will create the actual
dynamic snapshot jobs. After the dynamic snapshot jobs are created, you will need to start them manually or ensure they will
start according to a schedule.

If you have a dynamically filtered merge publication with multiple subscriptions, this sample shows how you can create multiple
dynamic snapshot jobs for the users of those subscriptions. Dynamic snapshots provide the performance advantage of using SQL
bulk copy program (bcp) files to apply data to a specific Subscriber when applying the initial snapshot. For more information, see
Dynamic Snapshots.

The sample code is located in the \Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\dynsnapjob directory.

To run the sample programs

1. In the \Microsoft SQL Server\80\Tools\Devtools\Samples\sqlrepl\dynsnapjob\xp directory, copy the compiled
xp_enumntusers.dll into your Windows system32 folder.

2. Register the name of the extended stored procedure to Microsoft SQL Server™ by running the following Transact-SQL
command in SQL Query Analyzer:

use master
go

exec sp_addextendedproc 'xp_enumntusers', 'xp_enumntusers.dll'
go

3. To create the stored procedure, open SQL Query Analyzer, and then run spdynsnapsample.sql, which is located in the
\Samples\sqlrepl\dynsnapjob\sp directory.

4. Create a merge publication with dynamic filtering enabled (use a system function such as SUSER_SNAME() as the criteria
for the filter), and then generate a standard snapshot for the publication.

5. Allow a Windows Local (or Global) group access to the SQL Server instance that contains the merge publication in Step 4.
This group needs to have public access only to the database on which you created the publication. This step can be
performed using SQL Server Enterprise Manager.

6. Add the Windows Group to the Publication Access List (PAL), which is found in the merge publication properties.

You can now run the extended stored procedure and stored procedure to generate dynamic snapshot jobs for the Windows
Group users. For more information about how to execute each procedure, see Using xp_enumntusers and Using
sp_addntgroupmergedynsnapshotjob.

Using xp_enumntusers

This extended stored procedure enumerates through Microsoft® Windows® Local and Global group users.

xp_enumntusers [@servername =] 'domain_server_name'

 , [@groupname =] 'group_name'

Arguments

[@servername =] 'domain_server_name'

The domain server to retrieve the group from. Use '.' or '' for local server.

[@groupname =] 'group_name'

The name of the group from which to enumerate users.

Both @servername and @groupname must be server strings.

Using sp_addntgroupmergedynsnapshotjob

This stored procedure generates a dynamic snapshot job for each user found when xp_enumntusers was run. The stored
procedure accepts parameters that allow you to specify the following:

Generate a single dynamic snapshot job for all users or generate a separate dynamic snapshot job for each user.

Filter the enumerated user using the LIKE operand.

Specify schedule information.

sp_addntgroupmergedynsnapshotjob [@publication =] 'publication'
 , [@ntserver_name =] 'ntserver_name'
 , [@group_name =] 'group_name'
 , [@destination =] 'destination'
 , [@job_name =] 'job_name'
 , [@like_string =] 'like_string'
 , [@as_one_job =] as_one_job
 , [@frequency_type =] frequency_type
 , [@frequency_interval =] frequency_interval
 , [@frequency_subday =] frequency_subday
 , [@frequency_subday_interval =] frequency_subday_interval
 , [@frequency_relative_interval =] frequency_relative_interval
 , [@frequency_recurrence_factor =] frequency_recurrence_factor
 , [@active_start_date =] active_start_date
 , [@active_end_date =] active_end_date
 , [@active_start_time_of_day =] active_start_time_of_day
 , [@active_end_time_of_day =] active_end_time_of_day

Arguments

[@publication =] 'publication'

The name of the publication. publication is sysname, with no default.

[@ntserver_name =] 'ntserver_name'

The Windows server or domain name on which to enumerate users. Use '.' for local server. ntserver_name is nvarchar(100) with
no default.

[@group_name =] 'group_name'

The name of the group on the Windows server or domain. group_name is nvarchar(256) with no default.

[@destination =] 'destination'

The destination directory path. destination is nvarchar(3500) with no default.

[@job_name =] 'job_name'

The job name. job_name is sysname with a default of NULL. If NULL, a default job name is used. This parameter is ignored when
@as_one_job=0

[@like_string =] 'like_string'

The string to be used in WHERE clause used when creating jobs for user names. For example, the WHERE clause is constructed of
"WHERE user name LIKE @like_string". like_string can contain any of the valid wildcard characters such as the percent sign ('%').
like_string is nvarchar(1000) with a default of NULL.

[@as_one_job =] as_one_job

Specifies how many dynamic snapshot jobs to create. as_one_job is a bit with a default of 1. 1 specifies that one dynamic
snapshot job will be created for all users. 0 specifies that an individual dynamic snapshot job will be created for each user.

[@frequency_type =] frequency_type

@frequency_type int = 4,

Is a value indicating when the job is to be executed. freq_type is int with a default of 4, and can be one of these values.

Value Description
1 Once
4 Daily
8 Weekly
16 Monthly
32 Monthly, relative to frequency_interval
64 Run when SQL Server Agent service

starts
128 Run when computer is idle

[@frequency_interval =] frequency_interval

Is the days that the job is executed. freq_interval is int with a default of 1, and the value used is dependent on the value of
freq_type.

Value of frequency_type Effect on frequency_interval
1 (Once) frequency_interval is ignored.
4 (Daily) Every frequency_internval days.
8 (Weekly) frequency_interval is one or more of the

following (combined with an OR logical
operator):

1 = Sunday
2 = Monday
4 = Tuesday
8 = Wednesday
16 = Thursday
32 = Friday
64 = Saturday

16 (Monthly) On the frequency_interval day of the
month.

32 (Monthly relative) frequency_interval is one of the
following:

1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
8 = Day
9 = Weekday
10 = Weekend day

64 (When SQL Server Agent service
starts)

frequency_interval is unused.

128 (When computer is idle) frequency_interval is unused.

[@frequency_subday =] frequency_subday

Specifies the units for frequency_subday_interval. frequency_subday is int with a default of 8, and can be one of these values.

Value Description of Units
0x1 At the specified time.
0x4 Minutes.
0x8 Hours.

[@frequency_subday_interval =] frequency_subday_interval

Is the number of frequency_subday_type periods to occur between each execution of the job. frequency_subday_interval is int,
with a default of 6.

[@frequency_relative_interval =] frequency_relative_interval

Is the scheduled job's occurrence of frequency_interval in each month, if frequency_interval is 32 (monthly relative).
frequency_relative_interval is int with a default of 1, and can be one of these values.

Value Description of Units
1 First
2 Second
4 Third
8 Fourth
16 Last

[@frequency_recurrence_factor =] frequency_recurrence_factor

Is the number of weeks or months between the scheduled execution of the job. frequency_recurrence_factor is used only if
frequency_type is 8, 16, or 32. frequency_recurrence_factor is int with a default of 0.

[@active_start_date =] active_start_date

Is the date on which execution of the job can begin. active_start_date is int with a default of 0, which indicates today's date. The
date is formatted as YYYYMMDD. If active_start_date is not NULL, the date must be greater than or equal to 19900101.

[@active_end_date =] active_end_date

Is the date on which execution of the job can stop. active_end_date is int with a default of 99991231, which indicates December
31, 9999. Formatted as YYYYMMDD.

[@active_start_time_of_day =] active_start_time_of_day

Is the time on any day between active_start_date and active_end_date to begin execution of the job. active_start_time is int, with a
default of 0, which indicates 12:00:00 A.M. on a 24-hour clock. The value for this parameter must be entered using the form
HHMMSS.

[@active_end_time_of_day =] active_end_time_of_day

Is the time on any day between active_start_date and active_end_date to end execution of the job. active_end_time is int with a
default of 235959, which indicates 11:59:59 P.M. on a 24-hour clock. The value for this parameter must be entered using the form
HHMMSS.

Replication Programming (SQL Server 2000)

Replication Distributor Interface Samples
Microsoft® SQL Server™ 2000 comes with the following sample applications to help you implement the Replication Distributor
Interface.

Sample Description
Programming Snapshot or
Transactional Replication from
Heterogeneous Data Sources

Microsoft Visual Basic® SQL-DMO application to
configure the Publisher, publication, and a
subscription for use in a heterogeneous publishing
environment. Also includes a Microsoft Visual C++®
application to deliver transactions to the Distributor.

Replication Programming (SQL Server 2000)

Programming Snapshot or Transactional Replication from
Heterogeneous Data Sources
SQL-DMO and the Replication Distributor Interface sample explains how to support a third-party publication. Because this sample
uses transactional replication, this sample will work only with Microsoft® SQL Server™ 2000 Standard Edition and SQL Server
2000 Enterprise Edition.

SQL-DMO configures a third-party publication and Distributor using SQL Server. The Replication Distributor Interface logs any
transaction that it marks for replication to this Distributor. The third-party publication uses the Distribution Agent to distribute the
transactions as if they were coming from an instance of SQL Server.

If the samples were installed to the default location, the files used in this sample will be located in the C:\Microsoft SQL
Server\80\Tools\Devtools\Samples\sqlrepl\samppub directory.

To run the sample programs

1. On the computer that will be the Publisher, verify that SQL Server Agent is running. If it is not running, start it.

2. In SQL Query Analyzer, open \Samples\sqlrepl\samppub\samppub.sql, and then execute it. This script creates two
databases, SampleSubscriberDB1 and SampleSubscriberDB2, and sets up a subscription to one of the databases. The
script also configures the computer for publishing and distribution, adds a distribution database named distribution, and
enables the computer as a Subscriber.

3. Execute the BAT file iniwkdir.bat, in the in \Microsoft SQL Server\80\Tools\Devtools\Samples\Sqlrepl\Samppub directory,
by either double-clicking it in Microsoft Windows Explorer or running it at a command line. The result of the execution
creates the working directory at C:\mssql8\repldata\UNC\samppub that contains the files Samptab.sch and Samptab.bcp.
These schema and .bcp data files will be used by the Visual C++ application.

4. On the Publisher, open Visual Basic, open the SQL-DMO application workspace, samppub.vbp, in the samppub\sqldmo
directory. Build the application by selecting Make samppub.exe on the File menu. The resulting executable will be named
samppub.exe, (the same name as the Visual C++ executable); therefore, it is recommended that this one be kept in the
SQLDMO directory or in a directory of your choosing where the two executables can be distinguished from each other.

5. Run the Visual Basic version of the samppub.exe from inside Visual Basic on the Run menu by clicking Start, or by starting
the executable from where it was saved. The application has one form with four buttons.

6. Click the Create Sample Publication button to create a publication on a third-party vendor. You can view the results in
SQL Server Enterprise Manager. Expand Replication, and there will be a new folder called Heterogeneous Publications.
There will be a folder called Sample Vendor, with a publication called SamplePublication. You can right-click
SamplePublication:SampleDatabase and select Properties to view information about the publication. You will see that
there is no subscription to this publication. If the Replication folder was already expanded, click Refresh to show the new
objects or close and open SQL Server Enterprise Manager again.

7. Click the Add Subscription button. This creates a push subscription, with the data going to the SampleSubscriberDB1
database. If you have not clicked the Create Sample Publication button, clicking this button will give an error because there
will be no publication on which to add a subscription. After clicking this button, you can view the results in SQL Server
Enterprise Manager. Expand Replication, expand Heterogeneous Publications, expand Sample Vendor Right-click
SamplePublication:SampleDatabase and select Properties. The Subscriptions tab shows the new subscription.

8. Open Visual C++, and then open the workspace samppub.dsw in the samppub\repldist directory. On the Tools menu,
point to Options, and then click the Directories tab. In the Show directories for box, select Include files and point to the
\Microsoft SQL Server\80\Tools\Devtools\Include directory. For the Library setting, navigate to \Microsoft SQL
Server\80\Tools\Devtools\Lib. On the Build menu, select Build samppub.exe. The application will be compiled and saved
to the samppub\repldist directory.

9. Run the Visual C++ version of samppub.exe . On the Build menu, click Execute samppub.exe. It can also be executed
directly running it from the directory where it was saved. This will deliver transactions to the Distributor. The application will
perform Snapshot Agent and Log Reader Agent operations for the publication. When run, messages will appear in the

Command window, with the messages:

Sample Publisher Agent Startup
Added 1 Transaction(s) consisting of 3 Command(s)
Sample Publisher Snapshot Agent Succeeded.
Added 1 Transaction(s) consisting of 30 Command(s)
Sample Publisher Logreader Agent Succeeded.

After a successful execution, you should see a table SampleTable1 in the SampleSubscriberDB1 database. Opening the
table shows 20 rows of data.

10. Optionally, create a push subscription to the SampleSubscriberDB2 from the publication database using SQL Server
Enterprise Manager. When creating this subscription, do not create an initial snapshot. Running the Visual C++ program
results in transactions being propagated to both subscriptions.

11. Execute the Visual Basic samppub.exe file from where it was saved, and then click Drop Subscription to drop the push
subscription. After clicking this button, you can view the results in SQL Server Enterprise Manager. Expand the SQL Server
Group, the Replication folder, Heterogeneous Publications folder, and Sample Vendor. On
SamplePublication:SampleDatabase, right-click and select Properties. On the Subscriptions tab is a Properties button
that shows the Subscription Properties dialog box. There are no subscriptions showing. If you have not clicked the Create
Sample Publication button, clicking this button will give an error, as there will be no subscription to drop because one has
not been created. If you have not clicked the Add Subscription button, clicking this button will give an error, as there is no
subscription to drop.

12. Click the Drop Sample Publication button to removes the publication. In SQL Server Enterprise Manager, in the
Replication folder, the Heterogeneous Publications folder is removed if this was the only heterogeneous publication on
the computer. If you have not clicked the Create Sample Publication button, clicking this button will give an error, as
there will be no Publication to drop. The subscription and the publication have been removed.

Data and schema files were installed on the local computer to a directory created by the iniwkdir.bat. The directory is
C:\mssql8\repldata\uncsamppub. They were used by the Visual C++ application as the data copied into the SampleTable1.

Replication Programming (SQL Server 2000)

Implementing Nonpartitioned, Bidirectional, Transactional
Replication
You can develop a transactional, nonpartitioned, bidirectional application using the following replication features:

Reciprocal publications

Custom stored procedures

Cycle detection

The sample application presented in this topic illustrates how these features can be combined programmatically on one
Microsoft® SQL Server™ installation using two databases (test1 and test2). The sample is built in six steps.

Step 1: Create the Databases and Enable Replication.

Step 2: Create a Bidirectional Schema.

Step 3: Create Reciprocal Publications.

Step 4: Create Subscriptions with Cycle Detection Enabled.

Step 5: Create Custom Stored Procedures to Apply Changes and Handle Conflicts.

Step 6: Test the Application.

See Also

Nonpartitioned, Bidirectional, Transactional Replication

Replication Programming (SQL Server 2000)

Step 1: Create the Databases and Enable Replication
To set up bidirectional replication

1. Create the two databases for your application: test1 and test2.

2. Enable the server as a Publisher, Subscriber, and Distributor. If the server is already enabled as a Publisher, Subscriber, and
Distributor, you can skip this step.

3. Enable the databases for replication.

Examples

1. Create the test databases

CREATE database test1
CREATE database test2

2. Enable the server as a Publisher, Subscriber, and Distributor

EXEC master..sp_adddistributor @distributor = @@SERVERNAME
GO
EXEC master..sp_adddistributiondb @database= 'distribution'
GO
EXEC master..sp_adddistpublisher @publisher = @@SERVERNAME, @distribution_db = 'distribution',
@working_directory = 'C:\Program Files\Microsoft SQL Server\MSSQL\REPLDATA'
GO
EXEC master..sp_addsubscriber @subscriber = @@SERVERNAME, @type = 0, @security_mode = 1
GO
EXEC master..sp_changesubscriber_schedule @subscriber = @@SERVERNAME, @agent_type = 1, @active_end_date = 0
GO

3. Enable the databases for replication

USE master
GO
EXEC sp_replicationdboption N'test1', N'publish', true
GO
EXEC sp_replicationdboption N'test2', N'publish', true
GO

Replication Programming (SQL Server 2000)

Step 2: Create a Bidirectional Schema
To create a bidirectional schema, create a table with the same schema in each test database and populate it with sample data.

Examples

1. Create a table in test1 and populate with 10 rows

USE test1
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'two_way_test1')
 DROP TABLE two_way_test1
GO

CREATE TABLE two_way_test1
(pkcol int primary key not null,
 intcol int,
 charcol char(100),
 datecol datetime
)
GO

INSERT INTO two_way_test1 VALUES (1, 10, 'row1', GETDATE())
INSERT INTO two_way_test1 VALUES (2, 20, 'row2', GETDATE())
INSERT INTO two_way_test1 VALUES (3, 30, 'row3', GETDATE())
INSERT INTO two_way_test1 VALUES (4, 40, 'row4', GETDATE())
INSERT INTO two_way_test1 VALUES (5, 50, 'row5', GETDATE())
INSERT INTO two_way_test1 VALUES (6, 60, 'row6', GETDATE())
INSERT INTO two_way_test1 VALUES (7, 70, 'row7', GETDATE())
INSERT INTO two_way_test1 VALUES (8, 80, 'row8', GETDATE())
INSERT INTO two_way_test1 VALUES (9, 90, 'row9', GETDATE())
INSERT INTO two_way_test1 VALUES (10, 100, 'row10', GETDATE())
GO

2. Create a table in test2 and populate with 10 rows

USE test2
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'two_way_test2')
 DROP TABLE two_way_test2
GO

CREATE TABLE two_way_test2
(pkcol int primary key not null,
 intcol int,
 charcol char(100),
 datecol datetime
)
GO

INSERT INTO two_way_test2 VALUES (1, 10, 'row1', GETDATE())
INSERT INTO two_way_test2 VALUES (2, 20, 'row2', GETDATE())
INSERT INTO two_way_test2 VALUES (3, 30, 'row3', GETDATE())
INSERT INTO two_way_test2 VALUES (4, 40, 'row4', GETDATE())
INSERT INTO two_way_test2 VALUES (5, 50, 'row5', GETDATE())
INSERT INTO two_way_test2 VALUES (6, 60, 'row6', GETDATE())
INSERT INTO two_way_test2 VALUES (7, 70, 'row7', GETDATE())
INSERT INTO two_way_test2 VALUES (8, 80, 'row8', GETDATE())
INSERT INTO two_way_test2 VALUES (9, 90, 'row9', GETDATE())
INSERT INTO two_way_test2 VALUES (10, 100, 'row10', GETDATE())
GO

Replication Programming (SQL Server 2000)

Step 3: Create Reciprocal Publications
To create reciprocal publications, add the transactional publication and article to each database. Note that:

Custom stored procedures are used for @ins_cmd, @del_cmd, and @upd_cmd.

The XCALL style parameters are used in UPDATE and DELETE stored procedures. For more information, see Using Custom
Stored Procedures in Articles.

@schema_option disables autogeneration of the default custom stored procedures because they will be created in Step 4.

Examples

1. Add the transactional publication and article in test1

USE test1
GO

EXEC sp_addpublication @publication = N'two_way_pub_test1',
 @restricted = N'false', @sync_method = N'native',
 @repl_freq = N'continuous', @description = N'publ1',
 @status = N'active', @allow_push = N'true',
 @allow_pull = N'true', @allow_anonymous = N'false',
 @enabled_for_internet = N'false',
 @independent_agent = N'false', @immediate_sync = N'false',
 @allow_sync_tran = N'false',
 @autogen_sync_procs = N'false', @retention = 60
GO

EXEC sp_addarticle @publication = N'two_way_pub_test1',
 @article = N'two_way_test1', @source_owner = N'dbo',
 @source_object = N'two_way_test1',
 @destination_table = N'two_way_test2',
 @type = N'logbased', @creation_script = null,
 @description = null, @pre_creation_cmd = N'drop',
 @schema_option = 0x00000000000000F1, @status = 16,
 @vertical_partition = N'false',
 @ins_cmd = N'CALL sp_ins_two_way_test2',
 @del_cmd = N'XCALL sp_del_two_way_test2',
 @upd_cmd = N'XCALL sp_upd_two_way_test2',
 @filter = null, @sync_object = null
GO

2. Add the transactional publication and article in test2

USE test2
GO

EXEC sp_addpublication @publication = N'two_way_pub_test2',
 @restricted = N'false', @sync_method = N'native',
 @repl_freq = N'continuous', @description = N'Pub2',
 @status = N'active', @allow_push = N'true',
 @allow_pull = N'true', @allow_anonymous = N'false',
 @enabled_for_internet = N'false',
 @independent_agent = N'false', @immediate_sync = N'false',
 @allow_sync_tran = N'false',
 @autogen_sync_procs = N'false', @retention = 60
GO

EXEC sp_addarticle @publication = N'two_way_pub_test2',
 @article = N'two_way_test2', @source_owner = N'dbo',
 @source_object = N'two_way_test2', @destination_table =
 N'two_way_test1', @type = N'logbased',
 @creation_script = null,
 @description = null, @pre_creation_cmd = N'drop',
 @schema_option = 0x00000000000000F1, @status = 16,
 @vertical_partition = N'false',
 @ins_cmd = N'CALL sp_ins_two_way_test1',
 @del_cmd = N'XCALL sp_del_two_way_test1',
 @upd_cmd = N'XCALL sp_upd_two_way_test1',
 @filter = null, @sync_object = null
GO

Replication Programming (SQL Server 2000)

Step 4: Create Subscriptions with Cycle Detection Enabled
To create subscriptions with cycle detection enabled, add a transactional subscription to each database with
@loopback_detection set to TRUE, so that the Distribution Agent does not send transactions that originated at the Subscriber
back to the Subscriber.

Examples

1. Add the transactional subscription in test1

USE test1
GO

EXEC sp_addsubscription @publication = N'two_way_pub_test1',
 @article = N'all', @subscriber = @@SERVERNAME,
 @destination_db = N'test2', @sync_type = N'none',
 @status = N'active', @update_mode = N'read only',
 @loopback_detection = 'true'
GO

2. Add the transactional subscription in test2

USE test2
GO

EXEC sp_addsubscription @publication = N'two_way_pub_test2',
 @article = N'all', @subscriber = @@SERVERNAME,
 @destination_db = N'test1', @sync_type = N'none',
 @status = N'active', @update_mode = N'read only',
 @loopback_detection = 'true'
GO

Replication Programming (SQL Server 2000)

Step 5: Create Custom Stored Procedures to Apply Changes and
Handle Conflicts
The update procedures in the examples have been customized to detect and handle simple conflicts. If a conflict is detected in the
intcol column, the current value and new increment are added together; if a conflict is detected in the charcol field, the values
are concatenated together.

Examples

1. Create custom stored procedures in test1

USE test1
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_ins_two_way_test1' and type = 'P')
 DROP proc sp_ins_two_way_test1
IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_upd_two_way_test1' and type = 'P')
 DROP proc sp_upd_two_way_test1
IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_del_two_way_test1' and type = 'P')
 DROP proc sp_del_two_way_test1
GO

-- Insert procedure
CREATE proc sp_ins_two_way_test1 @pkcol int,
 @intcol int,
 @charcol char(100),
 @datecol datetime
AS
 INSERT INTO two_way_test1 (pkcol, intcol, charcol,
 datecol)
 VALUES (@pkcol, @intcol, @charcol, GETDATE())
GO

-- Update procedure
CREATE proc sp_upd_two_way_test1 @old_pkcol int,
 @old_intcol int,
 @old_charcol char(100),
 @old_datecol datetime,
 @pkcol int, @intcol int,
 @charcol char(100),
 @datecol datetime
AS
 -- IF intcol conflict is detected, add values
 -- IF charcol conflict detected, concatenate values
 DECLARE @curr_intcol int, @curr_charcol char(100)

 SELECT @curr_intcol = intcol, @curr_charcol = charcol
 FROM two_way_test1 WHERE pkcol = @pkcol

 IF @curr_intcol != @old_intcol
 SELECT @intcol = @curr_intcol +
 (@intcol - @old_intcol)

 IF @curr_charcol != @old_charcol
 SELECT @charcol = rtrim(@curr_charcol) +
 '_' + rtrim(@charcol)

 UPDATE two_way_test1 SET intcol = @intcol,
 charcol = @charcol, datecol = GETDATE()
 WHERE pkcol = @old_pkcol

GO

-- Delete procedure
CREATE proc sp_del_two_way_test1 @old_pkcol int,
 @old_intcol int,
 @old_charcol char(100),
 @old_datecol datetime
AS
 DELETE two_way_test1 WHERE pkcol = @old_pkcol
GO

2. Create custom stored procedures in test2

USE test2

GO

IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_ins_two_way_test2' and type = 'P')
 DROP proc sp_ins_two_way_test2
IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_upd_two_way_test2' and type = 'P')
 DROP proc sp_upd_two_way_test2
IF EXISTS (SELECT * FROM sysobjects WHERE name LIKE 'sp_del_two_way_test2' and type = 'P')
 DROP proc sp_del_two_way_test2
GO

-- Insert procedure
CREATE proc sp_ins_two_way_test2 @pkcol int,
 @intcol int,
 @charcol char(100),
 @datecol datetime
AS
 INSERT INTO two_way_test2 (pkcol, intcol, charcol,datecol)
 VALUES (@pkcol, @intcol, @charcol, GETDATE())
GO

-- Update procedure
CREATE proc sp_upd_two_way_test2 @old_pkcol int,
 @old_intcol int,
 @old_charcol char(100),
 @old_datecol datetime,
 @pkcol int,
 @intcol int,
 @charcol char(100),
 @datecol datetime
AS
 -- IF intcol conflict is detected, add values
 -- IF charcol conflict detected, concatenate values
 DECLARE @curr_intcol int, @curr_charcol char(100)

 SELECT @curr_intcol = intcol, @curr_charcol = charcol
 FROM two_way_test2 WHERE pkcol = @pkcol

 IF @curr_intcol != @old_intcol
 SELECT @intcol = @curr_intcol +
 (@intcol - @old_intcol)

 IF @curr_charcol != @old_charcol
 SELECT @charcol = rtrim(@curr_charcol) +
 '_' + rtrim(@charcol)

 UPDATE two_way_test2 SET intcol = @intcol,
 charcol = @charcol, datecol = GETDATE()
 WHERE pkcol = @old_pkcol
GO

-- Delete procedure
CREATE proc sp_del_two_way_test2 @old_pkcol int,
 @old_intcol int,
 @old_charcol char(100),
 @old_datecol datetime
AS
 DELETE two_way_test2 WHERE pkcol = @old_pkcol

GO

Replication Programming (SQL Server 2000)

Step 6: Test the Application
To test the application you have built, execute updates and then select the data to see the results. Use the datecol column to see
when rows were updated at each database, relative to each other.

Examples

1. Execute updates to the first row in test1 and test2

USE test1
GO
UPDATE two_way_test1 SET intcol = 20 , charcol = 'updated at test1' WHERE pkcol = 1

USE test2
GO
UPDATE two_way_test2 SET intcol = 60 , charcol = 'updated at test2' WHERE pkcol = 1

2. Select data from both tables to verify that the changes were propagated

SELECT * FROM test1..two_way_test1 WHERE pkcol = 1
SELECT * FROM test2..two_way_test2 WHERE pkcol = 1

If the starting value of intcol was 10, the value in test1 was incremented by 10 and the value in test2 was incremented by 50.
The conflict resolution in the update custom procedure sums the values in this column, so this integer value converges to 70 in
both databases. It may take a few seconds to see the results in both tables.

DTS Programming (SQL Server 2000)

Programming DTS Applications
The Data Transformation Services (DTS) object model includes the objects and collections, as well as their associated properties,
methods and events, that are used to write applications that manipulate the DTS object model.

Although any programming language that supports COM can be used to implement DTS applications, this section focuses on
implementing DTS applications in Microsoft® Visual Basic® and Microsoft Visual C++®.

Topic Description
DTS Object Model Diagram Provides a diagram of the hierarchy of DTS

objects and collections and offers an
explanation of extended objects.

Creating DTS Packages with the DTS
Object Model

Describes how to implement DTS package
applications not specific to a particular
programming environment.

Creating DTS Packages in Visual Basic Describes how to implement DTS package
applications in Visual Basic.

Building a DTS Custom Task Describes how to implement and register a
DTS custom task.

Building a DTS Custom Transformation Describes how to implement and register a
DTS custom transformation.

See Also

Creating a DTS Package

DTS Basics

DTS Programming Reference

DTS Programming (SQL Server 2000)

Extended DTS Objects
Several Data Transformation Services (DTS) objects that enhance objects from Microsoft® SQL Server™ version 7.0 have been
added to Microsoft SQL Server 2000. These have been named by appending a 2 to the name of the existing object. For example,
the DataPumpTask2 object enhances the DataPumpTask object through the addition of the RowsComplete and RowsInError
properties. In this section, DataPumpTask2 refers to both the extended and original object.

Each extended object extends the functionality of the SQL Server 7.0 object and inherits the properties and methods of that object.
However, none is compatible with SQL Server 7.0 or earlier. The SQL Server 7.0 objects still are available and should be used
where interoperability with earlier versions of SQL Server is required.

Using the Extended Objects

When you run a DTS application that includes an extended object on SQL Server 7.0, a "type mismatch" or similar error will occur.
Therefore, if you want a DTS application to run on both an instance of SQL Server 2000 and SQL Server 7.0, it is recommended
that you do not use the extended objects.

A potential for failure under SQL Server 7.0 exists even when the extended objects are not used. If you run a DTS application on
SQL Server 2000, you can access the new properties of the extended objects through the Properties collection of the existing
objects. For example, you can access the LogServerName property through the Properties collection of the Package object,
even though LogServerName is new for Package2.

The following Microsoft Visual Basic® code shows how you can access the new LogServerName property through the
Properties collection of the Package object:

Dim objPackage As DTS.Package
Set objPackage = New DTS.Package
objPackage.Properties("LogServerName") = "(local)"

This code works when run on an instance of SQL Server 2000. However, if you run the application on SQL Server 7.0, the same
code will fail with an error message similar to "property 'LogServerName' was not found."

DTS Programming (SQL Server 2000)

DTS Object Model Diagram
The diagrams in the topics that follow illustrate the hierarchy of Data Transformation Services (DTS) objects and collections.
Objects are represented by a single blue rectangle. Collections, and the properties that return a reference to these collections, are
represented by several overlaid yellow rectangles. The red-bordered hexagonals represent placeholders that summarize parts of
the DTS object model. View the summarized objects, collections, and properties by clicking on the placeholders. A parent element
(for example, an object or collection) is placed above and to the left of its child element, with a line connecting them.

An element that is the child of an object is created when the parent object is created, and a reference to the child can be obtained
from a property of the parent. An object that is the child of a collection is created using a collection method.

For more information about using the DTS object model, see Creating DTS Packages with the DTS Object Model.

These topics contain object model diagrams and information about extended DTS objects.

Topic Description
DTS Package2 Hierarchy Describes the structure of the DTS Package2

hierarchy.
Pump Task Elements Describes the object model in tasks that use the DTS

data pump.
Pump Rowset Elements Describes the object model associated with rowset

processing in tasks using the DTS data pump.
Data Driven Query Elements Describes the object model associated with the Data

Driven Query task.
DTS Application Hierarchy Describes the structure of the DTS Application

hierarchy.

DTS Programming (SQL Server 2000)

DTS Package2 Hierarchy
This diagram illustrates the structure of the objects and collections of the Package2 hierarchy.

DTS Programming (SQL Server 2000)

Pump Task Elements
This diagram illustrates the structure of the objects and collections associated with tasks using the Data Transformation Services
(DTS) data pump.

DTS Programming (SQL Server 2000)

Pump Rowset Elements
This diagram illustrates the structure of the objects and collections associated with rowset processing in tasks using the Data
Transformation Services (DTS) data pump.

DTS Programming (SQL Server 2000)

Data Driven Query Elements
This diagram illustrates the structure of the objects and collections associated with the Data Driven Query task.

DTS Programming (SQL Server 2000)

DTS Application Hierarchy
This diagram illustrates the structure of the objects and collections of the Data Transformation Services (DTS) Application
hierarchy.

DTS Programming (SQL Server 2000)

Creating DTS Packages with the DTS Object Model
To create a Data Transformation Services (DTS) package using a programming language that supports COM, you need to create a
hierarchy of objects headed by a Package2 object from the DTS object model. After setting the properties of this hierarchy, you
can then invoke methods of a Package2 object to run the package. You also can save the package to Microsoft® SQL Server™, a
COM-structured storage file, a Microsoft Visual Basic® file, or to SQL Server 2000 Meta Data Services.

Note An object whose name ends with the digit 2 is an extended version of a DTS object from SQL Server version 7.0. If you
want to run a package on SQL Server 7.0, it is recommended that you use the corresponding object whose name does not have a
2 appended. For more information, see Extended DTS Objects.

This section summarizes building DTS packages and using DTS objects and features without regard to the programming
language you are using for implementation. For more information about configuring a particular development environment and
using it to implement DTS packages, see Creating DTS Packages in Visual Basic.

The following table summarizes the topics describing the DTS objects and features you use to implement a package. Most objects
and features are optional for a particular package. You are only required to create at least one step and at least one task. You do
not need to follow the order provided here except where the DTS object hierarchy dictates. For example, you must create the
Package2 object first to gain access to the methods used to create other DTS objects.

Topic Description
Creating DTS Package Objects and
Connections

Create and configure a Package2 object.

Create Connection2 objects to access data
sources.

Creating DTS Package Workflow and
Tasks

Create Step2 objects for the operations the
package is to perform.

Create PrecedenceConstraint objects to define
workflow among the steps.

Create a Task object of the type needed for each
step.

Adding DTS Transformations Create Transformation2 objects if needed for
tasks that move data between connections.

Adding DTS Column Objects Assign source and destination Column objects to
the transformations if necessary.

Adding DTS Lookups and Global
Variables

Create a Lookup object when you need a
transformation to look up data in another query
rowset.

Use GlobalVariable objects to pass data
between steps and packages.

Adding DTS ActiveX Scripts Add a Microsoft ActiveX® script to a step or to a
task or transformation that uses scripts.

Adding DTS Query Strings Add query strings to an object that issues
database queries.

Handling DTS Events and Errors Add handlers for the events of the Package2
object.

Add an error handler to a DTS package program.

Managing DTS Package Programs Execute a DTS package program.

Save a DTS package in one of several formats,
and load a package from these formats.

Retrieving DTS System, Package, and
Log Data

Retrieve information about registered
components and DTS packages, and retrieve log
data.

DTS Programming (SQL Server 2000)

Creating DTS Package Objects and Connections
Creating DTS Package Objects and Connections

 New Information - SQL Server 2000 SP3.

The Package2 object is at the top of the Data Transformation Services (DTS) object hierarchy and is the first created. You then
add Connection2 objects to access databases and other data sources.

Creating Package Objects

The first step in implementing a DTS package is creating the Package2 object. The way you create the Package2 object depends
on your programming environment. For more information about configuring the Package2 object, see DTS Packages in Visual
Basic.

Some Package2 properties and features you can use are:

AutoCommitTransaction, TransactionIsolationLevel and UseTransaction. These control whether Package2
components run under a package-level transaction, and how that transaction is used.

FailOnError and FailPackageOnLogFailure. These determine whether component failures cause package execution to fail.

CreationDate, CreatorComputerName, CreatorName, PackageID and VersionID. These provide creation and
identification information.

Adding Connections

Usually, you create a Connection2 object for each data source you want to access, although Connection2 objects can be reused.
You need an OLE DB provider for the data source you wish to access. The following table describes the typical data sources for
which OLE DB providers are supplied with Microsoft® SQL Server™ 2000.

Data Source Type Data Source
Databases SQL Server

Microsoft Access 2000
Oracle
Paradox
DB2
DBase 5
Other ODBC-compliant database

Other data sources Microsoft Excel 2000 worksheet
HTML file
Text file

For more information about the OLE DB providers available on a computer system, see OLEDBProviderInfos Collection. For more
information about the interfaces and schema that user-implemented OLE DB providers used with DTS must support, see
ProviderID Property. For more information about the interfaces and schema that user-implemented OLE DB providers used with
DTS must support, see ProviderID Property.

To create a Connection2 object, use the New method of the Connections collection of the Package2 object. Set the properties
as needed. The typical properties you use are:

Catalog. This is typically a database name.

DataSource. This is a server name or a data source file specification.

ID. This is a numeric identifier for the connection.

Password, UserID, or UseTrustedConnection. These contain user authentication information.

Security Note When possible, use Windows Authentication.

Then, Add each Connection2 object to the Connections collection of the Package2 object.

You can reference properties unique to specific OLE DB providers through the ConnectionProperties collection of the
Connection2 object.

For more information about configuring the Connection2 object, see DTS Connections in Visual Basic.

See Also

Handling DTS Events and Errors

Managing DTS Package Programs

Retrieving DTS System, Package, and Log Data

DTS Programming (SQL Server 2000)

Creating DTS Package Workflow and Tasks
Creating DTS Package Workflow and Tasks

 New Information - SQL Server 2000 SP3.

Workflow in Data Transformation Services (DTS) packages is implemented by creating steps, which are the units of functionality,
and precedence relationships between steps, which determine the sequencing of the steps. Tasks are the components the steps
use to perform their functions.

Creating the Step Object

You need to create a Step2 object for each operation the package is to perform. For each step, you create a Task object of the
appropriate type. The Task object performs the operation for the step.

To create a Step2 object, use the New method of the Steps collection of the Package2 object. Set the TaskName property of the
Step object to the name of the associated task. Other properties you can use are:

ActiveXScript, FunctionName, and ScriptLanguage. These properties specify the Microsoft® ActiveX® script to run
before the task.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user
knowledge or intervention and may contain security credentials in plain text. Review the script for security issues before use.
For more information, see Security and Scripting.

CommitSuccess, JoinTransactionIfPresent, RollbackFailure. These properties determine whether the step uses the
package transactions.

ExecuteInMainThread. This property runs the step in the package main thread rather than in a worker thread.

FailPackageOnError. This property fails the package if the step fails.

Then, Add the Step2 object to the Steps collection of the package.

Creating the Precedence Constraint Object

When a package is executed, DTS attempts to execute steps in parallel up to the limit established by the MaxConcurrentSteps
property of the Package2 object. However, you can order the steps by using precedence constraints. A Precedence Constraint
object inhibits the step with which it is associated from starting execution until an event by another named step occurs. As a
result, the step only begins execution when all of its precedence constraints have been satisfied.

To create the PrecedenceConstraint object, use the New method of the PrecedenceConstraints collection of the Step object.
Set its StepName property to the name of the preceding task and set the PrecedenceBasis and Value properties to specify the
type of event. Then, Add the PrecedenceConstraint to the PrecedenceConstraints collection of the associated Step object.

For more information about configuring the Step and PrecedenceConstraint objects and the PrecedenceConstraints
collection, see DTS Package Workflow in Visual Basic.

Creating the Task Object

To implement a DTS task, you need a generic Task object and a task object specific to the task class being created (for example, a
DataDrivenQueryTask2 object or a BulkInsertTask object). To create both of these, use the New method of the Tasks
collection of the Package2 object.

Configure the properties of these objects as appropriate for the processing you want to perform. While the elements of the
generic Task object manipulate information generic to all tasks, those of the class-specific task object manipulate information
unique to the class. The CustomTask property of the Task object returns a reference to the class-specific task object. The
properties of the class-specific task object also can be referenced through the Properties collection of the (generic) Task object.

Add each Task object to the Tasks collection of the Package2 object.

For more information about the task classes supplied with Microsoft SQL Server™ 2000, see Task Objects.

For more information about configuring the Task object and the class-specific task objects, see DTS Tasks in Visual Basic.

DTS Programming (SQL Server 2000)

Adding DTS Transformations
Adding DTS Transformations

Data Transformation Services (DTS) transformations are used by the data pump to perform various operations that you specify.
The data pump is the engine for the DataPumpTask2, DataDrivenQueryTask2, and ParallelDataPumpTask objects.
Transformations can be viewed as callbacks from the data pump. The other task classes supplied with Microsoft® SQL Server™
2000, which do not host the data pump, do not use transformations.

The data pump fetches data rows from a source connection and writes data rows to a destination connection. The table below
describes the phases of the data pump operations for which transformations can be specified. They are listed in the order in which
they are invoked by the data pump.

Phase Description Possible Uses
PreSourceData Occurs before first row is fetched

from source connection.
Writing header records to
the destination.

Initializating objects,
connections or memory
for use in later phases.

Transform Occurs after each source row is
fetched, before the destination row is
written.

Converting data types.

Validating.

OnTransformFailure Occurs after a failure in the
Transform phase, indicated by the
return of DTSTransformStat_Error
or
DTSTransformStat_ExceptionRow.
Typically caused by conversion
errors.

Handling custom data
based on the Transform
failure.

OnInsertSuccess Occurs after each data row is written
successfully to the destination
connection.

Maintaining aggregation
when this function cannot
be done by a Transform
phase transformation.

OnInsertFailure Occurs after each attempt to write a
data row to the destination
connection failed (for example, by
attempting to write a duplicate value
to a primary key field, or a null to a
NOT NULL field).

Handling custom data
based on the Insert failure
(for example, writing the
data to an error table).

OnBatchComplete Occurs in DataPumpTask2 when
using FastLoad option after each
batch is written, successful or failed.

Recording the current
position within the source
rowset, which could then
be used as the starting
point if the task needed to
be restarted.

PostSourceData Occurs after the last row is written to
the destination connection.

Writing trailer records to
the destination or freeing
up resources or
committing data held in
global variables.

OnPumpComplete Occurs at the end of the task
execution.

Freeing up resources or
committing data held in
global variables.

In the case of the ParallelDataPumpTask, the PreSourceData and PostSourceData phases occur at the beginning and end,
respectively, of each constituent rowset of the hierarchical rowset. The OnPumpComplete phase occurs once.

The DTSTransformScriptProperties2 transformation can support multiple phases. You provide a script function for each
supported phase. Transformations for phases other than Transform must be DTSTransformScriptProperties2 transformations

or custom transformations.

Creating Transformation Objects

To implement a transformation, you need a generic Transformation2 object and a transform server object, which is an object
specific to the transformation class (for example, DataPumpTransformCopy or DataPumpTransformDateTimeString). To
create both of these, use the New method of the Transformations collection of the DataPumpTask2, DataDrivenQueryTask2,
or the TransformationSet object of the ParallelDataPumpTask.

To access the transform server object, use the TransformServer property of Transformation2 object to return a reference to the
object. The properties of the transform server object also can be referenced through the TransformServerProperties collection
of the generic Transformation2 object.

If the transformation is to support any phase other than the Transform phase, set the TransformPhases property of the
Transformation2 object to the sum of the codes from DTSTransformPhaseEnum for the phases it is to support. Add the
Transformation2 object to the Transformations collection.

At least one transformation is required for the Transform phase. Transformations for the other phases are optional. When
multiple transformations are supplied for a phase, they are all executed at the time appropriate for the phase, in the order the
Transformation2 objects were added to the Transformations collection.

For more information about the transformation classes supplied with SQL Server 2000, see Transformation Objects.

For more information about configuring the Transformation2 object and the transform server objects, see DTS Transformations
in Visual Basic.

DTS Programming (SQL Server 2000)

Adding DTS Column Objects
Adding DTS Column Objects

You create Column objects to specify the source and destination columns referenced by a transformation and to specify the
destination column parameters for the queries of the DataDrivenQueryTask2 object.

Typically, transformations reference columns of the source and destination connections. In most cases, source and destination
columns need to be assigned to a transformation to define these columns.

To create a Column object, use the New method of the SourceColumns or DestinationColumns collections of the
Transformation2 object. Set properties as appropriate, then use the Add method of the appropriate collection. Or, use the
AddColumn method to create and add the column in a single step.

You do not need to define Column objects if:

Only a single Transformation2 object has been defined for the task.

The number of columns in the data source and the data destinations is the same.

The source and destination column ordering correctly match up.

Note You can use a Select query on the data source, specified with the DataDrivenQueryTask2, DataPumpTask2, or
ParallelDataPumpTask object SourceSQLStatement property, to control the number and ordering of source columns.

Whether a transformation can access the source or destination connections is determined by the phase in which it runs. The
following table specifies the permitted access.

Phase Source column access Destination column access
PreSourceData Read access to meta data Write access to columns
Transform Read access to columns Write access to columns
OnTransformFailure Read access to columns Write access to columns
OnInsertSuccess Read access to columns No access to columns
OnInsertFailure Read access to columns No access to columns
OnBatchComplete Read access to meta data Write access to columns
PostSourceData Read access to meta data Write access to columns
OnPumpComplete No access to columns No access to columns

For more information about configuring the Column object and the SourceColumns and DestinationColumns collections, see
DTS Column Objects in Visual Basic.

To assign destination column parameters to the DataDrivenQueryTask2 and ParallelDataPumpTask object queries, use the
procedure specified above to create Column objects and add them to the DeleteQueryColumns, InsertQueryColumns,
UpdateQueryColumns, or UserQueryColumns collections, as appropriate. For more information about parameterized queries
for these objects, see Adding DTS Query Strings.

DTS Programming (SQL Server 2000)

Adding DTS Lookups and Global Variables
Adding DTS Lookups and Global Variables

 New Information - SQL Server 2000 SP3.

Use a Lookup object when you need a transformation to look up data in another query rowset through a separate connection.

Global variables provide a means for tasks within a package to exchange data. When using the ExecutePackageTask object,
global variables provide a means for tasks to exchange data between packages.

Creating Lookups

To create a Lookup object, use the New method of the Lookups collection of a class-specific task object that uses
transformations. Set the appropriate properties. Typically, you use the following properties:

ConnectionID. This specifies the connection through which the lookup rowset is queried.

MaxCacheRows. This determines the number of queried rows cached for reuse.

Query. This specifies the SQL statement that generates the rowset.

Then, Add the Lookup object to the Lookups collection.

Alternatively, you can create and add the Lookup object to the Lookups collection with the AddLookup method.

You access the lookup in the script of a DataPumpTransformScript or DTSTransformScriptProperties2 object through the
Execute method of a DTSLookup object, which is the Data Transformation Services (DTS) scripting object model counterpart of
the Lookup object. Usually, you refer to the lookup by name from the DTSLookups collection.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

For more information about the Lookup object and the Lookups collection, see DTS Lookups in Visual Basic.

Creating and Using Global Variables

To create a global variable in a DTS package prior to package execution, use the New method of the Package2 object
GlobalVariables collection. Set the Value property, and then Add the object to the collection.

Alternatively, you can create and add the GlobalVariable object to the GlobalVariables collection with the AddGlobalVariable
method.

You need to create GlobalVariable objects before package execution if the ExplicitGlobalVariables property of the Package2
object is set to TRUE. However, if ExplicitGlobalVariables is set to FALSE, you do not need to create GlobalVariable objects.
The package automatically creates global variables that do not exist at first reference.

Setting global variables w ith the ExecuteSQLTask2 object

You can create and assign values to global variables in the ExecuteSQLTask2 object. Specify a list of global variable names with
the OutputGlobalVariableNames property. Values from the first row of the rowset generated by the ExecuteSQLTask2 query
(specified with the SQLStatement property) are stored in the named global variables. Set the OutputAsRecordset property to
store the entire rowset as a disconnected Microsoft® ActiveX® Data Objects (ADO) recordset in the global variable named first in
the list.

Using global variables as input parameters

You can use global variables as input parameters for the queries of the DataDrivenQueryTask2, DataPumpTask2,
ExecuteSQLTask2 and ParallelDataPumpTask objects. Specify a list of global variable names with the
InputGlobalVariableNames property. For more information, see Adding DTS Query Strings.

Exporting global variables to a DTS package

Create and add global variables, as described above, to the GlobalVariables collection of the ExecutePackageTask object to

export these global variables to the target package. These global variables are independent of the global variables in the
GlobalVariables collection of the calling package. Use the InputGlobalVariableNames property of ExecutePackageTask to
specify global variables from the collection of the package that are to be exported.

Referencing global variables in ActiveX scripts

Reference global variables in ActiveX scripts as members of the DTSGlobalVariables collection. For example, in Microsoft Visual
Basic® Scripting Edition (VBScript):

DTSGlobalVariables("GV1").Value

If you assign a value to the above expression and GV1 does not exist, and if the package ExplicitGlobalVariables property is not
set, GV1 is created.

For more information about the GlobalVariable object and the GlobalVariables collection, see DTS Global Variables in Visual
Basic.

DTS Programming (SQL Server 2000)

Adding DTS ActiveX Scripts
Adding DTS ActiveX Scripts

 New Information - SQL Server 2000 SP3.

Microsoft® ActiveX® scripts can be used to add functionality to Data Transformation Services (DTS) packages. Typical supported
scripts are Microsoft Visual Basic® Scripting Edition (VBScript), Microsoft JScript®, PerlScript and XMLScript. The following DTS
object types require or can use ActiveX scripts:

The Step2 object can use an ActiveX script. The script runs before the step's task executes.

The ActiveScriptTask object requires an ActiveX script that performs the functionality of the task.

The DataPumpTransformScript and DTSTransformScriptProperties2 transformations require ActiveX scripts that
perform the transformations.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user
knowledge or intervention and may contain security credentials in plain text. Review the script for security issues before use.
For more information, see Security and Scripting.

You assign ActiveX scripts to a property of objects that use scripts as a single text string, which can include embedded carriage
return/line feed pairs. Each scripted object also has properties for the script language and the script function name. For example:

For the Step2 and ActiveScriptTask objects, the script text is assigned to the ActiveXScript property. The
ScriptLanguage and FunctionName properties are used to specify the scripting language and function entry point.

For the DataPumpTransformScript transformation, the script text is assigned to the Text property. The Language and
FunctionEntry properties are used for the script language and function name, respectively.

The DTSTransformScriptProperties2 object extends the functionality of DataPumpTransformScript by providing multiple
transformation phases. The script specified by the Text property must have a function for each supported phase.

The following table describes the property you use to specify the entry point for each phase the
DTSTransformScriptProperties2 object supports.

Phase Entry Point Property
PreSourceData PreSourceDataFunctionEntry
Transform FunctionEntry
OnTransformFailure TransformFailureFunctionEntry
OnInsertSuccess InsertSuccessFunctionEntry
OnInsertFailure InsertFailureFunctionEntry
OnBatchComplete BatchCompleteFunctionEntry
PostSourceData PostSourceDataFunctionEntry
OnPumpComplete PumpCompleteFunctionEntry

Note To use Microsoft ActiveX scripting in Microsoft SQL Server 2000 after uninstalling SQL Server 7.0, you must re-register the
ActiveX scripting library (Axscphst.dll). Use the Regsvr32.exe registration utility and execute the following command (substituting
your own drive letter) from a command prompt or the Windows Run command:

regsvr32.exe C:\Program Files\Microsoft SQL Server\80\Tools\Binnaxscphst.dll

If the registration is successful, a message box appears indicating that Axscphst.dll is registered properly.

For more information about including ActiveX scripts in DTS programs, see DTS ActiveX Scripts in Visual Basic.

DTS Programming (SQL Server 2000)

Adding DTS Query Strings
Adding DTS Query Strings

Many Data Transformation Services (DTS) tasks and objects require queries to access or store database information. You assign
queries to a property of the object that uses the query as a text string. You also can include carriage return/line feed pairs.
Depending on the parent object, you can define query sequences and parameter placeholders. The following table defines the
query types that are supported for the objects that use queries.

Objects Using Queries Query Type Query String Attributes
DataPumpTask2,
DataDrivenQueryTask2 and
ParallelDataPumpTask objects

Source
query

Single Select or stored procedure
query that returns a rowset. Can
use ? placeholder for global
variable parameters, specified by
InputGlobalVariableNames
property.

DataPumpTask2,
DataDrivenQueryTask2 and
ParallelDataPumpTask objects

Destination
query

Single Select or stored procedure
query that returns a rowset.
Parameters are not supported.

DynamicPropertiesTaskAssignment
object of DynamicPropertiesTask

Property
value query

Single Select or stored procedure
query that returns a rowset.
Rowset has single row and one
column.

ExecuteSQLTask2 object Executed
query

Sequence of one or more SQL
statements or stored procedure
queries, which can contain the
Transact-SQL GO statement. Can
use ? placeholder for global
variable parameters, specified by
the InputGlobalVariableNames
property.

DataDrivenQueryTask2 and
TransformationSet objects of
ParallelDataPumpTask

Action
queries

Sequence of one or more SQL
statements or stored procedure
queries, which cannot contain the
Transact-SQL GO statement. Can
use ? placeholder for destination
columns.

Lookup object Lookup
query

Single Select or stored procedure
query that returns a rowset. Can
use ? placeholder for parameters,
specified with the Execute
method of DTSLookups scripting
collection.

For more information about including query strings in DTS programs, see DTS Query Strings in Visual Basic.

DTS Programming (SQL Server 2000)

Handling DTS Events and Errors
Handling DTS Events and Errors

The Package2 object raises events that report package status during execution. The Package2 Execute method can raise errors
that must be handled by the calling application.

Package Events

The following table specifies the events the Package2 object raises and the information that is returned when the specified
condition occurs.

Event Condition Information returned
OnError A Data Transformation Services

(DTS) error occurred during
package execution.

Step name, error code and
description, help file and context,
interface ID.

OnFinish A step has completed. Step name.
OnProgress This event occurs periodically

during step execution.
Step name, progress count
(typically rowcount), percent
complete, description.

OnQueryCancel This event gives application a
chance to cancel a step.

Step name.

OnStart A step has started. Step name.

For more information about these individual events, see Events.

If you implement handlers for any of the events, you must supply handlers for all the events. Unneeded event handlers can
consist of a single statement (for example, Exit Sub or return;).

For more information about implementing event handlers in DTS programs, see DTS Package Events in Visual Basic.

Package Error Handler

During the phase of your program where you are creating DTS objects and setting their properties, you can implement error
handling that is typical for your programming environment.

Errors that occur during the Execute method of the Package2 object are not propagated back to the caller unless you set the
Package2 object FailOnError property or the Step2 object FailPackageOnError property to TRUE. FailPackageOnError causes
an error in the referenced step to fail the package, while FailOnError causes an error in any step to fail the package.

You must retrieve errors that occur within individual steps with the GetExecutionErrorInfo method of the Step2 object.
GetExecutionErrorInfo provides information only about errors that cause a step to fail. For more detailed information, you must
implement handlers for the OnError and OnProgress events. You must provide at least stub handlers for the other events. The
OnError event will describe the error, while the OnProgress event will indicate the step and the row being processed. The
ProgressRowCount property of the DataPumpTask2, DataDrivenQueryTask2, and TransformationSet objects can be used
to specify how frequently OnProgress is raised.

For more information about implementing package error handlers in DTS programs, see DTS Error Handlers in Visual Basic.

DTS Programming (SQL Server 2000)

Managing DTS Package Programs
You can either run the configured Package2 object or save it in several formats. You also can load a saved Data Transformation
Services (DTS) package into a Package2 object.

Executing Packages

After you have created the hierarchy of DTS objects and set their properties, as needed, use the Execute method of the Package2
object to execute the package. DTS may raise errors from the Execute method. For more information about handling these errors,
see Handling DTS Events and Errors.

If you plan to do anything further with the Package2 object, release all references to other DTS objects, then use the UnInitialize
method.

For more information, see Executing DTS Packages in Visual Basic.

Saving and Loading Packages

You can save the package as a project in your current development environment. You can also save it in the formats in which DTS
tools save packages. To do the latter, use one of the following methods of the Package2 object.

Methods Description
SaveToRepository,
SaveToSQLServer,
SaveToStorageFile

Save the package to a specified storage type.

SaveToRepositoryAs,
SaveToSQLServerAs,
SaveToStorageFileAs

Assign a new name and package ID to the package, then
save it to a specified storage type.

SaveAs Assign a new name and package ID to the Package2
object, but do not save it to storage.

To load a Package2 object with the state of a previously saved package, use the LoadFromSQLServer, LoadFromRepository, or
LoadFromStorageFile methods. You can delete saved packages by using the RemoveFromSQLServer and
RemoveFromRepository methods.

For more information about saving and loading DTS packages, see Saving DTS Packages in Visual Basic.

DTS Programming (SQL Server 2000)

Retrieving DTS System, Package, and Log Data
Data Transformation Services (DTS) provides features for requesting information about registered components and saved
packages and for retrieving the contents of log records.

Registered Components

The Application object provides access to the system, package, and log data. You create it independently of a DTS package.

Use the collections of the Application object to obtain information about several different types of registered components used
by DTS. The following table describes the collections, the objects they contain, and the type of component for which information is
available.

Collection Object Component
OLEDBProviderInfos OLEDBProviderInfo OLE DB providers
ScriptingLanguageInfos ScriptingLanguageInfo Microsoft® ActiveX®

scripting languages
TaskInfos TaskInfo DTS task classes
TransformationInfos TransformationInfo DTS transformation classes

The DTS task and transformation classes include those supplied with Microsoft SQL Server™ and custom tasks and
transformations implemented by other vendors and users.

Normally DTS must scan all the registered classes in the operating system registry to determine the membership of each of these
collections, which can take a significant amount of time. DTS maintains a cache, also in the operating system registry, of each
component type. Use the Refresh method of these collections to update the cache for that component from a full-registry scan.
Set the UseCache property before iterating through the collection to make it scan the cache rather than the system registry.

Meta Data Services

DTS packages can be saved to an instance of SQL Server 2000 Meta Data Services. Lineage information is saved for such
packages, if the LineageOptions property of the package specifies this be done. A package lineage record is written each time a
package is executed and a step lineage record is generated for the execution of each step.

Use the GetPackageRepository method, specifying server, database and login information, to return a PackageRepository
object that provides access to an instance of Meta Data Services. The following methods of the PackageRepository object return
package and lineage information:

Use the EnumPackageInfos method to return a PackageInfos collection with information about all or a subset of the
packages saved in the Meta Data Services instance.

Use the EnumPackageLineages method to return a PackageLineages collection with lineage data for a particular
package version.

Use the EnumStepLineages method to return a StepLineages collection with step lineage data for a particular package
lineage (each step execution associated with a single execution of a particular package).

Use the RemovePackageLineages method to remove some or all of the lineage data for a package version.

SQL Server Storage and Logging

All DTS packages can log to an instance of SQL Server. Log records are written to the msdb database on the server specified by
the package LogServerName property each time a DTS package is executed, if the package LogToSQLServer property has been
set.

How log data is written

A package log record is written by DTS for each package execution, and a step log record is written for the execution of each step.

Use the PackageLog object methods when custom tasks and the ActiveScriptTask object are to write task log records. A
reference to PackageLog is passed as a parameter of the task Execute method. In task ActiveX scripts, it is available as the

DTSPackageLog scripting object.

Retrieving package and log data

Use the GetPackageSQLServer method, specifying server and login information, to return a PackageSQLServer object that
provides access to the package and log data on the server.

Use the PackageSQLServer object EnumPackageInfos method to return a PackageInfos collection with information about all
or a subset of the packages in SQL Server storage on that server.

Use a PackageSQLServer method from the table to return the corresponding collection that contains data for all or a subset of
the log records of the indicated type on the server. The removal methods will selectively remove log records of the indicated type.

Method Returned collection Removal method
EnumPackageLogRecords PackageLogRecords RemovePackageLogRecords
EnumStepLogRecords StepLogRecords RemoveStepLogRecords
EnumTaskLogRecords TaskLogRecords RemoveTaskLogRecords

In addition, RemoveAllLogRecords removes all log data for all packages from the server.

Packages Saved as Files

You can retrieve information about the contents of a DTS package storage file, which can contain multiple packages, each with
multiple versions. Create a Package2 object and then use the GetSavedPackageInfos method to return a reference to a
SavedPackageInfos collection with information about all the package versions contained in the file.

For more information about getting saved package information, see Retrieving DTS Information in Visual Basic.

DTS Programming (SQL Server 2000)

Creating DTS Packages in Visual Basic
You can implement Data Transformation Services (DTS) packages in Microsoft® Visual Basic® by following these installation
instructions:

You need to install the Microsoft SQL Server™ client tools and Visual Basic version 5.0 Service Pack 3 or later on the
computer on which the packages are to be developed.

You need to install the SQL Server client cools on the computers on which the packages are to be run.

You do not need to install Visual Basic on the target computers. The necessary Visual Basic files are supplied by the installation kit
produced with the Visual Basic Setup or Package and Deployment Wizards.

Configuring the Visual Basic Development Environment

To implement a DTS program in Visual Basic, open a new or existing project, as appropriate, in the Visual Basic development
environment. You can use any of the following project types:

Standard EXE

ActiveX EXE

ActiveX DLL

ActiveX Document EXE

ActiveX Document DLL

From the Project/References dialog box, select the references listed in the table below if you use any of the corresponding DTS
features in your application. This +will include the library file from the table in your Visual Basic project.

Reference DTS Features Library File
Microsoft DTSPackage
Object Library

Any DTS object or feature dtspkg.dll

Microsoft DTSDataPump
Scripting Object Library

Any transformation supplied with SQL
Server or any DTS scripting object

dtspump.dll

Microsoft DTS Custom
Tasks Object Library

The Message Queue task, the File
Transfer Protocol task or the Dynamic
Properties task

custtask.dll

The library files are installed in C:\Program Files\Microsoft SQL Server\80\Tools\Binn\ unless overridden by the SQL Server
installation.

Using DTS Packages Saved as Visual Basic Files

If you have used DTS Designer or the DTS Import/Export Wizard to save a DTS package as a Visual Basic file, these files can be
used as templates, or starting points, for user-implemented Visual Basic packages.

The generated code sets all properties of all objects referenced in the package to the initial values they will have when package
execution begins. This includes those that are set to their default values. Thus, many of the property assignments are redundant
and can be removed. These redundant property settings do not appear in the Visual Basic code examples in this section.

For more information, see Running a DTS Package Saved as a Visual Basic File.

See Also

Saving DTS Packages in Visual Basic

DTS Programming (SQL Server 2000)

Creating DTS Objects in Visual Basic
The topics that follow describe the creation and configuration of Data Transformation Services (DTS) objects that are used to
implement a DTS package in Microsoft® Visual Basic®.

Topic Description
DTS Packages in Visual Basic Explains how to create and configure a

Package or Package2 object.
DTS Connections in Visual Basic Explains how to create and configure a

Connection or Connection2 object for a
database or other data source.

DTS Package Workflow in Visual Basic Explains how to create and configure a Step
object and how to create and add
PrecedenceConstraint objects to implement
workflow.

DTS Tasks in Visual Basic Explains how to create a Task object and how
to configure it and the class-specific task
object.

DTS Transformations in Visual Basic Explains how to create a Transformation
object and how to configure it and the
transform server object.

DTS Column Objects in Visual Basic Explains how to create and add Column
objects in order to define source and
destination columns.

DTS Lookups in Visual Basic Explains how to create and configure a
Lookup object and access it from a Microsoft
ActiveX® script.

DTS Global Variables in Visual Basic Explains how to create and configure a
GlobalVariable object and how to explicitly
create a global variable prior to package
execution.

DTS ActiveX Scripts in Visual Basic Explains how to add ActiveX scripts to
ActiveScriptTask and
DataPumpTransformScript objects.

DTS Query Strings in Visual Basic Explains how to add query strings to the
objects that use them and describes the
details and limitations of each object type.

DTS Package Events in Visual Basic Explains how to implement event handlers for
Package object events.

DTS Programming (SQL Server 2000)

DTS Packages in Visual Basic
DTS Packages in Visual Basic

To create a Package object in Microsoft® Visual Basic®, you declare an object variable of the appropriate type and then create
the object with the Visual Basic New operator.

The Package2 class of Microsoft SQL Server™ 2000 extends the Package class of SQL Server 7.0. For more information, see
Extended DTS Objects.

However, Package2 objects cannot be created, and a Package2 object variable cannot be declared WithEvents. To create a
Package object that is compatible with SQL Server 7.0, or one that does not use the new package features, use the following code
example:

'Declare the object variable.
Private WithEvents objPackage As DTS.Package
. . .
'Create the package object.
Set objPackage = New DTS.Package

The WithEvents keyword must be omitted if package events are not to be handled. For more information about handling
package events, see DTS Package Events in Visual Basic.

Creating a Package2 Object

To create a Package2 object that makes available the new DTS features, use the following code example:

'Declare the object variables.
Private objPackage As DTS.Package2
Private WithEvents objPkgEvents As DTS.Package
. . .
'Create the package object.
Set objPackage = New DTS.Package
Set objPkgEvents = objPackage
The declaration of and assignment to objPkgEvents must be omitted if package events are not to be handled.

When using late binding in Visual Basic, object variables are declared As Object. In the following example, the new package
object is created the same way it was created in SQL Server 7.0:

'Declare the object variable.
Private objPackage As Object
. . .
'Create the package object.
Set objPackage = New DTS.Package

DTS Programming (SQL Server 2000)

DTS Connections in Visual Basic
DTS Connections in Visual Basic

 New Information - SQL Server 2000 SP3.

Add a Connection object for each database or other OLE DB store you want to access. ODBC data sources can be accessed
through the Microsoft® OLE DB provider for ODBC (MSDASQL).

Here are the basic steps for adding a Connection object in Microsoft Visual Basic®:

1. Declare an object variable of the appropriate type.

Use the Connection class in the object variable declaration if the application must be compatible with Microsoft SQL
Server™ version 7.0. Use Connection2 if it is to run only with SQL Server 2000.

2. Create the object with the New method of the Connections collection of the Package2 object. Pass the programmatic
identifier (ProgID) of the appropriate OLE DB provider to New as an argument.

3. Set properties to identify the connection and data source.

For more information, see Connection2 Object.

4. Use the Add method of the Connections collection of the Package2 object to add the Connection object to the package.

Security Note When possible, use Windows Authentication.

Creating a Connection with the Microsoft OLE DB Provider for SQL Server

The following code example shows you how to create a connection using the Microsoft OLE DB Provider for SQL Server. The New
method references a specific version of the SQLOLEDB provider. If you do not need a specific version, you should use the version-
independent ProgID, in this case "SQLOLEDB" rather than "SQLOLEDB.1":

'Declare the object variable.
Private objConnect As DTS.Connection2
Private objPackage As DTS.Package2
. . .
'Create the connection object. The package is already created at this point.
Set objConnect = objPackage.Connections.New("SQLOLEDB.1")
With objConnect
 .ID = 1
 .DataSource = "(local)"
 .UseTrustedConnection = True
End With
Set objPackage.Connections.Add = objConnect

DTS Programming (SQL Server 2000)

DTS Package Workflow in Visual Basic
DTS Package Workflow in Visual Basic

You create workflow in Data Transformation Services (DTS) packages by assigning all the tasks to steps and defining precedence
relationships between the steps. Task objects that are not assigned to steps can be included in the package, but they will not be
executed.

Creating DTS Step Objects

Here are the basic steps for adding Step objects in Microsoft® Visual Basic®:

1. Create a Step object with the New method of the Steps collection of the Package2 object.

2. Assign a unique step name to the Name property and assign the name of the associated task to the TaskName property.

3. Set other Step object properties, as appropriate.

If package event handlers coded in Visual Basic are being used, the ExecuteInMainThread property must be set TRUE.
Visual Basic does not support free threading, which DTS uses.

4. Use the Add method of the Step collection to add the Step object to the collection.

Example

The following code example shows you how to create, include, and assign a task to a Step object:

'Declare the step and the generic and class-specific task.
Dim objTask As DTS.Task
Dim objStep As DTS.Step
Dim objDataPump As DTS.DataPumpTask2
. . .
'Create the step and task, and then link the step to the task.
Set objStep = objPackage.Steps.New
Set objTask = objPackage.Tasks.New("DTSDataPumpTask")
Set objDataPump = objTask.CustomTask
objDataPump.Name = "LowerCaseTask"
With ObjStep
 .Name = "LowerCaseStep"
 .TaskName = objDataPump.Name
 .ExecuteInMainThread = True
End With
objPackage.Steps.Add objStep

DTS Programming (SQL Server 2000)

DTS Tasks in Visual Basic
DTS Tasks in Visual Basic

In Microsoft® Visual Basic®, a Data Transformation Services (DTS) task consists of a generic Task object and a class-specific task
object, such as DTSFTPTask, DataPumpTask2 or DynamicPropertiesTask object. For more information about the task classes
supplied with Microsoft SQL Server™ 2000, see Task Objects.

The basic steps for adding a DTS task in Visual Basic are as follows:

1. Declare an object variable of type Task and a class-specific task object variable.

2. Create the task with the New method of the Tasks collection of the Package2 object. Pass the programmatic identifier
(ProgID) of the task class to New as an argument.

3. Use the CustomTask property of the Task object to return a reference to the class-specific task object.

Do not declare the class-specific object variable as DTS.CustomTask. If you do, the class-specific properties and methods
will not be accessible. However, you can use late binding and declare it as Object.

4. Assign a unique name to the Name property, either of the Task object or class-specific task object.

This name also must be assigned to the TaskName property of the Step object. For more information, see DTS Package
Workflow in Visual Basic.

5. Set other class-specific task object properties as necessary.

Most task classes require a reference to one or more Connection objects. Usually, you do this through a property such as
SourceConnectionID of the class-specific task object.

6. Add the Task object to the package with the Add method of the Tasks collection.

Data Pump Task Example

The following code example shows one way to create a Data Pump task, link to Connection objects, and assign names to the
source and destination tables. Use of fully qualified table names, as shown here, makes it unnecessary to set the Catalog property
of the corresponding Connection object.

'Declare the generic and class-specific task variables.
Dim objTask As DTS.Task
Dim objDataPump As DTS.DataPumpTask2
. . .
'Create the task and then link the task to the connections.
Set objTask = objPackage.Tasks.New("DTSDataPumpTask")
Set objDataPump = objTask.CustomTask
objDataPump.Name = "LowerCaseTask"
With objDataPump
 .SourceConnectionID = 1
 .SourceObjectName = "pubs..authors"
 .DestinationConnectionID = 2
 .DestinationObjectName = "[DTS_UE].[dbo].[AuthNames]"
End With
. . .
objPackage.Tasks.Add objTask

DTS Programming (SQL Server 2000)

DTS Transformations in Visual Basic
DTS Transformations in Visual Basic

A Data Transformation Services (DTS) transformation consists of a Transformation object and a class-specific transform server
object, such as DataPumpTransformScript or DataPumpTransformTrimString. For more information about the
transformations supplied with Microsoft® SQL Server™ 2000, see Transformation Objects.

Here are the basic steps for adding a Transformation object to a Microsoft Visual Basic® file:

1. Declare an object variable of Transformation type and a transform server object variable of the appropriate type.

2. Create the transformation with the New method of the Transformations collection of the class-specific task object or
TransformationSet object. Pass the programmatic identifier (ProgID) of the transformation class to New as an argument.

3. Use the TransformServer property of the Transformation object to return a reference to the transform server object.

4. Assign a name unique among the objects in the Transformations collection to the Name property.

5. Set other Transformation or transform server object properties as necessary.

6. Add the Transformation object to the task with the Add method of the Transformations collection.

Example

The following code example shows you how to create a Copy Column transformation that does not have Column objects added.
This transformation copies all columns. The source and destination must have the same number of columns, and this must be the
only Transformation object in the Transformations collection.

'Declare the class-specific task and the transformation.
Dim objTransform As DTS.Transformation2
Dim objPumpTask As DTS.DataPumpTask2
. . .
'Create and add the transformation.
Set objTransform = objPumpTask.Transformations.New(_
 "DTS.DataPumpTransformCopy")
objTransform.Name = "Transform"
objTransform.TransformFlags = _
 DTSTransformFlag_AllowLosslessConversion
objPumpTask.Transformations.Add objTransform

DTS Programming (SQL Server 2000)

DTS Column Objects in Visual Basic
DTS Column Objects in Visual Basic

You must specify the columns to be transformed when:

There are multiple Transformation objects in the Transformations collection.

The number of source and destination columns is different (for example, if you are not transforming all columns).

The order of the source and destination columns does not match.

Here are the basic steps for adding Column objects to a transformation in Microsoft® Visual Basic®:

1. Create each Column object with the New method of the SourceColumns or DestinationColumns collections of the
Transformation object.

2. Specify the column name and ordinal position as arguments to New.

3. Set the properties of the Column object as appropriate.

4. Use the Add method of the SourceColumns or DestinationColumns collection to add the Column object to the
appropriate collection.

Example

The following example shows you how to create and include one source and one destination Column object and to use the
transform server object to set class-specific properties:

'Declare the class-specific task, the transformation, the column, and the transform server object.
Dim objDataPump As DTS.DataPumpTask
Dim objTransform As DTS.Transformation
Dim objColumn As DTS.Column
Dim objMidString As DTSPump.DataPumpTransformMidString

. . .
'Create an area code transformation.
' create columns, define start and width
Set objTransform = objDataPump.Transformations. _
 New("DTSPump.DataPumpTransformMidString")
With objTransform
 .Name = "AreaCodeTransform"
 Set objColumn = .SourceColumns.New("phone", 1)
 .SourceColumns.Add objColumn
 Set objColumn = .DestinationColumns.New("AreaCode", 1)
 .DestinationColumns.Add objColumn
End With
Set objMidString = objTransform.TransformServer
objMidString.CharacterStart = 1
objMidString.CharacterCount = 3
objDataPump.Transformations.Add objTransform

DTS Programming (SQL Server 2000)

DTS Lookups in Visual Basic
DTS Lookups in Visual Basic

You can create and configure a Lookup object to look up data in another query rowset through a separate connection.

Here are the basic steps for configuring a Lookup object:

1. Use the New method of the Lookups collection of a DataDrivenQueryTask(2), DataPumpTask(2) or
TransformationSet object of a ParallelDataPumpTask object to create the Lookup object.

2. Use the ConnectionID property to specify the connection, which should be different from the source and destination
connections for the task.

3. Specify the text of a query that returns a rowset (for example, a Select query or stored procedure) with the Query property.

The query should have one or more parameters denoted by the "?" placeholder. The query should be designed to return a
rowset with a single row. Additional rows in the rowset are ignored.

4. Use the Add method of the Lookups collection to add the Lookup object to the collection.

Example

The following code example shows you how to create and configure a Lookup object:

'Declare a lookup object and a class-specific task.
Dim objLookup As DTS.Lookup
Dim objDataPump As DTS.DataPumpTask2

. . .
'Define the lookup object.
Set objLookup = objDataPump.Lookups.New("JobDesc")
With objLookup
 .ConnectionID = 2
 .Query = "SELECT job_desc FROM jobs " & vbCrLf
 .Query = .Query & "WHERE job_id = ?"
 .MaxCacheRows = 60
End With
objDataPump.Lookups.Add objLookup

In the Microsoft® ActiveX® script, the lookup must be referenced with the Execute method of an element of the DTSLookups
collection, as illustrated in the following code example:

DTSDestination("JobDesc") = _
 DTSLookups("JobDesc").Execute(DTSSource("job_id"))

If the lookup rowset has more than one column, the Execute method returns a Variant array. The script may need to iterate
through the array to use multiple values.

After the Lookup object has been added to the Lookups collection, the object variable is no longer needed and can be reused for
other objects or set to Nothing to release its reference.

DTS Programming (SQL Server 2000)

DTS Global Variables in Visual Basic
DTS Global Variables in Visual Basic

Global variables that do not exist when first referenced during Data Transformation Services (DTS) package execution are created
at that time. Prior to package execution, you can create global variables explicitly by adding a GlobalVariable object to the
package.

Here are the basic steps for creating a global variable in a DTS package prior to package execution:

1. Use the New method of the GlobalVariables collection of the Package2 object.

2. Set the Value property of the created GlobalVariable object to the initial value of the global variable.

3. Add the object to the package with the Add method of the GlobalVariables collection.

Example

The following code example shows you how to create a global variable named ALuckyName initialized with the string
"SevenSevenSeven":

'Declare the package and global variable objects.
Dim objPackage As DTS.Package2
Dim objGlobal As DTS.GlobalVariable
. . .
'Define the global variable.
Set objGlobal = objPackage.GlobalVariables.New("ALuckyName")
objGlobal.Value = "SevenSevenSeven"
objPackage.GlobalVariables.Add objGlobal

Alternatively, the AddGlobalVariable method of the GlobalVariables collection creates the GlobalVariable object and adds it
to the collection in a single step. However, it does not return a reference to the object. The following code sample shows you how
to create global variable ALuckyName using AddGlobalVariable:

'Define the global variable.
objPackage.GlobalVariables.AddGlobalVariable _
 "ALuckyName", "SevenSevenSeven"

After the GlobalVariable object has been added to the GlobalVariables collection, the object variable is no longer needed and
can be reused for other objects or set to Nothing to release its reference.

DTS Programming (SQL Server 2000)

DTS ActiveX Scripts in Visual Basic
DTS ActiveX Scripts in Visual Basic

You assign Microsoft® ActiveX® scripts to a property of objects that require scripts as a single text string. That text string can
include embedded carriage return/line feed pairs. If the script string constant contains the " character, represent it as double
quotations "", as you would in any Microsoft Visual Basic® string constant. Each scripted object also has properties for the script
language and the script function name.

For the ActiveScriptTask, the script text is assigned to the ActiveXScript property. The ScriptLanguage and FunctionName
properties are used to specify the scripting language and function entry point.

For the DataPumpTransformScript transformation, the script text is assigned to the Text property. The Language and
FunctionEntry properties are used for the script language and function name, respectively.

Example

The following code example assigns a Microsoft Visual Basic Scripting Edition (VBScript) function to a
DataPumpTransformScript transformation used by a DataPumpTask2 object:

'Declare the class-specific task, the transformation, and the transform server object.
Dim objDataPump As DTS.DataPumpTask
Dim objTransformation As DTS.Transformation
Dim objTransScript As DTSPump.DataPumpTransformScript

'Create the transformation and the transform server object. Then assign the script string.
' objDataPump already exists at this point
Set objTransformation = objDataPump.Transformations.New(_
 "DTSPump.DataPumpTransformScript")
Set objTransScript = objTransformation.TransformServer
With objTransScript
 .Text = "Function Main()" & vbCrLf
 .Text = .Text & " DTSDestination(""emp_id"") = _
 DTSSource(""emp_id"")" & vbCrLf
 .Text = .Text & " DTSDestination(""Name"") = _
 DTSSource(""lname"") & "", "" & DTSSource(""fname"")" & vbCrLf
 .Text = .Text & " DTSDestination(""JobDesc"") = _
 DTSLookups(""JobDesc"").Execute(DTSSource(""job_id""))" _
 & vbCrLf
 .Text = .Text & " DTSDestination(""PubName"") = _
 DTSLookups(""PubName"").Execute(DTSSource(""pub_id""))" _
 & vbCrLf
 .Text = .Text & " Main = DTSTransformStat_OK" & vbCrLf
 .Text = .Text & "End Function"
 .Language = "VBScript"
 .FunctionEntry = "Main"
End With
. . .
objDataPump.Transformations.Add objTransScript

DTS Programming (SQL Server 2000)

DTS Query Strings in Visual Basic
DTS Query Strings in Visual Basic

 New Information - SQL Server 2000 SP3.

You can assign queries to a property of the object using a query as a text string. The property name differs for each object that
uses a query. The string can include carriage return/line feed pairs. When the query string is a constant and contains the "
character, represent it as double quotations "", as in all Microsoft® Visual Basic® string constants.

If you are supplying source or destination queries for the DataPumpTask(2), DataDrivenQueryTask(2) or
ParallelDataPumpTask, you must assign a single Select or stored procedure query to the SourceSQLStatement or
DestinationSQLStatement properties. The destination query defines a rowset into which destination rows are inserted. This
feature is not accessible to packages created in Data Transformation Services (DTS) Designer.

In the DynamicPropertiesTaskAssignment object of the DynamicPropertiesTask, assign a single Select or stored procedure
query that returns a rowset to the SourceQuerySQL property. This query returns a single row containing a single column.
Additional fields in the rowset are ignored.

Security Note Query strings should be treated as user input for the purposes of validation. Do not concatenate query strings
before validating them. Never execute a query string constructed from unvalidated user input. For more information, see
Validating User Input.

Example

The following code example shows one way to assign the source and destination queries for the ParallelDataPumpTask object:

'Declare the generic and class-specific task object variables.
Dim objTask As DTS.Task
Dim objParallelPumpTask As DTS.ParallelDataPumpTask

'Create the ParallelDataPumpTask and assign the connections and queries.
Set objTask = objPackage.Tasks.New("DTSParallelDataPumpTask")
Set objParallelPumpTask = objTask.CustomTask
With objParallelPumpTask
 .TransformationSetOptions = DTSTranSetOpt_DataDrivenQueries
 .SourceConnectionID = 1
 .SourceSQLStatement = _
 "SHAPE {SELECT au_id, au_lname, au_fname FROM authors} " & _
 "APPEND ({SELECT au_id, title FROM titleauthor TA, titles TS " & _
 "WHERE TA.title_id = TS.title_id} " & _
 "AS title_chap RELATE au_id TO au_id)"
 .DestinationConnectionID = 2
 .DestinationSQLStatement = _
 "SHAPE {SELECT * FROM AuthNames} " & _
 "APPEND ({SELECT * FROM TitleNames} " & _
 "AS TitleChap RELATE AuthID TO AuthID)"
End With

DTS Programming (SQL Server 2000)

DTS Package Events in Visual Basic
DTS Package Events in Visual Basic

To handle Data Transformation Services (DTS) package events in Microsoft® Visual Basic®, declare the Package object variable
WithEvents. A Package2 object variable cannot be declared WithEvents. If you want to use the new features of the Package2
object and also handle package events, create a Package object and assign it to a Package2 object variable. You can use this
object to access the package properties and methods. Also assign the Package2 object variable to a Package object variable that
has been declared WithEvents.

After you have declared a Package object variable WithEvents, you must provide event handlers for all the package events. If
you fail to do so, you will typically receive an access violation error at the time the unhandled event is raised.

Because Visual Basic objects do not support multiple threads, you also must set the ExecuteInMainThread property to TRUE for
each Step object in the package.

Example

The following code example is a private class that handles package events after its PackageObj property has been set.

Note The OnQueryCancel and OnStart event handlers consist of only a comment. This comment satisfies the requirement that
a handler be supplied for these events and causes Visual Basic to compile the Subs. You also can use the single statement Exit
Sub.

Option Explicit
Private WithEvents objPackage As DTS.Package
. . .
Private Sub objPackage_OnError(ByVal EventSource As String, _
 ByVal ErrorCode As Long, ByVal Source As String, _
 ByVal Description As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, _
 ByVal IDofInterfaceWithError As String, pbCancel As Boolean)
 Dim sMsg As String

 sMsg = "EventSource: " & EventSource & vbCrLf & _
 "ErrorCode: " & (ErrorCode) & vbCrLf & _
 "Source: " & Source & vbCrLf & _
 "Description: " & Description & vbCrLf & _
 "HelpFile: " & HelpFile & vbCrLf & _
 "IDofIFWErr: " & IDofInterfaceWithError
 MsgBox sMsg, vbExclamation, "OnError"

End Sub

Private Sub objPackage_OnFinish(ByVal EventSource As String)
 MsgBox EventSource, vbInformation, "OnFinish"
End Sub

Private Sub objPackage_OnProgress(ByVal EventSource As String, _
 ByVal ProgressDescription As String, _
 ByVal PercentComplete As Long, _
 ByVal ProgressCountLow As Long, _
 ByVal ProgressCountHigh As Long)
 Dim sMsg As String

 sMsg = "EventSource: " & EventSource & vbCrLf & _
 "ProgressDescr: " & ProgressDescription & vbCrLf & _
 "PercentComplete: " & (PercentComplete) & vbCrLf & _
 "ProgressCountLow: " & (ProgressCountLow) & vbCrLf & _
 "ProgressCountHigh: " & (ProgressCountHigh)
 MsgBox sMsg, vbExclamation, "OnProgress"

End Sub

Private Sub objPackage_OnQueryCancel(ByVal EventSource As String, _
 pbCancel As Boolean)
 'MsgBox EventSource, vbInformation, "OnQueryCancel"
End Sub

Private Sub objPackage_OnStart(ByVal EventSource As String)
 'MsgBox EventSource, vbInformation, "OnStart"
End Sub

Public Property Get PackageObj() As DTS.Package2

 Set PackageObj = objPackage
End Property

Public Property Set PackageObj(ByVal oNewPack As DTS.Package2)
 Set objPackage = oNewPack
End Property

DTS Programming (SQL Server 2000)

Managing DTS Package Programs in Visual Basic
The topics that follow describe the implementation of DTS functions in Microsoft® Visual Basic®. These functions use the Data
Transformation Services (DTS) object model.

Topic Description
Executing DTS Packages in Visual Basic Explains how to use the Execute method of the

Package2 object and describes what you need
to consider before reusing Package2.

Handling DTS Errors in Visual Basic Explains how to detect errors that occur during
DTS package execution.

Saving DTS Packages in Visual Basic Explains how a Package2 object can save the
package to storage and how to load a DTS
package into a Package2 object.

Running a Package Saved as a Visual
Basic File

Explains how to incorporate a DTS package
saved as a Visual Basic file by a DTS tool into a
Visual Basic project.

Retrieving DTS Information in Visual
Basic

Explains how to obtain package and version
information from a DTS package storage file.

DTS Programming (SQL Server 2000)

Executing DTS Packages in Visual Basic
Executing DTS Packages in Visual Basic

After you have created the necessary Data Transformation Services (DTS) objects, set their properties and added them to the
appropriate collections, use the Execute method of the Package2 object to run the package. For more information about
handling errors raised by the Execute method, see DTS Error Handlers in Visual Basic.

If the Package2 object is to be used again (for example, for saving or running), or if the application is to perform significant
processing outside of DTS after the DTS package is run, it is recommended that you call the Package2 UnInitialize method.
UnInitialize performs various clean-ups, for example, re-initializing global variables, closing user-opened connections, closing
the log, releasing threads, and terminating event connection points.

Before calling UnInitialize, it is strongly recommended that you release references to all DTS objects, except the Package2
object, through which you are going to run Uninitialize. This includes additional Package or Package2 object variables that you
have declared WithEvents in order to handle package events.

You can release references by either setting the appropriate object variables to Nothing or arranging your code so that they go
out of scope. If you fail to do this, resources such as computer memory will not be released by Uninitialize, giving the
appearance of a memory leak.

Example

The following code example shows a DTS package using an ExecutePackageTask, through the Execute and UnInitialize
methods:

Private WithEvents mobjPkgEvents As DTS.Package
. . .
Private Sub RunPackage()
'Run the package stored in file C:\DTS_UE\TestPkg\VarPubsFields.dts.
Dim objPackage As DTS.Package2
Dim objStep As DTS.Step
Dim objTask As DTS.Task
Dim objExecPkg As DTS.ExecutePackageTask

On Error GoTo PackageError
Set objPackage = New DTS.Package
Set mobjPkgEvents = objPackage
objPackage.FailOnError = True

'Create the step and task. Specify the package to be run, and link the step to the task.
Set objStep = objPackage.Steps.New
Set objTask = objPackage.Tasks.New("DTSExecutePackageTask")
Set objExecPkg = objTask.CustomTask
With objExecPkg
 .PackagePassword = "user"
 .FileName = "C:\DTS_UE\TestPkg\VarPubsFields.dts"
 .Name = "ExecPkgTask"
End With
With objStep
 .TaskName = objExecPkg.Name
 .Name = "ExecPkgStep"
 .ExecuteInMainThread = True
End With
objPackage.Steps.Add objStep
objPackage.Tasks.Add objTask

'Run the package and release references.
objPackage.Execute

Set objExecPkg = Nothing
Set objTask = Nothing
Set objStep = Nothing
Set mobjPkgEvents = Nothing

objPackage.UnInitialize
End Sub

DTS Programming (SQL Server 2000)

Handling DTS Errors in Visual Basic
Handling DTS Errors in Visual Basic

You need to take the steps described below when handling errors in Data Transformation Services (DTS) applications
implemented in Microsoft® Visual Basic®.

DTS applications typically consist of two phases:

In the first phase, the applications create DTS objects, set their properties, and add them to collections of parent objects.

Errors that occur during the object creation/property definition phase can be handled by a typical Visual Basic error handler.

In the second phase, the Execute method of the Package2 object is invoked.

Errors that occur during the Execute will not be propagated back to the caller unless the FailOnError property of the
Package2 object is set to TRUE.

When FailOnError is TRUE, the description of the returned error will often tell you only that the package failed because a
(named) step failed. To determine why a step failed, the GetExecutionErrorInfo method of the Step object will return the
properties of a Visual Basic error object that describe the error.

Troubleshooting Package Execution

To determine the step(s) that raised errors, the ExecutionStatus property of the Step object should have the value
DTSStepExecStat_Completed (in enum DTS.DTSStepExecStatus) and the ExecutionResult property should have the value
DTSStepExecResult_Failure (in enum DTS.DTSStepExecResult). If FailOnError is TRUE, there will only be one such step. If not,
there may be multiple failed steps, depending on the package workflow. The error handler should iterate through all the objects in
the Steps collection and not stop when it finds an error.

Error Handler Example

The following code example is a typical error handler that could be used while a package is being developed, and FailOnError is
set to TRUE. If failing the package on the first error is undesirable, the sAccumStepErrors function could still be used, but it would
need to be called following a normal return from objPackage.Execute, as well as from the error handler.

Private Sub RunDTSPackage()
 Dim objPackage As New DTS.Package
 . . .
 On Error GoTo PackageError
 . . .
 objPackage.FailOnError = True
 objPackage.Execute
 Exit Sub

PackageError:
 Dim sMsg As String
 sMsg = "Package failed, error: " & sErrorNumConv(Err.Number) & _
 vbCrLf & Err.Description & vbCrLf & sAccumStepErrors(objPackage)
 MsgBox sMsg, vbExclamation, objPackage.Name
 Exit Function
End Sub

Private Function sAccumStepErrors(_
 ByVal objPackage As DTS.Package) As String
'Accumulate the step error info into the error message.
 Dim oStep As DTS.Step
 Dim sMessage As String
 Dim lErrNum As Long
 Dim sDescr As String
 Dim sSource As String

 'Look for steps that completed and failed.
 For Each oStep In objPackage.Steps
 If oStep.ExecutionStatus = DTSStepExecStat_Completed Then
 If oStep.ExecutionResult = DTSStepExecResult_Failure Then

 'Get the step error information and append it to the message.
 oStep.GetExecutionErrorInfo lErrNum, sSource, sDescr
 sMessage = sMessage & vbCrLf & _
 "Step " & oStep.Name & " failed, error: " & _

 sErrorNumConv(lErrNum) & vbCrLf & sDescr & vbCrLf
 End If
 End If
 Next
 sAccumStepErrors = sMessage
End Function

Private Function sErrorNumConv(ByVal lErrNum As Long) As String
'Convert the error number into readable forms, both hexadecimal and decimal for the low-order word.

 If lErrNum < 65536 And lErrNum > -65536 Then
 sErrorNumConv = "x" & Hex(lErrNum) & ", " & CStr(lErrNum)
 Else
 sErrorNumConv = "x" & Hex(lErrNum) & ", x" & _
 Hex(lErrNum And -65536) & " + " & CStr(lErrNum And 65535)
 End If
End Function

DTS Programming (SQL Server 2000)

Saving DTS Packages in Visual Basic
Saving DTS Packages in Visual Basic

When you use the Package2 object methods, you can save or load a package in the formats available to you through Data
Transformation Services (DTS) Designer and the DTS Import/Export Wizard. You can save packages to Microsoft® SQL Server™
2000, to SQL Server 2000 Meta Data Services and to a COM-structured storage file.

To save a package, use one of the following Package2 methods:

SaveToSQLServer

SaveToSQLServerAs

SaveToRepository

SaveToRepositoryAs

SaveToStorageFile

SaveToStorageFileAs

If the package is run before being saved, call the UnInitialize method first.

To load a package, first create the Package2 object and then invoke one of the following Package2 object methods:

LoadFromSQLServer

LoadFromRepository

LoadFromStorageFile

To delete a package from SQL Server or Meta Data Services, use the Package2 object RemoveFromSQLServer or
RemoveFromRepository methods.

Example

The following code example shows a function loading a package in one format and saving it in another:

Enum eDTSPkgFormat
 REPOSITORY
 SQL_SERVER
 STORAGE_FILE
End Enum

Public Function blnCopyDTSPackage(_
 ByVal strReposServerName As String, ByVal strReposDBName As String, _
 ByVal strReposUserName As String, ByVal strReposPassword As String, _
 ByVal blnReposNTAuth As Boolean, ByVal strSQLServerName As String, _
 ByVal strSQLSvUserName As String, ByVal strSQLSvPassword As String, _
 ByVal blnSQLSvNTAuth As Boolean, ByVal strPackageID As String, _
 ByVal strPackageVerID As String, ByVal strPackageName As String, _
 ByVal strPkgOwnerPwd As String, ByVal strPkgUserPwd As String, _
 ByVal strPkgUNCPath As String, ByVal dpfPkgSource As eDTSPkgFormat, _
 ByVal dpfPkgDestination As eDTSPkgFormat) As Boolean
'Copy the DTS package source to the destination format.
Dim objPackage As DTS.Package2
Dim rsfFlags As DTS.DTSRepositoryStorageFlags
Dim ssfFlags As DTS.DTSSQLServerStorageFlags
Dim strPhase As String 'load/save phase for error msg

On Error GoTo ErrorHandler

'Copying the source to the destination in the same format is not supported.
If dpfPkgSource = dpfPkgDestination Then
 MsgBox "Same format for source and destination not supported", _
 vbExclamation
 Exit Function

End If

'Create the package object and calculate the storage flags.
Set objPackage = New DTS.Package
rsfFlags = IIf(blnReposNTAuth, DTSReposFlag_UseTrustedConnection, _
 DTSReposFlag_Default)
ssfFlags = IIf(blnSQLSvNTAuth, DTSSQLStgFlag_UseTrustedConnection, _
 DTSSQLStgFlag_Default)

'Load the package from the specified storage type.
strPhase = "loading"
Select Case dpfPkgSource
 Case REPOSITORY
 objPackage.LoadFromRepository _
 strReposServerName, strReposDBName, strReposUserName, _
 strReposPassword, strPackageID, strPackageVerID, _
 strPackageName, rsfFlags

 Case SQL_SERVER
 objPackage.LoadFromSQLServer _
 strSQLServerName, strSQLSvUserName, strSQLSvPassword, _
 ssfFlags, strPkgOwnerPwd, strPackageID, _
 strPackageVerID, strPackageName

 Case STORAGE_FILE
 objPackage.LoadFromStorageFile _
 strPkgUNCPath, strPkgOwnerPwd, strPackageID, _
 strPackageVerID, strPackageName
End Select

'Save the package to the specified storage type.
strPhase = "saving"
Select Case dpfPkgDestination
 Case REPOSITORY
 objPackage.SaveToRepository _
 strReposServerName, strReposDBName, strReposUserName, _
 strReposPassword, rsfFlags

 Case SQL_SERVER
 objPackage.SaveToSQLServer _
 strSQLServerName, strSQLSvUserName, strSQLSvPassword, _
 ssfFlags, strPkgOwnerPwd, strPkgUserPwd

 Case STORAGE_FILE
 objPackage.SaveToStorageFile _
 strPkgUNCPath, strPkgOwnerPwd, strPkgUserPwd
End Select

blnCopyDTSPackage = True
Exit Function

ErrorHandler:
MsgBox "Error " & strPhase & " DTS package: 0x" & Hex(Err.Number) & _
 vbCrLf & Err.Description, vbExclamation
Exit Function
End Function

DTS Programming (SQL Server 2000)

Running a DTS Package Saved as a Visual Basic File
Running a DTS Package Saved as a Visual Basic File

You can run a Data Transformation Services (DTS) package that has been saved by one of the DTS tools as a Microsoft® Visual
Basic® file. The saved module, a Visual Basic .bas file, consists of declarations and a Sub Main and may contain other Subs called
by Sub Main. The Subs contain all the logic of the DTS package.

Here are the basic steps for incorporating a Visual Basic module file into a Visual Basic project and executing it on a computer
running the Microsoft SQL Server™ client tools:

1. In Visual Basic, create a new Standard EXE project.

2. On the Project menu, click References, and then select the Microsoft DTSDataPump Scripting Object Library,
Microsoft DTSPackage Object Library, and Microsoft DTS Custom Tasks Object Library check boxes.

Not all DTS programs will require all three of these libraries.

3. On the Project menu, click Add File, and then add the Visual Basic file produced by the DTS Import/Export Wizard or DTS
Designer.

4. In the Project Explorer, select Form1 and then on the Project menu, click Remove Form1 to remove the blank form from
the Project.

5. Run the project.

No indication of completion will be given other than the Visual Basic Development Environment will go back to design
mode.

You may want to add completion notification and error handling and controls to allow the user to invoke the transformation.

Using the Visual Basic File to Save to SQL Server

The Visual Basic project you created from the generated Visual Basic file can be used to save the DTS package to SQL Server.

Here are the basic steps for saving Visual Basic files to SQL Server:

1. Go to the end of the Sub Main and uncomment the line

'objPackage.SaveToSQLServer ...

2. Comment out the following line

objPackage.Execute

3. Run the project.

When the Visual Basic Development Environment goes back to design mode, the package is saved to SQL Server.

The package can now be edited, maintained, and run from DTS Designer. It can be saved again as a Visual Basic file from DTS
Designer.

See Also

Executing DTS Packages in Visual Basic

Saving DTS Packages in Visual Basic

Saving a DTS Package to a Visual Basic File

DTS Programming (SQL Server 2000)

Retrieving DTS Information in Visual Basic
Retrieving DTS Information in Visual Basic

 New Information - SQL Server 2000 SP3.

Data Transformation Services (DTS) provides features for requesting information about registered components and saved
packages and for retrieving the contents of log records.

Registered Components

The Application object provides access to the system, package, and log data. You create it independently of a DTS package.

Use the OLEDBProviderInfos, ScriptingLanguageInfos, TaskInfos, and TransformationInfos collections of the Application
object to obtain information about:

OLE DB providers.

Microsoft® ActiveX® scripting languages.

DTS task classes and DTS transformation classes that are registered on the computer and can be used by DTS.

The DTS task and transformation classes include those supplied with Microsoft SQL Server™ and custom tasks and
transformations implemented by other vendors and users.

Example

The following example creates a DTS Application object, then iterates through the collections named above to retrieve information
about the registered components available to DTS.

To register components

1. In a Microsoft Visual Basic® development environment, create a new Standard EXE project.

2. On the Project menu, click References, and then select the Microsoft DTSPackage Object Library check box.

3. Place a textbox on Form1, and then accept the default name Text1.

4. Set the MultiLine property to TRUE and set the ScrollBars property to 3 - Both.

5. Copy the following code into the code window for Form1, and then run the project:

Note Be sure to include the Form_Resize sub. It allows you to drag the borders of Form1 to view the information.

Private Sub Form_Load()
 Dim objDTSAppl As DTS.Application
 Dim colScripInfo As DTS.ScriptingLanguageInfos
 Dim objScripInfo As DTS.ScriptingLanguageInfo
 Dim colOLEDBInfo As DTS.OLEDBProviderInfos
 Dim objOLEDBInfo As DTS.OLEDBProviderInfo
 Dim colTaskInfo As DTS.TaskInfos
 Dim objTaskInfo As DTS.TaskInfo
 Dim colTransInfo As DTS.TransformationInfos
 Dim objTransInfo As DTS.TransformationInfo
 Dim strMsg As String

 Set objDTSAppl = New DTS.Application

 strMsg = "OLEDB Provider Information" & vbCrLf & "=======================" & vbCrLf
 Set colOLEDBInfo = objDTSAppl.OLEDBProviderInfos
 For Each objOLEDBInfo In colOLEDBInfo

 strMsg = strMsg & vbCrLf & _
 vbTab & "ClassID:" & vbTab & objOLEDBInfo.ClassID & vbCrLf & _
 vbTab & "Descr:" & vbTab & objOLEDBInfo.Description & vbCrLf & _
 vbTab & "File:" & vbTab & objOLEDBInfo.ImplementationFileName & vbCrLf & _
 vbTab & "Version:" & vbTab & objOLEDBInfo.ImplementationFileVersionString & vbCrLf & _
 vbTab & "Name:" & vbTab & objOLEDBInfo.Name & vbCrLf & _
 vbTab & "Parse:" & vbTab & objOLEDBInfo.ParseName & vbCrLf
 Next

 strMsg = strMsg & vbCrLf & "Scripting Langauge Information" & vbCrLf & _
 "=========================" & vbCrLf
 Set colScripInfo = objDTSAppl.ScriptingLanguageInfos
 For Each objScripInfo In colScripInfo
 strMsg = strMsg & vbCrLf & _
 vbTab & "ClassID:" & vbTab & objScripInfo.ClassID & vbCrLf & _
 vbTab & "Descr:" & vbTab & objScripInfo.Description & vbCrLf & _
 vbTab & "File:" & vbTab & objScripInfo.ImplementationFileName & vbCrLf & _
 vbTab & "Version:" & vbTab & objScripInfo.ImplementationFileVersionString & vbCrLf & _
 vbTab & "Name:" & vbTab & objScripInfo.Name & vbCrLf
 Next

 strMsg = strMsg & vbCrLf & "Registered DTS Task Information" & vbCrLf & _
 "===========================" & vbCrLf
 Set colTaskInfo = objDTSAppl.TaskInfos
 For Each objTaskInfo In colTaskInfo
 strMsg = strMsg & vbCrLf & _
 vbTab & "ClassID:" & vbTab & objTaskInfo.ClassID & vbCrLf & _
 vbTab & "Descr:" & vbTab & objTaskInfo.Description & vbCrLf & _
 vbTab & "File:" & vbTab & objTaskInfo.ImplementationFileName & vbCrLf & _
 vbTab & "Version:" & vbTab & objTaskInfo.ImplementationFileVersionString & vbCrLf & _
 vbTab & "Icon:" & vbTab & objTaskInfo.IconFile & vbCrLf & _
 vbTab & "Index:" & vbTab & objTaskInfo.IconIndex & vbCrLf & _
 vbTab & "Name:" & vbTab & objTaskInfo.Name & vbCrLf
 Next

 strMsg = strMsg & vbCrLf & "Registered DTS Transformation Information" & vbCrLf & _
 "===================================" & vbCrLf
 Set colTransInfo = objDTSAppl.TransformationInfos
 For Each objTransInfo In colTransInfo
 strMsg = strMsg & vbCrLf & _
 vbTab & "ClassID:" & vbTab & objTransInfo.ClassID & vbCrLf & _
 vbTab & "Descr:" & vbTab & objTransInfo.Description & vbCrLf & _
 vbTab & "File:" & vbTab & objTransInfo.ImplementationFileName & vbCrLf & _
 vbTab & "Version:" & vbTab & objTransInfo.ImplementationFileVersionString & vbCrLf & _
 vbTab & "Name:" & vbTab & objTransInfo.Name & vbCrLf
 Next

 Text1.Text = strMsg
End Sub

Private Sub Form_Resize()
 Text1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight
End Sub

DTS Programming (SQL Server 2000)

Building a DTS Custom Task
In Data Transformation Services (DTS) packages, you can include custom tasks, which are DTS tasks implemented by your or third
party vendors. Custom tasks can be included in packages created by applications, or they can be registered so that they are
referenced from DTS Designer. There are additional constraints a custom task must satisfy if it is to be used in DTS Designer. For
more information, see DTS Example: Running Concurrent Operations in Visual Basic.

To implement a custom task, you must:

Use a programming language that supports COM, such as Microsoft® Visual C++® or Microsoft Visual Basic®.

Implement the CustomTask interface and optionally implement other DTS custom task interfaces. Microsoft SQL Server™
2000 supplies objects that define these interfaces.

Add registration code to your custom task if you want to avoid registering the task from DTS Designer.

Any DTS custom task implemented in Microsoft Visual Basic must execute on the main thread. If the custom task is included in an
Execute Package task, the Execute Package task will also need to run on the main thread. Similarly, if the custom task is
manipulated (for example, has one of its property values assigned) by a Dynamic Properties task, the Dynamic Properties task will
need to execute on the main thread.

This section explains how to implement custom tasks and provides examples.

Topic Description
DTS Custom Task Fundamentals Describes the CustomTask interface that all

custom tasks must implement.
Including a DTS Custom Task User
Interface

Describes the CustomTaskUI interface, which
custom tasks that have a custom property page
must implement.

Registering a DTS Custom Task Describes how to register custom tasks from DTS
Designer and how to support registration from
the command prompt.

Additional DTS Custom Task
Features

Explains how to raise package events, write to log
tables and files, and use the DTS properties
provider from a custom task.

DTS Custom Task Examples in
Visual Basic

Shows how to implement a basic DTS custom
task and how to add functionality to it in Visual
Basic.

Implementing DTS Custom Tasks in
Visual C++

Explains how to use the Active Template Library
(ATL) to implement DTS custom tasks in Visual
C++.

DTS Custom Task Examples in
Visual C++

Provides examples of DTS custom task examples
implemented in Visual C++.

DTS Programming (SQL Server 2000)

DTS Custom Task Fundamentals
A Data Transformation Services (DTS) custom task is implemented as an in-process COM component. To be used in DTS
Designer, the custom task must be an in-process DLL. When used programmatically, the custom task can be an out-of-process
executable.

All custom tasks must implement the CustomTask interface. If the custom task has a property sheet, the task also must
implement the CustomTaskUI interface. For more information, see Including a DTS Custom Task User Interface.

CustomTask Interface

In Microsoft® Visual Basic®, the CustomTask interface is defined by the CustomTask object from the Microsoft DTSPackage
Object Library. In Microsoft Visual C++®, it is defined by IDTSCustomTask in the include file dtspkg.h.

The DTS CustomTask interface includes the following elements.

Element Description
Description property A textual description that identifies the task in DTS Designer

or a programming environment.
Name property A unique identifier used by DTS to reference the task.
Properties collection A reference to a collection of Property objects that defines

each property of the custom task.
Execute method A subprogram that performs the function of the custom task.

As required by COM, all elements must be present, but they can be placeholders.

Because of the process Microsoft SQL Server 2000 uses to manage DTS custom tasks, you must include both a Get and Let (or
Set) property procedure for all properties. Each property associated with a custom task should consist of a pair of property
procedures: a property Get to retrieve the property value, and a property Let (or Set) to assign a new value.

Description Property

DTS Designer uses the Description property to label the icon for the custom task. To implement Description, you save the value
to which the property is set and return that value when the property is read. If you provide a placeholder for Description, the
label disappears when you close the task property page or the Custom Task Properties dialog box.

In Visual Basic, if you plan to use the default properties grid, you must provide an additional Description property for the class-
specific task object. Tie Description and CustomTask_Description together so that setting either the class-specific Description
property or CustomTask_Description causes the values of both to be updated.

This step is necessary because the CustomTask_Description Get and Let functions implement the Task.Description property.
However, Description implements CustTask.Description, where CustTask is the name you gave to your custom task.
Implementing CustTask.Description also causes Description to be included in the Properties collection. The properties grid
uses the Properties collection to read and update custom task properties.

If you do not plan to use the custom task in DTS Designer and you do not plan to use the Description property, you can provide
a placeholder for CustomTask_Description.

Name Property

The Name property identifies the Task objects in the package. Thus, it always must be implemented. To implement Name, you
save the value to which the property is set and return that value when the property is read.

It is recommended that you do not expose Name, especially in a read/write mode. DTS Designer assigns a unique name to the
task when the task icon is placed on the design sheet. If you change the value of Name, DTS Designer will look for the task using
the old name and fail when it cannot find it.

In a DTS application, you can set or change Name before adding the Task object to the Tasks collection. However, you will need
logic to detect when the user enters a name already used by another task. It is recommended that you have the application specify
task names and guarantee they are unique.

Properties Collection

The Properties collection contains Property objects that identify the properties of the custom task. You always must implement

Properties, but you can use a default properties provider supplied with DTS to do so. Invoke the default by returning either NULL
or Nothing, as appropriate for the programming environment, from Properties.

The default property grid displayed by DTS Designer uses the Properties collection to read and update the custom task
properties. In Visual Basic, the properties of the CustomTask interface are not included in the default Properties collection. It
may be necessary to add a duplicate property and tie it to the related CustomTask property, as was the case for Description.

Execute Method

The Execute method provides the functionality of the custom task. Use its parameters in the following ways.

Parameter Usage
pPackage Use this reference to the Package2 object to access other objects

in the DTS hierarchy. Do not save any reference obtained through
pPackage after the return from Execute.

pPackageEvents Use pPackageEvents to raise package events. Check
pPackageEvents for NULL/Nothing before using.

pPackageLog Use pPackageLog, a reference to the PackageLog object, to write
records to the server log table or to the log file. Check
pPackageLog for NULL/Nothing before using.

pTaskResult Set pTaskResult to a code from the DTSTaskExecResult constants
before returning from Execute in order to indicate success, retry or
failure.

In a DTS application, you do not need to call Execute from the application. DTS will call it at the appropriate time. When Execute
returns, task execution is complete.

Basic Custom Task

For more information about building a basic custom task, see DTS Example: Basic Custom Task in Visual Basic, DTS Example:
Adding Properties and Icons in Visual Basic and DTS Example: Adding Properties and Icons in Visual C++.

See Also

CustomTask Object

CustomTaskUI Object

DTSTaskExecResult

Execute Method

Package2 Object

Properties Collection

Property Object

Task Object

Tasks Collection

DTS Programming (SQL Server 2000)

Including a DTS Custom Task User Interface
To provide a user interface for setting properties, a custom task must implement the CustomTaskUI interface. This user interface,
sometimes called a property page, is displayed:

In Data Transformation Services (DTS) Designer when the DTS package is being implemented.

In a DTS application when the object hierarchy is being created.

A user interface that is active when the custom task is executing is not controlled through the CustomTaskUI interface.

If a custom task does not implement CustomTaskUI, DTS Designer displays a default property grid in place of the custom task
user interface.

For more information about building a custom task with a user interface, see DTS Example: Including a User Interface in Visual
Basic and DTS Example: Including a User Interface in Visual C++.

CustomTaskUI Interface

In DTS Designer, a custom task calls the methods of CustomTaskUI to perform functions related to the display of user interface
elements. When a custom task is part of a DTS application, the application calls the CustomTaskUI methods to perform these
functions.

In Microsoft® Visual Basic®, this user interface is defined by the CustomTaskUI object from the Microsoft DTSPackage Object
Library. In Microsoft Visual C++® it is defined by IDTSCustomTaskUI in the include file dtspkg.h.

The DTS CustomTaskUI interface includes the following elements.

Element Description
Initialize method Called before other CustomTaskUI methods to allow the

custom task to perform initializations.
New method Called when a custom task is created.
Edit method Called when the user interface is to be displayed for an

existing custom task.
Delete method Called when a custom task is to be removed from its

package.
Help method Called when Help for the custom task is to be displayed.
GetUIInfo method Called when the parent application is to display a ToolTip,

to determine if the custom task is to generate the ToolTip
window.

CreateCustomToolTip
method

Creates a custom ToolTip window and draws the ToolTip,
when custom ToolTips are supported.

As required by COM, all elements must be present, but they can be placeholders.

Caution It is strongly recommended that you check the parameters of all CustomTaskUI methods for validity before you use
them. The caller may be a DTS application and you may not know how extensively the application has been tested.

Initialize Method

DTS Designer calls Initialize before New, Edit, Delete and Help. It is recommended that DTS applications follow this sequence
so that the task can be used both within and outside of DTS Designer. The custom task can perform any initialization. The
parameter, a reference to the Task object, can be saved for use by the subsequent method (for example, to access custom task
properties).

New Method

DTS Designer calls New when the custom task icon is dragged to the design sheet. It is recommended that DTS applications call
New after the custom task has been created with the New method of the Tasks collection.

Typically, the custom task displays a property page with default values. The parameter is the window handle of the DTS design
sheet or of a window in the parent application.

If you do not implement CustomTaskUI, you see a default property grid in DTS Designer. If you implement CustomTaskUI but
provide a placeholder for New, no user interface is displayed.

Edit Method

DTS Designer calls Edit when you right-click the custom task icon and click Properties. It is recommended that if DTS
applications call Edit, they do so after the custom task has been created and values for custom task properties have been set.

Typically, the custom task displays a property page with current values. The parameter is the window handle of the DTS design
sheet or of a window in the parent application.

If you do not implement CustomTaskUI, you see a default property grid. If you implement CustomTaskUI but provide a
placeholder for Edit, no user interface is displayed.

Delete Method

DTS Designer calls Delete when you delete the custom task icon from the design sheet. The custom task can perform any
cleanup. The parameter is the window handle of the DTS design sheet or of a window in the parent application.

Help Method

DTS Designer calls Help when you right-click the custom task icon and click Help.

Typically, the custom task displays a help topic (for example, by calling winhlp32.exe with a help file specification and topic ID).
The parameter is the window handle of the DTS design sheet or of a window in the parent application.

If you do not implement CustomTaskUI, you see a generic help topic for custom tasks. If you implement CustomTaskUI but
provide a placeholder for Help, no topic is displayed.

GetUIInfo Method

GetUIInfo is not implemented in DTS Designer. A DTS application can use this method to query the custom task for its tooltip text
and description (for example, if the application used the custom task icon in its user interface). GetUIInfo also returns a value
indicating whether the custom task generates a custom tooltip. GetUIInfo has the following parameters.

Parameter Description
pbstrToolTip Returns the tooltip text.
pbstrDescription Returns the tooltip description.
plVersion Returns the custom task version number.
pFlags Returns a value from DTSCustomTaskUIFlags that indicates

whether the task generates a custom tooltip.

CreateCustomToolTip Method

CreateCustomToolTip is not implemented in DTS Designer. A DTS application can call this method so that the custom task
generates its custom tooltip after the GetUIInfo method has indicated the task can do so. CreateCustomToolTip has the
following parameters.

Parameter Description
hwndParent The handle of the window in the parent application where the TooltTip

is to be drawn.
x, y The co-ordinates where the ToolTip window is to be drawn.
plTipWindow The parameter through which the ToolTip window handle is returned.

The parent application is responsible for releasing the resources associated with the tooltip window.

See Also

CreateCustomToolTip Method

CustomTaskUI Object

Delete Method

DTSCustomTaskUIFlags

Edit Method

GetUIInfo Method

Help Method

Initialize Method

New (CustomTaskUI) Method

Task Object

Tasks Collection

DTS Programming (SQL Server 2000)

Registering a DTS Custom Task
Data Transformation Services (DTS) custom tasks require entries in their class registration to identify them as DTS tasks. You can
add these entries by registering the task from DTS Designer, or you can add code or script to the custom task so that it can create
these entries.

In Microsoft® ActiveX® components built with Microsoft Visual Basic®, the registration code is supplied by the build process and
is inaccessible to the developer. Therefore, a custom task built with Visual Basic cannot be detected by DTS until it has been
registered from within DTS Designer. To create the additional registry entries, you can add code or script to custom tasks built
using the Active Template Library (ATL) COM wizards in Microsoft Visual C++®.

DTS Custom Task Registration Entries

In Visual Basic, an ActiveX DLL component containing a public class Component.CTaskClass creates a set of registry keys under
\HKEY_CLASSES_ROOT\CLSID\ with this structure:

{Class ID for Component.CTaskClass}
(Default) Component.CTaskClass

Implemented Categories
{Automation Objects component category GUID}

InprocServer32
(Default) path\Component.dll
Threading Model Apartment

ProgID
(Default) Component.CTaskClass

Programmable

TypeLib
(Default) {Component type library GUID}

Version
(Default) version number

A component with class Component.CTaskClass generated by ATL COM AppWizard in Visual C++ creates a similar set of registry
keys under \HKEY_CLASSES_ROOT\CLSID\:

{Class ID for Component.CTaskClass}
(Default) CTaskClass Class

InprocServer32
(Default) path\Component.dll
Threading Model Both

ProgID
(Default) Component.CTaskClass.ver

Programmable

TypeLib
(Default) {Component type library GUID}

VersionIndependentProgID
(Default) Component.CTaskClass

DTS defines a component category for DTS tasks, which is a GUID that is added to the system registry when the Microsoft SQL
Server™ client tools are installed on your system. To make a custom task registration visible to DTS Designer, you must add the
Implemented Categories key, if it is not already there. Then, add a subkey to Implemented Categories that contains this
component category. Optionally, you can add values to the {Class ID for Component.CTaskClass} key that specify the task icon

and default description. The added key and values look like:

{Class ID for Component.CTaskClass}
(Default) CTaskClass Class
DTSIconFile path\iconfile.ext
DTSIconIndex index
DTSTaskDescription description

Implemented Categories
{GUID for DTS Tasks component category}

The added keys, values and data have the following descriptions.

Element Description
path\iconfile.ext File specification of the component that contains icons for the

custom task. Typically, this is the component that contains the
task, but it can be any file from which icons can be extracted.

index Position of the icon in the list of icons for the custom task. The
first icon has index = 0.

description Installed description of the custom task. DTS Designer appends
": undefined" to description to generate the default description
when the task icon is dragged to the design sheet.

GUID for DTS Tasks
component category

GUID that identifies the component as a DTS custom task. The
value is defined by the symbol CATID_DTSCustomTask in
include file dtspkg.h.

Registry Script File

If you are using the ATL COM wizards to implement a custom task, the simplest way to add these extra keys and values is through
the registry script (.rgs) file that ATL Object Wizard generates.

Example

The following registry script was created with the wizard for a custom task class CustTaskOne in a component named
DTSSimple. The script in normal font was generated by the wizard. The additional script, in bold, supports the DTS custom task
features.

This custom task uses the second icon (offset 1) in the component DLL and the default description is "Simple Custom Task".

Important Do not use the GUID shown in the example for the DTS tasks component category until you have verified from the
dtspkg.h include file on your system that it is correct.

HKCR
{
 DTSSimple.CustTaskOne.1 = s 'CustTaskOne Class'
 {
 CLSID = s '{196617B8-5CE1-4529-B36F-3D8AF026E085}'
 }
 DTSSimple.CustTaskOne = s 'CustTaskOne Class'
 {
 CLSID = s '{196617B8-5CE1-4529-B36F-3D8AF026E085}'
 CurVer = s 'DTSSimple.CustTaskOne.1'
 }
 NoRemove CLSID
 {
 ForceRemove {196617B8-5CE1-4529-B36F-3D8AF026E085} = s 'CustTaskOne Class'
 {
 ProgID = s 'DTSSimple.CustTaskOne.1'
 VersionIndependentProgID = s 'DTSSimple.CustTaskOne'
 ForceRemove 'Programmable'
 InprocServer32 = s '%MODULE%'
 {
 val ThreadingModel = s 'Both'
 }
 'TypeLib' = s '{7852210C-8748-487F-80A7-0FAAB76F0154}'
 'Implemented Categories'
 {
 '{10020200-EB1C-11CF-AE6E-00AA004A34D5}'
 }

 val DTSIconFile = s '%MODULE%'
 val DTSIconIndex = d 1
 val DTSTaskDescription = s 'Simple Custom Task'
 }
 }
}

DTS Programming (SQL Server 2000)

Additional DTS Custom Task Features
The following topics describe additional features supported by Data Transformation Services (DTS) custom tasks.

Topic Description
Raising Events from a DTS Custom Task Describes how to raise DTS package

events from a custom task.
Writing Log Data from a DTS Custom Task Explains how to write records to the

Microsoft® SQL Server™ task log table
and to the exception file from a custom
task.

Using the DTS Custom Task Properties
Provider

Describes how to invoke the DTS
properties provider.

DTS Programming (SQL Server 2000)

Raising Events from a DTS Custom Task
Raising Events from a DTS Custom Task

A custom task raises package events that are handled by the parent application. Typically, it raises the following events.

Event Purpose Frequency
OnError To notify the parent application that an

error has occurred, especially non-fatal
errors.

When an error occurs.

OnProgress To notify the parent application of
progress in task processing.

Every time a few units
(for example, rows)
process, or every few
seconds.

OnQueryCancel To give the parent application the
opportunity to terminate the custom task.
In Data Transformation Services (DTS)
Designer, click Cancel to handle this
event.

Every few seconds.

Note In DTS, you do not need to raise OnStart or OnFinish because each DTS step raises OnStart when it starts and OnFinish
when it finishes.

OnQueryCancel and OnError have a pbCancel parameter. If the handling application sets pbCancel, the custom task should
terminate execution by returning from the CustomTask_Execute method.

One of the parameters of CustomTask_Execute is a reference through which package events can be raised. Check for NULL or
Nothing (depending on programming language) before using it.

Example

The following Microsoft® Visual Basic® code raises OnProgress and OnQueryCancel and then terminates the task if requested:

Private Sub CustomTask_Execute(ByVal pPackage As Object, _
 ByVal pPackageEvents As Object, ByVal pPackageLog As Object, _
 pTaskResult As DTS.DTSTaskExecResult)
Dim lngRowCount As Long
Dim blnCancel As Boolean

. . .

'Make sure package events object is valid.
If Not pPackageEvents Is Nothing Then

 'Raise OnProgress and OnQueryCancel, and then exit if response says to cancel.
 pPackageEvents.OnProgress Me.Description, "Row Count", _
 0, lngRowCount, 0
 pPackageEvents.OnQueryCancel Me.Description, blnCancel
 If blnCancel Then
 pTaskResult = DTSTaskExecResult_Failure
 Exit Sub
 End If
End If

. . .

pTaskResult = DTSTaskExecResult_Success
End Sub

DTS Programming (SQL Server 2000)

Writing Log Data from a DTS Custom Task
Writing Log Data from a DTS Custom Task

Custom tasks can write log records to the Microsoft® SQL Server™ task log table and to the Data Transformation Services (DTS)
package log file.

You write log records through a reference to a PackageLog object, which is one of the parameters of CustomTask_Execute.
Check the reference for NULL or Nothing before using it.

Example

The following Microsoft Visual Basic® code writes a log file record specifying the number of rows processed upon successful
completion. If an error occurs within CustomTask_Execute, a task log record is written. Then the error is propagated back to the
caller:

Private Sub CustomTask_Execute(ByVal pPackage As Object, _
 ByVal pPackageEvents As Object, ByVal pPackageLog As Object, _
 pTaskResult As DTS.DTSTaskExecResult)
Dim lngRowCount As Long

On Error GoTo ErrorHandler

. . .

'Write rows processed message to log, if log object valid.
If Not pPackageLog Is Nothing Then
 pPackageLog.WriteStringToLog _
 Me.Description & ": Rows processed = " & (lngRowCount)
End If
pTaskResult = DTSTaskExecResult_Success
Exit Sub

ErrorHandler:
Dim lngErrorCode As Long
'Write error information to task log, if log object valid.
If Not pPackageLog Is Nothing Then
 pPackageLog.WriteTaskRecord Err.Number, _
 Me.Description & ": " & Err.Description
End If
pTaskResult = DTSTaskExecResult_Failure

'Extend error code to 32 bits if necessary, then propagate error.
lngErrorCode = Err.Number
If lngErrorCode >= 0 And lngErrorCode < 65536 Then
 lngErrorCode = lngErrorCode + vbObjectError
End If
Err.Raise lngErrorCode, Me.Description & "/" & Err.Source, Err.Description
End Sub

Log file strings are written only if the package LogFileName property has been set to the log file specification. Log file strings
and task log records also can be written through the DTSPackageLog scripting object from scripts within the ActiveScriptTask
object.

DTS Programming (SQL Server 2000)

Using the DTS Custom Task Properties Provider
Using the DTS Custom Task Properties Provider

A custom task can invoke the Data Transformation Services (DTS) properties provider explicitly and access the collection it
returns.

When a custom task implements a placeholder for the CustomTask_Properties property or returns NULL or Nothing, the
default DTS properties provider generates a Properties collection and returns a reference to it. However, the custom task is not
able to access or modify the collection.

Example

The following Microsoft® Visual Basic® code shows how to invoke the DTS properties provider explicitly (for example, in order to
change the default value of a custom task property). Create the PropertiesProvider object and invoke the
GetPropertiesForObject method:

Private Property Get CustomTask_Properties() As DTS.Properties
'Use DTS properties provider to generate the collection.
 Dim objPropsProvider As New DTS.PropertiesProvider
 Dim colProperties As DTS.Properties

 Set colProperties = objPropsProvider.GetPropertiesForObject(Me)
 Set objPropsProvider = Nothing

 'Access the properties collection through colProperties here.

 Set CustomTask_Properties = colProperties
End Property

DTS Programming (SQL Server 2000)

DTS Custom Task Examples in Visual Basic
This section provides examples of Data Transformation Services (DTS) custom tasks.

Topic Description
DTS Example: Basic Custom Task in
Visual Basic

Provides an example of a basic custom task and
explains how to build and register it.

DTS Example: Adding Properties
and Icons in Visual Basic

Provides an example of adding properties and
icons to a custom task.

DTS Example: Including a User
Interface in Visual Basic

Provides an example of a custom task with a
property page user interface.

DTS Example: Running Concurrent
Operations in Visual Basic

Provides an example of a custom task,
implemented in Microsoft® Visual Basic®, that
runs concurrently with other steps and uses
other custom task features.

DTS Programming (SQL Server 2000)

DTS Example: Basic Custom Task in Visual Basic
DTS Example: Basic Custom Task in Visual Basic

The following code example implements a basic Data Transformation Services (DTS) custom task in Microsoft® Visual Basic®.

When executed, the application displays a fixed message in a message box. The Execute method displays the message box. The
Name property returns the value to which it was set. The Description property and Properties collection are placeholders.

Implementing a Basic DTS Custom Task

Use the following Visual Basic code to implement a basic DTS custom task:

Implements DTS.CustomTask

Private mstrTaskName As String

Private Sub CustomTask_Execute(ByVal pPackage As Object, ByVal pPackageEvents As Object, _
 ByVal pPackageLog As Object, pTaskResult As DTS.DTSTaskExecResult)
 MsgBox "Minimum custom task!", vbExclamation
 pTaskResult = DTSTaskExecResult_Success
End Sub

Private Property Get CustomTask_Properties() As DTS.Properties
'CustomTask_Properties returns Nothing.
End Property

Private Property Get CustomTask_Description() As String
'Description returns empty string.
End Property

Private Property Let CustomTask_Description(ByVal RHS As String)
'Description set value is discarded.
End Property

Private Property Get CustomTask_Name() As String
'Implements Task.Name.
 CustomTask_Name = mstrTaskName
End Property

Private Property Let CustomTask_Name(ByVal strNewName As String)
'Implements Task.Name.
 mstrTaskName = strNewName
End Property

DTS Programming (SQL Server 2000)

DTS Example: Adding Properties and Icons in Visual Basic
DTS Example: Adding Properties and Icons in Visual Basic

 New Information - SQL Server 2000 SP3.

You can modify a Data Transformation Services (DTS) custom task so that users can:

Enter and change the task description and update the icon label with that description.

Enter and change the text of the displayed message.

Add one or more icons to the task component.

Writing Task Description and Message Properties

To enter and save the task description, implement the Description property of the CustomTask interface so that it saves the
value to which it is set and returns that value when the property is read. Also, you must add a Description property outside of the
CustomTask interface and tie the properties together so that setting the value of either causes both to be changed. For more
information, see DTS Custom Task Fundamentals.

To enter and save the message text, add a property (called Message in the sample code below) and use that property value in the
MsgBox function. Save the value to which Message is set and return that value when the property is read.

Example

This is the Microsoft® Visual Basic® code for adding these properties to the basic custom task:

Implements DTS.CustomTask

Private mstrTaskName As String
Private mstrDescription As String
Private mstrMessage As String

Private Sub CustomTask_Execute(ByVal pPackage As Object, ByVal pPackageEvents As Object, _
 ByVal pPackageLog As Object, pTaskResult As DTS.DTSTaskExecResult)
 MsgBox mstrMessage, vbExclamation, mstrDescription
End Sub

Private Property Get CustomTask_Properties() As DTS.Properties
 'Set CustomTask_Properties = Nothing
End Property

Private Property Get CustomTask_Description() As String
'Implements Task.Description.
 CustomTask_Description = mstrDescription
End Property

Private Property Let CustomTask_Description(ByVal strNewDescr As String)
'Implements Task.Description.
 mstrDescription = strNewDescr
End Property

Private Property Get CustomTask_Name() As String
'Implements Task.Name.
 CustomTask_Name = mstrTaskName
End Property

Private Property Let CustomTask_Name(ByVal strNewName As String)
'Implements Task.Name.
 mstrTaskName = strNewName
End Property

Public Property Get Message() As String
'Implements CustTask.Message.
 Message = mstrMessage
End Property

Public Property Let Message(ByVal strNewMsg As String)
'Implements CustTask.Message.
 mstrMessage = strNewMsg
End Property

Public Property Get Description() As String
'Implements CustTask.Description.
 Description = mstrDescription
End Property

Public Property Let Description(ByVal strNewDescr As String)
'Implements CustTask.Description.
 mstrDescription = strNewDescr
End Property

DTS Programming (SQL Server 2000)

DTS Example: Including a User Interface in Visual Basic
DTS Example: Including a User Interface in Visual Basic

The following Microsoft® Visual Basic® code example implements a property page for a Data Transformation Services (DTS)
custom task. The task displays the value of a global variable and supports a timeout on the display. The task closes the display, if
the user has not already done so, when the timeout occurs.

This Visual Basic project consists of a custom task class, a property page form, and a runtime display form.

Custom Task Class

The custom task class, called FinalGlobal, has these features:

A GVMonitor property, which specifies the name of the global variable to be displayed.

A DisplayTime property, which specifies the time after which the display is closed.

Description and Name properties that tie CustomTask interface properties to the FinalGlobal class.

It is acceptable to use Name because the property page exposes Name as read-only. Thus, the user cannot cause an error
by attempting to change it.

A property page that is displayed when the CustomTaskUI New or Edit methods are invoked. These methods are called by
DTS Designer when you either drag the task icon to the design sheet or right-click the icon and select Properties.

A Help page that is displayed when the CustomTaskUI Help method is invoked.

Implementing the FinalGlobal Class

Use the following Visual Basic code to implement the FinalGlobal class:

Implements DTS.CustomTask
Implements DTS.CustomTaskUI

Const INVAL_PROP = "Invalid property value."

Private strDescription As String 'Task/FinalGlobal.Description property
Private strTaskName As String 'Task/FinalGlobal.Name property
Private strGVMonitorName As String 'FinalGlobal.GVMonitor property
Private sngDisplayTime As Single 'FinalGlobal.DisplayTime
Private frmShowGV As frmFinalGlobal
Private frmGVProperties As frmFinalGVProperties
Private objTask As DTS.Task

Private Sub CustomTask_Execute(ByVal pPackage As Object, _
 ByVal pPackageEvents As Object, ByVal pPackageLog As Object, _
 pTaskResult As DTS.DTSTaskExecResult)
'Get reference to global variable, display its value.
 Dim objPackage As DTS.Package2
 Dim objMonitor As DTS.GlobalVariable
 Dim blnCancel As Boolean

 'Save reference to package, release parameter reference.
 Set objPackage = pPackage
 Set pPackage = Nothing
 pTaskResult = DTSTaskExecResult_Success

 'Get reference to global variable.
 Set objMonitor = objPackage.GlobalVariables(strGVMonitorName)

 'Create display form, pass GV name and value, and timeout.
 Set frmShowGV = New frmFinalGlobal
 frmShowGV.MonitorName = strGVMonitorName
 frmShowGV.MonitorValue = objMonitor.Value
 frmShowGV.DisplayTime = 1000 * sngDisplayTime
 frmShowGV.Show vbModal

 'Release display form after it closes.
 Unload frmShowGV
 Set frmShowGV = Nothing

End Sub

Private Property Get CustomTask_Properties() As DTS.Properties
'Use default Properties collection.
 Set CustomTask_Properties = Nothing
End Property

Private Property Let CustomTask_Description(ByVal strNewDescr As String)
'Implements Task.Description.
 strDescription = strNewDescr
End Property

Private Property Get CustomTask_Description() As String
'Implements Task.Description.
 CustomTask_Description = strDescription
End Property

Private Property Let CustomTask_Name(ByVal strNewName As String)
'Implements Task.Name.
 strTaskName = strNewName
End Property

Private Property Get CustomTask_Name() As String
'Implements Task.Name.
 CustomTask_Name = strTaskName
End Property

'--
Private Sub DisplayPropertyPage()
'Validate task reference and display property page.

 If TypeOf objTask Is DTS.Task Then
 Set frmGVProperties = New frmFinalGVProperties
 Set frmGVProperties.TaskObject = objTask
 frmGVProperties.Show vbModal

 DoEvents
 Set frmGVProperties = Nothing

 Else
 MsgBox "Invalid task reference. Unable to display property page.", _
 vbExclamation, "FinalGlobal Task"
 End If

End Sub

Private Sub CustomTaskUI_CreateCustomToolTip(ByVal hwndParent As Long, _
 ByVal x As Long, ByVal y As Long, plTipWindow As Long)
'CreateCustomToolTip not implemented.
End Sub

Private Sub CustomTaskUI_Delete(ByVal hwndParent As Long)
'Delete not implemented.
End Sub

Private Sub CustomTaskUI_Edit(ByVal hwndParent As Long)
'Display property page with current values.
 DisplayPropertyPage
End Sub

Private Sub CustomTaskUI_GetUIInfo(pbstrToolTip As String, _
 pbstrDescription As String, plVersion As Long, _
 pFlags As DTS.DTSCustomTaskUIFlags)
'GetUIInfo not implemented.
End Sub

Private Sub CustomTaskUI_Help(ByVal hwndParent As Long)
'Display Help screen.
 Dim strHelpText As String

 strHelpText = "Specify properties for FinalGlobal custom task. " & _
 "Task should run as last step of package." & _
 vbCrLf & vbCrLf & _
 "Enter/change task description. " & _
 "It appears as task icon label on design surface." & _
 vbCrLf & vbCrLf & _
 "Enter name of global variable to be displayed." & _
 vbCrLf & vbCrLf & _
 "Enter display time in seconds. Display is removed after " & _
 "this time elapses, if not already closed by user. " & _

 "Enter 0 if display is not to be automatically removed."
 MsgBox strHelpText, vbInformation, "FinalGlobal Help"

End Sub

Private Sub CustomTaskUI_Initialize(ByVal pTask As DTS.Task)
'Initialize Description property if not already set, save task reference.

 If TypeOf pTask Is DTS.Task Then Set objTask = pTask
 If Description = "" Then
 Description = "Final Global Variable Display"
 End If

End Sub

Private Sub CustomTaskUI_New(ByVal hwndParent As Long)
'Display property page with default values.
 DisplayPropertyPage
End Sub

'--
Public Property Get Name() As String
'Implements FinalGlobal.Name.
 Name = strTaskName
End Property

Public Property Let Name(ByVal strNewName As String)
'Implements FinalGlobal.Name.
 strTaskName = strNewName
End Property

Public Property Get Description() As String
'Implements FinalGlobal.Description.
 Description = strDescription
End Property

Public Property Let Description(ByVal strNewDescr As String)
'Implements FinalGlobal.Description and verifies that it is non-empty.

 If Len(strNewDescr) > 0 Then
 strDescription = strNewDescr
 Else
 Err.Raise 1001 + vbObjectError, Me.Name, INVAL_PROP
 End If

End Property

Public Property Get GVMonitor() As String
'Name of global variable to monitor.
 GVMonitor = strGVMonitorName
End Property

Public Property Let GVMonitor(ByVal strNewName As String)
'Name of global variable to monitor, verify non-empty.

 If Len(strNewName) > 0 Then
 strGVMonitorName = strNewName
 Else
 Err.Raise 1001 + vbObjectError, Me.Name, INVAL_PROP
 End If

End Property

Public Property Get DisplayTime() As Single
'Timeout for display form.
 DisplayTime = sngDisplayTime
End Property

Public Property Let DisplayTime(ByVal sngNewTime As Single)
'Timeout for display form.
'Validate non-negative, type check will validate numeric.

 If sngNewTime >= 0# Then
 sngDisplayTime = sngNewTime
 Else
 Err.Raise 1001 + vbObjectError, Me.Name, INVAL_PROP
 End If

End Property

DTS Programming (SQL Server 2000)

DTS Example: Running Concurrent Operations in Visual Basic
DTS Example: Running Concurrent Operations in Visual Basic

Custom tasks implemented in Microsoft® Visual Basic® must run on the package main thread because Visual Basic does not
support free threading. Therefore, tasks implemented in Visual Basic and run in a Data Transformation Services (DTS) package in
DTS Designer run sequentially, even when the package has no precedence constraints.

However, in a DTS package application, one task running on the main thread can run concurrently with others on worker threads.
Thus, such a task could be implemented in Visual Basic.

DTS Designer also does not allow a task to display a modeless form or dialog box. However, in a DTS application modeless forms
can be displayed. A modeless form is used in this example.

Concurrent Display

The following example code implements a DTS custom task that continuously displays the value of a global variable while other
tasks are running. The custom task closes the display when the value of another global variable changes to TRUE.

This Visual Basic project consists of a custom task class and a runtime display form.

Custom Task Class

In the custom task class, called ShowGlobal:

Properties GVMonitor and GVFinish specify the names of the global variable to be displayed and to the global variable
that indicates completion, respectively. There is no property page user interface, as the application sets the properties
directly.

The global variable display is updated continuously. The task raises the OnProgress and OnQueryCancel events every 3
seconds.

A log file string and a task record are written when task execution completes.

The DTS properties provider is explicitly invoked. The PersistPropertyBag interface is implemented.

Implementing the ShowGlobal Class

This is the Visual Basic code for the ShowGlobal class:

Implements DTS.CustomTask
Implements DTS.PersistPropertyBag

Const INVAL_PROP = "Invalid property value."

Private mstrDescription As String 'Task/ShowAGlobal.Description property
Private mstrTaskName As String 'Task/ShowAGlobal.Name property
Private mstrGVMonitorName As String 'ShowAGlobal.GVMonitor property
Private mstrGVFinishName As String 'ShowAGlobal.GVFinish property
Private frmShowGV As frmFinalGlobal
Private objTask As DTS.Task

Private Sub CustomTask_Execute(ByVal pPackage As Object, _
 ByVal pPackageEvents As Object, ByVal pPackageLog As Object, _
 pTaskResult As DTS.DTSTaskExecResult)
'Display value of global variable until another global indicates display finished.
 Dim objPackage As DTS.Package2
 Dim objMonitor As DTS.GlobalVariable
 Dim objFinished As DTS.GlobalVariable
 Dim blnCancel As Boolean
 Dim datCurrTime As Date
 Dim datStartTime As Date

 'Save reference to package, release parameter reference.
 Set objPackage = pPackage
 Set pPackage = Nothing
 pTaskResult = DTSTaskExecResult_Success

 'Initialize times for event generation.
 datStartTime = Now
 datCurrTime = Now

 'Get reference to global variables, exit if already finished.
 Set objMonitor = objPackage.GlobalVariables(mstrGVMonitorName)
 Set objFinished = objPackage.GlobalVariables(mstrGVFinishName)
 If objFinished.Value = True Then Exit Sub

 'Display form and use global variable name as title.
 Set frmShowGV = New frmFinalGlobal
 frmShowGV.MonitorName = mstrGVMonitorName
 frmShowGV.Show vbModeless

 'Refresh display until finished GV indicates done, user closes form, or app indicates Cancel.
 Do Until objFinished.Value Or frmShowGV.Unloaded
 frmShowGV.MonitorValue = objMonitor.Value

 'Every 3 sec, raise OnQueryCancel and OnProgress.
 If DateDiff("s", datCurrTime, Now) >= 3 Then
 datCurrTime = Now

 'Make sure package events object is valid.
 If Not pPackageEvents Is Nothing Then

 'Raise On Progress, OnQueryCancel, exit if response says to cancel.
 pPackageEvents.OnProgress Me.Description, "3 second notification", _
 0, DateDiff("s", datStartTime, Now), 0
 pPackageEvents.OnQueryCancel Me.Description, blnCancel
 If blnCancel Then Exit Do
 End If
 End If

 DoEvents
 Loop

 'Write elapsed time and GV value to log, if log object valid.
 If Not pPackageLog Is Nothing Then
 pPackageLog.WriteStringToLog Me.Description & ": " & _
 objMonitor.Name & " = " & objMonitor.Value
 pPackageLog.WriteTaskRecord 0, _
 Me.Description & " elapsed time: " & _
 (DateDiff("s", datStartTime, Now)) & " sec."
 End If

 'Close and release form.
 Unload frmShowGV
 Set frmShowGV = Nothing

End Sub

Private Property Get CustomTask_Properties() As DTS.Properties
'Use DTS properties provider to generate collection.
 Dim oPropsProvider As New DTS.PropertiesProvider

 Set CustomTask_Properties = oPropsProvider.GetPropertiesForObject(Me)
 Set oPropsProvider = Nothing

End Property

Private Property Let CustomTask_Description(ByVal strNewDescr As String)
'Implements Task.Description.
 mstrDescription = strNewDescr
End Property

Private Property Get CustomTask_Description() As String
'Implements Task.Description.
 CustomTask_Description = mstrDescription
End Property

Private Property Let CustomTask_Name(ByVal strNewName As String)
'Implements Task.Name.
 mstrTaskName = strNewName
End Property

Private Property Get CustomTask_Name() As String
'Implements Task.Name.
 CustomTask_Name = mstrTaskName
End Property

Private Sub PersistPropertyBag_Save(ByVal propBag As DTS.PropertyBag)

'Save property values in property bag.

 'On Error Resume Next
 propBag.Write "Name", mstrTaskName
 propBag.Write "Description", mstrDescription
 propBag.Write "GVMonitor", mstrGVMonitorName
 propBag.Write "GVFinish", mstrGVFinishName

End Sub

Private Sub PersistPropertyBag_Load(ByVal propBag As DTS.PropertyBag)
'Load property values from property bag.

 'On Error Resume Next.
 mstrTaskName = propBag.Read("Name")
 mstrDescription = propBag.Read("Description")
 mstrGVMonitorName = propBag.Read("GVMonitor")
 mstrGVFinishName = propBag.Read("GVFinish")

End Sub

Public Property Get GVMonitor() As String
'Name of global variable to monitor.
 GVMonitor = mstrGVMonitorName
End Property

Public Property Let GVMonitor(ByVal strNewName As String)
'Name of global variable to monitor, verify non-empty.

 If Len(strNewName) > 0 Then
 mstrGVMonitorName = strNewName
 Else
 Err.Raise 1001 + vbObjectError, Me.Name, INVAL_PROP
 End If

End Property

Public Property Get GVFinish() As String
'Name of global variable to indicate finish.
 GVFinish = mstrGVFinishName
End Property

Public Property Let GVFinish(ByVal strNewName As String)
'Name of global variable to indicate finish, verify non-empty.

 If Len(strNewName) > 0 Then
 mstrGVFinishName = strNewName
 Else
 Err.Raise 1001 + vbObjectError, Me.Name, INVAL_PROP
 End If

End Property

Public Property Get Name() As String
'Implements FinalGlobal.Name.
 Name = mstrTaskName
End Property

Public Property Let Name(ByVal strNewName As String)
'Implements FinalGlobal.Name
 mstrTaskName = strNewName
End Property

Public Property Get Description() As String
'Implements FinalGlobal.Description
 Description = mstrDescription
End Property

Public Property Let Description(ByVal strNewDescr As String)
'Implements FinalGlobal.Description
 mstrDescription = strNewDescr
End Property

DTS Programming (SQL Server 2000)

Implementing DTS Custom Tasks in Visual C++
This section describes using the Active Template Library (ATL) facility of Microsoft® Visual C++® to implement Data
Transformation Services (DTS) custom tasks.

Topic Description
Building a DTS Custom Task
from a Standard ATL Template

Describes how to create a framework for a custom
task from a standard ATL template.

Building a DTS Custom Task
from the ATL Custom Task Basic
Template

Describes how to create a custom task framework
from the basic ATL custom task template supplied
with Microsoft SQL Server™ 2000.

Adding a User Interface to the
Custom Task Framework

Describes how to create a framework that supports a
user interface from the basic ATL custom task
template.

Building a DTS Custom Task
with User Interface from the
ATL Custom Task Templates

Describes how to create a custom task that supports
a user interface from the ATL custom task templates
that have been enabled for a user interface.

Implementing and Testing a
DTS Custom Task

Describes how to implement and test a custom task
framework and explains how to use the Visual C++
debugger.

DTS Programming (SQL Server 2000)

Building a DTS Custom Task from a Standard ATL Template
Building a DTS Custom Task from a Standard ATL Template

One way to build a custom task is to create a project from a standard Active Template Library (ATL) template, add the interface
and other elements required by all Data Transformation Services (DTS) tasks, and then add the features of the specific custom
task.

This topic explains how to add the elements required by all DTS tasks. You can also use the basic ATL custom task template
supplied as a sample with Microsoft® SQL Server™ 2000 to build the custom task framework. Even if you plan to use the custom
task template, you need to understand the features that were added to create the basic custom task template from the standard
object template. For more information, see Building a Custom Task from the ATL Custom Task Basic Template.

Building a Standard ATL Component

You can create a standard ATL component that includes a class for the custom task using Microsoft Visual C++® version 6.0.

To build a standard ATL component with a class

1. On the File menu, click New, and then click the Projects tab.

2. Click ATL COM AppWizard, and then enter a project name and location.

For this discussion, assume you entered DTSCusTskBasic for the project name.

3. Click Dynamic Link Library (DLL), click Finish, and in the New Project Information dialog box, click OK.

4. On the Insert menu, click New ATL Object, click Objects, click Simple Object and then click Next.

5. On the Names tab, enter a short name.

For this discussion, assume you entered TaskNoUI. The wizard will fill in the other fields. The COM/Type field is the name
that will appear in the Tasks menu of DTS Designer. You can change it from the default TaskNoUI Class.

6. Click the Attributes tab, and then do the following:

Under Threading Model, click Both.

Under Interface, click Dual.

Under Aggregation, click No.

Select the Support ISupportErrorInfo check box.

The wizards will create files for the DTSCusTskBasic component and the TaskNoUI class and save them to the project location
folder specified in Step 1.

Adding Custom Task Features

After creating a standard ATL component with TaskNoUI class files, you need to add custom task elements. In this section, all files
will have the same names you specified in Step 4 of the previous procedure.

File Features
TaskNoUI.h Function prototypes, private declarations and COM map entries

for the IDTSCustomTask interface elements
TaskNoUI.cpp Initial function definitions for the IDTSCustomTask interface

elements and the CTaskNoUI constructor and destructor
TaskNoUI.rgs Registry subkeys required for DTS tasks
DTSCusTskBasic.idl Declaration of the IDTSCustomTask interface elements in the

ITaskNoUI interface

TaskNoUI.h

In this header file, you need to add the following:

Include statements for the DTS package header file

Prototypes for the class constructor and destructor

A COM Map entry for the IDTSCustomTask interface

Prototypes for the IDTSCustomTask interface elements

Adding an Include Statement

Immediately preceding the include statement for resource.h:

#include "resource.h" // main symbols

add this header file include statement:

#include "dtspkg.h"

Adding Constructor and Destructor Prototypes

The constructor body will be moved to TaskNoUI.cpp. Replace the following lines:

 CTaskNoUI()
 {
 }

with these prototype declarations:

 CTaskNoUI();
 ~CTaskNoUI();

Adding a COM M ap Entry

Immediately following the COM map entry for IDispatch:

 COM_INTERFACE_ENTRY(IDispatch)

add this COM map entry for IDTSCustomTask:

 COM_INTERFACE_ENTRY2(IDTSCustomTask, ITaskNoUI)

Supplying Function Prototypes

You must supply the function prototypes for the IDTSCustomTask interface and declarations for storage for the properties.

Immediately after the following lines:

// ITaskNoUI
public:

add these lines of code:

 STDMETHOD(get_Properties)(
 /* [retval][out] */ IDispatch **pRetVal);

 STDMETHOD(get_Name)(
 /* [retval][out] */ BSTR *pRetVal);

 STDMETHOD(put_Name)(
 /* [in] */ BSTR NewValue);

 STDMETHOD(get_Description)(
 /* [retval][out] */ BSTR *pRetVal);

 STDMETHOD(put_Description)(
 /* [in] */ BSTR NewValue);

 STDMETHOD(Execute)(

 /* [in] */ IDispatch *pPackage,
 /* [in] */ IDispatch *pPackageEvents,
 /* [in] */ IDispatch *pPackageLog,
 /* [out][in] */ LONG *pTaskResult);

private:
 // Internal storage for Name, Description properties.
 BSTR m_bstrName;
 BSTR m_bstrDescription;

DTS Programming (SQL Server 2000)

Building a DTS Custom Task from the ATL Custom Task Basic
Template
Building a DTS Custom Task from the ATL Custom Task Basic Template

To build a custom task with a user interface, use the ATL custom task basic template. This template is included in Microsoft® SQL
Server™ 2000 Data Transformation Services (DTS) sample programs. The basic template does not support a custom user
interface. For more information about DTS samples, see DTS Programming Samples.

Installing the ATL Custom Task Basic Template

To install the ATL custom task basic template, do the following:

1. Copy all the files in the DTSTaskBasicTemplate folder except DTSCuTsk.reg to C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Template\ATL\. This location will be different if Microsoft® Visual Studio® version 6.0 was not
installed to the default location.

2. Double-click DTSCuTsk.reg to run the file.

Building a Custom Task Framework from the Template

You can create an ATL component that includes a custom task class that does not support a user interface by using the Microsoft
Visual C++® development environment.

To build a custom task framework from the template

1. On the File menu, click New, and then click the Projects tab.

2. Click ATL COM AppWizard, and then enter a project name and location.

For this discussion, assume you entered DTSCusTskBasic for the project name.

3. Click Dynamic Link Library (DLL), click Finish, and then in the New Project Information dialog box, click OK.

4. On the Insert menu, click New ATL Object.

5. On the ATL Object Wizard screen, click DTS Custom Objects, click DTS Task w/o UI, and then click Next.

6. On the Names tab, enter a name into the Short Name box.

For this discussion, assume you entered TaskNoUI. The wizard will fill in the other fields. The COM/Type field is the name
that will appear in the Task menu of DTS Designer. You can change it from the default TaskNoUI Class.

7. Click the Attributes tab, and then do the following:

Under Threading Model, click Both.

Under Interface, click Dual.

Under Aggregation, click No.

Select the Support ISupportErrorInfo check box.

The wizards will create files for the DTSCusTskBasic component and the TaskNoUI class and save them to the project location
folder specified in Step 1.

If you build this custom task project from the Build/Build DTSCusTskBasic.dll menu before you add any custom code, Visual
C++ installs a custom task that appears in the Task menu of DTS Designer and can be included in a DTS package. When added to
a package, the task uses the DTS default icon and displays the DTS default property grid. However, this task will not perform any
function when the package is run. For more information on implementing and testing a custom task, see Implementing and
Testing a DTS Custom Task.

DTS Programming (SQL Server 2000)

Adding a DTS User Interface to the Custom Task Framework
Adding a DTS User Interface to the Custom Task Framework

To build a custom task that supports a custom task user interface, create a project from the Active Template Library (ATL) custom
task basic template, add another class and the interface and other elements required by tasks that support a custom user
interface, and then add the features of the specific custom task.

This topic explains how to add the elements required by a Data Transformation Services (DTS) task with a custom user interface.
You can also use the ATL custom task user interface templates supplied as samples with Microsoft® SQL Server™ 2000. Even if
you plan to use the custom task user interface templates, you need to understand the features that were added to create the
custom task user interface templates from the basic custom task template. For more information, see Building a Custom Task with
User Interface from the ATL Custom Task Templates.

Building a Custom Task Framework with a UI Class

You can create a Custom Task Framework that includes a class for the custom user interface using Microsoft Visual C++® version
6.0.

To build a custom task framework with a user interface class

1. Create a framework for a custom task using the ATL custom task basic template.

Assume you named the component DTSCusTskWUI and the custom task class TaskUISupp. For more information, see
Building a Custom Task from the ATL Custom Task Basic Template.

2. Add another class for the user interface. On the Insert menu, click New ATL Object. On the ATL Object Wizard screen,
click Objects, and then click Simple Object. Click Next.

3. On Names, enter a short name.

Assume you entered UserIF. The wizard will fill in the other fields.

4. Click the Attributes tab, and then do the following:

Under Threading Model, click Apartment.

Under Interface, click Dual.

Under Aggregation, click Yes.

The user interface class will not work unless it can be aggregated.

The wizards will create files for the DTSCusTskWUI component and the TaskUISupp and UserIF classes, and save them to the
project location folder specified when you created the framework in the first step.

Adding Features to Support a Custom UI

After creating the custom task framework with TaskUISupp and UserIF class files, you need to add features to support the user
interface. In this section, all files will have the same names you specified for the classes.

File Features
TaskUISupp.h Function prototypes, private declarations, and COM map entries

for the elements that connect the custom task class to the user
interface class.

TaskUISupp.cpp Definitions for the functions that connect the task class to the
user interface class.

UserIF.h Function prototypes, private declarations, and COM map entries
for the IDTSCustomTaskUI interface elements.

UserIF.cpp Initial function definitions for the IDTSCustomTaskUI interface
methods.

DTSCusTskWUI.idl Declaration of the IDTSCustomTaskUI interface elements in the
IUserIF interface.

TaskUISupp.h

In this header file, you need to add the following:

Prototypes for the functions that connect the custom task class to the user interface class

COM Map entries for the IDTSCustomTask and IDTSCustomTaskUI interfaces

A declaration of an interface pointer variable

Adding Hook Function Prototypes

These prototypes are for functions that are called when a QueryInterface request for the IDTSCustomTaskUI interface is made
to the task class.

Following the constructor and destructor prototypes for the task class:

 CTaskUISupp();
 ~CTaskUISupp();

add these lines of code:

 static HRESULT WINAPI FuncPreQueryInterface(void* pv, REFIID riid,
 LPVOID* ppv, DWORD dw);
 HRESULT PreQueryInterface(REFIID riid, LPVOID *ppv);

Adding COM M ap Entries

You need to replace the COM map entry for the ITaskUISupp interface so that it responds when presented with the interface ID
for the IDTSCustomTask. You need to add a COM map entry that invokes the hook function when presented with the interface ID
for IDTSCustomTaskUI.

Replace the following COM map entries:

 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY2(IDTSCustomTask, ITaskUISupp)

with these lines:

 COM_INTERFACE_ENTRY2(IDispatch, ITaskUISupp)
 COM_INTERFACE_ENTRY_IID(IID_IDTSCustomTask, ITaskUISupp)
 COM_INTERFACE_ENTRY_FUNC(IID_IDTSCustomTaskUI, 0, CTaskUISupp::FuncPreQueryInterface)

Adding an Interface Pointer Variable

This declaration is for a pointer variable for the user interface class, which is set by the hook functions.

Immediately following these lines:

 BSTR m_bstrName;
 BSTR m_bstrDescription;

add this declaration:

 IUnknown * m_pIUnkDTSCustomTaskUI;

TaskUISupp.cpp

In this Visual C++ file for the task class, you need to add the following:

An external reference for the class id of the user interface class

Code to initialize the user interface class interface pointer variable in the task class constructor

Code to release the pointer to the user interface class in the task class destructor

Functions that create an instance of the user interface class and issue a QueryInterface for IDTSCustomTaskUI

Adding an External Reference for the class id

Following this include statement:

#include "TaskUISupp.h"

add this external reference:

extern const CLSID CLSID_UserIF;

In itializing the User Interface Pointer

At the end of the task class constructor (before the right curly bracket):

CTaskUISupp::CTaskUISupp()

add this line of code:

 m_pIUnkDTSCustomTaskUI = NULL;

Releasing the Interface Pointer

Release the reference to the IDTSCustomTaskUI interface if it exists in the task class destructor.

At the end of the destructor (before the right curly bracket):

CTaskUISupp::~CTaskUISupp()

add these lines of code:

 if(m_pIUnkDTSCustomTaskUI)
 if(m_pIUnkDTSCustomTaskUI->Release() != 0)
 /* _ASSERT(0) */ NULL;

Adding Hook Function Definitions

These functions first obtain a reference to the aggregating object, which is the custom task class. If the QueryInterface request is
for the IDTSCustomTaskUI interface and the user interface has not yet been created, an instance of the user interface is created.
Then the QueryInterface is requested from the aggregated object, the user interface class.

After the task class destructor:

CTaskUISupp::~CTaskUISupp() { ... }

add these lines of code:

HRESULT WINAPI CTaskUISupp::FuncPreQueryInterface(void* pv, REFIID riid, LPVOID* ppv, DWORD dw)
{
 HRESULT hr = E_FAIL;
 _ASSERT(pv);
 CTaskUISupp * pDTSCustTask = (CTaskUISupp *)pv;
 return pDTSCustTask->PreQueryInterface(riid, ppv);
}

HRESULT CTaskUISupp::PreQueryInterface(REFIID riid, LPVOID *ppv)
{
 HRESULT hr = S_FALSE;
 IUnknown * pIUnknownOuter;

 if (!ppv)
 {
 hr = E_POINTER;
 goto error;
 }
 if FAILED(hr = QueryInterface(IID_IUnknown, (void **)&pIUnknownOuter))
 goto error;

 *ppv = NULL;
 if (IID_IDTSCustomTaskUI == riid)
 {
 if(!m_pIUnkDTSCustomTaskUI)
 if FAILED(hr = CoCreateInstance(CLSID_UserIF,

 pIUnknownOuter, CLSCTX_INPROC_SERVER,
 IID_IUnknown, (LPVOID*)&m_pIUnkDTSCustomTaskUI))
 goto error;

 hr = m_pIUnkDTSCustomTaskUI->QueryInterface(riid, ppv);
 }
 else
 hr = S_FALSE;

error:
 return hr;
}

DTS Programming (SQL Server 2000)

Building a DTS Custom Task with a User Interface from the ATL
Custom Task Templates
Building a DTS Custom Task with a User Interface from the ATL Custom Task Templates

To build a custom task with a user interface, use the Active Template Library (ATL) custom task templates, which support a user
interface. These templates are included in the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) sample
programs. The basic template does not support a user interface. For more information about DTS samples, see DTS Programming
Samples.

Installing the ATL Custom Task User Interface Templates

To install the ATL custom task user interface templates, do the following:

1. Copy all the files in the DTSTaskUITemplates folder except DTSCuTskUI.reg to C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Template\ATL\. This location will be different if Microsoft Visual Studio® version 6.0 was not
installed to the default location.

2. Double-click DTSCuTskUI.reg to run the file.

Building a Custom Task Framework from the Templates

You can create an ATL component that includes both a custom task class that supports a custom user interface, as well as a user
interface class, by using the Microsoft Visual C++® development environment.

To build a custom task framework from the templates

1. On the File menu, click New, and then click the Projects tab.

2. Click ATL COM AppWizard, and then enter a project name and location.

Assume you entered DTSCusTskWUI for the project name.

3. Click Dynamic Link Library (DLL), click Finish, and in the New Project Information dialog box, click OK.

4. On the Insert menu, click New ATL Object.

5. On the ATL Object Wizard screen, click DTS Custom Objects, click DTS Task w/ UI Support, and then click Next.

6. On the Names tab, enter a short name.

Assume you entered TaskUISupp. The wizard will fill in the other fields. The COM/Type field is the name that will appear in
the Task menu of DTS Designer, You can change it from the default TaskUISupp Class.

7. Click the Attributes tab, and then do the following:

Under Threading Model, click Both.

Under Interface, click Dual.

Under Aggregation, click No.

Select the Support ISupportErrorInfo check box.

8. Again, on the Insert menu, click New ATL.

9. On the ATL Object Wizard screen, click DTS Custom Objects, click DTS Task w/ UI Support, and then click Next.

10. On the Names tab, enter a short name.

Assume you entered UserIF. The wizard will fill in the other fields.

11. Click the Attributes tab, and then do the following:

Under Threading Model, click Apartment.

Under Interface, click Dual.

Under Aggregation, click Yes.

The wizards will create files for the DTSCusTskWUI component and the TaskUISupp and UserIF classes and save them to the
project location folder specified in Step 1.

If you build this custom task project from the Build/Build DTSCusTskBasic.dll menu before adding any custom code, you install
a custom task that will appear in the Task menu of DTS Designer and can be included in a DTS package. When added to a
package, the task will use the DTS default icon. Until code is added to the IDTSCustomTaskUI methods, it will display the DTS
default property grid. However, this task will not perform any function when the package is run. For more information about
implementing and testing a custom task, see Implementing and Testing a DTS Custom Task.

DTS Programming (SQL Server 2000)

Implementing and Testing a DTS Custom Task
Implementing and Testing a DTS Custom Task

To implement and test a Data Transformation Services (DTS) custom task, you need to:

Install the Microsoft® SQL Server™ 2000 header and library files on your development computer.

Build a custom task framework.

Configure Microsoft Visual C++® to build the project.

Add custom code to the task framework.

Register and optionally unregister the custom task.

Debug the custom task.

Installing SQL Server 2000 Header and Library Files

To install the header and library files, you must do a custom installation of either SQL Server 2000 or the SQL Server 2000 client
tools on the computer on which you develop the custom task.

To install header and library files during a custom installation

1. In the Setup Type dialog box, click Custom.

2. In the Select Component dialog box, under Components, select the Development Tools check box.

3. Under Sub-Components, check the Headers and Libraries and Debugger Interface check boxes.

Building a Custom Task Framework

To build the task framework, add code to a standard Active Template Library (ATL) template or use the custom task templates
included with SQL Server 2000 . For more information, see Building a Custom Task from the ATL Custom Task Basic Template and
Building a Custom Task with a User Interface from the ATL Custom Task Templates.

Configuring Visual C++ to Build the Project

Before you attempt to compile any of the framework files, configure Visual C++ to access SQL Server 2000 header and library
files.

To configure Visual C++ to access SQL Server 2000 files

1. On the Tools menu, click Options.

2. In the Options dialog box, click the Directories tab.

3. In the Show directories for list, enter the paths from the following table at the top of the Directories list for each entry.

File type Path
Executable files C:\Program Files\Microsoft SQL Server\80\Tools\Binn
Include Files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include
Library files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib
Source files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include

This only needs to be done once after installing SQL Server 2000. The paths will be different if SQL Server 2000 components were
installed to other than the default locations.

You also need to define the preprocessor symbol _ATL_NO_UUIDOF.

To enter preprocessor symbols

1. On the Project menu, click Settings.

2. Click the C/C++ tab, and then in the Preprocessor definitions box, enter the preprocessor symbols (comma separated) at
the end of the list.

Adding Code to the Framework

You need to add code for the logic specific to your custom task.

For all tasks, you need to implement the functionality of your task in the Execute method. Typically, the Name and Description
properties do not need to be modified. Logic needs to be added to the Properties property only when the functionality of the DTS
default properties provider is insufficient. For more information, see DTS Custom Task Fundamentals.

For tasks supporting a user interface, you need to add logic to the New and Edit methods to display the task user interface. If the
task is to display a Help page, you need to add logic to display the page in the Help method. The code generated by the templates
for these methods returns E_NOTIMPL, which causes DTS Designer to display the DTS default property grid or a generic Help
page. For more information, see Including a DTS Custom Task User Interface.

To add properties and methods to your custom task

1. In the Workspace window, right-click the interface for your custom task class or user interface class, depending on where
you want to add the element. Then click Add Property or Add Method.

2. In the Add Property to Interface or Add Method to Interface dialog box, enter the name, type and other requested
information.

For properties, you will need to specify whether get_property, put_property, or both are supported. Typically, for read/write
properties, select the Get Function and Put Function check boxes and click PropPut. For read-only properties, select the
Get Function check box.

3. Click Attributes, and then change the helpstring to something meaningful for the property or method.

If you change the id, make certain you do not cause the elements you add to come before the elements added by the
templates in the interface definition lists in the .idl file.

This procedure adds shells for the get_property, put_property or method functions to your project. You must provide the code to
implement them.

The procedure also adds entries to the appropriate interface in the project .idl file. Make sure that entries are added at the end of
the list for the interface, because the list order determines the structure of the vtable that Visual C++ uses to navigate to the
elements of the interface.

For more information about coding custom task logic, see DTS Example: Adding Properties and Icons in Visual C++ and DTS
Example: Including a User Interface in Visual C++.

Registering Custom Tasks

When you build the custom task project in Visual C++, it registers the task as the final step of the build process. If you have
enabled DTS component caching, you will need to refresh the cache or DTS Designer will not be able to see the custom task
component.

To refresh the cache

1. In SQL Server Enterprise Manager, right-click Data Transformation Services, and then click Properties.

2. In the Package Properties dialog box, click Refresh Cache.

When you remove a custom task from your computer, unregister it before deleting the component .dll file.

To unregister a custom task

1. From the command prompt, set the path to the folder that contains the custom task component DLL.

2. Enter:
 regsvr32 /u Component.dll

3. If DTS caching is enabled, refresh the cache.

Debugging Custom Tasks

It is recommended that you compile both Unicode and non-Unicode versions of your component, even in the absence of a
requirement to run on both types of systems. Clean compilation of both Unicode and non-Unicode versions helps ensure that
conversion functions such as OLE2T have been used properly. Set the compilation mode from the Build/Set Active
Configuration menu.

You can debug a custom task by running it from DTS Designer or from a DTS package program (for example, one implemented in
Microsoft Visual Basic®). In either case, you must specify the executable name and path, along with any parameters the
executable requires, on the Debug tab of the Project Settings dialog box.

If you use DTS Designer, you typically enter C:\WINNT\system32\mmc.exe in the Executable for debug session box and /s
"C:\Program Files\Microsoft SQL Server\80\Tools\BINN\SQL Server Enterprise Manager.MSC" in the Program arguments box.

To determine the correct debugging settings for your computer, find the shortcut used to launch SQL Server Enterprise Manager
from the Start menu. Then extract this information from the Target box on the Shortcut tab of the Enterprise Manager Properties
dialog box.

If you get access violations that you cannot trap because they do not occur within your component, verify that in your .idl file all
interface elements are present and that all user-defined properties and methods come at the end of the lists generated by the ATL
templates. You can double check your .idl file structure by opening a new project in Visual Basic and referencing your component.
View your component in Visual Basic Object Browser and verify all the properties and methods appear as expected.

DTS Programming (SQL Server 2000)

DTS Custom Task Examples in Visual C++
This section provides examples of Data Transformation Services (DTS) custom tasks implemented in Microsoft® Visual C++®.

Example Description
DTS Example: Adding
Properties and Icons in
Visual C++

Displays a message when executed. The text of the message
is specified with a custom property. For more information
about a similar task implemented in Microsoft Visual
Basic®, see DTS Example: Adding Properties and Icons in
Visual Basic

DTS Example: Including
a User Interface in
Visual C++

Displays the value of a global variable and allows user to
update the value. The global variable name and task
description are specified through properties using a custom
user interface. For more information about a similar task
implemented in Visual Basic, see DTS Example: Including a
User Interface in Visual Basic.

DTS Programming (SQL Server 2000)

DTS Example: Adding Properties and Icons in Visual C++
DTS Example: Adding Properties and Icons in Visual C++

This example, shown in Microsoft® Visual C++®, displays a message when executed. The text of the message is provided by a
property you add. To implement this example, do the following:

1. Create a framework for a custom task using the Active Template Library (ATL) custom task basic template.

2. Add a property for the message text.

3. Add an icon that appears when the task is used in Data Transformation Services (DTS) Designer.

4. Add code to implement the message and the property.

5. Build the project and run the custom task.

Creating the Task Framework

Create a custom task framework using the ATL custom task basic template provided with Microsoft SQL Server™ 2000. Name the
component DTSTskPropIcon and the task class GenMessage. Change the Type field in ATL Object Wizard from GenMessage
Class to Generate Message Task. For more information about using the basic template, see Building a Custom Task from the
ATL Custom Task Basic Template.

Adding the Message Property

Add the Message property to the custom task.

To add the Message property

1. On the ClassView tab of the Workspace window, right-click the IGenMessage interface, and then click Add Property.

2. In the Add Property to Interface dialog box, in the Property Type list, select BSTR, and then in the Property Name box,
enter Message.

3. Click Attributes, and then change the helpstring from property Message to Message to be displayed.

Adding an Icon

Select a suitable icon for the task for which you have an .ico file.

To add an icon

1. On the File menu, click Resources.

2. In the Insert Resource dialog box, under Resource Type, select Icon, and then click Import.

3. In the Import Resource dialog box, browse to find the .ico file.

When you select a file, the icon editor is displayed. If you make changes to the icon, you must edit both the 16x16 and
32x32 bit images.

This procedure makes a local copy of the icon file in the project directory whether or not you made changes in the icon editor.

Adding Implementation Code

Add the following code segments to the framework files:

A local variable to hold the value of the Message property

Code to initialize and release the Message property value

Code to retrieve and save the Message property value

Code to display the message when the task is executed

Adding a Local Variable Declaration

The declaration goes in the private section for the CGenMessage class, in file GenMessage.h.

Immediately after the lines:

 BSTR m_bstrName;
 BSTR m_bstrDescription;

insert the line:

 BSTR m_bstrMessage;

In itializing and Releasing the M essage Property Value

The Message property must be initialized to a valid value. This is done in the task class constructor in GenMessage.cpp.

At the end of the task class constructor (before the right curly bracket):

CGenMessage::CGenMessage()

add this line:

 m_bstrMessage = SysAllocString(OLESTR(""));

The allocated string must be released before the custom task is removed from memory. This is done in the class destructor, also
in GenMessage.cpp.

At the end of the destructor (before the right curly bracket):

CGenMessage::~CGenMessage()

add this line:

 if (m_bstrMessage) SysFreeString(m_bstrMessage);

Example

The property value must be retrieved in get_Message and saved in put_Message. These functions are in file GenMessage.cpp.

Replace the // TODO comment in CGenMessage::get_Message with the following code:

 if (!pVal)
 return E_POINTER;
 *pVal = SysAllocString(m_bstrMessage);
 if (!*pVal)
 return E_OUTOFMEMORY;

Replace the // TODO comment in CGenMessage::put_Message with the following code:

 if (m_bstrMessage)
 SysFreeString(m_bstrMessage);
 m_bstrMessage = SysAllocString(newVal);
 if (!m_bstrMessage)
 return E_OUTOFMEMORY;

DTS Programming (SQL Server 2000)

DTS Example: Including a User Interface in Visual C++
DTS Example: Including a User Interface in Visual C++

This example, shown in Microsoft® Visual C++®, shows how to implement a custom user interface and dialog box. The dialog
box displays a global variable, the value of which you update. The global variable name and task description are entered through
a custom user interface.

Topic Description
Creating the Custom Task Framework Describes how to create a framework for

the custom task using the Active Template
Library (ATL) custom task templates,
enabled for a user interface, and explains
how to add custom properties for the
global variable name and value.

Implementing the Property Page and
Display Dialog Box

Describes how to use the ATL Dialog
template to implement a custom user
interface for the properties and a dialog
box for displaying and updating the global
variable.

Implementing the Task Class Describes the code you need to add to the
custom task class.

Implementing the User Interface Class Describes the code you need to add to the
user interface class.

Implementing the Property Page Class Describes the code you need to add to
implement the property page.

Implementing the Display Dialog Class Describes the code you need to add to
implement the display and update dialog
box.

Building and Running the DTS Custom
Task User Interface Example in Visual C++

Describes what you must do to build and
use the Data Transformation Services
(DTS) user interface custom task example.

DTS Programming (SQL Server 2000)

Creating the Custom Task Framework
Creating the Custom Task Framework

To include a user interface in a Data Transformation Services (DTS) custom task, you need to create the custom task framework. If
you are displaying and updating a global variable through this user interface, add custom properties for the global variable name
and value.

Creating the Framework

Create a custom task framework using the Active Template Library (ATL) custom task template, enabled for a user interface,
provided with Microsoft® SQL Server™ 2000. Name the component DTSTskGVUpdate, the task class TaskGVUpdate, and the
user interface GVUserIF. Change the Type field in ATL Object Wizard from TaskGVUpdate Class to Global Variable Update
Task when creating the task class. For more information about using the templates with user interface support, see Building a
Custom Task with User Interface from the ATL Custom Task Templates.

You can add an icon to the project resource file that will appear when the task is added to the Data Transformation Services (DTS)
Designer design sheet. For more information about adding an icon to a custom task, see DTS Example: Adding Properties and
Icons in Visual C++.

Adding Custom Properties

Add properties for the global variable name and value according to the following table.

Property name Type Parameters Description
GblVarName BSTR None Name of the global variable to be displayed

and updated.
GblVarValue BSTR None Value of the global variable named by

GblVarName.

For more information about adding properties to an ATL custom task project, see Implementing and Testing a DTS Custom Task.

DTS Programming (SQL Server 2000)

Implementing the Property Page and Display Dialog Box
Implementing the Property Page and Display Dialog Box

For the Data Transformation Services (DTS) custom task user interface example, you need to implement a property page, which is
the user interface for entering custom task properties, and a dialog box for displaying and updating the global variable value.

Implementing the Property Page UI

You can create a property page framework using the Active Template Library (ATL) Dialog template.

To implement the user interface for the properties page

1. On the Insert menu in Microsoft® Visual C++®, click New ATL Object.

2. On the ATL Object Wizard screen, click Miscellaneous, click Dialog, and then click Next.

3. On the Names tab, enter GVPropPage for the short name.

The dialog box editor is displayed.

4. Add the following controls to the dialog box, which already includes the OK and Cancel buttons.
Control Type ID Description

Static text IDC_TASK_NAME Field for display of the task name.
Edit box IDC_TASK_DESCR Field for entry and display of the task

description.
Edit box IDC_GV_NAME Field for entry and display of the global

variable name.

5. Assign a suitable caption to the dialog box, and optionally add static text fields to label the above fields. If you add static text
fields, accept the default ID of IDC_STATIC.

Example

The dialog box editor will add a script for the property page similar to the following to the resource file DTSTskGVUpdate.rc.

IDD_GVPROPPAGE DIALOG DISCARDABLE 0, 0, 266, 113
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Global Variable Update Properties"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",1,81,93,50,14
 PUSHBUTTON "Cancel",2,135,93,50,14
 LTEXT "Task Name:",IDC_STATIC,5,5,83,8
 LTEXT "<task name>",IDC_TASK_NAME,5,16,256,8
 LTEXT "Task Description:",IDC_STATIC,5,31,110,8
 EDITTEXT IDC_TASK_DESCR,5,43,255,12,ES_AUTOHSCROLL
 LTEXT "Global variable name:",IDC_STATIC,5,63,95,8
 EDITTEXT IDC_GV_NAME,5,74,255,12,ES_AUTOHSCROLL
END

DTS Programming (SQL Server 2000)

Implementing the Task Class
Implementing the Task Class

To implement the task class in the Data Transformation Services (DTS) custom task user interface example, add code to the
header file TaskGVUpdate.h and the Microsoft® Visual C++® file TaskGVUpdate.cpp.

Adding Code to TaskGVUpdate.h

In this header file for the task class, add declarations for storing the properties added above:

Immediately after the line in the private section:

 IUnknown * m_pIUnkDTSCustomTaskUI;

insert these lines:

 // Storage for custom properties.
 BSTR m_bstrGblVarName;
 BSTR m_bstrGblVarValue;

Adding Code to TaskGVUpdate.cpp

Make these additions to the task class code file:

An include statement for the display and update dialog box header file.

Code to initialize and release the values of the added properties.

Code to retrieve and save the values of the added properties.

Code to retrieve the global variable value, display the dialog box, and update the global variable.

Adding an Include Statement

The include statement is necessary so the Execute method can access the dialog box class.

Immediately after the line:

#include "TaskGVUpdate.h"

insert the line:

#include "GVDialog.h"

In itializing and Releasing the Values of the Added Properties

The GblVarName and GblVarValue properties must be initialized to valid values. This is done in the task class constructor.

At the end of the task class constructor (before the right curly bracket):

CTaskGVUpdate::CTaskGVUpdate()

add these lines:

 m_bstrGblVarName = SysAllocString(OLESTR(""));
 m_bstrGblVarValue = SysAllocString(OLESTR(""));

The allocated strings must be released before the custom task is removed from memory. This is done in the class destructor.

At the end of the destructor (before the right curly bracket):

CTaskGVUpdate::~CTaskGVUpdate()

add these lines:

 if (m_bstrGblVarName) SysFreeString(m_bstrGblVarName);
 if (m_bstrGblVarValue) SysFreeString(m_bstrGblVarValue);

Retrieving and Saving the Values of the Added Properties

The property values must be retrieved in the get_property and saved in the put_property functions.

Example

Replace the // TODO comment in CTaskGVUpdate::get_GblVarName with the following code:

 if (!pVal)
 return E_POINTER;
 *pVal = SysAllocString(m_bstrGblVarName);
 if (!*pVal)
 return E_OUTOFMEMORY;

Replace the // TODO comment in CTaskGVUpdate::put_GblVarName with the following code:

 if (m_bstrGblVarName)
 SysFreeString(m_bstrGblVarName);
 m_bstrGblVarName = SysAllocString(newVal);
 if (!m_bstrGblVarName)
 return E_OUTOFMEMORY;

Replace the // TODO comment in CTaskGVUpdate::get_GblVarValue with the following code:

 if (!pVal)
 return E_POINTER;
 *pVal = SysAllocString(m_bstrGblVarValue);
 if (!*pVal)
 return E_OUTOFMEMORY;

Replace the // TODO comment in CTaskGVUpdate::put_GblVarValue with the following code:

 if (m_bstrGblVarValue)
 SysFreeString(m_bstrGblVarValue);
 m_bstrGblVarValue = SysAllocString(newVal);
 if (!m_bstrGblVarValue)
 return E_OUTOFMEMORY;

DTS Programming (SQL Server 2000)

Implementing the User Interface Class
Implementing the User Interface Class

To implement the user interface class in the Data Transformation Services (DTS) custom task user interface example, add code to
the Microsoft® Visual C++® file GVUserIF.cpp. No changes are necessary to the user interface class header file.

Add the following to the user interface class code file GVUserIF.cpp:

An include statement for the property page header file

Code to display the property page from the New and Edit methods

Adding an Include Statement

The include statement is necessary so the New and Edit methods can access the property page class.

Immediately after the line:

#include "GVUserIF.h"

insert the line:

#include "GVPropPage.h"

Displaying the Property Page

This code displays the property page and passes it a reference to the custom task so it can retrieve and update properties.

Example

Replace the entire body of both the CGVUserIF::New and CGVUserIF::Edit methods with the following code:

 CGVPropPage dlgProp;

 if(!m_pIDTSTask || !m_pIDTSCustomTask)
 return E_FAIL;

 dlgProp.DoModal((struct HWND__ *)hwndParent, (long)m_pIDTSCustomTask);

 return NOERROR;

DTS Programming (SQL Server 2000)

Implementing the Property Page Class
Implementing the Property Page Class

To implement the property page class in the Data Transformation Services (DTS) custom task user interface example, you need to
add code to the header file GVPropPage.h. The ATL dialog template puts all the code for the dialog box in the header file. The
corresponding code file TaskGVUpdate.cpp contains only include statements.

Add the following to the property page header file GVPropPage.h:

An include statement for the component header file and some define statements

Code to initialize controls on the property page with values of custom task properties

Code to validate and save the values of the task properties

A declaration for the task class interface pointer

Adding an Include and Define Statement

The component header file is generated by Microsoft® Visual C++®from the .idl file and contains definitions of all the interfaces
of the project. Here, the definition of the task class interface is needed. The define statements are for a buffer length and
MessageBox caption.

Immediately after the line:

#include <atlhost.h>

insert these lines:

#include "DTSTskGVUpdate.h"

#define MAX_PROP_LEN 2048
#define GVM_CAPTION _T("Global Variable Monitor Task")

Initializating Controls

The Name, Description and GblVarName properties must be retrieved from the task class and set into controls.

Example

At the head of the OnInitDialog function (after the left curly bracket), insert the following code:

 USES_CONVERSION;
 BSTR bstrProperty;

 m_pCustTask = (ITaskGVUpdate *)lParam;

 // Fetch values for Description, Name and GblVarName properties.
 m_pCustTask->get_Description(&bstrProperty);
 SetDlgItemText(IDC_TASK_DESCR, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

 m_pCustTask->get_Name(&bstrProperty);
 SetDlgItemText(IDC_TASK_NAME, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

 m_pCustTask->get_GblVarName(&bstrProperty);
 SetDlgItemText(IDC_GV_NAME, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

DTS Programming (SQL Server 2000)

Implementing the Display Dialog Class
Implementing the Display Dialog Class

To implement the display and update dialog box in the Data Transformation Services (DTS) custom task user interface example,
add code to the header file GVDialog.h. The corresponding code file TaskGVUpdate.cpp contains only include statements.

Add the following to the display and update dialog header file GVDialog.h:

An include statement for the component header file and a define statement.

Code to initialize controls on the dialog box with values of custom task properties.

Code to validate and save the value of the GblVarValue property.

A declaration for the task class interface pointer.

Adding an Include and Define Statement

The definition of the task class interface is needed from the component header file. The define is for a buffer length.

Immediately after the line:

#include <atlhost.h>

insert these lines:

#include "DTSTskGVUpdate.h"

#define MAX_PROP_LEN 2048

Initializating Controls

The Description, GblVarName and GblVarValue properties must be retrieved from the task class and set into controls.

Example

At the head of the OnInitDialog function, insert the following code:

 USES_CONVERSION;
 BSTR bstrProperty;

 m_pCustTask = (ITaskGVUpdate *)lParam;

 m_pCustTask->get_GblVarName(&bstrProperty);
 SetDlgItemText(IDC_GV_NAME, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

 m_pCustTask->get_GblVarValue(&bstrProperty);
 SetDlgItemText(IDC_GV_VALUE, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

 m_pCustTask->get_Description(&bstrProperty);
 SetDlgItemText(IDC_TASK_DESCR, OLE2T((LPOLESTR)bstrProperty));
 SysFreeString(bstrProperty);

DTS Programming (SQL Server 2000)

Building and Running the DTS Custom Task User Interface
Example in Visual C++
Building and Running the DTS Custom Task User Interface Example in Visual C++

To build the Data Transformation Services (DTS) custom task user interface example, click Build DTSTskGVUpdate.dll on the
Build menu. Refresh the Data Transformation Services (DTS) cache, if necessary. For more information about preparing the
custom task for execution, see Implementing and Testing a DTS Custom Task.

Open DTS Designer and drag the icon for this task onto the design sheet. When the property page you implemented is displayed,
change the values of the Description property and enter a value for the global variable name. The Name property was made
read-only on the property page because to change it in DTS designer causes an error.

When you execute the DTS package, the dialog box you implemented will appear with the value of the global variable. If the
global variable did not exist, you will see a blank edit box (DTS will have created the global variable), or you will get an error,
depending on whether the ExplicitGlobalVariables property is set.

Enter or change the global variable value. If you enter an invalid value (for example, substituting alpha characters for a numeric
global variable), the task will fail when you close the dialog box.

Test the update feature by placing two copies of this task in a package and connecting them with an OnSuccess precedence
constraint.

DTS Programming (SQL Server 2000)

Building a DTS Custom Transformation
The Data Transformation Services (DTS) data pump, which is the engine for the Transform Data, Data Driven Query and Parallel
Data Pump tasks, reads rows from a source connection, transforms the row data as necessary, and writes rows to a destination
connection. The data pump uses separate components called transformations to transform the data. The transformation performs
specific conversions for which it was designed and that are made necessary by the source and destination column data types. One
or more transformations are always required, even when the row data is simply copied.

Several transformations are supplied with Microsoft® SQL Server™ 2000. For more information, see DTS Transformations or
Transformation Objects. Custom transformations can also be implemented by users and third-party vendors. To implement a
custom transformation, you must:

Use Microsoft Visual C++®. The DTS data pump does not support the interfaces necessary to use components
implemented in Microsoft Visual Basic®. Most of the constants, structures and interfaces you will need are defined only in
Visual C++ header (.h) files that are supplied with SQL Server 2000 and Visual C++.

Implement the IDTSDataPumpTransform interface. If the transformation is to be used with SQL Server 2000, you must
also implement the IDTSDataPumpTransform2 interface. Other optional custom transformation interfaces can be
implemented as well.

Implement the API functions that COM dynamic-link libraries (DLLs) require. You must modify the registration functions, or
a registration script, to add and remove the component category globally unique identifier (GUID) for DTS transformations
from the system registry.

This section explains how to implement custom transformations and provides examples.

Topic Description
DTS Custom Transformation
Fundamentals

Describes DTS transformation
infrastructure, interfaces, data structures
and registration.

Implementing DTS Custom
Transformations

Describes the Active Template Library
(ATL) custom transformation template,
how to add code and how to test the
transformation.

DTS Custom Transformation Examples Provides examples of DTS custom
transformations.

DTS Programming (SQL Server 2000)

DTS Custom Transformation Fundamentals
The following topics describe functions, interfaces, data structures and registration issues you must consider when you implement
Data Transformation Services (DTS) custom transformations.

Topic Description
COM DLL Infrastructure Describes the functions involved with creating, loading

and registering the component that all COM DLLs
must implement.

IDTSDataPumpTransform
Interface

Describes the interface that all custom
transformations must implement.
IDTSDataPumpTransform supports initialization,
schema validation, data transformation and
termination.

IDTSDataPumpTransform2
Interface

Describes the interface that custom transformations
used with Microsoft® SQL Server™ 2000 must
implement. IDTSDataPumpTransform2 supports
pre-validation and multiple phases of data
transformation.

Column Information
Structures in DTS
Transformations

Describes the data structures that contain information
about the source and destination columns. These data
structures are arguments to the methods of
IDTSDataPumpTransform and
IDTSDataPumpTransform2.

Registration Requirements for
Transformations

Describes the information that must be stored in the
system registry that allows DTS to find and run the
transformation.

DTS Programming (SQL Server 2000)

COM DLL Infrastructure
COM DLL Infrastructure

A Data Transformation Services (DTS) custom transformation is implemented as a COM DLL. All COM DLLs must implement
several functions that are involved with creating, loading, unloading and registering the component.

Function Description
DLLMain Initializes the DLL. DLLMain is called by the operating

system when it first loads the DLL.
DLLGetClassObject Creates a class factory for the transformation and returns a

pointer to its interface. COM calls through the interface to
create the transformation

DLLCanUnloadNow Returns a code indicating whether the DLL can be unloaded.
It will be unloaded if no other application is using any
transformation the DLL contains.

DLLRegisterServer Inserts information about each transformation into the
system registry under the key HKEY_CLASSES_ROOT\CLSID.
This registry information specifies the location of the DLL
executable file, the transformation ProgID, and the DTS
transformation component category.

DLLUnregisterServer Removes the registry information inserted by
DLLRegisterServer.

These functions are generated automatically if you use the Active Template Library (ATL) facility of Microsoft® Visual C++® and
the ATL wizards to create the framework for your custom transformation.

For DLLRegisterServer and DLLUnregisterServer, you will need to either add code to the functions or add entries to the registry
script in order to include information about DTS transformations in the registration for the transformation. This is not necessary if
you use the custom transformation template supplied with Microsoft SQL Server™ 2000. For more information, see Registration
Requirements for Transformations.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform Interface
IDTSDataPumpTransform Interface

All Data Transformation Services (DTS) custom transformations must implement the IDTSDataPumpTransform interface.
Custom transformations that implement IDTSDataPumpTransform but do not implement IDTSDataPumpTransform2 can
only be used with Microsoft® SQL Server™ version 7.0. Such transformations only support a single phase of execution.

The IDTSDataPumpTransform interface has the following elements.

Element Description
Initialize method Initializes the transformation for the current

transform operation.
AddVariable method Adds a variable to the transformations execution

context.
ValidateSchema method Validates the schemas that are to be transformed.
Execute method Executes the transformation for a single row.
OnRowComplete method Performs any processing that is necessary after

each row has been transformed.
OnTransformComplete method Performs any processing that is necessary after all

rows have been transformed.

As required by COM, all these methods must be present, but they can be placeholders returning NOERROR.

Initialize Method

Initialize can be used to allocate local storage for the transform operation. The output parameter of Initialize is passed to all the
other methods so that it can store the state of the particular transform operation. This allows a single instance of the custom
transformation to process multiple operations. This is only done when the task that creates the custom transformation passes a
reference to a single instance in multiple IDTSDataPump::AddTransform calls.

AddVariable Method

AddVariable is always called at least once to add the DTSErrorRecords collection so that subsequent methods can report errors.
It is also called to add the collections used in Microsoft ActiveX® scripts, such as DTSGlobalVariables and DTSLookups.

ValidateSchema Method

ValidateSchema is called after the data pump has opened the source and destination rowsets but before any source rows are
fetched. It verifies that the meta data of the columns to be transformed is consistent with the needs of the transformation. Data
structures defining the source and destination columns are passed to the method. For more information, see Column Information
Structures in DTS Transformations.

ValidateSchema verifies that the number and types of the source and destination columns are appropriate. It also determines
whether the transformations being performed are consistent with the specified transform flags. For example, if a column for
which NULLs are allowed is being copied to a column defined as NOT NULL, ValidateSchema indicates an error unless the
DTSTransformFlag_AllowNullChange is specified. Likewise, it indicates an error if, for example, an int column is being copied to a
smallint column, unless DTSTransformFlag_AllowDemotion is specified.

Execute Method

Execute is called to perform the transformation once for each source row. The method returns a code other than NOERROR
from the function only in the event of a fatal error, which terminates the data pump. Execute indicates row data errors or
specifies the data driven query by returning an appropriate value from DTSTransformStatus. After a successful return from
Execute, the data pump attempts to insert the row data into, or perform the indicated data driven query on, the destination
rowset.

OnRowComplete Method

OnRowComplete is called after the row data is applied to the destination rowset in an insert operation or a data driven query. It
is called even when the insert fails or is not attempted because Execute specified the data not be inserted, or when Execute itself

failed. The primary function of OnRowComplete is to release allocations made by Execute that need to be retained until after
the row data is applied to the destination.

OnTransformComplete Method

OnTransformComplete is called after all the source rows have been processed. It gives the transformation an opportunity to
release allocations and perform any other post-processing that might be necessary. It is not called if IDTSDataPumpTransform2
is implemented and the transformation supports DTSTransformPhase_OnPumpComplete phase, which is called instead. For
more information, see IDTSDataPumpTransform2 Interface.

See Also

DTSTransformStatus

IDTSDataPump::AddTransform

IDTSDataPumpTransform::AddVariable

IDTSDataPumpTransform::Execute

IDTSDataPumpTransform::Initialize

IDTSDataPumpTransform::OnRowComplete

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2 Interface
IDTSDataPumpTransform2 Interface

All Data Transformation Services (DTS) custom transformations that are to be used with Microsoft® SQL Server™ 2000 must
implement the IDTSDataPumpTransform2 interface. Although IDTSDataPumpTransform2 inherits and implements all the
elements of IDTSDataPumpTransform, the transformation must still respond to QueryInterface for
IDTSDataPumpTransform as well as for IDTSDataPumpTransform2.

The IDTSDataPumpTransform2 interface has the following elements, in addition to those implemented by
IDTSDataPumpTransform.

Element Description
GetTransformServerInfo method Returns supported phases and other information

about the transformation.
PreValidateSchema method Validates the schemas that are to be transformed

at the time a custom transformation is created.
SetExtendedInfo method Reserved for future use.
ProcessPhase method Executes a phase of the custom transformation for

a single source row.
SetExecuteThreadComplete
method

Performs post-processing on a thread prior to
executing on another thread.

As required by COM, all these methods must be present, but they can be placeholders returning NOERROR.

GetTransformServerInfo Method

GetTransformServerInfo returns a bitmask that defines the phases supported by the custom transformation. It returns a help
string that can be displayed in a user interface to explain the function of the custom transformation.

Note The ProcessPhase method is not called for a phase specified by GetTransformServerInfo unless the value specified for
the TransformPhases property of the Transformation2 object also specifies the phase. For DTS packages built in DTS Designer,
specify phases on the Phases tab of the Transformation Options dialog box.

PreValidateSchema Method

PreValidateSchema is used to provide validation at the time a package is built. It is called from DTS Designer when the custom
transformation is created or edited. It can perform part or all of the validation on the source and destination column meta data
that IDTSDataPumpTransform::ValidateSchema performs. However, there are limitations that may justify deferring some
complex validations to ValidateSchema. For more information, see DTS Custom Transformation Example: Format Names.

SetExtendedInfo Method

SetExtendedInfo is reserved for future use. Implement it as a placeholder that returns NOERROR.

ProcessPhase Method

ProcessPhase is called to perform each phase of the custom transformation. It is responsible for transforming the source column
data to the destination columns. It writes any header or trailer rows that are necessary. It handles transformation, insert
operations, data driven queries, and batch errors. For more information, see IDTSDataPumpTransform2::ProcessPhase.

SetExecuteThreadComplete Method

SetExecuteThreadComplete is called when the data pump is to switch execution threads. The custom transformation closes any
thread-affinitive processes and prepares to reopen them on the new thread.

See Also

IDTSDataPumpTransform::ValidateSchema

IDTSDataPumpTransform2::PreValidateSchema

IDTSDataPumpTransform2::GetTransformServerInfo

IDTSDataPumpTransform2::SetExecuteThreadComplete

IDTSDataPumpTransform2::SetExtendedInfo

TransformPhases Property

DTS Programming (SQL Server 2000)

Column Information Structures in DTS Transformations
Column Information Structures in DTS Transformations

When you build a custom transformation, you must consider the Data Transformation Services (DTS) transformation methods
that are used to validate and process the source and destination columns being transformed. The ValidateSchema, Execute,
OnRowComplete and OnTransformComplete methods of the IDTSDataPumpTransform interface and the ProcessPhase
method of the IDTSDataPumpTransform2 interface need to access structures that define these columns. This access is provided
by pointers to a DTSTransformColumnInfo structure for the source columns and another DTSTransformColumnInfo for the
destination columns, which are passed as parameters to each of these methods.

DTSTransformColumnInfo Important Fields

The following are the important fields in DTSTransformColumnInfo.

Field Description
cColumns Count of source or destination columns.
rgColumnData Pointer to an array of DTSColumnData structures. There is one

array element for each column.

The remaining fields are associated with binary large object (BLOB) processing, and only need to be referenced if the
transformation processes BLOB types.

For the complete definition of this structure, search the include file dtspump.h for DTSTransformColumnInfo. This file is
installed by default in C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\include\ during a custom installation of
Microsoft® SQL Server™ 2000 client tools.

DTSColumnData Important Fields

The array referenced by DTSTransformColumnInfo.rgColumnData contains a DTSColumnData structure for each source or
destination column. The following are the important fields in DTSColumnData.

Field Description
pDBColumnInfo Pointer to an OLE DB DBCOLUMNINFO structure for the column.
pDBBinding Pointer to an OLE DB DBBINDING structure for the column.
pvData Pointer to the data space for the column. Includes fields for the

data (or a pointer to the data), data length, and status.

When IDTSDataPumpTransform::ValidateSchema is called, both pDBBinding and pvData are NULL. Thus, the DBBINDING
structure and the data space are not available in ValidateSchema.

For the complete definition of this structure, search the include file dtspump.h for DTSColumnData.

DBCOLUMNINFO Important Fields

Each DTSColumnData structure references an OLE DB DBCOLUMNINFO structure, which contains the meta data for the
column. The following are the important fields in DBCOLUMNINFO.

Field Description
pwszName The name of the column.
iOrdinal The numeric position of the column within the source or

destination row.
dwFlags The sum of flags for meta data attributes (for example,

ISNULLABLE, ISROWID, KEYCOLUMN).
ulColumnSize The width of the column, in characters for wide character types and

in bytes for other types.
wType The data type of the column.

The information in the DBCOLUMNINFO structure is not generally modified by the transformation. For the complete definition

of this structure, search the include file OLEDB.h for DBCOLUMNINFO.

To find the valid values for dwFlags, search OLEDB.h for DBCOLUMNFLAGS_. The symbols containing DBCOLUMNFLAGS_ are
defined in enumerations named DBCOLUMNFLAGSENUMxx, where xx is an optional OLE DB version number.

To find the valid values for wType, search OLEDB.h for DBTYPE_. The symbols containing DBTYPE_ are defined in enumerations
named DBTYPExx, where xx is an optional OLE DB version number.

DBBINDING Important Fields

Each DTSColumnData structure also references an OLE DB DBBINDING structure. A binding associates a single column to the
buffer referenced by the pvData field of the DTSColumnData structure, and it contains information about that buffer. The
following are the important fields in DBBINDING.

Field Description
iOrdinal The numeric position of the column within the source or destination

row.
obValue The offset within the buffer referenced by DTSColumnData.pvData

where the data value, or a pointer to the data value, is stored.
obLength The offset within the buffer referenced by DTSColumnData.pvData

where the actual data length, in bytes, is stored.
obStatus The offset within the buffer referenced by DTSColumnData.pvData

where the data status is stored.
dwPart Flags that specify which parts of the buffer are to be bound to the

column. The flags will indicate a combination of data length, status and
value.

cbMaxLen The size of the data area of the buffer, which is the maximum length of
the data. For character types, this is usually the width of the column in
bytes, plus one character.

wType The data type of the column.

For the complete definition of this structure, search the include file OLEDB.h for DBBINDING.

To find the valid values for the field whose offset is specified by obStatus, search OLEDB.h for DBSTATUS_. The symbols
containing DBSTATUS_ are defined in enumerations named DBSTATUSENUMxx, where xx is an optional OLE DB version number.

To find the valid values for dwPart, search OLEDB.h for DBPART_. These symbols containing DBPART_ are defined in an
enumeration named DBPARTENUM.

The valid values for wType are the same as for the DBCOLUMNINFO.wType field. If wType includes the flags DBTYPE_ARRAY,
DBTYPE_BYREF or DBTYPE_VECTOR, then the field in DTSColumnData.pvData at offset obValue contains a pointer to the
data, not the data itself.

IDTSDataPumpTransform2::PreValidateSchema Method

In PreValidateSchema the column information parameters are DTSTransformColumnMetadata structures. The following are
the important fields in DTSTransformColumnMetadata.

Field Description
cColumns Count of source or destination columns.
rgDBColumnInfo Pointer to an array of OLE DB DBCOLUMNINFO structures.

There is one array element for each column. DBCOLUMNINFO
was described above.

The information in the DTSTransformColumnMetadata structures is the same information that is available to
ValidateSchema, packaged differently.

DTS Programming (SQL Server 2000)

Registration Requirements for DTS Transformations
Registration Requirements for DTS Transformations

Data Transformation Services (DTS) custom transformations require entries in their class registration to identify them as DTS
transformations. You need to add code to the DLLRegisterServer and DLLUnregisterServer functions or add script to the
registry script (.rgs) file of the custom transformation project so that it can create these entries.

DTS Transformation Registry Entries

The DLLRegisterServer function needs to create a set of registry keys under \HKEY_CLASSES_ROOT\CLSID\ with the following
structure:

{Class ID for Component.CXFormClass}
(Default) transformation description

DTSTransform
1033
DTSTransformDescription transformation description

Implemented Categories
{GUID for DTS Transformations component category}

InprocHandler32
(Default) ole32.dll

InprocServer32
(Default) path\Component.dll
Threading Model Both

ProgID
(Default) Component.CXFormClass.version

VersionIndependentProgID
(Default) Component.CTaskClass

The transformation description is the name that appears in the Create New Transformation dialog box of DTS Designer. The
subkeys under the DTSTransform key provide locale-specific versions of the transformation description. You can add a subkey for
each locale in which you expect your transformation to be used.

DTS defines a component category for DTS transformations, which is a globally unique identifier (GUID) that is added to the
system registry when Microsoft® SQL Server™ 2000 client tools are installed on your system. To make a custom transformation
registration visible to DTS Designer, you must provide the Implemented Categories key and a subkey that contains this
component category.

In addition, DLLRegisterServer needs to map the VersionIndependentProgID and ProgID to the class ID by creating these keys
directly under \HKEY_CLASSES_ROOT\:

Component.CXFormClass
(Default) transformation description

CLSID
(Default) {Class ID for Component.CXFormClass}

Component.CXFormClass.version
(Default) transformation description

CLSID
(Default) {Class ID for Component.CXFormClass}

DLLUnregisterServer removes the registry entries added by DLLRegisterServer.

Registry Script File

If you use the Active Template Library (ATL) to create the framework for your custom transformation, it provides a registry script
that creates these registry keys under \HKEY_CLASSES_ROOT\CLSID\:

{Class ID for Component.CXFormClass}
(Default) CXFormClass Class

InprocServer32
(Default) path\Component.dll
Threading Model Both

ProgID
(Default) Component.CXFormClass.version

Programmable

TypeLib
(Default) {Component type library GUID}

VersionIndependentProgID
(Default) Component.CTaskClass

You can add the required DTSTransform, Implemented Categories and InprocHandler32 subkeys by editing the registry script file.
There is no need to remove the Programmable and TypeLib keys. For more information, see Building a Custom Transformation
from a Standard ATL Template.

DTS Programming (SQL Server 2000)

Implementing DTS Custom Transformations
This section describes use of the Active Template Library (ATL) facility of Microsoft® Visual C++® to implement Data
Transformation Services (DTS) custom transformations.

Topic Description
Building a Custom
Transformation from a
Standard ATL Template

Describes how to create a framework for a custom
transformation from a standard ATL template.

Building a Custom
Transformation from the ATL
Custom Transformation
Template

Describes how to create a custom transformation
framework from the ATL custom transformation
template supplied with Microsoft SQL Server™ 2000.

Implementing and Testing a
DTS Custom Transformation

Describes how to add code to a custom
transformation framework and explains how to use
the Visual C++ debugger.

DTS Programming (SQL Server 2000)

Building a Custom Transformation from a Standard ATL
Template
Building a Custom Transformation from a Standard ATL Template

To build a custom transformation, create a project from a standard Active Template Library (ATL) template, add the interfaces and
other elements required by all Data Transformation Services (DTS) transformations, and then add the features of the specific
transformation.

This topic explains how to add the elements required by all DTS transformations. You can also use the ATL custom transformation
template supplied as a sample with Microsoft® SQL Server™ 2000 to build a custom transformation framework. Even if you plan
to use the custom transformation template, it is recommended that you understand the features that were added to create the
custom template from the standard object template. For more information, see Building a Custom Transformation from the ATL
Custom Transformation Template.

Building a Standard ATL Component

To create a standard ATL component that includes a class for the custom transformation using Microsoft Visual C++® version
6.0, do the following:

To build a standard ATL component

1. On the File menu, click New, and then click the Projects tab.

2. Click ATL COM AppWizard, and then enter a project name and location.

For this discussion, assume you entered DTSTrans for the project name.

3. Click Dynamic Link Library (DLL), click Finish, and in the New Project Information dialog box, click OK.

4. On the Insert menu, click New ATL Object, click Objects, click Simple Object, and then click Next.

5. On the Names tab, enter a short name.

For this discussion, assume you entered CustomXFm. The wizard will fill in the other fields. The COM/Type field is the
name that will appear in the Create New Transformation dialog box of DTS Designer. You can change it from the default
CustomXFm Class.

6. Click the Attributes tab, and then do the following:

Under Threading Model, click Both.

Under Interface, click Dual.

Under Aggregation, click No.

Select the Support ISupportErrorInfo check box.

The wizards will create files for the DTSTrans component and the CustomXFm class and save them to the project location folder
specified in Step 1.

Adding Custom Transformation Features

After creating a standard ATL component with CustomXFm class files, you need to add custom transformation elements. In this
section, all files will have the same names you specified in Step 4 of the previous procedure.

File Features
CustomXFm.h Function prototypes and COM map entries for the

IDTSDataPumpTransform and IDTSDataPumpTransform2
interfaces

CustomXFm.cpp Initial function definitions for the IDTSDataPumpTransform and
IDTSDataPumpTransform2 interfaces

CustomXFm.rgs Registry subkeys required for DTS transformations

CustomXFm.h

In this header file, you need to add the following:

Include statements for other header files

An entry to the list of interfaces from which the class inherits

COM Map entries

Function prototypes

Adding Include Statements

Add these header file include statements:

#include <oledb.h>
#include <msdadc.h>
#include <comdef.h>
#include "dtspump.h"

immediately preceding the include statement for resource.h:

#include "resource.h" // main symbols

Adding Interface List Entry

To the list of interfaces from which class CCustomXFm inherits, add this reference to IDTSDataPumpTransform2:

 public IDTSDataPumpTransform2,

immediately preceding:

 public ISupportErrorInfo

Adding COM M ap Entries

Add these COM map entries for IDTSDataPumpTransform and IDTSDataPumpTransform2:

 COM_INTERFACE_ENTRY(IDTSDataPumpTransform) // Must still respond to QI on IDTSDataPumpTransform
 COM_INTERFACE_ENTRY(IDTSDataPumpTransform2) // even when IDTSDataPumpTransform2 implemented.

Immediately preceding the COM map entry for IDispatch:

 COM_INTERFACE_ENTRY(IDispatch)

Adding Function Prototypes

You must provide the function prototypes for the IDTSDataPumpTransform and IDTSDataPumpTransform2 interfaces.
Immediately after the following lines:

// ICustomXFm
public:

add these lines of code:

 // IDTSDataPumpTransform members
 STDMETHOD(Initialize)(THIS_
 DP_IN LPCOLESTR pwzName, // Transform name
 DP_IN VARIANT ServerParameters, // Parameters to server for this transform
 DP_OUT LPBYTE *ppvTransformServerData // Transform server state data.
);
 STDMETHOD(ValidateSchema)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.

 DP_INOUT LPCDTSTransformColumnInfo pSrcColumnInfo, // Source columns and rowdata
 DP_INOUT LPCDTSTransformColumnInfo pDestColumnInfo, // Dest columns and rowdata
 DP_IN IDTSDataConvert *pIDTSDataConvert, // Pointer to the data conversion interface
 DP_IN DTSTransformFlags eTransformFlags // Input Flags for Transformation validation and
execution
);
 STDMETHOD(AddVariable)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.
 DP_IN LPCOLESTR pwzName, // Variable name
 DP_IN BOOL bGlobal, // For ActiveX scripts, indicates whether this
variable's
 // methods must be qualified by the object name.
 DP_IN VARIANT Variable // Variable value; passed to and updatable by
Transform
);
 STDMETHOD(Execute)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.
 DP_IN LPCDTSTransformColumnInfo pSrcColumnInfo, // Source columns and rowdata
 DP_INOUT LPDTSTransformColumnInfo pDestColumnInfo, // Dest columns and rowdata
 DP_IN IDTSDataConvert *pIDTSDataConvert, // Pointer to the data conversion interface
 DP_OUT LPDTSTransformStatus pTransformStatus // Result of transform
) {
 return ProcessPhase(pvTransformServerData
 , pSrcColumnInfo
 , pDestColumnInfo
 , pIDTSDataConvert
 , NULL
 , pTransformStatus
);
 }
 STDMETHOD(OnRowComplete)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.
 DP_INOUT LPDTSTransformColumnInfo pSrcColumnInfo, // Source columns and rowdata
 DP_INOUT LPDTSTransformColumnInfo pDestColumnInfo, // Dest columns and rowdata
 DP_IN IDTSDataConvert *pIDTSDataConvert, // Pointer to the data conversion interface
 DP_IN DTSTransformStatus eTransformStatus, // Result of Execute()
 DP_IN HRESULT hrInsert // Result of IRowsetChange::InsertRow()
);
 STDMETHOD(OnTransformComplete)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.
 DP_INOUT LPDTSTransformColumnInfo pSrcColumnInfo, // Source columns and rowdata
 DP_INOUT LPDTSTransformColumnInfo pDestColumnInfo, // Dest columns and rowdata
 DP_IN IDTSDataConvert *pIDTSDataConvert // Pointer to the data conversion interface
);
 // IDTSDataPumpTransform2 members
 STDMETHOD(GetTransformServerInfo)(THIS_
 DP_OUT BSTR *pbstrHelpString, // Description of the server's implementation
 DP_OUT LPDTSTransformPhaseEnum peSupportedPhases // Phases supported by this server
);
 STDMETHOD(PreValidateSchema)(THIS_
 DP_IN LPCDTSTransformColumnMetadata pSrcMetadata, // May be NULL if not required by Transform
Server
 DP_IN LPCDTSTransformColumnMetadata pDestMetadata, // May be NULL if not required by Transform
Server
 DP_IN DTSTransformFlags eTransformFlags, // Input Flags for Transformation validation and
execution
 DP_IN DTSTransformPhaseEnum ePhases // Phase(s) for which this Transform is to be
called.
);
 STDMETHOD(SetExtendedInfo)(THIS_
 DP_IN IUnknown *pUnkExtendedInfo // Pointer to object supplying extended
information.
) {
 return NOERROR;
 }
 STDMETHOD(ProcessPhase)(THIS_
 DP_IN LPBYTE pvTransformServerData, // Transform server state data.
 DP_IN LPCDTSTransformColumnInfo pSrcColumnInfo, // Source columns and rowdata
 DP_INOUT LPDTSTransformColumnInfo pDestColumnInfo, // Dest columns and rowdata
 DP_IN IDTSDataConvert *pIDTSDataConvert, // Pointer to the data conversion interface
 DP_IN LPCDTSTransformPhaseInfo pPhaseInfo, // Pointer to phase info structure
 DP_OUT LPDTSTransformStatus peTransformStatus // Result of transform
);
 STDMETHOD(SetExecuteThreadComplete)(THIS)
 {
 return NOERROR;
 }\

DTS Programming (SQL Server 2000)

Building a Custom Transformation from the ATL Custom
Transformation Template
Building a Custom Transformation from the ATL Custom Transformation Template

To build a Data Transformation Services (DTS) custom transformation, use the Active Template Library (ATL) custom
transformation template. This template, which enables you to build custom transformations more quickly than if you used the ATL
standard template, is included in the Microsoft® SQL Server™ 2000 DTS sample programs. For more information, see DTS
Programming Samples.

Installing the ATL Custom Transformation Template

To install the ATL custom transformation template, do the following:

1. Copy all the files in the DTSXFormTemplate folder except DTSCuXFm.reg to C:\Program Files\Microsoft Visual
Studio\Common\MSDev98\Template\ATL\. This location will be different if Microsoft Visual Studio® version 6.0 was not
installed to the default location.

2. Double-click DTSCuXFm.reg to run the file.

Building a Custom Transformation Framework from the Template

You can create an ATL component that includes a custom transformation class by using the Microsoft Visual C++® development
environment.

To create the ATL component

1. On the File menu, click New, and then click the Projects tab.

2. Click ATL COM AppWizard, and then enter a project name and location.

For this discussion, assume DTSTrans was entered for the project name.

3. Click Dynamic Link Library (DLL), click Finish, and in the New Project Information dialog box, click OK.

4. On the Insert menu, click New ATL Object, click DTS Custom Objects, click DTS Transformation, and then click Next.

5. On the Names tab, enter a short name.

For this discussion, assume CustomXFm was entered. The wizard will fill in the other fields. The COM/Type field is the
name that will appear in the Create New Transformation dialog box of DTS Designer, You can change it from the default
CustomXFm Class.

6. Click the Attributes tab, and then do the following:

Under Threading Model, click Both.

Under Interface, click Dual.

Under Aggregation, click No.

Select the Support ISupportErrorInfo check box.

The wizards will create files for the DTSTrans component and the CustomXFm class and save them to the project location folder
specified in Step 1.

Building this transformation project from the Build/Build DTSTrans.dll menu, before adding any custom code, installs a custom
transformation that will appear in the Create New Transformation dialog box and can be included in a DTS package. However,
this custom transformation will not copy or transform the source columns when the package is run. For more information about
building and debugging a custom transformation, see Implementing and Testing a DTS Custom Transformation.

DTS Programming (SQL Server 2000)

Implementing and Testing a DTS Custom Transformation
Implementing and Testing a DTS Custom Transformation

To implement and test a Data Transformation Services (DTS) custom transformation, you need to:

Install the Microsoft® SQL Server® 2000 header and library files on your development computer.

Build the custom transformation framework.

Add properties, if necessary, to the custom transformation framework.

Configure Microsoft Visual C++® to build the project.

Add custom code to the custom transformation framework.

Register and optionally unregister the custom transformation.

Debug the custom transformation.

Installing SQL Server 2000 Header and Library Files

To install the header and library files, you must do a custom installation of SQL Server 2000 or the SQL Server 2000 client tools
on the computer on which you develop the custom transformation.

To install header and library files during a custom installation

1. In the Setup Type dialog box, click Custom.

2. In the Select Component dialog box, under Components, select the Development Tools check box.

3. Under Sub-Components, select Headers and Libraries and Debugger Interface.

Building the Custom Transformation Framework

You can add code to a standard Active Template Library (ATL) template or use the custom transformation template included with
SQL Server 2000 to build the transformation framework. For more information, see Building a Custom Transformation from a
Standard ATL Template and Using the ATL Custom Transformation Template.

Adding Properties to a Custom Transformation

Your custom transformation may require properties that are not supplied by the custom transformation framework.

To add properties to a custom transformation

1. In the Workspace window, right-click the interface for your transformation class, and then click Add Property.

2. In the Add Property to Interface dialog box, enter the name and type, as well as other requested information.

This procedure adds shells for the get_property and put_property functions to your project. You must provide the code to
implement them.

Configuring Visual C++ to Build the Project

Before you attempt to compile any of the framework files, you need to configure Visual C++ to look for SQL Server 2000 header
and library files.

To configure Visual C++ to build the project

1. On the Tools menu, click Options.

2. In the Options dialog box, click the Directories tab.

3. In the Show directories for list, enter the paths from the following table at the top of the Directories list for each entry.

File type Path
Executable files C:\Program Files\Microsoft SQL Server\80\Tools\Binn
Include Files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include
Library files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib
Source files C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include

This only needs to be done once after installing SQL Server 2000. The paths will be different if SQL Server 2000 components were
installed to other than the default locations.

You also need to define the preprocessor symbol _ATL_NO_UUIDOF.

To enter preprocessor symbols

1. On the Project menu, click Settings.

2. Click the C/C++ tab, and then in the Preprocessor definitions box, enter the preprocessor symbols (comma separated) at
the end of the list.

Adding Code to the Framework

You need to add code for the logic specific to your transformation.

All transformations need IDTSDataPumpTransform::ValidateSchema, plus either IDTSDataPumpTransform::Execute or
IDTSDataPumpTransform2::ProcessPhase, in order to be functional beyond a placeholder that returns NOERROR. If the
transformation is to run in DTS Designer, you also need to provide IDTSDataPumpTransform2::PreValidateSchema. For more
information, see IDTSDataPumpTransform Interface and IDTSDataPumpTransform2 Interface.

For more information about coding transformation logic, see DTS Custom Transformation Example: Copy One Column and DTS
Custom Transformation Example: Format Names.

Registering Custom Transformations

When you build the custom transformation project in Visual C++, it registers the transformation as the final step of the build
process. If you have enabled DTS component caching, you will need to refresh the cache or DTS Designer will not be able to see
the transformation component.

To refresh the cache

1. In SQL Server Enterprise Manager, right-click Data Transformation Services, and then click Properties.

2. In the Package Properties dialog box, click Refresh Cache.

If you want to remove a custom transformation from your computer, you must unregister it before deleting the component .dll
file.

To unregister a custom transformation

1. From the command prompt, set the path to the folder that contains the transformation component DLL.

2. Enter:
 regsvr32 /u Component.dll

3. If DTS caching is enabled, refresh the cache.

Debugging Custom Transformations

You can debug a custom transformation by running it from DTS Designer or from a DTS package program (for example, one
implemented in Microsoft Visual Basic®). Using DTS Designer may give you more testing options, as
IDTSDataPumpTransform2::PreValidateSchema is called and a custom user interface can be displayed. In either case, you

must specify the executable name and path, along with any parameters the executable requires, on the Debug tab of the Project
Settings dialog box.

If you use DTS Designer, you typically enter C:\WINNT\system32\mmc.exe in the Executable for debug session box and /s
"c:\Program Files\Microsoft SQL Server\80\Tools\BINN\SQL Server Enterprise Manager.MSC" in the Program arguments box.

To determine the correct debugging settings for your computer

1. Find the shortcut used to launch SQL Server Enterprise Manager from the Start menu.

2. Extract this information from the Target box on the Shortcut tab of the Enterprise Manager Properties dialog box.

When a transformation commits an access violation or other fatal error, the data pump terminates it and reports that the task
using the transformation failed. For example, when an access violation occurs, the message "Access is denied" is displayed. It is
recommended you place a breakpoint at the entry to IDTSDataPumpTransform::OnTransformComplete or the
OnPumpComplete code in IDTSDataPumpTransform2::ProcessPhase. If this breakpoint is reached unexpectedly before all
rows are processed, a likely cause is a transformation fatal error.

DTS Programming (SQL Server 2000)

DTS Custom Transformation Examples
This section provides examples of Data Transformation Services (DTS) custom transformations.

Example Description
DTS Custom
Transformation
Example: Copy One
Column

Takes one source and one destination column, verifies that
source and destination are the same simple type, and then
copies source to destination.

DTS Custom
Transformation
Example: Format Names

Takes two source columns and one destination column,
verifies that the columns are string types, formats the source
columns (LastName and FirstName), and then copies the
combined field to destination. Converts ANSI <=> wide
character when necessary. Performs certain transform flag
validation.

DTS Programming (SQL Server 2000)

DTS Custom Transformation Example: Copy One Column
DTS Custom Transformation Example: Copy One Column

The following code example in Microsoft® Visual C++® implements a custom transformation that copies a single source column
to a destination column. The source and destination columns must be the same simple type. The transformation verifies that:

There is exactly one source and one destination column.

The columns are the same type.

The columns are not complex types like binary large objects (BLOBs).

To implement this example, use the Active Template Library (ATL) custom transformation template to create the transformation
framework. Name the component DTSCopy and the transformation class Copy1Column. For more information, see Using the
ATL Custom Transformation Template.

Add the following code segments to the framework files:

CCopy1Column::PreValidateSchema method

CCopy1Column::ValidateSchema method

CCopy1Column::ProcessPhase method

Error code definitions

PreValidateSchema

The code for PreValidateSchema checks the number of source and destination columns. It also checks that the types match and
that they are simple types.

Adding PreValidateSchema Code

Insert the following code immediately ahead of the

 return NOERROR;

statement in CCopy1Column::PreValidateSchema in file Copy1Column.cpp:

 // Validate the count of source and destination columns.
 if (pDestMetadata->cColumns != 1 || pSrcMetadata->cColumns != 1)
 return DTSCopy_E_WrongNumCols;

 // Validate that the destination column type is simple. Remove BYREF flag.
 const DBCOLUMNINFO* pDestDBColumnInfo = &(pDestMetadata->rgDBColumnInfo[0]);
 WORD wDestType = (pDestDBColumnInfo->wType & (~DBTYPE_BYREF));

 if(wDestType & (DBTYPE_ARRAY | DBTYPE_VECTOR | DBTYPE_RESERVED))
 return DTSCopy_E_NotSimpleType;

 // Validate that the source column type is simple.
 const DBCOLUMNINFO* pSrcDBColumnInfo = &(pSrcMetadata->rgDBColumnInfo[0]);
 WORD wSourceType = (pSrcDBColumnInfo->wType);

 if(wSourceType & (DBTYPE_ARRAY | DBTYPE_VECTOR | DBTYPE_RESERVED | DBTYPE_BYREF))
 return DTSCopy_E_NotSimpleType;

 // Source and destination columns must be the same type.
 if(wDestType != wSourceType)
 return DTSCopy_E_NotSameType;

DTS Programming (SQL Server 2000)

DTS Custom Transformation Example: Format Names
DTS Custom Transformation Example: Format Names

The following code example in Microsoft® Visual C++® implements a custom transformation that merges two source columns
that are presumed to be a first and last name. It formats them LastName, FirstName and copies the combined name to a
destination column.

The source and destination columns must be string types, but they can be ANSI or wide character strings. If some columns are
ANSI and others are wide character, the source columns are converted to the character width of the destination column as they
are copied. The destination column is set to NULL if both source columns are NULL.

The transformation verifies there are exactly two source and one destination column, and that they are string types. It validates
that if both source columns can contain NULLs, either the destination can contain NULL or the
DTSTransformFlag_AllowNullChange transform flag has been set. It also verifies either that the destination column is large
enough to hold any name that will fit in the source columns or that the DTSTransformFlag_AllowStringTruncation transform
flag has been set.

Implementing the Format Names Example

To implement this example, use the Active Template Library (ATL) custom transformation template to create the transformation
framework. Name the component DTSStrings and the transformation class FormatName. For more information, see Building a
Custom Transformation from the ATL Custom Transformation Template.

Add Custom Properties

After creating the transformation framework, you need to add two properties to the transformation.

Property name Property type Description
FirstNameColumn BSTR The name of the source column that

contains the first name.
RemoveTrailingSpaces VARIANT_BOOL A boolean that indicates whether trailing

spaces are to be trimmed from the first and
last names.

To add properties in Visual C++

1. On the ClassView tab of the Workspace window, right-click the IFormatName interface, and then click Add Property.

2. In the Property Name box, enter a name, and then in the Property Type list, select or enter the type of property you want
to add. No parameters are needed.

3. Select the Get Function and Put Function check boxes, and then click PropPut.

Add Custom Code

Add the following code segments to the framework:

Initializations in the CFormatName class constructor

Declarations of module level variables in the CFormatName class

Overloaded function RemoveTrailingSpace

CFormatName::PreValidateSchema method

CFormatName::ValidateSchema method

CFormatName::AddVariable method

CFormatName::GetTransformServerInfo method

CFormatName::ProcessPhase method

Property get_ and put_ functions

Error code definitions

Initializations in CFormatName Constructor

This code provides initial values for the transformation properties.

Immediately after the following lines in FormatName.h:

public:
 CFormatName()
 {

Add these code lines:

 // Initialize the properties
 m_bstrFirstNameColumn.m_str = NULL;
 m_vbRemoveTrailingSpaces = FALSE;

Declaration of CFormatName Variables

These are the declarations of the internal storage for the properties and other module level variables.

Adding CFormatName Declarations

Immediately after these lines in FormatName.h:

 STDMETHOD(SetExecuteThreadComplete)(THIS)
 {
 return NOERROR;
 }

add these lines of code for the private section :

private:
 // Local variables.
 LONG m_lFirstNameOrd; // Ordinal of first-name column, 0 or 1.
 BOOL m_bNullIntoNonNull; // True if can get Null into Non-null error.
 ULONG m_ulSrcLength; // Combined maximum source length.
 BOOL m_bFirstWide; // First name is wide chars.
 BOOL m_bLastWide; // Last name is wide chars.
 BOOL m_bDestWide; // Destination column is wide chars.
 LPBYTE m_pstrBuffer; // Intermediate buffer.
 IDTSErrorRecords* m_pErrorRecords;

 // Properties
 CComBSTR m_bstrFirstNameColumn;
 VARIANT_BOOL m_vbRemoveTrailingSpaces;

DTS Programming (SQL Server 2000)

DTS Scripting Reference
This section documents the objects and collections, and their properties and methods, that are provided by the Data
Transformation Services (DTS) data pump for the scripts of Microsoft® ActiveX® Script transformations. They can also be
referenced in custom transformations implemented in Microsoft Visual C++® and the C language. The data pump is the engine
for the Transform Data task, the Data Driven Query task, and the Parallel Data Pump task.

These objects and collections can generally not be used in the scripts associated with the ActiveX Script task or with DTS package
steps. Moreover, the name you use within an ActiveX Script transformation is generally different from the object name. This table
specifies the names to be used within scripts, the types of scripts in which they are valid, and a reference to the underlying object.

Scripting Name Validity Reference
DTSErrorRecords ActiveX Script

transformations
DTSErrorRecords Collection

DTSGlobalVariables All DTS ActiveX
scripts

GlobalVariables Collection

DTSLookups ActiveX Script
transformations

DTSDataPumpLookups Collection

DTSPackageLog ActiveX Script
tasks

PackageLog Object

DTSSource
DTSDestination

ActiveX Script
transformations

DTSDataPumpColumns Collection

DTSTransformPhaseInfo ActiveX Script
transformations

DTSTransformPhaseInfo Object

To reference any other object in the DTS object model hierarchy from an ActiveX script, use DTSGlobalVariables.Parent to
return a reference to the Package2 object, from which you can reference any other object in the hierarchy. For example, to cause
a step named DTSStep_DTSBulkInsertTask_1 to execute again after it has already completed execution, set:

DTSGlobalVariables.Parent.Steps("DTSStep_DTSBulkInsertTask_1").ExecutionStatus = _
 DTSStepExecStat_Waiting

See Also

Package2 Object

DTS Programming (SQL Server 2000)

Scripting Objects
This section documents the Data Transformation Services (DTS) objects exposed by the DTS data pump for the scripts of
Microsoft® ActiveX® Script transformations. They can also be referenced in custom transformations implemented in Microsoft
Visual C++® and the C language.

Topic Description
DTSDataPumpColumn Object Provides access to a column for a

transformation or ActiveX script.
DTSDataPumpColumn2 Object Extends the functionality of the

DTSDataPumpColumn object.
DTSDataPumpLookup Object Specifies a named, parameterized query

string for a transformation or ActiveX script.
DTSTransformPhaseInfo Object Makes status information available to a

transformation or ActiveX script.

DTS Programming (SQL Server 2000)

DTSDataPumpColumn Object
The DTSDataPumpColumn object provides access to a column value and its meta data to a Microsoft® ActiveX® script.

Properties

ActualSize Property OriginalValue Property
Attributes Property Precision Property
DefinedSize Property Type Property
Name Property UnderlyingValue Property
NumericScale Property Value Property

DTS Programming (SQL Server 2000)

DTSDataPumpColumn2 Object
The DTSDataPumpColumn2 object provides access to a column value and its meta data to a Microsoft® ActiveX® script.

Extended Properties

Status Property

DTS Programming (SQL Server 2000)

DTSDataPumpLookup Object
The DTSDataPumpLookup object provides information about columns in a Data Transformation Services (DTS) lookup query to
a Microsoft® ActiveX® script. The DTSDataPumpLookup object belongs to the DTSDataPumpLookups collection.

Properties

LastRowCount Property Name Property

DTS Programming (SQL Server 2000)

DTSTransformPhaseInfo Object
The DTSTransformPhaseInfo object makes status information available to Data Transformation Services (DTS) transformations
and Microsoft® ActiveX® Script transformations.

Properties

CurrentPhase Property ErrorCode Property
CurrentSourceRow Property ErrorRows Property
DestinationRowsComplete Property TransformStatus Property

DTS Programming (SQL Server 2000)

Scripting Collections
Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) scripting collections contain groups of related data pump
scripting objects. They can be used from custom transformations or Microsoft ActiveX® script transformations.

Topic Description
DTSDataPumpColumns Collection Contains descriptions of source and

destination columns for ActiveX script
transformations.

DTSDataPumpLookups Collection Specifies named, parameterized query
strings for a transformation or ActiveX
script.

DTSErrorRecords Collection Details errors that a custom
transformation or ActiveX script
transformation has added to data pump
error stack.

DTS Programming (SQL Server 2000)

DTSDataPumpColumns Collection
The DTSDataPumpColumns collection contains groups of columns that provide source and destination column information to a
Microsoft® ActiveX® Script transformation or a custom transformation.

Properties

Count Property

DTS Programming (SQL Server 2000)

DTSDataPumpLookups Collection
The DTSDataPumpLookups collection contains DTSDataPumpLookup objects that provide Data Transformation Services
(DTS) lookup column information to a Microsoft® ActiveX® script.

Properties

Count Property

DTS Programming (SQL Server 2000)

DTSErrorRecords Collection
The DTSErrorRecords collection allows an application to append error records to the OLE DB IErrorInfo interface of the current
thread. This information can be provided by a Microsoft® ActiveX® script.

Methods

Add Method Clear Method

DTS Programming (SQL Server 2000)

Scripting Properties
This section defines the properties of the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) scripting objects and
collections. With these properties, you can retrieve and set the attributes of objects within Microsoft ActiveX® scripts.

DTS Programming (SQL Server 2000)

ActualSize Property
The ActualSize property returns the actual size of a column value for the current row.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Attributes Property
The Attributes property returns one or more characteristics of a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Count Property
The Count property specifies the number of items in a scripting collection.

Applies To

DTSDataPumpColumns Collection DTSDataPumpLookups Collection

DTS Programming (SQL Server 2000)

CurrentPhase Property
The CurrentPhase property specifies the current transformation phase.

Applies To

DTSTransformPhaseInfo Object

DTS Programming (SQL Server 2000)

CurrentSourceRow Property
The CurrentSourceRow property specifies the current source row being processed by a Transform Data task, Data Driven Query
task, or Parallel Data Pump task.

Applies To

DTSTransformPhaseInfo Object

DTS Programming (SQL Server 2000)

DefinedSize Property
The DefinedSize property specifies the maximum size of a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

DestinationRowsComplete Property
The DestinationRowsComplete property specifies the number of destination rows inserted or data-driven queries executed so
far for the current rowset by a Transform Data task, Data Driven Query task, or Parallel Data Pump task.

Applies To

DTSTransformPhaseInfo Object

DTS Programming (SQL Server 2000)

ErrorRows Property
The ErrorRows property specifies the number of error rows encountered for the current rowset by a transformation in a
Transform Data task, Data Driven Query task, or Parallel Data Pump task.

Applies To

DTSTransformPhaseInfo Object

DTS Programming (SQL Server 2000)

LastRowCount Property
The LastRowCount property returns the number of rows returned during the last operation of this lookup.

Applies To

DTSDataPumpLookup Object

DTS Programming (SQL Server 2000)

Name Property
The Name property specifies the name of a scripting object.

Applies To

DTSDataPumpColumn Object DTSDataPumpLookup Object
DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

NumericScale Property
The NumericScale property specifies the scale for numeric values in a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

OriginalValue Property
The OriginalValue property specifies the value of a column before it was modified.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Precision Property
The Precision property specifies the precision of numeric values in a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Status Property
The Status property indicates whether the data value or some other value, such as NULL, is to be used as the value of the column.
It may also indicate whether the data pump was able to get or set the value.

Applies To

DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

TransformStatus Property
The TransformStatus property specifies the status of the most recently completed transformation for the current row in a
Transform Data task, Data Driven Query task, or Parallel Data Pump task.

Applies To

DTSTransformPhaseInfo Object

DTS Programming (SQL Server 2000)

Type Property
The Type property specifies the data type of a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

UnderlyingValue Property
The UnderlyingValue property specifies the committed value of a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Value Property
The Value property specifies the current value of a column.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Scripting Methods
This section defines the data pump scripting methods of Microsoft® SQL Server™ 2000 Data Transformation Services (DTS). The
methods control the operation of Microsoft ActiveX® scripts in DTS objects.

DTS Programming (SQL Server 2000)

Add Method
The Add method adds an error record to the errors collection for a transformation.

Applies To

DTSErrorRecords Collection

DTS Programming (SQL Server 2000)

AddToCache Method
The AddToCache method adds a key and value mapping to the lookup object cache.

Applies To

DTSDataPumpLookup Object

DTS Programming (SQL Server 2000)

AppendChunk Method
The AppendChunk method adds a segment to a binary large object (BLOB) column value.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Clear Method
The Clear method clears the error records collection for the current transformation.

Applies To

DTSErrorRecords Collection

DTS Programming (SQL Server 2000)

Execute Method
The Execute method returns a value or row of values from the lookup based on the lookup keys provided.

Applies To

DTSDataPumpLookup Object

DTS Programming (SQL Server 2000)

GetChunk Method
The GetChunk method retrieves the next segment of a binary large object (BLOB) column value.

Applies To

DTSDataPumpColumn Object DTSDataPumpColumn2 Object

DTS Programming (SQL Server 2000)

Item Method
The Item method retrieves an object from a scripting collection.

Applies To

DTSDataPumpColumns Collection DTSDataPumpLookups Collection

DTS Programming (SQL Server 2000)

RemoveFromCache Method
The RemoveFromCache method removes a key and value mapping to the lookup object cache.

Applies To

DTSDataPumpLookup Object

DTS Programming (SQL Server 2000)

Scripting Constants
These are the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) constants that are frequently used in Microsoft
ActiveX® scripts.

Constants Description
DTSStepExecResult Specifies the result from the execution of a step
DTSStepExecStatus Specifies the current status of a step
DTSStepPrecedenceBasis Specifies whether execution status or result is

used to specify precedence basis
DTSStepScriptResult Specifies the disposition of the task associated

with a step script
DTSTaskExecResult Specifies the result from the execution of a task
DTSTransformFlags Specifies the exception handling options for

transformations
DTSTransformPhaseEnum Specifies the available phases for

transformations
DTSTransformStatus Specifies the Insert operation or data driven

query to be taken by data pump after a
transformation completes

DTS Programming (SQL Server 2000)

DTS Programming Reference
This section documents the objects and collections, as well as their associated properties, methods, events, and constants, of the
Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) object model. For more information about the object model
and a graphical representation, see DTS Object Model Diagram.

For more information about the system requirements and configuration instructions for developing DTS applications in a
particular programming environment, see Creating DTS Packages in Visual Basic.

DTS Programming (SQL Server 2000)

Task Objects
The following table describes the Data Transformation Services (DTS) task classes supplied with Microsoft® SQL Server™ 2000.

DTS Task Description
ActiveScriptTask Object Runs a Microsoft ActiveX® script in the context of a

DTS task.
BulkInsertTask Object Performs the function of Transact-SQL BULK INSERT

statements.
CreateProcessTask Object Runs a Microsoft Win32® executable or batch file.
CreateProcessTask2 Object Extends the CreateProcessTask object.
DataDrivenQueryTask Object Transforms source data and writes it to the

destination through user-specified queries.
DataDrivenQueryTask2 Object Extends the DataDrivenQueryTask object.
DataPumpTask Object Transforms source data and copies it to the

destination.
DataPumpTask2 Object Extends the DataPumpTask object.
DynamicPropertiesTask Object Changes the values of the properties of DTS objects

at runtime.
ExecutePackageTask Object Runs another DTS package.
ExecuteSQLTask Object Runs a sequence of SQL statements.
ExecuteSQLTask2 Object Runs a sequence of SQL statements. Extended

ExecuteSQLTask object.
DTSFTPTask Object Transfers files using File Transfer Protocol (FTP).
DTSMessageQueueTask Object Sends and receives Message Queuing messages.
ParallelDataPumpTask Object Transforms hierarchical source rowsets and writes to

destination.
SendMailTask Object Sends e-mail in the context of a DTS task.
TransferObjectsTask Object Transfers SQL Server objects between source and

destination.
TransferObjectsTask2 Object Transfers SQL Server objects between source and

destination. Extended TransferObjectsTask object.

DTS Programming (SQL Server 2000)

ActiveScriptTask Object
The ActiveScriptTask object defines a task that is a Microsoft® ActiveX® script. ActiveX Script tasks do not use the data pump
and therefore do not have access to the Connections collection or Data Transformation Services (DTS) source and destination
collections. However, ActiveScriptTask objects have full access to the GlobalVariables collection, which provides a way to share
information across tasks.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

BulkInsertTask Object
The BulkInsertTask object, based on the Transact-SQL BULK INSERT statement, provides the fastest method for copying large
amounts of data from a text file to Microsoft® SQL Server™. Use BulkInsertTask for copying operations, and in situations where
performance is the most important consideration. It is not used in conjunction with transformations during data import
operations.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

CreateProcessTask Object
The CreateProcessTask object runs a Microsoft® Win32® executable or batch file in the context of the Data Transformation
Services (DTS) package.

Use the ProcessCommandLine property to specify the file to be executed and command line parameters. You can set a Timeout
for the executed process. You can specify TerminateProcessAfterTimeout, or also FailPackageOnTimeout.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

CreateProcessTask2 Object
The CreateProcessTask2 object runs a Microsoft® Win32® executable or batch file in the context of the Data Transformation
Services (DTS) package. It is called the Execute Process Task in DTS Designer.

Extended Methods

GetExpandedProcessCommandLine Method

DTS Programming (SQL Server 2000)

DataDrivenQueryTask Object
The DataDrivenQueryTask object reads data through a source Connection object and transforms it using one or more
Transformation objects. One of the transformations, a DataPumpTransformScript object, returns an indicator that determines
which of four parameterized queries is executed on the destination Connection object. For more information, see Adding DTS
Transformations and Adding DTS Column Objects.

The queries are called the Insert query, Update query, Delete query and User query, although they do not actually need to be used
for these purposes. Any sequence of SQL action statements and stored procedure calls can be used for any of the queries. The
query parameters are columns from the destination connection. For more information, see Adding DTS Query Strings.

Collections

Lookups Collection Transformations Collection
Properties Collection

DTS Programming (SQL Server 2000)

DataDrivenQueryTask2 Object
The DataDrivenQueryTask2 object transforms data from a source connection and invokes user-defined queries to write data to
a destination connection.

Extended Properties

ExceptionFileOptions Property RowsComplete Property
ExceptionFileTextQualifier Property RowsInError Property
InputGlobalVariableNames Property

DTS Programming (SQL Server 2000)

DataPumpTask Object
The Data Transformation Services (DTS) data pump is an OLE DB service provider that provides the means to import, export, and
transform data between heterogeneous data sources.

The DataPumpTask object makes the features of the data pump available as a DTS task.

Collections

Lookups Collection Transformations Collection
Properties Collection

DTS Programming (SQL Server 2000)

DataPumpTask2 Object
The DataPumpTask2 object imports, exports, and transforms data between heterogeneous data sources.

Extended Properties

DataPumpOptions Property InputGlobalVariableNames Property
ExceptionFileOptions Property RowsComplete Property
ExceptionFileTextQualifier Property

DTS Programming (SQL Server 2000)

DynamicPropertiesTask Object
The DynamicPropertiesTask object changes the values of package objects properties at runtime. Any property of any object in
the package can be modified. This is useful for packages created with Data Transformation Services (DTS) Designer and the DTS
Import/Export Wizard because many package object properties are fixed after the design process is complete.

The Dynamic Properties Task object provides several different sources for the new value of a property:

A constant

The contents of a data file

An environment variable

A DTS global variable

A field in an .ini file

An SQL query

In an application that creates and manipulates DTS objects, it is often easier to modify the values of properties directly in code
rather than use a Dynamic Properties Task object. However, if part of a DTS package is contained within a module that cannot
be modified easily, the Dynamic Properties Task object may be useful.

Collections

DynamicPropertiesTaskAssignments
Collection

Properties Collection

DTS Programming (SQL Server 2000)

ExecutePackageTask Object
The ExecutePackageTask object runs another Data Transformation Services (DTS) package. The package can be located in
Microsoft® SQL Server™ 2000 Meta Data Services, in SQL Server, or in a file. The package can be specified by name or by
package or version globally unique identifier (GUID).

DTS global variables can be passed to the target package. For each such global variable, a GlobalVariable object, which defines
the name of the variable and value, is added to the GlobalVariables collection of the ExecutePackageTask object. These global
variables are distinct from the members of the GlobalVariables collection of the Package2 object that contains the
ExecutePackageTask object. Use the InputGlobalVariableNames property to specify members of the parent package
GlobalVariables collection that are to be created or set in the child package.

Steps in child packages can join the transactions of parent packages, if Microsoft Distributed Transaction Coordinator (MS DTC) is
running.

Collections

GlobalVariables Collection Properties Collection

DTS Programming (SQL Server 2000)

ExecuteSQLTask Object
The ExecuteSQLTask object allows you to execute a sequence of one or more SQL statements on a connection. Use the
ConnectionID property to specify the connection and the SQLStatement property to specify the sequence of SQL statements.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

ExecuteSQLTask2 Object
The ExecuteSQLTask2 object allows you to execute a sequence of one or more SQL statements on a connection.

Extended Properties

InputGlobalVariableNames Property OutputGlobalVariableNames Property
OutputAsRecordset Property

DTS Programming (SQL Server 2000)

DTSFTPTask Object
The DTSFTPTask object performs a binary transfer of one or more files from a specified Internet FTP site or network directory to
a destination directory.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

DTSMessageQueueTask Object
 New Information - SQL Server 2000 SP3.

The DTSMessageQueueTask object sends and receives messages to or from a queue of Message Queuing. In SQL Server 2000,
a Message Queue task cannot take part in the package transaction.

A single instance of the DTSMessageQueueTask either sends one or more messages to a specified queue or receives a single
message from a specified queue, waiting, if necessary, for the message to arrive.

Three types of messages can be sent:

A string message, which is supplied as the value of a property.

A data file message, which is generated from the contents of a specified data file.

A global variables message, which is generated from the names and values of one or more Data Transformation Services
(DTS) global variables.

Two types of messages can be received:

A string message. Various comparisons can be specified to determine whether the task returns success or failure.

A global variables message. The values of one or more global variables (specified by the message) in the local package can
be updated. If any of the global variables do not exist in the local package, they are created.

Collections

DTSMQMessages Collection Properties Collection

DTS Programming (SQL Server 2000)

ParallelDataPumpTask Object
The ParallelDataPumpTask object copies and transforms data from source to destination rowsets. It performs the same
functions as the DataPumpTask2 and DataDrivenQueryTask2, except that it will also copy and transform hierarchical rowsets.
The FastLoad option of the DataPumpTask2 is not supported, however.

In the ParallelDataPumpTask object, a TransformationSets collection is populated with one or more TransformationSet
objects, each of which includes a Transformations collection and contains all the information necessary to transform a
component rowset of the source hierarchical rowset to the corresponding component rowset in the destination.

The component rowsets are scanned and matched source to destination through recursive descent. The columns of the parent
rowset are in column-ordinal order. When a child rowset column is encountered, it is scanned before the remaining columns of
the parent. Child rowsets are similarly processed; their own children are scanned when encountered, before their remaining rows,
with greater column ordinal.

Using Transformation Modes

The ParallelDataPumpTask operates in one of the following modes:

In flattened mode, the component rowsets are copied without regard to the chapter values. All the rows of each child rowset
are copied, including those not referenced by any chapters.

In hierarchical mode, rowsets are copied a row at a time. The rows of a child rowset referenced by the chapter in the parent
rowset row are copied. Thus, child rowset rows can be copied multiple times, or not at all.

In data driven query mode, rowsets are processed in the same way as in flattened mode, except that one of four queries,
typically an INSERT, UPDATE or DELETE SQL statement, or stored procedure, can be executed based on the return code of a
script transform.

The mode is specified with the TransformationSetOptions property of the TransformationSet object.

Collections

Properties Collection TransformationSets Collection

DTS Programming (SQL Server 2000)

Hierarchical Rowsets
Hierarchical Rowsets

 New Information - SQL Server 2000 SP3.

A rowset is an OLE DB object that consists of data organized as a grid of rows and named, typed columns. Typically, a rowset
contains a result set from a database query, but the data can come from any source.

In a hierarchical rowset, one or more columns are themselves rowsets. The individual column values are references to subsets,
called chapters, of the column rowset. A chapter can include none, some, or all of its rows. The column rowsets can themselves
have one or more columns that are rowsets, nested to an arbitrary level.

Using the Data Shaping Service for OLE DB

Hierarchical rowsets are often generated with the Microsoft® Data Shaping Service for OLE DB. This provider supports the Shape
language, which allows rowset hierarchies to be constructed from rowsets obtained from an OLE DB data provider. The Shape
Append command appends one or more child rowsets as columns to a parent rowset, and assigns a reference to a chapter to
each row value in each appended column. For example:

SHAPE {SELECT au_id, au_lname, au_fname FROM authors}
APPEND ({SELECT au_id, title FROM titleauthor TA, titles TS
 WHERE TA.title_id = TS.title_id}
 AS title_chap RELATE au_id TO au_id)

This command creates a parent rowset from table authors and appends a child rowset in a column named title_chap. Each row
value in title_chap is a reference to the subset of the child rowset that has the same value in its au_id column as in the au_id
column of the parent rowset for that row. The tables referenced by this command are in the pubs database that is supplied with
Microsoft SQL Server™ 2000.

Writing sGetTitleAuthors Code

This is the Microsoft Visual Basic® source code for the sGetTitleAuthors function:

Private Function sGetTitleAuthors() As String
Dim rstParent As ADODB.Recordset
Dim rstChild As ADODB.Recordset
Dim sBuf As String

' SECURITY NOTE - When possible, use Windows Authentication.
Const CONNECT_PUBS = "PROVIDER=MSDataShape;DATA PROVIDER=SQLOLEDB;" & _
 "SERVER=;DATABASE=pubs;Trusted_Connection=yes"
Const SHAPE_TITLEAUTHORS = _
 "SHAPE {SELECT au_id, au_lname, au_fname FROM authors} " & _
 "APPEND ({SELECT au_id, title FROM titleauthor TA, titles TS " & _
 "WHERE TA.title_id = TS.title_id} " & _
 "AS title_chap RELATE au_id TO au_id)"

 '----- create rowsets
 Set rstParent = New ADODB.Recordset
 rstParent.Open SHAPE_TITLEAUTHORS, CONNECT_PUBS

 '----- process parent rowset
 Do While Not rstParent.EOF
 sBuf = sBuf & rstParent("au_id") & vbTab & _
 rstParent("au_lname") & ", " & rstParent("au_fname") & vbCrLf

 '----- process chapter of child rowset
 Set rstChild = rstParent("title_chap").Value
 Do While Not rstChild.EOF
 sBuf = sBuf & vbTab & vbTab & rstChild("title") & vbCrLf
 rstChild.MoveNext
 Loop
 rstParent.MoveNext
 Loop
 sGetTitleAuthors = sBuf
End Function

DTS Programming (SQL Server 2000)

Parallel Data Pump Example
Parallel Data Pump Example

 New Information - SQL Server 2000 SP3.

This sample Microsoft® Visual Basic® function sCopyCustOrderProd creates and runs a package that transforms parts of the
Customers, Orders, Order Details, and Products tables from the Northwind database that ships with Microsoft SQL Server™
2000. The function generates a hierarchical rowset consisting of the customers located in the U.K., their orders, the order details,
and the products.

Creating the sCopyCustOrderProd Rowset

This function copies the data to tables in a database called DTSTest that have the following structure:

CREATE TABLE dbo.customers (
 customer_key NCHAR (5) NOT NULL ,
 company_name NVARCHAR (40) NOT NULL)

CREATE TABLE dbo.orders (
 customer_key NCHAR (5) NULL ,
 order_key INT NOT NULL)

CREATE TABLE dbo.products (
 product_key INT NOT NULL ,
 product_name NVARCHAR (40) NOT NULL)

CREATE TABLE dbo.order_details (
 order_key INT NOT NULL ,
 product_key INT NOT NULL ,
 discount REAL NOT NULL)

The number of rows copied depends on whether Flattened or Hierarchical mode is used. In Flattened mode, the entire Orders,
Order Details, and Products tables are copied. In Hierarchical mode, only the rows referenced by the U.K. customers are copied,
although there are many duplicates of these rows in the products table in the destination database.

DTS Programming (SQL Server 2000)

Parallel Data Driven Query Example
Parallel Data Driven Query Example

 New Information - SQL Server 2000 SP3.

This sample Microsoft® Visual Basic® function, sDDQTitleAuthors, creates and runs a package that transforms parts of the
authors, titleauthor, and titles tables from the pubs database that ships with Microsoft SQL Server™ 2000. The function
generates a hierarchical rowset consisting of the authors from the pubs database and the titles with which they are associated.

Creating sDDQTitleAuthors Rowset

This function copies the data to tables in a database called DTSTest that have the following structure:

CREATE TABLE dbo.AuthNames (
 AuthID VARCHAR (11) NOT NULL ,
 LastName VARCHAR (40) NOT NULL ,
 FirstName VARCHAR (20) NOT NULL)

CREATE TABLE dbo.TitleNames (
 AuthID VARCHAR (11) NOT NULL ,
 TitleName VARCHAR (80) NOT NULL)

As in flattened mode, the component rowsets are copied without regard to the chapters.

Running sDDQTitleAuthors

This example can be run on a computer on which Visual Basic 6.0 and SQL Server 2000 have been installed.

The steps for running sDDQTitleAuthors are as follows:

1. Create a database named DTSTest using SQL Server Enterprise Manager, and then create the tables defined earlier in
DTSTest. If you use another database, change the line in the example that sets the database name for the destination
connection.

2. Create a new Standard EXE project in the Visual Basic development environment. In the Project/References dialog box,
check Microsoft DTSPackage Object Library and Microsoft DTSDataPump Scripting Object Library.

3. Copy the following code for function sDDQTitleAuthors to the code window for Form1.

4. Place a command button on the form Form1. In the _Click sub for the command button, call sDDQTitleAuthors.

5. You can add completion notification, such as a message box, and an error handler. For more information about returning
meaningful error information, see Handling DTS Errors in Visual Basic.

6. If you are using a database other than DTSTest, change the setting of the Catalog property of connection 2.

7. Run the project, click the command button, and then view the destination tables.

Writing sDDQTitleAuthors Code

This is the Visual Basic source code for the sDDQTitleAuthors function:

Private Function sDDQTitleAuthors() As String
 Dim oPackage As New DTS.Package
 Dim oConnection As DTS.Connection
 Dim oTask As DTS.Task
 Dim oStep As DTS.Step
 Dim oTransform As DTS.Transformation
 Dim oScriptTransform As DTSPump.DataPumpTransformScript
 Dim oTransformationSet As DTS.TransformationSet
 Dim oParallelPumpTask As DTS.ParallelDataPumpTask
 Dim sScript(1 To 3) As String
 Dim sScriptLanguage As String
 Dim sScriptFunction As String

Const SHAPE_PUBS_TITLEAUTHORS = _
 "SHAPE {SELECT au_id, au_lname, au_fname FROM authors} " & _
 "APPEND ({SELECT au_id, title FROM titleauthor TA, titles TS " & _
 "WHERE TA.title_id = TS.title_id} " & _
 "AS title_chap RELATE au_id TO au_id)"

Const SHAPE_DTSUE_TITLEAUTHORS = _
 "SHAPE {SELECT * FROM AuthNames} " & _
 "APPEND ({SELECT * FROM TitleNames} " & _
 "AS TitleChap RELATE AuthID TO AuthID)"

 '----- generate scripts, one needs 2 col, other needs 3
 sScriptLanguage = "VBScript"
 sScriptFunction = "Transform"
 sScript(1) = "Function Transform()" & vbCrLf & _
 "DTSDestination(1) = DTSSource(1)" & vbCrLf & _
 "DTSDestination(2) = DTSSource(2)" & vbCrLf
 sScript(2) = "DTSDestination(3) = DTSSource(3)" & vbCrLf
 sScript(3) = "Transform = DTSTransformStat_InsertQuery" & _
 vbCrLf & "End Function"

 '----- define source connection - pubs
 ' SECURITY NOTE - When possible, use Windows Authentication.
 Set oConnection = oPackage.Connections.New("MSDataShape")
 With oConnection
 .ConnectionProperties("Data Provider") = "SQLOLEDB"
 .ID = 1
 .Catalog = "pubs"
 .UseTrustedConnection = True
 '.UserID = "sa"
 '.Password = "sapassword"
 End With
 oPackage.Connections.Add oConnection

 '----- define destination connection - (local) DTSTest
 Set oConnection = oPackage.Connections.New("MSDataShape")
 With oConnection
 .ConnectionProperties("Data Provider") = "SQLOLEDB"
 .ID = 2
 .DataSource = "(local)"
 .Catalog = "DTSTest"
 .UseTrustedConnection = True
 End With
 oPackage.Connections.Add oConnection

 '----- Create ParallelDPTask set DDQ, connections and commands
 Set oTask = oPackage.Tasks.New("DTSParallelDataPumpTask")
 Set oParallelPumpTask = oTask.CustomTask
 With oParallelPumpTask
 .TransformationSetOptions = DTSTranSetOpt_DataDrivenQueries
 .SourceConnectionID = 1
 .SourceSQLStatement = SHAPE_PUBS_TITLEAUTHORS
 .DestinationConnectionID = 2
 .DestinationSQLStatement = SHAPE_DTSUE_TITLEAUTHORS
 End With

 '----- create TransformationSet for parent rowset
 Set oTransformationSet = oParallelPumpTask. _
 TransformationSets.New("TransformSet_author")
 oParallelPumpTask.TransformationSets.Add oTransformationSet
 Set oTransform = oTransformationSet. _
 Transformations.New("DTS.DataPumpTransformScript")
 Set oScriptTransform = oTransform.TransformServer
 With oScriptTransform
 .Language = sScriptLanguage
 .FunctionEntry = sScriptFunction
 .Text = sScript(1) & sScript(2) & sScript(3)
 End With

 '----- define source/dest columns for parent
 With oTransform
 .SourceColumns.AddColumn "au_id", 1
 .SourceColumns.AddColumn "au_lname", 2
 .SourceColumns.AddColumn "au_fname", 3
 .DestinationColumns.AddColumn "AuthID", 1
 .DestinationColumns.AddColumn "LastName", 2
 .DestinationColumns.AddColumn "FirstName", 3
 .Name = "Transform"
 End With

 '----- define INSERT query, params for parent

 With oTransformationSet
 .InsertQuery = "INSERT AuthNames VALUES (?, ?, ?)"
 .InsertQueryColumns.AddColumn "AuthID", 1
 .InsertQueryColumns.AddColumn "LastName", 2
 .InsertQueryColumns.AddColumn "FirstName", 3
 .Transformations.Add oTransform
 End With

 '----- create TransaformationSet for child rowset
 Set oTransformationSet = oParallelPumpTask. _
 TransformationSets.New("TransformSet_title")
 oParallelPumpTask.TransformationSets.Add oTransformationSet
 Set oTransform = oTransformationSet. _
 Transformations.New("DTS.DataPumpTransformScript")
 Set oScriptTransform = oTransform.TransformServer
 With oScriptTransform
 .Language = sScriptLanguage
 .FunctionEntry = sScriptFunction
 .Text = sScript(1) & sScript(3)
 End With

 '----- define source/dest columns for child
 With oTransform
 .SourceColumns.AddColumn "au_id", 1
 .SourceColumns.AddColumn "title", 2
 .DestinationColumns.AddColumn "AuthID", 1
 .DestinationColumns.AddColumn "TitleName", 2
 .Name = "Transform"
 End With

 '----- define INSERT query, params for child
 With oTransformationSet
 .InsertQuery = "INSERT TitleNames VALUES (?, ?)"
 .InsertQueryColumns.AddColumn "AuthID", 1
 .InsertQueryColumns.AddColumn "TitleName", 2
 .Transformations.Add oTransform
 End With

 '----- add task, step to package
 oTask.Name = "ParallelDDQTask"
 With oPackage
 Set oStep = .Steps.New
 oStep.Name = "ParallelDPStep"
 oStep.TaskName = oTask.Name
 .Tasks.Add oTask
 .Steps.Add oStep
 .Name = "ParallelDDQTask Package"
 .FailOnError = True

 .Execute 'run the package

 End With
End Function

DTS Programming (SQL Server 2000)

SendMailTask Object
The SendMailTask object lets you send an e-mail as a task. For example, if you want to notify a database administrator about the
success or failure of a particular task (such as a backup), you can link a SendMailTask object with a precedence constraint to the
previous task. To use a SendMailTask, the computer must have the Microsoft® messaging API installed with a valid user profile.

A SendMailTask can include attached data files. You can point to a location for an attached file and send a dynamically updated
file, rather than a static copy of the file fixed when you create the task. This feature is useful for sending attachments, such as log
and exception files, which contain information that changes constantly, and for which the file may not exist when the package is
created (at design time).

Note If you enter an attachment file name and path that does not exist when the package is run, with some versions of the
messaging API you receive the message: "Error sending mail: Internal MAPI error: the address book has no directories that contain
names." This message indicates the file does not exist at the specified location, or that access permissions are not granted for the
file. To fix the error, make sure that the file is available at the specified location when the package is run, or that access is granted.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

TransferObjectsTask Object
The TransferObjectsTask object allows you transfer one or more Microsoft® SQL Server™ objects between source and
destination databases. An object can represent:

A table, or table data.

A view.

A referential integrity constraint.

A stored procedure.

An index.

A default or a rule.

A user-defined data type.

In addition, you can transfer all users or all logins (roles) for the source database. You can also transfer all objects dependent
on the requested objects.

Note The source and destination must both be Microsoft SQL Server version 7.0 or later databases.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

TransferObjectsTask2 Object
The TransferObjectsTask2 object transfers objects between instances of Microsoft® SQL Server™.

Extended Properties

DestTranslateChar Property SourceTranslateChar Property
DestUseTransaction Property

DTS Programming (SQL Server 2000)

Transformation Objects
This section describes the Data Transformation Services (DTS) transformation classes supplied with Microsoft® SQL Server™
2000.

Topic Description
DataPumpTransformCopy Object Copies multiple source columns to destination

columns.
DataPumpTransformDateTimeString
Object

Converts datetime string formats.

DataPumpTransformLowerString
Object

Converts multiple source columns to lowercase
characters and copies them to destination
columns.

DataPumpTransformMidString
Object

Extracts substrings from a source column;
optionally trims white space and changes case.

DataPumpTransformReadFile Object Copies data read from files into destination
columns.

DataPumpTransformScript Object Transforms data with user-supplied Microsoft
ActiveX® scripts.

DataPumpTransformTrimString
Object

Removes white-space characters from data and
optionally changes case.

DataPumpTransformUpperString
Object

Converts multiple source columns to uppercase
characters and copies them to destination
columns.

DataPumpTransformWriteFile
Object

Writes data from a source column into files.

DTSTransformScriptProperties2
Object

Supports multiphase transformations with an
extended DataPumpTransformScript object.

DTS Programming (SQL Server 2000)

DataPumpTransformCopy Object
The DataPumpTransformCopy object converts a source column to the destination column data type and moves the data to the
destination column. DataPumpTransformCopy supports multiple source and destination columns. Destination truncation is
possible by setting DTSTransformFlag_AllowStringTruncation in the TransformFlags property of the Transformation2
object. There are no transformation properties.

For more information, see DataPumpTransformLowerString Object. The DataPumpTransformCopy object is used the same way
as the DataPumpTransformLowerString object in the example in that section, except that it is created as follows:

 Set oTransform = oCustTask.Transformations. _
 New("DTSPump.DataPumpTransformCopy")

See Also

Adding DTS Column Objects

Adding DTS Transformations

Transformation2 Object

TransformFlags Property

DTS Programming (SQL Server 2000)

DataPumpTransformDateTimeString Object
The DataPumpTransformDateTimeString object converts a datetime string in one format to another datetime format. It
requires one source and one destination column, both of data types compatible with the OLE DB data type DBTIMESTAMP. The
transformation properties InputFormat and OutputFormat specify the formats of the source and destination columns,
respectively.

Properties

AMSymbol Property Month??ShortName Property
Day?LongName Property OutputFormat Property
Day?ShortName Property PMSymbol Property
InputFormat Property ShortYear2000Cutoff Property
Month??LongName Property

DTS Programming (SQL Server 2000)

DataPumpTransformLowerString Object
The DataPumpTransformLowerString object converts a source column to lowercase characters and, if necessary, to the
destination column data type. It requires source and destination columns to be of string data types (char, varchar, text, nchar,
nvarchar, ntext, and flat file strings). Like the DataPumpTransformCopy object, this transformation object supports multiple
source and destination columns. Destination truncation is possible by setting DTSTransformFlag_AllowStringTruncation in the
TransformFlags property of the Transformation2 object. There are no custom transformation properties.

Remarks

Conversion to lowercase characters is also a feature of the DataPumpTransformTrimString and
DataPumpTransformMidString objects.

Example

This example Microsoft® Visual Basic® program converts two columns from the authors table in the pubs database to
lowercase characters while copying them to a table named AuthNames in a database named DTS_UE.

Public Sub Main()
'copy pubs..authors names to DTS_UE..AuthNames, making lower case
 Dim oPackage As DTS.Package
 Dim oConnect As DTS.Connection
 Dim oStep As DTS.Step
 Dim oTask As DTS.Task
 Dim oCustTask As DTS.DataPumpTask
 Dim oTransform As DTS.Transformation
 Dim oColumn As DTS.Column

 Set oPackage = New DTS.Package
 oPackage.FailOnError = True

 'establish connection to source server
 Set oConnect = oPackage.Connections.New("SQLOLEDB.1")
 With oConnect
 .ID = 1
 .DataSource = "(local)"
 .UseTrustedConnection = True
 End With
 oPackage.Connections.Add oConnect

 'establish connection to destination server
 Set oConnect = oPackage.Connections.New("SQLOLEDB.1")
 With oConnect
 .ID = 2
 .DataSource = "(local)"
 .UseTrustedConnection = True
 End With
 oPackage.Connections.Add oConnect

 'create step and task, link step to task
 Set oStep = oPackage.Steps.New
 oStep.Name = "LowerCaseStep"
 Set oTask = oPackage.Tasks.New("DTSDataPumpTask")
 Set oCustTask = oTask.CustomTask
 oCustTask.Name = "LowerCaseTask"
 oStep.TaskName = oCustTask.Name
 oPackage.Steps.Add oStep

 'link task to connections
 With oCustTask
 .SourceConnectionID = 1
 .SourceObjectName = "pubs..authors"
 .DestinationConnectionID = 2
 .DestinationObjectName = "[DTS_UE].[dbo].[AuthNames]"
 End With

 'create custom transform, link to source and dest columns
 Set oTransform = oCustTask.Transformations. _
 New("DTSPump.DataPumpTransformLowerString")
 With oTransform
 .Name = "LowerCaseTransform"

 .SourceColumns.AddColumn "au_fname", 1
 .SourceColumns.AddColumn "au_lname", 2
 .DestinationColumns.AddColumn "FirstName", 1
 .DestinationColumns.AddColumn "LastName", 2
 End With

 'link transform to task, task to package, run package
 oCustTask.Transformations.Add oTransform
 oPackage.Tasks.Add oTask
 oPackage.Execute
End Sub

DTS Programming (SQL Server 2000)

DataPumpTransformMidString Object
The DataPumpTransformMidString object extracts a substring from the source column and converts it, if necessary, to the
destination column data type. This object requires one source column and one destination column, both of a string data type
(char, varchar, text, nchar, nvarchar, ntext, and flat file strings). The properties CharacterStart and CharacterCount specify
the position of the substring.

Optionally, the transformation converts the extracted substring to uppercase or lowercase characters, as specified by the
UpperCaseString and LowerCaseString properties. It also optionally trims white-space characters, as specified by the
TrimLeadingWhiteSpace, TrimTrailingWhiteSpace, and TrimEmbeddedWhiteSpace properties. Substring extraction occurs
before the trimming of white space characters.

Destination truncation is possible by setting DTSTransformFlag_AllowStringTruncation in the TransformFlags property of
the Transformation2 object.

Properties

CharacterCount Property TrimLeadingWhiteSpace Property
CharacterStart Property TrimTrailingWhiteSpace Property
LowerCaseString Property UpperCaseString Property
TrimEmbeddedWhiteSpace Property

DTS Programming (SQL Server 2000)

DataPumpTransformReadFile Object
The DataPumpTransformReadFile object copies the contents of a file, the name of which is specified by a source column, to a
destination column.

Data conversion is controlled by the OEMFile and UnicodeFile properties. If the file named by the source column contains the
Unicode prefix bytes (hex FFFE), the file is assumed to be Unicode regardless of the value of UnicodeFile, and the prefix bytes are
skipped.

Properties

ErrorIfFileNotFound Property OEMFile Property
FilePath Property

DTS Programming (SQL Server 2000)

DataPumpTransformScript Object
The DataPumpTransformScript object transforms source columns and moves data to the destination columns using a
Microsoft® ActiveX® script. Columns can be transformed in any way supported by the scripting language. The driver for the
specific ActiveX scripting language must be installed.

The DataPumpTransformScript object supports properties that are used to specify the script text, scripting language, and entry
point name.

Properties

FunctionEntry Property Text Property
Language Property

DTS Programming (SQL Server 2000)

DataPumpTransformTrimString Object
The DataPumpTransformTrimString object converts the source column to uppercase or lowercase characters, as specified by
the UpperCaseString and LowerCaseString properties. It trims white-space characters, as specified by the
TrimLeadingWhiteSpace, TrimTrailingWhiteSpace and TrimEmbeddedWhiteSpace properties. It converts, if necessary, to
the destination column data type. It requires one source column and one destination column, both of a string data type (char,
varchar, text, nchar, nvarchar, ntext, and flat file strings).

Destination truncation is possible by setting DTSTransformFlag_AllowStringTruncation in the TransformFlags property of
the Transformation object.

Properties

LowerCaseString Property TrimTrailingWhiteSpace Property
TrimEmbeddedWhiteSpace Property UpperCaseString Property
TrimLeadingWhiteSpace Property

DTS Programming (SQL Server 2000)

DataPumpTransformUpperString Object
The DataPumpTransformUpperString object converts a source column to uppercase characters and, if necessary, to the
destination column data type. It requires source and destination columns to be of string data types (char, varchar, text, nchar,
nvarchar, ntext, and flat file strings). Like the DataPumpTransformCopy object, this transformation object supports multiple
source and destination columns. Destination truncation is possible by setting DTSTransformFlag_AllowStringTruncation in the
TransformFlags property of the Transformation2 object. There are no custom transformation properties.

Remarks

Conversion to uppercase characters is also a feature of the DataPumpTransformTrimString and
DataPumpTransformMidString objects.

For more information, see DataPumpTransformLowerString Object. The DataPumpTransformUpperString object is used the
same way as the DataPumpTransformLowerString object in the example in that section, except that it is created as follows:

 Set oTransform = oCustTask.Transformations. _
 New("DTSPump.DataPumpTransformUpperString")

See Also

Adding DTS Column Objects

Adding DTS Transformations

DataPumpTransformCopy Object

DataPumpTransformMidString Object

DataPumpTransformTrimString Object

Transformation2 Object

TransformFlags Property

DTS Programming (SQL Server 2000)

DataPumpTransformWriteFile Object
The DataPumpTransformWriteFile object converts a field from one source column into a file, the path of which is specified by
another source column. Columns in the destination connection of the task are not written, although the connection must exist.

Data conversion is controlled by the OEMFile and UnicodeFile properties. If UnicodeFile is set to TRUE, the Unicode file header
(hex FFFE) is prepended to the file, if it is not already there. The default behavior is to overwrite the destination file if it exists
already.

Properties

AppendIfFileExists Property FilePath Property
ErrorIfFileExists Property OEMFile Property
FileColumnName Property

DTS Programming (SQL Server 2000)

DTSTransformScriptProperties2 Object
The DTSTransformScriptProperties2 object transforms source columns and moves data to the destination columns using a
Microsoft® ActiveX® script. Columns can be transformed in any way supported by the scripting language being used.

Extended Properties

BatchCompleteFunctionEntry Property PreSourceDataFunctionEntry Property
InsertFailureFunctionEntry Property PumpCompleteFunctionEntry Property
InsertSuccessFunctionEntry Property TransformFailureFunctionEntry Property
PostSourceDataFunctionEntry Property

DTS Programming (SQL Server 2000)

Phased Transformation Samples
Phased Transformation Samples

 New Information - SQL Server 2000 SP3.

These Microsoft® Visual Basic® Scripting Edition (VBScript) functions support a Data Transformation Services (DTS) package
program that uses multiphase transformations. For more information, see DTSTransformScriptProperties2 Object.

TransformFailed Function

If an error occurred converting to money, TransformFailed opens a Microsoft ActiveX® Data Objects (ADO) recordset on an
error records table. Then it writes a record containing the primary key from the data source and the invalid money field. It sets
destination columns to indicate the error occurred. It saves the current source row number in a global variable to indicate the
conversion error occurred for the current row. If source columns are Null, it sets the corresponding destination column to "
<unknown>".

Example

The following is the VBScript for the TransformFailed function:

Function TransformFailed()
'Called on transform failure, usually conversion error or Null -> NOT NULL error.
 Dim rstErrors
 Dim strConnect

 DTSDestination("CustID") = DTSSource("CustID")
 DTSDestination("ErrorCount") = 0

 'See if transaction amount conversion error occurred.
 On Error Resume Next
 DTSDestination("TransAmount") = CCur(DTSSource("TransAmount"))

 'Conversion error occurred. Write bad transaction amount to error table.
 If Err.Number <> 0 Then
 On Error GoTo 0
 ' SECURITY NOTE - When possible, use Windows Authentication.
 strConnect = "Provider=SQLOLEDB;Data Source=(local);Initial Catalog=DataPerm;Trusted_Connection=yes;"
 Set rstErrors = CreateObject("ADODB.Recordset")
 rstErrors.LockType = 3 'adLockOptimistic
 rstErrors.Open "ErrorAmounts", strConnect, , , 2 'adCmdTable
 rstErrors.AddNew
 rstErrors("CustID") = DTSSource("CustID")
 rstErrors("TransAmount") = DTSSource("TransAmount")
 rstErrors.Update
 rstErrors.Close

 'Indicate error in destination table, and flag that that transform error occurred in this row.
 DTSDestination("TransAmount") = 0.0
 DTSDestination("ErrorCount") = 1
 DTSGlobalVariables("LastErrorRow") = _
 CLng(DTSTransformPhaseInfo.CurrentSourceRow)
 End If
 On Error GoTo 0

 'If NULL is in Name or Address, write <unknown>. Otherwise update field.
 If IsNull(DTSSource("CustName").Value) Then
 DTSDestination("CustName") = "<unknown>"
 Else
 DTSDestination("CustName") = DTSSource("CustName")
 End If
 If IsNull(DTSSource("CustAddr")) Then
 DTSDestination("CustAddr") = "<unknown>"
 Else
 DTSDestination("CustAddr") = DTSSource("CustAddr")
 End If

 TransformFailed = DTSTransformStat_OK
End Function

DTS Programming (SQL Server 2000)

Other Objects
This section describes the objects of the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) object model.

For more information about the task objects and transformation objects supplied with SQL Server 2000, see Task Objects and
Transformation Objects.

Topic Description
Application Object Provides access to system properties and

information about system components.
Column Object Contains information about a source or

destination column, or a data-driven
query parameter.

Connection Object Contains information about connections
to OLE DB data sources.

Connection2 Object Extends the functionality of the
Connection object.

CustomTask Object Allows developers to implement DTS
custom tasks.

CustomTaskUI Object Allows developers to implement a user
interface for a custom task.

DTSMQMessage Object Holds the definition of a
DTSMessageQueueTask message to be
sent.

DynamicPropertiesTaskAssignment Object Holds the definition of a DTS object
property for a DynamicPropertiesTask
object.

GlobalVariable Object Defines a DTS global variable.
GlobalVariable2 Object Extends the functionality of the

GlobalVariable object.
IDTSStdObject Serves as the base object from which all

other DTS objects are derived.
Lookup Object Specifies named, parameterized query

string.
OLEDBProperty Object Specifies property to be set in an OLE DB

service provider at run time.
OLEDBProperty2 Object Extends the functionality of the

OLEDBProperty object.
OLEDBProviderInfo Object Supplies information about an OLE DB

provider.
Package Object Heads the hierarchy of objects.
Package2 Object Extends the functionality of the Package

object.
PackageInfo Object Provides information about a DTS

package in persistent storage.
PackageLineage Object Provides the contents of a SQL Server

2000 Meta Data Services package lineage
record.

PackageLog Object Allows a custom task or task script to
write task log records.

PackageLogRecord Object Provides the contents of a package log
record.

PackageRepository Object Provides access to the DTS components
on Meta Data Services.

PackageSQLServer Object Provides access to the components on an
instance of SQL Server.

PersistPropertyBag Object Defines a persistent property storage
interface for a custom task

PrecedenceConstraint Object Limits when a DTS step can begin
execution.

PropertiesProvider Object Defines an object supplying a DTS
Properties collection.

Property Object Exposes the attributes of an object
property.

PropertyBag Object Defines a name-indexed container for
property values.

SavedPackageInfo Object Contains information about a package
saved in a COM-structured storage file.

ScriptingLanguageInfo Object Provides information about a Microsoft
ActiveX® scripting language registered on
the system.

Step Object Controls the execution of a task in the
package.

Step2 Object Extends the functionality of the Step
object.

StepLineage Object Provides the contents of a step lineage
record from Meta Data Services.

StepLogRecord Object Provides the contents of a step log record
from an instance of SQL Server.

Task Object Defines a unit of work to be performed as
part of a package.

TaskInfo Object Provides information about a task class
registered on the computer system.

TaskLogRecord Object Provides the contents of a task log record
from an instance of SQL Server.

Transformation Object Contains information about the
transformation class and the source and
destination columns.

Transformation2 Object Extends the functionality of the
Transformation object.

TransformationInfo Object Provides information about a registered
DTS transformation class.

TransformationSet Object Defines the transformations to be
performed on a component of a
hierarchical rowset.

See Also

Creating a DTS Package

Programming DTS Applications

DTS Programming (SQL Server 2000)

Application Object
The Application object provides access to system properties and information about system components. It returns connections
to Microsoft® SQL Server™ storage or to SQL Server 2000 Meta Data Services instances that contain Data Transformation
Services (DTS) packages.

Collections

OLEDBProviderInfos Collection TaskInfos Collection
Properties Collection TransformationInfos Collection
ScriptingLanguageInfos Collection

DTS Programming (SQL Server 2000)

Column Object
The Column object contains information about a source or destination column, or a data driven query parameter. If no source or
destination columns are specified for a transformation, then all columns are implied by default.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

Connection Object
The Connection object contains information about connections to data sources through OLE DB service providers. Connection
objects allow connection pooling and reuse for connections within a package so that only one connection must be established for
multiple steps or tasks.

Properties

Catalog Property InUse Property
Connected Property LastOwnerTaskName Property
ConnectImmediate Property Name Property
ConnectionProperties Property Parent Property
ConnectionTimeout Property Password Property
DataSource Property ProviderID Property
Description Property Reusable Property
ID Property UserID Property
InTransaction Property

DTS Programming (SQL Server 2000)

Connection2 Object
The Connection2 object contains information about connections to data sources through OLE DB service providers.

Extended Properties

UDLPath Property

DTS Programming (SQL Server 2000)

CustomTask Object
The CustomTask object is an interface that all Data Transformation Services (DTS) tasks must implement. This allows
programmers to create their own custom tasks, which can be controlled by the DTS package.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

CustomTaskUI Object
The CustomTaskUI object is an interface that allows you to optionally specify a custom dialog box for a Data Transformation
Services (DTS) custom task that can be used in DTS Designer. The CustomTaskUI interface is only used in conjunction with
custom tasks. If the CustomTaskUI is not implemented, DTS Designer displays a default user interface for task properties in a
simple grid format.

Methods

CreateCustomToolTip Method Help Method
Delete Method Initialize Method
Edit Method New Method
GetUIInfo Method

DTS Programming (SQL Server 2000)

DTSMQMessage Object
The DTSMQMessage object holds the definition of a single message to be sent by a DTSMessageQueueTask object.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

DynamicPropertiesTaskAssignment Object
The DynamicPropertiesTaskAssignment object holds the definition of a single package object property to be modified by a
Dynamic Properties Task object, and the source of the new property value.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

GlobalVariable Object
The GlobalVariable object defines a variable that allows data to be shared across steps and Microsoft® ActiveX® scripts.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

GlobalVariable2 Object
The GlobalVariable2 object defines a variable that allows data to be shared across steps and Microsoft® ActiveX® scripts.

Extended Methods

Lock Method Unlock Method

DTS Programming (SQL Server 2000)

IDTSStdObject
The IDTSStdObject is the base object from which all other Data Transformation Services (DTS) package objects are derived. It has
no properties, methods, or events.

See Also

Parent Property

DTS Programming (SQL Server 2000)

Lookup Object
The Lookup object allows a data pump consumer, for example a DataDrivenQueryTask2, DataPumpTask2 or
ParallelDataPumpTask object, to specify one or more named, parameterized query strings that allow a transformation to
retrieve data from locations other than the row being transformed. For example, a Lookup object might reference data in a
Microsoft® Excel worksheet.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

OLEDBProperty Object
OLEDBProperty objects are used by the Connection object to specify properties of sessions and rowsets to be set in the OLE DB
service provider at run time. These properties are set automatically by the Data Transformation Services (DTS) package at run
time. Connection properties of each OLE DB service provider can also be set this way.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

OLEDBProperty2 Object
OLEDBProperty2 objects are used by the Connection object to specify properties of sessions and rowsets to be set in the OLE
DB service provider at run-time.

Extended Properties

IsDefaultValue Property

DTS Programming (SQL Server 2000)

OLEDBProviderInfo Object
The OLEDBProviderInfo object provides information about an OLE DB provider that is registered on the computer system.

Properties

ClassID Property Name Property
Description Property Parent Property
ImplementationFileName Property ParseName Property
ImplementationFileVersionString Property

DTS Programming (SQL Server 2000)

Package Object
The Package object is the main transformation-defining object from which all other objects stem.

Collections

Connections Collection Steps Collection
GlobalVariables Collection Tasks Collection
Properties Collection

DTS Programming (SQL Server 2000)

Package2 Object
The Package2 object is the parent object of a Data Transformation Services (DTS) package. Most of the new properties support
logging to the msdb database of a specified instance of Microsoft® SQL Server™.

Extended Properties

ExplicitGlobalVariables Property LogServerUserName Property
FailPackageOnLogFailure Property LogToSQLServer Property
LogServerFlags Property NestedExecutionLevel Property
LogServerName Property PackageType Property
LogServerPassword Property

DTS Programming (SQL Server 2000)

PackageInfo Object
The PackageInfo object provides information about a package stored in Microsoft® SQL Server™ 2000 Meta Data Services or
SQL Server storage.

Properties

CreationDate Property PackageID Property
Description Property PackageType Property
IsOwner Property Parent Property
Name Property Properties Collection
Owner Property VersionID Property
PackageDataSize Property

DTS Programming (SQL Server 2000)

PackageLineage Object
The PackageLineage object provides the contents of a package lineage record from Microsoft® SQL Server™ 2000 Meta Data
Services. The record contains information about a Data Transformation Services (DTS) package execution hosted by Meta Data
Services.

Properties

Computer Property Operator Property
ExecutionDate Property PackageID Property
LineageFullID Property Parent Property
LineageShortID Property Properties Collection
Name Property

DTS Programming (SQL Server 2000)

PackageLog Object
The PackageLog object allows a Data Transformation Services (DTS) custom task or ActiveScriptTask object to write task log
records in the database or write log messages to the log file.

Methods

WriteStringToLog Method WriteTaskRecord Method

DTS Programming (SQL Server 2000)

PackageLogRecord Object
The PackageLogRecord object provides the contents of a package log record from an instance of Microsoft® SQL Server™. The
log record contains information about a package execution.

Properties

Computer Property LogDate Property
Description Property Name Property
ErrorCode Property Operator Property
ErrorDescription Property PackageID Property
ExecutionTime Property Parent Property
FinishTime Property Properties Collection
LineageFullID Property StartTime Property
LineageShortID Property

DTS Programming (SQL Server 2000)

PackageRepository Object
The PackageRepository object provides access to the Data Transformation Services (DTS) components hosted by an instance of
Microsoft® SQL Server™ 2000 Meta Data Services. Through methods of this object, you can obtain information about the DTS
packages stored in Meta Data Services and access the contents of the package and step lineage data for these packages.

Properties

Name Property Properties Collection
Parent Property

DTS Programming (SQL Server 2000)

PackageSQLServer Object
The PackageSQLServer object provides access to the Data Transformation Services (DTS) components hosted by an instance of
Microsoft® SQL Server™. Through methods of this object, you can obtain information about the DTS packages stored in SQL
Server storage and access the contents of the package, step, and task log records stored on that server.

Properties

Name Property Properties Collection
Parent Property

DTS Programming (SQL Server 2000)

PersistPropertyBag Object
The PersistPropertyBag object defines a persistent property storage interface for an object implementing a Data Transformation
Services (DTS) custom task. The PropertyBag object is a name-indexed container object for object properties. When
implemented, the PropertyBag and PersistPropertyBag objects allow simple object property handling.

Methods

Load Method Save Method

DTS Programming (SQL Server 2000)

PrecedenceConstraint Object
The PrecedenceConstraint object contains information about a condition that must occur before a Data Transformation Services
(DTS) step can be released for execution. The PrecedenceConstraint objects of all the package steps control the order in which
steps are executed.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

PropertiesProvider Object
The PropertiesProvider object defines an object supplying a Data Transformation Services (DTS) Properties collection. When
exposed, DTS will retrieve the Properties collection as required.

Methods

GetPropertiesForObject Method

DTS Programming (SQL Server 2000)

Property Object
The Property object exposes the attributes of a Data Transformation Services (DTS) object property.

Most DTS objects have Properties collections, which contain a Property object for each property the object has. By referencing
the Properties collection, a user of the object can determine whether the object supports a particular property without causing a
program error if it does not.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

PropertyBag Object
The PropertyBag object defines a name-indexed container for property values for an object implementing a Data Transformation
Services (DTS) custom task. Use the PropertyBag object as part of custom task object implementation when the custom task
maintains storage for task properties.

DTS can read and write values of simple data types, such as String, in a PropertyBag object. DTS cannot support objects and
other more complex data types as values in a PropertyBag container.

Methods

Read Method Write Method

DTS Programming (SQL Server 2000)

SavedPackageInfo Object
The SavedPackageInfo object contains information about packages that are saved in COM-structured storage files. This
information is returned by the GetSavedPackageInfos method.

Properties

Description Property PackageName Property
IsVersionEncrypted Property VersionID Property
PackageCreationDate Property VersionSaveDate Property
PackageID Property

DTS Programming (SQL Server 2000)

ScriptingLanguageInfo Object
The ScriptingLanguageInfo object provides information about a Microsoft® ActiveX® scripting language that is registered on
the computer system.

Properties

ClassID Property Name Property
Description Property Parent Property
ImplementationFileName Property Properties Collection
ImplementationFileVersionString Property

DTS Programming (SQL Server 2000)

Step Object
The Step object controls the flow and execution of tasks within the Data Transformation Services (DTS) package. Each step is
associated with a single task, although association with no task is possible. Step execution sequence is determined by the
precedence constraints. A step cannot start execution until all its precedence constraints are satisfied.

Collections

PrecedenceConstraints Collection Properties Collection

DTS Programming (SQL Server 2000)

Step2 Object
The Step2 object controls the flow and execution of tasks within the Data Transformation Services (DTS) package. Each step is
associated with a single task, although association with no task is possible. Step execution sequence is determined by the
precedence constraints. A step cannot start execution until all its precedence constraints are satisfied.

Extended Properties

FailPackageOnError Property

DTS Programming (SQL Server 2000)

StepLineage Object
The StepLineage object provides the contents of a step lineage record from Microsoft® SQL Server™ 2000 Meta Data Services.
The record contains information about the execution of a step in a Data Transformation Services (DTS) package hosted by Meta
Data Services.

Properties

ErrorCode Property Name Property
ErrorDescription Property Parent Property
ErrorHelpContext Property Properties Collection
ErrorHelpFile Property StartTime Property
ErrorSource Property StepExecutionResult Property
ExecutionTime Property StepExecutionStatus Property
FinishTime Property

DTS Programming (SQL Server 2000)

StepLogRecord Object
The StepLogRecord object provides the contents of a step log record from an instance of Microsoft® SQL Server™. The log
record contains information about the execution of a step in a Data Transformation Services (DTS) package.

Properties

ErrorCode Property Parent Property
ErrorDescription Property ProgressCount Property
ExecutionTime Property Properties Collection
FinishTime Property StartTime Property
LineageFullID Property StepExecutionID Property
Name Property StepExecutionResult Property

DTS Programming (SQL Server 2000)

Task Object
The Task object defines a unit of work to be performed as part of a Data Transformation Services (DTS) package. A Task object is
created in a package when the Tasks.New method is invoked with the program ID or class ID of the desired task class, followed
by Tasks.Add.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

TaskInfo Object
The TaskInfo object provides information about a Data Transformation Services (DTS) task class that is registered on the
computer system.

Properties

ClassID Property ImplementationFileVersionString Property
Description Property Name Property
IconFile Property Parent Property
IconIndex Property Properties Collection
ImplementationFileName Property

DTS Programming (SQL Server 2000)

TaskLogRecord Object
The TaskLogRecord object provides the contents of a task log record from an instance of Microsoft® SQL Server™. The log
record contains information about the execution of a task in a Data Transformation Services (DTS) package that has been
implemented to write task log records.

Properties

ErrorCode Property Properties Collection
ErrorDescription Property SequenceID Property
Parent Property

DTS Programming (SQL Server 2000)

Transformation Object
The generic Transformation object contains information about the class-specific transformation object and the source and
destination columns it manipulates.

Collections

Properties Collection

DTS Programming (SQL Server 2000)

Transformation2 Object
The generic Transformation2 object contains information about the class-specific transformation object and the source and
destination columns it manipulates.

Extended Properties

TransformPhases Property

DTS Programming (SQL Server 2000)

TransformationInfo Object
The TransformationInfo object provides information about a Data Transformation Services (DTS) transformation class that is
registered on the computer system.

Properties

ClassID Property Name Property
Description Property Parent Property
ImplementationFileName Property Properties Collection
ImplementationFileVersionString Property

DTS Programming (SQL Server 2000)

TransformationSet Object
The TransformationSet object defines the transformations to be performed on the columns of a component rowset in a
hierarchical rowset by the Parallel Data Pump Task object.

Collections

Lookups Collection Transformations Collection
Properties Collection

DTS Programming (SQL Server 2000)

Collections
This section describes the collections of the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) object model.
Collections contain groups of related DTS objects.

Topic Description
Columns Collection Contains descriptions of meta data for

columns in a data source.
Connections Collection Contains information about connections

to OLE DB service providers.
DTSMQMessages Collection Defines the messages to be sent by a

DTSMessageQueueTask object.
DynamicPropertiesTaskAssignments
Collection

Defines the properties to be changed by a
DynamicPropertiesTask object.

GlobalVariables Collection Contains information about data to be
shared across DTS steps.

Lookups Collection Defines query strings that allow data
retrieval from other than the row being
transformed.

OLEDBProperties Collection Contains properties for an OLE DB service
provider.

OLEDBProviderInfos Collection Provides information about available OLE
DB service providers.

PackageInfos Collection Provides information about packages
stored in SQL Server 2000 Meta Data
Services or SQL Server storage.

PackageLineages Collection Provides the contents of package lineage
records from Meta Data Services.

PackageLogRecords Collection Provides the contents of package log
records from an instance of SQL Server.

PrecedenceConstraints Collection Contains conditions that must occur
before a step can execute.

Properties Collection Contains a collection of properties for an
object.

SavedPackageInfos Collection Contains information about packages
saved in files.

ScriptingLanguageInfos Collection Provides information about Microsoft
ActiveX® scripting languages available on
the system.

StepLineages Collection Provides the contents of step lineage
records from Meta Data Services.

StepLogRecords Collection Provides the contents of step log records
from an instance of SQL Server.

Steps Collection Contains information about the flow and
execution of DTS tasks.

TaskInfos Collection Provides information about the tasks
available on the system.

TaskLogRecords Collection Provides the contents of task log records
from an instance of SQL Server.

Tasks Collection Contains information about the tasks in a
DTS package.

TransformationInfos Collection Provides information about the DTS
transformations available on the system.

Transformations Collection Defines the transformations used by a
task.

TransformationSets Collection Defines the sets of transformations used
to process components of a hierarchical
rowset.

DTS Programming (SQL Server 2000)

Columns Collection
A Columns collection is a group of Column objects containing a description of all available meta data about a column in a data
source. This includes name, description, data type, precision, scale, nullability, and numeric base.

Properties

Count Property Parent Property

DTS Programming (SQL Server 2000)

Connections Collection
The Connections collection is a group of Connection objects containing information about connections to OLE DB service
providers. This collection allows connection pooling and reuse across steps and tasks in a DTS package.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

DTSMQMessages Collection
The DTSMQMessages collection contains the DTSMQMessage objects that define the messages to be sent by a
DTSMessageQueueTask object.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

DynamicPropertiesTaskAssignments Collection
The DynamicPropertiesTaskAssignments collection contains the DynamicPropertiesTaskAssignment objects that define the
source of the new value and the properties to be changed by a DynamicPropertiesTask object.

Applies To

DynamicPropertiesTask Object

DTS Programming (SQL Server 2000)

GlobalVariables Collection
The GlobalVariables collection is a group of GlobalVariable objects containing information about variants that allow data to be
shared across steps and Microsoft® ActiveX® scripts.

Applies To

ExecutePackageTask Object Package2 Object
Package Object

DTS Programming (SQL Server 2000)

Lookups Collection
The Lookups collection is a group of Lookup object definitions. A Lookup object defines a named, parameterized query string
that allows a transformation to retrieve data from a location other than the row being transformed.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

OLEDBProperties Collection
The OLEDBProperties collection is a group of OLEDBProperty objects containing information about an OLE DB service provider.

Properties

Count Property Parent Property

DTS Programming (SQL Server 2000)

OLEDBProviderInfos Collection
The OLEDBProviderInfos collection contains OLEDBProviderInfo objects that provide information about each OLE DB provider
available on the computer system.

Applies To

Application Object

DTS Programming (SQL Server 2000)

PackageInfos Collection
The PackageInfos collection contains PackageInfo objects that provide information about a DTS package stored in Microsoft®
SQL Server™ 2000 Meta Data Services or SQL Server storage.

Properties

EOF Property

DTS Programming (SQL Server 2000)

PackageLineages Collection
The PackageLineages collection contains PackageLineage objects that provide the contents of package lineage records from
Microsoft® SQL Server™ 2000 Meta Data Services. The records contain information about a DTS package execution hosted by
Meta Data Services.

Properties

EOF Property

DTS Programming (SQL Server 2000)

PackageLogRecords Collection
The PackageLogRecords collection contains PackageLogRecord objects that provide the contents of package log records from
an instance of Microsoft® SQL Server™. The log records contain information about a DTS package execution.

Properties

EOF Property

DTS Programming (SQL Server 2000)

PrecedenceConstraints Collection
The PrecedenceConstraints collection is a group of PrecedenceConstraint objects containing information about conditions
that must occur before a DTS step can be released for execution.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

Properties Collection
The Properties collection contains Property objects exposing the attributes of a DTS object property.

Properties

Count Property Parent Property

DTS Programming (SQL Server 2000)

SavedPackageInfos Collection
The SavedPackageInfos collection is a group of SavedPackageInfo objects containing information about DTS packages saved
in files.

Properties

Count Property

DTS Programming (SQL Server 2000)

ScriptingLanguageInfos Collection
The ScriptingLanguageInfos collection contains ScriptingLanguageInfo objects that provide information about each
Microsoft® ActiveX® scripting language that is available on the system. You can use these scripting languages in ActiveX Script
tasks, ActiveX Script transformations, and step scripts.

Properties

Count Property UseCache Property
Parent Property

DTS Programming (SQL Server 2000)

StepLineages Collection
The StepLineages collection contains StepLineage objects that provide the contents of step lineage records from Microsoft®
SQL Server™ 2000 Meta Data Services. These records contain information about the execution of a step in a DTS package hosted
by Meta Data Services.

Properties

EOF Property

DTS Programming (SQL Server 2000)

StepLogRecords Collection
The StepLogRecords collection contains StepLogRecord objects that provide the contents of step log records from an instance
of Microsoft® SQL Server™. The log records contain information about the execution of a step in a DTS package.

Properties

EOF Property

DTS Programming (SQL Server 2000)

Steps Collection
The Steps collection is a group of Step2 objects that contain information about the flow and execution of tasks within a DTS
package.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

TaskInfos Collection
The TaskInfos collection contains TaskInfo objects that provide information about each DTS task available on the system. These
include the tasks supplied by Microsoft® SQL Server™ 2000 and custom tasks implemented by users or other vendors.

Properties

Count Property UseCache Property
Parent Property

DTS Programming (SQL Server 2000)

TaskLogRecords Collection
The TaskLogRecords collection contains TaskLogRecord objects that provide the contents of task log records from an instance
of Microsoft® SQL Server™. The log record contains information about the execution of a task that has been implemented in a
Data Transformation Services (DTS) package to write task log records.

Properties

EOF Property

DTS Programming (SQL Server 2000)

Tasks Collection
The Tasks collection is a group of Task objects that contain information about units of work to be performed as part of the
transformation process. The Tasks collection contains all of the defined tasks in a DTS package.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

TransformationInfos Collection
The TransformationInfos collection contains TransformationInfo objects that provide information about each DTS
transformation available on the system. These include the transformations supplied by Microsoft® SQL Server™ 2000 and
custom transformations implemented by users or other vendors.

Properties

Count Property UseCache Property
Parent Property

DTS Programming (SQL Server 2000)

Transformations Collection
The Transformations collection is a group of Transformation2 objects that contain information about the transformation, and
about source and destination columns.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

TransformationSets Collection
The TransformationSets collection contains the TransformationSet objects that define the transformations to be performed on
the columns of a component rowset in a hierarchical rowset by the Parallel Data Pump Task object.

Applies To

ParallelDataPumpTask Object

DTS Programming (SQL Server 2000)

Properties
This section defines the properties of the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) objects and
collections. Use these properties to retrieve and set the attributes of the DTS components.

DTS Programming (SQL Server 2000)

ActiveXScript Property
The ActiveXScript property specifies a Microsoft® ActiveX® script text string for an object to execute.

Applies To

ActiveScriptTask Object Step2 Object
Step Object

DTS Programming (SQL Server 2000)

AddGlobalVariables Property
The AddGlobalVariables property specifies whether global variables can be referenced from the current Microsoft® ActiveX®
script.

Applies To

ActiveScriptTask Object Step2 Object
Step Object

DTS Programming (SQL Server 2000)

AllowIdentityInserts Property
The AllowIdentityInserts property specifies whether the SET IDENTITY_INSERT Transact-SQL statement is set to ON before and
OFF after the data pump execution.

Applies To

DataPumpTask Object DataPumpTask2 Object

DTS Programming (SQL Server 2000)

AMSymbol Property
The AMSymbol property specifies or returns the string indicating the time format before 12:00 noon (for example, A.M.) when a
12-hour time format is specified.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

AppendIfFileExists Property
The AppendIfFileExists property specifies or returns a value indicating whether data written to a destination file is appended to
or is written over data that was present when the file was opened.

Applies To

DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

Assignments Property
The Assignments property returns a reference to the DynamicPropertiesTaskAssignments collection.

Applies To

DynamicPropertiesTask

DTS Programming (SQL Server 2000)

AutoCommitTransaction Property
The AutoCommitTransaction property specifies whether an active transaction is committed or rolled back on completion of
Package.Execute.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

BatchCompleteFunctionEntry Property
The BatchCompleteFunctionEntry property specifies or returns the name of the script function that is to be called for the
OnBatchComplete transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

BatchSize Property
The BatchSize property specifies the number of rows to load in a batch.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

Catalog Property
The Catalog property specifies the name of the catalog in which the connection is initially established.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

CCLine Property
The CCLine property specifies e-mail addresses to include on the CC: line.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

CharacterCount Property
The CharacterCount property specifies or returns the number of characters in the substring of the source column to be copied
by custom transformations.

Applies To

DataPumpTransformMidString Object

DTS Programming (SQL Server 2000)

CharacterStart Property
The CharacterStart property specifies or returns the starting position of the substring of the source column to be copied by
custom transformations.

Applies To

DataPumpTransformMidString Object

DTS Programming (SQL Server 2000)

CheckConstraints Property
The CheckConstraints property specifies whether any constraints must be checked while data is loaded.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

ClassID Property
The ClassID property returns the class ID and a globally unique identifier (GUID), under which a class of a component used by
Data Transformation Services (DTS) is registered in the operating system registry.

Applies To

OLEDBProviderInfo Object TaskInfo Object
ScriptingLanguageInfo Object TransformationInfo Object

DTS Programming (SQL Server 2000)

CloseConnection Property
The CloseConnection property specifies whether to close a connection on completion of a step.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

Codepage Property
The Codepage property specifies the code page to use while loading data.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

ColumnID Property
The ColumnID property specifies the column ID of a source or destination column.

Applies To

Column Object

DTS Programming (SQL Server 2000)

CommandProperties Property
The CommandProperties property returns a reference to an OLEDBProperties collection, which contains an OLEDBProperty
object for each OLE DB command property for the connection.

Applies To

ExecuteSQLTask Object ExecuteSQLTask2 Object

DTS Programming (SQL Server 2000)

CommandTimeout Property
The CommandTimeout property specifies the amount of time, in seconds, before the command is presumed to have failed.

Applies To

ExecuteSQLTask Object ExecuteSQLTask2 Object

DTS Programming (SQL Server 2000)

CommitSuccess Property
The CommitSuccess property specifies whether to commit a step if it completes successfully.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

Computer Property
The Computer property specifies the network node name of the computer on which a Data Transformation Services (DTS)
package was executed. This property applies only to packages for which a lineage or log record was written

Applies To

PackageLineage Object PackageLogRecord Object

DTS Programming (SQL Server 2000)

Connected Property
The Connected property indicates whether a connection is currently active.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

ConnectImmediate Property
The ConnectImmediate property specifies whether to make an immediate connection, either when a Data Transformation
Services (DTS) package starts running or at the time a step that references a task using this connection executes.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

ConnectionID Property
The ConnectionID property specifies the ID of a Connection object you use when connecting to a database or another data
source.

Applies To

BulkInsertTask Object ExecuteSQLTask2 Object
ExecuteSQLTask Object Lookup Object

DTS Programming (SQL Server 2000)

ConnectionProperties Property
The ConnectionProperties property returns a reference to an OLEDBProperties collection used to establish the characteristics
of a connection.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

ConnectionTimeout Property
The ConnectionTimeout property returns or sets the number of seconds to wait while establishing a connection. After that, an
error is generated.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

CopyAllObjects Property
The CopyAllObjects property specifies whether to transfer all objects from an instance of Microsoft® SQL Server™.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

CopyData Property
The CopyData property specifies whether data is copied and whether existing data is replaced or appended to.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

CopySchema Property
The CopySchema property specifies whether Microsoft® SQL Server™ database objects are copied.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

Count Property
The Count property specifies the number of items in a Data Transformation Services (DTS) collection.

Applies To

Columns Collection Properties Collection
Connections Collection SavedPackageInfos Collection
DTSMQMessages Collection ScriptingLanguageInfos Collection
DynamicPropertiesTaskAssignments
Collection

Steps Collection

GlobalVariables Collection TaskInfos Collection
Lookups Collection Tasks Collection
OLEDBProperties Collection TransformationInfos Collection
OLEDBProviderInfos Collection Transformations Collection
PrecedenceConstraints Collection TransformationSets Collection

DTS Programming (SQL Server 2000)

CreationDate Property
The CreationDate property specifies the date and time the Data Transformation Services (DTS) package was created.

Applies To

Package Object PackageInfo Object
Package2 Object

DTS Programming (SQL Server 2000)

CreatorComputerName Property
The CreatorComputerName property specifies the network name of the computer on which the Data Transformation Services
(DTS) package was created.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

CreatorName Property
The CreatorName property specifies the name of the user who created the Data Transformation Services (DTS) package.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

CustomTask Property
The CustomTask property returns a reference to the class-specific task object.

Applies To

Task Object

DTS Programming (SQL Server 2000)

CustomTaskID Property
The CustomTaskID property returns the programmatic identifier (ProgID) or class identifier (CLSID) of the class-specific object
for this task.

Applies To

Task Object

DTS Programming (SQL Server 2000)

 DataFile Property
The DataFile property specifies the universal naming convention (UNC) path of the file from which to load the data.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

DataFileNonOverwritable Property
The DataFileNonOverwritable property returns or sets a value indicating whether a data file message can overwrite an existing
data file.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

DataFileType Property
The DataFileType property specifies the type of the data file to insert.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

DataPumpOptions Property
The DataPumpOptions property returns or sets extended Data Transformation Services (DTS) data pump options.

Applies To

DataPumpTask2 Object

DTS Programming (SQL Server 2000)

DataSource Property
The DataSource property specifies a data source name appropriate to the OLE DB provider being used.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

DataType Property
The DataType property specifies the data type of a Column object.

Applies To

Column Object

DTS Programming (SQL Server 2000)

Day?LongName Property
The Day?LongName property specifies or returns the string to be used for the full name of the indicated day of the week. ? is a
number from 1 through 7 that indicates the day of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

Day?ShortName Property
The Day?ShortName property specifies or returns the string to be used for the short (3-character abbreviation) name of the
indicated day of the week. ? is a number from 1 through 7 that indicates the number of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

DeleteQuery Property
The DeleteQuery property specifies a string of one or more parameterized SQL statements to execute at the destination as the
Delete query.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

DeleteQueryColumns Property
The DeleteQueryColumns property returns a reference to a collection of columns whose values are to be placed into
parameters, in sequential order, for the DeleteQuery property.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

Description Property
The Description property returns or sets the textual description of a Data Transformation Services (DTS) object.

Applies To

ActiveScriptTask Object Package Object
BulkInsertTask Object Package2 Object
Connection Object PackageInfo Object
Connection2 Object PackageLogRecord Object
CreateProcessTask Object ParallelDataPumpTask Object
CreateProcessTask2 Object SavedPackageInfo Object
CustomTask Object ScriptingLanguageInfo Object
DataDrivenQueryTask Object SendMailTask Object
DataDrivenQueryTask2 Object Step Object
DataPumpTask Object Step2 Object
DataPumpTask2 Object Task Object
DTSMessageQueueTask Object TaskInfo Object
DynamicPropertiesTask Object TransferObjectsTask Object
ExecutePackageTask Object TransferObjectsTask2 Object
ExecuteSQLTask Object TransformationInfo Object
ExecuteSQLTask2 Object TransformationSet Object
OLEDBProviderInfo Object

DTS Programming (SQL Server 2000)

DesignerSettings Property
The DesignerSettings property specifies the settings that control the features available in Data Transformation Services (DTS)
Designer.

Applies To

Application Object

DTS Programming (SQL Server 2000)

DestinationColumnDefinitions Property
The DestinationColumnDefinitions property returns a reference to a Columns collection that contains the column definitions
for a DataPumpTask2, DataDrivenQueryTask2, or ParallelDataPumpTask destination connection.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

DestinationColumns Property
The DestinationColumns property returns a reference to a Columns collection that contains the definitions for the columns to
which the transformation will write.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

DestinationCommandProperties Property
The DestinationCommandProperties collection references an OLEDBProperties collection whose elements define the
properties of the destination connection OLE DB provider.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

DestinationConnectionID Property
The DestinationConnectionID property specifies the connection ID to use at the data destination.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

DestinationDatabase Property
The DestinationDatabase property specifies the name of the destination database to use when you transfer Microsoft® SQL
Server™ objects.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestinationLogin Property
The DestinationLogin property specifies the login ID on a destination server.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestinationObjectName Property
The DestinationObjectName property specifies the name of a data destination.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

DestinationPassword Property
The DestinationPassword property specifies the password to use on a destination server.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestinationPropertyID Property
The DestinationPropertyID property sets or returns a string that defines the path through the Data Transformation Services
(DTS) object model to the property to be modified by the DynamicPropertiesTask object.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

DestinationServer Property
The DestinationServer property specifies the name of the destination server when you transfer Microsoft® SQL Server™
objects.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestinationSQLStatement Property
The DestinationSQLStatement property specifies an SQL statement to execute at the data destination.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

DestinationTableName Property
The DestinationTableName property specifies the name of the table into which to load data.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

DestinationUseTrustedConnection Property
The DestinationUseTrustedConnection property specifies whether Windows Authentication is used.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestSite Property
The DestSite property sets or returns the destination directory to which the transferred files will be moved by a file transfer
protocol (FTP) task.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

DestTranslateChar Property
The DestTranslateChar property sets or returns a value indicating whether translation is performed for character data on the
destination server.

Applies To

TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DestUseTransaction Property
The DestUseTransaction property sets or returns a value indicating whether the operations of the task are performed within a
transaction on the destination server.

Applies To

TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DisableStep Property
The DisableStep property specifies whether a step should be executed.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

DropDestinationObjectsFirst Property
The DropDestinationObjectsFirst property specifies whether to drop objects if they already exist on the destination.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

DTSMessageLineageID Property
The DTSMessageLineageID property sets or returns the globally unique identifier (GUID) of the lineage information that was
saved with the Data Transformation Services (DTS) package in Microsoft® SQL Server™ 2000 Meta Data Services.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

DTSMessagePackageID Property
The DTSMessagePackageID property sets or returns the globally unique identifier (GUID) of the Data Transformation Services
(DTS) package that is the source of the message this DTSMessageQueueTask object is to receive.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

DTSMessageVersionID Property
The DTSMessageVersionID property sets or returns the globally unique identifier (GUID) of the Data Transformation Services
(DTS) package version that is the source of the message this DTSMessageQueueTask object is to receive.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

EOF Property
The EOF property specifies whether all the elements have been fetched while iterating through the associated collection.

Applies To

PackageInfos Collection StepLineages Collection
PackageLineages Collection StepLogRecords Collection
PackageLogRecords Collection TaskLogRecords Collection

DTS Programming (SQL Server 2000)

ErrorCode Property
The ErrorCode property specifies the code for the error that occurred with the associated object.

Applies To

DTSTransformPhaseInfo Object StepLogRecord Object
PackageLogRecord Object TaskLogRecord Object
StepLineage Object

DTS Programming (SQL Server 2000)

ErrorDescription Property
The ErrorDescription property specifies a textual description for the error that occurred with the associated object.

Applies To

PackageLogRecord Object StepLogRecord Object
StepLineage Object TaskLogRecord Object

DTS Programming (SQL Server 2000)

ErrorHelpContext Property
The ErrorHelpContext property specifies a context ID for the error that was returned by the step Execute method.

Applies To

StepLineage Object

DTS Programming (SQL Server 2000)

ErrorHelpFile Property
The ErrorHelpFile property specifies the name and path of a help file that contains information relevant to the error returned by
the step Execute method.

Applies To

StepLineage Object

DTS Programming (SQL Server 2000)

ErrorIfFileExists Property
The ErrorIfFileExists property specifies or returns a value indicating whether an error is raised if a destination file already exists.

Applies To

DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

ErrorIfFileNotFound Property
The ErrorIfFileNotFound property specifies or returns a value indicating whether an error is raised if a file named by a source
column does not exist.

Applies To

DataPumpTransformReadFile Object

DTS Programming (SQL Server 2000)

ErrorIfReceiveMessageTimeout Property
The ErrorIfReceiveMessageTimeout property sets or returns a value indicating whether an error is raised if a message is not
found in the specified queue after the specified time-out value.

Applies To

DTSMessageQueueTask

DTS Programming (SQL Server 2000)

ErrorSource Property
The ErrorSource property specifies the name of the component that generated the error returned by the step Execute method.

Applies To

StepLineage Object

DTS Programming (SQL Server 2000)

ExceptionFileColumnDelimiter Property
The ExceptionFileColumnDelimiter property specifies the column delimiter in the exception file.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

ExceptionFileName Property
The ExceptionFileName property specifies the file name path where exception rows are written.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

ExceptionFileOptions Property
The ExceptionFileOptions property specifies how Data Transformation Services (DTS) data pump errors and exception rows are
written to the exception and error files.

Applies To

DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask2 Object

DTS Programming (SQL Server 2000)

ExceptionFileRowDelimiter Property
The ExceptionFileRowDelimiter property specifies the row delimiter for the data in the exception file.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

ExceptionFileTextQualifier Property
The ExceptionFileTextQualifier property specifies the text qualifier for the data in the exception file.

Applies To

DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask2 Object

DTS Programming (SQL Server 2000)

ExecuteInMainThread Property
The ExecuteInMainThread property specifies whether the step executes in the main thread of the Data Transformation Services
(DTS) package or a worker thread.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

ExecutionDate Property
The ExecutionDate property specifies the date and time a Data Transformation Services (DTS) package lineage record was
written.

Applies To

PackageLineage Object

DTS Programming (SQL Server 2000)

ExecutionResult Property
The ExecutionResult property returns the step execution result.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

ExecutionStatus Property
 Topic last updated -- July 2003

The ExecutionStatus property specifies the status of the step.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

ExecutionTime Property
The ExecutionTime property specifies the total execution time, in seconds, of the associated object.

Applies To

PackageLogRecord Object StepLineage Object
Step Object StepLogRecord Object
Step2 Object

DTS Programming (SQL Server 2000)

ExplicitGlobalVariables Property
The ExplicitGlobalVariables property sets or returns a value indicating whether Data Transformation Services (DTS) package
global variables must be explicitly added to the GlobalVariables collection with the AddGlobalVariable method before being
referenced.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

 FailOnError Property
The FailOnError property specifies whether Data Transformation Services (DTS) package execution stops when there is an error
in any step.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

FailPackageOnError Property
The FailPackageOnError property specifies whether Data Transformation Services (DTS) package execution stops when there is
an error in the step with which it is associated.

Applies To

Step2 Object

DTS Programming (SQL Server 2000)

FailPackageOnLogFailure Property
The FailPackageOnLogFailure property sets or returns a value indicating whether the Data Transformation Services (DTS)
package will fail if there is a failure during the logging of the package.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

FailPackageOnTimeout Property
The FailPackageOnTimeout property specifies whether the Data Transformation Services (DTS) package fails if the task is
terminated by the expiration of the time-out period.

Applies To

CreateProcessTask Object CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

FastLoadOptions Property
The FastLoadOptions property specifies SQLOLEDB destination connection options specific for the UseFastLoad property.

Applies To

DataPumpTask Object DataPumpTask2 Object

DTS Programming (SQL Server 2000)

FetchBufferSize Property
The FetchBufferSize property specifies the number of rows to fetch in a single operation from the OLE DB source.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

FieldTerminator Property
The FieldTerminator property specifies the field or column terminator for files that support char and widechar data types.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

FileAttachments Property
The FileAttachments property specifies the name and path of file attachments.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

FileColumnName Property
The FileColumnName property specifies or returns the name of the source column that contains the name of the file to be
written. It must be one of the two source columns of the transformation.

Applies To

DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

FileName Property
The FileName property sets or returns the name and path of the file that contains a Data Transformation Services (DTS) package
to be run by an Execute Package Task object.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

FilePath Property
The FilePath property specifies or returns the path you want to prefix to the file name column in a custom transformation.

Applies To

DataPumpTransformReadFile Object DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

FinishTime Property
The FinishTime property specifies the date and time when the associated object completed its execution.

Applies To

PackageLogRecord Object StepLineage Object
Step Object StepLogRecord Object
Step2 Object

DTS Programming (SQL Server 2000)

FirstRow Property
The FirstRow property specifies the first source row to copy.

Applies To

BulkInsertTask Object DataPumpTask Object
DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object

DTS Programming (SQL Server 2000)

Flags Property
The Flags property specifies the OLE DB DBCOLUMN values that describe a column.

Applies To

Column Object

DTS Programming (SQL Server 2000)

ForceBlobsInMemory Property
The ForceBlobsInMemory property specifies whether to store each source binary large object (BLOB) column in a
transformation as a single memory allocation, even if storage objects are available from the OLE DB provider.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

ForceSourceBlobsBuffered Property
The ForceSourceBlobsBuffered property specifies whether to buffer each source binary large object (BLOB) column in a
transformation if storage objects are used.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

FormatFile Property
The FormatFile property specifies the name and path of a bulk copy data file to use for the load operation.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

FunctionEntry Property
The FunctionEntry property specifies or returns the name of the script function that is to be called for the transformation.

Applies To

DataPumpTransformationScript Object DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

FunctionName Property
The FunctionName property specifies the function name to call in the Microsoft® ActiveX® script associated with a script task
or step.

Applies To

ActiveScriptTask Object Step2 Object
Step Object

DTS Programming (SQL Server 2000)

Get Property
The Get property specifies whether a property value can be read.

Applies To

Property Object

DTS Programming (SQL Server 2000)

IconFile Property
The IconFile property returns the name and path of the resource file that contains the icon for the task class.

Applies To

TaskInfo Object

DTS Programming (SQL Server 2000)

IconIndex Property
The IconIndex property returns an index that identifies the icon for the task class in the resource file that contains it.

Applies To

TaskInfo Object

DTS Programming (SQL Server 2000)

ID Property
The ID property returns a unique numeric identifier assigned to a connection.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

ImplementationFileName Property
The ImplementationFileName property returns the name and path of the library file that implements the object class.

Applies To

OLEDBProviderInfo Object TaskInfo Object
ScriptingLanguageInfo Object TransformationInfo Object

DTS Programming (SQL Server 2000)

ImplementationFileVersionString Property
The ImplementationFileVersionString property returns the version number of the library file that implements the object class.

Applies To

OLEDBProviderInfo Object TaskInfo Object
ScriptingLanguageInfo Object TransformationInfo Object

DTS Programming (SQL Server 2000)

IncludeDependencies Property
The IncludeDependencies property specifies whether dependent objects are scripted and transferred during a transfer of
Microsoft® SQL Server™ objects.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

IncludeLogins Property
The IncludeLogins property specifies whether the logins on the source are scripted and transferred during a transfer of
Microsoft® SQL Server™ objects.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

IncludeUsers Property
The IncludeUsers property specifies whether the database users on the source are scripted and transferred during the transfer of
Microsoft® SQL Server™ objects.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

InMemoryBlobSize Property
The InMemoryBlobSize property specifies the byte size of per-column allocation for in-memory binary large objects (BLOBs) in
a transformation.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

InputFormat Property
The InputFormat property specifies or returns a string that defines the format of the datetime string in the source column. This
format string consists of tokens and delimiters: the tokens represent components of the date and time, and the delimiters must
explicitly appear in the source column.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

InputGlobalVariableNames Property
The InputGlobalVariableNames property returns or specifies a list of Data Transformation Services (DTS) global variable
names that are to be used as parameters in a query or created in a subpackage.

Applies To

DataDrivenQueryTask2 Object ExecuteSQLTask2 Object
DataPumpTask2 Object ParallelDataPumpTask Object
ExecutePackageTask Object

DTS Programming (SQL Server 2000)

InsertCommitSize Property
The InsertCommitSize property specifies the number of rows that are inserted in a single transaction when the FastLoad option
is being used.

Applies To

DataPumpTask Object DataPumpTask2 Object

DTS Programming (SQL Server 2000)

InsertFailureFunctionEntry Property
The InsertFailureFunctionEntry property specifies or returns the name of the script function that is to be called for the
OnInsertFailure transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

InsertQuery Property
The InsertQuery property specifies a string of one or more parameterized SQL statements to execute at the destination as the
insert query.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

InsertQueryColumns Property
The InsertQueryColumns property returns a reference to a collection of column parameters in sequential order for the
InsertQuery parameter.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

InsertSuccessFunctionEntry Property
The InsertSuccessFunctionEntry property specifies or returns the name of the script function that is to be called for the
OnInsertSuccess transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

InTransaction Property
The InTransaction property specifies whether the connection is included in the current Data Transformation Services (DTS)
package transaction, if one exists.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

InUse Property
The InUse property specifies whether the connection is currently in use by a task.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

IsDefaultValue Property
The IsDefaultValue property specifies whether the OLE DB property to which it refers has not been explicitly set to a value.

Applies To

OLEDBProperty2 Object

DTS Programming (SQL Server 2000)

IsNTService Property
The IsNTService property specifies whether the caller is a Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 Service.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

IsOwner Property
The IsOwner property specifies whether the login under which the program retrieving the Data Transformation Services (DTS)
package information is running is the same as the owner of the package.

Applies To

PackageInfo Object

DTS Programming (SQL Server 2000)

IsPackageDSORowset Property
The IsPackageDSORowset property specifies whether the current step executes and returns a rowset when the Data
Transformation Services (DTS) package is a rowset provider.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

IsVersionEncrypted Property
The IsVersionEncrypted property specifies whether a version of the Data Transformation Services (DTS) package was encrypted
when saved.

Applies To

SavedPackageInfo Object

DTS Programming (SQL Server 2000)

JITDebug Property
 New Information - SQL Server 2000 SP3.

The JITDebug property specifies whether a run-time error in a Microsoft® ActiveX® script causes a scripting debugger session
to be opened.

Applies To

Application Object

DTS Programming (SQL Server 2000)

JoinTransactionIfPresent Property
The JoinTransactionIfPresent property specifies whether a step executes within the Data Transformation Services (DTS)
package transaction.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

KeepIdentity Property
The KeepIdentity property indicates whether the data in the file is used for the values of identity columns.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

KeepNulls Property
The KeepNulls property returns or sets a value indicating whether NULL columns should keep NULL values even if defaults
exists on destination columns.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

Language Property
The Language property specifies the Microsoft® ActiveX® scripting language the transformation is using.

Applies To

DataPumpTransformScript Object DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

LastOwnerTaskName Property
The LastOwnerTaskName property specifies the last task to use the connection.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

LastRow Property
The LastRow property specifies the last source row to copy.

Applies To

BulkInsertTask Object DataPumpTask Object
DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object

DTS Programming (SQL Server 2000)

LineageFullID Property
The LineageFullID property specifies a globally unique identifier (GUID) that uniquely identifies the lineage record for the
execution of a Data Transformation Services (DTS) package stored in Microsoft® SQL Server™ 2000 Meta Data Services.

Applies To

PackageLineage Object StepLogRecord Object
PackageLogRecord Object

DTS Programming (SQL Server 2000)

LineageOptions Property
The LineageOptions property specifies how Data Transformation Services (DTS) package execution lineage is presented and
recorded.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

LineageShortID Property
The LineageShortID property specifies a value that uniquely identifies the lineage record for the execution of a Data
Transformation Services (DTS) package that is stored in Microsoft® SQL Server™ 2000 Meta Data Services.

Applies To

PackageLineage Object PackageLogRecord Object

DTS Programming (SQL Server 2000)

LogDate Property
The LogDate property specifies the date and time that the Data Transformation Services (DTS) package log record was written.

Applies To

PackageLogRecord Object

DTS Programming (SQL Server 2000)

LogFileName Property
The LogFileName property specifies the name and path of the error log file.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

LogServerFlags Property
 New Information - SQL Server 2000 SP3.

The LogServerFlags property sets or returns a value indicating whether Windows Authentication is used to validate access to the
log server.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

LogServerName Property
 New Information - SQL Server 2000 SP3.

The LogServerName property sets or returns the name of the computer running an instance of Microsoft® SQL Server™ to
which package logs are written.

Security Note When possible, use Windows Authentication.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

LogServerPassword Property
 New Information - SQL Server 2000 SP3.

The LogServerPassword property sets or returns the password used to log in to the instance of Microsoft® SQL Server™ to
which package logs are written.

Security Note When possible, use Windows Authentication.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

LogServerUserName Property
 New Information - SQL Server 2000 SP3.

The LogServerUserName property sets or returns the user name used to log in to the instance of Microsoft® SQL Server™ to
which package logs are written.

Security Note When possible, use Windows Authentication.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

LogToSQLServer Property
The LogToSQLServer property sets or returns a value indicating whether Data Transformation Services (DTS) package execution
is logged to the specified Microsoft® SQL Server™ 2000 msdb database.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

LowerCaseString Property
The LowerCaseString property specifies or returns a value indicating whether the alphabetical characters in the source column
string copied by custom transformations are converted to lowercase characters.

Applies To

DataPumpTransformMidString Object DataPumpTransformTrimString Object

DTS Programming (SQL Server 2000)

MaxCacheRows Property
The MaxCacheRows property specifies the maximum number of rows to cache.

Applies To

Lookup Object

DTS Programming (SQL Server 2000)

MaxConcurrentSteps Property
The MaxConcurrentSteps property specifies the maximum number of Data Transformation Services (DTS) steps executing
concurrently on separate threads.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

MaximumErrorCount Property
The MaximumErrorCount property specifies the maximum number of error rows before the data pump terminates.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

MaximumErrors Property
The MaximumErrors property specifies the maximum number of errors that can occur before the server terminates the load
operation.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

MessageDataFile Property
The MessageDataFile property sets or returns the name and path of the file that provides the data for a
DTSMessageQueueTask object data file message.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

MessageGlobalVariables Property
The MessageGlobalVariables property sets or returns a list of the names of the global variables that provides the data for a
DTSMessageQueueTask object global variables message.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

MessageString Property
The MessageString property sets or returns the string used as the data for a DTSMessageQueueTask object string message.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

MessageText Property
The MessageText property is the body of an e-mail message.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

MessageType Property
The MessageType property sets or returns the type of message defined by the DTSMQMessage object.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

Month??LongName Property
The Month??LongName property specifies or returns the string to be used for the long (full) name of the indicated month. ?? is
a month number from 1 through 12.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

Month??ShortName Property
The Month??ShortName property specifies or returns the string to be used for the short (3-character abbreviation) name of the
indicated month. ?? is a month number from 1 through 12.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

Name Property
The Name property specifies the name of a Data Transformation Services (DTS) object.

Applies To

ActiveScriptTask Object OLEDBProviderInfo Object
BulkInsertTask Object Package Object
Column Object Package2 Object
Connection Object PackageInfo Object
Connection2 Object PackageLineage Object
CreateProcessTask Object PackageLogRecord Object
CreateProcessTask2 Object PackageRepository Object
CustomTask Object PackageSQLServer Object
DataDrivenQueryTask Object ParallelDataPumpTask Object
DataDrivenQueryTask2 Object Property Object
DataPumpTask Object ScriptingLanguageInfo Object
DataPumpTask2 Object SendMailTask Object
DTSFTPTask Object Step Object
DTSMessageQueueTask Object Step2 Object
DynamicPropertiesTask Object StepLineage Object
ExecutePackageTask Object StepLogRecord Object
ExecuteSQLTask Object Task Object
ExecuteSQLTask2 Object TaskInfo Object
GlobalVariable Object TransferObjectsTask Object
GlobalVariable2 Object TransferObjectsTask2 Object
Lookup Object Transformation Object
OLEDBProperty Object Transformation2 Object
OLEDBProperty2 Object TransformationSet Object

DTS Programming (SQL Server 2000)

NestedExecutionLevel Property
The NestedExecutionLevel property specifies the number of times a Data Transformation Services (DTS) package that contains
an Execute Package task recursively executes the same or another package that also contains an Execute package task.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

NonOverwritable Property
The NonOverwritable property sets or returns a value indicating whether a destination file will be overwritten if it already exists,
when copied by a DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

Nullable Property
The Nullable property specifies whether a column can contain null values.

Applies To

Column Object

DTS Programming (SQL Server 2000)

NumericScale Property
The NumericScale property specifies the numeric scale of the column if it has a decimal or numeric data type.

Applies To

Column Object

DTS Programming (SQL Server 2000)

NumRetriesOnSource Property
The NumRetriesOnSource property sets or returns the number of times a connection to the source will be attempted before a
DTSFTPTask object considers it failed.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

OEMFile Property
The OEMFile property specifies or returns a value indicating whether the data read from or written to files by custom
transformations is translated from or to the client OEM code page.

Applies To

DataPumpTransformReadFile Object DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

Operator Property
The Operator property specifies the logged-in user that ran the Data Transformation Services (DTS) package for which a lineage
or log record was written.

Applies To

PackageLineage Object PackageLogRecord Object

DTS Programming (SQL Server 2000)

Ordinal Property
The Ordinal property specifies the ordinal position of a column in a table or rowset.

Applies To

Column Object

DTS Programming (SQL Server 2000)

OutputAsRecordset Property
The OutputAsRecordset property returns or specifies whether the entire rowset generated by the Execute SQL task query should
be stored in a global variable.

Applies To

ExecuteSQLTask2 Object

DTS Programming (SQL Server 2000)

OutputFormat Property
The OutputFormat property specifies or returns a string that defines the format of the datetime string in the destination column.
This format string consists of tokens and delimiters, which define how components of the date and time are to be formatted. The
delimiters are explicitly written to the destination column.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

OutputGlobalVariableNames Property
The OutputGlobalVariableNames property returns or specifies a list of Data Transformation Services (DTS) global variable
names that are to receive values from fields of a rowset or the entire rowset. The values and rowsets are generated by the Execute
SQL task query.

Applies To

ExecuteSQLTask2 Object

DTS Programming (SQL Server 2000)

Owner Property
The Owner property specifies the login of the owner of the Data Transformation Services (DTS) package.

Applies To

PackageInfo Object

DTS Programming (SQL Server 2000)

PackageCreationDate Property
The PackageCreationDate property specifies the date and time that the Data Transformation Services (DTS) package was first
created.

Applies To

SavedPackageInfo Object

DTS Programming (SQL Server 2000)

PackageDataSize Property
The PackageDataSize property specifies the size of the Data Transformation Services (DTS) package in Microsoft® SQL Server™
storage.

Applies To

PackageInfo Object

DTS Programming (SQL Server 2000)

PackageID Property
The PackageID property specifies the globally unique Data Transformation Services (DTS) package identifier, which is a string
representation of a globally unique identifier (GUID).

Applies To

ExecutePackageTask Object PackageLineage Object
Package Object PackageLogRecord Object
Package2 Object SavedPackageInfo Object
PackageInfo Object

DTS Programming (SQL Server 2000)

PackageName Property
The PackageName property sets or returns the name of the Data Transformation Services (DTS) package.

Applies To

ExecutePackageTask Object SavedPackageInfo Object

DTS Programming (SQL Server 2000)

PackagePassword Property
The PackagePassword property sets or returns the password of the Data Transformation Services (DTS) package to be run by an
ExecutePackageTask object.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

PackagePriorityClass Property
The PackagePriorityClass property specifies the Microsoft® Win32® thread priority class of the Data Transformation Services
(DTS) package process.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

PackageType Property
The PackageType property sets or returns a code that identifies the tool that created the Data Transformation Services (DTS)
package.

Applies To

Package2 Object PackageInfo Object

DTS Programming (SQL Server 2000)

Parent Property
The Parent property specifies a parent object or collection.

Applies To

Nearly all objects and collections in the Data Transformation Services (DTS) hierarchy have a Parent property.

Syntax

object.Parent

Part Description
object Expression that evaluates to an object in the Applies To list

Data Type

IDTSStdObject

Modifiable

Read-only

Prototype (C/C++)

HRESULT GetParent(IDTSStdObject **pRetVal);

Remarks

The parent of an object is the collection of which it is a member in the DTS hierarchy. The parent of a collection is the object above
it in the hierarchy. The parent of the Package object is itself.

Note Microsoft® Visual C++® and C applications obtain references on the parent object. The applications must release their
references using the IUnknown::Release method.

DTS Programming (SQL Server 2000)

ParseName Property
The ParseName property returns the moniker parse name for the OLE DB data source provider class.

Applies To

OLEDBProviderInfo Object

DTS Programming (SQL Server 2000)

Password Property
The Password property specifies the password to use when making the connection.

Applies To

Connection Object SendMailTask Object
Connection2 Object

DTS Programming (SQL Server 2000)

PMSymbol Property
The PMSymbol property specifies or returns the string to be used to indicate a time format after noon when a 12-hour time
format is specified.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

PostSourceDataFunctionEntry Property
The PostSourceDataFunctionEntry property specifies or returns the name of the script function that is to be called for the
PostSourceData transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

PrecedenceBasis Property
The PrecedenceBasis property specifies whether to use the current execution status of a Step object or the execution results in
determining whether its precedence constraint has been satisfied.

Applies To

PrecedenceConstraint Object

DTS Programming (SQL Server 2000)

Precision Property
The Precision property specifies column precision, if it has a decimal or numeric data type.

Applies To

Column Object

DTS Programming (SQL Server 2000)

PreSourceDataFunctionEntry Property
The PreSourceDataFunctionEntry property specifies or returns the name of the script function that is to be called for the
PreSourceData transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

ProcessCommandLine Property
The ProcessCommandLine property specifies the universal naming convention (UNC) file name of the file to execute and any
command prompt arguments.

Applies To

CreateProcessTask Object CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

Profile Property
The Profile property specifies the profile to use when sending an e-mail message.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

ProgressCount Property
The ProgressCount property specifies the intervals (typically rows) processed during this step.

Applies To

StepLogRecord Object

DTS Programming (SQL Server 2000)

ProgressRowCount Property
The ProgressRowCount property specifies the numbers of rows that are returned between notifications to the connection point
event during data pump execution.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

PropertyID Property
The PropertyID property specifies an OLEDBProperty object identifier (DBPROPID).

Applies To

OLEDBProperty Object OLEDBProperty2 Object

DTS Programming (SQL Server 2000)

PropertySet Property
The PropertySet property specifies the globally unique identifier (GUID) of the OLE DB property set.

Applies To

OLEDBProperty Object OLEDBProperty2 Object

DTS Programming (SQL Server 2000)

ProviderID Property
The ProviderID property returns the program ID of the OLE DB provider.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

PumpCompleteFunctionEntry Property
The PumpCompleteFunctionEntry property specifies or returns the name of the script function that is to be called for the
OnPumpComplete transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

Query Property
 New Information - SQL Server 2000 SP3.

The Query property specifies a parameterized query to execute.

Applies To

Lookup Object

DTS Programming (SQL Server 2000)

QueuePath Property
The QueuePath property sets or returns the full path of the Message Queuing queue used to send or receive messages.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

ReceiveMessageTimeout Property
The ReceiveMessageTimeout property sets or returns the time after which the DTSMessageQueueTask object will terminate if
a message is not found in the specified queue.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

ReceiveMessageType Property
The ReceiveMessageType property sets or returns the type of message for which a DTSMessageQueueTask object that is a
receiver is waiting.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

RelativePriority Property
The RelativePriority property specifies the Microsoft® Win32® priority of the thread on which a step is running, within the
priority class of the Data Transformation Services (DTS) package process.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

RemoveFromQueue Property
The RemoveFromQueue property sets or returns a value indicating whether a message is to be removed from the queue after it
is received.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

RepositoryDatabaseName Property
 New Information - SQL Server 2000 SP3.

The RepositoryDatabaseName property sets or returns the name of the database that contains the instance of Microsoft® SQL
Server™ 2000 Meta Data Services to be used by the ExecutePackageTask object.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

RepositoryMetadataOptions Property
The RepositoryMetadataOptions property specifies meta data scanning and resolution options when storing a Data
Transformation Services (DTS) package to Microsoft® SQL Server™ 2000 Meta Data Services.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

Reusable Property
The Reusable property specifies whether a connection is reusable by multiple steps.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

RollbackFailure Property
The RollbackFailure property specifies whether to roll back the Data Transformation Services (DTS) package transaction if there
is a step failure.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

RowsComplete Property
The RowsComplete property returns the number of source rows, including rows for which errors occurred, processed by the
task or transformation set.

Applies To

DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask2 Object

DTS Programming (SQL Server 2000)

RowsInError Property
The RowsInError property returns the number of rows for which an error occurred while being processed by the Data
Transformation Services (DTS) task or transformation set.

Applies To

DataDrivenQueryTask2 Object TransformationSet Object
DataPumpTask2 Object

DTS Programming (SQL Server 2000)

RowTerminator Property
The RowTerminator property specifies the row terminator for the Bulk Insert task. The same set of row terminators that apply to
the bulk copy program also apply to the Bulk Insert task.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

SaveDataFileName Property
The SaveDataFileName property sets or returns the name and path of the file into which a received data file is written by a
DTSMessageQueueTask object.

Applies To

DTSMessageQueueTask

DTS Programming (SQL Server 2000)

SaveMailInSentItemsFolder Property
The SaveMailInSentItemsFolder property specifies whether to save outgoing e-mail messages in the Sent Items folder.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

ScriptFileDirectory Property
The ScriptFileDirectory property specifies the directory to which the script file and log files are written.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

ScriptLanguage Property
The ScriptLanguage property specifies the Microsoft® ActiveX® script language needed to execute a script (for example,
Microsoft Visual Basic® Scripting Edition (VBScript), Microsoft JScript®, or PerlScript).

Applies To

ActiveScriptTask Object Step2 Object
Step Object

DTS Programming (SQL Server 2000)

ScriptOption Property
The ScriptOption property specifies which scripting option to use during an object transfer operation.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

ScriptOptionEx Property
The ScriptOptionEx property specifies the extended scripting option to use during an object transfer operation.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SequenceID Property
The SequenceID property specifies a sequence number for the task log record.

Applies To

TaskLogRecord Object

DTS Programming (SQL Server 2000)

ServerName Property
The ServerName property sets or returns the name of the server on which the Data Transformation Services (DTS) package to be
run by an ExecutePackageTask object is located.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

ServerPassword Property
The ServerPassword property sets or returns the login password for the instance of Microsoft® SQL Server™ that contains the
Data Transformation Services (DTS) package to be run by an ExecutePackageTask object.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

ServerUserName Property
The ServerUserName property sets or returns the login user name for the instance of Microsoft® SQL Server™ containing the
Data Transformation Services (DTS) package to be run by an ExecutePackageTask object.

Applies To

ExecutePackageTask Object

DTS Programming (SQL Server 2000)

Set Property
The Set property returns TRUE when the referenced object property is read/write rather than read-only.

Applies To

Property Object

DTS Programming (SQL Server 2000)

ShortYear2000Cutoff Property
The ShortYear2000Cutoff property specifies or returns the two-digit year below which the year is assumed to be 20yy. If the
two-digit year is equal to or above the ShortYear2000Cutoff property, the year is 19yy.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

Size Property
The Size property specifies the maximum size of the column.

Applies To

Column Object

DTS Programming (SQL Server 2000)

SortedData Property
The SortedData property specifies a string that corresponds to the ORDER clause in the Transact-SQL BULK INSERT statement.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

SourceColumns Property
The SourceColumns property returns a reference to a Columns collection that contains the source columns the transformation
uses.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

SourceCommandProperties Property
The SourceCommandProperties property specifies an OLEDBProperties collection of properties of the OLE DB provider used
by the source connection.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

SourceConnectionID Property
The SourceConnectionID property specifies the ID of the source connection.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

SourceConstantValue Property
The SourceConstantValue property sets or returns the value to which a Data Transformation Services (DTS) package object
property will be set by the DynamicPropertiesTask object, when the SourceType property is
DTSDynamicPropertiesSourceType_Constant.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceDatabase Property
The SourceDatabase property specifies the name of the source database.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SourceDataFileFileName Property
The SourceDataFileFileName property sets or returns a string that is the name and path of a file that contains the value to
which a Data Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object, when the
SourceType property is DTSDynamicPropertiesSourceType_DataFile.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceEnvironmentVariable Property
The SourceEnvironmentVariable property sets or returns the name of an environment variable that contains the value to which
a Data Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object, when the
SourceType property is DTSDynamicPropertiesSourceType_EnvironmentVariable.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceFilename Property
The SourceFilename property sets or returns a list of files, with path and size, to be transferred from the source by a
DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

SourceGlobalVariable Property
The SourceGlobalVariable property sets or returns the name of a Data Transformation Services (DTS) package global variable
that contains the value to which a package object property will be set by the DynamicPropertiesTask object, when the
SourceType property is DTSDynamicPropertiesSourceType_GlobalVariable.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceIniFileFileName Property
The SourceIniFileFileName property sets or returns a string that is the name and path of an .ini file, which contains the value to
which a Data Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object, when the
SourceType property is DTSDynamicPropertiesSourceType_IniFile.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceIniFileKey Property
The SourceIniFileKey property sets or returns the name of a key within an .ini file that identifies the value to which a Data
Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object, when the SourceType
property is DTSDynamicPropertiesSourceType_IniFile.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceIniFileSection Property
The SourceIniFileSection property sets or returns the name of a section within an .ini file that contains the value to which a Data
Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object, when the SourceType
property is DTSDynamicPropertiesSourceType_IniFile.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceLocation Property
The SourceLocation property sets or returns the source location type, an Internet site, or a network directory to be used by a
DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

SourceLogin Property
The SourceLogin property specifies the login ID on the source server.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SourceObjectName Property
The SourceObjectName property specifies the source object name if no value for the SourceSQLStatement property is
specified.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

SourcePassword Property
The SourcePassword property specifies the password on the source server.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SourcePassword (DTSFTPTask) Property
The SourcePassword property sets or returns the password that will be used to connect to the Internet File Transfer Protocol
(FTP) site by a DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

SourceQueryConnectionID Property
The SourceQueryConnectionID property sets or returns the connection ID of the connection against which a query will be run.
The query provides the value to which a Data Transformation Services (DTS) package object property will be set by the
DynamicPropertiesTask object, when the SourceType property is DTSDynamicPropertiesSourceType_Query.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceQuerySQL Property
The SourceQuerySQL property sets or returns a string that is an SQL query. The query provides the value to which a Data
Transformation Services (DTS) package object property is set by the DynamicPropertiesTask object, when the SourceType
property is DTSDynamicPropertiesSourceType_Query.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceServer Property
The SourceServer property specifies the name of the source server.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SourceSite Property
The SourceSite property sets or returns the location from which the files will be transferred by a DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

SourceSQLStatement Property
The SourceSQLStatement property specifies the SQL statement used to execute on the source rowset.

Applies To

DataDrivenQueryTask Object DataPumpTask2 Object
DataDrivenQueryTask2 Object ParallelDataPumpTask Object
DataPumpTask Object

DTS Programming (SQL Server 2000)

SourceTranslateChar Property
The SourceTranslateChar property sets or returns a value indicating whether translation is performed for character data on the
source server.

Applies To

TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SourceType Property
The SourceType property sets or returns a code for the type of source object that provides the value to which a Data
Transformation Services (DTS) package object property will be set by the DynamicPropertiesTask object.

Applies To

DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

SourceUsername Property
The SourceUsername property sets or returns the user name that will be used to connect to the Internet File Transfer Protocol
(FTP) site by a DTSFTPTask object.

Applies To

DTSFTPTask Object

DTS Programming (SQL Server 2000)

SourceUseTrustedConnection Property
The SourceUseTrustedConnection property specifies whether the Windows Authentication security mode is used.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

SQLStatement Property
The SQLStatement property specifies a sequence of one or more SQL statements or stored procedure references to be executed.

Applies To

ExecuteSQLTask Object ExecuteSQLTask2 Object

DTS Programming (SQL Server 2000)

StartTime Property
The StartTime property specifies when the Data Transformation Services (DTS) package or step execution started.

Applies To

PackageLogRecord Object StepLineage Object
Step Object StepLogRecord Object
Step2 Object

DTS Programming (SQL Server 2000)

StepExecutionID Property
The StepExecutionID property specifies a sequence number for the step log record.

Applies To

StepLogRecord Object

DTS Programming (SQL Server 2000)

StepExecutionResult Property
The StepExecutionResult property returns the result of the logged step execution.

Applies To

StepLineage Object StepLogRecord Object

DTS Programming (SQL Server 2000)

StepExecutionStatus Property
The StepExecutionStatus property returns the status of the logged step execution.

Applies To

StepLineage Object StepLogRecord Object

DTS Programming (SQL Server 2000)

StepName Property
The StepName property specifies the name of the step whose status or result is evaluated when determining if this constraint is
satisfied.

Applies To

PrecedenceConstraint Object

DTS Programming (SQL Server 2000)

StringCompareType Property
The StringCompareType property sets or returns the type of comparison to be performed on a received string message.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

StringCompareValue Property
The StringCompareValue property sets or returns the string to be compared with a received string message.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

Subject Property
The Subject property specifies the Subject: line of an e-mail message.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

SuccessReturnCode Property
The SuccessReturnCode property specifies a return code that indicates whether the task completed successfully.

Applies To

CreateProcessTask Object CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

TableLock Property
The TableLock property indicates whether an entire table is locked during a load operation.

Applies To

BulkInsertTask Object

DTS Programming (SQL Server 2000)

TaskName Property
The TaskName property specifies the name of the task to execute.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

TaskType Property
The TaskType property sets or returns the type of the DTSMessageQueueTask object, sender, or receiver.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

TerminateProcessAfterTimeout Property
The TerminateProcessAfterTimeout property specifies whether to terminate the process after the time-out period has expired.

Applies To

CreateProcessTask Object CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

Text Property
The Text property specifies or returns the text of a Microsoft® ActiveX® script.

Applies To

DataPumpTransformScript Object DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

Timeout Property
The Timeout property specifies the number of seconds in the time-out period.

Applies To

CreateProcessTask Object CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

ToLine Property
The ToLine property specifies e-mail addresses to include on the To: line.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

TransactionIsolationLevel Property
The TransactionIsolationLevel property specifies the isolation level at which a Package2 object transaction executes if the
UseTransaction property is set to TRUE.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

TransformationSetOptions Property
The TransformationSetOptions property returns or sets the mode in which a ParallelDataPumpTask object operates.

Applies To

ParallelDataPumpTask Object

DTS Programming (SQL Server 2000)

TransformFailureFunctionEntry Property
The TransformFailureFunctionEntry property specifies or returns the name of the script function that is to be called for the
OnTransformFailure transformation phase.

Applies To

DTSTransformScriptProperties2 Object

DTS Programming (SQL Server 2000)

TransformFlags Property
The TransformFlags property specifies transformation flags that indicate characteristics of a transformation.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

TransformPhases Property
The TransformPhases property returns or sets the transform phases that this transformation supports.

Applies To

Transformation2 Object

DTS Programming (SQL Server 2000)

TransformServer Property
The TransformServer property returns a reference to the transform server object (the class-specific transformation object)
through which the properties of that object can be directly accessed.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

TransformServerID Property
The TransformServerID property returns the programmatic identifier (ProgID) or class identifier (CLSID) of the transform server
object (the class-specific transformation object).

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

TransformServerParameter Property
The TransformServerParameter property specifies an initialization parameter for the transform server object (class-specific
transformation object), if required.

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

TransformServerProperties Property
The TransformServerProperties property returns a reference to a Properties collection containing the properties of the
transform server object (the class-specific transformation object).

Applies To

Transformation Object Transformation2 Object

DTS Programming (SQL Server 2000)

TrimEmbeddedWhiteSpace Property
The TrimEmbeddedWhiteSpace property specifies or returns a value indicating whether embedded white-space characters are
removed from the source column string copied by custom transformations.

Applies To

DataPumpTransformMidString Object DataPumpTransformTrimString Object

DTS Programming (SQL Server 2000)

TrimLeadingWhiteSpace Property
The TrimLeadingWhiteSpace property specifies or returns a value indicating whether leading white-space characters are
removed from the source column string copied by custom transformations.

Applies To

DataPumpTransformMidString Object DataPumpTransformTrimString Object

DTS Programming (SQL Server 2000)

TrimTrailingWhiteSpace Property
The TrimTrailingWhiteSpace property specifies or returns a value indicating whether trailing white-space characters are
removed from the source column string copied by custom transformations.

Applies To

DataPumpTransformMidString Object DataPumpTransformTrimString Object

DTS Programming (SQL Server 2000)

Type Property
The Type property specifies the data type of the value of a Property object.

Applies To

Property Object

DTS Programming (SQL Server 2000)

UDLPath Property
The UDLPath property specifies the name and path of a Microsoft® Data Link file used to create a connection.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

UnicodeFile Property
The UnicodeFile property specifies or returns a value indicating whether the data read from or written to files by
transformations is translated from or to Unicode.

Applies To

DataPumpTransformReadFile Object DataPumpTransformWriteFile Object

DTS Programming (SQL Server 2000)

UpdateQuery Property
The UpdateQuery property specifies a string of one or more parameterized SQL statements to execute at the destination as the
Update query.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

UpdateQueryColumns Property
The UpdateQueryColumns property returns a reference to a collection of Column objects that serve as parameters for the
query specified by the UpdateQuery property.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

UpperCaseString Property
The UpperCaseString property specifies or returns a value indicating whether the alphabetical characters in the source column
string copied by transformations are all converted to uppercase characters.

Applies To

DataPumpTransformMidString Object DataPumpTransformTrimString Object

DTS Programming (SQL Server 2000)

UseCache Property
The UseCache property returns or sets whether cached information is used when enumerating the associated collection.

Applies To

OLEDBProviderInfos Collection TaskInfos Collection
ScriptingLanguageInfos Collection TransformationInfos Collection

DTS Programming (SQL Server 2000)

UseCollation Property
The UseCollation property specifies whether column-level collation settings on the source table are used when transferring data
between computers running instances of Microsoft® SQL Server™ 2000.

Applies To

TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

UseFastLoad Property
The UseFastLoad property specifies whether to use the FastLoad option, where rows are processed in batches under a single
transaction commit.

Applies To

DataPumpTask Object DataPumpTask2 Object

DTS Programming (SQL Server 2000)

UseOLEDBServiceComponents Property
The UseOLEDBServiceComponents property specifies whether to use OLE DB service components when initializing data
sources.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

UseRepository Property
The UseRepository property sets or returns a value indicating whether Microsoft® SQL Server™ 2000 Meta Data Services
should be used as the source of the Data Transformation Services (DTS) package to be run by an ExecutePackageTask object.

Applies To

ExecutePackageTask

DTS Programming (SQL Server 2000)

UserID Property
The UserID property specifies a user ID or name to use when making a connection.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

UserQuery Property
The UserQuery property specifies a string of one or more parameterized SQL statements to execute at the destination as the user
query.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

UserQueryColumns Property
The UserQueryColumns property returns a reference to a collection of Column objects that serve as parameters for the query
specified by the UserQuery property.

Applies To

DataDrivenQueryTask Object TransformationSet Object
DataDrivenQueryTask2 Object

DTS Programming (SQL Server 2000)

UseTransaction Property
The UseTransaction property specifies whether the Package2 object creates a transaction for supporting Data Transformation
Services (DTS) tasks.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

UseTransaction (DTSMQMessage) Property
The UseTransaction property sets or returns a value indicating whether a transaction is used to send the message defined by the
DTSMQMessage object.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

UseTrustedConnection Property
 New Information - SQL Server 2000 SP3.

The UseTrustedConnection property specifies whether the connection connects to the data source using Windows
Authentication security mode.

Applies To

Connection Object ExecutePackageTask Object
Connection2 Object

DTS Programming (SQL Server 2000)

Value Property
The Value property specifies the value of a GlobalVariable, OLEDBProperty, or PrecedenceConstraint object.

Applies To

GlobalVariable Object OLEDBProperty2 Object
GlobalVariable2 Object PrecedenceConstraint Object
OLEDBProperty Object Property Object

DTS Programming (SQL Server 2000)

VersionID Property
The VersionID property specifies the globally unique identifier (GUID) of this version of the Data Transformation Services (DTS)
package.

Applies To

ExecutePackageTask Object PackageLineage Object
Package Object PackageLogRecord Object
Package2 Object SavedPackageInfo Object
PackageInfo Object

DTS Programming (SQL Server 2000)

VersionSaveDate Property
The VersionSaveDate property specifies the date and time a version of a Data Transformation Services (DTS) package was
saved.

Applies To

SavedPackageInfo Object

DTS Programming (SQL Server 2000)

WaitForAcknowledgement Property
The WaitForAcknowledgement property returns or sets a value indicating whether a DTSMessageQueueTask waits for an
acknowledgement after sending the message defined by the DTSMQMessage object.

Applies To

DTSMQMessage Object

DTS Programming (SQL Server 2000)

WriteCompletionStatusToNTEventLog Property
The WriteCompletionStatusToNTEventLog property specifies whether the completion status of the Data Transformation
Services (DTS) package is written to the Microsoft® Windows® application log.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

Methods
This section defines the methods of the Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) objects and
collections. The methods control the operation of the DTS packages and other objects.

DTS Programming (SQL Server 2000)

AcquireConnection Method
The AcquireConnection method allows a task to acquire exclusive ownership of a connection to an OLE DB service provider.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

Add Method
The Add method adds an object to a collection.

Applies To

Columns Collection PrecedenceConstraints Collection
Connections Collection Steps Collection
DTSMQMessages Collection Tasks Collection
DynamicPropertiesTaskAssignments
Collection

Transformations Collection

GlobalVariables Collection TransformationSets Collection
Lookups Collection

DTS Programming (SQL Server 2000)

AddColumn Method
The AddColumn method creates a Column object by name and ordinal position and adds it to the collection.

Applies To

Columns Collection

DTS Programming (SQL Server 2000)

AddConstraint Method
The AddConstraint method adds a PrecedenceConstraint object to a Step2 object.

Applies To

PrecedenceConstraints Collection

DTS Programming (SQL Server 2000)

AddGlobalVariable Method
The AddGlobalVariable method adds a GlobalVariable object to the collection by name.

Applies To

GlobalVariables Collection

DTS Programming (SQL Server 2000)

AddLookup Method
The AddLookup method adds a parameterized query to the Lookups collection.

Applies To

Lookups Collection

DTS Programming (SQL Server 2000)

AddObjectForTransfer Method
The AddObjectForTransfer method adds an object to the list of Microsoft® SQL Server™ objects to be transferred.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

BeginAcquireMultipleConnections Method
The BeginAcquireMultipleConnections method acquires ownership of the Connections collection's synchronization object.
This is to serialize the acquisition of multiple connections by a Data Transformation Services (DTS) task.

Applies To

Connections Collection

DTS Programming (SQL Server 2000)

CancelExecution Method
The CancelExecution method cancels execution of the task.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

CheckSyntax Method
The CheckSyntax method evaluates the script specified by the ActiveXScript property for correct syntax.

Applies To

ActiveScriptTask Object

DTS Programming (SQL Server 2000)

CreateCustomToolTip Method
The CreateCustomToolTip method creates a ToolTip window for a Data Transformation Services (DTS) custom task.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

Delete Method
The Delete method of the CustomTaskUI interface must be supplied by the implementer of a Data Transformation Services
(DTS) custom task that has a user interface. It is called by DTS when an instance of the custom task is to be deleted.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

Edit Method
The Edit method of the CustomTaskUI interface must be supplied by the implementer of a Data Transformation Services (DTS)
custom task that has a user interface. It is called by DTS when a user wants to edit properties of the CustomTask object.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

EndAcquireMultipleConnections Method
The EndAcquireMultipleConnections method releases ownership of the Connections collection's synchronization object. This
is after serializing the acquisition of multiple connections by a Data Transformation Services (DTS) task.

Applies To

Connections Collection

DTS Programming (SQL Server 2000)

EnumPackageInfos Method
The EnumPackageInfos method returns a PackageInfos collection containing information about all the packages stored in
Microsoft® SQL Server™ 2000 Meta Data Services or in SQL Server storage that satisfy the criteria of the input parameters.

Applies To

PackageRepository Object PackageSQLServer Object

DTS Programming (SQL Server 2000)

EnumPackageLineages Method
The EnumPackageLineages method returns a PackageLineages collection containing data from the package lineage records
stored in Microsoft® SQL Server™ 2000 Meta Data Services that satisfy the criteria of the input parameters.

Applies To

PackageRepository Object

DTS Programming (SQL Server 2000)

EnumPackageLogRecords Method
The EnumPackageLogRecords method returns a PackageLogRecords collection containing data from the package log records
in the database. These package log records satisfy the criteria of the input parameters.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

EnumStepLineages Method
The EnumStepLineages method returns a StepLineages collection containing information about all the step lineage records
stored in Microsoft® SQL Server™ 2000 Meta Data Services that satisfy the criteria of the input parameter.

Applies To

PackageRepository Object

DTS Programming (SQL Server 2000)

EnumStepLogRecords Method
The EnumStepLogRecords method returns a StepLogRecords collection containing data from the step log records in the
database that satisfy the criteria of the input parameters.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

EnumTaskLogRecords Method
The EnumTaskLogRecords method returns a TaskLogRecords collection containing data from the task log records in the
database that satisfy the criteria of the input parameters.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

Execute Method
The Execute method executes a Data Transformation Services (DTS) task object.

Applies To

ActiveScriptTask Object DynamicPropertiesTask Object
BulkInsertTask Object ExecutePackageTask Object
CreateProcessTask Object ExecuteSQLTask Object
CreateProcessTask2 Object ExecuteSQLTask2 Object
CustomTask Object ParallelDataPumpTask Object
DataDrivenQueryTask Object SendMailTask Object
DataPumpTask Object Task Object
DTSFTPTask Object TransferObjectsTask Object
DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

Execute (Package) Method
The Execute method executes a Data Transformation Services (DTS) package or step.

Applies To

Package Object Step Object
Package2 Object

DTS Programming (SQL Server 2000)

GetDayLongName Method
The GetDayLongName method returns the long (full) name for the specified day of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

GetDayShortName Method
The GetDayShortName method returns the short name (3-character abbreviation) for the specified day of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

GetDefaultProfileName Method
The GetDefaultProfileName method returns the default profile name.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

GetDTSVersionInfo Method
The GetDTSVersionInfo method retrieves version information for Data Transformation Services (DTS).

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

GetExecutionErrorInfo Method
The GetExecutionErrorInfo method returns details about step execution failure.

Applies To

Step Object Step2 Object

DTS Programming (SQL Server 2000)

GetExpandedProcessCommandLine Method
The GetExpandedProcessCommandLine method returns the process command line parameter string with the environment
variables expanded.

Applies To

CreateProcessTask2 Object

DTS Programming (SQL Server 2000)

GetLastExecutionLineage Method
The GetLastExecutionLineage method retrieves lineage information written to Microsoft® SQL Server™ 2000 Meta Data
Services during the last execution of the Data Transformation Services (DTS) package.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

GetMonthLongName Method
The GetMonthLongName method returns the long (full) name for the specified month.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

GetMonthShortName Method
The GetMonthShortName method returns the short name (3-character abbreviation) for the specified month.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

GetObjectForTransfer Method
The GetObjectForTransfer method iterates objects on the list of objects to be transferred.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

GetPackageRepository Method
 New Information - SQL Server 2000 SP3.

The GetPackageRepository method returns a PackageRepository object for the server and database specified by the input
parameters.

Security Note When possible, use Windows Authentication.

Applies To

Application Object

DTS Programming (SQL Server 2000)

GetPackageSQLServer Method
The GetPackageSQLServer method returns a PackageSQLServer object for the server specified by the input parameters.

Applies To

Application Object

DTS Programming (SQL Server 2000)

GetPropertiesForObject Method
The GetPropertiesForObject method returns a Data Transformation Services (DTS) Properties collection from an object
implementing a custom task.

Applies To

PropertiesProvider Object

DTS Programming (SQL Server 2000)

GetSavedPackageInfos Method
The GetSavedPackageInfos method retrieves a list of versions in this storage location.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

GetUIInfo Method
The GetUIInfo method returns top-level user interface information for a Data Transformation Services (DTS) custom task user
interface element to its caller. It must be supplied by the implementer of a custom task that has a user interface.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

Help Method
The Help method of the CustomTaskUI interface must be supplied by the implementer of a Data Transformation Services (DTS)
custom task that has a user interface. It is called by DTS when Help has been invoked for the custom task.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

Initialize Method
The Initialize method of the CustomTaskUI interface must be supplied by the implementer of a Data Transformation Services
(DTS) custom task that has a user interface. It is called by DTS whenever the custom task is opened in the design environment.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

InitializeMAPI Method
The InitializeMAPI method initializes the MAPI provider.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Insert Method
The Insert method inserts an object in an ordinal position in a collection.

Applies To

Columns Collection Steps Collection
Connections Collection Tasks Collection
GlobalVariables Collection Transformations Collection
Lookups Collection TransformationSets Collection
PrecedenceConstraints Collection

DTS Programming (SQL Server 2000)

Item Method
The Item method retrieves an object from a collection.

Applies To

Columns Collection Properties Collection
Connections Collection SavedPackageInfos Collection
DTSMQMessages Collection ScriptingLanguageInfos Collection
DynamicPropertiesTaskAssignments
Collection

Steps Collection

GlobalVariables Collection TaskInfos Collection
Lookups Collection Tasks Collection
OLEDBProperties Collection TransformationInfos Collection
OLEDBProviderInfos Collection Transformations Collection
PrecedenceConstraints Collection

DTS Programming (SQL Server 2000)

Load Method
The Load method fills the container object using persisted property values. The Load method is called by Data Transformation
Services (DTS) when a DTS package is loaded.

Applies To

PersistPropertyBag Object

DTS Programming (SQL Server 2000)

LoadFromRepository Method
 New Information - SQL Server 2000 SP3.

The LoadFromRepository method loads the Data Transformation Services (DTS) package from the specified instance of
Microsoft® SQL Server™ 2000 Meta Data Services. This includes information held in the objects and collections that belong to the
Package2 object.

Security Note When possible, use Windows Authentication.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

LoadFromSQLServer Method
The LoadFromSQLServer method loads the Data Transformation Services (DTS) package from the specified server running an
instance of Microsoft® SQL Server™. This includes information held in the objects and collections that belong to the Package2
object.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

LoadFromStorageFile Method
The LoadFromStorageFile method loads the Data Transformation Services (DTS) package from the specified structured storage
file. This includes information held in the objects and collections that belong to the Package object.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

Lock Method
The Lock method locks a GlobalVariable2 object for exclusive use.

Applies To

GlobalVariable2 Object

DTS Programming (SQL Server 2000)

Logoff Method
The Logoff method ends a MAPI session.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Logon Method
The Logon method creates a MAPI session.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Messages Method
The Messages method returns a reference to the DTSMQMessages collection.

Applies To

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

New Method
The New method creates a new, unnamed object for a collection.

Applies To

DTSMQMessages Collection Steps Collection
DynamicPropertiesTaskAssignments
Collection

DTS Programming (SQL Server 2000)

New (Columns) Method
The New method creates a new Column object with a specified name and ordinal position.

Applies To

Columns Collection

DTS Programming (SQL Server 2000)

New (CustomTaskUI) Method
The New method of the CustomTaskUI interface must be supplied by the implementer of a Data Transformation Services (DTS)
custom task that has a user interface. It is called by DTS when a new instance of the custom task is to be created.

Applies To

CustomTaskUI Object

DTS Programming (SQL Server 2000)

New (ID) Method
The New method creates a new object for a collection from a ProgID or CLSID.

Applies To

Connections Collection Transformations Collection
Tasks Collection

DTS Programming (SQL Server 2000)

New (Name) Method
The New method creates a new object for a collection with a specified name.

Applies To

GlobalVariables Collection PrecedenceConstraints Collection
Lookups Collection

DTS Programming (SQL Server 2000)

NewDataLink Method
The NewDataLink method gets a new Connection object using Microsoft® Data Link files.

Applies To

Connections Collection

DTS Programming (SQL Server 2000)

Next Method
The Next method fetches the next object while iterating through the associated collection.

Applies To

PackageInfos Collection StepLineages Collection
PackageLineages Collection StepLogRecords Collection
PackageLogRecords Collection

DTS Programming (SQL Server 2000)

Read Method
The Read method retrieves a property value.

Applies To

PropertyBag Object

DTS Programming (SQL Server 2000)

Refresh Method
The Refresh method updates the cached information for the associated collection by scanning the registered classes in the
operating system registry.

Applies To

OLEDBProviderInfos Collection TaskInfos Collection
ScriptingLanguageInfos Collection

DTS Programming (SQL Server 2000)

ReleaseConnection Method
The ReleaseConnection method releases ownership of the connection and makes it available to other tasks.

Applies To

Connection Object Connection2 Object

DTS Programming (SQL Server 2000)

Remove Method
The Remove method removes an object from a collection.

Applies To

Columns Collection PrecedenceConstraints Collection
Connections Collection Steps Collection
DTSMQMessages Collection Tasks Collection
DynamicPropertiesTaskAssignments
Collection

Transformations Collection

GlobalVariables Collection TransformationSets Collection
Lookups Collection

DTS Programming (SQL Server 2000)

RemoveAllLogRecords Method
The RemoveAllLogRecords method removes all package, step, and task log records from the database associated with the
PackageSQLServer object.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

RemoveFromRepository Method
 New Information - SQL Server 2000 SP3.

The RemoveFromRepository method removes the package from the specified instance of Microsoft® SQL Server™ 2000 Meta
Data Services.

Security Note When possible, use Windows Authentication.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

RemoveFromSQLServer Method
The RemoveFromSQLServer method removes the package from the specified server running an instance of Microsoft® SQL
Server™.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

RemovePackageLineages Method
The RemovePackageLineages method removes the package and step lineage records from Microsoft® SQL Server™ 2000
Meta Data Services that satisfy the criteria of the input parameters.

Applies To

PackageRepository Object

DTS Programming (SQL Server 2000)

RemovePackageLogRecords Method
The RemovePackageLogRecords method removes the package log records that satisfy the criteria of the input parameters from
the database.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

RemoveStepLogRecords Method
The RemoveStepLogRecords method removes the step log records that satisfy the criteria of the input parameters from the
database.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

RemoveTaskLogRecords Method
The RemoveTaskLogRecords method removes the task log records that satisfy the criteria of the input parameters from the
database.

Applies To

PackageSQLServer Object

DTS Programming (SQL Server 2000)

Reset Method
The Reset method resets all values in the target object to their defaults.

Applies To

DTSMQMessage Object DynamicPropertiesTaskAssignment Object

DTS Programming (SQL Server 2000)

ResetObjectsList Method
The ResetObjectsList method clears the list of objects to be transferred.

Applies To

TransferObjectsTask Object TransferObjectsTask2 Object

DTS Programming (SQL Server 2000)

ResolveName Method
The ResolveName method resolves an e-mail address.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Save Method
The Save method instructs an object implementing a custom task to perform custom property storage into a PropertyBag
object. The Save method is called by Data Transformation Services (DTS) when a DTS package is stored.

Applies To

PersistPropertyBag Object

DTS Programming (SQL Server 2000)

SaveAs Method
The SaveAs method creates a new Data Transformation Services (DTS) package ID and assigns the new name while preserving all
other properties.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

SaveToRepository Method
The SaveToRepository method saves information being held in the Package2 object and its subordinate objects and collections
to the specified instance of Microsoft® SQL Server™ 2000 Meta Data Services.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

SaveToRepositoryAs Method
 New Information - SQL Server 2000 SP3.

The SaveToRepositoryAs method saves information being held in the Package object and its subordinate objects and
collections to the specified instance of Microsoft® SQL Server™ 2000 Meta Data Services. The new name and a new Data
Transformation Services (DTS) package ID are assigned.

Security Note When possible, use Windows Authentication.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

SaveToSQLServer Method
The SaveToSQLServer method saves information being held in the Package2 object and its subordinate objects and collections
to the specified server running an instance of Microsoft® SQL Server™.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

SaveToSQLServerAs Method
 New Information - SQL Server 2000 SP3.

The SaveToSQLServer method saves information being held in the Package2 object and its subordinate objects and collections
to the specified server running an instance of Microsoft® SQL Server™. The new name and a new package ID are assigned.

Security Note When possible, use Windows Authentication.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

SaveToStorageFile Method
The SaveToStorageFile method saves the information being held in the Package2 object and its subordinate objects and
collections to a structured storage file.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

SaveToStorageFileAs Method
The SaveToStorageFileAs method saves the information being held in the Package2 object and its subordinate objects and
collections to a structured storage file. The new name and a new package ID are assigned.

Applies To

Package2 Object

DTS Programming (SQL Server 2000)

SetDayLongName Method
The SetDayLongName method sets the long (full) name for the specified day of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

SetDayShortName Method
The SetDayShortName method sets the short name (3-character abbreviation) for the specified day of the week.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

SetMonthLongName Method
The SetMonthLongName method sets the long (full) name for the specified month.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

SetMonthShortName Method
The SetMonthShortName method sets the short name (3-character abbreviation) for the specified month.

Applies To

DataPumpTransformDateTimeString Object

DTS Programming (SQL Server 2000)

ShowAddressBook Method
The ShowAddressBook method displays the address book user interface.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Uninitialize Method
The Uninitialize method clears all state information and releases all related objects, allowing the Package object to be reused.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

UninitializeMAPI Method
The UninitializeMAPI method uninitializes the MAPI provider.

Applies To

SendMailTask Object

DTS Programming (SQL Server 2000)

Unlock Method
The Unlock method unlocks a GlobalVariable2 object that had been previously locked with the Lock method.

Applies To

GlobalVariable2 Object

DTS Programming (SQL Server 2000)

Write Method
The Write method updates a value in a PropertyBag collection.

Applies To

PropertyBag Object

DTS Programming (SQL Server 2000)

WriteStringToLog Method
The WriteStringToLog adds a string to the log record that is being written for the step.

Applies To

PackageLog Object

DTS Programming (SQL Server 2000)

WriteTaskRecord Method
The WriteTaskRecord adds a record to the server log table for the current task execution, and formats it for WriteStringToLog to
write it to the log file.

Applies To

PackageLog Object

DTS Programming (SQL Server 2000)

Events
This section describes package events, which return information about the status of a Data Transformation Services (DTS)
package execution.

DTS Programming (SQL Server 2000)

OnError Event
The OnError event indicates and provides information about an error. It allows the event handler to cancel task execution.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

OnFinish Event
The OnFinish event indicates completion of a Data Transformation Services (DTS) task or step.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

OnProgress Event
The OnProgress event provides information about the progress of a Data Transformation Services (DTS) task.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

OnQueryCancel Event
The OnQueryCancel event terminates tasks. A Data Transformation Services (DTS) package raises this event only when it is safe
to stop execution of the task. The event handler determines whether task execution should be terminated.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

OnStart Event
The OnStart event indicates the start of a Data Transformation Services (DTS) task or step.

Applies To

Package Object Package2 Object

DTS Programming (SQL Server 2000)

Constants
This section describes a Data Transformation Services (DTS) package constants, which are enumerated data types. These
constants are used as parameters and return values in DTS package properties and methods.

DTS Programming (SQL Server 2000)

DTSBulkInsert_DataFileType
The DTSBulkInsert_DataFileType constants specify the type of data file used in Bulk Insert operations.

Constant Value Description
DTSBulkInsert_DataFileType_Char 0 Char data file type
DTSBulkInsert_DataFileType_Native 1 Native data file type
DTSBulkInsert_DataFileType_WideChar 2 WideChar data file type
DTSBulkInsert_DataFileType_WideNative 3 WideNative data file type

See Also

BulkInsertTask Object

DataFileType Property

DTS Programming (SQL Server 2000)

DTSCustomTaskUIFlags
The DTSCustomTaskUIFlags constants specify flags indicating the type of user interface supported by the database custom task.

Constant Value Description
DTSCustomTaskUIFlags_Default 0 Default
DTSCustomTaskUIFlags_DoesCustomToolTip 1 Custom task supports

custom tooltips

See Also

GetUIInfo Method

CustomTaskUI Object

DTS Programming (SQL Server 2000)

DTSDataPumpError
The DTSDataPumpError constants specify error ranges for Data Transformation Services (DTS) data pump execution.

Constant Value Description
DTSDataPump_E_AutoBufferInterfaceNotSupported 8273

(x2051)
A transform definition required buffering for
the specified source column, but the
requested interface is not
ISequentialStream or ILockBytes.

DTSDataPump_E_AxScript_AbortPumpReturned 8502
(x2136)

A transformation phase returned by
DTSTransformStat_AbortPump.

DTSDataPump_E_AxScript_BadTransformFunction 8259
(x2043)

Microsoft® ActiveX® scripting transform
function was not found.

DTSDataPump_E_AxScript_CantChangeSrcCols 8260
(x2044)

ActiveX scripting transform does not allow a
script to change source columns.

DTSDataPump_E_AxScript_CantInitializeEngine 8262
(x2046)

ActiveX scripting transform was not able to
initialize the script execution engine.

DTSDataPump_E_AxScript_CantResetAfterInitialize 8261
(x2045)

The scripting engine properties cannot be
changed after the scripting engine has been
instantiated.

DTSDataPump_E_
AxScript_InvalidPhaseColumnAccess

8500
(x2134)

The script attempted to write source columns
or the column access code is undefined.

DTSDataPump_E_AxScript_NoPhaseFunc 8503
(x2137)

A script function for a phase the
transformation is to support was not found.

DTSDataPump_E_AxScript_ParseError 8258
(x2042)

ActiveX script parsing fails when called by
ValidateSchema method.

DTSDataPump_E_AxScript_RequiredParams 8256
(x2040)

ActiveX scripting transform requires script
Text, Language, and FunctionEntry
parameters to be specified in
IDTSDataPumpTransformScriptProperties.

DTSDataPump_E_AxScript_RunTimeError 8263
(x2047)

ActiveX scripting transform encountered a
run-time error during the execution of the
script.

DTSDataPump_E_
AxScript_ValidateSchemaError

8257
(x2041)

A transformation relied on a bad data type.
User-defined data types, arrays, and vectors
of types are not supported.

DTSDataPump_E_BadTransformFlag 8210
(x2012)

Invalid or incompatible DTSTransformFlag
value(s).

DTSDataPump_E_BadTransformPhase 8496
(x2130)

An invalid transformation phase was
specified, via the TransformPhases property.

DTSDataPump_E_
BadTransformStatusReturned

8211
(x2013)

Transform server returned an invalid
DTSTransformStatus value, or an ActiveX
script did not return an integral type. The data
pump task will be terminated.

DTSDataPump_E_CannotRebindColumn 8213
(x2015)

Binding information for one or more columns
has been specified in a prior transform and
cannot be respecified.

DTSDataPump_E_
CannotTransformChapterColumns

8219
(x201B)

A column in a hierarchical rowset that
contains chapters (child rowsets) cannot itself
be transformed.

DTSDataPump_E_ColCountButNoCols 8198
(x2006)

A nonzero column count was specified with
no column specification pointer.

DTSDataPump_E_ColumnNameNotFound 8200
(x2008)

Column name not found.

DTSDataPump_E_ColumnOutOfRange 8201
(x2009)

Column ordinal was out of range.

DTSDataPump_E_Convert_BadBindInfo 8231
(x2027)

Incorrect binding information on column pair.

DTSDataPump_E_
Convert_BlobStorageNoInterface

8238
(x202E)

The required source BLOB storage object
interface does not exist.

DTSDataPump_E_Convert_ConversionFailed 8236
(x202C)

General conversion failure on column pair.

DTSDataPump_E_Convert_ConversionInvalid 8235
(x202B)

Conversion invalid for data types on column
pair.

DTSDataPump_E_Convert_DestNotNull 8230
(x2026)

Destination does not allow NULL on column
pair.

DTSDataPump_E_Convert_DestOverflow 8232
(x2028)

Destination overflowed on column pair.

DTSDataPump_E_
Convert_ProviderOwnedTypeMismatch

8237
(x202D)

DBMEMOWNER_PROVIDEROWNED type
mismatch for an allocatable type on column
pair.

DTSDataPump_E_Convert_SourceInvalidLength 8234
(x202A)

Source data length invalid for its type or for
conversion to destination type on column
pair.

DTSDataPump_E_Convert_SourceInvalidVariant 8233
(x2029)

Source variant invalid on column pair.

DTSDataPump_E_
Copy_NeedSrcAndDestColumns

8228
(x2024)

A DTSTransformCopy operation must
specify no columns or the same number of
source and destination columns.

DTSDataPump_E_Copy_ValidateSchemaError 8229
(x2025)

ValidateSchema method failed. See
extended error information appended to error
description. For more information, see
OnError Event and GetExecutionErrorInfo
Method.

DTSDataPump_E_DataPumpNotReentrant 8207
(x200F)

Data pump implements a single execution
operation and is therefore not reentrant.

DTSDataPump_E_
DDQ_BadTransformStatusContext

8293
(x2065)

Transform status returned a
DataDrivenQueryTask value, but no
DataDrivenQueryTask object was specified.

DTSDataPump_E_DDQ_DestColumnNeedsLength 8295
(x2067)

One or more destination column definitions is
variable-length and requires a maximum
column size to be specified.

DTSDataPump_E_
DDQ_DestColumnNotTransformed

8294
(x2066)

One or more destination parameter columns
had no transform specified.

DTSDataPump_E_
DDQ_DestDoesNotSupportSQL

8296
(x2068)

The destination OLE DB provider does not
implement the IDBCreateCommand interface,
which is needed to support SQL.

DTSDataPump_E_
DDQ_InformationNotSet

8293
(x2065)

Attempted to get data driven query
destination information when data pump
instance is not a DataDrivenQueryTask
(internal error).

DTSDataPump_E_DDQ_NeedDeleteQuery 8291
(x2063)

Transform status returned DeleteQuery
value, but no DeleteQuery property was
specified.

DTSDataPump_E_DDQ_NeedInsertQuery 8289
(x2061)

Transform status returned InsertQuery value,
but no InsertQuery property was specified.

DTSDataPump_E_DDQ_NeedTransformStatus 8288
(x2060)

No query specification returned by transform
status.

DTSDataPump_E_DDQ_NeedUpdateQuery 8290
(x2062)

Transform status returned UpdateQuery
value, but no UpdateQuery property was
specified.

DTSDataPump_E_DDQ_NeedUserQuery 8292
(x2064)

Transform status returned UserQuery value,
but no UserQuery property was specified.

DTSDataPump_E_
DDQ_TransformStatusForced

8297
(x2069)

Transformation improperly tried to set query
type.

DTSDataPump_E_DestColumnAlreadySpecified 8202
(x200A)

One or more destination columns have been
specified already in this or a prior
transformation.

DTSDataPump_E_DestColumnReadOnly 8208
(x2010)

One or more destination columns are read-
only; you must define a mapping which does
not include them.

DTSDataPump_E_DestinationBlobBinding 8224
(x2020)

In-memory destination BLOB
(DBCOLUMNFLAGS_ISLONG) columns must
specify a nonzero cbInMemoryBlobSize.

DTSDataPump_E_DestRowsetNotSupplied 8195
(x2003)

Destination columns or other information
specified, but no destination rowset was
supplied.

DTSDataPump_E_IDataConvertRequired 8203
(x200B)

Transform requires an IDataConvert
interface to be available on the destination
rowset or from an OLE DB installation
(Msdadc.dll).

DTSDataPump_E_InvalidDataPumpOption 8499
(x2133)

DataPumpOptions property was set to an
invalid value.

DTSDataPump_E_InvalidDTSBindMode 8215
(x2017)

Invalid or incompatible DTSBindMode
value(s), or DTSBindMode value
incompatible with column type.

DTSDataPump_E_InvalidFetchBufferSize 8214
(x2016)

FetchBufferSize property value must be
nonzero.

DTSDataPump_E_InvalidSpecifyBlobDefaults 8273
(x2051)

Invalid DTSSpecifyBlobDefaults enumeration
value(s).

DTSDataPump_E_InvalidStatusForPhase 8497
(x2131)

The transformation phase returned a status
value that is invalid for that phase.

DTSDataPump_E_
LastRowCantBeLessThanFirst

8275
(x2053)

The LastRow property cannot be less than the
FirstRow property.

DTSDataPump_E_LineageVariableNotFound 8274
(x2052)

A global variable or lineage variable was not
found.

DTSDataPump_E_LookupDupName 8218
(x201A)

A lookup name duplicates one that already
exists.

DTSDataPump_E_MismatchColOrdAndName 8199
(x2007)

A column ordinal referenced the wrong
column name. Ordinals are used only to
distinguish between multiple columns with
the same name.

DTSDataPump_E_
MustSpecifyDestOrTransform

8209
(x2011)

A destination or one or more transformations
must be specified.

DTSDataPump_E_NonBlobStorageBind 8217
(x2019)

Non-BLOB (DBCOLUMNFLAGS_ISLONG)
columns cannot be bound to storage objects.

DTSDataPump_E_NotImplemented 8192
(x2000)

Method or property not yet implemented.

DTSDataPump_E_NotReentrant 8205
(x200D)

Data pump implements a single execution
operation and is therefore not reentrant.

DTSDataPump_E_NullVariantIUnknown 8206
(x200C)

Passed variant is of type IUnknown, but
contains a NULL pointer.

DTSDataPump_E_RowFailuresExceedLimit 8298
(x206A)

The number of error rows exceeded the
MaximumErrorCount property.

DTSDataPump_E_RowsetChangeMustInsert 8206
(x200E)

Destination IRowsetChange must support
InsertRow (DBPROPVAL_UP_INSERT).

DTSDataPump_E_RowsetsAlreadySet 8193
(x2001)

Can be set only before Rowsets or
DataDrivenQueryTask have been initialized.

DTSDataPump_E_RowsetsNotSupplied 8196
(x2004)

NonNULL source rowset and an optional
destination rowset must be specified.

DTSDataPump_E_SourceBlobBinding 8216
(x2018)

In-Memory Source BLOB
(DBCOLUMNFLAGS_ISLONG) columns
cannot be bound with DTSBindMode_Byref,
and must specify a nonzero
cbInMemoryBlobSize.

DTSDataPump_E_SourceColumnsRequired 8197
(x2005)

Source columns are required for nondefault
transformations.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingInputData

8342
(x2096)

Error parsing the input datetime string.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingInputFormat

8340
(x2094)

Error parsing the value of the InputFormat
property.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingOutputFormat

8341
(x2095)

Error parsing the value of the OutputFormat
property.

DTSDataPump_E_TransformDateTimeString_
IndexOutOfRange

8337
(x2091)

The index used to access the array of day
names or month names is out of range.

DTSDataPump_E_TransformDateTimeString_
InvalidFormatString

8343
(x2097)

A string did not have a valid datetime format.

DTSDataPump_E_TransformDateTimeString_
InvalidNameOrFormat

8338
(x2092)

A required property or internal name was set
to an empty string.

DTSDataPump_E_TransformDateTimeString_
InvalidY2KCutoff

8339
(x2093)

The ShortYear2000Cutoff property was set
to a value outside of 0...99.

DTSDataPump_E_TransformDateTimeString_
NeedSrcAndDestColumns

8336
(x2090)

Something other than exactly one source
column and exactly one destination column
was specified.

DTSDataPump_E_TransformReadFile_
FileNotFound

8480
(x2120)

The file from which column data was to be
read could not be opened.

DTSDataPump_E_TransformReadFile_
InvalidDestSchema

8482
(x2122)

The destination column had type other than
DBTYPE_STR, DBTYPE_WSTR or
DBTYPE_BYTES.

DTSDataPump_E_TransformReadFile_
InvalidSourceSchema

8481
(x2121)

The source column had type other than
DBTYPE_STR, DBTYPE_WSTR or
DBTYPE_BSTR.

DTSDataPump_E_TransformReadFile_
NeedSrcAndDestColumns

8322
(x2082)

Something other than exactly one source
column and exactly one destination column
were specified.

DTSDataPump_E_TransformsAlreadySet 8194
(x2002)

Reserved.

DTSDataPump_E_TransformServerException 8212
(x2014)

Transform server generated an exception.

DTSDataPump_E_TransformString_
ColumnCount

8321
(x2081)

A Trim String or Middle of String
transformation specified other than one
source column.

DTSDataPump_E_TransformString_
DestStringTrunc

8324
(x2084)

Destination truncation occurred in a
Lowercase String, Uppercase String, Trim
String or Middle of String transformation
when
DTSTransformFlag_AllowStringTruncation
was not set.

DTSDataPump_E_TransformString_
NeedSrcAndDestColumns

8320
(x2080)

The number of source columns differs from
the number of destination columns in a
Lowercase String, Uppercase String, Trim
String or Middle of String transformation.

DTSDataPump_E_TransformString_
ValidateSchemaError

8323
(x2083)

The conversion from source to destination
column cannot be performed without error,
within the parameters of the TransformFlags
property, in a Lowercase String, Uppercase
String, Trim String or Middle of String
transformation.

DTSDataPump_E_TransformWriteFile_
FetchedNullFileName

8454
(x2106)

The source column that is to contain the file
specification is NULL or empty.

DTSDataPump_E_TransformWriteFile_
FileAlreadyExists

8449
(x2101)

The file that is to be written already exists, and
ErrorIfFileExists has been set.

DTSDataPump_E_TransformWriteFile_
FileColumnNameNotFound

8450
(x2102)

The column named by the FileColumnName
property could not be found.

DTSDataPump_E_TransformWriteFile_
InvalidDestSchema

8452
(x2104)

The source column that contains the file data
has type other than DBTYPE_STR,
DBTYPE_WSTR or DBTYPE_BSTR.

DTSDataPump_E_TransformWriteFile_
InvalidFileColumnName

8453
(x2105)

The FileColumnName property was set to
NULL or an empty string or was not set.

DTSDataPump_E_TransformWriteFile_
InvalidSourceSchema

8451
(x2103)

The source column that contains the file
specification has type other than DBTYPE_STR,
DBTYPE_WSTR, DBTYPE_BYTES or
DBTYPE_BSTR.

DTSDataPump_E_TransformWriteFile_
NeedSrcAndDestColumns

8448
(x2100)

Something other than exactly two source
columns and no destination columns were
specified for a Write File transformation.

DTSDataPump_E_UnsupportedPhase 8498
(x2132)

A Copy, Uppercase String, Lowercase String,
Trim String, Middle of String, Datetime String,
Read File or Write File transformation had a
phase other than Transform specified.

See Also

Handling DTS Events and Errors

DTS Programming (SQL Server 2000)

DTSDesignerSettings
The DTSDesignerSettings constants specify settings that control whether features are visible or hidden for Data Transformation
Services (DTS).

Constant Value Description
DTSDesigner_Default 0 Multiphase transformation

features are not shown in DTS
Designer.

DTSDesigner_ShowMultiPhaseTransforms 1 Multiphase transformation
features are visible in DTS
Designer.

See Also

DesignerSettings Property

DTS Programming (SQL Server 2000)

DTSExceptionFileOptions
The DTSExceptionFileOptions constants specify how Data Transformation Services (DTS) DataPump errors and exception rows
are to be written to files.

Constant Value Description
DTSExceptionFile_AbortOnRowLogFailure 8192

(x2000)
Terminate the data pump if
execution logging fails.

DTSExceptionFile_Ansi 256
(x0100)

File type is ANSI (uses ANSI
code page).

DTSExceptionFile_DestRowFile 8 Destination exception rows
are written to the destination
exception file.

DTSExceptionFile_ErrorFile 2 Error rows are written to the
error file.

DTSExceptionFile_OEM 512
(x0200)

File type is OEM (uses OEM
code page).

DTSExceptionFile_Overwrite 4096
(x1000)

Data is overwritten, rather
than appended, to file.

DTSExceptionFile_SingleFile70 1 Errors, source, and destination
exception rows are all written
to a single ANSI file.

DTSExceptionFile_SourceRowFile 4 Source exception rows are
written to the source
exception file.

DTSExceptionFile_Unicode 1024
(x0400)

File type is Unicode.

See Also

ExceptionFileOptions Property

DTS Programming (SQL Server 2000)

DTSExecuteStatus
The DTSExecuteStatus constants return values (int or long) from data pump execution.

Constant Value Description
DTSTransformExec_AbortPump 4100

(x1004)
Pump terminated due to
transform request or ErrorSink
return.

DTSTransformExec_Error 4096
(x1000)

Indicates the status code is an
error. Added to other items in
this table.

DTSTransformExec_ErrorCountExceeded 4098
(x1002)

Pump terminated because too
many rows had errors.

DTSTransformExec_OK 0 All rows copied (or skipped)
without error.

DTSTransformExec_OKErrors 4097
(x1001)

Pump continued to completion,
but encountered errors.

See Also

IDTSDataPumpErrorSink

DTS Programming (SQL Server 2000)

DTSFastLoadOptions
The DTSFastLoadOptions constants specify FastLoad options for the DataPumpTask FastLoadOptions property.

Constant Value Description
DTSFastLoad_CheckConstraints 2 Check constraints (default).
DTSFastLoad_Default 2 Specifies the default, same as check

constraints
DTSFastLoad_KeepNulls 1 Keep NULLs.
DTSFastLoad_NoOptions 0 No options.
DTSFastLoad_TableLock 4 Lock table.

See Also

DataPumpTask2 Object

FastLoadOptions Property

DTS Programming (SQL Server 2000)

DTSForceMode
The DTSForceMode constants override the default handling of associated properties.

Constant Value Description
DTSForceMode_Always 1 Data Transformation Services (DTS)

always overrides default handling of
property.

DTSForceMode_Default 0 DTS can choose to override default
handling of property.

DTSForceMode_Never 2 DTS never overrides default handling
of property.

See Also

ForceSourceBlobsBuffered Property

DTS Programming (SQL Server 2000)

DTSFTPError
The DTSFTPError constants specify codes used to report errors in DTSFTPTask object execution.

Constant Value Description
DTSFTP_E_CancelExecution 1007

(x03EF)
A cancel execution request was
received from the
OnQueryCancel event.

DTSFTP_E_CopyFileError 1011
(x03F3)

An error occurred copying one of
the specified files.

DTSFTP_E_ExceedeMaximumStringSize 1001
(x03E9)

A string property value exceeded
the maximum allowed size (usually
256 characters).

DTSFTP_E_FTPExecutionError 1006
(x03EE)

A reference to the
IDTSPackageEvents interface could
not be obtained.

DTSFTP_E_IncorrectOverwriteCBSelect 1003
(x03EB)

An invalid value for the
NonOverwritable property was
specified.

DTSFTP_E_IncorrectRetryTimes 1004
(x03EC)

An invalid value for the
NumRetriesOnSource property
was specified.

DTSFTP_E_InternetConnectionError 1008
(x03F0)

Connection to the internet using
Microsoft® Internet Explorer as
agent failed.

DTSFTP_E_InvalidFileNameProperty 1012
(x03F4)

An error occurred parsing the
SourceFilename property.

DTSFTP_E_InvalidSourceLocation 1005
(x03ED0

An invalid value for the
SourceLocation property was
specified.

DTSFTP_E_OutOfMemory 1010
(x03F2)

A memory allocation for character
string data failed.

DTSFTP_E_SiteConnectionError 1009
(x03F1)

Connection to the destination site
failed, after connection to the
internet succeeded.

DTSFTP_E_TooManyFilesSelected 1002
(x03EA)

The value used to set the
SourceFilename property
exceeded the allowed maximum
(2000 characters).

See Also

DTSFTPTask Object

DTS Programming (SQL Server 2000)

DTSFTPSourceLocation
The DTSFTPSourceLocation constants are used with the SourceLocation property to specify the source location type for a
DTSFTPTask object.

Symbol Value Description
DTSFTPSourceLocation_Directory 1 Source is a network directory.
DTSFTPSourceLocation_InternetSite 0 Source is an Internet site (default).

See Also

SourceLocation Property

DTS Programming (SQL Server 2000)

DTSIsolationLevel
The DTSIsolationLevel constants specify isolation levels for the Package TransactionIsolationLevel property.

Constant Value Description
DTSIsoLevel_Browse 256 (x0100) Browse level
DTSIsoLevel_Chaos 16 (x0010) Chaos level
DTSIsoLevel_CursorStability 4096 (x1000) Cursor stability level
DTSIsoLevel_Isolated 1048576 (x00100000) Isolated level
DTSIsoLevel_ReadCommitted 4096 (x1000) Read committed level
DTSIsoLevel_ReadUncommitted 256 (x0100) Read uncommitted level
DTSIsoLevel_RepeatableRead 65536 (x00010000) Repeatable read level
DTSIsoLevel_Serializable 1048576 (x00100000) Serializable level

See Also

Package2 Object

TransactionIsolationLevel Property

DTS Programming (SQL Server 2000)

DTSLineageOptions
The DTSLineageOptions constants specify Microsoft® SQL Server™ 2000 Meta Data Services lineage options for the Package
LineageOptions property.

Constant Value Description
DTSLineage_AddLineageVariables 1 Add lineage variables.
DTSLineage_None 0 Provide no lineage (default).
DTSLineage_WriteToReposIfAvailable 2 Write to Meta Data Services if

available.
DTSLineage_WriteToReposRequired 3 Write to Meta Data Services

(required).

See Also

LineageOptions Property

Package2 Object

DTS Programming (SQL Server 2000)

DTSMQMessageType
The DTSMQMessageType constants are used with the MessageType property to specify the type of message defined by a
DTSMQMessage object.

Symbol Value Description
DTSMQMessageType_DataFile 1 Message consists of the contents of a

data file.
DTSMQMessageType_GlobalVariables 2 Message consists of the names and

values of one or more Data
Transformation Services (DTS)
package global variables.

DTSMQMessageType_String 0 Message is a text string.

See Also

MessageType Property

DTS Programming (SQL Server 2000)

DTSMQStringMessageCompare
The DTSMQStringMessageCompare constants are used with the StringCompareType property to specify the type of
comparison to be performed on a received string message by a DTSMessageQueueTask object. The Description column in the
table below specifies the condition for successful comparison.

Symbol Value Description
DTSMQStringMessageCompare_Contains 3 Received message contains the

comparison string.
DTSMQStringMessageCompare_Exact 1 Received message matches

comparison string exactly,
including case of letters.

DTSMQStringMessageCompare_IgnoreCase 2 Received message matches
comparison string, ignoring
case of letters.

DTSMQStringMessageCompare_None 0 No comparison is performed
(default).

See Also

StringCompareType Property

DTS Programming (SQL Server 2000)

DTSMQType
The DTSMQType constants are used with the TaskType property to specify the type of the DTSMessageQueueTask object.

Symbol Value Description
DTSMQType_Receiver 1 Task object is to receive a single message.
DTSMQType_Sender 0 Task object is to send one or more messages.

See Also

DTSMessageQueueTask Object

TaskType Property

DTS Programming (SQL Server 2000)

DTSMSMQError
The DTSMSMQError constants specify codes used to report errors in DTSMessageQueueTask object execution.

Constant Value Description
DTSMSMQ_E_AssignmentIndexOutOfRange 1006

(x03EE)
The index for the Item or
Remove method of the
DTSMQMessages
collection was out of range.

DTSMSMQ_E_CancelExecution 1023
(x03FF)

A cancel execution request
was received from the
OnQueryCancel event.

DTSMSMQ_E_CanNotGetMessageQueueInfo 1015
(x03F7)

An error occurred setting
the label or the body of an
Message Queuing
message.

DTSMSMQ_E_CanNotGetPackageInfo 1019
(x03FB)

An error occurred
retrieving the package ID
or version ID of the Data
Transformation Services
(DTS) package.

DTSMSMQ_E_CanNotOpenMessageQueue 1014
(x03F6)

The queue specified by the
QueuePath property
could not be opened.

DTSMSMQ_E_CanNotSendMessage 1017
(x03F9)

An error occurred sending
a message to the queue
after it was successfully
opened.

DTSMSMQ_E_DataFileSizeError 1009
(x03F1)

A data file message
exceeds the maximum
allowed size, 4 megabytes
(MB).

DTSMSMQ_E_ErrorAccessMessageCollections 1016
(x03F8)

An error occurred
accessing the data of a
message to be sent.

DTSMSMQ_E_ErrorOpeningDataFile 1008
(x03F0)

An error occurred opening
the file that is the source of
a data file message.

DTSMSMQ_E_ErrorReadingDataFile 1010
(x03F2)

An error occurred reading
the file that is the source of
a data file message.

DTSMSMQ_E_ErrorSavingToDataFile 1027
(x0403)

An error occurred creating
the file that is to receive a
data file message.

DTSMSMQ_E_ErrorWritingDataFile 1021
(x03FD)

An error occurred writing a
data file message to the
receiving file.

DTSMSMQ_E_ExceededMaximumStringSize 1001
(x03E9)

A string property value
exceeds the maximum
allowed size (usually 256
characters).

DTSMSMQ_E_IncorrectDataFileMessageRead 1020
(x03FC)

The length of a data file
message differs from the
expected length.

DTSMSMQ_E_IncorrectGlobalVariablesMessageRead 1025
(x0401)

An error occurred creating
the global variable that is
to receive a global
variables message.

DTSMSMQ_E_IncorrectMSMQMessageType 1007
(x03EF)

The message type specified
by the MessageType or
ReceiveMessageType
properties is not valid.

DTSMSMQ_E_IncorrectStringCompareType 1003
(x03EB)

The comparison type
specified by the
StringCompareType
property is not valid.

DTSMSMQ_E_IncorrectTaskType 1002
(x03EA)

The task type specified by
the TaskType property is
not valid.

DTSMSMQ_E_IncorrectTimeoutValue 1004
(x03EC)

The timeout value specified
by the
ReceiveMessageTimeout
property is not valid
(negative).

DTSMSMQ_E_InvalidAssignmentIndexVariantType 1005
(x03ED)

The index specified by the
Item or Remove method
of the DTSMQMessages
collection is not valid.

DTSMSMQ_E_InvalidGlobalVariablesProperties 1024
(x0400)

An error occurred
formatting the global
variables message to be
sent.

DTSMSMQ_E_InvalidTaskProperties 1022
(x03FE)

A property required for the
type of message to be
received was not specified.

DTSMSMQ_E_MessageQueueObjectsNotSupported 1012
(x03F4)

An error occurred creating
a Message Queuing object.
Message Queuing was
probably not properly
installed.

DTSMSMQ_E_NoMessageCollectionsFound 1011
(x03F3)

The DTSMQMessages
collection does not exist or
contains zero elements.

DTSMSMQ_E_NoMessageQueuePathSpecified 1013
(x03F5)

The required QueuePath
property was not specified.

DTSMSMQ_E_OutOfMemory 1018
(x03FA)

A memory allocation for
character string data failed.

DTSMSMQ_E_ReceiveMessageTimeout 1026
(x0402)

The timeout value specified
by the
ReceiveMessageTimeout
property has elapsed, the
task is being failed.

See Also

DTSMessageQueueTask Object

DTS Programming (SQL Server 2000)

DTSPackageError
The DTSPackageError constants specify codes used to report errors in Data Transformation Services (DTS) package creation and
execution.

Constant Value Description
DTSPackage_E_AbandonedRowQueueDest 1076

(x0434)
This Step2 object has a
DataPumpTask2
RowQueue destination. A
corresponding Step2
object with a
DataPumpTask2
RowQueue source was
not found or was
skipped.

DTSPackage_E_AxScript_BadFunctionName 1020
(x03FC)

Microsoft® ActiveX®
scripting: Function not
found.

DTSPackage_E_AxScript_CantAddGlobals 1021 ActiveX scripting: Cannot
add global variables to
ActiveX script.

DTSPackage_E_AxScript_CantInitializeEngine 1017 ActiveX scripting: Not
able to initialize the script
execution engine.

DTSPackage_E_AxScript_ParseError 1019 ActiveX scripting: Error
parsing script.

DTSPackage_E_AxScript_RequiredParams 1018 ActiveX scripting:
Language, and
FunctionEntry names are
required to be specified.

DTSPackage_E_AxScript_RunTimeError 1022 ActiveX scripting:
Encountered a run-time
error during the
execution of the script.

DTSPackage_E_BadForceMode 1065 Invalid DTSForceMode
value.

DTSPackage_E_BadGUIDValue 1038 Invalid globally unique
identifier (GUID) value
specified.

DTSPackage_E_BadPackageDSORowsetTask 1075 PackageDSORowset
Step2 object must have
a DataPumpTask2.

DTSPackage_E_BadPrecedenceBasis 1026 Precedence basis should
be step status or result.

DTSPackage_E_BadPrecedenceStep 1036 Step specified in a
precedence constraint
was not found.

DTSPackage_E_BadPriorityClass 1042 Invalid priority class
specified for the package.

DTSPackage_E_BadRelativePriority 1043 Invalid relative priority
specified for a step.

DTSPackage_E_BadStepResultValue 1024 Invalid step result value.
DTSPackage_E_BadStepStatusValue 1023 Invalid step status value.
DTSPackage_E_BadStepTask 1027 Cannot find task

associated with step.
DTSPackage_E_BadTaskResultValue 1025 Invalid task result value.
DTSPackage_E_CannotFindConnection 1031 Connection specified in a

task was not found.

DTSPackage_E_CannotPersistProperty 1062 Cannot store property
values in file or
repository if they are
empty, null, arrays, or
objects.

DTSPackage_E_CantChangeLoadedPkgName 1060 Cannot change name of
a package that has been
loaded from a storage
file or Microsoft SQL
Server™ 2000 Meta Data
Services.

DTSPackage_E_CantFindPackageInStg 1044 Cannot find specified
package in the storage
location specified.

DTSPackage_E_CantFindVersionInStg 1040 Cannot find specified
version of package in the
storage location
specified.

DTSPackage_E_CantSetCommandProps 1041 Cannot set command
properties specified.

DTSPackage_E_ColumnNeedsNameOrOrdinal 1007 Columns collection can
be indexed only by name
or ordinal.

DTSPackage_E_ColumnsNotDescribed 1014 Unable to fetch column
meta data.

DTSPackage_E_ConnectionInUse 1030 Connection is currently
being used by a task. The
connection cannot be
closed or reused.

DTSPackage_E_ConnectionRequiresValidTaskName 1029 Acquiring a connection
requires a valid task
name.

DTSPackage_E_CreateProcTask_Timeout 1037 Process created by a task
did not terminate within
the time specified.

DTSPackage_E_DataDrivenQueryTask_RequireXforms 1077 DataDrivenQueryTask2
object requires
transformations to be
specified.

DTSPackage_E_DatatypeNotFound 1009 Invalid column data type.
DTSPackage_E_DescribeNeedsQuery 1013 Custom implementation

object's query property
must be set before the
columns can be
described.

DTSPackage_E_DSO_CantRelaunchPackage 1073 Package associated with
this OLE DB provider
cannot be relaunched.

DTSPackage_E_DSO_OnlyOneCommand 1074 This OLE DB provider
supports only a single
active command.

DTSPackage_E_DSO_OnlyOneRowset 1071 This OLE DB provider
supports only a single
active rowset.

DTSPackage_E_DSO_OnlyOneSession 1070 This OLE DB provider
supports only a single
active session.

DTSPackage_E_DSO_ProviderStringRequired 1072 This OLE DB provider
requires a
PROVIDERSTRING or
DATASOURCE
initialization property to
be set.

DTSPackage_E_EncryptStg_CantCreateOrWrite 1045 Cannot create storage
elements or write to
streams while loading
encrypted package.

DTSPackage_E_EncryptStg_CantOpenOrRead 1046 Cannot open storage
elements or read from
streams while saving
encrypted package.

DTSPackage_E_EncryptStg_HandsOnStg 1047 Encrypted storage cannot
be released, committed,
or reverted when
elements in storage have
not been released.

DTSPackage_E_EncryptStg_PasswordNotMatching 1049 Password specified does
not match the owner or
operator password.

DTSPackage_E_EncryptStg_RequirePassword 1050 Cannot load encrypted
package without a
password.

DTSPackage_E_EncryptStg_StreamTooLarge 1051 Encrypted streams
cannot exceed a size of
128 KB.

DTSPackage_E_EncryptStg_UnsupportedFlags 1048 Encrypted storage does
not support the flags
specified to open or
create a storage element.

DTSPackage_E_ExecutionCanceled 1063 Execution was canceled
by user.

DTSPackage_E_FailedOnStepError 1064 Package failed because a
step failed.

DTSPackage_E_MultiPackageStgNeedsID 1066 Specified storage file
contains multiple
packages; loading
requires a name or
package ID.

DTSPackage_E_NameDup 1004 Object of the specified
name already exists in
this object collection so a
new object of the same
name cannot be added.

DTSPackage_E_NameMustBeUniqueInStgFile 1067 Specified storage file
already contains a
package of this name
with a different package
ID.

DTSPackage_E_NameNotFound 1003 Object of specified name
was not found in this
object collection.

DTSPackage_E_NeedConnectionInfo 1010 Connection information
was not specified in the
custom implementation
child of this object.

DTSPackage_E_NeedDataDrivenQueries 1078 DataDrivenQueryTask2
object requires at least
one query (and
associated columns) to
be specified.

DTSPackage_E_NeedDataDrivenQueryAndColumns 1079 Data-driven queries must
specify the text of the
parameterized query and
identify any columns (in
the associated columns
collection) needed to fill
in the parameters.

DTSPackage_E_NeedDestinationColumnDefinitions 1069 Required column
definitions were not
supplied by the
application.

DTSPackage_E_NoPackageDataFromServer 1068 No data for the specified
package was retrieved
from the specified server
running an instance of
SQL Server.

DTSPackage_E_NoStepsDefined 1005 No steps have been
defined for the
transformation package.

DTSPackage_E_NoStepsToExecute 1012 No steps have been
added.

DTSPackage_E_NotImplemented 1001 Method or property not
yet implemented.

DTSPackage_E_NoXformDispatch 1061 Transformation server
does not support setting
properties through
automation interfaces.

DTSPackage_E_ODBC_NeedConnectionInfo 1011 ODBC connection
requires either a data
source name or a server
and driver name.

DTSPackage_E_OrdOutofRange 1002 Index value is out of
range for this object
collection.

DTSPackage_E_PropertyStringTooLong 1059 This property cannot
hold a string longer than
255 characters.

DTSPackage_E_PumpTask_RequireRowsetDataSrcInfo 1034 Data source object name
or SQL statement is
required to obtain a
rowset.

DTSPackage_E_PumpTask_RequireSrcAndDestColumns 1033 Source and destination
columns are required for
a Transformation2
object.

DTSPackage_E_PumpTask_RequireXformServer 1035 Transform server ID or
transform server needs
to be provided for a data
pump task
transformation.

DTSPackage_E_PumpTask_RequireXforms 1032 Data pump task requires
transformations to be
specified.

DTSPackage_E_RequireColumnNameAndOrdinal 1058 Specify a valid name and
ordinal value for the
column.

DTSPackage_E_RequireConnectionProperties 1028 Required Connection
object properties have
not been specified in a
Connection object.

DTSPackage_E_RequireConnectionID 1057 Specify a valid ID for the
connection.

DTSPackage_E_RequireNameForExecOr\Stg 1039 Cannot load, save, or
execute the package if
some objects do not
have a name. Specify
names for these objects.

DTSPackage_E_Security_InvalidPassword 1052 Password specified is
invalid. Specify a
password that is at least
8 characters in length.

DTSPackage_E_Security_OperatorNotPrivileged 1054 Operator is privileged
only to load the package
and execute it.

DTSPackage_E_Security_RequireBothPasswords 1053 Specify both owner and
operator passwords to
save a package to
encrypted storage.

DTSPackage_E_SQLTask_RequireSQL 1055 ExecuteSQLTask2
object requires SQL
statements to be
specified.

DTSPackage_E_Step_CyclicDependency 1015 Step cannot be a
predecessor of itself.

DTSPackage_E_UnknownOleDBProperty 1056 OLE DB property
specified is not
supported by this OLE
DB provider.

DTSPackage_E_UsageBeforeDescribeOnly 1016 Reserved.
DTSPackage_E_WrongCollection 1008 Collection member may

only be added or
inserted under the same
parent from which it was
acquired.

See Also

Handling DTS Events and Errors

Package2 Object

DTS Programming (SQL Server 2000)

DTSPackagePriorityClass
 New Information - SQL Server 2000 SP3.

The DTSPackagePriorityClass constants specify the Microsoft® Win32® process priority class to be used when the Data
Transformation Services (DTS) package is executed.

Constant Value Description
DTSPriorityClass_High 3 High package priority
DTSPriorityClass_Low 1 Low package priority
DTSPriorityClass_Normal 2 Normal package priority

See Also

PackagePriorityClass Property

DTS Programming (SQL Server 2000)

DTSPackageType
The DTSPackageType constants are used with the PackageType property to identify the tool that created the database package.

Name Value Package Created By
DTSPkgType_ActiveDirectory 4 Microsoft® Active Directory™, the directory

service included with Microsoft Windows®
2000.

DTSPkgType_Default 0 Custom program (or not set).
DTSPkgType_DTSDesigner 2 Data Transformation Services (DTS) Designer.
DTSPkgType_DTSWizard 1 The DTS Import/Export Wizard.
DTSPkgType_SQLReplication 3 Microsoft SQL Server™ 2000 replication

function.

See Also

PackageType Property

DTS Programming (SQL Server 2000)

DTSRepositoryMetadataOptions
The DTSRepositoryMetadataOptions constants specify scanning and resolution options to use when storing a Data
Transformation Services (DTS) package to Microsoft® SQL Server™ 2000 Meta Data Services.

Constant Value Description
DTSReposMetadata_Default 0 Package performs no

scanner resolution.
DTSReposMetadata_RequireScannedCatalog 1 Package requires that

any database objects
must have been scanned
into Meta Data Services.

DTSReposMetadata_ScanCatalogAlways 8 Package will scan all
catalogs referenced,
rescanning if already
scanned.

DTSReposMetadata_ScanCatalogIfNotFound 4 Package will issue a scan
on all catalogs that are
not found already
scanned.

DTSReposMetadata_UseScannedCatalogIfPresent 2 Package will use any
scanned objects found;
nonscanned references
will create local objects.

See Also

RepositoryMetadataOptions Property

DTS Programming (SQL Server 2000)

DTSRepositoryStorageFlags
 New Information - SQL Server 2000 SP3.

The DTSRepositoryStorageFlags constants specify Microsoft® SQL Server™ 2000 Meta Data Services options to use when
saving or loading a Data Transformation Services (DTS) package.

Security Note When possible, use Windows Authentication.

Constant Value Description
DTSReposFlag_Default 0 Use database authentication to

connect to Meta Data Services on
an instance of SQL Server.

DTSReposFlag_UseTrustedConnection 256 Use Windows Authentication to
connect to Meta Data Services on
an instance of SQL Server.

See Also

LoadFromRepository Method

RemoveFromRepository Method

SaveToRepository Method

SaveToRepositoryAs Method

DTS Programming (SQL Server 2000)

DTSSQLObjectType
The DTSSQLObjectType constants specify object copying options for the TransferObjectsTask, AddObjectForTransfer, and
GetObjectForTransfer methods.

Constant Value Description
DTSSQLObj_AllDatabaseObjects 4607 (x11FF) System and database objects
DTSSQLObj_AllDatabaseUserObjects 4605 (x11FD) User database objects
DTSSQLObj_Default 64 (x0040) Defaults
DTSSQLObj_Rule 128 (x0080) Rules
DTSSQLObj_StoredProcedure 16 (x0010) Stored procedures
DTSSQLObj_SystemTable 2 System tables
DTSSQLObj_Trigger 256 (x0100) Triggers
DTSSQLObj_UserDefinedDatatype 1 User-defined data types
DTSSQLObj_UserDefinedFunction 4096 (x1000) User-defined functions
DTSSQLObj_UserTable 8 User tables
DTSSQLObj_View 4 Views

See Also

AddObjectForTransfer Method

GetObjectForTransfer Method

DTS Programming (SQL Server 2000)

DTSSQLServerStorageFlags
 New Information - SQL Server 2000 SP3.

The DTSSQLServerStorageFlags constants specify Microsoft® SQL Server™ 2000 options to use when saving or loading a Data
Transformation Services (DTS) package.

Security Note When possible, use Windows Authentication.

Constant Value Description
DTSSQLStgFlag_Default 0 Use SQL Server Authentication to

connect to an instance of SQL
Server.

DTSSQLStgFlag_UseTrustedConnection 256 Use Windows Authentication to
connect to an instance of SQL
Server.

See Also

LoadFromSQLServer Method

LogServerFlags Property

RemoveFromSQLServer Method

SaveToSQLServer Method

DTS Programming (SQL Server 2000)

DTSStepExecResult
The DTSStepExecResult constants specify the results from the execution of a step.

Constant Value Description
DTSStepExecResult_Failure 1 Step execution failed.
DTSStepExecResult_Success 0 Step execution succeeded.

See Also

ExecutionResult Property

DTS Programming (SQL Server 2000)

DTSStepExecStatus
The DTSStepExecStatus constants specify status codes that indicates the current step status.

Constant Value Description
DTSStepExecStat_Completed 4 Step execution is completed.
DTSStepExecStat_Inactive 3 Step execution is inactive.
DTSStepExecStat_InProgress 2 Step execution is in progress.
DTSStepExecStat_Waiting 1 Step is waiting to execute.

See Also

ExecutionStatus Property

DTS Programming (SQL Server 2000)

DTSStepPrecedenceBasis
Steps can be executed after the precedence constraint is satisfied. The precedence constraint is based on either the execution
status or execution result of another step. The PrecedenceBasis property indicates whether to use the step result or step status.

Constant Value Description
DTSStepPrecedenceBasis_ExecResult 1 PrecedenceBasis based on

execution result
DTSStepPrecedenceBasis_ExecStatus 0 PrecedenceBasis based on

execution status

See Also

PrecedenceBasis Property

DTS Programming (SQL Server 2000)

DTSStepRelativePriority
The DTSStepRelativePriority constants specify the Microsoft® Win32® thread priority to be used when a step is executed.

Constant Value Description
DTSStepRelativePriority_AboveNormal 4 Above normal thread priority
DTSStepRelativePriority_BelowNormal 2 Below normal thread priority
DTSStepRelativePriority_Highest 5 Highest thread priority
DTSStepRelativePriority_Lowest 1 Lowest thread priority
DTSStepRelativePriority_Normal 3 Normal thread priority

See Also

RelativePriority Property

DTS Programming (SQL Server 2000)

DTSStepScriptResult
The DTSStepScriptResult constants specify return codes to be used from the Microsoft® ActiveX® scripts associated with
package steps. They should not be returned from the scripts associated with an ActiveXScriptTask object or
DataPumpTransformScript or DTSTransformScriptProperties2 transformations.

Constant Value Description
DTSStepScriptResult_DontExecuteTask 1 Do not execute task.
DTSStepScriptResult_ExecuteTask 0 Execute task.
DTSStepScriptResult_RetryLater 2 Retry execution later.

See Also

ActiveXScript Property

Step2 Object

DTS Programming (SQL Server 2000)

DTSTaskExecResult
The DTSTaskExecResult constants specify the result from the execution of a task.

Constant Value Description
DTSTaskExecResult_Failure 1 Task execution failed.
DTSTaskExecResult_RetryStep 2 Task execution is to be repeated.
DTSTaskExecResult_Success 0 Task execution succeeded.

See Also

Execute Method

DTS Programming (SQL Server 2000)

DTSTransfer_CopyDataOption
The DTSTransfer_CopyDataOption constants specify data copying options for the TransferObjectsTask CopyData property.

Constant Value Description
DTSTransfer_AppendData 2 Data that is copied is appended to existing

tables.
DTSTransfer_DontCopyData 0 Schema only is copied.
DTSTransfer_ReplaceData 1 Data that is copied replaces existing data.

See Also

CopyData Property

DTS Programming (SQL Server 2000)

DTSTransfer_ScriptOption
The DTSSQLServerStorageFlags constants specify extended scripting options. They are equivalent to SQLDMO_SCRIPT2_TYPE
constants used by SQL-DMO.

The DTSTransfer_ScriptOption constants specify scripting options for the TransferObjectsTask ScriptOption property.

Constant Value Description
DTSTransfer_Script_Aliases 16384 For users, script aliases.
DTSTransfer_Script_AppendToFile 256 Append to output file if it already exists.
DTSTransfer_Script_Bindings 128 Include rule/default bindings (table only).
DTSTransfer_Script_ClusteredIndexes 8 Include clustered index creation (table

only).
DTSTransfer_Script_DatabasePermissions 32 Database (statement) permissions.
DTSTransfer_Script_Default 4 Object creation only.
DTSTransfer_Script_DRI_All 532676608 All the foregoing (specifying this and not

PrimaryObject gets just DRI output).
DTSTransfer_Script_DRI_AllConstraints 520093696 Bitmask of all constraint types (primary

key, foreign key, unique, check, default).
DTSTransfer_Script_DRI_AllKeys 469762048 Bitmask of all key types (primary key,

foreign key, unique).
DTSTransfer_Script_DRI_Checks 16777216 Generated script creates column-

specified CHECK constraints. Directs
scripting when declarative referential
integrity establishes dependency
relationships. Applies only when scripting
references a Microsoft SQL Server™
table.

DTSTransfer_Script_DRI_Clustered 8388608 Generated script creates clustered
indexes. Directs scripting when
declarative referential integrity
establishes dependency relationships.
Applies only when scripting references a
SQL Server table.

DTSTransfer_Script_DRI_Defaults 33554432 Generated script includes column-
specified defaults. Directs scripting when
declarative referential integrity
establishes dependency relationships.
Applies only when scripting references a
SQL Server table.

DTSTransfer_Script_DRI_ForeignKeys 134217728 Generated script creates FOREIGN KEY
constraints. Directs scripting when
declarative referential integrity
establishes dependency relationships.
Applies only when scripting references a
SQL Server table.

DTSTransfer_Script_DRI_NonClustered 4194304 Generated script creates nonclustered
indexes. Directs scripting when
declarative referential integrity
establishes dependency relationships.
Applies only when scripting references a
SQL Server table.

DTSTransfer_Script_DRI_PrimaryKey 268435456 Generated script creates PRIMARY KEY
constraints. Directs scripting when
declarative referential integrity
establishes dependency relationships.
Applies only when scripting references a
SQL Server table.

DTSTransfer_Script_DRI_UniqueKeys 67108864 Generated script creates candidate keys
defined using a unique index. Directs
scripting when declarative referential
integrity establishes dependency
relationships. Applies only when scripting
references a SQL Server table.

DTSTransfer_Script_DRIIndexes 65536 Script DRI-generated indexes as indexes
if NoDRI is specified.

DTSTransfer_Script_DRIWithNoCheck 536870912 Script DRI with nocheck (not included in
_DRI_All).

DTSTransfer_Script_Drops 1 Include object drops.
DTSTransfer_Script_IncludeHeaders 131072 Include descriptive header in individual

object script output.
DTSTransfer_Script_IncludeIfNotExists 4096 Include "if not exists" on object creation.
DTSTransfer_Script_Indexes 73736 Include all index creation (table only).
DTSTransfer_Script_NoCommandTerm 32768 Do not append "GO" to commands.
DTSTransfer_Script_NoDRI 512 Do not include DRI (use only if you are

targeting a Microsoft SQL Server version
6.0 or earlier installation with scripts).

DTSTransfer_Script_NoIdentity 1073741824 Script with no IDENTITY attribute (such as
for replication).

DTSTransfer_Script_NonClusteredIndexes 8192 Includes nonclustered index creation
(table only).

DTSTransfer_Script_ObjectPermissions 2 Includes object creation.
DTSTransfer_Script_OwnerQualify 262144 Owner-qualify DROP statements (and

CREATE where possible).
DTSTransfer_Script_Permissions 34 Both database and object permissions

(for scripting users).
DTSTransfer_Script_PrimaryObject 4 Generate Transact-SQL creating the

referenced component.
DTSTransfer_Script_SortedData 1048576 If the index or constraint was clustered,

append sorted_data.
DTSTransfer_Script_SortedDataReorg 2097152 Same as DTSTransfer_Script_SortedData,

but DTSTransfer_Script_Sorted Data
Reorg is used to preserve fillfactor.

DTSTransfer_Script_TimestampToBinary 524288 Converts timestamp columns to
binary(8) (for replication, and so on).

DTSTransfer_Script_ToFileOnly 64 If not set, a string is returned (if file is
nonnull, both are done).

DTSTransfer_Script_TransferDefault 2147061505 The default script type for a transfer. This
is combination of following flags
DTSTransfer_Script_PrimaryObject
DTSTransfer_Script_Bindings
DTSTransfer_Script_ClusteredIndexes
DTSTransfer_Script_NonClusteredIndexes

DTSTransfer_Script_Triggers
DTSTransfer_Script_ToFileOnly
DTSTransfer_Script_Permissions
DTSTransfer_Script_IncludeHeaders
DTSTransfer_Script_Aliases
DTSTransfer_Script_IncludeIfNotExists
DTSTransfer_Script_OwnerQualify
DRI-restrictive flags. These may be
combined with PrimaryObject as desired.
These are used to include or exclude
specific DRI components.

DTSTransfer_Script_Triggers 16 Include trigger creation (table only).

DTSTransfer_Script_UDDTsToBaseType 1024 Converts user-defined data types to base
type when creating columns (table only).

DTSTransfer_Script_UseQuotedIdentifiers 2147483648 Scripts with quoted identifiers. Also will
cause the Transfer object to SET
QUOTED_IDENTIFIER ON on the
destination.

See Also

ScriptOption Property

DTS Programming (SQL Server 2000)

DTSTransfer_ScriptOptionEx
The DTSTransfer_ScriptOptionEx constants specify extended scripting options. They are equivalent to
SQLDMO_SCRIPT2_TYPE constants used by SQL-DMO.

Constant Value Description
DTSTransfer_ScriptEx_70Only 16777216

(x01000000)
Script the transfer of
Microsoft® SQL Server™ 7.0
objects only.

DTSTransfer_ScriptEx_AgentAlertJob 2048 (x0800) Include job in alert scripting.
DTSTransfer_ScriptEx_AgentNotify 1024 (x0400) Script notification for

SQLServerAgent alert object.
DTSTransfer_ScriptEx_AnsiFile 2 Generate ANSI output file.
DTSTransfer_ScriptEx_AnsiPadding 1 Explicitly SET ANSI PADDING

on or off before the CREATE
TABLE statement.

DTSTransfer_ScriptEx_EncryptPWD 128 (x0080) Script encrypted password
for logins.

DTSTransfer_ScriptEx_ExtendedProperty 4194304
(x00400000)

Include extended property
scripting as part of object
scripting

DTSTransfer_ScriptEx_FullTextCat 2097152
(x00200000)

Include full-text catalog
scripting.

DTSTransfer_ScriptEx_FullTextIndex 524288
(x00080000)

Include full-text index
scripting (table only).

DTSTransfer_ScriptEx_JobDisable 33554432
(x02000000)

Script Transact-SQL to
disable the job at the end of
job creation.

DTSTransfer_ScriptEx_LoginSID 1048576
(x00100000)

Include the security
identification number (SID)
for standard SQL Server
logins.

DTSTransfer_ScriptEx_MarkTriggers 32 (x0020) Mark system triggers. For
replication, single table script
only.

DTSTransfer_ScriptEx_NoCollatin 8388608
(x00800000)

Do not script the collation
clause if source is an instance
of SQL Server 2000.

DTSTransfer_ScriptEx_NoFG 16 (x0010) Do not generate ON
<filegroup>. For replication.

DTSTransfer_ScriptEx_NonStop 8 When error occurs during
script file generation, log
error and continue.

DTSTransfer_ScriptEx_NoWhatIfIndexes 512 (x0200) Do not script What-If indexes
(default: script out).

DTSTransfer_ScriptEx_OnlyUserTriggers 64 (x0040) Only script user triggers. For
replication, single table script
only.

DTSTransfer_ScriptEx_SeparateXPs 256 (x0100) Script XP to a separate file
(Convert).

DTSTransfer_ScriptEx_TransferDefault 4112 (x1010) Default.
DTSTransfer_ScriptEx_UnicodeFile 4 Generate UNICODE output

file.

See Also

ScriptOptionEx Property

DTS Programming (SQL Server 2000)

DTSTransformationSetOptions
The DTSTransformationSetOptions constants specify the operating mode of a Parallel Data Pump Task object.

Constant Value Description
DTSTranSetOpt_Flattened 0 Transforms component rowsets

independently without reference to
chapter subsets (default).

DTSTranSetOpt_Hierarchical 1 Transforms component rowsets row
at a time, using chapter subsets to
transform child rowsets.

DTSTranSetOpt_DataDrivenQueries 4 Transforms component rowset as in
flattened-mode, user queries to save
data.

See Also

Parallel Data Pump Task

TransformationSetOptions Property

DTS Programming (SQL Server 2000)

DTSTransformFlags
The DTSTransformFlags constants specify the flags controlling transformation. They are used to set the TransformFlags
property of the Transformation object. These values are used during schema validation, which occurs before any rows are
transformed.

Constant Value Description
DTSTransformFlag_AllowDemotion 1 Allows the transfer to proceed even if there

are potential overflows. Overflows that
actually occur during transformation cause
the row to be exceptioned. This value can be
specified when the source values are all (or
mostly) within the range of the destination
column.

DTSTransformFlag_AllowLosslessConversion 512
(x0200)

Allows all conversions for which a lossless
conversion is possible (for example,
Promotion, non-NULLable -> NULLable,
unsigned -> signed with field size increase).

DTSTransformFlag_AllowNullChange 16
(x0010)

Allows the transfer to proceed even if the
source column allows NULL values and the
destination column does not. Any row
actually containing NULL is exceptioned,
however.

DTSTransformFlag_AllowNumericTruncation 8 Allows the transfer to proceed even when
numeric truncation is possible, such as when
the source is a floating-point or
numeric/decimal type and the destination
is an integral type. Loss of significance
occurs without error, but integer overflow
still causes an error.

DTSTransformFlag_AllowPromotion 2 Allows the transfer to proceed when there is
promotion in the data range when moving
from the source to the destination types,
such as I2->I4 or I4->float/double.

DTSTransformFlag_AllowSignChange 32
(x0020)

Allows the transfer to proceed even in the
event that the source and destination have a
signed versus unsigned mismatch. As with
DTSTransformFlag_AllowDemotion, errors
may occur during a transform.

DTSTransformFlag_AllowStringTruncation 4 Allows column (w)char or byte data to be
truncated silently (for example, when moving
data from a char(60) to a char(40) column).

DTSTransformFlag_Default 63
(x003F)

Includes the default flag combination of
DTSTransformFlag_AllowDemotion,
DTSTransformFlag_AllowNullChange,
DTSTransformFlag_AllowNumericTruncation,
DTSTransformFlag_AllowPromotion,
DTSTransformFlag_AllowSignChange and
DTSTransformFlag_AllowStringTruncation.

DTSTransformFlag_ForceConvert 128
(x0080)

Allows the conversion to proceed at all times,
even when the source and destination types
are fundamentally different. Does a bitwise
copy when no other conversion is
appropriate.

DTSTransformFlag_PreserveDestRows 256
(x0100)

Causes the data pump to not clear the
destination row storage at the end of row
processing. This allows the destination row
values to be reused by the next
transformation.

DTSTransformFlag_RequireExactType 64
(x0040)

Requires that the data type of the destination
column be exactly the same as the data type
of the source column (including length or
precision and scale, fixed versus variable
length, sign, and nullability).

DTSTransformFlag_Strict 0 Specifies no flags; the conversion must be
between exact types, although conversions
between string and nonstring datatypes is
allowed and may cause errors. This value
may be overridden by
DTSTransformFlag_RequireExactType, which
is even stricter.

See Also

Transformation2 Object

TransformFlags Property

DTS Programming (SQL Server 2000)

DTSTransformPhaseEnum
The DTSTransformPhaseEnum constants specify the available Data Transformation Services (DTS) data pump transformation
phases.

Constant Value Description
DTSTransformPhase_All 255 (x00FF) Bitmask for all transform

phases.
DTSTransformPhase_None 0 Specifies no phases.
DTSTransformPhase_OnBatchComplete 64 (x0040) Occurs after a fast load batch

completes, on success or
failure.

DTSTransformPhase_OnInsertFailure 32 (x0020) Occurs after an Insert
operation or a data driven
query fails.

DTSTransformPhase_OnInsertSuccess 16 (x0010) Occurs after an Insert
operation or a data driven
query succeeds.

DTSTransformPhase_OnPumpComplete 128 (x0080) Occurs once at end of Data
Transformation Services (DTS)
data pump operation.

DTSTransformPhase_OnTransformFailure 8 Occurs after transformation
fails (for example, a
conversion error).

DTSTransformPhase_PostSourceData 2 Occurs after all source rows
processed.

DTSTransformPhase_PreSourceData 1 Occurs before first source row
processed.

DTSTransformPhase_Transform 4 Occurs after source row is
fetched, performs the primary
transformation processing.

See Also

CurrentPhase Property

TransformPhases Property

DTS Programming (SQL Server 2000)

DTSTransformStatus
The DTSTransformStatus constants return values (int or long) from the ActiveXScriptTask object transformation.

Constant Value Description
DTSTransformStat_AbortPump 16384

(x4000)
Processing is terminated with the current row
and DTSTransformExec_AbortPump is
returned from IDTSDataPump::Execute.

DTSTransformStat_DeleteQuery 64
(x0040)

The executed DELETE statement is passed to
the SetRowsetAndQueries property on the
destination, with values from the currently
transformed destination row.

DTSTransformStat_DestDataNotSet 512
(x0200)

The current row is not written to the
destination only if all transformations return
this value. If present in the returned status of
a transformation, it is removed before being
passed to the next transformation through
DTSTransformPhaseInfo.TransformStatus.

DTSTransformStat_Error 8192
(x2000)

Indicates the transformation encountered an
error.

DTSTransformStat_ErrorSkipRow 8194
(x2002)

Terminate further processing of this row due
to error and call the error sink, but do not
write to exception file.

DTSTransformStat_ExceptionRow 8448
(x2100)

Terminate further processing of this row as
an exception and call the error sink, and write
this row to exception file.

DTSTransformStat_Info 4096
(x1000)

Success with additional information, which
the application can process further by
reading its pvTransformUserData value (if it
shares that knowledge with the transform
server) or through OLE DB error records.

DTSTransformStat_InsertQuery 16
(x0010)

Executes the INSERT statement passed to the
SetRowsetAndQueries property on the
destination, with values from the currently
transformed destination row.

DTSTransformStat_NoMoreRows 32768
(x8000)

The current row is the last to be processed.
The current row is processed as specified by
other transformation status values. This value
differs from DTSTransformStat_AbortPump
in that no error is raised.

DTSTransformStat_OK 1 Default conversions (if any) succeeded. Write
the row to destination if specified, without
calling any error handlers.

DTSTransformStat_OKInfo 4097
(x1001)

Write row if destination specified; also call
ErrorSink with information.

DTSTransformStat_SkipFetch 4 Do not fetch the next row; reexecute all
transforms against the current source and
destination rows.

DTSTransformStat_SkipInsert 8 Do not write the current row to the
destination.

DTSTransformStat_SkipRow 2 Terminate further processing of this row, for
nonerror reasons.

DTSTransformStat_SkipRowInfo 4098
(x1002)

Terminate further processing of this row, and
call ErrorSink with information.

DTSTransformStat_UpdateQuery 32
(x0020)

Executes the UPDATE statement passed to the
SetRowsetAndQueries property on the
destination, with values from the currently
transformed destination row.

DTSTransformStat_UserQuery 128
(x0080)

Executes the user query statement passed to
SetRowsetAndQueries on the destination,
with values from the currently transformed
destination row.

See Also

IDTSDataPumpErrorSink

DTS Programming (SQL Server 2000)

DynamicPropertiesTaskError
The DynamicPropertiesTaskError constants specify codes used to report errors in DynamicPropertiesTask object execution.

Constant Value Description
DTSDynamicProperties_E_AssignmentIndexOutOfRange 1005

(x03ED)
An index for
the
Assignments
collection is
out of range.

DTSDynamicProperties_E_ConnectionIdNotFoundInPackage 1009
(x03F1)

No
Connection2
object with the
specified
ConnectionID
was found.

DTSDynamicProperties_E_CouldNotOpenFileForReading 1012
(x03F4)

The data file
specified as
the property
value source
could not be
opened for
reading.

DTSDynamicProperties_E_EnvironmentVariableNotFound 1015
(x03F7)

The
environment
variable
specified as
the property
value source
could not be
found.

DTSDynamicProperties_E_ExceededMaximumPropertySize 1016
(x03F8)

The length of a
string property
value exceeds
the maximum
(256
characters).

DTSDynamicProperties_E_GlobalVariableNotFoundInPackage 1013
(x03F5)

The global
variable
specified as
the property
value source
does not exist
in the package.

DTSDynamicProperties_E_InvalidAssignmentIndexVariantType 1018
(x03FA)

The Variant
specified for
an
Assignments
collection
index does not
have a type
valid for that
purpose.

DTSDynamicProperties_E_InvalidSourceType 1002
(x03EA)

The value
specified for
the
SourceType
property is not
defined.

DTSDynamicProperties_E_KeyNotFound 1006
(x03EE)

The key
specified as
the property
value source
could not be
found in the
.ini file.

DTSDynamicProperties_E_NoEnvironmentVariableProvided 1014
(x03F6)

No
environment
variable was
specified as
the property
value source,
although one
was required.

DTSDynamicProperties_E_NoFileNameProvided 1003
(x03EB)

No data file
name was
specified as
the property
value source,
although one
was required.

DTSDynamicProperties_E_NoGlobalVariableProvided 1008
(x03F0)

No global
variable was
specified as
the property
value source,
although one
was required.

DTSDynamicProperties_E_NoKeyProvided 1007
(x03EF)

No .ini file key
was specified
as the property
value source,
although one
was required.

DTSDynamicProperties_E_NoPropertyValueProvided 1011
(x03F3)

No property
value could be
retrieved from
the .ini file.

DTSDynamicProperties_E_NoRowsReturnedFromQuery 1010
(x03F2)

No rows were
returned from
the query that
was the
property value
source.

DTSDynamicProperties_E_NoSectionProvided 1004
(x03EC)

No .ini file
section was
specified,
although one
was required.

DTSDynamicProperties_E_PackagePropertyNotFound 1001
(x03E9)

The specified
package
property
whose value
was to be
changed is not
defined.

DTSDynamicProperties_E_SectionNotFound 1005
(x03ED)

The specified
section could
not be found
in the .ini file.

See Also

DynamicPropertiesTask Object

DTS Programming (SQL Server 2000)

DynamicPropertiesTaskSourceType
The DynamicPropertiesTaskSourceType constants are used with the SourceType property to specify the type of source object
that provides the value to which a Data Transformation Services (DTS) package object property will be set by the
DynamicPropertiesTask object.

Symbol Value Description
DTSDynamicPropertiesSourceType_Constant 4 Source is a

constant.
DTSDynamicPropertiesSourceType_DataFile 5 Source is the

contents of a data
file.

DTSDynamicPropertiesSourceType_EnvironmentVariable 3 Source is the value
of a system
environment
variable.

DTSDynamicPropertiesSourceType_GlobalVariable 2 Source is the value
of a Data
Transformation
Services (DTS)
global variable
within the package.

DTSDynamicPropertiesSourceType_IniFile 0 Source is the value
of a key within an
.ini file.

DTSDynamicPropertiesSourceType_Query 1 Source is a value
returned by an SQL
query.

See Also

SourceType Property

DTS Programming (SQL Server 2000)

Data Pump Interfaces
The Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) data pump is an OLE DB provider that provides the
interfaces and methods to import, export, and transform data from an OLE DB data source to an OLE DB destination. The DTS data
pump is the engine of the Transform Data task, Data Driven Query task, and Parallel Data Pump task, which is accessed through
the ParallelDataPumpTask object.

These tasks create rowsets on the source and destination connections, then create an instance of the data pump to move rows
between the source and destination rowsets. They also add instances of transformations to the data pump instance, transforming
individual row data as it is moved from source to destination.

The data pump provides an extensible COM-based architecture that allows custom applications to perform complex data
validations and transformations as data moves from source to destination. Third-party applications can also extend the data
pump by creating custom COM objects that implement the IDTSDataPumpTransform interface to make use of the full power of
Microsoft Win32® and COM. This allows an application to avoid the overhead of converting native data types to OLE DB variant
data types and then converting them back again.

Data pump interfaces are implemented using Microsoft Visual C++® applications that include Dtspump.h.

Using the Data Pump Interfaces

An application must call IDTSDataPump interface methods in order. For example, these methods must be called in the following
order:

1. SetRowsets

2. AddTransform

3. Execute

Other methods on the interface may be called in any order prior to a call to the Execute method. Because the data pump
represents a single execute operation, the data pump is not reentrant within calls. It returns an error if it is called as though it were
reentrant.

Calls to IDTSDataPump result in calls to the IDTSDataPumpTransform interfaces in the following sequence:

1. Create an instance of the transformation server object and associated properties, if necessary.

2. Call IDTSDataPump::AddTransform.

3. Call IPersistPropertyBag::Load, if IPropertyBag is specified.

4. Call IDTSDataPumpTransform::Initialize.

5. Call IDTSDataPumpTransform::AddVariable ("DTSErrorRecords").

6. Call IDTSDataPumpTransform::ValidateSchema.

7. Call IDTSDataPump::Execute.

8. Call IDTSDataPumpTransform::AddVariable, including any object except DTSErrorRecords.

9. Call IDTSDataPumpTransform::Execute.

DTS Programming (SQL Server 2000)

IDTSDataPump
The IDTSDataPump interface is used to specify OLE DB source and destination rowsets to be used, add transformations to the
data pump, and execute the transfer of data by the data pump.

The AddTransform method returns an error if IDTSDataPump::SetRowsets has not been called, and
IDTSDataPump::SetRowsets returns an error if any transformations have been added due to the
IDTSDataPumpTransform::ValidateSchema method having been executed against them previously.
IDTSDataPump::InitNew reinitializes the IDTSDataPump object.

DTS Programming (SQL Server 2000)

IDTSDataPump::AddTransform
The AddTransform method adds a transformation to the data pump.

Syntax

HRESULT AddTransform (
LPBYTE pvUserData,
LPCDTSTransformColumnsSpecification pColumns,
DTSGuid ServerClsid,
VARIANT ServerParameters,
DTSTransformFlags dwFlags,
IStorage *pIStorage);

Argument Description
pvUserData [in] Data that is passed to the event sink if an event occurs

during a transformation.
pColumns [in] Source and destination columns.
ServerClsid [in] COM server ProgID, CLSID, or Iunknown.
ServerParameters [in] Server parameters for the current transformation.
dwFlags [in] Transformation column-validation flags.
*pIStorage [in] Pointer to persistent storage of transformation properties.

Remarks

The data pump calls CoCreateInstance on the transformation object specified by ServerClsid. The transformation specified must
support the IDTSDataPumpTransform interface and is responsible for verifying that the source and destination column values
can be converted as specified.

The variant ServerParameters may be of type VT_UNKNOWN. If ServerParameters has the type VT_UNKNOWN, then the
VT_UNKNOWN pointer is used to access the IDTSDataPumpTransform interface using QueryInterface. This allows the data
pump to use custom COM objects that have not been previously registered on the system, making it easier to distribute custom
transformations. This is also used when providing a transformation server whose properties must be set programmatically by the
data pump consumer prior to adding the transformation. In this case, the consumer creates an instance of the object, calls
IUnknown::QueryInterface, and sets the properties.

If an IUnknown pointer is passed to the data pump, the data pump determines whether the pointer has previously been passed,
and if so, appropriately handles calling OnNextRow only one time, regardless of how many times that pointer has been passed
as a transformation server. In this case, ServerParameters specifies the shared object to handle. This is useful for objects that need
to perform specific row-by-row aggregations without potentially conflicting with named variables added by AddTransform.

The transformation validation is controlled by the DTSTransformFlags constants specified in the parameter list. If different
validations are required for different columns of the row, then a separate transformation must be added.

ServerClsid allows specification of the CLSID of the transformation server as a CLSID, ProgID, or as an existing IUnknown object
implementing the IDTSDataPumpTransform interface.

pIStorage is used to set the properties of the transformation server, after an instance of the transformation is created, if necessary.

pvUserData allows information about a specific transformation to be passed to an event sink. This pointer is not passed to the
transformation server; ServerParameters performs that task.

Transformations are always invoked in the order they are added.

See Also

DTSTransformFlags

DTS Programming (SQL Server 2000)

IDTSDataPump::AddTransformVariable
The AddTransformVariable method allows the data pump consumer to pass its global variables through to the executing
transformation server.

Syntax

HRESULT AddTransformVariable(
LPCOLESTR pwzName,
BOOL bGlobal,
VARIANT Variable);

Argument Description
pwzName [in] Variable name
bGlobal [in] For Microsoft® ActiveX® scripts, indicates whether this variable's

methods must be qualified by the object name
Variable [in] Variable value, passed to and updatable by the transformation

Remarks

This method results in a call to IDTSDataPumpTransform::AddVariable during IDTSDataPump::Execute initialization, before
transformations are actually executed. The data pump itself does not operate on these variables, but simply passes them through.
If bGlobal is TRUE for an ActiveX script, then the methods of this variable are considered global and can be called directly, without
qualifying by object name.

DTS Programming (SQL Server 2000)

IDTSDataPump::Execute
The Execute method executes the data pump and any transformations that have been defined.

Syntax

HRESULT Execute (
LPBYTE pvUserData,
ULARGE_INTEGER *puliRowsComplete,
ULONG *pulErrorRows,
LPDTSExecuteStatus pExecStatus);

Argument Description
pvUserData [in] User data passed back to event and error sinks
*puliRowsComplete [out] Total number of source rows processed, including those

skipped
*pulErrorRows [out] Total number of error rows encountered
pExecStatus [out] Pump return status

Remarks

Control is not returned to the caller until the last row has been processed or the data pump fails. Calls to the Execute method of
each transformation server are made for each row in the order in which the transformations were added. Structured exception
handling is placed around each call. If the called server returns an exception (for example, an access violation), an error is
reported. The data pump reports all errors through the IDTSDataPumpErrorSink::OnTransformError event.

The Execute method returns DTSExecuteStatus constant values. Execute returns E_FAIL if it is terminated;
DB_E_ERRORSOCURRED if the maximum error count is exceeded; DB_S_ERRORSOCCURRED if errors occurred, but the maximum
error count is not exceeded; and NOERROR if it completes with no errors.

See Also

DTSExecuteStatus

IDTSDataPumpErrorSink::OnTransformError

DTS Programming (SQL Server 2000)

IDTSDataPump::GetRowsets
The GetRowsets method is used to return interface pointers to the current source rowset and destination rowsetchange object.

Syntax

HRESULT GetRowsets (
IRowset **ppSrcRowset,
IRowsetChange **ppDestRowsetChange);

Argument Description
**ppSrcRowset [out] Variable to receive a pointer to the source rowset
**ppDestRowsetChange
[out]

Variable to receive a pointer to the destination
rowsetchange object

Remarks

GetRowsets allows a consumer application to reuse an instance of the data pump.

DTS Programming (SQL Server 2000)

IDTSDataPump::InitNew
The InitNew method is used to reset the data pump between successive executions.

Syntax

HRESULT InitNew();

DTS Programming (SQL Server 2000)

IDTSDataPump::SetFetchBufferSize
The SetFetchBufferSize method specifies the size of the buffer that the data pump uses to hold rows fetched from the source
using the OLE DB IRowset::GetNextRows method.

Syntax

HRESULT SetFetchBufferSize (
ULONG cIn);

Argument Description
cIn [in] Size of the GetNextRows HROW buffer

Remarks

The default buffer size is 1.

DTS Programming (SQL Server 2000)

IDTSDataPump::SetInsertCommitSize
The SetInsertCommitSize method specifies the number of rows inserted at a data destination between commit operations.

Syntax

HRESULT SetInsertCommitSize (
ULONG cIn);

Argument Description
cIn [in] Number of successful rows inserted between commit operations, if

supported by the OLE DB provider.

Remarks

The SetInsertCommitSize default setting is 0.

DTS Programming (SQL Server 2000)

IDTSDataPump::SetMaximumErrorRowCount
The SetMaximumErrorRowCount method specifies the maximum number of errors that can occur before the data pump fails.

Syntax

HRESULT SetMaximumErrorRowCount (
ULONG cIn);

Argument Description
cIn [in] Maximum number of allowable error rows

Remarks

By default, the data pump fails on the first error.

DTS Programming (SQL Server 2000)

IDTSDataPump::SetProgressRowCount
The SetProgressRowCount method specifies how often notifications should be sent using the connection point.

Syntax

HRESULT SetProgressRowCount (
ULONG cIn);

Argument Description
cIn [in] Number of rows inserted between progress notifications

Remarks

If no event sink has been created, then no notifications are sent. If an event sink exists and SetProgressRowCount is not called,
progress notifications are sent every 1000 rows.

DTS Programming (SQL Server 2000)

IDTSDataPump::SetRowsets
The SetRowsets method specifies the source and destination rowsets to be used by the data pump.

Syntax

HRESULT SetRowsets (
IRowset *pSrcRowset,
IRowsetChange *pDestRowsetChange);

Argument Description
*pSrcRowset [in] Pointer to the source rowset
*pDestRowsetChange [in] Pointer to the destination rowset

Remarks

The consumer application must open the rowsets before the data pump can use them.

The OLE DB provider must support DBPROP_UPDATABILITY: DPBROP_UP_INSERT.

DTS Programming (SQL Server 2000)

IDTSDataPump2
The IDTSDataPump2 interface extends the IDTSDataPump interface and supports features added to the Data Transformation
Services (DTS) data pump for Microsoft® SQL Server™ 2000. The new features supported by IDTSDataPump2 are:

Support for execution of a single row or set of rows.

Support for processing rows on a different thread from which previous rows in the rowset were processed.

Support for multiphased operation of transformation servers

DTS Programming (SQL Server 2000)

IDTSDataPump2::AddTransform2
The AddTransform method adds a new Transform with extended multiphase capability to the data pump.

Syntax

HRESULT AddTransform2(
 LPCOLESTR pwzName,
 LPBYTE pvUserData,
 LPCDTSTransformColumnsSpecification pColumns,
 DTSGuid ServerClsid,
 VARIANT ServerParameters,
 DTSTransformFlags dwFlags,
 DTSTransformPhaseEnum ePhases,
 IStorage *pIStorage);

Argument Description
pwzName [in] Transformation name
pvUserData [in] Data that is passed to the event sink if an event occurs

during a transformation
pColumns [in] Structure specifying source and destination columns
ServerClsid [in] ProgID or CLSID of transformation, which can be

Iunknown
ServerParameters [in] Server parameters for the current transformation
dwFlags [in] Transformation column-validation flags
ePhases [in] Phases for which the transformation will be called
pIStorage [in] Pointer to persistent storage of transformation properties

Remarks

The data pump calls CoCreateInstance on the transformation object specified by ServerClsid. The transformation specified must
support the IDTSDataPumpTransform2 interface and, by inheritance, IDTSDataPumpTransform. It must respond to
QueryInterface for both IDTSDataPumpTransform2 and IDTSDataPumpTransform.

See Also

IDTSDataPump::AddTransform

IDTSDataPumpTransform2 Interface

DTS Programming (SQL Server 2000)

IDTSDataPump2::ExecuteComplete
The ExecuteComplete method terminates a sequence of single-row data pump executions.

Syntax

HRESULT ExecuteComplete (
 LPDTSExecuteInfo pExecInfo);

Argument Description
pExecInfo [in/out] Execution info to be passed into and returned from the data

pump

Remarks

To execute one or more rows of the source rowset, the data pump caller first calls ExecuteInit, calls ExecuteRow for each row to
be processed, and then calls ExecuteComplete. If ExecuteComplete is not called, Insert batches may not be completed
successfully and transformation server processing may not be correctly cleaned up.

See Also

IDTSDataPump2::ExecuteInit

IDTSDataPump2::ExecuteRow

IDTSDataPump2::GetExecuteInfo

DTS Programming (SQL Server 2000)

IDTSDataPump2::ExecuteInit
The ExecuteInit method initiates a sequence of single-row data pump executions.

Syntax

HRESULT ExecuteInit (
 LPBYTE pvUserData,
 BOOL *pbEndOfRowset,
 LPDTSExecuteInfo pExecInfo);

Argument Description
pvUserData [in] Data that is passed to an event sink if an event occurs
pbEndOfRowset [out] TRUE if at end of source rowset
pExecInfo [in/out] Execution info to be passed into and returned from the

data pump

Remarks

To execute one or more rows of the source rowset, the data pump caller first calls ExecuteInit, calls ExecuteRow one or more
times, and then calls ExecuteComplete. ExecuteInit returns TRUE in pbEndOfRowset if the end of the rowset has already been
reached.

See Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteRow

IDTSDataPump2::GetExecuteInfo

DTS Programming (SQL Server 2000)

IDTSDataPump2::ExecuteRow
The ExecuteRow method causes the data pump to process a single-row of the source rowset.

Syntax

HRESULT ExecuteRow (
 BOOL *pbEndOfRowset,
 LPDTSExecuteInfo pExecInfo);

Argument Description
pbEndOfRowset [out] TRUE if at end of source rowset
pExecInfo [in/out] Execution information to be passed into and returned from

the data pump

Remarks

To execute one or more rows of the source rowset, the data pump caller calls ExecuteInit, calls ExecuteRow for each row to be
processed, and then calls ExecuteComplete. ExecuteRow returns TRUE in pbEndOfRowset if the end of the rowset has been
reached.

If MaximumErrorRowCount is greater than 0, ExecuteRow continues until a row is successfully processed or
MaximumErrorRowCount is exceeded.

See Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteInit

IDTSDataPump2::GetExecuteInfo

DTS Programming (SQL Server 2000)

IDTSDataPump2::GetExecuteInfo
The GetExecuteInfo returns information about data pump execution.

Syntax

HRESULT GetExecuteInfo(
 LPDTSExecuteInfo pExecInfo);

Argument Description
pExecInfo [in/out] Execution information to be passed into and returned from

the data pump

Remarks

GetExecuteInfo may be called at any point after ExecuteInit.

pExecInfo is a pointer to a DTSExecuteInfo structure. This structure is used to pass the following information to and from the
data pump:

Total number of source rows processed.

Total number of error rows encountered.

Data pump execution status.

Transform status, used to select the data driven query to be executed.

Handles to input source and destination chapters, used to specify the chapters where hierarchical rowset processing occurs.

Handles to output source and destination rows, returned by the data pump to enable caller to specify where rowset
processing should resume at next ExecuteRow call.

See Also

IDTSDataPump2::ExecuteRow

DTS Programming (SQL Server 2000)

IDTSDataPump2::GetOptions
The GetOptions method returns extended data pump processing options.

Syntax

HRESULT GetOptions(
 LPDTSDataPumpOptions peOptions);

Argument Description
peOptions [out] Extended data pump processing options

Remarks

For more information about the extended data pump processing options, see IDTSDataPump2::SetOptions.

DTS Programming (SQL Server 2000)

IDTSDataPump2::SetExecuteThreadComplete
The SetExecuteThreadComplete method completes processing that must be done on the current thread, prior to the data
pump being called on another thread.

Syntax

HRESULT SetExecuteThreadComplete();

Remarks

Some transformations may generate a thread-specific state that requires cleanup to be executed on that thread. For example, if
ExecuteInit or ExecuteRow is called on a worker thread that is not the same as that on which ExecuteComplete is called,
SetExecuteThreadComplete must be called on the worker thread when it has completed its operation (prior to
ExecuteComplete being called).

Currently this is specific to the Microsoft® ActiveX® Script transformation, due to the requirement that IActiveScript execution
state cannot be transferred across threads. In ActiveX Script transformations, any variables in the script, including global variables
outside function scope, will be independent across multiple threads calling ExecuteRow. Calling this method causes
IDTSDataPumpTransform2::SetExecuteThreadComplete to be called for all transformations supporting the
IDTSDataPumpTransform2 interface.

See Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteInit

IDTSDataPump2::ExecuteRow

DTS Programming (SQL Server 2000)

IDTSDataPump2::SetOptions
The SetOptions method sets extended data pump processing options.

Syntax

HRESULT SetOptions(
 DTSDataPumpOptions eOptions);

Argument Description
eOptions [in] Extended data pump processing options

Remarks

The extended data pump processing options are:

Symbol Value Description
DTSDataPumpOpt_Default 0 Normal processing occurs.
DTSDataPumpOpt_AlwaysCommitFinalBatch 1 The final batch is committed

even if the data pump fails. This
is to support restartability.

See Also

IDTSDataPump2::GetOptions

DTS Programming (SQL Server 2000)

IDTSDataPumpErrorSink
The IDTSDataPumpErrorSink interface provides optional error sinks for the source, transformations, or destination to data
pump consumers. Only one of the error sink methods is called for each row, and the method called indicates where the error was
encountered.

The error sinks determine the appropriate response to the error. The response is one of the following:

Terminate the data pump.

Increment an error count and continue if the error count does not exceed the value of the MaximumErrorCount property.

Continue the data pump operation.

The error information is written to the exception file and the package OnError event is raised if a handler has been provided.

See Also

Handling DTS Events and Errors

MaximumErrorCount Property

OnError Event

DTS Programming (SQL Server 2000)

IDTSDataPumpErrorSink::OnBindingError
The OnBindingError method indicates that a binding error occurred in a call to the OLE DB IAccessor::CreateAccessor method.

Syntax

HRESULT OnBindingError (
 LPBYTE pvExecUserData,
 HRESULT hrError,
 LPCDTSTransformColumnInfo pSourceRow,
 const DBBINDSTATUS *pSourceDBBindStatus,
 LPCDTSTransformColumnInfo pDestinationRow,
 const DBBINDSTATUS *pDestinationDBBindStatus);

Argument Description
pvExecUserData [in] User data pointer passed to IDTSDataPump::Execute.
hrError [in] Error code from CreateAccessor: specifies the

destination if pDestinationRow, the source if
pSourceRow.

pSourceRow [in] Pointer to the source row and binding information.
pSourceDBBindStatus [in] Pointer to source binding status returns.
pDestinationRow [in] Pointer to the destination row and binding information;

NULL if from a source binding error.
pDestinationDBBindStatus
[in]

Pointer to destination binding status returns; NULL if
from a source binding error.

Remarks

OnBindingError can be useful when designing custom transformation servers. It is primarily used to diagnose binary large
object (BLOB)-related problems.

DTS Programming (SQL Server 2000)

IDTSDataPumpErrorSink::OnDestinationError
The OnDestinationError method indicates that an error occurred during InsertRow.

Syntax

HRESULT OnDestinationError (
 LPBYTE pvExecUserData,
 LPDTSTransformColumnInfo pSourceRow,
 LPDTSTransformColumnInfo pDestinationRow,
 HRESULT hrError,
 ULARGE_INTEGER uliRow,
 ULONG cErrors,
 BOOL *pbAbort);

Argument Description
pvExecUserData [in] User data pointer passed to IDTSDataPump::Execute.
pSourceRow [in] Pointer to the source row and binding information; NULL if

GetNextRows or GetData failed.
PDestinationRow [in] Pointer to the destination row and binding information;

NULL if prior to the execution of the transformation.
hrError [in] Error code from the OLE DB or system call.
uliRow [in] Number of the row that failed.
cErrors [in] Number of error rows encountered during the

transformation, including the current row.
pbAbort [out] Set to TRUE by the error sink if this error should terminate

IDTSDataPump::Execute. Otherwise, Execute continues
until MaximumErrorRowCount is exceeded.

Remarks

OnDestinationError is called when an error is encountered sending a row to the destination using IRowsetChange::InsertRow.
Operation of the data pump continues unless the pbAbort flag is set to TRUE or the maximum allowable error count is exceeded.

DTS Programming (SQL Server 2000)

IDTSDataPumpErrorSink::OnSourceError
The OnSourceError method indicates that an error occurred during a GetNextRows or GetData operation.

Syntax

HRESULT OnSourceError (
 LPBYTE pvExecUserData,
 LPDTSTransformColumnInfo pSourceRow,
 HRESULT hrError,
 ULARGE_INTEGER uliRow,
 ULONG cErrors,
 BOOL *pbAbort);

Argument Description
pvExecUserData [in] User data pointer passed to IDTSDataPump::Execute.
pSourceRow [in] Pointer to the source row and binding information; NULL if

GetNextRows or GetData failed.
hrError [in] Error code from the OLE DB or system call.
uliRow [in] Number of the row that failed.
cErrors [in] Number of error rows encountered during the

transformation, including the current row.
pbAbort [out] Set to TRUE by the error sink if this error should terminate

IDTSDataPump::Execute. Otherwise, Execute continues
until MaximumErrorRowCount is exceeded.

Remarks

OnSourceError is called when an error is encountered acquiring a source row. This is generally considered to be a fatal data
pump error, and the pbAbort flag is set to TRUE.

DTS Programming (SQL Server 2000)

IDTSDataPumpErrorSink::OnTransformError
The OnTransformError method indicates that an error occurred during one or more transformations.

Syntax

HRESULT OnTransformError (
 LPBYTE pvExecUserData,
 LPBYTE pvTransformUserData,
 IDTSDataPumpTransform *pTransformServer,
 LPDTSTransformColumnInfo pSourceRow,
 DTSTransformStatus TransformStatus,
 HRESULT hrTransform,
 ULARGE_INTEGER uliRow,
 ULONG cErrors,
 BOOL *pbAbort);

Argument Description
pvExecUserData [in] User data pointer passed to IDTSDataPump::Execute.
pvTransformUserData [in] User data pointer passed to

IDTSDataPump::AddTransform in
DTSTransformColumnsSpecification parameter.

pTransformServer [in] Pointer to the transformation server returning the error.
pSourceRow [in] Pointer to the source row and binding information.
TransformStatus [in] Transformation returned status code.
hrTransform [in] DTSDataPumpTransform::Execute or

DTSDataPumpTransform2::ProcessPhase HRESULT
return code.

uliRow [in] Number of the row that failed.
cErrors [in] Number of error rows encountered during the

transformation, including the current row.
pbAbort [out] Set to TRUE by the error sink if this error should

terminate IDTSDataPump::Execute. Otherwise,
Execute continues until MaximumErrorRowCount is
exceeded.

Remarks

OnTransformError is called when an error is encountered transforming a row. Such an error may be encountered in one of the
following ways:

The transformation server encounters data that cannot be transformed. It reports this by returning an error transform
status. This is considered normal and operation of the data pump continues unless the pbAbort flag is set to TRUE or the
maximum allowable error count is exceeded.

The transformation server returns an error in the HRESULT from DTSDataPumpTransform::Execute. This is considered a
fatal data pump error.

The transformation server returns an exception. Any such exception is reported by the data pump as a normal row error,
and operation continues.

DTS Programming (SQL Server 2000)

IDTSDataPumpProgressSink
The IDTSDataPumpProgressSink interface exposes the OnIntervalComplete method, which is a progress indicator event sink.

DTS Programming (SQL Server 2000)

IDTSDataPumpProgressSink::OnIntervalComplete
The OnIntervalComplete method is a progress indicator event sink that a custom application can use to indicate progress
during a transformation.

Syntax

HRESULT OnIntervalComplete (
LPBYTE pvExecUserData,
ULARGE_INTEGER uliRowsComplete,
BOOL *pbAbort);

Argument Description
pvExecUserData [in] User data pointer passed to IDTSDataPump::Execute.
uliRowsComplete [in] Total source rows processed during the current

transformation, including those skipped.
*pbAbort [out] Indicates whether to terminate transformation execution; set

to TRUE by the event sink to terminate
IDTSDataPump::Execute.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform
The IDTSDataPumpTransform interface is retrieved and its methods are called by the data pump to perform individual
transformations. All custom transformation COM objects must support the IDTSDataPumpTransform interface.

An instance of the IDTSDataPumpTransform interface is created by the ServerClsid being passed to
IDTSDataPump::AddTransform. ServerParameters allows the data pump consumer to create a single instance of an
IDTSDataPumpTransform implementation and pass it to multiple IDTSDataPump::AddTransform calls. This is used by
custom transformation servers and can be used for internal operations as performing aggregations. The custom transformation
server should track this using the pvTransformServerData parameter to optimize operations such as AddVariable,
OnRowComplete, and so on.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::AddVariable
The AddVariable method adds a variable to the execution context of a transformation server. AddVariable is always called one
time before ValidateSchema to add the IDTSErrorRecords object.

Syntax

HRESULT AddVariable (
LPBYTE pvTransformServerData,
LPCOLESTR pwzName,
BOOL bGlobal,
VARIANT Variable);

Argument Description
pvTransformServerData [in] Transform server state data
pwzName [in] Variable name
bGlobal [in] For Microsoft® ActiveX® scripts, indicates whether the

methods of this variable must be qualified by the object
name

Variable [in] Variable value; passed to and updatable by the
transformation server

Remarks

AddVariable allows an application variable to be passed through to the transformation process. The data pump always calls this
method to add the DTSErrorRecords object immediately after a call to IDTSDataPumpTransform::Initialize and before a call
to ValidateSchema. This allows ValidateSchema to add errors to the OLE DB error records collection for the thread if columns
are found to be in error.

For objects to be used in ActiveX scripts, the variable should be ignored if the variant is not of type VT_DISPATCH. This allows all
variables to be passed to all transformation servers. The bGlobal parameter indicates whether the properties and methods of the
variable are to be added to the global namespace of the script; if so, the method can be called directly, instead of requiring
qualification using the object name. Data pump-generated variables (for example, DTSErrorInfo, and the DTSSource and
DTSDestination column collections) are always added with this flag set to FALSE to minimize the likelihood of name conflict.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::Execute
The Execute method executes the transformation for a single row.

Syntax

HRESULT Execute (
LPBYTE pvTransformServerData,
LPCDTSTransformColumnInfo pSrcColumnInfo,
LPDTSTransformColumnInfo pDestColumnInfo,
IDTSDataConvert *pIDTSDataConvert,
LPDTSTransformStatus peTransformStatus);

Argument Description
pvTransformServerData [in] Transformation server state data
pSrcColumnInfo [in] Source column and row data
pDestColumnInfo [in/out] Destination column and row data
pIDTSDataConvert [in] Pointer to the data conversion interface
peTransformStatus [out] Result of the transformation

Remarks

This function is called by the data pump and executes the specified transformation. The IDTSDataConvert interface is supplied to
provide a DTS-compatible conversion utility. For more information, search include file dtspump.h for IDTSDataConvert.
dtspump.h is installed by default to X:\Program Files\Microsoft SQL Server\80\Tools\DevTools\include\.

Execute returns NO_ERROR except when a fatal failure occurs. When Execute returns an error, the data pump terminates.
Normal errors such as data violations should be handled as a returned peTransformStatus, which results in a call to
IDTSDataPumpErrorSink::OnTransformError. Because some OLE DB providers may have restrictions on the number of storage
objects that may be open, Execute should release any BLOB storage objects that do not need to be held during the destination
insert upon completion, instead of waiting for OnRowComplete.

Column data should be written in the buffer referenced by DTSColumnData.pvData of the element for the destination column,
at the offset specified by DBBINDING.obValue. You can instead store a pointer to the data at this location if you add the
DBTYPE_BYREF flag to DBBINDING.wType. For more information and a description of these fields, see Column Information
Structures in DTS Transformations.

Transformations that implement both IDTSDataPumpTransform and IDTSDataPumpTransform2 typically implement
Execute by calling IDTSDataPumpTransform2::ProcessPhase with NULL for the pPhaseInfo parameter.

See Also

IDTSDataPumpTransform2::ProcessPhase

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::Initialize
The Initialize method allows the transformation server to initialize its state for the current transformation.

Syntax

HRESULT Initialize (
 LPCOLESTR pwzName,
 VARIANT ServerParameters,
 LPBYTE *ppvTransformServerData);

Argument Description
pwzName [in] Transformation name
ServerParameters [in] Parameters to server for this transformation
ppvTransformServerData [out] Transformation server state data

Remarks

An instance of the transformation server object is created by ServerClsid and is passed to IDTSDataPump::AddTransform,
unless this is an IUnknown object.

ServerParameters allows the Data Transformation Services (DTS) data pump to create an instance of an
IDTSDataPumpTransform implementation and pass it to multiple IDTSDataPump::AddTransform calls. This is only used by
custom transformation servers and can be helpful for internal operations such as aggregations. The transformation server should
track this in the pvTransformServerData parameter to optimize operations such as AddVariable, OnRowComplete, and so on.

The output ppvTransformServerData is passed to all subsequent methods, so a single instance of a transformation server can be
used to implement multiple separate transformations. Generally, you will need to allocate the storage whose reference you return
in ppvTransformServerData. You need to release the storage in OnTransformComplete, or in ValidateSchema, if
ValidateSchema returns an error.

See Also

IDTSDataPump::AddTransform

IDTSDataPumpTransform::AddVariable

IDTSDataPumpTransform::OnRowComplete

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::OnRowComplete
The OnRowComplete method is called after every successful fetch operation, allowing the transformation server to free per-row
allocations and client-owned data in both source and destination rows.

Syntax

HRESULT OnRowComplete (
LPBYTE pvTransformServerData,
LPDTSTransformColumnInfo pSrcColumnInfo,
LPDTSTransformColumnInfo pDestColumnInfo,
IDTSDataConvert *pIDTSDataConvert,
DTSTransformStatus eTransformStatus,
HRESULT hrInsert);

Argument Description
pvTransformServerData [in] Transform server state data
pSrcColumnInfo [in/out] Source column and row data
pDestColumnInfo [in/out] Destination column and row data
pIDTSDataConvert [in] Pointer to the data conversion interface
eTransformStatus [in] Result of Execute
hrInsert [in] Result of IRowsetChange::InsertRow

Remarks

After a successful fetch operation, the data pump calls Execute and attempts to insert the row into the destination using
IRowsetChange::InsertRow, if specified. OnRowComplete is called for every successful fetch operation, regardless of whether
Execute or InsertRow succeeded or failed. If OnRowComplete returns FAILED, the data pump terminates.

hrInsert indicates whether IRowsetChange::InsertRow succeeded.

eTransformStatus indicates whether errors occurred that resulted in no call to InsertRow. OLE DB requires that
IRowsetChange::InsertRow release any storage objects contained in the row; therefore, the transformation server must be
careful not to call pIDTSDataConvert->ClearBindingData on a storage object that has already been released.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::OnTransformComplete
After all rows have been transformed or the data pump has been terminated due to errors, the OnTransformComplete method
is called to allow the transformation server to release all allocations made for the transformation.

Syntax

HRESULT OnTransformComplete (
LPBYTE pvTransformServerData,
LPDTSTransformColumnInfo pSrcColumnInfo,
LPDTSTransformColumnInfo pDestColumnInfo,
IDTSDataConvert *pIDTSDataConvert);

Argument Description
pvTransformServerData [in] Transform server state data
pSrcColumnInfo [in/out] Source column and row data
pDestColumnInfo [in/out] Destination column and row data
*pIDTSDataConvert [in] Pointer to the data conversion interface

Remarks

OnTransformComplete is called only if ValidateSchema completes successfully. OnTransformComplete is not called if the
transformation implements IDTSDataPumpTransform2 and IDTSDataPumpTransform2::GetTransformServerInfo indicates
the transformation supports DTSTransformPhase_OnPumpComplete phase.

See Also

IDTSDataPumpTransform2::GetTransformServerInfo

IDTSDataPumpTransform2::ProcessPhase

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform::ValidateSchema
The ValidateSchema method validates the schema of the source and destination columns to be transformed.

Syntax

HRESULT ValidateSchema (
LPBYTE pvTransformServerData,
LPCDTSTransformColumnInfo pSrcColumnInfo,
LPCDTSTransformColumnInfo pDestColumnInfo,
IDTSDataConvert *pIDTSDataConvert,
DTSTransformFlags eTransformFlags);

Argument Description
pvTransformServerData [in] Transform server state data
pSrcColumnInfo [in/out] Source column and row data
pDestColumnInfo [in/out] Destination column and row data
*pIDTSDataConvert [in] Pointer to the data conversion interface
eTransformFlags [in] Input flags for transformation validation and

execution

Remarks

Pointers to source and destination column information structures are passed to ValidateSchema. The transformation can then
validate data types, preventing unintended row transfers if the types are incompatible. If the transformation does not validate at
this time (for example, due to a complex conversion performed on the row data), then it simply returns NO_ERROR. A validation
failure should return an appropriate failure code, such as DB_E_SCHEMAVIOLATION, or one defined by the transformation server
because the data pump cannot proceed.

The pointer to the IDTSDataConvert interface is passed in to allow the destination to verify that conversion between the source
and destination data types is possible and to indicate any special conditions that may be encountered.

The transformation flags define the data type promotion, demotion, and conversions that are allowed. Additional custom
properties may be defined through a custom interface, in which case the object (such as an IUnknown object) must be created
and edited prior to the object being passed to IDTSDataPump::AddTransform.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2
The IDTSDataPumpTransform2 interface must be implemented by all transformations that are to run with Microsoft® SQL
Server™ 2000. It supports multi-phase transform operations. Transformations that implement IDTSDataPumpTransform2 must
still implement IDTSDataPumpTransform.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2::GetTransformServerInfo
The GetTransformServerInfo method returns information that describes the functionality of the transformation.

Syntax

HRESULT GetTransformServerInfo (
 BSTR *pbstrHelpString,
 LPDTSTransformPhaseEnum peSupportedPhases);

Argument Description
pbstrHelpString [out] Description of the transformation implementation
peSupportedPhases [out] Phases supported by this transformation

Remarks

This method is called before IDTSDataPumpTransform::Initialize. It returns a textual description that can be used as a help
string and a bitmask that contains flags for the supported phases. These flags are values from DTSTransformPhaseEnum.

Any output parameter can be NULL if that information is not desired by the caller. GetTransformServerInfo must be prepared to
handle these.

IDTSDataPumpTransform2::ProcessPhase is not called for a phase specified by GetTransformServerInfo unless the value
specified for the TransformPhases property of the Transformation2 object also specifies the phase. For packages built in Data
Transformation Services (DTS) Designer, specify phases on the Phases tab of the Transformation Options dialog box.

See Also

IDTSDataPumpTransform::Initialize

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform2::ProcessPhase

TransformPhases Property

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2::PreValidateSchema
The PreValidateSchema method validates the schema of the source and destination columns to be transformed. It is called from
Data Transformation Services (DTS) Designer at the time the transformation is being configured.

Syntax

HRESULT PreValidateSchema (
 LPCDTSTransformColumnMetadata pSrcMetadata,
 LPCDTSTransformColumnMetadata pDestMetaData,
 DTSTransformFlags eTransformFlags,
 DTSTransformPhaseEnum ePhases);

Argument Description
pSrcMetadata [in] Source column meta data
pDestMetaData [in] Destination column meta data
eTransformFlags [in] Input flags for transformation validation and execution
ePhases [in] Phases this transformation is expected to support

Remarks

PreValidateSchema provides validation at the time the package is built, rather than when it is executed. It is called from DTS
Designer when the user selects the Only Show Valid Transformations check box in the Create New Transformation dialog
box and when the Transformation Options dialog box is closed. It is passed the meta data for the source and destination
columns, the transformation flags and a bitmask defining the phases the transformation is expected (by the caller) to support.

Any level of validation can be provided, up to and including that done by IDTSDataPumpTransform::ValidateSchema.
However, Only Show Valid Transformations simply removes the transformation name from the Create New Transformation
dialog box, so complex validations may leave the user wondering why the transformation is not valid.

The transformation flags, which use values from DTSTransformFlags, define the data type promotion, demotion and conversions
that are allowed. However, PreValidateSchema is not called when they are changed from the Transformation Flags dialog box,
so you may want to defer validation involving the flags to ValidateSchema.

The source and destination column meta data structure DTSTransformColumnMetadata has these fields.

Field Description
cColumns Count of source or destination columns.
rgDBColumnInfo Pointer to an array of OLE DB DBCOLUMNINFO structures.

There is one array element for each column.

For more information about the DBCOLUMNINFO structure, see Column Information Structures in DTS Transformations.

See Also

DTSTransformFlags

IDTSDataPumpTransform::ValidateSchema

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2::ProcessPhase
The ProcessPhase method executes a phase of the transformation for a single row.

Syntax

HRESULT ProcessPhase (
 LPBYTE pvTransformServerData,
 LPCDTSTransformColumnInfo pSrcColumnInfo,
 LPDTSTransformColumnInfo pDestColumnInfo,
 IDTSDataConvert *pIDTSDataConvert,
 LPCDTSTransformPhaseInfo pPhaseInfo,
 LPDTSTransformStatus peTransformStatus);

Argument Description
pvTransformServerData [in] Transformation server state data
pSrcColumnInfo [in] Source column and row data
pDestColumnInfo [in/out] Destination column and row data
pIDTSDataConvert [in] Pointer to the data conversion interface
pPhaseInfo [in] Transform phase information structure
peTransformStatus [out] Result of the transformation

Remarks

This function is called by the data pump and executes a phase of the transformation. The phase is identified by a code from
DTSTransformPhaseEnum in a field of pPhaseInfo, a DTSTransformPhaseInfo structure. The following table lists the
transformation phases that are available.

Phase Description
DTSTransformPhase_PreSourceData Called before first fetch of source data. Valid

destination codes can be returned in
peTransformStatus to write a destination row.
DTSTransformStat_SkipFetch can be returned to loop
and write multiple rows.

DTSTransformPhase_Transform Transforms source columns to destination columns.
Performs same function as
IDTSDataPumpTransform::Execute.

DTSTransformPhase_OnTransformFailure Called when DTSTransformPhase_Transform phase
returns DTSTransformStat_Error or
DTSTransformStat_ExceptionRow. The returned
peTransformStatus overrides that from
DTSTransformPhase_Transform. The insert operation
and data driven queries (DDQs) will be attempted if
the peTransformStatus so directs.

DTSTransformPhase_OnInsertSuccess Called on success of the insert/DDQ. Destination
operations cannot be specified in peTransformStatus
as the destination row has already been written.

DTSTransformPhase_OnInsertFailure Called on failure of the insert operation or data driven
query. Destination operations cannot be specified in
peTransformStatus (for example, the insert operation
and data driven query cannot be retried).

DTSTransformPhase_OnBatchComplete Called after the success or failure of a data pump
batch. The batch size is defined by the
InsertCommitSize property.

DTSTransformPhase_PostSourceData Called after last row of source data has been fetched
and transformed. Valid destination codes can be
returned in peTransformStatus to write a destination
row, but no source data is available.
DTSTransformStat_SkipFetch can be returned to loop
and write multiple rows.

DTSTransformPhase_OnPumpComplete Called when data pump operation completes as a
success or failure, if the transformation supports this
phase. It is called in place of
IDTSDataPumpTransform::OnTransformComplete.
The pPhaseInfo structure is available.

ProcessPhase is only called for the phases that are returned in the peSupportedPhases parameter of
IDTSDataPumpTransform2::GetTransformServerInfo. When there are multiple transformations, each phase is executed for all
the transformations, in the order in which they were created, before moving on to the next phase.

Note ProcessPhase is not called for a phase specified by GetTransformServerInfo unless the value specified for the
TransformPhases property of the Transformation2 object also specifies the phase. For packages built in Data Transformation
Services (DTS) Designer, specify phases on the Phases tab of the Transformation Options dialog box. The one exception is
DTSTransformPhase_OnPumpComplete, for which ProcessPhase called (in place of OnTransformComplete) whenever
GetTransformServerInfo specifies the phase is supported.

The source and destination column data is described by the DTSTransformColumnInfo structures referenced by
pSrcColumnInfo and pDestColumnInfo. Column data should be written in the buffer referenced by DTSColumnData.pvData of
the element for the destination column, at the offset specified by DBBINDING.obValue. You can instead store a pointer to the
data at this location if you add the DBTYPE_BYREF flag to DBBINDING.wType. For more information and a description of these
fields, see Column Information Structures in DTS Transformations.

Transformations that implement both IDTSDataPumpTransform and IDTSDataPumpTransform2 typically implement
Execute by calling IDTSDataPumpTransform2::ProcessPhase with NULL for the pPhaseInfo parameter.

The IDTSDataConvert interface provides a DTS-compatible conversion utility. For more information, search include file
dtspump.h for IDTSDataConvert. dtspump.h is installed by default to c:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\include\.

See Also

DTSTransformPhaseEnum

DTSTransformPhaseInfo Object

IDTSDataPumpTransform::Execute

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform2::GetTransformServerInfo

InsertCommitSize Property

TransformPhases Property

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2::SetExecuteThreadComplete
The SetExecuteThreadComplete method performs any deallocations and cleanup that might be necessary because the Data
Transformation Services (DTS) data pump instance (and thus the transformation) is going to continue execution on another
thread. It is called when IDTSDataPump2::SetExecuteThreadComplete is called.

Syntax

HRESULT SetExecuteThreadComplete();

The method has no parameters.

Remarks

Data pump execution can be segmented so that it processes one or more rows on a thread when IDTSDataPump2::ExecuteRow
is called, then processes additional rows when ExecuteRow is called on another thread. The DTS tasks supplied with Microsoft®
SQL Server™ 2000 do not cross threads like this, but custom tasks can do so. Custom tasks doing this must call
IDTSDataPump2::SetExecuteThreadComplete on the original thread before calling ExecuteRow on the new thread.
IDTSDataPump2::SetExecuteThreadComplete calls IDTSDataPumpTransform2::SetExecuteThreadComplete for each
transformation.

In most cases, the transformation does not need to do anything. Only when the transformation has invoked a thread-affinitive
process, it may need to close that process before re-opening it on the new thread. For example, if the transformation uses the
ActiveScripting engine, it needs to make a separate copy of the scripting engine instance, then call IActiveScript::Close on the
old thread, then initialize the scripting engine instance copy on the new thread.

DTS Programming (SQL Server 2000)

IDTSDataPumpTransform2::SetExtendedInfo
The SetExtendedInfo method is reserved for future use.

Syntax

HRESULT SetExtendedInfo (
 IUnknown *pUnkExtendedInfo);

Argument Description
pUnkExtendedInfo [in] Object supplying extended information

Remarks

If you implement IDTSDataPumpTransform2, you must implement SetExtendedInfo even though it is not called. Simply
return NO_ERROR.

When implemented, SetExtendedInfo will be called prior to IDTSDataPumpTransform::ValidateSchema. pUnkExtendedInfo
will be a pointer to an object that will QueryInterface to one or more interfaces that supply extended information. These will need
to be released in or prior to IDTSDataPumpTransform::OnTransformComplete.

See Also

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS Programming (SQL Server 2000)

Transform Status Enumerations
Dtspump.h and Dtspump.dll expose these constant enumerations.

Enumeration Description
DTSDataPumpError Error codes generated by the data pump.
DTSExecuteStatus Return values from data pump execution.
DTSTransformFlags Flags that control the conversions performed by

transformations.
DTSTransformPhaseEnum Codes that denote the transformation phases.
DTSTransformStatus Return codes that Microsoft® ActiveX® Script

Transformations can generate.

DTS Programming (SQL Server 2000)

DTS Programming Samples
The following samples illustrate Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) application development in
Microsoft Visual C++® and Microsoft Visual Basic®. They also include DTS packages.

Sample Description
CustomTaskNoUI Active Template Library (ATL) template. Implements

the framework for a DTS custom task that does not
support a user interface.

CustomTaskWithUI ATL template. Implements the framework for a DTS
custom task that supports a user interface.

CustomTransform ATL template. Implements the framework for a DTS
custom transformation.

DTS Custom Transformation
Sample

C++ sample. Concatenates a number of ANSI source
columns into a single destination column.

DTS Custom Task C++ sample. Creates and registers a DTS custom task
that is similar to the CreateProcessTask object.

DTSCopy C++ sample. Copies a single source column into a
destination column of the same type.

DTSStrings C++ sample. Reformats two source columns that are
assumed to be a first and last name into a single
destination column.

DTSTskGVUpdate C++ sample. Displays and updates the value of a
global variable through a user interface.

DTSTskPropIcon C++ sample. Displays a message.
Packages DTS package sample. Demonstrates how to create and

execute packages and how to solve typical business
problems.

Complex Transformation
Sample from SQL Server to
Excel

Visual Basic sample. Copies data from the pubs
database to a Microsoft Excel spreadsheet,
transforming it into a Microsoft PivotTable®.

DTS Package Sample
Supporting Multiple Source
and Destination Providers

Visual Basic sample. Creates a package from a variety
of data sources and destinations.

DTSActiveScriptTask Visual Basic sample. Demonstrates how to run a
Microsoft Visual Basic Scripting Edition (VBScrip)
script as part of a DTS Task.

DTSApplicationObject Visual Basic sample. Illustrates some of the
information that can be obtained from the DTS
Application object.

DTSAppObject Visual Basic sample. Demonstrates use of the DTS
Application object on the local server.

DTSBulkInsertTask Visual Basic sample. Demonstrates how to use DTS to
perform a bulk insert operation from a flat text file.

DTSCopyDatabase Visual Basic sample. Demonstrates how to use the DTS
TransferObjectsTask object to copy a database.

DTSExecProcess Visual Basic sample. Demonstrates how to run a
Win32 application from a DTS task.

DTSExecSQLTask Visual Basic sample. Demonstrates how to execute an
SQL statement while running a DTS package.

DTSExecutePackage Visual Basic sample. Demonstrates how to execute
programmatically a DTS package that has been saved
in .dts format to a structured storage file.

DTSFTPTask Visual Basic sample. Demonstrates how to use DTS to
copy non-SQL Server files from a source to a
destination.

DTSPackageInfo Visual Basic sample. Illustrates some of the
information that can be obtained from the DTS
Application.GetPackageInfos method.

DTSTransferObjectsTask Visual Basic sample. Demonstrates how to use DTS to
transfer various types of SQL Server objects from the
pubs database to the pubs2 database.

FoodMart2000 Visual Basic sample. Demonstrates how to use the
Visual Basic file output from the DTS import/export
wizard to convert the FoodMart 2000.mdb database to
SQL Server 2000.

Pub2Pubs Visual Basic sample. Copies the Authors table from the
pubs database to the pubs2 database while
performing several operations on various fields.

Simple DTS Package Sample
Using Visual Basic

Visual Basic sample. Demonstrates how to build and
execute a DTS package.

Simple Transformation
Sample Between Two SQL
Server Tables

Visual Basic sample. Copies data from a source table
to a destination table after a Transact-SQL script is
used to create a sample table in the pubs database.

To install the samples during SQL Server installation

1. On the Setup Type page, select Custom.

2. On the Select Components page, under Components, select Code Samples.

Samples are installed as a self-extracting file. To extract the samples, double-click Unzip_dts.exe, located at C:\Program
Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts. All samples include a project file applicable to the language used.

Prerequisites

C++ samples require Visual C++ version 6.0. Visual Basic samples require Visual Basic version 6.0.

See Also

Samples

DTS Programming (SQL Server 2000)

CustomTaskNoUI
This sample is an Active Template Library (ATL) template for a Data Transformation Services (DTS) custom task that does not
support a custom user interface, but instead uses the default property grid in DTS Designer.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Dts\ATLTemplates\CustomTaskNoUI

Running the Sample

To install this ATL template, do the following:

1. Copy all the files in the C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\Dts\ATLTemplates\CustomTaskNoUI\ directory except DTSCuTsk.reg to the ATL
template directory.

The default location for this directory is C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Template\ATL\.

2. Run DTSCuTsk.reg.

For more information about how to implement a custom task framework using this template, see Building a Custom Task from
the ATL Custom Task Basic Template.

See Also

Implementing and Testing a DTS Custom Task

DTS Programming Samples

DTS Programming (SQL Server 2000)

CustomTaskWithUI
This sample is an Active Template Library (ATL) template for a Data Transformation Services (DTS) custom task that supports a
custom user interface.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTaskWithUI

Running the Sample

To install this ATL template, do the following:

1. Copy all the files in the C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTaskWithUI\ directory except DTSCuTskUI.reg to the ATL
template directory.

The default location for this directory is C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Template\ATL\.

2. Run DTSCuTskUI.reg.

For more information about how to implement a custom task framework using this template, see Building a Custom Task with
User Interface from the ATL Custom Task Templates.

See Also

Implementing and Testing a DTS Custom Task

DTS Programming Samples

DTS Programming (SQL Server 2000)

CustomTransform
This sample is an Active Template Library (ATL) template for a Data Transformation Services (DTS) custom transformation.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTransform

Running the Sample

To install this ATL template, do the following:

1. Copy all the files in the C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTransform\ directory, except DTSCuXFmUI.reg, to the ATL
template directory.

The default location for this directory is C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Template\ATL\.

2. Run DTSCuXFmUI.reg.

For more information about how to implement a custom transformation framework using this template, see Building a Custom
Transformation from the ATL Custom Transformation Template.

See Also

Implementing and Testing a DTS Custom Transformation

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTS Custom Transformation Sample
This Microsoft® Visual C++® sample creates and registers a custom transformation. It concatenates a number of ANSI string
source columns into a single destination column.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSXForm

Running the Sample

1. In the Visual C++ development environment, open and run DTSXForm.dsw.

2. On the Build menu, click Build DTSXForm.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom transformation in a Transform Data task in DTS Designer.

If you are compiling the example transform for use under Microsoft Windows® 98, be sure you compile using a non-UNICODE
configuration. To set the configuration, use the Set Active Configuration option on the Build menu.

See Also

Implementing and Testing a DTS Custom Transformation

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTS Custom Task
This Microsoft® Visual C++® sample creates and registers a Data Transformation Services (DTS) custom task that is similar to
the CreateProcessTask object.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTStask

Running the Sample

1. In the Visual C++ development environment, open and run Dtstask.dsw.

2. On the Build menu, click Build dtstask.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom task in a DTS package.

See Also

Implementing and Testing a DTS Custom Task

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSCopy
This Microsoft® Visual C++® sample creates and registers a simple custom transformation. It copies a single source column of
any simple type into a destination column of the same type.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSCopy

Running the Sample

1. In the Visual C++ development environment, open and run DTSXForm.dsw.

2. On the Build menu, click Build DTSXForm.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom transformation in a Transform Data task in DTS Designer.

For more information about how this example is implemented, see DTS Custom Transformation Example: Copy One Column.

See Also

Implementing and Testing a DTS Custom Transformation

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSStrings
This Microsoft® Visual C++® sample creates and registers a custom transformation. It reformats two source columns that are
assumed to be a first and last name into the form of Last, First in a single destination column. The source and destination columns
can be ANSI or wide-character strings. Conversion between ANSI and wide characters is performed, as necessary.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSStrings

Running the Sample

1. In the Visual C++ development environment, open and run DTSStrings.dsw.

2. On the Build menu, click Build DTSStrings.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom transformation in a Transform Data task in DTS Designer.

For more information about how this example is implemented, see DTS Custom Transformation Example: Format Names.

See Also

Implementing and Testing a DTS Custom Transformation

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSTskGVUpdate
This Microsoft® Visual C++® sample is a Data Transformation Services (DTS) custom task with a user interface. It displays and
allows the user to update the value of a global variable. The global variable name is specified as a custom task property.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTSTskGVUpdate

Running the Sample

1. In the Visual C++ development environment, open and run DTSTskGVUpdate.dsw .

2. On the Build menu, click Build DTSTskGVUpdate.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom task in a DTS package.

For more information about how this example is implemented, see DTS Example: Including a User Interface in Visual C++.

See Also

Implementing and Testing a DTS Custom Task

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSTskPropIcon
This Microsoft® Visual C++® sample is a simple Data Transformation Services (DTS) custom task. It displays a message whose
text is specified as a custom task property.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTSTskPropIcon

Running the Sample

1. In the Visual C++ development environment, open and run DTSTskPropIcon.dsw.

2. On the Build menu, click Build DTSTskPropIcon.dll to build the project.

3. In Microsoft SQL Server™ Enterprise Manager, right-click Data Transformation Services, click Properties, and then click
Refresh Cache, if caching is active.

4. Include the custom task in a DTS package.

For more information about how this example is implemented, see DTS Example: Adding Properties and Icons in Visual C++.

See Also

Implementing and Testing a DTS Custom Task

DTS Programming Samples

DTS Programming (SQL Server 2000)

Packages
The samples supplied with Microsoft® SQL Server™ 2000 demonstrate how to create and execute packages and how to solve
typical business problems. You can also use the packages as templates for custom solutions tailored to the business needs of your
organization.

For more information, see DTS Designer Example: Copying Northwind Data. This example shows how to create connections, how
to create a simple transformation task that copies data, and how to run a package.

These sample Data Transformation Services (DTS) packages are installed along with the DTS sample programs.

File name Description
DTS - Workflow Example.dts Create simple and complex precedence

constraints.
DTS - Transform Customers.dts Use Microsoft ActiveX® scripts to transform

Northwind data to tempdb.
OLTP to Star Schema - Sample
Package.dts

Transform an OLTP database to a Star
schema.

DTS - Execute SQL DDL and DML.dts Create new databases, tables, and indexes.
DTS - Transfer Database and Objects.dts Copy objects between instances of SQL

Server.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Misc\packages

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

Complex Transformation Sample from SQL Server to Excel
This program copies data from the pubs database to a Microsoft® Excel spreadsheet, transforming it into a Microsoft
PivotTable®. The program also demonstrates how to create a Data Transformation Services (DTS) object.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsexmp2

Running the Sample

Here are the steps for running the Cptexmp application:

1. Open and compile Cptaxdll.vbp.

This registers the CreatePivotTable custom task used by Cptexmp.vbp and tstuiapp.vbp.

2. Open and run Cptexmp.vbp or tstuiapp.vbp.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTS Package Sample Supporting Multiple Source and
Destination Providers
This sample allows you to create a package from a variety of data sources and destinations. It creates a simple package that you
can create from an SQL statement or a Microsoft® ActiveX® script. You can choose a data source and destination from an
enumerated list.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtspackages\dtsexmp3

Running the Sample

Open and run dtsqry.vbp.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSActiveScriptTask
This Microsoft® Visual Basic® sample demonstrates how to run a Visual Basic Scripting Edition (VBScript) script as part of a Data
Transformation Services (DTS) Task. The script in this task shows a Message Box.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSActiveScriptTask

Running the Sample

1. Open the DTSActiveScriptTask.vbp project.

2. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSApplicationObject
This Microsoft® Visual Basic® sample illustrates some of the information that can be obtained from the Data Transformation
Services (DTS) Application object.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtspackages\DTSApplicationObject

Running the Sample

1. Open the DTSAppInfo.vbp project.

2. Run the application.

See Also

DTSAppObject

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSAppObject
This Microsoft® Visual Basic® sample demonstrates how to use the Data Transformation Services (DTS) Application object on
the local server.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtssysteminfo\DTSAppObject

Running the Sample

1. Open the DTSApplicationObject.vbp.

2. Run the application.

See Also

DTSApplicationObject

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSBulkInsertTask
This Microsoft® Visual Basic® sample demonstrates how to use Data Transformation Services (DTS) to perform a bulk insert
operation from a flat text file. Bulk insert operations are possible from a wide range of OLE DB provider file types.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSBulkInsertTask

Running the Sample

1. Open the BulkInsertTask.vbp project.

2. Run the application.

This sample assumes that you have created the pubs2..authors table as a copy of the pubs..authors table.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSCopyDatabase
This Microsoft® Visual Basic® sample demonstrates how to use the Data Transformation Services (DTS) TransferObjectsTask
object to copy a database. This sample copies all objects except dependencies, logins, and users from one named database on the
local server to another named database on the local server. If you wish to include dependencies, logins, or users in the transfer,
set the IncludeDependencies, IncludeLogins, and IncludeUsers properties to TRUE.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSCopyDatabase

Running the Sample

This sample assumes that you have created the pubs2 database with no data in it.

1. Open the DTSCopyDatabase.vbp project.

2. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSExecProcess
This Microsoft® Visual Basic® sample demonstrates how to run a Microsoft Win32® application from a Data Transformation
Services (DTS) task. The sample creates a DTS package and a custom task that runs the Windows Calculator for 15 seconds.

Depending on the FailPackageOnTimeout and FailOnError settings in the sample, an error message is returned if Calc.exe does
not exit in 15 seconds.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecProcess

Running the Sample

1. Open the DTSExecProcess.vbp project.

2. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSExecSQLTask
This Microsoft® Visual Basic® sample demonstrates how to execute an SQL statement while running a Data Transformation
Services (DTS) package.

This sample:

Creates a package.

Opens a connection to the pubs2 database.

Creates a custom task, which executes an SQL statement to INSERT a record into the Sales table.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecSQLTask

Running the Sample

1. Create the pubs2 database that is a copy of the pubs database on the local server.

2. Open the DTSExecuteSQLTask.vbp project.

3. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSExecutePackage
This Microsoft® Visual Basic® sample demonstrates how to execute programmatically a Data Transformation Services (DTS)
package that has been saved in .dts format to a structured storage file. The package in the sample performs a copy operation from
the pubs database to the pubs2 database.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecutePackage

Running the Sample

1. Create the pubs2 database that is a copy of the pubs database on the local server.

2. Open the DTSExecutePackage.vbp project.

3. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSFTPTask
This Microsoft® Visual Basic® sample demonstrates how to use Data Transformation Services (DTS) to copy files that are not
Microsoft® SQL Server™ files from a source to a destination. This sample copies Authors.txt in the local directory to the \Test
subdirectory.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSFTPTask

Running the Sample

1. Open the DTSFTPTask.vbp project.

2. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSPackageInfo
This Microsoft® Visual Basic® sample illustrates some of the information that can be obtained from the Data Transformation
Services (DTS) Application.GetPackageInfos method. It provides detailed information about the DTS packages on Microsoft®
SQL Server™ 2000.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtssysteminfo\DTSPackageInfo

Running the Sample

This application uses Windows Authentication.

1. Open the DTSSQLServerPackages.vbp.

2. Run the application.

3. Click DTS Package Info.

4. Select the instance of SQL Server you wish to query.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

DTSTransferObjectsTask
This Microsoft® Visual Basic® sample demonstrates how to use Data Transformation Services (DTS) to transfer various types of
database objects from the pubs database to the pubs2 database.

The objects transfered in this sample are:

Authors table.

Employee table.

Titleview view.

Byroyalty stored procedure.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtstasls\DTSTransferObjectsTask

Running the Sample

1. Create the pubs2 database that is a copy of the pubs database on the local server.

2. Open the DTSTransferObjectsTask.vbp project.

3. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

FoodMart2000
 New Information - SQL Server 2000 SP3.

These Microsoft® Visual Basic® samples demonstrate how to use the Visual Basic file output from the Data Transformation
Services (DTS) Import/Export Wizard to convert the FoodMart 2000.mdb database to a Microsoft SQL Server™ 2000 database.

There are three samples in this group.

Foodmart2000a: A .bas file that converts the Foodmart 2000.mdb file to SQL Server 2000.

Foodmart2000b: A project that converts the Foodmart 2000.mdb file to SQL Server 2000, but shows how to use the DTS
package events to indicate process status on UI.

Foodmart2000c: A .bas file that converts the Foodmart 2000.mdb file to SQL Server 2000, but also incorporates an error
handler.

Security Note Foodmart2000c is the preferred development template because it includes error handling.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Misc\FoodMart2000

Running the Sample

These samples assume that you are using Windows Authentication and that the execution account has the necessary privileges.

The initial steps for using these samples are:

1. Install SQL Server 2000 Analysis Services samples.

2. Use SQL Server Enterprise Manager to create a new database called Foodmart2000.

3. In FoodMart2000a and FoodMart2000c, modify the path for the DataSourcePath variable name.

4. Execute the FoodMart2000a.vdp, FoodMart2000b.vdp, and FoodMart2000c.vdp projects.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

Pub2Pubs
This Microsoft® Visual Basic® sample copies the Authors table from the pubs database to the pubs2 database while performing
several operations on various fields. The sample is a single package with two connections, and two Steps/Tasks with multiple
custom subtasks.

The comments in the source code of this sample provide detailed explanations of code that is generated by the Data
Transformation Services (DTS) Import/Export Wizard.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Misc\Pub2Pubs

Running the Sample

1. Create the pubs2 database that is a copy of the pubs database on the local server.

2. Open the PubsToPub2.vbp project.

3. Run the application.

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

Simple DTS Package Sample Using Visual Basic
This Microsoft® Visual Basic® sample demonstrates how to build and execute a Data Transformation Services (DTS) package.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsvbpkg

Running the Sample

1. Create two ODBC Data Source Names (DSN), "DTS Source" and "DTS Destination", that refer to the pubs database.

2. Open and run dtsvbpkg.vbp

See Also

DTS Programming Samples

DTS Programming (SQL Server 2000)

Simple Transformation Sample Between Two SQL Server Tables
This Microsoft® Visual Basic® sample copies data from a source table to a destination table, after a Transact-SQL script is used to
create a sample table in the pubs database.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsexmp1

Running the Sample

Here are the steps for running the Dtsexmp1 application:

1. Create an ODBC DSN for Microsoft SQL Server™ and make pubs the default database.

2. Run the Creattbl.sql script to create the authorname table.

3. Open and run Dtsexmp1.vbp.

See Also

DTS Programming Samples

Extended Stored Procedure Programming (SQL Server 2000)

Programming Extended Stored Procedures
Microsoft Open Data Services provides a server-based application programming interface (API) for extending Microsoft® SQL
Server™ functionality. The API consists of C and C++ functions and macros used to build applications in the following categories:

Extended stored procedures.

Gateway applications.

Extended Stored Procedures

Packaged as dynamic-link libraries (DLLs), extended stored procedures provide a way to extend SQL Server functionality through
functions developed by using C/C++, the Open Data Services API, and the Microsoft Win32® API. These functions can send result
sets and output parameters back to the client from a variety of external data sources.

Gateway Applications

In the past, Open Data Services was used to write server applications, such as gateways to non-SQL Server database
environments. With the emergence of newer and more powerful technologies, such as Windows NT Component Services and
SQL Server distributed queries, the need for Open Data Services gateway applications has largely been replaced.

If you have existing gateway applications, you cannot use opends60.dll and ums.dll that are shipped with SQL Server 2000
to run the applications. Gateway applications are no longer supported.

You can continue to run gateway applications using the opends60.dll and ums.dll that shipped with SQL Server 7.0.

Extended Stored Procedure Programming (SQL Server 2000)

How Extended Stored Procedures Work
The process by which an extended stored procedure works is:

1. When a client executes an extended stored procedure, the request is transmitted in tabular data stream (TDS) format from
the client application through the Net-Libraries and Open Data Services to Microsoft® SQL Server™.

2. SQL Server searches for the DLL associated with the extended stored procedure, and loads the DLL if it is not already
loaded.

3. SQL Server calls the requested extended stored procedure (implemented as a function inside the DLL).

4. The extended stored procedure passes result sets and return parameters back to the server by using the Open Data Services
API.

Extended Stored Procedure Programming (SQL Server 2000)

Execution Characteristics of Extended Stored Procedures
The execution of an extended stored procedure has these characteristics:

The extended stored procedure function is executed under the security context of Microsoft® SQL Server™.

The extended stored procedure function runs in the process space of SQL Server.

The Microsoft Win32® thread associated with the execution of the extended stored procedure is the same one used for the
client connection.

After the extended stored procedure DLL is loaded, the DLL remains loaded in the address space of the server until the SQL Server
is stopped or the administrator explicitly unloads the DLL by using DBCC DLL_name (FREE). This is the default behavior.

The extended stored procedure can be executed from Transact-SQL as a stored procedure by using the EXECUTE statement:
EXECUTE @retval = xp_extendedProcName @param1, @param2 OUTPUT

where

@retval

Is a return value.

@param1

Is an input parameter.

@param2

Is an input/output parameter.

Caution Extended stored procedures offer performance enhancements and extend SQL Server functionality. However, because
the extended stored procedure DLL and SQL Server share the same address space, a problem procedure can adversely affect SQL
Server functioning. Although exceptions thrown by the extended stored procedure DLL are handled by SQL Server, it is possible
to damage SQL Server data areas. As a security precaution, only SQL Server system administrators can add extended stored
procedures to SQL Server. These procedures should be thoroughly tested before they are installed.

Extended Stored Procedure Programming (SQL Server 2000)

Creating Extended Stored Procedures
An extended stored procedure is a function with a prototype:

SRVRETCODE xp_extendedProcName (SRVPROC *);

Using the prefix "xp_" is optional. Extended stored procedure names are case sensitive when referenced in Transact-SQL
statements, regardless of code page/sort order installed on the server. An extended stored procedure is implemented in a 32-bit
dynamic-linked library (DLL). When you build a DLL:

If an entry point is necessary, write a DllMain function.

This function is optional; if you do not provide it in source code, the compiler links its own version, which does nothing but
return TRUE. If you provide a DllMain function, the operating system calls this function when a thread or process attaches
to or detaches from the DLL.

All functions called from outside the DLL (all extended stored procedure functions) must be exported.

You can export a function by listing its name in the EXPORTS section of a .def file, or you can prefix the function name in the
source code with __declspec(dllexport), a Microsoft compiler extension (Note that __declspec() begins with two
underscores).

These Open Data Services files are required for creating an extended stored procedure DLL.

File Description
Srv.h Open Data Services header file
Opends60.lib Import library for Opends60.dll

It is highly recommended that all Microsoft® SQL Server™ 2000 extended stored procedure DLLs implement and export the
following function:

__declspec(dllexport) ULONG __GetXpVersion()
{
 return ODS_VERSION;
}

Note __declspec(dllexport) is a Microsoft-specific compiler extension. If your compiler does not support this directive, you should
export this function in your DEF file under the EXPORTS section.

When SQL Server is started with the trace flag -T260 or if a user with system administrator privileges runs DBCC TRACEON (260),
then if the extended stored procedure DLL does not support __GetXpVersion(), a warning message (Error 8131: Extended stored
procedure DLL '%' does not export __GetXpVersion().) is printed to the error log (Note that __GetXpVersion() begins with two
underscores). If you get this message, and you are running an extended stored procedure DLL compiled with headers and
libraries from SQL Server version 6.x, refer to Level 1: Handling Discontinued Functionality. If you get this message and are
running an extended stored procedure DLL compiled with headers and libraries from SQL Server 7.0, your extended stored
procedure DLL is not exporting the function __GetXpVersion().

If the extended stored procedure DLL exports __GetXpVersion(), but the version returned by the function is less than that required
by the server, a warning message (Error 8132: Extended stored procedure DLL '%' reports its version is %d.%d. Server expects
version %d.%d.) stating the version returned by the function and the version expected by the server is printed to the error log. If
you get this message, you are returning an incorrect value from __GetXpVersion(), or you are compiling with an older version of
srv.h.

Note SetErrorMode, a Microsoft Win32® function, should not be called in extended stored procedures.

For more information about creating a DLL, see the development environment documentation and the Microsoft Win32 SDK
documentation.

To create an extended stored procedure DLL by using Microsoft Visual C++

1. Create a new project of type Win32 Dynamic Link Library.

2. Set the directory for include files and library files to C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Include
and C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib, respectively.

a. On the Tools menu, click Options.

b. In the Options dialog box, click the Directories tab and set the directory for include files and library files.
3. On the Project menu, click Settings.

4. In the Project Settings dialog box, click the Link tab. Click the General category, and then add opends60.lib to
object/library modules.

5. Add source files (.c, .cpp, and .rc files, and so on) to your project.

6. Compile and link your project.

Extended Stored Procedure Programming (SQL Server 2000)

Extended Stored Procedure Sample: xp_hello
These code portions from xp_hello illustrate the basics of writing an extended stored procedure. The complete code for this
example is available in the Samples\ODS directory. This is in a sample only available if you select Dev Tools in setup.

Transact-SQL Script

-- TSQL script exercising xp_hello sample
use master
go

sp_addextendedproc 'xp_hello', 'xp_hello.dll'
go

-- Call xp_hello with literal parameters
declare @txt varchar(33)
exec xp_hello @txt OUTPUT
select @txt AS OUTPUT_Parameter
go

sp_dropextendedproc 'xp_hello'
go

dbcc xp_hello(free)
go

-- EXPECTED RESULTS
-- Column 1:
-- ---------
-- Hello World!

-- (1 row(s) affected)

-- OUTPUT_PARAMETER
-- ----------------
-- Hello World!

-- (1 row(s) affected)

C Source Code

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <windows.h>
#include <srv.h>
#include <time.h>

// Macros -- return codes
#define XP_NOERROR 0
#define XP_ERROR 1

#define MAX_SERVER_ERROR 20000
#define XP_HELLO_ERROR MAX_SERVER_ERROR+1

void printUsage (SRV_PROC* pSrvProc);
void printError (SRV_PROC *pSrvProc, CHAR* szErrorMsg);

// It is highly recommended that all Microsoft® SQL Server (7.0
// and greater) extended stored procedure DLLs implement and export
// __GetXpVersion. For more information see SQL Server
// Books Online
ULONG __GetXpVersion()

{
 return ODS_VERSION;
}

SRVRETCODE xp_hello(SRV_PROC* pSrvProc)
{
 char szText[15] = "Hello World!";
 BYTE bType;
 long cbMaxLen;
 long cbActualLen;
 BOOL fNull;

#ifdef _DEBUG
 // In a debug build, look up the data type name for assistance.
 DBCHAR* pdbcDataType;
 int cbDataType;
#endif

 // Count up the number of input parameters. There should only be one.
 if (srv_rpcparams(pSrvProc) != 1)
 {
 // Send error message and return
 //
 printUsage (pSrvProc);
 return (XP_ERROR);
 }

 // Use srv_paraminfo to get data type and length information.
 if (srv_paraminfo(pSrvProc, 1, &bType, &cbMaxLen, &cbActualLen,
 NULL, &fNull) == FAIL)
 {
 printError (pSrvProc, "srv_paraminfo failed...");
 return (XP_ERROR);
 }

 // Make sure first parameter is a return (OUTPUT) parameter
 if ((srv_paramstatus(pSrvProc, 1) & SRV_PARAMRETURN) == FAIL)
 {
 printUsage (pSrvProc);
 return (XP_ERROR);
 }

 // Make sure first parameter is of char or varchar datatype
 if (bType != SRVBIGVARCHAR && bType != SRVBIGCHAR)
 {
 printUsage (pSrvProc);
 return (XP_ERROR);
 }

 // Make sure first paramter is large enough to hold data
 if (cbMaxLen < (long)strlen(szText))
 {
 printError (pSrvProc, "output param max. length should be bigger");
 return (XP_ERROR);
 }

 // Describe the results set
//#define METHOD1
#ifdef METHOD1
 srv_describe(pSrvProc, 1, "Column 1", SRV_NULLTERM, bType,
 cbMaxLen, bType, strlen(szText), szText);
#else
 srv_describe(pSrvProc, 1, "Column 1", SRV_NULLTERM, bType,
 cbMaxLen, bType, 0, NULL);

 // Set the column's length
 if (srv_setcollen(pSrvProc, 1, strlen(szText)) == FAIL)
 {
 printError (pSrvProc, "srv_setcollen failed...");
 return (XP_ERROR);
 }

 // Set the column's data
 if (srv_setcoldata(pSrvProc, 1, szText) == FAIL)
 {
 printError (pSrvProc, "srv_setcoldata failed...");
 return (XP_ERROR);
 }

#endif //METHOD1

 // Send a row to client
 if (srv_sendrow(pSrvProc) == FAIL)
 {
 printError (pSrvProc, "srv_sendrow failed...");
 return (XP_ERROR);
 }

 // Set the output parameter
 if (FAIL == srv_paramsetoutput(pSrvProc, 1, szText, strlen(szText), FALSE))
 {
 printError (pSrvProc, "srv_paramsetoutput failed...");

 return (XP_ERROR);
 }

 srv_senddone(pSrvProc, (SRV_DONE_COUNT | SRV_DONE_MORE), 0, 1);

 return (XP_NOERROR);
}

// send XP usage info to client
void printUsage (SRV_PROC *pSrvProc)
{
 // usage: exec xp_hello <@param1 output>
 // Example:
 // declare @txt varchar(33)
 // exec xp_hello @txt OUTPUT
 // select @txt

 srv_sendmsg(pSrvProc, SRV_MSG_ERROR, XP_HELLO_ERROR, SRV_INFO, 1,
 NULL, 0, (DBUSMALLINT) __LINE__,
 "Usage: exec xp_hello <@param1 output>",
 SRV_NULLTERM);
 srv_senddone(pSrvProc, (SRV_DONE_ERROR | SRV_DONE_MORE), 0, 0);
}

// send szErrorMsg to client
void printError (SRV_PROC *pSrvProc, CHAR* szErrorMsg)
{
 srv_sendmsg(pSrvProc, SRV_MSG_ERROR, XP_HELLO_ERROR, SRV_INFO, 1,
 NULL, 0, (DBUSMALLINT) __LINE__,
 szErrorMsg,
 SRV_NULLTERM);

 srv_senddone(pSrvProc, (SRV_DONE_ERROR | SRV_DONE_MORE), 0, 0);
}

Xp_hello.def

The .def file used in the xp_hello sample exports the xp_hello function. This is in a sample only available if you select Dev Tools
during setup.

LIBRARY XP_HELLO

DESCRIPTION 'Sample SQL Server Extended Stored Procedure DLL'

EXPORTS
 xp_hello
 __GetXpVersion

Extended Stored Procedure Programming (SQL Server 2000)

Debugging an Extended Stored Procedure
Debugging an extended stored procedure is similar to debugging a DLL. For general information about debugging DLLs, see the
development environment and debugger vendor documentation.

To debug an extended stored procedure DLL by using Microsoft Visual C++

1. In Microsoft® Windows NT® 4.0, stop the SQL Server Service by using SQL Server Service Manager or Control Panel.

2. Open the project that builds the extended stored procedure DLL, and build it.

3. Copy the extended stored procedure DLL to the SQL Server \Binn directory (C:\Program Files\Microsoft SQL
Server\Mssql\Binn by default).

4. On the Project menu, click Settings.

5. In the Project Settings dialog box, click the Debug tab.

6. In the Category list, click General.

7. In the Executable for debug session box, enter the path and file name of the Microsoft SQL Server™ executable file (for
example, C:\Program Files\Microsoft SQL Server\Mssql\Binn\Sqlservr.exe). For information about sqlservr arguments, see
sqlservr Application.

8. In the Category list, click Additional DLLs.

9. In the Local module name box, enter the names of any additional DLLs you want to debug.

10. Click OK to store the information in the project.

11. Set breakpoints as required in the DLL source files or on function symbols in the DLL.

12. On the Build menu, click Go to start the debugger.

See Also

sqlservr Application

Extended Stored Procedure Programming (SQL Server 2000)

Adding an Extended Stored Procedure to SQL Server
A DLL that contains extended stored procedure functions acts as an extension to Microsoft® SQL Server™. To install the DLL, copy
the file to the directory containing the standard SQL Server DLL files (C:\Program Files\Microsoft SQL Server\Mssql\Binn by
default).

After the extended stored procedure DLL has been copied to the server, a SQL Server system administrator must register to SQL
Server each extended stored procedure function in the DLL. This is done using the sp_addextendedproc system stored
procedure. The first parameter of sp_addextendedproc specifies the name of the function, and the second parameter specifies
the name of the DLL in which that function resides. The name of the function specified in sp_addextendedproc must be exactly
the same, including the case, as the function's name in the DLL. For example, this command registers the function xp_hello,
located in xp_hello.dll, as a SQL Server extended stored procedure:

sp_addextendedproc 'xp_hello', 'xp_hello.dll'

If the name of the function specified in sp_addextendedproc does not exactly match the function name in the DLL, the new
name will be registered in SQL Server, but the name will not be usable. For example, although xp_Hello is registered as a SQL
Server extended stored procedure located in xp_hello.dll, SQL Server will not be able to find the function in the DLL if you use
xp_Hello to call the function later.

--Register the function (xp_hello) with an initial upper case
sp_addextendedproc 'xp_Hello', 'xp_hello.dll'

--Use the newly registered name to call the function
DECLARE @txt varchar(33)
EXEC xp_Hello @txt OUTPUT

--This is the error message
Cannot find the function xp_Hello in the library c:\xp_hello.dll. Reason: 127(The specified procedure could not
be found.).

If the name of the function specified in sp_addextendedproc matches exactly the function name in the DLL, and the collation of
the SQL Server instance is case-insensitive, the user can call the extended stored procedure using any combination of lower- and
upper-case letters of the name.

--Register the function (xp_hello)
sp_addextendedproc 'xp_hello', 'xp_hello.dll'

--The following will succeed in calling xp_hello
DECLARE @txt varchar(33)
EXEC xp_Hello @txt OUTPUT

DECLARE @txt varchar(33)
EXEC xp_HelLO @txt OUTPUT

DECLARE @txt varchar(33)
EXEC xp_HELLO @txt OUTPUT

When the collation of the SQL Server instance is case-sensitive, SQL Server will not be able to call the extended stored procedure
-- even if it was registered with exactly the same name and collation as the function in the DLL -- if the procedure was called with
a different case.

--Register the function (xp_hello)
sp_addextendedproc 'xp_hello', 'xp_hello.dll'

--The following will result in an error
DECLARE @txt varchar(33)
EXEC xp_HELLO @txt OUTPUT

--This is the error
Could not find stored procedure 'xp_HELLO'.

It is not necessary to stop and restart SQL Server. This is in a sample only available if you select Dev Tools during setup.

See Also

sp_addextendedproc

Extended Stored Procedure Programming (SQL Server 2000)

Removing an Extended Stored Procedure from SQL Server
To drop each extended stored procedure function in an extended stored procedure DLL, a Microsoft® SQL Server™ system
administrator must run the sp_dropextendedproc system stored procedure, specifying the name of the function and the name
of the DLL in which that function resides. For example, this command removes the function xp_hello, located in Xp_hello.dll, from
SQL Server:

sp_dropextendedproc 'xp_hello'

This is in a sample only available if you select Dev Tools during setup.

See Also

sp_dropextendedproc

Extended Stored Procedure Programming (SQL Server 2000)

Querying Extended Stored Procedures Installed in SQL Server
A Microsoft® SQL Server™ system administrator can display the currently defined extended stored procedures and the name of
the DLL to which each belongs by running the sp_helpextendedproc system procedure. For example, this command returns the
DLL to which xp_hello belongs:

sp_helpextendedproc 'xp_hello'

This is in a sample only available if you select Dev Tools during setup.

If sp_helpextendedproc is executed without specifying an extended stored procedure, then all the extended stored procedures
and their DLLs are displayed.

See Also

sp_helpextendedproc

Extended Stored Procedure Programming (SQL Server 2000)

Unloading an Extended Stored Procedure DLL
Microsoft® SQL Server™ loads an extended stored procedure DLL as soon as a call is made to one of the functions of the DLL.
The DLL remains loaded until the server is shut down or until the system administrator uses the DBCC statement to unload it. For
example, this command unloads Xp_hello.dll, allowing the system administrator to copy a newer version of this file to the
directory without shutting down the server:

DBCC xp_hello(FREE)

This is in a sample only available if you select Dev Tools during setup.

See Also

DBCC dllname (FREE)

Extended Stored Procedure Programming (SQL Server 2000)

Unicode Data and Server Code Pages
Open Data Services APIs are enabled for Unicode data; however, they are not enabled for Unicode meta data. The #define Unicode
directive does not have any effect on the Open Data Services API.

All meta data returned by, or provided to Open Data Services by your Open Data Services application is assumed to be in the
multibyte code page of the server. The default code page of an Open Data Services server application is the ANSI code page of the
computer on which the application is running, which can be obtained by calling srv_pfield with the field parameter set to
SRV_SPROC_CODEPAGE.

If your Open Data Services application is Unicode-enabled, you must convert your Unicode meta data column names, error
messages, and so on to multibyte data before passing this data to the Open Data Services API.

Example

The following extended stored procedure provides an example of the Unicode conversions discussed. Note that:

Column data is passed as Unicode data to srv_describe because the column is described to be SRVNVARCHAR.

Column name meta data is passed to srv_describe as multibyte data.

The extended stored procedure calls srv_pfield with the field parameter set to SRV_SPROC_CODEPAGE to obtain the
multibyte code page of Microsoft® SQL Server™.

Error messages are passed to srv_sendmsg as multibyte data.

__declspec(dllexport) RETCODE proc1 (SRV_PROC *srvproc)
{
 #define MAX_COL_NAME_LEN 25
 #define MAX_COL_DATA_LEN 50
 #define MAX_ERR_MSG_LEN 250
 #define MAX_SERVER_ERROR 20000
 #define XP_ERROR_NUMBER MAX_SERVER_ERROR+1

 int retval;
 UINT serverCodePage;
 CHAR *szServerCodePage;

 WCHAR unicodeColumnName[MAX_COL_NAME_LEN];
 CHAR multibyteColumnName[MAX_COL_NAME_LEN];

 WCHAR unicodeColumnData[MAX_COL_DATA_LEN];

 WCHAR unicodeErrorMessage[MAX_ERR_MSG_LEN];
 CHAR multibyteErrorMessage[MAX_ERR_MSG_LEN];

 lstrcpyW (unicodeColumnName, L"column1");
 lstrcpyW (unicodeColumnData, L"column1 data");
 lstrcpyW (unicodeErrorMessage, L"No Error!");

 // Obtain server code page.
 //
 szServerCodePage = srv_pfield (srvproc, SRV_SPROC_CODEPAGE, NULL);
 if (NULL != szServerCodePage)
 serverCodePage = atol(szServerCodePage);
 else
 { // Problem situation exists.
 srv_senddone(srvproc, (SRV_DONE_ERROR | SRV_DONE_MORE), 0, 0);
 return 1;
 }

 // Convert column name for Unicode to multibyte using the
 // server code page.
 //
 retval = WideCharToMultiByte(
 serverCodePage, // code page
 0, // default
 unicodeColumnName, // wide-character string
 -1, // string is null terminated
 multibyteColumnName, // address of buffer for new
 // string
 sizeof (multibyteColumnName), // size of buffer
 NULL, NULL);

 if (0 == retval)
 {
 lstrcpyW (unicodeErrorMessage, L"Conversion to multibyte
 failed.");
 goto Error;
 }

 retval = srv_describe (srvproc, 1, multibyteColumnName,
 SRV_NULLTERM,
 SRVNVARCHAR, MAX_COL_DATA_LEN*sizeof(WCHAR), // destination
 SRVNVARCHAR, lstrlenW(unicodeColumnData)*sizeof(WCHAR),
 unicodeColumnData); //source
 if (FAIL == retval)
 {
 lstrcpyW (unicodeErrorMessage, L"srv_describe failed.");
 goto Error;
 }

 retval = srv_sendrow(srvproc);
 if (FAIL == retval)
 {
 lstrcpyW (unicodeErrorMessage, L"srv_sendrow failed.");
 goto Error;
 }

 retval = srv_senddone (srvproc, SRV_DONE_MORE|SRV_DONE_COUNT, 0, 1);
 if (FAIL == retval)
 {
 lstrcpyW (unicodeErrorMessage, L"srv_senddone failed.");
 goto Error;
 }

 return 0;
Error:
 // convert error message from Unicode to multibyte.
 retval = WideCharToMultiByte(
 serverCodePage, // code page
 0, // default
 unicodeErrorMessage, // wide-character string
 -1, // string is null terminated
 multibyteErrorMessage, // address of buffer for new
 // string
 sizeof (multibyteErrorMessage), // size of buffer
 NULL, NULL);

srv_sendmsg(srvproc, SRV_MSG_ERROR, XP_ERROR_NUMBER, SRV_INFO, 1,
 NULL, 0, __LINE__,
 multibyteErrorMessage,
 SRV_NULLTERM);

 srv_senddone(srvproc, (SRV_DONE_ERROR | SRV_DONE_MORE), 0, 0);

 return 1;
}

Extended Stored Procedure Programming (SQL Server 2000)

Extended Stored Procedures Programmer's Reference
Microsoft® Open Data Services provides a server-based application programming interface (API) for extending Microsoft SQL
Server™ 2000 functionality. The API consists of C and C++ functions and macros used to build applications.

Extended Stored Procedure Programming (SQL Server 2000)

srv_alloc
Allocates memory dynamically.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

void * srv_alloc (DBINT size);

Arguments

size

Specifies the number of bytes to allocate.

Returns

A pointer to the newly allocated space. If size bytes cannot be allocated, a null pointer is returned.

Remarks

The srv_alloc function is equivalent to the Microsoft Win32® GlobalAlloc function. Normal Win32 or C run-time memory
management functions can be used in an Open Data Services application.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_convert
Changes data from one data type to another.

Syntax

int srv_convert (
SRV_PROC * srvproc,
int srctype,
void * src,
DBINT srclen,
int desttype,
void * dest,
DBINT destlen);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains all the control
information that Open Data Services uses to manage communications and data between the Open Data Services server
application and the client. If the srvproc handle is supplied, it is passed to the Open Data Services error handler function when an
error occurs.

srctype

Specifies the data type of the data to be converted. This parameter can be any of the Open Data Services data types.

src

Is a pointer to the data to be converted. This parameter can be any of the Open Data Services data types.

srclen

Specifies the length, in bytes, of the data to be converted. If srclen is 0, srv_convert places a null value in the destination variable.
Unless it is 0, this parameter is ignored for fixed-length data types, in which case the source data is assumed to be NULL. For data
of the SRVCHAR data type, a length of -1 indicates the string is null-terminated.

desttype

Specifies the data type to convert the source to. This parameter can be any of the Open Data Services data types.

dest

Is a pointer to the destination variable that receives converted data. If this pointer is NULL, srv_convert calls the user-supplied
error handler (if any) and returns -1.

If desttype is SRVDECIMAL or SRVNUMERIC, the dest parameter must be a pointer to a DBNUMERIC or DBDECIMAL structure
with the precision and scale fields of the structure already set to the desired values. You can use DEFAULTPRECISION to specify a
default precision, and DEFAULTSCALE to specify a default scale.

destlen

Specifies the length, in bytes, of the destination variable. This parameter is ignored for fixed-length data types. For a destination
variable of type SRVCHAR, the value of destlen must be the total length of the destination buffer space. A length of -1 for a
destination variable of type SRVCHAR or SRVBINARY indicates there is sufficient space available. For a destination variable of
type srvchar, a length of -1 causes the character string to be null-terminated.

Returns

The length of the converted data, in bytes, if the data type conversion succeeds. When srv_convert encounters a request for a
conversion it does not support, it calls the developer-supplied error handler (if any), sets a global error number, and returns -1.

Remarks

The srv_willconvert function determines whether a particular conversion is allowed.

Converting to the approximate numeric data types SRVFLT4 or SRVFLT8 can result in some loss of precision. Converting from the
approximate numeric data types SRVFLT4 or SRVFLT8 to SRVCHAR or SRVTEXT can also result in some loss of precision.

Converting to SRVFLTx, SRVINTx, SRVMONEY, SRVMONEY4, SRVDECIMAL, or SRVNUMERIC can result in overflow if the number
is larger than the destination's maximum value, or in underflow if the number is smaller than the destination's minimum value. If
overflow occurs when converting to SRVCHAR or SRVTEXT, the first character of the resulting value contains an asterisk (*) to
indicate the error.

When converting SRVCHAR to SRVBINARY, srv_convert interprets SRVCHAR as hexadecimal, whether or not the string contains
a leading 0. When converting SRVBINARY to SRVCHAR, srv_convert creates a hexadecimal string without a leading 0. In all other
cases, a conversion to or from the SRVBINARY data type is a straight bit-copy.

In certain cases, it can be useful to convert a data type to itself. For example, converting SRVCHAR to SRVCHAR with a destlen of -
1 adds a null terminator to a string.

For a description of data types and Open Data Services data type conversions, see Data Types.

The srv_convert function can fail for several reasons:

The requested conversion is not available.

The conversion resulted in truncation, overflow, or loss of precision in the destination variable.

A syntax error occurred while converting a character string to a numeric data type.

See Also

srv_setutype

srv_willconvert

Extended Stored Procedure Programming (SQL Server 2000)

srv_describe
Defines the column name and source and destination data types for a specific column in a row.

Syntax

int srv_describe (
SRV_PROC * srvproc,
int colnumber,
DBCHAR * column_name,
int namelen,
DBINT desttype,
DBINT destlen,
DBINT srctype,
DBINT srclen,
void * srcdata);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the client sending the
row). The structure contains all the information that the ODS Library uses to manage communications and data between the
Open Data Services server application and the client.

colnumber

Is currently not supported. Columns must be described in order. All columns must be described before srv_sendrow is called.

column_name

Specifies the name of the column to which the data belongs. This parameter can be NULL because a column is not required to
have a name.

namelen

Specifies the length, in bytes, of column_name. If namelen is SRV_NULLTERM, then column_name must be null-terminated.

desttype

Specifies the data type of the destination row column (the data type sent to the client). The data type must be specified even if the
data is NULL (see Data Types).

destlen

Specifies the length, in bytes, of the data to be sent to the client. For fixed-length data types that do not allow null values, destlen is
ignored. For variable-length data types and fixed-length data types that allow null values, destlen specifies the maximum length
the destination data can be.

srctype

Specifies the data type of the source data.

srclen

Specifies the length, in bytes, of the source data. This value is ignored for fixed-length data types.

srcdata

Provides the source data address for a particular column. When srv_sendrow is called, it looks for the data for colnumber at
srcdata. Therefore should not be freed before a call to srv_sendrow. The source data address can be changed between calls to
srv_sendrow by using srv_setcoldata. Memory allocated for srcdata should not be freed until srv_senddone is called.

If desttype is SRVDECIMAL or SRVNUMERIC, the srcdata parameter must be a pointer to a DBNUMERIC or DBDECIMAL structure
with the precision and scale fields of the structure already set to the values you want. You can use DEFAULTPRECISION to specify
a default precision, and DEFAULTSCALE to specify a default scale.

Returns

The number of the column described. The first column is column 1. If an error occurs, returns 0.

Remarks

The srv_describe function must be called once for each column in the row before the first call to srv_sendrow. The columns of a
row can be described in any order.

To change the location and length of the source data in column rows before the complete result set has been sent, use
srv_setcoldata and srv_setcollen, respectively.

For a description of data types and Open Data Services data type conversions, see Data Types.

If the column name in your application is in Unicode, you need to convert it to the multibyte code page of the server before calling
srv_describe. For more information, see Unicode Data and Server Code Pages.

See Also

srv_sendrow

srv_setutype

srv_setcoldata

Extended Stored Procedure Programming (SQL Server 2000)

srv_free
 New Information - SQL Server 2000 SP3.

Frees memory allocated with srv_alloc.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

 int srv_free (void * ptr);

Arguments

ptr

 Is a pointer to the source of the data to be freed.

Returns

SUCCEED if the memory was successfully freed; otherwise, FAIL.

Remarks

Memory allocated with srv_alloc is not freed unless you free it by using

srv_free, which is equivalent to the Microsoft Win32 GlobalFree function.

See Also

srv_alloc

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_getbindtoken
Obtains a bind token so an extended stored procedure session can share a common transaction lock space with the client session
that invoked the extended stored procedure, instead of opening a separate session.

Syntax

int srv_getbindtoken (
SRV_PROC* srvproc,
char* bindtoken);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The srvproc parameter contains
information that the ODS Library uses to manage communication and data between the application and client.

bindtoken

Is a pointer to a buffer where the bind token will be copied. The bind token is represented as a null-terminated string. The buffer
you specify should be 255 bytes in length.

Returns

SUCCEED or FAIL.

Remarks

To bind an extended stored procedure session to the client session that called it so they share the same transaction
lock space

1. The extended stored procedure calls svr_getbindtoken. This uses the existing bind token of the client session if the session
is already bound. If not, srv_getbindtoken creates a new bind token and binds the client session to the token.
srv_getbindtoken then returns the bind token in the bindtoken parameter.

2. The extended stored procedure uses the bind token with sp_bindsession to bind an extended stored procedure session to
the client session. Multiple extended stored procedure sessions can be bound to a client session.

3. A bound session is unbound when the external stored procedure returns or when sp_bindsession is called with an empty
string.

Note Only one bound session at a time can have access to a shared connection. If one session is currently executing a
statement at the server or has results pending from the server, no other sessions sharing the same bound connection can
gain access to the server until the current session has finished executing the current statement. If a session attempts to gain
access to the connection while the server is busy, an error is returned to the conflicting session indicating the connection is
in use and the session should retry later.

See Also

sp_bindsession

sp_getbindtoken

Extended Stored Procedure Programming (SQL Server 2000)

srv_message_handler
Calls the installed Open Data Services message handler. This function is usually used to call Microsoft® SQL Server™ from an
extended stored procedure to log an error (defined by the extended stored procedure) in the SQL Server error log file or the
Microsoft Windows® application log.

Syntax

int srv_message_handler (
SRV_PROC * srvproc,
int errornum,
BYTE severity,
BYTE state,
int oserrnum,
char * errtext,
int errtextlen,
char * oserrtext,
int oserrtextlen);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The srvproc parameter contains
information that the ODS Library uses to manage communication and data between the application and the client.

errornum

Is an error number defined by the extended stored procedure. This number must be from 50,001 through 2,147,483,647.

severity

Is a standard SQL Server severity value for the error. This number must be from 0 through 24.

state

Is a SQL Server state value for the error.

oserrnum

Is the operating-system error number. This argument is ignored.

errtext

Is the description of the extended stored procedure error errornum.

errtextlen

Is the length of the extended stored procedure error string errtext.

oserrtext

Is the description of the operating-system error oserrnum. This argument is ignored.

oserrtextlen

Is the length of the operating-system error string oserrtext.

Returns

SUCCEED or FAIL.

Remarks

The srv_message_handler function enables an extended stored procedure to integrate with the centralized error logging and
reporting features of SQL Server. SQL Server alerts can be established for events from extended stored procedures, and SQL
Server Agent will monitor for these alert conditions.

If the error message is longer, it is truncated to 412 bytes.

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramdata
Returns the value of a remote stored procedure call parameter.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ 2000 for backward
compatibility. It has been superseded by the srv_paraminfo function.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

void * srv_paramdata (
SRV_PROC * srvproc,
int n);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Is the number of the parameter. The first parameter is number 1.

Returns

A pointer to the parameter value. If the nth parameter is NULL, there is no nth parameter, or there is no remote stored procedure,
returns NULL. If the parameter value is a string, it might not be null-terminated. Use srv_paramlen to determine the length of the
string.

This function returns the following values, if the parameter is one of the SQL Server data types. Pointer data includes whether the
pointer for the data type is valid (VP), NULL, or not applicable (N/A), and the contents of the data pointed to.

New data types Input data length
 NULL ZERO >=255 <255

BITN VP
NULL

VP
NULL

N/A N/A

BIGVARCHAR NULL
N/A

VP
NULL

VP
255 chars*

VP
actual data

BIGCHAR NULL
N/A

VP
255 spaces

VP
255 chars*

VP
actual data
+ padding
(up to 255)

BIGBINARY NULL
N/A

VP
255 0x00

VP
255 bytes

VP
actual data
+ padding
(up to 255)

BIGVARBINARY NULL
N/A

VP
0x00

VP
255 bytes

VP
actual data

NCHAR NULL
N/A

VP
255 spaces

VP
255 chars*

VP
actual data
+ padding
(up to 255)

NVARCHAR NULL
N/A

VP
NULL

VP
255 chars*

VP
actual data

NTEXT N/A N/A N/A N/A

* data is not null-terminated; no warning is issued on truncation for data >255 characters.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Remarks

If you know the parameter name, you can use srv_paramnumber to get the parameter number. To determine whether a
parameter is NULL, use srv_paramlen.

When a remote stored procedure call is made with parameters, the parameters can be passed by name or by position (unnamed).
If the remote stored procedure call is made with some parameters passed by name and some passed by position, an error occurs.
If an error occurs, the SRV_RPC handler is still called, but it appears as if there were no parameters and srv_rpcparams returns 0.

See Also

srv_rpcparams

Extended Stored Procedure Programming (SQL Server 2000)

srv_paraminfo
Returns information about a parameter.

Important This function supersedes the following Open Data Services functions: srv_paramtype, srv_paramlen,
srv_parammaxlen, and srv_paramdata. srv_paraminfo supports the new Data Types and zero-length data.

Syntax

int srv_paraminfo (
SRV_PROC * srvproc,
int n,
BYTE * pbType,
ULONG * pcbMaxLen,
ULONG * pcbActualLen,
BYTE * pbData,
BOOL * pfNull);

Arguments

srvproc

A handle for a client connection.

n

The ordinal number of the parameter to be set. The first parameter is 1.

pbType

The data type of the parameter.

pcbMaxLen

Pointer to the maximum length of the parameter.

pcbActualLen

Pointer to the actual length of the parameter. A value of 0 (*pcbActualLen == 0) signifies zero-length data if *pfNull is set to
FALSE.

pbData

Pointer to the buffer for parameter data. If pbData is not NULL, Open Data Services writes *pcbActualLen bytes of data to
*pbData. If pbData is NULL, no data is written to *pbData but the function returns *pbType, *pcbMaxLen, *pcbActualLen, and
*pfNull. The memory for this buffer must be managed by the Open Data Services application.

pfNull

Pointer to a null flag. *pfNull is set to TRUE if the value of the parameter is NULL.

Returns

If the parameter information was successfully obtained, SUCCEED is returned; otherwise, FAIL. FAIL is returned when there is no
current remote stored procedure and when there is no nth remote stored procedure parameter.

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramlen
Returns the data length of a remote stored procedure call parameter.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ 2000 for backward
compatibility. It has been superseded by the srv_paraminfo function.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

int srv_paramlen (
SRV_PROC * srvproc,
int n);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information that the ODS Library uses to manage communication and
data between the Open Data Services server application and the client.

n

Indicates the number of the parameter. The first parameter is 1.

Returns

The actual length, in bytes, of the parameter data. If there is no nth parameter or there is no remote stored procedure, returns -1.
If the nth parameter is NULL, returns 0.

This function returns the following values, if the parameter is one of the following SQL Server data types.

New data types Input data length
 NULL ZERO >=255 <255

BITN 1 1 N/A N/A
BIGVARCHAR 0 1 255 actual len*
BIGCHAR 0 255 255 255
BIGBINARY 0 255 255 255
BIGVARBINARY 0 1 255 actual len*
NCHAR 0 255 255 255
NVARCHAR 0 1 255 actual len*
NTEXT -1 -1 -1 -1

* actual len = Length of multibyte character string (cch)

Remarks

Each remote stored procedure parameter has an actual and a maximum data length. For standard fixed-length data types that do
not allow null values, the actual and maximum lengths are the same. For variable-length data types, the lengths can vary. For
example, a parameter declared as varchar(30) can have data that is only 10 bytes long. The parameter's actual length is 10 and
its maximum length is 30. The srv_paramlen function gets the actual data length, in bytes, of a remote stored procedure. To
obtain the maximum data length of a parameter, use srv_parammaxlen.

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. The SRV_RPC handler is still called, but it appears as if there were no parameters and srv_rpcparams returns 0.

See Also

srv_paraminfo

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

srv_rpcparams

Extended Stored Procedure Programming (SQL Server 2000)

srv_parammaxlen
Returns the maximum data length of a remote stored procedure call parameter.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ 2000 for backward
compatibility. It has been superseded by the srv_paraminfo function.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

int srv_parammaxlen (
SRV_PROC * srvproc,
int n);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Indicates the number of the parameter. The first parameter is 1.

Returns

The maximum length, in bytes, of the parameter data. If there is no nth parameter or if there is no remote stored procedure,
returns -1.

This function returns the following values, if the parameter is one of the following SQL Server data types.

New data types Input data length
 NULL ZERO >=255 <255

BITN 1 1 N/A N/A
BIGVARCHAR 255 255 255 255
BIGCHAR 255 255 255 255
BIGBINARY 255 255 255 255
BIGVARBINARY 255 255 255 255
NCHAR 255 255 255 255
NVARCHAR 255 255 255 255
NTEXT -1 -1 -1 -1

Remarks

Each remote stored procedure parameter has an actual and a maximum data length. For standard fixed-length data types that do
not allow null values, the actual and maximum lengths are the same. For variable-length data types, the lengths can vary. For
example, a parameter declared as varchar(30) can have data that is only 10 bytes long. The parameter's actual length is 10 and
its maximum length is 30. The srv_parammaxlen function gets the maximum data length of a remote stored procedure. To
obtain the actual length of a parameter, use srv_paramlen.

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. The SRV_RPC handler is still called, but it appears as if there were no parameters, and srv_rpcparams returns 0.

See Also

srv_paraminfo

srv_rpcparams

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramname
Returns the name of a remote stored procedure call parameter.

Syntax

DBCHAR * srv_paramname (
SRV_PROC * srvproc,
int n ,
int * len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Indicates the number of the parameter. The first parameter is 1.

len

Provides a pointer to an int variable that contains the length, in bytes, of the parameter name. If len is NULL, the length of the
remote stored procedure parameter name is not returned.

Returns

A pointer to a null-terminated character string that contains the parameter name. The length of the parameter name is stored in
len. If there is no nth parameter or no remote stored procedure, returns NULL, len is set to -1, and an informational error message
is sent. If the parameter name is NULL, len is set to 0 and a null-terminated empty string is returned.

Remarks

This function gets the name of a remote stored procedure call parameter. When a remote stored procedure call is made with
parameters, the parameters can be passed either by name or by position (unnamed). If the remote stored procedure call is made
with some parameters passed by name and some passed by position, an error occurs. The SRV_RPC handler is still called, but it
appears as if there were no parameters, and srv_rpcparams returns 0.

See Also

srv_rpcparams

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramnumber
Returns the number of a remote stored procedure call parameter.

Syntax

int srv_paramnumber (
SRV_PROC * srvproc,
DBCHAR * name,
int namelen);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

name

Is a pointer to the parameter name.

namelen

Is the length of name. If name is null-terminated, set namelen to SRV_NULLTERM.

Returns

The parameter number of the named parameter. The first parameter is 1. If there is no parameter named name or no remote
stored procedure, 0 is returned and a message is generated.

Remarks

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. The SRV_RPC handler is still called, but it appears as if there were no parameters, and srv_rpcparams returns 0.

See Also

srv_rpcparams

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramset
Sets the value of a remote stored procedure call return parameter.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ 2000 for backward
compatibility. It has been superseded by the srv_paramsetoutput function.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

int srv_paramset (
SRV_PROC * srvproc,
int n ,
void * data,
int len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Indicates the number of the parameter to set. The first parameter is 1.

data

Is a pointer to the data value to be sent back to the client as the remote stored procedure return parameter.

len

Specifies the actual length of the data to be returned. If the data type of the parameter is of a constant length and does not allow
null values (for example, srvbit or srvint1), len is ignored.

Returns

SUCCEED if the parameter value was successfully set; otherwise, FAIL. FAIL is returned when there is no current remote stored
procedure, when there is no nth remote stored procedure parameter, when the parameter is not a return parameter, and when
the len argument is not legal.

If len is 0, returns NULL. Setting len to 0 is the only way to return NULL to the client.

This function returns the following values, if the parameter is one of SQL Server data types.

New data types Return data length
 NULL ZERO >=255 <255

BITN len = 0
data = IG
RET = 0

N/A N/A N/A

BIGVARCHAR len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

BIGCHAR len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

BIGBINARY len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

BIGVARBINARY len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

NCHAR len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

NVARCHAR len = 0
data = IG
RET = 1

len = IG
data = IG
RET = 0

len = max8k
data = valid
RET = 0

len = <8k
data = valid
RET = 1

NTEXT len = IG
data = IG
RET = 0

len = IG
data = IG
RET = 0

len = IG
data = IG
RET = 0

len = IG
data = IG
RET = 0

RET = Return value of srv_paramset
IG = Value will be ignored
valid = Any valid pointer to data

Remarks

Parameters contain data passed between clients and the Open Data Services server application with remote stored procedures.
The client can specify certain parameters as return parameters. These return parameters can contain values that the Open Data
Services server application passes back to the client. Using return parameters is analogous to passing parameters by reference.

You cannot set the return value for a parameter that wasn't invoked as a return parameter. You can use srv_paramstatus to
determine how the parameter was invoked.

This function sets the return value for a parameter but it does not actually send the return value to the client. All return
parameters, whether their return values have been set with srv_paramset or not, are automatically sent to the client when
srv_senddone is called with the status flag SRV_DONE_FINAL set.

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. The SRV_RPC handler is still called, but it appears as if there were no parameters, and srv_rpcparams returns 0.

See Also

srv_paramsetoutput

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramsetoutput
Sets the value of a return parameter.

Important This function supersedes the srv_paramset function. srv_paramsetoutput supports the new Open Data Services
data types and zero-length data.

Syntax

int srv_paramsetoutput (
SRV_PROC * srvproc,
int n,
BYTE * pbData,
ULONG cbLen,
BOOL fNull);

Arguments

srvproc

Is a handle for a client connection.

n

Is the ordinal number of the parameter to be set. The first parameter is 1.

pbData

Is a pointer to the data value to be sent back to the client as a procedure return parameter.

cbLen

Is the actual length of the data to be returned. If the data type of the parameter specifies values of a constant length and does not
allow null values (for example, srvbit or srvint1), cbLen is ignored. A value of 0 signifies zero-length data if fNull is FALSE.

fNull

Is a flag indicating whether the value of the return parameter is NULL. Set this flag to TRUE if the parameter should be set to
NULL. The default value is FALSE. If fNull is set to TRUE, cbLen should be set to 0 or the function will fail.

Returns

If the parameter information was successfully set, SUCCEED is returned; otherwise, FAIL. FAIL is returned when there is no current
remote stored procedure, when the parameter is not a return parameter, or when the cbLen argument is invalid.

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramstatus
Returns the status of a particular remote stored procedure call parameter.

Syntax

int srv_paramstatus (
SRV_PROC * srvproc,
int n);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Indicates the number of the parameter. The first parameter is number 1.

Returns

An int that contains status flags for the parameter. Currently, there is only one flag: If bit 0 is set to 1, the parameter is a return
parameter. If there is no nth parameter or if there is no remote stored procedure, returns -1.

Remarks

This routine returns the status flags for a remote stored procedure call parameter.

Parameters contain data passed between clients and the Open Data Services server application with remote stored procedures.
The client can specify certain parameters as return parameters. These return parameters can contain values that the Open Data
Services server application passes back to the client.

Currently, the only status flag is one that indicates whether the parameter is a return parameter.

Open Data Services can use srv_paramset to set the value of a return parameter.

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. If an error occurs, the SRV_RPC handler is still called, but it appears as if there were no parameters, and
srv_rpcparams returns 0.

See Also

srv_rpcparams

Extended Stored Procedure Programming (SQL Server 2000)

srv_paramtype
Returns the data type of a remote stored procedure call parameter.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ 2000 for backward
compatibility. It has been superseded by the srv_paraminfo function.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

int srv_paramtype (
SRV_PROC * srvproc,
int n);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure call). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

n

Indicates the number of the parameter. The first parameter is 1.

Returns

A token value for the data type of the parameter. For information about a list of data types, see Data Types. If there is no nth
parameter or if there is no remote stored procedure, returns - 1.

This function returns the following values, if the parameter is one of the SQL Server data types.

New data types Return value
BITN SRVBIT
BIGVARCHAR VARCHAR
BIGCHAR CHAR
BIGBINARY BINARY
BIGVARBINARY VARBINARY
NCHAR CHAR
NVARCHAR VARCHAR
NTEXT -1

Remarks

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call is made with some parameters passed by name and some passed by position, an
error occurs. The SRV_RPC handler is still called, but it appears as if there were no parameters and srv_rpcparams returns 0.

See Also

srv_paraminfo

srv_rpcparams

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_pfield
 New Information - SQL Server 2000 SP3.

Returns information about a database connection.

Syntax

DBCHAR * srv_pfield (
SRV_PROC * srvproc,
int field,
int * len);

Arguments

srvproc

Pointer identifying a database connection.

field

Specifies data on the connection to return.

Value Returns
SRV_APPLNAME The application name provided by the client

when it established the connection.
SRV_BCPFLAG A flag that is TRUE if the client is preparing for a

bulk copy operation; otherwise, FALSE.
SRV_CLIB The name of the library that enables the client to

talk to a server.
SRV_CPID The client process ID on the client source

computer.
SRV_HOST The name of the client's machine provided by

the client when it established the connection.
SRV_LIBVERS The version of the client library.
SRV_LSECURE A flag. TRUE if connection used integrated

security to login.
SRV_NETWORK_MODULE The name of the Net-Library DLL used by the

connection.
SRV_NETWORK_VERSION The version of the Net-Library DLL used used by

the connection.
SRV_NETWORK_CONNECTION The connection string passed to the Net-Library

DLL used for the current srvproc connection.
SRV_PIPEHANDLE A string containing the pipe handle of a

connected client, or NULL if the client is
connected on a network that does not use
named pipes. To use this handle as a valid pipe
handle with Microsoft® Windows NT® 4.0,
convert this string to an integer.

SRV_RMTSERVER The server from which the client process is
logged in. If the login is from a client, this value
is an empty string.

SRV_ROWSENT The number of rows already sent by srvproc for
the current set of results.

SRV_SPID The server thread ID of the srvproc. For extended
stored procedures, this value is the same as the
kpid column of sysprocesses, and it can change
over time.

SRV_SPROC_CODEPAGE Codepage that the server uses to interpret
multbyte data.

SRV_STATUS The current status of srvproc.
SRV_TYPE The connection type of srvproc. If "server" is

returned, srvproc is from an instance of SQL
Server. If "client" is returned, srvproc is from a
DB-Library or ODBC client.

SRV_USER The user name of the connection.

len

Is a pointer to an int variable that contains the length of the returned field value. If len is NULL, the length of the string is not
returned.

Returns

A pointer to a null-terminated string containing the current value for the specified field in the SRV_PROC structure. If the field is
empty, a valid pointer to an empty string is returned and len contains 0. If the field is unknown, NULL is returned and len contains
the value -1.

Extended Stored Procedure Programming (SQL Server 2000)

srv_pfieldex
Returns a pointer to data containing the requested SRV_PROC field.

Syntax

void *srv_pfieldex(SRV_PROC * srvproc, int field, int * len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information that
the ODS Library uses to manage communication and data between the Open Data Services server application and the client.

field

Specifies the srvproc field to return.

Field Description Return-type
SRV_MSGLCID Current session message LCID. ULONG*
SRV_INSTANCENAME Instance name (if named); otherwise,

returns NULL.
WCHAR*

len

Is a pointer to an int variable that contains the length of the returned field value in bytes. If len is NULL, the length is not returned.
When NULL is returned *len is set to 0.

Returns

A pointer to data whose type depends on field. NULL is returned when len is NULL or srvproc is NULL. If the field is unknown,
NULL is returned. When NULL is returned *len is set to 0.

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcdb
Returns the database name component for the current remote stored procedure.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

DBCHAR * srv_rpcdb (
SRV_PROC * srvproc,
int * len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information the
ODS Library uses to manage communication and data between the Open Data Services server application and the client.

len

Is a pointer to an int variable that receives the length of the database name. If len is NULL, the length of the database name is not
returned.

Returns

A DBCHAR pointer to the null-terminated string for the database name part of the current remote stored procedure. If there is no
current remote stored procedure, NULL is returned and the len parameter is set to - 1.

Remarks

This function returns only the database component of the remote stored procedure object name. It does not include the optional
specifiers for owner, remote stored procedure name, and remote stored procedure number.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcname
Returns the procedure name component for the current remote stored procedure.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

DBCHAR * srv_rpcname (
SRV_PROC * srvproc,
int * len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information that the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

len

Is a pointer to an integer variable that receives the length of the database name. If len is NULL, the length of the remote stored
procedure name is not returned.

Returns

A DBCHAR pointer to the null-terminated string for the remote stored procedure name component of the current remote stored
procedure. If there is not a current remote stored procedure, NULL is returned and len is set to -1.

Remarks

This function returns only the name of the remote stored procedure. It does not include the optional specifiers for owner,
database name, and remote stored procedure number.

Because it is valid to call srv_rpcname when there is not a remote stored procedure (no informational error occurs), this function
provides a method for determining whether a remote stored procedure exists.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcnumber
Returns the number component for the current remote stored procedure call.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

int srv_rpcnumber (SRV_PROC * srvproc)

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information that the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

Returns

The number component for the current remote stored procedure. If the client does not use a number component when running
the remote stored procedure or if there is no current remote stored procedure, returns - 1.

Remarks

This function returns only the number component of the remote stored procedure. It does not include the optional specifiers for
owner, remote stored procedure name, and database name.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcoptions
Returns run-time options for the current remote stored procedure.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

DBUSMALLINT srv_rpcoptions (SRV_PROC * srvproc);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

Returns

A bitmap that contains the run-time flags joined in a logical OR for the current remote stored procedure. If there is not a current
remote stored procedure, 0 is returned and a message is generated.

Remarks

The following table describes each run-time flag.

Run-time flag Description
SRV_NOMETADATA The client has requested results without meta data

information. This flag is only used when the client is
communicating with an instance of SQL Server. An Open Data
Services application cannot omit meta data information.

SRV_RECOMPILE The client has requested to recompile the remote stored
procedure before executing it. This flag may not apply to an
Open Data Services application.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcowner
Returns the owner component for the current remote stored procedure.

Important This Open Data Services function or macro is only supported in Microsoft® SQL Server™ version 7.0 for backward
compatibility.

For more information about Open Data Services functions or macros supported for backward compatibility, see Open Data
Services (Level 3).

Syntax

DBCHAR * srv_rpcowner (
SRV_PROC * srvproc,
int * len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information that the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

len

Is a pointer to an integer variable that receives the length of the owner name. The parameter len can be NULL, in which case the
length of the owner component is not returned.

Returns

A DBCHAR pointer to the null-terminated owner component for the current remote stored procedure. If there is no current
remote stored procedure, NULL is returned and len is set to - 1.

Remarks

This function returns only the owner component of the remote stored procedure. It does not include the optional specifiers for
name, remote stored procedure name, and remote stored procedure number.

https://msdn.microsoft.com/en-us/library/aa197077(v=sql.80).aspx

Extended Stored Procedure Programming (SQL Server 2000)

srv_rpcparams
Returns the number of parameters for the current remote stored procedure.

Syntax

int srv_rpcparams (SRV_PROC * srvproc);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the remote stored procedure). The structure contains information that the ODS Library uses to manage communication and data
between the Open Data Services server application and the client.

Returns

The number of parameters in the remote stored procedure. If there are no parameters in the remote stored procedure or if there
is not a current remote stored procedure, -1 is returned and an information error occurs.

Remarks

This function returns the number of parameters in the current remote stored procedure. It is usually called from the remote
stored procedure.

When a remote stored procedure call is made with parameters, the parameters can be passed either by name or by position
(unnamed). If the remote stored procedure call was made with some parameters passed by name and some passed by position,
an error occurs. When this error occurs, the remote stored procedure handler is called, but it does not receive the parameters and
srv_rpcparams returns 0.

Extended Stored Procedure Programming (SQL Server 2000)

srv_senddone
Sends a result completion message to the client.

Syntax

int srv_senddone (
SRV_PROC * srvproc,
DBUSMALLINT status,
DBUSMALLINT info,
DBINT count);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the language request). The structure contains information that the ODS Library uses to manage communication and data between
the Open Data Services server application and the client.

status

Is a 2-byte field for various status flags. Multiple flags can be set by using the AND and OR logical operators with status flag
values. The following table lists possible status flags.

Status flag Description
SRV_DONE_COUNT The count parameter contains a valid count.
SRV_DONE_ERROR The current client command received an error.

info

Is a reserved, 2-byte field. Set this value to 0.

count

Is a 4-byte field used to indicate a count for the current result set. If the SRV_DONE_COUNT flag is set in the status field, count
holds a valid count.

Returns

SUCCEED or FAIL

Remarks

A client request can cause the server to execute a number of commands and to return a number of result sets. For each result set,
srv_senddone must return a result completion message to the client.

The count field indicates the number of rows affected by a command. If the count field contains a count, the SRV_DONE_COUNT
flag should be set in the status field. This setting allows the client to distinguish between a count value of 0 and an unused count
field.

Do not call srv_senddone from the SRV_CONNECT handler.

Extended Stored Procedure Programming (SQL Server 2000)

srv_sendmsg
Sends a message to the client.

Syntax

int srv_sendmsg (
SRV_PROC * srvproc,
int msgtype,
DBINT msgnum,
DBTINYINT class,
DBTINYINT state,
DBCHAR * rpcname,
int rpcnamelen,
DBUSMALLINT linenum,
DBCHAR * message,
int msglen);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the language request). The structure contains information that the ODS Library uses to manage communication and data between
the Open Data Services server application and the client.

msgtype

Is either SRV_MSG_INFO or SRV_MSG_ERROR, depending on whether the server is sending an informational or error message.

msgnum

Is a 4-byte message number.

class

Specifies the error severity. A severity less than or equal to 10 is considered an informational message.

state

Provides the error state number for the current message. The error state number provides information about the context of the
error. Valid state numbers are from 1 through 127.

rpcname

Is currently not supported.

rpcnamelen

Is currently not supported.

linenum

Is the line number in the language command batch where the message applies. Line numbers start at 1. If linenum does not apply
to the message, set to 0.

message

Is a pointer to the character string to be sent to the client.

msglen

Specifies the length, in bytes, of message. If message is null-terminated, set msglen to SRV_NULLTERM.

Returns

SUCCEED or FAIL

Remarks

This function sends error or informational messages to the client. It is called once for each message to be sent.

Messages can be sent to the client with srv_sendmsg in any order before or after all rows (if any) have been sent with
srv_sendrow. All messages, if any, must be sent to the client before the completion status is sent with srv_senddone.

To send messages in Unicode, use srv_wsendmsg rather than srv_sendmsg.

For more information see Unicode Data and Server Code Pages.

Extended Stored Procedure Programming (SQL Server 2000)

srv_sendrow
Transmits a row of data to the client.

Syntax

int srv_sendrow (SRV_PROC * srvproc);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection (in this case, the handle that received
the language request). The structure contains information that the ODS Library uses to manage communication and data between
the Open Data Services server application and the client.

Returns

SUCCEED or FAIL.

Remarks

The srv_sendrow function is called once for each row sent to the client. All rows must be sent to the client before any messages,
status values, or completion statuses are sent with srv_sendmsg, srv_status, or srv_senddone.

Sending a row that has not had all its columns defined with srv_describe causes the Open Data Services server application to
raise an informational error message and return FAIL to the client. In this case, the row is not sent.

Note Open Data Services does not support sending compute rows to the client. Also, if a row containing ntext, text or image
data is sent to the client, the text pointer and text timestamp are not included.

See Also

srv_describe

Extended Stored Procedure Programming (SQL Server 2000)

srv_setcoldata
Specifies the current address for a column's data.

Syntax

int srv_setcoldata (
SRV_PROC * srvproc,
int column,
void * data);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information the
ODS Library uses to manage communication and data between the Open Data Services server application and the client.

column

Indicates the number of the column the address is being specified for. Columns are numbered beginning with 1.

data

Is a pointer for a column's data. Memory allocated for data should not be freed until srv_senddone is called.

Returns

SUCCEED or FAIL.

Remarks

Each column of the row must be defined first with srv_describe. Column data addresses are initially set with srv_describe. If the
address of the column data changes, srv_setcoldata must be called to specify the new address of the data and srv_setcoldata
must be called separately for each changed column.

Null data is represented by setting the column's length to 0 with srv_setcollen. The data address is then ignored.

See Also

srv_describe

Extended Stored Procedure Programming (SQL Server 2000)

srv_setcollen
Specifies the current data length in bytes of a variable-length column or a column that allows NULL values.

Syntax

int srv_setcollen (
SRV_PROC * srvproc,
int column,
int len);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information the
ODS Library uses to manage communication and data between the Open Data Services server application and the client.

column

Indicates the number of the column for which the data length is being specified. Columns are numbered beginning with 1.

len

Indicates the length, in bytes, of the column data. A length of 0 means the column data value is null.

Returns

SUCCEED or FAIL.

Remarks

Each column of the row must first be defined with srv_describe. The column data length is set by the last call to srv_describe or
srv_setcollen. If variable-length data (null-terminated data) changes for a row, srv_setcollen must be used to set it to the new
length before calling srv_sendrow. For a column that allows null values, srv_describe must have been called with desttype set to
a data type that allows nulls (like SRVINTN) and null data is specified by calling srv_setcollen with len set to 0. Zero length data
cannot be specified using Open Data Services API.

Note that when the data type of the column is variable-length, len is not checked. This function returns FAIL if called for a fixed-
length column.

See Also

srv_describe

Extended Stored Procedure Programming (SQL Server 2000)

srv_setutype
Sets the user-defined data type for a column in a row.

Syntax

int srv_setutype (
SRV_PROC * srvproc,
int column,
DBINT user_type);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information the
ODS Library uses to manage communication and data between the Open Data Services server application and the client.

column

Indicates which column to set. Columns are numbered beginning with 1.

user_type

Specifies the user-defined data type code.

Returns

SUCCEED or FAIL. Returns FAIL if the column does not exist.

Remarks

A column has two data types: its actual data type and its user-defined data type. The user-defined data type is used by Microsoft®
SQL Server™ to store the actual user-defined data type of the column (if any) and column description information (such as
nullability and updatability) for the column.

The srv_setutype function can be called any time that column has been defined with srv_describe and before the last row has
been sent.

See Also

srv_describe

Extended Stored Procedure Programming (SQL Server 2000)

srv_setRPC
This function allows setting individual RPC values (including parameters).

Syntax

void srv_setRPC(
SRV_PROC * srvproc,
int iItem,
ULONG ulValue,
Void * pValue);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains all information
the ODS Library needs to manage communication and data between the Open Data Services server application and the client.

iItem

Is the RPC value to set (see Remarks for supported values).

ulValue

Is the value to which to set the item (where applicable). If ulValue is SRV_NULLTERM, then the RPC value is assumed to be null-
terminated.

pValue

Is a pointer to the value to which to set the item (where applicable).

Remarks

This function is used to set individual RPC item values when RPC processing is in progress.

iItem
Applicable
parameters Description

SRV_RPC_ACTIVEFLAG ulValue Sets the RPC active flag to ulValue.
This flag indicates that an RPC is
active.

SRV_RPC_SERVER ulValue pValue Sets the RPC server name value. The
name is stored at the location
pointed to by pValue. The length of
the name is stored in ulValue.

SRV_RPC_DATABASE ulValue pValue Sets the RPC database name value.
The name is stored at the location
pointed to by pValue. The length of
the name is stored in ulValue.

SRV_RPC_OWNER ulValue pValue Sets the RPC owner name value. The
name is stored at the location
pointed to by pValue. The length of
the name is stored in ulValue.

SRV_RPC_OWNER ulValue pValue Sets the RPC owner name value. The
name is stored at the location
pointed to by pValue. The length of
the name is stored in ulValue.

SRV_RPC_OWNER ulValue pValue Sets the RPC owner name value. The
name is stored at the location
pointed to by pValue. The length of
the name is stored in ulValue.

SRV_RPC_PROCNUMBER ulValue Sets the RPC procedure number
value.

SRV_RPC_PROCNUMBER ulValue Sets the RPC procedure line number
value.

SRV_RPC_OPTIONS ulValue Sets the RPC option flag. The option
flag is 16 bits in size. Bit 0 is set if the
RPC is being sent with the recompile
option. Bit 1 is set if xp_cursor
operations are not supposed to
return meta data. Bits 2 through 15
are reserved and should be set to
zero.

SRV_RPC_NUMPARAMS ulValue Specifies how many RPC parameters
are contained within this RPC. This
value must be set before setting any
parameter values.

SRV_RPC_RPCPARAMS ulValue pValue Sets the RPC parameter value. The
RPC parameter to set is specified in
ulValue and the RPC parameter data
is contained in the structure, pValue.
The RPC parameter structure
definition is defined in the structure,
SRV_RPCp, which is defined in the
Srvstruc.h header file.

Extended Stored Procedure Programming (SQL Server 2000)

srv_willconvert
Determines whether a specific data type conversion is available within the ODS Library.

Syntax

BOOL srv_willconvert (
int srctype,
int desttype);

Arguments

srctype

Indicates the data type of the data to be converted. This parameter can be any of the Open Data Services data types.

desttype

Indicates the data type to which the source data is converted. This parameter can be any of the Open Data Services data types.

Returns

TRUE if the data type conversion is supported; FALSE if the data type conversion is not supported.

Remarks

For a description of each data type and Open Data Services data type conversions, see Data Types.

See Also

srv_convert

Extended Stored Procedure Programming (SQL Server 2000)

srv_wsendmsg
Sends a Unicode message to the client.

Syntax

int srv_wsendmsg(SRV_PROC * srvproc, int msgnum, int severity, WCHAR * message, int msglen);

Arguments

srvproc

Is a pointer to the SRV_PROC structure that is the handle for a particular client connection. The structure contains information the
ODS Library uses to manage communication and data between the Open Data Services server application and the client.

msgnum

Is a 4-byte message number.

severity

Specifies the severity of the error. A severity less than or equal to 10 is considered an informational message; otherwise, it is an
error.

message

Is a pointer to a Unicode string to be sent to the client.

msglen

Specifies the length, in characters, of message.

Returns

SUCCEED or FAIL.

Remarks

Use this function to send messages in Unicode. It is similar to srv_sendmsg, but it returns a pointer to a string of type WCHAR
rather than type DBCHAR. Note that message length is reported in characters rather than bytes and msglen will never be equal to
SRV_NULLTERM.

Extended Stored Procedure Programming (SQL Server 2000)

Errors
 New Information - SQL Server 2000 SP3.

The following error values are returned by Open Data Services.

Number Description
17801 Unknown internal error value.
17802 Creation of server event thread failed.
17803 Insufficient memory available.
17804 Invalid 'nbytes' value.
17805 Invalid buffer received from client.
17806 Invalid event specification.
17807 Invalid event '%l!ld!'.
17808 Invalid starting position specified.
17809 Unable to connect. The maximum number of '%l!ld!' users is

currently connected.
17810 Unable to set up named pipe.
17811 Requested data conversion does not exist.
17812 Data conversion resulted in overflow.
17813 Attempt to convert data stopped by syntax error in source field.
17814 Invalid function parameter.
17815 No longer waiting for client connections using '%1'.
17816 No active RPC, or parameter value out of range.
17817 No active RPC, or no parameters.
17818 No active RPC, or parameter name not found.
17819 No active RPC.
17820 Invalid data type parameter.
17821 Unable to set up subchannel.
17822 Unable to load ListenOn Net-Library '%1'.
17823 Unable to read from ListenOn connection.
17824 Unable to write to ListenOn connection '%1', loginname '%2',

hostname '%3'.
17825 Unable to close ListenOn connection.
17826 Unable to set up ListenOn connection '%1'.
17827 The maximum number of '%1!ld!' remote connections is currently in

use.
17828 Unable to read from local subchannel named pipe.
17829 Unable to copy buffer to subchannel thread, subchannel closed.
17830 A subchannel protocol error has occurred.
17831 Unable to load ListenOn Net-Library '%1' version '%2'. Need Net-

Library version '%3' or greater.
18732 Unable to read login packet(s).
18733 ListenOn connection '%1' is already in use.
17834 Using '%1' version '%2' to listen on '%3'.
17835 Configured for local access only.
17836 Unable to create IO completion port.

Security Note When you design an extended stored procedure, consider what information it might expose in error messages.
Create error handlers that do not pass sensitive information to end users.

Extended Stored Procedure Programming (SQL Server 2000)

Data Types
To use the Open Data Services data types, include the Srv.h header file in your program. Open Data Services applications also use
the same data type definitions as DB-Library functions.

Data type SQL Server data type Description
SRVBIGBINARY binary binary data type, length 0 to 8000

bytes.
SRVBIGCHAR char character data type, length 0 to

8000 bytes.
SRVBIGVARBINARY varbinary Variable-length binary data type,

length 0 to 8000 bytes.
SRVBIGVARCHAR varchar Variable-length character data

type, length 0 to 8000 bytes.
SRVBINARY binary binary data type.
SRVBIT Bit bit data type.
SRVBITN bit null bit data type, null values allowed.
SRVCHAR char character data type.
SRVDATETIME datetime 8-byte datetime data type.
SRVDATETIM4 smalldatetime 4-byte smalldatetime data type.
SRVDATETIMN datetime null smalldatetime or datetime data

type, null values allowed.
SRVDECIMAL decimal decimal data type.
SRVDECIMALN decimal null decimal data type, null values

allowed.
SRVFLT4 real 4-byte real data type.
SRVFLT8 float 8-byte float data type.
SRVFLTN real | float null real or float data type, null values

allowed.
SRVIMAGE image image data type.
SRVINT1 tinyint 1-byte tinyint data type.
SRVINT2 smallint 2-byte smallint data type.
SRVINT4 Int 4-byte int data type.
SRVINTN tinyint | smallint | int

null
tinyint, smallint, or int data type,
null values allowed.

SRVMONEY4 smallmoney 4-byte smallmoney data type.
SRVMONEY money 8-byte money data type.
SRVMONEYN money | smallmoney

null
smallmoney or money data
type, null values allowed.

SRVNCHAR nchar Unicode character data type.
SRVNTEXT ntext Unicode text data type.
SRVNUMERIC numeric numeric data type.
SRVNUMERICN numeric null numeric data type, null values

allowed.
SRVNVARCHAR nvarchar Unicode variable-length

character data type.
SRVTEXT text text data type.
SRVVARBINARY varbinary Variable-length binary data type.
SRVVARCHAR varchar Variable-length character data

type.

Open Data Services Data Type Conversions

The following chart shows conversions allowed for Open Data Services data types.

Extended Stored Procedure Programming (SQL Server 2000)

Sample Extended Stored Procedures
The Open Data Services samples are installed by the Microsoft® SQL Server™ 2000 setup program in subdirectories under
x:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\ODS. All of the necessary C source, definition, project, and
.sql files for the samples are located in these subdirectories.

Extended stored
procedure DLL

Source file
subdirectory Description

xp_hello Xp_hello.dll xp_hello Basic extended stored
procedure that accepts
one output parameter
and prints one result set.

xp_srv_paraminfo_sample Xp_param.dll xp_param Analyzes parameters
from an extended stored
procedure call, and
posts a result set to the
client about each
parameter and
parameter value.

xp_gettable_odbc Xp_odbc.dll xp_odbc Uses ODBC to open a
bound connection to the
same instance of SQL
Server that called the
extended stored
procedure. The server
returns a result set to
the extended stored
procedure, which passes
the result set to the
client.

xp_gettable_dblib Xp_dblib.dll xp_odbc Uses the DB-Library
interface to open a
bound connection to the
same instance of SQL
Server that called the
extended stored
procedure. The server
returns a result set to
the extended stored
procedure, which passes
the result set to the
client.

To create the extended stored procedure DLLs for these samples, go to the appropriate sample subdirectory. Using Microsoft
Visual C++® 6.0, open the .dsw file and compile this program. Perform these steps before you compile:

1. On the Tools menu, click Options, and then click the Directories tab.

2. In the Show directories for box, select Include files and Library files. Ensure these directories (as appropriate) are included
and also appear on the top list:

Include files: ..\Tools\Devtools\Include

Library files: ..\Tools\Devtools\Lib

See Also

Adding an Extended Stored Procedure to SQL Server

Creating Extended Stored Procedures

Debugging an Extended Stored Procedure

Removing an Extended Stored Procedure from SQL Server

Using Bound Connections

Extended Stored Procedure Programming (SQL Server 2000)

Using xp_hello
This Microsoft® Visual C++® sample shows a basic extended stored procedure that accepts one output parameter and prints
one result set.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODS\Xp_hello

Running the Sample

To create the extended stored procedure DLLs for these samples, in the appropriate sample subdirectory, open the supplied .dsw
file in Microsoft Visual C++.

To run this program

1. Build and compile the Xp_hello.dll.

2. Place the compiled Xp_hello.dll in the Microsoft SQL Server\80\Tools\Binn directory.

3. Start the server.

4. Start SQL Query Analyzer, and then run the Xp_hello.sql script.

See Also

Extended Stored Procedure Sample: xp_hello

Samples

Extended Stored Procedure Programming (SQL Server 2000)

Using xp_srv_paraminfo_sample
This Microsoft® Visual C++® sample shows how to analyze parameters from an extended stored procedure call, and post a
result set to the client about each parameter and parameter value.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODS\Xp_param

Running the Sample

To create the extended stored procedure DLLs for these samples, in the appropriate sample subdirectory, open the supplied .dsw
file in Microsoft Visual C++.

To run this program

1. Build the Xp_param.dll.

2. Place the compiled Xp_param.dll in the Microsoft SQL Server\80\Tools\Binn directory.

3. Start the server.

4. Start SQL Query Analyzer, and then run the Xp_param.sql script.

Remarks

See Also

Samples

Extended Stored Procedure Programming (SQL Server 2000)

Using xp_gettable_odbc
This Microsoft® Visual C++® sample shows using ODBC to open a bound connection to the same instance of Microsoft SQL
Server™ that called the extended stored procedure. The server returns a result set to the extended stored procedure, which passes
the result set to the client.

You must create an ODBC datasource called "local" or edit the code to change the datasource name.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODS\Xp_odbc

Running the Sample

To create the extended stored procedure DLLs for these samples, go to the appropriate sample subdirectory and open the
supplied .dsw file with Microsoft Visual C++.

To run this program

1. Build and compile the Xp_odbc.dll.

2. Place the compiled Xp_odbc.dll in the Microsoft SQL Server\80\Tools\Binn directory.

3. Start the server.

4. Start SQL Query Analyzer, and then run the Xp_odbc.sql script.

Remarks

xp_gettable_odbc works only on an instance of SQL Server running on Microsoft Windows® 2000 or Microsoft Windows NT®
4.0.

See Also

Using Bound Connections

Samples

Extended Stored Procedure Programming (SQL Server 2000)

Using xp_gettable_dblib
This Microsoft® Visual C++® sample shows using the DB-Library interface to open a bound connection to the same instance of
Microsoft SQL Server™ that called the extended stored procedure. The server returns a result set to the extended stored
procedure, which passes the result set to the client.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\ODS\Xp_dblib

Running the Sample

To create the extended stored procedure DLLs for these samples, go to the appropriate sample subdirectory and open the
supplied .dsw file with Microsoft Visual C++.

To run this program

1. Build the Xp_dblib.dll.

2. Place the compiled Xp_dblib.dll in the Microsoft SQL Server\80\Tools\Binn directory.

3. Start the server.

4. Start SQL Query Analyzer, and then run the Xp_dblib.sql script.

See Also

Using Bound Connections

Samples

Embedded SQL for C and SQL Server (SQL Server 2000)

Programming Embedded SQL for C
Microsoft Embedded SQL for C (ESQL/C) offers programmers an alternative to writing Microsoft® SQL Server™ 2000 client
applications with the DB-Library for C or Open Database Connectivity (ODBC) application programming interfaces (APIs). ESQL/C
enables you to incorporate Transact-SQL statements into your C-language programs.

ESQL/C is mainly used for porting your existing applications from other databases to SQL Server.

Warning While the ESQL/C API is still supported in Microsoft SQL Server 2000, no future versions of SQL Server will include the
files needed to do programming work on applications that use this API. Connections from existing applications written using
ESQL/C will still be supported in the next version of SQL Server, but this support will also be dropped in a future release. When
writing new applications, avoid using ESQL/C. When modifying existing applications, you are strongly encouraged to remove
dependencies on ESQL/C. Instead of ESQL/C, you can use Microsoft ActiveX® Data Objects (ADO), OLE DB, or ODBC to access
data in SQL Server.

Embedded SQL for C and SQL Server (SQL Server 2000)

Getting Started with Embedded SQL for C
In this topic, you will find Embedded SQL for C (ESQL/C) system requirements, syntax conventions, and installation information.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL for C Syntax Conventions
ESQL/C syntax combines SQL-92 standard Embedded SQL syntax and most of the Transact-SQL syntax. ESQL/C statements work
somewhat differently from, or are in addition to, standard Transact-SQL statements.

Naming Conventions

ESQL/C keywords and statements in your programs are not case-sensitive. For example, the following ESQL/C statement
fragments are equivalent:

EXEC SQL CONNECT TO
exec sql connect to

However, ESQL/C cursors, prepared statements, and connection names are case-sensitive. The same case must be used to declare
and use these names. For example, the following fragments declare two different cursors:

DECLARE CUR_NAME CURSOR
DECLARE cur_name CURSOR

The sort order of an instance of Microsoft® SQL Server™ 2000 to which you are connecting determines whether other words are
case-sensitive. Note that the hyphen (-) is not permitted in Transact-SQL identifiers, such as table and column names.

Note The Transact-SQL keyword null should not be uppercase in ESQL/C programs to avoid conflict with the C keyword NULL.
Also, the ESQL/C keyword delete and the Transact-SQL keyword in should not be uppercase in applications for 32-bit Microsoft
Windows® to avoid conflict with 32-bit Windows-defined constants in Windows.h.

Embedded SQL for C and SQL Server (SQL Server 2000)

System Requirements for Embedded SQL for C
Using ESQL/C, you can compile and run applications on various operating systems.

Windows NT

In Microsoft® SQL Server™ 2000, ESQL/C is supported on the Intel® platform under Microsoft Windows NT® 4.0. The specific
system requirements are:

Microsoft Windows NT 4.0 Workstation version 3.51 or later

Or

Microsoft Windows NT 4.0 Server version 3.51 or later

Microsoft Visual C++® development system (32-bit), version 2.0 or later (version 5.0 is recommended)

Or

A 100-percent compatible compiler and linker

Microsoft SQL Server 6.0, or later. The Ntwdblib.dll file must be version 6.0, or later. This library is installed on your system
under \Devtools\lib.

Windows 95 or Windows 98

Microsoft Windows® 95 or Microsoft Windows 98

Microsoft Visual C++ development system (32-bit), version 2.0 or later (version 5.0 is recommended).

Or

A 100-percent compatible compiler and linker

Microsoft SQL Server 6.0 or later; the Ntwdblib.dll file must be version 6.0 or later

Windows

The 16-bit ESQL/C compiler and libraries are available for use with SQL Server 7.0 but are not supported. The compiler and
libraries can be copied from the SQL Server compact disc. The system requirements for running ESQL/C under 16-bit
Windows are:

Microsoft Windows version 3.1 or later

Or

Microsoft Windows for Workgroups version 3.11 or later

Microsoft Visual C++ development system (32-bit), version 5.0 (minimum version is 2.0)

Or

A 100-percent compatible compiler and linker

Microsoft SQL Server 6.0, or later. The Msdblib3.dll file must be version 6.0 or later

MS-DOS

The 16-bit ESQL/C compiler and libraries are available for use with SQL Server 7.0 but are not supported. The compiler and
libraries can be copied from the SQL Server compact disc. The system requirements for running ESQL/C under 16-bit Microsoft
MS-DOS® are:

Microsoft MS-DOS version 6.22 or later

Microsoft Visual C++ development system (16-bit), version 1.52 or later

Or

A 100-percent compatible compiler or linker

Microsoft SQL Server 6.0 or later

Embedded SQL for C and SQL Server (SQL Server 2000)

Installing Embedded SQL for C
SQL Server Setup installs these groups of files.

Directory File Description
\Mssql7\Binn Nsqlprep.exe 32-bit precompiler for Microsoft®

Windows NT® 4.0, Microsoft
Windows® 95, and Windows 98

Sqlaiw32.dll Precompiler services for Windows
NT 4.0, Windows 95, and Windows
98

Sqlakw32.dll Run-time services for Windows NT
4.0, Windows 95, and Windows
98

\Mssql7\DevTools\Include Sqlca.h SQLCA header
 Sqlda.h SQLDA header
\Mssql7\DevTools\Lib Caw32.lib SQLCA library for Windows NT

4.0, Windows 95, and Windows 98
Sqlakw32.lib Run-time services import library

for Windows NT 4.0, Windows 95,
and Windows 98

\Mssql7\DevTools\Samples\Esqlc *.* C samples
\Mssql7\DevTools\Lib Ntwdblib.lib DB-Library used for

communicating with SQL Server.
This is part of DB-Library
development tools.

Embedded SQL for C and SQL Server (SQL Server 2000)

Call-level Method
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 programs, written using the DB-Library or ODBC API methods, communicate directly with SQL
Server through C function calls. DB-Library or ODBC functions pass SQL statements to SQL Server and return the results of
queries. The call-level method of programming requires no precompiler; however, you cannot include Transact-SQL statements in
your C programs, as you can with Embedded SQL for C (ESQL/C).

For example, to use DB-Library to connect to SQL Server and execute a simple query against the pubs sample database requires
source code similar to the following:

#define DBNTWIN32
#include <sqlfront.h>
#include <sqldb.h>

main()
{
 DBPROCESS *dbproc;
 LOGINREC *login;
 RETCODE r;

 dbinit();
 login = dblogin();
 if (login == NULL)
 return (1);
 DBSETLSECURE(login);
 dbproc = dbopen(login, "my_server");
 dbfreelogin(login);
 if (dbproc == NULL)
 return (1);
 dbuse(dbproc, "pubs");
 dbcmd(dbproc,
 "select au_fname from authors where au_lname = 'White'");
 r = dbsqlexec(dbproc);
 if (r == FAIL)
 return (1);
 while (1)
 {
 r = dbresults(dbproc);
 if (r == SUCCEED)
 {
 /* Process the rows with dbnextrow() */
 }
 if ((r == FAIL) || (r == NO_MORE_RESULTS))
 break;
 }
 return (0);
}

Security Note The preceding example uses the DBSETLSECURE function for Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

The DB-Library approach, using C function calls, is more verbose and more flexible than the ESQL/C approach, and it can be
loosely coupled to any database structure. Because a great deal of the program's behavior can be changed dynamically, DB-
Library programs are often general-purpose applications. DB-Library is well-suited for environments where the database
structure is not known in advance.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL Method
 New Information - SQL Server 2000 SP3.

Embedded SQL for C (ESQL/C) programs require preprocessing by a precompiler. The ESQL/C precompiler converts Embedded
SQL statements in the program into function calls that can be accepted by a C compiler. The C compiler can then compile the
resulting source code into an executable program.

For example, the following Embedded SQL code does the same task as the DB-Library example in Call-level Method:

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char first_name[50];
 char last_name[] = "White";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO my_server.pubs
 USER $integrated;
 EXEC SQL SELECT au_fname INTO :first_name
 from authors where au_lname = :last_name;
 return (0);
}

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

Note that each Embedded SQL statement starts with the introductory expression EXEC SQL. This expression tells the precompiler
that the code entered between EXEC SQL and the semicolon (;) contains Embedded SQL statements.

The ESQL/C approach, using programming statements similar to Transact-SQL, is more concise than the call-level method
approach and is tightly coupled to the existing database structure. Because SQL statements are directly included in the C source
code, ESQL/C programs are usually special-purpose applications. ESQL/C is well-suited for environments where the C
programmer is also in control of the database structure. However, ESQL/C is less flexible in environments where the database
structure is changing or is not predictable. Generally, ESQL/C is used for porting your existing Embedded SQL application code to
SQL Server with minimum modifications.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL Programming
Embedded SQL for C (ESQL/C) programs incorporate Transact-SQL statements into C source code. But because you cannot
directly submit ESQL/C programs to a C compiler, ESQL/C source programs must be processed by a precompiler that produces
source code acceptable to a C compiler.

ESQL/C programming is a multistep development process that converts your original Embedded SQL source code into a
Microsoft® SQL Server™ 2000 application that is an executable file compiled for the appropriate operating system.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL Steps
Embedded SQL for C (ESQL/C) programming operates as follows:

1. At a command prompt, the name of the ESQL/C source file and the appropriate build parameters are submitted to
nsqlprep, which is the ESQL/C precompiler for Microsoft® Windows NT® 4.0, and Microsoft Windows® 95/98 and later
operating systems. The precompiler parses the submitted file, finds the Embedded SQL statements included in the code, and
processes the statements.

2. The precompiler produces a C source code file with the Embedded SQL statements removed (commented out) and, if
appropriate, a bind file. The Embedded SQL statements are replaced by calls to the run-time library (Sqlakw32.dll). The run-
time library calls DB-Library (Ntwdblib.dll) to access servers running Microsoft SQL Server™ 2000 across a network.

During this step, you can specify that stored procedures be created automatically and stored on a specific instance of SQL
Server or saved in a bind file. Bind files are Transact-SQL scripts that have a .bnd extension.

3. The C source code file is compiled with a supported C compiler to produce an object code file.

4. The object code file and library routines are linked together with a supported linker to produce an executable file.

For more information about building an ESQL/C application, see Building Applications.

Embedded SQL for C and SQL Server (SQL Server 2000)

Including Embedded SQL Statements
You can include Embedded SQL statements in the portions of your C code where C functions or routines can be placed. To
distinguish Embedded SQL statements from C source code, each Embedded SQL statement must begin with the introductory
keyword EXEC SQL and end with a semicolon (;). An Embedded SQL statement that does not end with a semicolon usually results
in nsqlprep compiler error -19104 "Incorrect SQL statement syntax."

You can use a backslash (\) to continue Embedded SQL strings across more than one line of source code. A single quotation mark
must precede the first character of the Embedded SQL string on the first line of source code, and a single quotation mark must
appear after the last character of the string on the last line of source code. For example:

EXEC SQL INSERT INTO TEXT132 VALUES ('TEST 192 IS THE TEST FOR THE R\
ULE OF THE CONTINUATION OF LINES FROM ONE LINE TO THE NEXT LINE.');

You can also insert C language code after the EXEC SQL keyword on the same line. For example:

EXEC SQL COMMIT TRAN; printf("\n");

Note When you include C language code after an EXEC SQL keyword on the same line, you must use the /NOLINES precompiler
option.

You can also include Embedded SQL variable declaration sections in C language code where it is valid to declare variables. Use
the BEGIN DECLARE SECTION and END DECLARE SECTION statements.

Scope and Visibility

The scope of Embedded SQL variable names (statements, cursors, and connections) follow the rules that apply to C variables.

Embedded SQL for C and SQL Server (SQL Server 2000)

Connecting to a Database
 New Information - SQL Server 2000 SP3.

Use a CONNECT TO statement in your application to specify the Microsoft® SQL Server™ name, database name, login ID, and
password for the connection. You can connect to servers and databases other than those used during precompiling.

Security Note When possible, use the $integrated keyword to enable Windows Authentication.. If Windows Authentication is not
available, prompt users to enter their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you
should encrypt them with the Win32 cryptoAPI.

The default time-out for a database connection is 10 seconds. If the specified server does not respond to the connection request,
or if the network name lookup fails, the compilation or execution suspends for approximately 10 seconds. Use the SET OPTION
statement to change the connection time-out.

For more information about Embedded SQL statements, see Embedded SQL Statements.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Using Static and Dynamic Statements
 New Information - SQL Server 2000 SP3.

Embedded SQL for C (ESQL/C) supports both static and dynamic SQL statements.

A static SQL statement is a complete Transact-SQL statement that is embedded in the program source code. Static SQL
statements can be placed into stored procedures and can contain host variables.

With dynamic SQL statements, knowing the complete structure of an SQL statement before building the application is not
necessary. Dynamic SQL statements allow run-time input to provide information about the database objects to query.

A dynamic SQL statement is an incomplete Transact-SQL statement, some or all of which is supplied at run time.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Dynamic SQL statements created by using the PREPARE and EXECUTE statements can contain parameter markers and host
variables. Parameter markers are question marks (?) that act as placeholders for information supplied at run time. Dynamic SQL
statements executed by using the EXECUTE IMMEDIATE statement must conform to Transact-SQL language rules. They cannot
contain parameter markers, host variables, or keywords that pertain exclusively to ESQL/C.

Embedded SQL for C and SQL Server (SQL Server 2000)

Static SQL Statements
An entire Transact-SQL transaction, including variable declarations, control-of-flow language, and calls to stored procedures, can
be coded as a single static SQL statement.

Static SQL statements can contain C-program host variables for input values and output data. Host variables are defined by the
host C application and are accessible to the C and ESQL/C sections of your application. For more information about declaring and
using host variables, see Using Host Variables and Using the SQLDA Data Structure.

When an SQL statement uses input host variables, the values of these variables are inserted in the statement before the statement
runs. Output host variables are filled with the values returned after the statement runs.

Important Because Embedded SQL does not support alternate format rows, COMPUTE and COMPUTE BY clauses are ignored. If
a statement returns multiple result sets, only the first result set is recognized; subsequent result sets are discarded. Also, if a
statement returns more than one row, only the first row is recognized unless a cursor is used; subsequent rows are discarded.

At compile time, static SQL statements can be compiled as stored procedures into an access plan or executed as dynamic SQL
statements. For more information about access plans and their alternatives, see Access Plans and Bind Files and Building
Applications. When a static SQL statement contains only a single transaction-management command, such as BEGIN
TRANSACTION, COMMIT TRANSACTION, ROLLBACK TRANSACTION, or SAVE TRANSACTION, the static SQL statement is not
compiled into an access plan because stored procedures cannot contain unbalanced transaction-management statements. In
these cases, at run time, the application issues unmatched transaction-management statements as dynamic SQL statements.

The rules for Transact-SQL stored procedures apply to static SQL statements.

Embedded SQL for C and SQL Server (SQL Server 2000)

Dynamic SQL Statements
 New Information - SQL Server 2000 SP3.

Dynamic SQL statements are not completely embedded in the source code; instead, portions are stored in program variables that
can be modified at run time. Dynamic SQL statements consist of character strings that can contain question marks (?) as
parameter markers, which act as place holders for input data. For example:

DELETE FROM AUTHORS WHERE au_fname = ? AND au_lname = ?

Within an application, you can use the PREPARE, EXECUTE, and EXECUTE IMMEDIATE Embedded SQL statements to process a
dynamic SQL statement. In general, dynamic SQL statements are prepared by using the PREPARE statement and then executed by
using the EXECUTE statement. Optionally, when no parameter markers are used, you can combine the two statements by using
the EXECUTE IMMEDIATE statement.

Using dynamic SQL statements, you can write an application that prompts a user or scans a file for information (such as database
object names) that is unavailable at compile time. Use dynamic SQL statements when you must build an ad hoc Embedded SQL
statement.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Embedded SQL for C and SQL Server (SQL Server 2000)

Using Host Variables
 New Information - SQL Server 2000 SP3.

You can manage input and output for Embedded SQL statements by using host variables. Host variables are standard C-program
variables that are declared in an Embedded SQL declare section by using the BEGIN DECLARE SECTION and END DECLARE
SECTION statements.

Use host variables when the number of items and their data types are known at compile time. You can use host variables in static
SQL statements to specify input values or to receive output values. You can also use host variables together with parameter
markers in dynamic SQL statements to specify input values or to receive the output of a dynamically prepared cursor.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

When a host variable name is used in an Embedded SQL statement, the variable name begins with a colon (:). This colon enables
the compiler to distinguish between host variables, and tables or columns that might have the same name.

The following example is of a C program that uses host variables. The program prompts the user for an author's last name and
stores the entered value in the host variable szLastName. The program then retrieves the author's first name from the pubs
database and stores the result in the host variable szFirstName.

#include <stdio.h>

int main ()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char szLastName[30];
 char szFirstName[30];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO gizmo.pubs USER $integrated;

 printf("Type author's last name: ");
 fgets(stdin, 30, szLastName);

 EXEC SQL SELECT au_fname INTO :szFirstName
 FROM authors WHERE au_lname = :szLastName;

 printf("Author's first name is %s.", szFirstName);
 return (0);
}

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Declaring Host Variables
Before you use a host variable in an Embedded SQL statement, you must declare the variable by using normal C-language syntax
within an Embedded SQL host declare section. Host variable declarations start with the Embedded SQL statement BEGIN
DECLARE SECTION and end with the END DECLARE SECTION statement, for example:

EXEC SQL BEGIN DECLARE SECTION;
int nID;
unsigned short usNumber;
char szName[30];
EXEC SQL END DECLARE SECTION;

Note Embedded SQL limits the length of host variable names to 30 characters. In general, Embedded SQL does not provide
support for new Microsoft® SQL Server™ features such as 128-bit Unicode character support for identifiers. Declaring host
variables with names longer than 30 characters causes an error at precompile time when Embedded SQL processes the host
variable.

Host variables can be declared wherever C variables can be declared. However, you can use a structure member as a host
variable. You can also use a pointer to a single array element as a host variable and index that pointer as appropriate before each
use.

Note You may have to modify the generated C source code when pointer variables are used. The ESQL/C precompiler will give
you a warning message when it cannot determine the length of a pointer host variable. This is indicated by a value -1 in the fourth
parameter to the sqlasetv API call.

Embedded SQL for C and SQL Server (SQL Server 2000)

Host Variables and Null Values
 New Information - SQL Server 2000 SP3.

Unlike SQL, the C language does not support variables with null (unknown or missing) values. Embedded SQL enables you to
store and retrieve null values from a database by using host indicator variables. Together, a host variable and its companion
indicator variable specify a single SQL value. Each of the variables must be preceded by a colon (:). When a host variable is NULL,
its indicator variable has the value -1. When a host variable is nonNULL, the value of the indicator variable specifies the maximum
length of the host variable data.

Place indicator variables immediately after the corresponding host variable specified in the Embedded SQL statement. For
example, the following embedded UPDATE statement uses a saleprice host variable with a companion saleprice_null indicator
variable:

EXEC SQL UPDATE closeoutsale
 SET temp_price = :saleprice :saleprice_null, listprice = :oldprice;

In the following SELECT statement, price nullflag is set to -1 because the price of this book is NULL:

EXEC SQL
SELECT price INTO :price:price nullflag
FROM titles
WHERE au_id = "mc3026"

Optionally, you can precede an indicator variable with the INDICATOR keyword when using a host variable and its associated
indicator variable. For example, the following embedded UPDATE statement uses the INDICATOR keyword to more easily identify
the indicator variable saleprice_null:

EXEC SQL UPDATE closeoutsale
 SET temp_price = :saleprice INDICATOR :saleprice_null;

If saleprice_null has a value of -1 when the UPDATE statement executes, Embedded SQL will change the statement to:

EXEC SQL UPDATE closeoutsale
 SET temp_price = null, listprice = :oldprice;

You cannot use indicator variables in a search condition. For example, you cannot use the following Embedded SQL statement:

EXEC SQL DELETE FROM closeoutsale
 WHERE temp_price = :saleprice :saleprice_null;

However, you can use the following technique to search for null values:

if (saleprice_null == -1)
{
 EXEC SQL DELETE FROM closeoutsale
 WHERE temp_price IS null;
}
else
{
 EXEC SQL DELETE FROM closeoutsale
 WHERE temp_price = :saleprice;
}

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Embedded SQL for C and SQL Server (SQL Server 2000)

Host Variables and Data Types
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ 2000 uses different data types than the C programming language. ESQL/C must map C data types to
the appropriate SQL Server data types. The following Embedded SQL code fragment shows the mapping of three host variables,
declared as C data types, to their corresponding SQL Server data types:

EXEC SQL BEGIN DECLARE SECTION;
int hostvar1 = 39;
char *hostvar2 = "telescope";
float hostvar3 = 355.95;
EXEC SQL END DECLARE SECTION;

EXEC SQL UPDATE inventory
 SET department = :hostvar1
 WHERE part_num = "4572-3";

EXEC SQL UPDATE inventory
 SET prod_descrip = :hostvar2
 WHERE part_num = "4572-3";

EXEC SQL UPDATE inventory
 SET price = :hostvar3
 WHERE part_num = "4572-3";

In the first UPDATE statement, the department column has the SQL Server smallint (integer) data type because the host variable
hostvar1 is declared as a C int (integer) data type. Consequently, the data types from C map directly to SQL Server.

In the second UPDATE statement, the prod_descrip column has the SQL Server varchar (character) data type. The hostvar2 host
variable is declared as an array of the C char (character) data type, which maps to the SQL varchar data type.

In the third UPDATE statement, the price column has previously been assigned the SQL Server money data type. No data type in
C corresponds to the SQL Server money data type. Host variables to be used with SQL Server money data types can be declared
as C floating-point or character data types. Embedded SQL converts those host variables to and from money values.

Note Output host variables of data type char are padded with blanks to their full declared length, which is an SQL-92
requirement.

Input host variables of type char used to input binary values must have an explicitly declared length. They cannot be pointer data
types.

The following example is correct:

char vBinaryIn[100];

The following example is incorrect:

char *vBinaryIn="ff00";

Be sure to carefully match the data types of your host variables to their corresponding use in Embedded SQL statements. For
more information about mapping data types from the C environment to the SQL Server environment, see Advanced
Programming.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Embedded SQL for C and SQL Server (SQL Server 2000)

Using the SQLDA Data Structure
 New Information - SQL Server 2000 SP3.

When the number or data types of host variables to be passed are unknown at compile time, use dynamic SQL statements and
the SQL descriptor area (SQLDA) data structure instead of static SQL statements and host variables. You can use the SQLDA data
structure to define the type of data to be passed from the database to the host variable, or vice versa. The SQLDA data structure
generally includes question marks (?) for parameter markers to specify input values for prepared Embedded SQL statements. You
can also use the SQLDA data structure with the DESCRIBE or PREPARE INTO statements to receive data from a prepared SELECT
statement. Although you cannot use the SQLDA data structure with static SQL statements, you can use it with a cursor FETCH
statement, regardless of whether the cursor is dynamic or static.

Note For text and image data, the maximum length of the data column is the size of sqllen, which is 32 KB. Sqllen is of the data
type short.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command constructed
from unvalidated user input. For more information, see Validating User Input.

Embedded SQL for C and SQL Server (SQL Server 2000)

Data Input and Output Using the SQLDA Data Structure
The SQLDA data structure contains descriptive information about each input parameter or output column. The structure contains
the column name, data type, length, and pointer to the actual data buffer for each input or output variable.

For output data, you can use the DESCRIBE statement (or the PREPARE statement with the INTO option) to enter column name,
data type, and other data into the appropriate fields of the SQLDA data structure.

Before using the SQLDA structure in a PREPARE INTO or DESCRIBE statement, your application must set the length of SQLDA and
the maximum number of entries.

To use the SQLDA structure for input data, your application must supply the data for the fields of the entire SQLDA data structure.
If the sqltype field has an odd code number (value), the address of the indicator variable must also be supplied. For more
information about the SQLDA data structure, see Advanced Programming.

Embedded SQL for C and SQL Server (SQL Server 2000)

Using Cursors
When you write code for a transaction that retrieves a single row of results, you can use a SELECT INTO statement. This is called a
singleton SELECT statement.

When you write code for a transaction where the result set includes several rows of data, you must declare and use a cursor. A
cursor is a mechanism you can use to fetch rows one at a time. For example, if you write code that includes a SELECT statement or
stored procedure that returns multiple rows, you must declare a cursor and associate it with the SELECT statement. Then, by using
the FETCH statement, you can retrieve one row at a time from the result set.

You can also use cursors to perform operations within a result set. These operations are known as positioned update and
positioned delete. For more information, see Positioned UPDATE or DELETE Statements.

Important The cursor options available with Embedded SQL for C (ESQL/C) are different from the cursor options available with
the Transact-SQL DECLARE CURSOR option, and the two should not be intermixed. If a Transact-SQL cursor is not available as an
ESQL/C cursor option, it cannot be used.

Do not use ESQL/C cursors to process Transact-SQL batches or other operations that return multiple result sets. If a statement
returns multiple result sets, only the first result set is recognized and subsequent result sets are discarded. If COMPUTE rows are
returned, the rows are also ignored.

ESQL/C includes standard and browse cursor types. A standard cursor is used to retrieve one row of data at a time and shares the
same connection to Microsoft® SQL Server™ as the main program. Standard cursors require a unique index in SQL Server
version 6.0 and earlier. To set standard cursors, use the SET CURSORTYPE CUR_STANDARD statement or the DECLARE CURSOR
statement with the FOR UPDATE option. A browse cursor is used to retrieve one row of data at a time and requires a separate
connection to SQL Server. To set browse cursors, use the SET CURSORTYPE CUR_BROWSE statement.

Standard and browse cursors are declared and used (including FETCH and positioned update or delete operations) in the same
way. Standard cursors are based on the DB-Library cursor model and allow multiple cursor operations to share the same
connection to SQL Server. Each browse cursor requires a separate connection. For most applications, standard cursors are
recommended and are the default because a shared single connection avoids potential locking conflicts between cursors.

Standard DB-Library cursors provides detailed descriptions of standard DB-Library cursors. DB-Library cursors have several
options for controlling row membership, locking, and performance characteristics. These options are available to ESQL/C
programs through the SET ANSI_DEFAULTS, SET CURSOR_CLOSE_ON_COMMIT, SET SCROLLOPTION, SET CONCURRENCY, and
SET FETCHBUFFER statements. A SET option remains in effect for all cursor operations within an ESQL/C program until that
option is changed by another SET statement.

Browse Cursors provides details about browse cursors. If positioned update or delete statements are used on a browse cursor, the
SELECT statement used in the cursor declaration must include the FOR BROWSE option. However, because each browse cursor
uses a separate database connection, SQL Server treats each cursor as a separate user. This can result in locking conflicts between
different cursors in the same program. For more information, see Cursors and Lock Conflicts.

See Also

Standard DB-Library Cursors

Browse Cursors

Embedded SQL for C and SQL Server (SQL Server 2000)

Declaring Cursors
To define a cursor for row-at-a-time retrieval, use the DECLARE CURSOR statement. You can declare a cursor in one of two ways:
as a static cursor or as a dynamic cursor.

Using Static Cursors

For a static cursor, the complete SELECT statement is contained in the DECLARE CURSOR statement. The SELECT statement can
contain host variables for input parameters. When the OPEN statement is performed on a cursor, the values of the input
parameters for the host variable are read into the SELECT statement. You cannot specify host variables and SQLDA data structures
in the OPEN statement for a static cursor because the input host variables are already identified in the DECLARE CURSOR
statement.

This is an example of a static cursor:

EXEC SQL BEGIN DECLARE SECTION;
char szLastName[] = "White";
char szFirstName[30];
EXEC SQL END DECLARE SECTION;

EXEC SQL
 DECLARE author_cursor CURSOR FOR
 SELECT au_fname FROM authors WHERE au_lname = :szLastName;

EXEC SQL OPEN author_cursor;
EXEC SQL FETCH author_cursor INTO :szFirstName;

Using Dynamic Cursors

For a dynamic cursor, the SELECT statement is not contained in the DECLARE CURSOR statement. Instead, the DECLARE CURSOR
statement references the name of a prepared SELECT statement that can contain parameter markers (?) to indicate that data must
be supplied when a cursor is opened. You must declare a dynamic cursor by using the DECLARE CURSOR statement before you
prepare a SELECT statement.

When a prepared SELECT statement contains parameter markers, the corresponding OPEN statement must specify the host
variables or the name of the SQLDA data structure that will supply the values for the parameter markers. The data type, length,
and address fields of the specified SQLDA data structure must already contain valid data.

This is an example of a dynamic cursor:

EXEC SQL BEGIN DECLARE SECTION;
char szCommand[] = "SELECT au_fname FROM authors WHERE au_lname = ?";
char szLastName[] = "White";
char szFirstName[30];
EXEC SQL END DECLARE SECTION;

EXEC SQL
 DECLARE author_cursor CURSOR FOR select_statement;

EXEC SQL
 PREPARE select_statement FROM :szCommand;

EXEC SQL OPEN author_cursor USING :szLastName;
EXEC SQL FETCH author_cursor INTO :szFirstName;

Embedded SQL for C and SQL Server (SQL Server 2000)

Positioned UPDATE or DELETE Statements
Positioned UPDATE and DELETE statements are used in conjunction with cursors and include WHERE CURRENT OF clauses
instead of search condition clauses. The WHERE CURRENT OF clause specifies the location of the corresponding cursor.

You can perform a prepared positioned update or a ROLLBACK TRANSACTION operation only on dynamic cursors.

On a cursor declaration that contains a join, you can perform a positioned update or positioned delete only on the first table in the
join list.

Embedded SQL for C and SQL Server (SQL Server 2000)

Managing Transactions
With Embedded SQL for C (ESQL/C), you can use the full transaction control facilities of Microsoft® SQL Server™ 2000.

The COMMIT TRANSACTION statement marks the end of a user-defined transaction initiated by a BEGIN TRANSACTION
statement. The COMMIT statement makes changes to the transaction's database permanent and visible to other users. It also
removes all locks from the affected data so that other users can access the data.

As with other SQL Server applications, statements not bound by BEGIN TRANSACTION and COMMIT TRANSACTION are
automatically committed when the statement executes without an error.

The ROLLBACK TRANSACTION statement reverses the effects of a user-specified transaction to the beginning of the OPEN
TRANSACTION or to the last save point (marked by a Transact-SQL SAVE TRANSACTION statement) inside the open transaction.
After a transaction is committed, it cannot be rolled back.

Note that by default, a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement does not close cursors and applies only
to the current connection if multiple connections are active. You can use the SET CURSOR_CLOSE_ON_COMMIT statement to
close all cursors on a connection automatically when a COMMIT TRANSACTION or a ROLLBACK TRANSACTION statement is
issued.

Embedded SQL for C and SQL Server (SQL Server 2000)

Using the SQLCA Data Structure
Microsoft® SQL Server™ 2000 uses the SQL communications area (SQLCA) data structure to trap and report run-time errors to
your Embedded SQL for C (ESQL/C) applications. Your application can check the error fields and status indicators of the SQLCA
data structure to determine the success or failure of an Embedded SQL statement. The precompiler automatically includes the
SQLCA data structure in ESQL/C applications.

You can include routines in your application to test the SQLCODE, SQLWARN, SQLERRM, SQLERRD, and SQLSTATE fields of the
SQLCA data structure and to provide follow-up procedures according to the status returned.

The SQLCODE field contains the negative SQL Server error code (the ESQL/C standard requires that error codes be
negative).

The SQLWARN flags are set if certain exceptions, such as data truncation, occur.

The SQLERRM field contains the text of the error message.

The SQLERRD1 field contains the error number.

The SQLERRD3 array indicates the number of rows affected.

The SQLSTATE field contains run-time errors that generate SQL-92 standard SQLSTATE codes.

Because the character fields of SQLCA (such as SQLWARN and SQLERRMC) are FAR pointers in Microsoft Windows®, you must
use the %Fs format specifier for them when using printf and similar functions.

For more information about the SQLCA data structure, see Advanced Programming.

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLCODE Variable
The most important and widely used field of the SQLCA data structure is the SQLCODE variable. Each time Microsoft® SQL
Server™ 2000 runs an Embedded SQL statement, it sets the value of the SQLCODE variable to indicate whether the last
Embedded SQL statement completed successfully. A value of 0 indicates that the last Embedded SQL statement was successful.
Values other than 0 indicate warnings or errors.

To use SQLCODE in your program, you can either declare it explicitly as long SQLCODE; or leave it undeclared and have the
precompiler generate a declaration. However, the precompiler only generates a declaration in a source module that contains a
main() or a WinMain() function.

The preprocessor automatically inserts the following definition in all .sqc modules, so the actual definition of SQLCODE should
only occur in one module.

extern long SQLCODE;

If your project does not include a .sqc file that includes a main() or WinMain() function, you must explicitly declare SQLCODE in
one of your modules. Explicit SQLCODE declarations can occur either inside or outside of a host variable declaration block.

See Also

Advanced Programming

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLSTATE Variable
ESQL/C supports SQLSTATE codes, which return errors encountered at run time. SQLSTATE codes fall into two categories: those
that must be generated locally by DB-Library or ESQL/C, and those that are generated by the server. SQLSTATE codes always
correspond to SQLCODE values.

See Also

SQLSTATE Messages

Embedded SQL for C and SQL Server (SQL Server 2000)

Using the WHENEVER Statement
Writing code to check the value of the SQLCODE variable after each Embedded SQL statement becomes burdensome, especially
when writing large programs. Another method for checking the status of the SQLCA data structure fields is the WHENEVER
statement. The WHENEVER statement is not an executable statement. It is a directive to the ESQL/C precompiler to generate code
automatically to handle errors after each executable Embedded SQL statement, and it specifies the next action to be taken. The
WHENEVER statement allows one of three actions (CONTINUE, GOTO, or CALL) to be registered for each of the three possible
SQLCODE conditions (SQLWARNING, SQLERROR, or NOT FOUND).

A WHENEVER statement in the program code supersedes the conditions of all earlier WHENEVER statements.

This is an example of a WHENEVER statement:

EXEC SQL WHENEVER sqlerror GOTO errormessage1;

EXEC SQL DELETE FROM homesales
 WHERE equity < 10000;

EXEC SQL DELETE FROM customerlist
 WHERE salary < 40000;

EXEC SQL WHENEVER sqlerror CONTINUE;

EXEC SQL UPDATE homesales
 SET equity = equity - loanvalue;

EXEC SQL WHENEVER sqlerror GOTO errormessage2;

EXEC SQL INSERT INTO homesales (seller_name, sale_price)
 real_estate('Jane Doe', 180000.00);
 .
 .
 .
errormessage1:
 printf("SQL DELETE error: %ld\n, sqlcode);
exit();

errormessage2:
 printf("SQL INSERT error: %ld\n, sqlcode);
exit();

For more information, see WHENEVER in Embedded SQL Statements.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL for C Reference
The maximum size of a single Embedded SQL statement is 8,191 characters for 16-bit Microsoft® Windows® 2000 and 19,999
characters for Microsoft Windows NT® 4.0.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL Statements
For the Embedded SQL statements listed, an asterisk (*) identifies statements that have names identical to names of Transact-SQL
statements. For statements with asterisks, the syntax included augments the standard Transact-SQL syntax.

BEGIN DECLARE SECTION PREPARE
CLOSE* SELECT INTO*
CONNECT TO SET ANSI_DEFAULTS
DECLARE CURSOR* SET CONCURRENCY
DELETE (POSITIONED)* SET CONNECTION
DELETE (SEARCHED)* SET CURSOR_CLOSE_ON_COMMIT
DESCRIBE SET CURSORTYPE
DISCONNECT SET FETCHBUFFER
END DECLARE SECTION SET OPTION
EXECUTE* SET SCROLLOPTION
EXECUTE IMMEDIATE UPDATE (POSITIONED)*
FETCH* UPDATE (SEARCHED)*
GET CONNECTION WHENEVER
OPEN*

Embedded SQL for C and SQL Server (SQL Server 2000)

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a C host-variable declaration section.

Syntax

BEGIN DECLARE SECTION

Remarks

The BEGIN DECLARE SECTION statement can be included anywhere C permits declaring variables, and where declared host
variables follow the normal rules for scoping in C. Use END DECLARE SECTION to identify the end of a C declaration section. The
embedded BEGIN DECLARE SECTION statement must follow the EXEC SQL introductory keyword.

Declare sections cannot be nested.

Use the following rules for declaring host variables:

Host variables must be declared in C, not in Transact-SQL.

Host variables referenced by Embedded SQL statements must be included in a declaration section that appears before the
statement.

Examples

EXEC SQL BEGIN DECLARE SECTION;
int id;
char name[30];
EXEC SQL END DECLARE SECTION;

See Also

END DECLARE SECTION

Embedded SQL for C and SQL Server (SQL Server 2000)

CLOSE
The CLOSE statement ends row-at-a-time data retrieval initiated by the OPEN statement for a specified cursor, and closes the
cursor connection.

Syntax

CLOSE cursor_name

Arguments

cursor_name

Is a previously declared and opened cursor. Cursor names can have as many as 30 characters, and can include alphanumeric
characters and any symbols that are legal in file names. Hyphens (-) are not permitted. The first character of a cursor name must
be a letter.

Remarks

The CLOSE statement discards unprocessed rows and frees any locks held by the cursor. The cursor must be declared and opened
before it can be closed. All open cursors are closed automatically at the end of the program.

Examples

EXEC SQL DECLARE C1 CURSOR FOR
 SELECT id, name, dept, job, years, salary, comm FROM staff;
EXEC SQL OPEN c1;
while (SQLCODE == 0)
{
 /* SQLCODE will be zero if data is successfully fetched */
 EXEC SQL
 FETCH c1 INTO :id, :name, :dept, :job, :years, :salary, :comm;
 if (SQLCODE == 0)
 printf("%4d %12s %10d %10s %2d %8d %8d",
 id, name, dept, job, years, salary, comm);
}
EXEC SQL CLOSE c1;

See Also

DECLARE CURSOR

OPEN

FETCH

SET CURSOR_CLOSE_ON_COMMIT

Embedded SQL for C and SQL Server (SQL Server 2000)

CONNECT TO
 New Information - SQL Server 2000 SP3.

The CONNECT TO statement connects to a specific database with the supplied username and password.

Syntax

CONNECT TO {[server_name.]database_name} [AS connection_name] USER [login[.password] | $integrated]

Arguments

server_name

Is the server running Microsoft® SQL Server™ 2000. If you omit the server_name, the local server is assumed.

database_name

Is the database.

connection_name

Is a name for the connection. Connection names can have as many as 30 characters, and can include alphanumeric characters and
any symbols that are legal in file names. Hyphens (-) are not permitted. The first character must be a letter. Do not use current or
all for the connection name; they are not supported.

login

Is the user's login ID.

password

Is the user's password.

$integrated

Specifies that forced integrated security is used for run-time or compile-time applications instead of the login and password.

Remarks

The options can include character literals or host variables. If you use only one connection, you do not need to supply a name for
the connection. When you use more than one connection, you must specify a name for each connection.

Connection names are global within a process. Named connections are shared by separately compiled programs linked into a
single executable module. Named connections are also shared by a program and dynamic-link libraries that execute in a single
process.

All database transactions after a CONNECT TO statement that do not involve a browse cursor work through the most recently
declared, current connection. To use a different connection, you must use the SET CONNECTION statement.

Examples

EXEC SQL CONNECT TO :svr USER $integrated;

EXEC SQL CONNECT TO :svr USER :usr;

Or

EXEC SQL CONNECT TO "gizmo.pubs" USER "usr.password";

Or

EXEC SQL CONNECT TO gizmo.pubs USER usr.password;

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

http://go.microsoft.com/fwlink/?LinkId=9504

DISCONNECT

Embedded SQL for C and SQL Server (SQL Server 2000)

DECLARE CURSOR
Defines a cursor for row-at-a-time data retrieval.

Syntax

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR FOR {select_stmt | prepared_stmt_name} [FOR { READ ONLY | UPDATE [
OF column_list] }]

Arguments

cursor_name

Is the cursor name in subsequent statements. Cursor names can have as many as 30 characters, and can include alphanumeric
characters and any symbols that are legal in file names. Hyphens (-) are not permitted. The first character must be a letter.
Optionally, the cursor_name parameter can be enclosed in quotation marks (' ').

INSENSITIVE

Specifies creating a standard, read-only cursor that is a snapshot of the cursor result set at open time. It is equivalent to the
INSENSITIVE option of the Transact-SQL DECLARE CURSOR statement.

SCROLL

Specifies allowing first, last, and backward fetch operations. It is equivalent to issuing the SET CURSORTYPE CUR_STANDARD and
SET SCROLLOPTION KEYSET statements.

select_stmt

Is any valid Transact-SQL SELECT statement. Browse cursors can also use a stored procedure that contains a SELECT statement.
This SELECT statement must not contain any aggregates.

prepared_stmt_name

Is the name of a prepared SQL SELECT statement.

FOR READ ONLY

Specifies the use of standard DB-Library read-only cursors. This is equivalent to issuing both the SET CONCURRENCY READONLY
and the SET CURSORTYPE CUR_STANDARD statements. Using the FOR READ ONLY option overrides the SET CONCURRENCY
statement.

FOR UPDATE

Specifies that cursors are updatable by default; therefore, the DECLARE statement does not require a FOR UPDATE option.
However, if the DECLARE statement contains the FOR UPDATE option, the effect is equivalent to issuing both the SET
CONCURRENCY LOCKCC and the SET CURSORTYPE CUR_STANDARD statements. Using the FOR UPDATE option overrides the
SET CONCURRENCY statement.

Remarks

The DECLARE CURSOR statement associates the cursor name with the specified SELECT statement and enables you to retrieve
rows of data by using the FETCH statement.

Cursor names are global within a program module (source code file). Cursors cannot be shared by separately compiled programs
that are linked into a single executable module, or by a program and dynamic-link libraries that run in a single process.

The DECLARE CURSOR statement must appear before the first reference of the cursor. The SELECT statement runs when the
cursor is opened.

The following rules apply to the SELECT statement:

It cannot contain an INTO clause or parameter markers (?).

It can contain input host variables that were previously identified in a host variable declaration section.

It must include a HOLDLOCK option to enable repeatable reads. Additionally, standard cursors require that an explicit user-
defined transaction is open (opened by using BEGIN TRANSACTION).

For a standard cursor, use the SET CURSORTYPE CUR_STANDARD if you do not use the FOR UPDATE option.

For a browse cursor, include the FOR BROWSE option and use the SET CURSORTYPE CUR_BROWSE statement if positioned
updates or deletes will be performed on a browse cursor. If the SET CURSORTYPE statement is not used, the FOR BROWSE
option makes the cursor read-only. Do not use the FOR UPDATE option.

You must declare a dynamic cursor by using the DECLARE CURSOR statement before you prepare a SELECT statement.

Examples

EXEC SQL DECLARE c1 CURSOR FOR
 SELECT au_fname, au_lname FROM authors FOR BROWSE;

See Also

BEGIN DECLARE SECTION

PREPARE

CLOSE

SELECT INTO

FETCH

SET CURSOR_CLOSE_ON_COMMIT

OPEN

Embedded SQL for C and SQL Server (SQL Server 2000)

DELETE (POSITIONED)
 New Information - SQL Server 2000 SP3.

The DELETE (POSITIONED) statement removes the row where the cursor is currently positioned.

Syntax

DELETE [FROM] {table_name | view_name} WHERE CURRENT OF cursor_name

Arguments

FROM

Is an optional keyword included for compatibility with other versions of ESQL/C.

table_name

Is the same table used in the SELECT statement portion of the DECLARE CURSOR STATEMENT.

view_name

Is the same view used in the SELECT statement portion of the DECLARE CURSOR statement.

cursor_name

Is a previously declared, opened, and fetched cursor. Cursor names can have as many as 30 characters, and can include
alphanumeric characters and any symbols that are legal in file names. Hyphens (-) are not permitted. The first character must be a
letter.

Remarks

In addition to having the functionality of the Transact-SQL DELETE statement, the Embedded SQL DELETE statement includes
functionality known as positioned delete, which deletes the row most recently fetched by a cursor. The DELETE statement used in
standard Transact-SQL statements is known as a searched delete.

Note that a positioned delete has no search condition. The WHERE CURRENT OF option is used in place of a search condition
clause. The WHERE CURRENT OF option cannot be used in a PREPARE statement.

In a positioned delete that uses a browse cursor, the SELECT statement used to open the cursor must include a FOR BROWSE
clause. The base table(s) must include a timestamp column. If an error prevents any row found by the search condition from
being deleted, no changes are made to the database.

When using a browse cursor, or a standard cursor with optimistic concurrency control (SET CONCURRENCY with the OPTCC or
OPTCCVAL option), if the row has been changed after the last FETCH statement, no changes are made to the database and the
value of SQLCODE is set to -532. Also, the SQLERRD3 field in the SQLCA data structure shows that no rows were processed.

Examples

EXEC SQL DECLARE c1 CURSOR FOR
 SELECT au_fname, au_lname FROM authors FOR BROWSE;
EXEC SQL OPEN c1;
while (SQLCODE == 0)
{
 EXEC SQL FETCH c1 INTO :fname, :lname;
 if (SQLCODE == 0)
 {
 printf("%12s %12s\n", fname, lname);
 printf("Delete? ");
 fgets(stdin, 2, &reply);
 if (reply == 'y')
 {
 EXEC SQL DELETE FROM authors WHERE CURRENT OF c1;
 printf("delete sqlcode= %d\n", SQLCODE(ca));
 }
 }
}

See Also

DECLARE CURSOR

FETCH

Embedded SQL for C and SQL Server (SQL Server 2000)

DELETE (SEARCHED)
The DELETE (SEARCHED) statement removes table rows that meet the search criteria. DELETE is a standard Transact-SQL
statement.

Syntax

DELETE [FROM] {table_name | view_name} [WHERE search_conditions]

Arguments

FROM

Is an optional keyword included for compatibility with other versions of ESQL/C.

table_name

Is the table to remove rows from.

view_name

Is the view to remove rows from.

search_conditions

Is any expression that can legally follow the standard Transact-SQL WHERE clause.

Remarks

If you do not use a WHERE clause, all rows in the table specified in the DELETE statement are removed. The table, although it no
longer contains data, exists until you use a DROP TABLE statement.

You cannot use DELETE on a view with a FROM clause that specifies more than one table. This would change several tables and is
not supported. However, UPDATE and INSERT statements that affect only one base table of the view are supported.

Examples

EXEC SQL DELETE FROM authors WHERE au_lname = 'White'

Embedded SQL for C and SQL Server (SQL Server 2000)

DESCRIBE
The DESCRIBE statement populates the SQLDA data structure.

Syntax

DESCRIBE prepared_stmt_name INTO :sqlda_struct

Arguments

prepared_stmt_name

Is a prepared SQL statement. For more information, see PREPARE.

sqlda_struct

Is the output SQLDA data structure to be populated.

Remarks

The DESCRIBE statement processes prepared, dynamic SQL statements. This statement populates the specified SQLDA data
structure with the data type, the length, and the column name of each column returned by the specified prepared statement.
(Prepared statements are created by using the PREPARE statement. Note that the DESCRIBE statement cannot be used in the
FROM clause of a PREPARE statement.) The DESCRIBE statement works like a PREPARE statement with an INTO clause.

Before using DESCRIBE, the sqln and sqlabc fields of the SQLDA data structure that are allocated by the application should be set
to appropriate values. The sqln field must be set to the maximum number of column descriptor entries that can be held. The
sqlabc field must be set to the length, in bytes, of the SQLDA data structure. The length is computed by using the SQLDASIZE
macro as follows:

SQLDASIZE(mysqlda->sqln)

When the DESCRIBE statement is executed, it sets the sqld field of the SQLDA data structure to the number of column descriptors
used by the prepared statement. If a nonSELECT statement was prepared, sqld is set to 0.

If the application does not know the maximum number of column descriptors required for the prepared statement, it can set sqln
to 0 before using the DESCRIBE statement. Then DESCRIBE will set sqld to the maximum number of column descriptors required
without actually constructing any column descriptors.

After the DESCRIBE statement has populated the SQLDA data structure, and before it has used the FETCH statement, the
application must insert the address of each output variable into the sqldata field (part of the sqlvar field) of the SQLDA data
structure.

Examples

#define NUM_RETURN_COLS 2
struct sqlda *mysqlda;
EXEC SQL BEGIN DECLARE SECTION;
char statement[] = "SELECT au_fname, au_lname FROM authors";
EXEC SQL END DECLARE SECTION;

mysqlda = malloc(SQLDASIZE(NUM_RETURN_COLS));
if (mysqlda == NULL)
{
 return;
}
mysqlda->sqln = NUM_RETURN_COLS;
mysqlda->sqldabc = SQLDASIZE(NUM_RETURN_COLS);

EXEC SQL DECLARE c1 CURSOR FOR stmt1;
EXEC SQL PREPARE stmt1 FROM :statement;
EXEC SQL DESCRIBE stmt1 INTO :mysqlda;
// SQLDA now contains a description of the dynamic SQL statement //
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 USING DESCRIPTOR :mysqlda;

See Also

PREPARE

Advanced Programming

Embedded SQL for C and SQL Server (SQL Server 2000)

DISCONNECT
 New Information - SQL Server 2000 SP3.

The DISCONNECT statement disconnects one or all database connections.

Syntax

DISCONNECT [connection_name | ALL | CURRENT]

Arguments

connection_name

Is the connection to be disconnected.

ALL

Specifies disconnecting all connections. This option must be used before you can exit the program.

CURRENT

Specifies disconnecting the current connection. The current connection is either the most recent connection established by a
CONNECT TO statement or a subsequent connection set by a SET CONNECTION statement.

Remarks

When a connection is disconnected, all cursors opened for that connection are automatically closed.

To ensure a clean exit, an Embedded SQL program must issue a DISCONNECT ALL statement before it exits the main application.

Examples

EXEC SQL CONNECT TO caffe.pubs AS caffe1 USER $integrated;
EXEC SQL CONNECT TO latte.pubs AS latte1 USER $integrated;
EXEC SQL SET CONNECTION caffe1;
EXEC SQL SELECT name FROM sysobjects INTO :name;
EXEC SQL SET CONNECTION latte1;
EXEC SQL SELECT name FROM sysobjects INTO :name;
EXEC SQL DISCONNECT caffe1;
EXEC SQL DISCONNECT latte1;
// The first select takes place against the pubs //
// database on server "caffe." The second SELECT will //
// take place against the pubs database on server "latte." //
// In place of the two "disconnect" statements at the end, //
// you can also write: //
// EXEC SQL DISCONNECT ALL; //

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

CONNECT TO

SET CONNECTION

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a declaration section for host variables.

Syntax

END DECLARE SECTION

Remarks

The END DECLARE SECTION statement must be preceded by a BEGIN DECLARE SECTION statement.

Examples

EXEC SQL BEGIN DECLARE SECTION;
int id;
char name[30];
EXEC SQL END DECLARE SECTION;

See Also

BEGIN DECLARE SECTION

Embedded SQL for C and SQL Server (SQL Server 2000)

EXECUTE
 New Information - SQL Server 2000 SP3.

The EXECUTE statement runs a prepared embedded SQL statement.

Syntax

EXECUTE prepared_stmt_name [USING DESCRIPTOR :sqlda_struct |
USING :hvar [,...]]

Arguments

prepared_stmt_name

Is an SQL statement that was previously prepared.

sqlda_struct

Is an SQLDA data structure that was previously declared and that contains a description of the input values.

hvar

Is one or more input host variables.

Remarks

The EXECUTE statement processes dynamic SQL statements. It runs the specified prepared SQL statement after it substitutes
values for any parameter markers (?) present. (Prepared statements are created by using the PREPARE statement.) Only
statements that do not return results are supported.

With the USING DESCRIPTOR :sqlda_struct option, the values of the program variables are substituted for parameter markers in
the prepared statement. The program variables are addressed by corresponding sqldata entries in the SQLDA data structure. (The
sqldata field is part of the sqlvar field.)

If the prepared statement contains parameter markers, the EXECUTE statement must include either the USING :hvar option with
the same number of host variables in the same order as in the prepared statement, or the USING DESCRIPTOR :sqlda_struct
option that identifies the SQLDA data structure already populated by the application.

Also, the number of parameter markers in the prepared statement must match the number of sqldata entries (USING
DESCRIPTOR :sqlda_struct) or host variables (USING :hvar).

Examples

EXEC SQL BEGIN DECLARE SECTION;
char stmtbuf[] = "INSERT INTO publishers VALUES (?, ?, ?, ?)";
int pubid;
char pubname[30];
char city[30];
char state[3];
EXEC SQL END DECLARE SECTION;

// Prompt the user for publication data //
printf("Enter publication ID number: ");
fgets(stdin, 5, pubid);
printf("Enter publication name: ");
scanf("%s", pubname);
printf("Enter city: ");
fgets(stdin, 30, city);
printf("Enter state: ");
fgets(stdin, 3, state);

EXEC SQL PREPARE stmt FROM :stmtbuf;

EXEC SQL EXECUTE stmt USING :pubid, :pubname, :city, :state;

Security Note In the preceding example, stdin identifies the standard input of the program and is usually associated with your
terminal. When possible, you should validate all user input. Do not concatenate user input before validating it. Never execute a
command constructed from unvalidated user input. For more information, see Validating User Input.

See Also

EXECUTE IMMEDIATE

PREPARE

Embedded SQL for C and SQL Server (SQL Server 2000)

EXECUTE IMMEDIATE
 New Information - SQL Server 2000 SP3.

The EXECUTE IMMEDIATE statement runs the embedded SQL statement contained in the specified host variable.

Syntax

EXECUTE IMMEDIATE :stmt_hvar

Arguments

stmt_hvar

Is a character string host variable that contains a Transact-SQL statement.

Remarks

The EXECUTE IMMEDIATE statement must conform to Transact-SQL statement rules. It cannot contain input parameter markers or
host variables. It cannot return results. Results returned from this statement are discarded. Additionally, the statement cannot
contain keywords that pertain exclusively to ESQL/C.

If any rows are returned, SQLCODE is set to +1, which indicates an exception.

Examples

strncpy(prep, "DELETE FROM mf_table WHERE name='elaine'", 41);

EXEC SQL EXECUTE IMMEDIATE :prep;

See Also

EXECUTE

Embedded SQL for C and SQL Server (SQL Server 2000)

FETCH
The FETCH statement retrieves a specific row from the cursor.

Syntax

FETCH [[NEXT | PRIOR | FIRST | LAST] FROM] cursor_name [USING DESCRIPTOR :sqlda_struct | INTO :hvar [,...]]

Arguments

NEXT

Specifies returning the first row of the result set if this FETCH statement is the first FETCH against the cursor; otherwise, specifies
moving the cursor one row in the result set. NEXT is the default method used to move through a result set.

PRIOR

Specifies returning the previous row in the result set.

FIRST

Specifies moving the cursor to the first row in the result set and returning the first row.

LAST

Specifies moving the cursor to the last row in the result set and returning the last row.

cursor_name

Is a previously declared and opened cursor.

sqlda_struct

Is an output SQLDA data structure that was previously populated by the DESCRIBE statement and that contains output value
addresses. This option is used only with a cursor declared by prepared SELECT statements. (SELECT statements are prepared by
using the PREPARE statement.)

hvar

Is one or more host variables to receive the data.

Remarks

If the NEXT, PRIOR, FIRST, or LAST options are not specified, the FETCH statement retrieves the next n rows from the result set
produced by the OPEN statement for this cursor and writes the values of the columns in those rows to the corresponding host
variables or to addresses specified in the SQLDA data structure.

An OPEN cursor_name statement must precede a FETCH statement, and the cursor must be open while FETCH runs. Also, the data
type of the host variable must be compatible with the data type of the corresponding database column.

If the number of columns is less than the number of host variables, the value of SQLWARN3 is set to W. If an error occurs, no
further columns are processed. Processed columns are not undone. The SQLCODE value of 100 indicates that no more rows exist
in the result set.

The USING DESCRIPTOR :sqlda_struct option can be used only with a dynamically defined cursor. The INTO :hvar option can be
used with either a dynamic or static cursor.

Examples

EXEC SQL DECLARE C1 CURSOR FOR
 SELECT au_fname, au_lname FROM authors FOR BROWSE;
EXEC SQL OPEN C1;
while (SQLCODE == 0)
{
 EXEC SQL FETCH C1 INTO :fname, :lname;
}

See Also

DECLARE CURSOR

PREPARE

DESCRIBE

Advanced Programming

OPEN

Embedded SQL for C and SQL Server (SQL Server 2000)

GET CONNECTION
 New Information - SQL Server 2000 SP3.

The GET CONNECTION statement retrieves the DBPROCESS pointer for the specified connection and stores the pointer in a host
variable for use with DB-Library function calls.

Syntax

GET CONNECTION connection_name INTO :hvar

Arguments

connection_name

Is a previously opened connection.

hvar

Is the host variable, declared as data type DBPROCESS *. The hvar option is used to store the DB-Library connection pointer. The
pointer can then be used with DB-Library function calls.

Remarks

The GET CONNECTION statement stores the DB-Library DBPROCESS pointer for an ESQL/C connection in a host variable. This is
useful if you want to use features or functions that are specific to DB-Library (such as text and image handling functions) in your
ESQL/C program.

As with all DB-Library programs, you must first use #define to define the appropriate platform before you include the DB-Library
header files Sqlfront.h and Sqldb.h and link to the appropriate DB-Library .lib file.

Programs for Microsoft® Windows NT® 4.0, Microsoft Windows® 95, and Microsoft Windows 98 must first use #define
DBNTWIN32 and then link to Ntwdblib.lib.

Programs for 16-bit Windows and QuickWin must first use #define DBMSWIN and then link to Msdblib3.lib.

Programs for Microsoft MS-DOS® must first use #define DBMSDOS and then link to Msdblib3.lib.

If you are using a WHENEVER statement in your program, the Embedded SQL keyword sqlerror must not be uppercase to avoid
conflict with the DB Library-defined constant SQLERROR.

Examples

#define DBNTWIN32
#include <windows.h>
#include <sqlfront.h>
#include <sqldb.h>

 .
 .
 .

EXEC SQL BEGIN DECLARE SECTION;
DBPROCESS* dbproc;
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO gizmo.pubs
 AS my_connection
 USER $integrated
EXEC SQL GET CONNECTION my_connection
 INTO dbproc;
if (dbproc != NULL)
{
 printf("Got DBPROCESS connection, current database is '%Fs'\n",
 dbname(dbproc));
}
else
{
 printf("ERROR: Getting DBPROCESS connection\n");

}

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

CONNECT TO

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

OPEN
The OPEN statement begins row-at-a-time data retrieval for a specified cursor.

Syntax

OPEN cursor_name [USING DESCRIPTOR :sqlda | USING :hvar [,...]]

Arguments

cursor_name

Is a previously declared, opened, and fetched cursor.

sqlda

Is an input SQLDA data structure that was previously constructed by the application. The SQLDA data structure contains the
address, data type, and length of each input parameter. This option is used only with cursors that are declared by dynamical SQL
statements.

hvar

Is one or more input host variables that correspond to parameter markers in the SELECT statement. This option is used only with
cursors that are declared by dynamical SQL statements.

Remarks

The OPEN statement runs the SELECT statement specified in the corresponding DECLARE CURSOR statement to produce a result
set, which is accessed one row at a time by the FETCH statement.

If the cursor is declared with a static SELECT statement, the SELECT statement can contain host variables (hvar) but not parameter
markers (?). Host variables can only be used in place of constants. They cannot be used in place of the names of tables, columns,
other database objects, or keywords. The current values of the host variables are substituted when the OPEN statement runs.
Because the OPEN statement is for a statically declared cursor, it cannot contain the USING :hvar and USING DESCRIPTOR :sqlda
options.

If the cursor is declared by using a dynamic SELECT statement, the SELECT statement can contain parameter markers but not host
variables. Parameter markers can be used in place of column names in the SELECT statement. If the SELECT statement has
parameter markers, the OPEN statement must include either the USING :hvar option with the same number of host variables, as
in the SELECT statement, or the USING DESCRIPTOR :sqlda option that identifies the SQLDA data structure already populated by
the application.

With the USING DESCRIPTOR :sqlda option, the values of the program variables are substituted for parameter markers in the
SELECT statement. The program variables are addressed by corresponding sqldata entries in the SQLDA data structure. For
information about SQLDA, see Using the SQLDA Data Structure.

A separate database connection is used for each open browse cursor. Each connection counts toward the total number of user
connections configured on an instance of Microsoft® SQL Server™ 2000. If an attempt to make a new connection fails when
opening a browse cursor, or if a valid current connection is not made when opening a standard cursor, then run-time error -
19521 "Open cursor failure" - usually occurs.

Examples

EXEC SQL DECLARE c1 CURSOR FOR
 SELECT au_fname,au_lname FROM authors FOR BROWSE;
EXEC SQL OPEN c1;

while (SQLCODE == 0)
{
 EXEC SQL FETCH c1 INTO :fname,:lname;
}

See Also

CLOSE

SET CURSOR_CLOSE_ON_COMMIT

DECLARE CURSOR

Advanced Programming

FETCH

Embedded SQL for C and SQL Server (SQL Server 2000)

PREPARE
 New Information - SQL Server 2000 SP3.

The PREPARE statement prepares SQL statement from a character string in the host variable for later execution. It also associates
the statement with a symbolic SQL name.

Syntax

PREPARE stmt_name [INTO :sqlda] FROM :hvar

Arguments

stmt_name

Is the statement to a subsequent EXECUTE or OPEN statement, or a previous DECLARE CURSOR statement.

sqlda

Is the output SQLDA data structure to be populated.

hvar

Is the host variable that contains the SQL statement.

Remarks

The PREPARE statement processes dynamic SQL statements. Because singleton SELECT statements (SELECT INTO) are not
supported in dynamic SQL statements, they are not supported in PREPARE statements.

The statement name cannot be reused in multiple PREPARE statements within the same program module (source code file).
Statement names are global within a program module. PREPARE statements cannot be shared by separately compiled programs
linked into a single executable module, or by a program and dynamic-link libraries (DLLs) that execute in a single process.

You can use a PREPARE statement in one of two ways:

You can open a prepared dynamic cursor. (You must declare a dynamic cursor by using the DECLARE CURSOR statement
before you prepare a SELECT statement.)

You can execute a prepared statement.

Prepared statement names are limited to use in a single cursor definition. The following statements used together are not valid:

EXEC SQL DECLARE cursor1 CURSOR FOR prep_select_statement;
EXEC SQL DECLARE cursor2 CURSOR FOR prep_select_statement; // invalid

If the PREPARE statement is used by an EXECUTE statement, hvar cannot contain an SQL statement that returns results.

When you use PREPARE, the SQL statement in :hvar cannot contain host variables or comments, but it can contain parameter
markers (?). Additionally, the SQL statement cannot contain SQL keywords that pertain exclusively to Embedded SQL keywords.

The following keywords cannot be used in a PREPARE statement:

CLOSE FETCH
COMMIT INCLUDE
DESCRIBE OPEN
END-EXEC PREPARE
EXEC SQL ROLLBACK
EXECUTE WHENEVER

The INTO :sqlda option merges the functionality of the DESCRIBE statement with the functionality of the PREPARE statement.
Therefore, the following sample statements are functionally identical:

EXEC SQL PREPARE gumbo INTO :mysqlda FROM :hamhock;

Or

EXEC SQL PREPARE gumbo FROM :hamhock;
EXEC SQL DESCRIBE gumbo INTO :mysqlda;

Note that the SQLDA data structure is populated only for output data. Even then, the application must set the value of each
sqldata entry in the SQLDA data structure to the address of the corresponding program variable. (The sqldata field is part of
sqlvar.) The SQLDA data structure used for input parameters must be constructed entirely by the application. For more
information, see Using the SQLDA Data Structure.

Examples

EXEC SQL BEGIN DECLARE SECTION;
char prep[] = "INSERT INTO mf_table VALUES(?,?,?)";
char name[30];
char car[30];
double num;
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE prep_stat FROM :prep;

while (SQLCODE == 0)
{
 strncpy(name, "Elaine", 7);
 strncpy(car, "Lamborghini", 12);
 num = 4.9;
 EXEC SQL EXECUTE prep_stat USING :name, :car, :num;
}

See Also

DECLARE CURSOR

EXECUTE

DESCRIBE

Advanced Programming

Embedded SQL for C and SQL Server (SQL Server 2000)

SELECT INTO
The SELECT INTO statement retrieves one row of results. The SELECT INTO statement is also known as a singleton SELECT
statement.

Syntax

SELECT [select_list] INTO {:hvar [,...]} select_options

Arguments

select_list

Is the list of items (table columns or expressions) to retrieve data from.

hvar

Is one or more host variables to receive the select_list items.

select_options

Is one or more statements or other options that can be used with the Transact-SQL SELECT statement (for example, a FROM or
WHERE clause). The GROUP BY, HAVING, COMPUTE, CUBE, and ROLLUP clauses are not supported.

Remarks

The SELECT INTO statement retrieves one row of results and assigns the values of the items in select_list to the host variables
specified in the INTO list. If more columns are selected than the number of receiving host variables, then the value of SQLWARN3
is set to W. The data type and length of the host variable must be compatible with the value assigned to it. If data is truncated, the
value of SQLWARN3 is set to W.

The Embedded SQL SELECT INTO statement is compatible with the Transact-SQL SELECT INTO statement. The Embedded SQL
SELECT INTO statement is used only when results are retrieved for substitution in the application. The Transact-SQL SELECT INTO
statement does not return results to the application and must be issued by using the Embedded SQL EXECUTE statement.

If more than one row is returned, SQLCODE is set to +1, which indicates an exception.

Examples

EXEC SQL SELECT au_lname INTO :name FROM authors WHERE stor_id=:id;

See Also

BEGIN DECLARE SECTION

END DECLARE SECTION

Embedded SQL for C and SQL Server (SQL Server 2000)

SET ANSI_DEFAULTS
The SET ANSI_DEFAULTS statement sets ANSI defaults ON for the duration of the Microsoft® SQL Server™ 2000 query-
processing session or for the duration of a running trigger or a stored procedure. This statement is supported only for
connections to SQL Server version 6.5 or later.

Syntax

SET ANSI_DEFAULTS ON;

Arguments

ON

Specifies SQL-92 compatibility.

Remarks

The ON option sends the Transact-SQL statement SET ANSI_DEFAULTS ON to SQL Server and sets the following statements as
shown:

SET CONCURRENCY LOCKCC

SET CURSORTYPE CUR_STANDARD

SET CURSOR_CLOSE_ON_COMMIT ON

SET FETCHBUFFER 1

SET SCROLLOPTION FORWARD

Note Setting the SET ANSI_DEFAULTS statement to OFF is not supported. To reverse the effects of the SET ANSI_DEFAULTS
statement, turn off each option listed earlier.

See Also

SET CONCURRENCY

SET FETCHBUFFER

SET CURSOR_CLOSE_ON_COMMIT

SET SCROLLOPTION

SET CURSORTYPE

Embedded SQL for C and SQL Server (SQL Server 2000)

SET CONCURRENCY
The SET CONCURRENCY statement sets the concurrency option for standard cursors.

Syntax

SET CONCURRENCY {LOCKCC | OPTCC | OPTCCVAL | READONLY}

Arguments

LOCKCC (default if SET ANSI_DEFAULTS is ON)

Specifies intent to update locking. If a FETCH statement is issued within a user-defined transaction, an exclusive lock is placed on
the data before it is fetched. The exclusive lock prevents others from viewing or changing the data until the lock is released when
the transaction closes.

OPTCC (default if SET ANSI_DEFAULTS is not ON)

Specifies optimistic concurrency control based on a timestamp column (if available) or all nontext, nonimage columns.

OPTCCVAL

Specifies optimistic concurrency control based on all nontext, nonimage columns.

READONLY

Specifies read-only cursors. Data retrieved by a FETCH statement cannot be modified.

Remarks

After the SET CONCURRENCY statement is issued, it affects all subsequent OPEN statements. Using the DECLARE CURSOR FOR
UPDATE statement has the same effect as SET CONCURRENCY LOCKCC, and any reference to the SET CONCURRENCY statement
is ignored. The SET CONCURRENCY statement is also ignored if you are using browse cursors.

If the LOCKCC option is used, you can choose to hold open the user-defined transaction only around each fetch. This requires that
a SET FETCHBUFFER statement be issued before opening the cursor. Or you can choose to hold open the user-defined transaction
for the life of the cursor. Note that holding open a transaction during LOCKCC cursor operations can significantly reduce
concurrency and degrade performance.

If the OPTCC or OPTCCVAL option is used, an UPDATE WHERE CURRENT OF statement can fail if the row has been changed since
the last FETCH statement. The application must be able to handle this situation.

Examples

EXEC SQL SET CONCURRENCY READONLY;

See Also

DECLARE CURSOR

SET FETCHBUFFER

SET ANSI_DEFAULTS

SET SCROLLOPTION

SET CURSORTYPE

Standard DB-Library Cursors

Embedded SQL for C and SQL Server (SQL Server 2000)

SET CONNECTION
 New Information - SQL Server 2000 SP3.

The SET CONNECTION statement specifies which database connection to use for subsequent SQL statements.

Syntax

SET CONNECTION connection_name

Arguments

connection_name

Is the name of an existing database connection.

Remarks

The value for connection_name must match the connection name specified in a previous CONNECT TO statement. The
connection_name can be either the connection's literal name or a host variable that contains character values. SET CONNECTION
can be used only with a named connection.

If you are using connections across compilation modules, you must use named connections.

Examples

EXEC SQL CONNECT TO caffe.pubs AS caffe1 USER $integrated;
EXEC SQL CONNECT TO latte.pubs AS latte1 USER $integrated;
EXEC SQL SET CONNECTION caffe1;
EXEC SQL SELECT name FROM sysobjects INTO :name;
EXEC SQL SET CONNECTION latte1;
EXEC SQL SELECT name FROM sysobjects INTO :name;
EXEC SQL DISCONNECT caffe1;
EXEC SQL DISCONNECT latte1;
// The first select will take place against the pubs //
// database on server "caffe." The second SELECT will //
// take place against the pubs database on server "latte." //
// In place of the two "disconnect" statements at the end, //
// you can also write: //
// EXEC SQL DISCONNECT ALL; //

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

CONNECT TO

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

SET CURSOR_CLOSE_ON_COMMIT
The SET CURSOR_CLOSE_ON_COMMIT statement sets all cursors on a connection to automatically close when a COMMIT
TRANSACTION or a ROLLBACK TRANSACTION statement is issued.

Syntax

SET CURSOR_CLOSE_ON_COMMIT { ON | OFF };

Arguments

ON

Specifies closing all cursors on a connection when a COMMIT TRANSACTION or a ROLLBACK TRANSACTION statement is issued.

OFF (default)

Specifies that the calling application is required to close each cursor on a connection when a COMMIT TRANSACTION or a
ROLLBACK TRANSACTION statement is issued.

Remarks

You can use the SET CURSOR_CLOSE_ON_COMMIT command for standard and browse cursors.

See Also

CLOSE

SET ANSI_DEFAULTS

OPEN

Embedded SQL for C and SQL Server (SQL Server 2000)

SET CURSORTYPE
The SET CUSORTYPE statement sets the use of standard (DB-Library) or browse (one connection per cursor) cursors.

Syntax

SET CURSORTYPE {CUR_BROWSE | CUR_STANDARD}

Arguments

CUR_BROWSE

Specifies using browse cursors. Each browse cursor requires a separate connection to Microsoft® SQL Server™ 2000.

CUR_STANDARD (default)

Specifies using standard DB-Library cursors. A unique index must exist on the source table. Each standard cursor shares the same
(single) connection to the instance of SQL Server used by the application. This is recommended for cursors because it does not
require a separate connection to SQL Server.

Remarks

After this statement is issued, it affects all subsequent cursor OPEN statements. Using the DECLARE CURSOR FOR UPDATE
statement has the same effect as SET CURSORTYPE CUR_STANDARD.

To initiate positioned update or delete operations on a browse cursor, the SELECT statement used to open the browse cursor must
include a FOR BROWSE clause, and the table must include a timestamp column.

The SELECT statement used to open a standard cursor cannot contain any of the following Transact-SQL clauses:

FOR BROWSE COMPUTE
SELECT INTO UNION

For more information about restrictions on standard cursors with a SCROLLOPTION of DYNAMIC, see SET SCROLLOPTION.

If a cursor definition violates any of the conditions noted earlier, an SQLCODE of -19521 is generated.

SQL Server treats each browse cursor connection as a different user. Locks held by one browse cursor can block operations
attempted by other browse cursors. Because standard cursors share the same connection to SQL Server used by the application,
using standard cursors eliminates potential browse cursor locking problems.

Examples

EXEC SQL SET CURSORTYPE CUR_STANDARD;

See Also

DECLARE CURSOR

Standard DB-Library Cursors

SET CONCURRENCY

Browse Cursors

SET FETCHBUFFER

Embedded SQL for C and SQL Server (SQL Server 2000)

SET FETCHBUFFER
The SET FETCHBUFFER statement sets internally the number of rows to be retrieved at one time for standard cursors.

Syntax

SET FETCHBUFFER num_rows

Arguments

num_rows

Is the number of rows to be retrieved at one time from Microsoft® SQL Server™ 2000. Embedded SQL for C buffers num_rows
internally, and it returns one row to the application for each FETCH statement issued.

Remarks

The default is 1 if SET ANSI_DEFAULTS is ON. Otherwise, the default is 10. After this statement is issued, it affects all subsequent
cursor OPEN statements. Because a FETCH statement returns only a single row, the SET FETCHBUFFER statement is for
performance tuning only.

The number of fetch operations required to retrieve all data from a cursor can be reduced by setting the num_rows parameter
higher than the default setting of 10. You should ensure that the client has enough available memory for you to increase this
setting. You might need to reduce the default setting of the num_rows parameter if client memory is constrained, or if the cursors
have many columns or wide columns.

Examples

EXEC SQL SET FETCHBUFFER 5;

See Also

SET CONCURRENCY

SET SCROLLOPTION

SET CURSORTYPE

Standard DB-Library Cursors

Embedded SQL for C and SQL Server (SQL Server 2000)

SET OPTION
 New Information - SQL Server 2000 SP3.

The SET OPTION statement sets values for query-processing options for Microsoft® SQL Server™ 2000.

Syntax

SET OPTION {QUERYTIME | LOGINTIME | APPLICATION | HOST} value

Arguments

QUERYTIME

Specifies the number of seconds that DB-Library waits for SQL Server to respond to a Transact-SQL statement. The default value
is 0 seconds, meaning forever. This option is functionally the same as the DB-Library dbsettime function.

LOGINTIME

Specifies the number of seconds that DB-Library waits for SQL Server to respond to a request for a DBPROCESS connection. The
default value is 10 seconds. This option is functionally the same as the DB-Library dbsetlogintime function.

APPLICATION

Specifies the application name in the LOGINREQ structure. This option supports a character value only (not numerical). This
option is functionally the same as the DB-Library DBSETLAPP function.

HOST

Specifies the workstation name in the LOGINREQ structure. This option supports a character value only (not numerical). This
option is functionally the same as the DB-Library DBSETLHOST function.

value

Is the valid numerical time-out value, in seconds, for the QUERYTIME or LOGINTIME DB-Library option. It is also the valid
character value for the APPLICATION or HOST DB-Library option. value can be a character literal or a host variable.

Remarks

The remaining DB-Library options either do not apply to Embedded SQL (for example, row buffering) or can be set by using
Transact-SQL statements.

Examples

EXEC SQL SET OPTION LOGINTIME 5;
EXEC SQL CONNECT TO caffe.pubs USER $integrated;
// If login to the server "caffe" does not occur within five //
// seconds, the "connect" attempt times out and SQL Server returns to the program. //
EXEC SQL SET OPTION QUERYTIME 2;
EXEC SQL SELECT name FROM sysobjects INTO :name;
// If the query response does not occur within two seconds, //
// the query attempt times out and returns to the program. //

Security Note The preceding example uses the $integrated keyword to enable Windows Authentication. When possible, use this
authentication method. If Windows Authentication is not available, prompt users to enter their credentials at run time. Avoid
storing credentials in a file. If you must persist credentials, you should encrypt them with the Win32 cryptoAPI.

See Also

Using Host Variables

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

SET SCROLLOPTION
The SET SCROLLOPTION statement sets the scrolling functionality and row membership for standard cursors.

Syntax

SET SCROLLOPTION {DYNAMIC | FORWARD | KEYSET}

Arguments

DYNAMIC

Specifies that row membership in the cursor is updated for every FETCH statement, and that the cursor scrolls forward and
backward.

FORWARD (default)

Specifies that row membership in the cursor is updated for every FETCH statement, and that the cursor scrolls only forward.

KEYSET

Specifies fixing row membership in the cursor at OPEN time.

Remarks

After this statement is issued, it affects all subsequent cursor OPEN statements. This statement is ignored if you are using browse
cursors.

Row membership is determined by the subset of rows defined by the SELECT statement criteria and available for retrieval by
using FETCH statements. This includes the specific data rows available and what (if any) order those rows are in.

For KEYSET cursors, row membership is fixed when the OPEN statement is issued. After a KEYSET cursor has been opened, if
additional rows that meet the SELECT statement criteria are added by another user, they are not visible within the opened cursor.
You must close and reopen a KEYSET cursor to see the added rows.

For DYNAMIC and FORWARD cursors, row membership is dynamic. Each FETCH statement retrieves the most current data
available. After a DYNAMIC or FORWARD cursor has been opened, if rows that meet the SELECT statement criteria are added by
another user, they are potentially visible within the opened cursor.

When using the DYNAMIC or FORWARD scroll options, the SELECT statement used to open the cursor cannot contain a GROUP
BY or HAVING clause or an ORDER BY clause without a unique index.

Examples

EXEC SQL SET SCROLLOPTION DYNAMIC;

See Also

SET CONCURRENCY

SET FETCHBUFFER

SET CURSORTYPE

Standard DB-Library Cursors

Embedded SQL for C and SQL Server (SQL Server 2000)

UPDATE
 New Information - SQL Server 2000 SP3.

The UPDATE statement changes data in the row where the cursor is currently positioned.

Syntax

UPDATE {table_name | view_name} SET {column=expression[,...]} WHERE CURRENT OF cursor_name

Arguments

table_name

Is the table to be updated.

view_name

Is the view to be updated.

column

Is the column to be updated.

expression

Is the value of a particular column name. This value can be an expression or a null value.

cursor_name

Is a previously declared, opened, and fetched cursor.

Remarks

In addition to having the searched update functionality of the Transact-SQL UPDATE statement, the Embedded SQL UPDATE
statement includes functionality that is known as positioned update. Positioned update changes the row most recently fetched by
a cursor.

Note In a positioned update, the WHERE CURRENT OF option is used in place of a search condition clause. The WHERE CURRENT
OF option cannot be used in a PREPARE statement.

In a positioned update that uses a browse cursor, the SELECT statement used to open the cursor must include a FOR BROWSE
clause, and the base table(s) must include a timestamp column. If an error prevents any row found by the search condition
WHERE CURRENT OF from being deleted, no changes are made to the database.

When using a browse cursor, or a standard cursor with optimistic concurrency control (SET CONCURRENCY with the OPTCC or
OPTCCVAL option), and the row has been changed after the last FETCH statement, no changes are made to the database. The
value of SQLCODE is set to -532, which means that a positioned UPDATE or DELETE statement failed because of a conflict with
another user. Also, the SQLERRD3 field in the SQLCA data structure shows no rows processed.

Examples

while (SQLCODE == 0)
{
 EXEC SQL FETCH c1 INTO :fname,:lname;
 if (SQLCODE == 0)
 {
 printf("%s %s", fname, lname);
 printf("Update? ");
 fgets(stdin, 2, &reply);
 if (reply == 'y')
 {
 printf("New last name? ");
 fgets(stdin, 30, &lname);
 EXEC SQL
 UPDATE authors SET au_lname=:lname
 WHERE CURRENT OF c1;
 printf("update sqlcode= %s", SQLCODE);
 }
 }
 }

See Also

DECLARE CURSOR

FETCH

Embedded SQL for C and SQL Server (SQL Server 2000)

UPDATE (Searched)
The UPDATE (Searched) statement changes data in existing rows of a table. UPDATE (Searched) is a standard Transact-SQL
statement.

Syntax

UPDATE {table_name | view_name} SET [table_name. | view_name.] {column_name={expression | NULL | (select_statement)}[,...]}
[FROM {table_name | view_name}[,...]] [WHERE search_condition]

Arguments

table_name

Is the table to be updated.

view_name

Is the view to be updated.

column_name

Is the column to be updated.

expression

Is the value of a particular column. This value must be an expression.

select_statement

Is a valid SELECT statement that returns a single row with a single column of data.

search_condition

Is any expression that can legally follow the standard Transact-SQL WHERE clause.

Remarks

Use UPDATE to change values. Use INSERT to add new rows.

Updating a varchar or text column with the empty string (' ') inserts a single space. All char columns are padded to the defined
length.

All trailing spaces are removed from varchar column data. Strings that contain only spaces are truncated to a single space.

The SQL batch size of 128 KB limits the maximum amount of data that you can alter with UPDATE. Because some memory is
required for the query's execution plan, the actual amount of data you can include in an UPDATE statement is somewhat less than
128 KB. For example, you can update one column of about 125 KB, or two columns of about 60 KB each.

Examples

UPDATE authors SET au_fname = 'Fred' WHERE au_lname = 'White'

See Also

INSERT

Embedded SQL for C and SQL Server (SQL Server 2000)

WHENEVER
The WHENEVER statement specifies the action (CONTINUE, GOTO, or CALL) to be taken when one of three possible SQLCODE
conditions is met following the execution of an Embedded SQL statement.

Syntax

WHENEVER {SQLWARNING | SQLERROR | NOT FOUND} {CONTINUE | GOTO stmt_label | CALL function()}

Arguments

SQLWARNING

Specifies that an Embedded SQL warning occurred and was stored in the SQLCA data structure.

SQLERROR

Specifies that a Microsoft® SQL Server™ 2000 message was received and stored in the SQLCA data structure.

NOT FOUND

Specifies that no rows were returned from a valid and properly executed SELECT statement, or that a FETCH statement returned
no more rows, and that SQLCODE was set to 100 in the SQLCA data structure.

CONTINUE (default)

Specifies running the next physically sequential statement in the source program.

stmt_label

Is the place in the program where control is assumed.

function()

Is a function in your application. Parentheses () are required following the function name (function()). If parentheses are omitted,
the function is not called. The function can include parameters.

Remarks

SQLCODE conditions have the following values.

Condition Value Example
No error 0
NOT FOUND 100 Fetch past end of results
SQLWARNING +1 Data truncation on output
SQLERROR < 0 (negative) Constraint violation

For more information about how to handle specific error conditions programmatically, using SQLSTATE values, see SQLSTATE
Messages.

The following SQLCODE values are revised in ESQL/C version 6.5 and are carried to version 7.0.

Condition New value Previous value
Singleton SELECT statement returns more than
1 row

-1 1

NULL value returns, but no indicator variable
declared

-1 0

Second attempt to open cursor without
corresponding close while
CLOSE_ON_COMMIT is in force

-1 0

Server error encountered on cursor open -nnn..., where nnn
is a server
message number

-19521

WHENEVER statement actions are related to the position of statements in the source code, not in the run sequence. The default is
CONTINUE for all conditions.

Examples

EXEC SQL WHENEVER sqlerror GOTO displayca;
 .
 .
 .
EXEC SQL WHENEVER sqlerror CALL error_funct(param);

See Also

Using the WHENEVER Statement

Advanced Programming

Embedded SQL for C and SQL Server (SQL Server 2000)

Building Applications
To build an Embedded SQL for C (ESQL/C) application for the Microsoft® Windows NT® 4.0, Microsoft Windows® 95, or
Microsoft Windows 98 operating systems, you must compile the application on a computer running Windows NT 4.0, Windows
95, or Windows 98 on the Intel® platform.

If you need to build an ESQL/C application for either 16-bit Windows or Microsoft MS-DOS®, you must use the ESQL/C
compilation environment in Microsoft SQL Server™ 6.0 or 6.5. SQL Server 7.0 does not supply the 16-bit binaries needed to
compile ESQL/C clients in these environments:

To build an ESQL/C application for the 16-bit Windows operating system, you must compile the application on a computer
running MS-DOS or 16-bit Windows.

To build an ESQL/C application for the MS-DOS operating system, you must compile the application on a computer running
MS-DOS version 6.22 or later.

The following illustration shows how application code that contains Embedded SQL statements is precompiled, compiled, and
linked, and how the application operates at run time.

When you compile an ESQL/C application, the general process of creating an executable program is the same regardless of the
operating system you compile for. The specific procedures for precompiling, compiling, and linking ESQL/C applications for
Windows NT 4.0, Windows 95, or Windows 98, 16-bit Windows, and MS-DOS are described in other topics.

Embedded SQL for C and SQL Server (SQL Server 2000)

Steps for Building an Application
The following steps apply to building all Embedded SQL for C (ESQL/C) applications:

1. Run the appropriate nsqlprep precompiler to prepare the ESQL/C program for compiling with a C compiler.

For more information about nsqlprep, see Running the nsqlprep Precompiler.

2. Compile the C program created by the precompiler by using an appropriate C compiler. The compiler creates object file(s).

3. Link the object file(s), ESQL/C library files, and any other needed library files to create an executable file for the desired
environment.

For more information about compiling and linking ESQL/C applications, see the ESQL/C samples in the C:\Program
Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Esqlc subdirectory.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL Applications at Run Time
When you run an Embedded SQL for C (ESQL/C) application, SQL statements are executed as follows:

1. For every SQL statement, the application calls the appropriate ESQL/C run-time services.

2. If the SQL statement is static, the run-time services execute the SQL statement or a previously compiled stored procedure
with the appropriate input parameters. Executing a stored procedure at run-time depends on your pre-compile options to
nsqlprep (that is, /SQLACCESS which creates stored procedures for static SQL statements). If the statement is dynamic, the
run-time services issue the SQL statements directly.

3. The run-time services use DB-Library calls to send and retrieve data to and from Microsoft® SQL Server™ 2000.

4. The run-time services insert data into C program host variables (or SQLDA data structures). Status and error information is
inserted into the SQLCA data structure.

Embedded SQL for C and SQL Server (SQL Server 2000)

Processing Embedded SQL Statements
Embedded SQL for C (ESQL/C) fully supports all Transact-SQL extensions, including stored procedures, local variables, and
control-of-flow language. Due to syntax conflicts with Embedded SQL reserved keywords, and because static SQL statements are
compiled into stored procedures by the precompiler, minor restrictions apply to how Transact-SQL extensions are implemented.
The restrictions are as follows:

The Transact-SQL EXECUTE statement should be abbreviated to EXEC to avoid conflict with the Embedded SQL EXECUTE
statement.

Transact-SQL statement labels should not be used in static SQL statements because they conflict with the syntax for host
variables. However, you can use Transact-SQL labels in dynamic SQL statements.

If Microsoft® SQL Server™ 2000 returns an error during compilation, the SQL Server error code appears in the precompiler
error message as a negative number, for example:

SQL Syntax Error -SQLCODE = -207

For more information about a list of messages returned by ESQL, see Embedded SQL for C Messages.

Because nsqlprep converts all static SQL statements into stored procedures, all limitations for Transact-SQL stored
procedures apply to static SQL statements. A static SQL statement that contains a single transaction-management statement
(such as COMMIT TRANSACTION or SAVEPOINT) is not compiled into a stored procedure. Instead, the statement is issued
dynamically at run time.

For more information about restrictions that relate to other Embedded SQL statements, see Embedded SQL Statements.

Embedded SQL for C and SQL Server (SQL Server 2000)

Access Plans and Bind Files
The static SQL statements of an application can be issued at run time (as are dynamic SQL statements), or they can be placed into
an access plan. An access plan is a set of stored procedures. It includes a separate stored procedure for each static SQL statement.

Using the nsqlprep precompiler, you can connect to a specified server and database and create an access plan. Each time an
application is recompiled, old stored procedures with the same program module name are dropped.

If the database you need to connect to is unavailable when you are ready to compile, you can use the nsqlprep precompiler to
create a bind file. A bind file is a Transact-SQL script used to create stored procedures for the access plan. You can later use the
Microsoft® SQL Server™ 2000 isql utility to apply the bind file to the database before you run the application.

Embedded SQL for C and SQL Server (SQL Server 2000)

Running the nsqlprep Precompiler
You must run the appropriate nsqlprep precompiler to prepare your Embedded SQL for C (ESQL/C) program for compiling with
a C compiler.

Operating system Precompiler
Microsoft® Windows NT® 4.0 (Intel® platform) Nsqlprep.exe
Microsoft Windows® 95 or Windows 98 Nsqlprep.exe
16-bit Windows Sqlprep.exe
Microsoft MS-DOS® Sqlprep.exe

The nsqlprep precompiler finds SQL statements, parses the SQL statements, and if applicable, creates an access plan or bind file.
The precompiler creates a C program that can be compiled with an appropriate C compiler. For more information about
compiling and linking, see Compiling and Linking Embedded SQL Applications.

Embedded SQL for C and SQL Server (SQL Server 2000)

Setting Up the nsqlprep Precompiler
Before you run the nsqlprep precompiler, do the following:

The nsqlprep precompiler uses your compiler to process header files

Set the INCLUDE environment variable to include the full path where the Sqlca.h and Sqlda.h ESQL/C header files are
located and set the LIB environment variable to include the full path where the library files are located. There are several
ways to accomplish this, including either:

Issuing a SET statement at the command prompt, such as

SET INCLUDE = C\Mssql17\DevTools\INCLUSE; %include%

SET LIB = C\Mssql17\DevTools\LIB; %LIB%

At the command prompt, first running Vcvar32.bat (in the \Program Files\Microsoft Visual Studio\VC98\Bin
directory) and then running setenv.bat (in \Mssql17\DevTools\Samples\Esqlc directory).

The nsqlprep precompiler automatically includes these header files in the C programs it creates. Do not explicitly include
them (by using #include) in an Embedded SQL program.

To enable communication with Microsoft® SQL Server™ 2000, ensure that an appropriate Net-Library is loaded or available
on the path when precompiling with the /DB and /PASS options. For example, the Named Pipes Net-Library for the
Microsoft Windows NT® operating system (Intel® platform) is Dbnmpntw.dll, and the Named Pipes Net-Library for the
Microsoft MS-DOS® operating system is the Dbnmpipe.exe TSR.

Embedded SQL for C and SQL Server (SQL Server 2000)

Precompiler Syntax
 New Information - SQL Server 2000 SP3.

You can use either a slash (/) or a hyphen (-) to designate an nsqlprep precompiler option. For example, /DB
server_name.database_name and -DB server_name.database_name are equivalent.

Syntax

nsqlprep program_file_name [/SQLACCESS | /NOSQLACCESS]
[/FLAGGER {ENTRY | NONE}] [/DB [server_name.]database_name
/PASS {login[.password] | $INTEGRATED}] [/BIND file_name]
[/MSG file_name] [/NOLOGO] [/PLAN name] [/NOLINES]
[/user_defined_option]

Arguments

program_file_name

Is the file name (without the extension) of the Embedded SQL program to precompile. The precompiler searches for the file name
and the file extension .sqc. For example, if you run nsqlprep myprogrm, nsqlprep searches for Myprogrm.sqc and precompiles it
if it is found.

/SQLACCESS

Specifies that nsqlprep will create stored procedures automatically for the static SQL statements in the program. You must also
include /DB and /PASS to specify a direct connection to Microsoft® SQL Server™ 2000 for creating the stored procedures, or
/BIND to create a bind file for later loading of the stored procedures. Note that for standard cursors, the original SELECT
statement is used directly, and the stored procedures created by the /SQLACCESS option are not used.

/NOSQLACCESS

Specifies that nsqlprep will not automatically create stored procedures for static SQL statements in the program. If you also
include /DB and /PASS to specify a direct connection to SQL Server, nsqlprep:

Issues a message.

Connects to SQL Server.

Drops stored procedures created by a previous precompile of the same program.

Completes the precompile without creating new stored procedures.

/FLAGGER

Specifies sending static SQL statements to the server at compile time for syntax checking. Syntax or compilation error messages
generated from the server are displayed on the screen. If you specify the /FLAGGER option, you must also specify the /DB and
/PASS options. You cannot use the /PLAN or /SQLACCESS options with the /FLAGGER option.

ENTRY

Specifies that static SQL statements are also checked for FIPS 127-2 SQL compliance. If the precompiler encounters SQL
statements that do not conform to the specified FIPS level of support, an error message is displayed on the screen or stored in the
file specified by the /MSG option. Program output is generated the same way as when you use the /NOSQLACCESS option (that
is, stored procedures are not created).

NONE

Specifies that static SQL statements are not checked for FIPS 127-2 SQL compliance but are checked for correct syntax. The
existence of database objects that the statements refer to is also verified.

/DB [server_name.]database_name

Specifies a database, and optionally a server running SQL Server, in which to put stored procedures for the access plan. If SQL
Server is running on your local computer, you need to supply only the database_name. Whenever you use the /DB option, you
must also use the /PASS option. server_name or database_name is the same server or database name in the Embedded SQL

CONNECT TO statement in the program.. For more information about using /DB, see Access Plan and Bind File Options.

/PASS login[.password]

Specifies the user identifier and password for SQL Server access and stored procedure creation. Whenever you use the /PASS
option, you must also use the /DB option. login and password are a user's login ID and password, or a user's login ID only. For
more information about using /PASS, see Access Plan and Bind File Options.

$INTEGRATED

Forces use of Windows Authentication support for the login[.password] parameter. If Windows Authentication support is forced,
any implicit run-time connection also uses Windows Authentication.

/BIND file_name

Causes creation of a bind file on precompiler execution. The extension .bnd is appended to the required file_name supplied.
file_name is an MS-DOS path and file name specification. The file name should not include an extension.

The bind file is an isql script that can be used to create the desired stored procedures (it includes CREATE PROCEDURE
statements). For more information about using /BIND, see Access Plan and Bind File Options.

When you create a bind file, you must use the Embedded SQL CONNECT TO statement to connect to the server. If you use this
option and no stored procedure is created, the bind file is deleted.

/MSG file_name

Causes creation of a text file containing warning and error messages generated by nsqlprep processing. The .msg extension is
appended to the specified file name. If nsqlprep processing does not generate any warning or error messages, the file is not
generated. file_name is a Microsoft MS-DOS® path and file name specification. The file name should not include an extension.

/NOLOGO

Specifies suppression of the nsqlprep banner and the compiler banner (nsqlprep invokes the compiler).

/PLAN name

Specifies a nondefault name for an access plan. (The default name is the program_file_name without an .sql extension.)

/NOLINES

Specifies that the generated .c file be displayed for debugging, instead of the .sqc file. You must use the /NOLINES option if the
.sqc source code contains C language code that appears on the same line after an EXEC SQL statement.

/user_defined_option

Is a user-defined option to be passed to the C compiler.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Access Plan and Bind File Options
 New Information - SQL Server 2000 SP3.

By using the /DB and /PASS options with the nsqlprep precompiler, you can connect to a specified server and database and
create an access plan (set of stored procedures) for each separately compiled program module (compilation unit). With the /DB
and /PASS options, nsqlprep makes a connection using the specified server name, database name, login ID, and password. The
access plan consists of a separate stored procedure for each static SQL statement in each compiled program module.

By default, the stored procedure names consist of the following:

Name of the program module

A date/timestamp converted to eight printable ASCII characters

A dollar sign ($)

The access plan section number

The date/timestamp provides for re-creating stored procedures for the access plan with identical program module names each
time the program is compiled. However, if you use the /PLAN option and specify a nondefault plan name that ends with an
underscore (_), nsqlprep does not include the date/timestamp in the stored procedure names. In that case, you can reuse stored
procedures created from a previous precompile.

If the database you need to connect to is unavailable or you do not want to use it when you are ready to compile, you can use the
/BIND option in the nsqlprep precompiler command line to create a bind file. The bind file is a Transact-SQL script used to create
stored procedures for access plans. You can later use the Microsoft® SQL Server™ 2000 isql utility to apply the bind file to the
database. However, to run a bind file as an SQL script, each line must contain no more than 1,000 characters if you want to use
the isql utility. If one or more lines contain more than 1,000 characters, use the isqlw utility (SQL Query Analyzer). You must
apply the bind file to the database before you can run the corresponding C application.

If you do not specify the /DB and /PASS options or the /BIND option, both static and dynamic SQL statements are issued at run
time.

Security Note When possible, use the $INTEGRATED switch with the /PASS option for Windows Authentication. If Windows
Authentication is not available, prompt users to enter their credentials at run time. Avoid storing credentials in a file. If you must
persist credentials, you should encrypt them with the Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

Embedded SQL for C and SQL Server (SQL Server 2000)

Compiling and Linking Embedded SQL Applications
The nsqlprep precompiler creates a C program with the file extension .c from an Embedded SQL for C (ESQL/C) program. For
example, from the ESQL/C program Myprogrm.sqc, nsqlprep creates a C program named Myprogrm.c. You can compile the C
program for the Intel® platform by using the appropriate C compiler.

The ESQL/C precompiler does not support preprocessing of C++ modules. To use Embedded SQL in a C++ application, you must
create separate C-language modules for data access functions and preprocess only those modules. ESQL/C also does not support
the use of precompiled headers because the first step in preprocessing is to expand all #include files. You can improve
compilation time by segregating data access code into .sqc modules that have a minimum number of #include files.

If your program contains a #include windows.h statement, you must precede it with the following two statements:

#define _OLE2_H_
#define NOIME

In this example, the Ole2.h and Imm.h header files are excluded. The Ole2.h and Imm.h header files are not compatible with
version 6.5 of ESQL/C.

The Transact-SQL keyword null should not be uppercase in Embedded SQL programs to avoid conflict with the C keyword NULL.
Also, the Embedded SQL keyword delete and the Transact-SQL keyword in should not be uppercase in applications for 32-bit
Windows to avoid conflict with 32-bit Microsoft Windows®-defined constants in Windows.h.

Embedded SQL for C and SQL Server (SQL Server 2000)

Compiling and Linking for Windows NT and Windows 95 or
Windows 98
You can compile and link precompiled ESQL/C programs for Microsoft® Windows NT® and Microsoft Windows® 95 or
Microsoft Windows 98 on a computer running the Windows NT 4.0, Windows 95, or Windows 98 operating system by using
Microsoft Visual C++® version 4.5 or later.

You can set the LIB environment variable to avoid specifying library paths for the Embedded SQL libraries, for example:

SET LIB= C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib;C:\MSDEV\LIB

The following libraries are supplied and used by ESQL/C programs when built for Windows NT 4.0 and Windows 95 or Windows
98:

Caw32.lib

Sqlakw32.lib

To compile and link a program for Windows NT 4.0, Windows 95 or Windows 98

1. Run the compiler Cl.exe as you would for Windows NT 4.0 or Windows 95 or Windows 98 to create an object file, for
example:

CL /c /W3 /D"_X86_" MYPROGRM.C

In this example, the compiler creates the object file Myprogrm.obj. The /D"_X86_" compiler option defines the symbol
necessary for Windows NT 4.0, Windows 95, or Windows 98 operating systems that run on Intel®-based computers.

You can use any additional compiler options allowed by the compiler.

2. Run the linker (Link.exe) as you would for Windows NT 4.0, Windows 95 or Windows 98 to link the compiled ESQL/C object
file and system libraries, which creates an executable file for Windows NT 4.0, Windows 95, or Windows 98. When linking
files for Windows NT 4.0, Windows 95, or Windows 98 programs, you must explicitly link with the Sqlakw32.lib and
Caw32.lib libraries; for example:

LINK /NOD /subsystem:windows MYPROGRM.OBJ MYPROGRM.RES KERNEL32.LIB
GDI32.LIB USER32.LIB LIBCMT.LIB SQLAKW32.LIB CAW32.LIB

In the example, the compiled object file Myprogrm.obj, system libraries, and the ESQL/C libraries Sqlakw32.lib and
Caw32.lib are linked together to create the executable file Myprogrm.exe for Windows NT 4.0, Windows 95, or Windows 98.

To run a Windows NT 4.0, Windows 95, or Windows 98 ESQL/C application, the dynamic-link libraries Sqlakw32.dll, Ntwdblib.dll,
and Dbnmpntw.dll (or other appropriate Net-Library) must be available in the path.

Embedded SQL for C and SQL Server (SQL Server 2000)

Project Settings for Visual C++
The following project settings enable application development in Microsoft® Visual C++®. The techniques discussed apply to
any integrated development environment. For more information about a specific manufacturer's compiler and integrated
development environment, see the compiler documentation.

You set up ESQL/C projects in the same way you set up projects that include any additional component libraries.

To add the needed directory names to Visual C++ environment settings

1. On the Tools menu, click Options.

2. Click the Directories tab.

3. In the Show directories for box, click Include files.

4. Enter the path for Microsoft® SQL Server™ 2000 development include files, typically x:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include.

5. In the Show directories for box, click Library files.

6. Enter the path for SQL Server development library files, typically x:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Include.

7. In the Show directories for box, click Executable files.

8. Enter the path for SQL Server development binary executable files, typically C:\Program Files\Microsoft SQL
Server\80\Tools\Binn.

You must change the executable directories list so Visual C++ will correctly locate the nsqlprep executable file.

The following illustration shows adding the path for header files to the Visual C++ include file path list.

As you create each ESQL/C source file, you must indicate the preprocessor steps necessary to generate the appropriate C source
for compilation. Depending on the version of Visual C++, use the Build menu or the Project menu to locate the compilation
settings for the project.

Compilation settings can be set at the source-file level, and the custom build steps for your ESQL/C source files are set at this level
as well.

To add custom build steps for an ESQL/C source file

1. On either the Project menu (Visual C++ 5.0) or the Build menu (Visual C++ 4.x), click Settings.

2. Click the ESQL/C source file in the project's file list. In Visual C++ 5.0 a single instance of the file appears in the project's list.
You can click All configurations in the Settings for box to set custom build commands for both debug and release

versions of your project. In Visual C++ 4.x, you can expand the file list and select each occurrence of the ESQL/C source file
to set the custom build commands for all project configurations.

3. Click the Custom Build tab.

4. In the Build commands box, enter the nsqlprep command. You can use the $(InputName) macro to specify the file.

5. In the Output file(s) box, specify the name of the output file. The output file is a C source file. You can use the
$(InputName) macro to specify the file.

The illustration below shows custom build settings for an ESQL/C source file.

After you've successfully preprocessed the ESQL/C source files, you can add the generated C source to your project.

Embedded SQL for C and SQL Server (SQL Server 2000)

Compiling and Linking for 16-bit Windows
Microsoft® SQL Server™ 2000 does not supply the environment for compiling ESQL/C 16-bit Microsoft Windows® clients (the
16-bit binaries for Windows are not included). However, these clients will run under SQL Server 2000. To compile an ESQL/C 16-
bit Windows client, you need to use the ESQL/C compilation environment in SQL Server 6.0 or 6.5, which includes the 16-bit
Windows binaries.

You can compile and link precompiled ESQL/C programs for 16-bit Windows on a computer running the Microsoft MS-DOS® or
16-bit Windows operating system by using the Microsoft Visual C++® development system (16-bit), version 1.52 or later.

ESQL/C source files can be built as either large or medium memory model 16-bit Windows executable files.

You can set the LIB environment variable to avoid specifying library paths for the ESQL/C libraries, for example:

SET LIB= C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The following libraries are supplied and used by ESQL/C programs when built for 16-bit Windows:

Caw.lib

Sqlakw.lib

To compile and link a program for 16-bit Windows

1. Run the compiler Cl.exe as you would for 16-bit Windows to create an object file, for example:

CL /c /W3 /AL MYPROGRM.C

In the example, the compiler creates the object file Myprogrm.obj. The /AL compiler option sets the memory model of the
program to large. You can use any additional compiler options allowed by the compiler.

2. Run the linker Link.exe as you would for 16-bit Windows to link the compiled ESQL/C object file and system libraries, which
creates an executable file for Windows. When linking files for Windows-based programs, you must explicitly link with the
Sqlakw.lib and Caw.lib libraries, for example:

LINK /NOD MYPROGRM.OBJ,,, LIBW.LIB LLIBCEW.LIB SQLAKW.LIB CAW.LIB,
MYPROGRM.DEF;

In the example, the compiled object file Myprogrm.obj, system libraries Libw.lib and Mlibcew.lib, and ESQL/C libraries
Sqlakw.lib and Caw.lib are linked together to create the large model, executable file Myprogrm.exe for Windows.

To run a 16-bit Windows-based ESQL/C application, the dynamic-link libraries Sqlakw.dll, Msdblib3.dll, and Dbnmp3.dll (or other
appropriate Net-Library) must be available in your path.

Embedded SQL for C and SQL Server (SQL Server 2000)

Compiling and Linking for MS-DOS
Microsoft® SQL Server™ 2000 does not supply the environment for compiling ESQL/C 16-bit Microsoft MS-DOS® clients (the
16-bit binaries for MS-DOS are not included). However, these clients will run under SQL Server 2000. To compile an ESQL/C 16-
bit MS-DOS client, you need to use the ESQL/C compilation environment in SQL Server 6.0 or 6.5, which includes the 16-bit MS-
DOS binaries.

You can compile and link precompiled ESQL/C programs for MS-DOS on a computer running the MS-DOS version 6.22 or later
operating system by using the Microsoft Visual C++® development system (16-bit), version 1.52 or later.

ESQL/C sources can be built as large memory model MS-DOS executable files.

You can set the LIB environment variable to avoid specifying library paths for the ESQL/C libraries, for example:

SET LIB= C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The following libraries are supplied and used by ESQL/C programs when built for MS-DOS:

Car.lib

Rldblib.lib

Sqlakd.lib

To compile and link a program for MS-DOS

1. Run the compiler Cl.exe as you would for MS-DOS to create an object file, for example:

CL /c /W3 /AL MYPROGRM.C

In the example, the compiler creates the object file Myprogrm.obj. The /AL compiler option sets the memory model of the
program to large. You can use any additional compiler options allowed by the compiler.

2. Run the linker Link.exe as you would for MS-DOS to link the compiled ESQL/C object file and system libraries, which creates
an executable file for MS-DOS. When linking files for MS-DOS-based programs, you must explicitly link with the Sqlakd.lib,
Rldblib.lib, Oldnames.lib and Car.lib libraries, for example:

LINK /NOD MYPROGRM.OBJ,,, LLIBCE.LIB SQLAKD.LIB CAR.LIB OLDNAMES.LIB
RLDBLIB.LIB, MYPROGRM.DEF;

In the example, the compiled object file Myprogrm.obj, system library Llibce.lib, ESQL/C libraries Sqlakd.lib, Car.lib, and
Oldnames.lib and the DB-Library library Rldblib.lib are linked together to create the executable file Myprogrm.exe for MS-
DOS.

To run an MS-DOS-based ESQL/C application, load the appropriate Net-Library TSR.

Embedded SQL for C and SQL Server (SQL Server 2000)

Compiling and Linking for QuickWin
QuickWin is a set of libraries that helps convert source code for Microsoft®
MS-DOS® into 16-bit Microsoft Windows®-based applications. You can compile and link precompiled ESQL/C programs for
QuickWin on a computer that is running the MS-DOS or 16-bit Windows operating system by using the Microsoft Visual C++®
development system (16-bit), version 1.52.

Microsoft® SQL Server™ version 7.0 does not supply the environment for compiling ESQL/C 16-bit MS-DOS or 16-bit Windows
clients (the 16-bit binaries for Windows and MS-DOS are not included). However, these clients will run under SQL Server 7.0. To
compile an ESQL/C 16-bit MS-DOS or 16-bit Windows client, you need to use the ESQL/C compilation environment in SQL
Server 6.0 or 6.5, which includes the 16-bit binaries.

ESQL/C sources can be built as either large or medium memory model 16-bit Windows, QuickWin executables.

You can set the LIB environment variable to avoid specifying library paths for the ESQL/C libraries, for example:

SET LIB= C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The following libraries are supplied and used by ESQL/C for C programs when built as 16-bit Windows, QuickWin executable files:

Caw.lib

Sqlakw.lib

To compile and link a program for QuickWin

1. Run the compiler Cl.exe as you would for 16-bit Windows to create an object file, for example:

CL /c /W3 /AM MYPROGRM.C

In the example, the compiler creates the object file Myprogrm.obj. The /AM compiler option sets the memory model of the
program to medium. You can use any additional compiler options allowed by the compiler.

2. Run the linker Link.exe as you would for 16-bit Windows to link the compiled ESQL/C object file and system libraries, which
creates an executable file for Windows. When linking files for Windows-based programs, you must explicitly link with the
Sqlakw.lib and Caw.lib libraries, for example:

LINK /NOD MYPROGRM.OBJ,,, LIBW.LIB MLIBCEWQ.LIB SQLAKW.LIB CAW.LIB,
 MYPROGRM.DEF;

In the example, the compiled object file Myprogrm.obj, system libraries Libw.lib and Mlibcewq.lib, and ESQL/C libraries
Sqlakw.lib and Caw.lib are linked together to create the executable file Myprogrm.exe for Windows.

To run a 16-bit Windows-based ESQL/C application, the dynamic-link libraries Sqlakw.dll, Msdblib3.dll, and Dbnmp3.dll (or other
appropriate Net-Library) must be available in your path.

Embedded SQL for C and SQL Server (SQL Server 2000)

Debugging Embedded SQL Programs
You can use the Microsoft debuggers (including the integrated debugger in 16-bit Microsoft® Visual C++® and 32-bit Visual
C++), Microsoft CodeView® window-oriented debugger for Microsoft Windows®, and WinDebug for Microsoft Windows NT®
4.0, Windows 95, and Windows 98 to examine your Embedded SQL for C (ESQL/C) program while it is executing. A Microsoft
debugger displays ESQL/C source statements as lines of executable code. While debugging, you can set breakpoints on
Embedded SQL statements to test host variables. To monitor SQLCA and SQLDA fields, you must monitor the SQLCA and SQLDA
data structures and member variables. For example, you must monitor sqlca->sqlcode instead of the SQLCODE macro, and you
must monitor sqlca->sqlerrd[0] instead of the SQLERRD1 macro.

When you use the integrated debugger in 16-bit Visual C++ or 32-bit Visual C++, you can set breakpoints on lines of source
code in your .sqc file. However, to begin a debugging session, you must first open the .c file generated by nsqlprep and make that
window active. Then on the Debug menu, click Go.

If you are using Visual C++ 5.0 for example, you can open the .exe file, and choose from the menu BUILD, START DEBUG, STEP
INTO. For this to work, you need to compile and link with a debug information switches. For example:

Precompile:

nsqlprep myprogram /NOLINES /NOLOGO /NOSQLACCESS

Compile:

cl -c -G4d -W3 -Zi -Od myprogram.c

Link:

Link /MAP /DEBUG.full /DEBUGTYPE:both /SUBSYSTEM:console myprogram.obj kernel32.lib libc.lib sqlakw32.lib
caw32.lib ntwdblib.lib

For debugging the .c source code, you need to supply the /NOLINES precompiler option to nsqlprep. This allows debugging
directly into the .c file instead of the .sqc file.

When you use CodeView for 16-bit Windows and step through the code, the cursor disappears until it reaches the next C
statement.

See Also

Precompiler Syntax

Embedded SQL for C and SQL Server (SQL Server 2000)

Advanced Programming
Most of the features used in writing Embedded SQL code are discussed in Embedded SQL Programming.

Advanced programming topics include:

Data type mappings from Transact-SQL to C, and vice versa

The SQLDA data structure for data input and output

The contents of the SQLCA data structure

The EXEC statement and how to use it to selectively bypass the creation of an access plan

Embedded SQL for C is not thread-safe. If you are using ESQL/C in a threaded application, use only ESQL/C calls from a single
thread of execution. It is best if you use the main thread.

If you place the ESQL/C calls in a thread other than the main thread, the thread can be started only one time. The thread must
then remain available for all subsequent ESQL/C needs. Therefore, if you place the ESQL/C calls in a thread, and then start and
stop that thread multiple times to accomplish database tasks, you may experience unexpected behavior. To implement a thread
that handles all ESQL/C activity, set up the thread with an event-triggering mechanism.

In ESQL/C, statements that return only one result set can be executed. For example:

CREATE PROCEDURE spTest
AS
 SELECT au_lname
 FROM authors
 SELECT au_fname
 FROM authors
GO

Execution of spTest stored procedure produces two result sets from Microsoft® SQL Server™ 2000, but ESQL/C application will
see only the first result set.

See Also

Embedded SQL Programming

Embedded SQL for C and SQL Server (SQL Server 2000)

Data Type Mapping for Embedded SQL
Embedded SQL for C (ESQL/C) maps C data types to Microsoft® SQL Server™ 2000 data types, and vice versa. No Unicode data
types are supported in ESQL/C (for example, the data types nvarchar, nchar, and ntext are not supported). Conversions are
supported for all non-Unicode data types except datetime or smalldatetime, money or smallmoney, and, in some instances,
decimal or numeric. Data types that can be converted to datetime or smalldatetime, money or smallmoney, and decimal
or numeric are indicated by T.

C data type
Assigned SQL Server

data type
datetime or

smalldatetime
money or

smallmoney
decimal or

numeric
short smallint F F F
int smallint F F F
long int F F F
float real F F F
double float F F F
char varchar[x] (1) T T T
void *p binary (2) T T T
char byte tinyint F F F

1 For more information, see Mapping Character Data Types.
2 For more information, see Pointers as Host Variables.

The above table is valid for SQL Server version 6.5. In SQL Server 7.0, mapping from one type to another is done by the database
server. So all the above conversions are true in SQL Server 7.0.

Output data is truncated if the receiving data type is too short. This causes an exception (warning), and the SQLCODE field of the
SQLCA data structure is set to +1. Input data can be truncated if the receiving SQL Server column is too short. However, in this
case, no exception is generated.

Because text data types are not allowed in stored procedures, you cannot use C fields that are more than 255 bytes long in static
SQL statements compiled into access plans.

Embedded SQL for C and SQL Server (SQL Server 2000)

Mapping Character Data Types
You can declare character data types as host variables with a fixed maximum length by explicitly supplying the length of the
character array, or by declaring the host variable with an initial value, for example:

EXEC SQL BEGIN DECLARE SECTION;
char var1[18];
char var2[] = "Initialized string";
EXEC SQL END DECLARE SECTION;

In the example, two host variables are declared, each with a maximum length of 18 bytes.

Host variables declared as single-byte characters with no explicit length or initial values (for example, char var[3]) are treated as
1-byte integer data types.

Here is how C character data types are mapped to or from the Microsoft® SQL Server™ 2000 char, varchar, or text data types.

Mapped data types When converted
From C character to SQL Server
char, varchar, or text

Data is copied and truncated or padded with
blanks if the SQL Server table receiving the
columns is set to a fixed length.

To C character from SQL Server
char, varchar, or text

Data is copied and, if necessary, truncated to the
length of the receiving field and is terminated
with a NULL. If data is truncated, the SQLWARN1
field of the SQLCA data structure is set.

Embedded SQL for C and SQL Server (SQL Server 2000)

Pointers as Host Variables
A C host variable, declared as a pointer to a void (void *p), is treated as a data buffer of unknown length. Your program must
verify that enough memory is allocated to hold any output data received. You may also need to modify the generated .c code
manually to specify the length of the variable. For example, if you declare the void *pChar variable, the precompiler generates a
statement like the following.

Sqlasetv(2, 0, 462, (short)-1, (void far *)pChar, (void far *)0, (void far *)0L);

The third parameter of -1 indicates that this is a pointer. You may have to modify this length to indicate proper size of data
contained in pChar. The .c source can then be compiled and linked as usual.

Embedded SQL for C and SQL Server (SQL Server 2000)

Mapping date or time Data
Because C does not have a date or time data type, Microsoft® SQL Server™ 2000 date or time columns are converted to
characters by using the SQL Server default date format, for example:

mm dd yyyy hh:mm:ss[am | pm]

You can send dates to SQL Server from C character fields by using any of the character date formats accepted by SQL Server. For
a date without a time, use an 11-byte receiving field. If data is truncated, the SQLWARN3 field of the SQLCA data structure is set.
For other formats, use the Transact-SQL CONVERT statement. For example, to convert a time without a date, use a statement
similar to this:

SELECT CONVERT(char, date, 8) FROM sales

When you attempt to put a fixed-length data type into a buffer that is too small for it, an error occurs and no data is copied.

Embedded SQL for C and SQL Server (SQL Server 2000)

Mapping Binary Data
On singleton SELECT statements and cursor fetches, Microsoft® SQL Server™ 2000 binary, varbinary, and image columns are
mapped to C host variables declared as character arrays without any data conversion. The host variable is treated as a byte array.
To retrieve the hexadecimal character representation of a binary, varbinary, or image column, use the Transact-SQL CONVERT
function on the column.

When input, a C character array data type can be mapped to a SQL Server binary, varbinary, or image column by using
dynamic SQL statements. To do this, use two question marks (??) as parameter markers. The data format on input is the raw
binary data (not its hexadecimal character representation.) If you include at least one space between the parameter marker and its
indicator, you can use indicator variables. You cannot use static SQL statements to map binary data on input parameters.

You can use static SQL statements to map binary data on input parameters. However, you will need to manually modify the
generated .c code to specify the length of the variable. For example, if you declare the void *pChar variable, the precompiler will
generate a sqlasetv to set the parameter length to unknown by putting -1 as the parameter length. The third parameter of -1
indicates that this is a pointer. You may have to modify this length to indicate proper size of data contained in pChar. The .c source
can then be compiled and linked as usual.

Embedded SQL for C and SQL Server (SQL Server 2000)

Preparing SQLDA for Data Input and Output
The SQLDA data structure contains descriptive information about each input parameter or output column. The structure contains
the column name, data type, length, and a pointer to the actual data buffer for each input or output parameter.

For output data that uses the SQLDA data structure, you can use the DESCRIBE statement (or the PREPARE statement with the
INTO option) to enter the column name, data type, and other data into the appropriate fields of the SQLDA data structure.
DESCRIBE also sets sqld to the number of dynamic host variables used in the SQL statement being described.

Before using the SQLDA data structure in a PREPARE INTO or DESCRIBE statement, your application must set the size of the
SQLDA data structure in bytes and the maximum number of entries. These numbers are reflected in the sqldabc and sqln fields,
respectively.

Before performing a FETCH statement, the application must insert into the sqldata field the address of each program variable that
will receive the data from the corresponding column. (The sqldata field is part of sqlvar within the SQLDA data structure.) If
indicator variables are used, sqlind must also be set to the corresponding address. The data type field (sqltype) and length field
(sqllen) are filled with information in the Microsoft® SQL Server™ 2000 column from a PREPARE INTO or a DESCRIBE statement.
The value in the data type and length fields can be overridden by the application before a FETCH statement is executed. The
sqltype code and the sqld address that are assigned must be one of the valid data types listed in Valid Values for sqltype. For more
information, see Valid Values for sqltype.

Before the DESCRIBE or PREPARE statement is issued, the value of sqln must be set higher than the anticipated number of output
columns. If the number of columns is unknown, you can set sqln to 0, and then issue a DESCRIBE statement. No column detail
information is moved into the SQLDA data structure, but the number of columns in the result set is inserted into sqld.

To use the SQLDA data structure for input data, your application must supply data for the fields of the entire SQLDA data
structure, including the sqln, sqld, sqldabc, sqltype, sqllen, and sqldata fields for each variable. If the sqltype field has an odd code
number (value), the address of the indicator variable must also be supplied.

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLDA Data Structure
The SQLDA data structure definition (from Sqlda.h) looks like this:
// SQL Descriptor Area - SQLDA
struct sqlda
{
 unsigned char sqldaid[8]; // Eye catcher = 'SQLDA '
 long sqldabc; // SQLDA size in bytes = 16+44*SQLN
 short sqln; // Number of SQLVAR elements
 short sqld; // Num of used SQLVAR elements
 struct sqlvar
 {
 short sqltype; // Variable data type
 short sqllen; // Variable data length

// Maximum amount of data < 32K

 unsigned char FAR
 *sqldata; // Pointer to variable data value
 short FAR *sqlind; // Pointer to null indicator
 struct sqlname // Variable name
 {
 short length; // Name length [1..30]
 unsigned char
 data[30]; // Variable or column name
 } sqlname;
 } sqlvar[1];
};

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLDA
SQLDA

Here are fields and data types for the SQLDA data structure.

Field Data type Contains
sqldaid unsigned char* Text string SQLDA. This field is not used for FETCH,

OPEN, or EXECUTE statements.
sqldabc long Length of the SQLDA data structure (sqln* 44 +

16).
sqln short Total number of sqlvar entries allocated. Equal to

the number of input parameters or output
columns.

sqld short Number of sqlvar entries used.
sqlvar struct Values listed in the sqlvar table. The values can

occur several times, listed once per column in the
result set or input parameter.

sqltype short Number that represents the data type of columns
or host variables, and that indicates whether null
values are allowed. For information about valid
values, see Valid Values for sqltype.

sqllen short External length of a value from a column.
sqldata unsigned char far* Address of the host variable (which must be

inserted by the application) for FETCH, OPEN, and
EXECUTE statements. For DESCRIBE and PREPARE
statements, sqldata is not used.

sqlind short far* Address of an indicator variable for FETCH, OPEN,
and EXECUTE statements, if one exists.

If the column does not permit a null value, the field
is undefined. If the column permits a null value,
sqlind is set to -1 if the data value is null, or to 0 if
the data value is not null. For DESCRIBE and
PREPARE statements, sqlind is not used.

sqlname struct Name and length of the column (not used for
FETCH, OPEN, and EXECUTE statements).

length short Length of the name column.
name unsigned char* Name of the column. For a derived column, this

field contains the ASCII numeric literal value that
represents the derived column's original position
within the select list.

Embedded SQL for C and SQL Server (SQL Server 2000)

Valid Values for sqltype
Valid Values for sqltype

Here are the values for the sqltype field in the SQLDA data structure and corresponding Microsoft® SQL Server™ 2000 data types
for which they can serve as host variables in a FETCH statement or an EXECUTE statement. For each pair of sqltype codes, the odd
number type signifies a host variable with a corresponding null indicator variable needed for setting or retrieving null values.

sqltype
code

Description SQL Server data
type

Sample
declaration

392/393 26-byte date and time char
format corresponds to the
formats supported by
dbconvert for datetime
to/from char1.

datetime,
smalldatetime

char date1[27] =
Mar 7 1988
7:12PM;

444/445 Binary binary, varbinary,
image, timestamp

Note sqltype
444/445 is
automatically used
for these SQL Server
column types on
output.

char binary1[4097];

452/453 Char string <=254 bytes. Not
automatically null-terminated.

Note Make sure you initialize
the full array with nulls when
using this type for output.

char, varchar, or
text

char mychar[255];

456/457 Length-prefixed long
character field. Not
automatically null-terminated.

char, varchar, or
text

struct TEXTVAR

{
 short len;
 char data[4097];
} textvar;

462/463 Null-terminated string.

Note Declarations of known
length (mychar1) are padded
with blanks and a terminating
null. Declarations of char
pointers (mychar2) are not
padded with blanks and the
application must ensure
sufficient space is allocated.

char, varchar, or
text

char mychar1[41];

char * mychar2;

480/481 8-byte floating point. float, real, int,
smallint, tinyint,
decimal, numeric,
money,
smallmoney

double mydouble1;

482/483 4-byte floating point. float, real, int,
smallint, tinyint,
decimal, numeric,
money,
smallmoney

float myfloat1;

496/497 4-byte integer. int, smallint,
tinyint, bit

long myint1;

500/501 2-byte integer. smallint, tinyint,
bit

short myshort1;

1 For more information about datetime conversion, see dbconvert.

Here are the data type codes returned when using SQLDA structures in DESCRIBE or PREPARE INTO statements.

SQL Server column

sqltype returned
by DESCRIBE or
PREPARE INTO Comments

char, varchar 452/453 452/453 is a COBOL char data
type. Not null-terminated. It is
easier to use 462/463 from C.

text 456/457 sqllen set to maximum of 32767
for text.

binary, varbinary, image,
timestamp

444/445 sqllen set to maximum of 32767
for image.

smallint, tinyint, bit 500/501
int 496/497
float 480/481
real 482/483
datetime, smalldatetime 392/393
decimal, numeric, money,
smallmoney

484/485 COBOL decimal format. Not
supported for FETCH or EXECUTE
in ESQL/C (use 480 or 482
instead). Sqllen encoded with
scale and precision. Use sqllen &=
0xFF to get just precision.

DESCRIBE and PREPARE INTO statements are only supported for output columns of SELECT statements. They are not supported
for INSERT, UPDATE, or DELETE statements, or for any statement requiring an input host variable.

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLCA Data Structure
The SQLCA data structure contains status information about the Embedded SQL statement last executed. The structure definition
for SQLCA (from Sqlca.h) looks like this:
// SQL Communication Area - SQLCA
typedef struct sqlca
{
 unsigned char
 sqlcaid[EYECATCH_LEN]; // Eyecatcher = 'SQLCA '
 long sqlcabc; // SQLCA size in bytes = 136
 long sqlcode; // SQL return code
 short sqlerrml; // Length for SQLERRMC
 unsigned char
 sqlerrmc[SQLERRMC_SIZ]; // Error message tokens
 unsigned char sqlerrp[8]; // Diagnostic information
 long sqlerrd[6]; // Diagnostic information
 unsigned char sqlwarn[8]; // Warning flags
 unsigned char sqlext[3]; // Reserved
 unsigned char sqlstate[5]; // new member
} SQLCA;

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLCA
SQLCA

Here are fields and data types for the SQLCA data structure.

Field C data type Contains
sqlcaid unsigned char Text string SQLCA.
sqlabc long Length of the SQLCA data structure.
sqlcode long Status code for the last-run SQL statement:

0 The statement ran without error.
1 The statement ran, but an exception was
generated.
100 A FETCH statement was issued, but no more
rows satisfy the SELECT statement criteria used to
define the cursor. No rows were processed.
< 0 (negative) The statement did not run due to an
application, database, system, or network error.

sqlerrm Error messages that consist of two parts.
sqlerrml Length of the error message in sqlerrmc (0 to 70).
short
sqlerrmc Text of the error message. Error messages longer

than 70 bytes are truncated.
unsigned char Reserved (diagnostic information).

sqlerrp unsigned char
sqlerrd long Array of six integer status codes (codes not in the

fields listed later are reserved).
sqlerrd[1] Microsoft® SQL Server™ 2000 error number.
sqlerrd[2] SQL Server severity level.
sqlerrd[3] Number of rows affected.
sqlwarn Eight warning flags, each containing a blank or W

(flags not in the fields listed later are reserved).
sqlwarn[0] unsigned char Summary of all warning fields. Blank indicates no

warnings.
sqlwarn[1] unsigned char W indicates a character string was truncated during

output binding
sqlwarn[2] unsigned char Not used.
sqlwarn[3] unsigned char W indicates that the number of columns does not

match the number of host variables.
sqlext unsigned char Reserved.
sqlstate unsigned char SQLSTATE run-time error codes.

Warning If the number of host variables and parameter markers does not match, SQLWARN3 is set to W. This condition is
considered an exception (SQLCODE is set to +1). Exceeding the number of host variables or SQLDA data structure entries is fatal
(SQLCODE = -19313). During a FETCH statement or a singleton SELECT statement, SQLWARN3 is set if the number of columns is
not equal to the number of host variables (or SQLDA data structure entries). The lower of the two is the number of items actually
processed. For more information about SQLCA, see Using the SQLCA Data Structure.

Embedded SQL for C and SQL Server (SQL Server 2000)

Selectively Bypassing the Creation of Access Plans
To run a stored procedure by using a static SQL statement, include an EXEC statement before the stored procedure call to bypass
the creation of an access plan. If you do not include an EXECUTE statement before the stored procedure call, a stored procedure is
created to run the stored procedure that was called. Using EXECUTE eliminates this extra step; for example:

EXEC SQL EXEC sp-addlogin :loginame, :password;

You can also use the selective bypass method to issue an SQL statement dynamically from a static SQL statement without using
the PREPARE and EXECUTE statements, for example:

EXEC SQL EXEC CREATE TABLE t1 (c1 int, ...);

The current values of any host variables are substituted into the statement.

Embedded SQL for C and SQL Server (SQL Server 2000)

Defining Cursors
Standard cursors can be used to scroll through and update a result set. Standard cursors do not require a unique index for
Microsoft® SQL Server™ version 6.5 and later, do not require a timestamp or a second connection to a database for updates, and
do not create a copy of the entire result set.

Note Standard cursors will be enhanced in later versions; however, browse cursors will not.

These are the cursor types and their behavior:

Behavior Standard Browse
Connections to the
server

All share the same
connection.

One per cursor, plus one base
connection for all updates.

timestamp column Not required. Required for positioned
update or delete operations.

Transaction behavior All cursors share the same
transaction space. Standard
cursors cannot block each
other.

Read-only cursors can block
updates made by the same
program.

Unique index Not required for SQL Server
version 6.5 and later.

Required for update only.

Data currency Data values are always
current. Row membership
depends on the
SCROLLOPTION setting:

If keyset-driven,
membership is fixed at
cursor-open time.

If dynamic,
membership changes.

For read-only cursors, all data
is current.

For updatable cursors, the
server takes a snapshot of the
data and stores it in the
tempdb database when the
cursor is opened.

Restrictions on use of
SQL language

Cannot be used on stored
procedures.

Cannot contain UNION,
GROUP BY, and HAVING
clauses. In SQL Server
version 6.5 and later,
dynamic cursors can contain
an ORDER BY clause if the
table has a unique index.

Updatable cursors require the
FOR BROWSE clause.

Embedded SQL for C and SQL Server (SQL Server 2000)

Standard DB-Library Cursors
Embedded SQL for C (ESQL/C) programs use the SET SCROLLOPTION, SET CONCURRENCY, SET FETCHBUFFER, and SET
CURSOR_CLOSE_ON_COMMIT statements to control cursor options. All other standard cursor behavior is handled automatically
by the ESQL/C library.

Standard cursors use the current database connection. Because standard cursors do not use separate database connections (as
browse cursors do), many of the locking problems experienced with the use of browse cursors are avoided. Standard cursors also
use the cursor functions of DB-Library and will take advantage automatically of any future performance enhancements made to
DB-Library cursors.

Cursors and Stored Procedures

Microsoft cursors use catalog stored procedures, which include:

sp_databases sp_indexes
sp_tables sp_fkeys
sp_columns sp_table_privileges
sp_stored_procedures sp_column_privileges
sp_sproc_columns sp_server_info
sp_pkeys

Embedded SQL for C and SQL Server (SQL Server 2000)

Cursor Sensitivity to Change
In ESQL/C, standard cursors fall into one of two categories, depending on their sensitivity to change:

Keyset-Driven

Values can change, but order and membership in the result set remain fixed at cursor-open time.

Dynamic

Values, order, and membership in the result set can change.

Embedded SQL for C and SQL Server (SQL Server 2000)

Keyset-driven Standard Cursors
Keyset-driven Standard Cursors

In a keyset-driven cursor, the membership and order of rows in the result set are fixed at cursor-open time, but value changes
made by the cursor owner and committed changes made by other users are visible. If a change disqualifies a row for
membership, or affects the order of a row, the row does not disappear or move unless the cursor is closed and reopened. Inserted
phantom rows data does not appear, but changes to existing data do appear as the rows are fetched.

Specify keyset-driven cursors by issuing the SET SCROLLOPTION KEYSET statement. Dynamic standard cursors are the default if
no SET SCROLLOPTION statement is issued.

In a keyset-driven cursor, all keys for the result set are kept locally (which is one reason a unique index is required). Given the
results of n rows, the keyset contains the same n rows in the result set. The fetch buffer contains 10 rows by default, and moves
forward through the keysets as each FETCH statement is executed. If the SET ANSI_DEFAULTS ON statement is issued, the fetch
buffer contains 1 row. You can modify the size of the fetch buffer by using the SET FETCH_BUFFER statement.

Although values can change between fetches, rows do not move around if the changes affect ORDER BY columns, and they do not
disappear if they no longer satisfy the WHERE clause.

Embedded SQL for C and SQL Server (SQL Server 2000)

Dynamic Standard Cursors
Dynamic Standard Cursors

In a dynamic standard cursor, committed changes made by anyone and uncommitted changes made by the cursor owner become
visible the next time the user fetches data. Changes include insertions and deletions, as well as changes in order and membership.
(Deleted rows do not leave holes.) Dynamic standard cursors cannot use a GROUP BY or HAVING clause. Dynamic standard
cursors can use an ORDER BY clause in Microsoft® SQL Server™ version 6.5 and later, but only if the table has a unique index.

Specify dynamic standard cursors by issuing the SET SCROLLOPTION DYNAMIC statement. This statement sets the keyset equal
to the size of the fetch buffer, which is one row in Embedded SQL. Given a result set of n rows, the keyset and the fetch buffer are
identical. They both contain a single row, which moves forward through the result set as each FETCH statement is executed.

Embedded SQL for C and SQL Server (SQL Server 2000)

Concurrency Control
Concurrency Control

Standard cursors control, through several options, concurrent access. With concurrent access, data soon becomes unreliable
without some type of control. To activate the particular concurrency control desired, specify one of these options in a SET
CONCURRENCY statement.

Option Result
READONLY Updates are not permitted.
LOCKCC Rows are locked when they are fetched inside a user-

initiated transaction. No other user can update these rows.
Updates issued by the cursor owner are guaranteed to
succeed.

 With Microsoft® SQL Server™ 2000, locks placed by
LOCKCC prevent other users from reading and updating the
locked data. Use the BEGIN TRANSACTION and COMMIT
TRANSACTION statements to hold the locks. For more
information about locking, see Holding Locks.

OPTCC and OPTCCVAL Fetched rows are not locked. Other users can update or read
them.

To detect collisions between updates issued by the cursor owner and those issued by other users, standard cursors save and
compare timestamps or column values. Therefore, if you specify either of the optimistic concurrency control options (OPTCC or
OPTCCVAL), you may want to design the application to retry updates that fail because of collisions with other updates.

The two optimistic concurrency control options differ in the way they detect collisions.

Option Method of detection
OPTCC Compares timestamps if available; otherwise, saves and

then compares the value of all nontext, nonimage columns
in the tables with their previous values.

OPTCCVAL Compares all nontext, nonimage values whether a
timestamp is available.

Embedded SQL for C and SQL Server (SQL Server 2000)

Holding Locks
When using standard cursors with Microsoft® SQL Server™ 2000, the duration of locks acquired during cursor operations is
controlled by the application. In other words, an application that uses SET CONCURRENCY LOCKCC must also issue a BEGIN
TRANSACTION statement for the locking to have any effect. To hold the lock on the currently fetched row when LOCKCC is used,
the application must issue a BEGIN TRANSACTION statement before each FETCH statement and a COMMIT TRANSACTION
statement after all operations on that row are complete.

For repeatable-read consistency, specify HOLDLOCK in the SELECT statement when opening the standard cursor, and issue a
BEGIN TRANSACTION statement before the first FETCH statement. Locks are obtained as the data is fetched and are retained until
the application issues a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement.

Embedded SQL for C and SQL Server (SQL Server 2000)

Browse Cursors
Browse cursors are implemented as separate database connections and are treated as separate users, which can cause locking
conflicts between cursors and UPDATE statements.

Embedded SQL for C and SQL Server (SQL Server 2000)

UPDATE and DELETE Statements
Positioned UPDATE and DELETE statements are used in conjunction with browse cursors and include WHERE CURRENT OF
clauses instead of search condition clauses. The WHERE CURRENT OF clause specifies the location of the corresponding cursor.

Before a cursor can be used by a positioned UPDATE or DELETE statement, the SELECT statement in the cursor declaration must
contain the FOR BROWSE option. (The Microsoft® SQL Server™ 2000 FOR BROWSE option is similar to the FOR UPDATE option
in other SQL databases, but you must use SQL Server syntax.) To use the FOR BROWSE option, the table must have both a unique
index and a timestamp column.

When performing a positioned UPDATE or DELETE statement, a method called optimistic concurrency control helps prevent
conflicts with other users. Optimistic concurrency control allows users to share data with less interference than they would
experience with locking, which is the alternative concurrency control method.

Although optimistic concurrency control minimizes the likelihood of conflicts with other users, write your application so that it can
handle updates to tables that are rejected due to locking conflicts or other problems. Use the SQLCODE field in the SQL
communications area (SQLCA) data structure to detect conflicts with other users. (A SQLCODE value of -532 means the
positioned UPDATE or DELETE statement failed because of a conflict with another user.) For more information about the
SQLCODE field, see Using the SQLCA Data Structure. For more information about browse-mode processing, see Advanced
Programming.

A positioned update can be performed twice on the same row. To do this, use the FETCH statement to obtain the row, begin a
transaction by using BEGIN TRANSACTION, and update a nonkey column to itself. This locks the row and prevents other users
from reading or updating it until a COMMIT TRANSACTION statement is issued.

Embedded SQL for C and SQL Server (SQL Server 2000)

Isolation Levels
 New Information - SQL Server 2000 SP3.

An isolation level determines the degree to which data is isolated for use by one process and guarded against interference from
other processes. With browse cursors, isolation level is controlled on a per-cursor basis in Microsoft® SQL Server™ 2000.

If you do not specify the HOLDLOCK option in the DECLARE CURSOR statement, the isolation level is similar to cursor stability.
SQL Server maintains only a share lock on a single row of the database as you retrieve rows with the FETCH statement by using a
browse cursor. As long as the cursor is located on a given row, no other process can update that data page.

When you use the HOLDLOCK option, the isolation level is set to repeatable read. With the FETCH statement, and by using a
browse cursor, SQL Server maintains a share lock on each fetched page of the database. No updates are permitted to the fetched
data of the result set as long as the cursor is open, no matter what its position in the table. The repeatable read isolation level is
useful when you want to scan a result set and produce a self-consistent summary report without locking the entire result set.
Other users can update rows of the result set that have not been fetched, but fetched rows cannot be updated until the cursor is
closed. When a cursor is declared with HOLDLOCK, the lock is freed when the cursor closes. To reread a result set without freeing
the lock, reopen the cursor without closing it.

When you use a DECLARE CURSOR statement with the FOR BROWSE option (which is required for UPDATE or DELETE WHERE
CURRENT OF statements), SQL Server makes a snapshot of the result set when the cursor is opened. No locks are placed on the
original data; the cursor cannot detect any changes that are made to the data as it fetches rows. If the cursor is reopened, SQL
Server makes a new snapshot of the data, so the results may not be the same.

You can use a SELECT with HOLDLOCK to place share locks on a set of rows that prevents other connections from updating the
rows, and then open a FOR BROWSE cursor to repeatedly read the rows. If any modifications are needed, an UPDATE with a
WHERE CURRENT OF clause can be used to update the row at the cursor position. Because the SELECT with HOLDLOCK was
issued by the same connection, the share locks acquired by the HOLDLOCK do not block the UPDATE statements. All the locks are
freed when the transaction is committed or rolled back.

The following example shows the use of the HOLDLOCK option with a browse cursor:

/* Declare a cursor for browse. */
EXEC SQL DECLARE CURSOR c1 FOR SELECT * FROM orders FOR BROWSE;

/* Begin a transaction using dynamic SQL. */
strncpy(prep, "begin transaction", 18);
EXEC SQL EXECUTE IMMEDIATE :prep;

/* Issue a singleton SELECT statement that checks all rows but
return one row of output only. */
EXEC SQL SELECT COUNT(*) INTO :count FROM orders HOLDLOCK;

/* The result set is now locked until the transaction is complete.
Open the cursor previously declared for browse, do some fetches
and updates, close it, reopen it, and so on. */
EXEC SQL OPEN c1;

while (SQLCODE ==0)
{
 EXEC SQL FETCH c1 INTO :order_struct;
 .
 .
 .
 EXEC SQL UPDATE orders SET trancode = :new_code
WHERE CURRENT OF c1;
}

EXEC SQL CLOSE c1;
EXEC SQL OPEN c1;

/* Some fetch and update operations can be done here,
and the tables will not be changed. */

EXEC SQL CLOSE c2;
strcpy(prep, "commit transaction");
EXEC SQL EXECUTE IMMEDIATE :prep;
/* Now all locks are free. */

Embedded SQL for C and SQL Server (SQL Server 2000)

Cursors and Lock Conflicts
Updates are issued through a single database connection, including updates that reference a cursor (for example, in an UPDATE
WHERE CURRENT OF cursor_name statement). Because of this, locking conflicts do not occur between updates issued under the
same CONNECT TO, SET CONNECT, or default connection.

Each cursor's retrieval operations are performed through a separate database connection.

These situations block cursors:

Cursors declared without FOR BROWSE place a read lock on the current row as they move through the result set. No
changes can be made to that row by anyone, not even the cursor owner, until the cursor moves on.

When the cursor attempts to read a row that contains an uncommitted change (made by anyone, including the cursor
owner), the cursor waits until the change is committed.

Cursors declared with FOR BROWSE must wait for uncommitted changes (made by anyone, including the cursor owner)
only during the OPEN CURSOR operation. After the cursor is open, subsequent changes do not cause the cursor to wait.
When a cursor is reopened, it can be blocked by uncommitted changes.

Note Microsoft® SQL Server™ version 6.5 performs locking internally at the page level rather than at the row level. Therefore, a
second operation can be locked out by the first cursor operation even though the operations are accessing different rows.

For information about SQL Server cursor locking mechanisms, see Cursor Transaction Isolation Levels.

Embedded SQL for C and SQL Server (SQL Server 2000)

Reserved Keywords
Here are the reserved keywords for Embedded SQL for C (ESQL/C). Keywords reserved for Transact-SQL are also reserved for
ESQL/C. The application can use these keywords in string literals in SQL statements if the literal is enclosed in single quotes.

APPLICATION FETCH OPTCCVAL
CALL FETCHBUFFER OPTION
CLOSE FOUND QUERYTIME
CONCURRENCY GET READONLY
CONNECT HOST SCROLLOPTION
CONNECTION IMMEDIATE SECTION
CUR_BROWSE INCLUDE SQLCA
CUR_STANDARD INDICATOR SQLDA
CURRENT KEYSET SQLERROR
CURSOR LOCKCC SQLWARNING
CURSORTYPE LOGINTIME USER
DESCRIBE MIXED USING
DESCRIPTOR NOT WHENEVER
DISCONNECT OF WORK
DYNAMIC OPEN
FORWARD OPTCC

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL for C Messages
Because Embedded SQL for C (ESQL/C) messages are not generated by Microsoft® SQL Server™ 2000, they do not appear in the
sysmessages table.

Message
number

Run time/
compile time Description

-4998 C Attempt to connect to the specified database server
failed.

-19031 C Unable to open bindfile.
-19051 C Too many sections.
-19101 R Statement too long.
-19103 R Illegal %s value %s.

Nonnumeric %s value %s.
(Invalid number for the time-out value.)

-19104 R/C Incorrect SQL statement syntax.
-19199 C ESQL keyword(s) detected in PREPARE statement.
-19306 C Host variable used but not declared.
-19313 R Too few host variables.
-19324 C Host variable may not be used in this context.
-19408 R Invalid SQL data type for SQL_TYP_DECIMAL.
-19413 R Data overflow occurred during decimal data conversion.
-19422 R Unknown SQL Server data type.
-19423 R Invalid destination data type.
-19501 R No cursor declared.
-19505 C Duplicate cursor name: %s.
-19508 R Cursor not positioned on a row.
-19514 R Cursor not prepared.
-19517 R Cursor open attempted for non-SELECT prepared

statement.
-19521 R Open cursor failure for section %d of plans.
-19523 R Failure to locate/close cursor. Section %d, plan %s.
-19524 R Table for this cursor not updatable.
-19525 R Attempt to fetch on unopened cursor.
-19526 R No access plan for this cursor.
-19527 R Could not get section for this cursor.
-19528 R Connection for section %d of plan %s has NULL

DBPROCESS.
-19701 R NULL connection name.
 Connection %s not found.
-19702 R Connection name not found.
 Attempt to close nonexistent connection.
-19703 R Failed to get DBPROCESS.

Autoconnect failure.
-19706 R Login failure in section %d.
-19707 R Duplicate connection name.
-19822 R Improperly initialized user SQLDA.
-19911 C The SQL data type specified for a host variable is invalid.
-19913 C The token identifier has already been used.
-19917 C Invalid or incorrect option to sqlainit().
-19946 C Cursor %s not declared.
-19953 C Invalid call type.
-19955 R Text not found in %s section %u.
-19956 R Access plan section or statement text not found.
-19957 R Access plan or statement text not found.

-19994 R Cannot run next BEGIN DECLARE sections. Statement
ignored.

-19995 R END DECLARE encountered without preceding BEGIN
DECLARE statement. Statement ignored.

-19999 C An internal error occurred.

See Also

Error Message Severity Levels

Embedded SQL for C Error Message Format

Embedded SQL for C and SQL Server (SQL Server 2000)

SQLSTATE Messages
SQLSTATE codes return values that are error, warning, or "no data found" messages. Here's how SQLSTATE and SQLCODE
messages correspond to each other.

SQLSTATE code SQLCODE code
First digit greater than 0 Negative number
First digit equal to 1 1
First digit equal to 2 100

If a WHENEVER SQLERROR CALL myproc() statement is in effect, myproc() is called when SQLSTATE returns a value with a
nonzero first digit.

Use SQLSTATE to check for exceptions and warnings. To use SQLSTATE in a program, you must explicitly declare SQLSTATE
within a host variable declaration block, for example:

EXEC SQL BEGIN DECLARE SECTION ;
char SQLSTATE [6] ; // 5 characters for code and one character for
 // null terminator
EXEC SQL END DECLARE SECTION;

Errors caught at compile time by using the /SQLACCESS option will not be mapped to SQLSTATE values at run time.

Microsoft® SQL Server™ 2000 errors map to these SQLSTATE codes.

SQLSTATE
code

SQL Server message or
DB-Library error

numbers
Description

01001 532,10095 (DB-Library) Cursor update or delete failure due to
optimistic concurrency check failure.

01003 8153 Elimination of null values by set operator
(warning).

01004 n/a Select or fetch into host variable that is too
short.

02000 n/a No data found. Equivalent to SQLCODE =
100. Occurs when:

Cursor fetch at end of result set.

Cursor fetch on empty result set.

Singleton select returns no data.

Searched delete affects no rows.*

Insert/select affects no rows.*

Searched update affects no rows.*

* These conditions are only detected when
the program is compiled with the
NOSQLACCESS option to NSQLPREP.

07002 n/a Number of columns does not match
number of host variables.

21000 512 Singleton select returns more than one
row, or subquery preceded by = returns
more than one value.

22001 8152 String data truncated (on right) on insert or
update.

22002 n/a Null value returned with no indicator
variable provided.

22003 168,220,232,234,
236-238,244,246,248,
519-524,535,8115,
10015 (DB-Library)

Arithmetic overflow error.

22005 206,235,245,247,249,
256,257,305,409,518,
529

Data type conversion error.

22008 210,211,241,242,295,
296,517

Data type conversion error.

22012 8134 Divide by zero error.
22019 1010, 506 Invalid escape character.
22022 n/a Indicator variable overflow.
22024 n/a Unterminated C string passed as input host

variable.
22025 310 Invalid escape sequence, for example,

escape char not followed by %, _, or escape
char.

23000 233,272,273,515,530,
547,1505,1508,2601,
2615,2626,2627,3604,
3605

Constraint violation.

24000 n/a Invalid cursor state.
25000 266,277,611,628,3902,

3903,3906,3908,6401
Transaction state error.

40001 1205,1211,2625,
3309,7112

Transaction rollback due to deadlock.

42000 207,208,213,229,
230,260

Syntax error, permission violation, or other
nonspecific error.

44000 550 View with check option violation.

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL for C Samples
By default, Microsoft® SQL Server™ 2000 Setup installs the Embedded SQL for C (ESQL/C) sample source code in x:\Program
Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Esqlc.

Before you build any of the sample programs, use the Setenv.bat batch file to add the SQL Server development file header and
library directories to the INCLUDE and LIB environment variables. Edit the Setenv.bat file to set the variables as appropriate.

You can build any of the sample programs using the supplied, general purpose makefile. The single makefile, Makefile, contains
everything required to build an Embedded SQL program.

The default values for Makefile arguments support building the samples as Microsoft Win32® console applications. Makefile
arguments can be supplied in the command prompt, or they can be set as environment variables for rapid processing of several
example source files. For example, SET SERVER=MyServer could be used to cause nsqlprep to use MyServer as the build target
for ESQL/C stored procedure creation.

Makefile
argument

Default
value Description

APP Name of the sample source file to build. Do not
include a file extension.

UTIL Name of the utility source file. Do not include a file
extension. The default value for the utility file is
based on the value of the SUBSYS argument.

ENV dos Build sample for execution in Microsoft MS-DOS®.
win16 Build sample as a 16-bit Microsoft Windows®

application.
qwin Build console applications as 16-bit Windows,

QuickWin applications.
win32i Default. Build applications for 32-bit Windows

operating systems.
MODEL medium When building a sample for MS-DOS or 16-bit

Windows, build the sample for the medium memory
model.

large Default. When building the sample for MS-DOS or
16-bit Windows, build the sample for large memory
model.

SUBSYS console Default. Build sample as a console (command
window) application. Specifying console causes the
UTIL argument to default to gcutil.

windows Build the sample as a Windows application.
Specifying windows causes the UTIL argument to
default to gwutil.

DEBUG 0 Default. Build a release version of the sample. The
executable does not contain debugger support.

1 Build a debug version of the sample.
SQLACCESS 0 Do not attempt to connect to a server running SQL

Server and do not create stored procedures to
support SQL statements embedded in C source code.
Attempt to connect to an instance of SQL Server and
create stored procedures.

1 The default value of SQLACCESS is based on the
presence or absence of a LOGIN argument value.
Specify SQLACCESS to override the default
assignment.

BIND 0 Default. Do not create a bind file.
1 Create a bind file.

SERVER Name of an instance of SQL Server to use for stored
procedure creation.

LOGIN SQL Server login account. The identifier is used by
nsqlprep to connect to the server for stored
procedure creation.

PASSWORD SQL Server password. Used by nsqlprep to connect
to the server.

DATABASE SQL Server database nsqlprep will use when
creating stored procedures. The default is pubs.

For information about nmake command prompts that build a particular example, see the documentation for that example.

When started, each sample application accepts the following arguments for specifying an instance of SQL Server: the login ID,
password, and database to use. Each sample application generates a prompt for unspecified options.

Syntax

program [{/s | /S} [server_name]]
[{/u | /U} login_id]
[{/p | /P} [password]]
[{/d | /D} database]

Arguments

program

Is the sample program started.

server_name

Is the name of an instance of SQL Server to connect to. If server_name is omitted, the local SQL Server instance is used.

login_id

Is the login ID of an instance of SQL Server to connect to.

password

Is the password of an instance of SQL Server to connect to. If password is omitted, a NULL password is assumed.

database

Is the database to use.

Embedded SQL for C and SQL Server (SQL Server 2000)

GENCHAR (Generic for C)
Genchar is a generic Embedded SQL for C (ESQL/C) character-mode program written using plain C, standard C libraries, and
Embedded SQL statements. Genchar connects to a specified instance of Microsoft® SQL Server™ 2000 and issues a SELECT
statement query from the authors table in the pubs database.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Esqlc

Running the Sample

You can build Genchar for the following environments using the associated commands.

Environment Command
Microsoft Windows® 2000,
Microsoft Windows NT® 4.0 and
Microsoft Windows 95/98

nmake -f "makefile." APP="genchar"

Microsoft MS-DOS® nmake -f "makefile." APP="genchar"
ENV="dos"

QuickWin nmake -f "makefile." APP="genchar"
ENV="qwin"

Remarks

Genchar uses these files.

Gcutil.c Genchar.h
Gcutil.h Quickwin.def
Genchar.sqc

See Also

Samples

Embedded SQL for C and SQL Server (SQL Server 2000)

Genwin (Generic for Windows NT, Windows 95, Windows 98,
and 16-bit Windows)
Genwin is a generic Embedded SQL for C (ESQL/C) program for Microsoft® Windows® 2000, Microsoft Windows NT® 4.0,
Microsoft Windows 95, and Microsoft Windows 98, and 16-bit Windows written using the Win16/Microsoft Win32® API, C
language, standard libraries for 16-bit Windows and C, and Embedded SQL statements. Genchar connects to a specified instance
of Microsoft SQL Server™ 2000 and issues a SELECT statement query from the authors table in the pubs database.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Esqlc

Running the Sample

You can build Genwin for the following environments using the associated commands.

Environment Command
Microsoft Windows 2000,
Microsoft Windows NT 4.0,
Microsoft Windows 95, and
Microsoft Windows 98

nmake -f "makefile." APP="genwin"
SUBSYS="windows"

16-bit Windows nmake -f "makefile." APP="genwin"
SUBSYS="windows" ENV="win16"

Remarks

Genwin uses these files.

Genwin.def Genwin.sqc
Genwin.h Gwutil.c
Genwin.ico Gwutil.h
Genwin.rc

See Also

Samples

Embedded SQL for C and SQL Server (SQL Server 2000)

Edblib (Embedded SQL and DB-Library for Windows NT,
Windows 95, Windows 98, and 16-bit Windows)
Edblib is an Embedded SQL for C (ESQL/C) and DB-Library program for Microsoft® Windows® 2000, Microsoft Windows NT®
4.0, Microsoft Windows 95, and Microsoft Windows 98, and 16-bit Windows written using the Win16/Microsoft Win32® API, C
language, standard libraries for 16-bit Windows and C, Embedded SQL statements, and DB-Library functions. Edblib connects to a
specified instance of Microsoft SQL Server™ 2000 and issues a SELECT statement query from the authors table in the pubs
database using ESQL/C and DB-Library. It uses the GET CONNECTION statement to obtain the DB-Library DBPROCESS
connection pointer.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Esqlc

Running the Sample

You can build Edblib for the following environments by using the associated commands.

Environment Command
Microsoft Windows 2000,
Microsoft Windows NT 4.0 and
Microsoft Windows 95/98

nmake -f "makefile." APP="edblib"
SUBSYS="windows"

16-bit Windows nmake -f "makefile." APP="edblib"
SUBSYS="windows" ENV="win16"

Remarks

Edblib uses these files.

Edblib.def Edblib.sqc
Edblib.h Gwutil.c
Edblib.ico Gwutil.h
Edblib.rc

See Also

Samples

Embedded SQL for C and SQL Server (SQL Server 2000)

Embedded SQL for C Examples
The examples, from 1 through 8, describe Embedded SQL for C (ESQL/C) character-mode programs written using plain C,
standard C libraries, and Embedded SQL statements. Each program connects to a specified instance of Microsoft® SQL Server™
2000 and executes a series of Embedded SQL statements.

Default Location

x:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Esqlc

Running the Sample

You can build an example program for the following environments using the associated commands. N is the number of the
example program.

Environment Command
Microsoft Windows® 2000,
Microsoft Windows NT® 4.0,
Microsoft Windows 95, Microsoft
Windows 98

nmake -f "makefile." APP="examplen"

MS-DOS nmake -f "makefile." APP="examplen"
ENV="dos"

QuickWin nmake -f "makefile." APP="examplen"
ENV="qwin"

Remarks

Each program described in the following examples uses the appropriate Examplen.sqc, Gcutil.c, Gcutil.h, and Quickwin.def files.
Some of these programs use the author2 table, which you can create by using the Author2.sql file.

Example 1

Declares and opens a standard cursor using a prepared SQL statement.

Fetches rows from the sysobjects table in the specified database.

Example 2

Declares and opens a browse cursor.

Fetches rows from the sales table in the pubs database into a C structure.

Example 3

Illustrates error handling.

Attempts to insert a row into the authors table that violates the constraint on the au_id column.

Reports the CHECK constraint violation.

Example 4

Connects to two instances of Microsoft® SQL Server™ 2000, and declares and opens two standard cursors using a
prepared SQL statement.

Fetches rows from the author2 table in the pubs database of each SQL Server.

Allows you to issue positioned updates of each author's last name as the rows are fetched.

Example 5

Issues a single SELECT statement to retrieve a row from the titles table in the pubs database into a C structure, or into the
individual fields of a C structure.

Uses browse cursors with a SELECT statement and the sp_who stored procedure.

Issues static and dynamic INSERT statements.

Issues a SELECT statement of various date and time values.

Example 6

Issues multiple static SQL statements within a transaction in a Transact-SQL batch.

Executes the sp_addtype and sp_droptype stored procedures.

Uses a browse cursor with the sp_who stored procedure.

Issues a SELECT statement into a temporary table and retrieves a row from that temporary table by using the EXECUTE
IMMEDIATE statement.

Executes a static Transact-SQL batch that uses control-of-flow language.

Example 7

Opens a standard cursor by using HOLDLOCK within a transaction; inserts the cursor.

Updates and deletes rows from the authors table in the pubs database.

Inserts rows into the authors table within a transaction and then rolls back that transaction.

Demonstrates that triggers are enforced by attempting to delete a row from the titles table that fires the deltitle trigger.

Uses a browse cursor with the sp_who stored procedure.

Executes the sp_addtype and sp_droptype stored procedures.

Example 8

Demonstrates behavior similar to that of isql.

See Also

Samples

DB Library for C (SQL Server 2000)

Programming DB-Library for C
Microsoft® SQL Server™ is a powerful structured query language (SQL) database server. With local area network (LAN) software,
SQL Server allows clients running the Microsoft Windows NT® 4.0, Microsoft Windows®, or Microsoft MS-DOS® operating
systems to access its services. Developers can write applications for SQL Server by programming with DB-Library for C, the C-
language version of the communication library for SQL Server.

Warning While the DB-Library API is still supported in Microsoft SQL Server 2000, no future versions of SQL Server will include
the files needed to do programming work on applications that use this API. Connections from existing applications written using
DB-Library will still be supported in the next version of SQL Server, but this support will also be dropped in a future release. When
writing new applications, avoid using DB-Library. When modifying existing applications, you are strongly encouraged to remove
dependencies on DB-Library. Instead of DB-Library, you can use Microsoft ActiveX® Data Objects (ADO), OLE DB, or ODBC to
access data in SQL Server.

DB-Library for C is an application programming interface (API) consisting of C functions and macros that allow an application to
interact with SQL Server. Included are functions that send Transact-SQL statements to SQL Server and functions that process the
results of those statements. Other functions handle errors and convert data.

DB-Library for C offers a rich set of functions for:

Opening connections.

Formatting queries.

Sending query batches to the server and retrieving the resulting data.

Using scrollable cursors.

Bulk-copying data from files or program variables to and from the server.

Controlling two-phase commit operations between several participating SQL Servers.

Executing stored procedures or remote stored procedures.

These functions allow the application developer extremely fine-grained control of data flow back and forth between the client and
the server. DB-Library supports multiple environments. C programmers can choose from among:

A multithread dynamic-link library (DLL) for the Windows NT 4.0 operating system.

Medium and large model static-link libraries for MS-DOS for both Microsoft and Borland compilers.

A DLL for the Windows operating system.

DB Library for C (SQL Server 2000)

Getting Started with DB-Library for C
The Microsoft DB-Library for C application programming interface (API) is a set of C functions used to create client applications
that interact with Microsoft® SQL Server™.

You can use DB-Library for C to build applications for the Microsoft Windows NT® 4.0 operating system and to port Microsoft
Windows®-based applications to a Windows NT 4.0 system.

DB Library for C (SQL Server 2000)

DB-Library for C Syntax Conventions
The DB-Library for C syntax diagrams use these conventions.

Convention Used for
UPPERCASE Transact-SQL keywords, DB-Library data types, data

structures, and parameter settings.
Italic User-supplied parameters.
Monospace Program code.
Bold Functions, C data types, C statements, database names, table

names, column names, index names, stored procedures,
utilities, and text that must be typed exactly as shown.

DB Library for C (SQL Server 2000)

System Requirements for DB-Library for C
To develop applications using DB-Library for C, you must meet the Microsoft® SQL Server™ client system requirements for the
operating system you are using. For information about the system requirements for SQL Server, see Installing SQL Server.

Windows NT

To create Microsoft® Win32® DB-Library applications for Microsoft Windows NT® 4.0, you need the files provided with this
release, as well as the following software:

Microsoft Windows NT Workstation version 3.5 or later (version 3.51 or later is recommended)

Or

Microsoft Windows NT Server version 3.5 or later (version 3.51 or later is recommended)

Microsoft Visual C++® version 2.0 or later, or a 100-percent compatible compiler and linker

DB-Library for Windows NT 4.0 is available for computers with the Intel® 32-bit x86-based microprocessor architectures:

Windows 95 and Windows 98

To create Microsoft Win32 DB-Library applications for Microsoft Windows® 95 and Windows 98, you need the same DB-Library
files you use for Microsoft Windows NT 4.0, as well as the following software:

Microsoft Windows 95 and Windows 98

Microsoft Visual C++® version 2.0 or later, or a 100-percent compatible compiler and linker

Windows

To create Win16 DB-Library applications for Microsoft Windows, you need the files provided with this release, as well as the
following software:

Microsoft Windows version 3.11 or later

Or

Microsoft Windows for Workgroups version 3.11 or later

Microsoft Visual C++ for Windows version 1.0 or later

Or

Borland C++ version 3.1 or later

MS-DOS

To create 16-bit DB-Library applications for Microsoft MS-DOS®, you need the files provided with this release, as well as the
following software:

MS-DOS version 5.0 or later

Microsoft Visual C++ for Windows version 1.0 or later

Or

Borland C++ version 3.1 or later

DB Library for C (SQL Server 2000)

Installing DB-Library for C
SQL Server Setup installs the following groups of files.

In \Mssql7\DevTools\Include

File Description
Sqldb.h DB-Library function prototypes.
Sqlfront.h DB-Library type and macro definitions.

In \Mssql7\DevTools\Lib

File Description
Bldblib.lib Borland large-model DB-Library static library for Microsoft®

MS-DOS®.
Bmdblib.lib Borland medium-model DB-Library static library for MS-DOS.
Msdblib3.lib DB-Library import library for Microsoft Windows®.
Ntwdblib.lib DB-Library import library for Microsoft Win32®.
Rldblib.lib Large-model DB-Library static library for MS-DOS.
Rmdblib.lib Medium-model DB-Library static library for MS-DOS.
W3dblib.lib Old DB-Library import library for Windows. (Use Msdblib3.lib,

not this file.)

In \Mssql7\DevTools\Samples\Dblib\C

File Description
Readme.txt Summary of sample programs available in each directory.

DB Library for C (SQL Server 2000)

Determining the Version of DB-Library for C
For Microsoft® Windows® and Microsoft Windows NT® 4.0, run the SQL Server Client Network Utility to determine which
version of DB-Library is installed on your computer. This utility searches the path for the appropriate DLL to load (the path begins
with the current directory). Run the utility from the same working directory as your application.

For Microsoft MS-DOS®, include a call to dbinit in your DB-Library for C application to determine which version of DB-Library
for C is installed. This function returns the version number of DB-Library for C. It is a good idea to display this information in all
your DB-Library applications.

DB Library for C (SQL Server 2000)

Finding Further Information
Information about DB-Library for C and Microsoft® SQL Server™ is available from the following sources, as well as from the
Microsoft Development Library and Microsoft TechNet.

The Microsoft Developer Network provides in-depth information for developers. With Level 1 of the Developer Network, you get
four quarterly releases of the Development Library, packed with inside information about programming for Microsoft®
Windows® and Microsoft Windows NT® 4.0, plus other program benefits. With Level 2 of the Developer Network, you'll receive
all the Level 1 benefits plus quarterly releases of the Development Platform, containing the latest Windows and Windows NT 4.0
Workstation operating systems and API-level SDKs and DDKs from Microsoft. For ordering information, call (800) 759-5474.

Microsoft TechNet is the front-line resource for fast, complete answers to technical questions on Microsoft desktop and system
products. Through two monthly compact discs, you get everything from crucial data on client/server and workgroup computing,
systems platforms, and database products to the latest applications support for Microsoft Windows and the Apple Macintosh®.
For ordering information, call your reseller or (800) 344-2121.

DB Library for C (SQL Server 2000)

Programming for SQL Server
There are several methods of programming Microsoft® SQL Server™ applications.

Transact-SQL

Transact-SQL is the SQL Server-enhanced version of the SQL database language. Client applications use Transact-SQL to
communicate with SQL Server. Transact-SQL provides statements for creating and manipulating database objects, and for
inserting, updating, and selecting data. The Transact-SQL enhancements include data integrity features and stored procedures
(compiled static SQL statements). Stored procedures allow much of an application's processing logic to be shifted from the client
application to SQL Server. Stored procedures can contain most Transact-SQL statements, including Transact-SQL control-of-flow
statements. Furthermore, stored procedures are precompiled, so the statements don't have to be parsed each time the procedure
is executed.

DB-Library for C Applications

DB-Library for C enables the database to become an integral part of an application. Transact-SQL statements can be incorporated
into the application, allowing the application to retrieve and update values from a database. Through DB-Library for C, values
from the database can be placed in program variables for manipulation by the application. Conversely, values in program
variables can be inserted into the database.

Although DB-Library for C contains many functions, giving the application much control over its interaction with SQL Server,
most applications require only a few functions. The actual process of connecting with SQL Server, sending Transact-SQL
statements to SQL Server, and manipulating the resulting data is straightforward.

DB-Library Compared to Embedded SQL

DB-Library differs distinctly from the Embedded SQL for C type of language interface:

The DB-Library interface does not require a language precompiler.

DB-Library consists of C functions that are not preprocessed into an intermediate form.

Avoiding preprocessing can make database applications more straightforward to write and to debug. However, for programmers
new to developing SQL Server applications or who are familiar with other database platforms, Embedded SQL offers a simpler
programming interface. Tools for building Embedded SQL applications are available separately from Microsoft.

DB-Library for C Compared to Microsoft ODBC

In addition to DB-Library, SQL Server supports the Microsoft Open Database Connectivity (ODBC) call-level API. ODBC enables
applications for Microsoft Windows NT® 4.0, Microsoft Windows®, Windows 95, and Windows 98 to access multiple data
sources, including a wide range of relational databases and local indexed sequential access method (ISAM) data. In most cases,
DB-Library and ODBC are equally capable of creating SQL Server client applications. ODBC enables applications to access more
data sources. DB-Library provides equivalent functionality in multiple client environments, including Microsoft MS-DOS®. In
addition, DB-Library provides specialized support for SQL Server, such as bulk copy, two-phase commit, and text operations.

Tools for developing ODBC applications are available in the Microsoft ODBC Software Development Kit, which is part of the
Microsoft Developer Network Level II. The ODBC driver for SQL Server is included with SQL Server.

DB Library for C (SQL Server 2000)

Communicating with SQL Server
DB-Library functions communicate with Microsoft® SQL Server™ 2000 through the DBPROCESS structure. The dbopen function
allocates and initializes a DBPROCESS when it logs on to SQL Server. DBPROCESS serves as the connection between the
application and SQL Server. Most DB-Library functions require DBPROCESS as the first parameter. An application can have more
than one DBPROCESS if, for instance, it needs to update a database while still processing the results of an earlier query. Each
DBPROCESS is completely independent of any other.

Another structure, LOGINREC, allocated by dblogin, is the login record that contains information the dbopen function uses to
log on to SQL Server. It contains typical login information, such as the username and password. This information is also specified
through DB-Library for C functions.

Note With the Microsoft Windows NT® 4.0, Microsoft Windows® 95 and Windows 98 operating systems, each connection is a
separate execution thread that is spawned when the connection to SQL Server is established with dbopen and terminated when
the connection is closed using dbclose.

DB Library for C (SQL Server 2000)

DB-Library for C and Net-Library Interaction
When a call is made to open a connection to Microsoft® SQL Server™ 2000 (dbopen), DB-Library determines which client Net-
Library should be loaded to communicate with SQL Server.

Net-Libraries are linked dynamically at run time. With the Microsoft Windows NT® 4.0, Microsoft Windows® 2000, Microsoft
Windows 95, and Microsoft Windows 98 operating systems, Net-Libraries are implemented as dynamic-link libraries (DLLs), and
multiple Net-Libraries can be loaded simultaneously. With the Microsoft MS-DOS® operating system, Net-Libraries are
implemented as terminate-and-stay-resident (TSR), and only one can be loaded at any given time.

DB Library for C (SQL Server 2000)

Net-Library Architecture
Microsoft® SQL Server™ 2000 Net-Library architecture for client/server applications is based on the Net-Library concept that
abstracts the client and server applications from the underlying network protocols being used.

Tabular Data Stream (TDS) is the data stream protocol used by SQL Server to transfer requests and responses between the client
and the server. TDS is a logical data stream protocol and must be supported by a physical network interprocess communication
mechanism (IPC). The Net-Library architecture provides a method of sending TDS across a physical network connection, and it
provides a transparent interface to DB-Library for C.

DB Library for C (SQL Server 2000)

Using Examples with pubs
 New Information - SQL Server 2000 SP3.

Throughout this documentation, examples that use the pubs database are based on the U.S. English version of pubs. Your system
must have access to the pubs database to run the sample programs. If you have a localized version of Microsoft® SQL Server™
2000 and want to try the examples, drop the localized version of pubs and install the U.S. English version by running Instpubs.sql.
The syntax is as follows:

isql /Uusername /Ppassword /Sserver -i\sql\install\instpubs.sql

The login account identified by the username parameter must have sysadmin permissions in order to successfully run the
Instpubs.sql script.

The pubs database is installed in the \Mssql7\Data directory.

DB Library for C (SQL Server 2000)

Programming with DB-Library for C
 New Information - SQL Server 2000 SP3.

Programming with DB-Library for C typically involves the following steps:

1. Connect to Microsoft® SQL Server™ 2000.

2. Put Transact-SQL statements into a buffer and send them to SQL Server.

3. Process the results, if any, returned from SQL Server, one statement at a time and one row at a time. You can put the results
into program variables, where the application can manipulate them.

4. Handle DB-Library errors and SQL Server messages.

5. Disconnect from SQL Server.

The following example shows the basic framework of many DB-Library for C applications. The application connects to SQL Server,
sends a Transact-SQL SELECT statement to SQL Server, and processes the set of rows resulting from the SELECT statement.

For more information about defining the target operating system prior to compiling your application, see Building Applications.

#define DBNTWIN32
#include <stdio.h>
#include <windows.h>
#include <sqlfront.h>
#include <sqldb.h>

// Forward declarations of the error handler and message handler.
int err_handler(PDBPROCESS, INT, INT, INT, LPCSTR, LPCSTR);
int msg_handler(PDBPROCESS, DBINT, INT, INT, LPCSTR, LPCSTR,
 LPCSTR, DBUSMALLINT);

main()
{
 PDBPROCESS dbproc; // The connection with SQL Server.
 PLOGINREC login; // The login information.
 DBCHAR name[100];
 DBCHAR city[100];

 // Install user-supplied error- and message-handling functions.
 dberrhandle (err_handler);
 dbmsghandle (msg_handler);

 // Initialize DB-Library.
 dbinit ();

 // Get a LOGINREC.
 login = dblogin ();
 DBSETLSECURE (login);
 DBSETLAPP (login, "example");

 // Get a DBPROCESS structure for communication with SQL Server.
 dbproc = dbopen (login, "my_server");

 // Retrieve some columns from the authors table in the
 // pubs database.

 // First, put the command into the command buffer.
 dbcmd (dbproc, "SELECT au_lname, city FROM pubs..authors");
 dbcmd (dbproc, " WHERE state = 'CA' ");

 // Send the command to SQL Server and start execution.
 dbsqlexec (dbproc);

 // Process the results.
 if (dbresults (dbproc) == SUCCEED)
 {
 // Bind column to program variables.
 dbbind (dbproc, 1, NTBSTRINGBIND, 0, name);
 dbbind (dbproc, 2, NTBSTRINGBIND, 0, city);

 // Retrieve and print the result rows.

 while (dbnextrow (dbproc) != NO_MORE_ROWS)
 {
 printf ("%s from %s\n", name, city);
 }
 }

 // Close the connection to SQL Server.
 dbexit ();

 return (0);
}

int err_handler (PDBPROCESS dbproc, INT severity,
 INT dberr, INT oserr, LPCSTR dberrstr, LPCSTR oserrstr)
{
 printf ("DB-Library Error %i: %s\n", dberr, dberrstr);
 if (oserr != DBNOERR)
 {
 printf ("Operating System Error %i: %s\n", oserr, oserrstr);
 }
 return (INT_CANCEL);
}

int msg_handler (PDBPROCESS dbproc, DBINT msgno, INT msgstate,
 INT severity, LPCSTR msgtext, LPCSTR server,
 LPCSTR procedure, DBUSMALLINT line)
{
 printf ("SQL Server Message %ld: %s\n", msgno, msgtext);
 return (0);
}

This example illustrates features common to most DB-Library for C applications, including:

header files

All source files that contain calls to DB-Library functions require two header files, Sqlfront.h and Sqldb.h.

Before including the Sqlfront.h and Sqldb.h files, define the target operating system with #define:

DBMSDOS (for Microsoft MS-DOS®)

DBMSWIN (for 16-bit Microsoft Windows®)

DBNTWIN32 (for 32-bit Windows 95 and Microsoft Windows NT® 4.0)

An alternative is to put DBMSDOS, DBMSWIN, or DBNTWIN32 on the compilation command lines. For more information,
see the examples in "Include Files", in Building Applications.

For Windows, Windows 95, and Windows NT 4.0, you must include Windows.h before including the Sqlfront.h and Sqldb.h
files.

Include Sqlfront.h before Sqldb.h. Sqlfront.h defines symbolic constants, such as function return values and the exit values
STDEXIT and ERREXIT. These exit values can be used as the parameter for the C standard library function exit. The exit
values are defined appropriately for the operating system running the application. The Sqlfront.h file also includes type
definitions for data types that can be used in program variable declarations. These data types are described in DB-Library
for C Data types.

The Sqldb.h file contains additional type definitions and DB-Library function prototypes, most of which are meant to be used
only by the DB-Library functions. They should not be accessed directly by the program. To ensure compatibility with future
releases of DB-Library, use the contents of Sqldb.h only as documented here.

dberrhandle and dbmsghandle

The first of these DB-Library functions, dberrhandle, installs a user-supplied error-handling function, which is called
automatically whenever the application encounters a DB-Library error. Similarly, dbmsghandle installs a message-handling
function, which is called in response to informational or error messages returned from SQL Server. The error- and message-
handling functions are user-supplied. It is strongly recommended that users supply error-processing functions.

dblogin

Supplies a LOGINREC structure, which DB-Library uses to log on to SQL Server. Two functions set entries in the LOGINREC.
DBSETLPWD sets the password that DB-Library uses when logging in. DBSETLAPP sets the name of the application, which
appears in the SQL Server sysprocess table. Certain functions set other aspects of the LOGINREC, which contains defaults for

each value they set.

Security Note Authorization information, including user name and password, is stored in memory in the LOGINREC structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Take
precautions to prevent access to memory data by unauthorized individuals.

dbopen

Opens a connection between the application and SQL Server. It uses the LOGINREC supplied by dblogin to log on to the server. It
returns a DBPROCESS structure, which serves as the conduit for information between the application and the server. After this
function has been called, the application is connected with SQL Server and can send Transact-SQL statements to SQL Server and
process the results. Simultaneous transactions must each have a distinct DBPROCESS. Serial transactions can use the same
DBPROCESS.

Security Note Connection information, including user name and password, is stored in memory in the DBPROCESS structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Take
precautions to prevent access to memory data by unatuthorized individuals.

dbcmd

Fills the command buffer with Transact-SQL statements, which can then be sent to SQL Server. Each call to dbcmd, after the first,
adds the supplied text to the end of any text already in the buffer. The programmer must supply necessary blanks between words,
such as the space between the quotation mark and the word WHERE in the second dbcmd call in the example:

dbcmd(dbproc, " WHERE state = 'CA' ");

Although multiple statements can be included in the buffer, this example only shows how to send and process a single statement.
DB-Library allows an application to send multiple statements (called a command batch) to SQL Server and process each
statement's set of results separately.

dbsqlexec

Executes the command buffer; that is, it sends the contents of the buffer to SQL Server, which parses and executes the commands.
This function causes DB-Library to wait until SQL Server has completed execution of the query. To avoid this delay, you can call
dbsettime to set the DB-Library time-out, or you can use dbsqlsend, dbdataready, and dbsqlok (instead of dbsqlexec) to
retain control while SQL Server is busy.

dbresults

Gets the results of the current Transact-SQL statement ready for processing. After dbresults returns SUCCEED, column meta data
for the current result set is available. Your application should call dbresults until it returns NO_MORE_RESULTS. If your program
fails to do this, the DB-Library error message 10038 "Results Pending" occurs the next time that DBPROCESS is used.

dbbind

Binds result columns to program variables. In the example, the first call to dbbind binds the first result column to the name
variable. In other words, when the program reads a result row by calling dbnextrow, the contents of the first column in the result
row are placed in the name variable. The data type of the binding is NTBSTRINGBIND, one of several binding types available for
character data. The second call binds the second result column to the city variable.

dbnextrow

Reads a row and places the results in the program variables specified by the earlier dbbind calls. Each successive call to
dbnextrow reads another result row until the last row has been read and NO_MORE_ROWS is returned. Processing of the results
must take place inside the dbnextrow loop. This is because each call to dbnextrow overwrites the previous values in the bound
program variables.

dbexit

Closes all SQL Server connections and frees all DBPROCESS structures created because of the application. It is usually the last DB-
Library function in the program.

DB Library for C (SQL Server 2000)

DB-Library for C Data Types
DB-Library defines data type tokens for Microsoft® SQL Server™ data. These data type constants begin with "SQL" (for example,
SQLINT4, SQLMONEY, or SQLCHAR). DB-Library also provides type definitions for use in program variable declarations. These
type definitions begin with the prefix "DB" (for example, DBINT, DBCHAR, or DBMONEY). By using them, you ensure that your
program variables will be compatible with SQL Server data types. For more information about a list of SQL Server data types and
the DB-Library program variable types, see Using DB-Library for C Data Types.

The dbconvert function provides a way to convert data from one SQL Server data type to another. It supports conversion
between most data types. Because SQL Server data types correspond directly to the DB-Library data types, you can use
dbconvert widely within your application.

The functions that bind SQL Server result columns to program variables dbbind and dbaltbind also provide type conversion.

When the operators SUM and AVG are applied to any column with a small data type (such as smalldatetime, real, smallmoney,
smallint, or tinyint), the server returns results in the larger data type. For example, the table sales has a smallmoney column
named price and the following query is executed on this table:

SELECT price FROM sales

COMPUTE SUM(price), AVG(price), MIN(price), MAX(price)

The returned values price, MIN(price), and MAX(price) are of the data type smallmoney; AVG(price), and SUM(price) are of the
data type money.

DB Library for C (SQL Server 2000)

Finding SQL Servers on the Network
You can use the dbserverenum function to obtain the names of servers running Microsoft® SQL Server™ 2000 either locally or
over the network. For network searches, the Net-Library DLL used must support the dbserverenum function.

DB Library for C (SQL Server 2000)

Resolving Server Names
DB-Library resolves server names differently depending on the client platform. It is recommended that you use SQL Server Client
Network Utility to configure server name and Net-Library connection information.

DB Library for C (SQL Server 2000)

Windows NT-based Clients
For Microsoft® Windows NT® 4.0- based clients, when dbopen is called with the name of a server running Microsoft SQL
Server™ 2000 to connect to, DB-Library uses the configuration information in the following subtree of the Windows NT Registry:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 MSSQLServer\
 Client\
 ConnectTo

The entries of the Registry are values in the following format:

value:REG_SZ:Net-Library_Name[,network_specific_ parameters]

DB Library for C (SQL Server 2000)

Windows-based Clients
For Microsoft® Windows®-based clients, when dbopen is called with the name of a server running Microsoft SQL Server™ 2000
to connect to, DB-Library uses the configuration information in the [SQLSERVER] section of the Win.ini file. The entries of the
[SQLSERVER] section of Win.ini have the following format:

logical_name = Net-Library_Name[,network_specific_ parameters]

DB Library for C (SQL Server 2000)

MS-DOS-based Clients
With Microsoft® MS-DOS®, only one Net-Library TSR can be loaded, so there is no .ini configuration. Instead, MS-DOS
environment variables are used to specify any network-specific connection information. Environment variables have the following
format:

logical_name = network_specific_ parameters

Before loading the Net-Library TSR, the environment variables containing connection information must be set. If the servername
parameter passed from dbopen corresponds to a currently set environment variable, the Net-Library uses the information in the
environment string to determine server location and network-specific information parameters, if present. If no environment
variable matches the servername passed from dbopen, the Net-Library uses the servername parameter passed from dbopen.

DB Library for C (SQL Server 2000)

Results Processing
When dbsqlexec or dbsqlok returns SUCCEED, it indicates that Microsoft® SQL Server™ 2000 has successfully executed a
command batch. At that point, the application must process any results. The SELECT statement and EXECUTE statements that
contain SELECT statements both return result rows. INSERT statements and most other Transact-SQL statements also return data
needed by DB-Library.

The following list describes the two types of result rows:

Regular rows are generated from columns in a SELECT statement's select list.

Compute rows are generated from columns in a SELECT statement's COMPUTE clause.

Because these two types of rows contain different data, the application must process them separately.

The result for each statement in a batch is returned to the application separately. Within each statement's set of results, the result
rows are processed one at a time.

The results for each statement in the batch must be set up separately with dbresults.

DB Library for C (SQL Server 2000)

Getting Result Data
The simplest way to get result data is to bind result columns to program variables with dbbind and dbaltbind. Then, when a
result row is accessed, DB-Library automatically places copies of the columns' data into the program variables to which they are
bound.

You also can access a result column's data directly with dbdata and dbadata, which return pointers to the data. These functions
are frequently used with dbdatlen and dbadlen, which return the length of the data. The dbdata and dbadata functions have
the advantage of providing access to the actual data, not a copy of the data.

Binding of columns to variables must take place after the call to dbresults but before the first call to dbnextrow. No such
preliminary step is needed when results will be directly accessed with dbdata or dbadata.

DB Library for C (SQL Server 2000)

Accessing Result Rows
After dbresults has returned SUCCEED and any binding of columns to variables has been specified, the application is ready to
process the results. The first step is to make the result rows available to the application. The dbnextrow function accomplishes
this. Each call to dbnextrow reads the next row returned from Microsoft® SQL Server™ 2000. The row is read directly from the
network. As an alternative, you can do the same thing through cursors, often more simply and with more power. For details, see
Bulk-Copy Functions.

After a row has been read in by dbnextrow, the application can perform any processing desired on the data in the row. If the
result columns have been bound to program variables, the data in the row will have been automatically copied into the variables.
Alternatively, the data is accessible through dbdata or dbadata.

Rows read in by dbnextrow can be automatically saved in a row buffer, if desired. This is accomplished by setting the DBBUFFER
option. Without row buffering, each row must be processed as it is read in by dbnextrow because the next call to dbnextrow
will overwrite the previously read row. If row buffering has been turned on, the rows are added to a row buffer as they are read in
by dbnextrow. Row buffering allows the application to skip around in the buffer and return to previously read rows.

After all result rows have been returned, the final call to dbnextrow returns the NO_MORE_ROWS indication. You must continue
calling dbnextrow until it returns NO_MORE_ROWS, even if you know that the query produces only one result row.

Also available are functions that print result rows in a default format. They are often used for debugging. (These are not available
with the Microsoft Windows® operating system.)

DB-Library processes results one statement at a time, although multiple statements can be sent. When all the results for one
statement have been read, dbresults must be called again to set up the results for the next statement in the command buffer and
one final time to return NO_MORE_RESULTS.

Information covering several areas, including regular result columns, compute result columns, row buffers, and the command
state, can be retrieved from the DBPROCESS structure. Regular result columns correspond to columns in the SELECT statement's
select list, and compute result columns correspond to columns in the SELECT statement's optional COMPUTE clause.

DB Library for C (SQL Server 2000)

Regular Result Column Information
Regular Result Column Information

These functions can be called after dbresults returns SUCCEED.

Function Description
Dbcollen Returns the maximum length of a regular column's data.
dbcolname Returns the name of a regular result column.
Dbcoltype Returns the Microsoft® SQL Server™ data type for a regular

result column.
dbcolutype Returns the user-defined data type for a regular result column.
Dbdatlen Returns the actual length of a regular column's data. This

function is often used together with dbdata. The value
returned by dbdatlen can differ for each regular row read by
dbnextrow.

dbnumcols Determines the number of columns in the current result set.

DB Library for C (SQL Server 2000)

Compute Result Column Information
Compute Result Column Information

These functions can be called after dbnextrow or dbgetrow returns a compute ID.

Function Description
dbadlen Returns the actual length of a compute column's data. This

function is often used together with dbadata. The value
returned by dbadlen can differ for each compute row read by
dbnextrow.

dbaltcolid Returns the column ID for a compute column.
dbaltlen Returns the maximum length for a compute column's data.
dbaltop Returns the type of aggregate operator for a compute column.
dbalttype Returns the data type for a compute column.
dbaltutype Returns the user-defined data type for a compute column.
dbbylist Returns the bylist for a compute row.
dbnumalts Returns the number of columns in a compute row.
dbnumcompute Returns the number of COMPUTE clauses in the current set of

results.

DB Library for C (SQL Server 2000)

When to Process Results
It is critical that all result sets are processed completely in a timely manner. The result sets need to be processed to avoid
problems with subsequent SQL Server queries and to avoid concurrency issues with SQL Server resources.

In most cases, the return code from dbsqlok or dbsqlexec should be ignored. If you send the following batch and the INSERT
statement fails due to a duplicate key, a severity 14 error is generated; however, the batch continues.

INSERT INTO tblTest VALUES(1)
SELECT @@VERSION

The dbsqlok and dbsqlexec calls check only the success of the first command. If you do not call dbresults, you will not process
the SELECT statement results and can get result pending errors.

The following are the most common problems your application may encounter if result sets are not handled immediately and
completely:

If all result sets are not processed completely and you attempt to send another query to SQL Server using the same
connection, you will receive DB-Library error 10038:

Attempt to initiate a new SQL Server operation with results pending.

DB-Library prevents you from sending additional queries if there are results from a previous query that need to be handled.
For more information, see When and How to Use dbcancel().

If a query is issued to SQL Server and the results are not handled immediately, you may be holding locks and reducing
concurrency on your server.

For example, you issue a query that requires rows from two pages to populate your result set. SQL Server parses, compiles,
and runs the query. This means that shared locks are placed on the two pages that contain the rows needed to satisfy your
query. Further, not all rows fit onto one SQL Server Tabular Data Stream (TDS) packet. TDS packets are filled and sent to the
client. If all rows from the first page fit on the TDS packet, SQL Server releases the shared lock on that page, but leaves a
shared lock on the second page. SQL Server then waits for the client to request more data (this is done using
dbnextrow/dbresults, SQLNextRow/SQLResults, FetchLast/FetchFirst, and so on).

This means that the shared lock is held until the client requests the rest of the data. Other processes requesting data from
the second page may be blocked. For more information, see Troubleshooting Locking.

Following is an example of how to handle all result sets correctly.

BOOL bMoreResults = TRUE;
BOOL bMoreRows = TRUE;
RETCODE dbRC = SUCCEED;

//
// Send query

.

.

.

//
// Process *all* results

bMoreResults = TRUE

while(bMoreResults)
 {
 switch(dbRC = dbresults(pdbproc))
 {
 case SUCCEED:

 bMoreRows = TRUE;

 while(bMoreRows)
 {
 switch(dbRC = dbnextrow(pdbproc))
 {
 case REG_ROW:
 // Handle regular row
 break;

 case NO_MORE_ROWS:
 bMoreRows = FALSE;
 // All rows in this result set handled
 break;

 case BUF_FULL:
 // Handle full buffer when using row buffering
 break;

 case FAIL:
 // Any error processing desired
 bMoreRows = FALSE;
 break;

 default:
 // Handle compute row
 break;
 }
 }

 break;

 case NO_MORE_RESULTS:
 bMoreResults = FALSE; // All result sets handled
 break;

 case FAIL:
 // Any error processing desired
 // The current command has returned an error
 // Could be a nonfatal error
 bMoreResults = TRUE;
 break;

 case NO_MORE_RPC_RESULTS:
 // Extract stored procedure return information
 break;

 default:
 bMoreResults = FALSE; // unknown
 break;
 }
 } // while(bMoreResults && FALSE == DBDEAD(pdbproc))

DB Library for C (SQL Server 2000)

When and How to Use dbcancel()
The dbcancel() function is often used in applications when it should not be. A large percentage of common DB-Library or VBSQL
programming problems stem from applications that misuse this API call.

When retrieving results or after sending a Transact-SQL batch to the server, it is considered good DB-Library programming
practice to process all results until there are no more results, and to process all rows until there are no more rows. For example,
you should call dbresults() and dbnextrow() like this:

 while ((result_code = dbresults(dbproc)) != NO_MORE_RESULTS)
 {
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 }

Not calling dbresults() and dbnextrow() as above often causes application problems that may not become evident until later in
development or testing when corrective action is costly.

If an application is required to access only x number of rows from a result set, it is recommended that the SET ROWCOUNT x
Transact-SQL statement be used instead of calling dbnextrow x times followed by a call to dbcancel(). There are several reasons
for not using dbcancel() as part of standard results processing routines.

When Not to Use dbcancel()

dbcancel() will not cancel, roll back, or commit a user-defined transaction. All exclusive locks acquired within the user-defined
transaction will be retained even after issuing dbcancel() because the user-defined transaction is still active. This can cause
blocking and other difficult concurrency problems. When issuing dbcancel() within a user-defined transaction, the programmer
should ensure that the transaction is either explicitly committed or rolled back.

When operating in this context, it is easy to miss that an application is actually in the middle of a user-defined transaction that was
never committed or rolled back. In addition, there are also some variations of how dbcancel() or the attention signal that it
generates are implemented from platform to platform.

Note Microsoft® SQL Server™ implementations of dbcancel() are constant across all SQL Server platforms. Compatibility
issues arise primarily between different Sybase and SQL Server implementations. These differences often stem from transport
related issues such as how one vendor's TCP/IP out-of-band data is implemented and how it interacts with another vendor's
TCP/IP out-of-band data implementation. The net results of which can cause portability problems in DB-Library applications using
dbcancel().

When to Use dbcancel()

dbcancel() should be used in cases where the user needs to regain control of an application. In this environment, a programmer
can handle the exception of a user issuing a dbcancel() in an environment where dbcancel() does not work by responding with
a message such as "dbcancel() not supported on this platform!". A programmer may also want to use dbcancel() in case of a
DB-Library command failure as part of a clean up procedure for the affected DB-Lib processes.

See Also

dbcancel

dbprocmsghandle

dbexit

dbsetmaxprocs

dbinit

Programming DB-Library for C

dbprocerrhandle

DB Library for C (SQL Server 2000)

Error and Message Handling
DB-Library for C applications deal with errors and messages: Messages generated by DB-Library for C functions are called errors
and those from Microsoft® SQL Server™ 2000 are known as messages. SQL Server can return both informational and error
messages to the application. In addition, DB-Library for C has its own set of possible warnings and errors. A list of SQL Server
messages appears in the sysmessages table. For more information about a list of DB-Library for C errors, see Error Messages.

DB-Library for C easily centralizes error and message handling. With dbmsghandle and dberrhandle, you can install your own
message- and error-handling functions. When a message or error occurs, DB-Library for C automatically calls the appropriate
user-supplied function, providing information to that function on the nature of the message or error, thus the error- and
message-handling logic can be assigned to two functions in your application.

DB Library for C (SQL Server 2000)

Browse Mode
By creating temporary tables, browse mode lets you scan database rows and update their values one row at a time. This feature
uses optimistic concurrency control, which holds no locks while you are accessing data. Browse mode requires several steps
because it transfers each row from the database into program variables before browsing and updating it.

Because a row being browsed is just a copy residing in program variables, rather than the actual row in the database, the
application must ensure that changes to the variables' values reliably update the original database row. In particular, in multiuser
situations, the application must ensure that updates to the database made by one user do not overwrite updates made by
another. This becomes an issue whether the application selects one row or several rows at a time from the database. A
timestamp column in database tables that can be browsed lets you regulate this type of multiuser updating.

Browse-mode functions also allow an application to update ad hoc queries (queries made while an application is running). Several
of these functions return information that an application can use to examine the structure of a complicated ad hoc query to
update the underlying database tables.

Conceptually, browse mode does the following:

1. Issues a SELECT statement.

2. Fetches rows.

3. If any changes must be made, constructs an UPDATE statement and issues it.

In an application, implement these steps as follows:

1. Execute a SELECT statement, generating result rows containing result columns. The SELECT statement must include the FOR
BROWSE option.

2. Bind the result column values into program variables, one row at a time.

3. If appropriate, change the variables' values (possibly in response to user input).

4. If appropriate, construct and execute an UPDATE statement that updates the database row corresponding to the current
result row. To handle multiuser updates, the WHERE clause of the UPDATE statement must reference the timestamp
column. An appropriate WHERE clause can be constructed with the dbqual function.

5. Repeat steps 2 through 4 for each result row.

To use browse mode, the following conditions must be true:

The SELECT statement must end with the keywords FOR BROWSE.

The table(s) to be updated must have a unique index (or primary key) and a timestamp column.

The result columns to be used in the updates must be derived from tables that can be browsed and cannot be the result of
compute columns, such as "MAX(colname)." In other words, there must be a valid correspondence between the result
column and the database column to be updated.

In addition, browse mode requires two DBPROCESS structures: one for selecting the data and another for updating based on the
selected data.

DB Library for C (SQL Server 2000)

Building Applications
DB-Library applications can be built for the Microsoft® Windows NT® 4.0, Microsoft Windows® 95, Windows 98, and Microsoft
MS-DOS® operating systems.

The following table shows the DB-Library include files used for all operating systems.

Include file Contains
Sqlfront.h Type definitions, error codes and severity levels,

miscellaneous definitions.
Sqldb.h Function prototypes for all DB-Library functions.

DB Library for C (SQL Server 2000)

Changes to DB-Library for C
DB-Library for C version 7.0 has been changed and improved since version 4.2x, and your program can be revised to take
advantage of these changes. However, no changes to your application or program source code are required. Existing applications
should continue to run properly with DB-Library 7.0, and existing programs should build properly with DB-Library 7.0.

DB Library for C (SQL Server 2000)

MSdblib3 Replaces W3dblib
The DB-Library files for Microsoft® Windows® have been renamed. The new files are named Msdblib3.dll and Msdblib3.lib. New
DB-Library applications for Windows should use these files. The W3dblib.dll and W3dblib.lib files are still provided for backward
compatibility with existing applications.

DB Library for C (SQL Server 2000)

Header Files Sqlfront.h and Sqldb.h Changed
The DB-Library for C header files Sqlfront.h and Sqldb.h have been changed. They now use standard Microsoft® Win32® API
portable data types. The new PDBPROCESS, PLOGINREC, and PDBCURSOR portable macros can be used instead of the platform-
specific pointers.

Use Instead of
PDBPROCESS DBPROCESS *

DBPROCESS NEAR *
DBPROCESS FAR *

PLOGINREC LOGINREC *
LOGINREC NEAR *
LOGINREC FAR *

PDBCURSOR DBCURSOR *
DBCURSOR NEAR *
DBCURSOR FAR *

Also, the new PDBHANDLE macro indicates that either a PDBPROCESS, PLOGINREG, or PDBCURSOR may be valid.

DB Library for C (SQL Server 2000)

Building Win32 DB-Library Applications
You can build DB-Library applications using the Microsoft® Win32® API, the 32-bit application programming interface for
Microsoft Windows NT® 4.0, Microsoft Windows® 95, and Windows 98.

DB Library for C (SQL Server 2000)

DB-Library Architecture
For the Microsoft® Win32®-based versions of the DB-Library dynamic-link library (DLL), a separate operating-system thread
may be spawned for each connection that DB-Library makes with Microsoft SQL Server™ (depending on the Net-Library in use).
Each instance of the DB-Library DLL loaded by a calling process gets a private data area, while sharing code.

Win32-based DB-Library architecture differs from the implementation with the Microsoft Windows® operating system. In
Windows, Msdblib3.dll maintains DB-Library connections as a linked list of connections in a single data segment. This architecture
is required because Windows DLLs have a single data segment shared among all calling processes. This necessitates the
initialization and clean up of the DB-Library DLL data structures through calls to the dbinit and dbwinexit functions. Because
dbinit initializes private DB-Library structures and to maintain compatibility with future versions of DB-Library, you should call
dbinit for all environments.

DB Library for C (SQL Server 2000)

Libraries
The DB-Library functions for the Microsoft® Win32® API are stored in a dynamic-link library, Ntwdblib.dll. Net-Libraries for
Microsoft Windows NT® 4.0, Microsoft Windows® 95, and Windows 98 are also implemented as DLLs. For example,
Dbnmpntw.dll connects to Microsoft SQL Server™ over named pipes. Set the PATH environment variable to include the directory
in which the libraries reside.

The Ntwdblib.lib file is an import library containing function definitions that your applications use.

DB Library for C (SQL Server 2000)

Include Files
You can append the path to the INCLUDE environment variable to include the directory where the DB-Library Sqlfront.h and
Sqldb.h include files reside. Or you can use the /I compile line switch to point to the include file directory.

Because your Microsoft® Win32®-based applications must always include the Windows.h, Sqlfront.h, and Sqldb.h files, you don't
need to define the DB-Library functions you use. These functions and their proper declarations are already defined in the include
file. However, you must define an application's operating system before including the DB-Library include files. Include the
following statements at the beginning of all DB-Library applications designed for the Win32 API:

#define DBNTWIN32
#include <windows.h>
#include <sqlfront.h>
#include <sqldb.h>

You can also define the operating system by using the /D compile line switch (for example, /DDBNTWIN32 instead of a #define
declaration).

DB Library for C (SQL Server 2000)

Compiling and Linking
See the Microsoft® Visual C++® documentation for more information about compiling and linking a Microsoft Win32®
application for Microsoft Windows NT® 4.0, Microsoft Windows® 95 or Windows 98. The DB-Library sample programs include
sample build files.

DB Library for C (SQL Server 2000)

Porting DB-Library Applications
All DB-Library functions are completely portable between the Microsoft® Windows® and Microsoft Windows NT® 4.0 platforms.
You should not need to modify any of your DB-Library calls. You simply need to define the application's operating system at
compile time (for example, #define DBNTWIN32 for the Microsoft Win32® API).

Two DB-Library functions, dbprhead and dbprrow, not supported in Windows because they send output to STDIO, are
supported in the Win32 API and can be used when developing applications for the CONSOLE subsystem. The dbprhead and
dbprrow functions provide a convenient way to display the results of a query to the default output device.

If you have existing 16-bit DB-Library applications for Windows that you want to port to Win32 and run with Windows NT 4.0,
Windows 95, or Windows 98, you can take two approaches to porting:

Change your application source code so that it can be compiled for the Win32 or Windows platform.

If your DB-Library application is under development or is evolving to meet changing user needs, and you want to run the
application with Windows and Windows NT 4.0, Windows 95, or Windows 98, make small changes to the source code to
build 16-bit (Windows-based) and 32-bit (Win32-based) versions of your application from the same source.

Port your application source code entirely to the Win32 platform.

If you decide to modify your application to run only as a 32-bit (Win32-based) application (for example, you require Win32-
specific features such as threads or preemptive multitasking), you can port your application to the Win32 API, removing
redundant Windows calls and dependencies.

DB Library for C (SQL Server 2000)

Porting to Maintain DB-Library Compatibility with Windows
Porting to Maintain DB-Library Compatibility with Windows

You can port a 16-bit DB-Library application for the Microsoft® Windows® operating system to the Microsoft Win32® API for
Microsoft Windows NT® 4.0, Windows 95 or Windows 98 operating systems while retaining compatibility with applications for
Windows.

API Calls for Windows and C Run Time

In general, you can change your source code to easily build 16-bit or 32-bit versions. For an in-depth discussion of writing
applications for the Win32 API that retain compatibility with the Windows operating system, see the Microsoft Win32 API
Programmer's Reference (available separately).

Follow these guidelines when developing applications for the Win32 API:

Be sure that your function definitions and prototypes use portable data types.

The widening of handles to 32-bits means that the packing of handles and other values in wParam and lParam has
changed. Verify whether or not you need to change the decoding of wParam and lParam in your application.

DB-Library Functions

All DB-Library functions are completely portable between operating systems. You simply need to define the target operating
system at compile time.

Many DB-Library functions return values of type int. Note that the int data type is a 16-bit value in Windows and a 32-bit value in
the Win32 API. Therefore, verify that your application uses the correct type of variable to receive return values from DB-Library
functions that return an int data type. For example, a variable defined as the data type short receives a correct int value from DB-
Library in Windows but receives an incorrect value in the Win32 API.

Apart from verifying that variables receiving return values from DB-Library are of the correct type, no changes are needed to DB-
Library functions.

DB Library for C (SQL Server 2000)

Additional Porting Considerations
Additional Porting Considerations

If you port a Windows-based application to the Microsoft® Windows NT® 4.0, Microsoft Windows® 95, or Windows 98
operating system and do not need to maintain compatibility with Windows, you can change your DB-Library code to remove
redundant or unnecessary Windows functions.

Redundant Windows-specific DB-Library Functions

The dbwinexit function is Windows-specific and unnecessary in DB-Library for the Microsoft Win32® API.

Error/Message Handler Registration

The following changes apply to the registration of error and message handlers for the Win32 API:

No need to export callback functions.

You don't need to export the DB-Library error and message handler callback functions in a .def file.

No need to call MakeProcInstance.

You don't need to call MakeProcInstance to obtain a pointer to pass to the dberrhandle and dbmsghandle functions.
Simply call dberrhandle and dbmsghandle, passing the function address. The following examples show the differences in
calling the dberrhandle and dbmsghandle functions in Windows and in the Win32 API.

For Windows:

// Define variables
static FARPROC lpdbMsgHandler;
static FARPROC lpdbErrHandler;

// Get Procedure Instances
lpdbMsgHandler = MakeProcInstance((FARPROC)dbMsgHandler, hInst);
lpdbErrHandler = MakeProcInstance((FARPROC)dbErrHandler, hInst);

// Install the instances into dblib
dbmsghandle(lpdbMessageHandler);
dberrhandle(lpdbErrorHandler);

For the Win32 API:

// Install the instances into dblib
dbmsghandle(dbMsgHandler);
dberrhandle(dbErrHandler);

Preemptive Multitasking (Win32) vs. Cooperative Multitasking (Windows)

To support asynchronous processing in the cooperative multitasking environment in Windows, each application must behave well
and yield to the CPU at regular intervals. Therefore, when you process Microsoft SQL Server™ queries in Windows, you need to
use Windows timers or the PeekMessage function in combination with the DB-Library function calls for asynchronous
processing (dbsqlsend, dbdataready, and dbsqlok).

Support for preemptive multitasking in the Win32 API simplifies the implementation of asynchronous query processing. The
preemptive multitasking nature of the Windows NT, Windows 95 and Windows 98 operating systems ensures that other
processes always obtain CPU cycles regardless of any processing that another application is doing. Within a single process,
asynchronous processing can be implemented using Win32 threads or by using the DB-Library functions that support
asynchronous processing in conjunction with the PostMessage Windows function. For more information about asynchronous
processing, see Taking Advantage of Win32 API Features in DB-Library Applications.

DB Library for C (SQL Server 2000)

Taking Advantage of Win32 API Features in DB-Library
Applications
The Microsoft® Win32® API has many unique features.

DB Library for C (SQL Server 2000)

Asynchronous Query Processing
Asynchronous Query Processing

Preemptive multitasking in the Microsoft® Win32® API makes it easy to implement asynchronous query processing. Use one of
the following ways to implement asynchronous query processing, depending on whether you want your application to exhibit
asynchronous behavior between processes or within a single process.

Switch tasks between processes.

Use the standard dbsqlexec call to send a query to Microsoft SQL Server™. Although dbsqlexec is synchronous from the
calling thread's perspective (dbsqlexec returns only when SQL Server processes the query and is ready to return results),
the preemptive nature of the Win32 API allows other applications or threads of the same application to continue to work
and process user input while the query is executing.

Implement asynchronous processing within a single process:
Use threads.

The easiest way to implement asynchronous processing within a process is to use Win32 threads. You can spawn a
thread that calls dbsqlexec and continue to do other work or continue to receive user input while the query is being
processed.

Single-thread approach.

If you require a single-thread process to implement asynchronous query processing, use the asynchronous DB-
Library functions dbsqlsend, dbdataready, and dbsqlok in combination with the PostMessage function, as
shown in this example:

case WM_SENDQUERY:
 dbsqlsend(dbproc);
 PostMessage(hWnd,WM_CHECKQUERY,0,0L);
 break;

case WM_CHECKQUERY:
 if (dbdataready(dbproc))
 {
 dbsqlok(dbproc);
 PostMessage(hWnd,WM_GETRESULTS,0,0L);
 }
 else
 {
 PostMessage(hWnd,WM_CHECKQUERY,0,0L);
 }
 break;

DB Library for C (SQL Server 2000)

Memory Management in the Win32 API
Memory Management in the Win32 API

The 32-bit linear virtual memory address space available to processes in the Microsoft® Win32® API makes memory
management simpler and cleaner. (This applies to DB-Library programming as well as to all other programming for the Win32
API.)

Although the memory management functions (GlobalAlloc, LocalAlloc, and so on) in the Microsoft Windows® operating
system are supported in the Win32 API, consider using the C run-time functions malloc and free to perform dynamic memory
management when you develop applications to run with the Win32 API. In addition to the standard memory management
functions (Global and Local, C run-time support), the Win32 API also provides heap and virtual memory management functions
for applications that require specialized memory management.

Two specific areas of DB-Library programming can take advantage of the ability to address greater than 64 KB of data:

Processing of text and image data.

There are many uses for Microsoft SQL Server™ text and image data types. All require manipulation of text and image
data, and the ability to transfer data between the application and SQL Server. The ability to address large chunks of memory
can make this easier. Because it is possible to address up to 2 gigabytes (GB) of user memory in an application for the
Win32 API, you can develop text/image handling functions that transfer text/image data in a single operation instead of
transferring data chunks less than 64 KB. (Note, however, that waiting for 2 GB of data to transfer can take considerable
time.)

Row buffering.

In DB-Library for Microsoft MS-DOS® and Windows, you are constrained because DB-Library cannot handle more that 64
KB of data at a time, including memory allocated for row buffering. This value is further reduced by overhead taken up by
data structures, variables, and so on. In the Win32 API, it is possible to use DBSETOPT(DBBUFFER,...) to enable row buffering
for data sets greater than 64 KB.

DB Library for C (SQL Server 2000)

Threads in the Win32 API
Threads in the Win32 API

The multithreaded process structure of the Microsoft® Win32® API opens up powerful and elegant solutions to high-end
applications. Each thread within a process has its own stack and computer state. On multiprocessor systems with the Microsoft
Windows NT® 4.0 operating system, multiple threads can execute at the same time but on different processors. Applications that
need to perform intensive processing, I/O, and so on, can do this in the background using threads and still offer a responsive user
interface.

Using DB-Library in a Threaded Application

Here are a few tips to be aware of when creating a threaded DB-Library application:

Make sure you call the dbinit and dbexit functions only one time on your application.

Make sure to use per process error and message handling.

If you use global error and message handlers, you may need to synchronize access in your error and message handler
routines.

Make sure to call dbsetmaxprocs if you are going to have more than 25 connections open.

Make sure you are compiling/linking with the multithreaded C/C++ run-time libraries. By default, a Microsoft® Visual
C/C++® project is linked with the single threaded run-time libraries.

If you use the same LOGINREC to open multiple connections, access to the LOGINREC must be serialized.

See Also

dbprocerrhandle

dbprocmsghandle

DB Library for C (SQL Server 2000)

Reentrancy and DB-Library
Reentrancy and DB-Library

In applications where each thread uses a separate DBPROCESS connection, you don't need to serialize the DB-Library calls.
However, you must use dbprocerrhandle (instead of dberrhandle) and dbprocmsghandle (instead of dbmsghandle) to
establish connection-specific (instead of global) error and message handlers for your application. You should pass a LOGINREC to
dbprocerrhandle and dbprocmsghandle before calling dbopen using that LOGINREC. If you follow these steps, DB-Library is
completely reentrant and thread-safe.

DB-Library functions and routines that access a shared DBPROCESS are not reentrant across multiple threads. Therefore, be sure
that you serialize all DB-Library calls that access the same DBPROCESS in multithreaded applications you develop.

DB Library for C (SQL Server 2000)

DB-Library for C Reference
DB-Library for C is an application programming interface (API) consisting of C functions and macros that allow an application to
interact with Microsoft® SQL Server™ 2000. Included are functions that send Transact-SQL statements to SQL Server and
functions that process the results of those statements.

DB Library for C (SQL Server 2000)

Core Functions
DB-Library for C version 7.0 supports several core functions.

DB Library for C (SQL Server 2000)

dbadata
Returns a pointer to the data for a compute column.

Syntax

LPCBYTE dbadata (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation/ Microsoft® SQL Server™ 2000 process. It contains all
the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

Is the number of the column. The first column returned is number 1.

Returns

A BYTE pointer to the data for a particular column in a compute. A null BYTE pointer is returned if there is no such column or
compute or if the data has a null value. The data space pointed to is allocated and freed by DB-Library. Be careful not to overwrite
the space.

Remarks

After each call to dbnextrow that returns a value greater than 0, use dbadata to obtain a pointer to the data for a particular
column in a compute. The data is not null-terminated. Use dbadlen to get the length of the data.

When a column of integer data is summed or averaged, SQL Server always returns a four-byte integer, regardless of the size of
the column. Therefore, be sure that the variable that is to contain the result from such a compute is declared as DBINT.

Examples

The following program fragment shows how to use dbadata:

DBPROCESS *dbproc;
int rowinfo;
DBINT sum;

// First, put the commands into the command buffer.
dbcmd(dbproc, "SELECT fileid, size FROM sysdevices");
dbcmd(dbproc, " ORDER BY fileid ");
dbcmd(dbproc, " COMPUTE SUM(size) BY fileid ");
// Send the commands to SQL Server and start execution.
dbsqlexec(dbproc);
// Process the command.
dbresults(dbproc);
// Examine the results of the COMPUTE clause.
while((rowinfo = dbnextrow(dbproc)) != NO_MORE_ROWS)
{
 if (rowinfo == REG_ROW)
 printf("Regular row returned.\n");
 else
 {
 // This row is the result of a COMPUTE clause,
 // and "rowinfo" is the computeid of this COMPUTE
 // clause.

 sum = *(DBINT *)(dbadata(dbproc, rowinfo, 1));
 printf("sum = %ld\n", sum);

 }
}

The dbaltbind function automatically binds data to your program variables. It is somewhat easier to use than dbadata and
dbadlen, but is less efficient because it copies the data into your variable.

See Also

dbadlen

dbgetrow

dbaltbind

dbnextrow

dbaltlen

dbnumalts

dbalttype

DB Library for C (SQL Server 2000)

dbadlen
Returns the actual length of the data for a compute column.

Syntax

DBINT dbadlen (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

Is the number of the column. The first column is number 1.

Returns

The length, in bytes, of the data for a compute column. When no such column or COMPUTE clause exists, -1 is returned. When the
data has a null value, 0 is returned.

Remarks

This dbadlen returns the length of the data for a compute column. You can get a pointer to the actual data by using dbadata.
Calling dbadata after dbnextrow or dbgetrow returns a computeid.

Examples

The following program fragment shows how to use dbadlen:

DBPROCESS *dbproc;
char biggest_name[MAXNAME+1];
DBINT namelen;
STATUS rowinfo;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT name FROM sysobjects");
dbcmd(dbproc, " ORDER BY name");
dbcmd(dbproc, " COMPUTE MAX(name)");

// Send the command to SQL Server and start execution.
dbsqlexec(dbproc);

// Process the command.
dbresults(dbproc);

// Examine each row returned by the command.
while ((rowinfo = dbnextrow(dbproc)) != NO_MORE_ROWS)
{
 if (rowinfo == REG_ROW)
 printf("Regular row returned.\n");
 else
 {
 // This row is the result of a COMPUTE clause,
 // and "rowinfo" is the computeid of this COMPUTE
 // clause.

 namelen = dbadlen(dbproc, rowinfo, 1);
 strncpy(biggest_name,(char *)dbadata(dbproc, rowinfo, 1),
 (int)namelen);

 // Data pointed to by dbadata() is not null-terminated.
 biggest_name[namelen] = '\0';

 printf("biggest name = %s\n", biggest_name);
 }
}

See Also

dbadata

dbgetrow

dbaltlen

dbnextrow

dbalttype

dbnumalts

DB Library for C (SQL Server 2000)

dbaltbind
 New Information - SQL Server 2000 SP3.

Binds a compute column (column of results from a COMPUTE clause) to a program variable.

Syntax

RETCODE dbaltbind (
PDBPROCESS dbproc,
INT computeid,
INT column,
INT vartype,
DBINT varlen,
LPCBYTE varaddr);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID of the COMPUTE clause to which the dbaltbind function refers. Because a SELECT statement can have more than one
COMPUTE clause, the computeid is necessary to distinguish between them. The computeid is returned by dbnextrow or
dbgetrow.

column

Is the column number of the compute data that is to be copied to a program variable. The first column is number 1.

vartype

Is a description of the binding's data type. It corresponds to the data type of the program variable that receives the copy of the
data from the DBPROCESS.

The dbaltbind function supports a wide range of type conversions, so the binding's data type can be different from the type
returned by the SQL query. For instance, a SQLMONEY result can be bound to a DBFLT8 program variable, using FLT8BIND, and
the appropriate data conversion happens automatically.

For more information about a list of the data conversions provided by DB-Library, see dbwillconvert. For more information about
a list of the type definitions used by DB-Library, see DB-Library for C Data types. The following table lists the legal vartypes
recognized by dbaltbind and the program variable and SQL Server data types to which each refers.

vartype Program variable data type SQL Server data type
CHARBIND DBCHAR SQLCHAR
STRINGBIND DBCHAR SQLCHAR
NTBSTRINGBIND DBCHAR SQLCHAR
VARYCHARBIND DBVARYCHAR SQLCHAR
BINARYBIND DBBINARY SQLBINARY
VARYBINBIND DBVARYBIN SQLBINARY
TINYBIND DBTINYINT SQLINT1
SMALLBIND DBSMALLINT SQLINT2
INTBIND DBINT SQLINT4
FLT8BIND DBFLT8 SQLFLT8
BITBIND DBBIT SQLBIT
DATETIMEBIND DBDATETIME SQLDATETIME
MONEYBIND DBMONEY SQLMONEY
SMALLMONEYBIND DBMONEY4 SQLMONEY4
SMALLDATETIBIND DBDATETIM4 SQLDATETIM4
FLT4BIND DBFLT4 SQLFLT4

DECIMALBIND DBDECIMAL SQLDECIMAL
NUMERICBIND DBNUMERIC SQLNUMERIC
SRCDECIMALBIND DBDECIMAL SQLDECIMAL
SRCNUMERICBIND DBNUMERIC SQLNUMERIC

Because SQLTEXT and SQLIMAGE data are never returned through a compute row (a row of results generated by a COMPUTE
clause), these data types are not included in the preceding table. The SQL Server data type is listed for your reference. The vartype
you specify does not necessarily have to correspond to a particular SQL Server data type because, as mentioned earlier,
dbaltbind converts SQL Server data into the specified vartype.

The following table lists the four representations for character data. They differ according to whether the data is padded with
blanks or is null-terminated:

vartype Program data type Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0
VARYCHARBIND DBVARYCHAR none none

Note that "\0" is the null terminator character. Similarly, binary data can be stored in two different ways:

vartype Program data type Padding
BINARYBIND DBBINARY nulls
VARYBINBIND DBVARBINARY none

When a column of integer data is summed or averaged, SQL Server always returns a four-byte integer, regardless of the size of
the column. Therefore, be sure that the variable that is to contain the result from such a compute is declared as DBINT and that
the vartype of the binding is INTBIND.

When the source column specified by the column parameter has a type of SQLDECIMAL or SQLNUMERIC, you can keep the same
precision and scale in your bound C variable by using SRCDECIMALBIND or SRCNUMERICBIND.

varlen

Is the length of the program variable in bytes. For fixed-length vartypes, such as MONEYBIND or FLT8BIND, this length is ignored.
For character and binary types, varlen must describe the total length of the available destination buffer space, including any space
required for special terminating bytes, such as a null terminator. If varlen is 0, the total number of bytes available is copied into
the program variable. (For char and binary SQL Server data, the total number of bytes available is equal to the defined length of
the database column, including any blank padding. For varchar and varbinary data, the total number of bytes available is equal
to the actual data contained in the column.) The varlen is ignored for VARYCHARBIND and VARYBINBIND data.

varaddr

Is the address of the program variable to which the data is copied. Calling dbaltbind with a NULL var address parameter breaks
previously set bindings.

When binding using DECIMALBIND or NUMERICBIND, the varaddr parameter must be a pointer to a DBNUMERIC or DBDECIMAL
C variable, respectively, with the precision and scale fields of the structure already set to the desired values. You can use
DEFAULTPRECISION to specify a default precision and DEFAULTSCALE to specify a default scale.

Returns

SUCCEED or FAIL. The dbaltbind function returns FAIL if vartype isn't compatible with the SQL Server data type being returned,
or if varaddr is NULL.

Remarks

This function directs DB-Library to copy compute column data returned by SQL Server into a program variable. When each new
row containing computed data is read by dbnextrow or dbgetrow, the data from the designated column in that compute row is
copied into the program variable with the address varaddr. There must be a separate dbaltbind call for each compute column to
be copied. It is not necessary to bind every compute column to a program variable.

SQL Server can return two types of rows: regular rows containing data from columns designated by a SELECT statement's select

list, and compute rows resulting from the COMPUTE clause. The dbaltbind function binds data from compute rows. Use dbbind
for binding data from regular rows.

The calls to dbaltbind must be made after a call to dbresults and before the first call to dbnextrow.

Using dbaltbind causes some overhead because it always copies the row data into the designated program variable. To avoid
this copying, the returned data can be accessed more directly with dbadlen and dbadata.

Because null values can be returned from SQL Server, there is a set of default values, one for each data type that is substituted
when binding null values. You can explicitly set your own values to be substituted for the default null values with the dbsetnull
function. (For more information about a list of the default substitution values, see dbsetnull.)

Examples

This example shows the typical sequence of calls:

DBCHAR name[20];
DBINT namecount;

// Read the query into the command buffer.
dbcmd(dbproc, "SELECT name FROM employee COMPUTE COUNT(name)");
// Send the query to SQL Server.
dbsqlexec(dbproc);
// Get ready to process the results of the query.
dbresults(dbproc);
// Bind the regular row data - name.
dbbind(dbproc, 1, STRINGBIND, (DBINT) 0, name);
// Bind the compute column data - count of name.
dbaltbind(dbproc, 1, 1, INTBIND, (DBINT) 0, (BYTE *) &namecount);
// Now process each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 //C-code to print or process row data
}

See Also

DB-Library for C Data Types

dbgetrow

dbadata

dbnextrow

dbadlen

dbresults

dbanullbind

dbsetnull

dbbind

dbwillconvert

dbconvert

DB Library for C (SQL Server 2000)

dbaltcolid
Returns the operand column ID for a compute column.

Syntax

INT dbaltcolid (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

Is the number of the compute column. The first column is number 1.

Returns

The column ID that the aggregate in the compute applies to. The first column is number 1. If either computeid or column is
invalid, -1 is returned. Call this function after dbnextrow or dbgetrow returns a computeid.

Examples

When issued after the following SELECT statement, dbaltcolid(dbproc, 1, 1) returns 2, because the COMPUTE COUNT clause in
the SELECT statement refers to the second column in the select list:

SELECT dept, name FROM employee
ORDER BY dept, name
COMPUTE COUNT(name) BY dept

See Also

dbadata

dbnextrow

dbadlen

dbnumalts

dbaltlen

dbprtype

dbgetrow

DB Library for C (SQL Server 2000)

dbaltlen
Returns the maximum length of the data for a compute column.

Syntax

DBINT dbaltlen (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

The DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains all
the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

The ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

The number of the column. The first column is number 1.

Returns

The maximum number of bytes that the data can be for a particular column in a compute. When no such column or compute
exists, -1 is returned.

Remarks

dbaltlen returns the maximum length, in bytes, for a particular column in a compute row. For variable-length data, this is not
necessarily the actual length of the data, but rather the maximum length. Calling dbaltlen only after dbnextrow or dbgetrow
returns a computeid. For the actual data length, use dbadlen.

Examples

After the following SELECT statement, calling dbaltlen(dbproc, 1, 1) returns 4, because counts are of SQLINT4 type, which is 4
bytes long:

SELECT dept, name FROM employee
ORDER BY dept, name
COMPUTE COUNT(name) BY dept

See Also

dbadata

dbgetrow

dbadlen

dbnextrow

dbalttype

dbnumalts

DB Library for C (SQL Server 2000)

dbaltop
Returns the type of aggregate function for a compute column.

Syntax

INT dbaltop (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

The DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains all
the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

The ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

The number of the column. The first column is number 1.

Returns

The type of aggregate operator for the particular column in the compute. The types are defined as follows:

Type Aggregate operator
SQLAOPSUM SUM
SQLAOPAVG AVG
SQLAOPCNT COUNT
SQLAOPMIN MIN
SQLAOPMAX MAX

Call dbaltop only after dbnextrow or dbgetrow returns a computeid.

If computeid or column is not valid, -1 is returned.

Examples

After the following SELECT statement, calling dbaltop(dbproc, 1, 1) returns the type for COUNT because the first aggregate
operator in the first COMPUTE clause is COUNT:

SELECT dept, name FROM employee
ORDER BY dept, name
COMPUTE COUNT(name) BY dept

To convert the type to a readable string, use dbprtype.

See Also

dbadata

dbnextrow

dbadlen

dbnumalts

dbaltlen

dbprtype

dbgetrow

DB Library for C (SQL Server 2000)

dbalttype
Returns the data type for a compute column.

Syntax

INT dbalttype (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

The DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains all
the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

The ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

The number of the column. The first column is number 1.

Returns

The type of the data for the particular column in the compute. The types are defined as follows:

Column data type Returned constant
Char SQLCHAR
Varchar SQLCHAR
Binary SQLBINARY
Varbinary SQLBINARY
Tinyint SQLINT1
Smallint SQLINT2
Int SQLINT4
Real SQLFLT4
Float SQLFLT8
Smallmoney SQLMONEY4
Money SQLMONEY
Decimal SQLDECIMAL
Numeric SQLNUMERIC
Smalldatetime SQLDATETIM4
Datetime SQLDATETIME
Image SQLIMAGE
Text SQLTEXT

Call dbalttype only after dbnextrow or dbgetrow returns a computeid.

If either the computeid or column is invalid, -1 is returned.

Examples

In the following SELECT statements, calling dbalttype(dbproc, 1, 1) returns the type for SQLINT4 because counts are of
SQLINT4 type.

SELECT dept, name FROM employee
ORDER BY dept, name
COMPUTE COUNT(name) BY dept

To convert the type to a readable string, use dbprtype.

See Also

DB-Library for C Data Types

dbgetrow

dbadata

dbnextrow

dbadlen

dbnumalts

dbaltlen

dbprtype

DB Library for C (SQL Server 2000)

dbaltutype
Returns the user-defined data type for a compute column.

Syntax

DBINT dbaltutype (
PDBPROCESS dbproc,
INT computeid,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

column

Is the number of the column. The first column is number 1.

Returns

The user-defined data type of the specified compute column on success and -1 on error.

Remarks

This function is defined as type DBINT, because both the DB-Library data type DBINT and user-defined data types are 32 bits long.
Call dbaltutype only after dbnextrow or dbgetrow returns a computeid.

See Also

dbalttype

dbcolutype

DB Library for C (SQL Server 2000)

dbanullbind
Associates an indicator variable with a compute-row column.

Syntax

RETCODE dbanullbind (
PDBPROCESS dbproc,
INT computeid,
INT column,
LPCDBINT indicator);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow. A value of 1 is
the computeid corresponding to the first compute clause in a SELECT statement.

column

Is the number of the column to be associated with the indicator variable.

indicator

Is a pointer to the indicator variable.

Note The indicator parameter is just the pointer to the indicator variable. The variable itself is set.

Returns

SUCCEED or FAIL. The dbanullbind function returns FAIL if computeid or column is invalid.

Remarks

The indicator variable reveals whether a particular compute-row column has been converted and copied to a program variable
successfully or unsuccessfully, or whether it is NULL. Call dbanullbind only after dbnextrow or dbgetrow returns a computeid.

The indicator variable is set when compute rows are processed through dbnextrow. The possible values are:

-1 if the column is NULL.

The full length of the column's data. This value is in bytes if the column was bound to a program variable through
dbaltbind; the binding did not specify
any data conversions; and the bound data was truncated because the program variable was too small to hold the column's
data.

0 if the column was successfully bound and copied to a program variable.

Note Detection of character string truncation is implemented only for CHARBIND and VARYCHARBIND.

See Also

dbadata

dbnextrow

dbadlen

dbnullbind

dbaltbind

DB Library for C (SQL Server 2000)

dbbind
Binds a regular result column (a column of results from a SELECT statement's select list) to a program variable.

Syntax

RETCODE dbbind (
PDBPROCESS dbproc,
INT column,
INT vartype,
DBINT varlen,
LPBYTE varaddr);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the column number of the row data to be copied to a program variable. The first column is number 1.

vartype

Is a description of the binding's data type. It corresponds to the data type of the program variable that receives the copy of the
data from the DBPROCESS. The dbbind function supports a wide range of type conversions, so vartype can be different from the
type returned by the SQL query. For instance, a SQLMONEY result can be bound to a DBFLT8 program variable, using FLT8BIND,
and the appropriate data conversion happens automatically. For more information about a list of the data conversions provided
by DB-Library, see dbwillconvert. For more information about a list of the type definitions used by DB-Library, see DB-Library for
C Data Types.

The following table lists legal vartypes recognized by dbbind and the program variable and SQL Server type tokens that each
refers to.

vartype varaddr
SQL Server data type

of column
CHARBIND DBCHAR SQLCHAR, SQLVARCHAR, or

SQLTEXT
STRINGBIND DBCHAR SQLCHAR, SQLVARCHAR, or

SQLTEXT
NTBSTRINGBIND DBCHAR SQLCHAR, SQLVARCHAR, or

SQLTEXT
VARYCHARBIND DBVARYCHAR SQLCHAR, SQLVARCHAR, or

SQLTEXT
BINARYBIND DBBINARY SQLBINARY, SQLVARBINARY, or

SQLIMAGE
VARYBINBIND DBVARYBIN SQLBINARY, SQLVARBINARY, or

SQLIMAGE
TINYBIND DBTINYINT SQLINT1 or SQLINTN
SMALLBIND DBSMALLINT SQLINT2 or SQLINTN
INTBIND DBINT SQLINT4 or SQLINTN
FLT4BIND DBFLT4 SQLFLT4 or SQLFLTN
FLT8BIND DBFLT8 SQLFLT8 or SQLFLTN
BITBIND DBBIT SQLBIT
SMALLMONEYBIND DBMONEY4 SQLMONEY4 or SQLMONEYN
MONEYBIND DBMONEY SQLMONEY or SQLMONEYN
DECIMALBIND DBDECIMAL SQLDECIMAL
NUMERICBIND DBNUMERIC SQLNUMERIC
SRCDECIMALBIND DBDECIMAL SQLDECIMAL

SRCNUMERICBIND DBNUMERIC SQLNUMERIC
SMALLDATETIBIND DBDATETIM4 SQLDATETIM4 or SQLDATETIMN
DATETIMEBIND DBDATETIME SQLDATETIME or SQLDATETIMN

Note that the SQL Server type in the preceding table is listed merely for your information. The vartype you specify does not
necessarily have to correspond to a particular SQL Server data type because dbbind converts SQL Server data into the specified
vartype.

The following table lists the four representations for character and text data. They differ according to whether the data is blank-
padded or null-terminated.

vartype varaddr Padding Terminator
CHARBIND DBCHAR blanks none
STRINGBIND DBCHAR blanks \0
NTBSTRINGBIND DBCHAR none \0
VARYCHARBIND DBVARYCHAR none none

Note that "\0" is the null terminator character. Similarly, binary and image data can be stored in two different ways.

vartype varaddr Padding
BINARYBIND DBBINARY nulls
VARYBINBIND DBVARBINARY none

When the source column specified by the column parameter has a type of SQLDECIMAL or SQLNUMERIC, you can keep the same
precision and scale in your bound C variable by using SRCDECIMALBIND or SRCNUMERICBIND.

varlen

Is the length of the varaddr program variable in bytes. For fixed-length vartypes, such as MONEYBIND or FLT8BIND, this length is
ignored. For character, text, binary, and image types, varlen must describe the total length of the available destination buffer
space, including any space that can be required for special terminating bytes, such as a null terminator. If varlen is 0, the number
of bytes available is copied into the program variable. (For char and binary SQL Server data, the number of bytes available is
equal to the defined length of the database column, including any blank padding. For varchar, varbinary, text, and image data,
the number of bytes available is equal to the actual data contained in the column.) Therefore, if you are sure that your program
variable is large enough to handle the results, you can set varlen to 0.

In some cases, DB-Library issues a message indicating that data conversion resulted in an overflow. This is usually caused by a
varlen specification being too small for the data being received from SQL Server. For example, if varlen is set to 5, vartype is set
to VARYCHARBIND, and the SQL Server column being bound is of type VARCHAR with a length of 20. When the bind occurs
(using dbnextrow), the overflow message is issued. Note however that five bytes of data will be bound. Other types of binds also
can cause the overflow message to be issued. For information about data type conversions, see dbconvert.

varaddr

Is the address of the program variable to which the data is copied. Calling dbbind with a NULL varaddr parameter breaks a
previously set binding.

When binding using DECIMALBIND or NUMERICBIND, the varaddr parameter must be a pointer to a DBNUMERIC or DBDECIMAL
C variable, respectively, with the precision and scale fields of the structure already set to the desired values. You can use
DEFAULTPRECISION to specify a default precision and DEFAULTSCALE to specify a default scale.

Returns

SUCCEED or FAIL. The dbbind function returns FAIL if the column number given isn't valid, if the vartype isn't compatible with
the SQL Server data type being returned, or if varaddr is NULL.

Remarks

Data comes back from SQL Server one row at a time. This function directs DB-Library to copy the data for a regular column
(designated in a SELECT statement's select list) into a program variable. When each new row containing regular (not compute)
data is read using dbnextrow or dbgetrow, the data from the designated column in that row is copied into the program variable
with the address varaddr. There must be a separate dbbind call for each regular column to be copied. It is not necessary to bind

every column to a program variable. A result column can be bound to only one program variable.

SQL Server can return two types of rows: regular rows and compute rows resulting from the COMPUTE clause of a SELECT
statement. The dbbind function binds data from regular rows. Use dbaltbind for binding data from compute rows.

Calls to dbbind must be made after a call to dbresults and before the first call to dbnextrow.

Using dbbind causes some overhead because it copies the row data into the designated program variable. To avoid this copying,
the returned data can be accessed more directly with dbdatlen and dbdata.

Because null values can be returned from SQL Server, there is a set of default values, one for each data type that will be
substituted when binding null values. You can explicitly set your own values to be substituted for the default null value with the
dbsetnull function. (For more information about a list of the default substitution values, see dbsetnull.)

For the Microsoft Windows® operating system, DB-Library retrieves information about date, time, numeric, and currency
formatting from the Sqlcommn.loc file. The location of Sqlcommn.loc is pointed to by the SQLLocalizationFile key in the
Windows initialization file (Win.ini) under the [SQLSERVER] application heading. For example:

[SQLSERVER]
SQLLocalizationFile=C:\SQL60\BIN\SQLCOMMN.LOC

For the Microsoft Windows NT® 4.0 operating system, you set the date, time, numeric, and currency formatting using the
International application in Control Panel. Use the SQL Server Client Network Utility Use International Settings option to
activate this for DB-Library.

Examples

This example shows the typical sequence of calls:

DBINT xvariable;
DBCHAR yvariable[10];

// Read the query into the command buffer.
dbcmd(dbproc, "SELECT x = 100, y = 'hello'");
// Send the query to SQL Server.
dbsqlexec(dbproc);
// Get ready to process the results of the query.
dbresults(dbproc);
// Bind column data to program variables.
dbbind(dbproc, 1, INTBIND, (DBINT) 0, (BYTE *) &xvariable);
dbbind(dbproc, 2, STRINGBIND, (DBINT) 0, yvariable);

// Now process each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // C-code to print or process row data
}

See Also

DB-Library for C Data Types

dbgetrow

dbaltbind

dbnextrow

dbanullbind

dbresults

dbconvert

dbsetnull

dbdata

dbwillconvert

dbdatlen

DB Library for C (SQL Server 2000)

dbbylist
Returns the bylist for a compute row.

Syntax

LPCBYTE dbbylist (
PDBPROCESS dbproc,
INT computeid,
LPINT size);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and targets. The computeid is returned by dbnextrow or dbgetrow.

size

Is a pointer to an integer which dbbylist sets to the number of elements in the bylist.

Returns

A pointer to an array of BYTES containing the numbers of the columns that compose the bylist for the specified compute. The
names of the columns are available by calling dbcolname. If the computeid is out of range, NULL is returned.

The size of the array is returned in the size parameter. A size of 0 indicates that either this particular compute has no bylist or the
computeid is out of range.

Remarks

A SELECT statement's COMPUTE clause can contain the keyword BY, followed by a list of columns. This list, known as the bylist,
divides the results into subgroups based on changing values in the specified columns. The COMPUTE clause's row aggregate is
applied to each subgroup, generating a compute row for each subgroup.

Call this function after dbresults has returned SUCCEED.

Examples

Assume the following command has been executed:

SELECT dept, name, year, sales FROM employee
ORDER BY dept, name, year
COMPUTE COUNT(name) BY dept,name

The call dbbylist(dbproc, 1, &size) sets size to 2 because there are two items in the bylist. It returns a pointer to an array of 2
BYTES, which contain the values 1 and 2, indicating that the bylist is composed of columns 1 and 2 from the select list.

See Also

dbadata

dbcolname

dbadlen

dbgetrow

dbaltlen

dbnextrow

dbalttype

dbresults

DB Library for C (SQL Server 2000)

dbcancel
Cancels the current command batch and flushes any pending results.

Syntax

RETCODE dbcancel (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

You can call this function after calling dbsqlexec, dbsqlsend, dbsqlok, dbresults, or dbnextrow to cancel the execution of the
current command batch that SQL Server is processing and eliminate any pending results. When dbcancel is called, SQL Server is
interrupted and stops executing the command batch associated with the dbproc. Any pending results are read and discarded.
Note that dbcancel cancels all the commands in the current command batch. Do not use it to cancel only the current command
in a multiple-command batch; use dbcanquery instead.

If you receive the DB-Library error 10038 "Results Pending", you can call dbcancel to clear the pending results. If dbcancel
returns FAIL, the server may not be able to respond to the cancel request. Either continue to call dbcancel until it returns
SUCCEED, or close the DBPROCESS connection and open a new one.

See Also

dbcanquery

dbsqlexec

dbnextrow

dbsqlok

dbresults

dbsqlsend

DB Library for C (SQL Server 2000)

dbcanquery
Cancels any rows pending from the most recently executed query.

Syntax

RETCODE dbcanquery (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

This function is an efficient way to throw away any unread rows that result from the most recently executed SQL query. Calling
dbcanquery is similar to calling dbnextrow until it returns NO_MORE_ROWS. Binds are broken before rows are read.

The dbresults function must return SUCCEED before an application can call dbcanquery.

If you want to ignore all of the results from all of the commands in the current command batch, call dbcancel.

See Also

dbcancel

dbresults

dbnextrow

dbsqlexec

DB Library for C (SQL Server 2000)

dbchange
Determines whether a command batch has changed the current database to another database.

Syntax

LPCSTR dbchange (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

A pointer to the null-terminated name of the new database, if any. If the database has not changed, NULL is returned.

Remarks

The dbchange function informs the program of a switch from one database to another by catching any instance of the Transact-
SQL USE statement.

When connected to SQL Server version 4.2, a USE statement does not take effect until the end of the batch. The dbchange
function is therefore useful only in determining whether the current command batch has changed to another database for
subsequent command batches. The simplest way to keep track of database switches is to call dbchange when dbresults returns
NO_MORE_RESULTS at the end of each command batch.

When connected to SQL Server 6.0 and later, a USE statement takes effect immediately.

Alternatively, you can always get the name of the current database by calling dbname.

See Also

dbname

dbsqlsend

dbresults

dbuse

dbsqlexec

DB Library for C (SQL Server 2000)

dbclose
Closes and frees a single DBPROCESS structure.

Syntax

RETCODE dbclose (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL

Remarks

The dbclose function is the inverse of dbopen. It cleans up any activity associated with a single DBPROCESS structure and frees
the memory. It also closes the corresponding network connection and any open cursors.

To close all open DBPROCESS structures, use dbexit.

Calling dbclose with a parameter not returned by dbopen causes an error.

See Also

dbexit

dbopen

DB Library for C (SQL Server 2000)

dbclrbuf
Clears rows from the row buffer.

Syntax

void dbclrbuf (
PDBPROCESS dbproc,
DBINT n);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

n

Is the number of rows you want cleared from the row buffer. If n is equal to
or greater than the number of rows in the buffer, all but the newest row are
removed. If n is less than 1, the call is ignored. Rows are cleared on a first-in/first-out basis.

Remarks

You can turn row buffering on by calling dbsetopt (dbproc, DBBUFFER, n), where n is the number of rows you would like DB-
Library to buffer. DB-Library for C can buffer rows as they are returned from SQL Server. If buffering is on, you can refer to
buffered rows that have been read from SQL Server using dbgetrow.

The row buffer can become full if SQL Server returns more than the n rows that you said you wanted buffered. The row buffer is
full when dbnextrow returns BUF_FULL. After the row buffer is full, dbnextrow continues to return BUF_FULL until at least one
row is freed by calling dbclrbuf. The dbclrbuf function frees the oldest n rows in the buffer.

See Also

dbgetrow

dbnextrow

DB-Library Options

dbsetopt

DB Library for C (SQL Server 2000)

dbclropt
Clears an option set by dbsetopt.

Syntax

RETCODE dbclropt (
PDBPROCESS dbproc,
INT option,
LPCSTR param);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server. If dbproc
is NULL, the option is set for all active and future DBPROCESS structures.

option

Is the option to be turned off.

param

Is the option parameter. Certain options take parameters. If an option does not take a parameter, param is ignored. If an option
does take a parameter, param is ignored for all options except DBOFFSET and DBSTAT.

The DBOFFSET and DBSTAT options can have several settings, each with a different parameter. In these cases, dbclropt needs a
valid param to determine which option parameter to clear.

For more information about a list of options that take parameters, see DB-Library Options.

If an invalid parameter is specified for one of the SQL Server options, it will not be discovered until the command is sent to SQL
Server. The dbsqlexec or dbsqlsend calls will fail and DB-Library will invoke the user-installed message handler. If an invalid
parameter is specified for one of the DB-Library options (DBBUFFER or DBTEXTLIMIT), dbclropt itself will fail.

Returns

SUCCEED or FAIL.

Remarks

This function clears SQL Server and DB-Library options that have been set with dbsetopt. Although SQL Server options can be
set and cleared directly through Transact-SQL, use dbsetopt and dbclropt in an application to set and clear options. This
provides a uniform interface for setting both SQL Server and DB-Library options. It also allows the application to use dbisopt to
check the status of an option.

The dbclropt function does not immediately clear the options specified. With the exception of DBBUFFER and DBNOAUTOFREE,
options are not cleared until the command buffer is sent to SQL Server (by invoking the dbsqlexec function). An additional result
is returned by using dbresults. For information about results returned, see dbresults.

Note that the command string generated by this function is not immediately sent to SQL Server. Instead, it is buffered within DB-
Library and sent the next time dbsqlexec is invoked. Therefore, any options requested by this function do not go into effect until
then. Also, the results of the command generated by this function are not returned until the command is transferred to SQL
Server. The application should be expecting the results returned from the command string generated by this function.

For a complete list of options, see DB-Library Options.

See Also

dbisopt

DB-Library Options

dbsetopt

DB Library for C (SQL Server 2000)

dbcmd
Adds text to the DBPROCESS command buffer.

Syntax

RETCODE dbcmd (
PDBPROCESS dbproc,
LPCSTR cmdstring);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

cmdstring

Is a null-terminated character string to be copied into the command buffer.

Returns

SUCCEED or FAIL.

Remarks

This function adds text to the command buffer in the DBPROCESS structure. It adds to the existing command buffer; it doesn't
delete or overwrite the current contents except after the buffer has been sent to SQL Server. The user can call dbcmd repeatedly.
Note that sequential calls are concatenated; the application must include any necessary blanks between the end of one line and
the beginning of the next.

After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or dbfcmd automatically clears the command buffer
before the new text is entered. If this situation is undesirable, set the DBNOAUTOFREE option. When DBNOAUTOFREE is set, the
command buffer is cleared only by a call to dbfreebuf.

The dbfcmd function is a related function. Unlike dbcmd, dbfcmd takes additional parameters and interprets cmdstring as a
format string that is passed to sprintf along with any additional parameters.

Examples

This example shows how to use dbcmd to build up a multiple-line SQL statement:

DBPROCESS *dbproc;

dbcmd(dbproc, "SELECT name FROM sysobjects");
dbcmd(dbproc, " WHERE id < 5");
dbcmd(dbproc, " AND type='S'");

Note the leading spaces in the second and third calls to dbcmd. Leading spaces are needed to properly concatenate the entire
command string.

See Also

Bulk-Copy Functions

dbsetopt

dbfcmd

dbsqlexec

dbfreebuf

dbsqlsend

DB-Library Options

DB Library for C (SQL Server 2000)

dbcmdrow
Determines whether the current command can return rows.

Syntax

RETCODE dbcmdrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED to indicate that the statement can return rows.

FAIL to indicate that the statement can't return rows.

Remarks

dbcmdrow determines whether the current command is a Transact-SQL SELECT statement or an EXECUTE statement on a stored
procedure containing a SELECT statement. Call dbcmdrow after dbresults returns SUCCEED.

Even if dbcmdrow returns SUCCEED, the statement will not return any rows if none have qualified. To determine whether any
rows are actually being returned, use dbrows.

Even if dbcmdrow returns FAIL, you must still process the results by calling dbnextrow until it returns NO_MORE_ROWS.

See Also

dbnextrow

dbrows

dbresults

dbrowtype

DB Library for C (SQL Server 2000)

dbcolinfo
Returns information about a regular column or a compute column in a result set, or a column in a cursor.

Syntax

RETCODE dbcolinfo (
PDBHANDLE pdbhandle,
INT type,
DBINT column,
DBINT computeid,
LPDBCOL lpdbcol);

Arguments

pdbhandle

Is a DBPROCESS pointer or a cursor handle. If type is CI_REGULAR or CI_ALTERNATE, this is a DBPROCESS pointer. If type is
CI_CURSOR, this is a DBCURSOR handle.

type

Is the type of column information to return. The following table describes the different type values:

type Description
CI_REGULAR Returns information about a regular column in the current

result set.
CI_ALTERNATE Returns information about a compute column in the

current result set.
CI_CURSOR Returns information about a column in the open cursor.

column

Is the number of the column. The first column is number 1.

computeid

If type is CI_ALTERNATE, this is the ID that identifies the compute (the result of a COMPUTE clause) value. The computeid is
returned by dbnextrow or dbgetrow. If type is not CI_ALTERNATE, specify 0.

lpdbcol

Is a pointer to a DBCOL structure that DB-Library will fill with detailed information about the specified column.

The DBCOL structure is defined as follows:

typedef struct
{
 DBINT SizeOfStruct;
 CHAR Name[MAXCOLNAMELEN+1]
 CHAR ActualName[MAXCOLNAMELEN+1]
 CHAR TableName[MAXTABLENAME+1]
 SHORT Type;
 DBINT UserType;
 DBINT MaxLength;
 BYTE Precision;
 BYTE Scale;
 BOOL VarLength;
 BYTE Null;
 BYTE CaseSensitive;
 BYTE Updatable;
 BOOL Identity;
} DBCOL, PTR LPDBCOL;

The DBCOL fields (and the equivalent DB-Library functions, if any) are described here.

Field Description
SizeOfStruct Before calling dbcolinfo, set this field equal to the value

returned by the C sizeof function for the DBCOL structure.

Name Is the name of the returned column (dbcolname).
ActualName Is the actual name of the column in TableName if type is

CI_CURSOR; otherwise, this is the same as Name.
TableName Is the table that contains the column if type is CI_CURSOR;

otherwise, NULL.
Type Is the data type of the column (dbcoltype, dbalttype).
UserType Is the user-defined data type of the column (dbcolutype,

dbaltutype).
MaxLength Is the maximum length, in bytes, of the column (dbcollen,

dbaltlen).
Precision The precision if Type is SQLDECIMAL or SQLNUMERIC;

otherwise, - 1.
Scale The scale if Type is SQLDECIMAL or SQLNUMERIC;

otherwise, - 1.
VarLength Is one of the following (dbvarylen):

TRUE if the column is variable length.
FALSE if the column is fixed length.

Null Is one of the following:

TRUE if the column allows nulls.
FALSE if the column does not allow nulls.
DBUNKNOWN if nullability is unknown.

CaseSensitive Is one of the following:

TRUE if the column is case-sensitive.
FALSE if the column is case-insensitive.
DBUNKNOWN if case sensitivity is unknown.

Updatable Is one of the following:

TRUE if the column can be changed.
FALSE if the column is read-only and cannot be changed.
DBUNKNOWN if updatability is unknown.

Identity Is one of the following:

TRUE if the column is an identity column.
FALSE if the column is not an identity column.

Returns

SUCCEED or FAIL.

Remarks

Before calling dbcolinfo, set the SizeOfStruct field equal to the value returned by the C sizeof function for the DBCOL structure.
The dbcolinfo function fills the supplied DBCOL structure with information about the specified column.

Call this function after dbresults returns SUCCEED, or after dbcursoropen returns a cursor handle.

See Also

dbaltlen

dbcolname

dbalttype

dbcoltype

dbaltutype

dbcolutype

dbcollen

dbvarylen

DB Library for C (SQL Server 2000)

dbcollen
Returns the maximum length, in bytes, of the data for a column.

Syntax

DBINT dbcollen (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

The maximum length of the data for the particular column. If the column number is not in range, -1 is returned.

Remarks

In the case of variable-length data, the maximum length is not necessarily the actual length of the data, but rather the maximum
length that the data can be. For the actual data length, use dbdatlen. Call dbcollen after dbresults returns SUCCEED.

Examples

The following example shows how to use dbcollen:

DBPROCESS *dbproc;
int colnum;
DBINT column_length;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT name, id, type FROM sysobjects");

// Send the command to SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);

// Examine the column lengths.
for (colnum = 1; colnum < 4; colnum++)
{
 column_length = dbcollen(dbproc, colnum);
 printf("column %d, length is %ld.\n", colnum, column_length);
}

See Also

dbcolname

dbdatlen

dbcoltype

dbnumcols

dbdata

DB Library for C (SQL Server 2000)

dbcolname
Returns a pointer to the null-terminated name of a particular result column.

Syntax

LPCSTR dbcolname (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

A char pointer to the null-terminated name of the particular column. If the column number is not in range or if the column is the
result of an expression with no name assigned, dbcolname returns NULL. If the column number is out of range, dbcolname also
calls the error handler with an error of 10011 (SQLECNOR).

Examples

The following example shows how to use dbcolname:

DBPROCESS *dbproc;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT name, id, type FROM sysobjects");

// Send the command to SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);

// Examine the column names.
printf("first column name is %s\n", dbcolname(dbproc, 1));
printf("second column name is %s\n", dbcolname(dbproc, 2));
printf("third column name is %s\n", dbcolname(dbproc, 3));

See Also

dbcollen

dbdatlen

dbcoltype

dbnumcols

dbdata

DB Library for C (SQL Server 2000)

dbcoltype
Returns the data type for a regular result column.

Syntax

INT dbcoltype (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

A value for the data type for the particular column. If the column is not in range,
-1 is returned.

Column data type Returned constant
Char SQLCHAR
Varchar SQLCHAR
Binary SQLBINARY
Varbinary SQLBINARY
Tinyint SQLINT1
Smallint SQLINT2
Int SQLINT4
Real SQLFLT4
Float SQLFLT8
Smallmoney SQLMONEY4
money SQLMONEY
decimal SQLDECIMAL
numeric SQLNUMERIC
smalldatetime SQLDATETIM4
datetime SQLDATETIME
image SQLIMAGE
text SQLTEXT

Remarks

The dbcoltype function returns an integer value for the type. Use dbprtype to convert the type value into a readable string. For
more information about a list of SQL Server types, see DB-Library for C Data Types. Call dbcoltype after dbresults returns
SUCCEED.

This function cannot determine whether a column can take null values.

Examples

This example shows how to use dbcoltype and dbprtype:

DBPROCESS *dbproc;
int colnum;
int coltype;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT name, id, type FROM sysobjects");

// Send the command to SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);
// Examine the column types.
for (colnum = 1; colnum < 4; colnum++)
{
 coltype = dbcoltype(dbproc, colnum);
 printf("column %d, type is %s.\n", colnum, dbprtype(coltype));
}

See Also

dbcollen

DB-Library for C Data Types

dbcolname

dbnumcols

dbdata

dbprtype

dbdatlen

DB Library for C (SQL Server 2000)

dbcolutype
Returns the user-defined data type for a regular result column.

Syntax

DBINT dbcolutype (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

The column parameter's user-defined data type on success and -1 on error.

Remarks

This function is defined as data type DBINT to accommodate the size of user-defined data types. Both DBINT and user-defined
data types are 32 bits long. Call dbcolutype after dbresults returns SUCCEED.

Example

This example shows how to use dbcolutype:

DBPROCESS *dbproc;
int colnum;
int numcols;

// Put the command into the command buffer.
dbcmd (dbproc, "SELECT * FROM mytable");

// Send the command to the SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);
// Examine the user-defined column types.
numcols = dbnumcols(dbproc);
for (colnum = 1; colnum < numcols; colnum++)
{
 printf
 ("column %d, user-defined type is %ld.\n",
 colnum, dbcolutype(dbproc, colnum));
}

See Also

dbaltutype

dbcoltype

DB Library for C (SQL Server 2000)

dbconvert
Converts data from one data type to another.

Syntax

INT dbconvert (
PDBPROCESS dbproc,
INT srctype,
LPCBYTE src,
DBINT srclen,
INT desttype,
LPBYTE dest,
DBINT destlen);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

In dbconvert, the DBPROCESS is used only to supply any custom null values that the program specified through dbsetnull. If
dbproc is NULL, dbconvert uses the default values for null value data conversions.

srctype

Is the data type of the source data to be converted. This parameter can be any of the SQL Server data type tokens. You can use
dbcoltype to get the SQL Server data type token for a particular column.

src

Is a pointer to the source data to be converted. If this pointer is NULL, dbconvert puts an appropriate null value in the destination
variable. You can use dbdata to get a pointer to data from a SQL Server column.

When srctype is SQLDECIMAL or SQLNUMERIC, the src parameter must be a pointer to a valid DBNUMERIC or DBDECIMAL C
variable, respectively.

srclen

Is the length, in bytes, of the source data to be converted. This length is used for the following srctype data type tokens:

SQLCHAR, SQLVARCHAR, SQLTEXT

SQLBINARY, SQLVARBINARY, SQLIMAGE

SQLINTN, SQLFLTN, SQLMONEYN, SQLDATETIMN

This length is ignored for all fixed-length, non-NULL data types. If srclen is 0, the source data is assumed to be null, and
dbconvert places an appropriate null value in the destination variable. You can use dbdatlen to get the length of SQL
Server data.

When src points to a DBCHAR string, a srclen of -1 indicates that the string is null-terminated.

desttype

Is the destination data type into which the source data is to be converted. This parameter can be any of the SQL Server data type
tokens.

dest

Is a pointer to the destination variable that will receive the converted data. If this pointer is NULL, dbconvert calls the user-
supplied error handler (if any) and returns -1.

When desttype is SQLDECIMAL or SQLNUMERIC, the dest parameter must be a pointer to a DBNUMERIC or DBDECIMAL C
variable, respectively, with the precision and scale fields of the structure already set to the desired values. You can use
DEFAULTPRECISION to specify a default precision and DEFAULTSCALE to specify a default scale.

destlen

Is the length, in bytes, of the destination variable. This length is used for the following desttype data type tokens:

SQLCHAR, SQLVARCHAR, SQLTEXT

SQLBINARY, SQLVARBINARY, SQLIMAGE

SQLINTN, SQLFLTN, SQLMONEYN, SQLDATETIMN

The destlen is ignored for all fixed-length, non-NULL data types.

When dest points to a DBCHAR string or a DBBINARY array, the value of destlen must be the total length of the destination
buffer space, or -1 to indicate that there is sufficient space available. Note that when dest points to a DBCHAR string, a
destlen of -1 causes the character string to be given a terminating null.

Returns

The length of the converted data, in bytes, if the data type conversion succeeds. If the conversion fails, -1 is returned. If dbconvert
fails, it first calls a user-supplied error handler (if any). This routine may fail for one of these reasons:

The requested conversion was unavailable.

The conversion resulted in truncation, overflow, or loss of precision in the destination variable.

A syntax error occurred while converting a character string to some numeric type.

Remarks

This function allows the application to convert data from one representation to another. To determine whether a particular
conversion is permitted, the program can call dbwillconvert before attempting a conversion.

The dbconvert function can convert data stored in any of the SQL Server data types (although not all conversions are valid). The
following table shows the program variable type (src or dest parameters) you must provide for each non-NULL SQL Server data
type (srctype or desttype parameters).

Data type (srctype, desttype) Program variable type (src, dest)
SQLCHAR DBCHAR
SQLVARCHAR DBCHAR
SQLTEXT DBCHAR
SQLBINARY DBBINARY
SQLVARBINARY DBBINARY
SQLIMAGE DBBINARY
SQLINT1 DBTINYINT
SQLINT2 DBSMALLINT
SQLINT4 DBINT
SQLFLT4 DBFLT4
SQLFLT8 DBFLT8
SQLBIT DBBIT
SQLMONEY4 DBMONEY4
SQLMONEY DBMONEY
SQLDATETIM4 DBDATETIM4
SQLDATETIME DBDATETIME
SQLDECIMAL DBDECIMAL
SQLNUMERIC DBNUMERIC

The following table shows the program variable type (src or dest parameters) you must provide for each fixed-length SQL Server
data type (srctype or desttype parameters) that allows NULL values and valid byte length (srclen or destlen parameters).

srctype, desttype srclen, destlen src, dest

SQLINTN 1 DBTINYINT
SQLINTN 2 DBSMALLINT
SQLINTN 4 DBINT
SQLFLTN 4 DBFLT4
SQLFLTN 8 DBFLT8
SQLMONEYN 4 DBMONEY4
SQLMONEYN 8 DBMONEY
SQLDATIMETIMN 4 DBDATETIM4
SQLDATIMETIMN 8 DBDATETIME

Conversion to and from all SQL Server data types is supported, except for conversion between SQLDATETIME or SQLDATETIM4
and the following data types:

SQLINT1, SQLINT2, SQLINT4

SQLFLT4, SQLFLT8

SQLBIT

SQLMONEY, SQLMONEY4

SQLDECIMAL, SQLNUMERIC

A conversion to or from the data types SQLBINARY and SQLIMAGE is a straight bit-copy unless the conversion involves
SQLCHAR or SQLTEXT. When converting SQLCHAR or SQLTEXT data to SQLBINARY or SQLIMAGE, dbconvert interprets the
SQLCHAR or SQLTEXT string as hexadecimal digits, whether or not the string contains a leading 0x. When converting SQLBINARY
or SQLIMAGE data to SQLCHAR or SQLTEXT, dbconvert creates a string of hexadecimal digits without a leading 0x.

Converting to the approximate numeric data types SQLFLT4 or SQLFLT8 can result in some loss of precision. Converting from the
approximate numeric data types SQLFLT4 or SQLFLT8 to SQLCHAR or SQLTEXT can also result in some loss of precision.

Converting to SQLFLTx, SQLINTx, SQLMONEY, SQLMONEY4, SQLDECIMAL, or SQLNUMERIC can result in overflow if the number
is larger than the destination's maximum value, or in underflow if the number is smaller than the destination's minimum value. If
overflow occurs when converting to SQLCHAR or SQLTEXT, the first character of the resulting value contains an asterisk (*) to
indicate the error.

When binding data to variables rather than accessing the data directly, use dbbind to convert instead of dbconvert.

For the Microsoft Windows® operating system, DB-Library retrieves information about date, time, numeric, and currency
formatting from the Sqlcommn.loc file. The location of Sqlcommn.loc is pointed to by the SQLLocalizationFile key in the
Windows initialization file (Win.ini) under the [SQLSERVER] application heading. For example:

[SQLSERVER]
SQLLocalizationFile=C:\SQL60\BIN\SQLCOMMN.LOC

For the Microsoft Windows NT® 4.0 operating system, you set the date, time, numeric, and currency formatting using the
International application in Control Panel. Use the SQL Server Client Network Utility Use International Settings option to
activate this for DB-Library.

Examples

This example converts SQL Server data obtained with dbdata:

DBCHAR title[81];
DBCHAR price[9];

// Read the query into the command buffer.
dbcmd(dbproc, "SELECT title, price, royalty FROM pubs..titles");

// Send the query to SQL Server.
dbsqlexec(dbproc);

// Get ready to process the results of the query.
dbresults(dbproc);

// Process each row.

while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // The first dbconvert() adds a null terminator to the string.
 dbconvert(dbproc, SQLCHAR, (dbdata(dbproc,1)), (dbdatlen(dbproc,1)),
 SQLCHAR, title, (DBINT)-1);
 // The second dbconvert() converts money to string.
 dbconvert(dbproc, SQLMONEY, (dbdata(dbproc,2)), (DBINT)-1, SQLCHAR,
 price, (DBINT)-1);

 if (dbdatlen(dbproc,3) != 0)
 printf ("%s\n $%s %ld\n", title, price,
 *((DBINT *)dbdata(dbproc,3)));
}

See Also

dbaltbind

dberrhandle

dbbind

DB-Library for C Data Types

dbcoltype

dbsetnull

dbdata

dbwillconvert

dbdatlen

Error Messages

DB Library for C (SQL Server 2000)

dbcount
Returns the number of rows affected by a Transact-SQL statement.

Syntax

DBINT dbcount (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of rows affected by the current statement. Call dbiscount to determine if this count is correct.

Remarks

After the results of a statement have been processed, you can call dbcount to find out how many rows were affected by the
statement. For example, if a SELECT statement was sent to SQL Server and you have read all the rows by calling dbnextrow until
it returned NO_MORE_ROWS, you can call DBCOUNT to find out how many rows were retrieved.

If the current statement doesn't immediately return rows (for example, a DELETE statement), you can call dbcount after
dbresults.

If the current statement executes a stored procedure, for example an EXEC or a call to a remote stored procedure, dbcount
reports the number of rows returned by the last SELECT statement executed by the stored procedure. Note that a stored
procedure without a SELECT statement can execute a SELECT simply by calling another stored procedure with a SELECT
statement.

See Also

dbnextrow

dbresults

DB-Library Options

DB Library for C (SQL Server 2000)

dbcurcmd
Returns the number of the current command within a command batch.

Syntax

INT dbcurcmd (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of the command whose results are currently being processed. The first command in a batch is number 1.

Remarks

The command number is incremented every time dbresults returns SUCCEED or FAIL. Unsuccessful commands are counted. The
command number is reset by each call to dbsqlexec or dbsqlsend.

See Also

dbcmdrow

dbrows

dbmorecmds

dbsqlexec

dbresults

dbsqlsend

DB Library for C (SQL Server 2000)

dbcurrow
Returns the number of the row currently being read.

Syntax

DBINT dbcurrow (PDBPROCESS dproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of the current row.

Remarks

dbcurrow returns the number of the row most recently read by dbgetrow or dbnextrow. When you do not turn on row
buffering, dbfirstrow, dbcurrow, and dblastrow always return the same value (the number of the current row).

Use dbgetrow to read rows from the row buffer.

The first row returned from SQL Server is number 1. The row number is changed every time dbnextrow or dbgetrow returns
SUCCEED. The row number is reset to 0 by each new call to dbresults.

See Also

dbclrbuf

DB-Library Options

dbfirstrow

dbnextrow

dbgetrow

dbresults

dblastrow

dbsetopt

DB Library for C (SQL Server 2000)

dbdata
Returns a pointer to the data for a result column.

Syntax

LPCBYTE dbdata (
PDBPROCESS dproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

A BYTE pointer to the data for the column. A NULL BYTE pointer is returned if there is no such column or if the data has a null
value. To make sure that the data is really a null value, check for a return of 0 from dbdatlen.

Remarks

The data is not null-terminated. To get the length of the data, use dbdatlen.

The dbbind function automatically binds data to your program variables. It is often easier to use than dbdata, but it makes a
copy of the data. Call dbdata only after dbnextrow or dbgetrow has returned REG_ROW.

Example

The following example shows how to use dbdata:

DBPROCESS *dbproc;
DBINT row_number = 0;
DBINT object_id;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT id FROM sysobjects");

// Send the command to SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);
// Examine the data in each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 row_number++;
 object_id = *((DBINT *)dbdata(dbproc, 1));
 printf("row %ld, object id is %ld.\n", row_number, object_id);
}

See Also

dbbind

dbcoltype

dbcollen

dbdatlen

dbcolname

dbnumcols

DB Library for C (SQL Server 2000)

dbdataready
Determines whether database command processing sent data back to the client is ready to be processed.

Syntax

BOOL dbdataready (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

TRUE if data is available to be read; FALSE otherwise.

Remarks

This function allows an application to continue processing while SQL Server is actually performing the database operation.

The dbdataready function is ordinarily used after a call to dbsqlsend and before a call to dbsqlok. After dbsqlsend, SQL Server
begins executing the commands in the command buffer. When dbsqlok is called, DB-Library for C waits for SQL Server to finish
processing before returning control to the application.

The dbdataready function provides a way to determine when data is available for processing. It should be called repeatedly until
it returns a nonzero value. At that point, the application can call dbsqlok, dbresults, and dbnextrow.

Important It is possible for dbdataready to return FALSE forever if another process has a conflicting lock or if the connection is
broken. The calling program should contain a time-out mechanism.

See Also

Building Applications

dbsqlok

dbresults

dbsqlsend

dbsettime

DB Library for C (SQL Server 2000)

dbdatecrack
Converts a computer-readable DBDATETIME value into user-accessible format.

Syntax

RETCODE dbdatecrack (
PDBPROCESS dbproc,
LPDBDATEREC dateinfo,
LPCDBDATETIME datetime);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

dateinfo

Is a pointer to the DBDATEREC structure to contain the parts of datetime. DBDATEREC is defined as follows:

typedef struct dbdaterec
{
 int year; // 1753 - 9999
 int quarter; // 1 - 4
 int month; // 1 - 12
 int dayofyear; // 1 - 366
 int day; // 1 - 31
 int week; // 1 - 54 (for leap years)
 int weekday; // 1 - 7 (Mon. - Sun.)
 int hour; // 0 - 23
 int minute; // 0 - 59
 int second; // 0 - 59
 int millisecond; // 0 - 999
} DBDATEREC;

datetime

Is a pointer to the DBDATETIME value of interest.

Returns

SUCCEED or FAIL.

Remarks

dbdatecrack converts a DBDATETIME value into its integer components and puts them into a DBDATEREC structure.

DBDATETIME structures store date and time values in an internal format. For example, a time value is stored as the number of
300ths of a second since midnight, and a date value is stored as the number of days since January 1, 1900. The dbdatecrack
function converts the internal value to something easily usable by an application.

Using dbdatecrack function accepts a NULL value for the dbproc parameter. In SQL Server version 6.0 or earlier, the
dbdatecrack function can only be called if a DBPROCESS structure is active.

Examples

The following code fragment shows how to use dbdatecrack:

dbcmd(dbproc, "SELECT name, crdate FROM master..sysdatabases");
dbsqlexec(dbproc);
dbresults(dbproc);

while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // Print the database name and its date info
 dbconvert(dbproc,
 dbcoltype(dbproc, 2), dbdata(dbproc, 2),
 dbdatlen(dbproc, 2), SQLCHAR, datestring, -1);

 printf("%s: %s\n", (char *) (dbdata(dbproc, 1)), datestring);

 // Break up the creation date into its constituent parts
 dbdatecrack(dbproc, &dateinfo, (DBDATETIME *) (dbdata(dbproc, 2)));

 // Print the parts of the creation date
 printf("\tYear = %d.\n", dateinfo.year);
 printf("\tMonth = %d.\n", dateinfo.month);
 printf("\tDay of month = %d.\n", dateinfo.day);
 printf("\tDay of year = %d.\n", dateinfo.dayofyear);
 printf("\tDay of week = %d.\n", dateinfo.weekday);
 printf("\tHour = %d.\n", dateinfo.hour);
 printf("\tMinute = %d.\n", dateinfo.minute);
 printf("\tSecond = %d.\n", dateinfo.second);
 printf("\tMillisecond = %d.\n", dateinfo.millisecond);
}

See Also

dbconvert

dbdata

DB Library for C (SQL Server 2000)

dbdatlen
Returns the actual length, in bytes, of the data for a column.

Syntax

DBINT dbdatlen (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column is number 1. For further information, see dbadata.

Returns

The actual length of the data for the particular column. If the data has a null value, 0 is returned. If the column number is not in
range, -1 is returned.

Remarks

The dbcollen function determines the maximum possible length for the data. The data itself is available by calling dbdata.
Calling dbdatlen after dbnextrow or dbgetrow returns REG_ROW.

Examples

The following example shows how to use dbdatlen:

DBPROCESS *dbproc;
DBINT row_number = 0;
DBINT data_length;

// Put the command into the command buffer.
dbcmd(dbproc, "SELECT name FROM sysobjects");

// Send the command to SQL Server and begin execution.
dbsqlexec(dbproc);

// Process the command results.
dbresults(dbproc);

// Examine the data lengths of each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 row_number++;
 data_length = dbdatlen(dbproc, 1);
 printf("row %ld, data length is %ld.\n", row_number, data_length);
}

See Also

dbcollen

dbdata

dbcolname

dbnumcols

dbcoltype

DB Library for C (SQL Server 2000)

dbdead
Determines whether a particular DBPROCESS is inactive.

Syntax

BOOL dbdead (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

TRUE or FALSE.

Remarks

dbdead is particularly useful in user-supplied error handlers.

If a DBPROCESS is inactive, almost every DB-Library function that receives it as a parameter immediately fails, calling the user-
supplied error handler. You must close an inactive DBPROCESS connection with dbclose and open a new connection with
dbopen.

dbdead usually returns TRUE when a network connection is broken. Note any other errors or messages that you receive.

See Also

dberrhandle

Error Messages

DB Library for C (SQL Server 2000)

dbenlisttrans
Enlists the current Microsoft® SQL Server™ 2000 connection in an existing Microsoft Distributed Transaction Coordinator (MS
DTC) transaction.

Syntax

RETCODE dbenlisttrans (
PDBPROCESS dbproc,
LPVOID pTransaction);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation/SQL Server process. It contains all the information that
DB-Library uses to manage communications and data between the workstation and SQL Server.

pTransaction

Is the MS DTC transaction OLE object that specifies the transaction to export to SQL Server. The client calls the MS DTC OLE object
ITransactionDispenser::Begin Transaction method to create the MS DTC transaction object.

Returns

SUCCEED or FAIL.

Remarks

The client application must call dbenlisttrans before performing the first update on a server running SQL Server that is enlisted
in an MS DTC transaction.

To update two or more (n) SQL Servers using MS DTC

1. Connect to the MS DTC by using the MS DTC OLE DtcSelectTransactionManager method to obtain a transaction
manager object.

2. Call dbopen n times to connect to each SQL Server.

3. Call the MS DTC OLE ITransactionDispenser::BeginTransaction method to begin the MS DTC transaction and to obtain a
transaction object.

4. Call dbenlisttrans n times to send the MS DTC transaction to each SQL Server.

5. Call dbsqlexec n times to perform one or more MS DTC transaction updates on each SQL Server.

6. Call the MS DTC OLE ITransaction::Commit method to commit the MS DTC transaction. The transaction object is no longer
valid after the transaction commits.

7. Call the MS DTC OLE ITransaction::Return method to release the reference to the transaction object.

8. Either

Call dbenlisttrans n times to pass a NULL transaction pointer to each SQL Server, which will disconnect each SQL
Server.

Or

To begin a new coordinated transaction, go to Step 3.

Note You can also call dbenlisttrans and dbsqlexec in turn for each SQL Server instead of calling them as suggested in
steps 4 and 5 earlier.

See Also

dbenlistxatrans

DB Library for C (SQL Server 2000)

dbenlistxatrans
Enlists the current Microsoft® SQL Server™ 2000 connection in a transaction that is coordinated by an XA-compliant transaction
processing (TP) monitor.

Syntax

RETCODE debenlistxatrans (
 PDBPROCESS dbproc,
 BOOL enlisttran);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation orSQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

enlisttran

Is TRUE or FALSE. TRUE specifies to enlist in the current XA transaction. FALSE specifies to enlist in the NULL transaction, which
results in the connection no longer being enlisted in any XA transaction.

When enlisttran is TRUE, the SQL Server connection is enlisted in the current XA transaction. All SQL operations performed using
the SQL Server connection are performed under the protection of the current XA transaction.

When enlisttran is FALSE, the SQL Server connection is no longer enlisted in any XA transaction. If you have used a SQL Server
connection with an XA transaction, and you want to use the same SQL Server connection with a local SQL Server transaction, you
must call dbenlistxatrans and pass a value of FALSE for the enlisttran parameter.

Returns

SUCCEED OR FAIL.

Remarks

To use XA transactions

1. Call dbopen once for each SQL Server connection to establish.

2. Call the X/Open tx_begin function to begin an XA transaction. tx_begin calls the appropriate XA-compliant TP monitor.

3. For each SQL Server connection you want to enlist in the XA transaction, call dbenlistxatrans with enlisttran set to TRUE.
Each call associates the current XA transaction with the specified SQL Server connection.

4. Call dbsqlexec one or more times to perform SQL Server operations.

5. Call the X/Open tx_commit function to commit the XA transaction.
To perform a series of XA transactions, repeat steps 2 through 5.

For information about using XA transactions through ODBC, see the SQL_COPT_SS_ENLIST_IN_XA connection option of the
SQLSetConnectOption function.

See Also

dbenlisttrans

DB Library for C (SQL Server 2000)

dberrhandle
Supplies a user function to handle DB-Library errors.

Syntax

DBERRHANDLE_PROC dberrhandle (DBERRHANDLE_PROC handler);

Arguments

handler

Is a pointer to the user function called whenever DB-Library determines that an error has occurred. DB-Library calls this function
with six parameters:

dbproc

Is the affected DBPROCESS. If there is no DBPROCESS associated with this error, this parameter is NULL.

severity

Is the severity of the error (data type int). Error severities are defined in Sqlfront.h.

dberr

Is the identifying number of the error (data type int). Error numbers are defined in Sqlfront.h.

oserr

Is the error number that describes the cause of the error (data type int) and is specific to the operating system or network. If there
is no relevant operating-system error, the value is DBNOERR.

dberrstr

Is a printable description of dberr (data type char *).

oserrstr

Is a printable description of oserr (data type char *).

The error handler must return one of the following three values, directing DB-Library to perform particular actions.

Value Action
INT_EXIT Prints an error message and exits the application. DB-Library

also returns an error to the operating system. With the
Microsoft® Windows® operating system, this value is
considered an error and is treated as an INT_CANCEL.

INT_CANCEL Returns FAIL from the DB-Library function that caused the
error.

For time-out errors (SQLETIME) only, DB-Library calls
dbcancel in an attempt to cancel the current command batch
and flush any pending results. If this dbcancel attempt also
times out, the connection is broken.

INT_CONTINUE Continues to wait for one additional time-out period, and then
calls the error handler again. This return value is meaningful
only for time-out errors (SQLETIME). In any other case, this
value is considered an error and is treated as an INT_CANCEL.

If the error handler returns any value besides these three, the program continues.

The following example shows a typical error-handling routine:

#include <sqlfront.h>
#include <sqldb.h>

int err_handler(dbproc, severity, dberr, oserr, dberrstr, oserrstr)
DBPROCESS *dbproc;

int severity;
int dberr;
int oserr;
char *dberrstr;
char *oserrstr;

{
 printf("DB-Library error:\n\t%s\n", dberrstr);

 if (severity == EXCOMM && (oserr != DBNOERR || oserrstr))
 printf(Net-Lib error %d: %s\n"' oserr, oserrstr);

 if (oserr != DBNOERR)
 printf("Operating-system error:\n\t%s\n", oserrstr);

 if (dbproc == NULL) || (DBDEAD(dbproc))
 return(INT_EXIT);
 else
 return(INT_CANCEL);
}

Important Do not call any DB-Library functions from within the error handler because infinite recursive calls to the error handler
can result.

Returns

A pointer to the previously installed error handler. This can be NULL.

Remarks

When a DB-Library error occurs, DB-Library immediately calls this error handler. You must install an error handler to handle DB-
Library errors properly.

Because the error handler is a callback function, special consideration is required when compiling these functions for the
Windows operating system. For more information, see Building Applications. The user-supplied error handler completely
determines the response of DB-Library to any error that occurs. It must tell DB-Library which action to take:

Cancel the application.

Return an error code.

Keep trying (in the case of a time-out error).

If the user does not supply an error handler (or passes a null pointer to dberrhandle), DB-Library exhibits its default error-
handling behavior: It returns FAIL from the DB-Library function that caused the error and program execution continues.

Another function, dbmsghandle, installs a message handler that DB-Library calls in response to Microsoft® SQL Server™
messages. If an application causes messages to occur from DB-Library and SQL Server simultaneously, DB-Library calls the SQL
Server message handler before it calls the DB-Library error handler.

The error-handling function should not call any DB-Library functions. Because calls to DB-Library functions can themselves
generate errors, calls from within an error handler could result in infinite recursion. If your error handler must call a DB-Library
function, it should set the error handler to a null value, and then restore it when it exits.

The following code fragment shows this technique:

int err_handler (dbproc, . . .
{
// Set the error handler to NULL to prevent infinite recursion.
dberrhandle(NULL);
// Call other DB_Library functions as necessary.
 .
 .
 .
// Reset the error handler to this function.
dberrhandle(err_handler);
return(. . .
}

See Also

dbmsghandle

Error Messages

DB Library for C (SQL Server 2000)

dbexit
Closes and frees all DBPROCESS structures created as a result of your application.

Syntax

void dbexit (void);

Remarks

The dbexit function calls dbclose repeatedly for all open DBPROCESS structures. The dbclose function cleans up any activity
associated with a DBPROCESS structure and frees the space.

You can use dbclose directly to close just a single DBPROCESS structure.

See Also

dbclose

dbopen

dbinit

DB Library for C (SQL Server 2000)

dbfcmd
Adds text to the DBPROCESS command buffer using C run-time library sprintf-type formatting.

Syntax

RETCODE dbfcmd (
PDBPROCESS dbproc,
LPCSTR cmdstring,
... params);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

cmdstring

Is a format string of the form used by the sprintf function.

params

Are optional parameters to dbfcmd. The number of parameters required depends on the number indicated in the cmdstring
parameter. The parameters are passed directly to the sprintf function.

Returns

SUCCEED or FAIL.

Remarks

This function adds text to the command buffer in the DBPROCESS structure. The dbfcmd function works just like the C-language
standard I/O library sprintf function. If you don't need any of the formatting capability of sprintf, use dbcmd instead.

The following table lists the conversions supported by dbfcmd.

Conversion Program variable type
%c char
%s null-terminated string
%d int
%f double
%g double
%e double
%% none
%c char
%x unsigned hexadecimal integer string
%u unsigned decimal

The data type SQLDATETIME must be converted into a character string and passed, using %s. SQLMONEY can be converted to a
character string and passed, using %s, or it can be converted to float and passed, using %f.

To include a percent character (%) in the command string, encode it as two percent characters (%%) because dbfcmd calls
sprintf, which treats the % character as a format specification. In addition, don't use variables containing strings with apostrophes
or single quotation marks because they conflict with the SQL statement syntax if there is any. If you don't need any of the
formatting capability of sprintf, you can use dbcmd.

The dbfcmd function manages the space allocation for the command buffer. It adds to the existing command buffer; it doesn't
delete or overwrite the current contents except after the buffer has been sent to SQL Server. You can call dbfcmd repeatedly.
Note that sequential calls are concatenated: The application must make sure that any necessary blanks appear between the end of
one line and the beginning of the next.

After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or dbfcmd automatically clears the command buffer
before the new text is entered. If this situation is undesirable, set the DBNOAUTOFREE option. When DBNOAUTOFREE is set, the
command buffer is cleared only by a call to dbfreebuf.

Do not pass dbfcmd null pointers contained in variables.

An application can intermingle calls to dbcmd and dbfcmd.

At any time, an application can access the contents of the command buffer through calls to dbgetchar, dbstrlen, and dbstrcpy.

Available memory is the only constraint on the size of the DBPROCESS command buffer created by calls to dbcmd and dbfcmd.

This function does not support the C data type long double.

This function allocates its working buffer dynamically. The size it picks to allocate space is the maximum of a defined constant
(1024) and the string length of cmdstring * 2. If the arguments are big in comparison to the size of cmdstring, DB-Library may not
be able to allocate enough space.

Examples

The following example shows how to use dbfcmd to build up a multiple-line SQL command. Note the leading spaces.

char *column_name;
DBPROCESS *dbproc;
int low_id;
char *object_type;
char *tablename;

dbfcmd(dbproc, "SELECT %s FROM %s", column_name, tablename);
dbfcmd(dbproc, " WHERE id > %d", low_id);
dbfcmd(dbproc, " AND type='%s'", object_type);

See Also

Bulk-Copy Functions

dbfreebuf

dbcmd

DB-Library Options

DB Library for C (SQL Server 2000)

dbfirstrow
Returns the number of the first row in the row buffer.

Syntax

DBINT dbfirstrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of the first row in the row buffer. The first row returned from SQL Server is number 1. Use this return value when
making a call to dbgetrow.

Remarks

If you are not buffering rows, dbfirstrow, dbcurrow, and dblastrow always have the same value: the current row number in the
current batch. If you enable buffering by setting the DBBUFFER option, dbfirstrow returns the number of the row that is the first
row in the row buffer. For example, if a query returns 100 result rows and you read 20 rows into the buffer using dbnextrow,
dbfirstrow returns 1, regardless of which row is current. As the application processes and clears rows from the buffer using
dbclrbuf and more data is read from the server using dbnextrow, dbfirstrow returns the number of the result row stored in the
lowest (oldest) buffer location.

dblastrow returns the number of the result row stored in the highest (newest) buffer location.

See Also

Bulk-Copy Functions

dblastrow

dbclrbuf

DB-Library Options

dbcurrow

dbnextrow

dbgetrow

dbsetopt

DB Library for C (SQL Server 2000)

dbfreebuf
Clears the command buffer.

Syntax

void dbfreebuf (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Remarks

This function frees any space allocated to the command buffer of the DBPROCESS structure. The command buffer is then set to
NULL. Commands for SQL Server are added to the command buffer with the dbcmd or dbfcmd function.

After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or dbfcmd automatically calls dbfreebuf to clear the
command buffer before the new text is entered. If this situation is undesirable, set the DBNOAUTOFREE option. When
DBNOAUTOFREE is set, the command buffer is cleared only by a call to dbfreebuf.

The contents of the command buffer can be accessed through the dbgetchar, dbstrlen, and dbstrcpy functions.

See Also

Bulk-Copy Functions

dbsqlexec

dbcmd

dbsqlsend

dbfcmd

dbstrcpy

dbgetchar

dbstrlen

DB-Library Options

DB Library for C (SQL Server 2000)

dbfreelogin
 New Information - SQL Server 2000 SP3.

Frees a login record.

Syntax

void dbfreelogin (PLOGINREC login);

Arguments

login

Is the pointer to a LOGINREC structure returned from the dblogin function.

Remarks

This function frees the memory allocated by the dblogin function. It can be called immediately after a call to dbopen; however,
you can use the same login record for multiple calls to dbopen. Call dbfreelogin when you are completely finished with the
login record.

Examples

The following example shows how to use dbfreelogin:

DBPROCESS *dbproc;
LOGINREC *loginrec;

loginrec = dblogin();
DBSETLSECURE(loginrec);
DBSETLAPP(loginrec, "my_program");
dbproc = dbopen(loginrec, "my_server");
dbfreelogin (loginrec);

See Also

dblogin

dbopen

DB Library for C (SQL Server 2000)

dbgetchar
Returns a pointer to a character in the command buffer.

Syntax

LPSTR dbgetchar (
PDBPROCESS dbproc,
INT n);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

n

Is the character to find in the command buffer. The first character is the 0th character.

Returns

A pointer to the nth character in the command buffer. If n is not in range, NULL is returned.

Remarks

The dbgetchar function can be used to find a particular character in the command buffer. It returns a pointer to the nth character
in the command buffer.

Internally, the command buffer is a linked list of nonnull-terminated text strings. Parts of the command buffer can be located and
copied using the dbgetchar, dbstrcpy, and dbstrlen functions.

Because the command buffer is not just one large text string, but rather a linked list of text strings, you must use dbgetchar to
index through the buffer. If you just get a pointer using dbgetchar and then increment it yourself, it will probably fall off the end
of a string.

See Also

dbcmd

dbstrcpy

dbfcmd

dbstrlen

dbfreebuf

DB Library for C (SQL Server 2000)

dbgetmaxprocs
Determines the current maximum number of simultaneously open DBPROCESS structures.

Syntax

SHORT dbgetmaxprocs (void);

Returns

An integer representing the current limit on the number of simultaneously open DBPROCESS structures.

Remarks

A DB-Library for C program has a maximum number of simultaneously open DBPROCESS structures. By default, this number is
25. The application program can change this limit by calling dbsetmaxprocs.

See Also

dbopen

dbsetmaxprocs

DB Library for C (SQL Server 2000)

dbgetoff
Checks for the existence of Transact-SQL statements in the command buffer.

Syntax

INT dbgetoff (
PDBPROCESS dbproc,
DBUSMALLINT offtype,
INT startfrom);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation\ or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

offtype

Is the type of offset you want to find. The types (defined in the header file Sqlfront.h) are: OFF_SELECT, OFF_FROM, OFF_ORDER,
OFF_COMPUTE, OFF_TABLE, OFF_PROCEDURE, OFF_STATEMENT, OFF_PARAM, and OFF_EXEC

For details, see DB-Library Options.

startfrom

Is the point in the buffer from which to start looking. The command buffer begins at 0.

Returns

The character offset into the command buffer for the specified offset. If the offset is not found, -1 is returned.

Remarks

If the DBOFFSET option has been set, dbgetoff can check for the location of certain Transact-SQL statements in the command
buffer.

Examples

In this example, assume that the program doesn't know the contents of the command buffer but needs to know where the
Transact-SQL keyword SELECT appears:

int select_offset[10];
int last_offset;
int i;

// Set the offset option.
dbsetopt(dbproc, DBOFFSET, "select");

dbsqlexec(dbproc); // Execute the option on the server while(dbresults(dbproc)!=NO_MORE_RESULTS); // Read
returned results
// Assume the command buffer contains the following SELECTs:
dbcmd(dbproc, "SELECT x = 100 SELECT y = 5");

// Send the query to SQL Server.
dbsqlexec(dbproc);

// Get all the offsets to the SELECT keyword.
for (i = 0, last_offset = 0; last_offset != -1; i++)
if ((last_offset = dbgetoff(dbproc, OFF_SELECT, last_offset))!= -1)
 select_offset[i] = last_offset++;

 dbresults(dbproc);

In this example, select_offset[0] = 0 and select_offset[1] = 15.

The function dbgetoff does not recognize SELECT statements in a subquery. If the command buffer contains the following, the
second SELECT statement goes unrecognized:

SELECT pub_name
FROM publishers
WHERE pub_id NOT IN
(SELECT pub_id
FROM titles
WHERE type = "business")

See Also

Bulk-Copy Functions

dbsetopt

dbcmd

dbstrcpy

dbgetchar

dbstrlen

DB-Library Options

DB Library for C (SQL Server 2000)

dbgetpacket
Returns the tabular data stream (TDS) packet size currently in use.

Syntax

UINT dbgetpacket (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The TDS packet size currently in use.

Remarks

To determine the TDS packet size in use, an application should call dbgetpacket after dbopen.

You can change the TDS packet size by using DBSETLPACKET, which sets the packet size field in the LOGINREC structure.

If the call to dbgetpacket fails (for example, when dbproc is null), dbgetpacket returns 0. Other than the failure case of 0,
however, the call should never return less than 512 bytes.

See Also

dbsetlpacket

DB Library for C (SQL Server 2000)

dbgetrow
Reads the specified row in the row buffer.

Syntax

STATUS dbgetrow (
PDBPROCESS dbproc,
DBINT row);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

row

Is the number of the row to read. The first row returned from SQL Server is number 1.

Returns

One of four different types of values:

If the current row is a regular row, REG_ROW is returned.

If the current row is a compute row, the computeid of the row is returned (for information about the computeid, see
dbaltbind).

If the row is not in the row buffer, NO_MORE_ROWS is returned.

If the function was unsuccessful, FAIL is returned.

Remarks

The dbgetrow function sets the current row to a specific row and reads it. This function only works if the DBBUFFER option is on.
Any specified binding of row data to program variables takes effect.

When buffering is not turned on, generally each row is processed in turn by repeatedly calling dbnextrow until it returns
NO_MORE_ROWS. When buffering is turned on, dbgetrow allows the user to jump to any row that has already been read using
dbnextrow and is still in the row buffer. Calls to dbnextrow after a dbgetrow call return rows in order, following the row read
by dbgetrow.

See Also

Bulk-Copy Functions

DB-Library Options

dbbind

dbnextrow

dbclrbuf

DB Library for C (SQL Server 2000)

dbgettime
Returns the number of seconds that DB-Library waits for Microsoft® SQL Server™ to respond to a Transact-SQL statement.

Syntax

INT dbgettime (void);

Returns

The time-out value is the number of seconds that DB-Library waits for a SQL Server response before timing out. A time-out value
of 0, the default, represents an infinite time-out period.

Remarks

dbgettime returns the length of time, in seconds, that DB-Library waits for a SQL Server response during calls to dbsqlexec,
dbsqlok, dbresults, and dbnextrow.

The program can call dbsettime to change the time-out value.

See Also

dbnextrow

dbsqlexec

dbresults

dbsqlok

dbsettime

DB Library for C (SQL Server 2000)

dbgetuserdata
Returns a pointer to user-allocated data from a DBPROCESS structure.

Syntax

LPVOID dbgetuserdata (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

A generic BYTE pointer to the user's private data space. This pointer must have been previously saved with the dbsetuserdata
function.

Remarks

The functions dbgetuserdata and dbsetuserdata allow the application to associate user data with a particular DBPROCESS,
without using global variables. One use for these functions is to handle deadlock. (For an example, see the example under
dbsetuserdata. That example reruns the transaction when the application's message handler detects deadlock.)

You can call dbgetuserdata when dbdead returns TRUE.

This function is particularly useful when the application has more than one DBPROCESS.

See Also

dbsetuserdata

DB Library for C (SQL Server 2000)

dbinit
Initializes DB-Library.

Syntax

LPCSTR dbinit (void);

Returns

A null-terminated string containing the version of DB-Library, or NULL if initialization is unsuccessful.

Remarks

The application should call dbinit once and only once, before calling any other DB-Library functions.

The dbinit function enables dbconvert to use the international settings specified in Sqlcommn.loc for Microsoft® Windows®
2000 or in the Microsoft Windows NT® 4.0 Registry.

For the Windows operating system, DB-Library retrieves information about date, time, numeric, and currency formatting from the
Sqlcommn.loc file. The location of Sqlcommn.loc is pointed to by the SQLLocalizationFile key in the Windows initialization file
(Win.ini) under the [SQLSERVER] application heading. For example:

[SQLSERVER]
SQLLocalizationFile=C:\SQL60\BIN\SQLCOMMN.LOC

For the Windows NT 4.0 operating system, you set the date, time, numeric, and currency formatting using the International
application in the Control Panel.

Under Microsoft MS-DOS®, dbinit detects the presence of the Net-Library TSR used by DB-Library to communicate over the
network. If the TSR is not detected, dbinit returns NULL and DB-Library functions cannot be used. When running with the
Windows environment, DB-Library maintains information about each application that has referenced it. DB-Library creates the
information when a library application calls dbinit; it does this to prevent conflicts between applications that use DB-Library
concurrently. For DB-Library to release this information, the application must call dbwinexit just before it exits.

See Also

dbconvert

dbwinexit (Windows only)

DB Library for C (SQL Server 2000)

dbisavail
Determines whether a DBPROCESS structure is available for general use.

Syntax

BOOL dbisavail (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

TRUE if DBPROCESS is available for general use; FALSE otherwise.

Remarks

dbisavail indicates whether the specified DBPROCESS structure is available for general use. When DBPROCESS is first opened, it
is marked as being available until it is used. Many DB-Library functions automatically set DBPROCESS to "not available", but only
dbsetavail resets it to "available". This facility is useful when several parts of an application are trying to share a single
DBPROCESS structure.

See Also

dbsetavail

DB Library for C (SQL Server 2000)

dbiscount
Indicates whether or not the count returned by dbcount is real.

Syntax

BOOL dbiscount (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server. Unlike
the functions dbsetopt and dbclropt, dbproc cannot be NULL here.

Returns

TRUE if the count returned by dbcount is real or FALSE if the count returned by dbcount is not real.

Remarks

You can have commands that return or affect 0 or more rows and commands that do not affect rows. In both cases, dbcount
returns 0.

Calling dbiscount after dbcount determines whether the count is real.

See Also

dbcount

DB Library for C (SQL Server 2000)

dbisopt
Checks the status of a Microsoft® SQL Server™ 2000 or DB-Library option.

Syntax

BOOL dbisopt (
PDBPROCESS dbproc,
INT option,
LPCSTR param);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation SQL Server process. It contains all the information that
DB-Library uses to manage communications and data between the workstation and SQL Server. Unlike the functions dbsetopt
and dbclropt, dbproc cannot be NULL here.

option

Is the option to be checked.

param

Is the option parameter. Certain options take parameters. If an option does not take a parameter, param is ignored. If an option
does take a parameter, param is ignored for all options except DBOFFSET and DBSTAT.

The DBOFFSET and DBSTAT options can have several settings, each with a different parameter. In these cases, dbisopt needs a
valid param to determine which option parameter to check.

For more information about a list of options that take parameters, see DB-Library Options.

Returns

TRUE or FALSE.

Remarks

Although SQL Server options can be set and cleared directly through Transact-SQL, the application should use dbsetopt and
dbclropt to set and clear options. This provides a uniform interface for setting both SQL Server and DB-Library options. It also
allows the application to use the dbisopt function to check the status of an option.

For more information about a list of each option and its default status, see DB-Library Options.

See Also

Bulk-Copy Functions

DB-Library Options

dbclropt

dbsetopt

DB Library for C (SQL Server 2000)

dblastrow
Returns the number of the last row in the row buffer.

Syntax

DBINT dblastrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of the last row in the row buffer. The first row returned from SQL Server is number 1.

Remarks

If you aren't buffering rows, dbfirstrow, dbcurrow, and dblastrow always have the same value. If you have enabled buffering by
setting the DBBUFFER option, dblastrow returns the number of the last row in the row buffer, which may not be the last row
available from the server. Use this return value with a call to dbgetrow. For example, if a query returns 100 result rows and you
read 20 rows into the buffer using dbnextrow, dblastrow returns 20 regardless of which row is current. As the application
processes and clears rows from the buffer using dbclrbuf and more data is read from the server using dbnextrow, dblastrow
returns the number of the result row stored in the highest (newest) buffer location.

See Also

Bulk-Copy Functions

dbgetrow

dbclrbuf

DB-Library Options

dbcurrow

dbnextrow

dbfirstrow

dbsetopt

DB Library for C (SQL Server 2000)

dblogin
 New Information - SQL Server 2000 SP3.

Allocates a LOGINREC structure for use in dbopen.

Syntax

PLOGINREC dblogin (void);

Returns

A pointer to a LOGINREC structure. NULL is returned if the structure cannot be allocated.

Security Note Authorization information, including user name and password, is stored in memory in the LOGINREC structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Take
precautions to prevent access to memory output by unauthorized individuals.

Remarks

DB-Library contains various functions that supply components of the LOGINREC.

Function Component supplied
DBSTLUSER Login ID.
DBSETLPWD Password.
DBSETLHOST Workstation name.
DBSETLAPP Application name.
DBSETLNATLANG National language.
DBSETLPACKET TDS packet size.
DBSETLSECURE Secure connection request.
DBSETLTIME Connection-specific time-out.
DBSETLVERSION DB-Library 6.0 behavior.
BCP_SETL Enables bulk copy operations.

Generally, it is necessary for the program to supply only the username and password. All components in the LOGINREC are
initially set to NULL.

See Also

BCP_SETL

dbsetlpacket

dbfreelogin

dbsetlpwd

dbopen

dbsetlsecure

dbsetlapp

dbsetltime

dbsetlhost

dbsetluser

dbsetlnatlang

dbsetlversion

DB Library for C (SQL Server 2000)

dbmorecmds
Indicates whether there are more commands to be processed.

Syntax

RETCODE dbmorecmds (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED to indicate more results in the command batch; otherwise, FAIL.

Remarks

It should be called after dbnextrow returns NO_MORE_ROWS. If you know that the current command does not return any rows,
you can call dbmorecmds after dbresults returns SUCCEED.

You can get the same information by calling dbresults until it returns NO_MORE_RESULTS.

See Also

dbcmdrow

dbrows

dbnextrow

dbrowtype

dbresults

DB Library for C (SQL Server 2000)

dbmsghandle
Installs a user function to handle Microsoft® SQL Server™ 2000 messages.

Syntax

DBMSGHANDLE_PROC dbmsghandle (DBMSGHANDLE_PROC handler);

Arguments

handler

Is a pointer to the user function that is called whenever DB-Library receives an error or informational message from SQL Server.
DB-Library calls this function with these parameters:

dbproc

Is the affected DBPROCESS.

msgno

Is the online message number (data type DBINT). These numbers are documented in Troubleshooting. They are stored online in
the sysmessages table, from which they can be selected.

msgstate

Is the message error state number (data type int). These numbers provide information about the context of the error.

severity

Is the message information class or error severity (data type int). These numbers are documented in Troubleshooting.

msgtext

Is the message null-terminated text (data type char *).

srvname

Is the null-terminated name of the server that generated the message (data type char *). A server name is stored in the srvname
column of its sysservers system table. srvname is optional.

procname

Is the null-terminated name of the stored procedure that generated the message (data type char *). If the message was not
generated by a stored procedure, procname is set to a length of 0. procname is optional.

line

Is the number of the command batch or stored procedure line that generated the message (data type DBUSMALLINT). Line
numbers start at 1. line is optional.

The line number pertains to the nesting level at which the message was generated. For instance, if a command batch executes
stored procedure A, which then calls stored procedure B, and a message is generated at line 3 of B, then the value of line becomes
3.

If no line number is associated with the message, line becomes 0. Circumstances that can generate messages without line
numbers include a login error or a call to a remote procedure (through dbrpcsend) to a stored procedure that doesn't exist.

The message handler must return a value of 0 to DB-Library.

Returns

A pointer to the previously installed message handler. This can be NULL.

Remarks

This function installs a message-handling function that you supply. When DB-Library receives a SQL Server error or informational
message, it immediately calls this message handler. You must install a message handler to handle SQL Server messages.

Because the message handler is a callback function, special considerations are required when compiling these functions under the

Microsoft Windows® operating system. For more information, see Building Applications.

Note The srvname, procname, and line parameters are optional, and compatibility with earlier versions of SQL Server is
maintained through the cdecl parameter declaration convention.

Examples

The following example shows a typical message-handling function:

#include <sqlfront.h>
#include <sqldb.h>

int msg_handler (dbproc, msgno, msgstate, severity, msgtext, srvname, procname, line)
DBPROCESS *dbproc;
DBINT msgno
int msgstate
int severity
char *msgtext
char *srvname
char *procname
DBUSMALLINT line

{
 printf ("SQL Server message %ld, state %d, "
 "severity %d: \n\t%s\n", msgno, msgstate, severity, msgtext);
 if (strlen (srvname) != 0)
 printf ("Server '%s', ", srvname);
 if (strlen (procname) != 0)
 printf ("Procedure '%s', ", procname);
 if (line !=0)
 printf ("Line %d", line);

return (0);
}

See Also

dberrhandle

DB Library for C (SQL Server 2000)

dbname
Returns the name of the current database.

Syntax

LPCSTR dbname (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

A pointer to the null-terminated name of the current database.

Remarks

If you need to keep track of when the database changes, use dbchange.

See Also

dbchange

DB Library for C (SQL Server 2000)

dbnextrow
Reads in the next row.

Syntax

STATUS dbnextrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

One of five different types of values:

If a regular row is read, REG_ROW is returned.

Regular rows contain data from columns designated by a SELECT statement.

If a compute row is read, the computeid of the row is returned (for information about computeid, see dbaltbind).

If there are no more rows to be read, if the statement didn't return any rows, or if the server was unable to return more
rows (for example, when a deadlock occurs), NO_MORE_ROWS is returned.

If buffering is turned on and reading the next row would cause the buffer to be exceeded, BUF_FULL is returned.

In this case, no row has been read. To read more rows, first clear at least one row from the top of the row buffer. To clear the
row buffer, call dbclrbuf.

If the function was unsuccessful, FAIL is returned.

Remarks

The dbnextrow function causes the next data row to be made available through the dbproc. If the DBBUFFER option is turned on
and rows have been read out of order by calling dbgetrow, the next data row is read from the buffered rows. Any specified
binding of row data to program variables takes effect.

The dbresults function must be called and must have returned SUCCEED before you make any calls to dbnextrow.

Even if dbrows or dbcmdrow returns FAIL (indicating that no rows were returned), you must process the results by calling
dbnextrow until it returns NO_MORE_ROWS.

Normally, each row is processed in turn by repeatedly calling dbnextrow. If row buffering is enabled and the row buffer has been
cleared by the dbclrbuf function, the discarded rows are no longer available (even if dbgetrow tries to position to a discarded
row). When row buffering is disabled, the last row is cleared when dbnextrow returns NO_MORE_ROWS.

SQL Server can return two types of rows:

Regular rows containing data from columns designated by a SELECT statement's select list.

Compute rows resulting from the COMPUTE clause.

To help process data rows from SQL Server, dbnextrow returns different values according to the type of row.

If you want data returned from SQL Server to be displayed on the default output device, use dbprrow instead of dbnextrow
(except with the Microsoft Windows® operating system).

Note This function is one of the four that do not return control to the application until the server sends the required response.
The application can be blocked for a considerable time if the server is waiting for a lock or is processing a large sort. If this is
unacceptable, always call dbdataready before dbnextrow and set the DB-Library time-out to regain control periodically.

Examples

The typical sequence of calls is:

DBINT xvariable;
DBCHAR yvariable[10];

// Read the query into the command buffer.
dbcmd(dbproc, "SELECT x = 100, y = 'hello'");

// Send the query to SQL Server.
dbsqlexec(dbproc);

// Get ready to process the results of the query.
dbresults(dbproc);

// Bind column data to program variables.
dbbind(dbproc, 1, INTBIND, (DBINT) 0, (BYTE *)&xvariable);
dbbind(dbproc, 2, STRINGBIND, (DBINT) 0, yvariable);

// Now process each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // C-code to print or process row data
}

Note that if you are not using row buffering, you must continue calling dbnextrow until it returns NO_MORE_ROWS. This is true
even if you are sure that your query only generates one results row. The while loop in the preceding example illustrates the
correct way to use dbnextrow.

See Also

Bulk-Copy Functions

dbgetrow

dbbind

DB-Library Options

dbclrbuf

dbprrow

dbresults

DB Library for C (SQL Server 2000)

dbnullbind
Associates an indicator variable with a regular result row column.

Syntax

RETCODE dbnullbind (
PDBPROCESS dbproc,
INT column,
LPCDBINT indicator);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column to be associated with the indicator variable.

indicator

Is a pointer to the indicator variable.

Returns

SUCCEED or FAIL. Returns FAIL if column is invalid.

Remarks

The indicator variable reveals whether a column in a particular regular result row has been converted and copied to a program
variable successfully, or whether it is NULL. Call dbnullbind after dbresults has returned SUCCEED, and after calling dbbind for
column.

The indicator variable is set when regular result rows are processed through dbnextrow. The possible values include:

-1 if the column is NULL.

The full length of column's data, in bytes, if column was bound to a program variable through dbbind, the binding did not
specify any data conversions, and the bound data was truncated because the program variable was too small to hold data
for column.

0 if column was bound and copied to a program variable successfully.

Note Only CHARBIND and VARYCHARBIND can detect truncation of character strings.

See Also

dbanullbind

dbdatlen

dbbind

dbnextrow

dbdata

DB Library for C (SQL Server 2000)

dbnumalts
Returns the number of columns in a compute row.

Syntax

INT dbnumalts (
PDBPROCESS dbproc,
INT computeid);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

computeid

Is the ID that identifies the COMPUTE clause. A SELECT statement can have multiple COMPUTE clauses, which can have varying
numbers of aggregate operators and aggregate targets. The computeid is returned by dbnextrow or dbgetrow.

Returns

The number of columns for the particular computeid. If computeid is invalid, - 1 is returned.

Remarks

Call this function after dbresults has returned SUCCEED.

Examples

In this example, dbnumalts(dbproc, 1) returns 3:

SELECT dept, year, sales FROM employee
ORDER BY dept, year
COMPUTE AVG(sales), MIN(sales), MAX(sales) BY dept

See Also

dbadata

dbgetrow

dbadlen

dbnextrow

dbaltlen

dbresults

dbalttype

DB Library for C (SQL Server 2000)

dbnumcols
Determines the number of columns for the current result set.

Syntax

INT dbnumcols (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of columns in the current result set. If there are no columns, 0 is returned. Call dbnumcols after dbresults has
returned SUCCEED.

Examples

The following program fragment shows how to use dbnumcols:

int column_count;
DBPROCESS *dbproc;

// Put the commands into the command buffer
dbcmd(dbproc, "SELECT name, id, type FROM sysobjects");
dbcmd(dbproc, " SELECT name FROM sysobjects");

// Send the commands to SQL Server and start execution
dbsqlexec(dbproc);

// Process each command until there are no more
while (dbresults(dbproc) != NO_MORE_RESULTS)
{
 column_count = dbnumcols(dbproc);
 printf("%d columns in this SQL Server result.\n", column_count);
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 printf("row received.\n");
}

See Also

dbcollen

dbcolname

DB Library for C (SQL Server 2000)

dbnumcompute
Returns the number of COMPUTE clauses in the current set of results.

Syntax

INT dbnumcompute (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of COMPUTE clauses in the current set of results.

Remarks

Call this function after dbresults has returned SUCCEED.

Example

In this example, dbnumcompute (dbproc) returns 2, because there are two COMPUTE clauses in the SELECT statement:

SELECT dept, name FROM employee
ORDER BY dept, name
COMPUTE COUNT(name) BY dept
COMPUTE COUNT(name)

See Also

dbnumalts

dbresults

DB Library for C (SQL Server 2000)

dbnumorders
Returns the number of columns specified in a Transact-SQL SELECT statement's ORDER BY clause.

Syntax

INT dbnumorders (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of ORDER BY columns. If there is no ORDER BY clause, dbnumorders returns 0. If there is an error, dbnumorders
returns -1.

Remarks

After a SELECT statement has been executed and dbresults has been called to process it, you can call dbnumorders to find out
how many columns were specified in the current statement's ORDER BY clause. Call dbnumorders after dbresults has returned
SUCCEED.

See Also

dbordercol

dbresults

DB Library for C (SQL Server 2000)

dbopen
 New Information - SQL Server 2000 SP3.

Allocates and initializes a DBPROCESS connection structure.

Syntax

PDBPROCESS dbopen (
PLOGINREC login,
LPCSTR servername);

Arguments

login

Is a pointer to a LOGINREC structure. You can get one by calling dblogin.

Security Note Authorization information, including user name and password, is stored in memory in the LOGINREC structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Please
take precautions to prevent access to memory output by unauthorized individuals.

servername

Is the name of the server running Microsoft® SQL Server™ 2000 to connect to. This parameter can be the name of an actual SQL
Server, NULL or a null string to connect to a local SQL Server, or the logical name matching an entry in the Win.ini file or the
Microsoft Windows NT® 4.0 Registry.

Returns

A DBPROCESS pointer if everything is correct. Ordinarily, NULL is returned if a DBPROCESS structure could not be created or
initialized, or if your login to SQL Server failed. When NULL is returned, the user-supplied error handler is called to indicate the
error.

Security Note Connection information, including user name and password, is stored in memory in the DBPROCESS structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Take
precautions to prevent access to memory output by unauthorized individuals.

Note If there is an unexpected communications failure during the SQL Server login process and an error handler has not been
installed, the function returns NULL.

Errors

The dbopen function returns NULL if any of the following are true.

Error code Description
SQLEMEM Unable to allocate sufficient memory.
SQLEDBPS Maximum number of DBPROCESS structures already allocated.
SQLECONN Unable to connect: SQL Server is unavailable or does not exist.
SQLEPWD Login incorrect.

If the specified server cannot be found, a SQLECONN error is returned to your error handler (if one was registered) after the login
time-out expires. For more information about setting the login time-out, see dbsetlogintime.

Remarks

The DBPROCESS structure is the basic data structure that DB-Library uses to communicate with SQL Server. The application needs
a DBPROCESS structure to communicate with SQL Server. It is the first parameter in almost every DB-Library call. Besides
allocating the DBPROCESS structure, this function sets up communication with the network, logs in to SQL Server, and initializes
any default options.

In the call to dbopen, DB-Library uses the server name and connection information in the [SQLSERVER] section of Win.ini, or the
following subtree of the Windows NT 4.0 Registry:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 MSSQLServer\
 Client\
 ConnectTo

Use the SQL Server Client Network Utility to configure server name and connection information.

Note also that the SQL Server ODBC driver uses the same Net-Library mechanism as DB-Library.

There can be only one Net-Library TSR loaded for Microsoft MS-DOS®, so there is no .ini file configuration. Environment
variables for the name of the server are used to specify any network-specific connection information.

You can use dbopen to connect to a failover server. When used to connect to a failover server, this function only works with a
standby server configuration; it does not apply to a virtual server cluster/failover configration. If an attempt to connect to a
primary server fails, dbopen can attempt to connect to a failover server. You must call the DBSETLFALLBACK function to indicate
that a failover server can be used. The call to DBSETLFALLBACK must occur before the call to dbopen.

Each call to DBSETLFALLBACK from a computer running Windows NT 4.0, Microsoft Windows® 95 or Windows 98 updates the
failover information in the local registry from the SQL Server registry. Failover information is stored in the Win.ini file on
computers running 16-bit Windows. The dbopen function retrieves the failover information from the local registry or from the
Win.ini file.

When dbopen attempts to connect to a failover server, DB-Library generates warning message 10110 (SQLECONNFB):

Unable to connect: DB Server is unavailable or
does not exist - will attempt a fallback connection.

Example

The following example shows how to use dbopen:

DBPROCESS *dbproc;
LOGINREC *loginrec;

loginrec = dblogin();
DBSETLSECURE(loginrec);
DBSETLAPP(loginrec, "my_program");
dbproc = dbopen(loginrec, "my_server");

See Also

dbclose

dbsetlfallback

dbexit

dbsetlogintime

dblogin

DB Library for C (SQL Server 2000)

dbordercol
Returns the ID of a column appearing in the most recently executed query's ORDER BY clause.

Syntax

INT dbordercol (
PDBPROCESS dbproc,
INT order);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

order

Is the ID that identifies the particular ORDER BY column. The first column named within the ORDER BY clause is number 1.

Returns

The column ID (based on the column's position in the select list) for the column in the specified place in the ORDER BY clause. If
the order is invalid, then -1 is returned.

Remarks

Call dbordercol after dbresults has returned SUCCEED.

Example

In this example, dbordercol(dbproc, 1) returns 3 since the first column named in the ORDER BY clause refers to the third column
in the SELECT statement:

SELECT dept, name, salary FROM employee
ORDER BY salary, name

See Also

dbnumorders

DB Library for C (SQL Server 2000)

dbprhead
Prints the column headings for rows returned from Microsoft® SQL Server™ 2000.

Syntax

void dbprhead (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Remarks

This function displays the column headings for a set of query results on the default output device in a format similar to that used
by Isql.exe. The format is compatible with the format used by dbprrow. The output width is set at 80 columns.

You can call dbprhead after dbresults has succeeded.

The dbprhead function is useful for debugging.

The dbprhead function is not supported with the Microsoft Windows® operating system.

See Also

dbbind

dbprrow

dbnextrow

dbresults

DB Library for C (SQL Server 2000)

dbprocerrhandle
Supplies a user function to handle DB-Library errors for a specific DBPROCESS connection.

Syntax

DBERRHANDLE_PROC dbprocerrhandle (
PDBHANDLE pdbhandle,
DBERRHANDLE_PROC error_handler);

Arguments

pdbhandle

Is a DBPROCESS structure or a LOGINREC structure. If this is a DBPROCESS connection, the error_handler will be used for that
connection. If this is a LOGINREC structure, the error_handler will automatically be used for all future DBPROCESS connections
opened (with dbopen) using the LOGINREC.

error_handler

A pointer to the user function that is called whenever DB-Library determines that an error has occurred for the existing or future
connection specified in pdbhandle. Define the connection error-handler function in exactly the same way as the application error-
handler function specified in dberrhandle.

Returns

If pdbhandle is a DBPROCESS structure, a pointer to the previously installed connection error handler is returned. This can be
NULL.

If pdbhandle is a LOGINREC structure, a pointer to the newly installed connection error handler is returned, or NULL if this
function fails.

Remarks

This function is similar to the dberrhandle function. While dberrhandle installs an error handler global to the entire DB-Library
application, dbprocerrhandle installs an error handler for a specific DBPROCESS connection.

When a DB-Library error occurs using a connection that has a connection error handler (installed using dbprocerrhandle), only
the connection error handler is called. The application error handler is not called. Because a connection error handler is associated
with a connection and is not global to the entire DB-Library application, the connection error-handler code does not need to
protect against reentrancy by DB-Library.

Note that this function is not supported for Microsoft MS-DOS®.

See Also

dberrhandle

DB Library for C (SQL Server 2000)

dbprocinfo
Returns information about a DBPROCESS connection.

Syntax

RETCODE dbprocinfo (
PDBPROCESS pdbproc,
LPDBPROCINFO pdbprocinfo);

Arguments

pdbproc

The DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains all
the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

pdbprocinfo

A pointer to a DBPROCINFO structure that DB-Library will fill with information about the specified connection.

The DBPROCINFO structure is defined as follows:

typedef struct
{
 DBINT SizeOfStruct;
 BYTE ServerType;
 USHORT ServerMajor;
 USHORT ServerMinor;
 USHORT ServerRevision;
 CHAR ServerName[MAXSERVERNAME+1];
 CHAR NetLibName[MAXNETLIBNAME+1];
 CHAR NetLibConnStr[MAXNETLIBCONNSTR+1];
} DBPROCINFO, PTR LPDBPROCINFO;

The DBPROCINFO fields are described here.

Field Description
SizeOfStruct Before calling dbprocinfo, set this field equal to the value

returned by the C sizeof function for the DBPROCINFO
structure.

ServerType Is one of the following:

SERVTYPE_MICROSOFT if you are connected to a server
running SQL Server.

SERVTYPE_UNKNOWN if you are connected to an unknown
type of SQL Server.

ServerMajor Is the XX value in the XX.YY.ZZZ version number of the SQL
Server you are connected to. For example, 6.

ServerMinor Is the YY value in the XX.YY.ZZZ version number of the SQL
Server you are connected to. For example, 0.

ServerRevision Is the ZZZ value in the XX.YY.ZZZ version number of the SQL
Server you are connected to. For example, 101.

ServerName Is the name of the SQL Server to which you are connected.
NetLibName Is the name of the Net-Library DLL used to connect to SQL

Server.
NetLibConnStr Is the Net-Library connection string used to connect to SQL

Server.

Returns

SUCCEED or FAIL.

Remarks

Before calling dbprocinfo, set the SizeOfStruct field equal to the value returned by the C sizeof function for the DBPROCINFO
structure. The dbprocinfo function fills the supplied DBPROCINFO structure with information about the DBPROCESS connection.

See Also

dbopen

DB Library for C (SQL Server 2000)

dbprocmsghandle
Supplies a user function to handle Microsoft® SQL Server™ 2000 messages for a specific DBPROCESS connection.

Syntax

DBMSGHANDLE_PROC dbprocmsghandle (
PDBHANDLE pdbhandle,
DBMSGHANDLE_PROC message_handler)

Arguments

pdbhandle

Either a DBPROCESS structure or a LOGINREC structure. If this is a DBPROCESS connection, the message_handler will be used for
that connection. If this is a LOGINREC structure, the message_handler will automatically be used for all future DBPROCESS
connections opened (with dbopen) using the LOGINREC.

message_handler

A pointer to the user function that is called whenever DB-Library receives an error or informational message from SQL Server for
the existing or future connection specified in pdbhandle. Define the connection message-handler function in exactly the same way
as the application message-handler function specified in dbmsghandle.

Returns

If pdbhandle is a DBPROCESS, a pointer to the previously installed connection message handler is returned. This can be NULL.

If pdbhandle is a LOGINREC, a pointer to the newly installed connection message handler is returned, or NULL if this function
fails.

Remarks

This function is similar to the dbmsghandle function. While dbmsghandle installs a message handler global to the entire DB-
Library application, dbprocmsghandle installs a message handler for a specific DBPROCESS connection.

When DB-Library receives a message from SQL Server using a connection that has a connection message handler (installed using
dbprocmsghandle), only the connection message handler is called. The application message handler is not called. Because a
connection message handler is associated with a connection and is not global to the entire DB-Library application, the connection
message-handler code does not need to protect against reentrancy by DB-Library.

Note that this function is not supported for Microsoft MS-DOS®.

See Also

dbmsghandle

DB Library for C (SQL Server 2000)

dbprrow
Prints all rows returned from Microsoft® SQL Server™ 2000.

Syntax

RETCODE dbprrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

This function displays the rows for a set of query results on the default output device in a format similar to that used by Isql.exe.
This function reads and prints all the rows. Although it doesn't require allocating program variables to store the data and calling
dbbind, the format is predetermined.

This function can be called after dbresults has succeeded.

When using this function, do not call dbnextrow to loop through the rows.

The dbprrow function is useful for debugging. The output line width is set at 80 columns.

This function is not supported with the Microsoft Windows® operating system.

See Also

dbbind

dbprhead

dbnextrow

dbresults

DB Library for C (SQL Server 2000)

dbprtype
Converts a Microsoft® SQL Server™ 2000 token value to a readable string.

Syntax

LPCSTR dbprtype (INT token);

Arguments

token

Is the SQL Server token value.

Returns

A pointer to a null-terminated string that is the readable translation of the SQL Server token value. The pointer points to space
that is never overwritten, so it is safe to call this function more than once in the same statement. If the token is unknown, the
function returns a pointer to an empty string. The strings correspond to SQL Server data type names.

Remarks

Functions such as dbcoltype and dbalttype return SQL Server token values. To print out what the token value means, use
dbprtype.

The following token values are used by dbprtype.

Token value Data type
SQLINT1 tinyint
SQLINT2 smallint
SQLINT4 int
SQLMONEY money
SLQFLT8 float
SQLDATETIME datetime
SQLBIT bit
SQLCHAR char
SQLVARCHAR varchar
SQLTEXT text
SQLBINARY binary
SQLVARBINARY varbinary
SQLIMAGE image
SQLDECIMAL decimal
SQLNUMERIC numeric
SQLINTN integer-null
SQLDATETIMN datetime-null
SQLMONEYN money-null
SQLFLTN float-null
SQLAOPSUM sum
SQLAOPAVG avg
SQLAOPCNT count
SQLAOPMIN min
SQLAOPMAX max
SQLDATETIM4 smalldatetime
SQLMONEY4 smallmoney
SQLFLT4 real

See Also

dbaltop

DB-Library for C Data Types

dbalttype

New Features in Transact-SQL

dbcoltype

DB Library for C (SQL Server 2000)

dbresults
Sets up the results of the next query.

Syntax

RETCODE dbresults (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED, FAIL, NO_MORE_RESULTS, or NO_MORE_RPC_RESULTS. The most common reason for failing is a NULL or inactive
dbproc. NO_MORE_RPC_RESULTS is returned when stored procedure return information is available from one stored procedure
in a batch of multiple stored procedures. NO_MORE_RESULTS is returned if there are no more results to be processed.

Note This function is one of the four that do not return control to the application until the server sends the required response.
The application can be blocked for a considerable time if the server is waiting for a lock or processing a large sort. If this is
unacceptable, always call dbdataready before dbresults and set the DB-Library time-out to regain control periodically.

Remarks

This function sets up the next statement in the command batch for processing. It is called after dbsqlexec or dbsqlok. The
dbresults function returns SUCCEED or NO_MORE_RESULTS on the first call if dbsqlexec or dbsqlok has returned SUCCEED,
unless a network error or out-of-memory error has occurred. After dbresults returns SUCCEED, the user typically processes any
rows with dbnextrow.

The dbresults function must be called for each statement in the command batch, whether or not the statement returns any rows.
If the application code doesn't know how many statements are in the batch, dbresults can be called until it returns
NO_MORE_RESULTS. Ordinarily, call dbresults one time for any stored procedure in the command batch. However, if the stored
procedure contains more than one Transact-SQL SELECT statement, call dbresults one time for each SELECT statement. The
easiest way to do this is to continue to call dbresults until it returns NO_MORE_RESULTS.

You must call dbresults until it returns NO_MORE_RESULTS, or any continued use of the DBPROCESS causes the DB-Library
error 10038 "Results Pending".

Examples

This example shows the typical sequence of calls when using dbresults with dbsqlexec:

DBINT xvariable;
DBCHAR yvariable[10];

// Read the query into the command buffer.
dbcmd(dbproc, "SELECT x = 100, y = 'hello'");

// Send the query to SQL Server.
dbsqlexec(dbproc);
// Get ready to process the results of the query.
dbresults(dbproc);
// Bind column data to program variables.
dbbind(dbproc, 1, INTBIND, (DBINT) 0, (BYTE *) &xvariable);
dbbind(dbproc, 2, STRINGBIND, (DBINT) 0, yvariable);
// Now process each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // C-code to print or process row data
}

See Also

dbbind

dbnextrow

dbcancel

dbsqlexec

dbcanquery

dbsqlok

DB Library for C (SQL Server 2000)

dbrows
Indicates whether the current statement returned rows.

Syntax

RETCODE dbrows (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

Call dbrows after dbresults returns SUCCEED. Note that dbrows should be called before dbnextrow; otherwise, dbrows
returns an incorrect value. Use dbcmdrow to determine whether the current statement can return rows (that is, a Transact-SQL
SELECT or EXECUTE statement on a stored procedure containing a SELECT statement).

Even if dbrows returns FAIL, you must still process the results by calling dbnextrow until it returns NO_MORE_ROWS.

See Also

dbcmdrow

dbresults

dbnextrow

dbrowtype

DB Library for C (SQL Server 2000)

dbrowtype
Returns the type of the current row.

Syntax

STATUS dbrowtype (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

One of four values:

If the current row is a regular row, REG_ROW is returned.

If the current row is a compute row, the computeid of the row is returned (for more information about computeid, see
dbaltbind).

If no rows have been read, NO_MORE_ROWS is returned.

If dbrowtype was unsuccessful, FAIL is returned.

Remarks

Because dbnextrow returns the type (regular or compute) of the current row, you can usually determine the row type without
using dbrowtype.

See Also

dbnextrow

DB Library for C (SQL Server 2000)

dbserverenum
Searches for the names of Microsoft® SQL Servers™ 2000 locally, over the network, or both.

Syntax

INT dbserverenum (
USHORT searchmode,
LPSTR servnamebuf,
USHORT sizeservnamebuf,
LPUSHORT numentries);

Arguments

searchmode

Defines whether the dbserverenum function checks for server names locally, on the network, or both.

Set searchmode to LOC_SEARCH to search for the names of servers in the Win.ini file (Microsoft Windows®) or in the following
subtree of the Microsoft Windows NT® 4.0 Registry:

HKEY_Local_Machine\
 SOFTWARE\
 Microsoft\
 MSSQLServer\
 Client\
 ConnectTo

The LOC_SEARCH constant has the value 0x0001.

To search for the names of servers registered by the default Net-Library, set searchmode to NET_SEARCH. The NET_SEARCH
constant has the value 0x0002.

To search both locally and on the network for server names, use a bitwise OR operation (NET_SEARCH | LOC_SEARCH) to
combine the values of LOC_SEARCH and NET_SEARCH. In this case, a server name is duplicated if the server name is defined both
locally and on the network.

DB-Library first tries to load the default Net-Library set by the DSQUERY entry in the Windows NT Registry or in the .ini file
(Windows). If no default entry exists, DB-Library loads the appropriate Named Pipe Net-Library.

servnamebuf

Is a pointer to a buffer that stores the server names returned by a search. When the dbserverenum function successfully returns
a list of server names, the servnamebuf buffer contains the server names separated by null characters. The end of the list is
designated by two consecutive null characters. Only complete server names are copied to the buffer. When a buffer is full and
there are additional names that could not be copied to the buffer, dbserverenum returns the value MORE_DATA. Server names
are returned in unsorted order; names found using the LOC_SEARCH constant are returned before those names found using the
NET_SEARCH constant. Note that dbserverenum can return server names even when the SQL Server is not running. Therefore,
although a server name is returned in the list of servers, it does not guarantee that you can access the server.

sizeservnamebuf

Specifies the size of the buffer for the server names returned by a successful search. The buffer size limits the maximum number
of names that dbserverenum can return in a single call.

numentries

Returns the number of server names copied to the buffer by the current call to dbserverenum.

Returns

The dbserverenum function returns one or more of the following status code constants:

ENUM_SUCCESS (0x0000)

Indicates that the search to detect server names succeeded. ENUM_SUCCESS can be returned even when no servers are detected
(when numentries = 0).

MORE_DATA (0x0001)

Indicates that DB-Library has enough memory to service the dbserverenum request but the buffer passed to dbserverenum is
not large enough to hold all the names returned. Increasing the size of sizeservnamebuf enables the buffer to hold more server
names.

NET_NOT_AVAIL (0x0002)

Indicates that the Net-Library DLL is unavailable. A Net-Library DLL might be unavailable because no DLL is found or because the
available Net-Library DLL does not support the dbserverenum function. When the searchmode parameter includes the
NET_SEARCH mode, dbserverenum calls the default Net-Library DLL. When searchmode includes both the NET_SEARCH and
LOC_SEARCH modes (NET_SEARCH | LOC_SEARCH), dbserverenum can return both MORE_DATA and NET_NOT_AVAIL
(MORE_DATA | NET_NOT_AVAIL).

OUT_OF_MEMORY (0x0004)

Indicates that DB-Library cannot allocate enough memory to service the dbserverenum request.

NOT_SUPPORTED (0x0008)

Indicates that the capability is not supported by the current Net-Library version or the current server platform.

ENUM_INVALID_PARAM (0x0010)

Indicates that an invalid parameter, such as a null pointer, was passed to the function.

Remarks

Using dbserverenum, you can obtain the names of servers to which you can connect. The dbserverenum function can search
for the names of SQL Servers either locally or over the network. For network searches, the Net-Library DLL used must support the
dbserverenum function. A Net-Library DLL registers and finds servers on networks for a specific network environment such as
LAN Manager - based networks.

When the search mode is set to NET_SEARCH, dbserverenum calls the default Net-Library DLL (for example, Named Pipes or
Novell IPX/SPX). Because only one Net-Library DLL can be the default, those servers discernible to the specific Net-Library are
enumerated using the NET_SEARCH parameter. You must add a specific server entry in the Windows NT 4.0 Registry to use a
Net-Library DLL other than the default Net-Library DLL. Servers listed in the Registry are enumerated when the search mode is
set to LOC_SEARCH.

See Also

dbopen

DB Library for C (SQL Server 2000)

dbsetavail
Marks a DBPROCESS as being available for general use.

Syntax

void dbsetavail (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Remarks

Any subsequent call to dbisavail returns TRUE until some use is made of DBPROCESS. Many DB-Library functions automatically
set DBPROCESS to "not available". This is useful when many different parts of a program are attempting to share a single
DBPROCESS structure.

See Also

dbisavail

DB Library for C (SQL Server 2000)

dbsetlapp
Sets the application name in the LOGINREC structure.

Syntax

RETCODE DBSETLAPP (
PLOGINREC loginrec,
LPCSTR application);

Arguments

loginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get one of these pointers by calling
dblogin.

application

Is the application name that will be sent to Microsoft® SQL Server™ 2000. It must be a null-terminated character string. The
maximum length of the string is 30 characters, not including the null-terminating character. SQL Server stores only the first 16
characters and ignores the rest.

Returns

SUCCEED or FAIL.

Remarks

DBSETLAPP sets the application field in the LOGINREC structure. For it to have any effect, it must be called before dbopen.
DBSETLAPP is optional. If you do not call DBSETLAPP, the application parameter of the LOGINREC structure is set to the calling
application name by default instead of to NULL, as it is in SQL Server version 6.0 or earlier.

SQL Server uses the application name in its sysprocesses table to help identify your process. If you set the application name, you
see it if you query the sysprocesses table in the master database.

See Also

dblogin

dbsetlpwd

dbopen

dbsetluser

dbsetlhost

DB Library for C (SQL Server 2000)

dbsetlfallback
Indicates that dbopen can connect to a failover server if an attempt to connect to a primary server fails.

Syntax

RETCODE DBSETLFALLBACK (
 PLOGINREC ploginrec,
 LPCSTR pstatus);

Arguments

ploginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen.

pstatus

Specifies whether failover support is enabled or not. Set pstatus to "ON" to enable failover support. Set pstatus to "OFF" to disable
failover support.

Returns

SUCCEED or FAIL.

Remarks

This function only works with a standby server configuration; it does not apply to a virtual server cluster/failover configration. Call
the DBSETLFALLBACK function to indicate that a failover server can be used by a subsequent call to dbopen. When successfully
connected to the primary server, the dbopen function automatically determines the current failover server and verifies that the
failover information is stored in the registry. You must call the DBSETLFALLBACK function before you call the dbopen function.
If the attempt to connect to the primary server fails, dbopen attempts to connect to the failover server.

Setting pstatus to "ON" or "OFF" determines whether failover support is available during subsequent calls to dbopen.

For DBSETLFALLBACK to function properly, the connection time-out set by calling dbsetlogintime or DBSETLTIME must be a
value greater than 0.

Examples

In this example, DBSETLFALLBACK specifies that failover support is enabled prior to a call to dbopen.

DBSETLFALLBACK (loginrec, "ON");
dbproc = dbopen (loginrec, "my_server");

DB Library for C (SQL Server 2000)

dbsetlhost
Sets the workstation name in the LOGINREC structure.

Syntax

RETCODE DBSETLHOST (PLOGINREC loginrec, LPCSTR workstation);

Arguments

loginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get one of these pointers by calling
dblogin.

workstation

Is the workstation name to be sent to Microsoft® SQL Server™ 2000. It must be a null-terminated character string. The maximum
length of the string is 30 characters, not including the null-terminating character. SQL Server stores only the first 10 characters
and ignores the rest.

Returns

SUCCEED or FAIL.

Remarks

For DBSETLHOST to have any effect, call it before dbopen.

The workstation name shows up in the sysprocesses table in the master database, or on the screen if you issue an sp_who
command.

If you do not call DBSETLHOST, the workstation parameter of the LOGINREC structure is set to the host workstation name by
default instead of to NULL, as it is in SQL Server version 6.0 or earlier.

See Also

dblogin

dbsetlpwd

dbopen

dbsetluser

dbsetlapp

DB Library for C (SQL Server 2000)

dbsetlnatlang
Sets the name of the national language in the LOGINREC structure.

Syntax

RETCODE DBSETLNATLANG (
PLOGINREC loginrec,
LPCSTR language);

Arguments

loginrec

Is a pointer to a LOGINREC structure to be passed as a parameter to dbopen. Execute dblogin to get LOGINREC structures.

language

Is the name of the national language to use. This parameter must be a null-terminated character string.

Returns

SUCCEED or FAIL.

Remarks

To set a language other than the Microsoft® SQL Server™ 2000 default, call DBSETLNATLANG before dbopen. If language
support is installed in the server, error messages are returned in the designated national language.

See Also

dblogin

dbopen

DB Library for C (SQL Server 2000)

dbsetlogintime
Sets the number of seconds that DB-Library waits for Microsoft® SQL Server™ 2000 to respond to a request for a DBPROCESS
connection (after calling dbopen).

Syntax

RETCODE dbsetlogintime (INT seconds);

Arguments

seconds

Is the time-out value, or the number of seconds that DB-Library waits for a login response before timing out. A time-out value of
0 represents an infinite time-out period. The default time-out value is 60 seconds.

Returns

SUCCEED or FAIL.

See Also

dberrhandle

dbsettime

dbopen

DB Library for C (SQL Server 2000)

dbsetlpacket
Sets the tabular data stream (TDS) packet size in an application's LOGINREC structure.

Syntax

RETCODE DBSETLPACKET (
PLOGINREC loginrec,
USHORT packet_size);

Arguments

loginrec

Is a pointer to the LOGINREC structure to be passed as an argument to dbopen.

packet_size

Is the size requested, in bytes (0 through 65535). The server will set the actual packet size to a value less than or equal to the
requested size.

Returns

SUCCEED or FAIL.

Remarks

Tabular data stream (TDS) is an application protocol used for the transfer of requests and request results between clients and
servers. TDS data is sent in fixed-size chunks, called "packets". TDS packets have a default size set by Microsoft® SQL Server™
2000. If an application does bulk copy operations, or sends or receives large amounts of text or image data, a packet size larger
than the default might improve efficiency, because it results in fewer network reads and writes. For large data transfers, a packet
size between 4092 and 8192 bytes is usually best. Any larger size can degrade performance.

The only way an application can change the TDS packet size is by using DBSETLPACKET. If DBSETLPACKET is not called, all
DBPROCESS connections in an application will use the default size.

Note that when the application logs in to the server, the server sets the TDS packet size for that DBPROCESS connection to be
equal to or less than the value of the packet_size parameter. If the server is experiencing space constraints, the packet size is set to
a value less than the value of the packet_size parameter. Otherwise, the packet size is equal to the value of this parameter. To
determine the packet size that the server has set, call dbgetpacket.

Different DBPROCESS connections in an application can use different packet sizes. To set different packet sizes for DBPROCESS
connections, an application can either change the packet size in a single LOGINREC structure between the dbopen calls that
create the DBPROCESS connections, or it can set different packet sizes in multiple LOGINREC structures and use these different
LOGINREC structures when creating the DBPROCESS connections.

See Also

dbgetpacket

dbopen

dblogin

DB Library for C (SQL Server 2000)

dbsetlpwd
 New Information - SQL Server 2000 SP3.

Sets the user Microsoft® SQL Server™ 2000 password in the LOGINREC structure.

Syntax

RETCODE DBSETLPWD (
PLOGINREC loginrec,
LPCSTR password);

Arguments

loginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen. To get one of these pointers, call dblogin.

Security Note Authorization information, including user name and password, is stored in memory in the LOGINREC structure. It
is possible that someone accessing a memory dump of the machine running the application could access this information. Take
precautions to prevent access to memory output by unauthorized individuals.

password

Is the SQL Server password that is sent to SQL Server. It must be a null-terminated character string. The maximum length of the
string is 30 characters, not including the null-terminating character.

Returns

SUCCEED or FAIL.

Remarks

For DBSETLPWD to have any effect, call it before dbopen.

You do not need to call it if the password is a null value.

Security Note When possible, use DBSETLSECURE to enable Windows authentication rather than using DBSETLUSER and
DBSETLPWD to enable SQL Server authentication.

See Also

dblogin

dbsetlhost

dbopen

dbsetluser

dbsetlapp

DB Library for C (SQL Server 2000)

dbsetlsecure
 New Information - SQL Server 2000 SP3.

Sets the secure connection flag in a LOGINREC structure.

Syntax

RETCODE DBSETLSECURE (PLOGINREC ploginrec);

Arguments

ploginrec

A pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get one of these pointers by calling
dblogin.

Returns

SUCCEED or FAIL.

Remarks

By setting the secure connection flag in a LOGINREC structure with DBSETLSECURE, the application requests a secure, or trusted,
connection to Microsoft® SQL Server™ 2000. This means that SQL Server will use Windows Authentication security to establish
connections made (using dbopen) with this LOGINREC, regardless of the current login security mode at the server. Any login ID
or password supplied by DBSETLUSER or DBSETLPWD is ignored.

Security Note When possible, use DBSETLSECURE to enable Windows Authentication rather than using DBSETLUSER and
DBSETLPWD to enable SQL Server Authentication.

To use DBSETLSECURE and trusted connections, you must first use xp_grantlogin to grant SQL Server system administrator or
user privilege to the appropriate Microsoft Windows NT® 4.0-based groups or users. Use xp_revokelogin to revoke SQL Server
permissions and stop a user or group from using a trusted connection.

Note that DBSETLSECURE enables trusted connections even when the server is in Mixed Mode.

See Also

dblogin

dbsetlhost

dbopen

dbsetluser

dbsetlapp

Authentication Modes

DB Library for C (SQL Server 2000)

dbsetltime
Sets the connection-specific connection time-out in a LOGINREC structure.

Syntax

RETCODE DBSETLTIME (
PLOGINREC ploginrec,
DWORD seconds);

Arguments

ploginrec

A pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get one of these pointers by calling
dblogin.

seconds

The number of seconds that DB-Library waits for a login response from Microsoft® SQL Server™ 2000 before timing out. The
following special values are also available.

seconds Description
TIMEOUT_IGNORE Use the global connection time-out set using

dbsetlogintime.
TIMEOUT_INFINITE No time-out.
TIMEOUT_MAXIMUM Maximum DB-Library connection time-out.

Returns

SUCCEED or FAIL.

Remarks

The seconds value overrides the global time-out value set using dbsetlogintime or the default login time-out.

See Also

dblogin

dbsetlhost

dbopen

dbsetlogintime

dbsetlapp

dbsetluser

DB Library for C (SQL Server 2000)

dbsetluser
 New Information - SQL Server 2000 SP3.

Sets the username in the LOGINREC structure.

Syntax

RETCODE DBSETLUSER (
PLOGINREC loginrec,
LPCSTR username);

Arguments

loginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen. To get one of these pointers, call dblogin.

username

Is the username that is sent to Microsoft® SQL Server™ 2000. It must be a null-terminated character string. The maximum length
of the string is 30 characters, not including the null-terminating character. SQL Server uses it to determine who is attempting the
connection. The SQL Server usernames are defined in the syslogins table in the master database.

Returns

SUCCEED or FAIL.

Remarks

For DBSETLUSER to have any effect, it must be called before dbopen.

Security Note When possible, use DBSETLSECURE to enable Windows Authentication rather than using DBSETLUSER and
DBSETLPWD to enable SQL Server Authentication.

See Also

dblogin

dbsetlhost

dbopen

dbsetlpwd

dbsetlapp

DB Library for C (SQL Server 2000)

dbsetlversion
Sets the DB-Library client behavior to version 4.2 or 6.0 and later behavior in a LOGINREC structure.

Syntax

RETCODE DBSETLVERSION (
PLOGINREC ploginrec,
BYTE version)

Arguments

ploginrec

A pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get one of these pointers by calling
dblogin.

version

The DB-Library client behavior to use. Must be either DBVER60 to set DB-Library 6.0 behavior or DBVER42 to set DB-Library 4.2
behavior.

Returns

SUCCEED or FAIL.

Remarks

If this function is not called, the default is DB-Library 4.2 behavior.

Using the DBVER60 value means that Microsoft® SQL Server™ 2000 treats the connection as a DB-Library 6.0 client in every way.
SQL Server:

Returns decimal and numeric data values.

Returns complete column information (including identity column information) to DB-Library and dbcolinfo.

Using the DBVER42 value (or not calling DBSETLVERSION for the LOGINREC) means that SQL Server treats the connection as a
DB-Library 4.2 client. SQL Server:

Converts decimal and numeric data values to float before returning them to the client.

Returns limited, version 4.2 column information (not including identity column information) to DB-Library and dbcolinfo.

Note that using DBVER60 is not required to use SQL Server version 6.0 and later server cursors.

See Also

dblogin

dbsetlhost

dbopen

dbsetlpwd

dbsetlapp

DB Library for C (SQL Server 2000)

dbsetmaxprocs
Sets the maximum number of simultaneously open DBPROCESS structures.

Syntax

RETCODE dbsetmaxprocs (SHORT maxprocs);

Arguments

maxprocs

Is the new limit on simultaneously open DBPROCESS structures for this particular application.

Returns

SUCCEED if the function call is successful, or else FAIL (that is, maxprocs <= 0).

Remarks

A DB-Library application has a maximum number of simultaneously open DBPROCESS structures. Although the default number is
25, the application can change it by calling dbsetmaxprocs.

Similarly, the program can find out what the current limit is by calling dbgetmaxprocs.

The following table shows platform-dependent connection limitations:

Operating system Maximum number of connections per workstation
Microsoft® Windows NT®
4.0

Limited by amount of memory available.

Microsoft Windows® 95 or
Windows 98

Limited by amount of memory available.

Windows 45 for all Microsoft® SQL Server™ 2000-running
applications.

Microsoft MS-DOS® 15.

See Also

dbgetmaxprocs

dbopen

DB Library for C (SQL Server 2000)

dbsetnull
Defines substitution values for use when binding null values.

Syntax

RETCODE dbsetnull (
PDBPROCESS dbproc,
INT bindtype,
INT bindlen,
LPCBYTE bindval);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

bindtype

Is the type of variable binding to which the substitute value applies. (For more information about the different bindtypes, see
dbbind.)

bindlen

Is the length, in bytes, of the substitute value you are supplying. It is ignored in all cases except CHARBIND and BINARYBIND. All
the other types are either fixed length or have a special terminator or embedded byte count that provides the length of the data.

bindval

Is a generic BYTE pointer to the value you want to use as a null value substitution. The dbsetnull function always makes a copy of
this data, so you can free this pointer any time after this call.

Returns

SUCCEED or FAIL. The dbsetnull function fails if you give it a null bindval or if the length is smaller than 1 when CHARBIND and
BINARYBIND types are used.

Remarks

The dbbind and dbaltbind functions are used to bind returned SQL Server column values to your program variables. Because a
null value can be returned, there is a mechanism for defining what values should be substituted for the null value when doing
automatic copying of column data to program variables. Associated with each DBPROCESS is a list of substitute values for each of
the binding types. The default substitution values are as follows:

Binding type Default substitution value
TINYBIND 0
SMALLBIND 0
INTBIND 0
BITBIND 0
CHARBIND Empty string (padded with blanks)
STRINGBIND Empty string (padded with blanks, null-terminated)
NTBSTRINGBIND Empty string (null-terminated)
VARYCHARBIND Empty string
BINARYBIND Empty array (padded with zeros)
VARYBINBIND Empty array
DATETIMEBIND 8 bytes of zeros
MONEYBIND $0.00
FLT8BIND 0.0
FLT4BIND 0.0
SMALLMONEYBIND $0.00

SMALLDATETIBIND 4 bytes of zeros
DECIMALBIND 0.0
NUMERICBIND 0.0
SRCDECIMALBIND 0.0
SRCNUMERICBIND 0.0

Call dbsetnull to supply your own null substitution values. Whenever you call dbsetnull to change a particular null substitution
value, the new value remains in force for that DBPROCESS until you change it with another call to dbsetnull.

The dbconvert function also uses the current null substitution values when it needs to set a destination variable to null.

See Also

dbaltbind

dbconvert

dbbind

DB-Library for C Data Types

DB Library for C (SQL Server 2000)

dbsetopt
Sets a Microsoft® SQL Server™ 2000 or DB-Library option.

Syntax

RETCODE dbsetopt (
PDBPROCESS dbproc,
INT option,
LPCSTR param);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server. If dbproc is
NULL, the option is set for all active DBPROCESS structures.

option

Is the option to be set. See DB-Library Options.

param

Is a parameter for an option. Certain options take parameters. For example, the DBOFFSET option takes as its parameter the
construct for which offsets are to be returned:

dbsetopt(dbproc, DBOFFSET, "compute")

The DBBUFFER option takes as its parameter the number of rows to be buffered. A parameter with a negative value selects the
default (currently 100 rows). A value of 1 is invalid.

dbsetopt(dbproc, DBBUFFER, "500")

Note The param variable must always be a character string enclosed in quotation marks, even in the case of a numeric value, as
in the preceding DBBUFFER example.

If the option takes no parameters, param is ignored and may be NULL.

Returns

SUCCEED or FAIL.

This function fails if param is invalid for one of the DB-Library options. However, an invalid param for an SQL Server option does
not cause dbsetopt to fail, because such a parameter does not get validated until the command buffer is sent to SQL Server.

Remarks

Although SQL Server options can be set and cleared directly through Transact-SQL, the application should use dbsetopt and
dbclropt to set and clear options. This provides a uniform interface for setting both SQL Server and DB-Library options. It also
allows the application to use the dbisopt function to check the status of an option.

This function does not immediately set the options specified. They are not set until the command buffer is sent to SQL Server (by
invoking the dbsqlexec function). An additional result for each option set is returned through the dbresults function.

See Also

dbclropt

dbresults

dbisopt

dbsqlexec

DB-Library Options

Bulk-Copy Functions

DB Library for C (SQL Server 2000)

dbsettime
Sets the number of seconds that DB-Library waits for Microsoft® SQL Server™ 2000 to respond during calls to dbsqlexec,
dbsqlok, dbresults, dbnextrow, and dbrpcexec.

Syntax

RETCODE dbsettime (INT seconds);

Arguments

seconds

Is the time-out value, or the number of seconds that DB-Library waits for SQL Server to respond before timing out. The default
time-out value of 0 represents an infinite time-out period.

Returns

SUCCEED or FAIL.

Remarks

This function sets the length of time, in seconds, that DB-Library waits for a SQL Server response during calls to dbsqlexec,
dbsqlok, dbresults, dbnextrow, and dbrpcexec. The dbsettime function does not override existing network time-out settings.

The dbsettime function can be called at any time during the application, before or after a call to dbopen. It takes effect
immediately upon being called.

To set a time-out value for calls to dbopen, use dbsetlogintime.

Note that if an application sends a command to SQL Server using dbsqlexec, control is not returned to the calling application
until SQL Server completes the processing of the command. If the application program needs to continue execution while SQL
Server is processing the command, it should send the command with dbsqlsend, continue its processing, and then, when it is
ready to retrieve the results, call dbsqlok.

The program can call dbgettime for the current time-out value.

See Also

dbdataready

dbrpcexec

dberrhandle

dbsetlogintime

dbgettime

dbsqlexec

dbnextrow

dbsqlok

dbresults

dbsqlsend

DB Library for C (SQL Server 2000)

dbsetuserdata
Saves, in a DBPROCESS structure, a pointer to user-allocated data.

Syntax

void dbsetuserdata (PDBPROCESS dbproc, LPVOID ptr);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

ptr

Is a generic BYTE pointer to the user's private data space.

Remarks

The dbsetuserdata function lets an application associate user data with a particular DBPROCESS, eliminating the need for global
variables. This function is especially useful when an application has more than one DBPROCESS.

Make sure each application allocates the data that ptr points to. DB-Library never manipulates this data; it merely saves the
pointer so the application can use it later.

Examples

The following example shows how dbsetuserdata handles deadlock, an occasional occurrence in high-volume applications. This
program fragment sends updates to the SQL Server and reruns the transaction when its message handler detects deadlock:

// Deadlock detection:
// In the DBPROCESS structure, save a pointer to a DBBOOL variable.
// The message handler sets the variable when deadlock occurs.
// The result processing logic checks the variable and resends the
// transaction in case of deadlock.

// Allocate the space for the DBBOOL variable and save it in
// the DBPROCESS structure.

dbsetuserdata(dbproc, malloc(sizeof(DBBOOL)));

// Initialize the variable to FALSE.
*((DBBOOL *) dbgetuserdata(dbproc)) = FALSE;
// Run queries and check for deadlock.
deadlock:

// Did the application get here via deadlock?
// If so, the server has already canceled the transaction.
// Start the application again. In a real application,
// the deadlock handling may need to be somewhat more
// sophisticated. For instance, you may want to keep a
// counter and retry the transaction a fixed number
// of times.

if (*((DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
{
 // Reset the variable to FALSE.
 *((DBBOOL *) dbgetuserdata(dbproc)) = FALSE;
}

// Start the transaction.
dbcmd(dbproc, "begin transaction ");

// Run the first UPDATE command.
dbcmd(dbproc, "UPDATE ...");
dbsqlexec(dbproc);
while (dbresults(dbproc) ! = NO_MORE_RESULTS)
{
// application code
}

// Did the application deadlock?
if (*(DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
 goto deadlock;

// Run the second UPDATE command.
dbcmd(dbproc, "UPDATE ...");
dbsqlexec(dbproc);
while (dbresults(dbproc) ! = NO_MORE_RESULTS
{
 // application code
}

// Did the application deadlock?
if (*((DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
 goto deadlock;

// No deadlock -- Commit the transaction.
dbcmd(dbproc, "COMMIT TRANSACTION");
dbsqlexec(dbproc);
dbresults(dbproc);

// SERVERMSGS
// This is the server message handler. Assume that the dbmsghandle
// function installed it earlier in the application.

servermsgs(dbproc, msgno, msgstate, severity, msgtext, srvname, procname, line)
DBPROCESS *dbproc;
DBINT msgno;
int msgstate;
int severity;
char *msgtext;
char srvname;
char *procname;
DBUSMALLINT line;
{

// Is this a deadlock message?
if (msgno = 1205)
{
 // Set the deadlock indicator.
 * ((DBBOOL *) dbgetuserdata(dbproc)) = TRUE;
 return (O);
}

// Normal message handling code here.
}

See Also

dbgetuserdata

DB Library for C (SQL Server 2000)

dbsqlexec
Sends a command batch to Microsoft® SQL Server™ 2000.

Syntax

RETCODE dbsqlexec (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL. The most common reason for failing is a Transact-SQL syntax error or SQL Server permission violation. Other
reasons include incorrect column or table names. The dbsqlexec function also fails if previous results were not processed, if no
statement was specified, or if a network connection is broken.

Note that if a series of commands is sent to SQL Server and if one or more of the commands contains syntax errors, SQL Server
processes none of the commands, and dbsqlexec returns FAIL.

Remarks

This function sends Transact-SQL statements, stored in the command buffer of the DBPROCESS, to SQL Server. Statements can be
added to the DBPROCESS structure by calling dbcmd or dbfcmd.

The dbsqlexec function is equivalent to dbsqlsend followed by dbsqlok. However, after sending a query to SQL Server,
dbsqlexec waits until it receives a response or until the time-out period has elapsed. If you prefer not to have your application
wait, substitute dbsqlsend, dbdataready, and dbsqlok.

After dbsqlexec, the application must call dbresults to process the results.

Example

This example shows the typical sequence of calls:

DBINT xvariable;
DBCHAR yvariable[10];

// Place the query into the command buffer.
dbcmd(dbproc, "SELECT x = 100, y = 'hello'");

// Send the command buffer to SQL Server.
dbsqlexec(dbproc);

// Get ready to process the results of the query.
dbresults(dbproc);

// Bind column data to program variables.
dbbind(dbproc, 1, INTBIND, (DBINT) 0, (BYTE *) &xvariable);
dbbind(dbproc, 2, STRINGBIND, (DBINT) 0, yvariable);

// Now process each row.
while (dbnextrow(dbproc) != NO_MORE_ROWS)
{
 // C-code to print or process row data
}

See Also

dbcmd

dbsettime

dbfcmd

dbsqlok

dbnextrow

dbsqlsend

dbresults

DB Library for C (SQL Server 2000)

dbsqlok
Verifies the correctness of a command batch.

Syntax

RETCODE dbsqlok (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL. The most common reason for failing is a Transact-SQL syntax error.

Remarks

dbsqlok following dbsqlsend is the equivalent of dbsqlexec. This function must be called after dbsqlsend returns SUCCEED.
When dbsqlok returns, then dbresults can be called to process the results. In a batch, if the last statement fails, then dbsqlok
returns FAIL but there may still be some result set to process. So even if dbsqlok returns FAIL, dbresults should be called to
process any outstanding result set (until NO_MORE_RESULTS is returned).

The dbsqlok function is also useful in text-update operations. When chunks of text are sent to SQL Server using dbmoretext,
dbsqlok must be called before the first call to dbmoretext and after the last call to dbmoretext. For an example of its use in this
context, see dbwritetext.

Note This function is one of the four that do not return control to the application until the server sends the required response.
The application can be blocked for a considerable time if the server is waiting for a lock or processing a large sort. If this is
unacceptable, always call dbdataready before dbsqlok and set the DB-Library time-out to regain control periodically.

See Also

dbcmd

dbsettime

dbfcmd

dbsqlexec

dbmoretext

dbsqlsend

dbnextrow

dbwritetext

dbresults

DB Library for C (SQL Server 2000)

dbsqlsend
Sends a command batch to Microsoft® SQL Server™ 2000 and does not wait for a response.

Syntax

RETCODE dbsqlsend (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation/ SQL Server process. It contains all the information that
DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

This function sends Transact-SQL statements, stored in the command buffer of the DBPROCESS, to SQL Server. Statements can be
added to the command buffer by calling dbcmd or dbfcmd.

After dbsqlsend returns SUCCEED, dbsqlok must be called to verify the accuracy of the command batch. Then dbresults can be
called to process the results.

This function is particularly useful for multitasking with the Microsoft Windows® operating system.

See Also

Building Applications

dbresults

dbcmd

dbsettime

dbfcmd

dbsqlexec

dbnextrow

dbsqlok

DB Library for C (SQL Server 2000)

dbstrcpy
Copies a portion of the command buffer in the DBPROCESS structure to a specified memory location.

Syntax

RETCODE dbstrcpy (
PDBPROCESS dbproc,
INT start,
INT numbytes,
LPSTR dest);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

start

Is the character position in the command buffer from which to start copying. The first character position is 0. If start is greater
than the length of the command buffer, a null terminator is inserted at dest[0].

numbytes

Is the number of characters to copy.

numbytes setting Result
< 0 dbstrcpy copies the entire command buffer. It is valid

to copy 0 bytes.
= 0 A null terminator is inserted at dest[0].
> 0 dbstrcpy copies the number of bytes available and

returns SUCCEED.

dest

Is a pointer to the memory location to copy the source string into.

Returns

SUCCEED or FAIL. FAIL is returned if start is a negative number.

Remarks

The copy is null-terminated. The dbstrcpy function assumes that the destination string is large enough to receive the source
string. If not, unexpected errors may occur.

Internally, the command buffer is a linked list of nonterminated text strings. Parts of the command buffer can be located and
copied using the dbgetchar, dbstrcpy, and dbstrlen functions.

See Also

dbcmd

dbgetchar

dbfcmd

dbstrlen

dbfreebuf

DB Library for C (SQL Server 2000)

dbstrlen
Returns the length, in characters, of the command buffer.

Syntax

INT dbstrlen (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The length, in characters, of the command buffer.

Remarks

Internally, the command buffer is a linked list of nonterminated text strings. Parts of the command buffer can be located and
copied using the dbgetchar, dbstrcpy, and dbstrlen functions.

See Also

dbcmd

dbgetchar

dbfcmd

dbstrcpy

dbfreebuf

DB Library for C (SQL Server 2000)

dbuse
Uses a particular database.

Syntax

RETCODE dbuse (
PDBPROCESS dbproc,
LPCSTR dbname);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

dbname

Is a character pointer to a null-terminated string specifying the database name.

Returns

SUCCEED or FAIL.

Remarks

This function executes a Transact-SQL USE statement for the specified database for a particular DBPROCESS structure. It sets up
the statement and calls dbsqlexec and dbresults.

If the USE statement fails because the requested database has not yet completed a recovery process, dbuse continues to send
USE statements at 1-second intervals until it either succeeds or encounters some other error.

The function uses the dbproc provided by the caller and its command buffer. Any existing statements in the buffer are lost, and
the command buffer is cleared by dbuse when it is finished.

See Also

dbchange

dbresults

dbname

dbsqlexec

DB Library for C (SQL Server 2000)

dbvarylen
Determines whether the specified data in a regular result column can vary in length.

Syntax

BOOL dbvarylen (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the regular result column of interest. The first column is number 1. For further information, see dbadata.

Returns

TRUE or FALSE, indicating whether or not the column's data can vary in length. dbvarylen also returns FALSE if the column
number is out of range.

This function returns TRUE if:

The result column is derived from a database column of type varchar, varbinary, text, or image.

The source database column is defined as NULL, meaning that it may contain a null value.

Remarks

Use dbvarylen especially with programs that handle ad hoc queries and that need to be alerted to possible null data or data of
variable length. Call dbvarylen only after dbresults returns SUCCEED.

To get a column's data type, execute dbcoltype.

See Also

dbcollen

dbdatlen

dbcolname

DB-Library for C Data Types

dbcoltype

dbnumcols

dbdata

dbprtype

DB Library for C (SQL Server 2000)

dbwillconvert
Determines whether a specific data type conversion is available within DB-Library.

Syntax

BOOL dbwillconvert (
INT srctype,
INT desttype);

Arguments

srctype

Is the data type of the data to be converted. This parameter can be any of the Microsoft® SQL Server™ 2000 data types.

desttype

Is the data type into which the source data is to be converted. This parameter can be any of the SQL Server data types.

Returns

TRUE if the data type conversion is supported; FALSE otherwise.

Remarks

When dbconvert is asked to perform a conversion that it doesn't support, it calls a user-supplied error handler (if any) and
returns -1.

The dbconvert function can convert data stored in any of the SQL Server data types (not all conversions are allowable):

SQL Server data type Program variable type
SQLCHAR DBCHAR
SQLTEXT DBCHAR
SQLBINARY DBBINARY
SQLIMAGE DBBINARY
SQLINT1 DBTINYINT
SQLINT2 DBSMALLINT
SQLINT4 DBINT
SQLFLT8 DBFLT8
SQLBIT DBBIT
SQLMONEY DBMONEY
SQLDATETIME DBDATETIME
SQLDATETIM4 DBDATETIM4
SQLMONEY4 DBMONEY4
SQLFLT4 DBFLT4
SQLDECIMAL DBDECIMAL
SQLNUMERIC DBNUMERIC

For more information about data type conversions, see dbconvert.

See Also

dbaltbind

dbconvert

dbbind

DB-Library Options

DB Library for C (SQL Server 2000)

dbwinexit (Windows only)
Informs DB-Library that the Microsoft® Windows® application is about to exit.

Syntax

void dbwinexit (void);

Remarks

DB-Library for Windows maintains information about each application that has referenced it. DB-Library creates the information
when a library application calls dbinit; it does this to prevent conflicts between applications that use DB-Library concurrently. For
DB-Library to release this information, the application must call dbwinexit just before it exits. You should put the call to
dbwinexit within the message handling code for the WM_DESTROY message. For example:

case WM_DESTROY:
 dbwinexit();
 break;

This call releases the memory DB-Library allocated to keep track of this application and makes that memory available to other
applications.

It should be noted that dbwinexit does not close any connections. Use dbclose or dbexit to close connections.

Important After your application has called dbwinexit, it cannot call any other DB-Library function. If you have called
dbwinexit and then need to issue one or more DB-Library calls, you must call dbinit again to reregister your application.

See Also

dbinit

DB Library for C (SQL Server 2000)

Cursor Functions
DB-Library for C version 7.0 supports several cursor functions.

DB Library for C (SQL Server 2000)

dbcursor
Inserts, updates, deletes, locks, or refreshes a particular row in the fetch buffer of a client cursor, a transparent server cursor, or an
explicit server cursor.

Syntax

RETCODE dbcursor (
PDBCURSOR hc,
INT optype,
INT row,
LPCSTR table,
LPCSTR values);

Arguments

hc

Is the cursor handle previously returned by dbcursoropen.

optype

Specifies the type of cursor operation to perform on a row or rows in the fetch buffer, as follows.

optype Description
CRS_DELETE Deletes row(s).
CRS_INSERT Inserts a single row using data specified in values.
CRS_LOCKCC Locks row(s).

Client cursor:
An exclusive lock is placed on the data page that contains the
specified row. The lock is maintained only if it is inside an open
transaction block defined by BEGIN TRANSACTION; the lock is
released when the transaction is closed by a COMMIT
TRANSACTION or ROLLBACK TRANSACTION statement.

Transparent server cursor, explicit server cursor:
An update intent lock is placed on the data page that contains
the specified row. This lock is released when the next fetch is
performed or when the cursor is closed.

CRS_REFRESH Refreshes row(s) by retrieving current row data from
Microsoft® SQL Server™ 2000.

CRS_UPDATE Updates row(s) using data specified in values.

If the cursor was opened using a concuropt of CUR_READONLY (specified in dbcursoropen), only CRS_REFRESH is valid.

row

Is the row number in the fetch buffer to which the optype operation applies. The first row in the buffer is number 1. The specified
row must contain valid row data.

Client cursor, transparent server cursor:

When optype is CRS_REFRESH, a row value of 0 indicates that all rows in the fetch buffer will be refreshed.

Explicit server cursor:

When optype is one of the following values:

CRS_DELETE

CRS_LOCKCC

CRS_REFRESH

table

Is the table to which the optype operation applies. If optype is CRS_REFRESH use NULL. It must be one of the tables specified in
the FROM clause of the SELECT statement (specified in dbcursoropen) that defines the cursor. If the FROM clause includes only
one table, this parameter is not required, and you can specify that table or NULL.

Client cursor:

If the FROM clause includes more than one table, this parameter is required unless:

optype is CRS_INSERT and values points to a complete INSERT statement.

optype is CRS_UPDATE and values points to a complete UPDATE statement.

Transparent server cursor, explicit server cursor:

If the FROM clause includes more than one table and the dbcursor operation is being performed with an ambiguous
column name, this parameter is required. If table is required but not specified, the default is the first table listed in the FROM
clause.

values

Is a pointer to a string that contains a Transact-SQL statement or clause, or NULL. This parameter specifies the data to be inserted
or updated. The following table lists the valid values parameters for each optype.

optype Values
CRS_DELETE NULL
CRS_INSERT Can be one of the following:

NULL, indicating that the single row to be inserted will come
from the data stored in the bound program variables
(pvaraddr and poutlen in dbcursorbind) for the specified row
in the fetch buffer. This requires overwriting the values in the
bound program variables for an existing row.

A pointer to a string that contains a complete Transact-SQL
INSERT statement that specifies the single row to be inserted,
with no WHERE clause. The table specified in the INSERT
statement overrides the table parameter. The row parameter is
ignored.

A pointer to a string that contains just the VALUES clause
(from an INSERT statement) that specifies the single row to be
inserted. The VALUES keyword is optional, but the list of values
to be inserted must be surrounded by parentheses. The row
parameter is ignored.

CRS_LOCKCC NULL
CRS_REFRESH NULL

CRS_UPDATE Can be one of the following:

NULL, indicating that the changes made to a single row come
from the data stored in the bound program variables
(pvaraddr and poutlen in dbcursorbind) for the specified row
in the fetch buffer. To do this, the SELECT statement that
defines the cursor (specified in dbcursoropen) cannot include
an expression (for example, "length + 10") or a function (such
as CONVERT) in the select list.

A pointer to a string that contains a complete UPDATE
statement that specifies the changes made to a single row,
with no WHERE clause. The table specified in the UPDATE
statement overrides the table parameter. The row parameter is
ignored.

A pointer to a string that contains just the SET clause (from an
UPDATE statement) that specifies the changes made to a single
row. The SET keyword is optional. The row parameter is
ignored.

Returns

SUCCEED or FAIL.

This function can fail for the following reasons:

The cursor is opened as read-only, no updates allowed.

A server or connection failure or time-out occurs.

You have not been granted permission to update or change the database.

DB-Library is out of memory.

A trigger in the database caused the INSERT, LOCK, or UPDATE operation to fail.

You are using optimistic concurrency control, and the row has changed.

Remarks

Using dbcursor does not affect the current cursor position.

When optype is CRS_UPDATE and the values parameter is not NULL and points to a string that contains the UPDATE statement or
SET clause, the bound program variables (pvaraddr and poutlen in dbcursorbind) are automatically refreshed to their newly
updated values.

The select list used to define the cursor (specified in dbcursoropen) can contain timestamp or identity columns. When optype
is CRS_INSERT or CRS_UPDATE and the values parameter is NULL (indicating that new data is obtained from bound program
variables), any read-only columns (including timestamp or identity columns) in the fetch buffer are skipped if dbsetlversion
was called with DBVER60. Because no attempt is made to change these read-only columns, the insert or update can succeed
without receiving errors.

When using CRS_UPDATE, if a change is made to a column that is part of the unique index used to open the cursor, the changed
row will:

Be missing from a keyset cursor. The next time the changed row is fetched, the row status indicator (pstatus in
dbcursoropen) for that row will be FTC_MISSING.

Appear in a new position in a dynamic cursor. The new position depends on the new value of the unique index column, and
later fetches might retrieve the changed row.

After using CRS_DELETE, deleted rows will be missing from a keyset cursor (later fetches will have a row status of FTC_MISSING),
and will disappear from later fetches using dynamic cursors.

Client cursor:

When using CRS_INSERT with a keyset cursor, the inserted row does not appear in the cursor result set, and thus does not appear
in later fetches.

Transparent server cursor, explicit server cursor:

When optype is one of the following:

CRS_INSERT with a keyset cursor involving only one table

CRS_UPDATE to change a column that is part of the unique index used to open the cursor

the inserted or updated row will appear as a new row at the end of the keyset (even if the inserted row does not match the
WHERE clause criteria), or it will appear in the position of a missing row if the unique index columns of the inserted or updated
row match the unique index columns of the missing row.

See Also

Bulk-Copy Functions

dbcursorfetch

dbcursorbind

dbcursorinfo

dbcursorclose

dbcursoropen

dbcursorcolinfo

DB Library for C (SQL Server 2000)

dbcursorbind
Binds a column of a client cursor, transparent server cursor, or explicit server cursor to an array of program variables. This array
of program variables is filled with result data after every fetch or refresh.

Syntax

RETCODE dbcursorbind (
PDBCURSOR hc,
INT col,
INT vartype,
DBINT varlen,
LPDBINT poutlen,
LPBYTE pvaraddr);

Arguments

hc

Is the cursor handle created by dbcursoropen.

col

Is the column number in the cursor to be bound to a program variable. The first column is number 1.

vartype

Is the bind type used to bind the col column to the pvaraddr array of program variables. This bind type is identical to the vartype
parameter of dbbind and uses the same conversion rules. The vartype parameter indicates the program variable data type of the
pvaraddr array elements.

In addition to the dbbind bind types, vartype can be set to NOBIND, indicating that no binding is established for a column. After a
fetch:

Each element of the pvaraddr array will contain a pointer to the column data for that row, similar to dbdata.

Each element of the poutlen array will contain the length of the column data for that row, similar to dbdatlen.

varlen

Is the maximum length, in bytes, of a variable-length data type. This parameter must be supplied when vartype is one of the
following:

CHARBIND, VARYCHARBIND

STRINGBIND, NTBSTRINGBIND

BINARYBIND, VARYBINBIND

This parameter is ignored for fixed-length data types (all other vartype values except those given earlier) and when vartype
is NOBIND.

poutlen

Is a pointer to an array of DBINT elements, one element for each row in the fetch buffer. The required number of elements in this
array is given later. After a fetch, each element of this array will contain the length of the column data for that row, similar to
dbdatlen. A length element value of 0 indicates that the column is NULL.

If poutlen is set to NULL, the lengths are not returned.

Before calling dbcursor to update or insert a row with values from the pvaraddr array of bound program variables, set the
corresponding poutlen element (for that row in the fetch buffer) to one of the following values:

Set an element to 0 to indicate a NULL value.

When vartype is NOBIND, CHARBIND, VARYCHARBIND, BINARYBIND, or VARYBINBIND, set the element to the length, in

bytes, of the new column data.

When vartype is STRINGBIND or NTBSTRINGBIND, any nonzero value is ignored, and the length of the string is determined
by scanning for the null terminator.

For fixed-length data types, nonzero values are ignored.

Client cursor, transparent server cursor:

The number of elements in this array must equal the nrows parameter of dbcursoropen.

Explicit server cursor:

The maximum number of elements in this array is the nrows parameter of dbcursoropen. Before a fetch is made, the
number of elements in this array must be equal to or greater than the nfetchnrows parameter that will be passed to
dbcursorfetchex.

pvaraddr

Is a pointer to an array of elements, one element for each row in the fetch buffer. The required number of elements in this array is
given later. After a fetch, each element of this array will contain:

A copy of the column data for that row, converted as specified by the vartype parameter (similar to dbbind) when vartype
is one of the standard dbbind bind types.

A pointer to the actual column data for that row (similar to dbdata) when vartype is NOBIND.

Setting pvaraddr to NULL breaks any existing binding established by a previous call to dbcursorbind for the column.

Client cursor, transparent server cursor:

The number of elements in this array must equal the nrows parameter of dbcursoropen.

Explicit server cursor:

The maximum number of elements in this array is the nrows parameter of dbcursoropen. Before a fetch is made, the
number of elements in this array must be equal to or greater than the nfetchnrows parameter that will be passed to
dbcursorfetchex.

Returns

SUCCEED or FAIL.

Remarks

If dbcursorbind is called more than once for any column, only the last call will be effective.

See Also

Bulk-Copy Functions

dbcursorfetch

dbcursor

dbcursorinfo

dbcursorclose

dbcursoropen

dbcursorcolinfo

DB Library for C (SQL Server 2000)

dbcursorclose
Closes the client cursor, transparent server cursor, or explicit server cursor, and releases the memory associated with a cursor
handle or connection.

Syntax

RETCODE dbcursorclose (PDBHANDLE handle);

Arguments

handle

Is a DBPROCESS connection or DBCURSOR cursor handle. Cast handle to a PDBHANDLE value (for example,
(PDBHANDLE)mydbproc or (PDBHANDLE)mycursor) to avoid compiler warnings. The following table shows the
dbcursorclose operation for each type of handle.

Handle Operation
PDBCURSOR Closes the specified cursor.
PDBPROCESS Closes all open cursors using the specified connection.

Returns

SUCCEED or FAIL. If handle is a DBPROCESS connection, and this function returns FAIL, call dbcursorclose again to continue
closing all open cursors for the specified connection.

Remarks

After issuing dbcursorclose, the cursor handle should not used.

See Also

Bulk-Copy Functions

dbcursorfetch

dbcursor

dbcursorinfo

dbcursorbind

dbcursoropen

dbcursorcolinfo

DB Library for C (SQL Server 2000)

dbcursorcolinfo
Returns information about the specified column of a client cursor, transparent server cursor, or explicit server cursor.

Syntax

RETCODE dbcursorcolinfo (
PDBCURSOR hcursor,
INT column,
LPSTR colname,
LPINT coltype,
LPDBINT collen,
LPINT usertype);

Arguments

hcursor

Is the cursor handle created by dbcursoropen.

column

Is the column number in the cursor for which information is to be returned. The first column is number 1.

colname

Is a pointer to the program variable that will contain the name of the column. The program variable should be large enough to
accommodate the column name. If colname is set to NULL or -1, the column name is not returned.

coltype

Is a pointer to the program variable that will contain the data type token of the column. If coltype is set to NULL or -1, the column
data type is not returned.

collen

Is a pointer to the program variable that will contain the maximum length of the column, in bytes. If collen is set to NULL or -1, the
maximum column length is not returned.

usertype

Is a pointer to the program variable that will contain the user-defined data type of the column. If usertype is set to NULL or -1, the
column user-defined data type is not returned.

Returns

SUCCEED or FAIL.

Remarks

Call dbcursorcolinfo after dbcursoropen returns a valid cursor handle. The dbcolinfo function returns more detailed
information about a cursor column.

See Also

dbcolinfo

dbcursorfetch

dbcursor

dbcursorinfo

dbcursorbind

dbcursoropen

dbcursorclose

DB Library for C (SQL Server 2000)

dbcursorfetch
Fetches a block of rows (called the fetch buffer) from a client cursor or transparent server cursor, and stores the rows in the
bound program variables established using dbcursorbind. If you are connected to Microsoft® SQL Server™ version 6.0 or later,
you should use dbcursorfetchex.

Syntax

RETCODE dbcursorfetch (
PDBCURSOR hc,
INT fetchtype,
INT rownum);

Arguments

hc

Is the cursor handle created by dbcursoropen.

fetchtype

Specifies the type of fetch to execute, changing the position of the fetch buffer within the cursor result set. The following table
describes the different fetchtype values.

fetchtype Description
FETCH_FIRST Fetches the first block of rows from a dynamic or keyset

cursor. The first row of the new fetch buffer is the first
row in the cursor result set.

FETCH_NEXT Fetches the next block of rows from a dynamic or keyset
cursor. The first row of the new fetch buffer is the row
after the last row of the current fetch buffer.

If this is the first fetch using a new cursor, it behaves the
same as FETCH_FIRST.

FETCH_PREV Fetches the previous block of rows from a fully dynamic
or keyset cursor. The first row of the new fetch buffer is
nrows (specified in dbcursoropen) before the first row of
the current fetch buffer.

FETCH_RANDOM Fetches a block of rows from a keyset cursor. The first row
of the new fetch buffer is the specified rownum row in the
keyset cursor result set.

FETCH_RELATIVE Fetches a block of rows from a keyset cursor. The first row
of the new fetch buffer is rownum rows before or after
the first row of the current fetch buffer.

FETCH_LAST Fetches the last block of rows from a keyset cursor. The
last row of the new fetch buffer is the last row of the
cursor result set.

The block of rows retrieved by a fetch is called the fetch buffer. The number of rows in the fetch buffer is determined by the nrows
parameter of dbcursoropen.

For a forward-only dynamic cursor (scrollopt is CUR_FORWARD in dbcursoropen), you can use only FETCH_FIRST or
FETCH_NEXT.

rownum

Is the specified random or relative row number to use as the first row of the new fetch buffer. Use this parameter only with a
fetchtype of FETCH_RANDOM or FETCH_RELATIVE. Specify 0 for any other fetchtype.

When fetchtype is FETCH_RANDOM, the first row of the new fetch buffer is the rownum row (counting forward from the
beginning) of the keyset cursor result set. The rownum parameter must be positive.

When fetchtype is FETCH_RELATIVE:

A positive rownum means that the first row of the new fetch buffer is rownum rows after the first row of the current fetch
buffer.

A negative rownum means that the first row of the new fetch buffer is rownum rows before the first row of the current fetch
buffer.

A rownum of 0 means that all rows in the fetch buffer are refreshed with current data from SQL Server without moving the
current cursor position. This is identical to calling dbcursor with optype set to CRS_REFRESH.

Returns

SUCCEED or FAIL.

SUCCEED is returned if every row was fetched successfully. Note that for a keyset cursor, a fetch that results in a missing row will
not cause dbcursorfetch to FAIL.

FAIL is returned if at least one of the following is true:

A fetchtype of FETCH_RANDOM, FETCH_RELATIVE, or FETCH_LAST was used on a dynamic cursor.

A fetchtype other than FETCH_FIRST or FETCH_NEXT was used on a forward-only dynamic cursor.

The SQL Server connection is broken or times out.

DB-Library is out of memory.

Remarks

Specify the size of the fetch buffer in the nrows parameter of dbcursoropen.

After the fetch, the elements of the array of row status indicators (pstatus in dbcursoropen) are filled with row status values, one
for each row in the fetch buffer. Each row status value is a series of fetch status values joined in a logical OR. The following table
shows the meaning of each row status value.

Fetch status Description
FTC_SUCCEED Row was successfully fetched. The array of bound program

variables and the array of data length values (specified in
dbcursorbind) contain valid data for the row.

FTC_MISSING Row has been deleted or a unique index column of the row
has been changed. Do not use the values in the array of
bound program variables and the array of data length
values (specified in dbcursorbind) for the row.

For keyset cursors, this fetch status can appear at any time.
For dynamic cursors, this fetch status can appear only after
the current fetch buffer is refreshed.

FTC_ENDOFKEYSET Is the end of the keyset. This fetch status is set for backward
compatibility with "mixed" client cursors used by existing
applications.

FTC_ENDOFRESULTS Is the end of the result set of a dynamic or keyset cursor.
Rows in the fetch buffer after this row are invalid and will
have a row status indicator of 0; do not use the values in
the array of bound program variables and the array of data
length values (specified in dbcursorbind) for those rows.

If joined in a logical OR with FTC_SUCCEED, this is the last
row in the cursor result set; it contains valid data.

If joined in a logical OR with FTC_MISSING, this is the last
row in the cursor result set, but the row is missing.

If not joined with FTC_SUCCEED or FTC_MISSING, this row
is invalid.

A row status indicator of 0 means that the row is invalid, and the values in the array of bound program variables and the array of
data length values (specified in dbcursorbind) do not contain valid data. This usually happens when the row is before the
beginning (first row) or after the end (last row) of the cursor result set.

After the fetch, the elements of the array of bound program variables and the array of data length values (specified earlier in
dbcursorbind):

Are filled with valid data for all rows with a fetch status of FTC_SUCCEED.

Contain invalid data for all rows without a fetch status of FTC_SUCCEED.

If no fetches have been performed on a cursor, the current cursor position is before the beginning (first row) of the cursor result
set.

After a fetch is complete, the new cursor position is one of the following:

The first row of the new fetch buffer, as specified under fetchtype, if the first row of the new fetch buffer stayed within the
cursor result set.

Adjusted to the first row of the cursor result set if the first row of the new fetch buffer would have been before the first row
of the cursor result set and the last row of the new fetch buffer would have stayed within the cursor result set due to a
FETCH_PREV operation.

Unchanged from the current position if all rows of the new fetch buffer would have been before the first row of the cursor
result set, if the first row (and thus all rows) of the new fetch buffer would have been after the last row of the cursor result
set, or, if for a keyset cursor, if the first row of the new fetch buffer would have been before the first row of the cursor result
set and the last row of the new fetch buffer would have stayed within the cursor result set due to a FETCH_RELATIVE
attempt with a negative rownum.

When the new cursor position is unchanged because the first row (and thus all rows) of the new fetch buffer would have been
after the last row of the cursor result set, all rows in the fetch buffer are invalid and will not have a fetch status of FTC_SUCCEED.
In the case of dynamic cursors, the first row of the fetch buffer will have a fetch status of FTC_ENDOFRESULTS, and later rows will
have a row status of 0. In the case of keyset cursors, all rows in the fetch buffer will have a row status of 0.

When the new position of a dynamic cursor is unchanged because all rows of the new fetch buffer would have been before the
first row of the cursor result set, all rows in the fetch buffer are invalid and will not have a fetch status of FTC_SUCCEED. The first
row of the fetch buffer will have a fetch status of FTC_ENDOFRESULTS, and later rows will have a row status of 0.

When the new cursor position is unchanged and all rows in the fetch buffer are invalid, you can use dbcursor to refresh the rows
in the fetch buffer with current data from SQL Server. This will result in valid rows that reflect the current cursor position.

Each call to dbcursorfetch leaves the DBPROCESS structure available for use with no pending results.

Caution This function works with client cursors and transparent server cursors. Do not use both dbcursorfetch and
dbcursorfetchex with the same cursor handle. After one of these functions is used on a specific cursor handle, any attempt to
use the other function returns FAIL.

If rows in the current fetch buffer of a dynamic cursor are deleted, a fetch using a client cursor might behave differently than a
fetch using a transparent server cursor.

Client cursor

When the new position of a dynamic cursor is adjusted to be the first row of the cursor result set (which happens when the first
row of the new fetch buffer would have been before the first row of the dynamic cursor result set and the last row of the new
fetch buffer would have stayed within the dynamic cursor result set due to a FETCH_PREV operation), some rows at the end of the
new fetch buffer might be invalid. Any invalid rows will have a row status indicator of 0.

If rows in the current fetch buffer of a dynamic cursor are deleted, a fetch next or fetch previous might result in a new fetch buffer
that skips rows in the cursor result set or includes rows from the current fetch buffer again.

Transparent server cursor

A fetchtype of FETCH_NEXT or FETCH_PREV using a dynamic cursor is actually mapped to a relative fetch on SQL Server 6.0 or
later. Because of this, if the first row in the current fetch buffer is deleted before a FETCH_NEXT (mapped to a forward relative
fetch on SQL Server 6.0 or later) is performed, the current cursor position becomes invalid. For more information about the fetch
behavior in this case, see dbcursorfetchex.

See Also

Bulk-Copy Functions

dbcursorcolinfo

dbcursor

dbcursorinfo

dbcursorbind

dbcursoropen

dbcursorclose

DB Library for C (SQL Server 2000)

dbcursorfetchex
Fetches a block of rows (called the fetch buffer) from an explicit server cursor and stores the rows in the bound program variables
established using dbcursorbind.

Syntax

RETCODE dbcursorfetchex (
PDBCURSOR hc,
INT fetchtype,
DBINT rownum,
DBINT nfetchrows,
DBINT reserved)

Arguments

hc

Is a PDBCURSOR pointer to a server cursor returned by dbcursoropen.

fetchtype

Specifies the type of fetch to execute, changing the position of the fetch buffer within the cursor result set. The following table
describes the different fetchtype values.

fetchtype Description
FETCH_FIRST Fetches the first block of rows from a dynamic or keyset

cursor. The first row of the new fetch buffer is the first
row in the cursor result set.

FETCH_NEXT Fetches the next block of rows from a dynamic or keyset
cursor. The first row of the new fetch buffer is the row
after the last row of the current fetch buffer.

If this is the first fetch using a new cursor, it behaves the
same as FETCH_FIRST.

FETCH_PREV Fetches the previous block of rows from a fully dynamic
or keyset cursor. The first row of the new fetch buffer is
nrows (specified in dbcursoropen) before the first row of
the current fetch buffer.

FETCH_RANDOM Fetches a block of rows from a keyset cursor. The first row
of the new fetch buffer is the specified rownum row in the
cursor result set.

FETCH_RELATIVE Fetches a block of rows from a dynamic or keyset cursor.
The first row of the new fetch buffer is rownum rows
before or after the first row of the current fetch buffer.

FETCH_LAST Fetches the last block of rows from a dynamic or keyset
cursor. The last row of the new fetch buffer is the last row
of the cursor result set.

The block of rows retrieved by a fetch is called the fetch buffer. The number of rows in the fetch buffer is determined by the
nfetchrows parameter.

For a forward-only, dynamic cursor (scrollopt is CUR_FORWARD in dbcursoropen), you can only use the FETCH_FIRST,
FETCH_NEXT, or FETCH_RELATIVE (with a positive rownum) types.

rownum

Is the specified random or relative row number to use as the first row of the new fetch buffer. Use this parameter only with a
fetchtype of FETCH_RANDOM or FETCH_RELATIVE. Specify 0 for any other fetchtype.

When fetchtype is FETCH_RANDOM:

A positive rownum means that the first row of the new fetch buffer is the rownum row (counting forward from the

beginning) of the cursor result set.

A negative rownum means that the first row of the new fetch buffer is rownum rows backward from the end of the cursor
result set. Given n rows in the cursor result set, the first row of the new fetch buffer is row n+1+rownum of the cursor result
set.

For example, a rownum of - 1 means the first row of the new fetch buffer is row n (n+1 - 1), or the last row, of the current
result set. A rownum of - n means the first row of the new fetch buffer is row 1 (n+1 - n), or the first row, of the current
result set.

A rownum of 0 means that the first row of the new fetch buffer is before the beginning (first row) of the cursor result set.

When fetchtype is FETCH_RELATIVE:

A positive rownum means that the first row of the new fetch buffer is rownum rows after the first row of the current fetch
buffer.

For dynamic cursors, if the first row in the current fetch buffer is deleted before a relative fetch, the current cursor position
becomes invalid. Let d be the number of contiguous rows, including the first row, deleted from the beginning of the current
fetch buffer. Before executing a relative fetch, the current cursor position is set to before the first nondeleted row (row d+1)
in the current fetch buffer.

In this case, when a relative fetch is performed with a positive rownum, the first row of the new fetch buffer is row
rownum+d of the current fetch buffer.

A negative rownum means that the first row of the new fetch buffer is rownum rows before the first row of the current fetch
buffer.

For dynamic cursors, a rownum of 0 means that all the rows in the current fetch buffer are fetched again without moving
the current cursor position. This is different from a refresh because the rows in the new fetch buffer can differ from the rows
in the current fetch buffer. New rows can appear, and old rows can disappear.

In the case given earlier, after d contiguous rows have been deleted from the beginning of the current fetch buffer, when a
relative fetch is performed with a rownum of 0, the first row of the new fetch buffer is the first nondeleted row (row d+1) of
the current fetch buffer.

For keyset cursors, a rownum of 0 means that the current fetch buffer is refreshed with current data from Microsoft® SQL
Server™ without moving the current cursor position. This is identical to calling dbcursor with optype set to CRS_REFRESH.

nfetchrows

Is the number of rows in the new fetch buffer. This value must be less than or equal to the nrows parameter specified for this
cursor in dbcursoropen. The poutlen and pvaraddr arrays specified in calls to dbcursorbind must have at least nfetchrows
elements. If these arrays are not large enough, you must break the existing bindings and then rebind with large enough arrays (at
least nfetchrows elements) before calling dbcursorfetchex.

When fetchtype is FETCH_FIRST, an nfetchrows value of 0 means that the new cursor position is set to before the beginning (first
row) of the cursor result set.

When fetchtype is FETCH_LAST, an nfetchrows value of 0 means that the new cursor position is set to after the end (last row) of
the cursor result set.

reserved

Reserved for future use. Use 0.

Returns

SUCCEED or FAIL.

SUCCEED is returned if every row was fetched successfully. Note that for a keyset cursor, a fetch that results in a missing row will
not cause dbcursorfetchex to FAIL.

FAIL is returned if at least one of the following is true:

A fetchtype of FETCH_RANDOM was used on a dynamic cursor.

A fetchtype other than FETCH_FIRST, FETCH_NEXT, or FETCH_RELATIVE (with a positive rownum) was used on a forward-
only, dynamic cursor.

The SQL Server connection is broken or times out.

DB-Library is out of memory.

Remarks

After the fetch, the elements of the array of row status indicators (pstatus in dbcursoropen) are filled with row status values, one
for each row in the fetch buffer. Each row status value is a series of fetch status values joined in a logical OR. The following table
shows the meaning of each row status value.

Fetch status Description
FTC_SUCCEED Row was successfully fetched. The array of bound program

variables and the array of data length values (specified in
dbcursorbind) contain valid data for the row.

FTC_MISSING Row has been deleted or a unique index column of the row
has been changed. Do not use the values in the array of
bound program variables and the array of data length values
(specified in dbcursorbind) for the row.

For keyset cursors, this fetch status can appear at any time.
For dynamic cursors, this fetch status can appear only after
the current fetch buffer is refreshed.

A row status indicator of 0 means that the row is invalid, and the values in the array of bound program variables and the array of
data length values (specified in dbcursorbind) do not contain valid data. This happens when the row is before the beginning (first
row) or after the end (last row) of the cursor result set.

After the fetch, the elements of the array of bound program variables and the array of data length values (earlier specified in
dbcursorbind):

Are filled with valid data for all rows with a fetch status of FTC_SUCCEED.

Contain invalid data for all rows without a fetch status of FTC_SUCCEED.

If no fetches have been performed on a cursor, the current cursor position is before the beginning (first row) of the cursor result
set.

After a fetch is complete, the new explicit server cursor position is one of the following:

The first row of the new fetch buffer, as specified under fetchtype, if the first row of the new fetch buffer stayed within the
cursor result set.

Adjusted to the first row of the cursor result set if the first row of the new fetch buffer would have been before the first row
of the cursor result set and the last row of the new fetch buffer would have stayed within the cursor result set.

Before the beginning of the cursor result set if all rows of the new fetch buffer are before the first row of the cursor result
set, or if any backward fetch (FETCH_PREV or FETCH_RELATIVE with a negative rownum) is performed when the first row of
the current fetch buffer is the first row of the cursor result set.

After the end of the cursor result set if the first row (and thus all rows) of the new fetch buffer is after the last row of the
cursor result set.

When the current cursor position is before the beginning of the cursor, a FETCH_NEXT operation is identical to a FETCH_FIRST
operation. When the current cursor position is after the end of the cursor, a FETCH_PREV operation is identical to a FETCH_LAST
operation.

Note This function works with explicit server cursors in SQL Server version 6.0 or later. Do not use both dbcursorfetchex and
dbcursorfetch with the same server cursor handle. After one of these functions is used on a specific cursor handle, any attempt
to use the other function returns FAIL.

Each call to dbcursorfetch leaves the DBPROCESS structure available for use with no pending results.

See Also

Bulk-Copy Functions

dbcursorcolinfo

dbcursor

dbcursorinfo

dbcursorbind

dbcursoropen

dbcursorclose

DB Library for C (SQL Server 2000)

dbcursorinfo
Returns the number of columns and the number of rows in the keyset for a client cursor, a transparent server cursor, or an explicit
server cursor. The dbcursorinfoex function returns more detailed information.

Syntax

RETCODE dbcursorinfo (
PDBCURSOR hcursor,
LPINT ncols,
LPDBINT nrows);

Arguments

hcursor

Is the cursor handle created by dbcursoropen.

ncols

Is a pointer to a program variable that will contain the number of columns in the cursor.

nrows

Is a pointer to a program variable that will contain the number of rows in a cursor result set.

Client cursor:

For a keyset cursor, this number is always valid. For a dynamic cursor, this number is valid only if the current fetch buffer contains
the last row in the cursor result set; otherwise, - 1 is returned.

Transparent server cursor, explicit server cursor:

For a dynamic cursor, - 1 is returned.

For a keyset cursor, this value can be the number of rows populated if asynchronous population of the cursor result set is
incomplete, or the total number of rows in the cursor result set. You can call dbcursorinfoex to determine this.

Returns

SUCCEED or FAIL.

Remarks

Call dbcursorinfoex for more complete information about transparent server cursors and explicit server cursors.

See Also

Bulk-Copy Functions

dbcursorcolinfo

dbcursor

dbcursorfetch

dbcursorbind

dbcursoropen

dbcursorclose

DB Library for C (SQL Server 2000)

dbcursorinfoex
Returns information about a client cursor, a transparent server cursor, or an explicit server cursor.

Syntax

RETCODE dbcursorinfoex(
PDBCURSOR hc,
LPDBCURSORINFO pdbcursorinfo)

Arguments

hc

Is a PDBCURSOR pointer to a server cursor returned by dbcursoropen.

pdbcursorinfo

Is a pointer to a DBCURSORINFO structure that DB-Library will fill with information about the specified cursor.

The DBCURSORINFO structure is defined as follows:

typedef struct
{
 DBINT SizeOfStruct;
 ULONG TotCols;
 ULONG TotRows;
 ULONG CurRow;
 ULONG TotRowsFetched;
 ULONG Type;
 ULONG Status;
} DBCURSORINFO, PTR LPDBCURSORINFO;

The DBCURSORINFO fields are described in the table.

Field Description
SizeOfStruct Before calling dbcursorinfoex, set this field equal to the

value returned by the C sizeof function for the
DBCURSORINFO structure.

TotCols Is the total number of columns in the cursor.
TotRows Is the total number of rows in the cursor result set.

Client cursor:
For a keyset cursor, this number is always valid. For a
dynamic cursor, this number is valid only if the current fetch
buffer contains the last row in the cursor result set;
otherwise, - 1 is returned.

Transparent server cursor, explicit server cursor:
For a dynamic cursor, - 1 is returned.
For a keyset cursor, if the Status field is CU_FILLING, the
asynchronous population of the cursor result set is
incomplete, and this value indicates the number of rows
populated. If the Status field is CU_FILLED, the cursor result
set is completely populated, and this value indicates the total
number of rows in the cursor result set.

CurRow Is the row number within the cursor result set of the current
cursor position (first row of the fetch buffer). The first row of
the cursor result set is number 1.

Client cursor:
This value will be 0.

Transparent server cursor, explicit server cursor:
For a keyset cursor, this value is always valid.
For a dynamic cursor, this value will always be 1 when the
current position is within the cursor result set.
This value will be 0 if the current position is before the
beginning of the cursor. This value will be - 1 if the current
position is after the end of the cursor.

TotRowsFetched Is the total number of valid rows in the current fetch buffer.
Type Is a bitmap of cursor type, scroll option, and concurrency

control information. It is a series of the following values
joined in a logical OR:

Type:
CU_CLIENT: Client cursor
CU_SERVER: Transparent server cursor or explicit server
cursor

Scroll option:
CU_DYNAMIC: Dynamic cursor
CU_FORWARD: Forward-only, dynamic cursor
CU_KEYSET: Keyset cursor
CU_INSENSITIVE: Insensitive keyset cursor
CU_MIXED: Mixed-mode cursor (provided for backward
compatibility only)

Concurrency control:
CU_READONLY: Read-only concurrency
CU_LOCKCC: Intent to update concurrency
CU_OPTCC: Optimistic concurrency based on timestamp or
values
CU_OPTCCVAL: Optimistic concurrency based on values

Status Bitmap of status information. It is a series of the following
values joined in a logical OR:

Client cursor:
CU_FILLED: All cursors

Transparent server cursor, explicit server cursor:
CU_FILLING: Incomplete asynchronous population of a
keyset transparent server cursor or keyset explicit server
cursor result set
CU_FILLED: Incomplete asynchronous population of a keyset
transparent server cursor or keyset explicit server cursor
result set, or the cursor is a dynamic cursor

Returns

SUCCEED or FAIL.

Remarks

Before calling dbcursorinfoex, set the SizeOfStruct field equal to the value returned by the C sizeof function for the
DBCURSORINFO structure. The dbcursorinfoex function fills the supplied DBCURSORINFO structure with information about the
open server cursor.

See Also

Bulk-Copy Functions

dbcursorclose

dbcursor

dbcursorcolinfo

dbcursorbind

dbcursorfetch

DB Library for C (SQL Server 2000)

dbcursoropen
Opens a cursor. It is an explicit server cursor if you are connected to Microsoft® SQL Server™ version 6.0 or later and
dbcursorfetchex is used for the first fetch. It is a transparent server cursor if you are connected to SQL Server 6.0 or later and
dbcursorfetch is used for the first fetch. It is a client cursor if you are connected to SQL Server 4.2, or if the DBCLIENTCURSORS
option is set, and only dbcursorfetch can be used to fetch rows.

Syntax

PDBCURSOR dbcursoropen (
PDBPROCESS dbproc,
LPCSTR stmt,
INT scrollopt,
INT concuropt,
UINT nrows,
LPDBINT pstatus);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

stmt

Is the SELECT statement that defines a cursor.

Client cursor:

This must be a single SELECT statement. All tables included in the FROM clause must have a unique index.

The SELECT statement cannot contain any of the following:

INTO

FOR BROWSE

COMPUTE

UNION

COMPUTE BY

Aggregate function

Table alias

If scrollopt is CUR_KEYSET, the SELECT statement can contain the following keywords:

ORDER BY

HAVING

GROUP BY

If the SELECT statement includes a view, the FROM clause must include only a single view (no other tables or views). All
base tables included in the FROM clause of the view definition must have a unique index, and the select list must include all
unique index columns of the base tables.

Transparent server cursor, explicit server cursor:

This can be a single SELECT statement or the name of a stored procedure that contains only a single SELECT statement.

The SELECT statement (alone or in a stored procedure) cannot contain any of the following keywords:

INTO

FOR BROWSE

COMPUTE

The SELECT statement can contain an ORDER BY clause. If the columns in the ORDER BY clause match the columns of the
unique indexes used by the cursor, the cursor will use the scrollopt requested. If they do not match, SQL Server must
generate a temporary table, and a CUR_KEYSET cursor will be used if a scrollopt of CUR_FORWARD or CUR_DYNAMIC is
requested. This also occurs if the SELECT contains a subquery.

The cursor is automatically opened with a scrollopt of CUR_INSENSITIVE and a concuropt of CUR_READONLY if the SELECT
statement contains any of the following:

Table with no unique index

UNION

DISTINCT

GROUP BY

HAVING

Aggregate function

Outer join

If a stored procedure is used, any input parameters must be constants. Declared variables cannot be used for input
parameters. Any output parameters or return values from the stored procedure are ignored.

scrollopt

Is one of the following requested scroll options.

scrollopt Description
CUR_DYNAMIC Dynamic cursor.

Client cursor, transparent server cursor:
The dbcursorfetch function will allow only a fetchtype of
FETCH_FIRST, FETCH_NEXT, or FETCH_PREV.

Explicit server cursor:
The dbcursorfetchex function will allow all fetchtype
values except FETCH_RANDOM.

CUR_FORWARD Forward-only, dynamic cursor.

Client cursor, transparent server cursor:
The dbcursorfetch function will allow only a fetchtype of
FETCH_FIRST or FETCH_NEXT.

Explicit server cursor:
The dbcursorfetchex function will allow only a fetchtype
of FETCH_FIRST, FETCH_NEXT, or FETCH_RELATIVE with a
positive rownum.

CUR_KEYSET Keyset cursor.

The dbcursorfetch and dbcursorfetchex functions will
allow all fetchtype values.

CUR_INSENSITIVE Client cursor:
Not supported.

Transparent server cursor, explicit server cursor:
Insensitive keyset cursor. Use a concuropt of
CUR_READONLY. SQL Server will generate a temporary
table, so changes made to the rows by others will not be
visible through the cursor.

The dbcursorfetch and dbcursorfetchex functions will
allow all fetchtype values.

n > 1 Client cursor:
For backward compatibility with "mixed" client cursors.

Transparent server cursor, explicit server cursor:
Mapped to a CUR_KEYSET cursor.

concuropt

Is one of the following concurrency control options.

concuropt Description
CUR_READONLY Read-only cursor. You cannot modify rows in the cursor

result set.
CUR_LOCKCC Intent to update locking.

Client cursor:
Places an exclusive lock on the data page that contains
each row as it is fetched. The locks are maintained only if
it is inside an open transaction block defined by BEGIN
TRANSACTION; the locks are released when the
transaction is closed by a COMMIT TRANSACTION or
ROLLBACK TRANSACTION statement.

Transparent server cursor, explicit server cursor:
Places an update intent lock on the data page that
contains each row as it is fetched. If not inside an open
transaction, the locks are released when the next fetch is
performed. If inside an open transaction, the locks are
released when the transaction is closed.

CUR_OPTCC Optimistic concurrency control using timestamp or
values. Changes to a row that are initiated through the
cursor succeed only if the row remains unchanged since
the last fetch. Changes are detected by comparing
timestamps or by comparing all nontext, nonimage
values if timestamps are not available.

CUR_OPTCCVAL Optimistic concurrency control using values. Changes to a
row through the cursor succeed only if the row remains
unchanged since the last fetch. Changes are detected by
comparing all nontext, nonimage values.

nrows

Client cursor, transparent server cursor:

Is the number of rows in the fetch buffer filled by calls to dbcursorfetch.

Explicit server cursor:

Is the maximum number of rows in the fetch buffer. The nfetchrows parameter of dbcursorfetchex must be less than or equal to
this value.

pstatus

Is a pointer to the array of row status indicators. This array must contain nrows DBINT elements. A row status value is a bitmap of
fetch status values joined in a logical OR.

Each row in the fetch buffer has a corresponding row status indicator. After a fetch, the status of every row in the fetch buffer is
returned in the corresponding element of this array.

Client cursor, transparent server cursor:

For more information about fetch status values, see dbcursorfetch.

Explicit server cursor:

For more information about fetch status values, see dbcursorfetchex.

Returns

A handle to the cursor if the cursor open succeeds. If it fails, NULL is returned. Several errors, such as the following, can cause the
cursor to fail:

Not enough memory to complete the request.

Reduce the number of rows in the keyset cursor result set by using a more limiting WHERE clause, use a dynamic cursor, or
reduce the number of rows in the fetch buffer.

Tables did not have the required unique indexes.

A syntax error occurred or the SELECT statement failed.

Remarks

After dbcursoropen returns a valid cursor handle, you can call dbcursorinfoex and examine the Type field to determine the
actual type of cursor that was opened.

With a dynamic cursor, membership of rows in the cursor result set is determined at fetch time, and it can change between each
fetch. A row disappears from the cursor result set if it is deleted or if it is updated such that it no longer meets the WHERE clause
criteria. A row appears in the cursor result set if it is inserted or updated such that it meets the WHERE clause criteria.

With a keyset cursor, membership and order of rows in the cursor result set is fixed at open time. A row is marked as missing
from the cursor result set if it is deleted or if it is updated such that it no longer meets the WHERE clause criteria. A row appears in
the cursor result set only if it inserted through a cursor based on a single table.

Multiple cursors (as many as the system's memory allows) can be opened using the same DBPROCESS connection. When cursor
functions are called, there should be no commands waiting to be executed or results pending in the DBPROCESS connection.

When you call the dbcursoropen function with a scrollopt parameter of CUR_DYNAMIC, the tables you specify in the SELECT
statement of the stmt parameter no longer require unique indexes.

In SQL Server 6.0, the cursor automatically opens with a scrollopt parameter of CUR_INSENSITIVE and a concuropt parameter of
CUR_READONLY if the SELECT statement contains a table without a unique index.

In SQL Server 6.5 or later, the cursor automatically opens with a scrollopt parameter of CUR_INSENSITIVE and a concuropt
parameter of CUR_READONLY if the SELECT statement contains any of the following:

ORDER BY and a table with no unique index

UNION

DISTINCT

GROUP BY

HAVING

Aggregate function

SQL Server copies the results into temporary work tables. Because all fetch operations are performed on the temporary tables,
you cannot make changes to the cursor by using dbcursor.

See Also

dbcursor

dbcursorfetch

dbcursorbind

dbcursorinfo

dbcursorclose

Bulk-Copy Functions

dbcursorcolinfo

DB Library for C (SQL Server 2000)

Stored Procedure Functions
DB-Library for C version 7.0 supports several stored procedure functions.

DB Library for C (SQL Server 2000)

dbhasretstat
Determines whether a stored procedure or a remote stored procedure generated a return status number.

Syntax

DBBOOL dbhasretstat (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

TRUE or FALSE.

Remarks

Status numbers are returned only by stored procedures running on SQL Server version 4.2 or later.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbhasretstat after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

The dbretstatus function actually retrieves the status number. Stored procedures that complete generally return a status number
of 0.

The order in which the application processes the status number and any return parameter values is unimportant.

See Also

dbnextrow

dbrpcinit

dbresults

dbrpcparam

dbretdata

dbrpcsend

dbretstatus

DB Library for C (SQL Server 2000)

dbnumrets
Calculates the number of returned parameter values generated by a stored procedure or a remote stored procedure.

Syntax

INT dbnumrets (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of parameter values associated with the most recently executed stored procedure.

Remarks

For more information about stored procedure return parameters, see dbretdata.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbnumrets after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

See Also

dbnextrow

dbrettype

dbresults

dbrpcinit

dbretlen

dbrpcparam

dbretname

DB Library for C (SQL Server 2000)

dbretdata
Returns a pointer to a returned parameter value generated by a stored procedure or a remote stored procedure.

Syntax

LPCBYTE dbretdata (
PDBPROCESS dbproc,
INT retnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

retnum

Is the number of the returned value of interest. The first return value is number 1. Values are returned in the same order as the
parameters were originally specified in the stored procedure's CREATE PROCEDURE statement. (Note that the order is not
necessarily the same as that specified in the remote stored procedure.) When specifying retnum, nonreturn parameters are not
counted. For example, if the second parameter in a stored procedure is the only return parameter, its retnum is 1, not 2.

Returns

A pointer to the specified return value. If retnum is out of range, dbretdata returns NULL. To determine whether the data really
has a null value (and retnum is not merely out of range), check for a return value of 0 from dbretlen.

Remarks

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbretdata after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

Stored procedures can return values for specified parameters. If the value of one of these parameters is changed within a stored
procedure, the new value is returned to the program that called the procedure. This action parallels the pass-by-reference facility
available in some programming languages.

To function as a return parameter, a parameter must be declared as such:

When a stored procedure is created with CREATE PROCEDURE, the parameter must be declared as OUTPUT.

For a stored procedure executed using the Transact-SQL EXECUTE statement, the parameter must be declared as OUTPUT.

For a stored procedure executed using DB-Library functions (such as dbrpcinit), when the parameter is added using
dbrpcparam, the status bitmask must contain the DBRPCRETURN option.

If a stored procedure is executed using DB-Library functions (such as dbrpcinit), the return parameter values are automatically
available to the application. If the stored procedure is invoked with an EXECUTE statement, the return-parameter values are
available only if the command batch containing the EXECUTE statement uses Transact-SQL local variables, not constants, for the
return parameters.

See Also

dbnextrow

dbrettype

dbresults

dbrpcinit

dbretname

dbrpcparam

DB Library for C (SQL Server 2000)

dbretlen
Determines the length of a return-parameter value generated by a stored procedure or a remote stored procedure.

Syntax

DBINT dbretlen (
PDBPROCESS dbproc,
INT retnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

retnum

Is the number of the returned value of interest. The first return value is number 1. Values are returned in the same order as the
parameters were originally specified in the stored procedure's CREATE PROCEDURE statement. (Note that this is not necessarily
the same order as that specified in the remote stored procedure.) When specifying retnum, nonreturn parameters are not
counted. For example, if the second parameter in a stored procedure is the only return parameter, its retnum is 1, not 2.

Returns

The length of the specified returned value. If retnum is out of range, dbretlen returns -1. If the return value is null, dbretlen
returns 0.

Remarks

For more information about stored procedure return parameters, see dbretdata.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbretlen after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

See Also

dbnextrow

dbrettype

dbnumrets

dbrpcinit

dbresults

dbrpcparam

dbretdata

DB Library for C (SQL Server 2000)

dbretname
Determines the name of a return parameter of a stored procedure or a remote stored procedure.

Syntax

LPCSTR dbretname (
PDBPROCESS dbproc,
INT retnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

retnum

Is the number of the return value of interest. The first return value is number 1. Values are returned in the same order as the
parameters were originally specified in the stored procedure's CREATE PROCEDURE statement. (Note that this is not necessarily
the same order as that specified in the remote stored procedure.) When specifying retnum, nonreturn parameters are not
counted. For example, if the second parameter in a stored procedure is the only return parameter, its retnum is 1, not 2.

Returns

A pointer to the null-terminated parameter name for the specified return-parameter value. If retnum is out of range, dbretname
returns NULL.

Remarks

For more information about stored procedure return parameters, see dbretdata.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbretname after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

See Also

dbnextrow

dbrettype

dbnumrets

dbrpcinit

dbresults

dbrpcparam

dbretdata

DB Library for C (SQL Server 2000)

dbretstatus
Determines the stored procedure status number returned by a stored procedure or a remote stored procedure.

Syntax

DBINT dbretstatus (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The return status number for the stored procedure or remote stored procedure.

Remarks

Normally, completed stored procedures return a status number of 0. A RETURN statement in a stored procedure is used for
application-specific return status numbers. If a RETURN statement is not used and an error occurs when the stored procedure is
executed, SQL Server can return one of the following values:

Value Description
-1 Missing object.
-2 Data type error.
-3 Process was chosen as deadlock victim.
-4 Permission error.
-5 Syntax error.
-6 Miscellaneous user error.
-7 Resource error, such as out of space.
-8 Nonfatal internal problem.
-9 System limit was reached.
-10 Fatal internal inconsistency.
-11 Fatal internal inconsistency.
-12 Table or index is corrupt.
-13 Database is corrupt.
-14 Hardware error.

The values -15 through -99 are reserved for future SQL Server expansion.

The dbhasretstat function determines whether the most recently executed stored procedure actually generated a return status
number.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbretstatus after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

The order in which the application processes the status number and any return-parameter values is unimportant.

See Also

dbhasretstat

dbrpcinit

dbnextrow

dbrpcparam

dbresults

dbrpcsend

dbretdata

DB Library for C (SQL Server 2000)

dbrettype
Determines the data type of a return-parameter value generated by a stored procedure or a remote stored procedure.

Syntax

INT dbrettype (
PDBPROCESS dbproc,
INT retnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

retnum

Is the number of the returned value of interest. The first return value is number 1. Values are returned in the same order as the
parameters were originally specified in the stored procedure's CREATE PROCEDURE statement. (Note that this is not necessarily
the same order as that specified in the remote stored procedure.) When specifying retnum, nonreturn parameters are not
counted. For example, if the second parameter in a stored procedure is the only return parameter, its retnum is 1, not 2.

Returns

A token value for the data type of the specified return value.

Column data type Returned constant
Char SQLCHAR
Varchar SQLCHAR
Binary SQLBINARY
Varbinary SQLBINARY
Tinyint SQLINT1
Smallint SQLINT2
Int SQLINT4
Real SQLFLT4
Float SQLFLT8
smallmoney SQLMONEY4
Money SQLMONEY
Decimal SQLDECIMAL
Numeric SQLNUMERIC
smalldatetime SQLDATETIM4
Datetime SQLDATETIME

If retnum is out of range, -1 is returned.

Remarks

For more information about stored procedure return parameters, see dbretdata.

The server returns stored procedure information (including any return status and parameter values) immediately after returning
all normal results for that stored procedure. Process the normal results, and then call dbrettype after dbresults returns
NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or NO_MORE_RESULTS (for a single stored
procedure, or for the last stored procedure in a batch).

The dbrettype function actually returns an integer token value for the data type (SQLCHAR, SQLFLT8, and so on). To convert the
token value into a readable token string, use dbprtype. For more information about a list of all token values and their equivalent
token strings, see dbprtype.

See Also

dbnextrow

dbretlen

dbnumrets

dbretname

dbprtype

dbrpcinit

dbresults

dbrpcparam

dbretdata

DB-Library for C Data Types

DB Library for C (SQL Server 2000)

dbrpcexec
Executes a single stored procedure, a single remote stored procedure, or batch of stored procedures or remote stored procedures
on Microsoft® SQL Server™ 2000.

Syntax

RETCODE dbrpcexec (PDBPROCESS pdbproc);

Arguments

pdbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

After initializing and setting up each stored procedure using dbrpcinit and dbrpcparam, call dbrpcexec to execute the stored
procedure or batch of stored procedures on SQL Server. Then call dbsqlok before processing the stored procedure results.
dbrpcexec can be faster than dbrpcsend on some networks. For more information about executing stored procedures using DB-
Library functions, see dbrpcinit.

Note This function is one of the five (dbnextrow, dbresults, dbrpcexec, dbsqlexec, and dbsqlok) that do not return control to
the application until after the server sends the required response. The application can be blocked for a considerable time if the
server is waiting for a lock or is processing a large sort. If this is unacceptable, use dbrpcsend and dbsqlok, or set the DB-Library
time-out to regain control periodically.

See Also

dbnextrow

dbretstatus

dbresults

dbrpcparam

dbretdata

dbsqlok

DB Library for C (SQL Server 2000)

dbrpcinit
Initializes a stored procedure or a remote stored procedure.

Syntax

RETCODE dbrpcinit (
PDBPROCESS dbproc,
LPCSTR rpcname,
DBSMALLINT options);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

rpcname

Is a pointer to the name of the stored procedure to be invoked.

options

Is a 2-byte bitmask of options for stored procedures. Specify 0 to indicate no options. The following options are available.

Option Description
DBRPCRECOMPILE Recompiles a stored procedure before it is executed.
DBRPCRESET Cancels a single stored procedure or a batch of stored

procedures. If rpcname is specified, that new stored
procedure is initialized after the cancellation is complete.

Returns

SUCCEED or FAIL.

Remarks

An application can execute a single stored procedure, or it can execute a batch containing multiple stored procedures. To execute a
single stored procedure, you can use DB-Library functions (such as dbrpcinit) or the Transact-SQL EXECUTE statement. To
retrieve the status number and parameter values returned by each stored procedure in a batch, you must use DB-Library
functions.

To execute a single stored procedure or a batch of stored procedures using DB-Library functions

1. Call dbrpcinit once to initialize a new stored procedure.

2. Call dbrpcparam for each parameter of the stored procedure that does not have a default value.

3. Repeat steps 1 and 2 for each stored procedure in the batch.

4. Call dbrpcsend or dbrpcexec to send the entire stored procedure batch to SQL Server.

5. Call dbsqlok to wait for SQL Server to start returning results.

6. Call dbresults to process the results from each stored procedure.

If dbresults returns SUCCEED, call dbnextrow until it returns NO_MORE_ROWS to process the normal results from the
stored procedure.

If dbresults returns NO_MORE_RPC_RESULTS, and you want to retrieve status number and return-parameter information
returned by the stored procedure, follow the steps given later.

7. Repeat Step 6 until dbresults returns NO_MORE_RESULTS.

8. If you want to retrieve status number and return-parameter information returned by the last stored procedure in the batch,
follow the steps given later.

After dbresults returns NO_MORE_RPC_RESULTS (for all stored procedures in a batch except the last one) or
NO_MORE_RESULTS (for a single stored procedure, or for the last stored procedure in a batch), you can retrieve status number
and return-parameter information for a stored procedure.

To retrieve status number and return-parameter information returned by a stored procedure using DB-Library
functions

Call dbretstatus and dbhasretstat to retrieve the return status number.

Call dbnumrets to determine the number of return parameters.

Call dbretdata, dbrettype, dbretlen, and dbretname about retrieve information for each return parameter.

Executing stored procedures with DB-Library functions has some advantages over using an EXECUTE statement:

Using DB-Library functions to call a stored procedure passes parameters in their native data types; using an EXECUTE
statement passes parameters as ASCII characters. Calling stored procedures with DB-Library functions works faster and
usually more efficiently than an EXECUTE statement, because neither the application nor the server is required to convert
native data types into their ASCII equivalents.

Using DB-Library functions instead of an EXECUTE statement accommodates return parameters for stored procedures more
quickly. With a remote stored procedure, the return parameters are always available to the application by calling dbretdata.
(Note, however, that a return parameter must be specified as such when it is first added to the stored procedure through
dbrpcparam.)

If a stored procedure is called with an EXECUTE statement, the return parameter values are available only if the command
batch containing the EXECUTE statement uses local variables, rather than constants, as the return parameters. This involves
additional parsing each time the command batch is executed.

The client application can use DB-Library functions to issue a stored procedure call directly to an Open Data Services server
application. The Open Data Services server application will detect this request as a remote stored procedure event. The
Open Data Services server application is not required to parse the language buffer to find out what the client is requesting.

Stored procedures executed on the local SQL Server (using the dbproc connection) generally participate in transactions and can
be rolled back. Remote stored procedures executed on a remote SQL Server cannot be rolled back.

In SQL Server version 6.5 or later, you can pass stored procedure parameters when you open a cursor by calling the dbrpcinit
function and the dbrpcparam function.

The dbrpcinit function has an option parameter: DBRPCCURSOR. Use DBRPCCURSOR to specify the initialization of an input-
parameter list for a subsequent cursor-open operation on a stored procedure. When you use DBRPCCURSOR, you must set the
rpcname parameter to NULL.

No pending remote procedure calls (RPCs) can exist when you call dbrpcinit with an option of DBRPCCURSOR. The dbrpcinit
function returns FAIL if pending RPCs have been initiated.

You can call the dbrpcparam function to set the value for each stored procedure parameter that was used in the process of
opening a cursor. Stored procedure parameters are no longer required to be constants, and they can be passed as follows.

To open a cursor on a stored procedure that passes program variables as parameters

1. Call the dbrpcinit function once to initialize a new stored procedure. Set the rpcname parameter to NULL, and set the
option parameter to DBRPCCURSOR.

2. Call the dbrpcparam function once per parameter to set the value of each parameter of the stored procedure.

3. Call the dbcursoropen function to open the cursor, and in the stmt parameter, specify only the stored procedure name.

4. Call the remaining cursor functions as you ordinarily would.

See Also

dbnextrow

dbrpcparam

dbresults

dbrpcsend

dbretdata

dbsqlok

dbretstatus

DB Library for C (SQL Server 2000)

dbrpcparam
Adds a parameter to a stored procedure or a remote stored procedure.

Syntax

RETCODE dbrpcparam (
PDBPROCESS dbproc,
LPCSTR paramname,
BYTE status,
INT type,
DBINT maxlen,
DBINT datalen,
LPCBYTE value);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

paramname

Is a pointer to the name of the parameter to be invoked. This name must begin with (@), as do all parameter names within stored
procedures. As in the Transact-SQL EXECUTE statement, the name is optional. If no name is used, this parameter should be
specified as NULL. In that case, the order of the dbrpcparam calls determines the parameter to which each call refers.

status

Is a 1-byte bitmask of parameter options for stored procedures. The only option currently available is DBRPCRETURN, which
signifies that an application designates this parameter as a return parameter. Specify 0 to indicate no options.

type

Is the data type of the value parameter (such as SQLINT1, SQLCHAR, and so on).

maxlen

For variable-length return parameters (when type is SQLCHAR, SQLBINARY, SQLTEXT, or SQLIMAGE), maxlen is the maximum
desired byte length for the value parameter returned from a stored procedure.

Set maxlen to -1 in any of these cases:

For fixed-length return parameters (such as when type is SQLINT4).

To pass a NULL fixed-length parameter value (such as when type is SQLINT4) to the stored procedure.

For parameters that are not designated as return parameters.

Set maxlen to 0 to pass a NULL variable-length parameter value (when type is SQLCHAR, SQLBINARY, SQLTEXT, or
SQLIMAGE) to the stored procedure.

datalen

For variable-length return parameters (where type is SQLCHAR, SQLBINARY, SQLTEXT, or SQLIMAGE), datalen is the actual byte
length of the value parameter sent to the stored procedure. The byte length should not count any null terminator.

Set datalen to - 1 for non-NULL fixed-length parameters (such as when type is SQLINT4).

Set datalen to 0 to pass a NULL parameter value (fixed or variable length) to the stored procedure.

value

Is a pointer to the program variable containing the stored procedure parameter value itself.

The following table summarizes the required maxlen and datalen values for each type of parameter.

Parameter maxlen datalen
Fixed-length - 1 - 1
Variable-length Maximum desired length

of return value.
Length of input value not
counting null terminator.

Fixed-length NULL - 1 0
Variable-length NULL 0 0

When specifying a NULL parameter, the actual contents of value are not used, and a NULL parameter is added to the stored
procedure. However, when type is SQLDECIMAL or SQLNUMERIC, value must still point to a valid DBDECIMAL or DBNUMERIC
structure.

Returns

SUCCEED or FAIL.

Remarks

After initializing a stored procedure using dbrpcinit, you must call dbrpcparam once for each parameter of the stored procedure
that does not have a default value. You specify default values for stored procedure parameters in the CREATE PROCEDURE
statement. For more information about executing stored procedures using DB-Library functions, see dbrpcinit.

See Also

dbnextrow

dbretstatus

dbresults

dbrpcinit

dbretdata

dbsqlok

DB Library for C (SQL Server 2000)

dbrpcsend
Sends a single stored procedure, a single remote stored procedure, or batch of stored procedures or remote stored procedures to
Microsoft® SQL Server™ 2000 to be executed.

Syntax

RETCODE dbrpcsend (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

After initializing and setting up each stored procedure using dbrpcinit and dbrpcparam, call dbrpcsend to send the stored
procedure or batch of stored procedures to SQL Server. Then call dbsqlok before processing the stored procedure results. For
more information about executing stored procedures using DB-Library functions, see dbrpcinit.

See Also

dbnextrow

dbretstatus

dbresults

dbrpcinit

dbretdata

dbsqlok

DB Library for C (SQL Server 2000)

Text and Image Functions
DB-Library for C version 7.0 supports several text and image functions.

DB Library for C (SQL Server 2000)

dbmoretext
Sends part of a text or image value to Microsoft® SQL Server™ 2000.

Syntax

RETCODE dbmoretext (
PDBPROCESS dbproc,
DBINT size,
LPCBYTE text);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

size

Is the size, in bytes, of the particular part of the text or image value being sent to SQL Server. It is an error to send more text or
image bytes to SQL Server than were specified in the call to dbwritetext or dbupdatetext.

text

Is a pointer to the text or image portion to be written.

Returns

SUCCEED or FAIL.

Remarks

This function is used in conjunction with dbwritetext or dbupdatetext to send a large SQLTEXT or SQLIMAGE value to SQL
Server in the form of a number of smaller chunks. This is particularly useful with operating systems that cannot allocate extremely
long data buffers. A text or image fragment must be shorter than 64 KB.

After calling dbmoretext for the last time, call dbsqlok.

For an example of dbmoretext, see dbwritetext.

See Also

dbtxptr

dbwritetext

dbtxtimestamp

DB Library for C (SQL Server 2000)

dbreadtext
Reads part of a text or image value from Microsoft® SQL Server™ 2000.

Syntax

DBINT dbreadtext (
PDBPROCESS dbproc,
LPVOID buf,
DBINT bufsize);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

buf

Is a pointer to a caller-allocated buffer that will contain the chunk of text or image data.

bufsize

Is the size, in bytes, of the caller's buffer. This value must be smaller than
64 KB.

Returns

Returns Description
>0 The number of bytes put into the caller's buffer.
0 The end of a row.
-1 An error.
NO_MORE_ROWS All rows read.

Remarks

Use dbreadtext instead of dbnextrow to read SQLTEXT and SQLIMAGE values.

This function takes a large SQLTEXT or SQLIMAGE value from SQL Server and breaks it into several smaller chunks. A buffer
cannot be larger than 64 KB although the text or image value can be much larger.

To read successive chunks of the same SQLTEXT or SQLIMAGE value, call dbreadtext until it returns 0 (end of row).

The dbreadtext function processes the results of Transact-SQL queries if those queries return only one column containing either
text or image data. The Transact-SQL READTEXT statement returns results of this type.

See Also

Bulk-Copy Functions

dbwritetext

dbnextrow

DB Library for C (SQL Server 2000)

dbtxptr
Returns the value of the text or image pointer for a column in the current row.

Syntax

LPCDBBINARY dbtxptr (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column in a table is number 1. For further information, see dbadata.

Returns

A DBBINARY pointer to the text or image pointer for the column. This pointer can be NULL.

Remarks

Every database column of type SQLTEXT or SQLIMAGE has an associated text pointer that uniquely identifies the text or image
value. Use this text pointer with dbwritetext. Call dbtxptr only after dbnextrow or dbgetrow has returned REG_ROW.

Caution Do not modify this identifier in any way. Modifying the identifier can cause unpredictable results.

Text pointers are of fixed length and can be NULL when the text or image value is NULL.

See Also

dbwritetext

DB Library for C (SQL Server 2000)

dbtxtimestamp
Returns the value of the text timestamp for a column in the current row.

Syntax

LPCDBBINARY dbtxtimestamp (
PDBPROCESS dbproc,
INT column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

column

Is the number of the column. The first column in a table is number 1. For further information, see dbadata.

Returns

A DBBINARY pointer to the text timestamp for the column. This pointer can be NULL when the text or image value is null, or
when there is no current row.

Caution Do not modify this identifier in any way. Modifying the identifier can cause unpredictable results.

Remarks

Every database column of type SQLTEXT or SQLIMAGE has an associated text timestamp, which marks the time of the column's
last modification. Use the text timestamp with dbwritetext to ensure that one user doesn't inadvertently overwrite another's
modifications to the same value in the database. The text timestamp is returned to the DBPROCESS when a Transact-SQL SELECT
statement is performed on a SQLTEXT or SQLIMAGE column.

The length of a non-NULL text timestamp is always DBTXTSLEN (currently defined as eight bytes). Call dbtxtimestamp only
after dbnextrow or dbgetrow has returned REG_ROW.

See Also

dbreadtext

dbwritetext

DB Library for C (SQL Server 2000)

dbtxtsnewval
Returns the new value of a text timestamp after a call to dbwritetext.

Syntax

LPCDBBINARY dbtxtsnewval (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

A pointer to the new text timestamp value for the SQLTEXT or SQLIMAGE value modified by a dbwritetext operation. This
pointer can be NULL.

Caution Do not modify this identifier in any way. Modifying the identifier can cause unpredictable results.

Remarks

Every database column of type SQLTEXT or SQLIMAGE has an associated text timestamp, which is updated whenever the
column's value is changed. Use the text timestamp with dbwritetext to ensure that one user doesn't inadvertently overwrite
another's modifications to the same value in the database. It is returned to the DBPROCESS when a Transact-SQL SELECT
statement is performed on a SQLTEXT or SQLIMAGE column and can be examined by calling dbtxtimestamp.

After each successful dbwritetext operation (which can include a number of calls to dbmoretext), SQL Server sends the updated
text timestamp value back to DB-Library. The dbtxtsnewval function lets the application get this new timestamp value. The
application can then use dbtxtsput to put the new timestamp value in the DBPROCESS for future access through
dbtxtimestamp.

The application can use dbtxtsnewval in two ways. First, the return from dbtxtsnewval can be used as the timestamp
parameter of a dbwritetext call. Second, dbtxtsnewval and dbtxtsput can be used together to put the new timestamp value
into the DBPROCESS row buffer for future access using dbtxtimestamp. This is particularly useful when the application is
buffering result rows and does not need the new timestamp immediately.

See Also

dbmoretext

dbwritetext

dbreadtext

DB Library for C (SQL Server 2000)

dbtxtsput
Puts the new value of a text timestamp into the specified column of the current row in the DBPROCESS.

Syntax

RETCODE dbtxtsput (
PDBPROCESS dbproc,
LPCDBBINARY newtxts,
INT colnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

newtxts

Is a pointer to the new text timestamp value. It is returned by dbtxtsnewval.

colnum

Is the number of the column associated with this text timestamp. Column numbers start at 1.

Returns

SUCCEED or FAIL.

Remarks

Every database column of type SQLTEXT or SQLIMAGE has an associated text timestamp, which is updated whenever the
column's value is changed. Use the text timestamp with dbwritetext to ensure that one user doesn't inadvertently overwrite
another's modifications to the same value in the database. It is returned to the DBPROCESS when a Transact-SQL SELECT
statement is performed on a SQLTEXT or SQLIMAGE column and can be examined by calling dbtxtimestamp. Call dbtxtsput
only after dbnextrow or dbgetrow has returned REG_ROW.

After each successful dbwritetext operation (which can include a number of calls to dbmoretext), SQL Server sends the updated
text timestamp value back to DB-Library. The dbtxtsnewval function allows the application to get this new timestamp value.
The application can then use dbtxtsput to put the new timestamp value in the DBPROCESS row buffer for future access through
dbtxtimestamp. This is particularly useful when the application is buffering result rows and does not need the new timestamp
immediately.

See Also

dbmoretext

dbtxtimestamp

dbreadtext

dbwritetext

DB Library for C (SQL Server 2000)

dbupdatetext
Updates an existing text or image value. Unlike dbwritetext, which replaces an entire text or image value, dbupdatetext can
change only a portion of a text or image value in place.

Syntax

RETCODE dbupdatetext (
PDBPROCESS pdbproc,
LPCSTR dest_object,
LPCDBBINARY dest_textptr,
LPCDBBINARY dest_timestamp,
INT update_type,
DBINT insert_offset,
DBINT delete_length,
LPCSTR src_object,
DBINT src_size,
LPCBYTE src_text);

Arguments

pdbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

dest_object

Is the destination table and text or image column name (separated with a period) of the existing text or image value to be
updated.

dest_textptr

Is the text pointer of the existing text or image value to be updated. Call dbtxptr to get this value. This parameter cannot be
NULL.

dest_timestamp

Is the timestamp of the existing text or image value to be updated. Call dbtxtimestamp to get this value. This parameter cannot
be NULL.

update_type

The type of update operation to perform.

Use UT_TEXT to insert new data from a C program variable specified in this call to dbupdatetext. You must specify an src_object
value of NULL, an src_size equal to the size in bytes of the new data value being inserted, and a non-NULL src_text that points to
the C program variable that contains the new data value being inserted.

Use UT_MORETEXT to insert new data from a C program variable with later calls to dbmoretext. You must specify a src_object
value of NULL, a src_size equal to the total size in bytes of the new data value (that will be inserted by calls to dbmoretext), and a
src_text value of NULL. Then call dbmoretext to insert the new data value in chunks.

Use UT_TEXTPTR to insert new data from a text or image column of an existing table. You must specify a non-NULL src_object
value that gives the table and column, a src_size of 0, and a non-NULL src_text that gives the text pointer (returned by dbtxptr) of
the new data value being inserted from the src_object.

Use UT_DELETEONLY to only delete existing data. You must specify an insert_offset value other than -1 and a nonzero
delete_length value. Specify that no new data be inserted by using a src_object value of NULL, a src_size of 0 and a src_text value
of NULL.

By default, a dbupdatetext operation is not recorded in the transaction log. You can join the UT_LOG bit flag in a bitwise OR with
any of these update_type values (for example UT_TEXT | UT_LOG) to indicate that this operation will be recorded in the
transaction log.

insert_offset

Is the zero-based starting position, specified as the number of bytes (from the start of the existing text or image value) to skip

before inserting the new data. The existing text or image data beginning at this zero-based starting position will be shifted to the
right to make room for the new data. A value of 0 means that the new data will be inserted at the beginning of the existing data
value. A value of -1 means that the new data will be appended to the existing data value.

delete_length

Is the number of bytes to delete from the existing text or image value, starting at the insert_offset position. A value of 0 means
that no data will be deleted. A value of -1 means that all data from the insert_offset position to the end of the existing text or
image value will be deleted.

src_object

Is the source table and text or image column name (separated with a period) that can be used as the source of the inserted data.
If non-NULL, the src_size and src_text parameters are ignored. If NULL, the src_size and src_text parameters specify the data to be
inserted.

src_size

Is the total size, in bytes, of the source text or image value (specified by src_text) to be inserted. Use this parameter only if the
src_object parameter is NULL.

src_text

Is a pointer to the source data value to be inserted. Use this parameter only if the src_object parameter is NULL.

Returns

SUCCEED or FAIL.

Remarks

The dbupdatetext function can be used to delete existing data and then insert new data, to delete only existing data, or to insert
only new data.

To delete existing data and then insert new data, specify an update_type other than UT_DELETEONLY, an insert_offset value other
than -1, a nonzero delete_length value, and the new data to be inserted.

To delete only existing data, specify an update_type value of UT_DELETEONLY, an insert_offset value other than -1 and a nonzero
delete_length value. Do not specify any new data to be inserted.

To insert only new data, specify an update_type other than UT_DELETEONLY, a delete_length value of 0, and the new data to be
inserted.

See Also

dbmoretext

dbtxptr

dbreadtext

dbtxtimestamp

dbresults

dbtxtsnewval

dbsqlok

DB Library for C (SQL Server 2000)

dbwritetext
 New Information - SQL Server 2000 SP3.

Sends a text or image value to Microsoft® SQL Server™ 2000.

Syntax

RETCODE dbwritetext (
PDBPROCESS dbproc,
LPCSTR objname,
LPCDBBINARY textptr,
DBTINYINT textptrlen,
LPCDBBINARY timestamp,
BOOL log,
DBINT size,
LPCBYTE text);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

objname

Is the database table name and column name. Separate the table name from the column name with a period.

textptr

Is the text pointer of the text or image value to be modified. Call dbtxptr to get this pointer. The pointer cannot be NULL.

textptrlen

Is a parameter included for future compatibility. For now, define its value with the constant DBTXPLEN.

timestamp

Is the text timestamp of the text or image value to be modified. Call dbtxtimestamp to get this timestamp. This value changes
whenever the text or image value itself is changed. The pointer cannot be NULL.

log

Is a Boolean value, specifying whether this dbwritetext operation should be recorded in the transaction log.

size

Is the total size, in bytes, of the text or image value to be written.

text

Is a pointer to the text or image to be written. If this pointer is NULL, DB-Library expects the application to call dbmoretext one
or more times until all size bytes of data have been sent to SQL Server. For 16-bit DB-Library applications, no single data block
can be 64 KB or larger. (Win32-based DB-Library applications are not limited to 64 KB data blocks.) DB-Library does not support
huge pointers.

Returns

SUCCEED or FAIL.

Remarks

This function updates entire text and image values, allowing the application to send long values to SQL Server without having to
copy them into a Transact-SQL UPDATE statement. In addition, it gives applications access to the text timestamp mechanism,
which ensures that one user doesn't inadvertently overwrite another's modifications to the same value in the database.

The dbwritetext function succeeds only if its timestamp parameter, usually obtained when the column's value was originally

retrieved, matches the text column's timestamp in the database. If a match occurs, dbwritetext updates the text column, and at
the same time updates the column's timestamp. This has the effect of governing updates by competing application. An
application's dbwritetext call fails if a second application updated the text column between the time the first application
retrieved the column and the time it called dbwritetext.

The dbwritetext function is similar to the Transact-SQL WRITETEXT statement. It is usually more efficient to call dbwritetext
than to send a WRITETEXT statement through the command buffer.

The dbwritetext function can be invoked with or without logging, according to the value of the log parameter. To use
dbwritetext with logging turned off, the database option select into/bulkcopy must be set to true, as shown in the following
example:

sp_dboption 'mbdb', 'select into/bulk copy ', 'true'

This function, in conjunction with the dbmoretext function, also allows the application to send a large text or image value to
SQL Server in the form of a number of smaller chunks. This is particularly useful with operating systems that are unable to
allocate extremely long data buffers. All blocks must be shorter than 64 KB for 16-bit applications. (Win32-based DB-Library
applications are not limited to 64 KB data blocks.) DB-Library does not support huge pointers.

When dbwritetext is used with dbmoretext, it locks the specified database text column, and the lock is not released until the
final dbmoretext has sent its data. This ensures that a second application does not read or update the text column in the middle
of the first application's update.

Examples

If the text parameter is a nonnull value, dbwritetext executes the data transfer from start to finish, including any necessary calls
to dbsqlok and dbresults.

The following code fragment shows this use of dbwritetext:

LOGINREC *login;
DBPROCESS *q_dbproc;
DBPROCESS *u_dbproc;
DBCHAR abstract_var[512];

// Open separate DBPROCESSes for querying and updating.

login = dblogin();
DBSETLSECURE(login);
DBSETLAPP(login, "example1");
q_dbproc = dbopen(login, "my_server");
u_dbproc = dbopen(login, "my_server");

// The database column "abstract" is a text column. Retrieve the
// value of one of its rows.

dbcmd(q_dbproc, "SELECT abstract FROM articles WHERE article_id = 10");
dbsqlexec(q_dbproc);
dbresults(q_dbproc);
dbbind(q_dbproc, 1, STRINGBIND, (DBINT)0, abstract_var);

while (dbnextrow(q_dbproc) != NO_MORE_ROWS)
{
 // Change the value of "abstract_var".
 strcpy(abstract_var, "A brand new value.");

 // Update the text column.
 dbwritetext (u_dbproc, "articles.abstract", dbtxptr(q_dbproc, 1),
 DBTXPLEN, dbtxtimestamp(q_dbproc, 1), TRUE,
 (DBINT)strlen(abstract_var), abstract_var);
}
// Done.
dbexit();

To send chunks of a text or image value, rather than the whole value at once, set the text parameter to NULL. Then, dbwritetext
returns control to the application immediately after notifying SQL Server that a text transfer is about to begin. The actual text is
sent to SQL Server with dbmoretext, which can be called multiple times, once for each chunk.

The following code fragment uses dbwritetext with dbmoretext:

LOGINREC *login;
DBPROCESS *q_dbproc;
DBPROCESS u_dbproc;
DBCHAR art1[512];
static DBCHAR part2[512] = "This adds another sentence to the text.";

login = dblogin();
DBSETLSECURE(login);
DBSETLAPP(login, "example2");
q_dbproc = dbopen(login, "my_server");
u_dbproc = dbopen(login, "my_server");

dbcmd(q_dbproc, "SELECT abstract FROM articles WHERE article_id = 10");
dbsqlexec(q_dbproc);
dbresults(q_dbproc);
dbbind(q_dbproc, 1, STRINGBIND, (DBINT)0, part1);

while (dbnextrow(q_dbproc) != NO_MORE_ROWS)
{
 // Change the value of part of the text column. This example
 // adds a sentence to the end of the existing text.
 // Update the text column.

 dbwritetext(u_dbproc, "articles.abstract", dbtxptr(q_dbproc, 1), DBTXPLEN, dbtxtimestamp(q_dbproc,
1), TRUE,
 (DBINT)(strlen(part1) + strlen(part2)), NULL);
 dbsqlok(u_dbproc);
 dbresults(u_dbproc);

 // Send the update value in chunks.

 dbmoretext(u_dbproc, (DBINT)strlen(part1), part1);
 dbmoretext(u_dbproc, (DBINT)strlen(part2), part2);

 dbsqlok(u_dbproc);
 while (dbresults(u_dbproc) != NO_MORE_RESULTS);
}
dbexit();

Note Notice the required calls to dbsqlok and dbresults, between the call to dbwritetext and the first call to dbmoretext and
after the final call to dbmoretext.

When dbwritetext is used with dbmoretext, it locks the specified database text column. The lock is not released until the final
dbmoretext has sent its data. This ensures that a second application does not read or update the text column in the midst of the
first application's update.

See Also

dbmoretext

dbtxptr

dbreadtext

dbtxtimestamp

dbresults

dbtxtsnewval

dbsqlok

dbtxtsput

DB Library for C (SQL Server 2000)

Browse Functions
DB-Library for C version 7.0 supports several browse functions.

DB Library for C (SQL Server 2000)

dbcolbrowse
Determines whether the source of a result column can be updated with the DB-Library browse-mode facilities.

Syntax

BOOL dbcolbrowse (
PDBPROCESS dbproc,
INT colnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

colnum

Is the number of the result column. The first column is number 1.

Returns

TRUE or FALSE.

Remarks

The dbcolbrowse function is one of the DB-Library browse-mode functions. It determines whether the database column that is
the source of a result column in a select list can be updated with the DB-Library browse-mode facilities. This function is useful for
examining ad hoc queries. If the query has been hard-coded into the program, dbcolbrowse is unnecessary.

The dbcolbrowse function can be called any time after dbresults.

To determine the name of the source column given the name of the result column, use dbcolsource.

Examples

Only a column derived from a table that has a unique index and a timestamp column can be updated. It cannot be the result of a
Transact-SQL expression. For example, in the following select list, result columns 1 and 2 (title and category) can be updated, but
column 3 (wholesale) cannot because it is the result of an expression:

SELECT title, category=type, wholesale=(price * 0.6)
FROM inventory FOR BROWSE

See Also

dbqual

dbtsnewlen

dbtabbrowse

dbtsnewval

dbtabcount

dbtsput

dbtabname

Programming with DB-Library for C

dbtabsource

Browse Mode

DB Library for C (SQL Server 2000)

dbcolsource
Returns a pointer to the name of the database column from which the specified result column was derived.

Syntax

LPCSTR dbcolsource (
PDBPROCESS dbproc,
INT colnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

colnum

Is the number of the result column. The first column is number 1.

Returns

A pointer to a null-terminated column name. This pointer is NULL if the column number is out of range or if the column is the
result of a Transact-SQL expression, such as MAX(colname).

Remarks

The dbcolsource function is one of the DB-Library browse-mode functions. This function gives an application the information it
needs to update a database column, based on an ad hoc query. SELECT statements can optionally specify header names for result
columns. For example:

SELECT author = au_lname FROM authors FOR BROWSE

When updating a table, you must use the database column name, not the header name (in this example, au_lname, not author).
You can use the dbcolsource function if FOR BROWSE is issued on a view and to get the underlying database column name. For
example:

dbcolsource(dbproc, 1)

This call returns a pointer to the string au_lname.

The dbcolsource function is useful for ad hoc queries. If the query has been hardcoded into the program, this function is
unnecessary.

The dbcolsource function can be called any time after dbresults returns SUCCEED.

See Also

dbqual

dbtsnewlen

dbresults

dbtsnewval

dbtabbrowse

dbtsput

dbtabcount

Programming with DB-Library for C

dbtabname

Browse Mode

dbtabsource

DB Library for C (SQL Server 2000)

dbfreequal
Frees memory allocated by the dbqual function.

Syntax

void dbfreequal (LPCSTR ptr);

Arguments

ptr

Is a pointer to the memory allocated by the dbqual function.

Remarks

Whenever a successful call to dbqual has been issued, a buffer is dynamically allocated by dbqual. The buffer remains allocated
to the application. When the application is finished using the buffer, call dbfreequal to free it.

DB Library for C (SQL Server 2000)

dbqual
Returns a pointer to a WHERE clause to update the current row in a browsable table.

Syntax

LPCSTR dbqual (
PDBPROCESS dbproc,
INT tabnum,
LPCSTR tabname);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

tabnum

Is the number of the table, as specified in the SELECT statement FROM clause. Table numbers start at 1. If tabnum is -1, the
tabname parameter is used to identify the table.

tabname

Is a pointer to the null-terminated name of a table specified in the SELECT statement FROM clause. If tabname is NULL, the
tabnum parameter is used to identify the table.

Returns

A pointer to a null-terminated WHERE clause for the current row in the specified table. This buffer is dynamically allocated, and
the application must free it by calling dbfreequal. If dbqual is asked to construct a WHERE clause for a table that cannot be
browsed, it returns a NULL pointer. For details, see dbtabbrowse.

Remarks

The dbqual function is one of the DB-Library browse-mode functions.

The dbqual function provides a WHERE clause that the application can use to update a single row in a browsable table. Columns
from this row must have been previously retrieved through a browse-mode SELECT query.

The WHERE clause produced by dbqual begins with the keyword WHERE and contains references to the row's unique index and
timestamp column. The application appends the WHERE clause to an UPDATE or DELETE statement without needing to examine
or manipulate the statement in any way.

The timestamp column indicates the time that the particular row was last updated. An update on a browsable table fails if the
timestamp column in the dbqual-generated WHERE clause is different from the timestamp column in the table. Such a
condition, which provokes SQL Server error message 532, indicates that another user updated the row between the time this
application selected it for browsing and the time it tried to update it. The application itself must provide the logic for handling the
update failure. For one approach, see the example in dbtabbrowse.

The dbqual function can construct WHERE clauses only for tables that can be browsed. Use dbtabbrowse to determine whether
a table can be browsed.

The dbqual function is usually called after dbnextrow.

Examples

This code fragment shows what to do when a browse-mode update fails because another user has already updated the row. This
example retrieves the entire row again, allows the user to examine and modify it, and tries the update again.

Note that q_dbproc is the DBPROCESS used to query the database, and u_dbproc is the DBPROCESS used to update the database.

// First, find out which employee record the user wants to update.
employee_id = which_employee();
while (1)
{

 // Retrieve that employee record from the database.
 // Assume that "empid" is a unique index, so this query will
 // return only one row.

 dbfcmd
 (q_dbproc,
 "SELECT * FROM employees WHERE empid = %d FOR BROWSE",
 employee_id);
 dbsqlexec(q_dbproc);
 dbresults(q_dbproc);
 while (dbnextrow(q_dbproc)
 != NO_MORE_ROWS);

 // Now, let the user examine or edit the employee's
 // data, first placing the data into the program variables.

 extract_employee_data(q_dbproc, employee_struct);
 examine_and_edit(employee_struct, &edit_flag);

 if (edit_flag == FALSE)
 {
 // The user didn't edit this record,
 // so it's done.

 break;
 }
 else
 {
 // The user edited this record, so the application
 // uses the edited data to update the corresponding row
 // in the database.

 qualptr = dbqual(q_dbproc, -1, "employees");
 dbcmd(u_dbproc, "update employees");
 dbfcmd
 (u_dbproc,
 " SET address = '%s', salary = %d %s",
 employee_struct->address, employee_struct->salary,
 qualptr);
 dbfreequal(qualptr);
 if ((dbsqlexec(u_dbproc) == FAIL)
 || (dbresults(u_dbproc) == FAIL))

 {
 // The update failed. In a real program, it
 // would be necessary to examine the messages
 // returned from SQL Server to determine
 // why it failed. In this example,
 // assume that the update failed because
 // someone else has already updated this
 // row, thereby changing the timestamp.
 //
 // To cope with this situation, repeat
 // the loop, retrieving the changed row
 // for the user to examine and edit.
 // This will give the user the opportunity
 // to decide whether to overwrite
 // the change made by the other user.

 continue;
 }
 else
 {
 // The update succeeded, so the
 // application is done.
 break;
 }
 }
}

See Also

dbcolbrowse

dbtabname

dbcolsource

dbtabsource

dbnextrow

dbtsnewlen

dbtabbrowse

dbtsnewval

dbtabcount

dbtsput

DB Library for C (SQL Server 2000)

dbtabbrowse
Determines whether the specified table can be updated with the DB-Library browse-mode facilities.

Syntax

BOOL dbtabbrowse (
PDBPROCESS dbproc,
INT tabnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

tabnum

Is the number of the table as specified in the SELECT statement's FROM clause. Table numbers start at 1.

Returns

TRUE or FALSE. If you drop the unique index of a table while browsing, dbtabbrowse continues to return TRUE.

Remarks

The dbtabbrowse function is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see
Browse Mode in Programming DB-Library for C.

The dbtabbrowse function provides a way to identify tables that can be browsed. It is useful for examining ad hoc queries prior
to performing browse-mode updates based on the queries. If the query has been hard-coded into the program, this function is
unnecessary.

A table must have a unique index and a timestamp column before it can be browsed.

Call dbtabbrowse any time after calling dbresults.

See Also

dbcolbrowse

dbtabsource

dbcolsource

dbtsnewlen

dbresults

dbtsnewval

dbtabname

dbtsput

DB Library for C (SQL Server 2000)

dbtabcount
Returns the number of tables involved in the current SELECT statement.

Syntax

INT dbtabcount (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of tables, including SQL Server work tables, involved in the current set of row results. A value of -1 is returned if an
invalid dbproc value is sent to dbtabcount.

Remarks

The dbtabcount function is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see Browse
Mode in Programming DB-Library for C.

A SELECT statement can generate a set of result rows whose columns are derived from several database tables. To perform
browse-mode updates of columns in a statement's select list, the application must know how many tables were involved in the
query, because each table requires a separate UPDATE statement. The dbtabcount function can provide this information for ad
hoc queries. If the query has been hard-coded into the program, this function is unnecessary.

The count returned by this function includes any SQL Server work tables used in processing the query. The SQL Server sometimes
creates temporary, internal work tables to process a query. It deletes these work tables by the time it finishes processing the
statement. Work tables cannot be updated and are not available to the application. Therefore, before using a table number, the
application must make sure that it does not belong to a work table. The dbtabname function can be used to determine whether a
particular table number refers to a work table.

The dbtabcount function can be called any time after dbresults.

See Also

dbcolbrowse

dbtabsource

dbcolsource

dbtsnewlen

dbqual

dbtsnewval

dbresults

dbtsput

DB Library for C (SQL Server 2000)

dbtabname
Returns the name of a table based on its number.

Syntax

LPCSTR dbtabname (
PDBPROCESS dbproc,
INT tabnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

tabnum

Is the number of the table. Table numbers start with 1. Use dbtabcount to find out the total number of tables involved in a
particular statement.

Returns

A pointer to the null-terminated name of the specified table. This pointer is NULL if the table number is out of range or if the
specified table is a SQL Server work table. For a description of work tables, see dbtabcount.

Remarks

dbtabname is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see Browse Mode in
Programming DB-Library for C.

A SELECT statement can generate a set of result rows whose columns are derived from several database tables. The database
tables are specified by the FROM clause. dbtabname provides a way for an application to determine the name of each table
involved in an ad hoc query. If the query has been hard-coded into the program, this function is unnecessary.

dbtabname can be called any time after dbresults.

See Also

dbcolbrowse

dbtabbrowse

dbcolsource

dbtsnewlen

dbqual

dbtsnewval

dbresults

dbtsput

DB Library for C (SQL Server 2000)

dbtabsource
Returns the name and number of the table from which a particular result column was derived.

Syntax

LPCSTR dbtabsource (
PDBPROCESS dbproc,
INT colnum,
LPINT tabnum);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

colnum

Is the number of the result column. Column numbers start at 1.

tabnum

Is a pointer to an integer, which is filled in with the table's number. Many DB-Library functions that deal with browse mode accept
either a table name or a table number. If dbtabsource returns NULL (see Returns), tabnum is set to -1.

Returns

A pointer to the name of the table from which this result column was derived. A NULL return value can mean one of the following:

The DBPROCESS structure is inactive or not enabled. This is an error that causes an application's error handler to be
invoked.

The SELECT statement does not contain the FOR BROWSE clause.

The column number is out of range.

The column is the result of an expression, such as "MAX(colname)".

Remarks

dbtabsource is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see Browse Mode in
Programming DB-Library for C.

The dbtabsource function allows an application to determine which tables provided the columns in the current set of result rows.
This information is valuable when using dbqual to construct WHERE clauses for UPDATE and DELETE statements based on ad hoc
queries. If the query has been hard-coded into the program, this function is unnecessary.

The dbtabsource function can be called any time after dbresults.

See Also

dbcolbrowse

dbtabbrowse

dbcolsource

dbtabcount

dbqual

dbtsnewval

dbresults

dbtsput

DB Library for C (SQL Server 2000)

dbtsnewlen
Returns the length of the new value of the timestamp column after a browse-mode update.

Syntax

INT dbtsnewlen (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The length, in bytes, of the new timestamp value for the updated row. If no timestamp was returned to the application, the
function returns -1.

Remarks

dbtsnewlen is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see Browse Mode in
Programming with DB-Library for C.

dbtsnewlen provides information about the timestamp column. dbtsnewlen allows the application to save the length of the
new timestamp value, possibly for use with dbtsput.

See Also

dbcolbrowse

dbtabcount

dbcolsource

dbtabname

dbqual

dbtsput

dbtabbrowse

DB Library for C (SQL Server 2000)

dbtsnewval
Returns the new value of the timestamp column after a browse-mode update.

Syntax

LPCDBBINARY dbtsnewval (PDBPROCESS dbproc);

Argument

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

A pointer to the new timestamp value for the updated row. If no timestamp was returned to the application (possibly because
the update was unsuccessful), the pointer is NULL.

Important Do not modify the identifier in any way. Modifying the identifier can cause unpredictable results.

Remarks

dbtsnewval is one of the DB-Library browse-mode functions.

dbtsnewval provides information about the timestamp column. This function allows the application to save the new
timestamp value, possibly for use with dbtsput.

See Also

dbcolbrowse

dbtabcount

dbcolsource

dbtabname

dbqual

dbtabsource

dbtabbrowse

DB Library for C (SQL Server 2000)

dbtsput
Puts the new value of the timestamp column into the given table's current row in the DBPROCESS structure.

Syntax

RETCODE dbtsput (
PDBPROCESS dbproc,
LPCDBBINARY newts,
INT newtslen,
INT tabnum,
LPCSTR tabname);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server. This must
be the DBPROCESS used to perform the original SELECT query.

newts

Is a pointer to the new timestamp value. It is returned by dbtsnewval.

newtslen

Is the length of the new timestamp value. It is returned by dbtsnewlen.

tabnum

Is the number of the updated table. Table numbers start at 1. The tabnum must refer to a table that can be browsed. The
dbtabbrowse function determines whether a table can be browsed. If this value is -1, the tabname parameter identifies the table.

tabname

Is a pointer to a null-terminated table name. The tabname must refer to a table that can be browsed. Set this pointer to NULL if
the tabnum parameter is used to identify the table. The value of tabname is returned by dbtabsource.

Returns

SUCCEED or FAIL. The following situations cause this function to return FAIL:

The application tries to update the timestamp of a nonexistent row.

The application tries to update the timestamp, using NULL as the new timestamp value (newts).

The specified table cannot be browsed.

Remarks

The dbtsput function is one of the DB-Library browse-mode functions. For a detailed discussion of browse mode, see Browse
Mode in Programming DB-Library for C.

dbtsput manipulates the timestamp column. If the same row is updated a second time, the UPDATE statement's WHERE clause
must use the latest timestamp value. This function updates the timestamp in the DBPROCESS for the row currently being
browsed. Then, if the application needs to update the row a second time, it can call dbqual to formulate a new WHERE clause that
uses the new timestamp. Call dbtsput only after dbnextrow or dbgetrow has returned REG_ROW.

See Also

dbcolbrowse

dbtabcount

dbcolsource

dbtabname

dbqual

dbtabsource

dbtabbrowse

dbtsnewlen

DB Library for C (SQL Server 2000)

Bulk-Copy Functions
DB-Library for C version 7.0 supports several bulk-copy functions.

DB Library for C (SQL Server 2000)

bcp_batch
Saves any rows previously bulk copied from program variables and sent to Microsoft® SQL Server™ 2000 by bcp_sendrow.

Syntax

DBINT bcp_batch (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of rows saved after the last call to bcp_batch, or -1 in case of error.

Remarks

When an application uses bcp_bind and bcp_sendrow to bulk copy rows from program variables to SQL Server tables, the rows
are permanently saved in SQL Server only when the program calls bcp_batch or bcp_done.

You can call bcp_batch once every n rows or when there is a lull between periods of incoming data (as in a telemetry
application). Of course, you can choose some other criteria, or you can decide not to call bcp_batch at all. If bcp_batch is not
called, the rows are permanently saved in SQL Server when bcp_done is called.

See Also

bcp_done

bcp_sendrow

DB Library for C (SQL Server 2000)

bcp_bind
 New Information - SQL Server 2000 SP3.

Binds data from a program variable to a table column for bulk copy into Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_bind (
PDBPROCESS dbproc,
LPCBYTE varaddr,
INT prefixlen,
DBINT varlen,
LPCBYTE terminator,
INT termlen,
INT type,
INT table_column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

varaddr

Is the address of the program variable from which the data is copied. If type is SQLTEXT or SQLIMAGE, varaddr can be NULL. A
NULL varaddr indicates that text and image values are sent to SQL Server in chunks by bcp_moretext, rather than all at once
by bcp_sendrow.

prefixlen

Is the length, in bytes, of any length prefix this column can have; valid length prefixes are 0, 1, 2, or 4 bytes. For example, strings in
some non-C programming languages are made up of a 1-byte length prefix, followed by the string data itself. If the data does not
have a length prefix, set prefixlen to 0.

varlen

Is the length of the data in the program variable, not including the length of any length prefix or terminator. Setting varlen to 0
signifies that the data is NULL. Setting varlen to -1 indicates that the system should ignore this parameter.

For fixed-length data types, such as integers, the data type itself indicates to the system the length of the data. Therefore, for fixed-
length data types, varlen must always be -1 except when the data is NULL, in which case varlen must be 0.

For character, text, binary, and image data, varlen can be -1, 0, or some positive value. If varlen is -1, the system uses either a
length prefix or a terminator sequence to determine the length. (If both are supplied, the system uses the one that results in the
shortest amount of data being copied.) If varlen is -1 and neither a prefix length nor a terminator sequence is specified, the
system returns an error message. If varlen is 0, the system assumes the data is NULL. If varlen is some positive value, the system
uses varlen as the data length. However, if, in addition to a positive varlen, a prefix length or terminator sequence is provided, the
system determines the data length by using the method that results in the shortest amount of data being copied.

terminator

Is a pointer to the byte pattern, if any, that marks the end of this program variable. For example, C strings usually have a 1-byte
terminator whose value is 0. If there is no terminator for the variable, set terminator to NULL. If you want to designate the C null
terminator as the program variable terminator, use an empty string (" ") as terminator and set termlen to 1, because the null
terminator constitutes a single byte. For instance, to use a C null terminator:

bcp_bind (dbproc, co_name, 0, -1, "", 1, 0, 2)

If there is no terminator:

bcp_bind (dbproc, co_name, 0, -1, NULL, 0, 0, 2)

termlen

Is the length of this program variable's terminator, if any. If there is no terminator for the variable, set termlen to 0.

type

Is the data type of your program variable. The data in the program variable is automatically converted to the type of the database
column. If this parameter is 0, no conversion is performed. For more information about a list of supported conversions, see
dbconvert. For the list of valid SQL Server data types, see DB-Library for C Data Types.

table_column

Is the column number in the database table to which the data is copied. Column numbers start at 1.

Returns

SUCCEED or FAIL.

Remarks

Use bcp_bind for a fast, efficient way to copy data from a program variable into a table in SQL Server without first putting the
data into a user file or using the Transact-SQL INSERT statement.

Call bcp_init before calling this or any other bulk-copy functions.

Make a separate bcp_bind call for every column in the SQL Server table into which you want to copy. After the necessary
bcp_bind calls have been made, then call bcp_sendrow to send a row of data from your program variables to SQL Server. Call
bcp_init to set the table to be copied into.

Whenever you want SQL Server to checkpoint the rows already received, call bcp_batch. For example, call bcp_batch once for
every 1000 rows inserted or at any other interval.

When there are no more rows to be inserted, call bcp_done. Failure to do so results in an error.

When using bcp_bind, the user file name parameter, set hfile, in the call to bcp_init, to NULL, and set direction, the direction
parameter, to DB_IN.

Control parameter settings, specified with bcp_control, have no effect on bcp_bind row transfers.

Calling bcp_columns when using bcp_bind results in an error.

Examples

The following example shows how to use bcp_bind:

LOGINREC *login;
DBPROCESS *dbproc;
char co_name[MAXNAME];
DBINT co_id;
DBINT rows_sent;
DBBOOL more_data;
char *terminator = "\t\t";
// Install error-handler and message-handler.
dberrhandle(err_handler);
dbmsghandle(msg_handler);
// Open a DBPROCESS structure.
login = dblogin();
DBSETLSECURE(login);
DBSETLAPP(login, "example");
BCP_SETL(login, TRUE);
dbproc = dbopen(login, "my_server");
// Initialize bulk copy.
if (bcp_init(dbproc, "comdb..accounts_info", (BYTE *)NULL,
 (BYTE *)NULL, DB_IN) == FAIL)
 exit(ERREXIT);

// Bind program variables to table columns.
if (bcp_bind(dbproc, (BYTE *)&co_id, 0, (DBINT)-1, (BYTE *)NULL, 0, 0, 1) == FAIL)
{
 fprintf(stderr, "bcp_bind, column 1, failed.\n");
 exit(ERREXIT);
}

if (bcp_bind
 (dbproc, co_name, 0, (DBINT)-1, terminator, strlen(terminator), 0, 2) == FAIL)
{
 fprintf(stderr, "bcp_bind, column 2, failed.\n");
 exit(ERREXIT);
}

while (TRUE)
{
 // Process and retrieve program data.
 more_data = getdata(&co_id, co_name);

 if (more_data == FALSE)
 break;
 // Send the data.
 if (bcp_sendrow(dbproc) == FAIL)
 exit(ERREXIT);
}
// Terminate the bulk copy operation.
if ((rows_sent = bcp_done(dbproc)) == -1)
 printf("Bulk copy unsuccessful.\n");
else
 printf("%ld rows copied.\n", rows_sent);

See Also

bcp_batch

bcp_exec

bcp_collen

bcp_init

bcp_colptr

bcp_moretext

bcp_columns

bcp_sendrow

bcp_control

dbconvert

bcp_done

DB-Library for C Data Types

DB Library for C (SQL Server 2000)

bcp_colfmt
Specifies the format of a user file for bulk copy into or out of Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_colfmt (
PDBPROCESS dbproc,
INT file_column,
BYTE file_type,
INT file_ prefixlen,
DBINT file_collen,
LPCBYTE file_term,
INT file_termlen,
INT table_column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or
SQL Server 2000 process. It contains all the information that DB-Library uses to manage communications and data between the
workstation and SQL Server.

file_column

Is the column number in the user file for which the format is being specified. The first column is number 1.

file_type

Is the data type of this column in the user file. If it is different from the data type of the corresponding column in the database
table (table_column), the conversion is performed automatically. For a table of allowable data conversions, see dbconvert. If you
want to specify the same data type as in the corresponding column of the database table (table_column), set this parameter to 0.

For a bulk copy out of SQL Server into a file, when file_type is SQLDECIMAL or SQLNUMERIC:

If the source column is not decimal or numeric, the default precision and scale are used.

If the source column is decimal and numeric, the precision and scale of the source column are used.

file_ prefixlen

Is the length of the length prefix for this column in the user file. Legal prefix lengths are 1, 2, and 4 bytes. To avoid using a length
prefix, set this parameter to 0. To let DB-Library determine whether to use a length prefix, set this parameter to -1. In such a case,
DB-Library uses a length prefix (of whatever length is necessary) if the database column length is variable.

If more than one means of specifying a user-file column length is used (such as a length prefix and a maximum column length, or
a length prefix and a terminator sequence), DB-Library chooses the one that results in the shortest amount of data being copied.

Length prefixes simplify the way null data values are specified in a user file. For instance, assume you have a 1-byte length prefix
for a 4-byte integer column. Ordinarily, the length prefix contains a value of 4 to indicate that a 4-byte value follows. However, if
the value of the column is NULL, the length prefix can be set to 0 to indicate that 0 bytes follow for the column.

file_collen

Is the maximum length of this column's data in the user file, not including the length of any length prefix or terminator. Setting
file_collen to 0 signifies that the data is NULL. Setting file_collen to -1 indicates that the system should ignore this parameter (that
is, there is no default maximum length).

For fixed-length data types, such as integers, the length of the data is constant, except for the special case of null values. Therefore,
for fixed-length data types, file_collen must always be -1, except when the data is NULL, in which case file_collen must be 0. For
character, text, binary, and image data, file_collen can be -1, 0, or some positive value. If file_collen is -1, the system uses either a
length prefix or a terminator sequence to determine the length of the data. (If both are supplied, the system uses the one that
results in the shortest amount of data being copied.) If file_collen is -1 and neither a prefix length nor a terminator sequence is
specified, the system returns an error message. If file_collen is 0, the system assumes the data is NULL. If file_collen is a positive
value, the system uses file_collen as the maximum data length. However, if, in addition to a positive file_collen, a prefix length or

terminator sequence is provided, the system determines the data length by using the method that results in the shortest amount
of data being copied.

file_term

Is the terminator sequence to be used for this column. This parameter is useful mainly for character, text, binary, and image data
types because all other types are of fixed length. To avoid using a terminator, set this parameter to NULL. To set the terminator to
NULL, set file_term to "\0". To make the tab character the terminator, set file_term to "\t". To make the newline character the
terminator, set file_term to "\n".

If more than one means of specifying a user-file column length is used (such as a terminator and a length prefix, or a terminator
and a maximum column length), the bulk copy chooses the one that results in the shortest amount of data being copied.

file_termlen

Is the length, in bytes, of the terminator sequence to be used for this column. To avoid using a terminator, set this value to 0.

table_column

Is the corresponding column number in the database table. If this value is 0, this column is not copied. The first column number is
column 1.

Returns

SUCCEED or FAIL.

Remarks

bcp_colfmt allows you to specify the user-file format for bulk copies. For bulk copy, a format contains the following parts:

A mapping from user-file columns to database columns.

The data type of each user-file column.

The length of the optional length prefix of each column.

The maximum length of the user-file column's data.

The optional terminating byte sequence for each column.

The length of this optional terminating byte sequence.

Each call to bcp_colfmt specifies the format for one user-file column. For example, to change the default settings for three
columns in a five-column table, first call bcp_columns(5), and then call bcp_colfmt five times, with three of those calls setting
your custom format. Set file_type of the remaining two calls to 0, and set their file_ prefixlen, file_collen, and file_termlen
parameters to -1. This procedure copies all five columns, three with your customized format and two with the default format.

The bcp_columns function must be called before any calls to bcp_colfmt.

You must call bcp_colfmt once and only once for every column in the user file, regardless of whether some of those columns use
the default format or are skipped.

To skip a column, set the table_column parameter to 0. If you want to skip a column, you must specify its type.

See Also

bcp_batch

bcp_exec

bcp_colptr

bcp_init

bcp_columns

bcp_sendrow

bcp_control

dbconvert

bcp_done

DB Library for C (SQL Server 2000)

bcp_collen
Sets the program variable data length for the current bulk copy into Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_collen (
PDBPROCESS dbproc,
DBINT varlen,
INT table_column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

varlen

Is the length of the program variable, which does not include the length of the length prefix or terminator. Setting varlen to 0
signifies that the data is NULL. Setting it to -1 signifies that the data is variable length and that the length is determined by the
length prefix or terminator. If both a length prefix and a terminator exist, bcp uses the one that results in the shortest amount of
data being copied.

table_column

Is the column in the SQL Server table to which the data is copied. Column numbers start at 1.

Returns

SUCCEED or FAIL.

Remarks

The bcp_collen function allows you to change the program variable data length for a particular column while running a copy in
through calls to bcp_bind.

Initially, the program variable data length is determined when bcp_bind is called. If the program variable data length changes
between calls to bcp_sendrow and no length prefix or terminator is being used, you can call bcp_collen to reset the length. The
next call to bcp_sendrow uses the length you just set.

There must be a separate bcp_collen call for every column in the table whose data length you want to modify.

See Also

bcp_bind

bcp_sendrow

DB Library for C (SQL Server 2000)

bcp_colptr
Sets the program variable data address for the current copy into Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_colptr (
PDBPROCESS dbproc,
LPCBYTE colptr,
INT table_column);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

colptr

Is the address of the program variable.

table_column

Is the column in the SQL Server table to which the data is copied. Column numbers start at 1.

Returns

SUCCEED or FAIL.

Remarks

The bcp_colptr function allows you to change the program variable data address for a particular column while running a copy in
through calls to bcp_bind.

Initially, the program variable data address is determined when bcp_bind is called. If the program variable data address changes
between calls to bcp_sendrow, you can call bcp_colptr to reset the address of the data. The next call to bcp_sendrow uses the
data at the address you just set.

There must be a separate bcp_colptr call for every column in the table whose data address you want to modify.

See Also

bcp_bind

bcp_sendrow

DB Library for C (SQL Server 2000)

bcp_columns
Sets the total number of columns found in the user file for use with a bulk copy into or out of Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_columns (
PDBPROCESS dbproc,
INT file_colcount);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation orSQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

file_colcount

Is the total number of columns in the user file. Even if you are preparing to bulk copy data from the user file to a SQL Server table
and do not intend to copy all columns in the user file, you must still set file_colcount to the total number of user-file columns.

Returns

SUCCEED or FAIL.

Remarks

This function can be called only after bcp_init has been called with a valid file name.

You should call this function only if you intend to use a user-file format that differs from the default. For a description of the
default user-file format, see bcp_init.

After calling bcp_columns, you must call bcp_colfmt file_colcount times because you are defining a completely custom file
format.

See Also

bcp_colfmt

bcp_init

DB Library for C (SQL Server 2000)

bcp_control
 New Information - SQL Server 2000 SP3.

Changes the default settings for various control parameters for a bulk copy between a file and Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_control (
PDBPROCESS dbproc,
INT field,
DBINT value);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

field

One of the following:

BCPMAXERRS

Is the number of errors allowed before giving up. The default is 10; a value less than 1 resets this field to its default value. If a
value larger than 65,535 is specified, this field is set to 65,535.

BCPFIRST

Is the first row to copy. The default is 1; a value less than 1 resets this field to its default value.

BCPLAST

Is the last row to copy. The default is to copy all rows; a value less than 1 resets this field to its default value.

BCPBATCH

Is the number of rows per batch. The default is 0; a value less than 1 resets this field to its default value.

BCPKEEPNULLS

Specifies whether empty data values in the file will be converted to NULL values in the SQL Server table. If this option is set before
calling bcp_exec, empty values will be converted to NULL values in the SQL Server table. The default is for empty values to be
converted to the column's default value in the SQL Server table.

value

Is the value for the specified field.

Returns

SUCCEED or FAIL.

Remarks

This function sets various control parameters for bulk-copy operations, including the number of errors allowed before canceling a
bulk copy, the numbers of the first and last rows to copy, and the batch size.

These control parameters are only meaningful when copying between a user file and a SQL Server table. Control parameter
settings have no effect on bcp_bind row transfers.

The bcp_control function has a field parameter: BCPABORT. BCPABORT stops a bulk-copy operation that is already in progress.
Call bcp_control with a field of BCPABORT from another thread to stop a running bulk-copy operation. The value parameter is
ignored.

You can pass hints string to bcp_control. When performing a bulk copy operation, the TABLOCK hint can be specified using
bcp_control to acquire a table lock instead of row locks.

Examples

The following example shows how to use bcp_control:

LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

// Install error-handler and message-handler.
dberrhandle(err_handler);
dbmsghandle(msg_handler);

// Open a DBPROCESS structure.
login = dblogin();
BCP_SETL(login, TRUE);
DBSETLSECURE(login);
DBSETLAPP(login, "example");
dbproc = dbopen(login, "my_server");

// Initialize bulk copy.
if (bcp_init(dbproc, "comdb..address", "address.add", "addr.err",
 DB_IN) == FAIL)
 exit(ERREXIT);

// Set the number of rows per batch.
if (bcp_control(dbproc, BCPBATCH, (DBINT) 1000) == FAIL)
{
 printf("bcp_control failed to set batching behavior.\n");
 exit(ERREXIT);
}

// Set file column count.
if (bcp_columns(dbproc, 1) == FAIL)
{
 printf("bcp_columns failed.\n");
 exit(ERREXIT);
}

// Set the file format.
if (bcp_colfmt(dbproc, 1, 0, 0, (DBINT)-1, "\n", 1, 1) == FAIL)
{
 printf("bcp_colformat failed.\n");
 exit(ERREXIT);
}

// Now, execute the bulk copy.
if (bcp_exec(dbproc, &rowsread) == FAIL)
{
 printf("Incomplete bulk copy. Only %ld row%c copied.\n",
 rowsread, (rowsread == 1) ? ' ': 's');
 exit(ERREXIT);
}

See Also

bcp_batch

bcp_colptr

bcp_bind

bcp_exec

bcp_colfmt

bcp_init

bcp_collen

DB Library for C (SQL Server 2000)

bcp_done
Ends a bulk copy from program variables into Microsoft® SQL Server™ 2000 performed with bcp_bind and bcp_sendrow.

Syntax

DBINT bcp_done (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

The number of rows permanently saved after the last call to bcp_batch, or -1 in case of error.

Remarks

Call bcp_done after the last call to bcp_sendrow or bcp_moretext. Failure to call bcp_done after copying in all your data
results in unpredictable errors.

See Also

bcp_batch

bcp_moretext

bcp_bind

bcp_sendrow

DB Library for C (SQL Server 2000)

bcp_exec
 New Information - SQL Server 2000 SP3.

Executes a complete bulk copy of data between a database table and a user file.

Syntax

RETCODE bcp_exec (
PDBPROCESS dbproc,
LPDBINT rows_copied);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

rows_copied

Is a pointer to a DBINT. The bcp_exec function fills this DBINT with the number of rows successfully copied. If set to NULL, this
parameter is not filled in by bcp_exec.

Returns

SUCCEED or FAIL. The bcp_exec function returns SUCCEED if all rows are copied. If a partial or complete failure occurs, bcp_exec
returns FAIL. Check the rows_copied parameter for the number of rows successfully copied.

Remarks

This function copies data from a user file to a database table or vice versa, depending on the value of the direction parameter in
bcp_init.

Before calling bcp_exec, call bcp_init with a valid user file name. Failure to do so results in an error.

Examples

The following example shows how to use bcp_exec:

LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

// Install error-handler and message-handler.
dberrhandle(err_handler);
dbmsghandle(msg_handler);

// Open a DBPROCESS structure.
login = dblogin();
DBSETLSECURE(login);
DBSETLAPP(login, "example");
BCP_SETL(login, TRUE);
dbproc = dbopen(login, "my_server");

// Initialize bulk copy.
if (bcp_init(dbproc, "pubs..authors", "authors.sav",
 (BYTE *)NULL, DB_OUT) == FAIL)
 exit(ERREXIT);

// Now, execute the bulk copy.
if (bcp_exec(dbproc, &rowsread) == FAIL)
 printf("Incomplete bulk copy. Only %ld row%s copied.\n",
 rowsread, (rowsread == 1) ? "": "s");

See Also

bcp_batch

bcp_colptr

bcp_bind

bcp_columns

bcp_colfmt

bcp_control

bcp_collen

bcp_sendrow

DB Library for C (SQL Server 2000)

bcp_init
Initializes bulk copy operation.

Syntax

RETCODE bcp_init (
PDBPROCESS dbproc,
LPCSTR tblname,
LPCSTR hfile,
LPCSTR errfile,
INT direction);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or Microsoft® SQL Server™ 2000 process. It contains
all the information that DB-Library uses to manage communications and data between the workstation and SQL Server.

tblname

Is the name of the database table to be copied in or out. This name can also include the database name or the database owner
name. For example, pubs.gracie.titles, pubs..titles, gracie.titles, and titles are all valid table names.

If direction is DB_OUT, tblname can also be the name of a database view.

hfile

Is the name of the user file to be copied into or out of SQL Server. If data is being copied directly from variables using
bcp_sendrow, set hfile to NULL.

errfile

Is the name of the error file to be used. This error file is filled with progress messages, error messages, and copies of any rows
that, for any reason, could not be copied from a user file to a SQL Server table. If NULL is passed as errfile, no error file is used.

direction

Is the direction of the copy. It must be one of two values: DB_IN or DB_OUT. DB_IN indicates a copy from program variables or a
user file to the database table, while DB_OUT indicates a copy from the database table to the user file. It is invalid to request a bulk
copy from the database table (DB_OUT) without supplying a user file name.

Returns

SUCCEED or FAIL.

Remarks

bcp_init performs the necessary initializations for a bulk copy of data between the workstation and SQL Server. It sets the default
user-file data formats and examines the structure of the database table.

If a user file is being used (see the description of the hfile parameter), the default data native formats are as follows:

The order, type, length, and number of the columns in the user file are assumed to be identical to the order, type, and
number of the columns in the database table.

If a given database column's data is fixed length, then the user file's data column is also fixed length.

When a given database column's data is variable length or when it can contain null values, the user file's data column is
prefixed by a 4-byte length value for SQLTEXT and SQLIMAGE data types and a 1-byte length value for all other types.

There are no terminators of any kind between user file columns.

Any of these defaults can be overridden by calling bcp_columns and bcp_colfmt.

To use the bulk copy functions to copy data to a database table, follow these examples:

Call BCP_SETL to make the DBPROCESS structure usable for bulk copy purposes:

login = dblogin();
BCP_SETL(login, TRUE);

If the table has no indexes, set the database option select into/bulkcopy to TRUE, use the database, and send the SQL
Server CHECKPOINT statement:

sp_dboption 'mydb', 'select into/bulkcopy', 'true'
GO
USE mydb
GO
CHECKPOINT

If no user file is being used, it is necessary to call bcp_bind to specify the format and location in memory for each column's data
value, and send the rows using bcp_sendrow

The bcp_init function must be called before any other bulk-copy functions. Failure to do so results in an error.

See Also

bcp_batch

bcp_columns

bcp_bind

bcp_control

bcp_colfmt

bcp_done

bcp_collen

bcp_sendrow

bcp_colptr

DB Library for C (SQL Server 2000)

bcp_moretext
 New Information - SQL Server 2000 SP3.

Sends part of a text or image value to Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_moretext (
PDBPROCESS dbproc,
DBINT size,
LPCBYTE text);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

size

Is the size of this particular part of the text or image value being sent to SQL Server. Sending more text or image bytes to SQL
Server than were specified in the call to bcp_bind or bcp_collen results in an error.

text

Is a pointer to the text or image portion to be sent to SQL Server.

Returns

SUCCEED or FAIL.

Remarks

This function is used in conjunction with bcp_bind and bcp_sendrow to send a large SQLTEXT or SQLIMAGE value to SQL
Server in a number of smaller chunks. This is particularly useful with operating systems unable to allocate extremely long data
buffers.

If bcp_bind is called with a type parameter of SQLTEXT or SQLIMAGE and a nonnull varaddr parameter, bcp_sendrow sends the
entire text or image data value, just as it does for all other data types. If, however, bcp_bind has a null varaddr parameter,
bcp_sendrow returns control to the application immediately after all nontext and nonimage columns are sent to SQL Server.
The application can then call bcp_moretext repeatedly to send the text and image columns to SQL Server, a chunk at a time.

If you use bcp_moretext to send one text or image column in the row, you must also use it to send all other text and image
columns in the row.

If the row contains more than one text or image column, bcp_moretext first sends its data to the lowest numbered (that is,
leftmost) text or image column, followed by the next lowest numbered column, and so on.

An application generally calls bcp_sendrow and bcp_moretext within loops to send a number of rows of data. Here's an outline
of how to do this for a table containing two text columns:

while (there are still rows to send)
{
bcp_sendrow(...);

for (all the data in the first text column)
bcp_moretext(...);

for (all the data in the second text column)
bcp_moretext(...);
}

Examples

This example shows how to use bcp_moretext with bcp_bind and bcp_sendrow:

LOGINREC *login;
DBPROCESS *dbproc;

DBINT id = 5;
char *part1 = "This text value isn't long,";
char *part2 = " but it's broken up into three parts";
char *part3 = " anyhow.";

// Install error handler and message handler.
dberrhandle(err_handler);
dbmsghandle(msg_handler);

// Open a DBPROCESS structure.
login = dblogin();
BCP_SETL(login, TRUE);
DBSETLSECURE(login);
DBSETLAPP(login, "example");
dbproc = dbopen(login, "my_server");
// Initialize bulk copy.
if (bcp_init(dbproc, "comdb..articles", (BYTE *)NULL,
 (BYTE *)NULL, DB_IN) == FAIL)
 exit(ERREXIT);

// Bind program variables to table columns.
if (bcp_bind(dbproc, (BYTE *)&id, 0, (DBINT)-1, (BYTE *)NULL, 0, SQLINT4, 1)
 == FAIL)
{
 fprintf(stderr, "bcp_bind, column 1, failed.\n");
 exit(ERREXIT);
}

if (bcp_bind
 (dbproc, (BYTE *)NULL, 0, (DBINT)(strlen(part1) +
 strlen(part2) + strlen(part3)), (BYTE *)NULL, 0,
 SQLTEXT, 2) == FAIL)
{
 fprintf(stderr, "bcp_bind, column 2, failed.\n");
 exit(ERREXIT);
}

// Now send this row, with the text value broken into three chunks.
if (bcp_sendrow(dbproc) == FAIL)
 exit(ERREXIT);
if (bcp_moretext(dbproc, (DBINT)strlen(part1), part1) == FAIL)
 exit(ERREXIT);
if (bcp_moretext(dbproc, (DBINT)strlen(part2), part2) == FAIL)
 exit(ERREXIT);
if (bcp_moretext(dbproc, (DBINT)strlen(part3), part3) == FAIL)
 exit(ERREXIT);

// All done.
bcp_done(dbproc);
dbclose(dbproc);

See Also

bcp_bind

bcp_sendrow

bcp_collen

dbwritetext

DB Library for C (SQL Server 2000)

bcp_readfmt
Reads a data file format definition from a user file for a bulk copy between a file and Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_readfmt (
PDBPROCESS dbproc,
LPCSTR file_name);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

file_name

Is the full directory and file name specification of the file containing the format definitions.

Returns

SUCCEED or FAIL.

Remarks

After bcp_readfmt reads a data file format definition from a host file, it makes the appropriate calls to bcp_columns and
bcp_colfmt. These calls automate the bulk copy of multiple files that share a common data format.

The bulk copy utility (bcp) copies a database table to or from a host file in a user-specified format, which can be saved with bcp in
definition files for datafile format. These files can later automate the process of bulk copying files that share a common format.
For more information about the bcp utility and definition files for datafile format, see Transact-SQL Reference.

Applications can call bcp_writefmt to create files that define data file formats.

Note The format file cannot have been produced by a version of the bcp utility program earlier than version 4.2.

Examples

The following code fragment shows how to use bcp_readfmt:

bcp_init(dbproc, "mytable", "bcpdata", "bcperrs", DB_IN);
bcp_readfmt(dbproc, "my_fmtfile");
bcp_exec(dbproc, &rows_copied);

See Also

bcp_colfmt

bcp_writefmt

bcp_columns

DB Library for C (SQL Server 2000)

bcp_sendrow
Sends a row of data from program variables to Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_sendrow (PDBPROCESS dbproc);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server process. It contains all the information
that DB-Library uses to manage communications and data between the workstation and SQL Server.

Returns

SUCCEED or FAIL.

Remarks

bcp_sendrow builds a row from program variables and sends it to SQL Server.

Before calling bcp_sendrow, you must make calls to bcp_bind to specify the program variables to be used.

If bcp_bind is called with a type parameter of SQLTEXT or SQLIMAGE and a nonnull varaddr parameter, bcp_sendrow sends the
entire text or image data value, just as it does for all other data types. If, however, bcp_bind has a null varaddr parameter,
bcp_sendrow returns control to the application immediately after all nontext and nonimage columns are sent to SQL Server.
The application can then call bcp_moretext repeatedly to send the text and image columns to SQL Server, a chunk at a time. For
an example, see bcp_moretext.

After the last call to bcp_sendrow, you must call bcp_done to ensure proper internal cleanup.

When bcp_sendrow is used to bulk copy rows from program variables into SQL Server tables, rows are permanently saved in
SQL Server only when the user calls bcp_batch or bcp_done. The user can choose to call bcp_batch once every n rows or when
there is a lull between periods of incoming data. Of course, the user can choose some other criteria or decide not to call
bcp_batch at all. If bcp_batch is never called, the rows are permanently saved in SQL Server when bcp_done is called.

See Also

bcp_batch

bcp_control

bcp_bind

bcp_done

bcp_colfmt

bcp_exec

bcp_collen

bcp_init

bcp_colptr

bcp_moretext

bcp_columns

DB Library for C (SQL Server 2000)

BCP_SETL
Sets the LOGINREC to enable bulk-copy operations.

Syntax

RETCODE BCP_SETL (
PLOGINREC loginrec,
BOOL enable);

Arguments

loginrec

Is a pointer to a LOGINREC structure, which is passed as a parameter to dbopen. You can get a LOGINREC structure by calling
dblogin.

enable

Is a Boolean value (TRUE or FALSE) that specifies whether to enable bulk copy operations for the resulting DBPROCESS. By
default, DBPROCESS structures are not enabled for bulk-copy operations.

Returns

SUCCEED or FAIL.

Remarks

This function sets a field in the LOGINREC structure that tells Microsoft® SQL Server™ 2000 that the DBPROCESS connection can
be used for bulk-copy operations. For it to have any effect, it must be called before dbopen, the function that actually allocates
the DBPROCESS structure.

In applications that allow users to make ad hoc queries, you may want to avoid calling this function to keep users from initiating a
bulk-copy sequence with Transact-SQL statements. Or you may want to call it with the enable parameter set to FALSE. After a
bulk-copy sequence has begun, it cannot be stopped with a Transact-SQL statement.

See Also

bcp_init

dbsetlhost

dblogin

dbsetlpwd

dbopen

dbsetluser

dbsetlapp

DB Library for C (SQL Server 2000)

bcp_writefmt
Writes a data file format definition to a user file for a bulk copy between a file and Microsoft® SQL Server™ 2000.

Syntax

RETCODE bcp_writefmt (
PDBPROCESS dbproc,
LPCSTR file_name);

Arguments

dbproc

Is the DBPROCESS structure that is the handle for a particular workstation or SQL Server 2000 process. It contains all the
information that DB-Library uses to manage communications and data between the workstation and SQL Server.

file_name

Is the full path and file name of the file containing the format definitions.

Returns

SUCCEED or FAIL.

Remarks

The format of the data file reflects previous calls to bcp_columns and bcp_colfmt.

The bulk copy utility (bcp) copies a database table to or from a host file in a user-specified format, which can be saved with bcp in
definition files that store the data file format. These files can later automate the process of bulk copying files that share a common
format.

Read format-definition files with bcp_readfmt.

Note The file produced by bcp_writefmt is not compatible with versions of the bcp utility before version 4.2.

Examples

The following example shows how to use bcp_writefmt:

bcp_init(dbproc, "mytable", "bcpdata", "bcperrs", DB_OUT);

bcp_columns(dbproc, 3);
bcp_colfmt(dbproc, 1, SQLCHAR, 0, -1, '\t', 1, 1);
bcp_colfmt(dbproc, 2, SQLCHAR, 0, -1, '\t', 1, 2);
bcp_colfmt(dbproc, 3, SQLCHAR, 0, -1, '\t', 1, 3);

bcp_writefmt(dbproc, "my_fmtfile");

bcp_exec(dbproc, &rows_copied);

See Also

bcp_colfmt

bcp_readfmt

bcp_columns

DB Library for C (SQL Server 2000)

DB-Library Options
The functions dbsetopt and dbclropt use the following constants, defined in Sqldb.h, for setting and clearing options. All options
are off by default.

DBANSItoOEM | DBOEMtoANSI (Microsoft® Windows® and Microsoft Windows NT® only)

Translates, through the Windows functions AnsiToOem and OemToAnsi, all characters or text coming from or going to the
server. Because Microsoft MS-DOS® uses the OEM character set and Windows uses the ANSI character set, this translation
becomes necessary when international characters (character code larger than 127) are in the database.

There are two ways to convert data with transfers to and from the server:

Call dbsetopt with DBANSItoOEM or DBOEMtoANSI

For Windows, in the Win.ini file's [SQLSERVER] section, set AutoANSItoOEM=ON

For Windows NT, use the SQL Server Network Utility automatic ANSI to OEM option. This modifies the Registry under the
following subtree:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 MSSQLServer\
 Client\
 DB-Lib

This also sets the AutoAnsiToOem entry to ON (AutoAnsiToOem:REG_SZ:ON). This is the default entry.

The AutoANSItoOEM entry controls the default conversion behavior when you connect to a server. If AutoANSItoOEM is
set to ON, conversion is turned on in the following cases:

ANSI clients to OEM servers (Windows and Windows NT)

OEM clients to ANSI servers (Windows NT)

If AutoANSItoOEM is set to OFF, conversion is turned off for all connections.

You can override the default conversion by calling dbsetopt after calling dbopen.

Use the DBANSItoOEM option to enable conversion when connecting an ANSI client to an OEM server. Use the
DBOEMtoANSI option to enable conversion when connecting an OEM client (Windows NT Console application) to an ISO
server. You cannot set both options for the same DBPROCESS.

DBARITHABORT

Cancels a query during execution when an arithmetic exception occurs. If neither DBARITHABORT nor DBARITHIGNORE is set,
Microsoft SQL Server™ 2000 substitutes null values and prints a warning after the query has been executed.

DBARITHIGNORE

Substitutes (without warning) null values for selected or updated values when an arithmetic exception occurs during query
execution. If neither DBARITHABORT nor DBARITHIGNORE is set, SQL Server substitutes null values and prints a warning after the
query has been executed.

DBBUFFER

Buffers the result rows to access them nonsequentially with dbgetrow. DB-Library handles this option locally. With the option set,
supply a parameter that equals the number of rows you want buffered. If you choose a negative value, the buffer is set to a
default size (currently 100). A value of 1 is invalid.

Row buffering keeps a specified number of SQL Server result rows in the program's memory. Without row buffering, the result
row generated by each new dbnextrow call overwrites the contents of the previous result row. So use row buffering for
programs that need to look at result rows nonsequentially.

When turned on, DBBUFFER reduces memory and performance because each row in the buffer must be allocated and freed
individually. Therefore, write the application to turn on the DBBUFFER option only if it calls dbgetrow. Note that row buffering, an
independent issue, has nothing to do with network buffering. For more information about row buffering, see dbgetrow,

dbnextrow, and dbclrbuf.

DBCLIENTCURSORS

Forces the use of client cursors. When this option is set, every cursor opened with dbcursoropen is a client cursor.

This option can be enabled for a client running Windows by placing the line UseClientCursors=ON in the [SQLSERVER] section
of Win.ini. This option can be enabled for a client running Windows NT by setting the value UseClientCursors to ON
(UseClientCursors : REG_SZ : ON) in the following Windows NT Registry key:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 MSSQLServer\
 Client\
 DB-Lib

DBNOAUTOFREE

Clears the command buffer only by a call to dbfreebuf. When DBNOAUTOFREE is not set, after a call to dbsqlexec or
dbsqlsend, the first call to either dbcmd or dbfcmd automatically clears the command buffer before the new text is entered.

DBNOCOUNT

Stops returning information about the number of rows affected by each Transact-SQL statement. The application can otherwise
get this information by calling DBCOUNT.

DBNOEXEC

Processes the query through the compile step, but does not execute it. You can use this option with DBSHOWPLAN.

DBOFFSET

Indicates where SQL Server should return offsets to certain constructs in the query. This option takes a parameter that specifies
the particular construct. Valid values of this parameter include:

select

from

table

order

compute

statement

procedure

execute

param

Note The value param refers to parameters of stored procedures.

Calls to functions such as dbsetopt can specify these parameters in either uppercase or lowercase. For the internal types
that correspond to the offsets, see dbgetoff. Offsets are returned only if the batch contains no syntax errors.

DBPARSEONLY

Checks the syntax of the query and returns error messages to the host. Offsets are returned if the DBOFFSET option is set and
there are no errors.

DBQUOTEDIDENT

Specifies that DB-Library will automatically place double quotation marks (") around certain object names that are called quoted
identifiers. The DBQUOTEDIDENT option is disabled by default.

Call dbsetopt with the DBQUOTEDIDENT option to enable the use of quoted identifiers.

Call dbclropt with the DBQUOTEDIDENT option to disable the use of quoted identifiers.

Call dbisopt to check the status of the DBQUOTEDIDENT option.

Note When you use DBQUOTEDIDENT, you must set param to NULL.

The following table lists the functions and the parameters that are affected when DBQUOTEDIDENT is enabled.

Function Parameter(s)
bcp_init Tblname
dbrpcinit Rpcname
dbupdatetext dest_object

src_object
dbuse Dbname
dbwritetext Objname

When you call dbrpcinit, you must explicitly place quotation marks around remote procedure names that require quotation
marks in the rpcname parameter. This example demonstrates the use of quotation marks in rpcname.

"My server".."My RPC"

DBROWCOUNT

Specifies a maximum number of regular rows to be returned on SELECT statements. This option does not limit the number of
compute rows returned. Different from most options, DBROWCOUNT is always on, never off. Setting DBROWCOUNT to 0 sets it
back to the default, returning all the rows generated by a SELECT statement. Therefore, to turn DBROWCOUNT "off", turn it on
with a count of 0.

DBSETTIME

Overrides the global DB-Library time-out (set using dbsettime) and sets a new DB-Library time-out for a specific DBPROCESS
connection. When setting this option, supply a parameter that specifies the connection specific DB-Library time-out in seconds.

DBSHOWPLAN

Generates a description of the processing plan after compilation and continues executing the query.

DBSTAT

Determines, after each query, when performance statistics (CPU time, elapsed time, I/O, and so on) will be returned to the host.
DBSTAT takes one of two parameters: io, for statistics about SQL Server internal I/O; and time, for information about SQL Server's
parsing, compilation, and execution times. DB-Library receives these statistics as informational messages, and applications can
access them through the user-supplied message handler.

DBSTORPROCID

Sends the stored procedure ID to the host before sending rows generated by the stored procedure.

DBTEXTLIMIT

Causes DB-Library to limit the size of returned text or image values. When setting this option, supply a parameter with the same
length, in bytes, as the longest text or image value that your program can handle. DB-Library will read but ignore any part of a
text or image value that goes over this limit.

In the case of huge text values, it may take some time for the entire text value to be returned over the network. To keep SQL
Server from sending this extra text, use the DBTEXTSIZE option instead of DBTEXTLIMIT.

DBTEXTSIZE

Causes SQL Server to limit the size of returned text or image values. When setting this option, supply a parameter with the same
length, in bytes, as the longest text or image value that SQL Server should return.

Note that, in programs that allow ad hoc queries, the application user can override this option with the Transact-SQL SET
TEXTSIZE command. To set a text limit that the user cannot override, use the DBTEXTLIMIT option instead.

DBBUFFER, DBNOAUTOFREE, and DBTEXTLIMIT are DB-Library options. That is, they affect DB-Library but are not sent to SQL

Server. The others are SQL Server options (options that get sent to the SQL Server). You can set them with Transact-SQL.

As mentioned in the preceding descriptions, certain options take parameters. The following table lists these options and the
possible values of their parameters.

Option Possible parameter values
DBBUFFER 0 to 32767
DBOFFSET select, from, table, order, compute, statement, procedure,

execute, or param
DBROWCOUNT 0 to 2,147,483,647
DBSTAT io or time
DBTEXTLIMIT 0 to 65,534 for 16-bit DB-Library

0 to 2,147,483,647 for 32-bit DB-Library
DBTEXTSIZE 0 to 2,147,483,647

The function dbsetopt requires you to specify parameters when setting any of the options in the preceding table. On the other
hand, the functions dbclropt and dbisopt require you to specify a parameter only for DBOFFSET and DBSTAT, because they can
have simultaneous multiple settings, which require further definition before being cleared or checked.

Note that parameters specified in calls to dbsetopt, dbclropt, and dbisopt are always passed as character strings and enclosed
in quotation marks, even if they are numeric values.

DB Library for C (SQL Server 2000)

Using DB-Library for C Data Types
To use Microsoft® SQL Server™ 2000 data types, include the Sqlfront.h and Sqldb.h header files in your program.

DB Library for C (SQL Server 2000)

Data Types
The following list describes Microsoft® SQL Server™ 2000 data types. The dbconvert and dbwillconvert functions use these
types. In addition, dbcoltype, dbalttype, dbrettype each returns one of these types.

Data type Description
SQLARRAY 1 byte with variable length
SQLBINARY Binary
SQLBIT Bit
SQLCHAR Char
SQLDATETIM4 4-byte smalldatetime
SQLDATETIME 8-byte datetime
SQLDATETIMN datetime or smalldatetime with null values allowed
SQLDECIMAL Decimal
SQLFLT4 4-byte real
SQLFLT8 8-byte float
SQLFLTN float or real with null values allowed
SQLIMAGE Image
SQLINT1 1-byte tinyint
SQLINT2 2-byte smallint
SQLINT4 4-byte int
SQLINTN tinyint, smallint, or int with null values allowed
SQLMONEY4 4-byte smallmoney
SQLMONEY 8-byte money
SQLMONEYN money or smallmoney with null values allowed
SQLNUMERIC Numeric
SQLTEXT Text
SQLVARBINARY Varbinary
SQLVARCHAR Varchar

DB Library for C (SQL Server 2000)

Type Definitions
DB-Library functions use the following type definitions. Use these when defining C program variables, particularly those in
dbbind, dbaltbind, dbconvert, and dbdata.

typedef char DBCHAR; // char and text
typedef unsigned char DBBINARY; // binary and image
typedef unsigned char DBTINYINT; // 1-byte tinyint
typedef short DBSMALLINT; // 2-byte smallint
typedef unsigned short DBUSMALLINT; // Unsigned 2-byte integer
typedef long DBINT; // 4-byte int
typedef float DBFLT4; // 4-byte real
typedef double DBFLT8; // 8-byte float
typedef unsigned char DBBIT; // bit
typedef unsigned char DBBOOL; // Boolean
typedef long DBMONEY4; // 4-byte smallmoney

typedef struct dbmoney // 8-byte money
{
 DBINT mnyhigh;
 ULONG mnylow;
} DBMONEY;

typedef struct dbdatetime4 // 4-byte smalldatetime
{
 USHORT numdays; // Days since Jan 1, 1900
 USHORT nummins; // Minutes since midnight
} DBDATETIM4;

typedef struct dbdatetime // 8-byte datetime
{
 DBINT dtdays; // Days since Jan 1, 1900
 ULONG dttime; // 300ths of a second since midnight
} DBDATETIME;

#define MAXNUMERICLEN 16

typedef struct dbnumeric // Numeric (and decimal)
{
 BYTE precision; // Precision
 BYTE scale; // Scale
 BYTE sign; // 1 = Positive, 0 = Negative
 BYTE val[MAXNUMERICLEN]; // Padded little-endian value
} DBNUMERIC;

typedef DBNUMERIC DBDECIMAL; // Decimal

#define DBMAXCHAR 256

typedef struct dbvarychar // Pascal-type string
{
 DBSMALLINT len; // Character count
 DBCHAR str[DBMAXCHAR]; // Nonterminated string
} DBVARYCHAR;

typedef struct dbvarybin // Pascal-type byte array
{
 DBSMALLINT len; // Byte count
 BYTE array[DBMAXCHAR]; // Nonterminated array
} DBVARYBIN;

DB Library for C (SQL Server 2000)

Error Messages
The table in Errors lists the errors alphabetically with severities. The table in Error Severities summarizes the severity levels.
Number values corresponding to the errors are passed to the currently installed, user-supplied error handler. For information
about creating an error-handler function for your application, see dberrhandle.

To access these error definitions, include the Sqlfront.h and Sqldb.h header files in your program.

DB Library for C (SQL Server 2000)

Errors
The following error values are defined in the header file Sqlfront.h. Note that errors with a severity of EXCOMM also have a
network-related error message appended to the dberrstr value. EXCOMM errors also have network-specific error information in
oserr and oserrstr.

Error # Error Severity Description
10000 SQLEMEM EXRESOURCE Unable to allocate sufficient memory.
10001 SQLENULL EXPROGRAM NULL DBPROCESS pointer

encountered.
10002 SQLENLOG EXCONSISTENCY NULL LOGINREC pointer

encountered.
10003 SQLEPWD EXUSER Login incorrect.
10004 SQLECONN EXCOMM Unable to connect: Microsoft® SQL

Server™ 2000 is unavailable or does
not exist.

10005 SQLEDDNE EXINFO DBPROCESS is dead or not enabled.
10006 SQLENULLO EXCONSISTENCY Attempt to login with NULL

LOGINREC.
10007 SQLESMSG EXSERVER General SQL Server error: Check

messages from SQL Server.
10008 SQLEBTOK EXCOMM Bad token from SQL Server:

Datastream processing out of
synchronization.

10009 SQLENSPE EXPROGRAM General nonspecific DB-Library error.
10010 SQLEREAD EXCOMM Read from SQL Server failed.
10011 SQLECNOR EXPROGRAM Column number out of range.
10012 SQLETSIT EXINFO Attempt to call dbtsput with an

invalid timestamp.
10013 SQLEPARM EXCONSISTENCY Invalid parameter in DB-Library

function reference.
10014 SQLEAUTN EXPROGRAM Attempt to update the timestamp of

a table with no timestamp column.
10015 SQLECOFL EXCONVERSION Data conversion resulted in overflow.
10016 SQLERDCN EXCONVERSION Requested data conversion does not

exist.
10017 SQLEICN EXPROGRAM Invalid value for computeid or invalid

compute column number.
10018 SQLECLOS EXCOMM Error in closing network connection.
10019 SQLENTXT EXPROGRAM Attempt to get text point/timestamp

from a nontext column.
10020 SQLEDNTI EXPROGRAM Attempt to use dbtxtsput to put a

new text timestamp into a column
whose data type is neither SQLTEXT
nor SQLIMAGE.

10021 SQLETMTD EXPROGRAM Attempt to send too much text data
through dbmoretext.

10022 SQLEASEC EXPROGRAM Attempt to send an empty command
buffer to the SQL Server.

10023 SQLENTLL EXUSER Name too long for LOGINREC field.
10024 SQLETIME EXTIME SQL Server connection timed out.
10025 SQLEWRIT EXCOMM Write to SQL Server failed.
10026 SQLEMODE EXCOMM Network connection not in correct

mode; invalid SQL Server connection.
10027 SQLEOOB EXCOMM Error in sending out-of-band data to

SQL Server.
10028 SQLEITIM EXPROGRAM Illegal time-out value specified.

10029 SQLEDBPS EXRESOURCE Maximum number of DBPROCESS
structures already allocated.

10030 SQLEIOPT EXPROGRAM Attempt to use invalid dboption.
10031 SQLEASNL EXPROGRAM Attempt to set fields in a null

LOGINREC.
10032 SQLEASUL EXPROGRAM Attempt to set unknown LOGINREC

field.
10033 SQLENPRM EXPROGRAM NULL parameter not allowed for this

dboption.
10034 SQLEDBOP EXPROGRAM Invalid or out of range dbn

parameter.
10035 SQLENSIP EXPROGRAM Negative starting index passed to

dbstrcpy.
10036 SQLECNULL EXPROGRAM NULL destination variable not

allowed.
10037 SQLESEOF EXCOMM Unexpected EOF from SQL Server.
10038 SQLERPND EXPROGRAM Attempt to initiate a new SQL Server

operation with results pending.
10039 SQLECSYN EXCONVERSION Attempt to convert data stopped by

syntax error in source field.
10040 SQLENONET EXCOMM DB-Library network communications

layer not loaded.
10041 SQLEBTYP EXPROGRAM Unknown bind type passed to DB-

Library function.
10042 SQLEABNC EXPROGRAM Attempt to bind to a nonexistent

column.
10043 SQLEABMT EXPROGRAM User attempted a dbbind with

mismatched column and variable
types.

10044 SQLEABNP EXPROGRAM Attempt to bind using NULL pointers.
10045 SQLEBNCR EXPROGRAM Attempt to bind user variable to a

nonexistent compute row.
10046 SQLEAAMT EXPROGRAM User attempted a dbaltbind with

mismatched column and variable
types.

10047 SQLENXID EXNONFATAL The server did not grant a
distributed-transaction ID.

10048 SQLEIFNB EXPROGRAM Invalid field number passed to
bcp_control.

10049 SQLEKBCO EXINFO 1000 rows successfully bulk copied
to host file.

10050 SQLEBBCI EXINFO Batch successfully bulk copied to
SQL Server.

10051 SQLEKBCI EXINFO 1000 rows sent to SQL Server.
10052 SQLEBCWE EXNONFATAL I/O error while writing bcp data file.
10053 SQLEBCNN EXUSER Attempt to bulk copy a null value

into a server column that does not
accept null values.

10054 SQLEBCOR EXCONSISTENCY Attempt to bulk copy an oversized
row to SQL Server.

10055 SQLEBCPI EXPROGRAM Call bcp_init before any other bcp
routines.

10056 SQLEBCPN EXPROGRAM Use bcp_bind, bcp_collen, and
bcp_colptr only after calling
bcp_init with the copy direction set
to DB_IN.

10057 SQLEBCPB EXPROGRAM Do not use bcp_bind after bcp_init
has been passed a nonnull data file
name.

10058 SQLEVDPT EXUSER For bulk copy, all variable-length
data must have either a length prefix
or a terminator specified.

10059 SQLEBIVI EXPROGRAM Use bcp_columns and bcp_colfmt
only after bcp_init has been passed
a valid data file.

10060 SQLEBCBC EXPROGRAM Call bcp_columns before
bcp_colfmt.

10061 SQLEBCFO EXUSER Host files must contain at least one
column: bcp.

10062 SQLEBCVH EXPROGRAM Call bcp_exec only after bcp_init
has been passed a valid host file.

10063 SQLEBCUO EXRESOURCE Unable to open host datafile: bcp.
10064 SQLEBUOE EXRESOURCE Unable to open error file: bcp.
10065 SQLEBWEF EXNONFATAL I/O error while writing bcp error file.
10066 SQLEBTMT EXPROGRAM Attempt to send too much text data

with bcp_moretext.
10067 SQLEBEOF EXNONFATAL Unexpected EOF encountered in bcp

datafile.
10068 SQLEBCSI EXCONSISTENCY Host-file columns may be skipped

only when copying into the server.
10069 SQLEPNUL EXCONSISTENCY NULL program pointer encountered.
10070 SQLEBSKERR EXCONSISTENCY Cannot seek in data file.
10071 SQLEBDIO EXPROGRAM Bad bulk-copy direction.
10072 SQLEBCNT EXUSER Attempt to use bulk copy with a

nonexistent server table.
10073 SQLEMDBP EXPROGRAM Attempt to set maximum number of

DPPROCESS structures lower than 1.
10075 SQLCRSINV EXPROGRAM Invalid cursor statement.
10076 SQLCRSCMD EXPROGRAM Attempt to call cursor functions

when there are commands waiting to
be executed.

10077 SQLCRSNOIND EXINFO One of the tables involved in the
cursor statement does not have a
unique index.

10078 SQLCRSDIS EXPROGRAM Cursor statement contains one of the
disallowed phrases COMPUTE,
UNION, FOR BROWSE, or SELECT
INTO.

10079 SQLCRSAGR EXPROGRAM Aggregate functions are not allowed
in a cursor statement.

10080 SQLCRSORD EXPROGRAM Only fully keyset driven cursors can
have ORDER BY, GROUP BY, or
HAVING PHRASES clauses.

10081 SQLCRSMEM EXPROGRAM Keyset or window scroll size exceeds
the memory limitations of this
computer.

10082 SQLCRSBSKEY EXPROGRAM Keyset cannot be scrolled backward
in mixed cursors with a previous
fetch type.

10083 SQLCRSNORES EXINFO Cursor statement generated no
results.

10084 SQLCRSVIEW EXPROGRAM A view cannot be joined with another
table or a view in a cursor statement.

10085 SQLCRSBUFR EXPROGRAM Row buffering should not be turned
on when using cursor functions.

10086 SQLCRSFROWN EXINFO Row number to be fetched is outside
valid range.

10087 SQLCRSBROL EXPROGRAM Backward scrolling cannot be used in
a forward scrolling cursor.

10088 SQLCRSFRAND EXPROGRAM Fetch types RANDOM and RELATIVE
can only be used within the keyset of
keyset driven cursors.

10089 SQLCRSFLAST EXPROGRAM Fetch type LAST requires fully keyset
driven cursors.

10090 SQLCRSRO EXPROGRAM Data locking or modifications cannot
be made in a READONLY cursor.

10091 SQLCRSTAB EXPROGRAM Table name must be determined in
operations involving data locking or
modifications.

10092 SQLCRSUPDTAB EXPROGRAM Update or insert operations using
bind variables require single table
cursors.

10093 SQLCRSUPDNB EXPROGRAM Update or insert operations cannot
use bind variables when binding type
is NOBIND.

10094 SQLCRSVIIND EXPROGRAM The view used in the cursor
statement does not include all the
unique index columns of the
underlying tables.

10095 SQLCRSNOUPD EXINFO Update or delete operation did not
affect any rows.

10096 SQLCRSOS2 EXPROGRAM Cursors are not supported for this
server.

10097 SQLEBCSA EXPROGRAM The BCP hostfile %s contains only
%ld rows. Skipping all of these rows
is not allowed.

10098 SQLCRSRO EXPROGRAM Data locking or modifications cannot
be made in a READONLY cursor.

10099 SQLEBCNE EXPROGRAM The table %s contains only %ld rows.
Copying up to row %ld is not
possible.

10100 SQLEBCSK EXPROGRAM The table %s contains only %ld rows.
Skipping all of these rows is not
allowed.

10101 SQLEUVBF EXPROGRAM Attempt to read unknown version of
bcp format file.

10102 SQLEBIHC EXPROGRAM Incorrect host-column number found
in bcp format file.

10103 SQLEBWFF EXRESOURCE I/O error while reading bcp format
file.

10104 SQLNUMVAL EXPROGRAM The data stored in the
DBNUMERIC/DBDECIMAL structure
is invalid.

10105 SQLEOLDVR EXPROGRAM The SQL Server's TDS is obsolete
with this version of DB-Library.

10106 SQLEBCPS EXPROGRAM The row length exceeds SQL Server's
maximum allowable size.

10107 SQLEDTC EXRESOURCE Microsoft Distributed Transaction
Coordinator call failed.

10108 SQLENOTIMPL EXPROGRAM This function is not supported on this
platform at this time.

10109 SQLENONFLOAT EXPROGRAM float conversion attempt failed. The
source is invalid.

10110 SQLECONNFB EXCOMM Unable to connect: DB Server is
unavailable or does not exist - will
attempt a fallback connection.

DB Library for C (SQL Server 2000)

Error Severities
Error severities have numerical equivalents. When an error occurs or when a message is sent, these numerical equivalents are
passed to the currently installed, user-supplied error handler.

Error severity levels are defined in the Sqlfront.h header file. Your program must include Sqlfront.h if it refers to these severity
levels.

Error severity Severity
number

Description

EXINFO 1 Informational, nonerror.
EXUSER 2 User error.
EXNONFATAL 3 Nonfatal error.
EXCONVERSION 4 Error in DB-Library data conversion.
5 The server has returned an error flag.
EXTIME 6 Time-out period exceeded while waiting for a

response from the server; the DBPROCESS is
still alive.

EXPROGRAM 7 Coding error in user program.
EXRESOURCE 8 Running out of resources; the DBPROCESS may

be dead.
EXCOMM 9 Failure in communication with server; the

DBPROCESS is dead.
EXFATAL 10 Fatal error; the DBPROCESS is dead.
EXCONSISTENCY 11 Internal software error; notify your primary

support provider.

DB Library for C (SQL Server 2000)

DB-Library for C Samples
The DB-Library for C sample program files are stored as projects in their own directories. All samples are designed for use with
Mixed Mode security. Comments explaining how to implement Windows Authentication mode are provided in each sample.

When the Microsoft® SQL Server™ sample files are installed, the sample sources are installed to subdirectories of:

C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Dblib

DB Library for C (SQL Server 2000)

Example8 - Handling Procedure Output Parameters
 New Information - SQL Server 2000 SP3.

Example8 illustrates DB Library support for output parameters in Microsoft® SQL Server™ stored procedures.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\DBLib\Example8

Running the Sample

1. Open Example8.dsw in Microsoft Visual C++® 6.0.

2. From the Tools menu, choose Options, and then click the Directories tab.

3. From the Show directories for box, choose Include files and Library files, and ensure that the following directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

4. Ensure that the hard-coded server name, user name, and password are correct.

Security Note This is not a secure way of storing login credentials in a production application. If you use this sample as a
template for application development, modify the login routine to either use Windows Authentication (recommended), or prompt
the user for name and password information rather than hard-coding it.

5. Compile the program.

6. Create the stored procedure, rpctest by running C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\DBLib\Example8\Createsp.sql).

7. Open a Command Prompt window, and then change the current directory to C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\DBLib\Example8.

8. Run the program by entering "example8".

Functions Illustrated

Dbinit dbresults
Dbmsghandle dbprrow
Dberrhandle dbnumrets
Dblogin dbretname
DBSETLUSER dbrettype
DBSETLPWD dbprtype
DBSETLAPP dbretlen
DBSETLVERSION dbretdata
Dbopen dbhasretstat
Dbrpcinit dbretstatus
Dbrpcparam dbexit
Dbrpcsend DBDEAD
Dbsqlok

See Also

Samples

DB Library for C (SQL Server 2000)

SQLExamp: Determining Column Widths
SQLExamp illustrates handling of various data types for consistent output. The example processes a user's Transact-SQL
statement and formats result rowset data for display.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\DBLib\SQLExamp

Functions Illustrated

Dbinit dbnextrow
Dbsettime dbnumcols
Dbmsghandle dbcoltype
Dberrhandle dbcolinfo
Dblogin dbcollen
DBSETLUSER dbcolname
DBSETLHOST dbdata
DBSETLVERSION dbdatlen
Dbopen dbconvert
Dbcmd dbcancel
Dbsqlexec DBCOUNT
Dbresults dbclose

See Also

Samples

DB Library for C (SQL Server 2000)

SQLTestC - SELECT Statement Processing
 New Information - SQL Server 2000 SP3.

SQLTestc is a console mode version of the SQL Test example. The example issues a simple SELECT statement against the pubs
database and prints the returned result set rows to the console.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\DBLib\SQLTestC

1. Open the Sqltestc.dsw in Microsoft® Visual C++® 6.0.

2. From the Tools menu, choose Options, and then click the Directories tab.

3. From the Show directories for box, choose Include files and Library files, and ensure that the following directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

4. Ensure that the hard-coded server name, user name, and password are correct.

Security Note This is not a secure way of storing login credentials in a production application. If you use this sample as a
template for application development, modify the login routine to either use Windows Authentication (recommended), or
prompt the user for name and password information rather than hard-coding it.

5. Compile the program.

6. Open a Command Prompt window, and then change the current directory to C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\DBLib\Sqltestc.

7. Run the program by entering "sqltestc".

Functions Illustrated

Dbinit dbuse
Dbmsghandle dbcmd
Dberrhandle dbsqlexec
Dblogin dbresults
DBSETLUSER dbbind
DBSETLPWD dbnextrow
DBSETLAPP dbexit
DBSETLVERSION DBDEAD
Dbopen

See Also

Samples

DB Library for C (SQL Server 2000)

SQLTestN
 New Information - SQL Server 2000 SP3.

SQLTestN is a Win32® API, graphical user interface sample. The sample illustrates connecting to a Microsoft® SQL Server™ and
executing a simple SELECT statement.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\DBLib\SQLTestN

1. Open the sqltestn.dsw in Microsoft Visual C++® 6.0.

2. From the Tools menu, choose Options, and then click the Directories tab.

3. From the Show directories for box, choose Include files and Library files, and ensure that the following directories (as
appropriate) are included:

Include files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Include

Library files: C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Lib

4. Ensure that the hard-coded user name is correct. Compile the program.

The password is assumed to be NULL.

Security Note It is poor security practice to either hard-code a user name or use a null password with a production
application. If you use this sample as a template for application development, modify the login routine to either use
Windows Authentication (recommended), or prompt the user for name and password information rather than hard-coding
it.

5. Open a Command Prompt window, and then change the current directory to C:\Program Files\Microsoft SQL
Server\80\Tools\Devtools\Samples\DBLib\Sqltestn.

6. Run the program by entering "sqltestn".

Functions Illustrated

Dbbind dbmsghandle
Dbclose dbnextrow
Dbcmd dbopen
Dberrhandle dbresults
Dbexit DBSETLUSER
Dbfreelogin DBSETLVERSION
Dbinit dbsqlexec
DBLOCKLIB DBUNLOCKLIB
Dblogin dbuse

See Also

Samples

DB Library for C (SQL Server 2000)

TextCopy - Handling text and image data
TextCopy is a Microsoft Foundation Class (MFC) C++ example that illustrates handling Microsoft® SQL Server™ text and image
data types. The example moves data either to or from a single server column and row, and a user-specified operating system file.

Default Location

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\DBLib\TextCopy

Functions Illustrated

Dbinit dbuse
Dbmsghandle dbcmd
Dberrhandle dbnumcols
Dbsettime dbcoltype
Dbsetlogintime dbreadtext
Dblogin dbnextrow
DBSETLUSER dbtxtptr
DBSETLPWD dbtxtimestamp
DBSETLAPP dbwritetext
DBSETLHOST dbsqlok
Dbopen dbmoretext
Dbfreelogin dbcancel
Dbsetopt dbclose
Dbsqlexec DBDEAD
Dbresults

See Also

Samples

URL Access and SQL Server (SQL Server 2000)

URL Access
 New Information - SQL Server 2000 SP3.

SQL statements and stored procedures can be specified directly at the URL. The SQL ISAPI extension supports the following URL
syntax.

Syntax

http://iisserver/virtualroot/virtualname[/pathinfo][/XpathExpression] [?param=value[¶m=value]...n]

Or

http://iisserver/virtualroot?{sql=SqlString | template=XMLTemplate} [¶m=value[¶m=value]...n]

Arguments

iisserver

Is the Microsoft® Internet Information Services (IIS) server.

virtualroot

Is the virtual root that contains all the properties needed to access the database server and the database.

virtualname

Is one of the virtual names already created as part of defining the virtualroot properties. A virtualname of template type
indicates that a template file is being executed. A virtualname of schema type indicates that a schema file is specified. A
virtualname of dbobject type refers to a database object, allowing a table/view name to be specified directly at the URL.

[/pathinfo]

Is the path to the template file or mapping schema file. If specified, pathinfo is appended to the path already specified when
virtualname is created. pathinfo is not specified for virtualname of dbobject type.

[/XPathExpression]

Is specified for virtualname of dbobject or schema type. This XPath expression is specified against the mapping schema or the
database object.

?sql

Denotes an SQL query string.

SqlString

Is the SQL query or a stored procedure name. If SqlString is specified, the FOR XML clause can also be specified if an XML format
for the result set is required. Queries are usually specified using the FOR XML clause. However, FOR XML is not specified in cases
in which the returned data is known to be compatible with the receiving application (Web browser); for example, when a stored
procedure that returns an XML document is executed, or when an image (GIF or JPEG) stored in a table is retrieved by a SELECT
statement.

In some cases, the browser can detect the type of the returned data based on several items, such as:

The HTML header that is passed, which includes the content-type, provides the browser with the necessary information
about the returned data.

The returned data provides information to the browser.

The browser also examines the file name extension when template files are executed using a URL. If a template file with the
.gif extension is specified and a query in the file returns a column containing .gif files, then this provides an additional hint to
the browser about the content-type.

If the result of the query is a single value (one column, one row) or a single column (multiple rows), this is recognized as a
special case, and the FOR XML clause can be omitted. In the latter case, if text data is requested, all of the row values are
returned with no separator characters; and all of the data is returned as one long text stream. If nontext data, such as
numbers or a date, is requested, a binary version of the fields is returned.

?template

Denotes a SQL query string formatted as an XML document.

param

Is either a parameter name or a keyword. The keyword can be contenttype, outputencoding, root, or xsl.

Keyword Description
contenttype Specifies the content-type of the returned document. This

describes the data contained in the body fully enough that the
receiving agent (Web browser) can pick an appropriate
mechanism to present the data to the user.

contenttype provides the content-type and the subtype,
which describes the nature of the data. The content-type (such
as text, image, audio, video, and so on) describes the general
type of data, and the subtype specifies a specific format for
that type of data. For example, the contenttype value
image/jpeg indicates that the general type of the data is
image and the specific format is JPEG.

The contenttype setting becomes the content-type field
that is sent to the browser as part of the HTTP header, which
contains the MIME-type (Multipurpose Internet Mail
Extensions) of the document being sent as the body.

text/XML is the default value of contenttype for the
document. This means that text is the general type and XML is
the specific format of the data.

contenttype is specified when the specific type of the return
results is known. The most common examples are:

When html (xhtml) is being returned, usually as a result
of XSL formatting, the contenttype is set to text/html.

When a query specifies a Microsoft SQL Server™ BLOB
field (for example, a JPEG image), the contenttype is
set to image/jpeg. Many BLOB types have
corresponding MIME types. A full list of registered MIME
types is maintained by IANA (Internet Assigned
Numbers Authority)..

Another useful contenttype setting is text/plain, which on
many browsers causes the results to appear with no
formatting at all.

outputencoding Specifies the character set to use for the resulting output XML
document. By default, encoding for the result is set to UTF-8
(Unicode Transformation Format).

You can override the default by using outputencoding to
specify the encoding you want. The XML processing
instruction is then provided appropriately and the document
is encoded to match.

If a template is specified at the URL using keyword
template=, the encoding is Unicode. For all other templates,
the encoding is obtained from the template (template is a
valid XML document and, therefore, has its own encoding).

If an XML template is specified at the URL (instead of an SQL
query) and outputencoding is also specified, the encoding
specified in outputencoding overrides the template.

root The result of a query (SQL or XPath) may not be a well-
formed document and, therefore, may cause the browser to
display parser errors when loading the result. SQL ISAPI
supports this keyword. When this keyword is specified, the
result of a query is wrapped in the given root tag to return a
well-formed document.

xsl Specifies the URL to an XSL file that is used to process the
resulting XML data.

By definition, XSL takes two XML documents and produces a
third. One of the input documents contains the data, and the
other contains the XSL processing instructions.

Unless specified in the XSL document, the output document
has a default encoding of UTF-8. If another encoding is
wanted, it should be specified in the XSL document. In that
case, the encoding specified in the XSL document is used
when the document is returned.

If outputencoding is specified and an XSL document is also
specified in xsl, the encoding specified in outputencoding
overrides the encoding of XSL document.

value

Is the text string using standard URL escape sequences.

Security Note Support for this XML functionality has been enhanced in the Web releases of Microsoft SQLXML. For the latest
enhancements, install Microsoft SQLXML 3.0 Service Pack 1 from this Microsoft Web site. The documentation that accompanies
this service pack provides security considerations for developing applications.

See Also

Accessing SQL Server Using HTTP

http://go.microsoft.com/fwlink/?LinkId=9503

Distributing SQL Server Applications (SQL Server 2000)

Distributing SQL Server Applications Overview
 Topic last updated -- January 2004

When you consider how to deploy a database application to your users or customers, you must decide if you want to distribute
Microsoft® SQL Server™ 2000 components with the application, or if you prefer to instruct your users to install SQL Server 2000
before installing the application. Components of SQL Server 2000 can be distributed with your own applications:

If your users already have an instance of SQL Server installed, you can distribute only the SQL Server client components
with your application. For more information, see Distributing SQL Server Client Components.

If your customers do not have SQL Server installed, you can distribute the Microsoft SQL Server 2000 Desktop Engine
(MSDE 2000) with your application. For more information, see Distributing the SQL Server 2000 Desktop Engine.

Distributing SQL Server Applications (SQL Server 2000)

Distributing the SQL Server 2000 Desktop Engine
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) is a version of the SQL Server database engine designed for
redistribution with applications. MSDE 2000 uses a Windows Installer-based setup that can be integrated into the setup of
applications.

Topic Description
Installing Desktop Engine Describes the different ways to install MSDE

2000.
Reinstalling SQL Server 2000 Desktop
Engine

Describes how to restart an MSDE 2000
installation that encountered an error.

Upgrading from MSDE 1.0 to SQL Server
2000 Desktop Engine

Describes how to upgrade MSDE 1.0 to
MSDE 2000.

Installation API for Desktop Engine Describes an application programming
interface (API) for checking MSDE 2000
setup prerequisites.

Windows Installer Return Codes for
Desktop Engine

Describes the codes returned by MSDE
2000 Setup.

Windows Installer Callback Functions for
Desktop Engine

Describes the support for Windows Installer
callback functions to handle errors returned
by the MSDE 2000 setup.

Desktop Engine Installation Samples Shows examples of MSDE 2000 application
setup.

See Also

Understanding SQL Server 2000 Desktop Engine (MSDE 2000)

Distributing SQL Server Applications (SQL Server 2000)

Installing Desktop Engine
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) can be installed in the following ways:

Users who have a current MSDE 2000 license can run the Desktop Engine Setup.exe program from the command prompt to
install a new instance of MSDE 2000. Setup can also be used to apply a service pack to an existing instance of MSDE 2000,
provided the instance was previously installed using Desktop Engine Setup.exe.

Application developers who plan to redistribute Microsoft® SQL Server™ Desktop Engine (MSDE 2000) with their own
applications should code an application installation wrapper program to:

Call the MSDE 2000 Setup.exe.

Evaluate the return code received from the Desktop Engine Setup.exe to evaluate the success of the installation. For
example, you can determine if the installation failed because there are already 16 instances on the computer or the
instance name was not valid.

Install the application (if the installation of the instance of MSDE 2000 was successful).

Application developers can alternatively tell their customers to use the Desktop Engine Setup.exe to install an instance of
MSDE 2000 as a prerequisite to installing the application itself. This should only be done if the person installing the
application is an experienced SQL Server user.

All new applications that distribute MSDE 2000 should use one of these methods.

For more information about running the Desktop Engine Setup, see Customizing Desktop Engine Setup.exe.

The advantage of using the Desktop Engine Setup.exe to install instances of MSDE 2000 is that these instances can be patched by
Microsoft SQL Server 2000 service packs. The application vendor does not have to build and deploy MSDE 2000 patches. An issue
the application developer should consider is that customers can independently uninstall the instance of MSDE 2000 used by the
application, or apply a later service pack that raises compatibility issues in the application.

The latest versions of MSDE 2000 include Windows Installer-based merge modules that can be used to embed the installation of
MSDE 2000 in any Windows Installer-based setup program. These are provided only to support existing applications that still use
merge modules. Using merge modules to install an instance of MSDE 2000 has these disadvantages:

The instance of MSDE 2000 cannot be patched independently of the application. Only a patch module supplied by the
application vendor can be applied to the instance. MSDE 2000 service packs directly from Microsoft cannot be applied to the
instance.

The application vendor must build an MSDE 2000 patch file for every MSDE 2000 service pack, and then distribute those
patch files to all customers. Customers cannot simply download and apply the latest Microsoft service pack.

Future releases of SQL Server will not include merge modules.

For more information about maintaining merge modules, see Using the SQL Server Desktop Engine Merge Modules.

Caution Some SQL Server 2000 compact discs have a folder named MSDE that contains the first version of MSDE 2000. The first
version of MSDE 2000 does not address issues related to the Slammer worm. Do not install MSDE 2000 from the SQL Server
2000 compact disc. Instead, download the MSDE 2000 file from the latest SQL Server 2000 Service Pack, and use those files to
install MSDE 2000. The latest SQL Server 2000 Service Pack is available at this Web site.

Later versions of SQL Server 2000 include an MSDE 2000 SP3a CD that does address issues related to the Slammer worm.

See Also

Windows Installer Return Codes for Desktop Engine

http://go.microsoft.com/fwlink/?LinkId=20026

Distributing SQL Server Applications (SQL Server 2000)

Customizing Desktop Engine Setup.exe
 Topic last updated -- January 2004

Desktop Engine Setup.exe installs an instance of MSDE 2000. It can be executed in two ways:

Running it in a command prompt window.

Running it from within a wrapper application, such as a Microsoft® Windows® application that calls the Win32®
CreateProcess() function. For information about using CreateProcess() to execute Setup.exe, see Desktop Engine
Installation Samples. Additional information and samples are available on this MSDE 2000 Web site.

The behavior of Setup is controlled by switches and parameters. Switches can be specified in these locations:

On the command prompt, when Setup is run in the command prompt window.

In a character string using the lpCommandLine parameter, when Setup is run from a program calling CreateProcess().

Parameters can be specified in the same manner as switches, either on the command prompt or in an lpCommandLine
parameter. Parameters can also be specified in an .ini file specified in a /settings switch.

The Setup.exe switches are: /?, /i, /settings, /L*V, /upgradesp, /qn, /qb, and /x.

The Setup.exe parameters are: ALLOWXDBCHAINING, BLANKSAPWD, CALLBACK, COLLATION, DATADIR,
DISABLENETWORKPROTOCOLS, INSTANCENAME, SAPWD, SECURITYMODE, TARGETDIR, UPGRADE, UPGRADEUSER, and
UPGRADEPWD.

Before running Desktop Engine Setup.exe, ensure that your computer meets the hardware and software requirements for SQL
Server 2000 database software. For more information about these requirements, see Hardware and Software Requirements for
Installing SQL Server 2000. In addition, file and print sharing must be enabled for you to run the Desktop Engine Setup.exe, except
on Windows 98 and Windows Millennium Edition. In Control Panel, select Network Connections. Select the
Advanced/Advanced Settings menu item. Ensure File and Print Sharing for Microsoft Networks is enabled on the
Adaptors and Bindings tab.

New MSDE 2000 users who are attempting to run the Desktop Engine Setup.exe from the command prompt can view the
examples later in this topic to find out how to run Setup.exe in typical installation scenarios.

Security Note The version of the Desktop Engine included in SQL Server 2000 SP3a includes fixes to address the issues raised
by the Slammer worm. You should always install the version of Desktop Engine from SQL Server 2000 SP3a or later. This topic
describes the behavior of the SP3a Setup.exe file.

Security Note Installation with a blank sa password is strongly discouraged. The Installer's default behavior is to require that an
sa password be set using the SAPWD parameter. This requirement can be overridden by setting BLANKSAPWD=1, but that
should only be done if you have an application that requires that the sa login have a null password.

Syntax

setup [/?]

 [

 [/i package_file

 [/settings ini_file]

 | [[ALLOWXDBCHAINING=1]

 [BLANKSAPWD=1]

 [CALLBACK=Dllname!CallbackFunctionName]

 [COLLATION="collation_name"]

 [DATADIR="data_folder_path"]

 [DISABLENETWORKPROTOCOLS=n]

 [INSTANCENAME="instance_name"]

http://go.microsoft.com/fwlink/?LinkId=19861

 [SAPWD="sa_password"]

 [SECURITYMODE=SQL]

 [TARGETDIR="executable_folder_path"]

 [UPGRADE=1]

 [UPGRADEUSER=admin_login]

 [UPGRADEPWD=admin_password]

]

]

 [/L*v [filename]]

 [/upgradesp { SQLRUN

 | <MSIPath>SQLRunnn.msi }

]

 [/qn | /qb]

 [/x package_name]

]

Arguments

/?

Displays a syntax summary of the setup options.

Important Because setup displays more options than it accepts, use only the options documented in this topic.

/i package_file

Specifies the name of the Windows Installer installation package file (an .msi file) to be used to install an instance of the Microsoft
SQL Server™ 2000 Desktop Engine (MSDE 2000). The package file specified must be one of the .msi files (Sqlrun01.msi through
Sqlrun16.msi) distributed in the \MSDE\Setup folder. Place the .msi file in the same folder as Setup.exe. If /i is not specified, copy
all 16 of the .msi files from the \MSDE\Setup folder on the SQL Server 2000 compact disc to the folder in which Setup.exe is
located.

For SP3 or later, the preferred approach is to specify the INSTANCENAME parameter instead of the /i option. If all of the .msi
package files are present, then Setup will dynamically select which package file to use for the installation. If neither /i nor
INSTANCENAME are specified, Setup will dynamically select the package file and install a default instance.

Caution It is possible to overwrite an instance by mistake. You must check for instances that are already present, including
instances installed by other vendors' software.

/settings ini_file_name

Specifies the name of an .ini file containing settings for the Setup parameters ALLOWXDBCHAINING,
DISABLENETWORKPROTOCOLS, TARGETDIR, DATADIR, INSTANCENAME, COLLATION, and SECURITYMODE. If /settings is
specified, these parameters should be set in the .ini file, not on the command prompt. Place the .ini file in the folder where
Setup.exe is located.

ALLOWXDBCHAINING=1

In SQL Server 2000 Service Pack 3 (SP3) or later, overrides the default behavior of the Installer and enables cross database
ownership chains for the instance. For more information about cross database chaining, see Cross DB Ownership Chaining. You
should not use this parameter unless you are running an application that requires cross database ownership chains.

BLANKSAPWD=1

Overrides the Installer's default behavior, which is to require that you specify a strong sa password. If you specify
BLANKSAPWD=1, the Installer assigns a null password to the sa login

Security Note Assigning a null, blank, simple, or well-known password to the sa login can allow unauthorized people access to
your data.

CALLBACK=Dllname!CallbackFunctionName

Specifies the name of the DLL containing the Desktop Engine Windows Installer callback function, and the name of the callback
function. For more information, see Windows Installer Callback Functions for Desktop Engine.

COLLATION="collation_name"

Specifies the SQL Server collation that will be used as the default collation for this instance of the Desktop Engine. For information
about collation names, see Windows Collation Name and SQL Collation Name.

DATADIR="data_folder_path"

Specifies the folder where the SQL Server system databases are built. Assuming that the system default for program files is
C:\Program Files:

The default value for default instances is: C:\Program Files\Microsoft SQL Server\MSSQL\Data\.

The default value for named instances is C:\Program Files\Microsoft SQL Server\MSSQL$<instance_name>\Data\, where
instance_name is the name specified in the INSTANCENAME option.

The file path for this parameter must end with a backslash (\). When installing a default instance, setup appends mssql\data
to the end of the path specified in DATADIR. When installing a named instance, setup appends
mssql$<instance_name>\data, where instance_name is the value specified in the INSTANCENAME option.

Setup builds two other folders at the same location as the Data folder, a Log folder for the database engine error logs, and
an Install folder containing installation scripts.

Note Settings that contain spaces should be enclosed with quotation marks.

DISABLENETWORKPROTOCOLS=n

In SQL Server 2000 SP3 or later, specifies how the Installer configures the network protocol support for the instance of the
Desktop Engine being installed or upgraded. n is an integer number, and should be set to either 0 or 1.

These are the behaviors of DISABLNETWORKPROTOCOLS in SP3a or later:

Value Specified for n Upgrading Existing
Instance

Installing New
Instance

1 Instance is configured with
all server Net-Libraries
disabled.

Instance is configured
with all server Net-
Libraries disabled.

0 The existing server Net-
Library configuration is
retained.

Instance is configured
with default server Net-
Libraries and addresses
enabled.

Parameter not specified, or is
any value other than 0 or 1

The existing server Net-
Library configuration is
retained.

Instance is configured
with all server Net-
Libraries disabled.

In SP3, DISABLENETWORKPROTOCOLS has two differences in behavior compared to SP3a:

When installing a new instance using SP3, and DISABLENETWORKPROTOCOLS is either not specified or set to a value other
than 0 or 1, then the instance is installed with the default Net-Libraries and addresses enabled. In SP3a, the Net-Libraries are
disabled.

Whenever all Net-Libraries are disabled for an instance of MSDE 2000 SP3, the instance will still use User Datagram
Protocol (UDP) port 1434. In SP3a, the instance will not use UDP port 1434 in that configuration. For more information, see
Controlling Net-Libraries and Communications Addresses.

INSTANCENAME="instance_name"

Specifies the name for the instance. If no instance name is specified, the instance is installed as a default instance.

SAPWD="sa_password"

Specifies the password to be assigned to the sa login when installing a new instance of MSDE 2000. SAPWD is ignored when you
upgrade an existing instance of MSDE 2000, so you should ensure the sa login has a strong password before upgrading. You

should always specify a strong sa password, even when using Windows Authentication Mode. While the SAPWD parameter is
not written to the installation log file when running Setup.exe, it is if you install using merge modules.

SECURITYMODE=SQL

Specifies that the instance be configured in Mixed Mode, where the instance supports both SQL Server Authentication and
Windows Authentication connections.

In Microsoft Windows NT® 4.0 or Windows 2000, if SECURITYMODE=SQL is not specified, the instance will be configured in
Windows Authentication Mode. The instance will only support Windows Authentication connections, and the Windows local
administrator's group will be added to the SQL Server sysadmin role. If SECURITYMODE=SQL is specified, Setup configures the
instance in Mixed Mode.

Security Note When possible, use Windows Authentication.

In Microsoft Windows 98 or Windows ME, the instance is always configured to use Mixed Mode, regardless of whether
SECURITYMODE=SQL is specified. On these operating systems, MSDE 2000 can only support SQL Server Authentication
connections.

TARGETDIR="executable_folder_path"

Specifies the folder where the Desktop Engine executable files are to be installed. Assuming that your system default for program
files is C:\Program Files:

The default value for default instances is: C:\Program Files\Microsoft SQL Server\MSSQL\Binn\.

The default value for named instances is: C:\Program Files\Microsoft SQL Server\MSSQL$<instance_name>\Binn\ for
named instances, where instance_name is the name specified in the INSTANCENAME option.

The file path for this parameter must end with a backslash (\). When installing a default instance, setup appends mssql\binn
to the end of the path specified in TARGETDIR. When installing a named instance, setup appends
mssql$<instance_name>\binn.

Note Settings that contain spaces should be enclosed with quotation marks.

UPGRADE=1

Specifies that Desktop Engine Setup or Windows Installer is upgrading an instance of Microsoft Desktop Engine (MSDE) version
1.0 to SQL Server 2000 Desktop Engine. The only value supported is 1. MSDE 1.0 operates in the same fashion as a default
instance of MSDE 2000, and is always upgraded to a default instance of MSDE 2000.

UPGRADEUSER=admin_login

Specifies the login to be used when you upgrade an instance of either MSDE 1.0 or MSDE 2000 using SQL Server Authentication.
The login must be a member of the sysadmin fixed server role. This parameter is only used when you specify
SECURITYMODE=SQL when upgrading an instance of MSDE.

UPGRADEPWD=admin_password

Specifies the password for the login specified in UPGRADEUSER when you upgrade Desktop Engine using SQL Server
Authentication.

/L*v [filename]

Specifies that a verbose log be created. If filename is specified, the log is stored in the file specified.

/upgradesp { SQLRUN | <MSIPath>SQLRunnn.msi }

Specifies that Setup will upgrade an existing instance of MSDE 2000. For SP3 and later, this option replaces the /p option
supported by earlier versions of Setup. Do not use the /p option with SP3 or later. When upgrading to SP3 or later, you are no
longer required to specify the .msi file used to install the existing instance of MSDE 2000.

Many users simply specify SQLRUN, in which case the MSDE 2000 SP3 or later setup utility determines which .msi file to use.
When you specify SQLRUN without specifying an INSTANCENAME, Setup will upgrade the default instance of MSDE 2000. If
you specify both SQLRUN and an INSTANCENAME, Setup will upgrade the instance you specified using the INSTANCENAME
parameter.

When you specify the name of an MSDE 2000 .msi installation package file, Setup will upgrade whichever instance on the
computer was originally installed with a merge module of the same name. For example, if you specify SqlRun01.msi, Setup will
upgrade whichever instance of MSDE 2000 was originally installed using SqlRun01.msi. MSIPath is the path to the folder holding

the .msi file. MSIPath defaults to Setup\.

/qn

Specifies that Setup run with no user interface.

/qb

Specifies that Setup show only the basic user interface. Only dialog boxes displaying progress information are displayed. Other
dialog boxes, such as the dialog box that asks users whether they want to restart at the end of the setup process, are not
displayed.

If neither /qn nor /qb is specified, Setup displays all user interface dialog boxes.

/x package_name

Specifies the name of the Windows Installer installation package file (an .msi file) to use when uninstalling an instance of SQL
Server 2000 Desktop Engine. You must specify the name of the same installation package file that was used to install the instance
of the Desktop Engine. Place the .msi file in the same folder as Setup.exe.

Remarks

Setup.exe is a tool designed to be:

Called directly by installation wrapper programs and batch files.

Users can also execute it from the command prompt to install or upgrade instances of MSDE. New users running Setup.exe
from the command prompt can find examples of the switches to use for typical installation and upgrade scenarios later in
this topic.

By default, the MSDE 2000 SP3 or later Setup utility will not install a new instance of MSDE 2000 unless you use the SAPWD
parameter to specify a strong sa password. By default, the MSDE 2000 SP3 or later setup will not upgrade an existing instance of
MSDE 2000 unless you have assigned a strong password to the sa login before attempting the upgrade. You should assign a
strong password to the sa login, even when upgrading an existing instance, unless the application using your instance of MSDE
depends in some way on a null sa password. Even if the instance of MSDE 2000 is running in Windows Authentication mode, the
sa login becomes immediately active if the instance is ever switched to Mixed Mode. A null, blank, simple, or well-known sa
password could be used for unauthorized access. If you need to assign a strong sa password before upgrading your instance of
MSDE 2000, use the sp_password system stored procedure to assign a strong password to the sa login.

All Desktop Engine SP3a installation files and folders are located in the \MSDE folder:

On the SQL Server 2000 SP3a CD-ROM

In the directory containing the extracted service pack files from SQL2KDeskSP3.exe downloaded from the SQL Server 2000
service pack Web page.

The \MSDE folder holds the SP3areadme.htm file, the readme.txt file, the license.txt file, and the executable files for the Setup
utility. It also has the following subfolders:

\Msi: contains the executable files needed to install Windows Installer, or upgrade Windows Installer if it is earlier than
2.0.2600.0.

\MSM: Contains the merge modules needed for a merge module setup.

\Setup: Contains the .msi installation package files required by the MSDE 2000 setup to install a new instance of MSDE 2000
SP3a, or the msp patch package files to upgrade existing instances of MSDE 2000 to SP3a, and the sqlrun.cab cabinet file
containing the files installed by Setup.

For a description of using the Desktop Engine merge modules, see Using the SQL Server Desktop Engine Merge Modules.

If your application setup calls MSDE 2000 Setup, build a folder with this structure and sets of files (where MSDEInstallFolder
represents an example folder name):

MSDEInstallFolder

Copy in these files from the Desktop Engine SP3a \MSDE folder: Setup.exe, Setup.ini, Setup.rll, and sqlresld.dll.

MSDEInstallFolder\Msi

Copy in all of the files from the Desktop Engine SP3a \MSDE\Msi folder.

MSDEInstallFolder\Setup

Copy in all of the files from the Desktop Engine SP3a \MSDE\Setup folder.

You can then execute Setup.exe to install or upgrade instances of MSDE 2000 SP3a.

If Windows Installer has not been installed on the computer, or is a version earlier than the version tested with MSDE 2000 SP3a
Setup, Setup will use the files in the MSDEInstallFolder\Msi folder to upgrade Windows Installer.

When an application needs to uninstall an instance of the Desktop Engine, it must call Setup.exe using the /x option to specify the
same .msi file that was used to install that instance. For example, to uninstall a named instance installed with a custom installation
package file named MyCustom.msi, execute:

setup /x MyCustom.msi

The following example shows the format of a typical .ini file:

[Options]
TARGETDIR="C:\Program Files\Microsoft SQL Server\Mssql$MyInstance\Binn\"
DATADIR="C:\Program Files\Microsoft SQL Server\Mssql$MyInstance\Data\"
INSTANCENAME=MyInstance

Using the /L*v switch to enable verbose logging improves your ability to diagnose problems you might encounter when running
Setup.exe. You should especially consider turning on verbose logging in new environments, such as during the development and
testing of a new application that embeds the Desktop Engine Setup.exe.

Using TARGETDIR and DATADIR

When installing MSDE 2000 SP3a or later, you should usually not specify TARGETDIR and DATADIR. The MSDE 2000 files should
be in their default locations.

When you run Setup on an existing instance of MSDE 2000 to either apply a service pack or uninstall the instance, Setup will
automatically locate the data and executable files, even if you had used TARGETDIR and DATADIR to specify a non-default location
on the original installation.

These settings for TARGETDIR and DATADIR are the same as taking the defaults for either a default or named instance, assuming
the default location for your system program files folder is C:\Program Files:

TARGETDIR="C:\Program Files\Microsoft SQL Server\"
DATADIR="C:\Program Files\Microsoft SQL Server\"

Note Settings that contain spaces should be enclosed with quotation marks.

Implementation Guidelines

If you combine Setup.exe with your own installer, consider these factors:

Desktop Engine supports a maximum of 16 named instances on a given computer. Setup.exe implements a very simple
system of numbered instances, using numbered files in the MSDE\Setup directory. If you alter the default behavior of
Setup.exe, you must implement logic in your installer to avoid name conflicts and to ensure that this limit is not exceeded.
For more information, see Installation API for Desktop Engine.

Desktop Engine does not support nested installations. You must not call an .msi file from within another .msi file.

Using Setup.exe to Apply a Service Pack

Depending on how your instance of MSDE 2000 was originally installed, you may not be able to use Setup to apply a service pack
from Microsoft. Service packs cannot be used to patch an instance of MSDE 2000 that was installed using either a customized
MSDE 2000 installation package file or a Windows Installer-based application setup program that consumed the MSDE 2000
merge modules. The readme file for MSDE 2000 Service Pack 3a or later has instructions on how to determine if a Microsoft
service pack can be applied to an instance of MSDE 2000. If it cannot, you must obtain a patch file from the vendor who supplied
the application that installed that instance.

Examples

A. IN STALL A N EW IN STAN CE OF M SDE 2000

These examples will install a new instance of MSDE 2000 SP3a that has been configured with its network connectivity disabled. If
the instance must accept connections from applications running on other computers, also specify
DISABLENETWORKPROTOCOLS=0.

These examples install instances using the defaults for all configuration items such as collation and file locations. The
configurations can be controlled by setup parameters, such as COLLATION, DATADIR, and TARGETDIR.

1. Open a command prompt window.

2. From the command prompt, use the cd command to navigate to the folder containing the MSDE 2000 SP3a setup utility:

cd c:\MSDESP3aFolder\MSDE

where c:\MSDESP3aFolder is either the path to the folder into which you extracted the MSDE 2000 SP3a files, or the Desktop
Engine SP3a folder on the SQL Server 2000 SP3a CD.

3. Execute one of the following commands:

To install a default instance configured to use Windows Authentication Mode, execute:

setup SAPWD="AStrongSAPwd"

where AStrongSAPwd is a strong password to be assigned to the sa login.

To install a named instance configured to use Windows Authentication Mode, execute:

setup INSTANCENAME="InstanceName" SAPWD="AStrongSAPwd"

where AStrongSAPwd is a strong password to be assigned to the sa login and InstanceName is the name to be
assigned to the instance.

To install a default instance configured to use Mixed Mode, execute:

setup SAPWD="AStrongSAPwd" SECURITYMODE=SQL

where AStrongSAPwd is a strong password to be assigned to the sa login.

To install a named instance configured to use Mixed Mode, execute:

setup INSTANCENAME="InstanceName" SECURITYMODE=SQL SAPWD="AStrongSAPwd"

where AStrongSAPwd is a strong password to be assigned to the sa login and InstanceName is the name to be
assigned to the instance.

Important If you are using an .ini file during setup, avoid storing credentials in the .ini file.

Important Always specify a strong password for the sa login, even when the instance is configured to use Windows
Authentication Mode.

B. UPGRADE AN EXISTIN G IN STAN CE OF M SDE 2000

These examples will upgrade an existing instance of MSDE 2000 to SP3a, and also disable the network connectivity for that
instance of MSDE 2000. If the instance must accept connections from applications running on other computers, do not specify the
DISABLENETWORKPROTOCOLS parameter.

1. Open a command prompt window.

2. From the command prompt, use the cd command to navigate to the folder containing the MSDE 2000 SP3a setup utility:

cd c:\MSDESP3aFolder\MSDE

where c:\MSDESP3aFolder is either the path to the folder into which you extracted the MSDE 2000 SP3a files, or the Desktop
Engine SP3a folder on the SQL Server 2000 SP3a CD.

3. Execute one of the following commands:

For a default instance using Windows Authentication Mode, execute:

setup /upgradesp sqlrun DISABLENETWORKPROTOCOLS=1

For a named instance using Windows Authentication Mode, execute:

setup /upgradesp sqlrun INSTANCENAME=InstanceName DISABLENETWORKPROTOCOLS=1

For a default instance using Mixed Mode (where AnAdminLogin is a member of the sysadmin fixed server role),
execute:

setup /upgradesp sqlrun SECURITYMODE=SQL UPGRADEUSER=AnAdminLogin UPGRADEPWD=AdminPassword
DISABLENETWORKPROTOCOLS=1

For a named instance using Mixed Mode (where AnAdminLogin is a member of the sysadmin fixed server role),
execute:

setup /upgradesp sqlrun INSTANCENAME= InstanceName SECURITYMODE=SQL UPGRADEUSER=AnAdminLogin
UPGRADEPWD=AdminPassword DISABLENETWORKPROTOCOLS=1

Important If you use an .ini file during setup, avoid storing credentials in the .ini file.

Note When upgrading Desktop Engine on a computer running Windows 98 or Windows Millennium Edition, the instance of
Desktop Engine that you are upgrading must be stopped before starting Setup.

C. UPGRADE AN EXISTIN G IN STAN CE OF M SDE 1.0 TO M SDE 2000

These examples will upgrade an existing instance of MSDE 1.0 to MSDE 2000 SP3a, and also disable the network connectivity for
the instance. If the instance must accept connections from applications running on other computers, do not specify the
DISABLENETWORKPROTOCOLS parameter.

MSDE 1.0 operates in the same fashion as a default instance of MSDE 2000, and is always upgraded to a default instance of MSDE
2000.

1. Open a command prompt window.

2. From the command prompt, use the cd command to navigate to the folder containing the MSDE 2000 SP3a setup utility:

cd c:\MSDESP3aFolder\MSDE

where c:\MSDESP3aFolder is either the path to the folder into which you extracted the MSDE 2000 SP3a files, or the Desktop
Engine SP3a folder on the SQL Server 2000 SP3 CD.

3. Execute one of the following commands:

When using Windows Authentication Mode, execute:

setup UPGRADE=1 DISABLENETWORKPROTOCOLS=1

When using Mixed Mode (where AnAdminLogin is a member of the sysadmin fixed server role), execute:

setup UPGRADE=1 SECURITYMODE=SQL UPGRADEUSER=AnAdminLogin UPGRADEPWD=AdminPassword
DISABLENETWORKPROTOCOLS=1

Caution The use of blank passwords is strongly discouraged.

Important If you use an .ini file during setup, avoid storing credentials in the .ini file.

See Also

Reinstalling SQL Server 2000 Desktop Engine

Distributing SQL Server Applications (SQL Server 2000)

Managing Desktop Engine Installation Package Files
 Topic last updated -- January 2004

All supported methods of installing Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) require an installation package
file (.msi).

The recommended way to install MSDE 2000 is to run the Desktop Engine Setup.exe on either the command prompt or in an
installation wrapper application. Do not run Setup.exe with a customized installation package file; it must be used with the .msi
files (Sqlrun01.msi through Sqlrun16.msi) that are included on the SQL Server 2000 compact disc. Do not attempt to customize
Sqlrun01.msi through Sqlrun16.msi. For more information about running Setup.exe, see Customizing Desktop Engine Setup.exe.

The latest versions of MSDE 2000 still provide the ability to build customized Windows Installer-based merge modules. This
capability is provided only to support existing applications that still use merge modules. Using customized merge modules to
install an instance of MSDE 2000 has these disadvantages:

The instance of MSDE 2000 cannot be patched independently of the application. Only a patch module supplied by the
application vendor can be applied to the instance. MSDE 2000 service packs built by Microsoft cannot be applied to the
instance.

The application vendor must build an MSDE 2000 patch file for every MSDE 2000 service pack, and then distribute those
patch files to all customers. Customers cannot simply download and apply the latest Microsoft service pack.

Future releases of SQL Server will not include merge modules.

These disadvantages are true even if all you change is the product code globally unique identifier (GUID).

For more information about maintaining merge modules, see Using the SQL Server Desktop Engine Merge Modules.

SQL Server 2000 provides the following Desktop Engine installation package files to use as templates when you are creating a
custom installation package file:

Sample.msi

Supports only new installations; it does not support upgrading an instance of the Microsoft Desktop Engine (MSDE) version
1.0 to the SQL Server 2000 Desktop Engine.

SampleUpg.msi

Used both for installing new instances of the SQL Server 2000 Desktop Engine and for upgrading instances of MSDE 1.0 to
SQL Server 2000 Desktop Engine.

The Sample.msi and SampleUpg.msi files are provided only to build patch files for instances originally installed using them. Do
not use either of these .msi files to install new instances of MSDE 2000 or to build customized installation packages to be used
with a new application. The application should instead either use a wrapper installation application or have the user install an
instance using Setup.exe. For more information, see Installing Desktop Engine.

The files supplied in the MSDE 2000 service packs cannot patch instances of MSDE 2000 that were installed using these .msi files.
To patch such instances, you must instead build a patch file that can upgrade the instance to the latest service pack. For more
information about building a patch file for instances installed using Sample.msi or SampleUpg.msi, see the readme file in the
latest SQL Server 2000 service pack.

These .msi files are not included with MSDE 2000. They are, however, included with the other editions of SQL Server 2000, such
as SQL Server 2000 Developer Edition. If you installed the SQL Server sample applications when running SQL Server 2000 Setup,
the default location for these files is the folder C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Desktop.

Distributing SQL Server Applications (SQL Server 2000)

Using SQL Server Desktop Engine Merge Modules
 Topic last updated -- January 2004

Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) originally supplied a set of Microsoft Windows® Installer merge
modules for independent software vendors (ISVs) to use when installing an instance of MSDE 2000 during their own setup
processes. ISVs could use the Windows Installer setup development tools to merge these modules into their setup programs.

The latest service pack for MSDE 2000 still includes merge modules, but only to support existing applications that use them. Using
merge modules to install an instance of MSDE 2000 has these disadvantages:

The instance of MSDE 2000 cannot be patched independently of the application. Only a patch module supplied by the
application vendor can be applied to the instance; MSDE 2000 service packs directly from Microsoft cannot be applied.

The application vendor must build an MSDE 2000 patch file for each MSDE 2000 service pack, and then distribute that patch
file to all customers. Customers cannot simply download and apply the latest Microsoft service pack.

Future releases of SQL Server will not include merge modules.

The original MSDE 2000 merge modules were located in the /MSDE/MSM and /MSDE/MSM/1033 folders on the SQL Server
2000 compact disc. These folders were removed from the SQL Server 2000a compact disc. Do not use the merge modules from
the original SQL Server 2000 compact disc, because they install a version of MSDE 2000 that does not address issues related to
the Slammer worm. Use only the merge modules from the /MSM and/ MSM/1033 folders created by the latest MSDE 2000
service pack.

Important In the above paragraph, "1033" is the language identifier for English. If you are using an edition of SQL Server
localized to another language, the name of this directory will be different. For a list of language identifiers, see syslanguages.

Use the merge modules in the latest MSDE 2000 service pack to build patch files to apply the service pack to instances that were
originally installed using merge modules.

Merge modules are used in setup program files built using the Windows Installer SDK. You can download the Windows Installer
SDK from Microsoft Developer Network (MSDN®). For more information about the Microsoft Windows Installer Software
Development Kit (Windows Installer SDK), see the MSDN Library at this Microsoft Web site.

The following merge modules are required for a minimal installation of Desktop Engine.

Merge module Contents
Atl.msm Active Template Library (ATL) logic, files, and registration

information
Connect.msm Connectivity
Dev_scm.msm Service Control Manager developer files
Dtc.msm Microsoft Distributed Transaction Coordinator core files
Dts.msm Data Transformation Services (DTS) core files
Mfc42.msm Logic, files, and registration information needed to install

the retail version of the MFCDLL Shared Library
Msstkprp.msm Logic, files, and registration information needed to install

the Microsoft Stock Property Page
Msvcirt.msm Logic, files and registration information needed to install

the Microsoft Visual C++® Runtime Library
Msvcrt.msm Logic, files, and registration information needed to install

the Microsoft C Runtime Library
Sem.msm SQL Enterprise Manager core files
Shared.msm Implements SQL Server local language resource support.
Sqlagent.msm SQL Agent core files
Sqlsrv.msm SQL Server core files
Tools.msm SQL Server tools core files
Upgrade.msm Upgrade files
1033\DTS_res.msm Data Transformation Services resource files
1033\Sqlagent_res.msm SQL Agent resource files
1033\Sqlbase.msm SQL Server Setup

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

1033\Sqlsrv_res.msm SQL Server resource files
1033\Tools_res.msm SQL Server Tools resource files

Desktop Engine does not require the merge modules listed in the following table; these modules supply additional functionality.
You can omit them to conserve space.

Optional merge module Contents
Dmo.msm Distributed Management Objects (DMO) core files
1033\Dmo_res.msm Distributed Management Objects resource files
Repl.msm Replication core files
1033\Repl_msm Replication resource files

No more than 16 named instances of Desktop Engine can be installed on a single computer. Your installer's bootstrapper must
check for installed instances, ensuring both that this limit is not exceeded and that new installations have unique names. The
Desktop Engine Installation API implements two functions to assist in this stage of the installation: NumInstalledInstances and
IsInstanceNameValid. For more information, see Installation API for Desktop Engine.

Customizable Installation Properties

The Setup.exe installation properties that can be changed using switches and .ini file can also be changed in Windows Installer
packages by editing the Property table of the main .msi file. To edit the Property table, use a tool such as Orca.exe, which is
distributed as part of the Windows Installer SDK. The properties that can be changed and the Setup.exe switches to which they
correspond are listed in the following table.

External property Internal property
ALLOWXDBCHAINING SqlAllowXDBChaining
CALLBACK SqlCallback
COLLATION SqlCollation
DATADIR SqlDataDir
DISABLENETWORKPROTOCOLS SqlDisableNetworkProtocols
TARGETDIR SqlProgramDir
INSTANCENAME SqlInstanceName
SAPWD SqlSaPwd
SECURITYMODE SqlSecurityMode
UPGRADE SqlUpgrade
UPGRADEUSER SqlUpgradeUser
UPGRADEPWD SqlUpgradePwd

For information about these properties, see Customizing Desktop Engine Setup.exe.

Distributing SQL Server Applications (SQL Server 2000)

Reinstalling SQL Server 2000 Desktop Engine
If an attempt to install an instance of Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) fails (for reasons such as
specifying an incorrect login account or using a Microsoft Windows® account that does not have sufficient file permissions), you
may want to resume Setup after correcting the error condition. This includes installations using either Desktop Engine Setup or
the Desktop Engine merge modules in a Windows Installer installation process.

When resuming the installation process, you must specify two installation options in addition to the options that were specified in
the original installation attempt:

REINSTALL=All

Specifies that Desktop Engine Setup or Windows Installer install all SQL Server 2000 Desktop Engine features. The only value
supported is All.

REINSTALLMODE={ omus | a }

Specifies the level of processing performed by Desktop Engine Setup or Windows Installer. Specify REINSTALLMODE=omus
when you are resuming a failed setup. With this option, the entire installation process is verified and completed. Specify
REINSTALLMODE=a when you have to rebuild only the master database, such as after a failure of the disk drive containing the
master database.

Caution Back up all data before reinstalling! All system databases will be overwritten when you reinstall.

Specify these options either in the .ini file or as part of the Desktop Engine setup/settings switch. For more information about
specifying installation options, see Customizing Desktop Engine Setup.exe and Using SQL Server Desktop Engine Merge Modules.

Important When reinstalling an instance of Desktop Engine, you must specify the same instance name as that used in the
original installation.

Distributing SQL Server Applications (SQL Server 2000)

Upgrading from MSDE 1.0 to SQL Server 2000 Desktop Engine
To upgrade Microsoft Desktop Engine (MSDE) version 1.0 to Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000), you
must specify additional options during setup:

If you are using Setup.exe, you must specify UPGRADE=1 as a command prompt switch. For more information about the
Setup.exe command prompt switches, see Customizing Desktop Engine Setup.exe.

If you are using the Desktop Engine merge files in a Microsoft Windows® Installer setup, you must specify UPGRADE=1
with the other Desktop Engine entries in the [Options] section of your Windows Installer .ini file. For more information
about the Desktop Engine Windows Installer entries, see Using SQL Server Desktop Engine Merge Modules.

You must provide a custom installation package file built using SampleUpg.msi. For more information about
SampleUpg.msi, see Managing Desktop Engine Installation Package Files.

Here is an example of an .ini file for an upgrade:

 [Options]
 UPGRADE=1
 UPGRADEUSER=SetupLogin

Important Be sure to stop the instance of MSDE 1.0 before you try to upgrade to SQL Server 2000 Desktop Engine.

For more information about SQL Server authentication, see Authentication Modes.

Distributing SQL Server Applications (SQL Server 2000)

Installation API for Desktop Engine
Before installing an instance of the Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000), your application setup process
should first validate the proposed installation using the following Desktop Engine Installation API functions:

NumInstalledInstances

Returns the number of instances of SQL Server installed on the computer. There cannot be more than 16 instances installed.

IsInstanceNameValid

Checks whether the name for the new instance of SQL Server is already being used.

To use these functions in a setup program you are developing, you must:

1. Copy the file Validateinstance.h from C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Desktop to a
folder in your compiler include path. Validateinstance.h contains the function prototypes for the Desktop Engine Setup API
functions.

2. Copy the files Desktopenginedeploy.lib and Sqdedev.lib from C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\Desktop to a folder in your compiler library path.

If the application setup program requires logic to interpret the Desktop Engine return codes, you should also copy the file
Sqlserrors.h from C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Desktop to a folder in your compiler
include path.

Distributing SQL Server Applications (SQL Server 2000)

NumInstalledInstances Function
Returns the number of instances of Microsoft® SQL Server™ installed on a computer.

Syntax

int NumInstalledInstances ();

Arguments

The function takes no parameters.

Returns

The number of instances of SQL Server installed on the computer.

Remarks

Microsoft does not support more than 16 instances of SQL Server on a computer. Use NumInstalledInstances to check the
number of existing instances of SQL Server on a computer before installing a new instance of SQL Server 2000 Desktop Engine
(MSDE 2000).

See Also

Desktop Engine Installation Samples

Distributing SQL Server Applications (SQL Server 2000)

IsInstanceNameValid Function
Indicates whether a proposed instance name is being used for an instance of Microsoft® SQL Server™ already installed on the
computer.

Syntax

BOOL IsInstanceNameValid (LPTSTR lpszInstanceName);

Arguments

LpszInstanceName

Is a pointer to a character string containing an instance name. For more information about the correct format of an instance
name, see Instance Name.

Returns

TRUE

The instance name is not being used by any of the instances of SQL Server installed on the computer.

FALSE

The instance name is already being used.

Remarks

IsInstanceNameValid cannot be used to check whether a default instance has already been installed. The Desktop Engine (MSDE
2000) Setup will return ERROR_DUP_INSTANCE_NAME if you attempt to install a default instance when one has already been
installed on the computer.

See Also

Desktop Engine Installation Samples

Distributing SQL Server Applications (SQL Server 2000)

Windows Installer Return Codes for Desktop Engine
 Topic last updated -- January 2004

The Microsoft® Windows™ Installer implements a set of error messages specific to problems that may occur when installing
instances of Microsoft SQL Server™ 2000 Desktop Engine (MSDE 2000). These error messages may also be passed to programs
that run Setup.exe, because Setup.exe is based on Windows Installer. Windows Installer reports errors at two distinct levels of
specificity, contingent on the presence of a callback handler. When there is no callback handler available to catch errors, there are
only two return codes:

0 indicates the installation is successful.

1603 indicates an error is encountered.

The following return codes are returned only if you have specified a Desktop Engine Windows Installer callback function. For
more information about using callback functions, see Windows Installer Callback Functions for Desktop Engine.

Return
code

#define label Message text

50035 ERROR_CHARS_NOT_SUPPORTED The text specified contains characters
not supported on the Windows code
page.

50043 ERROR_DUP_INSTANCE_NAME An installation with the same instance
name already exists.

50047 ERROR_INVALID_INSTNAME_
SYNTAX

Instance names can contain from 1 to
16 characters, and must follow the
rules of SQL Server nondelimited
identifiers.

60001 ERROR_CONFIGURE_SERVER_
FAILURE

ConfigServer is failed.

60002 ERROR_INSTALL_CATALOG_STP_
FAILURE

InstallCatalogSTP is failed.

60003 ERROR_INSTALL_DTC_FAILURE InstallDTC is failed.
60004 ERROR_INSTALL_PERFMON_

FAILURE
InstallPerfmon is failed.

60005 ERROR_INSTALL_SQLAGENT_
SECURITY_FAILURE

InstallSQLAgentSecurity is failed.

60006 ERROR_INSTALL_SQLREDIS_
FAILURE

InstallSQLRedis is failed.

60007 ERROR_OVER_MAX_INSTANCES The number of instances is more than
the maximum (16) in
PickInstanceComponentSet.

60009 ERROR_UPGRADE_FAILURE UpgradeDatabases is failed.

These are causes and recommended actions for some of the return codes.

Return
code

Cause Recommended action

50043 The instance name is already
in use on the computer.

Specify a different instance name.

50047 The instance name is too long
or contains characters not
allowed in instance names.

Specify a different instance name that has 16 or
fewer characters, and only uses the characters
allowed in SQL Server identifiers. For more
information about identifier rules, see Using
Identifiers.

60005 The File and Print Sharing
service is not running (this is
one possible cause).

Retry the installation when the File and Print
Sharing service is running.

60007 There are already 16 instances
of SQL Server 2000 and MSDE
2000 installed on the
computer.

Either install the new instance on another
computer, or uninstall one of the existing
instances if it is no longer being used.

For more information about the Windows Installer error codes, see the Microsoft Developer Network (MSDN®) Library at this
Microsoft Web site.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Distributing SQL Server Applications (SQL Server 2000)

Windows Installer Callback Functions for Desktop Engine
The Microsoft® SQL Server™ 2000 Desktop Engine (MSDE 2000) Windows® Installer supports callback functions that an
application setup program can use to tailor its response to errors returned by the Desktop Engine Windows Installer.

You can code a Desktop Engine callback function as a function in a Microsoft Visual C++® DLL. The callback function is coded the
same as a Windows Installer Custom Action Type 1 callback function, except that the Desktop Engine callback function must take
an additional UINT parameter that will contain the Desktop Engine exit code, or return code:

UINT __stdcall MyCallbackFunction(MSIHANDLE hinstall, UINT uExitCode)

For more information on coding Windows Installer Custom Action Type 1 DLLs, see the Microsoft Developer Network (MSDN®)
Library at this Microsoft Web site. For a list of the return codes specific to the Desktop Engine, see Windows Installer Return
Codes for Desktop Engine.

Use the Desktop Engine Windows Installer CALLBACK option to invoke the callback function during setup:

CALLBACK=Dllname!CallbackFunctionName

Specifies the name of the DLL containing the Desktop Engine Windows Installer callback function, and the name of the callback
function.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Distributing SQL Server Applications (SQL Server 2000)

Desktop Engine Installation Samples
 Topic last updated -- January 2004

The Consoledesktopengine sample demonstrates how to call either the Microsoft® SQL Server™ 2000 Desktop Engine (MSDE
2000) Setup or Microsoft Windows® Installer Setup to install an instance of the Desktop Engine.

The logic in Consoledesktopengine.cpp for using CreateProcess() to call the Desktop Engine Setup.exe illustrates the
fundamental Desktop Engine-specific code that should be considered for an application wrapper installation program. This is the
method new applications should use to install MSDE 2000.

The logic to call the Windows Installer Setup to install MSDE 2000 using a custom installation package file is provided only for
existing applications that use this mechanism. This method should not be used for new applications. For more information on the
issues involved with using customized installation package files, see Managing Desktop Engine Installation Package Files.

Default Location of C++ Files

C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Desktop

To run the sample

1. Copy the following files from the sample folder to a folder in your Microsoft Visual C++® include path: Sqlserror.h and
Validateinstance.h.

2. Copy the following files from the sample folder to a folder in your Visual C++ library path: Sqldedev.lib and
Desktopenginedeploy.lib.

3. Using Visual C++ version 6.0, open and run Consoledesktopengine.dsw to create an executable.

4. Copy the contents of the \MSDE\Setup folder on the SQL Server 2000 compact disc to the folder holding
ConsoleDesktopengine.exe.

Optionally, generate a custom Desktop Engine installation package file in the folder containing ConsoleDesktopengine.exe.
For more information about generating a custom installation package file, see Managing Desktop Engine Installation
Package Files.

5. Run ConsoleDesktopengine.exe.

Default Location of Sample .msi Files

The following Desktop Engine installation package files were originally provided as templates for users developing their own
installation packages:

Sample.msi

Supports only new installations. This template does not support upgrading an instance of Microsoft Desktop Engine (MSDE)
version 1.0.

SampleUpg.msi

Supports both new installations and upgrades.

Do not use either of these files to install new instances of MSDE 2000. Only use them to build patch files for applying the latest
MSDE 2000 service pack to instances originally installed using these files. For more information about building patch files, see the
readme file for the latest SQL Server 2000 service pack.

These files are not installed with MSDE. They are included with the other editions of SQL Server, such as SQL Server 2000
Developer Edition. If you installed the SQL Server sample applications when running SQL Server 2000 Setup, the files are located
in the folder C:\Program Files\Microsoft SQL Server\80\Tools\Devtools\Samples\Desktop.

See Also

Installing Desktop Engine

Distributing the SQL Server 2000 Desktop Engine

Distributing SQL Server Applications (SQL Server 2000)

Distributing SQL Server Client Components
If your customers already have an installed instance of Microsoft® SQL Server™ 2000 to which they can connect, you need only
ensure that they have the client components used by your application. Your setup application should check for installed client
components and install those that are absent.

There are two levels of client component installation:

Client connectivity components (MDAC only)

If your application requires only the relational database client connectivity components that support ADO, OLE DB, or ODBC,
use Sqlredis.exe, the SQL Server-specific Microsoft Data Access Components (MDAC) redistribution file. This file is located
on the distribution disc in the \x86\Other directory.

Sqlredis.exe installs the OLE DB and ODBC core components, the Microsoft OLE DB Provider for SQL Server, the SQL Server
ODBC driver, and the default SQL Server client Net-Libraries. For more information about running Sqlredis.exe, see sqlredis
Software Distribution Executable.

Connectivity (MDAC with additional client components)

The following SQL Server client components can be installed together with the connectivity components and redistributed
with SQL Server 2000 Desktop Engine (MSDE 2000):

Distributed Component Object Model 95 (DCOM95)

PivotTable® Service

Decision Support Objects (DSO)

English Query

Replication

Data Transformation Services (DTS)

Distributed Management Objects (DMO)

SQL Namespace (SQL NS)

DB-Library

For more information about these components and lists of DLL files that must be copied and registered during the
installation process, see the file Redist.txt on the SQL Server 2000 compact disc. Your setup application must install the files
needed by these additional components after installing MDAC.

Distributing SQL Server Applications (SQL Server 2000)

sqlredis Software Distribution Executable
The sqlredis distribution executable is a self-extracting executable file that can be run by application setup programs. sqlredis
installs the Microsoft® SQL Server™ client connectivity components that support OLE DB, ODBC, and the APIs that encapsulate
them (including ADO), as well as Active Template Library (ATL).

Syntax

sqlredis [/?] [/C /T:"temporary_working_folder_path"]

Arguments

/?

Displays a syntax summary of the sqlredis switches. This version of sqlredis displays more switches than it accepts. Use only the
switches documented in this topic.

/C /T:"temporary_working_folder_path"

Specifies that sqlredis extract and expand its files into temporary_working_folder_path without installing them. If these switches
are not specified, sqlredis installs its files, using the default temp folder on the computer for the extraction process.

Remarks

sqlredis allows you to redistribute the SQL Server 2000 client connectivity components with an application that supports
connections to SQL Server 2000, but assumes the customer has separately purchased and installed the SQL Server 2000
relational database engine. sqlredis is a self-extracting program that invokes an InstallShield setup; it can be executed anywhere
an InstallShield setup program can be executed in the setup process of an application. sqlredis is a silent setup program; it
displays no dialog boxes that require user input. sqlredis is located in the \x86\Other folder on the SQL Server 2000 compact
disc.

To install the SQL Server connectivity components, execute sqlredis using no parameters. Specify only the /C
/T:"temporary_working_folder_path" switches if you want to see what modules are installed by sqlredis.

Important The version of sqlredis in SQL Server 2000 accepts different parameters than the version of sqlredis distributed with
Microsoft SQL Server 7.0 Service Pack 1 and Service Pack 2. Use only the parameters documented in this topic when using the
SQL Server 2000 version of sqlredis.

Command Prompt Utilities (SQL Server 2000)

Getting Started with Command Prompt Utilities
The command prompt utilities are installed automatically when you install the Microsoft® SQL Server™ 2000 utilities on a
computer running Microsoft Windows® 2000, Microsoft Windows NT®, Microsoft Windows 95, or Microsoft Windows 98. The
table shows the utilities and the directories where they are installed.

Directory Utilities
x:\Program Files\Microsoft SQL Server\MSSQL\Binn1 bcp2

console
isql2
sqlagent
sqldiag
sqlmaint
sqlservr
vswitch

x:\Program Files\Microsoft SQL Server\80\Tools\Binn bcp2

dtsrun
dtswiz
isql2
isqlw
itwiz
odbccmpt
osql
rebuildm
sqlftwiz

x:\Program Files\Microsoft SQL Server\80\Com distrib3

logread3

replmerg3

snapshot3

x:\Program Files\Common Files\Microsoft Shared\Service
Manager

scm

x:\Program Files\Common Files\Microsoft Shared\??? regxmlss

1 MSSQL is the directory name for the default instance of SQL Server 2000. For each named instance of SQL Server 2000, the
corresponding directory name is MSSQL$instance_name.
2 The bcp and isql utilities are installed in both the \MSSQL\Binn directory and the \80\Tools\Binn directory. They are also
installed in the \MSSQL$instance_name\Binn directory for each named instance of SQL Server 2000. Any copy of these utilities
may be used to connect to any instance of SQL Server. The instance of SQL Server to connect to is determined for each utility by a
server argument. You are not limited to the instance of SQL Server corresponding to the directory in which the utility is run.
3 These are the file names for the four replication agent utilities.

During installation, the x:\Program Files\Microsoft SQL Server\80\Tools\Binn directory is added to the system path. You can run
the utilities in this directory at any command prompt. For a utility not in the 80\Tools\Binn directory, you must either run the
utility from a command prompt in the directory in which it is installed or explicitly specify the path.

These utilities are no longer installed by SQL Server 2000 Setup.

makepipe utility

odbcping utility

readpipe utility

If you need to run these utilities, you can run them from the x:\x86\Binn directory on the SQL Server 2000 compact disc, or
manually copy them to your computer.

Command Prompt Utilities (SQL Server 2000)

Command Prompt Utilities Syntax Conventions
Convention Used for

UPPERCASE Statements and terms used at the operating system level.
monospace Sample commands and program code.
italic User-supplied parameters.
bold Commands, parameters, and other syntax that must be typed

exactly as shown.

Command Prompt Utilities (SQL Server 2000)

bcp Utility
 Topic last updated -- July 2003

The bcp utility copies data between an instance of Microsoft® SQL Server™ 2000 and a data file in a user-specified format.

Syntax

bcp {[[database_name.][owner].]{table_name | view_name} | "query"}
 {in | out | queryout | format} data_file
 [-m max_errors] [-f format_file] [-e err_file]
 [-F first_row] [-L last_row] [-b batch_size]
 [-n] [-c] [-w] [-N] [-V (60 | 65 | 70)] [-6]
 [-q] [-C code_page] [-t field_term] [-r row_term]
 [-i input_file] [-o output_file] [-a packet_size]
 [-S server_name[\instance_name]] [-U login_id] [-P password]
 [-T] [-v] [-R] [-k] [-E] [-h "hint [,...n]"]

Arguments

database_name

Is the name of the database in which the specified table or view resides. If not specified, this is the default database for the user.

Owner

Is the name of the owner of the table or view. owner is optional if the user performing the bulk copy operation owns the specified
table or view. If owner is not specified and the user performing the bulk copy operation does not own the specified table or view,
Microsoft® SQL Server™ 2000 returns an error message, and the bulk copy operation is canceled.

table_name

Is the name of the destination table when copying data into SQL Server (in), and the source table when copying data from SQL
Server (out).

view_name

Is the name of the destination view when copying data into SQL Server (in), and the source view when copying data from SQL
Server (out). Only views in which all columns refer to the same table can be used as destination views. For more information on
the restrictions for copying data into views, see INSERT.

Query

Is a Transact-SQL query that returns a result set. If the query returns multiple result sets, such as a SELECT statement that specifies
a COMPUTE clause, only the first result set is copied to the data file; subsequent result sets are ignored. Use double quotation
marks around the query and single quotation marks around anything embedded in the query. queryout must also be specified
when bulk copying data from a query.

in | out | queryout | format

Specifies the direction of the bulk copy. in copies from a file into the database table or view. out copies from the database table or
view to a file. queryout must be specified only when bulk copying data from a query. format creates a format file based on the
option specified (-n, -c, -w, -6, or -N) and the table or view delimiters. If format is used, the -f option must be specified as well.

Note The bcp utility included with Microsoft SQL Server 6.5 does not support bulk copying into tables that contain the
sql_variant or bigint data types.

data_file

Is the full path of the data file used when bulk copying a table or view to or from a disk. When bulk copying data into SQL Server,
the data file contains the data to be copied into the specified table or view. When bulk copying data from SQL Server, the data file
contains the data copied from the table or view. The path can have from 1 through 255 characters.

-m max_errors

Specifies the maximum number of syntax errors and compilation errors that can occur before the bulk copy operation is canceled.
Each row that cannot be copied by bcp is ignored and counted as one error. If this option is not included, the default is 10.

Note The max_errors option does not apply to constraint checks (or to converting money and bigint data types).

-f format_file

Specifies the full path of the format file that contains stored responses from a previous use of bcp on the same table or view. Use
this option when using a format file created with the format option to bulk copy data in or out. Creation of the format file is
optional. After prompting you with format questions, bcp prompts whether to save the answers in a format file. The default file
name is Bcp.fmt. bcp can refer to a format file when bulk copying data; therefore, reentering previous format responses
interactively is not necessary. If this option is not used and -n, -c, -w, -6, or -N is not specified, bcp prompts for format
information.

-e err_file

Specifies the full path of an error file used to store any rows bcp is unable to transfer from the file to the database. Error
messages from bcp go to the user's workstation. If this option is not used, an error file is not created.

-F first_row

Specifies the number of the first row to bulk copy. The default is 1, indicating the first row in the specified data file.

-L last_row

Specifies the number of the last row to bulk copy. The default is 0, indicating the last row in the specified data file.

-b batch_size

Specifies the number of rows per batch of data copied. Each batch is copied to the server as one transaction. SQL Server commits
or rolls back, in the case of failure, the transaction for every batch. By default, all data in the specified data file is copied in one
batch. Do not use in conjunction with the -h "ROWS_PER_BATCH = bb" option.

-n

Performs the bulk copy operation using the native (database) data types of the data. This option does not prompt for each field; it
uses the native values.

-c

Performs the bulk copy operation using a character data type. This option does not prompt for each field; it uses char as the
storage type, no prefixes, \t (tab character) as the field separator, and \n (newline character) as the row terminator.

-w

Performs the bulk copy operation using Unicode characters. This option does not prompt for each field; it uses nchar as the
storage type, no prefixes, \t (tab character) as the field separator, and \n (newline character) as the row terminator. Cannot be
used with SQL Server version 6.5 or earlier.

-N

Performs the bulk copy operation using the native (database) data types of the data for noncharacter data, and Unicode
characters for character data. This option offers a higher performance alternative to the -w option, and is intended for transferring
data from one SQL Server to another using a data file. It does not prompt for each field. Use this option when you are transferring
data that contains ANSI extended characters and you want to take advantage of the performance of native mode. -N cannot be
used with SQL Server 6.5 or earlier.

-V (60 | 65 | 70)

Performs the bulk copy operation using data types from an earlier version of SQL Server. Use this option in conjunction with
character (-c) or native (-n) format. This option does not prompt for each field; it uses the default values. For example, to bulk
copy date formats supported by the bcp utility provided with SQL Server 6.5 (but no longer supported by ODBC) into SQL Server
2000, use the -V 65 parameter.

Important When bulk copying data from SQL Server into a data file, the bcp utility does not generate SQL Server 6.0 or SQL
Server 6.5 date formats for any datetime or smalldatetime data, even if -V is specified. Dates are always written in ODBC
format. Additionally, null values in bit columns are written as the value 0 because SQL Server versions 6.5 and earlier do not
support nullable bit data.

-6

Performs the bulk copy operation using SQL Server 6.0 or SQL Server 6.5 data types. Supported for backward compatibility only.
Use the -V option instead.

-q

Executes the SET QUOTED_IDENTIFIERS ON statement in the connection between the bcp utility and an instance of SQL Server.
Use this option to specify a database, owner, table, or view name that contains a space or a quotation mark. Enclose the entire
three-part table or view name in double quotation marks (" ").

-C code_page

Supported for backward compatibility only. Instead, specify a collation name for each column in the format file or in interactive
bcp.

Specifies the code page of the data in the data file. code_page is relevant only if the data contains char, varchar, or text columns
with character values greater than 127 or less than 32.

Code page value Description
ACP ANSI/Microsoft Windows® (ISO 1252).
OEM Default code page used by the client. This is the default

code page used by bcp if -C is not specified.
RAW No conversion from one code page to another occurs. This

is the fastest option because no conversion occurs.
<value> Specific code page number, for example, 850.

-t field_term

Specifies the field terminator. The default is \t (tab character). Use this parameter to override the default field terminator.

-r row_term

Specifies the row terminator. The default is \n (newline character). Use this parameter to override the default row terminator.

-i input_file

Specifies the name of a response file, containing the responses to the command prompt questions for each field when performing
a bulk copy using interactive mode (-n, -c, -w, -6, or -N not specified).

-o output_file

Specifies the name of a file that receives output from bcp redirected from the command prompt.

-a packet_size

Specifies the number of bytes, per network packet, sent to and from the server. A server configuration option can be set by using
SQL Server Enterprise Manager (or the sp_configure system stored procedure). However, the server configuration option can be
overridden on an individual basis by using this option. packet_size can be from 4096 to 65535 bytes; the default is 4096.

Increased packet size can enhance performance of bulk copy operations. If a larger packet is requested but cannot be granted, the
default is used. The performance statistics generated by bcp show the packet size used.

-S server_name[\instance_name]

Specifies the instance of SQL Server to connect to. Specify server_name to connect to the default instance of SQL Server on that
server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that server. If no server is
specified, bcp connects to the default instance of SQL Server on the local computer. This option is required when executing bcp
from a remote computer on the network.

-U login_id

Specifies the login ID used to connect to SQL Server.

Security Note When possible, use the -T option (trusted connection).

-P password

Specifies the password for the login ID. If this option is not used, bcp prompts for a password. If this option is used at the end of
the command prompt without a password, bcp uses the default password (NULL).

Security Note NULL passwords are not recommended.

Security Note To mask your password, do not specify the -P option along with the -U option. Instead, after specifying bcp along
with the -U option and other switches (do not specify -P), press ENTER, and bcp will prompt you for a password. This method
ensures that your password will be masked when it is entered.

-T

Specifies that bcp connects to SQL Server with a trusted connection, using the security credentials of the network user. login_id
and password are not required.

-v

Reports the bcp utility version number and copyright.

-R

Specifies that currency, date, and time data is bulk copied into SQL Server using the regional format defined for the locale setting
of the client computer. By default, regional settings are ignored.

-k

Specifies that empty columns should retain a null value during the bulk copy operation, rather than have any default values for
the columns inserted.

-E

Specifies that the values for an identity column are present in the file being imported. If -E is not given, the identity values for this
column in the data file being imported are ignored, and SQL Server 2000 automatically assigns unique values based on the seed
and increment values specified during table creation. If the data file does not contain values for the identity column in the table or
view, use a format file to specify that the identity column in the table or view should be skipped when importing data; SQL Server
2000 automatically assigns unique values for the column. For more information, see DBCC CHECKIDENT.

-h "hint [,...n]"

Specifies the hint(s) to be used during a bulk copy of data into a table or view. This option cannot be used when bulk copying data
into SQL Server 6.x or earlier.

Hint Description
ORDER (column [ASC | DESC]
[,...n])

Sort order of the data in the data file. Bulk
copy performance is improved if the data
being loaded is sorted according to the
clustered index on the table. If the data file is
sorted in a different order, or there is no
clustered index on the table, the ORDER hint
is ignored. The names of the columns
supplied must be valid columns in the
destination table. By default, bcp assumes the
data file is unordered.

ROWS_PER_BATCH = bb Number of rows of data per batch (as bb).
Used when -b is not specified, resulting in the
entire data file being sent to the server as a
single transaction. The server optimizes the
bulk load according to the value bb. By
default, ROWS_PER_BATCH is unknown.

KILOBYTES_PER_BATCH = cc Approximate number of kilobytes (KB) of data
per batch (as cc). By default,
KILOBYTES_PER_BATCH is unknown.

TABLOCK A table-level lock is acquired for the duration
of the bulk copy operation. This hint
significantly improves performance because
holding a lock only for the duration of the
bulk copy operation reduces lock contention
on the table. A table can be loaded
concurrently by multiple clients if the table
has no indexes and TABLOCK is specified. By
default, locking behavior is determined by the
table option table lock on bulk load.

CHECK_CONSTRAINTS Any constraints on the destination table are
checked during the bulk copy operation. By
default, constraints are ignored. Note that the
max_errors option does not apply to
constraint checking.

FIRE_TRIGGERS Specified with the in argument, any insert
triggers defined on the destination table will
execute during the bulk copy operation. If
FIRE_TRIGGERS is not specified, no insert
triggers will execute. FIRE_TRIGGERS is
ignored for the out, queryout, and format
arguments.

Command Prompt Utilities (SQL Server 2000)

console Utility
The console command prompt utility displays backup and restore messages when backing up to or restoring from tape dump
devices, and is used by the person responsible for backing up and restoring a database.

Syntax

console [/S server_name[\instance_name]] [/P pipe_name]

Arguments

/S server_name[\instance_name]:

Is the name of the instance of Microsoft® SQL Server™ 2000 in which to connect. Specify server_name to connect to the default
instance of SQL Server on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000
on that server. If no server is specified, the console utility connects to the default instance of SQL Server on the local computer.
This option is required when executing the console utility from a remote computer on the network.

/P pipe_name:

Is the pipe used to start the server.

Command Prompt Utilities (SQL Server 2000)

dtsrun Utility
 New Information - SQL Server 2000 SP3.

The dtsrun utility executes a package created using Data Transformation Services (DTS). The DTS package can be stored in the
Microsoft® SQL Server™ msdb database, a COM-structured storage file, or SQL Server Meta Data Services.

Syntax

dtsrun
[/?] |
[
 [
 /[~]S server_name[\instance_name]
 { {/[~]U user_name [/[~]P password]} | /E }
]
 {
 {/[~]N package_name }
 | {/[~]G package_guid_string}
 | {/[~]V package_version_guid_string}
 }
 [/[~]M package_password]
 [/[~]F filename]
 [/[~]R repository_database_name]
 [/A global_variable_name:typeid=value]
 [/L log_file_name]
 [/W NT_event_log_completion_status]
 [/Z] [/!X] [/!D] [/!Y] [/!C]
]

Arguments

/?

Displays the command prompt options.

~

Specifies that the parameter to follow is hexadecimal text representing the encrypted value of the parameter. Can be used with
the /S, /U, /P, /N, /G, /V, /M, /F, and /R options. Using encrypted values increases the security of the command used to execute
the DTS package because the server name, password, and so on, are not visible. Use /!Y to determine the encrypted command.

/S server_name[\instance_name]

Specifies the instance of SQL Server to connect to. Specify server_name to connect to the default instance of SQL Server on that
server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that server.

/U user_name

Is a login ID used to connect to an instance of SQL Server.

/P password

Is a user-specified password used with a login ID.

/E

Specifies a trusted connection (password not required).

/N package_name

Is the name of a DTS package assigned when the package was created.

/G package_guid_string

Is the package ID assigned to the DTS package when it was created. The package ID is a GUID.

/V package_version_guid_string

Is the version ID assigned to the DTS package when it was first saved or executed. A new version ID is assigned to the DTS
package each time it is modified. The version ID is a GUID.

/M package_password

Is an optional password assigned to the DTS package when it was created.

/F filename

Is the name of a structured storage file containing DTS packages. If server_name is also specified, the DTS package retrieved from
SQL Server is executed and that package is added to the structured storage engine.

/R repository_database_name

Is the name of the repository database containing DTS packages. If no name is specified, the default database name is used.

/A global_variable_name:typeid=value

Specifies a package global variable, where typeid = type identifier for the data type of the global variable. The entire argument
string can be quoted. This argument can be repeated to specify multiple global variables. See the Remarks section for the different
available type identifiers available with global variables.

To set global variables with this command switch, you must have either Owner permission for the package or the package must
have been saved without DTS password protection enabled. If you do not have Owner permission, you can specify global
variables, but the values used will be those set in the package, not those specified with the /A command switch.

/L log_file_name:

Specifies the name of the package log file.

/W Windows_Event_Log

Specifies whether or not to write the completion status of the package execution to the Windows Application Log. Specify True or
False.

/Z

Indicates that the command line for dtsrun is encrypted using SQL Server 2000 encryption.

/!X

Blocks execution of the selected DTS package. Use this command parameter when you want to create an encrypted command line
without executing the DTS package.

/!D

Deletes the DTS package from an instance of SQL Server. The package is not executed. It is not possible to delete a specific DTS
package from a structured storage file. The entire file needs to be overwritten using the /F and /S options.

/!Y

Displays the encrypted command used to execute the DTS package without executing it.

/!C

Copies the command used to execute the DTS package to the Microsoft Windows® clipboard. This option can also be used in
conjunction with /!X and /!Y.

Command Prompt Utilities (SQL Server 2000)

dtswiz Utility
The dtswiz utility starts the DTS Import/Export Wizard using command prompt options. The wizards can be used to create Data
Transformation Services (DTS) packages that import, export, or transform data between data sources, for example between an
instance of Microsoft® SQL Server™ 2000 and a Microsoft Access database, ASCII text file, or any ODBC data source.

Syntax

dtswiz
[/?] |
[
 [
 {/i | /x}
 [/r provider_name]
 [/s server_name[\instance_name]]
 [/n | /u login_id [/p password]]
 [/d database_name]
]
 [/f filename]
 [/y] [/m]
]

Arguments

/?

Displays the command prompt options.

/i

Specifies an import to an instance of SQL Server.

/x

Specifies an export from an instance of SQL Server.

/r provider_name:

Is the name of the provider used to connect to the data source when importing, or the destination when exporting. For example,
the Microsoft OLE DB Provider for ODBC is MSDASQL.

/s server_name[\instance_name]

Is the instance of SQL Server to export data from or import data to. Specify server_name to connect to the default instance of SQL
Server on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that server.

/n

Specifies Windows Authentication (not required). If used, /n takes precedence over /u and /p.

/u login_id

Is a login ID used to connect to an instance of SQL Server.

/p password

Is a user-specified password used with a login ID.

/d database_name

Is the SQL Server database used to export data from, or import data to.

/f filename

Saves the DTS package created by the wizard to this COM-structured storage file.

/y

Hides the SQL Server system databases (master, model, msdb, tempdb). These databases do not show up in the list of source
databases when importing data, or the list of destination databases when exporting data.

/m

Execute all steps on the main package thread. For more information, see Enhancing Performance of DTS Packages.

Command Prompt Utilities (SQL Server 2000)

isql Utility
 New Information - SQL Server 2000 SP3.

The isql utility allows you to enter Transact-SQL statements, system procedures, and script files; and uses DB-Library to
communicate with Microsoft® SQL Server™ 2000.

Syntax

isql
 [-?] |
 [-L] |
 [
 {
 {-U login_id [-P password]}
 | –E
 }
 [-S server_name] [-H wksta_name] [-d db_name]
 [-l time_out] [-t time_out] [-h headers]
 [-s col_separator] [-w column_width] [-a packet_size]
 [-e] [-x max_text_size]
 [-c cmd_end] [-q "query"] [-Q "query"]
 [-n] [-m error_level] [-r {0 | 1}]
 [-i input_file] [-o output_file] [-p]
 [-b] [-O]
]

Arguments

-?

Displays the syntax summary of isql switches.

-L

Lists the locally configured servers and the names of the servers broadcasting on the network.

-U login_id

Is the user login ID. Login IDs are case-sensitive.

-P password

Is a user-specified password. If the -P option is not used, isql prompts for a password. If the -P option is used at the end of the
command prompt without any password, isql uses the default password (NULL).

Security Note NULL passwords are not recommended.

Passwords are case-sensitive.

The ISQLPASSWORD environment variable allows you to set a default password for the current session. Therefore, you do not
have to hard code a password into batch files.

If you do not specify a password with the -P option, isql first checks for the ISQLPASSWORD variable. If no value is set, isql uses
the default password, NULL. The following example sets the ISQLPASSWORD variable at the command prompt and then accesses
the isql utility:

C:\>SET ISQLPASSWORD=abracadabra
C:\>isql

Security Note To mask your password, do not specify the -P option along with the -U option. Instead, after specifying isql along
with the -U option and other switches (do not specify -P), press ENTER, and isql will prompt you for a password. This method
ensures that your password will be masked when it is entered.

-E

Uses a trusted connection instead of requesting a password.

-S server_name

Specifies the default instance of SQL Server to connect to. isql does not support connecting to a named instance of SQL Server
2000. If no server is specified, isql connects to the default instance of SQL Server on the local computer. This option is required if
you are executing isql from a remote computer.

-H wksta_name

Is a workstation name. The workstation name is stored in sysprocesses.hostname and is displayed by sp_who. If not specified,
the current computer name is assumed.

-d db_name

Issues a USE db_name statement when isql is started.

-l time_out

Specifies the number of seconds before an isql login times out. If no time_out value is specified, a command runs indefinitely. The
default time-out for login to isql is eight seconds.

-t time_out

Specifies the number of seconds before a command times out. If no time_out value is specified, a command runs indefinitely; the
default time-out for logging in to isql is eight seconds.

-h headers

Specifies the number of rows to print between column headings. The default is to print headings one time for each set of query
results. Use -1 to specify that no headers will be printed. If using -1, there must be no space between the parameter and the
setting (-h-1, not -h -1).

-s col_separator

Specifies the column-separator character, which is a blank space by default. To use characters that have special meaning to the
operating system (for example, | ; & < >), enclose the character in double quotation marks (").

-w column_width

Allows the user to set the screen width for output. The default is 80 characters. When an output line has reached its maximum
screen width, it is broken into multiple lines.

-a packet_size

Allows you to request a different-sized packet. The valid values for packet_size are 512 through 65535. The default value for the
Microsoft Windows NT® version of isql is 8192; otherwise, the default value is 512 for Microsoft MS-DOS®, although larger
sizes can be requested with that version as well. Increased packet size can enhance performance on larger script execution where
the amount of SQL statements between GO commands is substantial. Microsoft testing indicates that 8192 is typically the fastest
setting for bulk copy operations. A larger packet size can be requested, but isql defaults to 512 if the request cannot be granted.

-e

Echoes input.

-x max_text_size

Specifies, in bytes, the maximum length of text data to return. Text values longer than max_text_size are truncated. If max_text_size
is not specified, text data is truncated at 4096 bytes.

-c cmd_end

Specifies the command terminator. By default, commands are terminated and sent to SQL Server 2000 by entering GO on a line
by itself. When you reset the command terminator, do not use Transact-SQL reserved words or characters that have special
meaning to the operating system, whether preceded by a backslash or not.

-q "query"

Executes a query when isql starts, but does not exit isql when the query completes. (Note that the query statement should not
include GO). If you issue a query from a batch file, you can use %variables. Environment %variables% also work. For example:

SET table = sysobjects
isql /q "Select * from %table%"

Use double quotation marks around the query and single quotation marks around anything embedded in the query.

-Q "query"

Executes a query and immediately exits isql when the query completes. Use double quotation marks around the query and single
quotation marks around anything embedded in the query.

-n

Removes numbering and the prompt symbol (>) from input lines.

-m error_level

Customizes the display of error messages. The message number, state, and error level are displayed for errors of the specified
severity level or higher. Nothing is displayed for errors of severity levels lower than the specified level. Use -1 to specify that all
headers are returned with messages, even informational messages. If -1 is used, there must be no space between the parameter
and the setting (-m-1, not -m -1).

-r {0 | 1}

Redirects message output to the screen (stderr). If you do not specify a parameter, or if you specify 0, only error messages with
severity 11 or higher are redirected. If you specify 1, all message output (including "print") is redirected.

-i input_file

Identifies the file that contains a batch of SQL statements or stored procedures. The less than (<) comparison operator can be
used in place of -i.

-o output_file

Identifies the file that receives output from isql. The greater than (>) comparison operator can be used in place of -o.

-p

Prints performance statistics.

-b

Specifies that isql exits and returns a DOS ERRORLEVEL value when an error occurs. The value returned to the DOS ERRORLEVEL
variable is 1 when the SQL Server error message has a severity of 10 or greater; otherwise, the value returned is 0. MS-DOS batch
files can test the value of DOS ERRORLEVEL and handle the error appropriately.

-O

Specifies that isql reverts to the behavior of earlier versions. These features are deactivated:

EOF batch processing

Automatic console width scaling

Wide messages

This option also sets the default DOS ERRORLEVEL value to -1.

Command Prompt Utilities (SQL Server 2000)

isqlw Utility
 New Information - SQL Server 2000 SP3.

The isqlw utility (SQL Query Analyzer) allows you to enter Transact-SQL statements, system stored procedures, and script files.
You can set up shortcuts or create batch files to launch a preconfigured SQL Query Analyzer.

Syntax

isqlw
 [-?] |
 [
 [-S server_name[\instance_name]]
 [-d database]
 [-E] [-U user] [-P password]
 [{-i input_file} {-o output_file} [-F {U|A|O}]]
 [-f file_list]
 [-C configuration_file]
 [-D scripts_directory]
 [-T template_directory]
]

Arguments

-?

Displays usage information.

-S server_name[\instance_name]:

Specifies the instance of Microsoft® SQL Server™ 2000 to connect to. Specify server_name to connect to the default instance of
SQL Server 2000 on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that
server. If no server is specified, isqlw connects to the default instance of SQL Server on the local computer. This option is required
when executing isqlw from a remote computer on the network.

-d database

Issues a USE database statement when isqlw is started. The default is the default database of the user.

-E

Uses a trusted connection instead of requesting a password.

-U user

Is the user login ID. Login IDs are case-sensitive.

-P password

Is the login password. The default is NULL.

Security Note Null passwords are not recommended.

-i input_file

Identifies the file that contains a batch of SQL statements or stored procedures. The –i and –o options must be specified together.
When -i and -o options are specified, queries in the input file are executed and results are saved in the output file. No user
interface is shown while the queries are executing. When execution is completed, the process exits.

-o output_file

Identifies the file that receives output from isqlw. The –i and –o options must be specified together. When -i and -o options are
specified, queries in the input file are executed and results are saved in the output file. No user interface is shown while the
queries are executing. When execution is completed, the process exits. If file format is not specified with -F, the output file will be
of the same type as the input file.

-F {U|A|O}

Is the format of the input and output files. Values include Unicode, ANSI, and OEM. If -F is not specified, automatic mode is used (if

the file is Unicode signed, the file is opened as Unicode; otherwise, the file is opened as ANSI).

-f file_list

Loads the listed files into SQL Query Analyzer. With the -f option, you can load one or more files (file names separated by single
space). If more than one file is specified, files are opened on the same connection context. The file name can include the directory
path where the file resides. Wildcard characters, such as the asterisk (*), as in C:\Test*.sql, can be used.

-C configuration_file

Uses the settings specified in the configuration file. Other arguments explicitly specified on the command prompt overwrite the
corresponding configuration file settings.

-D scripts_directory

Overwrites the default saved script directory specified in the registry or the configuration file specified with -C. The value does not
persist in the registry or the configuration file. To see the current value of this option in SQL Query Analyzer, click Tools, and then
click Options.

-T template_directory

Overwrites the default template directory specified in the registry or the configuration file specified with -C. The value does not
persist in the registry or the configuration file. To see the current value of this option in SQL Query Analyzer, click Tools, and then
click Options.

Command Prompt Utilities (SQL Server 2000)

itwiz Utility
 New Information - SQL Server 2000 SP3.

The itwiz utility allows the Index Tuning Wizard to be executed using a command prompt utility. The Index Tuning Wizard can
also be started from SQL Server Enterprise Manager, SQL Query Analyzer, and SQL Profiler.

Syntax

itwiz
 [-?] |
 [
 -D database_name {-i workload_file | -t workload_trace_table_name}
 -o script_file_name
 [-S server_name[\instance]]
 {
 {-U login_id [-P password]}
 | –E
 }
 [-f tuning_feature_set]
 [-K keep_existing_indexes]
 [-M recommendation_quality]
 [-B storage_bound]
 [-n number_of_queries]
 [-C max_columns_in_index]
 [-T table_list_file]
 [-m minimum_improvement]
 [-F][-v]
]

Arguments

-?

Displays usage information.

-D database_name

Specifies the name of the database to be tuned.

-i workload_file

Specifies the name of the workload file to use as input for tuning. The file must be in one of these formats: .trc (SQL Profiler trace
file), .sql (SQL file), or .log (SQL Server 7.0 trace file).

-t workload_table_name

Specifies the name of a table containing the workload trace for tuning. The name is specified as:
[server_name].[database_name].[owner_name].table_name. The first three parameters are optional and can be omitted by
marking their positions with a period. The table shows the default values for each.

Parameter Default value
server_name server_name specified with –S option. If the –S

option is not specified, server_name defaults to
the local computer.

database_name database_name specified with –D option.
owner_name dbo.
table_name None.

Note owner_name must be dbo. If any other value is specified, execution of itwiz will fail and an error will be returned.

-o script_file_name

Specifies the name of the file to which itwiz writes the recommendation script. By default, output files are created in the current

directory. The recommendation script contains the expected improvement if the recommendation is accepted.

-S server_name[\instance]

Specifies the computer and instance of SQL Server to connect to. If no server_name or instance is specified, itwiz connects to the
default instance of SQL Server on the local computer. This option is required when executing itwiz from a remote computer on
the network.

-U login_id

Specifies the login ID used to connect to SQL Server.

-P password

Specifies the password for the login ID. If this option is not used, itwiz prompts for a password. If this option is used without
specifying a password, itwiz uses the default password (NULL).

Security Note Null passwords are not recommended.

-E

Uses a trusted connection instead of requesting a password.

-f tuning_feature_set

Specifies the features to be considered by itwiz for tuning.

Value Description
0 All features (default)
1 Indexes only
2 Indexed views only (applies only to SQL Server

2000, Enterprise and Developer editions)

-K keep_existing_indexes

Specifies whether itwiz is allowed to propose a recommendation that requires dropping one or more existing indexes.

Value Description
0 Do not keep existing indexes
1 Keep all existing indexes (default)

-M recommendation_quality

Specifies the desired point in the running time versus quality of recommendation tradeoff. Higher values of
recommendation_quality yield better quality of recommendation. Currently, recommendation_quality can be one of the values
shown in this table.

Value Description
0 Fast mode
1 Medium mode (default)
2 Thorough analysis mode

Fast mode currently has these restrictions:

No new clustered indexes are recommended.

No new indexed views are recommended.

All existing indexes are kept (this is equivalent to specifying the -K 1 option).

Note The combinations -M 0 -K 0 and -M 0 -f 2 are invalid and cannot be used. Also, when used in conjunction with -M 0,
options -f 0 and –f 1 are equivalent.

-B storage_bound

Specifies the maximum space in megabytes that can be consumed by the recommended index set. The default storage bound is

three times the current data size or the maximum available space on all attached disk drives, or whichever is smaller. The current
data size consists of all tables and clustered indexes.

-n number_of_queries

Specifies the number of queries to be tuned. By default, 200 queries are randomly chosen from the specified workload file. If
number_of_queries exceeds the number of queries in the workload file, all queries are tuned.

-C max_columns_in_index

Specifies the maximum number of columns in indexes proposed by itwiz. The default value is 16; this is the maximum value
allowed by SQL Server.

-T table_list_file

Specifies the name of a file containing a list of tables to be tuned. Each table listed within the file should begin on a new line. Table
names can be qualified by a user name (for example, dbo.authors). Optionally, to invoke the table-scaling feature, the name of a
table can be followed by a number indicating the projected number of rows in the table. The table-scaling feature enables
studying recommended indexes on smaller scale sample databases. A reasonable size (several %, thousands of rows per table)
should be used for the smaller sample database, otherwise the scaled data distribution histograms may be inaccurate and the set
of recommended indexes for the sample database may be different from the index recommended for the full scale database.

This is the file format for table_list_file:

[owner.]table [number_of_rows]
[owner.]table [number_of_rows]

If the -T option is omitted, all user tables in the specified database are considered for tuning.

-m minimum_improvement

If the -m option is specified, itwiz does not recommend any changes in the index configuration, unless the expected improvement
in performance for the selected workload is at least minimum_improvement%. If all queries are not considered for tuning (see
option -n), the queries not selected are not considered when the improvement is evaluated.

-F

Permits itwiz to overwrite an existing output file. In the event that an output file with the same name already exists and -F is not
specified, itwiz returns an error.

-v

Enables verbose output from itwiz. If -v is not specified, itwiz directs only abbreviated information to the screen during
execution.

Command Prompt Utilities (SQL Server 2000)

makepipe Utility
The makepipe utility tests the integrity of the network Named Pipe services, in conjunction with readpipe.

Syntax

makepipe [/h] [/w] [/p pipe_name]

Arguments

/h

Displays usage information.

/w

Specifies the wait time, in seconds, between read and write. The default is 0.

/p pipe_name

Is the name of the pipe. The default pipe_name is abc.

Command Prompt Utilities (SQL Server 2000)

odbccmpt Utility
The odbccmpt utility enables or disables the compatibility option for an ODBC application executable file.

Syntax

odbccmpt file_name [/v:version_number] [/P] [/T] [/R] [/d]

Arguments

file_name

Is the name of the application executable file for which the compatibility option is to be turned on/off. For example, if the full path
and name of your executable file is C:\Winnt\System32\MyApp.exe, only specify MyApp. Do not enclose file_name in quotation
marks.

Do not specify the name of the executable file for:

Any application in the Microsoft SQL Server 2000 program group.

Any SQL Server 2000 command prompt utility.

The SQL Server executable file, Sqlservr.exe.

/v:version_number

Specifies that the application should be run in 6.x or 7.0 compatibility mode. Allowable values for version_number are 6 and 7.
Invoking this option requests the server to communicate with the application using a lower level protocol.

/P

Requires a connection peek call during SQL_ATTR_CONNECTION_DEAD. Excluding this option provides a small performance
advantage for applications that use connection pooling.

/T

Specifies that translations be turned off in the specified application. This option provides backward compatibility with applications
that use SQLDriverConnect and have no way to customize their connection properties.

/R

Specifies that the application should ignore calls for a connection reset. When a connection returns to the connection pool, the
driver is called with SQL_COPT_SS_RESET. If this option is set, the application will ignore the call to reset the connection.

/d

Disables the specified option for specified application. For example, odbccmpt /P /d will disable connection peek.

Command Prompt Utilities (SQL Server 2000)

odbcping Utility
 New Information - SQL Server 2000 SP3.

The odbcping utility tests the integrity of an ODBC data source and the ability of the client to connect to a server.

Syntax

odbcping
 [/?] |
 [
 {
 -Sserver_name[\instance_name]
 | -Ddata_source
 }
 [-Ulogin_id]
 [-Ppassword]
]

Arguments

/?

Displays the odbcping syntax diagram.

-Sserver_name

Is the instance of Microsoft® SQL Server™ 2000 to connect to. Specify server_name to connect to the default instance of SQL
Server 2000 on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that
server. The connection is made without testing any ODBC data source.

-Ddata_source

Is the name of an ODBC data source defined to use the SQL Server ODBC driver. odbcping verifies that the data source is correct
by using it to connect to the server named in the data source.

-Ulogin_id

Is a valid login ID for the server.

-Ppassword

Is the password for login_id.

Security Note The password will not be masked.

Command Prompt Utilities (SQL Server 2000)

osql Utility
 Topic last updated -- January 2004

The osql utility allows you to enter Transact-SQL statements, system procedures, and script files. This utility uses ODBC to
communicate with the server.

Syntax

osql
 [-?] |
 [-L] |
 [
 {
 {-U login_id [-P password]}
 | –E
 }
 [-S server_name[\instance_name]] [-H wksta_name] [-d db_name]
 [-l time_out] [-t time_out] [-h headers]
 [-s col_separator] [-w column_width] [-a packet_size]
 [-e] [-I] [-D data_source_name]
 [-c cmd_end] [-q "query"] [-Q "query"]
 [-n] [-m error_level] [-r {0 | 1}]
 [-i input_file] [-o output_file] [-p]
 [-b] [-u] [-R] [-O] [-X[1]]
]

Arguments

-?

Displays the syntax summary of osql switches.

-L

Lists the locally configured servers and the names of the servers broadcasting on the network.

-U login_id

Is the user login ID. Login IDs are case-sensitive.

-P password

Is a user-specified password. If the -P option is not used, osql prompts for a password. If the -P option is used at the end of the
command prompt without any password, osql uses the default password (NULL).

Security Note NULL passwords are not recommended.

Passwords are case-sensitive.

The OSQLPASSWORD environment variable allows you to set a default password for the current session. Therefore, you do not
have to hard code a password into batch files.

If you do not specify a password with the -P option, osql first checks for the OSQLPASSWORD variable. If no value is set, osql
uses the default password, NULL. The following example sets the OSQLPASSWORD variable at a command prompt and then
accesses the osql utility:

C:\>SET OSQLPASSWORD=abracadabra
C:\>osql

Security Note To mask your password, do not specify the -P option along with the -U option. Instead, after specifying osql
along with the -U option and other switches (do not specify -P), press ENTER, and osql will prompt you for a password. This
method ensures that your password will be masked when it is entered.

-E

Uses a trusted connection instead of requesting a password.

-S server_name[\instance_name]

Specifies the instance of Microsoft® SQL Server™ 2000 to connect to. Specify server_name to connect to the default instance of
SQL Server on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that
server. If no server is specified, osql connects to the default instance of SQL Server on the local computer. This option is required
when executing osql from a remote computer on the network.

-H wksta_name

Is a workstation name. The workstation name is stored in sysprocesses.hostname and is displayed by sp_who. If this option is
not specified, the current computer name is assumed.

-d db_name

Issues a USE db_name statement when osql is started.

-l time_out

Specifies the number of seconds before an osql login times out. The default time-out for login to osql is eight seconds.

-t time_out

Specifies the number of seconds before a command times out. If a time_out value is not specified, commands do not time out.

-h headers

Specifies the number of rows to print between column headings. The default is to print headings one time for each set of query
results. Use -1 to specify that no headers will be printed. If –1 is used, there must be no space between the parameter and the
setting (-h-1, not -h -1).

-s col_separator

Specifies the column-separator character, which is a blank space by default. To use characters that have special meaning to the
operating system (for example, | ; & < >), enclose the character in double quotation marks (").

-w column_width

Allows the user to set the screen width for output. The default is 80 characters. When an output line has reached its maximum
screen width, it is broken into multiple lines.

-a packet_size

Allows you to request a different-sized packet. The valid values for packet_size are 512 through 65535. The default value osql is
the server default. Increased packet size can enhance performance on larger script execution where the amount of SQL
statements between GO commands is substantial. Microsoft testing indicates that 8192 is typically the fastest setting for bulk
copy operations. A larger packet size can be requested, but osql defaults to the server default if the request cannot be granted.

-e

Echoes input.

-I

Sets the QUOTED_IDENTIFIER connection option on.

-D data_source_name

Connects to an ODBC data source that is defined using the ODBC driver for Microsoft SQL Server. The osql connection uses the
options specified in the data source.

Note This option does not work with data sources defined for other drivers.

-c cmd_end

Specifies the command terminator. By default, commands are terminated and sent to SQL Server 2000 by entering GO on a line
by itself. When you reset the command terminator, do not use Transact-SQL reserved words or characters that have special
meaning to the operating system, whether preceded by a backslash or not.

-q "query"

Executes a query when osql starts, but does not exit osql when the query completes. (Note that the query statement should not
include GO). If you issue a query from a batch file, use %variables, or environment %variables%. For example:

SET table = sysobjects
osql /q "Select * from %table%"

Use double quotation marks around the query and single quotation marks around anything embedded in the query.

-Q "query"

Executes a query and immediately exits osql. Use double quotation marks around the query and single quotation marks around
anything embedded in the query.

-n

Removes numbering and the prompt symbol (>) from input lines.

-m error_level

Customizes the display of error messages. The message number, state, and error level are displayed for errors of the specified
severity level or higher. Nothing is displayed for errors of levels lower than the specified level. Use -1 to specify that all headers
are returned with messages, even informational messages. If using -1, there must be no space between the parameter and the
setting (-m-1, not -m -1).

-r {0 | 1}

Redirects message output to the screen (stderr). If you do not specify a parameter, or if you specify 0, only error messages with a
severity level 11 or higher are redirected. If you specify 1, all message output (including "print") is redirected.

-i input_file

Identifies the file that contains a batch of SQL statements or stored procedures. The less than (<) comparison operator can be
used in place of -i.

If input_file only specifies a file name, osql attempts to open a file with that name in the current folder. If the file is in another
folder, input_file must contain the path to that folder, such as –i C:\MyFolder\MyScript.sql.

-o output_file

Identifies the file that receives output from osql. The greater than (>) comparison operator can be used in place of -o.

If input_file is not Unicode and -u is not specified, output_file is stored in OEM format. If input_file is Unicode or -u is specified,
output_file is stored in Unicode format.

If output_file only specifies a file name, osql creates a file with that name in the current folder. To place the file in another folder,
specify the path to that folder in output_file, such as –o C:\MyFolder\MyReport.rpt.

-p

Prints performance statistics.

-b

Specifies that osql exits and returns a DOS ERRORLEVEL value when an error occurs. The value returned to the DOS ERRORLEVEL
variable is 1 when the SQL Server error message has a severity of 10 or greater; otherwise, the value returned is 0. Microsoft MS-
DOS® batch files can test the value of DOS ERRORLEVEL and handle the error appropriately.

-u

Specifies that output_file is stored in Unicode format, regardless of the format of the input_file.

-R

Specifies that the SQL Server ODBC driver use client settings when converting currency, date, and time data to character data.

-O

Specifies that certain osql features be deactivated to match the behavior of earlier versions of isql. These features are deactivated:

EOF batch processing

Automatic console width scaling

Wide messages

It also sets the default DOS ERRORLEVEL value to -1.

-X[1]

Disables the ED and !! commands (see descriptions of these commands later in this topic) when osql is executed from a batch file.
These commands are still recognized but osql does not execute them. Instead, osql issues a warning message and continues
execution of the batch. If the optional argument 1 is specified, osql issues an error message and exits.

Command Prompt Utilities (SQL Server 2000)

Rebuild master Utility
The Rebuild master (rebuildm) utility can be used to change the collation settings for an instance of Microsoft® SQL Server™
2000, or to fix a corrupted master database.

Syntax

rebuildm

Remarks

Before you run the Rebuild master utility, make sure you have one of these two items:

The scripts to rebuild the database objects and a backup to reload the data.

The data and log files to use with sp_attach_db.

Rebuilding the master database removes all database objects and data. After rebuilding the master database, re-create the
database objects and reload the data, or reattach the data and log files using sp_attach_db.

For information about where to find or how to run this utility, see Getting Started with Command Prompt Utilities.

See Also

How to rebuild the master database (Rebuild Master utility)

Command Prompt Utilities (SQL Server 2000)

readpipe Utility
The readpipe utility tests the integrity of the network Named Pipe services, in conjunction with makepipe.

Syntax

readpipe /Sserver_name /Dstring [/n] [/q] [/w] [/t] [/p pipe_name] [/h]

Arguments

/Sserver_name

Is the name of a default instance of Microsoft® SQL Server™ on which you just ran makepipe. readpipe does not support
named instances of SQL Server 2000. There are no spaces between /S and server_name.

/Dstring

Is a test character string. There are no spaces between /D and string.

/n

Specifies the number of iterations.

/q

Queries for incoming data (polling). Without /q, readpipe reads the pipe and waits for data.

/w

Specifies the wait time, in seconds, to pause while polling. The default is 0.

/t

Asks for Transact-SQL named pipes. This option overrides polling.

/p pipe_name

Is the name of the pipe. The default pipe_name is abc.

/h

Displays usage.

Command Prompt Utilities (SQL Server 2000)

Replication Distribution Agent Utility
The Replication Distribution Agent utility configures and begins the Distribution Agent, which moves the snapshot (for snapshot
replication and transactional replication) held in the distribution database tables (for transactional replication) to the destination
tables at the Subscribers.

Syntax

distrib [-?]
-Publisher server_name[\instance_name]
-PublisherDB publisher_database
-Subscriber server_name[\instance_name]
[-AltSnapshotFolder alt_snapshot_folder_path]
[-BcpBatchSize bcp_batch_size]
[-Buffers number_of_buffers]
[-CommitBatchSize commit_batch_size]
[-CommitBatchThreshold commit_batch_threshold]
[-Continuous]
[-DefinitionFile def_path_and_file_name]
[-Distributor distributor]
[-DistributorAddress distributor_address]
[-DistributorLogin distributor_login]
[-DistributorNetwork distributor_network]
[-DistributorPassword distributor_password]
[-DistributorSecurityMode [0|1]]
[-ErrorFile error_path_and_file_name]
[-FileTransferType [0|1]]
[-FtpAddress ftp_address]
[-FtpPassword ftp_password]
[-FtpPort ftp_port]
[-FtpUserName ftp_user_name]
[-HistoryVerboseLevel [1|2|3]]
[-Hostname host_name]
[-KeepAliveMessageInterval keep_alive_message_interval_seconds]
[-LoginTimeOut login_time_out_seconds]
[-MaxBcpThreads]
[-MaxDeliveredTransactions number_of_transactions]
[-MessageInterval message_interval]
[-NoTextInitOnSync]
[-Output output_path_and_file_name]
[-OutputVerboseLevel [0|1|2]]
[-PacketSize packet_size]
[-PollingInterval polling_interval]
[-ProfileName profile_name]
[-Publication publication]
[-QueryTimeOut query_time_out_seconds]
[-QuotedIdentifier quoted_identifier]
[-SkipErrors native_error_id [:...n]]
[-SubscriberDatabasePath subscriber_path]
[-SubscriberDB subscriber_database]
[-SubscriberLogin subscriber_login]
[-SubscriberPassword subscriber_password]
[-SubscriberSecurityMode [0|1]]
[-SubscriberType [0|1|2|3]]
[-SubscriptionTableName subscription_table]
[-SubscriptionType [0|1|2]]
[-TransactionsPerHistory [0|1|...10000]]
[-UseDTS]
[-UseInprocLoader]

Note Parameters can be specified in any order. When optional parameters are not specified, values from predefined registry

settings on the local computer are used.

Arguments

-?

Prints all available parameters.

-Publisher server_name[\instance_name]

Is the name of the Publisher. Specify server_name for the default instance of Microsoft® SQL Server™ 2000 on that server.
Specify server_name\instance_name for a named instance of SQL Server 2000 on that server.

-PublisherDB publisher_database

Is the name of the Publisher database.

-Subscriber server_name[\instance_name]

Is the name of the Subscriber. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server.

-AltSnapshotFolder alt_snapshot_folder_path

Is the path to the folder that contains the initial snapshot for a subscription.

-BcpBatchSize bcp_batch_size

Is the number of rows to send in a bulk copy operation. When performing a bcp in operation, the batch size is the number of
rows to send to the server as one transaction, and also the number of rows that must be sent before the Distribution Agent logs a
bcp progress message. When performing a bcp out operation, a fixed batch size of 1000 is used. A value of 0 indicates no
message logging.

-Buffers number_of_buffers

Is the number of buffers available for asynchronous transactions. The default is 2. Increasing the number of buffers can increase
performance because doing so reduces memory paging; however, a larger number of buffers also increases the amount of
memory reserved for paging. Evaluate performance by seeing how a change in buffer values affects the speed of the connections
between Subscriber and Distributor.

-CommitBatchSize commit_batch_size

Is the number of transactions to be issued to the Subscriber before a COMMIT statement is issued. The default is 100.

-CommitBatchThreshold commit_batch_threshold:

Is the number of replication commands to be issued to the Subscriber before a COMMIT statement is issued. The default is 1000.

-Continuous

Specifies whether the agent attempts to poll replicated transactions continually. If specified, the agent polls replicated transactions
from the source at polling intervals, even if there are no transactions pending.

-DefinitionFile def_path_and_file_name

Is the path of the agent definition file. An agent definition file contains command prompt arguments for the agent. The content of
the file is parsed as an executable file. Use double quotation marks (") to specify argument values containing arbitrary characters.

-Distributor distributor

Is the Distributor name. For Distributor (push) distribution, the name defaults to the name of the local Distributor.

-DistributorAddress distributor_address

Is the network connection string for the Net-Library defined in the DistributorNetwork option. If the DistributorNetwork
option is the TCP/IP Sockets Net-Library, then the connection string is in the form of

'address,socket'

For more information about the format, see Network Protocols. This option is useful for configuring connections over the Internet.

-DistributorLogin distributor_login

Is the Distributor login name.

-DistributorNetwork distributor_network

Is the Net-Library to use when connecting to the Distributor. This option is useful when configuring the Distribution Agent to
connect to a Distributor over the Internet.

-DistributorPassword distributor_password

Is the Distributor password.

-DistributorSecurityMode [0|1]

Specifies the security mode of the Distributor. A value of 0 indicates SQL Server Authentication Mode (default), and a value of 1
indicates Windows Authentication Mode.

-ErrorFile error_path_and_file_name

Is the path and file name of the error file generated by the Distribution Agent. This file is generated at any point where failure
occurred while applying replication transactions at the Subscriber. This file contains the failed replication transactions and
associated error messages. When not specified, the error file is generated in the current directory of the Distribution Agent. The
error file name is the name of the Distribution Agent with an .err extension. If the specified file name exists, error messages are
appended to the file.

-FileTransferType [0|1]

Specifies the file transfer type. A value of 0 indicates UNC (universal naming convention), and a value of 1 indicates FTP (file
transfer protocol).

-FtpAddress ftp_address

Is the network address of the FTP service for the Distributor. When not specified, DistributorAddress is used. If
DistributorAddress is not specified, Distributor is used.

-FtpPassword ftp_password

Is the user password used to connect to the FTP service.

-FtpPort ftp_port

Is the port number of the FTP service for the Distributor. When not specified, the default port number for FTP service (21) is used.

-FtpUserName ftp_user_name

Is the user name used to connect to the FTP service. When not specified, anonymous is used.

-HistoryVerboseLevel [1|2|3]

Specifies the amount of history logged during a distribution operation. You can minimize the effect of history logging on
performance by selecting 1.

HistoryVerboseLevel
value Description

1 Default. Always update a previous history message of the
same status (startup, progress, success, and so on). If no
previous record with the same status exists, insert a new
record.

2 Insert new history records unless the record is for such
things as idle messages or long-running job messages, in
which case update the previous records.

3 Always insert new records, unless it is for idle messages.

-Hostname host_name

Is the host name used when connecting to the Publisher.

-KeepAliveMessageInterval keep_alive_message_interval_seconds

Is the number of seconds before the history thread checks if any of the existing connections is waiting for a response from the
server. This value can be increased to avoid having the checkup agent mark the Distribution Agent as suspect when executing a
long-running batch. The default is 300 seconds.

-LoginTimeOut login_time_out_seconds

Is the number of seconds before the login times out. The default is 15 seconds.

-MaxBcpThreads number_of_threads

Specifies the number of bulk copy operations that can be performed in parallel. The maximum number of threads and ODBC
connections that exist simultaneously is the lesser of MaxBcpThreads or the number of bulk copy requests that appear in the
synchronization transaction in the distribution database. MaxBcpThreads must have a value greater than 0 and has no hard-
coded upper limit. The default is 1. When applying a snapshot that was generated at the Publisher using the concurrent snapshot
option, one thread is used, regardless of the number you specify for MaxBcpThreads.

-MaxDeliveredTransactions number_of_transactions

Is the maximum number of push or pull transactions applied to Subscribers in one synchronization. A value of 0 indicates that the
maximum is an infinite number of transactions. Other values can be used by Subscribers to shorten the duration of a
synchronization being pulled from a Publisher.

-MessageInterval message_interval

Is the time interval used for history logging. A history event is logged when one of these parameters is reached:

The TransactionsPerHistory value is reached after the last history event is logged.

The MessageInterval value is reached after the last history event is logged.

If there is no replicated transaction available at the source, the agent reports a no-transaction message to the Distributor.
This option specifies how long the agent waits before reporting another no-transaction message. Agents always report a
no-transaction message when they detect that there are no transactions available at the source after previously processing
replicated transactions. The default is 60 seconds.

-Output output_path_and_file_name

Is the path of the agent output file. If the file name is not provided, the output is sent to the console. If the specified file name
exists, the output is appended to the file.

-OutputVerboseLevel [0|1|2]

Specifies whether the output should be verbose. If the verbose level is 0, only error messages are printed. If the verbose level is 1,
all the progress report messages are printed. If the verbose level is 2 (default), all error messages and progress report messages
are printed, which is useful for debugging.

-PacketSize packet_size

Is the packet size, in bytes. The default is 4096 (bytes).

-PollingInterval polling_interval

Is how often, in seconds, the distribution database is queried for replicated transactions. The default is 1 second.

-ProfileName profile_name

Specifies an agent profile to use for agent parameters. If ProfileName is NULL, the agent profile is disabled. If ProfileName is
not specified, the default profile for the agent type is used.

-Publication publication

Is the name of the publication. This parameter is only valid if the publication is set to always have a snapshot available for new or
reinitialized subscriptions.

-QueryTimeOut query_time_out_seconds

Is the number of seconds before the query times out. The default is 300 seconds.

-QuotedIdentifier quoted_identifier

Specifies the quoted identifier character to use. The first character of the value indicates the value the Distribution Agent uses. If
QuotedIdentifier is used with no value, the Distribution Agent uses a space. If QuotedIdentifier is not used, the Distribution
Agent uses whatever quoted identifier the Subscriber supports.

-SkipErrors native_error_id [:...n]

Is a colon-separated list that specifies the error numbers to be skipped by this agent. For more information, see the section
Skipping Errors in Transactional Replication in Handling Agent Errors.

-SubscriberDatabasePath subscriber_database_path

Is the path to the Jet database (.mdb file) if SubscriberType is 2 (allows a connection to a Jet database without an ODBC Data
Source Name (DSN)).

-SubscriberDB subscriber_database

Is the name of the Subscriber database.

-SubscriberLogin subscriber_login

Is the Subscriber login name. If SubscriberSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-SubscriberPassword subscriber_password

Is the Subscriber password. If SubscriberSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-SubscriberSecurityMode [0|1]

Specifies the security mode of the Subscriber. A value of 0 indicates SQL Server Authentication (default), and a value of 1 indicates
Windows Authentication Mode.

-SubscriberType [0|1|2|3]

Specifies the type of Subscriber connection used by the Distribution Agent.

SubscriberType value Description
0 Microsoft SQL Server
1 ODBC data source
2 Jet database (direct connection)
3 OLE DB data source

-SubscriptionTableName subscription_table

Is the name of the subscription table generated or used at the given Subscriber. When not specified, the
MSreplication_subscription table is used. Use this option for database management systems (DBMS) that do not support long
file names.

-SubscriptionType [0|1|2]

Specifies the subscription type for distribution. A value of 0 indicates a push subscription, a value of 1 indicates a pull
subscription, and a value of 2 indicates an anonymous subscription.

-TransactionsPerHistory [0|1|...10000]

Specifies the transaction interval for history logging. If the number of committed transactions after the last instance of history
logging is greater than this option, a history message is logged. The default is 100. A value of 0 indicates infinite
TransactionsPerHistory. See the preceding –MessageInterval parameter.

-UseDTS

Must be specified as a parameter for a publication that allows data transformation.

-UseInprocLoader

Improves the performance of the initial snapshot by causing the Distribution Agent to use the BULK INSERT command when
applying snapshot files to the Subscriber.

Command Prompt Utilities (SQL Server 2000)

Replication Log Reader Agent Utility
The Replication Log Reader Agent utility configures and begins the Log Reader Agent, which monitors the transaction log of each
database configured for replication, and copies the transactions marked for replication from the transaction log into the
distribution database.

Syntax

logread [-?]
-Publisher server_name[\instance_name]
-PublisherDB publisher_database
[-Buffers number_of_buffers]
[-Continuous]
[-DefinitionFile def_path_and_file_name]
[-Distributor server_name[\instance_name]]
[-DistributorLogin distributor_login]
[-DistributorPassword distributor_password]
[-DistributorSecurityMode [0|1]]
[-HistoryVerboseLevel [1|2]]
[-KeepAliveMessageInterval keep_alive_message_interval_seconds]
[-LoginTimeOut login_time_out_seconds]
[-MaxCmdsInTran number_of_commands]
[-MessageInterval message_interval]
[-Output output_path_and_file_name]
[-OutputVerboseLevel [0|1|2]]
[-PacketSize packet_size]
[-PollingInterval polling_interval]
[-PublisherSecurityMode [0|1]]
[-PublisherLogin publisher_login]
[-PublisherPassword publisher_password]
[-QueryTimeOut query_time_out_seconds]
[-ReadBatchSize number_of_transactions]
[-ReadBatchThreshold read_batch_threshold]

Note Parameters can be specified in any order. When optional parameters are not specified, values from predefined registry
settings on the local computer are used.

Arguments

-?

Displays usage information.

-Publisher server_name[\instance_name]

Is the name of the Publisher. Specify server_name for the default instance of Microsoft® SQL Server™ 2000 on that server.
Specify server_name\instance_name for a named instance of SQL Server 2000 on that server.

-PublisherDB publisher_database

Is the name of the Publisher database.

-Buffers number_of_buffers

Is the number of buffers available for asynchronous transactions. The default is 2. Increasing the number of buffers can improve
performance because doing so reduces memory paging; however, a larger number of buffers also increases the amount of
memory reserved for paging. Evaluate performance by seeing how a change in buffer values affects the speed of the connections
between Subscriber and Distributor.

-Continuous

Specifies whether the agent attempts to poll replicated transactions continually. If specified, the agent polls replicated transactions
from the source at polling intervals even if there are no transactions pending.

-DefinitionFile def_path_and_file_name

Is the path of the agent definition file. An agent definition file contains command prompt arguments for the agent. The content of
the file is parsed as an executable file. Use double quotation marks (") to specify argument values containing arbitrary characters.

-Distributor server_name[\instance_name]

Is the Distributor name. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server.

-DistributorLogin distributor_login

Is the Distributor login name.

-DistributorPassword distributor_password

Is the Distributor password.

-DistributorSecurityMode [0|1]

Specifies the security mode of the Distributor. A value of 0 indicates SQL Server Authentication Mode (default), and a value of 1
indicates Windows Authentication Mode.

-HistoryVerboseLevel [1|2]

Specifies the amount of history logged during a log reader operation. You can minimize the performance affect of history logging
by selecting 1.

HistoryVerboseLevel
value Description

1 Default. Always update a previous history message of
the same status (startup, progress, success, and so on). If
no previous record with the same status exists, insert a
new record.

2 Insert new history records unless the record is for such
things as idle messages or long-running job messages,
in which case update the previous records.

-KeepAliveMessageInterval keep_alive_message_interval_seconds

Is the number of seconds before the history thread checks if any of the existing connections is waiting for a response from the
server. This value can be increased to avoid having the checkup agent mark the Log Reader Agent as suspect when executing a
long-running batch. The default is 300 seconds.

-LoginTimeOut login_time_out_seconds

Is the number of seconds before the login times out. The default is 15 seconds.

-MaxCmdsInTran number_of_commands

Requires Service Pack 1 or later. MaxCmdsInTran specifies the maximum number of statements grouped into a transaction as
the Log Reader writes commands to the distribution database. Using this parameter allows the Log Reader Agent and Distribution
Agent to divide large transactions (consisting of many commands) at the Publisher into several smaller transactions when applied
at the Subscriber. Specifying this parameter can reduce contention at the Distributor and reduce latency between the Publisher
and Subscriber. Because the original transaction is applied in smaller units, the Subscriber can access rows of a large logical
Publisher transaction prior to the end of the original transaction, breaking strict transactional atomicity. The default is 0, which
preserves the transaction boundaries of the Publisher.

-MessageInterval message_interval

Is the time interval used for history logging. A history event is logged when one of these parameters is reached:

The TransactionsPerHistory value is reached after the last history event is logged.

The MessageInterval value is reached after the last history event is logged.

If there is no replicated transaction available at the source, the agent reports a no-transaction message to the Distributor.
This option specifies how long the agent waits before reporting another no-transaction message. Agents always report a
no-transaction message when they detect that there are no transactions available at the source after previously processing
replicated transactions. The default is 60 seconds.

-Output output_path_and_file_name

Is the path of the agent output file. If the file name is not provided, the output is sent to the console. If the specified file name
exists, the output is appended to the file.

-OutputVerboseLevel [0|1|2]

Specifies whether the output should be verbose. If the verbose level is 0, only error messages are printed. If the verbose level is 1,
all the progress report messages are printed. If the verbose level is 2 (default), all error messages and progress report messages
are printed, which is useful for debugging.

-PacketSize packet_size

Is the packet size, in bytes. The default is 4096 (bytes).

-PollingInterval polling_interval

Is how often, in seconds, the log is queried for replicated transactions. The default is 2 seconds.

-PublisherSecurityMode [0|1]

Specifies the security mode of the Publisher. A value of 0 indicates SQL Server Authentication (default), and a value of 1 indicates
Windows Authentication Mode.

-PublisherLogin publisher_login

Is the Publisher login name.

-PublisherPassword publisher_password

Is the Publisher password.

-QueryTimeOut query_time_out_seconds

Is the number of seconds before the query times out. The default is 300 seconds.

-ReadBatchSize number_of_transactions

Is the maximum number of transactions read out of the transaction log of the publishing database. The default is 500.

-ReadBatchThreshold number of commands

Is the number of replication commands to be read from the transaction log before being issued to the Subscriber by the
Distribution Agent. The default is 0. If this parameter is not specified, the Log Reader Agent will read to the end of the log or to the
number specified in -ReadBatchSize (number of transactions).

Command Prompt Utilities (SQL Server 2000)

Replication Merge Agent Utility
The Replication Merge Agent utility configures and begins the Merge Agent, which applies the initial snapshot held in the
database tables to the Subscribers. It also merges incremental data changes that occurred at the Publisher after the initial
snapshot was created, and reconciles conflicts either according to the rules you configure or using a custom resolver you create.

Syntax

replmerg [-?]
-Publisher server_name[\instance_name]
-PublisherDB publisher_database
-Publication publication
-Subscriber server_name[\instance_name]
-SubscriberDB subscriber_database
[-AltSnapshotFolder alt_snapshot_folder_path]
[-Continuous]
[-DefinitionFile def_path_and_file_name]
[-DestThreads number_of_destination_threads]
[-Distributor server_name[\instance_name]]
[-DistributorAddress distributor_address]
[-DistributorLogin distributor_login]
[-DistributorNetwork distributor_network]
[-DistributorPassword distributor_password]
[-DistributorSecurityMode [0|1]]
[-DownloadGenerationsPerBatch download_generations_per_batch]
[-DownloadReadChangesPerBatch download_read_changes_per_batch]
[-DownloadWriteChangesPerBatch download_write_changes_per_batch]
[-DynamicSnapshotLocation dynamic_snapshot_location]
[-ExchangeType [1|2|3]]
[-FastRowCount [0|1]]
[-FileTransferType [0|1]]
[-ForceConvergenceLevel [0|1|2 (Publisher|Subscriber|Both)]]
[-FtpAddress ftp_address]
[-FtpPassword ftp_password]
[-FtpPort ftp_port]
[-FtpUserName ftp_user_name]
[-HistoryVerboseLevel [1|2|3]]
[-Hostname host_name]
[-InteractiveResolution [0|1]]
[-KeepAliveMessageInterval keep_alive_message_interval_seconds]
[-LoginTimeOut login_time_out_seconds]
[-MaxBcpThreads number_of_threads]
[-MaxDownloadChanges number_of_download_changes]
[-MaxUploadChanges number_of_upload_changes]
[-MetadataRetentionCleanup [0|1]]
[-Output]
[-OutputVerboseLevel [0|1|2]]
[-PollingInterval polling_interval]
[-ProfileName profile_name]
[-PublisherAddress publisher_address]
[-PublisherLogin publisher_login]
[-PublisherNetwork publisher_network]
[-PublisherPassword publisher_password]
[-PublisherSecurityMode [0|1]]
[-QueryTimeOut query_time_out_seconds]
[-SrcThreads number_of_source_threads]
[-StartQueueTimeout start_queue_timeout_seconds]
[-SubscriberDatabasePath subscriber_path]
[-SubscriberDBAddOption [0|1|2|3]]
[-SubscriberLogin subscriber_login]
[-SubscriberPassword subscriber_password

[-SubscriberSecurityMode [0|1]]
[-SubscriberType [0|1|2|3|4|5|6|7|8]]
[-SubscriptionType [0|1|2]]
[-SyncToAlternate [0|1]
[-UploadGenerationsPerBatch upload_generations_per_batch]
[-UploadReadChangesPerBatch upload_read_changes_per_batch]
[-UploadWriteChangesPerBatch upload_write_changes_per_batch]
[-UseInprocLoader]
[-Validate [0|1|2|3]]
[-ValidateInterval validate_interval]

Note Parameters can be specified in any order. When optional parameters are not specified, values from predefined registry
settings on the local computer are used.

Arguments

-?

Prints all available parameters.

-Publisher server_name[\instance_name]

Is the name of the Publisher. Specify server_name for the default instance of Microsoft® SQL Server™ 2000 on that server.
Specify server_name\instance_name for a named instance of SQL Server 2000 on that server.

-PublisherDB publisher_database

Is the name of the Publisher database.

-Publication publication

Is the name of the publication. This parameter is only valid if the publication is set to always have a snapshot available for new or
reinitialized subscriptions.

-Subscriber server_name[\instance_name]

Is the name of the Subscriber. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server.

-SubscriberDB subscriber_database

Is the name of the Subscriber database.

-AltSnapshotFolder alt_snapshot_folder_path

Is the path to the folder that contains the initial snapshot for a subscription.

-Continuous

Specifies whether the agent attempts to poll replicated transactions continually. If specified, the agent polls replicated transactions
from the source at polling intervals, even if there are no transactions pending.

-DestThreads number_of_destination_threads

Specifies the number of destination threads that the Merge Agent uses to apply changes at the destination. The destination is the
Publisher during upload and the Subscriber during download. The default is 4.

-DefinitionFile def_path_and_file_name

Is the path of the agent definition file. An agent definition file contains command prompt arguments for the agent. The content of
the file is parsed as an executable file. Use double quotation marks (") to specify argument values containing arbitrary characters.

-Distributor server_name[\instance_name]

Is the Distributor name. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server. For Distributor (push) distribution, the
name defaults to the name of the default instance of SQL Server on the local computer.

-DistributorAddress distributor_address

Is the network connection string for the Net-Library defined in the DistributorNetwork option. If the DistributorNetwork
option is the TCP/IP Sockets Net-Library, then the connection string is in the form of:

'address,socket'

For more information about the format, see Network Protocols. This option is useful for configuring connections across the
Internet.

-DistributorLogin distributor_login

Is the Distributor login name.

-DistributorNetwork distributor_network

Is the Net-Library (without the .dll extension) to use when connecting to the Distributor. This option is useful when configuring the
Merge Agent to connect to a Distributor over the Internet.

-DistributorPassword distributor_password

Is the Distributor password.

-DistributorSecurityMode [0|1]

Specifies the security mode of the Distributor. A value of 0 indicates SQL Server Authentication Mode (default), and a value of 1
indicates Windows Authentication Mode.

-DownloadGenerationsPerBatch download_generations_per_batch

Is the number of generations to be processed in a single batch while downloading changes from the Publisher to the Subscriber.
A generation is defined as a logical group of changes per article. The default for a reliable communication link is 100. The default
for an unreliable communication link is 10.

-DownloadReadChangesPerBatch download_read_changes_per_batch

Is the number of changes to be read in a single batch while downloading changes from the Publisher to the Subscriber. The
default is 100.

-DownloadWriteChangesPerBatch download_write_changes_per_batch

Is the number of changes to be applied in a single batch while downloading changes from the Publisher to the Subscriber. The
default is 100.

-DynamicSnapshotLocation dynamic_snapshot_location

Is the location of the dynamic snapshot.

-ExchangeType [1|2|3]

Specifies the type of exchange. A value of 1 indicates that the agent should upload data changes from the Subscriber to the
Publisher. A value of 2 indicates that the agent should download data changes from the Publisher to the Subscriber. A value of 3,
the default, indicates that the agent should first upload data changes from the Subscriber to the Publisher and then download
data changes from the Publisher to the Subscriber.

-FastRowCount [0|1]

Specifies what type of rowcount calculation method should be used for rowcount validation. A value of 1 (default) indicates the
fast method. A value of 0 indicates the full rowcount method.

-FileTransferType [0|1]

Specifies the file transfer type. A value of 0 indicates UNC (universal naming convention), and a value of 1 indicates FTP (file
transfer protocol).

-ForceConvergenceLevel [0|1|2 (Publisher|Subscriber|Both)]

Specifies the level of convergence the Merge Agent should use. The default is 0.

ForceConvergenceLevel
value Description

0 Default. Perform a standard merge without
additional convergence.

1 Force convergence for all generations.

2 Force convergence for all generations and correct
corrupt lineages. When specifying this value, specify
where lineages should be corrected: the Publisher,
the Subscriber, or both the Publisher and the
Subscriber.

-FtpAddress ftp_address

Is the network address of the FTP service for the Distributor. When not specified, DistributorAddress is used. If the
DistributorAddress is not specified, Distributor is used.

-FtpPassword ftp_password

Is the user password used to connect to the FTP service.

-FtpPort ftp_port

Is the port number of the FTP service for the Distributor. When not specified, the default port number for FTP service (21) is used.

-FtpUserName ftp_user_name

Is the user name used to connect to the FTP service. When not specified, anonymous is used.

-HistoryVerboseLevel [1|2|3]

Specifies the amount of history logged during a merge operation. You can minimize the effect of history logging on performance
by selecting 1.

HistoryVerboseLevel
value Description

1 Always update a previous history message of the same
status (startup, progress, success, and so on). If no
previous record with the same status exists, insert a
new record.

2 Default. Insert new history records unless the record is
for such things as idle messages or long-running job
messages. In those instances, update the previous
records.

3 Always insert new records, unless it is for idle
messages.

-Hostname host_name

Is the network name of the local computer. The default is the local computer name.

-LoginTimeOut login_time_out_seconds

Is the number of seconds before the login times out. The default is 15 seconds.

-MaxBcpThreads number_of_threads

Specifies the number of bulk copy operations that can be performed in parallel. The maximum number of threads and ODBC
connections that exist simultaneously is the lesser of MaxBcpThreads or the number of bulk copy requests that appear in the
system table sysmergeschemachange in the publication database. MaxBcpThreads must have a value greater than 0 and has
no hard-coded upper limit. The default is 1.

-MaxDownloadChanges number_of_download_changes

Specifies the maximum number of changed rows that should be downloaded from the Publisher to the Subscriber. The number of
rows downloaded may be higher than the specified maximum because: complete generations are processed; and parallel
destination threads may run, each of which processes at least 100 changes in its first pass. By default all changes that are ready to
be downloaded are sent.

-MaxUploadChanges number_of_upload_changes

Specifies the maximum number of changed rows that should be uploaded from the Subscriber to the Publisher. The number of
rows uploaded may be higher than the specified maximum because: complete generations are processed; and parallel destination
threads may run, each of which processes at least 100 changes in its first pass. By default all changes that are ready to be

uploaded are sent.

-MetadataRetentionCleanup [0|1]

Requires Service Pack 1 or later. MetadataRetentionCleanup specifies if meta data from MSmerge_genhistory,
MSmerge_contents and MSmerge_tombstone should be cleaned up based on the publication retention period. For Service
Pack 1 and later, the default is 1, indicating that cleanup should occur. A value of 0 indicates that cleanup should not occur
automatically. For more information on meta data cleanup, see How Merge Replication Works.

-Output output_path_and_file_name

Is the path of the agent output file. If the file name is not provided, the output is sent to the console. If the specified file name
exists, the output is appended to the file.

-OutputVerboseLevel [0|1|2]

Specifies whether the output should be verbose. If the verbose level is 0, only error messages are printed. If the verbose level is 1,
all of the progress report messages are printed. If the verbose level is 2 (default), all error messages and progress report
messages are printed, which is useful for debugging.

-PollingInterval polling_interval

Is how often, in seconds, the Publisher or Subscriber is queried for data changes. The default is 60 seconds.

-ProfileName profile_name

Specifies an agent profile to use for agent parameters. If ProfileName is NULL, the agent profile is disabled. If ProfileName is
not specified, the default profile for the agent type is used.

-PublisherAddress publisher_address

Is the network connection string for the Net-Library defined in the PublisherNetwork option. If the PublisherNetwork option is
the TCP/IP Sockets Net-Library, the connection string is in the form of:

'address,socket'

For more information about the format, see Network Protocols. This option is useful for configuring connections across the
Internet.

-PublisherLogin publisher_login

Is the Publisher login name. If PublisherSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-PublisherNetwork publisher_network

Is the Net-Library (without the .dll extension) to use when connecting to the Publisher. This option is useful when configuring the
Merge Agent to connect to a Publisher over the Internet.

-PublisherPassword publisher_password

Is the Publisher password. If PublisherSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-PublisherSecurityMode [0|1]

Specifies the security mode of the Publisher. A value of 0 indicates SQL Server Authentication (default), and a value of 1 indicates
Windows Authentication Mode.

-QueryTimeOut query_time_out_seconds

Is the number of seconds before the query times out. The default is 300 seconds.

-SrcThreads number_of_source_threads

Specifies the number of source threads that the Merge Agent uses to enumerate changes from the source. The source is the
Subscriber during upload and the Publisher during download. The default is 3.

-StartQueueTimeout start_queue_timeout_seconds

Is the maximum number of seconds that the Merge Agent waits when the number of concurrent merge processes running is at
the limit set by the @max_concurrent_merge property of sp_addmergepublication. If the maximum number of seconds is
reached and the Merge Agent is still waiting, it will exit. A value of 0 means that the agent waits indefinitely, although it can be
cancelled.

-SubscriberDatabasePath subscriber_database_path

Is the path to the Jet database (.mdb file) if SubscriberType is 2 (allows a connection to a Jet database without an ODBC Data
Source Name (DSN)).

-SubscriberDBAddOption [0|1|2|3]

Specifies whether there is an existing Subscriber database.

SubscriberDBAddOption
value Description

0 Use the existing database (default).
1 Create a new, empty Subscriber database.
2 Create a new database and attach it to the specified

file.
3 Create a new database, attach the database, and

enable all subscriptions that might exist at the file.

Note When you use values 2 and 3, the database path for the Subscriber must be specified in the SubscriberDatabasePath
option.

SubscriberLogin subscriber_login

Is the Subscriber login name. If SubscriberSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-SubscriberPassword subscriber_password

Is the Subscriber password. If SubscriberSecurityMode is 0 (for SQL Server Authentication), this parameter must be specified.

-SubscriberSecurityMode [0|1]

Specifies the security mode of the Subscriber. A value of 0 indicates SQL Server Authentication (default), and a value of 1 indicates
Windows Authentication Mode.

-SubscriberType [0|1|2|3|4|5|6|7|8]

Specifies the type of Subscriber connection used by the Merge Agent.

SubscriberType value Description
0 Microsoft SQL Server
1 ODBC data source
2 Jet database (direct connection)
3 OLE DB data source
4 Exchange data source
5 Oracle data source
6 DB2 data source
7 SQL Server CE (SSCE) data source
8 XML data source

-SubscriptionType [0|1|2]

Specifies the subscription type for distribution. A value of 0 indicates a push subscription (default), a value of 1 indicates a pull
subscription, and a value of 2 indicates an anonymous subscription.

-SyncToAlternate [0|1]

Specifies whether the Merge Agent is synchronizing between a Subscriber and an alternate Publisher. A value of 1 indicates that it
is an alternate Publisher. The default is 0.

-UploadGenerationsPerBatch upload_generations_per_batch

Is the number of generations to be processed in a single batch while uploading changes from the Subscriber to the Publisher. A
generation is defined as a logical group of changes per article. The default for a reliable communication link is 100. The default for
an unreliable communication link is 1.

-UploadReadChangesPerBatch upload_read_changes_per_batch

Is the number of changes to be read in a single batch while uploading changes from the Subscriber to the Publisher. The default is
100.

-UploadWriteChangesPerBatch upload_write_changes_per_batch

Is the number of changes to be applied in a single batch while uploading changes from the Subscriber to the Publisher. The
default is 100.

-UseInprocLoader

Improves the performance of the initial snapshot by causing the Merge Agent to use the BULK INSERT command when applying
snapshot files to the Subscriber.

-Validate [0|1|2|3]

Specifies whether validation should be done at the end of the merge session, and, if so, what type of validation.

Validate value Description
0 No validation (default)
1 Rowcount-only validation
2 Rowcount and checksum validation
3 Rowcount and binary checksum validation

Note The value of 3 is the recommended value for use with SQL Server 2000; however, it cannot be used with earlier versions of
SQL Server.

-ValidateInterval validate_interval

Is how often, in minutes, the subscription is validated in continuous mode. The default is 60 minutes.

Command Prompt Utilities (SQL Server 2000)

Replication Queue Reader Agent Utility
The Replication Queue Reader Agent utility configures and begins the Queue Reader Agent, which reads messages stored in a
SQL Server queue or a Microsoft Message Queue and then applies those messages to the Publisher. Queue Reader Agent is used
with snapshot and transactional publications that allow queued updating.

Syntax

qrdrsvc [-?]
[-Continuous]
[-DefinitionFile definition_file]
[-Distributor server_name[\instance_name]]
[-DistributionDB distribution_database]
[-DistributorLogin distributor_login]
[-DistributorPassword distributor_password]
[-DistributorSecurityMode [0|1]]
[-HistoryVerboseLevel [1|2]]
[-LoginTimeOut login_time_out_seconds]
[-Output output_path_and_file_name]
[-OutputVerboseLevel [0|1|2]]
[-PollingInterval polling_interval]
[-QueryTimeOut query_time_out_seconds]
[-ResolverState [1|2|3]]

Note Parameters can be specified in any order. When optional parameters are not specified, values from predefined registry
settings on the local computer are used.

Arguments

-?

Displays usage information.

-Continuous

Specifies whether the agent attempts to process queued transactions continuously. If specified, the agent continues execution
even if there are no queued transactions pending from any of the subscribers.

-DefinitionFile def_path_and_file_name

Is the path of the agent definition file. An agent definition file contains command prompt arguments for the agent. The content of
the file is parsed as an executable file. Use double quotation marks (") to specify argument values containing arbitrary characters.

-Distributor server_name[\instance_name]

Is the Distributor name. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server. If not specified, the name defaults to the
name of the default instance of SQL Server on the local computer.

-DistributionDB distribution_database

Is the distribution database.

-DistributorLogin distributor_login

Is the Distributor login name.

-DistributorPassword distributor_password

Is the Distributor password.

-DistributorSecurityMode [0|1]

Specifies the security mode of the Distributor. A value of 0 indicates SQL Server Authentication Mode (default), and a value of 1
indicates Windows Authentication Mode.

-HistoryVerboseLevel [1|2]

Specifies the amount of history logged during a queue reader operation. You can minimize the effect of history logging on

performance by selecting 1.

HistoryVerboseLevel
value Description

1 Default. Always update a previous history message of
the same status (startup, progress, success, and so on). If
no previous record with the same status exists, insert a
new record.

2 Insert new history records unless the record is for such
things as idle messages or long-running job messages,
in which case update the previous records.

-LoginTimeOut login_time_out_seconds

Is the number of seconds before the login times out. The default is 15 seconds.

-Output output_path_and_file_name

Is the path of the agent output file. If the file name is not provided, the output is sent to the console. If the specified file name
exists, the output is appended to the file.

-OutputVerboseLevel [0|1|2]

Specifies whether the output should be verbose. If the verbose level is 0, only error messages are printed. If the verbose level is 1,
all the progress report messages are printed. If the verbose level is 2 (default), all error messages and progress report messages
are printed, which is useful for debugging.

-PollingInterval polling_interval

Is relevant only for updating subscriptions that use SQL Server based queues. Specifies how often, in seconds, the SQL Server
queue is polled for pending queued transactions. The value can be between 0 and 240 seconds. The default is 10 seconds.

-QueryTimeOut query_time_out_seconds

Is the number of seconds before the query times out. The default is 300 seconds.

-ResolverState [1|2|3]

Specifies how queued updating conflicts are resolved. A value of 1 indicates the Publisher wins the conflict, and the current
conflicting queued transaction will be rolled back on the Publisher and the originating updating Subscriber; the processing of
subsequent queued transactions will continue. A value of 2 indicates the Subscriber wins the conflict, and the queued transaction
will override the values on the Publisher. A value of 3 indicates that any conflict will result in Subscriber re-initialization; the
Publisher wins the conflict, processing of subsequent queued transactions will be terminated, and the subscription will be
reinitialized. The default setting is 1 for transactional publications and 3 for snapshot publications.

Command Prompt Utilities (SQL Server 2000)

Replication Snapshot Agent Utility
The Replication Snapshot Agent utility configures and begins the Snapshot Agent, which prepares snapshot files containing
schema and data of published tables and database objects, stores the files in the snapshot folder, and records synchronization
jobs in the distribution database.

Syntax

snapshot [-?]
-Publisher server_name[\instance_name]
-PublisherDB publisher_database
-Publication publication_name
[-70Subscribers]
[-BcpBatchSize bcp_batch_size]
[-DefinitionFile def_path_and_file_name]
[-Distributor server_name[\instance_name]]
[-DistributorLogin distributor_login]
[-DistributorPassword distributor_password]
[-DistributorSecurityMode [0|1]]
[-DynamicFilterHostName dynamic_filter_host_name]
[-DynamicFilterLogin dynamic_filter_login]
[-DynamicSnapshotLocation dynamic_snapshot_location]
[-FieldDelimiter field_delimiter]
[-HistoryVerboseLevel [1|2|3]
[-LoginTimeOut login_time_out_seconds]
[-MaxBcpThreads]
[-Output output_path_and_file_name]
[-OutputVerboseLevel [0|1|2]
[-ProfileName profile_name]
[-PublisherLogin publisher_login]
[-PublisherPassword publisher_password]
[-PublisherSecurityMode [0|1]]
[-QueryTimeOut query_time_out_seconds]
[-ReplicationType [1|2]]
[-RowDelimiter row_delimiter]
[-StartQueueTimeout start_queue_timeout_seconds]

Note Parameters can be specified in any order.

Arguments

-?

Prints all available parameters.

-Publisher server_name[\instance_name]

Is the name of the Publisher. Specify server_name for the default instance of Microsoft® SQL Server™ 2000 on that server.
Specify server_name\instance_name for a named instance of SQL Server 2000 on that server.

-PublisherDB publisher_database

Is the name of the Publisher database.

-Publication publication

Is the name of the publication. This parameter is only valid if the publication is set to always have a snapshot available for new or
reinitialized subscriptions.

-70Subscribers

Must be used if any Subscribers are running SQL Server version 7.0.

-BcpBatchSize bcp_batch_size

Is the number of rows to send in a bulk copy operation. When performing a bcp in operation, the batch size is the number of

rows to send to the server as one transaction, and also the number of rows that must be sent before the Distribution Agent logs a
bcp progress message. When performing a bcp out operation, a fixed batch size of 1000 is used. A value of 0 indicates no
message logging.

-DefinitionFile def_path_and_file_name

Is the path of the agent definition file. An agent definition file contains command prompt arguments for the agent. The content of
the file is parsed as an executable file. Use double quotation marks (") to specify argument values containing arbitrary characters.

-Distributor distributor

Is the Distributor name.

-DistributorLogin server_name[\instance_name]

Is the Distributor login name. Specify server_name for the default instance of SQL Server 2000 on that server. Specify
server_name\instance_name for a named instance of SQL Server 2000 on that server.

-DistributorPassword distributor_password

Is the Distributor password.

-DistributorSecurityMode [0|1]

Specifies the security mode of the Distributor. A value of 0 indicates SQL Server Authentication Mode (default), and a value of 1
indicates Windows Authentication Mode.

-DynamicFilterHostName dynamic_filter_host_name

Is used to set a value for HOST_NAME() in filtering when a dynamic snapshot is created. For example, if the subset filter clause
"rep_id = HOST_NAME()" is specified for an article, and you set the DynamicFilterHostName property to "FBJones" before
calling the Merge Agent, only rows having "FBJones" in the rep_id column will be replicated.

-DynamicFilterLogin dynamic_filter_login

Is used to set a value for SUSER_SNAME() in filtering when a dynamic snapshot is created. For example, if the subset filter clause
"user_id = SUSER_SNAME()" is specified for an article, and you set the DynamicFilterLogin property to "rsmith" before calling
the Run method of the SQLSnapshot object, only rows having "rsmith" in the user_id column will be included in the snapshot.

-DynamicSnapshotLocation dynamic_snapshot_location

Is the location where the dynamic snapshot should be generated.

-FieldDelimiter field_delimiter

Is the character or character sequence that marks the end of a field in the SQL Server bulk-copy data file. The default is
\n<x$3>\n.

-HistoryVerboseLevel [1|2|3]

Specifies the amount of history logged during a snapshot operation. You can minimize the effect of history logging on
performance by selecting 1.

HistoryVerboseLevel
value Description

1 Default. Always update a previous history message of the
same status (startup, progress, success, and so on). If no
previous record with the same status exists, insert a new
record.

2 Insert new history records unless the record is for such
things as idle messages or long-running job messages, in
which case update the previous records.

3 Always insert new records, unless it is for idle messages.

-LoginTimeOut login_time_out_seconds

Is the number of seconds before the login times out. The default is 15 seconds.

-MaxBcpThreads number_of_threads

Specifies the number of bulk copy operations that can be performed in parallel. The maximum number of threads and ODBC

connections that exist simultaneously is the lesser of MaxBcpThreads or the number of bulk copy requests that appear in the
synchronization transaction in the distribution database. MaxBcpThreads must have a value greater than 0 and has no hard-
coded upper limit. The default is 1.

-Output output_path_and_file_name

Is the path of the agent output file. If the file name is not provided, the output is sent to the console. If the specified file name
exists, the output is appended to the file.

-OutputVerboseLevel [0|1|2]

Specifies whether the output should be verbose. If the verbose level is 0, only error messages are printed. If the verbose level is 1,
all the progress report messages are printed. If the verbose level is 2 (default), all error messages and progress report messages
are printed, which is useful for debugging.

-ProfileName profile_name

Specifies an agent profile to use for agent parameters. If ProfileName is NULL, the agent profile is disabled. If ProfileName is
not specified, the default profile for the agent type is used.

-PublisherLogin publisher_login

Is the Publisher login name.

-PublisherPassword publisher_password

Is the Publisher password.

-PublisherSecurityMode [0|1]

Specifies the security mode of the Publisher. A value of 0 indicates SQL Server Authentication (default), and a value of 1 indicates
Windows Authentication Mode.

-QueryTimeOut query_time_out_seconds

Is the number of seconds before the query times out. The default is 300 seconds.

-ReplicationType [1|2]

Specifies the type of replication. A value of 1 indicates transactional replication, and a value of 2 indicates merge replication.

-RowDelimiter row_delimiter

Is the character or character sequence that marks the end of a row in the SQL Server bulk-copy data file. The default is
\n<,@g>\n.

-StartQueueTimeout start_queue_timeout_seconds

Is the maximum number of seconds that the Snapshot Agent waits when the number of concurrent dynamic snapshot processes
running is at the limit set by the @max_concurrent_dynamic_snapshots property of sp_addmergepublication. If the
maximum number of seconds is reached and the Snapshot Agent is still waiting, it will exit. A value of 0 means that the agent
waits indefinitely, although it can be cancelled.

Command Prompt Utilities (SQL Server 2000)

scm Utility
 New Information - SQL Server 2000 SP3.

The scm utility (the Service Control Manager) creates, modifies, starts, stops, or pauses any of the Microsoft® SQL Server™ 2000
services that run under Microsoft Windows NT® and Microsoft Windows® 2000. Under Microsoft Windows 98, the scm utility
starts, stops, or pauses the equivalent SQL Server applications.

Syntax

scm [-?]
 -Action {1 | 2 | 3 | 4 | 5 | 6 | 7}
 -Service service_name
 [-Server server_name]
 [-Pwd sa_password]
 [-StartupOptions startup_option [...n]]
 [-ExePath exe_file_path]
 [-SvcStartType {1 | 2}]
 [-SvcAccount service_account]
 [-SvcPwd service_password]
 [-Dependencies service_name_dependency [;...n]]

Arguments

[-?]

Displays usage information.

-Action {1 | 2 | 3 | 4 | 5 | 6 | 7}

Specifies which of these actions the utility performs.

Code Action
1 Start
2 Restart
3 Is Running
4 Delete Service
5 Install Service
6 Stop
7 Modify

The scm utility returns a message box indicating if the action succeeded or failed. When using the 3 action code, success indicates
the service is running and failure indicates the service is not running.

-Service service_name

Specifies which SQL Server 2000 service is affected.

[-Server server_name]

Specifies the server for which a service is affected. The default is the local computer.

Note Do not include an instance name with the server_name. Only use the computer name. To affect a named instance, specify
the unique service_name with the -Service option.

[-Pwd sa_password]

Is the sa login password on the server. The default is a blank password.

Security Note Do not use a blank password. Use a strong password. For more information, see Security Rules.

[-StartupOptions startup_option [...n]]

Specifies a space-delimited list of server startup options to be used when the service starts. This option is applicable when you
install or modify the service.

[-ExePath exe_file_path]

Specifies the file path to the service executable on the local computer. This option is applicable when you install or modify the
service.

[-SvcStartType {1 | 2}]

Specifies whether the service starts automatically. If 1 is specified, the service must be started manually. If 2 is specified, the
service starts automatically when the computer starts. This option is applicable when you install or modify the service.

[-SvcAccount service_account]

Specifies the network login account to assign to the service. This option is applicable when you install or modify the service.

[-SvcPwd service_password]

Specifies the network login account password. This option is applicable when you install or modify the service.

[-Dependencies service_name_dependency [;...n]]

Specifies dependencies that this service has on other services. A dependent service can run only if the parent service is running.
This option is applicable when you install or modify the service.

Command Prompt Utilities (SQL Server 2000)

sqlagent Application
The sqlagent application starts SQL Server Agent from the command prompt. Usually, SQL Server Agent should be run from
SQL Server Service Manager or by using SQL-DMO methods in an application. Only run sqlagent from the command prompt
when you are diagnosing SQL Server Agent, or when you are directed to by your primary support provider.

Syntax

sqlagent -c [-v]

Arguments

-c

Indicates that SQL Server Agent is running from the command prompt and is independent of the Windows NT Service Control
Manager. When -c is used, SQL Server Agent cannot be controlled from either the Services application in Control Panel or SQL
Server Service Manager.

-v

Indicates that SQL Server Agent runs in verbose mode and writes diagnostic information to the command-prompt window. The
diagnostic information is the same as the information written to the SQL Server Agent error log.

Command Prompt Utilities (SQL Server 2000)

sqldiag Utility
 New Information - SQL Server 2000 SP3.

The sqldiag utility gathers and stores diagnostic information and the contents of the query history trace (if running.) The output
file includes error logs, output from sp_configure and additional version information. If the query history trace was running
when the utility was invoked, the trace file will contain the last 100 SQL events and exceptions. sqldiag is intended to expedite
and simplify information gathering by Microsoft Product Support Services.

Syntax

sqldiag
 [-?] |
 [-I instance_name]
 [[-U login_ID] [-P password] | [-E]]
 [-O output_file]
 [-X] [-M] [-C]

Arguments

-?

Displays usage information.

-I instance_name

Specifies the instance of Microsoft® SQL Server™ 2000 on the local server on which to connect. Omit the -I option to connect to
the default instance on the local server.

-U login_ID

Is the user login ID. Login IDs are case-sensitive.

-P password

Is the password for the specified login_ID. If the -P option is specified at the end of the command prompt specifying password,
sqldiag uses the default without password of NULL. Passwords are case-sensitive.

Security Note NULL passwords are not recommended.

-E

Uses a trusted connection instead of requesting a password.

-O output_file

Redirects sqldiag output to the file named output_file. If the -O option is not specified, the output file name defaults to sqldiag.txt.
In this case, the trace file names remain unchanged as blackbox.trc and blackbox_01.trc.

If the -O option is specified, sqldiag renames trace files blackbox.trc and blackbox_01.trc based on the name used for output_file
(for example, if output_file is specified as MyDiagnostics.txt, the trace files will be renamed to MyDiagnostics.trc and
MyDiagnostics_01.trc respectively).

Use of the -O option enables users to store several sqldiag outputs in the same directory.

-X

Excludes error logs.

-M

Performs DBCC stackdump.

-C

Retrieves cluster information.

Command Prompt Utilities (SQL Server 2000)

sqlmaint Utility
 New Information - SQL Server 2000 SP3.

The sqlmaint utility performs a specified set of maintenance operations on one or more databases. Use sqlmaint to run DBCC
checks, back up a database and its transaction log, update statistics, and rebuild indexes. All database maintenance activities
generate a report that can be sent to a designated text file, HTML file, or e-mail account.

Syntax

sqlmaint
[-?] |
[
 [-S server_name[\instance_name]]
 [-U login_ID [-P password]]
 {
 [-D database_name | -PlanName name | -PlanID guid]
 [-Rpt text_file]
 [-To operator_name]
 [-HtmlRpt html_file [-DelHtmlRpt <time_period>]]
 [-RmUnusedSpace threshold_percent free_percent]
 [-CkDB | -CkDBNoIdx]
 [-CkAl | -CkAlNoIdx]
 [-CkCat]
 [-UpdOptiStats sample_percent]
 [-RebldIdx free_space]
 [-WriteHistory]
 [
 {-BkUpDB [backup_path] | -BkUpLog [backup_path] }
 {-BkUpMedia
 {DISK [[-DelBkUps <time_period>]
 [-CrBkSubDir] [-UseDefDir]
]
 | TAPE
 }
 }
 [-BkUpOnlyIfClean]
 [-VrfyBackup]
]
 }
]

<time_period> ::=
number[minutes | hours | days | weeks | months]

Note The parameters and their values must be separated by a space. For example, there must be a space between -S and server.

Arguments

-?

Specifies that the syntax diagram for sqlmaint be returned. This parameter must be used alone.

-S server_name[\instance_name]

Specifies the target instance of Microsoft® SQL Server™ 2000. Specify server_name to connect to the default instance of SQL
Server 2000 on that server. Specify server_name\instance_name to connect to a named instance of SQL Server 2000 on that
server. If no server is specified, sqlmaint connects to the default instance of SQL Server 2000 on the local computer.

-U login_ID

Specifies the login ID to use when connecting to the server. If not supplied, sqlmaint attempts to use Windows Authentication. If
login_ID contains special characters, it must be enclosed in double quotation marks ("); otherwise, the double quotation marks are
optional.

Security Note When possible, use Windows Authentication.

-P password

Specifies the password for the login ID. Only valid if the -U parameter is also supplied. If password contains special characters, it
must be enclosed in double quotation marks; otherwise, the double quotation marks are optional.

Security Note The password will not be masked. When possible, use Windows Authentication.

-D database_name

Specifies the name of the database in which to perform the maintenance operation. If database_name contains special characters,
it must be enclosed in double quotation marks; otherwise, the double quotation marks are optional.

-PlanName name

Specifies the name of a database maintenance plan defined using the Database Maintenance Plan Wizard. The only information
sqlmaint uses from the plan is the list of the databases in the plan. Any maintenance activities you specify in the other sqlmaint
parameters are applied to this list of databases. You can get the plan name from SQL Server Enterprise Manager.

-PlanID guid

Specifies the globally unique identifier (GUID) of a database maintenance plan defined using the Database Maintenance Plan
Wizard. The only information sqlmaint uses from the plan is the list of the databases in the plan. Any maintenance activities you
specify in the other sqlmaint parameters are applied to this list of databases. This must match a plan_id value in
msdb.dbo.sysdbmaintplans.

-Rpt text_file

Specifies the full path and name of the file into which the report is to be generated. The report is also generated on the screen. The
report maintains version information by adding a date to the file name. The date is generated as follows: at the end of the file
name but before the period, in the form _yyyyMMddhhmm. Yyyy = year, MM = month, dd = day, hh = hour, mm = minute.

If you run the utility at 10:23 A.M. on December 1, 1996, and this is the text_file value:

c:\Program Files\Microsoft SQL Server\Mssql\Backup\Nwind_maint.rpt

The generated file name is:

c:\Program Files\Microsoft SQL Server\Mssql\Backup\Nwind_maint_199612011023.rpt

The full UNC file name is required for text_file when sqlmaint accesses a remote server.

-To operator_name

Specifies the operator to whom the generated report will be sent through SQL Mail. The operator can be defined by using SQL
Server Enterprise Manager.

-HtmlRpt html_file

Specifies the full path and name of the file into which an HTML report is to be generated. sqlmaint generates the file name by
appending a string of the format _yyyyMMddhhmm to the file name, just as it does for the -Rpt parameter.

The full UNC file name is required for html_file when sqlmaint accesses a remote server.

-DelHtmlRpt <time_period>

Specifies that any HTML report in the report directory be deleted if the time interval after the creation of the report file exceeds
<time_period>.

-DelHtmlRpt looks for files whose name fits the pattern generated from the html_file parameter. If html_file is c:\Program
Files\Microsoft SQL Server\Mssql\Backup\Nwind_maint.htm, then -DelHtmlRpt causes sqlmaint to delete any files whose
names match the pattern c:\Program Files\Microsoft SQL Server\Mssql\Backup\Nwind_maint*.htm and that are older than the
specified <time_period>.

-RmUnusedSpace threshold_percent free_percent

Specifies that unused space be removed from the database specified in -D. This option is only useful for databases that are
defined to grow automatically. Threshold_percent specifies in megabytes the size that the database must reach before sqlmaint
attempts to remove unused data space. If the database is smaller than the threshold_percent, no action is taken. Free_percent
specifies how much unused space must remain in the database, specified as a percentage of the final size of the database. For
example, if a 200-MB database contains 100 MB of data, specifying 10 for free_percent results in the final database size being 110
MB. Note that a database will not be expanded if it is smaller than free_percent plus the amount of data in the database. For

example, if a 108-MB database has 100 MB of data, specifying 10 for free_percent will not expand the database to 110 MB; it will
remain at 108 MB.

-CkDB | -CkDBNoIdx

Specifies that a DBCC CHECKDB statement or a DBCC CHECKDB statement with the NOINDEX option be run in the database
specified in -D. For more information, see DBCC CHECKDB.

A warning is written to text_file if the database is in use when sqlmaint runs.

-CkAl | -CkAlNoIdx

Specifies that a DBCC NEWALLOC statement or a DBCC NEWALLOC statement with the NOINDEX option be run in the database
specified in -D. For more information, see DBCC NEWALLOC.

-CkCat

Specifies that a DBCC CHECKCATALOG statement be run in the database specified in -D. For more information, see DBCC
CHECKCATALOG.

-UpdOptiStats sample_percent

Specifies that the following statement be run on each table in the database:

UPDATE STATISTICS table WITH SAMPLE sample_percent PERCENT

For more information, see UPDATE STATISTICS.

-RebldIdx free_space

Specifies that indexes on tables in the target database should be rebuilt by using the free_space percent value as the inverse of the
fill factor. For example, if free_space percentage is 30, then the fill factor used is 70. If a free_space percentage value of 100 is
specified, then the indexes are rebuilt with the original fill factor value.

-WriteHistory

Specifies that an entry be made in msdb.dbo.sysdbmaintplan_history for each maintenance action performed by sqlmaint. If -
PlanName or -PlanID is specified, the entries in sysdbmaintplan_history use the ID of the specified plan. If -D is specified, the
entries in sysdbmaintplan_history are made with zeroes for the plan ID.

-BkUpDB [backup_path] | -BkUpLog [backup_path]

Specifies a backup action. -BkUpDb backs up the entire database. -BkUpLog backs up only the transaction log.

[backup_path] specifies the directory for the backup. [backup_path] is not needed if -UseDefDir is also specified, and is overriden
by -UseDefDir if both are specified. The backup can be placed in a directory or a tape device address (for example, \\.\TAPE0). The
file name for a database backup is generated automatically as follows:

dbname_db_yyyyMMddhhmm.BAK

where

dbname is the name of the database being backed up.

yyyyMMddhhmm is the time of the backup operation with yyyy = year, MM = month, dd = day, hh = hour, and mm =
minute.

The file name for a transaction backup is generated automatically with a similar format:

dbname_log_yyyymmddhhmm.BAK

If you use the -BkUpDB parameter, you must also specify the media by using the -BkUpMedia parameter.

-BkUpMedia

Specifies the media type of the backup.

DISK

Specifies that the backup medium is disk.

-DelBkUps <time_period>

Specifies that any backup file in the backup directory be deleted if the time interval after the creation of the backup exceeds the
<time_period>.

-CrBkSubDir

Specifies that a subdirectory be created in the [backup_path] directory or in the default backup directory if -UseDefDir is also
specified. The name of the subdirectory is generated from the database name specified in -D. -CrBkSubDir offers an easy way to
put all the backups for different databases into separate subdirectories without having to change the [backup_path] parameter.

-UseDefDir

Specifies that the backup file be created in the default backup directory. UseDefDir overrides [backup_path] if both are specified.
With a default SQL Server 2000 setup, the default backup directory is c:\Program Files\Microsoft SQL Server\Mssql\Backup.

TAPE

Specifies that the backup medium is tape.

-BkUpOnlyIfClean

Specifies that the backup occur only if any specified -Ck checks did not find problems with the data. Maintenance actions run in
the same sequence as they appear in the command prompt. Specify the parameters -CkDB, -CkDBNoIdx, -CkAl, -CkAlNoIdx, -
CkTxtAl, or -CkCat before the -BkUpDB/-BkUpLog parameter(s) if you are also going to specify -BkUpOnlyIfClean, or the
backup will occur whether or not the check reports problems.

-VrfyBackup

Specifies that RESTORE VERIFYONLY be run on the backup when it completes.

number[minutes | hours | days | weeks | months]

Specifies the time interval used to determine if a report or backup file is old enough to be deleted. number is an integer. Valid
examples are 12weeks, 3months, and 15days. If only number is specified, the default date part is weeks.

Command Prompt Utilities (SQL Server 2000)

sqlservr Application
 New Information - SQL Server 2000 SP3.

The sqlservr application starts, stops, pauses, and continues an instance of Microsoft® SQL Server™ 2000 from a command
prompt.

Syntax

sqlservr [-sinstance_name] [-c] [-dmaster_path] [-f]
 [-eerror_log_path] [-lmaster_log_path] [-m]
 [-n] [-Ttrace#] [-v] [-x] [-g number] [-O] [-y number]

Arguments

-sinstance_name

Specifies the instance of SQL Server to connect to. If no named instance is specified, sqlservr starts the default instance of SQL
Server.

Important When starting an instance of SQL Server, you must use the sqlservr application in the appropriate directory for that
instance. For the default instance, run sqlservr from the \MSSQL\Binn directory. For a named instance, run sqlservr from the
\MSSQL$instance_name\Binn directory.

-c

Indicates that an instance of SQL Server is started independently of the Windows NT Service Control Manager. This option is used
when starting SQL Server from a command prompt, to shorten the amount of time it takes for SQL Server to start. (Note that
when you use this option, you cannot stop SQL Server by using SQL Server Service Manager or the net stop command, and if
you log off the Microsoft Windows NT® system, SQL Server will be stopped.)

-dmaster_path

Indicates the fully qualified path for the master database file. There are no spaces between -d and master_path.

-f

Starts the server in minimally configured mode. The system administrator can then reconfigure configuration options (with the
sp_configure system stored procedure).

-eerror_log_path

Indicates the fully qualified path for the error log file. If not specified, the default location is x:\Program Files\Microsoft SQL
Server\MSSQL\Log\Errorlog for the default instance and x:\Program Files\Microsoft SQL
Server\MSSQL$instance_name\Log\Errorlog for a named instance. There are no spaces between -e and error_log_path.

-lmaster_log_path

Indicates the fully qualified path for the master database transaction log file. There are no spaces between -l and
master_log_path.

-m

Indicates to start an instance of SQL Server in single-user mode. Only a single user can connect when SQL Server is started in
single-user mode. The CHECKPOINT mechanism, which guarantees that completed transactions are regularly written from the
disk cache to the database device, is not started. (Typically, this option is used if you experience problems with system databases
that require repair.)

-n

Indicates that you do not want to use the Windows NT application log to log SQL Server events. If you start an instance of SQL
Server with the -n option, it is advisable to use the -e option too, or SQL Server events are not logged.

-Ttrace#

Indicates that an instance of SQL Server should be started with a specified trace flag (trace#) in effect. Trace flags are used to start
servers with nonstandard behavior. For more information about available trace flags (trace#), see Trace Flags.

Important When specifying a trace flag, use -T to pass the trace flag number.

-v

Displays the server version number.

-x

Disables maintaining CPU statistics.

-g memory_to_reserve

Specifies an integer number of megabytes of memory to reserve for other applications running within (in-process) SQL Server
2000.

-O

Specifies that Distributed COM (DCOM) is not required, thereby disabling heterogeneous queries.

-y error_number

If SQL Server 2000 encounters an error message specified in this option, it writes the symptom stack trace to the error log. You
can specify multiple errors by using multiple –y arguments.

Command Prompt Utilities (SQL Server 2000)

sqlftwiz Utility
The sqlftwiz utility allows the Full-Text Indexing Wizard to be executed using a command prompt utility. The Full-Text Indexing
Wizard can also be started from SQL Server Enterprise Manager. Use the Full-Text Indexing Wizard to define full-text indexing on
Microsoft® SQL Server™ 2000 text-based columns with either an existing full-text catalog, or a new full-text catalog. The Full-Text
Indexing Wizard also creates or modifies population schedules that determine when the information stored in the full-text catalog
is updated.

Syntax

sqlftwiz
 {/n | {/ulogin_id /ppassword}}
 [/sserver_name[\instance_name]]
 [/ddatabase_name]

Arguments

/n

Specifies Windows Authentication Mode (password not required).

/ulogin_id

Specifies the login ID used to connect to an instance of SQL Server 2000.

/ppassword

Specifies the password for the given login_id.

/sserver_name[\instance_name]

Specifies the instance of SQL Server 2000 whose tables are to be full-text indexed. Specify server_name to connect to the default
instance of SQL Server 2000 on that server. Specify server_name\instance_name to connect to a named instance of SQL Server
2000 on that server. If no server is specified, sqlftwiz connects to the default instance of SQL Server 2000 on the local computer.

/ddatabase_name

Specifies the database name of the SQL Server database whose tables are to be full-text indexed. If database_name is not
specified, SQL Server 2000 prompts for the selection of a database_name on the given server_name.

Command Prompt Utilities (SQL Server 2000)

vswitch Utility
The vswitch utility can be used to switch between Microsoft® SQL Server™ 2000, SQL Server version 6.5, and SQL Server
version 6.0 as the active version of SQL Server.

Syntax

vswitch -SwitchTo {60 | 65 | 80} [-Silent {0 | 1}]

Arguments

-SwitchTo {60 | 65 | 80}

Specifies the version of SQL Server to make active.

-Silent {0 | 1}

Specifies whether any user interface or messages are displayed. If 1, no user interface or messages are displayed. The default is 0.

User Interface Reference (SQL Server 2000)

User Interface Reference
The following section contains the context-sensitive help topics for tools, wizards, and services supplied with Microsoft® SQL
Server™ 2000. Help also is provided for the Visual Database Tools used with SQL Server.

These topics are available from the user interface by pressing the F1 key or by clicking Help in wizard steps and dialog boxes.

For information about context-sensitive help for English Query, see User Interface Help Reference.

For information about context-sensitive help for SQL Server 2000 Analysis Services, see User Interface Help Reference.

User Interface Reference (SQL Server 2000)

User Interface Reference
The following section contains the context-sensitive help topics for tools, wizards, and services supplied with Microsoft® SQL
Server™ 2000. Help also is provided for the Visual Database Tools used with SQL Server.

These topics are available from the user interface by pressing the F1 key or by clicking Help in wizard steps and dialog boxes.

For information about context-sensitive help for English Query, see User Interface Help Reference.

For information about context-sensitive help for SQL Server 2000 Analysis Services, see User Interface Help Reference.

User Interface Reference (SQL Server 2000)

Keyboard Shortcuts
The following Microsoft® SQL Server™ tools have keyboard shortcuts:

Data Mining Model Browser

Keyboard Shortcuts (Data Mining Model Browser)

Dependency Network Browser

Keyboard Shortcuts (Dependency Network Browser)

English Query

English Query

Query Designer

Query Designer

SQL Profiler

SQL Profiler

SQL Query Analyzer

SQL Query Analyzer

SQL Server Books Online also has keyboard shortcuts:

Using Accessibility Features in SQL Server Books Online

Using Accessibility Features in SQL Server Books Online

https://msdn.microsoft.com/en-us/library/aa259157(v=sql.80).aspx

Copy Database Wizard Help (SQL Server 2000)

Copy Database Wizard Help
The Copy Database Wizard provides a convenient online way to move or copy databases and their objects from one server to
another, with no server downtime. Using this wizard, you can:

Pick a source and destination server.

Select databases to move or copy.

Specify the file location for the databases.

Create logins on the destination server.

Copy supporting objects, jobs, user-defined stored procedures, and error messages.

Schedule when to move or copy the databases.

Important For the Copy Database Wizard to work, you must be a member of the sysadmin fixed server role on the source
server, as well as on the destination server. In other words, you must be an administrator on the server from which the database
is to be copied, as well as an administrator on the server to which the database is being copied.

Copy Database Wizard DTS Custom Tasks

The Copy Database Wizard is built as a Data Transformation Services (DTS) Package that runs on the destination server. After the
wizard screens have been completed, Microsoft® SQL Server™ 2000 automatically names and saves the package on the
destination server. The package is saved whether or not it is run immediately, scheduled for a later date, or scheduled on a
recurring basis.

The DTS custom tasks are also available as stand-alone items in the DTS Designer, and can be used in any DTS Package (not just
with the Copy Database Wizard). The five custom tasks are:

Database Move/Copy Task

Logins Copy Task

Jobs Copy Task

Master Stored Procedures Copy Task

Error Messages Copy Task

See Also

Ugrading Databases from SQL Server 7.0 (Copy Database Wizard)

DTS Package Elements

Using the Copy Database Wizard

Copy Database Wizard Help (SQL Server 2000)

Select a Source Server
 New Information - SQL Server 2000 SP3.

Use this screen to specify the server on which the database to move or copy is located, and to enter login information. After you
select the authentication method and enter login information (as required), click Next to establish the connection to the source
server. This connection remains open for the duration of the copy or move session.

Options:

Source server

Select the name of the server on which the database or databases you want to move or copy are located, or click the browse (...)
button to locate the server you want.

Use Microsoft® Windows® Authentication

Use your Windows user name and password to validate the connection.

Security Note When possible, use Windows Authentication.

Use SQL Server™ Authentication

Use SQL Server security to validate the connections.

User name
Enter a valid SQL Server standard login, if SQL Server Authentication is selected.

Password
Enter the standard login password, if SQL Server Authentication is selected.

Next

Start the validation process. This process checks whether the user is a member of the sysadmin fixed server role on the selected
computer.

See Also

Authentication Modes

Ugrading Databases from SQL Server 7.0 (Copy Database Wizard)

Copy Database Wizard Help (SQL Server 2000)

Select a Destination Server
 New Information - SQL Server 2000 SP3.

Use this screen to specify the server to which the database will be moved or copied. After you select the authentication method
and enter user information, click Next to establish the connection to the destination server and to validate servers and user
information.

To establish a connection:

You must be a member of the sysadmin fixed server role on the selected computer.

The destination server must be different from the source server.

The two servers must conform to version rules.

Options:

Destination server

Select the name of the server to which the database or databases will be moved or copied, or click the browse (...) button to locate
a destination server.

Note You can use a destination that is a clustered server; the Copy Database Wizard will make sure you select only shared drives
on a clustered destination server.

Use Microsoft Windows Authentication

Use your Windows user name and password to validate the connections.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

Use SQL Server security to validate the connections.

User name
Enter a valid SQL Server standard login, if SQL Server Authentication is selected.

Password
Enter the standard login password, if SQL Server Authentication is selected.

Next

Start the validation process, and then move to the next screen.

See Also

Authentication Modes

Copy Database Wizard Help (SQL Server 2000)

Select the Databases to Move or Copy
Use this screen to select the database or databases you want to move or copy from the source server to the destination server.
The following databases cannot be moved or copied:

Databases that exist on the destination server.

System databases.

Databases marked for replication.

Databases marked Inaccessible, Loading, Offline, Recovering, Suspect, or in Emergency Mode.

Full-Text Catalogs

When you move or copy databases that contain full-text catalogs, full-text functionality is stopped, and then must be manually
restored. The Microsoft Search service manages full-text catalogs and runs in the database to provide this service. Full-text search
is stopped by the Copy Database Wizard so databases can be placed into single-user mode, a requirement for a move or copy
operation.

If you want to copy a database with full-text catalogs, full-text catalogs for the database are unavailable at the source server after
the copy operation has been completed. You must manually repopulate full-text catalogs on the destination server.

If you want to move a database with full-text catalogs, none of the associated full-text catalog files are moved when the database
is moved. These files must be moved manually by the database administrator.

Options

Move

Select to move the database to the destination server.

Copy

Select to copy the database to the destination server.

Source

Displays the databases that exist on the source server.

Destination

Displays the status of the source database on the destination server:

OK
The source database can be moved or copied.

Already exists
The source database already exists and cannot be copied.

System database
The source database is a system database and cannot be copied, although selected objects from the master and msdb
databases can be copied.

Replication database
The souce database is involved in replication, and cannot be copied.

Other
For special cases, the specific status of the souce database will be noted.

Refresh

Refresh the list of databases.

Data & Log file location (Windows 98 servers only)

The list appears when a Microsoft® Windows 98 server has been selected as the source server. Select a location from the list to
enable the Next button.

Click Next to verify that all data and log files for the selected databases are available at the selected location.

Next

Start the validation process, and then move to the next screen.

See Also

Upgrading Databases from SQL Server 7.0 (Copy Database Wizard)

Using the Copy Database Wizard

Copy Database Wizard Help (SQL Server 2000)

Database File Location
Use this screen to get an overview of the status for all the data and log files to be copied or moved. Files that are ready to be
moved or copied have a checkmark in the Status field. If a name conflict or disk space problem exists, a red X appears in the
Status field.

If there are disk space problems or naming conflicts, click either Modify or Next to open the Database Files Dialog Box, where
you can resolve name conflicts and space problems.

Files

Displays the data files and log files that are included.

Destination drives

Displays the drive name of the destination server for the data files and log files. This information is set automatically using data
from the registry of the destination server.

Size

Displays the size of the data or log file.

Status

Displays a green checkmark if the file is ready to be moved or copied.

Displays a red X if disk space problems or naming conflicts exist.

Modify

Click to open the Database File dialog box. Use this dialog box to resolve naming conflicts and/or to specify alternative drives if
disk space problems exist.

Refresh

Clicked to reevaluate disk space and naming conflicts. Updates appear in the Destination drives and Status fields.

Note In Microsoft® SQL Server™ 2000, the Size field is not updated, even if the size of the files has changed. For example,
updates could have been made to the list of databases selected.

Copy Database Wizard Help (SQL Server 2000)

Database Files Dialog Box
Use this dialog box to resolve conflicts encountered in a move or copy operation.

To resolve a name conflict, type a new name directly into the Source Files field.

To resolve disk space problems, click the browse (...) button to change the location in the Destination field.

After the name or disk space problems are resolved, click OK to proceed with the wizard.

Note You cannot free up disk space on destination disks using this dialog box.

Database

Displays the database name.

Destination Files

Displays the names of the files as they appear on the source server. To resolve a name conflict, you can edit this field directly.
Select a file name, and then type a name for the file on the destination server.

Size

Displays the size of source files.

Destination

Displays the proposed destination location. To change the destination, you can edit the field directly or click Browse.

(...) Browse

Click to change the location of the database on the destination server. In the Standard File Location dialog box, locate the folder
location you want, and then enter the database file name. You can use the same file name or change the database name.

Status

Displays a green checkmark if the file is ready to be moved or copied.

Displays a red X if disk space problems or naming conflicts exist.

Drive

Displays the drive name.

Available Space

Displays the available free space on each disk.

Required Space

Displays the disk space required for the proposed move or copy operation.

Refresh

Click to re-evaluate disk space and naming conflicts. Updates appear in the relevant fields.

See Also

Database File Location

Copy Database Wizard Help (SQL Server 2000)

Select Related Objects
Use this screen to modify which objects are to be included in the move or copy operation.

Options

Logins (recommended)

Include logins in the move or copy operation; selected by default.

All logins detected at package runtime
Select to copy all logins from the source serve. The list of logins copied is determined at run time.

Only logins used by the selected database (optional)
Select to copy only the logins used by the selected databases.

Shared stored procedures from the master database (optional)

Include stored procedures from the master database in the move or copy operation; selected by default.

Note Extended stored procedures and their associated DLLs are not eligible for automated copy in Microsoft® SQL Server™
2000.

All stored procedures detected at package runtime
Select to copy all dbo (database owner) stored procedures in the master database (except those with name conflicts).

User-selected stored procedures
Select to enable the Select Stored Procedures from master Database screen, which provides a detailed selection of stored
procedures in the master database.

Jobs from msdb (optional)

Include jobs from the msdb database in the move or copy operation; selected by default.

All jobs detected at package runtime
Select to copy all jobs in the msdb database (except those with name conflicts or associated with Replication).

User-selected jobs
Select to enable the Select Object from msdb screen, which provides a detailed selection of jobs in the msdb database.

User-defined error messages (optional)

Include user-defined error messages in the move or copy operation; selected by default.

All error messages detected at package runtime
Select to move or copy all messages (except those with ID conflicts).

User-selected error messages (optional)
Select to enable the Select User-Defined Error Messages screen, which provides a detailed selection of error messages.

Copy Database Wizard Help (SQL Server 2000)

Select Stored Procedures from the master Database (optional)
Use this screen to specify the stored procedures you want to include in the move or copy operation. This screen appears after you
select User-selected stored procedures on the Select Related Objects screen.

Options

Source objects

Displays all the user-created stored procedures in the master database. Stored procedures that exist on the destination server
cannot be copied; these are shown but not enabled on the list.

Owner name

Displays the owner of the object, for example, the special user dbo (database owner).

Type

Displays the type of the database object. Stored procedures are the only type used.

Destination

Displays the status of the source object on the destination server.

OK
The object can be moved or copied.

Already exists
The source objects already exist and cannot be copied.

Select All

Click to select all the objects listed in the Source field.

Clear All

Click to clear all the selected objects in the Source field.

Stored Procedures Copy Option

All stored procedures detected at package runtime

Use this option to copy all stored procedures detected at package runtime.

Selected stored procedures

Use this option to copy all the stored procedures.

Copy Database Wizard Help (SQL Server 2000)

Select Jobs from msdb (optional)
Use this screen to specify the jobs you want to include in the move or copy operation. This screen appears after you select User-
selected jobs on the Select Related Objects screen.

Options

Source

Displays the source jobs available from the msdb database.

Type

In Microsoft® SQL Server™ 2000, jobs are the only object type that can be copied from the msdb database.

Destination

Displays the status of the source job on the destination server.

Select All

Click to select all the listed source jobs.

Clear All

Click to clear all the selected source jobs.

Jobs Copy Option

All jobs detected at package runtime

Use the option to copy all jobs detected at package runtime.

Selected jobs

Use this option to copy all the selected jobs.

Copy Database Wizard Help (SQL Server 2000)

Select User-Defined Error Messages
Use this screen to specify the messages you want to include in the move or copy operation. This screen appears after you select
User-selected messages on the Select Related Objects screen.

All user-defined error messages appear on the list. You cannot copy a message if:

The message already exists on the destination server.

Conflicts exist with message ID numbers.

Error message IDs and language IDs conflict. For example, if (MessageId1, msglangid1) = (MessageId2, msglangid2), there
is a conflict.

The language in which the message is written is not installed on the destination server.

Options

Error

Displays the error message number.

Severity

Displays the severity level of the message.

Message

Displays the text of the message.

Language ID

Displays the language identifier for the text of the message.

Status

Displays the status of the error message on the destination server.

OK
The object can be moved or copied.

Already exists
The source objects already exist and cannot be copied.

Select All

Click to select all the listed messages.

Clear All

Click to clear all the selected messages.

Error Messages Copy Option

All error messages detected at package runtime

Use this option to copy all messages detected at package runtime.

Selected error messages

Use this option to copy all the selected messages.

See Also

Error Message Formats

Copy Database Wizard Help (SQL Server 2000)

Schedule the DTS Package
Use this screen to specify when you want the move or copy operation to start.

Options

Package properties

Displays the name of the DTS package.

Name
Displays the name of the DTS package you plan to run. This name is automatically generated.

When

Specify when you want to run the DTS package

Run immediately
Select if you want the move or copy operation to start after you click Next.

Run once
Select if you want to run the move or copy operation only once, and then use On Date and On Time edit boxes to specify the
time.

Schedule DTS package to run later
Select if you want to schedule the move or copy operation to start later. The current schedule settings appear in the description
box. To change the schedule, click the browse (...) button to open the Edit Recurring Job Schedule dialog box.

Copy Database Wizard Help (SQL Server 2000)

Completing the Copy Database Wizard
This screen provides an overview of the selections you have made, including:

Databases selected and whether these will be moved or copied.

File locations for each database.

Logins to be included.

Any selected objects from the master database.

Any selected jobs from the msdb database.

Important When using the Copy Database Wizard to upgrade databases from Microsoft® SQL Server™ version 7.0 to SQL
Server 2000, the administrator should run sp_updatestats (update statistics) against the database on the destination server. This is
important for optimum performance of the copied database.

Back

Click Back to review or change your selections.

Finish

Click Finish to run the move or copy operation and view its progress in the Log Detail screen.

See Also

sp_updatestats

Copy Database Wizard Help (SQL Server 2000)

Log Detail Screen
The Log Detail screen appears if the move or copy operation is run immediately. This status screen shows the ongoing progress
of each major step in the operation, as well as the start time, end time, and total elapsed time for each step. The screen can be
expanded to view the detail of each step.

Step Detail

Status

Displays a green checkmark to indicate the step has completed successfully.

Displays a red X to indicate the step has failed.

Step Name

Displays the name given by the Copy Database Wizard to steps in the process. For example, CDW Master Task Step would refer
to the transfer of object information from the master database.

Run status

Displays a numeric code to indicate the status of each step in the operation.

1
The step is waiting to be processed.

2
The step is currently running (executing).

3
The step is not currently active (execution inactive).

4
The step has finished running (execution completed).

Start Time

Displays the time when the move or copy operation starts.

End Time

Displays the time when the move or copy operation ends.

Elapsed time

Displays the total time taken for the operation.

Error Code

Displays the error message number if an error is raised.

Error Description

Displays the description of the error message encountered.

More Info

Expands the dialog box to show the Task detail of each major step.

Less Info

Collapses the dialog box to hide the Task detail of each major step.

View Error

Displays detailed description of the information in the Error Description field.

Task Detail

Status

Displays a green checkmark to indicate the step has completed successfully.

Displays a red X to indicate the step has failed.

Description

Displays a detailed description of the task.

Error Code

Displays an error message number if an error is raised. Ok indicates that no errors have been encountered.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Select Servers
Use the Select Servers screen to select one or more servers containing databases for which you want to create a database
maintenance plan. Rather than all the servers available on the network, only those servers to which the local MSX (master) server
can send jobs are listed.

The (local) server is the MSX (master) server.

All other servers are TSX (target) servers.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Select Databases
Use the Select Databases screen to view or specify the following options.

Options

All databases

Generate a maintenance plan that runs maintenance tasks against all Microsoft® SQL Server™ databases.

All system databases (master, model, and msdb)

Generate a maintenance plan that runs maintenance tasks against each of the SQL Server system databases. No maintenance
tasks are run against user-created databases.

All user databases (all databases other than master, model, and msdb)

Generate a maintenance plan that runs maintenance tasks against all user-created databases. No maintenance tasks are run
against the SQL Server system databases.

These databases

Generate a maintenance plan that runs maintenance tasks against only those databases that are selected. At least one database in
the list must be selected if this option is chosen.

Ship the transaction logs to other SQL Servers (log shipping)

Set up log shipping as part of this maintenance plan. For more information, see Log Shipping.

Note This feature is available only in the SQL Server 2000 Enterprise and Developer editions.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Update Data Optimization Information
Use the Update Data Optimization Information screen to view or specify the following options.

Options

Reorganize data and index pages

Cause the indexes on the tables in the database to be dropped and re-created with a new FILLFACTOR. The FILLFACTOR
determines how much empty space to leave on each page in the index, thereby reserving a percentage of free space on each data
page of the index to accommodate future expansion. As data is added to the table, the free space fills because the FILLFACTOR is
not maintained. Reorganizing data and index pages can reestablish the free space.

Reorganize pages with the original amount of free space

Cause the indexes on the tables in the database to be dropped and re-created with the original FILLFACTOR that was specified
when the indexes were created.

Change free space per page percentage to

Cause the indexes on the tables in the database to be dropped and re-created with a new automatically calculated FILLFACTOR,
thereby reserving the specified amount of free space on the index pages. The higher the percentage, the more free space is
reserved on the index pages and the larger the index grows. Valid values are from 0 through 100.

Update statistics used by query optimizer.

Cause the distribution statistics of each index created on user tables in the database to be resampled. The distribution statistics are
used by Microsoft® SQL Server™ to optimize navigation through tables during the processing of Transact-SQL statements. To
build the distribution statistics automatically, SQL Server periodically samples a percentage of the data in the corresponding table
for each index. This percentage is based on the number of rows in the table and the frequency of data modification. Use this
option to perform an additional sampling using the specified percentage of data in the tables.

Sample % of the database

Generate distribution statistics by sampling the percentage of data in the tables. The higher the percentage, the more accurate the
statistics, but the longer the sampling takes. If the specified value does not generate a sufficient sample, SQL Server determines an
adequate sample size automatically. Valid values range from 1 through 100.

Remove unused space from database files

Remove any unused space from the database, thereby allowing the size of the data files to be reduced.

When it grows beyond

Remove unused space from the database only if the database exceeds the specified size, in megabytes (MB).

Amount of free space to remain after shrink

Determine the amount of unused space to remain in the database after the database is shrunk (the larger the percentage, the less
the database can shrink). The value is based on the percentage of the actual data in the database. For example, a 100 MB database
containing 60 MB of data and 40 MB of free space, with a free space percentage of 50 percent, would result in 60 MB of data and
30 MB of free space (because 50 percent of 60 MB is 30 MB). Only excess space in the database is eliminated. Valid values are
from 0 through 100.

Schedule

Set the frequency that the data optimization tasks (scheduled using SQL Server Agent) are executed. The default is every Sunday
at 1:00 AM.

Change

Change the default schedule.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Database Integrity Check
Use the Database Integrity Check screen to view or specify the following options.

Options

Check database integrity

Check the allocation and structural integrity of user and system tables, and indexes in the database, by running the DBCC
CHECKDB Transact-SQL statement. This ensures that any integrity problems with the database are reported, thereby allowing
them to be addressed later by a system administrator or database owner.

Include indexes

Check the data and index pages in the database during the integrity tests.

Attempt to repair any minor problems

Attempt to correct any minor problems detected during the database integrity tests automatically. When this option is selected,
the database will be put in single user mode each time the maintenance plan runs. It is recommended that this option be selected.

Exclude indexes

Check only the data pages in the database during integrity tests. This does not check indexes. This option executes faster than
clicking Include indexes because fewer pages in the database are checked.

Perform these tests before doing backups

Cause the database and/or internal data integrity tests to be executed before backing up the database or transaction log. If the
integrity tests detect inconsistencies, any subsequent database or transaction log backup is not backed up.

Schedule

Set the frequency that the data integrity tasks (scheduled using SQL Server Agent) are executed. The default is every Sunday at
12:00 midnight.

Change

Change the default schedule.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify the Database Backup Plan
Use the Specify the Database Backup Plan screen to view or specify the following options.

Options

Back up the database as part of the maintenance plan

Cause the entire database to be backed up as part of the maintenance tasks. Backing up the database is important in case of
system or hardware failure (or user errors) that cause the database to be damaged in some way, thus requiring a backed-up copy
to be restored.

Verify the integrity of the backup on completion of the backup

Check that the backup set is complete and all volumes are accessible by executing the RESTORE VERIFYONLY Transact-SQL
statement.

Tape

Back up the database to the specified tape device. Only tape devices attached to the computer containing the database are
available.

Disk

Back up the database to disk. For more information about how to specify the location of the database backup, see Specify Backup
Disk Directory.

Schedule

Set the frequency that the database backup tasks (scheduled using SQL Server Agent) are executed. The default is every Sunday at
2:00 AM.

Change

Change the default schedule.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify Backup Disk Directory
Use the Specify Backup Disk Directory screen to view or specify the following options.

Options

Use the default backup directory

Back up the database to the default backup disk directory located on the computer that contains this database. This is the
\MSSQL\BACKUP directory for default instances of Microsoft® SQL Server™ 2000, and the \MSSQL$instancename\BACKUP
directory for named instances of SQL Server 2000.

Use this directory

Back up the database to the specified disk directory. Only disks located on the same computer as the database can be used. Click
the browse (...) button to change the default directory used to back up the database. Only drives on the computer containing the
SQL Server database being backed up can be selected.

Create a subdirectory for each database

Create a subdirectory under the specified disk directory containing the database backup for each database that is being backed up
as part of the maintenance plan.

Remove files older than

Delete database backups automatically that are older than the specified period. A history of database backups should be
maintained in the event that the database must be restored to a point in time earlier than the last performed backup. Retain as
many backups as disk space allows and as far in the past as necessary.

Backup file extension

Define the file extension used for each file that contains the database backup. The default file extension is .bak.

Note Disk backup file names are generated automatically (for example, pubs_tlog_199803120203.bak where 199803120203 is
the timestamp).

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify Transaction Log Backup Disk Directory
Use the Specify Transaction Log Backup Disk Directory screen to view or specify the following options.

Options

Use the default backup directory

Back up the transaction log to the default backup disk directory located on the computer that contains this transaction log. This is
the \MSSQL\BACKUP directory for default instances of Microsoft® SQL Server™ 2000, and the \MSSQL$instancename\BACKUP
directory for named instances of SQL Server 2000.

Use this directory

Back up the SQL Server transaction log to the specified disk directory that is located on the computer containing this transaction
log. Click the browse (...) button to change the default disk directory used to back up the transaction log. Only drives on the
computer containing the specified SQL Server transaction log can be selected.

Create a subdirectory for each database

Create a subdirectory under the specified disk directory for the transaction log backup for each database that is being backed up
as part of the maintenance plan.

Remove files older than

Delete automatically any transaction log backups older than the specified period. A history of transaction log backups should be
maintained in the event that the database needs to be restored to a specific point in time. Retain as many backups as disk space
allows and as far in the past as necessary.

Backup file extension

Define the file extension for each file containing a transaction log backup. The default file extension is .trn.

Note Disk backup file names are generated automatically (for example, pubs_tlog_199803120203.bak where 199803120203 is
the timestamp).

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify Transaction Log Backup Plan
Use the Specify Transaction Log Backup Plan screen to view or specify the following options.

Options

Backup the transaction log as part of the maintenance plan

Cause the transaction log to be backed up as part of the maintenance plan. Backing up the transaction log is necessary in order to
recover the database to the point of failure.

Verify the integrity of the backup when complete

Check that the backup is complete and all volumes are accessible by executing the RESTORE VERIFYONLY Transact-SQL
statement.

Tape

Back up the database to the specified tape device. Only tape devices attached to the computer containing the database are
available.

Disk

Back up the database to disk. For more information about how to specify the location of the database backup, see Specify Backup
Disk Directory.

Schedule

Set the frequency that the transaction log backup tasks (scheduled using SQL Server Agent) are executed. The default is every
Monday through Friday at 12:00 midnight.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Reports to Generate
Use the Reports to Generate screen to view or specify the following options.

Options

Write report to a text file in directory

Specify the full path and name of the text file into which the report is to be generated. The report contains details of the steps
executed by the maintenance plan, including any error information. The report maintains version information by adding a date to
the file name. The date is generated as a suffix to the file name but before the extension, in the form _YYYYMMDDHHMM. For
example: "DB Maintenance Plan10_199804090838.txt".

Click the browse (...) button to change the default directory for the text file. Only directories on the computer running the
maintenance plan can be selected.

Delete text report files older than

Delete text report files automatically that are older than the specified period. A history of text report files should be maintained so
that you can check the maintenance tasks that have been executed in the past.

Send E-mail report to operator

Specify the operator to whom the generated report will be sent through SQL Mail. Click the browse (...) button to change the
properties of the specified operator using SQL Server Enterprise Manager.

New Operator

Create a new operator using SQL Server Enterprise Manager.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Maintenance Plan History
Use the Maintenance Plan History screen to view or specify the following options.

Options

Write history to the msdb.dbo.sysdbmaintplan_history table on this server

Write the report as rows to this table on the server upon which the maintenance plan was executed. The report contains the steps
executed by the maintenance plan, including database name, activity, date, result (success or failure), and any error information. It
includes one row for each activity, per database, per execution date.

Limit rows in the table to

Specify the maximum number of rows in the table that represent history for this plan only. If the number of history rows in the
table for this plan exceeds this value, older rows for this plan (representing the earliest recorded history) are deleted. Setting this
value can prevent the table from becoming too large and filling the msdb database (if auto-grow is not permitted). The default is
10,000.

Write history to the server

Write the report as rows to the msdb.dbo.sysdbmaintplan_history table on a remote server. Windows Authentication is used
to connect to the remote server. The report contains the steps executed by the maintenance plan, including database name,
activity, date, result (success or failure), and any error information. It includes one row for each activity, per database, per
execution date.

Click the browse (...) button to change the remote server to which the report is written. Only instances of Microsoft® SQL
Server™ can be selected.

Limit rows in the table to

Specify the maximum number of rows in the table that represent history for this plan only. If the number of history rows in the
table for this plan exceeds this value, older rows for this plan (representing the earliest recorded history) are deleted. Setting this
value can prevent the table from becoming too large and filling the msdb database (if auto-grow is not permitted). The default is
10,000.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify the Transaction Log Share
Use the Specify the Transaction Log Share screen to specify a network share where you want the transaction log files to be
created.

Options

Network share name for <backup directory>

Specify the network share name for the indicated backup directory. Click the browse (...) button to search for the desired network
share.

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify the Log Shipping Destinations
Use the Specify the Log Shipping Destinations screen to select a destination server for log shipping.

Options

Destination Server

View the server to which transaction logs will be shipped.

Database

View the name of the database setup for log shipping.

Add

Add a new log shipping destination.

Edit

Edit the highlighted log shipping destination.

Delete

Delete the highlighted log shipping destination.

See Also

Log Shipping

Database Maintenance Plan Wizard Help (SQL Server 2000)

Add or Edit Destination Database
Use the Add or Edit Destination Database screen to enter information about the destination database for log shipping.

Options

Server name

Choose the destination server for log shipping.

Directory

Choose the directory on the destination server where you want the transaction logs to be shipped. Click the browse (...) button to
search for the appropriate disk directory.

Create and Initialize New Database

Create a new database on the destination server for use with log shipping.

Database Name

Specify the name of the database you want to create.

For Data

Specify the directory on the destination server that you want to use for the new database files. Click the browse (...) button to
search for the appropriate disk directory.

For Log

Specify the directory on the destination server where log files for the new database are to be stored. Click the browse (...) button
to search for the appropriate disk directory.

Use Existing Database (No initialization)

Use an existing database on the destination server for log shipping.

Database Name

Choose the database to be used for log shipping.

No Recovery Mode

Leave the destination database in No Recovery mode. User access is not possible with databases in No Recovery mode.

Standby Mode

Leave the destination database in Standby mode.

Terminate users in database (Recommended)

Specify if the connections users have to the destination database should be automatically terminated.

Allow database to assume primary role

Specify if the destination server should be setup to be able to function as a primary server.

Directory

Specify the directory on the destination server where the database transaction logs are to be stored when the secondary server is
functioning as the primary server.

See Also

Log Shipping

Database Maintenance Plan Wizard Help (SQL Server 2000)

Initialize the Destination Databases
Use the Initialize the Destination Databases screen to specify whether to take a full database backup or to use the most recent
backup file.

Options

Perform a full database backup now

Create a new full database backup for use by log shipping.

Use most recent backup file

Use the most recent backup file as specified in the text box. Click the browse (...) button to search for the most recent backup file.
If the file is not located in the log shipping share, it will be copied to this location.

See Also

Log Shipping

Database Maintenance Plan Wizard Help (SQL Server 2000)

Log Shipping Schedules
Use the Log Shipping Schedules screen to specify a schedule for any log shipping actions.

Options

Backup Schedule

View the current log backup schedule.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the current backup schedule.

Copy/Load Frequency

Set the frequency with which transaction log backups are to be loaded.

Load Delay

Set the age a transaction log backup must reach before it is eligible to be loaded.

File Retention Period

Set the age at which a transaction log backup will be deleted.

See Also

Log Shipping

Database Maintenance Plan Wizard Help (SQL Server 2000)

Log Shipping Thresholds
Use the Log Shipping Thresholds screen to specify the log shipping thresholds. When these thresholds are exceeded, alerts are
generated.

Options

Backup Alert Threshold

Set the maximum time between transaction log backups on the source server. If this time is exceeded, an alert will be generated.

Out of Sync Alert Threshold

Set the maximum time between the last transaction log backup on the source server and the last transaction log load on the
destination server. If this time is exceeded, an alert will be generated.

See Also

Log Shipping

Database Maintenance Plan Wizard Help (SQL Server 2000)

Specify the Log Shipping Monitor Server Information
 New Information - SQL Server 2000 SP3.

Use the Specify the Log Shipping Monitor Server Information screen to specify name and authentication information for the
central server, also called the Monitor Server, from which log shipping will be monitored.

Options

SQL Server

Select the instance of Microsoft® SQL Server™ from which log shipping will be monitored.

Use Windows Authentication

Use Windows Authentication when connecting to the log shipping monitor server.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

Use SQL Server Authentication when connecting to the log shipping monitor server.

Login Name

Specify the login name to use for connecting to the log shipping monitor server.

Password

Specify the password to use for connecting to the log shipping monitor server.

See Also

Log Shipping

DTS Designer Help (SQL Server 2000)

ActiveX Script Task Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to specify the code that will perform the functions you need to customize your Data Transformation Services
(DTS) package (for example, skipping a row of source data that contains invalid data).

Options

Description

Specify a description for the Microsoft® ActiveX® Script task. This description becomes the label for the task icon placed on the
DTS Designer design sheet.

Language tab

This tab lets you specify the scripting language and the functions to use in the ActiveX script.

Language
Select an available scripting language. When you install scripting languages on the computer, this list will update automatically.
Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript® are available by default.

Functions
Select a function from the script language library to be placed into the ActiveX script text box. Double-clicking on a function
name inserts the function code into the text box at the position of the cursor.

Entry Function
Specify the name of the function that will be the entry point when the script runs. Only one function can be specified as an entry
point for an ActiveX Script task.

Browser tab

View the tree that contains the return code constants, the package global variables, and the lookups available for use in the
ActiveX script. To copy information into the ActiveX script text box, expand the nodes and double-click on an item.

ActiveX script text box

Write or paste the scripting code necessary to perform the functions you need. The scripting editor has limited functionality. It
does not include features such as statement completion or color-coding of reserved words. Comment lines use the apostrophe (')
character syntax in any column, and all text from the comment character to the end of the line is ignored.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

Auto Gen.

Generate a single function and a line of code containing the return code, if supported by the selected scripting language.

Important If there is scripting code in the ActiveX script text box, the code will be deleted when you click Auto Gen.

Browse

Display the Select File dialog box, where you can select a file containing code. When you select a file, the contents of that file are
copied into the ActiveX script text box.

Important Opening an external script file from the Select File dialog box will overwrite any existing code in the ActiveX script
text box. Therefore, always select code files before inserting any other code into the box.

Parse

Check the code for syntax errors.

Save

Display the Save As dialog box, where you can save all the code in the ActiveX script text box into a file on the local hard drive or
on any mapped drive.

Undo

Reverse a limited number of text entry actions. You cannot undo actions such as adding code through the Select File dialog box.

See Also

Using ActiveX Scripts in DTS

Using Global Variables with DTS Packages

Debugging ActiveX Scripts

Using Return Codes in DTS

ActiveScriptTask Object

DTS Designer Help (SQL Server 2000)

ActiveX Script Transformation Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to define a transformation with a Microsoft® ActiveX® script. In this use of an ActiveX script, transformations
are executed for every row of source data.

Options

Language tab

This tab lets you specify the scripting language and the functions to use in the ActiveX script.

Language
Select an available scripting language. When you install scripting languages on the computer, this list will update automatically.
Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript® are available by default.

Functions
Select a function from the script language library to be placed into the ActiveX script text box. Double-clicking on a function
name inserts the function code into the text box at the position of the cursor.

Entry function
Specify the name of the function that will be the entry point when the ActiveX script runs. If you are adding functions for data
pump phases, this function only refers to the entry point for the Row Transform phase function. If you are not adding a function
for the Row Transform phase, this option is disabled.

Browser tab

View the tree that contains the return code constants, the Data Transformation Services (DTS) package global variables, the
source and destination columns, and the lookups available for use in the ActiveX script. Click to expand nodes, and double-click
on an item to copy the information into the ActiveX script text box.

Phases tab

Select the data pump phases for which you plan to add ActiveX scripts, and then type the name of each function beneath the
appropriate phase name. You must include an ActiveX script function in the text box for each selected phase, and the function
name in the scripting box must match the function name entered on this tab.

Note This tab only appears if you enabled multiphase data pump functionality in SQL Server Enterprise Manager.

ActiveX script text box

Write or paste the scripting code necessary to perform the functions you need. The scripting editor has limited functionality. It
does not include features such as statement completion or color-coding of reserved words. Comment lines use the apostrophe (')
character syntax in any column, and all text from the comment character to the end of the line is ignored.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

Auto Gen.

Generate a single function and a line of code containing the return code, if supported by the selected scripting language.

Important If there is scripting code in the ActiveX script text box, the code will be deleted when you click Auto Gen.

Browse

Display the Select File dialog box, where you can select a file containing code. When you select a file, the contents of that file are
copied into the ActiveX script text box.

Important Opening an external script file from the Select File dialog box will overwrite any existing code in the ActiveX script
text box. Therefore, always select code files before inserting any other code into the box.

Parse

Check the syntax of the ActiveX script.

Save

Display the Save As dialog box, where you can save all the code in the ActiveX script text box into a file on the local hard drive
or on any mapped drive.

Undo

Reverse a limited number of text entry actions. You cannot undo actions such as adding code through the Select File dialog box.

Test

Test the transformation by executing it against a part of the source data and copying the results to a temporary text file for
preview purposes. This option is not available for ActiveX script transformations in a Data Driven Query task.

Because test mode sends data to a file rather than the actual destination, problems with the provider, the destination, or data type
overflow may not be detected.

See Also

Using ActiveX Scripts in DTS

Mapping Column Transformations

Using Global Variables with DTS Packages

Debugging ActiveX Scripts

Using Return Codes in DTS

Multiphase Data Pump Functionality

DTS Designer Help (SQL Server 2000)

Add/Edit Assignment
Use this dialog box to specify the source for the property whose value will be dynamically assigned.

Options

Source

Select an available source from the list. The source for the dynamic property value can be an .ini file, an SQL query, a global
variable, an environment variable, a constant, or a data file.

Source information

Further specify the source information required to extract the dynamic property value. Depending on which Source you select,
different options become available.

File
For an INI File or Data File source, select the file from which you want the property value extracted.

Section
For an INI File, select the section of the file containing the property value from the list.

Key
For an INI File, select the key containing the property value from the list.

Preview
View the current value of the property to be dynamically assigned.

Refresh
Redisplay the property value displayed in the Preview box based on the most current information.

Connection
Select an available Data Transformation Services (DTS) connection from the list.

Query
Type a SQL query whose result set will be dynamically assigned to the selected property. When you assign the results of a
query to a DTS package property, the Dynamic Properties task uses only the results of the first column of the first row.

Parse
Check the syntax of the SQL query.

Browse
Display the Select File dialog box, where you can select an .sql file containing a SQL query to enter in the Query box.

Variable
Select a global variable or environmental variable from the list.

Create Global Variables
Create a global variable available for selection as a dynamic properties assignment.

Constant
Type a constant value to be assigned to the selected property.

Select
Select a property value from a list of DTS constants.

See Also

Dynamic Properties Task

DynamicPropertiesTask Object

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Advanced Copy Options
Use this dialog box to specify which objects to transfer from one Microsoft® SQL Server™ database to another.

Options

Transfer database users and database roles

Transfer all database users and roles.

Transfer SQL Server logins (Windows and SQL Server logins)

Transfer all SQL Server logins.

Transfer object-level permissions

Transfer all object-level permissions.

Transfer indexes

Transfer indexes for all tables transferred, if applicable.

Transfer triggers

Transfer triggers for all tables transferred, if applicable.

Transfer full text indexes

Transfer full-text indexes on all tables transferred, if applicable.

Transfer PRIMARY and FOREIGN keys

Transfer PRIMARY and FOREIGN key definitions for all tables transferred.

Generate Scripts in Unicode

Transfer data as Unicode. Useful if source data contains nchar data types. For more information about Unicode, see Unicode
Data.

Use quoted identifiers when transferring objects

Enclose all object names in quotation marks.

See Also

Copy SQL Server Objects Task

Transfer Object

DTS Designer Help (SQL Server 2000)

Advanced Connection Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to set custom values for certain OLE DB initialization properties. The OLE DB advanced properties available for
customization will vary depending on the properties supported by a particular provider.

To change an OLE DB property value, in Value, click a cell, and then type the new value.

Security Note When a package runs attended then the Persist Security Info property can be set to False. The default value for
this property is True.

Note If you need to work more closely at the OLE DB level, use the OLE DB Rowset Viewer, available with the OLE DB Software
Development Kit (SDK). The OLE DB Rowset Viewer offers a simple way to view and manipulate OLE DB rowsets with the added
ability to call and manipulate other OLE DB methods from the data source, session, command, rowset, transaction, and
notification objects supported by any OLE DB provider.

See Also

DTS Connections

DTS Designer Help (SQL Server 2000)

Bulk Insert Task Properties (General Tab)
Use this tab to specify the properties that will direct the Bulk Insert task to import data from a data file and copy it to the specified
Microsoft® SQL Server™ table or view.

The parameters in the Bulk Insert properties map to most of the parameters in the Bulk Insert command. For more information
about any of the options in the user interface, see BULK INSERT.

Options

Description

Describe the Bulk Insert task. This description becomes the label for the task placed on the Data Transformation Services (DTS)
Designer design sheet.

Existing connection

Choose the SQL Server connection that specifies the appropriate destination database for the data.

Destination table

Specify the SQL Server table or view in the database to which the data is to be copied.

Refresh

Populate the database list on Microsoft Windows® 98 computers.

Source data file

Specify the name of the file containing the data to be copied. Click the browse (...) button to search for the source data file.

Use format file

Specify the full path and name of the format file. The format file describes the contents of the data file, which has been created
using the bcp utility. Click the browse (...) button to search for the source data file.

Specify format

Specify the row and column delimiters in the source data file to ensure that the file will be parsed correctly when it is read.

Row delimiter
Specify the delimiter used to denote the end of a row for each line of data in the source file. A newline delimiter {LF} is used by
default.

Column delimiter
Specify the delimiter used to denote the end of a column for each row in the source file. A tab is used by default.

Generate

Display the Select a data file and a format file dialog box, where you search for the source data file and its associated format
file on the local computer, as well as on all mapped network drivers. Displays a preview of the data before the Bulk Insert task is
saved or executed.

See Also

Bulk Insert Task

BulkInsertTask Object

DTS Designer Help (SQL Server 2000)

Bulk Insert Task Properties (Options Tab)
Use this tab to specify properties with which to organize your file.

Check constraints

Ensure that any constraints on the destination table are checked during the bulk copy operation. By default, constraints are
ignored.

Enable identity insert

Specify that there are values in the data file for an identity column.

Sorted data

Indicate to the task that the data in the data file has been sorted on the specified column. The column name that you supply must
be a valid column in the destination table.

Keep NULL values

Specify that any columns containing a null value should be retained as null values, even if a default value was specified for that
column in the destination table.

Lock entire table

Specify a table-level lock on the destination table for the duration of the BULK INSERT operation.

Code page

Indicate to the task that your data file has char, varchar, or text columns with character values greater than 127 or less than 32,
and then choose the appropriate code page value so that the data can be parsed correctly.

Data file type

Specify the type of data in the data file.

Insert batch size

Specify the number of rows in a batch. The default is the entire data file.

The following values for the Batch size property have these effects:

If you set Batch size to zero, the data is loaded in a single batch. The first row that fails will cause the entire load to be canceled,
and the step fails.

If you set Batch size to one, the data is loaded a row at a time. Each row that fails is counted as one row failure. Previously loaded
rows are either committed or, if the step has joined the package transaction, provisionally retained in the transaction, subject to
later commit or rollback.

If you set Batch size to a value greater than one, the data is loaded one batch at a time. Any row that fails in a batch fails that
entire batch; loading stops, and the step fails. Rows in previously loaded batches are either committed or, if the step has joined the
package transaction, provisionally retained in the transaction, subject to later commit or rollback.

Only copy selected rows

Specify whether a continuous range of rows should be copied in a range.

Starting with row
Specify the first row from which to start copying.

Stopping at row
Specify the last row to copy.

See Also

BULK INSERT

Bulk Insert Task

BulkInsertTask Object

DTS Designer Help (SQL Server 2000)

Calendar Names
Use this dialog box to:

Change the strings representing the different months and days of the week, and A.M. and P.M. representations.

Change the language used to represent the date and time data.

Options

Name

Identify the month, day, or A.M. and P.M. designation.

Value

View or change the current value for the month, day, or A.M. and P.M. designation.

Language

Select a language to use for date and time data.

Set Language Defaults

Set the default language for the data used in the Date Time String transformation. Click this option after selecting from the
Language list to set this language as the default.

See Also

Date Time String Transformation

Transformation Types

Mapping Column Transformations

DTS Designer Help (SQL Server 2000)

Column Order
Use this dialog box to view the names of the source and destination columns mapped in the transformation, and to change the
source and destination columns included. You may need to change the order of the column mappings in transformations where
there is an unequal number of source and destination columns (for example, where a single source column is copied to multiple
destination columns).

Options

Columns text box

Edit column mappings by clicking a Source cell or Destination cell, selecting a column name or <ignore> from the list, and
repeating the process for any additional Source and Destination cells.

See Also

Mapping Column Transformations

Copy Column Transformation

Transformation Types

DTS Designer Help (SQL Server 2000)

Confirm Package Owner Password
Use this dialog box to confirm owner passwords.

Options

Password text box

Validate the owner password you typed in the Save DTS Package dialog box by retyping the password. If you have set an owner
password, a Data Transformation Services (DTS) package user needs this password to edit or run the package.

See Also

Handling Package Security in DTS

DTS Designer Help (SQL Server 2000)

Confirm Package User Password
Use this dialog box to confirm Data Transformation Services (DTS) package user passwords.

Options

Password text box

Validate the user password you typed in the Save DTS Package dialog box by retyping the password. Package users with access
only to the user password can run the package. However, they can neither open nor edit the package unless they also have access
to the owner password.

See Also

Handling Package Security in DTS

DTS Designer Help (SQL Server 2000)

Connection Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to add a connection to a data source, which can be either a new connection or a copy of an existing
connection. Not all of the following options are available for all providers. A subset of the options will be available, depending on
the provider selected.

Options

New connection

Name a new connection to a data source.

Existing connection

Select an existing connection to a data source.

Data source

Select an OLE DB provider from the list of available providers. By default, the Microsoft® OLE DB Provider for SQL Server is
selected. If your data source or data destination is an instance of Microsoft SQL Server™, it is recommended that you use this
provider, because it offers options such as high-performance bulk loading of data and setting batch size when copying and
transforming data.

File Name

Specify the database path and file name holding the data to be imported (for example, C:\MyData.xls,
\\Sales\Database\Northwind.mdb).

Username

Specify a user name for the database connection.

Password

Specify a password for the database connection.

UDL Filename

Specify the name of the data link (.udl) file that contains the connection string.

Security Note UDL files are not encrypted and you therefore need to secure the folder in which they reside.

Always read properties from UDL file

Specify that the package resolve information in the data link (.udl) file at run time. If you do not select this check box, the
connection string is copied from the .udl into the package, and the file is not referenced again. Connection changes then can be
modified only by editing the Data Transformation Services (DTS) package directly.

Properties

Display the Data Link Properties dialog box. Changes made in the dialog box will be incorporated into the package created
during the current session and will not change the data link file.

User/System DSN

Specify the name of the existing user or system data source name (DSN) that points to the data source.

New

Display the Create New Data Source dialog box to create an ODBC DSN. For more information about creating an ODBC data
source, search in the Platform SDK section in the MSDN® Library at Microsoft Web site.

File DSN

Specify the name of the existing file DSN that points to the data source.

Server

Specify the name of the server holding the data source.

Use Windows Authentication

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Specify that the package use Windows Authentication for login to an instance of SQL Server.

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to an instance of SQL Server.

Security Note When possible, use Windows Authentication.

Database

List databases on the specified instance of SQL Server.

Refresh

Cause the database list to populate on Microsoft Windows® 98 computers.

Advanced

Display the Advanced Connection Properties dialog box, where you can enter custom settings. For more information about the
OLE DB connection properties, search in the Platform SDK section in the MSDN Library at Microsoft Web site.

See Also

DTS Connections

Data Link Connection

Transform Data Task

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

DTS Designer Help (SQL Server 2000)

Copy SQL Server Objects Task (Source Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to select the source of the data to be copied and to provide the appropriate security context through which users can
access the database.

Options

Description

Specify an optional description of the Copy SQL Server Objects task. This text becomes the name of the Copy SQL Server Objects
task icon on the Data Transformation Services (DTS) Designer design sheet.

Server

Specify the name of the server containing the data source.

Use Windows Authentication

Specify that the package use Windows Authentication for login to the Microsoft® SQL Server™ database.

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to the SQL Server database.

Security Note When possible, use Windows Authentication.

User name

Specify a user name for the database connection.

Password

Specify a password for the database connection.

Database

List databases on the specified server.

Refresh

Cause the database list to populate on computers running Microsoft Windows® 98.

See Also

Copy SQL Server Objects Task

TransferObjectsTask Object

DTS Designer Help (SQL Server 2000)

Copy SQL Server Objects Task (Destination Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to specify the destination to which the data is to be copied and to provide the appropriate security context through
which users can access the database.

Server

Specify the name of the server containing the data source.

Use Windows Authentication

Specify that the package use Windows Authentication for login to the Microsoft® SQL Server™ database.

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to the SQL Server database.

Security Note When possible, use Windows Authentication.

User name

Specify a user name for the database connection.

Password

Specify a password for the database connection.

Database

List databases on the specified server.

Refresh

Cause the database list to populate on Microsoft Windows® 98 computers.

See Also

Copy SQL Server Objects Task

DTS Designer Help (SQL Server 2000)

Copy SQL Server Objects Task (Copy Tab)
Use this tab to specify which objects to transfer from one Microsoft® SQL Server™ database to another. You can transfer only
from one instance of SQL Server version 7.0 to another, from an instance of SQL Server 7.0 to an instance of SQL Server 2000,
and from one instance of SQL Server 2000 to another.

Create destination objects

Create destination objects for all objects to be transferred (tables, views, stored procedures, defaults, rules, constraints, user-
defined data types, logins, users, roles, and indexes). Specify the following copy options:

Drop destination objects first
Drop all corresponding destination objects before creating new ones.

Include all dependent objects
Include all dependent objects, such as the tables supporting a view, in the transfer of data.

Copy data

Enable the copying of SQL Server data from source to destination. Specify the following copy options:

Replace existing data
Overwrite existing data in the destination objects with the new data from the specified source.

Append data
Retain existing data in the destination object, and append new data from the specified source.

Use Collation

Enable the copying of data between different collations. For more information on using different collations with Data
Transformation Services (DTS), see Data Conversion and Transformation Considerations.

Copy all objects

Transfer all objects associated with the specified data source.

Select objects

Display the Select Objects dialog box, where you can select or remove objects from the transfer process. Clear the Transfer all
objects check box to enable this option.

Use default options

Set the advanced transfer options to their defaults.

Options

Display the Advanced Copy Options dialog box, where you can select or remove the specific objects to be transferred. Clear the
Use default options check box to enable this option.

Script file directory

Specify the directory to which the script file and log files are written. The script file directory must exist on the computer on which
the task runs.

See Also

Copy SQL Server Objects Task

TransferObjectsTask2 Object

DTS Designer Help (SQL Server 2000)

Create Binding Table
Use this dialog box to write your own SQL CREATE TABLE statement for the binding table used by the parameterized queries, or
to customize the existing binding table. By default, Data Transformation Services (DTS) Designer displays a CREATE TABLE
statement for the selected source table. You can edit the table name or any column definitions; however, use care because the
new binding table is created immediately in the destination.

See Also

Building a Data Driven Query

DTS Designer Help (SQL Server 2000)

Create Database
Use this dialog box to define a new database for a data source connection. You can define a new database only when connecting
to an instance of Microsoft® SQL Server™ through the Microsoft OLE DB Provider for SQL Server or through the Microsoft OLE
DB Provider for ODBC. The database files will be put into the same location as your master database files. If you are unable to
create a new database, make sure your login has the appropriate permissions.

This dialog box is provided for simplicity and convenience, but does not include all available options for creating databases. To
have access to all options, click New Database in SQL Server Enterprise Manager.

Make sure to follow SQL Server naming conventions for the database, and set the data file size and log file size for the new
database appropriately. For more information, see Naming Conventions for Instances of SQL Server 2000.

See Also

Creating a Database

DTS Designer Help (SQL Server 2000)

Create Destination Table
Use this dialog box to write your own SQL CREATE TABLE statement for the destination table or to customize the existing
destination table. By default, Data Transformation Services (DTS) Designer displays a CREATE TABLE statement for the selected
source table. You can edit the table name or any column definitions; however, use care because the new table is created
immediately in the destination database.

DTS Designer Help (SQL Server 2000)

Create New Transformation
Use this dialog box to select a transformation from the list to apply to the source and destination columns. The list includes all
transformation types supplied with Data Transformation Services (DTS), as well as any custom transformations that were added
and registered.

The most frequently used transformation types are Copy Column and ActiveX Script. Use Copy Column when you simply
want to copy data from a source to a destination without transforming the data. Use ActiveX Script when you want to use
scripting code to transform the data.

See Also

Mapping Column Transformations

Transformation Types

DTS Designer Help (SQL Server 2000)

Custom Task Properties
Use this dialog box to view the properties of a Data Transformation Services (DTS) custom task. All properties are listed, though
not all of the listed properties can be edited (for example, BLOB data such as an image is unavailable to be edited in this dialog
box). If a property can be edited, click in the cell under the Value column and then type the new value.

See Also

DTS Custom Task

Building a DTS Custom Task

CustomTask Property

CustomTask Object

CustomTaskUI Object

DTS Designer Help (SQL Server 2000)

Custom Transformation Properties
Use this dialog box to view and edit the properties of the custom transformation. This dialog box appears only if you loaded a
custom transformation into Data Transformation Services (DTS) Designer and did not write your own user interface for the
transformation.

The properties listed in the dialog box are specific to how the transformation was written, as is the availability of the properties for
editing. To edit a custom transformation property value, click on the Value cell for that row in the table and type the new value.

See Also

Building a DTS Custom Transformation

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Source Tab)
Use this tab to select a table or view, or the results of a query as a data source for the data driven queries.

Options

Description

Type a description of this Data Driven Query task.

Connection

Select an existing connection to a data source from the list.

Table/View

Select a table or view from the data source specified on the connection. There is no guaranteed ordering of rows.

SQL query

Specify that an SQL statement retrieves the data from the data source. Type the SQL statement.

Parameters

Map global variables to input parameters. This option can only be performed after specifying an SQL query that includes
parameters (using one or more question marks as a parameter placeholders).

Preview

View the data in the selected source table or view.

Note If your source connection is a dBase data source and you specify an SQL query, the source data may not be available for
viewing.

Build query

Use the Data Transformation Services (DTS) Query Designer to create the SQL statement to execute against the data source.

Browse

Specify the location of an SQL query to execute.

Parse query

Check the syntax of the SQL statement prior to execution.

See Also

Data Driven Query Task

Using Parameterized Queries in DTS

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Bindings Tab)
Use this tab to configure the bindings to which the parameters of the data driven queries will map. If you intend to use multiple
queries in a Data Driven Query task, the binding table must include columns for all parameters in the queries.

Options

Connection

Select an existing data source connection to use as the basis for the parameter binding table.

Table name

Select an existing table to use for the parameter bindings. Make sure the table includes columns for all parameters in the queries
you will define.

Create

Create a new binding table to use for the parameters. A binding table must exist before you can specify transformations.

Name

View the column name.

Type

View the destination native data type using OLE DB data type mappings.

Nullability

View whether binding columns allow null values. The default is true.

Size

View the width of binding columns where applicable.

Precision

View the precision of binding columns where applicable.

Scale

View the number of digits in scale where applicable.

See Also

Data Driven Query Task

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Transformations Tab)
Use this tab to select and graphically map the source and binding columns composing each transformation. Graphically mapping
a transformation is not required. Instead, you may specify the source and destination columns for a transformation using
selection boxes in the Transformation Options dialog box.

Column mappings are represented on this tab by arrows connecting columns in the Source and Binding table boxes. By default,
the Data Driven Query task maps an equal number of matched source and binding table columns using a single many-to-many
mapping.

Important Unless you are an advanced user or have specialized needs, you should not need to change the default column
mappings for a Data Driven Query task.

Options

Phases filter

Select the data pump phase for which you want to add a transformation. This advanced option is only available if the Show
multi-phase pump in DTS Designer check box is selected in SQL Server Enterprise Manager. The default is Row transform
phase.

Name

View the name of the selected transformation. You must click on a mapping line to display the name of the transformation.
Otherwise <none selected> is displayed. By default, the transformations are named DTS_Transformation_n, where n is equal
to the ordinal position of the mapped transformation.

Type

View the type of column-level transformation for the selected mapping. You must click on a mapping line to display the
transformation type. Otherwise <none selected> is displayed. If you intend to create a new transformation, this value is ignored.

New

Display the Create New Transform dialog box, where you select a type of column-level transformation.

Edit

Display the Transformation Options dialog box, where you can modify an existing transformation. Select the mapping line of
the transformation you want to modify before clicking Edit.

Delete

Delete a selected transformation. Select the mapping line representing the transformation you want to remove from the task
before clicking Delete.

Source

View the columns of the source data in graphical form, and click one or more columns to include in a transformation.

Binding table

View the columns of the binding table in graphical form, and click one or more columns to include in a transformation.

Select All

Select all source columns and all destination columns. Use Select All when you want to create a many-to-many type of
transformation mapping.

Delete All

Delete all transformations. Select the mapping line representing the transformation you want to remove from the task before
clicking Delete.

See Also

Mapping Column Transformations

Data Driven Query Task

Multiphase Data Pump Functionality

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Queries Tab)
Use this tab to query and set the properties of the source rowset.

Options

Query Type

Select the type of data driven query to execute. Options include Insert, Update, Delete, or User (stored procedure).

The query type labels are suggestions only. You can use a Query Type of Insert to perform an Update, a Query Type of Delete
to perform an Insert, and so on. For readability, you may want to use the label that matches the type of query you plan to use.

Build

Use Data Transformation Services (DTS) Query Designer to create the parameterized SQL statement to execute.

Parse/Show Parameters

Check the syntax of the SQL statement and list any parameters mapped to binding columns on the Transformations tab.

Destination

Indicate the binding column for a mapped parameter.

Parameters

Indicate the corresponding parameter mapped to a binding column.

See Also

Building a Data Driven Query

Data Driven Query Example: Changing Customer Accounts

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Lookups Tab)
Use this tab to define a lookup query. Before defining a lookup query, you must first create connections for the source, binding,
and lookup tables, and specify the source and binding tables. For more information, see Lookup Queries.

Options

Name

Type a name for the lookup.

Connection

Select an existing connection on which to execute the lookup query.

Cache

Specify the number of lookup results saved in a cache. Caching is especially useful with lookups if the number of rows being
transformed is large and you are querying on a small number of rows in the lookup table.

Query

Build the lookup query in Data Transformation Services (DTS) Query Designer. Alternatively, you can paste the query from a text
editor into the SQL pane.

Add

Create a new lookup query, which will be listed as a row in the Lookups table.

Delete

Remove the highlighted lookup query from the Lookups table.

See Also

Configuring a Simple Lookup Query

Using ActiveX Scripts in DTS

DTS Designer Help (SQL Server 2000)

Data Driven Query Task Properties (Options Tab)
Use this tab to send rows to an exception file, determine the format of that file, and set the error count at which package execution
should cease. The exception files are stored on a local or mapped drive.

Options

Exception file area

Name

Specify the path and name of the file where exception records will be written. If the file does not exist at package run time, the file
will be created. The file does not have a default extension assigned to it.

Click the browse (...) button to search the local computer or mapped drives for an existing exception file. If an existing exception
file is used, the status and error information for the package will be appended.

File type area

7.0 format

Select to save the exception file in 7.0 format. This format is useful if an exception file parser was written for Microsoft® SQL
Server™ version 7.0 exception files, as exception files using this backward-compatible format can still be used in the parser.

Error text

Specify that any errors encountered during the task execution be recorded. Selecting this option records information such as the
Data Transformation Services (DTS) package name, execution start and completion time, and other data in the exception log.

Source error rows

Specify that a separate exception file be created to contain all the rows from the source data that did not get written to the binding
table. Formatting of the file is done according to the File format properties specified. The file name will be the same as the name
specified in the Name field with the extension .Source appended to the name, and the file will be located in the same directory as
the exception file.

Dest error rows

Create a separate exception file to record error information on rows that fail when attempting to write to the destination. The file
name will be the same as the name specified in the Name field with the extension .Dest appended to the name, and the file will
be located in the same directory as the exception file.

File format area

Row delimiter

Select the delimiter used to separate rows of data in the exception file. A carriage return/line feed {CR}{LF} is used by default.

Column delimiter

Select the delimiter used to separate the columns of data in the exception file. A vertical bar is used by default.

Text qualifier

Specify which character marks are to be used in the delimited data file to qualify text. Choose from: Double Quote {"}; Single
Quote {'}; and <none>. You also can type in a character to use as the text qualifier.

Data movement area

Max error count

Set a limit on the number of errors allowed before processing is terminated for the task. When the Max error count value is
exceeded, task execution is terminated. The default is zero, which means that the task will terminate upon the first error.

Fetch buffer size

Set the number of rows of data being fetched at the source during data movement. Generally, you should not need to adjust this
value unless it is necessary to optimize the characteristics of the data provider.

First row

Specify the first row of data to be moved. This is useful if the first row consists of column headings, or, if the first part of a data
source has been copied, you can set this value to the row number where processing stopped in an earlier data pump operation.

Last row

Specify the last row of data to move.

See Also

Tasks That Transform Data

Data Driven Query Task

DTS Designer Help (SQL Server 2000)

Date Time String Transformation Properties
Use this dialog box to select the format for the source and destination date-time data used in a transformation. You can reformat
the date and time source data and copy it to the destination using any of the available formats.

Options

Source

Use these options to specify the format of the source data.

Date format
Select an available date-time format from the list.

Preview
View the current date and time in the selected date format.

Destination

Use these options to specify the format of the destination data.

Date format
Select an available date-time format from the list.

Preview
View the current date and time in the selected date format.

Year 2000 cutoff date

Use to specify an integer that represents the cutoff year for interpreting two-digit years as four-digit years. A two-digit year that is
less than or equal to the last two digits of the Year 2000 cutoff date is in the century that precedes the Year 2000 cutoff date. A
two-digit year that is greater than the last two digits of the Year 2000 cutoff date is in the same century as the Year 2000 cutoff
date.

Naming

Rename date and time information or reset the language used when copying date and time information for a transformation.

See Also

Date Time String Transformation

Transformation Types

Mapping Column Transformations

DTS Designer Help (SQL Server 2000)

Define Columns
Use this dialog box to specify the columns and their attributes when the destination is a text file.

Options

Table columns

Define the columns in the text file. By default, all columns selected in the source are copied to the destination.

Name
Select whether or not to <ignore> a column in the destination.

Type
Select whether the data in the column is quotable or not quotable.

Size
Type the column size for a selected destination column.

Binary
Select whether or not the data in a destination column is binary.

Populate from Source

Copy the column schema as is from the source to the destination, overwriting any changes. You can still modify the columns and
column attributes after selecting this option.

Execute

Use the values entered in this dialog box to define the destination.

DTS Designer Help (SQL Server 2000)

Define Row Width
Use this dialog box to define the row width for data in a text file when the file does not contain delimiters (you must have selected
None for Row delimiter). Select the red line and drag it to specify the number of characters you want in a row, shown in the
Value box. Alternatively, you can click on the arrows alongside the Value box to set the row width.

DTS Designer Help (SQL Server 2000)

DTS Package Properties (General Tab)
Use this tab to view the general properties of a Data Transformation Services (DTS) package.

Options

Name

View the package name.

Description

Type a description of the text package.

Package GUID

View the globally unique identifier (GUID) of the package, a 128-bit unique number.

Version GUID

View the GUID of the package version, a 128-bit unique number. If only one version of the package exists, this number is the
same as the package GUID; if more than one version exists, the version GUID is different.

Creator name

View the name of the user who created the package (the DTS Package.CreatorName property). On computers running
Microsoft® Windows® 98, this field may be blank; when it is not blank, it contains both the domain and user names.

Computer

View the name of the computer on which the package was created (the Microsoft Win32® computer name, stored in the
Package.CreatorComputerName property).

Date

View the date on which the package was created (the Package.CreationDate property).

Priority class

Specify the Windows process priority (the Package.PackagePriorityClass property). Possible values are Low, Normal, and
High.

Limit the maximum number of tasks executed in parallel to

Specify the maximum number of tasks that can execute concurrently. This can be any positive 32-bit integer. The default value is
4.

Setting this value too high can slow package execution; setting the value too low can slow simultaneous step execution.

See Also

Managing DTS Package Properties

DTS Designer Help (SQL Server 2000)

DTS Package Properties (Global Variables Tab)
Use this tab to view information about global variables, which can be referenced by any Microsoft® ActiveX® script in a Data
Transformation Services (DTS) package. These scripts can be used to customize tasks, workflow steps, and transformations. Global
variables defined on this tab remain in scope for the life of the package.

The values of global variables created in this tab are saved with the package. Global variables can also be created dynamically and
used in ActiveX scripts; for example:

DTSGlobalVariables("NewGlobalVariable").Value = 5

Global variables created in this manner are not saved with the package and do not appear on the Global Variables tab.

Options

Name

Specify the global variable name. You can edit an existing name, or you can type a new name in the cell after clicking New.

Type

Specify the global variable data type from the list.

Value

Specify the initial value assigned to the variable.

Explicit Global Variables

Specify that global variables used in ActiveX scripts must be defined in this dialog box or in the Execute SQL Task dialog box
before use. By setting Explicit Global Variables, you force yourself to declare every global variable, just as you do in Microsoft
Visual Basic® when you turn on Option Explicit.

New

Add a global variable to the package. Clicking New inserts an empty row in the Variables table.

Delete

Delete a selected global variable from the package.

See Also

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

DTS Package Properties (Logging Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to save information regarding a Data Transformation Services (DTS) package execution. You can specify where you
want to save the errors for a package, and decide whether the package should stop when an error is encountered. You can also
have the package execution status saved to Microsoft® SQL Server™ and specify to stop the package when problems are
encountered with the log file.

Options

Log package execution to SQL Server

Specify that you want to save the package and step execution data into the msdb database. Information about the package will be
saved in the sysdtspackagelog file, while information about each step in the package will be saved in the sysdtssteplog. Steps
that are not executed have no information stored for them in the log.

Server

Specify the name of the server whose msdb database will be the storage area for the logging information.

Use Windows Authentication

Specify to use Windows Authentication for login to the instance of SQL Server where the msdb database resides.

Use SQL Server Authentication

Specify to use SQL Server Authentication for login to the SQL Server database where the msdb database resides.

Security Note When possible, use Windows Authentication.

User name

Specify a user name for the msdb database connection.

Password

Specify a password for the msdb database connection.

Fail package on log error

Specify that a failure to write the log to the server will stop the package from executing further. Log errors can be caused by
having the event log buffer sized too small, or renaming the server log table.

Delete Logs

Specify that you want immediately to delete all logs of this package from the msdb database saved .

Error file

Specify the name of the file where package and step status and error information will be written. This file will contain a list of the
steps not executed, in addition to the steps that were executed and their result. The file can be on a local drive or on a mapped
drive. If the file does not exist at package run time, the file will be created. The file does not have a default extension assigned to it;
you must put the extension on the file name. The most common extension is .txt.

Browse

Display the Select File dialog box, where you can search the local computer or mapped drives for an existing error file. If an
existing error file is used, the status and error information for the package will be appended.

Fail package on first error

Specify that a first step failure stops the entire package. Any remaining steps or tasks are not run. If this option is not selected,
then the package will continue to run regardless of any failures in any of the steps. The package will complete with a successful
status.

Write completion status to event log

Specify that you want to write the package execution status to the Microsoft Windows® application log. This option is only
available on computers running Windows NT 4.0 and Windows 2000. For more information, see How to view the Windows
application log (Windows).

See Also

Using DTS Package Logs

DTS Designer Help (SQL Server 2000)

DTS Package Properties (Advanced Tab)
Use this tab to specify data lineage properties, Microsoft® SQL Server™ 2000 Meta Data Services scanning options, and
transaction settings for Data Transformation Services (DTS). These allow you to do the following:

The data lineage feature of DTS allows you to determine the source of any piece of data and the transformations applied to
that data.

Meta Data Services scanning options are settings for relating objects referenced by the package to catalog meta data in
Meta Data Services.

Transaction capabilities allow you to assign tasks in a workflow to a transaction, and commit and roll back individual steps
based on the success or failure of the transactional unit. The settings on the Advanced tab allow you to turn on transaction
capabilities, and set their commit mode and isolation level.

Note Not all OLE DB providers support transactions or specific transaction capabilities. For more information, see the
documentation for the individual providers.

The first two groups of these options can only be used if you are saving a DTS package to Meta Data Services. If you attempt to
save a package to any other location or format after you have clicked any of these options, DTS Designer prompts you to save the
package to Meta Data Services.

Options

Name

View the package name.

Show lineage variables as source columns

Add global data lineage variables to the package, but do not write them to Meta Data Services. Clicking this option by itself is
useful if you want to create a custom task to write lineage tracking and auditing information.

Write lineage to repository

Specify to always write data lineage variables to the repository database when saving a package.

Options

Set Meta Data Services scanning options for the package.

Use transactions

Allow the definition and use of transactional units of work in the package.

Commit on successful package completion

Specify that each individual SQL statement is a transaction. If the statement completes successfully, the transaction is
automatically committed; if the statement has an error, the statement is rolled back (the default setting for OLE DB).

When this setting is cleared, the DTS connections operate in implicit transaction mode. (The first SQL statement begins a
transaction that remains in effect until DTS commits it or rolls it back. A new transaction is started by the next SQL statement
executed after any commit or rollback.)

Transaction isolation level

Select from one of these levels:

Chaos. You can see uncommitted changes made by other transactions, but update locks are not held to the end of the
transaction. Rollback is not supported. This isolation level is not supported by SQL Server.

Read Committed. You cannot see changes made by other transactions until those transactions are committed.

Read Uncommitted. You can see uncommitted changes made by other transactions.

Repeatable Read. You are guaranteed not to see any changes made by other transactions in values it has already read.

Serializable. This option guarantees that all concurrent transactions will interact only in ways that produce the same effect as
if each transaction were executed entirely one after the other.

Use OLE DB service components

Select to instantiate the OLE DB provider data source objects using the OLE DB service components
(IDataInitialize::CreateDBInstance,the default), or clear to instantiate the data source objects directly with CoCreateInstance.

OLE DB service components provide services like session pooling and IRowsetChange, which may not be supported by some
OLE DB providers. This setting is ignored by the DTS providers (PackageDSO, RowQueue, FlatFile) and by the Microsoft OLE DB
Provider for SQL Server.

See Also

Incorporating Transactions in a DTS Package

Recording Data Lineage in DTS

Managing DTS Package Properties

DTS Designer Help (SQL Server 2000)

Data Transformation Services Query Designer
Use the simple graphical interface of the Data Transformation Services (DTS) Query Designer for building SQL commands.

The DTS Query Designer contains a selection box that lets you choose the server to connect to, and several synchronized panes
that let you graphically manipulate data and enter SQL command text to build queries.

Options

Linked server

Select the server on which the connected database you want is located. Any servers you connected to in Data Transformation
Services (DTS) are available, including any defined linked servers.

DTS Query Designer Panes

The DTS Query Designer contains the Table/View List pane, the Diagram pane, the Grid pane, the SQL pane, and the Results
pane:

Table/View List pane
This pane displays a list of tables or views in the connected database. When you change the server, the list of tables and views
refreshes. To use this pane to build queries, select a table or view and drag it onto the Diagram pane.

Diagram pane
This pane displays the tables and other table-structured objects that you are querying. Each rectangle represents a table or
table-structured object and shows the available data columns as well as icons that indicate how each column is used in the
query. Joins are indicated by lines between the rectangles.

Grid pane
This pane contains a spreadsheet-like grid in which you specify options, such as which data columns to display, what rows to
select, how to group rows, and so on. For more information, see Grid Pane.

SQL pane
This pane displays the SQL statement for the query or view. You can edit the SQL statement created by the DTS Query Designer
or you can enter your own SQL statement. It is particularly useful for typing SQL statements that cannot be created using the
Diagram and Grid panes, such as Union queries. For more information, see SQL Pane.

Results pane
This pane shows a grid with data retrieved by the query or view. In the DTS Query Designer, the pane shows the results of the
most recently executed Select query. You can modify the database by editing values in the cells of the grid, and you can add or
delete rows. For more information, see Results Pane. In the View Designer, the results pane shows the contents of the view.

You can create a query or view by working in any of the panes: you can specify a column to display by choosing it in the Diagram
pane, entering it into the Grid pane, or making it part of the SQL statement in the SQL pane. The Diagram, Grid, and SQL panes
are synchronized. When you make a change in one pane, the other panes automatically reflect the change.

See Also

Diagram Pane

Grid Pane

Navigating in the Query Designer

Results Pane

SQL Pane

https://msdn.microsoft.com/en-us/library/aa292919(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292937(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292931(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292917(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292919(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259157(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292931(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292937(v=sql.80).aspx

DTS Designer Help (SQL Server 2000)

Dynamic Properties Task Properties
Use this tab to view the package properties that will be assigned at Data Transformation Services (DTS) package run time.

Description

Type a description of the Dynamic Properties task. This description appears on the DTS Designer design sheet.

Destination Property

View the name of the package property whose value will be assigned at run time.

Source Type

Select one of the following external sources from which a property value is assigned:

An .ini file

A data file

A query

A global variable

An environment variable

A constant

Source Value

View the current value of the property, which may change each time the package is run.

Add

Display the Package Properties dialog box, where you can select a new package property to assign a value dynamically.

Edit

Click to change the dynamic assignment of a selected property in the Change list.

Delete

Click to permanently remove a dynamic property assignment from the Change list.

See Also

Dynamic Properties Task

DTS Designer Help (SQL Server 2000)

Dynamic Properties Task: Package Properties
Use this dialog box to view and select a property to be set dynamically.

The left pane displays a tree view of Data Transformation Services (DTS) package properties. Expand the appropriate nodes to
navigate to the group containing the property whose value you want assigned dynamically.

The right pane lists the names and default values of the properties belonging to the property group selected in the left pane.

Options

Add

After selecting a property from the right pane, click to display the Add/Edit Assignment dialog box, which you use to make the
property assignment.

Close

Return to the Dynamic Properties Task Properties dialog box.

Leave this dialog box open after adding a setting

Make multiple property assignments at a time. If this box is cleared, the Add/Edit Assignment dialog box is closed after a setting
is added, and the Dynamic Properties Task Properties dialog box is displayed.

See Also

Dynamic Properties Task

DTS Designer Help (SQL Server 2000)

Edit All Package Properties
Use this dialog box to select a Data Transformation Services (DTS) package property whose value you want to view or modify.
You cannot modify all package properties.

The Edit All Package Properties dialog box is divided into left and right panes:

The left pane contains an expandable tree view of all the property groups in the current package. To expose the properties,
click on the plus icons to expand branches in the tree view. After exposing the property group containing the property you
want to view or modify, select the property by clicking on its name.

The right pane contains a list of properties for the node selected in the left pane. Use it to select the individual property
whose value you want to view or modify.

Options

Edit

View or edit a property value after selecting a property in the right pane.

Close

Save changes and close the dialog box.

See Also

Editing DTS Package Properties with Disconnected Edit

DTS Designer Help (SQL Server 2000)

Edit Property
Use this dialog box to view or change a selected property. If a property cannot be edited, you can view the data, but the Type and
Value boxes are disabled.

Options

Name

View the name of the property selected in the Edit All Package Properties dialog box.

Type

Select a data type for the property from the list.

Warning Not all data types may be valid for the selected property, and Data Transformation Services (DTS) Designer does not
perform any validation checking. Make certain any data type changes you make are valid or you may disable the DTS package.

Value

View or change a value for the property.

See Also

Editing DTS Package Properties with Disconnected Edit

DTS Designer Help (SQL Server 2000)

Execute Package Task Properties (General Tab)
 New Information - SQL Server 2000 SP3.

Use the Execute Package task to specify another Data Transformation Services (DTS) package to run as part of package execution,
and to pass information contained in parent package global variables to the child package.

Options

Description

Type a text label for the Execute Package task, which will appear on the Data Transformation Services (DTS) Designer design sheet.

Location

Specify how the package that will be run by the Execute Package task was saved:

To Microsoft® SQL Server™

To SQL Server 2000 Meta Data Services

To a structured storage file

Package name

Type the name of the package to be run by the task, or browse for the package.

Note If you select a specific version of the package to be run in the Select Package dialog box, you will always execute that
version of the package. If you select a package node in the Select Package dialog box, the latest version of the selected package
is always run.

Password

Type the password of the package to be run by the task, if one exists.

Package ID

View the globally unique identifier (GUID) associated with the package to be run.

Server

Select the name of the server containing the external package to be run from the list of available servers (SQL Server and SQL
Server Meta Data Services only).

Use Windows Authentication

Specify Windows Authentication for login (SQL Server and Meta Data Services only).

Use SQL Server Authentication

Specify SQL Server Authentication for login (SQL Server and Meta Data Services only).

Security Note When possible, use Windows Authentication.

User name

Specify a user name for a new connection (SQL Server and Meta Data Services only).

Password

Specify a password for a new connection (SQL Server and Meta Data Services only).

See Also

Execute Package Task

DTS Designer Help (SQL Server 2000)

Execute Package Task Properties (Child Package Globals Tab)
Use this tab to specify global variable information that will be passed to the Data Transformation Services (DTS) package to be
executed. Make sure that the child package contains definitions for the global variables specified here or the Execute Package task
will fail.

Information about global variables is displayed in each row of the Variables table. The buttons at the bottom of the table control
the addition or deletion of global variables. You can select a cell in the table to enter or change information.

Options

Name

Specify the global variable name. You can edit an existing name, or type a new name in the cell after clicking New.

Type

Specify the global variable data type from the list.

Value

Specify the initial value assigned to the variable.

New

Add a global variable to the package. Click New to insert an empty row in the Variables table.

Delete

Delete a selected global variable from the package.

See Also

Execute Package Task

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Execute Package Task (Parent Package Globals Tab)
Use this tab to select those global variables in the parent package that will pass information to the child package. You can use
existing global variables or create new ones. Global variables defined in this dialog box are created and executed at run-time. You
can also define global variables in the DTS Package Properties dialog box.

Options

Name

Specify the global variable name. You can edit an existing name, or type a new name in the cell after clicking New.

New

Add a global variable to the package. Click New to insert an empty row in the Variables table.

Delete

Delete a selected global variable from the parent package global variables list.

See Also

Execute Package Task

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Execute Process Task Properties
Use this tab to specify the properties to run an executable program or batch file as a task.

Options

Description

Type a description of the Execute Process task. This description becomes the label on the Data Transformation Services (DTS)
Designer design sheet.

Win32 process

Specify the name of the executable file (.exe) or batch file (.bat) that will be run.

Browse

Display the Select File dialog box, where you can search the local computer and mapped drives for the executable or batch file.

Parameters

Specify any command prompt parameters required for the executable file or batch file. Separate multiple parameters with a
space.

Return code

Specify the return code you want upon successful execution of the process.

Timeout

Specify the number of elapsed seconds within which the process can successfully execute. A value of 0 means that no time-out
value is used, and the process runs until completion or error.

Terminate process after timeout

Terminate the process after the time-out period has been reached.

See Also

Execute Process Task

CreateProcessTask Object

CreateProcessTask2 Object

DTS Designer Help (SQL Server 2000)

Execute SQL Task Properties
Use this dialog box to name the task, specify the data connection, specify the SQL statements to execute, and set the connection
time-out.

Options

Description

Type a description of the Execute SQL task. This description becomes the label on the Data Transformation Services (DTS)
Designer design sheet.

Existing connection

Choose the connection to the appropriate data against which you want the SQL statement to run.

Command Timeout

Specify the value that determines the maximum number of seconds the execution can take before timing out. A value of zero
indicates an infinite amount of time.

SQL Statement

Specify the SQL statement to execute. You can separate multiple queries with the GO statement.

Parameters

Display the Parameter Mapping dialog box, where you can map global variables as either input parameters to your SQL
statement or as output parameters to contain the results of a query. If you create an SQL statement with a parameter marker and
the Parameters button is not enabled, the selected provider does not support parameterized queries.

Parse Query

Check the syntax of the SQL statements. The OLE DB provider provides syntax checking for standard SQL syntax. The syntax
checking will not catch errors in complicated expressions, nor does it support the use of non-standard SQL constructs, such as
parameter markers and comments. Error messages related to incorrect syntax should be verified and can be ignored if you find
that the SQL statement is valid.

Build Query

Create the SQL statement to execute using DTS Query Designer, a graphical query-building tool.

Browse

Display the Selected File dialog box, where you can select a file containing prewritten SQL statements. When a file is selected, the
SQL contained in that file is copied into the SQL statement text area.

See Also

Execute SQL Task

ExecuteSQLTask Object

DTS Designer Help (SQL Server 2000)

Executing DTS Package
Use this dialog box to view the execution progress of the Data Transformation Services (DTS) package overall, as well as the
execution status of the individual tasks composing the package.

To display error information about a task, double-click the task that did not execute correctly.

Options

Step

View the name of the task that executes in the step.

Status

View the progress of the executing step, and whether the step completed successfully or failed. For tasks that report the number
of rows processed (shown in parentheses), the number indicates the total number of rows read from the source, not the number
of rows that were successfully processed.

See Also

Executing a DTS Package

DTS Designer Help (SQL Server 2000)

File Transfer Protocol Task Properties (Location Tab)
Use this tab to specify and configure a remote server or Internet location from which to download data.

Options

Description

Type a text label for the File Transfer Protocol (FTP) task.

Source

Select whether to download data from a Directory location in your network or from an Internet Site. Different options become
available depending on which selection you choose.

Directory path

If you choose to download data from a Directory location, enter the directory path. Click the browse (...) button to search for the
directory from which to download data.

FTP Site

If you choose to download data from an Internet site location, enter the FTP address for the source data.

Username

Type the user name required for access to the FTP site.

Password

Type the password required for access to the FTP site.

Number of retries

Specify the attempted number of connections if the first one fails.

Destination

Specify information about the destination for the FTP data.

Directory path
Type the FTP site location for the destination files.

See Also

File Transfer Protocol Task

DTS Designer Help (SQL Server 2000)

File Transfer Protocol Task Properties (Files Tab)
Use this tab to select which files to copy between File Transfer Protocol (FTP) sites.

Options

Source

View information about the source files and select the files to be copied. Double-clicking a file moves it to the Destination list.

Destination

View information about the destination files, and select the files that you do not want copied. Double-clicking a file removes it
from the Destination list.

>

Move a selected file from the Source list to the Destination list.

>>

Move all files in the Source list to the Destination list.

<

Remove a selected file from the Destination list.

<<

Remove all files from the Destination list.

Refresh

Redisplay the listing of files, in case files have been added to or removed from the specified location.

Overwrite

Select whether you want to overwrite existing files with the same names or create new files when the copies are made.

See Also

File Transfer Protocol Task

DTS Designer Help (SQL Server 2000)

Font
Use this dialog box to format the Transact-SQL code in the query box.

Options

Color

Specify a Transact-SQL content element to assign color coding and formatting.

Foreground
Assign a color for the selected content element.

Background
Assign a background color for the selected query element.

Font

Assign a font to the selected Transact-SQL content element.

Size

Assign a font size to the selected Transact-SQL content element.

Sample

View an example of the selected Transact-SQL content element with the assigned font attributes.

Reset All

Reset all options to their original default values.

DTS Designer Help (SQL Server 2000)

Global Variables
Use this dialog box to view or change information about global variables in the Data Transformation Services (DTS) package.
Global variables defined in this dialog box are saved with the package, and they are usable from any transformation scripts
written at the task, step, and column-mapping levels. You can also define global variables in the DTS Package Properties dialog
box.

Information about global variables is displayed in each row of the Variables table. The buttons at the bottom of the table control
the addition or deletion of global variables. You can select a cell in the table to enter or change information.

Options

Name

Specify the global variable name. You can edit an existing name, or type a new name in the cell after clicking New.

Type

Specify the global variable data type from the list.

Value

Specify the initial value assigned to the variable.

New

Add a global variable to the package. Click New to insert an empty row in the Variables table.

Delete

Delete a selected global variable from the package.

See Also

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Message Queue Message Properties
Use this dialog box to define the type and content of messages that will be sent to a message queue.

Options

Message type

Select one of the following message types from the list:

String Message, which contains a text string you specify.

Data File Message, which contains a Data Transformation Services (DTS) package ID, a version ID, and the name and contents of
a data file.

Global Variables Message, which contains a DTS package ID, a version ID, and the name, type, and value of one or more
variables.

Message

Choose whether you want the message queue task to Send messages to other packages or Receive messages from other
packages.

String message

Type the text of the message if you selected a Message type of String Message.

File name

Type the path and name of the data file containing the package information.

Global variables

Displays a list of the package global variables that will be sent to the message queue.

Name
After clicking New, select a global variable to include in the message from the list of available package global variables.

Type
View the data type of the selected package global variable.

Value
View the initial value of the selected package global variable.

Create Global Variables

Create new package global variables that you can include in the message queue task.

New

Create a global variable entry to include in the message.

Delete

Delete a global variable entry. Deleting a global variable entry does not delete the global variable definition from the package.

Global variables

Display a list of the global variables that will be sent to the message queue.

See Also

Message Queue Task

Message Types

DTS Designer Help (SQL Server 2000)

Message Queue Task Properties
Use this dialog box to configure a Message Queue task, which allows you to use Message Queuing to send and receive messages
between Data Transformation Services (DTS) packages.

Options

Description

Type a text name for the message queue task.

Message

Select whether you want the message queue task to Send messages or Receive messages.

Queue

Specify the queue from which you will send or receive messages. The format for the queue is:
computer_name\queue_type$\queue name, where queue_type can be Outgoing, Public, Private, or System.

Send Message Options

If you select Send messages in the Message box, the following options are available:

Messages to be sent
Displays information on each message defined for this message queue task:

Number

View the automatically generated number that designates the order in which a message was created.

Message type

View whether the message consists of a data file, global variable, or string.

Add

Define a new message to add to the message queue task.

Edit

Edit an existing message within the message queue task.

Receive Message Options

If you select Receive messages in the Message box, different options become available depending on the Message type you
select:

Message type
Select one of the following message types from the list:

String Message, which contains a text string you specify.

Data File Message, which contains a DTS package ID, a version ID, and the name and contents of a data file.

Global Variables Message, which contains a DTS package ID, a version ID, and the name, type, and value of one or more
variables.

Only receive message from a specific package or version
Lets you filter the possible messages the message queue task can receive:

No filter. Select this option to turn message filtering off for the task.

From package. Select this option to specify a package to use as a filter. Only messages from versions of the specified package
will be received.

From version. Select this option to specify a package version to use as a filter. Only messages from a package with the specific
version identifier will be received.

Identifier. View the globally unique identifier (GUID) of the package or package version to be used as a filter.

... Browse for a package or version to use as a filter for receiving messages.

Save file as
Save the contents of a data file message into the specified file, by typing the file path and name or by browsing for a file in
which to save the contents of a data file message.

Compare
Specify a filter to use when receiving a string message. The string message is not received by the Message Queue task unless it
matches the filter. Use one of the following:

None, to specify no filter.

Exact match, to specify that the message content must exactly match the string entered in the Compare string box.

Ignore case, to specify that the message content must match that of the string entered in the Compare string box, irrespective
of case.

Containing, to specify that the message content must contain the string entered in the Compare string box.

Compare string
Type the string to be used as a filter when evaluating the string message.

Overwrite
Select to overwrite the data in an existing file when saving the contents of a data file message.

Time out after

Select to specify a time-out period in which to receive the message.

See Also

Message Queue Task

Message Types

DTS Designer Help (SQL Server 2000)

Middle of String Transformation Properties
Use this dialog box to copy a substring from the source column, transform it, and copy the result to the destination column. You
specify the substring by providing a start position and a maximum number of characters to include. Other options are available
that allow you to trim white space from the string and change case.

Options

Substring Options

Use these options to locate the substring to be copied.

Start position (1 based)
Define the starting character position (the index starts at the number 1) from which the substring will be copied.

Limit number of characters to
Specify the number of characters to be copied. By default, all characters in the string, including the character in the start
position, will be copied (default value of 0).

Trimming Options

Select from which location in the string to remove white space.

Trim leading white space
Remove any white space preceding the first character of the string data.

Trim trailing white space
Remove any white space after the last character of the string data.

Trim embedded white space
Remove any white space in between the first and last characters of the string data.

Case Options

Select whether to change the case of the string data as part of the transformation.

Do not change case
Leave the case of the string data intact after performing any trim operations.

Uppercase
Change the case of the string data to uppercase after performing any trim operations.

Lowercase
Change the case of the string data to lowercase after performing any trim operations.

See Also

Middle of String Transformation

Trim String Transformation

DTS Designer Help (SQL Server 2000)

Parameter Mapping (Input Parameters Tab)
Use this tab to specify the global variables to be assigned to the parameters in the SQL statement. The parameters, indicated by
question marks in the SQL statement, are parsed left to right and are represented in the Parameters column as Parameter1,
Parameter2, and so on.

Options

Input Global Variables

Select the global variable whose value you would like to use to replace the parameter marker at run time.

Parameters

View a read-only list of parameter markers from the SQL statement.

Create Global Variables

Display the Global Variables dialog box, where you can create new Data Transformation Services (DTS) package global variables.

See Also

Using Parameterized Queries in DTS

Execute SQL Task

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Parameter Mapping (Output Parameters Tab)
Use this tab to specify the global variables that will contain the data returned from the query.

Options

Output Parameter Type Area

None
Specify that no data be returned from the query, or, if data is being returned, that no data be stored in a global variable.

Row Value
Specify that each column returned from the query be stored in a separate global variable. The grid will populate with the
corresponding number of columns in the results set. The columns will be listed in order as Parameter1, Parameter2, and so
on. Automatic mapping to existing global variables is done ordinally. If you do not want to save the value of a column being
returned, type <none> in the Output Global Variable field. To change which column is being stored in which global variable,
use the list in the Output Global Variable cell to select the global variable that should hold the data. If the global variable you
want to use does not exist, click Create Global Variable. After the global variable has been created, it is now ready to be used
in the parameter mapping.

Rowset
Specify that you want to store the data returned from the query in a single global variable. The global variable will hold the
entire rowset. This global variable can be used in subsequent tasks as a disconnected Microsoft® ActiveX® Data Objects (ADO)
recordset. If no data is returned from the query, then the global variable will contain nothing. If the global variable you want to
use does not exist, click Create Global Variable. After the global variable has been created, it is now ready to be used in the
parameter mapping.

Rowset List
Specify the name of the global variable that will hold the rowset.

Parameter Mapping Area

Parameters
Display a read-only list of the columns being returned from the SQL statement, if applicable.

Output Global Variable
Specify the global variable to contain the data in the column when the data is being returned as a row value.

Create Global Variable
Display the Global Variables dialog box, where you can type a new global variable for the Data Transformation Services (DTS)
package.

See Also

Using Parameterized Queries in DTS

Execute SQL Task

Using Global Variables with DTS Packages

DTS Designer Help (SQL Server 2000)

Read File Transformation Properties
Use this dialog box to copy the entire content of a file specified by a source column to a destination column.

Options

Directory

Type the directory location for the files from which you want to read data. At run time, each of the entries in the source column is
appended to this directory name to form a read path. If a file exists at that location, it is opened and the contents (possibly
translated) are copied to the destination column. The directory name may start with a disk drive or a Universal Naming
Convention (UNC).

You also can browse for the location of the directory containing the files from which you want to read data.

File type

Select whether the files that the transformation reads data from are ANSI, Unicode, or OEM.

Error if file not found

Select to stop processing and fail the read file transformation if a file specified in the source column is not found in the directory
location.

See Also

Read File Transformation

DTS Designer Help (SQL Server 2000)

Register Custom Task
Use this dialog box to register a custom task. Custom tasks are written in languages such as Microsoft® Visual Basic® or
Microsoft Visual C++®. After you create a custom task, you can register the task and include it in the Data Transformation
Services (DTS) Designer user interface. Then you can use the custom task when you create packages with DTS Designer.

Options

Task description

Type a description of the custom task.

Task location

Type the path and file name of the dynamic-link library (.dll file) for the custom task, or browse for the location of that library.

Icon location

Type the path and file name of the icon for the custom task, or browse for the location of that icon.

Refresh

Clear data from the boxes.

Select icon

Select an icon for the custom task.

See Also

DTS Custom Task

Building a DTS Custom Task

DTS Designer Help (SQL Server 2000)

Save DTS Package
 New Information - SQL Server 2000 SP3.

Use this dialog box to save a Data Transformation Services (DTS) package to the Microsoft® SQL Server™ msdb database, SQL
Server 2000 Meta Data Services, a COM-structured storage file, or a Microsoft Visual Basic® file. You can also set package
authentication information and passwords in this dialog box.

Options

When you are saving a package, the following options are available:

Package name

Specify a unique name for the package. The msdb tables use this name as a primary key.

Owner password

Specify a password for the package to protect any sensitive user name and server password information in the package from
unauthorized users. If the package has an owner password, the data is encrypted with the standard encryption API. This option is
available only for packages saved to SQL Server or as a structured storage file.

User password

Set a password for a package user. This password allows a user to execute a package. However, this option does not allow a user
to view the package definition. If you set the user password, you also must set the owner password. This option is available only
for packages saved to SQL Server or as a structured storage file.

Location

Specify the format and location of the saved package. You can save to a SQL Server msdb database, to Meta Data Services, to a
structured storage file, or to a Visual Basic file.

When you save the package to SQL Server or to Meta Data Services, you have the following options:

Server name

Specify the name of the SQL Server installation storing the package.

Use Windows Authentication

Specify the security mode used to connect to SQL Server. The Windows Authentication used will be the Microsoft Windows®
login of the user creating the package.

Use SQL Server Authentication

Specify the security mode used to connect to an instance of SQL Server.

Security Note When possible, use Windows Authentication.

User name

Specify a user name for the connection to an instance of SQL Server.

Password

Specify a password for the connection to an instance of SQL Server.

When you save the package to Meta Data Services, you have the following additional option:

Scanning

Display the Scanning Options dialog box, where you specify how objects referenced by the package should be scanned into
Meta Data Services. This capability allows you to relate source and destination objects in a package to database meta data (for
example, primary and foreign keys in a table, indexes, and column information, such as data type) stored in Meta Data Services.

When you save the package as a COM-structured storage file or a Visual Basic file, you have the following options:

File name

Specify the package file name and path. If the package is a structured storage file, it should be stored with the extension .dts. If the
package is a Visual Basic file, it should be stored with the extension .bas.

Browse (...)

Display the Save As dialog box, where you can specify the file name, extension, and storage location.

See Also

Saving a DTS Package

DTS Designer Help (SQL Server 2000)

Scanning Options
Use the OLE DB scanner for Microsoft® SQL Server™ 2000 Meta Data Services to import database schema information from an
OLE DB data source and populate instances of the Database Information Model (DBM) in Meta Data Services. The scanner is
passed an OLE DB provider, examines the schema, and creates a set of corresponding instance objects in Meta Data Services
using the DBM and Data Transformation Services (DTS) Meta Data Services information models.

If you save a DTS package to Meta Data Services, you can set how the objects referenced by the package are related to SQL Server
catalog meta data scanned into Meta Data Services. Meta data in this context refers to information such as:

Primary and foreign keys.

Column type, size, precision, scale, and nullability.

Indexes.

Options

Resolve package references to scanned catalog meta data

Enable the scanning options, which link the package to Meta Data Services meta data.

Use scanned catalogs if already present in Meta Data Services

Relate the package to Meta Data Services meta data if the meta data has already been saved (that is, by importing the meta data,
or by a previous scan). This option is useful if the database schema has not changed, Meta Data Services meta data already exists,
and saving time is a consideration. If column or meta data information has changed and this option is used, references of the
package to Meta Data Services meta data may not be meaningful.

Scan all referenced catalogs into Meta Data Services

Scan everything about a database (all table, column, and meta data information) into Meta Data Services, even if the information
is not used. This is safer than the previous option, but more costly in terms of time and performance.

Scan catalog if not already present in Meta Data Services

If a database is not present in Meta Data Services, add it. (This is the default selection if scanning options are enabled.)

Scan catalog always

Scan a database into Meta Data Services even if it is present already.

See Also

Importing and Saving Meta Data in DTS

Recording Data Lineage in DTS

DTS Designer Help (SQL Server 2000)

Select Objects
Use this dialog box to select the objects that you want to transfer to the new database.

Note Selecting a check box does not automatically mark the corresponding object to be transferred. The objects to appear are in
the Objects list, from which you then select the objects to transfer.

Options

Show all tables

Display all tables in the database in the Objects table.

Show all views

Display all views in the database in the Objects table.

Show all stored procedures

Display all stored procedures in the database in the Objects table.

Show all defaults

Display all defaults in the database in the Objects table.

Show all rules

Display all rules in the database in the Objects table.

Show user-defined data types

Display all user-defined data types in the database in the Objects table.

Select All

Select all objects in the database as eligible for transfer to the new database.

Check

Place a check mark next to all selected objects.

Uncheck

Remove the check mark from all selected objects.

See Also

Copy SQL Server Objects Task

DTS Designer Help (SQL Server 2000)

Select Package
Use this dialog box to select from Data Transformation Services (DTS) package versions saved to a structured storage file or to
Microsoft® SQL Server™.

Selecting a Package Version Saved to a Structured Storage File

When you open a package saved to a structured storage file, if more than one package or package version is contained in the file,
the Select Package dialog box appears. The dialog box contains a tree view of a package version history.

At the top node, a text file icon and accompanying label indicates the storage location for the package.

Package nodes are shown beneath the top node. Each of these nodes represents a different package. There can be multiple
package nodes listed under a file, if different packages were saved under the same file name.

Version nodes with dates, indicating the complete version history of a package, are displayed beneath a package node.

Double-clicking a package icon loads the latest version of that package version; double-clicking a version icon loads that specific
package version.

Selecting a Package Version Saved to SQL Server

The Select Package dialog box appears when you attempt to load a package saved to SQL Server with multiple versions. As with
structured storage files with multiple versions, a tree view of the package history is displayed for selection. However, only
versions for a single package are displayed; you do not save multiple packages to a single file, as is the case with a structured
storage file.

Expand a package icon to view its version history, and then double-click on the package icon to load the latest version of the
package, or click on a specific version to load that version.

See Also

Saving a DTS Package to a Structured Storage File

Saving a DTS Package to SQL Server

DTS Package Execution Utilities

DTS Designer Help (SQL Server 2000)

Send Mail Task Properties
Use this tab to specify the properties that will direct the message to the appropriate recipient. The Send Mail task allows
attachments to be sent with the message.

Options

Description

Type a description of the Send Mail task. This description becomes the label on the Data Transformation Services (DTS) Designer
design sheet.

Profile Name

Specify the appropriate e-mail profile name by selecting from the Profile Name list, which contains all locally-defined MAPI
profiles.

Password

Type the profile password.

To

Specify the name of the e-mail recipient. Click the browse (...) button to display the Address Book on <profile> dialog box,
where you select the address book that contains the name you want.

CC

Specify the names of any recipients who should receive carbon copies of this e-mail. Click the browse (...) button to display the
Address Book on <profile> dialog box, where you select the address book that contains the name you want. From the list of
names, select the recipient to whom you want the carbon copy to go.

Subject

Specify a subject for the e-mail.

Message

Type the e-mail message.

Attachments

Specify the files to attach to the e-mail.

Add

Display the Select File dialog box, where you can select the file that you want to attach to the e-mail.

See Also

Send Mail Task

DTS Designer Help (SQL Server 2000)

Text File Properties
Use this dialog box to set the data format of the source or destination text file. There are two data formats from which to choose:
delimited and fixed field.

Options

Delimited

Specify that the source or destination text file uses delimiter characters to indicate columns.

Fixed field

Specify that the data in the source or destination text file is aligned into equal width columns.

Skip rows

Specify the number of rows you want skipped in a text file. This option only applies when the text file is used for source data.

First row has column names

Indicate that the first row in the specified file consists of column names.

File type

Specify whether the data file is ANSI (default), Unicode, or OEM.

Row delimiter

Specify whether the character that delimits rows in the data file is carriage return/line feed {CR}{LF} (default), carriage return
{CR}, or line feed {LF}. You can also type another character.

Text qualifier

Specify whether quotation marks are to be used to qualify text in the data file.

DTS Designer Help (SQL Server 2000)

Task References
Use this dialog box to change the source or destination connections used in an already mapped transformation.

Task Name

Displays all the tasks associated with the source or destination that were modified.

Clear Transformations

Map transformations between source and destination fields, and set a default Copy Column transformation for each pairing; or
clear for the previously defined transformations to remain intact.

Cancel

Keep the previously defined transformations intact.

Important The application does not check that the fields are valid for the new source or destination chosen. It simply applies the
selected action to the fields that were in existence at the time the transformations were made originally.

See Also

Mapping Column Transformations

Transformation Types

Copy Column Transformation

DTS Designer Help (SQL Server 2000)

Testing Transformation
Use this dialog box to view the execution progress of the Microsoft® ActiveX® script transformation you selected.

The transformation is run on the source data, and the results are copied to a temporary text file. The destination table is not
affected. Because test mode sends data to a file rather than the actual destination, problems with the provider, the destination, or
the data type overflow may not be detected.

Options

Execution Progress

View the progress of the transformation being tested.

Execution status

View error information about a transformation that did not execute correctly. Double-click the step.

Done

Display the ActiveX Script Transformation Properties dialog box, where you can change the ActiveX script.

View Results

Display the View Data dialog box, where you can view the contents of the temporary file containing the results of the test
transformation.

See Also

Using ActiveX Scripts in DTS

Tasks That Transform Data

Transform Data Task

DTS Designer Help (SQL Server 2000)

Transform Data Task Properties (Source Tab)
Use this tab to set the properties of and query source data.

Options

Description

Type a description of this Transform Data task.

Table/View

Select a table or a view from the data source specified on the connection. There is no guaranteed ordering of rows.

SQL query

Specify that an SQL statement retrieve the data from the data source. Type the SQL statement.

Parameters

Map global variables to input parameters by specifying an SQL query that includes parameters (using one or more question
marks as a parameter placeholder).

Preview

View the data in the selected source table.

Note If your source connection is to a dBase data source, and you specify an SQL query, the source data may not be available for
viewing.

Build query

Use the Data Transformation Services (DTS) Query Designer, a visual query building tool, to create the SQL statement to execute.

Browse

Specify the location of an SQL query to execute.

Parse query

Check the syntax of the SQL statement prior to execution.

See Also

Transform Data Task

DTS Connections

Using Parameterized Queries in DTS

DTS Designer Help (SQL Server 2000)

Transform Data Task Properties (Destination Tab)
Use this tab to configure the destination table or storage location for the results of the task. The properties to be configured will
vary, depending on the characteristics of the destination data source.

Options

Table name

Select the data destination of the transformation from the list.

Create

Specify that a new table should be created as the destination. A destination table or storage area must exist before you can specify
transformations.

Name

View the names of the destination columns.

Type

View the destination native data type using OLE DB data type mappings.

Nullability

View whether the destination columns allow null values. The default is true.

Size

View the width of destination columns where applicable.

Precision

View the precision of destination columns where applicable.

Scale

View the number of digits in scale where applicable.

See Also

Transform Data Task

DTS Connections

DTS Designer Help (SQL Server 2000)

Transform Data Task Properties (Transformations Tab)
Use this tab to select and graphically map the source and destination columns composing each transformation. Graphically
mapping a transformation is not required. You can also map transformations using selection boxes in the Transformation
Options dialog box.

Column mappings are represented on this tab by arrows connecting columns in the Source and Destination boxes. By default,
the Transform Data task maps all columns using one-to-one column mappings.

Options

Phases filter

Select the data pump phase for which you want to add a transformation. This advanced option is only available if the Show
multi-phase pump in DTS Designer check box is selected in the Package Properties dialog box. The default is Row
transform phase.

Name

View the name of the selected transformation. You must click on a mapping line to display the name of the transformation;
otherwise <none selected> is displayed. By default, the transformations are named DTS_Transformation_n, where n is equal
to the ordinal position of the mapped transformation.

Type

View the type of column-level transformation for the selected mapping. You must click on a mapping line to display the type of
the transformation; otherwise <none selected> is displayed. If you intend to create a new transformation, the value is ignored.

New

Display the Create New Transform dialog box, where you can select a type of column-level transformation.

Edit

Display the Transformation Options dialog box, where you can modify an existing transformation. Select the mapping line of
the transformation you want to modify before clicking Edit.

Delete

Delete a selected transformation. Select the mapping line representing the transformation you want to remove from the task
before clicking Delete.

Source

View the columns of the source data in graphical form, and click one or more columns to include in a transformation.

Destination

View the columns of the destination data in graphical form, and click one or more columns to include in a transformation.

Test

Run the selected transformation. Select the mapping line representing the transformation you want to run before clicking Test.
The results of the transformation are sent to a text file, and you can view the data. No permanent changes to the destination data
are made when you test a transformation.

Select All

Select all source columns and all destination columns. Use Select All when you want to create a many-to-many type of
transformation mapping.

Delete All

Delete all transformations. Select the mapping line representing the transformation you want to remove from the task before
clicking Delete.

See Also

Mapping Column Transformations

Tasks That Transform Data

Transform Data Task

Multiphase Data Pump Functionality

DTS Designer Help (SQL Server 2000)

Transform Data Task Properties (Lookups Tab)
Use this tab to define a lookup query. Before defining a lookup query, you must first create connections for the source, binding,
and lookup tables, and specify the source and binding tables.

Options

Name

Type a name for the lookup.

Connection

Choose an existing connection from the list on which to execute the lookup query.

Cache

Type a value for or view the number of lookup results saved in a cache. Caching is especially useful with lookups if the number of
rows being transformed is large, and you are querying on a small number of rows in the lookup table.

Query

Build the lookup query in the Data Transformation Services (DTS) Query Designer. You can also paste the query from a text editor
into the SQL pane.

Add

Create a new lookup query, which will be listed as a row in the Lookups table.

Delete

Removes the highlighted lookup query from the Lookups table.

See Also

Lookup Queries

Configuring a Simple Lookup Query

Using ActiveX Scripts in DTS

DTS Designer Help (SQL Server 2000)

Transform Data Task Properties (Options Tab)
Use this tab to send rows to an exception file, determine the format of that file, and set the error count at which package execution
should cease. The exception files are stored on a local or mapped drive. You can also specify items such as fast load, table locking
properties, and constraint checking as data is moved.

Options

Exception file properties area

Name
Specify the path and name of the file where exception records will be written. If the file does not exist at package run time, the
file will be created. The file does not have a default extension assigned to it.

Browse
Display the Select File dialog box, where you can search the local computer or mapped drives for an existing exception file. If
an existing exception file is used, the status and error information for the package will be appended.

File type properties area

7.0 format
Specify to save the exception file in 7.0 format. This format is useful if an exception file parser was written for Microsoft® SQL
Server™ version 7.0 exception files, because exception files using this backward-compatible format can still be used in the
parser.

Error text
Specify that any errors encountered during the task execution be recorded. Information such as the package name, execution
start and completion times, and other data are entered in the exception log.

Source error rows
Specify that a separate exception file be created to contain all the rows from the source data that did not get written to the
destination. Formatting of the file is done according to the specified File format properties. The file name will be the same as
the file name specified in the Name field, with the extension .Source appended to it.

Dest error rows
Specify that a separate exception file be created to contain records rejected from the source file. The file name will be the same
as the file name specified in the Name field, with the extension .Dest appended to it.

File format properties area

Row delimiter
Select the delimiter used to separate rows of data in the exception file. A carriage return/line feed {CR}{LF} is used by default.

Column delimiter
Select the delimiter used to separate the columns of data in the exception file. A vertical bar is used by default.

Text qualifier
Specify which character marks were used in the delimited data file to qualify text. Choose from: Double Quote {"}; Single
Quote {'}; <none>. You can also type a character to use as the text qualifier.

Data movement properties area

Max error count
Set a limit for the number of errors allowed before processing is terminated for the task. When the SQL Server fast load option
is selected, each error corresponds either to a row-level failure detected by the Transform Data task or to a batch failure. The
value of Max error count includes the number of row-level errors detected by the Transform Data task plus batch failures.
When the Max error count value is exceeded, task execution is terminated. The default is zero, which means that the task will
terminate upon the first error.

Fetch buffer size
Set the number of rows of data being fetched at the source during data movement. Generally, you should not need to adjust
this value unless it is necessary to optimize the characteristics of the data provider.

First row
Specify the first row of data to be moved. This is useful if the first row consists of column headings, or, if the first part of a data
source has been copied. You can set this value to the row number where processing stopped in an earlier data pump operation.

Last row
Specify the last row of data to move.

SQL Server properties Area

Use fast load
Specify that you want to use high-speed bulk-copy processing. The fast load option can be used only when the destination

connection is the Microsoft OLE DB Provider for SQL Server. When you enable this option, the data pump can accept batches of
transformed data. Batch sizes are controlled through the Insert batch size option in this area.

Keep NULL values
Specify that you want to keep the NULL value in the destination column, even if the destination table was created with a default
value designated for the column. This option is available only if you enable Use fast load.

Check constraints
Specify whether constraints on the destination table are checked during the load. By default, constraints are ignored. This
improves the performance, but it also allows data that violates existing constraints to be inserted into the table. This option is
available only if you enable Use fast load.

Table lock
Specify how the table should be locked during use. When the Use fast load property is not used, and Table lock is not used,
the table is locked using row-level locks. If Table lock is used, the table is locked using table-level locking. If the Use fast load
property is turned on, and Table lock is not used, the table is locked using row-level locks. If Table lock is used, then the table
is locked using table-level locking. This option is available only if you enable Use fast load.

Enable identity insert
Allow explicit values to be inserted into the identity column of a table (SQL Server only). This option is available only if an
identity column is detected. An identity column is defined as having a data type of bigint, decimal, integer, numeric,
smallint, or tinyint, with the Identity property for the column set to Yes. This option is available only if you enable Use fast
load.

Always commit final batch
Select to commit all rows in the final batch that were processed successfully before an error occurs. This property applies when
a transformation or insert error occurs during processing of the final batch, so that all rows in the batch prior to the error do not
have to be processed again. The setting is useful for large batch sizes. This option is available only if you enable Use fast load.

Insert batch size
Specify the number of rows in a batch. This option is available only if you enable Use fast load.

Values for Batch size work as follows:

If you set batch size to 0, the data is loaded in one batch, and the first row that fails will cause the entire load to be canceled and
the step fails. This value is the default setting.

If you set batch size to 1, the data is loaded a single row at a time. Each row that fails is counted as a batch failure, and the value
of Max error count is incremented by one. Previously loaded rows are either committed, or, if the step has joined the package
transaction, retained in the transaction, subject to later commit or rollback.

If you set batch size to a value greater than 1, the data is loaded one batch at a time. The first row that fails in a batch fails that
entire batch; loading stops and the step fails. Rows in previously loaded batches are either committed, or, if the step has joined
the package transaction, retained in the transaction, subject to later commit or rollback.

See Also

Tasks That Transform Data

Transform Data Task

DTS Designer Help (SQL Server 2000)

Transformation Flags
Use this dialog box to customize data conversions between source and destination columns and enforce the stringency with
which data type conversions are allowed. The transformation flags available through this dialog box correspond to a subset of the
members of the DTSTransformFlags object class.

Options

Default transformation flags

Allow all possible data conversions. This is the least stringent data conversion setting. It corresponds to the
DTSTransformFlag_Default constant.

Require exact match between source and destination

Enforce that data types match exactly in source and destination columns. If there is not an exact match, an error is generated. Use
the Advanced tab of the Data Transformation Properties dialog box for error handling. This setting corresponds to the
DTSTransformFlag_RequireExactType constant.

Custom transformation flags

Enable selection of the three transformation flag settings listed in the following options.

Allow data type promotion
Allow data type promotion from 16-bit integer to 32-bit integer numbers. This setting corresponds to the
DTSTransformFlag_AllowPromotion constant.

Allow data type demotion
Allow data type demotion from 32-bit integer to 16-bit integer numbers. This setting corresponds to the
DTSTransformFlag_AllowDemotion constant.

Allow NULL conversion
Allow data conversions from columns that allow NULL values to columns that do not. This setting corresponds to the
DTSTransformFlag_AllowNullChange constant.

See Also

TransformFlags Property

DTS Designer Help (SQL Server 2000)

Transformation Options (General Tab)
Use this tab to name the transformation you want to create, view information about the transformation type, and display the
Properties dialog box for the transformation.

When using other tabs in the Transformation Options dialog box, you must return to the General tab before you can view or
configure the properties of the transformation by clicking Properties.

Options

Name

Type a name for the transformation, or use the default name. The default name is "DTSTransformation_n", where n is equal to the
number of the transformation being defined for the task.

Type

View the type of column transformation you selected in the Create New Transformation dialog box.

Properties

Configure the properties of the selected transformation.

Sequence

View the order in which the current transformation was created and will be executed. In transformations where the same
destination column is written to by multiple transformations, the results of the last transformation (as designated by the sequence
number) are saved.

Transform Description

View a summary description of the transformation type selected.

See Also

Mapping Column Transformations

Transformation Types

Tasks That Transform Data

DTS Designer Help (SQL Server 2000)

Transformation Options (Source Columns Tab)
Use this tab to select and order the source columns you will use in the transformation. If you used the mapping lines on the
Transformations tab of the Transform Data or Data Driven Query task to define the transformation, the source columns you
mapped appear in the Selected columns list.

Options

Available columns

View the source columns from which you can select when creating the transformation.

Selected columns

View the source columns that will be used in the transformation.

>

Copy a selected column from the Available columns list to the Selected columns list.

>>

Copy all columns from the Available columns list to the Selected columns list.

<

Remove a selected column from the Selected columns list.

<<

Remove all columns from the Selected columns list and from the transformation.

See Also

Mapping Column Transformations

Transformation Types

Tasks That Transform Data

DTS Designer Help (SQL Server 2000)

Transformation Options (Destination Columns Tab)
Use this tab to select and order available destination columns you will use in the transformation. If you used the mapping lines on
the Transformations tab of the Transform Data or Data Driven Query task to define the transformation, the destination columns
you mapped appear in the Selected columns list.

Options

Available columns

View the destination columns from which you can select when creating the transformation.

Selected columns

View the destination columns that will be used in the transformation.

>

Copy a selected column from the Available columns list to the Selected columns list.

>>

Copy all columns from the Available columns list to the Selected columns list.

<

Remove a selected column from the Selected columns list.

>>

Remove all columns from the Selected columns list and from the transformation.

See Also

Mapping Column Transformations

Transformation Types

Tasks That Transform Data

DTS Designer Help (SQL Server 2000)

Transformation Options (Phases Tab)
Use this tab to select the transformation phase or phases you will implement by supplying and registering a COM object. You do
not need to use this tab if you are supplying Microsoft® ActiveX® script functions to implement multiphase data pump
functionality.

Options

Pre source data function

Call a function before the first fetch of source data. You create functions for the pre source transformation phase primarily for
writing header rows to the destination.

Row transform function

Call the default transformation function for copying and transforming data. Creating a function only for this transformation phase
is the same as not using the multiphase data pump feature.

Post Row Transform Function

Specify that post row transformation functions are executed after the row transform phase of the data pump. Only one of the
following post row transform functions can be called for a row: On insert success, On insert failure, and On transform failure.

On insert success

Create a function to be called on success of an Insert operation (or Insert query if the transformation is part of a Data Driven
Query task). You cannot specify any destination operations in the returned status.

On insert failure

Create a function to be called on failure of an Insert operation (or Insert query if the transformation is part of a Data Driven Query
task). You cannot specify any destination operations in the returned status.

On transform failure

Create a function to be called on failure of the normal transform phase (when the row transformation returns
DTSTransformStat_Error or DTSTransformStat_ExceptionRow). Writing a function for this transform phase allows you to
handle transformation errors (for example, type mismatches), overriding the value returned by the transformation and continuing
with execution.

On batch complete

Create a function to be called on success or failure of a batch or rows, as defined by the value specified in Insert batch size in the
Options tab of the Transform Data task. Setting a batch size for a Data Driven Query task or parallel data pump task can only be
done programmatically. Therefore, if you want to write an On batch complete function for either of those tasks, you should do
so programmatically as well.

On pump complete

Create a function to be called at the end of the transformation task (after all rows have been processed). Use functions written to
On pump complete to free up resources and commit data held in global variables throughout the lifetime of data pump. You
cannot access the data through an On pump complete function.

Post source data function

Create a function for processing the destination data after completion of the task. Unlike On pump complete functions,
functions written to this phase allow you to access the destination data. Common uses of a post source data function include
writing footer rows to a file, freeing up resources, and committing data held in global variables.

See Also

Multiphase Data Pump Functionality

Mapping Column Transformations

Transformation Types

Tasks That Transform Data

DTS Designer Help (SQL Server 2000)

Trim String Transformation Properties
Use this dialog box to remove leading, trailing, and embedded white space from a string in the source column, and copy the result
to the destination column.

Options

Trimming Options

Select the location in the string from which to remove white space.

Trim leading white space
Remove any white space preceding the first character of the string data.

Trim trailing white space
Remove any white space after the last character of the string data.

Trim embedded white space
Remove any white space in between the first and last characters of the string data.

Case Options

Select whether to change the case of the string data as part of the transformation.

Do not change case
Leave the case of the string data intact after performing any trim operations.

Uppercase
Change the case of the string data to uppercase after performing any trim operations.

Lowercase
Change the case of the string data to lowercase after performing any trim operations.

See Also

Trim String Transformation

Middle of String Transformation

DTS Designer Help (SQL Server 2000)

Unregister Custom Task
Use this dialog box to remove any registered custom tasks, along with their registry entries.

Options

Task Description

Select the custom task you want to unregister from the list.

See Also

DTS Custom Task

Building a DTS Custom Task

DTS Designer Help (SQL Server 2000)

Verifying Transformations
Use this dialog box to select how you want the column mappings handled when the source or destination connection has
changed and when column mappings exist that are no longer valid.

Options

Remove invalid transformations

Remove all column mappings. If you select this option, the Transformations tab is displayed, where you can reapply appropriate
column mapping and transformations. By using this option to clear out all invalid mappings, you do not need to manually delete
all invalid mappings and then set up appropriate column mappings. Thus, new mappings are more easily applied.

Change source/destination

Modify the source or destination tables. If you select this option, the Source tab of the transformation task is displayed, where
you can change the source table, or the Destination tab is displayed, where you can modify the destination.

Remove all transformations and redo auto-mapping

Remove all the original column mappings and reapply the column mapping with the new fields. If you select this option, the
Transformations tab is displayed, where you can review and apply appropriate column mappings and transformations. This
selection maps every column automatically. Any incorrect mapping must be deleted and then reapplied appropriately.

See Also

Mapping Column Transformations

DTS Designer Help (SQL Server 2000)

View Data
Use this dialog box to inspect source data that will be used by a transformation task, or to review the results of a test run of a
transformation.

When used after testing a transformation, the View Data dialog box allows you to view the temporary text file containing the
transformation results. You can check the data to ensure that the transformation is producing the expected results.

Because test mode sends data to a file rather than the actual destination, problems with the provider, the destination, or data type
overflow may not be detected. Therefore, in certain cases, test results may not accurately represent the performance of a
transformation task.

DTS Designer Help (SQL Server 2000)

Workflow ActiveX Script Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to specify the scripting code that will perform the functions you need to customize a Data Transformation
Services (DTS) package step (for example, retrying a connection).

Options

Language Tab

This tab contains a list of the functions available in the language that you choose in the Language list.

Language
Select an available scripting language. When you install scripting languages on the computer, this list will update automatically.
Microsoft® Visual Basic® Scripting Edition (VBScript) and Microsoft JScript® are available by default.

Functions
Select a function from the script language library to be placed into the ActiveX script text box. Double-clicking a function
name inserts the function code into the text box at the position of the cursor.

Entry Function
Specify the name of the function that will be the entry point when the script runs. Only one function can be specified as an entry
point for a workflow Microsoft ActiveX® script.

Browser Tab

View the constants available for use as return codes, package global variables, and lookups with a workflow ActiveX script. Click a
tab to display the available information for selection, and double click on an item to copy the information into the ActiveX script
text box.

ActiveX Script text box

Type or paste the scripting code necessary to perform the functions you need. The scripting editor has limited functionality; it
does not include features such as statement completion or color-coding of reserved words. Comment lines use the apostrophe (')
character syntax in any column, and all text from the comment character to the end of the line is ignored.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user knowledge or
intervention and may contain security credentials in plain text. Review the script for security issues before use. For more
information, see Security and Scripting.

Auto Gen.

Generate a single function placeholder in the selected scripting language. This option may not work for all installed scripting
engines.

Important If there is scripting code in the ActiveX script text area, the code will be deleted when you click Auto Gen.

Browse

Display the Select File dialog box, where you can select a file containing code. When you select a file, this will copy the contents
of that file into the ActiveX script text box.

Important Opening an external script file from this dialog box will overwrite any existing code in the ActiveX script task text box.
Therefore, this task should always be performed first.

Parse

Check the syntax of the code for errors.

Save

Display the Save As dialog box, where you can save all the code in the ActiveX script text box into a file on the local hard drive
or on any mapped drive.

Undo

Reverse a limited number of text entry actions. You cannot undo actions such as adding code through the Select File dialog box.

See Also

Using ActiveX Scripts in a DTS Workflow

Using ActiveX Scripts in DTS

Using Global Variables with DTS Packages

Debugging ActiveX Scripts

Using Return Codes in DTS

DTS Designer Help (SQL Server 2000)

Workflow Properties (Precedence Tab)
Use this tab to view and configure the relationships among tasks, transformations, and precedence constraints.

If you are configuring the properties of a precedence constraint, this tab displays the steps, from source to destination, that
must be completed for the constraint to be exercised. You can also use the tab to add additional constraints to the preceding
steps, delete constraints on those steps, or redefine existing constraints for those steps.

If you are configuring the workflow of a Transform Data task, this tab displays the source precedence constraints preceding
the target transformation. You can also use the tab to add additional constraints to a workflow, delete constraints, or
redefine existing constraints.

The order of constraints is not important. By default, each step is eligible for immediate execution.

Options

Source step

Select an available source step from the list.

Precedence

Specify task execution based on On completion, On success, or On failure status. You can also select <none> to terminate an
existing relationship between a Source Step and Destination Step.

Destination step

Select an available destination step from the list.

New

Add a new constraint between two steps, which you then need to configure.

Delete

Delete an existing constraint between two steps.

See Also

DTS Package Workflow

DTS Designer Help (SQL Server 2000)

Workflow Properties (Options Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to customize the workflow properties of a Transform Data task regarding transactional behavior, execution options,
and the use of a Microsoft® ActiveX® script.

Options

Description

View the name of the Transform Data task.

Join transaction if present

If you select this option, and transactions are enabled, the step joins the Data Transformation Services (DTS) package transaction.
Updates accumulate until commit or rollback. If cleared, updates are carried out one at a time, as they are requested.

Commit transaction on successful completion of this step

If you select this option, successful step completion triggers a transaction commit. Pending updates are made permanent. If
cleared, any updates remain in the transaction until a later commit or rollback.

Rollback transaction on failure

If you select this option, step failure triggers a rollback of the package transaction. Pending updates are discarded. If cleared, any
updates remain in the transaction until a later commit or rollback.

Execute on main package thread

Force the task associated with this step to execute on the main package thread rather than on a spawned thread. Choose this
option if you are executing a task against a data provider that is not free-threaded and does not support parallel execution of
tasks.

Important If parallel execution is attempted on a provider that does not support it, serious errors may result. Some data
providers used with DTS Designer that do not support parallel execution are the Microsoft OLE DB Provider for Jet, and the
providers for Microsoft Excel, dBase, Paradox, and HTML source files. Use the Execute on main package thread option if more
than one operation is used with these providers.

Close connection on completion

Close the connection after the completion of a task if the task is associated with a connection. Use of this option depends on the
data provider; some providers perform better if the connection is not kept open. Another consideration on whether to select this
option is the number of connections available for use and the expense associated with maintaining an open connection. For more
information, see the OLE DB provider documentation.

Fail package on step failure

Select this option to terminate processing of the DTS package if a failure occurs on this step.

DSO rowset provider

Expose OLE DB rowset data obtained from this step to an external consumer. This allows the package to be queried and for data
from the step to be used as a source for other packages.

Disable this step

Disable this workflow step when the package is executed.

Step priority

Set the Microsoft Windows NT® 4.0 thread priority for the step. The default setting is Normal.

Use ActiveX script

Include an ActiveX script to execute the step.

Properties

Display the ActiveX Script Properties dialog box, if Use ActiveX Script is selected.

See Also

DTS Package Workflow

Configuring Properties for DTS Transactions

Using ActiveX Scripts in a DTS Workflow

DTS Designer Help (SQL Server 2000)

Write File Transformation Properties
Use this dialog box to copy the contents of a source column (data column) to a file whose path is specified by a second source
column (file name column).

Options

Directory

Type the directory in which the files specified in the file name column are located or browse for the directory. At run time, each of
the entries in the file name column is appended to this directory name to create a save path. If no file exists at that location, one is
created and initialized with the contents of the data column.

File type

Select whether the files to which the transformation writes data are ANSI, Unicode, or OEM.

File name column

Select the column containing the list of file names from the list.

Handle existing file

Select an option for situations where the file in which to write data already exists.

Overwrite if file exists
Replace the contents of the existing file with new content (default selection).

Append if file exists
Retain the existing content of the file and add the new content to the end of the file.

Error if file exists
Terminate processing and fail the write file transformation if the file exists.

See Also

Write File Transformation

DTS Run UI Help (SQL Server 2000)

DTS Run
Use this dialog box to select a Data Transformation Services (DTS) package to run and to specify its connection settings and
scheduling options.

Options

Location

Select whether the DTS package is stored in Microsoft® SQL Server™, SQL Server 2000 Meta Data Services, or a structured
storage file.

Package Name

Select an existing package stored in SQL Server, Meta Data Services, or as a structured storage file to be run. If a single package of
the type you specified in Location exists, that package is specified. If multiple packages exist, no package is specified, and you
must click the browse (...) button to select a package.

Advanced

Display the Advanced DTS Run dialog box, where you generate global variable, logging, encryption, and command prompt
selections .

Date

View the current date and time.

Version

View the globally unique identifier (GUID) for the version of the selected package.

Server

Specify the name of the server on which the package is stored. This option is available for packages saved to SQL Server and Meta
Data Services only.

Use Windows Authentication

Specify Windows Authentication for login. This option is available only if you save the package to SQL Server.

Use SQL Server Authentication

Specify SQL Server Authentication for login. This option is available only if you save the package to SQL Server.

User name

Specify a user name for the connection.

Password

Specify a password for the connection.

Run

Execute the selected package.

Schedule

Display the Edit Recurring Job Schedule dialog box, where you can schedule package execution on a regular basis.

See Also

dtsrun Utility

Executing a DTS Package

Scheduling a DTS Package for Execution

DTS Run UI Help (SQL Server 2000)

Advanced DTS Run
 New Information - SQL Server 2000 SP3.

Use this dialog box to view or edit various options for Data Transformation Services (DTS) global variables, logging, and
encryption settings.

Options

Variables

Add a global variable or temporarily change the name, data type, and value of an existing package global variable. Any additions
or changes exist only for the duration of a dtsrun execution. After the DTS Run utility is closed, changes to existing global
variables are not saved, and global variables added during a DTS Run utility session are discarded.

New

Create a new global variable for the duration of a DTS Run utility session.

Delete

Delete a global variable for the duration of a DTS Run utility session.

Log File

Type the name of the text file containing DTS package execution error information.

Browse

Select a package execution log file.

Write completion status to event log

Include a completion status of package execution in the Microsoft® Windows® application log.

Encrypt the command

Encrypt the dtsrun command prompt statement according to SQL Server 2000 encryption. Click Generate to display the
encrypted text in the command prompt box. The /Z command prompt switch is shown, followed by the encrypted text for the
entire command prompt.

SQL Server 7.0 Format

Encrypt the dtsrun command prompt statement according to SQL Server 7.0 encryption. You need to select this option if you are
scheduling packages on an instance of SQL Server 7.0. Click Generate to display the encrypted text in the command prompt box.
Only the parameter values are encrypted; the dtsrun.exe command and the command prompt switches are not.

Command line

Display the command line equivalent to the options selected in the DTS Run utility.

Security Note Encrypt the command statement when you plan to copy the statement and save it in a text file.

Generate

Generate the text displayed in the Command Line box. If you select the Encrypt the command check box, the parameter values
in the generated command are encrypted. Generating a command prompt is useful if you want to execute dtsrun from batch files
or from SQL Server Agent.

See Also

dtsrun Utility

Executing a DTS Package

Scheduling a DTS Package for Execution

DTS Run UI Help (SQL Server 2000)

Select Package
Use this dialog box to select among Data Transformation Services (DTS) package versions saved to a structured storage file or to
SQL Server.

Selecting a Package Version Saved to a Structured Storage File

When you open a package saved to a structured storage file, if more than one package or package version is contained in the file,
the Select Package dialog box appears. The dialog box contains a tree view of a package version history:

At the top node, a text file icon and accompanying label indicates the storage location for the package.

Package nodes are shown beneath the top node. Each of these nodes represents a different package. There can be multiple
package nodes listed under a file, if different packages were saved under the same file name.

Version nodes with dates, indicating the complete version history of a package, are displayed beneath a package node.

Double-clicking a package icon loads the latest version of that package version. Double-clicking a version icon loads that specific
package version.

Selecting a Package Version Saved to SQL Server

The Select Package dialog box appears when you attempt to load a package saved in multiple versions to SQL Server. As with
structured storage files that have multiple versions, a tree view of the package history is displayed for selection. However, only
versions for a single package are displayed. You do not save multiple packages to a single file as you do with structured storage
files.

Expand a package icon to view its version history, then double-click on the package icon to load the latest version of the package,
or click on a specific version to load that version.

See Also

Saving a DTS Package to a Structured Storage File

Saving a DTS Package to SQL Server

DTS Package Execution Utilities

DTS Run UI Help (SQL Server 2000)

Executing DTS Package
This dialog box displays the execution progress of the Data Transformation Services (DTS) package, as well as the execution status
of the individual tasks composing the package.

To display error information about a task, double-click the task that did not execute correctly.

Options

Step

Name of the task that executes in the step.

Status

Indicates the progress of the executing step, and whether the step completed successfully or failed. For tasks that report the
number of rows processed (shown in parentheses), the number indicates the total number of rows read from the source, not the
number of rows that were successfully processed.

See Also

Executing a DTS Package

DTS Import/Export Wizard Help (SQL Server 2000)

Choose a Data Source
Choose a Data Source

 New Information - SQL Server 2000 SP3.

Use this dialog box to specify the source of the data to be copied. Not all the options defined below are available for all providers.
A subset of the options below will be shown, depending on the provider chosen.

Options

Data Source

Choose the data-specific driver that matches the data storage format of the source data.

File Name

Specify the database path and file name holding the data to be imported (for example, C:\MyData.xls,
\\Sales\Database\Northwind.mdb).

Username

Specify a user name for the database connection.

Password

Specify a password for the database connection.

Advanced

Display the Advanced Properties dialog box, where you can enter custom settings. For more information about the OLE DB
provider properties, search in the Platform SDK section in the MSDN® Library at Microsoft Web site.

UDL Filename

Specify the name of the data link (.udl) file that contains the connection string.

Security Note UDL files are not encrypted and you therefore need to secure the folder in which they reside.

Always read properties from UDL file

Request that the package search for and read the connection string from the specified data link (.udl) file each time the package is
executed. Changes made to the data link file between different executions of the package will be incorporated on the next run. If
you select this check box, the .udl file must be deployed with the package so the package can find it and read from it. If you do not
select this check box, the connection string is copied from the .udl into the package, and the file is not referenced again.
Connection changes then can be modified only by editing the Data Transformation Services (DTS) package directly.

Properties

Display the Data Link Properties dialog box, where you configure the data link connection. Changes made in the dialog box will
be incorporated into the package created during the current session and will not change the data link file.

User/System DSN

Specify the name of the existing user or system data source name (DSN) that points to the data source.

New

Display the Create New Data Source dialog box, where you can create an ODBC DSN. For more information about creating a
new ODBC data source, search in the Platform SDK section in the MSDN Library at Microsoft Web site.

File DSN

Specify the name of the existing file DSN that points to the data source.

Server

Specify the name of the server holding the data source.

Use Windows Authentication

Specify that the package use Windows Authentication for login to the Microsoft® SQL Server™ database.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to the Microsoft SQL Server database.

Security Note When possible, use Windows Authentication.

Database

List databases on the specified instance of SQL Server.

Refresh

Cause the database list to populate on Microsoft Windows® 98 computers.

See Also

DTS Connections

DTS Import/Export Wizard Help (SQL Server 2000)

Choose a Destination
Choose a Destination

 New Information - SQL Server 2000 SP3.

Use this dialog box to specify the destination of the data being copied. Not all the options defined below are available for all
providers. A subset of the options below will be shown, depending on the provider chosen.

Options

Destination

Choose the data-specific driver that matches the data storage format of the destination.

File Name

Specify the path and file name of where the data being imported is to be stored (for example, C:\MyData.xls,
\\Sales\Database\Northwind.mdb).

User name

Specify a user name for the database connection.

Password

Specify a password for the database connection.

Advanced

Display the Advanced Properties dialog box, where you can enter custom settings. For more information about the OLE DB
provider properties, search in the Platform SDK section in the MSDN® Library at Microsoft Web site.

UDL Filename

Specify the name of the data link (.udl) file that contains the connection string.

Security Note UDL files are not encrypted and you therefore need to secure the folder in which they reside.

Always read properties from UDL file

Request that the package search for and read the connection string from the specified data link (.udl) file each time the package is
executed. Changes made to the data link file between different executions of the package will be incorporated on the next run. If
you select this check box, the .udl file must be deployed with the package so the package can find it and read from it. If you do not
select this check box, the connection string is copied from the .udl into the package, and the file is not referenced again.
Connection changes then can be modified only by editing the Data Transformation Services (DTS) package directly.

Properties

Display the Data Link Properties dialog box, where you configure the data link connection. Changes made in the dialog box will
be incorporated into the package created during the current session and will not change the data link file.

User/System DSN

Specify the name of the existing user or system data source name (DSN) that points to the data source.

New

Display the Create New Data Source dialog box, where you can create an ODBC DSN. For more information about creating a
new ODBC data source, search in the Platform SDK section in the MSDN Library at Microsoft Web site.

File DSN

Specify the name of the existing file DSN that points to the data source.

Server

Specify the name of the server to hold the data.

Use Windows Authentication

Specify that the package use Windows Authentication for login to the Microsoft® SQL Server™ database.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to the Microsoft SQL Server database.

Security Note When possible, use Windows Authentication.

Database

List databases on the specified SQL Server.

Refresh

Cause the database list to populate on Microsoft Windows® 98 computers.

See Also

DTS Connections

DTS Import/Export Wizard Help (SQL Server 2000)

Advanced Connection Properties
Advanced Connection Properties

Use this dialog box to set custom values for certain OLE DB initialization properties. The OLE DB advanced properties available for
customization varies depending on the properties supported by a particular provider. For more information, see the
programming documentation for the individual OLE DB provider.

To change an OLE DB property value, in Value, click a cell, and then enter the new value.

Note If you need to work more closely at the OLE DB level, the OLE DB Rowset Viewer, available with the OLE DB Software
Development Kit (SDK), offers a simple way to view and manipulate OLE DB rowsets. It also gives you the added ability to call and
manipulate other OLE DB methods from the data source, session, command, rowset, transaction, and notification objects
supported by any OLE DB provider.

See Also

DTS Connections

DTS Import/Export Wizard Help (SQL Server 2000)

Create Database
Create Database

Use this dialog box to define a new database for a data source connection. You can define a new database only when connecting
to an instance of Microsoft® SQL Server™ through the Microsoft OLE DB Provider for SQL Server or through the Microsoft OLE
DB Provider for ODBC. The database files will be put into the same location as your master database files. If you are unable to
create a new database, make sure your login has the appropriate permissions.

This dialog box offers a subset of the available options for creating a database. For access to all the options when creating a
database, in SQL Server Enterprise Manager, right-click the Databases node and then click New Database.

Make sure to follow SQL Server naming conventions for the database and appropriately set the data file size and log file size for
the new database. For more information, see Naming Conventions for Instances of SQL Server 2000.

See Also

Creating a Database

DTS Import/Export Wizard Help (SQL Server 2000)

Select File Format
Select File Format

Use this dialog box to specify the formatting of a source or destination text file. Columns and rows in the text file may be of fixed
length or delimited with special characters.

Note If importing from an instance of Microsoft® SQL Server™ to a text file, column sizes may default to 2 gigabytes (GB). If you
need to adjust the column size setting, click Transform in the Select destination file format dialog box to modify columns.
When copying data from a text file to a new SQL Server table, the column sizes may default to varchar (255).

Options

Delimited

Specify that data within the file is aligned into fields and that each field is delimited with the same terminating character.

Fixed Field

Specify that data within the file is aligned into fields of equal width. A field within the file has the same width for all rows of data.
However, each field can have a width different from other fields within the same row.

File type

Specify file type by clicking ANSI, OEM, or Unicode, depending on the type of data in the file. If you click ANSI or OEM, the data
will be interpreted as belonging to the code page that is current on the computer executing the package.

Row delimiter

Specify that each row in the file is separated from the next with a character sequence. Click one of the following: {CR} (carriage
return); {LF} (line feed); Semicolon; Comma; Tab; Vertical Bar. You also can type in a character to use as the row delimiter. You
can also click <none> if the file is a fixed field file.

Text qualifier

Specify which character marks were used in the delimited data file to qualify text. Click one of the following: Double Quote {"};
Single Quote {'}; <none>. You also can type in a character to use as the text qualifier. If the text was not delimited, but the file is
not a Fixed field file, then this property can be left to the default of Double Quote {"} or changed to <none>.

Skip rows

Specify the number of rows from the start of the file that you do not want copied. This field works together with the First row has
column names field. If the First row has column names check box is not selected, then the number of rows skipped is equal to
the number typed here. If the First row has column names check box is checked, then the number of rows skipped starts
counting after the first row of column headings has been counted.

First row has column names

Specify that the first row in the text file has column headings rather than data.

Transform

Display the Column Mappings and Transformations dialog box, where you can customize the mapping of columns and add
transformations to the copied data.

DTS Import/Export Wizard Help (SQL Server 2000)

Define Row Width
Define Row Width

Use this dialog box to define the row width for data in a text file when the file does not contain delimiters. To display this dialog
box, you must clicked None in the Row delimiter list when configuring the file format.

To specify the number of characters you want in a row (shown in the Value box), select the red line and drag it, Alternatively, you
can click on the arrows alongside the Value box to set the row width.

DTS Import/Export Wizard Help (SQL Server 2000)

Specify Table Copy or Query
Specify Table Copy or Query

Use this dialog box to specify whether you want to do a simple copy of data or a more complex copy of data that requires an SQL
statement to gather and select the appropriate rows to copy.

Options

Copy table(s) and view(s) from the source database

Display the Select Source Tables and Views dialog box, where you can copy fields from the selected tables and views in the
source to the specified destination(s). The records will not be filtered or ordered.

Use a query to specify the data to transfer

Display the Type SQL Statement dialog box, where you can build SQL statements to retrieve selected rows. Only the rows
matching the selection criteria will be available for copying.

Copy objects and data between SQL Server databases

Display the Select Objects to Transfer dialog box, where you can specify both objects and data to copy, if both the data source
and destination are Microsoft® SQL Server™ databases. The objects you can transfer include tables, views, stored procedures,
defaults, rules, constraints, user-defined data types, logins, users, roles, and indexes. You can transfer objects only between
multiple instances of SQL Server version 7.0, from an instance of SQL Server 7.0 to an instance of SQL Server 2000, and between
multiple instances of SQL Server 2000.

DTS Import/Export Wizard Help (SQL Server 2000)

Type SQL Statement
Type SQL Statement

Use this dialog box to type the SQL statement that will generate the data you want from the data source for copying to the
destination.

Options

Query Statement

Type a query statement to retrieve selected rows of data from the source database. For example, the following query statement
retrieves the OrderID, CustomerID, and OrderDate for orders made in 1997 and stored in the Northwind database:

SELECT OrderID, CustomerID, OrderDate
FROM Orders
WHERE OrderDate BETWEEN '01/01/1997' AND '12/31/1997'

Query Builder

Display the Select Columns dialog box, where you can determine the tables, columns, and rows to be selected for copying.

Parse

Check the SQL statement in the Query statement text area for valid syntax. This option does not allow you to verify data fields or
the existence of tables and views.

Browse

Display the Select File dialog box, where you can select a file. When a file is selected, the text from the file is copied into the
Query statement text area.

DTS Import/Export Wizard Help (SQL Server 2000)

Select Objects to Copy
Select Objects to Copy

Use this dialog box to specify which objects to transfer from one instance of Microsoft® SQL Server™ to another. You can transfer
only between multiple instances of SQL Server version 7.0, from an instance of SQL Server 7.0 to an instance of SQL Server 2000,
and between multiple instances of SQL Server 2000.

Options

Create destination objects

Create destination objects for all objects (tables, views, stored procedures, defaults, rules, constraints, user-defined data types,
logins, users, roles, and indexes) to be transferred. Enable the following options:

Drop destination objects first
Drop all corresponding destination objects before creating new ones.

Include all dependent objects
Include all dependent objects, such as the tables supporting a view, in the transfer of data.

Include all extended properties
Include all extended properties, which are user-supplied definitions on various objects in the database. For more information,
see Using Extended Properties on Database Objects.

Copy data

Enable the copying of SQL Server data from source to destination and the following copy options:

Replace existing data
Overwrite existing data in the destination objects with the new data from the specified source.

Append data
Retain existing data in the destination object and append new data from the specified source.

Use Collation

Enable the copying of data between different collations. For more information on using different collations with Data
Transformation Services (DTS), see Data Conversion and Transformation Considerations.

Copy all objects

Transfer all objects associated with the specified data source.

Use default options

Set the advanced transfer options to their defaults.

Select objects

Display the Select Objects dialog box, where you can select individual objects to be transferred. Clear the Transfer all objects
check box to make this option available.

Options

Display the Advanced Transfer Options dialog box, where you can further specify the transfer of logins and tables, and whether
to use quoted identifiers in the generated SQL Script. Clear the Use default options check box to make this option available.

Script file directory

Specify the directory to which the script file and log files are written.

The SQL and data files for each selected object have script files written to a directory, which must exist on the same computer on
which the task runs. These script files are then run against the destination database.

The script and log files remain accessible in the directory until the next time the package is executed. At that time, the files are
overwritten with new information. Because the script files are being executed in this manner, running multiple transformations
from the same source database at the same time will entail changing the directory where the script file is being stored for one of
these transformations. If the script file directory is not changed, one process will not be able to access the file because it is in use.

See Also

Copy SQL Server Objects Task

DTS Import/Export Wizard Help (SQL Server 2000)

Select Objects
Select Objects

Use this dialog box to specify the objects that you want to transfer to the new database.

Note If you select one of the options below, you do not mark automatically the objects to be transferred. Instead, you cause the
objects to appear in the Objects table. From that table, you then select the objects to transfer.

Options

Show all tables

View all tables in the database in the Objects table.

Show all views

Display all views in the database in the Objects table.

Show all stored procedures

Display all stored procedures in the database in the Objects table.

Show all user-defined functions

Display all user-defined functions in the Objects table.

Show all defaults

Display all database defaults in the Objects table.

Show all rules

Display all database rules in the Objects table.

Show user-defined data types

Display all user-defined data types in the database in the Objects table.

Objects table

Select items individually to include them in the transfer or click the following:

Select All
Select all objects in the database as eligible for transfer to the new database.

Check
Select one or more database objects.

Uncheck
Remove one or more database objects from selection.

See Also

Copy SQL Server Objects Task

DTS Import/Export Wizard Help (SQL Server 2000)

Advanced Copy Options
Advanced Copy Options

Use this dialog box to specify which objects to copy from one instance of Microsoft® SQL Server™ to another.

Options

Copy database users and database roles

Copy all database users and roles.

Copy SQL Server logins (Windows NT and SQL Server logins)

Copy all SQL Server logins.

Copy object-level permissions

Copy all object-level permissions.

Copy indexes

Copy indexes for all tables copied, if applicable.

Transfer triggers

Copy triggers for all tables copied, if applicable.

Copy full text indexes

Copy full-text indexes for all tables copied, if applicable.

Copy PRIMARY and FOREIGN keys

Copy primary and foreign key definitions for all tables copied.

Generate Scripts in Unicode

Copy data as Unicode. Useful if source data contains nchar data types or double-byte character set (DBCS) data. For more
information about Unicode, see Unicode Data.

Use quoted identifiers when copying objects

Enclose all object names in quotation marks.

See Also

Copy SQL Server Objects Task

DTS Import/Export Wizard Help (SQL Server 2000)

Select Columns
Select Columns

Use this dialog box to specify tables, views, and columns you want copied to the destination and to order columns in the
destination tables.

Options

Source tables

View the tables to be copied. To move all the columns to the Selected columns text area for copying to the destination, select the
table and click the > button, or double-click the table name. You also can select and move individual columns. To see the
individual columns, expand the table that contains the column.

Selected columns

View the columns to be copied. The columns are listed in the order in which they will be created.

Move Up

Move the selected column up in the order.

Move Down

Move the selected column down in the order.

DTS Import/Export Wizard Help (SQL Server 2000)

Specify Sort Order
Specify Sort Order

Use this dialog box to order the records to be placed as they are placed in the destination table.

Options

Selected columns

View the columns to be copied into the destination table. To see the column in the Sorting order table, highlight a row and
double-click, or click the > button.

Sorting order

View the columns to be used as the sorting criteria. An ORDER BY clause will be generated from the chosen columns. The ORDER
BY clause will be followed by the column names shown in the Sorting order table, with the first column as the outer sort field,
the next column as the inner sort, and so on. As a result, the records will be placed in the destination table in order of the specified
sort. The ordering does not generate a clustered index or affect indexing.

DTS Import/Export Wizard Help (SQL Server 2000)

Specify Query Criteria
Specify Query Criteria

Use this dialog box to specify whether a WHERE clause is used to filter out rows of data. If you want to use filtering, use a
combination of the Column, Oper, and Value/Column fields to write the predicate. If more than three conditions are necessary,
type in the additional criteria in the Type SQL Statement dialog box that is displayed when you click Next, or click Back to
return to the previous dialog box and type the SQL statement directly.

If you enter multiple conditions that are combined with different logical operators (AND, OR), the rules of precedence defined for
that database management system (DBMS) apply. In most DBMS installations, the AND condition is evaluated first.

Options

All rows

Select all rows from the source without constraint. No WHERE clause will be appended to the SQL statement.

Only Rows meeting criteria

Enable the Column, Oper, and Value/Column fields so that the following selection criteria can be defined:

Column
Choose the column to which the constraint will apply.

Oper
Choose the relationship operator to apply in the comparison. Available values are =, <, >, <>, <=, >=.

Value/Column
Select the other value or column to which the field in the Column list is compared. Click the browse (...) button to list the values
stored in the table for the column shown in the Column list. The value selected from the list becomes the comparison value.

DTS Import/Export Wizard Help (SQL Server 2000)

Select Source Tables and Views
Select Source Tables and Views

Use this dialog box to specify the tables and view to be copied to the destination.

Options

Table(s) and View(s)

View the tables and views that are available for copying to the destination. If you select a source and perform no other action, you
will copy the schema and data from the source without changes.

...

Display the Column Mappings and Transformations dialog box, where you specify which destination columns are to receive
source data, edit script code to customize the transfer at the record level, and edit the SQL code required to create the destination
table.

Preview

Preview the source data to verify it before running the Data Transformation Services (DTS) package. Click Back to return to
previous dialog boxes, where you can make corrections that will produce the appropriate data.

DTS Import/Export Wizard Help (SQL Server 2000)

Column Mappings and Transformations
Column Mappings and Transformations

Use this dialog box to specify the mappings between the source and destination columns and to specify the transformations the
data goes through, if any, as it is moved to the destination. You also can change the data type of the data if a valid data conversion
is applicable.

Column Mappings Tab

Use this tab to specify how to treat the destination table and to specify column attributes on any newly created table.

Options

Create destination table

Create the destination table before copying the source data. This is the default option if the destination table you specified does
not exist. If this option is selected and the destination table already exists, an error occurs, unless you select the Drop and re-
create destination table check box.

Edit SQL

Customize the Transact-SQL CREATE TABLE statements used to create the destination table.

Delete rows in destination table

Delete all rows in the destination table before copying the source data. This option is only available if the destination table already
exists. Existing indexes and constraints on the destination table are not affected by this option.

Append rows to destination table

Insert source data into the destination table. This option is available only if the table already exists. Existing data, indexes, and
constraints on the destination table are not affected. However, rows are not necessarily appended to the end of the destination
table. You can determine where rows will be inserted only by having a clustered index on the destination table.

Drop and re-create destination table

Drop the destination table and re-create it before moving data into it. All existing data in the destination table and any indexes are
destroyed.

Enable identity insert

Allow explicit values to be inserted into the identity column of a table (Microsoft® SQL Server™ only). This option is only available
if an identity column is detected. An identity column is a column that has been defined as having a data type of bigint, decimal,
integer, numeric, smallint, or tinyint, where the Identity property for the column is set to yes.

Mappings table

Edit the cells in the table. The table does not list the order in which the destination columns will appear, but rather lists each
destination column alongside each source column to which it maps.

For each column in the Mappings table, you can set the following properties:

Source
Choose the column name in the source table to copy to the destination. Click <ignore> on the source column name to set the
destination column to NULL for a new table. If the table already exists, the data will be NULL if allowed, or set to its default value
if one was defined. If the destination is defined as NOT NULL, clicking <ignore> in the source column results in an error when
the package is executed if no default value is specified for the destination column.

If you copy a source column defined as an identity column, the data will not be copied unless the Enable identity insert check
box is selected.

If you copy a source column defined with user-defined data types to a new table, the data type of the destination column is the
system-defined data type that corresponds to the user-defined data type.

You may change the following properties only if a new destination table is being created.

Destination

Choose the column name in the destination table to receive the source data. Click <ignore> to prevent the source column from
being created in the destination table when creating a new table. If you want to remove a column from an existing table, click
<ignore> in the destination column, but also select the Drop and re-create destination table check box in this dialog box.
This will re-create the table with the columns specified. Existing data and indexes in the table will be lost.

timestamp columns cannot be copied by the Data Transformation Services (DTS) Import/Export Wizard. If the destination
column is a timestamp column, the value in that field will be a new timestamp indicating when the row was inserted, not a
copy of the timestamp data from the source table.

Type

Select a data type for the destination column. The default setting matches the data type of the destination column to the source.

Note Invalid data conversions can be specified without causing an error, as the default transformation setting allows all
possible conversions. For example, converting an int data type to a tinyint data type will result in data truncation, but the
conversion will proceed.

Nullable
Specify if destination can allow null values.

Size
Specify the length of the Destination column, in units corresponding to the data type. The value is only applicable for the char,
varchar, nchar, nvarchar, binary, and varbinary data types. Specifying a size smaller than the length of the source can result
in data truncation.

Precision
Enter the maximum number of decimal digits that can be stored to the left and to the right of the decimal point. This option
applies only to decimal and numeric data types.

Scale
Enter the maximum number of decimal digits that are stored to the right of the decimal point. The number must be less than or
equal to the number in the Precision column. This option applies only to decimal and numeric data types.

Transformations tab

Use this tab to specify whether unique transformation code must be written. The column mappings set on the Column
Mappings tab are reflected in code shown in the text area.

Options

Copy the source column directly to the destination columns

Copy the source column to the destination tables without changing the data or the source and destination mappings.

Transform information as it is copied to the destination

Edit the script in the text area to customize the columns before copying them from the source to the destination. For complex
transformations, consider using DTS Designer, which offers support for Microsoft ActiveX® scripting.

Language

Select a scripting language. The default language is Microsoft Visual Basic® Scripting Edition (VBScript). Available languages are
VBScript or JScript.

Browse

Display the Select File dialog box, where you can select a file that contains previously written transformation code, if the code
already has been written and saved to a .txt, .vbs or .bas file. When a file is selected, the text from the file is copied into the Query
statement text area.

See Also

ActiveX Script Transformation

Using ActiveX Scripts in DTS

DTS Import/Export Wizard Help (SQL Server 2000)

Save, Schedule and Replicate Package
Save, Schedule, and Replicate Package

Use this dialog box to save the source, destination, and transformations properties as a Data Transformation Services (DTS)
package.

Options

Run Immediately

Run the transformation immediately and create the destination data when the wizard completes

Use replication to publish destination data

Use the destination tables for replication. When you click Use replication to publish destination data, the Create Publication
Wizard starts after the DTS Import/Export Wizard completes.

Schedule DTS package for later execution

Save the package to the Microsoft® SQL Server™ msdb database, SQL Server 2000 Meta Data Services, a COM-structured
storage file, or a Microsoft Visual Basic® file and schedule it to run at predefined intervals. Click the browse (...) button to display
the Edit Recurring Job Schedule dialog box, where you can schedule the execution of a package. If the schedule is not modified,
the default is to run the package daily at 12:00 midnight.

Save DTS Package

Specify that you want to save the DTS package to one of the following formats:

SQL Server
Save the package to SQL Server and store it in the sysdtspackages table of the msdb database.

SQL Server Meta Data Services
Save the package to Meta Data Services. Use this option if you plan to track package version, meta data, and data lineage
information with Meta Data Services.

Structured Storage File
Save the package as a COM-structured storage file.

Visual Basic File
Save the package into a Visual Basic file.

See Also

Introducing Replication

Saving a DTS Package

DTS Import/Export Wizard Help (SQL Server 2000)

Save DTS Package
Save DTS Package

Use this dialog box to save a Data Transformation Services (DTS) package.

Options

Name

Specify a unique name for the package.

Description

Specify a description for the package.

Owner password

Specify a password for the package to protect any sensitive user name and server password information in the package from
unauthorized users. This option is not available if you save to Microsoft® SQL Server™ 2000 Meta Data Services or to a Microsoft
Visual Basic® file.

User password

Specify a password for a package user. This password allows a user to execute a package; however, this option does not allow a
user to view the package definition. If you set the user password, you also must set the owner password. This option is not
available if you save to Meta Data Services or to a Visual Basic file.

Server name

Specify the name of the SQL Server installation storing the package.

Use Windows Authentication

Use Windows Authentication when saving a package to an instance of SQL Server. The Windows Authentication used will be the
Microsoft Windows® login of the developer creating the package. If the package is scheduled through SQL Server Agent, the SQL
Server Agent service must be run under an account that has permissions to access all the resources.

Use SQL Server Authentication

Use SQL Server Authentication when saving a package to an instance of SQL Server. If the package is scheduled through SQL
Server Agent, the SQL Server Agent service account must have access to all the resources required by the package.

User name

Specify the login used to connect to an instance of SQL Server if you clicked Use SQL Server Authentication.

Password

Specify the password associated with the user name if you clicked Use SQL Server Authentication.

Scanning

Display the Scanning Options dialog box, where you can specify how objects referenced by the package should be scanned into
Meta Data Services. This capability allows you to relate source and destination objects in a package to database meta data (for
example, primary and foreign keys in a table, indexes, and column information such as data type) stored in Meta Data Services.

When you save the package as a COM-structured storage file or a Visual Basic file, the following options are available:

Name
Specify a unique name for the package.

Description
Specify a description for the package.

File name
Specify the package source code file name and path. Click the browse (...) button to display the Save As dialog box.

See Also

Saving a DTS Package

DTS Import/Export Wizard Help (SQL Server 2000)

View Data
View Data

Use this dialog box to inspect source data that will be used in the data copying operation. Only the first 100 lines of data are
displayed.

DTS Import/Export Wizard Help (SQL Server 2000)

Font
Font

Use this dialog box to format the Transact-SQL code in the query box.

Options

Color

Specify a Transact-SQL content element to assign color coding and formatting.

Foreground
Assign a color for the selected content element.

Background
Assign a background color for the selected query element.

Font

Assign a font to the selected Transact-SQL content element.

Size

Assign a font size to the selected Transact-SQL content element.

Sample

View an example of the selected Transact-SQL content element with the assigned font attributes.

Reset All

Reset all options to their original default values.

DTS Import/Export Wizard Help (SQL Server 2000)

Scanning Options
Scanning Options

Use this dialog box to import database schema information from an OLE DB data source and populate instances of the Database
Information Model (DBM) in Microsoft® SQL Server™ 2000 Meta Data Services. The scanner is passed an OLE DB provider, and
then it examines the schema and creates a set of corresponding instance objects in Meta Data Services using the DBM and Data
Transformation Services (DTS) Meta Data Services information models.

If you save a DTS package to Meta Data Services, you can set how the objects referenced by the package are related to SQL Server
catalog meta data scanned into Meta Data Services. Meta data in this context refers to information such as:

Primary and foreign keys.

Column type, size, precision, scale, and nullability.

Indexes.

Options

Resolve package references to scanned catalog meta data

Enable the scanning options, which link the package to Meta Data Services meta data.

Use scanned catalogs if already present in repository

Relate the package to Meta Data Services meta data if the meta data has already been saved (for example, by importing the meta
data or by a previous scan). This option is useful if the database schema has not changed, Meta Data Services meta data already
exists, and saving time is a consideration. If column or meta data information has changed and this option is used, references of
the package to Meta Data Services meta data may not be meaningful.

Scan all referenced catalogs into repository

Scan all information about a database (all table, column, and meta data information) into Meta Data Services, even if the
information is not used. This is safer than the previous option, but more costly in terms of time and performance.

Scan catalog if not already present in Repository

Add the database if it is not present in Meta Data Services. This is the default selection if scanning options are enabled.

Scan catalog always

Scan a database into Meta Data Services even if it is present already.

See Also

Importing and Saving Meta Data in DTS

Recording Data Lineage in DTS

Full-Text Search Help (SQL Server 2000)

Full-Text Indexes, Catalogs, and Search
A full-text index stores all the full-text words and their locations for a given table. A full-text catalog stores the full-text index of a
database. The full-text service performs the full-text querying.

Full-Text Search Help (SQL Server 2000)

Full-Text Search Service Properties, General Tab
This section shows the options and their functions available on the General tab of the Full-Text Search Properties dialog box.

Service status

Displays the current status of the full-text search service. Click Refresh to get the latest status.

Default location of catalog files

Displays the default directory location for full-text catalog files. SQL Server Setup determines this location, making it a read-only
property. However, an administrator can override this location when creating a full-text catalog.

Location of temporary files

Displays the directory location for temporary files. This property is established at setup and is read-only.

Location of error log files

Displays the directory location for error log files. This property is established at setup and is read-only.

Full-Text Search Help (SQL Server 2000)

New Full-Text Catalog Properties, New Full-Text Catalog Tab
This section shows the options and functions available on the New Full-Text Catalog tab of the New Full-Text Catalog
Properties dialog box.

Name

Display and set the display name for a full-text catalog.

Location

Display and override the default full-text catalog location established during setup and displayed on the General tab.

Full-Text Search Help (SQL Server 2000)

New Full-Text Catalog Properties, Schedules Tab
Use to create full or incremental population schedules for the current full-text catalog. Each row represents a full or incremental
population schedule. You can assign one or more full or incremental population schedules, or a combination of full-population
times and incremental population times, to a full-text catalog. To modify a schedule, double-click the schedule, or select the
schedule and click Edit. To add a schedule, click New Schedule. To delete a schedule, select the schedule and click Delete.

Full-Text Search Help (SQL Server 2000)

Full-Text Catalog Properties, Status Tab
This section shows the options and their functions available on the Status tab of the Full-Text Catalog Properties dialog box.

Name

Display the friendly name of the catalog. It is read-only.

Location

Display the root directory location of this catalog. It is read-only.

Physical catalog

Display the on-disk catalog name. It is read-only.

Status

Display the current population status of this catalog. The display can be updated by clicking the Refresh button. It is read-only.

The value is one of the following:

Idle

Full population in progress

Paused

Throttled

Recovering

Shutdown

Incremental population in progress

Building index

Disk is full. Paused

Change tracking

Item count

Display the number of tables and rows indexed in this full-text catalog. It is read-only.

Catalog size

Display the size in MB of the full-text catalog. It is read-only.

Unique key count

Display the count of unique nonnoise words indexed in the full-text catalog. It is read-only.

Last population date

Display the date and time this full-text catalog was last populated.

Note If a population is stopped immediately after starting, the Last population date will contain the date the population was
started, even though it did not finish successfully.

Full-Text Search Help (SQL Server 2000)

Full-Text Search Catalog Properties, Tables Tab
This section shows the options and their functions available on the Tables tab of the Full-Text Search Catalog Properties
dialog box.

Table

Displays the tables configured for full-text indexing using this full-text catalog.

Full-text indexing enabled

Displays for each table whether the full-text index is active and can be queried.

Full-Text Search Help (SQL Server 2000)

Full-Text Catalog Properties/Full-Text Indexing, Schedules Tab
Use to view or modify the list of full or incremental population schedules for the current full-text catalog. Each row represents a
full or incremental population schedule. You can assign one or more full or incremental population schedules to a full-text
catalog. To modify a schedule, double-click the schedule, or select the schedule and click Edit. To add a schedule, click New
Schedule. To delete a schedule, select the schedule and click Delete.

Full-Text Search Help (SQL Server 2000)

New/Edit Full-Text Indexing Schedules
You can create or modify a full or incremental population schedule for the current full-text catalog. This section shows the options
and their functions available in the New (or Edit) Full-Text Indexing Schedules dialog boxes.

Name

Display or modify the name of the schedule.

Enabled

Display or modify the enabled status of the selected schedule.

Job type (Full/Incremental)

Specify either a full or incremental population job type. Full population rebuilds all entries in the full-text catalog. Incremental
population updates entries in the full-text catalog for tables with timestamped rows.

Start automatically when SQL Server Agent starts

Start the scheduled population automatically when SQL Server Agent starts.

One time

Start the scheduled population one time at the specified date and time.

On date

Specify the date on which you want the population to start.

At time

Specify the time at which you want the population to start.

Recurring

Start the scheduled population according to the displayed schedule information.

Change

Change the current recurring job schedule.

Full-Text Search Help (SQL Server 2000)

Table Properties, Full-Text Indexing Tab
This section shows the options and their functions available on the Full-Text Indexing tab of the Table Properties dialog box.

Full-text index status

Indicates whether the full-text index for this table is active or inactive. An active full-text index supports full-text queries.

Full-text catalog

Displays the name of the full-text catalog containing the full-text index for this table. You can find this full-text catalog in the Full-
Text Catalog folder of this table's database.

Full-text unique key column

Displays the column name of the unique key used to identify table rows in the full-text index.

Full-text unique key index

Displays the index of the unique key used to identify table rows in the full-text index.

Full-text change-tracking

Indicates whether full-text change-tracking is enabled for this table.

Full-text update-index

Indicates whether full-text update-index is enabled for this table.

Columns

Displays the columns of this table. Textual columns selected to participate in full-text indexing are checked.

IIS Virtual Directory Management Utility (SQL Server 2000)

IIS Virtual Directory Management Utility
IIS Virtual Directory Management Utility

Use these tabs on the Virtual Directory Properties dialog box to specify a virtual root, its associated physical directory, the
database, login information, and other permissions:

Virtual Directory Properties Dialog Box (General Tab)

Virtual Directory Properties Dialog Box (Security Tab)

Virtual Directory Properties Dialog Box (Data Source Tab)

Virtual Directory Properties Dialog Box (Settings Tab)

Virtual Directory Properties Dialog Box (Virtual Names Tab)

Virtual Directory Properties Dialog Box (Advanced Tab)

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (General Tab)
Virtual Directory Properties Dialog Box (General Tab)

Use this tab to specify the name of the virtual directory through which the database is accessed, and the physical directory path
associated with the virtual directory.

The physical directory stores files accessed through the virtual directory. Template files or annotated mapping schema files are
typically stored in this directory.

Options

Virtual Directory Name

Enter the name of the virtual directory (for example, VirtualRoot).

Local Path

Enter the full path to the physical directory associated with the virtual directory (for example, C:\Inetpub\Wwwroot\VirtualRoot).
Click Browse to find the directory on the local computer. The browse button is unavailable when connected to a remote
computer.

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (Security Tab)
Virtual Directory Properties Dialog Box (Security Tab)

Use this tab to specify a login authentication method. The options on this tab map to the three Microsoft® Internet Information
Services (IIS) authentication schemes.

Options

Always log on as

The Windows and SQL Server account types map to the anonymous access scheme of the IIS authentication security. With
anonymous access, anyone can access the virtual directory. Everyone who accesses the server is logged on using the credentials
specified in User Name and Password.

User Name
Specify a user name for the login. If SQL Server account type is selected, the account name specified must be a valid Microsoft
SQL Server™ 2000 login. If Windows account type is selected, the supplied Microsoft Windows® login is used for all users.

Password
Specify the password for the SQL Server or Windows login that is selected.

SQL Server
Select to specify that a SQL Server login name and password be used to access a server. When a SQL Server login is specified,
all users of this virtual directory will use that account.

Windows
Select to specify a Windows account for all users of the virtual directory. By default, IUSR_ServerName (the Internet Guest
Account) is used to access the server. IUSR_ServerName is the user that is created when IIS is installed. By default, Enable
Windows account synchronization is selected.

Use Windows Integrated Authentication

Select to authenticate using Windows logins.

This option maps to the Microsoft Windows NT® challenge/response (Windows NT 4.0) or Windows Integrated Authentication
(Microsoft Windows 2000) IIS authentication method. Users with a valid Windows NT 4.0 or Windows 2000 user account are
authenticated and allowed access to the virtual directory. Windows Integrated Authentication requires that the Windows user
accounts be granted access to SQL Server.

Use Basic Authentication (Clear Text) to SQL Server account

Select to authenticate by prompting for a SQL Server login and password.

This option differs from the Basic Authentication method of IIS Authentication security. By selecting this option, a user is
prompted for a SQL Server login and password. In this authentication option, anonymous authentication is enabled in IIS. The
login supplied by the user must be a valid SQL Server login. Therefore, when you attempt to access the database, the ISAPI first
tries the anonymous access; and if this fails, an error message is sent to the browser. The browser then shows a dialog box
requesting a user name and password for SQL Server.

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (Data Source Tab)
Virtual Directory Properties Dialog Box (Data Source Tab)

Use this tab to specify the instance of Microsoft® SQL Server™ 2000 that contains the database you want to connect to, and the
database name.

Options

SQL Server

Enter the name of the server (and optionally, the instance of SQL Server) you want. Click the browse (...) button to view the
servers running SQL Server on the network. If multiple instances of SQL Server are installed, you can specify the server name and
the instance name. If no instance name is specified, the default instance is assumed.

Database

Enter the name of the default database on the server (for example, Northwind). The virtual directory maps to this database.
Depending upon the access permissions, queries can be executed against other databases on the instance of SQL Server to which
the virtual directory maps; however, the database specified here is the default.

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (Settings Tab)
Virtual Directory Properties Dialog Box (Settings Tab)

Use this tab to specify the type of Microsoft® SQL Server™ 2000 access you want to provide through the virtual directory.

Note Template and schema files can be stored anywhere. When a virtual name is created for the template or schema, the
directory path specifies the location of these files.

By default, only templates are permitted in the URL. Optionally, execution of SQL queries, XPath queries or POST queries can also
be allowed at the URL.

Options

Allow URL queries

Execute SQL queries directly at the URL. For security reasons, it is recommended that you not use this option.

Allow template queries

Execute a template in the URL. A template is a valid XML document, consisting of one or more SQL queries. This option is enabled
by default.

Allow XPath

Execute XPath queries against annotated mapping schemas directly at the URL.

Allow POST

Enable the posting of the data to the database. By default, users cannot send data to the server but can access the data from the
server.

Maximum size of POST queries (in kilobytes)

Specify the maximum amount of data (in kilobytes) that can be sent to the server per query.

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (Virtual Names Tab)
Virtual Directory Properties Dialog Box (Virtual Names Tab)

Use this tab to create a virtual name that is specified directly as part of the URL to execute a template file, execute an XPath query
against a mapping schema file, or access a database object. Because only virtual names are included in the URL, the information
about what is executed and where files are stored is not exposed. This provides additional security.

Options

Defined virtual names

Specify the virtual name by which you will access the resource. For example, the virtual name as in the VirtualRoot virtual
directory can be accessed at http://IISServer/VirtualRoot/as/.

Type

Specify the type of query for which the virtual name is being created.

dbobject
Indicates a database object.

schema
Indicates an XPath query against a mapping schema.

template
Indicates SQL queries in a template file.

Path

Specify the directory path where the templates and mapping schemas are located. The path can be absolute or relative (relative to
the physical directory associated with the virtual directory). If a virtual name is created for dbobject type, no path is necessary.
Click the browse (...) button to search the directory path. The browse button is unavailable when managing remote computers.

When you create a template or schema mapping, the path can be a path to a folder or a path to a file. When the path is to a folder,
the file name must be included on the URL (for example, http://IISServer/VirtualRoot/as/schema.xml). When the path is to a file,
the mapping goes directly to that file, so only that file can be used.

URL paths are not allowed (the IIS Virtual Directory Management for SQL Server utility does not validate path entries).

New

Click to create a new virtual name.

Delete

Click to delete a mapping selected from the list of defined mappings.

IIS Virtual Directory Management Utility (SQL Server 2000)

Virtual Directory Properties Dialog Box (Advanced Tab)
Virtual Directory Properties Dialog Box (Advanced Tab)

Use this tab to specify the location of the ISAPI extension dynamic-link library (DLL) (Sqlisapi.dll for Microsoft® SQL Server™
2000). This file is required to access an instance of SQL Server 2000 through the virtual directory.

Options

ISAPI Location

Specify the location of the Sqlisapi.dll. If the virtual directory is created on a remote server, you may have to provide the location
of the Sqlisapi.dll (by default, Sqlisapi.dll is installed in the Program Files\Common Files\System\Ole DB directory). If Sqlisapi.dll is
moved from its default location, the Sqlisapi.rll must also be moved to the same location.

Additional user settings

Specify additional optional settings. These settings are appended unparsed to the connection string passed in to OLE DB.

Caching options

Sqlisapi.dll has a caching option that stores the mapping schema in a cache to be reused in subsequent queries.

Select Disable caching of mapping schemas to prevent caching the mapping schemas. The mapping schemas are reloaded
each time a query is executed against the schema.

Index Tuning Wizard Help (SQL Server 2000)

Select Server and Database
Use the Select Server and Database dialog box to select a Microsoft® SQL Server™ 2000 database for tuning. You can also
choose the keep existing indexes, include indexed views, and select a tuning mode.

Options

Server

Specify the name of an instance of SQL Server to which you want to connect.

Database

Specify the database to be tuned.

Keep all existing indexes

Specify to keep all existing indexes in the final tuning recommendation. Indexes may be dropped or replaced if you elect not to
keep existing indexes.

Add indexed views

Specify to include indexed views in the analysis. Indexed views are recommended on platforms where their use is supported.

Tuning mode

Specify the tuning mode to use.

Mode Description Restrictions
Fast Select to provide the quickest execution

time. This mode may not result in the
best overall improvement in
performance.

New clustered indexes are not
recommended.

New indexed views are not
recommended.

All existing indexes are kept.

Medium Select to provide a more
comprehensive analysis than Fast mode
and a quicker execution time than
Thorough mode. This is the default
selection.

None

Thorough Select to perform an exhaustive
analysis of queries. The execution time
of this mode will take longer, but will
result in greater overall improvement in
performance.

None

Index Tuning Wizard Help (SQL Server 2000)

Specify Workload
Use the Specify Workload dialog box to specify the name of the workload file to use as input for tuning.

Options

My workload file

Specify the location of the workload file. The file must be in one of these formats: .trc (SQL Profiler trace file), .sql (SQL file), or .log
(Microsoft® SQL Server™ 2000 version 6.5 trace file).

SQL Server table

Open the Connect to SQL Server and Source Table dialog boxes to specify the database table containing the workload for
tuning.

Query Analyzer selection

Select to analyze a single query or batch in SQL Query Analyzer. Only members of the sysadmin fixed server role can perform
index analysis using SQL Query Analyzer.

Advanced Options

Click the Advanced Options dialog box to view or change the index tuning parameters.

Index Tuning Wizard Help (SQL Server 2000)

Advanced Options
Use the Advanced Options dialog box to view or change the default index tuning parameters.

Options

Current space usage

Displays the data and index size of the database and the space available for growth. This information cannot be modified from the
Index Tuning Wizard.

Current data size (MB)
The current size of tables and clustered indexes in the database.

Current index size (MB)
The current size of all non-clustered indexes in the database.

Space available for growth (MB)
Available space on the disk for the database to grow.

Index Tuning Parameters

Modify these parameters to improve the performance of the Index Tuning Wizard.

Limit number of workload queries to sample
Specify the number of workload queries to sample. The default value is 200 queries. Queries are selected at random from the
specified workload file. If the value exceeds the number of queries in the workload file, all queries are tuned.

Maximum space for the recommended indexes (MB)
Specify the maximum space in megabytes that can be consumed by the recommended index set. The default space is three
times the current data size or the maximum available space on all attached disk drives, or whichever is smaller

Maximum columns per index
Specify the maximum number of columns in indexes proposed by the Index Tuning Wizard. The maximum value allowed is 16;
this is the default value.

Index Tuning Wizard Help (SQL Server 2000)

Select Tables to Tune
Use the Select Tables to Tune dialog box to choose the tables to be tuned.

Options

Displays current tables available for analysis.

Table

Clicking the check box to specify the tablet for the wizard to tune. Alternatively, click the check box to clear a previously selected
table.

Actual Rows

Displays the current number of rows in the table.

Projected Rows

Displays the projected growth of the table. By default, this value is the same as Actual Rows. This table-scaling feature enables
studying recommended indexes on smaller scale sample databases. A reasonable size (several percent, thousands of rows per
table) should be used for the smaller sample database, otherwise the scaled data distribution histograms may be inaccurate and
the set of recommended indexes for the sample database may be different from the index recommended for the full scale
database.

Select All Tables

Click to select all the tables that are listed.

Clear All Tables

Click to clear all the selected tables.

Index Tuning Wizard Help (SQL Server 2000)

Index Recommendations
Use the Index Recommendations dialog box to view the recommendations made by the Index Tuning Wizard. This dialog box

Displays the recommended index set. The list may contain existing indexes to use, existing indexes to drop, or new indexes to be
created.

Options

Clustered

Indicates whether the index is clustered.

Index Name

Displays the name of the index. An icon representing the status of the index (existing, new, or to be dropped) is displayed. To view
the icon definition, click the icon.

Table/View Name

Displays the table or view associated with the index.

Column Name

Displays the columns used in the index.

Analysis

Click to open the Reports dialog box.

Index Tuning Wizard Help (SQL Server 2000)

Reports
Use the Reports dialog box to select a report type. The report can be saved to a tab-delimited text file.

Options

Reports

Displays the selected report from the list of available report types.

Index Tuning Wizard Help (SQL Server 2000)

Schedule Index Update Job
Use the Schedule Index Update Job dialog box to schedule the implementation of the index recommendation.

Options

Apply changes

Specify the implementation option.

Execute recommendations now

Specify immediate implementation.

Schedule a time to execute recommendations

Specify the date and time to implement the index recommendation.

Save script file

Specify the file name and location to store the script file. The script can be executed manually at a later time or on a different
server.

Network Configuration Help (SQL Server 2000)

SQL Server Network Utility (General Tab)
Use this tab to view or specify server properties, including protocols, encryption, and proxies.

Options

Instance(s) on this server

Select the instance of Microsoft® SQL Server™ you wish to view or for which you want to change the protocols.

Disabled protocols

View all disabled protocols for the selected instance of SQL Server.

Enabled protocols

View all enabled protocols for the selected instance of SQL Server. The Banyan VINES Net-Library has not been enhanced and
runs at a SQL Server 7.0 level of functionality. This Net-Library is available for backward compatibility only, and it is not supported
on named instances.

Enable

Enable the selected protocol for the specified instance of SQL Server.

Disable

Disable the selected protocol for the specified instance of SQL Server.

Properties

View the properties for the selected protocol.

Force protocol encryption

Enable protocol encryption. Encryption is a method for keeping sensitive information confidential by changing data into an
unreadable form. Encryption ensures that data remains secure by keeping the information hidden from all users, even if they view
the encrypted data directly.

If you want to use encryption with a failover cluster, you must install the server certificate with the fully qualified DNS name of the
virtual server on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
test1.redmond.corp.microsoft.com and test2.redmond.corp.microsoft.com and a virtual SQL Server "Virtsql", you need to get a
certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the Force
protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption.

Enable WinSock proxy

Set SQL Server to listen on a proxy server using Microsoft Proxy Server over TCP/IP Sockets.

WinSock proxy address

Specify a WinSock proxy server address.

WinSock proxy port

Specify a WinSock proxy server port number.

See Also

How to deactivate a server network library configuration (Network Utility)

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

SQL Server Network Utility (Network Libraries Tab)
Use this tab to view or specify network library properties.

Options

Server name

View the server name for which you are viewing network library properties.

Server network library

View the Microsoft® SQL Server™ client network libraries installed on this computer.

Library file name

View the location of the SQL Server client network libraries installed on this computer.

Path

View the path of the server network library installed on this computer.

Version

View the version numbers of the SQL Server client network libraries installed on this computer.

File date

View the dates that the SQL Server client network libraries were installed on this computer.

Size

View the file sizes of the SQL Server client network libraries installed on this computer.

See Also

How to view the installed SQL Server server network libraries (Network Utility)

Network Configuration Help (SQL Server 2000)

Named Pipes
Use this dialog box to view or specify named pipe defaults.

Options

Default pipe

Specify the default pipe on which Microsoft® SQL Server™ listens. By default, SQL Server listens on the pipe, \\.\pipe\sql\query.

See Also

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

TCP/IP
Use this dialog box to view or specify TCP/IP configurations.

Options

Default port

Specify the default TCP/IP port that the server should listen on when accepting connections from TCP/IP Sockets clients. The
default is 1433.

Hide server

Select to hide the instance of Microsoft® SQL Server™. When you hide an instance of SQL Server, responses to broadcasts from
clients attempting to enumerate those instances of SQL Server present on the network are disabled.

See Also

Revealing SQL Server on a Network

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

Multiprotocol
Use this dialog box to view or specify how the server handles multiple network connections.

Options

Minimum connections expected

Specify the minimum number of expected server connections. The default value is 1.

Maximum connections expected

Specify the maximum number of expected server connections. After this number is exceeded, additional connections are refused.
The default value is 1024.

RPC protocols

Specify the values for each supported multiprotocol.

Enable encryption

Enable protocol encryption. Encryption is a method for keeping sensitive information confidential by changing data into an
unreadable form. Encryption ensures that data remains secure by keeping the information hidden from all users, even if they view
the encrypted data directly.

If you want to use encryption with a failover cluster, you must install the server certificate with the fully qualified DNS name of the
virtual server on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
test1.redmond.corp.microsoft.com and test2.redmond.corp.microsoft.com and a virtual SQL Server "Virtsql", you need to get a
certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the Force
protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption.

See Also

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

NWLink IPX/SPX
Use this dialog box to view or specify NWLink IPX/SPX configurations.

Options

Default service name

Specify the default Microsoft® Windows NT® 4.0 or Windows® 2000 computer name under which an instance of Microsoft SQL
Server™ runs. This information is stored in the bindery of the server.

Default port

Specify the default NWLink IPX/SPX port that the server should listen on when accepting connections from NWLink IPX/SPX
clients. The default is 33854.

Hide server

Select to hide the instance of SQL Server. When you hide the instance of SQL Server, the responses to broadcasts from clients
attempting to enumerate those instances of SQL Server present on the network are disabled.

See Also

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

AppleTalk
Use this dialog box to view or specify AppleTalk configurations.

Options

Default object name

Specify the default service object assigned by the system administrator. The standard default is the name of the instance of
Microsoft® SQL Server™.

See Also

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

Banyan Vines
Use this dialog box to view or specify Banyan VINES configurations.

Options

Item name

Specify the name used to rename the service.

Default group

Specify the default group to which the service belongs.

Default organization

Specify the default organization to which the group belongs.

See Also

How to edit a server network library configuration (Network Utility)

How to load an installed server network library (Network Utility)

Network Configuration Help (SQL Server 2000)

VIA
 New Information - SQL Server 2000 SP3.

Use this dialog box to view or specify Virtual Interface Architecture (VIA) configurations. VIA is not available for systems running
Microsoft® Windows® 98.

Options

Vendor

Select the hardware vendor to be used with VIA, such as QLogic or Giganet. This value must be the recognized vendor for the
registry.

Listen Info

Enter the value for the listen information. The default is 0:1433.

See Also

VIA Clients

SQL Server Network Utility

Rebuild Master Help (SQL Server 2000)

Rebuild Master
Use the Rebuild Master utility to repair a corrupted master database or change the collation settings for an instance of
Microsoft® SQL Server™. Before running the Rebuild Master utility, make sure you have the scripts to rebuild the database
objects and a backup to reload the data. Rebuilding the master database removes all database objects and data. After rebuilding
the master database, re-create the database objects and reload the data.

Server

Select the instance of SQL Server to rebuild the master database for.

Source Directory

Select the path to the Data directory from which the master database was originally installed. Click Browse... to select a directory.
Depending on how you installed SQL Server, either load the SQL Server compact disc and select the Data directory from the root
of the compact disc, or select the Data directory from the shared network installation drive.

Collation Settings

Click Settings to change the collation settings for the instance of SQL Server.

SQL Data Directory

Displays the local directory where the master database is stored.

Click Rebuild to rebuild the master database with the collation settings specified.

Replication Conflict Viewer Help (SQL Server 2000)

Microsoft Replication Conflict Viewer, Merge Publication
The Replication Conflict Viewer helps you view and resolve conflicts that may have occurred during replication synchronization.
Conflicts occur when the same data is modified at two separate servers, for example, at a Publisher and Subscriber, or at two
different Subscribers. The following conflicts can occur:

Update and insert conflicts. This conflict happens when the same data is changed at two locations. One change "wins," the
other one "loses." For these conflicts, you have the option to keep the existing data (the data that won) or overwrite the
existing data with the data that conflicted with it (the losing data). If you keep the existing data, it remains in the replica that
won and the Microsoft Replication Conflict Viewer adds it to the replica whose update or insert operation initially lost. If you
overwrite the existing data with the conflicting data, the replicas are changed to include the data that originally lost.

Delete conflicts. This conflict occurs when the same row is deleted at one location and changed at the other.

Conflicts are automatically resolved using the conflict resolver initially selected when the article was created. As conflicts are
resolved during synchronization, the data from the losing row is written to a conflict table. The Replication Conflict Viewer allows
you to review these conflict records and, potentially, modify your data.

When you resolve a conflict using Replication Conflict Viewer, you can choose to accept the original resolution or submit an
update to the data based on the winning or losing row. In each instance, the logged conflict row is deleted from the conflict table.
Thereafter, you should periodically review conflicts to help reduce the size of the conflict tracking tables.

Note The Replication Conflict Viewer displays conflicts that may occur as part merge replication, or as part of snapshot or
transactional replication whenever updatable subscriptions (immediate updating or queued updating) are used. In the case of
snapshot and transactional publication using updatable subscriptions, you will be able to use Replication Conflict Viewer to
observe the conflict, but you will not be able to alter the resolution the way you can with conflicts that occur during merge
replication synchronization.

The following options are available in the Replication Conflict Viewer dialog box for merge publications.

The specific options that appear depend on the type of conflict that has occurred. Not all options appear in all dialog boxes. Dates
are displayed in ISO date-time format instead of the local format.

Options

Reason for conflict

View the reason for the conflict including where data modifications ocurred.

Show only columns with conflicts

Select to display only those columns where data modifications conflict.

Show all columns

Select to show all columns regardless of whether there is a conflict or not.

Show

Select Conflict Winner or Conflict Loser to view the data modifications made by the winner or loser that caused the conflict.

Show or edit for resolution

Select Conflict Winner or Conflict Loser to view or edit the data modifications made by the winner or loser that caused the
conflict.

Keep winning change

Select to keep the winning change. The losing change will be disregarded and the winning change will be propagated to the other
servers in the replication topology.

Resolve with this data

Select to resolve the conflict with the data listed. This data will be accepted and propagated to the other servers in the replication
topology.

Postpone resolution

Postpones any resolution to the conflict and closes the Replication Conflict Viewer for this table.

Log the details of the conflict for later reference

Logs the details of the conflict in system tables.

Replication Conflict Viewer Help (SQL Server 2000)

Microsoft Replication Interactive Resolver
The Interactive Resolver allows you to view, compare, edit, and select the outcome data. Data that cannot be edited in the
Interactive Resolver (for example, rowguid data) is displayed read-only with the box shaded. Information describing why the
conflict occurred (for example, the same row was updated at both the Publisher and the Subscriber) is displayed in the Reason
for conflict box.

The conflict data is displayed in two corresponding columns (Show and Show or edit for resolution), with the Subscriber data
displayed in the left column beneath Show, and the suggested resolution data displayed in the right column beneath Show or
edit for resolution. The Resolve With This Data button always refers to the data displayed in the right column.

If the conflict is between updated and deleted data, there may be no data to show for the deleted side of the conflict. In this case,
the Interactive Resolver displays a message in one of the columns, indicating the row was deleted at one location and updated at
another, and indicating the suggested resolution (conflict winner).

Options

Reason for conflict

View the reason for the conflict including where data modifications ocurred.

Show only columns with conflicts

Select to display only those columns where data modifications conflict.

Show all columns

Select to show all columns regardless of whether there is a conflict or not.

Show

Select Publisher Data or Subscriber Data to view the data modifications made by the winner or loser that caused the conflict. The
starting selection in the Show dropdown is based on comparing the Publisher data to the Suggested Resolution. If the rows are
different, the Publisher data is displayed. If the rows are the same, the Subscriber data is displayed.

Show or edit for resolution

Select Publisher Data, Subscriber Data or Suggested Resolution to view or edit the data modifications made by the Publisher, the
Subscriber or to view or edit the suggested resolution of the Interactive Resolver.

Resolve with this data

Select to resolve the conflict with the data listed. This data will be accepted and propagated to the other servers in the replication
topology.

Resolve with defaults

Postpones any resolution to the conflict and closes the Replication Conflict Viewer for this table.

Resolve all with defaults

Postpones any resolution to the conflict and closes the Replication Conflict Viewer for this table.

Log the details of the conflict for later reference

Logs the details of the conflict in system tables.

See Also

Interactive Resolver

Merge Replication Conflict Detection and Resolution

Replication Conflict Viewer Help (SQL Server 2000)

Microsoft Replication Conflict Viewer, Updatable Subscriptions
The Replication Conflict Viewer helps you view and resolve conflicts that may have occurred during replication synchronization.
Conflicts occur when the same data is modified at two separate servers, for example, at a Publisher and Subscriber, or at two
different Subscribers. The following conflicts can occur:

Update and insert conflicts. This conflict happens when the same data is changed at two locations. One change "wins," the
other one "loses." For these conflicts, you have the option to keep the existing data (the data that won) or overwrite the
existing data with the data that conflicted with it (the losing data). If you keep the existing data, it remains in the replica that
won and the Microsoft Replication Conflict Viewer adds it to the replica whose update or insert operation initially lost. If you
overwrite the existing data with the conflicting data, the replicas are changed to include the data that originally lost.

Delete conflicts. This conflict occurs when the same row is deleted at one location and changed at the other.

Conflicts are automatically resolved using the conflict resolver initially selected when the article was created. As conflicts are
resolved during synchronization, the data from the losing row is written to a conflict table. The Replication Conflict Viewer allows
you to review these conflict records and, potentially, modify your data.

The conflict resolver choices for queued updating subscriptions are:

Publisher wins and the subscription is reinitialized

Publisher wins

Subscriber wins

Note The Replication Conflict Viewer displays conflicts that may occur as part merge replication or as part of snapshot or
transactional replication whenever updatable subscriptions (immediate updating or queued updating) are used. In the case of
snapshot and transactional publication using updatable subscriptions, you will be able to use Replication Conflict Viewer to
observe the conflict, but you will not be able to alter the resolution the way you can with conflicts that occur during merge
replication synchronization.

The following options are available in the Replication Conflict Viewer dialog box for snapshot or transactional publications that
allow updatable subscriptions.

The specific options that appear depend on the type of conflict that has occurred. Not all options appear in all dialog boxes. Dates
are displayed in ISO date-time format instead of the local format.

Options

Reason for conflict

View the

Show only columns with conflicts

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Show all columns

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Show

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Show or edit for resolution

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Keep winning change

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the

article.

Resolve with this data

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Postpone resolution

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Log the details of the conflict for later reference

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Replication Sync Manager Help (SQL Server 2000)

Attach Subscription
The attachable subscription databases feature allows you to transfer a database with published data and subscriptions from one
Subscriber to another. After the database is attached to the new Subscriber, the database at the new Subscriber automatically
receives its own pull subscriptions to the publications at those Publishers. The publication must enable copying for a subscription
database to be copied and attached to another Subscriber.

The following options are available on the Attach Subscription tab of the Windows Synchronization Manager.

Options

Subscription database file:

Enter the path and file name for the .msf subscription database file to attach to this Subscriber.

(...)

Browse for the .msf subscription database file to attach to this Subscriber.

Subscriber

Enter the computer name for the Subscriber.

Database

Enter the name of the subscription database that will receive replicated data.

Use Windows Authentication of the current user's account

Select this option if you will use Windows Authentication to connect to the Subscriber.

Use SQL Server Authentication

Select this option if you will use SQL Server Authentication with login and password to connect to the Subscriber.

Login

Enter the login used when connecting to the Subscriber.

Password

Enter the password used when connecting to the Subscriber.

Confirm password

Enter the password to confirm the spelling.

Replication Sync Manager Help (SQL Server 2000)

Create Anonymous Subscription
An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber is not stored. Initiated at the Subscriber, the Subscriber is responsible for keeping an anonymous subscription
synchronized.

The following options are available on the Create Anonymous Subscription tab of the Windows Synchronization Manager.

Options

Display name

Enter the name for the anonymous subscription.

Subscriber

Enter the computer name for the Subscriber.

Database

Enter the name of the subscription database that will receive replicated data.

Publisher

Enter the computer name for the Publisher.

Database

Enter the publication database that is the source for the published data.

Publication

Enter the name of the publication to which this subscription will subscribe.

Type

Click the drop-down arrow and select the type of publication (snapshot publication, transactional publication, or merge
publication).

Distributor

Enter the computer name of the Distributor.

Replication Sync Manager Help (SQL Server 2000)

Create Anonymous Subscription (Browse the Active Directory)
An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber is not stored. Initiated at the Subscriber, the Subscriber is responsible for keeping an anonymous subscription
synchronized. Using Microsoft® Windows® 2000 Active Directory™ Services, you can view replication objects, such as a
publication, and, if allowed, subscribe to that publication.

The following options are available on the Create Anonymous Subscription tab of the Windows Synchronization Manager.

Options

Publication

View the name of publications that are listed in Active Directory.

Browse (...)

Click to browse for publications listed in Active Directory.

Subscriber

Enter the computer name of the Subscriber.

Database

Enter the name of the subscription database that will receive the replicated data.

Use Windows Authentication of the current user's account

Select this option if you will use Windows Authentication to connect to the Subscriber.

Use SQL Server Authentication

Select this option if you will use SQL Server Authentication with login and password to connect to the Subscriber.

Login

Enter the login used when connecting to the Subscriber.

Password

Enter the password used when connecting to the Subscriber.

Confirm password

Enter the password to confirm the spelling.

Replication Sync Manager Help (SQL Server 2000)

SQL Server Subscription Properties, Identification Tab
This tab allows you to change the name for the subscription, choose alternate synchronization partners for merge subscriptions,
and reinitialize or remove the subscription.

The following options are available on the SQL Server Subscription Properties, Identification tab of the Windows
Synchronization Manager.

Options

Display name

View or enter the name for the anonymous subscription.

Subscriber

View the computer name for the Subscriber.

Subscription Database

View the name of the subscription database that will receive replicated data.

Publisher

Select the computer name for the Publisher that will synchronize this subscription. Subscribers to merge publications can
synchronize with servers other than the Publisher at which the subscription originated. Synchronizing with alternate partners
provides the ability for a Subscriber to synchronize data even if the primary Publisher is unavailable. This feature is also useful
when mobile Subscribers have access to a faster or more reliable network connection with an alternate synchronization
partner.The alternate synchronization partner must have the data and schema required by the subscription. It is recommended
that the publication created on the alternate server be a clone of the publication created on the original Publisher. The publication
properties must specify that Subscribers can synchronize with other Publishers.

Publication Database

View the publication database that is the source for the published data.

Publication name

View the name of the publication to which this subscription will subscribe.

Distributor

View the computer name of the Distributor.

Publication type

View the type of publication (snapshot publication, transactional publication, or merge publication).

Replication Sync Manager Help (SQL Server 2000)

SQL Server Subscription Properties, Other Tab
The following options are available on the SQL Server Subscription Properties, Other tab of the Windows Synchronization
Manager.

Options

Login timeout

Specify the amount of time to wait for a connection before timing out.

Query timeout

Specify the amount of time a query can process before timing out.

Resolve conflicts interactively (only applies to articles that support interactive resolution)

Select to resolve conflicts interactively. Microsoft SQL Server replication provides an interactive resolver, which allows you to
resolve conflicts manually during on-demand synchronization. Activated at run-time, the Interactive Resolver displays data for
each conflicting row, and provides options for viewing and editing the conflict data, and resolving each conflict individually. The
article must be enabled to support interactive resolution. This option is displayed only for subscriptions to merge publications.

Resolve conflicts automatically

Select to have SQL Server resolve conflicts automatically based on the conflict resolution policy of the publication. This option is
displayed only for subscriptions to merge publications.

Subscriber update mode

Select immediate updating or queued updating as the method for which data modifications made at the Subscriber will be
propagated to the Publisher. This option is displayed only for subscriptions to snapshot or transactional publications that allow
immediate updating with queued updating as a failover. Immediate updating with queued updating as a failover can be used
when you expect the Publisher and Subscribers to be connected, but you do not want to lose the ability to make updates at the
Subscriber if a system failure results in the loss of network connectivity. Immediate updating with queued updating as a failover
allows you to use immediate updating and switch to queued updating when needed.

Replication Wizard Help (SQL Server 2000)

Select Distributor
The Distributor is a server that contains the distribution database and stores meta data, history data, and/or transactions. The
Distributor can be a separate server from the Publisher (remote Distributor), or it can be the same server as the Publisher (local
Distributor). The role of the Distributor varies depending on which type of replication you implement, and in general, its role is
much greater for snapshot replication and transactional replication than it is for merge replication.

The Distributor uses these additional resources on the server where it is located:

Additional disk space if the snapshot files for the publication are stored on it.

Additional disk space to store the distribution database.

Additional processor time, which is used by the replication agents running on the Distributor. (Remote agent activation can
be used to offload agent processing if necessary).

The server you select as the Distributor should have adequate disk space and processor power to support replication and any
other activities based on that server.

Select Make server its own Distributor; SQL Server will create a distribution database and log to make the local server the
Distributor. Select Use the following server (the selected server must already be configured as a Distributor) and then
click on the name of the server to make a remote server the Distributor.

If you want to use a remote server as the Distributor, make sure the remote server is already configured as a Distributor and the
local server is enabled as a Publisher on that Distributor. If the server you want to use as a Distributor is not listed, click Add
Server to register it in SQL Server Enterprise Manager and add it to the list of available Distributors.

See Also

Publishers, Distributors, and Subscribers

Remote Agent Activation

Replication Wizard Help (SQL Server 2000)

Specify Administrative Password
The Distributor requires that you use a password when connecting this Publisher to the Distributor. The password you enter here
must be the same as the administrative link password set at the Distributor.

You can change the password on the Distributor tab of the Publisher and Distributor Properties dialog box.

See Also

Connecting to the Distributor

Replication Properties

Replication Wizard Help (SQL Server 2000)

Specify Snapshot Folder
The Specify Snapshot Folder dialog box appears in the Configure Publishing and Distribution Wizard and in the Create
Publication Wizard.

When specifying the snapshot folder in the Configure Publishing and Distribution Wizard, the path you specify will be used as the
default snapshot folder for all Publishers enabled in this wizard (the default snapshot folder does not apply to Publishers that are
later enabled using Publisher and Distributor Properties).

When specifying the snapshot folder in the Create Publication Wizard, the path you specify will be used as the snapshot folder for
the Publisher on which you are creating a publication.

If you use a folder location that requires a login with administrative privileges on the Distributor (for example, a folder located on
C$), the share might not be accessible by agents running on other computers, such as agents for pull subscriptions. Prior to
implementing replication, test that the replication agents will be able to connect to the snapshot folder by logging on under the
security account that will be used by the agents and then try to access the snapshot folder.

Enter the path or use the browse button (...) to specify the location where you want snapshot files stored.

See Also

Alternate Snapshot Locations

Applying the Initial Snapshot

Replication Wizard Help (SQL Server 2000)

Provide Distribution Database Information
Enter a name for the distribution database. The name can be a maximum of 128 characters but cannot include ~'!%@^&*()+-={}
[]|\:;"<>,.?/. The default name for the distribution database is 'distribution'.

You can specify only one distribution database using the Configure Publishing and Distribution Wizard. However, after
completing this wizard, you can specify additional distribution databases in the Publisher and Distributor Properties dialog
box.

Enter the path and folder for the distribution database file and for the distribution database log file. Paths must refer to disks that
are local to the Distributor and begin with a local drive letter and colon (for example, C:). Mapped drive letters and network paths
are invalid.

You can decrease the time it takes to write transactions and improve the performance of replication by placing the distribution log
on a separate disk drive from the distribution database.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Types of Replication

Replication Wizard Help (SQL Server 2000)

Enable Publishers
You can give permission for other Publishers to use this Distributor. Select the registered server you want to allow to use this
Distributor. Click the properties button (...) next to a Publisher to set the security options, login information, and snapshot folder.

The servers you select as Publishers will use the distribution database created by this wizard. If you want to use a different
distribution database than the one created in this wizard, do not enable the Publisher at this time. Instead, use the Publisher and
Distributor Properties dialog box to add Publishers after you complete the Configure Publishing and Distribution Wizard.

If you are running Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 on the Distributor and you want to enable a
server that is not listed as a Publisher, click New to register the server in SQL Server Enterprise Manager and add it to the list of
available Publishers. Distributors running Windows 98 cannot be Distributors for other Publishers.

Enabling a Publisher to use this server as its Distributor does not make that server a Publisher. You must connect to the Publisher,
configure it for publishing, and choose this server as the Distributor.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Distributor Password
 New Information - SQL Server 2000 SP3.

You must enter a password if you selected one or more Publishers to use this server as a remote Distributor and one or more of
those Publishers requires a password. The connection between a Publisher and a remote Distributor is a hybrid of a linked server
and remote server. The connection uses the login distributor_admin. By default the Publisher is configured as non-trusted at the
remote Distributor, so a password is required.

See Also

Connecting to the Distributor

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Enable Publication Databases
Select the databases that will be enabled to publish snapshot and transactional publications and/or merge publications.

You must be a member of the sysadmin fixed server role to enable a database for publishing. After a database is enabled, a
database owner can create publications based on it. An administrator, however, can create a publication without the database
having been enabled previously for publication.

If you want to create snapshot or transactional publications based on the database, enable the database for transactional
replication. Snapshot replication is the process of copying and distributing data and database objects exactly as they appear at a
moment in time. Snapshot replication does not require continuous monitoring of changes because changes made to published
data are not propagated to Subscriber(s) incrementally.

With transactional replication, an initial snapshot of data is propagated to Subscribers, and then when data modifications are
made at the Publisher, the individual transactions are captured and propagated to Subscribers.

If you want to create merge publications, enable the database for merge replication. Merge replication allows various sites to
work autonomously (online or offline) and merge updates made at multiple sites into a single, uniform result at a later time. The
initial snapshot is applied to Subscribers, and then SQL Server 2000 tracks changes to published data at the Publisher and at the
Subscribers. The data is synchronized between servers either at a scheduled time or on demand. Because updates are made
independently (no commit protocol) at more than one server, the same data may have been updated by the Publisher or by more
than one Subscriber. Therefore, conflicts can occur when updates are merged.

See Also

Publishers, Distributors, and Subscribers

Types of Replication

Replication Wizard Help (SQL Server 2000)

Enable Subscribers
Select the Subscribers that will be able to receive publications from this Publisher. You can enable only Subscribers running
Microsoft® SQL Server™ in this wizard. Click the properties button (...) next to the Subscriber name to set the security options
and default agent schedules.

You can configure a heterogeneous Subscriber in the Publisher and Distributor Properties dialog box after completing the
Configure Publishing and Distribution Wizard.

If the server you want to enable as a Subscriber is not listed, click New to register it in SQL Server Enterprise Manager and add it
to the list of registered servers.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher and Distributor Properties, Distributor Tab (Local
Distributor)
The following options are available on the Distributor tab of the Publisher and Distributor Properties dialog box when you
use a local Distributor.

Options

Name

View the name of the Distributor.

Databases

View the names of the distribution databases.

Properties

Display the properties of the selected distribution database.

New

Add a new distribution database.

Delete

Delete the selected distribution database.

Agent Profiles

Display the profiles for each type of agent.

Administrative Link Password

Enter the password used when a Publisher connects to the Distributor. You can specify certain Publishers as trusted; trusted
Publishers do not need a password to connect to the Distributor. If the Publisher is non-trusted, the password you enter here
must also be entered when the Publisher is being configured.

Confirm password

Enter the password again to confirm the spelling.

See Also

Connecting to the Distributor

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher and Distributor Properties, Distributor Tab (Remote
Distributor)
The following options are available on the Distributor tab of the Publisher and Distributor Properties dialog box when you
use a remote Distributor.

Options

Distributor for Publisher

View the name of the Publisher.

Distribution server name

View the name of the server where the distribution database is located.

Distribution database

View the name of the distribution database.

Administrative Link Password

Enter the password used by this Publisher to connect to the Distributor. If the Distributor has identified this Publisher as trusted,
this control is not displayed on the dialog box.

Confirm password

Enter the password again to confirm the spelling. If the Distributor has identified this Publisher as trusted, this control is not
displayed in the dialog box.

See Also

Connecting to the Distributor

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher and Distributor Properties, Publishers Tab
The following options are available on the Publishers tab of the Publisher and Distributor Properties dialog box.

Options

Publishers

Select the Publisher to enable from the list of all registered servers. If Microsoft® SQL Server™ 2000 Personal Edition is running
on the Distributor, only the local server is listed as an available Publisher, and whether this Publisher is trusted.

Distribution DB

View the name of the distribution database.

(...)

Display and modify the properties of the Publisher including distribution database used, snapshot folder location, and security
connection used for the replication agent connection to the Publisher.

Enable All

Enable all the listed Publishers to use this Distributor. If you have installed the Personal Edition, this control is not shown.

Enable None

Clear all the listed Publishers, disabling them from using this Distributor. If SQL Server 2000 Personal Edition is running on the
Distributor, this control is not shown.

New

Register a server that does not appear in the list. After the server is registered in SQL Server Enterprise Manager, the server will
appear as an available Publisher and you can enable it. If SQL Server 2000 Personal Edition is running on the Distributor, this
control is not shown.

See Also

Connecting to the Distributor

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher and Distributor Properties, Publication Databases
Tab
The following options are available on the Publication Databases tab of the Publisher and Distributor Properties dialog box.

Options

Trans

Enable the database for snapshot replication or transactional replication.

Merge

Enable the database for merge replication.

Database name

View the name of the database.

Transactional - Enable All

Enable all the listed databases for snapshot replication or transactional replication.

Transactional - Enable None

Clear all the listed databases for snapshot replication or transactional replication.

Merge - Enable All

Enable all the listed databases for merge replication.

Merge - Enable None

Clear all the listed databases for merge replication.

Double-clicking on a database name will enable or clear the database for all types of replication.

See Also

Connecting to the Distributor

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher and Distributor Properties, Subscribers Tab
The following options are available on the Subscribers tab of the Publisher and Distributor Properties dialog box.

Options

Subscribers

Select the Subscriber to enable. You can then create subscriptions for this Subscriber to publications from this Publisher.

(...)

Display the properties of the selected Subscriber including the security used by replication agents when connecting to the
Subscriber and setting the default schedule of the Distribution Agents or Merge Agents.

Enable All

Enable all the listed servers for receiving data from this Publisher.

Enable None

Clear all the listed Subscribers, disabling them from receiving data from this Publisher.

New

Register a new Subscriber that is a SQL Server installation, an installation of Microsoft® Jet 4.0 database (Microsoft Access), an
installation of Microsoft Exchange server (if Microsoft Exchange 2000 is installed on this computer), an ODBC data source, or an
OLE DB data source. If the new Subscriber is a SQL Server installation, the server will be registered in SQL Server Enterprise
Manager.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Distribution Database Properties, Database Tab (Existing
Database)
The following options are available on the Database tab of the Distribution Database Properties dialog box when viewing the
properties of an existing distribution database.

Options

Database name

View the name of the distribution database.

These Publishers use this database

View the list of Publishers currently using this distribution database.

Transaction Retention

Reduce the amount of disk space used on the Distributor by minimizing the amount of time for log history and transaction
retention.

Store transactions at least

Set the minimum length of time the transaction records are stored in the distribution database. If the unit of time is hours, the
minimum value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the maximum value
is 1365. The minimum value must be less than the maximum value for storing records.

But not more than

Set the maximum length of time the transaction records are stored in the distribution database. If the unit of time is hours, the
minimum value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the maximum value
is 1365. The maximum value cannot be less than or equal to the minimum value.

Hours

Use hours as the unit of time for storing transaction records.

Days

Use days as the unit of time for storing transaction records.

History Retention

You can reduce the amount of disk space used on the Distributor by minimizing the amount of time for log history and
transaction retention.

Store replication performance history at least

Set the minimum length of time the replication performance history is stored in the distribution database. If the unit of time is
hours, the minimum value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the
maximum value is 1365. The minimum value must be less than the maximum value for storing performance history.

Hours

Use hours as the unit of time for storing replication performance history.

Days

Use days as the unit of time for storing replication performance history.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Transactional Replication

Replication Wizard Help (SQL Server 2000)

Distribution Database Properties, Database Tab (Creating New
Database)
The following options are available on the Database tab of the Distribution Database Properties dialog box when creating a
new distribution database.

Options

Database name

Specify the name of the new distribution database.

Folder for database file

Enter the path for the distribution database file.

(. . .)

Browse for the folder in which to store the distribution database.

Folder for log file

Enter the path for the log file for the distribution database.

(. . .)

Browse for the folder in which to store the log file for the distribution database.

Transaction Retention

Reduce the amount of disk space used on the Distributor by minimizing the amount of time for log history and transaction
retention.

Store transactions at least

Set the minimum length of time transactions are stored in the distribution database. If the unit of time is hours, the minimum
value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the maximum value is 1365.
The minimum value must be less than the maximum value for storing records.

But not more than

Set the maximum length of time transactions are stored in the distribution database. If the unit of time is hours, the minimum
value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the maximum value is 1365.
The maximum value cannot be less than or equal to the minimum value.

Hours

Use hours as the unit of time for storing transaction records.

Days

Use days as the unit of time for storing transaction records.

History Retention

Reduce the amount of disk space used on the Distributor by minimizing the amount of time for log history and transaction
retention.

Store replication performance history at least

Set the minimum length of time replication performance history is stored in the distribution database. If the unit of time is hours,
the minimum value is 0 and the maximum value is 32767. If the unit of time is days, the minimum value is 0 and the maximum
value is 1365. The minimum value must be less than the maximum value for storing performance history.

Hours

Use hours as the unit of time for storing replication performance history.

Days

Use days as the unit of time for storing replication performance history.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Transactional Replication

Replication Wizard Help (SQL Server 2000)

Publisher Properties, General Tab
The following options are available on the General tab of the Publisher Properties dialog box for a Publisher running SQL
Server.

Options

Publisher

View the name of the Publisher.

Distribution database

If you are enabling a new Publication and there is more than one distribution database at the Distributor, select the distribution
database to be used by the Publisher. For a currently enabled Publisher, view the distribution database used by the Publisher.

Snapshot folder

Enter the path and name of the folder to be used to store the snapshots of publications from the Publisher.

Impersonate the SQL Server Agent account on Publisher (trusted connection)

Use the same Windows Authentication account used by SQL Server Agent on the Publisher.

Use SQL Server Authentication

Use SQL Server Authentication with specified login and password.

Login name

Enter the login name for the account.

Password

Enter the password for the account.

Confirm password

Enter the password for the account again to confirm it.

Administrative Link to the Distributor

Select This Publisher requires a password to establish a link to the Distributor to mark the Publisher as non-trusted by the
Distributor. A password is needed to connect to the Distributor, and you can specify that password on the Distributor tab of the
Publisher and Distributor Properties dialog box.

This option appears only if the Publisher and Distributor are configured on different servers.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Publisher Properties, General Tab (Heterogeneous Publisher)
The following options are available on the General tab of the Publisher Properties dialog box for a heterogeneous Publisher.

Options

Heterogeneous Publisher

View the name of the heterogeneous Publisher.

Distribution database

View the distribution database used by the Publisher.

Snapshot folder

View the path and name of the folder used to store the snapshots of publications from the Publisher.

Subscribers

Select the Subscriber that can receive published data from this Publisher.

Enable All

Enable all the listed Subscribers to receive data from this Publisher.

Enable None

Clear all the listed Subscribers, disabling them from receiving data from this Publisher.

New Subscriber

Register a new Subscriber that is a Microsoft® SQL Server™ installation, an installation of Microsoft Access (Microsoft Jet 4.0
database), an ODBC data source, or an OLE DB data source.

See Also

Heterogeneous Publishers

Publishers, Distributors, and Subscribers

Replication Properties

Replication Wizard Help (SQL Server 2000)

Subscriber Properties, General Tab
The following options are available on the General tab of the Subscriber Properties dialog box.

Options

Subscriber

View the name of the Subscriber.

Type

View the type of Subscriber (SQL Server, Microsoft® Jet 4.0 database, Microsoft Exchange server, ODBC, or OLE DB).

Description

Enter or modify the description of the Subscriber.

Impersonate the SQL Server Agent account on Distributor (trusted connection)

Use the same Windows Authentication account used by SQL Server Agent on the Distributor.

Use SQL Server Authentication of this account

Use SQL Server Authentication with a specified login and password.

Login name

Enter the login name for the SQL Server account.

Password

Enter the password for the SQL Server account.

Confirm password

Enter the password for the account again to confirm it.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Subscriber Properties, Schedules Tab
The following options are available on the Schedules tab of the Subscriber Properties dialog box. These options are available for
the Distribution Agents and the Merge Agents.

Options

Continuously

Set the default schedule that is used when new agents are created to run the agent at all times.

At the following scheduled times

Set the default schedule that is used when new agents are created to run the agents according to the specified schedule.

Change

Set the job schedule for the agents.

See Also

Publishers, Distributors, and Subscribers

Replication Properties

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Create Publication Wizard, Welcome
The Welcome page of the Create Publication Wizard includes a description of the Create Publication Wizard and an option
to select advanced options during the wizard.

If you enable Show advanced options in this wizard and you create a snapshot or transactional publication, you will be able to
enable the publication for:

Updatable subscription options for immediate updating and/or queued updating.

Transforming data as it is published using Data Transformation Services (DTS).

When creating a merge publication, you will see all the options available whether the Show advanced options in the wizard
check box is selected or not.

Updatable Subscriptions

Typically, replicated data is read-only. However, in Microsoft® SQL Server™ 2000, you have the ability to modify replicated data
at the Subscriber by using updatable subscriptions with snapshot replication or transactional replication or by using merge
replication. If you need to modify data at the Subscriber using snapshot replication or transactional replication, you can choose
immediate updating, queued updating, or immediate updating with queued updating as a failover.

Transforming Published Data

Transformable subscriptions (available with snapshot replication or transactional replication) leverages the data movement,
transformation mapping, and filtering capabilities of Data Transformation Services (DTS). Using transformable subscriptions in
your replication topology allows you to customize and send published data based on the requirements of individual Subscribers.

Examples of how you can use transformable subscriptions include:

Creating column and horizontal partitions of published data on a per Subscriber basis (custom data partitions).

Creating data transformations such as data type mappings (for example, integer to real data type), column manipulations
(for example, concatenating first name and last name columns), string manipulations, and use of functions.

See Also

Publishing Data and Database Objects

Replication Wizards

Transforming Published Data

Updatable Subscriptions

Replication Wizard Help (SQL Server 2000)

Choose Publication Database
Select the name of the database that contains the data and database object that you want to publish.

The publication database is the database on the Publisher that is the source of data and database objects to be replicated. Each
database used in replication must be enabled as a publication database by a member of the sysadmin server role, either through
the Configure Publishing and Distribution Wizard, the Publisher and Distributor properties, by using the
sp_replicationdboption system stored procedure, or by creating a publication on that database using the Create Publication
Wizard.

See Also

Publishers, Distributors, and Subscribers

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

Select Publication Type
Microsoft® SQL Server™ 2000 provides these types of publications: snapshot, transactional, and merge. Each type provides
different capabilities depending on your application, and different levels of ACID properties (atomicity, consistency, isolation,
durability) of transactions and site autonomy.

For example, merge replication allows users to work and update data autonomously, although ACID properties are not assured.
Instead, when servers are reconnected, all sites in the replication topology converge to the same data values.

Transactional replication maintains transactional consistency, but Subscriber sites are not as autonomous as they are in merge
replication because Publishers and Subscribers generally should be connected continuously for updates to be propagated to
Subscribers.

Snapshot replication distributes data exactly as it appears at a specific moment in time and does not monitor for updates to the
data. Snapshot replication is best used as a method for replicating data that changes infrequently, or where the most up-to-date
values (low latency) are not a requirement. When synchronization occurs, the entire snapshot is generated and sent to
Subscribers.

It is possible for the same application to use multiple replication types and options. Some of the data in the application may not
require any updates at Subscribers, some sets of data may require updates infrequently, with updates made at only one or a few
servers, while other sets of data may need to be updated daily at multiple servers.

Which type of replication you choose for your application depends on your requirements based on distributed data factors,
whether or not data will need to be updated at the Subscriber, your replication environment, and the needs and requirements of
the data that will be replicated.

Note If you are running Microsoft SQL Server 2000 Personal Edition, Transactional publication appears shaded. The license
for the Personal Edition does not permit the creation of transactional publications. However, you can still subscribe to
transactional publications. To create transactional publications at this server, SQL Server 2000 Standard Edition or SQL Server
2000 Enterprise Edition must be installed.

See Also

Planning for Replication

Publishing Data and Database Objects

Types of Replication

Replication Wizard Help (SQL Server 2000)

Updatable Subscriptions, Create Publication Wizard
With snapshot replication or transactional replication, replicated data is by read-only by default; however, you have the ability to
modify replicated data at the Subscriber by using updatable subscriptions. If you need to modify data at the Subscriber using
snapshot or transactional replication, you can choose one of the following options depending on your requirements.

Updatable Subscription Requirements
Immediate Updating Publisher and Subscriber must be connected to

update data at the Subscriber.
Queued Updating Publisher and Subscriber do not have to be

connected to update data at the Subscriber.
Updates can be made while offline.

Immediate Updating with Queued
Updating as a Failover

Publisher and Subscriber are connected most of
the time, but you may occasionally need to make
updates offline.

The following options are available on the Updatable Subscriptions page of the Create Publication Wizard.

Options

Immediate updating

Enables immediate updating. Immediate updating allows data modifications to replicate data at the Subscriber. Those changes are
then sent back to the Publisher and to other Subscribers. Immediate updating ensures that there are no conflicts. Data
modifications are propagated from the Subscriber to the Publisher using two-phase commit protocol (2PC).

Queued updating

Enables queued updating. Queued updating allows data modifications to replicated data at the Subscriber without requiring an
active network connection to the Publisher. When you create a publication with the queued updating option enabled and INSERT,
UPDATE, or DELETE statements are performed on replicated data at the Subscriber, the changes are stored in a queue. The queued
transactions are applied asynchronously at the Publisher when network connectivity is restored. You can use either SQL Server
queues (default) or Microsoft Message Queuing. For more information, see Queued Updating Components.

Select both Immediate updating and Queued updating to enable immediate updating with queued updating as a failover.
Immediate updating with queued updating as a failover can be used when you expect the Publisher and Subscribers to be
connected, but you do not want to lose the ability to make updates at the Subscriber if a system failure results in the loss of
network connectivity. Immediate updating with queued updating as a failover allows you to use immediate updating and switch
to queued updating when needed.

After you enable immediate updating and/or queued updating when creating the publication, you will also need to specify the
updatable subscription option when creating subscriptions to the publication.

Note You cannot enable or disable immediate updating or queued updating after the publication is created by modifying
Publication Properties. Updatable subscriptions and transforming published data are mutually exclusive options. If you choose to
enable updatable subscriptions, you cannot also enable transforming published data (another option available with snapshot and
transactional publications).

See Also

Transactional Replication

Updatable Subscriptions

Replication Wizard Help (SQL Server 2000)

Transform Published Data
Transforming published data (available with snapshot replication or transactional replication) leverages the data movement,
transformation mapping, and filtering capabilities of Data Transformation Services (DTS). Using transformable subscriptions in
your replication topology allows you to customize and send published data based on the requirements of individual Subscribers.

Examples of how you can use transformable subscriptions include:

Creating column and horizontal partitions of published data on a per-Subscriber basis (custom data partitions).

Creating data transformations such as data type mappings (for example, integer to real data type), column manipulations
(for example, concatenating first name and last name columns), string manipulations, and use of functions.

The following options are available on the Transform Published Data page of the Create Publication Wizard.

Options

Yes, transform the data

Enables the transformation of published data. Transforming published data allows you to attach a DTS package to a subscription
so that data is transformed as it is published.

No, all Subscribers receive data directly

Disables the transformation of published data.

After the transformation of published data is enabled, you can build a replication DTS package using the Transform Published
Data Wizard. You will need to attach the DTS package as part of the subscription process. Transforming published data is
supported for Microsoft® SQL Server™ 2000 and OLE DB Subscribers (ODBC Subscribers are not supported).

Note You cannot enable or disable the transformation of published data after the publication is created by modifying Publication
Properties.

See Also

Transactional Replication

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

Specify Subscriber Types
Subscribers are servers that receive replicated data. Subscribers subscribe to publications, not to individual articles within a
publication, and they subscribe only to the publications that they need, not necessarily all of the publications available on a
Publisher.

A subscription is the request for data or database objects to be published to a specific Subscriber. A Subscriber can have several
subscriptions to different publications.

Subscribers can be servers running Microsoft® SQL Server™ 2000, earlier versions of SQL Server, or heterogeneous data
sources. For merge replication, Subscribers can also be devices running Microsoft SQL Server for Windows® CE Edition.

The following options are available on the Specify Subscriber Types page of the Create Publication Wizard.

Options

Select one or more of the types of Subscribers that will subscribe to this publication.

Servers running SQL Server 2000

Subscribers running SQL Server 2000 can subscribe to this publication.

Servers running SQL Server version 7.0

Subscribers running SQL Server version 7.0 can subscribe to this publication. If you select this option, you will only see
publication properties in this wizard that are compatible with SQL Server 7.0 Subscribers.

Devices running SQL Server CE

Devices running Microsoft SQL Server 2000 Windows CE Edition (SQL Server CE) can subscribe to merge publications using
anonymous subscriptions. If you enable this type of Subscriber, anonymous subscriptions will also be enabled and cannot be
disabled. This option is available only if you are creating a merge publication.

Heterogeneous data sources, such as Oracle or Microsoft Access

Subscribers running heterogeneous data sources or SQL Server version 7.0 or earlier can subscribe to this publication.
Subscribers running SQL Server version 7.0 or earlier can subscribe to snapshot or transactional publications, but not to merge
publications. Subscribers running Oracle, Microsoft Access, and other heterogeneous data sources can subscribe to snapshot or
transactional publications. Subscribers running Microsoft Access can subscribe to merge publications.

The version requirement for Subscribers to a publication is determined by the properties of the publication, not by the types of
Subscribers selected on this page. For example, if servers running SQL Server 2000 is the only option selected, but you do not
enable any of the new properties that require Subscriber to run SQL Server 2000, Subscribers running SQL Server 7.0 would still
be able to subscribe to this publication.

See Also

Publishers, Distributors, and Subscribers

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Specify Articles
Select the object to publish as an article. Articles can be all or filtered partitions of a table, or can be database objects such as
stored procedures, views and user-defined functions.

Determine what articles to include in the publication based on the type of replication you are using and requirements of the
specific article. If you are publishing a database object that references other database objects, you must publish all objects
referenced by the object. For example, the Products Above Average Price view on the Northwind database retrieves data from
the PRODUCTS tables. If you publish this view, you must also publish the PRODUCTS tables as part of the publication.

To filter data in a table, continue in the Create Publication Wizard and you will be able to filter horizontally or vertically for any
type of publication, and for merge publications, you can create dynamic filters and/or join filters.

If you are creating a merge publication and you indicated that Subscribers would be running SQL Server version 7.0 or earlier, a
clock icon will appear on any tables that contain timestamp columns. Publishing timestamp columns as part of merge
replication was not available in SQL Server version 7.0 or earlier, and when Subscribers are running SQL Server version 7.0 or
earlier, they are limited to the functionality of that version. You will not be able to publish data from these tables without first
removing the timestamp columns.

An article cannot be published both in a merge publication and in a snapshot or transactional publication that allows updatable
subscriptions. If the article has been specified for a merge publication and you are creating a snapshot or transactional publication
that allows updatable subscriptions, a merge icon will appear next to the table name on the Specify Articles page indicating that
the article cannot be included in the new publication.

If the article has been specified for a snapshot or transactional publication that allows updatable subscriptions and you are
creating a merge publication, a red circle with a slash will appear next to the table on the Specify Articles page indicating that the
article cannot be included in the new publication.

The table must have a primary key for it to be published as part of a transactional publication. If you are creating a transactional
publication, a key icon with an X over it will appear next to tables that do not have primary keys. Tables with this icon cannot be
included in the new publication.

The best use of default article properties is to set the defaults for an object type before creating any articles of that type. If you
create articles first, and then change the defaults, you will be prompted whether to update the properties of the previously
published articles. SQL Server overwrites all properties that have defaults in articles that have previously been published. This
may affect more properties than you intended. The default properties that you set do not persist outside of this wizard. When you
open Publication Properties, the defaults may not be the same as what you defined in this wizard.

See Also

Filtering Published Data

Planning for Each Type of Replication

Publishers, Distributors, and Subscribers

Publishing Data and Database Objects

Replication Between Different Versions of SQL Server

Replication Wizard Help (SQL Server 2000)

Article Issues
You may receive a message stating that you have an article issue after you select the articles that you want to publish. This
messages states conditions that have been found and actions, if any, performed by Microsoft® SQL Server™ 2000.

Article Issue Details
uniqueidentifier columns
will be added to tables.

SQL Server requires that all merge articles contain a
uniqueidentifier column with a unique index and the
ROWGUIDCOL property. SQL Server will add a
uniqueidentifier column to published tables that do
not have one when the first snapshot is generated. For
more information, see Merge Replication.

timestamp columns will be
added to tables. (for
Publishers running SQL
Server 7.0).

SQL Server requires that all articles in a publication
allowing updatable subscriptions contain a timestamp
column used for tracking changes to the replicated data.
SQL Server will add a timestamp column to those
published tables that do not have one. For more
information, see Immediate Updating.

Uniqueidentifier columns
will be added to tables.

SQL Server requires that all articles in a publication
allowing updatable subscriptions contain a
uniqueidentifier column named 'MSrepl_tran_version'
used for tracking changes to the replicated data. SQL
Server will add such a column to published tables that
do not have one. For more information, see Updatable
Subscriptions.

IDENTITY columns require
the NOT FOR REPLICATION
option.

SQL Server requires that all IDENTITY columns use the
NOT FOR REPLICATION option. If a published IDENTITY
column does not use this option, INSERT commands
may not replicate properly. For more information, see
Using NOT FOR REPLICATION.

IDENTITY property not
transferred to Subscribers.

Because this publication does not allow updatable
subscriptions, when IDENTITY columns are transferred
to the Subscriber, the IDENTITY property will not be
transferred. (For example, a column defined as INT
IDENTITY at the Publisher will be defined as INT at the
Subscriber.) For more information, see Using IDENTITY
Values with Replication.

Tables referenced by views
are required.

SQL Server requires that all tables referenced by
published views and indexed views be available at the
Subscriber. If the referenced tables are not published as
articles in this publication, they must be created at the
Subscriber manually. For more information, see
Publishing Data and Database Objects.

Objects referenced by stored
procedures are required.

SQL Server requires that all objects referenced by
published stored procedures, such as tables and user-
defined functions, be available at the Subscriber. If the
referenced objects are not published as articles in this
publication, they must be created at the Subscriber
manually. For more information, see Publishing Data
and Database Objects.

Indexed view articles are
supported only in SQL
Server 2000, Enterprise
Edition.

Indexed views are supported only in Microsoft SQL
Server 2000, Enterprise Edition. You have published one
or more indexed view articles that create an indexed
view at the Subscriber. For Subscribers that are servers
running Microsoft SQL Server, only those running SQL
Server 2000, Enterprise Edition will be able to subscribe
to this publication. For more information, see Publishing
Data and Database Objects.

Heterogeneous Subscribers
may not support BIGINT
IDENTITY columns.

You have enabled identity range management for one
or more published tables that contain a BIGINT
IDENTITY column. Some heterogeneous Subscribers
may not support the IDENTITY property or automatic
IDENTITY value management for this column. Such
Subscribers may allow IDENTITY column values that
could result in duplicate key violations or other
synchronization conflicts. For more information, see
Managing Identity Values.

Replication Wizard Help (SQL Server 2000)

Customize the Properties of the Publication
You can choose to accept the default properties for the publication, or you can choose to define properties such as filtering data,
enabling anonymous subscriptions, and setting the schedule of the Snapshot Agent.

Accepting the default properties for the publication is the fastest way to finish the wizard and create your publication. However,
there are some options that cannot be changed after the publication is created.

Choose Yes, I will define data filters, enable anonymous subscriptions, or customize other properties if you want to:

Publish only certain rows or columns from a table.

Allow anonymous subscriptions.

Specify whether to make snapshots always available to immediately synchronize new subscriptions.

Replication Wizard Help (SQL Server 2000)

Filter Data
Choose whether you want to filter the publication vertically (by restricting the columns that are published) or horizontally (by
restricting the rows that are published). You need to enable filtering here in order to be able to filter when creating the publication
(using this wizard).

Enabling horizontal filters includes being able to create dynamic filters and join filters for merge publications.

By filtering published data, you can:

Minimize the amount of data sent over the network.

Reduce the amount of storage space required at the Subscriber.

Customize publications and applications based on individual Subscriber requirements.

Avoid or reduce conflicts because the different data partitions can be sent to different Subscribers (no two Subscribers will
be updating the same data values).

Fully replicated database designs publish all database tables to remote locations. However, to maximize application performance
and reduce the amount of remote storage required, or to restrict the availability of certain data to specific Subscribers, you should
publish only the minimum amount of data required. Your publication can include both unfiltered and filtered tables. For example,
you could include the complete (unfiltered) table of company products and the filtered table of customers for a specific region.

You can limit the set of published data by filtering an article according to specific attributes. For example, it is advisable to filter
the table rows when sites or regions in the replicated topology only need access to certain rows in the database. If you are
creating a snapshot or transactional publication, it is advisable to filter table columns when there is limited network capacity or
when Subscribers have limited capacity to store large text or image columns. Merge publications do not support filters on table
columns.

Note If you do not enable filtering for this publication on this page of the Create Publication Wizard, you will not be able to filter
table articles in this wizard.

See Also

Filtering Published Data

Replication Wizard Help (SQL Server 2000)

Filter Table Columns
Column filters restrict the columns to be included as part of a snapshot, transactional or merge publication. Column filters can
reduce the time it takes to propagate data updates to Subscribers, reduce the storage space needed at the Subscriber, and limit
the data in a publication to data that is needed by individual Subscribers.

Select the columns to be included in the publication. In the list of columns in the article, you can check or clear the box to the left
of the column name to indicate whether the column is included or excluded from the article.

Columns that are part of the primary key for the table (as indicated by a key icon in place of the check box) cannot be excluded
from the publication.

If it is a merge publication or if the snapshot or transactional publication allows immediate updating or queued updating
subscriptions, timestamp columns (as indicated by the clock icon in place of the check box) cannot be excluded from the
publication.

The following columns cannot be excluded:

Column Type Type of publication and/or
options

Icon displayed
next to column

primary key Transactional publications primary key
timestamp Snapshot or transactional

publication that allows immediate
updating and/or queued updating

clock

uniqueidentifier column Merge publications disabled checkbox
msrepl_tran_version Snapshot or transactional

publication that allows immediate
updating and/or queued updating

disabled checkbox

columns that do not allow
NULL and do not have
default values

Merge publications

Snapshot or transactional
publication that allows
immediate updating and/or
queued updating

disabled checkbox

See Also

Column Filters

Replication Wizard Help (SQL Server 2000)

Enable Dynamic Filters
You can tailor the subset of data sent to the individual needs of each Subscriber by setting dynamic filters on table articles. The
dynamic filter examines the characteristics of the Subscriber and then forwards the appropriate data as defined in the filter. This
allows you to create a single publication that provides different data sets to different Subscribers or groups of Subscribers.

You must create the dynamic filter manually using a function such as SUSER_SNAME() to determine which data is propagated to
which Subscribers.

Dynamic snapshots provide a performance advantage when applying the snapshot of a merge publication with dynamic filters. By
using Microsoft® SQL Server™ 2000 bulk copy files to apply data to a specific Subscriber instead of a series of INSERT
statements, you will improve the performance when applying the initial snapshot for dynamically filtered merge publications. For
more information, see Dynamic Snapshots.

Select Yes, enable dynamic filters to enable the publication to use dynamic filters. You will not be able to change this property
in the Publication Properties dialog box after the publication is created.

See Also

Dynamic Filters

Replication Wizard Help (SQL Server 2000)

Generate Filters Automatically
To define a static filter in your table, identify a table in your database that contains at least one column of the characteristics on
which to filter.

To define a dynamic filter, identify a table in your database that contains at least one column of hostnames and one column of a
host characteristic on which to filter. For example, the following table has one column containing hostnames and one column
containing the host's region.

Hostname Region
Smith 5
Smith 6
Jones 2
Green 1

The table is the starting point for a filter on hostnames that can be extended automatically to filter related tables. In this example,
applying a filter to return only rows for Smith would result in Microsoft® SQL Server™ 2000 also including the rows for regions 5
and 6 in any related tables. If you do not have a suitable table in your database, you must create one.

For either static or dynamic filters, select from the list the table in your database that contains the column(s) of data used in the
first filter. Then enter the conditions to be used in extending the first filter to another column(s) of data in the tables. Enter only the
conditions to be used in the filter. Do not enter the entire SELECT statement, and do not enter the WHERE keyword. For example,
enter only:

sales.rep = SUSER_SNAME()

instead of

WHERE sales.rep = SUSUER_SNAME()

After you complete this wizard page, SQL Server will generate a tentative list of JOIN filters to display in the next wizard dialog
box.

See Also

Filtering Published Data

Replication Wizard Help (SQL Server 2000)

Filter Table Rows
You can filter the rows in a table to reduce the amount of data being published. The filter statement must refer only to columns
and values in that table. Filters cannot refer to data in other tables to determine whether rows of this table are included or
excluded.

Click the properties button (...) to enter the WHERE clause used as the filter.

Using row filters, you can specify a subset of rows from a table to be published. Row filters can be used when only specific rows
need to be propagated to Subscribers, to eliminate rows that users do not need to see (such as rows that contain sensitive or
confidential information), or to create different partitions of data that are sent to different Subscribers. For those applications that
can, publishing different partitions of data to different Subscribers can also help avoid conflicts that would otherwise be caused by
multiple Subscribers updating the same data values.

If you are creating a merge publication, you can extend filtering to a related table by creating a join filter, or if you have enabled
dynamic filters for the publication, you can specify a user-defined function or system function for the row filter.

To specify a dynamic filter for a merge publication

Click the properties button (...) to enter the WHERE clause and use a system function, such as SUSER_SNAME(), or a user-
defined function as the criteria for the filter.

To specify a join filter for a merge publication

1. Filter the rows in a table by clicking the properties button (...) to enter the WHERE clause used as the filter.

2. Click the Create JOIN statement under the Filtered Table column. The table name that is being filtered in the row filter
appears as a row.

3. Click under Table to Filter and select the table to filter from the drop down box.

4. Click on the properties button (...) under JOIN Filter Clause and enter the WHERE clause used for the join filter.

See Also

Dynamic Filters

Join Filters

Row Filters

Replication Wizard Help (SQL Server 2000)

Specify Filter
Enter only the conditions to be used in the filter. The SELECT * FROM . . . WHERE statement has already been supplied and cannot
be modified. For example, enter only:

sales.rep = SUSER_SNAME()

See Also

Row Filters

Replication Wizard Help (SQL Server 2000)

Specify Filter (<<TABLE>> Keyword)
Enter only the conditions to be used in the filter. The SELECT <published columns> FROM <<TABLE>> WHERE statement has
already been supplied and cannot be modified. Add the necessary filter in the WHERE clause. If you use a table name in the
WHERE clause, you must use <<TABLE>> instead of the table name. For example, enter only:

<<TABLE>>.salesrep = SUSER_SNAME()

See Also

Row Filters

Replication Wizard Help (SQL Server 2000)

Specify Join Filter
Enter only the conditions to be used in the filter. The SELECT*FROM . . . ON statement has already been supplied and cannot be
modified. For example, enter only:

CUSTOMER.CUST_ID = ORDERS.CUST_ID

Any column names that are identical in both tables and, therefore, could resolve to either table, should be qualified with the name
of the table.

See Also

Join Filters

Replication Wizard Help (SQL Server 2000)

Validate Subscriber Information, Create Publication Wizard
With merge replication dynamic filters, you use a function that references Subscriber information. Microsoft® SQL Server™ 2000
validates Subscriber information based on that function before each merge. This ensures that information is partitioned
consistently with each merge.

For example, when a publication is dynamically filtered using the function SUSER_SNAME(), the Merge Agent applies the initial
snapshot to each Subscriber based on data that is valid for the SUSER_SNAME() expression.

When the Subscriber reconnects to the Publisher for the next synchronization, the Merge Agent validates the information at the
Subscriber and ensures that the same partitions are synchronized as were originally sent as part of the initial snapshot.

Select Yes, validate Subscriber information if you want the Subscriber information to be validated during each merge. Then
enter all functions used in dynamic filters for this publication.

Select No, do not validate Subscriber information if you do not want the Subscriber information validated during each
merge.

After you create the publication, you cannot change this property in the Publication Properties dialog box.

See Also

Validate Subscriber Information

Replication Wizard Help (SQL Server 2000)

Optimize Synchronization
Optimizing synchronization during merge replication allows you to minimize network traffic when determining if recent changes
have caused a row to move into or out of a partition for a Subscriber. In merge replication, an option is provided that stores more
information at the Publisher instead of transferring that information over the network to the Subscriber. While this option may
result in a larger database at the Publisher, it can improve synchronization performance by making filter evaluation more efficient
and minimizing network traffic over a slow link. However, more information will be stored at the Publisher and additional storage
space will be necessary.

If the optimize synchronization setting is not used, changes in one partition will cause the merge process to verify the partition
content of data sent to all Subscribers again, even if the change affects only one or a few Subscribers.

Select Yes, minimize the amount of data if you want to store more information at the Publisher instead of sending it over the
network to the Subscriber.

Select No, do not minimize the amount of data if you want the information to be sent over the network to the Subscriber.

See Also

Optimizing Synchronization

Replication Wizard Help (SQL Server 2000)

Allow Anonymous Subscriptions
An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber are not stored. Initiated at the Subscriber, the Subscriber is responsible for keeping an anonymous subscription
synchronized.

Select Yes, allow anonymous subscriptions to allow Subscribers unknown to the Publisher to subscribe to this publication. You
will not be able to change this property in the Publication Properties after the publication is created.

If Devices running SQL Server CE was enabled on the Subscriber Types page of the Create Publication Wizard, this option for
anonymous subscriptions cannot be disabled. Subscribers running SQL Server CE must use anonymous subscriptions.

See Also

Anonymous Subscriptions

Replication Wizard Help (SQL Server 2000)

article Properties, General Tab (Snapshot or Transactional
Publication)
The following options are available on the General tab of the article Properties dialog box.

Options

Name

If creating a new article, enter the name of the article. If the article is already created, view the name of the article.

Description

Enter or change the description of the article.

Source table owner

View the name of the owner of the table on which the article is based.

Source table name

View the name of the table on which the article is based.

Destination table owner

If creating a new article, enter the name of the table owner. If the article is already created, view the name of the table owner.

Destination table name

If creating a new article, enter the name of the table. If the article is already created, view the name of the table.

Provide support for horizontal partitions created by DTS transformation scripts.

Enables the publication to use horizontal DTS partitions. Using transformable subscriptions and partitioning data horizontally, you
can exclude certain rows on a per Subscriber basis. This option is visible only if the publication allows transformation of published
data.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

article Properties, General Tab (Merge Publication)
The following options are available on the General tab of the article Properties dialog box.

Options

Name

If creating a new article, enter the name of the article. If the article is already created, view the name of the article.

Description

Enter or change the description of the article.

Source table owner

View the name of the owner of the table on which the article is based.

Source table name

View the name of the table on which the article is based.

Destination table owner

If creating a new article, enter the name of the table owner. If the article is already created, view the name of the table owner.

Treat changes to the same row as a conflict

Define a conflict as the same row being changed at the same time by two sites.

Treat changes to the same column as a conflict (changes to different columns in the same row will be merged).

Define a conflict as the same column of the same row being changed at the same time by two sites.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

article Properties, Snapshot Tab
The following options are available on the Snapshot tab of the article Properties dialog box.

Options

Keep the existing table unchanged

Keep all the existing data and schema in the Subscriber table with the same name as the destination table.

DROP the existing table and re-create it

Delete the Subscriber table that has the same name as the destination table and create a new table locally that is identical to the
table at the Publisher.

Delete data in the existing table that matches the row filter statement

Delete the data that matches the data to be replicated from the Publisher in the Subscriber table with the same name as the
destination table. Data in the local table that does not match the data to be replicated remains unchanged in the local table.

Delete all data in the existing table

Delete all the data but keep the table schema in the Subscriber table with the same name as the destination table.

Include declared referential integrity

Copy all primary key constraints, reference constraints, and unique constraints to the destination table if they exist on the source
table at the Publisher.

Clustered indexes

Copy clustered indexes to the destination table if they exist on the source table at the Publisher.

Nonclustered indexes

Copy nonclustered indexes to the destination table if they exist on the source table at the Publisher.

User triggers

Copy user triggers to the destination table if they exist on the source table at the Publisher.

Extended properties

Copy extended properties to the destination table if they exist on the source table at the Publisher.

Collation

Copy collation specifications to the destination database if they exist on the source database at the Publisher.

Convert user-defined to base data types

Convert the user-defined types to the original data types on which they were based if there are user-defined data types in the
source table at the Publisher. Converting user-defined data types to base data types may alter the formatting and other
characteristics of the data.

See Also

Applying the Initial Snapshot

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

article Properties, Commands Tab
The following options are available on the Commands tab of the article Properties dialog box. This tab is not displayed for
snapshot or merge publications, or for transactional publications that allow immediate updating or queued updating
subscriptions or transactional publications that allow transformations of published data.

Options

Replace INSERT commands with this stored procedure call

Use a custom stored procedure at each Subscriber in place of the INSERT command published by the Publisher. You can use the
stored procedure named and created automatically, or you can use your own specified custom stored procedure. If you specify
that all Subscribers are running SQL Server, this option is automatically selected. If you include heterogeneous Subscribers, you
must clear this option for the heterogeneous Subscriber to receive the INSERT commands.

Replace UPDATE commands with this stored procedure call

Use a custom stored procedure at each Subscriber in place of the UPDATE command published by the Publisher. You can use the
stored procedure named and created automatically, or you can use your own specified custom stored procedure. The custom
stored procedure must be specified with an M call. If you specify that all Subscribers are running SQL Server, this option is
automatically selected. If you include heterogeneous Subscribers, you must clear this option for the heterogeneous Subscriber to
receive the UPDATE commands.

Replace DELETE commands with this stored procedure call

Use a custom stored procedure at each Subscriber in place of the DELETE command published by the Publisher. You can use the
stored procedure named and created automatically, or you can use your own specified custom stored procedure. If you specify
that all Subscribers are running SQL Server, this option is automatically selected. If you include heterogeneous Subscribers, you
must clear this option for the heterogeneous Subscriber to receive the DELETE commands.

Create the stored procedures specified above during initial synchronization of the Subscribers

Create the stored procedures automatically at the Subscriber because they do not exist there. If you have created your own
custom stored procedures at the Subscriber, clear this option.

Send parameters in binary format

Send the stored procedures in the most efficient format.

Use column names in commands that are not replaced by stored procedures

Use the table column names in all SQL statements.

See Also

Transactional Replication

Using Custom Stored Procedures in Articles

Replication Wizard Help (SQL Server 2000)

article Properties, Resolver Tab
The following options are available on the Resolver tab of the article Properties dialog box. This tab shows on the article
properties for merge publications.

Options

Use the default resolver

Have the resolver that ships with Microsoft® SQL Server™ 2000 handle conflicts detected during the merge process.

Use this custom resolver (registered at the Distributor)

Have a custom resolver handle the conflicts detected during the merge process. Select the custom resolver to be used for this
article. Twelve custom resolvers are available with SQL Server 2000.

Require verification of a digital signature before merging

Replication signature verification constants are used to specify whether to verify a digital signature before using a resolver in
merge replication.

Enter information needed by the resolver

Enter the name of the stored procedure to call when using the stored procedure resolver and enter any parameters or other
information it requires. You can also enter information required by other custom resolvers.

Allow Subscribers to resolve conflicts interactively during on-demand synchronizations

Activated at run-time, the Interactive Resolver displays data for each conflicting row, and provides options for viewing and editing
the conflict data, and resolving each conflict individually. If resolving conflicts interactively is allowed, you must also specify
whether to resolve conflicts interactively when a subscription is created.

See Also

Merge Replication Conflict Detection and Resolution

Replication Wizard Help (SQL Server 2000)

article Properties, Identity Range Tab
In replication topologies where a publication contains an identity column and where new rows can be inserted at Subscribers,
additional configuration may be necessary to ensure that no duplicate identity values or constraint violations occur.

The Identity Range Tab allows you to specify that SQL Server™ 2000 will assign and manage identity columns automatically by
allocating ranges of identity values to the Publisher and all the Subscribers.

The following options are available on the Identity Range tab of the article Properties dialog box.

Options

Automatically assign and maintain a unique identity range for each subscription

SQL Server will assign the identity ranges for the Publisher and for each subscription to this article.

Maximum identity value

View the maximum identity value that will be entered for a row in this replicated table.

Next range starting value

View the next available starting identity value.

Identity Increment

View the increment with which identity values are generated.

Range size of Publisher

Enter the identity range size reserved for INSERTs made at the Publisher.

Range size of Subscribers

Enter the identity range size reserved for INSERTs made at Subscribers.

Assign a new range when this percentage of values is used

When INSERT values on this article reach this percentage of the existing identity range, SQL Server will assign a new identity
range.

Note Changing the values on this dialog box affect all articles based on this table. All articles in all publications that are based on
this table use the same identity range properties.

See Also

Identity Ranges with Immediate Updating and Queued Updating

Managing Identity Values

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

article Properties, Merging Changes Tab
SQL Server™ 2000 provides the option to validate permissions for a Subscriber to upload data changes to a Publisher. This
verifies that the Merge Agent login has the permissions to perform INSERT, UPDATE, and DELETE commands on the publication
database. Validating permissions requires that the Merge Agent login be a valid user with the appropriate permissions in the
publication database.

This permissions validation is in addition to the verification that the logins used at the Subscriber are in the publication access list
(PAL).

If you set the check permissions option after the initial snapshot has been generated, a new snapshot must be generated and
reapplied at the Subscriber in order for permissions to be validated when data changes are merged.

The following options are available on the Merging Changes tab of the article Properties dialog box.

Options

INSERT

Select to have SQL Server verify that the Merge Agent login has permissions to perform INSERT commands.

UPDATE

Select to have SQL Server verify that the Merge Agent login has permissions to perform UPDATE commands.

DELETE

Select to have SQL Server verify that the Merge Agent login has permissions to perform DELETE commands.

Multicolumn updates

Enables SQL Server to generate one UPDATE statement for all changes to multiple column values in the same row. If you open the
article properties, Merging Changes tab while in the Create Publication Wizard, you can modify this option. If you open the article
properties, Merging Changes tab while in the Publication Properties after the publication is created, you will be able to view this
option, but you will not be able to modify it.

See Also

Merge Replication

Merge Replication Conflict Detection and Resolution

Replication Wizard Help (SQL Server 2000)

Stored Procedure Article Properties, General Tab
The following options are available on the General tab of the Stored Procedure Article Properties dialog box.

Any object referenced by the stored procedure (such as tables or functions) should also be published or should be created
manually at each Subscriber.

When you publish these objects, the definitions are replicated as part of the initial snapshot applied at the Subscriber. Subsequent
changes to the definition of these objects are not copied automatically to Subscribers.

Options

Name

If creating a new stored procedure article, enter the name of the article. If the article is already created, view the name of the
article.

Source Stored Procedure Owner

View the owner for the stored procedure to be published.

Source Stored Procedure Name

View the name of the stored procedure to be published.

Destination Stored Procedure Owner

Enter or view the owner of the replicated stored procedure after it is published to the Subscriber.

Destination Stored Procedure Name

View the name of the replicated stored procedure after it is published to the Subscriber.

Description

Enter a description for the stored procedure article.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

Stored Procedure Article Properties, Other Tab
The following options are available on the Other tab of the Stored Procedure Article Properties dialog box.

Options

Keep the existing stored procedure

If the stored procedure already exists at the Subscriber, keep the existing stored procedure at the Subscriber but do not publish
this stored procedure.

Drop the existing stored procedure

If the stored procedure already exists at the Subscriber, drop the stored procedure at the Subscriber and publish this stored
procedure.

For stored procedure articles in transactional publications that do not allow updatable subscriptions, you can publish the
execution of the stored procedure in addition to the schema of the stored procedure. For more information, see Publishing Stored
Procedure Execution.

Never replicate the schema only

Does not replicate the execution of the stored procedure.

Every time it is executed

Always replicate the execution of the stored procedure.

Only when it is executed inside a serializable transaction

Replicate the stored procedure when it is executed inside a serializable transaction.

Extended properties

Publishes all extended properties that exist with this stored procedure article.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

View Article Properties, General Tab
After you create views, they will appear as objects in the Create Publication Wizard in the Specify Articles dialog box.

When you replicate these objects, the definitions are replicated as part of the initial snapshot applied at the Subscriber.
Subsequent changes to the definition of these objects are not copied automatically to Subscribers. However, replicating the
definition of these objects can provide a convenient mechanism for deploying these components of your application to
Subscribers.

Any objects referenced by the view (such as tables or functions) should also be published or should be created manually at each
Subscriber.

The following options are available on the General tab of the View Article Properties dialog box.

Options

Name

If creating a new view article, enter the name of the article. If the article is already created, view the name of the article.

Source View Owner

View the owner for the view to be published.

Source View Name

View the name of the view to be published.

Destination View Owner

Enter or view the owner of the replicated view after it is published to the Subscriber.

Destination View Name

View the name of the replicated view after it is published to the Subscriber.

Description

Enter a description for the view article.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

View Article Properties, Snapshot Tab
The following options are available on the Snapshot tab of the View Article Properties dialog box.

Options

Keep the existing view

If a view with the same name already exists at the Subscriber, keep the existing view at the Subscriber and do not publish this
view.

Drop the existing view

If a view with the same name already exists at the Subscriber, drop the view at the Subscriber and publish this view.

Extended properties

Publishes all extended properties that exist with this view article.

User Triggers

Publishes all user triggers that exist with this view article.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

User-Defined Function Article Properties, General Tab
After you create views, user-defined functions, and stored procedure definitions in a database, they will appear as objects in the
Create Publication Wizard in the Specify Articles dialog box.

When you replicate these objects, the definitions are replicated as part of the initial snapshot applied at the Subscriber.
Subsequent changes to the definition of these objects are not copied automatically to Subscribers. However, replicating the
definition of these objects can provide a convenient mechanism for deploying these components of your application to
Subscribers.

Any object referenced by the function should also be published or should be created manually at each Subscriber.

The following options are available on the General tab of the User-defined Function Article Properties dialog box.

Options

Name

If creating a new user-defined function article, enter the name of the article. If the article is already created, view the name of the
article.

Source User-Defined Function Owner

View the owner for the user-defined function to be published.

Source User-Defined Function Name

View the name of the user-defined function to be published.

Destination User-Defined Function Owner

Enter or view the owner of the replicated user-defined function after it is published to the Subscriber.

Destination User-Defined Function Name

View the name of the replicated user-defined function after it is published to the Subscriber.

Description

Enter a description for the user-defined function article.

See Also

Publishing Data and Database Objects

User-defined Functions

User-Defined Functions and Dynamic Filters

Replication Wizard Help (SQL Server 2000)

User-Defined Function Article Properties, Snapshot Tab
The following options are available on the Snapshot tab of the User-defined Function Article Properties dialog box.

Options

Keep the existing user-defined function

If a user-defined function with the same name already exists at the Subscriber, keep the existing user-defined function at the
Subscriber and do not publish this user-defined function.

Drop the existing user-defined function

If a user-defined function with the same name already exists at the Subscriber, drop the user-defined function at the Subscriber
and publish this user-defined function.

Extended properties

Publishes all extended properties that exist with this user-defined function article.

See Also

Publishing Data and Database Objects

User-defined Functions

Replication Wizard Help (SQL Server 2000)

Indexed View Article Properties, General Tab
After you create indexed views, they will appear as objects in the Create Publication Wizard in the Specify Articles dialog box.

When you replicate these objects, the definitions are replicated as part of the initial snapshot applied at the Subscriber.
Subsequent changes to the definition of these objects are not copied automatically to Subscribers. However, replicating the
definition of these objects can provide a convenient mechanism for deploying these components of your application to
Subscribers.

When publishing an indexed view as a table to the Subscriber, a table is created on the Subscriber that contains the data the view
is based upon. Indexing a view as a table at a Subscriber can be a convenient way of replicating the contents of a view without
requiring each of the tables that comprise the view definition to be replicated as well.

When publishing indexed views that are schema-only articles, any objects referenced by the indexed view (such as tables or
functions) should also be published or should be created manually at each Subscriber.

The following options are available on the General tab of the Indexed View Article Properties dialog box.

Options

Name

If creating a new indexed view article, enter the name of the article. If the article is already created, view the name of the article.

Source View Owner

View the owner for the indexed view to be published.

Source View Name

View the name of the indexed view to be published.

Destination View Owner

Enter or view the owner of the replicated object after it is published to the Subscriber.

Destination View Name

View the name of the replicated object after it is published to the Subscriber.

Description

Enter a description for the indexed view article.

In snapshot and transactional publications that do not allow updatable subscriptions, you can specify whether indexed view
articles create an indexed view or a table at the Subscriber. Indexed view articles in merge publications always create an indexed
view at the Subscriber.

An indexed view

Create an indexed view at the Subscriber. This option is not displayed for merge publications.

A table defined by the source indexed view

Create a table at the Subscriber containing the data at the Publisher defined by the indexed view. This option is not displayed for
merge publications.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

Indexed View Article Properties, Snapshot Tab
The following options are available on the Snapshot tab of the Indexed View Article Properties dialog box.

Options

Keep the existing view

If an object with the same name as the destination object already exists at the Subscriber, keep the existing object at the
Subscriber and do not publish this indexed view.

Drop the existing view

If object already exists at the Subscriber, drop the indexed view at the Subscriber and publish this indexed view.

Nonclustered indexes

Publishes all nonclustered indexes that exist with this indexed view article. This option is required if the destination object is an
indexed view.

Extended properties

Publishes all extended properties that exist with this indexed view article.

User Triggers

Publishes all user triggers that exist with this indexed view article.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

Push Subscription Wizard, Welcome
The Welcome page of the Create Push Subscription Wizard includes a description of the Create Push Subscription Wizard
and an option to select advanced options during the wizard.

If you enable Show advanced options in this wizard and you create a push subscription for a snapshot or transactional
publication, you will be able to configure the subscription for:

Updatable subscription options for immediate updating and/or queued updating.

Running the agent at a location other than the Distributor.

When creating a push subscription to a merge publication, you will see all the options available whether the Show advanced
options in the wizard check box is selected or not.

Updatable Subscriptions

Typically, replicated data is read-only. However, in SQL Server™ 2000, you have the ability to modify replicated data at the
Subscriber by using updatable subscriptions with snapshot replication or transactional replication or by using merge replication.
If you need to modify data at the Subscriber using snapshot replication or transactional replication, you can choose immediate
updating, queued updating or immediate updating with queued updating as a failover.

For more information, see Updatable Subscriptions.

Remote Agent Activation

Remote agent activation allows you to reduce the amount of processing on the Distributor or Subscriber by running the
Distribution Agent or Merge Agent on another computer and then activating that agent remotely using Distributed Component
Object Model (DCOM).

You can implement remote agent activation on either push or pull subscriptions. With each type of subscription, you need to:

Indicate where the agent will run in the Push Subscription or Pull Subscription Wizard.

Configure DCOM to activate an agent remotely.

Configure or create the subscription indicating where the agent should run.

See Also

Push Subscriptions

Remote Agent Activation

Replication Wizards

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Choose Subscribers
Select the data source that will subscribe to this publication. You can make multiple selections by holding down the CTRL key.
Selecting a group name selects all the servers in that group.

The Enabled Subscribers group includes all Subscribers (both Microsoft® SQL Server™ and heterogeneous data sources) that
were enabled as Subscribers previously. If a Subscriber is missing from the list, cancel the wizard, and then use Subscribers tab in
the Publisher and Distributor Properties (in Enterprise Manager, right-click the Replication folder and click Configure
Publishing, Subscribers and Distribution) to enable it.

Note If you are publishing to heterogeneous Subscribers or Subscribers running SQL Server version 7.0 or earllier, the snapshot
format must be set to character mode.

Replication Wizard Help (SQL Server 2000)

Set Merge/Distribution Agent Location
When creating a push subscription, the Merge Agent (for merge publications) or the Distribution Agent (for snapshot and
transactional publications) runs at the Distributor by default.

You can offload agent processing to another server while still maintaining administration control at the Publisher and Distributor.
Offloading agent processing is only supported for Subscribers on Microsoft Windows® 2000 or Windows NT® 4.0.

Select Run the agent at the Distributor if you do not want to offload agent processing.

Select Run the agent at the Subscriber (supported only for Windows 2000 and Windows NT Subscribers) if you want to
offload agent processing. Then verify or enter the computer name of the Subscriber.

See Also

Remote Agent Activation

Replication Wizard Help (SQL Server 2000)

Initialize Subscription
If you want Microsoft® SQL Server™ to initialize the subscription, select Yes, initialize the schema and data. After the
subscription is created, the Distribution Agent or Merge Agent will run and apply the snapshot files to the Subscriber.

If you manually load the schema and data at the Subscriber, for example, using backup tapes, you do not need to initialize the
subscription. Select No, the Subscriber already has the schema and data if you do not want SQL Server to apply the
snapshot.

If the publication property to synchronize immediately is enabled, and the Snapshot Agent has not run, or the publication is not
set to synchronize immediately, select Start the Snapshot Agent to initialize the subscription immediately to start the
Snapshot Agent. If the Merge Agent or Distribution Agent is not set to run continuously, the snapshot will be applied when that
agent runs according to its schedule.

If the publication property to synchronize immediately is enabled, and the snapshot has not been generated for the publication,
this option will indicate that you must start the Merge Agent or Distribution Agent after the snapshot is available.

If the publication property to synchronize immediately is enabled, the snapshot has been generated, and the Merge Agent or
Distribution Agent is set to run continuously, the Start the Snapshot Agent to initialize the subscription immediately check
box is not displayed.

See Also

Applying the Initial Snapshot

Replication Wizard Help (SQL Server 2000)

Set Subscription Priority
When you create a subscription, you can either assign it a priority value or use the Publisher as a proxy for the Subscriber when
resolving conflicts.

A subscription with an assigned priority value is called a global subscription; a subscription using the priority value of the
Publisher is called a local subscription. This table summarizes the main differences and uses of each type.

Type Priority Value Used
Global. Assigned by user. When you want different Subscribers to

have different priorities.
Local (includes
anonymous).

0.00, but the Publisher
acts as a proxy for data
changes after the
Subscriber
synchronization with the
Publisher.

When you want all Subscribers to have the
same priority, and the first Subscriber to
merge with the Publisher to win the
conflict.
Anonymous subscriptions are helpful
when you expect to have a large number of
Subscribers and you do not want to keep
track of them at the Publisher/Distributor.

When you change a row in a global subscription, the subscription priority is stored in the meta data for the change. This priority
value travels with the changed row as it merges with changes at other Subscribers. This assures that a change made by a higher
priority subscription does not lose to a change made by a subscription with a lower priority.

If a row is changed in a local subscription, no priority is assigned to the change until the row merges with the other changes at a
Publisher. During the merge process at the Publisher, the changes from the Subscriber are assigned the priority of the Publisher
and travel with that priority as it merges with changes at other Publishers and Subscribers. In a sense, the Publisher assumes
authorship of the change.

Global subscriptions provide a greater number of options and allow for greater sophistication to a conflict resolution scheme than
local subscriptions. Using global subscriptions ensures that priority values are preserved throughout the enterprise.

Global subscriptions can also be specified as alternate synchronization partners for subscriptions to this publication. (Alternate
synchronization partners are specified in the Publication Properties dialog box.)

Local subscriptions are also appropriate (and usually required) in a topology with several levels, where Subscribers are leaf nodes.
In these topologies, any nodes that republish data must be global Subscribers; local Subscribers can be used only at the leaf
nodes.

Select Use the Publisher as a proxy for the Subscriber when resolving conflicts if you want this to be a local subscription.

Select Use the following priority . . . and then enter a priority number for the subscription if you want this to be a global
subscription.

See Also

Merge Replication Conflict Detection and Resolution

Subscriber Types and Conflicts

Replication Wizard Help (SQL Server 2000)

Updatable Subscriptions, Subscription Wizards
With snapshot replication or transactional replication, replicated data is by default read only; however, you have the ability to
modify replicated data at the Subscriber by using updatable subscriptions. If you need to modify data at the Subscriber using
snapshot or transactional replication, you can choose one of the following options depending on your requirements.

Updatable Subscription Requirements
Immediate Updating Publisher and Subscriber must be connected to

update data at the Subscriber.
Queued Updating Publisher and Subscriber do not have to be

connected to update data at the Subscriber.
Updates can be made while offline.

Immediate Updating with Queued
Updating as a Failover

Publisher and Subscriber are connected most of
the time, but you may occasionally need to make
updates offline.

Options

None – changes are not replicated

Replicated data that is modified at the Subscriber will not be propagated to the Publisher or other Subscribers.

Immediate updating

Configures this subscription to use immediate updating. Immediate updating allows data modifications to replicated data at the
Subscriber. Those changes are then sent back to the Publisher and to other Subscribers. Immediate updating ensures that there
are no conflicts. Data modifications are propagated from the Subscriber to the Publisher using two-phase commit protocol (2PC).

Queued updating

Configures this subscription to use queued updating. Queued updating allows data modifications to replicated data at the
Subscriber, without requiring an active network connection to the Publisher. When you create a publication with the queued
updating option enabled and a INSERT, UPDATE, or DELETE statements are performed on replicated data at the Subscriber, the
changes are stored in a queue. The queued transactions are applied asynchronously at the Publisher when network connectivity is
restored. You can use either SQL Server queues (default) or Microsoft Message Queuing. For more information, see Queued
Updating Components.

Immediate updating with queued updating as a standby in case of failure

Configures the subscription for immediate updating with queued updating as a failover. Immediate updating with queued
updating as a failover can be used when you expect the Publisher and Subscribers to be connected, but you do not want to lose
the ability to make data modifications at the Subscriber if a system failure results in the loss of network connectivity. Immediate
updating with queued updating as a failover allows you to use immediate updating and switch to queued updating when needed.

Note You cannot configure immediate updating or queued updating after the subscription is created by modifying Push
Subscription Properties or Pull Subscription Properties.

See Also

Transactional Replication

Updatable Subscriptions

Replication Wizard Help (SQL Server 2000)

Specify DTS Package
If transforming published data has been enabled in the publication, you must specify the DTS package to use with this
subscription.

These are the options available on the Specify DTS Package page of the Create Push Subscription Wizard.

Options

Distributor

Select this option if the DTS package is located at the Distributor.

Subscriber

Select this option if the DTS package is located at the Subscriber.

List Packages

If you select the Subscriber option and the Subscriber is running SQL Server, you can also click the List Packages button. This will
connect to the Subscriber and retrieve the list of packages created for use with replication. Such packages can be created
manually or by using the Define Transformation of Published Data Wizard.

Package name

Enter the name of the DTS package that will be used with this subscription.

Owner Password (if required)

Enter the owner password for the DTS package if required.

See Also

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

Start Required Services
The services listed on this wizard page must be running for Microsoft® SQL Server™ to synchronize changes. SQL Server Agent is
required for all publications. MS DTC is required for transactional and snapshot publications that allow updatable subscriptions
(immediate updating and/or queued updating). Microsoft Message Queuing is required for transactional and snapshot
publications that allow queued updating subscriptions and use Microsoft Message Queuing to queue data modifications made at
the Subscriber.

The SQL Server Agent icon, MS DTC icon, or Microsoft Message Queuing icon before the service indicates whether the service is
currently running or stopped. If the icon is shaded, the state of the service is unknown.

If the required service is not currently running, you can either select the service and have SQL Server start the service
automatically when this wizard is finished, or start the service manually later.

Replication Wizard Help (SQL Server 2000)

Pull Subscription Wizard, Welcome
The Welcome page of the Create Pull Subscription Wizard includes a description of the Create Pull Subscription Wizard
and an option to select advanced options during the wizard.

If you enable Show advanced options in this wizard and you create a pull subscription for a snapshot or transactional
publication, you will be able to configure the subscription for:

Updatable subscription options for immediate updating and/or queued updating.

When creating a pull subscription to a merge publication, you will see all the options available whether the Show advanced
options in the wizard check box is selected or not.

Updatable Subscriptions

Typically, replicated data is read-only. However, in SQL Server 2000, you have the ability to modify replicated data at the
Subscriber by using updatable subscriptions with snapshot replication or transactional replication or by using merge replication.
If you need to modify data at the Subscriber using snapshot replication or transactional replication, you can choose immediate
updating, queued updating or immediate updating with queued updating as a failover.

For more information, see Updatable Subscriptions.

See Also

Pull Subscriptions

Replication Wizards

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Choose Publication
When you expand a Publisher, SQL Server Enterprise Manager displays the publications that meet these requirements:

Your current login is included in the publication access list for that publication.

The current server is an enabled Subscriber at the Publisher or the publication allows anonymous subscriptions.

If the publication you want to subscribe to is not in the list, add the login used at the Subscriber to the publication access list for
the publication. To add a login to the PAL:

1. Click Cancel to exit the Create Pull Subscription Wizard.

2. In Enterprise Manager, connect to the Publisher and right-click the publication that you want to subscribe to.

3. Click Properties, and then on the Publication Access List tab, add the login used at the Subscriber.

If the current server is not enabled as a Subscriber at the Publisher, add the Subscriber. To add a Subscriber for this Publisher:

1. Click Cancel to exit the Create Pull Subscription Wizard.

2. In Enterprise Manager, connect to the Publisher and right-click the Replication folder and then click Configure Publishing,
Subscribers, and Distribution.

3. On the Subscribers tab, select the box to the left of the Subscriber name. If the Subscriber is not listed, click New
Subscriber, than click the type of Subscriber to register, and enter the server and connection information.

If the publication does not allow anonymous subscriptions, change this property. To enable anonymous subscriptions:

1. Click Cancel to exit the Create Pull Subscription Wizard.

2. In Enterprise Manager, connect to the Publisher and right-click the publication that you want to allow anonymous
subscriptions, and then click Properties.

3. On the Subscription Options tab, select Allow anonymous subscriptions.

See Also

Anonymous Subscriptions

Pull Subscriptions

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Look for Publication
These are the options available on the Look for Publication page of the Create Pull Subscription Wizard.

Options

Look at publications from registered servers

Select this option to view publications at registered servers.

Look at publications in the Active Directory or specify publication information

Select this option to view publications that are listed in Microsoft® Active Directory™. If allowed, you will be able to subscribe to
publications listed in Active Directory. This option is for Publishers running SQL Server 2000.

See Also

Active Directory Services

Replication Wizard Help (SQL Server 2000)

Specify Publication
These are the options available on the Specify Publication page of the Create Pull Subscription Wizard.

Options

Publisher

Enter the computer name of the Publisher.

Browse (...)

Select to browse for Publisher information in Microsoft® Active Directory™.

Publication database

Enter the name of the publication database.

Publication

Enter the name of the publication.

Connect using Windows Authentication

Select to use Windows Authentication to connect to the Publisher.

Connect using SQL Server Authentication

Select to use SQL Server Authentication to connect to the Publisher.

Login

Type the login for the SQL Server account.

Password

Type the password for the SQL Server account.

See Also

Active Directory Services

Replication Wizard Help (SQL Server 2000)

Specify Updating Subscription Login
The publication access list determines which logins have permissions to update the data in the publication. Be sure the login you
specify is included in the publication access list for this publication.

See Also

Publication Access Lists

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Snapshot Delivery
The publication being subscribed to allows Subscribers to use alternate snapshot locations or file transfer protocol (FTP) to
download the snapshot file over the Internet. If the Subscriber does not have direct network access to the snapshot files at the
time the subscription is initialized, Microsoft® SQL Server™ can copy the snapshot file over the Internet using FTP.

Select Use snapshot files from the default snapshot folder for this publication to access snapshot files in the default
location for this Publisher.

Select Use snapshot files from the following folder to specify another location that the Subscriber can access where the
snapshot files are located.

See Also

Alternate Snapshot Locations

Applying the Initial Snapshot

Replication Wizard Help (SQL Server 2000)

Set Distribution Agent Schedule
Specify the schedule for the Distribution Agent to run for this subscription. Select Continuously to guarantee that data
modifications will be propagated immediately between the Publisher and the Subscriber.

Selecting Using the following schedule runs the Distribution Agent hourly (default), or daily, weekly, or monthly. However,
choosing a frequency other than Continuously increases the latency between the Subscriber and the Publisher.

Select On demand only to run the Distribution Agent only when specifically requested. This option also enables a Subscriber to
use Microsoft Windows Synchronization Manager.

See Also

Distribution Agents

Replication Agents

Windows Synchronization Manager

Replication Wizard Help (SQL Server 2000)

Set Merge Agent Schedule
Specify the schedule for the Merge Agent to run for this subscription. Select Continuously to guarantee that data modifications
will be propagated immediately between the Publisher and the Subscriber.

Selecting Using the following schedule runs the Merge Agent hourly (default), or daily, weekly, or monthly. However, choosing
a frequency other than Continuously increases the latency between the Subscriber and the Publisher.

Select On demand only to run the Merge Agent only when specifically requested. This option also enables a Subscriber to use
Microsoft Windows Synchronization Manager.

See Also

Merge Agents

Replication Agents

Windows Synchronization Manager

Replication Wizard Help (SQL Server 2000)

Allow Anonymous Subscription
An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber are not stored. Initiated at the Subscriber, the Subscriber is responsible for keeping an anonymous subscription
synchronized.

Select Yes, make the subscription anonymous to make this an anonymous subscription.

Select No, this is a named subscription to make this a pull subscription for which detailed information is stored.

See Also

Anonymous Subscriptions

Pull Subscriptions

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Specify Subscriber Security
This Subscriber has been registered in Enterprise Manager to require the user to enter a password when connecting to the
Subscriber. Select the connection information to be used by the replication agents. Select By impersonating the SQL Server
Agent account on server to use the same Windows Authentication account used by SQL Server Agent on the server. Select
Using SQL Server Authentication of this account to use SQL Server Authentication of a specified account.

You can change the password later on the Security tab of the Pull Subscription Properties.

See Also

Replication Properties

Replication Security

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

publication Properties, General Tab
The following options are available on the General tab of the publication Properties dialog box.

Options

Name

View the name of the publication.

Database

View the name of the database containing the publication.

Description

Enter or change the description of the publication.

Type

View the type of publication (snapshot, transactional, or merge).

List the publication in the Active Directory

Select to enable the publication in the Microsoft® Windows® Active Directory™ Services available on Microsoft Windows 2000.
This will allow users at Subscribers to view the publication, and if allowed, subscribe to the publication.

Subscriptions expire and are dropped if not synchronized in the following number of hours/days

Set the number of hours for snapshot and transactional publication, or the number of days for merge publications. This is the
number of hours or days in which synchronization needs to occur, otherwise the subscription will be dropped.

Subscriptions never expire

Allows subscriptions to exist even if they haven't synchronized. For snapshot and transactional publications, the subscription will
be deactivated until it is reinitialized.

See Also

Subscription Deactivation and Expiration

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

publication Properties, Articles Tab
The following options are available on the Articles tab of the publication Properties dialog box.

Options

(check box)

Enable the selected object as an article.

Object Type

Types of objects in the publication database that can be published as articles.

Show

Click this checkbox to display the objects of this type in the article list.

Publish All

Select this checkbox to publish all objects of this type that can be published as articles in this publication. (Some objects cannot be
published. For example, tables without primary key columns cannot be published as part of transactional publications, so
selecting this option will publish all tables that have primary keys).

Owner

View the name of the owner of the object.

Object

View the name of the table, stored procedure, view, user-defined function or indexed view on which the article is based.

(...)

Display the properties of the article.

Ariticle Defaults

Set the default properties for new articles based on selected type of object.

Show unpublished objects

Displays objects that were not marked for publishing in the publication.

See Also

Publishing Data and Database Objects

Replication Wizard Help (SQL Server 2000)

publication Properties, Filter Columns Tab
The following options are available on the Filter Columns tab of the publication Properties dialog box.

Options

Owner

View the name of the owner of the table.

Table

View the name of the table on which the article is based.

Article

View the name of the article.

(check box)

Include or exclude a table column from the selected article. Columns that are part of the primary key for the table, as indicated by
a key icon in the column, cannot be excluded from the article.

The following columns cannot be excluded from a publication.

Column Type Type of Publication and Options Icon
Primary key Transactional publication Primary key
Timestamp Snapshot or transactional

publications that allow updatable
subscriptions

Clock

uniqueidentifier Merge publications Disabled check box
msrepl_tran_version Snapshot or transactional

publications that allow updatable
subscriptions

Disabled check box

columns that do not
allow NULL and do not
have default values

Merge publications

Snapshot or transactional
publications that allow updatable
subscriptions

Disabled check box

Column name

View the name of the column.

Data type (Base Type)

View the data type of the column. If the data type is based on another data type, the base data type is shown in parenthesis.

Add column to table

Allows you to add a column on the publishing table that can then be included in the publication.

Drop selected column

Allows you to drop a column from the publication and from the publishing table.

See Also

Column Filters

Filtering Published Data

Schema Changes on Publication Databases

Replication Wizard Help (SQL Server 2000)

publication Properties, Filter Rows Tab
The following options are available on the Filter Rows tab of the publication Properties dialog box.

Options

Owner

View the name of the owner of the table.

Table

View the name of the table on which the article is based.

Article

View the name of the article.

Filter clause

View the clause used to filter the rows included in the article.

(...)

Enter or modify the filter clause.

See Also

Filtering Published Data

Row Filters

Replication Wizard Help (SQL Server 2000)

publication Properties, Filter Rows Tab (merge publication)
The following options are available on the Filter Rows tab of the publication Properties dialog box.

Options

Owner

View the name of the owner of the table.

Table

View the name of the table on which the article is based.

Article

View the name of the article.

Filter clause

View the clause used to filter the rows included in the article.

(...)

Enter or modify the filter clause.

Filtered table

Select the name of the filtered table. Only tables that either have a row filtered or are filtered through a JOIN are displayed in this
column. Select Delete JOIN to remove an existing JOIN.

Table to filter

Select the name of the table to which filtering is extended.

Join filter clause

View the JOIN clause used to extend the filtering from Filtered table to Table to filter.

(...)

Enter or modify the JOIN clause.

See Also

Dynamic Filters

Filtering Published Data

Join Filters

Row Filters

Replication Wizard Help (SQL Server 2000)

publication Properties, Subscriptions Tab
The following options are available on the Subscriptions tab of the publication Properties dialog box.

Options

Subscription name

View the name of the subscription.

Type

View the type of subscription (push or pull).

Priority

View the priority of the subscription. This option is displayed only for merge publications. A priority of 0 indicates that the
Subscriber is using the Publisher as a proxy for changes when resolving data conflicts. This option is displayed only for merge
publications.

All Articles

View whether this subscription contains all articles in the publication. This option is displayed only for snapshot and transactional
publications.

Push New

Create a new push subscription for this publication.

Properties

Display the properties of the selected subscription.

Delete

Delete the selected subscription.

Reinitialize

Reinitialize the selected subscription.

Reinitialize All

Reinitialize all subscriptions listed.

View Conflicts

View the synchronization conflicts for the selected subscription. This option is displayed only for merge publications and for
snapshot and transactional publications that use updatable subscriptions. This option is not shown for heterogeneous
publications.

Transformations

Start the Transform Published Data Wizard, which helps you create a DTS package to transform data as it is published. This option
is displayed only for snapshot and transactional publication that allow transforming published data. This option is not shown for
heterogeneous publications.

Dynamic Snapshot

Start the Create Dynamic Snapshot Job Wizard. This option is only displayed for merge publications that allow dynamic filters.
This option is not shown for heterogeneous publications.

Limit the number of concurrent merge processes to the following

Limit the number of merge processes that can run at the same time to the specified number. This option is displayed only for
merge publications. This option is not shown for heterogeneous publications.

See Also

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

publication Properties, Subscription Options Tab (Snapshot or
Transactional Publication)
The following options are available on the Subscription Options tab of the publication Properties dialog box.

Options

Use a Distribution Agent that is independent of other publications from this database

Select whether the publication uses an independent Distribution Agent or whether multiple push subscriptions to publications
from this publication database to the same Subscriber and subscription database share one Distribution Agent. Sharing the same
Distribution Agent reduces the resource demands and increases performance at the Distributor. You must use an independent
Distribution Agent if you want to have anonymous subscriptions for this publication or use attachable subscription databases.

Snapshot files are always available to initialize new subscriptions

Select whether to continuously maintain a current snapshot of the publication so that new subscriptions can be initialized as soon
as the subscription is created. You must select this if you want to allow anonymous subscriptions or attachable subscription
databases.

Allow anonymous pull subscriptions

Select to allow anonymous subscriptions for this publication.

Allow new subscriptions to be created by attaching a copy of a subscription database

Select whether to allow new subscriptions to be created by attaching a copy of a subscription database.

Allow pull subscriptions

Select whether those Subscribers who have been specifically enabled are allowed to create pull subscriptions to the publication.
Subscribers are enabled on the Subscribers tab of the Publisher and Distributor Properties dialog box.

Data Transformation Services

View whether or not DTS can be used to transform the data as it is published.

See Also

Replication Agents

Subscribing to Publications

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

publication Properties, Subscription Options Tab (Merge
Publication)
The following options are available on the Subscription Options tab of the publication Properties dialog box.

Options

Allow pull subscriptions

Select whether Subscribers that have been specifically enabled are allowed to create pull subscriptions to the publication.
Subscribers are enabled to create pull subscriptions on the Subscribers tab of the Publisher and Distributor Properties dialog box.

Allow anonymous subscriptions

Select to allow anonymous subscriptions for this publication.

Allow new subscriptions to be created by attaching a copy of a subscription database

Select whether to allow new subscriptions to be created by attaching a copy of a subscription database.

Centralize conflicting reporting at the Publisher

Select whether all data conflicts are reported at the Publisher or whether a conflict is reported at the location where the conflict
occurred, either at the Publisher or at a Subscriber.

Allow partitioning through dynamic filters

Specify whether the merge publication allows dynamic filters.

Minimize network traffic by increasing the storage requirements at the Publisher

Select to optimize synchronization so that network traffic is minimized when determining if recent changes have caused a row to
move into or out of a partition for a Subscriber.

See Also

Dynamic Filters

Merge Replication

Optimizing Synchronization

Replication Wizard Help (SQL Server 2000)

publication Properties, Subscription Options Tab (SQL Server
7.0 Transactional Publication)
The following options are available on the Subscription Options tab of the publication Properties dialog box.

Options

Use a Distribution Agent that is independent of other publications from this database

Select whether the publication uses a separate Distribution agent. Having all the publications at the Publisher use the same
Distribution Agent reduces the resource demands and increases performance at the Distributor. However, if your application
requires immediate synchronization or allows anonymous subscriptions, you must have a separate Distribution Agent for this
publication.

Snapshot files are always available to immediately initialize new subscriptions

Select whether to continuously maintain a current snapshot of the publication so that new subscriptions can be initialized as soon
as the subscription is created.

Allow anonymous Subscribers to pull subscriptions

Select whether anonymous Subscribers are allowed to create pull subscriptions to the publication.

Allow enabled Subscribers to pull subscriptions

Select whether those Subscribers who have been specifically enabled are allowed to create pull subscriptions to the publication.
Subscribers are enabled on the Subscribers tab of the Publisher and Distributor Properties dialog box.

Allow snapshots to be downloaded using FTP (File Transfer Protocol)

Select whether enabled Subscribers or anonymous Subscribers can use file transfer protocol (FTP) to download the snapshot file
over the Internet.

Allow immediate updating subscriptions

View whether a Subscriber can modify subscription data and have those changes replicated to the Publisher.

Replication Wizard Help (SQL Server 2000)

publication Properties, Updatable Tab
With snapshot replication or transactional replication, replicated data is by default read only; however, you have the ability to
modify replicated data at the Subscriber by using updatable subscriptions. If you need to modify data at the Subscriber using
snapshot or transactional replication, you can choose one of the following options depending on your requirements.

The following options are available on the Updatable tab of the publication Properties dialog box.

Options

Allow immediate updating subscriptions

View whether this publication allows data modifications made at the Subscriber to be immediately propagated to the Publisher
and then to other Subscribers. You cannot change this property after the publication is created. If you need to change it, you will
have to delete the publication and re-create it.

Allow queued updating subscriptions

View whether this publication allows data modifications made at the Subscriber to be stored in a queue and propagated to the
Publisher at a later time. You cannot change this property after the publication is created. If you need to change it, you will have to
delete the publication and re-create it.

Report conflicting data changes at the Publisher only

Specifies that conflict reporting will occur only at the Publisher. If you clear this option, conflict reporting will occur at the
Publisher and Subscriber.

Keep the change made at the Publisher

Select to indicate that when a conflict occurs, the data change made at the Publisher wins the conflict.

Keep the change made at the Subscriber

Select to indicate that when a conflict occurs, the data change made at the Subscriber wins the conflict.

Reinitialize the subscription

Select to indicate that when a conflict occurs, the subscription will be reinitialized.

In a SQL Server database

Select to indicate that data modifications made at the Subscriber will be stored in a SQL Server database. This option is only
available if queued updating is enabled.

Using Microsoft Message Queuing

Select to indicate that data modifications made at the Subscriber will be stored using Microsoft Message Queuing. This option is
only available if queued updating is enabled. For more information, see Queued Updating Components.

See Also

Planning for Replication Options

Queued Updating Conflict Detection and Resolution

Updatable Subscriptions

Replication Wizard Help (SQL Server 2000)

publication Properties, Snapshot Tab
The following options are available on the Snapshot tab of the publication Properties dialog box.

Options

Native SQL Server format – all Subscribers must be servers running SQL Server

Specifies that the snapshot files will be in native SQL Server format.

Character mode format - supports heterogeneous Subscribers and data transformations using DTS

Specifies that the snapshot files will be in character mode format.

Do not lock tables during snapshot generation. All Subscribers must be servers running SQL Server version 7.0 or later.

Select this option to enable concurrent snapshot processing. This option is displayed with transactional replication. Publishing
tables will not be locked while the snapshot is generated.

Before applying the snapshot, execute this script

Enter the network path for the script that you want executed before the snapshot is applied.

After applying the snapshot, execute this script

Enter the network path for the script that you want executed before the snapshot is applied.

(. . .)

Browse to the location of the script that needs to be executed.

See Also

Applying the Initial Snapshot

Executing Scripts Before and After the Snapshot is Applied

How Transactional Replication Works

Replication Wizard Help (SQL Server 2000)

publication Properties, Snapshot Location Tab
Alternate snapshot locations enable you to store snapshot files in a location other than, or in addition to, the default location,
which is often located at the Distributor. Alternate locations can be on another server, on a network drive, or on removable media
such as CD-ROMs or removable disks.

The following options are available on the Snapshot Location tab of the publication Properties dialog box.

Options

Generate snapshots in the normal snapshot folder

Specifies that the snapshot files will be stored in the default snapshot folder for this Publisher. To modify the snapshot folder for
this Publisher (which affects all publications on this Publisher), connect to the Distributor, open the Publisher and Distributor
Properties dialog box, click on the Publishers tab, select this Publisher, and then click the browse button (. . .).

Generate snapshots in the following location

Enter the folder location where you want snapshot files stored.

(. . .)

Browse for the folder location where you want snapshot files stored.

Compress the snapshot files in this location

Indicates that the snapshot files will be compressed when they are created.

Subscribers can access this folder using File Transfer Protocol (FTP)

Specify that the snapshot folder can be accessed using FTP. Enabling this option allows the Distribution Agents or Merge Agents
to use FTP to access the snapshot files, but you must ensure that the specified folder is under the FTP home directory on the
Distributor.

FTP server name

Enter the server name for the FTP site.

Port

Enter the port number for the FTP site.

Client path to this folder from the FTP root

Enter the path from the FTP home directory. This folder is used by the Distribution Agents or Merge Agents at the Subscriber to
access the snapshot folder after a connection to the FTP server's root folder has been established.

Login name

Enter the login name for the account.

Password

Enter the password for the account.

Confirm password

Enter the password for the account again to confirm spelling.

See Also

Applying the Initial Snapshot

Alternate Snapshot Locations

Compressed Snapshot Files

Transferring Snapshots

Replication Wizard Help (SQL Server 2000)

publication Properties, Publication Access List Tab
The following options are available on the Publication Access List tab of the publication Properties dialog box.

Options

Login name

View the login name for the account.

Type

View the type of user account.

Add

Add a new login to the list. You can add only those login names that are already defined at both the Publisher and Distributor.

Remove

Remove the selected login from the list.

Remove All

Remove all the logins from the list.

Note Before an enabled Subscriber can connect to a Publisher, the login for the Subscriber must be present in the Publisher's
publication access list

See Also

Publication Access Lists

Replication Wizard Help (SQL Server 2000)

publication Properties, Status Tab
The following options are available on the Status tab of the publication Properties dialog box.

Options

Last run

View the last date and time the Snapshot Agent was run.

Run Agent Now

Run the Snapshot Agent on demand.

Next run

View the next date and time the Snapshot Agent is scheduled to run.

Agent Properties

View the properties of the Snapshot Agent job.

Explore Snapshot

Start Windows Explorer at the snapshot folder for this Publisher so that you can view, copy, or move the current snapshot files.

Service

View the service required to be running on the indicated server.

Status

View the status of the service (stopped, starting, or started).

Start Service

Start the selected service on the indicated server.

Refresh Status

Refresh the status of the selected service.

See Also

Administering and Monitoring Replication

Snapshot Agents

Replication Wizard Help (SQL Server 2000)

publication Properties, Sync Partners Tab
Subscribers to merge publications can synchronize with servers other than the Publisher at which the subscription originated.
Synchronizing with alternate partners provides the ability for a Subscriber to synchronize data even if the primary Publisher is
unavailable. This feature is also useful when mobile Subscribers have access to a faster or more reliable network connection with
an alternate synchronization partner.

Note Subscribers must be running SQL Server® 2000 in order for you to enable and use alternate synchronization partners. If
you have specified Subscriber types other than those running SQL Server 2000, you will be warned that the Subscriber Types
option will be changed to servers running SQL Server 2000 and existing subscriptions from that do not meet this requirement
will become invalid.

Potential synchronization partners can be the original Publisher of this publication, global Subscribers to this publication (which
do not use the Publisher as a proxy when resolving data conflicts), and republishers of this publication.

The following options are available on the Sync Partners tab of the publication Properties dialog box.

Options

Allow Subscribers to synchronize with other partners than the Publisher from which the subscription was created

Enable using alternate synchronization partners.

(checkbox)

Select which potential alternate synchronization partners are enabled for use with this publication. The original Publisher for this
publication cannot be disabled.

Partner

The name of the server identified as an alternate synchronization partner for this publication.

Publication Database

The publication database on the alternate synchronization partner which has the necessary data for this publication.

Publication

The name of the publication on the alternate synchronization partner.

See Also

Alternate Synchronization Partners

How Alternate Synchronization Partners Works

Merge Replication

Replication Wizard Help (SQL Server 2000)

heterogeneous publication Properties, General Tab
The following options are available on the General tab of the heterogeneous publication Properties dialog box.

Options

Publication name

View the name of the publication.

Database name

View the name of the database.

Description

View the description of the publication.

Publication type

View the type of publication (snapshot or transactional).

Publisher name

View the name of the Publisher.

Vendor name

View the name of the vendor who created the publication.

Distribution database

View the name of the distribution database for this publication.

Note Properties of heterogeneous Publishers and publications can only be created programmatically and cannot be set through
the Microsoft® SQL Server user interface.

See Also

Heterogeneous Publishers

Replication Wizard Help (SQL Server 2000)

heterogeneous publication Properties, Subscription Options
Tab
The following options are available on the Subscription Options tab of the publication Properties dialog box.

Options

Allow only enabled Subscribers to create pull subscriptions

View whether those Subscribers who have been specifically enabled are allowed to create pull subscriptions to the publication.

Allow both anonymous and enabled Subscribers to pull subscriptions

View whether those Subscribers who have been specifically enabled and any anonymous Subscribers are allowed to create pull
subscriptions to the publication.

Use a Distribution Agent that is independent of other publications from this database

View whether the publication uses a separate Distribution agent. Having all the publications at the Publisher use the same
Distribution Agent reduces the resource demands and increases performance at the Distributor. However, if your application
requires immediate synchronization or allows anonymous subscriptions, you must have a separate Distribution Agent for this
publication.

Snapshot files are always available to immediately initialize new subscriptions

View whether a new subscription can be immediately initialized from the snapshot stored at the Distributor.

Allow the Internet to be used to create and synchronize subscriptions

View whether Subscribers can create and synchronize their subscriptions over the Internet.

See Also

Heterogeneous Publishers

Replication Wizard Help (SQL Server 2000)

heterogeneous publication Properties, Subscriptions Tab
The following options are available on the Subscriptions tab of the heterogeneous publication Properties dialog box

Options

Subscription name

View the name of the subscription.

Type

View the type of subscription (push or pull).

All Articles

View whether this subscription contains all articles in the publication. This option is displayed only for snapshot and transactional
publications.

Push New

Create a new push subscription at one or more Subscribers.

Properties

Display the properties of the subscription.

Delete

Delete the subscription.

See Also

Heterogeneous Publishers

Replication Wizard Help (SQL Server 2000)

Choose a Destination, Define Transformation of Published Data
Wizard
The following options are available on the Choose a Destination page of the Define Transformation of Published Data
Wizard.

Options

Destination

Choose the data-specific driver that matches the data storage format of the destination.

Server

Select the name of the server that will receive the transform data.

File Name

Specify the path and file name of where the data being imported is to be stored (for example, C:\MyData.xls,
\\Sales\Database\Northwind.mdb). This option is available if Microsoft Jet 4.0 database is selected as the destination.

(. . .)

Click to browse for the Jet .mdb database file. This option is available if Microsoft Jet 4.0 database is selected as the destination.

Use Windows Authentication

Select to connect to the destination using Windows Authentication. This option is available for SQL Server destination databases.

Use SQL Server Authentication

Select to connect to the destination using SQL Server Authentication. This option is available for SQL Server destination
databases.

Login

Enter the login name for the account. This option is available for SQL Server destination databases.

Password

Enter the password for the account. This option is available for SQL Server destination databases.

Database

Select the destination database. This option is only available for SQL Server destination databases.

Refresh

Click to refresh the database list. This option is only available for SQL Server destination databases.

Advanced Connection Properties

Shows the advanced properties that may be available depending on your destination data source.

See Also

DTS Basics

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

Define Transformations
The following options are available on the Define Transformations page of the Define Transformation of Published Data
Wizard.

Options

Source table (Publisher)

View the source table name at the Publisher.

Table name (Subscriber)

View the destination table name at the Subscriber.

Transform (. . .)

Click on the transform button (. . .) to create column mappings or transformations based on scripts.

See Also

DTS Basics

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

Column Mappings and Transformations
This page allows you to define the column mappings and transformation scripts that will occur as the data is published.

Column Mappings tab

Use this tab to specify how to treat the destination table and to specify column attributes on any newly created table.

Options

Drop the existing table and re-create it

Drop the destination table and re-create it before moving data into it. All existing data in the destination table and any indexes are
destroyed.

Keep the existing table unchanged

Keep the destination table and do not change it.

Delete all data in the existing table

Drop the data at the destination table.

Mappings

Edit the cells in the table. The table does not list the order in which the destination columns will appear, but rather lists each
destination column alongside each source column to which it maps.

For each column in the Mappings table, you can set the following properties:

Source
Choose the column name in the source table to copy to the destination. Click <ignore> on the source column name to set the
destination column to NULL for a new table. If the table already exists, the data will be NULL if allowed, or set to its default value
if one was defined. If the destination is defined as NOT NULL, clicking <ignore> in the source column results in an error when
the package is executed if no default value is specified for the destination column.

If you copy a source column defined as an identity column, the data will not be copied unless the Enable identity insert check
box is selected.

If you copy a source column defined with user-defined data types to a new table, the data type of the destination column is the
system-defined data type that corresponds to the user-defined data type.

You may change the following properties only if a new destination table is being created.

Destination
Choose the column name in the destination table to receive the source data. Click <ignore> to prevent the source column from
being created in the destination table when creating a new table. If you want to remove a column from an existing table, click
<ignore> in the destination column, but also select the Drop and re-create destination table check box in this dialog box.
This will re-create the table with the columns specified. Existing data and indexes in the table will be lost.

Type
Select a data type for the destination column. The default setting matches the data type of the destination column to the source.

Nullable
Specify if destination can allow null values.

Size
Specify the length of the Destination column, in units corresponding to the data type. The value is only applicable for the char,
varchar, nchar, nvarchar, binary, and varbinary data types. Specifying a size smaller than the length of the source can result
in data truncation.

Precision
Enter the maximum number of decimal digits that can be stored to the left and to the right of the decimal point. This option
applies only to decimal and numeric data types.

Scale
Enter the maximum number of decimal digits that are stored to the right of the decimal point. The number must be less than or
equal to the number in the Precision column. This option applies only to decimal and numeric data types.

Transformations tab

Use this tab to specify whether unique transformation code must be written. The column mappings set on the Column

Mappings tab are reflected in code shown in the text area.

Options

Copy the source column directly

Copy the source column to the destination tables without changing the data or the source and destination mappings.

Transform data using the following script

Edit the script in the text area to customize the columns before copying them from the source to the destination. For complex
transformations, consider using DTS Designer, which offers support for Microsoft ActiveX® scripting.

Advanced

Display the Advanced Transformation Properties dialog box, where you can set transformation flags. These provide varying
levels of protection from conversion and data loss.

See Also

DTS Basics

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

DTS Package Location
The following options are available on the DTS Package Location page of the Define Transformation of Published Data
Wizard.

Options

At the Distributor

Select to save the DTS package at the Distributor.

At the Subscriber

Select to save the DTS package at the Subscriber.

Use Windows Authentication

Select to connect to the selected server using Windows Authentication. This option is available for SQL Server destination
databases.

Use SQL Server Authentication

Select to connect to the selected server using SQL Server Authentication. This option is available for SQL Server destination
databases.

Login

Enter the login name for the account. This option is available for SQL Server destination databases.

Password

Enter the password for the account. This option is available for SQL Server destination databases.

See Also

DTS Basics

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

DTS Package Identification
The following options are available on the DTS Package Identification page of the Define Transformation of Published
Data Wizard.

Options

Package Name

Specify the name of the DTS package.

Description

Enter a description for the DTS package.

Owner password (allows editing and execution)

Enter an owner password for this DTS package. When this password is used, the DTS package can be edited and executed.

User password (allows execution).

Enter an owner password for this DTS package. When this password is used, the DTS package can be executed but not edited.

See Also

DTS Basics

Transforming Published Data

Replication Wizard Help (SQL Server 2000)

Specify Filter Values
The following options are available on the Specify Filter Values page of the Create Dynamic Snapshot Job Wizard.

Options

Value of HOST_NAME()

Enter the value of the system function HOST_NAME() if it is used to dynamically filter the merge publication. This value will
identify the partition of data for the dynamic snapshot.

Value of suser_sname(), the login used by Subscriber(s) to connect to the Publisher

Enter the value of the system function SUSER_SNAME() if it is used to dynamically filter the merge publication. This value will
identify the partition of data for the dynamic snapshot.

See Also

Dynamic Filters

Dynamic Snapshots

Replication Wizard Help (SQL Server 2000)

Specify Snapshot File Location
On the Specify Snapshot File Location page, type the path to the folder where you want snapshot files saved or click the browse
button (...) and browse for the folder location. Using the alternate snapshot location feature, you can specify the snapshot folder
location on the network, on removable media or on an FTP server.

The following options are available on the Specify Snapshot File Location page of the Create Dynamic Snapshot Job
Wizard.

Options

Network path to the snapshot folder

Enter the path and snapshot folder location. Do not specify a foler that is used for other snapshots.

(. . .)

Browse to specify the snapshot folder location.

See Also

Dynamic Filters

Dynamic Snapshots

Replication Wizard Help (SQL Server 2000)

Set Job Schedule
On the Set Job Schedule page, select Run the job on the following schedule, and then select Change to specify a schedule for
when the dynamic snapshot will be generated, or select Run the Job On demand only to control the dynamic snapshot agent
job manually.

Select the Create the first snapshot immediately check box to generate the dynamic snapshot immediately.

See Also

Dynamic Filters

Dynamic Snapshots

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, General Tab
The following options are available on the General tab of the Pull Subscription Properties dialog box.

Options

Subscription to publication

View the name of the publication.

Publisher

View the name of the Publisher.

Publisher database

View the name of the Publisher database.

Description

View the description of the publication.

Anonymous

View whether the subscription is anonymous.

Immediate updating subscription

View whether the subscription allows immediate updates at the Subscriber. This option is not displayed for merge publications.

Queued updating subscription

View whether the subscription allows queued updates at the Subscriber or whether queued updating as a failover to be used
when an immediate update fails. This option is not displayed for merge publications.

Priority when resolving data conflicts

View the priority value used when resolving conflicts ("Use the priority of the Publisher" or a numeric value). This option is
displayed only for merge publications. This option is not displayed for snapshot or transactional publications.

See Also

Pull Subscriptions

Subscribing to Publications

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, Synchronization Tab (Snapshot or
Transactional Publication)
The following options are available on the Synchronization tab of the Pull Subscription Properties dialog box.

Options

Last Updated

Time and date of the last synchronization

Distribution Agent Properties

View or modify the Distribution Agent properties

Enable synchronization using Windows Synchronization Manager

Allows you to use Windows Synchronization Manager to synchronize this pull subscription.

Run the agent at the Subscriber

Enable if you want to run the agent at the Subscriber. This is selected by default for pull subscriptions. You can also offload agent
processing to the Distributor but retain agent administration at the Subscriber.

Run the agent at the Distributor

Enable if you want to run the agent at the Distributor. Selecting this offloads the agent processing, but agent administration is
performed at the Subscriber.

Network machine name of Distributor

Verify or enter the network machine name of the Distributor if you are offloading agent processing to the Distributor.

Verify agent

Click to verify that the agent runs at the Distributor.

Immediate updating (using MSDTC)

Select to invoke immediate updating for this subscription. This option is displayed for a snapshot or transactional publication and
subscription configured to use both immediate updating and queued updating.

Queued updating (using Microsoft Message Queuing or a SQL Server queue)

Select to invoke queued updating for this subscription. This option is displayed if the publication and subscription are configured
to use both immediate updating and queued updating. For more information, see Queued Updating Components.

See Also

Remote Agent Activation

Updatable Subscriptions

Windows Synchronization Manager

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, Synchronization Tab (Merge
Publication)
The following options are available on the Synchronization tab of the Pull Subscription Properties dialog box.

Options

Agent Properties

View or modify the property of the Distribution or Merge Agent.

View Conflicts

View conflicts at the Subscriber.

Enable synchronization using Windows Synchronization Manager

Allows you to use Windows Synchronization Manager to synchronize this pull subscription.

Resolve conflicts automatically

Indicates that Microsoft® SQL Server™ 2000 will resolve conflicts encountered during merge replication synchronization
according to the conflict resolution chosen when the publication was created.

Resolve conflicts interactively (articles must support interactive resolution)

Select if you want to use the interactive resolver to resolve conflicts encountered during merge replication synchronization.

Run the agent at the Subscriber

Enable if you want to run the agent at the Subscriber. This is selected by default for pull subscriptions. You can also offload agent
processing to the Distributor, but retain agent administration at the Subscriber.

Run the agent at the Distributor

Enable if you want to run the agent at the Distributor. This is selected by default for pull subscriptions. Selecting this offloads the
agent processing, but agent administration is performed at the Subscriber.

Network machine name of Distributor

Verify or enter the network machine name of the Distributor if you are offloading agent processing to the Distributor.

Verify agent

Click to verify that the agent runs at the Distributor.

See Also

Interactive Resolver

Merge Replication Conflict Detection and Resolution

Remote Agent Activation

Windows Synchronization Manager

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, Security Tab
The following options are available on the Security tab of the Pull Subscription Properties dialog box.

Options

Impersonate the SQL Server Agent account on server

Use the same Windows Authentication account used by SQL Server Agent on the Subscriber.

Use SQL Server Authentication of this account

Use SQL Server Authentication of a specified account to login to the Subscriber.

Login name

Enter the login name for the account.

Password

Enter the password for the account.

Confirm password

Enter the password for the account again to confirm spelling.

Use the same login as for the Distributor

Use the same account to log into the Publisher as used to log into the Distributor. This option is only available for merge
publications.

Use a predefined linked server or remote server login

Specifies that a predefined linked server or remote server login will be used. This option is displayed only for snapshot and
transactional publications that allow updatable subscriptions.

Impersonate the SQL Server Agent account on server

Use the same Windows Authentication account used by SQL Server Agent on the Publisher. This option is displayed only for
merge publications.

Use SQL Server Authentication of this account

Use SQL Server Authentication of a specified account to login to the Publisher.

Login name

Enter the login name for the account.

Password

Enter the password for the account.

Confirm password

Enter the password for the account again to confirm spelling.

See Also

Connecting to the Distributor

Replication Security

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, Snapshot Location Tab
The following options are available on the Snapshot Location tab of the Pull Subscription Properties dialog box.

Options

Get the snapshot from the Publisher's normal snapshot folder

Retrieves the snapshot from the default snapshot folder location.

Get the snapshot from the following folder

Enter the folder where snapshots are stored.

This is a snapshot for a dynamically filtered publication

Indicates that the snapshot being retrieved is a dynamic snapshot. This option is not displayed for snapshot or transactional
publications.

Download the snapshot using File Transfer Protocol (FTP)

Use FTP instead of the regular protocol for downloading files to this server.

Temporary working folder

Enter the folder that you want to use as a temporary working folder. To use the Windows temporary folder, leave this option
blank.

See Also

Alternate Snapshot Locations

Applying the Initial Snapshot

Replication Wizard Help (SQL Server 2000)

Pull Subscription Properties, Snapshot Delivery Tab (SQL Server
7.0)
The following options are available on the Snapshot Delivery tab of the Pull Subscription Properties dialog box.

Options

Get the snapshot from the Publisher's normal snapshot folder

Retrieves the snapshot from the default snapshot folder location.

Get the snapshot from the following folder

Enter the folder where snapshots are stored.

Download the snapshot using FTP (File Transfer Protocol) with the following properties:

Use FTP instead of the regular protocol for downloading files to this server.

Server address of the Distributor

Enter the network address of the FTP service at the Distributor.

Login

Enter the username used to connect to the FTP service.

Port

Enter the port number of the FTP service at the Distributor.

Password

Enter the user password used to connect to the FTP service.

Confirm password

Enter the password again to confirm spelling.

Replication Wizard Help (SQL Server 2000)

Generate SQL Scripts, General Tab
The following options are available on the General tab of the Generate SQL Scripts dialog box.

Options

Distributor properties

Script the configuration of the Distributor. If the server is both a Publisher and Distributor, the script includes all configurations. If
the server is just a Publisher, the script contains just the pointer to the Distributor.

Publications in these databases

Script the publications in the selected databases.

Pull Subscriptions in these selected databases

Script the pull subscriptions in the selected databases.

All

Select all the databases in the list.

None

Clear all the databases in the list.

Enable or create the selected components

Script the steps to enable or create the components in the selected databases. Also adds a Distributor, if that is selected.

Disable or drop the selected components

Script the steps to disable or drop the components in the selected databases. Also drops a Distributor, if that is selected. Scripting
these steps will not drop the publications or pull subscriptions or disable the Distributor.

Script creation of replication jobs

If selected, SQL Server Enterprise Manager will attempt to create scripts of replication jobs along with configuration of the
Distributor, publications, or pull subscriptions if indicated. However, you do not have privileges to view jobs using
msdb.dbo.sp_help_job, SQL Server Enterprise Manager may fail to create the job script. Typically, members of the sysadmin fixed
server role or the owner of jobs have privilege to view jobs using msdb.dbo.sp_help_job. This option is not available for servers
running SQL Server 7.0 or earlier versions.

Preview

Preview and modify the script before it is saved. If you make changes to the preview script, you must click Save As in the
Preview dialog box to save those changes.

Replication Wizard Help (SQL Server 2000)

Generate SQL Scripts, File Options Tab
The following options are available on the File Options tab of the Generate SQL Scripts dialog box.

Options

MS-DOS text

Create the script using the OEM character set.

Windows text

Create the script using the ANSI character set.

International text

Create the script using the Unicode character set.

Append script to file

Add the script to the end of the file you specify.

Replication Wizard Help (SQL Server 2000)

Agent Profiles
The following options are available in the Agent Profiles dialog box.

Options

Default

Select the profile to be used when creating new agents of the type indicated. This option is displayed only when viewing the
default agent profiles dialog box in the Publisher and Distributor Properties.

Use

Select the profile to use for this agent. This option is displayed only when viewing the Agent Profiles for an existing agent.

Profile name

View the name of the agent profile.

Type

View the type of agent profile (user or system).

Description

View the description of the profile.

View Details

Display the parameters of the selected profile. This option is displayed only if a system profile is selected.

Modify Profile

Display a dialog box for modifying a selected profile. This option is displayed only if an existing user profile is selected.

New Profile

Display a dialog box for creating a new profile based on the selected profile. The starting values for the parameters are the values
of whatever profile you have selected. The new profile does not automatically become the profile to be used.

Delete

Delete the selected user profile from the list. System profiles cannot be deleted.

Change all existing . . . Agents to use the selected profile

Change all agents of the indicated type to use the Default Profile. Agents that run continuously must be stopped and restarted
before the new profile will be used. This option is displayed only when viewing the default agent profiles dialog box from the
Publisher and Distributor Properties.

Replication Wizard Help (SQL Server 2000)

Refresh Rate and Settings, General Tab
The following options are available on the General tab of the Refresh Rate and Settings dialog box.

Options

Refresh results pane

Update the detailed view displayed by the Replication Monitor periodically. Set the number of seconds between refreshes.

Refresh server tree

Update the items displayed under Replication Monitor in the server tree periodically. Set the number of seconds between
refreshes.

Inactivity threshold

Set the minutes in which an agent has not logged any activity in order for it to be considered not functioning.

Anonymous subscriptions

Select whether you want anonymous subscriptions and the agents for the subscriptions to show in Replication Monitor.

Replication Wizard Help (SQL Server 2000)

Refresh Rate and Settings, Performance Monitor Tab
The following options are available on the Performance Monitor tab of the Refresh Rate and Settings dialog box.

Options

Path to performance monitor settings

Specify the path and name of the file containing the Windows Performance Monitor settings for replication agents. This file must
already exist and is required for the Replication Monitor to use the Windows Performance Monitor.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Snapshot Agents Tab
The following options are available on the Snapshot Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Publisher Publisher that created the publication.
Publication database Name of the publication database.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (cmds/sec) Ratio of delivered commands to the duration of the

agent. If the agent is still running, this value reflects a
cumulative count from the beginning of the session.

#Trans The number of transactions delivered to the Distributor.
#Cmds The number of commands delivered to the Distributor.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Log Reader Agents Tab
The following options are available on the Log Reader Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Database Name of the Publisher database.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (cmds/sec) Ratio of delivered commands to the duration of the

agent. If the agent is still running, this value reflects a
cumulative count from the beginning of the session.

Latency (msec) The current amount of time, in milliseconds, elapsed
from when transactions are applied at the Publisher to
when they are delivered to the Distributor.

#Cmds The number of commands delivered to the Distributor.
#Trans The number of transactions delivered to the Distributor.
Avg. #Cmds The average number of commands per transaction

delivered to the Distributor for the session.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Distribution Agents Tab
The following options are available on the Distribution Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Publisher Publisher that created the publication.
Publisher DB Name of the Publisher database.
Subscription Name of the subscription.
Type Type of subscription.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (cmds/sec) Ratio of delivered commands to the duration of the

agent. If the agent is still running, this value reflects a
cumulative count from the beginning of the session.

Latency (msec) The current amount of time, in milliseconds, elapsed
from when transactions are delivered to the Distributor
to when they are applied at the Subscriber.

#Trans The number of transactions delivered to the Subscriber.
#Cmds The number of commands delivered to the Subscriber.
Avg. #Cmds The average number of commands per transaction

delivered to the Subscriber for the session.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Merge Agents Tab
The following options are available on the Merge Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Publisher Publisher that created the publication.
Publication database Name of the publication database.
Subscription Name of the subscription.
Type Type of subscription.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (rows/sec) Ratio of delivered rows to the duration of the agent. If

the agent is still running, this value reflects a cumulative
count from the beginning of the session.

Publisher inserts Number of INSERT commands applied at the Publisher.
Publisher updates Number of UPDATE commands applied at the Publisher.
Publisher deletes Number of DELETE commands applied at the Publisher.
Publisher conflicts The number of conflicts occurring at the Publisher

during the merge process.
Subscriber inserts Number of INSERT commands applied at the

Subscriber.
Subscriber updates Number of UPDATE commands applied at the

Subscriber.
Subscriber deletes Number of DELETE commands applied at the

Subscriber.
Subscriber conflicts The number of conflicts occurring at the Subscriber

during the merge process.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Transactional
Publication View Tab
The following options are available on the Trans Publication View tab of the Replication Monitor - Select Columns dialog
box.

Option Description
(check box) Display the selected column in the result pane.
Type Type of subscription.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (cmds/sec) Ratio of delivered commands to the duration of the

agent. If the agent is still running, this value reflects a
cumulative count from the beginning of the session.

Latency (msec) For the Snapshot or Log Reader Agent, this is the
current amount of time, in milliseconds, elapsed from
when transactions are applied at the Publisher to when
they are delivered to the Distributor.

For the subscription, this is the current amount of time,
in milliseconds, elapsed from when transactions are
delivered to the Distributor to when they are applied at
the Subscriber.

#Trans For the Snapshot or Log Reader Agent, this is the
number of transactions delivered to the Distributor.

For the subscription, this is the number of transactions
delivered to the Subscriber.

#Cmds For the Snapshot or Log Reader Agent, this is the
number of commands delivered to the Distributor.

For the subscription, this is the number of commands
delivered to the Subscriber.

Avg. #Cmds For the Snapshot or Log Reader Agent, this is the
average number of commands per transaction delivered
to the Distributor for the session.

For the subscription, this is the average number of
commands per transaction delivered to the Subscriber
for the session.

Move Up Move the selected column higher in the list. It also
moves the column to the left in the result pane.

Move Down Move the selected column lower in the list. It also moves
the column to the right in the result pane.

Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Merge Publication View
Tab
The following options are available on the Merge Publication View tab of the Replication Monitor - Select Columns dialog
box.

Option Description
(check box) Display the selected column in the result pane.
Type Type of subscription.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time the action was taken.
Start time Time this session was started.
Duration Duration of the agent session.
Delivery rate (rows/sec) Ratio of delivered rows to the duration of the agent. If

the agent is still running, this value reflects a cumulative
count from the beginning of the session.

Publisher inserts Number of INSERT commands applied at the Publisher.
Publisher updates Number of UPDATE commands applied at the Publisher.
Publisher deletes Number of DELETE commands applied at the Publisher.
Publisher conflicts The number of conflicts occurring at the Publisher

during the merge process.
Subscriber inserts Number of INSERT commands applied at the

Subscriber.
Subscriber updates Number of UPDATE commands applied at the

Subscriber.
Subscriber deletes Number of DELETE commands applied at the

Subscriber.
Subscriber conflicts The number of conflicts occurring at the Subscriber

during the merge process.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Miscellaneous Agents
Tab
The following options are available on the Miscellaneous Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Type Type of miscellaneous agent.
Status Status of the agent's last action.
Last action Last action taken.
Start time Time this session was started.
Duration Duration of the agent session.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all the columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Replication Monitor - Select Columns, Queue Reader Agents
Tab
The following options are available on the Queue Reader Agents tab of the Replication Monitor - Select Columns dialog box.

Option Description
(check box) Display the selected column in the result pane.
Status Status of the agent's last action.
Last action Last action taken.
Action time Time at which the action was taken.
Start time Time at which the session was started.
Duration Duration of the agent session.
Delivery rate (cmds/sec) Ratio of delivered commands to the duration of the

agent. If the agent is still running, this value reflects a
cumulative count from the beginning of the session.

Latency (msec) Latency, in milliseconds, between when a transaction
entered the queue and when it is applied at the
Publisher.

#Cmds Cumulative number of commands processed in the
session.

#Trans Cumulative number of transactions processed in the
session.

Avg. #Cmds The average number of commands.
Move Up Move the selected column higher in the list. It also

moves the column to the left in the result pane.
Move Down Move the selected column lower in the list. It also moves

the column to the right in the result pane.
Reset Select all columns and list them in default order.

Replication Wizard Help (SQL Server 2000)

Add Column to Replicated Table
The following options are available on the Add Column to Replicated Table dialog box.

Options

Table

View the name of the table on which a column will be added.

Column name

Enter the name of the new column.

Column definition (excluding the column name)

Enter the SQL syntax that defines the column including data type, constraints and properties. The column must either allow NULLs
or have a specified default value.

Include the column in the following publications

Select the publications where this column will be automatically added.

Note If you are adding or dropping columns to a publishing table for a snapshot or transactional publication that allows data
transformations, the schema change is not propagated to the Subscriber automatically. You will need to update the schema
manually and regenerate the replication DTS package; otherwise the Distribution Agent may fail to apply subsequent
modifications. For snapshot publications, you need to update only the schema if pre_creation_cmd is either TRUNCATE or
DELETE, but not DROP.

See Also

Schema Changes on Publication Databases

Replication Wizard Help (SQL Server 2000)

Validate All Subscriptions
The following options are available on the Validate All Subscriptions dialog box for merge publications.

Options

Verify the row counts only

Validates data by calculating a rowcount at the Publisher and then comparing that value to the rowcount calculated at the
Subscriber.

Verify the row counts and compare checksums to verify the row data

Validates data by calculating a rowcount and a checksum at the Publisher and then comparing those values to the rowcount and
checksum calculated at the Subscriber. Because checksums can require large amounts of processor resources when validating a
large data set, you may want to schedule validation to occur when there is the least activity on the servers used in replication.

Verify the row counts and compare binary checksums to verify the row data (all Subscribers are servers running SQL
Server 2000)

Validates data by calculating a binary checksum at the Publisher and then comparing that value to the binary checksum calculated
at the Subscriber.

See Also

Validating Replicated Data

Replication Wizard Help (SQL Server 2000)

Validate Subscriptions
The following options are available on the Validate Subscriptions dialog box for transactional publications.

Options

Validate all subscriptions

Select to validate all subscriptions for this publication.

Validate the following subscriptions

Select only those subscriptions for which you want to validate data.

Validation options

Click to see more options for validation including whether to calculate row count or checksum values.

See Also

Validating Replicated Data

Replication Wizard Help (SQL Server 2000)

Subscription Validation Options
The following options are available on the Subscription Validation Options dialog box for transactional publications.

Options

Compute a fast row count based on cached table information

Validates data by calculating a rowcount at the Publisher and then comparing that value to the rowcount calculated at the
Subscriber. The rowcounts are based on cached table information rather than querying the tables directly.

Compute an actual row count by querying the tables directly

Validates data by calculating a rowcount at the Publisher and then comparing that value to the rowcount calculated at the
Subscriber and querying the tables at each server directly.

Compute a fast row count; if differences are found, compute an actual row count

Validates data by calculating a fast rowcount based on cached table information. If changes are found, an actual rowcount is
calculated by querying the tables directly.

Compare checksums to verify row data

Validates data by calculating a checksum at the Publisher and then comparing that value to the checksum calculated at the
Subscriber.

This Subscriber is a server running SQL Server 2000, use a binary checksum

Validates data by calculating a binary checksum at the Publisher and then comparing that value to the binary checksum calculated
at the Subscriber.

Stop the Distribution Agent after the validation has completed

Stops the Distribution Agent after any kind of validation has completed.

Replication Wizard Help (SQL Server 2000)

Enable Subscriber - ODBC Data Source
Select a data source name in the list of ODBC data source names. The following options are available on the Enable Subscriber –
ODBC Data Source dialog box.

Options

Login name

Enter the login name for the Subscriber account (if one is required).

Password

Enter the password for the Subscriber account (if one is required).

Confirm password

Enter the password for the Subscriber account to confirm the password.

See Also

Heterogeneous Subscribers

Replication Wizard Help (SQL Server 2000)

Enable Subscriber - OLE DB Data Source
The following options are available on the Enable Subscriber – OLE DB Data Source dialog box.

Options

Add

Select to register a server running OLE DB data sources as linked servers.

Login name

Enter the login name for the Subscriber account (if one is required).

Password

Enter the password for the Subscriber account (if one is required).

Confirm password

Enter the password for the Subscriber account to confirm the password.

See Also

Heterogeneous Subscribers

Replication Wizard Help (SQL Server 2000)

Compatibility Level Warning
The Compatibility Level Warning dialog box alerts you to a change in the compatibility level required of Subscribers. Changing
the compatibility level for Subscribers can cause some subscriptions to be deactivated; these subscriptions will need to be
reinitialized.

For example, suppose you create a publication and specify that you will publish to Subscribers running Microsoft® SQL Server™
2000 or to Subscribers running SQL Server 7.0, and then create the publication with one table article in it. Later, you open
Publication Properties and select a view article to publish as part of the publication.

View articles can be published only with Subscribers running SQL Server 2000. If you have active subscriptions from Subscribers
running SQL Server 7.0, and you choose to change the compatibility property by publishing the view, the subscriptions to the SQL
Server 7.0 Subscriber will become inactive.

Select Do not warn me about changing this property again to disable the compatibility level warning during future changes
that affect compatibility.

Select Do not warn me about changing any publication property again to disable all warnings resulting from a change in
the Publication Properties.

Replication Wizard Help (SQL Server 2000)

Add Distributor to Monitor
Replication Monitor is a component of SQL Server Enterprise Manager designed for viewing the status of replication agents and
troubleshooting potential problems at the Distributor. Replication Monitor shows up as a node in SQL Server Enterprise Manager
when the server is enabled as a Distributor and the user is a member of the sysadmin fixed server role.

You can use Replication Monitor to:

View a list of Publishers, publications, and subscriptions to the publications that are supported by the Distributor.

View scheduled replication agents, and to monitor real-time status and history for each agent.

Set up and monitor alerts related to replication events.

Administering agents and subscriptions including starting and stopping agents and reinitializing subscriptions.

Registered servers

Select the server(s) you want to add to the Replication Monitor. Hold down the CTRL key or the Shift key to select multiple
servers.

Register server

Click to specify a server to register in Enterprise Manager.

Replication Wizard Help (SQL Server 2000)

Run Agent at Subscriber
The following options are available on the Run Agent at Subscriber dialog box.

Options

Network name of the subscribing server

Enter the name of the Subscriber where the agent will run.

Verify Subscriber

Click to verify that the Subscriber is prepared to run the offloaded agent.

See Also

Remote Agent Activation

Replication Wizard Help (SQL Server 2000)

Attach Subscription Database
Use the Attach Subscription Database dialog box to specify the database file to attach. Subscriptions in this database will be
created automatically for this Subscriber.

If you are attaching the subscription database at a local server, you will be able to specify the subscription database file, the name
of the database to create and the location of the new database file to create.

If you are attaching the subscription database at a remote server, you will only be able to specify the subscription database file
and the name of the database to create. The database file will automatically be created at the default location for the remote
server.

See Also

Attachable Subscription Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Registered SQL Server Properties (General Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Server

View the registered server running the instance of Microsoft® SQL Server™ that you want to edit. Click the search (...) button to
perform a search for the server you want to view.

Use Windows Authentication

Use Windows Authentication when connecting to an instance of SQL Server. It is recommended that you use this option for
security because users who connect through a Microsoft Windows NT® 4.0 or Windows® 2000 user account can make use of
trusted connections. Trusted connections are those validated by Windows NT 4.0 or Windows 2000.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

Use SQL Server Authentication when connecting to the server.

Login name

Specify the login name you want to use when connecting to the server using SQL Server Authentication.

Password

Specify the password you want to use when connecting to the server using SQL Server Authentication.

Always prompt for login name and password

Specify that SQL Server must always prompt for the login name and password when a user connects to the server using SQL
Server Authentication.

Important For security purposes, you should select to prompt for the login name and password when possible.

Server group

Select the server group with which to associate the server. Click the add (...) button to add a server group to the list.

Display SQL Server state in console

Specify that the SQL Server state be displayed in the console.

Show system databases and system objects

Specify that system databases and system objects be displayed.

Automatically start SQL Server when connecting

Specify that an instance of SQL Server start automatically when you connect to the server.

See Also

Registering Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Server Groups (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the server group.

Top level group

Specify the group to appear at the top level of the console tree in the SQL Server Enterprise Manager window.

Sub-group of

Specify the group to appear as a subgroup of a server group.

See Also

Creating Server Groups

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Enterprise Manager Properties (General Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Poll server to find out state of server and related services

Poll the server at regular intervals and view its status using the stoplight icon.

Service

Select which service to poll.

Poll interval (seconds)

Specify the time, in seconds, between server polls.

Read/Store locally

Read and store the registration information for the servers locally.

Read/Store user independent

Read and store the registration information for the servers separately for each user.

Important For security purposes, when connecting using SQL Server Authentication, you should always select this option.

Read from remote

Read the registration information for a remote server.

Server name

Specify the remote server name where the registration information is stored.

Reset All

Reset all of the options in this dialog box.

See Also

How to set access to your display of servers and groups (Enterprise Manager)

How to set the polling interval (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Enterprise Manager Properties (Advanced Tab)
Use this tab to view or specify the following options.

Options

Login time-out (seconds)

Specify the number of seconds to wait before the instance returns from a failed remote login attempt.

Query time-out (seconds)

Specify the number of seconds that must elapse during the processing of a remote query before the query times out. The default
is 0, which allows an infinite wait.

Packet size (bytes)

Specify the size of the Tabular Data Stream (TDS) packets. The default size of TDS packets is 4 kilobytes (KB).

Perform translation for character data

Perform a translation of character data between different client and server code pages. This option only affects data stored in
Microsoft® SQL Server™ char, varchar, and text columns.

Open the console tree to the last active node

Specify that upon startup, the console tree will open to the last previously active node in SQL Server Enterprise Manager.

Reset All

Reset all of the options on this tab.

See Also

How to configure packet size (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (General Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Name

View the name of the instance of Microsoft® SQL Server™.

Product

View the product name.

Operating system

View the operating system on which the server is running.

Product version

View the version of the instance of SQL Server.

Language

View the default language for the product.

Platform

View the platform on which the product runs.

OS memory

View the available operating system memory.

Processors

View the number of processors.

Root directory

View the root directory.

Server collation

View the type of collation that the instance of SQL Server is using.

Autostart SQL Server

Automatically start the instance of SQL Server when Microsoft Windows NT® 4.0 or Windows® 2000 starts.

Autostart SQL Server Agent

Automatically start SQL Server Agent when Windows NT 4.0 or Windows 2000 starts.

Autostart MSDTC

Automatically start Microsoft Distributed Transaction Coordinator (MS DTC) when Windows NT 4.0 or Windows 2000 starts.

Enable the error reporting feature

Enabling this option allows error reporting for the SQL Server database engine and SQL Server Agent. If you enable this feature,
SQL Server will be configured to automatically send a report to Microsoft if a fatal error occurs. For more information about the
error reporting feature, see Using Error Reporting

Startup parameters

Display the Server Parameters dialog box.

Network Configuration

Start the SQL Server Network Utility.

See Also

Starting SQL Server Automatically

Using Startup Options

SQL Server Network Utility

SQL Server Enterprise Manager Help (SQL Server 2000)

Startup Parameters
Use this dialog box to view or specify the following options.

Options

Parameter

Specify the server parameter to add or remove.

Existing parameters

View the existing server parameters.

Add

Add a server parameter.

Remove

Remove a server parameter.

See Also

Using Startup Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Memory Tab)
Use this tab to view or specify the following options.

Options

Dynamically configure SQL Server memory

Specify that Microsoft® SQL Server™ memory be configured immediately after you make changes to the server properties.

Use a fixed memory size

Specify a fixed memory size for SQL Server.

Reserve physical memory for SQL Server

Reserve physical memory space for SQL Server equal to the memory setting. This means Microsoft Windows NT® 4.0 or
Windows® 2000 does not swap out SQL Server's pages even if the pages can be used more readily when SQL Server is idle.

Minimum query memory

Specify the minimum amount of memory that can be allocated per user for query execution. The default is 1024 kilobytes (KB).

Configured values

View or change the configured values for the options on this tab. If you change these values, click Running values to see
whether the changes have taken effect. If they have not, you must restart the instance of SQL Server for the changes to be
implemented.

Running values

View the current running values for the options on this tab. These values are read-only.

See Also

Setting Configuration Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Processor Tab)
Use this tab to view or specify the following options.

Options

Processor

Specify the processor you want the instance of Microsoft® SQL Server™ to use.

Maximum worker threads

Specify the maximum number of worker threads available to SQL Server processes.

Boost SQL Server priority on Windows

Specify whether an instance of SQL Server can run at a higher priority than other processes on the same computer. The default is
0, which is a priority base of 7. If you set this option to 1, SQL Server runs at a priority base of 13 in the Microsoft Windows NT®
4.0 or Windows® 2000 scheduler. It is recommended that you change the default only on Windows NT 4.0 or Windows 2000
systems dedicated to SQL Server.

Use Windows NT fibers

Specify that you want an instance of SQL Server to use fibers instead of threads. When using fibers, SQL Server allocates one
thread per CPU and then allocates one fiber per concurrent user, up to the max worker threads value. This setting takes effect
after you restart the server.

Use all available processors

Specify that you want SQL Server to use all available processors for the parallel execution of queries.

Use processors

Specify the number of processors you want SQL Server to use for the parallel execution of queries.

Minimum query plan threshold for considering queries for parallel execution

Specify the threshold at which SQL Server creates and executes parallel plans. SQL Server creates and executes a parallel plan for
a query only when the estimated cost to execute a serial plan for the same query is higher than the value set for this option.

View or change the configured values for the options on this tab. If you change these values, click Running values to see
whether the changes have taken effect. If they have not, you must restart the instance of SQL Server for the changes to be
implemented.

Running values

View the current running values for the options on this tab. These values are read-only.

See Also

Setting Configuration Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Security Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

SQL Server and Windows

Specify that users can connect to the instance of Microsoft® SQL Server™ using SQL Server Authentication and Windows
Authentication. This is considered Mixed Mode authentication. Users who connect through a Microsoft Windows NT 4.0 or
Windows 2000 user account can make use of trusted connections in either Windows Authentication or Mixed Mode. When a user
connects through a Windows NT 4.0 or windows 2000 user account, SQL Server revalidates the account name and password by
calling back to Windows NT 4.0 or Windows 2000 for the information.

Security Note When possible, use Windows Authentication.

Windows only

Specify that users can connect to the instance of SQL Server using Windows Authentication only.

None

Disable auditing. This is the default for this setting.

Success

Audit on successful login attempts. You can record attempted user accesses as well as other SQL Server log information, and
enable auditing for both security modes and you can record information on both trusted and nontrusted connections. Log records
for these events appear in the Microsoft Windows® application log, the SQL Server error log, or both, depending on how you
configure logging for the instance of SQL Server.

If you select this option, you must stop and restart the server for auditing to be enabled.

Failure

Audit on failed login attempts. You can record attempted user accesses as well as other SQL Server log information, and enable
auditing for both security modes, and you can record information on both trusted and nontrusted connections. Log records for
these events appear in the Windows application log, the SQL Server error log, or both, depending on how you configure logging
for your instance of SQL Server.

If you select this option, you must stop and restart the server to enable auditing.

All

Audit on both successful and failed login attempts. You can record attempted user accesses as well as other SQL Server log
information, and enable auditing for both security modes, and you can record information on both trusted and nontrusted
connections. Log records for these events appear in the Windows application log, the SQL Server error log, or both, depending on
how you configure logging for your SQL Server.

If you select this option, you must stop and restart the server to enable auditing.

Allow cross-database ownership chaining

Enable cross-database ownership chaining for all databases hosted by the instance of SQL Server. If you select this check box, all
databases can be the source or target database in cross-database ownership chaining. If you clear this check box, you can turn
cross-database ownership chaining on or off for individual databases on the Options tab of the Database Properties dialog box.

Cross-database ownership chaining is always on for the master and tempdb databases.

For more information about cross-database ownership chaining, see Using Ownership Chains.

System account

Specify that the instance of SQL Server service account is the built-in local system administrator account.

This account

Specify that the SQL Server service account is a Microsoft Windows NT® 4.0 or Windows 2000 domain account. This field is only
enabled if you are using a valid Windows NT 4.0 or Windows 2000 administrator account on the computer where the registered

instance of SQL Server is running.

Password

Specify the password for the Windows NT 4.0 or Windows 2000 domain account. This field is only enabled if you are using a valid
Windows NT 4.0 or Windows 2000 administrator account on the computer where the registered instance of SQL Server is
running.

See Also

Setting Configuration Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Connections Tab)
Use this tab to view or specify the following options.

Options

Maximum concurrent user connections

Specify the maximum concurrent user connections. Entering zero means there can be an unlimited number of concurrent user
connections.

Default connection options

Specify the default connection options for the selected server.

Allow other SQL Servers to connect remotely to this SQL Server using RPC

Allow other instances of Microsoft® SQL Server™ to connect remotely to this server by using a remote procedure call (RPC).

Query time-out (seconds)

Specify the number of seconds that must elapse during a remote query before the query times out. Specifying zero means that an
unlimited amount of time can elapse.

Enforce distributed transactions (MTS)

Protect a server-to-server procedure by using Microsoft Distributed Transaction Coordinator (MS DTC) to coordinate distributed
transactions.

Configured values

View or change the configured values for the options on this tab. If you change these values, click Running values to see
whether the changes have taken effect. If they have not, you must restart the instance of SQL Server for the changes to be
implemented.

Running values

View the current running values for the options on this tab. These values are read-only.

See Also

Setting Configuration Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Server Settings Tab)
Use this tab to view or specify the following options.

Options

Default language for user

Specify the default language for server messages.

Allow modifications to be made directly to the system catalogs

Allow modifications to be made directly to the system catalogs.

Allow triggers to be fired which fire other triggers (nested triggers).

Allow nested triggers to be fired.

Use query governor to prevent queries exceeding specified cost

Select the cost query governor as a tool for preventing queries from exceeding the specified cost.

Mail login name

Specify the valid mail login name for the mail client.

When a two-digit year is entered, interpret as a year between

Specify how an instance of Microsoft® SQL Server™ interprets two-digit years. To change the time span, type the ending year.
The default time span is 1950 to 2049. The beginning date is January 1, 1950, and the ending date is December 31, 2049. 99 is
interpreted as 1999 and 01 is interpreted as 2001. The rule is that years less than or equal to the last two digits of the cutoff year
are in the same century as that of the cutoff year. Years greater than the last two digits of the cutoff year are in the century
previous to that of the cutoff year. Four-digit years are not affected by this option. If you want SQL Server to use the same two-
digit cutoff year as the client, select 2030.

Configured values

View or change the configured values for the options on this tab. If you change these values, click Running values to see
whether the changes have taken effect. If they have not, you must restart the instance of SQL Server for the changes to be
implemented.

Running values

View the current running values for the options on this tab. These values are read-only.

See Also

Setting Configuration Options

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Database Settings Tab)
Use the Database Settings tab to view or specify the following options.

Options

Fixed

Set the default index fill factor manually. The index fill factor determines how full Microsoft® SQL Server™ makes each page
when it creates a new index using existing data. When this option is cleared, SQL Server selects the optimal setting for
performance.

Wait indefinitely

Specify that DB-Library must wait indefinitely for the instance of SQL Server to respond.

Try once then quit

Specify that DB-Library must try once to connect to an instance of SQL Server and then time out.

Try for minute(s)

Specify the time, in minutes, that DB-Library must try to connect to an instance of SQL Server before timing out.

Default backup media retention (days)

Set a system-wide default for the length of time to retain each backup medium after the backup has been used for a database or
transaction log backup.

Recovery interval (Min)

Set the maximum number of minutes per database that SQL Server needs in order to complete its recovery procedures. The
default is 0 minutes per database, which is the autoconfiguration for fast recovery.

Default data directory

Specify the default directory used for data files when new databases are created in SQL Server. Click the browse (...) button to
search for an existing data directory.

Default log directory

Specify the default directory used for log files when new databases are created in SQL Server. Click the browse (...) button to
search for an existing log directory.

Configured values

View or change the configured values for the options on this tab. If you change these values, click Running values to see
whether the changes have taken effect. If they have not, you must restart the instance of SQL Server for the changes to be
implemented.

Running values

View the current running values for the options on this tab. These values are read-only.

See Also

Setting Configuration Options

How to set a fixed fill factor (Enterprise Manager)

How to set the backup retention duration (Enterprise Manager)

How to set the recovery interval (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View the name of the selected database.

Status

View the status of the selected database.

Owner

View the owner of the selected database.

Date created

View the date and time the database was created.

Size

View the size of the database in megabytes (MB).

Space available

View the space available in the database.

Number of users

View the number of database users.

Last database backup

View the date and time of the last database backup.

Last transaction log backup

View the date and time of the last transaction log backup.

Maintenance plan

View details about the maintenance plan.

Collation name

View the database collation type.

See Also

Viewing a Database

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Properties (Transaction Log Tab)
Use this tab to view or specify the following options.

Options

Transaction log files

View the file name, location, and space allocated for the transaction log files.

Delete

Delete the selected transaction log file.

Automatically grow file

Specify that the transaction log files grow automatically.

In megabytes

Specify that the transaction log files grow automatically by megabytes (MB).

By percent

Specify that the transaction log files grow automatically by percent.

Unrestricted filegrowth

Specify that the transaction log files can grow without restriction.

Restrict filegrowth (MB)

Specify the size, in megabytes, to which a restricted transaction log file can grow.

See Also

Transaction Logs

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Properties (Options Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Restrict access

Specify that only the users indicated in the following options can access the database.

Members of db_owner, dbcreator, or sysadmin

Specify that only members of db_owner, dbcreator, or sysadmin can access the database.

Single user

Specify that only one user can access the database at a time.

Read only

Specify that users can retrieve, but not modify, data from the database.

Model

Specify the type of recovery model for the database. For more information on recovery models, see Using Recovery Models.

ANSI NULL default

Specify whether database columns are defined as NULL or NOT NULL by default.

Recursive triggers

Enable recursive firing of triggers.

Select into/bulkcopy

Specify that nonlogged operations can be performed. This option is only available if you are viewing the database properties on a
Microsoft® SQL Server™ version 7.0 server. This specifies the type of recovery model for the database. For more information on
recovery models, see Using Recovery Models.

Truncate log on checkpoint

Specify that the transaction log is truncated when the checkpoint process occurs. This option is only available if you are viewing
the database properties on a SQL Server 7.0 server. This specifies the type of recovery model for the database. For more
information on recovery models, see Using Recovery Models.

Torn page detection

Specify that incomplete pages can be detected.

Allow cross-database ownership chaining

Enable cross-database ownership chaining for the database. If you select this check box, the database can be the source or target
database in cross-database ownership chaining. If this check box is cleared, cross-database ownership chaining is turned of for
the database.

The server configuration setting can override this option. If cross-database ownership chaining is on for the instance, it is also on
for all databases. To determine if it is on for the instance, go to the Security tab of the SQL Server Properties dialog box. If the
Allow cross-database ownership chaining check box is selected, cross-database ownership chaining is on for all databases.

You cannot turn cross-database ownership chaining off for the master and tempdb databases.

For more information about cross-database ownership chaining, see Using Ownership Chains.

Auto close

Specify that the database is shut down after its resources are freed and all users exit.

Auto shrink

Specify that the database files are candidates for automatic periodic shrinking.

Auto create statistics

Specify that any missing statistics needed by a query for optimization are built automatically during optimization.

Auto update statistics

Specify that out-of-date statistics needed by a query for optimization are built automatically during optimization.

Use quoted identifiers

Specify that SQL Server enforce ANSI rules regarding quotation marks. Select this option to specify that double quotation marks
be used only for identifiers, such as column and table names. Character strings must be enclosed in single quotation marks.

Level

Specify the database compatibility level.

List this database in the Active Directory

Specify to list this database in the Active Directory. Active Directory is a central component of the Microsoft Windows® 2000
operating system and provides a place to store information about network-based entities, such as applications, files, printers, and
people. This option is only available if the database is on a server that has been added to the Active Directory.

See Also

Setting Database Options

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Properties (Permissions Tab)
Use this tab to view or specify the following options.

Options

User/Role

View the name of the user or role.

Create Table

Specify whether permission to create a table is granted for each user or role.

Create View

Specify whether permission to create a view is granted for each user or role.

Create SP

Specify whether permission to create a system procedure is granted for each user or role.

Create Default

Specify whether permission to create a default is granted for each user or role.

Create Rule

Specify whether permission to create a rule is granted for each user or role.

Create Function

Specify whether permission to create a function is granted for each user or role.

Backup DB

Specify whether permission to create a backup database is granted for each user or role.

Backup Log

Specify whether permission to create a backup log is granted for each user or role.

See Also

Managing Permissions

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Role Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the database role.

Permissions

Display the Database User Properties dialog box, where you can specify the login name and user name for the database user.

Standard role

Specify that the database role is standard if you are creating a new database role. Add and review members of an existing
database role.

Add

Add users to the database role.

Remove

Remove users from the database role.

Application role

Specify that the database is an application role, which requires a password.

Password

Specify the application role password.

See Also

Database Roles

Viewing Roles

SQL Server Enterprise Manager Help (SQL Server 2000)

Database User Properties (General Tab)
Use this tab to view or specify the following options.

Options

Login name

Specify the login name of the database user.

User name

Specify the user name of the database user.

Permissions

Display the Database User Properties dialog box, where you can specify user database permissions.

Permit in database role

Specify to which database role the user belongs.

Properties

Display the Database Role Properties dialog box, where you can add users to or remove users from the role.

See Also

Users

Viewing Database Users

SQL Server Enterprise Manager Help (SQL Server 2000)

Database User Properties (Permissions Tab)
Use this tab to view or specify the following options. A black check indicates that the permission has been granted. A red X
indicates that the permission has been denied.

Options

Database user

Specify the user for which the permissions are displayed.

List all objects

List all the objects for the selected database. Click the appropriate box to modify database user permissions.

List only objects with permissions for this user

List only the objects for which the user has permission. Click the appropriate box to modify database user permissions.

Columns

Display the Column Permissions dialog box, where you can manage the permissions for each column.

See Also

Managing Permissions

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Login Properties (General Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Name

Specify the name of the Microsoft® SQL Server™ login.

Windows Authentication

Use Windows Authentication when connecting to an instance of SQL Server. It is recommended that you use this option for
security because users who connect through a Microsoft Windows NT® 4.0 or Windows® 2000 user account can make use of
trusted connections. Trusted connections are those validated by Windows NT 4.0 or Windows 2000.

Security Note When possible, use Windows Authentication.

Domain

View the Windows NT 4.0 or Windows 2000 domain. This domain account provides network access to other servers in the
domain.

Grant access

Grant login access to a Windows NT 4.0 or Windows 2000 account.

Deny access

Deny login access to a Windows NT 4.0 or Windows 2000 account.

SQL Server Authentication

Use SQL Server Authentication when connecting to the server. This option uses SQL Server security to validate the user.

Password

Specify the password to use when connecting to the server using SQL Server Authentication.

Database

View the default database for this login.

Language

View the default language for this login.

See Also

Logins

Managing Security

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Login Properties (Server Roles Tab)
Use this tab to view or specify the following options.

Options

Server role

Grant server-wide security permissions to a login.

Description

Describe the login permissions for a role.

Properties

Display the Server Role Properties dialog box, where you can grant server-wide permissions to a server role.

See Also

Roles

Managing Security

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Login Properties (Database Access Tab)
Use this tab to view or specify the following options.

Options

Specify which databases can be accessed by this login

Specify which database the login can access.

Database roles

Select permissions for each database role.

Properties

Display the Database Role Properties dialog box, where you can add members to or remove members from the database role.

See Also

Managing Security

SQL Server Enterprise Manager Help (SQL Server 2000)

Default Properties (General Tab)
Use this to view or specify the following options.

Options

Name

Specify the name of the default.

Value

Specify the value of the default.

Bind UDTs

Bind the default to a user-defined data type.

Bind Columns

Bind the default to a column.

See Also

Defaults

CREATE DEFAULT

SQL Server Enterprise Manager Help (SQL Server 2000)

Rule Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the rule.

Text

Specify the text of the rule.

Bind UDTs

Bind the rule to a user-defined data type.

Bind Columns

Bind the rule to a column.

See Also

Rules

CREATE RULE

SQL Server Enterprise Manager Help (SQL Server 2000)

Stored Procedure Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the stored procedure.

Permissions

Display the Object Properties dialog box, where you can specify stored procedure permissions.

Owner

View the owner of the stored procedure.

Create date

View the creation date of the stored procedure.

Text

View the text occurring in the stored procedure. If you want to indent a Transact-SQL statement in a stored procedure created
through SQL Server Enterprise Manager, use CTRL+Tab.

Check Syntax

Check the syntax of the Transact-SQL script used to create the stored procedure.

See Also

Stored Procedures

SQL Server Enterprise Manager Help (SQL Server 2000)

User-Defined Data Type Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Create a user-defined data type name or review an existing user-defined data type name. This name can be used across a
database to represent a data type.

Data type

Specify the data type the user-defined name represents.

Length

View or change the length of the user-defined data type.

Allow NULLs

Specify whether the data type can allow nulls.

Rule

Specify the rules associated with the user-defined data type.

Default

Specify the default for the user-defined data type.

Where Used

View where the user-defined data type is used.

See Also

Creating User-Defined Data Types

SQL Server Enterprise Manager Help (SQL Server 2000)

Extended Stored Procedure Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the extended stored procedure.

Permissions

Display the Object Properties dialog box, where you can specify permissions for extended stored procedures.

Path

Specify the location of the extended stored procedure. Click the browse (...) button to search for an extended stored procedure.

See Also

Extended Stored Procedures

SQL Server Enterprise Manager Help (SQL Server 2000)

Remote Server Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the remote server.

RPC

Enable the remote server to execute stored procedures on the local server using a remote procedure call (RPC).

Map all remote logins to

Specify the login ID that all remote logins must use to access the local server. This option is selected by default.

Check password

Check the password for a remote login when it connects to the local server.

Map remote logins to different local logins

Map each remote login ID with a specific local login ID for users connecting to the local server from the remote server.

See Also

Configuring Remote Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Linked Server Properties (General Tab)
Use this tab to view or specify the following options.

Options

Linked server

Specify the name of the linked server.

SQL Server

Identify the linked server as an instance of Microsoft® SQL Server™. If you use this method of defining a SQL Server linked
server, the name specified in Linked server must be the network name of the server. Also, any tables retrieved from the server
are from the default database defined for the login on the linked server.

Other data source

Define a linked server through any of the available OLE DB providers, including SQL Server, by specifying the following:

Provider name
Specify the name of the OLE DB provider managing the access to the specified linked server.

Provider options
Display the Provider Options dialog box, where you view the various attributes of the linked server.

Product name
Specify the product name of the OLE DB data source you want to add as a linked server.

Data source
Specify the OLE DB data source property corresponding to the linked server.

Provider string
Specify the OLE DB provider string property corresponding to the linked server.

Location
Specify the OLE DB location property corresponding to the linked server.

Catalog
Specify the OLE DB catalog property corresponding to the linked server.

See Also

Configuring Linked Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Linked Server Properties (Security Tab)
Use this tab to view or specify the following options.

Options

Local login

Specify the local login IDs that can connect to the linked server.

Impersonate

Specify that the local login ID will be used to connect to the linked server. Select this option if you are certain that the local login
ID exactly matches a login ID with sufficient permissions on the linked server.

Remote user

Use the remote user to map users not defined in Local login.

Remote password

Specify the password used to map users who are not defined in Local login.

Not be made

Specify that for logins not defined in the list, a connection will not be made.

Be made without using a security context

Specify that for logins not defined in the list, a connection will be made without using a security context.

Be made using the login's current security context

Specify that for logins not defined in the list, a connection will be made using the current security context of the login.

Be made using this security context

Specify that for logins not defined in the list, a connection will be made using the login and password specified in the Remote
login and With password boxes.

See Also

Configuring Linked Servers

Establishing Security for Linked Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (General Tab)
Use this tab to view or specify the following options.

Options

Plan name

Specify the name of the maintenance plan.

All databases

Generate a maintenance plan that runs maintenance tasks against all instances of Microsoft® SQL Server™.

All system databases (master, model and msdb)

Generate a maintenance plan that runs maintenance tasks against each of the SQL Server system databases. No maintenance
tasks are run against user-created databases.

All user databases (not master, model and msdb)

Generate a maintenance plan that runs maintenance tasks against all user-created databases. No maintenance tasks are run
against the SQL Server system databases.

These databases

Generate a maintenance plan that runs maintenance tasks only against the databases you select from the list. If you choose this
option, you must select at least one database. This option is the default.

See Also

Database Maintenance Plan Wizard

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Optimizations Tab)
Use this tab to reorganize your data and index pages, allowing the query optimizer better access to execution plans.

Options

Reorganize data and index pages

Cause table indexes in the database to be dropped and re-created with a new fill factor. The FILLFACTOR determines how much
empty space to leave on each page in the index and reserves a percentage of free space on each data page of the index to
accommodate future expansion. As data is added to the table, the free space fills up because the FILLFACTOR is not maintained.
Reorganizing data and index pages can reestablish the free space.

Reorganize pages with the original amount of free space

Drop and re-create table indexes in the database with the original FILLFACTOR that was specified when the indexes were first
created.

Change free space per page percentage to

Drop and re-create the indexes with a new, automatically recalculated FILLFACTOR, thereby reserving the specified amount of free
space on the index pages. The higher the percentage, the more free space is reserved on the index pages and the larger the index
grows. Valid values are 0 to 100.

Update the statistics used by the query optimizer

Resample the distribution statistics of each index created on user tables in the database. The distribution statistics are used by
Microsoft® SQL Server™ to optimize navigation through tables during the processing of Transact-SQL statements. To build the
distribution statistics automatically, SQL Server periodically samples a percentage of the data in the corresponding table for each
index. This percentage is based on the number of rows in the table and the frequency of data modification. Use this option to
perform an additional sampling using the specified percentage of data in the tables.

Percentage of database to sample

Specify the percentage of data in the tables to sample in order to generate distribution statistics. As the percentage increases, the
accuracy of the statistics increases. However, the sampling takes an increasingly long time. If the specified value does not generate
a sufficient sample, SQL Server determines an adequate sample size automatically. Valid values are 1 to 100.

Remove unused space from database files

Remove any unused space from the database, thereby reducing the size of the data files.

Shrink database when it grows beyond
Remove unused space from the database only if the database exceeds the specified size, in megabytes (MB).

Amount of free space to remain after shrink
Determine the amount of unused space that will remain in the database after the database has shrunk. The greater the
percentage, the smaller the amount by which the database can shrink. The value is based on the percentage of the actual data in
the database. For example, if you were to shrink a 100 MB database containing 60 MB of data and 40 MB of free space, with a
free space percentage of 50%,you would have 60 MB of data and 30 MB of free space left. Only excess space in the database is
eliminated. Valid values are 0 to 100.

Schedule

Set the frequency at which the data optimization tasks (scheduled using SQL Server Agent) are executed. The default is every
Sunday at 12:00 midnight.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the default schedule.

See Also

Database Maintenance Plan Wizard

Optimizing Database Performance Overview

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Integrity Tab)
Use the Integrity tab to run data integrity tests, which detect corrupted data. Corruption sometimes may be caused by a
hardware or software errors.

Options

Check database integrity

Check the allocation of data pages in the database.

Include indexes
Check allocations in indexes and data pages when testing database integrity.

Attempt to repair any minor problems
Automatically attempt to correct any minor problems detected during the internal data integrity tests. It is recommended that
you select this option.

Exclude indexes

Check allocations only in data pages when testing database integrity. It is faster to use this test than to test the database with
indexes because fewer pages are checked.

Perform these tests before backing up the database or transaction log

Execute the database or internal data integrity tests before backing up the database or transaction log. If the integrity tests detect
inconsistencies, subsequent database or transaction log backups are not backed up.

Schedule

Set the frequency at which the data integrity tasks (scheduled using SQL Server Agent) are executed. The default is every Sunday
at 12:00 midnight.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the default schedule.

See Also

Database Maintenance Plan Wizard

Data Integrity

Database Integrity Check

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Complete Backup Tab)
Use this tab to make backup copies of the database, protecting against data loss in the event of a failure.

Options

Back up the database as part of the maintenance plan

Back up the entire database as part of regular maintenance tasks. Backing up the database is important because of potential
system or hardware failure, or because user errors can damage the database, thus requiring a backed-up copy of the database to
be restored.

Verify the integrity of the backup upon completion

Check that the backup set is complete and that all volumes are accessible if you execute the Transact-SQL statement, RESTORE
VERIFYONLY.

Tape

Back up the database to the specified tape device. The tape device is attached to the computer that contains the Microsoft® SQL
Server™ database being backed up.

Disk

Back up the database to the disk located on the computer containing the SQL Server database being backed up.

Use the default backup directory
Back up the database to the \Program Files\Microsoft SQL Server\MSSQL\BACKUP disk directory located on the computer that
contains the SQL Server database being backed up.

Use this directory
Back up the database to the specified disk directory located on the computer that contains the SQL Server database being
backed up. Click the browse (...) button to change the default disk directory used to back up the database. You can select drives
only on the computer that contains the SQL Server database that is being backed up.

Create a sub-directory for each database
Create a sub-directory under the specified disk directory that contains the database backup for each database being backed up
as part of the maintenance plan.

Remove files older than
Automatically delete database backups that are older than the specified period. It is recommended that you maintain a history
of database backups in the event that the database must be restored to a point in time earlier than the last performed backup.
Retain as many backups as disk space allows, extending as far back as you eventually may need to restore, depending on
business practices.

Backup file extension

Specify the file name extension used for each file containing a database backup. The default file extension is .bak.

Schedule

Set the frequency at which the database backup tasks (scheduled using SQL Server Agent) are executed. The default is every
Sunday at 12:00 midnight.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the default schedule.

See Also

Database Maintenance Plan Wizard

Backing Up and Restoring Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Transaction Log Backup Tab)
Use this tab to make backup copies of the transaction log, protecting against data loss in the event of a failure.

Options

Back up the transaction log of the database as part of the maintenance plan

Back up the transaction log as part of regular maintenance tasks. Backing up the transaction log is important in case the database
must be restored to a specific point in time. Selecting this option makes the following options available.

Verify the integrity of the backup upon completion

Check that the backup set is complete and that all volumes are accessible if you execute the Transact-SQL statement, RESTORE
VERIFYONLY.

Tape

Back up the transaction log to the specified tape device. The tape device is attached to the computer that contains the Microsoft®
SQL Server™ transaction log that is being backed up.

Disk

Back up the transaction log to the disk located on the computer that contains the SQL Server transaction log being backed up.

Use the default backup directory
Back up the database to the Program Files\Microsoft SQL Server\MSSQL\BACKUP disk directory located on the computer
running the instance of SQL Server being backed up.

Use this directory
Back up the database to the specified disk directory located on the computer that contains the SQL Server database being
backed up. Click the browse (...) button to change the default disk directory used to back up the database. You can select drives
only on the computer that contains the SQL Server database that is being backed up.

Create a subdirectory for each database
Create a subdirectory under the specified disk directory that contains the database backup for each database being backed up
as part of the maintenance plan.

Remove files older than
Delete database backups that are older than the specified period automatically. It is recommended that you maintain a history
of database backups in the event that the database must be restored to a point in time earlier than the last performed backup.
Retain as many backups as disk space allows and as far in the past from which you may need to restore, depending on business
practices.

Backup file extension

Specify the file name extension used for each file containing the database backup. The default file extension is .bak.

Schedule

Set the frequency at which the transaction log backup tasks (scheduled using SQL Server Agent) are executed. The default is every
day, except Sunday, at 12:00 midnight.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the default schedule.

See Also

Database Maintenance Plan Wizard

Transaction Log Backups

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Reporting Tab)
Use this tab to save in a file or write to a table a record of the maintenance activities performed by Microsoft® SQL Server™.

Options

Write report to a text file in directory

Specify the full path and name of the text file into which the report is to be generated. The report contains details of the steps
executed by the maintenance plan, including any error information. The report maintains version information by adding a date to
the file name. The date is generated as a suffix to the file name but is added before the extension, in the form _YYYYMMDDHHMM
(for example, "DB Maintenance Plan10_199804090838.txt").

Click the browse (...) button to change the default directory for the text file. You can select directories only on the instance of SQL
Server running the maintenance plan.

Delete text report files older than
Automatically Delete text report files that are older than the specified period . It is recommended that you maintain a history of
text report files so that you can check executed maintenance tasks as far back in time as you think you may ever need to check,
depending on business practices.

E-mail report to operator

Specify the operator to whom the generated report will be sent through SQL Mail. Click the browse (...) button to specify an
existing operator or to create a new one using SQL Server Enterprise Manager.

New

Display the New Operator Properties dialog box, where you can create a new operator.

Write history to the table msdb.dbo.sysdbmaintplan_history

Write the history report as rows to the msdb.dbo.sysdbmaintplan_history table on the server where the maintenance plan was
executed. The report contains the steps executed by the maintenance plan, including database name, activity, date, result (success
or failure), and any error information, with one row for each activity, per database, per execution date.

View History

Display the Database Maintenance Plan History dialog box, where you can view the history of the database maintenance plan
for the local server.

Limit rows in the table to

Specify the maximum number of rows in the table. These rows represent the history for this plan only. If the number of history
rows in the table for this plan exceeds this value, older rows for this plan (representing the earliest recorded history) are deleted.
Setting this value can prevent the table from becoming too large and filling the msdb database (unless auto-grow is permitted).
The default value is 100.

Write history to the table on server

Write the history report as rows to the msdb.dbo.sysdbmaintplan_history table on a remote server. Windows Authentication is
used to connect to the remote server. The report contains the steps executed by the maintenance plan, including database name,
activity, date, result (success or failure), and any error information, with one row for each activity, per database, per execution date.

Click the browse (...) button to specify a server from a list of active servers on the network.

View History

View the history of the database maintenance plan for the remote server.

Limit rows in the table to

Specify the maximum number of rows in the table representing the history for this plan only. If the number of history rows in the
table for this plan exceeds this value, older rows for this plan (representing the earliest recorded history) are deleted. Setting this
value can prevent the table from becoming too large and filling the msdb database (unless auto-grow is permitted). The default
value is 10,000.

See Also

Database Maintenance Plan Wizard

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan History
Use this dialog box to view the history of database maintenance plans that either have completed successfully or have failed to
complete. By default, the history of all plans is shown. To view a subset of the plans, specify the criteria that the plans to be viewed
must have. The history of a plan is displayed only if it matches all of the specified criteria.

Options

Plan name

Specify the name of the database maintenance plan you want to view.

Server name

Specify the name of the server containing the database maintenance plan history you want to view.

Database

Specify the name of the database whose history you want to view.

Status

Specify the status of the plans whose history you want to view: Succeeded or Failed. If you click Failed, type keywords in the
Keywords in message box to further narrow the scope of the plan histories displayed.

Activity

Specify the activity of the plans whose history you want to view: Optimizations, Integrity Checks, Database Backup,
Transaction Log Backup.

Keywords in message

Specify the error message keywords for the history you want to view, or view the history of successful backup jobs.

Automatically apply filters

Apply the group of criteria to the entire set of database plans each time you change one of the filter settings. Clear this option
until you have set all the filter criteria to your satisfaction. This option is the default.

Properties

Display the properties dialog box for the selected database maintenance plan.

Delete

Delete the selected maintenance plan history.

Refresh

Refresh this dialog box with the most current data.

See Also

Database Maintenance Plan Wizard

SQL Server Enterprise Manager Help (SQL Server 2000)

Send Message
Use this dialog box to send a message to a connected user or computer.

Options

Message

Type the text of the message that will be sent to the connected computer or user.

Using username

Send the message to the connected user. The user name is specified.

Using hostname

Send the message to the connected computer. You can send the message to a different computer by typing another computer
name in the box.

Send

Transmit the message over the network.

See Also

SQL Server and Mail Integration

Configuring SQL Mail

SQL Server Enterprise Manager Help (SQL Server 2000)

Process Details
Use this dialog box to view or specify the following options.

Options

Last T-SQL command batch

View the first 255 bytes of text of the Transact-SQL statement that was executed by the selected process.

Send message

Send a message to a connected computer or user. For example, you can send a message to connected users notifying them that
the server will be shut down for maintenance. The users can then exit their operations and log off the server in anticipation of the
server shutdown.

Kill Process

End a process without a forewarnedexit. Use this when a nonsystem process cannot be stopped in any other way. You must be a
member of the sysadmin role to terminate processes.

Refresh

Perform a new query against the server and repaint the window to get an accurate depiction of the current activity.

See Also

Monitoring with SQL Server Enterprise Manager

SQL Server Enterprise Manager Help (SQL Server 2000)

Trigger Properties
Use this dialog box to view or specify the following options.

Options

Name

Specify the name of the trigger.

Text

Specify the Transact-SQL syntax that defines the trigger.

Check Syntax

Check the syntax of the Transact-SQL script used to create the trigger.

Delete

Delete the trigger from the database.

See Also

Enforcing Business Rules with Triggers

SQL Server Enterprise Manager Help (SQL Server 2000)

Table Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the table.

Permissions

Display the Object Properties dialog box, where you can specify user table permissions.

Owner

View the name of the table owner.

Create date

View the date that the table was created in the database.

Filegroup

View the filegroup within which the table is stored.

Rows

View the number of rows in the table.

Key

View the table columns that make up the primary key.

ID

View the table columns that have identities associated with them.

Name

View the names of each table column.

Data type

View the data types associated with each table column.

Size

View the table column size in n characters. The character value displayed is dependent upon whether the characters are Unicode
or not.

Nulls

View the table columns that allow null values.

Default

View the table columns that have a default associated with them.

See Also

Tables

SQL Server Enterprise Manager Help (SQL Server 2000)

Object Properties (Permissions Tab)
Use this tab to view or specify the following options.

Options

Object

Specify the name of the object.

List all users/user-defined database roles/public

List all users and database roles for the selected database. Click the appropriate box to modify object permissions.

List only users/user-defined database roles/public with permissions on this object

List only users or database roles that already have permissions on the object. Click the appropriate box to modify database user
permissions.

User/Database roles/public

View the user ID or database role.

SELECT

Grant, revoke, or deny SELECT permissions on this object.

INSERT

Grant, revoke, or deny INSERT permissions on this object.

UPDATE

Grant, revoke, or deny UPDATE permissions on this object.

DELETE

Grant, revoke, or deny DELETE permissions on this object.

EXEC

Grant, revoke, or deny EXECUTE permissions on this object.

DRI

Grant, revoke, or deny declarative referential integrity permissions on this object.

Columns

Display the Column Permissions dialog box, where you can manage permissions for each column.

See Also

Managing Permissions

SQL Server Enterprise Manager Help (SQL Server 2000)

View Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View the name of the Microsoft® SQL Server™ view.

Permissions

Display the Object Properties dialog box, where you can specify user view permissions.

Owner

View the name of the view owner.

Date created

View the date on which the view was created.

Text

View the Transact-SQL script used to create the view.

Check Syntax

Check the syntax of the Transact-SQL script used to create the view.

See Also

Views

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Scripts (General Tab)
Use this tab to generate Transact-SQL statements that create objects identical to those currently in your database. This is useful if
you want to create objects on other servers with the same schema as those in your original database.

Options

Show All

View all available objects for scripting.

Preview

Preview the Transact-SQL script that will be created from the options you select.

Script all objects

Include all database objects in the Transact-SQL script.

All tables
Include all database tables in the Transact-SQL script.

All views
Include all database views in the Transact-SQL script.

All stored procedures
Include all database stored procedures in the Transact-SQL script.

All defaults
Include all database defaults in the Transact-SQL script.

All rules
Include all database rules in the Transact-SQL script.

All user-defined data types
Include all database user-defined data types in the Transact-SQL script.

All user-defined functions
Include all database user-defined functions in the Transact-SQL script.

Objects on

View the list of objects in the database that are not included in the Transact-SQL script.

Objects to be scripted

View the list of objects in the database that are included in the Transact-SQL script.

Add

Add database objects to the Transact-SQL script.

Remove

Remove database objects from the Transact-SQL script.

See Also

Documenting and Scripting Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Scripts (Formatting Tab)
 Topic last updated -- January 2004

Use this tab to generate Transact-SQL statements that format the database objects you are creating. This is useful if you want to
drop an existing object in one database, and then re-create it with the schema of a similar object from another database.

Options

Generate the CREATE <object> command for each object

Generate a Transact-SQL statement to create each object you selected on the General tab.

Generate the DROP <object> command for each object

Generate a Transact-SQL statement to drop each object you selected on the General tab.

Generate scripts for all dependent objects

Generate a Transact-SQL statement to add dependent objects for each object you selected on the General tab.

Include descriptive headers in the script files

Include explanatory header text prefacing each Transact-SQL statement in the script.

Include extended properties

Include extended properties in the SQL scripts you create.

Only script 7.0 compatible features

Generate a script that is compatible with Microsoft® SQL Server™ version 7.0. If you select this option, the following SQL Server
2000 options will be ignored: column level collation, user-defined functions, extended property, INSTEAD OF trigger on tables and
views, indexes on views (indexed views), indexes on computed columns, reference permissions on views, and descending indexes.

Script template

View the Transact-SQL script template that results from the options you have selected on this tab.

See Also

Documenting and Scripting Databases

Using Extended Properties on Database Objects

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Scripts (Options Tab)
Use this tab to generate Transact-SQL statements that further refine the creation of objects on a database. You can specify
security, table creation, and file saving options.

Options

Script database

Generate a Transact-SQL statement to create a script of the existing database schema.

Script database users and database roles

Generate a Transact-SQL statement to create all users and roles that have access to the database.

Script SQL Server logins (Windows NT and SQL Server logins)

Generate a Transact-SQL statement to create all logins that currently have access to the server.

Script object-level permissions

Generate a Transact-SQL statement to create all grant, revoke, and deny permissions that currently exist for each object selected
on the General tab.

Script indexes

Generate a Transact-SQL statement to create indexes that currently exist for any selected tables. This option is useful only if one or
more tables are selected on the General tab.

Script full-text indexes

Generate a Transact-SQL statement to create full-text indexes. This option is useful only if one or more tables are selected on the
General tab.

Script triggers

Generate a Transact-SQL statement to create triggers that exist for any selected tables. This option is useful only if one or more
tables are selected on the General tab.

Script PRIMARY keys, FOREIGN keys, defaults, and check constraints

Generate a Transact-SQL statement to create PRIMARY keys, FOREIGN keys, defaults, and check constraints that exist for any
selected tables. This option is useful only if one or more tables are selected on the General tab.

MS-DOS text (OEM)

Save the Transact-SQL script in the format of the current Microsoft® Windows® system code page. Select this option if you will
use the script in a batch operation and execute it from the command prompt using a console application such as Isql.exe.

Windows text (ANSI)

Save the Transact-SQL script in ANSI format. Select this option if the script will be used in SQL Query Analyzer or another
Windows application.

International text (Unicode)

Save the Transact-SQL script in Unicode format. Select this option if the script uses special international characters that are
supported only in the Unicode font. This format requires two times the disk space of either the current Windows code page or
ANSI.

Create one file

Save one file that includes all Transact-SQL statements for every object you have selected.

Create one file per object

Save one file for each distinct object you have selected.

See Also

Documenting and Scripting Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Dependencies (General Tab)
Use this tab to view information about the dependency relationships of an object.

Options

Object

Select a database object whose dependencies you want to view.

Objects that depend on <object>

View all the database objects that are dependent on the selected object. View the owner and the sequence of each object.

Objects that <object> depends on

View all database objects on which the selected object is dependent. View the owner and the sequence of each object.

Show first level dependency only

View only first-level dependencies for the selected object.

See Also

sp_depends

SQL Server Enterprise Manager Help (SQL Server 2000)

Backup Device Properties (General Tab)
Use this tab to view and modify the name and location of a backup device.

Options

Name

Specify the name of the backup device.

View Contents

View the name, server, database, type of backup, date, expiration, size, and description for each backup stored on a device.

Tape drive name

Specify the tape drive name for the backup device.

File name

Specify the name and path of the disk drive. Click the browse (...) to search for the backup device.

See Also

Backup Devices

SQL Server Enterprise Manager Help (SQL Server 2000)

Font (Format Tab)
Use this tab to view or specify the following options.

Options

Text

Specify the format of alphabetic text.

Text selection

Specify the format of text when it is selected.

Keyword

Specify the format of Transact-SQL keywords.

Stored procedure

Specify the format of stored procedures.

System table

Specify the format of system tables.

Global variable

Specify the format of global variables.

Comment

Specify the format of comments within a Transact-SQL script.

Number

Specify the format of numeric text.

String

Specify the format of alphanumeric text contained within single quotation marks.

Operator

Specify the format of symbols used to perform mathematical computations or comparisons between columns or variables.
Operators are classified as arithmetic, bitwise, comparison, or join.

Foreground

Specify the foreground character color for the content type selected in the Color box.

Background

Specify the background color for the content type selected in the Color box.

Font

Specify the font for the content type selected in the Color box.

Size

Specify the point size of the content type selected in the Color box.

Sample

View the query characters in the selected format.

Reset All

Reset all options to their original default values.

SQL Server Enterprise Manager Help (SQL Server 2000)

Drop Objects
Use this dialog box to view or specify the following options.

Options

Object

Specify the object to delete.

Owner

Specify the owner of the object to delete.

Type

Specify the type of object to delete.

Drop All

Drop all selected objects.

Show Dependencies

View the dependencies of the selected object to delete.

See Also

How to delete user-defined data types (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Shrink Database
Use this dialog box to view or specify the following options.

Options

Space allocated

View the space allocated for the selected database in megabytes (MB).

Space free

View the free space for the selected database in both MB and as a percentage of total space.

Maximum free space in files after shrinking

Specify the maximum percent of free space in the database files after shrinking the database.

Move pages to beginning of file before shrinking

Specify to move pages to the beginning of the file before shrinking the database. Selecting this option may hinder performance.

Shrink the database based on this schedule

Specify to shrink the database on a selected schedule, as determined in the following option.

Change
Modify the schedule used to shrink the database.

Files

Display the Shrink Database Files dialog box, where you can specify the individual database files to shrink. This option provides
more precise control when shrinking the database.

See Also

Shrinking a Database

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Backup (General Tab)
Use this tab to view or specify the following options.

Options

Database

Specify the database to back up.

Name

Specify the name of the database backup.

Description

Describe the database backup.

Database – complete

Perform a complete database backup.

Database – differential

Perform a differential database backup. A differential backup records only the changes made to the data in the database after the
last full database backup.

Transaction log

Back up the transaction log.

File and filegroup

Specify the file name and filegroup to back up. Click the browse (...) button to search for a file or filegroup.

Tape

Back up the database to a tape device.

Disk

Back up the database to a disk device.

Add

Add a backup destination.

Remove

Remove the selected backup destination.

Contents

View the contents of the selected tape or disk.

Append to media

Append the backup to an existing media. The previous contents of the media remain intact, and the new backup is written after
the end of the last backup on the media.

Overwrite existing media

Specify to overwrite any existing media. By overwriting backups on media, the existing contents of the backup media are
overwritten with the new backup and therefore are no longer available.

Schedule

Schedule a database backup. Click the browse (...) button to view the current backup schedule.

See Also

Backing Up and Restoring Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Backup (Options Tab)
Use this tab to view or specify the following options.

Options

Verify backup upon completion

Specify that the media integrity of the backup is verified upon completion.

Eject tape after backup

Eject the backup media tape after the backup is complete.

Remove inactive entries from transaction log

Remove from the transaction log all entries for completed transactions upon completion of the backup.

Check media set name and backup set expiration

Check the media set name and backup set expiration date before overwriting the media.

Media set name

Specify the media set name the media must have before they can be overwritten.

Backup set will expire

Set the backup set expiration conditions. Microsoft® SQL Server™ only uses the backup expiration information from the first
backup set on the media to determine whether the entire media can be overwritten.

After

Specify the number of days after the backup is completed before the media can be overwritten.

On

Specify the date on which the media can be overwritten.

Initialize and label media

Write the Microsoft Tape Format (MTF) header to the beginning of the media. This will erase all contents and any previous media
header information. The backup set expiration and media set name are not checked when initializing a media.

Media set name

Write the media name to the media as part of the MTF header.

Media set description

Write the media description to the media as part of the MTF header. This is typically what the media is used for or where it is
stored.

See Also

Backing Up and Restoring Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Restore Database (General Tab)
Use this tab to view or specify the following options.

Options

Restore as database

Specify which database to restore.

Database

Restore the selected database.

Filegroups or files

Restore a filegroup or file.

From device

Restore from a device.

Show backups of database

Show backups of the selected database.

First backup to restore

Specify which backup to restore first. This option is displayed only if you restore a database.

Point in time restore

Restore a backup from a selected point in time. This option is displayed only if you restore a database. Click the browse (...) button
to search for a backup.

Restore

Restore the selected backup.

Type

View the type of backup.

Backup set date

View the date of the backup set.

Size

View the size of the backup set.

Restore from

View the file location of the backup set.

Backup set name

View the backup set name.

Properties

View the properties of the backup set.

See Also

Backing Up and Restoring Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Restore Database (Options Tab)
Use this tab to view or specify the following options.

Options

Eject tapes (if any) after restoring each backup

Eject tapes after restoring each backup.

Prompt before restoring each backup

Prompt the user before restoring each backup to prevent a user from inadvertently restoring a backup.

Force restore over existing database

Force the restore over an existing database.

Restore database files as

Specify the name and location of the database files that will be restored.

Leave database operational. No additional transaction logs can be restored

Leave the database operational, which means no additional transaction logs can be restored.

Leave database nonoperational but able to restore additional transaction logs

Leave the database operational but allow additional transaction logs to be restored.

Leave database read-only and able to restore additional transaction logs

Leave the database read-only and allow additional transaction logs to be restored.

Undo file

Specify the name of the file to undo. Click the browse (...) button to search for a file to undo.

See Also

Backing Up and Restoring Databases

SQL Server Enterprise Manager Help (SQL Server 2000)

Provider Options
Use this dialog box to view or specify the following options.

Options

Provider options

Display the Linked Server Properties dialog box, where you can view the options for the provider selected in the Provider
name box.

Linked servers using this provider

Display the Linked Server Properties dialog box, where you can view any linked servers using the providers selected in the
Provider name box.

See Also

Configuring Linked Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Server Role Properties (Permissions Tab)
Use this tab to view or specify the following options.

Options

This server role can execute the following commands

View the commands the selected server role can execute.

See Also

Managing Permissions

SQL Server Enterprise Manager Help (SQL Server 2000)

Server Role Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View the server role name.

Specify which logins are members of this security role

View the list of logins that are members of the selected server role.

Add

Add a login to the selected server role.

Remove

Remove a login from the selected server role.

See Also

Roles

SQL Server Enterprise Manager Help (SQL Server 2000)

External Tools
Use this dialog box to gain easier access to tools such as the Windows Systems Monitor.

Options

Add

Display the Add External Tools dialog box, where you can add an external tool to the list of current tools.

Change

Commit the changes you have made to Menu text, Command, and Parameters for the selected current tool.

Remove

Remove the selected current tool.

Menu text

Specify the text that describes the tool, which appears in the list of current tools and on the Tools menu.

Command

Specify the fully-qualified path to the external tool, including the executable file name of the tool.

Parameters

Specify the parameters with which you want the external tool to launch. The placeholders [SRV] and [DBN] can be added for
substitution based on the current server and database context in the left or right pane.

See Also

How to add an external tool to the Tools menu (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Add External Tools
Use this dialog box to view or specify the following options.

Options

Command

Specify the fully-qualified path to the external tool, including the executable file name of the tool.

Browse

Search for external tools to add.

Parameters

Specify the parameters with which you want the external tool to launch. The placeholders [SRV] and [DBN] can be added for
substitution based on the current server and database context in the left or right pane.

See Also

How to add an external tool to the Tools menu (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Replication Tab)
Use this tab to view or specify the following options.

Options

Configure

Specify that you want to configure publishing and distribution on this server. Selecting this option starts the Configure Publishing
and Distribution Wizard or displays Publisher and Distributor properties.

Disable

Specify that you want to disable publishing and distribution on this server. Selecting this option starts the Disable Publishing and
Distribution Wizard.

Replication Monitor Group

Add server to a Replication Monitor group if the server is configured as a Distributor.

See Also

Implementing Replication (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Properties (Data Files Tab)
Use this tab to view or specify the following options.

Options

Database files

Specify the file name, location, space allocated, and filegroup for the selected data files.

Delete

Delete the selected data files.

Automatically grow file

Specify that data files automatically increase in size by the amount indicated in the following options.

In megabytes
Specify the number of megabytes by which to grow the data files.

By percent
Specify the percentage by which you want the data files to grow automatically.

Unrestricted file growth
Specify that the data file growth will be unrestricted.

Restrict file growth (MB)
Specify the size in megabytes to which a restricted data file can grow.

See Also

Files and Filegroups

SQL Server Enterprise Manager Help (SQL Server 2000)

Properties (Filegroups Tab)
Use this tab to view or specify the following options.

Options

Filegroups

View or specify the name of the filegroup, the number of files, and the status of the filegroup.

Delete

Delete the selected filegroup. You cannot delete a filegroup until all files that are a part of it have been removed.

See Also

Files and Filegroups

SQL Server Enterprise Manager Help (SQL Server 2000)

User-Defined Function Properties (General Tab)
Use this dialog box to view or specify the following options.

Options

Name

View the name of the user-defined function.

Permissions

Display the Object Properties dialog box, where you can specify permissions for user-defined functions.

Owner

View the owner of the user-defined function.

Create date

View the date on which the user-defined function was created.

Text

View the syntax of the user-defined function.

Check Syntax

Check the syntax of the Transact-SQL script used to create the user-defined function.

Save as Template

Save the user-defined function text as a template.

See Also

User-Defined Functions

SQL Server Enterprise Manager Help (SQL Server 2000)

Linked Server Properties (Server Options Tab)
Use this tab to view or specify the following options.

Options

Option Name

View the options for each linked server.

Value

Specify the value of the options associated with each linked server. For example, view the connection timeout value or if the linked
server is collation compatible.

See Also

Configuring Linked Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Edit SQL Server Message
Use this dialog box to view or specify the following options.

Options

Error Number

Specify the number of the error message.

Severity

Specify the severity of the error message.

Message text

Specify the message text of the error message.

Language

Specify the language of the error message text.

Always write to Windows NT event log

Specify to always write the error message to the Microsoft® Windows® event log.

See Also

Managing SQL Server Messages

SQL Server Enterprise Manager Help (SQL Server 2000)

Shrink Database Files
Use this dialog box to view or specify the following options.

Options

Database file

Specify the database file to shrink.

Filegroup name

View the filegroup name of the selected database file.

File ID

View the file ID for the selected database files.

File type

View the file type for the selected database files (for example, data file or log file).

Location

View the location of the selected database files.

Current size

View the current size (in megabytes) of the selected database files.

Space used

View the space used (in megabytes) of the selected database files.

Compress pages and then truncate free space from the file

Compress the database pages and then truncate the free space that is generated by compressing the pages.

Truncate free space from the end of the file

Truncate the free space from the end of the file.

Empty the file (data will migrate to other files in the file group)

Empty the selected database file. The data in the current file will move to other files in the file group.

Shrink file to

Shrink file to a specified size in megabytes.

Shrink the file later

Shrink the file at a specified date and time.

Date

Specify the date on which to shrink the database file.

Time

Specify the time at which to shrink the database file.

See Also

Shrinking a Database

SQL Server Enterprise Manager Help (SQL Server 2000)

Detach Database
Use this dialog box to view or specify the following options.

Options

Clear

Clear any connection to the selected database.

Connections using this database

View the number of connections to the selected database. You cannot detach a database while users are connected.

Database being replicated

View if the database is being replicated. You cannot detach a database while it is being replicated.

Status

View the status of the database. This will tell you if the database is ready to be detached, based on the criteria in the previous
options.

Update statistics prior to detach

Update the database statistics prior to detaching the database.

See Also

How to attach and detach a database (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Add/Edit Destination Database (General Tab)
Use this tab to view or specify the following options.

Options

Server name

Specify the secondary database to add to the log shipping definition. The server containing the database must be registered and
running Microsoft® SQL Server™ 2000, Enterprise Edition to appear in the list. If you are editing a destination database, the
Server name is read-only.

Directory

Specify the transaction log destination directory to which the logs will be backed up. Click the browse (...) button to search for an
existing directory.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Add Destination Database (Initialize Tab)
Use this tab to view or specify the following options.

Options

No recovery mode

Specify that the secondary database be made unavailable for use. The secondary database is placed in NORECOVERY mode as a
result of either the RESTORE LOG operation or the RESTORE WITH NORECOVERY operation.

Standby mode

Specify that the secondary database be made available for use, but in read-only mode. The secondary database is placed in
STANDBY mode as a result of either the RESTORE LOG operation or the RESTORE DATABASE WITH STANDBY operation.

Terminate users in database (Recommended)

Disconnect all users from the database. Log shipping will not work if there are any users connected to the secondary database
you have configured for log shipping.

Take full database backup now

Take a full database backup now, rather than using an existing backup file.

Use most recent backup file

Specify the most recent backup file to use to initialize the destination database. Click the browse (...) button to search for a recent
backup file.

Copy frequency

Set the frequency (in minutes) with which you want the destination server to back up the transaction logs from the source server.

Load frequency

Set the frequency (in minutes) with which you want the destination server to restore the transaction logs from the source server.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Add Destination Database (Thresholds Tab)
Use this tab to view or specify the following options.

Options

Out of sync threshold

Specify the maximum elapsed time between the last transaction log backup on the source server and the last transaction log
restore on the destination server.

Load time delay

Set the amount of time you want the destination server to delay before it restores the transaction log from the source server. The
default for this option is zero minutes, indicating that the destination server should immediately restore any transaction log
backups. Changing the time delay would provide a cushion of time if something goes wrong on the source server, allowing you to
correct the problem before the corrupted log is restored onto the destination server.

File retention period

Specify how long to wait before a transaction log is deleted.

History retention period

Specify how long to wait before a transaction log history is deleted.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Edit Destination Database (Thresholds Tab)
Use this tab to view or specify the following options.

Options

Out of sync threshold

Specify the maximum elapsed time between the last transaction log backup on the source server and the last transaction log
restore on the destination server.

Load time delay

Set the amount of time you want the destination server to delay before it restores the transaction log from the source server. The
default for this option is zero minutes, indicating that the destination server should immediately restore any transaction log
backups. Changing the time delay would provide a cushion of time if something goes wrong on the source server, allowing you to
correct the problem before the corrupted log is restored onto the destination server.

File retention period

Specify how long to wait before a transaction log is deleted.

History retention period

Specify how long to wait before a transaction log history is deleted from the log_shipping_plan_history table.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Log Shipping Tab)
Use this tab to view or specify the following options.

Options

Monitor Server

View the monitor server for the specified database maintenance plan.

Destination Server Information

View the destination server information for the specified database maintenance plan, including the names of all destination
servers, the destination databases, and the sync threshold.

Add

Display the Add Destination Database dialog box, where you can add a new destination database.

Delete

Delete a destination database. This stops log shipping to the selected destination database.

Edit

Display the Edit Destination dialog box, where you can edit an existing destination database.

Remove Log Shipping

Remove log shipping for the database associated with the selected maintenance plan.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Bind Rule/Default to User-defined Data Types
Use this dialog box to view or specify the following options.

Options

Rule

View the name of the rule that you wish to bind to a user-defined data type. When bound to a column or a user-defined data type,
a rule specifies the acceptable values that can be inserted into that column. Rules, a backward compatibility feature, perform some
of the same functions as check constraints. CHECK constraints, created using the CHECK keyword of ALTER or CREATE TABLE, are
the preferred, standard way to restrict the values in a column (multiple constraints can be defined on a column or multiple
columns). A column or user-defined data type can have only one rule bound to it. However, a column can have both a rule and
one or more check constraints associated with it. When this is true, all restrictions are evaluated. For more information about
rules, see CREATE RULE.

Name

View the name and data type of the user-defined data type. Select each rule to bind, by checking the Bind box. Selecting the
Future Only box prevents existing columns of a user-defined data type from inheriting the new rule. If Future Only is selected,
the new rule is bound to any columns of the user-defined data type that currently have no rule or that are using the existing rule
of the user-defined data type. For more information about binding rules, see sp_bindrule.

See Also

Creating User-Defined Data Types

SQL Server Enterprise Manager Help (SQL Server 2000)

Bind Rule/Default to Columns
Use this dialog box to view or specify the following options.

Options

Rule

View the name of the rule that you wish to bind to a column. When bound to a column or a user-defined data type, a rule
specifies the acceptable values that can be inserted into that column.

As a backward compatibility feature, rules perform some of the same functions as check constraints. CHECK constraints, created
using the CHECK keyword of ALTER or CREATE TABLE, are the recommended, standard way to restrict the values in a column. One
key difference between rules and check constraints is that while multiple constraints can be defined on a column or multiple
columns, only one rule can be bound to a column or user-defined data type. A column can, however, have both a rule and one or
more check constraints associated with it. When this is true, all restrictions are evaluated. For more information about rules, see
CREATE RULE.

Table

Select the table containing the column you wish to bind a rule to.

Unbound columns

View the names and data types of the unbound columns in the selected table.

Bound columns

View the names and data types of the bound columns in the selected table.

Add

Bind a rule to a column. You must select an unbound column from the Unbound columns list before you click Add.

Remove

Unbind a rule from a column. You must first select a bound column from the Bound columns list before you click Remove.

See Also

Creating User-Defined Data Types

SQL Server Enterprise Manager Help (SQL Server 2000)

Secondary Server Log Shipping History
Use this dialog box to view or specify the following options.

Options

Show history for

Specify the databases for which you want to view the log shipping history. You can select an individual database or all databases
for the selected secondary server. The history shows the status of each activity, such as copy, load, and time of completion.

Message

View any messages regarding log shipping for the specified secondary server.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Log Shipping Pair Properties (Status Tab)
Use this tab to view or specify the following options.

Options

Status

View the status of the log shipping servers. For example, the secondary server may be out of sync or in a normal state.

Current date time/on monitor server

View the current date and time on the monitor server.

Last backup file

View the last backup of the source server.

Updated

View the date and time that the last backup file was updated.

Backup delta

View the time between database backups.

Last file copied

View the last file copied from the source server.

Updated

View the date and time that the last file was copied from the source server.

Copy delta

View the time between file copies.

Last file loaded

View the last file restored onto the destination server.

Updated

View the date and time that the last backup file was restored onto the destination server.

Load delta

View the time between database restores.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Log Shipping Pair Properties (Source Tab)
Use this tab to view or specify the following options.

Options

Source

View the source server for the log shipping pair.

Alert threshold

Specify the threshold at which an alert is generated. The value specified in this option sets the maximum elapsed time since the
last transaction log backup was made on the source server. After the time exceeds this specified threshold, an alert is generated
by the monitor server.

Alert number

Specify the alert number that will be generated if the alert threshold is passed.

Enabled

Enable the alert.

Start time

Specify the starting time when alerts will not be generated, even if the alert threshold is passed.

End time

Specify the ending time when alerts will not be generated, even if the alert threshold is passed.

On days

Specify the days when alerts will not be generated between the start and end times, even if the alert threshold is passed.

View backup schedule

Display the Schedule dialog box, where you can view how often the backups are made.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Log Shipping Pair Properties (Destination Tab)
Use this tab to view or specify the following options.

Options

Source

View the destination server for the log shipping pair.

Alert threshold

Specify the threshold before an alert is generated. This value specified in this option is the maximum elapsed time since the last
transaction log backup was made on the source server. After the time exceeds this specified threshold, an alert is generated by the
monitor server.

Alert number

Specify the alert number that will be generated if the alert threshold is passed.

Enabled

Enable the alert.

Start time

Specify the starting time when alerts will not be generated, even if the alert threshold is passed.

End time

Specify the ending time when alerts will not be generated, even if the alert threshold is passed.

On days

Specify the days when alerts will not be generated between the start and end times, even if the alert threshold is passed.

View copy schedule

Display the Schedule dialog box, where you can view how often database copies are made.

Copy is enabled

Enable database copies.

View load schedule

Display the Schedule dialog box, where you can view how often the database is restored.

Load is enabled

Enable restoring the database.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Schedule
Use this dialog box to view the following option.

Options

Schedule

View the schedule for the selected log shipping event, including database backups, copies, or restores. The frequency of the
selected event is displayed.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Login Properties - New Login
 New Information - SQL Server 2000 SP3.

Use this dialog box to view or specify the following options.

Options

Name

Specify the name for the new login.

Windows Authentication

Use Windows Authentication when connecting to an instance of Microsoft® SQL Server™. It is recommended that you use this
option for security because users who connect through a Microsoft Windows NT® 4.0 or Windows® 2000 user account can
make use of trusted connections. Trusted connections are those validated by Windows NT 4.0 or Windows 2000.

Security Note When possible, use Windows Authentication.

Domain
Specify the domain to use to validate a login's network security attributes. SQL Server achieves login security integration with
Windows NT 4.0 by using the security attributes of a network user to control login access. A user's network security attributes
are established at network login time and are validated by a Windows domain controller.

Grant access
Grant access to the login.

Deny access
Deny access to the login.

SQL Server Authentication

Connect using SQL Server Authentication. When a user connects with a specified login name and password from a nontrusted
connection, SQL Server performs the authentication itself by checking to see if a SQL Server login account has been set up and if
the specified password matches the one previously recorded. If SQL Server does not have a login account set, authentication fails
and the user receives an error. For more information about SQL Server Authentication, see Authentication Modes.

Password
Specify the password to use when connecting to the server using SQL Server Authentication.

Database

Specify the default database for the selected login.

Language

Specify the default language for the selected login.

See Also

Adding a SQL Server Login

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Role Properties (Permissions Tab)
Use this tab to view or specify the following options.

Options

Database role

Select the database role for which to view or modify permissions.

List all objects

List all objects in the database. Click the appropriate box to modify role permissions.

List only objects with permissions for this role

Specify permissions only for objects with permission in the database. Click the appropriate box to modify role permissions. This
may be helpful if there are many objects, and you only need to view or modify the objects with permissions for the selected role.

Object

Specify the permissions for the selected object. You can grant or remove permissions to execute SELECT, INSERT, UPDATE,
DELETE, EXEC statements. You can also grant or remove permissions to execute Declarative Referential Integrity (DRI) constraints.
For more information on Declarative Referential Integrity constraints, see Parts of a Database.

Columns

Display the Column Permissions dialog box, which allows you to manage permissions for the object on a column-by-column
basis.

See Also

Creating User-Defined SQL Server Database Roles

SQL Server Enterprise Manager Help (SQL Server 2000)

Attach Database
Use this dialog box to view or specify the following options.

Options

MDF file of database to attach

Specify the name of the MDF (master data file) of the database to attach. There can be up to 16 file names specified. Microsoft®
SQL Server™ cannot attach a database if more than 16 files are specified. For more information about attaching databases, see
sp_attach_db.

Click the browse (...) button to search for the MDF of the database to attach.

Verify

Verify that the specified MDF is correct.

Original File Name(s)

View all files in the database to attach. This includes data files and log files.

Current File(s) Location

View or edit all current file names and paths. The current location of the MDF file must be in the column for the attach to work,
and if SQL Server cannot find the files in the specified location, the attach fails. For example, if you have changed the default
location of the file before you detached it, you must specify the current location for the attach to be successful.

Attach as:

Specify the name for the database you are attaching. The database name cannot match any existing database names.

Specify database owner

Specify the database owner.

See Also

How to attach and detach a database (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Start Job
Use this dialog box to view or specify the following options.

Options

Job name

View the name of the job to start.

Start execution at step

Select the step at which to start the job execution. You can also view the step ID, step same, and the type of step.

See Also

Running Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Database Maintenance Plan (Servers Tab)
Use this tab to view or specify the following option.

Options

Server

Select the servers on which the database maintenance plan will be executed.

See Also

Database Maintenance Plan Wizard

SQL Server Enterprise Manager Help (SQL Server 2000)

Log Shipping Details
 New Information - SQL Server 2000 SP3.

Use this dialog box to view or specify the following options. This dialog box is only available when one secondary database is in
standby mode.

Options

SQL Server

View the monitor server name.

Use Windows authentication

Use Windows Authentication when connecting to an instance of Microsoft® SQL Server™. It is recommended that you use this
option for security because users who connect through a Microsoft Windows NT® 4.0 or Windows® 2000 user account can
make use of trusted connections. Trusted connections are those validated by Windows NT 4.0 or Windows 2000.

Security Note When possible, use Windows Authentication.

Use SQL Server authentication

Use SQL Server Authentication to connect the monitor server. When a user connects with a specified login name and password
from a nontrusted connection, SQL Server performs the authentication itself by checking to see if a SQL Server login account has
been set up and if the specified password matches the one previously recorded. If SQL Server does not have a login account set,
authentication fails and the user receives an error. For more information about SQL Server Authentication, see Authentication
Modes.

Login Name

View the login name for the monitor server, if the server is connecting using SQL Server Authentication.

Password

View or specify the password for the monitor server, if the server is connecting using SQL Server Authentication.

Log Shipping Role

View information about the role of the monitor server.

See Also

Log Shipping

SQL Server Enterprise Manager Help (SQL Server 2000)

Configure SQL Server Error Logs
Use this dialog box to view or specify the following options.

Options

Limiting the number of the error log files before they are recycled.

Check to limit the number of error logs created before they are recycled. A new error log is created each time an instance of
Microsoft® SQL Server™ is started. Typically, SQL Server retains backups of the previous six logs, unless you check this option,
and specify a different maximum number of error log files below.

Maximum number of the error log files.

Specify the maximum number of error log files created before they are recycled. The default is six, which is the number of
previous backup logs SQL Server retains before recycling them.

See Also

Using the SQL Server Agent Error Log

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Properties (Active Directory Tab)
Use this tab to view or specify the following options.

Options

Add

Add the selected to server to the Active Directory. Active Directory is a central component of the Microsoft® Windows® 2000
operating system and provides a place to store information about network-based entities, such as applications, files, printers, and
people. Adding a server to the Active Directory requires local administrator privileges on the server.

Refresh

Refresh the attributes of the selected server in the Active Directory.

Remove

Remove the selected server from the Active Directory. Removing this server will also remove the databases and publications of
the server from the Active Directory.

SQL Server Enterprise Manager Help (SQL Server 2000)

Alert Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View or specify the name of the alert. The name is limited to 128 characters.

ID

View the ID generated for the alert by Microsoft® SQL Server™. New appears when you are creating a new alert.

Type

Specify the type of alert definition.

Enabled

Enable the alert. The alert is enabled by default.

Error number

Specify the error number that triggers the alert. Click the browse (...) button to display the Manage Server Messages dialog box,
where you can view alerts according to error number. These options are only available when you select a SQL Server event alert.

Severity

Specify the severity level that triggers the alert. Available only when you select a SQL Server event alert.

Database name

Specify the database in which the error must occur to trigger the alert. Available only when you select a SQL Server event alert.

Error message contains this text

Restrict the alert to only those events containing the text specified in the error message. Available only when you select a SQL
Server event alert.

Date last occurred

View the date and time the alert last occurred.

Date last responded to

View the date and time the alert last raised a response.

Occurrence count

View the number of times the alert has occurred since the count was last reset.

Reset Count

Reset the alert count.

See Also

Defining Alerts

SQL Server Enterprise Manager Help (SQL Server 2000)

Alert Properties (Response Tab)
Use this tab to view or specify the following options.

Options

Execute job

Specify the job to execute when the alert occurs. Click the edit (...) button to change the properties of the selected job.

New Operator

Display the New Operator Properties dialog box, where you can add an operator to respond to the alert.

Operator name

View the list of operators responding to the alert.

E-mail

Notify the operator about the alert by e-mail. An icon to the right of the check box indicates that the operator has an e-mail
address defined.

Pager

Notify the operator about the alert by pager. An icon to the right of the check box indicates that the operator has a pager address
defined.

Net send

Notify the operator about the alert by net send. An icon to the right of the check box indicates that the operator has a net send
address defined.

Include alert error text in e-mail

Include the error message text in the e-mail notification.

Include alert error text in pager

Include the error message text in the pager notification.

Include alert error text in net send

Include the error message text in the net send notification.

Additional notification message to send

Specify any additional notification messages to send to the operator.

Delay between responses

Specify the delay, in minutes and seconds, between responses for a recurring alert.

See Also

Defining Alerts

SQL Server Enterprise Manager Help (SQL Server 2000)

Operator Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the operator name. The name is limited to 128 characters.

ID

Indicate the ID generated for the operator by Microsoft® SQL Server™. New appears when you are creating a new operator.

E-mail name

Specify the e-mail address of the operator. If the display name or alias name is ambiguous, then specify a fully qualified e-mail
name in square brackets. For example, you can use [SMTP:myfriend@mycompany.com]. Click the browse (...) button to search the
SQL Server address book.

Pager e-mail name

Specify the pager address of the operator. If the display name or alias name is ambiguous, then specify a fully qualified e-mail
name in square brackets. For example, you can use [SMTP:myfriend@mycompany.com]. Click the browse (...) button to search the
SQL Server address book.

Test

Send a test e-mail, pager, or net send notification.

Net send address

Specify the net send address of the operator.

Pager on duty schedule

Specify the days the operator is available to receive pager notifications.

Workday begin

Specify the time after which the operator is available to receive pager notifications.

Workday end

Specify the time after which the operator is no longer available to receive pager notifications.

See Also

Defining Operators

SQL Server Enterprise Manager Help (SQL Server 2000)

Operator Properties (Notifications Tab)
Use this tab to view or specify the following options.

Options

Notifications sent to this operator by

Specify to view the notifications sent to this operator by alerts or jobs.

Alert name

View the names of the alerts for which you can make an operator responsible.

E-mail

Specify that the operator will receive notification by e-mail.

Pager

Specify that the operator will receive notification by pager.

Net send

Specify that the operator will receive notification by net send.

Operator is available to receive notifications

Specify that the operator is available to receive notifications.

Send e-mail

Generate an e-mail message detailing the alert responsibilities of the operator.

By e-mail

View the date and time of the most recent e-mail notification sent to the operator.

By pager

View the date and time of the most recent pager notification sent to the operator.

By net send

View the date and time of the most recent net send notification sent to the operator.

See Also

Defining Operators

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

Specify the name of the job. The name is limited to 128 characters. Job names must be unique only if they originate from the
same server. A job created locally on a target server and a downloaded job from a master server can share the same name.

Source

View the server where the job originated. The default is local, which means that the job was created on the instance of Microsoft®
SQL Server™ that is the local server.

Created

View the creation date and time of the job. Not yet created appears if you are creating a new job.

Enabled

Enable the job. This option is selected by default, both for new and existing jobs. A disabled job runs only if a user explicitly starts
it.

Target local server

Define the job as a local job, which is a job that runs only on the local server.

Target multiple servers

Define the job as a multiserver job, which is a job that runs on multiple remote servers. This option is enabled only on a master
server.

Category

Select the job category. Use job categories to organize jobs for easy filtering and grouping. By default, local jobs are assigned to
the [Uncategorized (Local)] job category. Click the list (...) button to view other jobs in the same category as the one selected.

Owner

Select the job owner. This option is enabled when the user is the system administrator. The system administrator can reassign the
job to another owner. By default, the owner list contains the SQL Server login ID of the job creator.

Description

Describe the job using up to 512 characters. A description can help other users on local and remote computers understand the
purpose of the job.

Last modified

Display the date the job was last modified. Not applicable appears if you are creating a new job.

Change

Display the Change Job Target Server dialog box, where you can change the target server for the job. Available for multiserver
jobs only.

See Also

Creating Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Properties (Steps Tab)
Use this tab to view or specify the following options.

Options

ID

View the step identification number.

Step name

View the step name.

Type

View the step type.

On success

Display the control-of-flow action if the step succeeds.

On failure

Display the control-of-flow action if the step fails.

Move step

Modify the sequence in which the steps execute.

Start step

Select the step at which the job begins execution.

New

Display the New Job Step dialog box, where you can configure a new step to insert at the end of the list of existing steps.

Insert

Display the New Job Step dialog box, where you can configure a new step to insert above the currently selected step.

Edit

Display the Edit Job Step dialog box, where you can change the configurations of the currently selected step.

Delete

Delete the currently selected step.

See Also

Creating Jobs

Creating Job Steps

Handling Multiple Job Steps

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Properties (Schedules Tab)
Use this tab to view or specify the following options.

Options

Note

View the current date and time on the target server.

ID

View the alert or schedule identification number.

Name

View the name of the schedule or alert.

Enabled

View the enabled status of the selected schedule or alert.

Description

View the description of the schedule or alert.

New Schedule

Display the New Job Schedule dialog box, where you can configure a new job schedule.

New Alert

Display the New Alert Properties dialog box, where you can configure a new alert.

Edit

Display the Edit Job Schedule dialog box, where you can change the configurations of the currently selected schedule or alert.

Delete

Delete the currently selected schedule or alert.

See Also

Creating Jobs

Scheduling Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Properties (Notifications Tab)
Use this tab to view or specify the following options.

Options

E-mail operator

Specify that an operator be notified by e-mail when a Microsoft® SQL Server™ event completes. Select the name of the operator
to notify by e-mail, or click the browse (...) button to add a new operator or edit the properties of an existing operator. Also, select
the completion status about which the operator will be notified.

Page operator

Specify that an operator be notified by page when a SQL Server event completes. Select the name of the operator to notify by
page, or click the browse (...) button to add a new operator or edit the properties of an existing operator. Also, select the
completion status about which the operator will be notified.

Net send operator

Specify that an operator be notified by net send when a SQL Server event completes. Select the name of the operator to notify by
net send, or click the browse (...) button to add a new operator or edit the properties of an existing operator. Also, select the
completion status about which the operator will be notified.

Write to Windows application eventlog

Write a job completion event to the Microsoft Windows® application log when the job completes. Also, select the completion
status for writing the event log.

Automatically delete job

Delete the job automatically when it completes, succeeds, or fails. This is dependent upon your completion status selection.

See Also

Creating Jobs

Specifying Job Responses

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Category Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View the name of the job category to view. If you are creating a new job category, specify a name.

Jobs in this category

View all defined jobs that are members of the job category.

See Also

Creating Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Schedule Properties
Use this dialog box to view or specify the following options.

Options

Name

Specify the name of the schedule. The name is limited to 128 characters. Each schedule name in a job must be unique.

Enabled

Enable the new job schedule.

Start automatically when SQL Server Agent starts

Automatically start the job when SQL Server Agent starts.

Start whenever the CPU(s) become idle

Start the job whenever the CPU(s) become idle. CPU idle time is specified on the Advanced tab of the SQL Server Agent
Properties dialog box.

One time

Start the job once at the specified date and time.

On date
Specify the date you want the job to start.

At time
Specify the time you want the job to start.

Recurring

Start the job according to the recurring schedule displayed.

Change

Display the Edit Recurring Job Schedule dialog box, where you can change the current recurring job schedule.

See Also

Scheduling Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Edit Recurring Job Schedule
Use this dialog box to view or specify the following options.

Options

Job name

View the name of the job for which to set a recurring schedule.

Daily

Set a daily job occurrence.

Weekly

Set a weekly job occurrence.

Monthly

Set a monthly job occurrence.

Every week(s)

Specify the job frequency in week increments.

Mon

Set job to occur on a Monday.

Tue

Set job to occur on a Tuesday.

Wed

Set job to occur on a Wednesday.

Thur

Set job to occur on a Thursday.

Fri

Set job to occur on a Friday.

Sat

Set job to occur on a Saturday.

Sun

Set job to occur on a Sunday.

Occurs once at

Set the time for a job to occur once daily.

Occurs every

Set the number of hours or minutes between occurrences.

Starting at
Set the time at which the job frequency starts every day.

Ending at
Set the time at which the job frequency ends every day.

Start date

Set the date when this schedule will become effective.

End date

Set the date when this schedule will no longer be effective.

No end date

Specify that the schedule is to be effective indefinitely.

See Also

Scheduling Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Step (General Tab)
Use this tab to view or specify the following options.

Options

Step name

Specify the name of the job step to add. The name is limited to 128 characters. Each step name in a job must be unique.

Type

Specify a job step type.

Database

Specify the database to use when using a Transact-SQL or Replication Queue Reader job step.

Process exit code of a successful command

A job step that executes a command shell process relies on the process exit code to determine the success or failure of the job
step. Set this option to the successful return code of a command shell process to enable logic and notifications based on the
success or failure of the job step. This option is only available when you use an Operating System Command (CmdExec) job step.

Command

Specify a procedure or command appropriate for the type selected.

Open

Open a Transact-SQL or Microsoft® ActiveX® script file. Available only when you click Transact-SQL in the Type list.

Parse

Check the syntax of the Transact-SQL or ActiveX script command. Available only when you click Transact-SQL in the Type list.

Next

Move to the next job step.

Previous

Move to the previous job step.

See Also

Creating Job Steps

Handling Multiple Job Steps

SQL Server Enterprise Manager Help (SQL Server 2000)

Job Step (Advanced Tab)
Use this tab to view or specify the following options.

Options

On success action

Specify the action to perform if the step succeeds.

Retry attempts

Specify the number of retry attempts to be made if the step fails.

Retry interval (minutes)

Specify the interval (in minutes) to wait before retrying the step.

On failure action

Specify the action to perform if the step fails (after performing any retries).

Output file

Specify the file in which to store the results of the Transact-SQL or CmdExec job step. Click the browse (...) button to search for a
directory in which to store the output file.

View

Display the selected output file.

Overwrite

Overwrite existing file with the new results.

Append

Add the results to the end of the existing file.

Append output to step history

Add the results of the Transact-SQL job step to the history entry for this step.

Run as user

Allow the system administrator to run the Transact-SQL job step as another database user.

Next

Move to the next step.

Previous

Move to the previous step.

See Also

Creating Job Steps

Handling Multiple Job Steps

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Properties (General Tab)
Use this tab to view or specify the following options.

Options

System account

Run SQL Server Agent service under the system account.

This account

Specify the Microsoft® Windows NT® 4.0 or Windows® 2000 account under which the SQL Server Agent service runs.

Password

Specify the Windows NT 4.0 or Windows 2000 account password.

Mail profile

Specify a valid MAPI profile name that has been configured and tested for the SQL Server Agent service startup account.

Test

Start and stop a MAPI session (on the server) using the specified profile.

Save copies of the sent messages in the Sent Items folder

Specify that copies of all sent messages be saved in the Sent Items folder of Microsoft Outlook®, Microsoft Exchange client, or
applicable MAPI-1 e-mail client.

File name

Specify the file name for the SQL Server Agent log. The default is C:\Program Files\Microsoft SQL
Server\MSSQL\LOG\SQLAGENT.OUT. Click the browse (...) button to search for the error log directory.

View

View the SQL Server Agent error log.

Include execution trace messages

Include additional execution trace messages in the error log. This option should only be selected during specific SQL Server Agent
problem investigations.

Write OEM File

Enable the Sqlagent.out file (error log file) to be written as a non-Unicode file. This saves disk space, especially when the Include
execution trace messages check box is selected.

Net send recipient

Specify the name of a recipient to receive network pop-up notification of errors that SQL Server Agent writes to its error log.

See Also

SQL Server Agent

How to change SQL Server services login account information (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Properties (Advanced Tab)
Use this tab to view or specify the following options.

Options

Auto restart SQL Server if it stops unexpectedly

Automatically restart the Microsoft® SQL Server™ service if it terminates unexpectedly.

Auto restart SQL Server Agent if it stops unexpectedly

Automatically restart the SQL Server Agent service if it terminates unexpectedly.

Forward events to a different server

Forward new SQL Server events in the Microsoft® Windows® application log to the specified server.

Server
Specify the server to which to forward events.

Unhandled events
Forward only events that have not been handled locally.

All events
Forward all events, even those that have been handled locally.

If error has severity of or above

Specify the severity level for forwarding events to the selected server. The value is greater than or equal to the selected severity
level.

Average CPU usage falls below

Specify the idle CPU condition by percentage. Idle is when the average CPU usage remains below the selected percent for the
specified number of seconds.

And remains below this level for

Specify the idle CPU condition by seconds. Idle is when the average CPU usage remains below the selected percentage for the
specified number of seconds.

See Also

How to autostart SQL Server Agent (Enterprise Manager)

How to designate an events forwarding server (Enterprise Manager)

How to set CPU idle time and duration (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Properties (Alert System Tab)
Use this tab to view or specify the following options.

Options

To line

Specify the pager address prefix and/or suffix for the To: line.

CC line

Specify the pager address prefix and/or suffix for the CC: line.

Pager address

Specify if the pager address for the operator should be included in the To: or CC: line.

Subject

Enter up to 100 characters of text to appear before the alert name in the subject line of the alert page. The format of the subject of
the page is <Prefix><Alert name><Suffix>.

Suffix

Specify the text to appear after the alert name in the subject line of the alert page. The format of the subject of the page is
<Prefix><Alert name><Suffix>.

Include body of e-mail in notification page

Include the body of the e-mail in the notification page. Clear this check box to shorten the page sent.

Operator

Specify the operator to which to send fail-safe notifications.

E-mail

Notify the fail-safe operator by e-mail.

Pager

Notify the fail-safe operator by pager.

Net send

Notify the fail-safe operator by net send.

See Also

How to designate a fail-safe operator (Enterprise Manager)

How to format pager addresses (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Properties (Job System Tab)
Use this tab to view or specify the following options.

Options

Limit size of job history log

Enable limiting the size of the job history log to avoid filling msdb.

Maximum job history log size (rows)

Specify the maximum job history log size, in rows.

Maximum job history rows per job

Specify the maximum job history rows per job.

Current job history log size (rows)

View the current size, in rows, of the job history log.

Clear Log

Clear the job history log.

Shutdown time-out interval (seconds)

Specify the maximum number of seconds that SQL Server Agent will wait for a job to finish executing before SQL Server Agent is
shut down.

Master SQLServerAgent (MSX) server

Indicate the instance of Microsoft® SQL Server™ that is acting as the master SQL Server Agent for this server.

Only users with SysAdmin privileges can execute CmdExec and ActiveScripting job steps

Specify that only members of the sysadmin role can execute CmdExec or Microsoft ActiveX® scripting job steps. If a user who is
not a member of the sysadmin role attempts to run a job that includes these types of job steps, the CmdExec or ActiveScripting
job steps will fail.

Reset Proxy Account

Edit the user name, password, and domain of the user account used by SQL Server Agent to execute jobs owned by non system
administrators.

Reset Proxy Password

This option is available only when administering an instance of SQL Server 7.0.

See Also

How to resize the job history log (Enterprise Manager)

How to set job execution shutdown (Enterprise Manager)

How to set up the job history log (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Properties (Connection Tab)
 New Information - SQL Server 2000 SP3.

Use this tab to view or specify the following options.

Options

Use Windows Authentication

Connect SQL Server Agent to an instance of Microsoft® SQL Server™ using Windows Authentication. If this option is selected,
then the Microsoft Windows NT® 4.0 and Microsoft Windows 2000® user account specified as the SQL Server Agent service
startup account must be a member of the sysadmin role in SQL Server.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

Connect SQL Server Agent to an instance of SQL Server using SQL Server Authentication.

SysAdmin login ID

Specify the login ID for the system administrator.

Password

Specify the password for the system administrator.

Login time-out

Specify the maximum time, in seconds, that SQL Server Agent waits for a connection to an instance of SQL Server to be
established.

Local host server

Specify the alias of the instance of SQL Server that is the local server to accommodate custom connection needs. Use the Client
Network Utility to modify the available choices.

See Also

How to set a SQL Server alias (Enterprise Manager)

How to set the SQL Server connection (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Agent Error Log
Use this dialog box to view or specify the following options.

Options

Type

Specify the type of entries to view from the SQL Server Agent error log.

Containing text

Restrict the log entries shown to include only those containing the specified text. The search is case-sensitive.

Apply Filter

Refresh the display according to the specified filter parameters.

Type

View the type of log entry.

Date/Time

View the date and time the log entry was written.

Message

View the text of the log entry. Double-click the message to view the full message text.

See Also

Using the SQL Server Agent Error Log

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Mail Configuration (General Tab)
Use this tab to view or specify the following options.

Options

Profile name

Specify a valid MAPI profile name that has been configured and tested for the Microsoft® SQL Server™ service startup account.
SQL Mail only supports extended MAPI.

Test

Start and stop a MAPI session on an instance of SQL Server using the specified profile.

See Also

Configuring SQL Mail

SQL Server Enterprise Manager Help (SQL Server 2000)

Manage SQL Server Messages (Search Tab)
Use this tab to view or specify the following options.

Options

Message text contains

Specify the text to search for in the messages.

Find

Find the messages that meet the specified criteria.

Error number

Specify the error number to search for in the messages.

Severity

Specify the severity to search for in the messages.

Only include logged messages

Include only messages that are always written to the Microsoft® Windows® application log.

Only include user-defined messages

Include only the messages that have been created by users.

See Also

Managing SQL Server Messages

How to find a SQL Server message (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

SQL Server Message
Use this dialog box to view or specify the following options.

Options

Error number

Specify the user-defined error message number. User-defined error message numbers must be greater than 50,000.

Severity

Specify the Microsoft® SQL Server™ severity level of the message. Severity levels are between 1 and 25.

Message text

Specify the text of the message. The maximum number of characters is 255.

Language

Specify the language of the message. You must create an English version of the message before you can create the message in
another language.

Always write to Windows event log

Specify that this message should be written to the Microsoft Windows® application log. You must select this option if you want
your user-defined message to be monitored for alert purposes by SQL Server Agent.

See Also

Managing SQL Server Messages

SQL Server Enterprise Manager Help (SQL Server 2000)

Manage SQL Server Messages (Messages Tab)
Use this tab to view or specify the following options.

Options

Error

View the error number of the message.

Severity

View the severity level of the message.

Language

View the language of the message.

Logged

View if the error is always written to the Microsoft® Windows® application log.

Message text

View the text of the error message.

New

Display the New SQL Server Message dialog box, where you can add a new server message.

Edit

Display the New SQL Server Message dialog box, where you can edit a server message. You can also double-click on a message
to edit it.

Delete

Delete a server message. You can delete only user-defined messages with numbers greater than 50,000.

See Also

Managing SQL Server Messages

SQL Server Enterprise Manager Help (SQL Server 2000)

Change Job Target Servers (Available Servers Tab)
Use this tab to view or specify the following options.

Options

Available servers

View the target servers available for running the job.

Properties

Display the Target Server Properties dialog box, where you do the following:

>
Add one or more target servers to the list of target servers on which the job will run. Alternatively, double-click on an available
server.

<
Remove one or more target servers from the list of target servers on which the job will run. Alternatively, double-click on a
selected target server.

Selected target servers

View the target servers on which the job will run.

See Also

Creating Jobs

Multiserver Administration

SQL Server Enterprise Manager Help (SQL Server 2000)

Change Job Target Servers (All Server Groups Tab)
Use this tab to view or specify the following options.

Options

Name

View the name of the target server group.

Selected

View the number of servers in a server group on which a job will run.

Selected target servers

View the target servers on which the job will run.

Add

Add a new target server group.

Delete

Delete a target server group. Individual target servers assigned to that group are not deleted.

Properties

View the properties associated with the target server group.

>

Add the servers that are members of the selected group(s) to the list of target servers on which the job will run.

See Also

Creating Jobs

Multiserver Administration

SQL Server Enterprise Manager Help (SQL Server 2000)

Target Server Properties
Use this dialog box to view or specify the following options.

Options

Name

View the name of the target server.

Location

Specify the physical location and/or description of the target server.

Time zone

View the time zone of the target server.

Local time

View the current date and time on the target server in its time zone. The value displayed is not updated in real time.

Date enlisted

View the local date and time that the target server enlisted.

Last poll

View the local date and time that the target server last polled the master server.

Polling interval

View the time interval between the target server's polls of the master server.

Unread instructions

View how many instructions from the master server have not been read by the target server.

Server belongs to these target server groups

View the target server groups to which the target server belongs.

See Also

Creating Jobs

Multiserver Administration

SQL Server Enterprise Manager Help (SQL Server 2000)

Target Servers (Target Server Status Tab)
Use this tab to view or specify the following options.

Options

Target server

View the name of the target server. If you right-click on this server, you can also view the properties of the server, check the state
of SQL Server Agent, and view the SQL Server Agent error log.

Local time

View the current date and time of the target server in its time zone.

Last polled

View the local date and time that the target server last polled the master server.

Unread instructions

View how many instructions from the master server have not yet been read by the target server.

Status

View the status of the target server: blocked, OK, or offline. Offline indicates that the selected target server has not polled the
master server within the last three poll intervals.

Force Poll

Force the selected target server to poll the master server.

Force Defection

Force the selected target server to defect from the master server.

Post Instructions

Post instructions for one or more target servers.

See Also

Multiserver Administration

How to view a master SQL Server Agent error log (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Target Servers (Download Instructions Tab)
Use this tab to view or specify the following options.

Options

Target server

Filter download instructions by target server.

Job

Filter download instructions by job.

Target server

View the target servers to which the download instruction applies.

Operation

View the operation that will be performed by the download instruction.

Object name

View the name of the object that will be affected by the download instruction.

Date posted

View the local date and time that the instruction was posted.

Date downloaded

View the local date and time that the instruction was downloaded by the target server. If the target server had a problem while
downloading the instruction, an error is indicated.

Instruction download status

View the most recent status for the selected download instruction.

Delete

Delete the selected download instruction. Use this with caution because the sequence of instructions is often of critical
importance.

Clear

Clear the status of the download instruction, thus allowing the target server another download attempt.

See Also

Multiserver Administration

SQL Server Enterprise Manager Help (SQL Server 2000)

Post Download Instructions
Use this dialog box to view or specify the following options.

Options

Instruction type

Specify the type of instruction to post.

Description

Describe what the instruction will cause the target server to do.

All target servers

Specify that all target servers are to receive the instruction.

These target servers

Specify that only selected target servers are to receive the instruction.

Target server

View the name of the target server.

Local time

View the current date and time of the target server in its time zone.

Polling interval

View the interval, in seconds, at which the target server polls the master server.

Select

Specify that the target server should receive the download instruction.

See Also

Multiserver Administration

How to start a job (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Enlist Registered Servers Into this MSX
Use this dialog box to view or specify the following options.

Options

Server name

View the name of a server that is registered but not enlisted as a target server of this master server. Only instances of Microsoft®
SQL Server™ running on Microsoft Windows NT® 4.0 or Windows® 2000 are shown.

Known credentials

View whether or not the registration information for the server includes connection information. If connection information is not
included, you must provide it to enlist the server.

Properties

View the properties associated with the selected server.

Enlist

Enlist all checked servers into the master server.

See Also

Multiserver Administration

How to enlist a target server from a master server (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Multiserver Job Execution Status
Use this dialog box to view or specify the following options.

Options

Job

View job execution status by job.

Server

View job execution status by server.

Job name

Specify the name of the job to view, if you have selected to show job execution status by job.

Name

View the server name, if you have selected to show job execution status by job. View the job name, if you have selected to show
job execution status by server.

Last run time

View the job execution start date and time most recently uploaded by the target server for the selected job. The most current and
comprehensive information about job execution history is available by viewing the remote job history.

Last run status

View the job outcome status most recently uploaded by the target server for the selected job. The most current and
comprehensive information about job execution history is available by viewing the remote job history.

Last run message

View the job outcome message most recently uploaded by the target server for the selected job. The most current and
comprehensive information about job execution history is available by viewing the remote job history.

View Remote Job History

Make a connection to the target server and view job history information remotely.

Target Server Status

View the status of the target server.

Synchronize Jobs

Resynchronize all multiserver jobs on the target server, if you have selected to show job execution status by server. Resynchronize
the specified job on all target servers on which it executes, if you have selected to show job execution status by job.

See Also

Multiserver Administration

How to view the job history (Enterprise Manager)

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Script
Use this dialog box to view or specify the following options.

Options

File name

Specify the file name for the SQL script. Click the browse (...) button to select a file name to use for saving the SQL script.

MS-DOS text (OEM)

Save the Transact-SQL script in the format of the current Microsoft® Windows® system code page. Select this option if you will
use the script in a batch operation and execute it from the command prompt.

Windows text (ANSI)

Save the Transact-SQL script in ANSI format. Select this option if the script will be used in SQL Query Analyzer or another
Windows application.

International text (Unicode)

Save the Transact-SQL script in Unicode format. Select this option if the script uses special international characters that are
supported only in the Unicode font. This format requires two times the disk space of either the current Windows code page or
ANSI.

Replace alert if it exists

Specify that the script code should replace the alert if it already exists.

Include notifications sent by the alert to the operators

Include in the script any notifications sent by the alert to the operators.

Include the name of the job executed by the alert

Include in the script the name of the job executed by the alert.

TSQL batch separator

Specify the word used to separate Transact-SQL command batches in the script.

Preview

View the Transact-SQL script that will be created.

See Also

Copying Operators or Alerts to Other Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Script
Use this dialog box to view or specify the following options.

Options

File name

Specify the file name for the SQL script. Click the browse (...) button to select a file name to use for saving the SQL script.

MS-DOS text (OEM)

Save the Transact-SQL script in the format of the current Microsoft® Windows® system code page. Select this option if you will
use the script in a batch operation and execute it from the command prompt.

Windows text (ANSI)

Save the Transact-SQL script in ANSI format. Select this option if the script will be used in SQL Query Analyzer or another
Windows application.

International text (Unicode)

Save the Transact-SQL script in Unicode format. Select this option if the script uses special international characters that are
supported only in the Unicode font. This format requires two times the disk space of either the current Windows code page or
ANSI.

Replace operator if it exists

Specify that the script code should replace the operator if it already exists.

Include notifications sent by alerts to the operator

Include in the script any notifications sent by alerts to the operator.

TSQL batch separator

Specify the word used to separate Transact-SQL command batches in the script.

Preview

View the Transact-SQL script that will be created.

See Also

Copying Operators or Alerts to Other Servers

SQL Server Enterprise Manager Help (SQL Server 2000)

Generate SQL Script
Use this dialog box to view or specify the following options.

Options

File name

Specify the file name for the SQL script. Click the browse (...) button to select a file name to use for saving the SQL script

MS-DOS text (OEM)

Save the Transact-SQL script in the format of the current Microsoft® Windows® system code page. Select this option if you will
use the script in a batch operation and execute it from the command prompt.

Windows text (ANSI)

Save the Transact-SQL script in ANSI format. Select this option if the script will be used in SQL Query Analyzer or another
Windows application.

International text (Unicode)

Save the Transact-SQL script in Unicode format. Select this option if the script uses special international characters that are
supported only in the Unicode font. This format requires two times the disk space of either the current Windows code page or
ANSI.

Replace job if it exists

Specify that the script code should replace the job if it already exists.

TSQL batch separator

Specify the word used to separate Transact-SQL command batches in the script. This is useful if Transact-SQL job steps already
contain the GO command separator.

Preview

View the Transact-SQL script that will be created.

See Also

Scripting Jobs Using Transact-SQL

SQL Server Enterprise Manager Help (SQL Server 2000)

View Job Category Properties (General Tab)
Use this tab to view or specify the following options.

Options

Name

View the name of the selected job category.

Jobs in this category

View the list of jobs in the selected job category.

See Also

Creating Jobs

SQL Server Enterprise Manager Help (SQL Server 2000)

Connection Properties
 New Information - SQL Server 2000 SP3.

Use this dialog box to specify a connection (session) and optionally, a database (catalog) for importing meta data, if supported by
the data provider. These specifications must be made to import meta data (for example, table and column information, primary
and foreign keys, indexes) into Microsoft® SQL Server™ 2000 Meta Data Services. For the import of meta data to work, the data
provider specified must support OLE DB schema rowsets.

After a connection is made, Data Transformation Services (DTS) reads the meta data information from the specified connection
into Meta Data Services. Later, when you save a Data Transformation Services (DTS) package with Scanning Options enabled,
the tasks in the package will form relationships to the imported meta data.

With the Import Metadata selection you read the meta data from only one database (catalog); when you select Scan all
referenced catalogs in the Scanning Options dialog box, the meta data from all databases referenced in the package are saved
to Meta Data Services.

Not all the options defined below are available for all providers. A subset of the options will be shown, depending on the provider
chosen.

Options

Source

Select the data-specific driver that matches the data storage format of the source data.

File Name

Specify the database path and file name holding the data to be imported (for example, C:\MyData.xls, or
\\Sales\Database\Northwind.mdb).

User name

Specify a user name for the database connection.

Password

Specify a password for the database connection.

Advanced

Display the Advanced Properties dialog box, where you can enter custom settings. For more information about OLE DB provider
properties, search in the Platform SDK section in the MSDN® Library at Microsoft Web site.

UDL Filename

Specify the name of the Microsoft Data Link (.udl) file that contains the connection string.

Always read properties from UDL file

Specify that the package search for and read the connection string from the specified data link (.udl) file each time the package is
executed. Changes made to the data link file between different executions of the package will be incorporated on the next run. If
you select this check box, the .udl file must be deployed with the package so the package can find it and read from it. If you do not
select this check box, the connection string is copied from the .udl into the package, and the file is not referenced again.
Connection changes then can be modified only by editing the DTS package directly.

Properties

Display the Data Link Properties dialog box, where you configure a data link connection. Changes made in the dialog box will be
incorporated into the package created during the current session and will not change the data link file.

User/System DSN

Specify the name of the existing user or system Data Source Name (DSN) that points to the data source.

New

Display the Create New Data Source dialog box, where you can create an ODBC DSN. For more information about creating an
ODBC data source, search in the Platform SDK section in the MSDN Library at Microsoft Web site.

File DSN

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Specify the name of the existing file DSN that points to the data source.

Server

Specify the name of the server holding the data source.

Use Windows Authentication

Specify that the package use Windows Authentication for login to the SQL Server database.

Security Note When possible, use Windows Authentication.

Use SQL Server Authentication

Specify that the package use SQL Server Authentication for login to the SQL Server database.

Database

List databases on the specified instance of SQL Server.

Refresh

Cause the database list to populate on computers running on Microsoft Windows® 98.

See Also

DTS Connections

Sharing Meta Data

SQL Server Enterprise Manager Help (SQL Server 2000)

DTS Package Versions
Use this dialog box to display the version history of a selected Data Transformation Services (DTS) package, and to edit or delete
selected package versions.

The available options depend on how you saved the package:

You can edit and delete versions of packages saved to Microsoft® SQL Server™.

You can edit versions of packages saved to SQL Server 2000 Meta Data Services; however, you cannot delete package
versions.

To edit or delete a package, click on a Version, then click Edit or Delete.

See Also

Deleting a DTS Package

Saving a DTS Package to SQL Server

Saving a DTS Package to Meta Data Services

SQL Server Enterprise Manager Help (SQL Server 2000)

Package Properties
Use this dialog box to set options for Data Transformation Services (DTS) applications.

Options

Turn on cache

Optimize the performance of DTS applications when using DTS Designer on computers running Microsoft® Windows® 2000.
For this environment, the time needed to open a DTS package decreases significantly if you select this check box.

Refresh Cache

Cause the DTS application to recognize new scripting languages, custom transformations, OLE DB providers, and custom tasks
that were added since the last time the cache was refreshed. This option is only available if the Turn on cache check box is
selected. Registering a new task in DTS Designer will refresh the cache for tasks, but new OLE DB providers that were added will
not appear in the DTS application until you refresh the cache.

Generally, click Refresh Cache after installing a new instance of Microsoft SQL Server™ 2000, registering a new DTS object, or
adding a new OLE DB provider.

Show multi-phase pump in DTS Designer

Display the multiphase data pump options in transformation tasks in DTS Designer. You access the multiphase data pump options
when configuring transformations in either the Transform Data Task or the Data Driven Query Task.

Turn on just-in-time debugging

Use the script debugger supplied with those products to debug your Microsoft ActiveX® scripts. This option is available only if
you have Windows 2000, Microsoft Visual InterDev® 6.0 or the Microsoft Windows NT® 4.0 Option Pack installed.

See Also

Multiphase Data Pump Functionality

Debugging ActiveX Scripts

SQL Server Enterprise Manager Help (SQL Server 2000)

DTS Packages Logs
Use this dialog box to select from the Data Transformation Services (DTS) package logs stored on the server and view the events
and details of the package execution.

Options

DTS Packages available on the server <server name>

Select the package whose logs you would like to have displayed.

DTS Package versions and log tree

View the default display, which shows all the versions of a package for which you have created logs. Expand the tree to view all
the logs that you created each time you executed that package version and requested a log to be generated. The logs are listed
with the oldest logs shown at the top.

Open Log

Display the Log Detail dialog box, where you can view the step execution details for the selected log.

Delete

Display the Delete Package Logs dialog box, where you can select which package logs to delete.

See Also

Using DTS Package Logs

SQL Server Enterprise Manager Help (SQL Server 2000)

Delete Package Logs
Use this dialog box to remove Data Transformation Services (DTS) package logs. The main purpose of removing package logs is
to delete the oldest logs from the system and keep the newer, more pertinent logs. The only way to force the feature to delete the
newest logs in a version is by selecting the Delete most recent log check box.

Options

DTS Package available on the server <server name>

Specify the package whose logs you want to see in the tree.

Delete all the logs for the selected version <Version x> created on <mm/dd/yy hh:mm:ss AM/PM>

Specify that all the logs in the version you have highlighted will be deleted, with the exception of the most recent one. If you want
all the logs for the selected version deleted without exception, you also must select the Delete most recent log check box.

Delete all the logs for the package: <package name>

Specify that all the logs for the package that you have selected will be deleted, except for the most recent log and version. If you
also select the Delete most recent log check box, all package logs and versions are deleted.

Delete most recent log

Specify that only the most recent log of the selected version will be deleted. This option is selected by default.

SQL Server Enterprise Manager Help (SQL Server 2000)

Log Detail
Use this dialog box to review detailed execution information on Data Transformation Services (DTS) package steps.

Options

Status

View a symbol that indicates the success or failure of the step. The green check mark indicates the step completed successfully,
while the red "X" indicates an error occurred in that step. Any step not run is not logged and will not appear in the Log Detail
dialog box.

Step Name

View the step in the package. This indicates the step to which the rest of the columns in this row of the log are referring.

Run status

View the code that indicates the step status. Status codes are:

Step Waiting = 1

Step In Progress = 2

Step Inactive = 3

Step Completed = 4

For more information, see DTSStepExecStatus.

Start Time

View the date and time that the step was started. The format of the date and time is yyyy-mm-dd hh:mm:ss:ms.

End Time

View the date and time that the step finished. The format of the date and time is yyyy-mm-dd hh:mm:ss:ms.

Elapsed Time

View the time it took for the step to execute. This is the difference between the Start Time and End Time fields.

Error code

View the error code. If a step executes successfully, an error code of zero is entered in this column. If the step did not execute
successfully, the error code indicating the reason for step failure will be entered in this column.

Error description

View a brief text description of the error that occurred.

More Info

Expand the Log Detail dialog box to display the Task Detail section.

Less Info

Remove the Task Detail section from the Log Detail dialog box.

View Error

Display the View package log error description dialog box, where you view a detailed description of the information in the
Error Description column.

Task Detail

Display detailed real-time logging information for DTS tasks. While the DTS tasks supplied with Microsoft® SQL Server™ do not
provide this detailed logging information. you can write DTS custom tasks that do. For more information, see WriteTaskRecord
Method.

Status

View status of the task. A green checkmark indicates the step has completed successfully. A red "X" indicates the step has failed.

Description

View detailed description of the task.

Error Code

View the error message number if errors are raised. Ok indicates that no errors have been encountered.

SQL Profiler Help (SQL Server 2000)

Trace Properties (General Tab)
Use this tab to view or specify the following options.

Options

Trace name

Specify the name of the trace.

Trace SQL Server

Specify the instance of Microsoft® SQL Server™ to trace.

Template name

Select a template from the template directory.

Template file name

Select a template that was previously saved with a .tdf file extension.

Save to file

Capture the trace data to a .trc file. This is useful for saving trace data for later review and analysis. Saving a trace to a file also
reduces the memory overhead of SQL Profiler.

If you select to save the trace data to a file, you must specify the maximum size of the trace file. The maximum is 1 gigabyte (GB).

Enable file rollover
Specify that when the maximum file size is reached a new file will be opened to accept the trace data. The new file name will be
the original .trc file name with a number appended to it. For example, NewTrace.trc becomes NewTrace_1.trc, NewTrace_2.trc,
and so forth, as the maximum file size is reached. This is enabled by default when you save a trace to a file.

Server processes SQL Server trace data
Specify that the server running the trace should process the trace data. If selected, no events will be skipped under stress
conditions; however, performance of the server may be affected, depending on the number of events being traced. If this check
box is cleared, then the processing is performed by the client application, and there is a possibility that some events will not be
traced under stress conditions.

Save to table

Capture the trace data to a database table. This is useful for saving data for later review and analysis. However, saving trace data
to a table can incur significant overhead on the server on which the trace is being saved.

Set maximum rows (in thousands)
Specify the largest number of rows in which to save data. The maximum is 9,999,000 rows.

Enable trace stop time

Set the date and time for the trace to end and close itself.

See Also

How to create a trace (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Trace Template Properties (General Tab)
Use this tab to view or specify the following options.

Options

File name

View the name of the trace template.

Save trace template

Save the current trace definition as another name.

See Also

Creating and Managing Traces and Templates

SQL Profiler Help (SQL Server 2000)

Trace File Properties (General Tab)
Use this tab to view or specify the following options.

Options

File name

Specify the name and location of the trace file.

File size (KB)

Specify the file size in kilobytes (KB).

Created

Specify the date and time that the file was created.

Modified

Specify the date and time that the file was updated.

See Also

Creating and Managing Traces and Templates

SQL Profiler Help (SQL Server 2000)

Trace Table Properties (General Tab)
Use this tab to view or specify the following options.

Options

Table name

Specify the name of the trace table.

Server name

Specify the server on which the trace table is stored.

Rows

Specify how many rows are included in the table.

Data size (pages)

Specify the data size in pages.

See Also

Creating and Managing Traces and Templates

How to save trace results to a table (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Properties (Events Tab)
Use this tab to view or specify the following options.

Options

Available event classes

View all events available to trace. When viewing the properties of a saved trace, no event class will be listed.

Selected event classes

View all events selected to trace for a trace or trace template. When viewing the properties of a saved trace, only the events
captured will be listed.

Add

Add event classes to a trace or trace template.

Remove

Remove event classes from a trace or trace template.

See Also

How to add or remove events from a trace template or trace file (SQL Profiler)

Monitoring with SQL Profiler Event Categories

SQL Profiler Help (SQL Server 2000)

Properties (Data Columns Tab)
Use this tab to view or specify the following options.

Options

Unselected data

View all data columns not selected to capture in the trace or trace template.

Selected data

View all data columns selected to capture in the trace or trace template. Event Class and SPID are required columns and cannot
be moved from the Selected data list.

Add

Add columns to the Selected Data list, specifying by which columns to group the trace. You cannot group by the EndTime or
StartTime data columns.

Remove

Remove columns from the Selected Data list.

Up

Move a selected column up the list of selected columns or group-by columns.

Down

Move a selected column down the list of selected columns or group-by columns.

See Also

How to add or remove data columns from a trace template (SQL Profiler)

Monitoring with SQL Profiler Event Categories

SQL Profiler Help (SQL Server 2000)

Properties (Filters Tab)
Use this tab to view or specify the following options.

Options

Trace event criteria

Specify trace event criteria to restrict the collection of data about events that are defined in the trace. To apply a filter, expand a
trace criterion and enter or modify the values in the boxes below each criterion.

Use the wildcard character (%) and semicolons to include any series of characters. For example, SQL%;MS% specifies that all
events beginning with SQL and all events beginning with MS will be included in the trace.

Multiple filtering can be performed with Like, Not Like, Equals, and Not Equals operators.

Exclude system Ids

Capture fewer trace events by excluding events that reference most system objects. System objects usually are assigned Sytem
IDs less than or equal to 100. Selecting this option sets Object Ids to greater than or equal to 100, thus eliminating most of the
system objects from the trace. The trace becomes more selective because system objects that are being accessed can result in 50-
75% of the trace events.

See Also

How to filter events in a trace template (SQL Profiler)

Limiting Traces

SQL Profiler Help (SQL Server 2000)

Trace Options (General Tab)
Use this tab to view or specify the following options.

Options

Template name

Select a template that comes with Microsoft® SQL Server™ to use for new traces.

Template file name

Specify the custom template file name to use for new traces, unless otherwise specified.

Start tracing immediately after making a connection

Specify to start tracing as soon as a connection to the server is made.

See Also

How to set trace definition defaults (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Trace Options (Display Tab)
Use this tab to view or specify the following options.

Options

Font name

Specify the font displayed in the SQL Profiler trace window.

Font size

Specify the size of the font (from 0 through 24) displayed in the SQL Profiler trace window.

See Also

How to set trace display defaults (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Source Table
Use this dialog box to view or specify the following options.

Options

SQL Server

Specify the server destination for the table.

Database

Specify the database destination for the table.

Owner

Specify the database owner of the table.

Table

Specify the table to which the trace appends data.

See Also

How to open a trace table (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Replay SQL Server
Use this dialog box to view or specify the following options.

Options

Replay SQL Server

Specify the server against which to replay the trace. Replay is used to re-create previously captured Microsoft® SQL Server™
activity to debug or profile events, or to stress the server.

Output file name

Specify the name and location of the file where the replay output will be saved. Save the output file to review and analyze errors
and results at a later time.

Replay events in the order they were traced. This option enables debugging.

Specify to replay events in the order they were traced. This allows you to use debugging methods such as stepping through each
trace.

Replay events using multiple threads. This option optimizes performance and disables debugging.

Specify to replay events using multiple threads. This optimizes performance, but debugging is disabled.

Display replay results

Specify to display the results of the replay. This is the default option. If the trace you are replaying is very large, you may want to
disable this to save disk space.

See Also

How to open a trace data file (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Destination Table
Use this dialog box to view or specify the following options.

Options

SQL Server

Specify the server for the trace table.

Database

Specify the database for the trace table.

Owner

Specify the owner of the table

Table

Specify the table that holds the trace results.

See Also

How to save trace results to a table (SQL Profiler)

SQL Profiler Help (SQL Server 2000)

Find
Use this dialog box to view or specify the following options.

Options

Search value

Specify a value to search for.

Data column

Select the column you want to search in.

Find next

Find the next value that matches search criteria.

Find previous

Return to the previous value that matches the search criteria.

See Also

How to find a value or data column while tracing (SQL Profiler)

SQL Query Analyzer Help (SQL Server 2000)

Overview of SQL Query Analyzer
Microsoft® SQL Server™ 2000 SQL Query Analyzer is a graphical tool that allows you to:

Create queries and other SQL scripts and execute them against SQL Server databases. (Query window)

Quickly create commonly used database objects from predefined scripts. (Templates)

Quickly copy existing database objects. (Object Browser scripting feature)

Execute stored procedures without knowing the parameters. (Object Browser procedure execution feature)

Debug stored procedures. (T-SQL Debugger)

Debug query performance problems. (Show Execution Plan, Show Server Trace, Show Client Statistics, Index Tuning
Wizard)

Locate objects within databases (object search feature), or view and work with objects. (Object Browser)

Quickly insert, update, or delete rows in a table. (Open Table window)

Create keyboard shortcuts for frequently used queries. (custom query shortcuts feature)

Add frequently used commands to the Tools menu. (customized Tools menu feature)

You can run SQL Query Analyzer directly from the Start menu, or you run it from inside SQL Server Enterprise Manager. You can
also run SQL Query Analyzer from the command prompt by executing the isqlw utility.

SQL Query Analyzer Help (SQL Server 2000)

Using isqlw
Use the isqlw utility to run SQL Query Analyzer from the command prompt. Options are provided for specifying server name,
database name, login information, input and output files, and other information. These options enable you to start a
preconfigured SQL Query Analyzer.

See Also

isqlw Utility

SQL Query Analyzer Help (SQL Server 2000)

Connecting to SQL Server
 New Information - SQL Server 2000 SP3.

Connect to an instance of Microsoft® SQL Server™ to open a query window in SQL Query Analyzer. If you access SQL Query
Analyzer through a connection in SQL Server Enterprise Manager, a query window opens automatically.

If you access SQL Query Analyzer without first establishing a connection, the Connect to SQL Server dialog box is displayed to
allow you to specify a database server. This dialog box is also accessible from the toolbar, and from the Connect command on
the File menu.

To connect to SQL Server

1. In the Connect to SQL Server dialog box, enter the name of the database server in the SQL Server box.

To select the local server, select (local).

To specify another server or another instance of the server, enter the server name in the SQL Server box. Click the browse
button (...) to display a list of active servers. The servers are listed using the format servername\instancename.

2. Click Windows NT Authentication to connect using Windows NT Authentication.

-Or-

Click SQL Server Authentication to connect using SQL Server Authentication.

Security Note When possible, use Windows Authentication.

After you have connected to an instance of SQL Server, you can establish additional connections through the Connect to SQL
Server dialog box or you can open a new query. In the latter case, the Connect to SQL Server dialog box is not displayed.

Attempting to connect to an instance of SQL Server version 7.0, running on the same computer as SQL Query Analyzer and SQL
Server 2000, may fail under certain conditions. To avoid this problem, make sure that the shared memory protocol option
within SQL Server Client Network Utility is disabled before trying to connect. For more information, see How to start the Client
Network Utility (Windows).

SQL Query Analyzer Help (SQL Server 2000)

Using SQL Query Analyzer Windows
SQL Query Analyzer provides several windows in which to work:

Query window

T-SQL Debugger window

Open Table window

Query Window

The title bar of the query window displays the name of the database server, the name of the current database, the current login
name, and the query name. If the query is saved to a file, the complete path to the file is shown.

The query window is composed of multiple panes. The Editor pane is a text editor where you can enter Transact-SQL statements.
The Results pane displays returned result sets. The Messages pane displays error messages. The Execution Plan pane displays a
graphical representation of an execution plan. The Trace pane displays server trace information. The Statistics pane displays
statistics information.

Click a pane to make it the active pane. Alternatively, press SHIFT+F6 to move between panes.

T-SQL Debugger Window

The Transact-SQL Debugger window is composed of multiple panes. The Code pane displays the SQL statements being
debugged. In addition, the Transact-SQL debugger presents separate output windows for local and global variables, and for the
output (result set) of the query. Note that global variable is a legacy term for the Transact-SQL built-in functions whose names
start with @@.

Open Table Window

The Open Table window displays the columns and rows from a table in a grid. You can modify the data in the grid. You can also
insert and delete rows.

Attempts to insert, delete, or update a column referenced by a computed column may fail under certain conditions. If an index
exists on the computed column, then user option ARITHABORT must be enabled by default before you can edit the referenced
column. To enable ARITHABORT, execute the following set of commands on your server:

sp_configure 'user options', 64
RECONFIGURE
GO

SQL Query Analyzer Help (SQL Server 2000)

SQL Query Analyzer Icons
This table lists the icons displayed in the SQL Query Analyzer toolbar.

Icon Description
Open a new query window.
Open a query file.
Save a query to a file.
Insert Template.
Cut.
Copy.
Paste.
Clear the Editor pane.
Find.
Undo.
Result Target Selector. This option has four states: result to
text (display execution plan off), result to text (display
execution plan on), result to grid (execution plan off), result to
grid (execution plan on).
Check syntax only.
Execute a query.
Cancel a query.
Change database.
Display Object Browser in SQL Query Analyzer.
Display the estimated execution plan.
Display the Object Search dialog box.
Display connection properties.
Show/hide the Results pane.
Display the Connect to SQL Server dialog box.
Manage Windows.
Cascade.
Disconnect.
Disconnect All.
Horizontal Tile.
Index Tuning Wizard
Replace Templates
Repeat Search.
T-SQL Help.
Vertical Tile.

Configuring the Toolbar

You can custom configure the toolbar.

To configure the toolbar

1. Right-click the toolbar.

2. In the Customize Toolbar dialog box, add or remove the buttons and separators to be displayed on the toolbar. Use Move
Up and Move Down to rearrange the order.

To restore the toolbar to its default configuration

Click Reset.

SQL Query Analyzer Help (SQL Server 2000)

Transact-SQL Debugger Icons
This table lists the icons displayed in the Transact-SQL Debugger toolbar.

Icon Description
Go
Toggle Breakpoint
Remove All Breakpoints
Step Into
Step Over
Step Out
Run to Cursor
Restart
Stop Debugging
Auto Rollback
Help

SQL Query Analyzer Help (SQL Server 2000)

Status Bar Information
SQL Query Analyzer has five status bars, which provide information about activity or connections in SQL Query Analyzer
windows.

SQL Query Analyzer window - The status bar in the SQL Query Analyzer application window displays:

General information about activity in the window, including descriptions of selected menu commands.

Total number of connections consumed by the current user.

CAPS lock setting.

NUM lock setting.

Insert/Overwrite mode setting.

Query window - The Query window status bar displays:

Status of the current operation.

Name of the current database server.

Current user and server process identifier (ID).

Name of the current database.

Amount of execution time for the last query or the currently executing query.

Number of rows returned. When results are displayed in a grid and the Results pane is the active pane, the grid number is
also shown.

Current position of the insert cursor in the window. When results are displayed in a grid and the Results pane is the active
pane, the position of the current grid cell is shown.

Object Search - The Object Search window status bar displays:

Status of the current operation.

Name of the current database server.

Current user and server process ID.

Amount of search time for the last search or currently executing search.

Number of rows in the search result.

Open Table window - The Open Table window status bar displays:

Name of the current database server.

Current user and server process ID.

Name of the current database.

Number of rows returned.

Position of the current grid cell.

T-SQL Debugger - The Transact-SQL Debugger window status bar displays:

Status of the current operation.

Connected.

Automatic rollback of transactions.

Current position of the insert cursor in the window.

SQL Query Analyzer Help (SQL Server 2000)

Color Coding in SQL Query Analyzer
The code entered in the Editor pane is colored by category. This table lists the default colors and what they indicate.

Color Category
Red Character string
Dark Red Stored Procedure
Green System Table
Dark Green Comment
Magenta System Function
Blue Keyword
Gray Operator

Note You can change these defaults by selecting the Fonts tab on the Options dialog box.

SQL Query Analyzer Help (SQL Server 2000)

SQL Query Analyzer Keyboard Shortcuts
This table displays the keyboard shortcuts available in SQL Query Analyzer.

Activity Shortcut
Bookmarks: Clear all bookmarks. CTRL-SHIFT-F2
Bookmarks: Insert or remove a bookmark (toggle). CTRL+F2
Bookmarks: Move to next bookmark. F2
Bookmarks: Move to previous bookmark. SHIFT+F2
Cancel a query. ALT+BREAK
Connections: Connect. CTRL+O
Connections: Disconnect. CTRL+F4
Connections: Disconnect and close child window. CTRL+F4
Database object information. ALT+F1
Editing: Clear the active Editor pane. CTRL+SHIFT+DEL
Editing: Comment out code. CTRL+SHIFT+C
Editing: Copy. You can also use CTRL+INSERT. CTRL+C
Editing: Cut. You can also use SHIFT+DEL. CTRL+X
Editing: Decrease indent. SHIFT+TAB
Editing: Delete through the end of a line in the Editor pane. CTRL+DEL
Editing: Find. CTRL+F
Editing: Go to a line number. CTRL+G
Editing: Increase indent. TAB
Editing: Make selection lowercase. CTRL+SHIFT+L
Editing: Make selection uppercase. CTRL+SHIFT+U
Editing: Paste. You can also use SHIFT+INSERT. CTRL+V
Editing: Remove comments. CTRL+SHIFT+R
Editing: Repeat last search or find next. F3
Editing: Replace. CTRL+H
Editing: Select all. CTRL+A
Editing: Undo. CTRL+Z
Execute a query. You can also use CTRL+E (for backward
compatibility).

F5

Help for SQL Query Analyzer. F1
Help for the selected Transact-SQL statement. SHIFT+F1
Navigation: Switch between query and result panes. F6
Navigation: Switch panes. Shift+F6
Navigation: Window Selector. CTRL+W
New Query window. CTRL+N
Object Browser (show/hide). F8
Object Search. F4
Parse the query and check syntax. CTRL+F5
Print. CTRL+P
Results: Display results in grid format. CTRL+D
Results: Display results in text format. CTRL+T
Results: Move the splitter. CTRL+B
Results: Save results to file. CTRL+SHIFT+F
Results: Show Results pane (toggle). CTRL+R
Save. CTRL+S
Templates: Insert a template. CTRL+SHIFT+INSERT
Templates: Replace template parameters. CTRL+SHIFT+M
Tuning: Display estimated execution plan. CTRL+L
Tuning: Display execution plan (toggle ON/OFF). CTRL+K
Tuning: Index Tuning Wizard. CTRL+I

Tuning: Show client statistics CTRL+SHIFT+S
Tuning: Show server trace. CTRL+SHIFT+T
Use database. CTRL+U

SQL Query Analyzer Help (SQL Server 2000)

Managing SQL Query Analyzer Windows
In SQL Query Analyzer, you can customize the windows and control the behavior of the Editor pane and the Results pane. You can
also specify fonts to use and manipulate the size of the Results pane relative to the Editor pane.

Specifying input and output options

You can control the look and behavior of the Query window through the Options dialog box, which is accessible from the Tools
menu.

To customize the Editor pane, use the Editor tab in the Options dialog box:

To set the maximum number of undo buffers and the maximum cumulative size of all undo buffers.

To set the tab size (in spaces).

To control whether tabs are saved as tab characters or spaces.

To enable and disable dragging text in the Editor pane.

To specify the default non-Unicode file open format.

To specify whether the Results pane appears on a separate tab in the Query window (tabbed mode) or is displayed below
the Editor pane (splitter mode). If tabbed mode is selected, you can also control whether the Results tab appears
automatically after a query executes, and whether the Query window tabs are displayed at the top or the bottom of the
window.

To customize the Results pane, use the Results tab in the Options dialog box:

To specify the default destination for results. The options are Results to Text, Results to Grids, and Results to File.

To specify the result set format.

To specify the maximum width for result set columns.

To specify whether to include column headers in the output and whether numbers are right-aligned.

To specify whether to scroll the Results pane as results are received.

To control various actions, such as discarding results or playing a sound, when execution completes.

Specifying fonts

Specify fonts used for text in the Editor pane, the Results text pane, the Results grid pane and Open Table window, the Execution
Plan pane, the Statement Profile, the Statistics pane, and the Object Browser. Use the Fonts tab of the Options dialog box,
accessible from the Tools menu, to specify the fonts to use. You can also right-click these panes and select Fonts from the Context
menu.

Moving the splitter

When the Query window is split, you can change the relative size of the Editor pane and the Results pane by positioning the
mouse on the split bar and dragging it up or down.

To position the pointer on the split bar, press CTRL+B.

Showing/Hiding the Results Pane

If the Query window is in split mode, you can toggle the display of the Results pane by clicking the Show Results Pane button on
the toolbar.

SQL Query Analyzer Help (SQL Server 2000)

Managing Options in SQL Query Analyzer
You can control the values of SET options for the current connection and for all new connections. You can also set general
connection options, such as timeout settings, for new connections. To set connection options:

Select Current Connection Properties from the Query menu to control SET options for the current connection.

Select Options from the Tools menu and use the Connection Properties tab to control SET options for all new
connections.

Select Options from the Tools menu and use the Connections tab to set general connection options.

See Also

Using SET Options in SQL Query Analyzer

Specifying General Connection Operations

SQL Query Analyzer Help (SQL Server 2000)

Using SET Options in SQL Query Analyzer
Connection-level options are specified with SET statements. These are default settings for SET options in SQL Query Analyzer.

Option Default Setting
Set nocount OFF
Set noexec OFF
Set parseonly OFF
Set concat_null_yields_null ON
Set rowcount 0
Set ansi_defaults ON
Set arithabort ON
Set showplant_text OFF
Set statistics time OFF
Set statistics 10 OFF
Set ansi_nulls ON
Set ansi_null_dflt_on ON
Set ansi_padding ON
Set ansi_warnings ON
Set cursor_close_on_commit OFF
Set implicit_transactions OFF
Set quoted_identifier ON

Important The SQL Query Analyzer default settings of Set ansi_defaults, Set arithabort, and Set quoted_identifier differ from the
default settings in earlier releases of Microsoft® SQL Server™.

Use the Current Connection Properties dialog box to specify the settings for the current connection. Use the Connection
Properties tab of the Options dialog box to specify the settings for all new connections.

SQL Query Analyzer Help (SQL Server 2000)

Specifying General Connection Operations
You can specify the default settings for general operations, such as time-out values and network package sizes. You can also
specify default behavior for operations, such as whether to use regional settings to display currency, numbers, dates, and time, or
whether to disconnect after each query.

Use the Connections tab of the Options dialog box to define these defaults.

SQL Query Analyzer Help (SQL Server 2000)

Using the Editor Pane
The Editor pane in SQL Query Analyzer is a text-editing window used to enter and execute SQL statements. To enter code, you
can:

Type SQL statements directly in the Editor pane.

Open a saved SQL script. The contents are displayed in the Editor pane, where they can be edited.

Open a template file. The contents are displayed in the Editor pane, where they can be edited.

Use the scripting features of Object Browser to copy SQL statements for the selected database object into the Editor pane.

SQL Query Analyzer Help (SQL Server 2000)

Editing SQL Statements
The Editor pane in SQL Query Analyzer provides various tools to help you create and edit SQL statements, including the standard
editing commands: Undo, Cut, Copy, Paste, and Select All.

You can also find and replace text, move the input cursor to a particular line, insert and remove indentation, force case, and insert
and remove comment marks.

In addition, you can view Transact-SQL Reference topics from Microsoft SQL Server Books Online and copy the syntax into the
Editor pane.

SQL Query Analyzer Help (SQL Server 2000)

Moving and Copying Text
This procedure describes how to move or copy text in the Editor pane.

To move or copy text

1. Select the text to be moved or copied. Click Select All to select all of the text in the Editor pane.

2. Click Cut to move text or Copy to copy text.

3. Click the new location to mark the insertion point for the text.

4. Click Paste.

Alternatively, you can select the text to be moved and drag it to the new location.

Note A drag-and-drop operation can be used within a pane, from one pane to another, and even from SQL Query Analyzer to
other applications. In addition, database objects can be dragged from Object Browser and the Object Search dialog box and
dropped into the query window.

SQL Query Analyzer Help (SQL Server 2000)

Undoing Mistakes
This procedure describes how to undo a mistake in the Editor pane.

To undo a mistake

Click the Undo button or press CTRL+Z.

Each time you click Undo, the previous action is rolled back. The maximum number of undo operations is 20.

SQL Query Analyzer Help (SQL Server 2000)

Clearing the Editor Pane
This procedure describes how to remove all text from the Editor pane.

To remove all text from the Editor pane

Click Clear Query Window, or press CTRL+SHIFT+DEL.

SQL Query Analyzer Help (SQL Server 2000)

Finding and Replacing Text
These procedures describe how to find and replace text in the Editor pane.

To find text

1. Select Find from the Query menu.

2. Enter the text to be found.

3. Specify the search direction.

4. For a case sensitive search, select Match Case.

To replace text

1. Select Replace from the Query menu.

2. Enter the text to be found.

3. Enter the replacement text.

4. Specify the search direction.

5. For a case sensitive search, select Match Case.

6. Replace occurrences individually by clicking Find Next and then Replace.

-Or-

Replace all occurrences by clicking Replace All.

SQL Query Analyzer Help (SQL Server 2000)

Going to a Line Number
This procedure describes how to go to a line number in the Editor pane.

To go to a line number

1. From the Edit menu, click Go to Line.

2. In the Go To dialog box, enter the line number.

If you specify a number greater than the total number of lines available, the destination will be the bottom of the window.

SQL Query Analyzer Help (SQL Server 2000)

Using Bookmarks
You can insert bookmarks on the left side of the Editor pane to help you locate lines in your code.

To insert or remove bookmarks

To insert a bookmark at the current line, press CTRL+F2.

-Or-

To remove the bookmark at the current line, press CTRL+F2.

To remove all bookmarks, press CTRL+SHIFT+F2.

To navigate between bookmarks

Press F2 to move to the next bookmark.

-Or-

Press SHIFT+F2 to move back to the previous bookmark.

SQL Query Analyzer Help (SQL Server 2000)

Forcing the Case of Text
This procedure describes how to force the case of text in the Editor pane.

To force the case of text

1. Select the text for which you want to change case.

2. To make the selected text lowercase, press CTRL+SHIFT+L.

-Or-

To make the selected text uppercase, press CTRL+SHIFT+U.

SQL Query Analyzer Help (SQL Server 2000)

Adding and Removing Indentation
These procedures describe how to change indentation in the Editor pane.

To indent one line of text

1. Set an insertion point to the left of the text to be indented.

2. Press TAB.

To remove indentation from one line of text

1. Make an insertion point to the left of the text.

2. Press SHIFT+TAB.

To add or remove indentation for a block of text

1. Select the text.

2. Press TAB to indent the entire block.

-Or-

Press SHIFT+TAB to remove indentation for the entire block.

SQL Query Analyzer Help (SQL Server 2000)

Adding and Removing Comments
These procedures describe how to add and remove comments in the Editor pane.

To comment out text

1. Select the text to comment out.

2. Press CTRL+SHIFT+C.

To remove comment marks

1. Select the text from which comment marks are to be removed.

2. Press CTRL+SHIFT+R.

SQL Query Analyzer Help (SQL Server 2000)

Viewing Transact-SQL Help
This procedure describes how to view Transact-SQL help.

To view Transact-SQL help

In the Editor pane, select a Transact-SQL statement, function, stored procedure, or other Transact-SQL element, and press
SHIFT+F1 to view information about the selected text.

SQL Query Analyzer Help (SQL Server 2000)

Using SQL Files
 New Information - SQL Server 2000 SP3.

You can save query definitions and other SQL scripts for reuse. The default extension for these files is .sql.

You can also create templates, which are boilerplate scripts used to create objects in a database. The extension for template files is
.tql.

Security Note Never store passwords in a script.

SQL Query Analyzer Help (SQL Server 2000)

Opening SQL files
This procedure describes how to open a SQL script and display code in the Editor pane.

To open a script and display the code in the Editor pane

1. Open a Query window

2. Click Load SQL Script on the toolbar.

3. In the Open Query File dialog box, specify the location and name of the file to be opened.

4. If necessary, specify a file format. If you specify Auto, the appropriate file format is used automatically.

SQL Query Analyzer Help (SQL Server 2000)

Saving SQL Statements to a File
 New Information - SQL Server 2000 SP3.

This procedure describes how to save the contents of the Editor pane to a file.

To save the contents of the Editor pane to a file

1. Make the Editor pane the active pane.

2. Click Save on the toolbar.

3. If the file has never been saved, the Save Query dialog box is displayed. Specify a location, file name, file extension, and file
format.

You can also save result sets to a file by making the Results pane the active pane before saving, or by selecting Results to File
from the Query menu before executing the query.

Security Note Do not store passwords in text files.

SQL Query Analyzer Help (SQL Server 2000)

Using Templates in SQL Query Analyzer
 New Information - SQL Server 2000 SP3.

Templates are boilerplate files containing SQL scripts that help you create objects in the database. Microsoft® SQL Server™ 2000
provides a variety of templates in the Templates\SQL Query Analyzer directory. Among the templates provided are those that
create databases, tables, views, indexes, stored procedures, triggers, statistics, and functions. In addition, there are templates that
help you to manage extended properties, linked servers, logins, roles, and users, and to declare and use cursors.

The template scripts provided with SQL Query Analyzer contain parameters to help you customize the code. Template parameter
definitions use this format:

<parameter_name, data_type, value>

where

parameter_name is the name of the parameter in the script.

data_type is the data type of the parameter.

value is the value that is to replace every occurrence of the parameter in the script.

Use the Replace Template Parameters dialog box to insert values into the script.

Note You can use the Replace Template Parameters dialog box to specify values any time a parameter definition is used in
code. For example, when you execute a function from Object Browser, the function that is written to the Editor pane contains
parameter definitions for any arguments in the function. You can, therefore, use the Replace Template Parameters dialog box
to specify argument values.

To use a template

1. Open a Query window.

2. Click Insert Template on the toolbar.

3. In the Insert Template dialog box, specify the template to open. By default, template files have the extension .tql.

4. When the template is displayed in the Editor pane, select Replace Template Parameters from the Edit menu.

5. In the Replace Template Parameters dialog box, specify values for the parameters.

6. To insert the specified values into the script in the Editor pane, click Replace All.

7. Save the file under a different name.

Security Note Never store passwords in a script.

SQL Query Analyzer Help (SQL Server 2000)

Running Queries in SQL Query Analyzer
There are several ways to run queries in SQL Query Analyzer. You can execute SQL statements entered or loaded into the Editor
pane, or you can use the various methods available for executing stored procedures.

Executing SQL Statements in SQL Query Analyzer

Executing Stored Procedures in SQL Query Analyzer

Canceling a Long-Running Query

Resolving Errors in SQL Query Analyzer

Returning Result Sets in SQL Query Analyzer

SQL Query Analyzer Help (SQL Server 2000)

Executing SQL Statements in SQL Query Analyzer
You can execute a complete script or only selected SQL statements in SQL Query Analyzer.

Execute a complete script by creating or opening the script in the Editor pane and pressing F5.

Execute only selected SQL statements by highlighting the lines of code in the Editor pane and pressing F5.

You can also easily execute a SELECT statement containing a built-in function. Right-click the function in Object Browser, select
Script Object to New Window As, and select Execute. A SELECT statement containing the function is displayed in a new Editor
pane. If the function contains arguments, they are displayed in template parameter format. Press CTRL+SHIFT+M to display the
Replace Template Parameters dialog box and supply values for the function arguments. Press F5 to execute the SELECT
statement.

SQL Query Analyzer Help (SQL Server 2000)

Executing Stored Procedures in SQL Query Analyzer
SQL Query Analyzer provides multiple ways to execute stored procedures.

You can enter the statement to execute the stored procedure directly in the Editor pane and press F5. If the statement that
executes the procedure is the first in the batch, you can omit the EXECUTE (or EXEC) statement; otherwise, EXECUTE is
required.

You can right-click a stored procedure in Object Browser or Object Search dialog box and select Open to invoke the
Execute Procedure dialog box. This dialog box lists any parameters and provides a text box where you specify parameter
values.

SQL Query Analyzer Help (SQL Server 2000)

Canceling a Long-Running Query
Click Cancel Executing Query in the Query menu or press ALT+BREAK. Notification of the cancellation appears in the
Messages pane and in the status bar.

SQL Query Analyzer Help (SQL Server 2000)

Resolving Errors in SQL Query Analyzer
SQL Query Analyzer provides several tools to help you prevent and resolve errors.

Use the color-coding in the Editor pane to help eliminate errors.

Using the default colors as examples, if you type a keyword not displayed in blue, the keyword may be misspelled. If much
of your code is displayed as red, you might have omitted the closing quotation mark for a character string.

To parse syntax without executing the code, click the Parse button.

If an error occurs, double-click the error message to locate the line that contains the error in your code.

To debug stored procedures, use the Transact-SQL Debugger.

SQL Query Analyzer Help (SQL Server 2000)

Returning Result Sets in SQL Query Analyzer
SQL Query Analyzer provides multiple ways for returning result sets.

Within the Query window, you can choose whether the Results pane should be displayed below the Editor pane or on a
separate Results tab.

You can control whether the Results pane is displayed as text or as one or more grids.

You can choose to have the results saved to a file.

If you open a table in Object Browser or from the Object Search dialog box, the results are displayed in the Open Table
window. You can perform insert, update, and delete operations in the Open Table window.

SQL Query Analyzer Help (SQL Server 2000)

Entering Data in SQL Query Analyzer
In addition to the Editor pane of the Query window, in which you can type INSERT, UPDATE, and DELETE statements, SQL Query
Analyzer provides the Open Table window, which is a graphical interface for viewing or modifying data.

From either Object Browser or the Object Search dialog box, right-click the table that contains the data to be updated and select
Open from the Context Menu.

To insert a row

1. Right-click in the Open Table window and select Add from the Context Menu.

An empty row is inserted at the bottom of the window.

2. Fill in the data in the columns of the new row.

To update a row

1. Locate the row to be modified and enter the changes. If you right-click in the cell your are editing, you have access to Undo,
Cut, Copy, Paste, Delete, and Select All commands on the Context menu.

2. Move off the row to save the changes.

To delete a row

Right-click the row to be deleted and select Delete from the Context menu.

SQL Query Analyzer Help (SQL Server 2000)

Printing in SQL Query Analyzer
You can print the contents of the Editor pane or, if text output is specified, the contents of the Results pane.

To print in SQL Query Analyzer

Click the pane to be printed and select Print from the File menu.

SQL Query Analyzer Help (SQL Server 2000)

Analyzing Queries
Among the most important features of SQL Query Analyzer are the tools to help you analyze your queries for optimal
performance. These tools include:

Show Query Execution Plan.

Show Estimated Execution Plan.

Show Server Trace.

Show Client Statistics.

Index Tuning Wizard.

See Also

Viewing the Query Execution Plan

Viewing the Estimated Query Execution Plan

Viewing Server Trace Information

Viewing Client Statistics Information

Tuning Indexes

SQL Query Analyzer Help (SQL Server 2000)

Viewing the Query Execution Plan
1. If there is no query in the query pane, open a saved query or create a new query.

2. On the Query menu, click Show Execution Plan or press CTRL+K to turn it on.

Note This option works only when connected to an instance of Microsoft® SQL Server™ version 7.0 or later.

3. Execute the query by pressing F5, or on the Query menu, click Query Execute.

4. Position the cursor over graphical elements to reveal additional execution plan information.

SQL Query Analyzer Help (SQL Server 2000)

Viewing the Estimated Query Execution Plan
1. If there is no query in the query pane, open a saved query or create a new query.

2. On the Query menu, click Display Estimated Execution Plan or press CTRL+L.

3. If you have referenced temporary objects, no estimated query execution plan will be displayed.

Note This option works only when connected to an instance of Microsoft® SQL Server™ version 7.0 or later.

4. Position the cursor over graphical elements to reveal additional execution plan information.

SQL Query Analyzer Help (SQL Server 2000)

Viewing Server Trace Information
1. Open a saved query or create a new query in the query pane.

2. On the Query menu, click Show Server Trace.

3. Execute the query by pressing F5 or Query Execute from the menu.

4. Click the Trace tab to display trace information.

For more information about events, see Monitoring with SQL Profiler Event Categories.

SQL Query Analyzer Help (SQL Server 2000)

Viewing Client Statistics Information
1. Open a saved query or create a new query in the query pane.

2. On the Query menu, click Show Client Statistics.

3. Execute the query by pressing F5 or on the Query menu, click Query Execute.

4. Click the Statistics tab to display statistics information.

See Also

Query Window Statistics Pane

SQL Query Analyzer Help (SQL Server 2000)

Tuning Indexes
 New Information - SQL Server 2000 SP3.

1. If there is no query in the query pane, open a saved query or create a new query.

2. Select the query text to tune.

3. On the Query menu, click Index Tuning Wizard or press CTRL+I. To perform index tuning, you must be a member of the
sysadmin fixed server role.

Note This option works only when connected to an instance of Microsoft® SQL Server™ version 7.0 or later.

4. Follow the instructions in the Index Tuning Wizard. On the Specify Workload page, select Query Analyzer selection to
tune the query in the Query window. Continue through the wizard pages. The wizard recommends the best index
configuration for the query.

5. When you have completed the steps required to tune your index, you may apply the recommendations immediately,
schedule a job to apply them at a certain time, or save them to a file in the form of a Transact-SQL script.

Security Note Never store passwords in a script.

SQL Query Analyzer Help (SQL Server 2000)

Using Object Browser
Object Browser is a tree-based tool used to navigate the objects in a database. In addition to navigation, Object Browser offers
object scripting, stored procedure execution, and access to table and view objects.

Object Browser consists of two panes:

Objects pane, which lists objects within database and common objects, such as built-in functions and base data types.

Templates pane, which provides access to the Templates directory.

See Also

Adding Objects to Code from Object Browser

Querying from Object Browser

Running Stored Procedures from Object Browser

Editing Objects from Object Browser

Using the Scripting Feature in Object Browser

Setting Extended Properties from Object Browser

SQL Query Analyzer Help (SQL Server 2000)

Adding Objects to Code from Object Browser
Use the drag-and-drop feature of Object Browser to add objects to code in the Editor pane.

To add a single object

1. In Object Browser, expand a server, and then expand a database.

2. Expand a folder, click the object, and then drag the object to the position in the Editor pane.

For example, to build a query that selects the CategoryID column from the Categories table, type SELECT in the Editor pane and
open the folder for the Northwind database. Drag CategoryID to the position following SELECT in the Editor pane.

To add all the objects in a folder

1. In Object Browser, expand a server, and then expand a database.

2. Click the folder, and then drag the folder to the Editor pane.

For example, to build a select list that contains all of the columns in the Category table, drag the Columns folder from the
Category table to the Editor pane.

SQL Query Analyzer Help (SQL Server 2000)

Querying from Object Browser
You can use Object Browser to execute SELECT * queries in SQL Query Analyzer.

To execute a query from Object Browser

1. In Object Browser, expand a server, and then expand a database.

2. Expand a folder, right-click the table, and then click Open.

The query results are displayed in a separate results window.

SQL Query Analyzer Help (SQL Server 2000)

Running Stored Procedures from Object Browser
Use Object Browser to run a stored procedure and be prompted for parameters.

To run a stored procedure

1. In Object Browser, expand a server, and then expand a database.

2. Expand the Stored Procedures folder, right-click the stored procedure, and then click Open to display the Execute
Procedure dialog box.

3. Click a parameter in the Parameters list, and then type a value in the Value box. Do this for each parameter you want to
use.

4. Click Execute.

The EXECUTE statement for the stored procedure is displayed in the Editor pane and the result is displayed in the Results pane.

SQL Query Analyzer Help (SQL Server 2000)

Editing Objects from Object Browser
You can use Object Browser to alter objects in the database.

To edit an object from Object Browser

1. In Object Browser, expand a server, and then expand a database.

2. Right-click the object and click Edit.

An ALTER statement for the selected object is displayed in the Editor pane. For example, if the selected object is a stored
procedure, an ALTER PROCEDURE statement is provided.

3. Use the ALTER statement to specify the changes.

4. Execute the ALTER statement.

To delete objects from Object Browser

Right-click the object, and then click Delete.

Unlike the Edit command, the Delete command does not display a DROP statement for you to modify and execute. Instead, you
are asked to verify that you want to delete the object. If you click OK, the object is deleted.

SQL Query Analyzer Help (SQL Server 2000)

Using the Scripting Feature in Object Browser
Object Browser provides scripting functionality for many of the displayed objects. The operations supported vary depending upon
the type of object. For example, table objects can generate scripts containing SELECT statements, data definition statements (such
as CREATE), or data manipulation statements (such as INSERT). Views can only generate SELECT statements or data definition
statements.

There are three options for scripting destinations:

Script Object to New Window

Script Object to File As

Script Object to Clipboard

For any of these scripting destinations, you can specify the following operations.

Operation Description
Create Generates a CREATE statement for the object.
Alter Generates an ALTER statement.
Drop Generates a DROP statement.
Select Generates a SELECT statement containing all of the tables

columns in the select list
Insert Generates an INSERT statement and provides placeholders for

the values to be inserted.
Update Generates an UPDATE statement and provides placeholders for

values and the search condition.
Delete Generates a DELETE statement and provides a placeholder for

the search condition.
Execute Generates an EXECUTE statement for a stored procedure.

SQL Query Analyzer Help (SQL Server 2000)

Setting Extended Properties from Object Browser
Extended properties are properties that you can define on various objects in the database. Object Browser provides access to the
Extended Property dialog box, where you can view existing properties for the selected object or define new properties.

To view or define extended properties for an object

1. In Object Browser, expand a server, and then expand a database.

2. Right-click the object and then click Extended properties.

To define a new property, enter a name for the property in the name box and a property value in the value box.

SQL Query Analyzer Help (SQL Server 2000)

Using Object Search
Use the object search feature to find objects in the current database server. Object search is accessible through a button on the
toolbar, and through the Object Search command on the Tools menu.

Important The object search feature is not available when connected to an instance of SQL Server 6.5.

To find an object

1. Click the Object Search button to display the Object Search dialog box.

2. In the Object name box, type the name of the object to be found, or use ALL to find all objects of the specified object types.

3. For a case-sensitive search, select the Case-sensitive check box. Case-sensitive searches are valid only if the database
server is case-sensitive.

4. In the Database list, click the name of a particular database or click ALL.

5. In the Hit Limit dialog box, enter the maximum number of search hits.

6. In the Object type check boxes, select one or more types of objects to be located.

7. To locate extended properties associated with the selected object types, select Extended Property.

You can search for all property names or a specific name.

You can search for all property values or a specific value.

8. Click Find Now to execute the search.

The results are displayed in the lower portion of the dialog box.

Note You can drag one or more objects in the results to the Query window. You can also right-click in the results to display the
Context menu, which enables you to open the selected object in the Open Table window, or perform various editing and scripting
activities.

SQL Query Analyzer Help (SQL Server 2000)

Using Shortcuts
SQL Query Analyzer provides various shortcuts for obtaining information and customizing the working environment. You quickly
retrieve information about objects in the current database, create custom shortcuts for queries or stored procedures that you run
frequently, and add commands to Tools menu.

See Also

Getting Database Object Information

Defining Custom Shortcuts

Customizing the Tools Menu

SQL Query Analyzer Help (SQL Server 2000)

Getting Database Object Information
On the Help menu, Database Object Information to view sp_help information for the current database.

To view information about a specific object in the database

1. Type and then highlight the object name in the query pane.

2. On the Help menu, click Database Object Information.

The information is displayed in the Results pane.

SQL Query Analyzer Help (SQL Server 2000)

Defining Custom Shortcuts
SQL Query Analyzer supports customizable keyboard shortcuts used to execute Transact-SQL statements. The following
predefined key combinations cannot be modified:

Key Combination Definition
ALT+F1 sp_help
CTRL+1 sp_who
CTRL+2 sp_lock

To define query shortcuts

1. On the Tools menu, click Customize.

2. In the Customize dialog box, click the Custom tab.

3. Type the Transact-SQL statement to be executed in the column next to a key combination. The statement can be a maximum
of 1,024 characters in length.

For example, the following code executes the sp_autostats stored procedure to enable autostatistics for the Customers
table in the Northwind database.

USE Northwind EXEC sp_autostats 'Customers', 'ON'

This example executes a SELECT statement against the Customers table.

SELECT * from Northwind..Customers

To remove all modifiable shortcuts

Click Reset All.

SQL Query Analyzer Help (SQL Server 2000)

Customizing the Tools Menu
You can customize SQL Query Analyzer by adding commands to the Tools menu. For example, you can add executables like
Notepad or osql, or the names of documents.

To add commands to the Tools menu

1. On the Tools menu, click Customize.

2. In the Customize dialog box, click the Tools tab.

3. Click the add button. In the Menu contents list, type the name to appear on the Tools menu. This might be the name of an
executable or the name of a document to be opened. Use the up and down arrows to position the name in the menu.

4. In the Command box, enter the name and location of the file to be executed. You can use the browse (...) button to find the
directory in which it resides.

For example, to execute osql, enter this:

C:\Program Files\Microsoft SQL Server\80\Tools\Binn\osql.exe

If using Microsoft® Windows NT® and want to specify Notepad, enter this:

C:\WINNT\Notepad.exe

5. Enter any arguments for the command in the Arguments box. For example, if the command is osql, you might specify the
options –Usa -Psapassword.

If the command is Notepad and you want the menu command to invoke a new document, leave this box blank. If you want
to open a specific document in Notepad, specify the name of the document here.

6. In the Initial Directory box, enter the location from which the command will be executed.

SQL Query Analyzer Help (SQL Server 2000)

Using Transact-SQL Debugger
SQL Query Analyzer comes equipped with a Transact-SQL debugger that allows you to control and monitor the execution of
stored procedures. The debugger supports traditional functionality such as setting breakpoints, defining watch expressions, and
single stepping through procedures. This functionality is available when the SQL Server service uses a domain user account.

In a client/server environment, the client workstation running the debugger must be a member of the same domain as the
computer running the corresponding instance of SQL Server.

The Transact-SQL debugger in SQL Query Analyzer supports debugging against Microsoft® SQL Server™ 2000, SQL Server
version 7.0, and SQL Server version 6.5 Service Pack 2.

Note It is not advisable to use the Transact-SQL debugger on a production server. While in step execution mode, the debugger
can lock certain system resources that are needed by other processes.

See Also

Transact-SQL Debugger

Transact-SQL Debugger Icons

SQL Query Analyzer Help (SQL Server 2000)

Starting the Debugger
T-SQL Debugger can only be run from within SQL Query Analyzer. Once started, the debugging interface occupies a window
within that application.

Starting the debugger

There are two methods for starting the debugger. Each method requires that the target procedure be created and stored in a SQL
Server database. The first method employs Object Browser. The second method relies on the Object Search tool.

To start the debugger from Object Browser

1. On the Tools menu, click Object Browser.

2. In Object Browser, click the Objects tab.

3. Double-click to open the database in which your procedure is stored.

4. Double-click to open the Stored Procedures folder.

5. Right-click the stored procedure to debug. A Context menu will appear.

6. Select Debug from the Context menu.

To start the debugger from Object Search

1. On the Tools menu, click Object Search.

2. In the Object Search window, enter the appropriate search parameters required to locate the procedure you are looking
for. Click the Find Now button to display matches.

3. In the results pane of the Object Search window, right-click the name of the stored procedure you wish to debug. A
Context Menu appears.

4. Select Debug from the Context Menu.

When the Transact-SQL Debugger starts, a dialog box appears, prompting you to set the values of input parameter variables. It is
not mandatory that these values be set at this time. You will have the opportunity to make modifications once the debugger's
interface appears. In the dialog box, click Execute to continue with your session.

Note SQL Query Analyzer does not support multiple instances of the debugger. Attempting to debug a second stored procedure
will prompt you to cancel the currently active debugging session.

Due to connection constraints, it is not possible to create a new query while the debugger window is in the foreground. To create
a new query, either bring an existing query window to the foreground or open a new connection to the database.

SQL Query Analyzer Help (SQL Server 2000)

Interface Components
The Transact-SQL debugger interface consists of a tool bar, status bar, and a series of window panes. Many of these components
have dual purposes, serving both as control and monitoring mechanisms.

Only limited functionality may be available from some of these components after a procedure has been completed or aborted.
For example, you may not set breakpoints or scroll between entries in either of the variables windows when the procedure is not
running.

Tool Bar

The toolbar resides at the top of the debugger interface. It consists of a series of buttons that may be used to control the starting,
stopping, and incremental progression of an executing procedure.

Source Code Window

The source code window displays the code from the procedure currently in scope. A yellow arrow indicates the next statement to
be executed. Red bullets mark statements before which breakpoints have been set.

Parameter Variables Window

The parameter variables window displays the name, value, and type of each input and output variable for the current procedure.
The values displayed here change as a running procedure sets or modifies its variables.

Parameter variables may be manually modified at any time while a procedure executes. Click a value to change and type the
replacement text.

Local Variables Window

The behavior of the local variables window is analogous to that of the parameter variables window. By default, this window
contains only variables defined within the current scope.

While executing within a nested procedure call, it is still possible to access the scope of higher level procedures. Click on any of
the procedure names listed in the callstack window to view or modify elements of calling procedures.

Callstack Window

The callstack window shows a list of active, or uncompleted, procedure calls. The top entry in the list is called the current
procedure. This procedure determines the scope of variables in the local and parameter variable windows.

The callstack window helps trace the operation of a stored procedure as it executes a series of nested procedure calls. For
example, a first procedure can call a second procedure, which in turn can call a third procedure. Nested calls such as these can
complicate the debugging process. The callstack window keeps track of past calls and the current procedure.

The currently executing procedure can be identified by the presence of a yellow arrow in source code window. In order to view the
point from which the parent procedure called the current one, click on the name listed below the current procedure in the
callstack window. The source code window will then display the parent procedure's source along with a green arrow pointing to
the line of code that called the current procedure.

Results Text Window

The results text window is used to display any output from your stored procedure. This area is also used to display server error
messages.

Status Bar

The status bar, located at the bottom of the debugger's interface, contains read-only information about the current session. It lists
the current state of execution (running, completed, or aborted), which host the debugger is connected to, which user it is logged
on as, and the position of the cursor within the source code window.

SQL Query Analyzer Help (SQL Server 2000)

SQL Query Analyzer Dialog Boxes and Windows
This section provides information about SQL Query Analyzer dialog boxes:

Connect to SQL Server

Create New Index

Create Statistics

Current Connection Properties

Customize

Customize Toolbar

Edit Existing Index

Edit Transact-SQL Script

Execute Procedure

Manage Indexes

Manage Statistics

New

Object Search

Options

Select Database

T-SQL Debugger

Template Parameter Value

Update Statistics

Window Selector

SQL Query Analyzer Help (SQL Server 2000)

Connect to SQL Server Dialog Box
Use the Connect to SQL Server dialog box to connect to a Microsoft® SQL Server™ database.

Options

SQL Server

Specify the name of an instance of SQL Server to which you want to connect. In Microsoft Windows NT®, you must have the
required system permissions and rights to start SQL Server either locally or remotely. On computers running the Microsoft
Windows® 95 or Windows 98 operating system, every user can start SQL Server locally. The operating system prevents SQL
Server from being started remotely.

Start SQL Server if it is stopped

Start an instance of SQL Server if it is stopped.

(...)

Display the list of active SQL Server database servers on the network. This list only displays instances of SQL Server on Windows
NT. This functionality is not available on computers running the Microsoft Windows 95 or Windows 98 operating system.

Connect using:

Specify the type of authentication to use when connecting to the database server.

Windows NT
authentication

Specify that SQL Server will use the Windows NT user
information to validate the user. This option is only available
when connecting to an instance of SQL Server on Windows
NT. The client needs to be part of a Windows NT domain or
workgroup. The user needs to be validated as a Windows NT
user before access is granted.

SQL Server
authentication

Specify the use of standard SQL Server security validation.
This is the default and only available option for an instance of
SQL Server on the Windows 95 or Windows 98 operating
system. It is optional for an instance of SQL Server on
Windows NT. The login must be added to the SQL Server
before a user can log in.

Login name Specify a login recognized in SQL Server.
Password Specify the password for the login name.

SQL Query Analyzer Help (SQL Server 2000)

Create Missing Statistics Dialog Box
Use the Create Missing Statistics dialog box to create missing statistics. SQL Query Analyzer suggests additional indexes and
statistics on nonindexed columns that would improve the query optimizer's ability to process a query. In particular, SQL Query
Analyzer displays missing statistics so that they can be created.

Options

Statistics name

View the name of the statistic missing from the selected column.

Column name

View the column missing the specified statistics.

Column type

View the type of column missing the specified statistics.

Amount of data to sample

Specify how much data to sample for the statistic.

Default Select to sample the default amount of data for the
selected statistic.

Sample all the data Specify to sample all of the data for the selected
statistic.

Sample % of the data Specify the percentage of the data to sample for the
selected statistic.

Do not automatically recompute statistics

Specify to not automatically recompute statistics. This is not recommended.

Edit SQL

Open the Edit Transact-SQL Script dialog box to edit the CREATE STATISTICS statement.

SQL Query Analyzer Help (SQL Server 2000)

Create Statistics Dialog Box
Use the Create Statistics dialog box to define statistics on the database and table specified in the Manage Statistics dialog box.

Options

Name

Specify the name of the statistic to create.

Column

Specify the columns to include in the new statistic.

Data type

View the data type of the column.

Amount of data to sample

Specify how much data to sample for the statistic.

Default Select to sample the default amount of data for the
statistic.

Sample % of the data Specify the percentage of the data to sample for
the statistic.

Sample all the data Specify to sample all of the data for the statistic.

Do not automatically recompute statistics

Specify to not automatically recompute statistics. This is not recommended.

Edit SQL

Open the Edit Transact-SQL Script dialog box to edit the CREATE STATISTICS statement.

SQL Query Analyzer Help (SQL Server 2000)

Current Connection Properties Dialog box
Use the Current Connection Options dialog box to specify the settings for the current connection.

Note To specify the connection properties for all new connections, use the Connection Properties tab on the Options dialog
box.

Options

Set nocount

Suppress the rowcount message. This setting reflects the SET NOCOUNT ON/OFF state set in a query or stored procedure. For
more information, see SET NOCOUNT in SQL Server Books Online. The default setting is OFF.

Set noexec

Compile, but do not execute the statements. This setting is useful for validating syntax and object names. It is also useful for
debugging statements that may be part of a larger batch of statements. The default setting is OFF.

Set parseonly

Parse the syntax, but do not compile or execute the statements. This option does not validate object names. The default for this
setting is OFF.

Set concat_null_yields_null

Return NULL if any operand in a concatenation operation is NULL.

Set rowcount

Return the specified number of rows and stop the query. The default (0) returns all rows.

Set arithabort

Terminate a query when an overflow or divide-by-zero error occurs during query execution.

Set showplan_text

Show execution information, but do not execute.

Set statistics time

Show the number of milliseconds required to parse, compile, and execute statements. The default setting is OFF.

Set statistics IO

Show information about disk activity. The information includes the name of the table used, the number of scans performed, the
number of pages read from the data cache and the disk, and the number of pages placed into the cache for the query. The default
setting is OFF.

Show stats I/O

Specify that the information regarding disk activity generated by each query statement be shown.

Set ansi_defaults

Set the options in this group to comply with SQL-92.

Set ansi nulls Return UNKNOWN if a comparison operator has
any null expressions. This option sets the
ANSI_NULLS option to ON. The ANSI syntax "IS
NULL" or "IS NOT NULL" must be used for all null
comparisons. If the ANSI_NULLS option is OFF,
comparisons of all data against a null value evaluate
to TRUE if the data value is NULL.

Set ansi_null_dflt_on Overrides the default nullability for new columns.

Set ansi_padding Do not automatically truncate trailing blanks and
trailing zeros. This option sets the ANSI_PADDING
option to ON. Trailing blanks on varchar values and
trailing zeroes on varbinary values are not
truncated automatically.

Set ansi_warnings Issue warnings on certain error conditions. This
option sets the ANSI_WARNINGS option to ON.
SQL Server issues warning messages for conditions
that violate ANSI rules but do not violate the rules
of Transact-SQL.

Set
cursor_close_on_commit

Close cursors when a transaction commits.

Set implicit_transactions Begin transactions automatically, without explicit
BEGIN TRANSACTION statements.

Set quoted_identifier Interpret characters enclosed in double quotation
marks as identifiers. This option sets the
QUOTED_IDENTIFIERS option to ON when the SQL
Server ODBC driver connects. The default for this
setting is OFF. For more information, see SET
QUOTED_IDENTIFIERS.

Reset All

Restore all connection properties to their initial settings.

SQL Query Analyzer Help (SQL Server 2000)

Customize Dialog Box
Use the tabs on this dialog box to define keyboard shortcuts and add commands to the Tools menu.

Custom Tab, Customize Dialog Box

Tools Tab, Customize Dialog Box

SQL Query Analyzer Help (SQL Server 2000)

Custom Tab, Customize Dialog Box
Use the Custom tab of the Customize dialog box to define up to twelve keyboard shortcuts for stored procedures.

Options

Shortcut

Is the keystroke combination used to run a stored procedure or execute a SQL statement.

Stored Procedure

Specify the stored procedure or SQL statement to run when the shortcuts are used. sp_help, sp_who, and sp_lock are defined by
default.

Reset All

Removes all modifiable shortcuts.

SQL Query Analyzer Help (SQL Server 2000)

Tools Tab, Customize Dialog Box
 New Information - SQL Server 2000 SP3.

Use the Tools tab of the Customize dialog box to add commands to the Tools menu.

Options

Menu contents

Specify the text that is to appear on the Tools menu. This might be the name of an executable or the name of a document to be
opened.

Add Menu Item button

Add the selected item to the Tools menu.

Remove Menu Item button

Remove the selected item from the Tools menu.

Up arrow and Down arrow

Change the position of the selected item on the Tools menu.

Command

Specify the name and location of the file to be executed. For example, to execute osql, enter:

C:\Program Files\Microsoft SQL Server\80\Tools\Binn\osql.exe

Arguments

Specify any arguments for the command. For example, if the command is osql, you might specify the option –E to establish a
trusted connection.

Initial directory

Specify the location from which the command will be executed.

SQL Query Analyzer Help (SQL Server 2000)

Customize Toolbar Dialog Box
Use the Customize Toolbar dialog box to specify the buttons that appear on the toolbar.

Available toolbar buttons

List the buttons that can be placed on the toolbar.

Current toolbar buttons

List the buttons on the toolbar.

Add

Move the selected button in the Available toolbar buttons list to the Current toolbar buttons list.

Remove

Move the selected button in the Current toolbar buttons list back to the Available toolbar buttons list.

Reset

Restore the toolbar to its initial state.

SQL Query Analyzer Help (SQL Server 2000)

Edit Transact-SQL Script Dialog Box
Use the Edit Transact-SQL Script dialog box to edit the SQL statements generated by the index management and statistics
management features.

Options

Parse

Parses, but does not execute, the SQL in the text box.

Execute

Executes the SQL in the text box.

SQL Query Analyzer Help (SQL Server 2000)

Debug Procedure Dialog Box
Use the Debug Procedure dialog box to specify parameter values and debug a stored procedure.

Options

Procedures

Select the stored procedure to be debugged.

Parameters

List the parameters defined for the stored procedure.

Data type

Show the data type of the selected parameter.

Direction

Show whether the selected parameter is an input or output parameter.

Value

Specify a value for the selected parameter.

Set to null

Specify a null value for the selected parameter.

Auto roll back

Automatically rolls back all work performed during execution of the procedure.

Execute

Debug the stored procedure using the specified values.

SQL Query Analyzer Help (SQL Server 2000)

Execute Procedure Dialog Box
Use the Execute Procedure dialog box to specify parameter values and execute a stored procedure.

Options

Procedures

Select the stored procedure to be executed.

Parameters

List the parameters defined for the stored procedure.

Data type

Show the data type of the selected parameter.

Direction

Show whether the selected parameter is an input or output parameter.

Value

Specify a value for the selected parameter.

Set to null

Specify a null value for the selected parameter.

Execute

Execute the stored procedure using the specified values.

Copy

Using the specified values, produce the Transact-SQL statements used to invoke the stored procedure, and copy those statements
to the clipboard.

SQL Query Analyzer Help (SQL Server 2000)

Extended Property Dialog Box
Use the Extended Property dialog box to define extended properties on objects in the database. These extended properties can
be used to store application-specific or site-specific information about the objects.

Options

Object name

Is the name of the object.

Name

Specify the name of a property.

Value

Specify the value for a property.

Add button

Add a property to the list.

Remove button

Remove a property from the list.

Apply

Apply the displayed extended properties to the object.

Refresh

Discard unapplied properties and values.

See Also

Using Extended Properties on Database Objects

SQL Query Analyzer Help (SQL Server 2000)

Index Dialog Box
Use the Create New Index and Edit Existing Index dialog boxes to define and modify indexes on the database and table
specified in the Manage Indexes dialog box.

Options

Index name

Specify the name of the index to create or edit.

Column

Specify or change the columns in the selected index.

Sort Order

Specify or change the sort order for the column. The default order is descending.

Data type

View the data type of the column.

Length

Display the length of the selected column.

Nullable

Display whether the selected column is nullable.

Precision

Display the precision of the selected column.

Scale

Display the scale of the selected column.

Change column order

Change the position of the column in the index.

Move Up Move the selected column up one.
Move Down Move the selected column down one.

Index options

Specify the type of index and other index options.

Clustered index Specify a clustered index.
Unique values Specify to index the columns by unique values.
Ignore duplicate values Specify to ignore duplicate values.
Do not recompute statistics
(not recommended)

Specify to not recompute the statistics of the
index. This is not recommended.

File group Specify the filegroup of the index.
Pad index Specify to pad the index. Padding the index leaves

space on each interior node of the index.
Drop existing Specify to delete any existing index of the same

name before creating the new index.
Fill factor Specify how full SQL Server should make the leaf

level of each index page during index creation.

Edit SQL

Open the Edit Transact-SQL Script dialog box where you can edit the CREATE INDEX or ALTER INDEX statement.

SQL Query Analyzer Help (SQL Server 2000)

Manage Indexes Dialog Box
Use the Manage Indexes dialog box to select the database and table or view for which you want to create, edit, or delete indexes.

Options

Database

Specify the database.

Table/view

Specify the table or view for the index.

Include system objects

Specify to include system objects in the list of tables and views.

Index

Specify an existing index in the selected database and table or view.

Clustered

Indicates whether the existing index is clustered.

Columns

Indicates the columns on which the index is based.

New

Open the Create New Index dialog box to define a new index on the selected database and table.

Edit

Edit the selected index in the Edit Existing Index dialog box.

Delete

Drop the selected index on the selected database and table.

SQL Query Analyzer Help (SQL Server 2000)

Manage Statistics Dialog Box
Use the Manage Statistics dialog box to select the database and table or view for which you want to create, edit, or delete
statistics.

Options

Database

Specify the database.

Table/view

Specify the table or view for which to create, edit, or delete statistics.

Include system objects

Specify to include system objects in the list of tables and views.

Name

Lists the names of existing statistics.

Columns

Shows the columns on which existing statistics are based.

New

Open the Create Statistics dialog box to define a new statistic.

Update

Update the selected statistic in the Update Statistics dialog box.

Delete

Delete the selected statistic.

SQL Query Analyzer Help (SQL Server 2000)

New Dialog Box
Use the General tab of the New dialog box to open a template or a blank Query window. Use the options to control the display of
template folders and files in the dialog box.

Options

Up One Level

Display the contents of the folder above the current level.

Large Icons

Display the template folders and files as large icons.

List

Display the template folders and files in a multi-column list.

Details

Display the template folders and files in a list that provides details such as date modified and size.

SQL Query Analyzer Help (SQL Server 2000)

Object Search Dialog Box
Use the Object Search dialog box to locate objects in the current database server.

Options

Object name

Specify the name of the object to find.

Case sensitive

Specify a case-sensitive search, regardless of the case-sensitive setting of the database server.

Database

Specify the database to be searched or specify all databases.

Hit limit

Specify the maximum number of items to return.

All object types

Consider all object types when performing the search.

System table

Search for system tables.

User table

Search for user tables.

View

Search for views.

Stored procedure

Search for stored procedures.

User defined function

Search for user defined functions.

Column

Search for columns.

Index

Search for indexes.

Trigger

Search for triggers.

Extended procedure

Search for extended stored procedures.

DRI constraint

Search for declarative referential integrity constraints.

Extended property search

Search for extended properties.

Property name Specify the name of the property to find.
Property value Specify the property value to find.

Find Now

Begin the search operation. The search results are displayed in the lower part of the window.

Note Right-click the results to display the Context Menu, which enables you to open the selected object in the Open Table
window, or perform various editing and scripting activities.

New Search

Clear the selected items so new search criteria can be specified.

SQL Query Analyzer Help (SQL Server 2000)

Options Dialog Box
Use the tabs on the Options dialog box to specify file locations and other configuration settings, configure the Editor pane and
the Results pane, specify general connection options, specify SET options, and specify the fonts used.

General Tab, Options Dialog Box

Editor Tab, Options Dialog Box

Results Tab, Options Dialog Box

Connections Tab, Options Dialog Box

Connection Properties Tab, Options Dialog Box

Fonts Tab, Options Dialog Box

Scripting Tab, Options Dialog Box

SQL Query Analyzer Help (SQL Server 2000)

General Tab, Options Dialog Box
Use the General tab on the Options dialog box to specify file locations, file extensions, and other configuration settings.

Options

Query file directory

Specify the default location for query files.

Result file directory

Specify the default location for results files.

Template file directory

Specify the default location for template files.

Query file extension

Specify the default extension for query files.

Results file extension

Specify the default extension for results files.

Template file extension

Specify the default extension for template files.

Mark SQL Query Analyzer as the default editor for query file extensions

Specify that SQL Query Analyzer is the default editor for query files.

Do not prompt for unsaved files on closure

Specify that files will be closed without asking whether they should be saved.

Load

Load a file containing configuration settings.

Save

Save current configuration file settings for backup purposes or for transfer to another computer.

SQL Query Analyzer Help (SQL Server 2000)

Editor Tab, Options Dialog Box
Use the Editor tab on the Options dialog box to configure the Editor pane.

Options

Number of Undo buffers

Specify the number of undo operations that can be performed.

Max Undo buffer size

Specify the total size of all undo buffers.

Undo buffer limit handling

Specify how undo buffer limitations are handled.

Tab size (in spaces)

Specify the number of spaces to indent when the tab key is used.

Save tabs as spaces

Specify whether tabs are saved as spaces or as tab characters.

Disable dragging text within editor

Control whether text can be dragged in the Editor pane.

Default (non-Unicode) file open format

Specify the default file format.

Tabbed mode (vs. Split mode)

Specify whether query results are displayed on separate tabs (Tabbed mode) or all in the lower half of the Query window.

Switch to Results tab after query executes

Specify whether the Results tab is displayed automatically when a query is executed. If this is not enabled, you must select the
Results tab manually.

Show tabs on top

Specify whether the window tabs are displayed at the top or bottom of the window.

SQL Query Analyzer Help (SQL Server 2000)

Results Tab, Options Dialog Box
Use the Results tab on the Options dialog box to configure the Results pane. An asterisk (*) indicates that the option does not
apply to the results to grid feature.

Options

Default results target

Specify the default type of results output.

Result output format

Specify the format for the results: Column Aligned, Comma Separated (CSV), Tab Delimited, Space Delimited, Other
Delimiter.

Delimiter

Specify the delimiter character if Other Delimited is selected.

Maximum characters per column (*)

Specify the maximum number of characters returned in an output column. This setting also affects the behavior of the Transact-
SQL Debugger window.

Print column headers

Specify whether to include column headings in the output.

Output query

Specify that the first three lines of a query appear in the Results pane. The default for this setting is OFF.

Discard results

Specify that query results are discarded.

Scroll results as received (*)

Specify that the results should be scrolled as they are returned.

Right-align numeric (*)

Specify that numbers should be right-aligned.

When a query batch completes:

Specify that a signal should be given when a query batch finishes executing.

Play the Windows message beep

Specify that the Windows message beeps when the batch completes.

Play this WAV file

Specify that a .wav file sounds when the batch completes.

SQL Query Analyzer Help (SQL Server 2000)

Connections Tab, Options Dialog Box
Use the Connections tab on the Options dialog box to configure general connection settings.

Options

Login timeout (seconds)

Specify the amount of time to wait for a connection before timing out. The connection timeout applies only after Query Analyzer
has searched every computer on the network for the requested server.

Network package size (bytes)

Specify the network package size.

Query timeout (seconds)

Specify the amount of time a query can process before timing out.

Lock timeout (milliseconds.)

Specify the amount of time to wait for a lock before timing out.

Batch separator

Specify the word or character that can be used to separate batches.

Parse ODBC message prefixes

Specify that ODBC prefixes should be parsed.

Perform translation for character data

Specify that translation should be performed for character data.

Use regional settings when displaying currency, number, dates and times

Specify that regional settings should be used for currency, numbers, dates, and times.

Disconnect after query executes

Specify that the connection should be dropped after the query executes.

Parse ODBC message prefixes

Specify to parse ODBC message prefixes. When this option is selected the prefix [Microsoft][ODBC SQL Server Driver][SQL
Server] is removed from the ODBC error messages. If the option is OFF, the error messages are presented. The default for this
setting is ON.

Note This option works only when connected to an instance of SQL Server version 4.21a or later.

T-SQL batch separator

Specify the Transact-SQL command to separate batches. The default for this setting is GO.

Note This option works only when connected to an instance of SQL Server 4.21a or later.

Query time-out (seconds)

Specify the number of seconds to wait for any request on the connection to complete before returning to the application. When
this time is exceeded, the client prompts the user to continue waiting. The default is 0, which indicates an infinite wait or no time-
out.

Note This option works only when connected to an instance of SQL Server 4.21a or later.

Change the language of SQL Server system messages to

Specify the language to use for system messages sent from SQL Server to the client. The list presented is the actual list of possible
languages present on a given server. However, the extensive list of languages is only available when connecting to a Microsoft®
SQL Server™ version 7.0 or later. SQL Server version 6.5 and earlier support only English, French, German, and Japanese.

Note This option works only when connected to an instance of SQL Server 4.21a or later.

Perform translation for character data

Specify to perform translations for character data. Turning on this setting causes the ODBC driver to translate characters between
the client and server code pages as data is exchanged. The attribute only affects data stored in SQL Server char, varchar, and text
columns. When the translate option is OFF, the driver does not translate characters from one code page to another in character
data exchanged between the client and the server. The driver configures the character translation automatically, determining the
code page installed on the server in use by the client. The default for this setting is ON.

Note This option works only when connected to an instance of SQL Server 4.21a or later.

Use regional settings when outputting currency, number, dates, and times

Specify to use regional settings when converting numeric, date, time, and currency data to a string. Turning this setting to ON
causes the ODBC driver to respect the local client setting when converting numeric, date, time, and currency values to character
strings. The conversion is from SQL Server native data types to character strings only. When the setting is OFF, the driver does not
convert numeric, date, time, and currency data to character string data using the client locale setting. The conversion setting is
only applicable to output conversion and is only visible when currency, numeric, date, or time values are converted to character
strings (which is always the case with Query Analyzer). The default for this setting is OFF.

Note This option works only when connected to an instance of SQL Server 4.21a or later.

SQL Query Analyzer Help (SQL Server 2000)

Connection Properties Tab, Options Dialog Box
Use the Connection Properties tab on the Options dialog box to specify SET options for all new connections.

Note The options on the Connection Properties tab of the Options dialog box are the same as those on the Current
Connection Properties dialog box. However, connection properties set in the Options dialog box affect new connections.
Options set in the Current Connection Properties dialog box affect only the current connection.

Options

Set nocount

Suppress the rowcount message. This setting reflects the SET NOCOUNT ON/OFF state set in a query or stored procedure. For
more information, see SET NOCOUNT in SQL Server Books Online. The default setting is OFF.

Set noexec

Compile, but do not execute, the statements. This setting is useful for validating syntax and object names. It is also useful for
debugging statements that may be part of a larger batch of statements. The default setting is OFF.

Set parseonly

Parse the syntax but do not compile or execute the statements. This option does not validate object names. The default for this
setting is OFF.

Set concat_null_yields_null

Return NULL if any operand in a concatenation operation is NULL.

Set rowcount

Return the specified number of rows and stops the query. The default (0) returns all rows.

Set arithabort

Terminate a query when an overflow or divide-by-zero error occurs during query execution.

Set showplan_text

Show execution information but do not execute.

Set statistics time

Show the number of milliseconds required to parse, compile, and execute statements. The default setting is OFF.

Set statistics IO

Show information about disk activity. The information includes the name of the table being used, the number of scans performed,
the number of pages read from the data cache and the disk, and the number of pages placed into the cache for the query. The
default setting is OFF.

Show stats I/O

Specify that the information regarding disk activity generated by each query statement be shown.

Set ansi_defaults

Set the options in this group to comply with SQL-92.

Set ansi nulls Return UNKNOWN if a comparison operator has
any null expressions. This option sets the
ANSI_NULLS option to ON. The ANSI syntax "IS
NULL" or "IS NOT NULL" must be used for all null
comparisons. If the ANSI_NULLS option is OFF,
comparisons of all data against a null value evaluate
to TRUE if the data value is NULL.

Set ansi_null_dflt_on Overrides the default nullability for new columns.

Set ansi_padding Do not automatically truncate trailing blanks and
trailing zeros. This option sets the ANSI_PADDING
option to ON. Trailing blanks on varchar values and
trailing zeroes on varbinary values are not
truncated automatically.

Set ansi_warnings Issue warnings on certain error conditions. This
option sets the ANSI_WARNINGS option to ON.
SQL Server issues warning messages for conditions
that violate ANSI rules but do no violate the rules of
Transact-SQL.

Set
cursor_close_on_commit

Close cursors when a transaction commits.

Set implicit_transactions Begin transactions automatically, without explicit
BEGIN TRANSACTION statements.

Set quoted_identifier Interpret characters enclosed in double quotation
marks as identifiers. This option sets the
QUOTED_IDENTIFIERS option to ON when the SQL
Server ODBC driver connects. The default for this
setting is OFF. For more information, see SET
QUOTED_IDENTIFIERS in SQL Server Books Online.

Reset All

Restore all connection properties to their initial settings.

SQL Query Analyzer Help (SQL Server 2000)

Fonts Tab, Options Dialog Box
Use the Fonts tab on the Options dialog box to control the fonts used on SQL Query Analyzer elements. These elements include:

Editor

Results Text

Results Grid/Open Table

Showplan

Statement Profile

Client Statistics

Object Browser

You can specify a font and size to be used for all components in SQL Query Analyzer. In addition, you can specify different colors
for the various types of text that appear in the Editor pane.

Options

Text (Query characters)

Specify the format of alphabetic text.

Text Selection (Query characters)

Specify the format of query text when it is selected.

Keyword (Query characters)

Specify the format of Transact-SQL keywords.

Stored Procedure (Query characters)

Specify the format of stored procedures.

System table (Query characters)

Specify the format of system tables.

Global variable (Query characters)

Specify the format of global variables.

Comment (Query characters)

Specify the format of comments within a Transact-SQL script.

Number (Query characters)

Specify the format of numeric text.

String (Query characters)

Specify the format of alphanumeric text contained within single quotation marks.

Operator (Query characters)

Specify the format of symbols used to perform mathematical computations or comparisons between columns or variables.
Operators are classified as Arithmetic, Bitwise, Comparison, or Join.

Foreground

Specify the foreground character color for the content type selected in the Color box.

Background

Specify the background color for the content type selected in the Color box.

Font

Specify the font for the content type selected in the Color box.

Size

Specify the point size of the content type selected in the Color box.

Sample

Display the query characters in the selected format.

Reset All

Reset all options to their original default values.

SQL Query Analyzer Help (SQL Server 2000)

Scripting Tab, Options Dialog Box
In the object browser, you can script the creation of objects. Use the Scripting tab on the Options dialog box to set scripting
options and tailor scripted output. Available options include:

Script Formatting Options

Include descriptive headers in the script.

Adds a /*...*/ delimited comment to the scripted output. The comment includes the full name of the object, and the creation time
of the script.

Prefix the script with a check for existence. When script is executed, component is created only if it does not exist.

Adds statements to the script that check for the object's existence. If the object exists, the script does not attempt to create it.

Identifier delimiter

Allows you to tailor the format of scripted identifiers for compatibility with Microsoft® SQL Server™ version 6.5, SQL Server 7.0
or SQL Server 2000. Options include:

Version dependent defaults

None

[] -- 7.0 compatible quoted identifier

"" -- 6.5 compatible quoted identifier

Do not use a command terminator.

Omits the 'GO' terminator from scripted output. If this option is not selected, each Transact-SQL statement will be terminated with
a 'GO' command.

Only script 7.0 compatible features.

Only include SQL Server version 7.0 compatible options in scripted output.

Do not script the collation clause if source is an instance of SQL Server version 7.0 or later.

Do not script the collation clause if source is an instance of SQL Server version 7.0 or later.

Generate Transact-SQL to remove referenced component. Script tests for existence prior to attempt to remove
component.

Adds statements to the script that test for existence of the component and conditionally remove the component before re-
creating it.

Include extended property scripting as part of object scripting.

If the object has extended properties associated with it, the appropriate calls to sp_addextendedproperty will be appended to
the end of the script to restore any previously associated extended properties.

Do not include 'ON <filegroup>' clause directing filegroup use.

Do not include 'ON <filegroup>' clause directing filegroup use.

Script object-level permissions.

Adds statements to the script that restores any special privileges associated with the object.

Table Scripting Options

Qualify object name by its owner.

Adds current owner name to object name syntax. (for example, syscomments becomes dbo.syscomments).

Convert specification of user-defined data types to the appropriate SQL Server base data type.

Converts user-defined data types to the SQL Server supplied data types (for example, decimal, int, char, varchar) on which the

user-defined data types are based.

Do not include any clauses defining declarative referential integrity constraints.

Do not include any clauses defining declarative referential integrity constraints in the scripted output.

Do not include definition of identity property, seed, and increment.

Removes the IDENTITY property from column definitions in the table creation command. For more information, see IDENTITY
(Property).

Generate SET ANSI_PADDING ON and SET ANSI_PADDING OFF statements before CREATE TABLE statements.

Prefixes the table creation command with a SET ANSI_PADDING statement. For more information, see SET ANSI_PADDING.

SQL Query Analyzer Help (SQL Server 2000)

Select Database Dialog Box
Use the Select Database dialog box to specify the database context for the active Query window. The dialog box provides a list of
the databases in the current database server.

Options

Name

Show the name of the database. The current database appears in blue.

Compatibility Level

Identifies the current compatibility level of the database.

Status

Show the current state of the database, such as whether the database is offline or in single-user mode. If this column is empty, the
database is in normal operating mode.

Refresh

Refresh the list.

SQL Query Analyzer Help (SQL Server 2000)

Replace Template Parameters Dialog Box
 New Information - SQL Server 2000 SP3.

Use the Replace Template Parameters dialog box to specify values for parameters in stored procedures or functions.

Options

Parameter

List the parameters in a stored procedure or function.

Type

Identify the data type of the template parameters.

Value

Specify a value for the selected parameter.

Security Note Credentials may be echoed to the user's screen during execution.

Replace All

Insert the specified parameter values into the code in the Editor pane.

SQL Query Analyzer Help (SQL Server 2000)

Update Statistics Dialog Box
Use the Update Statistics dialog box modify statistics on the database and table specified in the Manage Statistics dialog box.

Options

Name

View the name of the statistic to update.

Columns

View the columns to include in the selected statistic.

Amount of data to sample

Specify how much data to sample for the statistic.

Default Select to sample the default amount of
data for the statistic.

Sample % of the data Specify the percentage of the data to
sample for the statistic.

Sample all the data Specify to sample all of the data for the
statistic.

Sample rows Specify the number of rows to sample for
the selected statistic.

Update statistics options

Specify additional statistics options.

Include columns Specify to include columns in the selected
statistic.

Do not automatically recompute
statistics

Specify to not automatically recompute
statistics. This is not recommended.

Edit SQL

Open the Edit Transact-SQL Script dialog box to edit the UPDATE STATISTICS statement.

SQL Query Analyzer Help (SQL Server 2000)

Window Selector Dialog Box
Use the Window Selector dialog box to navigate windows in SQL Query Analyzer.

Options

Select window(s)

List the windows that are open in SQL Query Analyzer. The active window appears in blue. The list box displays this information
about each window.

Column Description
Window Type The type of window, such as Query Window, Transact-

SQL Debugger, or Object Search.
Server Database server.
Database Database context for the window.
User Login that opened the window.
Description Information about the window. Information includes the

name of an unsaved window, the name and path of a
saved window, and the name of a stored procedure in
the Transact-SQL Debugger.

Activate

Make the selected window the active window and close the dialog box.

Close Window(s)

Close the selected windows.

Save

Save the contents of the selected window to a file.

SQL Query Analyzer Help (SQL Server 2000)

Transact-SQL Debugger
The Transact-SQL Debugger window displays the text of the stored procedure to be debugged and provides the following
debugging options.

Option Description
Go Runs the stored procedure in debugging mode.
Toggle Breakpoint Sets or removes a breakpoint at the current line. You

cannot set a breakpoint on lines containing
nonexecutable code such as comments, declaration
statements, or blank lines.

Remove All Breakpoints Clears all breakpoints in your code.
Step Into Executes one code statement at a time. Step Into executes

the statement at the current execution point. If the
statement is a call to a procedure, the next statement
displayed is the first statement in the procedure.

Step Over Executes one code statement at a time. If the current
statement contains a call to a procedure, Step Over
executes the procedure as a unit, and then steps to the
next statement in the current procedure. Therefore, the
next statement displayed is the next statement in the
current procedure regardless of whether the current
statement is a call to another procedure.

Step Out Executes the remaining lines of a function in which the
current execution point lies. The next statement displayed
is the statement following the procedure call. All of the
code is executed between the current and the final
execution points.

Run to Cursor Specifies a statement further down in your code where
you want execution to stop. Use this option to avoid
stepping through large loops.

Restart Restarts execution from the beginning of the stored
procedure.

Stop Debugging Halts debugging.
Callstack Lists the procedures calls that have started but are not

completed.
Auto Rollback Automatically rolls back all work performed during

execution of the procedure.

The code pane displays the SQL statement you are debugging. Separate output panes are provided for local and global variables,
for the result set of the query, and for the call stack. Note that global variable is a legacy term for the Transact-SQL built-in
functions whose names start with @@.

SQL Query Analyzer Help (SQL Server 2000)

Query Window Execution Plan Pane
The Execution Plan options graphically display the data retrieval methods chosen by the Microsoft® SQL Server™ query
optimizer.

The Execution Plan pane uses icons to represent the execution of specific statements and queries in SQL Server rather than the
tabular representation produced by the SET SHOWPLAN_ALL or SET SHOWPLAN_TEXT statements.

Icons

Graphically Displaying the Execution Plan Using SQL Server Query Analyzer

Physical operators

Assert

Bookmark Lookup

Clustered Index Delete

Clustered Index Insert

Clustered Index Scan

Clustered Index Seek

Clustered Index Update

Collapse

Compute Scalar

Concatenation

Constant Scan

Deleted Scan

Filter (clsColumn)

Hash Match

Hash Match Root

Hash Match Team

Index Delete

Index Insert

Index Scan

Index Seek

Index Spool

Index Update

Inserted Scan

Log Row Scan

Merge Join

Nested Loops

Parallelism

Parameter Table Scan

Remote Delete

Remote Insert

Remote Query

Remote Scan

Remote Update

Row Count Spool

Sequence

Sort

Stream Aggregate

Table Delete

Table Insert

Table Scan

Table Spool

Table Update

Top

Cursor physical operator

Dynamic

Fetch Query

Keyset

Population Query

Refresh Query

Snapshot

SQL Query Analyzer Help (SQL Server 2000)

Query Window Statistics Pane
The Show Client Statistics command provides detailed information about client-side statistics for execution of the query. The
output result set displayed in the Statistics pane contains these columns.

Column name Description
Counter Counter label.
Value The value of the counter, updated after each query

execution .
Average A running average from the beginning of the connection

or since the last manual reset.

The three groups of statistics counters are:

Application profile

Network

Time

These statistics are displayed only when query results are generated. They are not displayed when commands such as Parse,
Display Estimated Execution Plan, or Index Tuning Wizard are selected.

Application Profile Statistics

Counter Description
Timer Resolution
(milliseconds)

Minimum resolution of the server clock time in
milliseconds. This is usually reported as zero and should
only be considered if the number reported is large. If the
minimum resolution of the server clock is larger than the
likely interval for some of the timer-based statistics, those
statistics could be inflated.

Number of INSERT,
UPDATE, DELETE
statements

Number of INSERT, UPDATE, or DELETE statements after
SQL_PERF_START.

Rows affected by
INSERT, UPDATE,
DELETE statements

Number of rows affected by INSERT, UPDATE, or DELETE
statements after SQL_PERF_START.

Number of SELECT
statements

Number of SELECT statements processed after
SQL_PERF_START.

Rows affected by
SELECT statements

Number of rows selected after SQL_PERF_START.

Number of user
transactions

Number of user transactions after SQL_PERF_START,
including rollbacks. When an ODBC application is running
with SQL_AUTOCOMMIT_ON, each command is
considered a transaction.

Average fetch time Equals SQLFetchTime/SQLFetchCount.
Cumulative fetch time Cumulative amount of time it took to complete fetches

against server cursors.
Number of fetches Number of fetches performed against server cursors after

SQL_PERF_START.
Number of open
statement handles

Number of statement handles currently open on all
connections open in the driver.

Max number of open
statement handles

Maximum number of concurrently opened statement
handles after SQL_PERF_START.

Cumulative number of
statement handles

Number of statement handles opened after
SQL_PERF_START.

Network Statistics

Counter Description
Number of server
roundtrips

Number of times the driver sent commands to the server
and received a reply.

Number of TDS packets
sent

Number of TDS packets sent to SQL Server by the driver
after SQL_PERF_START. Large commands can take
multiple buffers. For example, if a large command is sent
to the server and it fills six packets, ServerRndTrips is
incremented by one and BuffersSent is incremented by six.

Number of TDS packets
received

Number of TDS packets received by the driver from SQL
Server after the application started using the driver.

Number of bytes sent Number of bytes of data sent to SQL Server in TDS
packets after the application started using the driver.

Number of bytes
received

Number of bytes of data in TDS packets received by the
driver from SQL Server after the application started using
the driver.

Time Statistics

Counter Description
Cumulative client
processing time

Cumulative amount of time the driver spent processing
after SQL_PERF_START, including the time it spent waiting
for replies from the server.

Cumulative wait time
on server replies

Cumulative amount of time the driver spent waiting for
replies from the server.

SQL Query Analyzer Help (SQL Server 2000)

Query Window Trace Pane
The Show Server Trace command provides access to information used to determine the server-side impact of a query.

If enabled when a query is executed, the Show Server Trace command displays the Trace pane, which provides information
about the event class, subclass, integer data, text data, database ID, duration, start time, reads and writes, and CPU usage.

SQL Query Analyzer Help (SQL Server 2000)

Object Browser
Use Object Browser to navigate the database objects of the selected database server. Object Browser is accessible through a
button on the toolbar and through the Object Browser command on the Tools menu.

The Objects tab contains a tree list that displays the databases in the selected database server. For each database, Object Browser
lists these folders.

User Tables For each user table, Object Browser lists columns,
indexes, triggers, and dependencies.

System Tables For each system table, Object Browser lists the
columns, indexes, and dependencies.

Views For each view, Object Browser lists the columns
and dependencies.

Stored Procedures For each stored procedure, Object Browser lists
parameters and dependencies.

Extended Stored Procedures For each extended stored procedure, Object
Browser lists parameters and dependencies.

Extended stored procedures are shown only for
the master database.

Functions For each user-defined function, Object Browser
lists parameters and dependencies.

In addition to databases, the tree list displays a folder named Common Objects, which contains Transact-SQL built-in functions
and base data types.

The Templates tab displays the templates stored in the Query Analyzer Templates directory.

Troubleshooting (SQL Server 2000)

Troubleshooting Overview
As a starting point to troubleshooting a problem in Microsoft® SQL Server™ 2000, you may find the solution in one of the online
troubleshooters from SQL Server Product Support Services (PSS). For more information, see Online Troubleshooters from PSS. In
addition, review current error logs for information that may pinpoint the problem. Other current information about
troubleshooting SQL Server 2000 can be found on the FAQs & Highlights for SQL Server page, available at Microsoft Web site.

Error Logs

The error log in SQL Server 2000 provides complete information about events in SQL Server. You may also want to view the
Microsoft Windows® 2000 or Windows NT® 4.0 application log, which provides an overall picture of events that occur on the
Windows NT 4.0 and Windows 2000 operating systems, as well as events in SQL Server and SQL Server Agent. Both logs include
informational messages (such as startup data), and both record the date and time of all events automatically.

SQL Server events are logged according to the way you start SQL Server.

When SQL Server is started as a service under the Windows 2000 or Windows NT 4.0 operating system, events are logged
to the SQL Server error log, to the Windows 2000 or Windows NT application log, or to both logs.

When SQL Server is started from the command prompt, events are logged to the SQL Server error log and to standard
output (typically the monitor, unless output has been redirected elsewhere).

For information about how to view the logs, see Viewing Error Logs.

Backward Compatibility Issues

If you encounter a problem regarding compatibility between SQL Server 2000 and earlier versions of SQL Server, see SQL Server
2000 and SQL Server version 7.0 and SQL Server 2000 and SQL Server version 6.5. For information about a detailed list of
feature changes between SQL Server 6.5 and SQL Server 2000, see SQL Server Backward Compatibility Details.

Additional Resources

For access to the Microsoft Knowledge Base and other current information, a subscription to Microsoft TechNet or MSDN® can
be helpful. For more information, see:

The Microsoft TechNet page at Microsoft Web site.

The MSDN page at Microsoft Web site.

Viewing Web-Based Information

Numerous links to Microsoft Product Support Services (PSS) Web pages are provided in the Troubleshooting topics. Links to the
new online troubleshooters, as well as pertinent Microsoft Knowledge Base articles and white papers, are also available. Every
effort has been made to ensure the Web links are correct and will remain stable over time. However, if a link does not work, go to
the MSDN Online Support Web page at Microsoft Web site, and navigate to the correct location.

See Also

Monitoring the Error Logs

Troubleshooting Planning

http://www.microsoft.com/isapi/redir.dll?prd=SQL&Sbp=FAQs and Highlights for SQL Server
http://www.microsoft.com/isapi/redir.dll?prd=Technet
http://www.microsoft.com/isapi/redir.dll?prd=MSDN&ar=serv&O1=olsupp
http://www.microsoft.com/isapi/redir.dll?prd=MSDN&ar=serv&O1=olsupp

Troubleshooting (SQL Server 2000)

Troubleshooting Planning
To minimize the effects of a server failure or other troubleshooting situation:

Develop and test a backup and disaster recovery plan.

Use the Database Maintenance Plan Wizard to schedule the scripts to run during periods of low activity.

Verify the security permissions and roles you have planned for your databases.

Disaster Recovery Plan

The importance of disaster recovery assessment cannot be overstated. What is the business risk if you cannot get your data back?
What is the cost for each hour's delay in getting your system back up and running? Do not assume that your data is quickly
recoverable. Thoroughly understanding the steps for recovery ahead of time will minimize the stress and uncertainty imposed by
a future disaster. Some important points to consider are:

Periodically assess the validity of the current disaster recovery plan.

Have sufficient hardware and staff to implement recovery procedures.

See Also

Data Integrity Validation

Database Maintenance Plan Wizard

Designing a Backup and Restore Strategy

Disaster Recovery Planning

Managing Permissions

Troubleshooting (SQL Server 2000)

Viewing Error Logs
The Microsoft® SQL Server™ 2000 error log can be viewed using SQL Server Enterprise Manager or any text editor. The most
current error log is named Errorlog (with no extension) and is located in the Program Files\Microsoft SQL Server\Mssql\Log
directory by default.

To view the SQL Server error log from SQL Server Enterprise Manager

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Logs.

3. Click the SQL Server Log to view it. Error log information appears in the details pane.

The Microsoft Windows® 2000 or Windows NT® 4.0 application log provides an overall picture of events that occur on the
Windows 2000 or Windows NT operating system.

To view the Windows 2000 application log

1. On the Start menu, point to Programs, point to Administrative Tools, and then click Event Viewer.

2. In the left pane, click Application Log.

Microsoft SQL Server events are identified by the entry MSSQLServer or MSSQL$<server named instance> in the Source
column. SQL Server Agent events are identified by the entry SQLServerAgent or SQLAgent$<server named instance>.
Microsoft Search service events are identified by the entry Microsoft Search.

3. To view the log of a different computer, in the right pane, right-click Event Viewer, and then click Connect to another
computer.

Note If you are viewing the log of the local computer, skip this step.

4. Complete the Select Computer dialog box.

5. Optionally, to display only SQL Server events, on the View menu, select Filter, and then in the Event Source box, select
MSSQLServer or MSSQL$<server named instance>.

6. To view more information about an event, double-click the event.

To view the Windows NT 4.0 application log

1. On the Start menu, point to Programs, point to Administrative Tools, and then click Event Viewer.

2. If the application log is not displayed, on the Log menu, click Application.

Microsoft SQL Server events are identified by the entry MSSQLServer or MSSQL$<server named instance> in the Source
column. SQL Server Agent events are identified by the entry SQLServerAgent or SQLAgent$<server named instance>.
Microsoft Search service events are identified by the entry Microsoft Search.

3. To view the log of a different computer, on the Log menu, click Select Computer, and then complete the Select Computer
dialog box.

Note If you are viewing the log of the local computer, skip this step.

4. Optionally, to display only SQL Server events, on the View menu, click Filter Events, and in the Source box, select
MSSQLServer.

5. To view only SQL Server Agent events, select SQLServerAgent instead.

6. To view more information about an event, double-click the event.

See Also

Error Messages

Troubleshooting (SQL Server 2000)

Using Error Reporting
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ now provides error reporting functionality in Service Pack 3. If you enable this feature, SQL Server
automatically sends a report to Microsoft if a fatal error occurs in the SQL Server database engine, SQL Server Agent, or SQL
Server Analysis Services. Microsoft uses error reports to improve SQL Server functionality, and treats all information as
confidential.

Note Error reporting is turned off by default.

Information about the error is sent over a secure (https) connection to Microsoft, where it is stored with limited access.
Alternatively, this information can be sent to your own Corporate Error Reporting server. See this Microsoft Web site for more
information about setting up a Corporate Error Reporting server.

The error report contains the following information:

The condition of SQL Server when the problem occurred.

The operating system version and computer hardware information.

Your Digital Product ID, which could be used to identify your license.

Your computer's IP network address.

Information from memory or file(s) of the process that caused the error.

Microsoft does not intentionally collect your files, name, address, e-mail address, or any other form of personal information. The
error report may, however, contain customer-specific information from the memory or file(s) of the process that caused the error.
Although this information could potentially be used to determine your identity, Microsoft does not use this information for that
purpose.

For the Microsoft error reporting data collection policy, see this Microsoft Web site.

You can enable error reporting during installation through SQL Server Setup or Analysis Services Setup, or after installation
through the SQL Server Enterprise Manager Server Properties dialog box or the Analysis Manager Server Properties dialog box.
Enabling it during SQL Server Setup allows error reporting for the SQL Server database engine and SQL Server Agent; enabling it
during Analysis Services Setup allows error reporting for Analysis Services. If you wish to enable error reporting for both SQL
Server and Analysis Services, you must enable error reporting for SQL Server during SQL Server Setup, and enable it again for
Analysis Services during Analysis Services Setup, or enable error reporting through Analysis Manager and SQL Server Enterprise
Manager as described above.

If you have error reporting enabled and a fatal error has occurred, you may see a response from Microsoft in the Windows Event
log that points to a Microsoft Knowledge Base article on a particular error. A response may look similar to this example:
Source = MSSQLServerOlapServicesDW
EventID = 1010
data = http://support.microsoft.com/support/misc/kblookup.asp?id=.

To turn off error reporting for the SQL Server database engine and SQL Server Agent, go to the General tab of the SQL Server
Properties dialog box in Enterprise Manager and clear the Enable the error reporting feature check box. To turn off error
reporting for Analysis Services, go to the Error Reporting tab of the Properties dialog box in Analysis Manager and clear the
Enable the error reporting feature check box. If you have error reporting turned on for both SQL Server (database engine and
SQL Server Agent) and Analysis Services, and you wish to turn it off for both, you must turn off error reporting in both places.

http://go.microsoft.com/fwlink/?LinkId=9309
http://go.microsoft.com/fwlink/?LinkId=9310

Troubleshooting (SQL Server 2000)

Online Troubleshooters from PSS
The online troubleshooters for Microsoft® SQL Server™ 2000 no longer exist.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and Other PSS
Web-based Information

Troubleshooting (SQL Server 2000)

Help with Backup and Restore
The online Backup and Restore Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Connectivity
The online Connectivity Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Data Transformation Services
The online Data Transformation Services Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Distributed Queries
The online Distributed Query Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Full-Text Search
The online Full-Text Search Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Performance
The online SQL Server Performance Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with SQL Profiler
The online Profiler Troubleshooter for Microsoft® SQL Server 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Replication
The online Replication Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Setup
The online Setup Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with Startup
The online Startup Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Help with SQL Mail
The online SQL Server Mail Troubleshooter for Microsoft® SQL Server™ 2000 no longer exists.

To access additional SQL Server troubleshooting information on the Web, see Viewing Online Troubleshooters and other PSS
Web-Based Information.

Troubleshooting (SQL Server 2000)

Viewing Online Troubleshooters and Other PSS Web-Based
Information

 Topic last updated -- July 2003

The online troubleshooters for Microsoft® SQL Server™ 2000 no longer exist, but you can use other troubleshooting resources
available on the Web.

Viewing SQL Server Using MSDN Online

The best way to locate information about SQL Server 2000 on the Microsoft Developers Network (MSDN) is to follow these steps:

1. Go to the MSDN® Online Support Web page at Microsoft Web site.

2. Click SQL Server in the Products & Technologies group.

Viewing SQL Server Knowledge Base Articles

Links to Knowledge Base articles within a topic take you directly to the article on the Web. You can also locate articles by title or
number using the Microsoft Knowledge Base Search page, accessible from any product support Web page. You can also perform
keyword searches of Knowledge Base articles.

The Knowledge Base is available by clicking the Support option on any product support Web page. You can also access the
Knowledge Base by following these steps:

1. Go to the MSDN® Online Support Web page at Microsoft Web site.

2. Click Search the Knowledge Base (KB) in the Troubleshooting group.

3. To search for SQL Server 2000 Knowledge Base Articles, click SQL Server 2000 in the Select a Microsoft Product list box.

Viewing SQL Server Newsgroups

The SQL Server 2000 customer community has an active discussion of SQL Server issues in a set of newsgroups on MSDN. The
newsgroups are an excellent tool for learning how other customers work with SQL Server. While other customers answer most
postings, members of the Microsoft SQL Server development and support teams sometimes monitor the newsgroups and answer
questions.

You can access these newsgroups by following these steps:

1. Go to the MSDN® Online Support Web page at Microsoft Web site.

2. Click Newsgroups in the Peer Help group.

http://www.microsoft.com/isapi/redir.dll?prd=MSDN&ar=serv&O1=olsupp
http://www.microsoft.com/isapi/redir.dll?prd=MSDN&ar=serv&O1=olsupp
http://www.microsoft.com/isapi/redir.dll?prd=MSDN&ar=serv&O1=olsupp

Troubleshooting (SQL Server 2000)

Frequently Asked Questions
Microsoft® SQL Server Product Support Services (PSS) has compiled a list of questions commonly asked by users of Microsoft
SQL Server™ 2000. This list is available on the FAQ & Highlights for SQL Server page at Microsoft Web site.

The questions and answers on this Web page have been included in the Troubleshooting topics as follows:

SQL Server Books Online FAQ

SQL Server Enterprise Manager FAQ

Administration Tools FAQ

Failover Clustering FAQ

Multiple Instance FAQ

Programming FAQ

Replication FAQ

Server FAQ

Setup and Installation FAQ

Upgrading to SQL Server 2000 FAQ

Expanding Text in the FAQs

The topics in Frequently Asked Questions contain a format that allows the answer text to be hidden and then expanded. When you
click near the plus sign (+), the text appears. For example:

How does expanding text work?

Answer:

Click the +Answer to expand the text. Click again to hide the answer.

http://www.microsoft.com/isapi/redir.dll?prd=SQL&Sbp=FAQs and Highlights for SQL Server

Troubleshooting (SQL Server 2000)

SQL Server Books Online FAQ
Why are some links in SQL Server Books Online different colors?

Answer:

The first time you install SQL Server Books Online, all of the links are one color, which means no linked topics have been visited.
After you link to a topic, all the links for that topic appear as a different color. This is the standard behavior for HTML browsers.

How do I print a topic and include all of the linked subtopics?

Answer:

To print all subtopics that are linked to a topic, on the toolbar, click Print, and then select Print the selected heading and
subtopics. To use CTRL+P to print, first click anywhere in the right pane, press CTRL+P, and then select the Print all linked
documents check box.

Troubleshooting (SQL Server 2000)

SQL Server Enterprise Manager FAQ
How can I get my system databases to appear after they have been hidden from view in SQL Server Enterprise
Manager?

Answer:

Right-click the server icon to change the setting that shows or hides system databases and system objects. Click Edit SQL Server
Registration Properties, and then on the General tab, select Show system databases and system objects.

I'm having difficulty viewing the information in the results pane of SQL Query Analyzer. What can I do?

Answer:

If there is either too little or too much text in the results pane of SQL Query Analyzer, you can display the query results in a grid.
Either press CTRL+D or click Results in Grid on the Query menu and then execute the query again.

If you are still having difficulty viewing the appropriate data in the results pane, adjust the maximum number of characters per
column. On the Tools menu, click Options, and then click the Results tab. In the Maximum characters per column box, enter
the number of characters to display. To view more characters, set this number to 256.

Why isn't the SQL Server Service Manager icon removed from the taskbar when the Service Manager window is
closed?

Answer:

The SQL Server Service Manager icon shows the status of one of the Microsoft® SQL Server™ services. Closing the SQL Server
Service Manager window only removes the dialog box from view; it does not affect the icon in the taskbar. To remove the icon
from the taskbar, right-click the icon, and then click Exit.

How can I administer SQL Server through SQL Server Enterprise Manager without using the mouse?

Answer:

Press SHIFT+F10 to perform a mouse right-click. For more information about keyboard shortcut keystrokes, see Using
Accessibility Shortcut Keys in SQL Server Books Online.

Troubleshooting (SQL Server 2000)

Administration Tools FAQ
When I attempt to register an OLAP server running on Microsoft® Windows® 2000 from an OLAP server running on
Microsoft Windows NT®, I get the following error:
Errors occurred while connecting to server2000.
Cannot connect to the registry on the server computer (server2000).
Do you still want to register this server?

How do I resolve this error?

Answer:

Start the remote registry service on the computer running Windows 2000 by performing the following steps:

1. On the Start menu, point to Programs, point to Administrative Tools, and then click Services.

2. Right-click Remote Registry Service, and then on the shortcut menu, click Start .

Can the ON DELETE CASCADE option be set in the user interface?

Answer:

Yes. When creating the table in the Diagram user interface, click Table and Index Properties. On the Relationships tab, select
the cascading referential integrity option you want to implement:

Cascade Update Related Fields

Cascade Delete Related Records

When creating a new table in SQL Server Enterprise Manager, I see a field titled Description for each column. How is
this field used?

Answer:

The purpose of the Description field is to allow you to store a textual description of each column. There is also a Description
field associated with the table. This description is stored as an extended property on the field. When generating a script for the
table, the Include Extended Properties option appears on the formatting page. If this option is selected when the script is
generated, the description property will show in the script.

Using SQL Server Enterprise Manager, how can I set a database to single user mode and dbo use only mode?

Answer:

In SQL Server 2000, a database cannot be set to both single user mode and dbo use only mode simultaneously. Instead, SQL
Server Enterprise Manager allows you to set the following alternative options by right-clicking the database to change, clicking
Properties on the shortcut menu, and then clicking the Options tab.

Restrict access

When this option is not selected, normal access to the database is allowed.

When this option is selected, the following settings are available:
Members of db_owner, dbcreator, or sysadmin

When selected, this option restricts access to the database only to members of the db_owner, dbcreator, or
sysadmin roles.

Single user

When selected, this option restricts access to the database to only one user at a time.

Both of these options exist for SQL Server 6.5 and 7.0 databases. However, if you are using SQL Server 2000 tools, you can no
longer set these options on the database properties tab in SQL Server Enterprise Manager. Instead, these options can be set only
on SQL Server 6.5 and 7.0 databases by running the sp_dboption stored procedure.

Can I have both SQL Server 7.0 and SQL Server 2000 client management tools installed on the same computer?

Answer:

No. During an installation upgrade, the SQL Server 2000 tools replace the SQL Server 7.0 tools. Additionally, when installing SQL
Server 2000 as a separate instance, if you choose to upgrade the tools, the SQL Server 7.0 program group remains and the SQL
Server 2000 program group is added. However, the icons in the SQL Server 7.0 program group actually execute the SQL Server
2000 tools instead of the original SQL Server 7.0 tools.

Is it possible to define a special template that is copied automatically into the query pane for SQL Query Analyzer
when you select New?

Answer:

Yes. By default, a blank document is always displayed. However, you can define and save a special template by typing the
Transact-SQL statements into a window in SQL Query Analyzer, selecting Save As, and saving it in the directory you want as a
Template SQL File (*.tql). You can select the template you want to open by selecting the drop down New icon on the toolbar, and
then selecting Template.

Is it possible to use SQL Server 7.0 tools to connect to SQL Server 2000?

Answer:

It is recommended that you upgrade your tools to SQL Server 2000 if you plan to connect to a computer running SQL Server
2000 because most SQL Server 7.0 tools will not connect to computers running SQL Server 2000. The only SQL Server 7.0 tools
that can connect to computers running SQL Server 2000 are SQL Query Analyzer and osql; however, these tools cannot be used
to connect to named instances of SQL Server 2000.

Troubleshooting (SQL Server 2000)

Failover Clustering FAQ
Is the use of software fault-tolerant disk sets for cluster storage supported?

Answer:

No. For more information, see the following Microsoft Knowledge Base article:

http://support.microsoft.com/support/kb/articles/Q171/0/52.asp

Software FT Sets Are Not Supported in Microsoft Cluster Server.

Does SQL Server 2000 clustering provide load balancing?

Answer:

No. SQL Server 2000 clustering does not provide load balancing; it provides failover clustering. To achieve load balancing
between instances of SQL Server, you will need additional software.

Does SQL Server 2000 full-text search support clustering?

Answer:

Yes.

How do I upgrade SQL Server 6.5 or SQL Server 7.0 to SQL Server 2000 when SQL Server version 6.5 or SQL Server 7.0 is
part of a cluster?

Answer

If your installation of SQL Server 6.5 or SQL Server 7.0 is part of a cluster, you must perform certain steps to upgrade the server
to SQL Server 2000. For information, see Upgrading to a SQL Server 2000 Failover Cluster.

For specific procedures, see the following topics:

How to upgrade from a SQL Server 6.5 active/passive failover cluster (SQL Server Setup)

How to upgrade from a SQL Server 6.5 active/active failover cluster (SQL Server Setup)

How to upgrade from a SQL Server 7.0 active/active failover cluster (SQL Server Setup)

How to upgrade from a SQL Server 7.0 active/passive failover cluster (SQL Server Setup)

How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (SQL Server Setup)

For more information, see Failover Clustering.

What hardware is required to run SQL Server 2000 in a clustering environment?

Answer:

Check the Microsoft Windows Hardware Compatibility List for a list of clustering-compatible servers at: Microsoft Web site

Note Search by using the word "cluster" because individual components cannot be combined to create a supported system.

In addition, refer to the Microsoft Cluster Server Administrator's Guide for a list of supported hardware configurations and
hardware configuration information.

Can SQL Server 6.5 or SQL Server 7.0 be installed on one node and SQL Server 2000 be installed on the other node of a
cluster?

Answer:

No. For two instances of SQL Server to participate in a failover cluster, they must be the same version of SQL Server. You cannot
have a local SQL Server 7.0 installation and a failover cluster SQL Server 2000 instance.

Where do I place the SQL Server 2000 files to provide failover support?

Answer:

SQL Server setup installs a new instance of SQL Server binaries on the local disk of each computer in the cluster and installs the

http://support.microsoft.com/support/kb/articles/Q171/0/52.asp
http://www.microsoft.com/isapi/redir.dll?prd=Hardware Compatibility List&Pver=1.0&Olcid=0x0816&Ar=/hwtest/hcl

system databases on the specified shared cluster disk. The binaries are installed in the same path on each cluster node, so you
must ensure that each node has a local drive letter in common with all the other nodes in the cluster.

How do I shut down SQL Server from the command line without the Cluster Service interpreting the shutdown as a
failure?

Answer:

Use the Service Manager. For information, see How to stop a clustered instance of SQL Server (Service Manager). Alternatively,
use the Cluster.exe application that comes with Microsoft® Windows NT® Enterprise Edition, Windows 2000 Advanced Server, or
Microsoft Windows 2000 Data Center. Cluster.exe is installed as part of the typical Cluster setup, which can also be run on a
Microsoft Windows NT Workstation, Microsoft Windows 2000 Professional, or Microsoft Windows 2000 Server member server
computer to install just the Cluster Administrator and the other administrative applications. The basic syntax for this command is:

cluster [cluster name] RESOURCE [resource name] /option

In the preceding command syntax, the /option switch controls this functionality.

The specific options to be used are /online and /offline. These options are equivalent to the commands net start mssqlserver
(to start SQL Server from the command line) and net stop mssqlserver (to shut down SQL Server from the command line) for a
nonvirtualized server, respectively. You can perform this procedure on the SQL Server Fulltext, the SQL Server Agent, and the SQL
Server resources.

Following are some examples of how to use this command syntax:

To take the SQL Server 2000 resource offline if the Cluster Name is "SQLCluster" and the resource is named "SQL Server"
(where "SQL Server" is the name of the SQL Server 2000 resource:

cluster "SQLCluster" resource "SQL Server" /offline

To bring the SQL Server 2000 resource back online:

cluster "SQLCluster" resource "SQL Server" /online

Troubleshooting (SQL Server 2000)

Multiple Instance FAQ
How do I install multiple instances of Analysis Services?

Answer:

Unlike SQL Server, Analysis Services does not support multiple instances on a single server. It is not possible to run both OLAP
Services 7.0 and Analysis Services 2000 on the same computer.

When I install multiple instances of SQL Server, where are the tools installed for each instance?

Answer:

SQL Server 2000 always installs the tools on a system drive such as the common directory in Windows NT, so you will have only
one set of tools, which will be common to all instances. This set of tools works with SQL Server 7.0 servers as well as SQL Server
2000 servers, and replaces the SQL Server 7.0 tools that may already be installed on the computer.

Does the port number for an instance have to be configured during setup?

Answer:

No. During setup, you have the option of either entering the port number or allowing the server to choose the port number.

When running both SQL Server 7.0 and SQL Server 2000 on the same computer, is there any way to get the two
instances to share the same user databases?

Answer:

No. The same database files cannot be used for both SQL Server 7.0 and SQL Server 2000. SQL Server 7.0 databases can be
upgraded to SQL Server 2000 databases, but after the database files are upgraded, they cannot be used by the SQL Server 7.0
instance. This database upgrade is done automatically when a SQL Server 7.0 database is attached or restored to a SQL Server
2000 server. There is no way to downgrade the database files from SQL Server 2000 to SQL Server 7.0 files.

Troubleshooting (SQL Server 2000)

Programming FAQ
Does SQL Server 2000 come with a new version of DB-Library?

Answer:

No. DB-Library has not been enhanced for SQL Server 2000. SQL Server 2000 includes the same features contained in the SQL
Server 6.5 and 7.0 DB-Library.

Can ODBC 6.5 drivers be used to connect to SQL Server 2000?

Answer:

SQL Server 2000 is designed to be backward compatible with earlier versions of ODBC applications. The following can be
accomplished:

An application written to connect to SQL Server 6.5 that uses ODBC 6.5 drivers can connect to SQL Server 2000.

The SQL Server 2000 ODBC drivers can connect to SQL Server 6.5.

A legacy application that must connect to SQL Server 2000 can be flagged as a 6.5-compatible ODBC application using the
odbccmpt utility. For more information, see odbccmpt Utility Utility.

For information about exceptions, see Level 1: Handling Discontinued Functionality.

Where can I find the MDAC redist file with SQL Server 2000?

Answer:

A copy of Mdac_typ.exe is included on the SQL Server 2000 compact disc in the \MSEQ\x86\odbc folder.

Is it possible to attach properties/variables to the SQL-NS statement?

Answer:

No. SQL-NS only provides access to the dialog boxes. You cannot preset values for the dialog boxes.

Troubleshooting (SQL Server 2000)

Replication FAQ
How do you view the commands for transactions marked for replication in the transaction log of the publishing
database in a readable format?

Answer:

Use the stored procedure sp_replshowcmds. to view transactions that currently are not distributed (those transactions
remaining in the transaction log that have not been sent to the Distributor). sp_replshowcmds can be run only when client
connections (including the current connection) are not reading replicated transactions from the log. Hence, the Log Reader Agent
needs to be stopped for this procedure to be run. This stored procedure is executed at the Publisher on the publication database.

Note sp_replshowcmds should be run only to troubleshoot problems with replication.

When is the MSreplication_subscriptions table created on the Subscriber?

Answer:

The Distribution Agent creates the MSreplication_subscriptions table at startup if the table does not already exist. Alternately,
the sp_addpullsubscription stored procedure creates the MSreplication_subscriptions table if the table does not already exist
on the Subscriber.

What .exe or .dll file is called for each agent?

Answer:

This table shows the agent names and associated files.
Agent name File name

Log Reader Agent Logread.exe
Snapshot Agent Snapshot.exe
Distribution Agent Distrib.exe
Queue Reader Agent Qrdrsvc.exe
Merge Agent Replmerg.exe

Note The Snapshot Agent, the Distribution Agent, and the Merge Agent can also be invoked through the Sqlinitx.dll, Sqldistx.dll
and Sqlmergx.dll Microsoft® ActiveX® interfaces respectively.

When do I need multiple distribution databases?

Answer:

In most cases, you need only one. This feature is for users who are centralizing replication operations and administration and
want one distribution server to host many Publishers. You can support many Publishers to one distribution database. However,
there may be cases in which you want to separate logical replication applications into separate databases for administration
purposes. In this case, use multiple distribution databases. Multiple distribution databases may also provide a performance
benefit by reducing contention (both writing to and reading from the distribution database).

Can all servers in a merge setup have the same priority?

Answer:

The Publisher and the Subscriber can never have the same priority. Microsoft SQL Server™ 2000 enforces this while adding
subscriptions. However, if there are two subscriptions (for example, S1 and S2) that have the same priority, the first subscription
that propagates changes to the Publisher wins. For example, if S1 and S2 make changes simultaneously, the first one to merge
changes with the Publisher wins. The same rule applies to local subscriptions, which essentially have a priority of 0 (the first one
to the hub wins).

Synchronizing on Internet publications fails with the error "Couldn't deliver schema information." Why?

Answer:

It is possible that the file copy operations failed. By default, agents used with pull subscriptions use the Universal Naming
Convention (UNC) path set for the Distributor and Publisher to open the files. If the computer is not on the Local Area Network
(LAN), UNC will not work. You can set up a File Transfer Protocol (FTP) server at the Distributor and set the Merge Agent
command line to include an FTP address. Publications enabled for the Internet will have the initial snapshot downloaded to the
client computer by the Merge Agent through FTP before it is applied to the Subscriber.

I used the Disable Publishing And Distribution Wizard, and the physical files for the distribution database persisted
on my hard disk. Is this by design? When I reinstall replication, what will happen?

Answer:

When you remove distribution, SQL Server attempts to remove the physical files. However, if other clients are using the
distribution database or if there is a sharing violation when the file is being deleted, the file will not actually be removed from the
hard disk. If the physical file is not removed and you try to install distribution again, a new name will be used for the distribution
database.

If I create a publication with one table as an article, and then change the schema of the published table (for example,
by adding a column to the table), will the new schema ever be applied at the Subscribers?

Answer:

Yes. The new schema will be applied at the Subscribers, provided schema changes to the published table were made through the
replication publication properties dialog box in SQL Server Enterprise Manager or through replication stored procedures. Do not
make schema changes to published tables using the SQL ALTER TABLE statements in a tool such as SQL Query Analyzer or by
using SQL Server Enterprise Manager visual database tools. Changes made to the schema of a published table using these tools
will not be propagated to Subscribers.

For more information, see Schema Changes on Publication Databases.

What is a good way to see the commands in MSrepl_commands?

Answer:

Execute the stored procedure sp_browsereplcmds at the Distributor on the distribution database.

What if the Snapshot Agent has not completed when the Distribution Agent starts?

Answer:

This is not a problem if the Distribution Agent runs at the same time as the Snapshot Agent. However, if the Distribution Agent
runs and there is no snapshot available, it will shut down with a message stating that a snapshot is not yet available, unless it has
been configured to run continuously. In that case, the Distribution Agent waits for the Snapshot Agent to finish.

On Windows 2000 Server, transactional replication is unavailable. Why?

Answer:

If you are using Microsoft SQL Server 2000 Personal Edition or Microsoft SQL Server 2000 Desktop Engine (MSDE 2000), the
server can only be a Subscriber to transactional replication. The server cannot be used as a transactional replication Publisher,
regardless of the operating system you are running.

Using immediate updating subscriptions, the published table is altered. Why?

Answer:

In SQL Server 2000, tables used in publications that allow immediate updating are required to have a SQL Server
uniqueidentifier column. If one does not exist, SQL Server 2000 adds one automatically when you create the publication. If you
stop publishing a table, you can drop the uniqueidentifier column. Applications will work unchanged against tables with the
uniqueidentifier column because you do not have to include this column in qualified INSERT, UPDATE, or DELETE statements.

See Also

Help with Replication

Troubleshooting (SQL Server 2000)

Server FAQ
What is the difference between DBCC INDEXDEFRAG and DBCC DBREINDEX?

Answer:

Unlike DBCC DBREINDEX or any general index build, DBCC INDEXDEFRAG is an online operation, so it does not hold long-term
locks that can block running queries or updates. Depending on the amount of fragmentation, DBCC INDEXDEFRAG can be
considerably faster than running DBCC DBREINDEX because a relatively unfragmented index can be defragmented much faster
than a new index can be built. Another advantage is that with DBCC INDEXDEFRAG, the index is always available, unlike
DBREINDEX. A large amount of fragmentation can cause DBCC INDEXDEFRAG to run considerably longer than DBCC DBREINDEX,
which may or may not outweigh the benefit of the command's online capabilities. DBCC INDEXDEFRAG will not help if two
indexes are interleaved on the disk because INDEXDEFRAG shuffles the pages in place. To improve the clustering of pages, rebuild
the index.

When I create a table, I get the following 2714 error message:
Total rowsize for table exceeds the maximum number of bytes per row (8060). Rows that exceed the maximum number
of bytes will not be added.

However, the table creation succeeds and data can be inserted without problems. What did this error message mean?

Answer:

This error message indicates that you have variable length columns in your table (such as nvarchar or varbinary) and that the
total maximum length of all the columns adds up to more than 8,060 bytes. You can still insert rows into the table if the total
length of the data in each row does not exceed 8,060 bytes. However, if the data does exceed 8,060 bytes, the insertion fails with
the following error message:
Server: Msg 511, Level 16, State 1, Line 5
Cannot create a row of size <rowlength> which is greater than the allowable maximum of 8060.
The statement has been terminated.

A user-defined function returns a table that is schemabound to two tables in my database. According to the
documentation, the referenced tables cannot be altered until the schemabound option is removed. However, I am
able to add or delete columns from these referenced tables. Shouldn't this give me an error?

Answer:

You will not receive an error if you alter columns that are not referenced by the function. You cannot drop or alter the columns of
a table that are involved in the schemabinding, but you can alter other columns that are not involved in the schemabinding. For
example, suppose a schemabound table, table1, is defined with 5 columns: c1, c2, c3, c4, and c5. If the function only references c1
and c3, only columns c1 and c3 cannot be altered. Columns c2, c4, and c5 can be altered as needed.

How can I set the database to single user mode and restrict the access to dbo use only?

Answer:

In SQL Server 2000, a database cannot be in single-user mode with dbo use only. Instead, the following alternative options are
available by using the ALTER DATABASE command:

ALTER DATABASE database SET SINGLE_USER.

This command restricts access to the database to only one user at a time.

ALTER DATABASE database SET RESTRICTED_USER.

This command restricts access to the database to only members of the db_owner, dbcreator, or sysadmin roles.

ALTER DATABASE database SET MULTI_USER.

This command returns access to the database to its normal operating state.

Can I run multiple instances of SQL Server 2000 at the same time on one computer?

Answer:

Yes. For information, see Multiple Instances of SQL Server.

Are DB-Library applications supported in SQL Server 2000?

Answer:

Yes. However, DB-Library has not been enhanced for SQL Server 2000. DB-Library includes the same features that the Microsoft®
SQL Server™ 7.0 DB-Library contains. This means that a DB-Library application can only connect to a default instance of SQL
Server 2000; it cannot connect to a named instance. It will not recognize any of the new features available in SQL Server 2000.

Do I need to use the multi-protocol network library to enable encryption?

Answer:

No. SQL Server 2000 can use the Secure Sockets Layer (SSL) to encrypt all data transmitted between an application computer and
a SQL Server instance on a database computer. The SSL encryption is performed within the Super Socket Net-Library (Dbnetlib.dll
and Ssnetlib.dll) and applies to all inter-computer protocols supported by SQL Server 2000. For more information, see Net-
Library Encryption.

Why does my SQL statement work correctly outside of a user-defined function, but incorrectly inside it?

Answer:

You may have included a statement in the BEGIN-END block that has side effects, which is not allowed in user-defined functions.
Function side effects are any permanent changes to the state of a resource that has a scope outside the function. Changes can be
made only to local objects such as local cursors or variables. Examples of actions that cannot be performed in a function include
modifications to database tables, operations on cursors that are not local to the function, sending e-mail, attempting a catalog
modification, and generating a result set that is returned to the user.

How can I qualify a named instance in a linked server query?

Answer:

You must use square brackets around the multi-instance linked server name in the four part query. For example:

SELECT * FROM [myServer\sql80].northwind.dbo.customers

Troubleshooting (SQL Server 2000)

Setup and Installation FAQ
What operating systems support SQL Server 2000?

Answer:

Operating system and other software requirements vary, depending upon the edition of SQL Server 2000 and the components
that you choose to install. For more information, see Hardware and Software Requirements for Installing SQL Server 2000.

What are the minimum hardware requirements for installing SQL Server 2000?

Answer:

Hardware requirements vary, depending upon the edition of SQL Server 2000 and the components that you choose to install. For
more information, see Hardware and Software Requirements for Installing SQL Server 2000.

Can I install SQL Server 2000 on a server that already has SQL Server 7.0 installed?

Answer:

Yes. You can install SQL Server 2000 as a named instance and run both SQL Server 7.0 and SQL Server 2000 at the same time.

How can I install only SQL Server Books Online?

Answer:

You can select the SQL Server Books Online option during a custom installation of SQL Server.

How do I install only the client and SQL Profiler?

Answer:

During a custom installation, under components, select Client Connectivity and Management Tools. With Management
Tools selected, select Profiler under Sub-Components.

When I run SQL Server Setup, why do I get a message asking me to close all ODBC components?

Answer:

SQL Server 2000 Setup installs Microsoft Data Access Components (MDAC) 2.6, which installs newer ODBC components.
Therefore, all applications that use ODBC must be shut down so that the MDAC installation can be successful. Applications that
use ODBC include Microsoft Internet Information Services (IIS), Microsoft Systems Management Server, Microsoft Access, and
Oracle database applications.

When installing SQL Server 2000 on a computer running Windows 98, Windows NT 4.0, or Windows 2000, do I need to
install the Windows 95 Winsock2 update?

Answer:

No, you only need to install the Windows 95 Winsock2 update if you are planning to install SQL Server 2000 client connectivity
components on a computer running Windows 95. Regardless of the platform on which you are installing SQL Server 2000, the
Winsock2 update for Windows 95 will be listed when you select Install SQL Server 2000 Prerequisites during setup. However,
this prerequisite applies only to computers running Windows 95, not to computers running Windows 98, Windows NT 4.0, or
Windows 2000.

Can I install the MDAC 2.6 that comes with SQL Server 2000 without actually installing SQL Server 2000?

Answer:

Yes. MDAC 2.6 has a separate installation and can be installed without installing SQL Server 2000. Run the program Mdac_typ.exe
located in the MSEQ\x86\ODBC directory on the SQL Server 2000 compact disc.

Is it possible to have SQL Server start automatically on computers running Windows 98?

Answer:

Yes. In the SQL Server Service Manager, there is an option called AutoStart Service When OS Starts that you can use to start
SQL Server.

Can I perform a remote installation?

Answer:

Yes. The Computer Name screen of SQL Server Setup gives you the option of selecting the local computer, a remote computer, or,
when installing clustering, a virtual server. All prerequisites must first be installed on the remote computer before beginning the
installation.

Do I need Microsoft Internet Explorer 5.0 to install only the client connectivity tools on my clients?

Answer:

No. If you want to install only the client connectivity tools, you do not need Internet Explorer 5.0, but you do need Internet
Explorer 4.01 with Service Pack 2. Note that if you intend to install the management tools or the SQL Server 2000 Books Online,
you do need Internet Explorer 5.0.

What do I need to do if I have an unsuccessful installation?

Answer:

If you have an unsuccessful installation of SQL Server 2000, you can examine two files to help determine what the failure was. The
first file is the Sqlstp.log file in the Windows directory. The Sqlstp.log file gives detailed information on what setup is doing and
contains all errors encountered during setup. Reviewing this file will give you a better understanding as to where Setup is failing
and why.

During the configuration portion of setup, SQL Server Setup runs an application named Cnfgsvr.exe to configure the SQL Server.
This application starts SQL Server, connects to it, and runs the initial installation scripts. Any error encountered during this process
is written to the Sqlstp.log file. In addition, you should review the SQL Server error log, named Errorlog with no file name
extension, located by default in the Program Files\Microsoft SQL Server\Mssql\Log directory. This error log will contain errors
that SQL Server encounters when setup attempts to start SQL Server.

If you are unable to determine the cause of the Setup failure, save the files mentioned earlier, and call Microsoft Product Support
Services (PSS) to contact a SQL Server Support Professional who will help you to resolve your problem. If the Setup application
fails, it rolls back all changes to the file system, including removing any copied files, and removes any changes that were made to
the registry.

How do I rebuild the registry?

Answer:

To rebuild the SQL Server registry entries, run setup, select Advanced Options, and then select Rebuild Registry.

Why won't SQL Server 2000 install on a computer that has a Cyrix chip installed?

Answer:

Earlier versions of Cyrix chips do not support the complete Pentium instruction set. SQL Server 2000 makes use of some of these
instructions, so the Setup program detects and refuses to install SQL Server on a computer with earlier versions of Cyrix chips.

Can I install SQL Server 2000 on a server running Windows NT 4.0, Terminal Server Edition?

Answer:

No. Currently, SQL Server 2000 is not supported on Windows NT 4.0 Terminal Server; however, it is supported on Windows 2000
Terminal Server.

Troubleshooting (SQL Server 2000)

Upgrading to SQL Server 2000 FAQ
Can you detach a SQL Server 7.0 database and attach it to a SQL Server 2000 server?

Answer:

Yes. SQL Server 7.0 databases are compatible with SQL Server 2000. However, exceptions do exist. For information about these
exceptions, see Upgrading Databases from SQL Server 7.0 (Copy Database Wizard).

Attaching a SQL Server 7.0 database to SQL Server 2000 automatically upgrades the SQL Server 7.0 database to a SQL Server
2000 database and the database is no longer usable by the SQL Server 7.0 installation.

Can you detach a SQL Server 2000 database and attach it to a SQL Server 7.0 server?

Answer:

No. The only way to move a SQL Server 2000 database to a SQL Server 7.0 server is by using Data Transformation Services (DTS).

Can you restore a SQL Server 7.0 database backup to a SQL Server 2000 server?

Answer:

Yes. Other than the master, model, msdb, and distribution databases, SQL Server 7.0 databases are compatible with SQL Server
2000.

Can you restore a SQL Server 2000 database backup to a SQL Server 7.0 server?

Answer:

No. The only way to move a SQL Server 2000 database to a SQL Server 7.0 server is by transferring the data using a method such
as DTS, bcp, or use of a query between linked servers.

Can you restore or attach a SQL Server 6.5 database to SQL Server 2000?

Answer:

No. The only way to move a SQL Server 6.5 database to SQL Server 2000 is to run the SQL Server Upgrade Wizard.

Is a SQL Server 7.0 service pack required to upgrade?

Answer:

No service packs are required to perform the upgrade from SQL Server 7.0 to SQL Server 2000, although Microsoft Product
Support Services (PSS) recommends that you be on the latest service pack.

Which SQL Server 6.5 service pack is required to upgrade to SQL Server 2000?

Answer:

When you upgrade SQL Server 6.5 to an instance of SQL Server 2000 on the same computer, you must first apply the SQL Server
version 6.5 Service Pack 5a or later. When you upgrade SQL Server 6.5 to an instance of SQL Server 2000 on a different
computer, you must first apply the SQL Server version 6.5 Service Pack 3 or later.

How long will the upgrade process take to upgrade my SQL Server 6.5 databases?

Answer:

Many factors affect the amount of time needed to upgrade SQL Server 6.5 databases to SQL Server 2000. Each object in the SQL
Server 6.5 database must be rebuilt in the SQL Server 2000 database, and every row must be transferred. Depending on the
complexity of each database, the length of time needed to convert two 10 GB databases that have differing numbers of rows and
objects varies widely. In addition, the hardware platform, number of processors, disk subsystem, and amount of RAM play a
significant part in the amount of time required for the upgrade. Selecting data validation during the setup increases the amount
of time needed to perform the upgrade by a factor of two. This table shows some typical times for the upgrade process.
Size of Database Estimated Time Required to Upgrade
400 MB Less than 20 minutes
1 GB Less than 1 hour
10 GB Less than 4 hours
50 GB Less than 12 hours
100 GB Less than 24 hours

Can users be connected to the SQL Server 7.0 server while the installation upgrade process runs?

Answer:

No. When you perform an installation upgrade, the SQL Server 7.0 server is stopped and started; users are not able to stay
connected. To perform an upgrade while users stay connected, you must install a separate instance of SQL Server 2000 and then
use the Copy Database Wizard to copy each database from SQL Server 7.0 to that instance of SQL Server 2000. The Copy
Database Wizard allows you to upgrade your SQL Server 7.0 databases without having to shut down any servers in the process.

Can users be connected to the SQL Server 6.5 server while the upgrade process runs?

Answer:

No. During the upgrade process, the SQL Server 6.5 server is stopped and started while objects are scripted and data is extracted.
When the data transfer starts, only SQL Server 2000 is running, and it is not possible to access SQL Server 6.5.

How should I configure my SQL Server 6.5 server before performing the upgrade?

Answer:

If you are upgrading your existing SQL Server 6.5 server to a different computer that is running SQL Server 2000, both computers
should be configured to use a domain user name and password for the MSSQLServer service. The domain user account should
also belong to the Administrators group on both computers. A local system account is sufficient for a one-computer upgrade. If
you are upgrading across different domains, you must have a trust relationship set up between the domains before you start the
upgrade.

Can I consolidate databases from two or more SQL Server 6.5 servers onto one SQL Server 2000 server?

Answer:

No. The upgrade process keeps track of the server being upgraded and only allows databases from one SQL Server 6.5 server to
be upgraded. Consolidating databases from different servers may cause problems in user login IDs, user accounts, and object
permissions. If you want to consolidate several databases from different SQL Server 6.5 servers, move all the databases that you
want to consolidate to a single SQL Server server and verify that your applications work correctly before upgrading to SQL Server
2000.

Can I upgrade only one or a few of my databases to SQL Server 2000?

Answer:

An upgrade of an existing SQL Server 7.0 instance to SQL Server 2000 always upgrades all databases because it replaces SQL
Server 7.0 with SQL Server 2000. If you want to upgrade only some of your SQL Server 7.0 databases, install SQL Server 2000 as
a separate instance and use the Copy Database Wizard to upgrade the databases. For more information, see Upgrading Databases
from SQL Server 7.0 (Copy Database Wizard).

When you upgrade SQL Server 6.5, you can upgrade one, some, or all of your SQL Server databases to SQL Server 2000. You can
even convert individual databases as a test or as practice before you upgrade all of the databases on the server. Microsoft
recommends that you convert all production databases on a server at the same time to minimize potential problems. Even if you
only want to convert a subset of your existing SQL Server databases, you should still convert them all at the same time.

If you are not upgrading all of the SQL Server 6.5 databases at the same time, any objects that rely on the contents of other
databases, including views, stored procedures, and triggers, fail to be created if the object or the dependent database does not
exist.

If the SQL Server 6.5 model database has been modified to include additional objects, it should be converted either at the same
time as all of the other SQL Server 6.5 databases, or after all of the other SQL Server 6.5 databases. Any objects that were created
in SQL Server 6.5 databases because of non-default objects being added into the SQL Server 6.5 model database will be scripted
during the upgrade process.

When other SQL Server 6.5 databases are upgraded after the model database has been converted, they contain nondefault
objects based on the SQL Server 6.5 model database. Because the objects are added to the new SQL Server 2000 databases
when they are initially created by the SQL Server 2000 model database, the creation script fails to create any objects that already
exist in the database. Therefore, by converting the model database last, any changes in the database structure are applied only to
new SQL Server 2000 databases. All of the nondefault objects in the SQL Server 6.5 converted databases will have been created
by scripts during the conversion process of those databases.

Can I run SQL Server 2000 at the same time as SQL Server 7.0 or SQL Server 6.5 on the same computer?

Answer:

SQL Server 6.5 and SQL Server 7.0 install as the default instance on a server, and you can run only one of these versions on a

particular computer at a time. SQL Server 2000 does support multiple instances of the SQL Server database engine running
concurrently on the same computer. If you install SQL Server 2000 as a named instance, you can run it alongside the SQL Server
6.5 or SQL Server 7.0 default instance that was previously installed on the computer. If you install SQL Server 2000 as the default
instance, it upgrades the SQL Server 6.5 or SQL Server 7.0 default instance that is already present on the computer. When this
occurs on a computer that was running SQL Server 6.5, you can use the vswitch utility to switch between the SQL Server 2000
default instance and the SQL Server 6.5 default instance following the upgrade. In the case in which the SQL Server 7.0 default
instance is upgraded, only the SQL Server 2000 default instance is accessible following the upgrade.

Important Each instance of the SQL Server database engine has its own set of system and user databases that are not shared
between instances.

For more information, see Working with Instances and Versions of SQL Server.

Why am I getting the following error during a SQL Server 6.5 conversion?
@@servername not valid

Answer:

This error message may occur if the SQL Server 6.5 server you are upgrading has not been named. To resolve these problems,
perform the following steps on the SQL Server 6.5 server:

1. In isql or isql/w, run the following query to make sure that the server has a name:

SELECT @@servername

2. If the server does not have a name, run the following stored procedure to add a name:

sp_addserver <server_name>, local

When you upgrade a SQL Server 6.5 server, what causes the following error messages?
Cannot open default database
Error querying @@servername

Answer:

If the default database for the system administrator has not recovered yet, or if it is marked as suspect, the upgrade wizard
produces one of these error messages. Resolve the problem with the default database and run the upgrade wizard again.

When you upgrade a server running SQL Server 6.5, the upgrade wizard seems to stop responding and fails. Why?

Answer:

If applications or services have open ODBC connections to the SQL Server 6.5 server during the conversion process, they may not
allow the server to shut down completely. The conversion process will not proceed to the next step if it does not receive
verification that the server running SQL Server 6.5 has been completely stopped. The conversion process appears to stop
responding and eventually fails. To resolve the situation, close all applications and services that may have ODBC connections or
that may be using SQL Server before you perform the upgrade. If either SQL Profiler or SQL Trace is connected to the server
running SQL Server 6.5, you will see a similar problem. Although the server will not actually stop responding, tasks that once
processed quickly are now exponentially slower.

Where can I look to see a record of any errors that I may have encountered during the upgrade process?

Answer:

During the upgrade process, detailed logs are generated and stored in your SQL directory. If any errors occur during the upgrade
process, you will see a dialog box at the end of the process. This dialog box will display the contents of the error files. This output
file is located in the Program Files\Microsoft SQL Server\MSSQL\Upgrade\<servername>_<date>_<time> directory. Each
database has its own subdirectory with output and error files that were generated during the upgrade process.

Troubleshooting (SQL Server 2000)

Best Practices
This section describes recommendations and best practices for Microsoft® SQL Server™ 2000.

DBCC CHECKDB Recommendations

Distributed Partitioned View Recommendations

Full-Text Search Recommendations

Multiple Instance Recommendations

Parallel Query Recommendations

User-Defined Function Recommendations

Troubleshooting (SQL Server 2000)

DBCC CHECKDB Recommendations
In Microsoft® SQL Server™ 2000, you can run DBCC CHECKDB while users are using the database because of a change in the
type of locks that DBCC CHECKDB holds on the database tables as it checks each one.

In SQL Server 7.0 and earlier, DBCC CHECKDB (which in turn runs DBCC CHECKTABLE and CHECKALLOC on each table in the
database) used to hold shared locks (S) on the tables, thus blocking all data modification language (DML) statements.

In SQL Server 2000, DBCC CHECKDB holds a schema lock on the table to prevent meta data changes while the table is being
checked, thus allowing DML statements but not any data definition language (DDL) statements on the tables being checked. This
change provides greater flexibility as to when you can run DBCC CHECKDB because DBCC CHECKDB does not deny system usage
completely to the users.

DBCC CHECKDB is a CPU- and disk-intensive operation. Each data page that requires checking must first be read from disk into
memory. In addition, DBCC CHECKDB uses tempdb to do sorting.

If actively performing transactions while DBCC CHECKDB is running, the transaction log continues to grow because the DBCC
command blocks log truncation until it has finished reading the log.

It is recommended that DBCC CHECKDB be run during hours when the load is light on the server. If DBCC CHECKDB is run during
heavy peak usage time, expect a performance hit on the transaction throughput as well as DBCC CHECKDB completion time.

Recommendations for Good DBCC Performance

Run CHECKDB when the system usage is low.

Be sure that you are not performing other disk I/O operations, such as disk backups.

Place tempdb on a separate disk system or a fast disk subsystem.

Allow enough room for tempdb to expand on the drive. Use DBCC with ESTIMATE ONLY to estimate how much space will
be needed for tempdb.

Avoid running CPU-intensive queries or batch jobs.

Reduce active transactions while a DBCC command is running.

Use the NO_INFOMSGS option to reduce processing and tempdb usage significantly.

Consider using DBCC CHECKDB with the PHYSICAL_ONLY option to check the physical structure of the page and record headers.
This operation performs a quick check if hardware-induced errors are suspect.

Troubleshooting (SQL Server 2000)

Distributed Partitioned View Recommendations
With the implementation of distributed partitioned views, Microsoft SQL Server 2000 Enterprise Edition allows for high-end users
to scale their servers to meet the requirements of large Web sites and enterprise environments. Before choosing to create a
federated server implementation, and consequently partition your tables, you need to decide whether distributed partitioned
views are best for your overall environment. The implementation of distributed partitioned views can bring about a lot of
complexity to the management and operation of the overall environment. Currently, the percentage of companies that may need
to implement this scale-out behavior to improve their environment is very small.

Distributed partitioned views add a scale-out capability to the database backend by transparently partitioning the data across a
group of servers. This implementation is designed for high-end OLTP and Web sites with individual SQL statements retrieving
minimal data as compared to the decision support, Analysis Services (formerly OLAP Services). The following topics include high-
level considerations for any environment that may use distributed partitioned views as part of the database implementation.

Scaling to the Limits of a Single Database Server

Have you already scaled to the limits of a single database server? Scaling refers to the process of adding resources to a tier so that
it can handle increased workloads. Scaling can be done in one of these ways:

Scale up. Increases the processing power of a server by using a more powerful computer.

Scale out. Increases the processing power of a system designed in a modular fashion, such as becoming a cluster of
computers, by adding one or more additional computers (also called nodes) to the system.

While a federation of servers implementing distributed partitioned views allow for a scale-out environment model, scaling up on
a single server should be considered first. Distributed partitioned views should be considered a solution only for database
systems which have already fully scaled up and at this point are looking to scale out their data services tier. Many perceived
problems might well be resolved more efficiently through implementing a scale-up philosophy and adding additional resources
for the single database server to use. By scaling up instead of scaling out, the change to the environment should be less intrusive,
minimizing such things as application code changes and database design issues, while allowing for efficient memory usage on the
single server.

Database and Table Design for a Distributed Environment

Does your database and table design lend itself to a distributed environment?

Consider the current database and table design of your environment. To partition a table successfully, the design must lend itself
to this type of an implementation. The goal is to design partitions so that most of the queries are run locally, not remotely.
Considerations such as which tables to partition are crucial to the overall performance of the system.

For example, an environment may have Orders, Customers, and Items tables, with Orders and Customers consistently
changing and the Items table remaining fairly constant. As a practice, if the Items table, for example, has very few INSERT,
UPDATE, or DELETE statements executed against it, you may want to clone this data across all partitions to keep the clusters of
tables and data retrieved together.

The partitioning for an updatable view is done on a unique primary key constraint (horizontal partitioning). Therefore, consider
not only how the table might be divided, but also the layout of your data today and in the future. Consider your partitioning
column and the type of queries that will be run against this column.

In designing a partitioning scheme, it must be clear what data belongs to each partition. The partitioning column cannot be an
identity, default, or timestamp column. You may want to use a hashed value for your key to get a relatively even distribution of
each one of your partitions when new keys are inserted or deleted. If, in the future, tables need to be re-partitioned, an overhead
will be incurred in modifying the view and underlying table schema, and possibly in changing the data-routing rules of the
business tier.

Consider why you may need to implement a federated database design. If you have an extremely high-hit database, it may not be
that database or table that you want to distribute. Rather, if you could minimize the load associated with other table queries on
that server by distributing them, this could be an efficient implementation as well. It is recommended that most of the SQL
statements be routed directly to the member server with a large percent of the necessary data, therefore minimizing the
distributed nature of the design. For more information, see Designing Partitions.

Overall Query Performance

Have you considered overall query performance? Performance should be a large consideration in any database design and

implementation. When distributing data across multiple servers, there is a performance hit for querying a remote server. Analysis
should be done on the type of queries implemented in the OLTP environment to get a baseline on what data is being touched by
specific queries. Because there is a certain degree of overhead in running distributed queries, this overhead may in some cases
outweigh the benefits of distributing your tables. It is important to analyze queries and their generated plans to gather
information as to how you want to distribute your data, whether you need to distribute your data, and to modify long-running
queries. Removing redundant trips to a remote server and being able to cache compiled plans and execution plans can increase
overall performance; however, the more remote trips (some are inherent in a distributed environment), the more performance
will decrease.

Application and Business-Tier Design

What about your application and business-tier design? Consider that you can gain considerable performance in your federated
database tier throughout the environment by connecting to the correct server (the server with the data you need or a server that
can most efficiently process the query) the majority of the time. Within a business-tier logic that can route queries to the
appropriate servers, the system-wide efficiency can be increased significantly. This routing logic can be implemented in the
business tier or even within a table at the data tier, with the advent of data-routing rules. Data-routing rules are a set of rules that
can be used to send a query to the server that contains the appropriate data. Implementing data-routing rules can require the
initial overhead of making changes to your application or other tiers within your environment. For more information, see
Designing Applications to Use Federated Database Servers.

Backup And Recovery Planning for Multiple Servers

How will you maintain your backup and recovery plan across multiple servers? Overall, manageability of your environment can
become more challenging when more servers are added to the enterprise. The backup and restore features that are included with
SQL Server 2000 become more complex when working with a distributed environment. Consider the need to backup and restore
databases across partitions at the same logical point in time. SQL Server 2000 has made these restores easier with the
implementation of marked transactions. For more information, see Backing Up and Restoring Federated Database Servers and
Recovering to a Named Transaction.

See Also

Federated SQL Server 2000 Servers

Designing Partitions

Creating a Partitioned View

Designing Applications to Use Federated Database Servers

Partitioning Data

Backing Up and Restoring Federated Database Servers

Recovering to a Named Transaction

Troubleshooting (SQL Server 2000)

Full-Text Search Recommendations
Full-text search allows word- or phrase-based indexing of character data in Microsoft® SQL Server™ 2000 tables. Full-text search
consists of these basic components:

Full-text indexing enables the creation and population of the full-text catalogs, which are maintained outside of SQL Server
and managed by the Microsoft Search service.

Full-text search uses the new Transact-SQL predicates (CONTAINS, CONTAINSTABLE, FREETEXT, and FREETEXTTABLE) to
query these populated full-text catalogs.

Full-Text Indexing

If you are full-text indexing tables that have less than a million rows, very little performance tuning is required. If you full-text
index large SQL Server tables that contain millions of rows that create large full-text catalogs, this will sustain heavy read and
write activity, so you must configure SQL Server and the full-text catalogs to maximize disk I/O performance by load balancing
across multiple hard disk drives. You will also need to consider hardware configurations, Microsoft Windows® 2000 or Windows
NT® 4.0 system configurations, and SQL Server 2000 configurations, as well the actual location of the full-text catalogs and
database files.

Hardware Considerations

Multiple CPUs: One to four 500 MHz Xeon III processors.

Memory: 1 to 4 GB of physical RAM.

Multiple disk controllers with several channels or a single disk controller with multiple channels.

Disk I/O sub-systems: RAID0 (disk striping with no fault-tolerance protection), RAID0+1 and RAID5.

Windows 2000 or Windows NT 4.0 System Configuration Considerations

If you are installing SQL Server on Windows NT Server 4.0, the pagefile.sys file needs to be sized at 1.5 to 2 times the
amount of available physical RAM. This consideration can be avoided by installing SQL Server on Windows 2000 Server
with larger amounts of RAM.

Pagefile.sys files need to be placed on their own drives (RAID0 or RAID0+1), preferably on a separate controller or least a
separate channel off a shared controller.

SQL Server Configuration Considerations

After a full population of a large table (greater than 1 million rows), consider using the new feature Change Tracking along
with Update Index in Background and Update Index versus Incremental Population. For more information about
when to use Change Tracking versus Timestamp-based incremental populations, see Maintaining Full-Text Indexes.

Full-Text Indexing and Catalog Considerations

Full-text indexing or populating the full-text catalogs should be done during periods of low system activity, typically during
database maintenance windows.

Place the full-text catalog files on either its own disk controller or off a separate channel on a single disk controller with
multiple channels.

Place the database files on a separate disk controller from the full-text catalog files or off a separate channel on a single disk
controller with multiple channels.

The full-text indexing of SQL tables with 4 million to 20 millions rows can take many hours or days to complete. Consider
options offered in Knowledge Base Article Q240867, "INF: How to Move, Copy and Backup SQL 7.0 Full-Text Catalog Folders
and Files."

Full-Text Search

If you are full-text searching tables that have less than a million rows, there is little performance tuning required. (A million
rows is just a general break point.) If you are going to be full-text searching tables that have more than a million rows,
consider the appropriate full-text search predicate, CONTAINS versus CONTAINSTABLE or FREETEXT versus
FREETEXTTABLE, as well as the average number of rows and query timeout considerations.

Use CONTAINSTABLE or FREETEXTTABLE with the new top_n_by_rank parameter to restrict the number of rows returned.
Top_n_by_rank specifies that only the n-highest ranked matches, in descending order, be returned. Applies only when an
integer value, n, is specified. In addition, you should consider using the TOP clause to limit the number of rows returned in
the result set with CONTAINTSTABLE or FREETEXTTABLE. Review the Knowledge Base Article Q240833, "FIX: Full-Text
Search Performance Improved via Support for TOP" for more details.

If you are attempting to limit the results from a full-text query with additional WHERE clauses, the WHERE clauses are
applied after the JOIN with the SQL table results, not before. Otherwise, the result set would be incorrect because qualifying
rows would be omitted from the result set without any notification to the client. To limit the results from a full-text search
query, use the Top_N_Rank parameter from the CONTAINSTABLE or FREETEXTTABLE predicates.

If you are using SQL Server full-text search by means of a Web or Microsoft Internet Information Services (IIS) interface and
searching against large tables (greater than 1 million rows), consider increasing the IIS query timeout default of 20 seconds
to 30 seconds if you are using the CONTAINS or FREETEXT predicates.

If you are using multiple CONTAINS or FREETEXT predicates in your SQL query and are experiencing poor full-text search
query performance, reduce the number of CONTAINS or FREETEXT predicates or using "*" to use all full-text indexed
columns in your query.

You also may encounter Error 7619, "The query contained only ignored words" when using any of the full-text predicates in
a full-text query, such as CONTAINS(pr_info, 'between AND king'). The word "between" is an ignored or noise word and the
full-text query parser considers this an error, even with an OR clause. Consider rewriting this query to a phrase-based query,
removing the noise word, or options offered in Knowledge Base article Q246800, "INF: Correctly Parsing Quotation Marks
in FTS Queries". Also, consider using Windows 2000 Server: there have been some enhancements to the word-breaker files
for Indexing Services.

What is RANK and how is it determined when used with CONTAINSTABLE and FREETEXTTABLE predicates? Full-text RANK
values are based on the frequency of rows that contain the unique word. A factor that plays a part in determining the RANK
value of the returned row is the frequency of the unique word in the full-text indexed column for that row. Another factor is
the total number of unique word occurrences in the table (this serves to normalize the probabilities). The RANK values
returned in the result set are relative to each other. Therefore, it is not possible to interpret the RANK value as a percentage
or group the RANK values into high/medium/low ranges. Think of RANK as a method to order the results for a specific
query and result set.

There are also full-text indexing and searching considerations when determining whether to include multiple SQL tables in one
full-text catalog versus one SQL table per full-text catalog. There is a trade-off between performance and maintenance when
considering this design question with large SQL tables and you may want to test both options for your environment. If you
choose to have multiple SQL tables in one full-text catalog, you incur the overhead of longer-running full-text search queries as
well because incremental populations will force the full-text indexing of all other SQL tables in that full-text catalog. If you choose
to have a single SQL table per full-text catalog and have multiple SQL tables full-text indexed, you have the overhead of
maintaining separate full-text catalogs with a total limit of 256 full-text catalogs per server.

Troubleshooting (SQL Server 2000)

Multiple Instance Recommendations
Before installing multiple instances of Microsoft® SQL Server™ 2000 on the computer, you should be aware of the resources
each instance will be using. Each instance acts like an individual server and yields resources only to the operating system and not
to other instances. For example, if instance1 needs more memory to run a query, it will not ask instance2 to yield but will request
a memory grant from the operating system.

If you have multiple instances installed on a single-CPU computer, with both instances actively processing queries, expect a
slowdown in the queries because both instances will compete for CPU resources. In that environment, a query that is resource
intensive, such as one containing JOIN with GROUP BY or ORDER BY clauses, may take twice as much time to run as the same
query on a single instance installed on a single-CPU computer. This information is based on comparing the query execution on a
single-CPU computer with one instance to two instances on the same computer, with both instances running the same CPU
intensive operation simultaneously.

Installing multiple instances on a computer with low RAM leads to slower query execution. For example, installing three instances
on a server with 64MB of RAM will slow your queries significantly. You can expect that about 15 percent more time will be
required to run the same query.

Running Multiple Instances

Consider switching to a "Fixed memory size" configuration for server memory. This configuration will prevent one instance from
taking all available memory. For example, you might want to assign 80 percent of the RAM to the production server, and 10
percent to the development instance.

Consider assigning CPUs to a specific instance using the affinity mask option on an SMP computer. For more information, see
Allocating Threads to a CPU.

Some Sample Test Results (Averages)

The following figures are from ad-hoc testing. Your results might be different.

Computer/instance Query type Execution time (ms)
Single CPU single instance Select into 420
Single CPU single instance Select with Group by and Order

by
16683

Single CPU single instance Union query 13590
Single CPU single instance Join with Group by 4406
Single CPU two instances Select into 1153
Single CPU two instances Select with Group by and Order

by
24246

Single CPU two instances Union query 16623
Single CPU two instances Join with Group by 5076
Two CPU single instance Select into 314
Two CPU single instance Select with Group by and Order

by
9342

Two CPU single instance Union query 9972
Two CPU single instance Join with Group by 1289
Two CPU two instances Select into 852
Two CPU two instances Select with Group by and Order

by
18120

Two CPU two instances Union query 12091
Two CPU two instance Join with Group by 3121

Troubleshooting (SQL Server 2000)

Parallel Query Recommendations
Microsoft® SQL Server™ can execute queries in parallel automatically. This optimizes the query execution in multi-processor
computers. Rather than using one OS thread to execute one query, work is broken down into multiple threads (subject to the
availability of threads and memory), and complex queries are completed faster and more efficiently.

The optimizer generates the plan for the query and decides when a query will be executed in parallel. It considers the following
when making the decision:

Does the computer have multiple processors?

Is there enough memory available to execute the query in parallel?

What is the CPU load on the server?

What type of query is being run?

When allowing SQL Server to run parallel operations like DBCC and index creation in parallel, the server resources become
stressed, and you might see warning messages when heavy parallel operations are occurring. If warning messages about
insufficient resources appear frequently in the server error log, consider using Performance Monitor to investigate what resources
are available, such as memory, CPU usage, and I/O usage.

Do not run heavy queries that are executed in parallel when there are active users on the server.

Try executing maintenance jobs such as DBCC and INDEX creation during offload times. These jobs can be executed in parallel.

Monitor the disk I/O performance. Observe the disk queue length in Performance Monitor to make decisions about upgrading
your hard disks or redistributing your databases onto different disks.

Upgrade or add more processors if the CPU usage is very high.

Configuration Settings that Influence Parallel Queries

The following server configurations can affect parallel execution of the queries:

Cost threshold for parallelism

Maximum degree of parallelism

Maximum worker threads

Query governor cost limit

See Also

Degree of Parallelism

Advanced Query Concepts

cost threshold for parallelism Option

Parallel Query Processing

Query Tuning Recommendations

Query Tuning

Query Tuning (How To)

Parallel Query Example

Execution Plan Caching and Reuse

Troubleshooting (SQL Server 2000)

User-Defined Function Recommendations
This section contains recommendations and tips for working with user-defined functions, including information about scalar and
table-valued functions, the effects that changes to the schema can have on functions, and the use of nested functions to simplify
complex functions.

Where Scalar Functions Are Useful

Scalar functions are useful in places where you need to do the same mathematical calculations at multiple places in code. For
example, if calculating interest based on percent rate, principal, and years is done throughout your application, it can be coded as
a callable function, as follows.

create function calc_interest (@principal int , @rate numeric(10,5) , @years int)
returns int
as
begin
 declare @interest int
 set @interest = @principal * @rate * @years / 100
 RETURN(@interest)
end

Using System Functions as Building Blocks

System functions can be used as building blocks for a user-defined function. For example, if you need to calculate the quadrupled
value of a number, use the SQUARE system function to arrive at the value instead of writing the entire function from scratch.

Nesting Functions to Divide and Simplify a Complex Function

Nesting of functions is allowed; therefore, it might be better to break down a complex function into simpler functions and use the
simpler functions together to produce the result. The advantage of breaking complex functions into smaller functions is that this
code can be reused in more places in the application.

For example, suppose you need to calculate the area of a plot of land and the input can be in either meters or feet, but the area
must always be displayed in square feet. Instead of writing one function that does all the work, you can break up the task into two
functions:

cnvt_meters_feet does the conversion from meters to feet

calc_Area_ft calculates the area in feet

This way, you can use the cnvt_meters_feet function at other places in the code.

USE pubs
GO
CREATE FUNCTION cnvt_meters_feet (@value numeric(10,3))
RETURNS numeric(10,3)
AS
BEGIN
 DECLARE @ret_feet numeric(10,3)
 SET @ret_feet = @value * 3.281 ---1 Meter=3.281 Feet
 RETURN(@ret_feet)
END
GO
CREATE FUNCTION calc_area_ft (@length numeric(10,3), @width numeric(10,3), @Unit char(2))
RETURNS numeric(10,3)
AS
BEGIN
 DECLARE @area numeric(10,3)
 ---Check for unit, if meters(MT), convert it to feet(FT)
 IF @Unit = 'MT'
 BEGIN
 SET @length = pubs.dbo.cnvt_meters_feet(@length)
 SET @width = pubs.dbo.cnvt_meters_feet (@width)
 END
 ---Calculate Area
 SET @area = @length * @width
 RETURN (@area)
END
GO
SELECT pubs.dbo.calc_area_ft (100.0, 50.0, 'MT') AS 'Area in Feet'
SELECT pubs.dbo.calc_area_ft (100.0, 50.0, 'FT') AS 'Area in Feet'

go

Avoiding the Default of Returning All Rows

When using the input parameter of the function as a condition in a WHERE clause, the number of rows returned should be
considered for all possible values.

For example, if you are using the condition "WHERE name like '@value%' " as the only condition and you are relying on the user
to specify the starting value, but the user does not specify any value, the WHERE condition transforms to "WHERE name like '%' ",
which will return ALL the rows in the table. This will be detrimental on a multi-million-row table. To avoid this excessive result set,
you can implement a default checking mechanism so that when no input is specified, only a portion of the rows is returned.

Consider Effects of Changes to the Schema

If "SELECT * FROM <table>" is being used in a function, effects of changes to the schema after creation of the function should be
considered. If the function is not created with the SCHEMA_BINDING option, changes to the schema are not reflected in the result.

For example, if a new column is added to the table after the function was created and the function is not SCHEMA bound, the new
column will not show up in the result set. If a column is removed after creation of the function and the function is NOT SCHEMA
bound, a NULL value will show up in the result set for the deleted column.

Using Subsets to Consolidate Stored Procedures and User-Defined Functions

Table-valued functions can be defined to return a wide result set. Different users can then use the subsets of the result to retrieve
the data accordingly. This can be used to consolidate multiple stored procedures or user-defined functions.

For example, you can create the functions as follows:

FunctionA returns Col1, Col2, Col3, ... Col10 from TableA

FunctionB returns Col1, Col3 from FunctionA.

FunctionC returns Col2, Col4 from FunctionA.

Now different users can retrieve smaller subsets by using FunctionB or FunctionC. They can also select the subset of the columns
returned by FunctionA by using a simple SELECT statement. Example: Select Col10 from FunctionA.

Eliminating Temporary Table Usage

Multi-statement table-valued functions can be used to eliminate temporary table usage for intermediate result processing.

When to Convert Stored Procedures into Table-Valued Functions

Evaluate the reasons for conversion; do not convert stored procedures into table-valued functions just for uniformity. Even
though some improvements are expected, test the conversion thoroughly to confirm the expectations and check for any
unwanted side effects.

Troubleshooting (SQL Server 2000)

Reporting Errors to Your Primary Support Provider
If you are unable to resolve a problem, contact your primary support provider for assistance. Anytime you receive a server
internal error (for example, assertion or access violation (AV)), contact your primary support provider. If you experience an
operating system or I/O error, it is most likely a hardware problem. Correct the hardware problem and restore your database.
When reporting an error to your primary support provider, be sure to provide the Blackbox.trc and Sqldiag.txt files.

For more information about resolving a 9002 or 1105 space-related error, see Troubleshooting Recovery, Error 9002, and Error
1105.

Use sp_trace_create with the TRACE_PRODUCE_BLACKBOX option to define a trace that appends trace information to a
blackbox.trc file in the \Data directory. Once the trace is started, trace information is recorded in the blackbox.trc file until the size
of the file reaches 5 megabytes (MB). The trace then creates another trace file, blackbox_1.trc, and trace information is written to
the new file. When the size of blackbox_1.trc reaches 5 MB, the trace reverts to blackbox.trc. Thus, up to 5 MB of trace information
is always available.

Use the sqldiag utility to collect information about server version and configuration, .dll file version, error logs, extended stored
procedures, operating system, computer version, configuration data, and additional data, all of which is put into Sqldiag.txt (by
default located in \Mssql\Log). Also when sqldiag is executed, the two trace files blackbox.trc and blackbox_1.trc (if it exists)
containing trace information including any server exceptions, are copied to the same output directory as sqldiag.txt (by default
\mssql\log).

For example, the environment in which the error occurred includes this information:

Microsoft® SQL Server™ version number (as reported to the error log or returned by SELECT @@VERSION). The first
message written to the error log provides the SQL Server version number.

DB-Library API version number (as reported by the SQL Server Client Network Utility), ODBC driver version (as reported by
ODBC Driver Setup), or OLE DB provider information.

Application version number (for example, SQL Server Enterprise Manager or osql.exe).

Operating-system version number.

Hardware platform.

Production or development environment.

This additional information is also helpful in troubleshooting a problem:

The message number, message state, and complete error message text.

Any variables (numbers, database object types, or database object names) included in the error message.

The context in which the message was generated (what statement was running at the time).

The number of users who were logged in to SQL Server when the error occurred.

The frequency with which the error occurs.

If you are using SQL Query Analyzer and you do not see more than 255 characters in the results pane, click Tools, and then
click Options. Click the Results tab, and then increase the value for Maximum Characters Per Column.

In addition, review the error logs and, if running Microsoft Windows® 2000 or Microsoft Windows NT® 4.0, review the Windows
application log and the Sqlstp.log file, located in the \WINNT directory. You may also want to use SQL Profiler to monitor events.

To help resolve your problem quickly, you may be asked to send your Sqldiag.txt and error log in e-mail to your primary support
provider.

When providing this information, provide the entire error log, including all messages displayed from startup to the very end of
the log. Be sure to send all information beginning with the time of startup and ending with the error message in question.

Although most startup messages are identical each time you start SQL Server, additional messages sometimes appear during
startup, which can provide clues for solving problems that occur during or after startup. If additional messages appear during
startup, write down these error messages to assist your support provider in diagnosing and resolving the problem.

See Also

Monitoring with SQL Profiler

Troubleshooting (SQL Server 2000)

Reproducing Problems
In general, the time it takes for your primary support provider to resolve a problem is reduced if you generate a reproducible test
case demonstrating the error. These test cases can range from a single query that is not acting as expected to a relatively complex
code fragment that encounters a serious problem. A quick resolution is more likely when the test case is simple.

Important Providing a test case improves the chances of a quick resolution to the problem. If a problem cannot be reproduced, it
is usually impossible to solve.

Whenever possible, create the test case using the pubs or Northwind sample databases. In many cases, creating a test case can
save you from having to send large amounts of data to your primary support provider.

To reproduce and diagnose problems, SQL Profiler may be used. SQL Profiler captures information about events and, if necessary,
replays these events. Capturing and replaying events can be instrumental in reproducing and diagnosing problems.

See Also

Monitoring with SQL Profiler

Northwind Sample Database

pubs Sample Database

Troubleshooting (SQL Server 2000)

Isolating Connection Problems
Note For immediate help in diagnosing your connection problems, see the new online setup troubleshooter on the Product
Support Web site. For more information, see Help with Connectivity.

When an application or tool has problems connecting to Microsoft® SQL Server™ 2000, there might be a problem with SQL
Server, with the network, or with both. Regardless of the network you are running on, there are several items that you can check
to isolate the problem. Check that:

For servers running Microsoft Windows NT® 4.0, the local connection to SQL Server over Named Pipes is available. You can
test a local Named Pipes connection by using osql with no servername argument. If you cannot make a local connection
using Named Pipes, either you are using an invalid login or there is a problem with SQL Server.

For servers running Microsoft Windows® Me or Microsoft Windows 98, the local connection to SQL Server uses the Shared
Memory Net-Library.

The network components match the requirements specified in Network Protocols.

The default client Net-Library is appropriate for your network. You can determine and, if necessary, change the default client
Net-Library by using SQL Server Client Network Utility in the Microsoft SQL Server program group.

The network connection information on the server is appropriate for your network (if you are running SQL Server and
listening on other interprocess communication (IPC) mechanisms in addition to Named Pipes). You can determine and, if
necessary, change the network SQL Server is listening on using SQL Server Server Network Utility in the Microsoft SQL
Server program group.

The network connection between the client workstation and the server is established. If you test the network connection and
determine that it is not open, check that:

The hardware connection is not disabled due to loose connectors or plugs.

The network software is installed and running on both the client workstation and the server.

See Also

Client Network Utility

Net-Libraries and Network Protocols

Server Network Utility

Troubleshooting (SQL Server 2000)

Orphaned Sessions
A client may have its connection abruptly severed from the server such that the client process is unable to tell the network to
close the connection properly. This may occur for many reasons, including power failures on the client. Microsoft® SQL Server™
2000 does not proactively probe the status of a client connection. Instead, it relies on Microsoft Windows NT® to notify it when a
connection needs to be terminated or closed. Windows NT monitors connections and continues to report them as active to SQL
Server for the duration of the KeepAliveTime for TCP/IP or SessionKeepAlive for NetBios, which affects Named Pipes clients. SQL
Server continues to keep locks owned by the client active until they are killed, or until the connection is terminated or closed by
Windows NT.

What is an orphaned session?

An orphaned session is a session that remains open on the server side after the client has disconnected.

Do not confuse orphaned sessions with orphaned users. Orphaned users are created when a database is backed up and restored
to another system that does not have a corresponding user account configured. For more information about orphaned users, see
Troubleshooting Orphaned Users.

When do orphaned sessions occur?

Orphaned sessions occur when the client is unable to free network connections it is holding when it terminates.

If the client terminates cleanly, Windows NT closes the connection and notifies SQL Server. If SQL Server is processing a client
command, it will detect the closed connection when it ends the session. Client applications that crash or have their processes
terminated (for example, from Task Manager) are cleaned up immediately by Windows NT, rarely resulting in an orphaned
session.

One common cause of orphaned sessions arises when a client computer loses power unexpectedly, or is powered off without
performing a proper shutdown. Orphaned sessions can also occur due to a hung application that never completely terminates,
resulting in a dead connection. Windows NT does not know that the connection is dead and continues to report the action as
active to SQL Server. SQL Server, in turn, keeps the session open and continues to wait for a command from the client.

What problems can orphaned sessions cause?

Open sessions take up one of the SQL Server network connections. The maximum number of connections is limited by the
number of server Client Access Licenses (CALs), therefore, orphaned sessions may prevent other clients from connecting.

Typically, a more important issue is that open sessions use server resources, and may have open cursors, temporary tables, or
locks. These locks may block other connections from performing useful work, and can sometimes be the result of a major "pile
up" of locks. In severe cases, it can appear that SQL Server has stopped working.

How can I tell if an orphaned session exists and what problems it might be causing?

The sysprocesses table (or stored procedures, such as sp_who) reports information on existing server sessions. Possible
orphaned sessions can be identified if the status of a process is awaiting command and the interval of time found by subtracting
last_batch from GETDATE() is longer than usual for the process. If the session host name is known to be down, it is orphaned.

How do I resolve orphaned sessions?

Windows NT periodically checks inactive sessions to ensure they are active. If a session does not respond, it is closed and SQL
Server is notified. The frequency of the checking depends on the network protocol and registry settings. However, by default,
Windows NT only performs a check every one or two hours, depending on the protocol used. These configuration settings can be
changed in the registry.

To close an orphaned SQL Server session, use the KILL statement. All resources held by the session are then released.

If orphaned sessions become a problem, registry settings can be changed on Windows NT to increase the frequency with which
clients are checked to verify they are active. Changing these settings affects other application connections. The following points
should be considered before making any changes.

Warning Do not change these settings on computers running Microsoft Windows® 95 or Microsoft Windows 98.

Consider the effect changing these settings may have on other applications on your system, in particular, applications with
Internet connectivity, such as Microsoft Internet Information Services (IIS) or Microsoft Internet Explorer. In addition, consider the
affects of using connections that are charged on a per-packet basis.

Caution Editing the registry is not recommended; inappropriate or incorrect changes can cause serious configuration problems
for your system. Only experienced users should use the Registry Editor. For more information, see your Windows NT
documentation.

The registry entries can be altered from HKEY_LOCAL_MACHINE by double-clicking SYSTEM, expanding CurrentControlSet, and
then clicking Services.

KeepAliveTime for TCP/IP

Key: Tcpip\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 1 - 0xFFFFFFFF
Default: 7,200,000 (two hours)
Description: The parameter controls how often TCP attempts to verify that an idle

connection is still intact by sending a keep alive packet. If the remote
system is still reachable and functioning, it will acknowledge the keep
alive transmission. Keep alive packets are not sent by default; this
feature may be enabled on a connection by an application.

SessionKeepAlive for N amed Pipes

Key: Netbt\Parameters
Value Type: REG_DWORD - Time in milliseconds
Valid Range: 60,000 - 0xFFFFFFFF
Default: 3,600,000 (1 hour)
Description: This value determines the time interval between keep alive

transmissions on a session. Setting the value to 0xFFFFFFF disables
keep alives.

Do not increase the ping frequency to less than 1 minute, as network I/O and CPU usage for pings may become excessive.

Troubleshooting (SQL Server 2000)

Named Pipes Client Connections
The following procedure describes how to test a network connection when using Named Pipes as the IPC mechanism.

To test a Named Pipes connection

At the operating-system command prompt on the client workstation, type:

net view \\servername

When using net view, servername is the name of the server to which you want to connect.

For example, to check the connection between a Named Pipes client and a server named \\SEATTLE1, type the following on the
client:

net view \\SEATTLE1

If the connection is open, the output looks something like this:
Shared resources at \\SEATTLE1
SQL Server
Sharename Type Used as Comment
--
PUBLIC Disk Public Files
The command completed successfully.

To verify connection to a server's named pipe

From a command prompt, type:

net use \\servername\IPC$

When using net use, servername is the server to which you want to connect.

For example:
net use \\SEATTLE1\IPC$
The command completed successfully

If the connection between the client workstation and the server is open but you still cannot connect to Microsoft® SQL Server™
2000, test the network and local named pipes using the makepipe and readpipe utilities. These utilities are included with SQL
Server to help test the integrity of network named pipes.

The makepipe and readpipe utilities are installed during installation of both the client and server components. There are
different versions of these utilities for the different operating systems on which they run: makepipe runs on Microsoft Windows
NT®; readpipe runs on Windows NT, Microsoft Windows®, and MS-DOS®. Be sure to use the correct version for the operating
system that you are testing. (The version that runs on Windows is named readpipe. If the SQL Server tools are installed,
readpipe is located in the \Msqql\Binn directory; no icon is created for it.)

To test the integrity of the network named pipe services

1. At the operating system command prompt on the server, type:

makepipe

The makepipe utility returns the following information:

Making PIPE:\pipe\abc
read to write delay (seconds):0
Waiting for Client to Connect...

SQL Server is waiting for a client to connect.

2. At the operating system command prompt on the client workstation, type:

readpipe /Sserver_name /Dstring

When using readpipe, server_name is the network server name of the SQL Server on which makepipe was started and

string is a test character string. If the string contains spaces, it must be enclosed in double quotation marks. There are no
spaces between /S and the server name, and no spaces between /D and the string.

For example, to connect to a SQL Server installation named myserver, type one of the following:

readpipe /Smyserver /Dhello

readpipe /Smyserver /D"hello there"

readpipe /Smyserver /D'hello there'

The strings specified in the first two readpipe statements are treated identically.

If a network named pipe connection can be established, the client workstation returns the following information to each of
the previous commands, respectively:

SvrName:\\myserver
PIPE :\\myserver\pipe\abc
DATA :hello
Data Sent: 1 : hello
Data Read: 1 : hello

SvrName:\\myserver
PIPE :\\myserver\pipe\abc
DATA :hello there
Data Sent: 1 :hello there
Data Read: 1 :hello there

SvrName:\\myserver
PIPE :\\myserver\pipe\abc
DATA :hello
Data Sent: 1 : 'hello
Data Read: 1 : 'hello

If a network named pipe connection can be established, the makepipe utility returns information similar to this:

Waiting for Client to Connect...
Waiting for client to send... 1

Data Read:
hello

Waiting for client to send... 2

Pipe closed

Waiting for Client to Connect...
Waiting for client to send... 1

Data Read:
hello there

Waiting for client to send... 2

Pipe closed

Waiting for Client to Connect...
Waiting for client to send... 1

Data Read:
'hello

Waiting for client to send... 2

Pipe closed

Waiting for Client to Connect...

At this point, SQL Server is waiting for a client to connect. The readpipe utility can be run from other workstations.

3. When testing is complete, go to the server on which the makepipe utility is running and press either CTRL+BREAK or
CTRL+C.

If the results are different from those in Step 2, network named pipe services are not available. If you are using Named Pipes as
the IPC mechanism, clients cannot connect to SQL Server until a named pipe is available. These utilities attempt to open and use a
named pipe; they do not stress the named pipe connection.

See Also

Configuring Client Network Connections

makepipe Utility

readpipe Utility

Troubleshooting (SQL Server 2000)

TCP/IP Sockets Client Connections
The following procedure describes how to test a network connection when using TCP/IP Sockets as the IPC mechanism.

To test a TCP/IP Sockets connection

At the operating system command prompt on the client workstation, type:

ping {ip_address | server_name}

When using ping, ip_address is the TCP/IP address of the server to which you want to connect, and server_name is the name of
the server to which you want to connect.

For example, to check the connection between a TCP/IP Sockets client workstation and a server at the TCP/IP address 11.1.4.70,
type the following on the client workstation:

ping 11.1.4.70

If the connection is open, the output looks something like this:
[1] echo received from 11.1.4.70 with roundtrip < 50 sec

This example checks the connection between a TCP/IP Sockets client and a server named SEATTLE1:

ping SEATTLE1

If the connection is open, the output looks something like this:
[1] echo received from SEATTLE1 with roundtrip < 50 sec

See Also

Configuring Client Network Connections

Troubleshooting (SQL Server 2000)

Troubleshooting SQL Server Setup
For immediate help in diagnosing your setup problems, see the new online setup troubleshooter on the Product Support Web
site. For more information, see Help with Setup.

SQL Server Setup is designed to be as problem-free as possible; however, there may be situations that will interfere with the
installation of Microsoft SQL Server 2000. The most common errors are simple to diagnose and resolve. The resolution may
involve freeing up disk space, shutting down other applications, or restarting the computer to unlock shared files.

To avoid problems, be sure to review Preparing to Install SQL Server 2000. If you intend to install a SQL Server 2000 failover
cluster, review Before Installing Failover Clustering before you run Setup.

If the installation fails, the Setup program might remove all installed components.

Before running the Setup program or installing additional SQL Server components, be sure to:

Shut down all services.

Use Services in Control Panel to shut down the MSSQLServer and SQLServerAgent services. Shut down the MSSearch
service if you installed Full-text Search. Shut down the MSDTC service if you installed MS DTC.

Be sure the SQL Server Service Manager icon in the taskbar is closed.

Any attempt to run SQL Server Setup with the SQL Server Service Manager icon present (or any services still running)
may cause Setup to fail.

Remove the read-only attribute for all ODBC* files. On computers running Microsoft Windows NT® these files are located
in the \System32 directory. On computers running Microsoft Windows® 95 or Microsoft Windows 98, these files are
located in the system directory.

If you cannot remove the read-only attribute on the ODBC* files, SQL Server provides a dialog box that allows you to retry
the updating of the ODBC* files.

Understand that servers running Windows NT require Named Pipes. Cleaning named pipes during SQL Server installation
does not prevent installation of named pipes. Because servers running Windows NT require named pipes, there is no way to
uninstall Named Pipes on a server running Windows NT.

See Also

Help with Setup

Setup and Installation FAQ

Setup Troubleshooting: Checklist

Troubleshooting (SQL Server 2000)

Setup Troubleshooting: Checklist
1. Read the error message. SQL Server Setup translates most error codes received from the operating system.

2. With the error dialog box showing, open Sqlstp.log in the \Windows or \WINNT directory. Check the last few events in the
log to see if any problems occurred before the error message was generated.

3. If this is a custom installation and the component that failed to install properly is the Full-text Search (MSSearch) service,
check the Mssearch.log in the \Temp directory to see if any problems occurred.

4. Continue past the error message dialog box. Some error messages are just warnings. The Setup program may still finish
successfully.

5. If the Setup program fails, and you cannot diagnose and fix the problem yourself, make a copy of Sqlstp.log and Setup.log
from the \Windows or \WinNT directory and, if you installed Full-text Search, make a copy of the Mssearch.log from the
\Temp directory.

Note SQL Server Setup may encounter problems installing MS DTC on computers with multiple network cards or SPX installed.
If SQL Server Setup stops responding, check the Sqlstp.log in the \Windows or \WinNT directory to see if MS DTC is being
installed. If this is the problem, uninstall one of the network cards or SPX, and then retry SQL Server Setup.

If you try to install Microsoft® Transaction Server (MTS) from the Microsoft Windows NT® 4.0 Option Pack after installing
Microsoft SQL Server™ 2000, you might encounter an error message indicating that MTS could not be installed; however, MTS
was installed. You can ignore this error message.

See Also

Help with Setup

Setup and Installation FAQ

Troubleshooting (SQL Server 2000)

Testing an Installation of SQL Server 2000
Before a server installation is complete, SQL Server Setup starts and connects to the server. When the installation is complete, you
can test the installation yourself and connect to it locally by running the osql utility from the server.

To test an installation of SQL Server 2000 (Command Prompt)

1. Start Microsoft® SQL Server™ by entering from a command prompt:

net start mssqlserver

2. Connect to SQL Server by entering:

osql /Usa /P<administrator password>

If osql connects, this osql prompt appears:

1>

If osql cannot connect, an ODBC error is returned.

3. Enter a simple query, for example

SELECT @@SERVERNAME
GO

The osql utility returns the server name, as shown in this example:

1> SELECT @@SERVERNAME
2> GO

WOLFHOUND
(1 row affected)
1>

4. Verify that you have checked a SQL Server 2000 server by entering:

SELECT @@VERSION
GO

The osql utility returns the version information.

5. Quit the osql utility by entering:

exit

Troubleshooting (SQL Server 2000)

Informational Files Created by SQL Server Setup
These informational files are generated to locate any problems during setup.

Sqlstp.log

The Sqlstp.log file, located in your \Windows or \WinNT directory. For example, C:\WinNT\Sqlstp.log.Any errors encountered
during the configuration portion of setup are written to this file.

Setup.log

The Setup.log file, located in your \Windows or \WinNT directory. For example, C:\WinNT\Setup.log.

Errorlog

The most recent error log, located in the \Log directory of the target installation directory. For example, the default location for
the error log is C:\Program Files\Microsoft SQL Server\Mssql\Log\Errorlog. For a named instance, the error log would be in
\Microsoft SQL Server\Mssql$<instancename>\Log\Errorlog.

Troubleshooting (SQL Server 2000)

Error Codes for an Unattended Installation
When you run an unattended installation of Microsoft® SQL Server™ 2000 Enterprise Edition, SQL Server 2000 Standard Edition,
SQL Server 2000 Developer Edition, or SQL Server 2000 Personal Edition, these error codes may be returned.

Error code number Error code description
0 Success.
-1 General error.
-2 Invalid mode.
-3 Required data not found in the Setup.iss file.
-4 Not enough memory available.
-5 File does not exist.
-6 Cannot write to the response file.
-7 Cannot write to the log file.
-8 Invalid path to the InstallShield Silent response file.
-9 Not a valid list type (string or number).
-10 Data type is invalid.
-11 Unknown error during setup.
-12 Dialog boxes are out of order. This is a common error,

caused when a dialog box appears out of order in the setup
initialization file (Setup.iss). This can occur due to a system
problem during the creation of Setup.iss.

-51 Cannot create the specified folder.
-52 Cannot access the specified file or folder.
-53 Invalid option selected.

Troubleshooting (SQL Server 2000)

Troubleshooting the SQL Server Upgrade Wizard
The SQL Server Upgrade Wizard is designed to be as problem-free as possible; however, there are situations that may interfere
with upgrading Microsoft® SQL Server™ version 6.5 databases to SQL Server 2000. The most common upgrade error is the
failure to create an object in SQL Server 2000. In many cases, the problem is simple, such as running out of disk space. In any
case, the SQL Server Upgrade Wizard creates detailed logs specifying the problem.

See Also

Upgrading to SQL Server 2000

Troubleshooting (SQL Server 2000)

Completing the SQL Server Upgrade Wizard
The SQL Server Upgrade Wizard performs a server and data version upgrade using the options you specified. The Microsoft®
SQL Server™ version 6.5 are left intact throughout the version upgrade process.

During the SQL Server Upgrade Wizard process:

User stored procedures are verified against the contents of syscomments for inconsistencies.

All logins, users, and permissions are validated.

If the SQL Server Upgrade Wizard detects any problems, a dialog box appears with this text:

One or more warnings have been logged. Please read the next screen carefully before you begin your upgrade.

For more information about specific errors, see the \Mssql\Upgrade\<servername>_<date>_<time> directory for *.err files.

The Summary of Warnings dialog box displays inconsistencies found in the user objects of accounts. Users should not continue
until these are resolved. This output file is located in the \Mssql\Upgrade\<SQLServer_date_time> directory. The file name is
associated with the database name and ID, "check65-<dbid><dbname>_err.out" (for example, "check65-007mypubs_err.out"). If
the user continues without fixing the listed errors, check the relevant files for objects, logins, and invalid permissions.

If stored procedures have been renamed using sp_rename, the source stored in syscomments must be changed. Drop and re-
create the procedure using the new name in the CREATE PROCEDURE syntax.

See Also

Upgrading to SQL Server 2000

Upgrading to SQL Server 2000 FAQ

Troubleshooting (SQL Server 2000)

Upgrade Log Files
Each time you run the SQL Server Upgrade Wizard, a subdirectory is created in the \Mssql\Upgrade directory (default location
C:\Program Files\Microsoft SQL Server\MSSQL\Upgrade). The subdirectory name consists of the server name and the current
date and time to distinguish multiple runs of the SQL Server Upgrade Wizard (for example, SQLCONV1_092198_151900).

Inside this subdirectory are a number of descriptively named log files describing each of the upgrade steps. Also inside is another
subdirectory for each upgraded database, including the master database. Inside each database folder are log files indicating the
success of the creation of different types of objects in that database. Files that end in .ok indicate that all instances of that type of
object were created successfully. Files that end in .err indicate that at least one instance of that type of object was not created
successfully. The error files list each failed object creation statement and the reason the object was not created successfully.

Any log files that indicate a problem are listed at the end of the SQL Server Upgrade Wizard for easy access.

The \WinNT directory contains these files.

File Description
Sqlupgrade.ini List of .err files to be displayed by the Script

Interpreter
Upgrade.ini Template .ini file used to set defaults and

run pre-task and post-task applications

The \Mssql\Upgrade directory contains these files and directories.

File Description
Status.log Live status of the current set of tasks being

executed by the script interpreter (useful
for remote checking the upgrade status)

Check65.ini Additional command prompt arguments
sent to Check65.exe when the finish page is
checking SQL Server 6.5 databases

Upgrade.tmp Upgrade.ini before the Finish button is
clicked in SQL Server Upgrade Wizard

Upgrade.ini Script file for the upgrade
<6.5 server>_<date>_<time>
directories

Object directory for each run of the SQL
Server Upgrade Wizard

Object directories contain these files and directories. The SQL Server Upgrade Wizard names some files with either an .out or an
.err extension, depending on the success of the task.

File Description
Layout.ini Used for communication between the SQL

Server Upgrade Wizard and the layout
utility, a subcomponent of the wizard

~backup.ini Used to back up, delete, and restore SQL
Server 6.5 data files manually during a tape
upgrade

<dbid><db>.ini Files used by Layout.exe to cache the user
settings for the current upgrade session

Changedbo.sql.out / .err List of each statement that passed after the
Change DBO task has been run

Check65 - <dbid><db>.out / .err Output from Check65.exe created while
checking the SQL Server 6.5 databases for
inconsistencies in the finish page of the
SQL Server Upgrade Wizard

Check65 - <dbid><db>_err.out / .err Errors from Check65.exe created while
checking the SQL Server 6.5 databases for
inconsistencies in the finish page of the
SQL Server Upgrade Wizard

Cleantempdb.bat Used to delete the SQL Server 2000
tempdb files after a successful upgrade

Cleantempdb.sql.out / .err Output from deleting the SQL Server 2000
tempdb files after a successful upgrade

Convload1.sql.out / .err Sets configuration options
Convload2.sql.out / .err Adds logins, remote logins, local groups,

and other objects
Createdb.sql.out / .err Creates the SQL Server 2000 tempdb and

user databases
Creating Databases.out / .err Output from creating the SQL Server 2000

tempdb and user databases
Dboptions.sql.out / .err Status of database options that were set

and passed
Dropping temporary tempdb files.out /
.err

Success of dropping temporary tempdb
files

Export and Import via Named Pipe -
<dbid><db>.out / .err

Success of exporting data from SQL Server
6.5 and importing into SQL Server 2000
during a named pipe backup

Export Data - <dbid><db>.out / .err Success of exporting data from SQL Server
6.5 in a tape backup

Import Data - <dbid><db>.out / .err Success of importing data into SQL Server
2000 from a tape backup

Export Database Objects - <dbid>
<db>.out / .err

Success of exporting objects from SQL
Server 6.5

Export Database Owners.out / .err Success of exporting database owners from
SQL Server 6.5

Export Logins - <#>.out / .err Success of exporting logins from SQL
Server 6.5

Export Server Settings from Master.out /
.err

Success of exporting server settings from
SQL Server6.5

Export SQL Executive Settings.out / .err Success of exporting SQL Executive settings
Import Database Objects - <dbid>
<db>.out / .err

Success of importing objects into SQL
Server 2000

Import Logins - <#>.out / .err Success of importing logins into SQL
Server 2000

Import Server Settings from Master.out
/ .err

Success of importing server settings into
SQL Server 2000

Import SQL Executive Settings - <#>.out
/ .err

Success of importing SQL Executive
settings into SQL Server Agent in SQL
Server 2000

Logininfo.sid Integrated login mapping
Loginmap.txt Integrated login mapping
Marking database upgrade status -
<dbid><db>.out / .err

Success of marking which databases have
been upgraded

Marking database upgrade status -
<dbid><db>.sql.out / .err

Marks database upgrade status

Modifying scripts.out / .err Success of removing stored procedures
that are not to be created in SQL Server
2000

Msdb6in.sql msdb integrated logins run against SQL
Server 2000

Pre60to7.sql Upgrades msdb from SQL Server 6.5 to
SQL Server 2000

Pre65to7.sql Upgrades msdb from SQL Server 6.5 to
SQL Server 2000

Preparing MSDB for Upgrade - <#>.out
/ .err

Success of preparing msdb for upgrade

Preparing SQL-DMO for upgrade.out /
.err

Success of preparing SQL-DMO for
upgrade

Replupd.out / .errreplupd_erro.out / .err Success of updating replication settings
Setting Database Options.out / .err Success of setting database options in SQL

Server 2000
Upgrade Complete.ini Lists upgrade options and success codes

for each upgrade task and object type
Upgrade.log Lists success code, start time, and stop time

for each task in the Script Interpreter,
created when the Script Interpreter exits or
restarts after a failed task

Upgrade.reg Registry entries for the upgrade DSN used
by many of the ODBC applications in the
upgrade process

<dbid><db> directories Database-specific directories for each
upgraded database, including master

Database-specific directories contain these files.

File Description
<6.5 server>.master.bak (only in the
master database directory)

Backup of stored procedure script before
the Modify Scripts task is run

<6.5 server>.<db>.bnd.out / .err Table column bindings
<6.5 server>.<db>.def.out / .err Defaults
<6.5 server>.<db>.dr1.out / .err DRI to be created before data transfer

(clustered keys)
<6.5 server>.<db>.dr2.out / .err DRI to be created after data transfer

(nonclustered keys)
<6.5 server>.<db>.fky.out / .err FOREIGN KEY constraints
<6.5 server>.<db>.gr1.out / .err Groups
<6.5 server>.<db>.id1.out / .err Indexes to be created before data transfer

(clustered indexes)
<6.5 server>.<db>.id2.out / .err Indexes to be created after data transfer

(nonclustered indexes)
<6.5 server>.<db>.LGN Creates logins
<6.5 server>.<db>.prc.out / .err Stored procedures
<6.5 server>.<db>.prv.out / .err Permissions
<6.5 server>.<db>.rul.out / .err Rules
<6.5 server>.<db>.tab.out / .err Tables
<6.5 server>.<db>.trg.out / .err Triggers
<6.5 server>.<db>.udt.out / .err User-defined data types
<6.5 server>.<db>.usr.out / .err Users
<6.5 server>.<db>.viw.out / .err Views

See Also

Upgrading to SQL Server 2000

Troubleshooting (SQL Server 2000)

Server and Database Troubleshooting
Servers running Microsoft® SQL Server™ 2000 databases may have errors specific to the following areas:

Databases marked as suspect

Alerts

Backup and restore

Locks

Jobs

Microsoft Windows NT® services related to SQL Server

Interaction with the operating system

Recovery

Troubleshooting (SQL Server 2000)

Resetting the Suspect Status
Microsoft® SQL Server™ 2000 returns error 1105 and sets the status column of sysdatabases to suspect if SQL Server is unable
to complete recovery on a database because the disk drive no longer has any free space. Follow these steps to resolve the
problem:

1. Execute sp_resetstatus.

2. Use ALTER DATABASE to add a data file or log file to the database.

3. Stop and restart SQL Server.

With the extra space provided by the new data file or log file, SQL Server should be able to complete recovery of the
database.

4. Free disk space and rerun recovery.

sp_resetstatus turns off the suspect flag on a database, but leaves all other database options intact.

Caution Use sp_resetstatus only when directed by your primary support provider or as recommended in Troubleshooting.
Otherwise, you might damage your database.

Because this procedure modifies the system tables, the system administrator must enable updates to the system tables before
creating this procedure. To enable updates, use this procedure:

USE master
GO
sp_configure 'allow updates', 1
GO
RECONFIGURE WITH OVERRIDE
GO

After the procedure is created, immediately disable updates to the system tables:

sp_configure 'allow updates', 0
GO
RECONFIGURE WITH OVERRIDE
GO

sp_resetstatus can be executed only by the system administrator. Always shut down SQL Server immediately after executing this
procedure.

The syntax is:

sp_resetstatus database_name

This example turns off the suspect flag on the PRODUCTION database.

sp_resetstatus PRODUCTION

Here is the result set:

Database 'PRODUCTION' status reset!
WARNING: You must reboot SQL Server prior to accessing this database!

sp_resetstatus Stored Procedure Code

Here is the code of the sp_resetstatus stored procedure:

IF EXISTS (SELECT * from sysobjects where name = 'sp_resetstatus')
 DROP PROCEDURE sp_resetstatus
GO

CREATE PROC sp_resetstatus @dbname varchar(30) AS
DECLARE @msg varchar(80)
IF @@trancount > 0
 BEGIN
 PRINT 'Can''t run sp_resetstatus from within a transaction.'
 RETURN (1)
 END
IF suser_id() != 1
 BEGIN

 SELECT @msg = 'You must be the System Administrator (SA)'
 SELECT @msg = @msg + ' to execute this procedure.'
 RETURN (1)
 END
IF (SELECT COUNT(*) FROM master..sysdatabases
 WHERE name = @dbname) != 1
 BEGIN
 SELECT @msg = 'Database ' + @dbname + ' does not exist!'
 PRINT @msg
 RETURN (1)
 END
IF (SELECT COUNT(*) FROM master..sysdatabases
 WHERE name = @dbname AND status & 256 = 256) != 1
 BEGIN
 PRINT 'sp_resetstatus can only be run on suspect databases.'
 RETURN (1)
 END
BEGIN TRAN
 UPDATE master..sysdatabases SET status = status ^ 256
 WHERE name = @dbname
 IF @@error != 0 OR @@rowcount != 1
 ROLLBACK TRAN
 ELSE
 BEGIN
 COMMIT TRAN
 SELECT @msg = 'Database ' + @dbname + ' status reset!'
 PRINT @msg
 PRINT ''
 PRINT 'WARNING: You must reboot SQL Server prior to '
 PRINT ' accessing this database!'
 PRINT ''
 END
GO

See Also

ALTER DATABASE

BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

Starting, Pausing, and Stopping SQL Server

sysdatabases

Transactions

Transactions Architecture

UPDATE

Troubleshooting (SQL Server 2000)

Troubleshooting Alerts
If you are experiencing problems with alerts, read the solutions detailed here.

An alert is not firing.

Ensure that the SQLServerAgent and EventLog services are running.

Ensure that the event appears in the Microsoft Windows NT® application log.

Start the Windows NT Event Viewer. If the event is not in the log, check the log settings. On the Log menu, click Log
Settings, and then in the Change Settings for Log box, select Application. If needed, set these options to the specified
values.

Setting Value
Maximum Log Size Minimum of 2,048 KB (2 MB)
Event Log Wrapping Overwrite Events as Needed

Note Also check the SQL Server error log; events written to the Windows 2000 or Windows NT application log are also
written to the SQL Server error log. To focus the search on the cause of the problem, compare the dates and times for
events between the SQL Server error log, the SQL Server Agent error log, and the Windows 2000 or Windows NT
application log.

Ensure that the alert is enabled.

Ensure that the history values of the alert (for example, the occurrence count and last occurred values) are changing.

Ensure that the counter value is at, above, or below the defined threshold value for a minimum of 20 seconds.

SQL Server Agent polls the performance counters at 20-second intervals.

Important Using a frequency higher than 20 seconds increases the processing overhead for SQL Server.

If a counter spikes for only a few seconds, which satisfies the performance condition, there is a high likelihood that SQL
Server Agent will fail to see the spike; the alert will not fire.

An alert is firing, but the responsible operator is not receiving notification.

Check the operator and notification information to ensure that you have entered the correct e-mail, pager, and net send
addresses.

Test the e-mail, pager, and net send addresses.

Check the operator's on-duty schedule.

Check the SQL Server Agent error log for any e-mail problems.

An alert is firing, but the notification is not timely.

The probable causes for this include:

The Delay between responses setting for the alert is too high.

The alert response is complex, requiring many operator notifications.

Note Send notifications to as few operators as possible. For example, send notifications to one group e-mail address rather
than notifying several individual operators.

This error appears in the SQLServerAgent error log on Windows Me or Windows 98 servers: "The common event system is being restarted after
function ProduceEventsFromSS returned error 44, 'Unable To Connect'"

This may indicate incorrect registered server information. Ensure that the registered server information for the local server is
correct and that the registered login name is a member of the sysadmin fixed server role.

The Windows 2000 or Windows NT application log fills rapidly with the same error.

The CPU usage is high.

The number of alert responses is high.

Because SQL Server Agent both depends on and monitors SQL Server, SQL Server Agent can become caught in an endless loop
of firing the same alert. This generally occurs when SQL Server runs out of an essential global resource and an alert has been
defined on this event.

When the number of alerts raised exceeds the SQL Server Agent alert processing rate, a backlog is created.

To eliminate an alert processing backlog

1. Increase the amount of time in the Delay between responses setting.

2. Correct the global resource problem to prevent recurring alerts from using all your resources.

3. Configure an error so that it does not generate an alert.

Important Configuring an error to not generate an alert can be performed only within the registry. This solution should be
used only as a last resort.

4. Clear the Windows NT application log if: the backlog is not clearing, you do not want to wait for SQL Server Agent to clear
the backlog, or you want an empty, unpopulated Windows NT application log.

Caution Clearing the Windows NT application log using the Clear All Events option on the Log menu deletes all events
from the error log, including events unrelated to SQL Server.

To configure an error to not generate an alert

1. Start the Registry Editor.

2. Locate the following registry key:

HKEY_LOCAL_MACHINE
\SOFTWARE
\Microsoft
\MSSQLServer
\SQLServerAgent
\NonAlertableErrors

3. Type the error number.

The list of nonalertable errors can be a maximum of 1,024 characters, should not contain spaces, and items must be
separated by commas (,). Any error number in the list that appears after the number 0 will generate an alert. For example,
assume that the list consists of

1204,0,100

In this example, only error number 1204 does not generate an alert. Because error number 100 follows error number 0 in
the list, it will generate an alert.

Important Never remove the default nonalert-generating error, error 1204. Error 1204 defines those conditions known to lead
to recursive alert generation. Removing this error will hamper attempts to resolve recursive alert generation.

See Also

Defining Alerts

Error 1204

Modifying and Viewing Alerts

Troubleshooting (SQL Server 2000)

Troubleshooting Backing Up and Restoring
Here are some problems you may encounter when backing up and restoring databases and transaction logs:

A syntax error occurred when using the BACKUP or RESTORE statements, which indicates that the database is in Microsoft®
SQL Server™ version 6.5 compatibility mode. The BACKUP and RESTORE keywords are valid only with SQL Server 7.0 or
SQL Server 2000 databases.

Set the SQL Server compatibility level to 80 before using BACKUP or RESTORE statements. For more information, see Error
156.

The BACKUP statement cannot be performed at the same time as creating or deleting database files.

Reissue the backup operation after the conflicting operation has finished. For more information, see Error 3023.

A standby database cannot be backed up if it has not yet been recovered.

Use backups from your primary server until operations have switched to the standby. For more information, see Error 3036.

The backup being restored is a valid Microsoft Tape Format, but is not a SQL Server backup.

To determine the backup contents, use RESTORE HEADERONLY. For more information, see Error 3143.

The backup set is a backup of a database with the same name as the database to which you are restoring. However, the
database being restored to was created by a different CREATE DATABASE statement than the database in the backup set.

Either overwrite the existing database or restore the backup set to a different database name. For more information, see
Error 3154.

An attempt was made to use a logical device that is not a defined backup device.

Either create the device or use the TAPE = or DISK = syntax of the BACKUP statement. For more information, see Error 3206
or Error 3209.

The media family spans multiple volumes. The restore operation has already processed the data on the specified volume.

Replace the current volume with a volume not yet processed. For more information, see Error 3227.

The backup device does not contain data in Microsoft Tape Format. For more information, see Error 3242.

The media family spans multiple volumes. The restore operation expected to process the volume number specified in the
error message, but found a different volume number instead.

To continue the restore operation, replace the current volume with the volume number specified in the error message. For
more information, see Error 3247.

The media family spans multiple volumes. The backup set to be processed by the restore operation starts on an earlier
volume than the one inserted into the named device.

Replace the current volume with a volume containing the start of the target backup set. For more information, see Error
3249.

The restore operation has completely processed the media family on the named device, and is now ready to reuse the
device to restore one of the remaining media families.

Replace the current volume with the first volume of a media family that has not yet been processed. For more information,
see Error 3251.

The backup operation that created the backup set did not finish successfully.

Either restore a different database backup, if restoring a database backup, and apply transaction logs; or apply the next
transaction log backup, if restoring a transaction log backup. For more information, see Error 3256.

The volume on the named device does not belong to the same media set as the other volumes being processed.

Either remove the offending volume and insert the next volume of the media family, for tape media sets; or, for disks,
reissue the command, naming only those backup devices part of the same media set. For more information, see Error 3258.

The tape inserted into the named device is part of the current media set and may not be used as continuation media.

Replace the current volume with a fresh tape that can be overwritten. For more information, see Error 3263.

The server is too busy to perform the backup or restore operation.

Retry the operation after reducing the server load. For more information, see Error 3267 or Error 3627.

Some statements are not allowed while the recovery model is SIMPLE. Use BACKUP DATABASE or change the recovery
model using ALTER DATABASE.For more information, see Error 4208.

To restore the database after failure, you must begin either with a full database backup or with a complete set of file
backups. A log backup was created before the first database or file backup.

Perform a full database backup before backing up the transaction log. For more information, see Error 4214.

The restore operation found a gap between the last restore and the transaction log that you attempted to apply.

Apply the transaction log backups in the order they were created originally. For more information, see Error 4305.

No further restore operations may be performed after a database has been recovered.

Restart the restore sequence and use the NORECOVERY option on all but the final RESTORE statement. For more
information, see Error 4306.

Could not recover the database to the state that it was in at the time the current log backup was made. At least one file has
been modified since this time. Therefore, recovery is not possible because the database would be left in an inconsistent
state.

Recover the database either to its most recent state or to a specific point in time. For more information, see Error 4318.

A backup file could not be used because it was originally formatted with one sector size and is now on a device with a
different sector size.

SQL Server uses nonbuffered I/O, which requires sectors to be aligned. You must restore the backup set from a disk with
the same sector size, or over a network, which uses buffered I/O. Alternatively, you can specify a WITH BLOCKSIZE clause
when you back up the database.

See Also

Backing Up and Restoring Databases

BACKUP

Insufficient Disk Space

Recovery Performance

Reserved Keywords

Server and Database Troubleshooting

Setting Database Options

sp_addumpdevice

sp_dbcmptlevel

Troubleshooting Recovery

Troubleshooting (SQL Server 2000)

Troubleshooting Orphaned Users
When restoring a database backup to another server, you may experience a problem with orphaned users. This scenario displays
and resolves the problem:

1. Alias the login janetl to dbo by executing sp_addlogin.

sp_addlogin 'janetl', 'dbo'

2. Back up a database. In this example, back up Northwind.

BACKUP DATABASE Northwind
TO DISK = 'c:\mssql\backup\northwnd'

3. Drop the database that was just backed up.

DROP DATABASE Northwind

4. Drop the login.

sp_droplogin 'janetl'

5. Restore the backed up database.

RESTORE DATABASE Northwind
FROM DISK = 'c:\mssql\backup\northwnd'

The janetl login cannot access the Northwind database unless the guest login is allowed. Even though the janetl login
has been deleted, it still shows up (as an orphaned row) in the sysusers table:

USE Northwind
SELECT *
FROM sysusers
WHERE name = 'janetl'

To resolve orphaned users

1. Add a temporary login using sp_addlogin. Specify the security identifier (SID) (from sysusers) for the orphaned user.

sp_addlogin @loginame = 'nancyd',
 @sid = 0x32C864A70427D211B4DD00104B9E8A00

2. Drop the temporary alias that belongs to the aliased SID using sp_dropalias.

sp_dropalias 'nancyd'

3. Drop the original user (now orphaned) using sp_dropuser.

sp_dropuser 'janetl'

4. Drop the original login using sp_droplogin.

sp_droplogin 'nancyd'

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

sp_addlogin

sp_dropalias

sp_droplogin

sp_dropuser

Troubleshooting (SQL Server 2000)

Troubleshooting Data Transformation Services
Note For immediate help in diagnosing your Data Transformation Services (DTS) problems, see the new online troubleshooter
on the Product Support Web site. For more information, see Help with Data Transformation Services.

Following is information about errors that might be generated while using DTS Designer:

If a connection is created for a database user who does not have permission to access the model database, when opening
the transformation properties, the user will receive the message "Unspecified error. Server user '<user name>' is not a valid
user in database 'model'". This message occurs because the user cannot see the provider type information. However, the
error is informational and does not prevent the user from creating the transformations.

If you receive the message "Cannot find the specified file," when attempting to access a DTS package saved to a COM-structured
storage file, verify that:

The directory path is specified correctly.

Permissions are set correctly.

Note It is possible that the file is corrupt and that the COM structure cannot be detected.

Troubleshooting (SQL Server 2000)

Troubleshooting Locking
Two locking problems that an application may encounter are deadlocking and blocking.

Deadlocking

Deadlocking is a condition that can occur on any system with multiple users, not only on a relational database management
system (RDBMS). A deadlock occurs when two users (or sessions) have locks on separate objects and each user wants a lock on
the other's object. Each user waits for the other to release their lock. Microsoft® SQL Server™ detects when two connections have
gotten into a deadlock. One of the connections is chosen as a deadlock victim. The connection's transaction is rolled back and the
application receives an error.

If deadlocks become a common occurrence and their rollbacks are causing excessive performance degradation, you may need to
perform more in-depth investigation. Use trace flag 1204. For example, this command starts SQL Server from the command
prompt and enables trace flag 1204:

c:\mssql\binn\sqlservr -T1204

All messages will now appear in the console screen where SQL Server was started and in the error log.

Deadlocking can also occur when using distributed transactions. For more information about resolving deadlocks with distributed
transactions, see Transactions Architecture.

Blocking

An unavoidable characteristic of any lock-based concurrent system is that blocking may occur under some conditions. Blocking
happens when one connection holds a lock and a second connection wants a conflicting lock type. This forces the second
connection to either wait or block on the first.

In this topic, the term connection refers to a single logged-on session of the database. Each connection appears as a system
process ID (SPID). Each of these SPIDs is often referred to as a process, although it is not a separate process context in the usual
sense. Rather, each SPID consists of the server resources and data structures necessary to service the requests of a single
connection from a given client. A single client application may have one or more connections. From the perspective of SQL Server,
there is no difference between multiple connections from a single client application on a single client computer and multiple
connections from multiple client applications or multiple client computers. One connection can block another connection,
regardless of whether they emanate from the same application or separate applications on two different client computers.

To eliminate deadlocking or blocking problems, contact your system administrator. The system administrator should check the
waittype, waittime, lastwaittype, and the waitresource columns of sysprocesses to see what activities each SPID is
performing.

See Also

Deadlocking

Distributed Transactions

Locking

SET DEADLOCK_PRIORITY

sp_who

SQL Server: Locks Object

sqlservr Application

syslockinfo

sysprocesses

Trace Flags

Understanding and Avoiding Blocking

Troubleshooting (SQL Server 2000)

Troubleshooting Deadlocks
In a deadlock, various threads cannot proceed because they are waiting on a set of resources held by each other or held by other
threads. The deadlock is a cyclic dependency that is best addressed by first identifying the participants in the dependency chain
and the resources involved, and then choosing the thread that breaks the deadlock on the resources for the various other threads.

When a deadlock occurs, the user receives the following error.

Transaction (Process ID xxx) was deadlocked on (xxx) resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

The error identifies the resource or resources on which the transaction is deadlocked. The resources can be locks, parallelism (or
communication buffer), waiting threads, or a combination of them.

To resolve the deadlock, one of the participants in the cycle must be terminated. In picking the deadlock victim, Microsoft® SQL
Server™ 2000 looks at all participating threads and how much work each one has done. Generally, SQL Server chooses the
participating thread that has done the least amount of work as the deadlock victim.

With SQL Server 2000, you can determine the resources involved in a deadlock and troubleshoot locking by using SQL Profiler or
Trace Flag 1204. SQL Profiler is a graphical tool available in SQL Server Enterprise Manager. SQL Profiler provides information for
basic deadlock detection. For more information, see Monitoring with SQL Profiler.

This troubleshooting section focuses on the use of Trace Flag 1204, which provides a report that allows for a detailed analysis of
deadlock situations.

Using Trace Flag 1204

In a deadlock situation, Trace Flag 1204 graphs the cycle of dependency among waiting threads, the resources on which the
threads are waiting, and which threads hold these resources.

Terms in a Trace Flag 1204 Report

Although Trace Flag 1204 returns different information depending on the resources involved, the report typically includes the
following terms.

Node:x

Represents the entry number (x) in the deadlock chain.

Lists

The lock owner can be part of these lists: Grant, Convert, and Wait.

Grant List
Enumerates the current owners of the resource.

Convert List
Enumerates the current owners that are trying to convert their locks to a higher level.

Wait List
Enumerates current new lock requests for the resource.

SPID: x ECID: x

Identifies the system process ID thread in cases of parallel processes. The entry SPID x ECID 0 represents the main thread, and
SPID x ECID > 0 represents the sub-threads for the same SPID.

Statement Type

Is the SELECT, INSERT, UPDATE, or DELETE statement on which the threads have permissions.

Line #

Lists the line in the current batch of statements that was being executed when the deadlock occurred.

Input Buf

Lists all the statements in the current batch.

Mode

Specifies the type of lock for a particular resource that is requested, granted, or waited on by a thread. Mode can be IS (Intent

shared), S (Shared), U (Update), IX (Intent exclusive), SIX (Shared with intent exclusive), and X (Exclusive). For more information,
see Understanding Locking in SQL Server.

RID

Identifies the single row within a table on which a lock is held or requested.

RID is represented in Trace Flag 1204 as RID: db_id:file_id:page_no:row_no; for example, RID: 1:1:1253:0.

TAB

Identifies the table on which a lock is held or requested.

TAB is represented in Trace Flag 1204 as TAB: db_id:object_id; for example, TAB: 2:2009058193.

KEY

Identifies the key range within an index on which a lock is held or requested.

KEY is represented in Trace Flag 1204 as KEY: db_id:object_id:index_id; for example, KEY: 2:1977058079:1.

PAG

Identifies the page resource on which a lock is held or requested.

PAG is represented in Trace Flag 1204 as PAG: db_id:file_id:page_no; for example, PAG: 7:1:168.

EXT

Identifies the extent structure.

EXT is represented in Trace Flag 1204 as EXT: db_id:file_id:extent_no; for example, EXT: 7:1:9.

DB

Identifies the database lock.

DB is represented in Trace Flag 1204 in one of the following ways:

DB: db_id

DB:db_id[BULK-OP-DB], which identifies the database lock taken by the backup database.

DB:db_id[BULK-OP-LOG], which identifies the lock taken by the backup log for that particular database.

IND

Identifies the lock taken by the index created on index resources.

IND is represented in Trace Flag 1204 in one of the following ways:

IND: db_id:object_id:index_id

IND: db_id:object_id:index_id[INDEX_ID], which indicates that the lock is on the index ID.

IND: db_id:object_id:index_id[INDEX_NAME], which indicates that the lock is on the index name.

APP

Identifies the lock taken by an application resource.

APP is represented in Trace Flag 1204 as APP: lock_resource; for example, APP: Formf370f478.

When SQL Server chooses an application resource as the deadlock victim, the application resource owner will not get the error
message described earlier. Instead, the application owner will get a "-3" return code when the sp_getapplock stored procedure is
executed on that application resource. For information, see sp_getapplock.

Victim Resource Owner

Specifies the participating thread that SQL Server chooses as the victim to break the deadlock cycle. The chosen thread (identified
by SPID x ECID 0) and all existing sub-threads (identified by SPID x ECID > 0) will be terminated .

Next Branch

Represents the two or more sub-threads from the same SPID that are involved in the deadlock cycle.

When the deadlock involves parallelism, the various sub-threads could be blocked on communication buffers, and one thread
ends up waiting for the other sub-threads. It is a deadlock situation only if all the other threads also are involved in a deadlock.
The next branch represents the deadlock chain tracing alternative paths.

For more information about Trace Flag 1204 deadlock reports involving specific resources, see Deadlocks involving locks,
Deadlocks involving parallelism, and Deadlocks involving threads

See Also

Deadlocking

KILL

Locks Event Category

Monitoring with SQL Profiler

sp_lock

sp_who

Trace Flags

Troubleshooting (SQL Server 2000)

Deadlocks Involving Locks
When a deadlock involves locks, Trace Flag 1204 reports the resource on which the deadlock is waiting, the lock mode in effect
and being requested, and the threads participating in the cycle of dependency.

Examples

A Complete 1204 Report on Deadlock Involving Locks

In this example, SPID 51 is blocked from its request for an exclusive (X) lock on Table 2:2009058193 because SPID 52 already has
an exclusive lock on it. In Node 2, SPID 52 is blocked from its request for an exclusive lock on Table 2:1993058136 because SPID
51 has an exclusive lock on it.

SQL Server chose SPID 52 as the deadlock victim to break the deadlock, as indicated by the Victim Resource Owner entry.

Deadlock encountered Printing deadlock information

Wait-for graph

Node:1
 TAB: 2:2009058193 [] CleanCnt:1 Mode: X Flags: 0x0
 Grant List::
 Owner:0x1c3b5260 Mode: X Flg:0x0 Ref:1 Life:02000000 SPID:52 ECID:0
 SPID: 52 ECID: 0 Statement Type: SELECT Line #: 1
 Input Buf: Language Event: select * from a (tablockx)

 Requested By:
 ResType:LockOwner Stype:'OR' Mode: X SPID:51 ECID:0 Ec:(0x1c657890) Value:0x1c3b51c0 Cost:(0/0)

Node:2
 TAB: 2:1993058136 [] CleanCnt:1 Mode: X Flags: 0x0
 Grant List::
 Owner:0x1c3b52e0 Mode: X Flg:0x0 Ref:1 Life:02000000 SPID:51 ECID:0
 SPID: 51 ECID: 0 Statement Type: SELECT Line #: 1
 Input Buf: Language Event: select * from b (tablockx)

 Requested By:
 ResType:LockOwner Stype:'OR' Mode: X SPID:52 ECID:0 Ec:(0x1c593890) Value:0x1c3b5380 Cost:(0/0)
Victim Resource Owner:
 ResType:LockOwner Stype:'OR' Mode: X SPID:52 ECID:0 Ec:(0x1c593890) Value:0x1c3b5380 Cost:(0/0)

Troubleshooting (SQL Server 2000)

Deadlocks Involving Parallelism
Deadlocks involving parallelism always involve thread or lock resources. Parallelism alone cannot cause a deadlock. The
information reported by Trace Flag 1204 allows users to trace the separate parallel workers and find the other resource
contention issues that are causing the deadlock. Treat all parallel threads (for example, threads with the same SPID) as a single
unit when tracing the deadlock.

Trace Flag 1204 reports on these sets of participants in the cycle: Coordinator, Consumer, and Producer. The Coordinator is the
creator and destroyer of the sub-threads. The Producers produce information on which the consumers wait.

To resolve the deadlock involving one nonparallel SPID AA and a parallel SPID BB, follow the same procedure as you would to
resolve a deadlock between two nonparallel SPIDs.

Examples

A. Deadlock Involving Parallelism

The following example shows how the Coordinator, Consumer, and Producer are presented in a Trace Flag 1204 report.

Node:2
Port: 0x2b968100 Xid Slot: -1, EC: 0x2bba53b0, SPID:59 ECID: 0 (Coordinator), Exchange
Wait Type :e_etypeClose
Coordinator: EC = 0x2bba53b0, SPID:59 ECID: 0, Not Blocking
Consumer List::
Consumer: Xid Slot: 0, EC = 0x2bbda090, SPID:59 ECID: 2, Blocking
Consumer: Xid Slot: 1, EC = 0x2bbce090, SPID:59 ECID: 4, Blocking
Consumer: Xid Slot: 4, EC = 0x2bb60090, SPID:59 ECID: 1, Blocking
Consumer: Xid Slot: 5, EC = 0x2bbd4090, SPID:59 ECID: 3, Blocking
Producer List::
Producer: Xid Slot: 2, EC = 0x2bb64090, SPID:59 ECID: 6, Blocking
Producer: Xid Slot: 3, EC = 0x2bbbe090, SPID:59 ECID: 8, Blocking
Producer: Xid Slot: 6, EC = 0x2bbca090, SPID:59 ECID: 5, Blocking
Producer: Xid Slot: 7, EC = 0x2bbc6090, SPID:59 ECID: 7, Blocking

B. Deadlocks with Branches

Trace Flag 1204 reports deadlock cycles that have branches. For example, the following excerpt shows one branch, Node 6, in
which a thread has an exclusive (X) lock on RID 1:1:1253:0, while SPID 55 is waiting for an update (U) lock on it and SPID 60 has
just requested another update (U) lock on it.

-- next branch --
Node:6
 RID: 1:1:1253:0 CleanCnt:5 Mode: X Flags: 0x2
 Wait List:
 Owner:0x98b9d7c Mode: U Flg:0x0 Ref:1 Life:02000000 SPID:55 ECID:0
 Requested By:
 ResType:LockOwner Stype:'OR' Mode: U SPID:60

-- next branch --

Node:9
 RID: 1:1:1253:0 CleanCnt:5 Mode: X Flags: 0x2
 Wait List:
 Owner:0x98b9d7c Mode: U Flg:0x0 Ref:1 Life:02000000 SPID:55 ECID:0
 Requested By:
 ResType:LockOwner Stype:'OR' Mode: U SPID:59 ECID:0 Ec:(0x9b09494) Value:0x98b9c5c Cost:(0/0)
-- next branch --

In deadlocks involving parallelism and threads, a thread can wait on multiple threads. Consequently, each instance of "Next
Branch" in the Trace Flag 1204 report represents the next wait for a particular thread.

Troubleshooting (SQL Server 2000)

Deadlocks Involving Threads
In deadlocks that involve threads, Trace Flag 1204 provides information on the threads that have been granted statement
permissions and threads that are waiting on permissions.

In the following example, several threads (SPID 64, 60, 59, 57, and 55) have UPDATE statement permissions, while SPID 51 is on
the Wait list.

Node:1
 Granted thread list:
 SPID: 64 ECID: 0 Statement Type: UPDATE
 SPID: 60 ECID: 0 Statement Type: UPDATE
 SPID: 59 ECID: 0 Statement Type: UPDATE
 SPID: 57 ECID: 0 Statement Type: UPDATE
 SPID: 55 ECID: 0 Statement Type: UPDATE
 Wait thread list:
 SPID: 51 ECID: 0 Statement Type: UNKNOWN TOKEN

UNKNOWN TOKEN means the thread currently is not executing a batch.

Troubleshooting (SQL Server 2000)

Troubleshooting MS DTC Transactions
A distributed transaction is in-doubt when the outcome of the transaction cannot be determined. This occurs when the transaction
in Microsoft® SQL Server™ was prepared by Microsoft Distributed Transaction Coordinator (MS DTC), but one or more of the MS
DTC processes involved in the transaction is not reachable from SQL Server.

A SQL Server user can detect this situation when the following message appears in the error log:

<SQL Server detected a DTC in-doubt transaction for UOW <xxx>. Please resolve it following the guideline for
Troubleshooting DTC Transactions.>

To correct this problem, identify the MS DTC processes involved in the transaction and either start or restore the connection to the
processes. Under typical circumstances, this procedure should fix the situation and the transaction should resolve itself. If this step
does not resolve the issue, consult the MS DTC user manual for specific information on dealing with in-doubt transactions.

SQL Server can resolve in-doubt transactions; however, this option should be used only in extreme cases – when the MS DTC
process required for in-doubt transaction cannot solve the problem.

With the in-doubt transaction's Unit of Work ID (UOW) accessible, users can resolve the transaction in SQL Server by using a
specific KILL command syntax, and then performing the steps to recover the database. For information, see Backing Up and
Restoring Databases.

Syntax

KILL UOW WITH { COMMIT | ROLLBACK }

Arguments

UOW

Identifies the Unit of Work ID representing the in-doubt MS DTC transaction. UOW is a character string and can be obtained from
the SQL Server error log. For more information about monitoring distributed transactions, see the MS DTC user manual.

WITH { COMMIT | ROLLBACK }

Specifies that the Unit of Work ID identified should be either committed or stopped. An MS DTC transaction can be forced to
commit or stop only if the transaction is in the prepared state, and thus not resolved, and MS DTC is in recovery. MS DTC is said to
be in recovery when it is not accessible or when SQL Server is recovering from a failure.

This KILL syntax can be used only to resolve in-doubt transactions that are in the prepared state. For information about
terminating other distributed transactions, see KILL.

Important Use the KILL command with the UOW WITH COMMIT or ABORT option only in extreme cases when the MS DTC
utilities are not accessible.

See Also

Distributed Transactions

KILL

Troubleshooting (SQL Server 2000)

Troubleshooting MSSQLServer or SQLServerAgent Services
User Accounts
If you have difficulty starting either the MSSQLServer or SQLServerAgent service under a particular user account, you can:

Use Windows NT User Manager to verify that the account has Log on as a service rights on the computer. (Both of these
must be assigned within the security context of the local computer, not the domain.)

If services are started by someone who is not a member of the Windows NT local administrators group, the service account
must have these permissions:

Full control of the main Microsoft® SQL Server™ directory (by default, \Mssql).

Full control of the SQL Server database files, regardless of storage location.

The Log on as a service right. Ensure that all logon hours are allowed in the Logon Hours dialog box.

Full control of registry keys at and below HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer.

Selection of the Password Never Expires box.

Full control of registry keys at and below
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQLServer.

Full control of registry keys at and below HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Perflib.

If the service does not have the appropriate permissions, certain functionality cannot be accomplished. For example, to write
to a mail slot, the service must have a Windows NT domain user account, not just local system, with network write
privileges. The service must be a Windows NT account with local administrator privileges to:

Create SQL Server Agent CmdExec and Microsoft ActiveX® Script jobs not belonging to members of the sysadmin
fixed server role.

Use the automatic server restart feature of SQL Server Agent.

Create SQL Server Agent jobs to be run when the server is idle.
For the MSSQLServer service, right-click the server, click Properties, and then click the Security tab. Under Startup
service account, enter the appropriate account and password. If the password is incorrect or has changed, the service
cannot be started until the correct password is entered.

Caution For the MSDTC service only, use Services in Control Panel to reenter the user account password. If the password is
incorrect or has changed, the service cannot be started until the correct password is entered. If necessary, change the
account's password using User Manager, and then enter that password for the service using Services in Control Panel.

For the SQLServerAgent service, expand the server, and then expand Management. Right-click SQLServerAgent, and then
click Properties. On the General tab (the default) in the Service startup account section, enter the account and password.

Assign the account experiencing the problem to another service. If you still have difficulty starting the MSSQLServer or
SQLServerAgent service under a particular user account, assign that account to another service (for example, the Spooler
service) and verify that the service can be started successfully. If not, the account is either not configured properly or cannot
be validated by the domain controller (for example, if no domain controller is available).

Troubleshooting (SQL Server 2000)

Troubleshooting Full-Text Search
For immediate help in diagnosing Full-Text Search issues, see the online troubleshooter on the Product Support Web site. For
more information, see Help with Full-Text Search

Full-Text Catalog Administration

The error "Cannot general SSPI context" may occur during an operation such as rebuilding or populating a Full-Text Catalog. This
error occurs when an invalid Service Principal Name (SPN) prevents MSSearch from making an OLE DB connection to SQL
Server.

Resolve this error by finding and deleting the invalid SPN using the SetSPN utility from the Windows 2000 Resource Kit.
Alternatively, stop and then start the SQL Server service on the local server.

To list the current registered SPNs, type the following from a command prompt:

Setspn -l SQLServerName

To delete the invalid SPN, type the following from a command prompt:

Setspn -d SPN

Note The value for the SQLServerName parameter can be either the server name if it is running under LocalSystem, or the
service account name without a domain qualifier.

For more information about the SetSPN utility, see the Windows 2000 Resource Kit documentation.

Troubleshooting (SQL Server 2000)

Troubleshooting the Operating System
When installing Microsoft® SQL Server™ 2000 on a Microsoft Windows® NTFS partition, make sure that the NTFS file
permissions allow read/write access. Otherwise, this Windows error message may appear in the Microsoft Windows NT®
application log (for each installation attempt):
Msg 17050: initerrlog: Could not open error log file 'C:\MSSQL\log\ERRORLOG'. Operating system error =5(Access
is denied.).

Ensure that all system requirements are met, including service packs. For more information about system requirements, see
Hardware and Software Requirements for Installing SQL Server 2000.

Troubleshooting (SQL Server 2000)

Appearance of Internet Connection Dialog Box at Startup of
Windows 95 or Windows 98
If remote connections are enabled in Microsoft® Windows® 95 or Microsoft Windows 98, the system may initiate an Internet
connection at Windows startup or at the start of many applications. This behavior is sometimes called autodial or autoconnect,
and can be disabled by setting the registry key EnableRemoteConnect to N.

To do this, create a text file named DisbleAutoConnect.reg with the following three lines:

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE]
"EnableRemoteConnect"="N"

Changing this setting to disable remote connections should not prevent any of your usual Internet activities. This setting is the
default for most systems. However, enabling remote connections is necessary for some features of DCOM For more information,
see the Knowledge Base article, HOWTO: Troubleshoot Run-Time Error '429' in DCOM
Applicationshttp://support.microsoft.com/support/kb/articles/Q177/3/94.asp.

If there are instances when you need to have remote connections enabled, create a second REG file, named
EnableRemoteConnect.reg, with the following lines:

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE]
"EnableRemoteConnect"="Y"

Run EnableAutoConnect.reg to make the setting, and then run DisbleAutoConnect.reg to disable it when autoconnect is no longer
needed.

http://support.microsoft.com/support/kb/articles/Q177/3/94.asp

Troubleshooting (SQL Server 2000)

Thread Pooling
The Microsoft® SQL Server™ error log may display the message:
The working thread limit of 255 has been reached

This message is an informational message and does not indicate any problem with the system.

SQL Server maintains a pool of operating-system threads for executing batches of SQL statements as they arrive from clients. On
Microsoft Windows NT®, if the server lightweight pooling configuration option is set to 1, SQL Server maintains a pool of
fibers instead of threads; fibers use fewer resources than threads. Using a pool of threads or fibers allows SQL Server to optimize
the allocation of processing time when executing multiple SQL statements at the same time. The threads or fibers in this pool are
known collectively as the worker threads. For more information, see Thread and Task Architecture.

The number of worker threads is controlled by the max worker threads server configuration option. The default is 255 and
rarely needs to be changed.

When a batch of Transact-SQL statements is received from a client, if an existing worker thread is free, it is allocated to execute
the batch. If no existing worker threads are free and the number of worker threads is less than max worker threads, a new
worker thread is allocated. If no worker threads are free and max worker threads is reached, the new batch waits until an
existing worker thread completes its current batch and becomes free. When the number of worker threads reaches max worker
threads, SQL Server displays this message:
The working thread limit of 255 has been reached

Having all worker threads allocated does not mean that the performance of SQL Server will degrade. Typically, a new batch has
only a short wait for a free thread. Allocating more threads may degrade performance because of the increased work required to
coordinate resources among the threads. Many SQL Server systems running in production reach this state and run with very high
performance levels.

See Also

max worker threads Option

Setting Configuration Options

sp_configure

Troubleshooting (SQL Server 2000)

Insufficient Virtual Memory on the Server
When the applications running on a server request more memory than is available on the server, Microsoft® Windows® opens
the Server Process - Out of Virtual Memory dialog box with the following text:
Your system is running low on virtual memory. Please close some applications. You can then start the System
option in the Control Panel and choose the Virtual Memory button to create an additional paging file or increase
the size of your current paging file.

Use Virtual Memory in Control Panel to make sure that the amount of virtual memory at least 1.5 times the amount of physical
memory available on the server. Microsoft SQL Server™ dynamically requests or frees memory as needed on Microsoft Windows
NT® systems. SQL Server should not cause this error on Windows NT when running with the default configuration options. For
more information, see Configuring Virtual Memory.

If the virtual memory setting seems appropriate, consider the following actions:

Check that the SQL Server max server memory and min server memory configuration options are not set high enough
to use most of the virtual memory. For more information, see Configuration Options (Level 1).

Check that other applications on the server are not using the available virtual memory.

Use the max server memory and min server memory configuration options to control the amount of memory requested
by SQL Server.

https://msdn.microsoft.com/en-us/library/aa197127(v=sql.80).aspx

Troubleshooting (SQL Server 2000)

Insufficient Resource Space
If a Microsoft® SQL Server™ configuration option is set too high for the amount of available resources, SQL Server fails to start.
For example, if the max server memory setting is too high, other applications may take some time to start.

Reset configuration options to their default values or start SQL Server with minimal configuration by using the -f startup option
of the sqlservr application. For more information about setting default values, see the Setting Configuration Options or
sp_configure (T-SQL).

See Also

Setting Configuration Options

sp_configure

sqlservr Application

Troubleshooting (SQL Server 2000)

Determining When SQL Server Causes a Windows NT Blue
Screen
Infrequently, Microsoft Windows NT® may either halt with a STOP screen or hard hang, during which the console is completely
frozen and unresponsive. This is commonly called a blue screen. This may sometimes happen on a computer on which
Microsoft® SQL Server™ is running, or may coincide with a particular SQL Server operation such as the bcp utility, a long-
running query, and so on.

Most of the time, this indicates an operating system, device-driver, or hardware problem and should be pursued as such. The
Windows NT user or kernel mode process isolation ensures that a user mode application problem does not cause the operating
system to stop responding. This section presents exceptions to this and ways to determine whether to troubleshoot the problem
at the system or application layer.

Sometimes the cause of a computer hard hang or blue screen may be a nonmaskable interrupt (NMI) error. This is sometimes
visible as an error code stating NMI, parity check, or I/O parity check. NMI errors are almost always hardware. Usually they are
caused by a memory failure; however, they can originate in other hardware subsystems such as video boards. Even if the NMI
error happens only during certain SQL Server operations, and if the system passes initial hardware diagnostics, it should still be
considered a hardware problem and pursued as such. It may be necessary to use a dedicated memory SIMM testing device, which
can often find a transient memory error that eludes software-based diagnostics.

Processes exist on Windows NT in either user mode or kernel mode (sometimes called supervisor or privileged mode). In the
Intel® x86 architecture, user mode maps to ring 3 and kernel mode to ring 0 of the 4-ring protection system. The x86 architecture
has been carried forward with little change in all Intel and compatible processors to date, including the Pentium Pro and Pentium
II. Processors such as the Alpha AXP typically have unprivileged and privileged modes as well.

Kernel mode is a privileged processor mode in which a thread has access to system-wide memory (including that of all user-
mode processes) and to hardware. By contrast, user mode is a nonprivileged processor mode in which a thread can only access
system resources by calling system services.

A user mode process cannot access kernel mode memory, or access memory of another user mode process. This is enforced by
processor hardware, in conjunction with kernel mode data structures such as Page Tables.

As a result of this protection system, a user mode application generally cannot stop responding, cause a blue screen, or otherwise
cause a failure in the Windows NT operating system. Such problems should be pursued primarily at the system layer as an
operating system, device-driver, or hardware issue.

While an application error cannot cause a failure in the operating system, an operating system error can cause an application to
stop responding. This is because of the general rule: applications must call inward (to kernel mode), but the operating system can
reference outward to user mode freely at any time. A microkernel-influenced architecture such as Windows NT may in turn
dispatch certain work to a user-mode system process rather than perform the work in kernel mode. However, the overall principle
remains the same: Processor hardware enforces process context isolation, which prevents one process from causing a failure in
another, whether one or both are in user mode.

If a user mode application passes an invalid parameter in a Win32® API call, it is the responsibility of the operating system to
validate this parameter. In very rare cases, passing an invalid parameter may cause a Windows NT blue screen error. However,
this is an operating system issue, and should be debugged and pursued as such.

See Also

bcp Utility

Troubleshooting (SQL Server 2000)

Troubleshooting Recovery
Every time Microsoft® SQL Server™ starts, recovery is performed on all system and user databases. The topics in this section
focus on resolving performance and insufficient disk space problems related to recovery.

Troubleshooting (SQL Server 2000)

Recovery Performance
Recovery time is determined by how much work has been done since the last checkpoint, and by how much work has been done
by all active transactions at the time of the data loss. Microsoft® SQL Server™ uses a configuration option named recovery
interval to set the maximum number of minutes per database that SQL Server needs to recover databases. This recovery
interval setting controls checkpoint frequency. For an online transaction processing (OLTP) system (using short transactions),
recovery interval is the primary factor determining recovery time.

After installation, SQL Server sets this recovery interval setting to a default value of zero (0). As long as the recovery interval
setting is at the default setting and long-running transactions are not present, recovery for each database should take
approximately 1 minute or less. If long-running transactions were active at the time of the data loss, recovery time is controlled by
the time it takes to rollback the effects of these transactions.

If recovery routinely takes significantly longer than 1 minute for a database, the recovery interval setting has a value of zero (0),
and there are no long-running transactions to rollback, consider contacting your primary support provider to resolve the recovery
performance problem.

Recovery reports progress (based on the virtual log files for a database). Recovery analyzes and scans the log at the beginning of
recovery, since the last checkpoint. Based on the analysis phase, recovery estimates how much log will be read during recovery.
The amount of log read is used to report recovery progress.

If the recovery interval setting is changed from the default value, database recovery takes that many times longer to complete.
For example, if recovery interval is changed to 10, recovery would take approximately 10 times longer to complete than if
recovery interval remained at the default setting of zero (0).

When growing the log, use larger chunks rather than small chunks to ensure a shorter startup time for SQL Server. The smaller
the log chunks you have, the longer it takes SQL Server to initialize them.

If a long-running transaction is terminated, let the server finish the rollback process. If you are concerned about the length of the
rollback process, ask your system administrator to confirm that activity is taking place on the server. Terminating the server
process during the rollback of a long-running transaction results in long recovery time.

If you have a long-running transaction and a crash occurs during this transaction, SQL Server begins the recovery process. This
may take some time. If you are concerned that this recovery process is taking too long and you believe it is halted, contact your
system administrator.

See Also

recovery interval Option

Setting Configuration Options

sp_configure

Troubleshooting (SQL Server 2000)

Insufficient Disk Space
During recovery, it is a rare but possible occurrence for the server to require additional log or data space. If additional space is
unavailable and either the log or data files cannot grow, the server:

Reports error message 9002 or 1105 in the Microsoft® SQL Server™ error log.

Marks the database as suspect.

Takes the database offline.

To resolve the 9002 error message and bring the database online

1. Free disk space on any disk drive containing the log file for the related database. Freeing disk space allows the recovery
system to grow the log file automatically.

2. Reset the suspect status by executing sp_resetstatus.

3. Run recovery by executing DBCC DBRECOVER (database).

-or-

1. Free disk space on a different disk drive.

2. Move the transaction log files with an insufficient amount of free disk space to the disk drive in Step 1.

3. Detach the database by executing sp_detach_db.

4. Attach the database by executing sp_attach_db, pointing to the moved files.

-or-

Add a log file to the suspect database and run recovery on the database by executing
sp_add_log_file_recover_suspect_db.

To resolve the 1105 error message and bring the database online

1. Free disk space on any disk containing a file in the filegroup mentioned in the 1105 error message. Freeing disk space
allows the files in the filegroup to grow.

2. Reset the suspect status by executing sp_resetstatus.

3. Run recovery by executing DBCC DBRECOVER (database).

-or-

1. Free disk space on a different disk drive.

2. Move the data files in the filegroup with an insufficient amount of free disk space to the disk drive in Step 1.

3. Detach the database by executing sp_detach_db.

4. Attach the database by executing sp_attach_db, pointing to the moved files.

-or-

Add a data file to the suspect database and run recovery on the database by executing
sp_add_data_file_recover_suspect_db.

See Also

ALTER DATABASE

CREATE DATABASE

DROP DATABASE

Error 1105

Error 9002

recovery interval Option

Resetting the Suspect Status

Server and Database Troubleshooting

Setting Configuration Options

sp_add_log_file_recover_suspect_db

sp_attach_db

sp_attach_single_file_db

sp_configure

Troubleshooting (SQL Server 2000)

SQL Server Tools Troubleshooting
This section contains information about troubleshooting problems you may encounter when using these tools with Microsoft®
SQL Server™ 2000.

Index Tuning Wizard

SQL Mail with Exchange Server

SQL Profiler

SQL Query Analyzer

Web Assistant Wizard

Transact-SQL Debugger

Troubleshooting (SQL Server 2000)

Troubleshooting the Index Tuning Wizard
Microsoft® SQL Server™ 2000 uses indexes to optimize searching. Indexes that worked on SQL Server 6.5 or SQL Server 7.0 may
not be the best choice for use with SQL Server 2000. Use the Index Tuning Wizard to find the most efficient indexes for the SQL
Server 2000 optimizer.

The wizard requires a workload or a table to build a recommendation of the optimal set of indexes that should be in place. For
more information about optimal sets of indexes, see Tuning Indexes.

Here are some general problems that you might encounter.

Communication error

The connection to the server is broken or the server is offline. See Connect to SQL Server Dialog Box.

Empty workload

The trace file or script contains no SQL batch or RPC events.

Canceling index analysis

When processing a large workload, canceling index analysis can take several minutes or more to complete processing.

Accepting index configuration

After accepting the recommended index configuration for a large workload or database, final processing can take several
minutes or more to complete.

Nonexisting objects

Queries referencing temporary or other nonexisting objects cannot be tuned.

File error

The Index Tuning Wizard was unable to open a file. Check to see if another user or process locked the workload file, or if the
workload file was moved or deleted.

I/O error

The Index Tuning Wizard encountered a problem writing to a work file. Increase the available space on the disk drive on
which the system temp directory is located.

Insufficient memory error

There was insufficient memory to run the Index Tuning Wizard. Run the Index Tuning Wizard on a computer other than the
server, or increase the size of the operating-system paging file.

"Missing index" error

Multiple users concurrently tuning a database may result in "missing index" errors. It is recommended that only one user
tune a database at a time.

Add Indexed Views option is grayed out

Indexed views are available only on Microsoft SQL Server 2000 Enterprise Edition. For more information, see Resolving
Indexes on Views and Creating an Indexed View.

Here are some workload problems that you might encounter.

Cannot choose a SQL Server trace table
Does not connect

If you receive a connection error, the connection to the server is broken or the server is offline.

Does not list my tables

You must first create a SQL Profiler trace of server activity and save this to either a file or a table. The trace must be
created in advance. For more information, see Monitoring with SQL Profiler.

"My workload file" problems

You must first create a SQL Profiler trace of server activity and save this to either a file or a table.

Workload cannot be parsed

The trace file contains SQL batch or RPC events, but none that reference objects in the selected database.

Troubleshooting (SQL Server 2000)

Troubleshooting SQL Mail with Exchange Server
Typically, errors that occur when starting a SQL Mail session or sending mail from SQL Mail with Microsoft® Exchange Server fall
into these categories: permissions problems and Exchange client setup problems. For more information, see SQL Mail.

To troubleshoot problems with SQL Mail, complete these steps:

1. Log on to Microsoft Windows NT® 4.0 or Windows® 2000 with the user account that will be used for the MSSQLServer
service. This user account must be an administrator of the local computer and a domain account.

2. Confirm that the Exchange Server client, Exchnge32.exe, or the Microsoft Outlook™ client, Outlook.exe, can connect to
Exchange Server and that e-mail can be sent. If using Outlook, ensure that Outlook has been installed with the Corporate or
Workgroup option.

3. Confirm that the Exchange Server profile used does not have a Personal Message Store (.pst). The Exchange Server profile
name should not be longer than 32 characters.

4. On the Services tab, confirm that the only services available are Microsoft Exchange Server and Personal Address Book, and
then click the Delivery tab. Confirm that the selection in the Deliver To box is the mailbox on Exchange Server, which
should have a name similar to "Mailbox - <Friendly User Name>" (where <Friendly User Name> is the name of the user
who logged on to Windows NT 4.0 or Windows 2000in Step 1).

5. To run SQL Mail with Exchange Server, the MSSQLServer service must be run under the same user account that logged on
in Step 1. In Control Panel, double-click Services, select MSSQLServer service, and then click Startup.

6. Confirm that the SQL Mail profile is correct. In SQL Server Enterprise Manager, expand the server, expand the Support
Services folder, select SQL Mail, and then right-click. Click Properties, and then on the General tab, ensure that the profile
name specified in the Profile name box is correct. (The profile name must match the profile name used in Step 3.) Click
Test to verify that the profile was set up correctly.

7. If SQL Mail fails to start (for example, gives you an error indicating that the profile was incorrect), check to make sure that
Outlook Express is not set as the default e-mail client. In Control Panel, double-click Internet Options. On the Programs tab,
verify that Outlook Express is not in the e-mail combo box. If you have to change the default e-mail client to a client other
than Outlook Express, you may need to stop and restart the MSSQLServer service before verifying that SQL Mail can start
with the mail profile.

In some cases, a mail profile may get corrupted and SQL Mail will not be able to use it. To correct the problem, copy the profile to
a different name, or re-create the profile.

If the account used to start Microsoft SQL Server™ does not have access to the Exchange server, you cannot use SQL Mail. Test
SQL Server access permissions to Exchange Server by executing xp_cmdshell, which executes with the same permissions as SQL
Mail. Use the following command to test connectivity to the server, assuming Exchange Server is located on a computer named
"MyServer".

xp_cmdshell "NET USE \\MyServer\IPC$"

If this command fails, Step 3 was not completed correctly.

Troubleshooting (SQL Server 2000)

Troubleshooting SQL Profiler
Here are some problems you may encounter when using SQL Profiler:

When setting filters, a blank include filter includes all items in the SQL Profiler output. A filter on a data column is not
applied to event classes that do not populate that data column.

Because the SQL Profiler stored procedures save trace queue definitions on the server rather than on the client, SQL Profiler
is unable to edit or start a trace created originally with the stored procedures.

For security reasons, batches containing stored procedures with password arguments are not traced. Instead, an event is
produced, which replaces the batch text with a comment.

In Microsoft® Windows® Me and Windows 98, SQL Profiler does not accept client configuration changes until the SQL
Profiler is closed and restarted.

SQL Profiler can incur problems accessing files on a remote computer if those files become unavailable.

Here are some common problems you may encounter when replaying a SQL Profiler trace:

Replay errors may occur when logins and users captured in the trace do not exist in the target database. If the logins and
users exist in the database, they must have the same permissions as they did in the source (traced) database.

Replay errors may occur when the database ID (DBID) of the target database is different from the DBID captured in the trace.
To correct this problem, restore a backup of the master database of the source (traced) server onto the target server. Then,
restore the user database or databases. As an alternative, the DBID data column can be removed from the trace and the
default database set to the target database for each user captured in the trace.

Replay errors may occur when attempting to replay a trace against a database if it is in a different state than from the
source (traced) database. Updates may fail if data is missing or changed.

System performance may degrade if replaying a trace that contains more concurrent connections than the replay computer
can manage. In this case, the trace may be filtered by Application Name, SQL User Name, or another filter if one or more
of these data columns were captured in the trace.

Replaying captured events containing the KILL statement may cause unexpected replay results; the SPID that is terminated
may not exist or, if it does exist, the SPID may be assigned to a different user or connection than the one traced originally.

When replaying a trace file as fast as possible, SPIDs may become blocked, halting the progress of the replay. To free the
blocked SPID and allow the trace to continue, kill the blocking SPID.

Troubleshooting (SQL Server 2000)

Troubleshooting SQL Query Analyzer
Here is a problem that you may encounter when using SQL Query Analyzer to execute a script:

Showplan does not return a plan for Transact-SQL statements referencing objects created within the SHOWPLAN
statement. If SHOWPLAN is set to ON, the query will not execute and the object will not be created. Any references to the
object will fail with an error indicating that the object does not exist. You can trace the TSQL:SQL:BatchStarting and
Performance:Execution Plan events in SQL Profiler while executing the Transact-SQL statements to see the plan.

Here is a problem that you may encounter when using SQL Query Analyzer to tune a database for a query:

Unable to recommend indexes because the query did not reference any tunable tables. This problem was caused by at least
one of the following scenarios.

The query did not reference any tunable tables.

The query has a syntax error or is invalid.

You are working in the wrong database.

You are referencing a temporary table.

For more information, see Index Tuning Wizard.

Troubleshooting (SQL Server 2000)

Troubleshooting the Web Assistant Wizard
This topic describes how the Web Assistant Wizard handles HTML page generation using the When the SQL Server data
changes scheduling option.

With the Web Assistant Wizard, you can generate an HTML file whenever the data changes for one or more tables by using the
Schedule the Web Assistant Job dialog box and selecting When the SQL Server data changes. The Web Assistant Wizard will
accomplish this by either building new INSERT, UPDATE, and DELETE triggers for each of the tables selected by the user or
updating existing ones. Any existing triggers are detected automatically by the Web Assistant Wizard and retained. Additional
Transact-SQL statements are appended to the existing trigger code.

The trigger object built by the Web Assistant Wizard will have a name generated according to the following:

Web Page Name_1 -> INSERT trigger
Web Page Name_2 -> UPDATE trigger
Web Page Name_4 -> DELETE trigger

For example, if the page you create is named "Web Page 1", the three triggers generated by the Web Assistant Wizard will be:
Web Page 1_1, Web Page 1_2, and Web Page 1_3 for the INSERT, UPDATE, and DELETE triggers respectively.

sp_depends does not enlist any of the Web Assistant Wizard generated triggers for a given table. You can use sp_helptrigger to
return trigger information for the specified table for the current database.

Use the following steps to drop any of the triggers generated by the Web Assistant Wizard:

1. Identify the object name of all triggers to be dropped by executing the sp_helptrigger system stored procedure.

sp_helptrigger TableName
GO

2. Execute the DROP TRIGGER statement for each of the triggers you want to drop:

DROP TRIGGER WebTriggerName

Troubleshooting (SQL Server 2000)

Troubleshooting the Transact-SQL Debugger
The goal of this topic is to address any problems you may encounter while trying to start and use the Transact-SQL debugger.
Potential sources of error include:

Incorrect DCOM permission settings

DCOM on Windows 98

Missing or unregistered DLLs

Lack of (or limited) debugger support

This topic describes how to identify and remedy various problems. Before attempting to troubleshoot your debugger
configuration, verify the following:

1. Make sure you have permission to execute the SP_SDIDEBUG extended procedure.

2. Start the SQL Server Service using an account that has Administrator privileges on that computer.

3. Check the Event Viewer's Application and System logs for any error messages.

Incorrect DCOM Permission Settings

SQL debugging uses Distributed COM (DCOM) to communicate between your client computer and the database server. You must
configure DCOM to allow remote users to attach the debugger to a process on the database server.

By default, the correct DCOM settings are in place when SQL Server is installed. However, because of security considerations for
the computer running SQL Server, you may want to restrict debugging access. Use the following as a general procedure for
setting up DCOM on the SQL Server computer.

Important If you plan on running the debugger as any user other than the one running SQL Server, DCOM will need to be
correctly configured first. Follow these steps to insure you have execution permission.

On the server:

1. Run DCOMCNFG.EXE.

2. In the Distributed COM Configuration Properties window, select the Default Security tab. Under Default Access
Permissions, click Edit Default.

3. If group Everyone does not already have permissions, you may add it by clicking Add. Select the local machine name from
the List Name From list. Select Everyone and make sure that Type of Access is set to Allow Access. Then click OK.

OR

If you prefer to limit debugging to specific users, you can add individual domain user accounts (e.g. domain\account) with
administrator privileges. If you choose to add only domain accounts instead of Everyone, make sure to add the SYSTEM
account as well.

4. Switch to the Applications tab of the Distributed COM Configuration Properties dialog.

5. Scroll through the Applications list and select SQLDBREG. Then click Properties.

6. Select the Identity tab and make sure that The interactive user is selected as the user to run this application.

7. Click OK to close the dialog box.

8. Restart the SQL Server service.

After applying those steps, your server's DCOM settings should look like this:

 DCOMCNFG
 |
 |__ Application Tab
 | |
 | |_____ SQLDBREG
 | |
 | |______ Identity Tab
 | |
 | |_______ The interactive user
 |
 |__ Default Security Tab
 |
 |_____ Default Access Permissions
 |
 |______ Edit Default Button
 |
 |_______ Everyone (or domain\account and System)

DCOM on Windows 98

DCOM95 on Windows 98 is not as robust as DCOM on Windows NT. In addition, RPCSS.EXE on Windows 98 can cause problems
if it is not started either at shell load time or at boot time. To ensure that RPCSS.EXE is started early enough, modify either of the
following registry entries:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices

Using any name, follow these steps to add a new String Value to the registry at either of those locations, and set its value to
'C:\WINDOWS\SYSTEM\RPCSS':

1. Run REGEDIT.EXE.

2. Expand HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\ CurrentVersion\Run.

3. Right-click and select New -> String Value.

4. Type in any name (e.g. RPC).

5. Double-click on the newly created string.

6. Type in the value (e.g. C:\WINDOWS\SYSTEM\RPCSS.EXE).

7. Reboot the computer.

Also, make sure that the following registry keys are set to 'y':

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\EnableDCOM
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\EnableRemoteConnect

You must reboot your computer after making any of these changes.

Missing or unregistered DLLs

If the debugger fails to start, and you encounter any of these error messages, then you may need to manually setup the
debugging environment:

Error in output window (indicates mssdi98.dll is missing under ..\mssql\binn folder)

ODBC: Msg 0, Level 16, State 1
[Microsoft][ODBC SQL Server Driver][SQL Server]Cannot load the DLL mssdi98.dll, or one of the DLLs it
references.
Reason: 126 (The specified module could not be found.).

Error in Event Viewer/Application log (indicates sqldbg.dll is not registered or sqldbreg is not registered)

Unable to connect to debugger on <Server Name>
(Error = 0x80004002 No such interface supported).

Ensure that client side components such as SQLDBREG.EXE are installed and registered on <Server Name>. Debugging
disabled for connection 54.

Error Message Dialog Box (indicates sqldbg.dll is not registered or sqldbreg is not registered).

Missing or unregistered sdiclnt.dll
Initialization of the debugger failed!
Possible cause:
'sdiclnt.dll' was not installed or registered properly.

Follow these steps to manually install and register missing debugger components when the server and client (i.e. Query Analyzer)
are running on the same machine:

1. Copy file sdiclnt.dll from the \x86\binn folder of your SQL Server 2000 CD-ROM to c:\program files\microsoft sql
server\mssql\80\tools\binn, and then register it by executing the following command:

regsvr32 sdiclnt.dll

Note On Windows 9x, the regsvr32 utility is located under the \windows\system folder.

2. Create folder c:\program files\common files\microsoft shared\SQL Debugging.

3. Copy the following files from \x86\other\sdi to c:\program files\common files\microsoft shared\SQL Debugging:

sqldbg.dll
sqldbreg.exe

then, register the files:

regsvr32 sqldbg.dll
sqldbreg /RegServer

4. Copy file mssdi98.dll from \x86\other\sdi to where sqlservr.exe resides (e.g. c:\program files\microsoft sql
server\mssql\binn).

5. Restart the SQL Server service.

Follow these steps to manually install and register missing debugger components when the server and client are running on
different machines:

On the client:

1. Copy file sdiclnt.dll from the \x86\binn folder of your SQL Server 2000 CD-ROM to c:\program files\microsoft sql
server\mssql\80\tools\binn, then register it:

regsvr32 sdiclnt.dll

Note On Windows 9x, the regsvr32 utility is located under the \windows\system folder.

2. Create folder c:\program files\common files\microsoft shared\SQL Debugging.

3. Copy the following files from \x86\other\sdi to c:\program files\common files\microsoft shared\SQL Debugging:

sqldbg.dll
sqldbreg.exe

then, register the files:

regsvr32 sqldbg.dll
sqldbreg /RegServer

On the server:

1. Create folder c:\program files\common files\microsoft shared\SQL Debugging.

2. Copy the following file from \x86\other\sdi to c:\program files\common files\microsoft shared\SQL Debugging:

sqldbg.dll

then, register the file:

regsvr32 sqldbg.dll

3. Copy file mssdi98.dll from \x86\other\sdi to where sqlservr.exe resides (e.g. c:\program files\microsoft sql
server\mssql\binn)

4. Restart the SQL Server service

Lack of (or limited) debugger support

Limited support is provided for these data types:
table

Variables of this type are not displayed in the local variables window.

sql_variant, text, ntext, image, and cursor

Variables of these types are displayed within the local variables window, but cannot be modified.

Procedures of greater than 64K in size are not supported.

Nesting of greater than 32 stored procedure calls is not supported.

Passing of more than 1023 arguments to a stored procedure is not supported.

Troubleshooting (SQL Server 2000)

Analysis Services Troubleshooting
These topics provide information about troubleshooting and resolving the most common errors that you may encounter when
using Microsoft® SQL Server™ 2000 Analysis Services.

Troubleshooting Development

Troubleshooting Processing

Troubleshooting Querying and Browsing

Troubleshooting Security

Troubleshooting Server

Troubleshooting (SQL Server 2000)

Troubleshooting Development (Analysis Server)
What problem are you having?

Database on server cannot be deleted.

A database on a server (in ADOMD.Catalogs) does not appear in the DSO.Server.MDStores collection and cannot be deleted.

Cause: The repository is corrupted or changed, or the server failed during a transaction.

Solution: To remove the database and free the used disk space, use Decision Support Objects (DSO) to create a database with the
same name, and then use the Remove method of the clsServer object to immediately delete it.

Received the following error message: "License information for this component not found".

Received the "License information for this component not found" message for Microsoft® Visual Basic® controls.

Cause: Microsoft SQL Server™ 2000 Analysis Services installs controls with a license for run-time use. Visual Basic was installed
after Analysis Services and failed to install these components correctly for use in the design environment.

Solution: On the Internet, go to the Microsoft Product Support Services Web site, http://search.support.microsoft.com/kb/c.asp.

On the search screen:

1. Under My search is about, select Visual Basic.

2. Under I want to search by, select Specific article ID number.

3. Under My question is, type Q181854.

4. Click Find, and then follow the instructions in the article.

Received the following error message: "The cube schema is already optimized".

After selecting the Optimize Schema menu command in Cube Editor, received the "The cube schema is already optimized"
message. Subsequent saving of the cube results in the following message: "A loop was detected in the schema. Please remove the
extra joins".

Cause: Optimizing the schema through the Optimize Schema command may not have deleted a join that is not valid between a
fact table and a dimension table or between two dimension tables for a snowflake-schema dimension.

Solution: In the schema view of Cube Editor, identify joins that are not valid, and then remove them with the Remove Join
command. For more information about optimizing cube schemas, see Optimizing Cube Schemas.

Tables are missing from the list when setting drillthrough options.

Cause: A cube with an optimized schema may not display all available tables for use when you specify drillthrough options. For
more information, see Optimizing Cube Schemas.

Solution: You can join a table to the schema for drillthrough when you specify drillthrough options. Add the table and define a
SQL WHERE clause to establish the join.

Applications behave unexpectedly when referring to Decision Support Objects (DSO) object properties or methods.

After an application obtains a lock with the LockObject method on a DSO object, other applications sharing the DSO object
behave unexpectedly when referring to certain properties or methods of the object.

Cause: The originating application may have destroyed the original DSO object. If so, all other applications will have references
that are not valid to that object, because DSO automatically refreshes updated objects after a lock is obtained.

Solution: Use the Parent property of the DSO object to check the validity of the object reference. An object reference that is not
valid will have its Parent property set to Nothing.

http://support.microsoft.com/isapi/gokbsearch.asp?target=/kb/c.asp

Troubleshooting (SQL Server 2000)

Troubleshooting Processing (Analysis Server)
What problem are you having?

After you change the data source provider for a cube, an error occurs while processing the cube.

Changing a data source provider (for example, moving from an ODBC provider to a Microsoft® SQL Server™ provider) for an existing cube causes an error
the next time the cube is processed.

Cause: Different providers sometimes use incompatible SQL dialects, and a statement that was valid for one provider is not valid for another.

Solution: The error message should identify the syntax that is not valid. Use Decision Support Objects (DSO) or Cube Editor to correct the problem. To avoid
such problems, do not change the data source provider for an existing cube.

Received the following error message while processing a dimension: "Maximum number of child members exceeded."

Cause: One or more members of a dimension contains more than the maximum number of children allowed per parent.

Solution: Create member groups to provide intermediate levels that organize the dimension such that no member has more than the maximum allowable
children. For more information, see Creating Member Groups.

While processing a cube, the member key was found in the fact table but not in a dimension level, the set of leaf members, or in the dimension.

While processing a cube, you received one of the following error messages:

If the dimension is not parent child dimension: "A member with key key was found in the fact table but was not found in the level level of the dimension
dimension."

If the dimension is a parent child dimension and the MembersWithData property of the dimension is set to dataforLeafMembersOnly, the message
is: "A member with key key was found in the fact table but was not found in the set of leaf members of dimension dimension."

If the dimension is a parent child dimension and the MembersWithData property of the dimension is not set to dataforLeafMembersOnly, the
message is: "A member with key key was found in the fact table but was not found in the dimension dimension."

Cause: The dimension table does not contain a member related to a fact in the fact table, or the dimension was not processed after changing the dimension
table.

Solution: Verify referential integrity between dimension tables and fact tables. Process a dimension after changing the dimension table and before
processing cubes that use the dimension. For more information, see Optimizing Cube Schemas.

To manage a large number of these key errors, you can log the missing members to a file and use Data Transformation Services (DTS) to import the log into a
relational database. You can then either remove the records with the keys from the fact table or add them to the dimension table. You select to log dimension
key errors to a file in the Cube Processing Settings Dialog Box.

Some fact table rows are not read when a cube or partition is processed or incrementally updated.

Cause: The source data lacks referential integrity. For example, the cube's fact table contains foreign key values that are not present in a joined dimension
table's primary key column.

Solution: Correct the referential integrity of the source data so that inner joins between the fact and dimension tables include all rows in the fact table.

User sees old version of a cube or virtual cube.

There are two possible causes.

Cause: The cube or virtual cube was changed but not processed.

Solution: First the administrator must process cube or virtual cube. After the cube is processed, the user must reconnect to the server computer.

Cause: The cube or virtual cube was processed while the user was browsing the cube.

Solution: The user might need to reconnect to the server computer. Reconnection is required for a full update but not for an incremental update.

Analysis Services is processing more records than exist in the fact table.

Cause: There is a many-to-many instead of a one-to-many relationship between the dimension table and the fact table.

Solution: Remove redundant members from the dimension tables.

Troubleshooting (SQL Server 2000)

Troubleshooting Querying and Browsing (Analysis Server)
What problem are you having?

Cannot see data when browsing a cube.

Data is not visible when you attempt to browse a cube with the aggregations stored in one method such as hybrid OLAP (HOLAP),
but data is visible when you attempt to browse the cube with the aggregations stored in another mode such as relational OLAP
(ROLAP).

Cause: The source data lacks referential integrity. For example, the fact table of the cube contains foreign key values that are not
present in the primary key column of a joined dimension table.

Solution: Correct the referential integrity of the source data so that inner joins between the fact and dimension tables include all
rows in the fact table.

Query of a calculated member returns text such as "1.#INF or 1.#J" instead of the number.

Cause: The formula in the calculated member attempted to divide by zero.

Solution: Change your formulas to check for possible division by zero errors before they occur.

Cubes are missing from the list of cubes in a database.

Cause: Cubes that use features introduced in Microsoft® SQL™ Server 2000 Analysis Services are not available to SQL Server 7.0
OLAP Services client applications, and their presence is hidden from these clients.

Solution: Upgrade the client application to a version that is fully compatible with SQL Server 2000 Analysis Services.

Troubleshooting (SQL Server 2000)

Troubleshooting Security (Analysis Server)
What problem are you having?

A change made to a user's permissions or group membership list does not take effect.

Cause: The user was logged on to Microsoft® Windows NT® 4.0 when the change was made and has not logged off.

Solution: The user must log off Windows NT 4.0 and then log on again.

Cannot connect to server computer that stores a cube or virtual cube.

Cause: User lacks permissions to the data source containing cube's source data.

Solution: Ensure the user logon provides access to the data source.

See also: Windows NT Server or Windows 2000 Server online documentation (click Help on the Start menu).

Insufficient disk space for temporary files.

During cube processing or aggregation design, Analysis Manager displayed a message indicating insufficient disk space for
temporary files.

Cause: The temporary file folder used by Microsoft SQL Server™ 2000 Analysis Services is on a disk that has no more space.

Solution: Create additional space on the disk or specify a temporary file folder on another disk with more space.

See also: Properties Dialog Box - General Tab

Attempting to register an Analysis server generates an error message.

When you attempt to register an Analysis server, Analysis Manager displays an error message such as the following: "Connection
to server failed. Your permissions on the server computer do not allow you to administer this Analysis server".

Cause: You are not logged on using an account that is a member of the OLAP Administrators group on the server to be
registered.

Solution: On the server to be registered, add your account to the OLAP Administrators group. You may have to log off and then
log on again before the group membership becomes effective.

Troubleshooting (SQL Server 2000)

Troubleshooting Server (Analysis Server)
What problem are you having?

Received the following error message: "Cannot open connection to Analysis server servername. Network error servername".

When you try to register an Analysis server in Analysis Manager, Analysis Manager displays the following error message: "Cannot open
connection to Analysis server servername. Network error servername".

Cause: MSSQLServerOLAPService is not started on the specified server.

Solution: Start MSSQLServerOLAPService on the server. To do this, use the Services application, which is in Control Panel in
Microsoft® Windows NT® 4.0 or the Administrative Tools folder in Control Panel in Windows 2000.

If the service is already started, you may not have permissions on the server computer to administer Microsoft SQL Server™ 2000
Analysis Services (see Troubleshooting Security (Analysis Server)).

The Analysis Services service, MSSQLServerOLAPService, fails to start.

Cause: The computer name has been changed, the network card has been replaced, or other changes have been made to the computer.

Solution: Reinstall Analysis Services.

Cause: The password has been changed for the logon account used by Analysis Services.

Solution: Change the logon account password for Analysis Services. To do this, use the Services application, which is in Control Panel
in Windows NT 4.0 or the Administrative Tools folder in Control Panel in Windows 2000.

Cause: The first word in the name of the root folder for Analysis Services is duplicated among root folder names on the same disk. For
example, Analysis Services is installed in the Program Files root folder and another root folder named Program exists.

Solution: Rename the root folder that does not contain Analysis Services.

Characters display incorrectly in some non-English versions of Analysis Services.

Cause: The current display font does not support the full character set for the language in use, specifically characters in the extended
ASCII character set. Analysis Services uses the system's Icon font setting for the majority of its user interface display.

Solution: Change the display font to one that supports the extended character set for the language in use:

1. Run the Display application in Control Panel, and then click the Appearance tab.

2. Select Icon in the Item list and then, under Font, select a font that supports the extended ASCII character set, such as Times New
Roman or Tahoma.

Received the following error message: "Cannot obtain server's start directory from registry".

MSSQLServerOLAPService failed to start, and the system displayed the following error message: "Cannot obtain server's start directory
from registry".

Cause: If the path of the data directory contains more than 102 characters, Analysis Services cannot start.

Solution: During installation, make sure that the size of the path of the Data directory is limited to 102 characters. You can change the
path after installation by using the Data folder box in the Properties dialog box for the server.

Troubleshooting (SQL Server 2000)

Error Messages
When Microsoft® SQL Server™ 2000 encounters a problem, it either writes a message from the sysmessages system table to
the SQL Server error log and the Microsoft Windows® 2000 or Microsoft Windows NT® 4.0 application log, or sends a message
to the client, depending on the severity level.

Error messages can be either returned by SQL Server when encountering a problem or produced manually using the RAISERROR
statement.

The RAISERROR statement provides centralized error message management. RAISERROR can retrieve an existing entry from
sysmessages, or it can use a hard-coded (user-defined) message. When RAISERROR returns a user-defined error message, it also
sets a system variable to record that an error has occurred. The message can include C PRINTF-style format strings that are filled
with arguments specified by RAISERROR at run time. After it is defined, the message is sent back to the client as a server error
message.

Whether returned by SQL Server or through the RAISERROR statement, each message contains:

A message number that uniquely identifies the error message.

A severity level that provides an indication of the type of problem.

An error state number that identifies the source from which the error was issued (if the error can be issued from more than
one place).

A message that states the problem and sometimes a possible solution.

For example, if you access a table that does not exist:
SELECT *
FROM bogus

The error message sent to the client looks similar to this:
Server: Msg 208, Level 16, State 1
Invalid object name 'bogus'.

You can view the list of SQL Server error messages by querying the sysmessages table in the master database. For more
information about sysmessages, see System Error Messages.

See Also

RAISERROR

Using RAISERROR

Troubleshooting (SQL Server 2000)

Error Message Formats
All of the Microsoft® SQL Server™ 2000 components can issue informational, warning, or error messages to applications. Most
SQL Server messages returned to applications contain these parts:

Error number

A one-to-five-digit number that identifies the message. Error numbers for user-defined messages can contain more digits.

Description

A Unicode string that contains information about the condition that generated the message.

Severity level

A one- or two-digit number that indicates the severity of the error condition.

State

A one- to three-digit number with a maximum value of 127 that indicates to Microsoft support engineers and developers
the location in the SQL Server code that generated the message:

Line number

A number within the batch or stored procedure that contains the statement that generated the message. Line number can
also be within the text of the stored procedure that is being executed.

The error numbers, descriptions, and severity levels for most SQL Server messages are stored in master.dbo.sysmessages. The
state and line numbers are generated dynamically by the code issuing the message.

Messages raised in the client Net-Libraries, the Microsoft OLE DB Provider for SQL Server, or the SQL Server ODBC driver do not
have some of these message parts.

To see an example of an error message, execute this statement:
SELECT * FROM ThisObjectDoesNotExist

This statement raises an error with these parts:
Error number: 208
Severity level: 16
State: 1
Line: 1
Description: Invalid object name 'ThisObjectDoesNotExist'.

All of the data APIs used by applications to access SQL Server return the error number and description. Not all of the APIs return
the severity level, state, or line number. The Microsoft OLE DB Provider for SQL Server and the SQL Server ODBC driver return
these parts only if an OLE DB or ODBC application has been written to use SQL Server-specific diagnostic features that are
exposed by the provider and driver.

Troubleshooting (SQL Server 2000)

Error Message Numbers and Descriptions
A message number uniquely identifies each error message and the error message text describes the problem. The error message
text often includes placeholders for information (such as object names) to be inserted in the error message when it is displayed.

In the description column of the sysmessages table, a percent sign (%) followed by a character serves as a placeholder; the
specific data is supplied when the error message is generated. The notation %d is a placeholder for a number; %ls (or %.*ls) is a
placeholder for a string. For example, the actual error message displayed for error 105 might be:
Unclosed quote before the character string %.*ls.

When you report an error to your primary support provider, it is important to include error numbers, error states, object types,
and object names. Otherwise, it can be difficult and time-consuming for the support provider to render assistance in resolving the
error message.

See Also

Reporting Errors to Your Primary Support Provider

sysmessages

Troubleshooting (SQL Server 2000)

Error Message Severity Levels
The severity level of an error message provides an indication of the type of problem that Microsoft® SQL Server™ 2000 has
encountered.

 Severity level 10 messages are informational and indicate problems caused by mistakes in the information you have entered.
Severity levels from 11 through 16 are generated by the user, and can be corrected by the user.

Severity levels from 17 through 25 indicate software or hardware errors. You should inform the system administrator whenever
problems that generate errors with severity levels 17 and higher occur. The system administrator must resolve these errors and
track their frequency. When a level 17, 18, or 19 error occurs, you can continue working, although you might not be able to
execute a particular statement.

The system administrator should monitor all problems that generate severity levels from 17 through 25 and print the error log
that contains information to backtrack from the error.

If the problem affects an entire database, you can use DBCC CHECKDB (database) to determine the extent of the damage. DBCC
may identify some objects that must be removed and will optionally repair the damage. If damage is extensive, the database
might have to be restored.

When specifying user-defined error messages with RAISERROR, use error message numbers greater than 50,000 and severity
levels from 0 through 18. Only system administrators can issue RAISERROR with a severity level from 19 through 25.

Severity Levels 0 through 19

Error messages with a severity level of 10 are informational. Error messages with severity levels from 11 through 16 are
generated by the user and can be corrected by the user. Severity levels from 17 and 18 are generated by resource or system
errors; the user's session is not interrupted.

Using sp_addmessage, user-defined messages with severities from 1 through 25 can be added to sysmessages. Only the
system administrator can add messages with severities from 19 through 25.

Error messages with severity levels 17 and higher should be reported to the system administrator.

Severity Level 10: Status Information

This is an informational message that indicates a problem caused by mistakes in the information the user has entered. Severity
level 0 is not visible in SQL Server.

Severity Levels 11 through 16

These messages indicate errors that can be corrected by the user.

Severity Level 17: Insufficient Resources

These messages indicate that the statement caused SQL Server to run out of resources (such as locks or disk space for the
database) or to exceed some limit set by the system administrator.

Severity Level 18: Nonfatal Internal Error Detected

These messages indicate that there is some type of internal software problem, but the statement finishes, and the connection to
SQL Server is maintained. For example, a severity level 18 message occurs when the SQL Server query processor detects an
internal error during query optimization. The system administrator should be informed every time a severity level 18 message
occurs.

Severity Level 19: SQL Server Error in Resource

These messages indicate that some nonconfigurable internal limit has been exceeded and the current batch process is terminated.
Severity level 19 errors occur rarely; however, they must be corrected by the system administrator or your primary support
provider. The administrator should be informed every time a severity level 19 message occurs.

Severity Levels 20 through 25

Severity levels from 20 through 25 indicate system problems. These are fatal errors, which means that the process (the program
code that accomplishes the task specified in your statement) is no longer running. The process freezes before it stops, records
information about what occurred, and then terminates. The client connection to SQL Server closes, and depending on the
problem, the client might not be able to reconnect.

Error messages with a severity level of 19 or higher stop the current batch. Errors messages with a severity level of 20 or higher

are considered fatal errors and terminate the client connection. Errors messages in this range may affect all of the processes in the
database, and may indicate that a database or object is damaged. Error messages with a severity level from 19 through 25 are
written to the error log.

Severity Level 20: SQL Server Fatal Error in Current Process

These messages indicate that a statement has encountered a problem. Because the problem has affected only the current process,
it is unlikely that the database itself has been damaged.

Severity Level 21: SQL Server Fatal Error in Database (dbid) Processes

These messages indicate that you have encountered a problem that affects all processes in the current database; however, it is
unlikely that the database itself has been damaged.

Severity Level 22: SQL Server Fatal Error Table Integrity Suspect

These messages indicate that the table or index specified in the message has been damaged by a software or hardware problem.

Severity level 22 errors occur rarely; however, if you should encounter one, run DBCC CHECKDB to determine if other objects in
the database are also damaged. It is possible that the problem is in the cache only and not on the disk itself. If so, restarting SQL
Server corrects the problem. To continue working, you must reconnect to SQL Server. Otherwise, use DBCC to repair the problem.
In some cases, it may be necessary to restore the database.

If restarting does not help, the problem is on the disk. Sometimes destroying the object specified in the error message can solve
the problem. For example, if the message tells you that SQL Server has found a row with a length of 0 in a nonclustered index,
delete the index and rebuild it.

Severity Level 23: SQL Server Fatal Error: Database Integrity Suspect

These messages indicate that the integrity of the entire database is in question because of a hardware or software problem.

Severity level 23 errors occur rarely; however, if you should encounter one, run DBCC CHECKDB to determine the extent of the
damage. It is possible that the problem is in the cache only and not on the disk itself. If so, restarting SQL Server corrects the
problem. To continue working, you must reconnect to SQL Server. Otherwise, use DBCC to repair the problem. In some cases, it
may be necessary to restore the database.

Severity Level 24: Hardware Error

These messages indicate some type of media failure. The system administrator might have to reload the database. It might also be
necessary to call your hardware vendor.

See Also

Backing Up and Restoring Databases

DBCC

DBCC CHECKDB

Setting Configuration Options

sp_configure

Troubleshooting (SQL Server 2000)

ADO Error Message Format
The ADO specification defines Error objects in an Errors collection. Each Error object holds a message from the underlying
provider. ADO does not provide for provider-specific diagnostic information. ADO and the Microsoft OLE DB Provider for SQL
Server map the parts of Microsoft® SQL Server™ messages into these ADO Error object properties:

Description

Contains the SQL Server message description, usually from the description column in master.dbo.sysmessages.

SQLState

Contains the five-character SQLSTATE code generated by the Microsoft OLE DB Provider for SQL Server.

NativeError

Contains the SQL Server error number. For example, if a statement raises a SQL Server error 170 (syntax error), 170 is
returned in NativeError.

Troubleshooting (SQL Server 2000)

OLE DB Error Message Format
OLE DB applications receive Microsoft® SQL Server™ messages in these ways:

Call the OLE DB ISQLErrorInfo::GetSQLInfo function.

Call the provider-specific ISQLServerErrorInfo::GetErrorInfo function.

ISQLErrorInfo::GetSQLInfo returns the SQL Server error numbers from master.dbo.sysmessages as the plNativeError
parameter and the SQLSTATE value as the pbstrSQLState parameter. These SQLSTATE codes are not related to any of the parts of
a SQL Server message. The Microsoft OLE DB Provider for SQL Server generates the appropriate SQLSTATE code anytime it
returns a message to an application. The SQLSTATE codes generated by the OLE DB Provider for SQL Server are same as the five-
character SQLSTATE codes defined in the ODBC specification. For ISQLErrorInfo::GetSQLInfo, pbstrSQLState may be NULL when
the error is not produced by SQL Server.

Both the Microsoft OLE DB Provider for SQL Server and the Microsoft OLE DB Provider for ODBC support the ISQLErrorInfo
interface.

The provider-specific ISQLServerErrorInfo interface returns more detail about a SQL Server error. The ISQLServerErrorInfo
interface exposes one member function, GetErrorInfo. The function returns a pointer to a SSERRORINFO structure and a pointer
to a string buffer. The pointer to SSERRORINFO structure is NULL when SQL Server does not produce the error.

The SQL Server message parts map to members of the SSERRORINFO structure:

pwszMessage

Contains the SQL Server error description.

lNative

Contains the SQL Server error number.

bState

Contains the SQL Server error state.

bClass

Contains the severity of the SQL Server error condition.

wLineNumber

Contains the line number of the stored procedure on which the error occurred.

See Also

Information in OLE DB Error Interfaces

Troubleshooting (SQL Server 2000)

ODBC Error Message Format
ODBC drivers return messages to applications as diagnostic records. An application can call the SQLGetDiagRec and
SQLGetDiagField functions to retrieve these diagnostic records. The Microsoft® SQL Server™ ODBC driver maps SQL Server
message parts into these standard ODBC diagnostic record fields:

SQLSTATE

The ODBC specification defines a set of five-character codes called SQLSTATE codes that identify the conditions generating the
message. These SQLSTATE codes are not related to any of the parts of a SQL Server message. The SQL Server ODBC driver
generates the appropriate SQLSTATE code anytime it returns a message to an application.

pfNative

The SQL Server ODBC driver returns the SQL Server error number as the ODBC pfNative field. For example, if a statement raises a
SQL Server error 170 (syntax error), the ODBC driver returns 170 in pfNative.

MessageText

The SQL Server ODBC driver returns the SQL Server error description as the MessageText field in an ODBC diagnostic record. The
ODBC specification defines a series of headers for the MessageText field that indicates the component that issued the message:

[Microsoft][ODBC Driver Manager]

These messages are issued by the ODBC Driver Manager.

[Microsoft][ODBC Cursor Library]

These messages are issued by the ODBC client cursor library.

[Microsoft][ODBC SQL Server Driver]

These messages are issued by the SQL Server ODBC driver. If there are no other nodes with the name of either a Net-
Library or a SQL Server installation, the message was issued by the driver.

[Microsoft][ODBC SQL Server Driver][Net-Libraryname]

These messages are issued by the SQL Server Net-Library, where Net-Libraryname is the display name of a SQL Server
client Net-Library (for example, Named Pipes, Shared Memory, Multiprotocol, TCP/IP Sockets, NWLink IPX/SPX, or Banyan
VINES).

[Microsoft][ODBC SQL Server Driver][SQL Server]

These messages are issued by SQL Server. The remainder of the error message is the description from SQL Server, usually
from master.dbo.sysmessages.

The ODBC specification allows ODBC drivers to define driver-specific fields in ODBC diagnostic records. The SQL Server ODBC
driver maps SQL Server message parts into these SQL Server ODBC driver-specific diagnostic fields:

SQL_DIAG_SS_SEVERITY.

Contains the SQL Server severity level.

SQL_DIAG_SS_MSGSTATE.

Contains the SQL Server state. It is not related to the ODBC SQLSTATE code.

SQL_DIAG_SS_LINE.

Contains the number of the line containing the SQL statement generating the message.

SQL_DIAG_SS_PROCNAME.

Contains the name of the stored procedure generating the message, if appropriate.

SQL_DIAG_SS_SRVNAME.

Contains the name of the server from which the message came.

See Also

Handling Errors and Messages

Troubleshooting (SQL Server 2000)

Embedded SQL for C Error Message Format
The errors and messages are returned to the application in an SQLCA data structure. The Microsoft® SQL Server™ message parts
map to fields in the SQLCA data structure:

sqlerrmc

Contains text of the error message.

sqlerrd[1]

Contains the SQL Server error number.

sqlerrd[2]

Contains the SQL Server severity level.

Sqlstate

Contains the SQLSTATE run-time error codes as defined in Embedded SQL for C. These SQLSTATE codes are not related to any of
the parts of a SQL Server message.

Troubleshooting (SQL Server 2000)

DB-Library Error Message Format
DB-Library returns Microsoft® SQL Server™ errors and messages to call-back functions written by the application programmer.

The application programmer uses the dberrorhandle function to give DB-Library the address of the call-back function that
handles the errors. When DB-Library determines that an error has occurred, it calls the call-back function identified by
dberrorhandle. DB-Library passes the SQL Server error information into the parameters of the call-back function:

severity

Contains the severity of the error.

dberr

Contains the SQL Server error number.

dberrstr

Contains the description of the SQL Server error.

The application programmer uses the dbmsghandle function to give DB-Library the address of the call-back function that
handles the messages. When DB-Library receives an informational message from SQL Server, it calls the call-back function
identified by dbmsghandle.

DB-Library passes the SQL Server message information into the parameters of the call-back function:

msgno

Contains the error number identifying the message.

msgstate

Contains the SQL Server message state.

severity

Contains the severity of the error condition.

msgtext

Contains the description of the SQL Server message.

srvname

Contains the server name that generated the message.

procname

Contains the stored procedure name that generated the message.

line

Contains the line number in the stored procedure or the command batch that generated the message.

DB-Library calls the application error handler and message handler functions asynchronously as packets containing messages
and errors are received from the server. This means DB-Library applications may receive errors and messages in a slightly
different sequence from applications using either the Microsoft OLE DB Provider for SQL Server or the SQL Server ODBC Driver.

Troubleshooting (SQL Server 2000)

Messages Returned by SQL Server Utilities
All of the Microsoft® SQL Server™ 2000 utilities use ODBC except for the isql command prompt utility. This has effects on the
way error messages are displayed by the ODBC-based utilities:

The error messages may have leading ODBC headers built into the description. These headers identify the component
raising the error. The osql command prompt utility returns the ODBC headers. SQL Query Analyzer defaults to removing
the ODBC headers, but users can set a connection option so that these are returned.

For example, isql returns the error 208 description as:

Invalid object name 'ThisObjectDoesNotExist'.

osql includes the ODBC headers in the description:
[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid object name 'ThisObjectDoesNotExist'.

The presence of the ODBC headers in the message does not necessarily indicate that the problem is in the ODBC components. The
SQL Server ODBC driver includes these headers in messages from all components. For more information about how to determine
the component raising the error, see ODBC Error Message Format.

Errors raised within the SQL Server ODBC driver have only a description. They have no error number, state, severity level, or
line number. For example, if the following statement is executed in SQL Query Analyzer, the SQL Server ODBC driver itself
raises a syntax error:

{ CLL sp_who }

Because the driver generates the error, the only message part displayed by SQL Query Analyzer is the description:

[Microsoft][SQL Server ODBC Driver]Syntax error or access violation

See Also

isql Utility

osql Utility

sysmessages

Troubleshooting (SQL Server 2000)

Error Message Descriptions
 Topic last updated -- January 2004

The following topics contain error message information for Microsoft® SQL Server™ 2000 system error messages. In addition,
details on other types of error messages are listed in this section, including:

DB-Library Error Messages

Distributed Queries Error Messages

Embedded SQL for C Error Messages

SQL Server Enterprise Manager Error Messages

ODBC Error Messages

XML Error Messages

Replication Merge Agent Error Messages

See Also

Resolving System Error Messages

Error Message Formats

Troubleshooting (SQL Server 2000)

System Error Messages
Topics in this section contain the text of Microsoft® SQL Server™ 2000 system error messages, arranged in order by error
number. The tables in the topics include the error message number, the severity level, and the description, which is the text of the
error message from the master.sysmessages table.

Additional topics are available for some of the system error messages, with an explanation of the issue and suggested actions for
resolving the error.

The master.sysmessages table contains one row for each system error or warning that can be returned by SQL Server. The
following table shows the column names in the sysmessages table.

Column name Data type Description
error int Unique error number.
severity smallint Severity level of the error.
dlevel smallint Reserved. For internal use only.
description nvarchar(255) Text of the error message with

placeholders for parameters and variables
to be inserted each time the error message
appears in a specific context.

mslangid smallint System message group ID.

These symbols may appear in the error message text along with the system error message descriptions. The symbols are
placeholders that will be replaced by specific values when the error text is generated in a particular context.

Symbol Meaning
%d, %ld, or %D Decimal integer
%x Hexadecimal number
%ls or %.*ls Character string
%S_type SQL Server -defined structure
%c Single character
%lf Double floating-point number

Troubleshooting (SQL Server 2000)

Errors 1 - 999
Errors 1 - 999

Error Severity Description (Message Text)
1 10 Version date of last upgrade: 10/11/90.
21 10 Warning: Fatal error %d occurred at %S_DATE. Note the

error and time, and contact your system administrator.
102 15 Incorrect syntax near '%.*ls'.
103 15 The %S_MSG that starts with '%.*ls' is too long. Maximum

length is %d.
104 15 ORDER BY items must appear in the select list if the

statement contains a UNION operator.
105 15 Unclosed quotation mark before the character string

'%.*ls'.
106 16 Too many table names in the query. The maximum

allowable is %d.
107 15 The column prefix '%.*ls' does not match with a table

name or alias name used in the query.
108 15 The ORDER BY position number %ld is out of range of the

number of items in the select list.
109 15 There are more columns in the INSERT statement than

values specified in the VALUES clause. The number of
values in the VALUES clause must match the number of
columns specified in the INSERT statement.

110 15 There are fewer columns in the INSERT statement than
values specified in the VALUES clause. The number of
values in the VALUES clause must match the number of
columns specified in the INSERT statement.

111 15 '%ls' must be the first statement in a query batch.
112 15 Variables are not allowed in the %ls statement.
113 15 Missing end comment mark '*/'.
114 15 Browse mode is invalid for a statement that assigns values

to a variable.
116 15 Only one expression can be specified in the select list

when the subquery is not introduced with EXISTS.
117 15 The %S_MSG name '%.*ls' contains more than the

maximum number of prefixes. The maximum is %d.
118 15 Only members of the sysadmin role can specify the %ls

option for the %ls statement.
119 15 Must pass parameter number %d and subsequent

parameters as '@name = value'. After the form '@name =
value' has been used, all subsequent parameters must be
passed in the form '@name = value'.

120 15 The select list for the INSERT statement contains fewer
items than the insert list. The number of SELECT values
must match the number of INSERT columns.

121 15 The select list for the INSERT statement contains more
items than the insert list. The number of SELECT values
must match the number of INSERT columns.

122 15 The %ls option is allowed only with %ls syntax.
123 15 Batch/procedure exceeds maximum length of %d

characters.
124 15 CREATE PROCEDURE contains no statements.
125 15 Case expressions may only be nested to level %d.

128 15 The name '%.*ls' is not permitted in this context. Only
constants, expressions, or variables allowed here. Column
names are not permitted.

129 15 Fillfactor %d is not a valid percentage; fillfactor must be
between 1 and 100.

130 16 Cannot perform an aggregate function on an expression
containing an aggregate or a subquery.

131 15 The size (%d) given to the %S_MSG '%.*ls' exceeds the
maximum allowed for any data type (%d).

132 15 The label '%.*ls' has already been declared. Label names
must be unique within a query batch or stored procedure.

133 15 A GOTO statement references the label '%.*ls' but the label
has not been declared.

134 15 The variable name '%.*ls' has already been declared.
Variable names must be unique within a query batch or
stored procedure.

135 15 Cannot use a BREAK statement outside the scope of a
WHILE statement.

136 15 Cannot use a CONTINUE statement outside the scope of a
WHILE statement.

137 15 Must declare the variable '%.*ls'.
138 15 Correlation clause in a subquery not permitted.
139 15 Cannot assign a default value to a local variable.
140 15 Can only use IF UPDATE within a CREATE TRIGGER

statement.
141 15 A SELECT statement that assigns a value to a variable must

not be combined with data-retrieval operations.
142 15 Incorrect syntax for definition of the '%ls' constraint.
143 15 A COMPUTE BY item was not found in the order by list. All

expressions in the compute by list must also be present in
the order by list.

144 15 Cannot use an aggregate or a subquery in an expression
used for the group by list of a GROUP BY clause.

145 15 ORDER BY items must appear in the select list if SELECT
DISTINCT is specified.

146 15 Could not allocate ancillary table for a subquery.
Maximum number of tables in a query (%d) exceeded.

147 15 An aggregate may not appear in the WHERE clause unless
it is in a subquery contained in a HAVING clause or a select
list, and the column being aggregated is an outer
reference.

148 15 Incorrect time syntax in time string '%.*ls' used with
WAITFOR.

149 15 Time value '%.*ls' used with WAITFOR is not a valid value.
Check date/time syntax.

150 15 Both terms of an outer join must contain columns.
151 15 '%.*ls' is an invalid money value.
153 15 Invalid usage of the option %.*ls in the %ls statement.
154 15 %S_MSG is not allowed in %S_MSG.
155 15 '%.*ls' is not a recognized %ls option.
156 15 Incorrect syntax near the keyword '%.*ls'.
157 15 An aggregate may not appear in the set list of an UPDATE

statement.
159 15 For DROP INDEX, you must give both the table and the

index name, in the form tablename.indexname.
160 15 Rule does not contain a variable.
161 15 Rule contains more than one variable.

163 15 The compute by list does not match the order by list.
164 15 GROUP BY expressions must refer to column names that

appear in the select list.
165 16 Privilege %ls may not be granted or revoked.
166 15 '%ls' does not allow specifying the database name as a

prefix to the object name.
167 16 Cannot create a trigger on a temporary object.
168 15 The %S_MSG '%.*ls' is out of the range of computer

representation (%d bytes).
169 15 A column has been specified more than once in the order

by list. Columns in the order by list must be unique.
170 15 Line %d: Incorrect syntax near '%.*ls'.
171 15 Cannot use SELECT INTO in browse mode.
172 15 Cannot use HOLDLOCK in browse mode.
173 15 The definition for column '%.*ls' must include a data type.
174 15 The %ls function requires %d arguments.
177 15 The IDENTITY function can only be used when the SELECT

statement has an INTO clause.
178 15 A RETURN statement with a return value cannot be used in

this context.
179 15 Cannot use the OUTPUT option when passing a constant

to a stored procedure.
180 15 There are too many parameters in this %ls statement. The

maximum number is %d.
181 15 Cannot use the OUTPUT option in a DECLARE statement.
182 15 Table and column names must be supplied for the

READTEXT or WRITETEXT utility.
183 15 The scale (%d) for column '%.*ls' must be within the range

%d to %d.
185 15 Data stream is invalid for WRITETEXT statement in bulk

form.
186 15 Data stream missing from WRITETEXT statement.
188 15 Cannot specify a log device in a CREATE DATABASE

statement without also specifying at least one non-log
device.

189 15 The %ls function requires %d to %d arguments.
191 15 Some part of your SQL statement is nested too deeply.

Rewrite the query or break it up into smaller queries.
192 16 The scale must be less than or equal to the precision.
193 15 The object or column name starting with '%.*ls' is too long.

The maximum length is %d characters.
194 15 A SELECT INTO statement cannot contain a SELECT

statement that assigns values to a variable.
195 15 '%.*ls' is not a recognized %S_MSG.
196 15 SELECT INTO must be the first query in an SQL statement

containing a UNION operator.
197 15 EXECUTE cannot be used as a source when inserting into a

table variable.
198 15 Browse mode is invalid for statements containing a

UNION operator.
199 15 An INSERT statement cannot contain a SELECT statement

that assigns values to a variable.
201 16 Procedure '%.*ls' expects parameter '%.*ls', which was not

supplied.

202 16 Invalid type '%s' for WAITFOR. Supported data types are
CHAR/VARCHAR, NCHAR/NVARCHAR, and DATETIME.
WAITFOR DELAY supports the INT and SMALLINT data
types.

203 16 The name '%.*ls' is not a valid identifier.
204 20 Normalization error in node %ls.
205 16 All queries in an SQL statement containing a UNION

operator must have an equal number of expressions in
their target lists.

206 16 Operand type clash: %ls is incompatible with %ls
207 16 Invalid column name '%.*ls'.
208 16 Invalid object name '%.*ls'.
209 16 Ambiguous column name '%.*ls'.
210 16 Syntax error converting datetime from binary/varbinary

string.
212 16 Expression result length exceeds the maximum. %d max,

%d found.
213 16 Insert Error: Column name or number of supplied values

does not match table definition.
214 16 Procedure expects parameter '%ls' of type '%ls'.
217 16 Maximum stored procedure, function, trigger, or view

nesting level exceeded (limit %d).
220 16 Arithmetic overflow error for data type %ls, value = %ld.
221 10 FIPS Warning: Implicit conversion from %ls to %ls.
223 11 Object ID %ld specified as a default for table ID %ld,

column ID %d is missing or not of type default.
224 11 Object ID %ld specified as a rule for table ID %ld, column

ID %d is missing or not of type default.
226 16 %ls statement not allowed within multi-statement

transaction.
229 14 %ls permission denied on object '%.*ls', database '%.*ls',

owner '%.*ls'.
230 14 %ls permission denied on column '%.*ls' of object '%.*ls',

database '%.*ls', owner '%.*ls'.
231 11 No such default. ID = %ld, database ID = %d.
232 16 Arithmetic overflow error for type %ls, value = %f.
233 16 The column '%.*ls' in table '%.*ls' cannot be null.
234 16 There is insufficient result space to convert a money value

to %ls.
235 16 Cannot convert a char value to money. The char value has

incorrect syntax.
236 16 The conversion from char data type to money resulted in a

money overflow error.
237 16 There is insufficient result space to convert a money value

to %ls.
238 16 There is insufficient result space to convert the %ls value

(= %d) to the money data type.
241 16 Syntax error converting datetime from character string.
242 16 The conversion of a char data type to a datetime data type

resulted in an out-of-range datetime value.
243 16 Type %.*ls is not a defined system type.
244 16 The conversion of the %ls value '%.*ls' overflowed an %hs

column. Use a larger integer column.
245 16 Syntax error converting the %ls value '%.*ls' to a column

of data type %ls.
248 16 The conversion of the %ls value '%.*ls' overflowed an int

column. Maximum integer value exceeded.

251 16 Could not allocate ancillary table for query optimization.
Maximum number of tables in a query (%d) exceeded.

256 16 The data type %ls is invalid for the %ls function. Allowed
types are: char/varchar, nchar/nvarchar, and
binary/varbinary.

257 16 Implicit conversion from data type %ls to %ls is not
allowed. Use the CONVERT function to run this query.

259 16 Ad hoc updates to system catalogs are not enabled. The
system administrator must reconfigure SQL Server to
allow this.

260 16 Disallowed implicit conversion from data type %ls to data
type %ls, table '%.*ls', column '%.*ls'. Use the CONVERT
function to run this query.

261 16 '%.*ls' is not a recognized function.
262 16 %ls permission denied in database '%.*ls'.
263 16 Must specify table to select from.
264 16 Column name '%.*ls' appears more than once in the result

column list.
266 16 Transaction count after EXECUTE indicates that a COMMIT

or ROLLBACK TRANSACTION statement is missing.
Previous count = %ld, current count = %ld.

267 16 Object '%.*ls' cannot be found.
268 16 Cannot run SELECT INTO in this database. The database

owner must run sp_dboption to enable this option.
270 16 Object '%.*ls' cannot be modified.
271 16 Column '%.*ls' cannot be modified because it is a

computed column.
272 16 Cannot update a timestamp column.
273 16 Cannot insert a non-null value into a timestamp column.

Use INSERT with a column list or with a default of NULL
for the timestamp column.

278 16 The text, ntext, and image data types cannot be used in a
GROUP BY clause.

279 16 The text, ntext, and image data types are invalid in this
subquery or aggregate expression.

280 16 Only text, ntext, and image columns are valid with the
TEXTPTR function.

281 16 %d is not a valid style number when converting from %ls
to a character string.

282 10 The '%.*ls' procedure attempted to return a status of
NULL, which is not allowed. A status of 0 will be returned
instead.

283 16 READTEXT cannot be used on inserted or deleted tables
within an INSTEAD OF trigger.

284 16 Rules cannot be bound to text, ntext, or image data types.
285 16 The READTEXT, WRITETEXT, and UPDATETEXT statements

cannot be used with views or functions.
286 16 The logical tables INSERTED and DELETED cannot be

updated.
287 16 The %ls statement is not allowed within a trigger.
288 16 The PATINDEX function operates on char, nchar, varchar,

nvarchar, text, and ntext data types only.
291 16 CAST or CONVERT: invalid attributes specified for type

'%.*ls'
292 16 There is insufficient result space to convert a smallmoney

value to %ls.
293 16 Cannot convert char value to smallmoney. The char value

has incorrect syntax.

294 16 The conversion from char data type to smallmoney data
type resulted in a smallmoney overflow error.

295 16 Syntax error converting character string to smalldatetime
data type.

296 16 The conversion of char data type to smalldatetime data
type resulted in an out-of-range smalldatetime value.

298 16 The conversion from datetime data type to smalldatetime
data type resulted in a smalldatetime overflow error.

299 16 The DATEADD function was called with bad type %ls.
301 16 Query contains an outer-join request that is not permitted.
303 16 The table '%.*ls' is an inner member of an outer-join

clause. This is not allowed if the table also participates in a
regular join clause.

306 16 The text, ntext, and image data types cannot be compared
or sorted, except when using IS NULL or LIKE operator.

307 16 Index ID %d on table '%.*ls' (specified in the FROM clause)
does not exist.

308 16 Index '%.*ls' on table '%.*ls' (specified in the FROM clause)
does not exist.

311 16 Cannot use text, ntext, or image columns in the 'inserted'
and 'deleted' tables.

312 16 Cannot reference text, ntext, or image columns in a filter
stored procedure.

313 16 An insufficient number of arguments were supplied for the
procedure or function %.*ls.

401 16 Unimplemented statement or expression %ls.
403 16 Invalid operator for data type. Operator equals %ls, type

equals %ls.
409 16 The %ls operation cannot take a %ls data type as an

argument.
410 20 COMPUTE clause #%d 'BY' expression #%d is not in the

order by list.
411 20 COMPUTE clause #%d, aggregate expression #%d is not in

the select list.
420 16 The text, ntext, and image data types cannot be used in an

ORDER BY clause.
425 16 Data type %ls of receiving variable is not equal to the data

type %ls of column '%.*ls'.
426 16 The length %d of the receiving variable is less than the

length %d of the column '%.*ls'.
427 20 Could not load sysprocedures entries for constraint ID %d

in database ID %d.
428 20 Could not find row in sysconstraints for constraint ID %d

in database ID %d.
429 20 Could not find new constraint ID %d in sysconstraints,

database ID %d, at compile time.
430 20 Could not resolve table name for object ID %d, database ID

%d, when compiling foreign key.
431 19 Could not bind foreign key constraint. Too many tables

involved in the query.
433 20 Could not find CHECK constraint for '%.*ls', although the

table is flagged as having one.
436 20 Could not open referenced table ID %d in database ID %d.
437 20 Could not resolve the referenced column name in table ID

%d.

438 20 Could not resolve the referencing column name in table ID
%d.

439 20 Could not find FOREIGN KEY constraints for table '%.*ls' in
database ID %d although the table is flagged as having
them.

441 16 Cannot use the '%ls' function on a remote data source.
443 16 Invalid use of '%s' within a function.
444 16 Select statements included within a function cannot return

data to a client.
445 16 COLLATE clause cannot be used on expressions containing

a COLLATE clause.
446 16 Cannot resolve collation conflict for %ls operation.
447 16 Expression type %ls is invalid for COLLATE clause.
448 16 Invalid collation '%.*ls'.
449 16 Collation conflict caused by collate clauses with different

collation '%.*ls' and '%.*ls'.
450 16 Code page translations are not supported for the text data

type. From: %d To: %d.
451 16 Cannot resolve collation conflict for column %d in %ls

statement.
452 16 COLLATE clause cannot be used on user-defined data

types.
453 16 Collation '%.*ls' is supported on Unicode data types only

and cannot be set at the database or server level.
455 16 The last statement included within a function must be a

return statement.
456 16 Implicit conversion of %ls value to %ls cannot be

performed because the resulting collation is unresolved
due to collation conflict.

457 16 Implicit conversion of %ls value to %ls cannot be
performed because the collation of the value is unresolved
due to a collation conflict.

502 16 The SQL Debugging Interface (SDI) requires that SQL
Server, when started as a service, must not log on as
System Account. Reset to log on as user account using
Control Panel.

503 16 Unable to send symbol information to debugger on %ls
for connection %d. Debugging disabled.

504 16 Unable to connect to debugger on %ls (Error = 0x%08x).
Ensure that client-side components, such as
SQLDBREG.EXE, are installed and registered on %.*ls.
Debugging disabled for connection %d.

505 16 Current user account was invoked with SETUSER.
Changing databases is not allowed.

506 16 Invalid escape character '%.*ls' was specified in a LIKE
predicate.

507 16 Invalid argument for SET ROWCOUNT. Must be a non-null
non-negative integer.

508 16 Unable to connect to debugger on %ls (Error = 0x%08x).
Ensure that client-side components, such as SQLLE.DLL,
are installed and registered on %.*ls. Debugging disabled
for connection %d.

509 11 User name '%.*ls' not found.
510 16 Cannot create a worktable row larger than allowable

maximum. Resubmit your query with the ROBUST PLAN
hint.

511 16 Cannot create a row of size %d which is greater than the
allowable maximum of %d.

512 16 Subquery returned more than 1 value. This is not
permitted when the subquery follows =, !=, <, <= , >, >=
or when the subquery is used as an expression.

513 16 A column insert or update conflicts with a rule imposed by
a previous CREATE RULE statement. The statement was
terminated. The conflict occurred in database '%.*ls', table
'%.*ls', column '%.*ls'.

514 16 Unable to communicate with debugger on %ls (Error =
0x%08x). Debugging disabled for connection %d.

515 16 Cannot insert the value NULL into column '%.*ls', table
'%.*ls'; column does not allow nulls. %ls fails.

516 16 Attempt to initialize OLE library failed. Check for correct
versions of OLE DLLs on this machine.

517 16 Adding a value to a '%ls' column caused overflow.
518 16 Cannot convert data type %ls to %ls.
520 16 SQL Server no longer supports version %d of the SQL

Debugging Interface (SDI).
528 20 System error detected during attempt to use the 'upsleep'

system function.
529 16 Explicit conversion from data type %ls to %ls is not

allowed.
532 16 The timestamp (changed to %S_TS) shows that the row

has been updated by another user.
535 16 Difference of two datetime columns caused overflow at

runtime.
536 16 Invalid length parameter passed to the substring function.
538 16 Cannot find '%.*ls'. This language may have been dropped.

Contact your system administrator.
542 16 An invalid datetime value was encountered. Value exceeds

the year 9999.
544 16 Cannot insert explicit value for identity column in table

'%.*ls' when IDENTITY_INSERT is set to OFF.
545 16 Explicit value must be specified for identity column in table

'%.*ls' when IDENTITY_INSERT is set to ON.
547 16 %ls statement conflicted with %ls %ls constraint '%.*ls'.

The conflict occurred in database '%.*ls', table
'%.*ls'%ls%.*ls%ls.

548 16 The identity range managed by replication is full and must
be updated by a replication agent. The %ls conflict
occurred in database '%.*ls', table '%.*ls'%ls%.*ls%ls.
Sp_adjustpublisheridentityrange can be called to get a new
identity range.

550 16 The attempted insert or update failed because the target
view either specifies WITH CHECK OPTION or spans a view
that specifies WITH CHECK OPTION and one or more rows
resulting from the operation did not qualify under the
CHECK OPTION constraint.

551 16 The checksum has changed to %d. This shows that the row
has been updated by another user.

552 15 CryptoAPI function "%ls" failed. Error 0x%x: %ls
555 16 User-defined functions are not yet enabled.
556 16 INSERT EXEC failed because the stored procedure altered

the schema of the target table.
557 16 Only functions and extended stored procedures can be

executed from within a function.
558 16 Remote function calls are not allowed within a function.
561 16 Failed to access file '%.*ls'

562 16 Failed to access file '%.*ls'. Files can be accessed only
through shares

563 14 The transaction for the INSERT EXEC statement has been
rolled back. The INSERT EXEC operation will be terminated.

564 16 Attempted to create a record with a fixed length of '%d'.
Maximum allowable fixed length is '%d'.

565 18 The server encountered a stack overflow during compile
time.

566 21 Error writing audit trace. SQL Server is shutting down.
567 16 File '%.*ls' either does not exist or is not a recognizable

trace file. Or there was an error opening the file.
568 16 Server encountered an error '%.*ls'.
601 12 Could not continue scan with NOLOCK due to data

movement.
602 21 Could not find row in sysindexes for database ID %d,

object ID %ld, index ID %d. Run DBCC CHECKTABLE on
sysindexes.

604 21 Could not find row in sysobjects for object ID %ld in
database '%.*ls'. Run DBCC CHECKTABLE on sysobjects.

605 21 Attempt to fetch logical page %S_PGID in database '%.*ls'
belongs to object '%.*ls', not to object '%.*ls'.

607 21 Insufficient room was allocated for search arguments in
the session descriptor for object '%.*ls'. Only %d search
arguments were anticipated.

615 21 Could not find database table ID %d, name '%.*ls'.
617 20 Descriptor for object ID %ld in database ID %d not found

in the hash table during attempt to unhash it.
618 21 A varno of %d was passed to the opentable system

function. The largest valid value is %d.
622 16 Filegroup '%.*ls' has no files assigned to it. Tables, indexes,

and text, ntext, and image columns cannot be populated
on this filegroup until a file is added.

623 21 Could not retrieve row from page by RID because logical
page %S_PGID is not a data page. %S_RID. %S_PAGE.

624 21 Could not retrieve row from page by RID because the
requested RID has a higher number than the last RID on
the page. %S_RID.%S_PAGE, DBID %d.

625 21 Cannot retrieve row from page %S_PGID by RID because
the slotid (%d) is not valid.

626 16 Cannot use ROLLBACK with a savepoint within a
distributed transaction.

627 16 Cannot use SAVE TRANSACTION within a distributed
transaction.

628 13 Cannot issue SAVE TRANSACTION when there is no active
transaction.

635 20 Process %d tried to remove DES resource lock %S_DES,
which it does not hold.

637 20 Index shrink program returned invalid status of 0.
639 21 Could not fetch logical page %S_PGID, database ID %d.

The page is not currently allocated.
644 21 Could not find the index entry for RID '%.*hs' in index page

%S_PGID, index ID %d, database '%.*ls'.
649 21 Could not find the clustered index entry for page %S_PGID,

object ID %ld, status 0x%x. Index page %S_PGID, in
database '%.*ls', was searched for this entry.

650 16 You can only specify the READPAST lock in the READ
COMMITTED or REPEATABLE READ isolation levels.

651 16 Cannot use %hs granularity hint on table '%.*ls' because
locking at the specified granularity is inhibited.

652 16 Index ID %d for table '%.*ls' resides on a read-only
filegroup which cannot be modified.

653 20 Two buffers are conflicting for the same keep slot in table
'%.*ls'.

654 20 No slots are free to keep buffers for table '%.*ls'.
655 20 Expected to find buffer in keep slot for table '%.*ls'.
666 16 Maximum system-generated unique value for a duplicate

group exceeded for table ID %d, index ID %d. Dropping
and re-creating the index may fix the problem; otherwise
use another clustering key.

667 16 Index %d for table '%.*ls' resides on offline filegroup that
cannot be accessed.

701 19 There is insufficient system memory to run this query.
708 10 Warning: Due to low virtual memory, special reserved

memory used %d times since startup. Increase virtual
memory on server.

802 17 No more buffers can be stolen.
804 20 Could not find buffer 0x%lx holding logical page %S_PGID

in the SDES 0x%lx kept buffer pool for object '%.*ls'.
809 20 Buffer 0x%lx, allocation page %S_PGID, in database '%.*ls'

is not in allocation buffer pool in PSS (process status
structure). Contact Technical Support.

813 20 Logical page %S_PGID in database ID %d is already
hashed.

816 20 Process ID %d tried to remove a buffer resource lock
%S_BUF that it does not hold in SDES %S_SDES. Contact
Technical Support.

818 19 There is no room to hold the buffer resource lock %S_BUF
in SDES %S_SDES. Contact Technical Support.

821 20 Could not unhash buffer at 0x%lx with a buffer page
number of %S_PGID and database ID %d with HASHED
status set. The buffer was not found. %S_PAGE.

822 21 Could not start I/O for request %S_BLKIOPTR.
823 24 I/O error %ls detected during %S_MSG at offset

%#016I64x in file '%ls'.
834 21 The bufclean system function was called on dirty buffer

(page %S_PGID, stat %#x/%#x, objid %#x, sstat%#x).
840 17 Device '%.*ls' (physical name '%.*ls', virtual device number

%d) is not available. Contact the system administrator for
assistance.

844 10 Time out occurred while waiting for buffer latch type %d,
bp %#x, page %S_PGID, stat %#x, object ID %d:%d:%d,
waittime %d. Continuing to wait.

845 17 Time-out occurred while waiting for buffer latch type %d
for page %S_PGID, database ID %d.

901 21 Could not find descriptor for database ID %d, object ID %ld
in hash table after hashing it.

902 16 To change the %ls, the database must be in state in which
a checkpoint can be executed.

903 22 Could not find row in sysindexes for clustered index on
system catalog %ld in database ID %d. This index should
exist in all databases. Run DBCC CHECKTABLE on
sysindexes in the database.

906 22 Could not locate row in sysobjects for system catalog
'%.*ls' in database '%.*ls'. This system catalog should exist
in all databases. Run DBCC CHECKTABLE on sysobjects in
this database.

911 16 Could not locate entry in sysdatabases for database '%.*ls'.
No entry found with that name. Make sure that the name
is entered correctly.

913 22 Could not find database ID %d. Database may not be
activated yet or may be in transition.

916 14 Server user '%.*ls' is not a valid user in database '%.*ls'.
921 14 Database '%.*ls' has not been recovered yet. Wait and try

again.
922 14 Database '%.*ls' is being recovered. Waiting until recovery

is finished.
923 14 Database '%.*ls' is in restricted mode. Only the database

owner and members of the dbcreator and sysadmin roles
can access it.

924 14 Database '%.*ls' is already open and can only have one
user at a time.

925 19 Maximum number of databases used for each query has
been exceeded. The maximum allowed is %d.

926 14 Database '%.*ls' cannot be opened. It has been marked
SUSPECT by recovery. See the SQL Server errorlog for
more information.

927 14 Database '%.*ls' cannot be opened. It is in the middle of a
restore.

929 20 Attempting to close a database that is not already open.
Contact Technical Support.

941 14 Cannot open database '%.*ls'. It has not been upgraded to
the latest format.

942 14 Database '%.*ls' cannot be opened because it is offline.
943 14 Database '%.*ls' cannot be opened because its version

(%d) is later than the current server version (%d).
944 10 Converting database '%.*ls' from version %d to the current

version %d.
945 16 Database '%.*ls' cannot be opened due to inaccessible files

or insufficient memory or disk space. See the SQL Server
errorlog for details.

946 14 Cannot open database '%.*ls' version %d. Upgrade the
database to the latest version.

947 16 Error while closing database '%.*ls' cleanly.
948 14 Database '%.*ls' cannot be upgraded. Database is version

%d and this server supports version %d.
949 16 tempdb is skipped. You cannot run a query that requires

tempdb
950 14 Database '%.*ls' cannot be upgraded - database has a

version (%d) earlier than SQL Server 7.0(%d).
951 10 Database '%.*ls' running the upgrade step from version

%d to version %d.
952 16 Database '%.*ls' is in transition. Try the statement later.
953 16 Warning: Index '%ls' on '%ls' in database '%ls' may be

corrupt because of expression evaluation changes in this
release. Drop and re-create the index.

Troubleshooting (SQL Server 2000)

Errors 1000 - 1999
Errors 1000 – 1999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
1001 16 Line %d: Length or precision specification %d is invalid.
1002 16 Line %d: Specified scale %d is invalid.
1003 15 Line %d: %ls clause allowed only for %ls.
1004 16 Invalid column prefix '%.*ls': No table name specified
1005 15 Line %d: Invalid procedure number (%d). Must be between

1 and 32767.
1006 15 CREATE TRIGGER contains no statements.
1007 15 The %S_MSG '%.*ls' is out of the range for numeric

representation (maximum precision 38).
1008 15 The SELECT item identified by the ORDER BY number %d

contains a variable as part of the expression identifying a
column position. Variables are only allowed when ordering
by an expression referencing a column name.

1010 15 Invalid escape character '%.*ls'.
1011 15 The correlation name '%.*ls' is specified multiple times in a

FROM clause.
1012 15 The correlation name '%.*ls' has the same exposed name as

table '%.*ls'.
1013 15 Tables or functions '%.*ls' and '%.*ls' have the same

exposed names. Use correlation names to distinguish them.
1014 15 TOP clause contains an invalid value.
1015 15 An aggregate cannot appear in an ON clause unless it is in

a subquery contained in a HAVING clause or select list, and
the column being aggregated is an outer reference.

1016 15 Outer join operators cannot be specified in a query
containing joined tables.

1019 15 Invalid column list after object name in GRANT/REVOKE
statement.

1020 15 Column list cannot be specified for object-level
permissions.

1021 10 FIPS Warning: Line %d has the non-ANSI statement '%ls'.
1022 10 FIPS Warning: Line %d has the non-ANSI clause '%ls'.
1023 15 Invalid parameter %d specified for %ls.
1024 10 FIPS Warning: Line %d has the non-ANSI function '%ls'.
1025 10 FIPS Warning: The length of identifier '%.*ls' exceeds 18.
1027 15 Too many expressions are specified in the GROUP BY

clause. The maximum number is %d when either CUBE or
ROLLUP is specified.

1028 15 The CUBE and ROLLUP options are not allowed in a
GROUP BY ALL clause.

1029 15 Browse mode is invalid for subqueries and derived tables.
1031 15 Percent values must be between 0 and 100.
1032 16 Cannot use the column prefix '%.*ls'. This must match the

object in the UPDATE clause '%.*ls'.
1033 16 The ORDER BY clause is invalid in views, inline functions,

derived tables, and subqueries, unless TOP is also specified.
1035 15 Incorrect syntax near '%.*ls', expected '%.*ls'.
1036 15 File option %hs is required in this CREATE/ALTER

DATABASE statement.

1037 15 The CASCADE, WITH GRANT or AS options cannot be
specified with statement permissions.

1038 15 Cannot use empty object or column names. Use a single
space if necessary.

1039 16 Option '%.*ls' is specified more than once.
1040 15 Mixing old and new syntax in CREATE/ALTER DATABASE

statement is not allowed.
1041 15 Option %.*ls is not allowed for a LOG file.
1042 15 Conflicting %ls optimizer hints specified.
1043 15 '%hs' is not yet implemented.
1044 15 Cannot use an existing function name to specify a stored

procedure name.
1045 15 Aggregates are not allowed in this context. Only scalar

expressions are allowed.
1046 15 Subqueries are not allowed in this context. Only scalar

expressions are allowed.
1047 15 Conflicting locking hints specified.
1048 15 Conflicting cursor options %ls and %ls.
1049 15 Mixing old and new syntax to specify cursor options is not

allowed.
1050 15 This syntax is only allowed within the stored procedure

sp_executesql.
1051 15 Cursor parameters in a stored procedure must be declared

with OUTPUT and VARYING options, and they must be
specified in the order CURSOR VARYING OUTPUT.

1052 15 Conflicting %ls options %ls and %ls.
1053 15 For DROP STATISTICS, you must give both the table and

the column name in the form 'tablename.column'.
1054 15 Syntax '%ls' is not allowed in schema-bound objects.
1055 15 '%.*ls' is an invalid name because it contains a NULL

character.
1056 15 The maximum number of elements in the select list is %d

and you have supplied %d.
1057 15 The IDENTITY function cannot be used with a SELECT INTO

statement containing a UNION operator.
1058 15 Cannot specify both READ_ONLY and FOR READ ONLY on

a cursor declaration.
1059 15 Cannot set or reset the %ls option within a procedure.
1060 15 The number of rows in the TOP clause must be an integer.
1061 16 The text/ntext/image constants are not yet implemented.
1062 16 The TOP N WITH TIES clause is not allowed without a

corresponding ORDER BY clause.
1063 16 A filegroup cannot be added using ALTER DATABASE ADD

FILE. Use ALTER DATABASE ADD FILEGROUP.
1064 16 A filegroup cannot be used with log files.
1065 15 The NOLOCK, READUNCOMMITTED, and READPAST lock

hints are only allowed in a SELECT statement.
1066 10 Warning. Line %d: The option '%ls' is obsolete and has no

effect.
1067 15 The SET SHOWPLAN statements must be the only

statements in the batch.
1068 16 Only one list of index hints per table is allowed.
1069 16 Index hints are only allowed in a FROM clause.
1070 15 CREATE INDEX option '%.*ls' is no longer supported.
1071 16 Cannot specify a JOIN algorithm with a remote JOIN.
1072 16 A REMOTE hint can only be specified with an INNER JOIN

clause.

1073 15 '%.*ls' is not a recognized cursor option for cursor %.*ls.
1074 15 Creation of temporary functions is not allowed.
1075 15 RETURN statements in scalar valued functions must include

an argument.
1076 15 Function '%s' requires at least %d argument(s).
1077 15 INSERT into an identity column not allowed on table

variables.
1078 15 '%.*ls %.*ls' is not a recognized option.
1079 15 A variable cannot be used to specify a search condition in a

fulltext predicate when accessed through a cursor.
1101 17 Could not allocate new page for database '%.*ls'. There are

no more pages available in filegroup %.*ls. Space can be
created by dropping objects, adding additional files, or
allowing file growth.

1102 22 IAM page %S_PGID for object ID %ld is incorrect. The
%S_MSG ID on page is %ld; should be %ld. The entry in
sysindexes may be incorrect or the IAM page may contain
an error.

1103 21 Allocation page %S_PGID in database '%.*ls' has different
segment ID than that of the object which is being allocated
to. Run DBCC CHECKALLOC.

1105 17 Could not allocate space for object '%.*ls' in database
'%.*ls' because the '%.*ls' filegroup is full.

1109 21 Could not read allocation page %S_PGID because either the
object ID (%ld) is not correct, or the page ID (%S_PGID) is
not correct.

1203 20 Process ID %d attempting to unlock unowned resource
%.*ls.

1204 19 The SQL Server cannot obtain a LOCK resource at this time.
Rerun your statement when there are fewer active users or
ask the system administrator to check the SQL Server lock
and memory configuration.

1205 13 Transaction (Process ID %d) was deadlocked on {%Z}
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

1206 18 Transaction manager has canceled the distributed
transaction.

1211 13 Process ID %d was chosen as the deadlock victim with
P_BACKOUT bit set.

1220 17 No more lock classes available from transaction.
1222 13 Lock request time out period exceeded.
1223 16 Attempting to release application lock '%.*ls' that is not

currently held.
1501 20 Sort failure.
1505 14 CREATE UNIQUE INDEX terminated because a duplicate key

was found for index ID %d. Most significant primary key is
'%S_KEY'.

1507 10 Warning: Deleted duplicate row. Primary key is '%S_KEY'.
1508 14 CREATE INDEX terminated because a duplicate row was

found. Primary key is '%S_KEY'.
1509 20 Row compare failure.
1510 17 Sort failed. Out of space or locks in database '%.*ls'.
1511 20 Sort cannot be reconciled with transaction log.
1522 20 Sort failure. Prevented overwriting of allocation page in

database '%.*ls' by terminating sort.
1523 20 Sort failure. Prevented incorrect extent deallocation by

aborting sort.

1528 21 Character data comparison failure. An unrecognized Sort-
Map-Element type (%d) was found in the server-wide
default sort table at SMEL entry [%d].

1529 21 Character data comparison failure. A list of Sort-Map-
Elements from the server-wide default sort table does not
end properly. This list begins at SMEL entry [%d].

1530 16 CREATE INDEX with DROP_EXISTING was aborted because
a row was out of order. Most significant offending primary
key is '%S_KEY'. Explicitly drop and create the index instead.

1531 16 The SORTED_DATA_REORG option cannot be used for a
nonclustered index if the keys are not unique within the
table. CREATE INDEX was aborted because of duplicate
keys. Primary key is '%S_KEY'.

1532 20 New sort run starting on page %S_PGID found extent not
marked as shared.

1533 20 Cannot share extent %S_PGID among more than eight sort
runs.

1534 20 Extent %S_PGID not found in shared extent directory.
1535 20 Cannot share extent %S_PGID with shared extent directory

full.
1536 20 Cannot build a nonclustered index on a memory-only work

table.
1537 20 Cannot suspend a sort not in row input phase.
1538 20 Cannot insert into a sort not in row input phase.
1540 16 Cannot sort a row of size %d, which is greater than the

allowable maximum of %d.
1619 21 Could not open tempdb. Cannot continue.
1620 21 Cannot start C2 audit trace. SQL Server is shutting down.
1621 10 Server started with '-f'. Auditing will not be started.
1701 16 Creation of table '%.*ls' failed because the row size would

be %d, including internal overhead. This exceeds the
maximum allowable table row size, %d.

Error 1702 16 CREATE TABLE failed because column '%.*ls' in table '%.*ls'
exceeds the maximum of %d columns.

1703 17 Could not allocate disk space for a work table in database
'%.*ls'. You may be able to free up space by using BACKUP
LOG, or you may want to extend the size of the database by
using ALTER DATABASE.

1704 16 Only members of the sysadmin role can create the system
table '%.*ls'.

1705 16 You must create system table '%.*ls' in the master
database.

1706 16 System table '%.*ls' was not created, because ad hoc
updates to system catalogs are not enabled.

1708 10 Warning: The table '%.*ls' has been created but its
maximum row size (%d) exceeds the maximum number of
bytes per row (%d). INSERT or UPDATE of a row in this
table will fail if the resulting row length exceeds %d bytes.

1709 16 Cannot use TEXTIMAGE_ON when a table has no text, ntext,
or image columns.

1750 10 Could not create constraint. See previous errors.
1752 16 Could not create DEFAULT for column '%.*ls' as it is not a

valid column in the table '%.*ls'.
1753 16 Column '%.*ls.%.*ls' is not the same length as referencing

column '%.*ls.%.*ls' in foreign key '%.*ls'.
1754 16 Defaults cannot be created on columns with an IDENTITY

attribute. Table '%.*ls', column '%.*ls'.

1755 16 Defaults cannot be created on columns of data type
timestamp. Table '%.*ls', column '%.*ls'.

1756 10 Skipping FOREIGN KEY constraint '%.*ls' definition for
temporary table.

1757 16 Column '%.*ls.%.*ls' is not of same collation as referencing
column '%.*ls.%.*ls' in foreign key '%.*ls'.

1759 16 Invalid column '%.*ls' is specified in a constraint or
computed-column definition.

1760 16 Constraints of type %ls cannot be created on columns of
type %ls.

1763 16 Cross-database foreign key references are not supported.
Foreign key '%.*ls'.

1766 16 Foreign key references to temporary tables are not
supported. Foreign key '%.*ls'.

1767 16 Foreign key '%.*ls' references invalid table '%.*ls'.
1768 16 Foreign key '%.*ls' references object '%.*ls' which is not a

user table.
1769 16 Foreign key '%.*ls' references invalid column '%.*ls' in

referencing table '%.*ls'.
1770 16 Foreign key '%.*ls' references invalid column '%.*ls' in

referenced table '%.*ls'.
1772 16 Foreign key '%.*ls' defines an invalid relationship between

a user table and system table.
1773 16 Foreign key '%.*ls' has implicit reference to object '%.*ls'

which does not have a primary key defined on it.
1774 16 The number of columns in the referencing column list for

foreign key '%.*ls' does not match those of the primary key
in the referenced table '%.*ls'.

1776 16 There are no primary or candidate keys in the referenced
table '%.*ls' that match the referencing column list in the
foreign key '%.*ls'.

1777 14 User does not have correct permissions on referenced table
'%.*ls' to create foreign key '%.*ls'.

1778 16 Column '%.*ls.%.*ls' is not the same data type as
referencing column '%.*ls.%.*ls' in foreign key '%.*ls'.

1779 16 Table '%.*ls' already has a primary key defined on it.
1781 16 Column already has a DEFAULT bound to it.
1784 16 Cannot create the foreign key '%.*ls' because the

referenced column '%.*ls.%.*ls' is a computed column.
1785 16 Introducing FOREIGN KEY constraint '%.*ls' on table '%.*ls'

may cause cycles or multiple cascade paths. Specify ON
DELETE NO ACTION or ON UPDATE NO ACTION, or modify
other FOREIGN KEY constraints.

1786 16 Either column '%.*ls.%.*ls' or referencing column
'%.*ls.%.*ls' in foreign key '%.*ls' is a timestamp column.
This data type cannot be used with cascading referential
integrity constraints.

1787 16 Cannot define foreign key constraint '%.*ls' with cascaded
DELETE or UPDATE on table '%.*ls' because the table has an
INSTEAD OF DELETE or UPDATE TRIGGER defined on it.

1788 16 Cascading foreign key '%.*ls' cannot be created where the
referencing column '%.*ls.%.*ls' is an identity column.

1801 16 Database '%.*ls' already exists.
1802 11 CREATE DATABASE failed. Some file names listed could not

be created. Check previous errors.

1803 17 CREATE DATABASE failed. Could not allocate enough disk
space for a new database on the named disks. Total space
allocated must be at least %d MB to accommodate a copy
of the model database.

1804 10 There is no disk named '%.*ls'. Checking other disk names.
1805 10 The CREATE DATABASE process is allocating %.2f MB on

disk '%.*ls'.
1806 16 CREATE DATABASE failed. The default collation of database

'%.*ls' cannot be set to '%.*ls'.
1807 17 Could not obtain exclusive lock on database '%.*ls'. Retry

the operation later.
1808 21 Default devices are not supported.
1809 10 To achieve optimal performance, update all statistics on the

'%.*ls' database by running sp_updatestats.
1811 16 '%.*ls' is the wrong type of device for CREATE DATABASE

or ALTER DATABASE. Check sysdevices. The statement is
aborted.

1812 16 CREATE DATABASE failed. COLLATE clause cannot be used
with the FOR ATTACH option.

1813 16 Could not open new database '%.*ls'. CREATE DATABASE is
aborted.

1814 10 Could not create tempdb. If space is low, extend the
amount of space and restart.

1901 16 Column '%.*ls'. Cannot create index on a column of bit data
type.

1902 16 Cannot create more than one clustered index on table
'%.*ls'. Drop the existing clustered index '%.*ls' before
creating another.

1903 16 Index keys are too large. The %d bytes needed to represent
the keys for index %d exceeds the size limit of %d bytes.

1904 16 Cannot specify more than %d column names for statistics
or index key list. %d specified.

1905 21 Could not find 'zero' row for index '%.*ls' the table in
sysindexes.

1906 11 Cannot create an index on '%.*ls', because this table does
not exist in database '%.*ls'.

1907 16 Cannot re-create index '%.*ls'. The new index definition
does not match the constraint being enforced by the
existing index.

1909 16 Cannot use duplicate column names in index key list.
Column name '%.*ls' listed more than once.

1910 16 Cannot create more than %d nonclustered indices or
column statistics on one table.

1911 16 Column name '%.*ls' does not exist in the target table.
1913 16 There is already an index on table '%.*ls' named '%.*ls'.
1914 16 Index cannot be created on object '%.*ls' because the object

is not a user table or view.
1916 16 CREATE INDEX options %ls and %ls are mutually exclusive.
1918 10 Index (ID = %d) is being rebuilt.
1919 16 Column '%.*ls'. Cannot create index on a column of text,

ntext, or image data type.
1920 10 Skipping rebuild of index ID %d, which is on a read-only

filegroup.
1921 16 Invalid filegroup '%.*ls' specified.
1922 16 Filegroup '%.*ls' has no files assigned to it. Tables, indexes,

and text, ntext, and image columns cannot be created on
this filegroup.

1923 10 The clustered index has been dropped.

1938 16 Index cannot be created on %S_MSG '%.*ls' because the
underlying object '%.*ls' has a different owner.

1939 16 Index %S_MSG cannot be created on view '%.*ls' because
the view is not schema bound.

1940 16 Cannot create %S_MSG on view '%.*ls'. It does not have a
unique clustered index.

1941 16 Nonunique clustered index cannot be created on view
'%.*ls' because only unique clustered indexes are allowed.

1942 16 Index cannot be created on view '%.*ls' because the view
contains text, ntext or image columns.

1943 16 Index cannot be created on view '%.*ls' because the view
has one or more nondeterministic expressions.

1944 16 Index '%.*ls' was not created. This index has a key length of
at least %d bytes. The maximum permissible key length is
%d bytes.

1945 16 Warning! The maximum key length is %d bytes. The index
'%.*ls' has maximum length of %d bytes. For some
combination of large values, the insert/update operation
will fail.

1946 16 Operation failed. The index entry of length %d bytes for the
index '%.*ls' exceeds the maximum length of %d bytes.

1947 16 Index cannot be created on view '%.*ls' because the view
contains a self-join on '%.*ls'.

1948 16 Duplicate index names '%.*ls' and '%.*ls' detected on table
'%.*ls'.

1949 16 Index on view '%.*ls' cannot be created because function
'%s' yields nondeterministic results.

1950 16 Index on view '%.*ls' cannot be created because the view
contains an imprecise expression in a GROUP BY clause

1951 16 Index on view '%.*ls' cannot be created because the view
contains an imprecise expression in the WHERE clause.

1952 16 Index on view '%.*ls' cannot be created because the view
contains an imprecise expression in a join.

1953 16 Index on view '%.*ls' cannot be created because some
arguments are missing in a built-in function.

1954 16 Index on view '%.*ls' cannot be created because the view
uses a column bound to a rule.

1955 16 Index on view '%.*ls' cannot be created because the view
contains a nondeterministic computed column.

1956 16 Index on view '%.*ls' cannot be created because the view
uses a nondeterministic user-defined function.

1957 16 Index on view '%.*ls' cannot be created because the view
requires a conversion involving dates or variants.

1958 16 This edition of SQL Server does not support indexed views.
1959 16 Cannot create index on view or computed column because

this database is not SQL Server compatible.

Troubleshooting (SQL Server 2000)

Errors 2000 - 2999
Errors 2000 - 2999

Error Severity Description (Message Text)
2001 10 Cannot use duplicate parameter names. Parameter name

'%.*ls' listed more than once.
2004 16 Procedure '%.*ls' has already been created with group

number %d. Create procedure with an unused group
number.

2007 11 Cannot add rows to sysdepends for the current stored
procedure because it depends on the missing object
'%.*ls'. The stored procedure will still be created.

2008 16 The object '%.*ls' is not a procedure so you cannot create
another procedure under that group name.

2009 10 Procedure '%.*ls' was created despite delayed name
resolution warnings (if any).

2010 16 Cannot perform alter on %.*ls because it is an
incompatible object type.

2011 16 Index hints cannot be specified within a schema-bound
object.

2012 16 User-defined variables cannot be declared within a
schema-bound object.

2106 11 Cannot create a trigger on table '%.*ls', because this table
does not exist in database '%.*ls'.

2108 16 Cannot create a trigger on table '%.*ls' because you can
only create a trigger on a table in the current database.

2110 16 Cannot alter trigger '%.*ls' for table '%.*ls' because this
trigger does not belong to this table.

2111 16 Cannot %s trigger '%.*ls' for %S_MSG '%.*ls' because an
INSTEAD OF %s trigger already exists.

2112 16 Cannot %s trigger '%.*ls' for view '%.*ls' because it is
defined with the CHECK OPTION.

2113 16 Cannot %s INSTEAD OF DELETE or UPDATE TRIGGER
'%.*ls' on table '%.*ls' because the table has a FOREIGN
KEY with cascaded DELETE or UPDATE.

2114 16 Column '%.*ls' cannot be used in an IF UPDATE clause
because it is a computed column.

2501 16 Could not find a table or object named '%.*ls'. Check
sysobjects.

2502 16 Could not start transaction.
2503 10 Successfully deleted the physical file '%ls'.
2504 16 Could not delete the physical file '%ls'. The DeleteFile

system function returned error %ls.
2505 16 The device '%.*ls' does not exist. Use sp_helpdevice to

show available devices.
2506 16 Could not find a table or object name '%.*ls' in database

'%.*ls'.
2511 16 Table error: Object ID %d, Index ID %d. Keys out of order

on page %S_PGID, slots %d and %d.
2512 16 Table error: Object ID %d, Index ID %d. Duplicate keys on

page %S_PGID slot %d and page %S_PGID slot %d.
2513 16 Table error: Object ID %ld (object '%.*ls') does not match

between '%.*ls' and '%.*ls'.
2514 16 Table error: Data type %ld (type '%.*ls') does not match

between '%.*ls' and '%.*ls'.

2515 16 Page %S_PGID, object ID %d, index ID %d has been
modified but is not marked modified in the differential
backup bitmap.

2516 16 The differential bitmap was invalidated for database %.*ls.
A full database backup is required before a differential
backup can be performed.

2517 16 The minimally logged operation status has been turned on
for database %.*ls. Rerun backup log operations to ensure
that all data has been secured.

2519 16 Unable to process table %.*ls because filegroup %.*ls is
invalid.

2520 16 Could not find database '%.*ls'. Check sysdatabases.
2521 16 Could not find database ID %d. Check sysdatabases.
2522 16 Unable to process index %.*ls of table %.*ls because

filegroup %.*ls is invalid.
2523 16 Filegroup %.*ls is invalid.
2524 16 Unable to process table %.*ls because filegroup %.*ls is

offline.
2525 16 Database file %.*ls is offline.
2526 16 Incorrect DBCC statement. Check the documentation for

the correct DBCC syntax and options.
2527 16 Unable to process index %.*ls of table %.*ls because

filegroup %.*ls is offline.
2528 10 DBCC execution completed. If DBCC printed error

messages, contact your system administrator.
2529 16 Filegroup %.*ls is offline.
2530 16 Secondary index entries were missing or did not match the

data in the table. Use the WITH TABLOCK option and run
the command again to display the failing records.

2531 16 Table error: Object ID %d, index ID %d B-tree level
mismatch, page %S_PGID. Level %d does not match level
%d from previous %S_PGID.

2532 16 DBCC SHRINKFILE could not shrink file %ls. Log files are
not supported.

2533 16 Table error: Page %S_PGID allocated to object ID %d, index
ID %d was not seen. Page may be invalid or have incorrect
object ID information in its header.

2534 16 Table error: Page %S_PGID with object ID %d, index ID %d
in its header is allocated by another object.

2535 16 Table error: Page %S_PGID is allocated to object ID %d,
index ID %d, not to object ID %d, index ID %d found in
page header.

2536 10 DBCC results for '%.*ls'.
2537 16 Table error: Object ID %d, index ID %d, page %S_PGID, row

%d. Record check (%hs) failed. Values are %ld and %ld.
2538 10 File %d. Number of extents = %ld, used pages = %ld,

reserved pages = %ld.
2539 10 Total number of extents = %ld, used pages = %ld, reserved

pages = %ld in this database.
2540 10 The system cannot self repair this error.
2541 10 DBCC UPDATEUSAGE: sysindexes row updated for table

'%.*ls' (index ID %ld):
2542 10 DATA pages: Changed from (%ld) to (%ld) pages.
2543 10 USED pages: Changed from (%ld) to (%ld) pages.
2544 10 RSVD pages: Changed from (%ld) to (%ld) pages.
2545 10 ROWS count: Changed from (%I64d) to (%I64d) rows.

2546 10 Index '%.*ls' on table '%.*ls' is marked offline. Rebuild the
index to bring it online.

2547 10 Performing second pass of index checks.
2548 10 DBCC: Compaction phase of index '%.*ls' is %d%%

complete.
2549 10 DBCC: Defrag phase of index '%.*ls' is %d%% complete.
2557 14 User '%.*ls' does not have permission to run DBCC %ls for

object '%.*ls'.
2559 16 The '%ls' and '%ls' options are not allowed on the same

statement.
2560 16 Parameter %d is incorrect for this DBCC statement.
2562 16 '%ls' cannot access object '%.*ls' because it is not a table.
2566 14 DBCC DBREINDEX cannot be used on system tables.
2567 14 DBCC INDEXDEFRAG cannot be used on system table

indexes
2568 16 Page %S_PGID is out of range for this database or is in a

log file.
2570 16 Warning: Page %S_PGID, slot %d in Object %d Index %d

Column %.*ls value %.*ls is out of range for data type
"%.*ls". Update column to a legal value.

2571 14 User '%.*ls' does not have permission to run DBCC %.*ls.
2572 16 DBCC cannot free DLL '%.*ls'. The DLL is in use.
2573 16 Database '%.*ls' is not marked suspect. You cannot drop it

with DBCC.
2574 10 Object ID %d, index ID %d: Page %S_PGID is empty. This is

not permitted at level %d of the B-tree.
2575 16 IAM page %S_PGID is pointed to by the next pointer of

IAM page %S_PGID object ID %d index ID %d but was not
detected in the scan.

2576 16 IAM page %S_PGID is pointed to by the previous pointer
of IAM page %S_PGID object ID %d index ID %d but was
not detected in the scan.

2577 16 Chain sequence numbers are out of order in IAM chain for
object ID %d, index ID %d. Page %S_PGID sequence
number %d points to page %S_PGID sequence number
%d.

2578 16 Minimally logged extents were found in GAM interval
starting at page %S_PGID but the minimally logged flag is
not set in the database table.

2579 16 Table error: Extent %S_PGID object ID %d, index ID %d is
beyond the range of this database.

2580 16 Table '%.*ls' is either a system or temporary table. DBCC
CLEANTABLE cannot be applied to a system or temporary
table.

2583 16 An incorrect number of parameters was given to the DBCC
statement.

2588 16 Page %S_PGID was expected to be the first page of a text,
ntext, or image value.

2590 10 User '%.*ls' is modifying bytes %d to %d of page %S_PGID
in database '%.*ls'.

2591 16 Could not find row in sysindexes with index ID %d for
table '%.*ls'.

2592 10 %ls index successfully restored for object '%.*ls' in
database '%.*ls'.

2593 10 There are %I64d rows in %ld pages for object '%.*ls'.
2594 16 Invalid index ID (%d) specified.
2595 16 Database '%.*ls' must be set to single user mode before

executing this statement.

2597 16 The database is not open. Execute a 'USE %.*ls' statement
and rerun the DBCC statement.

2598 16 Clustered indexes on sysobjects and sysindexes cannot be
re-created.

2601 14 Cannot insert duplicate key row in object '%.*ls' with
unique index '%.*ls'.

2603 21 No space left on logical page %S_PGID of index ID %d for
object '%.*ls' when inserting row on an index page. This
situation should have been handled while traversing the
index.

2624 21 Could not insert into table %S_DES because row length %d
is less than the minimum length %d.

2627 14 Violation of %ls constraint '%.*ls'. Cannot insert duplicate
key in object '%.*ls'.

2701 10 Database name '%.*ls' ignored, referencing object in
tempdb.

2702 16 Database '%.*ls' does not exist.
2705 16 Column names in each table must be unique. Column

name '%.*ls' in table '%.*ls' is specified more than once.
2706 11 Table '%.*ls' does not exist.
2710 16 You are not the owner specified for the object '%.*ls' in

this statement (CREATE, ALTER, TRUNCATE, UPDATE
STATISTICS or BULK INSERT).

2714 16 There is already an object named '%.*ls' in the database.
2715 16 Column or parameter #%d: Cannot find data type %.*ls.
2716 16 Column or parameter #%d: Cannot specify a column width

on data type %.*ls.
2717 15 The size (%d) given to the %S_MSG '%.*ls' exceeds the

maximum allowed (%d).
2718 16 Column or parameter #%d: Cannot specify null values on a

column of data type bit.
2721 11 Could not find a default segment to create the table on.

Ask your system administrator to specify a default
segment in syssegments.

2724 10 Parameter '%.*ls' has an invalid data type.
2727 11 Cannot find index '%.*ls'.
2730 11 Cannot create procedure '%.*ls' with a group number of

%d because a procedure with the same name and a group
number of 1 does not currently exist in the database. Must
execute CREATE PROCEDURE '%.*ls';1 first.

2731 16 Column '%.*ls' has invalid width: %d.
2732 16 Error number %ld is invalid. The number must be from

%ld through %ld
2734 16 The user name '%.*ls' does not exist in sysusers.
2736 16 Owner name specified is a group name. Objects cannot be

owned by groups.
2737 16 Message passed to %hs must be of type char, varchar,

nchar, or nvarchar.
2738 16 A table can only have one timestamp column. Because

table '%.*ls' already has one, the column '%.*ls' cannot be
added.

2739 16 The text, ntext, and image data types are invalid for local
variables.

2740 16 SET LANGUAGE failed because '%.*ls' is not an official
language name or a language alias on this SQL Server.

2741 16 SET DATEFORMAT date order '%.*ls' is invalid.

2742 16 SET DATEFIRST %d is out of range.
2743 16 %ls statement requires %S_MSG parameter.
2744 16 Multiple identity columns specified for table '%.*ls'. Only

one identity column per table is allowed.
2745 10 Process ID %d has raised user error %d, severity %d. SQL

Server is terminating this process.
2746 16 Cannot specify user error format string with a length

exceeding %d bytes.
2747 16 Too many substitution parameters for RAISERROR. Cannot

exceed %d substitution parameters.
2748 16 Cannot specify %ls data type (RAISERROR parameter %d)

as a substitution parameter for RAISERRROR.
2749 16 Identity column '%.*ls' must be of data type int, bigint,

smallint, tinyint, or decimal or numeric with a scale of 0,
and constrained to be nonnullable.

2750 16 Column or parameter #%d: Specified column precision %d
is greater than the maximum precision of %d.

2751 16 Column or parameter #%d: Specified column scale %d is
greater than the specified precision of %d.

2752 16 Identity column '%.*ls' contains invalid SEED.
2753 16 Identity column '%.*ls' contains invalid INCREMENT.
2754 16 Error severity levels greater than %d can only be specified

by members of the sysadmin role, using the WITH LOG
option.

2755 16 SET DEADLOCK_PRIORITY option '%.*ls' is invalid.
2756 16 Invalid value %d for state. Valid range is from %d to %d.
2757 16 RAISERROR failed due to invalid parameter substitution(s)

for error %d, severity %d, state %d.
2758 16 %hs could not locate entry for error %d in sysmessages.
2759 0 CREATE SCHEMA failed due to previous errors.
2760 16 Specified owner name '%.*ls' either does not exist or you

do not have permission to use it.
2761 16 The ROWGUIDCOL property can only be specified on the

uniqueidentifier data type.
2762 16 sp_setapprole was not invoked correctly. Refer to the

documentation for more information.
2763 16 Could not find application role '%.*ls'.
2764 16 Incorrect password supplied for application role '%.*ls'.
2765 15 Could not locate statistics for column '%.*ls' in the system

catalogs.
2766 16 The definition for user-defined data type '%.*ls' has

changed.
2767 15 Could not locate statistics '%.*ls' in the system catalogs.
2768 15 Statistics for %ls '%.*ls'.
2769 15 Column '%.*ls'. Cannot create statistics on a column of

data type %ls.
2770 16 The SELECT INTO statement cannot have same source and

destination tables.
2771 16 Cannot create statistics on table '%.*ls'. This table is a

virtual system table.
2772 16 Cannot access temporary tables from within a function.
2773 16 Sort order ID %d is invalid.
2774 16 Collation ID %d is invalid.
2775 16 Code page %d is not supported by the operating system.

2777 17 Database '%.*ls' contains columns or parameters with the
following code page(s) not supported by the operating
system: %ls.

2801 16 The definition of object '%.*ls' has changed since it was
compiled.

2809 18 The request for %S_MSG '%.*ls' failed because '%.*ls' is a
%S_MSG object.

2812 16 Could not find stored procedure '%.*ls'.

Troubleshooting (SQL Server 2000)

Errors 3000 - 3999
Errors 3000 - 3999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
3009 16 Could not insert a backup or restore history/detail record in

the msdb database. This may indicate a problem with the
msdb database. The backup/restore operation was still
successful.

3011 16 All backup devices must be of the same general class (for
example, DISK and TAPE).

3013 16 %hs is terminating abnormally.
3014 10 %hs successfully processed %d pages in %d.%03d seconds

(%d.%03d MB/sec).
3015 10 %hs is not yet implemented.
3016 16 File '%ls' of database '%ls' has been removed or shrunk

since this backup or restore operation was interrupted. The
operation cannot be restarted.

3017 16 Could not resume interrupted backup or restore operation.
See the SQL Server error log for more information.

3018 16 There is no interrupted backup or restore operation to
restart. Reissue the statement without the RESTART clause.

3019 16 The checkpoint file was for a different backup or restore
operation. Reissue the statement without the RESTART
clause.

3020 16 The backup operation cannot be restarted as the log has
been truncated. Reissue the statement without the
RESTART clause.

3021 16 Cannot perform a backup or restore operation within a
transaction.

3023 16 Backup and file manipulation operations (such as ALTER
DATABASE ADD FILE) on a database must be serialized.
Reissue the statement after the current backup or file
manipulation operation is completed.

3024 16 You can only perform a full backup of the master database.
Use BACKUP DATABASE to back up the entire master
database.

3025 16 Missing database name. Reissue the statement specifying a
valid database name.

3026 16 Could not find filegroup ID %d in sysfilegroups for
database '%ls'.

3027 16 Could not find filegroup '%.*ls' in sysfilegroups for
database '%.*ls'.

3028 16 Operation checkpoint file is invalid. Could not restart
operation. Reissue the statement without the RESTART
option.

3031 16 Option '%ls' conflicts with option(s) '%ls'. Remove the
conflicting option and reissue the statement.

3032 16 One or more of the options (%ls) are not supported for this
statement. Review the documentation for supported
options.

3033 16 BACKUP DATABASE cannot be used on a database opened
in emergency mode.

3034 16 No files were selected to be processed. You may have
selected one or more filegroups that have no members.

3035 16 Cannot perform a differential backup for database '%ls',
because a current database backup does not exist. Perform
a full database backup by reissuing BACKUP DATABASE,
omitting the WITH DIFFERENTIAL option.

3036 16 Database '%ls' is in warm-standby state (set by executing
RESTORE WITH STANDBY) and cannot be backed up until
the entire load sequence is completed.

3037 16 Minimally logged operations have occurred prior to this
WITH RESTART command. Reissue the BACKUP statement
without WITH RESTART.

3038 16 The filename '%ls' is invalid as a backup device name.
Reissue the BACKUP statement with a valid filename.

3039 16 Cannot perform a differential backup for file '%ls' because
a current file backup does not exist. Reissue BACKUP
DATABASE omitting the WITH DIFFERENTIAL option.

3040 10 An error occurred while informing replication of the
backup. The backup will continue, but the replication
environment should be inspected.

3041 16 BACKUP failed to complete the command %.*ls
3101 16 Exclusive access could not be obtained because the

database is in use.
3108 16 RESTORE DATABASE must be used in single user mode

when trying to restore the master database.
3110 14 User does not have permission to RESTORE database

'%.*ls'.
3112 16 Cannot restore any database other than master when the

server is in single user mode.
3113 21 The database owner (DBO) does not have an entry in

sysusers in database '%.*ls'.
3114 21 Database '%.*ls' does not have an entry in sysdatabases.
3123 16 Invalid database name '%.*ls' specified for backup or

restore operation.
3127 16 Temporary Message: The backup set does not contain

pages for file '%ls'.
3128 16 File '%ls' has an unsupported page size (%d).
3129 16 Temporary Message: File '%ls' has changed size from %d to

%d bytes.
3132 16 The media set for database '%ls' has %d family members

but only %d are provided. All members must be provided.
3133 16 The volume on device '%ls' is not a member of the media

family.
3135 16 The backup set in file '%ls' was created by %hs and cannot

be used for this restore operation.
3136 16 Cannot apply the backup on device '%ls' to database '%ls'.
3138 16 One or more files in the backup set are no longer part of

database '%ls'.
3140 16 Could not adjust the space allocation for file '%ls'.
3141 16 The database to be restored was named '%ls'. Reissue the

statement using the WITH REPLACE option to overwrite the
'%ls' database.

3142 16 File '%ls' cannot be restored over the existing '%ls'. Reissue
the RESTORE statement using WITH REPLACE to overwrite
pre-existing files.

3143 16 The data set on device '%ls' is not a SQL Server backup set.
3144 16 File '%.*ls' was not backed up in file %d on device '%ls'. The

file cannot be restored from this backup set.

3145 16 The STOPAT option is not supported for RESTORE
DATABASE. You can use the STOPAT option with RESTORE
LOG.

3146 16 None of the newly-restored files had been modified after
the backup was taken, so no further recovery actions are
required. The database is now available for use.

3147 16 Backup and restore operations are not allowed on database
tempdb.

3148 16 Media recovery for ALTER DATABASE is not yet
implemented. The database cannot be rolled forward.

3150 10 The master database has been successfully restored.
Shutting down SQL Server.

3151 21 The master database failed to restore. Use the rebuildm
utility to rebuild the master database. Shutting down SQL
Server.

3234 15 Logical file '%.*ls' is not part of database '%ls'. Use
RESTORE FILELISTONLY to list the logical file names.

3241 16 The media family on device '%ls' is incorrectly formed. SQL
Server cannot process this media family.

3242 16 The file on device '%ls' is not a valid Microsoft Tape Format
backup set.

3243 16 The media family on device '%ls' was created using
Microsoft Tape Format version %d.%d. SQL Server
supports version %d.%d.

3244 16 Descriptor block size exceeds %d bytes. Use a shorter name
and/or description string and retry the operation.

3245 16 Could not convert a string to or from Unicode, %ls.
3246 16 The media family on device '%ls' is marked as

nonappendable. Reissue the statement using the INIT
option to overwrite the media.

3247 16 The volume on device '%ls' has the wrong media sequence
number (%d). Remove it and insert volume %d.

3248 25 >>> VOLUME SWITCH <<< (not for output!)
3249 16 The volume on device '%ls' is a continuation volume for the

backup set. Remove it and insert the volume holding the
start of the backup set.

3250 16 The value '%d' is not within range for the %ls parameter.
3251 10 The media family on device '%ls' is complete. The device is

now being reused for one of the remaining families.
3253 16 The block size parameter must supply a value that is a

power of 2.
3254 16 The volume on device '%ls' is empty.
3255 16 The data set on device '%ls' is a SQL Server backup set not

compatible with this version of SQL Server.
3256 16 The backup set on device '%ls' was terminated while it was

being created and is incomplete. RESTORE sequence is
terminated abnormally.

3257 16 There is insufficient free space on disk volume '%ls' to
create the database. The database requires %I64u
additional free bytes, while only %I64u bytes are available.

3258 16 The volume on device '%ls' belongs to a different media
set.

3259 16 The volume on device '%ls' is not part of a multiple family
media set. BACKUP WITH FORMAT can be used to form a
new media set.

3260 16 An internal buffer has become full.
3261 16 SQL Server cannot use the virtual device configuration.
3262 10 The backup set is valid.

3263 16 Cannot use the volume on device '%ls' as a continuation
volume. It is sequence number %d of family %d for the
current media set. Insert a new volume, or sequence
number %d of family %d for the current set.

3264 16 The operation did not proceed far enough to allow
RESTART. Reissue the statement without the RESTART
qualifier.

3265 16 The login has insufficient authority. Membership of the
sysadmin role is required to use VIRTUAL_DEVICE with
BACKUP or RESTORE.

3266 10 The backup data in '%ls' is incorrectly formatted. Backups
cannot be appended, but existing backup sets may still be
usable.

3267 16 Insufficient resources to create UMS scheduler.
3268 16 Cannot use the backup file '%ls' because it was originally

formatted with sector size %d and is now on a device with
sector size %d.

3269 16 Cannot restore the file '%ls' because it was originally
written with sector size %d; '%ls' is now on a device with
sector size %d.

3270 16 An internal consistency error occurred. Contact Technical
Support for assistance.

3271 16 Nonrecoverable I/O error occurred on file '%ls'.
3272 16 The '%ls' device has a hardware sector size of %d, but the

block size parameter specifies an incompatible override
value of %d. Reissue the statement using a compatible
block size.

3273 16 The BUFFERCOUNT parameter must supply a value that
allows at least one buffer per backup device.

3274 16 Incorrect checksum computed for the backup set on device
%ls. The backup set cannot be restored.

3275 16 I/O request 0x%08x failed I/O verification. See the error log
for a description.

3276 16 WITH SNAPSHOT can be used only if the backup set was
created WITH SNAPSHOT.

3277 16 WITH SNAPSHOT must be used with only one virtual
device.

3278 16 Failed to encrypt string %ls
3279 16 Access is denied due to a password failure
3280 16 Backups on raw devices are not supported. '%ls' is a raw

device.
3281 16 Released and initiated rewind on '%ls'.
3301 21 Invalid log record found in the transaction log (logop %d).
3313 21 Error while redoing logged operation in database '%.*ls'.

Error at log record ID %S_LSN.
3314 21 Error while undoing logged operation in database '%.*ls'.

Error at log record ID %S_LSN.
3315 10 During rollback, process %d was expected to hold mode %d

lock at level %d for row %S_RID in database '%.*ls' under
transaction %S_XID.

3405 10 Recovering database '%.*ls'.
3406 10 %d transactions rolled forward in database '%.*ls' (%d).
3407 10 %d transactions rolled back in database '%.*ls' (%d).
3408 10 Recovery complete.
3413 21 Database ID %d. Could not mark database as suspect.

Getnext NC scan on sysdatabases.dbid failed.
3414 10 Database '%.*ls' (database ID %d) could not recover.

Contact Technical Support.

3415 16 Database '%.*ls' is read-only or has read-only files and
must be made writable before it can be upgraded.

3417 21 Cannot recover the master database. Exiting.
3429 10 Warning: The outcome of transaction %S_XID, named

'%.*ls' in database '%.*ls' (database ID %d), could not be
determined because the coordinating database (database
ID %d) could not be opened. The transaction was assumed
to be committed.

3430 10 Warning: Could not determine the outcome of transaction
%S_XID, named '%.*ls' in database '%.*ls' (with ID %d)
because the coordinating database (ID %d) did not contain
the outcome. The transaction was assumed to be
committed.

3431 21 Could not recover database '%.*ls' (database ID %d) due to
unresolved transaction outcomes.

3432 16 Warning: syslanguages is missing.
3433 16 Name is truncated to '%.*ls'. The maximum name length is

%d.
3434 20 Cannot change sort order or locale. Server shutting down.

Restart SQL Server to continue with sort order unchanged.
3435 20 Sort order or locale cannot be changed because user

objects or user databases exist.
3436 16 Cannot rebuild index for the '%.*ls' table in the '%.*ls'

database.
3437 21 Error recovering database '%.*ls'. Could not connect to

MSDTC to check the completion status of transaction
%S_XID.

3438 10 Database '%.*ls' (database ID %d) failed to recover because
transaction first LSN is not equal to LSN in checkpoint.
Contact Technical Support.

3439 10 Database '%.*ls' (database ID %d). The DBCC RECOVERDB
statement failed due to previous errors.

3440 21 Database '%.*ls' (database ID %d). The DBCC RECOVERDB
statement can only be run after a RESTORE statement that
used the WITH NORECOVERY option.

3441 21 Database '%.*ls' (database ID %d). The RESTORE statement
could not access file '%ls'. Error was '%ls'.

3442 21 Database '%.*ls' (database ID %d). The size of the undo file
is insufficient.

3443 21 Database '%.*ls' (database ID %d) was marked for standby
or read-only use, but has been modified. The RESTORE LOG
statement cannot be performed.

3445 21 File '%ls' is not a valid undo file for database '%.*ls',
database ID %d.

3450 10 Recovery of database '%.*ls' (%d) is %d%% complete
(approximately %d more seconds) (Phase %d of 3).

3604 10 Duplicate key was ignored.
3605 10 Duplicate row was ignored.
3606 10 Arithmetic overflow occurred.
3607 10 Division by zero occurred.
3608 16 Cannot allocate a GUID for the token.
3612 10 %hsSQL Server Execution Times:%hs CPU time = %lu ms,

elapsed time = %lu ms.
3613 10 SQL Server parse and compile time: %hs CPU time = %lu

ms, elapsed time = %lu ms.
3615 10 Table '%.*ls'. Scan count %d, logical reads %d, physical

reads %d, read-ahead reads %d.
3618 10 The transaction has been terminated.

3619 10 Could not write a CHECKPOINT record in database ID %d
because the log is out of space.

3620 10 Automatic checkpointing is disabled in database '%.*ls'
because the log is out of space. It will continue when the
database owner successfully checkpoints the database. Free
up some space or extend the database and then run the
CHECKPOINT statement.

3621 10 The statement has been terminated.
3622 10 A domain error occurred.
3625 20 '%hs' is not yet implemented.
3627 16 Could not create worker thread.
3628 24 A floating point exception occurred in the user process.

Current transaction is canceled.
3629 10 This SQL Server has been optimized for %d concurrent

queries. This limit has been exceeded by %d queries and
performance may be adversely affected.

3630 10 Concurrency violations since %ls%s 1 2 3 4 5
6 7 8 9 10-100
>100%s%6u%6u%6u%6u%6u%6u%6u%6u%6u%8u%6u

3631 10 Concurrency violations will be written to the SQL Server
error log.

3632 10 Concurrency violations will not be written to the SQL
Server error log.

3701 11 Cannot %S_MSG the %S_MSG '%.*ls', because it does not
exist in the system catalog.

3702 16 Cannot drop the %S_MSG '%.*ls' because it is currently in
use.

3703 16 Cannot detach the %S_MSG '%.*ls' because it is currently in
use.

3704 16 User does not have permission to perform this operation
on %S_MSG '%.*ls'.

3705 16 Cannot use DROP %ls with '%.*ls' because '%.*ls' is a
%S_MSG. Use DROP %ls.

3708 16 Cannot %S_MSG the %S_MSG '%.*ls' because it is a system
%S_MSG.

3716 16 The %S_MSG '%.*ls' cannot be dropped because it is bound
to one or more %S_MSG.

3718 11 Could not drop index '%.*ls' because the table or clustered
index entry cannot be found in the sysindexes system table.

3723 16 An explicit DROP INDEX is not allowed on index '%.*ls'. It is
being used for %ls constraint enforcement.

3724 16 Cannot %S_MSG the %S_MSG '%.*ls' because it is being
used for replication.

3725 16 The constraint '%.*ls' is being referenced by table '%.*ls',
foreign key constraint '%.*ls'.

3726 16 Could not drop object '%.*ls' because it is referenced by a
FOREIGN KEY constraint.

3727 10 Could not drop constraint. See previous errors.
3728 16 '%.*ls' is not a constraint.
3729 16 Cannot %ls '%.*ls' because it is being referenced by object

'%.*ls'.
3733 16 Constraint '%.*ls' does not belong to table '%.*ls'.
3736 16 Cannot drop the %S_MSG '%.*ls' because it is being used

for distribution.
3737 16 Could not delete file '%ls'. See the SQL Server error log for

more information.
3738 16 Deleting database file '%ls'.

3739 15 Cannot %ls the index '%.*ls' because it is not a statistics
collection.

3902 13 The COMMIT TRANSACTION request has no corresponding
BEGIN TRANSACTION.

3903 13 The ROLLBACK TRANSACTION request has no
corresponding BEGIN TRANSACTION.

3904 21 Cannot unsplit logical page %S_PGID in object '%.*ls', in
database '%.*ls'. Both pages together contain more data
than will fit on one page.

3906 16 Could not run BEGIN TRANSACTION in database '%.*ls'
because the database is read-only.

3908 16 Could not run BEGIN TRANSACTION in database '%.*ls'
because the database is in bypass recovery mode.

3909 16 Session binding token is invalid.
3910 16 Transaction context in use by another session.
3912 16 Cannot bind using an XP token while the server is not in an

XP call.
3914 16 The data type '%s' is invalid for transaction names or

savepoint names. Allowed data types are char, varchar,
nchar, or nvarchar.

3915 16 Cannot use the ROLLBACK statement within an INSERT-
EXEC statement.

3916 16 Cannot use the COMMIT statement within an INSERT-EXEC
statement unless BEGIN TRANSACTION is used first.

3917 16 Session is bound to a transaction context that is in use.
Other statements in the batch were ignored.

3918 16 Statement must be executed in the context of a user
transaction.

3919 16 Cannot enlist in the transaction because the transaction has
already been committed or rolled back.

3920 10 The WITH MARK option only applies to the first BEGIN
TRAN WITH MARK statement. The option is ignored.

3921 16 Cannot get a transaction token if there is no transaction
active. Reissue the statement after a transaction has been
started

3922 16 Cannot enlist in the transaction because the transaction
does not exist.

3923 10 Cannot use transaction marks on database '%.*ls' with
bulk-logged operations that have not been backed up. The
mark is ignored.

3924 10 The session was enlisted in an active user transaction while
trying to bind to a new transaction. The session has
defected from the previous user transaction.

3925 16 Invalid transaction mark name. The 'LSN:' prefix is reserved.
3926 10 The transaction active in this session has been committed

or aborted by another session.
3927 10 The session had an active transaction when it tried to enlist

in a Distributed Transaction Coordinator transaction.
3928 16 The marked transaction '%.*ls' failed. A Deadlock was

encountered while attempting to place the mark in the log.

Troubleshooting (SQL Server 2000)

Errors 4000 - 4999
Errors 4000 - 4999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
4003 21 ODS error. Server is terminating this connection.
4004 16 Unicode data in a Unicode-only collation or ntext data cannot

be sent to clients using DB-Library (such as ISQL) or ODBC
version 3.7 or earlier.

4015 16 Language requested in login '%.*ls' is not an official name on
this SQL Server. Using server-wide default %.*ls instead.

4016 16 Language requested in 'login %.*ls' is not an official name on
this SQL Server. Using user default %.*ls instead.

4017 16 Neither the language requested in 'login %.*ls' nor user
default language %.*ls is an official language name on this
SQL Server. Using server-wide default %.*ls instead.

4018 16 User default language %.*ls is not an official language name
on this SQL Server. Using server-wide default %.*ls instead.

4019 16 Language requested in login '%.*ls' is not an official language
name on this SQL Server. Login fails.

4020 16 Default date order '%.*ls' for language %.*ls is invalid. Using
mdy instead.

4027 16 Mount tape for %hs of database '%ls'.
4028 16 End of tape has been reached. Remove tape '%ls' and mount

next tape for %hs of database '%ls'.
4030 10 The medium on device '%ls' expires on %hs and cannot be

overwritten.
4035 10 Processed %d pages for database '%ls', file '%ls' on file %d.
4037 16 User-specified volume ID '%ls' does not match the volume ID

'%ls' of the device '%ls'.
4038 16 Cannot find file ID %d on device '%ls'.
4060 11 Cannot open database requested in login '%.*ls'. Login fails.
4061 11 Cannot open either database requested in login (%.*ls) or

user default database. Using master database instead.
4062 11 Cannot open user default database. Using master database

instead.
4063 11 Cannot open database requested in login (%.*ls). Using user

default '%.*ls' instead.
4064 11 Cannot open user default database. Login failed.
4208 16 The statement %hs is not allowed while the recovery model

is SIMPLE. Use BACKUP DATABASE or change the recovery
model using ALTER DATABASE.

4212 16 Cannot back up the log of the master database. Use BACKUP
DATABASE instead.

4214 10 There is no current database backup. This log backup cannot
be used to roll forward a preceding database backup.

4215 10 The log was not truncated because records at the beginning
of the log are pending replication. Ensure the Log Reader
Agent is running or use sp_repldone to mark transactions as
distributed.

4216 16 Minimally logged operations cannot be backed up when the
database is unavailable.

4217 10 BACKUP LOG cannot modify the database because database
is read-only. The backup will continue,although subsequent
backups will duplicate the work of this backup.

4301 16 Database in use. The system administrator must have
exclusive use of the database to restore the log.

4304 16 A USER ATTENTION signal raised during RESTORE LOG is
being ignored until the current restore completes.

4305 16 The log in this backup set begins at LSN %.*ls, which is too
late to apply to the database. An earlier log backup that
includes LSN %.*ls can be restored.

4306 16 The preceding restore operation did not specify WITH
NORECOVERY or WITH STANDBY. Restart the restore
sequence, specifying WITH NORECOVERY or WITH STANDBY
for all but the final step.

4316 16 Can only RESTORE LOG in the master database if SQL Server
is in single user mode.

4318 16 File '%ls' has been rolled forward to LSN %.*ls. This log
terminates at LSN %.*ls, which is too early to apply the WITH
RECOVERY option. Reissue the RESTORE LOG statement
WITH NORECOVERY.

4320 16 File '%ls' was only partially restored by a database or file
restore. The entire file must be successfully restored before
applying the log.

4322 10 This log file contains records logged before the designated
point-in-time. The database is being left in load state so you
can apply another log file.

4323 16 The database is marked suspect. Transaction logs cannot be
restored. Use RESTORE DATABASE to recover the database.

4324 10 Backup history older than %ls has been deleted.
4325 16 Could not delete entries for backup set ID '%ls'.
4326 16 The log in this backup set terminates at LSN %.*ls, which is

too early to apply to the database. A more recent log backup
that includes LSN %.*ls can be restored.

4327 16 The log in this backup set contains minimally logged
changes. Point-in-time recovery is inhibited. RESTORE will
roll forward to end of logs without recovering the database.

4328 16 File '%ls' is missing. Rollforward stops at log sequence
number %.*ls. File is created at LSN %.*ls, dropped at LSN
%.*ls. Restore transaction log beyond point in time when file
was dropped or restore data to be consistent with rest of
database.

4329 10 This log file contains records logged before the designated
mark. The database is being left in load state so you can
apply another log file.

4330 16 The log in this backup set cannot be applied because it is on a
recovery path inconsistent with the database.

4331 16 The database cannot be recovered because the files have
been restored to inconsistent points in time.

4332 16 RESTORE LOG has been halted. To use the database in its
current state, run RESTORE DATABASE %ls WITH RECOVERY.

4333 16 The database cannot be recovered because the log was not
restored.

4334 16 The named mark does not identify a valid LSN.
4403 16 View or function '%.*ls' is not updatable because it contains

aggregates.
4404 16 View or function '%.*ls' is not updatable because the

definition contains the DISTINCT clause.
4405 16 View or function '%.*ls' is not updatable because the

modification affects multiple base tables.
4406 16 Update or insert of view or function '%.*ls' failed because it

contains a derived or constant field.

4408 19 The query and the views or functions in it exceed the limit of
%d tables.

4413 16 Could not use view or function '%.*ls' because of binding
errors.

4414 16 Could not allocate ancillary table for view or function
resolution. The maximum number of tables in a query (%d)
was exceeded.

4415 16 View '%.*ls' is not updatable because either it was created
WITH CHECK OPTION or it spans a view created WITH CHECK
OPTION and the target table is referenced multiple times in
the resulting query.

4416 16 UNION ALL view '%.*ls' is not updatable because the
definition contains a disallowed construct.

4417 16 Derived table '%.*ls' is not updatable because the definition
contains a UNION operator.

4418 16 Derived table '%.*ls' is not updatable because it contains
aggregates.

4419 16 Derived table '%.*ls' is not updatable because the definition
contains the DISTINCT clause.

4420 16 Derived table '%.*ls' is not updatable because the
modification affects multiple base tables.

4421 16 Derived table '%.*ls' is not updatable because a column of
the derived table is derived or constant.

4422 16 View '%.*ls' has an INSTEAD OF UPDATE trigger and cannot
be a target of an UPDATE FROM statement.

4423 16 View '%.*ls' has an INSTEAD OF DELETE trigger and cannot
be a target of a DELETE FROM statement.

4424 16 Joined tables cannot be specified in a query containing outer
join operators. View or function '%.*ls' contains joined tables.

4425 16 Cannot specify outer join operators in a query containing
joined tables. View or function '%.*ls' contains outer join
operators.

4427 16 The view or function '%.*ls' is not updatable because the
definition contains the TOP clause.

4428 16 The derived table '%.*ls' is not updatable because the
definition contains the TOP clause.

4429 16 View or function '%.*ls' contains a self-reference. Views or
functions cannot reference themselves directly or indirectly.

4430 10 Warning: Index hints supplied for view '%.*ls' will be ignored.
4431 16 Partitioned view '%.*ls' is not updatable because table '%.*ls'

has a timestamp column.
4432 16 Partitioned view '%.*ls' is not updatable because table '%.*ls'

has a DEFAULT constraint.
4433 16 Cannot INSERT into partitioned view ''%.*ls'' because table

''%.*ls'' has an IDENTITY constraint.
4434 16 Partitioned view '%.*ls' is not updatable because table '%.*ls'

has an INSTEAD OF trigger.
4435 16 Partitioned view '%.*ls' is not updatable because a value was

not specified for partitioning column '%.*ls'.
4436 16 UNION ALL view '%.*ls' is not updatable because a

partitioning column was not found.
4437 16 Partitioned view '%.*ls' is not updatable as the target of a

bulk operation.
4438 16 Partitioned view '%.*ls' is not updatable because it does not

deliver all columns from its member tables.
4439 16 Partitioned view '%.*ls' is not updatable because the source

query contains references to partition table '%.*ls'.

4440 16 UNION ALL view '%.*ls' is not updatable because a primary
key was not found on table '%.*ls'.

4441 16 Partitioned view '%.*ls' is not updatable because the table
'%.*ls' has an index on a computed column.

4442 16 UNION ALL view '%.*ls' is not updatable because base table
'%.*ls' is used multiple times.

4443 16 UNION ALL view '%.*ls' is not updatable because column
'%.*ls' of base table '%.*ls' is used multiple times.

4444 16 UNION ALL view '%.*ls' is not updatable because the primary
key of table '%.*ls' is not included in the union result.

4445 16 UNION ALL view '%.*ls' is not updatable because the primary
key of table '%.*ls' is not unioned with primary keys of
preceding tables.

4446 16 UNION ALL view '%.*ls' is not updatable because the
definiton of column '%.*ls' of view '%.*ls' is used by another
view column.

4447 16 View '%.*ls' is not updatable because the definition contains
a set operator.

4448 16 Cannot INSERT into partitioned view '%.*ls' because values
were not supplied for all columns.

4449 16 Using defaults is not allowed in views that contain a set
operator.

4450 16 Cannot update partitioned view '%.*ls' because the definition
of the view column '%.*ls' in table '%.*ls' has a IDENTITY
constraint.

4451 16 Views referencing tables on multiple servers are not
updatable on this SKU of SQL Server.

4501 16 View or function ''%.*ls'' has more columns defined than
column names given.

4502 16 View or function ''%.*ls'' has more column names specified
than columns defined.

4505 16 CREATE VIEW failed because column '%.*ls' in view '%.*ls'
exceeds the maximum of %d columns.

4506 10 Column names in each view or function must be unique.
Column name '%.*ls' in view or function '%.*ls' is specified
more than once.

4508 16 Views or functions are not allowed on temporary tables.
Table names that begin with '#' denote temporary tables.

4509 16 Could not perform CREATE VIEW because WITH %ls was
specified and the view contains set operators.

4510 16 Could not perform CREATE VIEW because WITH %ls was
specified and the view is not updatable.

4511 16 Create View or Function failed because no column name was
specified for column %d.

4512 16 Cannot schema bind %S_MSG '%.*ls' because name '%.*ls' is
invalid for schema binding. Names must be in two-part
format and an object cannot reference itself.

4513 16 Cannot schema bind %S_MSG '%.*ls'. '%.*ls' is not schema
bound.

4514 16 CREATE FUNCTION failed because a column name is not
specified for column %d.

4515 16 CREATE FUNCTION failed because column '%.*ls' in function
'%.*ls' exceeds the maximum of %d columns.

4516 16 Cannot schema bind function '%.*ls' because it contains an
EXECUTE statement.

4602 14 Only members of the sysadmin role can grant or revoke the
CREATE DATABASE permission.

4604 16 There is no such user or group '%.*ls'.

4606 16 Granted or revoked privilege %ls is not compatible with
object.

4610 16 You can only grant or revoke permissions on objects in the
current database.

4611 16 To revoke grantable privileges, specify the CASCADE option
with REVOKE.

4613 16 Grantor does not have GRANT permission.
4615 16 Invalid column name '%.*ls'.
4617 16 Cannot grant, deny or revoke permissions to or from special

roles.
4618 16 You do not have permission to use %.*ls in the AS clause.
4619 16 CREATE DATABASE permission can only be granted in the

master database.
4701 11 Could not truncate table '%.*ls' because this table does not

exist in database '%.*ls'.
4706 17 Could not truncate table '%.*ls' because there is not enough

room in the log to record the deallocation of all the index and
data pages.

4707 16 Could not truncate object '%.*ls' because it or one of its
indexes resides on a READONLY filegroup.

4708 16 Could not truncate object '%.*ls' because it is not a table.
4709 16 You are not allowed to truncate the system table '%.*ls'.
4711 16 Cannot truncate table '%.*ls' because it is published for

replication.
4712 16 Cannot truncate table '%.*ls' because it is being referenced

by a FOREIGN KEY constraint.
4803 21 Received invalid row length %d from bcp client. Maximum

row size is %d.
4804 21 Premature end-of-message while reading current row from

host. Host program may have terminated.
4805 17 The front-end tool you are using does not support the

feature of bulk insert from host. Use the proper tools for this
command.

4807 21 Received invalid row length %d from bcp client. Minimum
row size is %d.

4808 16 Bulk copy operations cannot trigger BULK INSERT
statements.

4810 16 Expected the TEXT token in data stream for bulk copy of text
or image data.

4811 16 Expected the column offset in data stream for bulk copy of
text or image data.

4812 16 Expected the row offset in data stream for bulk copy of text
or image data.

4813 16 Expected the text length in data stream for bulk copy of text,
ntext, or image data.

4815 21 Received invalid column length from bcp client.
4817 16 Could not bulk insert. Invalid sorted column '%.*ls'. Assuming

data stream is not sorted.
4818 16 Could not bulk insert. Sorted column '%.*ls' was specified

more than once. Assuming data stream is not sorted.
4819 16 Could not bulk insert. Bulk data stream was incorrectly

specified as sorted.
4820 16 Could not bulk insert. Unknown version of format file '%s'.
4821 16 Could not bulk insert. Error reading the number of columns

from format file '%s'.
4822 16 Could not bulk insert. Invalid number of columns in format

file '%s'.

4823 16 Could not bulk insert. Invalid column number in format file
'%s'.

4824 16 Could not bulk insert. Invalid data type for column number
%d in format file '%s'.

4825 16 Could not bulk insert. Invalid prefix for column number %d in
format file '%s'.

4826 16 Could not bulk insert. Invalid column length for column
number %d in format file '%s'.

4827 16 Could not bulk insert. Invalid column terminator for column
number %d in format file '%s'.

4828 16 Could not bulk insert. Invalid destination table column
number for source column %d in format file '%s'.

4829 16 Could not bulk insert. Error reading destination table column
name for source column %d in format file '%s'.

4830 10 Bulk Insert: DataFileType was incorrectly specified as char.
DataFileType will be assumed to be widechar because the
data file has a Unicode signature.

4831 10 Bulk Insert: DataFileType was incorrectly specified as
widechar. DataFileType will be assumed to be char because
the data file does not have a Unicode signature.

4832 16 Bulk Insert: Unexpected end-of-file (EOF) encountered in data
file.

4833 16 Bulk Insert: Version mismatch between the provider dynamic
link library and the server executable.

4834 16 You do not have permission to use the BULK INSERT
statement.

4835 16 Bulk copying into a table with computed columns is not
supported for downlevel clients.

4837 16 Error: Cannot bulk copy into a table '%s' enabled for
immediate-updating subscriptions

4838 16 The bulk data source does not support the SQLNUMERIC or
SQLDECIMAL data types.

4839 16 Cannot perform bulk insert. Invalid collation name for source
column %d in format file '%s'.

4840 16 The bulk data source provider string has an invalid %ls
property value %ls.

4841 16 The data source name is not a simple object name.
4842 16 The required FormatFile property is missing from the

provider string of the server.
4843 16 The bulk data source provider string has a syntax error ('%lc')

near character position %d.
4844 16 The bulk data source provider string has an unsupported

property name (%ls).
4845 16 The bulk data source provider string has a syntax error near

character position %d. Expected '%lc', but found '%lc'.
4846 16 The bulk data provider failed to allocate memory.
4847 16 Bulk copying into a table with bigint columns is not

supported for versions earlier than SQL Server 2000.
4848 16 Bulk copying into a table with sql_variant columns is not

supported for versions earlier than SQL Server 2000.
4849 16 Could not import table '%ls'. Error %d.
4850 10 Data import: Table '%ls' is already locked by another user.
4851 10 Data import: Table '%ls' already has data. Skipping to next

table.
4852 10 Data import: Table '%ls' does not exist or it is not a user table.
4853 10 %hs
4854 21 %hs

4860 16 Could not bulk insert. File '%ls' does not exist.
4861 16 Could not bulk insert because file '%ls' could not be opened.

Operating system error code %ls.
4862 16 Could not bulk insert because file '%ls' could not be read.

Operating system error code %ls.
4863 16 Bulk insert data conversion error (truncation) for row %d,

column %d (%ls).
4864 16 Bulk insert data conversion error (type mismatch) for row

%d, column %d (%ls).
4865 16 Could not bulk insert because the maximum number of

errors (%d) was exceeded.
4866 16 Bulk Insert fails. Column is too long in the data file for row

%d, column %d. Make sure the field terminator and row
terminator are specified correctly.

4867 16 Bulk insert data conversion error (overflow) for row %d,
column %d (%ls).

4868 16 Bulk Insert fails. Codepage '%d' is not installed. Install the
codepage and run the command again.

4869 16 Bulk Insert failed. Unexpected NULL value in data file row %d,
column %d. Destination column (%ls) is defined NOT NULL.

4880 16 Could not bulk insert. When using the FIRSTROW and
LASTROW parameters, the value for FIRSTROW cannot be
greater than the value for LASTROW.

4881 10 Note: Bulk Insert through a view may result in base table
default values being ignored for NULL columns in the data
file.

4882 16 Could not bulk insert. Prefix length, field length, or terminator
required for source column %d in format file '%s'.

4901 16 ALTER TABLE only allows columns to be added that can
contain nulls or have a DEFAULT definition specified. Column
'%.*ls' cannot be added to table '%.*ls' because it does not
allow nulls and does not specify a DEFAULT definition.

4902 11 Cannot alter table '%.*ls' because this table does not exist in
database '%.*ls'.

4909 16 Cannot alter '%.*ls' because it is not a table.
4910 16 Only the owner or members of the sysadmin role can alter

table '%.*ls'.
4916 16 Could not enable or disable the constraint. See previous

errors.
4917 16 Constraint '%.*ls' does not exist.
4920 16 ALTER TABLE failed because trigger '%.*ls' on table '%.*ls'

does not exist.
4921 16 ALTER TABLE failed because trigger '%.*ls' does not belong to

table '%.*ls'.
4922 16 %ls %.*ls failed because one or more objects access this

column.
4923 16 ALTER TABLE DROP COLUMN failed because '%.*ls' is the

only data column in table '%.*ls'. A table must have at least
one data column.

4924 16 %ls failed because column '%.*ls' does not exist in table
'%.*ls'.

4925 16 ALTER TABLE ALTER COLUMN ADD ROWGUIDCOL failed
because a column already exists in table '%.*ls' with
ROWGUIDCOL property.

4926 16 ALTER TABLE ALTER COLUMN DROP ROWGUIDCOL failed
because a column does not exist in table '%.*ls' with
ROWGUIDCOL property.

4927 16 Cannot alter column '%.*ls' to be data type %.*ls.

4928 16 Cannot alter column '%.*ls' because it is '%ls'.
4929 16 Cannot alter the %S_MSG '%.*ls' because it is being

published for replication.
4930 10 Warning: Columns added to the replicated table %S_MSG

'%.*ls' will be ignored by existing articles.
4931 16 Cannot add columns to %S_MSG '%.*ls' because it is being

published for merge replication.
4932 16 ALTER TABLE DROP COLUMN failed because '%.*ls' is

currently replicated.

Troubleshooting (SQL Server 2000)

Errors 5000 - 5999
Errors 5000 - 5999

Error Severity Description (Message Text)
5001 16 User must be in the master database.
5002 16 Database '%.*ls' does not exist. Check sysdatabases.
5004 16 To use ALTER DATABASE, the database must be in a

writable state in which a checkpoint can be executed.
5005 10 Extending database by %.2f MB on disk '%.*ls'.
5006 16 Could not get exclusive use of %S_MSG '%.*ls' to perform

the requested operation.
5008 16 This ALTER DATABASE statement is not supported.
5009 16 ALTER DATABASE failed. Some disk names listed in the

statement were not found. Check that the names exist and
are spelled correctly before rerunning the statement.

5010 16 Log file name cannot be generated from a raw device. The
log file name and path must be specified.

5011 14 User does not have permission to alter database '%.*ls'.
5012 16 The name of the primary filegroup cannot be changed.
5013 16 The master and model databases cannot have files added

to them. ALTER DATABASE was aborted.
5014 16 The %S_MSG '%.*ls' does not exist in database '%.*ls'.
5015 16 ALTER DATABASE failed. The total size specified must be 1

MB or greater.
5016 16 System databases master, model, and tempdb cannot have

their names changed.
5017 16 ALTER DATABASE failed. Database '%.*ls' was not created

with 'FOR LOAD' option.
5018 0 File '%.*ls' modified in sysaltfiles. Delete old file after

restarting SQL Server.
5019 10 Cannot find entry in sysaltfiles for file '%.*ls'.
5020 16 The primary data or log file cannot be removed from a

database.
5021 10 The %S_MSG name '%.*ls' has been set.
5022 16 Log file '%ls' for this database is already active.
5023 16 Database must be put in bypass recovery mode to rebuild

the log.
5024 16 No entry found for the primary log file in sysfiles1. Could

not rebuild the log.
5025 16 The file '%ls' already exists. It should be renamed or

deleted so that a new log file can be created.
5026 16 Could not create a new log file with file '%.*ls'. See

previous errors.
5027 16 System databases master, model, and tempdb cannot have

their logs rebuilt.
5028 16 The system could not activate enough of the database to

rebuild the log.
5029 10 Warning: The log for database '%.*ls' has been rebuilt.

Transactional consistency has been lost. DBCC CHECKDB
should be run to validate physical consistency. Database
options will have to be reset, and extra log files may need
to be deleted.

5030 16 The database could not be exclusively locked to perform
the operation.

5031 16 Cannot remove the file '%.*ls' because it is the only file in
the DEFAULT filegroup.

5032 10 The file cannot be shrunk below page %ud until the log is
backed up because it contains bulk logged pages.

5035 16 Filegroup '%.*ls' already exists in this database.
5036 16 MODIFY FILE failed. Specify logical name.
5037 16 MODIFY FILE failed. Do not specify physical name.
5038 16 MODIFY FILE failed for file "%.*ls". At least one property per

file must be specified.
5039 16 MODIFY FILE failed. Specified size is less than current size.
5040 16 MODIFY FILE failed. Size is greater than MAXSIZE.
5041 16 MODIFY FILE failed. File '%.*ls' does not exist.
5042 16 The %S_MSG '%.*ls' cannot be removed because it is not

empty.
5043 16 The %S_MSG '%.*ls' cannot be found in %ls.
5044 10 The %S_MSG '%.*ls' has been removed.
5045 16 The %S_MSG already has the '%ls' property set.
5046 10 The %S_MSG property '%ls' has been set.
5047 16 Cannot change the READONLY property of the PRIMARY

filegroup.
5048 16 Cannot add, remove, or modify files in filegroup '%.*ls'. The

filegroup is read-only.
5049 16 Cannot extend file '%ls' using this syntax as it was not

created with DISK INIT. Use ALTER DATABASE MODIFY
FILE.

5050 16 Cannot change the properties of empty filegroup '%.*ls'.
The filegroup must contain at least one file.

5051 16 Cannot have a filegroup with the name 'DEFAULT'.
5053 16 The maximum of %ld filegroups per database has been

exceeded.
5054 16 Could not cleanup worktable IAM chains to allow shrink or

remove file operation. Please try again when tempdb is
idle.

5055 16 Cannot add, remove, or modify file '%.*ls'. The file is read-
only.

5056 16 Cannot add, remove, or modify a file in filegroup '%.*ls'
because the filegroup is offline.

5057 16 Cannot add, remove, or modify file '%.*ls' because it is
offline.

5058 16 Option '%.*ls' cannot be set in database '%.*ls'.
5059 16 Database '%.*ls' is in transition. Try the ALTER DATABASE

statement later.
5060 10 Nonqualified transactions are being rolled back. Estimated

rollback completion: %d%%.
5061 16 ALTER DATABASE failed because a lock could not be placed

on database '%.*ls'. Try again later.
5062 16 Option '%.*ls' cannot be set at the same time as another

option setting.
5063 16 Database '%.*ls' is in warm standby. A warm-standby

database is read-only.
5064 16 Changes to the state or options of database '%.*ls' cannot

be made at this time. The database is in single-user mode,
and a user is currently connected to it.

5065 16 Database '%.*ls' cannot be opened.
5066 16 Database options single user and dbo use only cannot be

set at the same time.

5068 10 Failed to restart the current database. The current database
is switched to master.

5069 16 ALTER DATABASE statement failed.
5070 16 Database state cannot be changed while other users are

using the database '%.*ls'
5072 16 ALTER DATABASE failed. The default collation of database

'%.*ls' cannot be set to %.*ls.
5073 16 Cannot alter collation for database '%ls' because it is

READONLY, OFFLINE, or marked SUSPECT.
5074 16 The %S_MSG '%.*ls' is dependent on %S_MSG '%.*ls'.
5075 16 The %S_MSG '%.*ls' is dependent on %S_MSG.
5076 10 Warning: Changing default collation for database '%.*ls',

which is used in replication. It is recommend that all
replication database have the same default collation.

5101 15 You must supply parameters for the DISK %hs statement.
Usage: %hs.

5102 15 No such statement DISK %.*ls.
5103 16 MAXSIZE cannot be less than SIZE for file '%ls'.
5104 16 File '%.*ls' already used.
5105 16 Device activation error. The physical file name '%.*ls' may

be incorrect.
5106 15 Parameter '%hs' requires value of data type '%hs'.
5107 15 Value is wrong data type for parameter '%hs' (requires

data type '%hs').
5108 10 Log file '%.*ls' does not match the primary file. It may be

from a different database or the log may have been rebuilt
previously.

5109 16 No such parameter '%.*ls'.
5110 16 File '%.*ls' is on a network device not supported for

database files.
5116 14 You do not have permission to run DISK statements.
5117 16 Could not run DISK statement. You must be in the master

database to run this statement.
5122 10 Each disk file size must be greater than or equal to 1 MB.
5123 16 CREATE FILE encountered operating system error %ls while

attempting to open or create the physical file '%.*ls'.
5126 16 The logical device '%.*ls' does not exist in sysdevices.
5146 16 The %hs of %d is out of range. It must be between %d and

%d.
5148 16 Could not set the file size to the desired amount. The

operating system file size limit may have been reached.
5149 16 MODIFY FILE encountered operating system error %ls

while attempting to expand the physical file.
5150 16 The size of a single log file must not be greater than 2 TB.
5151 16 The %hs statement is obsolete and no longer supported.
5157 16 I/O error encountered in the writelog system function

during backout.
5158 10 Warning: Media in device '%.*ls' may have been changed.
5159 16 Operating system error %.*ls on device '%.*ls' during %ls.
5160 16 Cannot take '%.*ls' offline because the database is in use.
5162 16 Cannot find '%.*ls' in sysdatabases.
5163 16 Cannot open '%.*ls' to take offline.
5164 16 Usage: DBCC DBCONTROL(dbname,ONLINE|OFFLINE)
5165 16 Cannot explicitly open or close master database.
5167 16 Database '%.*ls' is already offline.
5168 16 File '%.*ls' is on a network drive, which is not allowed.

5169 16 FILEGROWTH cannot be greater than MAXSIZE for file
'%.*ls'.

5170 16 Cannot create file '%ls' because it already exists.
5171 16 %.*ls is not a primary database file.
5172 16 The header for file '%ls' is not a valid database file header.

The %ls property is incorrect.
5173 16 Cannot associate files with different databases.
5174 10 Each file size must be greater than or equal to 512 KB.
5175 10 The file '%.*ls' has been expanded to prevent recovery from

failing. Contact the system administrator for further
assistance.

5176 10 The file '%.*ls' has been expanded beyond its maximum
size to prevent recovery from failing. Contact the system
administrator for further assistance.

5177 16 Encountered an unexpected error while checking the sector
size for file '%.*ls'. Check the SQL Server error log for more
information.

5178 16 Cannot use file '%.*ls' because it was originally formatted
with sector size %d and is now on a device with sector size
%d.

5179 16 Cannot use file '%.*ls', which is on a device with sector size
%d. SQL Server supports a maximum sector size of 4096
bytes.

5180 22 Could not open FCB for invalid file ID %d in database
'%.*ls'.

5181 16 Could not restart database '%.*ls'. Reverting back to old
status.

5182 16 New log file '%.*ls' was created.
5183 16 File '%ls' cannot be created. Use WITH MOVE to specify a

usable physical file name.
5184 16 Cannot use file '%.*ls' for clustered server. Only formatted

files on which the cluster resource of the server has a
dependency can be used.

5701 10 Changed database context to '%.*ls'.
5702 10 SQL Server is terminating this process.
5703 10 Changed language setting to %.*ls.
5803 10 Unknown config number (%d) in sysconfigures.
5804 16 Character set, sort order, or collation cannot be changed

because at least one database is not writable.
5805 16 Too few locks specified. Minimum %d.
5807 16 Recovery intervals above %d minutes not recommended.

Use the RECONFIGURE WITH OVERRIDE statement to force
this configuration.

5808 16 Ad hoc updates to system catalogs not recommended. Use
the RECONFIGURE WITH OVERRIDE statement to force this
configuration.

5809 16 Average time slices above %d milliseconds not
recommended. Use the RECONFIGURE WITH OVERRIDE
statement to force this configuration.

5810 16 Valid values for the fill factor are 0 to 100.
5812 14 You do not have permission to run the RECONFIGURE

statement.
5823 16 Cannot reconfigure SQL Server to use sort order ID %d,

because the row for that sort order does not exist in
syscharsets.

5828 16 User connections are limited to %d.
5829 16 The specified user options value is invalid.

5830 10 The default collation for SQL Server has been reconfigured.
Restart SQL Server to rebuild the table indexes on columns
of character data types.

5831 16 Minimum server memory value (%d) must be less than or
equal to the maximum value (%d).

5904 17 Background checkpoint process suspended until locks are
available.

Troubleshooting (SQL Server 2000)

Errors 6000 - 6999
Errors 6000 - 6999

Error Severity Description (Message Text)
6001 10 SHUTDOWN is waiting for %d process(es) to complete.
6002 10 SHUTDOWN is in progress. Log off.
6004 10 User does not have permission to perform this action.
6005 10 SHUTDOWN is in progress.
6006 10 Server shut down by request.
6007 10 The SHUTDOWN statement cannot be executed within a

transaction or by a stored procedure.
6101 16 Process ID %d is not a valid process ID. Choose a number

between 1 and %d.
6102 14 User does not have permission to use the KILL statement.
6103 17 Could not do cleanup for the killed process. Received

message %d.
6104 16 Cannot use KILL to kill your own process.
6106 16 Process ID %d is not an active process ID.
6107 14 Only user processes can be killed.
6108 16 KILL SPID WITH COMMIT/ABORT is not supported by

Microsoft SQL Server 2000. Use Microsoft Distributed
Transaction Coordinator to resolve distributed transactions.

6109 10 SPID %d: transaction rollback in progress. Estimated rollback
completion: %d%%. Estimated time remaining: %d seconds.

6110 16 The distributed transaction with UOW %s does not exist.
6111 16 Another user has decided a different outcome for the

distributed transaction associated with UOW %s.
6112 16 Distributed transaction with UOW %s is in prepared state.

Only Microsoft Distributed Transaction Coordinator can
resolve this transaction. KILL command failed.

6113 16 The distributed transaction associated with UOW %s is in
PREPARE state. Use KILL UOW WITH COMMIT/ABORT syntax
to kill the transaction instead.

6114 16 Distributed transaction with UOW %s is being used by
another user. KILL command failed.

6115 16 KILL command cannot be used inside user transactions.
6116 16 KILL command failed.
6117 16 There is a connection associated with the distributed

transaction with UOW %s. First, kill the connection using KILL
SPID syntax.

6118 16 The distributed transaction associated with UOW %s is not in
PREPARED state. Use KILL UOW to kill the transaction
instead.

6119 10 Distributed transaction with UOW %s is rolling back:
estimated rollback completion: %d%%, estimated time left
%d seconds.

6120 16 Status report cannot be obtained. Rollback operation for
Process ID %d is not in progress.

6121 16 Status report cannot be obtained. Rollback operation for
UOW %s is not in progress.

6401 16 Cannot roll back %.*ls. No transaction or savepoint of that
name was found.

6600 16 XML error: %.*ls
6601 10 XML parser returned the error code %d from line number

%d, source '%.*ls'.

6602 16 The error description is '%.*ls'.
6603 16 XML parsing error: %.*ls
6604 25 XML stored procedures are not supported in fibers mode.
6605 16 %.*ls: Failed to obtain an IPersistStream interface on the XML

text.
6606 17 %.*ls: Failed to save the XML text stream. The server

resources may be too low.
6607 16 %.*ls: The value supplied for parameter number %d is invalid.
6608 16 Failed to instantiate class '%ls'. Make sure Msxml2.dll exists

in the SQL Server installation.
6609 16 Column '%ls' contains an invalid data type. Valid data types

are char, varchar, nchar, nvarchar, text, and ntext.
6610 17 Failed to load Msxml2.dll.
6612 16 Invalid data type for the column indicated by the parameter

'%ls'. Valid data types are int, bigint, smallint, and tinyint.
6613 16 Specified value '%ls' already exists.
6614 16 Value specified for column '%ls' is the same for column '%ls'.

An element cannot be its own parent.
6615 16 Invalid data type is specified for column '%ls'. Valid data

types are int, bigint, smallint, and tinyint.
6616 16 Parameter '%ls' is required when the parent of the element

to be added is missing and must be inserted.
6617 16 The specified edge table has an invalid format. Column '%ls'

is missing or has an invalid data type.
6618 16 Column '%ls' in the specified edge table has an invalid or null

value.
6619 16 XML node of type %d named '%ls' cannot be created .
6620 16 XML attribute or element cannot be created for column '%ls'.
6621 16 XML encoding or decoding error occurred with object name

'%.*ls'.
6622 16 Invalid data type for column '%ls'. Data type cannot be text,

ntext, image, or binary.
6623 16 Column '%ls' contains an invalid data type. Valid data types

are char, varchar, nchar, and nvarchar.
6624 16 XML document could not be created because server memory

is low. Use sp_xml_removedocument to release XML
documents.

6800 16 FOR XML AUTO requires at least one table for generating
XML tags. Use FOR XML RAW or add a FROM clause with a
table name.

6801 16 FOR XML EXPLICIT requires at least three columns, including
the tag column, the parent column, and at least one data
column.

6802 16 FOR XML EXPLICIT query contains the invalid column name
'%.*ls'. Use the TAGNAME!TAGID!ATTRIBUTENAME[!..] format
where TAGID is a positive integer.

6803 16 FOR XML EXPLICIT requires the first column to hold positive
integers that represent XML tag IDs.

6804 16 FOR XML EXPLICIT requires the second column to hold NULL
or nonnegative integers that represent XML parent tag IDs.

6805 16 FOR XML EXPLICIT stack overflow occurred. Circular parent
tag relationships are not allowed.

6806 16 Undeclared tag ID %d is used in a FOR XML EXPLICIT query.
6807 16 Undeclared parent tag ID %d is used in a FOR XML EXPLICIT

query.
6808 16 XML tag ID %d could not be added. The server memory

resources may be low.

6809 16 Unnamed column or table names cannot be used as XML
identifiers. Name unnamed columns using AS in the SELECT
statement.

6810 16 Column name '%.*ls' is repeated. The same attribute cannot
be generated more than once on the same XML tag.

6811 16 FOR XML is incompatible with COMPUTE expressions.
Remove the COMPUTE expression.

6812 16 XML tag ID %d that was originally declared as '%.*ls' is being
redeclared as '%.*ls'.

6813 16 FOR XML EXPLICIT cannot combine multiple occurrences of
ID, IDREF, IDREFS, NMTOKEN, and/or NMTOKENS in column
name '%.*ls'.

6814 16 In the FOR XML EXPLICIT clause, ID, IDREF, IDREFS,
NMTOKEN, and NMTOKENS require attribute names in
'%.*ls'.

6815 16 In the FOR XML EXPLICIT clause, ID, IDREF, IDREFS,
NMTOKEN, and NMTOKENS attributes cannot be hidden in
'%.*ls'.

6816 16 In the FOR XML EXPLICIT clause, ID, IDREF, IDREFS,
NMTOKEN, and NMTOKENS attributes cannot be generated
as CDATA, XML, or XMLTEXT in '%.*ls'.

6817 16 FOR XML EXPLICIT cannot combine multiple occurrences of
ELEMENT, XML, XMLTEXT, and CDATA in column name
'%.*ls'.

6818 16 In the FOR XML EXPLICIT clause, CDATA attributes must be
unnamed in '%.*ls'.

6819 16 The FOR XML clause is not allowed in a %ls statement.
6820 16 FOR XML EXPLICIT requires column %d to be named '%ls'

instead of '%.*ls'.
6821 16 GROUP BY and aggregate functions are currently not

supported with FOR XML AUTO.
6824 16 In the FOR XML EXPLICIT clause, mode '%.*ls' in a column

name is invalid.
6825 16 ELEMENTS mode requires FOR XML AUTO.
6826 16 Every IDREFS or NMTOKENS column in a FOR XML EXPLICIT

query must appear in a separate SELECT clause, and the
instances must be ordered directly after the element to which
they belong.

6827 16 FOR XML EXPLICIT queries allow only one XMLTEXT column
per tag. Column '%.*ls' declares another XMLTEXT column
that is not permitted.

6828 16 XMLTEXT column '%.*ls' must be of a string data type.
6829 16 FOR XML EXPLICIT and RAW modes currently do not support

addressing binary data as URLs in column '%.*ls'. Remove
the column, or use the BINARY BASE64 mode, or create the
URL directly using the
'dbobject/TABLE[@PK1="V1"]/@COLUMN' syntax.

6830 16 FOR XML AUTO could not find the table owning the
following column '%.*ls' to create a URL address for it.
Remove the column, or use the BINARY BASE64 mode, or
create the URL directly using the
'dbobject/TABLE[@PK1="V1"]/@COLUMN' syntax.

6831 16 FOR XML AUTO requires primary keys to create references
for '%.*ls'. Select primary keys, or use BINARY BASE64 to
obtain binary data in encoded form if no primary keys exist.

6832 16 FOR XML AUTO cannot generate a URL address for binary
data if a primary key is also binary.

6833 16 Parent tag ID %d is not among the open tags. FOR XML
EXPLICIT requires parent tags to be opened first. Check the
ordering of the result set.

6834 16 XMLTEXT field '%.*ls' contains an invalid XML document.
Check the root tag and its attributes.

6835 16 FOR XML EXPLICIT field '%.*ls' can specify the directive HIDE
only once.

6836 16 FOR XML EXPLICIT requires attribute-centric IDREFS or
NMTOKENS field '%.*ls' to precede element-centric
IDREFS/NMTOKEN fields.

6837 16 The XMLTEXT document attribute that starts with '%.*ls' is
too long. Maximum length is %d.

6838 16 Attribute-centric IDREFS or NMTOKENS field not supported
on tags having element-centric field '%.*ls' of type
TEXT/NTEXT or IMAGE. Either specify ELEMENT on
IDREFS/NMTOKENS field or remove the ELEMENT directive.

6839 16 FOR XML EXPLICIT does not support XMLTEXT field on tag
'%.*ls' that has IDREFS or NMTOKENS fields.

6840 16 XMLDATA does not support namespace elements or
attributes such as '%.*ls'. Run the SELECT FOR XML
statement without XMLDATA or remove the namespace
prefix declaration.

Troubleshooting (SQL Server 2000)

Errors 7000 - 7999
Errors 7000 - 7999

Error Severity Description (Message Text)
7000 16 OPENXML document handle parameter must be of data type

int.
7001 16 OPENXML flags parameter must be of data type int.
7002 16 OPENXML XPath must be of a string data type, such as

nvarchar.
7003 16 Only one OPENXML column can be of type %ls.
7004 16 OPENXML does not support retrieving schema from remote

tables, as in '%.*ls'.
7005 16 OPENXML requires a metaproperty namespace to be

declared if 'mp' is used for another namespace in
sp_xml_preparedocument.

7006 16 OPENXML encountered a problem identifying the
metaproperty namespace prefix. Consider removing the
namespace parameter from the corresponding
sp_xml_preparedocument statement.

7007 16 OPENXML encountered unknown metaproperty '%.*ls'.
7008 16 The OPENXML EDGETABLE is incompatible with the XMLTEXT

OVERFLOW flag.
7009 16 OPENXML allows only one metaproperty namespace prefix

declaration in sp_xml_preparedocument.
7101 16 You cannot use a text pointer for a table with option 'text in

row' set to ON.
7102 20 SQL Server Internal Error. Text manager cannot continue with

current statement.
7103 16 You cannot set option 'text in row' for table %s.
7104 16 Offset or size type is invalid. Must be int or smallint data type.
7105 22 Page %S_PGID, slot %d for text, ntext, or image node does not

exist.
7106 16 You cannot update a blob with a read-only text pointer
7107 16 You can have only 1,024 in-row text pointers in one

transaction
7116 16 Offset %d is not in the range of available text, ntext, or image

data.
7122 16 Invalid text, ntext, or image pointer type. Must be binary(16).
7123 16 Invalid text, ntext, or image pointer value %hs.
7124 16 The offset and length specified in the READTEXT statement is

greater than the actual data length of %ld.
7125 16 The text, ntext, or image pointer value conflicts with the

column name specified.
7126 16 The text, ntext, or image pointer value references a data page

with an invalid text, ntext, or image status.
7127 16 The text, ntext, or image pointer value references a data page

with an invalid timestamp.
7128 16 The text, ntext, or image pointer value references a data page

that is no longer allocated.
7130 16 %ls WITH NO LOG is not valid at this time. Use sp_dboption

to set the 'select into/bulkcopy' option on for database '%.*ls'.
7133 16 NULL textptr (text, ntext, or image pointer) passed to %ls

function.
7135 16 Deletion length %ld is not in the range of available text, ntext,

or image data.

7137 16 %s is not allowed because the column is being processed by
a concurrent snapshot and is being replicated to a non-SQL
Server Subscriber or Published in a publication allowing Data
Transformation Services (DTS).

7138 16 The WRITETEXT statement is not allowed because the column
is being replicated with Data Transformation Services (DTS).

7139 16 Length of text, ntext, or image data (%ld) to be replicated
exceeds configured maximum %ld.

7141 16 Must create orphaned text inside a user transaction.
7142 16 Must drop orphaned text before committing the transaction.
7143 16 Invalid locator de-referenced.
7201 17 Could not execute procedure on remote server '%.*ls'

because SQL Server is not configured for remote access. Ask
your system administrator to reconfigure SQL Server to allow
remote access.

7202 11 Could not find server '%.*ls' in sysservers. Execute
sp_addlinkedserver to add the server to sysservers.

7212 16 Could not execute procedure '%.*ls' on remote server '%.*ls'.
7213 20 Could not set up parameter for remote server '%.*ls'.
7214 16 Remote procedure time out of %d seconds exceeded. Remote

procedure '%.*ls' is canceled.
7221 16 Could not relay results of procedure '%.*ls' from remote

server '%.*ls'.
7300 16 OLE DB error trace [%ls].
7301 16 Could not obtain a required interface from OLE DB provider

'%ls'.
7302 16 Could not create an instance of OLE DB provider '%ls'.
7303 16 Could not initialize data source object of OLE DB provider

'%ls'. %ls
7304 16 Could not create a new session on OLE DB provider '%ls'.
7305 16 Could not create a statement object using OLE DB provider

'%ls'.
7306 16 Could not open table '%ls' from OLE DB provider '%ls'. %ls
7307 16 Could not obtain the data source of a session from OLE DB

provider '%ls'. This action must be supported by the provider.
7310 16 Could not obtain the schema options for OLE DB provider

'%ls'. The provider supports the interface, but returns a failure
code when it is used.

7311 16 Could not obtain the schema rowset for OLE DB provider
'%ls'. The provider supports the interface, but returns a failure
code when it is used.

7312 16 Invalid use of schema and/or catalog for OLE DB provider
'%ls'. A four-part name was supplied, but the provider does
not expose the necessary interfaces to use a catalog and/or
schema.

7313 16 Invalid schema or catalog specified for provider '%ls'.
7314 16 OLE DB provider '%ls' does not contain table '%ls'. The table

either does not exist or the current user does not have
permissions on that table.

7315 16 OLE DB provider '%ls' contains multiple tables that match the
name '%ls'.

7316 16 Could not use qualified table names (schema or catalog) with
OLE DB provider '%ls' because it does not implement
required functionality.

7317 16 OLE DB provider '%ls' returned an invalid schema definition.
7318 16 OLE DB provider '%ls' returned an invalid column definition.
7319 16 OLE DB provider '%ls' returned a '%ls' index '%ls' with

incorrect bookmark ordinal %d.

7320 16 Could not execute query against OLE DB provider '%ls'. %ls
7321 16 An error occurred while preparing a query for execution

against OLE DB provider '%ls'. %ls
7322 16 A failure occurred while giving parameter information to OLE

DB provider '%ls'. %ls
7323 16 An error occurred while submitting the query text to OLE DB

provider '%ls'. %ls
7330 16 Could not fetch a row from OLE DB provider '%ls'. %ls
7331 16 Rows from OLE DB provider '%ls' cannot be released. %ls
7332 16 Could not rescan the result set from OLE DB provider '%ls'.

%ls
7333 16 Could not fetch a row using a bookmark from OLE DB

provider '%ls'. %ls
7340 16 Could not create a column accessor for OLE DB provider

'%ls'. %ls
7341 16 Could not get the current row value of column '%ls.%ls' from

the OLE DB provider '%ls'. %ls
7342 16 Unexpected NULL value returned for column '%ls.%ls' from

the OLE DB provider '%ls'. This column cannot be NULL.
7343 16 OLE DB provider '%ls' could not %ls table '%ls'. %ls
7344 16 OLE DB provider '%ls' could not %ls table '%ls' because of

column '%ls'. %ls
7345 16 OLE DB provider '%ls' could not delete from table '%ls'. %ls
7346 16 Could not get the data of the row from the OLE DB provider

'%ls'. %ls
7347 16 OLE DB provider '%ls' returned an unexpected data length for

the fixed-length column '%ls.%ls'. The expected data length is
%ls, while the returned data length is %ls.

7348 16 OLE DB provider '%ls' could not set range for table '%ls'.%ls
7349 16 OLE DB provider '%ls' could not set range for table '%ls'

because of column '%ls'.%ls
7350 16 Could not get the column information from the OLE DB

provider '%ls'.
7351 16 OLE DB provider '%ls' could not map ordinals for one or

more columns of object '%ls'.
7352 16 OLE DB provider '%ls' supplied inconsistent metadata. The

object '%ls' was missing expected column '%ls'.
7353 16 OLE DB provider '%ls' supplied inconsistent metadata. An

extra column was supplied during execution that was not
found at compile time.

7354 16 OLE DB provider '%ls' supplied invalid metadata for column
'%ls'. %ls

7355 16 OLE DB provider '%ls' supplied inconsistent metadata for a
column. The name was changed at execution time.

7356 16 OLE DB provider '%ls' supplied inconsistent metadata for a
column. Metadata information was changed at execution
time.

7357 16 Could not process object '%ls'. The OLE DB provider '%ls'
indicates that the object has no columns.

7358 16 Could not execute query. The OLE DB provider '%ls' did not
provide an appropriate interface to access the text, ntext, or
image column '%ls.%ls'.

7359 16 The OLE DB provider '%ls' reported a schema version for
table '%ls' that changed between compilation and execution.

7360 16 Could not get the length of a storage object from the OLE DB
provider '%ls' for table '%ls', column '%ls'.

7361 16 Could not read a storage object from the OLE DB provider
'%ls', for table '%ls', column '%ls'.

7362 16 The OLE DB provider '%ls' reported different meta data at run
time for table '%ls' column '%ls'.

7365 16 Could not obtain optional metadata columns of columns
rowset from the OLE DB provider '%ls'.

7366 16 Could not obtain columns rowset from OLE DB provider '%ls'.
The provider supports the interface, but returns a failure code
when used.

7367 16 The OLE DB provider '%ls' supports column-level collation,
but failed to provide metadata column '%ls' at run time.

7368 16 The OLE DB provider '%ls' supports column-level collation,
but failed to provide collation data for column '%ls'.

7369 16 The OLE DB provider '%ls' provided invalid collation. %ls.
7370 16 One or more properties could not be set on the query for OLE

DB provider '%ls'. %ls
7371 16 One or more properties could not be set on the table for OLE

DB provider '%ls'.
7372 16 Cannot get properties from OLE DB provider '%ls'.
7373 16 Could not set the initialization properties for the OLE DB

provider '%ls'.
7374 16 Could not set the session properties for the OLE DB provider

'%ls'.
7375 16 Could not open index '%ls' on table '%ls' from OLE DB

provider '%ls'. %ls
7376 16 Could not enforce the remote join hint for this query.
7377 16 Cannot specify an index or locking hint for a remote data

source.
7378 16 The update/delete operation requires a unique key or a

clustered index on the remote table.
7379 16 OLE DB provider '%ls' returned an unexpected '%ls' for the

decimal/numeric column '%ls.%ls'. The expected data length
is '%ls', while the returned data length is '%ls'.

7390 16 The requested operation could not be performed because the
OLE DB provider '%ls' does not support the required
transaction interface.

7391 16 The operation could not be performed because the OLE DB
provider '%ls' was unable to begin a distributed transaction.

7392 16 Could not start a transaction for OLE DB provider '%ls'.
7393 16 OLE DB provider '%ls' reported an error aborting the current

transaction.
7394 16 OLE DB provider '%ls' reported an error committing the

current transaction.
7395 16 Unable to start a nested transaction for OLE DB provider

'%ls'. A nested transaction was required because the
XACT_ABORT option was set to OFF.

7399 16 OLE DB provider '%ls' reported an error. %ls
7401 16 Cannot create OLE DB provider enumeration object installed

with SQL Server. Verify installation.
7403 16 Could not locate registry entry for OLE DB provider '%ls'.
7404 16 The server could not load DCOM.
7405 16 Heterogeneous queries require the ANSI_NULLS and

ANSI_WARNINGS options to be set for the connection. This
ensures consistent query semantics. Enable these options and
then reissue your query.

7410 16 Remote access not allowed for Windows NT user activated by
SETUSER.

7411 16 Server '%.*ls' is not configured for %ls.
7413 16 Could not perform a Windows NT authenticated login

because delegation is not available.
7414 16 Invalid number of parameters. Rowset '%ls' expects %d

parameter(s).
7415 16 Ad hoc access to OLE DB provider '%ls' has been denied. You

must access this provider through a linked server.
7416 16 Access to the remote server is denied because no login-

mapping exists.
7417 16 GROUP BY ALL is not supported in queries that access

remote tables if there is also a WHERE clause in the query.
7418 16 Text, image, or ntext column was too large to send to the

remote data source due to the storage interface used by the
provider.

7419 16 Lazy schema validation error. Linked server schema version
has changed. Re-run the query.

7601 16 Cannot use a CONTAINS or FREETEXT predicate on %S_MSG
'%.*ls' because it is not full-text indexed.

7602 16 The Full-Text Service (Microsoft Search) is not available. The
system administrator must start this service.

7603 15 Syntax error in search condition, or empty or null search
condition '%ls'.

7604 17 Full-text operation failed due to a time out.
7605 17 Full-text catalog '%ls' has been lost. Use sp_fulltext_catalog to

rebuild and to repopulate this full-text catalog.
7606 17 Could not find full-text index for database ID %d, table ID %d.

Use sp_fulltext_table to deactivate then activate this index.
7607 17 Search on full-text catalog '%ls' for database ID %d, table ID

%d with search condition '%ls' failed with unknown result
(%x).

7608 17 An unknown full-text failure (%x) occurred in function %hs on
full-text catalog '%ls'.

7609 17 Full-Text Search is not installed, or a full-text component
cannot be loaded.

7610 16 Access is denied to '%ls', or the path is invalid. Full-text search
was not installed properly.

7611 10 Warning: Request to start a population in full-text catalog
'%ls' ignored because a population is currently active for this
full-text catalog.

7612 16 %d is not a valid value for full-text system resource usage.
7613 16 Cannot drop index '%.*ls' because it enforces the full-text key

for table '%.*ls'.
7614 16 Cannot alter or drop column '%.*ls' because it is enabled for

Full-Text Search.
7615 16 A CONTAINS or FREETEXT predicate can only operate on one

table. Qualify the use of * with a table name.
7616 16 Full-Text Search is not enabled for the current database. Use

sp_fulltext_database to enable full-text search for the
database.

7617 16 Query does not reference the full-text indexed table.
7618 16 %d is not a valid value for a full-text connection time out.
7620 16 Conversion to data type %ls failed for full-text search key

value 0x%ls.
7621 16 Invalid use of full-text predicate in the HAVING clause.
7622 17 Full-text catalog '%ls' lacks sufficient disk space to complete

this operation.

7623 17 Full-text query failed because full-text catalog '%ls' is not yet
ready for queries.

7624 17 Full-text catalog '%ls' is in an unusable state. Drop and re-
create this full-text catalog.

7625 16 Full-text table has more than one LCID among its full-text
indexed columns.

7626 15 The top_n_by_rank argument ('%d') must be greater than
zero.

7627 16 Full-text catalog in directory '%ls' for clustered server cannot
be created. Only directories on a disk in the cluster group of
the server can be used.

7628 17 Cannot copy Schema.txt to '%.*ls' because access is denied or
the path is invalid. Full-text search was not installed properly.

7629 17 Cannot open or query registry key '%.*ls'.
7630 15 Syntax error occurred near '%.*ls' in search condition '%.*ls'.
7631 15 Syntax error occurred near '%.*ls'. Expected '%.*ls' in search

condition '%.*ls'.
7632 15 The value of the Weight argument must be between 0.0 and

1.0.
7633 15 The syntax <content search condition> OR NOT <content

boolean term> is not allowed.
7634 17 Stack overflow occurred in parsing search condition '%.*ls'.
7635 16 The Microsoft Search service cannot be administered under

the present user account
7636 10 Warning: Request to start a full-text index population on table

'%ls' is ignored because a population is currently active for
this table.

7637 16 Value %d is not valid for full-text data time-out.
7638 10 Warning: Request to stop change tracking has deleted all

changes tracked on table '%ls'.
7639 16 Cannot use a full-text predicate on %S_MSG '%.*ls' because it

is not located on the local server.
7640 10 Warning: Request to stop tracking changes on table '%ls' will

not stop population currently in progress on the table.
7641 16 Full-Text catalog '%ls' does not exist.
7642 16 A full-text catalog named '%ls' already exists in this database.
7905 16 The object specified is neither a table nor a constraint
7908 10 The table '%.*ls' was created with the NO_LOG option.
7910 10 Repair: Page %S_PGID has been allocated to object ID %d,

index ID %d.
7911 10 Repair: Page %S_PGID has been deallocated from object ID

%d, index ID %d.
7912 10 Repair: Extent %S_PGID has been allocated to object ID %d,

index ID %d.
7913 10 Repair: Extent %S_PGID has been deallocated from object ID

%d, index ID %d.
7914 10 Repair: %ls page at %S_PGID has been rebuilt.
7915 10 Repair: IAM chain for object ID %d, index ID %d, has been

truncated before page %S_PGID and will be rebuilt.
7916 10 Repair: Deleted record for object ID %d, index ID %d, on page

%S_PGID, slot %d. Indexes will be rebuilt.
7917 10 Repair: Converted forwarded record for object ID %d, index

ID %d, at page %S_PGID, slot %d to a data row.

7918 10 Repair: Page %S_PGID next and %S_PGID previous pointers
have been set to match each other in object ID %d, index ID
%d.

7919 16 Repair statement not processed. Database needs to be in
single user mode.

7920 10 Processed %ld entries in sysindexes for database ID %d.
7923 10 Table %.*ls Object ID %ld.
7924 16 Index ID %ld. FirstIAM %S_PGID. Root %S_PGID. Dpages %ld.
7925 16 Index ID %d. %ld pages used in %ld dedicated extents.
7927 16 Total number of extents is %ld.
7932 16 The indexes for '%.*ls' are already correct. They will not be

rebuilt.
7933 16 One or more indexes contain errors. They will be rebuilt.
7934 16 The table '%.*ls' has no indexes.
7935 16 REINDEX received an exception. Statement terminated.
7937 16 The data in table '%.*ls' is possibly inconsistent. REINDEX

terminated. Run DBCC CHECKTABLE and report errors to
your system administrator.

7939 16 Cannot detach database '%.*ls' because it does not exist.
7940 16 System databases master, model, msdb, and tempdb cannot

be detached.
7941 10 Trace option(s) not enabled for this connection. Use 'DBCC

TRACEON()'.
7942 10 DBCC %ls scanning '%.*ls' table...
7943 10 Table: '%.*ls' (%d); index ID: %d, database ID: %d
7944 10 %ls level scan performed.
7945 10 - Pages Scanned................................: %lu
7946 10 - Extents Scanned..............................: %lu
7947 10 - Extent Switches..............................: %lu
7948 10 - Avg. Pages per Extent........................: %3.1f
7949 10 - Scan Density [Best Count:Actual Count].......: %4.2f%ls

[%lu:%lu]
7950 10 - Logical Scan Fragmentation: %4.2f%ls
7951 10 - Physical Scan Fragmentation: %4.2f%ls
7952 10 - Extent Scan Fragmentation: %4.2f%ls
7953 10 - Avg. Bytes Free per Page.....................: %3.1f
7954 10 - Avg. Page Density (full).....................: %4.2f%ls
7955 10 Invalid SPID %d specified.
7956 10 Permission to execute DBCC %ls denied.
7957 10 Cannot display the specified SPID's buffer; in transition.
7958 10 The specified SPID does not process input/output data

streams.
7959 10 The DBCC statement is not supported in this release.
7961 16 Object ID %d, index ID %d, page ID %S_PGID, row ID %d.

Column '%.*ls' is a var column with a NULL value and non-
zero data length.

7962 16 Upgrade requires SQL Server to be started in single user
mode. Restart SQL Server with the -m flag.

7963 16 Upgrade encountered a fatal error. See the SQL Server
errorlog for more information.

7965 16 Table error: Could not check object ID %d, index ID %d due to
invalid allocation (IAM) page(s).

7966 10 Warning: NO_INDEX option of %ls being used. Checks on
non-system indexes will be skipped.

7968 10 Transaction information for database '%.*ls'.
7969 10 No active open transactions.

7970 10 %hsOldest active transaction:
7971 10 SPID (server process ID) : %d
7972 10 UID (user ID) : %d
7974 10 Name : %.*ls
7975 10 LSN : (%d:%d:%d)
7977 10 Start time : %.*ls
7979 10 %hsReplicated Transaction Information:
7980 10 Oldest distributed LSN : (%d:%d:%d)
7982 10 Oldest non-distributed LSN : (%d:%d:%d)
7983 14 User '%.*ls' does not have permission to run DBCC %ls for

database '%.*ls'.
7984 16 Invalid object name '%.*ls'.
7985 16 The object name '%.*ls' contains more than the maximum

number of prefixes. The maximum is %d.
7986 16 Warning: Pinning tables should be carefully considered. If a

pinned table is larger, or grows larger, than the available data
cache, the server may need to be restarted and the table
unpinned.

7991 16 System table mismatch: Table '%.*ls', object ID %d has index
ID 1 in sysindexes but the status in sysobjects does not have
the clustered bit set. The table will be checked as a heap.

7992 16 Cannot shrink 'read only' database '%.*ls'.
7993 10 Cannot shrink file '%d' in database '%.*ls' to %d pages as it

only contains %d pages.
7994 16 Object ID %d, index ID %d: FirstIAM field in sysindexes is

%S_PGID. FirstIAM for statistics only and dummy index
entries should be (0:0).

7995 16 Database '%ls' consistency errors in sysobjects, sysindexes,
syscolumns, or systypes prevent further %ls processing.

7996 16 Extended stored procedures can only be created in the master
database.

7997 16 '%.*ls' does not contain an identity column.
7998 16 Checking identity information: current identity value '%.*hs',

current column value '%.*hs'.
7999 16 Could not find any index named '%.*ls' for table '%.*ls'.

Troubleshooting (SQL Server 2000)

Errors 8000 - 8999
Errors 8000 - 8999

Error Severity Description (Message Text)
8101 16 An explicit value for the identity column in table '%.*ls' can

only be specified when a column list is used and
IDENTITY_INSERT is ON.

8102 16 Cannot update identity column '%.*ls'.
8103 16 Table '%.*ls' does not exist or cannot be opened for SET

operation.
8104 16 The current user is not the database or object owner of

table '%.*ls'. Cannot perform SET operation.
8105 16 '%.*ls' is not a user table. Cannot perform SET operation.
8106 16 Table '%.*ls' does not have the identity property. Cannot

perform SET operation.
8107 16 IDENTITY_INSERT is already ON for table '%.*ls.%.*ls.%.*ls'.

Cannot perform SET operation for table '%.*ls'.
8108 16 Cannot add identity column, using the SELECT INTO

statement, to table '%.*ls', which already has column '%.*ls'
that inherits the identity property.

8109 16 Attempting to add multiple identity columns to table '%.*ls'
using the SELECT INTO statement.

8110 16 Cannot add multiple PRIMARY KEY constraints to table
'%.*ls'.

8111 16 Cannot define PRIMARY KEY constraint on nullable column
in table '%.*ls'.

8112 16 Cannot add more than one clustered index for constraints
on table '%.*ls'.

8114 16 Error converting data type %ls to %ls.
8115 16 Arithmetic overflow error converting %ls to data type %ls.
8116 16 Argument data type %ls is invalid for argument %d of %ls

function.
8117 16 Operand data type %ls is invalid for %ls operator.
8118 16 Column '%.*ls.%.*ls' is invalid in the select list because it is

not contained in an aggregate function and there is no
GROUP BY clause.

8119 16 Column '%.*ls.%.*ls' is invalid in the HAVING clause
because it is not contained in an aggregate function and
there is no GROUP BY clause.

8120 16 Column '%.*ls.%.*ls' is invalid in the select list because it is
not contained in either an aggregate function or the
GROUP BY clause.

8121 16 Column '%.*ls.%.*ls' is invalid in the HAVING clause
because it is not contained in either an aggregate function
or the GROUP BY clause.

8122 16 Only the first query in a UNION statement can have a
SELECT with an assignment.

8123 16 A correlated expression is invalid because it is not in a
GROUP BY clause.

8124 16 Multiple columns are specified in an aggregated expression
containing an outer reference. If an expression being
aggregated contains an outer reference, then that outer
reference must be the only column referenced in the
expression.

8125 16 An aggregated expression containing an outer reference
must be contained in either the select list, or a HAVING
clause subquery in the query whose FROM clause contains
the table with the column being aggregated.

8126 16 Column name '%.*ls.%.*ls' is invalid in the ORDER BY
clause because it is not contained in an aggregate function
and there is no GROUP BY clause.

8127 16 Column name '%.*ls.%.*ls' is invalid in the ORDER BY
clause because it is not contained in either an aggregate
function or the GROUP BY clause.

8128 10 Using '%s' version '%s' to execute extended stored
procedure '%s'.

8129 16 The new disk size must be greater than %d. Consider using
DBCC SHRINKDB.

8130 16 The device is not a database device. Only database devices
can be expanded.

8131 10 Extended stored procedure DLL '%s' does not export
__GetXpVersion(). Refer to the topic "Backward
Compatibility Details (Level 1) - Open Data Services" in the
documentation for more information.

8132 10 Extended stored procedure DLL '%s' reports its version is
%d.%d. Server expects version %d.%d.

8133 16 None of the result expressions in a CASE specification can
be NULL.

8134 16 Divide by zero error encountered.
8135 16 Table level constraint does not specify column list, table

'%.*ls'.
8136 16 Duplicate columns specified in %ls constraint key list, table

'%.*ls'.
8138 16 More than 16 columns specified in foreign key column list,

table '%.*ls'.
8139 16 Number of referencing columns in foreign key differs from

number of referenced columns, table '%.*ls'.
8140 16 More than one key specified in column level %ls constraint,

table '%.*ls'.
8141 16 Column %ls constraint for column '%.*ls' references

another column, table '%.*ls'.
8142 16 Subqueries are not supported in %ls constraints, table

'%.*ls'.
8143 16 Parameter '%.*ls' was supplied multiple times.
8144 16 Procedure or function %.*ls has too many arguments

specified.
8145 16 %.*ls is not a parameter for procedure %.*ls.
8146 16 Procedure %.*ls has no parameters and arguments were

supplied.
8147 16 Could not create IDENTITY attribute on nullable column

'%.*ls', table '%.*ls'.
8148 16 More than one column %ls constraint specified for column

'%.*ls', table '%.*ls'.
8149 16 OLE Automation objects are not supported in fiber mode.
8150 16 Multiple NULL constraints were specified for column '%.*ls',

table '%.*ls'.
8151 16 Both a PRIMARY KEY and UNIQUE constraint have been

defined for column '%.*ls', table '%.*ls'. Only one is allowed.
8152 16 String or binary data would be truncated.
8153 0 Warning: Null value is eliminated by an aggregate or other

SET operation.
8154 15 The table '%.*ls' is ambiguous.

8155 15 No column was specified for column %d of '%.*ls'.
8156 15 The column '%.*ls' was specified multiple times for '%.*ls'.
8157 15 All the queries in a query expression containing a UNION

operator must have the same number of expressions in
their select lists.

8158 15 '%.*ls' has more columns than were specified in the column
list.

8159 15 '%.*ls' has fewer columns than were specified in the
column list.

8160 15 A grouping function can only be specified when either
CUBE or ROLLUP is specified in the GROUP BY clause.

8161 15 A grouping function argument does not match any of the
expressions in the GROUP BY clause.

8162 16 Formal parameter '%.*ls' was defined as OUTPUT but the
actual parameter not declared OUTPUT.

8163 16 The text, ntext, or image data type cannot be selected as
DISTINCT.

8164 16 An INSERT EXEC statement cannot be nested.
8165 16 Invalid subcommand value %d. Legal range from %d to %d.
8166 16 Constraint name '%.*ls' not permitted. Constraint names

cannot begin with a number sign (#).
8168 16 Cannot create two constraints named '%.*ls'. Duplicate

constraint names are not allowed.
8169 16 Syntax error converting from a character string to

uniqueidentifier.
8170 16 Insufficient result space to convert uniqueidentifier value to

char.
8171 16 Hint '%ls' on object '%.*ls' is invalid.
8175 10 Could not find table %.*ls. Will try to resolve this table

name later.
8176 16 Resync procedure expects value of key '%.*ls', which was

not supplied.
8177 16 Cannot use a column in the %hs clause unless it is

contained in either an aggregate function or the GROUP BY
clause.

8178 16 Prepared statement '%.*ls' expects parameter %.*ls, which
was not supplied.

8179 16 Could not find prepared statement with handle %d.
8180 16 Statement(s) could not be prepared.
8181 16 Text for '%.*ls' is missing from syscomments. The object

must be dropped and re-created before it can be used.
8183 16 Only UNIQUE or PRIMARY KEY constraints are allowed on

computed columns.
8184 16 Error expanding '*': all columns incomparable, '*' expanded

to zero columns.
8185 16 Error expanding '*': An uncomparable column has been

found in an underlying table or view.
8186 16 Function '%.*ls' can be used only on user and system

tables.
8190 16 Cannot compile replication filter procedure without

defining table being filtered.
8191 16 Replication filter procedures can only contain SELECT,

GOTO, IF, WHILE, RETURN, and DECLARE statements.
8192 16 Replication filter procedures cannot have parameters.
8193 16 Cannot execute a procedure marked FOR REPLICATION.
8194 16 Cannot execute a USE statement while an application role is

active.

8196 16 Duplicate column specified as ROWGUIDCOL.
8197 16 Windows NT user '%.*ls' does not have server access.
8198 16 Could not obtain information about Windows NT

group/user '%ls'.
8199 16 In EXECUTE <procname>, procname can only be a literal or

variable of type char, varchar, nchar, or nvarchar.
8501 16 MSDTC on server '%.*ls' is unavailable.
8502 20 Unknown MSDTC token '0x%x' received.
8504 20 Invalid transaction import buffer.
8506 20 Invalid transaction state change requested from %hs to

%hs.
8508 20 QueryInterface failed for '%hs': %hs.
8509 20 Import of MSDTC transaction failed: %hs.
8510 20 Enlist of MSDTC transaction failed: %hs.
8511 20 Unknown isolation level %d requested from MSDTC.
8512 20 MSDTC Commit acknowledgement failed: %hs.
8513 20 MSDTC Abort acknowledgement failed: %hs.
8514 20 MSDTC PREPARE acknowledgement failed: %hs.
8515 20 MSDTC Global state is invalid.
8517 20 Failed to get MSDTC PREPARE information: %hs.
8518 20 MSDTC BEGIN TRANSACTION failed: %hs.
8519 16 Current MSDTC transaction must be committed by remote

client.
8520 20 Commit of internal MSDTC transaction failed: %hs.
8521 20 Invalid awakening state. Slept in %hs; awoke in %hs.
8522 20 Distributed transaction aborted by MSDTC.
8523 15 PREPARE TRAN statement not allowed on MSDTC

transaction.
8524 16 The current transaction could not be exported to the

remote provider. It has been rolled back.
8525 16 Distributed transaction completed. Either enlist this session

in a new transaction or the NULL transaction.
8601 17 Internal Query Processor Error: The query processor could

not obtain access to a required interface.
8602 16 Indexes used in hints must be explicitly included by the

index tuning wizard.
8616 10 The index hints for table '%.*ls' were ignored because the

table was considered a fact table in the star join.
8617 17 Invalid Query: CUBE and ROLLUP cannot compute distinct

aggregates.
8618 17 Warning: The query processor could not produce a query

plan from the optimizer because the total length of all the
columns in the GROUP BY or ORDER BY clause exceeds
8000 bytes.

8619 17 Warning: The query processor could not produce a query
plan from the optimizer because the total length of all the
columns in the GROUP BY or ORDER BY clause exceeds
8000 bytes. Resubmit your query without the ROBUST
PLAN hint.

8620 17 Internal Query Processor Error: The query processor
encountered an internal limit overflow.

8621 16 Internal Query Processor Error: The query processor ran
out of stack space during query optimization.

8622 16 Query processor could not produce a query plan because
of the hints defined in this query. Resubmit the query
without specifying any hints and without using SET
FORCEPLAN.

8623 16 Internal Query Processor Error: The query processor could
not produce a query plan. Contact your primary support
provider for more information.

8624 16 Internal SQL Server error.
8625 16 Warning: The join order has been enforced because a local

join hint is used.
8626 16 Only text pointers are allowed in work tables, never text,

ntext, or image columns. The query processor produced a
query plan that required a text, ntext, or image column in a
work table.

8627 16 The query processor could not produce a query plan
because of the combination of hints and text, ntext, or
image data passing through operators using work tables.

8628 17 A time out occurred while waiting to optimize the query.
Rerun the query.

8629 16 The query processor could not produce a query plan from
the optimizer because a query cannot update a text, ntext,
or image column and a clustering key at the same time.

8630 17 Internal Query Processor Error: The query processor
encountered an unexpected error during execution.

8640 17 Internal Query Processor Error: The query processor
encountered an unexpected work table error during
execution.

8642 17 The query processor could not start the necessary thread
resources for parallel query execution.

8644 16 Internal Query Processor Error: The plan selected for
execution does not support the invoked given execution
routine.

8645 17 A time out occurred while waiting for memory resources to
execute the query. Rerun the query.

8646 21 The index entry for row ID %.*hs was not found in index ID
%d, of table %d, in database '%.*ls'.

8647 20 Scan on sysindexes for database ID %d, object ID %ld,
returned a duplicate index ID %d. Run DBCC CHECKTABLE
on sysindexes.

8648 20 Could not insert a row larger than the page size into a hash
table. Resubmit the query with the ROBUST PLAN hint.

8649 17 The query has been canceled because the estimated cost of
this query (%d) exceeds the configured threshold of %d.
Contact the system administrator.

8650 13 Intra-query parallelism caused your server command
(process ID #%d) to deadlock. Rerun the query without
intra-query parallelism by using the query hint option
(maxdop 1).

8651 17 Could not perform the requested operation because the
minimum query memory is not available. Decrease the
configured value for the 'min memory per query' server
configuration option.

8653 17 Warning: The query processor is unable to produce a plan
because the table '%.*ls' is marked OFFLINE.

8654 16 A cursor plan could not be generated for the given
statement because it contains textptr (inrow lob).

8660 16 An index cannot be created on the view '%.*ls' because the
view definition does not include all the columns in the
GROUP BY clause.

8661 16 A clustered index cannot be created on the view '%.*ls'
because the index key includes columns which are not in
the GROUP BY clause.

8662 16 An index cannot be created on the view '%.*ls' because the
view definition includes an unknown value (the sum of a
nullable expression).

8663 16 An index cannot be created on the view '%.*ls' because the
view definition does not include count_big(*).

8664 16 An index cannot be created on the view '%.*ls' because the
view definition includes duplicate column names.

8665 16 An index cannot be created on the view '%.*ls' because no
row can satisfy the view definition.

8666 10 Warning: The optimizer cannot use the index because the
select list of the view contains a non-aggregate expression.

8667 10 Warning: The optimizer cannot use the index because the
group-by list in the view forms a key and is redundant.

8680 17 Internal Query Processor Error: The query processor
encountered an unexpected error during the processing of
a remote query phase.

8901 13 Deadlock detected during DBCC. Complete the transaction
in progress and retry this statement.

8902 17 Memory allocation error during DBCC processing.
8903 16 Extent %S_PGID in database ID %d is allocated in both GAM

%S_PGID and SGAM %S_PGID.
8904 16 Extent %S_PGID in database ID %d is allocated by more

than one allocation object.
8905 16 Extent %S_PGID in database ID %d is marked allocated in

the GAM, but no SGAM or IAM has allocated it.
8906 16 Page %S_PGID in database ID %d is allocated in the SGAM

%S_PGID and PFS %S_PGID, but was not allocated in any
IAM. PFS flags '%hs'.

8908 16 Table error: Database ID %d, object ID %d, index ID %d.
Chain linkage mismatch. %S_PGID->next = %S_PGID, but
%S_PGID->prev = %S_PGID.

8909 16 Table error: Object ID %d, index ID %d, page ID %S_PGID.
The PageId in the page header = %S_PGID.

8910 16 Page %S_PGID in database ID %d is allocated to both object
ID %d, index ID %d, and object ID %d, index ID %d.

8911 10 The error has been repaired.
8912 10 %.*ls fixed %d allocation errors and %d consistency errors

in database '%ls'.
8913 16 Extent %S_PGID is allocated to '%ls' and at least one other

object.
8914 10 Incorrect PFS free space information for page %S_PGID,

object ID %d, index ID %d, in database ID %d. Expected
value %hs, actual value %hs.

8915 10 File %d (number of mixed extents = %ld, mixed pages
= %ld).

8916 10 Object ID %ld, Index ID %ld, data extents %ld, pages %ld,
mixed extent pages %ld.

8917 10 Object ID %ld, Index ID %ld, index extents %ld, pages %ld,
mixed extent pages %ld.

8918 10 (number of mixed extents = %ld, mixed pages = %ld) in
this database.

8919 16 Single page allocation %S_PGID in table %ls, object ID %d,
index ID %d is not allocated in PFS page ID %S_PGID.

8920 16 Cannot perform a %ls operation inside a user transaction.
Terminate the transaction and reissue the statement.

8921 16 CHECKTABLE terminated. A failure was detected while
collecting facts. Possibly tempdb out of space or a system
table is inconsistent. Check previous errors.

8922 10 Could not repair this error.
8923 10 The repair level on the DBCC statement caused this

repair to be bypassed.
8924 10 Repairing this error requires other errors to be

corrected first.
8925 16 Table error: Cross object linkage: Page %S_PGID, slot %d, in

object ID %d, index ID %d, refers to page %S_PGID, slot %d,
in object ID %d, index ID %d.

8926 16 Table error: Cross object linkage: Parent page %S_PGID, slot
%d, in object ID %d, index ID %d, and page %S_PGID, slot
%d, in object ID %d, index ID %d, next refer to page
%S_PGID but are not in the same object.

8927 16 Object ID %d, index ID %d: The ghosted record count (%d)
in the header does not match the number of ghosted
records (%d) found on page %S_PGID.

8928 16 Object ID %d, index ID %d: Page %S_PGID could not be
processed. See other errors for details.

8929 16 Object ID %d: Errors found in text ID %I64d owned by data
record identified by %.*ls.

8930 16 Table error: Object ID %d, index ID %d cross-object chain
linkage. Page %S_PGID points to %S_PGID in object ID %d,
index ID %d.

8931 16 Table error: Object ID %d, index ID %d B-tree level
mismatch, page %S_PGID. Level %d does not match level
%d from parent %S_PGID.

8932 16 Table error: Object ID %d, index ID %d, column '%.*ls'. The
column ID %d is not valid for this table. The valid range is
from 1 to %d.

8933 16 Table error: Object ID %d, index ID %d. The low key value
on page %S_PGID (level %d) is not %ls the key value in the
parent %S_PGID slot %d.

8934 16 Table error: Object ID %d, index ID %d. The high key value
on page %S_PGID (level %d) is not less than the low key
value in the parent %S_PGID, slot %d of the next page
%S_PGID.

8935 16 Table error: Object ID %d, index ID %d. The previous link
%S_PGID on page %S_PGID does not match the previous
page %S_PGID that the parent %S_PGID, slot %d expects
for this page.

8936 16 Table error: Object ID %d, index ID %d. B-tree chain linkage
mismatch. %S_PGID->next = %S_PGID, but %S_PGID-
>Prev = %S_PGID.

8937 16 Table error: Object ID %d, index ID %d. B-tree page
%S_PGID has two parent nodes %S_PGID, slot %d and
%S_PGID, slot %d.

8938 16 Table error: Page %S_PGID, Object ID %d, index ID %d.
Unexpected page type %d.

8939 16 Table error: Object ID %d, index ID %d, page %S_PGID. Test
(%hs) failed. Values are %ld and %ld.

8940 16 Table error: Object ID %d, index ID %d, page %S_PGID. Test
(%hs) failed. Address 0x%x is not aligned.

8941 16 Table error: Object ID %d, index ID %d, page %S_PGID. Test
(%hs) failed. Slot %d, offset 0x%x is invalid.

8942 16 Table error: Object ID %d, index ID %d, page %S_PGID. Test
(%hs) failed. Slot %d, offset 0x%x overlaps with the prior
row.

8943 16 Table error: Object ID %d, index ID %d, page %S_PGID. Test
(%hs) failed. Slot %d, row extends into free space at 0x%x.

8944 16 Table error: Object ID %d, index ID %d, page %S_PGID, row
%d. Test (%hs) failed. Values are %ld and %ld.

8945 16 Table error: Object ID %d, index ID %d will be rebuilt.
8946 16 Table error: Allocation page %S_PGID has invalid %ls page

header values. Type is %d. Check type, object ID and page
ID on the page.

8947 16 Table error: Multiple IAM pages for object ID %d, index ID
%d contain allocations for the same interval. IAM pages
%S_PGID and %S_PGID.

8948 16 Database error: Page %S_PGID is marked with the wrong
type in PFS page %S_PGID. PFS status 0x%x expected 0x%x.

8949 10 %.*ls fixed %d allocation errors and %d consistency errors
in table '%ls' (object ID %d).

8950 16 %.*ls fixed %d allocation errors and %d consistency errors
not associated with any single object.

8951 16 Table error: Table '%ls' (ID %d). Missing or invalid key in
index '%ls' (ID %d) for the row:

8952 16 Table error: Database '%ls', index '%ls.%ls' (ID %d) (index ID
%d). Extra or invalid key for the keys:

8953 10 Repair: Deleted text column, text ID %I64d, for object ID %d
on page %S_PGID, slot %d.

8954 10 %.*ls found %d allocation errors and %d consistency errors
not associated with any single object.

8955 16 Data row (%d:%d:%d) identified by (%ls) has index values
(%ls).

8956 16 Index row (%d:%d:%d) with values (%ls) points to the data
row identified by (%ls).

8957 10 DBCC %ls (%ls%ls%ls) executed by %ls found %d errors
and repaired %d errors.

8958 10 %ls is the minimum repair level for the errors found by
DBCC %ls (%ls %ls).

8959 16 Table error: IAM page %S_PGID for object ID %d, index ID
%d is linked in the IAM chain for object ID %d, index ID %d
by page %S_PGID.

8960 23 Table error: Page %S_PGID, slot %d, column %d is not a
valid complex column.

8961 23 Table error: Object ID %d. The text, ntext, or image node at
page %S_PGID, slot %d, text ID %I64d does not match its
reference from page %S_PGID, slot %d.

8962 23 Table error: The text, ntext, or image node at page %S_PGID,
slot %d, text ID %I64d has incorrect node type %d.

8963 23 Table error: The text, ntext, or image node at page %S_PGID,
slot %d, text ID %I64d has type %d. It cannot be placed on a
page of type %d.

8964 23 Table error: Object ID %d. The text, ntext, or image node at
page %S_PGID, slot %d, text ID %I64d is not referenced.

8965 23 Table error: Object ID %d. The text, ntext, or image node at
page %S_PGID, slot %d, text ID %I64d is referenced by page
%S_PGID, slot %d, but was not seen in the scan.

8966 22 Could not read and latch page %S_PGID with latch type %ls.
%ls failed.

8967 16 Table error: Invalid value detected in %ls for Object ID %d,
index ID %d. Row skipped.

8968 16 Table error: %ls page %S_PGID (object ID %d, index ID %d)
is out of the range of this database.

8969 16 Table error: IAM chain linkage error: Object ID %d, index ID
%d. The next page for IAM page %S_PGID is %S_PGID, but
the previous link for page %S_PGID is %S_PGID.

8970 16 Row error: Object ID %d, index ID %d, page ID %S_PGID,
row ID %d. Column '%.*ls' was created NOT NULL, but is
NULL in the row.

8971 16 Forwarded row mismatch: Object ID %d, page %S_PGID,
slot %d points to forwarded row page %S_PGID, slot %d;
the forwarded row points back to page %S_PGID, slot %d.

8972 16 Forwarded row referenced by more than one row. Object
ID %d, page %S_PGID, slot %d incorrectly points to
forwarded row page %S_PGID, slot %d; the forwarded row
correctly refers back to page %S_PGID, slot %d.

8973 16 CHECKTABLE processing of object ID %d, index ID %d
encountered page %S_PGID, slot %d twice. Possible internal
error or allocation fault.

8974 16 Text node referenced by more than one node. Object ID %d,
text, ntext, or image node page %S_PGID, slot %d, text ID
%I64d is pointed to by page %S_PGID, slot %d and by page
%S_PGID, slot %d.

8975 16 Table error: Object ID %d, index ID %d. The child page
pointer %S_PGID on PageId %S_PGID, slot %d is not a valid
page for this database.

8976 16 Table error: Object ID %d, index ID %d. Page %S_PGID was
not seen in the scan although its parent %S_PGID and
previous %S_PGID refer to it. Check any previous errors.

8978 16 Table error: Object ID %d, index ID %d. Page %S_PGID is
missing a reference from previous page %S_PGID. Possible
chain linkage problem.

8979 16 Table error: Object ID %d, index ID %d. Page %S_PGID is
missing references from parent (unknown) and previous
(page %S_PGID) nodes. Possible bad root entry in
sysindexes.

8980 16 Table error: Object ID %d, index ID %d. Index node page
%S_PGID, slot %d refers to child page %S_PGID and
previous child %S_PGID, but they were not encountered.

8981 16 Table error: Object ID %d, index ID %d. The next pointer of
%S_PGID refers to page %S_PGID. Neither %S_PGID nor its
parent were encountered. Possible bad chain linkage.

8982 16 Table error: Cross object linkage. Page %S_PGID->next in
object ID %d, index ID %d refers to page %S_PGID in object
ID %d, index ID %d but is not in the same index.

8983 10 File %d. Extents %d, used pages %d, reserved pages %d,
mixed extents %d, mixed pages %d.

8984 10 Object ID %d, index ID %d. Allocations for %S_PGID. IAM
%S_PGID, extents %d, used pages %d, mixed pages %d.

8985 16 Could not locate file '%.*ls' in sysfiles.
8986 16 Too many errors found (%d) for object ID %d. To see all

error messages rerun the statement using "WITH
ALL_ERRORMSGS".

8987 16 No help available for DBCC statement '%.*ls'.
8988 10 The schema for database '%ls' is changing. May find

spurious allocation problems due to schema changes in
progress.

8989 10 %.*ls found %d allocation errors and %d consistency errors
in database '%ls'.

8990 10 %.*ls found %d allocation errors and %d consistency errors
in table '%ls' (object ID %d).

8991 16 0x%.8x + 0x%.8x bytes is not a valid address range.
8992 16 Database ID %d, object '%ls' (ID %d). Loop in data chain

detected at %S_PGID.

8993 16 Object ID %d, forwarding row page %S_PGID, slot %d
points to page %S_PGID, slot %d. Did not encounter
forwarded row. Possible allocation error.

8994 16 Object ID %d, forwarded row page %S_PGID, slot %d
should be pointed to by forwarding row page %S_PGID,
slot %d. Did not encounter forwarding row. Possible
allocation error.

8995 16 System table '%.*ls' (object ID %d, index ID %d) is in
filegroup %d. All system tables must be in filegroup %d.

8996 16 IAM page %S_PGID for object ID %d, index ID %d controls
pages in filegroup %d, that should be in filegroup %d.

8997 16 Single page allocation %S_PGID for object ID %d, index ID
%d is in filegroup %d; it should be in filegroup %d.

8998 16 Page errors on the GAM, SGAM, or PFS pages do not allow
CHECKALLOC to verify database ID %d pages from
%S_PGID to %S_PGID. See other errors for cause.

8999 10 Database tempdb allocation errors prevent further %ls
processing.

Troubleshooting (SQL Server 2000)

Errors 9000 - 9999
Errors 9000 - 9999

Error Severity Description (Message Text)
9001 10 The log for database '%.*ls' is not available.
9002 19 The log file for database '%.*ls' is full. Back up the

transaction log for the database to free up some log space.
9003 20 The LSN %S_LSN passed to log scan in database '%.*ls' is

invalid.
9004 21 An error occurred while processing the log for database

'%.*ls'.
9005 16 Either start LSN or end LSN specified in

OpenRowset(DBLog, ...) is invalid.
9006 10 Cannot shrink log file %d (%s) because total number of

logical log files cannot be fewer than %d.
9007 10 Cannot shrink log file %d (%s) because requested size

(%dKB) is larger than the start of the last logical log file.
9008 10 Cannot shrink log file %d (%s) because all logical log files

are in use.
9009 10 Cannot shrink log file %d (%s) because of minimum log

space required.
9010 14 User does not have permission to query the virtual table,

DBLog. Only members of the sysadmin fixed server role
and the db_owner fixed database role have this permission

Troubleshooting (SQL Server 2000)

Errors 10000 - 10999
Errors 10000 - 10999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
10000 16 Unknown provider error.
10001 16 The provider reported an unexpected catastrophic failure.
10002 16 The provider did not implement the functionality.
10003 16 The provider ran out of memory.
10004 16 One or more arguments were reported invalid by the provider.
10005 16 The provider did not support an interface.
10006 16 The provider indicated an invalid pointer was used.
10007 16 The provider indicated an invalid handle was used.
10008 16 The provider terminated the operation.
10009 16 The provider did not give any information about the error.
10010 16 The data necessary to complete this operation was not yet

available to the provider.
10011 16 Access denied.
10021 16 Execution terminated by the provider because a resource limit

was reached.
10022 16 The provider called a method from IRowsetNotify in the

consumer, and the method has not yet returned.
10023 16 The provider does not support the necessary method.
10024 16 The provider indicates that the user did not have the permission

to perform the operation.
10025 16 Provider caused a server fault in an external process.
10026 16 No command text was set.
10027 16 Command was not prepared.
10028 16 Authentication failed.
10031 16 An error occurred because one or more properties could not be

set.
10032 16 Cannot return multiple result sets (not supported by the

provider).
10033 16 The specified index does not exist or the provider does not

support an index scan on this data source.
10034 16 The specified table does not exist.
10035 16 No value was given for one or more of the required parameters.
10041 16 Could not set any property values.
10042 16 Cannot set any properties while there is an open rowset.
10051 16 An error occurred while setting the data.
10052 16 The insertion was canceled by the provider during notification.
10053 16 Could not convert the data value due to reasons other than sign

mismatch or overflow.
10054 16 The data value for one or more columns overflowed the type

used by the provider.
10055 16 The data violated the integrity constraints for one or more

columns.
10056 16 The number of rows that have pending changes has exceeded

the limit specified by the DBPROP_MAXPENDINGROWS
property.

10057 16 Cannot create the row. Would exceed the total number of active
rows supported by the rowset.

10058 16 The consumer cannot insert a new row before releasing
previously-retrieved row handles.

10061 16 An error occurred while setting data for one or more columns.
10062 16 The change was canceled by the provider during notification.
10063 16 Could not convert the data value due to reasons other than sign

mismatch or overflow.
10064 16 The data value for one or more columns overflowed the type

used by the provider.
10065 16 The data violated the integrity constraints for one or more

columns.
10066 16 The number of rows that have pending changes has exceeded

the limit specified by the DBPROP_MAXPENDINGROWS
property.

10067 16 The rowset was using optimistic concurrency and the value of a
column has been changed after the containing row was last
fetched or resynchronized.

10068 16 The consumer could not delete the row. A deletion is pending or
has already been transmitted to the data source.

10069 16 The consumer could not delete the row. The insertion has been
transmitted to the data source.

10075 16 An error occurred while deleting the row.
10081 16 The rowset uses integrated indexes and there is no current

index.
10085 16 RestartPosition on the table was canceled during notification.
10086 16 The table was built over a live data stream and the position

cannot be restarted.
10087 16 The provider did not release some of the existing rows.
10088 16 The order of the columns was not specified in the object that

created the rowset. The provider had to reexecute the command
to reposition the next fetch position to its initial position, and
the order of the columns changed.

Troubleshooting (SQL Server 2000)

Errors 11000 - 11999
Errors 11000 - 11999

Error Severity Description (Message Text)
11000 16 Unknown status code for this column.
11001 16 Non-NULL value successfully returned.
11002 16 Deferred accessor validation occurred. Invalid binding for this

column.
11003 16 Could not convert the data value due to reasons other than sign

mismatch or overflow.
11004 16 Successfully returned a NULL value.
11005 16 Successfully returned a truncated value.
11006 16 Could not convert the data type because of a sign mismatch.
11007 16 Conversion failed because the data value overflowed the data

type used by the provider.
11008 16 The provider cannot allocate memory or open another storage

object on this column.
11009 16 The provider cannot determine the value for this column.
11010 16 The user did not have permission to write to the column.
11011 16 The data value violated the integrity constraints for the column.
11012 16 The data value violated the schema for the column.
11013 16 The column had a bad status.
11014 16 The column used the default value.
11015 16 The column was skipped when setting data.
11031 16 The row was successfully deleted.
11032 16 The table was in immediate-update mode, and deleting a single

row caused more than one row to be deleted in the data source.
11033 16 The row was released even though it had a pending change.
11034 16 Deletion of the row was canceled during notification.
11036 16 The rowset was using optimistic concurrency and the value of a

column has been changed after the containing row was last
fetched or resynchronized.

11037 16 The row has a pending delete or the deletion had been
transmitted to the data source.

11038 16 The row is a pending insert row.
11039 16 DBPROP_CHANGEINSERTEDROWS was VARIANT_FALSE and

the insertion for the row has been transmitted to the data
source.

11040 16 Deleting the row violated the integrity constraints for the
column or table.

11041 16 The row handle was invalid or was a row handle to which the
current thread does not have access rights.

11042 16 Deleting the row would exceed the limit for pending changes
specified by the rowset property
DBPROP_MAXPENDINGROWS.

11043 16 The row has a storage object open.
11044 16 The provider ran out of memory and could not fetch the row.
11045 16 User did not have sufficient permission to delete the row.
11046 16 The table was in immediate-update mode and the row was not

deleted due to reaching a limit on the server, such as query
execution timing out.

11047 16 Updating did not meet the schema requirements.
11048 16 There was a recoverable, provider-specific error, such as an RPC

failure.

11100 16 The provider indicates that conflicts occurred with other
properties or requirements.

11101 16 Could not obtain an interface required for text, ntext, or image
access.

11102 16 The provider could not support a required row lookup interface.
11103 16 The provider could not support an interface required for the

UPDATE/DELETE/INSERT statements.
11104 16 The provider could not support insertion on this table.
11105 16 The provider could not support updates on this table.
11106 16 The provider could not support deletion on this table.
11107 16 The provider could not support a row lookup position.
11108 16 The provider could not support a required property.
11109 16 The provider does not support an index scan on this data

source.

Troubleshooting (SQL Server 2000)

Errors 13000 - 13999
Errors 13000 - 13999

Error Severity Description (Message Text)
13001 10 data page
13002 10 index page
13003 10 leaf page
13004 10 last
13005 10 root
13006 10 read from
13007 10 send to
13008 10 receive
13009 10 send
13010 10 read
13011 10 wait
13012 10 a USE database statement
13013 10 a procedure or trigger
13014 10 a DISTINCT clause
13015 10 a view
13016 10 an INTO clause
13017 10 an ORDER BY clause
13018 10 a COMPUTE clause
13019 10 a SELECT INTO statement
13020 10 option
13021 10 offset option
13022 10 statistics option
13023 10 parameter option
13024 10 function name
13025 10 varbinary (128) NOT NULL
13026 10 parameter
13027 10 convert specification
13028 10 index
13029 10 table
13030 10 database
13031 10 procedure
13032 10 trigger
13033 10 view
13034 10 default
13035 10 rule
13036 10 system table
13037 10 unknown type
13038 10 SET statement
13039 10 column
13040 10 type
13041 10 character string
13042 10 integer
13043 10 identifier
13044 10 number
13045 10 integer value
13046 10 floating point value
13047 10 object
13048 10 column heading

13076 10 an assignment
13077 10 a cursor declaration
13078 10 replication filter
13079 10 variable assignment
13080 10 statistics
13081 10 file
13082 10 filegroup
13083 10 server
13084 0 write
13085 0 function
13086 10 database collation
13087 10 drop
13088 10 alter

Troubleshooting (SQL Server 2000)

Errors 14000 - 14999
Errors 14000 - 14999

 Topic last updated -- January 2004

Error Severity Description (Message Text).
14002 16 Could not find the 'Sync' subsystem with the task ID %ld.
14003 16 You must supply a publication name.
14004 16 %s must be in the current database.
14005 16 Could not drop publication. A subscription exists to it.
14006 16 Could not drop the publication.
14008 11 There are no publications.
14009 11 There are no articles for publication '%s'.
14010 16 The remote server is not defined as a subscription server.
14012 16 The @status parameter value must be either 'active' or

'inactive'.
14013 16 This database is not enabled for publication.
14014 16 The synchronization method (@sync_method) must be '[bcp]

native', '[bcp] character', 'concurrent' or 'concurrent_c'.
14015 16 The replication frequency (@repl_freq) must be either

'continuous' or 'snapshot'.
14016 16 The publication '%s' already exists.
14017 16 Invalid @restricted parameter value. Valid options are 'true' or

'false'.
14018 16 Could not create the publication.
14019 16 The @operation parameter value must be either 'add' or 'drop'.
14020 16 Could not obtain the column ID for the specified column.

Schema replication failed.
14021 16 The column was not added correctly to the article.
14022 16 The @property parameter value must be either 'description',

'sync_object', 'type', 'ins_cmd', 'del_cmd', 'upd_cmd', 'filter',
'dest_table', 'dest_object', 'creation_script', 'pre_creation_cmd',
'status', 'schema_option', or 'destination_owner'.

14023 16 The type must be '[indexed view] logbased', '[indexed view]
logbased manualfilter', '[indexed view] logbased manualview',
'[indexed view] logbased manualboth', or '(view | indexed view
| proc | func) schema only'.

14025 10 Article update successful.
14027 11 %s does not exist in the current database.
14028 16 Only user tables, materialized views, and stored procedures can

be published as 'logbased' articles.
14029 16 The vertical partition switch must be either 'true' or 'false'.
14030 16 The article '%s' exists in publication '%s'.
14031 16 User tables and views are the only valid synchronization

objects.
14032 16 The value of parameter %s cannot be 'all'. It is reserved by

replication stored procedures.
14033 16 Could not change replication frequency because there are active

subscriptions on the publication.
14034 16 The publication name (@publication) cannot be the keyword

'all'.
14035 16 The replication option '%s' of database '%s' has already been

set to true.
14036 16 Could not enable database for publishing.

14037 16 The replication option '%s' of database '%s' has been set to
false.

14038 16 Could not disable database for publishing.
14039 16 Could not construct column clause for article view. Reduce the

number of columns or create the view manually.
14040 16 The server '%s' is already a Subscriber.
14042 16 Could not create Subscriber.
14043 16 The parameter %s cannot be NULL.
14046 16 Could not drop article. A subscription exists on it.
14047 16 Could not drop %s.
14048 16 The server '%s' is not a Subscriber.
14049 16 Stored procedures for replication are the only objects that can

be used as a filter.
14050 11 No subscription is on this publication or article.
14051 16 The parameter value must be 'sync_type' or 'dest_db'.
14052 16 The @sync_type parameter value must be 'automatic' or 'none'.
14053 16 The subscription could not be updated at this time.
14054 10 The subscription was updated successfully.
14055 10 The subscription does not exist.
14056 16 The subscription could not be dropped at this time.
14057 16 The subscription could not be created.
14058 16 The subscription already exists.
14059 16 Materialized view articles cannot be created for publications

with the properties allow_sync_tran, allow_queued_tran, or
allow_dts.

14061 16 The @pre_creation_cmd parameter value must be 'none', 'drop',
'delete', or 'truncate'.

14062 10 The Subscriber was dropped.
14063 11 The remote server does not exist or has not been designated as

a valid Subscriber.
14065 16 The @status parameter value must be 'initiated', 'active',

'inactive', or 'subscribed'.
14066 16 The previous status must be 'active', 'inactive', or 'subscribed'.
14067 16 The status value is the same as the previous status value.
14068 16 Could not update sysobjects. The subscription status could not

be changed.
14069 16 Could not update sysarticles. The subscription status could not

be changed.
14070 16 Could not update the distribution database subscription table.

The subscription status could not be changed.
14071 16 Could not find the Distributor or the distribution database for

the local server. The Distributor may not be installed, or the
local server may not be configured as a Publisher at the
Distributor.

14074 16 The server '%s' is already listed as a Publisher.
14075 16 The Publisher could not be created at this time.
14076 16 Could not grant replication login permission to '%s'.
14077 10 The publication was updated successfully.
14078 16 The parameter must be 'description', 'taskid', 'sync_method',

'status', 'repl_freq', 'restricted', 'retention', 'immediate_sync',
'enabled_for_internet', 'allow_push', 'allow_pull',
'allow_anonymous', or 'retention'.

14080 11 The remote server does not exist or has not been designated as
a valid Publisher.

14085 16 The Subscriber information could not be obtained from the
Distributor.

14088 16 The table '%s' must have a primary key to be published using
the transaction-based method.

14089 16 The clustered index on materialized view '%s' may not contain
nullable columns if it is to be published using the transaction-
based method.

14090 16 Error evaluating article synchronization object after column
drop. The filter clause for article '%s' must not reference the
dropped column.

14091 16 The @type parameter passed to sp_helpreplicationdb must be
either 'pub' or 'sub'.

14092 16 Could not change article because there is an existing
subscription to the article.

14093 16 Cannot grant or revoke access directly on publication '%s'
because it uses the default publication access list.

14094 16 Could not subscribe to article '%s' because heterogeneous
Subscriber '%s' does not support the @pre_creation_cmd
parameter value 'truncate'.

14095 16 Could not subscribe to publication '%s' because heterogeneous
Subscriber '%s' only supports the @sync_method parameter
value 'bcp character' .

14096 16 The path and name of the table creation script must be specified
if the @pre_creation_cmd parameter value is 'drop'.

14097 16 The 'status' value must be 'no column names', 'include column
names', 'string literals', 'parameters', 'DTS horizontal partitions'
or 'no DTS horizontal partitions'.

14098 16 Cannot drop Distribution Publisher '%s'. The remote Publisher
is using '%s' as Distributor.

14099 16 The server '%s' is already defined as a Distributor.
14100 16 Specify all articles when subscribing to a publication using

concurrent snapshot processing.
14101 16 The publication '%s' already has a Snapshot Agent defined.
14102 16 Specify all articles when unsubscribing from a publication using

concurrent snapshot processing.
14105 10 You have updated the distribution database property '%s'

successfully.
14106 10 Distribution retention periods must be greater than 0.
14107 10 The @max_distretention value must be larger than the

@min_distretention value.
14108 10 Removed %ld history records from %s.
14109 10 The @security_mode parameter value must be 0 (SQL Server

Authentication) or 1 (Windows Authentication).
14110 16 For stored procedure articles, the @property parameter value

must be 'description', 'dest_table', 'dest_object', 'creation_script',
'pre_creation_cmd', 'schema_option', or 'destination_owner'.

14111 16 The @pre_creation_cmd parameter value must be 'none' or
'drop'.

14112 16 This procedure can be executed only against table-based
articles.

14113 16 Could not execute '%s'. Check '%s' in the install directory.
14114 16 '%s' is not configured as a Distributor.
14115 16 The property parameter value must be %s.
14117 16 '%s' is not configured as a distribution database.
14118 16 A stored procedure can be published only as a 'serializable proc

exec' article, a 'proc exec' article, or a 'proc schema only' article.
14119 16 Could not add the distribution database '%s'. This distribution

database already exists.
14120 16 Could not drop the distribution database '%s'. This distributor

database is associated with a Publisher.

14121 16 Could not drop the Distributor '%s'. This Distributor has
associated distribution databases.

14122 16 The @article parameter value must be 'all' for immediate_sync
publications.

14123 16 The subscription @sync_type parameter value 'manual' is no
longer supported.

14124 16 A publication must have at least one article before a
subscription to it can be created.

14126 16 You do not have the required permissions to complete the
operation.

14128 16 Invalid @subscription_type parameter value. Valid options are
'push' or 'pull'.

14129 16 The @status parameter value must be NULL for 'automatic'
sync_type when you add subscriptions to an immediate_sync
publication.

14135 16 There is no subscription on Publisher '%s', publisher database
'%s', publication '%s'.

14136 16 The keyword 'all' is reserved by replication stored procedures.
14137 16 The @value parameter value must be either 'true' or 'false'.
14138 16 Invalid option name '%s'.
14139 16 The replication system table '%s' already exists.
14143 16 Cannot drop Distributor Publisher '%s'. There are Subscribers

associated with it in the distribution database '%s'.
14144 16 Cannot drop Subscriber '%s'. There are subscriptions from it in

the publication database '%s'.
14146 16 The article parameter '@schema_option' cannot be NULL.
14147 16 Restricted publications are no longer supported.
14148 16 Invalid '%s' value. Valid values are 'true' or 'false'.
14149 10 Removed %ld replication history records in %s seconds (%ld

row/secs).
14150 10 Replication-%s: agent %s succeeded. %s
14151 18 Replication-%s: agent %s failed. %s
14152 10 Replication-%s: agent %s scheduled for retry. %s
14153 10 Replication-%s: agent %s warning. %s
14154 16 The Distributor parameter must be '@heartbeat_interval'.
14155 16 Invalid article ID specified for procedure script generation.
14156 16 The custom stored procedure was not specified in the article

definition.
14157 10 The subscription created by Subscriber '%s' to publication '%s'

has expired and has been dropped.
14158 10 Replication-%s: agent %s: %s.
14159 16 Could not change property '%s' for article '%s' because there is

an existing subscription to the article.
14199 10 The specified job "%s" is not created for maintenance plans.
14200 16 The specified '%s' is invalid.
14201 10 0 (all steps) ..
14202 10 before or after @active_start_time
14203 10 sp_helplogins [excluding Windows NT groups]
14204 10 0 (non-idle), 1 (executing), 2 (waiting for thread), 3 (between

retries), 4 (idle), 5 (suspended), 7 (performing completion
actions)

14205 10 (unknown)
14206 10 0..n seconds
14207 10 -1 [no maximum], 0..n

14208 10 1..7 [1 = E-mail, 2 = Pager, 4 = NetSend]
14209 10 0..127 [1 = Sunday .. 64 = Saturday]
14210 10 notification
14211 10 server
14212 10 (all jobs)
14213 16 Core Job Details:
14214 16 Job Steps:
14215 16 Job Schedules:
14216 16 Job Target Servers:
14217 16 SQL Server Warning: '%s' has performed a forced defection of

TSX server '%s'. Run sp_delete_targetserver at the MSX in order
to complete the defection.

14218 10 hour
14219 10 minute
14220 10 second
14221 16 This job has one or more notifications to operators other than

'%s'. The job cannot be targeted at remote servers as currently
defined.

14222 16 Cannot rename the '%s' operator.
14223 16 Cannot modify or delete operator '%s' while this server is a %s.
14224 0 Warning: The server name given is not the current MSX server

('%s').
14225 16 Warning: Could not determine local machine name. This

prevents MSX operations from being posted.
14226 0 %ld history entries purged.
14227 0 Server defected from MSX '%s'. %ld job(s) deleted.
14228 0 Server MSX enlistment changed from '%s' to '%s'.
14229 0 Server enlisted into MSX '%s'.
14230 0 SP_POST_MSX_OPERATION: %ld %s download instruction(s)

posted.
14231 0 SP_POST_MSX_OPERATION Warning: The specified %s ('%s') is

not involved in a multiserver job.
14232 16 Specify either a job_name, job_id, or an originating_server.
14233 16 Specify a valid job_id (or 0x00 for all jobs).
14234 16 The specified '%s' is invalid (valid values are returned by %s).
14235 16 The specified '%s' is invalid (valid values are greater than 0 but

excluding %ld).
14236 0 Warning: Non-existent step referenced by %s.
14237 16 When an action of 'REASSIGN' is specified, the New Login

parameter must also be supplied.
14238 0 %ld jobs deleted.
14239 0 %ld jobs reassigned to %s.
14240 0 Job applied to %ld new servers.
14241 0 Job removed from %ld servers.
14242 16 Only a system administrator can reassign ownership of a job.
14243 0 Job '%s' started successfully.
14244 16 Only a system administrator can reassign tasks.
14245 16 Specify either the @name, @id, or @loginname of the task(s) to

be deleted.
14246 16 Specify either the @currentname or @id of the task to be

updated.
14247 16 Only a system administrator can view tasks owned by others.
14248 16 This login is the owner of %ld job(s). You must delete or

reassign these jobs before the login can be dropped.
14249 16 Specify either @taskname or @oldloginname when reassigning

a task.

14250 16 The specified %s is too long. It must contain no more than %ld
characters.

14251 16 Cannot specify '%s' as the operator to be notified.
14252 16 Cannot perform this action on a job you do not own.
14253 0 %ld (of %ld) job(s) stopped successfully.
14254 0 Job '%s' stopped successfully.
14255 16 The owner ('%s') of this job is either an invalid login, or is not a

valid user of database '%s'.
14256 16 Cannot start job '%s' (ID %s) because it does not have any job

server(s) defined.
14257 16 Cannot stop job '%s' (ID %s) because it does not have any job

server(s) defined.
14258 16 Cannot perform this operation while SQLServerAgent is

starting. Try again later.
14259 16 A schedule (ID %ld, '%s') for this job with this definition already

exists.
14260 16 You do not have sufficient permission to run this command.
14261 16 The specified %s ('%s') already exists.
14262 16 The specified %s ('%s') does not exist.
14263 16 Target server '%s' is already a member of group '%s'.
14264 16 Target server '%s' is not a member of group '%s'.
14265 25 The MSSQLServer service terminated unexpectedly.
14266 16 The specified '%s' is invalid (valid values are: %s).
14267 16 Cannot add a job to the '%s' job category.
14268 16 There are no jobs at this server that originated from server '%s'.
14269 16 Job '%s' is already targeted at server '%s'.
14270 16 Job '%s' is not currently targeted at server '%s'.
14271 16 A target server cannot be named '%s'.
14272 16 Object-type and object-name must be supplied as a pair.
14273 16 You must provide either @job_id or @job_name (and,

optionally, @schedule_name), or @schedule_id.
14274 16 Cannot add, update, or delete a job (or its steps or schedules)

that originated from an MSX server.
14275 16 The originating server must be either '(local)' or '%s'.
14276 16 '%s' is a permanent %s category and cannot be deleted.
14277 16 The command script does not destroy all the objects that it

creates. Revise the command script.
14278 16 The schedule for this job is invalid (reason: %s).
14279 16 Supply either @job_name or @originating_server.
14280 16 Supply either a job name (and job aspect), or one or more job

filter parameters.
14281 0 Warning: The @new_owner_login_name parameter is not

necessary when specifying a 'DELETE' action.
14282 16 Supply either a date (created or last modified) and a data

comparator, or no date parameters at all.
14283 16 Supply @target_server_groups or @target_servers, or both.
14284 16 Cannot specify a job ID for a new job. An ID will be assigned by

the procedure.
14285 16 Cannot add a local job to a multiserver job category.
14286 16 Cannot add a multiserver job to a local job category.
14287 16 The '%s' supplied has an invalid %s.
14288 16 %s cannot be before %s.
14289 16 %s cannot contain '%s' characters.
14290 16 This job is currently targeted at the local server so cannot also

be targeted at a remote server.

14291 16 This job is currently targeted at a remote server so cannot also
be targeted at the local server.

14292 16 There are two or more tasks named '%s'. Specify %s instead of
%s to uniquely identify the task.

14293 16 There are two or more jobs named '%s'. Specify %s instead of
%s to uniquely identify the job.

14294 16 Supply either %s or %s to identify the job.
14295 16 Frequency Type 0x2 (OnDemand) is no longer supported.
14296 16 This server is already enlisted into MSX '%s'.
14297 16 Cannot enlist into the local machine.
14298 16 This server is not currently enlisted into an MSX.
14299 16 Server '%s' is an MSX. Cannot enlist one MSX into another MSX.
14300 16 Circular dependencies exist. Dependency evaluation cannot

continue.
14301 16 Logins other than the current user can only be seen by

members of the sysadmin role.
14302 16 You must upgrade your client to version 6.5 of SQL-DMO and

SQL Server Enterprise Manager to connect to this server. The
upgraded versions will administer both SQL Server version 6.5
and 6.0 (if sqlole65.sql is run).

14303 16 Stored procedure '%s' failed to access registry key.
14304 16 Stored procedure '%s' can run only on Windows 2000 servers.
14410 16 You must supply either a plan_name or a plan_id.
14411 16 Cannot delete this plan. The plan contains enlisted databases.
14412 16 The destination database is already part of a log shipping plan.
14413 16 This database is already log shipping.
14414 16 A log shipping monitor is already defined.
14415 16 The user name cannot be null when using SQL Server

authentication.
14416 16 This stored procedure must be run in msdb.
14417 16 Cannot delete the monitor server while databases are

participating in log shipping.
14418 16 The specified @backup_file_name was not created from

database '%s'.
14419 16 The specified @backup_file_name is not a database backup.
14420 16 The log shipping source %s.%s has not backed up for %s

minutes.
14421 16 The log shipping destination %s.%s is out of sync by %s

minutes.
14422 16 Supply either @plan_id or @plan_name.
14423 16 Other databases are enlisted on this plan and must be removed

before the plan can be deleted.
14424 16 The database '%s' is already involved in log shipping.
14425 16 The database '%s' does not seem to be involved in log shipping.
14426 16 A log shipping monitor is already defined. Call

sp_define_log_shipping_monitor with @delete_existing = 1.
14427 16 A user name is necessary for SQL Server security.
14428 16 Could not remove the monitor as there are still databases

involved in log shipping.
14429 16 There are still secondary servers attached to this primary.
14430 16 Invalid destination path %s.
14440 16 Could not set single user mode.
14441 16 Role change succeeded.
14442 16 Role change failed.
14450 16 The specified @backup_file_name was not taken from database

'%s'.

14451 16 The specified @backup_file_name is not a database backup.
14500 16 Supply either a non-zero message ID, non-zero severity, or non-

null performance condition.
14501 16 An alert ('%s') has already been defined on this condition.
14502 16 The @target_name parameter must be supplied when

specifying an @enum_type of 'TARGET'.
14503 16 The @target_name parameter should not be supplied when

specifying an @enum_type of 'ALL' or 'ACTUAL'.
14504 16 '%s' is the fail-safe operator. You must make another operator

the fail-safe operator before '%s' can be dropped.
14505 16 Specify a null %s when supplying a performance condition.
14506 16 Cannot set alerts on message ID %ld.
14507 16 A performance condition must be formatted as:

'object_name|counter_name|instance_name|comparator(> or <
or =)|numeric value'.

14539 16 Only a Standard or Enterprise edition of SQL Server can be
enlisted into an MSX.

14540 16 Only a SQL Server running on Microsoft Windows NT can be
enlisted into an MSX.

14541 16 The version of the MSX (%s) is not recent enough to support
this TSX. Version %s or later is required at the MSX.

14542 16 It is invalid for any TSQL step of a multiserver job to have a
non-null %s value.

14543 16 Login '%s' owns one or more multiserver jobs. Ownership of
these jobs can only be assigned to members of the %s role.

14544 16 This job is owned by '%s'. Only a job owned by a member of the
%s role can be a multiserver job.

14545 16 The %s parameter is not valid for a job step of type '%s'.
14546 16 The %s parameter is not supported on Windows 95/98

platforms.
14547 10 Warning: This change will not be downloaded by the target

server(s) until an %s for the job is posted using %s.
14548 10 Target server '%s' does not have any jobs assigned to it.
14549 10 (Description not requested.)
14550 10 Command-Line Subsystem
14551 10 Replication Snapshot Subsystem
14552 10 Replication Transaction-Log Reader Subsystem
14553 10 Replication Distribution Subsystem
14554 10 Replication Merge Subsystem
14555 10 Active Scripting Subsystem
14556 10 Transact-SQL Subsystem
14557 10 [Internal]
14558 10 (encrypted command)
14559 10 (append output file)
14560 10 (include results in history)
14561 10 (normal)
14562 10 (quit with success)
14563 10 (quit with failure)
14564 10 (goto next step)
14565 10 (goto step)
14566 10 (idle)
14567 10 (below normal)
14568 10 (above normal)
14569 10 (time critical)
14570 10 (Job outcome)
14571 10 No description available.

14572 10 @freq_interval must be at least 1 for a daily job.
14573 10 @freq_interval must be a valid day of the week bitmask

[Sunday = 1 .. Saturday = 64] for a weekly job.
14574 10 @freq_interval must be between 1 and 31 for a monthly job.
14575 10 @freq_relative_interval must be one of 1st (0x1), 2nd (0x2), 3rd

[0x4], 4th (0x8) or Last (0x10).
14576 10 @freq_interval must be between 1 and 10 (1 = Sunday .. 7 =

Saturday, 8 = Day, 9 = Weekday, 10 = Weekend-day) for a
monthly-relative job.

14577 10 @freq_recurrence_factor must be at least 1.
14578 10 Starts whenever the CPU usage has remained below %ld

percent for %ld seconds.
14579 10 Automatically starts when SQLServerAgent starts.
14580 10 job
14581 10 Replication Transaction Queue Reader Subsystem
14585 16 Only the owner of DTS Package '%s' or a member of the

sysadmin role may reassign its ownership.
14586 16 Only the owner of DTS Package '%s' or a member of the

sysadmin role may create new versions of it.
14587 16 Only the owner of DTS Package '%s' or a member of the

sysadmin role may drop it or any of its versions.
14588 10 ID.VersionID =
14589 10 [not specified]
14590 16 DTS Package '%s' already exists with a different ID in this

category.
14591 16 DTS Category '%s' already exists in the specified parent

category.
14592 16 DTS Category '%s' was found in multiple parent categories. You

must uniquely specify the category to be dropped.
14593 16 DTS Category '%s' contains packages and/or other categories.

You must drop these first, or specify a recursive drop.
14594 10 DTS Package
14595 16 DTS Package '%s' exists in different categories. You must

uniquely specify the package.
14596 16 DTS Package '%s' exists in another category.
14597 16 DTS Package ID '%s' already exists with a different name.
14598 16 Cannot drop the Local, Repository, or LocalDefault DTS

categories.
14599 10 Name

Troubleshooting (SQL Server 2000)

Errors 15000 - 15999
Errors 15000 - 15999

Error Severity Description (Message Text)
15001 16 Object '%ls' does not exist or is not a valid object for this

operation.
15002 16 The procedure '%s' cannot be executed within a transaction.
15003 16 Only members of the %s role can execute this stored procedure.
15004 16 Name cannot be NULL.
15005 0 Statistics for all tables have been updated.
15006 16 '%s' is not a valid name because it contains invalid characters.
15007 16 The login '%s' does not exist.
15008 16 User '%s' does not exist in the current database.
15009 16 The object '%s' does not exist in database '%s'.
15010 16 The database '%s' does not exist. Use sp_helpdb to show

available databases.
15011 16 Database option '%s' does not exist.
15012 16 The device '%s' does not exist. Use sp_helpdevice to show

available devices.
15013 0 Table '%s': No columns without statistics found.
15014 16 The role '%s' does not exist in the current database.
15015 16 The server '%s' does not exist. Use sp_helpserver to show

available servers.
15016 16 The default '%s' does not exist.
15017 16 The rule '%s' does not exist.
15018 0 Table '%s': Creating statistics for the following columns:
15019 16 The extended stored procedure '%s' does not exist.
15020 0 Statistics have been created for the %d listed columns of the

above tables.
15021 16 There are no remote users mapped to any local user from

remote server '%s'.
15022 16 The specified user name is already aliased.
15023 16 User or role '%s' already exists in the current database.
15024 16 The group '%s' already exists in the current database.
15025 16 The login '%s' already exists.
15026 16 Logical device '%s' already exists.
15027 16 There are no remote users mapped to local user '%s' from

remote server '%s'.
15028 16 The server '%s' already exists.
15029 16 The data type '%s' already exists in the current database.
15030 16 The read-only bit cannot be turned off because the database is

in standby mode.
15031 0 'Virtual_device' device added.
15032 16 The database '%s' already exists.
15033 16 '%s' is not a valid official language name.
15034 16 The application role password must not be NULL.
15035 16 '%s' is not a database device.
15036 16 The data type '%s' does not exist.
15037 16 The physical data type '%s' does not allow nulls.
15038 16 User-defined data types based on timestamp are not allowed.
15039 16 The language %s already exists in syslanguages.
15040 16 User-defined error messages must have an ID greater than

50000.

15041 16 User-defined error messages must have a severity level
between 1 and 25.

15043 16 You must specify 'REPLACE' to overwrite an existing message.
15044 16 '%s' is an unknown device type. Use 'disk', 'tape', or 'pipe'.
15045 16 The logical name cannot be NULL.
15046 16 The physical name cannot be NULL.
15047 16 The only permitted options for a tape device are 'skip' and

'noskip'.
15048 0 Valid values of database compatibility level are %d, %d, %d, or

%d.
15049 11 Cannot unbind from '%s'. Use ALTER TABLE DROP

CONSTRAINT.
15050 11 Cannot bind default '%s'. The default must be created using the

CREATE DEFAULT statement.
15051 11 Cannot rename the table because it is published for replication.
15052 0 Prior to updating sysdatabases entry for database '%s', mode =

%d and status = %d (status suspect_bit = %d).
15053 16 Objects exist which are not owned by the database owner.
15054 0 The current compatibility level is %d.
15055 11 Error. Updating sysdatabases returned @@error <> 0.
15056 0 No row in sysdatabases was updated because mode and status

are already correctly reset. No error and no changes made.
15057 16 List of %s name contains spaces, which are not allowed.
15058 16 List of %s has too few names.
15059 16 List of %s has too many names.
15060 16 List of %s names contains name(s) which have '%s' non-

alphabetic characters.
15061 16 Add device request denied. A physical device named '%s'

already exists.
15062 16 The guest user cannot be mapped to a login name.
15063 16 The login already has an account under a different user name.
15064 11 PRIMARY KEY and UNIQUE KEY constraints do not have space

allocated.
15065 16 All user IDs have been assigned.
15066 16 A default-name mapping of a remote login from remote server

'%s' already exists.
15067 16 '%s' is not a local user. Remote login denied.
15068 16 A remote user '%s' already exists for remote server '%s'.
15069 16 One or more users are using the database. The requested

operation cannot be completed.
15070 0 Object '%s' was successfully marked for recompilation.
15071 16 Usage: sp_addmessage <msgnum>,<severity>,<msgtext> [,

<language> [,FALSE | TRUE [,REPLACE]]]
15072 16 Usage: sp_addremotelogin remoteserver [, loginame

[,remotename]]
15073 0 For row in sysdatabases for database '%s', the status bit %d was

forced off and mode was forced to 0.
15074 0 Warning: You must recover this database prior to access.
15075 16 The data type '%s' is reserved for future use.
15076 16 Default, table, and user data types must be in the current

database.
15077 16 Rule, table, and user data type must be in the current database.
15078 16 The table or view must be in the current database.
15079 10 Queries processed: %d.
15081 16 Membership of the public role cannot be changed.

15082 11 NULL is not an acceptable parameter value for this procedure.
Use a percent sign instead.

15083 16 Physical data type '%s' does not accept a collation
15084 16 The column or user data type must be in the current database.
15085 16 Usage: sp_addtype name, 'data type' [,'NULL' | 'NOT NULL']
15086 16 Invalid precision specified. Precision must be between 1 and 38.
15087 16 Invalid scale specified. Scale must be less than precision and

positive.
15088 16 The physical data type is fixed length. You cannot specify the

length.
15089 11 Cannot change the '%s' option of a database while another user

is in the database.
15090 16 There is already a local server.
15091 16 You must specify a length with this physical data type.
15092 16 Invalid length specified. Length must be between 1 and 8000

bytes.
15093 16 '%s' is not a valid date order.
15094 16 '%s' is not a valid first day.
15095 16 Insert into syslanguages failed. Language not added.
15097 16 The size associated with an extended property cannot be more

than 7,500 bytes.
15100 16 Usage: sp_bindefault defaultname, objectname [, 'futureonly']
15101 16 Cannot bind a default to a column of data type timestamp.
15102 16 Cannot bind a default to an identity column.
15103 16 Cannot bind a default to a column created with or altered to

have a default value.
15104 16 You do not own a table named '%s' that has a column named

'%s'.
15105 16 You do not own a data type with that name.
15106 16 Usage: sp_bindrule rulename, objectname [, 'futureonly']
15107 16 Cannot bind a rule to a column of data type text, ntext, image, or

timestamp.
15109 16 Cannot change the owner of the master database.
15110 16 The proposed new database owner is already a user in the

database.
15111 16 The proposed new database owner is already aliased in the

database.
15112 11 The third parameter for table option 'text in row' is invalid. It

should be 'on', 'off', '0', or a number from 24 through 7000.
15123 16 The configuration option '%s' does not exist, or it may be an

advanced option.
15124 16 The configuration option '%s' is not unique.
15125 16 Trigger '%s' is not a trigger for '%s'.
15126 16 Trigger '%s' was not found.
15127 16 Cannot set the default language to a language ID not defined in

syslanguages.
15129 16 '%d' is not a valid value for configuration option '%s'.
15130 16 Table '%s' already has a '%s' trigger for '%s'.
15131 16 Usage: sp_dbremove <dbname> [,dropdev]
15132 16 Cannot change default database belonging to someone else.
15133 16 INSTEAD OF trigger '%s' cannot be associated with an order.
15134 16 No alias exists for the specified user.
15135 16 Object is invalid. Extended properties are not permitted on '%s',

or the object does not exist.
15139 16 The device is a RAM disk and cannot be used as a default

device.

15140 16 Usage: sp_diskdefault logicalname {defaulton | defaultoff}
15142 16 Cannot drop the role '%s'.
15143 16 '%s' is not a valid option for the @updateusage parameter.

Enter either 'true' or 'false'.
15144 16 The role has members. It must be empty before it can be

dropped.
15174 16 Login '%s' owns one or more database(s). Change the owner of

the following database(s) before dropping login:
15175 16 Login '%s' is aliased or mapped to a user in one or more

database(s). Drop the user or alias before dropping the login.
15176 16 The only valid @parameter value is 'WITH_LOG'.
15177 16 Usage: sp_dropmessage <msg number> [,<language> | 'ALL']
15178 16 Cannot drop a message with an ID less than 50000.
15179 16 Message number %u does not exist.
15180 16 Cannot drop. The data type is being used.
15181 16 Cannot drop the database owner.
15182 16 Cannot drop the guest user from master or tempdb.
15183 16 The user owns objects in the database and cannot be dropped.
15184 16 The user owns data types in the database and cannot be

dropped.
15185 16 There is no remote user '%s' mapped to local user '%s' from the

remote server '%s'.
15190 16 There are still remote logins for the server '%s'.
15191 16 Usage: sp_dropserver server [, droplogins]
15193 16 This procedure can only be used on system tables.
15194 16 Cannot re-create index on this table.
15197 16 There is no text for object '%s'.
15198 16 The name supplied (%s) is not a user, role, or aliased login.
15200 16 There are no remote servers defined.
15201 16 There are no remote logins for the remote server '%s'.
15202 16 There are no remote logins defined.
15203 16 There are no remote logins for '%s'.
15204 16 There are no remote logins for '%s' on remote server '%s'.
15205 16 There are no servers defined.
15206 16 Invalid Remote Server Option: '%s'.
15210 16 Only members of the sysadmin role can use the loginame

option. The password was not changed.
15211 16 Old (current) password incorrect for user. The password was

not changed.
15216 16 '%s' is not a valid option for the @delfile parameter.
15217 16 Property cannot be updated or deleted. Property '%s' does not

exist for '%s'.
15218 16 Object '%s' is not a table.
15220 16 Usage: sp_remoteoption [remoteserver, loginame, remotename,

optname, {true | false}]
15221 16 Remote login option does not exist or cannot be set by user.

Run sp_remoteoption with no parameters to see options.
15222 16 Remote login option '%s' is not unique.
15223 11 Error: The input parameter '%s' is not allowed to be null.
15224 11 Error: The value for the @newname parameter contains invalid

characters or violates a basic restriction (%s).
15225 11 No item by the name of '%s' could be found in the current

database '%s', given that @itemtype was input as '%s'.
15227 16 The database '%s' cannot be renamed.
15228 16 A member of the sysadmin role must set database '%s' to single

user mode with sp_dboption before it can be renamed.

15233 16 Property cannot be added. Property '%s' already exists for '%s'.
15234 16 Object is stored in sysprocedures and has no space allocated

directly.
15235 16 Views do not have space allocated.
15236 16 Column '%s' has no default.
15237 16 User data type '%s' has no default.
15238 16 Column '%s' has no rule.
15239 16 User data type '%s' has no rule.
15241 16 Usage: sp_dboption [dbname [,optname [,'true' | 'false']]]
15242 16 Database option '%s' is not unique.
15243 16 The option '%s' cannot be changed for the master database.
15244 16 Only members of the sysadmin role or the database owner may

set database options.
15245 16 DBCC DBCONTROL error. Database was not placed offline.
15247 16 User does not have permission to perform this action.
15248 11 Error: The parameter @oldname is either ambiguous or the

claimed @itemtype (%s) was wrong.
15249 11 Error: Explicit @itemtype '%s' is unrecognized (%d).
15250 16 The database name component of the object qualifier must be

the name of the current database.
15251 16 Invalid '%s' specified. It must be %s.
15252 16 The primary or foreign key table name must be given.
15253 11 Syntax error parsing SQL identifier '%s'.
15254 16 Users other than the database owner or guest exist in the

database. Drop them before removing the database.
15255 11 '%s' is not a valid value for @autofix. The only valid value is

'auto'.
15256 16 Usage: sp_certify_removable <dbname> [,'auto']
15257 16 The database that you are attempting to certify cannot be in use

at the same time.
15258 16 The database must be owned by a member of the sysadmin

role before it can be removed.
15261 16 Usage: sp_create_removable <dbname>,<syslogical>,

<sysphysical>,<syssize>,<loglogical>,<logphysical>,
<logsize>,<datalogical1>,<dataphysical1>,<datasize1> [,
<datalogical2>,<dataphysical2>,<datasize2>...
<datalogical16>,<dataphysical16>,<datasize16>]

15262 0 Invalid file size entered. All files must be at least 1 MB.
15264 16 Could not create the '%s' portion of the database.
15266 16 Cannot make '%s' database removable.
15269 16 Logical data device '%s' not created.
15270 16 You cannot specify a length for user data types based on

sysname.
15271 16 Invalid @with_log parameter value. Valid values are 'true' or

'false'.
15275 16 FOREIGN KEY constraints do not have space allocated.
15277 16 The only valid @parameter_value values are 'true' or 'false'.
15278 16 Login '%s' is already mapped to user '%s' in database '%s'.
15279 16 You must add the us_english version of this message before

you can add the '%s' version.
15280 16 All localized versions of this message must be dropped before

the us_english version can be dropped.
15283 16 The name '%s' contains too many characters.
15284 16 The user has granted or revoked privileges to the following in

the database and cannot be dropped.
15285 16 The special word '%s' cannot be used for a logical device name.

15286 16 Terminating this procedure. The @action '%s' is unrecognized.
Try 'REPORT', 'UPDATE_ONE', or 'AUTO_FIX'.

15287 16 Terminating this procedure. '%s' is a forbidden value for the
login name parameter in this procedure.

15289 16 Terminating this procedure. Cannot have an open transaction
when this is run.

15290 16 Terminating this procedure. The Action '%s' is incompatible
with the other parameter values ('%s', '%s').

15291 16 Terminating this procedure. The %s name '%s' is absent or
invalid.

15292 0 The row for user '%s' will be fixed by updating its login link to a
login already in existence.

15293 0 Barring a conflict, the row for user '%s' will be fixed by updating
its link to a new login. Consider changing the new password
from null.

15294 0 The number of orphaned users fixed by adding new logins and
then updating users was %d.

15295 0 The number of orphaned users fixed by updating users was %d.
15298 0 New login created.
15300 11 No recognized letter is contained in the parameter value for

General Permission Type (%s). Valid letters are in this set: %s.
15301 16 Collation '%s' is supported for Unicode data types only and

cannot be set at either the database or server level.
15302 11 Database_Name should not be used to qualify owner.object for

the parameter into this procedure.
15303 11 The "user options" config value (%d) was rejected because it

would set incompatible options.
15304 16 The severity level of the '%s' version of this message must be

the same as the severity level (%ld) of the us_english version.
15305 16 The @TriggerType parameter value must be 'insert', 'update', or

'delete'.
15306 16 Cannot change the compatibility level of replicated or

distributed databases.
15307 16 Could not change the merge publish option because the server

is not set up for replication.
15308 16 You must set database '%s' to single user mode with

sp_dboption before fixing indexes on system tables.
15311 16 The file named '%s' does not exist.
15312 16 The file named '%s' is a primary file and cannot be removed.
15318 0 All fragments for database '%s' on device '%s' are now

dedicated for log usage only.
15319 17 Error: DBCC DBREPAIR REMAP failed for database '%s' (device

'%s').
15321 16 There was some problem removing '%s' from sysaltfiles.
15322 0 File '%s' was removed from tempdb, and will take effect upon

server restart.
15323 16 The selected index does not exist on table '%s'.
15324 16 The option %s cannot be changed for the '%s' database.
15325 16 The current database does not contain a %s named '%ls'.
15326 0 No extended stored procedures exist.
15327 0 The database is now offline.
15328 0 The database is offline already.
15330 11 There are no matching rows on which to report.
15331 11 The user "%s" cannot take the action auto_fix due to duplicate

SID.
15333 11 Error: The qualified @oldname references a database (%s) other

than the current database.

15335 11 Error: The @newname value '%s' is already in use as a %s name
and would cause a duplicate that is not permitted.

15336 16 Object '%s' cannot be renamed because the object participates
in enforced dependencies.

15337 0 Caution: sysdepends shows that other objects (views,
procedures and so on) are referencing this object by its old
name. These objects will become invalid, and should be
dropped and re-created promptly.

15338 0 The %s was renamed to '%s'.
15339 0 Creating '%s'.
15340 0 Alias user added.
15341 0 Granted database access to '%s'.
15354 0 Usage: sp_detachdb <dbname>, [TRUE|FALSE]
15358 0 User-defined filegroups should be made read-only.
15363 16 The role '%s' already exists in the current database.
15379 11 The server option value '%s' supplied is unrecognized.
15394 16 Collation '%s' is not supported by the operating system
15387 11 If the qualified object name specifies a database, that database

must be the current database.
15388 11 There is no user table matching the input name '%s' in the

current database.
15390 11 Input name '%s' does not have a matching user table or indexed

view in the current database.
15395 11 The qualified old name could not be found for item type '%s'.
15398 11 Only objects in the master database owned by dbo can have the

startup setting changed.
15399 11 Could not change startup option because this option %s. This

type of change is restricted to objects that have no parameters
or columns.

15401 11 Windows NT user or group '%s' not found. Check the name
again.

15402 11 '%s' is not a fixed server role.
15405 11 Cannot use the reserved user or role name '%s'.
15407 11 '%s' is not a valid Windows NT name. Give the complete name:

<domain\username>.
15409 11 '%s' is not a role.
15410 11 User or role '%s' does not exist in this database.
15412 11 '%s' is not a known fixed role.
15413 11 Cannot make a role a member of itself.
15414 16 Cannot set compatibility level because database has a view or

computed column that is indexed. These indexes require a SQL
Server compatible database.

15415 11 User is a member of more than one group. sp_changegroup is
set up for backward compatibility and expects membership in
one group at most.

15416 16 Usage: sp_dbcmptlevel [dbname [, compatibilitylevel]]
15417 16 Cannot change the compatibility level of the '%s' database.
15418 16 Only members of the sysadmin role or the database owner may

set the database compatibility level.
15419 16 Supplied parameter @sid should be binary(16).
15420 16 The group '%s' does not exist in this database.
15421 16 The user owns role(s) in the database and cannot be dropped.
15422 16 Application roles can only be activated at the ad hoc level.
15423 0 The password for application role '%s' has been changed.
15424 0 New role added.
15425 0 New application role added.

15426 16 You must specify a provider name with this set of properties.
15427 16 You must specify a provider name for unknown product '%ls'.
15428 16 You cannot specify a provider or any properties for product

'%ls'.
15429 16 '%ls' is an invalid product name.
15430 19 Limit exceeded for number of servers.
15431 16 You must specify the @rolename parameter.
15432 16 Stored procedure '%s' can only be executed at the ad hoc level.
15433 16 Supplied parameter @sid is in use.
15434 16 Could not drop login '%s' as the user is currently logged in.
15435 0 Database successfully published.
15436 0 Database successfully enabled for subscriptions.
15437 0 Database successfully published using merge replication.
15438 0 Database is already online.
15439 0 Database is now online.
15440 0 Database is no longer published.
15441 0 Database is no longer enabled for subscriptions.
15442 0 Database is no longer enabled for merge publications.
15443 0 Checkpointing database that was changed.
15444 0 'Disk' device added.
15445 0 'Diskette' device added.
15446 0 'Tape' device added.
15447 0 'Pipe' device added.
15449 0 Type added.
15450 0 New language inserted.
15452 0 No alternate languages are available.
15453 0 us_english is always available, even though it is not in

syslanguages.
15454 0 Language deleted.
15456 0 Valid configuration options are:
15457 0 Configuration option '%ls' changed from %ld to %ld. Run the

RECONFIGURE statement to install.
15458 0 Database removed.
15459 0 In the current database, the specified object references the

following:
15460 0 In the current database, the specified object is referenced by the

following:
15461 0 Object does not reference any object, and no objects reference

it.
15462 0 File '%s' closed.
15463 0 Device dropped.
15467 0 Type has been dropped.
15469 0 No constraints have been defined for this object.
15470 0 No foreign keys reference this table.
15471 0 The object comments have been encrypted.
15472 0 The object does not have any indexes.
15473 0 Settable remote login options.
15475 0 The database is renamed and in single user mode.
15476 0 A member of the sysadmin role must reset the database to

multiuser mode with sp_dboption.
15477 0 Caution: Changing any part of an object name could break

scripts and stored procedures.
15478 0 Password changed.
15479 0 Login dropped.
15480 0 Could not grant login access to '%s'.

15481 0 Granted login access to '%s'.
15482 0 Could not deny login access to '%s'.
15483 0 Denied login access to '%s'.
15484 0 Could not revoke login access from '%s'.
15485 0 Revoked login access from '%s'.
15486 0 Default database changed.
15487 0 %s's default language is changed to %s.
15488 0 '%s' added to role '%s'.
15489 0 '%s' dropped from role '%s'.
15490 0 The dependent aliases were also dropped.
15491 0 User has been dropped from current database.
15492 0 Alias user dropped.
15493 0 Role dropped.
15494 0 The application role '%s' is now active.
15495 0 Application role dropped.
15496 0 Group changed.
15497 0 Could not add login using sp_addlogin (user = %s). Terminating

this procedure.
15498 17 Inside txn_1a_, update failed. Will roll back (1a1).
15499 0 The dependent aliases were mapped to the new database

owner.
15500 0 The dependent aliases were dropped.
15501 0 Database owner changed.
15502 0 Setting database owner to SA.
15503 0 Giving ownership of all objects to the database owner.
15504 0 Deleting users except guest and the database owner from

sysusers.
15505 16 Cannot change owner of object '%ls' or one of its child objects

because the new owner '%ls' already has an object with the
same name.

15511 0 Default bound to column.
15512 0 Default bound to data type.
15513 0 The new default has been bound to columns(s) of the specified

user data type.
15514 0 Rule bound to table column.
15515 0 Rule bound to data type.
15516 0 The new rule has been bound to column(s) of the specified user

data type.
15519 0 Default unbound from table column.
15520 0 Default unbound from data type.
15521 0 Columns of the specified user data type had their defaults

unbound.
15522 0 Rule unbound from table column.
15523 0 Rule unbound from data type.
15524 0 Columns of the specified user data type had their rules

unbound.
15525 0 sp_checknames is used to search for non 7-bit ASCII characters.
15526 0 in several important columns of system tables. The following
15527 0 columns are searched:
15528 0 In master:
15536 0 In all databases:
15543 0 Looking for non 7-bit ASCII characters in the system tables of

database '%s'.
15544 0 Table.column '%s'

15545 0 The following database names contain non 7-bit ASCII
characters.

15546 0 If you wish to change these names, use '%s'.
15547 0 The following logins have default database names that contain
15548 0 non 7-bit ASCII characters. If you wish to change these names

use
15549 0 sp_defaultdb.
15550 0 The following servers have 'initialization file' names that contain
15551 0 non 7-bit ASCII characters. If you wish to change these names,
15552 0 use UPDATE.
15553 0 Database '%s' has no object, user, and so on
15554 0 names that contain non 7-bit ASCII characters.
15555 0 The database name provided '%s' must be the current database

when executing this stored procedure.
15564 0 The following device names contain non 7-bit ASCII characters.
15565 0 The following login names contain non 7-bit ASCII characters.
15566 0 The following remote login names contain non 7-bit ASCII

characters.
15567 0 The following server names contain non 7-bit ASCII characters.
15568 0 The following column and parameter names contain non 7-bit

ASCII characters.
15569 0 The following index names contain non 7-bit ASCII characters.
15570 0 The following object names contain non 7-bit ASCII characters.
15571 0 The following segment names contain non 7-bit ASCII

characters.
15572 0 The following data type names contain non 7-bit ASCII

characters.
15573 0 The following user or role names contain non 7-bit ASCII

characters.
15574 10 This object does not have any statistics.
15575 10 This object does not have any statistics or indexes.
15576 16 You cannot set network name on server '%ls' because it is not a

linked SQL Server.
15600 15 An invalid parameter or option was specified for procedure

'%s'.
15601 16 Full-Text Search is not enabled for the current database. Use

sp_fulltext_database to enable Full-Text Search.
15604 16 Cannot drop full-text catalog '%ls' because it contains a full-text

index.
15605 16 A full-text index for table '%ls' has already been created.
15606 16 You must first create a full-text index on table '%ls'.
15607 16 '%ls' is not a valid index to enforce a full-text search key. You

must specify a unique, non-nullable, single-column index.
15608 16 Full-text search has already been activated for table '%ls'.
15609 16 Cannot activate full-text search for table '%ls' because no

columns have been enabled for full-text search.
15610 16 You must deactivate full-text search on table '%ls' before

adding columns to or removing columns from the full-text
index.

15611 16 Column '%ls' of table '%ls' cannot be used for full-text search
because it is not a character-based column.

15612 16 DBCC DBCONTROL error. Database was not made read-only.
15613 0 The database is now read-only.
15614 0 The database already is read-only.
15615 16 DBCC DBCONTROL error. Database was not made single user.
15616 0 The database is now single user.

15617 0 The database already is single user.
15618 0 The database is now read/write.
15619 0 The database already is read/write.
15620 0 The database is now multiuser.
15621 0 The database already is multiuser.
15622 10 No permission to access database '%s'.
15623 10 Enabling %ls option for database '%ls'.
15624 10 Disabling %ls option for database '%ls'.
15625 10 Option '%ls' not recognized for '%ls' parameter.
15626 10 You attempted to acquire a transactional application lock

without an active transaction.
15627 10 sp_dboption command failed.
15630 16 Full-text search must be activated on table '%ls' before this

operation can be performed.
15631 16 Full-text change tracking is currently enabled for table '%ls'.
15632 16 Full-text change tracking must be started on table '%ls' before

full-text auto propagation can begin.
15633 16 Full-text auto propagation is currently enabled for table '%ls'.
15634 16 Full-text change tracking must be started on table '%ls' before

the changes can be flushed.
15635 16 Cannot execute '%ls' because the database is in read-only

access mode.
15636 16 Full-text catalog '%ls' cannot be populated because the

database is in single-user access mode.
15637 16 Full-text index for table '%ls' cannot be populated because the

database is in single-user access mode.
15638 10 Warning: Full-text index for table '%ls' cannot be populated

because the database is in single-user access mode. Change
tracking is stopped for this table. Use sp_fulltext_table to start
change tracking.

15639 10 Warning: Table '%s' does not have the option 'text in row'
enabled and has full-text indexed columns that are of type
image, text, or ntext. Full-text change tracking cannot track
WRITETEXT or UPDATETEXT operations performed on these
columns.

15640 16 sp_fulltext_table 'start_full' must be executed on table '%ls'.
Columns affecting the index have been added or dropped since
the last index full population.

15642 16 The ongoing population is necessary to ensure an up-to-date
index. If needed, stop change tracking, and then deactivate the
full-text index population.

15643 10 Warning: This operation did not succeed on one or more tables.
A table may be inactive, or a full-text index population may
already be active.

15644 16 Full-text index population failed to start on this table. Execute
sp_fulltext_table '%ls', '%ls' to update the index.

15645 16 Column '%ls' does not exist.
15646 16 Column '%ls' is not a computed column.
15647 10 No views with schema binding reference this table.

Troubleshooting (SQL Server 2000)

Errors 16000 - 16999
Errors 16000 - 16999

Error Severity Description (Message Text)
16801 11 sp_dropwebtask requires at least one defined parameter

@outputfile or @procname.
16802 11 sp_dropwebtask cannot find the specified task.
16803 11 sp_runwebtask requires at least one defined parameter

@outputfile or @procname.
16804 11 SQL Web Assistant: Could not establish a local connection to

SQL Server.
16805 11 SQL Web Assistant: Could not execute the SQL statement.
16806 11 SQL Web Assistant: Could not bind the parameter to the SQL

statement.
16807 11 SQL Web Assistant: Could not obtain a bind token.
16808 11 SQL Web Assistant: Could not find the existing trigger. This

could be due to encryption.
16809 11 SQL Web Assistant failed on the call to SQLGetData.
16810 11 SQL Web Assistant failed on the call to SQLFetch.
16811 11 SQL Web Assistant failed to bind a results column.
16812 11 SQL Web Assistant: The @query parameter must be specified.
16813 11 SQL Web Assistant: Parameters can be passed either by name

or position.
16814 11 SQL Web Assistant: Invalid parameter.
16815 11 SQL Web Assistant: @procname is not valid.
16816 11 SQL Web Assistant: @outputfile is not valid.
16817 11 SQL Web Assistant: Could not read the given file.
16820 11 SQL Web Assistant failed because the state of the Web task in

msdb..MSwebtasks is invalid.
16821 11 SQL Web Assistant: Could not open the output file.
16822 11 SQL Web Assistant: Could not open the template file.
16823 11 SQL Web Assistant: Could not allocate enough memory to

satisfy this request.
16824 11 SQL Web Assistant: The template file specified in the Web task

has a bad size.
16825 11 SQL Web Assistant: Could not read the template file.
16826 11 SQL Web Assistant: Could not find the specified marker for data

insertion in the template file.
16827 11 SQL Web Assistant: Could not write to the output file.
16828 11 SQL Web Assistant: @tabborder must be tinyint.
16829 11 SQL Web Assistant: @singlerow must be 0 or 1. Cannot specify

this parameter with @nrowsperpage.
16830 11 SQL Web Assistant: The @blobfmt parameter specification is

invalid.
16831 11 SQL Web Assistant: The output file name is mandatory for every

column specified in the @blobfmt parameter.
16832 11 SQL Web Assistant: Procedure called with too many

parameters.
16833 11 SQL Web Assistant: @nrowsperpage must be a positive number

and it cannot be used with @singlerow.
16834 11 SQL Web Assistant: Read/write operation on text, ntext, or

image column failed.
16838 11 SQL Web Assistant: Could not find the table in the HTML file.

16839 11 SQL Web Assistant: Could not find the matching end table tag
in the HTML file.

16841 11 SQL Web Assistant: The @datachg parameter cannot be
specified with the given @whentype value.

16842 11 SQL Web Assistant: Could not find and drop the necessary
trigger for updating the Web page.

16843 11 SQL Web Assistant: Could not add the necessary trigger for the
@datachg parameter. There could be an existing trigger on the
table with missing or encrypted text.

16844 11 SQL Web Assistant: Incorrect syntax for the @datachg
parameter.

16845 11 SQL Web Assistant: @datachg must be specified for the given
@whentype option.

16846 11 SQL Web Assistant: @unittype and/or @numunits must be
specified for the given @whentype option.

16847 11 SQL Web Assistant: @fixedfont must be 0 or 1.
16848 11 SQL Web Assistant: @bold must be 0 or 1.
16849 11 SQL Web Assistant: @italic must be 0 or 1.
16850 11 SQL Web Assistant: @colheaders must be 0 or 1.
16851 11 SQL Web Assistant: @lastupdated must be 0 or 1.
16852 11 SQL Web Assistant: @HTMLheader must be in the range 1 to 6.
16853 11 SQL Web Assistant: @username is not valid.
16854 11 SQL Web Assistant: @dbname is not valid.
16855 11 SQL Web Assistant: @whentype must be in the range 1 to 9.
16856 11 SQL Web Assistant: @unittype must be in the range 1 to 4.
16857 11 SQL Web Assistant: @targetdate is invalid. It must be a valid

date after 1900-01-01.
16858 11 SQL Web Assistant: The @targettime parameter must be

between 0 and 240000.
16859 11 SQL Web Assistant: @dayflags must be 1, 2, 4, 8, 16, 32, or 64.
16860 11 SQL Web Assistant: @numunits must be greater than 0.
16861 11 SQL Web Assistant: @targetdate must be specified for the given

@whentype option.
16862 11 SQL Web Assistant: @dayflags must be specified for the given

@whentype option.
16863 11 SQL Web Assistant: URL specification is invalid.
16864 11 SQL Web Assistant: @blobfmt is invalid. The file must include

the full path to the output_file location.
16865 11 SQL Web Assistant: URL hyperlink text column must not be of

the image data type.
16866 11 SQL Web Assistant: Could not obtain the number of columns in

@query.
16867 11 SQL Web Assistant: URL hyperlink text column is missing in

@query.
16868 11 SQL Web Assistant failed on the call to SQLColAttribute.
16869 11 SQL Web Assistant: Columns of data type image cannot have a

template.
16870 11 SQL Web Assistant: Internal error. Could not read @

parameters.
16871 11 SQL Web Assistant: Invalid @charset. Execute

sp_enumcodepages for a list of character sets.
16873 11 SQL Web Assistant: Invalid @codepage. Execute

sp_enumcodepages for a list of code pages.
16874 11 SQL Web Assistant: Internal error. Cannot translate to the

specified code page.
16875 11 SQL Web Assistant: Translation to the desired code page is

unavailable on this system.

16876 11 SQL Web Assistant: Internal error. Could not obtain COM
interface ID.

16877 11 SQL Web Assistant: Internal error. Could not obtain COM
language ID.

16878 11 SQL Web Assistant: Internal error. Could not initialize COM
library.

16879 11 SQL Web Assistant: Internal error. Could not translate from
Unicode to the specified code page.

16880 11 SQL Web Assistant: Internal error. Could not create translation
object. Make sure that the file MLang.dll is in your system
directory.

16881 16 SQL Web Assistant: This version is not supported on Win32s of
Windows 3.1.

16882 16 SQL Web Assistant: Web task not found. Verify the name of the
task for possible errors.

16883 16 SQL Web Assistant: Could not list Web task parameters.
xp_readwebtask requires @procname.

16884 16 SQL Web Assistant: Procedure name is required to convert Web
tasks.

16885 16 SQL Web Assistant: Could not upgrade the Web task to 8.0. The
Web task will remain in 6.5 format and will need to be re-
created.

16886 16 SQL Web Assistant: Could not update Web tasks system table.
The Web task remains in 6.5 format.

16887 16 SQL Web Assistant: @procname parameter is missing. The
parameter is required to upgrade a Web task to 8.0.

16888 16 SQL Web Assistant: Source code page is not supported on the
system. Ensure @charset and @codepage language files are
installed on your system.

16889 16 SQL Web Assistant: Could not send Web task row to the client.
16890 16 SQL Web Assistant: ODS error occurred. Could not send Web

task parameters.
16901 16 %hs: This feature has not been implemented yet.
16902 16 %hs: The value of parameter %hs is invalid.
16903 16 %hs procedure called with incorrect number of parameters.
16904 16 sp_cursor: optype: You can only specify ABSOLUTE in

conjunction with DELETE or UPDATE.
16905 16 The cursor is already open.
16907 16 %hs is not allowed in cursor statements.
16909 16 %hs: The cursor identifier value provided (%x) is not valid.
16911 16 %hs: The fetch type %hs cannot be used with forward only

cursors.
16914 16 %hs procedure called with too many parameters.
16915 16 A cursor with the name '%.*ls' already exists.
16916 16 A cursor with the name '%.*ls' does not exist.
16917 16 Cursor is not open.
16922 16 Cursor Fetch: Implicit conversion from data type %s to %s is not

allowed.
16924 16 Cursorfetch: The number of variables declared in the INTO list

must match that of selected columns.
16925 16 The fetch type %hs cannot be used with dynamic cursors.
16926 16 sp_cursoroption: The column ID (%d) does not correspond to a

text, ntext, or image column.
16927 16 Cannot fetch into text, ntext, and image variables.
16929 16 The cursor is READ ONLY.
16930 16 The requested row is not in the fetch buffer.
16931 16 There are no rows in the current fetch buffer.

16932 16 The cursor has a FOR UPDATE list and the requested column to
be updated is not in this list.

16933 16 The cursor does not include the table being modified or the
table is not updatable through the cursor.

16934 16 Optimistic concurrency check failed. The row was modified
outside of this cursor.

16935 16 No parameter values were specified for the sp_cursor-%hs
statement.

16936 16 sp_cursor: One or more values parameters were invalid.
16937 16 A server cursor is not allowed on a remote stored procedure or

stored procedure with more than one SELECT statement. Use a
default result set or client cursor.

16938 16 sp_cursoropen/sp_cursorprepare: The statement parameter can
only be a single select or a single stored procedure.

16940 16 Cannot specify UPDLOCK or TABLOCKX with READ ONLY or
INSENSITIVE cursors.

16941 16 Cursor updates are not allowed on tables opened with the
NOLOCK option.

16942 16 Could not generate asynchronous keyset. The cursor has been
deallocated.

16943 16 Could not complete cursor operation because the table schema
changed after the cursor was declared.

16944 16 Cannot specify UPDLOCK or TABLOCKX on a read-only table in
a cursor.

16945 16 The cursor was not declared.
16946 16 Could not open the cursor because one or more of its tables

have gone out of scope.
16947 10 No rows were updated or deleted.
16948 16 The variable '%.*ls' is not a cursor variable, but it is used in a

place where a cursor variable is expected.
16949 16 The variable '%.*ls' is a cursor variable, but it is used in a place

where a cursor variable is not valid.
16950 10 The variable '%.*ls' does not currently have a cursor allocated to

it.
16951 16 The variable '%.*ls' cannot be used as a parameter because a

CURSOR OUTPUT parameter must not have a cursor allocated
to it before execution of the procedure.

16952 16 A cursor variable cannot be used as a parameter to a remote
procedure call.

16953 10 Remote tables are not updatable. Updatable keyset-driven
cursors on remote tables require a transaction with the
REPEATABLE_READ or SERIALIZABLE isolation level spanning
the cursor.

16954 16 Executing SQL directly; no cursor.
16955 16 Could not create an acceptable cursor.
16956 10 Cursor created was not of the requested type.
16957 16 FOR UPDATE cannot be specified on a READ ONLY cursor.
16958 16 Could not complete cursor operation because the set options

have changed since the cursor was declared.
16959 16 Unique table computation failed.
16960 16 You have reached the maximum number of cursors allowed.
16961 10 One or more FOR UPDATE columns have been adjusted to the

first instance of their table in the query.
16962 16 The target object type is not updatable through a cursor.
16963 16 You cannot specify scroll locking on a cursor that contains a

remote table.
16995 16 %hs requires the NO_BROWSETABLE option to be set.

16996 16 %hs cannot take output parameters.
16998 20 Internal Cursor Error: A cursor work table operation failed.
16999 20 Internal Cursor Error: The cursor is in an invalid state.

Troubleshooting (SQL Server 2000)

Errors 17000 - 17999
Errors 17000 - 17999

Error Severity Description (Message Text)
17000 10 Usage: sp_autostats <table_name> [, {ON|OFF} [,

<index_name>]]
17050 10 The '%ls' option is ignored in this edition of SQL Server.
17550 10 DBCC TRACEON %d, server process ID (SPID) %d.
17551 10 DBCC TRACEOFF %d, server process ID (SPID) %d.
17557 16 DBCC DBRECOVER failed for database ID %d.
17558 10 *** Bypassing recovery for database ID %d.
17560 10 DBCC DBREPAIR: '%ls' index restored for '%ls.%ls'.
17561 10 %ls index restored for %ls.%ls.
17569 16 DBCC cannot find the library initialization function %ls.
17570 16 DBCC cannot find the function %ls in the library %ls.
17571 20 DBCC function %ls in the library %ls generated an access

violation. SQL Server is terminating process %d.
17572 16 DBCC cannot free DLL %ls. SQL Server depends on this DLL to

function properly.
17750 16 Cannot load the DLL %ls, or one of the DLLs it references.

Reason: %ls.
17751 16 Cannot find the function %ls in the library %ls. Reason: %ls.
17752 16 Extended procedure memory allocation failed for '%ls'.
17753 16 %.*ls can only be executed in the master database.

Troubleshooting (SQL Server 2000)

Errors 18000 - 18999
Errors 18000 - 18999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
18002 20 Stored function '%.*ls' in the library '%.*ls' generated an access

violation. SQL Server is terminating process %d.
18100 10 Process ID %d killed by hostname %.*ls, host process ID %d.
18450 14 Login failed for user '%ls'. Reason: Not defined as a valid user of

a trusted SQL Server connection.
18451 14 Login failed for user '%ls'. Only administrators may connect at

this time.
18452 14 Login failed for user '%ls'. Reason: Not associated with a trusted

SQL Server connection.
18453 14 Login succeeded for user '%ls'. Connection: Trusted.
18454 14 Login succeeded for user '%ls'. Connection: Non-Trusted.
18455 14 Login succeeded for user '%ls'.
18456 14 Login failed for user '%ls'.
18457 14 Login failed for user '%ls'. Reason: User name contains a

mapping character or is longer than 30 characters.
18458 14 Login failed. The maximum simultaneous user count of %d

licenses for this server has been exceeded. Additional licenses
should be obtained and registered through the Licensing
application in the Windows NT Control Panel.

18459 14 Login failed. The maximum workstation licensing limit for SQL
Server access has been exceeded.

18460 14 Login failed. The maximum simultaneous user count of %d
licenses for this '%ls' server has been exceeded. Additional
licenses should be obtained and installed or you should
upgrade to a full version.

18461 14 Login failed for user '%ls'. Reason: Server is in single user
mode. Only one administrator can connect at this time.

18482 16 Could not connect to server '%ls' because '%ls' is not defined as
a remote server.

18483 16 Could not connect to server '%ls' because '%ls' is not defined as
a remote login at the server.

18485 16 Could not connect to server '%ls' because it is not configured
for remote access.

18666 17 Could not free up descriptor in rel_desclosed() system function.
18750 16 %ls: The parameter '%ls' is invalid.
18751 16 %ls procedure called with incorrect number of parameters.
18752 16 Another log reader is replicating the database.
18754 16 Could not open table %d.
18755 16 Could not allocate memory for replication.
18756 16 Could not get replication information for table %d.
18757 16 The database is not published.
18759 16 Replication failure. File '%ls', line %d.
18760 16 Invalid %ls statement for article %d.
18761 16 Commit record at (%ls) has already been distributed. Check

DBTABLE.
18762 16 Invalid begin LSN (%ls) for commit record (%ls). Check

DBTABLE.
18763 16 Commit record (%ls) reports oldest active LSN as (0:0:0).

18764 16 Execution of filter stored procedure %d failed. See the SQL
Server errorlog for more information.

18765 16 Begin LSN specified for replication log scan is invalid.
18766 16 The replbeginlsn field in the DBTABLE is invalid.
18767 16 The specified begin LSN (%ls) for replication log scan occurs

before replbeginlsn (%ls).
18768 16 The specified LSN (%ls) for repldone log scan occurs before the

current start of replication in the log (%ls).
18769 16 The specified LSN (%ls) for repldone log scan is not a replicated

commit record.
18770 16 The specified LSN (%ls) for repldone log scan is not present in

the transaction log.
18771 16 Invalid storage type %d specified writing variant of type %d.
18772 16 Invalid server data type (%d) specified in repl type lookup.
18773 16 Could not locate text information records for column %d during

command construction.
18774 16 The stored procedure sp_replsetoriginator must be executed

within a transaction.
18775 16 The Log Reader Agent encountered an unexpected log record of

type %u encountered while processing DML operation.
18776 16 An error occurred while waiting on the article cache access

event.
18777 16 %s: Error initializing MSMQ components
18778 16 %s: Error opening Microsoft Message Queue %s

Troubleshooting (SQL Server 2000)

Errors 19000 -19999
Errors 19000 - 19999

Microsoft® SQL Server™ 2000 currently has no system error messages in the range 19000 to 19999.

Troubleshooting (SQL Server 2000)

Errors 20000 - 20999
Errors 20000 - 20999

 Topic last updated -- January 2004

Error Severity Description (Message Text)
20001 0 There is no nickname for article '%s' in publication '%s'.
20002 0 The filter '%s' already exists for article '%s' in publication '%s'.
20003 0 Could not generate nickname for '%s'.
20007 16 The system tables for merge replication could not be dropped

successfully.
20008 16 The system tables for merge replication could not be created

successfully.
20009 16 The article '%s' could not be added to the publication '%s'.
20010 16 The Snapshot Agent corresponding to the publication '%s' could

not be dropped.
20011 16 Cannot set incompatible publication properties. The

'allow_anonymous' property of a publication depends on the
'immediate_sync' property.

20012 16 The subscription type '%s' is not allowed on publication '%s'.
20013 16 The publication property '%s' cannot be changed when there are

subscriptions on it.
20014 16 Invalid @schema_option value.
20015 16 Could not remove directory '%ls'. Check the security context of

xp_cmdshell and close other processes that may be accessing
the directory.

20016 16 Invalid @subscription_type value. Valid values are 'pull' or
'anonymous'.

20017 16 The subscription on the Subscriber does not exist.
20018 16 The @optional_command_line is too long. Use an agent

definition file.
20019 16 Replication database option '%s' cannot be set unless the

database is a publishing database or a distribution database.
20020 16 The article resolver supplied is either invalid or nonexistent.
20021 16 The subscription could not be found.
20023 16 Invalid @subscriber_type value. Valid options are 'local', 'global',

'anonymous', or 'repub'.
20025 16 The publication name must be unique. The specified publication

name '%s' has already been used.
20026 16 The publication '%s' does not exist.
20027 16 The article '%s' does not exist.
20028 16 The Distributor has not been installed correctly. Could not

enable database for publishing.
20029 16 The Distributor has not been installed correctly. Could not

disable database for publishing.
20030 16 The article '%s' already exists on another publication with a

different column tracking option.
20031 16 Could not delete the row because it does not exist.
20032 16 '%s' is not defined as a Subscriber for '%s'.
20033 16 Invalid publication type.
20034 16 Publication '%s' does not support '%s' subscriptions.
20036 16 The Distributor has not been installed correctly.
20037 16 The article '%s' already exists in another publication with a

different article resolver.

20038 16 The article filter could not be added to the article '%s' in the
publication '%s'.

20039 16 The article filter could not be dropped from the article '%s' in the
publication '%s'.

20040 16 Could not drop the article(s) from the publication '%s'.
20041 16 Transaction rolled back. Could not execute trigger. Retry your

transaction.
20043 16 Could not change the article '%s' because the publication has

already been activated.
20044 16 The priority property is invalid for local subscribers.
20045 16 You must supply an article name.
20046 16 The article does not exist.
20047 16 You are not authorized to perform this operation.
20049 16 The priority value should not be larger than 100.0.
20050 16 The retention period must be greater than or equal to %d.
20051 16 The Subscriber is not registered.
20054 16 Current database is not enabled for publishing.
20055 16 Table '%s' cannot be published for merge replication because it

has a timestamp column.
20056 16 Table '%s' cannot be republished.
20057 16 The profile name '%s' already exists for the specified agent type.
20058 16 The @agent_type must be 1 (Snapshot), 2 (Logreader), 3

(Distribution), or 4 (Merge)
20059 16 The @profile_type must be 0 (System) or 1 (Custom)
20060 16 Compatibility level cannot be smaller than 60.
20061 16 The compatibility level of this database must be set to 70 or

higher to be enabled for merge publishing.
20062 16 Updating columns with the rowguidcol property is not allowed.
20064 16 Cannot drop profile. Either it is not defined or it is defined as the

default profile.
20065 16 Cannot drop profile because it is in use.
20066 16 Profile not defined.
20067 16 The parameter name '%s' already exists for the specified profile.
20068 16 The article cannot be created on table '%s' because it has more

than %d columns.
20069 16 Cannot validate a merge article that uses looping join filters.
20070 16 Cannot update subscription row.
20072 16 Cannot update Subscriber information row.
20073 16 Articles can be added or changed only at the Publisher.
20074 16 Only a table object can be published as a "table" article for

merge replication.
20075 16 The 'status' parameter value must be either 'active' or

'unsynced'.
20076 16 The @sync_mode parameter value must be 'native' or

'character'.
20077 16 Problem encountered generating replica nickname.
20078 16 The @property parameter value must be 'sync_type', 'priority',

or 'description'.
20079 16 Invalid @subscription_type parameter value. Valid options are

'push', 'pull', or 'both'.
20081 16 Publication property '%s' cannot be NULL.
20084 16 Publication '%s' cannot be subscribed to by Subscriber database

'%s'.
20086 16 Publication '%s' does not support the nosync type because it

contains a table that does not have a rowguidcol column.
20087 16 You cannot push an anonymous subscription.

20088 16 Only assign priorities that are greater than or equal to 0 and less
than 100.

20089 16 Could not get license information correctly.
20090 16 Could not get version information correctly.
20091 16 sp_mergesubscription_cleanup is used to clean up push

subscriptions. Use sp_dropmergepullsubscription to clean up
pull or anonymous subscriptions.

20100 16 Cannot drop Subscriber '%s'. There are existing subscriptions.
20500 16 The updatable Subscriber stored procedure '%s' does not exist

in sysobjects.
20501 16 Could not insert into sysarticleupdates using sp_articlecolumn.
20502 16 Invalid '%s' value. Valid values are 'read only', 'sync tran',

'queued tran', or 'failover'.
20503 16 Invalid '%s' value in '%s'. The publication is not enabled for '%s'

updatable subscriptions.
20505 16 Could not drop synchronous update stored procedure '%s' in

'%s'.
20506 16 Source table '%s' not found in '%s'.
20507 16 Table '%s' not found in '%s'.
20508 16 Updatable Subscriptions: The text/ntext/image values inserted at

Subscriber will be NULL.
20509 16 Updatable Subscriptions: The text/ntext/image values cannot be

updated at Subscriber.
20510 16 Updatable Subscriptions: Cannot update identity columns.
20511 16 Updatable Subscriptions: Cannot update timestamp columns.
20512 16 Updatable Subscriptions: Rolling back transaction.
20515 16 Updatable Subscriptions: Rows do not match between Publisher

and Subscriber. Run the Distribution Agent to refresh rows at
the Subscriber.

20516 16 Updatable Subscriptions: Replicated data is not updatable.
20517 16 Updatable Subscriptions: Update of replica's primary key is not

allowed unless published table has a timestamp column.
20518 16 Updatable Subscriptions: INSERT and DELETE operations are not

supported unless published table has a timestamp column.
20519 16 Updatable Subscriptions: INSERT operations on tables with

identity or timestamp columns are not allowed unless a primary
key is defined at the Subscriber.

20520 16 Updatable Subscriptions: UPDATE operations on tables with
identity or timestamp columns are not allowed unless a primary
key is defined at the Subscriber.

20521 16 sp_MSmark_proc_norepl: must be a member of the db_owner
or sysadmin roles.

20522 16 sp_MSmark_proc_norepl: invalid object name '%s'.
20523 16 Could not validate the article '%s'. It is not activated.
20524 10 Table '%s' may be out of synchronization. Rowcounts (actual:

%s, expected: %s). Rowcount method %d used (0 = Full, 1 =
Fast).

20525 10 Table '%s' might be out of synchronization. Rowcounts (actual:
%s, expected %s). Checksum values (actual: %s, expected: %s).

20526 10 Table '%s' passed rowcount (%s) validation. Rowcount method
%d used (0 = Full, 1 = Fast).

20527 10 Table '%s' passed rowcount (%s) and checksum validation.
Checksum is not compared for any text or image columns.

20528 10 Log Reader Agent startup message.
20529 10 Starting agent.
20530 10 Run agent.
20531 10 Detect nonlogged agent shutdown.

20532 10 Replication agent schedule.
20533 10 Replication agents checkup
20534 10 Detects replication agents that are not logging history actively.
20535 10 Removes replication agent history from the distribution

database.
20536 10 Replication: agent failure
20537 10 Replication: agent retry
20538 10 Replication: expired subscription dropped
20540 10 Replication: agent success
20541 10 Removes replicated transactions from the distribution database.
20542 10 Detects and removes expired subscriptions from published

databases.
20543 10 @rowcount_only parameter must be the value 0,1, or 2. 0=7.0

compatible checksum. 1=only check rowcounts. 2=new
checksum functionality introduced in version 8.0.

20545 10 Default agent profile
20546 10 Verbose history agent profile.
20547 10 Agent profile for detailed history logging.
20548 10 Slow link agent profile.
20549 10 Agent profile for low bandwidth connections.
20550 10 Windows Synchronization Manager profile
20551 10 Profile used by the Windows Synchronization Manager.
20552 10 Could not clean up the distribution transaction tables.
20553 10 Could not clean up the distribution history tables.
20554 10 The agent is suspect. No response within last %ld minutes.
20555 10 6.x publication.
20556 10 Heartbeats detected for all running replication agents.
20557 10 Agent shutdown. For more information, see the SQL Server

Agent job history for job '%s'.
20558 10 Table '%s' passed full rowcount validation after failing the fast

check. DBCC UPDATEUSAGE will be initiated automatically.
20559 10 Conditional Fast Rowcount method requested without

specifying an expected count. Fast method will be used.
20560 10 An expected checksum value was passed, but checksums will

not be compared because rowcount-only checking was
requested.

20561 10 Generated expected rowcount value of %s for %s.
20562 10 User delete.
20563 10 No longer belongs in this partial.
20564 10 System delete.
20565 10 Replication: Subscriber has failed data validation
20566 10 Replication: Subscriber has passed data validation
20567 10 Agent history clean up: %s
20568 10 Distribution clean up: %s
20569 10 Expired subscription clean up
20570 10 Reinitialize subscriptions having data validation failures
20571 10 Reinitializes all subscriptions that have data validation failures.
20572 10 Subscriber '%s' subscription to article '%s' in publication '%s'

has been reinitialized after a validation failure.
20573 10 Replication: Subscription reinitialized after validation failure
20574 10 Subscriber '%s' subscription to article '%s' in publication '%s'

failed data validation.
20575 10 Subscriber '%s' subscription to article '%s' in publication '%s'

passed data validation.
20576 10 Subscriber '%s' subscription to article '%s' in publication '%s'

has been reinitialized after a synchronization failure.

20577 10 No entries were found in msdb..sysreplicationalerts.
20578 10 Replication: agent custom shutdown
20579 10 Generated expected rowcount value of %s and expected

checksum value of %s for %s.
20580 10 Heartbeats not detected for some replication agents. The status

of these agents have been changed to 'Failed'.
20581 10 Cannot drop server '%s' because it is used as a Distributor in

replication.
20582 10 Cannot drop server '%s' because it is used as a Publisher in

replication.
20583 10 Cannot drop server '%s' because it is used as a Subscriber in

replication.
20584 10 Cannot drop server '%s' because it is used as a Subscriber to

remote Publisher '%s' in replication.
20585 16 Validation Failure. Object '%s' does not exist.
20586 16 (default destination)
20587 16 Invalid '%s' value for stored procedure '%s'.
20588 16 The subscription is not initialized. Run the Distribution Agent

first.
20589 10 Agent profile for replicated queued transaction reader.
20590 16 The article property 'status' cannot include bit 64, 'DTS

horizontal partitions' because the publication does not allow
data transformations.

20591 16 Only 'DTS horizontal partitions' and 'no DTS horizontal
partitions' are valid 'status' values because the publication
allows data transformations.

20592 16 'dts horizontal partitions' and 'no dts horizontal partitions' are
not valid 'status' values because the publication does not allow
data transformations.

20593 16 Cannot modify publication '%s'. The sync_method cannot be
changed to 'native', 'concurrent' or 'concurrent_c' because the
publication has subscriptions from ODBC or OLE DB
Subscribers.

20594 16 A push subscription to the publication exists. Use
sp_subscription_cleanup to drop defunct push subscriptions.

20595 16 Skipping error signaled.
20596 16 Only '%s' or members of db_owner can drop the anonymous

agent.
20597 10 Dropped %d anonymous subscription(s).
20598 16 The row was not found at the Subscriber when applying the

replicated command.
20599 16 Continue on data consistency errors.
20600 10 Agent profile for skipping data consistency errors. It can be used

only by SQL Server Subscribers.
20601 10 Invalid value specified for agent parameter 'SkipErrors'.
20602 10 The value specified for agent parameter 'SkipErrors' is too long.
20603 10 The agent profile cannot be used by heterogeneous Subscribers.
20604 10 You do not have permissions to run agents for push

subscriptions. Make sure that you specify the agent parameter
'SubscriptionType'.

20605 10 Invalidated the existing snapshot of the publication. Run the
Snapshot Agent again to generate a new snapshot.

20606 10 Reinitialized subscription(s).
20607 10 Cannot make the change because a snapshot is already

generated. Set @force_invalidate_snapshot to 1 to force the
change and invalidate the existing snapshot.

20608 10 Cannot make the change because there are active subscriptions.
Set @force_reinit_subscription to 1 to force the change and
reinitialize the active subscriptions.

20609 16 Cannot attach subscription file '%s'. Make sure that it is a valid
subscription copy file.

20610 16 Cannot run '%s' when the Log Reader Agent is replicating the
database.

20611 16 Only table or indexed view to table articles are allowed in
publications that allow DTS.

20612 16 Checksum validation is not supported because the publication
allows DTS. Use row count only validation.

20613 16 Validation is not supported for articles that are set up for DTS
horizontal partitions.

20614 16 Validation is not supported for heterogeneous Subscribers.
20616 10 High Volume Server-to-Server Profile
20617 10 Merge agent profile optimized for the high volume server-to-

server synchronization scenario.
20618 16 You must have CREATE DATABASE permission to attach a

subscription database.
20619 16 Server user '%s' is not a valid user in database '%s'. Add the

user account or 'guest' user account into the database first.
20620 11 The security mode specified requires the server '%s' in

sysservers. Use sp_addlinkedserver to add the server.
20621 11 Cannot copy a subscription database to an existing database.

Troubleshooting (SQL Server 2000)

Errors 21000 -21999
Errors 21000 - 21999

Error Severity Description (Message Text)
21000 16 Cannot subscribe to an inactive publication.
21001 16 Cannot add a Distribution Agent at the Subscriber for a push

subscription.
21002 16 The Distribution Agent for this subscription already exists (%s).
21003 16 Changing publication names is no longer supported.
21004 16 Cannot publish the database object '%s' because it is encrypted.
21005 10 For backward compatibility, sp_addpublisher can be used to

add a Publisher for this Distributor. However,
sp_adddistpublisher is more flexible.

21006 16 Cannot use sp_addpublisher to add a Publisher. Use
sp_adddistpublisher.

21007 16 Cannot add the remote Distributor. Make sure that the local
server is configured as a Publisher at the Distributor.

21008 16 Cannot uninstall the Distributor because there are Subscribers
defined.

21009 16 The specified filter procedure is already associated with a table.
21010 16 Removed %ld replicated transactions consisting of %ld

statements in %ld seconds (%ld rows/sec).
21011 16 Deactivated subscriptions.
21012 16 Cannot change the 'allow_push' property of the publication to

"false". There are push subscriptions on the publication.
21013 16 Cannot change the 'allow_pull' property of the publication to

"false". There are pull subscriptions on the publication.
21014 16 The @optname parameter value must be 'transactional' or

'merge'.
21015 16 The replication option '%s' has been set to TRUE already.
21016 16 The replication option '%s' has been set to FALSE already.
21017 16 Cannot perform SQL Server 7.0 compatible checksum

operation on a merge article that has a vertical or horizontal
partition. Rowcount validation and SQL Server 2000 compatible
binary checksum operation can be performed on this article.

21018 16 There are too many consecutive snapshot transactions in the
distribution database. Run the Log Reader Agent again or clean
up the distribution database.

21021 16 Drop the Distributor before you uninstall replication.
21022 16 Cannot set incompatible publication properties. The

'immediate_sync' property of a publication is dependent on the
'independent agent' property of a publication.

21023 16 '%s' is no longer supported.
21024 16 The stored procedure '%s' is already published as an

incompatible type.
21025 16 The string being encrypted cannot have null characters.
21026 16 Cannot have an anonymous subscription on a publication that

does not have an independent agent.
21027 16 '%s' replication stored procedures are not installed. Use

sp_replicationoption to install them.
21028 16 Replication components are not installed on this server. Run

SQL Server Setup again and select the option to install
replication.

21029 16 Cannot drop a push subscription entry at the Subscriber unless
@drop_push is 'true'.

21030 16 Names of SQL Server replication agents cannot be changed.
21031 16 'post_script' is not supported for stored procedure articles.
21032 16 Could not subscribe because non-SQL Server Subscriber '%s'

does not support 'sync tran' update mode.
21033 16 Cannot drop server '%s' as Distribution Publisher because there

are databases enabled for replication on that server.
21034 16 Rows inserted or updated at the Subscriber cannot be outside

the article partition.
21035 16 You have updated the Publisher property '%s' successfully.
21036 16 Another %s agent for the subscription(s) is running.
21037 16 Invalid working directory '%s'.
21038 16 Windows Authentication is not supported by the server.
21039 16 The destination owner name is not supported for publications

that can have heterogeneous Subscribers. Use native mode bcp
for this functionality.

21040 16 Publication '%s' does not exist.
21041 16 A remote distribution Publisher is not allowed on this server

version.
21042 16 The distribution Publisher property, 'distributor_password', has

no usage and is not supported for a Distributor running on
Windows NT 4.0.

21043 16 The Distributor is not installed.
21044 16 Cannot ignore the remote Distributor

(@ignore_remote_distributor cannot be 1) when enabling the
database for publishing or merge publishing.

21045 16 Cannot uninstall the Distributor because there are databases
enabled for publishing or merge publishing.

21046 16 Cannot change distribution Publisher property 'distribution_db'
because the remote Publisher is using the current distribution
database.

21047 16 Cannot drop the local distribution Publisher because there are
Subscribers defined.

21048 16 Cannot add login '%s' to the publication access list because it
does not have access to the distribution server '%s'.

21049 16 The login '%s' does not have access permission on publication
'%s' because it is not in the publication access list.

21050 16 Only members of the sysadmin or db_owner roles can perform
this operation.

21051 16 Could not subscribe because non-SQL Server Subscriber '%s'
does not support custom stored procedures.

21052 16 Queued Updating Subscriptions: write to message queue failed.
21053 16 The parameter must be one of the following: 'description',

'status', 'retention', 'sync_mode', 'allow_push', 'allow_pull',
'allow_anonymous', 'enabled_for_internet',
'centralized_conflicts', 'conflict_retention', or 'snapshot_ready'.

21054 16 Updatable Subscribers: RPC to Publisher failed.
21055 15 Invalid parameter %s specified for %s.
21056 16 The subscription to publication '%s' has expired and does not

exist.
21057 16 Anonymous Subscribers cannot have updatable subscriptions.
21058 16 An updatable subscription to publication '%s' on Subscriber

'%s' already exists.
21059 16 Cannot reinitialize subscriptions of non-immediate_sync

publications.
21060 16 Could not subscribe because non-SQL Server Subscriber '%s'

does not support parameterized statements.
21061 16 Invalid article status %d specified when adding article '%s'.

21062 16 The row size of table '%s' exceeds the replication limit of 6,000
bytes.

21063 16 Table '%s' cannot participate in updatable subscriptions
because it is published for merge replication.

21064 16 The subscription is unavailable for immediate updating because
it is marked for reinitialization. Try again after the reinitialization
completes.

21070 16 This subscription does not support automatic reinitialization
(subscribed with the 'no sync' option). To reinitialize this
subscription, you must drop and re-create the subscription.

21071 10 Cannot reinitialize article '%s' in subscription '%s:%s' to
publication '%s' (subscribed with the 'no sync' option).

21072 16 The subscription has not been synchronized within the
maximum retention period or it has been dropped at the
Publisher. You must reinitialize the subscription to receive data.

21073 16 The publication specified does not exist.
21074 16 The subscription has been marked inactive and must be

reinitialized at the Publisher. Contact the database
administrator.

21075 10 The initial snapshot for publication '%s' is not yet available.
21076 10 The initial snapshot for article '%s' is not yet available.
21077 10 Deactivated initial snapshot for anonymous publication(s). New

subscriptions must wait for the next scheduled snapshot.
21078 16 Table '%s' does not exist in the Subscriber database.
21079 16 The RPC security information for the Publisher is missing or

invalid. Use sp_link_publication to specify it.
21080 16 The 'msrepl_tran_version' column must be in the vertical

partition of the article that is enabled for updatable
subscriptions; it cannot be dropped.

21081 16 Server setting 'Allow triggers to be fired which fire other
triggers (nested triggers)' must exist on updatable Subscribers.

21082 16 Database property 'IsRecursiveTriggersEnabled' has to be false
for subscription databases at Subscribers that allow updatable
subscriptions.

21083 16 Database compatibility level at immediate updating Subscribers
cannot be less than 70.

21084 16 Publication '%s' does not allow anonymous subscriptions.
21085 16 The retention period must be less than the retention period for

the distribution database.
21086 16 The retention period for the distribution database must be

greater than the retention period of any existing non-merge
publications.

21087 16 Anonymous Subscribers or Subscribers at this server are not
allowed to create merge publications.

21088 10 The initial snapshot for the publication is not yet available.
21107 16 '%ls' is not a table or view.
21108 16 This edition of SQL Server does not support transactional

publications.
21109 16 The parameters @xact_seqno_start and @xact_seqno_end must

be identical if @command_id is specified.
21110 16 @xact_seqno_start and @publisher_database_id must be

specified if @command_id is specified.
21111 16 '%s' is not a valid parameter for the Snapshot Agent.
21112 16 '%s' is not a valid parameter for the Log Reader Agent.
21113 16 '%s' is not a valid parameter for the Distribution Agent.
21114 16 '%s' is not a valid parameter for the Merge Agent.

21115 16 '%s' is not a valid value for the '%s' parameter. The value must
be a positive integer.

21116 16 '%s' is not a valid value for the '%s' parameter. The value must
be 1, 2, or 3.

21117 16 '%s' is not a valid value for the '%s' parameter. The value must
be 0, 1, or 2.

21118 16 '%s' is not a valid value for the '%s' parameter. The value must
be greater than or equal to 0 and less than or equal to 10,000.

21119 16 '%s' is not a valid value for the '%s' parameter. The value must
be a non-negative integer.

21120 16 Only members of the sysadmin fixed server role and db_owner
fixed database role can drop subscription '%s' to publication
'%s'.

21121 16 Only members of the sysadmin fixed server role and '%s' can
drop the pull subscription to the publication '%s'.

21122 16 Cannot drop the distribution database '%s' because it is
currently in use.

21123 16 The agent profile '%s' could not be found at the Distributor.
21124 16 Cannot find the table name or the table owner corresponding to

the alternative table ID(nickname) '%d' in sysmergearticles.
21125 16 A table used in merge replication must have at least one non-

computed column.
21126 16 Pull subscriptions cannot be created in the same database as

the publication.
21127 16 Only global merge subscriptions can be added to database '%s'.
21128 16 Terminating immediate updating or queued updating INSERT

trigger because it is not the first trigger to fire. Use
sp_settriggerorder procedure to set the firing order for trigger
'%s' to first.

21129 16 Terminating immediate updating or queued updating UPDATE
trigger because it is not the first trigger to fire. Use
sp_settriggerorder procedure to set the firing order for trigger
'%s' to first.

21130 16 Terminating immediate updating or queued updating DELETE
trigger because it is not the first trigger to fire. Use
sp_settriggerorder procedure to set the firing order for trigger
'%s' to first.

21131 16 There are existing subscriptions to heterogeneous publication
'%s'. To add new articles, first drop the existing subscriptions to
the publication.

21132 16 Cannot create transactional subscription to merge publication
'%s'. The publication type should be either transactional(0) or
snapshot(1) for this operation.

21133 16 Publication '%s' is not enabled to use an independent agent.
21134 16 The specified job ID must identify a Distribution Agent or a

Merge Agent job.
21135 16 Detected inconsistencies in the replication agent table. The

specified job ID does not correspond to an entry in '%ls'.
21136 16 Detected inconsistencies in the replication agent table. The

specified job ID corresponds to multiple entries in '%ls'.
21137 16 This procedure supports only remote execution of push

subscription agents.
21138 16 The 'offload_server' property cannot be the same as the

Distributor name.
21139 16 Could not determine the Subscriber name for distributed agent

execution.
21140 16 Agent execution cannot be distributed to a Subscriber that

resides on the same server as the Distributor.

21141 16 The @change_active flag may not be specified for articles with
manual filters or views.

21142 16 The SQL Server '%s' could not obtain Windows group
membership information for login '%s'. Verify that the
Windows account has access to the domain of the login.

21143 16 The custom stored procedure schema option is invalid for a
snapshot publication article.

21144 16 Cannot subscribe to publication of sync_type 'dump database'
because the Subscriber has subscriptions to other publications.

21145 16 Cannot subscribe to publication %s because the Subscriber has
a subscription to a publication of sync_type 'dump database'.

21146 16 @use_ftp cannot be 'true' while @alt_snapshot_folder is neither
NULL nor empty.

21147 16 The '%s' database is not published for merge replication.
21148 16 Both @subscriber and @subscriberdb must be specified with

non-null values simultaneously, or both must be left
unspecified.

21149 16 The '%s' database is not published for transactional or snapshot
replication.

21150 16 Unable to determine the snapshot folder for the specified
subscription because the specified Subscriber is not known to
the Distributor.

21151 16 Pre- and post-snapshot commands are not supported for a
publication that may support non-SQL Server Subscribers by
using the character-mode bcp as the synchronization method.

21152 16 Cannot create a subscription of sync_type 'none' to a
publication using the 'concurrent' or 'concurrent_c'
synchronization method.

21153 16 Cannot create article '%s'. All articles that are part of a
concurrent synchronization publication must use stored
procedures to apply changes to the Subscriber.

21154 16 Cannot change article '%s'. All articles that are part of a
concurrent synchronization publication must use stored
procedures to apply changes to the Subscriber.

21156 16 The @status parameter value must be 'initiated' or 'active'.
21157 16 The snapshot compression option can be enabled only for a

publication having an alternate snapshot generation folder
defined.

21158 16 For a publication to be enabled for the Internet, the
'ftp_address' property must not be null.

21159 16 If a publication is enabled for the Internet, the
'alt_snapshot_folder' property must be non-empty.

21160 16 The @ftp_port parameter cannot be NULL.
21161 16 Could not change the Publisher because the subscription has

been dropped. Use sp_subscription_cleanup to clean up the
triggers.

21162 16 It is invalid to exclude the rowguid column for the table from
the partition.

21163 16 It is not possible to add column '%s' to article '%s' because the
snapshot for publication '%s' has been run.

21164 16 Column '%s' cannot be included in a vertical partition because it
is neither nullable nor defined with a default value.

21165 16 Column '%s' cannot be excluded from a vertical partition
because it is neither nullable nor defined with a default value.

21166 16 Column '%s' does not exist.
21167 16 The specified job ID does not represent a %s agent job for any

push subscription in this database.

21168 16 Only members of the sysadmin fixed server role, members of
the db_owner fixed database role, and owners of subscriptions
served by the specified replication agent job can modify the
agent offload settings.

21169 16 Could not identify the Publisher '%s' at the Distributor '%s'.
Make sure that '%s' is registered in the sysservers table at the
Distributor.

21170 16 Only a SQL Server 2000 or OLE DB Subscriber can use DTS.
21171 16 Could not find package '%s' in msdb at server '%s'.
21172 16 The publication has to be in 'character' or 'concurrent_c' bcp

mode to allow DTS.
21173 16 The publication has to be 'independent_agent type' to allow

DTS.
21174 16 You must use default values for @ins_cmd, @upd_cmd, and

@del_cmd, and @status can be only 16 or 80 because the
publication allows DTS.

21175 16 You cannot change 'ins_cmd','upd_cmd', or 'del_cmd' article
properties because the publication allows DTS or queued
updating option.

21176 16 Only members of the sysadmin fixed server role, db_owner
fixed database role, or the creator of the subscription can
change the subscription properties.

21177 16 Could not create column list because it is too long. Create the
list manually.

21178 16 DTS properties cannot be set because the publication does not
allow for data transformation.

21179 16 Invalid @dts_package_location parameter value. Valid options
are 'Distributor' or 'Subscriber'.

21180 16 A publication that allows DTS cannot be enabled for updatable
subscriptions.

21181 16 @dts_package_name can be set for push subscriptions only.
21182 16 The @agent_type parameter must be one of 'distribution',

'merge', or NULL.
21183 16 Invalid property name '%s'.
21184 16 %s parameter is incorrect: it should be '%s', '%s' or '%s'.
21185 16 The subscription is not initialized or not created for failover

mode operations.
21186 16 Subscription for Publisher '%s' does not have a valid queue_id.
21187 16 The current mode is the same as the requested mode.
21188 10 Changed update mode from [%s] to [%s].
21189 16 The queue for this subscription with queue_id = '%s' is not

empty. Run the Queue Reader Agent to make sure the queue is
empty before setting mode from [queued] to [immediate].

21190 10 Overriding queue check for setting mode from [%s] to [%s].
21191 16 Values for @ins_cmd, @upd_cmd, and @del_cmd can be only

[%s], [%s] and [%s] respectively because the publication allows
queued transactions.

21192 16 MSrepl_tran_version column is a predefined column used for
replication and can be only of data type uniqueidentifier

21193 16 @identity_range, @pub_identity_range, or @threshold cannot
be NULL when @auto_identity_support is set to TRUE.

21194 16 Cannot support identity_range_control because this table does
not have an identity column.

21195 16 A valid identity range is not available. Check the data type of the
identity column.

21196 16 Identity automation failed.
21197 16 Failed to allocate new identity range.

21198 16 Schema replication failed.
21199 16 This change cannot take effect until you run the snapshot again.
21200 16 Publication '%s' does not exist.
21201 16 Dropping a column that is being used by a merge filter clause is

not allowed.
21202 16 It is not possible to drop column '%s' to article '%s' because the

snapshot for publication '%s' has already been run.
21203 10 Duplicate rows found in %s. Unique index not created.
21204 16 The publication '%s' does not allow subscription copy or its

subscription has not been synchronized.
21205 16 The subscription cannot be attached because the publication

does not allow subscription copies to synchronize changes.
21206 16 Cannot resolve load hint for object %d because the object is not

a user table.
21207 16 Cannot find source object ID information for article %d.
21208 16 This step failed because column '%s' exists in the vertical

partition.
21209 16 This step failed because column '%s' does not exist in the

vertical partition.
21210 16 The publication must be immediate_sync type to allow

subscription copy.
21211 16 The database is attached from a subscription copy file without

using sp_attach_subscription. Drop the database and reattach it
using sp_attach_subscription.

21212 16 Cannot copy subscription. Only single file subscription
databases are supported for this operation.

21213 16 Non-SQL Server Subscribers cannot subscribe to publications
that allow DTS without using a DTS package.

21214 16 Cannot create file '%s' because it already exists.
21215 16 An alternate synchronization partner can be configured only at

the Publisher.
21216 16 Publisher '%s', publisher database '%s', and publication '%s' are

not valid synchronization partners.
21217 10 Publication of '%s' data from Publisher '%s'.
21218 16 The creation_script property cannot be NULL if a schema option

of 0x0000000000000000 is specified for the article.
21219 16 The specified source object must be a stored procedure object if

it is published as a 'proc schema only' type article.
21220 16 Unable to add the article '%s' because a snapshot has been

generated for the publication '%s'.
21221 16 The specified source object must be a view object if it is going

to be as a 'view schema only' type article.
21222 16 The @schema_option parameter for a procedure or function

schema article can include only the options
0x0000000000000001 or 0x0000000000002000.

21223 16 The @pre_creation_command parameter for a schema only
article must be either 'none' or 'drop'.

21224 16 '%s' is not a valid property for a schema only article.
21225 16 The 'offload_server' property cannot be NULL or empty if the

pull subscription agent is to be enabled for remote activation.
21226 16 The database '%s' does not have a pull subscription to the

specified publication.
21227 16 The 'offload_server' property cannot be the same as the

Subscriber server name.
21228 16 The specified source object must be a user-defined function

object if it is going to be published as a 'func schema only' type
article.

21229 16 The only schema options available for a view schema article are:
0x0000000000000001, 0x0000000000000010,
0x0000000000000040, 0x0000000000000100, and
0x0000000000002000.

21230 16 Do not call this stored procedure for schema change because
the current database is not enabled for replication.

21231 16 Automatic identity range support is useful only for publications
that allow queued updating.

21232 16 Identity range values must be positive numbers that are greater
than 1.

21233 16 Threshold value must be from 1 through 100.
21234 16 Cannot use the INSERT command because the table has an

identity column. The insert custom stored procedure must be
used to set 'identity_insert' settings at the Subscriber.

21235 16 Article property '%s' can be set only when the article uses
automatic identity range management.

21236 16 The subscription(s) to Publisher '%s' does not allow
subscription copy or it has not been synchronized.

21237 16 There is a push subscription to Publisher '%s'. Only pull and
anonymous subscriptions can be copied.

21238 16 There is a push subscription to publication '%s'. Only pull and
anonymous subscriptions can be copied.

21239 16 Cannot copy subscriptions because there is no synchronized
subscription found in the database.

21240 16 The table '%s' is already published as another article with a
different automatic identity support option.

21241 16 The threshold value should be from 0 through 99.
21242 16 Conflict table for article '%s' could not be created successfully.
21243 16 Publisher '%s', publication database '%s', and publication '%s'

could not be added to the list of synchronization partners.
21244 16 Character mode publication does not support vertical filtering

when the base table does not support column-level tracking.
21245 16 Table '%s' is not part of publication '%s'.
21246 16 This step failed because table '%s' is not part of any publication.
21247 16 Cannot create file at '%s'. Ensure the file path is valid.
21248 16 Cannot attach subscription file '%s'. Ensure the file path is valid

and the file is updatable.
21249 16 OLE DB or ODBC Subscribers cannot subscribe to article '%s' in

publication '%s' because the article has a timestamp column
and the publication is 'allow_queued_tran' (allows queued
updating subscriptions).

21250 16 Primary key column '%s' cannot be excluded from a vertical
partition.

21251 16 Publisher '%s', publisher database '%s', publication '%s' could
not be removed from the list of synchronization partners.

21252 16 It is invalid to remove the default Publisher '%s', publication
database '%s', and publication '%s' from the list of
synchronization partners

21253 16 Parameter '@add_to_active_directory' cannot be set to TRUE
because Active Directory client package is not installed properly
on the machine where SQL Server is running.

21254 16 The Active Directory operation on publication '%s' could not be
completed because Active Directory client package is not
installed properly on the machine where SQL Server is running.

21255 16 Column '%s' already exists in table '%s'.
21256 16 A column used in filter clause '%s' either does not exist in the

table '%s' or cannot be excluded from the current partition.
21257 16 Invalid property '%s' for article '%s'.

21258 16 You must first drop all existing merge publications to add an
anonymous or local subscription to database '%s'.

21259 16 Invalid property value '%s'.
21260 16 Schema replication failed because database '%s' on server '%s'

is not the original Publisher of table '%s'.
21261 16 The offload server must be specified if the agent for this

subscription is to be offloaded for remote execution.
21262 16 Failed to drop column '%s' from the partition because a

computed column is accessing it.
21263 16 Parameter '%s' cannot be NULL or an empty string.
21264 16 Column '%s' cannot be dropped from table '%s' because it is a

primary key column.
21265 16 Column '%s' cannot be dropped from table '%s' because there

is a unique index accessing this column.
21266 16 Cannot publish table '%s' for both a merge publication and a

publication with the queued updating option .
21267 10 Invalid value for queue type was specified. Valid values = (%s).
21268 10 Cannot change queue type while there are subscriptions to the

publication.
21269 16 Cannot add a computed column or a timestamp column to a

vertical partition for a character mode publication.
21270 10 Queued snapshot publication property '%s' cannot have the

value '%s'.
21272 16 Cannot clean up the meta data for publication '%s' because

other publications are using one or more articles in this
publication.

21273 16 You must upgrade the Subscriber to SQL Server 2000 to create
updatable subscriptions to SQL Server 2000 Publishers.

21274 16 Invalid publication name '%s'.
21275 16 The schema-bound view '%ls' can be published only as

'indexed view schema only' or a log-based indexed view
(transactional only) article.

21276 16 The type must be 'table' or '(view | indexed view | proc | func)
schema only'.

21277 16 The source object '%ls' must be a schema-bound view to be
published as 'indexed view schema only' or a log-based indexed
view article.

21278 16 The source object '%ls' must be a schema-bound view with at
least a clustered index to be published as a log-based indexed
view article.

21279 16 The 'schema_option' property for a merge article cannot be
changed after a snapshot is generated for the publication. To
change the 'schema_option' property of this article the
corresponding merge publication must be dropped and re-
created.

21280 16 Publication '%s' cannot be subscribed to by Subscriber
database '%s' because it contains one or more articles that have
been subscribed to by the same Subscriber database at
transaction level.

21281 16 Publication '%s' cannot be subscribed to by Subscriber
database '%s' because it contains one or more articles that have
been subscribed to by the same Subscriber database at merge
level.

21282 16 @identity_range, @pub_identity_range, and @threshold must
be NULL when @auto_identity_support is set to FALSE.

21283 16 Column '%s' of table '%s' cannot be excluded from a vertical
partition because there is a computed column that depends on
it.

21284 16 Failed to drop column '%s' from table '%s'.
21285 16 Failed to add column '%s' to table '%s'.
21286 16 Conflict table '%s' does not exist.
21287 16 The specified @destination_folder is not a valid path of an

existing folder.
21288 16 Could not create the snapshot directory structure in the

specified @destination_folder.
21289 16 Either the snapshot files have not been generated or they have

been cleaned up.
21290 16 Identity range value is too large for the data type of the identity

column.
21291 16 The specified automatic identity support parameters conflict

with the settings in another article.
21292 16 Object '%s' cannot be published twice in the same publication.
21293 10 Warning: adding updatable subscription for article '%s' may

cause data inconsistency as the source table is already
subscribed to '%s'

21294 16 Either @publisher (and @publisher_db) or @subscriber (and
@subscriber_db) must be specified, but both cannot be
specified.

21295 16 Publication '%s' does not contain any article that uses automatic
identity range management.

21296 16 Parameter @resync_type must be either 0, 1, 2.
21297 16 Invalid resync type. No validation has been performed for this

subscription.
21298 16 Failed to resynchronize this subscription.
21299 16 Invalid Subscriber partition validation expression '%s'.
21300 10 The resolver information was specified without specifying the

resolver to be used for article '%s'. The default resolver will be
used.

21301 16 The resolver information should be specified while using the
'%s' resolver.

21302 16 The resolver information should specify a column with data
type, datetime, or smalldatetime while using the '%s' resolver.

21303 16 The article '%s' should enable column tracking to use the '%s'
resolver. The default resolver will be used to resolve conflicts on
this article.

21304 16 The merge triggers could not be created on the table '%s'.
21305 16 The schema change information could not be updated at the

subscription database.
21306 16 The copy of the subscription could not be made because the

subscription to publication '%s' has expired.
21307 16 The subscription could not be attached because the subscription

to publication '%s' has expired.
21308 10 Rowcount validation profile.
21309 10 Profile used by the Merge Agent to perform rowcount

validation.
21310 10 Rowcount and checksum validation profile.
21311 10 Profile used by the Merge Agent to perform rowcount and

checksum validation.
21312 10 Cannot change this publication property because there are

active subscriptions to this publication.
21313 10 Subscriber partition validation expression must be NULL for

static publications.
21314 10 There must be one and only one of '%s' and '%s' that is not

NULL.
21315 10 Failed to adjust Publisher identity range for table '%s'.

21316 10 Failed to adjust Publisher identity range for publication '%s'.
21317 10 A push subscription to the publication '%s' already exists. Use

sp_mergesubscription_cleanup to drop defunct push
subscriptions.

21318 10 Table '%s' must have at least one column that is included in the
vertical partition.

21319 16 Could not find the Snapshot Agent command line for the
specified publication.

21320 16 This version of the Publisher cannot use a SQL Server 7.0
Distributor.

21321 16 The parameter @dynamic_snapshot_location cannot be an
empty string.

21323 16 A dynamic snapshot job can be scheduled only for a publication
with dynamic filtering enabled.

21324 16 A Snapshot Agent must be added for the specified publication
before a dynamic snapshot job can be scheduled.

21325 16 Could not find the Snapshot Agent ID for the specified
publication.

21326 16 Could not find the dynamic snapshot job with a '%ls' of '%ls' for
the specified publication.

21327 16 '%ls' is not a valid dynamic snapshot job name.
21328 16 The specified dynamic snapshot job name '%ls' is already in

use. Try the operation again with a different job name.
21329 16 Only one of the parameters, @dynamic_snapshot_jobid or

@dynamic_snapshot_jobname, can be specified with a
nondefault value.

21330 16 Failed to create a sub-directory under the replication working
directory.(%ls)

21331 16 Failed to copy user script file to the Distributor.(%ls)
21332 16 Failed to retrieve information about the publication : %ls. Check

the name again.
21333 16 Protocol error. Message indicates a generation has disappeared.
21334 16 Cannot initialize Message Queuing-based subscription because

the platform is not Message Queuing %s compliant
21335 16 Warning: column '%s' already exists in the vertical partition

already.
21336 16 Warning: column '%s' does not exist in the vertical partition.
21337 16 Invalid @subscriber_type value. Valid options are 'local' and

'global'.
21338 16 Cannot drop article '%s' from publication '%s' because its

snapshot has been run and this publication could have active
subscriptions.

21339 10 Warning: the publication uses a feature that is only supported
only by Ssubscribers running '%s' or higher.

21340 16 On Demand user script cannot be applied to the snapshot
publication.

21341 16 @dynamic_snapshot_location cannot be a non-empty string
while @alt_snapshot_folder is neither empty nor null.

21342 16 @dynamic_snapshot_location cannot be a non-empty string
while @use_ftp is 'true'.

21343 16 Could not find stored procedure '%s'.
21344 16 Invalid value specified for %ls parameter.
21345 16 Excluding the last column in the partition is not allowed.
21346 16 Failed to change the owner of '%s' to '%s'.
21347 16 Column '%s' cannot be excluded from the vertical partitioning

because there is a unique index accessing this column.
21348 16 Invalid property name '%s'.

21349 10 Warning: only Subscribers running SQL Server 7.0 Service Pack
2 or later can synchronize with publication '%s' because
decentralized conflict logging is designated.

21350 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because a compressed
snapshot is used.

21351 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because vertical filters are
being used.

21352 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because schema replication is
performed.

21353 10 Warning: only Subscribers running SQL Server 7.0 Service Pack
2 or later can synchronize with publication '%s' because
publication wide reinitialization is performed.

21354 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because publication wide
reinitialization is performed.

21355 10 Warning: only Subscribers running SQL Server 7.0 Service Pack
2 or later can synchronize with publication '%s' because merge
metadata cleanup task is performed.

21356 10 Warning: only Subscribers running SQL Server 7.0 Service Pack
2 or later can synchronize with publication '%s' because
publication wide validation task is performed.

21357 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because data types new in
SQL Server 2000 exist in one of its articles.

21358 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because at least one
timestamp column exists in one of its articles

21359 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because automatic identity
ranges are being used.

21360 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because a new article has
been added to the publication after its snapshot has been
generated.

21361 16 The specified @agent_jobid is not a valid job id for a '%s' agent
job.

21362 16 Merge filter '%s' does not exist.
21363 16 Failed to add publication '%s' to Active Directory. %s.
21364 16 Could not add article '%s' because a snapshot is already

generated. Set @force_invalidate_snapshot to 1 to force this
and invalidate the existing snapshot.

21365 16 Could not add article '%s' because there are active
subscriptions. Set @force_reinit_subscription to 1 to force this
and reintialize the active subscriptions.

21366 16 Could not add filter '%s' because a snapshot is already
generated. Set @force_invalidate_snapshot to 1 to force this
and invalidate the existing snapshot.

21367 16 Could not add filter '%s' because there are active subscriptions.
Set @force_reinit_subscription to 1 to force this and reinitialize
the active subscriptions.

21368 16 The specified offload server name contains the invalid character
'%s'.

21369 16 Could not remove publication '%s' from Active Directory.
21370 16 The resync date specified '%s' is not a valid date.
21371 10 Could not propagate the change on publication '%s' to Active

Directory.

21372 16 Cannot drop filter '%s' from publication '%s' because its
snapshot has been run and this publication could have active
subscriptions.

21373 11 Could not open database %s. Replication settings and system
objects could not be upgraded. If the database is used for
replication, run sp_vupgrade_replication in the [master]
database when the database is available.

21374 10 Upgrading distribution settings and system objects in database
%s.

21375 10 Upgrading publication settings and system objects in database
%s.

21376 11 Could not open database %s. Replication settings and system
objects could not be upgraded. If the database is used for
replication, run sp_vupgrade_replication in the [master]
database when the database is available.

21377 10 Upgrading subscription settings and system objects in database
%s.

21378 16 Could not open distribution database %s because it is offline or
being recovered. Replication settings and system objects could
not be upgraded. Be sure this database is available and run
sp_vupgrade_replication again.

21379 16 Cannot drop article '%s' from publication '%s' because a
snapshot is already generated. Set @force_invalidate_snapshot
to 1 to force this and invalidate the existing snapshot.

21380 16 Cannot add identity column without forcing reinitialization. Set
@force_reinit_subscription to 1 to force reinitialization.

21381 16 Cannot add (drop) column to table '%s' because the table
belongs to publication(s) with an active updatable subscription.
Set @force_reinit_subscription to 1 to force reinitialization.

21382 16 Cannot drop filter '%s' because a snapshot is already generated.
Set @force_invalidate_snapshot to 1 to force this and invalidate
the existing snapshot.

21383 16 Cannot enable a merge publication on this server because the
working directory of its Distributors is not using a UNC path.

21384 16 The specified subscription does not exist or has not been
synchronized yet.

21385 16 Snapshot failed to process publication '%s'. Possibly due to
active schema change activity.

21386 16 Schema change failed on publication '%s'. Possibly due to active
snapshot or other schema change activity.

21387 16 The expanded dynamic snapshot view definition of one of the
articles exceeds the system limit of 3499 characters. Consider
using the default mechanism instead of the dynamic snapshot
for initializing the specified subscription.

21388 10 The concurrent snapshot for publication '%s' has not been
activated by the Log Reader Agent.

21389 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because column-level
collation is scripted out with the article schema creation script.

21390 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because extended properties
are scripted out with the article schema creation script.

21391 10 Warning: only Subscribers running SQL Server 2000 can
synchronize with publication '%s' because it contains schema-
only articles.

21392 16 Row filter(%s) is invalid for column partition(%s) for article '%s'
in publication '%s'.

21393 16 Dropping row filter(%s) for article '%s' in '%s'. Reissue
sp_articlefilter and sp_articleview to create a row filter.

21394 16 Invalid schema option specified for Queued updating
publication. Need to set the schema option to include DRI
constraints.

21395 10 This column cannot be included in a transactional publication
because the column ID is greater than 255.

21396 16 The subscription is marked inactive and must be dropped and
re-created.

21400 16 Article property must be changed at the original Publisher of
article '%s'.

21401 16 Article name cannot be 'all'.
21402 16 Incorrect value for parameter ''%s''
21403 10 The 'max_concurrent_dynamic_snapshots' publication property

must be greater than or equal to zero.
21404 10 '%s' is not a valid value for the '%s' parameter. The value must

be a positive integer greater than 300 or 0.
21405 10 '%s' is not a valid value for the '%s' parameter. The value must

be an integer greater than or equal to %d.
21406 10 '%s' is not a valid value for the '%s' parameter. The value must

be 0 or 1.
21413 16 Failed to acquire the application lock indicating the front of the

queue.
21414 10 Unexpected failure acquiring application lock.
21415 10 Unexpected failure releasing application lock.
21416 10 Property "%s" of article "%s" cannot be changed.
21417 10 Having a queue timeout value of over 12 hours is not allowed.
21418 10 Failed to add column "%s" to table "%s" because of metadata

overflow.
21419 10 Filter "%s" of article "%s" cannot be changed.
21420 10 Subscription property "%s" cannot be changed.
21421 10 Article ''%s'' cannot be dropped because there are other articles

using it as a join article.
21500 10 Invalid subscription type is specified. A subscription to

publication '%s' already exists in the database with a different
subscription type.

21501 10 The supplied resolver information does not specify a valid
column name to be used for conflict resolution by '%s'.

21502 10 The publication '%s' does not allow the subscription to
synchronize to an alternate synchronization partner.

Troubleshooting (SQL Server 2000)

Resolving System Error Messages
This topic identifies system error messages for which additional information or user action is provided.

Troubleshooting (SQL Server 2000)

Error 103
Error 103

Severity Level 15

Message Text

The %S_MSG that starts with '%.*ls' is too long. Maximum length is %d.

Explanation

If you enclose a character string that is more than 128 characters in double quotation marks, the application may receive this
error. When the QUOTED_IDENTIFIERS option is set ON (SET QUOTED_IDENTIFIERS ON), Microsoft® SQL Server™ expects
quoted identifiers to be enclosed in double quotation marks (") and data values to be enclosed in single quotation marks ('). In the
case of character parameters of stored procedures, SQL Server accepts data values enclosed in double quotation marks if the
character string is less than 128 characters. They should be considered syntax errors by SQL Server and generate an error.

You can also see this in ODBC applications using the SQL Server ODBC driver versions 2.50.0121 and later. These drivers set
QUOTED_IDENTIFIERS ON when run against a SQL Server version 6.x or later server so that the ODBC driver's behavior more
closely matches the ANSI and ODBC standards. ODBC applications that use double quotation marks for parameter values may see
this behavior after you upgrade to SQL Server 6.x or later and the ODBC 2.50.0121 or later driver.

This behavior has been seen when using stored procedures that contain nested stored procedure execution with parameters
delimited in double quotation marks (such as xp_cmdshell) from ODBC applications such as Microsoft Internet Information
Service (IIS).

SQL Server does not always flag stored procedure parameters enclosed in double quotation marks if the SET
QUOTED_IDENTIFIER ON option has been issued.

Action

Change the procedure call to enclose the parameter values in single quotation marks:

EXECUTE myproc 1, 'abcdefghijklmn'

ODBC applications can also use bound parameter markers instead of providing the values directly using either proprietary
Transact-SQL syntax:

SQLExecDirect(hstmt, "EXECUTE myproc ?,?", SQL_NTS);

or, the ODBC standard syntax:

SQLExecDirect(hstmt, "{ call myproc (?,?)}", SQL_NTS);

In these cases, you may be able to work around the problem by placing a SET QUOTED_IDENTIFIER OFF statement at the
beginning of the stored procedure. This setting will be in effect only for the scope of the stored procedure and will not affect other
statement execution outside of the stored procedure.

CREATE PROCEDURE iisproc
AS
 BEGIN
 DECLARE @stmt varchar(255)
 SET QUOTED_IDENTIFIER OFF
 SELECT @stmt = 'xp_cmdshell "c:\myprog xxxxxxxxxxxxxxxxxxxxxxx"' EXECUTE (@stmt)
 END

See Also

Errors 1 - 999

EXECUTE

SET QUOTED_IDENTIFIER

Using Identifiers

Troubleshooting (SQL Server 2000)

Error 107
Error 107

Severity Level 15

Message Text

The column prefix '%.*ls' does not match with a table name or alias name used in the query.

Explanation

A column prefix was specified that does not correspond to any table name specified in the query. Match the column prefixes
against the table names and alias names in the FROM clause.

One common cause of this error is the use of a table name when an alias name for the table is also supplied. When working with
a table alias (a correlation name in ANSI terminology), the syntax checking in Microsoft® SQL Server™ complies with the ANSI
specification. ANSI states,

A <table name> ... is exposed ... if and only if the <table reference>
does not specify a <correlation name>.

If an alias has been provided for a table name in the FROM clause, you can use the alias only to qualify columns from the table;
the table name cannot be used elsewhere in the statement because they are flagged as syntax errors.

As an example of the difference in behavior, assume this script has been executed:

USE Northwind
GO
SELECT Customers.ContactName
FROM Customers cu
WHERE ContactName LIKE 'C%'
GO
SELECT cu.ContactName
FROM Customers cu
WHERE Customers.ContactName LIKE 'C%'
GO

In both SELECT statements, notice the use of Customers to qualify the column ContactName even though a table alias of cu has
been provided to substitute for the table name. Both of these queries return this error message:
Server: Msg 107, Level 16, State 3
The column prefix 'Customers' does not match with a table name or alias name used in the query.

Action

Use the column prefix that corresponds to the exposed name of the table.

Rewrite any queries where column names are qualified with the table name. Use the table alias instead. For example, this SELECT
statement is equivalent to the ones above and uses a table alias for column qualification:

USE Northwind
GO
SELECT cu.ContactName
FROM Customers cu
WHERE cu.ContactName LIKE 'C%'
GO

See Also

Errors 1 - 999

Query Fundamentals

SELECT

Using Table Aliases

Troubleshooting (SQL Server 2000)

Error 109
Error 109

Severity Level 15

Message Text

There are more columns in the INSERT statement than values specified in the VALUES clause. The number of values
in the VALUES clause must match the number of columns specified in the INSERT statement.

Explanation

This error occurs when more columns are listed in the INSERT statement than values specified in the VALUES clause. The number
of values in the VALUES clause must match the number of columns specified in the INSERT statement.

Do not confuse error 109 with operating-system error 109. Operating-system error 109 means that a named pipe connection has
been terminated.

Action

Rewrite the INSERT statement, ensuring that the number of columns specified matches the number of columns in the VALUES
clause. For example:

INSERT t1 (col1,col2,col3) VALUES (val1,val2,val3)

See Also

INSERT

Troubleshooting (SQL Server 2000)

Error 137
Error 137

Severity Level 15

Message Text

Must declare the variable '%.*ls'.

Explanation

This error occurs when a variable is used in a SQL script without first declaring the variable. This example returns error 137:

SET @mycol = 'ContactName'
SELECT @mycol
GO

One of the more complicated causes of this error includes the use of a variable that was declared outside the EXECUTE statement.
For example:

USE Northwind
GO
DECLARE @mycol nvarchar(20)
SET @mycol = 'ContactName'
EXECUTE ('SELECT @mycol FROM Customers')

Action

Verify that any variables used in a SQL script are declared before being used elsewhere in the script.

Rewrite the procedure so that it does not reference variables in the EXECUTE statement that were declared outside of it.

USE Northwind
GO
DECLARE @mycol nvarchar(20)
SET @mycol = 'ContactName'
EXECUTE ('SELECT ' + @mycol + ' FROM Customers')

See Also

DECLARE @local_variable

Errors 1 - 999

EXECUTE

SELECT @local_variable

SET @local_variable

Troubleshooting (SQL Server 2000)

Error 156
Error 156

Severity Level 15

Message Text

Incorrect syntax near the keyword '%.*ls'.

Explanation

This error indicates that the syntax of a Transact-SQL statement is incorrect and that the syntax error was detected near the
keyword specified in the error message. The most frequent causes for syntax errors are misspellings of Transact-SQL keywords or
operators, and specifying the syntax of a Transact-SQL statement in the wrong order.

One of the more complicated causes for this error may be a compatibility level mismatch for the current database. If the current
database has a compatibility level other than 70, Microsoft® SQL Server™ will not recognize any of the keywords that a database
with a compatibility level of 70 would recognize.

Action

First, check the Transact-SQL statement syntax near the keyword specified in the error message. Because Transact-SQL language
syntax can be very complex, SQL Server may incorrectly report the position of the syntax error as later in the Transact-SQL
statement than it actually occurred. Second, reexamine the entire Transact-SQL statement that generated the error. Verify the
syntax order of the statement.

Ensure that the database does not have a compatibility level of 65 and has a compatibility level of 70.

See Also

Backward Compatibility

Errors 1 - 999

Transact-SQL Overview

Reserved Keywords

sp_dbcmptlevel

Troubleshooting (SQL Server 2000)

Error 170
Error 170

Severity Level 15

Message Text

Line %d: Incorrect syntax near '%.*ls'.

Explanation

This error indicates that the syntax of a Transact-SQL statement is incorrect and that the syntax error was detected near the
Transact-SQL syntax element specified in the error message. The most frequent causes for syntax errors are misspellings of
Transact-SQL syntax elements or operators, and specifying the syntax of a Transact-SQL statement in the wrong order.

This example produces error 170:

USE Northwind
GO
SELECT &
FROM Categories
ORDER BY CategoryName ASC

Action

First, check the Transact-SQL statement syntax near the syntax element specified in the error message. Because Transact-SQL
language syntax can be very complex, Microsoft® SQL Server™ may report the syntax error later in the Transact-SQL statement
syntax than it actually occurred. Second, reexamine the entire Transact-SQL statement that generated the error. Verify the syntax
order of the statement.

In the above example, changing the ampersand (&) to an asterisk (*) corrects the problem:

USE Northwind
GO
SELECT *
FROM Categories
ORDER BY CategoryName ASC

See Also

Errors 1 - 999

Transact-SQL Overview

Troubleshooting (SQL Server 2000)

Error 207
Error 207

Severity Level 16

Message Text

Invalid column name '%.*ls'.

Explanation

This error occurs when a column referenced in a Transact-SQL statement was not found in any table specified in the FROM clause
of the query.

Action

Change the column name to a column name present in one of the tables referenced in the query.

This example returns error 207:

USE Northwind
GO
SELECT CategoryName1
FROM Categories
GO

Evaluate the problem by looking at the full command. For the above example, ensure that the SELECT statement contains the
name of a valid column name (CategoryName rather than CategoryName1 as specified above) for the specified table.

USE Northwind
GO
SELECT CategoryName
FROM Categories
GO

See Also

Errors 1 - 999

SELECT

Troubleshooting (SQL Server 2000)

Error 208
Error 208

Severity Level 16

Message Text

Invalid object name '%.*ls'.

Explanation

This error occurs when an object that does not exist is referenced. If the object exists, you might need to include the owner's name
in the object name.

If the object is not owned by the user attempting to access it, and it is not owned by the database owner, all references to the
object must include the owner's name. For example, if user1 creates a table called test, other users must use the name user1.test
when they refer to the table.

The Microsoft® SQL Server™ naming convention for database objects is:

[[[server_name.][database_name].][owner_name].]object_name

The default value for server_name is the current server and the default value for database_name is the current database. The
default value for owner_name is the current user. Because owner_name is part of the object name, it is possible for two different
users to have tables with the same name in the same database (for example, user1.test and user2.test). For more information
about naming conventions, see Transact-SQL Syntax Conventions.

This message can also occur when you reference a temporary table that was created with an EXECUTE statement.

Action

The procedure for handling this error depends on what you know about the object indicated in the error message text.

The appropriate permissions must also be set to allow access to an object. If these permissions are not set, error 229 or 230
occurs.

If you do not know who owns the object

Execute sp_help with no parameters to display the object owner.

Or

Query the Information Schema Views if the object is a table or view to determine the object owner and type. If the object is
not a table or a view, query the sysobjects system table to determine the object owner and type.

For example, to determine the owner and type for the object named table_1, execute the following:

USE master
GO
SELECT TABLE_SCHEMA
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'table_1'
GO

If no rows are returned from this query, the object either resides in a different database or does not exist.

If you do not own the object in question

Include the object owner in the object name. For example:

SELECT *
FROM user1.table_1

Although using fully qualified object names eliminates this problem, remember that including the fully qualified object
name in an application might complicate the maintenance of the application. For example, if all references to a table include
the database name, changing the database name could become difficult.

Or

Have the database owner create the object. If the owner creates the object, any user can find the object without specifying
the owner. However, temporary tables reside in tempdb and are dropped automatically when the user process or server
connection that created them is terminated. Users cannot share temporary tables, even if they are created by the database
owner.

If the object does not reside in the database

Switch context to the correct database using the USE statement. For example:

USE database_1

Or

Qualify the object name with the database name. For example:

SELECT *
FROM database_1.user1.table_1

If you own the object or if the object is owned by the database owner, the owner name is not needed. For example:

SELECT *
FROM database_1..table_1

If a temporary table created with an EXECUTE statement is referenced

If you must use the EXECUTE statement to create a temporary table, create it as a global temporary table using the syntax
##tablename.

See Also

CREATE TABLE

Creating and Modifying a Table

Errors 1 - 999

EXECUTE

Information Schema Views

Querying SQL Server System Catalogs

SELECT

sp_help

sysobjects

Transact-SQL Syntax Conventions

USE

Troubleshooting (SQL Server 2000)

Error 220
Error 220

Severity Level 16

Message Text

Arithmetic overflow error for data type %ls, value = %ld.

Explanation

This error occurs when an attempt is made to convert a float or real data type value into a data type that cannot store the result.
This error prevents the operation from being completed. For example, if you attempt to place the number 32770 into a variable or
column of smallint data type, Microsoft® SQL Server™ returns this error because variables or columns of smallint data type can
address integers from -215 (–32,768) through 215-1(32,767).

This example raises the error:

DECLARE @myval smallint
SET @myval = 32770
SELECT @myval
GO

Action

For numeric operations, use the ROUND, CAST, and CONVERT functions to manipulate the value in question to fit into the column
or variable. Change the data type of the column or variable in question. In the example described above, change the column or
variable from smallint to int).

Here is the corrected example:

DECLARE @myval int
SET @myval = 32770
SELECT @myval
GO

See Also

CAST and CONVERT

Data Types

Errors 1 - 999

ROUND

Troubleshooting (SQL Server 2000)

Error 229
Error 229

Severity Level 14

Message Text

%ls permission denied on object '%.*ls', database '%.*ls', owner '%.*ls'.

Explanation

This error occurs when a Microsoft® SQL Server™ user attempts an action, such as executing a stored procedure, or reading or
modifying a table, for which the user does not have the appropriate privileges.

Action

Any user with full-control over the object in question (such as the object owner or system administrator) can grant the necessary
privileges to the user requiring access to the object.

See Also

Errors 1 - 999

EXECUTE

GRANT

Managing Permissions

SELECT

UPDATE

Troubleshooting (SQL Server 2000)

Error 245
Error 245

Severity Level 16

Message Text

Syntax error converting the %ls value '%.*ls' to a column of data type %ls.

Explanation

Microsoft® SQL Server™ returns this message if a character is converted to an integer. For example, these SELECT statements
return error 245:

SELECT CONVERT(int, 'A')
-- Or
SELECT CAST('A' AS int)

SQL Server returns this error message because a conversion from a character value to an integer can only be done if it resembles
a numeric value. For example, the character 1 (one) can be converted to an integer.

SELECT CONVERT(int, '1')
-- Or
SELECT CAST('1' AS int)

Action

To convert a character to an integer, use the ASCII function, which returns a numerical representation of the character. For
example:

SELECT CONVERT(int, ASCII('A'))
-- Or
SELECT CAST(ASCII('A') AS int)

See Also

ASCII

CAST and CONVERT

Data Types

Errors 1 - 999

Troubleshooting (SQL Server 2000)

Error 259
Error 259

Severity Level 16

Message Text

Ad hoc updates to system catalogs are not enabled. The system administrator must reconfigure SQL Server to allow
this.

Explanation

This error occurs when Microsoft® SQL Server™ detected an attempt to modify the system catalogs directly while the allow
updates system configuration option of sp_configure is set to 0.

The allow updates system configuration option allows the system administrator to change the system catalogs directly.

Warning Severe problems can result from the direct manipulation of the system catalogs. Do not modify the system catalogs
unless instructed to do so by your primary support provider.

Action

Before modifying any system catalogs, be sure that you have a valid backup of the database.

Warning Incorrect modification of the system catalogs can result in database corruption or data loss.

If possible, restart SQL Server in single-user mode by using the -m flag of the sqlservr application so that inadvertent
modifications do not occur. For more information, see sqlservr Application.

To modify system catalogs, use the osql utility to alter the allow updates system configuration setting.

Note Only the system administrator can alter the value for the allow updates system configuration setting.

See Also

allow updates Option

Backing Up and Restoring Databases

Errors 1 - 999

osql Utility

RECONFIGURE

Reporting Errors to Your Primary Support Provider

Setting Configuration Options

sp_configure

Using Startup Options

Troubleshooting (SQL Server 2000)

Error 266
Error 266

Severity Level 16

Message Text

Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK TRANSACTION statement is missing. Previous
count = %ld, current count = %ld.

Explanation

If a stored procedure exits with the @@TRANCOUNT value that is not the same as when the stored procedure was entered,
Microsoft® SQL Server™ returns error 266.

Note This error can be ignored because it only sends a message to the client and does not affect execution.

This example reproduces the problem:

CREATE PROCEDURE test
AS
SELECT @@TRANCOUNT
ROLLBACK TRANSACTION
SELECT @@TRANCOUNT
GO
BEGIN TRANSACTION
EXECUTE test
GO

Because @@TRANCOUNT is not the same in both SELECT statements, error 266 is generated on return from the stored
procedure.

This is expected behavior, but it does not mean that transactions cannot be started, completed, or terminated in a stored
procedure. Instead, care must be taken so that the @@TRANSACTION function matches on both the entry and exit of the stored
procedure. For more information, see ROLLBACK TRANSACTION.

This problem is more likely to occur when writing nested stored procedures.

Action

There is a solution so that the stored procedure works without the error. The following is a list of solutions, with sample code for
each:

1. Perform final COMMIT TRANSACTION or ROLLBACK TRANSACTION statements from the same stored procedure nesting
level where the transaction began, as shown by the following examples:

-- Example 1.a
CREATE PROCEDURE test1a
AS
SELECT @@TRANCOUNT
GO
BEGIN TRANSACTION
EXECUTE test1a
ROLLBACK TRANSACTION
GO
-- Example 1.b
CREATE PROCEDURE test1c
AS
SELECT @@TRANCOUNT
GO
CREATE PROCEDURE test1b
AS
BEGIN TRANSACTION
EXEC test1c

COMMIT TRANSACTION
GO
EXECUTE test1b
GO

2. If nested transactions are used in a stored procedure, perform matching commits.

Note The transaction is not committed until @@TRANCOUNT is equal to 0 (zero).

-- Example 2
CREATE PROCEDURE test2b
AS
SELECT @@TRANCOUNT
BEGIN TRANSACTION
SELECT @@TRANCOUNT
COMMIT TRANSACTION
SELECT @@TRANCOUNT
GO
CREATE PROCEDURE test2a
AS
BEGIN TRANSACTION
EXECUTE test2b
COMMIT TRANSACTION
GO
EXECUTE test2a
GO

3. If a rollback is needed and the stored procedure nesting level is different than where the transaction began, use RAISERROR,
with a valid user-defined error, and check the @@ERROR function after the EXECUTE statement.

-- Example 3
USE master
EXECUTE sp_addmessage 50001, 16, 'Rollback of transaction in test3'
GO
CREATE PROCEDURE test3
AS
RAISERROR (50001,16,1)
GO
BEGIN TRANSACTION
EXEC test3
 IF @@error <> 50001
 BEGIN
 PRINT 'Commit'
 COMMIT TRANSACTION
 END
 ELSE
 BEGIN
 PRINT 'Rollback'
 ROLLBACK TRANSACTION
 END
GO

4. The exception to this rule is that if a trigger performs a rollback, @@TRANCOUNT need not match its starting value,
because the batch is terminated. However, a stored procedure called by a trigger may cause the problem if it terminated the
transaction.

-- Example 4
CREATE TABLE x (col1 int)
GO
CREATE TRIGGER xins
 ON x

 FOR INSERT AS
 ROLLBACK TRANSACTION
GO
CREATE PROCEDURE sp_xinsert
AS
 SELECT @@TRANCOUNT
 INSERT x (col1) VALUES (1)
 SELECT @@TRANCOUNT
GO
BEGIN TRANSACTION
EXECUTE sp_xinsert
 IF @@error <> 0
 BEGIN
 PRINT 'Commit'
 COMMIT TRANSACTION
 END
 ELSE
 BEGIN
 PRINT 'Rollback'
 ROLLBACK TRANSACTION
 END
GO
SELECT *
FROM x

See Also

@@ERROR

@@TRANCOUNT

BEGIN TRANSACTION

COMMIT TRANSACTION

Errors 1 - 999

EXECUTE

ROLLBACK TRANSACTION

Transactions

Troubleshooting (SQL Server 2000)

Error 268
Error 268

Severity Level 16

Message Text

Cannot run SELECT INTO in this database. The database owner must run sp_dboption to enable this option.

Explanation

This error occurs when an attempt to use the SELECT INTO statement has not been permitted because the select into/bulkcopy
database option is not enabled for this database. The database owner must turn on the select into/bulkcopy database option
before the SELECT INTO statement can be completed successfully.

This error can also be triggered by stored procedures.

Caution Enabling the select into/bulkcopy database option permits nonlogged operations to take place. Have a specific
backup strategy in place to ensure data integrity after nonlogged operations have been performed. A transaction log cannot be
backed up after a nonlogged operation. Use the BACKUP DATABASE statement after nonlogged operations have been performed.

Action

The database owner or system administrator must use the sp_dboption system stored procedure to enable the select
into/bulkcopy database option. For example, for the pubs database, you would use the osql command prompt utility to
perform the following steps:

1. Switch to the master database and set the database option for the Northwind database. Type:

USE master
GO
sp_dboption Northwind, 'select into/bulkcopy', true
GO
USE Northwind
GO
CHECKPOINT
GO

2. Verify that the change has taken place correctly. Execute the sp_helpdb system stored procedure on Northwind. The status
result column should show the select into/bulkcopy database option as enabled. Type:

sp_helpdb Northwind
GO

You may want to review information about the bcp Utility and SELECT INTO statement. For more information, see the SELECT and
bcp Utility. In some cases, bcp is a logged operation that can affect your backup strategy and transaction log backup frequency.

See Also

Backing Up and Restoring Databases

BACKUP

Errors 1 - 999

osql Utility

Setting Database Options

sp_dboption

sp_help

sp_helpdb

Troubleshooting (SQL Server 2000)

Error 511
Error 511

Severity Level 16

Message Text

Cannot create a row of size %d which is greater than the allowable maximum of %d.

Explanation

This error occurs when you attempt to insert a row that is larger than the defined maximum for that table. This error occurs if the
row you attempt to insert into a table is too big to fit into a data page.

In Microsoft® SQL Server™, the maximum allowable size of a row in a table is 8060 bytes. A row cannot be split across data
pages. A data page is 8 KB in size and consists of the data row and some internal data structures.

Action

Change the data being inserted so it does not exceed the maximum number of bytes (8060) that can be stored in a single row.

See Also

Adding Rows with INSERT

CREATE TABLE

INSERT

Maximum Capacity Specifications

Troubleshooting (SQL Server 2000)

Error 515
Error 515

Severity Level 16

Message Text

Cannot insert the value NULL into column '%.*ls', table '%.*ls'; column does not allow nulls. %ls fails.

Explanation

This error occurs at run time when an attempt is made to use a null value while inserting or updating a column that does not
allow null values.

This message differs from the following message, which indicates that the attempt has been detected at compile time.
error 233: The column '%.*ls' in table '%.*ls' cannot be null.

This error can also occur if the table that is the target of an INSERT or UPDATE statement in a stored procedure or trigger is being
dropped and re-created, and one or more of the table column definition(s) have changed from NULL to NOT NULL.

Action

If this error occurs when you are running an UPDATE or INSERT statement, verify that the data inserted or updated matches the
column definition for the affected table.

Inserting or updating a column does not allow null values.

Note In a direct UPDATE or INSERT by value, you will get compile error 233 instead of error 515. Usually 515 errors occur in an
INSERT/SELECT or an UPDATE statement that uses data in another table.

If this error occurs when a stored procedure or trigger references a table that has been dropped and re-created with different
nullability, drop and re-create the affected stored procedure or trigger.

If you are unable to resolve the problem, contact your primary support provider for assistance.

See Also

ALTER PROCEDURE

ALTER TABLE

ALTER TRIGGER

CREATE PROCEDURE

CREATE TABLE

CREATE TRIGGER

DROP PROCEDURE

DROP TRIGGER

Errors 1 - 999

INSERT

Reporting Errors to Your Primary Support Provider

SELECT

UPDATE

Troubleshooting (SQL Server 2000)

Error 544
Error 544

Severity Level 16

Message Text

Cannot insert explicit value for identity column in table '%.*ls' when IDENTITY_INSERT is set to OFF.

Explanation

This error occurs when you have attempted to insert a row that contains a specific identity value into a table that contains an
identity column. However, SET IDENTITY_INSERT is not enabled for the specified table.

Action

To insert a specific identity row successfully into a table containing an identity column, you must enable SET IDENTITY_INSERT.
The following example inserts identity row 2, where iID is defined as the identity column.

USE pubs
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'tblTest')
 DROP TABLE tblTest
GO
CREATE TABLE tblTest
(iID int IDENTITY(1, 1),
 strData nvarchar(15)
)
GO
INSERT INTO tblTest (strData) VALUES (N'Leverling')
INSERT INTO tblTest (strData) VALUES (N'Davolio')
GO
SET IDENTITY_INSERT tblTest ON
GO

-- Insert the specified identity row using a column list.
INSERT INTO tblTest (iID, strData) VALUES (5, N'Callahan')
GO
-- Display the rows in tblTest to see identity values.

SELECT *
FROM tblTest

-- Disable IDENTITY_INSERT.
SET IDENTITY_INSERT tblTest OFF
GO

See Also

ALTER TABLE

CREATE TABLE

Errors 1 - 999

SET IDENTITY_INSERT

Troubleshooting (SQL Server 2000)

Error 601
Error 601

Severity Level 12

Message Text

Could not continue scan with NOLOCK due to data movement.

Explanation

When scanning with the NOLOCK locking hint or with the transaction isolation level set to READ UNCOMMITTED, it is possible for
the page at the current position of the scan to be deleted. When this happens, Microsoft® SQL Server™ is not able to continue the
scan.

Action

This error aborts the query. Either resubmit the query or remove the NOLOCK locking hint.

See Also

Locking Hints

SELECT

SET TRANSACTION ISOLATION LEVEL

Troubleshooting (SQL Server 2000)

Error 602
Error 602

Severity Level 21

Message Text

Could not find row in sysindexes for database ID %d, object ID %ld, index ID %d. Run DBCC CHECKTABLE on
sysindexes.

Explanation

This error occurs when Microsoft® SQL Server™ cannot find a row in the sysindexes table for a needed table or index (for
example, when executing a stored procedure that references a table that has been dropped).

Action

If the error occurs because a stored procedure references a dropped table, drop and re-create the stored procedure. This error
may also occur in conjunction with other error messages that better point to the root cause of the problem. Execute DBCC
CHECKTABLE on sysindexes; also execute DBCC CHECKDB.

If the problem persists, contact your primary support provider. Have the output from the DBCC CHECKDB statement available for
review.

See Also

ALTER PROCEDURE

CREATE PROCEDURE

DBCC CHECKDB

DBCC CHECKTABLE

DROP PROCEDURE

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

sysindexes

Troubleshooting (SQL Server 2000)

Error 605
Error 605

Severity Level 21

Message Text

Attempt to fetch logical page %S_PGID in database '%.*ls' belongs to object '%.*ls', not to object '%.*ls'.

Explanation

This error occurs when Microsoft® SQL Server™ detects database corruption. The second object specified in the text not to object
'%.*ls' is probably corrupt. Because this error can mask the existence of other errors, execute DBCC CHECKDB to determine the
extent of the damage. If DBCC CHECKDB does not report additional errors, the first object mentioned is not corrupt.

SQL Server detects database corruption when it traverses the pages of an object and finds a page in the chain whose object ID
does not match that of the object being accessed. There is probably a damaged page chain, a corrupt Index Allocation Map (IAM),
or an invalid entry in the sysobjects system table for that object. A clustered table has one doubly-linked page chain for the table
data as well as one for each index level. A nonclustered index has a page chain for each level of the index. Pages in a heap are not
linked. The IAM is used to find the pages of a heap.

Although error 605 usually displays two object names, other variations can occur:

If instead of an object name the error displays a number greater than 0, it means that an attempt was made to reference an
object ID that does not exist in a system table for that object.

If the error reports the first object ID as 0, an unallocated page was probably encountered. (There is no object ID equal to 0.)

If the error states that a page belongs to object ALLOCATION, some of the allocation structures used by the database might
be corrupted.

Usually this error occurs after the corruption has been written to the database on disk, but it can also occur entirely in the cache
without the damage ever being written to the disk. This is known as a transient 605 error and is not associated with data
corruption. If error 605 occurs during data access, but subsequent DBCC CHECKDB statements complete without error, the 605
error was probably transient. Transient 605 errors can be caused by the operating system prematurely notifying SQL Server that
an I/O operation has completed; the error message is displayed even though no actual data corruption exists.

Nontransient 605 errors are often caused by hardware or disk device driver failure.

Action

Execute DBCC CHECKTABLE on the second object specified in the error message. To determine the full extent of the corruption,
execute DBCC CHECKDB as soon as possible. Also check the error log for other errors, which often accompany a 605 error.

If the 605 error is not transient, the problem is severe and you must run DBCC CHECKDB with one of the repair clauses. If the
error involves an index page, use the REPAIR_REBUILD clause. If the error involves a data page, it may be necessary to use the
REPAIR_ALLOW_DATA_LOSS clause. In the likely event that you cannot allow the loss of data, you will need to restore from a
known clean backup. If the problem persists, contact your primary support provider. Have the output from DBCC CHECKDB
available for review.

Important If running DBCC CHECKDB with one of the repair clauses does not correct the index problem, or if you are unsure
what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support provider.

In addition, run hardware diagnostics and correct any problems. You might find it beneficial to perform a completely new setup
on the computer, including reformatting the disk drives and reinstalling the operating system. This eliminates the possibility that a
.dll or .exe program is corrupted. You can also examine your operating-system error log to see if the error occurred as the result
of hardware failure.

Finally, be sure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem,
contact your hardware vendor.

Additional Information

DBCC CHECKDB offers the REPAIR_REBUILD and REPAIR_ALLOW_DATA_LOSS clauses. The REPAIR_REBUILD clause rebuilds
corrupt indexes and the REPAIR_ALLOW_DATA_LOSS clause fixes allocation problems. Sometimes, deleting pages is the only way
to fix allocation problems. Typically, these pages contain data that was already deleted, but the pages may contain valid data.
Therefore, deleting pages is a more risky option than using DBCC CHECKDB with a repair clause. Using DBCC CHECKDB with a
repair clause fixes database corruption when a database backup is not available.

If your database is a data warehouse, you may be able to continue operating without the lost data for some time before reloading
the missing data. In these cases, use DBCC CHECKDB with the REPAIR_ALLOW_DATA_LOSS clause to fix the damaged database.

You can prevent problems by following these guidelines:

1. Run SQL Server only on hardware and controllers that are certified for your operating system.

2. Perform regular backups in conjunction with DBCC CHECKDB statements. DBCC CHECKDB performs all checks that DBCC
NEWALLOC and DBCC CHECKALLOC previously did, but DBCC CHECKDB is faster. This is the only way to be confident of
the state of the database at the time of the backup.

3. If the data is critical, back up the transaction log frequently. This makes it possible to reduce your window of vulnerability,
even in the event of a catastrophic hardware problem, to an hour or less.

4. In the most critical situations, use a standby server and a continually running batch job to take transaction backups off of the
primary computer and continually restore them on the standby computer.

5. If you have persistent data corruption problems, try to swap the computer, the controllers, and the disk device drivers for
components of a different type. This makes it easier to determine whether the problem is specifically platform-related.

See Also

Backing Up and Restoring Databases

BACKUP

Errors 1 - 999

Managing Space Used by Objects

Reporting Errors to Your Primary Support Provider

Using Standby Servers

Troubleshooting (SQL Server 2000)

Error 624
Error 624

Severity Level 21

Message Text

Could not retrieve row from page by RID because the requested RID has a higher number than the last RID on the
page. %S_RID.%S_PAGE, Dbid %d

Explanation

This error occurs when an attempt to retrieve a row from a data page by specifying the row ID (RID) failed because the requested
RID was a higher number than the last RID on the page. This can happen during normal processing, if the leaf page of a corrupt
nonclustered index points to an incorrect or nonexistent RID on a data page.

If the error occurs on a system table during a read-only operation while other users are updating system tables (executing DDL), it
is probably a transient 624 error (rather than a corrupted index). To confirm that there is no corruption, execute DBCC
CHECKTABLE without a repair clause.

Action

The recovery procedure depends on when the error occurred. If problems persist, the following procedures might not be
sufficient to clean up the index corruption. In this case, contact your primary support provider. Have the output from either DBCC
CHECKTABLE (if investigating possible system table corruption) or DBCC CHECKDB available for review.

If the error occurred during normal processing

Execute DBCC CHECKTABLE with the REPAIR_REBUILD clause. If executing DBCC CHECKTABLE with the REPAIR_REBUILD clause
does not correct the problem, drop and re-create the affected index(es).

Important If executing DBCC CHECKDB with the REPAIR_REBUILD clause does not correct the index problem or if you are unsure
what effect DBCC CHECKDB with the REPAIR_REBUILD clause has on your data, contact your primary support provider.

Index unknown, query known

The fastest way to resolve this problem is to execute DBCC CHECKDB with the REPAIR_REBUILD clause. This fixes any index
corruption in the entire database. If the database is so large that you do not want to run DBCC CHECKDB, use these instructions to
locate the specific index to drop and re-create.

If you do not know which index is causing the problem but you do know which query encounters the problem, follow the
instructions below. If you do not know the index or the query, follow the instructions under the next section, "Index and query
both unknown."

1. Determine which index should be dropped by reading the showplan output for the query that encounters the error. If you
SET SHOWPLAN_TEXT to ON, SET NOEXEC to ON, and then run the query in question, the output indicates which
nonclustered index the query is using to access the table in question.

For example:

USE pubs
GO
SET SHOWPLAN_TEXT ON
GO
SET NOEXEC ON
GO
SELECT title
FROM titles
WHERE title > 'Cooking'
GO

Here is the result set:

StmtText

SET NOEXEC ON

(1 row(s) affected)

StmtText

SELECT title
FROM titles
WHERE title > 'Cooking'

(1 row(s) affected)

StmtText

 |--Index Seek(OBJECT:([pubs].[dbo].[titles].[titleind]), SEEK:([titles].[title] > [@1]) ORDERED FORWARD)

(1 row(s) affected)

2. SET NOEXEC to OFF and SET SHOWPLAN_TEXT TO OFF again:

SET NOEXEC OFF
GO
SET SHOWPLAN_TEXT OFF
GO

3. Drop and re-create the index identified in Step 1 (in this example, titleind).

Index and query both unknown

If you do not know the index or the query, rebuild all nonclustered indexes on the table as follows:

1. Look at the output you created with DBCC CHECKDB when you obtained the table name:

If the object ID is less than 100, you cannot drop and re-create the indexes. Do not continue with Steps 2 or 3. You
must restore the database from a known clean backup.

If the object ID is 100 or greater, continue with Step 2.

2. Use sp_helpindex to list all indexes on the table, and then rebuild all the nonclustered indexes using one of the following
methods:

Drop and re-create each nonclustered index on the table.

If the table has a clustered index, drop and re-create it. This causes all nonclustered indexes to be rebuilt automatically.
If your table is large, you might not have the space to do this. Generally, 1.2 times of the size of the table must be
available.

3. After the appropriate index has been re-created, run DBCC CHECKTABLE on the table to confirm that the problem has been
resolved.

See Also

DBCC CHECKDB

DBCC CHECKTABLE

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

Resetting the Suspect Status

SET NOEXEC

SET SHOWPLAN_TEXT

sp_helpindex

Troubleshooting (SQL Server 2000)

Error 625
Error 625

Severity Level 21

Message Text

Cannot retrieve row from page %S_PGID by RID because the slotid (%d) is not valid.

Explanation

This error occurs when an object to which this row belongs is in error. The problem was detected during the reading of a specific
row from that logical page. This error can occur as a result of:

Hardware problems, especially problems with the hard drive, controller or hardware write caching.

Other errors in the database.

Action

Execute DBCC CHECKDB to determine the full extent of the error. Also check the error log for other errors such as 25xx messages,
which often accompany this error.

If DBCC CHECKDB issues other error messages, resolving those messages first may take care of this error. Execute DBCC
CHECKDB with the REPAIR_REBUILD clause to repair the damage.

Important If executing DBCC CHECKDB with the REPAIR_REBUILD clause does not correct the index problem or if you are unsure
what effect DBCC CHECKDB with the REPAIR_REBUILD clause has on your data, contact your primary support provider.

If executing DBCC CHECKDB with the REPAIR_REBUILD clause does not resolve all table error problems, determine which table is
affected by examining the page in the error message. If the page is associated with an index, you may be able to resolve the
problem by dropping and then re-creating the index. If the page is a data page and a clean current backup is available, restore the
database from the backup.

If no backup is available, select the table into another table or bulk copy data out of the table, drop the table, re-create it, and then
select data back into the table.

If you suspect a hardware problem, run hardware diagnostics and correct any problems. You might find it beneficial to perform a
completely new setup, including reformatting the disk drives and reinstalling the operating system. Also examine the Microsoft®
Windows NT® application log to see if the error occurred as the result of hardware failure.

Finally, be sure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem,
contact your hardware vendor.

See Also

BACKUP

DBCC CHECKDB

Errors 1 - 999

Troubleshooting (SQL Server 2000)

Error 644
Error 644

Severity Level 21

Message Text

Could not find the index entry for RID '%.*hs' in index page %S_PGID, index ID %d, database '%.*ls'.

Explanation

This error occurs when the nonclustered index indicated by the index ID is in error. The corruption is detected when a process tries
to delete a nonexistent row.

Action

Execute DBCC CHECKDB without a repair clause to determine the extent of the damage. Then, execute DBCC CHECKDB with
REPAIR_REBUILD clause to correct the damage. If problems persist, either drop and re-create the index (as shown below) or
contact your primary support provider.

Important If executing DBCC CHECKDB with the REPAIR_REBUILD clause does not correct the index problem or if you are unsure
what effect DBCC CHECKDB with the REPAIR_REBUILD clause has on your data, contact your primary support provider.

To drop and re-create the index:

1. Record the value of index page and index ID specified in the error text.

2. Identify which table and index correspond to the index page number.

3. Note the object ID.

If the object with the error is a system table (the object ID is less than 100), you cannot drop the index. Execute DBCC
CHECKDB with the REPAIR_REBUILD clause or restore the database from a known clean backup.

4. If the object ID is greater than 100, drop and re-create the index using the table name and index name obtained in Step 1. In
most cases, this will clear the error.

5. Execute DBCC CHECKDB with the REPAIR_REBUILD clause on the affected database to verify that all problems have been
resolved.

If problems persist, this procedure might not be sufficient to clean up the index error. In this case, contact your primary support
provider. Have the output from DBCC CHECKDB available for review.

See Also

CREATE INDEX

DBCC CHECKDB

DROP INDEX

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 701
Error 701

Severity Level 19

Message Text

There is insufficient system memory to run this query.

Explanation

The memory requirements for the set of tasks Microsoft® SQL Server™ is attempting to perform exceeds the amount of available
memory. Either increase the amount of server memory or reduce the server workload.

Action

To decrease the server workload, reduce the number of users currently using SQL Server. To prevent additional users from
logging in to SQL Server, pause the server. For more information, see Pausing and Resuming SQL Server.

To increase server memory:

1. Check the settings for both min server memory (MB) and max server memory (MB).

If max server memory (MB) is a value close to the value of min server memory (MB), then increase the max server
memory (MB) value.

2. Check the size of the virtual memory paging file.

If possible, increase the size of the file.

3. Shut down any other applications running, if applicable, on the server.

4. View the current memory usage information in Windows NT Performance Monitor.

To view current memory usage information in preparation for tuning memory configuration, use the Total Server Memory
(KB) Performance Monitor Counter of the SQLServer:General Statistics object.

5. Add additional memory to the server.

See Also

Errors 1 - 999

Programming Stored Procedures

Server Memory Options

SQL Server: General Statistics Object

Troubleshooting (SQL Server 2000)

Error 813
Error 813

Severity Level 20

Message Text

Logical page %S_PGID in database ID %d is already hashed.

Explanation

This error occurs when Microsoft® SQL Server™ attempts to hash the logical page %S_PGID of database ID%d and the page is
already in the SQL Server hash table.

This error usually occurs as a side effect of other data errors that can usually be detected by executing DBCC CHECKDB without a
repair clause.

Action

Review the SQL Server error log, and then execute DBCC CHECKDB with the appropriate repair clause on the database. If the error
involves an index page, use the REPAIR_REBUILD clause. If the error involves a data page, it may be necessary to use the
REPAIR_ALLOW_DATA_LOSS clause. In the likely event that you cannot allow the loss of data, you will need to restore from a
known clean backup. If the problem persists, contact your primary support provider. Have the output from DBCC CHECKDB
available for review.

Important If executing DBCC CHECKDB with one of the repair clauses does not correct the index problem or if you are unsure
what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support provider.

Verify with your hardware vendor that the disk subsystem being used by SQL Server is at the currently supported and
recommended firmware and hardware levels.

If DBCC CHECKDB finds no errors, or if errors are found and corrected so that subsequent DBCC statements indicate no errors,
but this error reoccurs, contact your primary support provider. Have the SQL Server error logs and the output from DBCC
CHECKDB and sp_configure available for review.

See Also

DBCC CHECKALLOC

DBCC CHECKDB

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

Setting Configuration Options

sp_configure

Troubleshooting (SQL Server 2000)

Error 822
Error 822

Severity Level 21

Message Text

Could not start I/O for request %S_BLKIOPTR.

Explanation

Microsoft® SQL Server™ encountered an error while attempting to initiate a read or write request. This error can occur for any of
the following reasons:

A database file is off-line.

A database file has been removed or renamed.

A database file is inaccessible for another reason (such as insufficient permissions).

The parameter in the error message refers to an internal structure and does not help determine which database file is involved.
However, other error messages appearing in the error log just before error 822 usually indicate the file involved.

Action

Examine the availability and condition of the file involved using your standard operating-system procedures, and make sure the
file is accessible.

Because error 822 marks the database as suspect, SQL Server cannot recover the database upon restarting. If you know that the
database was marked suspect because the file was unavailable, you can reset the status of the database to allow recovery to
continue.

Caution Do not use these procedures if there are other errors in the error log, near the error 822 message, that suggest that the
database might have been marked suspect for some other reason.

Reset the suspect status by executing sp_resetstatus. This is the safest method. After you execute sp_resetstatus, restart SQL
Server.

Here are two examples of error 822 and the associated messages from the log. Examining the error messages that occurred just
before error 822 usually helps determine the type of problem.

Device missing

In this example, the device C:\Mssql7\data\mydb_data.mdf did not exist when SQL Server started, causing access to the device to
fail:

kernel udopen: Operating system error 2(The system cannot find the file specified.) during the
creation/opening of physical device C:\MSSQL7\data\mydb_Data.MDF.
kernel FCB::Open failed: Could not open device C:\MSSQL7\data\mydb_Data.MDF for virtual device number (VDN) 1.
spid9 Device activation error. The physical file name 'C:\MSSQL7\data\mydb_Data.MDF' may be incorrect.

To correct an error like this, be sure that the virtual device appearing in the error message exists, and correct whatever error
prevented SQL Server from finding it. For example, it might have been renamed or moved while SQL Server was not running.

If the virtual device no longer exists, you must restore from known clean backups. Merely creating an empty device with the
correct name will not solve this problem.

Permission problems

Permission problems can occur if the device is on an NTFS partition.

In this example, the permissions on C:\Mssql7\Data\Mydb_DATA.Mdf were incorrect, so SQL Server could not access it:

kernel udopen: Operating system error 2(The system cannot find the file specified.) during the
creation/opening of physical device C:\MSSQL7\data\mydb_Data.MDF.

kernel: dopen: open "c:\mssql7\data\mydb_data.mdf", Permission denied
kernel FCB::Open failed: Could not open device C:\MSSQL7\data\mydb_Data.MDF for virtual device number (VDN) 1.
spid9 Device activation error. The physical file name 'C:\MSSQL7\data\mydb_Data.MDF' may be incorrect.

To correct an error like this, change the object ownership for the device to Administrator, and be sure that the account under
which SQL Server was started has read and write permissions on the object.

See Also

BEGIN TRANSACTION

CHECKPOINT

Errors 1 - 999

RECONFIGURE

Resetting the Suspect Status

Setting Configuration Options

Setting Database Options

SHUTDOWN

sp_configure

sp_dboption

UPDATE

Troubleshooting (SQL Server 2000)

Error 823
Error 823

Severity Level 24

Message Text

I/O error %ls detected during %S_MSG at offset %#016I64x in file '%ls'.

Explanation

Microsoft® SQL Server™ encountered an I/O error on a read or write request made to a device. This error usually indicates disk
problems. However, additional kernel messages in the error log, recorded before error 823, should indicate which device is
involved.

Action

Check the accessibility and condition of the device in question.

Run hardware diagnostics and correct problems, if possible.

Restore damaged files from the latest database backup. Restoring from a database backup should always be considered the
primary means of fixing a damaged database.

If you don't have a backup or if the errors detected are very isolated, the repair functionality of DBCC CHECKDB may be useful.
However, using DBCC CHECKDB can be more time consuming than restoring the damaged files from a backup, and you may not
be able to recover all your data .

Caution If running DBCC CHECKDB with one of the repair clauses does not correct the problem or if you are unsure how this
process may affect your data, contact your primary support provider.

See Also

RESTORE

DBCC CHECKDB

Errors 1 - 999

Troubleshooting (SQL Server 2000)

Error 844
Error 844

Severity Level 10

Message Text

Time out occurred while waiting for buffer latch type %d, bp %#x, page %S_PGID, stat %#x, object ID %d:%d:%d,
waittime %d. Continuing to wait.

Explanation

When under a heavy stress load or high I/O conditions, your system may produce this message.

Action

This message can usually be ignored. However, if you receive repeated messages where the wait time increases, it may indicate an
internal server problem, in which case, contact your system administrator. The system administrator should check the waittype,
waittime, lastwaittype, and the waitresource columns of sysprocesses to see what activities each SPID is performing.

See Also

Errors 1 - 999

sysprocesses

Troubleshooting (SQL Server 2000)

Error 845
Error 845

Severity Level 17

Message Text

Time-out occurred while waiting for buffer latch type %d for page %S_PGID, database ID %d.

Explanation

When under a heavy stress load or high I/O conditions, your system may produce this message.

Action

This message can usually be ignored; however, if you receive repeated messages where the wait time increases, it may indicate an
internal server problem. Contact your system administrator. The system administrator should check the waittype, waittime,
lastwaittype, and the waitresource columns of sysprocesses to see what activities each SPIDs is performing.

See Also

Errors 1 - 999

sysprocesses

Troubleshooting (SQL Server 2000)

Error 911
Error 911

Severity Level 16

Message Text

Could not locate entry in sysdatabases for database '%.*ls'. No entry found with that name. Make sure that the
name is entered correctly.

Explanation

This error occurs when attempting to change database context (with a USE statement) to a database that does not exist, or when
the default database established for a login does not exist. In the latter case, the user login then attempts to access the master
database.

Action

To obtain a list of databases, execute sp_helpdb or issuing this query:

SELECT name
FROM master..sysdatabases

The list returned will contain the databases that exist on the Microsoft® SQL Server™ installation. Either create a missing database
or connect to an existing one. To correct login-level errors, it may be necessary to execute sp_defaultdb.

See Also

Errors 1 - 999

sp_defaultdb

sp_helpdb

sysdatabases

USE

Troubleshooting (SQL Server 2000)

Error 913
Error 913

Severity Level 22

Message Text

Could not find database ID %d. Database may not be activated yet or may be in transition.

Explanation

This error can occur if there is a problem with the view resolution process. During execution of various compiled objects in a
database that references the database dbid (such as stored procedures and views), it is typical to resolve the dbid with other
structures within the database. When a compiled object is first created, the dbid where the object is located is embedded in the
compiled code. For example, when a view is accessed or a stored procedure is executed, the rights to access the view or execute
the stored procedure are checked.

Action

If the error occurs when a stored procedure or view is accessed, you may be able to correct the problem by simply dropping and
re-creating the database object (stored procedure or view).

If this error continues to occur, contact your primary support provider and have the Microsoft® SQL Server™ error log and any
additional information relevant to the circumstances when the error occurred available for review.

See Also

CREATE PROCEDURE

CREATE VIEW

DROP PROCEDURE

DROP VIEW

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 924
Error 924

Severity Level 14

Message Text

Database '%.*ls' is already open and can only have one user at a time.

Explanation

This error occurs when trying to access a database that is already in use by another user or session. Microsoft® SQL Server™
detected an attempt to access a database that is in single-user mode.

Action

Verify that the database in question is actually in single-user mode by executing this query (substitute your database name for
<database>).

sp_helpdb <database>
GO

If the database is truly in single-user mode, the status result set column heading will list single user as the access mode.

To see what login is accessing the database, execute sp_who and scan the dbname result set column heading for the specified
database.

If single-user mode privilege is a problem, contact your system administrator and ask to have the single-user mode database
option set to multiuser. The system administrator can do so by executing sp_dboption from the master database, as shown here:

sp_dboption database, 'single user', false

See Also

Errors 1 - 999

Setting Database Options

sp_dboption

sp_helpdb

sp_who

Troubleshooting (SQL Server 2000)

Error 926
Error 926

Severity Level 14

Message Text

Database '%.*ls' cannot be opened. It has been marked SUSPECT by recovery. See the SQL Server errorlog for more
information.

Explanation

The database is marked as suspect because it failed the recovery process that brings a database to a consistent transactional state.
This can occur during the following operations:

Starting up an instance of Microsoft® SQL Server™ 2000.

Attaching a database.

Using the RESTORE database or RESTORE LOG procedures.

Action

Inspect the Microsoft SQL Server error log and determine the cause of the error. If SQL Server has been restarted since the failed
recovery, look at previous SQL Server error logs to see the reason why recovery failed.

If the recovery failed because of a persistent I/O error, a torn page, or other possible hardware problem, resolve the underlying
hardware problem and restore the database by using a backup. If no backups are available, consider the repair options of DBCC
CHECKDB.

If you are unable to resolve this problem, contact your primary support provider. Have the SQL Server error log available for
review.

See Also

Backing Up and Restoring Databases

Errors 1 - 999

Reporting Errors to Your Primary Support Provider

Resetting the Suspect Status

RESTORE

sysdatabases

Troubleshooting (SQL Server 2000)

Error 945
Error 945

Severity Level 16

Message Text

Database '%.*ls' cannot be opened due to inaccessible files or insufficient memory or disk space. See the SQL
Server errorlog for details.

Explanation

Error 945 is returned when the database is marked IsShutdown. This occurs when a database cannot be recovered due to
missing files, or some other resource error that usually can be corrected easily.

Action

First, verify that the database is marked IsShutdown using DATABASEPROPERTY.

Then, determine the cause of the error by consulting the errorlog, and take action as noted below.

If one or more data or log files are missing:

1. Make the files available and bring the database OFFLINE using ALTER DATABASE.

2. Use ALTER DATABASE to bring the database ONLINE

If insufficient log space:

Use sp_add_log_file_recover_suspect_db() to add another log file.

The database is recovered and brought online by this procedure.

If insufficient data space:

Use sp_add_data_file_recover_suspect_db() to add another log file.

The database is recovered and brought online by this procedure.

If insufficient memory:

The insufficient memory error can occur when a number of databases are recovered at the same time. Retrying the operation may
fix the problem:

1. Retry the operation using ALTER DATABASE to bring the database OFFLINE.

2. Use ALTER DATABASE to bring the database ONLINE.

If retrying the operation does not work, consider freeing up memory.

See Also

DATABASEPROPERTY

Troubleshooting (SQL Server 2000)

Error 1002
Error 1002

Severity Level 16

Message Text

Line %d: Specified scale %d is invalid.

Explanation

This error occurs when the scale of a decimal or numeric column does not fall between the allowable minimum and maximum
values based on the precision of the column.

Action

Specify the precision with p, which must be between 1 and the maximum precision, and the scale with s, which must be between 0
and p. If you do not specify the precision, Microsoft® SQL Server™ uses a default precision of 18. If you do not specify the scale,
SQL Server uses a default scale of 0. For more information, see the decimal and numeric topic and the Precision, Scale, and
Length.

Troubleshooting (SQL Server 2000)

Error 1105
Error 1105

Severity Level 17

Message Text

Could not allocate space for object '%.*ls' in database '%.*ls' because the '%.*ls' filegroup is full.

Explanation

The specified filegroup has run out of free space.

Action

To gain more space, you can free disk space on any disk drive containing a file in the full filegroup, allowing files in the group to
grow. Or you can gain space using a data file with the specified database.

Freeing disk space

You can free disk space on your local drive or on another disk drive. To free disk space on another drive:

1. Move the data files in the filegroup with an insufficient amount of free disk space to a different disk drive.

2. Detach the database by executing sp_detach_db.

3. Attach the database by executing sp_attach_db, pointing to the moved files.

Using a data file

Another solution is to add a data file to the specified database using the ADD FILE clause of the ALTER DATABASE statement. Or
you can enlarge the data file by using the MODIFY FILE clause of the ALTER DATABASE statement, specifying the SIZE and
MAXSIZE syntax.

See Also

ALTER DATABASE

Errors 1000 - 1999

Expanding a Database

Insufficient Disk Space

sp_attach_db

sp_detach_db

sp_add_data_file_recover_suspect_db

Troubleshooting (SQL Server 2000)

Error 1203
Error 1203

Severity Level 20

Message Text

Process ID %d attempting to unlock unowned resource %.*ls.

Explanation

This error occurs when Microsoft® SQL Server™ is engaged in some activity other than normal post-processing cleanup and it
finds that a particular page it is attempting to unlock is already unlocked. The underlying cause for this error may be related to
structural problems within the affected database. SQL Server manages the acquisition and release of pages to maintain
concurrency control in the multi-user environment. This mechanism is maintained through the use of various internal lock
structures that identify the page and the type of lock present. Locks are acquired for processing of affected pages and released
when the processing is completed.

Action

Execute DBCC CHECKDB against the database in which the object belongs. If DBCC CHECKDB reports no errors, attempt to
reestablish the connection and execute the command.

Important If executing DBCC CHECKDB with one of the repair clauses does not correct the index problem, or if you are unsure
what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 1000 - 1999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 1204
Error 1204

Severity Level 19

Message Text

The SQL Server cannot obtain a LOCK resource at this time. Rerun your statement when there are fewer active
users or ask the system administrator to check the SQL Server lock and memory configuration.

Explanation

This error occurs when there are not enough system locks to complete the current command. SQL Server then attempts to obtain
a LOCK block to represent and control the desired lock. When dynamically configured, the lock limit is determined by the
available memory. When statically configured, the lock limit is determined by the sp_configure setting.

If you continue to encounter this problem, make sure your statistics are up to date, you have sufficient indexes to run your query
efficiently, and that the transaction isolation level for your application is not more restrictive than necessary.

Action

Either execute the command again when activity on the server is low, or have the system administrator increase the number of
locks by executing sp_configure from the master database.

To view the current configuration:

sp_configure locks
GO

This reports the minimum, maximum, current run, and configuration values. To increase the number of locks, run sp_configure
again, specifying the number of locks to be configured. For example, to configure 10,000 locks:

sp_configure locks, 10000
GO
RECONFIGURE WITH OVERRIDE
GO

Stop and restart Microsoft® SQL Server™ so the changes can take effect. Locks are allocated at system startup.

If the number of locks cannot be increased at the current time, and the single action requires more locks than the server is
currently configured for, you may be able to reduce the number of locks required for the operation. For example, try the
following:

For large UPDATE statements, break the updates into smaller units that will affect only a subset of records at a time. For
example, you could use the primary key, changing the single UPDATE statement from:

UPDATE employees
SET salary = salary * 1.05
WHERE employee_id BETWEEN 1000 AND 9999
GO

to several UPDATE statements:

UPDATE employees
SET salary = salary * 1.05
WHERE employee_id BETWEEN 1000 AND 4999
GO
UPDATE employees
SET salary = salary * 1.05
WHERE employee_id BETWEEN 5000 AND 9999
GO

For a maintenance type of task or for a global update, consider putting the database into single-user mode (if it is feasible to
keep other users out of the database). Single-user mode does not set locks, so you will not run out of locks, and the
operation will run somewhat faster (because you save the locking overhead).

For a large bulk copy operation, the entire operation is treated as a single transaction. When you use the batch parameter (-
b), the bcp utility will treat the operation in small transactions with the number of rows specified. At the end of each small
transaction, the system resources held by that transaction are freed, so fewer locks are needed.

See Also

Understanding and Avoiding Blocking

bcp Utility

BULK INSERT

Errors 1000 - 1999

Setting Configuration Options

sp_configure

Starting, Pausing, and Stopping SQL Server

UPDATE

Troubleshooting (SQL Server 2000)

Error 1205
Error 1205

Severity Level 13

Message Text

Transaction (Process ID %d) was deadlocked on {%Z} resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

Explanation

This error occurs when Microsoft® SQL Server™ encounters a deadlock. A deadlock occurs when two (or more) processes
attempt to access a resource that the other process holds a lock on. Because each process has a request for another resource,
neither process can be completed. When a deadlock is detected, SQL Server rolls back the command that has the least processing
time and returns error message 1205 to the client application. This error is not fatal and may not cause the batch to be
terminated.

Action

In some instances, a deadlock condition will cause a DB-Library function (such as dbsqlexec, dbsqlok, dbresults, or dbnextrow)
to return FAIL. It is always the responsibility of the program to check the return codes from each DB-Library function. If FAIL is
returned by one of these DB-Library functions, the program should cancel the batch and not attempt to continue. In some cases, it
is possible to continue execution of subsequent functions in the batch. However, because a deadlock situation occurred and the
functions that caused it were rolled back, later functions in the batch will probably fail with a more serious error, such as "object
not found".

In other instances, a deadlock condition will not cause a DB-Library function to return FAIL. In these cases, the program must
check for error message 1205 in the message handler and use the dbsetuserdata function to communicate this to the application.
The program must then check for the deadlock indicator after every DB-Library call and should cancel the batch if a deadlock is
detected.

Although it may seem unnecessary to cancel a batch after receiving a 1205 deadlock message, it is necessary because the server
does not always terminate the batch in a deadlock situation. If the batch is not canceled, any attempt to submit a new batch can
result in a DB-Library error 10038 "Results Pending".

You can also use the SET DEADLOCK_PRIORITY statement (LOW or NORMAL). SET DEADLOCK_PRIORITY controls how the
session reacts when in a deadlock situation. If set to LOW, the process will be the preferred victim of a deadlock situation. If set to
NORMAL, the session will use the default deadlock-handling method.

If a deadlock situation continues, it is often useful to use trace flag 1204 to gather more information. Trace flag 1204 prints out
the deadlock chains and victim, as shown in this sample output:

*** Deadlock Detected ***
 ==> Process 7 chosen as deadlock victim
 == Deadlock Detected at: 1998-09-10 16:39:29.17
 == Session participant information:
 SPID: 7 ECID: 0 Statement Type: UPDATE
 Input Buf: update t1 set c1 = c1 where c1 = 2

 SPID: 8 ECID: 0 Statement Type: UPDATE
 Input Buf: update t1 set c1 = c1 where c1 = 1

 == Deadlock Lock participant information:
 == Lock: KEY: 2:117575457:1 (010001000000)
 Database: tempdb
 Table: t1
 Index: i1
 - Held by: SPID 7 ECID 0 Mode "S"
 - Requested by: SPID 8 ECID 0 Mode "X"
 == Lock: KEY: 2:117575457:1 (020002000000)
 Database: tempdb
 Table: t1
 Index: i1
 - Held by: SPID 8 ECID 0 Mode "S"
 - Requested by: SPID 7 ECID 0 Mode "X"

This deadlock information can be interpreted as follows:

The first section displays the deadlock victim and time of deadlock, along with the sessions involved in the deadlock. For
each session, the current SPID, statement type, and a portion of the input buffer are displayed.

The second section displays details about the locks involved in the deadlock. From the output above, note that the deadlock
involves key locks on table t1, index i1. The deadlock output shows which processes own the locks involved in the deadlock
and which sessions are waiting for the locks to be granted as well as the associated lock modes.

The process that has generated the least amount of log volume will, by default, be chosen as the deadlock victim and be
rolled back automatically. To influence which session is rolled back, set the DEADLOCK_PRIORITY for a session.

See Also

Deadlocking

Errors 1000 - 1999

SET DEADLOCK_PRIORITY

Trace Flags

Troubleshooting (SQL Server 2000)

Error 1505
Error 1505

Severity Level 14

Message Text

CREATE UNIQUE INDEX terminated because a duplicate key was found for index ID %d. Most significant primary key
is '%S_KEY'.

Explanation

This error occurs when you attempt to create a unique index and more than one row contains the duplicate value. Microsoft®
SQL Server™ has detected a uniqueness violation and cancels the CREATE INDEX operation.

For example, the creation for the index below would be canceled due to the uniqueness violation at row 3. The BUCHANAN
STEVEN combination is already located in row 1.

TABLE: tblTest
Row strLastName strFirstName strCity strState
1 BUCHANAN STEVEN BOISE ID
2 SUYAMA MICHAEL BUTTE MT
3 BUCHANAN STEVEN SEATTLE WA
4 DAVOLIO NANCY SAN FRANCISCO CA

CREATE UNIQUE NONCLUSTERED INDEX
idxUniqueNames ON
tblText(strLastName, strFirstName)

Action

You must review your index objective. If your index does not need to be unique, remove the UNIQUE keyword and reissue the
CREATE INDEX statement. However, if you still want to create a unique index, you must query the table in question and remove
the rows in error. For more information about the CREATE INDEX statement, see CREATE INDEX.

To find the duplicate rows, issue a GROUP BY statement:

SELECT * FROM tblTest
GROUP BY strLastName, strFirstName

See Also

Errors 1000 - 1999

SELECT

Troubleshooting (SQL Server 2000)

Error 1508
Error 1508

Severity Level 14

Message Text

'CREATE INDEX terminated because a duplicate row was found. Primary key is ''%S_KEY''.'

Explanation

This error occurs when you attempt to create a clustered index and a duplicate row is encountered in the table.

The following example produces error 1508 when the index creation process reaches row 3, which is an exact duplicate of row 1:

TABLE: tblTest
Row strLastName strFirstName strCity strState
1 BUCHANAN STEVEN BOISE ID
2 SUYAMA MICHAEL BUTTE MT
3 BUCHANAN STEVEN BOISE ID
4 DAVOLIO NANCY SAN FRANCISCO CA

CREATE CLUSTERED INDEX
idxClusteredName ON
tblText(strLastName)

Action

You must decide whether to allow or prevent duplicate rows in the table. To allow duplicate rows, you should add the
ALLOW_DUP_ROW keyword to the CREATE INDEX statement. Be cautious when using IGNORE_DUP_ROW, because it physically
removes duplicate data from the table. Also note that when creating clustered indexes, the amount of space required can be 120
percent to 150 percent of the original table size. For more information, see CREATE INDEX.

The following example creates the clustered index while allowing the duplicate rows to remain in the table:

CREATE CLUSTERED INDEX
idxClusteredName ON
tblText(strLastName)
WITH ALLOW_DUP_ROW

See Also

Errors 1000 - 1999

SELECT

Troubleshooting (SQL Server 2000)

Error 1510
Error 1510

Severity Level 17

Message Text

Sort failed. Out of space or locks in database '%.*ls'.

Explanation

This error occurs when you attempt to create an index and there is not enough space in the database to complete the operation or
no more locks are currently available.

Creating indexes can require 1.2 times the original table size when building a clustered index (this amount is in addition to the
table size during the time that CREATE INDEX is processing). This space must be available in the indicated database or in the
segment on which you were attempting to create the index.

Action

When there is not enough space in the database, you may be able to select a specific filegroup on which to place the index. To
locate a specific filegroup and to check the size available on the filegroup, execute sp_helpfilegroup:

sp_helpfilegroup 'PRIMARY'

Or use the ALTER DATABASE statement to increase the overall database size. Note that after you increase the size of the database,
you may not be allowed to decrease the size. For more information about creating and extending files or filegroups, and altering
or moving databases, see ALTER DATABASE.

If your database has no more locks available, execute sp_configure to increase the number of locks. This example increases the
amount of locks to 10,000:

sp_configure 'locks', 10000
GO
RECONFIGURE
GO

For the configuration option to take effect, stop and restart the Microsoft® SQL Server™ service. For user convenience, you may
want to pause the service and allow current user activity to gracefully finish before officially stopping the service. For more
information about starting, pausing, and stopping the SQL Server service, see Starting, Pausing, and Stopping SQL Server.

See Also

CREATE INDEX

Errors 1000 - 1999

Setting Configuration Options

sp_configure

sp_helpfilegroup

Troubleshooting (SQL Server 2000)

Error 1530
Error 1530

Severity Level 16

Message Text

CREATE INDEX with DROP_EXISTING was aborted because a row was out of order. Most significant offending primary
key is '%S_KEY'. Explicitly drop and create the index instead.

Explanation

This error occurs when you try to create an index using the DROP_EXISTING clause of the CREATE INDEX statement on a column
or columns containing data that is not in sorted order. When this error occurs, no index is created.

The DROP_EXISTING clause speeds the creation of an index when the data in the table is already in order. The space required to
build a clustered index is less when the DROP_EXISTING clause is used.

The DROP_EXISTING clause speeds index creation only for clustered indexes or unique nonclustered indexes. Creating a
nonunique, nonclustered index with the DROP_EXISTING clause may succeed, but there is no improvement in performance.

Action

Use either of these strategies:

Execute CREATE INDEX with the DROP_EXISTING clause.

Drop and re-create the index without any clauses.

You can also use the SORTED_DATA_REORG clause, which physically reorganizes the data.

See Also

CREATE INDEX

Errors 1000 - 1999

Troubleshooting (SQL Server 2000)

Error 1702
Error 1702

Severity Level 16

Message Text

CREATE TABLE failed because column '%.*ls' in table '%.*ls' exceeds the maximum of %d columns.

Explanation

This error occurs when you try to create a table with more than 1,024 columns. The maximum number of definable columns per
table is 1,024.

Column names must follow the rules for identifiers. They must be unique within a given table, but you can use the same column
name in different tables in the same database.

Action

Reduce the number of columns in the table to 1,024 or less. For more information about creating tables, see CREATE TABLE.

See Also

Errors 1000 - 1999

Maximum Capacity Specifications

Using Identifiers

Troubleshooting (SQL Server 2000)

Error 1803
Error 1803

Severity Level 17

Message Text

CREATE DATABASE failed. Could not allocate enough disk space for a new database on the named disks. Total space
allocated must be at least %d MB to accommodate a copy of the model database.

Explanation

This error occurs when there is not enough space on the device to create the tempdb database.

Action

The procedure for handling this error depends on whether the error occurred on a user database or on tempdb.

If the error occurred on a user database

Create the database on a different disk.

Or

Delete some files to free space on the disk.

If the error occurred on tempdb

If you moved tempdb from one device back to any default device and you do not have enough space on the device (2 MB),
Microsoft® SQL Server™ will attempt to create tempdb on another device. If you do not have a device with at least 2 MB free,
SQL Server will not start. Start SQL Server using the -f minimum configuration option.

You can free at least 2 MB on the device, or create a new device with at least 2 MB. If you create a new device, make sure it is
specified as a default device, as in this example:

sp_diskdefault new_device_name, defaulton

If no default is specified, SQL Server sends an "out of memory" message (you can ignore this message) and then moves tempdb
to RAM automatically.

See Also

Errors 1000 - 1999

sqlservr Application

Troubleshooting (SQL Server 2000)

Error 1814
Error 1814

Severity Level 10

Message Text

Could not create tempdb. If space is low, extend the amount of space and restart.

Explanation

This error occurs when there is not enough space on the device to create the tempdb database.

Action

You can free at least 2 MB on the device, or create a new device with at least 2 MB. If you create a new device, make sure it is
specified as a default device, as in the following example:

sp_diskdefault new_device_name, defaulton

If no default device is specified, Microsoft® SQL Server™ sends an "out of memory" message (you can ignore this message) and
then moves tempdb to RAM automatically.

See Also

Errors 1000 - 1999

Troubleshooting (SQL Server 2000)

Error 1902
Error 1902

Severity Level 16

Message Text

Cannot create more than one clustered index on table '%.*ls'. Drop the existing clustered index '%.*ls' before
creating another.

Explanation

This error occurs when a table can have only one clustered index, but it can have many nonclustered indexes. Microsoft® SQL
Server™ uses the clustered index to sort rows so that their physical order is the same as their logical (indexed) order. The bottom
(leaf level) of a clustered index contains the actual data pages of the table.

In a nonclustered index, the physical order of the rows is not the same as the indexed order. In a nonclustered index, the bottom
(leaf level) contains pointers to rows on data pages, which creates an extra level between the index structure and the data itself.

Action

Use the sp_helpindex system stored procedure to examine the existing indexes on the table. If a clustered index already exists,
you must drop it before creating another clustered index.

See Also

CREATE INDEX

Errors 1000 - 1999

sp_helpindex

Troubleshooting (SQL Server 2000)

Error 1903
Error 1903

Severity Level 16

Message Text

Index keys are too large. The %d bytes needed to represent the keys for index %d exceeds the size limit of %d
bytes.

Explanation

This error occurs when the sum of the lengths of the columns that make up the composite index exceeds 900 bytes.

A composite index is an index that uses from 2 to 16 columns. For example, the following shows a composite index using objects
from the Northwind database:

USE Northwind
GO
CREATE INDEX CompanyNameCity
ON Customers (CompanyName, City)
GO

In this example, CompanyName is defined as nvarchar(40) and City as nvarchar(15). Each character requires 2 bytes of
storage, so the total length of this composite index is 110 bytes (2* (40 + 15)). Note that when using varchar columns, the index
will assume the maximum length of the varchar column to calculate the length of the composite index.

Action

Examine the lengths of the columns in your composite index and make sure that the total does not exceed 900 bytes. For more
information about determining the storage size for different Microsoft® SQL Server™ data types, see the Data Types topic, and
for more information about indexes, see the CREATE INDEX and Creating an Index.

See Also

Errors 1000 - 1999

Troubleshooting (SQL Server 2000)

Error 1904
Error 1904

Severity Level 16

Message Text

Cannot specify more than %d column names for statistics or index key list. %d specified.

Explanation

This error occurs when more than 16 columns are used to create a composite index. A composite index is an index that uses from
2 to 16 columns.

The following example shows a composite index using objects from the pubs database:

USE pubs
GO
CREATE INDEX idxPubNameCity
ON publishers (pub_name, city)
GO

Action

Modify the CREATE INDEX statement to use no more than 16 columns. For more information, see CREATE INDEX.

See Also

Creating an Index

Errors 1000 - 1999

Troubleshooting (SQL Server 2000)

Error 1910
Error 1910

Severity Level 16

Message Text

Cannot create more than %d nonclustered indices or column statistics on one table.

Explanation

This error occurs when either:

A table already has 250 indexes.

Or

A table has a large number of indexes and statistics are either being created or updated. Microsoft® SQL Server™ makes an
entry in sysindexes for each set of column-level statistics that are either created or updated, if the base column does not
already have an index.

The following example produces this error message by updating statistics on a table with 250 indexes:

USE pubs
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'TestCols')
 DROP TABLE TestCols
GO
DECLARE @counter int, @stmt varchar(255)
SET @counter = 1
CREATE TABLE TestCols
 (
 c1 int IDENTITY(1, 1),
 c2 char(255)
)
-- Creating 250 indexes.
WHILE (@counter < 251)
 BEGIN
 IF (@counter = 1)
 CREATE UNIQUE CLUSTERED INDEX Ind1 ON TestCols (c1)
 ELSE
 BEGIN
 SELECT @stmt = 'CREATE INDEX t1Ind' + LTRIM(STR(@counter)) +
 ' ON TestCols (c1)'
 EXEC (@stmt)
 END
 SET @counter = @counter + 1
 END

-- Updating Statistics. Returns error 1910.
UPDATE STATISTICS TestCols (c2) WITH COLUMNS, FULLSCAN

Action

Either:

Modify the CREATE INDEX statement to use no more than 250 indexes.

Or

Remove any unused, nonclustered indexes to create or update statistics successfully.

For more information, see CREATE INDEX.

See Also

Errors 1000 - 1999

sysindexes

UPDATE STATISTICS

Troubleshooting (SQL Server 2000)

Error 1916
Error 1916

Severity Level 16

Message Text

CREATE INDEX options %ls and %ls are mutually exclusive.

Explanation

This error occurs when you attempt to create an index with two mutually exclusive CREATE INDEX statement clauses. The index is
not created when this error occurs.

This table shows when to use the CREATE INDEX clauses:

Index type Clause
Unique clustered IGNORE_DUP_KEY
Nonclustered None
Unique nonclustered IGNORE_DUP_KEY

Action

Select the correct clauses for the CREATE INDEX statement.

See Also

CREATE INDEX

Creating an Index

Errors 1000 - 1999

Troubleshooting (SQL Server 2000)

Error 2501
Error 2501

 Topic last updated -- January 2004

Severity Level 16

Message Text

Could not find a table or object named '%.*ls'. Check sysobjects.

Explanation

The table specified in DBCC CHECKTABLE was not found, because the table does not exist or the database metadata is corrupt in
some way.

Action

Check to see if the table exists.

Executing DBCC CHECKDB and DBCC CHECKCATALOG can indicate other problems in the database. Restore your database from
backup or contact your primary support provider for assistance.

You may also be able to use the bcp utility to copy out other tables. But because this problem is often caused by other problems
in the database, problems can occur when you copy out other tables.

See Also

bcp Utility

BULK INSERT

DBCC CHECKDB

DBCC CHECKCATALOG

Errors 2000 - 2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2511
Error 2511

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table Corrupt: Object ID %d, Index ID %d. Keys out of order on page %S_PGID, slots %d and %d.
Table error: Object ID %d, Index ID %d. Keys out of order on page %S_PGID, slots %d and %d.

Explanation

The two slots specified are in the wrong order, according to a comparison of their keys.

Per-state information:

State 1: Page P_ID is an index page.

State 2: Page P_ID is a data page (that is, clustered index leaf level).

Out of order slots can only happen in B-trees (that is, clustered or non-clustered indexes).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair for this error is to rebuild the index I_ID. If running DBCC CHECKDB with one of the repair clauses does not correct the
problem, contact your primary support provider.

See Also

DBCC CHECKDB

DBCC CHECKTABLE

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2512
Error 2512

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, Index ID I_ID. Duplicate keys on page P_ID1 slot SLOT1 and page P_ID2 slot SLOT2.

Explanation

The two slots specified have identical keys, including any unique identifiers.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If either record is a ghost, or the index is non-unique, the repair is to rebuild the index. Otherwise, slot SLOT2 on page P_ID2 is
deleted (or marked as a ghost if necessary). If running DBCC CHECKDB with one of the repair clauses does not correct the
problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2513
Error 2513

Severity Level 16

Message Text

Table error: Object ID %ld (object '%.*ls') does not match between '%.*ls' and '%.*ls'.

Explanation

This error occurs when the DBCC CHECKCATALOG statement detects a database object in one system table and the object is not
expected in another table. Most often, this occurs when one or more rows in the syscolumns, syscomments, sysindexes, or
sysdepends tables have no corresponding rows in sysobjects. This error can also occur if an operation affecting the system
table, such as deletion of a user table, was interrupted.

Action

Although this error seldom interferes with database use, it is a good idea to restore the affected system table.

Warning Severe problems can result from the direct manipulation of the system catalogs. Do not modify the system catalogs
unless instructed to do so by your primary support provider.

Follow these steps to restore the consistency of the system tables:

1. Display the offending rows by executing a query in the problem database against the two tables mentioned in the message.
For example, if the message reports one or more mismatches between syscolumns and sysobjects:

USE master
GO
SELECT * FROM syscolumns
WHERE syscolumns.id NOT IN
 (SELECT sysobjects.id FROM sysobjects)

1. Enable updates to system tables by enabling the allow updates configuration option.

Before modifying any system catalogs, be sure that you have a valid backup of the database. For more information about
backup operations, see Backing Up and Restoring Databases.

Warning Incorrect modification of the system catalogs can result in database corruption or data loss.

2. Make sure that the rows displayed in Step 1 correspond to reported 2513 errors, and then delete them from the first table
mentioned in the message text.

3. If the number of rows affected by the delete does not match the number found in Step 1, roll back the transaction. If the
numbers match, commit it.

4. To confirm that the mismatches are fixed, re-execute DBCC CHECKCATALOG. Then, disable the allow updates
configuration option.

See Also

BEGIN TRANSACTION

CHECKPOINT

Errors 2000-2999

Setting Configuration Options

Using Startup Options

Troubleshooting (SQL Server 2000)

Error 2515
Error 2515

 Topic last updated -- January 2004

Severity Level 16

Message Text

Page P_ID, object ID O_ID, index ID I_ID has been modified but is not marked modified in the differential backup
bitmap.

Explanation

The page specified has an LSN that is higher than the differential reference LSN in the BackupManager (or the differential base
LSN in the file's FCB, whichever is more recent), but is not marked as changed in the differential backup bitmap.

This check is only performed if the differential bitmap is known to be error-free. Only the first page per database with this
problem is reported, because the repair action is independent of the number of pages with this problem.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will invalidate the differential bitmap. Differential backups will not be possible again until a full database backup has been
made. This full backup will provide a base for the differential bitmap to be rebuilt. If running DBCC CHECKDB with one of the
repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2516
Error 2516

 Topic last updated -- January 2004

Severity Level 16

Message Text

The differential bitmap was invalidated for database NAME. A full database backup is required before a
differential backup can be performed.

Explanation

This message from the repair code is reported when error 2515 is repaired.

Action

No user action required.

See Also

Error 2515

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2517
Error 2517

 Topic last updated -- January 2004

Severity Level 16

Message Text

The minimally logged operation status has been turned on for database NAME. Rerun backup log operations to
ensure that all data has been secured.

Explanation

This message from the repair code is reported when error 2578 is repaired. The minimally logged bit is set in the DBTABLE and
boot page for database NAME.

Action

No user action required.

See Also

Error 2578

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2519
Error 2519

 Topic last updated -- January 2004

Severity Level 16

Message Text

Unable to process table O_NAME because filegroup F_NAME is invalid.

Explanation

The heap or clustered index for table O_NAME is marked as residing on file group F_NAME. However, that file group does not
exist, so the table cannot be checked.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be self-repaired.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2522
Error 2522

 Topic last updated -- January 2004

Severity Level 16

Message Text

Unable to process index I_NAME of table O_NAME because filegroup F_NAME is invalid.

Explanation

One of the filegroup IDs stored in the metadata for an index does not exist, so the index cannot be checked.

All other indexes of the same object (barring problems) will be checked.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2523
Error 2523

 Topic last updated -- January 2004

Severity Level 16

Message Text

Filegroup F_NAME is invalid.

Explanation

The file group specified in the first parameter to the DBCC CHECKFILEGROUP statement does not exist.

Action

Specify a valid file group in the first parameter to the DBCC CHECKFILEGROUP statement.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2524
Error 2524

 Topic last updated -- January 2004

Severity Level 16

Message Text

Unable to process table O_NAME because filegroup F_NAME is offline.

Explanation

The heap or clustered index for table O_NAME is marked as residing on file group F_NAME. However, that file group is marked as
offline, so the table cannot be checked.

This error could have occurred for the following reasons:

A corruption in the sysfilegroups table.

The file group could have been erroneously marked offline.

Someone could have taken the file group offline.

Action

Check to see if the file group is offline. If so, bring the file group online and re-issue the DBCC statement.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2527
Error 2527

 Topic last updated -- January 2004

Severity Level 16

Message Text

Unable to process index I_NAME of table O_NAME because filegroup F_NAME is offline.

Explanation

A filegroup that stores data for an index is offline, so the index cannot be checked. All other indexes of the same object (barring
problems) will be checked.

Action

Ensure that the filegroup is online and rerun the CHECKDB statement.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2529
Error 2529

 Topic last updated -- January 2004

Severity Level 16

Message Text

FileGroup F_NAME is offline.

Explanation

The filegroup specified as the first parameter to DBCC CHECKFILEGROUP is offline.

Action

Specify an online filegroup in the first parameter to the DBCC CHECKFILEGROUP statement.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2531
Error 2531

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID B-tree level mismatch, page P_ID1. Level LEVEL1 does not match level
LEVEL2 from previous P_ID2.

Explanation

There are two pages linked as immediate neighbors on a level of a B-tree. The level (LEVEL2) in the right hand page (P_ID2) does
not match the level (LEVEL1) in the left-hand page (P_ID1).

Action

HARDWARE FAILURE

To find out which page is incorrect, examine the surrounding pages and the contents of the two pages in question. Also look for
8931 (B-tree parent-child level mismatch) errors.

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2533
Error 2533

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Page P_ID allocated to object ID O_ID, index ID I_ID was not seen. Page may be invalid or have
incorrect object ID information in its header.

Explanation

A page is allocated as specified, but was not seen with that object/index ID in its header. The page has a different index ID in its
header, so there will be a matching 2534 (page allocated by another object) error for the page. The 2534 error corresponds to the
object/index ID that is in the page's header.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will de-allocate the page. If the page was from a non-clustered or clustered index, it will be rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 2534

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2534
Error 2534

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Page P_ID with object ID O_ID, index ID I_ID in its header is allocated by another object.

Explanation

A page has the object/index ID specified but is not allocated by any of that index's IAM pages. The page has an incorrect
object/index ID in its header, so there will be a matching 2533 (page not seen although allocated) error for the page. The 2533
error corresponds to the index the page is really allocated to.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index (if any). Note that the repair for the matching 2533 error is to de-allocate the page
before the rebuild.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 2533

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2535
Error 2535

Severity Level 16

Message Text

Table error: Page %S_PGID is allocated to object ID %d, index ID %d, not to object ID %d, index ID %d found in
page header.

Explanation

The DBCC CHECKALLOC statement detected a mismatch in the object ID between an allocation structure (extent) and sysindexes.

Note Occasionally, DBCC CHECKALLOC reports this error when no real error condition exists. Execute DBCC CHECKALLOC in
single-user mode if you suspect the 2535 error is incorrect.

Action

Follow these steps:

1. Examine the index ID associated with the page number in the message to determine whether the error occurred on the table
data or on an index.

2. Restore the database:

If the object ID is less than or equal to 100, the error is on a system table. Restore the database from a clean backup.

If the object ID is greater than 100, the error is on a user table.

If this error occurs on table data (the index ID = 1), restore the database from a clean backup.

If the error occurs on an index, you can usually correct it by dropping and re-creating the index. If dropping and re-
creating the index is not feasible, or if you cannot drop the index, contact your primary support provider for assistance.

If the problem persists, contact your primary support provider for assistance. Have the output of the appropriate DBCC
statements available for review.

See Also

DBCC CHECKALLOC

DBCC CHECKDB

DBCC CHECKTABLE

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2536
Error 2536

 Topic last updated -- January 2004

Severity Level 10

Message Text

DBCC results for 'COMMAND'.

Explanation

This is the first line of textual results for all check commands.

Action

No user action required.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2537
Error 2537

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID, row ROW_ID. Record check (CHECK_TEXT) failed. Values are
VALUE1 and VALUE2.

Explanation

The row ROW_ID (or a column in the row) failed the test or condition described by CHECK_TEXT. The interpretation of VALUE1
and VALUE2 depends on the error state.

Per-state information (missing states are by-design):

State 40: A column's length in the record is greater than the maximum length specified in the metadata.

VALUE1 is the length of the column.

VALUE2 is the maximum length in the metadata.

State 43: A gross failure occurred while checking the value of a computed column.

VALUE1 is the relational column ID of the column being checked.

VALUE2 is 0.

State 43: A variant column's data length is longer than the maximum allowed for the data type stored in the variant.

VALUE1 is the data length stored in the variant column.

VALUE2 is the maximum allowable length of the type.

State 43: A gross failure occurred while checking the value of a variant column.

VALUE1 is the relational column ID of the column being checked.

VALUE2 is 0.

State 100: The record is not a valid type to be stored on a data page.

VALUE1 is the record's type. The valid types are:
RecBase::PRIMARY_RECORD

RecBase::FORWARDED_RECORD

RecBase::FORWARDING_STUB (if the page is in a heap)

RecBase::GHOST_DATA_RECORD (if the page is in a clustered index)
VALUE2 is 0.

State 101: An index record's size is greater than the maximum size it can be on a page (according to metadata).

VALUE1 is the record's size.

VALUE2 is the specified maximum length.

State 401: The record is not a valid type to be stored on an index page.

VALUE1 is the record's type. The valid types are:
RecBase::INDEX_RECORD

RecBase::GHOST_INDEX_RECORD (if the page is at level 0)
VALUE2 is 0.

State 510: A BLB_LARGE_ROOT_2 text node has more child links than the number of possible entries in its child link array.

VALUE1 is the number of children the node thinks it has.

VALUE2 is the number of child links the link array has space for.

State 510: The same as state 510 above, but for a node of type BLB_LARGE_INTERNAL or BLB_LARGE_ROOT.

State 511: A BLB_LARGE_ROOT_2 text node has more children than the defined maximum fan-out (BLOBROOTFANOUT—
currently 5).

VALUE1 is the number of children the node has.

VALUE2 is the defined maximum fan-out.

State 511: The same as state 511 above, but for a node of type BLB_LARGE_INTERNAL or BLB_LARGE_ROOT. Also, the defined
maximum fan-out for these two node types is BLB_NODE_FANOUT—currently 504.

State 512: A BLB_LARGE_ROOT_2 text node has more children than there is space in the text record to hold.

VALUE1 is the number of children.

VALUE2 is the amount of space available to hold them.

State 512: The same as state 512 above, but for a node of type BLB_LARGE_INTERNAL or BLB_LARGE_ROOT.

State 513: A text record's minLen is not big enough to hold the BLB_LARGE_ROOT_2 text header (that is, it is smaller than
BlobMan::DATA_NODE_HEAD_SIZE—currently 14).

VALUE1 is the record's minLen.

VALUE2 is BlobMan::DATA_NODE_HEAD_SIZE.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The effects of a repair are state-dependent. For a non-clustered index, performing a repair will rebuild the index. For a text (or
record), the node (or record) will be deleted. For a heap or clustered index, the record will be deleted and all indexes will be rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2538
Error 2538

 Topic last updated -- January 2004

Severity Level 10

Message Text

File FILE. Number of extents = EXTENTS, used pages = USED_PAGES, reserved pages = RESERVED_PAGES.

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It is the per-file summary of allocated extents, used
pages, and reserved pages for the database.

Action

No user action required.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2539
Error 2539

 Topic last updated -- January 2004

Severity Level 10

Message Text

Total number of extents = EXTENTS, used pages = USED_PAGES, reserved pages = RESERVED_PAGES in this database.

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It is the summary of allocated extents, used pages, and
reserved pages for the database.

Action

No user action required.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2540
Error 2540

 Topic last updated -- January 2004

Severity Level 10

Message Text

The system cannot self repair this error.

Explanation

There are certain errors that cannot be repaired automatically by the check code, including the following:

Corrupt metadata.

PFS page corruptions.

Corruptions in certain critical system tables.

Action

Contact your primary support provider for assistance with this error.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2546
Error 2546

 Topic last updated -- January 2004

Severity Level 10

Message Text

Index 'INDEX_NAME' on table 'OBJECT_NAME' is marked offline. Rebuild the index to bring it online.

Explanation

The specified index is marked as offline (or disabled), and therefore cannot be checked.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index, bringing it back online. If running DBCC CHECKDB with one of the repair clauses does
not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2570
Error 2570

 Topic last updated -- January 2004

Severity Level 16

Message Text

Warning: Page P_ID, slot S_ID in Object O_ID Index I_ID Column COLUMN_NAME value COLUMN_VALUE is out of range
for data type "DATATYPE". Update column to a legal value.

Explanation

The column specified has an illegal value, given its type. These messages are only generated when running with trace flag 2570.

Per-state information:

State 1: The column is a date-time (XVT_SSDATE).

State 2: The column is a small date-time (XVT_SMALLDATE).

State 3: The column is a double (XVT_R8).

State 4: The column is a float (XVT_R4).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically. The column value must be updated manually.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2574
Error 2574

 Topic last updated -- January 2004

Severity Level 10

Message Text

Object ID O_ID, index ID I_ID: Page P_ID is empty. This is not permitted at level LEVEL of the B-tree.

Explanation

A B-tree page above the leaf level is empty (that is, it has no rows). This used to be possible for leaf level pages, but has never
been possible in tree levels.

Action

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2575
Error 2575

 Topic last updated -- January 2004

Severity Level 16

Message Text

IAM page P_ID1 is pointed to by the next pointer of IAM page P_ID2 object ID O_ID index ID I_ID but was not
detected in the scan.

Explanation

An IAM page was not seen, even though another IAM page (or metadata entry) pointed to it as being the next page in an IAM
chain. If P_ID2 is (0:0), this means that the missing IAM page P_ID1 is the head of an IAM chain according to the metadata.

Per-state information:

State 1: The P_ID1 page was referenced as described above but not seen.

State 2: Two IAM pages pointed to the unseen page P_ID1, and P_ID2 is the second page to do so. The other page will be reported
in another error.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will attempt to rebuild the IAM chain involving P_ID2, which may involve removing pages from the chain. If the metadata is
incorrect, the entire chain will be rebuilt. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

Caution This repair may cause data loss.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2576
Error 2576

 Topic last updated -- January 2004

Severity Level 16

Message Text

IAM page P_ID1 is pointed to by the previous pointer of IAM page P_ID2 object ID O_ID index ID I_ID but was not
detected in the scan.

Explanation

An IAM page or metadata entry was not seen, even though another IAM page pointed to it as being the previous page in an IAM
chain. If P_ID1 is (0:0), this means that IAM page P_ID2 is the head of an IAM chain and the metadata entry for the IAM chain is
missing.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will attempt to rebuild the IAM chain involving P_ID2, which may involve removing pages from the chain. If the metadata is
incorrect, the entire chain will be rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2577
Error 2577

 Topic last updated -- January 2004

Severity Level 16

Message Text

Chain sequence numbers are out of order in IAM chain for object ID O_ID, index ID I_ID. Page P_ID1 sequence
number SEQUENCE1 points to page P_ID2 sequence number SEQUENCE2.

Explanation

Every IAM page has a sequence number, which is its position within the IAM chain. The sequence numbers increase by 1 with
every IAM page. This error means that IAM page P_ID2 has a sequence number that does not follow these rules.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the IAM chain. It does this with the following steps:

1. Split the existing chain in two.

The first half of the chain will end with IAM page P_ID1 and its next page pointer will be set to (0:0).

The second half of the chain will begin with IAM page P_ID2 and its prev page pointer will be set to (0:0).

2. Connect the two chains together and regenerate the sequence numbers for the whole IAM chain. Any unrepairable IAM
pages will be de-allocated.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2578
Error 2578

 Topic last updated -- January 2004

Severity Level 16

Message Text

Minimally logged extents were found in GAM interval starting at page P_ID but the minimally logged flag is not
set in the database table.

Explanation

A page of type ML_MAP_PAGE was found in the GAM extent of a GAM interval, but the DBT_MINIMAL_LOG_IN_DB bit in the
dbt_stat in the DBTABLE was not set.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will set the DBT_MINIMAL_LOG_IN_DB bit in the DBTABLE and boot page of the database. If running DBCC CHECKDB with
one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2579
Error 2579

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Extent P_ID object ID O_ID, index ID I_ID is beyond the range of this database.

Explanation

P_ID is a PageID of the form (filenum:pageinfile). The pageinfile of this extent is greater than the physical size of the file filenum of
the database. The extent is marked allocated in an IAM page for the object/index ID indicated.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the extent to be de-allocated from the IAM page.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 2000-2999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 2592
Error 2592

 Topic last updated -- January 2004

Severity Level 10

Message Text

INDEX_TYPE index successfully restored for object 'OBJECT' in database 'DATABASE'.

Explanation

This is an informational message from repair stating that an index has been rebuilt.

Action

No user action required.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2593
Error 2593

 Topic last updated -- January 2004

Severity Level 10

Message Text

There are ROWCOUNT rows in PAGECOUNT pages for object 'OBJECT'.

Explanation

This message is part of the informational output of all checks except DBCC CHECKALLOC. It gives the row and page counts for a
table.

Action

No user action required.

See Also

Errors 2000-2999

Troubleshooting (SQL Server 2000)

Error 2601
Error 2601

Severity Level 14

Message Text

Cannot insert duplicate key row in object '%.*ls' with unique index '%.*ls'.

Explanation

This error occurs when you attempt to put duplicate index values into a column or columns that have a unique index. Microsoft®
SQL Server™ does not allow two rows to have the same index value (including NULL) in columns that have a unique index. SQL
Server checks for duplicate values when the index is created and each time the table is modified using the INSERT or UPDATE
statement.

Action

If you need duplicate index values in the indexed column(s), drop the unique index and create a nonunique index.

To use a unique index on data that contains duplicate values, you must change some values to prevent the duplication. You can
change the data already in the table by using the SELECT or UPDATE statement, or you can change the data to be inserted.

See Also

CREATE INDEX

Creating an Index

DELETE

Errors 2000-2999

INSERT

SELECT

UPDATE

Troubleshooting (SQL Server 2000)

Error 2731
Error 2731

Severity Level 16

Message Text

Column '%.*ls' has invalid width: %d.

Explanation

This error occurs when a user is attempting to create a view in which a column is empty, or has a length that is less than or equal
to 0. This is not allowed in Microsoft® SQL Server™ 2000.

An example of a query which generates this error follows. Note that the data for CategoryName is 0-length.

CREATE VIEW myview AS

SELECT CategoryName = '', p.ProductName, c.Description

FROM Products p, Categories c

WHERE p.CategoryId = c.CategoryId

AND p.UnitsInStock > 0

GO

Action

You can resolve this error by:

Not using zero-length columns when creating a view.

Specifying a default value for column length. For example:

create view myview as char(10) "empty column"

Troubleshooting (SQL Server 2000)

Error 2750
Error 2750

Severity Level 16

Message Text

Column or parameter #%d: Specified column precision %d is greater than the maximum precision of %d.

Explanation

This error occurs when the precision of a float, decimal, or numeric column exceeds the maximum value for the specified data
type.

For decimal and numeric data types, Microsoft® SQL Server™ normally supports a maximum precision of 38 digits for
compatibility with various front ends, such as Microsoft Visual Basic®. For more information about running the sqlservr
application, see sqlservr Application.

Action

Define the column to have a precision that falls within the allowable precision range for that data type.

See Also

decimal and numeric

float and real

Precision, Scale, and Length

Troubleshooting (SQL Server 2000)

Error 2751
Error 2751

Severity Level 16

Message Text

Column or parameter #%d: Specified column scale %d is greater than the specified precision of %d.

Explanation

This error occurs when the scale of a decimal or numeric column exceeds the precision value for that column.

For decimal and numeric data types, Microsoft® SQL Server™ normally supports a maximum precision of 38 digits for
compatibility with various applications. For more information about running the sqlservr application, see sqlservr Application.

Action

Specify the precision with p, which must be between 1 and the maximum precision, and the scale with s, which must be between 0
and p. If you do not specify the precision, SQL Server uses a default precision of 18. If you do not specify the scale, SQL Server
uses a default scale of 0.

See Also

decimal and numeric

Errors 2000-2999

float and real

Precision, Scale, and Length

Troubleshooting (SQL Server 2000)

Error 2812
Error 2812

Severity Level 16

Message Text

Could not find stored procedure '%.*ls'.

Explanation

An attempt was made to execute a stored procedure that does not exist. If the procedure does exist (it appears when sp_help is
run with no parameters), the error might have occurred because you did not fully qualify the procedure name. If the procedure is
not owned by the user attempting to execute it, and it is not owned by the database owner (dbo), all references to it must include
the owner name. For example, suppose user1 creates a procedure called proc1. Any users must add the owner name before the
procedure name, as shown in the following example:

EXECUTE user1.proc1

Naming conventions for database objects are as follows:

[[[server_name.][database_name].][owner_name].]object_name

The default value for database_name is the current database; the default value for owner_name is the current user. If the current
user is not the owner, the current user must specify the owner name when using the procedure. Because the owner name is part
of the object name, two different users can have procedures with the same object name in the same database (for example
user1.proc1 and user2.proc1). For more information about naming conventions, see Transact-SQL Syntax Conventions.

The only exceptions to this naming convention are system procedures, which can be executed from any database. System
procedures reside in the master database, are owned by the system administrator, and have names that begin with sp_. System
procedures reference the system tables for the current database.

Action

If you do not know who owns the procedure, use sp_help to display the owner. If you run sp_help without any parameters, it
displays objects owned by other users. To determine which procedures exist in a database and who owns them, use the following:

USE master
GO
SELECT name,owner = USER_NAME(uid)
FROM sysobjects
WHERE type = 'P'
GO

If the procedure does not appear in the output of this query, the procedure is either in a different database or does not exist.

If you do not own the procedure in question, you can avoid error 2812 by qualifying the procedure name with the owner name,
as shown in the following example:

EXECUTE user1.proc1

For procedures used by many users of a database, it is usually easiest if the dbo creates the procedure. This allows any user to
find the procedure without specifying an owner name.

If the procedure is not in the database where it is executed, you can avoid this error by fully qualifying the procedure name with
the database name, as shown in the following example:

EXECUTE database_1.user1.proc1

The owner name is not needed if you or the dbo own the procedure. For example:

EXECUTE database_1..proc1

Execute permission must be provided so that other users can execute this procedure, but no permissions are required to see the
text of the procedure.

If this error occurs on system procedures, it might be resolved by running Instmstr.SQL. This reinstalls all system procedures and

initializes various other structures.

See Also

Errors 2000-2999

EXECUTE

sp_configure

sp_help

Troubleshooting (SQL Server 2000)

Error 3023
Error 3023

Severity Level 16

Message Text

Backup and file manipulation operations (such as ALTER DATABASE ADD FILE) on a database must be serialized.
Reissue the statement after the current backup or file manipulation operation is completed.

Explanation

These operations may not be performed at the same time as a backup operation:

File management operations such as the ALTER DATABASE statement with either the ADD FILE or REMOVE FILE clauses.

The file truncation phase of shrink database or shrink file.

If a backup is started when either an add or remove file operation is in progress, the backup will wait for a timeout period, then
fail. If a backup is running and one of these operations is attempted, the operation fails immediately.

If a shrink operation tries to truncate a file while a backup is running, the shrink stops without truncating the file, however data
pages have been relocated. If a backup is started just as a file is being truncated, backup normally waits long enough for the file
truncation to complete.

Action

Reissue the operation after the conflicting operation has completed.

If a shrink operation fails, reissue the shrink command with the TRUNCATE_ONLY option after the backup completes.

See Also

ALTER DATABASE

Backing Up and Restoring Databases

BACKUP

DBCC SHRINKDATABASE

DBCC SHRINKFILE

Setting Database Options

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3036
Error 3036

Severity Level 16

Message Text

Database '%ls' is in warm-standby state (set by executing RESTORE WITH STANDBY) and cannot be backed up until
the entire load sequence is completed.

Explanation

Your standby database has not been recovered and may not be backed up. Usually, you recover this database only if your primary
fails and you switch operations to the standby. Until this occurs, rely on backups taken from the primary server.

See Also

Backing Up and Restoring Databases

BACKUP

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3041
Error 3041

Severity Level 16

Message Text

BACKUP failed to complete the command %.*ls

Explanation

This error indicates that Microsoft® SQL Server™ could not complete the BACKUP of the specified database due to a previous
error. The BACKUP command that failed is given at the end of the error message. This message also appears in the Microsoft
Windows NT® application log.

Action

To determine why the BACKUP failed, examine the Microsoft SQL Server error log for any errors prior to error 3041.

See Also

Viewing the SQL Server Error Log

Troubleshooting (SQL Server 2000)

Error 3101
Error 3101

Severity Level 16

Message Text

Exclusive access could not be obtained because the database is in use.

Explanation

This error occurs when you attempt to load a backup while users are accessing the database. This error can occur with RESTORE
DATABASE or RESTORE LOG. You cannot use the RESTORE DATABASE statement while the database is in use by any user,
including yourself.

Action

Use the ALTER DATABASE SET SINGLE_USER to remove users from the database.

Or, wait until all users have finished using the database, and then use the RESTORE DATABASE statement. Make sure that you are
not using the database being loaded when you issue the RESTORE DATABASE statement. Although not required, it is best to run
the RESTORE DATABASE statement from the master database.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting (SQL Server 2000)

Error 3143
Error 3143

Severity Level 16

Message Text

The data set on device '%ls' is not a SQL Server backup set.

Explanation

The backup being restored conforms to the Microsoft Tape Format, but is not a Microsoft® SQL Server™ backup. The backup may
have been written by another software product.

Action

To determine the contents of the backup, consider using RESTORE HEADERONLY.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE HEADERONLY

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3154
Error 3154

Severity Level 16

Message Text

The backup set holds a backup of a database other than the existing '%ls' database.

Explanation

The backup set is a backup of a database with the same name as the database to which you are restoring. However, the database
being restored was created by a different CREATE DATABASE statement than the database in the backup set. Even though the
databases have the same name, they are in fact different databases.

Action

Either overwrite the existing database by reissuing the RESTORE DATABASE command using the WITH REPLACE clause, or restore
the backup set to a different database name. If you restore the backup set to a different database name, ensure that the files that
will be created do not already exist and are not being used by another database. If you chose the wrong backup set to restore,
select a backup of the existing database and restore it.

See Also

Backing Up and Restoring Databases

CREATE DATABASE

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3155
Error 3155

Severity Level 16

Message Text

The RESTORE operation cannot proceed because one or more files have been added or dropped from the database
since the backup set was created.

Explanation

You must begin the restore sequence by restoring a full database backup created after files were added or removed from the
database. You cannot roll forward across file creation or deletion operations.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3206
Error 3206

Severity Level 16

Message Text

No entry in sysdevices for backup device '%.*ls'. Update sysdevices and rerun statement.

Explanation

You have attempted to use a logical device that is not a backup device.

Action

Either define the device using sp_addumpdevice, or refer to the physical device directly by specifying the TAPE = or DISK =
syntax of the BACKUP statement.

See Also

Backing Up and Restoring Databases

Error 3209

sysdevices

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3209
Error 3209

Severity Level 16

Message Text

'%.*ls' is not a backup device. Check sysdevices.

Explanation

You have attempted to use a logical device that is not a backup device.

Action

Either define the device using sp_addumpdevice, or refer to the physical device directly by specifying the TAPE = or DISK =
syntax of the BACKUP statement.

See Also

Backing Up and Restoring Databases

Error 3206

sp_addumpdevice

sysdevices

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3227
Error 3227

Severity Level 16

Message Text

The volume on device '%ls' is a duplicate of stripe set member %d.

Explanation

This message occurs when either:

Volumes from the same media family are mounted in more than one tape device. All such volumes must be mounted on
the same device.

A volume from a media family that has already been processed has been loaded into the specified device.

Action

Remove the volume from the specified device and insert the correct volume.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3242
Error 3242

Severity Level 16

Message Text

The file on device '%ls' is not a valid Microsoft Tape Format backup set.

Explanation

The backup device does not contain data in Microsoft Tape Format due to one of the following situations:

The contents of the backup set were not generated by SQL Server version 7.0 or later.

The contents of the backup set have been damaged.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3247
Error 3247

Severity Level 16

Message Text

The volume on device '%ls' has the wrong media sequence number (%d). Remove it and insert volume %d.

Explanation

The media family spans multiple volumes. The restore operation expected to process the volume specified in the error message,
but found a different volume of the same media family instead.

Action

Remove the volume from the specified device and insert the volume with the requested value.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3249
Error 3249

Severity Level 16

Message Text

The volume on device '%ls' is a continuation volume for the backup set. Remove it and insert the volume holding
the start of the backup set.

Explanation

The media family spans multiple volumes. The backup set to be processed by the restore operation starts on an earlier volume
than the one inserted into the named device.

Action

Remove the volume and insert the volume containing the start of the target backup set. To determine which backup sets are
contained on which volumes, use RESTORE HEADERONLY.

See Also

Backing Up and Restoring Databases

RESTORE

RESTORE HEADERONLY

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3251
Error 3251

Severity Level 10

Message Text

The media family on device '%ls' is complete. The device is now being reused for one of the remaining families.

Explanation

The restore operation allows a media set to be restored with fewer physical devices than were used to create it. This message
means that the restore operation has completely processed the media family on the named device, and is now ready to reuse the
device to restore one of the remaining media families in the media set.

Action

Remove the volume from the named device and insert the first volume of a media family that has not yet been processed.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3256
Error 3256

Severity Level 16

Message Text

The backup set on device '%ls' was terminated while it was being created and is incomplete. RESTORE sequence is
terminated abnormally.

Explanation

The backup operation that created the backup set did not finish successfully. You can only restore backup sets that were created
successfully. For example, the backup may have been terminated with an attention message. The backup set is not complete, and
the restore operation must terminate.

Action

If you were restoring a database backup, restore a different database backup, and use log backups to roll forward. If you were
restoring a log backup, apply the next log backup, the log backup made following the incomplete backup, instead.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3258
Error 3258

Severity Level 16

Message Text

The volume on device '%ls' belongs to a different media set.

Explanation

The volume on the named device does not belong to the same media set as the other volumes being processed.

Action

For tape media sets, remove the offending volume and insert the next volume of the media family.

For disks, reissue the command. Name only those backup devices that were part of the same media set.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3263
Error 3263

Severity Level 10

Message Text

Cannot use the volume on device '%ls' as a continuation volume. It is sequence number %d of family %d for the
current media set. Insert a new volume, or sequence number %d of family %d for the current set.

Explanation

The media set spans multiple volumes. Initializing the volume currently in the named device would destroy the integrity of the
media set because the volume has already been used as a member of the media set.

Action

Remove the volume and insert a fresh tape that can be overwritten.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3266
Error 3266

 Topic last updated -- January 2004

Severity Level 16

Message

The backup data in '%ls' is incorrectly formatted. Backups cannot be appended, but existing backup sets may
still be usable.

Explanation

The backup data on the indicated media is incorrectly formatted. The likely cause is that a backup was interrupted, leaving the end
of a disk backup file in an improperly terminated condition. The specific meaning of this error depends on the context in which it
is returned:

When returned in response to a backup statement, this error indicates that the operation failed and the backup was not
created. Pre-existing backup sets on the media may be damaged and unusable.

When logged in the error log, the message may be in response to a backup operation or to a restore operation. In response
to a backup operation, this error may be a warning, as when you try to append a backup, or the error may indicate that the
application failed. When this message appears in the error log for a restore operation, it is a warning message; the operation
succeeded, but, other backup sets on the media may be damaged and unusable.

Action

You can complete the failed backup by switching to other backup media, if available. Alternatively, if none of the existing backup
sets on the current media is usable, consider reformatting the current media using the WITH FORMAT option before use.

Caution BACKUP WITH FORMAT will reformat the media and destroy all contents. Before reformatting, consider using RESTORE
VERIFYONLY to determine the usability of pre-existing backup sets on the media.

See Also

RESTORE VERIFYONLY

BACKUP

Troubleshooting (SQL Server 2000)

Error 3267
Error 3267

Severity Level 16

Message Text

Insufficient resources to create UMS scheduler.

Explanation

When attempting a backup or restore operation, this error message indicates that the server is too busy to perform the backup or
restore operation.

Action

Retry the operation after reducing the server load.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3414
Error 3414

Severity Level 10

Message Text

Database '%.*ls' (database ID %d) could not recover. Contact Technical Support for further instructions.

Explanation

During startup, Microsoft® SQL Server™ could not complete the recovery of the specified database.

Action

To determine why recovery failed, examine the error log for any errors prior to error 3414. It is important to examine errors that
occurred before the first occurrence of error 3414 because subsequent attempts to start the server might not give the detailed
error information you need to diagnose the problem. If you do not have sufficient information to recover from the previous
errors, you can recover from known clean backups, or you can contact your primary support provider for assistance. Note that
you cannot use the database until whatever caused the error has been corrected.

See Also

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 3456
Error 3456

 Topic last updated -- January 2004

Severity Level 21

Message

Could not redo log record %S_LSN, for transaction ID %S_XID, on page %S_PGID, database '%.*ls' (%d). Page: LSN =
%S_LSN, type = %ld. Log: OpCode = %ld, context %ld, PrevPageLSN: %S_LSN.

Explanation

Restore could not roll forward the indicated log record for the transaction indicated by the log sequence number (LSN).

Action

Contact technical support.

See Also

Transaction Logs

Transaction Recovery

Troubleshooting (SQL Server 2000)

Error 3604
Error 3604

Severity Level 10

Message Text

Duplicate key was ignored.

Explanation

This error occurs when you attempt to insert a row that has an index value that violates the uniqueness property (UNIQUE with
IGNORE_DUP_KEY) on an existing index.

Microsoft® SQL Server™ ignores the statement that caused the error and continues processing the transaction.

Action

No action is necessary unless you want to insert that row into the table. If so, you can drop and re-create the index without the
UNIQUE clause, or you can change the data causing the uniqueness violation.

See Also

CREATE INDEX

Creating an Index

Troubleshooting (SQL Server 2000)

Error 3627
Error 3627

Severity Level 16

Message Text

Could not create worker thread.

Explanation

When attempting a backup or restore operation, this error message indicates that the server is too busy to perform the backup or
restore operation.

Action

Retry the operation after reducing the server load.

See Also

Backing Up and Restoring Databases

BACKUP

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 3724
Error 3724

 Topic last updated -- January 2004

Severity Level 16

Message Text

Cannot %S_MSG the %S_MSG '%.*ls' because it is being used for replication.

Explanation

When objects in a database are replicated, they are marked as replicated in the system tables sysarticles (for snapshot and
transactional publications) and sysmergearticles (for merge publications). If you try to alter or drop a replicated object, you
receive an error message similar to:

Cannot drop the table 'Employees' because it is being used for replication.

This error message can also occur incorrectly in some circumstances when an object is not replicated.

Note Most schema changes on replicated objects are not allowed, but you can add or drop columns in a replicated table. For
more information, see Schema Changes on Publication Databases.

Action

This error typically occurs for objects that are replicated, but in some cases can occur incorrectly for objects that are not replicated.

Error occurs for objects that are replicated

For objects that are replicated, remove the object from the publication before attempting to alter or drop it. If the publication has
subscriptions, you must delete all subscriptions before removing the object from the publication. See the following topics for
more information:

Enterprise Manager
How to delete publications and articles (Enterprise Manager)

How to delete a push subscription (Enterprise Manager)

How to delete a pull or anonymous subscription (Enterprise Manager)
Transact-SQL

How to Delete Publications and Articles (Transact-SQL)

How to Delete a Push Subscription (Transact-SQL)

How to Delete a Pull Subscription (Transact-SQL)

If removing the article does not solve the problem, you might need to remove replication from the server completely. See the
following topics for more information:

Enterprise Manager
How to disable publishing and distribution (Enterprise Manager)

Transact-SQL
How To Disable Publishing and Distribution (Transact-SQL)

Error occurs for objects that are not replicated

For objects that are not replicated, you must ensure that they are not marked as replicated in the system tables. If they are marked
as replicated, the system tables must be updated. There are two approaches to updating the system tables:

The first approach (recommended) is calling the stored procedure sp_removedbreplication on the database that contains
the object:

sp_removedbreplication 'dbname'

The second approach is to update the system tables directly.

Important You should only use this approach after other options have been exhausted. Ensure you have backed up the
database first.

The following procedure is dependent on SQL Server system tables. The structure of these tables may vary in different SQL
Server versions. Microsoft does not recommend that you select directly from the system tables.

In most cases, Microsoft does not recommend that you (or any user) change system tables directly. For example, do not try
to modify system tables by using DELETE, UPDATE, or INSERT statements, or by using user-defined triggers.

To update system tables

1. Execute the following code in Query Analyzer. Replace object_name with the name of the object that is marked for
replication:

sp_configure 'allow updates', 1
go
reconfigure with override
go
begin transaction
update sysobjects set replinfo = 0 where name = 'object_name'

2. Verify that only one row was affected. If the intended row in the sysobjects table was updated, commit the transaction, or
roll back the transaction by using the following appropriate command:

rollback transaction
go
-- or
commit transaction
go

3. Run the following code:

sp_configure 'allow updates', 0
go
reconfigure with override
go

See Also

sysarticles

sysmergearticles

sp_removedbreplication

sp_configure

Troubleshooting (SQL Server 2000)

Error 4208
Error 4208

Severity Level 16

Message Text

The statement %hs is not allowed while the recovery model is SIMPLE. Use BACKUP DATABASE or change the recovery
model using ALTER DATABASE.

Explanation

When using the Simple Recovery model, the log is truncated when periodic checkpoints occur. Only full database and differential
database backups are allowed because the log has been truncated and any log backups made would be unusable.

Action

To maintain your database by performing only full and differential database backups, keep using the Simple Recovery model
along with BACKUP DATABASE.

To maintain a full set of transaction log backups to guarantee that no change to the database is lost in the event of a failure, use
ALTER DATABASE to change the recovery model to full or bulk-logged. Then use BACKUP DATABASE, and begin taking periodic
transaction log backups using BACKUP LOG.

See Also

BACKUP

Setting Database Options

sp_dboption

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 4214
Error 4214

Severity Level 10

Message Text

There is no current database backup. This log backup cannot be used to roll forward a preceding database backup.

Explanation

To restore the database after failure, you must begin either with a full database backup, or with a partial or complete set of file
backups. Either this database has never been backed up, or a BACKUP LOG statement was executed after switching from the
Simple Recovery model to Full or Bulk-Logged recovery before a database or file backup was performed. Therefore, the log
backup just completed is not useful.

Action

Perform a full database backup before backing up the log.

See Also

BACKUP

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 4305
Error 4305

Severity Level 16

Message Text

The log in this backup set begins at LSN %.*ls, which is too late to apply to the database. An earlier log
backup that includes LSN %.*ls can be restored.

Explanation

The restore operation found a gap between the last restore and the transaction log that you attempted to apply.

Action

Locate the missing, earlier transaction log backups and apply these first. Transaction logs must be restored in the same order in
which they were backed up.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 4306
Error 4306

Severity Level 16

Message Text

The preceding restore operation did not specify WITH NORECOVERY or WITH STANDBY. Restart the restore sequence,
specifying WITH NORECOVERY or WITH STANDBY for all but the final step.

Explanation

After the database has been recovered, no further restore operations may be performed.

Action

To recover a database, start the sequence over and use the NORECOVERY clause on all RESTORE statements except the last. If you
are maintaining a standby server and want to bring up the database in read-only mode between restore operations, use the
STANDBY clause of RESTORE instead of the NORECOVERY clause.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 4408
Error 4408

 Topic last updated -- January 2004

Severity Level 19

Message Text

The query and the views or functions in it exceed the limit of %d tables.

Explanation

The maximum number of tables that can be referenced in the FROM clause of a query, including through views and table-valued
functions, is 256. This error is raised when a query exceeds this maximum limit.

Action

This error can be resolved by referencing 256 or fewer tables in the query.

See Also

Maximum Capacity Specifications

FROM

Troubleshooting (SQL Server 2000)

Error 4928
Error 4928

 Topic last updated -- January 2004

Severity Level 16

Message Text

Cannot alter column '%.*ls' because it is '%ls'.

Explanation

This error message typically occurs for columns that are included in a replication article. When objects in a database are
replicated, columns in replicated tables are marked as replicated in the system table syscolumns. If you attempt to alter a column
that is marked, you receive an error message similar to:
Cannot alter column 'Notes' because it is 'replicated'.

Note Most schema changes on replicated objects are not allowed, but you can add or drop columns in a replicated table. For
more information, see Schema Changes on Publication Databases.

Action

This error typically occurs for columns that are replicated, but in some cases can occur incorrectly for objects that are not
replicated.

Error occurs for columns that are replicated

For columns that are replicated, remove the column from the publication before attempting to alter it. If the publication has
subscriptions, you must delete all subscriptions before removing the column. See the following topics for more information.

Enterprise Manager
How to filter publications vertically using publication properties (Enterprise Manager)

How to delete a push subscription (Enterprise Manager)

How to delete a pull or anonymous subscription (Enterprise Manager)
Transact-SQL

How to Delete a Push Subscription (Transact-SQL)

How to Delete a Pull Subscription (Transact-SQL)

Error occurs for columns that are not replicated

For objects that are not replicated, you must ensure that they are not marked as replicated in the system tables. If they are marked
as replicated, the system tables must be updated.

Important This procedure will mark all columns in a database as non-replicated. Ensure you have backed up the database before
using this procedure.

The following procedure is dependent on SQL Server system tables. The structure of these tables may vary in different SQL Server
versions. Microsoft does not recommend that you select directly from the system tables.

In most cases, Microsoft does not recommend that you (or any user) change system tables directly. For example, do not try to
modify system tables by using DELETE, UPDATE, or INSERT statements, or by using user-defined triggers.

To update system tables

1. Run the following code to clear the replication indicators on the columns:

sp_configure 'allow updates', 1

go
reconfigure with override
go
begin transaction
update syscolumns set colstat = colstat & ~4096 where colstat & 4096 <>0
go

2. Verify that rows were affected. If the intended rows in the syscolumns table were updated, commit the transaction, or roll
back the transaction by using one of these commands:

rollback transaction
go
-- or
commit transaction
go

3. Run the following code to set the server configuration back:

sp_configure 'allow updates', 0
go
reconfigure with override
go

See Also

syscolumns

sp_configure

Troubleshooting (SQL Server 2000)

Error 4929
Error 4929

 Topic last updated -- January 2004

Severity Level 16

Message Text

Cannot alter the %S_MSG '%.*ls' because it is being published for replication.

Explanation

When objects in a database are replicated, they are marked as replicated in the system tables sysarticles (for snapshot and
transactional publications) and sysmergearticles (for merge publications). If you try to alter or drop a replicated object, you
receive an error message similar to:

Cannot alter the table 'Employees' because it is being used for replication.

This error message can also occur incorrectly in some circumstances when an object is not replicated and when a snapshot is
being applied to reinitialize a Subscriber.

Note Most schema changes on replicated objects are disallowed, but you can add or drop columns in a replicated table. For
more information, see Schema Changes on Publication Databases.

Action

This error typically occurs for objects that are replicated, but in some cases can occur incorrectly for objects that are not replicated.

Error occurs for objects that are replicated

For objects that are replicated, remove the object from the publication before attempting to alter or drop it. If the publication has
subscriptions, you must delete all subscriptions before removing the object from the publication. See the following topics for
more information.

Enterprise Manager
How to delete publications and articles (Enterprise Manager)

How to delete a push subscription (Enterprise Manager)

How to delete a pull or anonymous subscription (Enterprise Manager)
Transact-SQL

How to Delete Publications and Articles (Transact-SQL)

How to Delete a Push Subscription (Transact-SQL)

How to Delete a Pull Subscription (Transact-SQL)

If removing the article does not solve the problem, you might need to remove replication from the server completely. See the
following topics for more information:

Enterprise Manager
How to disable publishing and distribution (Enterprise Manager)

Transact-SQL
How To Disable Publishing and Distribution (Transact-SQL)

Error occurs when the snapshot is applied

When applying a snapshot to a Subscriber, you have four options if an object with the same name exists at the Subscriber:

Keep the existing table unchanged.

Drop the existing table and recreate it.

Delete data in the existing table that matches the row filter statement.

Delete all data in the existing table.

If you are receiving error message 4929 during snapshot application at the Subscriber, ensure that you choose to keep the
existing table unchanged:

1. In SQL Server Enterprise Manager, right-click the publication and click Properties.

2. Click the Articles tab, and click Article Defaults.

3. Click the Snapshot tab on the Default Table Article Properties dialog box.

4. Select the option Keep the existing table unchanged and click OK.

Error occurs for objects that are not replicated

For objects that are not replicated, you must ensure that they are not marked as replicated in the system tables. If they are marked
as replicated, the system tables must be updated. There are two approaches to updating the system table information:

The first approach (recommended) is calling the stored procedure sp_removedbreplication on the database that contains
the object:

sp_removedbreplication 'dbname'

The second approach is to update the system tables directly.

Important You should only use this approach after other options have been exhausted. Ensure you have backed up the
database first.

The following procedure is dependent on SQL Server system tables. The structure of these tables may vary in different SQL
Server versions. Microsoft does not recommend that you select directly from the system tables.

In most cases, Microsoft does not recommend that you (or any user) change system tables directly. For example, do not try
to modify system tables by using DELETE, UPDATE, or INSERT statements, or by using user-defined triggers.

To update system tables

1. Execute the following code in Query Analyzer. Replace object_name with the name of the object that is marked for
replication:

sp_configure 'allow updates', 1
go
reconfigure with override
go
begin transaction
update sysobjects set replinfo = 0 where name = 'object_name'

2. Verify that only one row was affected. If the intended row in the sysobjects table was updated, commit the transaction, or
roll back the transaction by using the following appropriate command:

rollback transaction
go
-- or
commit transaction
go

3. Run the following code:

sp_configure 'allow updates', 0
go
reconfigure with override
go

See Also

sysarticles

sysmergearticles

sp_removedbreplication

sp_configure

Troubleshooting (SQL Server 2000)

Error 4318
Error 4318

Severity Level 16

Message Text

File '%ls' has been rolled forward to LSN %.*ls. This log terminates at LSN %.*ls, which is too early to apply
the WITH RECOVERY option. Reissue the RESTORE LOG statement WITH NORECOVERY.

Explanation

You have attempted to recover the database to its state at the time the current log backup was made. However, at least one file
has been modified since this backup was created. Recovery is not possible because the database would be left in an inconsistent
state.

Action

To recover the database to its most recent state, reissue the RESTORE LOG statement with the NORECOVERY clause and continue
to apply transaction logs, recovering only when you have rolled far enough forward.

To recover the database to the point-in-time at the end of this log backup, use RESTORE DATABASE to restore the indicated file to
an earlier state and roll it forward.

See Also

Backing Up and Restoring Databases

RESTORE

Troubleshooting Backing Up and Restoring

Troubleshooting (SQL Server 2000)

Error 5013
Error 5013

Severity Level 16

Message Text

The master and model databases cannot have files added to them. ALTER DATABASE was aborted.

Explanation

This error occurs when you attempt to extend either the master or model databases by adding database files.

Action

Extend the master or model databases only when necessary. The master database will grow automatically, if needed. If there is
no room on the disk drive where the master files reside, either delete other files to make more disk space or replace the disk
drive with a larger disk drive. If you need to expand the model database, ensure that there is available disk space on the disk
drive where the model data files currently reside.

See Also

ALTER DATABASE

Rebuilding the master Database (Level 4)

Restoring the master Database from a Current Backup

https://msdn.microsoft.com/en-us/library/aa197084(v=sql.80).aspx

Troubleshooting (SQL Server 2000)

Error 5701
Error 5701

Severity Level 10

Message Text

Changed database context to '%.*ls'.

Explanation

This is an informational message indicating that the database context has changed. This message is returned anytime a USE
database statement is executed.

Action

None needed.

See Also

USE

Troubleshooting (SQL Server 2000)

Error 5808
Error 5808

Severity Level 16

Message Text

Ad hoc updates to system catalogs not recommended. Use the RECONFIGURE WITH OVERRIDE statement to force this
configuration.

Explanation

This error message occurs in one of these two situations:

When a user tries to use the sp_configure system stored procedure with the allow updates option.

When a user tries to set a configuration parameter to a value that Microsoft® SQL Server™ recognizes as likely to interfere
with performance or smooth operation.

When the allow updates option is enabled, SQL Server allows direct updates to the system tables, so any user who can log on as
the SQL Server system administrator can update the system tables directly with ad hoc queries and can create stored procedures
that update the system catalog. Incorrect changes to the system tables can cause unrecoverable database corruption or data loss.

Warning Severe problems can result from the direct manipulation of the system catalogs. Do not modify the system catalogs
unless instructed to do so by your primary support provider.

Action

Before modifying any system catalogs, be sure that you have a valid backup of the database. For more information about backup
operations, see Backing Up and Restoring Databases.

Warning Incorrect modification of the system catalogs can result in database corruption or data loss.

If possible, restart SQL Server in single-user mode by using the -m flag of the sqlservr application so that inadvertent
modifications do not occur. For more information, see sqlservr Application.

To modify system catalogs, use the osql utility to alter the allow updates system configuration setting.

Note Only the system administrator can alter the value for the allow updates system configuration setting.

See Also

allow updates Option

osql Utility

Reporting Errors to Your Primary Support Provider

Setting Configuration Options

sp_configure

Using Startup Options

Troubleshooting (SQL Server 2000)

Error 6103
Error 6103

Severity Level 17

Message Text

Could not do cleanup for the killed process. Received message %d.

Explanation

This error message occurs when another error caused a user connection to terminate abnormally. The message number that
caused this error will be printed in the error 6103 message.

Action

Examine and resolve the "received message" reported in this error message.

See Also

How to kill a process (Enterprise Manager)

KILL

Troubleshooting (SQL Server 2000)

Error 6826
Error 6826

Severity Level 16

Message Text

Every IDREFS or NMTOKENS column in a FOR XML EXPLICIT query must appear in a separate SELECT clause, and the
instances must be ordered directly after the element to which they belong.

Explanation

The schema may not have sufficient key fields specified.

Action

This can be resolved by adding sql:key-fields annotation.

Troubleshooting (SQL Server 2000)

Error 7102
Error 7102

Severity Level 20

Message Text

SQL Server Internal Error. Text manager cannot continue with current statement.

Explanation

This error is raised when one of the following occurs:

Microsoft® SQL Server™ 2000 cannot deallocate a text page.

This occurs if you have canceled a query or if the server cannot obtain a lock resource.

An internal SQL Server error.

Action

If the error occurred because you canceled a query, resubmit the query.

If you did not cancel a query, check the error log for error message 1204. If error message 1204 exists in the error log, to resolve
this error, see Error 1204.

If you did not cancel a query or if error message 1204 does not exist in the error log, the error was raised due to an internal error.
To resolve this error, contact Microsoft Product Support Services.

Troubleshooting (SQL Server 2000)

Error 7130
Error 7130

Severity Level 16

Message Text

%ls WITH NO LOG is not valid at this time. Use sp_dboption to set the 'select into/bulkcopy' option on for
database '%.*ls'.

Explanation

This error occurs upon executing either the UPDATETEXT or WRITETEXT statements, or either the dbupdatetext or dbwritetext
routines in a database that does not have the sp_dboption system stored procedure's select into/bulkcopy option enabled.
Because these are nonlogged operations, the option must be enabled.

Often, UPDATETEXT, WRITETEXT, dbupdatetext, and dbwritetext are run against a temporary table. The select into/bulkcopy
option must be enabled in tempdb, or these will not run successfully.

Action

Enable the sp_dboption system stored procedure's select into/bulkcopy option for all databases affected by the query that
contains a nonlogged operation. To do this, the system administrator and database owners should follow these steps:

1. Enable the option:

USE master
GO
sp_dboption database_name, 'select into/bulkcopy',true
GO
USE database_name
GO
CHECKPOINT
GO

2. Verify that the change is active:

sp_helpdb database_name
GO

3. Execute the nonlogged operation.

4. When the nonlogged operation is complete, backup the database.

Caution After executing a nonlogged operation, do not back up the transaction log. Although the procedure may appear to
succeed, you may have been backing up only empty text pages. Whenever you make nonlogged changes to your database, you
must use the BACKUP DATABASE statement, because changes made by the nonlogged operation cannot be recovered from
transaction logs.

5. Return the database to its original condition by disabling the select into/bulkcopy option:

USE master
GO
sp_dboption database_name, 'select into/bulkcopy',false
GO
USE database_name
GO
CHECKPOINT
GO

6. Verify that the change is active:

sp_helpdb database_name
GO

See Also

CHECKPOINT

dbwritetext

dbupdatetext

Setting Database Options

sp_dboption

sp_helpdb

UPDATETEXT

WRITETEXT

Troubleshooting (SQL Server 2000)

Error 7303
Error 7303

Severity Level 16

Message Text

Could not initialize data source object of OLE DB provider '%ls'. %ls

Explanation

This error message indicates that the OLE DB data source object could not be initialized.

Action

This error message can occur because of one of these problems.

Problem Resolution
One of the initialization parameters
specified in sp_addlinkedserver
(data_source, location, provider_string,
or catalog) is incorrect for this provider.

Verify that these parameters defined for the
linked server, specified by executing
sp_addlinkedserver, are correct for the
given provider. Check the provider's
documentation for the appropriate values
for these parameters.

Login and password sent to the provider
is invalid.

Verify that there is a valid login and
password configured for the linked server
and the current SQL Server login through
sp_addlinkedsrvlogin.

See Also

Distributed Queries

Errors 7000 - 7999

sp_addlinkedserver

sp_addlinkedsrvlogin

Troubleshooting (SQL Server 2000)

Error 7304
Error 7304

Severity Level 16

Message Text

Could not create a new session on OLE DB provider '%ls'.

Explanation

Unable to create a new session to the OLE DB data source.

Action

Check for error messages returned by the provider and review provider documentation.

See Also

Accessing External Data

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7306
Error 7306

Severity Level 16

Message Text

Could not open table '%ls' from OLE DB provider '%ls'. %ls

Explanation

This error message is returned if the OLE DB provider does not support the interfaces and OLE DB properties required for the
UPDATE, DELETE, and INSERT statements.

Action

In this scenario, a trace on OLE DB Errors would output additional information on the specific missing OLE DB support. For
example, in the case of Microsoft® SQL Server™, the INSERT, UPDATE, and DELETE statements are not supported on the remote
table if the table does not have a unique index defined on it. In this case, SQL Profiler would output the following information:

OLE/DB Provider 'SQLOLEDB' IOpenRowset::OpenRowset returned 0x80040e21:
[PROPID=DBPROP_BOOKMARKS VALUE=True STATUS=DBPROPSTATUS_OK], [PROPID=DBPROP_IRowsetLocate
VALUE=True STATUS=DBPROPSTATUS_OK], [PROPID=DBPROP_IRowsetChange VALUE=True
STATUS=DBPROPSTATUS_CONFLICTING], [PROPID=DBPROP_UPDATABILITY VALUE=1 STATUS=DBPROPSTATUS_OK]

This error message indicates the status of each OLE DB property that was requested on the rowset opened against the table being
updated. This information indicates that all properties required by SQL Server to perform this query, except the
DBPROP_IRowsetChange property, were satisfied by the provider.

See Also

Distributed Queries

Errors 7000 - 7999

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7314
Error 7314

Severity Level 16

Message Text

OLE DB provider '%ls' does not contain table '%ls'. The table either does not exist or the current user does
not have permissions on that table.

Explanation

Either the specified table or columns do not exist or the login used to connect to the provider does not have the required
permissions on the table or columns.

This message occurs on case-sensitive servers.

Action

Verify that the table or columns specified exist. Verify that the appropriate permissions are granted on the table or columns
specified.

If the table was originally created in Oracle without quotation marks, specify the table name in the distributed query using all
uppercase letters. If the table was originally created in Oracle with quotation marks, specify the table name in the distributed
query using all lowercase letters.

See Also

Distributed Queries

Errors 7000 - 7999

OLE DB Providers Tested with SQL Server

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7321
Error 7321

Severity Level 16

Message Text

An error occurred while preparing a query for execution against OLE DB provider '%ls'. %ls

Explanation

Indicates a possible syntax error in the pass-through query's query string parameter.

Action

Verify that the query string is free of syntax errors (with respect to the query language supported by the OLE DB provider).

See Also

Distributed Queries

Errors 7000 - 7999

OPENQUERY

Troubleshooting (SQL Server 2000)

Error 7356
Error 7356

Severity Level 16

Message Text

OLE DB provider '%ls' supplied inconsistent metadata for a column. Metadata information was changed at execution
time.

Explanation

This error indicates that there was inconsistent metadata reported by the provider on a given table between compilation time and
execution time of the query. This typically occurs because the provider returns inconsistent metadata between the OLE DB schema
rowset COLUMNS (during compilation) and that metadata reported by the IColumnsInfo interface on the table's rowset.

Action

Consult SQL Profiler to determine which table column caused this error.

See Also

Distributed Queries

Errors 7000 - 7999

Monitoring with SQL Profiler

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7357
Error 7357

Severity Level 16

Message Text

Could not process object '%ls'. The OLE DB provider '%ls' indicates that the object has no columns.

Explanation

Either the specified table or columns do not exist or the login used to connect to the provider does not have the required
permissions on the table or columns.

Action

Verify that the table or columns specified exist. Verify that the appropriate permissions are granted on the table or columns
specified.

See Also

Distributed Queries

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7391
Error 7391

Severity Level 16

Message Text

The operation could not be performed because the OLE DB provider '%ls' was unable to begin a distributed
transaction.

Explanation

This error can occur while processing an INSERT, UPDATE, or DELETE statement inside an explicit or implicit transaction. This
indicates that the OLE DB provider does not support distributed transactions, which is needed for data modification statements
inside an explicit or implicit transaction. A data modification statement can be executed against such a provider only in the case
where the statement is a transaction by itself.

Action

Verify that the OLE DB provider specified supports distributed transactions. If the provider does not support distributed
transactions, rewrite the data modification statement not to use distributed transactions.

See Also

Distributed Queries

Troubleshooting (SQL Server 2000)

Error 7392
Error 7392

Severity Level 16

Message Text

Could not start a transaction for OLE DB provider '%ls'.

Microsoft® SQL Server™ also returns this error message if the provider is a SQL Server-specific provider:
Only one transaction can be active on this session.

Explanation

The OLE DB provider returned error 7392 because only one transaction can be active for this session. This error indicates that a
data modification statement is being attempted against an OLE DB provider when the connection is in an explicit or implicit
transaction, and the OLE DB provider does not support nested transactions. SQL Server requires this support so that, on certain
error conditions, it can terminate the effects of the data modification statement while continuing with the transaction.

Action

SET XACT_ABORT is ON. This causes SQL Server to terminate the surrounding transaction when there is an error while processing
the data modification statement. If SET XACT_ABORT is ON, SQL Server does not require nested transaction support from the OLE
DB provider.

See Also

Distributed Queries

SET XACT_ABORT

Troubleshooting (SQL Server 2000)

Error 7399
Error 7399

Severity Level 16

Message Text

OLE DB provider '%ls' reported an error. %ls
Cannot start your application. The workgroup information file is missing or opened exclusively by another user.

Explanation

This error message returned by the Microsoft OLE DB Provider for Jet indicates one of the following:

The Microsoft® Access database is not a secured database and the login and password specified was not Admin with no
password.

The Access database is secured and the HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\SystemDB registry key is not
pointing to the correct Access workgroup file. Secured Access databases have a corresponding workgroup file, including the
full path, which should be indicated by the above registry key.

Action

Verify that there is a login mapping for the current Microsoft SQL Server™ login to Admin with no password.

If the Access database being accessed is secured, make sure that the above registry key points to the full pathname of the Access
workgroup file.

See Also

Distributed Queries

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7403
Error 7403

Severity Level 16

Message Text

Could not locate registry entry for OLE DB provider '%ls'.

Explanation

This error message indicates one of the following:

The OLE DB provider is not registered properly.

The name of the provider used in the provider_name parameter of sp_addlinkedserver (or specified in the OPENROWSET
function) is incorrect.

Action

Verify that the provider has been registered correctly and that the provider_name parameter uses the PROGID of the provider.

See Also

Distributed Queries

OPENROWSET

sp_addlinkedserver

Troubleshooting (SQL Server 2000)

Error 7413
Error 7413

Severity Level 16

Message Text

Could not perform a Windows NT authenticated login because delegation is not available.

Explanation

This error message indicates that a distributed query is being attempted for a Microsoft® Windows® authenticated login without
an explicit login mapping. In an operating-system environment in which security delegation is not supported, Windows NT
authenticated logins need an explicit mapping to a remote login and password created using sp_addlinkedsrvlogin.

Action

Create explicit mapping to a remote login and password using sp_addlinkedsrvlogin.

See Also

Distributed Queries

sp_addlinkedsrvlogin

Troubleshooting (SQL Server 2000)

Error 7910
Error 7910

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Page P_ID has been allocated to object ID O_ID, index ID I_ID.

Explanation

This is an informational message from repair stating that a page has been allocated to an IAM's single-page slot array.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7911
Error 7911

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Page P_ID has been deallocated from object ID O_ID, index ID I_ID.

Explanation

This is an informational message from repair stating that a page has been de-allocated from an IAM page's single-page slot array.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7912
Error 7912

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Extent P_ID has been allocated to object ID O_ID, index ID I_ID.

Explanation

This is an informational message from repair stating that an extent has been allocated.

Per-state information:

State 1: The extent was allocated to an IAM page.

State 2: The extent was marked as available in an SGAM page (in which case the O_ID should be 99).

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7913
Error 7913

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Extent P_ID has been deallocated from object ID O_ID, index ID I_ID.

Explanation

This is an informational message from repair stating that an extent has been de-allocated.

Per-state information:

State 1: The extent was de-allocated from an IAM page.

State 2: The extent was marked as unavailable in an SGAM page (in which case the O_ID should be 99).

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7914
Error 7914

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: PAGE_TYPE page at P_ID has been rebuilt.

Explanation

This repair indicates that either a GAM or SGAM page has been rebuilt from scratch, using PFS page data. This repair is only
available using an undocumented repair option. PAGE_TYPE can be 'GAM' or 'SGAM'.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7915
Error 7915

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: IAM chain for object ID O_ID, index ID I_ID, has been truncated before page P_ID and will be rebuilt.

Explanation

The IAM chain specified has been patched so that it could be rebuilt. This may have involved allocating a new head of the IAM
chain, or removing bad pages from the chain.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7916
Error 7916

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Deleted record for object ID O_ID, index ID I_ID, on page P_ID, slot S_ID. Indexes will be rebuilt.

Explanation

The record specified was deleted from the page.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7917
Error 7917

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Converted forwarded record for object ID O_ID, index ID I_ID, at page P_ID, slot S_ID to a data row.

Explanation

The record specified was converted in-place to a primary record. The record pointed back to a non-existent heap forwarding stub
record. There should be a matching 8994 error.

Action

No user action required.

See Also

Error 8994

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7918
Error 7918

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Page P_ID1 next and P_ID2 previous pointers have been set to match each other in object ID O_ID, index
ID I_ID.

Explanation

The sibling chain linkages in the two IAM pages specified were set to point to each other.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7919
Error 7919

 Topic last updated -- January 2004

Severity Level 16

Message Text

Repair statement not processed. Database needs to be in single user mode.

Explanation

Repair can only be executed in single-user mode to ensure that the database is transactionally consistent when checked.

Action

Reconfigure the database in single-user mode and rerun repair.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7920
Error 7920

 Topic last updated -- January 2004

Severity Level 10

Message Text

Processed ENTRY_COUNT entries in sysindexes for database ID D_ID.

Explanation

This message is part of the informational output of all check commands except DBCC CHECKALLOC; it gives the total number of
indexes checked.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7923
Error 7923

 Topic last updated -- January 2004

Severity Level 10

Message Text

Table TABLE Object ID O_ID.

Explanation

This is part of the informational output of DBCC CHECKALLOC; it gives the table name and ID at the top of a list of allocation
information for all indexes in the table.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7924
Error 7924

 Topic last updated -- January 2004

Severity Level 16

Message Text

Index ID I_ID. FirstIAM P_ID1. Root P_ID2. Dpages PAGECOUNT.

Explanation

This is part of the informational output of DBCC CHECKALLOC; it gives the allocation metadata for a particular index.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7925
Error 7925

 Topic last updated -- January 2004

Severity Level 16

Message Text

Index ID I_ID. PAGECOUNT pages used in EXTENTCOUNT dedicated extents.

Explanation

This is part of the informational output of DBCC CHECKALLOC; it gives the allocation summary for a particular index.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7927
Error 7927

 Topic last updated -- January 2004

Severity Level 16

Message Text

Total number of extents is EXTENTCOUNT.

Explanation

This is part of the informational output of DBCC CHECKALLOC; it gives the total number of allocated extents in the database.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7961
Error 7961

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, index ID I_ID, page ID P_ID, row ID ROW_ID. Column 'COLUMN' is a var column with a NULL value
and non-zero data length.

Explanation

The variable length column specified has a NULL value (that is, zero length), but the actual data length is non-zero.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If the index ID specified is a heap, performing a repair will set the length to zero. Otherwise, the index ID specified must be a
clustered or non-clustered index, and therefore the index will be rebuilt to fix the problem.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 7000 - 7999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 7965
Error 7965

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Could not check object ID O_ID, index ID I_ID due to invalid allocation (IAM) page(s).

Explanation

One of the IAM pages in the IAM chain identified by the various IDs is corrupt.

Per-state information:

State 2: The IAM page is the first page in an IAM chain, and was found to be corrupt while loading the IAM chain into the page
iterator.

State 3: The IAM page was found to be corrupt during the initial IAM page scan.

There will be accompanying errors that give more specific information about the corruption.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will patch the IAM chain so that further repairs can be run. This may involve removing the corrupt page.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 7000 - 7999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 7966
Error 7966

 Topic last updated -- January 2004

Severity Level 10

Message Text

Warning: NO_INDEX option of COMMAND being used. Checks on non-system indexes will be skipped.

Explanation

This message is a warning to the user that non-clustered indexes of user tables will not be checked for logical consistency or B-
tree structural consistency.

Action

No user action required.

See Also

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 7991
Error 7991

 Topic last updated -- January 2004

Severity Level 16

Message Text

System table mismatch: Table 'O_NAME' object ID O_ID has index id 1 in sysindexes but the status in sysobjects
does not have the clustered bit set. The table will be checked as a heap.

Explanation

The metadata describing the table is corrupt. Sysindexes thinks the table has a clustered index, but sysobjects thinks the table is a
heap. It is safer to assume that the table is a heap for the purposes of checking it.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 7000 - 7999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 7994
Error 7994

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, index ID I_ID: FirstIAM field in sysindexes is P_ID. FirstIAM for statistics only and dummy
index entries should be (0:0).

Explanation

Statistics only and dummy indexes do not have any actual storage allocated to them, so the FirstIAM page ID in the sysindexes
row for them should be (0:0). This message informs you that the FirstIAM page ID is not zero.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The IAM chain (if it really exists) will be removed when repair is performed. If running DBCC CHECKDB with one of the repair
clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 7000 - 7999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 7995
Error 7995

 Topic last updated -- January 2004

Severity Level 16

Message Text

Database 'DBNAME' consistancy errors in sysobjects, sysindexes, syscolumns, or systypes prevent further
CHECKNAME processing.

Explanation

CHECKDB is a three-stage process:

1. Allocation check (equivalent to CHECKALLOC).

2. System table consistency checks (equivalent to running CHECKTABLE on a small list of vital system tables).

3. Whole database consistency checks.

If stage 2 finds errors that it cannot repair (or repair has not been specified), stage 3 cannot continue. This is because the system
tables in question store the metadata for all objects in the database. If they are corrupt, the metadata cannot be trusted.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Examine the list of errors to see what repair will do for each.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 7000 - 7999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8101
Error 8101

Severity Level 16

Message Text

An explicit value for the identity column in table '%.*ls' can only be specified when a column list is used and
IDENTITY_INSERT is ON.

Explanation

You have attempted to insert a row containing a specific identity value into a table that contains an identity column. However, you
did not provide a column list or have SET IDENTITY_INSERT enabled for the specified table.

Action

To insert a specific identity row in a table containing an identity column successfully you must provide a column list and SET
IDENTITY_INSERT to ON. The following example inserts identity row 2, where iID is defined as the identity column.

Table: tblTest
iID strData
1 King
3 Suyama

-- Enable IDENTITY_INSERT.
SET IDENTITY_INSERT tblTest ON
GO
-- Insert the specified identity row using a column list.
INSERT INTO tblTest (iID, strData) values (2, 'Davolio')
GO
-- Disable IDENTITY_INSERT.
SET IDENTITY_INSERT tblTest OFF
GO

See Also

SET IDENTITY_INSERT

Troubleshooting (SQL Server 2000)

Error 8102
Error 8102

Severity Level 16

Message Text

Cannot update identity column '%.*ls'.

Explanation

You have specifically attempted to alter the value of an identity column in the SET portion of the UPDATE statement. You can only
use the identity column in the WHERE clause of the UPDATE statement.

Action

Updating of the identity column is not allowed. To update an identity column, you can use the following techniques:

To reassign all identity values, bulk copy the data out, and then drop and re-create the table with the proper seed and
increment values. Then bulk copy the data back into the newly created table. When bcp inserts the values it will
appropriately increase the values and redistribute the identity values. You can also use the INSERT INTO and sp_rename
commands to accomplish the same action.

To reassign a single row, you must delete the row and insert it using the SET IDENTITY_INSERT tblName ON clause.

See Also

bcp Utility

INSERT

SET IDENTITY_INSERT

sp_rename

UPDATE

Troubleshooting (SQL Server 2000)

Error 8106
Error 8106

Severity Level 16

Message Text

Table '%.*ls' does not have the identity property. Cannot perform SET operation.

Explanation

You have attempted to use the SET IDENTITY_INSERT property on a table that does not contain an identity column.

Action

Double-check the table in question by using the sp_help tblName stored procedure to verify the identity column information.

See Also

SET IDENTITY_INSERT

sp_help

Troubleshooting (SQL Server 2000)

Error 8114
Error 8114

Severity Level 16

Message Text

Error converting data type %ls to %ls.

Explanation

If the error text refers to both DBTYPE_DATE and datetime, respectively, this error message indicates that a DBTYPE_DATE OLE
DB data type column from a remote table could not be converted to a datetime value in Microsoft® SQL Server™. The
DBTYPE_DATE column most likely has a value outside the range supported by the datetime data type (datetime values must be
from January 1, 1753, through December 31, 9999). Because the range of values of the DBTYPE_DATE data type is larger than that
of the SQL Server datetime data type, such errors can occur if the column contains values outside of the range supported by SQL
Server.

Action

Remove the remote table column of DBTYPE_DATE data type from the query select list or predicate list.

See Also

datetime and smalldatetime

Distributed Queries

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 8155
Error 8155

Severity Level 16

Message Text

No column was specified for column %d of ''%.*ls''

Explanation

One or more of the aggregate or computed columns in your select list have not been supplied with an alias.

Action

Supply an alias for all aggregate or computed column. For example:
select pub_name, "count"=count(*)
into #t
from publishers p, titles t
where p.pub_id = t.pub_id
group by pub_name

Troubleshooting (SQL Server 2000)

Error 8163
Error 8163

Severity Level 16

Message Text

The text, ntext, or image data type cannot be selected as DISTINCT.

Explanation

When querying, Microsoft® SQL Server™ does not allow the use of SELECT DISTINCT on a text, ntext, or image column. For
example, this query fails, returning error 8163:

USE Northwind
SELECT DISTINCT Description
FROM Categories

Action

Remove references to any text, ntext, or image columns when using SELECT DISTINCT.

See Also

Eliminating Duplicates with DISTINCT

Query Fundamentals

SELECT

Troubleshooting (SQL Server 2000)

Error 8501
Error 8501

Severity Level 16

Message Text

MS DTC on server '%.*ls' is unavailable.

Explanation

This error can occur while processing an INSERT, UPDATE, or DELETE statement inside an explicit or implicit transaction. This error
typically indicates that the MSDTC service is not running on the local server. Data modification statements in an explicit or implicit
transaction require the MSDTC service to be running and the provider's support of distributed transactions.

Action

Use SQL Server Service Manager to verify that the MSDTC service has been started on the server. For more information, see the
Microsoft Distributed Transaction Coordinator documentation.

See Also

Distributed Queries

Errors 7000 - 7999

Troubleshooting (SQL Server 2000)

Error 8645
Error 8645

Severity Level 17

Message Text

A time out occurred while waiting for memory resources to execute the query. Re-run the query.

Explanation

If the query wait configuration option is -1, then Microsoft® SQL Server™ waited 25 times the estimated query cost for the
memory required to run the query. If query time is a nonnegative value, then SQL Server waited this amount of time, in seconds,
for the memory required to run the query. The query timed out and it has not been executed.

Action

You can:

Free memory on the server.
Check the size of the virtual memory paging file.

If possible, increase the size of the file.

Shut down any other applications running, if applicable, on the server.
Add additional memory to the server.

Reduce the server workload.

To decrease the server workload, reduce the number of users currently using SQL Server. To prevent additional users from
logging in to SQL Server, pause the server. For more information, see Pausing and Resuming SQL Server.

Create one or more indexes.

Increase the query wait configuration value.

See Also

Index Tuning Wizard

query wait Option

sp_configure

Troubleshooting (SQL Server 2000)

Error 8621
Error 8621

Severity Level 16

Message Text

Internal Query Processor Error: The query processor ran out of stack space during query optimization.

Explanation

The Query Processor is using a large but limited memory stack when optimizing queries. In some extreme situations the stack size
may become a limit for a given very large query--for example, a query containing an inlist with 100,000 constants.

Action

Simplify the query to avoid this problem. For example, in the case of an extremely large inlist use temporary table or table
variable to store the constants, and rewrite the query to use this variable or temporary table instead.

Troubleshooting (SQL Server 2000)

Error 8651
Error 8651

Severity Level 17

Message Text

Could not perform the requested operation because the minimum query memory is not available. Decrease the
configured value for the 'min memory per query' server configuration option.

Explanation

SQL Server has computed the amount of memory that this query requires to complete. This amount of required memory is not
currently available; the min memory per query option may be too high.

Action

Resubmit the query. If resubmitting the query does not allow the query to run, you can:

Add additional memory to the server.

Create one or more indexes.

Reduce the value of min memory per query.

Increase the query wait configuration option if it is a nonzero value.

See Also

Index Tuning Wizard

min memory per query Option

query wait Option

sp_configure

Troubleshooting (SQL Server 2000)

Error 8902
Error 8902

 Topic last updated -- January 2004

Severity Level 17

Message Text

Memory allocation error during DBCC processing.

Explanation

This error occurs when the coverage bitmap for the non-clustered index coverage checks cannot steal a buffer from the buffer
pool to use as its bitmap (that is, there's no memory). This error is immediately fatal to all CHECK* commands. Anything that
could cause the server to run out of memory may lead to this error.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8903
Error 8903

 Topic last updated -- January 2004

Severity Level 16

Message Text

Extent E_ID in database ID DB_ID is allocated in both GAM GAM_P_ID and SGAM SGAM_P_ID.

Explanation

A GAM page has one bit per extent for all extents in the file interval it maps (approximately 4 GB). A bit is set if the extent is
completely unallocated and clear if the extent is allocated.

An SGAM page has a similar structure to a GAM page, with the following differences:

Each set bit represents an extent in which the pages are individually allocated to IAM pages for different indexes (called a
'mixed' extent).

There is at least one unallocated page left to be used in the extent, and at least one allocated page. (It is not possible to have
a mixed extent with no allocated pages—this is just an unallocated extent.)

An IAM page again has a similar structure, with one bit per dedicated extent allocated to the index of which the IAM page is part.

The bit combinations are as follows. Combinations in italics are illegal; the one in bold corresponds to this error.

State GAM SGAM IAM Legal Meaning
1 0 0 0 Y Extent is mixed, with all pages allocated.
2 0 0 1 Y Extent is dedicated, allocated to the IAM.
3 0 1 0 Y Extent is mixed, with unallocated pages.
4 0 1 1 N Extent is dedicated and mixed.
5 1 0 0 Y Extent is unallocated.
6 1 0 1 N Extent is dedicated and unallocated.
7 1 1 0 N Extent is mixed and unallocated.
8 1 1 1 N Extent is mixed, dedicated, and unallocated.

This error corresponds to the bits being in state 7 in the table above.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the

corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8904
Error 8904

 Topic last updated -- January 2004

Severity Level 16

Message Text

Extent E_ID in database ID DB_ID is allocated to more than one allocation object.

Explanation

A GAM page has one bit per extent for all extents in the file interval it maps (approximately 4 GB). A bit is set if the extent is
completely unallocated and clear if the extent is allocated.

An SGAM page has a similar structure to a GAM page, with the following differences:

Each set bit represents an extent in which the pages are individually allocated to IAM pages for different indexes (called a
'mixed' extent).

There is at least one unallocated page left to be used in the extent, and at least one allocated page. (It is not possible to have
a mixed extent with no allocated pages—this is just an unallocated extent.)

An IAM page again has a similar structure, with one bit per dedicated extent allocated to the index of which the IAM page is part.

The bit combinations are as follows. Combinations in italics are illegal; the one in bold corresponds to this error.

State GAM SGAM IAM Legal Meaning
1 0 0 0 Y Extent is mixed, with all pages allocated.
2 0 0 1 Y Extent is dedicated, allocated to the IAM.
3 0 1 0 Y Extent is mixed, with unallocated pages.
4 0 1 1 N Extent is dedicated and mixed.
5 1 0 0 Y Extent is unallocated.
6 1 0 1 N Extent is dedicated and unallocated.
7 1 1 0 N Extent is mixed and unallocated.
8 1 1 1 N Extent is mixed, dedicated, and unallocated.

This error corresponds to the bits being in state 2 in the table above, but with two separate IAM pages having the same extent
allocated to them. There will be an accompanying 8913 message with details of one of the indexes involved.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC

CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8913

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8905
Error 8905

 Topic last updated -- January 2004

Severity Level 16

Message Text

Extent E_ID in database ID DB_ID is marked allocated in the GAM, but no SGAM or IAM has allocated it.

Explanation

A GAM page has one bit per extent for all extents in the file interval it maps (approximately 4 GB). A bit is set if the extent is
completely unallocated and clear if the extent is allocated.

An SGAM page has a similar structure to a GAM page, with the following differences:

Each set bit represents an extent in which the pages are individually allocated to IAM pages for different indexes (called a
'mixed' extent).

There is at least one unallocated page left to be used in the extent, and at least one allocated page. (It is not possible to have
a mixed extent with no allocated pages—this is just an unallocated extent).

An IAM page again has a similar structure, with one bit per dedicated extent allocated to the index of which the IAM page is part.

The bit combinations are as follows. Combinations in italics are illegal; the one in bold corresponds to this error.

State GAM SGAM IAM Legal Meaning
1 0 0 0 Y Extent is mixed, with all pages allocated.
2 0 0 1 Y Extent is dedicated, allocated to the IAM.
3 0 1 0 Y Extent is mixed, with unallocated pages.
4 0 1 1 N Extent is dedicated and mixed.
5 1 0 0 Y Extent is unallocated.
6 1 0 1 N Extent is dedicated and unallocated.
7 1 1 0 N Extent is mixed and unallocated.
8 1 1 1 N Extent is mixed, dedicated, and unallocated.

This error corresponds to the bits being in state 1 in the table above, but none of the individual pages in the extent were seen.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the

corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8906
Error 8906

 Topic last updated -- January 2004

Severity Level 16

Message Text

Page P_ID in database ID DB_ID is allocated in the SGAM SGAM_P_ID and PFS PFS_P_ID, but was not allocated in any
IAM. PFS flags 'PFS_FLAGS'.

Explanation

 A PFS page has one byte per page for all pages in the file interval it maps (approximately 64 Mb). Each byte contains, among
other things, a bit that, when set, indicates that the page is from a mixed extent (that is, it is a mixed page).

An IAM page has, among other things, an array of eight page IDs (called the mixed page array) to hold the mixed pages allocated
to the index. Note that IAM pages themselves are mixed pages, but IAM pages are not self-referential (that is, the IAM page ID
itself is not stored in its own mixed page array).

This message means that a page has the 'mixed page' bit set in its PFS byte, but the page was not seen as an IAM page and was
not seen in an IAM page's mixed page array.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If the page is an IAM page, performing a repair will de-allocate the page, and the IAM chain will be patched by the repairs for
accompanying errors.

Otherwise, a general purpose routine to repair doubly allocated pages is used. It takes two sets of IDs, one for each of the two
indexes (IAM chains) that have the page allocated. In this case, we use the IDs derived from the page itself, and an invalid set of
IDs.

The algorithm of the general purpose routine is as follows:

1. Check page validity.

If the page is not a valid page ID in the database, de-allocate it from both indexes and return.

If the page is corrupt, de-allocate it from both indexes, then return.

2. Work out which index the page actually belongs to.

3. Check for the allocation page.

If the page is an IAM page or allocation page, de-allocate it from both indexes passed in.

If the page is an IAM page and the index it thinks it belongs to cannot be found, de-allocate the page.

Return.

4. If the page belongs to the first index passed in:

De-allocate it from the second index passed in.

Try to allocate it to the first index. If this fails, de-allocate the page.

Return.

Note We should not get below here for this particular error.

5. De-allocate the page from the first index.

6. If the page does not belong to second index:

If the second index is not invalid, de-allocate the page from the second index.

Try to allocate the page to the real owning index. If it fails, de-allocate the page.

Return.

7. Page must belong to second index passed in.

Try to allocate the page to the second index. If it fails, de-allocate the page.

Return.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Managing Extent Allocations and Free Space

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8908
Error 8908

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Database Id DB_ID, object Id O_ID, index Id I_ID. Chain linkage mismatch. P_ID1->next = P_ID2, but
P_ID2->prev = P_ID3.

Explanation

The first phase of a DBCC CHECKDB is to do primitive checks on the data pages of critical system tables. If any errors are found,
they cannot be repaired, so the DBCC CHECKDB terminates immediately.

This error means that the next page pointer of page P_ID1 points to page P_ID2, but the prev page pointer of page P_ID2 points to
page P_ID3—not back to page P_ID1 as it should.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 2000 - 2999

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8909
Error 8909

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page ID P_ID1. The PageId in the page header = P_ID2.

Explanation

DBCC asked for page P_ID1. When the page was read from disk, the page ID in its header was found to be P_ID2.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The result of a repair depends on the page type.

PFS page: No repair possible.

Allocation page: The page is reformatted and rebuilt.

Other pages: The page is de-allocated.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8910
Error 8910

 Topic last updated -- January 2004

Severity Level 16

Message Text

Page P_ID in database ID DB_ID is allocated to both object ID O_ID1, index ID I_ID1, and object ID O_ID2, index
ID I_ID2.

Explanation

An IAM page has, among other things, an array of eight page IDs (called the mixed page array) to hold the mixed pages allocated
to the index. Note that IAM pages themselves are mixed pages, but IAM pages are not self-referential (that is, the IAM page ID
itself is not stored in its own mixed page array).

Per-state information:

State 1: Two indexes have the page allocated in one of their IAM page's mixed page array.

State 2: The page is entered twice in an IAM page's mixed page array. The two sets of IDs given should match.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

A general purpose routine to repair doubly-allocated pages is used to repair both states. It takes two sets of IDs, one for each of
the two indexes (IAM chains) that have the page allocated.

The algorithm of the general purpose routine is as follows:

1. Check page validity.

If the page is not a valid page ID in the database, de-allocate it from both indexes and return.

If the page is corrupt, de-allocate it from both indexes, then return.

2. Work out which index the page actually belongs to.

3. Check for the allocation page.

If the page is an IAM page or allocation page, de-allocate it from both indexes passed in.

If the page is an IAM page and the index it thinks it belongs to cannot be found, de-allocate the page.

Return.

4. If the page belongs to the first index passed in:

De-allocate it from the second index passed in.

Try to allocate it to the first index. If this fails, de-allocate the page.

Return.

5. De-allocate the page from the first index.

6. If the page does not belong to second index:

If the second index is not invalid, de-allocate the page from the second index.

Try to allocate the page to the real owning index. If it fails, de-allocate the page.

Return.

7. Page must belong to second index passed in.

Try to allocate the page to the second index. If it fails, de-allocate the page.

Return.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8911
Error 8911

 Topic last updated -- January 2004

Severity Level 10

Message Text

The error has been repaired.

Explanation

The relevant error has been successfully repaired.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8912
Error 8912

 Topic last updated -- January 2004

Severity Level 10

Message Text

CHECKNAME fixed A_COUNT allocation errors and C_COUNT consistency errors in database 'DBNAME'.

Explanation

This is a summary message printed at the end of CHECKNAME, giving the total number of errors repaired for database 'DBNAME'.
If running a DBCC CHECKALLOC command, C_COUNT should be zero.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8913
Error 8913

 Topic last updated -- January 2004

Severity Level 16

Message Text

Extent E_ID is allocated to 'OBJECTNAME' and at least one other object.

Explanation

This is the error message that accompanies message 8904. It gives the name of the first of two objects that has an extent
allocated.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

See the documentation for error 8904 for more error and repair information.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8904

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8914
Error 8914

 Topic last updated -- January 2004

Severity Level 10

Message Text

Incorrect PFS free space information for page P_ID, object ID O_ID, index ID I_ID, in database ID DB_ID.
Expected value PFS_VAL1, actual value PFS_VAL2.

Explanation

A PFS page has one byte per page for all pages in the file interval it maps (approximately 64 Mb). Each byte contains, among
other things, 3 bits that can indicate five levels of free space in the page. Depending on the free space on the page P_ID and the
bits set in the PFS byte, the values of PFS_VAL1 and PFS_VAL2 can be any of the following:

'0_PCT_FULL'

'50_PCT_FULL'

'80_PCT_FULL'

'95_PCT_FULL'

'100_PCT_FULL'

This error arises because the bits set in the PFS byte do not correspond to the actual free space on the page P_ID.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair is simply to set the PFS byte to have the correct free space bits set.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8915
Error 8915

 Topic last updated -- January 2004

Severity Level 10

Message Text

File FILE_ID (number of mixed extents = ME_COUNT, mixed pages = MP_COUNT).

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It lists the total number of mixed extents and pages
for the file specified.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8916
Error 8916

 Topic last updated -- January 2004

Severity Level 10

Message Text

Object ID O_ID, index ID I_ID, data extents DE_COUNT, pages DP_COUNT, mixed extent pages DMEP_COUNT.

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It lists the total number of mixed extent pages, data
extents, and pages for the index specified.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8917
Error 8917

 Topic last updated -- January 2004

Severity Level 10

Message Text

Object ID O_ID, index ID I_ID, index extents IE_COUNT, pages IP_COUNT, mixed extent pages IMEP_COUNT.

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It lists the total number of mixed extent pages, index
extents, and pages for the index specified.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8918
Error 8918

 Topic last updated -- January 2004

Severity Level 10

Message Text

(number of mixed extents = ME_COUNT, mixed pages = MP_COUNT) in this database.

Explanation

This message is part of the informational output from DBCC CHECKALLOC. It lists the total number of mixed extents and pages in
the database.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8921
Error 8921

 Topic last updated -- January 2004

Severity Level 16

Message Text

CHECKTABLE terminated. A failure was detected while collecting facts. Possibly tempdb out of space or a system
table is inconsistent. Check previous errors.

Explanation

The internal query which DBCC uses to obtain parallelism and scalability failed for an unknown reason (that is, the QP raised an
error from the ExecSql call).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8922
Error 8922

 Topic last updated -- January 2004

Severity Level 10

Message Text

Could not repair this error.

Explanation

There are a number of errors which do not have automatic fixes. These include:

Errors on PFS pages.

Errors that require rebuilding the clustered indexes of certain system tables.

Errors that require rebuilding GAM or SGAM pages without using undocumented options.

Action

Contact your primary support provider for assistance with this error.

See Also

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8923
Error 8923

 Topic last updated -- January 2004

Severity Level 10

Message Text

The repair level on the DBCC statement caused this repair to be bypassed.

Explanation

All fixes are ranked so that their impact can be correlated with a repair-level option specified by the user (among other reasons
for ranking). For example, a missing non-clustered index row can be fixed by an index rebuild (for which the user must have
specified REPAIR_REBUILD), whereas a corrupt data page header can only be fixed by de-allocating the page (for which the user
must specify REPAIR_ALLOW_DATA_LOSS).

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8924
Error 8924

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repairing this error requires other errors to be corrected first.

Explanation

The error in question will be fixed as part of fixing another error.

All fixes are ranked so that more pervasive fixes are done first (among other reasons for ranking). For example, an index B-tree
linkage problem is ranked higher than a missing non-clustered index row. This means the fix for the B-tree linkage problem (to
rebuild the index) will also fix the missing non-clustered index row.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8925
Error 8925

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Cross object linkage: Page P_ID1, slot S_ID1, in object ID O_ID1, index ID I_ID1 refers to page
P_ID2, slot S_ID2, in object ID O_ID2, index ID I_ID2.

Explanation

The page P_ID1 points, in a parent-child manner, to a page (P_ID2) in a different object.

Per-state information:

State 1 (I_ID1 = 0): The pages are from a heap. Page P_ID1 has a forwarding record that points to a row in page P_ID2.

State 1 (I_ID1 > 0): The pages are from an index B-tree. Page P_ID1 has a child page pointer that points to page P_ID2.

State 2: The pages are from a text object. One of the following is true:

Page P_ID1 is a text page that has a record with a child pointer that pointer points to a record on page P_ID2.

Page P_ID1 is an index or data page that has an in-row text root that points to an text page P_ID2.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the error state:

State 1 (heap): The forwarding record on page P_ID1 will be deleted and all non-clustered indexes over the heap will be
rebuilt.

State 1 (B-tree): The index containing page P_ID1 will be rebuilt.

State 2: The two records in pages P_ID1 and P_ID2 will be deleted.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Errors 2000 - 2999

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8926
Error 8926

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Cross object linkage: Parent page P_ID1, slot S_ID1 in object ID O_ID1, index ID I_ID1, and page
P_ID2, slot S_ID2 in object ID O_ID2, index ID I_ID2, next refer to page P_ID3 but are not in the same object.

Explanation

The next page pointer of page P_ID2 and a child page pointer of page P_ID1 in a B-tree of the specified object points to a page
(P_ID3) in a different object. Furthermore, pages P_ID1 and P_ID2 may themselves be in different objects.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild both referring indexes. If running DBCC CHECKDB with one of the repair clauses does not correct
the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8927
Error 8927

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, index ID I_ID: The ghosted record count (HG_COUNT) in the header does not match the number of
ghosted records (G_COUNT) found on page P_ID.

Explanation

The count G_COUNT is calculated from the total number of ghost records seen on the page. There may also be an accompanying
8919 message.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the ghost record count in the header to be corrected. If running DBCC CHECKDB with one of the
repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8928
Error 8928

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, index ID I_ID: Page P_ID could not be processed. See other errors for details.

Explanation

Page P_ID was marked allocated in a PFS page (and therefore should be readable), but reading the page failed. The reason is
given in accompanying error messages.

Per-state information:

States 1-2: The page is a data or index page.

State 6: The page is an IAM page.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the page to be de-allocated.

Caution This may result in data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8929
Error 8929

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID: Errors found in text ID TEXT_ID owned by data record identified by RID.

Explanation

This message accompanies messages 8962 or 8963 (both of which indicate corruption in a text node) when the owner of the
corrupt text node can be found.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the text node to be deleted.

Caution This may result in data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8962

Error 8963

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8930
Error 8930

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID1, index ID I_ID1 cross-object chain linkage. Page P_ID1 points to P_ID2 in object ID
O_ID2, index ID I_ID2.

Explanation

The first phase of a DBCC CHECKDB is to do primitive checks on the data pages of critical system tables. If any errors are found,
they cannot be repaired and so the DBCC CHECKDB terminates immediately.

This error means that the next page pointer of page P_ID1 in the data level of the specified object points to a page (P_ID2) in a
different object.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8931
Error 8931

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID B-tree level mismatch, page P_ID1. Level LEVEL1 does not match level
LEVEL2 from parent P_ID2.

Explanation

There are two pages linked as parent (P_ID2) and child (P_ID1) in a B-tree. The level (LEVEL1) in the child page (P_ID1) does not
comply with the level rules for B-trees, given the level (LEVEL2) in the parent page (P_ID2).

The level rules are such that if a parent page has level X, a child page must have:

Level X-1, if the index is a non-clustered index.

Level X-1, if the index is a clustered index and the child page is not at the leaf level.

Level 0, if the index is a clustered index and the child page is at the leaf level. In this case, the parent page level must also be
0.

Action

To find out which page is incorrect, examine the two pages and also look for any 2531 (b-tree sibling level mismatch) errors.

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the index to be rebuilt.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 2531

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8932
Error 8932

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, column 'COLUMN'. The column ID COL_ID is not valid for this table.
The valid range is from 1 to MAX_COL_ID.

Explanation

The metadata for a table contains a column ID that is greater than the largest column ID ever used in the table. This is a fatal error
if the table is a system table, because the checks cannot continue when metadata is corrupt.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8933
Error 8933

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. The low key value on page P_ID1 (level LEVEL) is not COMPARISON the
key value in the parent P_ID2 slot S_ID.

Explanation

A B-tree tree level page contains a record for each child page, along with a key value for that child page. If the child page is a leaf-
level page (that is, level 0), all records on the page must have key values greater than or equal to the key value in the parent page.
If the child page is a tree-level page (that is, level > 0), all records must have key values greater than the key value in the parent,
except the first record, which must have a key value that exactly matches that in the parent.

This message means that the comparison has failed. If LEVEL is 0, page P_ID1 is a leaf-level page and COMPARISON will be '>='.
Otherwise, LEVEL must be greater than 0, indicating that P_ID1 is a tree-level page and COMPARISON will be '=='. In both cases,
page P_ID2 is a tree-level page and is the parent page of page P_ID1.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8934
Error 8934

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. The high key value on page P_ID1 (level LEVEL) is not less than the
low key value in the parent P_ID2, slot S_ID of the next page P_ID3.

Explanation

A B-tree tree-level page contains a record for each child page, along with a key value for that child page. If the child page is a leaf-
level page, all records on the page must have key values greater than or equal to the key value in the parent page. If the child
page is a tree-level page, all records must have key values greater than the key value in the parent, except the first record, which
must have a key value that exactly matches that in the parent.

It follows that for parent page P_ID2, with children P_ID1 and P_ID3, all key values on page P_ID1 must be less than the key value
stored for page P_ID3 in the parent page.

In this case, the highest key value on page P_ID1 (that is, the keys of the last record on the page) are not less than the key value
for the P_ID3 stored in the parent page P_ID2.

There are three states possible for this message (1, 2, and 3) and they all mean the same thing. They are distinguished only by
where in the code the problem is discovered.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8935
Error 8935

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. The previous link P_ID1 on page P_ID2 does not match the previous
page P_ID3 that the parent P_ID4, slot S_ID expects for this page.

Explanation

A B-tree is structured so that pages at a single level point to each other, in a doubly-linked list. Also, the pages' parent in the B-tree
has a record for each of its children, with their keys and page IDs.

This error means that page P_ID2 points back to page P_ID1 as its left-hand sibling. However, page P_ID2's parent page, P_ID4,
thinks that page P_ID3 is page P_ID2's left-hand sibling.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8936
Error 8936

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. B-tree chain linkage mismatch. P_ID1->next = P_ID2, but P_ID2->Prev
= P_ID3.

Explanation

There is a break in the logical page chain at some level in the B-tree specified (this can happen at any level, including the leaf
level). A page P_ID2 is pointed to by the next page pointer of page P_ID1, but page P_ID2's previous page pointer points to a
different page, P_ID3.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8937
Error 8937

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. B-tree page P_ID1 has two parent nodes P_ID2, slot S_ID2 and P_ID3,
slot S_ID3.

Explanation

The B-tree structure is corrupt because page P_ID1 is referenced as a child page by slots in two pages higher in the B-tree, P_ID2
and P_ID3. A page can only be referenced by a single parent.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8938
Error 8938

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Page P_ID, Object ID O_ID, index ID I_ID. Unexpected page type TYPE.

Explanation

Page P_ID had an page type that was unexpected by the code trying to interpret it. The page is marked allocated, however, which
is why the DBCC code is trying to interpret it.

The various page types are:

1 - Page::DATA_PAGE: A data page in a heap or a clustered index.

2 - Page::INDEX_PAGE: An index (B-tree) page in the tree of a clustered or non-clustered index, or the leaf of a non-clustered
index.

3 - Page::TEXT_MIX_PAGE: A text page shared between various text structures.

4 - Page::TEXT_TREE_PAGE: A non-shared text page.

5 - Unused.

6 - Page::WF_PAGE: A work file page.

7 - Page::SORT_PAGE: A page used in internal sorts.

8 - Page::GAM_PAGE: A GAM allocation map.

9 - Page::SGAM_PAGE: An SGAM allocation map.

10 - Page::IAM_PAGE: An index allocation map.

11 - Page::PFS_PAGE: A free-space and allocation status page.

12 - Unused.

13 - Page::BOOT_PAGE: A database-wide information page.

14 - Page::SYSCONFIG_PAGE: A server config block.

15 - Page::FILEHEADER_PAGE: The first page of every file.

16 - Page::DIFF_MAP_PAGE: A differential bitmap for a GAM interval.

17 - Page::ML_MAP_PAGE: A minimally-logged extent map for a GAM interval.

Per-state information:

State 1: The page was found in the leaf level of a critical system table, but was not a data page with type = 1.

State 36: The page had a completely unrecognized page type or is marked as a page that DBCC previously de-allocated during
repair. The error is discovered during the Page::Audit method.

State 300: The page is a data page with type = 1, but it belongs to a non-clustered index.

State 301: The page is an index page with type = 2, but it belongs to a heap or text index.

State 302: The page is a text page with type = 3 or 4, but it belongs to a heap or a clustered or non-clustered index.

State 303: This state is from code that is reading pages that purportedly are allocated to an index (that is, they are IAM pages or
data pages, index pages, or text pages marked as allocated to an IAM page). The code has found a page that is none of these types.
Examine the page type to determine the type of page that was found.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

For State 303, performing a repair will cause the page to be de-allocated from the IAM page that has it allocated, but the IAM
page will not be de-allocated itself. For all other states, the page is de-allocated.

Caution This may involve data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8939
Error 8939

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID. Test (TEST) failed. Values are VAL1 and VAL2.

Explanation

A page has failed auditing due to a corruption in its page header. The string in TEST gives the actual test that failed. VAL1 and
VAL2 depend on the error state.

Per-state information:

State 1: The offset of the data portion of the page is not equal to the constant size of a page header (96 bytes).

TEST is 'PAGEHEADSIZE == (int)((BYTE*)m_data – (BYTE*) this)'.

VAL1 is the constant size of a page header ('PAGEHEADSIZE').

VAL2 is the offset of the data portion of the page (value of right-hand expression in TEST).

State 3: A system table non-text page is incorrectly aligned.

TEST is 'm_flagBits & PG_ALIGNED4'.

VAL1 is the value of the m_flagBits.

VAL2 is the object ID.

State 4: A non-system table page is incorrectly aligned.

TEST is '!(m_flagBits & PG_ALIGNED4)'

VAL1 is the value of the m_flagBits.

VAL2 is the object ID.

State 5: The header version is not HEADER_7_0.

TEST is 'm_headerVersion == HEADER_7_0'.

VAL1 is the header version on the page ('m_headerVersion').

VAL2 is the constant HEADER_7_0 (1).

State 6: The page type is not valid, or it is Page::UNKNOWN_PAGE and the audit level is not basic.

TEST is '(m_type >= DATA_PAGE && m_type <= UNDOFILE_HEADER_PAGE) || (m_type == UNKNOWN_PAGE && level ==
BASIC_HEADER)'.

VAL1 is the page type ('m_type'). See error 8938 for page types.

VAL2 is also the page type.

State 7: The persisted free space offset on the page is inside the page header or the slot offset array.

TEST is 'm_freeData >= PAGEHEADSIZE && m_freeData <= (UINT)PAGESIZE – m_slotCnt * sizeof(Slot)'.

VAL1 is the persisted free space offset ('m_freeData').

VAL2 is the start of the slot offset table (rhs of second expression above).

State 8: The free space count is greater than the maximum possible.

TEST is 'm_freeCnt <= PAGESIZE – PAGEHEADSIZE'.

VAL1 is the free space count ('m_freeCnt').

VAL2 is the maximum possible free space (page size minus page header size).

State 10: The slot count is >= the maximum.

TEST is 'm_slotCnt < MaxSlot'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is the maximum ('MaxSlot').

State 12: One of the long words in the unused portion of the page header is not zero as required.

TEST is '*(((UNIT32*) &m_used1) + i == 0'.

VAL1 is the long word that is non-0 ('i').

VAL2 is its value (lhs of expression).

State 13: A DATA_PAGE page has a level other than zero.

TEST is 'm_level == 0'.

VAL1 is the level ('m_level').

VAL2 is 0.

State 14: A DATA_PAGE page has an index ID other than zero.

TEST is 'm_indexId == TABENTRY'.

VAL1 is the value of m_indexId.

VAL2 is 0.

State 15: An INDEX_PAGE page has an index ID of zero.

TEST is 'm_indexId >= CLUSTIND'.

VAL1 is the value of m_indexId.

VAL2 is 1.

State 16: A text page has an index ID other than 255.

TEST is 'm_indexId == TXTENTRY'.

VAL1 is the value of m_indexId.

VAL2 is 255.

State 17: The object ID on an ML_MAP_PAGE page is not the constant system object ID.

TEST is 'm_objId == SYSALLOCPG && m_indexId == 0 && m_pageId == pgId'.

VAL1 is the object ID ('m_objId').

VAL2 is the system object ID ('SYSALLOCPG')—currently 99.

State 18: An ML_MAP_PAGE page is not in a GAM extent.

TEST is 'ISGAMEXTID (GetId (), DFLT_EXT_SIZE)'.

VAL1 is the file ID of the correct extent position in the file.

VAL2 is the page ID of the correct extent position in the file.

State 19: There are not exactly two records on an ML_MAP_PAGE page.

TEST is 'm_slotCnt == 2'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is two.

State 20: The offset of the first slot is not immediately after the page header for a ML_MAP_PAGE page.

TEST is 'm_slots[0].GetOffset () == PAGEHEADSIZE'.

VAL1 is the offset of the first slot ('m_slots[0].GetOffset ()').

VAL2 is the size of a page header ('PAGEHEADSIZE').

State 21: The second slot in an ML_MAP_PAGE page is not at the correct offset.

TEST is 'Align(m_slots[-1].GetOffset ()) == Align(m_slots[0].GetOffset () + sizeof(GAMHEADER) + sizeof(DataRecHdr))'.

VAL1 is the offset of the second slot (lhs of expression).

VAL2 is the offset that it should be (rhs of expression).

State 27: There are not exactly two records on an IAM page.

TEST is 'm_slotCnt == 2 && m_type == IAM_PAGE'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is 2.

State 28: The offset of the first slot is not immediately after the page header for a IAM page.

TEST is 'm_slots[0].GetOffset () == PAGEHEADSIZE && m_type == IAM_PAGE'.

VAL1 is the offset of the first slot ('m_slots[0].GetOffset ()').

VAL2 is the size of a page header ('PAGEHEADSIZE').

State 29: The second slot in an IAM page is not at the correct offset.

TEST is 'Align(m_slots[-1].GetOffset ()) == Align(m_slots[0].GetOffset () + sizeof(IAMHEADER) + sizeof(DataRecHdr)) &&
m_type == IAM_PAGE'.

VAL1 is the offset of the second slot (lhs of expression).

VAL2 is the offset that it should be (rhs of expression).

State 30: The object ID on a PFS page is not the constant system object ID.

TEST is 'm_objId == SYSALLOCPG && m_indexId == 0 && m_type == PFS_PAGE'.

VAL1 is the object ID ('m_objId').

VAL2 is the system object ID ('SYSALLOCPG')—currently 99.

State 31: A PFS page is in the wrong place in a file.

TEST is 'GetAllocPgId ((AllocPageType)PFS_PAGE, GetId (), DFLT_EXT_SIZE) == GetId ()'.

VAL1 is the file number of the correct position of the page.

VAL2 is the page ID of the correct position of the page.

State 32: There is not exactly one record on a PFS page.

TEST is 'm_slotCnt == 1 && m_type == PFS_PAGE'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is 1.

State 33: The offset of the first slot is not immediately after the page header for a PFS page.

TEST is 'm_slots[0].GetOffset () == PAGEHEADSIZE && m_type == PFS_PAGE'.

VAL1 is the offset of the first slot ('m_slots[0].GetOffset ()').

VAL2 is the size of a page header ('PAGEHEADSIZE').

State 34: The persisted page-type specific bits are non-zero for a DUMP_HEADER_PAGE.

TEST is 'm_typeFlagBits == 0'.

VAL1 is the value of the persisted bits ('m_typeFlagBits').

VAL2 is 0.

State 35: The persisted page type-specific bits are non-zero for a DUMP_TRAILER_PAGE.

TEST is 'm_typeFlagBits == 0'.

VAL1 is the value of the persisted bits ('m_typeFlagBits').

VAL2 is 0.

State 37: The persisted free space offset is less than the end of a record on the page.

TEST is 'm_freeData >= m_slots [-i].offset + rowlen'.

VAL1 is the persisted free space offset ('m_freeData').

VAL2 is the end of the current record being considered (rhs of expression).

State 39: The amount of data calculated by adding up all record sizes does not equal that calculated using the persisted free space
count.

TEST is 'dataLen == dataLenCalc'.

VAL1 is the amount of free space calculated by adding the record sizes ('dataLen').

VAL2 is the amount of free space calculated using the persisted free space count ('dataLenCalc').

State 40: A FILEHEADER page is not the first page in the file, or it has the wrong number of slots (2 for the first log file, 1 for all
others).

TEST is 'm_type == FILEHEADER_PAGE && m_pageId.PageInFile () == 0 && (m_slotCnt == 1 || (m_slotCnt == 2 &&
m_pageId.GetFileId () == PRIMARY_LOG_FCB))'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is 1.

State 41: There are set bits in the page's persisted flags that are undefined.

TEST is '!ANY_ON (UndefinedPageTypeBits, m_flagBits)'.

VAL1 is the persisted set of flags ('m_flagBits').

VAL2 is the set of undefined bits ('UndefinedPageTypeBits').

State 42: A TEXT_TREE_PAGE has a slot count > 1.

TEST is 'm_slotCnt <= 1 && m_type == TEXT_TREE_PAGE'.

VAL1 is the slot count ('m_slotCnt').

VAL2 is one.

State 98: A page had a read IO error that was not a bad page ID in its header.

TEST is 'IS_OFF (BUF_IOERR, pBUF->bstat) || pBUF->berrcode == BUFERR_BADPAGEID'.

VAL1 is the buffer status ('pBUF->bstat').

VAL2 is the error code ('pBUF->berrcode').

State 99: A work file page was found in a database other than TEMPDB.

TEST is 'pageType != WF_PAGE || pDBTABLE->dbt_dbid == TEMPDBID'.

VAL1 is the database ID ('pDBTABLE->dbt_dbid').

VAL2 is the database ID of TEMPDB ('TEMPDBID').

State 100 and 110: A header modification log record has new data for the page's prev page of PageID_ILLEGAL (0:1).

TEST is 'm_prevpage != PageId_ILLEGAL'.

VAL1 is 0.

VAL2 is 1.

State 101 and 111: A header modification log record has new data for the page's next page of PageID_ILLEGAL (0:1)

TEST is 'm_nextpage != PageId_ILLEGAL'

VAL1 is 0.

VAL2 is 1.

State 105: The persisted free space offset on the page after the last row is less than the position of the end of the last row.

TEST is 'max <= m_freeData'.

VAL1 is the position of the end of the last row ('max').

VAL2 is the persisted free space offset ('m_freeData').

State 106: The persisted free space count on the page is not equal to the actual count of free space.

TEST is 'm_freeCnt == freeCnt'.

VAL1 is the persisted free space count ('m_freeCnt').

VAL2 is the actual free space count ('freeCnt').

State 107: The persisted free space offset on the page is inside the slot offset table at the end of the page.

TEST is 'm_freeData <= PAGEHEADSIZE + (DataSize + 1 * sizeof(Slot) – sizeof(Slot) * m_slotCnt)'.

VAL1 is the persisted free space offset('m_freeData').

VAL2 is the start of the slot offset array (value of right-hand expression in TEST).

State 108: The HAS_FREESLOT bit is clear but the empty slot count is non-zero.

TEST is 'emptySlotCnt == 0'.

VAL1 is the empty slot count ('emptySlotCnt').

VAL2 is 0.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non-allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option is used):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8938

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8940
Error 8940

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID. Test (TEST) failed. Address 0xADDRESS is not aligned.

Explanation

The structure at address ADDRESS is not 4-byte aligned.

Per-state information:

State 9: The persisted free space offset is not aligned correctly.

TEST is 'IsAligned (m_freeData)'.

ADDRESS is the persisted free space offset ('m_freeData').

State 102: A record is not aligned on correctly on a page.

TEST is 'IsAligned (sorted[i].offset)'.

ADDRESS is the record offset on the page.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non- allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option is specified):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8941
Error 8941

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID. Test (TEST) failed. Slot S_ID, offset 0xADDRESS is
invalid.

Explanation

The slot specified has an invalid offset (ADDRESS) in the page, according to the slot array.

Per-state information:

State 102: The slot's offset is inside the page header.

TEST is 'sorted [i].offset >= PAGEHEADSIZE'.

State 102: The slot's offset is inside the free space area.

TEST is 'sorted [i].offset <= m_freeData'.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non-allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option is specified):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8938

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8942
Error 8942

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID. Test (TEST) failed. Slot S_ID, offset 0xADDRESS overlaps
with the prior row.

Explanation

Slot S_ID's offset in the slot offset array is not greater than or equal to the end of the previous slot, so they overlap. TEST is 'sorted
[i].offset >= max', where the lhs of the expression is the ADDRESS, and 'max' is the end of the previous slot.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non-allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option is specified):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8938

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8943
Error 8943

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID. Test (TEST) failed. Slot S_ID, row extends into free
space at 0xADDRESS.

Explanation

The end of the slot S_ID is past the persisted free space offset, ADDRESS. TEST is 'max <= m_freeData', where the persisted free
space offset if 'm_freeData' and the end of slot S_ID is 'max'.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non-allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option is specified):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8938

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8944
Error 8944

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID, page P_ID, row S_ID. Test (TEST) failed. Values are VAL1 and VAL2.

Explanation

This error means that a record has failed auditing due to a corruption in its record header. The string in TEST gives the actual test
that failed, and VAL1 and VAL2 depend on the error state.

Per-state information:

State 1: DEBUG builds only. The record size is greater than the buffer holding it.

TEST is 'm_SizeRec <= m_sizeBuf || !m_sizeBuf'.

VAL1 is the record size ('m_SizeRec').

VAL2 is the size of the buffer holding it ('m_sizeBuf').

State 2: The VERSION_MASK, RECTAG_RESV_A or RECTAG_RESV_B bits are set in the record r_tagA field, when they should be
clear.

TEST is '!(TagA () & (VERSION_MASK | RECTAG_RESV_A | RECTAG_RESV_B))'.

VAL1 is the value of the r_tagA field.

VAL1 is the values of the three bits that should be clear (rhs of expression).

State 3: The record type is invalid.

TEST is 'GetRecType () <= LAST_REC_TYPE'.

VAL1 is the record type ('GetRecType ()').

VAL2 is the value of LAST_REC_TYPE.

State 4: The offset of the null section of the record is less than the offset of the first column in a data record.

TEST is 'm_offsetNull >= BASEOFFSET'.

VAL1 is the offset of the null section of the record ('m_offsetNull').

VAL2 is the offset of the first column in an index record ('BASEOFFSET'—currently 4).

State 5: The offset of the null section of the record is less than the offset of the first column in an index record.

TEST is 'm_offsetNull >= BASEINDOFF'.

VAL1 is the offset of the null section of the record ('m_offsetNull').

VAL2 is the offset of the first column in an index record ('BASEINDOFF'—currently 1).

State 6: The offset of the variable section of the record is less than the offset of the null section of the record.

TEST is 'm_offsetVar >= m_offsetNull'.

VAL1 is the offset of the variable section of the record ('m_offsetVar').

VAL2 is the offset of the null section of the record ('m_offsetNull').

State 7: The offset of the variable length columns is less than the offset of the variable section of the record.

TEST is 'm_offBeginVar >= m_offsetVar'.

VAL1 is the offset of the beginning of the variable length columns ('m_offsetVar').

VAL2 is the offset of the variable section of the record ('m_offsetVar').

State 8: The record size is less than the offset of the variable length columns.

TEST is 'm_SizeRec >= m_offBeginVar'.

VAL1 is the record size ('m_SizeRec').

VAL2 is the offset of the variable length columns ('m_offBeginVar').

State 9: A FORWARDING_STUB record is the wrong size.

TEST is 'm_SizeRec == FORWARD_STUB_SIZE'.

VAL1 is the size of the record ('m_SizeRec').

VAL2 is correct size ('FORWARD_STUB_SIZE'—currently 9).

State 10: A non-index record has a non-zero r_tagB byte.

TEST is '((UNALIGNED DataRecHdr*) m_pRec)->r_tagB == 0'.

VAL1 is the value of the r_tagB byte (lhs of expression).

VAL2 is 0.

State 11: A re-sized copy of the record is not exactly the same as the original.

TEST is '0 == memcmp (&tmp, this, RECBASE_RTLSIZE)'.

VAL1 is the address of the record copy.

VAL2 is the address of the original record.

State 12: The start of the column offset section is in the next record.

TEST is 'ColumnOffsets <= (nextRec – pRec)'.

VAL1 is the start of the column offset section ('ColumnOffsets').

VAL2 is the size of the record (rhs of expression).

State 13: The end of the NULL bitmap extends into the next record.

TEST is 'ColumnOffsets <= (nextRec – pRec)'.

VAL1 is the end of the NULL bitmap array ('ColumnOffsets').

VAL2 is the length of the record (rhs of expression).

State 14: The column offset array extends into the next record.

TEST is 'ColumnOffsets + (int)sizeof (COLOFF) <= (nextRec – pRec)'.

VAL1 is the offset of the end of the column offset array (lhs of expression).

VAL2 is the size of the record (rhs of expression).

State 15: The number of variable length columns in the column offset array does not match the state of the VARIABLE_COLUMNS
bit in the record header.

TEST is 'nVarCols && (hdr->r_tagA & VARIABLE_COLUMNS)'.

VAL1 is the number of variable length columns ('nVarCols').

VAL2 is the state of the VARIABLE_COLUMNS bit (rhs of expression).

State 16: The variable column offset array extends into the next record.

TEST is 'VarColOffsets + (int)(sizeof (class VarColOffset) * nVarCols) <= (nextRec – pRec)'.

VAL1 is the offset of the end of the variable column offset array (lhs of expression).

VAL2 is the size of the record (rhs of expression).

State 17: The variable length column offset greater than the size of the record.

TEST is 'columnOffsets->offTbl [varColumnNumber] <= (nextRec – pRec)'.

VAL1 is the column offset (lhs of expression).

VAL2 is the size of the record (rhs of expression).

State 18: The variable length column offset is not >= the offset of the previous variable length column.

TEST is 'columnOffsets->offTbl [varColumnNumber] >= priorOffset'.

VAL1 is the column offset (lhs of expression).

VAL2 is the previous variable length column offset ('priorOffset').

State 19: A variable length complex column is not the last column, and is not a text column (text pointer or text in-row root).

TEST is 'columnOffsets->IsComplex (varColumnNumber) && (ColumnId == COLID_HYDRA_TEXTPTR || ColumnId ==
COLID_ _INROW_ROOT)'.

VAL1 is the variable length column number ('varColumnNumber').

VAL2 is the column type ('ColumnId').

State 20: The last variable length column is a complex column, but is not one of the valid types (back-pointer, text pointer, or text
in-row root).

TEST is 'columnOffsets->IsComplex (varColumnNumber) && (ColumnId == COLID_HYDRA_TEXTPTR || ColumnId ==
COLID_ _INROW_ROOT || ColumnId == COLID_BACKPTR)'.

VAL1 is the variable length column number ('varColumnNumber').

VAL2 is the column type ('ColumnId').

State 21: The column is a back-pointer but the column size is incorrect. It should be REC_BACKPTR_OVERHEAD (10).

TEST is 'ColumnId == COLID_BACKPTR && REC_BACKPTR_OVERHEAD == columnOffsets->offTbl [varColumnNumber] –
priorOffset'.

VAL1 is the variable length column number ('varColumnNumber').

VAL2 is the length of the column (rhs of second expression).

State 21: The start of the null bitmap is in the next record.

TEST is 'ColumnOffsets + (int)sizeof (UINT16) <= (nextRec – pRec)'.

VAL1 is the offset of the start of the NULL bitmap (lhs of expression).

VAL2 is the record length (rhs of expression).

State 22: A back-pointer was found in the record but it is neither a FORWARDED_RECORD nor a GHOST_DATA_RECORD.

TEST is 'ColumnId == COLID_BACKPTR && (GetRecType (pRec) == FORWARDED_RECORD || GetRecType (pRec) ==
GHOST_DATA_RECORD)'.

VAL1 is the column type ('columnId').

VAL2 is the record type ('GetRecType (pRec)').

State 23: The heap forwarded record has no back-pointer.

TEST is 'GetRecType (pRec) == FORWARDED_RECORD && fBackPtrFound == TRUE'.

VAL1 is FORWARDED_RECORD.

VAL2 is 0.

State 30: The minimum length of a record on the page is less than the offset of the first column in a non-clustered index record
(record types INDEX_RECORD or GHOST_INDEX_RECORD).

TEST is 'minlen >= BASEINDOFF'.

VAL1 is the record minimum length for the page ('minlen').

VAL2 is the offset of the first column in a non-clustered index ('BASEINDOFF').

State 31: The offset of the null section is less than the offset of the first column in a BLOB_FRAGMENT record.

TEST is 'offsetNull >= BASEOFFSET'.

VAL1 is the offset of the null section ('offsetNULL').

VAL2 is the offset of the first column ('BASEOFFSET').

State 32: The record type is invalid.

TEST is 'GetRecType (pRec) >= 0 && GetRecType (pRec) <= LAST_REC_TYPE'.

VAL1 is the record type ('GetRecType (pRec)').

VAL2 is the value of LAST_REC_TYPE.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs

and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair depends on the type of page (see error 8938 for a list of page types):

Any type of page with a NULL page ID:

De-allocate the page and rebuild any index the page was part of.

Any non-allocation page:

De-allocate the page and rebuild any index the page was part of.

GAM, SGAM, or ML_MAP_PAGE page (if the undocumented repair option was specified):

Re-format and rebuild the page.

DIFF_MAP_PAGE page:

Re-format the page and clear the bitmap.

Set the database as having no full backup, preventing differential backups until one is taken.

PFS_PAGE page and all other allocation pages:

No repair possible.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8938

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8945
Error 8945

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID will be rebuilt.

Explanation

This message is printed during repair and means that the index specified will be rebuilt to complete a previous repair. Some
repairs, such as deleting a page or record in a heap or clustered index, require that non-clustered indexes be rebuilt to become
consistent with their base tables.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8946
Error 8946

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Allocation page P_ID has invalid PAGE_TYPE page header values. Type is TYPE. Check type, object ID
and page ID on the page.

Explanation

The page specified has an invalid page header.

Per-state information:

State 1: PAGE_TYPE may be 'GAM_PAGE', 'SGAM_PAGE', 'ML_MAP_PAGE', 'DIFF_MAP_PAGE', or 'IAM_PAGE'.

State 2: PAGE_TYPE is 'PFS_PAGE'.

State 12: PAGE_TYPE is 'PFS_PAGE'. This state is fatal to the command.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair depends on the page type (see error 8938 for page types):

PFS_PAGE:

Nothing will be done because PFS pages cannot be repaired.

IAM_PAGE:

The IAM chain will be patched so that further repairs can be run. This may involve removing the corrupt page.

All other allocation pages will be reformatted and rebuilt (if the undocumented repair option was specified).

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8947
Error 8947

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Multiple IAM pages for object ID O_ID, index ID I_ID contain allocations for the same interval. IAM
pages P_ID1 and P_ID2.

Explanation

An 'interval' refers to the amount of space in a file a GAM page maps (approximately 4 GB). Each index that has one or more
extents allocated from a GAM interval must have an IAM page for that GAM interval. An IAM page has one bit per extent for all
extents in the GAM interval, with a set bit indicating that the extent is allocated to that index.

This error means that the IAM chain for the index specified has at least two IAM pages (P_ID1 and P_ID2) that cover the same
GAM interval.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the IAM chain containing P_ID2, allowing any other errors to be corrected as well. This may involve deleting
corrupt IAM pages.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8948
Error 8948

 Topic last updated -- January 2004

Severity Level 16

Message Text

Database error: Page P_ID1 is marked with the wrong type in PFS page P_ID2. PFS status 0xVAL1 expected 0xVAL2.

Explanation

A PFS page has one byte per page for all pages in the file interval it maps (approximately 64 MB). Each byte contains, among
other things, the following three status bits that indicate the type of page and whether it is allocated or not:

PFS_IS_IAM_PG (0x10)

PFS_IS_MIXED_EXT (0x20)

PFS_IS_ALLOCATED (0x40)

This error means that these bits are not set correctly, given the type of page and context in which it is read.

Per-state information:

State 1: A mixed page is not marked at all.

VAL1 is 0x00.

VAL2 is 0x60.

State 2: An IAM page is not marked as a mixed page.

VAL1 is 0x50.

VAL2 is 0x70.

State 3: A mixed page is incorrectly marked as an IAM page.

VAL1 is 0x70.

VAL2 is 0x60.

State 4: An IAM page is not marked at all.

VAL1 is 0x00.

VAL2 is 0x70.

State 5: An allocation page (GAM_PAGE, SGAM_PAGE, ML_MAP_PAGE, DIFF_MAP_PAGE) is not marked as allocated and 100%
full (see error 8914 for an explanation of PFS free space bits).

VAL1 is whatever the entire PFS byte is set to.

VAL2 is 0x44.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs

and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

The repair is simply to set the PFS byte to have the correct free space bits set.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8949
Error 8949

 Topic last updated -- January 2004

Severity Level 10

Message Text

CHECKNAME fixed A_COUNT allocation errors and C_COUNT consistency errors in table 'OBJNAME' (object ID O_ID).

Explanation

This is a summary message printed at the end of CHECKNAME giving the total number of errors repaired for table 'OBJNAME'.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8950
Error 8950

 Topic last updated -- January 2004

Severity Level 16

Message Text

CHECKNAME fixed A_COUNT allocation errors and C_COUNT consistency errors not associated with any single object.

Explanation

This is a summary message and lists the number of allocation and consistency errors fixed where the error could
not be attributed to a specific table.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8951
Error 8951

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Table 'OBJNAME' (ID O_ID). Missing or invalid key in index 'INDEXNAME' (ID I_ID) for the row:

Explanation

Every data row in a table (heap or clustered index) must have exactly one matching index row in every non-clustered index over
that table. This error means that a non-clustered index is missing an index row.

There will be an accompanying 8955 message that identifies the data row and the keys of the index row that is missing. There
may also be accompanying 8952 and 8956 errors.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem,
contact your primary support provider.

See Also

Error 8952

Error 8955

Error 8966

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8952
Error 8952

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Database 'DBNAME', index 'OBJNAME.INDNAME' (ID O_ID) (index ID I_ID). Extra or invalid key for the
keys:

Explanation

Every data row in a table (heap or clustered index) must have exactly one matching index row in every non-clustered index over
that table. This error means that a non-clustered index has an index row that does not match any data row.

There will be an accompanying 8956 message that identifies the index row and its keys, and the data row that the index row
thinks it matches. There may also be accompanying 8951 and 8955 errors.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

Error 8951

Error 8955

Error 8966

DBCC CHECKDB

Error 8956

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8953
Error 8953

 Topic last updated -- January 2004

Severity Level 10

Message Text

Repair: Deleted text column, text ID TEXT_ID, for object ID O_ID on page P_ID, slot S_ID.

Explanation

The specified text node and its reference were deleted.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8954
Error 8954

 Topic last updated -- January 2004

Severity Level 10

Message Text

CHECKNAME found A_COUNT allocation errors and C_COUNT consistency errors not associated with any single object.

Explanation

This is a summary message that lists the number of allocation and consistency errors found that could not be attributed to a
specific table.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8955
Error 8955

 Topic last updated -- January 2004

Severity Level 16

Message Text

Data row (F_ID:P_ID:S_ID) identified by (RID_STRING) has index values (INDEX_KEY_STRING).

Explanation

This error provides more details about the problem described in error 8951. See that error for an explanation.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8951

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8956
Error 8956

 Topic last updated -- January 2004

Severity Level 16

Message Text

Index row (F_ID:P_ID:S_ID) with values (INDEX_KEY_STRING) points to the data row identified by (RID_STRING).

Explanation

This error provides more details about the problem described in error 8952. See that error for an explanation.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Error 8952

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8958
Error 8958

 Topic last updated -- January 2004

Severity Level 10

Message Text

REPAIR_LEVEL is the minimum repair level for the errors found by DBCC CHECKNAME (NAME OPTIONS).

Explanation

This message gives the highest repair level required to fix all the errors found by this run of the check command. For example, if
one error requires REPAIR_REBUILD and another requires REPAIR_ALLOW_DATA_LOSS, the REPAIR_LEVEL specified will be
REPAIR_ALLOW_DATA_LOSS.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8959
Error 8959

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: IAM page P_ID1 for object ID O_ID1, index ID I_ID1 is linked in the IAM chain for object ID O_ID2,
index ID I_ID2 by page P_ID2.

Explanation

All IAM pages for an index must have the same index ID on them. In this case, one of the IAM pages linked into the IAM chain for
index I_ID2 has index ID I_ID1 on it. There are three possible states of this error; they all mean the same thing, but differ in where
the discovery is made.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will patch the IAM chains for both indexes, so they are both correct. IAM page P_ID1 will be removed from one or both of
the chains.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8960
Error 8960

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: Page P_ID, slot S_ID, column C_ID is not a valid complex column.

Explanation

A column is marked as being a complex column in the record's variable length column section, but it is not a valid text pointer or
in-row text root.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If the column is in a non-clustered index, the index is rebuilt. Otherwise, the record is deleted and all indexes rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8961
Error 8961

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: Object ID O_ID. The text, ntext, or image node at page P_ID1, slot S_ID1, text ID TEXT_ID does not
match its reference from page P_ID2, slot S_ID2.

Explanation

There is a corruption inside a text object; a child node does not match its parent node in some way. The internals of check
(simplified here) refer to nodes in a text object as either data or index. A text data node is one at the leaf of the text object, and
holds the actual text itself. A text index node is one at a level higher than the leaf, all the way up to and including the text pointer
or root in the actual data or index rows.

Per-state information:

State 1: The timestamp in the node does not match the timestamp in the parent.

State 2: The node is text data and its size is greater than or equal to the size its parent thinks it should be, or the node is text index
and its size is not exactly what its parent thinks it should be.

State 4: A node is text data, but its parent thinks it is text index (or vice-versa), or a node is text index, but its level does not match
the level its parent thinks it should have.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause both text nodes and their sub-trees to be dropped.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8962
Error 8962

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: The text, ntext, or image node at page P_ID, slot S_ID, text ID TEXT_ID has incorrect node type
NODE_TYPE.

Explanation

A text node on a text page has an unknown type. If the parent (owner) of this node can be found, there will be an accompanying
8929 message providing details about the owner.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the text node to be deleted.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8929

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8963
Error 8963

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: The text, ntext, or image node at page P_ID, slot S_ID, text ID TEXT_ID has type NODE_TYPE. It
cannot be placed on a page of type PAGE_TYPE.

Explanation

The text node is on the wrong text page type. If the parent (owner) of the node can be found, there will be an accompanying 8929
message providing details about the owner.

There are two possibilities for PAGE_TYPE:

3 (TEXT_MIX_PAGE): NODE_TYPE will be 2 (BLB_LARGE_INTERNAL).

4 (TEXT_TREE_PAGE): NODE_TYPE will be one of the following:

0 (BLB_SMALL_ROOT)

1 (BLB_LARGE_ROOT)

3 (BLB_LARGE_DATA)

4 (BLB_LARGE_ROOT_2)

8 (BLB_NULL_ROOT)

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the text node to be deleted.

Caution This repair may cause data loss

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8929

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8964
Error 8964

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: Object ID O_ID. The text, ntext, or image node at page P_ID, slot S_ID, text ID TEXT_ID is not
referenced.

Explanation

The text node was not referenced in any complex column in any heap or clustered index. It is effectively orphaned.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the text node to be deleted.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8965

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8965
Error 8965

 Topic last updated -- January 2004

Severity Level 23

Message Text

Table error: Object ID O_ID. The text, ntext, or image node at page P_ID1, slot S_ID1, text ID TEXT_ID is
referenced by page P_ID2, slot S_ID2, but was not seen in the scan.

Explanation

The text node was not referenced in any complex column in any heap or clustered index. It is effectively orphaned.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the text reference to be deleted.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

Error 8964

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8966
Error 8966

 Topic last updated -- January 2004

Severity Level 22

Message Text

Could not read and latch page P_ID with latch type TYPE. OPERATION failed.

Explanation

The page read failed for some reason (see any accompanying errors), or a latch could not be taken (there may be latch timeout
messages on the error log).

Per-state information:

State 1: The page is being read as part of the per-checks of critical system tables.
TYPE is 'SH'.

OPERATION is the name of the DBCC command being executed.

State 2: An indeterminate operation is being performed. The error was raised by generic DBCC read/latch code.

TYPE may be 'NL', 'SH', 'EX', 'UP', or 'Unknown'.

OPERATION is 'Acquire (Wait)' or the string provided by the buffer pool.

State 3: An indeterminate operation is being performed. The error was raised by generic DBCC read/latch code.

TYPE may be 'NL', 'SH', 'UP', 'EX', or 'Unknown'.

OPERATION is 'bufget'.

State 4: The page is being read to verify its page ID.

TYPE may be 'SH', 'UP', 'EX', or 'Unknown'.

OPERATION is 'VerifyPageId'.

State 5: The page is being repaired.

TYPE is 'SH'.

OPERATION is 'DbccExChangePageState ()'.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

There is no repair for this error, because it is only a symptom of the real problem. See the accompanying errors for details.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8968
Error 8968

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: PAGETYPE page P_ID (object ID O_ID, index ID I_ID) is out of the range of this database.

Explanation

The page specified is marked as allocated, but is beyond the in-use portion of the file in which it resides (except in certain states,
as described below).

Per-state information:

States 1, 2: The page is a regular page allocated to an IAM.

PAGETYPE is 'SinglePage'.

State 3: The page is an IAM page.

PAGETYPE is 'IAM'.

State 10: An IAM page maps an invalid interval. The start of the interval is beyond the in-use portion of the file.

PAGETYPE is 'IAM'.

State 10: The page is an IAM page.

PAGETYPE is 'IAM'.

State 10: During repair, the first IAM page for an index is found to be PageId_NULL. This is fatal to the command.

PAGETYPE is 'IAM'.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If the page is an IAM page, performing a repair will cause the IAM chain it is part of to be rebuilt to remove the page. Otherwise,
the page is de-allocated.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8969
Error 8969

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: IAM chain linkage error: Object ID O_ID, index ID I_ID. The next page for IAM page P_ID1 is P_ID2,
but the previous link for page P_ID2 is P_ID3.

Explanation

There is a break in the IAM chain for the index specified. A page P_ID2 is pointed to by the next page pointer of page P_ID1, but
page P_ID2's previous page pointer points to a different page, P_ID3. Both error states mean the same, and only differ in where
the corruption was discovered.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the IAM chain.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8970
Error 8970

 Topic last updated -- January 2004

Severity Level 16

Message Text

Row error: Object ID O_ID, index ID I_ID, page ID P_ID, row ID S_ID. Column 'COLUMN' was created NOT NULL, but
is NULL in the row.

Explanation

A column was created as not NULL, but is NULL in the row.

Per-state information:

State 1: The column is a regular data column.

State 2: The column is a SqlVariant and the data contained within it is NULL.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

If the record is from a non-clustered index, performing a repair will rebuild the index. Otherwise, the record is deleted and all
indexes are rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8971
Error 8971

 Topic last updated -- January 2004

Severity Level 16

Message Text

Forwarded row mismatch: Object ID O_ID, page P_ID1, slot S_ID1 points to forwarded row page P_ID2, slot S_ID2;
the forwarded row points back to page P_ID3, slot S_ID3.

Explanation

In a heap, the forwarded row (S_ID2 on page P_ID2) must point back to the forwarding row (S_ID1 on page P_ID1). This message
means that the forwarded row points back to the wrong row.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will fix the back-pointer in row S_ID2 on page P_ID2 to point back to row S_ID1 on page P_ID1, and then will
rebuild any non-clustered indexes.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8972
Error 8972

 Topic last updated -- January 2004

Severity Level 16

Message Text

Forwarded row referenced by more than one row. Object ID O_ID, page P_ID1, slot S_ID1 incorrectly points to the
forwarded row page P_ID2, slot S_ID2; the forwarded row correctly refers back to page P_ID3, slot S_ID3.

Explanation

The forwarded row (S_ID2 on page P_ID2) is pointed to by an extra forwarding row (S_ID1 on page P_ID1).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause row S_ID1 on page P_ID1 to be deleted, and any non-clustered indexes to be rebuilt. If running
DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8973
Error 8973

 Topic last updated -- January 2004

Severity Level 16

Message Text

CHECKTABLE processing of object ID O_ID, index ID I_ID encountered page P_ID, slot S_ID twice. Possible internal
error or allocation fault.

Explanation

Page P_ID was encountered twice during the course of the scan.

Per-state information:

State 1: The page is from a B-tree, the page is an IAM page, or the page is a data page in a heap and a record was read twice.

State 3: The page is a text page and a text node was read twice.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair depends on the page type:

Heap data page:

Drop the record in the heap and rebuild any non-clustered indexes.

Text page:

Drop the text node and any referencing node.

IAM or B-tree pages (data or index):

The index will be rebuilt.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8974
Error 8974

 Topic last updated -- January 2004

Severity Level 16

Message Text

Text node referenced by more than one node. Object ID O_ID, text, ntext, or image node page P_ID1, slot S_ID1,
text Id TEXT_ID is pointed to by page P_ID2, slot S_ID2 and by page P_ID3, slot P_ID3.

Explanation

A text node is referenced by more than one node. There may be accompanying errors related to any of the three pages involved.
Examine these for more details.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Performing a repair will cause the text node on page P_ID1 and both references (on pages P_ID2 and P_ID3) to be deleted.

Caution This repair may cause data loss.

If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8976
Error 8976

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. Page P_ID1 was not seen in the scan although its parent P_ID2 and
previous P_ID3 refer to it. Check any previous errors.

Explanation

A page (P_ID1) in a B-tree was not seen, even though an index page (P_ID2) points to it as a child page and its previous page
(P_ID3) in the page chain points to it as the next page in the chain. This can happen at any level of the B-tree. Both error states
mean the same thing; they differ only in where the error was discovered.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

DBCC CHECKALLOC

DBCC CHECKDB

DBCC CHECKFILEGROUP

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8977
Error 8977

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. Parent node for page P_ID was not encountered.

Explanation

Page P_ID was seen in a B-tree, and is linked into the B-tree level it is at. However, no index page was seen that had a reference to
the page as a child page. This can happen at any level of the B-tree.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8978
Error 8978

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. Page P_ID1 is missing a reference from previous page P_ID2. Possible
chain linkage problem.

Explanation

A page (P_ID2) in a B-tree was not seen, even though its neighbor (P_ID1) in the page chain points to it in its previous page link.
This can happen in any level of the B-tree. Both error states mean the same thing; they differ only in where the error is discovered.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8979
Error 8979

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. Page P_ID1 is missing references from parent (unknown) and previous
(page P_ID2) nodes. Possible bad root entry in sysindexes.

Explanation

Page P_ID1 was seen, but is not linked into the B-tree it thinks it belongs to.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8980
Error 8980

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. Index node page P_ID1, slot S_ID1 refers to child page P_ID2 and
previous child P_ID3, but they were not encountered.

Explanation

An index page (P_ID1) in a B-tree has child references to two neighboring lower-level pages (P_ID2 and P_ID3), but neither was
seen.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

Error 8977

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8981
Error 8981

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Object ID O_ID, index ID I_ID. The next pointer of P_ID1 refers to page P_ID2. Neither P_ID2 nor
its parent were encountered. Possible bad chain linkage.

Explanation

A page (P_ID1) references its next page in the page chain (P_ID2), but page P_ID2 was not seen and was not referenced by any
parent page in the B-tree.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact your
primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8982
Error 8982

 Topic last updated -- January 2004

Severity Level 16

Message Text

Table error: Cross object linkage. Page P_ID1->next in object ID O_ID1, index ID I_ID1 refers to page P_ID2 in
object ID O_ID2, index ID I_ID2 but is not in the same index.

Explanation

Page P_ID is linked to page P_ID2 but the two pages are allocated to different indexes and/or objects.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will rebuild the index I_ID1. If running DBCC CHECKDB with one of the repair clauses does not correct the problem, contact
your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8983
Error 8983

 Topic last updated -- January 2004

Severity Level 10

Message Text

File F_ID. Extents E_COUNT, used pages UP_COUNT, reserved pages RP_COUNT, mixed extents ME_COUNT, mixed pages
MP_COUNT.

Explanation

This is part of the informational output of DBCC CHECKALLOC when WITH TABLERESULTS is specified. It is a summary message
that provides statistics of the different kinds of extents and pages in a file.

Action

No user action required.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8986
Error 8986

Severity Level 16

Message Text

Too many errors found (ERROR_COUNT) for object ID O_ID. To see all error messages rerun the statement using
"WITH ALL_ERRORMSGS".

Explanation

DBCC commands will only display the first 200 errors by default. This message will be displayed if there are more than 200 errors
and the 'WITH ALL_ERRORMSGS' option is not specified.

Action

Rerun the statement using "WITH ALL_ERRORMSGS" to see all error messages.

Troubleshooting (SQL Server 2000)

Error 8989
Error 8989

 Topic last updated -- January 2004

Severity Level 10

Message Text

CHECKNAME found A_COUNT allocation errors and C_COUNT consistency errors in database 'DBNAME'.

Explanation

This is a summary message printed at the end of CHECKNAME giving the total number of errors for database 'DBNAME'. If you
are running a DBCC CHECKALLOC command, C_COUNT should be zero.

Action

If repair is run, an accompanying message will provide the number of errors repaired for database 'DBNAME'.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8990
Error 8990

 Topic last updated -- January 2004

Severity Level 10

Message Text

CHECKNAME found A_COUNT allocation errors and C_COUNT consistency errors in table 'OBJNAME' (object ID O_ID).

Explanation

This is a summary message printed at the end of CHECKNAME giving the total number of errors for table 'OBJNAME'.

Action

If repair is run, an accompanying message provide the number of errors repaired for table 'OBJNAME'.

See Also

Errors 8000 - 8999

Troubleshooting (SQL Server 2000)

Error 8992
Error 8992

 Topic last updated -- January 2004

Severity Level 16

Message Text

Database ID DB_ID, object 'OBJNAME' (ID O_ID). Loop in data chain detected at P_ID.

Explanation

The first phase of a DBCC CHECKDB is to do primitive checks on the data pages of critical system tables. If any errors are found,
they cannot be repaired, so the DBCC CHECKDB terminates immediately.

This error means that a page linkage loop has been detected, centered on page P_ID (following the next page pointers from page
P_ID will eventually return to page P_ID).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be repaired automatically.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8993
Error 8993

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, forwarding row page P_ID1, slot S_ID1 points to page P_ID2, slot S_ID2. Did not encounter
forwarded row. Possible allocation error.

Explanation

A forwarding row in a heap points to a non-existent forwarded row.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the row to be deleted and any non-clustered indexes to be rebuilt. If running DBCC CHECKDB with one of the
repair clauses does not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8994
Error 8994

 Topic last updated -- January 2004

Severity Level 16

Message Text

Object ID O_ID, forwarded row page P_ID1, slot S_ID1 should be pointed to by forwarding row page P_ID2, slot
S_ID2. Did not encounter forwarding row. Possible allocation error.

Explanation

A forwarded row in a heap is missing the forwarding row that should point to it.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair will cause the row to be converted to a regular data record. If running DBCC CHECKDB with one of the repair clauses does
not correct the problem, contact your primary support provider.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8995
Error 8995

 Topic last updated -- January 2004

Severity Level 16

Message Text

System table 'OBJNAME' (object ID O_ID, index ID I_ID) is in filegroup FG_ID1. All system tables must be in
filegroup FG_ID2.

Explanation

All system tables must be contained in the primary file group. FG_ID2 is always 1 (PRIMARY_FG_ID).

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be automatically repaired.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8996
Error 8996

 Topic last updated -- January 2004

Severity Level 16

Message Text

IAM page P_ID for object ID O_ID, index ID I_ID controls pages in filegroup FG_ID1, that should be in filegroup
FG_ID2.

Explanation

An IAM page maps an interval in a file that is not in the same file group as the IAM page itself.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

This error cannot be automatically repaired.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8998
Error 8998

 Topic last updated -- January 2004

Severity Level 16

Message Text

Page errors on the GAM, SGAM, or PFS pages do not allow CHECKALLOC to verify database ID DB_ID pages from P_ID1
to P_ID2. See other errors for cause.

Explanation

The GAM pages are allocation bitmaps, with a bit per extent indicating whether an extent is allocated or not. The SGAM is a similar
bitmap of mixed extents. The PFS is an allocation byte-map, with a byte per page indicating (among other things) whether a page
is allocated or not. The GAM and SGAM pages map 4 GB of extents each. The PFS pages map 7990 pages each (just under 64 MB).

If one of these pages is unusable for some reason (see accompanying errors), the range of pages mapped by the page cannot be
checked, because CHECKDB has no way of knowing whether the pages are allocated or not. P_ID1 and P_ID2 give the lower and
upper bounds, respectively, of the affected region.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

There is no repair for this error because it is a consequential error of GAM, SGAM, or PFS errors.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 8999
Error 8999

 Topic last updated -- January 2004

Severity Level 10

Message Text

Database tempdb allocation errors prevent further CHECKNAME processing.

Explanation

The allocation checks on TEMPDB found allocation errors. Allocation errors cannot be fixed in TEMPDB, because TEMPDB cannot
be taken offline. Therefore, the entire check operation is terminated.

Action

HARDWARE FAILURE

Run hardware diagnostics and correct any problems. Also examine the Microsoft® Windows NT® system and application logs
and the SQL Server™ error log to see if the error occurred as the result of hardware failure. Fix any hardware related problems.

If you have persistent data corruption problems, try to swap out different hardware components to isolate the problem. Check to
ensure that your system does not have write caching enabled on the disk controller. If you suspect this to be the problem, contact
your hardware vendor.

Finally, you might find it beneficial to switch to a completely new hardware system, including reformatting the disk drives and
reinstalling the operating system.

RESTORE FROM BACKUP

If the problem is not hardware related and a known clean backup is available, restore the database from the backup.

DBCC CHECKDB

If no clean backup is available, execute DBCC CHECKDB without a repair clause to determine the extent of the corruption. DBCC
CHECKDB will recommend a repair clause to use. Then, execute DBCC CHECKDB with the appropriate repair clause to repair the
corruption.

Caution If you are unsure what effect DBCC CHECKDB with a repair clause has on your data, contact your primary support
provider before executing this statement.

Repair cannot be performed in TEMPDB, because TEMPDB cannot be put in single-user mode.

See Also

DBCC CHECKDB

Errors 8000 - 8999

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 9002
Error 9002

 Topic last updated -- January 2004

Severity Level 19

Message Text

The log file for database '%.*ls' is full. Back up the transaction log for the database to free up some log
space.

Explanation

The transaction log file for the indicated database has run out of free space.

Action

The user action that is appropriate to you depends on your situation. Potentially, possible actions include:

Backing up the transaction log

Freeing disk space

Moving the log file to a disk drive with sufficient space

Adding or enlarging a log file

These possible actions are discussed below.

Regardless of which action you adopt, you should also follow them up by considering what caused the transaction log to fill.
Likely causes include a long running transaction or a published transaction. To look for such transactions, use DBCC OPENTRAN.

A long-running transaction prevents truncation and reclamation of transaction log space, which normally happens either
automatically (under the Simple Recovery model) or as a result of taking a log backup (under the Full Or Bulk-Logged
Recovery model).

You may have to use the KILL statement. Use KILL very carefully, however, especially when critical processes are running.
For more information, see KILL.

If replication is turned on for the database and has fallen behind, a published transaction that has not been passed into the
distribution database may be preventing log truncation. For information about replication and the transaction log, see
Planning for Transactional Replication.

The remainder of this section discusses possible actions, any one of which should suffice.

Backup the transaction log

If the database is using the Full or Bulk-Logged Recovery model, you should back up the transaction log immediately to free up
space. If you are not taking log backups, you should either start taking log backups or switch to the Simple Recovery model. If the
database is using the Simple Recovery model, backing up the transaction log is not possible.

For more information on recovery models, see Using Recovery Models.

Regardless of the recovery model, consider the following actions.

Free disk space

You may want to free disk space on whatever disk drive contains the transaction log file for the database. Freeing disk space
allows the recovery system to enlarge the log file automatically.

Move the log file to a disk drive with sufficient space

If you cannot free sufficient disk space on the drive that currently contains the log file, consider moving the file to another drive
with sufficient space. If you choose to use another drive:

1. After ensuring that the other drive has sufficient free space for the transaction log, detach the database by executing
sp_detach_db.

Detaching a database makes it unavailable until it is reattached.

2. Move the transaction log files with insufficient space to the other drive.

3. Attach the database by executing sp_attach_db, pointing to the moved log file(s).

For more information see, Insufficient Disk Space.

Adding or enlarging a log file

Alternatively, you can gain space by adding an additional log file for the database or enlarging the existing log file (if disk space
permits).

To add a log file to the specified database, use the ADD FILE clause of the ALTER DATABASE statement. Adding an additional
log file allows the existing log to grow.

For information about adding files, see Adding and Deleting Data and Transaction Log Files.

To enlarge the log file, use the MODIFY FILE clause of the ALTER DATABASE statement, specifying the SIZE and MAXSIZE
syntax.

For more information on these Transact-SQL clauses, see ALTER DATABASE.

See Also

ALTER DATABASE

Errors 9000-9999

Expanding a Database

Insufficient Disk Space

sp_attach_db

sp_detach_db

sp_add_log_file_recover_suspect_db

Troubleshooting (SQL Server 2000)

Error 14157
Error 14157

 Topic last updated -- January 2004

Severity Level 10

Message Text

The subscription created by Subscriber '%s' to publication '%s' has expired and has been dropped.

Explanation

A Subscriber must synchronize with the Publisher within the time specified in the publication retention period. If a Subscriber
does not synchronize within this period, the Subscriber's subscription expires and is dropped.

Action

The subscription must be re-created and initialized before the Subscriber can begin receiving data changes again.

For information on creating subscriptions, see Subscribing to Publications.

For information on initializing subscriptions, see Generating the Initial Snapshot.

To change the publication retention period

You can increase the publication retention period to avoid having subscriptions expire. Use caution in setting a value, because a
high value can result in more data and meta data being stored, which affects performance.

Transact SQL
Execute sp_changepublication (for snapshot or transactional publications) or sp_changemergepublication (for
merge publications). Specify a value of 'retention' for the parameter @property and a numeric value for the
parameter @value.

Enterprise Manager

1. Right-click the publication and click Properties.

2. On the General tab of the Publication Properties dialog box, specify a value for Subscription expiration.

See Also

sp_changepublication

sp_changemergepublication

How to Modify Publications and Articles (Transact-SQL)

How to modify publications and articles (Enterprise Manager)

Troubleshooting (SQL Server 2000)

Error 17050
Error 17050

Severity Level 16

Message Text

The '%ls' option is ignored in this edition of SQL Server.

Explanation

When installing Microsoft® SQL Server™ on an NTFS partition, make sure that the NTFS file permissions allow read/write access.
Otherwise, this error message may appear in the Microsoft Windows NT® application log (for each installation attempt).

Action

Ensure that the NTFS file permissions allow read/write access. In addition, the SYSTEM account should have full-control rights to
the computer. It is recommended that everyone using the computer have full-control rights, but that the NTFS partition not be
shared.

See Also

Errors 17000 - 17999

Troubleshooting the Operating System

Troubleshooting (SQL Server 2000)

Error 18456
Error 18456

 Topic last updated -- January 2004

Severity Level 14

Message Text

Login failed for user '%ls'.
Login failed for user distributor_admin.

Explanation

If the error message includes the account with which you are trying to access the server, you do not have permission to log
in to the server.

If the error message includes the account distributor_admin, the issue is with an account used by replication. Replication
creates a remote server, repl_distributor, which allows communication between the Distributor and Publisher. The login
distributor_admin is associated with this remote server. The distributor_admin account can be designated as trusted or
non-trusted when you configure replication. If it is designated as non-trusted, a password is required, and login will fail
without one.

Action

If the error message contains the login with which you are trying to access the server, contact a member of the sysadmin
fixed server role to request login permission.

If the error message includes the user distributor_admin, ensure that there is a password associated with the account. For
more information, see the topic Connecting to the Distributor.

Note It is recommended to use a non-trusted connection for the distributor_admin account.

See Also

Logins

Managing Security

Troubleshooting (SQL Server 2000)

Error 18458
Error 18458

Severity Level 14

Message Text

Login failed. The maximum simultaneous user count of %d licenses for this server has been exceeded. Additional
licenses should be obtained and registered through the Licensing application in the Windows NT Control Panel.

Explanation

This error occurs when the server is set for Per Server licensing and the number of attempted client connections exceeds the
number of Client Access Licenses for this server.

Action

Obtain additional Client Access Licenses or reduce the number of simultaneous client connection attempts.

See Also

Errors 18000 - 18999

Troubleshooting (SQL Server 2000)

Error 18459
Error 18459

Level 14

Message Text

Login failed. The maximum workstation licensing limit for SQL Server access has been exceeded.

Explanation

This error occurs when the server is set for Per Seat licensing and a connection is attempted from a client computer that does not
have a Client Access License.

Action

Obtain a Client Access License for the client computer.

See Also

SQL Server 2000 Databases on the Desktop

SQL Server 2000 Databases on Windows 98

Editions of SQL Server 2000

Troubleshooting (SQL Server 2000)

Error 19012
Error 19012

 Topic last updated -- January 2004

Severity Level 16

Message

SuperSocket Info: Bind failed on TCP port %1<port-number>.

Explanation

The specified TCP port was selected for SQL Server to listen on, but the port cannot be bound to. Probably, this is because the port
is in use by an other application on the machine.

Action

Either change the port that SQL server is set to listen on, or find the application using the port and terminate it. To find the other
application that is using the TCP port, open a Command Prompt window and enter the NETSTAT –ao command. This command
displays protocol statistics, all of the current TCP/IP network connections and listening ports, and the owning-process ID
associated with each connection.

See Also

Client and Server Net-Libraries

Connections to SQL Server Over the Internet

How to configure a client to use TCP/IP (Client Network Utility)

Troubleshooting (SQL Server 2000)

Error 19015
Error 19015

 Topic last updated -- January 2004

Severity Level 16

Message

Encryption requested but no valid certificate was found. SQL Server terminating.

Explanation

The administrator enabled Secure Sockets Layer (SSL-based encryption) for all connections coming into SQL server, but no
certificate was found. A valid certificate is required for encryption, and without a certificate to use, SQL Server cannot start up.

SSL encryption works with both default and named instances of SQL Server 2000, if its service account has access to a valid
certificate issued from a public certificate authority. SQL Server 2000 cluster servers must have the certificate issued to the virtual
server name on each node.

The possible reasons that an instance of SQL Server service cannot find a valid certificate include:

There is no valid certificate available on the computer.

The certificate in the wrong store, and the account used to start the SQL Server service cannot find the certificate.

The certificate is in the local store, but the SQL Server service account used to start the service lacks permission to access the
local store and cannot locate the certificate.

This might happen, for example, if an administrator requested a certificate and placed it in the local store, but the service
account is not an administrator account. In this case, SQL Server would not find the certificate.

SSL-encryption may have been enabled by mistake in the SQL Server Network Utility by checking the "Force Protocol
Encryption" checkbox. The next time the SQL Server service shuts down and tries to restart, a valid certificate is required.

For information about the encryption architecture, see Net-Library Encryption.

Action

If SSL-encryption was enabled by mistake, either obtain and install a valid certificate, or contact technical support for information
on how to allow SQL Server to restart without a certificate.

If the administrator intends to use SSL-encryption, ensure that the SQL Server service account has a valid certificate available in
its local store. Also, ensure that the service account has permission to access the store. If no valid certificate is available, the
administrator must install a certificate using the fully qualified domain name of the computer running the instance of SQL Server
2000. The intended purpose of the certificate must be for "Server Authentication".

Also, ensure the computer on which the application is running has a root CA certificate from the same authority. For more
information about certificates, see the Windows documentation.

See Also

Configuring Client Net-Libraries

Net-Library Encryption

Using Encryption Methods

Troubleshooting (SQL Server 2000)

Error 20554
Error 20554

 Topic last updated -- January 2004

Severity Level 10

Message Text

The agent is suspect. No response within last %ld minutes.

Explanation

A suspect agent is an agent that is not responding as expected. The problem is not necessarily that the agent stopped or failed. If
an agent has failed, error 20536 should be displayed:

Replication: Agent failure.

The following issues can cause an agent to be marked as suspect:

The agent failed to log history messages.

The replication agent checkup job runs at a specified interval (set to 10 minutes by default) to check on the status of each
replication agent. If an agent has not logged any history messages since the last time the checkup job ran, the agent is
considered suspect. The agent is considered suspect because it is expected to at least log history messages even if no other
replication activity is occurring.

The agent is busy.

If the agent is too busy to respond when polled by the agent checkup job, the status of the replication agent is unclear and
the agent checkup job cannot report whether the replication agent is functioning or not.

There are many reasons why the replication agent is busy: There may be a lot of data that is being replicated, or there may
be configuration or replication-design issues that result in processes that run for a long time.

The agent cannot log in to one of the computers in the topology.

All agents have a parameter -LoginTimeOut (set to 15 seconds by default), which governs how long an agent attempts to
log in to a replication node, such as a Merge Agent logging in to the Publisher. If the -LoginTimeOut value is set higher
than the interval at which the replication agent checkup job runs, a login problem could be the root cause of the error. If the
-LoginTimeout value is set too high, the replication agent checkup marks the agent as suspect before the agent is able to
return a more specific error, such as "The process could not connect to the Subscriber."

Action

The agent failed to log history messages.

Check the error details in Enterprise Manager and then restart the agent if it has stopped. The error details might provide
additional information on why the agent was not running properly.

To restart an agent

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the agent; for example Distribution Agent.

3. Right-click the agent and click Start Agent.

To check for additional error information

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the agent; for example Distribution Agent.

3. Right-click the agent and click Error Details. You can also click Agent History to see details on previous runs of the
agent.

The agent is busy.

If the replication agent is frequently marked as suspect because it is busy, you might need to redesign your application so
that he agent spends less time processing. You can also increase the interval at which agent status is checked.

To change the interval at which agent status is checked

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the agent; for example Distribution Agent.

3. Right-click the agent and click Refresh Rate and Settings.

4. Set a value for Inactivity threshold.

The agent cannot log in to one of the computers in the topology.

It is recommended that the -LoginTimeOut value be set lower than the interval at which the replication agent checkup job
runs. In some cases, the value for
-LoginTimeOut is set higher because of network issues that cause logins to time out. If the -LoginTimeOut is set lower,
replication can report more specific errors, allowing you to troubleshoot login problems that could be caused by
permissions, network problems, or other issues.

To specify a value for the –LoginTimeOut parameter

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the agent; for example Distribution Agent.

3. Right-click the agent and click Agent Properties....

4. Click the Steps tab in the agent properties dialog box.

5. Select the step entitled Run Agent and click Edit.

6. Add "-LoginTimeOut" to the end of the command in the Command text box, and then type a value (in seconds) for
the timeout. The command line should look like:

-Subscriber [SampleSub] -SubscriberDB [SampleSubDB] -Publisher [SamplePub]
-Distributor [SampleDist] -DistributorSecurityMode 1 -Publication [SamplePublication]
-PublisherDB [SamplePubDB]-Continuous –LoginTimeOut 30

7. Click OK to save changes and close.

See Also

Replication Distribution Agent Utility

Replication Log Reader Agent Utility

Replication Merge Agent Utility

Replication Queue Reader Agent Utility

Replication Snapshot Agent Utility

Troubleshooting (SQL Server 2000)

Read/Write Error
Read/Write Error

Message Text

%s: operating system error %d (%s) encountered

Explanation

The Read/Write Error is raised when opening or closing a file and Microsoft® SQL Server™ fails to read from or write to the
specified disk location. This failure is usually a result of a physical disk problem like a bad sector on the disk drive or a failure of
the disk drive or controller.

Action

Identify the device with the problem database by selecting the row from sysaltfiles that has the same disk name indicated in the
error message:

USE master
GO
SELECT name, filename
FROM master..sysaltfiles
GO

The output from this query should provide the physical name of the damaged disk. Examine the disk as soon as possible and
correct any problems.

After the disk drive or controller problem is resolved, restart SQL Server.

If the disk is found to be damaged, restore data from a backup database or consider using DBCC CHECKDB.

See Also

sysaltfiles

Troubleshooting (SQL Server 2000)

Error Log Messages
In reviewing the error log, you may see one or more of these messages.

Message Text

Failed to obtain TransactionDispenserInterface: XACT_E_TMNOTAVAILABLE.

Explanation

This message is an informational error message indicating that the Microsoft Distributed Transaction Coordinator (MS DTC)
service either is currently not running on the server or is currently unavailable. For more information about MS DTC, see the
Microsoft Distributed Transaction Coordinator documentation.

Message Text

Warning: Server cursor memory usage: %d pages. If this message repeats, see the Error Log Messages topic in
Troubleshooting.

Explanation

Too many cursors either have been created and left open or have not been deallocated. It is recommended that a cursor be closed
and deallocated as soon as it is no longer needed. For more information, see Cursors.

In time-critical situations, the system administrator may need to terminate those connections that have not been closing or
deallocating cursors using the KILL command.

Message Text

Warning: SQL cache memory usage: %d (pages). If this condition persists, see the Error Log Messages topic in
Troubleshooting.

Explanation

The Microsoft® SQL Server™ cache consumes memory and holds ad hoc and prepared SQL text. This message occurs if the SQL
Server cache exceeds a certain number of pages of server memory. For example, this error occurs if one or more clients are
preparing large numbers of SQL statements without performing corresponding unprepare operations. This lack of corresponding
unprepare operations can be due to poor application design, an application bug, or repeated creation of prepared SQL text.

This message will be printed again if server memory changes significantly and if the memory consumption of the SQL Server
cache remains high.

Either warn the suspected clients that server memory is at a low level or terminate suspected connections using KILL.

Troubleshooting (SQL Server 2000)

Analysis Services Error Messages
This section describes the cause and resolution for specific error messages that users frequently encounter.

The following table describes the topics in this section.

Error number Message text
117 Unexpected fatal error occurred. Attempting to restart

server.%0\r\n
123 The server is out of memory.%0
2437 An unexpected internal error has occurred.
3013, 30163, 30322, or
33031

Data source provider error: provider message

3151 The user could not be authenticated.
3238 Connection to the server is lost
30159 Error(%s1): The object structure is not valid (%s2)

Invalid procedure call or argument.

30973 Unable to browse the cube '%s1'.

Unable to open connection.

30979 Unable to browse the dimension '%s1'.

The operation requested failed due to timeout.

31040 and 31041 Connection to server failed.

Errors occurred while connecting to server name.
Server message Do you still want to register this
server?

-2147221453 Unable to connect to the registry on the server
computer (<server name>), or you are not a member
of the OLAP Administrators group on this server.

-2147221455 Cannot retrieve the repository information from the
server computer (<server name>).

MDX Errors Lists common MDX errors.

Troubleshooting (SQL Server 2000)

Error 117
Error 117

Message Text

Unexpected fatal error occurred. Attempting to restart server.%0\r\n

Explanation

The Analysis server has shut down. The application event log will contain a message that resembles the following:

Source: MSSQLServerOLAPServices
Event ID: 117
Description: Unexpected fatal error occurred.
Attempting to restart server.

In addition, Analysis Manager or a client application may display a message such as the following:

Connection to the server is lost.

Possible reasons for the shutdown include:

The data files in the Analysis Services Data directory are corrupted.

The server has encountered a bug.

Action

To fix corrupted data files, stop the Analysis server if it is running, and then delete all files in the Data directory for Analysis
Services. After you delete the files, restart the server and restore your Analysis Services databases from backup files.

To correct possible bugs, make sure that your server is running the latest service pack for SQL Server 2000 Analysis Services. For
more information, see Microsoft Knowledge Base article 290211, How to Obtain the Latest SQL Server 2000 Service Pack.

If you are unable to resolve this problem, contact your primary support provider.

See Also

Archiving and Restoring Databases

Reporting Errors to Your Primary Support Provider

http://support.microsoft.com/?kbid=290211

Troubleshooting (SQL Server 2000)

Error 123
Error 123

Message Text

The server is out of memory.%0

Explanation

Analysis Services load all dimensions for all databases into volatile memory on startup. During processing, the server
consumes additional memory to process updates to dimensions and cubes. If insufficient memory is available for these and
other operations, you will receive this message.

Action

You can resolve this issue in several ways:

Using Microsoft Windows® NT 4.0 Enterprise Edition, Windows 2000 Advanced Server, or Windows 2000 Datacenter
Server, enable application memory tuning and then enable the Analysis server to use 3 gigabytes (GB) of RAM. For more
information, see Microsoft Knowledge Base article 295443, How To Enable Analysis Services to Use 3 GB of RAM.

Lower the HighMemoryLimit registry entry, so that the cleaner thread starts earlier. For more information on this, and
other registry entries mentioned in this topic, see this Microsoft Web site.

Lower the BackgroundInterval registry entry, so that background operations are performed more frequently.

Lower the ProcessReadAheadSize, ProcessReadSegmentSize, and ProcessRecordsReportGranularity registry entries
to reduce the amount of memory used during processing.

Increase the page file size or create a second page file.

If dimensions are too large to fit in memory, the following changes may be required:

Install more physical memory in the server.

Upgrade to a 64-bit platform.

Reduce the size of the dimension as follows:

1. Convert the dimension keys to integers.

2. Eliminate any unnecessary redundant data elements.

3. Delete or reduce the number of member properties used in dimensions.

Convert to ROLAP storage.

http://support.microsoft.com/?kbid=295443
http://go.microsoft.com/fwlink/?LinkId=20294

Troubleshooting (SQL Server 2000)

Error 2437
Error 2437

Message Text

An unexpected internal error has occurred.

Explanation

Analysis Services encountered a bug in either the server or the client software. The message shown earlier is a general message
for this type of error.

Action

Contact your primary support provider.

See Also

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 3013, 30163, 30322, or 33031
Error 3013, 30163, 30322, or 33031

Message Text

Data source provider error: provider message

Explanation

This message appears in the Event Viewer application log. Analysis Services returns this message after it accesses a relational data
source during cube processing, ROLAP queries, cell or dimension writeback, mining model training, writing to the query log, or
other processes. Any message returned by the data source provider is appended to the message.

Action

In some cases, a data source may not support the syntax of a query. If the message returned by the provider indicates a syntax
error, you may be able to reconfigure the data source to work around the problem.

To find solutions for syntax errors or other known problems, you can search at Knowledge Base (KB) Search. for the provider
message returned with the error message.

If you are unable to resolve this problem, contact your primary support provider.

See Also

Data Sources

Reporting Errors to Your Primary Support Provider

SQL in Analysis Services

http://www.microsoft.com/isapi/redir.dll?Prd=Support&Ar=SearchKB

Troubleshooting (SQL Server 2000)

Error 3151
Error 3151

Message Text

The user could not be authenticated.

Explanation

Analysis Services returns this message when a client attempts to connect to the server and the server is unable to authenticate the
client. This usually occurs if the client and the server are in different Microsoft Windows® domains that do not have a trust
relationship. This message can also appear when a client is trying to connect over the Internet.

Action

Ensure that there is a trust relationship between the server and the client domains. If establishing a trust relationship is not
possible, use an HTTP connection between the client and the server. The following articles on the Microsoft Web site describe how
to connect to Analysis Services over the Internet:

Microsoft Support WebCast: How to Connect to Analysis Services over the Internet

Improved Web Connectivity in Microsoft SQL Server 2000 Analysis Services

MSDN: Build an OLAP Reporting App in ASP.NET Using SQL Server 2000 Analysis Services and Office XP

See Also

Authentication of Connections

Connected to Analysis Services

Connecting Using HTTP

Context of Connections

Reporting Errors to Your Primary Support Provider

http://go.microsoft.com/fwlink/?LinkId=20291
http://go.microsoft.com/fwlink/?LinkId=20292
http://go.microsoft.com/fwlink/?LinkId=20293

Troubleshooting (SQL Server 2000)

Error 3238
Error 3238

Message Text

Connection to the server is lost.

Explanation

The client has lost its connection with the server and cannot reconnect. Possible reasons include the following:

Dimension security evaluated to an empty dimension, preventing the server from continuing to send results to the client.

A network problem exists between the client and the server.

The server was stopped.

The server is out of memory.

The server has encountered a bug.

Action

Perform the following tasks to resolve the problem:

Ensure that you have the latest SQL Server 2000 Analysis Services service pack installed.

If the connection was lost because the server could not continue sending the results to the client, verify that dimension
security is configured properly.

Troubleshoot the network connection between the client computer and the server.

Ensure that the server is running and that the MSSQLServerOLAPService service is started.

Check the event log to determine if the server has run out of memory.

If you are unable to resolve this problem, contact your primary support provider.

See Also

Error 123

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 30159
Error 30159

Message Text

Error(%s1): The object structure is not valid (%s2)
Invalid procedure call or argument.

Explanation

Analysis Services encountered a bug.

Action

Contact your primary support provider.

See Also

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 30973
Error 30973

Message Text

Unable to browse the cube '%s1'.
Unable to open connection.

Explanation

When you attempt to browse a cube, the connection to the server can be lost. Additionally, you cannot browse the cube with
Analysis Manager when the All Caption property for the dimension matches the name of a level in the dimension.

Action

Perform the following tasks to resolve the problem:

Ensure that you have the latest SQL Server 2000 Analysis Services service pack installed.

Troubleshoot the network connection between the client computer and the server.

If you change the default setting for All Caption property, ensure that the new name does not match the name of any level
in the dimension. By default, Analysis Services chooses a unique name for the All Caption property.

If you are unable to resolve this problem, contact your primary support provider.

See Also

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 30979
Error 30979

Message Text

Unable to browse the dimension '%s1'.
The operation requested failed due to timeout.

Explanation

By default the OLE DB time-out property is set to 15 seconds. If the query takes longer than 15 seconds to return data, the
Analysis Manager browser returns the time-out message. Although you can set the default OLE DB time-out value in the
connection string for ADOMD and OLE DB applications, you cannot configure this value for the Analysis Manager browser.

Action

Install the latest SQL Server 2000 Analysis Services service pack, which increases the OLE DB time-out property to 30 seconds.

Work with your network administrator to tune the network and reduce query response time.

Troubleshooting (SQL Server 2000)

Errors 31040 and 31041
Errors 31040 and 31041

Message Text

Connection to server failed.
Errors occurred while connecting to server name.
Server message Do you still want to register this server?

Explanation

A connection to a server can fail for various reasons. The following reasons are common:

The user does not have the permissions required to access a server or a database.

The repository is located on a remote computer, and the computer name cannot be resolved.

The repository has been migrated to a SQL Server database, but the client is missing the necessary SQL Server connectivity
components.

A client does not have the permissions required to access the instance of SQL Server containing the database.

Analysis Manager (or another application using DSO) is attempting to connect to an Analysis server with a later service pack
than the Analysis Services service pack on the local host server.

Network problems prevent the connection.

These messages can also appear when the SQL Server Client Network Utility on the computer running Analysis Manager is
configured to use TCP/IP as the default protocol, or if TCP/IP is used for the connection to the instance of SQL Server containing
the Analysis Services repository. The error messages then indicate that Analysis Manager cannot make trusted connections with
SQL Server using TCP/IP.

Action

Examine the server message text embedded in the message for an indication of the problem. To see if there is a Knowledge Base
article about the issue, you can search for the static portion of the server message string (omitting dynamic elements, such as a
server name) at Knowledge Base (KB) Search.

Ensure that the user or the client application has the permissions required to access the server, the database, and the repository,
and that other connectivity problems do not exist between the client, the server, and the repository.

If you are attempting to administer an upgraded Analysis server from an Analysis server that has not been upgraded, you can fix
this problem by upgrading the server running the older service pack to the same service pack (or later) that is on the upgraded
server. For more information, see Microsoft Knowledge Base article 290211, How to Obtain the Latest SQL Server 2000 Service
Pack.

If trusted connections with SQL Server cannot be made using TCP/IP, take the following steps to eliminate the problem:

Use the SQL Server Client Network Utility to change the default protocol to named pipes.

Use SQL Server Authentication instead of Windows Authentication to migrate the repository.

If you cannot resolve the problem, contact your primary support provider.

See Also

Configuring Client Network Connections

Connecting to SQL Server

Isolating Connection Problems

http://www.microsoft.com/isapi/redir.dll?Prd=Support&Ar=SearchKB
http://support.microsoft.com/?kbid=290211

Migrating Analysis Services Repositories

Reporting Errors to Your Primary Support Provider

Security and Authentication

Troubleshooting (SQL Server 2000)

Error -2147221453
Error -2147221453

Message Text

Unable to connect to the registry on the server computer (<server name>), or you are not a member of the OLAP
Administrators group on this server.

Explanation

This error can occur for one of the following reasons:

The user account used to connect to the Analysis server, using either Analysis Manager or a Decision Support Objects (DSO)
application, is not a member of the OLAP Administrators group.

You attempt to remotely administer a server that has been upgraded to Microsoft SQL Server 2000 Analysis Services
Service Pack 3 (SP3) from Analysis Manager or from any Decision Support Objects (DSO) application that has not been
upgraded to SP3.

The Remote Registry service is not started on an Analysis server that is running on Windows 2000.

Action

You can take the following actions to resolve this problem:

Obtain the latest service pack for SQL Server 2000. For additional information, see Microsoft Knowledge Base article
290211, How to Obtain the Latest SQL Server 2000 Service Pack.

Ensure that the user account used to connect to the Analysis server is a member of the OLAP Administrators group. For
additional information, see Microsoft Knowledge Base article 231951, Permissions That You Must Have to Administer an
OLAP Server.

Note You may receive additional errors if the user account is not a member of the Administrators group. For additional
information, see Microsoft Knowledge Base article 293782, Can Only Administer Analysis Server if User is a Member of
Administrators Group.

Ensure that the Remote Registry service is started if the Analysis server is running on Windows 2000.

If you are unable to resolve this problem, contact your primary support provider.

See Also

Introducing Decision Support Objects

http://support.microsoft.com/default.aspx?kbid=290211
http://support.microsoft.com/default.aspx?kbid=231951
http://support.microsoft.com/default.aspx?kbid=293782

Troubleshooting (SQL Server 2000)

Error -2147221455
Error -2147221455

Message Text

Cannot retrieve the repository information from the server computer (<server name>).

Explanation

SQL Server 2000 Analysis Services stores information about the repository in the registry of the computer running the
MSSQLServerOLAPServices service. Other applications, such as Analysis Manager or any application using Decision Support
Objects (DSO) to perform administrative tasks, must be able to connect to the registry in order to retrieve the repository
information. This error typically occurs when the user account attempting to perform an administrative function, using Analysis
Manager or a Decision Support Objects (DSO) application, is not a member of either the OLAP Administrators group or the
Administrators group.

Action

Ensure that the user account used to connect to the Analysis server has the following permissions:

Access to the following registry key on the server:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\Server Connection Info

Write permissions on the hidden share, MsOLAPRepository$, which contains the Analysis Services repository and locking
files. By default this share is the Bin directory under the Analysis Services directory.

Full Control rights on the Bin and Data directories under the Program Files\Microsoft Analysis Services\Bin directory. By
default, these folders should allow Everyone full control, but if for security reasons you want to tighten security, ensure that
the OLAP Administrators group retains Full Control rights.

When you install Analysis Services, a local group named OLAP Administrators is created and given Full Control rights to the
preceding registry key and the MsOLAPRepository$ share. Typically, adding the user account to the OLAP Administrators group
grants the necessary permissions.

If you are unable to resolve this problem, contact your primary support provider.

Troubleshooting (SQL Server 2000)

MDX Errors
MDX Errors

This section lists common MDX errors and describes how to resolve them. The following errors are described in this section:

Formula error - aggregations are not supported for the DISTINCT COUNT measure "<measure name>"

Infinite recursion detected during execution of calculated member <member name>

Troubleshooting (SQL Server 2000)

Formula error - aggregations are not supported for the
DISTINCT COUNT measure "<measure name>"
Formula error - aggregations are not supported for the DISTINCT COUNT measure "<measure name>"

Message Text

Formula error - aggregations are not supported for the DISTINCT COUNT measure "<measure mame>"

Explanation

This error can occur under the following conditions when the cube contains a distinct count measure:

A user browses the cube using a client application such as Microsoft Excel or Office Web Components, which support the
selection of multiple members in the slicer or page filter.

The cube contains calculated cells that are defined over the distinct count measure.

A user browses the cube using Excel while visual totals mode is enabled and some members in the specified axis are hidden.

The cube implements complex dimension security while visual totals mode is enabled.

Action

Analysis Services cannot calculate aggregations over a distinct count measure if visual totals mode is enabled or if calculations are
performed across multiple, arbitrarily selected members (such as when multiple members are selected in the slicer or page filter),
You may be able to work around this issue by disabling visual totals mode or by selecting only a single member when using client
applications that support the selection of multiple members in the slicer or page filter.

If you are unable to resolve this problem, contact your primary support provider.

Troubleshooting (SQL Server 2000)

Infinite recursion detected during execution of calculated
member <member name>
Infinite recursion detected during execution of calculated member <member name>

Message Text

Infinite recursion detected during execution of calculated member <member name>.

Explanation

This error occurs when the definition of a calculated member, custom rollup formula, custom member, or calculated cell refers to
itself recursively. Infinite recursion can sometimes be difficult to discover within a Multidimensional Expressions (MDX)
expression, because the source of the recursion may not be readily apparent. Two examples are presented here to demonstrate
obvious and subtle ways in which infinite recursion can occur within MDX expressions.

In the first example, a calculated measure that sums the value of the Sales measure for the year to date is defined using the
following MDX expression:

Sum(YTD())

Because the Sales measure is not referenced within the expression, the current measure is used instead to evaluate the calculated
measure. However, the calculated measure is the current measure, so the expression recursively refers to itself.

Another less obvious example is a calculated measure that counts the number of members in the Products dimension that have
associated transactions. Suppose the following MDX expression is used to define the calculated measure:

Count([Products].[Members])

While this expression does not cause recursion, it also counts both empty and non-empty members and does not provide the
desired value for the calculated measure. The following MDX expression attempts to resolve this issue by excluding empty
members

Count([Products].[Members], EXCLUDEEMPTY)

This expression satisfies the requirements of the example, excluding empty members from the Products dimension. However, the
values of the members in the Products dimension must be calculated first in order to determine whether a member is empty.
Because a measure was not specified in the MDX expression, the current measure is again used and infinite recursion occurs as a
result.

Action

Examine the MDX expression that defines the calculated member, custom rollup formula, custom member, or calculated cell in
question and ensure that the expression does not explicitly or implicitly reference itself. Typically, such actions involve explicitly
specifying an implied member or measure within the MDX expression. The following MDX expressions demonstrate how to
resolve the infinite recursion issues described earlier.

To resolve the problem in the first example, the following MDX expression directly references the Sales measure, removing the
infinite recursion:

Sum(YTD(), [Measures].[Sales])

To resolve the problem in the second example, the following MDX expression uses the DefaultMember MDX function to specify
that the default measure be used when the expression is resolved:

Count([Products].[Members]*{[Measures].DefaultMember}, EXCLUDEEMPTY)

If you are unable to resolve this problem, contact your primary support provider.

See Also

MDX

Count

DefaultMember

Sum

Troubleshooting (SQL Server 2000)

MAPI Error Messages
These MAPI error values are used by SQL Mail.

MAPI Constant Description
MAPI_USER_ABORT User abort.
MAPI_E_FAILURE General MAPI failure.
MAPI_E_LOGIN_FAILURE MAPI login failure.
MAPI_E_DISK_FULL Disk full.
MAPI_E_INSUFFICIENT_MEMORY Insufficient memory.
MAPI_E_ACCESS_DENIED Access denied.
MAPI_E_TOO_MANY_SESSIONS Too many sessions.
MAPI_E_TOO_MANY_FILES Too many files were specified.
MAPI_E_TOO_MANY_RECIPIENTS Too many recipients were specified.
MAPI_E_ATTACHMENT_NOT_FOUND A specified attachment was not found.
MAPI_E_ATTACHMENT_OPEN_FAILURE Attachment open failure.
MAPI_E_ATTACHMENT_WRITE_FAILURE Attachment write failure.
MAPI_E_UNKNOWN_RECIPIENT Unknown recipient: Parameter '%s',

recipient '%s'.
MAPI_E_BAD_RECIPTYPE Bad recipient type.
MAPI_E_NO_MESSAGES No messages.
MAPI_E_INVALID_MESSAGE Invalid message.
MAPI_E_TEXT_TOO_LARGE Text too large.
MAPI_E_INVALID_SESSION Invalid session.
MAPI_E_TYPE_NOT_SUPPORTED Type not supported.
MAPI_E_AMBIGUOUS_RECIPIENT A recipient was specified ambiguously.
MAPI_E_MESSAGE_IN_USE Message in use.
MAPI_E_NETWORK_FAILURE Network failure.
MAPI_E_INVALID_EDITFIELDS Invalid edit fields.
MAPI_E_INVALID_RECIPS Invalid recipients.
MAPI_E_NOT_SUPPORTED Not supported.

See Also

SQL Server and Mail Integration

Help with SQL Mail

Troubleshooting (SQL Server 2000)

DB-Library Error Messages
This topic describes all DB-Library error messages and severity levels. The information in this topic is divided into two tables. The
following table lists the errors alphabetically, along with their severities. The table under DB-Library Error Severities summarizes
the error severity levels. Number values corresponding to the errors are passed to the currently installed, user-supplied error
handler. For information about creating error handlers, see dberrhandle. To access these error definitions, include the Sqlfront.h
and Sqldb.h header files in your program.

The following error values are defined in the Sqlfront.h header file. Errors with a severity of EXCOMM also have a network-related
error message appended to the dberrstr value. In addition, EXCOMM errors have network-specific error information in oserr and
oserrstr.

Error
number

Error/
Error severity Description

10000 SQLEMEM
EXRESOURCE

Unable to allocate sufficient memory.

10001 SQLENULL
EXPROGRAM

NULL DBPROCESS pointer encountered.

10002 SQLENLOG
EXCONSISTENCY

NULL LOGINREC pointer encountered.

10003 SQLEPWD
EXUSER

Login incorrect.

10004 SQLECONN
EXCOMM

Unable to connect: SQL Server is unavailable or does
not exist.

10005 SQLEDDNE
EXINFO

DBPROCESS is dead or not enabled.

10006 SQLENULLO
EXCONSISTENCY

Attempt to login with NULL LOGINREC.

10007 SQLESMSG
EXSERVER

General SQL Server error: Check messages from SQL
Server.

10008 (DB-
Library)

SQLEBTOK
EXCOMM

Bad token from SQL Server: Datastream processing
out of synchronization.

10009 SQLENSPE
EXPROGRAM

General nonspecific DB-Library error.

10010 SQLEREAD
EXCOMM

Read from SQL Server failed.

10011 SQLECNOR
EXPROGRAM

Column number out of range.

10012 SQLETSIT
EXINFO

Attempt to call dbtsput with an invalid timestamp.

10013 SQLEPARM
EXCONSISTENCY

Invalid parameter in DB-Library function reference.

10014 SQLEAUTN
EXPROGRAM

Attempt to update the timestamp of a table with no
timestamp column.

10015 SQLECOFL
EXCONVERSION

Data conversion resulted in overflow.

10016 SQLERDCN
EXCONVERSION

Requested data conversion does not exist.

10017 SQLEICN
EXPROGRAM

Invalid value for computeid or invalid compute
column number.

10019 SQLENTXT
EXPROGRAM

Attempt to get text point/timestamp from a nontext
column.

10020 SQLEDNTI
EXPROGRAM

Attempt to use dbtxtsput to put a new text
timestamp into a column whose data type is neither
SQLTEXT nor SQLIMAGE.

10021 SQLETMTD
EXPROGRAM

Attempt to send too much TEXT data through
dbmoretext.

10022 SQLEASEC
EXPROGRAM

Attempt to send an empty command buffer to the
SQL Server.

10023 SQLENTLL
EXUSER

Name too long for LOGINREC field.

10024 (DB-
Library)

SQLETIME
EXTIME

SQL Server connection timed out.

10026 SQLEMODE
EXCOMM

Network connection not in correct mode – invalid
SQL Server connection.

10027 SQLEOOB
EXCOMM

Error in sending out-of-band data to SQL Server.

10028 SQLEITIM
EXPROGRAM

Illegal timeout value specified.

10029 SQLEDBPS
EXRESOURCE

Maximum number of DBPROCESSes already
allocated.

10030 SQLEIOPT
EXPROGRAM

Attempt to use invalid dboption.

10031 SQLEASNL
EXPROGRAM

Attempt to set fields in a null LOGINREC.

10032 SQLEASUL
EXPROGRAM

Attempt to set unknown LOGINREC field.

10033 SQLENPRM
EXPROGRAM

NULL parameter not allowed for this dboption.

10034 SQLEDBOP
EXPROGRAM

Invalid or out of range dbn parameter.

10035 SQLENSIP
EXPROGRAM

Negative starting index passed to dbstrcpy.

10036 SQLECNULL
EXPROGRAM

NULL destination variable not allowed.

10037 SQLESEOF
EXCOMM

Unexpected EOF from SQL Server.

10038 SQLERPND
EXPROGRAM

Attempt to initiate a new SQL Server operation with
results pending.

10039 SQLECSYN
EXCONVERSION

Attempt to convert data stopped by syntax error in
source field.

10040 SQLENONET
EXCOMM

DB-Library network communications layer not
loaded.

10041 SQLEBTYP
EXPROGRAM

Unknown bind type passed to DB-Library function.

10042 SQLEABNC
EXPROGRAM

Attempt to bind to a nonexistent column.

10043 SQLEABMT
EXPROGRAM

User attempted a dbbind with mismatched column
and variable types.

10044 SQLEABNP
EXPROGRAM

Attempt to bind using NULL pointers.

10045 SQLEBNCR
EXPROGRAM

Attempt to bind user variable to a nonexistent
compute row.

10046 SQLEAAMT
EXPROGRAM

User attempted a dbaltbind with mismatched
column and variable types.

10047 SQLENXID
EXNONFATAL

The server did not grant us a distributed-transaction
ID.

10048 SQLEIFNB
EXPROGRAM

Illegal field number passed to bcp_control.

10049 SQLEKBCO
EXINFO

1000 rows successfully bulk copied to host file.

10050 SQLEBBCI
EXINFO

Batch successfully bulk copied to SQL Server.

10051 SQLEKBCI
EXINFO

1000 rows sent to SQL Server.

10052 SQLEBCWE
EXNONFATAL

I/O error while writing bcp datafile.

10053 (DB-
Library)

SQLEBCNN
EXUSER

Attempt to bulk copy a null value into a server
column that does not accept null values.

10054 (DB-
Library)

SQLEBCOR
EXCONSISTENCY

Attempt to bulk copy an oversized row to SQL Server.

10055 SQLEBCPI
EXPROGRAM

Call bcp_init before any other bcp routines.

10056 SQLEBCPN
EXPROGRAM

Use bcp_bind, bcp_collen, and bcp_colptr only
after calling bcp_init with the copy direction set to
DB_IN.

10057 SQLEBCPB
EXPROGRAM

Do not use bcp_bind after bcp_init has been passed
a non-null input filename.

10058 SQLEVDPT
EXUSER

For bulk copy, all variable-length data must have
either a length-prefix or a terminator specified.

10059 SQLEBIVI

EXPROGRAM

Use bcp_columns and bcp_colfmt only after
bcp_init has been passed a valid input file.

10060 SQLEBCBC
EXPROGRAM

Call bcp_columns before bcp_colfmt.

10061 SQLEBCFO
EXUSER

Host files must contain at least one column: bcp.

10062 SQLEBCVH
EXPROGRAM

Call bcp_exec only after bcp_init has been passed a
valid host file.

10063 SQLEBCUO
EXRESOURCE

Unable to open host datafile: bcp.

10064 SQLEBUOE
EXRESOURCE

Unable to open error file: bcp.

10065 SQLEBWEF
EXNONFATAL

I/O error while writing bcp error file.

10066 SQLEBTMT
EXPROGRAM

Attempt to send too much text data with
bcp_moretext.

10067 SQLEBEOF
EXNONFATAL

Unexpected EOF encountered in bcp datafile.

10068 SQLEBCSI
EXCONSISTENCY

Host-file columns may be skipped only when copying
into the server.

10069 SQLEPNUL
EXCONSISTENCY

NULL program pointer encountered.

10070 SQLEBSKERR
EXCONSISTENCY

Cannot seek in data file.

10071 SQLEBDIO
EXPROGRAM

Bad bulk-copy direction.

10072 SQLEBCNT
EXUSER

Attempt to use bulk copy with a nonexistent server
table.

10073 SQLEMDBP
EXPROGRAM

Attempt to set maximum number of DPPROCESS
lower than 1.

10075 SQLCRSINV
EXPROGRAM

Invalid cursor statement.

10076 SQLCRSCMD
EXPROGRAM

Attempt to call cursor functions when there are
commands waiting to be executed.

10077 SQLCRSNOIND
EXINFO

One of the tables involved in the cursor statement
does not have a unique index.

10078 SQLCRSDIS
EXPROGRAM

Cursor statement contains one of the disallowed
phrases COMPUTE, UNION, FOR BROWSE, or SELECT
INTO.

10079 SQLCRSAGR
EXPROGRAM

Aggregate functions are not allowed in a cursor
statement.

10080 SQLCRSORD
EXPROGRAM

Only fully keyset-driven cursors can have ORDER BY,
GROUP BY, or HAVING PHRASES.

10081 SQLCRSMEM
EXPROGRAM

Keyset or window scroll size exceeds the memory
limitations of this machine.

10082 SQLCRSBSKEY
EXPROGRAM

Keyset cannot be scrolled backward in mixed cursors
with a previous fetch type.

10083 SQLCRSNORES
EXINFO

Cursor statement generated no results.

10084 SQLCRSVIEW
EXPROGRAM

A view cannot be joined with another table or a view
in a cursor statement.

10085 SQLCRSBUFR
EXPROGRAM

Row buffering should not be turned on when using
cursor functions.

10086 SQLCRSFROWN
EXINFO

Row number to be fetched is outside valid range.

10087 SQLCRSBROL
EXPROGRAM

Backward scrolling cannot be used in a forward
scrolling cursor.

10088 SQLCRSFRAND
EXPROGRAM

Fetch types RANDOM and RELATIVE can only be used
within the keyset of keyset-driven cursors.

10089 SQLCRSFLAST
EXPROGRAM

Fetch type LAST requires fully keyset-driven cursors.

10090 SQLCRSRO

EXPROGRAM

Data locking or modifications cannot be made in a
READONLY cursor.

10091 SQLCRSTAB
EXPROGRAM

Table name must be determined in operations
involving data locking or modifications.

10092 SQLCRSUPDTAB
EXPROGRAM

Update or insert operations using bind variables
require single table cursors.

10093 SQLCRSUPDNB
EXPROGRAM

Update or insert operations cannot use bind variables
when binding type is NOBIND.

10094 SQLCRSVIIND
EXPROGRAM

The view used in the cursor statement does not
include all the unique index columns of the
underlying tables.

10095 SQLCRSNOUPD
EXINFO

Update or delete operation did not affect any rows.

10096 SQLCRSOS2
EXPROGRAM

Cursors are not supported for this server.

10097 SQLEBCSA

EXPROGRAM

The BCP hostfile %s contains only %ld rows. Skipping
all of these rows is not allowed.

10098 SQLCRSRO
EXPROGRAM

Data locking or modifications cannot be made in a
READONLY cursor.

10099 SQLEBCNE
EXPROGRAM

The table %s contains only %ld rows. Copying up to
row %ld is not possible.

10100 SQLEBCSK
EXPROGRAM

The table %s contains only %ld rows. Skipping all of
these rows is not allowed.

10101 SQLEUVBF
EXPROGRAM

Attempt to read unknown version of bcp format file.

10102 SQLEBIHC
EXPROGRAM

Incorrect host-column number found in bcp format
file.

10103 SQLEBWFF
EXRESOURCE

I/O error while reading bcp format file.

10104 SQLNUMVAL
EXPROGRAM

The data stored in the DBNUMERIC/DBDECIMAL
structure is invalid.

10105 SQLEOLDVR
EXPROGRAM

The SQL Server's TDS is obsolete with this version of
DB-Library.

Troubleshooting (SQL Server 2000)

DB-Library Error Severities
DB-Library Error Severities

The following table lists all error severities with their numerical equivalents and an explanation of the type of error. When an error
occurs or when a message is sent, these numerical equivalents are passed to the currently installed, user-supplied error handler.

Error severity levels are defined in the Sqlfront.h header file. Your program must include Sqlfront.h if it refers to these severity
levels.

Error severity
Severity
number Description

EXINFO 1 Informational, nonerror.
EXUSER 2 User error.
EXNONFATAL 3 Nonfatal error.
EXCONVERSION 4 Error in DB-Library data conversion.
EXSERVER 5 The server has returned an error flag.
EXTIME 6 Timeout period exceeded while waiting for a

response from the server — the DBPROCESS is
still alive.

EXPROGRAM 7 Coding error in user program.
EXRESOURCE 8 Running out of resources — the DBPROCESS may

be dead.
EXCOMM 9 Failure in communication with server — the

DBPROCESS is dead.
EXFATAL 10 Fatal error — the DBPROCESS is dead.
EXCONSISTENCY 11 Internal software error — notify your primary

support provider.

See Also

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 10008 (DB-Library)
Error 10008 (DB-Library)

Severity Level 9

Message Text

Bad token from SQL Server: Datastream processing out of synchronization.

Explanation

This error occurs when DB-Library cannot interpret the Tabular Data Stream (TDS) sent from Microsoft® SQL Server™. A DB-
Library application communicates with SQL Server over the network using a TDS. The TDS is a specification for the
communication of data and other messages between SQL Server and the DB-Library client. The network libraries used by SQL
Server and the DB-Library client provide the interface for the transmission of TDS over a particular network protocol. The network
protocol used is independent from the TDS as long as there is an appropriate interface network library that supports the network
protocol, whether it is a named pipe connection or a socket connection. Each DB-Library application parses this TDS automatically
to extract useful information (for example, query result rows) or to generate requests of, or responses to, SQL Server in a format
that is mutually understood.

There are two main causes for this error:

The data sent by SQL Server over the network named pipe or socket has been corrupted. This is usually caused by a
network problem involving either network hardware or software.

The network can generate errors or messages unknown to DB-Library; therefore, this error can be generated.

Action

Inspect the Windows NT Event Viewer system and application logs. These logs may provide information that indicates if the
problem is related to the server network protocol, the network card, or the system configuration. Review the SQL Server-specific
entries in the application log or the SQL Server error log for relevant network-related errors that correspond in time with the
occurrence of the 10008 error seen on the client. If this review does not provide enough information to resolve the problem,
special network monitoring tools and a review of the client's configuration may be necessary.

If the problem persists, contact your primary network support provider for assistance.

Programmers using the SQL Server Programmer's Toolkit (for DB-Library) can handle error 10008 by adding conditional
statements to test for the occurrence of this error. When error 10008 is seen in the DB-Library error handler, additional
processing can include closing the current DBPROCESS connection, opening a new connection, and then resending the query.

See Also

Programming DB-Library for C

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Error 10024 (DB-Library)
Error 10024 (DB-Library)

Severity Level 6

Message Text

SQL Server connection timed out.

Explanation

This error message is returned from DB-Library when the query time-out setting for the application's connection to Microsoft®
SQL Server™ is too low. The query is terminated when it takes longer to complete than the time allocated.

Action

Check the application for configuration settings, and increase the query time-out setting. If this is a custom application, you can
adjust the query time-out setting by using the dbsettime() function.

See Also

Programming DB-Library for C

Troubleshooting (SQL Server 2000)

Error 10053 (DB-Library)
Error 10053 (DB-Library)

Severity Level 2

Message Text

Attempt to bulk copy a null value into a server column that does not accept null values.

Explanation

This error occurs when you attempt to bulk copy a null value into a table column that does not accept null values. This usually
occurs when the column is changed from NULL to NOT NULL after previous bulk copies.

Action

If the source file being bulk copied is character data, the file can be edited and the column value changed to an appropriate value
for the column definition. You can also change the current definition of the table or create a separate table with a column
definition that allows null values.

See Also

Programming DB-Library for C

Troubleshooting (SQL Server 2000)

Error 10054 (DB-Library)
Error 10054 (DB-Library)

Severity Level 11

Message Text

Attempt to bulk copy an oversized row to SQL Server.

Explanation

This error occurs during a bulk copy operation when a row or rows in the source data file do not match the row as defined for the
destination database table. It can occur due to a missing end-of-line marker. It can also occur if there are more column delimiters
in the source data file than currently exist in the destination database table, or if the source data file is corrupt.

Action

Verify that the source data file matches the column definitions for the database table, or create a new table to match the current
data file, bulk copy the data into the database, and then manipulate the data using Transact-SQL statements.

You can either manipulate the source data file or create a format file to facilitate the data transfer. You can manipulate character-
based data files by using a text editing tool that accommodates the data file size and will not add special hidden characters during
a save operation. The editing tool can then be used to manipulate the source data file by adding or deleting characters as
necessary so that the source data file matches the table definition. You can also create a format file. The generated format file can
be manipulated by a text editing tool and changed so that character positions/columns in the source data file are ignored. Native
format files are more difficult to manipulate.

The alternatives to manipulating the native format source data file and/or a format file are limited due to the storage of data types
other than character in a binary type format. It can be difficult to manipulate this file type with any editing tool, and it is more
difficult to generate and manipulate a format file. You can use the -F or the -L command-line flags to specify the first and last row
in the source data file that is to be bulk copied into SQL Server. If the source data file contains a few oversized rows, these flags
can be used to bulk copy up to the oversized row followed by a bulk copy operation from the row following the oversized row to
the end of the data file.

If you are unable to resolve this error, contact your primary support provider for assistance.

See Also

bcp Utility

Programming DB-Library for C

Reporting Errors to Your Primary Support Provider

Troubleshooting (SQL Server 2000)

Distributed Queries Error Messages
This topic discusses troubleshooting tips and techniques for distributed queries against various OLE DB providers. On an error
condition against an OLE DB provider, Microsoft® SQL Server™ outputs these sets of error messages:

Provider error messages (indicated by one or more error messages surrounded by square brackets), which are returned by
the OLE DB provider.

SQL Server error messages.

SQL Server uses the OLE DB provider's error object and its interfaces to return the provider's error messages. If the provider does
not support the error object and its interfaces for the given error context, provider error messages are not available.

In addition to using these error message topics to resolve problems with distributed queries, use SQL Profiler to trace the OLE DB
Errors event class. The OLE DB Errors event class outputs the OLE DB interface and method for the provider returning an error
and the error code returned by the method invocation. The hexadecimal error code can be looked up in the Oledberr.h header file
(located in the \DevTools\Include directory of the target SQL Server installation directory, by default, C:\Mssql) to determine the
meaning of the error code, by default, the OLE DB Errors event class does not show up in SQL Profiler. For more information
about seeing the OLE DB Errors event class and other advanced errors using SQL Profiler, see Creating and Managing Traces and
Templates.

This table lists all distributed queries error messages.

Error Severity Description
7303 16 Could not initialize data source object of OLE DB provider '%ls'.

%ls.
7306 16 Could not open table '%ls' from OLE DB provider '%ls'. %ls.
7314 16 OLE DB provider '%ls' does not contain table '%ls'.
7321 16 An error occurred while preparing a query for execution against

OLE DB provider '%ls'. %ls.
7356 16 OLE DB provider '%ls' supplied inconsistent metadata for a

column. Metadata information was changed at execution time.
7357 16 Could not process object '%ls'. The OLE DB provider '%ls'

indicates that the object has no columns.
7391 16 The operation could not be performed because the OLE DB

provider '%ls' does not support distributed transactions.
7392 16 Could not start a transaction for OLE DB provider '%ls'.
7399 16 OLE DB provider '%ls' reported an error. %ls.
7403 16 Could not locate registry entry for OLE DB provider '%ls'.
7413 16 Could not perform a Windows authenticated login because

delegation is not available.
8114 16 Error converting data type %ls to %ls.
8501 16 MS DTC on server '%.*ls' is unavailable.

Troubleshooting (SQL Server 2000)

Embedded SQL for C Error Messages
When developing and running Embedded SQL for C (ESQL/C) programs, you will see different status and error messages. All
message numbers that are returned by ESQL/C are negative numbers.

The messages in the following table are generated by ESQL/C. Because the messages are not generated by Microsoft® SQL
Server™, they do not appear in the sysmessages table.

Message
number

Run time/
compile time Description

4998 C Attempt to connect to the specified database server
failed.

19031 C Unable to open bindfile.
19051 C Too many sections.
19101 R Statement too long.
19103 R Illegal %s value %s.

Non-numeric %s value %s.
(Invalid number for the timeout value.)

19104 R/C Incorrect SQL statement syntax.
19199 C ESQL keyword(s) detected in PREPARE statement.
19306 C Host variable used but not declared.
19313 R Too few host variables.
19324 C Host variable may not be used in this context.
19408 R Invalid SQL data type for SQL_TYP_DECIMAL.
19413 R Data overflow occurred during decimal data

conversion.
19422 R Unknown SQL Server data type.
19423 R Invalid destination data type.
19501 R No cursor declared.
19505 C Duplicate cursor name: %s.
19508 R Cursor is not positioned on a row.
19514 R Cursor is not prepared.
19517 R Cursor open attempted for non-SELECT prepared

statement.
19521 R Open cursor failure for section %d of plans.
19523 R Failure to locate/close cursor. Section %d, plan %s.
19524 R Table for this cursor not updatable.
19525 R Attempt to fetch on unopened cursor.
19526 R No access plan for this cursor.
19527 R Could not get section for this cursor.
19528 R Connection for section %d of plan %s has NULL

DBPROCESS.
19701 R NULL connection name.
 Connection %s not found.
19702 R Connection name not found.
 Attempt to close nonexistent connection.
19703 R Failed to get DBPROCESS.

Autoconnect failure.
19706 R Login failure in section %d.
19707 R Duplicate connection name.
19822 R Improperly initialized user SQLDA.
19911 C The SQL data type specified for a host variable is invalid.
19913 C The token identifier has already been used.
19917 C Invalid or incorrect option to sqlainit().
19946 C Cursor %s not declared.
19953 C Invalid call type.

19955 R Text not found in %s section %u.
19956 R Access plan section or statement text not found.
19957 R Access plan or statement text not found.
19994 R Can't run next BEGIN DECLARE sections. Statement

ignored.
19995 R END DECLARE encountered without preceding BEGIN

DECLARE statement. Statement ignored.
19999 C An internal error occurred.

See Also

Programming Embedded SQL for C

Troubleshooting (SQL Server 2000)

SQL Server Enterprise Manager Error Messages
This section contains explanations and corrective actions for many of the error messages related to SQL Server Enterprise
Manager.

Troubleshooting (SQL Server 2000)

<0s> is not supported.
<0s> is not supported.

Message Text

<0s> is not supported.

Explanation

The syntax you entered is valid but is not supported visually by SQL Server Enterprise Manager.

Action

Be sure to verify your syntax before saving.

See Also

Query Fundamentals

Troubleshooting (SQL Server 2000)

<0s> may not be used in this query type.
<0s> may not be used in this query type.

Message Text

<0s> may not be used in this query type.

Explanation

The action you are attempting is not permitted with the type of query you have selected.

Action

Verify the syntax in your query or change the query type.

See Also

Query Fundamentals

Troubleshooting (SQL Server 2000)

A relationship cannot contain more than '<0d>' columns.
A relationship cannot contain more than '<0d>' columns.

Message Text

A relationship cannot contain more than '<0d>' columns.

Action

Select fewer than 16 columns when defining the foreign key relationship.

See Also

Creating and Modifying PRIMARY KEY Constraints

Primary Key Constraints

Troubleshooting (SQL Server 2000)

Cannot add this expression to the select list.
Cannot add this expression to the select list.

Message Text

Cannot add this expression to the select list.

Explanation

There are limitations to what expressions are allowed in the select list. The expression you are trying to add may be invalid.

Action

Verify that the syntax in the expression is correct. It is possible that the type of expression is invalid.

See Also

Expressions

Using Operators in Expressions

Troubleshooting (SQL Server 2000)

Error modifying column properties.
Error modifying column properties.

Appears when your constraint expression contains an error.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]The name '[column value]' is illegal in this context. Only
constants, constant expressions, or variables allowed here. Column names are illegal.

Explanation

A default value defined for a character column is not enclosed in single quotation marks (').

Action

Enclose the value in single quotation marks in the database column's Default Value cell, and then save the table.

See Also

ALTER TABLE

Columns Property

Creating and Modifying DEFAULT Definitions

Modifying Column Properties

Troubleshooting (SQL Server 2000)

Illegal expression list usage.
Illegal expression list usage.

Message Text

Illegal expression list usage.

Explanation

There is an error in the syntax of your query. SQL Server Enterprise Manager has attempted to locate the source of the error.

Action

Review your query syntax and correct the error before running your query.

See Also

Expressions

Filtering Rows with WHERE and HAVING

Query Fundamentals

Troubleshooting (SQL Server 2000)

Information models in the specified Meta Data Services
repository database must be updated in order to save this DTS
package version
Information models in the specified Meta Data Services repository database must be updated in order to
save this DTS package version.

Message Text

Information models in the specified Meta Data Services repository database must be updated in order to save this DTS package
version.

Explanation

Upgrading to Microsoft® SQL Server™ 2000 does not install the SQL Server 2000 Meta Data Services information models
required by Data Transformation Services (DTS), which results in this error when you save to Meta Data Services. The error occurs
after upgrading from SQL Server version 7.0 to SQL Server 2000. It does not occur if you perform a new installation, or if you
store DTS packages in SQL Server, as a structured storage file, or as a Microsoft Visual Basic® file.

Action

You must upgrade the Meta Data Services information models to the versions expected by DTS. For more information and
instructions for upgrading the information models, see DTS Information Model.

Troubleshooting (SQL Server 2000)

Object <0s> does not exist in the database.
Object <0s> does not exist in the database.

Message Text

Object <0s> does not exist in the database.

Explanation

There is an error in the syntax of your query. SQL Server Enterprise Manager has attempted to locate the source of the error.

Action

Review your query syntax and correct the error before running your query.

See Also

Expressions

Filtering Rows with WHERE and HAVING

Query Fundamentals

Using the Select List

Troubleshooting (SQL Server 2000)

Only one ROWGUIDCOL column is allowed per table.
Only one ROWGUIDCOL column is allowed per table.

Message Text

Only one ROWGUIDCOL column is allowed per table.

Explanation

You have attempted to assign more than one ROWGUIDCOL. The ROWGUIDCOL is a special property similar to IDENTITY and
only one ROWGUIDCOL is allowed per table.

See Also

Setting Column Properties

Database Designer

https://msdn.microsoft.com/en-us/library/aa276120(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292883(v=sql.80).aspx

Troubleshooting (SQL Server 2000)

SQL Verification.
SQL Verification.

Message Text

SQL Verification.

Explanation

The SQL verified successfully.

See Also

Expressions

Filtering Rows with WHERE and HAVING

Query Fundamentals

Using the Select List

Troubleshooting (SQL Server 2000)

System errors.
System errors.

Two system errors can appear in the Save Incomplete dialog box when you exceed Microsoft® SQL Server limitations that are
not controlled by SQL Server Enterprise Manager.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Can't allocate space for object 'Syslogs' in database 'Guest'
because the 'logsegment' segment is full. If you ran out of space in Syslogs, dump the transaction log.
Otherwise, use ALTER DATABASE or sp_extendsegment to increase the size of the segment.

Explanation

This error occurs because there is insufficient log space to complete the transaction.

Action

Follow the recommendation in the message and delete the transaction log. (Typically this action will not entirely solve the
problem.)

Increase the size of the database to accommodate the change. With large databases, changes that require the recreation of
tables (for example, changing a column data type or size) may not be possible using SQL Server Enterprise Manager. You
may need to use methods of transferring data that don't require transactions, such as bulk copying (bcp utility).

ODBC error text

[Microsoft][ODBC SQL Server Driver]Timeout expired.

Explanation

The timeout can occur when you're updating the database with any Transact-SQL changes.

Action

Try again later to save the diagram or selected tables.

Save a change script and apply it to the database at a later time.

Increase the SQL Query Time-out value and try to save the diagram or selected tables again.

To increase the SQL Query Time-out value

1. From the Tools menu, choose Options.

2. In the left pane, click Data Tools, and then click Data View.

3. Type a new value in the SQL query time-out box.

See Also

ALTER DATABASE

Physical Database Files and Filegroups

remote query timeout Option

Saving a Change Script

sp_configure

https://msdn.microsoft.com/en-us/library/aa292501(v=sql.80).aspx

Troubleshooting (SQL Server 2000)

The current version of the ODBC driver is not valid.
The current version of the ODBC driver is not valid.

Message Text

The current version of the ODBC driver is not valid.

Explanation

Your ODBC driver is not current.

Action

For best results, use the ODBC driver provided with the Microsoft® SQL Server™ installation.

For more information, see the ODBC documentation.

Troubleshooting (SQL Server 2000)

The outer join operator (+) cannot be used in QBE.
The outer join operator (+) cannot be used in QBE.

Message Text

The outer join operator (+) cannot be used in QBE.

Explanation

There is an error in the syntax of your query. SQL Server Enterprise Manager has attempted to locate the source of the error.

Action

Review your query syntax and correct the error before running your query.

See Also

Join Fundamentals

Transact-SQL Joins

Troubleshooting (SQL Server 2000)

The Query Designer supports no more than one data source for
this type of query.
The Query Designer supports no more than one data source for this type of query.

Message Text

The Query Designer supports no more than one data source for this type of query.

Explanation

Only one data source can be used with this query type.

See Also

Query Fundamentals

Troubleshooting (SQL Server 2000)

There are not enough columns to match the subquery select
list.
There are not enough columns to match the subquery select list.

Message Text

There are not enough columns to match the subquery select list.

Explanation

The SELECT statement needs to include the same number of columns that the embedded subquery returns.

See Also

Expressions

Query Fundamentals

Subquery Fundamentals

Using the Select List

Troubleshooting (SQL Server 2000)

Unable to add constraint.
Unable to add constraint.

Appears when a new constraint has failed on existing data or your constraint expression contains an error. Compare the ODBC
error text that appears in the Save Incomplete dialog box with the error text shown below to determine the appropriate solution.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Data exists in table '[table name]', database '[database name]',
that violates CHECK constraint '[constraint name]' being added. ALTER command has been aborted.
[Microsoft][ODBC SQL Server Driver][SQL Server]Unable to create constraint. See previous errors.

Explanation

Existing data does not match the check constraint.

Action

Change the data (for example, by using SQL Server Enterprise Manager) to match the constraint.

Clear the Check existing data on creation check box in the Tables property page for the check constraint in question.

Change the constraint expression in the Tables property page for the check constraint in question.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column '[column name]' specified in constraint
definition.
[Microsoft][ODBC SQL Server Driver][SQL Server]Unable to create constraint. See previous errors.

Explanation

The text value in the check constraint expression on the Tables property page is not enclosed in single quotation marks (').

A column that participates in the check constraint has been renamed. For example, if the original constraint had the
expression (cityname = 'Paris') and you renamed the column to city, you would see the same error except that 'cityname'
would be the invalid column shown in the error message.

Action

Correct the expression and save the table.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Line [line number]: Incorrect syntax near '[operator]'.

Explanation

The expression defined for the check constraint (in the Tables property page) or the default constraint (in the Default Value cell)
is not valid Transact-SQL syntax. For example, the check constraint expression 'city equals Paris' was typed instead of 'city = Paris'.

Action

Correct the expression and save the table.

See Also

Database Designer

Filtering Rows with WHERE and HAVING

https://msdn.microsoft.com/en-us/library/aa292883(v=sql.80).aspx

Query Fundamentals

Database Objects

Troubleshooting (SQL Server 2000)

Unable to create index.
Unable to create index.

Appears when a new index has failed on existing data.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Create unique index aborted on duplicate key. Primary key is
'[primary key data]'
[Microsoft][ODBC SQL Server Driver][SQL Server]Unable to create constraint. See previous errors.

Explanation

A unique index was created in the Indexes/Keys property page but duplicate data exists in the database. The value after the
phrase "Primary key is" is the first duplicate value that Microsoft® SQL Server™ found as it created the index.

Action

Remove duplicate data from the database (for example, by using SQL Server Enterprise Manager).

Change the option in the Indexes/Keys property page to allow duplicate rows in the index.

See Also

Creating SQL Server Indexes

Indexes

UNIQUE Constraints

Troubleshooting (SQL Server 2000)

Unable to create relationship.
Unable to create relationship.

Appears when a new constraint has failed on existing data.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Data exists in table '[table name]', database '[database name]',
that violates FOREIGN KEY constraint '[constraint name]' being added. ALTER command has been aborted.
[Microsoft][ODBC SQL Server Driver][SQL Server]Unable to create constraint. See previous errors.

Explanation

Existing data fails the foreign key constraint.

Action

Change the data that fails the foreign key constraint by running a query to show all the foreign key values that do not match
primary key values. For example, to find foreign key values in the job_id column of the employee table that do not match
primary key values in the jobs table, run a query with this Transact-SQL syntax:

SELECT employee.emp_id, employee.job_id
FROM employee LEFT OUTER JOIN jobs ON employee.job_id = jobs.job_id
WHERE (jobs.job_id IS NULL)

Clear the Check existing data on creation check box in the Relationships property page.

See Also

Constraints

Database Designer

Filtering Rows with WHERE and HAVING

Query Fundamentals

https://msdn.microsoft.com/en-us/library/aa225863(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa292883(v=sql.80).aspx

Troubleshooting (SQL Server 2000)

Unable to modify table.
Unable to modify table.

Appears when a new constraint has failed on existing data. Compare the ODBC error text that appears in the Save Incomplete
dialog box with the two ODBC errors shown below to determine the appropriate solution.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]The column [column name] in table Tmp_ [table name] may not be
null.

Explanation

A new database column has been added that doesn't allow null values and doesn't provide a default value. The table name in
question appears after "Tmp_".

Action

Change the column properties. Either select the Allow Nulls property or type a Default Value setting.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Attempt to insert the value NULL into column '[column name]',
table '[database name] TMP_ [table name]'; column does not allow nulls. INSERT fails.
[Microsoft][ODBC SQL Server Driver][SQL Server]Command has been aborted.

Explanation

The Allow Nulls property on an existing database column has been cleared, but the column has existing null values in it. The
table name in question appears after "TMP_".

Action

Go to the column and select the Allow Nulls property.

See Also

Modifying Column Properties

Troubleshooting (SQL Server 2000)

Unable to preserve trigger.
Unable to preserve trigger.

Appears when your trigger text references a column that has been renamed, deleted, or assigned a different data type.

ODBC error text

[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column name '[column name]'.
- Unable to preserve trigger '[trigger name]'.

Explanation

A change to the table required the table to be re-created. When a table is re-created, the triggers attached to that table are
automatically re-created as well.

Action

The recommended solution depends on the type of change made to the column referenced by the trigger.

To preserve a trigger that references a renamed column

Rename the column to its original name and then save the table. This action will allow the table to be re-created. You can
now rename the column, save the table again, and then edit the trigger to fix the renamed columns.

To preserve a trigger that references a deleted column

1. Expand the table that the trigger is attached to.

2. Right-click the trigger you want to change and choose Open from the shortcut menu.

3. Edit the trigger text and save the trigger.

4. Save the table or database diagram.

To preserve a trigger that references a column whose data type changed

1. In your database diagram, click the Save Change Script button in the Database Diagram toolbar.

2. Open the change script.

3. In Data View, expand the table that the incorrect trigger is attached to.

4. Delete the incorrect trigger.

5. Create a new trigger for the table.

6. In the change script, select the trigger text. The set of statements that creates the trigger begins with a CREATE TRIGGER
statement.

7. Copy the selected text into the Trigger window.

8. On the toolbar, click the Save button. This action saves the trigger in the database and adds the trigger to the table in the
Tables folder.

9. Repeat Steps 3 through 8 for each trigger you want to recreate.

See Also

Creating a Trigger

Trigger Object

Triggers

Troubleshooting (SQL Server 2000)

Unnecessary use of CONVERT function.
Unnecessary use of CONVERT function.

Message Text

Unneccesary use of CONVERT function.

Explanation

There is an error in the syntax of your query. SQL Server Enterprise Manager has attempted to locate the source of the error.

Action

Review your query syntax and correct the error before running your query.

See Also

Data Type Conversion

Expressions

Filtering Rows with WHERE and HAVING

Using the Select List

Troubleshooting (SQL Server 2000)

Unsupported SQL.
Unsupported SQL.

Message Text

Unsupported SQL.

Explanation

There is an error in the syntax of your query. SQL Server Enterprise Manager has attempted to locate the source of the error.

Action

Review your query syntax and correct the error before running your query.

See Also

Expressions

Filtering Rows with WHERE and HAVING

Using the Select List

Troubleshooting (SQL Server 2000)

SQL Server Agent Error Messages
SQL Server Agent Error Messages

This section contains explanations and corrective actions for some of the error messages related to SQL Server Agent.

Troubleshooting (SQL Server 2000)

Error 22
Error 22

 Topic last updated -- January 2004

Message Text
The polling interval could not be set (reason: %s).

Explanation

SQL Server Agent reports this message when the master server requests the target server to update the polling interval, but the
update fails because the target server cannot open or update the value in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\SQLServerAgent\MSXPollInterval

Possible causes for the failure include registry contention, corruption in the registry, or a missing registry key.

User Action

The Windows error message included in the text of this message provides the best clue for solving the problem. The root cause of
this error is that SQL Server Agent cannot access the Windows registry. Therefore, solving this problem may require you to
investigate and resolve the Windows error message reported.

Registry contention occurs when more than one thread tries to update the registry at the same time. Because only one thread can
update the registry at a time, registry contention may cause this error. If registry contention causes this error, resending the
update request by calling sp_post_msx_operation may resolve the problem.

If the registry key has been deleted, restarting SQL Server Agent re-creates it. The registry key must contain a REG_DWORD value.
If the key is corrupt, delete the key, and restart SQL Server Agent.

Troubleshooting (SQL Server 2000)

Error 318
Error 318

 Topic last updated -- January 2004

Message Text

The job details could not be read (see the SQLServerAgent errorlog [at the target server] for details).

Explanation

SQL Server Agent reports this message when a target server fails to add or update a master server job.

The target server must be able to execute a SELECT statement against the msdb database on the master server. When the target
server successfully connects to the master server, but the SELECT statement fails, SQL Server Agent reports this error message on
the master server.

User Action

Make sure that the target server uses an account that has the correct privileges on the master server. In particular, the account
must be able to execute a SELECT statement against the msdb database and must also be a member of TargetServersRole.

Intermittent network problems may also cause this error. If the network connection between the target and the master server fails
during the SELECT statement, the server logs this error. In this case, retrying the statement may resolve the problem.

Troubleshooting (SQL Server 2000)

Error 203
Error 203

 Topic last updated -- January 2004

Message Text
Forwarding SQLServer event %ld (SQL Server Error %ld) to server %s

Explanation

This is an informational message indicating that SQL Server forwarded the event described to another server. This forwarding
feature is off by default. The Agent Properties dialog allows an administrator to select messages to forward, as well as the server
to forward the messages to.

User Action

This message indicates normal operation. No user action is required.

Troubleshooting (SQL Server 2000)

Error 312
Error 312

 Topic last updated -- January 2004

Message Text

An MSX enlistment has been requested by %s for '%s'.

Explanation

This is an informational message indicating that this server is enlisting into a multiserver environment. The enlistment process
makes this server a target server in a SQL Server Agent multiserver environment.

User Action

This message indicates normal operation. No user action is required.

Troubleshooting (SQL Server 2000)

Error 311
Error 311

 Topic last updated -- January 2004

Message Text

Thread %s (ID %ld) is still running.

Explanation

When SQL Server Agent prepares to shut down, it sends all threads an event notifying them of the shutdown. SQL Server Agent
then waits for a period of time to allow the threads to exit. After this period of time, if one or more threads are still active, SQL
Server Agent logs this message and forcibly terminates each thread.

User Action

If a job is forcibly terminated when SQL Server Agent shuts down, the job may be left in an indeterminate state, depending on the
type of job step and the stage of the job at the time that the job was terminated.

Recovery steps depend on the specific job and the exact state of the job. For simple Transact-SQL jobs or jobs that occur within a
transaction, it may be sufficient to simply rerun the job. Complex jobs that are not protected within a transaction may require
manual recovery by someone who knows the details of the job.

The registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\SQLServerAgent\JobShutdownTimeout
determines how long SQL Server Agent waits for jobs to exit. You can increase the value of this registry key to allow more wait
time. However, increasing the timeout may also cause SQL Server Agent to take longer to shut down.

Troubleshooting (SQL Server 2000)

XML Error Messages
The XML error messages are classified in the following categories:

Errors in annotated XDR schemas

Errors in XPath queries

MSXML errors detected during XPath processing

Troubleshooting (SQL Server 2000)

Errors in Annotated XDR Schemas
Errors in Annotated XDR Schemas

The XDR schema errors are classified in the following categories:

XDR schema errors detected during the schema processing

XDR schema errors detected by XPath

XDR Schema Errors Detected During the Processing of the Annotated XDR Schema.

"Schema: unable to load schema %1. An error occurred (%2)"

The annotated schema could not be loaded. Check that the schema file indicated is in the expected location and you have
permission to access it. Verify that the schema is well-formed and valid XML.

"Schema: duplicate element definition (%1)"

"Schema: duplicate attribute definition (%1) on %2"

"Schema: duplicate attribute reference (%1) on %2"

"Schema: duplicate top-level attribute definition (%1)"

An attribute or element definition or reference appears more than once in the schema. Remove the offending duplicates.

"Schema: missing attribute definition (%1) on %2"

"Schema: missing element definition (%1)"

A required attribute or element is missing from the schema. Add the missing information.

"Schema: missing %1 on %2"

The annotation (%1) is missing from the schema. Add the missing annotation.

(For example, <sql:relationship key-relation="T" foreign-relation="T" /> is missing key and foreign-key.)

"Schema: value expected for %1 on %2"

The value of the annotation (%1) is empty. (E.g., sql:field=""). Add the missing value.

"Schema: invalid value for %1 on %2"

The value of the annotation (%1) is not valid. (For example, sql:key-fields=" "). Correct the value.

"Schema: nested element definition is not allowed"

An ElementType cannot contain an ElementType.

"Schema: content is not allowed in a relationship tag"

The relationship tag can only have attributes (<sql:relationship />).

"Schema: unknown attribute %1 on relationship tag"

The only attributes on relationship are: key, key-relation, foreign-key, and foreign-relation. XML names are case-sensitive.

"Schema: the key/foreign-key pair in a relationship on %1 do not have the same number of columns"

Check the value of the key and foreign-key attributes on the indicated relationship tag.

(For example, <sql:relationship key-relation="T" foreign-relation="T" key="a b" foreign-key="x" /> has two columns in key but
only one column in foreign-key.) Column names that have embedded spaces must be wrapped with square brackets ([]). Refer to
the topic in SQL Server Books Online that explains the relationship.

"Schema: '0' or '1' expected for %1 on %2"

The attribute indicated is Boolean-valued. Use "0" for false, "1" for true.

"Schema: unknown XDR type %1 on %2"

The indicated type is not a valid XDR type. See the XML Data Reduced specification for the complete list of available types.

"Schema: unknown SQL type %1 on %2"

The indicated data type is not a valid SQL Server data type. SQL Server data type is used to distinguish among the large object
binary types, and so must be one of: binary, image, ntext, or text

"Schema: invalid name/type, string value expected"

The value of the name or type attribute is invalid.

"Schema: invalid schema URL (%1)"

The URL is not valid.

"Schema: unknown element %1"

The only recognized Schema elements are: group, attribute, element, AttributeType, or ElementType.

"Schema: content other than relationship is not allowed in an element/attribute/AttributeType"

These tags can have attributes or a relationship annotation, but no other content.

"Schema: cannot infer default mapping for %1. Neither it nor any of its ancestors defines a relation"

Refer to the doc sections on relation and default mappings. The relation mapping for an element or attribute could not be
determined.

"Schema: reference to %1 not allowed. Schema element/attribute is only allowed inside an ElementType"

The element and attribute tags can be used only inside of an ElementType.

"Schema: the element/attribute name %1 is invalid"

The name is not a valid XML element or attribute name.

"Schema: 'type' attribute expected on element/attribute"

"Schema: 'name' attribute expected on ElementType/AttributeType"

A schema item is missing a type or name attribute. (For example, <ElementType type="Oops" /> will cause this error; the user
should have used name, not type. Similarly for <element name="Oops" />)

"Schema: invalid 'type' on element/attribute"

"Schema: invalid 'name' on ElementType/AttributeType"

The name is not a valid XML element/attribute name.

"Schema: mixed content is not allowed on element %1. Property elements cannot have subelements"

Mixed content on property elements is not supported. Refer to the topic in SQL Server Books Online that defines property
elements. [A property element is one that maps to a column in SQL Server. The explicit mapping is given using the field
annotation, or the default (implicit) mapping will occur with the content="textOnly" annotation (in which case the column name is
the element name).]

"Schema: unresolved namespace prefix (%1)"

The namespace prefix was used but never defined (using xmlns:prefix="uri") in the current context.

"Schema: relationship expected on '%1' when specifying a limit field"

The limit-field annotation is used to qualify a join. It cannot be used except on an attribute or element with a relationship.

"Schema: %1 cannot be used on is-constant element (%2)"

Refer to the topic in SQL Server Books Online that explains the is-constant annotation. Is-constant elements cannot have fields or
a relation.

"Schema: relationship expected on %1"

The element or attribute requires a relationship.

"Schema: unexpected relationship on %1"

The element or attribute cannot have a relationship.

"Schema: invalid relationship on %1"

Refer to the topic in SQL Server Books Online that defines the relationship annotation. Relationships can be invalid for any
number of reasons. Common reasons include:

The first key-relation must be the mapped ancestor's table

The last foreign-relation must be the current node's table

The table and column names are always case-sensitive

"Schema: map-field is not allowed on %1. This annotation may be used only on attributes and property elements"

The map-field annotation can be used only on nodes that map to columns in SQL Server. These are elements or attributes
annotated with field, or elements with textOnly content.

"Schema: a relationship from the same table to itself (self-join) is not supported on attribute %1"

The relationship is not supported in SQL Server 2000. Consider using is-constant or different relations.

"Schema: a base path is required to resolve external schema reference"

The external schema was referenced without a base path.

"Schema: the attribute %1 on an element is not supported"

"Schema: the attribute %1 on an attribute is not supported"

"Schema: the attribute %1 on an ElementType is not supported"

"Schema: the attribute %1 on an AttributeType is not supported"

An unrecognized attribute was used. Refer to the XML Data Reduced specification for the use of element, attribute, ElementType,
and AttributeType.

XDR Schema Errors Detected by XPath

"Schema: the url-encode annotation requires one or more keys (specified in join relationships or the key-field annotation) in an
ancestor or self"

The url-encode annotation causes a direct object query to be generated. Direct object queries must select a single column from a
single row, so key information is required to select a single row from the table. Keys are described by key-fields and
relationships. The url-encoded node or one of its ancestors has no keys.

"Schema: a join relationship is required between %1 and %2"

When an element and its child map to different tables, a relationship is required. Refer to the topic in SQL Server Books Online
that explains the use of the relationship annotation.

"Schema: the join relationship between %1 and %2 is invalid"

Refer to the topic in SQL Server Books Online that explains the use of the relationship annotation.

"Schema: the annotations url-encode and use-cdata are mutually exclusive and may not be used with any of the types
id/idref/idrefs/nmtoken/nmtokens"

Not all annotations can be used with each other. Remove one of the mutually exclusive annotations.

"Schema: the map-field annotation is not allowed on the root element (%1)"

The top-most element must be mapped, or else is-constant.

"Schema: a relation is expected on the element %1"

Refer to the topic in SQL Server Books Online that explains relation and default mappings. The relation mapping for the element
could not be determined.

"Schema: recursive element containment is not supported"

Recursion is not supported in SQL Server 2000.

"Schema: the is-constant element %1 cannot have attributes"

Attributes are not allowed on is-constant elements. Attributes can be used only on elements with relation.

Troubleshooting (SQL Server 2000)

Errors in XPath Queries
Errors in XPath Queries

These are the XPath errors detected during XPath processing

"XPath: an unexpected internal error occurred"

Not expected during typical processing.

"XPath: unable to instantiate MSXML class factories"

"XPath: the parsed XPath contains an unexpected value (%1). The version of MSXML2.DLL installed may be incompatible with
SQLXMLX.DLL"

Not expected during typical processing. If one of these errors occurs, the most likely cause is an installation problem. Check that
SQLXMLX.DLL and MSXML2.DLL are the versions that were installed with SQL Server.

"XPath: the %1 axis is not supported"

"XPath: the %1 nodetest is not supported"

"XPath: the %1 function is not supported"

"XPath: the %1 operator is not supported"

Refer to the topic in SQL Server Books Online that explains the functionality supported in SQL Server 2000.

"XPath: direct object access must select a column"

"XPath: only direct object access may select an attribute"

Refer to the topic in SQL Server Books Online that explains direct object access. Selecting an attribute is supported only in direct
object access because the attribute's value is returned, and this is not valid XML. Conversely, direct object access must select a
single column from a single row.

"XPath: the root selection (/) is not supported"

Refer to the topic in SQL Server Books Online that explains XPath Limitations.

"XPath: the attribute %1 cannot be selected from root. It must be selected from a containing element"

There can be no top-level attributes. Only elements can have attributes.

"XPath: ordinal (numeric) predicates are not supported"

Refer to the topic in SQL Server Books Online that explains XPath Limitations.

"XPath: the parameter %1 is undefined"

The parameter was used, but not defined anywhere.

"XPath: the type of the parameter %1 is not supported. XPath parameters must be of type WSTR"

Only string-valued parameters are supported in XPath queries.

"XPath: unable to find %1 in the schema"

The named element or attribute does not exist in the schema.

"XPath: conversion to type %1 cannot be performed"

Refer to the topic in SQL Server Books Online that explains XPath Data Types.

"XPath: unable to evaluate the text content of element %1"

"XPath: the use of idrefs/nmtokens %1 in the predicate is not supported"

Refer to the topic in SQL Server Books Online that explains XPath Limitations. The named element does not map to a single
column in a single row of the database.

"XPath: uncorrelated query in predicate is not supported. Read the documentation for details"

Refer to the topic in SQL Server Books Online that explains XPath Limitations. XPath cross-products are not supported in SQL

Server 2000.

Troubleshooting (SQL Server 2000)

MSXML Errors Detected During XPath Processing
MSXML Errors Detected During XPath Processing

"MSXML2: %1 is an invalid or unsupported XPath"

Either the XPath contains an error or it contains constructs that MSXML2 does not support.

Troubleshooting (SQL Server 2000)

ODBC Error Messages
SQLERROR returns SQLSTATE values as defined by the X/Open and SQL Access Group SQL CAE specification (1992). SQLSTATE
values are strings that contain five characters. The following table lists SQLSTATE values that a driver can return for SQLError.

The character string value returned for SQLSTATE consists of a two-character class value followed by a three-character subclass
value. A class value of 01 indicates a warning and is accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class values
other than 01, except for the class IM, indicate an error and are accompanied by a return code of SQL_ERROR. The class IM is
specific to warnings and errors that derive from the implementation of ODBC. The subclass value 000 in any class is for
implementation defined conditions within the given class. The assignment of class and subclass values is defined by SQL-92.

Note Although successful execution of a function is indicated typically by a return value of SQL_SUCCESS, the SQLSTATE 00000
also indicates success.

SQLSTATE ODBC API (Driver Manager) error
00000 Success
01000 General warning
01002 Disconnect error
01004 Data truncated
01006 Privilege not revoked
01S00 Invalid connection string attribute
01S01 Error in row
01S02 Option value changed
01S03 No rows updated or deleted
01S04 More than one row updated or deleted
01S05 Cancel treated as FreeStmt/Close
01S06 Attempt to fetch before the result returned the first rowset
07001 Wrong number of parameters
07006 Restricted data type attribute violation
07S01 Invalid use of default paramater
08001 Unable to connect to data source
08002 Connection in use
08003 Connection not open
08004 Data source rejected establishment of connection
08007 Connection failure during transaction
08S01 Communication link failure
21S01 Insert value list does not match column list
21S02 Degree of derived table does not match column list
22001 String data right truncation
22002 Indicator variable required but not supplied
22003 Numeric value out of range
22005 Error in assignment
22008 Datetime field overflow
22012 Division by zero
22026 String data, length mismatch
23000 Integrity constraint violation
24000* Invalid cursor state
25000 Invalid transaction state
28000 Invalid authorization specification
34000 Invalid cursor name
37000 Syntax error or access violation
3C000 Duplicate cursor name
40001 Serialization failure
42000 Syntax error or access violation
70100 Operation aborted
IM001 Driver does not support this function

IM002 Data source name not found and no default driver specified
IM003 Specified driver could not be loaded
IM004 Driver's SQLAllocEnv failed
IM005 Driver's SQLAllocConnect failed
IM006 Driver's SQLSetConnectOption failed
IM007 No data source or driver specified; dialog prohibited
IM008 Dialog failed
IM009 Unable to load translation DLL
IM010 Data source name too long
IM011 Driver name too long
IM012 DRIVER keyword syntax error
IM013 Trace file error
S0001 Base table or view already exists
S0002 Base table not found
S0011 Index already exists
S0012 Index not found
S0021 Column already exists
S0022 Column not found
S0023 No default for column
S1000 General error
S1001 Memory allocation failure
S1002 Invalid column number
S1003 Program type out of range
S1004 SQL data type out of range
S1008 Operation canceled
S1009 Invalid argument value
S1010 Function sequence error
S1011 Operation invalid at this time
S1012 Invalid transaction operation code specified
S1015 No cursor name available
S1090 Invalid string or buffer length
S1091 Descriptor type out of range
S1092 Option type out of range
S1093 Invalid parameter number
S1094 Invalid scale value
S1095 Function type out of range
S1096 Information type out of range
S1097 Column type out of range
S1098 Scope type out of range
S1099 Nullable type out of range
S1100 Uniqueness option type out of range
S1101 Accuracy option type out of range
S1103 Direction option out of range
S1104 Invalid precision value
S1105 Invalid parameter type
S1106 Fetch type out of range
S1107 Row value out of range
S1108 Concurrency option out of range
S1109 Invalid cursor position
S1110 Invalid driver completion
S1111 Invalid bookmark value
S1C00 Driver not capable
S1DE0 No data at execution values pending
S1T00 Timeout expired

* In SQL Server Enterprise Manager, you may receive the "Invalid cursor state" error message when Microsoft® SQL Server™
runs out of resources while attempting to save selected tables or a database diagram. This error is returned because of insufficient
space in your database or transaction log to complete the save process. To correct this problem, check to see if whether the
database or the transaction log is full. If so, increase the size of the database to accommodate the change. Check other system
resources or contact your system administrator.

In addition to the standard ODBC error messages located in your ODBC programmer's reference documentation, the SQL Server
ODBC driver can return error messages for certain SQLSTATE values, as shown in this table.

SQLSTATE
SQL SERVER DRIVER

ERROR Description
01000 %ld rows sent to SQL

Server. Total sent: %ld.
A batch size of rows have been sent to SQL
Server using the BCP API.

01000 %ld rows successfully
bulk-copied to host-file.
Total received: %ld.

A batch size of rows have been written to
the host file using the BCP API.

01000 Access to database
configured in the DSN has
been denied. Default used.

Either the database does not exist or the
user does not have permission to access the
database. The default database configured
for the login ID was used.

01000 An error has occurred
during an attempt to
access the log file, logging
disabled.

The log file for driver statistics or long-
running queries could not be used. The
logging of driver statistics or long-running
queries has been disabled.

01000 Connected to backup
server.

The SQL Server primary server was not
available, so the connection was made to
the fallback server.

01000 Language configured in
the DSN is not supported.
Default used.

Either the language name is invalid or the
language is not installed on the server. The
default language configured for the login ID
was used.

01000 Null bit data forced to
zero.

A bit field containing a NULL is being
loaded to a server that does not support
NULL bit data. The field was set to zero.

01000 Procedure executed with
'EXEC'. No output
parameters returned.

The procedure could not be executed as an
RPC and output parameters were specified.
Because the procedure had to be executed
with EXEC, no output parameters will be
stored.

01000 SQL Debugging disabled. SQL Debugging could not be enabled,
probably because the SQL Server is not
configured for SQL debugging.

01000 The ODBC catalog stored
procedures installed on
server %s are version %s;
version
%02d.%02d.%4.4d or
later is required to ensure
proper operation. Please
contact your system
administrator.

Install the ODBC catalog stored procedures
by executing \Msqql\Install\Instcat.sql.

01000 Zero length data forced to
length 1.

A zero-length binary or character field is
being loaded, but zero-length data is not
supported. The field was forced to a 1 byte
blank or binary zero.

01S02 Cursor concurrency
changed.

The application requested a concurrency
that could not be honored because of the
type of request or query. A different
concurrency was used instead.

01S02 Cursor type changed. The application requested a cursor type that
could not be honored because of the type of
request or query. A different cursor type
was used instead.

01S02 Packet size change not
honored by server, server
size used.

The application requested a nondefault
packet size that could not be supported by
SQL Server. The server default size was
used instead.

01S02 Packet size changed. The application requested a nondefault
packet size that was outside of the limits of
allowable size. Either the smallest or largest
packet size was used instead, depending if
the requested size was too small or too
large.

01S02 Login timeout changed. The application requested a login time-out
that was too large. The maximum login time
out was used instead.

07006 Conversions not allowed
using bcp_moretext.

The application using bcp_moretext must
have the same field type as it does the
column type.

08004 Server rejected the
connection; Access to
selected database has
been denied.

Either the database does not exist or the
user does not have permission to access the
database.

08004 Server rejected the
connection; Language
specified is not supported.

Either the language name is invalid or the
language is not installed on SQL Server.

HY024 Database is invalid or
cannot be accessed.

Either the database does not exist or the
user does not have permission to access the
database.

IM006 Packet size change not
supported by server,
default used.

The application requested a nondefault
packet size that SQL Server does not
support. The client default size was used.

HY000 All bound columns are
read-only.

There must be an updatable column to use
SQLSetPos or SQLBulkOperations to
change or insert a row.

HY000 An old netlib (%s) has
been detected. Please
delete it and restart the
application.

The netlib that was being loaded was out of
date. The driver requires a newer netlib.

The problem could be a netlib in the current
directory of the application, which is being
loaded instead of the one in the system
directory, or it could be that the netlib was
not installed properly or is corrupted. If the
netlib specified in the error text exists
elsewhere than in the Windows system
directory, delete it. If the netlib exists only in
the system directory, install the client
utilities on the client and restart the
application.

HY000 Attempt to bulk-copy a
NULL value into a Server
column which does not
accept NULL values.

The field contains a NULL value, but the
column does not allow NULL values.

HY000 Attempt to bulk-copy an
oversized column to the
SQL Server.

The length supplied for a column is larger
than the column definition in the table.

HY000 Attempt to read unknown
version of BCP format file.

The header line in the bcp format file was
not a recognized version.

HY000 Bad bulk-copy direction.
Must be either IN or OUT.

The bcp_init call did not specify a valid
direction for the eDirection parameter.

HY000 Bad terminator. The terminator string supplied in bcp_bind
is invalid.

HY000 Bcp host-files must
contain at least one
column.

No columns were selected to be loaded.

HY000 Cannot generate SSPI
context.

The driver could not obtain an SSPI context
required for integrated security. The native
error will contain the Win32 error code.

HY000 Cannot initialize SSPI
package.

The driver could not obtain an SSPI context
required for integrated security. The native
error will contain the Win32 error code.

HY000 Communication module
is not valid. Driver has not
been correctly installed.

The network library .dll is corrupted. Install
the client utilities on the client and restart
the application.

HY000 Connection is busy with
results for another hstmt.

The SQL Server ODBC driver allows only
one active hstmt. For more information, see
Using Default Result Sets.

HY000 Connection is not enabled
for BCP.

The application using the BCP API must set
the SQLSetConnectAttr or
SQL_SS_COPT_BCP attribute before
connecting.

HY000 Failure during closing of
connection.

The ConnectionClose function in the
network library failed. This problem is
typically caused by a network or SQL Server
problem.

HY000 For BCP, all variable-
length data must have
either a length-prefix or a
terminator specified.

bcp_bind was called with
SQL_VARYLEN_DATA, but neither a prefix
length nor a terminator was specified.

HY000 Host-file columns may be
skipped only when
copying into the server.

A bcp out format file specified that a
column should be skipped. This is not
allowed. Either create a view containing
only the desired columns and bcp out from
that view, or use the -Q flag to provide a
SELECT statement selecting only the desired
columns.

HY000 Incorrect host-column
number found in BCP
format-file.

The format file contains a column number
greater than the number of columns in the
table.

HY000 I/O error while reading
bcp data-file.

HY000 I/O error while reading
BCP format file.

HY000 I/O error while writing
bcp data-file.

HY000 I/O error while writing
bcp error-file.

HY000 Invalid option. The eOption parameter to bcp_control was
not valid.

HY000 Non-default parameter
not allowed after default
parameter.

Parameters to a stored procedure cannot
have a non-default value after any
preceding parameter has been specified
with the default value.

HY000 Not enough columns
bound.

For a bcp out, not all columns of the table
were bound. Either create a view which
contains only the desired columns and bcp
out from that view or, use the -Q flag to
provide a SELECT statement selecting only
the desired columns.

HY000 ODBC BCP/Driver version
mismatch.

The Sqlsrv32.dll and Odbcbcp.dll .dlls do
not have identical versions. Install the client
utilities on the client and restart the
application.

HY000 Protocol error in TDS
stream.

The TDS stream from the server is invalid.
This problem is typically caused by a SQL
Server problem. Check the SQL Server error
log.

HY000 Table contains less rows
than first row count.

A starting row number was supplied, but
the table on the server did not contain that
number of rows. No rows were copied to
the host-file.

HY000 Table contains less rows
than last row count.

An ending row number was supplied, but
the table on the server did not contain that
number of rows.

HY000 Table has no text/image
columns.

bcp_moretext was called, but the table does
not contain any text or image columns.

HY000 TDS buffer length too
large.

The TDS stream from the server is invalid.
This problem is typically caused by a SQL
Server problem. Check the SQL Server error
log.

HY000 Text column data
incomplete.

The summation of the lengths supplied by
bcp_moretext did not match the length
supplied in bcp_bind or bcp_collen.

HY000 The BCP host-file contains
less rows than first row
count.

A starting row number was supplied, but
the host-file did not contain that number of
rows. No rows were loaded.

HY000 The row length exceeds
SQL Server's maximum
allowable size.

The summation of the data lengths for a
row is larger than the maximum row size.

HY000 The stored procedure
required to complete this
operation could not be
found on the server (they
were supplied with SQL
Server). Please contact
your system
administrator.

Install the ODBC catalog stored procedures
by executing \Msqql\Install\Instcat.sql.

HY000 Unable to load
communication module.
Driver has not been
correctly installed.

The network library .dll specified for the
connection does not exist on this client.
Install the client utilities on the client and
restart the application.

HY000 Unable to open BCP host
data-file.

The file name specified in the bcp_init call
does not exist or is opened by another
application.

HY000 Unable to open BCP
error-file.

The error file name specified in the bcp_init
call does not exist or is opened by another
application.

HY000 Unable to read driver
version.

The driver was unable to read the version
block in its .DLL. Install the client utilities on
the client and restart the application.

HY000 Unexpected EOF
encountered in BCP data-
file.

During a bcp in operation, end-of-file was
detected on the data file while in the middle
of processing the last row. This is typically
caused by having a different number of
columns, types, nullability, or sizes between
the original table and the table being
loaded.

HY000 Unicode conversion failed. An error occurred during conversion to or
from a Unicode string. The native error will
contain the Win32 error code.

HY000 Unicode conversion failed.
The code page of the SQL
server must be installed
on the client system.

The server code page must exist on the
client for proper operation. Either clear the
Auto Translate check box for the DSN or
install the code page of the server on the
client. The server code page can be
determined by running EXEC
sp_server_info 18.

HY000 Unknown token received
from SQL Server.

The TDS stream from the server is invalid.
This error is typically caused by a problem
on the server. Check the SQL Server error
log.

HY000 Warning: Partial
insert/update. The
insert/update of a text or
image column(s) did not
succeed.

A failure during insertion or update of a
text, image, or ntext column occurred.
That column will not contain the proper
data. Roll back the transaction, if possible.

Troubleshooting (SQL Server 2000)

Replication Merge Agent Error Messages
 Topic last updated -- January 2004

This topic discusses troubleshooting tips and techniques for the Replication Merge Agent. Cause and resolution information for
the following common error messages returned by the Merge Agent are provided:

"Failed to enumerate changes in the filtered articles."

"The merge process could not initialize the replication provider."

"Another merge agent for the subscription(s) is running."

"Waiting on backend connection"

"The process could not change generation history at the 'Subscriber'."

Message Text

Failed to enumerate changes in the filtered articles.

Explanation

When processing changes to filtered articles during the download phase of the merge replication process, the Replication Merge
Agent executes the internal sp_MSsetupbelongs stored procedure. When articles are filtered, this stored procedure is used to
determine whether changes should be sent to a Subscriber. This error can occur because of a Replication Merge Agent time-out
occurs while processing these filtered changes. The time-out might be caused by one of the following:

Index fragmentation occurs on the column used for filtering.

Filtered tables are not joined on a unique key.

Large merge meta data tables must be read during the download, meta tables such as MSmerge_tombstone,
MSmerge_contents, and MSmerge_genhistory.

Action

The first step in resolving this issue is to increase the time-out setting for the Merge Agent. You can set this time-out by specifying
the -QueryTimeOut argument when starting the Replication Merge Agent. For more information, see Replication Merge Agent
Utility.

To specify a value for the -QueryTimeOut parameter

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the Merge Agent.

3. Right-click the agent, and then click Agent Properties.

4. In the Agent Properties dialog box, click the Steps tab.

5. Select the Run Agent step, and then click Edit.

6. In the Command text box, add -QueryTimeOut to the end of the command. The command line should look like:

-Publisher [SamplePub] -PublisherDB [SamplePubDB] -Publication [SamplePublication]
-Subscriber [SampleSub] -SubscriberDB [SampleSubDB] -Distributor [SampleDist]
-DistributorSecurityMode 1 –QueryTimeOut

Note Line breaks in the previous example are added to improve readability. In the Command text box, parameters must

be provided on a single line.

7. To save changes and close, click OK.

In addition, you should also work to improve the overall efficiency of the download by doing the following:

Ensure that columns used for filtering are properly indexed and rebuild such indexes if necessary. For more information, see
Rebuilding an Index.

When using join filters, if the join condition is based on a unique column, the join_unique_key property should be set for
the article for best performance. For more information, see Join Filters.

Simplify the filtering criteria by denormalizing the filtered tables to reduce the number of join filters needed.

Avoid making large numbers of changes on filtered tables between merges, or run the Merge Agent more frequently.

To change a Merge Agent schedule

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the Merge Agent.

3. Right-click the agent, and then click Agent Properties.

4. In the Agent Properties dialog box, click the Schedules tab.

5. Select the existing schedule, and then click Edit.

6. In the Edit Job Schedule dialog box, click Change.

7. In the Edit Recurring Job Schedule dialog box, specify a more frequent schedule.

8. Click OK three times.

Message Text

The merge process could not initialize the replication provider.

Explanation

The most likely cause is that the replication provider library file is missing or corrupt. For SQL Server Subscribers, this library file
is Replprov.dll, and for Microsoft Access Subscribers, this library file is Msrpjt40.dll. Because these library files is installed by SQL
Server, this problem is more likely to occur when replication components are deployed independently from SQL Server, as when
deploying applications using the SQL Merge ActiveX control or with an Access Subscriber.

Action

If this error occurs when the Subscriber is an instance of SQL Server, you may have to rerun Setup to repair or reinstall
Replprov.dll. When deploying client applications using the SQL Merge ActiveX control, ensure that this file is properly installed
and registered. When the Subscriber is an Access database, ensure that Msrpjt40.dll is installed and registered properly.

Note You can register these components using the Microsoft Windows® Regsvr32.exe utility.

Message Text

Another merge agent for the subscription(s) is running.

Explanation

The most likely cause of this error is the existence of an orphaned process resulting from an earlier, unhandled termination of
Merge Agent.

Action

SQL Server cleans up orphaned processes at regular intervals. To remedy this situation immediately, you can terminate the
process by using the KILL command. For more information, see KILL. The system process ID (SPID) of the orphaned Merge Agent
process can be determined by querying the sysprocesses system table for the value of the spid column when the value of the
program_name column is "Replication Merge Agent". For more information, see sysprocesses.

Message Text

Waiting on backend connection

Explanation

This error occurs when Merge Agent process threads running at the local server must wait for threads running at the remote
server to complete before applying changes. This can be caused by a poorly performing query or process.

Action

When attempting to trace this error back to a poorly performing query, you can locate the SPID for the Replication Merge Agent
from the sysprocesses table and then execute DBCC INPUTBUFFER for this SPID. For more information, see sysprocesses and
DBCC INPUTBUFFER. You should improve the indexes on any user tables involved in poorly performing queries. You can also
attempt to resolve this issue by simply improving the overall efficiency of the merge process by doing the following:

Ensure that columns used for filtering are properly indexed and rebuild such indexes if necessary. For more information, see
Rebuilding an Index.

Rebuild indexes on the merge replication system tables.

When using join filters, if the join condition is based on a unique column, the join_unique_key property should be set for
the article for best performance. For more information, see Join Filters.

Simplify the filtering criteria by denormalizing the filtered tables to reduce the number of join filters needed.

Decrease the retention period for the publication, if possible.

Note You can use sp_changemergerepublication to change the retention period of an existing publication, or you can
change this publication property on the Publication Properties, General Tab in SQL Server Enterprise Manager. For more
information, see sp_changemergepublication.

Message Text

The process could not change generation history at the 'Subscriber'

Explanation

This message is most likely the result of contention on the merge replication system tables that can occur when these tables have
grown excessively large.

Action

To resolve this issue, reduce the settings for the -DownloadGenerationsPerBatch and -UploadGenerationsPerBatch
arguments when calling the Replication Merge Agent directly, or for scheduled synchronizations, use the slow link agent profile
for the Merge Agent, because this also reduces batch sizes. For more information, see Agent Profiles.

Note The default value for both -DownloadGenerationsPerBatch and -UploadGenerationsPerBatch is 100.

To specify a value for the -DownloadGenerationsPerBatch and -UploadGenerationsPerBatch parameters

1. In SQL Server Enterprise Manager, expand Replication Monitor and the Agent folder.

2. Expand the folder for the Merge Agent.

3. Right-click the agent, and then click Agent Properties.

4. In the Agent Properties dialog box, click the Steps tab.

5. Select the Run Agent step, and then click Edit.

6. In the Command text box, add -DownloadGenerationsPerBatch or -UploadGenerationsPerBatch to the end of the
command, and then type a value for the number of generations per batch. With both arguments, the command line should
look like:

-Publisher [SamplePub] -PublisherDB [SamplePubDB] -Publication [SamplePublication]
-Subscriber [SampleSub] -SubscriberDB [SampleSubDB] -Distributor [SampleDist]
-DistributorSecurityMode 1 -DownloadGenerationsPerBatch 100
-UploadGenerationsPerBatch 20

Note Line breaks in the previous example are added to improve readability. In the Command text box, parameters must
be provided on a single line.

7. To save changes and close, click OK.

Note You can also try lowering the retention period for the publication. Use sp_changemergepublication to change the
retention period of an existing publication, or you can change this publication property on the Publication Properties,
General Tab in SQL Server Enterprise Manager. For more information, see sp_changemergepublication.

See Also

Replication Merge Agent

Troubleshooting (SQL Server 2000)

Finding Supplemental Error Message Information
Over time, more information about Microsoft® SQL Server™ error messages, either documented or not documented in this
section, may become available.

Troubleshooting (SQL Server 2000)

Adding User-Defined Error Messages
User-defined error messages can be added to the sysmessages table using the system stored procedure sp_addmessage. At a
minimum, you can specify the message number, the severity level, and the message text using sp_addmessage.

Similar to specifying user-defined error messages with RAISERROR, use error message numbers greater than 50000 and severity
levels from 0 through 18. Only system administrators can issue RAISERROR with a severity level from 19 through 25.

See Also

sp_addmessage

 New Information - SQL Server 2000 SP3.

Symbols
(All) level

The optional highest level of a dimension. The (All) level contains a single member that is the summary of all members of
the immediately subordinate level.

A
action

An end user-initiated operation upon a selected cube or portion of a cube. The operation can launch an application with the
selected item as a parameter or retrieve information about the selected item.

active statement

An SQL statement that has been executed but whose result set has not yet been canceled or fully processed.

active voice

Indicates the subject of the sentence is the entity that performs the action described by the verb. For example, customers
buy products is in active voice, whereas products are bought by customers is in passive voice.

See also: passive voice

ActiveX Data Objects

An easy-to-use application programming interface (API) that wraps OLE DB for use in languages such as Visual Basic,
Visual Basic for Applications, Active Server Pages, and Microsoft Internet Explorer Visual Basic Scripting.

ActiveX Data Objects (Multidimensional) (ADO MD)

A high-level, language-independent set of object-based data access interfaces optimized for multidimensional data
applications. Visual Basic and other automation languages use ADO MD as the data access interface to multidimensional
data storage. ADO MD is a part of ADO 2.0 and later.

ad hoc connector name

The OpenRowset function in the FROM clause of a query, which allows all connection information for an external server
and data source to be issued every time the data must be accessed.

add-in

A custom extension, written in any language that supports the Component Object Model (COM), usually Visual Basic, that
interacts with Analysis Manager and provides specific functionality. Add-ins are registered with the Analysis Add-in
Manager. They are called by the Analysis Add-in Manager in response to user actions in the user interface.

adjective phrasing

A way of expressing a relationship in English in which an entity is described by an adjective (either a single word or
another entity containing the adjective). For example, in the phrasing the cities are hot, hot is the adjective, and cities is the
entity being described.

ADO

See definition for: ActiveX Data Objects

ADO MD

See definition for: ActiveX Data Objects (Multidimensional) (ADO MD)

adverb

The part of speech modifying a verb, an adjective, or another adverb. In English Query, adverbs such as very and recent are
interpreted correctly; however, other adverbs, such as rapidly or graciously are not interpreted.

aggregate function

A function that performs a calculation on a column in a set of rows and returns a single value.

aggregate query

A query (SQL statement) that summarizes information from multiple rows by including an aggregate function such as
Sum or Avg .

aggregation

A table or structure that contains precalculated data for a cube.

aggregation

A collection of objects that makes a whole. An aggregation can be a concrete or conceptual set of whole-part relationships
among objects.

aggregation prefix

A string that is combined with a system-defined ID to create a unique name for a partition's aggregation table.

aggregation wrapper

A wrapper that encapsulates a COM object within another COM object.

alert

A user-defined response to a SQL Server event. Alerts can either execute a defined task or send an e-mail and/or pager
message to a specified operator.

alias

An alternative name for a table or column in expressions that is often used to shorten the name for subsequent reference
in code, prevent possible ambiguous references, or provide a more descriptive name in the query output. An alias can also
be an alternative name for a server.

aliasing

To allow the name of an object, property, or relationship to be reused in a new context while keeping all other attributes
constant.

All member

The single member of the (All) level. By default, the name of the All member is All followed by a space and the dimension
name.

See also: default member

American National Standards Institute (ANSI)

An organization of American industry and business groups that develops trade and communication standards for the
United States. Through membership in the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC), ANSI coordinates American standards with corresponding international standards.

Analysis server

The server component of Analysis Services that is specifically designed to create and maintain multidimensional data
structures and provide multidimensional data in response to client queries.

ancestor

A member in a superior level in a dimension hierarchy that is related through lineage to the current member within the
dimension hierarchy. For example, in a Time dimension containing the levels Quarter, Month, and Day, Qtr1 is an ancestor
of January 1.

See also: child, descendant, parent, sibling

annotational property

A property that is maintained by Meta Data Services as string data that can be attached to any repository object that
exposes the IAnnotationalProps interface.

anonymous subscription

An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber is not stored.

ANSI

See definition for: American National Standards Institute (ANSI)

ANSI to OEM conversion

The conversion of characters that must occur when data is transferred from a database that stores character data using a
specific code page to a client application on a computer that uses a different code page. Typically, Windows-based client
computers use ANSI/ISO code pages, and some databases (for compatibility reasons) may use OEM code pages, such as
the MS-DOS 437 code page or code page 850.

API

See definition for: application programming interface (API)

API server cursor

A server cursor built to support the cursor functions of an application programming interface (API), such as ODBC, OLE DB,
ADO, and DB-Library. An application does not usually request a server cursor directly; it calls the cursor functions of the
API. The SQL Server interface for that API implements a server cursor if that is the best way to support the requested
cursor functionality.

See also: server cursor

application programming interface (API)

A set of routines available in an application, such as ActiveX Data Objects (ADO), for use by software programmers when
designing an application interface.

application role

A SQL Server role created to support the security needs of an application.

archive file

The .cab file created by archiving an Analysis Services database.

article

An object specified for replication. An article is a component in a publication and can be a table, specified columns (using a
column filter), specified rows (using a row filter), a stored procedure or view definition, the execution of a stored procedure,
a view, an indexed view, or a user-defined function.

atomic

Either all of the transaction data modifications are performed or none of them are performed.

attribute

In data mining, a single characteristic of a case. An attribute is used to provide information about a case. For example,

weight can be an attribute of a case that involves shipping containers.

See also: case

authentication

The process of validating that the user attempting to connect to SQL Server is authorized to do so.

See also: SQL Server Authentication

authorization

The operation that verifies the permissions and access rights granted to a user.

automatic recovery

Recovery that occurs every time SQL Server is restarted. Automatic recovery protects your database if there is a system
failure.

autonomy

The independence one site has from other sites when performing modifications to data.

axis

A set of tuples. Each tuple is a vector of members. A set of axes defines the coordinates of a multidimensional data set. For
more information about axes, see the OLE DB documentation.

See also: slice, tuple

B
backup

A copy of a database, transaction log, file, or filegroup used to recover data after a system failure.

backup device

A tape or disk used in a backup or restore operation.

backup file

A file that stores a full or partial database, transaction log, or file and/or filegroup backup.

backup media

The tape, disk, or named pipe used to store a backup set.

backup set

The output of a single backup operation.

balanced hierarchy

A dimension hierarchy in which all leaf nodes are the same distance from the root node.

base data type

Any system-supplied data type, for example, char , varchar , binary , and varbinary . User-defined data types are derived
from base data types.

See also: data type, user-defined data type

base table

A table stored permanently in a database. Base tables are referenced by views, cursors, SQL statements, and stored

procedures.

See also: underlying table

batch

A set of SQL statements submitted together and executed as a group. A script is often a series of batches submitted one
after the other.

bcp files

Files that store bulk copy data created by the bulk copy utility or synchronization.

bcp utility

A command prompt bulk copy utility that copies SQL Server data to or from an operating system file in a user-specified
format.

bigint data type

An integer data type with a value from -2^63 (-9,223,372,036,854,775,808) through 2^63-1 (9,223,372,036,854,775,807).

binary data type

A fixed-length binary data type with a maximum length of 8,000 bytes.

binary large object

A piece of binary data that has an exceptionally large size (such as pictures or audio tracks stored as digital data), or any
variable or table column large enough to hold such values. In Transact-SQL, a BLOB is stored in an image column.
Sometimes the term BLOB is also applied to large character data values, such as those stored in text or ntext columns.

binding

In SQL application programming interfaces (APIs), binding is associating a result set column or a parameter with a
program variable so that data is moved automatically into or out of a program variable when a row is fetched or updated.

bit data type

A data type that holds a value of either 1 or 0.

bitwise operation

An operation that manipulates a single bit, or tests whether a bit is on or off.

BLOB

See definition for: binary large object

blocks

A series of Transact-SQL statements enclosed by BEGIN and END. You can nest BEGIN...END blocks within other
BEGIN...END blocks.

Boolean

An operation or expression that can be evaluated only as either true or false.

browse mode

A function that lets you scan database rows and update their values one row at a time. Several browse mode functions
return information that an application can use to examine the structure of a complicated ad hoc query.

built-in functions

A group of predefined functions provided as part of the Transact-SQL and Multidimensional Expressions (MDX) languages.

business rules

The logical rules that are used to run a business. Business rules can be enforced in the .com objects that make up the
middle tier of a Windows DNA system, they can also be enforced in a SQL Server database using triggers, stored
procedures, and constraints.

C
cache aging

The mechanism of caching that determines when a cache row is outdated and must be refreshed.

calculated column

A column in a table that displays the result of an expression rather than stored data. For example, CalculatedCostColumn
= Price * Quantity .

calculated field

A field defined in a query that displays the result of an expression rather than stored data.

calculated member

A member of a dimension whose value is calculated at run time using an expression. Calculated member values may be
derived from other members' values. A calculated member is any member that is not an input member. For example, a
calculated member Profit can be determined by subtracting the value of the member Costs from the value of the member
Sales.

See also: input member

calculation condition

A Multidimensional Expressions (MDX) logical expression used to determine whether a calculation formula will be applied
against a cell in a calculation subcube.

See also: solve order

calculation formula

A Multidimensional Expressions (MDX) expression used to supply a value for cells in a calculation subcube, subject to the
application of a calculation condition.

See also: solve order

calculation pass

A stage of calculation in a multidimensional cube in which applicable calculations are evaluated. Multiple passes may be
required to complete all calculations.

See also: solve order

calculation subcube

The set of multidimensional cube cells used to create a calculated cells definition. The set of cells is defined by a
combination of Multidimensional Expressions (MDX) set expressions.

See also: solve order

call-level interface (CLI)

The interface supported by ODBC for use by an application.

candidate key

A column or set of columns that have a unique value for each row in a table. Each candidate key value uniquely identifies a
single row in the table. Tables can have multiple candidate keys. One candidate key in a table is specified by the database

designer to be the primary key for the table, and any other candidate key is called an alternate key.

cascading delete

An operation that deletes a row containing a primary key value that is referenced by foreign key columns in existing rows
in other tables. On a cascade delete, all of the rows whose foreign key values reference the deleted primary key value are
also deleted.

cascading update

An operation that updates a primary key value that is referenced by foreign key columns in existing rows in other tables.
On a cascade update, all of the foreign key values are updated to match the new primary key value.

case

In data mining, an abstract view of data characterized by attributes and relations to other cases. A case is a distinct member
of a case set, and can be a member of multiple case sets.

See also: case key, case set, attribute

case key

In data mining, the element of a case by which the case is referenced within a case set.

See also: case

case set

In data mining, a set of cases.

See also: case

cell

In a cube, the set of properties, including a value, specified by the intersection when one member is selected from each
dimension.

cellset

In ADO MD, an object that contains a collection of cells selected from cubes or other cellsets by a multidimensional query.

certificate

A collection of data used for authentication and secure exchange of information on nonsecured networks, such as the
Internet. A certificate securely binds a public encryption key to the entity that holds the corresponding private encryption
key. Certificates are digitally signed by the issuing certification authority and can be managed for a user, a computer, or a
service.

change script

A text file that contains SQL statements for all changes made to a database, in the order in which they were made, during
an editing session. Each change script is saved in a separate text file with an .sql extension. Change scripts can be applied
back to the database later, using a tool such as osql .

changing dimension

A dimension that has a flexible member structure. A changing dimension is designed to support frequent changes to
structure and data.

char data type

A character data type that holds a maximum of 8,000 characters.

character format

Data stored in a bulk copy data file using text characters.

See also: native format

character set

A character set determines the types of characters that SQL Server recognizes in the char , varchar , and text data types.
Each character set is a set of 256 letters, digits, and symbols specific to a country/region or language. The printable
characters of the first 128 values are the same for all character sets. The last 128 characters, sometimes referred to as
extended characters, are unique to each character set. A character set is related to, but separate from, Unicode characters.

CHECK constraints

Defines which data values are acceptable in a column. You can apply CHECK constraints to multiple columns, and you can
apply multiple CHECK constraints to a single column. When a table is dropped, CHECK constraints are also dropped.

checkpoint

An event in which the database engine writes dirty buffer pages to disk. Dirty pages are pages that have been modified, but
the modifications have not yet been written to disk. Each checkpoint writes to disk all pages that were dirty at the last
checkpoint and still have not been written to disk. Checkpoints occur periodically based on the number of log records
generated by data modifications, or when requested by a user or a system shutdown.

child

A member in the next lower level in a hierarchy that is directly related to the current member. For example, in a Time
dimension containing the levels Quarter, Month, and Day, January is a child of Qtr1.

See also: parent, ancestor, descendant, sibling

classification

See definition for: prediction

clause

In English Query, a sequence of related words within a sentence, having both a subject and a predicate and functioning as
either an independent or a dependent unit. In Transact-SQL, a subunit of an SQL statement. A clause begins with a
keyword.

CLI

See definition for: call-level interface (CLI)

client application

An application that retrieves data from an Analysis server and performs local analysis and presentation of data from
relational or multidimensional databases. Client applications connect to the Analysis server through the PivotTable Service
component.

client cursor

A cursor implemented on the client. The entire result set is first transferred to the client, and the client application
programming interface (API) software implements the cursor functionality from this cached result set.

clustered index

An index in which the logical order of the key values determines the physical order of the corresponding rows in a table.

clustering

A data mining technique that analyzes data to group records together according to their location within the
multidimensional attribute space. Clustering is an unsupervised learning technique.

See also: segmentation

code page

For character and Unicode data, a definition of the bit patterns that represent specific letters, numbers, or symbols (such as
0x20 representing a blank space and 0x74 representing the character "t"). Some data types use 1 byte per character; each
byte can have 1 of 256 different bit patterns.

collation

A set of rules that determines how data is compared, ordered, and presented. Character data is sorted using collation
information, including locale, sort order, and case-sensitivity.

See also: locale, SQL collation

column

In an SQL table, the area in each row that stores the data value for some attribute of the object modeled by the table. For
example, the Employees table in the Northwind sample database models the employees of the Northwind Traders
company. The LastName column in each row of the Employees table stores the last name of the employee represented
by that row, the same way a Last Name field in a window or form would contain a last name.

See also: row

column filter

Column filters restrict the columns to be included as part of a snapshot, transactional or merge publication.

column-level collation

The ability of SQL Server 2000 to support multiple collations in a single instance. Databases can have default collations
different from the default collation of the instance. Individual columns and variables can be assigned collations different
from the default collation for the instance or database. Each column in a table can have a different collation.

column-level constraint

A constraint definition that is specified within a column definition when a table is created or altered. The constraint applies
only to the associated column.

See also: constraint

COM

See definition for: Component Object Model (COM)

COM-structured storage file

A component object model (COM) compound file used by Data Transformation Services (DTS) to store the version history
of a saved DTS package.

command relationship

Provides instructions to hardware based on natural-language questions or commands. For example, "Play the album with
song XXX on it."

commit

An operation that saves all changes to databases, cubes, or dimensions made since the start of a transaction. A commit
guarantees that all of the transaction's modifications are made a permanent part of the database, cube or dimension. A
commit also frees resources, such as locks, used by the transaction.

See also: roll back

comparative form

A form of an adjective or adverb that refers to a comparison or that denotes a greater degree. Shorter adjectives and some
adverbs typically form their comparative degree by adding -er, such as young and younger.

Component Object Model (COM)

A Microsoft specification for developing component software. Several SQL Server and database application programming

interfaces (APIs) such as SQL-DMO, OLE DB, and ADO are based on COM. Some SQL Server components, such as Analysis
Services and English Query, store objects as COM objects.

See also: method

composite index

An index that uses more than one column in a table to index data.

composite key

A key composed of two or more columns.

computed column

A virtual column in a table whose value is computed at run time. The values in the column are not stored in the table, but
are computed based on the expression that defines the column. An example of the definition of a computed column is:
Cost as Price * Quantity .

concatenation

To combine two or more character strings or expressions into a single character string or expression, or to combine two or
more binary strings or expressions into a single binary string or expression.

concurrency

A process that allows multiple users to access and change shared data at the same time. SQL Server uses locking to allow
multiple users to access and change shared data at the same time without conflicting with each other.

conjunction

A part of speech (such as and or although) used to connect words, phrases, clauses, or sentences. Coordinating
conjunctions (and, but, or, nor, for, so, yet) connect and relate words and word groups of equal grammatical rank.

connection

An interprocess communication (IPC) linkage established between a SQL Server 2000 application and an instance of SQL
Server 2000. The connection is a network link if the application is on a computer different from the SQL Server 2000
instance. If the application and the SQL Server 2000 instance are on the same computer, the linkage is formed through a
local IPC mechanism, such as shared memory. The application uses the IPC linkage to send Transact-SQL statements to
SQL Server and to receive result sets, errors, and messages from SQL Server.

constant

A group of symbols that represent a specific data value. The format of a constant depends on the data type of the value it
represents. For example, 'abc' is a character string constant, 123 is an integer constant, 'December 16, 1999' is a datetime
constant, and 0x02FA is a binary constant.

constraint

A property assigned to a table column that prevents certain types of invalid data values from being placed in the column.
For example, a UNIQUE or PRIMARY KEY constraint prevents you from inserting a value that is a duplicate of an existing
value, a CHECK constraint prevents you from inserting a value that does not match a search condition, and NOT NULL
prevents you from inserting a NULL value.

See also: column-level constraint

continuation media

The backup media used when the initial medium becomes full, allowing continuation of the backup operation.

control-break report

A report that summarizes data in user-defined groups or breaks. A new group is triggered when different data is
encountered.

control-of-flow language

Transact-SQL keywords that control the flow of execution of SQL statements and statement blocks in triggers, stored
procedures, and batches.

correlated subquery

A subquery that references a column in the outer statement. The inner query is executed for each candidate row in the
outer statement.

CPU busy

A SQL Server statistic that reports the time, in milliseconds, the central processing unit (CPU) spent on SQL Server work.

crosstab query

Displays data for summarized values from a field or table, and then groups them by two sets of facts: one down the left
side and the other across the top of the datasheet.

cube

A set of data that is organized and summarized into a multidimensional structure defined by a set of dimensions and
measures.

See also: multidimensional structure

cube file

See definition for: local cube

cube role

A collection of users and groups with the same access to a cube. A cube role is created when you assign a database role to
a cube, and it applies only to that cube.

See also: custom rule, database role

cursor

An entity that maps over a result set and establishes a position on a single row within the result set. After the cursor is
positioned on a row, operations can be performed on that row, or on a block of rows starting at that position. The most
common operation is to fetch (retrieve) the current row or block of rows.

cursor data type

A special data type used to reference a cursor.

cursor library

A part of the ODBC and DB-Library application programming interfaces (APIs) that implements client cursors. A cursor
library is not commonly used in current systems; server cursors are used instead.

custom rollup

An aggregation calculation that is customized for a dimension level or member and overrides the aggregate functions of a
cube's measures.

custom rule

In a role, a specification that limits the dimension members or cube cells that users in the role are permitted to access.

See also: cube role, database role

D

data block

In text , ntext , and image data, a data block is the unit of data transferred at one time between an application and an
instance of SQL Server 2000. The term is also applied to the units of storage for these data types. In tape backup files, data
block is the unit of physical I/O.

data connection

A collection of information required to access a specific database. The collection includes a data source name and logon
information. Data connections are stored in a project and are activated when the user performs an action that requires
access to the database. For example, a data connection for a SQL Server database consists of the name of the database, the
location of the server on which it resides, network information used to access that server, and a user ID and password.

Data Control Language (DCL)

The subset of SQL statements used to control permissions on database objects. Permissions are controlled using the
GRANT and REVOKE statements.

data definition

Specifying the attributes, properties, and objects in a database.

data definition language (DDL)

A language, usually part of a database management system, that is used to define all attributes and properties of a
database, especially row layouts, column definitions, key columns (and sometimes keying methodology), file locations, and
storage strategy.

data dictionary

A set of system tables, stored in a catalog, that includes definitions of database structures and related information, such as
permissions.

data dictionary view

A system table.

data explosion

The exponential growth in size of a multidimensional structure, such as a cube, due to the storage of aggregated data.

See also: density, sparsity

data file

In bulk copy operations, the file that transfers data from the bulk copy out operation to the bulk copy in operation. In SQL
Server 2000 databases, data files hold the data stored in the database. Every SQL Server 2000 database has at least one
primary data file, and can optionally have multiple secondary data files to hold data that does not fit on the primary data
file.

See also: log file

data integrity

A state in which all the data values stored in the database are correct. If incorrect data values have been stored in a
database, the database is said to have lost data integrity.

data lineage

Information used by Data Transformation Services (DTS), in conjunction with Meta Data Services, that records the history
of package execution and data transformations for each piece of data.

data manipulation language (DML)

The subset of SQL statements used to retrieve and manipulate data.

data mart

A subset of the contents of a data warehouse. A data mart tends to contain data focused at the department level, or on a
specific business area.

See also: data warehouse

data member

A child member generated for a nonleaf member in a parent-child dimension. A data member contains a value directly
associated with a nonleaf member that is independent of the summary value calculated from the descendants of the
member. For example, a data member can contain a manager's salary so that either individual salaries or summarized
salaries can be displayed.

data modification

An operation that adds, deletes, or changes information in a database using Transact-SQL statements such as INSERT,
DELETE, and UPDATE.

data pump

An OLE DB service provider that provides the infrastructure to import, export, and transform data between heterogeneous
data stores using Data Transformation Services (DTS).

data scrubbing

Part of the process of building a data warehouse out of data coming from multiple online transaction processing (OLTP)
systems. The process must address errors such as incorrect spellings, conflicting spelling conventions between two
systems, and conflicting data (such as having two part numbers for the same part).

data source

In ADO and OLE DB, the location of a source of data exposed by an OLE DB provider.

See also: ODBC data source

data source

The source of data for an object such as a cube or dimension. It is also the specification of the information necessary to
access source data. It sometimes refers to an object of ClassType clsDataSource .

data source name (DSN)

The name assigned to an ODBC data source. Applications can use DSNs to request a connection to a system ODBC data
source, which specifies the computer name and (optionally) the database to which the DSN maps.

data type

An attribute that specifies what type of information can be stored in a column, parameter, or variable. System-supplied
data types are provided by SQL Server; user-defined data types can also be created.

See also: base data type

data warehouse

A database specifically structured for query and analysis. A data warehouse typically contains data representing the
business history of an organization.

See also: data mart, fact table

data-definition query

An SQL query that contains Data Definition Language (DDL) statements. These are statements that allow you to create or
alter objects (such as tables, indexes, views, and so on) in the database and to migrate database objects from Microsoft
Access.

database

A collection of information, tables, and other objects organized and presented to serve a specific purpose, such as
searching, sorting, and recombining data. Databases are stored in files.

database catalog

The part of a database that contains the definition of all the objects in the database, as well as the definition of the
database.

See also: system catalog

database diagram

A graphical representation of the objects in a database. A database diagram can be either a whole or a partial picture of the
structure of a database; it includes objects for tables, the columns they contain, and the relationship between them.

database file

One of the physical files that make up a database.

database language

The language used for accessing, querying, updating, and managing data in relational database systems. SQL is a widely
used database language. The Microsoft SQL Server implementation of SQL is called Transact-SQL.

database object

A database component. A table, index, trigger, view, key, constraint, default, rule, user-defined data type, or stored
procedure in a database. May also refer to a database.

database object

An object (tables, fields, and joins) that is used in an English Query application to answer queries.

database owner

A member of the database administrator role of a database. There is only one database owner. The owner has full
permissions in that database and determines the access and capabilities provided to other users.

database project

A collection of one or more data connections (a database and the information needed to access that database). When you
create a database project, you can connect to one or more databases through ODBC and view their components through a
visual user interface that includes a Database Designer for designing and creating databases and a Query Designer for
creating SQL statements for any ODBC-compliant database.

database role

A collection of users and groups with the same access to an Analysis Services database. You can assign a database role to
multiple cubes in the database, thereby granting the role's users access to these cubes.

See also: cube role, custom rule

database schema

The names of tables, fields, data types, and primary and foreign keys of a database. Also known as the database structure.

database script

A collection of statements used to create database objects. Transact-SQL scripts are saved as files, usually ending with .sql.

dataset

In OLE DB for OLAP, the set of multidimensional data that is the result of executing a Multidimensional Expressions (MDX)
SELECT statement. For more information about datasets, see the OLE DB documentation.

datetime data type

A SQL Server system data type that stores a combined date and time value from January 1, 1753, through December 31,
9999, with an accuracy of three-hundredths of a second, or 3.33 milliseconds.

DBCS

See definition for: double-byte character set (DBCS)

DCL

See definition for: Data Control Language (DCL)

DDL

See definition for: data definition language (DDL)

deadlock

A situation when two users, each having a lock on one piece of data, attempt to acquire a lock on the other's piece. Each
user would wait indefinitely for the other to release the lock, unless one of the user processes is terminated. SQL Server
detects deadlocks and terminates one user's process.

See also: livelock

decimal data type

Fixed precision and scale numeric data from -10^38 -1 through 10^38 -1.

decision support

Systems designed to support the complex analytic analysis required to discover business trends. The information retrieved
from these systems allows manager to make business decisions based on timely and accurate analysis of business trends.

decision tree

A treelike model of data produced by certain data mining methods. Decision trees can be used for prediction.

See also: prediction

declarative referential integrity (DRI)

FOREIGN KEY constraints defined as part of a table definition that enforce proper relationships between tables. The
constraints ensure that proper actions are taken when DELETE, INSERT, and UPDATE statements remove, add, or modify
primary or foreign key values. The DRI actions enforced by FOREIGN KEY constraints can be supplemented with additional
referential integrity logic defined in triggers on a table.

default

A data value, option setting, collation, or name assigned automatically by the system if a user does not specify the value,
setting, collation, or name. An action taken automatically at certain events if a user has not specified the action to take.

DEFAULT constraint

A property defined for a table column that specifies a constant to be used as the default value for the column. If any
subsequent INSERT or UPDATE statement specifies a value of NULL for the column, or does not specify a value for the
column, the constant value defined in the DEFAULT constraint is placed in the column.

default database

The database the user is connected to immediately after logging in to SQL Server.

default instance

The copy of SQL Server that uses the computer name on which it is installed as its name.

See also: named instance, multiple instances

default language

The language that SQL Server 2000 uses for errors and messages if a user does not specify a language. Each SQL Server
2000 login has a default language.

default member

The dimension member used in a query when no member is specified for the dimension. The default member of a
dimension is the All member if an (All) level exists, or else an arbitrary member of the highest level. You can also set
default members for individual roles in custom rules for dimension security.

See also: All member

default result set

The default mode SQL Server uses to return a result set back to a client. Rows are sent to the client in the order they are
placed in the result set, and the application must process the rows in this order. After executing an SQL statement on a
connection, the application cannot do anything on the connection other than retrieve the rows in the result set until all the
rows have been retrieved. The only other action that an application can perform before the end of the result set is to cancel
the remainder of the result set. This is the fastest method to get rows from SQL Server to the client.

See also: firehose cursors

Delete query

A query (SQL statement) that removes rows from one or more tables.

delimiter

In Transact-SQL, characters that indicate the start and end of an object name, using either double quotation marks ("") or
brackets ([]).

denormalize

To introduce redundancy into a table in order to incorporate data from a related table. The related table can then be
eliminated. Denormalization can improve efficiency and performance by reducing complexity in a data warehouse schema.

See also: star schema

density

The percentage of cells that contain data in a multidimensional structure. Analysis Services stores only cells that contain
data. A dense cube requires more storage than a sparse cube of identical structure design.

See also: data explosion, sparsity

deny

Removes a permission from a user account and prevents the account from gaining permission through membership in
groups or roles within the permission.

dependencies

The views and procedures that depend on the specified table or view.

descendant

A member in a dimension hierarchy that is related to a member of a higher level within the same dimension. For example,
in a Time dimension containing the levels Year, Quarter, Month, and Day, January is a descendant of 1997.

See also: child, parent, ancestor, sibling

destination object

An object in a repository that participates in a relationship such that the object is the destination of the relationship. For
example, component is the destination object in the relationship project has component .

See also: origin object

device

See definition for: file

dictionary entry

Defined words in the English Query dictionary. You can make additions to the dictionary through the English Query
domain editor by specifying the word, its part of speech, and an optional irregular form.

differential database backup

A database backup that records only those changes made to the database since the last full database backup. A differential
backup is smaller, and is faster to restore than a full backup and has minimal effect on performance.

dimension

A structural attribute of a cube, which is an organized hierarchy of categories (levels) that describe data in the fact table.
These categories typically describe a similar set of members upon which the user wants to base an analysis. For example, a
geography dimension might include levels for Country, Region, State or Province, and City.

See also: measure, virtual dimension, level, member group

dimension hierarchy

One of the hierarchies of a dimension.

See also: hierarchy

dimension table

A table in a data warehouse whose entries describe data in a fact table. Dimension tables contain the data from which
dimensions are created.

See also: primary dimension table, fact table

direct connect

The state of being connected to a back-end database, so that any changes you make to a database diagram automatically
update your database when you save the diagram or selected items in it.

direct object

A noun (along with any of its modifiers) naming whom or what after a transitive verb. For example, the customer buys the
products (the products is the direct object.)

direct response mode

The default mode in which SQL Server statistics are gathered separately from the SQL Server Statistics display. Data is
available immediately to SQL Server Performance Monitor; however, the statistics displayed are one period behind the
statistics retrieved.

dirty pages

Buffer pages that contain modifications that have not been written to disk.

dirty read

Reads that contain uncommitted data. For example, transaction1 changes a row. Transaction2 reads the changed row
before transaction1 commits the change. If transaction1 rolls back the change, transaction2 has read a row that never
logically existed.

distribute

To move transactions or snapshots of data from the Publisher to Subscribers, where they are applied to the destination
tables in the subscription databases.

distributed query

A single query that accesses data from multiple data sources.

distribution database

A database on the Distributor that stores data for replication including transactions, snapshot jobs, synchronization status,
and replication history information.

distribution retention period

The distribution retention period determines the amount of information stored for a replication agent and the length of
time subscriptions will remain active in the distribution database. When the distribution retention period is exceeded, the
Distribution Clean Up Agent runs.

Distributor

A server that hosts the distribution database and stores history data, and/or transactions and meta data.

See also: local Distributor, remote Distributor

DML

See definition for: data manipulation language (DML)

domain

In Windows 2000 security, a collection of computers grouped for viewing and administrative purposes that share a
common security database. In relational databases, the set of valid values allowed in a column.

domain integrity

An integrity mechanism that enforces the validity of entries for a given column. The mechanism, such as the CHECK
constraint, can restrict the possible data values by data type, format, or range of values allowed.

double-byte character set (DBCS)

A character set that generally uses two bytes to represent a character, allowing more than 256 characters to be
represented. DBCSs are typically used in environments that use ideographic writing systems, such as Japanese, Korean,
and Chinese.

DRI

See definition for: declarative referential integrity (DRI)

drill down/drill up

A technique for navigating through levels of data ranging from the most summarized (up) to the most detailed (down). For
example, when viewing the details of sales data by year, a user can drill down to display sales data by quarter, and further
to display data by month.

drill through

To retrieve the detailed data from which the data in a cube cell was summarized.

DSN

See definition for: data source name (DSN)

DSN-less connection

A type of data connection that is created based on information in a data source name (DSN), but is stored as part of a
project or application. DSN-less connections are especially useful for Web applications because they enable you to move
the application from one server to another without recreating the DSN on the new server.

DTS package

An organized collection of connections, Data Transformation Services (DTS) tasks, DTS transformations, and workflow

constraints defined by the DTS object model and assembled either with a DTS tool or programmatically.

DTS package template

A model Data Transformation Services (DTS) package. The template is used to help create and configure a particular type
of package.

dump

See definition for: backup

dump file

See definition for: backup file

dynamic cursor

A cursor that can reflect data modifications made to the underlying data while the cursor is open. Updates, deletes, and
inserts made by users are reflected in the dynamic cursor.

dynamic filter

Merge replication filters that restrict data based on a system function or user-defined function (for example:
SUSER_SNAME()).

dynamic locking

The process used by SQL Server to determine the most cost-effective locks to use at any one time.

dynamic recovery

The process that detects and/or attempts to correct software failure or loss of data integrity within a relational database
management system (RDBMS).

dynamic snapshot

A snapshot of a merge publication with dynamic filters that is applied using bulk copy files to improve performance.

dynamic SQL statements

In Embedded SQL for C, an SQL statement built and executed at run time.

E
encryption

A method for keeping sensitive information confidential by changing data into an unreadable form.

English Query

Refers to a Microsoft application development product that allows users to ask questions in English, rather than in a
computer language such as SQL. For example, you might ask, "How many customers bought products last year?" rather
than prepare an equivalent SQL statement.

English Query application

An application based on a relational database that gives end users the ability to pose queries in English, rather than in a
computer language such as SQL.

entity

In English Query, an entity is a real-world object, referred to by a noun (person, place, thing, or idea), such as people,
products, shipments, cities, and so on. Entities are semantic objects.

entity integrity

A state in which all the rows in a database have a not-null primary key value, all tables have primary keys, and no table has
any duplicate primary key values. This ensures that there are no duplicate entries for anything represented in the database.

enumeration

A data type of a property. It specifies that a property value should support a fixed set of constant strings or integer values.

equijoin

A join in which the values in the columns being joined are compared for equality, and all columns are included in the
results.

error log

A text file that records system information from SQL Server.

error state number

A number associated with SQL Server 2000 messages that helps Microsoft support engineers find the specific code
location that issued the message. This can be helpful in diagnosing errors that may be generated from multiple locations in
the SQL Server 2000 code.

escape character

A character used to indicate that another character in an expression is meant literally and not as an operator. For example,
in SQL, the character "%" is used as a wildcard character to mean "any number of characters in this position." However, if
you want to search for a string such as "10%" (ten percent), you cannot specify "10%" alone as a search string, because the
"%" would be interpreted as "any number of characters in addition to 10." By specifying an escape character, you can flag
instances where "%" specifically means percent. For example, if you specify the escape character "#", you can indicate a
search string of "10#%" to mean "ten percent."

exclusive lock

A lock that prevents any other transaction from acquiring a lock on a resource until the original lock on the resource is
released at the end of the transaction. An exclusive lock is always applied during an update operation (INSERT, UPDATE, or
DELETE).

explicit transaction

A group of SQL statements enclosed within transaction delimiters. The first delimiter must be either BEGIN TRANSACTION
or BEGIN DISTRIBUTED TRANSACTION, and the end delimiter must be one of the following:

COMMIT TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION.

expression

In SQL, a combination of symbols and operators that evaluate to a single data value. Simple expressions can be a constant,
variable, column, or scalar function. Complex expressions are one or more simple expressions connected by operators.

extended stored procedure

A function in a dynamic link library (DLL) that is coded using the SQL Server 2000 Extended Stored Procedure API. The
function can then be invoked from Transact-SQL using the same statements that are used to execute Transact-SQL stored
procedures. Extended stored procedures can be built to perform functionality not possible with Transact-SQL stored
procedures.

extent

The unit of space allocated to a SQL Server object, such as a table or index, whenever the object needs more space. In SQL
Server 2000, an extent is eight contiguous pages.

F
fact

A row in a fact table in a data warehouse. A fact contains values that define a data event such as a sales transaction.

fact table

A central table in a data warehouse schema that contains numerical measures and keys relating facts to dimension tables.
Fact tables contain data that describes specific events within a business, such as bank transactions or product sales.

See also: data warehouse, dimension table, star join, star schema

Federal Information Processing Standard (FIPS)

Standards that apply to computer systems purchased by the United States government. Each FIPS standard is defined by
the National Institute of Standards and Technology (NIST). The current standard for SQL products is FIPS 127-2, which is
based on the ANSI SQL-92 standard. ANSI SQL-92 is aligned with ISO/IEC SQL-92.

fetch

An operation that retrieves a row or block of rows from a cursor. Transact-SQL batches, stored procedures, and triggers
use the FETCH statement to fetch from Transact-SQL cursors. Applications use application programming interface (API)
fetch functions.

field

An area in a window or record that stores a single data value. Some databases, such as Microsoft Access, use field as a
synonym for column.

field length

In bulk copy, the maximum number of characters needed to represent a data item in a bulk copy character format data file.

field terminator

In bulk copy, one or more characters marking the end of a field or row, separating one field or row in the data file from the
next.

file

In SQL Server databases, a basic unit of storage for a database. One database can be stored in several files. SQL Server
uses three types of files: data files (which store data), log files (which store transaction logs), and backup files (which store
backups of a database).

file DSN

Stores connection information for a database in a file that is saved on your computer. The file is a text file with the
extension .dsn. The connection information consists of parameters and corresponding values that the ODBC Driver
Manager uses to establish a connection.

file storage type

Defines the storage format used in the data file that transfers data from a bulk copy out operation to a bulk copy in
operation. In native mode files, all data is stored using the same internal structures that SQL Server 2000 uses to store the
data in a database. In character mode files, all data is converted to character strings.

filegroup

In SQL Server, a named collection of one or more files that forms a single unit of allocation or for administration of a
database.

fill factor

An attribute of an index that defines the amount of free space on each page of the index. FILLFACTOR accommodates
future expansion of table data and reduces the potential for page splits. FILLFACTOR is a value from 1 through 100 that
specifies the percentage of the index page to be left empty.

filter

A set of criteria that controls the set of records returned as a result set. Filters can also define the sequence in which rows
are returned.

filtering

The ability to restrict data based upon criteria set in the WHERE clause of an SQL statement. For replication, filtering occurs
on table articles defined in a publication. The result is partitions of data that can be published to Subscribers.

See also: partitioning, vertical filtering

FIPS

See definition for: Federal Information Processing Standard (FIPS)

firehose cursor

An obsolete term for default result set.

firehose cursors

Obsolete term for default result sets.

See also: default result set

fixed database role

A predefined role that exists in each database. The scope of the role is limited to the database in which it is defined.

fixed server role

A predefined role that exists at the server level. The scope of the role is limited to the SQL Server instance in which it is
defined.

FK

See definition for: foreign key (FK)

flattened interface

An interface created to combine members of multiple interfaces.

flattened rowset

A multidimensional data set presented as a two-dimensional rowset in which unique combinations of elements of multiple
dimensions are combined on an axis. For more information, see the OLE DB documentation.

float data type

A data type that holds floating-point number data from -1.79E + 308 through 1.79E + 308. float , double precision , and
float(n) are SQL Server float data types.

foreign key (FK)

The column or combination of columns whose values match the primary key (PK) or unique key in the same or another
table. Also called the referencing key.

foreign table

A table that contains a foreign key.

forward-only cursor

A cursor that cannot be scrolled; rows can be read only in sequence from the first row to the last row.

fragmentation

Occurs when data modifications are made. You can reduce fragmentation and improve read-ahead performance by
dropping and re-creating a clustered index.

full outer join

A type of outer join in which all rows in all joined tables are included, whether they are matched or not.

full-text catalog

Stores all of the full-text indexes for tables within a database.

full-text enabling

The process of allowing full-text querying to occur on the current database.

full-text index

The portion of a full-text catalog that stores all of the full-text words and their locations for a given table.

full-text query

As a SELECT statement, a query that searches for words, phrases, or multiple forms of a word or phrase in the character-
based columns (of char , varchar , text , ntext , nchar , or nvarchar data types). The SELECT statement returns those
rows meeting the search criteria.

full-text service

The SQL Server component that performs the full-text querying.

function

A piece of code that operates as a single logical unit. A function is called by name, accepts optional input parameters, and
returns a status and optional output parameters. Many programming languages support functions, including C, Visual
Basic, and Transact-SQL. Transact-SQL supplies built-in functions, which cannot be modified, and supports user-defined
functions, which can be created and modified by users.

G
global default

A default that is defined for a specific database and is shared by columns of different tables.

global properties

General properties of an English Query application, such as the default year setting or the start date of the fiscal year.

global rule

A rule that is defined for a specific database and is shared by columns of different tables.

global subscriptions

A subscription to a merge publication with an assigned priority value used for conflict detection and resolution.

global variable

In SQL Server, a variable that can be referenced by multiple Data Transformation Services (DTS) tasks. In earlier versions of
SQL Server, the term referred to the Transact-SQL system functions whose names start with two at signs (@@).

grant

Applies permissions to a user account, which allows the account to perform an activity or work with data.

granularity

The degree of specificity of information contained in a data element. A fact table that has fine granularity contains many
discrete facts, such as individual sales transactions. A table that has coarse granularity stores facts that are summaries of
individual elements, such as sales totals per day.

guest

A special user account that is present in all SQL Server 2000 databases and cannot be removed from any database. If a
connection is made using a login that has not been assigned a user account in a database and the connection references
objects in that database, it has the permissions assigned only to the guest account in that database.

H
heterogeneous data

Data stored in multiple formats. For example, data stored in a SQL Server database, a text file, and an Excel spreadsheet.

hierarchy

A logical tree structure that organizes the members of a dimension such that each member has one parent member and
zero or more child members.

See also: level, dimension hierarchy

HOLAP

See definition for: hybrid OLAP (HOLAP)

homogeneous data

Data that comes from multiple data sources that are all managed by the same software (for example, data that comes from
several Exchange spreadsheets, or data that comes from several SQL Server 2000 instances). A SQL Server 2000
distributed query is homogeneous if all the data comes from SQL Server 2000 instances.

hop

In data communications, one segment of the path between routers on a geographically dispersed network. A hop is
comparable to one "leg" of a journey that includes intervening stops between the starting point and the destination. The
distance between each of those stops (routers) would be a communications hop.

horizontal partitioning

To segment a single table into multiple tables based on selected rows. Each of the multiple tables has the same columns
but fewer rows.

See also: partitioning

HTML

See definition for: Hypertext Markup Language (HTML)

huge dimension

In Analysis Services, a dimension that contains more than approximately ten million members. Huge dimensions must use
relational OLAP (ROLAP) storage mode.

See also: very large dimension

hybrid OLAP (HOLAP)

A storage mode that uses a combination of multidimensional data structures and relational database tables to store
multidimensional data. Analysis Services stores aggregations for a HOLAP partition in a multidimensional structure and
stores facts in a relational database.

See also: multidimensional OLAP (MOLAP), relational OLAP (ROLAP)

Hypertext Markup Language (HTML)

A system of marking up, or tagging, a document so that it can be published on the World Wide Web. Documents prepared
in HTML include reference graphics and formatting tags. You use a Web browser (such as Microsoft Internet Explorer) to
view these documents.

I
identifier

The name of an object in a database. An identifier can be from 1 through 128 characters.

identity column

A column in a table that has been assigned the identity property. The identity property generates unique numbers.

identity property

A property that generates values that uniquely identify each row in a table. When inserting rows into a table that has an
identity column, SQL Server generates the next identity value automatically based on the last used identity value and the
increment value specified during column creation.

idle time

A SQL Server 2000 Agent condition that defines the level of CPU usage by the SQL Server 2000 database engine that
constitutes an idle state. SQL Server 2000 Agent jobs can then be created to run whenever the database engine CPU usage
falls below the level defined in the idle time definition. This minimizes the impact the SQL Server Agent jobs may have on
other tasks accessing the database.

IEC

See definition for: International Electrotechnical Commission (IEC)

image data type

A SQL Server variable-length binary data type with a maximum length of 2^31 - 1 (2,147,483,647) bytes.

immediate updating

An option available with snapshot replication and transactional replication that allows data modifications to be made to
replicated data at the Subscriber. The data modifications are then immediately propagated to the Publisher using two-
phase commit protocol (2PC).

immediate updating Subscribers

See definition for: immediate updating subscriptions

immediate updating subscriptions

A subscription to a snapshot or transactional publication for which the user is able to make data modifications at the
Subscriber. The data modifications are then immediately propagated to the Publisher using two-phase commit protocol
(2PC).

implicit transaction

A connection option in which each SQL statement executed by the connection is considered a separate transaction.

implied permission

Permission to perform an activity specific to a role. Implied permissions cannot be granted, revoked, or denied.

incremental update

The set of operations that either adds new members to an existing cube or dimension, or adds new data to a partition. One
of three processing options for a cube or partition. One of two processing options for a dimension.

See also: refresh data, process

index

In a relational database, a database object that provides fast access to data in the rows of a table, based on key values.
Indexes can also enforce uniqueness on the rows in a table. SQL Server supports clustered and nonclustered indexes. The
primary key of a table is automatically indexed. In full-text search, a full-text index stores information about significant
words and their location within a given column.

index ORing

An execution strategy that consists of looking up rows of a single table using several indexes, followed by producing the
result (by combining the partial results). Usually corresponds to an OR in the WHERE <search_conditions>. For example,
WHERE R.a = 6 OR R.b = 7 with indexes on columns R.a and R.b.

index page

A database page containing index rows.

indirect object

A word (or words) naming the one (or ones) indirectly affected by the action of the verb. For example, Emily sliced me
some cheese. (Me is the indirect object.)

information model

An object-oriented schema that defines meta data constructs used to specify the structure and behavior of an application,
process, component, or software artifact.

initial media

The first medium in each media family.

initial snapshot

Files including schema and data, constraints, extended properties, indexes, triggers and system tables necessary for
replication. The initial snapshot is transferred to Subscribers when implementing replication.

See also: synchronization

inner join

An operation that retrieves rows from multiple source tables by comparing the values from columns shared between the
source tables. An inner join excludes rows from a source table that have no matching rows in the other source tables.

input member

A member whose value is loaded directly from the data source instead of being calculated from other data.

See also: calculated member

input set

The set of data provided to a Multidimensional Expressions (MDX) value expression upon which the expression operates.
For more information about set value expressions, see the OLE DB documentation.

input source

Any table, view, or schema diagram used as an information source for a query.

insensitive cursor

A cursor that does not reflect data modification made to the underlying data by other users while the cursor is open.

Insert query

A query that copies specific columns and rows from one table to another or to the same table.

Insert Values query

A query (SQL statement) that creates a new row and inserts values into specified columns.

instance

A copy of SQL Server running on a computer. A computer can run multiple instances of SQL Server 2000. A computer can
run only one instance of SQL Server version 7.0 or earlier, although in some cases it can also be running multiple instances
of SQL Server 2000.

int (integer) data type

A SQL Server system data type that holds whole numbers from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647).

integer

In SQL Server 2000, a data type category that includes the bigint , int , smallint , and tinyint data types.

integrated security

See definition for: Windows Authentication

integrity constraint

A property defined on a table that prevents data modifications that would create invalid data.

intent lock

A lock placed on one level of a resource hierarchy to protect shared or exclusive locks on lower-level resources. For
example, before a SQL Server 2000 database engine task applies shared or exclusive row locks within a table, it places an
intent lock on the table. If another task tries to apply a shared or exclusive lock at the table level, it is blocked by the table-
level intent lock held by the first task. The second task does not have to check for individual page or row locks before
locking the table, it only has to check for an intent lock on the table.

interactive structured query language (ISQL)

An interactive command prompt utility provided with SQL Server that allows users to execute Transact-SQL statements or
batches from a server or workstation and view the results returned.

interface

A defined set of properties, methods, and collections that form a logical grouping of behaviors and data. Classes are
defined by the interfaces that they implement. An interface may be implemented by many different classes.

interface implication

If an interface implies another interface, then any class that implements the first interface must also implement the second
interface. Interface implication is used in an information model to get some of the effects of multiple inheritance.

internal identifier

A more compact form of an object identifier in a repository. An internal identifier is guaranteed to be unique only within a
single repository.

See also: object identifier

International Electrotechnical Commission (IEC)

One of two international standards bodies responsible for developing international data communications standards. The
International Electrotechnical Commission (IEC) works closely with the International Organization for Standardization (ISO)
to define standards of computing. They jointly published the ISO/IEC SQL-92 standard for SQL.

International Organization for Standardization (ISO)

One of two international standards bodies responsible for developing international data communications standards.
International Organization for Standardization (ISO) works closely with the International Electrotechnical Commission (IEC)
to define standards of computing. They jointly published the ISO/IEC SQL-92 standard for SQL.

Internet-enabled

A publication setting that enables replication to Internet Subscribers.

interprocess communication (IPC)

A mechanism through which operating system processes and threads exchange data and messages. IPCs include local
mechanisms such as Windows shared memory, or network mechanisms such as Windows Sockets.

IPC

See definition for: interprocess communication (IPC)

irregular form

A form of an English word that is an exception to the standard rules of inflection. For example, the past-tense of run is ran ,
not runned ; likewise, the plural of alumnus is alumni , not alumnuses .

irregular form type

The type of inflection (plural, past tense, or unknown) for which a word uses an irregular form. For example, the word
woman has an irregular plural form (women), as you don't form the plural of woman in the standard way by adding -s or -
es.

irregular noun

A noun plural that is not formed by adding -s or -es, such as men or women.

irregular verb

A verb that is not inflected in the usual ways. One example of an irregular verb is one that does not add -ed to the root
form to create the past tense and past participle. There are several common types of irregular verbs classified according to
how they indicate past tense and past participle: vowel changes (begin, began, begun); -en added (beat, beat, beaten);
vowel changes (spin, spun, spun); -d changes to -t (lend, lent, lent); no change (put, put, put).

ISO

See definition for: International Organization for Standardization (ISO)

isolation level

The property of a transaction that controls the degree to which data is isolated for use by one process and guarded against
interference from other processes. Setting the isolation level defines the default locking behavior for all SELECT statements
in your SQL Server session.

ISQL

See definition for: interactive structured query language (ISQL)

J
job

A specified series of operations, called steps, performed sequentially by SQL Server Agent.

join

As a verb, to combine the contents of two or more tables and produce a result set that incorporates rows and columns
from each table. Tables are typically joined using data that they have in common. As a noun, the process or result of joining
tables, as in the term "inner join" to indicate a particular method of joining tables.

See also: join column, logical join

join column

A column referenced in a join condition.

See also: join

join condition

A comparison clause that specifies how tables are related by their join columns.

join field

See definition for: join column

join filter

A row filter used in merge replication that defines a relationship between two tables that will be enforced during
synchronization, which is similar to specifying a join between two tables.

join operator

A comparison operator in a join condition that determines how the two sides of the condition are evaluated and which
rows are returned.

join path

A series of joins indicating how two tables are related. For example, Sales.SalesRepIDSalesReps.ID,
SalesReps.BranchIDBranches.ID.

join table

See definition for: junction table

junction table

A table that establishes a relationship between other tables. The junction table contains foreign keys referencing the tables
that form the relationship. For example, an OrderParts junction table can show what parts shipped with each order by
having foreign keys to an Orders table and a Parts table.

K
kernel

In SQL Server 2000, a subset of the storage engine that is referenced in some error messages. In Windows 2000, the core
of the operating system that performs basic operations.

key

A column or group of columns that uniquely identifies a row (PRIMARY KEY), defines the relationship between two tables
(FOREIGN KEY), or is used to build an index.

See also: key column

key column

A column referenced by a primary, foreign, or index key.

See also: key

key range lock

A lock used to lock ranges between records in a table to prevent phantom insertions or deletions into a set of records.
Ensures serializable transactions.

keyset-driven cursor

A cursor that shows the effects of updates made to its member rows by other users while the cursor is open, but does not
show the effects of inserts or deletes.

keyword

A reserved word in SQL Server that performs a specific function, such as to define, manipulate, and access database
objects.

L
large level

A dimension level that contains a number of members that equals or exceeds the threshold for large levels. This threshold
is variable and is set in the Properties dialog box of Analysis Manager.

latency

The amount of time that elapses when a data change is completed at one server and when that change appears at another
(for example, the time between when a change is made at a Publisher and when it appears at the Subscriber).

LCID

See definition for: locale identifier (LCID)

leaf

In a tree structure, an element that has no subordinate elements. For example, in Analysis Services, a leaf is a dimension
member that has no descendants.

See also: nonleaf

leaf level

The bottom level of a clustered or nonclustered index. In a clustered index, the leaf level contains the actual data pages of
the table. In a nonclustered index, the leaf level either points to data pages or points to the clustered index (if one exists),
rather than containing the data itself.

leaf member

A dimension member without descendants.

left outer join

A type of outer join in which all rows from the left-most table in the JOIN clause are included. When rows in the left table
are not matched by rows in the right table, all result set columns that come from the right table are assigned a value of
NULL.

level

The name of a set of members in a dimension hierarchy such that all members of the set are at the same distance from the
root of the hierarchy. For example, a time hierarchy may contain the levels Year, Month, and Day.

See also: dimension, hierarchy

level hierarchy

See definition for: dimension hierarchy

library

In Analysis Services, a folder that contains shared objects such as shared dimensions that can be used by multiple objects
within a database.

linked cube

A cube based on a cube defined on another Analysis server.

See also: publishing server, source cube, subscribing server

linked server

A definition of an OLE DB data source used by SQL Server 2000 distributed queries. The linked server definition specifies
the OLE DB provider required to access the data, and includes enough addressing information for the OLE DB provider to
connect to the data. Any rowsets exposed by the OLE DB data source can then be referenced as tables, called linked tables,
in SQL Server 2000 distributed queries.

See also: local server

linked table

An OLE DB rowset exposed by an OLE DB data source that has been defined as a linked server for use in SQL Server 2000
distributed queries. The rowsets exposed by the linked server can be referenced as tables in distributed queries.

linking table

A table that has associations with two other tables and is used indirectly as an association between those two tables.

livelock

A request for an exclusive lock that is repeatedly denied because a series of overlapping shared locks keeps interfering.
SQL Server detects the situation after four denials and refuses further shared locks. A livelock also occurs when read
transactions monopolize a table or page, forcing a write transaction to wait indefinitely.

See also: deadlock

local cube

A cube created and stored with the extension .cub on a local computer using PivotTable Service.

local Distributor

A server that is configured as both a Publisher and a Distributor for SQL Server Replication.

See also: Distributor, remote Distributor

local group

A group in Windows NT 4.0 or Windows 2000 containing user accounts and global groups from the domain group in
which they are created and any trusted domain. Local groups cannot contain other local groups.

local login identification

The identification (ID) a user must use to log in to a local server. A login ID can have up to 128 characters. The characters
can be alphanumeric; however, the first character must be a letter (for example, CHRIS or TELLER8).

local server

In SQL Server 2000 connections, an instance of SQL Server 2000 running on the same computer as the application.

When resolving references to database objects in a Transact-SQL statement, the instance of SQL Server 2000 executing the
statement.

In SQL Server 2000 distributed queries, the instance of SQL Server 2000 executing the distributed query. The local server
then accesses any linked servers referenced in the query.

In SQL Server 2000 remote stored procedures, the instance of SQL Server executing an EXEC statement that references a

remote stored procedure. The local server then passes the execution request to the remote server on which the remote
stored procedure resides.

See also: linked server, remote server

local subscription

A subscription to a merge publication using the priority value of the Publisher for conflict detection and resolution.

local variable

A user-defined variable that has an assigned value. A local variable is defined with a DECLARE statement, assigned an
initial value with a SELECT or SET statement, and used within the statement batch or procedure in which it was declared.

locale

The Windows operating-system attribute that defines certain behaviors related to language. The locale defines the code
page, or bit patterns, used to store character data, and the order in which characters are sorted. It also defines language-
specific items such as the format used for dates and time and the character used to separate decimals in numbers. Each
locale is identified by a unique number, called a locale identifier or LCID. SQL Server 2000 collations are similar to locales
in that the collations define language-specific types of behaviors for instances of SQL Server 2000.

See also: collation, locale identifier (LCID)

locale identifier (LCID)

A number that identifies a Windows-based locale.

See also: locale

lock

A restriction on access to a resource in a multiuser environment. SQL Server locks users out of a specific row, column, or
file automatically to maintain security or prevent concurrent data modification problems.

lock escalation

The process of converting many fine-grain locks into fewer coarse-grain locks, thereby reducing system overhead.

log file

A file or set of files containing a record of the modifications made in a database.

See also: data file

logical join

In XML View Mapper, a description of correspondence between tables based on equivalent values in one or more fields.
Logical joins are automatically created during import based on table relationships. User-defined logical joins can be added
through the user interface to describe additional relationships.

See also: join

logical name

A name used by SQL Server to identify a file. A logical name for a file must correspond to the rules for identifiers and can
have as many as 30 characters (for example, ACCOUNTING or LIBRARY).

logical operators

The operators AND, OR, and NOT. Used to connect search conditions in WHERE clauses.

login (account)

An identifier that gives a user permission to connect to SQL Server 2000 using SQL Server Authentication. Users
connecting to SQL Server 2000 using Windows NT Authentication are identified by their Windows 2000 login, and do not
need a separate SQL Server 2000 login.

Note: When possible, use Windows Authentication.

login security mode

A security mode that determines the manner in which a SQL Server 2000 instance validates a login request. There are two
types of login security: Windows Authentication and SQL Server authentication.

lookup table

A table, either in a database or hard-coded in the English Query application, that contains codes and the English word or
phrase they represent. For example, a gender lookup table contains the following code and English descriptions:

M, Male

M
machine DSN

Stores connection information for a database in the system registry. The connection information consists of parameters
and corresponding values that the ODBC Driver Manager uses to establish a connection.

Make Table query

A query (SQL statement) that creates a new table and then creates rows in it by copying rows from an existing table.

many-to-many relationship

A relationship between two tables in which rows in each table have multiple matching rows in the related table. Many-to-
many relationships are maintained by using a third table called a junction table and adding the primary key columns from
each of the other two tables to this table.

many-to-one relationship

A relationship between two tables in which one row in one table can relate to many rows in another table.

MAPI

See definition for: Messaging Application Programming Interface (MAPI)

master database

The database that controls the operation of each instance of SQL Server. It is installed automatically with each instance of
SQL Server and keeps track of user accounts, remote user accounts, and remote servers that each instance can interact
with. It also tracks ongoing processes, configurable environment variables, system error messages, tapes and disks
available on the system, and active locks.

master definition site

See definition for: Publisher

master file

The file installed with earlier versions of SQL Server used to store the master , model , and tempdb system databases
and transaction logs and the pubs sample database and transaction log.

master site

See definition for: Distributor

MDX

See definition for: Multidimensional Expressions (MDX)

measure

In a cube, a set of values that are based on a column in the cube's fact table and are usually numeric. Measures are the
central values that are aggregated and analyzed.

See also: dimension

measurement

In English Query, an option in the Adjective Phrasing dialog box. Using it, you can specify some measurement that is
represented in an entity. For example, the relationship expressed as the city is some temperature might be represented by
an Area entity and a Temperature entity.

media description

The text describing the media set.

See also: media set

media family

All media in a set written by a single device (for example, an initial medium and all continuation media, if any).

See also: media set

media header

Provides information about the backup media.

media name

The descriptive name for the entire backup media set.

media set

All media involved in a backup operation.

See also: media description, media family

member

An item in a dimension representing one or more occurrences of data. A member can be either unique or nonunique. For
example, 1997 and 1998 represent unique members in the year level of a time dimension, whereas January represents
nonunique members in the month level because there can be more than one January in the time dimension if it contains
data for more than one year.

See also: virtual dimension

member delegation

A modeling concept that describes how interface members are mapped from one interface to another.

member group

A system-generated parent of a collection of consecutive dimension members.

See also: dimension

member key column

A dimension level's property that specifies the identifiers of the members of the level. The value of this property can
specify a column that contains the identifiers or an expression that evaluates to the identifiers.

See also: member name column, member variable

member name column

A dimension level's property that specifies the names of the members of the level. The value of his property can specify a
column that contains the names or an expression that evaluates to the names.

See also: member key column, member variable

member property

Information about the members of a dimension level in addition to that contained in the dimension (for example, the color
of a product or the telephone number of a sales representative). For more information about member properties, see the
OLE DB documentation.

See also: virtual dimension

member variable

The value used internally by Analysis Services to identify a dimension member. The MemberKeyColumn property
specifies the member variables for a dimension. For example, a number from 1 through 12 could be the member variable
that corresponds to a month of the year.

See also: member key column, member name column

memo

A type of column containing long strings of text, typically more than 255 characters. This is the Access equivalent of a SQL
Server text data type.

merge

The operation that combines two partitions into a single partition.

merge replication

A type of replication that allows sites to make autonomous changes to replicated data, and at a later time, merge changes
and resolve conflicts when necessary.

See also: snapshot replication, transactional replication

message number

A number that identifies a SQL Server 2000 error message.

Messaging Application Programming Interface (MAPI)

An e-mail application programming interface (API).

meta data

Information about the properties of data, such as the type of data in a column (numeric, text, and so on) or the length of a
column. It can also be information about the structure of data or information that specifies the design of objects such as
cubes or dimensions.

method

A function that performs an action by using a COM object, as in SQL-DMO, OLE DB, and ActiveX Data Objects (ADO).

See also: Component Object Model (COM)

mining model

An object that contains the definition of a data mining process and the results of the training activity. For example, a data
mining model may specify the input, output, algorithm, and other properties of the process and hold the information
gathered during the training activity, such as a decision tree.

mining model training

The process a data mining model uses to estimate model parameters by evaluating a set of known and predictable data.
Also, the act of causing a mining model to evaluate training data.

See also: training data set

mirroring

The process for protecting against the loss of data due to disk failure by maintaining a fully redundant copy of data on a
separate disk. Mirroring can be implemented at several levels: in SQL Server 2000, in the operating system, and in the disk
controller hardware.

Mixed Mode

Combines Windows Authentication and SQL Server Authentication. Mixed Mode allows users to connect to an instance of
SQL Server, through either a Windows NT 4.0 or Windows 2000 user account or a SQL Server login.

Note: When possible, use Windows Authentication.

model

In English Query, a model is the collection of all information that is known about the objects in the English Query
application. This information includes: the specified database objects (such as tables, fields, and joins); semantic objects
(such as entities, the relationships between them, additional dictionary entries); and global domain default options.

model database

A database installed with SQL Server that provides the template for new user databases. SQL Server 2000 creates a new
database by copying in the contents of the model database and then expanding it to the size requested.

model dependency

A relationship between two or more models in which one model is dependent on the information of another model.

module

A group of objects in a project. You can move objects between modules in a project, thus organizing those objects for a
dispersed development environment.

modulo

An arithmetic operator that provides the integer remainder after a division involving two integers.

MOLAP

See definition for: multidimensional OLAP (MOLAP)

money data type

A SQL Server system data type that stores monetary values from -2^63 (-922,337,203,685,477.5808) through 2^63 - 1
(+922,337,203,685,477.5807), with accuracy to a ten-thousandth of a monetary unit.

Multidimensional Expressions (MDX)

A syntax used for defining multidimensional objects and querying and manipulating multidimensional data.

multidimensional OLAP (MOLAP)

A storage mode that uses a proprietary multidimensional structure to store a partition's facts and aggregations or a
dimension. The data of a partition is completely contained within the multidimensional structure.

See also: relational OLAP (ROLAP), hybrid OLAP (HOLAP)

multidimensional structure

A database paradigm that treats data not as relational tables and columns, but as information cubes that contain
dimension and summary data in cells. Each cell is addressed by a set of coordinates that specify a position in the
structure's dimensions. For example, the cell at coordinates {SALES, 1997, WASHINGTON, SOFTWARE} would contain the
summary of software sales in Washington in 1997.

See also: cube

multiple inheritance

A modeling term that describes how an interface receives the characteristics of more than one parent interface.

multiple instances

Multiple copies of SQL Server running on the same computer. There can be one default instance, which can be any version
of SQL Server. There can be multiple named instances of SQL Server 2000.

See also: default instance, named instance

multithreaded server application

An application that creates multiple threads within a single process to service multiple user requests at the same time.

multiuser

The ability of a computer to support many users operating at the same time, while providing the computer system's full
range of capabilities to each user.

N
name phrasing

An English description of a relationship in which one entity is the name of another entity. For example, in the sentence
"Custnames are the names of Customers", Custnames and Customers are both entities.

named instance

An installation of SQL Server 2000 that is given a name to differentiate it from other named instances and from the default
instance on the same computer. A named instance is identified by the computer name and instance name.

See also: default instance, multiple instances

named pipe

An interprocess communication (IPC) mechanism that SQL Server uses to provide communication between clients and
servers. Named pipes permit access to shared network resources.

named set

A set of dimension members or a set expression that is created for reuse, for example, in Multidimensional Expressions
(MDX) queries.

naming relationship

A naming convention that identifies the destination objects of that relationship by name.

native format

Bulk copy data files in which the data is stored using the same internal data structures SQL Server uses to store data in
SQL Server databases. Bulk copy can quickly process native mode files because it does not have to convert data when
transferring it between SQL Server and the bulk copy data file.

See also: character format

nchar data type

A fixed-length Unicode data type with a maximum of 4,000 characters. Unicode characters use 2 bytes per character and
support all international characters.

nested query

A SELECT statement that contains one or more subqueries, or another term for subquery.

nested table

A data mining model configuration in which a column of a table contains a table.

Net-Library

A SQL Server communications component that isolates the SQL Server client software and database engine from the
network APIs. The SQL Server client software and database engine send generic network requests to a Net-Library, which
translates the request to the specific network commands of the protocol chosen by the user.

nickname

When used with merge replication system tables, a name for another Subscriber that is known to already have a specified
generation of updated data. Used to avoid sending an update to a Subscriber that has already received those changes.

niladic functions

Functions that do not have any input parameters. Most niladic SQL Server functions return system information.

noise word

Words that do not participate in a full-text query search. For example, a, and, the, and so on.

nonclustered index

An index in which the logical order of the index is different than the physical, stored order of the rows on disk.

nonleaf

In a tree structure, an element that has one or more subordinate elements. For example, in Analysis Services, a dimension
member that has one or more descendants. In SQL Server indexes, an intermediate index node that points to other
intermediate nodes or leaf nodes.

See also: leaf

nonleaf member

A member with one or more descendants.

nonrepeatable read

When a transaction reads the same row more than one time, and between the two (or more) reads, a separate transaction
modifies that row. Because the row was modified between reads within the same transaction, each read produces different
values, which introduces inconsistency.

normalization rules

A set of database design rules that minimizes data redundancy and results in a database in which the database engine and
application software can easily enforce integrity.

noun

A part of speech that names a person, place, thing, idea, animal, quality, or action. A noun usually changes form to indicate
the plural and the possessive case.

ntext data type

A variable-length Unicode data type that can hold a maximum of 2^30 - 1 (1,073,741,823) characters. ntext columns store
a 16-byte pointer in the data row, and the data is stored separately.

NULL

An entry that has no explicitly assigned value. NULL is not equivalent to zero or blank. A value of NULL is not considered to
be greater than, less than, or equivalent to any other value, including another value of NULL.

nullability

The attribute of a column, parameter, or variable that specifies whether it allows null data values.

numeric expression

Any expression that evaluates to a number. The expression can be any combination of variables, constants, functions, and
operators.

nvarchar data type

A variable-length Unicode data type with a maximum of 4,000 characters. Unicode characters use 2 bytes per character
and support all international characters. sysname is a system-supplied user-defined data type that is a synonym for
nvarchar(128) and is used to reference database object names.

O
object

In databases, one of the components of a database: a table, index, trigger, view, key, constraint, default, rule, user-defined
data type, or stored procedure.

object dependencies

References to other objects when the behavior of the first object can be affected by changes in the object it references. For
example, if a stored procedure references a table, changes to the table can affect the behavior of the stored procedure.

object identifier

A unique name given to an object.

In Meta Data Services, a unique identifier constructed from a globally unique identifier (GUID) and an internal identifier. All
objects must have an object identifier.

See also: internal identifier

object owner

The security account that controls the permissions for an object, usually the creator of the object. Object owner is also
called the database object owner.

object permission

An attribute that controls the ability to perform operations on an object. For example, table or view permissions control
which users can execute SELECT, INSERT, UPDATE, and DELETE statements against the table or view.

object variable

A variable that contains a reference to an object.

ODBC

See definition for: Open Database Connectivity (ODBC)

ODBC data source

The location of a set of data that can be accessed using an ODBC driver. Also, a stored definition that contains all of the
connection information an ODBC application requires to connect to the data source.

See also: data source

ODBC driver

A dynamic-link library (DLL) that an ODBC-enabled application, such as Excel, can use to access an ODBC data source. Each
ODBC driver is specific to a database management system (DBMS), such as SQL Server, Access, and so on.

ODS

See definition for: Open Data Services (ODS)

OIM

See definition for: Open Information Model (OIM)

OLAP

See definition for: online analytical processing (OLAP)

OLE Automation controller

A programming environment (for example, Visual Basic) that can drive Automation objects.

OLE Automation objects

A Component Object Model (COM) object that provides Automation-compatible interfaces.

OLE Automation server

An application that exposes programmable automation objects to other applications, which are called "automation clients."
Exposing programmable objects enables clients to "automate" certain functions by directly accessing those objects and
using the services they make available. For example, a word processor might expose its spell-checking functionality so that
other programs can use it.

OLE DB

A COM-based application programming interface (API) for accessing data. OLE DB supports accessing data stored in any
format (databases, spreadsheets, text files, and so on) for which an OLE DB provider is available.

See also: OLE DB for OLAP

OLE DB consumer

Any software that calls and uses the OLE DB application programming interface (API).

OLE DB for OLAP

Formerly, the separate specification that addressed OLAP extensions to OLE DB. Beginning with OLE DB 2.0, OLAP
extensions are incorporated into the OLE DB specification.

See also: OLE DB

OLE DB provider

A software component that exposes OLE DB interfaces. Each OLE DB provider exposes data from a particular type of data
source (for example SQL Server databases, Access databases, or Excel spreadsheets).

OLTP

See definition for: online transaction processing (OLTP)

one-to-many relationship

In relational databases, a relationship between two tables in which a single row in the first table can be related to one or
more rows in the second table, but a row in the second table can be related only to one row in the first table.

one-to-one relationship

In relational databases, a relationship between two tables in which a single row in the first table can be related only to one
row in the second table, and a row in the second table can be related only to one row in the first table.

online analytical processing (OLAP)

A technology that uses multidimensional structures to provide rapid access to data for analysis. The source data for OLAP
is commonly stored in data warehouses in a relational database.

online redo log

See definition for: transaction log

online transaction processing (OLTP)

A data processing system designed to record all of the business transactions of an organization as they occur. An OLTP
system is characterized by many concurrent users actively adding and modifying data.

Open Data Services (ODS)

The layer of the SQL Server database engine that transfers client requests to the appropriate functions in the database
engine. Open Data Services exposes the extended stored procedure API used to write DLL functions that can be called from
Transact-SQL statements.

Open Database Connectivity (ODBC)

A data access application programming interface (API) that supports access to any data source for which an ODBC driver is
available. ODBC is aligned with the American National Standards Institute (ANSI) and International Organization for
Standardization (ISO) standards for a database Call Level Interface (CLI).

Open Information Model (OIM)

An information model published by the Meta Data Coalition (MDC) and widely supported by software vendors. The OIM is
a formal description of meta data constructs organized by subject area.

optimize synchronization

An option in merge replication that allows you to minimize network traffic when determining whether recent changes have
caused a row to move into or out of a partition that is published to a Subscriber.

optimizer

See definition for: query optimizer

ordered set

A set of members returned in a specific order. The ORDER function in a Multidimensional Expressions (MDX) query returns
an ordered set.

origin object

An object in a repository that is the origin in a directional relationship. For example, project is the origin object in the
relationship project has component .

See also: destination object, sequenced relationship

outer join

A join that includes all the rows from the joined tables that meet the search conditions, even rows from one table for which
there is no matching row in the other join table. For result set rows returned when a row in one table is not matched by a
row from the other table, a value of NULL is supplied for all result set columns that are resolved to the table that had the
missing row.

overfitting

The characteristic of some data mining algorithms that assigns importance to random variations in data by viewing them
as important patterns.

P
page

In a virtual storage system, a fixed-length block of contiguous virtual addresses copied as a unit from memory to disk and
back during paging operations. SQL Server allocates database space in pages. In SQL Server, a page is 8 kilobytes (KB) in
size.

page split

The process of moving half the rows or entries in a full data or index page to two new pages to make room for a new row
or index entry.

parent

A member in the next higher level in a hierarchy that is directly related to the current member. The parent value is usually a
consolidation of the values of all of its children. For example, in a Time dimension containing the levels Quarter, Month,
and Day, Qtr1 is the parent of January.

See also: child, descendant, sibling, ancestor

partition

In Analysis Services, one of the storage containers for data and aggregations of a cube. Every cube contains one or more
partitions. For a cube with multiple partitions, each partition can be stored separately in a different physical location. Each
partition can be based on a different data source. Partitions are not visible to users; the cube appears to be a single object.

partitioning

The process of replacing a table with multiple smaller tables. Each smaller table has the same format as the original table,
but with a subset of the data. Each partitioned table has rows allocated to it based on some characteristic of the data, such
as specific key ranges. The rules that define into which table the rows go must be unambiguous. For example, a table is
partitioned into two tables. All rows with primary key values lower than a specified value are allocated to one table, and all
keys equal to or greater than the value are allocated to the other. Partitioning can improve application processing speeds
and reduce the potential for conflicts in multisite update replication. You can improve the usability of partitioned tables by
creating a view. The view, created by a union of select operations on all the partitioned tables, presents the data as if it all
resided in a single table.

See also: filtering, vertical partitioning, horizontal partitioning

parts of speech

The classes into which words may be grouped according to their form changes and their grammatical relationships. The
traditional parts of speech are verbs, nouns, pronouns, adjectives, adverbs, prepositions, conjunctions, and interjections.

pass order

The order of evaluation (from highest to lowest calculation pass number) and calculation (from lowest to highest
calculation pass number) for calculated members, custom members, custom rollup formulas, and calculated cells in a
multidimensional cube. Pass order is used to determine formula precedence when calculating values for cells in
multidimensional cubes, across all calculation passes.

See also: solve order

pass-through query

A query passed uninterpreted to an external server for evaluation. The result set returned by a pass-through query can be
used in the FROM clause of a query like an ordinary base table.

pass-through statement

A SELECT statement that is passed directly to the source database without modification or delay. In PivotTable Service, the
PASSTHROUGH option is part of the INSERT INTO statement.

passive voice

Indicates that the subject of the verb receives the action of the verb. For example, in the sentence "The customers are sold
products", the subject customers receives the action of the verb are sold .

See also: active voice

persistence

The saving of an object definition so it will be available after the current session ends.

phantom

By one task, the insertion of a new row or the deletion of an existing row in a range of rows previously read by another
task that has not yet committed its transaction. The task with the uncommitted transaction cannot repeat its original read
because of the change to the number of rows in the range. If a connection sets its transaction isolation level to serializable,
SQL Server uses key-range locking to prevent phantoms.

phrase

A sequence of grammatically related words lacking a subject or a predicate, or both.

phrasing

A way to express a relationship in English. Types of phrasings include name, adjective, subset, preposition, verb, and trait
phrasings. For example, department names are names of departments is an example of name phrasing.

physical name

The path where a file or mirrored file is located. The default is the path of the Master.dat file followed by the first eight
characters of the file's logical name. For example, if Accounting is the logical name, and the Master.dat file is located in
Sql\Data, the default physical name is Sql\Data\Accounti.dat. For a mirrored file, the default is the path of the Master.mir
file followed by the first eight characters of the mirror file's logical name. For example, if Maccount is the name of the
mirrored file, and the Master.mir file is located in Sql\Data, the default physical name is Sql\Data\Maccount.mir.

physical reads

A request for a database page in which SQL Server must transfer the requested page from disk to the SQL Server buffer
pool. All attempts to read pages are called logical reads. If the page is already in the buffer, there is no associated physical
read generated by the logical read. The number of physical reads never exceeds the number of logical reads. In a well-
tuned instance of SQL Server, the number of logical reads is typically much higher than the number of physical reads.

pivot

To rotate rows to columns, and columns to rows, in a crosstabular data browser.

To choose dimensions from the set of available dimensions in a multidimensional data structure for display in the rows
and columns of a crosstabular structure.

PK

See definition for: primary key (PK)

position

The current location of processing in a cursor. For example, after an application fetches the first 10 rows from a cursor, it is
positioned on the tenth row of the cursor. Database APIs also have functions, such as the ODBC SQLSetPos function, that
allow an application to move directly to a specific position in a cursor without performing a fetch.

positioned update

An update, insert, or delete operation performed on a row at the current position of the cursor. The actual change is made
in the rows of the base tables used to build the current row in the cursor. Transact-SQL batches, stored procedures, and
triggers use the WHERE CURRENT OF clause to perform positioned updates. Applications use API functions, such as the
ODBC SQLSetPos function, to perform positioned updates.

possessive case

A grammatical case that denotes ownership or a relation analogous to ownership, for example, Mary's blood type, or
John's movie.

precision

The maximum total number of decimal digits that can be stored, both to the left and right of the decimal point.

predicate

A basic grammatical division of a sentence that consists of what is said about the subject. For example, in the sentence "The
voters elected the incumbent", the subject is voters and the predicate is elected the incumbent .

prediction

A data mining technique that analyzes existing data and uses the results to predict values of attributes for new records or
missing attributes in existing records. For example, existing credit application data can be used to predict the credit risk for
a new application.

See also: decision tree

prefix characters

A set of 1 to 4 bytes that prefix each data field in a native-format bulk-copy data file. The prefix characters record the length
of the data value in the field, or contain -1 when the value is NULL.

prefix length

The number of prefix characters preceding each noncharacter field in a bcp native format data file.

prefix search

Full-text query searching for those columns where the specified character-based text, word, or phrase, is the prefix. When
using a phrase, each word within the phrase is considered to be a prefix. For example, a prefix search specifying the phrase
"sport fish*" matches "sport fishing", "sportsman fishing supplies", and so on.

preposition

A part of speech that links and relates a noun or noun substitute to another word in the sentence. For example, in the
sentence "the dancers leaped across the stage", across is the preposition. Words commonly used as prepositions include
about , after , among , before , between , but , during , for , from , in , into , near , of , on , over , to , until , with , and so on.

preposition phrasing

A way of expressing a relationship in English in which an entity serves as a subject and an entity serves as an object and
are linked by a preposition. For example, in the sentence, "stories are about subjects", stories is the subject entity, about is
the preposition, and subjects is the object.

primary dimension table

In a snowflake schema in a data warehouse, a dimension table that is directly related to and usually joined to the fact table.
Additional tables that complete the dimension definition are joined to the primary dimension table instead of to the fact
table.

See also: dimension table, snowflake schema

primary key (PK)

A column or set of columns that uniquely identify all the rows in a table. Primary keys do not allow null values. No two
rows can have the same primary key value; therefore, a primary key value always uniquely identifies a single row. More
than one key can uniquely identify rows in a table; each of these keys is called a candidate key. Only one candidate key can
be chosen as the primary key of a table; all other candidate keys are known as alternate keys. Although tables are not
required to have primary keys, it is good practice to define them. In a normalized table, all of the data values in each row
are fully dependent on the primary key. For example, in a normalized employee table that has EmployeeID as the primary
key, all of the columns should contain data related to a specific employee. This table does not have the column
DepartmentName because the name of the department is dependent on a department ID, not on an employee ID.

primary table

The "one" side of two related tables in a one-to-many relationship. A primary table should have a primary key and each
record should be unique. An example of a primary table is a table of customer names that are uniquely identified by a
CustomerID primary key field.

private dimension

A dimension created for and used by a specific cube. Unlike shared dimensions, private dimensions are available only to

the cube in which they are created.

See also: shared dimension

procedure cache

The part of the SQL Server memory pool that is used to store execution plans for Transact-SQL batches, stored procedures,
and triggers. Execution plans record the steps that SQL Server must take to produce the results specified by the Transact-
SQL statements contained in the batches, stored procedures, or triggers.

process

In a cube, the series of operations that rebuilds the cube's structure, loads data into a multidimensional structure, calculates
summaries, and saves the precalculated aggregations. As a verb, to populate a cube with data and aggregations. It is one of
three processing options for a cube.

In a dimension, the operation that loads data from a dimension table in a data warehouse into the levels defined for a
dimension and rebuilds the structure of the dimension. It is one of two processing options for a dimension.

In a data mining model, the operation that retrieves training data from a relational or OLAP data source into the structure
defined for a data mining model, statistically analyzes it with a data mining algorithm, and saves the statistical data as data
mining content. As a verb, to populate a data mining model with data mining content.

See also: incremental update, refresh data

producer

Collects events in a specific event category and sends the data to a SQL Server Profiler queue.

project

In English Query, a file that contains the structure of the relational database and definitions of semantic objects, such as
entities, relationships, and dictionary entries. Its extension is *.eqp. It is used to test how English Query translates English
questions into SQL statements. Later, it can be compiled into a deployable application file with an *.eqd extension.

pronoun

A part of speech that takes the position of a noun and functions as one, for example, she, he, and we.

proper noun

A noun that is capitalized; a specific name, for example, John Smith.

property

A named attribute of a control, field, or database object that you set to define one of the object's characteristics (such as
size, color, or screen location) or an aspect of its behavior (such as whether it is hidden).

property pages

A tabbed dialog box where you can identify the characteristics of tables, relationships, indexes, constraints, and keys. Every
object in a database diagram has a set of properties that determine the definition of a database object. Each set of tabs
shows only the properties specific to the selected object. If multiple objects are selected, the property pages show the
properties of the first object you selected.

provider

An OLE DB provider.

An in-process dynamic link library (DLL) that provides access to a database.

proximity search

Full-text query searching for those occurrences where the specified words are close to one another.

publication

A publication is a collection of one or more articles from one database. This grouping of multiple articles makes it easier to
specify a logically related set of data and database objects that you want to replicate at the same time.

publication database

A database on the Publisher from which data and database objects are marked for replication as part of a publication that
is propagated to Subscribers.

publication retention period

A predetermined length of time that regulates how long subscriptions will receive updates during synchronizations and
remain activated in databases.

published data

Data at the Publisher that has been replicated.

Publisher

A server that makes data available for replication to other servers, detects changed data, and maintains information about
all publications at the site.

publishing server

An Analysis server that stores the source cube for one or more linked cubes.

See also: linked cube, subscribing server

publishing table

The table at the Publisher in which data has been marked for replication and is part of a publication.

pubs database

A sample database provided with SQL Server.

pull subscription

A subscription created and administered at the Subscriber. Information about the publication and the Subscriber is stored.

See also: push subscription

push subscription

A subscription created and administered at the Publisher. Information about the publication and Subscriber is stored.

See also: pull subscription

Q
query optimizer

The SQL Server database engine component responsible for generating efficient execution plans for SQL statements.

question

In English Query, an English form of a query, for example, "How many customers bought products last year?" Questions
may also be posed as statements to an English Query application, for example, "List the customers that bought products
last year."

Question Builder

A tool that supports users' needs to know more about the domain objects so that they can construct questions. They can
find out what the domain objects contain, what kind of basic relationships are represented in the domain, and what English
phrases can be used to ask about the relationships.

question file (.eqq)

An ASCII text file that contains questions (one to a line) that are ready for testing with the English Query engine. Question
files are denoted with the .eqq extension. Questions can be submitted to the question file automatically with the test tool,
or a developer can create a list of questions.

question template

A structure that describes a set of questions that can be asked using a particular relationship or set of relationships.

queue

A SQL Server Profiler queue provides a temporary holding place for server events to be captured.

R
ragged hierarchy

A dimension hierarchy in which one or more levels do not contain members in one or more branches of the hierarchy. For
example, the state or province level in a geography hierarchy contains no members for countries or regions that do not
have states or provinces.

See also: unbalanced hierarchy

range query

A query that specifies a range of values as part of the search criteria, such as all rows from 10 through 100.

rank

For full-text and SQL Server Books Online searches, a value indicating how closely rows or topics match the specified
search criteria. For Meta Data Services and Analysis Services, a value indicating the relative positions of elements such as
dimension members, hierarchy levels, or tuples in a set.

RDBMS

See definition for: relational database management system (RDBMS)

real data type

A SQL Server system data type that has 7-digit precision. Floating precision number data from -3.40E + 38 through 3.40E
+ 38. Storage size is 4 bytes.

record

A group of related fields (columns) of information treated as a unit. A record is more commonly called a row in an SQL
database.

recordset

The ActiveX Database Objects (ADO) object used to contain a result set. It also exhibits cursor behavior depending on the
recordset properties set by an application. ADO recordsets are mapped to OLE DB rowsets.

recovery interval

The maximum amount of time that the database engine should require to recover a database. The database engine ensures
that the active portion of the database log is small enough to recover the database in the amount of time specified for the
recovery interval.

recursive partitioning

The iterative process, used by data mining algorithm providers, of dividing data into groups until no more useful groups
can be found.

redo log file

See definition for: backup file

referenced key

A primary key or unique key referenced by a foreign key.

referencing key

See definition for: foreign key (FK)

referential integrity (RI)

A state in which all foreign key values in a database are valid. For a foreign key to be valid, it must contain either the value
NULL, or an existing key value from the primary or unique key columns referenced by the foreign key.

reflexive relationship

A relationship from a column or combination of columns in a table to other columns in that same table. A reflexive
relationship is used to compare rows within the same table. In queries, this is called a self-join.

refresh data

The series of operations that clears data from a cube, loads the cube with new data from the data warehouse, and
calculates aggregations. Refresh data is used when a cube's underlying data in the data warehouse changes but the cube's
structure and aggregation definitions remain the same. One of three processing options for a cube.

See also: incremental update, process

regular cube

A cube that is based on tables and has its own aggregations.

regular dimension

A dimension that is neither a parent-child dimension nor a virtual dimension.

relational database

A collection of information organized in tables. Each table models a class of objects of interest to the organization (for
example, Customers , Parts , Suppliers). Each column in a table models an attribute of the object (for example,
LastName , Price , Color). Each row in a table represents one entity in the class of objects modeled by the table (for
example, the customer name John Smith or the part number 1346). Queries can use data from one table to find related
data in other tables.

relational database management system (RDBMS)

A system that organizes data into related rows and columns. SQL Server is a relational database management system
(RDBMS).

relational OLAP (ROLAP)

A storage mode that uses tables in a relational database to store multidimensional structures.

See also: multidimensional OLAP (MOLAP), hybrid OLAP (HOLAP)

relationship

A link between tables that references the primary key in one table to a foreign key in another table. The relationship line is
represented in a database diagram by a solid line if referential integrity between the tables is enforced, or a dashed line if
referential integrity is not enforced for INSERT and UPDATE transactions. The endpoints of a relationship line show a
primary key symbol to denote a primary key-to-foreign key relationship, or they show an infinity symbol to denote the
foreign key side of a one-to-many relationship.

In English Query, an association between entities that describes what those entities have to do with one another.

Relationships can be described concisely in English as simple statements about entities (for example, customers purchase
products). More than one join may be required to represent a single relationship.

relationship

In Meta Data Services, a relationship is an association between a pair of objects, where one object is an origin and the other
object is a destination. The association repeats for each subsequent pair of objects, so that the destination of one
relationship becomes the origin in the next relationship. In this way, all objects in an information model are associated
through a chain of relationships that extend from one object to the next throughout the information model.

relationship object

An object representing a pair of objects that assume a role in relation to each other.

See also: sequenced relationship

relationship type

A definition of a relationship between two interfaces, as defined in an information model. A relationship type is similar to a
class in that it describes characteristics to which specific instances must conform.

remote data

Data stored in an OLE DB data source that is separate from the current instance of SQL Server. The data is accessed by
establishing a linked server definition or using an ad-hoc connector name.

remote Distributor

A server configured as a Distributor that is separate from the server configured as the Publisher.

See also: Distributor, local Distributor

remote login identification

The login identification (login ID) assigned to a user for accessing remote procedures on a remote server.

remote partition

A partition whose data is stored on an Analysis server other than the one used to store the meta data of the partition.

remote server

A definition of an instance of SQL Server used by remote stored procedure calls. Remote servers are still supported in SQL
Server 2000, but linked servers offer greater functionality.

See also: local server

remote stored procedure

A stored procedure located on one instance of SQL Server that is executed by a statement on another instance of SQL
Server. In SQL Server 2000, remote stored procedures are supported, but distributed queries offer greater functionality.

remote table

A table stored in an OLE DB data source that is separate from the current instance of SQL Server. The table is accessed by
either establishing a linked server definition or using an ad-hoc connector name.

replicated data

Data at the Subscriber that has been received from a Publisher.

replication

A process that copies and distributes data and database objects from one database to another and then synchronizes
information between databases for consistency.

Replication Conflict Viewer

Allows users to view and resolve conflicts that occurred during the merge replication process and to review the manner in
which conflicts have been resolved.

Replication Monitor

Allows users to view and manage replication agents responsible for various replication tasks and to troubleshoot potential
problems at the Distributor.

replication scripting

The generation of .sql scripts that can be used to configure and disable replication.

replication topology

Defines the relationship between servers and the copies of data and clarifies the logic that determines how data flows
between servers.

repository

The storage container for the meta data used by Analysis Services. Meta data is stored in tables in a relational database and
is used to define the parameters and properties of Analysis server objects.

repository

A database containing information models that, in conjunction with the executable software, manage the database. The
term can also refer to an installation of Meta Data Services.

repository engine

Object-oriented software that provides management support for and customer access to a repository database.

repository object

A COM object that represents a data construct stored in a repository type library.

Repository SQL schema

A set of standard tables used by the repository engine to manage all repository objects, relationships, and collections.
Repository SQL schema maps information model elements to SQL schema elements.

Repository Type Information Model (RTIM)

A core object model that represents repository type definitions for Meta Data Services. This object model is composed of
abstract classes upon which instances of information models are based.

republish

When a Subscriber publishes data received from a Publisher to another Subscriber.

republisher

A Subscriber that publishes data that it has received from a Publisher.

resolution strategy

A set of criteria that the repository engine evaluates sequentially when selecting an object, where multiple versions exist
and version information is unspecified in the calling program.

restatement

An English query, returned by the English Query engine, that is a check on the query entered by the end user. Restatements
give end users a check that the English Query engine interpreted their question correctly. If the restatement is accurate, the
correct SQL statements will be generated, and thus the returned answer will be valid.

result

In English Query, an English answer to a question that has been posed to an English Query application.

result set

The set of rows returned from a SELECT statement. The format of the rows in the result set is defined by the column-list of
the SELECT statement.

return parameters

A legacy term for stored procedure output parameters, used in the Open Data Services and DB-Library APIs.

reusable bookmark

A bookmark that can be consumed from a rowset for a given table and used on a different rowset of the same table to
position on a corresponding row.

revoke

Removes a previously granted or denied permission from a user account, role, or group in the current database.

RI

See definition for: referential integrity (RI)

right outer join

A type of outer join in which all rows in the right-most table in the JOIN clause are included. When rows in the right table
are not matched in the left table, all result set columns that come from the left table are assigned a value of NULL.

ROLAP

See definition for: relational OLAP (ROLAP)

role

A SQL Server security account that is a collection of other security accounts that can be treated as a single unit when
managing permissions. A role can contain SQL Server logins, other roles, and Windows logins or groups.

role

In Analysis Services, a role uses Windows security accounts to limit scope of access and permissions when users access
databases, cubes, dimensions, and data mining models.

See also: rule

roll back

To remove the updates performed by one or more partially completed transactions. Rollbacks are required to restore the
integrity of a database after an application, database, or system failure.

See also: commit

roll forward

To apply all the completed transactions from a database or log backup in order to recover a database to a point in time or
the point of failure (for example, after events such as the loss of a disk).

root form

The simplest form of a word. For example, the root form of generating is generate. For other verbs, the present, infinitive
form should be used when defining dictionary entries in English Query (use run, not ran or runs). For nouns, use the
singular, not the plural form as the base word (animal, not animals).

row

In an SQL table, the collection of elements that form a horizontal line in the table. Each row in the table represents a single

occurrence of the object modeled by the table and stores the values for all the attributes of that object. For example, in the
Northwind sample database, the Employees table models the employees of the Northwind Traders Company. The first
row in the table records all the information (for example, name and title) about the employee who has employee ID 1.

See also: column

row aggregate function

A function, which generates summary values that appear as additional rows in the query results (unlike aggregate function
results that appear as new columns). It allows you to see detail and summary rows in one set of results. Row aggregate
functions (SUM, AVG, MIN, MAX, and COUNT) are used in a SELECT statement with the COMPUTE clause.

row filter

Specifies a subset of rows from a table to be published and when specific rows need to be propagated to Subscribers.

row lock

A lock on a single row in a table.

rowset

The OLE DB object used to contain a result set. It also exhibits cursor behavior depending on the rowset properties set by
an application.

RTIM

See definition for: Repository Type Information Model (RTIM)

rule

A database object that is bound to columns or user-defined data types, and specifies which data values are acceptable in a
column. CHECK constraints provide the same functionality and are preferred because they are in the SQL-92 standard.

rule

In Analysis Services, a rule specifies restrictions such as Unrestricted, Fully Restricted, or Custom for security read and
read/write role permissions.

See also: role

S
sample data

Artificially generated data presented instead of actual data when a cube is queried before it has been processed. Sample
data enables you to view the effects of structure changes while modifying a cube.

savepoint

A marker that allows an application to roll back part of a transaction if a minor error is encountered. The application must
still commit or roll back the full transaction when it is complete.

scalar aggregate

An aggregate function, such as MIN(), MAX(), or AVG(), that is specified in a SELECT statement column list that contains
only aggregate functions. When the column list contains only aggregate functions, then the result set has only one row
giving the aggregate values calculated from the source rows that match the WHERE clause predicates.

scheduled backup

An automatic backup accomplished by SQL Server Agent when defined and scheduled as a job.

schema

In the SQL-92 standard, a collection of database objects that are owned by a single user and form a single namespace. A
namespace is a set of objects that cannot have duplicate names. For example, two tables can have the same name only if
they are in separate schemas; no two tables in the same schema can have the same name. In Transact-SQL, much of the
functionality associated with schemas is implemented by database user IDs. In database tools, schema also refers to the
catalog information that describes the objects in a schema or database. In Analysis Services, a schema is a description of
multidimensional objects such as cubes and dimensions. In XML View Mapper, a schema is a description of XML elements
and database definitions that can be mapped to create a mapping schema.

schema rowset

A special OLE DB or Analysis Services rowset that reports catalog information for objects in databases or multidimensional
cubes. For example, the OLE DB schema rowset DBSCHEMA_COLUMNS describes columns in tables, and the Analysis
Services MDSCHEMA_MEASURES schema rowset describes the measures in a cube.

script

A collection of Transact-SQL statements used to perform an operation. Transact-SQL scripts are stored as files, usually with
the .sql extension.

scroll

The ability to move around a cursor in directions other than forward-only. Users can move up and down the cursor.

search condition

In a WHERE or HAVING clause, predicates that specify the conditions that the source rows must meet to be included in the
SQL statement. For example, the statement SELECT * FROM Employees WHERE Title = 'Sales Representative' returns only
those rows that match the search condition: Title = 'Sales Representative'.

Security Identifier (SID)

A unique value that identifies a user who is logged on to the security system. SIDs can identify either one user or a group
of users.

segmentation

A data mining technique that analyzes data to discover mutually exclusive collections of records that share similar
attributes sets. A segmentation algorithm can use unsupervised learning techniques such as clustering or supervised
learning for a specific prediction field.

See also: clustering

SELECT

The Transact-SQL statement used to return data to an application or another Transact-SQL statement, or to populate a
cursor. The SELECT statement returns a tabular result set consisting of data that is typically extracted from one or more
tables. The result set contains only data from rows that match the search conditions specified in WHERE or HAVING
clauses.

SELECT

In Analysis Services, the Multidimensional Expressions (MDX) statement used to query cubes and return recordsets of
multidimensional data.

select list

The SELECT statement clause that defines the columns of the result set returned by the statement. The select list is a
comma-separated list of expressions, such as column names, functions, or constants.

Select query

A query that returns rows into a result set from one or more tables. A Select query can contain specifications for those
columns to return, the rows to select, the order to put the rows in, and how to group (summarize) information.

self-join

A join in which records from a table are combined with other records from the same table when there are matching values
in the joined fields. A self-join can be an inner join or an outer join. In database diagrams, a self-join is called a reflexive
relationship.

semantic object

An object that can be represented by a database object or other real-world object. For example, an entity and a relationship
are semantic objects.

semiadditive measure

A measure that can be summed along one or more, but not all, dimensions in a cube. For example, a quantity-on-hand
measure of inventory can be summed along the geography dimension to produce a total quantity on hand for all
warehouses, but it cannot be summed along the time dimension because the measure specifies snapshot quantities
periodically in time.

sensitive cursor

A cursor that can reflect data modifications made to underlying data by other users while the cursor is open. Updates,
deletes, and inserts made by other users are reflected in the sensitive cursor. Sensitive cursors are typically used in
Transact-SQL batches, stored procedures, and triggers by omitting the INSENSITIVE keyword on the DECLARE CURSOR
statement.

sequence

See definition for: identity column

sequenced collection

A collection of destination objects of a sequenced relationship object.

See also: sequenced relationship

sequenced relationship

A relationship in a repository that specifies explicit positions for each destination object within the collection of destination
objects.

See also: relationship object, origin object, sequenced collection

serializable

The highest transaction isolation level. Serializable transactions lock all rows they read or modify to ensure the transaction
is completely isolated from other tasks. This guarantees that a series of serializable transactions will always produce the
same results if run in the same sequence.

server cursor

A cursor implemented on the server. The cursor itself is built at the server, and only the rows fetched by an application are
sent to the client.

See also: API server cursor

server name

A name that uniquely identifies a server computer on a network. SQL Server applications can connect to a default instance
of SQL Server by specifying only the server name. SQL Server applications must specify both the server name and instance
name when connecting to a named instance on a server.

session

In English Query, a sequence of operations performed by the English Query engine. A session begins when a user logs on
and ends when the user logs off. All operations during a session form one transaction scope and are subject to
permissions determined by the logon username and password.

Setup initialization file

A text file, using the Windows .ini file format, that stores configuration information allowing SQL Server to be installed
without a user having to be present to respond to prompts from the Setup program.

severity level

A number indicating the relative significance of an error generated by the SQL Server database engine. Values range from
informational (1) to severe (25).

shared dimension

A dimension created within a database that can be used by any cube in the database.

See also: private dimension

shared lock

A lock created by nonupdate (read) operations. Other users can read the data concurrently, but no transaction can acquire
an exclusive lock on the data until all the shared locks have been released.

Showplan

A report showing the execution plan for an SQL statement. SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL produce
textual showplan output. SQL Query Analyzer and SQL Server Enterprise Manager can display showplan information as a
graphical tree.

sibling

A member in a dimension hierarchy that is a child of the same parent as a specified member. For example, in a Time
dimension with Year and Month levels, the members January 1997 and February 1997 are siblings.

See also: child, descendant, parent, ancestor

SID

See definition for: Security Identifier (SID)

single-user mode

A state in which only one user can access a resource. Both SQL Server instances and individual databases can be put into
single-user mode.

slice

A subset of the data in a cube, specified by limiting one or more dimensions by members of the dimension. For example,
facts for a particular year constitute a slice of multiyear data.

See also: axis

smalldatetime data type

Date and time data from January 1, 1900, through June 6, 2079, with an accuracy of one minute.

smallint data type

SQL Server system integer data from -2^15 (-32,768) through 2^15 - 1 (32,767).

smallmoney data type

A SQL Server system data type that stores monetary values from -214,748.3648 through +214,748.3647, with accuracy to
a ten-thousandth of a monetary unit. Storage size is 4 bytes. When smallmoney values are displayed, they are rounded
up two places.

Snapshot Agent

Prepares snapshot files containing schema and data of published tables, stores the files in the snapshot folder, and inserts
synchronization jobs in the publication database.

Snapshot Agent utility

Configures and triggers the Snapshot Agent, which prepares snapshot files containing schema and data of published
tables and database objects.

snapshot cursor

See definition for: static cursor

snapshot replication

A type of replication that distributes data exactly as it appears at a specific moment in time and does not monitor for
modifications made to the data.

See also: merge replication, transactional replication

snowflake schema

An extension of a star schema such that one or more dimensions are defined by multiple tables. In a snowflake schema,
only primary dimension tables are joined to the fact table. Additional dimension tables are joined to primary dimension
tables.

See also: primary dimension table, star schema

solve order

The order of evaluation (from highest to lowest solve order) and calculation (from lowest to highest solve order) for
calculated members, custom members, custom rollup formulas, and calculated cells in a single calculation pass of a
multidimensional cube. Solve order is used to determine formula precedence when calculating values for cells in
multidimensional cubes, but only within a single calculation pass.

See also: pass order, calculation subcube, calculation pass, calculation condition, calculation formula

sort order

The set of rules in a collation that define how characters are evaluated in comparison operations and the sequence in
which they are sorted.

source and target

A browsing technique in which a source object is used to retrieve its target object or objects through their relationship.

source cube

The cube on which a linked cube is based.

See also: linked cube

source database

See definition for: publication database

source database

In data warehousing, the database from which data is extracted for use in the data warehouse.

source object

The single object to which all objects in a particular collection are connected by way of relationships that are all of the same
relationship type. For destination collections, the source object is the destination object. For origin collections, the source
object is the origin object.

source partition

An Analysis Services partition that is merged into another and is deleted automatically at the end of the merger process.

See also: target partition

sparsity

The relative percentage of a multidimensional structure's cells that do not contain data. Analysis Services stores only cells
that contain data. A sparse cube requires less storage than a dense cube of identical structure design.

See also: data explosion, density

SQL

See definition for: Structured Query Language (SQL)

SQL collation

A set of SQL Server 2000 collations whose characteristics match those of commonly-used code page and sort order
combinations from earlier versions of SQL Server. SQL collations are compatibility features that let sites choose collations
that match the behavior of their earlier systems.

See also: collation

SQL database

A database based on Structured Query Language (SQL).

SQL expression

Any combination of operators, constants, literal values, functions, and names of tables and fields that evaluates to a single
value. For example, use expressions to define calculated fields in queries.

SQL Mail

A component of SQL Server that allows SQL Server to send and receive mail messages through the built-in Windows NT
or Windows 2000 Messaging Application Programming Interface (MAPI). A mail message can consist of short text strings,
the output from a query, or an attached file.

SQL query

An SQL statement, such as SELECT, INSERT, UPDATE, DELETE, or CREATE TABLE.

SQL Server Authentication

One of two mechanisms for validating attempts to connect to instances of SQL Server. Users must specify a SQL Server
login ID and password when they connect. The SQL Server instance ensures the login ID and password combination are
valid before allowing the connection to succeed. Windows authentication is the preferred authentication mechanism.

See also: authentication, Windows Authentication

SQL Server Event Forwarding Server

A central instance of SQL Server that manages SQL Server Agent events forwarded to it by other instances. Enables central
management of SQL Server events.

SQL Server login

An account stored in SQL Server that allows users to connect to SQL Server.

SQL Server role

See definition for: role

SQL Server user

See definition for: user (account)

SQL statement

An SQL or Transact-SQL command, such as SELECT or DELETE, that performs some action on data.

SQL-92

The version of the SQL standard published in 1992. The international standard is ISO/IEC 9075:1992 Database Language
SQL. The American National Standards Institute (ANSI) also published a corresponding standard (Data Language SQL
X3.135-1192), so SQL-92 is sometimes referred to as ANSI SQL in the United States.

sql_variant data type

Data type that stores values of various SQL Server-supported data types except text , ntext , timestamp , and sql_variant
.

standard security

See definition for: SQL Server Authentication

star join

A join between a fact table (typically a large fact table) and at least two dimension tables. The fact table is joined with each
dimension table on a dimension key. SQL Server considers special index manipulation strategies on these queries to
minimize access to the fact table.

An example of a schema participating in a star join query could be a sales table, the fact table (containing millions of rows),
a product table, (containing the description of several hundred products), and a store table (containing several dozen store
names). In this example, the product and store tables are dimension tables. A query for selecting sales data for a small set
of stores and a subset of products restricted by attributes not present in the sales database is an ideal candidate for the star
query optimization.

See also: fact table

star schema

A relational database structure in which data is maintained in a single fact table at the center of the schema with additional
dimension data stored in dimension tables. Each dimension table is directly related to and usually joined to the fact table
by a key column. Star schemas are used in data warehouses.

See also: denormalize, fact table, snowflake schema

statement permission

An attribute that controls that controls whether a user can execute CREATE or BACKUP statements.

static cursor

A cursor that shows the result set exactly as it was at the time the cursor was opened. Static cursors do not reflect updates,
deletes, or inserts made to underlying data while the cursor is open. They are sometimes called snapshot cursors.

static SQL statements

In Embedded SQL for C, an SQL statement that is built at the time the application is compiled. It is created as a stored
procedure when the application is compiled, and the stored procedure is executed when the application is run.

step object

A Data Transformation Services (DTS) object that coordinates the flow of control and execution of tasks in a DTS package.
A task that does not have an associated step object is never executed.

store-and-forward database

See definition for: distribution database

stored procedure

A precompiled collection of Transact-SQL statements stored under a name and processed as a unit. SQL Server supplies
stored procedures for managing SQL Server and displaying information about databases and users. SQL Server-supplied
stored procedures are called system stored procedures.

string

A set of contiguous bytes that contain a single character-based or binary data value. In character strings, each byte, or pair
of bytes, represents a single alphabetic letter, special character, or number. In binary strings, the entire value is considered
to be a single stream of bits that do not have any inherent pattern. For example, the constant 'I am 32.' is an 8 byte
character string, while the constant 0x0205efa3 is a 4 byte binary string.

string functions

Functions that perform operations on character or binary strings. Built-in string functions return values commonly needed
for operations on character data.

Structured Query Language (SQL)

A language used to insert, retrieve, modify, and delete data in a relational database. SQL also contains statements for
defining and administering the objects in a database. SQL is the language supported by most relational databases, and is
the subject of standards published by the International Standards Organization (ISO) and the American National Standards
Institute (ANSI). SQL Server 2000 uses a version of the SQL language called Transact-SQL.

structured storage file

See definition for: COM-structured storage file

subject

A basic grammatical division of a sentence. The subject is a noun or noun clause about which something is asserted or
asked in the predicate, which it usually precedes. For example, in the sentence "The employee placed the order," the word
employee is the subject of the sentence.

subquery

A SELECT statement nested inside another SELECT, INSERT, UPDATE, or DELETE statement, or inside another subquery.

subscribe

To request data from a Publisher.

Subscriber

A server that receives copies of published data.

subscribing server

An Analysis server that stores a linked cube.

See also: publishing server, linked cube

subscription

An order that defines what data will be published, when, and to what Subscriber.

subscription database

A database at the Subscriber that receives data and database objects published by a Publisher.

subset

A selection of tables and the relationship lines between them that is part of a larger database diagram. This selection can
be copied to a new database diagram. This is called subsetting the diagram.

subset phrasing

A way of expressing a relationship in English in which one entity or word is a subset of another entity. For example, in the
sentence "Some mountains are volcanoes", volcanoes are a subset of mountains.

superlative form

A form of an adverb or adjective that refers to a comparison or denotes the greatest degree. Shorter adjectives and some
adverbs typically form their superlative degree by adding -est, as youngest or strongest.

synchronization

In replication, the process of maintaining the same schema and data at a Publisher and at a Subscriber.

See also: initial snapshot

synonym

A word that means the same thing as another word. For example, workers can be a synonym for employees .

system administrator

The person or group of people responsible for managing an instance of SQL Server. System administrators have full
permissions to perform all actions in an instance of SQL Server. System administrators are either members of the
sysadmin fixed server role, or log in using the sa login ID.

system catalog

A set of system tables that describe all the features of an instance of SQL Server. The system catalog records meta data
such as the definitions of all users, all databases, all objects in each database, and system configuration information such as
server and database option settings.

See also: database catalog

system databases

A set of four databases present in all instances of SQL Server that are used to store system information:

The master database stores all instance-level meta data, and records the location of all other databases.

The tempdb database stores transient objects that only exist for the length of a single statement or connection, such as
worktables and temporary tables or stored procedures.

The model database is used as a template for creating all user databases.

The msdb database is used by the SQL Server Agent to record information on jobs, alerts, and backup histories.

See also: user database

system functions

A set of built-in functions that perform operations on and return the information about values, objects, and settings in SQL
Server.

system stored procedures

A set of SQL Server-supplied stored procedures that can be used for actions such as retrieving information from the
system catalog or performing administration tasks.

system tables

Built-in tables that form the system catalog for SQL Server. System tables store all the meta data for an instance of SQL
Server, including configuration information and definitions of all the databases and database objects in the instance. Users
should not directly modify any system table.

T
table

A two-dimensional object, consisting of rows and columns, used to store data in a relational database. Each table stores
information about one of the types of objects modeled by the database. For example, an education database would have
one table for teachers, a second for students, and a third for classes.

The columns of a table represent an attribute of the modeled object (for example, first name, last name, and address). Each

row represents one occurrence of the modeled object. For example, one row in the Class table would record the
information about an Algebra 1 class taught at 9:00 A.M. and another would record the information about a World History
class taught at 10:00 A.M.

table data type

A special data type used to store a result set for later processing.

table lock

A lock on a table including all data and indexes.

table scan

A data retrieval operation where the database engine must read all the pages in a table to find the rows that qualify for a
query.

table-level constraint

Constraints that allow various forms of data integrity to be defined on one column (column-level constraint) or several
columns (table-level constraints) when the table is defined or altered. Constraints support domain integrity, entity integrity,
and referential integrity, as well as user-defined integrity.

tabular data stream (TDS)

The SQL Server internal client/server data transfer protocol. TDS allows client and server products to communicate
regardless of operating-system platform, server release, or network transport.

tape backup

A backup operation to any tape device supported by Windows NT 4.0 and Windows 2000. If you are creating a tape
backup file, you must first install the tape device by using Windows NT 4.0 and Windows 2000. The tape device must be
physically attached to the SQL Server you are backing up.

target object

See definition for: source and target

target partition

An Analysis Services partition into which another is merged and which contains the data of both partitions after the
merger.

See also: source partition

task

See definition for: job

task object

A Data Transformation Services (DTS) object that defines pieces of work to be performed as part of the data
transformation process. For example, a task can execute an SQL statement or move and transform heterogeneous data
from an OLE DB source to an OLE DB destination using the DTS Data Pump.

TDS

See definition for: tabular data stream (TDS)

tempdb database

The database that provides a storage area for temporary tables, temporary stored procedures, and other temporary
working storage needs.

temporary stored procedure

A procedure placed in the temporary database, tempdb , and erased at the end of the session.

temporary table

A table placed in the temporary database, tempdb , and erased at the end of the session.

text data type

A SQL Server system data type that specifies variable-length non-Unicode data with a maximum length of 2^31 -1
(2,147,483,647) characters. The text data type cannot be used for variables or parameters in stored procedures.

theta join

A join based on a comparison of scalar values (=, > , >= , < , <= , < >, !<, !>).

thread

An operating system component that allows the logic of multiuser applications to be performed as several separate,
asynchronous execution paths. The SQL Server relational database engine executes multiple threads in order to make use
of multiple processors. The use of threads also helps ensure that work is being performed for some user connections even
when other connections are blocked (for example, when waiting for a disk read or write operation to complete).

time dimension

A dimension that breaks time down into levels such as Year, Quarter, Month, and Day. In Analysis Services, a special type of
dimension created from a date/time column.

timestamp data type

A SQL Server system data type that is a monotomically increasing counter whose values are always unique within a
database.

tinyint data type

A SQL Server system data type that holds whole numbers from 0 through 255. Its storage size is 1 byte.

tool

A SQL Server application with a graphical user interface used to perform common tasks.

trace file

A file used by SQL Profiler to record monitored events.

training data set

A set of known and predictable data used to train a data mining model.

See also: mining model training

trait

An attribute that describes an entity. For example, blood-type is a trait of patients.

trait phrasing

A way of expressing a relationship in English description in which a minor entity describes a major entity. For example, in
the phrase, ages of customers, ages is the trait (or minor entity), and customers is the major entity.

Transact-SQL

The language containing the commands used to administer instances of SQL Server, create and manage all objects in an
instance of SQL Server, and to insert, retrieve, modify and delete all data in SQL Server tables. Transact-SQL is an extension
of the language defined in the SQL standards published by the International Standards Organization (ISO) and the
American National Standards Institute (ANSI).

Transact-SQL cursor

A server cursor defined by using the Transact-SQL DECLARE CURSOR syntax. Transact-SQL cursors are intended for use in
Transact-SQL batches, stored procedures, and triggers.

transaction

A group of database operations combined into a logical unit of work that is either wholly committed or rolled back. A
transaction is atomic, consistent, isolated, and durable.

transaction log

A database file in which all changes to the database are recorded. It is used by SQL Server during automatic recovery.

transaction processing

Data processing used to efficiently record business activities, called transactions, that are of interest to an organization (for
example, sales, orders for supplies, or money transfers). Typically, online transaction processing (OLTP) systems perform
large numbers of relatively small transactions.

transaction rollback

Rollback of a user-specified transaction to the last savepoint inside a transaction or to the beginning of a transaction.

transactional replication

A type of replication where an initial snapshot of data is applied at Subscribers, and then when data modifications are
made at the Publisher, the individual transactions are captured and propagated to Subscribers.

See also: merge replication, snapshot replication

transformable subscription

A subscription that allows data movement, transformation mapping, and filtering capabilities of Data Transformation
Services (DTS) during replication.

transformation

In data warehousing, the process of changing data extracted from source data systems into arrangements and formats
consistent with the schema of the data warehouse.

trigger

A stored procedure that executes when data in a specified table is modified. Triggers are often created to enforce
referential integrity or consistency among logically related data in different tables.

trusted connection

A Windows network connection that can be opened only by users who have been authenticated by the network. The users
are identified by their Windows login ID and do not have to enter a separate SQL Server login ID.

See also: Windows Authentication

tuple

An ordered collection of members from different dimensions. For example, (Boston, [1995]) is a tuple formed by members
of two dimensions: Geography and Time. A single member is a degenerated case of a tuple and can be used as an
expression without the parentheses.

See also: axis

two-phase commit

A process that ensures transactions that apply to more than one server are completed on all servers or on none.

U

U
unbalanced hierarchy

A dimension hierarchy in which leaf nodes differ in their distances from the root node. Component part and organization
chart hierarchies are usually unbalanced.

See also: ragged hierarchy

underlying table

A table referenced by a view, cursor, or stored procedure.

See also: base table

unenforced relationship

A link between tables that references the primary key in one table to a foreign key in another table, and which does not
check the referential integrity during INSERT and UPDATE transactions. An unenforced relationship is represented in a
database diagram by a dashed line.

Unicode

Unicode defines a set of letters, numbers, and symbols that SQL Server recognizes in the nchar , nvarchar , and ntext
data types. It is related to but separate from character sets. Unicode has more than 65,000 possible values compared to a
character set's 256, and takes twice as much space to store. Unicode includes characters for most languages.

Unicode collation

This acts as a sort order for Unicode data. It is a set of rules that determines how SQL Server compares, collates, and
presents Unicode data in response to database queries.

Unicode format

Data stored in a bulk copy data file using Unicode characters.

Union query

A query that combines two tables by performing the equivalent of appending one table onto the other.

UNIQUE constraints

Constraints that enforce entity integrity on a nonprimary key. UNIQUE constraints ensure that no duplicate values are
entered and that an index is created to enhance performance.

unique index

An index in which no two rows are permitted to have the same index value, thus prohibiting duplicate index or key values.
The system checks for duplicate key values when the index is created and checks each time data is added with an INSERT
or UPDATE statement.

uniqueidentifier data type

A data type containing a unique identification number stored as a 16-byte binary string used for storing a globally unique
identifier (GUID).

update

The act of modifying one or more data values in an existing row or rows, typically by using the UPDATE statement.
Sometimes, the term update refers to any data modification, including insert, update, and delete operations.

update lock

A lock placed on resources (such as row, page, table) that can be updated. Updated locks are used to prevent a common
form of deadlock that occurs when multiple sessions are locking resources and are potentially updating them later.

Update query

A query that changes the values in columns of one or more rows in a table.

update statistics

A process that recalculates information about the distribution of key values in specified indexes. These statistics are used
by the query optimizer to determine the most efficient way to execute a query.

user (account)

A SQL Server security account or identifier that represents a specific user in a database. Each user's Windows account or
SQL Server login is mapped to a user account in a database. Then, the appropriate permissions are granted to the user
account. Each user account can only access data with which it has been granted permission to work.

user database

A database created by a SQL Server user and used to store application data. Most users connecting to instances of SQL
Server reference user databases only, not system databases.

See also: system databases

user-defined data type

A data type, based on a SQL Server data type, created by the user for custom data storage. Rules and defaults can be
bound to user-defined data types (but not to system data types).

See also: base data type

user-defined event

A type of message, defined by a user, that can be traced by SQL Profiler or used to fire a custom alert. Typically, the user is
the system administrator.

user-defined function

In Analysis Services, a function defined in a Microsoft ActiveX library created using a Component Object Model (COM)
automation language such as Visual Basic or Visual C++. Such libraries can be registered with Analysis Services and their
functions called from Multidimensional Expressions (MDX) queries.

user-defined function

In SQL Server, a Transact-SQL function defined by a user. Functions encapsulate frequently performed logic in a named
entity that can be called by Transact-SQL statements instead of recoding the logic in each statement.

utility

A SQL Server application run from a command prompt to perform common tasks.

V
value expression

An expression in Multidimensional Expressions (MDX) that returns a value. Value expressions can operate on sets, tuples,
members, levels, numbers, or strings. For example, set value expressions operate on member, tuple, and set elements to
yield other sets.

varbinary data type

A SQL Server system data type that holds up to 8,000 bytes of variable-length binary data.

varchar data type

A SQL Server system data type that holds variable-length non-Unicode data with a maximum of 8,000 characters.

variables

Defined entities that are assigned values. A local variable is defined with a DECLARE@localvariable statement and assigned
an initial value within the statement batch where it is declared with either a SELECT or SET@localvariable statement.

verb

A part of speech denoting action, occurrence, or existence. A verb can consist of one or more words. For example, verbs
appear in italics in the following sentences:

Employees sell products.

Employees will be working late.

verb phrasing

A way of expressing a relationship in English in which one entity is the subject in an action, which is expressed with a verb.
For example, customers buy products. (Customers is the entity; buy is the verb, and products is the direct object.)

vertical filtering

Filtering columns from a table. When used as part of replication, the table article created contains only selected columns
from the publishing table.

See also: filtering, vertical partitioning

vertical partitioning

To segment a single table into multiple tables based on selected columns. Each of the multiple tables has the same number
of rows but fewer columns.

See also: partitioning, vertical filtering

very large dimension

In Analysis Services, a dimension that contains more than approximately five million members and less than approximately
ten million members. Special techniques are used to process very large dimensions.

See also: huge dimension

view

A database object that can be referenced the same way as a table in SQL statements. Views are defined using a SELECT
statement and are analogous to an object that contains the result set of this statement.

view generation

A repository engine feature that is used to create relational views based on classes, interfaces, and relationships in an
information model.

virtual cube

A logical cube based on one or more regular cubes or linked cubes.

virtual dimension

A logical dimension that is based on the values of properties of members of a physical dimension. For example, a virtual
dimension that contains the colors red, green, and blue can be based on the Color member property of a product
dimension.

See also: member property, dimension, member

visual total

A displayed, aggregated cell value for a dimension member that is consistent with the displayed cell values for its
displayed children. The visual total of a cell can vary from the actual total if some children of the cell are hidden. For
example, if the aggregate function is SUM, the displayed cell value for Spain is 1000, and the displayed cell value for
Portugal is 2000, the visual total for Iberia is 3000.

W
WHERE clause

The part of an SQL statement that specifies which records to retrieve.

wildcard characters

Characters, including underscore (_), percent (%), and brackets ([]), used with the LIKE keyword for pattern matching.

wildcard search

The use of placeholders (such as * or ?) to perform a search for data in a table or field. For example, searching the Last
Name field in a database using Smith*, could result in finding all records in which the last name starts with Smith,
including Smith, Smithson, Smithlin, and so forth.

Windows Authentication

One of two mechanisms for validating attempts to connect to instances of SQL Server. Users are identified by their
Windows user or group when they connect. Windows Authentication is the most secure mechanism for connecting to SQL
Server.

See also: SQL Server Authentication, trusted connection

Windows collation

A set of rules that determines how SQL Server sorts character data. It is specified by name in the Windows Control Panel
and in SQL Server 2000 during Setup.

word generation

Process of determining other forms of the word(s) specified. The Microsoft Search Service currently implements
inflectional word generation. For example, if the word swim is specified, SQL Server also searches for swim , swam , and
swimming .

write back

To update a cube cell value, member, or member property value.

See also: write enable

write enable

To change a cube or dimension so that users in cube roles with read/write access to the cube or dimension can change its
data.

See also: write back

write-ahead log

A transaction logging method in which the log is always written prior to the data.

X
There are no glossary terms that begin with this letter.

Y
There are no glossary terms that begin with this letter.

Z

Z
There are no glossary terms that begin with this letter.

 New Information - SQL Server 2000 SP3.

Symbols
(All) level

The optional highest level of a dimension. The (All) level contains a single member that is the summary of all members of
the immediately subordinate level.

A
action

An end user-initiated operation upon a selected cube or portion of a cube. The operation can launch an application with the
selected item as a parameter or retrieve information about the selected item.

active statement

An SQL statement that has been executed but whose result set has not yet been canceled or fully processed.

active voice

Indicates the subject of the sentence is the entity that performs the action described by the verb. For example, customers
buy products is in active voice, whereas products are bought by customers is in passive voice.

See also: passive voice

ActiveX Data Objects

An easy-to-use application programming interface (API) that wraps OLE DB for use in languages such as Visual Basic,
Visual Basic for Applications, Active Server Pages, and Microsoft Internet Explorer Visual Basic Scripting.

ActiveX Data Objects (Multidimensional) (ADO MD)

A high-level, language-independent set of object-based data access interfaces optimized for multidimensional data
applications. Visual Basic and other automation languages use ADO MD as the data access interface to multidimensional
data storage. ADO MD is a part of ADO 2.0 and later.

ad hoc connector name

The OpenRowset function in the FROM clause of a query, which allows all connection information for an external server
and data source to be issued every time the data must be accessed.

add-in

A custom extension, written in any language that supports the Component Object Model (COM), usually Visual Basic, that
interacts with Analysis Manager and provides specific functionality. Add-ins are registered with the Analysis Add-in
Manager. They are called by the Analysis Add-in Manager in response to user actions in the user interface.

adjective phrasing

A way of expressing a relationship in English in which an entity is described by an adjective (either a single word or
another entity containing the adjective). For example, in the phrasing the cities are hot, hot is the adjective, and cities is the
entity being described.

ADO

See definition for: ActiveX Data Objects

ADO MD

See definition for: ActiveX Data Objects (Multidimensional) (ADO MD)

adverb

The part of speech modifying a verb, an adjective, or another adverb. In English Query, adverbs such as very and recent are
interpreted correctly; however, other adverbs, such as rapidly or graciously are not interpreted.

aggregate function

A function that performs a calculation on a column in a set of rows and returns a single value.

aggregate query

A query (SQL statement) that summarizes information from multiple rows by including an aggregate function such as
Sum or Avg .

aggregation

A table or structure that contains precalculated data for a cube.

aggregation

A collection of objects that makes a whole. An aggregation can be a concrete or conceptual set of whole-part relationships
among objects.

aggregation prefix

A string that is combined with a system-defined ID to create a unique name for a partition's aggregation table.

aggregation wrapper

A wrapper that encapsulates a COM object within another COM object.

alert

A user-defined response to a SQL Server event. Alerts can either execute a defined task or send an e-mail and/or pager
message to a specified operator.

alias

An alternative name for a table or column in expressions that is often used to shorten the name for subsequent reference
in code, prevent possible ambiguous references, or provide a more descriptive name in the query output. An alias can also
be an alternative name for a server.

aliasing

To allow the name of an object, property, or relationship to be reused in a new context while keeping all other attributes
constant.

All member

The single member of the (All) level. By default, the name of the All member is All followed by a space and the dimension
name.

See also: default member

American National Standards Institute (ANSI)

An organization of American industry and business groups that develops trade and communication standards for the
United States. Through membership in the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC), ANSI coordinates American standards with corresponding international standards.

Analysis server

The server component of Analysis Services that is specifically designed to create and maintain multidimensional data
structures and provide multidimensional data in response to client queries.

ancestor

A member in a superior level in a dimension hierarchy that is related through lineage to the current member within the
dimension hierarchy. For example, in a Time dimension containing the levels Quarter, Month, and Day, Qtr1 is an ancestor
of January 1.

See also: child, descendant, parent, sibling

annotational property

A property that is maintained by Meta Data Services as string data that can be attached to any repository object that
exposes the IAnnotationalProps interface.

anonymous subscription

An anonymous subscription is a type of pull subscription for which detailed information about the subscription and the
Subscriber is not stored.

ANSI

See definition for: American National Standards Institute (ANSI)

ANSI to OEM conversion

The conversion of characters that must occur when data is transferred from a database that stores character data using a
specific code page to a client application on a computer that uses a different code page. Typically, Windows-based client
computers use ANSI/ISO code pages, and some databases (for compatibility reasons) may use OEM code pages, such as
the MS-DOS 437 code page or code page 850.

API

See definition for: application programming interface (API)

API server cursor

A server cursor built to support the cursor functions of an application programming interface (API), such as ODBC, OLE DB,
ADO, and DB-Library. An application does not usually request a server cursor directly; it calls the cursor functions of the
API. The SQL Server interface for that API implements a server cursor if that is the best way to support the requested
cursor functionality.

See also: server cursor

application programming interface (API)

A set of routines available in an application, such as ActiveX Data Objects (ADO), for use by software programmers when
designing an application interface.

application role

A SQL Server role created to support the security needs of an application.

archive file

The .cab file created by archiving an Analysis Services database.

article

An object specified for replication. An article is a component in a publication and can be a table, specified columns (using a
column filter), specified rows (using a row filter), a stored procedure or view definition, the execution of a stored procedure,
a view, an indexed view, or a user-defined function.

atomic

Either all of the transaction data modifications are performed or none of them are performed.

attribute

In data mining, a single characteristic of a case. An attribute is used to provide information about a case. For example,

weight can be an attribute of a case that involves shipping containers.

See also: case

authentication

The process of validating that the user attempting to connect to SQL Server is authorized to do so.

See also: SQL Server Authentication

authorization

The operation that verifies the permissions and access rights granted to a user.

automatic recovery

Recovery that occurs every time SQL Server is restarted. Automatic recovery protects your database if there is a system
failure.

autonomy

The independence one site has from other sites when performing modifications to data.

axis

A set of tuples. Each tuple is a vector of members. A set of axes defines the coordinates of a multidimensional data set. For
more information about axes, see the OLE DB documentation.

See also: slice, tuple

B
backup

A copy of a database, transaction log, file, or filegroup used to recover data after a system failure.

backup device

A tape or disk used in a backup or restore operation.

backup file

A file that stores a full or partial database, transaction log, or file and/or filegroup backup.

backup media

The tape, disk, or named pipe used to store a backup set.

backup set

The output of a single backup operation.

balanced hierarchy

A dimension hierarchy in which all leaf nodes are the same distance from the root node.

base data type

Any system-supplied data type, for example, char , varchar , binary , and varbinary . User-defined data types are derived
from base data types.

See also: data type, user-defined data type

base table

A table stored permanently in a database. Base tables are referenced by views, cursors, SQL statements, and stored

procedures.

See also: underlying table

batch

A set of SQL statements submitted together and executed as a group. A script is often a series of batches submitted one
after the other.

bcp files

Files that store bulk copy data created by the bulk copy utility or synchronization.

bcp utility

A command prompt bulk copy utility that copies SQL Server data to or from an operating system file in a user-specified
format.

bigint data type

An integer data type with a value from -2^63 (-9,223,372,036,854,775,808) through 2^63-1 (9,223,372,036,854,775,807).

binary data type

A fixed-length binary data type with a maximum length of 8,000 bytes.

binary large object

A piece of binary data that has an exceptionally large size (such as pictures or audio tracks stored as digital data), or any
variable or table column large enough to hold such values. In Transact-SQL, a BLOB is stored in an image column.
Sometimes the term BLOB is also applied to large character data values, such as those stored in text or ntext columns.

binding

In SQL application programming interfaces (APIs), binding is associating a result set column or a parameter with a
program variable so that data is moved automatically into or out of a program variable when a row is fetched or updated.

bit data type

A data type that holds a value of either 1 or 0.

bitwise operation

An operation that manipulates a single bit, or tests whether a bit is on or off.

BLOB

See definition for: binary large object

blocks

A series of Transact-SQL statements enclosed by BEGIN and END. You can nest BEGIN...END blocks within other
BEGIN...END blocks.

Boolean

An operation or expression that can be evaluated only as either true or false.

browse mode

A function that lets you scan database rows and update their values one row at a time. Several browse mode functions
return information that an application can use to examine the structure of a complicated ad hoc query.

built-in functions

A group of predefined functions provided as part of the Transact-SQL and Multidimensional Expressions (MDX) languages.

business rules

The logical rules that are used to run a business. Business rules can be enforced in the .com objects that make up the
middle tier of a Windows DNA system, they can also be enforced in a SQL Server database using triggers, stored
procedures, and constraints.

C
cache aging

The mechanism of caching that determines when a cache row is outdated and must be refreshed.

calculated column

A column in a table that displays the result of an expression rather than stored data. For example, CalculatedCostColumn
= Price * Quantity .

calculated field

A field defined in a query that displays the result of an expression rather than stored data.

calculated member

A member of a dimension whose value is calculated at run time using an expression. Calculated member values may be
derived from other members' values. A calculated member is any member that is not an input member. For example, a
calculated member Profit can be determined by subtracting the value of the member Costs from the value of the member
Sales.

See also: input member

calculation condition

A Multidimensional Expressions (MDX) logical expression used to determine whether a calculation formula will be applied
against a cell in a calculation subcube.

See also: solve order

calculation formula

A Multidimensional Expressions (MDX) expression used to supply a value for cells in a calculation subcube, subject to the
application of a calculation condition.

See also: solve order

calculation pass

A stage of calculation in a multidimensional cube in which applicable calculations are evaluated. Multiple passes may be
required to complete all calculations.

See also: solve order

calculation subcube

The set of multidimensional cube cells used to create a calculated cells definition. The set of cells is defined by a
combination of Multidimensional Expressions (MDX) set expressions.

See also: solve order

call-level interface (CLI)

The interface supported by ODBC for use by an application.

candidate key

A column or set of columns that have a unique value for each row in a table. Each candidate key value uniquely identifies a
single row in the table. Tables can have multiple candidate keys. One candidate key in a table is specified by the database

designer to be the primary key for the table, and any other candidate key is called an alternate key.

cascading delete

An operation that deletes a row containing a primary key value that is referenced by foreign key columns in existing rows
in other tables. On a cascade delete, all of the rows whose foreign key values reference the deleted primary key value are
also deleted.

cascading update

An operation that updates a primary key value that is referenced by foreign key columns in existing rows in other tables.
On a cascade update, all of the foreign key values are updated to match the new primary key value.

case

In data mining, an abstract view of data characterized by attributes and relations to other cases. A case is a distinct member
of a case set, and can be a member of multiple case sets.

See also: case key, case set, attribute

case key

In data mining, the element of a case by which the case is referenced within a case set.

See also: case

case set

In data mining, a set of cases.

See also: case

cell

In a cube, the set of properties, including a value, specified by the intersection when one member is selected from each
dimension.

cellset

In ADO MD, an object that contains a collection of cells selected from cubes or other cellsets by a multidimensional query.

certificate

A collection of data used for authentication and secure exchange of information on nonsecured networks, such as the
Internet. A certificate securely binds a public encryption key to the entity that holds the corresponding private encryption
key. Certificates are digitally signed by the issuing certification authority and can be managed for a user, a computer, or a
service.

change script

A text file that contains SQL statements for all changes made to a database, in the order in which they were made, during
an editing session. Each change script is saved in a separate text file with an .sql extension. Change scripts can be applied
back to the database later, using a tool such as osql .

changing dimension

A dimension that has a flexible member structure. A changing dimension is designed to support frequent changes to
structure and data.

char data type

A character data type that holds a maximum of 8,000 characters.

character format

Data stored in a bulk copy data file using text characters.

See also: native format

character set

A character set determines the types of characters that SQL Server recognizes in the char , varchar , and text data types.
Each character set is a set of 256 letters, digits, and symbols specific to a country/region or language. The printable
characters of the first 128 values are the same for all character sets. The last 128 characters, sometimes referred to as
extended characters, are unique to each character set. A character set is related to, but separate from, Unicode characters.

CHECK constraints

Defines which data values are acceptable in a column. You can apply CHECK constraints to multiple columns, and you can
apply multiple CHECK constraints to a single column. When a table is dropped, CHECK constraints are also dropped.

checkpoint

An event in which the database engine writes dirty buffer pages to disk. Dirty pages are pages that have been modified, but
the modifications have not yet been written to disk. Each checkpoint writes to disk all pages that were dirty at the last
checkpoint and still have not been written to disk. Checkpoints occur periodically based on the number of log records
generated by data modifications, or when requested by a user or a system shutdown.

child

A member in the next lower level in a hierarchy that is directly related to the current member. For example, in a Time
dimension containing the levels Quarter, Month, and Day, January is a child of Qtr1.

See also: parent, ancestor, descendant, sibling

classification

See definition for: prediction

clause

In English Query, a sequence of related words within a sentence, having both a subject and a predicate and functioning as
either an independent or a dependent unit. In Transact-SQL, a subunit of an SQL statement. A clause begins with a
keyword.

CLI

See definition for: call-level interface (CLI)

client application

An application that retrieves data from an Analysis server and performs local analysis and presentation of data from
relational or multidimensional databases. Client applications connect to the Analysis server through the PivotTable Service
component.

client cursor

A cursor implemented on the client. The entire result set is first transferred to the client, and the client application
programming interface (API) software implements the cursor functionality from this cached result set.

clustered index

An index in which the logical order of the key values determines the physical order of the corresponding rows in a table.

clustering

A data mining technique that analyzes data to group records together according to their location within the
multidimensional attribute space. Clustering is an unsupervised learning technique.

See also: segmentation

code page

For character and Unicode data, a definition of the bit patterns that represent specific letters, numbers, or symbols (such as
0x20 representing a blank space and 0x74 representing the character "t"). Some data types use 1 byte per character; each
byte can have 1 of 256 different bit patterns.

collation

A set of rules that determines how data is compared, ordered, and presented. Character data is sorted using collation
information, including locale, sort order, and case-sensitivity.

See also: locale, SQL collation

column

In an SQL table, the area in each row that stores the data value for some attribute of the object modeled by the table. For
example, the Employees table in the Northwind sample database models the employees of the Northwind Traders
company. The LastName column in each row of the Employees table stores the last name of the employee represented
by that row, the same way a Last Name field in a window or form would contain a last name.

See also: row

column filter

Column filters restrict the columns to be included as part of a snapshot, transactional or merge publication.

column-level collation

The ability of SQL Server 2000 to support multiple collations in a single instance. Databases can have default collations
different from the default collation of the instance. Individual columns and variables can be assigned collations different
from the default collation for the instance or database. Each column in a table can have a different collation.

column-level constraint

A constraint definition that is specified within a column definition when a table is created or altered. The constraint applies
only to the associated column.

See also: constraint

COM

See definition for: Component Object Model (COM)

COM-structured storage file

A component object model (COM) compound file used by Data Transformation Services (DTS) to store the version history
of a saved DTS package.

command relationship

Provides instructions to hardware based on natural-language questions or commands. For example, "Play the album with
song XXX on it."

commit

An operation that saves all changes to databases, cubes, or dimensions made since the start of a transaction. A commit
guarantees that all of the transaction's modifications are made a permanent part of the database, cube or dimension. A
commit also frees resources, such as locks, used by the transaction.

See also: roll back

comparative form

A form of an adjective or adverb that refers to a comparison or that denotes a greater degree. Shorter adjectives and some
adverbs typically form their comparative degree by adding -er, such as young and younger.

Component Object Model (COM)

A Microsoft specification for developing component software. Several SQL Server and database application programming

interfaces (APIs) such as SQL-DMO, OLE DB, and ADO are based on COM. Some SQL Server components, such as Analysis
Services and English Query, store objects as COM objects.

See also: method

composite index

An index that uses more than one column in a table to index data.

composite key

A key composed of two or more columns.

computed column

A virtual column in a table whose value is computed at run time. The values in the column are not stored in the table, but
are computed based on the expression that defines the column. An example of the definition of a computed column is:
Cost as Price * Quantity .

concatenation

To combine two or more character strings or expressions into a single character string or expression, or to combine two or
more binary strings or expressions into a single binary string or expression.

concurrency

A process that allows multiple users to access and change shared data at the same time. SQL Server uses locking to allow
multiple users to access and change shared data at the same time without conflicting with each other.

conjunction

A part of speech (such as and or although) used to connect words, phrases, clauses, or sentences. Coordinating
conjunctions (and, but, or, nor, for, so, yet) connect and relate words and word groups of equal grammatical rank.

connection

An interprocess communication (IPC) linkage established between a SQL Server 2000 application and an instance of SQL
Server 2000. The connection is a network link if the application is on a computer different from the SQL Server 2000
instance. If the application and the SQL Server 2000 instance are on the same computer, the linkage is formed through a
local IPC mechanism, such as shared memory. The application uses the IPC linkage to send Transact-SQL statements to
SQL Server and to receive result sets, errors, and messages from SQL Server.

constant

A group of symbols that represent a specific data value. The format of a constant depends on the data type of the value it
represents. For example, 'abc' is a character string constant, 123 is an integer constant, 'December 16, 1999' is a datetime
constant, and 0x02FA is a binary constant.

constraint

A property assigned to a table column that prevents certain types of invalid data values from being placed in the column.
For example, a UNIQUE or PRIMARY KEY constraint prevents you from inserting a value that is a duplicate of an existing
value, a CHECK constraint prevents you from inserting a value that does not match a search condition, and NOT NULL
prevents you from inserting a NULL value.

See also: column-level constraint

continuation media

The backup media used when the initial medium becomes full, allowing continuation of the backup operation.

control-break report

A report that summarizes data in user-defined groups or breaks. A new group is triggered when different data is
encountered.

control-of-flow language

Transact-SQL keywords that control the flow of execution of SQL statements and statement blocks in triggers, stored
procedures, and batches.

correlated subquery

A subquery that references a column in the outer statement. The inner query is executed for each candidate row in the
outer statement.

CPU busy

A SQL Server statistic that reports the time, in milliseconds, the central processing unit (CPU) spent on SQL Server work.

crosstab query

Displays data for summarized values from a field or table, and then groups them by two sets of facts: one down the left
side and the other across the top of the datasheet.

cube

A set of data that is organized and summarized into a multidimensional structure defined by a set of dimensions and
measures.

See also: multidimensional structure

cube file

See definition for: local cube

cube role

A collection of users and groups with the same access to a cube. A cube role is created when you assign a database role to
a cube, and it applies only to that cube.

See also: custom rule, database role

cursor

An entity that maps over a result set and establishes a position on a single row within the result set. After the cursor is
positioned on a row, operations can be performed on that row, or on a block of rows starting at that position. The most
common operation is to fetch (retrieve) the current row or block of rows.

cursor data type

A special data type used to reference a cursor.

cursor library

A part of the ODBC and DB-Library application programming interfaces (APIs) that implements client cursors. A cursor
library is not commonly used in current systems; server cursors are used instead.

custom rollup

An aggregation calculation that is customized for a dimension level or member and overrides the aggregate functions of a
cube's measures.

custom rule

In a role, a specification that limits the dimension members or cube cells that users in the role are permitted to access.

See also: cube role, database role

D

data block

In text , ntext , and image data, a data block is the unit of data transferred at one time between an application and an
instance of SQL Server 2000. The term is also applied to the units of storage for these data types. In tape backup files, data
block is the unit of physical I/O.

data connection

A collection of information required to access a specific database. The collection includes a data source name and logon
information. Data connections are stored in a project and are activated when the user performs an action that requires
access to the database. For example, a data connection for a SQL Server database consists of the name of the database, the
location of the server on which it resides, network information used to access that server, and a user ID and password.

Data Control Language (DCL)

The subset of SQL statements used to control permissions on database objects. Permissions are controlled using the
GRANT and REVOKE statements.

data definition

Specifying the attributes, properties, and objects in a database.

data definition language (DDL)

A language, usually part of a database management system, that is used to define all attributes and properties of a
database, especially row layouts, column definitions, key columns (and sometimes keying methodology), file locations, and
storage strategy.

data dictionary

A set of system tables, stored in a catalog, that includes definitions of database structures and related information, such as
permissions.

data dictionary view

A system table.

data explosion

The exponential growth in size of a multidimensional structure, such as a cube, due to the storage of aggregated data.

See also: density, sparsity

data file

In bulk copy operations, the file that transfers data from the bulk copy out operation to the bulk copy in operation. In SQL
Server 2000 databases, data files hold the data stored in the database. Every SQL Server 2000 database has at least one
primary data file, and can optionally have multiple secondary data files to hold data that does not fit on the primary data
file.

See also: log file

data integrity

A state in which all the data values stored in the database are correct. If incorrect data values have been stored in a
database, the database is said to have lost data integrity.

data lineage

Information used by Data Transformation Services (DTS), in conjunction with Meta Data Services, that records the history
of package execution and data transformations for each piece of data.

data manipulation language (DML)

The subset of SQL statements used to retrieve and manipulate data.

data mart

A subset of the contents of a data warehouse. A data mart tends to contain data focused at the department level, or on a
specific business area.

See also: data warehouse

data member

A child member generated for a nonleaf member in a parent-child dimension. A data member contains a value directly
associated with a nonleaf member that is independent of the summary value calculated from the descendants of the
member. For example, a data member can contain a manager's salary so that either individual salaries or summarized
salaries can be displayed.

data modification

An operation that adds, deletes, or changes information in a database using Transact-SQL statements such as INSERT,
DELETE, and UPDATE.

data pump

An OLE DB service provider that provides the infrastructure to import, export, and transform data between heterogeneous
data stores using Data Transformation Services (DTS).

data scrubbing

Part of the process of building a data warehouse out of data coming from multiple online transaction processing (OLTP)
systems. The process must address errors such as incorrect spellings, conflicting spelling conventions between two
systems, and conflicting data (such as having two part numbers for the same part).

data source

In ADO and OLE DB, the location of a source of data exposed by an OLE DB provider.

See also: ODBC data source

data source

The source of data for an object such as a cube or dimension. It is also the specification of the information necessary to
access source data. It sometimes refers to an object of ClassType clsDataSource .

data source name (DSN)

The name assigned to an ODBC data source. Applications can use DSNs to request a connection to a system ODBC data
source, which specifies the computer name and (optionally) the database to which the DSN maps.

data type

An attribute that specifies what type of information can be stored in a column, parameter, or variable. System-supplied
data types are provided by SQL Server; user-defined data types can also be created.

See also: base data type

data warehouse

A database specifically structured for query and analysis. A data warehouse typically contains data representing the
business history of an organization.

See also: data mart, fact table

data-definition query

An SQL query that contains Data Definition Language (DDL) statements. These are statements that allow you to create or
alter objects (such as tables, indexes, views, and so on) in the database and to migrate database objects from Microsoft
Access.

database

A collection of information, tables, and other objects organized and presented to serve a specific purpose, such as
searching, sorting, and recombining data. Databases are stored in files.

database catalog

The part of a database that contains the definition of all the objects in the database, as well as the definition of the
database.

See also: system catalog

database diagram

A graphical representation of the objects in a database. A database diagram can be either a whole or a partial picture of the
structure of a database; it includes objects for tables, the columns they contain, and the relationship between them.

database file

One of the physical files that make up a database.

database language

The language used for accessing, querying, updating, and managing data in relational database systems. SQL is a widely
used database language. The Microsoft SQL Server implementation of SQL is called Transact-SQL.

database object

A database component. A table, index, trigger, view, key, constraint, default, rule, user-defined data type, or stored
procedure in a database. May also refer to a database.

database object

An object (tables, fields, and joins) that is used in an English Query application to answer queries.

database owner

A member of the database administrator role of a database. There is only one database owner. The owner has full
permissions in that database and determines the access and capabilities provided to other users.

database project

A collection of one or more data connections (a database and the information needed to access that database). When you
create a database project, you can connect to one or more databases through ODBC and view their components through a
visual user interface that includes a Database Designer for designing and creating databases and a Query Designer for
creating SQL statements for any ODBC-compliant database.

database role

A collection of users and groups with the same access to an Analysis Services database. You can assign a database role to
multiple cubes in the database, thereby granting the role's users access to these cubes.

See also: cube role, custom rule

database schema

The names of tables, fields, data types, and primary and foreign keys of a database. Also known as the database structure.

database script

A collection of statements used to create database objects. Transact-SQL scripts are saved as files, usually ending with .sql.

dataset

In OLE DB for OLAP, the set of multidimensional data that is the result of executing a Multidimensional Expressions (MDX)
SELECT statement. For more information about datasets, see the OLE DB documentation.

datetime data type

A SQL Server system data type that stores a combined date and time value from January 1, 1753, through December 31,
9999, with an accuracy of three-hundredths of a second, or 3.33 milliseconds.

DBCS

See definition for: double-byte character set (DBCS)

DCL

See definition for: Data Control Language (DCL)

DDL

See definition for: data definition language (DDL)

deadlock

A situation when two users, each having a lock on one piece of data, attempt to acquire a lock on the other's piece. Each
user would wait indefinitely for the other to release the lock, unless one of the user processes is terminated. SQL Server
detects deadlocks and terminates one user's process.

See also: livelock

decimal data type

Fixed precision and scale numeric data from -10^38 -1 through 10^38 -1.

decision support

Systems designed to support the complex analytic analysis required to discover business trends. The information retrieved
from these systems allows manager to make business decisions based on timely and accurate analysis of business trends.

decision tree

A treelike model of data produced by certain data mining methods. Decision trees can be used for prediction.

See also: prediction

declarative referential integrity (DRI)

FOREIGN KEY constraints defined as part of a table definition that enforce proper relationships between tables. The
constraints ensure that proper actions are taken when DELETE, INSERT, and UPDATE statements remove, add, or modify
primary or foreign key values. The DRI actions enforced by FOREIGN KEY constraints can be supplemented with additional
referential integrity logic defined in triggers on a table.

default

A data value, option setting, collation, or name assigned automatically by the system if a user does not specify the value,
setting, collation, or name. An action taken automatically at certain events if a user has not specified the action to take.

DEFAULT constraint

A property defined for a table column that specifies a constant to be used as the default value for the column. If any
subsequent INSERT or UPDATE statement specifies a value of NULL for the column, or does not specify a value for the
column, the constant value defined in the DEFAULT constraint is placed in the column.

default database

The database the user is connected to immediately after logging in to SQL Server.

default instance

The copy of SQL Server that uses the computer name on which it is installed as its name.

See also: named instance, multiple instances

default language

The language that SQL Server 2000 uses for errors and messages if a user does not specify a language. Each SQL Server
2000 login has a default language.

default member

The dimension member used in a query when no member is specified for the dimension. The default member of a
dimension is the All member if an (All) level exists, or else an arbitrary member of the highest level. You can also set
default members for individual roles in custom rules for dimension security.

See also: All member

default result set

The default mode SQL Server uses to return a result set back to a client. Rows are sent to the client in the order they are
placed in the result set, and the application must process the rows in this order. After executing an SQL statement on a
connection, the application cannot do anything on the connection other than retrieve the rows in the result set until all the
rows have been retrieved. The only other action that an application can perform before the end of the result set is to cancel
the remainder of the result set. This is the fastest method to get rows from SQL Server to the client.

See also: firehose cursors

Delete query

A query (SQL statement) that removes rows from one or more tables.

delimiter

In Transact-SQL, characters that indicate the start and end of an object name, using either double quotation marks ("") or
brackets ([]).

denormalize

To introduce redundancy into a table in order to incorporate data from a related table. The related table can then be
eliminated. Denormalization can improve efficiency and performance by reducing complexity in a data warehouse schema.

See also: star schema

density

The percentage of cells that contain data in a multidimensional structure. Analysis Services stores only cells that contain
data. A dense cube requires more storage than a sparse cube of identical structure design.

See also: data explosion, sparsity

deny

Removes a permission from a user account and prevents the account from gaining permission through membership in
groups or roles within the permission.

dependencies

The views and procedures that depend on the specified table or view.

descendant

A member in a dimension hierarchy that is related to a member of a higher level within the same dimension. For example,
in a Time dimension containing the levels Year, Quarter, Month, and Day, January is a descendant of 1997.

See also: child, parent, ancestor, sibling

destination object

An object in a repository that participates in a relationship such that the object is the destination of the relationship. For
example, component is the destination object in the relationship project has component .

See also: origin object

device

See definition for: file

dictionary entry

Defined words in the English Query dictionary. You can make additions to the dictionary through the English Query
domain editor by specifying the word, its part of speech, and an optional irregular form.

differential database backup

A database backup that records only those changes made to the database since the last full database backup. A differential
backup is smaller, and is faster to restore than a full backup and has minimal effect on performance.

dimension

A structural attribute of a cube, which is an organized hierarchy of categories (levels) that describe data in the fact table.
These categories typically describe a similar set of members upon which the user wants to base an analysis. For example, a
geography dimension might include levels for Country, Region, State or Province, and City.

See also: measure, virtual dimension, level, member group

dimension hierarchy

One of the hierarchies of a dimension.

See also: hierarchy

dimension table

A table in a data warehouse whose entries describe data in a fact table. Dimension tables contain the data from which
dimensions are created.

See also: primary dimension table, fact table

direct connect

The state of being connected to a back-end database, so that any changes you make to a database diagram automatically
update your database when you save the diagram or selected items in it.

direct object

A noun (along with any of its modifiers) naming whom or what after a transitive verb. For example, the customer buys the
products (the products is the direct object.)

direct response mode

The default mode in which SQL Server statistics are gathered separately from the SQL Server Statistics display. Data is
available immediately to SQL Server Performance Monitor; however, the statistics displayed are one period behind the
statistics retrieved.

dirty pages

Buffer pages that contain modifications that have not been written to disk.

dirty read

Reads that contain uncommitted data. For example, transaction1 changes a row. Transaction2 reads the changed row
before transaction1 commits the change. If transaction1 rolls back the change, transaction2 has read a row that never
logically existed.

distribute

To move transactions or snapshots of data from the Publisher to Subscribers, where they are applied to the destination
tables in the subscription databases.

distributed query

A single query that accesses data from multiple data sources.

distribution database

A database on the Distributor that stores data for replication including transactions, snapshot jobs, synchronization status,
and replication history information.

distribution retention period

The distribution retention period determines the amount of information stored for a replication agent and the length of
time subscriptions will remain active in the distribution database. When the distribution retention period is exceeded, the
Distribution Clean Up Agent runs.

Distributor

A server that hosts the distribution database and stores history data, and/or transactions and meta data.

See also: local Distributor, remote Distributor

DML

See definition for: data manipulation language (DML)

domain

In Windows 2000 security, a collection of computers grouped for viewing and administrative purposes that share a
common security database. In relational databases, the set of valid values allowed in a column.

domain integrity

An integrity mechanism that enforces the validity of entries for a given column. The mechanism, such as the CHECK
constraint, can restrict the possible data values by data type, format, or range of values allowed.

double-byte character set (DBCS)

A character set that generally uses two bytes to represent a character, allowing more than 256 characters to be
represented. DBCSs are typically used in environments that use ideographic writing systems, such as Japanese, Korean,
and Chinese.

DRI

See definition for: declarative referential integrity (DRI)

drill down/drill up

A technique for navigating through levels of data ranging from the most summarized (up) to the most detailed (down). For
example, when viewing the details of sales data by year, a user can drill down to display sales data by quarter, and further
to display data by month.

drill through

To retrieve the detailed data from which the data in a cube cell was summarized.

DSN

See definition for: data source name (DSN)

DSN-less connection

A type of data connection that is created based on information in a data source name (DSN), but is stored as part of a
project or application. DSN-less connections are especially useful for Web applications because they enable you to move
the application from one server to another without recreating the DSN on the new server.

DTS package

An organized collection of connections, Data Transformation Services (DTS) tasks, DTS transformations, and workflow

constraints defined by the DTS object model and assembled either with a DTS tool or programmatically.

DTS package template

A model Data Transformation Services (DTS) package. The template is used to help create and configure a particular type
of package.

dump

See definition for: backup

dump file

See definition for: backup file

dynamic cursor

A cursor that can reflect data modifications made to the underlying data while the cursor is open. Updates, deletes, and
inserts made by users are reflected in the dynamic cursor.

dynamic filter

Merge replication filters that restrict data based on a system function or user-defined function (for example:
SUSER_SNAME()).

dynamic locking

The process used by SQL Server to determine the most cost-effective locks to use at any one time.

dynamic recovery

The process that detects and/or attempts to correct software failure or loss of data integrity within a relational database
management system (RDBMS).

dynamic snapshot

A snapshot of a merge publication with dynamic filters that is applied using bulk copy files to improve performance.

dynamic SQL statements

In Embedded SQL for C, an SQL statement built and executed at run time.

E
encryption

A method for keeping sensitive information confidential by changing data into an unreadable form.

English Query

Refers to a Microsoft application development product that allows users to ask questions in English, rather than in a
computer language such as SQL. For example, you might ask, "How many customers bought products last year?" rather
than prepare an equivalent SQL statement.

English Query application

An application based on a relational database that gives end users the ability to pose queries in English, rather than in a
computer language such as SQL.

entity

In English Query, an entity is a real-world object, referred to by a noun (person, place, thing, or idea), such as people,
products, shipments, cities, and so on. Entities are semantic objects.

entity integrity

A state in which all the rows in a database have a not-null primary key value, all tables have primary keys, and no table has
any duplicate primary key values. This ensures that there are no duplicate entries for anything represented in the database.

enumeration

A data type of a property. It specifies that a property value should support a fixed set of constant strings or integer values.

equijoin

A join in which the values in the columns being joined are compared for equality, and all columns are included in the
results.

error log

A text file that records system information from SQL Server.

error state number

A number associated with SQL Server 2000 messages that helps Microsoft support engineers find the specific code
location that issued the message. This can be helpful in diagnosing errors that may be generated from multiple locations in
the SQL Server 2000 code.

escape character

A character used to indicate that another character in an expression is meant literally and not as an operator. For example,
in SQL, the character "%" is used as a wildcard character to mean "any number of characters in this position." However, if
you want to search for a string such as "10%" (ten percent), you cannot specify "10%" alone as a search string, because the
"%" would be interpreted as "any number of characters in addition to 10." By specifying an escape character, you can flag
instances where "%" specifically means percent. For example, if you specify the escape character "#", you can indicate a
search string of "10#%" to mean "ten percent."

exclusive lock

A lock that prevents any other transaction from acquiring a lock on a resource until the original lock on the resource is
released at the end of the transaction. An exclusive lock is always applied during an update operation (INSERT, UPDATE, or
DELETE).

explicit transaction

A group of SQL statements enclosed within transaction delimiters. The first delimiter must be either BEGIN TRANSACTION
or BEGIN DISTRIBUTED TRANSACTION, and the end delimiter must be one of the following:

COMMIT TRANSACTION

COMMIT WORK

ROLLBACK TRANSACTION

ROLLBACK WORK

SAVE TRANSACTION.

expression

In SQL, a combination of symbols and operators that evaluate to a single data value. Simple expressions can be a constant,
variable, column, or scalar function. Complex expressions are one or more simple expressions connected by operators.

extended stored procedure

A function in a dynamic link library (DLL) that is coded using the SQL Server 2000 Extended Stored Procedure API. The
function can then be invoked from Transact-SQL using the same statements that are used to execute Transact-SQL stored
procedures. Extended stored procedures can be built to perform functionality not possible with Transact-SQL stored
procedures.

extent

The unit of space allocated to a SQL Server object, such as a table or index, whenever the object needs more space. In SQL
Server 2000, an extent is eight contiguous pages.

F
fact

A row in a fact table in a data warehouse. A fact contains values that define a data event such as a sales transaction.

fact table

A central table in a data warehouse schema that contains numerical measures and keys relating facts to dimension tables.
Fact tables contain data that describes specific events within a business, such as bank transactions or product sales.

See also: data warehouse, dimension table, star join, star schema

Federal Information Processing Standard (FIPS)

Standards that apply to computer systems purchased by the United States government. Each FIPS standard is defined by
the National Institute of Standards and Technology (NIST). The current standard for SQL products is FIPS 127-2, which is
based on the ANSI SQL-92 standard. ANSI SQL-92 is aligned with ISO/IEC SQL-92.

fetch

An operation that retrieves a row or block of rows from a cursor. Transact-SQL batches, stored procedures, and triggers
use the FETCH statement to fetch from Transact-SQL cursors. Applications use application programming interface (API)
fetch functions.

field

An area in a window or record that stores a single data value. Some databases, such as Microsoft Access, use field as a
synonym for column.

field length

In bulk copy, the maximum number of characters needed to represent a data item in a bulk copy character format data file.

field terminator

In bulk copy, one or more characters marking the end of a field or row, separating one field or row in the data file from the
next.

file

In SQL Server databases, a basic unit of storage for a database. One database can be stored in several files. SQL Server
uses three types of files: data files (which store data), log files (which store transaction logs), and backup files (which store
backups of a database).

file DSN

Stores connection information for a database in a file that is saved on your computer. The file is a text file with the
extension .dsn. The connection information consists of parameters and corresponding values that the ODBC Driver
Manager uses to establish a connection.

file storage type

Defines the storage format used in the data file that transfers data from a bulk copy out operation to a bulk copy in
operation. In native mode files, all data is stored using the same internal structures that SQL Server 2000 uses to store the
data in a database. In character mode files, all data is converted to character strings.

filegroup

In SQL Server, a named collection of one or more files that forms a single unit of allocation or for administration of a
database.

fill factor

An attribute of an index that defines the amount of free space on each page of the index. FILLFACTOR accommodates
future expansion of table data and reduces the potential for page splits. FILLFACTOR is a value from 1 through 100 that
specifies the percentage of the index page to be left empty.

filter

A set of criteria that controls the set of records returned as a result set. Filters can also define the sequence in which rows
are returned.

filtering

The ability to restrict data based upon criteria set in the WHERE clause of an SQL statement. For replication, filtering occurs
on table articles defined in a publication. The result is partitions of data that can be published to Subscribers.

See also: partitioning, vertical filtering

FIPS

See definition for: Federal Information Processing Standard (FIPS)

firehose cursor

An obsolete term for default result set.

firehose cursors

Obsolete term for default result sets.

See also: default result set

fixed database role

A predefined role that exists in each database. The scope of the role is limited to the database in which it is defined.

fixed server role

A predefined role that exists at the server level. The scope of the role is limited to the SQL Server instance in which it is
defined.

FK

See definition for: foreign key (FK)

flattened interface

An interface created to combine members of multiple interfaces.

flattened rowset

A multidimensional data set presented as a two-dimensional rowset in which unique combinations of elements of multiple
dimensions are combined on an axis. For more information, see the OLE DB documentation.

float data type

A data type that holds floating-point number data from -1.79E + 308 through 1.79E + 308. float , double precision , and
float(n) are SQL Server float data types.

foreign key (FK)

The column or combination of columns whose values match the primary key (PK) or unique key in the same or another
table. Also called the referencing key.

foreign table

A table that contains a foreign key.

forward-only cursor

A cursor that cannot be scrolled; rows can be read only in sequence from the first row to the last row.

fragmentation

Occurs when data modifications are made. You can reduce fragmentation and improve read-ahead performance by
dropping and re-creating a clustered index.

full outer join

A type of outer join in which all rows in all joined tables are included, whether they are matched or not.

full-text catalog

Stores all of the full-text indexes for tables within a database.

full-text enabling

The process of allowing full-text querying to occur on the current database.

full-text index

The portion of a full-text catalog that stores all of the full-text words and their locations for a given table.

full-text query

As a SELECT statement, a query that searches for words, phrases, or multiple forms of a word or phrase in the character-
based columns (of char , varchar , text , ntext , nchar , or nvarchar data types). The SELECT statement returns those
rows meeting the search criteria.

full-text service

The SQL Server component that performs the full-text querying.

function

A piece of code that operates as a single logical unit. A function is called by name, accepts optional input parameters, and
returns a status and optional output parameters. Many programming languages support functions, including C, Visual
Basic, and Transact-SQL. Transact-SQL supplies built-in functions, which cannot be modified, and supports user-defined
functions, which can be created and modified by users.

G
global default

A default that is defined for a specific database and is shared by columns of different tables.

global properties

General properties of an English Query application, such as the default year setting or the start date of the fiscal year.

global rule

A rule that is defined for a specific database and is shared by columns of different tables.

global subscriptions

A subscription to a merge publication with an assigned priority value used for conflict detection and resolution.

global variable

In SQL Server, a variable that can be referenced by multiple Data Transformation Services (DTS) tasks. In earlier versions of
SQL Server, the term referred to the Transact-SQL system functions whose names start with two at signs (@@).

grant

Applies permissions to a user account, which allows the account to perform an activity or work with data.

granularity

The degree of specificity of information contained in a data element. A fact table that has fine granularity contains many
discrete facts, such as individual sales transactions. A table that has coarse granularity stores facts that are summaries of
individual elements, such as sales totals per day.

guest

A special user account that is present in all SQL Server 2000 databases and cannot be removed from any database. If a
connection is made using a login that has not been assigned a user account in a database and the connection references
objects in that database, it has the permissions assigned only to the guest account in that database.

H
heterogeneous data

Data stored in multiple formats. For example, data stored in a SQL Server database, a text file, and an Excel spreadsheet.

hierarchy

A logical tree structure that organizes the members of a dimension such that each member has one parent member and
zero or more child members.

See also: level, dimension hierarchy

HOLAP

See definition for: hybrid OLAP (HOLAP)

homogeneous data

Data that comes from multiple data sources that are all managed by the same software (for example, data that comes from
several Exchange spreadsheets, or data that comes from several SQL Server 2000 instances). A SQL Server 2000
distributed query is homogeneous if all the data comes from SQL Server 2000 instances.

hop

In data communications, one segment of the path between routers on a geographically dispersed network. A hop is
comparable to one "leg" of a journey that includes intervening stops between the starting point and the destination. The
distance between each of those stops (routers) would be a communications hop.

horizontal partitioning

To segment a single table into multiple tables based on selected rows. Each of the multiple tables has the same columns
but fewer rows.

See also: partitioning

HTML

See definition for: Hypertext Markup Language (HTML)

huge dimension

In Analysis Services, a dimension that contains more than approximately ten million members. Huge dimensions must use
relational OLAP (ROLAP) storage mode.

See also: very large dimension

hybrid OLAP (HOLAP)

A storage mode that uses a combination of multidimensional data structures and relational database tables to store
multidimensional data. Analysis Services stores aggregations for a HOLAP partition in a multidimensional structure and
stores facts in a relational database.

See also: multidimensional OLAP (MOLAP), relational OLAP (ROLAP)

Hypertext Markup Language (HTML)

A system of marking up, or tagging, a document so that it can be published on the World Wide Web. Documents prepared
in HTML include reference graphics and formatting tags. You use a Web browser (such as Microsoft Internet Explorer) to
view these documents.

I
identifier

The name of an object in a database. An identifier can be from 1 through 128 characters.

identity column

A column in a table that has been assigned the identity property. The identity property generates unique numbers.

identity property

A property that generates values that uniquely identify each row in a table. When inserting rows into a table that has an
identity column, SQL Server generates the next identity value automatically based on the last used identity value and the
increment value specified during column creation.

idle time

A SQL Server 2000 Agent condition that defines the level of CPU usage by the SQL Server 2000 database engine that
constitutes an idle state. SQL Server 2000 Agent jobs can then be created to run whenever the database engine CPU usage
falls below the level defined in the idle time definition. This minimizes the impact the SQL Server Agent jobs may have on
other tasks accessing the database.

IEC

See definition for: International Electrotechnical Commission (IEC)

image data type

A SQL Server variable-length binary data type with a maximum length of 2^31 - 1 (2,147,483,647) bytes.

immediate updating

An option available with snapshot replication and transactional replication that allows data modifications to be made to
replicated data at the Subscriber. The data modifications are then immediately propagated to the Publisher using two-
phase commit protocol (2PC).

immediate updating Subscribers

See definition for: immediate updating subscriptions

immediate updating subscriptions

A subscription to a snapshot or transactional publication for which the user is able to make data modifications at the
Subscriber. The data modifications are then immediately propagated to the Publisher using two-phase commit protocol
(2PC).

implicit transaction

A connection option in which each SQL statement executed by the connection is considered a separate transaction.

implied permission

Permission to perform an activity specific to a role. Implied permissions cannot be granted, revoked, or denied.

incremental update

The set of operations that either adds new members to an existing cube or dimension, or adds new data to a partition. One
of three processing options for a cube or partition. One of two processing options for a dimension.

See also: refresh data, process

index

In a relational database, a database object that provides fast access to data in the rows of a table, based on key values.
Indexes can also enforce uniqueness on the rows in a table. SQL Server supports clustered and nonclustered indexes. The
primary key of a table is automatically indexed. In full-text search, a full-text index stores information about significant
words and their location within a given column.

index ORing

An execution strategy that consists of looking up rows of a single table using several indexes, followed by producing the
result (by combining the partial results). Usually corresponds to an OR in the WHERE <search_conditions>. For example,
WHERE R.a = 6 OR R.b = 7 with indexes on columns R.a and R.b.

index page

A database page containing index rows.

indirect object

A word (or words) naming the one (or ones) indirectly affected by the action of the verb. For example, Emily sliced me
some cheese. (Me is the indirect object.)

information model

An object-oriented schema that defines meta data constructs used to specify the structure and behavior of an application,
process, component, or software artifact.

initial media

The first medium in each media family.

initial snapshot

Files including schema and data, constraints, extended properties, indexes, triggers and system tables necessary for
replication. The initial snapshot is transferred to Subscribers when implementing replication.

See also: synchronization

inner join

An operation that retrieves rows from multiple source tables by comparing the values from columns shared between the
source tables. An inner join excludes rows from a source table that have no matching rows in the other source tables.

input member

A member whose value is loaded directly from the data source instead of being calculated from other data.

See also: calculated member

input set

The set of data provided to a Multidimensional Expressions (MDX) value expression upon which the expression operates.
For more information about set value expressions, see the OLE DB documentation.

input source

Any table, view, or schema diagram used as an information source for a query.

insensitive cursor

A cursor that does not reflect data modification made to the underlying data by other users while the cursor is open.

Insert query

A query that copies specific columns and rows from one table to another or to the same table.

Insert Values query

A query (SQL statement) that creates a new row and inserts values into specified columns.

instance

A copy of SQL Server running on a computer. A computer can run multiple instances of SQL Server 2000. A computer can
run only one instance of SQL Server version 7.0 or earlier, although in some cases it can also be running multiple instances
of SQL Server 2000.

int (integer) data type

A SQL Server system data type that holds whole numbers from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647).

integer

In SQL Server 2000, a data type category that includes the bigint , int , smallint , and tinyint data types.

integrated security

See definition for: Windows Authentication

integrity constraint

A property defined on a table that prevents data modifications that would create invalid data.

intent lock

A lock placed on one level of a resource hierarchy to protect shared or exclusive locks on lower-level resources. For
example, before a SQL Server 2000 database engine task applies shared or exclusive row locks within a table, it places an
intent lock on the table. If another task tries to apply a shared or exclusive lock at the table level, it is blocked by the table-
level intent lock held by the first task. The second task does not have to check for individual page or row locks before
locking the table, it only has to check for an intent lock on the table.

interactive structured query language (ISQL)

An interactive command prompt utility provided with SQL Server that allows users to execute Transact-SQL statements or
batches from a server or workstation and view the results returned.

interface

A defined set of properties, methods, and collections that form a logical grouping of behaviors and data. Classes are
defined by the interfaces that they implement. An interface may be implemented by many different classes.

interface implication

If an interface implies another interface, then any class that implements the first interface must also implement the second
interface. Interface implication is used in an information model to get some of the effects of multiple inheritance.

internal identifier

A more compact form of an object identifier in a repository. An internal identifier is guaranteed to be unique only within a
single repository.

See also: object identifier

International Electrotechnical Commission (IEC)

One of two international standards bodies responsible for developing international data communications standards. The
International Electrotechnical Commission (IEC) works closely with the International Organization for Standardization (ISO)
to define standards of computing. They jointly published the ISO/IEC SQL-92 standard for SQL.

International Organization for Standardization (ISO)

One of two international standards bodies responsible for developing international data communications standards.
International Organization for Standardization (ISO) works closely with the International Electrotechnical Commission (IEC)
to define standards of computing. They jointly published the ISO/IEC SQL-92 standard for SQL.

Internet-enabled

A publication setting that enables replication to Internet Subscribers.

interprocess communication (IPC)

A mechanism through which operating system processes and threads exchange data and messages. IPCs include local
mechanisms such as Windows shared memory, or network mechanisms such as Windows Sockets.

IPC

See definition for: interprocess communication (IPC)

irregular form

A form of an English word that is an exception to the standard rules of inflection. For example, the past-tense of run is ran ,
not runned ; likewise, the plural of alumnus is alumni , not alumnuses .

irregular form type

The type of inflection (plural, past tense, or unknown) for which a word uses an irregular form. For example, the word
woman has an irregular plural form (women), as you don't form the plural of woman in the standard way by adding -s or -
es.

irregular noun

A noun plural that is not formed by adding -s or -es, such as men or women.

irregular verb

A verb that is not inflected in the usual ways. One example of an irregular verb is one that does not add -ed to the root
form to create the past tense and past participle. There are several common types of irregular verbs classified according to
how they indicate past tense and past participle: vowel changes (begin, began, begun); -en added (beat, beat, beaten);
vowel changes (spin, spun, spun); -d changes to -t (lend, lent, lent); no change (put, put, put).

ISO

See definition for: International Organization for Standardization (ISO)

isolation level

The property of a transaction that controls the degree to which data is isolated for use by one process and guarded against
interference from other processes. Setting the isolation level defines the default locking behavior for all SELECT statements
in your SQL Server session.

ISQL

See definition for: interactive structured query language (ISQL)

J
job

A specified series of operations, called steps, performed sequentially by SQL Server Agent.

join

As a verb, to combine the contents of two or more tables and produce a result set that incorporates rows and columns
from each table. Tables are typically joined using data that they have in common. As a noun, the process or result of joining
tables, as in the term "inner join" to indicate a particular method of joining tables.

See also: join column, logical join

join column

A column referenced in a join condition.

See also: join

join condition

A comparison clause that specifies how tables are related by their join columns.

join field

See definition for: join column

join filter

A row filter used in merge replication that defines a relationship between two tables that will be enforced during
synchronization, which is similar to specifying a join between two tables.

join operator

A comparison operator in a join condition that determines how the two sides of the condition are evaluated and which
rows are returned.

join path

A series of joins indicating how two tables are related. For example, Sales.SalesRepIDSalesReps.ID,
SalesReps.BranchIDBranches.ID.

join table

See definition for: junction table

junction table

A table that establishes a relationship between other tables. The junction table contains foreign keys referencing the tables
that form the relationship. For example, an OrderParts junction table can show what parts shipped with each order by
having foreign keys to an Orders table and a Parts table.

K
kernel

In SQL Server 2000, a subset of the storage engine that is referenced in some error messages. In Windows 2000, the core
of the operating system that performs basic operations.

key

A column or group of columns that uniquely identifies a row (PRIMARY KEY), defines the relationship between two tables
(FOREIGN KEY), or is used to build an index.

See also: key column

key column

A column referenced by a primary, foreign, or index key.

See also: key

key range lock

A lock used to lock ranges between records in a table to prevent phantom insertions or deletions into a set of records.
Ensures serializable transactions.

keyset-driven cursor

A cursor that shows the effects of updates made to its member rows by other users while the cursor is open, but does not
show the effects of inserts or deletes.

keyword

A reserved word in SQL Server that performs a specific function, such as to define, manipulate, and access database
objects.

L
large level

A dimension level that contains a number of members that equals or exceeds the threshold for large levels. This threshold
is variable and is set in the Properties dialog box of Analysis Manager.

latency

The amount of time that elapses when a data change is completed at one server and when that change appears at another
(for example, the time between when a change is made at a Publisher and when it appears at the Subscriber).

LCID

See definition for: locale identifier (LCID)

leaf

In a tree structure, an element that has no subordinate elements. For example, in Analysis Services, a leaf is a dimension
member that has no descendants.

See also: nonleaf

leaf level

The bottom level of a clustered or nonclustered index. In a clustered index, the leaf level contains the actual data pages of
the table. In a nonclustered index, the leaf level either points to data pages or points to the clustered index (if one exists),
rather than containing the data itself.

leaf member

A dimension member without descendants.

left outer join

A type of outer join in which all rows from the left-most table in the JOIN clause are included. When rows in the left table
are not matched by rows in the right table, all result set columns that come from the right table are assigned a value of
NULL.

level

The name of a set of members in a dimension hierarchy such that all members of the set are at the same distance from the
root of the hierarchy. For example, a time hierarchy may contain the levels Year, Month, and Day.

See also: dimension, hierarchy

level hierarchy

See definition for: dimension hierarchy

library

In Analysis Services, a folder that contains shared objects such as shared dimensions that can be used by multiple objects
within a database.

linked cube

A cube based on a cube defined on another Analysis server.

See also: publishing server, source cube, subscribing server

linked server

A definition of an OLE DB data source used by SQL Server 2000 distributed queries. The linked server definition specifies
the OLE DB provider required to access the data, and includes enough addressing information for the OLE DB provider to
connect to the data. Any rowsets exposed by the OLE DB data source can then be referenced as tables, called linked tables,
in SQL Server 2000 distributed queries.

See also: local server

linked table

An OLE DB rowset exposed by an OLE DB data source that has been defined as a linked server for use in SQL Server 2000
distributed queries. The rowsets exposed by the linked server can be referenced as tables in distributed queries.

linking table

A table that has associations with two other tables and is used indirectly as an association between those two tables.

livelock

A request for an exclusive lock that is repeatedly denied because a series of overlapping shared locks keeps interfering.
SQL Server detects the situation after four denials and refuses further shared locks. A livelock also occurs when read
transactions monopolize a table or page, forcing a write transaction to wait indefinitely.

See also: deadlock

local cube

A cube created and stored with the extension .cub on a local computer using PivotTable Service.

local Distributor

A server that is configured as both a Publisher and a Distributor for SQL Server Replication.

See also: Distributor, remote Distributor

local group

A group in Windows NT 4.0 or Windows 2000 containing user accounts and global groups from the domain group in
which they are created and any trusted domain. Local groups cannot contain other local groups.

local login identification

The identification (ID) a user must use to log in to a local server. A login ID can have up to 128 characters. The characters
can be alphanumeric; however, the first character must be a letter (for example, CHRIS or TELLER8).

local server

In SQL Server 2000 connections, an instance of SQL Server 2000 running on the same computer as the application.

When resolving references to database objects in a Transact-SQL statement, the instance of SQL Server 2000 executing the
statement.

In SQL Server 2000 distributed queries, the instance of SQL Server 2000 executing the distributed query. The local server
then accesses any linked servers referenced in the query.

In SQL Server 2000 remote stored procedures, the instance of SQL Server executing an EXEC statement that references a

remote stored procedure. The local server then passes the execution request to the remote server on which the remote
stored procedure resides.

See also: linked server, remote server

local subscription

A subscription to a merge publication using the priority value of the Publisher for conflict detection and resolution.

local variable

A user-defined variable that has an assigned value. A local variable is defined with a DECLARE statement, assigned an
initial value with a SELECT or SET statement, and used within the statement batch or procedure in which it was declared.

locale

The Windows operating-system attribute that defines certain behaviors related to language. The locale defines the code
page, or bit patterns, used to store character data, and the order in which characters are sorted. It also defines language-
specific items such as the format used for dates and time and the character used to separate decimals in numbers. Each
locale is identified by a unique number, called a locale identifier or LCID. SQL Server 2000 collations are similar to locales
in that the collations define language-specific types of behaviors for instances of SQL Server 2000.

See also: collation, locale identifier (LCID)

locale identifier (LCID)

A number that identifies a Windows-based locale.

See also: locale

lock

A restriction on access to a resource in a multiuser environment. SQL Server locks users out of a specific row, column, or
file automatically to maintain security or prevent concurrent data modification problems.

lock escalation

The process of converting many fine-grain locks into fewer coarse-grain locks, thereby reducing system overhead.

log file

A file or set of files containing a record of the modifications made in a database.

See also: data file

logical join

In XML View Mapper, a description of correspondence between tables based on equivalent values in one or more fields.
Logical joins are automatically created during import based on table relationships. User-defined logical joins can be added
through the user interface to describe additional relationships.

See also: join

logical name

A name used by SQL Server to identify a file. A logical name for a file must correspond to the rules for identifiers and can
have as many as 30 characters (for example, ACCOUNTING or LIBRARY).

logical operators

The operators AND, OR, and NOT. Used to connect search conditions in WHERE clauses.

login (account)

An identifier that gives a user permission to connect to SQL Server 2000 using SQL Server Authentication. Users
connecting to SQL Server 2000 using Windows NT Authentication are identified by their Windows 2000 login, and do not
need a separate SQL Server 2000 login.

Note: When possible, use Windows Authentication.

login security mode

A security mode that determines the manner in which a SQL Server 2000 instance validates a login request. There are two
types of login security: Windows Authentication and SQL Server authentication.

lookup table

A table, either in a database or hard-coded in the English Query application, that contains codes and the English word or
phrase they represent. For example, a gender lookup table contains the following code and English descriptions:

M, Male

M
machine DSN

Stores connection information for a database in the system registry. The connection information consists of parameters
and corresponding values that the ODBC Driver Manager uses to establish a connection.

Make Table query

A query (SQL statement) that creates a new table and then creates rows in it by copying rows from an existing table.

many-to-many relationship

A relationship between two tables in which rows in each table have multiple matching rows in the related table. Many-to-
many relationships are maintained by using a third table called a junction table and adding the primary key columns from
each of the other two tables to this table.

many-to-one relationship

A relationship between two tables in which one row in one table can relate to many rows in another table.

MAPI

See definition for: Messaging Application Programming Interface (MAPI)

master database

The database that controls the operation of each instance of SQL Server. It is installed automatically with each instance of
SQL Server and keeps track of user accounts, remote user accounts, and remote servers that each instance can interact
with. It also tracks ongoing processes, configurable environment variables, system error messages, tapes and disks
available on the system, and active locks.

master definition site

See definition for: Publisher

master file

The file installed with earlier versions of SQL Server used to store the master , model , and tempdb system databases
and transaction logs and the pubs sample database and transaction log.

master site

See definition for: Distributor

MDX

See definition for: Multidimensional Expressions (MDX)

measure

In a cube, a set of values that are based on a column in the cube's fact table and are usually numeric. Measures are the
central values that are aggregated and analyzed.

See also: dimension

measurement

In English Query, an option in the Adjective Phrasing dialog box. Using it, you can specify some measurement that is
represented in an entity. For example, the relationship expressed as the city is some temperature might be represented by
an Area entity and a Temperature entity.

media description

The text describing the media set.

See also: media set

media family

All media in a set written by a single device (for example, an initial medium and all continuation media, if any).

See also: media set

media header

Provides information about the backup media.

media name

The descriptive name for the entire backup media set.

media set

All media involved in a backup operation.

See also: media description, media family

member

An item in a dimension representing one or more occurrences of data. A member can be either unique or nonunique. For
example, 1997 and 1998 represent unique members in the year level of a time dimension, whereas January represents
nonunique members in the month level because there can be more than one January in the time dimension if it contains
data for more than one year.

See also: virtual dimension

member delegation

A modeling concept that describes how interface members are mapped from one interface to another.

member group

A system-generated parent of a collection of consecutive dimension members.

See also: dimension

member key column

A dimension level's property that specifies the identifiers of the members of the level. The value of this property can
specify a column that contains the identifiers or an expression that evaluates to the identifiers.

See also: member name column, member variable

member name column

A dimension level's property that specifies the names of the members of the level. The value of his property can specify a
column that contains the names or an expression that evaluates to the names.

See also: member key column, member variable

member property

Information about the members of a dimension level in addition to that contained in the dimension (for example, the color
of a product or the telephone number of a sales representative). For more information about member properties, see the
OLE DB documentation.

See also: virtual dimension

member variable

The value used internally by Analysis Services to identify a dimension member. The MemberKeyColumn property
specifies the member variables for a dimension. For example, a number from 1 through 12 could be the member variable
that corresponds to a month of the year.

See also: member key column, member name column

memo

A type of column containing long strings of text, typically more than 255 characters. This is the Access equivalent of a SQL
Server text data type.

merge

The operation that combines two partitions into a single partition.

merge replication

A type of replication that allows sites to make autonomous changes to replicated data, and at a later time, merge changes
and resolve conflicts when necessary.

See also: snapshot replication, transactional replication

message number

A number that identifies a SQL Server 2000 error message.

Messaging Application Programming Interface (MAPI)

An e-mail application programming interface (API).

meta data

Information about the properties of data, such as the type of data in a column (numeric, text, and so on) or the length of a
column. It can also be information about the structure of data or information that specifies the design of objects such as
cubes or dimensions.

method

A function that performs an action by using a COM object, as in SQL-DMO, OLE DB, and ActiveX Data Objects (ADO).

See also: Component Object Model (COM)

mining model

An object that contains the definition of a data mining process and the results of the training activity. For example, a data
mining model may specify the input, output, algorithm, and other properties of the process and hold the information
gathered during the training activity, such as a decision tree.

mining model training

The process a data mining model uses to estimate model parameters by evaluating a set of known and predictable data.
Also, the act of causing a mining model to evaluate training data.

See also: training data set

mirroring

The process for protecting against the loss of data due to disk failure by maintaining a fully redundant copy of data on a
separate disk. Mirroring can be implemented at several levels: in SQL Server 2000, in the operating system, and in the disk
controller hardware.

Mixed Mode

Combines Windows Authentication and SQL Server Authentication. Mixed Mode allows users to connect to an instance of
SQL Server, through either a Windows NT 4.0 or Windows 2000 user account or a SQL Server login.

Note: When possible, use Windows Authentication.

model

In English Query, a model is the collection of all information that is known about the objects in the English Query
application. This information includes: the specified database objects (such as tables, fields, and joins); semantic objects
(such as entities, the relationships between them, additional dictionary entries); and global domain default options.

model database

A database installed with SQL Server that provides the template for new user databases. SQL Server 2000 creates a new
database by copying in the contents of the model database and then expanding it to the size requested.

model dependency

A relationship between two or more models in which one model is dependent on the information of another model.

module

A group of objects in a project. You can move objects between modules in a project, thus organizing those objects for a
dispersed development environment.

modulo

An arithmetic operator that provides the integer remainder after a division involving two integers.

MOLAP

See definition for: multidimensional OLAP (MOLAP)

money data type

A SQL Server system data type that stores monetary values from -2^63 (-922,337,203,685,477.5808) through 2^63 - 1
(+922,337,203,685,477.5807), with accuracy to a ten-thousandth of a monetary unit.

Multidimensional Expressions (MDX)

A syntax used for defining multidimensional objects and querying and manipulating multidimensional data.

multidimensional OLAP (MOLAP)

A storage mode that uses a proprietary multidimensional structure to store a partition's facts and aggregations or a
dimension. The data of a partition is completely contained within the multidimensional structure.

See also: relational OLAP (ROLAP), hybrid OLAP (HOLAP)

multidimensional structure

A database paradigm that treats data not as relational tables and columns, but as information cubes that contain
dimension and summary data in cells. Each cell is addressed by a set of coordinates that specify a position in the
structure's dimensions. For example, the cell at coordinates {SALES, 1997, WASHINGTON, SOFTWARE} would contain the
summary of software sales in Washington in 1997.

See also: cube

multiple inheritance

A modeling term that describes how an interface receives the characteristics of more than one parent interface.

multiple instances

Multiple copies of SQL Server running on the same computer. There can be one default instance, which can be any version
of SQL Server. There can be multiple named instances of SQL Server 2000.

See also: default instance, named instance

multithreaded server application

An application that creates multiple threads within a single process to service multiple user requests at the same time.

multiuser

The ability of a computer to support many users operating at the same time, while providing the computer system's full
range of capabilities to each user.

N
name phrasing

An English description of a relationship in which one entity is the name of another entity. For example, in the sentence
"Custnames are the names of Customers", Custnames and Customers are both entities.

named instance

An installation of SQL Server 2000 that is given a name to differentiate it from other named instances and from the default
instance on the same computer. A named instance is identified by the computer name and instance name.

See also: default instance, multiple instances

named pipe

An interprocess communication (IPC) mechanism that SQL Server uses to provide communication between clients and
servers. Named pipes permit access to shared network resources.

named set

A set of dimension members or a set expression that is created for reuse, for example, in Multidimensional Expressions
(MDX) queries.

naming relationship

A naming convention that identifies the destination objects of that relationship by name.

native format

Bulk copy data files in which the data is stored using the same internal data structures SQL Server uses to store data in
SQL Server databases. Bulk copy can quickly process native mode files because it does not have to convert data when
transferring it between SQL Server and the bulk copy data file.

See also: character format

nchar data type

A fixed-length Unicode data type with a maximum of 4,000 characters. Unicode characters use 2 bytes per character and
support all international characters.

nested query

A SELECT statement that contains one or more subqueries, or another term for subquery.

nested table

A data mining model configuration in which a column of a table contains a table.

Net-Library

A SQL Server communications component that isolates the SQL Server client software and database engine from the
network APIs. The SQL Server client software and database engine send generic network requests to a Net-Library, which
translates the request to the specific network commands of the protocol chosen by the user.

nickname

When used with merge replication system tables, a name for another Subscriber that is known to already have a specified
generation of updated data. Used to avoid sending an update to a Subscriber that has already received those changes.

niladic functions

Functions that do not have any input parameters. Most niladic SQL Server functions return system information.

noise word

Words that do not participate in a full-text query search. For example, a, and, the, and so on.

nonclustered index

An index in which the logical order of the index is different than the physical, stored order of the rows on disk.

nonleaf

In a tree structure, an element that has one or more subordinate elements. For example, in Analysis Services, a dimension
member that has one or more descendants. In SQL Server indexes, an intermediate index node that points to other
intermediate nodes or leaf nodes.

See also: leaf

nonleaf member

A member with one or more descendants.

nonrepeatable read

When a transaction reads the same row more than one time, and between the two (or more) reads, a separate transaction
modifies that row. Because the row was modified between reads within the same transaction, each read produces different
values, which introduces inconsistency.

normalization rules

A set of database design rules that minimizes data redundancy and results in a database in which the database engine and
application software can easily enforce integrity.

noun

A part of speech that names a person, place, thing, idea, animal, quality, or action. A noun usually changes form to indicate
the plural and the possessive case.

ntext data type

A variable-length Unicode data type that can hold a maximum of 2^30 - 1 (1,073,741,823) characters. ntext columns store
a 16-byte pointer in the data row, and the data is stored separately.

NULL

An entry that has no explicitly assigned value. NULL is not equivalent to zero or blank. A value of NULL is not considered to
be greater than, less than, or equivalent to any other value, including another value of NULL.

nullability

The attribute of a column, parameter, or variable that specifies whether it allows null data values.

numeric expression

Any expression that evaluates to a number. The expression can be any combination of variables, constants, functions, and
operators.

nvarchar data type

A variable-length Unicode data type with a maximum of 4,000 characters. Unicode characters use 2 bytes per character
and support all international characters. sysname is a system-supplied user-defined data type that is a synonym for
nvarchar(128) and is used to reference database object names.

O
object

In databases, one of the components of a database: a table, index, trigger, view, key, constraint, default, rule, user-defined
data type, or stored procedure.

object dependencies

References to other objects when the behavior of the first object can be affected by changes in the object it references. For
example, if a stored procedure references a table, changes to the table can affect the behavior of the stored procedure.

object identifier

A unique name given to an object.

In Meta Data Services, a unique identifier constructed from a globally unique identifier (GUID) and an internal identifier. All
objects must have an object identifier.

See also: internal identifier

object owner

The security account that controls the permissions for an object, usually the creator of the object. Object owner is also
called the database object owner.

object permission

An attribute that controls the ability to perform operations on an object. For example, table or view permissions control
which users can execute SELECT, INSERT, UPDATE, and DELETE statements against the table or view.

object variable

A variable that contains a reference to an object.

ODBC

See definition for: Open Database Connectivity (ODBC)

ODBC data source

The location of a set of data that can be accessed using an ODBC driver. Also, a stored definition that contains all of the
connection information an ODBC application requires to connect to the data source.

See also: data source

ODBC driver

A dynamic-link library (DLL) that an ODBC-enabled application, such as Excel, can use to access an ODBC data source. Each
ODBC driver is specific to a database management system (DBMS), such as SQL Server, Access, and so on.

ODS

See definition for: Open Data Services (ODS)

OIM

See definition for: Open Information Model (OIM)

OLAP

See definition for: online analytical processing (OLAP)

OLE Automation controller

A programming environment (for example, Visual Basic) that can drive Automation objects.

OLE Automation objects

A Component Object Model (COM) object that provides Automation-compatible interfaces.

OLE Automation server

An application that exposes programmable automation objects to other applications, which are called "automation clients."
Exposing programmable objects enables clients to "automate" certain functions by directly accessing those objects and
using the services they make available. For example, a word processor might expose its spell-checking functionality so that
other programs can use it.

OLE DB

A COM-based application programming interface (API) for accessing data. OLE DB supports accessing data stored in any
format (databases, spreadsheets, text files, and so on) for which an OLE DB provider is available.

See also: OLE DB for OLAP

OLE DB consumer

Any software that calls and uses the OLE DB application programming interface (API).

OLE DB for OLAP

Formerly, the separate specification that addressed OLAP extensions to OLE DB. Beginning with OLE DB 2.0, OLAP
extensions are incorporated into the OLE DB specification.

See also: OLE DB

OLE DB provider

A software component that exposes OLE DB interfaces. Each OLE DB provider exposes data from a particular type of data
source (for example SQL Server databases, Access databases, or Excel spreadsheets).

OLTP

See definition for: online transaction processing (OLTP)

one-to-many relationship

In relational databases, a relationship between two tables in which a single row in the first table can be related to one or
more rows in the second table, but a row in the second table can be related only to one row in the first table.

one-to-one relationship

In relational databases, a relationship between two tables in which a single row in the first table can be related only to one
row in the second table, and a row in the second table can be related only to one row in the first table.

online analytical processing (OLAP)

A technology that uses multidimensional structures to provide rapid access to data for analysis. The source data for OLAP
is commonly stored in data warehouses in a relational database.

online redo log

See definition for: transaction log

online transaction processing (OLTP)

A data processing system designed to record all of the business transactions of an organization as they occur. An OLTP
system is characterized by many concurrent users actively adding and modifying data.

Open Data Services (ODS)

The layer of the SQL Server database engine that transfers client requests to the appropriate functions in the database
engine. Open Data Services exposes the extended stored procedure API used to write DLL functions that can be called from
Transact-SQL statements.

Open Database Connectivity (ODBC)

A data access application programming interface (API) that supports access to any data source for which an ODBC driver is
available. ODBC is aligned with the American National Standards Institute (ANSI) and International Organization for
Standardization (ISO) standards for a database Call Level Interface (CLI).

Open Information Model (OIM)

An information model published by the Meta Data Coalition (MDC) and widely supported by software vendors. The OIM is
a formal description of meta data constructs organized by subject area.

optimize synchronization

An option in merge replication that allows you to minimize network traffic when determining whether recent changes have
caused a row to move into or out of a partition that is published to a Subscriber.

optimizer

See definition for: query optimizer

ordered set

A set of members returned in a specific order. The ORDER function in a Multidimensional Expressions (MDX) query returns
an ordered set.

origin object

An object in a repository that is the origin in a directional relationship. For example, project is the origin object in the
relationship project has component .

See also: destination object, sequenced relationship

outer join

A join that includes all the rows from the joined tables that meet the search conditions, even rows from one table for which
there is no matching row in the other join table. For result set rows returned when a row in one table is not matched by a
row from the other table, a value of NULL is supplied for all result set columns that are resolved to the table that had the
missing row.

overfitting

The characteristic of some data mining algorithms that assigns importance to random variations in data by viewing them
as important patterns.

P
page

In a virtual storage system, a fixed-length block of contiguous virtual addresses copied as a unit from memory to disk and
back during paging operations. SQL Server allocates database space in pages. In SQL Server, a page is 8 kilobytes (KB) in
size.

page split

The process of moving half the rows or entries in a full data or index page to two new pages to make room for a new row
or index entry.

parent

A member in the next higher level in a hierarchy that is directly related to the current member. The parent value is usually a
consolidation of the values of all of its children. For example, in a Time dimension containing the levels Quarter, Month,
and Day, Qtr1 is the parent of January.

See also: child, descendant, sibling, ancestor

partition

In Analysis Services, one of the storage containers for data and aggregations of a cube. Every cube contains one or more
partitions. For a cube with multiple partitions, each partition can be stored separately in a different physical location. Each
partition can be based on a different data source. Partitions are not visible to users; the cube appears to be a single object.

partitioning

The process of replacing a table with multiple smaller tables. Each smaller table has the same format as the original table,
but with a subset of the data. Each partitioned table has rows allocated to it based on some characteristic of the data, such
as specific key ranges. The rules that define into which table the rows go must be unambiguous. For example, a table is
partitioned into two tables. All rows with primary key values lower than a specified value are allocated to one table, and all
keys equal to or greater than the value are allocated to the other. Partitioning can improve application processing speeds
and reduce the potential for conflicts in multisite update replication. You can improve the usability of partitioned tables by
creating a view. The view, created by a union of select operations on all the partitioned tables, presents the data as if it all
resided in a single table.

See also: filtering, vertical partitioning, horizontal partitioning

parts of speech

The classes into which words may be grouped according to their form changes and their grammatical relationships. The
traditional parts of speech are verbs, nouns, pronouns, adjectives, adverbs, prepositions, conjunctions, and interjections.

pass order

The order of evaluation (from highest to lowest calculation pass number) and calculation (from lowest to highest
calculation pass number) for calculated members, custom members, custom rollup formulas, and calculated cells in a
multidimensional cube. Pass order is used to determine formula precedence when calculating values for cells in
multidimensional cubes, across all calculation passes.

See also: solve order

pass-through query

A query passed uninterpreted to an external server for evaluation. The result set returned by a pass-through query can be
used in the FROM clause of a query like an ordinary base table.

pass-through statement

A SELECT statement that is passed directly to the source database without modification or delay. In PivotTable Service, the
PASSTHROUGH option is part of the INSERT INTO statement.

passive voice

Indicates that the subject of the verb receives the action of the verb. For example, in the sentence "The customers are sold
products", the subject customers receives the action of the verb are sold .

See also: active voice

persistence

The saving of an object definition so it will be available after the current session ends.

phantom

By one task, the insertion of a new row or the deletion of an existing row in a range of rows previously read by another
task that has not yet committed its transaction. The task with the uncommitted transaction cannot repeat its original read
because of the change to the number of rows in the range. If a connection sets its transaction isolation level to serializable,
SQL Server uses key-range locking to prevent phantoms.

phrase

A sequence of grammatically related words lacking a subject or a predicate, or both.

phrasing

A way to express a relationship in English. Types of phrasings include name, adjective, subset, preposition, verb, and trait
phrasings. For example, department names are names of departments is an example of name phrasing.

physical name

The path where a file or mirrored file is located. The default is the path of the Master.dat file followed by the first eight
characters of the file's logical name. For example, if Accounting is the logical name, and the Master.dat file is located in
Sql\Data, the default physical name is Sql\Data\Accounti.dat. For a mirrored file, the default is the path of the Master.mir
file followed by the first eight characters of the mirror file's logical name. For example, if Maccount is the name of the
mirrored file, and the Master.mir file is located in Sql\Data, the default physical name is Sql\Data\Maccount.mir.

physical reads

A request for a database page in which SQL Server must transfer the requested page from disk to the SQL Server buffer
pool. All attempts to read pages are called logical reads. If the page is already in the buffer, there is no associated physical
read generated by the logical read. The number of physical reads never exceeds the number of logical reads. In a well-
tuned instance of SQL Server, the number of logical reads is typically much higher than the number of physical reads.

pivot

To rotate rows to columns, and columns to rows, in a crosstabular data browser.

To choose dimensions from the set of available dimensions in a multidimensional data structure for display in the rows
and columns of a crosstabular structure.

PK

See definition for: primary key (PK)

position

The current location of processing in a cursor. For example, after an application fetches the first 10 rows from a cursor, it is
positioned on the tenth row of the cursor. Database APIs also have functions, such as the ODBC SQLSetPos function, that
allow an application to move directly to a specific position in a cursor without performing a fetch.

positioned update

An update, insert, or delete operation performed on a row at the current position of the cursor. The actual change is made
in the rows of the base tables used to build the current row in the cursor. Transact-SQL batches, stored procedures, and
triggers use the WHERE CURRENT OF clause to perform positioned updates. Applications use API functions, such as the
ODBC SQLSetPos function, to perform positioned updates.

possessive case

A grammatical case that denotes ownership or a relation analogous to ownership, for example, Mary's blood type, or
John's movie.

precision

The maximum total number of decimal digits that can be stored, both to the left and right of the decimal point.

predicate

A basic grammatical division of a sentence that consists of what is said about the subject. For example, in the sentence "The
voters elected the incumbent", the subject is voters and the predicate is elected the incumbent .

prediction

A data mining technique that analyzes existing data and uses the results to predict values of attributes for new records or
missing attributes in existing records. For example, existing credit application data can be used to predict the credit risk for
a new application.

See also: decision tree

prefix characters

A set of 1 to 4 bytes that prefix each data field in a native-format bulk-copy data file. The prefix characters record the length
of the data value in the field, or contain -1 when the value is NULL.

prefix length

The number of prefix characters preceding each noncharacter field in a bcp native format data file.

prefix search

Full-text query searching for those columns where the specified character-based text, word, or phrase, is the prefix. When
using a phrase, each word within the phrase is considered to be a prefix. For example, a prefix search specifying the phrase
"sport fish*" matches "sport fishing", "sportsman fishing supplies", and so on.

preposition

A part of speech that links and relates a noun or noun substitute to another word in the sentence. For example, in the
sentence "the dancers leaped across the stage", across is the preposition. Words commonly used as prepositions include
about , after , among , before , between , but , during , for , from , in , into , near , of , on , over , to , until , with , and so on.

preposition phrasing

A way of expressing a relationship in English in which an entity serves as a subject and an entity serves as an object and
are linked by a preposition. For example, in the sentence, "stories are about subjects", stories is the subject entity, about is
the preposition, and subjects is the object.

primary dimension table

In a snowflake schema in a data warehouse, a dimension table that is directly related to and usually joined to the fact table.
Additional tables that complete the dimension definition are joined to the primary dimension table instead of to the fact
table.

See also: dimension table, snowflake schema

primary key (PK)

A column or set of columns that uniquely identify all the rows in a table. Primary keys do not allow null values. No two
rows can have the same primary key value; therefore, a primary key value always uniquely identifies a single row. More
than one key can uniquely identify rows in a table; each of these keys is called a candidate key. Only one candidate key can
be chosen as the primary key of a table; all other candidate keys are known as alternate keys. Although tables are not
required to have primary keys, it is good practice to define them. In a normalized table, all of the data values in each row
are fully dependent on the primary key. For example, in a normalized employee table that has EmployeeID as the primary
key, all of the columns should contain data related to a specific employee. This table does not have the column
DepartmentName because the name of the department is dependent on a department ID, not on an employee ID.

primary table

The "one" side of two related tables in a one-to-many relationship. A primary table should have a primary key and each
record should be unique. An example of a primary table is a table of customer names that are uniquely identified by a
CustomerID primary key field.

private dimension

A dimension created for and used by a specific cube. Unlike shared dimensions, private dimensions are available only to

the cube in which they are created.

See also: shared dimension

procedure cache

The part of the SQL Server memory pool that is used to store execution plans for Transact-SQL batches, stored procedures,
and triggers. Execution plans record the steps that SQL Server must take to produce the results specified by the Transact-
SQL statements contained in the batches, stored procedures, or triggers.

process

In a cube, the series of operations that rebuilds the cube's structure, loads data into a multidimensional structure, calculates
summaries, and saves the precalculated aggregations. As a verb, to populate a cube with data and aggregations. It is one of
three processing options for a cube.

In a dimension, the operation that loads data from a dimension table in a data warehouse into the levels defined for a
dimension and rebuilds the structure of the dimension. It is one of two processing options for a dimension.

In a data mining model, the operation that retrieves training data from a relational or OLAP data source into the structure
defined for a data mining model, statistically analyzes it with a data mining algorithm, and saves the statistical data as data
mining content. As a verb, to populate a data mining model with data mining content.

See also: incremental update, refresh data

producer

Collects events in a specific event category and sends the data to a SQL Server Profiler queue.

project

In English Query, a file that contains the structure of the relational database and definitions of semantic objects, such as
entities, relationships, and dictionary entries. Its extension is *.eqp. It is used to test how English Query translates English
questions into SQL statements. Later, it can be compiled into a deployable application file with an *.eqd extension.

pronoun

A part of speech that takes the position of a noun and functions as one, for example, she, he, and we.

proper noun

A noun that is capitalized; a specific name, for example, John Smith.

property

A named attribute of a control, field, or database object that you set to define one of the object's characteristics (such as
size, color, or screen location) or an aspect of its behavior (such as whether it is hidden).

property pages

A tabbed dialog box where you can identify the characteristics of tables, relationships, indexes, constraints, and keys. Every
object in a database diagram has a set of properties that determine the definition of a database object. Each set of tabs
shows only the properties specific to the selected object. If multiple objects are selected, the property pages show the
properties of the first object you selected.

provider

An OLE DB provider.

An in-process dynamic link library (DLL) that provides access to a database.

proximity search

Full-text query searching for those occurrences where the specified words are close to one another.

publication

A publication is a collection of one or more articles from one database. This grouping of multiple articles makes it easier to
specify a logically related set of data and database objects that you want to replicate at the same time.

publication database

A database on the Publisher from which data and database objects are marked for replication as part of a publication that
is propagated to Subscribers.

publication retention period

A predetermined length of time that regulates how long subscriptions will receive updates during synchronizations and
remain activated in databases.

published data

Data at the Publisher that has been replicated.

Publisher

A server that makes data available for replication to other servers, detects changed data, and maintains information about
all publications at the site.

publishing server

An Analysis server that stores the source cube for one or more linked cubes.

See also: linked cube, subscribing server

publishing table

The table at the Publisher in which data has been marked for replication and is part of a publication.

pubs database

A sample database provided with SQL Server.

pull subscription

A subscription created and administered at the Subscriber. Information about the publication and the Subscriber is stored.

See also: push subscription

push subscription

A subscription created and administered at the Publisher. Information about the publication and Subscriber is stored.

See also: pull subscription

Q
query optimizer

The SQL Server database engine component responsible for generating efficient execution plans for SQL statements.

question

In English Query, an English form of a query, for example, "How many customers bought products last year?" Questions
may also be posed as statements to an English Query application, for example, "List the customers that bought products
last year."

Question Builder

A tool that supports users' needs to know more about the domain objects so that they can construct questions. They can
find out what the domain objects contain, what kind of basic relationships are represented in the domain, and what English
phrases can be used to ask about the relationships.

question file (.eqq)

An ASCII text file that contains questions (one to a line) that are ready for testing with the English Query engine. Question
files are denoted with the .eqq extension. Questions can be submitted to the question file automatically with the test tool,
or a developer can create a list of questions.

question template

A structure that describes a set of questions that can be asked using a particular relationship or set of relationships.

queue

A SQL Server Profiler queue provides a temporary holding place for server events to be captured.

R
ragged hierarchy

A dimension hierarchy in which one or more levels do not contain members in one or more branches of the hierarchy. For
example, the state or province level in a geography hierarchy contains no members for countries or regions that do not
have states or provinces.

See also: unbalanced hierarchy

range query

A query that specifies a range of values as part of the search criteria, such as all rows from 10 through 100.

rank

For full-text and SQL Server Books Online searches, a value indicating how closely rows or topics match the specified
search criteria. For Meta Data Services and Analysis Services, a value indicating the relative positions of elements such as
dimension members, hierarchy levels, or tuples in a set.

RDBMS

See definition for: relational database management system (RDBMS)

real data type

A SQL Server system data type that has 7-digit precision. Floating precision number data from -3.40E + 38 through 3.40E
+ 38. Storage size is 4 bytes.

record

A group of related fields (columns) of information treated as a unit. A record is more commonly called a row in an SQL
database.

recordset

The ActiveX Database Objects (ADO) object used to contain a result set. It also exhibits cursor behavior depending on the
recordset properties set by an application. ADO recordsets are mapped to OLE DB rowsets.

recovery interval

The maximum amount of time that the database engine should require to recover a database. The database engine ensures
that the active portion of the database log is small enough to recover the database in the amount of time specified for the
recovery interval.

recursive partitioning

The iterative process, used by data mining algorithm providers, of dividing data into groups until no more useful groups
can be found.

redo log file

See definition for: backup file

referenced key

A primary key or unique key referenced by a foreign key.

referencing key

See definition for: foreign key (FK)

referential integrity (RI)

A state in which all foreign key values in a database are valid. For a foreign key to be valid, it must contain either the value
NULL, or an existing key value from the primary or unique key columns referenced by the foreign key.

reflexive relationship

A relationship from a column or combination of columns in a table to other columns in that same table. A reflexive
relationship is used to compare rows within the same table. In queries, this is called a self-join.

refresh data

The series of operations that clears data from a cube, loads the cube with new data from the data warehouse, and
calculates aggregations. Refresh data is used when a cube's underlying data in the data warehouse changes but the cube's
structure and aggregation definitions remain the same. One of three processing options for a cube.

See also: incremental update, process

regular cube

A cube that is based on tables and has its own aggregations.

regular dimension

A dimension that is neither a parent-child dimension nor a virtual dimension.

relational database

A collection of information organized in tables. Each table models a class of objects of interest to the organization (for
example, Customers , Parts , Suppliers). Each column in a table models an attribute of the object (for example,
LastName , Price , Color). Each row in a table represents one entity in the class of objects modeled by the table (for
example, the customer name John Smith or the part number 1346). Queries can use data from one table to find related
data in other tables.

relational database management system (RDBMS)

A system that organizes data into related rows and columns. SQL Server is a relational database management system
(RDBMS).

relational OLAP (ROLAP)

A storage mode that uses tables in a relational database to store multidimensional structures.

See also: multidimensional OLAP (MOLAP), hybrid OLAP (HOLAP)

relationship

A link between tables that references the primary key in one table to a foreign key in another table. The relationship line is
represented in a database diagram by a solid line if referential integrity between the tables is enforced, or a dashed line if
referential integrity is not enforced for INSERT and UPDATE transactions. The endpoints of a relationship line show a
primary key symbol to denote a primary key-to-foreign key relationship, or they show an infinity symbol to denote the
foreign key side of a one-to-many relationship.

In English Query, an association between entities that describes what those entities have to do with one another.

Relationships can be described concisely in English as simple statements about entities (for example, customers purchase
products). More than one join may be required to represent a single relationship.

relationship

In Meta Data Services, a relationship is an association between a pair of objects, where one object is an origin and the other
object is a destination. The association repeats for each subsequent pair of objects, so that the destination of one
relationship becomes the origin in the next relationship. In this way, all objects in an information model are associated
through a chain of relationships that extend from one object to the next throughout the information model.

relationship object

An object representing a pair of objects that assume a role in relation to each other.

See also: sequenced relationship

relationship type

A definition of a relationship between two interfaces, as defined in an information model. A relationship type is similar to a
class in that it describes characteristics to which specific instances must conform.

remote data

Data stored in an OLE DB data source that is separate from the current instance of SQL Server. The data is accessed by
establishing a linked server definition or using an ad-hoc connector name.

remote Distributor

A server configured as a Distributor that is separate from the server configured as the Publisher.

See also: Distributor, local Distributor

remote login identification

The login identification (login ID) assigned to a user for accessing remote procedures on a remote server.

remote partition

A partition whose data is stored on an Analysis server other than the one used to store the meta data of the partition.

remote server

A definition of an instance of SQL Server used by remote stored procedure calls. Remote servers are still supported in SQL
Server 2000, but linked servers offer greater functionality.

See also: local server

remote stored procedure

A stored procedure located on one instance of SQL Server that is executed by a statement on another instance of SQL
Server. In SQL Server 2000, remote stored procedures are supported, but distributed queries offer greater functionality.

remote table

A table stored in an OLE DB data source that is separate from the current instance of SQL Server. The table is accessed by
either establishing a linked server definition or using an ad-hoc connector name.

replicated data

Data at the Subscriber that has been received from a Publisher.

replication

A process that copies and distributes data and database objects from one database to another and then synchronizes
information between databases for consistency.

Replication Conflict Viewer

Allows users to view and resolve conflicts that occurred during the merge replication process and to review the manner in
which conflicts have been resolved.

Replication Monitor

Allows users to view and manage replication agents responsible for various replication tasks and to troubleshoot potential
problems at the Distributor.

replication scripting

The generation of .sql scripts that can be used to configure and disable replication.

replication topology

Defines the relationship between servers and the copies of data and clarifies the logic that determines how data flows
between servers.

repository

The storage container for the meta data used by Analysis Services. Meta data is stored in tables in a relational database and
is used to define the parameters and properties of Analysis server objects.

repository

A database containing information models that, in conjunction with the executable software, manage the database. The
term can also refer to an installation of Meta Data Services.

repository engine

Object-oriented software that provides management support for and customer access to a repository database.

repository object

A COM object that represents a data construct stored in a repository type library.

Repository SQL schema

A set of standard tables used by the repository engine to manage all repository objects, relationships, and collections.
Repository SQL schema maps information model elements to SQL schema elements.

Repository Type Information Model (RTIM)

A core object model that represents repository type definitions for Meta Data Services. This object model is composed of
abstract classes upon which instances of information models are based.

republish

When a Subscriber publishes data received from a Publisher to another Subscriber.

republisher

A Subscriber that publishes data that it has received from a Publisher.

resolution strategy

A set of criteria that the repository engine evaluates sequentially when selecting an object, where multiple versions exist
and version information is unspecified in the calling program.

restatement

An English query, returned by the English Query engine, that is a check on the query entered by the end user. Restatements
give end users a check that the English Query engine interpreted their question correctly. If the restatement is accurate, the
correct SQL statements will be generated, and thus the returned answer will be valid.

result

In English Query, an English answer to a question that has been posed to an English Query application.

result set

The set of rows returned from a SELECT statement. The format of the rows in the result set is defined by the column-list of
the SELECT statement.

return parameters

A legacy term for stored procedure output parameters, used in the Open Data Services and DB-Library APIs.

reusable bookmark

A bookmark that can be consumed from a rowset for a given table and used on a different rowset of the same table to
position on a corresponding row.

revoke

Removes a previously granted or denied permission from a user account, role, or group in the current database.

RI

See definition for: referential integrity (RI)

right outer join

A type of outer join in which all rows in the right-most table in the JOIN clause are included. When rows in the right table
are not matched in the left table, all result set columns that come from the left table are assigned a value of NULL.

ROLAP

See definition for: relational OLAP (ROLAP)

role

A SQL Server security account that is a collection of other security accounts that can be treated as a single unit when
managing permissions. A role can contain SQL Server logins, other roles, and Windows logins or groups.

role

In Analysis Services, a role uses Windows security accounts to limit scope of access and permissions when users access
databases, cubes, dimensions, and data mining models.

See also: rule

roll back

To remove the updates performed by one or more partially completed transactions. Rollbacks are required to restore the
integrity of a database after an application, database, or system failure.

See also: commit

roll forward

To apply all the completed transactions from a database or log backup in order to recover a database to a point in time or
the point of failure (for example, after events such as the loss of a disk).

root form

The simplest form of a word. For example, the root form of generating is generate. For other verbs, the present, infinitive
form should be used when defining dictionary entries in English Query (use run, not ran or runs). For nouns, use the
singular, not the plural form as the base word (animal, not animals).

row

In an SQL table, the collection of elements that form a horizontal line in the table. Each row in the table represents a single

occurrence of the object modeled by the table and stores the values for all the attributes of that object. For example, in the
Northwind sample database, the Employees table models the employees of the Northwind Traders Company. The first
row in the table records all the information (for example, name and title) about the employee who has employee ID 1.

See also: column

row aggregate function

A function, which generates summary values that appear as additional rows in the query results (unlike aggregate function
results that appear as new columns). It allows you to see detail and summary rows in one set of results. Row aggregate
functions (SUM, AVG, MIN, MAX, and COUNT) are used in a SELECT statement with the COMPUTE clause.

row filter

Specifies a subset of rows from a table to be published and when specific rows need to be propagated to Subscribers.

row lock

A lock on a single row in a table.

rowset

The OLE DB object used to contain a result set. It also exhibits cursor behavior depending on the rowset properties set by
an application.

RTIM

See definition for: Repository Type Information Model (RTIM)

rule

A database object that is bound to columns or user-defined data types, and specifies which data values are acceptable in a
column. CHECK constraints provide the same functionality and are preferred because they are in the SQL-92 standard.

rule

In Analysis Services, a rule specifies restrictions such as Unrestricted, Fully Restricted, or Custom for security read and
read/write role permissions.

See also: role

S
sample data

Artificially generated data presented instead of actual data when a cube is queried before it has been processed. Sample
data enables you to view the effects of structure changes while modifying a cube.

savepoint

A marker that allows an application to roll back part of a transaction if a minor error is encountered. The application must
still commit or roll back the full transaction when it is complete.

scalar aggregate

An aggregate function, such as MIN(), MAX(), or AVG(), that is specified in a SELECT statement column list that contains
only aggregate functions. When the column list contains only aggregate functions, then the result set has only one row
giving the aggregate values calculated from the source rows that match the WHERE clause predicates.

scheduled backup

An automatic backup accomplished by SQL Server Agent when defined and scheduled as a job.

schema

In the SQL-92 standard, a collection of database objects that are owned by a single user and form a single namespace. A
namespace is a set of objects that cannot have duplicate names. For example, two tables can have the same name only if
they are in separate schemas; no two tables in the same schema can have the same name. In Transact-SQL, much of the
functionality associated with schemas is implemented by database user IDs. In database tools, schema also refers to the
catalog information that describes the objects in a schema or database. In Analysis Services, a schema is a description of
multidimensional objects such as cubes and dimensions. In XML View Mapper, a schema is a description of XML elements
and database definitions that can be mapped to create a mapping schema.

schema rowset

A special OLE DB or Analysis Services rowset that reports catalog information for objects in databases or multidimensional
cubes. For example, the OLE DB schema rowset DBSCHEMA_COLUMNS describes columns in tables, and the Analysis
Services MDSCHEMA_MEASURES schema rowset describes the measures in a cube.

script

A collection of Transact-SQL statements used to perform an operation. Transact-SQL scripts are stored as files, usually with
the .sql extension.

scroll

The ability to move around a cursor in directions other than forward-only. Users can move up and down the cursor.

search condition

In a WHERE or HAVING clause, predicates that specify the conditions that the source rows must meet to be included in the
SQL statement. For example, the statement SELECT * FROM Employees WHERE Title = 'Sales Representative' returns only
those rows that match the search condition: Title = 'Sales Representative'.

Security Identifier (SID)

A unique value that identifies a user who is logged on to the security system. SIDs can identify either one user or a group
of users.

segmentation

A data mining technique that analyzes data to discover mutually exclusive collections of records that share similar
attributes sets. A segmentation algorithm can use unsupervised learning techniques such as clustering or supervised
learning for a specific prediction field.

See also: clustering

SELECT

The Transact-SQL statement used to return data to an application or another Transact-SQL statement, or to populate a
cursor. The SELECT statement returns a tabular result set consisting of data that is typically extracted from one or more
tables. The result set contains only data from rows that match the search conditions specified in WHERE or HAVING
clauses.

SELECT

In Analysis Services, the Multidimensional Expressions (MDX) statement used to query cubes and return recordsets of
multidimensional data.

select list

The SELECT statement clause that defines the columns of the result set returned by the statement. The select list is a
comma-separated list of expressions, such as column names, functions, or constants.

Select query

A query that returns rows into a result set from one or more tables. A Select query can contain specifications for those
columns to return, the rows to select, the order to put the rows in, and how to group (summarize) information.

self-join

A join in which records from a table are combined with other records from the same table when there are matching values
in the joined fields. A self-join can be an inner join or an outer join. In database diagrams, a self-join is called a reflexive
relationship.

semantic object

An object that can be represented by a database object or other real-world object. For example, an entity and a relationship
are semantic objects.

semiadditive measure

A measure that can be summed along one or more, but not all, dimensions in a cube. For example, a quantity-on-hand
measure of inventory can be summed along the geography dimension to produce a total quantity on hand for all
warehouses, but it cannot be summed along the time dimension because the measure specifies snapshot quantities
periodically in time.

sensitive cursor

A cursor that can reflect data modifications made to underlying data by other users while the cursor is open. Updates,
deletes, and inserts made by other users are reflected in the sensitive cursor. Sensitive cursors are typically used in
Transact-SQL batches, stored procedures, and triggers by omitting the INSENSITIVE keyword on the DECLARE CURSOR
statement.

sequence

See definition for: identity column

sequenced collection

A collection of destination objects of a sequenced relationship object.

See also: sequenced relationship

sequenced relationship

A relationship in a repository that specifies explicit positions for each destination object within the collection of destination
objects.

See also: relationship object, origin object, sequenced collection

serializable

The highest transaction isolation level. Serializable transactions lock all rows they read or modify to ensure the transaction
is completely isolated from other tasks. This guarantees that a series of serializable transactions will always produce the
same results if run in the same sequence.

server cursor

A cursor implemented on the server. The cursor itself is built at the server, and only the rows fetched by an application are
sent to the client.

See also: API server cursor

server name

A name that uniquely identifies a server computer on a network. SQL Server applications can connect to a default instance
of SQL Server by specifying only the server name. SQL Server applications must specify both the server name and instance
name when connecting to a named instance on a server.

session

In English Query, a sequence of operations performed by the English Query engine. A session begins when a user logs on
and ends when the user logs off. All operations during a session form one transaction scope and are subject to
permissions determined by the logon username and password.

Setup initialization file

A text file, using the Windows .ini file format, that stores configuration information allowing SQL Server to be installed
without a user having to be present to respond to prompts from the Setup program.

severity level

A number indicating the relative significance of an error generated by the SQL Server database engine. Values range from
informational (1) to severe (25).

shared dimension

A dimension created within a database that can be used by any cube in the database.

See also: private dimension

shared lock

A lock created by nonupdate (read) operations. Other users can read the data concurrently, but no transaction can acquire
an exclusive lock on the data until all the shared locks have been released.

Showplan

A report showing the execution plan for an SQL statement. SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL produce
textual showplan output. SQL Query Analyzer and SQL Server Enterprise Manager can display showplan information as a
graphical tree.

sibling

A member in a dimension hierarchy that is a child of the same parent as a specified member. For example, in a Time
dimension with Year and Month levels, the members January 1997 and February 1997 are siblings.

See also: child, descendant, parent, ancestor

SID

See definition for: Security Identifier (SID)

single-user mode

A state in which only one user can access a resource. Both SQL Server instances and individual databases can be put into
single-user mode.

slice

A subset of the data in a cube, specified by limiting one or more dimensions by members of the dimension. For example,
facts for a particular year constitute a slice of multiyear data.

See also: axis

smalldatetime data type

Date and time data from January 1, 1900, through June 6, 2079, with an accuracy of one minute.

smallint data type

SQL Server system integer data from -2^15 (-32,768) through 2^15 - 1 (32,767).

smallmoney data type

A SQL Server system data type that stores monetary values from -214,748.3648 through +214,748.3647, with accuracy to
a ten-thousandth of a monetary unit. Storage size is 4 bytes. When smallmoney values are displayed, they are rounded
up two places.

Snapshot Agent

Prepares snapshot files containing schema and data of published tables, stores the files in the snapshot folder, and inserts
synchronization jobs in the publication database.

Snapshot Agent utility

Configures and triggers the Snapshot Agent, which prepares snapshot files containing schema and data of published
tables and database objects.

snapshot cursor

See definition for: static cursor

snapshot replication

A type of replication that distributes data exactly as it appears at a specific moment in time and does not monitor for
modifications made to the data.

See also: merge replication, transactional replication

snowflake schema

An extension of a star schema such that one or more dimensions are defined by multiple tables. In a snowflake schema,
only primary dimension tables are joined to the fact table. Additional dimension tables are joined to primary dimension
tables.

See also: primary dimension table, star schema

solve order

The order of evaluation (from highest to lowest solve order) and calculation (from lowest to highest solve order) for
calculated members, custom members, custom rollup formulas, and calculated cells in a single calculation pass of a
multidimensional cube. Solve order is used to determine formula precedence when calculating values for cells in
multidimensional cubes, but only within a single calculation pass.

See also: pass order, calculation subcube, calculation pass, calculation condition, calculation formula

sort order

The set of rules in a collation that define how characters are evaluated in comparison operations and the sequence in
which they are sorted.

source and target

A browsing technique in which a source object is used to retrieve its target object or objects through their relationship.

source cube

The cube on which a linked cube is based.

See also: linked cube

source database

See definition for: publication database

source database

In data warehousing, the database from which data is extracted for use in the data warehouse.

source object

The single object to which all objects in a particular collection are connected by way of relationships that are all of the same
relationship type. For destination collections, the source object is the destination object. For origin collections, the source
object is the origin object.

source partition

An Analysis Services partition that is merged into another and is deleted automatically at the end of the merger process.

See also: target partition

sparsity

The relative percentage of a multidimensional structure's cells that do not contain data. Analysis Services stores only cells
that contain data. A sparse cube requires less storage than a dense cube of identical structure design.

See also: data explosion, density

SQL

See definition for: Structured Query Language (SQL)

SQL collation

A set of SQL Server 2000 collations whose characteristics match those of commonly-used code page and sort order
combinations from earlier versions of SQL Server. SQL collations are compatibility features that let sites choose collations
that match the behavior of their earlier systems.

See also: collation

SQL database

A database based on Structured Query Language (SQL).

SQL expression

Any combination of operators, constants, literal values, functions, and names of tables and fields that evaluates to a single
value. For example, use expressions to define calculated fields in queries.

SQL Mail

A component of SQL Server that allows SQL Server to send and receive mail messages through the built-in Windows NT
or Windows 2000 Messaging Application Programming Interface (MAPI). A mail message can consist of short text strings,
the output from a query, or an attached file.

SQL query

An SQL statement, such as SELECT, INSERT, UPDATE, DELETE, or CREATE TABLE.

SQL Server Authentication

One of two mechanisms for validating attempts to connect to instances of SQL Server. Users must specify a SQL Server
login ID and password when they connect. The SQL Server instance ensures the login ID and password combination are
valid before allowing the connection to succeed. Windows authentication is the preferred authentication mechanism.

See also: authentication, Windows Authentication

SQL Server Event Forwarding Server

A central instance of SQL Server that manages SQL Server Agent events forwarded to it by other instances. Enables central
management of SQL Server events.

SQL Server login

An account stored in SQL Server that allows users to connect to SQL Server.

SQL Server role

See definition for: role

SQL Server user

See definition for: user (account)

SQL statement

An SQL or Transact-SQL command, such as SELECT or DELETE, that performs some action on data.

SQL-92

The version of the SQL standard published in 1992. The international standard is ISO/IEC 9075:1992 Database Language
SQL. The American National Standards Institute (ANSI) also published a corresponding standard (Data Language SQL
X3.135-1192), so SQL-92 is sometimes referred to as ANSI SQL in the United States.

sql_variant data type

Data type that stores values of various SQL Server-supported data types except text , ntext , timestamp , and sql_variant
.

standard security

See definition for: SQL Server Authentication

star join

A join between a fact table (typically a large fact table) and at least two dimension tables. The fact table is joined with each
dimension table on a dimension key. SQL Server considers special index manipulation strategies on these queries to
minimize access to the fact table.

An example of a schema participating in a star join query could be a sales table, the fact table (containing millions of rows),
a product table, (containing the description of several hundred products), and a store table (containing several dozen store
names). In this example, the product and store tables are dimension tables. A query for selecting sales data for a small set
of stores and a subset of products restricted by attributes not present in the sales database is an ideal candidate for the star
query optimization.

See also: fact table

star schema

A relational database structure in which data is maintained in a single fact table at the center of the schema with additional
dimension data stored in dimension tables. Each dimension table is directly related to and usually joined to the fact table
by a key column. Star schemas are used in data warehouses.

See also: denormalize, fact table, snowflake schema

statement permission

An attribute that controls that controls whether a user can execute CREATE or BACKUP statements.

static cursor

A cursor that shows the result set exactly as it was at the time the cursor was opened. Static cursors do not reflect updates,
deletes, or inserts made to underlying data while the cursor is open. They are sometimes called snapshot cursors.

static SQL statements

In Embedded SQL for C, an SQL statement that is built at the time the application is compiled. It is created as a stored
procedure when the application is compiled, and the stored procedure is executed when the application is run.

step object

A Data Transformation Services (DTS) object that coordinates the flow of control and execution of tasks in a DTS package.
A task that does not have an associated step object is never executed.

store-and-forward database

See definition for: distribution database

stored procedure

A precompiled collection of Transact-SQL statements stored under a name and processed as a unit. SQL Server supplies
stored procedures for managing SQL Server and displaying information about databases and users. SQL Server-supplied
stored procedures are called system stored procedures.

string

A set of contiguous bytes that contain a single character-based or binary data value. In character strings, each byte, or pair
of bytes, represents a single alphabetic letter, special character, or number. In binary strings, the entire value is considered
to be a single stream of bits that do not have any inherent pattern. For example, the constant 'I am 32.' is an 8 byte
character string, while the constant 0x0205efa3 is a 4 byte binary string.

string functions

Functions that perform operations on character or binary strings. Built-in string functions return values commonly needed
for operations on character data.

Structured Query Language (SQL)

A language used to insert, retrieve, modify, and delete data in a relational database. SQL also contains statements for
defining and administering the objects in a database. SQL is the language supported by most relational databases, and is
the subject of standards published by the International Standards Organization (ISO) and the American National Standards
Institute (ANSI). SQL Server 2000 uses a version of the SQL language called Transact-SQL.

structured storage file

See definition for: COM-structured storage file

subject

A basic grammatical division of a sentence. The subject is a noun or noun clause about which something is asserted or
asked in the predicate, which it usually precedes. For example, in the sentence "The employee placed the order," the word
employee is the subject of the sentence.

subquery

A SELECT statement nested inside another SELECT, INSERT, UPDATE, or DELETE statement, or inside another subquery.

subscribe

To request data from a Publisher.

Subscriber

A server that receives copies of published data.

subscribing server

An Analysis server that stores a linked cube.

See also: publishing server, linked cube

subscription

An order that defines what data will be published, when, and to what Subscriber.

subscription database

A database at the Subscriber that receives data and database objects published by a Publisher.

subset

A selection of tables and the relationship lines between them that is part of a larger database diagram. This selection can
be copied to a new database diagram. This is called subsetting the diagram.

subset phrasing

A way of expressing a relationship in English in which one entity or word is a subset of another entity. For example, in the
sentence "Some mountains are volcanoes", volcanoes are a subset of mountains.

superlative form

A form of an adverb or adjective that refers to a comparison or denotes the greatest degree. Shorter adjectives and some
adverbs typically form their superlative degree by adding -est, as youngest or strongest.

synchronization

In replication, the process of maintaining the same schema and data at a Publisher and at a Subscriber.

See also: initial snapshot

synonym

A word that means the same thing as another word. For example, workers can be a synonym for employees .

system administrator

The person or group of people responsible for managing an instance of SQL Server. System administrators have full
permissions to perform all actions in an instance of SQL Server. System administrators are either members of the
sysadmin fixed server role, or log in using the sa login ID.

system catalog

A set of system tables that describe all the features of an instance of SQL Server. The system catalog records meta data
such as the definitions of all users, all databases, all objects in each database, and system configuration information such as
server and database option settings.

See also: database catalog

system databases

A set of four databases present in all instances of SQL Server that are used to store system information:

The master database stores all instance-level meta data, and records the location of all other databases.

The tempdb database stores transient objects that only exist for the length of a single statement or connection, such as
worktables and temporary tables or stored procedures.

The model database is used as a template for creating all user databases.

The msdb database is used by the SQL Server Agent to record information on jobs, alerts, and backup histories.

See also: user database

system functions

A set of built-in functions that perform operations on and return the information about values, objects, and settings in SQL
Server.

system stored procedures

A set of SQL Server-supplied stored procedures that can be used for actions such as retrieving information from the
system catalog or performing administration tasks.

system tables

Built-in tables that form the system catalog for SQL Server. System tables store all the meta data for an instance of SQL
Server, including configuration information and definitions of all the databases and database objects in the instance. Users
should not directly modify any system table.

T
table

A two-dimensional object, consisting of rows and columns, used to store data in a relational database. Each table stores
information about one of the types of objects modeled by the database. For example, an education database would have
one table for teachers, a second for students, and a third for classes.

The columns of a table represent an attribute of the modeled object (for example, first name, last name, and address). Each

row represents one occurrence of the modeled object. For example, one row in the Class table would record the
information about an Algebra 1 class taught at 9:00 A.M. and another would record the information about a World History
class taught at 10:00 A.M.

table data type

A special data type used to store a result set for later processing.

table lock

A lock on a table including all data and indexes.

table scan

A data retrieval operation where the database engine must read all the pages in a table to find the rows that qualify for a
query.

table-level constraint

Constraints that allow various forms of data integrity to be defined on one column (column-level constraint) or several
columns (table-level constraints) when the table is defined or altered. Constraints support domain integrity, entity integrity,
and referential integrity, as well as user-defined integrity.

tabular data stream (TDS)

The SQL Server internal client/server data transfer protocol. TDS allows client and server products to communicate
regardless of operating-system platform, server release, or network transport.

tape backup

A backup operation to any tape device supported by Windows NT 4.0 and Windows 2000. If you are creating a tape
backup file, you must first install the tape device by using Windows NT 4.0 and Windows 2000. The tape device must be
physically attached to the SQL Server you are backing up.

target object

See definition for: source and target

target partition

An Analysis Services partition into which another is merged and which contains the data of both partitions after the
merger.

See also: source partition

task

See definition for: job

task object

A Data Transformation Services (DTS) object that defines pieces of work to be performed as part of the data
transformation process. For example, a task can execute an SQL statement or move and transform heterogeneous data
from an OLE DB source to an OLE DB destination using the DTS Data Pump.

TDS

See definition for: tabular data stream (TDS)

tempdb database

The database that provides a storage area for temporary tables, temporary stored procedures, and other temporary
working storage needs.

temporary stored procedure

A procedure placed in the temporary database, tempdb , and erased at the end of the session.

temporary table

A table placed in the temporary database, tempdb , and erased at the end of the session.

text data type

A SQL Server system data type that specifies variable-length non-Unicode data with a maximum length of 2^31 -1
(2,147,483,647) characters. The text data type cannot be used for variables or parameters in stored procedures.

theta join

A join based on a comparison of scalar values (=, > , >= , < , <= , < >, !<, !>).

thread

An operating system component that allows the logic of multiuser applications to be performed as several separate,
asynchronous execution paths. The SQL Server relational database engine executes multiple threads in order to make use
of multiple processors. The use of threads also helps ensure that work is being performed for some user connections even
when other connections are blocked (for example, when waiting for a disk read or write operation to complete).

time dimension

A dimension that breaks time down into levels such as Year, Quarter, Month, and Day. In Analysis Services, a special type of
dimension created from a date/time column.

timestamp data type

A SQL Server system data type that is a monotomically increasing counter whose values are always unique within a
database.

tinyint data type

A SQL Server system data type that holds whole numbers from 0 through 255. Its storage size is 1 byte.

tool

A SQL Server application with a graphical user interface used to perform common tasks.

trace file

A file used by SQL Profiler to record monitored events.

training data set

A set of known and predictable data used to train a data mining model.

See also: mining model training

trait

An attribute that describes an entity. For example, blood-type is a trait of patients.

trait phrasing

A way of expressing a relationship in English description in which a minor entity describes a major entity. For example, in
the phrase, ages of customers, ages is the trait (or minor entity), and customers is the major entity.

Transact-SQL

The language containing the commands used to administer instances of SQL Server, create and manage all objects in an
instance of SQL Server, and to insert, retrieve, modify and delete all data in SQL Server tables. Transact-SQL is an extension
of the language defined in the SQL standards published by the International Standards Organization (ISO) and the
American National Standards Institute (ANSI).

Transact-SQL cursor

A server cursor defined by using the Transact-SQL DECLARE CURSOR syntax. Transact-SQL cursors are intended for use in
Transact-SQL batches, stored procedures, and triggers.

transaction

A group of database operations combined into a logical unit of work that is either wholly committed or rolled back. A
transaction is atomic, consistent, isolated, and durable.

transaction log

A database file in which all changes to the database are recorded. It is used by SQL Server during automatic recovery.

transaction processing

Data processing used to efficiently record business activities, called transactions, that are of interest to an organization (for
example, sales, orders for supplies, or money transfers). Typically, online transaction processing (OLTP) systems perform
large numbers of relatively small transactions.

transaction rollback

Rollback of a user-specified transaction to the last savepoint inside a transaction or to the beginning of a transaction.

transactional replication

A type of replication where an initial snapshot of data is applied at Subscribers, and then when data modifications are
made at the Publisher, the individual transactions are captured and propagated to Subscribers.

See also: merge replication, snapshot replication

transformable subscription

A subscription that allows data movement, transformation mapping, and filtering capabilities of Data Transformation
Services (DTS) during replication.

transformation

In data warehousing, the process of changing data extracted from source data systems into arrangements and formats
consistent with the schema of the data warehouse.

trigger

A stored procedure that executes when data in a specified table is modified. Triggers are often created to enforce
referential integrity or consistency among logically related data in different tables.

trusted connection

A Windows network connection that can be opened only by users who have been authenticated by the network. The users
are identified by their Windows login ID and do not have to enter a separate SQL Server login ID.

See also: Windows Authentication

tuple

An ordered collection of members from different dimensions. For example, (Boston, [1995]) is a tuple formed by members
of two dimensions: Geography and Time. A single member is a degenerated case of a tuple and can be used as an
expression without the parentheses.

See also: axis

two-phase commit

A process that ensures transactions that apply to more than one server are completed on all servers or on none.

U

U
unbalanced hierarchy

A dimension hierarchy in which leaf nodes differ in their distances from the root node. Component part and organization
chart hierarchies are usually unbalanced.

See also: ragged hierarchy

underlying table

A table referenced by a view, cursor, or stored procedure.

See also: base table

unenforced relationship

A link between tables that references the primary key in one table to a foreign key in another table, and which does not
check the referential integrity during INSERT and UPDATE transactions. An unenforced relationship is represented in a
database diagram by a dashed line.

Unicode

Unicode defines a set of letters, numbers, and symbols that SQL Server recognizes in the nchar , nvarchar , and ntext
data types. It is related to but separate from character sets. Unicode has more than 65,000 possible values compared to a
character set's 256, and takes twice as much space to store. Unicode includes characters for most languages.

Unicode collation

This acts as a sort order for Unicode data. It is a set of rules that determines how SQL Server compares, collates, and
presents Unicode data in response to database queries.

Unicode format

Data stored in a bulk copy data file using Unicode characters.

Union query

A query that combines two tables by performing the equivalent of appending one table onto the other.

UNIQUE constraints

Constraints that enforce entity integrity on a nonprimary key. UNIQUE constraints ensure that no duplicate values are
entered and that an index is created to enhance performance.

unique index

An index in which no two rows are permitted to have the same index value, thus prohibiting duplicate index or key values.
The system checks for duplicate key values when the index is created and checks each time data is added with an INSERT
or UPDATE statement.

uniqueidentifier data type

A data type containing a unique identification number stored as a 16-byte binary string used for storing a globally unique
identifier (GUID).

update

The act of modifying one or more data values in an existing row or rows, typically by using the UPDATE statement.
Sometimes, the term update refers to any data modification, including insert, update, and delete operations.

update lock

A lock placed on resources (such as row, page, table) that can be updated. Updated locks are used to prevent a common
form of deadlock that occurs when multiple sessions are locking resources and are potentially updating them later.

Update query

A query that changes the values in columns of one or more rows in a table.

update statistics

A process that recalculates information about the distribution of key values in specified indexes. These statistics are used
by the query optimizer to determine the most efficient way to execute a query.

user (account)

A SQL Server security account or identifier that represents a specific user in a database. Each user's Windows account or
SQL Server login is mapped to a user account in a database. Then, the appropriate permissions are granted to the user
account. Each user account can only access data with which it has been granted permission to work.

user database

A database created by a SQL Server user and used to store application data. Most users connecting to instances of SQL
Server reference user databases only, not system databases.

See also: system databases

user-defined data type

A data type, based on a SQL Server data type, created by the user for custom data storage. Rules and defaults can be
bound to user-defined data types (but not to system data types).

See also: base data type

user-defined event

A type of message, defined by a user, that can be traced by SQL Profiler or used to fire a custom alert. Typically, the user is
the system administrator.

user-defined function

In Analysis Services, a function defined in a Microsoft ActiveX library created using a Component Object Model (COM)
automation language such as Visual Basic or Visual C++. Such libraries can be registered with Analysis Services and their
functions called from Multidimensional Expressions (MDX) queries.

user-defined function

In SQL Server, a Transact-SQL function defined by a user. Functions encapsulate frequently performed logic in a named
entity that can be called by Transact-SQL statements instead of recoding the logic in each statement.

utility

A SQL Server application run from a command prompt to perform common tasks.

V
value expression

An expression in Multidimensional Expressions (MDX) that returns a value. Value expressions can operate on sets, tuples,
members, levels, numbers, or strings. For example, set value expressions operate on member, tuple, and set elements to
yield other sets.

varbinary data type

A SQL Server system data type that holds up to 8,000 bytes of variable-length binary data.

varchar data type

A SQL Server system data type that holds variable-length non-Unicode data with a maximum of 8,000 characters.

variables

Defined entities that are assigned values. A local variable is defined with a DECLARE@localvariable statement and assigned
an initial value within the statement batch where it is declared with either a SELECT or SET@localvariable statement.

verb

A part of speech denoting action, occurrence, or existence. A verb can consist of one or more words. For example, verbs
appear in italics in the following sentences:

Employees sell products.

Employees will be working late.

verb phrasing

A way of expressing a relationship in English in which one entity is the subject in an action, which is expressed with a verb.
For example, customers buy products. (Customers is the entity; buy is the verb, and products is the direct object.)

vertical filtering

Filtering columns from a table. When used as part of replication, the table article created contains only selected columns
from the publishing table.

See also: filtering, vertical partitioning

vertical partitioning

To segment a single table into multiple tables based on selected columns. Each of the multiple tables has the same number
of rows but fewer columns.

See also: partitioning, vertical filtering

very large dimension

In Analysis Services, a dimension that contains more than approximately five million members and less than approximately
ten million members. Special techniques are used to process very large dimensions.

See also: huge dimension

view

A database object that can be referenced the same way as a table in SQL statements. Views are defined using a SELECT
statement and are analogous to an object that contains the result set of this statement.

view generation

A repository engine feature that is used to create relational views based on classes, interfaces, and relationships in an
information model.

virtual cube

A logical cube based on one or more regular cubes or linked cubes.

virtual dimension

A logical dimension that is based on the values of properties of members of a physical dimension. For example, a virtual
dimension that contains the colors red, green, and blue can be based on the Color member property of a product
dimension.

See also: member property, dimension, member

visual total

A displayed, aggregated cell value for a dimension member that is consistent with the displayed cell values for its
displayed children. The visual total of a cell can vary from the actual total if some children of the cell are hidden. For
example, if the aggregate function is SUM, the displayed cell value for Spain is 1000, and the displayed cell value for
Portugal is 2000, the visual total for Iberia is 3000.

W
WHERE clause

The part of an SQL statement that specifies which records to retrieve.

wildcard characters

Characters, including underscore (_), percent (%), and brackets ([]), used with the LIKE keyword for pattern matching.

wildcard search

The use of placeholders (such as * or ?) to perform a search for data in a table or field. For example, searching the Last
Name field in a database using Smith*, could result in finding all records in which the last name starts with Smith,
including Smith, Smithson, Smithlin, and so forth.

Windows Authentication

One of two mechanisms for validating attempts to connect to instances of SQL Server. Users are identified by their
Windows user or group when they connect. Windows Authentication is the most secure mechanism for connecting to SQL
Server.

See also: SQL Server Authentication, trusted connection

Windows collation

A set of rules that determines how SQL Server sorts character data. It is specified by name in the Windows Control Panel
and in SQL Server 2000 during Setup.

word generation

Process of determining other forms of the word(s) specified. The Microsoft Search Service currently implements
inflectional word generation. For example, if the word swim is specified, SQL Server also searches for swim , swam , and
swimming .

write back

To update a cube cell value, member, or member property value.

See also: write enable

write enable

To change a cube or dimension so that users in cube roles with read/write access to the cube or dimension can change its
data.

See also: write back

write-ahead log

A transaction logging method in which the log is always written prior to the data.

X
There are no glossary terms that begin with this letter.

Y
There are no glossary terms that begin with this letter.

Z

Z
There are no glossary terms that begin with this letter.

How To (SQL Server 2000)

How to Install SQL Server 2000
This set of How To topics includes common procedures used in installing Microsoft® SQL Server™ 2000.

How To (SQL Server 2000)

How to install SQL Server 2000 (Setup)
 New Information - SQL Server 2000 SP3.

To install SQL Server 2000

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components.

If you are running Microsoft Windows® 95, click SQL Server 2000 Prerequisites, and then click Install Common
Controls Library Update.

3. Select Install Database Server and setup prepares the SQL Server Installation Wizard. At the Welcome screen, click Next.

4. In the Computer Name dialog box, Local Computer is the default option and the local computer name appears in the edit
box. Click Next.

For a remote installation, click Remote Computer. You can then type a computer name or click Browse to locate a remote
computer.

If a cluster is detected, Virtual server is the default option.

5. In the Installation Selection dialog box, click Create a new instance of SQL Server, or install Client Tools, and then
click Next.

6. Follow directions on the User Information, Software License Agreement and related screens.

7. In the Installation Definition dialog box, click Server and Client Tools, and then click Next.

8. In the Instance Name dialog box, if the Default check box is available, you can install either the default or a named
instance. If the Default check box is not available, a default instance has already been installed, and you can install only a
named instance.

To install the default instance, select the Default check box, and click Next.

To install a named instance, clear the Default check box, and type a new named instance in the Instance Name edit
box. Click Next.

9. In the Setup Type dialog box, click Typical or Minimum, and then click Next.

If you want to select components and subcomponents, change character set, network libraries or other settings, click
Custom, and then click Next.

10. In the Service Accounts dialog box, accept the default settings, enter your domain password, and then click Next.

For information about services account options, see Services Accounts.

11. In the Authentication Mode dialog box, accept the default setting, and click Next.

Security Note When possible, use Windows Authentication.

To use Mixed Mode, see Authentication Modes.

12. When you are finished specifying options, click Next in the Start Copying Files dialog box.

13. In the Choose Licensing Mode dialog box, make selections according to your license agreement, and click Continue to
begin the installation.

Click Help for information about licensing or see your system administrator.

14. In the Setup Complete dialog box, click Yes, I want to restart my computer now, and then click Finish.

See Also

How to add components to an instance of SQL Server 2000 (Setup)

How to create a case-sensitive instance of SQL Server (Setup)

How to install a named instance of SQL Server (Setup)

How To (SQL Server 2000)

How to install client tools only (Setup)
You can install client tools only using any SQL Server compact disc, on any supported operating system. For more information,
see How to install tools only from any compact disc.

To install client tools only for SQL Server 2000

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then click Next at the Welcome screen of the
SQL Server Installation Wizard.

3. In Computer Name dialog box, Local Computer is the default option, and the local computer name appears in the edit
box. Click Next.

4. In the Installation Selection dialog box, click Create a new instance of SQL Server, or install Client Tools, and then
click Next.

5. Follow the directions on the User Information, Software License Agreement, and related screens.

6. In the Installation Definition dialog box, click Client tools only, and then click Next.

7. In the Select Components dialog box, accept the defaults or select the components you want, and then click Next.

You can select an item in the Components list, such as Management Tools, and then select items from the related Sub-
Components list, such as Enterprise Manager. Click to select items you want to install; clear the check box of the items
you do not want to install.

For information about each component, select the item, and view the Description box.

8. In the Start Copying Files dialog box, click Next to complete the installation of the client tools.

How To (SQL Server 2000)

How to install tools only from any compact disc (Setup)
Note In this procedure, you can use the installation disc for any edition of SQL Server 2000 on a computer with any of the
operating systems supported by SQL Server 2000.

To install tools only from any compact disc

1. Insert a Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. This can be the installation disc for any edition
of SQL Server 2000, without regard to operating system support. If the compact disc does not autorun, double-click
Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then click Next at the Welcome screen of the
SQL Server Installation Wizard.

3. In Computer Name dialog box, Local Computer is the default option, and the local computer name appears in the edit
box. Click Next.

4. Follow the directions on the User Information, Software License Agreement, and related screens.

5. In the Select Components dialog box, accept the defaults or select the components you want, and then click Next.

You can select an item in the Components list, such as Management Tools, and then select items from the related Sub-
Components list, such as Enterprise Manager. Click to select items you want to install; clear the check box of the items
you do not want to install.

For information about each component, select the item, and view the Description box.

6. In the Start Copying Files dialog box, click Next to complete the installation of the client tools.

How To (SQL Server 2000)

How to install connectivity only (Setup)
The connectivity-only option installs Network Libraries and MDAC (Microsoft® Data Access Components).

To install connectivity only for SQL Server 2000

1. Insert the Microsoft SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components.

If you are running Microsoft Windows® 95, click Install Common Controls Library Update.

3. Select Install Database Server and setup prepares the SQL Server Installation Wizard. At the Welcome screen, click Next.

4. In the Computer Name dialog box, Local Computer is the default option, and the local computer name appears in the edit
box. Click Next.

5. In the Installation Selection dialog box, click Create a new instance of SQL Server, or install Client Tools, and then
click Next.

6. Follow the directions on the User Information, Software License Agreement and related screens.

7. In the Installation Definition dialog box, click Connectivity Only, and then click Next.

8. In the Start Copying Files dialog box, click Next to complete the installation.

How To (SQL Server 2000)

How to install a named instance of SQL Server 2000 (Setup)
 New Information - SQL Server 2000 SP3.

You can install a named instance of Microsoft® SQL Server™ 2000 the first time you run SQL Server Setup or later after the
default instance is installed. For each additional named instance you want to install, follow this procedure.

Note If you have a SQL Server 7.0 installation on your computer, the installation remains intact during the installation of a
named instance of SQL Server 2000. A default instance of SQL Server 2000 will overwrite a SQL Server 7.0 installation (as the
previous default installation), but a named instance does not overwrite SQL Server 7.0.

To install a named instance of SQL Server 2000

1. Insert the SQL Server 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-click
Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components.

If you are running Microsoft Windows® 95, Install Common Controls Library Update.

3. Select Install Database Server and setup prepares the SQL Server Installation Wizard. At the Welcome screen, click Next.
In the Computer Name dialog box, Local Computer is the default option, and the local computer name appears in the edit
box. Click Next.

4. In the Installation Selection dialog box, click Create a new instance of SQL Server, or install Client Tools, and then
click Next.

If this is the first SQL Server 2000 installation on your computer, follow the directions on the User Information,
Software License Agreement, and related screens.

If an installation of SQL Server 2000 exists on your computer, these screens are omitted.

5. In the Installation Definition dialog box, click Server and Client Tools, and then click Next.

6. In the Instance Name dialog box, clear the Default check box, and type a name for the new named instance, and then click
Next.

Note If you have an existing default installation (either SQL Server 7.0 or 2000), the Default check box is not available.

If you have typed an instance name, and later return to the Instance Name dialog box to change the name before
completing setup, you can do so. However, a workaround is necessary to edit the instance name box, which will be
unavailable after clicking Back to get to this dialog box. Select the Default checkbox, then immediately clear it, and you will
be able to edit the instance name.

For more information about instance names, click Help.

7. In the Setup Type dialog box, select Typical, Minimum, or Custom, and then click Next.

If you want to select subcomponents or change character set, network libraries, or other settings, click Custom.

8. In the Service Accounts dialog box, accept the default settings, enter your domain password, and then click Next.

For information about services account options, see Services Accounts.

9. In the Authentication Mode dialog box, accept the default setting, and click Next.

Security Note When possible, use Windows Authentication.

To use Mixed Mode authentication, see Authentication Modes.

10. When you are finished specifying options, click Next in the Start Copying Files dialog box.

11. In the Choose Licensing Mode dialog box, make selections according to your license agreement, and click Continue to
begin the installation.

Click Help for information about licensing, or see your system administrator.

12. In the Setup Complete dialog box, click Yes, I want to restart my computer now, and then click Finish.

See Also

Working with Named and Multiple Instances of SQL Server 2000

Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000

How To (SQL Server 2000)

How to upgrade a SQL Server 7.0 installation to SQL Server
2000 (Setup)
Caution This version upgrade procedure overwrites your Microsoft® SQL Server™ 7.0 installation; the installation no longer
exists on your computer. In addition, previous registry settings are removed. For example, after upgrading you will need to re-
register your servers.

To restore the SQL Server 7.0 installation, you must first uninstall SQL Server 2000, perform a complete reinstall of the SQL
Server 7.0 files, and then restore your backed-up SQL Server 7.0 databases.

To upgrade SQL Server 7.0 to SQL Server 2000

1. Insert the Microsoft SQL Server 2000 compact disc for the edition to which you want to upgrade into your CD-ROM drive. If
the compact disc does not autorun, double-click Autorun.exe in the root directory of the compact disc.

Note If you have purchased an edition of SQL Server with more features than your current SQL Server 7.0 installation, the
upgrade process will perform both the version and edition upgrade at the same time.

2. Select SQL Server 2000 Components, select Install Database Server, and then setup prepares the SQL Server Installation
Wizard. At the Welcome screen, click Next.

3. In Computer Name dialog box, Local Computer is the default option and the local computer name appears in the edit
box. Click Next.

4. In the Installation Selection dialog box, click Upgrade, remove, or add components to an existing instance of SQL
Server, and then click Next.

5. In the Instance Name dialog box, Default will be selected. Click Next.

Note When upgrading, SQL Server 7.0 automatically becomes the default instance of SQL Server 2000.

6. In the Existing Installation dialog box, click Upgrade your existing installation, and then click Next.

7. In the Upgrade dialog box, you are prompted as to whether you want to proceed with the requested upgrade. Click Yes,
upgrade my <text specific to the upgrade> to start the upgrade process, and then click Next. The upgrade runs until
finished.

8. In the Connect to Server dialog box, select an authentication mode, and then click Next.

If you are not sure which mode to use, accept the default: The Windows account information I use to log on to my
computer with (Windows).

9. In Start Copying Files dialog box, click Next.

10. In the Setup Complete dialog box, click Yes, I want to restart my computer now, and then click Finish.

See Also

Authentication Modes

How to perform an edition upgrade within SQL Server 2000 (Setup)

How To (SQL Server 2000)

How to upgrade databases online using the Copy Database
Wizard (Enterprise Manager)
To upgrade a SQL Server 7.0 database to a SQL Server 2000 database

1. Expand a server group, and then expand a server.

2. Right-click the server, point to All Tasks, and then click Copy Database Wizard.

3. Complete the steps in the wizard.

Important After upgrading databases from SQL Server 7.0, run sp_updatestats (update statistics) against the database on the
destination server to ensure optimal performance of the copied database.

See Also

Copy Database Wizard Help

Database Upgrade from SQL Server 7.0 (Copy Database Wizard)

How To (SQL Server 2000)

How to perform an edition upgrade within SQL Server 2000
(Setup)
To upgrade a SQL Server 2000 installation to a different edition of SQL Server 2000

1. Insert the Microsoft® SQL Server 2000™ compact disc for the edition you want to install into your CD-ROM drive. If the
compact disc does not autorun, double-click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then setup prepares the SQL Server Installation
Wizard. At the Welcome screen, click Next.

3. In Computer Name dialog box, select Local Computer or Remote computer.

4. In the Installation Selection dialog box, click Upgrade, Remove, or Add Components to an existing instance of SQL
Server, and then click Next.

5. In the Instance Name dialog box, click Next.

6. In the Existing Installation dialog box, click Upgrade your existing installation, and then click Next.

7. If Setup detects that you are doing an edition upgrade, the Upgrade dialog box appears. Click Yes, Upgrade my <text
specific to the upgrade> to upgrade the feature set of your current installation, and click Next.

8. After the upgrade is completed, you are prompted as to whether you want to install additional components. If you click Yes,
the Select Components dialog box appears. Accept the defaults or select the additional components you want to install,
and then click Next.

You can select an item in the Components list, and then select items from the related Sub-Components list. Click to select
items you want to install; clear the check box of the items you do not want to install.

9. When you are finished specifying options, in the Start Copying Files dialog box, click Next.

10. In the Setup Complete dialog box, click Yes, I want to restart my computer now, and then click Finish to complete the
edition upgrade.

See Also

Upgrading an Existing Installation of SQL Server

How To (SQL Server 2000)

How to uninstall an existing installation of SQL Server (Setup)
To uninstall an existing installation of SQL Server 7.0 or SQL Server 2000 (default or named instance)

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then setup prepares the SQL Server Installation
Wizard. At the Welcome screen, click Next.

3. In Computer Name dialog box, select Local Computer or Remote computer.

4. In the Installation Selection dialog box, click Upgrade, Remove, or Add Components to an existing instance of SQL
Server, and then click Next.

5. In the Instance Name dialog box, Default is selected if you have the Default instance installed. If you want to uninstall a
named instance, select it from the Instance Name list box, and then click Next.

6. In the Existing Installation dialog box, click Uninstall your existing installation, and then click Next.

7. Setup removes the selected installation. In the Uninstalling dialog box, click Next, and then in the Setup Complete dialog
box, click Finish.

How To (SQL Server 2000)

How to test an installation of SQL Server 2000 (Command
Prompt)
To test the installation

1. Start Microsoft® SQL Server™ 2000 by entering from a command prompt:

For the default instance, use:

net start mssqlserver

For a named instance, include the instance name, for example:

net start MSSQL$Instance1

2. Connect to SQL Server by entering:

For the default instance, use:

osql /Usa /P [sapassword]

For a named instance, include both the server and instance name, for example:

osql /Usa /P [sapassword] /S Machine1\Instance1

When osql connects, this osql prompt appears:

1>

If osql cannot connect, an ODBC error is returned.

3. Enter a simple query, such as:

SELECT @@SERVERNAME
GO

The osql utility returns the server name:

1> SELECT @@SERVERNAME
2> GO

WOLFHOUND

(1 row affected)
1>

4. Verify that you have checked a SQL Server 2000 server by entering:

SELECT @@VERSION
GO

The osql utility returns the version information.

5. Quit the osql utility by entering:

Exit

How To (SQL Server 2000)

How to change SQL Server services login account information
(Windows NT)
To change SQL Server services login account information (Windows NT)

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click Services.

3. In the Services dialog box, double-click MSSQLSERVER in the Service list.

Note For named instances, the instance name is included. For example, to modify the user account for Instance1, you
double-click MSSQL$Instance1.

4. In the Service dialog box, under Log on as, select This account, and then enter the changed account information.

5. Repeat Steps 3 and 4 above for SQL Server Agent. In the Services dialog box, double-click SQLSERVERAGENT (or
SQLAgent$Instance1 for a named instance), and then enter the changed account information in the Service dialog box.

6. Start SQL Server Enterprise Manager, and change the user account information there, as well, for both SQL Server and SQL
Server Agent For more information see How to change SQL Server services login account information (Enterprise Manager).

How To (SQL Server 2000)

How to change SQL Server services login account information
(Windows)
To change SQL Server services login account information (Windows 2000)

1. On the Start menu, point to Programs/Administrative Tools, and then click Services.

2. Right-click MSSQLServer, and then click Properties.

3. On the Log On tab, enter and confirm the new password, and then restart services using the SQL Server Service Manager.

4. Repeat the password reset for SQLServerAgent and other services.

5. Start SQL Server Enterprise Manager, and change user account information there, as well, for both SQL Server and SQL
Server Agent For more information, see How to change SQL Server services login account information (Enterprise
Manager).

How To (SQL Server 2000)

How to change SQL Server services login account information
(Enterprise Manager)
Note If you are running Microsoft® Windows® 2000 and want to use the Windows 2000 Encrypted File System to encrypt any
Microsoft SQL Server™ files, you must unencrypt the files before you can change the SQL Server service accounts. If you do not
unencrypt the files and then reset the SQL Server service accounts, you cannot unencrypt the files.

To change the MSSQLServer service login (Enterprise Manager)

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. In the SQL Server Properties dialog box, click the Security tab.

4. In the Startup service account box, the option for This Account is selected, indicating that the SQL Server service account
is a Windows domain account. Enter changes as necessary for the account and password.

To change the SQLServerAgent service login (Enterprise Manager)

Note You can change the SQLServerAgent service account to a non Microsoft Windows NT® 4.0 administrator account.
However, the Windows NT 4.0 account must be a member of the sysadmin fixed server role to run SQL Server Agent.

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, and then click Properties.

4. In the SQL Server Agent Properties dialog box, click the General tab.

5. In the Service startup account box, enter the appropriate account and password.

See Also

Creating SQL Server Services User Accounts

Changing Passwords and User Accounts

How To (SQL Server 2000)

How to rebuild the registry (Setup)
To rebuild the registry

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then click Next at the Welcome screen of the
SQL Server Installation Wizard.

3. In the Computer Name dialog box, click Next.

4. In the Installation Selection dialog box, click Advanced options, and then in the Advanced Options dialog box, click
Registry Rebuild. Click Next.

5. A message appears informing you that Setup rebuilds the registry based on information you supply in the subsequent
screens.

Caution The setup options you enter must be the same choices that you entered during the initial installation. If you do not
know or are not sure of this information, do not use this registry rebuild process. Instead, you must uninstall and reinstall
SQL Server to restore the registry.

6. To prepare for the registry rebuild, enter the same information and options that you entered during the initial installation of
SQL Server in the setup screens as they appear. When you have finished, the registry rebuild will occur.

Note Rebuilding the registry includes re-copying external components such as MDAC and MS DTC.

How To (SQL Server 2000)

How to rebuild the master database (Rebuild Master utility)
To rebuild the master database

1. Shutdown Microsoft® SQL Server™ 2000, and then run Rebuildm.exe. This is located in the Program Files\Microsoft SQL
Server\80\Tools\Binn directory.

2. In the Rebuild Master dialog box, click Browse.

3. In the Browse for Folder dialog box, select the \Data folder on the SQL Server 2000 compact disc or in the shared network
directory from which SQL Server 2000 was installed, and then click OK.

4. Click Settings. In the Collation Settings dialog box, verify or change settings used for the master database and all other
databases.

Initially, the default collation settings are shown, but these may not match the collation selected during setup. You can select
the same settings used during setup or select new collation settings. When done, click OK.

5. In the Rebuild Master dialog box, click Rebuild to start the process.

The Rebuild Master utility reinstalls the master database.

Note To continue, you may need to stop a server that is running.

See Also

Collation Settings in Setup

How To (SQL Server 2000)

How to perform a remote installation of SQL Server 2000
(Setup)
To perform a remote installation

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then click Next at the Welcome screen of the
SQL Server Installation Wizard.

3. In Computer Name dialog box, click Remote Computer. You can then type a computer name or click Browse to locate a
remote computer.

4. In the Installation Selection dialog box, click Create a new instance of SQL Server, or install Client Tools.

5. Follow the directions on the User Information, Software License Agreement, and related screens.

6. In the Remote Setup Information dialog box, enter password and other information. For more information, see Remote
Setup Information. After you finish defining options, click Next.

7. In the Installation Definition, Instance Name, Setup Type, and subsequent setup screens, select the options you want
for the remote installation.

SQL Server Setup creates the Setup.iss file in your local system folder with the options you have specified.

8. After Setup creates Setup.iss, the Setup Complete dialog box appears. Click Finish to start the remote installation process.

9. When the process is finished, click OK in the message box that appears. Reboot the remote computer before running the
remote instance.

How To (SQL Server 2000)

How to record an unattended installation file (Setup)
The Record Unattended Setup option allows you to simulate an installation and create an .iss file that can be used later for an
unattended installation of Microsoft® SQL Server™ 2000. SQL Server files are not installed in this process.

To create a file for an unattended installation

1. Insert the Microsoft SQL Server 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components, select Install Database Server, and then click Next at the Welcome screen of the
SQL Server Installation Wizard.

3. In the Computer Name dialog box, select the option you want, and click Next.

4. In the Installation Selection dialog box, click Advanced options, and then in the Advanced Options dialog box, click
Record Unattended .ISS file. Click Next.

5. In subsequent Setup screens, select the options you want for the unattended installation. After you finish selecting the
options, in the Setup Information screen, click Next.

6. In the Setup Complete screen, click Finish.

This message appears: "Setup has collected the information needed to create an unattended installation file (.iss) for use
with later unattended installations of SQL Server."

SQL Server Setup then creates the Setup.iss file in the %windir% location with the options you have specified.

To run the file, see How to run an unattended installation of SQL Server 2000 (Command Prompt).

See Also

Performing an Unattended Installation

How To (SQL Server 2000)

How to run an unattended installation of SQL Server 2000
(Command Prompt)
You can run an unattended installation by using sample batch files and setup initialization files included on the Microsoft® SQL
Server™ 2000 compact disc. Or, you can run the Setup program directly from the command prompt in the appropriate directory
for the edition of SQL Server you want to install, using arguments as needed.

To run an unattended installation using ready-made batch files

1. Locate the .bat and .iss files in the root directory of your SQL Server 2000 compact disc.

2. View the .bat and associated .iss files, and modify if necessary. For more information, see Creating a Specialized Setup File.

3. Run the appropriate batch and setup files from the command prompt:

For a standard unattended installation, run Sqlins.bat.

For a client-only unattended installation, run Sqlcli.bat.

For a custom unattended installation, run Sqlcst.bat.

To run an unattended installation directly from the command prompt

1. Run Setupsql.exe from the Setup directory in the appropriate architecture directory.

2. Use arguments as needed:

-f1 <initialization file path>
Selects an unattended setup initialization file.

start /wait command (with the -SMS option)
Returns control to the command prompt only after SQL Server Setup completes.

-s flag
Causes the Setup program to run in silent mode with no user interface.

For examples of command prompt options and arguments, see the sample .bat files on your SQL Server 2000 compact disc.

See Also

Performing an Unattended Installation

How to record an unattended installation file (Setup)

How To (SQL Server 2000)

How to add components to an instance of SQL Server 2000
(Setup)
Note You cannot remove components by clearing checkboxes in the Select Components dialog box. If you need to remove
components from an instance of SQL Server, you must uninstall the instance.

To add components to an instance (default or named) of SQL Server 2000

1. Run SQL Server Setup, select SQL Server 2000 Components, select Install Database Server, and then click Next at the
Welcome screen of the SQL Server Installation Wizard.

2. In Computer Name dialog box, Local Computer is the default option and the local computer name appears in the edit
box. Click Next.

3. In the Installation Selection dialog box, click Upgrade, Remove, or Add Components to an existing instance of SQL
Server, and then click Next.

4. In the Instance Name dialog box, Default is selected if you have the Default instance installed. If you want to add
components to a named instance, select it from the Instance Name list, and then click Next.

5. In the Existing Installation dialog box, click Add Components to your existing installation, and then click Next.

6. In the Select Components dialog box, select a component from the Components list, and then select items from the
related Sub-Components list. Click to select items you want to add, and then click Next.

For information about each component, select the item, and view the Description box.

7. When you are finished specifying options, click Next in the Start Copying Files dialog box to add components to the
selected instance of SQL Server.

See Also

How to uninstall an existing installation of SQL Server (Setup)

How to access SQL Server Books Online for SQL Server 7.0

How To (SQL Server 2000)

How to install English Query (Setup)
To install English Query

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components.

3. On the Install Components screen, select Install English Query.

No further selections are necessary. SQL Server Setup installs English Query on your computer.

How To (SQL Server 2000)

How to install Analysis Services (Setup)
The following procedure is a shortened version of the steps to install Analysis Services. For a more complete installation
procedure and for related information, see Running Setup.

To install Analysis Services

1. Insert the Microsoft® SQL Server™ 2000 compact disc in your CD-ROM drive. If the compact disc does not autorun, double-
click Autorun.exe in the root directory of the compact disc.

2. Select SQL Server 2000 Components.

3. On the Install Components screen, select Install Analysis Services.

4. At the Welcome screen for Microsoft SQL Server 2000 Analysis Services, click Next.

5. Follow the directions on the User Information, Software License Agreement, and related screens.

6. In the Select Components dialog box, select or clear components as needed, and then click Next.

If you want to change the default location of the Analysis Services program files, click Browse at Destination Folder and
select a folder location.

7. In the Data Folder Location dialog box, accept or change the default location for data files, and then click Next.

8. In the Select Program Folder dialog box, accept or change the default settings, and then click Next.

SQL Server Setup installs Analysis Services on your computer.

How To (SQL Server 2000)

How to create a case-sensitive instance of SQL Server 2000
(Setup)

 New Information - SQL Server 2000 SP3.

To create a case-sensitive instance of SQL Server 2000

1. Run SQL Server Setup to install SQL Server 2000 Components, select Install Database Server, and then click Next at the
Welcome screen of the SQL Server Installation Wizard.

2. In Computer Name dialog box, Local Computer is the default option and the local computer name appears in the edit
box. Click Next.

3. In the Installation Selection dialog box, click click Create a new instance of SQL Server, or install Client Tools, and
then click Next.

4. Follow the directions on the User Information and related screens.

5. In the Installation Definition dialog box, click Server and Client Tools, and then click Next.

6. In the Instance Name dialog box:

To create a case-sensitive default instance, accept the Default check box and click Next.

To create a case-sensitive named instance, clear the Default check box and type an instance name.

7. In the Setup Type dialog box, click Custom, and click Next.

8. In the Select Components, Services Accounts, and Authentication Mode dialog boxes, change or accept the default
settings, and then click Next.

Security Note When possible, use Windows Authentication.

9. In the Collation Settings dialog box, you have two options:

To make a Windows Locale collation case-sensitive, select Collation designator and then select the correct collation
designator from the list. Clear the Binary check box, and then select the Case-sensitive check box.

To make a SQL collation case-sensitive, select SQL Collations, and then select the correct collation name.

For more information about collation options, click Help. When you finish setting the options, click Next.

10. In subsequent dialog boxes, change or accept the default settings, and then click Next.

11. When you are finished specifying options, click Next in the Start Copying Files dialog box.

12. In the Choose Licensing Mode dialog box, make selections according to your license agreement, and click Continue to
begin the installation.

13. Click Help for information about licensing, or see your system administrator.

See Also

Collation Settings in Setup

How To (SQL Server 2000)

How to set client code pages
To set client code pages under the Windows NT, Windows 98, or Windows 2000 operating systems

Use the Regional Settings application in Control Panel as described in the Microsoft® Windows NT®, Microsoft Windows®
98, or Microsoft Windows 2000 documentation.

How To (SQL Server 2000)

How to switch from SQL Server 6.5 to SQL Server 2000
(Command Prompt)
To switch from SQL Server 6.5 to SQL Server 2000

Run Vswitch.exe.

-SwitchTo <65|80>
Determines which version of Microsoft® SQL Server™ 2000 to activate.

-Silent <0|1>
Determines if any user interface or messages are displayed. If 1 is specified, a user interface or messages are not displayed. The
default is 0.

Examples

c:\...\vswitch -SwitchTo 80 -Silent 1

How To (SQL Server 2000)

How to switch from SQL Server 6.5 to SQL Server 2000
(Windows)
To switch from SQL Server 6.5 to SQL Server 2000

On the Start menu, point to Programs/Microsoft SQL Server-Switch, and then click Microsoft SQL Server 2000.

SQL Server Setup switches from Microsoft® SQL Server™ 2000 version 6.5 to SQL Server 2000.

How To (SQL Server 2000)

How to remove SQL Server 2000 (Windows)
You can remove instances of Microsoft® SQL Server™ 2000 using Control Panel. Each named instance must be removed
separately. When upgrading or maintaining instances, you can remove SQL Server using the Uninstall option in Setup. For more
information, see How to uninstall an existing installation (Setup).

You cannot remove a selected component of SQL Server 2000 after it is installed. To remove components, you must remove the
entire instance.

To remove a named instance of SQL Server 2000

1. In Control Panel, click Add/Remove programs.

2. Select a name of an instance of SQL Server 2000, and click Remove.

To remove all instances of SQL Server 2000

1. In Control Panel, click Add/Remove programs.

2. Repeat the removal process for each instance of SQL Server 2000 that is installed.

SQL Server 2000 is uninstalled, but some files may remain. Manually delete directories if any files related to SQL Server 2000 still
exist.

See Also

Directories and File Locations

How To (SQL Server 2000)

How To Upgrade from SQL Server 6.5
The How To topics in this section are specific to the process of converting data from Microsoft® SQL Server™ 6.5 to Microsoft
SQL Server 2000 using the SQL Server Upgrade Wizard.

Note To run the SQL Server Upgrade Wizard, you must have an instance of Microsoft SQL Server 2000 already installed on your
computer.

Considerations when upgrading from SQL Server 6.5:

During the upgrade process, the SQL Server 6.5 server is stopped and started while objects are scripted and data is
extracted. When the data transfer starts, only SQL Server 2000 is running, and it is not possible to access SQL Server 6.5.

If you are upgrading your existing SQL Server 6.5 server to a different computer that is running SQL Server 2000, both
computers should be configured to use a domain user name and password for the MSSQLServer service.

During this upgrade, user-defined messages created in SQL Server 6.5 using sp_addmessage are not converted to SQL
Server 2000. To retain these custom messages, manually copy the messages added in SQL Server 6.5 to your installation of
SQL Server 2000.

See Also

Troubleshooting the SQL Server Upgrade Wizard

Completing the SQL Server Upgrade Wizard

Upgrade Log Files

Upgrading to SQL Server 2000 FAQ

How To (SQL Server 2000)

How to change the size of tempdb in SQL Server 6.5 (ISQL/w)
How to change the size of tempdb in SQL Server 6.5 (ISQL/w)

To change the size of tempdb in SQL Server 6.5

1. On the Start menu, point to Programs/Microsoft SQL Server 6.5, and then click ISQL/w.

2. Enter the sa password, and then click Connect.

3. Execute a DISK INIT command to increase the size of the tempdb device to at least 25 MB.

4. Execute an ALTER DATABASE command to increase the size of the tempdb database to at least 25 MB.

Examples

--Increase the size of the tempdb device
DISK INIT name = 'tempdb1',physname = 'c:\mssql\data\tempdb1.DAT',vdevno = 100, size = 12800
GO
--Increase the size of tempdb
ALTER DATABASE tempdb ON tempdb1 = 25

How To (SQL Server 2000)

How to change to the current server name in the SQL Server 6.5
master database (ISQL/w)
How to change to the current server name in the SQL Server 6.5 master database (ISQL/w)

To change to the current server name in the SQL Server 6.5 master database

1. Start Microsoft® SQL Server™ in minimal configuration mode. In a command prompt window, from the \Mssql\Binn
directory, run:

sqlservr -f

2. On the Start menu, point to Programs /Microsoft SQL Server 6.5, and then click ISQL/w.

3. Enter the sa password, and then click Connect.

4. Execute SELECT @@SERVERNAME to retrieve the former server name.

5. Execute sp_dropserver to drop the former server.

6. Execute sp_addserver to add the current server.

7. Stop SQL Server. In the command prompt window, press Ctrl+C.

8. Restart SQL Server.

9. Execute SELECT @@SERVERNAME to verify the current server name.

Examples

--Start SQL Server in minimal configuration mode.
--Retrieve the former server name.
SELECT @@SERVERNAME
--Drop the server returned from the previous select.
sp_dropserver 'SERVER6X'
--Add the current server.
sp_addserver 'SERVER70', local
--Stop SQL Server.
--Restart SQL Server in minimal configuration mode.
--Verify the current server name.
SELECT @@SERVERNAME

How To (SQL Server 2000)

How to update the device file locations in the SQL Server 6.5
master database (ISQL/w)
How to update the device file locations in the SQL Server 6.5 master database (ISQL/w)

To update the device file locations in the SQL Server 6.5 master database

1. On the Start menu, point to Programs/Microsoft SQL Server 6.5, and then click ISQL/w.

2. Enter the sa password, and then click Connect.

3. Select from sysdevices in the master database to view the old device file locations.

4. Execute sp_configure to allow updates to the system tables, and then reconfigure with override.

5. Update the device file locations that have changed.

6. Execute sp_configure to disallow updates to the system tables, and then reconfigure with override.

Examples

--View the old device file locations
SELECT phyname FROM sysdevices

--Allow updates to the system tables
sp_configure 'allow updates',1
GO
RECONFIGURE WITH OVERRIDE
GO
--Update device file locations that have changed
UPDATE sysdevices
SET phyname = "E:\Data\HR\HR1.dat"
WHERE name = "HumanResources1"
GO
UPDATE sysdevices
SET phyname = "E:\Data\HR\HR1Log.dat"
WHERE name = "HumanResources1Log"
GO
--Disallow updates to the system tables
sp_configure 'allow updates',0
GO
RECONFIGURE WITH OVERRIDE
GO

How To (SQL Server 2000)

How to estimate the disk space required for an upgrade from
SQL Server version 6.5 to SQL Server 2000 (SQL Server Upgrade
Wizard)
How to estimate the disk space required for an upgrade from SQL Server version 6.5 to SQL Server 2000
(SQL Server Upgrade Wizard)

Note To run the SQL Server Upgrade Wizard, you must have an instance of Microsoft® SQL Server™ 2000 already installed on
your computer.

To estimate the disk space required for an upgrade

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then click
Next.

2. Select Named pipe; then click Next.

3. In Export server (6.5), in the Server name box, enter the name of the local or remote computer on which SQL Server 6.5
resides.

4. In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next.

Unless you have changed it already, the default system administrator password for SQL Server 2000 is blank. Although the
SQL Server 2000 default for the sa password is blank, to conform with best security practices, it should be changed to a
strong password at the first opportunity.

5. Include the databases to upgrade. Move any database not to include in the disk space estimation to the Exclude list, and then
click Next.

6. Select Use the default configuration or edit the default; then click Edit.

The SQL Server Upgrade Wizard layout utility appears, showing the proposed layout of the SQL Server 2000 data files.

7. Click Advanced.

8. Click an object in the Proposed database layout box to view details in the Object details box.

9. The Drive summary box shows the estimated size of all SQL Server 2000 data files and the free disk space left on all of the
local fixed disks. On the Options menu, select Freespace includes 6.5 files to view the free space that would exist if the
SQL Server 6.5 data files were deleted.

10. Click Accept to return to the Database Creation dialog box.

11. Click Cancel to quit the SQL Server Upgrade Wizard.

How To (SQL Server 2000)

How to edit the default database configuration (SQL Server
Upgrade Wizard)
How to edit the default database configuration (SQL Server Upgrade Wizard)

Note To run the SQL Server Upgrade Wizard, you must have an instance of Microsoft® SQL Server™ 2000 already installed on
your computer.

To edit the default database configuration

1. In the Database Creation dialog box of the SQL Server Upgrade Wizard, click Edit.

2. Click Advanced to view object details and drive summaries.

3. In the Proposed database layout box, double-click a database file.

4. Change any database file attributes, and then click OK.

5. View the changes to the drive summary.

6. When all changes have been made, click Accept to save the database configuration.

See Also

Proposed Database Layout

How To (SQL Server 2000)

How to perform a SQL Server version 6.5 to SQL Server 2000
upgrade using a direct pipeline (SQL Server Upgrade Wizard)
How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a direct pipeline (SQL Server
Upgrade Wizard)

Note To run the SQL Server Upgrade Wizard, you must have an instance of Microsoft® SQL Server™ 2000 already installed on
your computer.

To perform a SQL Server version 6.5 to SQL Server 2000 upgrade by named pipe

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then click
Next.

2. In the Data and Object Transfer screen, accept the default selections, including Named pipe, and then click Next.
Verification options are recommended, but not required. Click Help for information.

3. On the Logon screen, in the Server name box in the Export server (6.5) group box, enter the name of the local or remote
computer on which Microsoft SQL Server version 6.5 is installed.

In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next.

Unless you have changed it already, the default system administrator password for SQL Server 2000 is blank. Although the
SQL Server 2000 default for the sa password is blank, to conform with best security practices, it should be changed to a
strong password at the first opportunity.

For Import Server (2000), the server name is filled in. Enter the optional startup arguments, if you want. Click Help for
information. When you are finished setting options, click Next.

4. In the message box asking if you want to continue, click Yes if you are ready to upgrade. The SQL Server Upgrade Wizard
shuts down SQL Server 6.5 and starts SQL Server 2000.

5. In the Code Page Selection screen, accept or change the default settings, and then click Next.

6. In the Database Selection screen, include the databases to upgrade. Move any databases you do not want upgraded at this
time to the Exclude list, and then click Next.

Converting all databases is recommended.

7. In the Database Creation dialog box, select Use the default configuration or edit the default, and then click Next.

Click Edit to examine and make changes to the proposed disk configuration within the layout utility. In the Proposed
Database Layout box, make changes as needed. Click Advanced to view Object Details and Drive Summary. When you
are finished, click Accept to return to the SQL Server Upgrade Wizard.

8. In the System Configuration screen, in System objects to transfer, select the object types to transfer from SQL Server
6.5 to SQL Server 2000:

Server configuration

Login and remote login registrations and server configuration options relevant to SQL Server 2000 are transferred as
part of the version upgrade.

Replication settings

All articles, subscriptions and publications of each selected database, plus the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that SQL Server 2000 can schedule and run
those tasks in SQL Server Agent.

9. In the System Configuration screen, in Advanced settings, for ANSI Nulls, select:

Off, if ANSI nulls should not be used when stored procedures are created. This is the default.

On, if ANSI nulls should be used when stored procedures are created.

10. In Quoted identifiers, select one of these options, and then click Next:

Mixed (or don't know), if some of your objects were created with QUOTED_IDENTIFIER set to ON and others with it
set to OFF, or if you are not sure how they were created.

Off, if all objects should be compiled with QUOTED_IDENTIFIER set to OFF.

On, if all objects should be compiled with QUOTED_IDENTIFIER set to ON.

11. In the Completing the SQL Server Wizard screen, view the summary of choices you have made. Click View warnings
and choices in notepad to open a text version of the upgrade script. If all options are correct, click Finish.

The SQL Server Upgrade Script Interpreter screen appears, with information on the progress of the upgrade.

See Also

Order of Upgrade Using a Direct Pipeline or Tape Drive

How To (SQL Server 2000)

How to perform a SQL Server version 6.5 to SQL Server 2000
upgrade using a tape drive (SQL Server Upgrade Wizard)
How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server
Upgrade Wizard)

Note To run the SQL Server Upgrade Wizard, you must have an instance of Microsoft® SQL Server™ 2000 already installed on
your computer.

To perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then click
Next.

2. In the Data and Object Transfer screen, click Tape, and then click Next. Verification options are recommended, but not
required. Click Help for information.

3. On the Logon screen, in the Server name box in the Export server (6.5) group box, enter the name of the computer on
which Microsoft SQL Server version 6.5 is installed.

In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next.

Unless you have changed it already, the default system administrator password for SQL Server 2000 is blank. Although the
SQL Server 2000 default for the sa password is blank, to conform with best security practices, it should be changed to a
strong password at the first opportunity.

For Import Server (2000), the server name is filled in. Enter optional startup arguments, if you want. Click Help for
information. When you are finished setting options, click Next.

4. In the message box asking if you want to continue, click Yes if you are ready to upgrade. The SQL Server Upgrade Wizard
switches to the SQL Server 2000 server.

5. In the Code Page Selection screen, accept or change the default settings, and then click Next.

6. In the Database Selection screen, include the databases to upgrade. Move any database not to be upgraded at this time to
the Exclude list, and then click Next.

7. In Device for data transfer, specify the location of the tape drive.

8. In 6.5 device backup options, select Backup 6.5 devices before exporting data if you have not backed up the
databases already.

Prior to creating the SQL Server 2000 databases, the SQL Server Upgrade Wizard either prompts you to back up the SQL
Server 6.5 devices or copies the devices for you automatically.

9. Select Delete 6.5 devices before importing data if necessary due to lack of disk space, and then click Next.

After objects and data are exported, and before creating databases in SQL Server 2000, the SQL Server Upgrade Wizard
deletes the SQL Server 6.5 devices to reclaim disk space.

10. Select Use the default configuration or edit the default, and then click Next.

Click Edit to examine and make changes to the proposed disk configuration within the layout utility. In the Proposed
Database Layout box, make changes as needed. Click Advanced to view Object Details and Drive Summary. When you
are finished, click Accept to return to the SQL Server Upgrade Wizard.

11. In System objects to transfer, select the object types to transfer from SQL Server 6.5 to SQL Server 2000:

Server configuration

Login and remote login registrations and server configuration options relevant to SQL Server 2000 are transferred as
part of the version upgrade.

Replication settings

All articles, subscriptions, and publications of each selected database, plus the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that SQL Server 2000 can schedule and run
those tasks in SQL Server Agent.

12. In ANSI Nulls, select:

Off, if ANSI nulls should not be used when stored procedures are created. This is the default.

On, if ANSI nulls should be used when stored procedures are created.

13. In Quoted Identifiers, select one of these options, and then click Next:

Mixed (or don't know), if some of your objects were created with QUOTED_IDENTIFIER set to ON and others with it
set to OFF, or if you are not sure how they were created.

Off, if all objects should be compiled with QUOTED_IDENTIFIER set to OFF.

On, if all objects should be compiled with QUOTED_IDENTIFIER set to ON.

14. In the Completing the SQL Server Wizard screen, view the summary of choices you have made. Click View warnings
and choices in notepad to open a text version of the upgrade script. If all options are correct, click Finish.

The SQL Server Upgrade Script Interpreter screen appears with information about the progress of the upgrade.

See Also

Order of Upgrade Using a Direct Pipeline or Tape Drive

How To (SQL Server 2000)

SQL Server Enterprise Manager
Microsoft® Management Console (MMC) is a tool that presents a common interface for managing different server applications in
a Microsoft Windows® network. Server applications provide a component called an MMC snap-in that presents MMC users with
a user interface for managing the server application. SQL Server Enterprise Manager is the Microsoft SQL Server™ MMC snap-in.

SQL Server Enterprise Manager is the primary administrative tool for SQL Server and provides an MMC-compliant user interface
that allows users to:

Define groups of SQL Server instances.

Register individual servers in a group.

Configure all SQL Server options for each registered server.

Create and administer all SQL Server databases, objects, logins, users, and permissions in each registered server.

Define and execute all SQL Server administrative tasks on each registered server.

Design and test SQL statements, batches, and scripts interactively by invoking SQL Query Analyzer.

Invoke the various wizards defined for SQL Server.

How To (SQL Server 2000)

Administering SQL Server
Microsoft® SQL Server™ 2000 administration applications, and the accompanying services, are designed to assist the system
administrator with all administrative tasks related to maintaining and monitoring server performance and activities.

Topic Description
Starting, Pausing, and Stopping
SQL Server

Explains how to start an instance of SQL Server,
and what you need to do before, during, and
after you log in.

Failover Clustering Describes how to set up and use a SQL Server
2000 failover cluster.

Importing and Exporting Data Describes how to retrieve data from external
sources and feed data to other applications.

Backing Up and Restoring
Databases

Describes how to protect and restore data over a
wide range of potential system problems.

Using the Copy Database Wizard Describes how to copy or move databases
between servers and upgrade databases from
SQL Server version 7.0 to SQL Server 2000.

Managing Servers Describes how to register and configure remote
and linked servers, add or remove servers, and
modify server settings.

Managing Clients Describes how to configure client connections
with server components and change the default
network protocol to meet the needs of your site.

Automating Administrative Tasks Describes how to establish which administrative
responsibilities will occur regularly, define jobs
and alerts, and run SQL Server Agent.

Managing Security Describes how to protect and safeguard database
access by restricting permissions to include only
authorized users.

Monitoring Server Performance
and Activity

Describes how to develop a strategy for ensuring
that server and activity performance are at
acceptable levels.

Using the Web Assistant Wizard Explains how to use the wizard to create Web
pages.

How To (SQL Server 2000)

How to start an instance of SQL Server automatically
(Enterprise Manager)
How to start an instance of SQL Server automatically (Enterprise Manager)

To start an instance of SQL Server automatically

1. Right-click a server, and then click Properties.

2. Click the General tab.

3. Under Autostart policies when the operating system starts, select the Autostart SQL Server check box.

See Also

Starting SQL Server Automatically

How to shut off automatic startup of SQL Server (Enterprise Manager)

How To (SQL Server 2000)

How to shut off automatic startup of SQL Server (Enterprise
Manager)
How to shut off automatic startup of SQL Server (Enterprise Manager)

To shut off automatic startup of SQL Server

1. Right-click a server, and then click Properties.

2. Click the General tab.

3. Under Autostart policies when the operating system starts, clear the Autostart SQL Server check box.

See Also

Starting SQL Server Automatically

How to start SQL Server automatically

How To (SQL Server 2000)

How to start SQL Server (Enterprise Manager)
How to start SQL Server (Enterprise Manager)

To start SQL Server

Right-click a server, and then click Start.

The green arrow on the icon beside the server name indicates that the server started successfully.

See Also

Starting SQL Server Manually

Stopping SQL Server

Pausing and Resuming SQL Server

How To (SQL Server 2000)

How to stop SQL Server or SQL Server Agent (Enterprise
Manager)
How to stop SQL Server or SQL Server Agent (Enterprise Manager)

Note Before stopping an instance of Microsoft® SQL Server™, you should pause SQL Server and stop SQL Server Agent to
ensure the most orderly shutdown. You can stop both by using SQL Server Service Manager.

To stop SQL Server or SQL Server Agent (Enterprise Manager)

1. Right-click a server, and then click Pause.

2. Optionally, send a message informing connected users that the server will be shutting down. After an appropriate interval,
proceed to Step 3.

3. Right-click SQL Server Agent, and then click Stop.

4. Right-click the server, and then click Stop.

Note Stopping an instance of SQL Server by using SQL Server Enterprise Manager or the net stop mssqlserver command
causes SQL Server to perform a checkpoint in all databases. Then a SHUTDOWN WITH NOWAIT is done to flush all committed
data from the data cache and to stop the server immediately.

To stop SQL Server or SQL Server Agent (Service Manager)

1. If the service is a remote service, in the Server box, enter the name of the remote server. If it is a local server, the Server box
will be filled in.

This connects you to the remote server and populates the Services box with the names of the SQL Server services
registered on the remote computer.

2. In the Services dialog box, click SQL Server or SQL Server Agent.

3. Click Pause.

If you are stopping SQL Server Agent, proceed to Step 4. Otherwise, send a message informing connected users that the server
will be shutting down. After an appropriate interval, proceed to Step 4.

4. Click Stop.

See Also

Stopping SQL Server

How To (SQL Server 2000)

How to start the default instance of SQL Server (Service
Manager)
How to start the default instance of SQL Server (Service Manager)

To start the default instance of SQL Server

1. In the Services box, click SQL Server.

If the service is a remote service, type the name of the remote server in the Server box.

2. Click Start/Continue.

See Also

Starting SQL Server Manually

How To (SQL Server 2000)

How to start a clustered instance of SQL Server (Service
Manager)
How to start a clustered instance of SQL Server (Service Manager)

To start a clustered instance of SQL Server

1. Type the name of the virtual SQL Server in the Server box. If it is a default instance, you only need to specify the virtual
server name. If it is a named instance, you must enter VIRTUALSERVER\Instance.

2. In the Services box, click SQL Server.

3. Click Start/Continue.

See Also

Starting SQL Server Manually

How To (SQL Server 2000)

How to start a named instance of SQL Server (Service Manager)
How to start a named instance of SQL Server (Service Manager)

To start a named instance of SQL Server

1. In the Server box, select the name of the server and the named instance of Microsoft® SQL Server™ 2000, or type the name
of the remote server.

2. In the Services box, click SQL Server, and then click Start/Continue.

How To (SQL Server 2000)

How to start the default instance of SQL Server (Windows)
How to start the default instance of SQL Server (Windows)

To start the default instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click MSSQLSERVER, and then click Start.

How To (SQL Server 2000)

How to start a named instance of SQL Server (Windows)
How to start a named instance of SQL Server (Windows)

To start a named instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click the named instance of Microsoft® SQL Server™ 2000 you want to start, and then click
Start.

How To (SQL Server 2000)

How to start the default instance of SQL Server (Command
Prompt)
How to start the default instance of SQL Server (Command Prompt)

To start the default instance of SQL Server from a command prompt

From a command prompt, enter:

sqlservr.exe -c

Note You must switch to the appropriate directory (for the instance of Microsoft® SQL Server™ you want to start) in the
command window before starting sqlservr.exe.

See Also

Starting SQL Server Manually

How To (SQL Server 2000)

How to start a named instance of SQL Server (Command
Prompt)
How to start a named instance of SQL Server (Command Prompt)

To start a named instance of SQL Server from a command prompt

From a command prompt, enter this command:

sqlservr.exe -c -s {instancename}

Note You must switch to the appropriate directory (for the instance of Microsoft® SQL Server™ 2000 you want to start) in the
command window before starting sqlservr.exe. For example, if Instance1 uses \mssql$Instance1 to store its binaries, you must be
in the \mssql$Instance1\binn directory to start sqlservr.exe.

How To (SQL Server 2000)

How to start the default instance of SQL Server in single-user
mode (Command Prompt)
How to start the default instance of SQL Server in single-user mode (Command Prompt)

To start the default instance of SQL Server in single-user mode from a command prompt

From a command prompt, enter:

sqlservr.exe -c -m

Note You must switch to the appropriate directory (for the instance of Microsoft® SQL Server™ you want to start) in the
command window before starting sqlservr.exe.

See Also

Starting SQL Server in Single-User Mode

Using Startup Options

How To (SQL Server 2000)

How to start a named instance of SQL Server in single-user
mode (Command Prompt)
How to start a named instance of SQL Server in single-user mode (Command Prompt)

To start a named instance of SQL Server in single-user mode from a command prompt

From a command prompt, enter:

sqlservr.exe -c - m -s {instancename}

Note You must switch to the appropriate directory (for the instance of Microsoft® SQL Server™ 2000 you want to start) in
the command window before starting sqlservr.exe.

How To (SQL Server 2000)

How to start the default instance of SQL Server with minimal
configuration (Command Prompt)
How to start the default instance of SQL Server with minimal configuration (Command Prompt)

To start the default instance of SQL Server with minimal configuration

From a command prompt, enter the following command to start the default instance of Microsoft® SQL Server™ as a
service:

sqlservr -c -f

Note You must switch to the appropriate directory (for the instance of SQL Server you want to start) in the command
window before starting sqlservr.exe.

See Also

Starting SQL Server Manually

How To (SQL Server 2000)

How to start a named instance of SQL Server with minimal
configuration (Command Prompt)
How to start a named instance of SQL Server with minimal configuration (Command Prompt)

To start a named instance of SQL Server with minimal configuration

From a command prompt, enter the following command to start a named instance of Microsoft® SQL Server™ 2000 as a
service:

sqlservr -c -f -s {instancename}

Note You must switch to the appropriate directory (for the instance of SQL Server you want to start) in the command
window before starting sqlservr.exe.

How To (SQL Server 2000)

How to pause and resume the default instance of SQL Server
(Service Manager)
How to pause and resume the default instance of SQL Server (Service Manager)

To pause and resume the default instance of SQL Server

1. In the Services box, click SQL Server.

If the service is a remote service, type the name of the remote server.

2. Click Pause, and then click Start/Continue.

See Also

Pausing and Resuming SQL Server

How To (SQL Server 2000)

How to stop a clustered instance of SQL Server (Service
Manager)
How to stop a clustered instance of SQL Server (Service Manager)

To stop a clustered instance of SQL Server

1. Type the name of the virtual Microsoft® SQL Server™ in the Server box. If it is a default instance, you only need to specify
the virtual server name. If it is a named instance, you must enter VIRTUALSERVER\Instance.

2. In the Services box, click SQL Server.

3. Click Stop. This pauses the cluster resource, and then stops the SQL Server service, which does not cause a failover of SQL
Server.

See Also

Stopping SQL Server

How To (SQL Server 2000)

How to pause and resume a named instance of SQL Server
(Service Manager)
How to pause and resume a named instance of SQL Server (Service Manager)

To pause and resume a named instance of SQL Server

1. In the Server box, select the name of the server and the named instance of Microsoft® SQL Server™ 2000, or type the name
of the remote server.

2. In the Services box, click SQL Server.

3. Click Pause, and then click Start/Continue.

How To (SQL Server 2000)

How to pause and resume the default instance of SQL Server
(Windows)
How to pause and resume the default instance of SQL Server (Windows)

To pause and resume the default instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click MSSQLSERVER.

3. Click Pause or Continue.

How To (SQL Server 2000)

How to pause and resume a named instance of SQL Server
(Windows)
How to pause and resume a named instance of SQL Server (Windows)

To pause and resume a named instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click the named instance of Microsoft® SQL Server™ 2000 you want to pause.

3. Click Pause or Continue.

How To (SQL Server 2000)

How to pause and resume the default instance of SQL Server
(Command Prompt)
How to pause and resume the default instance of SQL Server (Command Prompt)

To pause and resume the default instance of SQL Server

From a command prompt, enter either:

net pause mssqlserver

-or-

net continue mssqlserver

An instance of Microsoft® SQL Server™ can be paused or resumed only if it was started as a Microsoft Windows NT® 4.0
or Windows® 2000 service.

See Also

Pausing and Resuming SQL Server

How To (SQL Server 2000)

How to pause and resume a named instance of SQL Server
(Command Prompt)
How to pause and resume a named instance of SQL Server (Command Prompt)

To pause and resume a named instance of SQL Server

From a command prompt, enter either:

net pause mssql$instancename

-or-

net continue mssql$instancename

How To (SQL Server 2000)

How to broadcast a shutdown message (Command Prompt)
How to broadcast a shutdown message (Command Prompt)

To broadcast a shutdown message

From a command prompt, enter:

net send /users "message"

For example:

net send /users "SQL Server is going down in 20 minutes.
Disconnect within 15 minutes."

Note The shutdown message can be broadcast only if an instance of Microsoft® SQL Server™ is running on Microsoft
Windows NT® 4.0 or Windows® 2000. The users option specifies that the message be sent to all users connected to the
server. For information about other net send options, see the Windows NT 4.0 and Windows 2000 documentation.

See Also

Stopping SQL Server

How To (SQL Server 2000)

How to stop the default instance of SQL Server (Windows)
How to stop the default instance of SQL Server (Windows)

To stop the default instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click MSSQLSERVER, and then click Stop.

How To (SQL Server 2000)

How to stop a named instance of SQL Server (Windows)
How to stop a named instance of SQL Server (Windows)

To stop a named instance of SQL Server

1. In Control Panel, double-click Services.

2. In the Services dialog box, click the named instance of Microsoft® SQL Server™ 2000 you want to stop, and then click
Stop.

How To (SQL Server 2000)

How to stop the default instance of SQL Server (Command
Prompt)
How to stop the default instance of SQL Server (Command Prompt)

To stop the default instance of SQL Server

From a command prompt, enter:

net stop mssqlserver

Note Stopping a default instance of Microsoft® SQL Server™ using SQL Server Enterprise Manager or the net stop
mssqlserver command causes SQL Server to perform a checkpoint in all databases. Then a SHUTDOWN WITH NOWAIT is done
to flush all committed data from the data cache and to stop the server immediately. Stopping a default instance of SQL Server
from the command prompt works only if you are running Microsoft Windows NT® 4.0 or Windows® 2000.

See Also

Stopping SQL Server

How To (SQL Server 2000)

How to stop a named instance of SQL Server (Command
Prompt)
How to stop a named instance of SQL Server (Command Prompt)

To stop a named instance of SQL Server

From a command prompt, enter:

net stop mssql$instancename

Note Stopping a named instance of Microsoft® SQL Server™ 2000 using SQL Server Enterprise Manager or the net stop
mssql$instancename command causes SQL Server to perform a checkpoint in all databases. Then a SHUTDOWN WITH
NOWAIT is done to flush all committed data from the data cache and to stop the server immediately. Stopping a named instance
of SQL Server 2000 from the command prompt works only if you are running Microsoft Windows NT® 4.0 or Windows® 2000.

How To (SQL Server 2000)

How to log in to the default instance of SQL Server (Command
Prompt)
How to log in to the default instance of SQL Server (Command Prompt)

To log in to the default instance of SQL Server

From a command prompt, enter either:

osql /U [login_id] /P [password] /S [servername]

-or-

isql/U [login_id]/P [password] /S [servername]

See Also

osql Utility

How To (SQL Server 2000)

How to log in to a named instance of SQL Server (Command
Prompt)
How to log in to a named instance of SQL Server (Command Prompt)

To log in to a named instance of SQL Server

From a command prompt, enter either:

osql / U login_id /P password /S servername\instancename

-or-

isql/U login_id/P password /S servername\instancename

How To (SQL Server 2000)

How to change the default service (Service Manager)
How to change the default service (Service Manager)

To change the default service

1. Right-click SQL Server Service Manager, and then click Options.

2. In the Default Service box, select the new default service to view through SQL Server Service Manager. When you restart
the computer, the service that appears is the new default. For example, if you change the default service to SQLServerAgent
service and then shut down the computer, the next time you start it, SQLServerAgent service will be displayed in Service
Control Manager. You can only change the default service for the local machine.

How To (SQL Server 2000)

How to create a new failover cluster (Setup)
How to create a new failover cluster (Setup)

 New Information - SQL Server 2000 SP3.

Important Before you create a Microsoft® SQL Server™ 2000 failover cluster, you must configure Microsoft Cluster Service
(MSCS) and use Cluster Administrator in Microsoft Windows NT® 4.0 or Windows® 2000 to create at least one cluster disk
resource. Note the location of the cluster drive in the Cluster Administrator before you run SQL Server Setup because you need
this information to create a new failover cluster.

To create a new failover cluster

1. On the Welcome screen of the Microsoft SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Virtual Server and enter a virtual server name. If Setup detects that you are running
MSCS, it will default to Virtual Server. Click Next.

3. On the User Information screen, enter the user name and company. Click Next.

4. On the Software License Agreement screen, click Yes.

5. On the Failover Clustering screen, enter one IP address for each network configured for client access. That is, enter one IP
address for each network on which the virtual server will be available to clients on a public (or mixed) network. Select the
network for which you want to enter an IP address, and then enter the IP address. Click Add.

The IP address and the subnet are displayed. The subnet is supplied by MSCS. Continue to enter IP addresses for each
installed network until you have populated all desired networks with an IP address. Click Next.

6. On the Cluster Disk Selection screen, select the cluster disk group where the data files will be placed by default. Click
Next.

7. On the Cluster Management screen, review the cluster definition provided by SQL Server 2000. By default, all available
nodes are selected. Remove any nodes that will not be part of the cluster definition for the virtual server you are creating.
Click Next.

8. On the Remote Information screen, enter login credentials for the remote cluster node. The login credentials must have
administrator privileges on the remote node(s) of the cluster. Click Next.

9. On the Instance Name screen, choose a default instance or specify a named instance. To specify a named instance, clear
the Default check box, and then enter the name for the named instance. Click Next.

Important You cannot name an instance DEFAULT or MSSQLSERVER. For more information about naming instances of
SQL Server 2000, see Working with Named and Multiple Instances of SQL Server 2000. Names must follow rules for SQL
Server identifiers. For more information about naming conventions for identifiers, see Using Identifiers.

10. On the Setup Type screen, select the type of installation to install. The Setup program automatically defaults to the first
available cluster disk resource from the group you previously selected.

However, if you need to specify a different clustered drive resource, under Data Files, click Browse and then specify a path
on a clustered drive resource. You will be required to select a clustered drive resource that is owned by the node on which
you are running the Setup program. The drive also must be a member of the cluster group you previously selected. Click
Next.

11. On the Services Accounts screen, select the service account(s) that you want to run in the failover cluster. Click Next.

12. In the Authentication Mode dialog box, choose the authentication mode to use. If you change the selection from
Windows Authentication Mode to Mixed Mode (Windows Authentication and SQL Server Authentication), you
need to enter and confirm a password for the sa login.

Security Note When possible, use Windows Authentication.

13. On the Start Copying Files screen, click Next.

14. On the Setup Complete screen, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from the Setup program when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

How To (SQL Server 2000)

How to install a one-node failover cluster (Setup)
How to install a one-node failover cluster (Setup)

1. On the Welcome screen of the Microsoft SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Virtual Server and enter a virtual server name. If SQL Server Setup detects that you
are running Microsoft® Cluster Service (MSCS), it will default to Virtual Server. Click Next.

3. On the User Information screen, enter the user name and company. Click Next.

4. On the Software License Agreement screen, click Yes.

5. On the Failover Clustering screen, enter one IP address per installed network for the virtual server. Select the network for
which you wish to enter an IP address, and then enter the IP address. Click Add.

The IP address and the subnet are displayed. The subnet is supplied by MSCS. Continue to enter IP addresses for each
installed network until you have populated all desired networks with an IP address. Click Next.

6. On the Cluster Disk Selection screen, select the cluster disk group where the data files will be placed by default. Click
Next.

7. On the Cluster Management screen, review the failover cluster definition provided by Microsoft SQL Server™ 2000. By
default, all available nodes are selected. Remove any nodes that will not be part of the cluster definition for the virtual server
you are creating. Click Next.

8. On the Remote Information screen, enter login credentials that have administrator privileges on the remote node of the
cluster. Click Next.

9. On the Instance Name screen, choose a default instance or specify a named instance. To specify a named instance, clear
the Default check box, and then enter the name. Click Next.

Important You cannot name an instance DEFAULT or MSSQLSERVER. The name must follow the rules for SQL Server
identifiers. For more information about naming conventions for identifiers, see Using Identifiers.

10. On the Setup Type screen, select the type of installation to install. Setup will automatically default to the first available
clustered disk resource from the group you previously selected. However, if you need to specify a different clustered drive
resource, under Data Files, click the Browse button and then specify a path on a clustered drive resource. You will be
required to select a clustered drive resource that is owned by the node on which you are running Setup. The drive must also
be a member of the cluster group you previously selected. Click Next.

11. On the Services Accounts screen, select the service account(s) that you want to run in the failover cluster. Click Next.

12. In the Authentication Mode dialog box, choose the authentication mode to use. If you change the selection from
Windows Authentication Mode to Mixed Mode (Windows Authentication and SQL Server Authentication), you
must enter and confirm a password for the sa login.

13. Security Note When possible, use Windows Authentication.

On the Start Copying Files screen, click Next.

14. On the Setup Complete screen, click Finish. If you are instructed to restart the computer, do so now. It is important to read
the message from the Setup program when you are done with installation. Failure to restart any of the specified nodes may
cause failures when running the Setup program in the future on any node in the cluster.

How To (SQL Server 2000)

How to add nodes to an existing virtual server (Setup)
How to add nodes to an existing virtual server (Setup)

1. On the Welcome screen of the Microsoft SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Virtual Server and specify the virtual server to which you want to add a node. Click
Next.

3. On the Installation Selection screen, click Advanced options. Click Next.

4. On the Advanced Options screen, click Maintain a virtual server for failover clustering. Click Next.

5. On the Failover Clustering screen, click Next.

You do not need to enter an IP address.

6. On the Cluster Management screen, select the node and click Add.

If the node is listed as unavailable, you must modify the disk resources in the cluster group of the virtual server so the disk
is available for the node you want to add to the Microsoft® SQL Server™ configuration. Click Next.

7. On the Remote Information screen, enter login credentials for the remote cluster node that has administrator privileges
on the remote node of the cluster. Click Next.

8. On the Setup Complete screen, click Finish.

How To (SQL Server 2000)

How to remove a node from an existing failover cluster (Setup)
How to remove a node from an existing failover cluster (Setup)

1. On the Welcome screen of the Microsoft SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Virtual Server and specify the name of the server from which to remove the node.
Click Next.

3. You may see an error message saying that one (or more) of the nodes of the Microsoft® Windows NT® 4.0 or Microsoft
Windows® 2000 cluster are unavailable. This may be because the node(s) you are attempting to remove is damaged. The
node(s) still can be removed. Click OK.

4. On the Installation Selection screen, click Advanced Options. Click Next.

5. On the Advanced Options screen, click Maintain a virtual server for failover clustering. Click Next.

6. On the Failover Clustering screen, click Next.

You do not need to modify any IP address(es).

7. On the Cluster Management screen, select the node and click Remove. Click Next.

8. On the Remote Information screen, enter login credentials for the remote cluster node that has administrator privileges
on the remote node(s) of the cluster. Click Next.

9. On the Setup Complete screen, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from SQL Server Setup when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

How To (SQL Server 2000)

How to remove a failover clustered instance (Setup)
How to remove a failover clustered instance (Setup)

1. On the Welcome screen of the Microsoft SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Virtual Server and specify the name of the server from which to remove a clustered
instance. Click Next.

3. On the Installation Selection screen, click Upgrade, remove, or add components to an existing instance of SQL
Server.

4. On the Instance Name screen, for a default instance, click Default. For a named instance, specify the name of the instance
to remove. Click Next.

5. On the Existing Installation screen, click Uninstall your existing installation. Click Next.

6. On the Remote Information screen, specify the password that is a valid administrator password on all nodes in the
cluster. Click Next.

7. In the Setup message "Successfully uninstalled the instance . . . ", click OK.

8. On the Setup Complete screen, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from SQL Server Setup when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

How To (SQL Server 2000)

How to recover from failover cluster failure in Scenario 1
How to recover from failover cluster failure in Scenario 1

In this scenario, failure is caused by hardware failure in Node 1 of a two-node cluster. This hardware failure could be caused, for
example, by the failure of a small computer system interface (SCSI) card or the operating system.

1. After Node 1 fails, the Microsoft® SQL Server™ 2000 failover cluster fails over to Node 2.

2. Run SQL Server Setup and remove Node 1. For more information, see How to remove a failover clustered instance .

3. Evict Node 1 from Microsoft Cluster Service (MSCS). To evict a node from MSCS, from Node 2, right-click on the node to
remove, and then click Evict Node.

4. Install new hardware to replace the failed hardware in Node 1.

5. Install the operating system. For more information about which operating system to install and specific instructions on how
to do this, see Before Installing Failover Clustering.

6. Install MSCS and join the existing cluster. For more information, see Before Installing Failover Clustering.

7. Run the Setup program on Node 2 and add Node 1 back to the failover cluster. For more information, see How to add
nodes to an existing virtual server (Setup).

How To (SQL Server 2000)

How to recover from failover cluster failure in Scenario 2
How to recover from failover cluster failure in Scenario 2

In Scenario 2, failure is caused by Node 1 being down or offline but not irretrievably broken. This could be caused, for example, by
an operating system failure.

1. After Node 1 fails, the Microsoft® SQL Server™ 2000 failover cluster fails over to Node 2.

2. Run SQL Server Setup and remove Node 1. For more information, see How to remove a failover clustered instance.

3. Resolve the problem with Node 1.

4. Ensure that the Microsoft Cluster Service (MSCS) cluster is working and all nodes are online.

5. Run the Setup program on Node 2 and add Node 1 back to the failover cluster. For more information, see How to add
nodes to an existing virtual server (Setup).

How To (SQL Server 2000)

How to upgrade from a SQL Server 6.5 active/passive failover
cluster (Setup)
How to upgrade from a SQL Server 6.5 active/passive failover cluster (Setup)

To upgrade from a SQL Server 6.5 active/passive failover cluster

1. Uncluster Microsoft® SQL Server™ version 6.5.

2. Install a default instance of SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. On all nodes of the cluster, this drive must have at least 300 megabytes (MB)
of available space.

3. Run the SQL Server Upgrade Wizard to migrate your data into SQL Server 2000.

4. Uninstall SQL Server 6.5.

5. Run SQL Server Setup to upgrade your default instance of SQL Server 2000 to a SQL Server 2000 failover cluster.

For more information, see How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (SQL
Server Setup).

See Also

How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a direct pipeline (SQL Server Upgrade Wizard)

How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server Upgrade Wizard)

How To (SQL Server 2000)

How to upgrade from a SQL Server 6.5 active/active failover
cluster (Setup)
How to upgrade from a SQL Server 6.5 active/active failover cluster (Setup)

Note To upgrade from a Microsoft® SQL Server™ 6.5 active/active failover cluster (or any configuration where SQL Server exists
on the second node), you must first convert one side of the failover cluster to a named instance of SQL Server 2000.

To upgrade from a SQL Server 6.5 active/active failover cluster

1. On Node 1, uncluster SQL Server 6.5. On Node 2, uncluster SQL Server 6.5.

2. On Node 1, install a default (non-clustered) instance of SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 megabytes (MB)
of available space.

3. On Node 1, run the SQL Server 2000 Upgrade Wizard to migrate your data into SQL Server 2000.

4. On Node 1, uninstall the instance of SQL Server 6.5.

5. On Node1, install a named, clustered instance of SQL Server 2000.

6. Run the Copy Database Wizard (CDW.exe) to migrate your SQL Server data (originally from SQL Server 6.5) to a named
instance in a SQL Server 2000 failover cluster. For more information about the Copy Database Wizard, see Using the Copy
Database Wizard or How to upgrade databases online using the Copy Database Wizard (Enterprise Manager).

7. On Node 1, uninstall the default instance of SQL Server 2000.

8. On Node 2, install a default instance of SQL Server 2000.

9. Run the SQL Server 2000 Upgrade Wizard to migrate your data into SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. On all nodes of the cluster, this drive must have at least 300 megabytes (MB)
of available space.

10. On Node 2, uninstall the instance of SQL Server 6.5.

11. On Node 2, upgrade the default instance of SQL Server to a clustered instance.

For more information, see How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (SQL
Server Setup).

How To (SQL Server 2000)

How to upgrade from a SQL Server 7.0 active/active failover
cluster (Setup)
How to upgrade from a SQL Server 7.0 active/active failover cluster (Setup)

Note To upgrade from a Microsoft® SQL Server™ version 7.0 active/active failover cluster (or any configuration where SQL
Server exists on the second node), you must first convert one side of the failover cluster to a named instance of SQL Server 2000.

To upgrade from a SQL Server 7.0 active/active failover cluster

1. On Node 1, uncluster SQL Server version 7.0. Reboot Node 1.

2. On Node 2, uncluster SQL Server 7.0. Reboot Node 2.

3. On Node 1, install a clustered, named instance of SQL Server 2000 as a virtual server. This is not an upgrade process, but a
side-by-side installation of SQL Server 7.0 and SQL Server 2000. Do not install the data to the same location/disk as Node 2.
If you do, when you attempt to upgrade Node 2 from a SQL Server 7.0 to a SQL Server 2000 installation, Setup will fail.

4. On Node 1, run the Copy Database Wizard (CDW.exe) to move all databases and related information from the SQL Server
7.0 installation into the clustered, named instance of SQL Server 2000. For more information about the Copy Database
Wizard, see Using the Copy Database Wizard or How to upgrade databases online using the Copy Database Wizard
(Enterprise Manager).

5. On Node 1, uninstall SQL Server 7.0.

6. On Node 2, upgrade SQL Server 7.0 to SQL Server 2000 as the default instance.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 megabytes (MB)
of available space.

7. On Node 2, upgrade the default instance of SQL Server 2000 to a clustered instance.

For more information, see How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (SQL
Server Setup).

Note Optionally, you could create two named instances of SQL Server 2000 and use the Copy Database Wizard to upgrade both
SQL Server 7.0 installations to a clustered, named instance of SQL Server 2000. This will provide better consistency, because all
references to clustered installations of SQL Server 2000 will be in the form VirtualServer\Instance, rather than sometimes being
just the servername, and sometimes both the servername and instancename.

How To (SQL Server 2000)

How to upgrade from a SQL Server 7.0 active/passive failover
cluster (Setup)
How to upgrade from a SQL Server 7.0 active/passive failover cluster (Setup)

To upgrade from a SQL Server 7.0 active/passive failover cluster

1. On Node 1, uncluster Microsoft® SQL Server™ version 7.0. Reboot Node 1.

2. On Node 1, upgrade SQL Server 7.0 to SQL Server 2000 as the default instance.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 megabytes (MB)
of available space.

3. On Node 1, upgrade the default instance of SQL Server 2000 to a clustered instance of SQL Server 2000.

For more information, see How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (SQL
Server Setup).

How To (SQL Server 2000)

How to upgrade from a default instance to a default clustered
instance of SQL Server 2000 (Setup)
How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (Setup)

Note This upgrade is from a default instance (a local installation where the data is on a local disk) to a clustered instance of
Microsoft® SQL Server™ 2000. Use this upgrade step if you want to have a cluster disk.

To upgrade from a default instance to a default clustered instance of SQL Server 2000

1. On the Welcome screen of the SQL Server Installation Wizard, click Next.

2. On the Computer Name screen, click Local Computer. The computer you want to change from a default to a clustered
instance should be displayed. You must be on the local computer to upgrade from a default to a clustered instance. Click
Next.

3. On the Installation Selection screen, click Upgrade, remove, or add components to an existing instance of SQL
Server. Click Next.

4. On the Existing Installation screen, click Upgrade your existing installation to a clustered installation. Click Next.

5. On the Virtual Server Name screen, enter a name for your virtual server. Click Next.

6. On the Failover Clustering screen, enter one IP address for each network configured for client access. That is, enter one IP
address for each network on which the virtual server will be available to clients on a public (or mixed) network. Select the
network for which you want to enter an IP address, and then enter the IP address. Click Add.

The IP address and the subnet are displayed. The subnet is supplied by Microsoft Cluster Service (MSCS). Continue to enter
IP addresses for each installed network until you have populated all desired networks with an IP address. Click Next.

6. On the Cluster Management screen, review the failover cluster definition provided by SQL Server 2000. By default, all
available nodes are selected. Remove any nodes that will not be part of the failover cluster definition for the virtual server
you are creating. Click Next.

7. On the Remote Information screen, enter login credentials for the remote cluster node. The login credentials must have
administrator privileges on the remote node(s) of the cluster. Click Next.

8. On the Services Accounts screen, select the service account(s) for the SQL Server services under which you want the
failover cluster to run. Click Next.

9. On the Setup Complete screen, click Finish. If you need to restart the remote nodes in the failover cluster, you will be
instructed to do so in the Setup Complete screen.

How To (SQL Server 2000)

How to upgrade from a local default instance to a clustered,
named instance of SQL Server 2000 (Setup)
How to upgrade from a local default instance to a clustered, named instance of SQL Server 2000 (Setup)

To upgrade from a local default instance to a named clustered instance of SQL Server 2000

1. Install a clustered, named instance of Microsoft® SQL Server™ 2000.

2. Run the Copy Database Wizard (CDW.exe) to move all databases and related information into the clustered, named instance
of SQL Server 2000. For more information about the Copy Database Wizard, see Using the Copy Database Wizard or How
to upgrade databases online using the Copy Database Wizard (Enterprise Manager).

3. Optionally, you can uninstall the default instance of SQL Server 2000.

How To (SQL Server 2000)

Backing Up and Restoring Databases
The backup and restore component of Microsoft® SQL Server™ provides an important safeguard for protecting critical data
stored in SQL Server databases. Understanding how to create and restore database, differential database, transaction log, and file
and filegroup backups helps you implement this important safeguard.

How To (SQL Server 2000)

How to create a logical disk backup device (Enterprise
Manager)
How to create a logical disk backup device (Enterprise Manager)

To create a logical disk backup device

1. Expand a server group, and then expand a server.

2. Expand Management, right-click Backup, and then click New Backup Device.

3. In the Name box, type a name for the named backup device.

4. Click File name, and then do one of the following:

Type the name of the file used by the disk backup device.

Click the browse (...) button to display the Backup Device Location dialog box, and then select the file on the local
computer used by the disk backup device.

See Also

Backup Devices

How To (SQL Server 2000)

How to create a logical tape backup device (Enterprise
Manager)
How to create a logical tape backup device (Enterprise Manager)

To create a logical tape backup device

1. Expand a server group, and then expand a server.

2. Expand Management, right-click Backup, and then click New Backup Device.

3. In the Name box, type a name for the named backup device.

4. Click Tape drive name, and then click the tape device to use as the tape backup device.

Note If no tape devices are listed, then no tape devices can be detected on the local computer. For more information about how
to set up tape devices, see the Microsoft® Windows NT® 4.0 and Windows® 2000 documentation.

See Also

Backup Devices

How To (SQL Server 2000)

How to delete a logical backup device (Enterprise Manager)
How to delete a logical backup device (Enterprise Manager)

To delete a logical backup device

1. Expand a server group, and then expand a server.

2. Expand Management, and then click Backup.

3. In the details pane, right-click the named backup device to delete.

4. Click Delete, and then confirm the deletion.

See Also

Backup Devices

sp_dropdevice

How To (SQL Server 2000)

How to create a database backup (Enterprise Manager)
How to create a database backup (Enterprise Manager)

To create a database backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Backup Database.

3. In the Name box, type the backup set name. Optionally, in Description, type a description of the backup set.

4. Under Backup, click Database - complete.

5. Under Destination, click Tape or Disk, and then specify a backup destination.

If no backup destinations appear, click Add to add an existing destination or to create a new one.

6. Under Overwrite, do one of the following:

Click Append to media to append the backup to any existing backups on the backup device.

Click Overwrite existing media to overwrite any existing backups on the backup device.

7. Optionally, select the Schedule check box to schedule the backup operation for later or periodic execution.

8. Optionally, click the Options tab and do one or more of the following:

Select the Verify backup upon completion check box to cause the backup to be verified when backed up.

Select the Eject tape after backup check box to cause the tape to be ejected when the backup operation has
completed. Available only with tape devices.

Select the Check media set name and backup set expiration check box to cause the backup media to be checked
to prevent accidental overwrites. In Media set name, type the name of the media to be used for the backup
operation. Leave blank when specifying only the backup set expiration.

9. If it is the first use of the backup media, or you want to change an existing media label, under Media set labels, select the
Initialize and label media check box and type the media set name and media set description. The media can be initialized
and labeled only when overwriting the media.

See Also

Appending Backup Sets

Backing Up the master Database

Backing Up the model, msdb, and distribution Databases

Copying Databases

Transaction Log Backups

Database Backups

Differential Database Backups

Deleting a Database

Overwriting Backup Media

Reducing Recovery Time

Initializing Backup Media

Verifying Backups

How To (SQL Server 2000)

How to start the Create Database Backup Wizard (Enterprise
Manager)
How to start the Create Database Backup Wizard (Enterprise Manager)

To start the Create Database Backup Wizard

1. Expand a server group, and then expand a server.

2. On the Tools menu, click Wizards.

3. In the Select Wizard dialog box, expand Management.

4. Double-click Backup Wizard.

5. Complete the steps in the wizard.

See Also

Database Backups

How To (SQL Server 2000)

How to restore a database backup (Enterprise Manager)
How to restore a database backup (Enterprise Manager)

Note If you are restoring a database backup that does not have any backup set information listed in the backup history stored in
the msdb database, such as a database backup created on another server, see How to restore a backup from a backupdevice.

To restore a database backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore, if different from the default. To restore
the database with a new name, type the new name of the database.

4. Click Database.

5. In the First backup to restore list, click the backup set to restore.

6. In the Restore list, click the database backup to restore.

7. Optionally, click the Options tab and do the following:

In Restore as, type the new name or location for each database file comprising the database backup.

Note Specifying a new name for the database determines automatically the new names for the database files
restored from the database backup.

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
or differential database backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
or differential database backup is to be applied.

See Also

Transaction Log Backups

Database Backups

Differential Database Backups

Identifying the Backup Set to Restore

Rebuilding the master Database

Restoring a Database to a Prior State

Restoring the master Database from a Current Backup

Restoring the model, msdb, and distribution Databases

Reducing Recovery Time

How To (SQL Server 2000)

How to restore a backup from a backup device (Enterprise
Manager)
How to restore a backup from a backup device (Enterprise Manager)

To restore a backup from a backup device

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore if different from the default. To restore
the database with a new name, type the new name of the database.

Note Specifying a new name for the database determines automatically the new names for the database files restored
from the database backup.

4. Click From device, and then click Select devices.

5. Under Restore from, click Tape or Disk, and then select a device from which to restore.

If no devices appear, click Add to add an existing backup device or to create a new one. In the Restore Database dialog
box, click View Contents and select the backup set to restore.

Note This option scans the backup set for the backup content information and can be time consuming, especially when
using tape devices. If you already know the backup set to restore, type the backup set number in Backup number instead.

6. Under Restore backup set, do one of the following:

Click Database - complete to restore a database backup.

Click Database - differential to restore a differential database backup.

Click Transaction log to apply a transaction log backup.

Click File or filegroup to restore a file or filegroup backup. Specify the name of the file or filegroup.

7. Optionally, click the Options tab, and then do one of the following:

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
backup is to be applied.

See Also

Transaction Log Backups

Database Backups

Differential Database Backups

Identifying the Backup Set to Restore

Rebuilding the master Database

Restoring a Database to a Prior State

Restoring the master Database from a Current Backup

Restoring the model, msdb, and distribution Databases

Using Differential Database Backups with Transaction Log Backups

How To (SQL Server 2000)

How to create a transaction log backup (Enterprise Manager)
How to create a transaction log backup (Enterprise Manager)

To create a transaction log backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Backup Database.

3. In the Name box, type the backup set name. Optionally, in Description, type a description of the backup set.

4. Under Backup, click Transaction log.

Note If the Transaction Log option is unavailable, ensure that the recovery model is set to Full or Bulk-Logged. For more
information, see Using Recovery Models.

5. Under Destination, click Tape or Disk, and then specify a backup destination.

If no backup destinations appear, click Add to add an existing backup device or to create a new one.

6. Under Overwrite, do one of the following:

Click Append to media to append the backup to any existing backups on the backup device.

Click Overwrite existing media to overwrite any existing backups on the backup device.

7. Optionally, select the Schedule check box to schedule the backup operation for later or periodic execution.

8. Optionally, click the Options tab, and then do one of the following:

Select the Verify backup upon completion check box to cause the backup to be verified when backed up.

Select the Eject tape after backup check box to cause the tape to be ejected when the backup operation has
completed. Available only with tape devices.

Select the Remove inactive entries from transaction log check box to cause the inactive portion of the transaction
log to be truncated, allowing Microsoft® SQL Server™

to reuse this truncated, unused space.

Select the Check media set name and backup set expiration check box to cause the backup media to be checked
to prevent accidental overwrites. In the Media set name box, type the name of the media to be used for the backup
operation. Leave blank when specifying only the backup set expiration.

9. If it is the first use of the backup media or you want to change an existing media label, under Media set labels, select the
Initialize and label media check box and type the media set name and media set description. The media can only be
initialized and labeled when it is being overwritten.

See Also

Transaction Log Backups

Using File Backups

Restoring a Database to a Prior State

Reducing Recovery Time

How To (SQL Server 2000)

How to apply a transaction log backup (Enterprise Manager)
How to apply a transaction log backup (Enterprise Manager)

Note If you are restoring a transaction log backup that does not have any backup set information listed in the backup history
stored in the msdb database, such as a transaction log backup created on another server, see How to restore a backup from a
backup device.

To apply a transaction log backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore, if different from the default.

4. Click Database.

5. In the First backup to restore list, click the backup set to restore.

6. In the Restore list, click the transaction log backup to restore.

7. Optionally, click the Options tab and , and then do one of the following:

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
or differential database backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
or differential database backup is to be applied.

See Also

Transaction Log Backups

Using File Backups

Reducing Recovery Time

How To (SQL Server 2000)

How to create a differential database backup (Enterprise
Manager)
How to create a differential database backup (Enterprise Manager)

To create a differential database backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Backup Database.

3. In the Name box, type the backup set name. Optionally, in Description, type a description of the backup set.

4. Under Backup, select Database - differential.

5. Under Destination, click Tape or Disk, and then specify a backup destination.

If no backup destinations appear, click Add to add an existing backup device or to create a new one.

6. Under Overwrite, do one of the following:

Click Append to media to append the backup to any existing backups on the backup device.

Click Overwrite existing media to overwrite any existing backups on the backup device.

7. Optionally, select the Schedule check box to schedule the backup operation for later or periodic execution.

8. Optionally, click the Options tab, and then do one or more of the following:

Select the Verify backup upon completion check box to cause the backup to be verified when backed up.

Select the Eject tape after backup check box to cause the tape to be ejected when the backup operation has
completed. Available only with tape devices.

Select the Check media set name and backup set expiration check box to cause the backup media to be checked
to prevent accidental overwrites. In Media set name, type the name of the media to be used for the backup
operation. Leave blank when specifying only the backup set expiration.

9. If it is the first use of the backup media or you want to change an existing media label, under Media set labels, select the
Initialize and label media check box and type the media set name and media set description. The media can be initialized
and labeled only when overwriting the media.

See Also

Differential Database Backups

Reducing Recovery Time

How To (SQL Server 2000)

How to restore a differential database backup (Enterprise
Manager)
How to restore a differential database backup (Enterprise Manager)

Note If you are restoring a differential database backup that does not have any backup set information listed in the backup
history stored in the msdb database, such as a differential database backup created on another server, see How to restore a
backup from a backup device.

To restore a differential database backup

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore, if different from the default.

4. Click Database.

5. In the First backup to restore list, click the backup set to restore.

6. In the Restore list, click the differential backup to restore.

7. Optionally, click the Options tab, and then do one of the following:

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
backup is to be applied.

See Also

Differential Database Backups

Reducing Recovery Time

How To (SQL Server 2000)

How to set up, maintain, and bring online a standby server
(Enterprise Manager)
How to set up, maintain, and bring online a standby server (Enterprise Manager)

Setting up a standby server generally involves creating database backups and periodic transaction log backups at the primary
server, and then applying those backups, in sequence, to the standby server. The standby server is left in a read-only state
between restore operations. When the standby server must be made available for use, any outstanding transaction log backups
from the primary server, including the backup of the active transaction log, are applied to the standby server; then the database is
recovered.

To create backups on the primary server

How to create a database backup

How to create a transaction log backup

To set up and maintain a backup (standby) server

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In Restore as database, type or select the name of the database to restore, if different from the default. To restore the
database with a new name, type the new name of the database.

4. Under Restore, click From device, and then click Select devices.

5. Under Restore from, click Tape or Disk, and then select a device from which to restore.

If no devices appear, click Add to add an existing backup device or to create a new one. The backup device must reference
the backup device files created at the primary server.

6. In the Restore Database dialog box, click View contents. Select the backup set to restore.

Note This option scans the backup set for the backup content information and can be time consuming, especially when
using tape devices. If you already know the backup set to restore, type the backup set number in Backup number instead.

7. Under Restore backup set, do one of the following:

Click Database - complete to restore the initial database backup created on the primary server. The initial database
backup must be restored before any transaction log backups can be applied.

Click Transaction log to apply a transaction log backup created on the primary server.

8. On the Options tab, click Leave database read-only and able to restore additional transaction logs, and then in the
Undo file box, type the name of the undo file that contains the contents of data pages before uncommitted transactions
affecting those pages were rolled back.

9. Repeat this procedure for each transaction log backup applied to the standby server.

To bring the standby server online (primary server failed)

1. Back up the active transaction log on the primary server, if possible.

For more information, see How to create a backup of the currently active transaction log.

2. Apply all transaction log backups, including the active transaction log backup created in Step 1, which have not yet been
applied to the standby server.

For more information, see How to apply a transaction log backup.

3. Recover the database.

For more information, see How to recover a database without restoring.

See Also

Using Standby Servers

How To (SQL Server 2000)

How to restore to a point in time (Enterprise Manager)
How to restore to a point in time (Enterprise Manager)

To restore to a point in time

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In Restore as database, type or select the name of the database to restore, if different from the default.

4. Click Database.

5. In the First backup to restore list, click the backup set to restore.

6. In the Restore list, select the database backup and one or more transaction logs to restore.

7. Click Point in time restore, and then type values for Date and Time.

8. Click the Options tab, and then click Leave database operational. No additional transaction logs can be restored.

See Also

Restoring a Database to a Prior State

How To (SQL Server 2000)

How to view the data and log files in a backup set (Enterprise
Manager)
How to view the data and log files in a backup set (Enterprise Manager)

To view the data and log files in a backup set

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. Click From device, and then click Select devices.

4. Under Restore from, click Tape or Disk, and then select a device from which to restore.

If no backup destinations appear, click Add to add an existing backup device or to create a new one. The backup device must
reference the backup device files created at the primary server.

5. In the Restore Database dialog box, click View contents.

See Also

Verifying Backups

Viewing Information about Backups

How To (SQL Server 2000)

How to view backup and media header information (Enterprise
Manager)
How to view backup and media header information (Enterprise Manager)

To view backup and media header information

1. Expand a server group, and then expand a server.

2. Expand Management, and then click Backup.

3. In the details pane, right-click the named backup device to view, and then click Properties.

4. Click View Contents.

See Also

Verifying Backups

Viewing Information about Backups

How To (SQL Server 2000)

How to back up files and filegroups (Enterprise Manager)
How to back up files and filegroups (Enterprise Manager)

To back up files and filegroups

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Backup Database.

3. In the Name box, type the backup set name. Optionally, in Description, type a description of the backup set.

4. Under Backup, click File and filegroup,and then click the browse (...) button.

5. In the Specify Filegroups and Files dialog box, select a Backup for each filegroup or file you want to back up.

By selecting a filegroup name, all the files within the filegroup are selected automatically.

6. Under Destination, click Tape or Disk, and then specify a backup destination.

If no backup destinations appear, click Add to add an existing backup destination or to create a new one.

7. Under Overwrite, do one of the following:

Click Append to media to append the backup to any existing backups on the backup device.

Click Overwrite existing media to overwrite any existing backups on the backup device.

8. Optionally, the Schedule check box to schedule the backup operation for later or periodic execution.

9. Optionally, click the Options tab, and then do one or more of the following:

Select the Verify backup upon completion check box to cause the backup to be verified when backed up.

Select the Eject tape after backup check box to cause the tape to be ejected when the backup operation has
completed. Available only with tape devices.

Select the Check media set name and backup set expiration check box to cause the backup media to be checked
to prevent accidental overwrites. In Media set name, type the name of the media to be used for the backup
operation. Leave blank when specifying only the backup set expiration.

10. If it is the first use of the backup media or you want to change an existing media label, under Media set labels, select the
Initialize and label media check box and type the media set name and media set description. The media can be initialized
and labeled only when it is being overwritten.

See Also

Using File Backups

How To (SQL Server 2000)

How to restore files and filegroups (Enterprise Manager)
How to restore files and filegroups (Enterprise Manager)

Note If you are restoring a file or filegroup backup that does not have any backup set information listed in the backup history
stored in the msdb database, such as a file or filegroup backup created on another server, see How to restore a backup from a
backup device.

To restore files and filegroups

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore, if different from the default.

4. Click Filegroups or files.

5. In the Restore list, select each file and filegroup to restore.

6. Click the Options tab, and then do one of the following:

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
backup is to be applied.

Important If the files have been modified since the file backup was created, transaction log backups created after the file backup
must be applied.

See Also

Using File Backups

How To (SQL Server 2000)

How to restore files and filegroups over existing files
(Enterprise Manager)
How to restore files and filegroups over existing files (Enterprise Manager)

To restore files and filegroups over existing files

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, point to All Tasks, and then click Restore Database.

3. In the Restore as database box, type or select the name of the database to restore, if different from the default.

4. Click From device, and then click Select devices.

5. Under Restore from, click Tape or Disk, and then select a device from which to restore.

If no backup destinations appear, click Add to add an existing backup device or to create a new one. The backup device must
reference the backup device files created at the primary server.

6. In the Restore Database dialog box, click View contents. Select the backup set to restore.

Note This option scans the backup set for the backup content information and can be time consuming, especially when
using tape devices. If you already know the backup set to restore, type the backup set number in Backup number instead.

7. Under Restore backup set, click File or filegroup, and then type the names of the files you want to restore.

8. Click the Options tab, and then click Force restore over existing database.

9. Under Recovery completion state, do one of the following:

Click Leave database operational. No additional transaction logs can be restored if no further transaction log
backups are to be applied.

Click Leave database nonoperational, but able to restore additional transaction logs if another transaction log
backup is to be applied.

See Also

Copying Databases

How To (SQL Server 2000)

How to set the recovery model for a database (Enterprise
Manager)
How to set the recovery model for a database (Enterprise Manager)

To set the recovery model for a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database, and then click Properties.

3. Click the Options tab.

4. In the Model list, click a recovery model.

See Also

Using Recovery Models

How To (SQL Server 2000)

Managing Servers
Microsoft® SQL Server™ server management comprises a wide variety of administration tasks, including:

Registering servers and assigning passwords.

Reconfiguring network connectivity.

Configuring linked servers, which allows you to execute distributed queries and distributed transactions on OLE DB data
sources across the enterprise.

Configuring remote servers, which allows you to use one instance of SQL Server to execute a stored procedure residing on
another instance of SQL Server.

Configuring standby servers.

Setting server configuration options.

Managing SQL Server messages.

Setting the polling intervals.

In most cases, you do not need to reconfigure the server. The default settings for server components, configured during SQL
Server Setup, allow you to run an instance of SQL Server immediately after SQL Server is installed. However, server management
is necessary in those situations where you want to add new servers, set up special server configurations, change the network
connections, or set server configuration options to improve SQL Server performance.

How To (SQL Server 2000)

How to register a server (Enterprise Manager)
How to register a server (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To register a server

1. Right-click a server or a server group, and then click New SQL Server Registration.

Note If you selected the From now on I want to perform this task without using a wizard check box the last time you
used the Register Server Wizard, SQL Server Enterprise Manager displays the Registered SQL Server Properties dialog
box. Otherwise, the Register Server Wizard is started.

2. In the Server box, type the server name.

3. To specify the connection between SQL Server Enterprise Manager (as a client) and the server running the instance of
Microsoft® SQL Server™ being registered, do one of the following:

Click Use Windows Authentication

Security Note When possible, use Windows Authentication.

-or-

Click Use SQL Server Authentication

With this type of connection, you must provide a login name and password. Select the Always prompt for login
name and password check box to always prompt user for login name and password, rather than storing your login
id and password in your registry.

Important For maximum security, you should select to prompt for the login name and password when possible.

4. In the Server Group list, click a server group.

Note If the group you need does not exist yet, create it by clicking the build (...) button, and then completing the Server
Groups dialog box.

5. Do one or more of the following:

Select the Display SQL Server state in console check box to turn on service polling.

Select the Show system databases and system objects check box to show all system databases and objects.

Select the Automatically start SQL Server when connecting check box to start an instance of SQL Server
automatically.

6. Repeat Steps 1 through 5 to register each server with SQL Server Enterprise Manager.

See Also

How to create server groups

Managing Servers

Registering Servers

How To (SQL Server 2000)

How to create server groups (Enterprise Manager)
How to create server groups (Enterprise Manager)

To create server groups

1. Right-click a server group, and then click New SQL Server Registration.

2. Under Options, click the add (...) button.

3. In the Name box, enter a unique name for the new group.

4. Choose from the following group levels:

Top level group

Sub-group of

If this option is selected, you need to select the top level group under which you want the new subgroup to be below.

5. Repeat Steps 2 through 4 to create each new server group.

See Also

How to register a server (Enterprise Manager)

Managing Servers

Registering Servers

How To (SQL Server 2000)

How to change a server's registration (Enterprise Manager)
How to change a server's registration (Enterprise Manager)

To change a server's registration

1. Expand a server group, and then right-click a server.

2. Click Edit SQL Server Registration properties, and then change the server's registration as appropriate.

See Also

Registering Servers

How To (SQL Server 2000)

How to remove a registered server running SQL Server
(Enterprise Manager)
How to remove a registered server running SQL Server (Enterprise Manager)

To remove a registered server running SQL Server

1. Expand a server group, and then right-click a server.

2. Click Delete SQL Server Registration.

3. Confirm the deletion.

How To (SQL Server 2000)

How to connect to a registered server running SQL Server
(Enterprise Manager)
How to connect to a registered server running SQL Server (Enterprise Manager)

To connect to a registered server running SQL Server

1. Expand a server group, and then right-click a server.

2. Click Connect or expand the server.

How To (SQL Server 2000)

How to disconnect from a registered server running SQL Server
(Enterprise Manager)
How to disconnect from a registered server running SQL Server (Enterprise Manager)

To disconnect from a registered server running SQL Server

1. Expand a server group, and then right-click a server.

2. Click Disconnect.

How To (SQL Server 2000)

How to assign the sa password on a newly installed server
(Enterprise Manager)
How to assign the sa password on a newly installed server (Enterprise Manager)

To assign the sa password

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click sa, and then click Properties.

4. In the Password box, type the new password.

How To (SQL Server 2000)

How to view server properties (Enterprise Manager)
How to view server properties (Enterprise Manager)

To view server properties

1. Expand a server group, and then right-click a server.

2. Click Properties.

How To (SQL Server 2000)

How to check and set remote server configuration options
(Enterprise Manager)
How to check and set remote server configuration options (Enterprise Manager)

To check and set remote server configuration options

1. Expand a server group, and then right-click a server.

2. Click Properties, and then click the Connections tab.

3. Under Remote server connections, review and, if appropriate, change the values for the following configuration options:

Allow other SQL Servers to connect remotely to this SQL Server using RPC.

Query time-out (sec, 0 = unlimited)

This option specifies the number of seconds to wait before returning from processing a query. A value of 0 will allow
an infinite wait. The default is 0.

Enforce distributed transactions (MTS).

Changing a configuration option requires that you stop and restart the server. If you changed a configuration option, then
proceed to Step 4. If not, skip to Step 6.

4. Right-click the server, and then click Stop.

5. After the server has stopped, right-click the server, and then click Start.

6. Repeat Steps 1 through 5 on the other server of the remote server pair.

How To (SQL Server 2000)

How to set access to your display of servers and groups
(Enterprise Manager)
How to set access to your display of servers and groups (Enterprise Manager)

To set access to your display of servers and groups

1. Expand a server group, and then click a server.

2. On the Tools menu, click Options.

3. On the General tab, click Read/Store locally, and then select or clear the Read/Store user independent check box.

How To (SQL Server 2000)

How to set the polling interval (Enterprise Manager)
How to set the polling interval (Enterprise Manager)

To set the polling interval

1. Expand a server group, and then click a server.

2. On the Tools menu, click Options.

3. On the General tab, select the Poll server to find out state of server and related services check box.

4. In the Service list, click the service to poll.

5. In the Poll interval (seconds) box, type or select the polling interval.

See Also

How to set the polling interval (Service Manager)

How To (SQL Server 2000)

How to disable a remote server setup (Enterprise Manager)
How to disable a remote server setup (Enterprise Manager)

To disable a remote server setup

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Remote Servers to list the remote servers defined on the selected server.

3. Right-click the remote server to disable, and then click Delete.

How To (SQL Server 2000)

How to manage or view SQL Server messages (Enterprise
Manager)
How to manage or view SQL Server messages (Enterprise Manager)

To manage or view SQL Server messages

1. Expand a server group, and then right-click a server.

2. Point to All Tasks, and then click Manage SQL Server Messages.

3. To specify search options, do one or more of the following:

In the Message text contains box, type the text to search for.

In the Error number box, type the error number to search for.

Under Severity, select a severity level to search for.

4. To specify the messages to include, do one of the following:

Select the Only include logged messages check box.

-or-

Select the Only include user-defined messages check box.

5. Click Find to find all messages that match the search criteria.

How To (SQL Server 2000)

How to edit a SQL Server message (Enterprise Manager)
How to edit a SQL Server message (Enterprise Manager)

To edit a SQL Server message

1. Expand a server group, and then right-click a server.

2. Point to All Tasks, and then click Manage SQL Server Messages.

3. Click the Messages tab, select the message to edit, and then click Edit.

How To (SQL Server 2000)

How to delete a SQL Server message (Enterprise Manager)
How to delete a SQL Server message (Enterprise Manager)

To delete a SQL Server message

1. Expand a server group, and then right-click a server.

2. Point to All Tasks, and then click Manage SQL Server Messages.

3. Click the Messages tab, select the message to delete, and then click Delete.

4. Confirm the deletion.

How To (SQL Server 2000)

How to add a new SQL Server message (Enterprise Manager)
How to add a new SQL Server message (Enterprise Manager)

To add a new SQL Server message

1. Expand a server group, and then right-click a server.

2. Point to All Tasks, and then click Manage SQL Server Messages.

3. On the Messages tab, click New.

4. To specify message options, do the following:

In the New SQL Server Message dialog box, select an error number for the message.

In the Severity box, type or select a severity level.

In the Message text box, type the text for the message.

In the Language box, click the language to be used in the message. The default is English.

5. If you want the message always to be written to the Microsoft® Windows® application log, select the Always write to
Windows NT event log check box.

How To (SQL Server 2000)

How to find a SQL Server message (Enterprise Manager)
How to find a SQL Server message (Enterprise Manager)

To find a SQL Server message

1. Expand a server group, and then right-click a server.

2. Point to All Tasks, and then click Manage SQL Server Messages.

3. Click the Search tab, and then specify the text, error number, and severity level for the message. You can also choose to
include only logged or user-defined messages.

4. Click Find.

How To (SQL Server 2000)

How to set up a linked server (Enterprise Manager)
How to set up a linked server (Enterprise Manager)

To set up a linked server

1. Expand a server group, and then expand a server.

2. Expand Security, right-click Linked Servers, and then click New Linked Server.

3. Click the General tab, and in the Linked server box, type the name of the server to link.

4. Under Server type, click a selection.

If you select Other data source, you will have to specify provider properties.

How To (SQL Server 2000)

How to delete a linked server (Enterprise Manager)
How to delete a linked server (Enterprise Manager)

To delete a linked server

1. Expand a server group, and then expand a server.

2. Expand Security, and then expand Linked Servers.

3. Right-click the linked server to delete, and then click Delete.

4. Confirm the deletion.

How To (SQL Server 2000)

How to configure log shipping (Enterprise Manager)
How to configure log shipping (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To configure log shipping with the Database Maintenance Plan Wizard

Note Before you configure log shipping, you must create a share on the primary database to make the transaction logs available.
This is a share off of the directory that the transaction logs are dumped to. For example, if you dump the logs to the directory
e:\data\tlogs\, you could create the \\logshipping\tlogs share off the directory.

1. In the Select Databases screen, select the These databases check box, and then select the database to log ship.

If you select more than one database, log shipping will not work, and the log shipping option will not be available. You are
not allowed to select a database that is already configured for log shipping.

2. Select the Ship the transaction logs to other SQL Servers (Log Shipping) check box.

3. Continue through the wizard, specifying the rest of the database maintenance options, until you get to the Specify the Log
Shipping Destinations screen.

4. Click Add to add a destination database.

For this option to be available, you must have selected to use log shipping earlier in the wizard.

5. In the Add Destination Database screen, select a server name.

The server must be registered and running Microsoft® SQL Server™ 2000 Enterprise Edition to appear in the drop-down
list. If you want this destination to become an available source database, you must select the Allow database to assume
primary role check box. If this box is not selected, this destination database will not be able to assume the source database
role in the future. If you have selected the Allow database to assume primary role check box, you must also specify the
Transaction Log Backup Directory on the destination database to which the logs will be backed up.

6. To change the transaction log destination database from the default location, enter a location in the Directory box.

7. If the source database does not exist on the destination database, select the Create New Database check box.

The Database Name box will default to the source database name. If you want a different database name on the
destination server, specify a new name. If you have chosen to allow this destination database to assume the source role, you
cannot change the database name from the default.

8. If you have selected the Create New Database check box, you must specify the file directories for the data and log on the
destination database in the For Data and For Log boxes.

9. If the source database already exists on the destination database, select the Use Existing Database check box. If the
database name on the destination server is different, enter it in the Database Name box. This database must have been
restored using the WITH STANDBY option to properly accept logs.

10. In the Initialize the Destination Databases screen, either:

Click Take full database backup now.

–or-

Click Use most recent backup file to initialize the destination database.

11. In the Log Shipping Schedules screen, view the default log shipping schedule. If you would like to alter the schedule, click
Change.

12. In the Copy/Load Frequency box, set the frequency, in minutes, with which you want the destination servers to backup
and restore the transaction logs from the source server.

13. In the Load Delay box, set the delay, in minutes, you want the destination database to wait before it restores the transaction
log from the source server.

The default for this box is 0 minutes, which indicates that the destination database should immediately restore any
transaction log backups.

14. In the File Retention Period box, specify the length of time that must elapse before a transaction log can be deleted.

15. In the Log Shipping Thresholds screen, set the Backup Alert Threshold.

This is the maximum elapsed time since the last transaction log backup was made on the source server. After the time
exceeds this specified threshold, an alert will be generated by the monitor server.

16. In the Out of Sync Alert box, specify how long a time has passed between the last transaction log backup on the source
server and the last transaction log restore on the destination server.

After the time exceeds this specified threshold, an alert will be generated by the monitor server.

17. In the Specify the Log Shipping Monitor Information screen, type the name of the server that will monitor log shipping.

18. Click either Use Windows Authentication or Use SQL Server Authentication to connect to the monitor server. The
log_shipping_monitor_probe login name is fixed and must be used to connect to the monitor server. If this is a new
account, choose a new password. If the account already exists on the monitor server, you must specify the existing
password.

Security Note When possible, use Windows Authentication.

Note Using the Database Maintenance Wizard to set up log shipping, you can log ship only to disks; the backup to tape
option is not available.

How To (SQL Server 2000)

How to remove log shipping (Enterprise Manager)
How to remove log shipping (Enterprise Manager)

To remove log shipping

1. Expand a server group, and then expand the primary server.

2. Expand Management, and then click Database Maintenance Plans.

3. In the details pane, right-click the database maintenance plan to delete, and then click Properties.

4. Click the Log Shipping tab, and then click Remove Log Shipping.

This stops log shipping on the primary server, removes all secondary servers, and removes the monitor server. You must
delete the database maintenance plan to remove additional jobs.

How To (SQL Server 2000)

How to add or edit a destination server (Enterprise Manager)
How to add or edit a destination server (Enterprise Manager)

To add or edit a destination server

1. Expand a server group, and then expand the primary server.

2. Expand Management, and then click Database Maintenance Plans.

3. In the details pane, right-click the database maintenance plan to edit, and then click Properties.

4. Click the Log Shipping tab, and then click Add or Edit.

5. In the Directory box, type or select the directory in which to store the transaction logs.

6. Do one of the following:

Click Create New Database to create a new database on the destination server. If you create a new database, you
must specify the database name, along with the file directories for the data and logs.

Click Use Existing Database if the database already exists on the destination server.

How To (SQL Server 2000)

How to delete a destination server (Enterprise Manager)
How to delete a destination server (Enterprise Manager)

To delete a destination server

1. Expand a server group, and then expand the primary server.

2. Expand Management, and then click Database Maintenance Plans.

3. In the details pane, right-click the database maintenance plan to edit, and then click Properties.

4. Click the Log Shipping tab, select the destination server to delete, and then click Delete.

5. Confirm the deletion.

Note If you delete the only destination server, all of log shipping is removed from the destination, source, and monitor
servers. You must use the Database Maintenance Plan Wizard or the Database Properties dialog box to add other
destination servers.

How To (SQL Server 2000)

How to view the status of servers configured for log shipping
(Enterprise Manager)
How to view the status of servers configured for log shipping (Enterprise Manager)

To view the status of servers configured for log shipping

1. Expand a server group, and then expand the monitor server.

2. Expand Management, and then click Log Shipping Monitor.

3. In the details pane, right-click the log shipping pair to monitor, and then click Properties.

4. Click the Status tab, and then view information about the status of both the source and destination servers.

Information about the last backup file, the last file copied, and the last file restored is also displayed.

How To (SQL Server 2000)

How to view or edit information about the source server
(Enterprise Manager)
How to view or edit information about the source server (Enterprise Manager)

To view or edit information about the source server

1. Expand a server group, and then expand the monitor server.

2. Expand Management, and then click Log Shipping Monitor.

3. In the details pane, right-click the log shipping pair to monitor, and then click Properties.

4. Click the Source tab, and then view or edit information about the source server (for example, the backup failure alert and
the alert generation suppression value

There is also an option to view the backup schedule for the source server.

How To (SQL Server 2000)

How to view or edit information about the destination server
(Enterprise Manager)
How to view or edit information about the destination server (Enterprise Manager)

To view or edit information about the destination server

1. Expand a server group, and then expand the monitor server.

2. Expand Management, and then click Log Shipping Monitor.

3. In the details pane, right-click the log shipping pair to monitor, and then click Properties.

4. Click the Destination tab, and then view or edit information about the destination server (for example, the backup failure
alert and the alert generation suppression).

There is also an option to view and/or enable the copy and restore schedules for the destination server.

How To (SQL Server 2000)

How to add an external tool to the Tools menu (Enterprise
Manager)
How to add an external tool to the Tools menu (Enterprise Manager)

To add an external tool to the Tools menu

1. On the Tools menu, click External Tools.

2. Click Add.

3. Enter a command and parameters.

You can launch any Microsoft® Windows NT® 4.0 or Windows® 2000 application from SQL Server Enterprise Manager.
External applications can be added to and run from the Tools menu.

Note You can use [SVR] and [DBN] in the Parameters box to represent the current server and database. When you run the
tool, SQL Server Enterprise Manager substitutes the current server and database names, passing them as parameters to the
application.

How To (SQL Server 2000)

How to launch SQL Server Enterprise Manager in the Computer
Management console (Windows)
How to launch SQL Server Enterprise Manager in the Computer Management console

Note In Microsoft® Windows® 2000, you can access SQL Server Enterprise Manager from the Computer Management console.

To launch SQL Server Enterprise Manager in the Computer Management console

1. On the Start menu, point to Programs, point to Administrative Tools, and then click Computer Management.

2. Expand the Services and Applications group.

3. Expand the Microsoft SQL Servers group.

See Also

How to enable child windows (Enterprise Manager)

How To (SQL Server 2000)

How to enable child windows (Enterprise Manager)
How to enable child windows in SQL Server Enterprise Manager

Note The first time you use the Computer Management console to access SQL Server Enterprise Manager, you may need to
change the console mode to enable child windows.

To enable child windows in SQL Server Enterprise Manager

1. On the Start menu, point to Search, and then click For Files or Folders.

2. In the Search for files or folders named box, type Compmgmt.msc, and then click Search Now.

3. Right-click Compmgmt.msc, and then click Author.

4. On the Console menu, click Options.

5. In the Console mode list, click User mode - limited access, multiple window.

See Also

How to launch SQL Server Enterprise Manager in the Computer Management console (Windows)

How To (SQL Server 2000)

How to configure the affinity mask (Enterprise Manager)
How to configure the affinity mask (Enterprise Manager)

To configure the affinity mask

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Processor tab.

4. Under Processor control, select one or more processors to assemble your affinity mask.

How To (SQL Server 2000)

How to set the allow updates option (Enterprise Manager)
How to set the allow updates option (Enterprise Manager)

To set the allow updates option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Server Settings tab.

4. Under Server behavior, select or clear the Allow modifications to be made directly to the system catalogs check box.

How To (SQL Server 2000)

How to configure the cost threshold for parallelism (Enterprise
Manager)
How to configure the cost threshold for parallelism (Enterprise Manager)

To configure the cost threshold for parallelism

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Processor tab.

4. Under Parallelism, in the Minimum query plan threshold for considering queries for parallel execution (cost
estimate) box, type or select a value from 0 through 32767.

This threshold value is relevant only in symmetrical multiprocessing (SMP) environments.

How To (SQL Server 2000)

How to set the default language (Enterprise Manager)
How to set the default language (Enterprise Manager)

To set the default language

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Server Settings tab.

4. In the Default language for user box, choose the language in which Microsoft® SQL Server™ should display system
messages.

The default language is English.

How To (SQL Server 2000)

How to set a fixed fill factor (Enterprise Manager)
How to set a fixed fill factor (Enterprise Manager)

To set a fixed fill factor

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Database Settings tab.

4. Under Settings, select the Fixed check box, and then position the fill factor slider.

How To (SQL Server 2000)

How to configure the number of processors available for
parallel queries (Enterprise Manager)
How to configure the number of processors available for parallel queries (Enterprise Manager)

To configure the number of processors available for parallel queries

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Processor tab.

4. Under Parallelism, select the number of processors to execute queries in parallel.

By default, all available processors are used.

How To (SQL Server 2000)

How to set minimum query memory (Enterprise Manager)
How to set minimum query memory (Enterprise Manager)

To set minimum query memory

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Memory tab.

4. In the Minimum query memory box, type or select a value from 512 through 2147483647 kilobytes (KB).

The default value is 1024 KB.

How To (SQL Server 2000)

How to configure the maximum number of worker threads
(Enterprise Manager)
How to configure the maximum number of worker threads (Enterprise Manager)

To configure the maximum number of worker threads

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Processor tab.

4. In the Maximum worker threads box, type or select a value from 32 through 32767.

The default value is 255.

How To (SQL Server 2000)

How to set the backup retention duration (Enterprise Manager)
How to set the backup retention duration (Enterprise Manager)

To set the backup retention duration

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Database Settings tab.

4. In the Default backup media retention (days) box, type or select a value from 0 through 365 to set the number of days
the backup medium will be retained after a database or transaction log backup.

The default value is 0 days.

How To (SQL Server 2000)

How to set a fixed amount of memory (Enterprise Manager)
How to set a fixed amount of memory (Enterprise Manager)

To set a fixed amount of memory

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Memory tab.

4. Click Use a fixed memory size (MB), and then position the fixed memory slider.

Note If you use the default settings, Microsoft® SQL Server™ configures memory dynamically.

How To (SQL Server 2000)

How to set the nested triggers option (Enterprise Manager)
How to set the nested triggers option (Enterprise Manager)

To set the nested triggers option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Server Settings tab.

4. Under Server behavior, select or clear the Allow triggers to be fired which fire other triggers (nested triggers) check
box.

See Also

Using Nested Triggers

How To (SQL Server 2000)

How to set the priority boost option (Enterprise Manager)
How to set the priority boost option (Enterprise Manager)

To set the priority boost option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Processor tab.

4. Under Processor control, select the Boost SQL Server priority on Windows check box.

How To (SQL Server 2000)

How to set the recovery interval (Enterprise Manager)
How to set the recovery interval (Enterprise Manager)

To set the recovery interval

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Database Settings tab.

4. Under Recovery, in the Recovery interval (min) box, type or select a value from 0 through 32767 to set the maximum
amount of time, in minutes, that Microsoft® SQL Server™ should spend recovering each database at startup.

The default value is 0 minutes, indicating automatic configuration.

How To (SQL Server 2000)

How to set remote server access (Enterprise Manager)
How to set remote server access (Enterprise Manager)

To set remote server access

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Connections tab.

4. Under Remote server connections, select or clear the Allow other SQL Servers to connect remotely to this SQL
Server using RPC check box.

How To (SQL Server 2000)

How to enforce distributed transactions for remote procedures
(Enterprise Manager)
How to enforce distributed transactions for remote procedures (Enterprise Manager)

To enforce distributed transactions for remote procedures

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Connections tab.

4. Under Remote server connections, select the Enforce distributed transactions (MTS) check box.

Note Remote server connections must be allowed before this value can be set.

How To (SQL Server 2000)

How to set a time limit for remote queries (Enterprise
Manager)
How to set a time limit for remote queries (Enterprise Manager)

To set a time limit for remote queries

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Connections tab.

4. Under Remote server connections, in the Query time-out (sec, 0 = unlimited) box, type or select a value from 0
through 2147483647 to set the maximum number seconds that Microsoft® SQL Server™ will wait before timing out.

Note Remote server connections must be allowed before this value can be set.

How To (SQL Server 2000)

How to set the working set size option (Enterprise Manager)
How to set the working set size option (Enterprise Manager)

To set the working set size option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Memory tab.

4. Select or clear the Reserve physical memory for SQL Server check box.

How To (SQL Server 2000)

How to set the two digit year cutoff option (Enterprise
Manager)
How to set the two digit year cutoff option (Enterprise Manager)

To set the two digit year cutoff option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Server Settings tab.

4. Under Two digit year support, in the When a two-digit year is entered, interpret it as a year between box, type or
select a value that is the ending year of the time span.

The default time span for Microsoft® SQL Server™ is 1950-2049, which represents a cutoff year of 2049. This means that
SQL Server interprets a two-digit year of 49 as 2049, a two-digit year of 50 as 1950, and a two-digit year of 99 as 1999. To
maintain backward compatibility, leave the setting at the default value.

Many client applications, such as those based on automation objects, use 2030 as the cutoff year. To make SQL Server
compatible with those client applications, specify a time span of 1931-2030.

How To (SQL Server 2000)

How to set user connections (Enterprise Manager)
How to set user connections (Enterprise Manager)

To set user connections

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Connections tab.

4. Under Connections, in the Maximum concurrent user connections (0 = unlimited) box, type or select a value from 0
through 32767 to set the maximum amount of simultaneous user connections allowed to the instance of Microsoft® SQL
Server™.

How To (SQL Server 2000)

How to configure user options (Enterprise Manager)
How to configure user options (Enterprise Manager)

To configure user options

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Connections tab.

4. In the Default connection options box, select one or more attributes to configure the default query-processing options
for all connected users.

By default, no user options are configured.

How To (SQL Server 2000)

How to configure packet size (Enterprise Manager)
How to configure packet size (Enterprise Manager)

To configure packet size

1. On the Tools menu, click Options.

2. Click the Advanced tab.

3. In the Packet size (bytes) box, type a value.

How To (SQL Server 2000)

How to set the query governor cost limit option (Enterprise
Manager)
How to set the query governor cost limit option (Enterprise Manager)

To set the query governor cost limit option

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Server Settings tab.

4. Under Server behavior, select or clear the Use query governor to prevent queries exceeding specified cost check
box.

If you select this check box, in the spin box, enter a nonzero, nonnegative value, which the query governor uses to disallow
execution of any query with a running length exceeding that value.

How To (SQL Server 2000)

How to enable encryption after SQL Server has been installed
(Network Utility)
How to enable encryption after SQL Server has been installed (Network Utility)

Note If you want to use encryption with a failover cluster, you must install the server certificate with the fully qualified DNS
name of the virtual server on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
test1.redmond.corp.microsoft.com and test2.redmond.corp.microsoft.com and a virtual SQL Server "Virtsql", you need to get a
certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the Force
protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption.

To enable encryption

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility

2. If Multiprotocol does not appear under Enabled protocols, click it under Disabled protocols, and then click Enable.
Otherwise, skip to Step 3.

3. Under Enabled protocols, click Multiprotocol, and then click Properties.

4. Select the Enable encryption check box.

See Also

Multiprotocol Clients

How To (SQL Server 2000)

How to connect to SQL Server through Microsoft Proxy Server
(Setup)
How to connect to SQL Server through Microsoft Proxy Server (Setup)

Note To listen remotely by way of Remote WinSock (RWS), define the local address table (LAT) for the proxy server so that the
listening node address is outside the range of LAT entries.

To connect to SQL Server through Microsoft Proxy Server

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

2. If TCP/IP does not appear under Enabled protocols, click it under Disabled protocols, and then click Enable. Otherwise,
skip to Step 3.

3. Under Enabled protocols, click TCP/IP, and then click Properties.

4. Ensure that the port is correct.

How To (SQL Server 2000)

How to set the polling interval (Service Manager)
How to set the polling interval (Service Manager)

To set the polling interval

1. Start SQL Server Service Manager, if it is not already running.

2. In the Microsoft® Windows® taskbar, right-click SQL Server Service Manager, and then click Options.

3. In the Polling interval (seconds) box, enter a polling interval.

The polling interval determines how often SQL Server Service Manager checks the state of Microsoft SQL Server™, SQL
Server Agent, and Microsoft Distributed Transaction Coordinator (MS DTC).

4. Optionally, select the Verify service control action check box if you want SQL Server Service Manager to provide a
confirmation box before stopping, pausing, starting, or continuing a service, including dependent services such as SQL
Server Agent.

See Also

How to set the polling interval (Enterprise Manager)

How To (SQL Server 2000)

How to configure a mail profile (Windows)
How to configure a mail profile (Windows)

To configure a mail profile

1. Log on to the Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 server by specifying the name and password
used to start Microsoft SQL Server™ services.

2. In Control Panel, double-click the Mail icon to create and configure or copy an existing mail profile. Select the appropriate
mail service to interact with your mail host. Choose a name for the profile that will help the recipient identify the messages.

3. On the instance of SQL Server, start the mail client using the newly created mail profile.

4. Send a message addressed to the same profile name to ensure that the mail client, mail profile, and e-mail provider are
working properly.

If your e-mail message does not appear, you may need to establish mail synchronization by going to the Tools menu and
then clicking Deliver Now.

How To (SQL Server 2000)

How to set up SQL Mail (Enterprise Manager)
How to set up SQL Mail (Enterprise Manager)

To set up SQL Mail

1. Expand a server group, and then expand a server.

2. Expand Support Services, right-click SQL Mail, and then click Properties.

3. In the Profile name list, type or select the mail profile that you configured for SQL Mail.

4. Click Test to check the ability of the system to start and stop mail client services with the profile entered.

You should receive a message that SQL Mail has started successfully and stopped a mail session with this profile.

How To (SQL Server 2000)

How to set up SQL Agent Mail (Enterprise Manager)
How to set up SQL Agent Mail (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To set up SQL Agent Mail

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. If you have configured a mail profile using a domain account different from the one used by Microsoft® SQL Server™, click
This account, and then enter the Microsoft Windows NT® 4.0 or Windows® 2000 account name and password used to
create the mail profile for SQL Agent Mail.

4. In the Mail profile box, select the mail profile you created for SQL Agent Mail. To ensure SQL Agent Mail works with the
selected profile, click Test.

You should receive a message that SQL Agent Mail has successfully started and stopped a mail session with this profile.

How To (SQL Server 2000)

How to enable the Lock Page in Memory option (Windows)
How to enable the Lock Page in Memory option (Windows)

Note This functionality is available only if you are running the Microsoft® Windows® 2000 operating system.

To enable the Lock Page in Memory option

1. On the Start menu, click Run, and then in the Open box, type gpedit.msc.

2. On the Group Policy console, expand Computer Configuration, and then expand Windows Settings.

3. Expand Security Settings, and then expand Local Policies.

4. Select the Users Rights Assignment check box.

The policies will be displayed in the details pane.

5. In the details pane, double-click Lock pages in memory.

6. In the Local Security Policy Setting dialog box, click Add.

7. In the Select Users or Groups dialog box, add an account with privileges to run sqlservr.exe.

How To (SQL Server 2000)

How to start the SQL Server Network Utility (Network Utility)
How to start the SQL Server Network Utility (Network Utility)

To start the SQL Server Network Utility

On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

How To (SQL Server 2000)

How to load an installed server network library (Network
Utility)
How to load an installed server network library (Network Utility)

To load an installed server network library

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

2. On the General tab, select the name of the instance of Microsoft® SQL Server™ on which to load an installed server
network library.

3. Under Disabled protocols, click the protocol you want to enable, and then click Enable.

Depending on which server network library you are loading, you may need to specify any necessary connection parameters.
To change any necessary connection parameters, click the protocol and then click Properties.

How To (SQL Server 2000)

How to deactivate a server network library configuration
(Network Utility)
How to deactivate a server network library configuration (Network Utility)

To deactivate a server network library configuration

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

2. Under Enabled protocols, click the appropriate server network library configuration, and then click Disable.

How To (SQL Server 2000)

How to edit a server network library configuration (Network
Utility)
How to edit a server network library configuration (Network Utility)

To edit a server network library configuration

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

2. Under Enabled protocols, click the server network library configuration to edit, and then click Properties.

3. In the dialog box for the specified protocol, change the server name or parameters to edit.

How To (SQL Server 2000)

How to view the installed SQL Server server network libraries
(Network Utility)
How to view the installed SQL Server server network libraries (Network Utility)

To view the installed SQL Server server network libraries

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Server Network Utility.

2. Click the Network Libraries tab. The installed Microsoft® SQL Server™ server network libraries will be displayed.

How To (SQL Server 2000)

Managing Clients
A client is a front-end application that uses the services provided by a server. The computer that hosts the application is referred
to as the client computer. Client software enables computers to connect to an instance of Microsoft® SQL Server™ on a network.

SQL Server clients can include applications of various types, such as:

OLE DB consumers.

These applications use the Microsoft OLE DB Provider for SQL Server or the Microsoft OLE DB Provider for ODBC to connect
to and converse with instances of SQL Server. The OLE DB providers serve as intermediaries between an instance of SQL
Server and client applications that consume SQL Server data as OLE DB rowsets.

ODBC applications.

These include client utilities installed with SQL Server, such as SQL Server Enterprise Manager and SQL Query Analyzer, as
well as other applications that use the SQL Server ODBC driver to connect to and converse with an instance of SQL Server.

DB-Library clients, including the SQL Server isql command prompt utility and clients written to DB-Library.

Regardless of the type of application, managing a client consists mainly of configuring its connection with the server components
of SQL Server. Depending on the requirements of your site, client management can range from little more than entering the
name of the server computer to building a library of custom configuration entries to accommodate a diverse multiserver
environment.

How To (SQL Server 2000)

How to start the Client Network Utility (Windows)
How to start the Client Network Utility (Windows)

To start the Client Network Utility

On the Start menu, point to Programs/Microsoft SQL Server, and then click Client Network Utility.

How To (SQL Server 2000)

How to display the network library version numbers (Client
Network Utility)
How to display the network library version numbers (Client Network Utility)

To display the library version numbers

Click the Network Libraries tab.

The network library, library file name, version, file date, and size are displayed.

How To (SQL Server 2000)

How to set DB-Library conversion preferences (Client Network
Utility)
How to set DB-Library conversion preferences (Client Network Utility)

Note This procedure applies to Microsoft® Windows® 32-bit operating system clients.

To set the DB-Library conversion preferences

1. Click the DB-Library Options tab.

2. Select or clear the Automatic ANSI to OEM conversion check box.

3. Select or clear the Use international settings check box.

How To (SQL Server 2000)

How to add a network library configuration (Client Network
Utility)
How to add a network library configuration (Client Network Utility)

To add a network library configuration

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, under Network libraries, select one of the network libraries.

3. Enter the server alias and any required parameter information for the network library selected.

How To (SQL Server 2000)

How to edit a network library configuration (Client Network
Utility)
How to edit a network library configuration (Client Network Utility)

To edit a network library configuration

1. Click the Alias tab, and then click the network protocol configuration to edit.

2. Click Edit.

3. In the Edit Network Library Configuration dialog box, edit the information to change.

How To (SQL Server 2000)

How to delete a network library configuration (Client Network
Utility)
How to delete a network library configuration (Client Network Utility)

To delete a network library configuration

1. Click the Alias tab, and then click the network library configuration to delete.

2. Click Remove.

How To (SQL Server 2000)

How to alias a client to an alternate pipe (Client Network
Utility)
How to alias a client to an alternate pipe (Client Network Utility)

To alias a client to an alternate pipe

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click Named Pipes.

3. In the Server alias box, enter the server alias.

4. Under Connection parameters, in the Pipe name box, type the name of the alternate pipe name (for example,
\\myserver\pipe\altpipe).

How To (SQL Server 2000)

How to configure a client to use the Multiprotocol Net-Library
(Client Network Utility)
How to configure a client to use the Multiprotocol Net-Library (Client Network Utility)

Note Before creating a Multiprotocol client configuration, make sure your computer has at least one IPC protocol loaded under
Multiprotocol on the server (Named Pipes, NWLink IPX/SPX, TCP/IP, or Windows Sockets).

To configure a client to use the Multiprotocol Net-Library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click Multiprotocol.

3. In the Server alias box, enter the name of the instance of Microsoft® SQL Server™ listening on the Multiprotocol Net-
Library.

4. Leave the Additional parameters box empty, unless the server requires specific parameters. Verify with your network
administrator before entering parameters.

How To (SQL Server 2000)

How to configure a client to use TCP/IP (Client Network Utility)
How to configure a client to use TCP/IP (Client Network Utility)

To configure a client to use TCP/IP

1. Click the General tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click TCP/IP.

3. In the Server alias box, enter the alias of the instance of Microsoft® SQL Server™ listening on the Windows Sockets Net-
Library.

With TCP/IP, you can also specify the server with its IP address instead of its name.

4. Do one of the following:

Select the Dynamically determine port check box to automatically determine the port.

Clear the Dynamically determine port check box to set the port manually, and then in the Port number box, type
the port number.

For more information about other TCP/IP protocols that support Windows Sockets, see the TCP/IP documentation.

How To (SQL Server 2000)

How to configure a client to use the NWLink IPX/SPX network
library (Client Network Utility)
How to configure a client to use the NWLink IPX/SPX network library (Client Network Utility)

To configure a client to use the NWLink IPX/SPX network library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click NWLink IPX/SPX.

3. In the Server alias box, enter the alias of the instance of Microsoft® SQL Server™ listening on the NWLink IPX/SPX Net-
Library.

4. Under Connection parameters, click either Service name or Network address, and then do one of the following:

If you clicked Service name, enter the service name.

Service name is the Microsoft Windows NT® 4.0 or Windows® 2000 computer name under which an instance of
SQL Server is running. This name is stored in the Bindery of the server computer.

If you clicked Network address, enter the address (the MAC address), port (socket number), and network (NetWare
network number).

How To (SQL Server 2000)

How to configure a client to use the AppleTalk network library
(Client Network Utility)
How to configure a client to use the AppleTalk network library (Client Network Utility)

To configure a client to use the AppleTalk network library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click AppleTalk.

3. In the Server alias box, enter the name of the instance of Microsoft® SQL Server™ listening on the AppleTalk Net-Library.

4. Under Connection parameters, type the AppleTalk object name and optional zone identifiers.

How To (SQL Server 2000)

How to configure a client to use the Banyan VINES network
library (Client Network Utility)
How to configure a client to use the Banyan VINES network library (Client Network Utility)

To configure a client to use the Banyan VINES network library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click Banyan VINES.

3. In the Server alias box, enter the alias of the instance of Microsoft® SQL Server™ listening on the Banyan VINES Net-
Library.

4. Under Connection parameters, type the service and the VINES organization. You can use the default value of MSSQL for
group.

How To (SQL Server 2000)

How to configure a client to use the VIA network library (Client
Network Utility)
How to configure a client to use the VIA network library (Client Network Utility)

To configure a client to use the Banyan VINES network library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click VIA.

3. In the Server alias box, enter the alias of the instance of Microsoft® SQL Server™ listening on the VIA Net-Library.

4. Under Connection parameters, type the server name and server port number.

How To (SQL Server 2000)

How to configure a client to use a nonstandard network library
(Client Network Utility)
How to configure a client to use a nonstandard network library (Client Network Utility)

To configure a client to use a nonstandard network library

1. Click the Alias tab, and then click Add.

2. In the Add Network Library Configuration dialog box, click Other.

3. In the Server alias box, enter the alias of the instance of Microsoft® SQL Server™ listening on the Net-Library you plan to
install.

4. Under Connection parameters, type the file name (file must be a DLL) of the installed Net-Library. Do not enter the DLL
extension.

5. If necessary, enter any additional information in the Parameters box (such as user name and password). Use comma
separators between parameters.

How To (SQL Server 2000)

How to verify that SQL Server is listening on AppleTalk and can
accept a client connection (Client Network Utility)
How to verify that SQL Server is listening on AppleTalk and can accept a client connection (Client
Network Utility)

To verify that SQL Server is listening on AppleTalk and can accept a client connection

1. Copy the client AppleTalk Net-Library (Dbmsadsn.dll) from the \WINNT\system32 directory of the server to the same
directory of a remote computer running Microsoft® Windows NT® or Microsoft Windows® 2000 Services for Macintosh.

2. On the remote workstation, start SQL Server Client Configuration.

3. If AppleTalk is listed in the Disabled protocols list, click AppleTalk, and then click Enable.

4. In the Enabled protocols by order list, click AppleTalk, and then click the up button until AppleTalk is at the top of the
list.

5. Click OK.

6. Attempt an ISQL connection with the AppleTalk service object name.

For example, at the command line, type:

isql -Usa -Psapassword -Sservicename

If you can connect with ISQL and execute queries, the server is configured properly and is accepting connections.

Note The Microsoft Win32® AppleTalk (ADSP) client side Net-Library (Dbmsadsn.dll) is included for testing ADSP connections
and troubleshooting AppleTalk connections between Macintosh clients and Microsoft SQL Server™. This Net-Library is intended
to be used only when testing a connection from a remote client to an instance of SQL Server. If you attempt to make local
connections through the ADSP Net-Library to an instance of SQL Server listening on AppleTalk, you will receive the following
network error: Net-Library error 11: getsockopt().

How To (SQL Server 2000)

How to check the ODBC SQL Server driver version (Windows)
How to check the ODBC SQL Server driver version (Windows)

Note You can follow these steps only if you are running the Microsoft® Windows NT® 4.0 operating system.

To check the ODBC SQL Server driver version (32-bit ODBC)

1. In Control Panel, double-click ODBC Data Sources.

2. Click the Drivers tab.

Information for the Microsoft SQL Server™ entry is displayed in the Version column.

How To (SQL Server 2000)

Automating Administrative Tasks
This topic defines automated administration and its components, multiserver administration, and introduces Microsoft® SQL
Server™ tools for defining automated tasks.

What is Automated Administration?

Automated administration is the programmed response to predictable administrative responsibilities or server events.
Administrators, application writers, and analysts operating data warehouses can benefit from task automation. To automate
administration:

Establish which administrative responsibilities or server events occur regularly and can be administered programmatically.

Define a set of jobs and alerts.

Run the SQL Server Agent service.

Why Should I Automate Administration?

The job of an administrator entails various administrative duties that do not change from day to day and can be tedious chores.
By automating recurring administrative tasks and responses to server events, you free time to perform other tasks that require
creativity and lack predictable or programmable responses.

How To (SQL Server 2000)

How to set the service startup account for SQL Server Agent
(Enterprise Manager)
How to set the service startup account for SQL Server Agent (Enterprise Manager)

To set the service startup account for SQL Server Agent

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Under Service startup account, do one of the following:

Click System account if your jobs require resources from the local server only.

Click This account if your jobs require resources across the network, including application resources; if you want to
forward events to other Windows® application logs; or if you want to notify operators through e-mail or pagers.

4. If you clicked This account, enter the Microsoft® Windows NT® 4.0 or Windows 2000 account name that SQL Server
Agent will use, and then enter the password for this account in the Password box.

You must restart SQL Server Agent before these configuration changes take effect.

How To (SQL Server 2000)

How to set the mail profile for SQL Server Agent (Enterprise
Manager)
How to set the mail profile for SQL Server Agent (Enterprise Manager)

To set the mail profile for SQL Server Agent

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Under Mail session, select a profile in the Mail profile box. If no profiles are listed, enter the name of the profile to use.

How To (SQL Server 2000)

How to set the SQL Server connection (Enterprise Manager)
How to set the SQL Server connection (Enterprise Manager)

To set the SQL Server connection

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Connection tab, and under SQL Server connection, do of the following:

Click Use Windows Authentication if you are running SQL Server Agent on a Microsoft® Windows NT® 4.0 or
Windows 2000 server.

Use SQL Server Authentication if you are running SQL Server Agent on Windows 98.

If you clicked Use SQL Server Authentication, in the SysAdmin login ID box, enter a login ID of a Microsoft SQL
Server™ login who is a member of the sysadmin role. In the Password box, enter the password for the SQL Server
login.

How To (SQL Server 2000)

How to set a SQL Server alias (Enterprise Manager)
How to set a SQL Server alias (Enterprise Manager)

To set a SQL Server alias

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Connection tab, and in the Local host server list, click the alias to which SQL Server Agent should connect.

Select an alias that refers to the local instance of Microsoft® SQL Server™ or SQL Server Agent will not work correctly.

How To (SQL Server 2000)

How to create a job (Enterprise Manager)
How to create a job (Enterprise Manager)

To create a job

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, and then click New Job.

4. In the Name box, enter a name for the job.

5. Clear the Enabled check box if you do not want the job to be run immediately following its creation. For example, if you
want to test a job before it is scheduled to run, disable the job.

6. Under Source, do one of the following:

Click Target local server if the job should run on this server only. Skip to Step 9 if you select this option.

Click Target multiple servers if the job should run on other servers. Then click Change.

This option is enabled only if the server is a master server.

7. In the Change Job Target Servers dialog box, on the Available Servers tab, click a server, and then click the right arrow to
move the server to the Selected target servers list.

8. Click OK to return to the New Job Properties dialog box.

9. In the Owner list, select a user to be the owner of the job.

10. In the Description box, enter a description of what the job does. The maximum number of characters is 512.

Important Each job must have at least one step. A step must be created with the job before the job can be saved. For more
information, see Creating Job Steps.

How To (SQL Server 2000)

How to disable a job (Enterprise Manager)
How to disable a job (Enterprise Manager)

To disable a job

1. In the details pane, right-click the job, and then click Properties.

2. Clear the Enabled check box.

How To (SQL Server 2000)

How to create a job category (Enterprise Manager)
How to create a job category (Enterprise Manager)

To create a job category

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, point to All Tasks, and then click Manage Job Categories.

4. In the Job Categories dialog box, click Add.

5. In the Name box, enter a name for the job category.

See Also

How to assign a job to a job category (Enterprise Manager)

How To (SQL Server 2000)

How to delete a job category (Enterprise Manager)
How to delete a job category (Enterprise Manager)

To delete a job category

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, point to All Tasks, and then click Manage Job Categories.

4. Click a job category, and then click Delete.

How To (SQL Server 2000)

How to assign a job to a job category (Enterprise Manager)
How to assign a job to a job category (Enterprise Manager)

To assign a job to a job category

1. In the details pane, right-click the job, and then click Properties.

2. In the Category list, select the job category you want to assign to the job.

How To (SQL Server 2000)

How to change the membership of a job category (Enterprise
Manager)
How to change the membership of a job category (Enterprise Manager)

To change the membership of a job category

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, point to All Tasks and then click Manage Job Categories.

4. In the Job Categories dialog box, select a job category, and then click Properties.

5. Click Show all jobs.

6. In the Select jobs for this category list, select or clear the Member check box.

How To (SQL Server 2000)

How to give others ownership of a job (Enterprise Manager)
How to give others ownership of a job (Enterprise Manager)

To give others ownership of a job

1. In the details pane, right-click the job, and then click Properties.

2. In the Owner list, select a login.

Assigning a job to another login does not guarantee that the new owner has sufficient permission to run the job
successfully.

How To (SQL Server 2000)

How to create a CmdExec job step (Enterprise Manager)
How to create a CmdExec job step (Enterprise Manager)

To create a CmdExec job step

1. Create a new job or right-click an existing job, and then click Properties.

For more information about creating a job, see Creating Jobs.

2. In the Job Properties dialog box, click the Steps tab, and then click New.

3. In the Step name box, enter a job step name.

4. In the Type list, click Operating system command (CmdExec).

5. In the Process exit code of a successful command box, enter a value from 0 to 999999.

6. In the Command box, enter the operating system command or executable program.

How To (SQL Server 2000)

How to reset SQLAgentCmdExec permissions (Enterprise
Manager)
How to reset SQLAgent permissions (Enterprise Manager)

To reset SQLAgent permissions

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Job System tab.

4. Under Non-SysAdmin job step proxy account, clear the Only users with SysAdmin privileges can execute CmdExec
and ActiveScripting job steps check box, and click Reset Proxy Account.

5. Type the user name, password, and domain of the user account to be used by SQL Server Agent when running jobs owned
by users who are not system administrators.

How To (SQL Server 2000)

How to create a Transact-SQL job step (Enterprise Manager)
How to create a Transact-SQL job step (Enterprise Manager)

To create a Transact-SQL job step

1. Create a new job or right-click an existing job, and then click Properties.

For more information on creating a job, see Creating Jobs.

2. In the Job Properties dialog box, click the Steps tab, and then click New.

3. In the Step name box, enter a job step name.

4. In the Type list, click Transact-SQL Script (TSQL).

5. In the Database list, click a database for this job step to use.

6. In the Command box, enter the Transact-SQL command batch(es), or click Open to select a Transact-SQL file to use as the
command.

7. Click Parse to check your syntax.

The message "Parse succeeded" is displayed when your syntax is correct. If an error is found, correct the syntax before
continuing.

How To (SQL Server 2000)

How to define Transact-SQL job step options (Enterprise
Manager)
How to define Transact-SQL job step options (Enterprise Manager)

To define Transact-SQL job step options

1. In the details pane, right-click the job, and then click Properties.

2. Click the Steps tab, click a job step, and then click Edit.

3. Confirm that the job type is Transact-SQL Script (TSQL), and then click the Advanced tab.

4. Enter the name of an output file, and decide whether the file should be overwritten or appended to.

5. Select the Append output to step history check box if you want the output included in the steps history.

Output will only be shown if there were no errors. Also, output may be truncated.

6. In the Run as user list, click the user (available to system administrators only).

How To (SQL Server 2000)

How to create an Active Script job step (Enterprise Manager)
How to create an Active Script job step (Enterprise Manager)

To create an Active Script job step

1. Create a new job or right-click an existing job, and then click Properties.

For more information on creating a job, see Creating Jobs.

2. Click the Steps tab, and then click New.

3. In the Step name box, enter a job step name.

4. In the Type list, click ActiveX Script.

5. In the Language list, click a scripting language, or click Other and then enter the name of the Microsoft® ActiveX®
scripting language in which the command will be written.

6. In the Command box, enter the source for the job step.

7. Click Parse to check your syntax.

The message "Parse succeeded" is displayed when your syntax is correct. If an error is found, correct the syntax before
continuing.

Note There are some instances in which the "Parse succeeded" message is displayed, but the command does not run
successfully. To determine whether the command will run successfully, run the command in an ActiveX script authoring
environment such as Microsoft Visual Basic®.

How To (SQL Server 2000)

How to set job step success or failure flow (Enterprise
Manager)
How to set job step success or failure flow (Enterprise Manager)

To set job step success or failure flow

1. In the details pane, right-click the job, and then click Properties.

2. Click the Steps tab, click a step, and then click Edit.

3. Click the Advanced tab.

4. In the On success action list, click the action to perform if the job step completes successfully.

5. In the Retry attempts box, enter the number of times from 0 through 9999 that the job step should be repeated before it is
considered to have failed. If you entered a value greater than 0 in the Retry attempts box, enter in the Retry interval
(minutes) box the number of minutes from 1 through 9999 that must pass before the job step is retried.

6. In the On failure action list, click the action to perform if the job step fails.

How To (SQL Server 2000)

How to set up the job history log (Enterprise Manager)
How to set up the job history log (Enterprise Manager)

To set up the job history log

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Job System tab, select the Limit size of job history log check box, and then increase or decrease the maximum
number of rows for the job history log.

How To (SQL Server 2000)

How to view the job history (Enterprise Manager)
How to view the job history (Enterprise Manager)

To view the job history

1. In the details pane, right-click a job, and then do one of the following:

Click View Job History if you are viewing the history of a local job.

Click Job Status if you are viewing the history of a multiserver job.

2. If you clicked Job Status, in the Multiserver Job Execution Status dialog box, click Job, click a job name, and then click
View Remote Job History.

3. To update the job history, click Refresh.

How To (SQL Server 2000)

How to make a master server (Enterprise Manager)
How to make a master server (Enterprise Manager)

To make a master server

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Make this a Master.

A server must be running on Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000 to be made a master server. The
Make MSX Wizard guides you through the process of making a master server.

How To (SQL Server 2000)

How to make a target server (Enterprise Manager)
How to make a target server (Enterprise Manager)

To make a target server

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Make this a Target.

A server must be running on Microsoft® Windows NT® 4.0 or Windows® 2000 to be made a target server. The Make TSX
Wizard guides you through the process of making a target server.

How To (SQL Server 2000)

How to enlist a target server from a master server (Enterprise
Manager)
How to enlist a target server from a master server (Enterprise Manager)

To enlist a target server from master server

1. Expand a server group, and then expand a server configured as a master server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Add Target Servers.

4. Select one or more registered servers, and then click Enlist.

How To (SQL Server 2000)

How to defect a target server from a master server (Enterprise
Manager)
How to defect a target server from a master server (Enterprise Manager)

To defect a target server from a master server

1. Expand a server group, and then expand a server configured as a target server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Defect from MSX.

4. Click Yes to confirm that you want to defect this target server from a master server.

How To (SQL Server 2000)

How to defect multiple target servers from a master server
(Enterprise Manager)
How to defect multiple target servers from a master server (Enterprise Manager)

To defect multiple target servers from a master server

1. Expand a server group, and then expand a server configured as a master server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. Click Post Instructions, and then in the Instruction type list, click Defect.

5. Under Recipients, do one of the following:

Click All target servers to defect all target servers of this master server. Use this option if you want to completely
uninstall the current multiserver administration configuration.

Click These target servers, and then click the corresponding Select box, to defect some but not all target servers of
this master server.

How To (SQL Server 2000)

How to view a master SQL Server Agent error log (Enterprise
Manager)
How to view a master SQL Server Agent error log (Enterprise Manager)

To view a master SQL Server Agent error log

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. On the Target Server Status tab, right-click a server, and then click View SQLServerAgent Error log.

How To (SQL Server 2000)

How to check the status of a target server (Enterprise Manager)
How to check the status of a target server (Enterprise Manager)

To check the status of a target server

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. On the Target Server Status tab, right-click a server, and then click Check SQLServerAgent State.

How To (SQL Server 2000)

How to schedule a job (Enterprise Manager)
How to schedule a job (Enterprise Manager)

To schedule a job

1. In the details pane, right-click the job, click Properties, click the Schedules tab, and then click New Schedule.

2. In the Name box, enter a name for the new schedule.

3. Clear the Enabled check box if you do not want the schedule to take effect immediately following its creation.

4. Under Schedule type, do one of the following:

Click Start automatically when SQL Server Agent starts to start the job when the SQL Server Agent service is
started.

Click Start whenever the CPU(s) become idle to start the job when the CPU(s) reach an idle condition.

Click One time if you want a schedule to run once. To set the one time schedule, enter values in the On date and At
time boxes.

Click Recurring if you want a schedule to run repeatedly. To set the recurring schedule, click Change, and then
complete the Edit Recurring Job Schedule dialog box.

How To (SQL Server 2000)

How to set CPU idle time and duration (Enterprise Manager)
How to set CPU idle time and duration (Enterprise Manager)

To set CPU idle time and duration

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Advanced tab, and then select the The computer is idle when check box.

4. Under Idle CPU condition, do the following:

Specify the percentage that the average CPU usage must remain below (across all CPUs).

Specify the duration in seconds before the computer is considered idle.

How To (SQL Server 2000)

How to notify an operator of job status (Enterprise Manager)
How to notify an operator of job status (Enterprise Manager)

To notify an operator of job status

1. In the details pane, right-click the job, and then click Properties.

2. In the Job Properties dialog box, click the Notifications tab.

3. If you want to notify an operator by e-mail, select the E-mail operator check box, and then in the list do one of the
following:

Click When the job succeeds to notify the operator when the job completes successfully.

Click When the job fails to notify the operator when the job completes unsuccessfully.

Click Whenever the job completes to notify the operator regardless of completion status.

4. If you want to notify an operator by pager, select the Page operator check box, and then in the list do one of the following:

Click When the job succeeds to notify the operator when the job completes successfully.

Click When the job fails to notify the operator when the job completes unsuccessfully.

Click Whenever the job completes to notify the operator regardless of completion status.

5. If you want to notify an operator by net send, select the Net send operator check box, click an operator, and then do one
of the following:

Click When the job succeeds to notify the operator when the job completes successfully.

Click When the job fails to notify the operator when the job completes unsuccessfully.

Click Whenever the job completes to notify the operator regardless of completion status.

How To (SQL Server 2000)

How to write the job status to the Windows application log
(Enterprise Manager)
How to write the job status to the Windows application log (Enterprise Manager)

To write the job status to the Windows application log

1. In the details pane, right-click the job, and then click Properties.

2. Click the Notifications tab.

3. Select the Write to Windows application event log check box, and then in the list, do one of the following:

Click When the job succeeds to log the job status when the job completes successfully.

Click When the job fails to log the job status when the job completes unsuccessfully.

Click Whenever the job completes to log the job status regardless of completion status.

How To (SQL Server 2000)

How to automatically delete a job (Enterprise Manager)
How to automatically delete a job (Enterprise Manager)

To automatically delete a job

1. In the details pane, right-click the job, and then click Properties.

2. Click the Notifications tab.

3. Select the Automatically delete job check box, and then in the list, do one of the following:

Click When the job succeeds to delete the job status when it has completed successfully.

Click When the job fails to delete the job when it has completed unsuccessfully.

Click Whenever the job completes to delete the job regardless of completion status.

How To (SQL Server 2000)

How to set the polling interval for target servers (Enterprise
Manager)
How to set the polling interval for target servers (Enterprise Manager)

To set the polling interval for target servers

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. On the Target Server Status tab, click Post Instructions.

5. In the Instruction type list, select Set polling interval.

6. In the Polling interval box, enter the number of seconds from 10 through 28,800 that must pass before the target server
polls the master server.

7. Under Recipients, do one of the following:

Click All target servers if all target servers share the same polling interval.

Click These target servers if not all target servers share the same polling interval, and then select each target server
that will use this polling interval.

How To (SQL Server 2000)

How to start a job (Enterprise Manager)
How to start a job (Enterprise Manager)

To start a job

In the details pane, right-click the job, and then do of the following:
Click Start Job if you are working on a single server, or working on a target server, or running a local server job on
a master server.

Click Start Job, and then click Start on all targeted servers if you are working on a master server and want all
targeted servers to run the job simultaneously.

Click Start Job, and then click Start on specific target servers if you are working on a master server and want to
specify target servers for the job.

In the Post Download Instructions dialog box, select the These target servers check box, and then select each
target server on which this job should run.

How To (SQL Server 2000)

How to stop a job (Enterprise Manager)
How to stop a job (Enterprise Manager)

To stop a job

In the details pane, right-click the job, and then click Stop Job.

For a multiserver job, a STOP instruction for the job is posted to all target servers of the job.

How To (SQL Server 2000)

How to force a target server to poll the master server
(Enterprise Manager)
How to force a target server to poll the master server (Enterprise Manager)

To force a target server to poll the master server

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. Click a target server, and then click Force Poll.

How To (SQL Server 2000)

How to view a job (Enterprise Manager)
How to view a job (Enterprise Manager)

To view a job

1. Expand a server group, and then expand a server.

2. Expand Management, expand SQL Server Agent, and then click Jobs.

3. In the details pane, right-click a job, and then click Properties.

You can only view jobs that you own.

How To (SQL Server 2000)

How to resize the job history log (Enterprise Manager)
How to resize the job history log (Enterprise Manager)

To resize the job history log

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Job System tab, and then select Limit size of job history log check box.

4. In the Maximum job history log size (rows) box, enter the maximum number of rows the job history log should allow.

5. In the Maximum job history rows per job box, enter the maximum number of job history rows to allow for a job.

How To (SQL Server 2000)

How to clear the job history log (Enterprise Manager)
How to clear the job history log (Enterprise Manager)

To clear the job history log

1. Expand a server group, and then expand a server.

2. Expand Management, expand SQL Server Agent, and then click Jobs.

3. In the details pane, right-click a job, and then do one of the following:

Click View job history if you want to clear the history log of a local job.

Click Job status if you want to clear the history log of a multiserver job. Click Job, click a job name, and then click
View Remote Job History.

4. Click Clear All.

How To (SQL Server 2000)

How to modify a job (Enterprise Manager)
How to modify a job (Enterprise Manager)

To modify a job

1. In the details pane, right-click the job, and then click Properties.

2. In the Job Properties dialog box, update the job's properties, steps, schedule, and notifications using the corresponding
tabs.

Unless you are a member of the sysadmin role, you can only modify jobs that you own.

See Also

How to create a job (Enterprise Manager)

How to notify an operator of job status (Enterprise Manager)

How to schedule a job (Enterprise Manager)

How To (SQL Server 2000)

How to modify the target servers for a job (Enterprise
Manager)
How to modify the target servers for a job (Enterprise Manager)

To modify the target servers for a job

1. In the details pane, right-click a job and then click Properties.

2. On the General tab, click Change.

3. Click one or more servers, and then click the right arrow to select the servers as targets for the job.

4. Under Selected target servers, choose one or more servers, and then click the left arrow to remove the servers as targets
for the job.

How To (SQL Server 2000)

How to modify a target server's location (Enterprise Manager)
How to modify a target server's location (Enterprise Manager)

To modify a target server's location

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, point to Multi Server Administration, and then click Manage Target Servers.

4. Right-click a server, and then click Properties.

5. In the Location box, enter a location for the server.

How To (SQL Server 2000)

How to delete a job (Enterprise Manager)
How to delete a job (Enterprise Manager)

To delete a job

In the details pane, right-click the job, and then click Delete.

Unless you are a member of the sysadmin role, you can only delete jobs that you own.

How To (SQL Server 2000)

How to synchronize target server clocks (Enterprise Manager)
How to synchronize target server clocks (Enterprise Manager)

To synchronize target server clocks

1. Expand a server group, and then expand a server.

2. Right-click SQL Server Agent, point to Multi Server Administration, and the click Manage Target Servers.

3. Click Post Instructions.

4. In the Instruction type list, select Synchronize clocks.

5. Under Recipients, do one of the following:

Click All target servers to synchronize all target server clocks with the master server clock.

Click These target servers to synchronize certain server clocks, and then select each target server whose clock you
want to synchronize with the master server clock.

How To (SQL Server 2000)

How to script jobs using Transact-SQL (Enterprise Manager)
How to script jobs using Transact-SQL (Enterprise Manager)

To script jobs using Transact-SQL

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, point to All Tasks, and then click Generate SQL Script.

4. In the File name box, type a name for the script.

5. Under File format, do one of the following:

Click MS-DOS Text (OEM) to save the script in OEM format.

Click Windows Text (ANSI) to save the script in ANSI format.

Click International Text (Unicode) to save the script in Unicode format.

6. Optionally, under SQL generation options, do one or both of the following:

Select the Replace job if it exists check box to include in the script commands to delete jobs that have the same
names as the jobs generated by the script.

Select the Include target servers check box to include in the script commands to generate target server assignments.
This option is available only when scripting multiserver jobs.

7. In the TSQL batch separator box, enter a Transact-SQL batch separator.

How To (SQL Server 2000)

How to create an operator (Enterprise Manager)
How to create an operator (Enterprise Manager)

To create an operator

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Operators, and then click New Operator.

4. In the Name box, type the name of the operator.

5. To define notification methods for the operator, do one or more of the following:

In the E-mail name box, enter the operator's e-mail address if the operator will be notified by e-mail.

In the Pager e-mail name box, enter the pager address of the operator's pager service if the operator will be notified
by pager. Also click the days when the operator is available to receive pager notifications.

In the Net send address box, enter the operator's net send address if the operator will be notified by net send.

See Also

How to assign alerts to an operator (Enterprise Manager)

How To (SQL Server 2000)

How to assign alerts to an operator (Enterprise Manager)
How to assign alerts to an operator (Enterprise Manager)

To assign alerts to an operator

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Operators.

4. In the details pane, right-click an operator, click Properties, and then click the Notifications tab.

5. Under Notifications sent to this operator by, select one or more of the following check boxes to define the notification
method for each alert as necessary: E-mail, Pager, or Net send.

6. Select the Operator is available to receive notifications check box to enable notifications (of all types) for the operator.

How To (SQL Server 2000)

How to format pager addresses (Enterprise Manager)
How to format pager addresses (Enterprise Manager)

To format pager addresses

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, click Properties, and then click the Alert System tab.

3. In the To line boxes and CC line boxes, enter the pager address prefix or suffix. The operator's actual pager address is
inserted when a notification is sent.

4. In the Subject box, enter the subject line prefix or suffix.

5. Select the Include body of e-mail in notification page check box to include the full e-mail message with the pager
message (as opposed to the subject line only).

How To (SQL Server 2000)

How to designate a fail-safe operator (Enterprise Manager)
How to designate a fail-safe operator (Enterprise Manager)

To designate a fail-safe operator

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, click Properties, and then click the Alert System tab.

3. Under Fail-safe operator, in the Operator list, click an operator.

4. Click the appropriate notification type(s) to specify how the operator will be notified.

How To (SQL Server 2000)

How to create an alert using an error number (Enterprise
Manager)
How to create an alert using an error number (Enterprise Manager)

To create an alert using an error number

1. Expand a server group, and then expand a server.

2. Expand Management, right-click Alerts, and then click New Alert.

3. In the Name box, enter a name for this alert.

4. Select the Enabled check box to enable the alert to run.

5. Click Error number, and then type a valid error number for the alert.

When an error number is found in the sysmessages table, the error number message text is displayed. Otherwise, "Not a
valid error number" is displayed.

Note To search for errors by message text, error number, or severity, click the browse (...) button to open the Manage SQL
Server Messages dialog box.

6. In the Database name list, click the database to restrict the alert to a specific database.

7. In the Error message contains this text box, enter a keyword or character string to restrict the alert to a particular
character sequence. The maximum number of characters is 100.

See Also

How to define the response to an alert

How To (SQL Server 2000)

How to create an alert using severity level (Enterprise Manager)
How to create an alert using severity level (Enterprise Manager)

To create an alert using severity level

1. Expand a server group, and then expand a server.

2. Expand Management, right-click Alerts, and then click New Alerts.

3. In the Name box, type a name for this alert.

4. Select the Enabled check box to enable the alert to run.

5. Click Severity, and then click a severity level.

Severity levels from 19 through 25 send a Microsoft® SQL Server™ message to the Microsoft Windows® application log
and trigger an alert. Events with severity levels less than 19 will trigger alerts only if you have used sp_altermessage,
RAISERROR WITH LOG, or xp_logevent to force them to be written to the Windows application log.

6. In the Database name list, click the database to restrict the alert to a specific database.

7. In the Error message contains this text box, type a keyword or character string to restrict the alert to a particular
character sequence.

The maximum number of characters is 100.

See Also

How to define the response to an alert

How To (SQL Server 2000)

How to define the response to an alert (Enterprise Manager)
How to define the response to an alert (Enterprise Manager)

To define the response to an alert

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Alerts, and in the details pane, right-click an alert.

4. Click Properties, and then click the Response tab.

5. Select the Execute job check box, and then click a job to execute when the alert occurs.

You can create a new job by clicking (New Job), or modify an existing job by clicking the browse (...) button.

6. Under Operators to notify, select one or more of the following check boxes for one or more operators: E-mail, Pager, or
Net send.

Be sure that each operator's notification method is valid.

7. Select the appropriate Include alert error text in check box for the notification method used if you want the alert error text
to be sent with the notification.

8. Under Additional notification message to send to operator, enter additional information for the operator.

The maximum number of characters is 512.

See Also

How to assign alerts to an operator (Enterprise Manager)

How to create an operator (Enterprise Manager)

How to modify a job (Enterprise Manager)

How To (SQL Server 2000)

How to create a user-defined event error message (Enterprise
Manager)
How to create a user-defined event error message (Enterprise Manager)

To create a user-defined event error message

1. Expand a server group.

2. Right-click a server, point to All Tasks, and then click Manage SQL Server Messages.

3. Click the Messages tab, and then click New.

4. In the Severity list, click the severity level.

5. In the Message text box, enter the new event message.

The maximum number of characters is 255.

6. Select the Always write to Windows eventlog check box to write the event message to the Microsoft® Windows®
application log.

How To (SQL Server 2000)

How to edit a user-defined event error message (Enterprise
Manager)
How to edit a user-defined event error message (Enterprise Manager)

To edit a user-defined event error message

1. Expand a server group.

2. Right-click a server, point to All Tasks, and then click Manage SQL Server Messages.

3. On the General tab, click Only include user-defined messages.

To refine your search, you can specify the search to look for a specified error number, message text, or a severity level.
Search results are displayed on the Messages tab.

4. On the Messages tab, click the message to edit, and then click Edit.

In the Edit SQL Server Message dialog box, you can edit severity level and message text.

How To (SQL Server 2000)

How to delete a user-defined event error message (Enterprise
Manager)
How to delete a user-defined event error message (Enterprise Manager)

To delete a user-defined event error message

1. Expand a server group.

2. Right-click the server, click All Tasks, and then click Manage SQL Server Messages.

3. On the General tab, click Only include user-defined messages.

To refine your search, you can specify the search to look for a specified error number, message text, or a severity level.
Search results are displayed on the Messages tab.

4. On the Messages tab, click the message to delete, and then click Delete.

How To (SQL Server 2000)

How to disable or reactivate an alert (Enterprise Manager)
How to disable or reactivate an alert (Enterprise Manager)

To disable or reactivate an alert

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Alerts, and in the details pane, right-click an alert, and then click Properties.

4. Select or clear the Enabled check box.

See Also

How to delete an alert

How To (SQL Server 2000)

How to designate an events forwarding server (Enterprise
Manager)
How to designate an events forwarding server (Enterprise Manager)

To designate an events forwarding server

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, click Properties, and then click the Advanced tab.

3. Under SQL Server event forwarding, select the Forward events to a different server check box.

Event forwarding is only available on Microsoft® Windows NT® 4.0 and Microsoft Windows® 2000.

4. In the Server list, click a server, and then do one of the following:

Click Unhandled events to forward only the events that have not been handled by local alerts.

Click All events to forward all events regardless of whether they have been handled by local alerts.

5. In the If event has severity of or above list, click the severity level at which events are forwarded to the selected server.

How To (SQL Server 2000)

How to view information about an operator (Enterprise
Manager)
How to view information about an operator (Enterprise Manager)

To view information about an operator

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Operators, and in the details pane, right-click an operator, and then click Properties.

The General tab displays the notification methods and the pager schedule defined for the operator. The Notifications tab
displays the notifications the operator receives and the most recent notification attempts.

How To (SQL Server 2000)

How to edit an operator (Enterprise Manager)
How to edit an operator (Enterprise Manager)

To edit an operator

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Operators, and in the details pane, right-click an operator, and then click Properties.

See Also

How to assign alerts to an operator (Enterprise Manager)

How to create an operator (Enterprise Manager)

How To (SQL Server 2000)

How to change an operator's availability (Enterprise Manager)
How to change an operator's availability (Enterprise Manager)

To change an operator's availability

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Operators, and in the details pane, right-click an operator, click Properties, and then click the Notifications tab

4. Select or clear the Operator is available to receive notifications check box.

See Also

How to delete an operator

How To (SQL Server 2000)

How to delete an operator (Enterprise Manager)
How to delete an operator (Enterprise Manager)

To delete an operator

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Operators, and in the details pane, right-click an operator, and then click Delete.

4. If the Delete Operator dialog box appears, do one of the following:

In the Reassign to list, click an operator, and then click Reassign if you want another operator to receive the alerts
and jobs sent to the deleted operator.

Click Delete without reassigning if you want to delete the operator without reassigning the alerts and jobs.

See Also

How to change an operator's availability

How To (SQL Server 2000)

How to view information about an alert (Enterprise Manager)
How to view information about an alert (Enterprise Manager)

To view information about an alert

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Alerts, and in the details pane, right-click an alert, and then click Properties.

On the General tab, under History, you can view the date the alert last occurred, the date the alert was last responded to,
and the number of times the alert was triggered since the last time the count was reset. On the Response tab, you can view
the actions that occur when the alert is triggered.

How To (SQL Server 2000)

How to edit an alert (Enterprise Manager)
How to edit an alert (Enterprise Manager)

To edit an alert

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Alerts, and in the details pane, right-click an alert, and then click Properties.

4. Update the alert properties on the General and Response tabs.

See Also

How to create an alert using an error number (Enterprise Manager)

How to create an alert using severity level (Enterprise Manager)

How to define the response to an alert (Enterprise Manager)

How To (SQL Server 2000)

How to delete an alert (Enterprise Manager)
How to delete an alert (Enterprise Manager)

To delete an alert

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Click Alerts, and in the details pane, right-click an alert, and then click Delete.

4. Confirm the deletion.

See Also

How to disable or reactivate an alert (Enterprise Manager)

How To (SQL Server 2000)

How to script operators using Transact-SQL (Enterprise
Manager)
How to script operators using Transact-SQL (Enterprise Manager)

To script operators using Transact-SQL

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Operators, point to All Tasks, and then click Generate SQL Script.

4. In the File name box, type a name for the script.

5. Under File format, do one of the following:

Click MS-DOS Text (OEM) to save the script in OEM format.

Click Windows Text (ANSI) to save the script in ANSI format.

Click International Text (Unicode) to save the script in Unicode format.

6. Under SQL generation options, do one or both of the following:

Select the Replace operator if it exists check box to include in the script commands to that will delete any operators
with the same name as jobs generated by the script.

Select the Include notifications sent by alerts to the operator check box to include in the script commands to
generate alert assignments for the operators generated by the script.

7. Enter a Transact-SQL batch separator.

How To (SQL Server 2000)

How to script alerts using Transact-SQL (Enterprise Manager)
How to script alerts using Transact-SQL (Enterprise Manager)

To script alerts using Transact-SQL

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Alerts, point to All Tasks, and then click Generate SQL Script.

4. In the File name box, type a name for the script.

5. Under File format, do one of the following:

Click MS-DOS Text (OEM) to save the script in OEM format.

Click Windows Text (ANSI) to save the script in ANSI format.

Click International Text (Unicode) to save the script in Unicode format.

6. Under SQL generation options, do one or more of the following:

Select the Replace alert if it exists check box to include in the script commands to delete any alerts with the same
name as jobs generated by the script.

Select the Include notifications sent by alerts to the operator check box to include in the script commands to
generate alert assignments for the operators generated by the script.

Select the Include the name of the job executed by the alert check box to include in the script commands to
provide the name of the job executed by the alert.

7. In the TSQL batch separator box, enter a Transact-SQL batch separator.

Include the name of the job executed by the alert to have the alerts generated by the script reference their response jobs.

How To (SQL Server 2000)

How to set job execution shutdown (Enterprise Manager)
How to set job execution shutdown (Enterprise Manager)

To set job execution shutdown

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, click Properties, and then click the Job System tab.

3. Under Job execution, in the Shutdown time-out interval (seconds) box, increase or decrease the shutdown time-out
interval.

This determines how long SQL Server Agent will wait for executing jobs to finish before SQL Server Agent itself finishes.

How To (SQL Server 2000)

How to autostart SQL Server Agent (Enterprise Manager)
How to autostart SQL Server Agent (Enterprise Manager)

To autostart SQL Server Agent

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Click the Advanced tab, and then select the Auto restart SQL Server Agent if it stops unexpectedly check box.

How To (SQL Server 2000)

How to send SQL Server Agent error messages (Enterprise
Manager)
How to send SQL Server Agent error messages (Enterprise Manager)

To send SQL Server Agent error messages

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Under Error log, in the Net send recipient box, type the user name or computer name.

This feature is available only in Microsoft® Windows NT® 4.0 and Microsoft Windows® 2000.

How To (SQL Server 2000)

How to view SQL Server Agent error log (Enterprise Manager)
How to view SQL Server Agent error log (Enterprise Manager)

To view SQL Server Agent error log

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Display Error Log.

3. In the Type list, click a type of logged item to filter the log contents.

4. Optionally, in the Containing text box, enter message text to filter the log contents.

5. Click Apply Filter if you have selected filter parameters.

6. Under Filtered contents, view the log contents.

How To (SQL Server 2000)

How to rename a SQL Server Agent error log (Enterprise
Manager)
How to rename a SQL Server Agent error log (Enterprise Manager)

To rename a SQL Server Agent error log

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Under Error log, in the File name box, enter the new path and file name, or find it using the browse (...) button.

You can only rename the error log when SQL Server Agent is stopped.

How To (SQL Server 2000)

How to write execution trace messages to the SQL Server Agent
error log (Enterprise Manager)
How to write execution trace messages to the SQL Server Agent error log (Enterprise Manager)

To write execution trace messages to the SQL Server Agent error log

1. Expand a server group, and then expand a server.

2. Expand Management, right-click SQL Server Agent, and then click Properties.

3. Under Error log, select the Include execution trace messages check box.

Because this option can cause the error log to become large, set it only when investigating a specific SQL Server Agent
problem.

How To (SQL Server 2000)

How to schedule a DTS package using the SQLServerAgent
service (Enterprise Manager)
How to schedule a DTS package using the SQLServerAgent service (Enterprise Manager)

To schedule a DTS package using the SQLServerAgent service

1. Expand a server, and then expand a server group.

2. Expand Management, and then expand SQL Server Agent.

3. Right-click Jobs, and then click New Job.

4. Complete the information on the General tab, and then click the Steps tab.

5. Click New, and then complete the information in the New Job Step dialog box:

For Type, click Operating System Command (CmdExec) from the list.

For Command, enter the dtsrun command for the package.

Click the Advanced tab for further job customization options.

See Also

How to create a job (Enterprise Manager)

How To (SQL Server 2000)

How to create a SQL Server 7.0 compatible script (Enterprise
Manager)
How to create a SQL Server 7.0 compatible script (Enterprise Manager)

To create a SQL Server 7.0 compatible script

1. Expand a server group, and then expand a server.

2. Expand Databases.

3. Right-click a database, point to All Tasks, and then click Generate SQL Script.

4. On the General tab, click Show All to show all objects to script.

5. Select the type of object to script, or select the Script all objects check box.

6. Click the Formatting tab, and then select the Only script 7.0 compatible features check box.

This option is only available on Microsoft® SQL Server™ 2000.

How To (SQL Server 2000)

Managing Security
To ensure that data and objects stored in Microsoft® SQL Server™ are accessed only by authorized users, security must be set up
correctly. Security elements that may have to be set up include authentication modes, logins, users, roles, granting, revoking, and
denying permissions on Transact-SQL statements and objects, and data encryption.

How To (SQL Server 2000)

How to set up Windows Authentication Mode security
(Enterprise Manager)
How to set up Windows Authentication Mode security (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To set up Windows Authentication Mode security

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. On the Security tab, under Authentication, click Windows only.

4. Under Audit level, select the level at which user accesses to Microsoft® SQL Server™ are recorded in the SQL Server error
log:

None causes no auditing to be performed.

Success causes only successful login attempts to be audited.

Failure causes only failed login attempts to be audited.

All causes successful and failed login attempts to be audited.

Security Note Microsoft recommends auditing, at minimum, failed login attempts. Auditing failed login attempts helps
determine if unauthorized users are attempting to access the system.

See Also

Authentication Modes

How To (SQL Server 2000)

How to set up Mixed Mode security (Enterprise Manager)
How to set up Mixed Mode security (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

Security Note When possible, use Windows Authentication.

To set up Mixed Mode security

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. Click the Security tab.

4. Under Authentication, click SQL Server and Windows.

5. Under Audit level, select the level at which user accesses to Microsoft® SQL Server™ are recorded in the SQL Server error
log:

None causes no auditing to be performed.

Success causes only successful login attempts to be audited.

Failure causes only failed login attempts to be audited.

All causes successful and failed login attempts to be audited.

Security Note Microsoft recommends auditing, at minimum, failed login attempts. Auditing failed login attempts helps
determine if unauthorized users are attempting to access the system.

See Also

Authentication Modes

How To (SQL Server 2000)

How to grant a Windows user or group login access to SQL
Server (Enterprise Manager)
How to grant a Windows user or group login access to SQL Server (Enterprise Manager)

To grant a Windows NT 4.0 or Window 2000 user or group login access to SQL Server

1. Expand a server group, and then expand a server.

2. Expand Security, right-click Logins, and then click New Login.

3. In the Name box, enter the Microsoft® Windows NT® 4.0 or Windows® 2000 account (in the form DOMAIN\User) to be
granted access to Microsoft SQL Server™.

4. Under Authentication, click Windows Authentication.

5. Optionally:

In Database, click the default database to which the user is connected after logging into an instance of SQL Server.

In Language, click the default language in which messages are displayed to the user.

See Also

Adding a Windows NT User or Group

How To (SQL Server 2000)

How to grant a Windows user or group access to a database
(Enterprise Manager)
How to grant a Windows user or group access to a database (Enterprise Manager)

To grant a Windows NT 4.0 or Windows 2000 user or group access to a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user or group will be granted access.

3. Right-click Users, and then click New Database User.

4. In the Login name box, type or select the Microsoft® Windows NT® 4.0 or Windows® 2000 user or group name to which
database access will be granted.

5. Optionally, in User name, enter the user name that the login is known by in the database. By default, it is set to the login
name.

6. Optionally, select database role memberships to be granted to the user or group in addition to public, the default.

See Also

Granting a Windows NT User or Group Access to a Database

How To (SQL Server 2000)

How to add a SQL Server login (Enterprise Manager)
How to add a SQL Server login (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

Security Note When possible, use Windows Authentication.

To add a SQL Server login

1. Expand a server group, and then expand a server.

2. Expand Security, right-click Logins, and then click New Login.

3. In Name, enter a name for the Microsoft® SQL Server™ login.

4. Under Authentication, select SQL Server Authentication.

5. Optionally, in Password, enter a password.

6. Optionally:

In Database, click the default database to which the login is connected after logging into an instance of SQL Server.

In Language, click the default language in which messages are displayed to the user.

See Also

Adding a SQL Server Login

How To (SQL Server 2000)

How to add a linked server login (Enterprise Manager)
How to add a linked server login (Enterprise Manager)

To add a linked server login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Linked Servers.

3. In the details pane, right-click the linked server to which the login will be added, and then click Properties.

4. On the Security tab, click the local login to add.

5. Optionally, select the Impersonate check box if the local login should connect to the linked server using its own user
security credentials.

6. Enter the remote user and remote password with which the local login should connect to the linked server when not using
the user's security credentials (Impersonate not selected).

See Also

Establishing Security for Linked Servers

How to set up a linked server (Enterprise Manager)

How To (SQL Server 2000)

How to grant a SQL Server login access to a database
(Enterprise Manager)
How to grant a SQL Server login access to a database (Enterprise Manager)

To grant a SQL Server login access to a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the login will be granted access.

3. Right-click Users, and then click New Database User.

4. In the Login name box, click the Microsoft® SQL Server™ login to which database access will be granted.

5. Optionally, in User name, enter the user name that the login is known by in the database. By default, it is set to the login
name.

6. Optionally, select database role memberships in addition to public, the default.

See Also

Granting a SQL Server Login Access to a Database

guest User

How To (SQL Server 2000)

How to create a SQL Server database role (Enterprise Manager)
How to create a SQL Server database role (Enterprise Manager)

To create a SQL Server database role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which to create a role.

3. Right-click Roles, and then click New Database Role.

4. In the Name box, enter the name of the new role.

5. Optionally, click Add to add members to the Standard role list, and then click a user or users to add.

Only users in the selected database can be added to the role.

See Also

Creating User-Defined SQL Server Database Roles

How To (SQL Server 2000)

How to add a member to a SQL Server database role (Enterprise
Manager)
How to add a member to a SQL Server database role (Enterprise Manager)

To add a member to a SQL Server database role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which the role exists.

3. Click Roles.

4. In the details pane, right-click the role to which the user will be added, and then click Properties.

5. Click Add, and then click a user or users to add.

Only users in the selected database can be added to the role.

See Also

Adding a Member to a Predefined Role

Adding a Member to a SQL Server Database Role

How To (SQL Server 2000)

How to add a member to a fixed server role (Enterprise
Manager)
How to add a member to a fixed server role (Enterprise Manager)

To add a member to a fixed server role

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Server Roles.

3. In the details pane, right-click the role, and then click Properties.

4. On the General tab, click Add, and then click the logins to add.

See Also

Adding a Member to a Predefined Role

How To (SQL Server 2000)

How to grant SQL Server login access to a user by using the
Create Login Wizard (Enterprise Manager)
How to grant SQL Server login access to a user by using the Create Login Wizard (Enterprise Manager)

To grant SQL Server login access to a user by using the Create SQL Server Login Wizard

1. On the Tools menu, click Wizards.

2. In the Select Wizard dialog box, expand Database, and then double-click Create Login Wizard.

3. Complete the steps in the wizard.

See Also

Using the Create Login Wizard

How To (SQL Server 2000)

How to view a SQL Server login or Windows user or group
(Enterprise Manager)
How to view a SQL Server login or Windows user or group (Enterprise Manager)

To view a SQL Server login or Windows NT 4.0 or Windows 2000 user or group

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the login to view, and then click Properties.

See Also

Viewing Logins

How To (SQL Server 2000)

How to view a database user (Enterprise Manager)
How to view a database user (Enterprise Manager)

To view a database user

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user belongs.

3. Click Users.

4. In the details pane, right-click the user to view, and then click Properties.

See Also

Viewing Database Users

How To (SQL Server 2000)

How to change the password of a SQL Server login (Enterprise
Manager)
How to change the password of a SQL Server login (Enterprise Manager)

To change the password of a SQL Server login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the login to modify, and then click Properties.

4. In the Password box, on the General tab, enter a new password.

5. Confirm the password.

See Also

Modifying Logins

How To (SQL Server 2000)

How to change the default database of a login (Enterprise
Manager)
How to change the default database of a login (Enterprise Manager)

To change the default database of a login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the login to modify, and then click Properties.

4. In the Database list, on the General tab, click the new default database to which the login is connected after logging into an
instance of Microsoft® SQL Server™.

See Also

Modifying Logins

How To (SQL Server 2000)

How to change the default language of a login (Enterprise
Manager)
How to change the default language of a login (Enterprise Manager)

To change the default language of a login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the login to modify, and then click Properties.

4. In the Language list, on the General tab, click the new default language in which messages are to be displayed to the user.

See Also

Modifying Logins

How To (SQL Server 2000)

How to remove a user or group from a database (Enterprise
Manager)
How to remove a user or group from a database (Enterprise Manager)

To remove a user or group from a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user or group belongs.

3. Click Users.

4. In the details pane, right-click the user or group to remove, and then click Delete.

5. Confirm the deletion.

See Also

Removing Logins and Users

How To (SQL Server 2000)

How to remove a SQL Server login (Enterprise Manager)
How to remove a SQL Server login (Enterprise Manager)

To remove a SQL Server login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the login to remove, and then click Delete.

4. Confirm the deletion.

See Also

Removing Logins and Users

How To (SQL Server 2000)

How to revoke a Windows user or group login access from SQL
Server (Enterprise Manager)
How to revoke a Windows user or group login access from SQL Server (Enterprise Manager)

To revoke a Windows NT 4.0 or Windows 2000 user or group login access from SQL Server

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the Microsoft® Windows NT® 4.0 or Windows® 2000 user or group to revoke, and then click
Delete.

4. Confirm the deletion.

See Also

Removing Logins and Users

How To (SQL Server 2000)

How to deny login access to a Windows user or group
(Enterprise Manager)
How to deny login access to a Windows user or group (Enterprise Manager)

To deny login access to a Windows NT 4.0 or Windows 2000 user or group

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Logins.

3. In the details pane, right-click the Microsoft® Windows NT® 4.0 or Windows® 2000 user or group to deny, and then click
Properties.

4. Under Authentication, click Deny access.

See Also

Denying Login Access to Windows NT Accounts

How to grant a Windows NT user or group login access to SQL Server (Enterprise Manager)

How To (SQL Server 2000)

How to remove a linked server login (Enterprise Manager)
How to remove a linked server login (Enterprise Manager)

To remove a linked server login

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Linked Servers.

3. In the details pane, right-click the linked server to which the linked server login to be removed is mapped, and then click
Properties.

4. On the Security tab, under Local login, click the linked server login to remove, and then select the blank login at the top of
the list.

See Also

Removing Logins and Users

How To (SQL Server 2000)

How to view the roles defined in the current database
(Enterprise Manager)
How to view the roles defined in the current database (Enterprise Manager)

To view the roles defined in the current database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to view.

3. Click Roles.

See Also

Viewing Roles

How To (SQL Server 2000)

How to view the fixed server roles (Enterprise Manager)
How to view the fixed server roles (Enterprise Manager)

To view the fixed server roles

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Server Roles.

See Also

Viewing Roles

How To (SQL Server 2000)

How to view the members of a database role (Enterprise
Manager)
How to view the members of a database role (Enterprise Manager)

To view the members of a database role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user belongs.

3. Click Roles.

4. In the details pane, right-click the role to view, and then click Properties to view members.

See Also

Viewing and Modifying Role Memberships

How To (SQL Server 2000)

How to remove a user account from a database role (Enterprise
Manager)
How to remove a user account from a database role (Enterprise Manager)

To remove a user account from a database role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which the role exists.

3. Click Roles.

4. In the details pane, right-click the role to which the user account belongs, and then click Properties.

5. Select the user to remove, and then click Remove.

See Also

Viewing and Modifying Role Memberships

How To (SQL Server 2000)

How to view the members of a fixed server role (Enterprise
Manager)
How to view the members of a fixed server role (Enterprise Manager)

To view the members of a fixed server role

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Server Roles.

3. In the details pane, right-click the server role to view, and then click Properties.

See Also

Viewing and Modifying Role Memberships

How To (SQL Server 2000)

How to remove a login from a fixed server role (Enterprise
Manager)
How to remove a login from a fixed server role (Enterprise Manager)

To remove a login from a fixed server role

1. Expand a server group, and then expand a server.

2. Expand Security, and then click Server Roles.

3. In the details pane, right-click the server role to modify, and then click Properties.

4. On the General tab, select the login to remove, and then click Remove.

See Also

Viewing and Modifying Role Memberships

How To (SQL Server 2000)

How to remove a SQL Server role (Enterprise Manager)
How to remove a SQL Server role (Enterprise Manager)

To remove a SQL Server role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which the role exists.

3. Click Roles.

4. In the details pane, right-click the role, and then click Delete.

Note You must drop all role members before you can delete the role. Fixed roles cannot be deleted.

5. Confirm the deletion.

See Also

Removing a SQL Server Database Role

How To (SQL Server 2000)

How to allow access by granting permissions (Enterprise
Manager)
How to allow access by granting permissions (Enterprise Manager)

To allow access by granting permissions (on an object)

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the object belongs.

3. Depending on the type of object, click one of the following:

Tables

Views

Stored Procedures

4. In the details pane, right-click the object on which to grant permissions, point to All Tasks, and then click Manage
Permissions.

5. Click List all users/user-defined database roles/public, and then select the permission to grant each user.

A check indicates a granted permission. Only permissions applicable to the object are listed.

See Also

Granting Permissions

How To (SQL Server 2000)

How to grant statement permissions to users within a database
(Enterprise Manager)
How to grant statement permissions to users within a database (Enterprise Manager)

To grant statement permissions to users within a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database containing the users to whom statement permissions will be granted, and then
click Properties.

3. On the Permissions tab, select the statement permission to grant each user.

A check indicates a granted permission.

See Also

Granting Permissions

How To (SQL Server 2000)

How to grant permissions on multiple objects to a user, group,
or role (Enterprise Manager)
How to grant permissions on multiple objects to a user, group, or role (Enterprise Manager)

To grant permissions on multiple objects to a user, group, or role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user, group, or role belongs.

3. Depending on the type of user, group, or role to which permissions will be granted, click either Users or Roles.

4. In the details pane, right-click the user, group, or role to which permissions will be granted, point to All Tasks, and then click
Manage Permissions.

5. Click List all objects, and then select the permission to grant each object.

A check indicates a granted permission. Only permissions applicable to the object are listed.

See Also

Granting Permissions

How To (SQL Server 2000)

How to prevent access by denying permissions (Enterprise
Manager)
How to prevent access by denying permissions (Enterprise Manager)

To prevent access by denying permissions (on an object)

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the object belongs.

3. Depending on the type of object to which access will be denied, click one of the following:

Tables

Views

Stored Procedures

4. In the details pane, right-click the object to which access will be denied, point to All Tasks, and then click Manage
Permissions.

5. Click List all users/user-defined database roles/public, and then select the permission to deny each user.

An 'X' indicates a denied permission. Only permissions applicable to the object are listed.

See Also

Denying Permissions

How To (SQL Server 2000)

How to deny statement permissions from users within a
database (Enterprise Manager)
How to deny statement permissions from users within a database (Enterprise Manager)

To deny statement permissions from users within a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database containing the users to whom statement permissions will be denied, and then
click Properties.

3. On the Permissions tab, select the statement permission to deny each user.

An 'X' indicates a denied permission.

See Also

Denying Permissions

How To (SQL Server 2000)

How to deny permissions on multiple objects to a user, group,
or role (Enterprise Manager)
How to deny permissions on multiple objects to a user, group, or role (Enterprise Manager)

To deny permissions on multiple objects to a user, group, or role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user, group, or role belongs.

3. Depending on the type of user, group, or role to which permissions will be denied, click either Users or Roles.

4. In the details pane, right-click the user or group to which permissions will be denied, point to All Tasks, and then click
Manage Permissions. If you are denying permission to a role, right-click the role to which permissions will be denied, click
Properties, and then click Permissions.

5. Click List all objects, and then select the permission to deny for each object.

An 'X' indicates a denied permission. Only permissions applicable to the object are listed.

See Also

Denying Permissions

How To (SQL Server 2000)

How to revoke permissions on an object (Enterprise Manager)
How to revoke permissions on an object (Enterprise Manager)

To revoke permissions on an object

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the object belongs.

3. Depending on the type of object to which access will be revoked, click one of the following:

Tables

Views

Stored Procedures

4. In the details pane, right-click the object to which access will be revoked, point to All Tasks, and then click Manage
Permissions.

5. Click List all users/user-defined database roles/public, and then select the permission to revoke from each user.

An empty box indicates a revoked permission. Only permissions applicable to the object are listed.

See Also

Revoking Permissions

How To (SQL Server 2000)

How to revoke statement permissions from users in a database
(Enterprise Manager)
How to revoke statement permissions from users in a database (Enterprise Manager)

To revoke statement permissions from users in a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database containing the users from whom statement permissions will be revoked, and
then click Properties.

3. On the Permissions tab, select the statement permission to revoke from each user.

An empty box indicates a revoked permission.

See Also

Revoking Permissions

How To (SQL Server 2000)

How to revoke permissions on multiple objects from a user,
group, or role (Enterprise Manager)
How to revoke permissions on multiple objects from a user, group, or role (Enterprise Manager)

To revoke permissions on multiple objects from a user, group, or role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the user, group, or role belongs.

3. Depending on the type of user, group, or role from which permissions will be revoked, click either Users or Roles.

4. In the details pane, right-click the user or group from which permissions will be revoked, point to All Tasks, and then click
Manage Permissions. If you are revoking permission from a role, right-click the role to which permissions will be denied,
click Properties, and then click Permissions.

5. Click List all objects, and then select the permission to revoke for each object.

An empty box indicates a revoked permission. Only permissions applicable to the object are listed.

See Also

Revoking Permissions

How To (SQL Server 2000)

How to create an application role (Enterprise Manager)
How to create an application role (Enterprise Manager)

To create an application role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which to create a role.

3. Right-click Roles, and then click New Database Role.

4. In the Name box, enter the name of the new application role.

5. Under Database role type, click Application role, and then enter a password.

See Also

Establishing Application Security and Application Roles

How To (SQL Server 2000)

How to remove an application role (Enterprise Manager)
How to remove an application role (Enterprise Manager)

To remove an application role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which the application role exists.

3. Click Roles.

4. In the details pane, right-click the application role to remove, and then click Delete.

5. Confirm the deletion.

See Also

Establishing Application Security and Application Roles

How To (SQL Server 2000)

How to reveal or cancel announcement of SQL Server on a
network (Windows)
How to reveal or cancel announcement of SQL Server on a network (Windows)

To reveal or cancel announcement of SQL Server on a network

1. In Control Panel, double-click Network.

2. Click the Services tab.

3. In the Network Services list, click Server, and then click Properties.

4. Select Make Browser Broadcasts to LAN Manager 2.x Clients to reveal the server, or clear the check box to hide the
server.

See Also

Revealing SQL Server on a Network

How To (SQL Server 2000)

How to grant, deny, or revoke permissions on multiple objects
to a user-defined role (Enterprise Manager)
How to grant, deny, or revoke permissions on multiple objects to a user-defined role (Enterprise
Manager)

To grant, deny, or revoke permissions on multiple objects to a user-defined role

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database to which the role belongs.

3. Click Roles.

4. In the details pane, right-click the user-defined role to which permissions will be granted, denied, or revoked, and then click
Properties.

5. Under Names, click Permissions.

6. Click List all objects, and then select the permission to grant, deny, or revoke on each object.

A checkmark indicates a granted permission; an 'X' indicates a denied permission; and an empty box indicates a revoked
permission. Only permissions applicable to the object are listed.

How To (SQL Server 2000)

Monitoring Server Performance and Activity
There are a variety of tools and techniques that can be used to monitor Microsoft® SQL Server™. Understanding how to monitor
SQL Server can help you:

Determine whether performance improvements can be made.

Determine user activity to find out what queries users are issuing and who is connecting to SQL Server.

Troubleshoot problems.

Test applications.

How To (SQL Server 2000)

How to start SQL Profiler (Enterprise Manager)
How to start SQL Profiler (Enterprise Manager)

To start SQL Profiler

1. On the Start menu, point to Programs/Microsoft SQL Server, and then click Enterprise Manager.

2. On the Tools menu, click SQL Profiler.

See Also

Starting SQL Server

How To (SQL Server 2000)

How to view current server activity (Enterprise Manager)
How to view current server activity (Enterprise Manager)

To view current server activity

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand Current Activity.

3. Click Process Info.

The current server activity is displayed in the details pane.

See Also

Monitoring with SQL Server Enterprise Manager

Monitoring with Transact-SQL Statements

How To (SQL Server 2000)

How to view the last command batch for a connection
(Enterprise Manager)
How to view the last command batch for a connection (Enterprise Manager)

To view the last command batch for a connection

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand Current Activity.

3. Click Process Info.

The current server activity is displayed in the details pane.

4. In the details pane, right-click a Process ID, and then click Properties.

5. Optionally, click Refresh to update the display.

See Also

Monitoring with SQL Server Enterprise Manager

Monitoring with Transact-SQL Statements

How To (SQL Server 2000)

How to view the current locks (Enterprise Manager)
How to view the current locks (Enterprise Manager)

To view the current locks

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand Current Activity.

3. Do one of the following:

Expand Locks / Process ID to view the current locks for each connection.

Expand Locks / Object to view the current locks for each object.

4. In the console tree, click the connection (SPID) or object to view.

The current locks for the connection or object are displayed in the details pane.

See Also

Displaying Locking Information

Monitoring with SQL Server Enterprise Manager

Monitoring with Transact-SQL Statements

Understanding Locking in SQL Server

How To (SQL Server 2000)

How to send a message to a currently connected user
(Enterprise Manager)
How to send a message to a currently connected user (Enterprise Manager)

To send a message to a currently connected user

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand Current Activity.

3. Click Process Info.

The current server activity is displayed in the details pane.

4. In the details pane, right-click a Process ID, and then click Send Message.

Note It is not possible to send a message to a user when SQL Server Enterprise Manager is running on Microsoft®
Windows® 98.

5. In the Message box, type the message.

6. Optionally, select Using hostname, and enter the computer name to send the message to a specific computer.

See Also

Monitoring with SQL Server Enterprise Manager

How To (SQL Server 2000)

How to terminate a process (Enterprise Manager)
How to terminate a process (Enterprise Manager)

To terminate a process

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand Current Activity.

3. Click Process Info.

The current server activity is displayed in the details pane.

4. In the details pane, right-click a Process ID, and then click Kill Process.

5. Confirm that the process has terminated.

See Also

Monitoring with SQL Server Enterprise Manager

How To (SQL Server 2000)

How to view the SQL Server error log (Enterprise Manager)
How to view the SQL Server error log (Enterprise Manager)

To view the SQL Server error log

1. Expand a server group, and then expand a server.

2. Expand Management, and then expand SQL Server Logs.

3. Click the SQL Server Log to view.

Error log details appear in the details pane.

See Also

Viewing the SQL Server Error Log

How To (SQL Server 2000)

How to start Performance Monitor (Windows)
How to start Performance Monitor (Windows)

To start Performance Monitor in Windows NT 4.0

On the Start menu, point to Programs/Administrative Tools, and then click Performance Monitor.

See Also

Running System Monitor

How To (SQL Server 2000)

How to start System Monitor (Windows)
How to start System Monitor (Windows)

To start System Monitor in Windows 2000

On the Start menu, point to Programs/Administrative Tools, and then click Performance.

See Also

Running System Monitor

How To (SQL Server 2000)

How to set up a SQL Server database alert (Windows NT)
How to set up a SQL Server database alert (Windows NT)

To set up a SQL Server database alert

1. On the View menu, click Alert.

2. On the Edit menu, click Add to Alert.

3. In the Object list, click a SQL Server object, and then in the Counter box, click a counter on which the alert will be based.

4. Under Alert If, click either Over or Under, and then enter a threshold value.

The alert will be generated when the value for the counter is more than or less than the threshold value (depending on
whether you click Over or Under).

5. Click First Time or Every Time to determine how often the alert is generated.

The default is Every Time.

See Also

Creating a SQL Server Database Alert

How To (SQL Server 2000)

How to set up a SQL Server database alert (Windows 2000)
How to set up a SQL Server database alert (Windows)

To set up a SQL Server database alert

1. On the Tree tab of the Performance window, expand Performance Logs and Alerts.

2. Right-click Alerts, and then click New Alert Settings.

3. In the New Alert Settings dialog box, type a name for the new alert, and then click OK.

4. Click Add to add a counter to the alert.

All alerts must have at least one counter.

5. In the Performance Object list, select a Microsoft® SQL Server™ object, and then in the Select counters from list box,
select a counter.

6. To add the counter to the alert, click Add. You can continue to add counters, or you can click Close to return to the Alert
dialog box.

7. In the Alert dialog box, click either Over or Under from the Alert when value is list, and then enter a threshold value.

The alert will be generated when the value for the counter is more than or less than the threshold value (depending on
whether you clicked Over or Under).

8. In the Sample data every boxes, set the sampling frequency.

9. On the Action tab, set actions to occur every time the alert is triggered.

10. On the Schedule tab, set the start and stop schedule for the alert scan.

See Also

Creating a SQL Server Database Alert

How To (SQL Server 2000)

How to view the Windows application log (Windows)
How to view the Windows application log (Windows)

To view the Windows application log

1. On the Start menu, point to Programs/Administrative Tools, and then click Event Viewer.

2. If the Microsoft® Windows® application log is not displayed, on the Log menu, click Application.

Microsoft SQL Server™ events are identified by the entry MSSQLSERVER in the Source column. SQL Server Agent events
are identified by the entry SQLSERVERAGENT. Microsoft Search service events are identified by the entry Microsoft
Search.

3. To view the log of a different computer, on the Log menu, click Select Computer and complete the Select Computer
dialog box.

4. Optionally, to display only SQL Server events, on the View menu click Filter Events, and in the Source list, select
MSSQLSERVER. To view only SQL Server Agent events, select SQLSERVERAGENT instead.

5. To view more information about an event, double-click the event.

See Also

How to view the SQL Server error log

Viewing the Windows NT Application Log

How To (SQL Server 2000)

How to enable SQL Server support of SNMP on Windows 98
(Windows)
How to enable SQL Server support of SNMP on Windows 98 (SQL Server Network Utility)

To enable SQL Server support of SNMP on Windows 98

1. Install the Microsoft® Windows® 98 SNMP Agent by clicking on the Network icon in Control Panel. Click Add, click
Service as the type of network component to install, click Add, and then click Have Disk.

2. Install SNMP Agent from Tools\Reskit\Netadmin\Snmp directory.

How To (SQL Server 2000)

How to copy the SQL Server MSSQL-MIB to an SNMP
workstation (Windows)
How to copy the SQL Server MSSQL-MIB to an SNMP workstation (Windows)

To copy the MSSQL-MIB to an SNMP workstation

1. Under C:\Program Files\Microsoft SQL Server\MSSQL\Binn, locate the Mssql.mib file.

2. Copy the Mssql.mib file to the appropriate directory on the monitoring workstation.

3. Repeat these steps for all workstations that will be monitoring Microsoft® SQL Server™.

For more information about loading the Microsoft SQL Server Management Information Base (MSSQL-MIB) and
monitoring SQL Server, see the Simple Network Management Protocol (SNMP) application documentation.

How To (SQL Server 2000)

How to set trace definition defaults (SQL Profiler)
How to set trace definition defaults (SQL Profiler)

To set trace definition defaults

1. On the Tools menu, click Options.

2. In the Trace Options dialog box, select a template from either the Template name list or from the Template file name
list.

3. Select or clear the Start tracing immediately after making a connection check box.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set trace display defaults (SQL Profiler)
How to set trace display defaults (SQL Profiler)

To set trace display defaults

1. On the Tools menu, click Options.

2. In the Trace Options dialog box, click the Display tab.

3. In the Font name list, select the font to be used by SQL Profiler to display traces.

4. In the Font size list, select a number between 6 and 24.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to create a trace (SQL Profiler)
How to create a trace (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To create a trace

1. On the File menu, point to New, and then click Trace.

2. In the SQL Server list, select the server to be traced, and then select a connection.

Security Note When possible, use Windows Authentication.

3. In the Trace name box, type a name for the trace, and then do the following:

In the Trace SQL Server list, select a server for the trace to run on.

In the Template name list, select a trace template on which the trace will be based.

4. Do one of the following:

click Save to file to capture the trace to a file in another location.

click Save to table to capture the trace to a database table.

5. Optionally, select the Enable trace stop time check box to specify a stop date and time.

6. To complete other trace properties, click the Events, Data Columns, or Filters tabs and set the options on these tabs.

7. Click Run when ready to start the trace.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to add or remove events from a trace template or trace
file (SQL Profiler)
How to add or remove events from a trace template or trace file (SQL Profiler)

To add or remove events from a trace template or trace file

1. On the File menu, point to Open, and then click Trace Template or Trace File.

2. Select the template file or trace file to open.

3. In the Trace Template Properties dialog box, click the Events tab.

4. In the Available events classes list, expand an event group and click an individual event, or click the entire event group.

5. Click Add to add the selected event or event group to the events that will be traced.

6. In the Selected event classes list, expand an event group and click an individual event, or click the entire event group.

7. Click Remove to remove the selected event or event group from the events that will be traced.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to add or remove data columns from a trace template
(SQL Profiler)
How to add or remove data columns from a trace template (SQL Profiler)

To add or remove data columns from a trace template

1. On the File menu, point to Open, and then click Trace Template.

2. Select the template file to open.

3. In the Trace Template Properties dialog box, click the Data Columns tab.

4. In Unselected data list, click a data column, and then click Add to add the data column to the data that will be captured.

5. In the Selected data list, click a data column, and then click Remove to remove the data column from the data that will be
captured.

6. In the Selected data list, click an individual data column, and then click Up or Down to order the data column.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to filter events in a trace template (SQL Profiler)
How to filter events in a trace template (SQL Profiler)

To filter events in a trace template

1. On the File menu, point to Open, and then click Trace File or Trace Template.

2. Select the template file or trace file to open.

3. In the Trace Template Properties dialog box, click the Filters tab.

4. In the Trace event criteria list, click a criterion.

5. Enter a value in the field that appears beneath the trace event criterion.

How To (SQL Server 2000)

How to save trace results to a file (SQL Profiler)
How to save trace results to a file (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To save trace results to a file

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace name box, type a name for the trace, and then select the Save to file check box.

4. Set the maximum file size in the Set maximum file size (MB) check box. You must set the maximum file size if you are
saving trace results to a file.

5. Optionally, after saving the file, do the following:

Select the Enable file rollover check box, which creates new files to store the trace data if the maximum file size is
reached. This option is selected by default when you are saving trace results to a file.

Select the Server processes SQL Server trace data check box.

To avoid missing events, select this option.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to save trace results to a table (SQL Profiler)
How to save trace results to a table (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To save trace results to a table

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace name box, type a name for the trace, and then click Save to table.

4. In the Destination Table dialog box, do the following:

In the Database list, select the destination database.

In the Table list, type or select the table name for the trace results.

5. Select the Set maximum rows (in thousands) check box to specify the maximum number of rows to save.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to modify a trace template (SQL Profiler)
How to modify a trace template (SQL Profiler)

To modify a trace template

1. On the File Menu, point to Open, and then click Trace Template.

2. Select the trace template file to open.

3. In the Trace Template Properties dialog box, specify the trace template configurations by doing the following:

Click the Events tab to modify the list of selected event classes.

Click the Data Columns tab to modify the list of selected data.

Click the Filters tab to modify the criteria for determining which events to capture. To add or edit criteria, expand the
trace event and then type the criteria in the field that appears beneath the trace criterion.

These modifications are effective the next time the trace template is used for a trace.

4. Click Save, or click Save As to save the trace template under another name.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to pause a trace (SQL Profiler)
How to pause a trace (SQL Profiler)

To pause a trace

1. Select the window for a trace that is running.

2. On the File menu, click Pause Trace.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to run a trace after it has been paused or stopped (SQL
Profiler)
How to run a trace after it has been paused or stopped (SQL Profiler)

To run a trace after it has been paused or stopped

1. Select the window containing the stopped or paused trace.

2. On the File menu, click Run Trace.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to clear a trace window (SQL Profiler)
How to clear a trace window (SQL Profiler)

To clear a trace window

1. When multiple traces are active, select the trace window to clear.

2. On the Edit menu, click Clear Trace Window.

The contents of the trace window are removed.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to close a trace window (SQL Profiler)
How to close a trace window (SQL Profiler)

To close a trace window (which closes a trace)

1. Select the trace window to close. Closing the trace window closes the trace.

2. On the File menu, click Close.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to stop a trace (SQL Profiler)
How to stop a trace (SQL Profiler)

To stop a trace

1. Select a running trace.

2. On the File menu, click Stop Trace, or close a trace window.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to view filter information (SQL Profiler)
How to view filter information (SQL Profiler)

To view filter information

1. Create a trace, or open a trace template, trace file, or SQL Script.

2. If you created a trace, on the File menu, click Properties.

3. Click the Filters tab to view the filter information.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to open a trace data file (SQL Profiler)
How to open a trace data file (SQL Profiler)

To open a trace data file

1. On the File menu, point to Open, and then click Trace File.

2. Select the trace data file to open.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to open a trace table (SQL Profiler)
How to open a trace table (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To open a trace table

1. On the File menu, point to Open, and then click Trace Table.

2. In the Connect to SQL Server dialog box, select the instance of Microsoft® SQL Server™ that contains the trace table and a
connection method.

Security Note When possible, use Windows Authentication.

3. In the Source Table dialog box, in the Database list, click the database in which the table is saved.

4. In the Table list, click the table name.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to replay a trace table (SQL Profiler)
How to replay a trace table (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay a trace table

1. On the File menu, point to Open, and then click Trace Table.

2. In the Connect to SQL Server dialog box, select the instance of Microsoft® SQL Server™ that contains the trace table and a
connection method.

Security Note When possible, use Windows Authentication.

3. In the Source Table dialog box, in the Database list, click the database in which the table is saved.

4. On the Replay menu, click Start.

5. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

6. In the Replay SQL Server dialog box, select the destination server, and then select any of the following:

Replay events in the order they were traced

Replay events using multiple threads

Display replay results

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to replay a trace file (SQL Profiler)
How to replay a trace file (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay a trace file

1. On the File menu, point to Open, and then click Trace File.

2. Select the file to open.

3. On the Replay menu, click Start.

4. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

5. In the Replay SQL Server dialog box, select the destination server, and then select any of the following:

Replay events in the order they were traced

Replay events using multiple threads

Display replay results

How To (SQL Server 2000)

How to replay a single event at a time (SQL Profiler)
How to replay a single event at a time (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay a single event at a time

1. On the File menu, point to Open, and then click Trace File or Trace Table.

2. If you choose to replay an event from a trace table, you must enter the connection information. In the Connect to SQL
Server dialog box, select the server to connect to and a connection method, and specify the database in which the table is
saved in the Source Table dialog box.

Security Note When possible, use Windows Authentication.

3. Select the trace file to open, unless you have already selected the trace table.

4. On the Replay menu, click Step.

5. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

6. In the Replay SQL Server dialog box, alter any necessary settings, and then click Start.

7. On the Replay menu, click Step.

8. Repeat Step 6 until you have replayed all the necessary event steps.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to replay to a breakpoint (SQL Profiler)
How to replay to a breakpoint (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay to a breakpoint

1. On the File menu, point to Open, and then click Trace File or Trace Table.

2. If you choose to replay a trace table, you must enter the connection information. In the Connect to SQL Server dialog box,
select the server to connect to and a connection method, and specify the database in which the table is saved in the Source
Table dialog box.

Security Note When possible, use Windows Authentication.

3. Select the trace file to open, unless you have already selected the trace table.

4. In the trace windows, click a trace event.

5. On the Replay menu, click Toggle Break-Point.

6. On the Replay menu, click Start.

7. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

8. In the Replay SQL Server dialog box, alter any necessary settings, and then click Start.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to replay to the cursor (SQL Profiler)
How to replay to the cursor (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay to the cursor

1. On the File menu, point to Open, and then click Trace File or Trace Table.

2. If you choose to replay a trace table, you must enter the connection information. In the Connect to SQL Server dialog box,
select the server to connect to and a connection method, and specify the database in which the table is saved in the Source
Table dialog box.

Security Note When possible, use Windows Authentication.

3. Select the trace file to open, unless you have already selected the trace table.

4. In the trace window, click an event.

5. On the Replay menu, click Run To Cursor.

6. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

7. In the Replay SQL Server dialog box, alter any necessary settings and then click Start.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to replay an SQL script (SQL Profiler)
How to replay an SQL script (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To replay an SQL script

1. On the File menu, point to Open, and then click SQL Script.

2. Select the Transact-SQL script file to open.

3. On the Replay menu, click Start.

4. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

5. In the Replay SQL Server dialog box, alter any necessary settings, and then click Start.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to modify a filter (SQL Profiler)
How to modify a filter (SQL Profiler)

To modify a filter

1. On the File menu, point to Open, and then click Trace Template.

2. Select the trace template to open.

3. In the Trace Template Properties dialog box, click the Filters tab.

4. In the Trace event criteria list, click a criterion.

5. Enter a value in the field that appears beneath the criterion.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set a maximum file size for a trace file (SQL Profiler)
How to set a maximum file size for a trace file (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To set a maximum file size for a trace file

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type a name for the trace.

In the Template name list, select a trace template.

4. Select Save to file, and then specify a file in which to store the trace information.

5. In the Set maximum file size (MB) check box, specify a maximum file size for the trace. File rollover is enabled by default.

When the file size reaches this maximum, the trace events are no longer recorded.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set a maximum table size for a trace table (SQL Profiler)
How to set a maximum table size for a trace table (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To set a maximum table size for a trace table

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, in the Trace name box, type a name for the trace.

4. Select the Save to table check box, and then specify a table in which to store the trace information.

You will be prompted to connect to the server on which you want the trace to be stored.

5. In the Destination Table dialog box, in the Database list, select a database for the trace, and then in the Table box, type or
select a table name.

6. Select the Set maximum rows (in thousands) check box and specify a maximum number of rows for the trace table.

When the number of rows in the table exceeds this maximum, the trace events are no longer recorded.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set an immediate start time for traces (SQL Profiler)
How to set an immediate start time for traces (SQL Profiler)

To set an immediate start time for traces

1. On the Tools menu, click Options.

2. Select the Start tracing immediately after making a connection check box.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set a StartTime filter for a trace (SQL Profiler)
How to set a StartTime filter for a trace (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To set a StartTime filter for a trace

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type a name for the trace.

In the Template name list, select a trace template.

Optionally, specify a save destination for the trace results.

4. Click the Filters tab, and then in the Trace event criteria box, expand StartTime.

5. Expand Greater or Less than, and then enter a time value in the field that appears beneath the criterion.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set an EndTime filter for a trace (SQL Profiler)
How to set an EndTime filter for a trace (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To set an EndTime filter for a trace

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to connect to and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type a name for the trace.

In the Template name list, select a trace template.

Optionally, specify a save destination for the trace results.

4. Click the Filters tab, and then in the Trace event criteria box, expand EndTime.

5. Expand Greater or Less than, and then enter a time value in the field that appears beneath the criterion.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to filter system IDs in a trace (SQL Profiler)
How to filter system IDs in a trace (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To filter system IDs in a trace

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type a name for the trace.

In the Template name list, select a trace template.

Optionally, specify a save destination for the trace results.

4. Click the Filters tab, and then in the Trace event criteria box, expand SPID.

5. Expand Equals, Not equal to, Greater than or equal or Less than or equal, and then enter a value in the field that
appears beneath the criterion.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to create a trace template (SQL Profiler)
How to create a trace template (SQL Profiler)

To create a trace template

1. On the File menu, point to New, and then click Trace Template.

2. Specify template properties by clicking options on the Events, Data Columns, or Filters tabs.

3. Click Save As to name and save the template.

See Also

How to derive a template from a running trace

How to derive a template from a trace file or trace table

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to set global trace options (SQL Profiler)
How to set global trace options (SQL Profiler)

To set global trace options

1. On the Tools menu, click Options.

2. From the Template name list, select a default trace template.

3. Optionally, select the Start tracing immediately after making a connection check box.

4. Click the Display tab, and then in the Font Name list, select the font used by SQL Profiler to display traces.

5. In the Font size list, type or select a number that ranges from 6 through 24.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to find a value or data column while tracing (SQL Profiler)
How to find a value or data column while tracing (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To find a value or data column while tracing

1. Create a trace by clicking the File menu and pointing to New and then Trace.

2. In the Connect to SQL Server dialog box, select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. To display data in the trace window, run SQL Query Analyzer, and then click the trace window in SQL Profiler again.

4. On the Edit menu, click Find.

5. In the Find dialog box, enter a search value or specify a data column.

6. Click Find Previous.

The search starts at the beginning of the trace.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to launch a new trace with the current template (SQL
Profiler)
How to launch a new trace with the current template (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To launch a new trace with the current template

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to be traced and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type the name of the new trace.

In the Template name list, select the same template as the currently running trace.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to derive a template from a running trace (SQL Profiler)
How to derive a template from a running trace (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To derive a template from a running trace

1. On the File menu, point to New, and then click Trace.

2. In the Connect to SQL Server dialog box, select the server to be traced and connection method.

Security Note When possible, use Windows Authentication.

3. In the Trace Properties dialog box, do the following:

In the Trace name box, type the name of the new trace.

In the Template name list, select a template.

4. Modify the template by adding or deleting events, columns, or filters, and then start the trace by clicking Run.

5. On the File menu, point to Save As, and then click Trace Template.

6. Type a name and save the template file.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to derive a template from a trace file or trace table (SQL
Profiler)
How to derive a template from a trace file or trace table (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To derive a template from a trace file or trace table

1. On the File menu, point to Open, and then click either Trace File or Trace Table.

2. If you choose to replay a trace table, you must enter the connection information. In the Connect to SQL Server dialog box,
select the server to which you want to connect and a connection method, and specify the database in which the table is
saved in the Source Table dialog box.

Security Note When possible, use Windows Authentication.

3. Select the trace file to open, unless you have already selected a trace table to open.

4. On the File menu, point to Save As, and then click Trace Template.

5. Type a name and save the template file.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to save a template, trace file, or trace table to SQL Script
(SQL Profiler)
How to save a template, trace file, or trace table to SQL Script (SQL Profiler)

 New Information - SQL Server 2000 SP3.

To save a template, trace file, or trace table to SQL Script

1. On the File menu, point to Open, and then click Trace Template, Trace File, or Trace Table.

2. If you choose to save a trace table, you must enter the connection information. In the Connect to SQL Server dialog box,
select the server to which you want to connect and a connection method.

Security Note When possible, use Windows Authentication.

3. In the Open dialog box, select a trace template, trace file, or trace table to save.

4. On the File menu, point to Save As, and then click SQL Script.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

How to create an SQL Script for a running trace (SQL Profiler)
How to create an SQL Script for a running trace (SQL Profiler)

To create an SQL Script for running a trace

1. Create and run a new trace, or create or open a trace template.

2. On the File menu, point to Script Trace, and then click For SQL Server 2000 or For SQL Server 7.0, depending on the
server that is to be traced.

See Also

Monitoring with SQL Profiler

How To (SQL Server 2000)

Creating and Maintaining Databases
Designing your Microsoft® SQL Server™ 2000 database structure involves creating and maintaining a number of interrelated
components.

Database component Description
Databases Contain the objects used to represent, manage, and access

data.
Tables Store rows of data and define the relationships between

multiple tables.
Indexes Optimize the speed of accessing the data in the table.
Views Provide an alternate way of looking at the data in one or

more tables.
Stored Procedures Centralize business rules, tasks, and processes within the

server using Transact-SQL programs.
Triggers Centralize business rules, tasks, and processes within the

server using special types of stored procedures that are
only executed when data in a table is modified.

Creating a database to serve your business needs requires an understanding of how to design, create, and maintain them to
ensure your database performs optimally.

How To (SQL Server 2000)

Databases
A database in Microsoft® SQL Server™ 2000 consists of a collection of tables with data, and other objects, such as views, indexes,
stored procedures, and triggers, that are defined to support the activities performed with the data. Before objects within the
database can be created, you must create the database and understand how to change the settings and the configuration of the
database. This includes tasks such as expanding or shrinking the database, or specifying the files used to create the database.

See Also

Databases

How To (SQL Server 2000)

How to create a database (Enterprise Manager)
How to create a database (Enterprise Manager)

To create a database

1. Expand a server group, and then expand a server.

2. Right-click Databases, and then click New Database.

3. Enter a name for the new database.

The primary database and transaction log files are created using the database name you specified as the prefix, for example
newdb_Data.mdf and newwdb_Log.ldf. The initial sizes of the database and transaction log files are the same as the default
sizes specified for the model database. The primary file contains the system tables for the database.

4. To change the default values for the new primary database file, click the General tab. To change the defaults for the new
transaction log file, click the Transaction Log tab.

5. To change the default values provided in the File name, Location, Initial size (MB), and File group (not applicable for the
transaction log) columns, click the appropriate cell to change and enter the new value.

6. To specify how the file should grow, select from these options:

To allow the currently selected file to grow as more data space is needed, select Automatically grow file.

To specify that the file should grow by fixed increments, select In megabytes and specify a value.

To specify that the file should grow by a percentage of the current file size, select By percent and specify a value.

7. To specify the file size limit, select from these options:

To allow the file to grow as much as necessary, select Unrestricted filegrowth.

To specify the maximum size the file should be allowed to grow to, select Restrict filegrowth (MB) and specify a
value.

Note The maximum database size is determined by the amount of disk space available and the licensing limits determined by
the version of Microsoft® SQL Server™ you are using.

See Also

Creating a Database

Creating Filegroups

How To (SQL Server 2000)

How to create a database using the Create Database Wizard
(Enterprise Manager)
How to create a database using the Create Database Wizard (Enterprise Manager)

To create a database using the Create Database Wizard

1. Expand a server group, and then expand the server in which to create a database.

2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create Database Wizard.

5. Complete the steps in the wizard.

See Also

Creating a Database

How To (SQL Server 2000)

How to increase the size of a database (Enterprise Manager)
How to increase the size of a database (Enterprise Manager)

To increase the size of a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to increase, and then click Properties.

3. To increase the data space, click the General tab. To increase the transaction log space, click the Transaction Log tab.

4. To add a new file, click the next empty row and, in the File name column, enter the file name that will contain the additional
space.

The file location is generated automatically and given the .ndf suffix for a database file, or an .ldf suffix for a transaction log
file.

5. To change the default values provided in the File name, Location, Space allocated (MB), and Filegroup (not applicable
for the transaction log) columns, click the cell to change and enter the new value.

For existing files, only the Space allocated (MB) value can be changed; the new value must be larger than the existing
value.

6. To specify how the file should grow, select from these options:

To allow the currently selected file to grow as more data space is needed, select Automatically grow file.

To specify that the file should grow by fixed increments, select In megabytes and specify a value.

To specify that the file should grow by a percentage of the current file size, select By percent and specify a value.

7. To specify the file size limit, select from these options:

To allow the file to grow as much as necessary, select Unrestricted filegrowth.

To specify the maximum size to which the file should be allowed to grow, select Restrict filegrowth (MB) and specify
a value.

Note The maximum database size is determined by the amount of disk space available and the licensing limits determined by
the version of SQL Server you are using.

See Also

Adding and Deleting Data and Transaction Log Files

Creating Filegroups

Expanding a Database

How To (SQL Server 2000)

How to shrink a database (Enterprise Manager)
How to shrink a database (Enterprise Manager)

To shrink a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to shrink, point to All Tasks, and then click Shrink Database.

3. To specify how much to shrink the database, select from these options:

For Maximum free space in files after shrinking, enter the amount of free space you want left in the database after
shrinking. Use the Database Size, Space free value as a guideline.

Select Move pages to beginning of file before shrinking to cause the freed file space to be retained in the
database files, and pages containing data to be moved to the beginning of the database files.

4. Click Schedule to create or change the frequency or time when the database is automatically shrunk.

5. Click Shrink files if you want to shrink individual database files.

Note You cannot shrink a database smaller than the size of the model database.

See Also

Shrinking a Database

How To (SQL Server 2000)

How to delete data or log files from a database (Enterprise
Manager)
How to delete data or log files from a database (Enterprise Manager)

To delete data or log files from a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database from which to delete the data or log files, and then click Properties.

3. To delete data files, click the General tab. To delete log files, click the Transaction Log tab.

4. In the File name column, click the arrow next to the name of the file to delete, and then press the DELETE key. A cross will
appear next to the file name indicating that the file will be deleted.

Note Files can be deleted only if they are empty. Remove all objects on the files and shrink the database before deleting files
from the database.

See Also

Adding and Deleting Data and Log Files

How To (SQL Server 2000)

How to change the configuration settings for a database
(Enterprise Manager)
How to change the configuration settings for a database (Enterprise Manager)

To change the configuration settings for a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to change, and then click Properties.

3. Click the Options tab, and select or clear the configuration setting(s) to change.

See Also

Nested Triggers

Renaming a Database

Setting Database Options

Shrinking a Database

How To (SQL Server 2000)

How to view a database (Enterprise Manager)
How to view a database (Enterprise Manager)

To view a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then click the database to view.

3. Right-click the database, click View and then click Taskpad.

4. Click General, Tables and Indexes, or Space Allocated tabs to view more information about the database.

See Also

Viewing a Database

How To (SQL Server 2000)

How to view the settings for a database (Enterprise Manager)
How to view the settings for a database (Enterprise Manager)

To view the settings for a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to view, and then click Properties.

3. Click the Options tab.

See Also

Viewing a Database

How To (SQL Server 2000)

How to view a list of databases on a server (Enterprise
Manager)
How to view a list of databases on a server (Enterprise Manager)

To view a list of databases on a server

1. Expand a server group, and then expand a server.

2. Expand Databases and a list of all databases on the server will be displayed.

See Also

Viewing a Database

How To (SQL Server 2000)

How to display data and log space information for a database
(Enterprise Manager)
How to display data and log space information for a database (Enterprise Manager)

To display data and log space information for a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then click the database to view.

3. Right-click the database, click View and then click Taskpad.

4. In the details pane, look at Space Allocated to view database space information.

See Also

Displaying Database and Transaction Log Space

Monitoring with Transact-SQL Statements

How To (SQL Server 2000)

How to generate a script (Enterprise Manager)
How to generate a script (Enterprise Manager)

To generate a script

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to script, point to All Tasks, and then click Generate SQL Scripts.

3. On the General tab, select the database objects to script. By default, all objects in the database are scripted.

4. On the Formatting tab, select from the script formatting options:

Generate the CREATE <object> command for each object so that each object to be scripted is explicitly created
using its existing definition. This is selected by default.

Generate the DROP <object> command for each object so that a DROP statement is added to the script for each
object to be scripted. This is selected by default.

Caution When executed, this causes any existing objects in the database (where the script is executed with the same
name as objects listed in the script) to be deleted first.

Generate scripts for all dependent objects so that all objects in the database which are needed to create the
objects listed in the script are included automatically in the script if not already selected.

Include descriptive headers in the script files so that a comment is added to the file for each object listed in the
script.

5. On the Options tab, select the security-related, table-related, and script file-related options.

6. On the General tab, click Preview to view a preview of the generated script.

See Also

Documenting and Scripting Databases

How To (SQL Server 2000)

How to start the Database Maintenance Plan Wizard
(Enterprise Manager)
How to start the Database Maintenance Plan Wizard (Enterprise Manager)

To start the Database Maintenance Plan Wizard

1. Expand a server group, and then expand the server.

2. On the Tools menu, click Database Maintenance Planner.

3. Complete the steps in the wizard.

See Also

Database Maintenance Plan Wizard

How To (SQL Server 2000)

How to delete a database (Enterprise Manager)
How to delete a database (Enterprise Manager)

To delete a database

1. Expand a server group, and then expand a server.

2. Expand Databases, right-click the database to delete, and then click Delete.

3. Confirm the deletion.

See Also

Deleting a Database

How To (SQL Server 2000)

How to attach and detach a database (Enterprise Manager)
How to attach and detach a database (Enterprise Manager)

To attach a database

1. Expand a server group, and then expand a server.

2. Right-click Databases, and select All Tasks/Attach Database.

3. Enter the name of the MDF (master data file) of the database to attach. If you are not sure where the file is located, click
browse (...) to search. There can only be up to 16 file names specified. For more information, see sp_attach_db.

4. To ensure that the specified MDF file is correct, click Verify. The Original File Name(s) column lists all the files in the
database (data files and log files). The Current File(s) Location column lists the file names and paths. If Microsoft® SQL
Server™ cannot find the files in the specified locations, the attach operation fails. The Current File(s) Location column can be
edited, and the current location of the file must be in this column for the attach operation to work. For example, if you have
changed the default location of the file before you detached it, you must specify the current location for the attach operation
to be successful.

5. In the Attach as box, enter the name of the database. The database name must not match any existing database names.

6. Specify the database owner.

7. Click OK. A database node for the newly attached database is created in the Database folder.

To detach a database

1. Expand a server group, and then expand a server.

2. Expand Databases.

3. Right-click the database, and then select All Tasks/Detach Database. This menu is visible only if you are a member of the
sysadmin fixed server role and the server to which you are connected is SQL Server 2000. The master, model, and
tempdb databases cannot be detached.

4. In the Detach Database dialog box, check the status of the database. To successfully detach a database, STATUS should be:
The database is ready to be detached. Optionally, you can select to update statistics prior to the detach operation.

5. To terminate any existing connections from the database, click Clear.

6. Click OK. The database node for the detached database is removed from the Database folder.

How To (SQL Server 2000)

How to create user-defined data types (Enterprise Manager)
How to create user-defined data types (Enterprise Manager)

To create a user-defined data type

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which to create the user-defined data type.

3. Right-click User Defined Data Types, and then click New User Defined Data Type.

4. Enter the name of the new data type.

5. In the Data type list, select the base data type.

6. If Length is active, enter another value if you want to change the maximum data length that the data type can store. The
only data types that can have variable lengths are binary, char, nchar, nvarchar, varbinary, and varchar.

7. To allow the data type to accept null values, select Allow Nulls.

8. Optionally, in the Rule and Default lists, select a rule or default, if any, to bind to the user-defined data type.

See Also

Creating User-Defined Data Types

sp_addtype

Using Data Types

How To (SQL Server 2000)

How to delete user-defined data types (Enterprise Manager)
How to delete user-defined data types (Enterprise Manager)

To delete a user-defined data type

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database, and then click User Defined Data Types.

3. In the details pane, right-click the data type to delete, and then click Delete.

4. To see how deleting this data type will affect the database, click Show Dependencies.

5. In the Drop Objects dialog box, click Drop All.

See Also

Creating User-defined Data Types

sp_droptype

Using Data Types

How To (SQL Server 2000)

How to create a reflexive relationship (Enterprise Manager)
How to create a reflexive relationship (Enterprise Manager)

To create a reflexive relationship

1. Open a database diagram.

2. Click the row selector for the database column that you want to relate to another column.

3. While the pointer is positioned over the row selector, drag the pointer outside the table until a line appears.

4. Drag the line back to the selected table.

5. Release the mouse button.

The Create Relationship dialog box appears and attempts to match the primary key columns with the non-key columns to
which you dragged the line.

6. Confirm that the columns you want to relate are shown in the Primary key table and Foreign key table lists.

See Also

Drawing a Reflexive Relationship

https://msdn.microsoft.com/en-us/library/aa275866(v=sql.80).aspx

How To (SQL Server 2000)

How to create a many-to-many relationship between tables
(Enterprise Manager)
How to create a many-to-many relationship between tables (Enterprise Manager)

To create a many-to-many relationship between tables

1. Open a database diagram.

2. Add the tables that you want to create a many-to-many relationship between.

3. Create a third table by right-clicking within the database diagram, and then clicking New Table.

This will become the junction table.

4. In the Choose Name dialog box, enter a name for the table.

For example, the junction table between the titles table and the authors table is named titleauthors.

5. Copy the primary key columns from each of the other two tables to the junction table.

You can add other columns to this table, just as you can to any other table.

6. In the junction table, set the primary key to include all the primary key columns from the other two tables.

7. Define a one-to-many relationship between each of the two primary tables and the junction table.

See Also

Adding Tables to a Diagram

Copying Columns from One Table to Another

Mapping Many-to-Many Relationships to a Database Diagram

https://msdn.microsoft.com/en-us/library/aa275820(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa275831(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa259090(v=sql.80).aspx

How To (SQL Server 2000)

How to delete a relationship (Enterprise Manager)
How to delete a relationship (Enterprise Manager)

To delete a relationship

1. Open a database diagram.

2. Right-click the relationship line that you want to delete from the diagram, and then click Delete Relationship from
Database.

See Also

Deleting a Relationship

https://msdn.microsoft.com/en-us/library/aa275858(v=sql.80).aspx

How To (SQL Server 2000)

How to create a DEFAULT object (Enterprise Manager)
How to create a DEFAULT object (Enterprise Manager)

To create a DEFAULT object

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which to create the DEFAULT object.

3. Right-click Defaults, and then click New Default.

4. In Name, enter a name for the DEFAULT object.

5. In Value, enter the value for the DEFAULT object. The value can be a constant or expression.

6. Optionally, click:

Bind UDTs to bind the new DEFAULT object to a user-defined data type.

Bind Columns to bind the DEFAULT object to an existing column in a table.

See Also

Creating and Modifying DEFAULT Definitions

How To (SQL Server 2000)

How to delete a DEFAULT object (Enterprise Manager)
How to delete a DEFAULT object (Enterprise Manager)

To delete a DEFAULT object

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the DEFAULT object belongs, and then click Defaults.

3. In the details pane, right-click the DEFAULT object to delete, and then click Delete.

4. To see how deleting this table will affect the database, click Show Dependencies.

5. Click Drop All.

See Also

Creating and Modifying DEFAULT Definitions

How To (SQL Server 2000)

How to view the dependencies of a table (Enterprise Manager)
How to view the dependencies of a table (Enterprise Manager)

To view the dependencies of a table

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, point to All Tasks, and then click Display Dependencies.

See Also

Viewing a Table

How To (SQL Server 2000)

Indexes
To create efficient indexes that improve the performance of your database application by increasing the speed of your queries,
you need an understanding of how to create and maintain the indexes on the tables in your database.

See Also

Indexes

How To (SQL Server 2000)

How to analyze a query using Index Analysis (Query Analyzer)
How to analyze a query using Index Analysis (Query Analyzer)

To start the Index Tuning Wizard

1. Expand a server group, and then expand the server in which to create the index.

2. On the Tools menu, click Wizards.

3. Expand Management.

4. Double-click Index Tuning Wizard.

5. Complete the steps in the wizard.

See Also

Index Tuning Wizard

How To (SQL Server 2000)

How to analyze a query using Index Tuning Wizard (Query
Analyzer)
How to analyze a query using Index Tuning Wizard (Query Analyzer)

To analyze a query using Index Tuning Wizard

1. Enter the query or batch of Transact-SQL statements to be analyzed into the query pane.

2. On the Query menu, click Index Tuning Wizard.

See Also

Index Tuning Wizard

How To (SQL Server 2000)

How to create an index using the Create Index Wizard
(Enterprise Manager)
How to create an index using the Create Index Wizard (Enterprise Manager)

To create an index using the Create Index Wizard

1. Expand a server group, and then expand the server in which to create the index.

2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create Index Wizard.

5. Complete the steps in the wizard.

See Also

Creating an Index

How To (SQL Server 2000)

How to view all indexes in a database (Enterprise Manager)
How to view all indexes in a database (Enterprise Manager)

To view all indexes in a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then click the database to view.

3. Right-click the database, click View and then click Taskpad.

4. Select the Table Info tab to view information about the indexes in the database.

See Also

Viewing an Index

How To (SQL Server 2000)

Views
By creating, modifying, and maintaining views, you can customize each user's perception of the database.

See Also

Views

How To (SQL Server 2000)

How to create a view using the Create View Wizard (Enterprise
Manager)
How to create a view using the Create View Wizard (Enterprise Manager)

To create a view using the Create View Wizard

1. Expand a server group, and then expand the server in which to create the view.

2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create View Wizard.

5. Complete the steps in the wizard.

See Also

Creating a View

How To (SQL Server 2000)

How to rename a view (Enterprise Manager)
How to rename a view (Enterprise Manager)

To rename a view

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the view belongs, and then click Views.

3. In the details pane, right-click the view, and then click Rename.

4. Enter the new name of the view.

5. Confirm the new name.

See Also

Modifying and Renaming a View

How To (SQL Server 2000)

How to modify a view (Enterprise Manager)
How to modify a view (Enterprise Manager)

To modify a view

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the view belongs, and then click Views.

3. In the details pane, right-click the view, and then click Design View.

4. To add additional tables or views to the view, right-click in the diagram pane, and then click Add Table.

On the Tables or Views tabs, click the table or view to add to the new view, and then click Add. Repeat for each table
or view you want to add to the new view.

5. To remove an entire table or view from the view, in the diagram pane, right-click the title bar of the table, and then click
Remove.

6. In the Column box of the grid pane, select the columns to be referenced in the view.

7. Select Output if the column is to appear in the result set of the view.

8. To group by column, right-click the column, and then click Group By.

9. In the Criteria column, enter the criteria specifying which rows to retrieve; this determines the WHERE clause. If Group By is
specified, this determines the HAVING clause.

10. In the Or column, enter any additional criteria to specify which rows to retrieve.

11. Right-click anywhere in the grid pane, and then click Properties.

12. Optionally, select:

Output all columns to display all columns in the view in the result set.

DISTINCT values to filter out duplicate values in the result set.

Encrypt view to encrypt the definition of the view.

13. Optionally, in Top, enter the number of rows to return in the result set. Enter the word PERCENT after the number to return
a percentage of rows in the result set.

14. Right-click anywhere in the diagram pane, and then click Run (to view the result set) or Save (to save the view).

See Also

Modifying and Renaming a View

How To (SQL Server 2000)

How to get information about a view (Enterprise Manager)
How to get information about a view (Enterprise Manager)

To get information about a view

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the view belongs, and then click Views.

3. In the details pane, right-click the view, and then click Properties.

See Also

Getting Information About a View

How To (SQL Server 2000)

How to display the dependencies of a view (Enterprise
Manager)
How to display the dependencies of a view (Enterprise Manager)

To display the dependencies of a view

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the view belongs, and then click Views.

3. In the details pane, right-click the view, point to All Tasks, and then click Display Dependencies.

See Also

Getting Information About a View

How To (SQL Server 2000)

How to delete a view (Enterprise Manager)
How to delete a view (Enterprise Manager)

To delete a view

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the view belongs, and then click Views.

3. In the details pane, right-click the view, and then click Delete.

4. To see how deleting this view will affect the database, click Show Dependencies.

5. Click Drop All.

See Also

Deleting a View

How To (SQL Server 2000)

Stored Procedures
By creating, modifying, and using stored procedures, you can simplify your business applications and improve application and
database performance.

See Also

Stored Procedures

How To (SQL Server 2000)

How to create a stored procedure (Enterprise Manager)
How to create a stored procedure (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To create a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database in which to create the procedure.

3. Right-click Stored Procedures, and then click New Stored Procedure.

4. Enter the text of the stored procedure. Press TAB to indent the text of a stored procedure. Press CTRL+TAB to exit the text
box, or click an appropriate button.

5. To check the syntax, click Check Syntax.

6. To set the permissions, click Permissions.

Security Note Validate all user input. Do not concatenate user input before validating it. Never execute a command
constructed from unvalidated user input. For more information, see Validating User Input.

See Also

Creating a Stored Procedure

How To (SQL Server 2000)

How to create a stored procedure using the Create Stored
Procedure Wizard (Enterprise Manager)
How to create a stored procedure using the Create Stored Procedure Wizard (Enterprise Manager)

To create a stored procedure using the Create Stored Procedure Wizard

1. Expand a server group, and then expand the server in which to create the view.

2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create Stored Procedure Wizard.

5. Complete the steps in the wizard.

See Also

Creating a Stored Procedure

How To (SQL Server 2000)

How to add an extended stored procedure (Enterprise
Manager)
How to add an extended stored procedure (Enterprise Manager)

To add an extended stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the master database.

3. Right-click Extended Stored Procedures, and then click New Extended Stored Procedure.

4. In Name, enter the name of the extended stored procedure.

5. In Path, enter the path of the dynamic link library that contains the extended stored procedure. Optionally, click (...) to locate
the DLL containing the extended stored procedure.

See Also

Creating a Stored Procedure

Extended Stored Procedures

How To (SQL Server 2000)

How to modify a stored procedure (Enterprise Manager)
How to modify a stored procedure (Enterprise Manager)

To modify a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the procedure belongs, and then click Stored Procedures.

3. In the details pane, right-click the stored procedure, and then click Properties.

4. In the Text box, change the text of the stored procedure as necessary. Press CTRL+TAB to indent the text of a SQL Server
Enterprise Manager stored procedure.

5. To check the syntax, click Check Syntax.

6. To change the permissions, click Permissions.

See Also

Modifying and Renaming a Stored Procedure

How To (SQL Server 2000)

How to rename a stored procedure (Enterprise Manager)
How to rename a stored procedure (Enterprise Manager)

 Topic last updated -- January 2004

To rename a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the procedure belongs, and then click Stored Procedures.

3. In the details pane, right-click the stored procedure, and then click Rename.

4. Type the new name of the stored procedure.

5. Confirm the new name.

6. Note Renaming a stored procedure does not change the name of the stored procedure in the text of the procedure's
definition. To change the name of the stored procedure in the definition, modify the stored procedure directly.

See Also

Modifying and Renaming a Stored Procedure

How To (SQL Server 2000)

How to view the definition of a stored procedure (Enterprise
Manager)
How to view the definition of a stored procedure (Enterprise Manager)

To view the definition of a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the stored procedure belongs, and then click Stored Procedures.

3. In the details pane, right-click the stored procedure, and then click Properties.

See Also

Viewing a Stored Procedure

How To (SQL Server 2000)

How to view the dependencies of a stored procedure
(Enterprise Manager)
How to view the dependencies of a stored procedure (Enterprise Manager)

To view the dependencies of a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the stored procedure belongs, and then click Stored Procedures.

3. In the details pane, right-click the stored procedure, point to All Tasks, and then click Display Dependencies.

See Also

Viewing a Stored Procedure

How To (SQL Server 2000)

How to view information about an extended stored procedure
(Enterprise Manager)
How to view information about an extended stored procedure (Enterprise Manager)

To view information about an extended stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the master database, and then click Extended Stored Procedures.

3. In the details pane, right-click the extended stored procedure, and then click Properties.

4. Optionally, click (...) to locate the DLL containing the extended stored procedure.

5. Optionally, click Permissions to view or set permissions on the extended stored procedure.

See Also

Viewing a Stored Procedure

How To (SQL Server 2000)

How to delete a stored procedure (Enterprise Manager)
How to delete a stored procedure (Enterprise Manager)

To delete a stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the stored procedure belongs, and then click Stored Procedures.

3. In the details pane, right-click the stored procedure to delete, and then click Delete.

4. To see how deleting this stored procedure will affect the database, click Show Dependencies.

5. Click Drop All.

See Also

Deleting a Stored Procedure

How To (SQL Server 2000)

How to delete an extended stored procedure (Enterprise
Manager)
How to delete an extended stored procedure (Enterprise Manager)

To delete an extended stored procedure

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the master database, and then click Extended Stored Procedures.

3. In the details pane, right-click the extended stored procedure to delete, and then click Delete.

4. To see how deleting this extended stored procedure will affect the database, click Show Dependencies.

5. Click Drop All.

See Also

Deleting a Stored Procedure

How To (SQL Server 2000)

Triggers
By understanding how to create, modify, and maintain triggers, you can use triggers to:

Cascade changes through related tables in the database.

Disallow or roll back changes that violate referential integrity, thereby canceling the attempted data modification
transaction.

Enforce restrictions that are more complex than those defined with CHECK constraints.

Find the difference between the state of a table before and after a data modification and take action(s) based on that
difference.

See Also

Enforcing Business Rules with Triggers

How To (SQL Server 2000)

How to create a trigger (Enterprise Manager)
How to create a trigger (Enterprise Manager)

To create a trigger

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table to contain the trigger belongs, and then click Tables.

3. In the details pane, right-click the table on which the trigger will be created, point to All Tasks, and then click Manage
Triggers.

4. In Name, click <new>.

5. In the Text box, enter the text of the trigger. Use CTRL-TAB to indent the text of a trigger.

6. To check the syntax, click Check Syntax.

See Also

Creating a Trigger

How To (SQL Server 2000)

How to modify a trigger (Enterprise Manager)
How to modify a trigger (Enterprise Manager)

To modify a trigger

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table containing the trigger belongs, and then click Tables.

3. In the details pane, right-click the table on which the trigger exists, point to All Tasks, and then click Manage Triggers.

4. In Name, select the name of the trigger.

5. Change the text of the trigger in the Text field as necessary. Press CTRL+TAB to indent the text of a SQL Server Enterprise
Manager trigger.

6. To check the syntax of the trigger, click Check Syntax.

See Also

Modifying and Renaming a Trigger

How To (SQL Server 2000)

How to view a trigger (Enterprise Manager)
How to view a trigger (Enterprise Manager)

To view a trigger

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table containing the trigger belongs, and then click Tables.

3. In the details pane, right-click the table on which the trigger exists, point to All Tasks, and then click Manage Triggers.

See Also

Viewing a Trigger

How To (SQL Server 2000)

How to view the dependencies of a trigger (Enterprise
Manager)
How to view the dependencies of a trigger (Enterprise Manager)

To view the dependencies of a trigger

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the trigger belongs, and then click Tables.

3. In the details pane, right-click the table to which the trigger belongs, point to All Tasks, and then click Display
Dependencies.

4. In Object, click the name of the trigger whose dependencies you want to display.

See Also

Modifying and Renaming a Trigger

Viewing a Trigger

How To (SQL Server 2000)

How to delete a trigger (Enterprise Manager)
How to delete a trigger (Enterprise Manager)

To delete a trigger

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table containing the trigger belongs, and then click Tables.

3. In the details pane, right-click the table on which the trigger exists, point to All Tasks, and then click Manage Triggers.

4. In Name, click the name of the trigger to delete.

5. Click Delete.

6. Confirm the deletion.

See Also

Deleting a Trigger

How To (SQL Server 2000)

Full-text Indexes
Full-text support for Microsoft® SQL Server™ 2000 data requires two tasks: enabling the database to allow queries against
character data, and the creation and maintenance of the underlying indexes that facilitate these queries.

How To (SQL Server 2000)

How to enable a database for full-text indexing (Enterprise
Manager)
How to enable a database for full-text indexing (Enterprise Manager)

To enable a database for full-text indexing

1. Expand a server group, and then expand a server.

2. Expand Databases, and then click a database to enable.

3. On the Tools menu, click Full-Text Indexing.

4. Complete the Full-Text Indexing Wizard.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to enable a table for full-text indexing (Enterprise
Manager)
How to enable a table for full-text indexing (Enterprise Manager)

To enable a table for full-text indexing

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, click Full-Text Index Table, and then click Define Full-Text Indexing on a Table.

4. Complete the Full-Text Indexing Wizard.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to enable a column for full-text indexing (Enterprise
Manager)
How to enable a column for full-text indexing (Enterprise Manager)

To enable a column for full-text indexing

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, click Full-Text Index Table, and then click Define Full-Text Indexing on a Table.

4. Complete the Full-Text Indexing Wizard to enable specific columns.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to edit a full-text index on a table (Enterprise Manager)
How to edit a full-text index on a table (Enterprise Manager)

To edit a full-text index on a table

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, click Full-Text Index Table, and then click Edit Full-Text Indexing.

4. Make the changes in the Full-Text Indexing Wizard.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to remove full-text indexing on a table (Enterprise
Manager)
How to remove full-text indexing on a table (Enterprise Manager)

To remove a full-text index on a table

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, click Full-Text Index Table, and then click Remove Full-Text Indexing.

4. Click Yes to confirm the removal of the full-text index from the table.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to create a full-text catalog (Enterprise Manager)
How to create a full-text catalog (Enterprise Manager)

To create a full-text catalog

1. Expand a server group, and then expand a server.

2. Expand Databases, and then right-click the database where you want the full-text catalog.

3. Click New, and then click New Full-Text Catalog.

4. Complete the New Full-Text Catalog dialog box.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to rebuild a full-text catalog (Enterprise Manager)
How to rebuild a full-text catalog (Enterprise Manager)

To rebuild a full-text catalog

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the full-text catalog to rebuild.

3. Click Full-Text Catalogs, and then right-click the specific catalog to rebuild.

4. Select Rebuild Catalog.

5. Click Yes to rebuild the catalog.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to rebuild all full-text catalogs in a database (Enterprise
Manager)
How to rebuild all full-text catalogs in a database (Enterprise Manager)

To rebuild all full-text catalogs

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the catalogs to rebuild.

3. Right-click Full-Text Catalogs, and then click Rebuild All Catalogs.

4. Click Yes to rebuild all the catalogs.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to start and stop a full or incremental population of a full-
text index (Enterprise Manager)
How to start and stop a full or incremental population of a full-text index (Enterprise Manager)

To start and stop the production of a full-text index

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the full-text catalog to rebuild.

3. Click Full-Text Catalogs, and then right-click the specific catalog to populate.

4. Click Start Full Population or Start Incremental Population. Or click Stop Population, as appropriate.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to check the status, tables, and schedules of a full-text
catalog (Enterprise Manager)
How to check the status, tables, and schedules of a full-text catalog (Enterprise Manager)

To check the status, tables, and schedules of a full-text catalog

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the full-text catalog to review.

3. Click Full-Text Catalogs, and then right-click the specific catalog to review.

4. Click Properties, and then click the Status, Tables, and Schedules tabs, as appropriate.

See Also

Full-Text Indexes

sp_fulltext_catalog

How To (SQL Server 2000)

How to change or create a new schedule for a full-text catalog
(Enterprise Manager)
How to change or create a new schedule for a full-text catalog (Enterprise Manager)

To change or create a new schedule for a full-text catalog

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the full-text catalog to review.

3. Click Full-Text Catalogs, and then right-click the specific catalog to review.

4. Click Schedules and make changes or establish a new schedule.

See Also

Full-Text Indexes

sp_add_job

sp_add_jobschedule

sp_add_jobserver

sp_fulltext_catalog

sp_delete_job

sp_update_job

How To (SQL Server 2000)

How to remove a full-text catalog from a database (Enterprise
Manager)
How to remove a full-text catalog from a database (Enterprise Manager)

To remove a full-text catalog

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the full-text catalog to rebuild.

3. Click Full-Text Catalogs, and then right-click the specific catalog you want to remove, and click Delete.

4. Click Yes to remove the catalog.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to remove all full-text catalogs in a database (Enterprise
Manager)
How to remove all full-text catalogs in a database (Enterprise Manager)

To remove all full-text catalogs in a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the catalogs to remove.

3. Right-click Full-Text Catalogs, and then click Remove All Catalogs.

4. Click Yes to confirm the removal of the catalogs.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to repopulate all full-text catalogs for a database
(Enterprise Manager)
How to repopulate all full-text catalogs for a database (Enterprise Manager)

To repopulate all full-text catalogs in a database

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the database that contains the catalogs to repopulate.

3. Right-click Full-Text Catalogs, and then click Repopulate All Catalogs.

4. Click Yes to repopulate all the catalogs.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to clean up the full-text catalogs on a server (Enterprise
Manager)
How to clean up the full-text catalogs on a server (Enterprise Manager)

To clean up the full-text catalogs on a server

1. Expand a server group, and then expand a server.

2. Expand Support Services, right-click Full-Text Search, and then click Clean Up Catalogs.

3. Click Yes to clean up all full-text catalogs on the server.

See Also

Full-Text Indexes

How To (SQL Server 2000)

How to start and stop the Microsoft Search Service for full-text
support (Enterprise Manager)
How to start and stop the Microsoft Search Service for full-text support (Enterprise Manager)

If necessary, the full-text service can be started (and stopped) in one of these ways:

1. Expand a server group, and then expand a server.

2. Expand Support Services, right-click Full-Text Search, and then click Start (or Stop).

3. You can also start and stop the service by:

Selecting the Microsoft Search Service in SQL Server Service Manager and clicking start or stop.

Typing net start mssearch (or net stop mssearch) from a command prompt.

See Also

Full-Text Indexes

How To (SQL Server 2000)

Accessing and Changing Data
SQL Server Enterprise Manager includes a tool for designing queries interactively using a graphical user interface. These queries
are used:

In views.

In Data Transformation Services (DTS) Packages.

To display the data in Microsoft® SQL Server™ tables.

How To (SQL Server 2000)

How to access the Query Designer in Data Transformation
Services (Enterprise Manager)
How to access the Query Designer in Data Transformation Services (Enterprise Manager)

To access the Query Designer in Data Transformation Services

1. Right-click an Execute SQL Task object, and then click Properties.

2. In the Execute SQL Properties window, click Build Query.

The Query Designer will open with the diagram and SQL panes visible. To open panes, see Query and View Designer Layout.

Note There must be a valid data source connection in the package to build a query. If there is not, a connection must be created
before trying to access the Query Designer.

https://msdn.microsoft.com/en-us/library/aa290279(v=sql.80).aspx

How To (SQL Server 2000)

Optimizing Database Performance
The goal of optimizing database performance is to minimize the response time for each query and to maximize the throughput of
the entire database server by minimizing network traffic, disk I/O, and CPU time. Understanding how to design the logical and
physical structure of the data, tune queries, and configure Microsoft® SQL Server™ 2000 and the operating system can help
optimize database performance.

How To (SQL Server 2000)

Database Design
There are two components to designing a database: logical and physical. It is important to understand how to design the database
to model your business requirements correctly and to take advantage of hardware and software features early on in the
development of a database application. It is difficult to make changes to these components later in the development cycle.

How To (SQL Server 2000)

How to place an existing table on a different filegroup
(Enterprise Manager)
How to place an existing table on a different filegroup (Enterprise Manager)

To place an existing table on a different filegroup

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table belongs, and then click Tables.

3. In the details pane, right-click the table, and then click Design Table.

4. Right-click any column, and then click Properties.

5. On the Tables tab, in the Table Filegroup list, select the filegroup on which to place the table.

6. Optionally, in the Text Filegroup list, select a filegroup on which to place any text, image, and ntext columns.

See Also

Placing Tables on Filegroups

How To (SQL Server 2000)

How to place an existing index on a different filegroup
(Enterprise Manager)
How to place an existing index on a different filegroup (Enterprise Manager)

To place an existing index on a different filegroup

1. Expand a server group, and then expand a server.

2. Expand Databases, expand the database in which the table containing the index belongs, and then click Tables.

3. In the details pane, right-click the table, and then click Design Table.

4. Right-click any column, and then click Properties.

5. On the Indexes/Keys tab, in the Selected index list, select the index to move.

6. In the Index Filegroup list, select a filegroup on which to place the index.

See Also

Placing Indexes on Filegroups

How To (SQL Server 2000)

Query Tuning
Query tuning involves monitoring and determining if and why a query is not performing as optimally as possible, and then taking
steps to resolve any problems. Understanding how to create and update column statistics and indexes can significantly improve
query performance.

How To (SQL Server 2000)

How to create statistics (Query Analyzer)
How to create statistics (Query Analyzer)

To create statistics

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that suggests that statistics need to be created (table name in red), and then
click Create Missing Statistics. The database, table, and column(s) that the Graphical Execution Plan suggests need new
statistics are automatically selected.

5. Optionally, in Statistics name, enter the name for the statistics.

6. Optionally, in Amount of data to sample, select:

Default to let Microsoft® SQL Server™ determine the number of rows to sample automatically.

Sample all the data to instruct SQL Server to sample all of the data in the table.

Sample % of the data and enter a percentage of data to sample to base the statistics on.

7. Optionally, select Do not automatically recompute statistics (not recommended) to prevent SQL Server from
updating statistics automatically as the data is updated.

8. Optionally, click Edit SQL to view and edit the Transact-SQL statement used to create or update the statistics.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

Statistical Information

How To (SQL Server 2000)

How to update statistics (Query Analyzer)
How to update statistics (Query Analyzer)

To update statistics

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that suggests that statistics need to be updated, and then click Manage
Statistics. The Graphical Execution Plan automatically selects the appropriate database and table.

5. Optionally, in Database and Table, click the name of a different database and table on which to update the statistics.

6. Click Update.

7. In Name, select the statistics to be updated.

8. Optionally, in Amount of data to sample, select:

Default to let Microsoft® SQL Server™ determine the number of rows to sample automatically.

Sample all the data to instruct SQL Server to sample all of the data in the table.

Sample % of the data and enter a percentage of data to sample to base the statistics on.

Sample rows and enter the number of rows to sample to base the statistics on.

9. Optionally, in Update statistics options, select:

Include columns to update statistics on columns as well as indexes.

Do not automatically recompute statistics (not recommended) to prevent SQL Server from updating statistics
automatically as the data is updated.

10. Optionally, click Edit SQL to view and edit the Transact-SQL statement used to create or update the statistics.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

Statistical Information

How To (SQL Server 2000)

How to delete statistics (Query Analyzer)
How to delete statistics (Query Analyzer)

To delete statistics

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that represents the table containing the statistics that need to be deleted, and
then click Manage Statistics.

5. Optionally, in Database and Table, click the name of a different database and table on which to delete the statistics.

6. In Existing statistics, click the name of the statistic to delete, and then click Delete.

7. Confirm the deletion.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

Statistical Information

How To (SQL Server 2000)

How to create a new index (Query Analyzer)
How to create a new index (Query Analyzer)

To create a new index

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that suggests that an index needs to be created, and then click Manage
Indexes. The Graphical Execution Plan automatically selects the appropriate database and table. Click New.

5. In Index name, enter the name for the index.

6. In Column, select the column to appear in the index. Composite indexes can be created by selecting more than one column.

7. Optionally, select a column, and then click either Move Up or Move Down to change the order of the columns in the index.

8. Optionally, in Index options, select:

Unique values to create a unique index.

Clustered index to create a clustered index. If a clustered index already exists, this option is not available.

Ignore duplicate values to control what happens when an INSERT statement inserts multiple, nonunique key values
into an index. For more information, see CREATE INDEX.

Do not recompute statistics (not recommended) to specify that index statistics are not automatically recomputed
as the index is updated.

Filegroup to specify the filegroup on which to create the index. Click the name of the filegroup.

Pad index to leave space open on each interior node of the index. For more information, see CREATE INDEX.

Drop existing to delete any existing index of the same name before creating the new index.

Fill factor to specify how full SQL Server should make the leaf level of each index page during index creation. For
more information, see CREATE INDEX.

9. Optionally, click Edit SQL to view and edit the Transact-SQL statement used to create the index.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

Placing Indexes on Filegroups

How To (SQL Server 2000)

How to modify an index (Query Analyzer)
How to modify an index (Query Analyzer)

To modify an index

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that suggests that an index needs to be modified, and then click Manage
Indexes. The database and table that the Graphical Execution Plan suggests need an index modified are automatically
selected.

5. Optionally, in Database and Table, select the name of a different database and table.

6. In Existing indexes, click the name of the index to modify, and then click Edit.

7. In Column, select the column you want to appear in the index. Composite indexes can be created by selecting more than
one column.

8. Optionally, select a column, and then click either Move Up or Move Down to change the order of the columns in the index.

9. Optionally, in Index options, select:

Unique values to create a unique index.

Clustered index to create a clustered index. If a clustered index already exists, this option is not available.

Ignore duplicate values to control what happens when an INSERT statement inserts multiple, nonunique key values
into an index. For more information, see CREATE INDEX.

Do not recompute statistics (not recommended) to specify that index statistics are not automatically recomputed
as the index is updated.

Filegroup to specify the filegroup on which to create the index. Click the name of the filegroup.

Pad index to leave space open on each interior node of the index. For more information, see CREATE INDEX.

Drop existing to delete any existing index of the same name before creating the new index.

Fill factor to specify how full SQL Server should make the leaf level of each index page during index creation. For
more information, see CREATE INDEX.

10. Optionally, click Edit SQL to view and edit the Transact-SQL statement used to create the index.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

Placing Indexes on Filegroups

How To (SQL Server 2000)

How to delete an index (Query Analyzer)
How to delete an index (Query Analyzer)

To delete an index

1. On the Query menu, click Show Execution Plan.

2. Execute the Transact-SQL script in the query pane.

3. In the result pane, click the Execution Plan tab.

4. Right-click the icon of the physical operator that represents the table containing the index that needs to be deleted, and then
click Manage Indexes.

5. Optionally, in Database and Table, select the name of a different database and table.

6. In Existing indexes, click the name of the index to delete, and then click Delete.

7. Confirm the deletion.

See Also

Graphically Displaying the Execution Plan Using SQL Query Analyzer

How To (SQL Server 2000)

Replication
Microsoft® SQL Server™ 2000 replication is the process of copying and distributing data and database objects from one
database to another and then synchronizing between databases for consistency.

Using replication, you can distribute data to different locations, to remote or mobile users over a local area network, using a dial-
up connection, and over the Internet. Replication also allows you to enhance application performance, physically separate data
based on how it is used (for example, to separate online transaction processing (OLTP) and decision support systems), or
distribute database processing across multiple servers.

How To (SQL Server 2000)

Replication Types (Enterprise Manager)
Microsoft® SQL Server™ 2000 provides the following types of replication that you can use in your distributed applications:

Snapshot replication

Transactional replication

Merge replication

Each type provides different capabilities depending on your application and different levels of ACID properties of transactions and
site autonomy. For example, merge replication allows users to work and update data autonomously, although ACID properties are
not assured. Instead, when servers are reconnected, all sites in the replication topology converge to the same data values.
Transactional replication maintains transactional consistency, but Subscriber sites are not as autonomous as they are in merge
replication because Publishers and Subscribers generally must be connected reliably and continuously for updates to be
propagated to Subscribers.

It is common for the same application to use multiple replication types and options. Some of the data in the application may not
require any updates at Subscribers, some sets of data may require updates infrequently, with updates made at only one or a few
servers, while other sets of data may need to be updated daily at multiple servers.

Which type of replication you choose for your application depends on your requirements based on distributed data factors,
whether or not data will need to be updated at the Subscriber, your replication environment, and the needs and requirements of
the data that will be replicated. For more information, see Planning for Replication.

Each type of replication begins with generating and applying the snapshot at the Subscriber, so it is important to understand
snapshot replication in addition to any other type of replication and options you choose.

How To (SQL Server 2000)

How to enable activation of the Interactive Resolver (Enterprise
Manager)
How to enable activation of the Interactive Resolver (Enterprise Manager)

1. In SQL Server Enterprise Manager, in the Create Publication Wizard, on the Specify Articles page, click the table you want to
publish, and then click its properties (...) button.

2. On the Resolver tab, click Allow Subscribers to resolve conflicts interactively during on-demand synchronizations.

3. In SQL Server Enterprise Manager, when creating a subscription in the Pull Subscription Wizard, select the option allowing
the subscriber to resolve conflicts interactively during on-demand synchronizations.

Alternatively, you can set this option after you have created a pull subscription, on the Synchronization tab of the
Properties dialog box for the subscription.

How To (SQL Server 2000)

To activate the Interactive Resolver during a merge
synchronization (Windows Synchronization Manager)
To activate the Interactive Resolver during a merge synchronization (Windows Synchronization
Manager)

1. On the Windows Start menu, point to Programs, point to Accessories, and then click Synchronize.

2. In the Items to Synchronize dialog box, click the subscription you want to synchronize, click Properties, and then click the
Other tab.

3. Under Conflict resolution mode, click Interactively resolve conflicts, and then click OK.

4. Repeat Steps 1 through 3 for each subscription you will be synchronizing and using the Interactive Resolver.

5. Click Synchronize.

How To (SQL Server 2000)

How to set row- or column-level tracking for an article
(Enterprise Manager)
How to set row- or column-level tracking for an article (Enterprise Manager)

1. In the Create Publication Wizard, on the Specify Articles page, click the Table you plan to use as an article in your merge
publication.

2. Click the properties (...) button for the selected table.

3. On the Properties page for the article, on the General tab, under When merging changes from different sources, click
Treat changes to the same row as a conflict for row-level tracking, or click Treat changes to the same column as a
conflict (changes to different columns in the same row will be merged) for column-level tracking.

How To (SQL Server 2000)

How to choose a resolver (Enterprise Manager)
How to choose a resolver (Enterprise Manager)

1. In the Create Publication Wizard, on the Specify Articles page, click the Table you plan to use as an article in your merge
publication (if it is not already configured as an active article).

2. Click the properties (...) button for the selected table.

3. On the Properties page for the article, on the Resolver tab, click Use the default resolver to enable the default resolver
for the article.

4. If you want to use a custom resolver with the article, click Use this custom resolver, and then in the list, click the desired
resolver. If you want to use a custom stored procedure resolver, click Microsoft SQL Server Stored Procedure Resolver.

5. If you will be using a custom stored procedure resolver, press the TAB key to get to the Information for the custom
resolver box, and then type the name of the stored procedure. If you are using a COM custom resolver, use the information
box only if you need to enter any additional information required by the custom resolver (such as an input parameter).

How To (SQL Server 2000)

Replication Tools (Enterprise Manager)
Microsoft® SQL Server™ 2000 provides several methods for implementing and administering replication, including SQL Server
Enterprise Manager, programming interfaces, and other Microsoft Windows® components.

SQL Server Enterprise Manager includes a graphical organization of replication objects, several wizards, and dialog boxes you can
use to simplify configuration and administration of replication. SQL Server Enterprise Manager allows you to view and modify the
properties of replication configuration and monitor and troubleshoot replication activity.

You can also implement, monitor and maintain replication using programming interfaces such as Microsoft ActiveX® controls for
replication, SQL-DMO, and scripting of Transact-SQL system stored procedures.

Components such as Windows Synchronization Manager and Microsoft Windows 2000 Active Directory™ Services enable you to
synchronize data, subscribe to publications, and organize and access replication objects from within Windows applications.

How To (SQL Server 2000)

How to open Publisher and Distributor properties (Enterprise
Manager)
How to open Publisher and Distributor properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication folder, and then right-click the Publications folder.

2. Click Configure Publishing, Subscribers, and Distribution.

The Publisher and Distributor properties dialog box is titled with Publisher and Distributor Properties and the name of the
Distributor.

How To (SQL Server 2000)

How to open publication properties (Enterprise Manager)
How to open publication properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication folder, and then expand the Publications folder.

2. Right-click a publication, and then click Properties.

If the publication has subscriptions, you will not be able to modify some properties, and a dialog box will notify you of this.
Publication properties is titled with Publication Properties and the name of the publication.

How To (SQL Server 2000)

How to open push subscription properties (Enterprise
Manager)
How to open push subscription properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication folder, and then expand the Publications folder.

2. Click a publication, right-click a push subscription, and then click Properties.

How To (SQL Server 2000)

How to open pull subscription properties (Enterprise Manager)
How to open pull subscription properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication folder, and then click the Subscriptions folder.

2. Right-click a pull subscription, and then click Properties.

How To (SQL Server 2000)

How to open agent properties (Enterprise Manager)
How to open agent properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand Replication Monitor, and then expand the Agents folder.

2. Click the folder for the agent you want to see (for example, Snapshot Agents), right-click an agent, and then click Agent
Properties.

The agent properties dialog box will be titled with the name of the Distributor, the published database, the publication, and
job number.

How To (SQL Server 2000)

How to open Windows Synchronization Manager
How to open Windows Synchronization Manager

Note Windows Synchronization Manager is installed automatically with Microsoft® Windows® 2000 and anywhere Microsoft
Internet Explorer 5.0 or later is installed.

On the Windows Start menu, click Programs, click Accessories, and then click Synchronize.

How To (SQL Server 2000)

Implementing Replication (Enterprise Manager)
Whether you are using snapshot replication, transactional replication, or merge replication, the following stages will help you
implement replication.

Stage Tasks
Configuring Replication Identify the Publisher, Distributor, and Subscribers in

your topology. Use SQL Server Enterprise Manager,
SQL-DMO, scripts, or Transact-SQL system stored
procedures to configure the Publisher, create a
distribution database, and enable Subscribers.

Publishing Data and Database
Objects

Create the publication and define the data and
database object articles in the publication, and apply
any necessary filters to data that will be published.

Subscribing to Publications Create push, pull, or anonymous subscriptions to
indicate what publications need to be propagated to
individual Subscribers and when.

Applying the Initial Snapshot Indicate where to save snapshot files, whether they are
compressed, and scripts to run before or after
applying the initial snapshot.

Specify to have the Snapshot Agent apply the
snapshot at the Subscriber immediately after creating
a subscription or at a specified time.

Apply the snapshot manually by saving it to a network
location or to removable media that can be
transported to the Subscriber, and then applying the
Snapshot files manually at the Subscriber.

Synchronizing Data Synchronizing data occurs when the Snapshot, Log
Reader, or Merge Agent runs and updates are
propagated between Publisher and Subscribers.

For snapshot replication, the snapshot will be
reapplied at the Subscriber.

For transactional replication, updates will be
propagated to Subscribers.

If using updatable subscriptions with either snapshot
replication or transactional replication, data will be
propagated from the Subscriber to the Publisher and
to other Subscribers.

For merge replication, data is synchronized during the
merge process when data changes at all servers are
converged and conflicts, if any, are detected and
resolved.

How To (SQL Server 2000)

How to configure publishing and distribution (Enterprise
Manager)
How to configure publishing and distribution (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand a SQL Server group, expand a server, right-click the Replication folder, and then
click Configure Publishing, Subscribers, and Distribution.

2. Follow the wizard pages to select a Distributor, create the distribution database, and then on the Customize the
Configuration page, either accept Publisher and Subscriber defaults, or select Yes, let me set the distribution database
properties, enable Publishers or set the publishing settings.

This allows you to set distribution database properties, enable Publishers, enable publication databases, and enable
Subscribers using the wizard. You can also configure these properties later in the Publisher and Distributor properties.

How To (SQL Server 2000)

How to modify Publisher and Distributor properties (Enterprise
Manager)
How to modify Publisher and Distributor properties (Enterprise Manager)

To add, modify, or remove a Publisher

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing, Subscribers, and Distribution.

2. Select what you want to do with the Publisher.

To add a Publisher, click the Publishers tab, and then select a Publisher to enable.

To modify a Publisher, click the Publishers tab, click the Publisher to modify, and then click the properties button (...).

To remove a Publisher, click the Publishers tab, and then clear the box next to the Publisher name.

Note If the Publisher does not have items in the distribution database, a confirmation prompt will not appear.

To modify a Distributor or add or modify a distribution database

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing, Subscribers, and Distribution.

2. Select what you want to do with the Distributor.

To modify Distributor properties, click the Distribution tab to change the password for connecting to the Distributor
or set agent profiles.

To add a distribution database, click the Distributor tab, click New, and then enter a database name and the location
for the database and log files.

To modify the distribution database, click the Properties button for the distribution database to change the
transaction retention period or the history retention period.

How To (SQL Server 2000)

How to add, modify, or disable a Subscriber (Enterprise
Manager)
How to add, modify, or disable a Subscriber (Enterprise Manager)

To enable or disable a Subscriber

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing, Subscribers, and Distribution.

2. Select what you want to do with the Subscriber.

To enable a Subscriber, click the Subscribers tab, and then if the Subscriber is listed, select the Subscriber.

To enable a Subscriber if it is not listed, on the Subscriber tab, click New Subscriber, click the type of Subscriber to
register, and then enter the server, ODBC data source, or OLE DB data source, and connection information.

To disable a Subscriber, click the Subscribers tab, and then clear the box next to the Subscriber.

To modify a Subscriber

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing, Subscribers, and Distribution.

2. Click the Subscribers tab, click the Subscriber to modify, and then click the properties button (...).

3. On the General tab, change the Subscriber description or the security mode.

4. Click the Schedules tab to modify default scheduling options.

How To (SQL Server 2000)

How to disable publishing and distribution (Enterprise
Manager)
How to disable publishing and distribution (Enterprise Manager)

To disable a Distributor

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Disable Publishing.

2. Complete the steps in the wizard.

To delete a distribution database

1. In SQL Server Enterprise Manager, expand a server group, expand the Distributor, right-click the Replication folder, and
then click Configure Publishing and Distribution.

2. Click the Distributor tab, select the database to delete, and then click Delete.

How To (SQL Server 2000)

How to create publications and define articles (Enterprise
Manager)
How to create publications and define articles (Enterprise Manager)

To create publications

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, right-click
the Publications folder, and then click New Publication.

2. On the Welcome to the Create Publication Wizard page, select Show advanced options in this wizard to enable
updatable subscriptions or transformable subscriptions (options available with snapshot replication or transactional
replication).

3. The wizard guides you through:

Choosing a publication database.

Using a publication template.

Selecting the type of publication.

Selecting updatable subscriptions or transformable subscriptions (snapshot replication or transactional replication).

Specifying Subscriber types.

Specifying data and database object articles to publish.

Selecting a publication name and description. Publication names cannot contain these characters: / \ < >.

Customizing the properties of the publication including filtering columns, filtering rows, enabling dynamic filters,
validating subscription information, optimizing synchronization, allowing anonymous subscriptions, and setting the
snapshot agent schedule.

How To (SQL Server 2000)

How to modify publications and articles (Enterprise Manager)
How to modify publications and articles (Enterprise Manager)

Note If subscriptions have been created to the publication, some properties are disabled and cannot be changed.

To view or modify publication properties

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click a publication and choose Properties.

2. In the Publication Properties dialog box, click the General tab to view the publication name, database name, and type of
publication.

3. You can also view or modify the publication description, the initial snapshot file format, or the synchronization time limit.

4. Select what you want to do on the General tab.

To add, remove, or change the properties of an article, click the Articles tab. To view or change the schema objects
that are being published, click the properties button (...) for an article and click the Snapshot tab

To filter the columns in published tables, click Filter Columns.

To filter the rows in published tables, click Filter Rows.

To push, delete, reinitialize, or view the properties of subscriptions, click the Subscriptions tab.

For snapshot or transactional publications, click Subscription Options to allow pull subscriptions, allow anonymous
subscriptions, allow new subscriptions to be created by attaching a subscription database, and view whether the
publication allows transformations on published data, immediate updating, or queued updating.

For merge publications, click Subscription Options to allow pull subscriptions, allow anonymous subscriptions, allow
new subscriptions to be created by attaching a subscription database, view if data conflicts are stored centrally at the
Publisher, view if dynamic filtering is used, and if so if Subscriber information is validated, and view if synchronization
is being optimized.

For snapshot and transactional publications, click the Updatable tab to see if immediate updating or queued
updating subscriptions are allowed, to enable conflicts to be reported centrally at the Publisher, to specify the conflict
resolution policy, and if queued updating is allowed, to specify where to queue changes at the Subscriber.

To modify snapshot format (SQL Server or character mode), specify scripts to run before and after the snapshot is
applied, and for transactional replication to enable concurrent snapshot processing, click the Snapshot tab.

To specify an alternate location to save the snapshot, compress the snapshot files, and specify File Transfer Protocol
(FTP) information if the Subscriber will access the snapshot folder using FTP, click the Snapshot Location tab.

To specify the logins that have access to the publication, click Publication Access List.

To view the status of the Snapshot Agent, run the Agent, view Agent properties, or start the services required by the
publication, click the Status tab.

For merge publications, click the Sync Partners tab to enable Subscribers to synchronize with servers other than the
original Publisher, and then select the servers that may serve as alternate partners for this publication.

To grant or revoke access to a publication

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click the publication, and then click Properties.

2. To add or remove a login for access to the publication, click the Publication Access List tab, click Add, Remove, or
Remove All.

Note If a remote Distributor is used, the new logins must exist in the publication access lists at both the Publisher and at the
Distributor. If the pull subscription login is not in the publication access list, an error appears at the Subscriber.

To add or delete an article

Note After subscriptions are created, articles can be added to existing publications. Deleting articles from publications that have
subscriptions is not allowed. To remove an article, you must first delete all subscriptions.

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click a publication and choose Properties.

2. Select what you want to do with the article.

To see a list of all available objects, click the Articles tab, and then select Show unpublished objects.

To add an article, select the Show check box next to the Object Type listed. Select the check box next to the article
object to add to the publication, or select the Publish All check box next to the object type you want to publish.

To delete an article, select the Show check box next to the Object Type listed. Clear the check box next to the article
object to delete to the publication, or clear the Publish All check box next to the object type you want to exclude from
the publication.

To set article options, click the build button (...).

How To (SQL Server 2000)

How to delete publications and articles (Enterprise Manager)
How to delete publications and articles (Enterprise Manager)

To delete a publication

At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click the publication, and then click Delete.

To delete an article

Note Deleting articles from publications that have subscriptions is not allowed. To delete an article, you must first delete all
subscriptions to the publication.

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click the publication, and then click Properties.

2. Click the Articles tab, select an article to delete, and then clear the check box next to the article to delete.

How To (SQL Server 2000)

How to create a push subscription (Enterprise Manager)
How to create a push subscription (Enterprise Manager)

To create a push subscription

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, right-click the publication for which you want the subscription, and then click Push New
Subscription.

2. Complete the steps in the wizard.

How To (SQL Server 2000)

How to modify a push subscription (Enterprise Manager)
How to modify a push subscription (Enterprise Manager)

To modify push subscription properties

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, click the publication that has the subscription you want to modify, right-click the push subscription for
that publication, and then click Properties.

2. Select what you want to do with the subscription properties.

To view the selected subscription properties, click the General tab.

To specify where the Distribution Agent or Merge Agent should run, click the Synchronization tab.

How To (SQL Server 2000)

How to delete a push subscription (Enterprise Manager)
How to delete a push subscription (Enterprise Manager)

To delete a push subscription

At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, click the publication that has the subscription you want to delete, right-click the push subscription for
that publication in SQL Server Enterprise Manager, and then click Delete.

How To (SQL Server 2000)

How to create a pull or anonymous subscription (Enterprise
Manager)
How to create a pull or anonymous subscription (Enterprise Manager)

To create a pull or anonymous subscription

1. At the Subscriber, in SQL Server Enterprise Manager, expand a server group, expand the Replication folder, right-click the
Subscriptions folder, and then click New Pull Subscription.

2. Follow the steps in the Pull Subscription Wizard.

If the publication allows anonymous subscriptions, the Allow Anonymous Subscription page will show in the Pull Subscription
Wizard and you can specify the new subscription as anonymous.

How To (SQL Server 2000)

How to view or modify pull or anonymous subscriptions
(Enterprise Manager)
How to view or modify pull or anonymous subscriptions (Enterprise Manager)

At the Subscriber, in SQL Server Enterprise Manager, expand a server group, expand the Replication folder, click the
Subscriptions folder, right-click the subscription you want to modify in the right pane of SQL Server Enterprise Manager,
and then click Properties.

How To (SQL Server 2000)

How to delete a pull or anonymous subscription (Enterprise
Manager)
How to delete a pull or anonymous subscription (Enterprise Manager)

At the Subscriber, in SQL Server Enterprise Manager, expand a server group, expand the Replication folder, click the
Subscriptions folder, right-click the subscription you want to delete in the right pane of SQL Server Enterprise Manager, and
then click Delete.

How To (SQL Server 2000)

How to create an anonymous subscription (Windows
Synchronization Manager)
How to create an anonymous subscription (Windows Synchronization Manager)

1. On the Start menu, point to Programs, point to Accessories, and then click Synchronize.

2. Click To create a subscription: select this, then click Properties, click Properties, and then select By specifying the
publication and subscription information manually.

3. Enter the name for the subscription, the Subscriber name, subscription database name, Publisher name, publication
database name, type of publication, and Distributor name.

How To (SQL Server 2000)

How to view or modify the default snapshot folder location
(Enterprise Manager)
How to view or modify the default snapshot folder location (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand a server group, expand the Publisher, right-click the Replication folder, and then
click Configure Publishers, Subscribers, and Distribution.

2. Click the Publishers tab, and then click the distribution database properties button (...) for a specific Publisher.

3. To modify the default snapshot folder location, click the properties button (...) and browse to set a new default location.

How To (SQL Server 2000)

How to specify alternate snapshot locations (Enterprise
Manager)
How to specify alternate snapshot locations (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications directory, select a publication, right-click the
publication, and then click Properties.

2. On the Snapshot Location tab, select Generate snapshots in the following location option, and then type a Universal
Naming Convention path or click the browse button (...) and browse for the location where you want to save snapshot files.

3. To use compression, select Compress the snapshot files in this location.

4. If FTP is being used to transfer snapshots, select Subscribers can access this folder using FTP (File Transfer Protocol).

How To (SQL Server 2000)

How to compress and deliver snapshot files (Enterprise
Manager)
How to compress and deliver snapshot files (Enterprise Manager)

To compress snapshot files

1. In SQL Server Enterprise Manager, expand the Replication and Publications directories, right-click a publication, and then
click Properties.

2. On the Snapshot Location tab, select Generate snapshots in the following location, specify a location for the files, and
then select Compress the snapshot files in this location.

To configure snapshot delivery on the Subscriber

1. In Microsoft SQL Server Enterprise Manager, expand the subscription database and the Subscriptions directory, right-click
a subscription, and then click Properties.

2. On the Snapshot File Location tab, select Get the snapshot from the following folder.

3. Type the path or click the browse (...) button and browse to the directory where you want snapshot files to be placed.

How To (SQL Server 2000)

How to set the UseInprocLoader property (Enterprise Manager)
How to set the – UseInprocLoader property (Enterprise Manager)

1. On the server where the Distribution Agent or Merge Agent is running, expand the Replication Monitor node, click the
Distribution Agents or Merge Agents folder, right-click the agent that will be applying the snapshot, and then click
Agent Properties.

2. On the Steps tab, double-click the subscription agent step, and then add the –UseInprocLoader property in the Command
text box.

How To (SQL Server 2000)

How to execute scripts before and after the snapshot is applied
(Enterprise Manager)
How to execute scripts before and after the snapshot is applied (Enterprise Manager)

1. At the Publisher, open SQL Server Enterprise Manager, expand the Replication and Publications directories, right-click a
publication, and then click Properties.

2. On the Snapshot tab, click the browse (...) button for either Before applying the snapshot or After applying the
snapshot, and then select the script that you want to execute before or after synchronization.

How To (SQL Server 2000)

How to reinitialize a subscription (Enterprise Manager)
How to reinitialize a subscription (Enterprise Manager)

To reinitialize a push subscription

At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, and then click the publication for which subscriptions need to be reinitialized.

Right-click the subscription you want to reinitialize, and then click Reinitialize.

To reinitialize a pull or anonymous subscription

At the Subscriber, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, and then
click the Subscriptions folder.

Right-click the subscription you want to reinitialize, and then click Reinitialize.

How To (SQL Server 2000)

How to browse and copy snapshot files (Enterprise Manager)
How to browse and copy snapshot files (Enterprise Manager)

To use the Snapshot Explorer

In SQL Server Enterprise Manager, expand the Replication and Publications directories, select a publication, right-click the
publication, and then click Explore the Latest Snapshot Folder.

How To (SQL Server 2000)

How to synchronize a subscription (Enterprise Manager)
How to synchronize a subscription (Enterprise Manager)

To synchronize a push subscription

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, expand the
Publications folder, and then click the publication for which subscriptions need to be synchronized.

2. Right-click the subscription you want to synchronize, and then click Start Synchronizing.

To synchronize a pull or anonymous subscription

1. At the Subscriber, open SQL Server Enterprise Manager, expand a server group, expand the Replication folder, and then
click the Subscriptions folder.

2. Right-click the subscription you want to synchronize, and then click Start Synchronizing.

How To (SQL Server 2000)

How to synchronize an anonymous subscription (Windows
Synchronization Manager)
How to synchronize an anonymous subscription (Windows Synchronization Manager)

To synchronize an anonymous subscription

1. On the Start menu, point to Programs, point to Accessories, and then click Synchronize.

2. Click the subscription that you want to synchronize, and then click Synchronize.

How To (SQL Server 2000)

How to view and resolve merge synchronization conflicts
(Enterprise Manager)
How to view and resolve merge synchronization conflicts (Enterprise Manager)

To view and further resolve synchronization conflicts

1. Expand a server group, and then expand a server.

2. Expand Databases, and then expand the name of the database.

3. Expand Publications, right-click the publication, and then click View Conflicts.

4. In the Publications in database list, select the publication to view.

5. In the Tables with conflicts list, select the table of conflicts to view.

Note Be sure to connect to the correct server to view the conflicts. The location of the conflict table varies depending upon
whether replication has been configured for centralized of decentralize logging of conflicts. If centralized, the conflict table is
stored at the Publisher and you must connect to the Publisher to view the conflicts. If decentralized, the conflict table is stored at
either the Publisher or Subscriber, depending upon which one lost the conflicts.

How To (SQL Server 2000)

How to script replication (Enterprise Manager)
How to script replication (Enterprise Manager)

1. At the Publisher, open SQL Server Enterprise Manager, expand a server group, right-click the Replication folder, and then
click Generate SQL Script.

2. Select the replication component to script (Distributor properties, publications and push subscriptions, or pull subscriptions)
and whether you want the script to enable or create the components or disable or drop the components.

How To (SQL Server 2000)

How to apply schema changes on publication databases
(Enterprise Manager)
How to apply schema changes on publication databases (Enterprise Manager)

To add columns to an article

1. In SQL Server Enterprise Manager, under Replication, expand Publications and then right-click the publication where you
want to modify a schema.

2. Click Properties, click Filter Columns, and then click Add Column.

3. In the Add Column to Replicated Table dialog box, enter the name of the column and the SQL syntax that defines the
column. In the SQL for the column definition, you must either specify a default value or allow NULL values.

4. For information about the syntax required to define the column, see the Transact-SQL ALTER TABLE statement.

5. In the Add Column to Replicated Table dialog box, select the publications to which you want to add the column.

To drop columns from an article

1. In SQL Server Enterprise Manager, expand Replication, expand Publications, and then right-click the publication where
you want to modify a schema.

2. Click Properties, click Filter Columns, select a table in the Tables in publication list, select a column in the Columns in
selected table list, and then click Drop Column.

3. If the column is constrained, you will be prompted; columns with primary key or unique constraints, and uniqueidentifier
columns cannot be dropped. If you attempt to drop one of those types of columns, an error message is displayed. For other
constraints, a warning message is displayed; click OK to drop the column.

How To (SQL Server 2000)

How to specify FTP information (Enterprise Manager)
How to specify FTP information (Enterprise Manager)

To set the snapshot folder as the FTP home directory

1. On the Start menu, point to Programs, point to Microsoft Internet Server, and then click Internet Service Manager.

2. Click the server name corresponding to the FTP service.

3. On the Properties menu, click Service Properties, and then on the Directories tab, click Add.

4. Enter the path to the FTP directory (for example, C:\Microsoft SQL Server\Mssql\Repldata\Ftp), and then click Home
Directory.

To configure the FTP home directory as an FTP site

1. On the Start menu, point to Programs, point to Microsoft SQL Server 2000, and then click Client Network Utility.

2. On the General tab, ensure that TCP/IP appears in the Enabled protocols by order list. If TCP/IP appears in the Disabled
protocols list, select it, and then click Enable.

3. In Server alias, enter the name of the server.

4. In Computer name, overwrite the existing name with the IP address.

5. Your system administrator can provide you with the correct IP address.

6. In Port number, overwrite the existing port number, if necessary.

How To (SQL Server 2000)

Replication Options (Enterprise Manager)
Replication Options allow you to configure replication in a manner best suited to your application and environment.

Option Type of
Replication

Benefits

Filtering
Published Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters allow you to create vertical and/or
horizontal partitions of data that can be
published as part of replication. By distributing
partitions of data to different Subscribers, you
can:

Minimize the amount of data sent over the
network.

Reduce the amount of storage space
required at the Subscriber.

Customize publications and applications
based on individual Subscriber
requirements.

Reduce conflicts because the different data
partitions can be sent to different
Subscribers.

Updatable
Subscriptions
(Immediate
Updating, Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate updating and queued updating
options allow users to update data at the
Subscriber and either propagate those updates
to the Publisher immediately or store the
updates in a queue.

Updatable subscriptions are best for replication
topologies where replicated data is mostly read,
and occassionally updated at the Subscriber
when Publisher, Distributor, and Subscriber are
connected most of the time and when conflicts
caused my multiple users updating the same
data are infrequent.

Transforming
Published Data

Snapshot
Replication

Transactional
Replication

You can leverage the data movement,
transformation mapping and filtering capabilities
of Data Transformation Services (DTS) during
replication. With transformable subscriptions,
you can:

Create custom partitions for snapshot and
transactional publications.

Transform the data as it is being published
with data type mappings (for example,
integer to real data type), column
manipulations (for example, concatenating
first name and last name columns into
one), string manipulations, and functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate synchronization partners allow
Subscribers to merge publications to synchronize
data with servers other than the Publisher at
which the subscription originated. This allows the
Subscriber to synchronize data when the original
Publisher is unavailable, and is also useful for
mobile Subscribers that may have access to a
faster or more reliable network connection with
an alternate server.

Optimizing
Synchronization

Merge
Replication

By optimizing synchronization during merge
replication, you can store more information at
the Publisher instead of transferring that
information over the network to the Subscriber.
This improves synchronization performance over
a slow network connection, but requires
additional storage at the Publisher.

Attachable
Subscription
Databases

Snapshot
Replication

Transactional
Replication

Merge
Replication

Attachable subscription databases allow you to
transfer a database with replicated data and
subscriptions from one Subscriber to another.
After the database is attached to the new
Subscriber, the database at the new Subscriber
will automatically receive its own pull
subscriptions to the publications at those
Publishers. This saves you the time and effort of
creating subscription databases and
subscriptions at multiple Subscribers.

How To (SQL Server 2000)

How to filter publications horizontally using the Create
Publication Wizard (Enterprise Manager)
How to filter publications horizontally using the Create Publication Wizard (Enterprise Manager)

1. In the Create Publication Wizard, on the Customize the Properties of the Publication page, select Yes, I will define data
filters, enable anonymous subscriptions, or customize other properties.

2. On the Filter Data page, select Horizontally, by filtering the rows of published data.

3. On the Filter Table Rows page, click the Filter Clause (...) button next to the article you want to filter, and then in the
Specify Filter dialog box, complete the WHERE clause with a condition for the filter.

Note This is not the page to enter join filters that cross tables based on relationships between tables. That page in the Create
Publication Wizard is called Generate Filters Automatically.

How To (SQL Server 2000)

How to filter publications vertically using the Create
Publication Wizard (Enterprise Manager)
How to filter publications vertically using the Create Publication Wizard (Enterprise Manager)

Note If you are creating a merge publication for use with Subscribers running Microsoft® SQL Server™ version 7.0, you will not
be able to create a vertical filter and you will not see the Filter Columns page in the Create Publication Wizard.

1. In the Create Publication Wizard, on the Customize the Properties of the Publication page, select Yes, I will define data
filters, enable anonymous subscriptions, or customize other properties.

2. On the Filter Data page, select Vertically, by filtering the columns of published data.

3. On the Filter Table Columns page, click the table in the publication for which you want to add a vertical filter, and then clear
the columns you do not want included in the publication.

How To (SQL Server 2000)

How to filter publications vertically using publication
properties (Enterprise Manager)
How to filter publications vertically using publication properties (Enterprise Manager)

Note If you are viewing the properties of a merge publication on Microsoft® SQL Server™ version 7.0, you will not see the Filter
Columns page.

1. In SQL Server Enterprise Manager, expand the Replication and Publications folders, right-click the publication for which
you want to add a column filter, and then click Properties.

2. On the Filter Columns tab, click the table in the publication for which you want to add a column filter, and then clear the
columns you do not want included in the publication.

How To (SQL Server 2000)

How to validate Subscriber information using the Create
Publication Wizard (Enterprise Manager)
How to validate Subscriber information using the Create Publication Wizard (Enterprise Manager)

1. In the Create Publication Wizard, on the Customize the Properties of the Publication page, select Yes, I will define data
filters, enable anonymous subscriptions, or customize other properties.

2. On the Filter Data page, select Horizontally, by filtering the rows of published data, and then on the Enable Dynamic
Filters page, select Yes, enable dynamic filters.

3. On the Filter Table Rows page, click the Filter Clause (...) button next to the article you want to filter, and then in the Specify
Filter dialog box, complete the WHERE clause with the function that will retrieve information at the Subscriber and filter the
publication dynamically.

4. On the Validate Subscriber Information page, select Yes, validate Subscriber information, and then type in the functions
used in dynamic filters for this publication.

How To (SQL Server 2000)

How to filter publications horizontally using publication
properties (Enterprise Manager)
How to filter publications horizontally using publication properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications folders, right-click the publication for which
you want to add a row filter, and then click Properties.

2. On the Filter Rows tab, click the Filter Clause (...) button next to the article you want to filter, and then in the Specify Filter
dialog box, complete the WHERE clause with a condition for the filter.

How To (SQL Server 2000)

How to create a dynamic snapshot (Enterprise Manager)
How to create a dynamic snapshot (Enterprise Manager)

To generate a dynamic snapshot

Note You must generate a regular snapshot to the dynamically filtered merge publication before creating a dynamic snapshot.

1. Create the merge publication with dynamic filters enabled and specified on any necessary articles.

2. Generate the regular snapshot by running the Snapshot Agent.

3. At the Publisher, in SQL Server Enterprise Manager, expand the Replication and Publications folders, right-click the
dynamically filtered merge publication, and then click Create Dynamic Snapshot Job.

4. On the Specify Filter Criteria page, type in the system functions used in the dynamic filters of the publication
(SUSER_SNAME() or HOSTNAME()) and the value of the login for the Publisher.

5. On the Specify Snapshot File Location page, type the path to the folder where you want snapshot files saved or click the
browse button (...) and browse for the folder location. Using the alternate snapshot location feature, you can specify the
snapshot folder location on the network, on removable media or on an FTP server.

6. On the Set Job Schedule page, select Using the following schedule, and then select Change to specify a schedule for
when the dynamic snapshot will be generated, or select On demand only. Select the Create the first snapshot
immediately check box to generate the dynamic snapshot immediately.

7. On the Specify Job Name page, type in a name for this dynamic Snapshot Agent.

8. Run the dynamic snapshot agent job

To apply the dynamic snapshot

1. At the Subscriber, create a pull subscription using the Pull Subscription Wizard. On the Snapshot File Location page, select
Use the snapshot from files from the following folder, specify or browse for the location of the dynamic snapshot in
the text box, and then select This is a snapshot for a dynamically filtered subscription.

2. Finish the steps in the Pull Subscription Wizard. Manually start the Merge Agent (using Replication Monitor at the Publisher
or programmatically) when the snapshot is available to apply it at the Subscriber.

How To (SQL Server 2000)

How to filter with a user-defined function using the Create
Publication Wizard (Enterprise Manager)
How to filter with a user-defined function using the Create Publication Wizard (Enterprise Manager)

1. In the Create Publication Wizard, on the Customize the Properties of the Publication page, select Yes, I will define data
filters, enable anonymous Subscribers, or customize other properties.

2. On the Filter Data page, select Horizontally, by filtering the rows of published data.

3. If you also selected Vertically, by filtering the columns of published data on the Filter Data page, on the Filter Table
Columns page, select the columns you want to filter from the publication.

4. In the Filter Table Rows dialog box, click the properties button (...) next to the article that you want to filter, and then
complete the WHERE clause using a user-defined function in the condition.

How To (SQL Server 2000)

How to filter with a user-defined function using publication
properties (Enterprise Manager)
How to filter with a user-defined function using publication properties (Enterprise Manager)

1. In SQL Server Enterprise Manager, on the Tools menu, click Replication, and then click Create and Manage
Publications.

2. Expand the database containing the publication to modify, click the publication to modify, and then click Properties &
Subscriptions.

3. If there are Subscriptions for this publication, you will need to delete them before you can modify the publication filter.

How To (SQL Server 2000)

How to drop all subscriptions to a publication (Enterprise
Manager)
How to drop all subscriptions to a publication (Enterprise Manager)

1. On the Subscriptions tab, click the subscription name, and then click Delete.

2. Click OK to close the Publication Properties dialog box, and then reopen it in the Create and Manage Publications
dialog box by clicking Properties & Subscriptions.

3. In the Publication Properties dialog box, click the Filter Rows tab, and then complete the WHERE clause using a user-
defined function as part of the filter condition.

How To (SQL Server 2000)

How to install Message Queuing on the Distributor and
Subscribers (Enterprise Manager)
How to install Message Queuing on the Distributor and Subscribers (Enterprise Manager)

1. In Control Panel, double-click Add/Remove Programs, click Add/Remove Windows Components, and then select
Message Queuing Services.

2. Select Message Queuing Server.

How To (SQL Server 2000)

How to set the queued updating conflict resolution policy
(Enterprise Manager)
How to set the queued updating conflict resolution policy (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications directories.

2. Right-click the publication that allows queued updating, and then click Properties.

3. On the Updatable tab, under Conflict resolution policy, you can choose to keep the change made at the Publisher, keep
the change made at the Subscriber, or reinitialize the subscription.

How To (SQL Server 2000)

How to allow decentralized conflict reporting (Enterprise
Manager)
How to allow decentralized conflict reporting (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications directories.

2. Right-click the publication that allows queued updating, and then click Properties. On the Updatable tab, under Data
Conflicts, you can clear Report conflicting data changes at the Publisher only. Conflicting data changes will be
reported at both the Publisher and Subscriber.

How To (SQL Server 2000)

How to view conflicts (Enterprise Manager)
How to view conflicts (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications directories.

2. Right-click the publication that allows queued updating, and then select View Conflicts.

How To (SQL Server 2000)

How to enable immediate updating with queued updating as a
failover (Enterprise Manager)
How to enable immediate updating with queued updating as a failover (Enterprise Manager)

1. In the Create Publication Wizard, on the Welcome page, select Show advanced options in this wizard.

2. Select either Snapshot publication or Transactional publication, and then on the Updatable Subscriptions page, select
both Immediate updating and Queued updating.

3. When you create a subscription using either the Pull Subscription Wizard or Push Subscription Wizard, on the Updatable
Subscriptions page, select Immediate updating with queued updating as a standby in case of failure.

How To (SQL Server 2000)

How to switch from immediate updating to queued updating
as a failover (Enterprise Manager)
How to switch from immediate updating to queued updating as a failover (Enterprise Manager)

1. For push subscriptions: expand the Replication and Subscriptions directories, right-click the subscription, click Set
Update Method, and then select either Immediate Updating or Queued Updating.

2. For pull subscriptions: on the Subscriber, expand the Pull Subscriptions directory, right-click the subscription, click
Properties, and then on the Synchronization tab, select either Immediate Updating or Queued Updating.

How To (SQL Server 2000)

How to switch from immediate updating to queued updating
as a failover (Transact-SQL)
How to switch from immediate updating to queued updating as a failover (Transact-SQL)

Use the sp_setreplfailovermode stored procedure and set the following parameters.
Parameter Description
@publisher Name of the Publisher.
@publisher_db Name of the publication database.
@publication Name of the publication.
@failover_mode Can be 'immediate', or 'queued'.

How To (SQL Server 2000)

How to switch from immediate updating to queued updating
as a failover (Windows Synchronization Manager)
How to switch from immediate updating to queued updating as a failover (Windows Synchronization
Manager)

1. On the Start Menu, point to Programs, point to Accessories, and then click Synchronize.

2. Double-click the subscription, and then in the Properties dialog box, on the Other tab, select either Immediate Updating
or Queued Updating.

Pull subscriptions created using on-demand synchronization are automatically added to Windows Synchronization Manager. You
can add pull subscriptions that are not using on-demand synchronization to Windows Synchronization Manager by opening the
subscription properties, and then on the Synchronization tab, selecting Enable this subscription to be synchronized using
the Windows Synchronization Manager.

How To (SQL Server 2000)

How to create a transformable subscription (Enterprise
Manager)
How to create a transformable subscription (Enterprise Manager)

1. Create a publication enabled for transformable subscriptions using the Create Publication Wizard, and on the Create
Publication Wizard Welcome page, click Show Advanced Options, click Next, and then click a database in the list.

2. On the Choose Publication Type page, click either Snapshot Publication or Transactional Publication.

3. On the Updatable Subscriptions page, do not select Immediate Updating or Queued Updating because transformable
subscriptions will not also be available.

4. On the Transform Published Data page, click Yes, and then continue creating the publication.

5. Build the replication DTS package using the Transform Published Data Wizard.
a. In SQL Server Enterprise Manager, right-click the publication enabled for transformable subscriptions, and then click

Properties.

b. In the Properties dialog box for the publication, click Subscriptions, and then click Transformations.

c. In the Transform Published Data Wizard, click Next until the Choose a Destination page is displayed. Select a provider
to connect to the Subscriber (the Microsoft® SQL Server™ 2000 Replication OLE DB Provider for DTS is used only for
the source connection from the package to the Distributor), and then complete the rest of the connection information.
On the Define Transformations page, click the transform (...) button for a published table on which to define a
transformation.

d. On the Column Mappings and Transformations page, click the Column Mappings tab, and then click one of the
following: Keep the existing table unchanged, DROP the existing table and re-create it or Delete all data in the existing
table. If you want to partition data vertically, in the list, select the Destination columns you want to include.

e. If you want to partition published data horizontally or map transformations on the published partition, click the
Transformations tab for the published table. Click Transform data using the following script. Choose the type of
language for the script from the drop down, edit directly in the script window or click Load file to load a script. Repeat
this step for all tables in the publication for which you want to add transformations.

f. On the Save DTS Package page, enter a Name, enter a Description, and then either enter optional password
information for the package or use the supplied default values. Continue until the package is created successfully. If
you want to use this package for a push subscription, save the package at the Distributor (default). If using the
package for a pull subscription, save it at the Subscriber.

6. This set of steps is used to create a transformable subscription.
a. Open either the Push Subscription Wizard or the Pull Subscription Wizard.

b. On the Specify DTS Package page, click the DTS package you want to use with the subscription, optionally enter a
package password, click Next, and then continue through the wizard until you have created the subscription
successfully.

How To (SQL Server 2000)

How to enable Subscribers to synchronize with alternate
synchronization partners (Enterprise Manager)
How to enable Subscribers to synchronize with alternate synchronization partners (Enterprise Manager)

1. In SQL Server Enterprise Manager, expand the Replication and Publications directories, right-click a Publication, and then
click Properties.

2. Click the Sync Partners tab, and then enable Allow Subscribers to synchronize with other partners than the
Publisher from which the subscription was created.

3. Enable the Publishers and Subscribers that can be alternate Publishers for Subscribers to this publication.

How To (SQL Server 2000)

How to enable a Subscriber at an alternate synchronization
partner (for named subscriptions) (Enterprise Manager)
How to enable a Subscriber at an alternate synchronization partner (for named subscriptions) (Enterprise
Manager)

1. On the Publisher, right-click the Replication directory in SQL Server Enterprise Manager, and then click Configure
Publishing, Subscribers, and Distribution.

2. On the Subscribers tab, select the box next to the Subscriber you want to enable or click New Subscriber and register the
Subscriber.

How To (SQL Server 2000)

How to synchronize with alternate synchronization partners
(Windows Synchronization Manager)
How to synchronize with alternate synchronization partners (Windows Synchronization Manager)

1. On the Start Menu, point to Programs, Accessories, and then click Synchronize.

2. Select the publication you want to synchronize, click Properties, and then on the Identity tab, select the Publisher with
which you want to synchronize.

3. Click OK, and then click Synchronize.

How To (SQL Server 2000)

How to synchronize pull subscriptions with alternate
synchronization partners (Enterprise Manager)
How to synchronize pull subscriptions with alternate synchronization partners (Enterprise Manager)

1. On the Subscriber, expand the Replication directory, click the Subscriptions directory, right-click a pull subscription, and
then click Properties.

2. On the Synchronization tab, click Merge Agent Properties.

3. On the Steps tab, double-click the subscription agent step, and then add the –SyncToAlternate switch in the Command
text box.

How To (SQL Server 2000)

How to synchronize push subscriptions with alternate
synchronization partners (Enterprise Manager)
How to synchronize push subscriptions with alternate synchronization partners (Enterprise Manager)

1. On the Subscriber, expand the Replication Monitor and Agents directories, select the Merge Agents directory, right-click
the publication, and then click Agent Properties.

2. On the Steps tab, double-click the subscription agent step, and add the –SyncToAlternate switch in the Command text
box.

How To (SQL Server 2000)

How to minimize the amount of data sent over the network
during merge replication (Transact-SQL)
How to minimize the amount of data sent over the network during merge replication (Transact-SQL)

Execute the sp_addmergepublication system stored procedure and set the @keep_partition_changes parameter to
'true'.

How To (SQL Server 2000)

How to configure a publication to allow copying of
subscription databases (Enterprise Manager)
How to configure a publication to allow copying of subscription databases (Enterprise Manager)

1. Create the publication using the Create Publication Wizard.

2. In SQL Server Enterprise Manager, expand the Replication and Publication directories, and then right-click the publication
that you want to enable for new subscriptions.

3. For snapshot replication and transactional replication, click the Subscription Options tab in the Publication Properties,
select Use a Distribution Agent that is independent of other publications from this database, and then select
Snapshot files are always available to immediately initialize new subscriptions. You do not need to do anything for
this step if you are using merge replication.

4. Select Allow new subscriptions to be created by attaching a copy of a subscription database.

How To (SQL Server 2000)

How to copy a subscription database (Enterprise Manager)
How to copy a subscription database (Enterprise Manager)

1. On the Subscriber, in SQL Server Enterprise Manager, expand the Replication and Subscriptions directories, right-click
the pull subscription that has a subscription database you want to copy, and then click Copy Subscription Database.

2. In the Copy Subscription Database dialog box, browse to the directory or drive where you want to save a copy of the
subscription database.

3. The location can be on the network, using removable media (such as CD-ROMs or tape devices) or on a File Transfer
Protocol (FTP) site.

4. In the File Name box, type a name for the subscription database file (the file will have the extension .msf).

How To (SQL Server 2000)

How to enable a Subscriber to receive published data
(Enterprise Manager)
How to enable a Subscriber to receive published data (Enterprise Manager)

1. On the Publisher, in SQL Server Enterprise Manager, right-click the Replication directory, and then click Configure
Publishing, Subscribers, and Distribution.

2. On the Subscribers tab, select the box next to the Subscriber you want to enable or click New Subscriber and register the
Subscriber.

How To (SQL Server 2000)

How to attach a subscription database with named
subscriptions (Enterprise Manager)
How to attach a subscription database with named subscriptions (Enterprise Manager)

1. On the new Subscriber, in SQL Server Enterprise Manager, expand the Replication directory.

2. Right-click the Subscriptions directory, and then click Attach Subscription Database.

3. Either type the Universal Naming Convention (UNC) path or click the browse (...) button and browse for the location of the
.msf file.

4. In the Name of database to create box, type a name for the database.

How To (SQL Server 2000)

How to attach a subscription database with anonymous
subscriptions (Enterprise Manager)
How to attach a subscription database with anonymous subscriptions (Enterprise Manager)

1. On the new Subscriber, in SQL Server Enterprise Manager, expand the Replication directory.

2. Right-click the Subscriptions directory, and then click Attach Subscription Database.

3. Either type the UNC path or click the browse (...) button and browse for the location of the .msf file.

4. In the Attach as database box, type a name for the database.

How To (SQL Server 2000)

Administering and Monitoring Replication (Enterprise
Manager)
SQL Server replication provides tools to administer and monitor replication agents and replication alerts and replication
processes so that you can ensure that replication is meeting the needs of your applications and your organization.

Monitoring replication will help you:

Set the profiles, schedules and notifications for replication agents.

Troubleshoot agent activity including verifying when agents last ran, monitoring agent activity.

Troubleshoot agent errors.

Ensure that data values are the same at the Publisher and at Subscribers.

How To (SQL Server 2000)

How to change replication monitoring properties (Enterprise
Manager)
How to change replication monitoring properties (Enterprise Manager)

To change replication monitoring properties

1. Expand a server group, and then expand the Distributor.

2. Right-click Replication Monitor, and then click Refresh Rate and Settings.

To select columns for monitoring views

1. Expand a server group; then expand the Distributor.

2. Right-click Replication Monitor; then click Select Columns.

How To (SQL Server 2000)

How to monitor replication agent history (Enterprise Manager)
How to monitor replication agent history (Enterprise Manager)

To monitor replication agent history

1. Expand a server group, and then expand the Distributor.

2. Expand Replication Monitor, and then click Agents.

3. Click the agent to monitor, right-click a row in the details pane, and then click Agent History.

How To (SQL Server 2000)

How to configure DCOM to run the Distribution Agent
remotely
How to configure DCOM to run the Distribution Agent remotely

To configure DCOM to run the Distribution Agent remotely

Note To run DCOM configuration, on Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000, run Dcomcnfg.exe located at
\Winnt\System32. On Microsoft Windows 98, run Dcomcnfg.exe located at \Windows\System.

1. On the computer where you want the agent to run, on to the Start menu, click Run, type dcomcnfg, and then click OK.

2. On the Applications tab, select Microsoft SQL Server Replication Remote Dist Agent 8.0, and then click Properties.

3. On the Security tab, select Use custom launch permissions, and then click Edit.

4. In the Registry Value Permissions window, add the account used to run SQL Server Agent on the Distributor (for push
subscriptions), or SQL Server Agent on the Subscriber (for pull subscriptions), and then click OK.

5. Click the Identity tab, select This user, and then type the user account used by SQL Server Agent on the Distributor (for
push subscriptions), or SQL Server Agent on the Subscriber (for pull subscriptions).

How To (SQL Server 2000)

How to configure DCOM to run the Merge Agent remotely
How to configure DCOM to run the Merge Agent remotely

To configure DCOM to run the Merge Agent remotely

Note To run DCOM configuration, on Microsoft® Windows NT® 4.0 or Microsoft Windows® 2000, run Dcomcnfg.exe located at
\Winnt\System32. On Microsoft Windows 98, run Dcomcnfg.exe located at \Windows\System.

1. On the Start menu, click Run, enter dcomcnfg, and then click OK.

2. On the Applications tab, select Microsoft SQL Server Replication Remote Merge Agent 8.0, and then click Properties.

3. On the Security tab, select Use custom launch permissions, and then click Edit.

4. In the Registry Value Permissions window, add the account used to run SQL Server Agent on the Distributor (for push
subscriptions), or SQL Server Agent on the Subscriber (for pull subscriptions), and then click OK.

5. Click the Identity tab, select This user, and then enter the same user account used by SQL Server Agent on the Distributor
(for push subscriptions), or SQL Server Agent on the Subscriber (for pull subscriptions).

How To (SQL Server 2000)

How to enable a push subscription to use remote agent
activation
How to enable a push subscription to use remote agent activation

To configure a push subscription to use remote agent activation

1. In the Microsoft® Management Console on the Distributor, expand Microsoft SQL Servers 2000, expand SQL Server
Group, select the Distributor, and then expand the Replication directory.

2. At the Publisher, expand the Publications directory, right-click a publication, and then select Push New Subscription.

3. In either the Set Distribution Agent Location window for Transactional Replication, or the Set Merge Agent Location window
for Merge Replication, select Run the Agent at the Subscriber.

4. To verify that the agent can be run remotely, click Verify Subscriber.

5. The Distributor connects to the Subscriber and starts the Distribution Agent or the Merge Agent using DCOM. If the
connection is successful, you will receive the message, The Subscriber 'SubscriberName' is prepared to run the
offload agent.

Important After you specify where the agent should run when creating the subscription, synchronization may fail if you
specified that the subscription should be automatically synchronized and you haven't configured DCOM for the remote agent
activation.

How To (SQL Server 2000)

How to enable a pull subscription to use remote agent
activation
How to enable a pull subscription to use remote agent activation

To configure a pull subscription to use remote agent activation

1. At the Subscriber, in SQL Server Enterprise Manager, expand the Replication folder, right-click the Subscriptions folder,
and then click New Pull Subscription.

2. Follow the steps in the wizard to create a new pull subscription.

3. After the pull subscription is created, right-click on it, and then select Properties.

4. Click the Synchronization tab, and then select Run the agent at the Distributor to offload agent processing from the
Subscriber.

Important After you specify where the agent should run when creating the subscription, synchronization may fail if you
specified that the subscription should be automatically synchronized and you haven't configured DCOM for the remote agent
activation.

How To (SQL Server 2000)

How to configure an existing subscription to use remote agent
activation
How to configure an existing subscription to use remote agent activation

To configure an existing subscription to use remote agent activation

1. Right-click a publication, and then select Properties.

2. Click the Subscriptions tab, and then select Properties.

3. Click the Synchronization tab, and then select Run the distribution agent at the Subscriber for push subscriptions or
Run the distribution agent at the Distributor for pull subscriptions.

How To (SQL Server 2000)

How to monitor replication agent performance (Enterprise
Manager)
How to monitor replication agent performance (Enterprise Manager)

To monitor replication agent performance

1. Expand a server group; then expand a server.

2. Right-click Replication Monitor; then click Performance Monitor.

3. On the Edit menu, click Add To Chart.

4. In the Object list, select the SQL Server replication object to monitor.

5. In the Counter list, select the counter to use.

To monitor replication agent session details

1. Expand a server group; then expand the Distributor.

2. Expand Replication Monitor; then click Agents.

3. Click the agent to monitor.

4. Right-click a row in the details pane; then click Agent History.

5. Select a session in the session list; then click Session Details.

How To (SQL Server 2000)

How to create a replication agent profile (Enterprise Manager)
How to create a replication agent profile (Enterprise Manager)

To create a replication agent profile

1. Expand a server group, and then expand the Distributor.

2. On the Tools menu, point to Replication, and then click Configure Publishing, Subscribers, and Distribution.

3. Click Agent Profiles, click the tab for the type of agent to get a new profile, and then click Copy Selected Profile.

4. Enter the name and optional description of the new profile, click the parameters you want to change, and then enter the new
value.

To set the default profile for a type of replication agent

1. Expand a server group, and then click the Distributor name.

2. On the Tools menu, point to Replication, and then click Configure Publishing, Subscribers, and Distribution.

3. Click the Distributor, click Agent Profiles, and then click the tab for the type of replication agent.

4. Select the Default column next to the profile to be used as the default.

5. Select Change all existing type Agents to use the selected profile to apply the new default to all existing type agents.
Clearing this option will apply the new default only to new agents created from this point forward.

To view or modify a replication agent profile

1. Expand a server group, expand a server, and then expand Replication Monitor.

2. Expand Publishers, expand the Publisher name where the profile is to be modified, and then click the publication.

3. In the details pane, right-click the agent or subscription, and then click Agent Profiles.

4. Select an agent profile, click View Details, and then enter the value of the parameter you want to change. If you created the
agent profile, you can click Modify to modify the parameters for the agent.

Note You cannot delete the system profiles, and you cannot delete a profile if it is being used by any agent.

To delete a replication agent profile

1. Expand a server group, and then click the Distributor name.

2. On the Tools menu, point to Replication, and then click Configure Publishing, Subscribers, and Distribution.

3. Click the Distributor tab, click Agent Profiles, and then click the tab for the type of replication agent.

4. Select the profile to be deleted, and then click Delete Profile.

How To (SQL Server 2000)

Replication and Heterogeneous Data Sources (Enterprise
Manager)
Microsoft® SQL Server™ 2000 offers the ability to replicate data to any heterogeneous data source that provides a 32-bit ODBC
or OLE DB driver on Microsoft Windows® 2000, Microsoft Windows NT® Server 4.0, or Windows 98 operating systems.
Additionally, SQL Server 2000 can receive copies of data replicated from Microsoft Access, Microsoft Exchange, Oracle, DB2
Universal, DB2/MVS, and DB2 AS400.

Heterogeneous Subscribers

Publishing to heterogeneous data sources allows corporations that have acquired different databases to continue providing SQL
Server 2000 to individuals or offices using those databases.

The simplest way to publish data to a heterogeneous data source is by using ODBC and creating a push subscription from the
Publisher to the ODBC Subscriber.

Heterogeneous Publishers

SQL Server 2000 can subscribe to snapshot or transactional data replicated from Oracle, DB2, Access, and other data sources. This
allows companies that are planning to deploy large databases or a data warehouse with SQL Server, or Internet and intranet
applications, to gain access to various sources of data. That data can then be consolidated in SQL Server 2000 using replication,
and placed into a data mart, data warehouse, or multidimensional database designed for SQL Server Analysis Services.

To implement snapshot or transactional replication published by heterogeneous data sources to your SQL Server 2000
applications, configure SQL Server with third-party software or using applications built with SQL-DMO and the Replication
Distributor Interface.

For more information, see Programming Replication from Heterogeneous Data Sources.

How To (SQL Server 2000)

How to publish to heterogeneous Subscribers (Enterprise
Manager)
How to publish to heterogeneous Subscribers (Enterprise Manager)

1. Expand a server group; then expand the Publisher.

2. On the Tools menu, point to Replication, and then click Create and Manage Publications.

3. In the Databases and Publications list, click the database from which to create a publication, and then click Create
Publication.

4. When prompted to specify subscriber types that will use the publication, select One or more Subscribers will not be SQL
Servers.

5. Complete the steps in the wizard.

6. On the Tools menu, point to Replication, and then click Configuring Publishing, Subscribers, and Distribution.

7. Click the Subscribers tab.

8. Click New Subscriber; then click the type of data source.

9. Select the heterogeneous Subscriber; then specify the login information, if required.

How To (SQL Server 2000)

How to enable a Jet 4.0 database as a Subscriber (Enterprise
Manager)
How to enable a Jet 4.0 database as a Subscriber (Enterprise Manager)

1. Expand a server group; then expand the Publisher of the publication to which the Jet Subscribers will subscribe.

2. On the Tools menu, point to Replication, and then click Configuring Publishing, Subscribers, and Distribution.

3. On the Subscribers tab, click New Subscriber.

4. Select Microsoft Jet 4.0 database (Microsoft Access).

5. Select the new Subscriber from the list of Microsoft® Jet 4.0 databases shown. Enter the login name and, optionally, the
password for the Microsoft Jet database. The Microsoft Jet database does not need to exist. If the database is new or
unsecured, you must enter admin as the login name.

6. If the database is not listed, click Add. In Linked server name, enter a name for the linked server (for example, enter the
name of the Jet database).

7. In Database path, enter the path and file name to the database. If the database is located on the same server as the
Distributor, you can use local drive letters in the path. If the database is located on a different server than the Distributor,
enter a UNC path. If the database does not exist, it will be created automatically when the subscription is initialized.

How To (SQL Server 2000)

How to create a publication for a Jet 4.0 Subscriber (Enterprise
Manager)
How to create a publication for a Jet 4.0 Subscriber (Enterprise Manager)

1. Expand a server group; then expand the Publisher.

2. On the Tools menu, point to Replication, and then click Create and Manage Publications.

3. In the Databases and Publications list, click the database from which to create a publication list, and then click Create
Publication.

4. Follow the steps in the wizard.

5. If you are creating a transactional publication, select One or more Subscribers will not be a server running SQL Server
when asked What type of Subscribers will subscribe to this publication?

6. If you are creating a merge publication, select Some Subscribers will be Microsoft Jet 4.0 databases when asked What
type of Subscribers will subscribe to this publication?

7. Follow the remaining steps in the wizard.

How To (SQL Server 2000)

How to add a push subscription to a Jet 4.0 Subscriber
(Enterprise Manager)
How to add a push subscription to a Jet 4.0 Subscriber (Enterprise Manager)

1. Expand a server group; then expand the Publisher.

2. On the Tools menu, point to Replication, and then click Push Subscriptions to Others.

3. Expand the database containing the publication to which a push subscription will be added.

4. Click the publication; then click Push New Subscription.

5. Follow the steps in the wizard.

6. If the subscription is to a merge publication, when asked to set the subscription priority, click the priority that corresponds
to the type of subscription known to Microsoft® Access. If you want the subscription to be an Access Local or Anonymous
replica, select Use the priority setting of the Publisher from which this subscription is created. If you want the
subscription to be an Access Global replica, select Use the following priority to resolve the conflict and set the desired
priority.

7. Follow the remaining steps in the wizard.

How To (SQL Server 2000)

Replication Security (Enterprise Manager)
Replication security is an important part of the design and implementation of your distributed application. Replication applies the
data changes made elsewhere on the network to the database at your server and vice-versa.

The decentralized availability of replicated data increases the complexity of managing or restricting access to that data.
Microsoft® SQL Server™ 2000 replication uses a combination of security mechanisms to protect the data and business logic in
your application:

Role requirements

By mapping user logins to specific SQL Server 2000 roles, SQL Server 2000 allows users to perform only those replication
and database activities authorized for that role. Replication grants certain permission to the sysadmin fixed server role, the
db_owner fixed database role, the current login, and the public role. For example, only members of the sysadmin server
role can configure replication.

Distributor administrative link security

SQL Server 2000 provides a secure administrative link between the Distributor and a remote Publisher. Publishers can be
treated as trusted or nontrusted.

Snapshot folder security

The operating system or FTP service prevents users from accessing specific files on the server. The user must have a valid
login to read or write the files used in the replication process.

Registered subscribers

SQL Server 2000 allows you to limit access to publications to either registered Subscribers that are well-known to the
Publisher, anonymous, or Subscribers that have logins in the publication access list. SQL Server 2000 uses linked server
definitions for heterogeneous Subscribers to secure the replication of data with heterogeneous data sources.

Publication access lists

By supporting publication access lists (PAL) on each server, SQL Server 2000 allows you to determine which logins have
access to publications. SQL Server 2000 creates the PAL with default logins, but you can add or delete logins from the list.

Agent login security

By supporting agent login security, SQL Server 2000 requires each user to supply a valid login account to connect to the
server. Replication agents are required to use valid logins when connecting to Publishers, Distributors, and Subscribers.
However, agents also can use different logins and security modes when connecting to different servers simultaneously.

Immediate-updating Subscriber security

For immediate-updating Subscribers, SQL Server 2000 replication applies security mechanisms to the Publisher-RPC link
and Publisher stored procedures.

When used together, these security mechanisms provide the highest safeguards for the data and business logic in your
application.

How To (SQL Server 2000)

How to change the login property of a pull subscription
How to change the login property of a pull subscription

1. On the Tools menu, point to Replication, and then click Pull Subscription To.

2. Click Properties, and then on the Synchronization tab, click Distribution Agent Properties.

3. On the Steps tab, click Edit.

4. On the command line, edit the values for SubscriberSecurityMode and SubscriberLogin.

How To (SQL Server 2000)

How to add or change a password on a Distributor
How to add or change a password on a Distributor

To add or change a password on a Distributor

1. Expand a server group; then click the Distributor name.

2. On the Tools menu, point to Replication, and then click Configure Publishing, Subscribers, and Distribution.

3. Click the Distributor tab.

4. Enter the new or changed password.

How To (SQL Server 2000)

To grant or revoke access to a publication
To grant or revoke access to a publication

To grant or revoke access to a publication

1. Expand a server group; then click the Publisher name.

2. On the Tools menu, point to Replication, and then click Create and Manage Publications.

3. Expand the database; then click the publication.

4. Click Properties & Subscriptions.

5. Click the Publication Access List tab.

6. Add or remove the login to access the publication.

Note If a remote Distributor is used, the new logins must exist in the publication access lists at the Publisher and the Distributor.
If the pull subscription login is not in the publication access list, an error appears at the Subscriber.

How To (SQL Server 2000)

Data Transformation Services
This section contains procedures for:

Using Data Transformation Services (DTS) tools.

Using DTS connections, tasks, transformations, and workflow elements to build DTS packages.

Managing packages.

How To (SQL Server 2000)

DTS Tools
This section contains procedures for using Data Transformation Services (DTS) tools.

How To (SQL Server 2000)

How to create a connection to Northwind in DTS Designer
(Enterprise Manager)
How to create a connection to Northwind in DTS Designer (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To create a connection to Northwind in DTS Designer

1. From the Connection toolbar, drag a Microsoft® OLE DB Provider for SQL Server connection onto the Data
Transformation Services (DTS) Designer design sheet.

2. In the New Connection box, type Cn1.

3. In the Data source list, click Microsoft SQL OLE DB Provider for SQL Server.

4. In the Server list, click local.

5. Do one of the following:

Click Use Windows Authentication.

-or-

Click Use SQL Server Authentication, and then enter a user name and password.

Security Note When possible, use Windows Authentication.

6. In the Database list, click Northwind.

How To (SQL Server 2000)

How to create a second connection to the Northwind database
using DTS Designer (Enterprise Manager)
How to create a second connection to the Northwind database using DTS Designer (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To create a second connection to the Northwind database using DTS Designer

1. From the Connection toolbar, drag a second Microsoft® OLE DB Provider for SQL Server connection onto the Data
Transformation Services (DTS) Designer design sheet.

2. In the New Connection box, type Cn2.

3. Complete the remaining property selections as you did for the first connection.

Security Note When possible, use Windows Authentication.

How To (SQL Server 2000)

How to copy data from a Northwind table using DTS Designer
(Enterprise Manager)
How to copy data from a Northwind table using DTS Designer (Enterprise Manager)

To copy data from a Northwind table using DTS Designer

1. On the Data Transformation Services (DTS) Designer design sheet, CTRL-click Cn1, and then CTRL-click Cn2.

The order in which you CTRL-click is the order in which DTS Designer directs the data flow.

2. On the Task toolbar, click Transform Data Task.

An arrow appears pointing from Cn1 to Cn2.

3. Right-click the Transform Data arrow, and then click Properties.

4. In the Description box, type Copy Categories data, and then in the Table/View list, click [Northwind].[dbo].
[Categories].

5. Click the Destination tab, and then click Create.

A new table is created to receive the copy of the source data.

6. In the Create Destination Table dialog box, in the SQL statement box, position the insertion point in the first line and edit
the CREATE TABLE statement so it reads:

CREATE TABLE [Categories2]

7. Click the Transformations tab and view the mappings between the source and destination columns in the two tables. Then
click OK to exit the Transform Data Task Properties dialog box and save the settings.

Note In this example, you are copying data, but you also can use this dialog box to map transformations or manipulate the
columns.

How To (SQL Server 2000)

How to configure an Execute SQL task to drop and re-create a
destination table (Enterprise Manager)
How to configure an Execute SQL task to drop and re-create a destination table (Enterprise Manager)

To configure an Execute SQL Task to drop and re-create a destination table

1. From the Task toolbar, drag an Execute SQL task onto the Data Transformation Services (DTS) Designer design sheet.

2. In the Description box, type Drop Dest Table.

After you configure the task, that text will display on the design sheet, under the Execute SQL task icon.

3. In the Existing connection list, click Cn2.

In this example, you can use either connection because both Cn1 and Cn2 connect to the same database. However, it is
better practice to use the destination connection.

4. In the SQL statement text box, type the following SQL code:

IF EXISTS (SELECT * from sysobjects
 WHERE id = object_id(N'[Northwind].[dbo].[Categories2]') AND
 OBJECTPROPERTY(id, N'IsUserTable') = 1)
 DROP Table [Northwind].[dbo].[Categories2]
GO

CREATE TABLE [Northwind].[dbo].[Categories2]
(
 [CategoryID] [int] IDENTITY (1,1) NOT NULL PRIMARY KEY,
 [CategoryName] [nvarchar] (15) NOT NULL,
 [Description] [ntext],
 [Picture] [image]
)
GO

This SQL code checks for the presence of the destination table. If the table does not exist, it is created. If the table exists, it is
dropped and re-created. Without this package step, the same data from the source table is appended to the destination table
every time the package is run.

5. Click OK to save the configuration settings and SQL code for the Execute SQL task.

How To (SQL Server 2000)

How to configure workflow in the Execute SQL task (Enterprise
Manager)
How to configure workflow in the Execute SQL task (Enterprise Manager)

To configure workflow in the Execute SQL Task

1. On the Data Transformation Services (DTS) design sheet, CTRL-click Drop Dest Table (the Execute SQL task you created),
and then CTRL-click Cn1 (the first Northwind connection).

2. Click the Workflow menu, and then click On success.

A green striped arrow appears pointing from Drop Dest Table to Cn1. This arrow is a conditional precedence constraint. It
directs the workflow so that the first task must execute successfully in order for the next task (the Transform Data task) to run.

How To (SQL Server 2000)

How to save the DTS package to a SQL Server msdb table
(Enterprise Manager)
How to save the DTS package to a SQL Server msdb table (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To save the DTS package to a SQL Server msdb table

1. In Data Transformation Services (DTS) Designer, on the Package menu, click Save.

2. In the Package name box, type Northwind Package.

3. In the Location list, click SQL Server.

Security Note Provide user and owner passwords when saving packages to SQL Server.

Security Note When possible, use Windows Authentication.

How To (SQL Server 2000)

How to access a DTS package template (Enterprise Manager)
How to access a DTS package template (Enterprise Manager)

To access a DTS package template

1. In SQL Server Enterprise Manager, right-click Data Transformation Services, point to All Tasks, and then click Open
Template.

2. In the Select File dialog box, double-click the template you want (.dtt file).

How To (SQL Server 2000)

How to create and save a DTS package template (Enterprise
Manager)
How to create and save a DTS package template (Enterprise Manager)

To create and save a DTS package template

1. In Data Transformation Services (DTS) Designer, right-click the design sheet of a DTS package, click Disconnected Edit,
and stub out property values that will be entered later by template users. Repeat as needed.

You stub out a property value by replacing it with a label or instruction or by deleting the current value.

2. Right-click the design sheet, click Add Text Annotation, and then add labels and instructions. Repeat as needed.

3. On the Package menu, click Save.

4. In the Package name box, type a name for the template and optionally any passwords.

5. In the Location list, click Structured Storage File.

6. In the File name box, type a name for the package template and change the file suffix from .dts to .dtt.

7. Click the browse (...) button to select a directory location to save the template.

How To (SQL Server 2000)

DTS Package Elements
The following are procedures for adding, configuring, and using Data Transformation Services (DTS) tasks, transformations,
connections, and workflow items.

How To (SQL Server 2000)

How to create a Transform Data task (Enterprise Manager)
How to create a Transform Data task (Enterprise Manager)

To create a Transform Data Task

1. On the Data Transformation Services (DTS) Designer design sheet, click the connection you want to use as a source, and
then CTRL-click the connection you want to use as a destination.

You must have your source and destination connections defined before configuring a Transform Data task.

2. From the Task toolbar, drag a Transform Data task to the design sheet.

See Also

DTS Connections

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to configure the connections for a Transform Data task
(Enterprise Manager)
How to configure the connections for a Transform Data task (Enterprise Manager)

To configure the connections for a Transform Data task

1. Point to the Transform Data task on the Data Transformation Services (DTS) Designer design sheet until the cursor changes,
and then double-click to open the Transform Data Task Properties dialog box.

2. On the Source tab, type a description for the task.

3. Under Connection, do one of the following:

Click Table / View and select a table or view from the list.

Click SQL query. You can enter the query text in the box or click Build Query to create the query with DTS Query
Designer. If you create a query with input parameters, click Parameters to assign the parameters to DTS package
global variables.

4. Click the Destination tab, and then do one of the following:

In the Table name list, select a destination table.

Create a new table by clicking Create and editing the CREATE TABLE script in the Create Destination Table dialog
box.

See Also

DTS Connections

DTS Transformations

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to configure a new transformation for a Transform Data
task (Enterprise Manager)
How to configure a new transformation for a Transform Data task (Enterprise Manager)

To configure a new transformation for a Transform Data Task

1. After configuring your source and destination connections, click the Transformations tab.

2. Do one of the following:

If the columns you want are not already mapped to another transformation, click New.

If the columns you want are already mapped, click on the mapping line for the transformation, click Delete, and then
click New.

3. In the Create New Transformation dialog box, click the type of transformation you want to add. The Transformation
Options dialog box is displayed.

4. Click the Source Columns tab, and then use the arrow buttons to select columns for the transformation.

5. Click the Destination Columns tab, and then use the arrow buttons to select columns for the transformation.

6. Click the General tab, click Properties, and then accept or edit the properties for the transformation you selected.

7. Repeat steps 2 through 6 for each transformation you want to create.

See Also

Mapping Column Transformations

DTS Transformations

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to activate the multiphase data pump feature (Enterprise
Manager)
How to activate the multiphase data pump feature (Enterprise Manager)

To activate the multiphase data pump feature

1. In SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click Properties.

2. Under Designer, select the Show multi-phase pump in DTS Designer check box.

See Also

Multiphase Data Pump Functionality

How To (SQL Server 2000)

How to add a multiphase data pump transformation function
using an ActiveX script (Enterprise Manager)
How to add a multiphase data pump transformation function using an ActiveX script (Enterprise
Manager)

 New Information - SQL Server 2000 SP3.

To add a multiphase data pump transformation function using an ActiveX script

1. After activating the multiphase data pump feature and configuring your source and destination connections, click the
Transformations tab.

2. In the Phases filter list, click the data pump phase you want to add.

The Phases filter list displays all the transformations configured for a specific data pump phase. By default, the Row transform
phase is selected.

3. Do one of the following:

If the columns you want are not already mapped to another transformation, click New.

If the columns you want are already mapped, click on the mapping line for the transformation, click Delete, and then
click New.

4. In the Create New Transformation dialog box, click ActiveX Script.

5. Click the Source Columns tab, and then use the arrow buttons to select columns for the transformation.

6. Click the Destination Columns tab, and then use the arrow buttons to include a column in the transformation.

7. Click the General tab, click Properties, and then click the Phases tab.

8. Select the data pump phases for which you will be adding Microsoft® ActiveX® script functions, and then for the selected
phases, type the names of those functions in their respective boxes.

9. In the ActiveX Script text box, enter the ActiveX script code for each function.

The function names specified in the ActiveX Script text box must match those entered on the Phases tab.

Security Note Scripts can be the source of security vulnerabilities; they can invoke system functions without user
knowledge or intervention and may contain security credentials in plain text. Review the script for security issues before use.
For more information, see Security and Scripting.

See Also

ActiveX Script Transformation

Multiphase Data Pump Functionality

Tasks That Transform Data

How To (SQL Server 2000)

How to call a COM object that customizes one or more data
pump phases (Enterprise Manager)
How to call a COM object that customizes one or more data pump phases (Enterprise Manager)

To call a COM object that customizes one or more data pump phases

1. After activating the multiphase data pump feature and after configuring your source and destination connections, click the
Transformations tab.

2. In the Phases filter list, click the data pump phase you want to customize.

The Phases filter list displays all the transformations configured for a specific data pump phase. By default, the Row
transform phase is selected.

3. Do one of the following:

If the columns you want are not already mapped to another transformation, click New.

If the columns you want are already mapped, click on the mapping line for the transformation and click Delete, and
then click New.

4. In the Create New Transformation dialog box, click the entry corresponding to the custom transformation (COM object)
that will be called.

Note If the COM object has been installed on your computer but does not appear in the Create New Transform dialog
box, and you have enabled Data Transformation Services (DTS) caching, you must refresh the cache. In SQL Server
Enterprise Manager, right-click Data Transformation Services, and then click Properties. Under Cache, click Refresh
Cache.

5. Click the Source Columns tab, and then use the arrow buttons to select columns for the transformation.

6. Click the Destination Columns tab, and then use the arrow buttons to include a column in the transformation.

7. Click the Phases tab, and then click the data pump phases that will call the custom transformation you are supplying.

Note If the custom transformation includes a user interface, you can click the General tab and then click Properties to
enter any additional information for the transformation.

See Also

Multiphase Data Pump Functionality

Tasks That Transform Data

How To (SQL Server 2000)

How to enable the Transform Data task fast load options
(Enterprise Manager)
How to enable the Transform Data task fast load options (Enterprise Manager)

To enable the Transform Data Task fast load options

1. After configuring the connections and transformations for a Transform Data task, click the Options tab.

2. Select the Use fast load check box, and then select any of the other Microsoft® SQL Server™ fast load options that you
want to use.

The fast load options are only in effect when you use the Microsoft OLE DB Provider for SQL Server as the destination
connection.

See Also

DTS Transformations

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to configure the fast load batch options (Enterprise
Manager)
How to configure the fast load batch options (Enterprise Manager)

To configure the fast load batch options

1. After configuring the connections and transformations for a Transform Data task, click the Options tab.

2. Select the Use fast load check box.

The fast load options are only in effect when you use the Microsoft® OLE DB Provider for SQL Server as the destination
connection.

3. In Insert batch size box, enter a value for the batch size.

4. Optionally, select the Commit final batch check box if you want to commit all rows in the last batch that will be copied
prior to an error.

5. In the Max error count box, enter a value to specify the number of row-level errors detected by the Transform Data task
plus the number of batch failures that must be exceeded before data pump operation for the task is terminated.

See Also

DTS Transformations

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to configure the data pump exception files (Enterprise
Manager)
How to configure the data pump exception files (Enterprise Manager)

To configure the data pump exception files

1. On the Data Transformation Services (DTS) design sheet, double-click a Transform Data task or Data Driven Query task.

You must have your source and destination connections defined before configuring a Transform Data task.

2. Click the Options tab.

3. Under Exception file, in the Name box, type a file path for the text file you want to use as an exception file, or click the
browse (...) button to locate the file.

If you enter a file that does not exist, the file will be created when the step associated with this transformation task is run.

4. Optionally, if you want to use the Microsoft® SQL Server™ 2000 data pump exception file options, then under File type,
clear the 7.0 format check box and select the exception files you want to generate.

5. Under File format, select any additional options for the exception file.

See Also

DTS Connections

Tasks That Transform Data

Transform Data Task

How To (SQL Server 2000)

How to add a DTS task to a DTS package (Enterprise Manager)
How to add a DTS task to a DTS package (Enterprise Manager)

To add a DTS task to a DTS package in DTS Designer

From the Task toolbar, drag the task onto the Data Transformation Services (DTS) design sheet.

See Also

DTS Tasks

How To (SQL Server 2000)

How to add the Bulk Insert task to a DTS package (Enterprise
Manager)
How to add the Bulk Insert task to a DTS package (Enterprise Manager)

To add a Bulk Insert task to a DTS package in DTS Designer

1. From the Connection toolbar, drag a Microsoft® OLE DB Provider for SQL Server connection onto the Data
Transformation Services (DTS) design sheet and configure the connection.

Note The Bulk Insert Task requires one Microsoft OLE DB Provider for SQL Server connection. If such a connection is
already configured in the package, you can skip Step 1.

2. From the Task toolbar, drag a Bulk Insert Task to the design sheet.

See Also

Bulk Insert Task

How To (SQL Server 2000)

How to add the Execute SQL task to a DTS package (Enterprise
Manager)
How to add the Execute SQL task to a DTS package (Enterprise Manager)

To add the Execute SQL task to a DTS package in DTS Designer

1. From the Connection toolbar, drag a connection onto the Data Transformation Services (DTS) design sheet and configure
the connection.

Note The Execute SQL task requires one connection. If a connection is already configured in the package and you can
access the data source through that connection, you can skip Step 1.

2. From the Task toolbar, drag an Execute SQL task to the design sheet.

See Also

Execute SQL Task

How To (SQL Server 2000)

How to execute a stored procedure with an input parameter
(Enterprise Manager)
How to execute a stored procedure with an input parameter (Enterprise Manager)

To execute a stored procedure with an input parameter using the Execute SQL task

1. In the Execute SQL Task Properties dialog box, in the SQL statement box, type the parameterized SQL stored procedure
statement. For example:

exec byRoyalty ?

2. Click Parameters, click the Input Parameters tab, and then assign a global variable and its value to the parameter.

How To (SQL Server 2000)

How to save row values into global variables (Enterprise
Manager)
How to save row values into global variables (Enterprise Manager)

To save row values into global variables

1. From the Connection toolbar, drag a Microsoft® OLE DB Provider for SQL Server connection to the Data Transformation
Services (DTS) design sheet.

2. In the Connection Properties dialog box, in the Database list, click pubs.

3. From the Task toolbar, drag an Execute SQL task to the design sheet.

4. In the Execute SQL Task Properties dialog box, in the Existing connection list, click the pubs connection just created.

5. In the SQL statement box, type the SQL code. For example:

SELECT *
FROM titleauthor
WHERE (royaltyper = '40')

6. Click Parameters, click Create Global Variables, and then enter the global variable names. For example: o_au_id,
o_title_id, o_au_order, and o_royaltyper.

7. Click the Output Parameters tab, click Row Value, and in the Output Global Variables column, click a row and select the
global variable from the list to hold the column's data.

You can skip a column when saving values to a global variable. For example, if you do not want to store the value of the
title_id column, modify the Output Global Variable column to assign the title_id column to <none>.

Note If the package has been executed and a value previously returned into the o_title_id global variable, setting the
title_id column to <none> will not reset or null the value of o_title_id. The global variable will contain the last value to
which it was set. For more information, see Using Global Variables with DTS Packages.

How To (SQL Server 2000)

How to retrieve the row value data (Enterprise Manager)
How to retrieve the row value data (Enterprise Manager)

To retrieve the row value data

1. From the Task toolbar, drag a Microsoft® ActiveX® Script task onto the Data Transformation Services (DTS) design sheet.

2. In the ActiveX Script Properties dialog box, after the Function Main() statement, type the following Microsoft Visual
Basic® Scripting Editing (VBScript) code:

MsgBox "The author ID is " & DTSGlobalVariables("o_au_id").value
MsgBox "The title ID is " & DTSGlobalVariables("o_title_id").value
MsgBox "The au_ord is " & DTSGlobalVariables("o_au_ord").value
MsgBox "The royalty is " & DTSGlobalVariables("o_royaltyper").value

Main = DTSTaskExecResult_Success

3. On the design sheet, click the Execute SQL task, and then CTRL-click the ActiveX Script task.

4. On the Workflow menu, click On Success or On Completion.

How To (SQL Server 2000)

How to save an entire rowset into a global variable (Enterprise
Manager)
How to save an entire rowset into a global variable (Enterprise Manager)

To save an entire result set of a SELECT statement into a global variable using the Execute SQL task

1. From the Connection toolbar, drag a Microsoft® OLE DB Provider for SQL Server connection to the design sheet.

2. In the Database list, click pubs.

3. From the Task toolbar, drag an Execute SQL task to the Data Transformation Services (DTS) design sheet.

4. In the Execute SQL Properties dialog box, in the Existing connection list, click the pubs connection just created.

5. In the SQL statement box, type the following:

SELECT *
FROM titleauthor

6. Click Parameters, and then click Create Global Variables.

7. In the Name list, type Authors, and then in the Type list, click <other>. Leave the Value box empty.

8. Click the Output Parameters tab, click Rowset, and then in the Output Parameter Type list, select the Authors global
variable.

This procedure assigns all records returned from the SELECT statement to be stored in the Authors global variable.

How To (SQL Server 2000)

How to retrieve rowset data stored in a global variable
(Enterprise Manager)
How to retrieve rowset data stored in a global variable (Enterprise Manager)

To retrieve the rowset data stored in a global variable using the Execute SQL task

1. From the Task toolbar, drag a Microsoft® ActiveX® Script task onto the Data Transformation Services (DTS) design sheet.

2. In the ActiveX Script Properties dialog box, after the Function Main() statement, type the following Microsoft Visual
Basic® Scripting Edition (VBScript) code:

dim countr
dim RS
set RS = CreateObject("ADODB.Recordset")
set RS = DTSGlobalVariables("Authors").value

for countr = 1 to RS.RecordCount
 MsgBox "The author ID is " & RS.Fields("au_id").value
 RS.MoveNext
Next

Main = DTSTaskExecResult_Success

3. On the design sheet, click the Execute SQL task, and then CTRL-click the ActiveX Script task.

4. On the Workflow menu, click On Success or On Completion.

The au_id column for each row returned from the SELECT statement is displayed.

How To (SQL Server 2000)

How to send a message with the Message Queue task
(Enterprise Manager)
How to send a message with the Message Queue task (Enterprise Manager)

To send a message with the Message Queue task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type a label that identifies the task on the
design sheet.

3. In the Message list, click Receive messages.

4. In the Queue box, type the name of the computer_name\queue_type$\queue_name combination that identifies the queue
from which you will be reading messages.

5. Click Add, and then in the Message type list, select a type of message queue and configure each message:

Select String Message, and in the String Message box, type the message.

Select Data File Message, and in the File Name box, type the path of the file to send the message to, or click the
browse (...) button to locate the file.

Select Global Variables Message. To add an existing package global variable, click New, and then in the name list,
click a global variable. To create a global variable that does not exist in the package for use as a message, click Create
Global Variables.

How To (SQL Server 2000)

How to receive a string message with the Message Queue task
(Enterprise Manager)
How to receive a string message with the Message Queue task (Enterprise Manager)

To receive a string message with the Message Queue task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, enter a label that identifies the task on the
design sheet.

3. In the Message list, click Receive messages.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the queue
from which you will be reading messages.

5. In the Message type list, click String message, and then under Compare, click an option for filtering the message.

6. If you click Exact Match, Ignore Case, or Containing in the Compare String box, type the search text.

7. Select the Remove from message queue check box to delete any received message from the queue. Clear this check box
to leave the message on the queue after task completion.

8. Clear the Timeout after check box to wait indefinitely for an acceptable message or select the Timeout after check box to
enter a timeout interval.

The timeout interval may take any value from 1 through 9999 (in seconds).

How To (SQL Server 2000)

How to receive a Data File Message with the Message Queue
task (Enterprise Manager)
How to receive a Data File Message with the Message Queue task (Enterprise Manager)

To receive a data file message with the Message Queue task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, enter a label that identifies the task on the
design sheet.

3. In the Message list, click Receive messages.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the queue
from which you will be reading messages.

5. In the Message type list, click Data File Message.

6. In the Save file as box, enter the path of a file or directory on your computer, or click the browse (...) button to locate the
file.

7. Under Only receive message from a specific package or version, click a filter option.

8. If you select From package or From version, set Identifier to the globally unique identifier (GUID) string that identifies
the proper DTS package or version. Use the browse (...) button to search for available packages and versions.

9. Clear the Timeout after check box to wait indefinitely for an acceptable message or select the Timeout after check box to
enter a timeout interval. The value can range from 1 through 9999 (in seconds).

How To (SQL Server 2000)

How to receive a global variables message with the Message
Queue task (Enterprise Manager)
How to receive a global variables message with the Message Queue task (Enterprise Manager)

To receive a global variables message with the Message Queue task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, enter a label that identifies the task on the
design sheet.

3. In the Message list, click Receive messages.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the queue
from which you will be reading messages.

5. In the Message type box, click Global Variables Message.

6. Under Only receive message from a specific package or version, click a filter option.

7. If you selected From package or From version, set Identifier to the globally unique identifier (GUID) string that identifies
the proper DTS package or version. Use the browse (...) button to search for available packages and versions.

8. Clear the Timeout after check box to wait indefinitely for an acceptable message. Select the Timeout after check box to
enter a timeout interval. The value can range from 1 through 9999 (in seconds).

How To (SQL Server 2000)

How to configure the Ask For Facts task (Enterprise Manager)
How to configure the Ask For Facts task (Enterprise Manager)

To configure the Ask For Facts task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type Ask For Facts.

3. In the Message box, click Send Message.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the
location to which these messages will be sent.

5. Under Messages to be sent, click New, and then in the Message type box, click String Message.

6. In the String Message box, type Summarize shipments.

7. On the design sheet, right-click Ask For Facts, point to Workflow, and then click Workflow Properties.

8. Click the Options tab, and then clear the following check boxes:

Join transaction if present

Commit transaction on successful completion of this step

Rollback transaction on failure

How To (SQL Server 2000)

How to configure the Wait For Trigger task (Enterprise
Manager)
How to configure the Wait For Trigger task (Enterprise Manager)

To configure the Wait For Trigger task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type Wait for Trigger.

3. In the Message list, click Receive Message. In the Queue box, enter the same computer_name\queue_type$\queue_name
combination as that entered for the Ask for Facts task.

4. In the Message type list, click String Message.

5. Under Compare, click Exact Match, and then in the Compare String box, type Summarize shipments.

6. Select the Remove from message queue check box.

7. On the design sheet, right-click Wait for Trigger, point to Workflow, and then click Workflow Properties.

8. In the Workflow Properties dialog box, click the Options tab, and then clear the following check boxes:

Join transaction if present

Commit transaction on successful completion of this step

Rollback transaction on failure

How To (SQL Server 2000)

How to create and configure Add New Employees (Enterprise
Manager)
How to create and configure Add New Employees (Enterprise Manager)

To create and configure the Add New Employees package

1. In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click New
Package.

2. On the Package menu, click Save.

3. In the Package name box, type Add New Employees, and in the Location list, click SQL Server.

4. Right-click the Data Transformation Services (DTS) design sheet, and then click Package Properties.

5. Click the Advanced tab, select the Use transactions check box, and then clear the Commit on successful package
completion check box.

6. Click the Logging tab, and then under Error handling, clear the Fail package on first error check box.

How To (SQL Server 2000)

How to configure the New Employee task (Enterprise Manager)
How to configure the New Employee task (Enterprise Manager)

To configure the New Employee task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type New Employee.

3. In the Message box, click Receive Message.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination to identify the queue at
which global variable messages will be received.

5. In the Message type list, click Global Variables Message, and then click No filter.

6. Specify the following options:

Select the Remove from message queue check box or the DTS package will loop indefinitely as it repeatedly
attempts to add the same employee.

Select the Timeout after check box to force package termination after the queue is emptied, and then in the seconds
box, type 1.

7. On the design sheet, right-click New Employee, point to Workflow, and then select Workflow Properties.

8. In the Workflow Properties dialog box, click the Options tab, and then clear the following check boxes:

Join transaction if present

Commit transaction on successful completion of this step

Rollback transaction on failure

How To (SQL Server 2000)

How to configure the Transform Data task for Global Variable
Messages (Enterprise Manager)
How to configure the Transform Data task for Global Variable Messages (Enterprise Manager)

To configure the Transform Data task for global variable messages

1. Click Not Used, and then CTRL-click Corporate.

2. On the Task toolbar, click Transform Data Task, and then on the Data Transformation Services (DTS) design sheet, double-
click the resulting arrow.

3. In the Data Transformation Properties dialog box, do the following:
a. In the Description box, type Insert One Employee.

b. Under Connection, click SQL query, and then in the text box, type SELECT 'xxx' AS xxx.

This generates a source rowset with one row in it. As a result, the insert will be attempted exactly once.

4. Click the Destination tab, and then in the Table name list, select the Employee table.

5. Click the Transformations tab, and then do the following:
a. Click Delete All to clear any default transformations.

b. In the Destination list, click EmployeeID, and then CTRL-click EmployeeName.

c. Click New.
6. In the Create New Transformation dialog box, click ActiveX Script.

7. In the Transformation Options dialog box, click Properties.

8. In the Active X Script Transformation Properties dialog box, under Entry function, type the following:

DTSDestination ("EmployeeID") = DTSGlobalVariables("ID")
DTSDestination("EmployeeName") = DTSGlobalVariables("Name")

9. Right-click the Transform Data task, and then click Workflow Properties.

10. In the Workflow Properties dialog box, click the Options tab, and then do the following:

Select the Join transaction if present check box.

Select the Commit transaction on successful completion of this step check box.

Clear the Rollback transaction on failure check box.

11. Click the Precedence tab, and then add a new entry with Source Step set to New Employee and Precedence set to
Success.

How To (SQL Server 2000)

How to configure the Log Bad Update task (Enterprise
Manager)
How to configure the Log Bad Update task (Enterprise Manager)

To configure the Log Bad Update task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type Log Bad Update.

3. In the Message list, click Send Messages.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the
location to which bad update messages will be sent.

5. Click Add, and then in the Message type list, click Global Variables Message.

6. Add the global variables ID and Name by doing the following:
a. Click Create Global Variables.

b. In the Global Variables dialog box, type ID under a blank entry in the Variables list, then click New to create a new
entry and enter Name.

c. In the Message Queue Message Properties dialog box, click New, click in the box under Name, and then select ID
from the list. Repeat this step for the global variable Name.

Note Entries for Type and Value have no effect in this application. You do not need to enter values.

7. On the design sheet, right-click Log Bad Update, point to Workflow, and then click Workflow Properties.

8. Click the Options tab, and then do the following:

Select the Join transaction if present check box.

Select the Commit transaction on successful completion of this step check box.

Clear the Rollback transaction on failure check box.

9. Click the Precedence tab, and then add a new entry with Source Step set to Insert One Employee and Precedence set to
Failure.

How To (SQL Server 2000)

How to configure one Loop task (Enterprise Manager)
How to configure one Loop task (Enterprise Manager)

To configure one Loop task

1. On the Data Transformation Services (DTS) design sheet, right-click New Employee, point to Workflow, and then click
Workflow Properties.

2. In the Workflow Properties dialog box, click the Options tab and note the name of the step in the Name box.

It is likely to be DTSStep_DTSMessageQueueTask_1. You will need to click this name in another box later in this
procedure.

3. From the Task toolbar, drag a Dynamic Properties task onto the design sheet.

4. In the Dynamic Properties Task Properties dialog box, in the Description box, type Loop, and then click Add.

5. In the tree display in the left pane, expand Steps, and then expand DTSStep_DTSMessageQueueTask_1 (the name you
noted in Step 2).

6. In the right pane, under Property name, double-click ExecutionStatus.

7. In the Add/Edit Assignment dialog box, in the Source list, click Constant, and then in the Constant box, type 1.

1 is the value assigned to DTSStepExecStat_Waiting.

8. On the design sheet, right-click Loop, point to Workflow, and then click Workflow Properties.

9. Click the Precedence tab, and then add a new entry with Source Step set to either Insert One Employee or Log Bad
Update and Precedence set to Success.

How To (SQL Server 2000)

How to create and configure the Load Expenses package
(Enterprise Manager)
How to create and configure the Load Expenses package (Enterprise Manager)

To create and configure the Load Expenses package

1. In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click New
Package.

2. On the Package menu, click Save.

3. In the Package Name box, type Load Expenses.

4. Right-click the Data Transformation Services (DTS) design sheet, and then click Package Properties.

5. Click the Logging tab, and then clear the Fail package on first error check box.

6. Click the Advanced tab, select the Use transactions check box, and then clear the Commit on successful package
completion check box.

How To (SQL Server 2000)

How to configure the Spreadsheet Wait task (Enterprise
Manager)
How to configure the Spreadsheet Wait task (Enterprise Manager)

To configure the Spreadsheet Wait task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message list, click Receive Message.

3. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the queue
where expense worksheets will be sent.

4. In the Message Type list, click Data File Message.

5. In the Save file as box, type C:\Temp\Expense.xls.

6. Do the following:

Select the Overwrite check box to prevent the first worksheet from blocking further uploads.

Select the Remove from message queue check box or the package will loop indefinitely as it repeatedly attempts to
load the same worksheet.

Clear the Timeout after check box because this package runs until canceled.

7. On the design sheet, right-click Wait, point to Workflow, and then click Workflow Properties.

8. Click the Options tab, and then clear the following check boxes:

Join transaction if present

Commit transaction on successful completion of this step

Rollback transaction on failure

How To (SQL Server 2000)

How to configure the Delete Raw Data task (Enterprise
Manager)
How to configure the Delete Raw Data task (Enterprise Manager)

To configure the Delete Raw Data task

1. From the Task toolbar, drag an Execute SQL task onto the Data Transformation Services (DTS) design sheet.

2. In the Execute SQL Task Properties dialog box, in the Description box, type Delete Raw Data.

3. In the Existing Connection list, click Raw Data.

4. In the SQL Statement text box, type the following:

DELETE FROM RawExpense.

5. On the design sheet, right-click Delete Raw Data, point to Workflow, and then click Workflow Properties.

6. Click the Options tab, and then clear the following check boxes:

Join transaction if present

Commit transaction on successful completion of this step

Rollback transaction on failure

7. Click the Precedence tab, and then add a new entry with Source Step set to Spreadsheet Wait and set Precedence to
Success.

How To (SQL Server 2000)

How to configure the Load Raw Data task (Enterprise Manager)
How to configure the Load Raw Data task (Enterprise Manager)

To configure the Load Raw Data task

1. Click Expense Report, and then CTRL-click Raw Data.

2. On the Task toolbar, click Transform Data Task, and then on the Data Transformation Services (DTS) design sheet, double-
click the resulting arrow.

3. In the Description box, type Load Raw Data, and in the Table/View list, click Expenses to load data from the proper
spreadsheet range.

4. Click the Destination tab, and then in the Table name list, click RawExpense.

5. Click the Transformations tab, and then click OK.

Clicking OK without editing the transformations saves the default column mappings.

6. On the design sheet, right-click the Transform Data task, point to Workflow, and then click Workflow Properties.

7. Click the Options tab, and then do the following:

Clear the Commit transaction on successful completion of this step check box.

Clear the Rollback transaction on failure check box.

Select the Join transaction if present check box.

8. Click the Precedence tab, and then add a new entry with Source Step set to Delete Raw Data and Precedence set to
Success.

How To (SQL Server 2000)

How to configure the Load Filtered Data task (Enterprise
Manager)
How to configure the Load Filtered Data task (Enterprise Manager)

To configure the Load Filtered Data task

1. Click Raw Data, and then CTRL-click Corporate.

2. On the Task toolbar, click Transform Data Task, and then on the Data Transformation Services (DTS) design sheet, double-
click the resulting arrow.

3. In the Description box, type Load Final Data.

4. Under Connection, click SQL query, and then in the text box, type the following SQL statement:

SELECT FROM RawExpense WHERE ExpenseDate IS NOT NULL

This generates a source rowset without any null rows.

5. Click the Destination tab, and then in the Table name list, click Expense.

6. Click the Transformations tab, and then click OK.

Clicking OK without editing the transformations saves the default column mappings.

7. On the design sheet, right-click the Transform Data task, point to Workflow, and then click Workflow Properties.

8. Click the Options tab, and then do the following:

Select the Commit transaction on successful completion of this step check box.

Select the Join transaction if present check box.

Clear the Rollback transaction on failure check box.

9. Click the Precedence tab, and then add a new entry with Source Step set to Load Raw Data and Precedence set to
Success.

How To (SQL Server 2000)

How to configure the Failed Expense Load (or Failed XLS Load)
task (Enterprise Manager)
How to configure the Failed Expense Load (or Failed XLS Load) task (Enterprise Manager)

To configure the Failed Expense Load (or Failed XLS Load) task

1. From the Task toolbar, drag a Message Queue task onto the Data Transformation Services (DTS) design sheet.

2. In the Message Queue Task Properties dialog box, in the Description box, type Failed Expense Load (or Failed XLS
Load).

3. In the Message list, click Send Message.

4. In the Queue box, enter the name of the computer_name\queue_type$\queue_name combination that identifies the
location to which unloadable worksheets will be sent.

5. In the Messages to be sent list, click Add.

6. In the Message type box, click Data File Message, and in the File Name box, type C:\Temp\Expense.xls.

7. On the design sheet, right-click Failed Expense Load (or Failed XLS Load), point to Workflow, and then click Workflow
Properties.

8. Click the Options tab, and then select the following check boxes:

 Commit transaction on successful completion of this step

Join transaction if present

Rollback transaction on failure

9. Click the Precedence tab, and then add a new entry with Source Step set to Load Filtered Data (or Load Raw Data) and
Precedence set to Failure.

How To (SQL Server 2000)

How to create and configure three Loop tasks (Enterprise
Manager)
How to create and configure three Loop tasks (Enterprise Manager)

To create and configure three Loop tasks

1. On the Data Transformation Services (DTS) design sheet, right-click Spreadsheet Wait, point to Workflow, and then click
Workflow Properties.

2. In the Workflow Properties dialog box, click the Options tab and note the name of the step in the Name box.

It is likely to be DTSStep_DTSMessageQueueTask_1. You will need to click this name in another box later in this
procedure.

3. From the Task toolbar, drag a Dynamic Properties task onto the design sheet.

4. In the Description box, type Loop, and then click Add.

5. In the tree display in the left pane, expand Steps, and then expand DTSStep_DTSMessageQueueTask_1 (the name you
noted in Step 2).

6. In the right pane, under Property name, double-click Execution Status.

7. In the Add/Edit Assignment dialog box, in the Source list, click Constant, and then in the Constant box, type 1.

1 is the value assigned to DTSStepExecStat_Waiting.

8. On the design sheet, do the following:

Right-click Loop, and then click Copy.

Right-click the design sheet, and then click Paste. Repeat this paste once.

Position the three Loop tasks in a column on the right side of the design sheet.

9. Right-click each of these pasted Loop tasks, point to Workflow, and then click Workflow Properties.

10. Click the Precedence tab, and then add a new entry with Source Step set to the proper step: Failed XLS Load, Failed
Expense Load, or Load Filtered Data. Set Precedence to Success.

How To (SQL Server 2000)

How to convert the format of a Date Time String
transformation (Enterprise Manager)
How to convert the format of a Date Time String transformation (Enterprise Manager)

To convert the format of a Date Time String transformation

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the date or time to be modified, and then click the Destination column where you want
the modified string to be placed.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New.

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, click DateTime String.

4. Click the General tab, and then click Properties.
e. In the Date Format list, select the format you want.

6. Click Naming to display the Calendar Names dialog box, where you can select long or short day or month names and the
A.M. and P.M. designators you want.

7. In the Language list, select the language you want, and then click Set Language Defaults.

See Also

Date Time String Transformation

Transform Data Task

How To (SQL Server 2000)

How to convert a string to lowercase characters (Enterprise
Manager)
How to convert a string to lowercase characters (Enterprise Manager)

To convert a string to lowercase characters

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the string to be modified, and then click the Destination column where you want the
modified string to be placed.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New.

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, select Lowercase String.

See Also

Lowercase String Transformation

Transform Data Task

How To (SQL Server 2000)

How to convert a string to uppercase characters (Enterprise
Manager)
How to convert a string to uppercase characters (Enterprise Manager)

To convert a string to uppercase characters

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the string to be modified, and then click the Destination column where you want the
modified string to be placed.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, select Uppercase String.

See Also

Uppercase String Transformation

Transform Data Task

How To (SQL Server 2000)

How to perform a Middle of String transformation (Enterprise
Manager)
How to perform a Middle of String transformation (Enterprise Manager)

To perform a Middle of String transformation

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the string to be modified, and then click the Destination column where you want the
modified string to be placed.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New.

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, select Middle of String.

4. Click the General tab, and then click Properties.

5. In the Start position (1 based) box, type or select the first character position occupied by the substring.

6. Optionally, if you want to remove characters from the end of the source string, select the Limit number of characters to
check box and enter a maximum substring length.

See Also

Middle of String Transformation

Transform Data Task

How To (SQL Server 2000)

How to perform a Trim String transformation (Enterprise
Manager)
How to perform a Trim String transformation (Enterprise Manager)

To perform a Trim String transformation

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the string to be modified, and then click the Destination column where you want the
modified string to be placed.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New.

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, select Trim String.
d. Click the General tab, and then click Properties.

See Also

Trim String Transformation

Transform Data Task

How To (SQL Server 2000)

How to perform a Read File transformation (Enterprise
Manager)
How to perform a Read File transformation (Enterprise Manager)

To perform a Read File transformation

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the file specification information, and then click the Destination column to which you
want the contents of the file copied.

2. Do one of the following:

If there is a mapping arrow connecting the two columns, click Delete, and then click New.

If there is no mapping arrow, click New.

3. In the Create New Transformation dialog box, click Read File.

4. Click the General tab, and then click Properties.

5. In the Read File Transformation dialog box, do the following:

In the Directory box, type the name of the directory from which the files are to be read.

In the File type list, click the file type you want.

Select the Error if file not found check box to fail the step when no file matches the source column. Clear this check
box to null the destination column.

See Also

Read File Transformation

Transform Data Task

How To (SQL Server 2000)

How to perform a Write File transformation (Enterprise
Manager)
How to perform a Write File transformation (Enterprise Manager)

To perform a Write File transformation

1. On the Transformations tab of the Transform Data Task Properties or Data Driven Query Task Properties dialog box,
click the Source column containing the file name column and the Source column containing the data column.

2. Click New, and in the Create New Transformation dialog box, click Write File.

3. Click the General tab, and then click Properties.

4. In the Write File Transformation Properties dialog box, do the following:

In the Directory box, type the name of the directory in which the files are to be saved.

In the File type list, click the file type you want.

In the File name column list, click the column that contains the file names.

Under Handle existing file, click the option that you want.

See Also

Write File Transformation

Transform Data Task

How To (SQL Server 2000)

How to create a connection (Enterprise Manager)
How to create a connection (Enterprise Manager)

To create a connection in DTS Designer

1. On the Connection toolbar, drag the connection you want onto the Data Transformation Services (DTS) Designer design
sheet.

2. Do one of the following:

Click New connection.

Click Existing connection, and then click an available connection from the list.

3. Complete the rest of the connection configuration information.

The types of information will vary according to the particular data provider you choose.

How To (SQL Server 2000)

How to create a data link with run-time resolution (Enterprise
Manager)
How to create a data link with run-time resolution (Enterprise Manager)

To create a data link with run-time resolution

1. In the Connection Properties dialog box, in the Data Source list, click Microsoft Data Link.

2. Select the Always read properties from UDL file check box.

If the check box is cleared, connection properties must be edited through the Data Transformation Services (DTS) package.

3. Click Properties to display the Data Link Properties dialog box.

See Also

Data Link Connection

How To (SQL Server 2000)

DTS Package Management
The topics in this section contain procedures for managing Data Transformation Services (DTS) packages from SQL Server
Enterprise Manager and from within DTS tools.

How To (SQL Server 2000)

How to create a DTS package using DTS Designer (Enterprise
Manager)
How to create a DTS package using DTS Designer (Enterprise Manager)

To create a DTS package using DTS Designer

In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click New
Package.

Note Your choice of Local Packages or Meta Data Services Packages determines the format in which the file is saved
by default (Local packages are saved to Microsoft® SQL Server™ and Meta Data Services packages are saved to SQL Server
2000 Meta Data Services).

See Also

Managing a DTS Package

How To (SQL Server 2000)

How to create a DTS package using the DTS Import/Export
Wizard (Enterprise Manager)
How to create a DTS package using the DTS Import/Export Wizard (Enterprise Manager)

To create a new package using the DTS Import/Export Wizard

In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, point to All Tasks, and then
click Import Data or Export Data.

See Also

dtswiz Utility

DTS Import/Export Wizard

Managing a DTS Package

How To (SQL Server 2000)

How to edit a DTS package saved to SQL Server or Meta Data
Services (Enterprise Manager)
How to edit a DTS package saved to SQL Server or Meta Data Services (Enterprise Manager)

To edit a DTS package saved to SQL Server or Meta Data Services

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services.

2. Do one of the following:

Click Local Packages for Data Transformation Services (DTS) packages saved to Microsoft® SQL Server™.

Click Meta Data Services Packages for packages saved to SQL Server 2000 Meta Data Services.

3. In the details pane, double-click the DTS package you want to open in DTS Designer.

See Also

Managing a DTS Package

Saving a DTS Package to Meta Data Services

Saving a DTS Package to SQL Server

How To (SQL Server 2000)

How to edit a DTS package saved to a structured storage file
(Enterprise Manager)
How to edit a DTS package saved to a structured storage file (Enterprise Manager)

To edit a DTS package saved to a structured storage file

1. In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click Open
Package.

2. In the Select File dialog box, browse for the file you want, click the file, and then click Open.

3. If the file contains multiple packages or multiple package versions, the Select Package dialog box appears. Double-click a
Data Transformation Services (DTS) package or package version. If you want the most recent version of a package, click the
package node or the latest version node.

See Also

Saving a DTS Package to a Structured Storage File

Managing a DTS Package

How To (SQL Server 2000)

How to delete a DTS package (Enterprise Manager)
How to delete a DTS package (Enterprise Manager)

To delete a DTS package saved to SQL Server or Meta Data Services

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services.

2. Do one of the following:

Click Local Packages for Data Transformation Services (DTS) packages saved to Microsoft® SQL Server™.

Click Meta Data Services Packages for packages saved to SQL Server 2000 Meta Data Services.

3. In the details pane, right-click a Data Transformation Services (DTS) package, and then click Delete.

This deletes all versions of the package.

To delete a DTS package version saved to SQL Server

1. In SQL Server Enterprise Manager console tree, expand Local Packages.

2. In the detail pane, right-click the package, and then click Versions.

3. In the DTS Package Versions dialog box, click the package version, and then click Delete.

To delete a DTS package saved to a file

1. Using a file manager such as Microsoft Windows Explorer, click the folder containing your DTS packages.

2. Right-click the desired package file, and then click Delete.

See Also

Managing a DTS Package

How To (SQL Server 2000)

How to execute a DTS package from SQL Server Enterprise
Manager (Enterprise Manager)
How to execute a DTS package from SQL Server Enterprise Manager (Enterprise Manager)

To execute a DTS package from SQL Server Enterprise Manager

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services.

2. Do one of the following:

Click Local Packages for Data Transformation Services (DTS) packages saved to Microsoft® SQL Server™.

Click Meta Data Services Packages for packages saved to SQL Server 2000 Meta Data Services.

3. In the details pane, right-click the package, and then click Execute Package.

See Also

Executing a DTS Package

How To (SQL Server 2000)

How to execute a DTS package from DTS Designer (Enterprise
Manager)
How to execute a DTS package from DTS Designer (Enterprise Manager)

To execute a DTS package from DTS Designer

With the Data Transformation Services (DTS) package open in DTS Designer, click the Execute button on the toolbar.

See Also

Executing a DTS Package

How To (SQL Server 2000)

How to execute a DTS package from the DTS Import/Export
Wizard (Enterprise Manager)
How to execute a DTS package from the DTS Import/Export Wizard (Enterprise Manager)

To execute a DTS package from the DTS Import/Export Wizard

1. On the Save, Schedule and Replicate Package dialog box, click Run immediately, and then click Next.

2. On the Completing the DTS Wizard dialog box, click Finish.

See Also

Executing a DTS Package

How To (SQL Server 2000)

How to execute a DTS package using the DTS Run utility
(Command Prompt)
How to execute a DTS package using the DTS Run utility (Command Prompt)

To execute a DTS package using the DTS Run utility

1. Open a command prompt window and type dtsrunui without any command switches.

2. In the DTS Run and Advanced DTS Run dialog boxes, enter any information for connection settings and logging.

3. Click OK when you are ready to execute the package.

See Also

DTS Package Execution Utilities

Executing a DTS Package

How To (SQL Server 2000)

How to execute a DTS package using dtsrun (Command
Prompt)
How to execute a DTS package using dtsrun (Command Prompt)

 New Information - SQL Server 2000 SP3.

To execute a DTS package using dtsrun

Open a command prompt window and type dtsrun with any necessary and optional command switches.

Security Note Command switches can reveal privileged information such as passwords, user and server names, and the
names of log files.

See Also

dtsrun Utility

Executing a DTS Package

How To (SQL Server 2000)

How to save a DTS package to SQL Server (Enterprise Manager)
How to save a DTS package to SQL Server (Enterprise Manager)

To save a DTS package to SQL Server

1. In Data Transformation Services (DTS) Designer, on the toolbar, click the Save button.

2. In the Location list, click SQL Server.

3. Complete the rest of the required fields.

Note If the DTS package has already been saved to Microsoft® SQL Server™, the Save DTS Package dialog box will not
appear and a new version will be saved. If the package has been saved to a structured storage or a Microsoft Visual Basic®
file, or to SQL Server 2000 Meta Data Services, click Save As to save to SQL Server.

See Also

Saving a DTS Package to SQL Server

How To (SQL Server 2000)

How to open a DTS package saved to SQL Server (Enterprise
Manager)
How to open a DTS package saved to SQL Server (Enterprise Manager)

To open a DTS package saved to SQL Server

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services, and then click Local
Packages.

2. Do one of the following:

Double-click the Data Transformation Services (DTS) package you want to open in DTS Designer.

Right-click the DTS package you want to open, and then click Versions. In the DTS Package Versions dialog box,
click the package version you want, and then click Edit.

See Also

Saving a DTS Package to SQL Server

How To (SQL Server 2000)

How to save a DTS package to Meta Data Services (Enterprise
Manager)
How to save a DTS package to Meta Data Services (Enterprise Manager)

To save a DTS package to Meta Data Services

1. In Data Transformation Services (DTS) Designer, on the Package menu, click Save.

2. In the Location list, click Meta Data Services.

3. Complete the rest of the required fields.

Note If the package has already been saved to Microsoft® SQL Server™ 2000 Meta Data Services, the Save DTS Package
dialog box will not appear, and a new version will be saved. If the package has been saved to a structured storage or a Microsoft
Visual Basic® file, or to SQL Server, click Save As to save to Meta Data Services.

See Also

Saving a DTS Package to Meta Data Services

How To (SQL Server 2000)

How to open a DTS package saved to Meta Data Services
(Enterprise Manager)
How to open a DTS package saved to Meta Data Services (Enterprise Manager)

To open a DTS package saved to Meta Data Services

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services, and then double-click Meta
Data Services Packages.

2. Do one of the following:

Double-click the Data Transformation Services (DTS) package you want to open in DTS Designer.

Right-click the DTS package you want to open, and then click Versions. In the DTS Package Versions dialog box,
click the package version you want, and then click Edit.

See Also

Saving a DTS Package to Meta Data Services

How To (SQL Server 2000)

How to save a DTS package to a structured storage file
(Enterprise Manager)
How to save a DTS package to a structured storage file (Enterprise Manager)

To save a DTS package to a structured storage file

1. In Data Transformation Services (DTS) Designer, on the toolbar, click Save.

2. In the Location list, click Structured Storage File.

3. Complete the rest of the required fields.

Note If the DTS package has already been saved to a structured storage file, the Save DTS Package dialog box will not appear,
and a new version will be saved. If the package has been saved to Microsoft® SQL Server™, SQL Server 2000 Meta Data Services,
or a Microsoft Visual Basic® file, click Save As to save to a structured storage file.

See Also

Saving a DTS Package to a Structured Storage File

How To (SQL Server 2000)

How to open a DTS package saved to a structured storage file
(Enterprise Manager)
How to open a DTS package saved to a structured storage file (Enterprise Manager)

To open a DTS package saved to a structured storage file

1. In the SQL Server Enterprise Manager console tree, right-click Data Transformation Services, and then click Open
Package.

2. In the Select File dialog box, click the .dts file you want, and then click Open.

3. If multiple Data Transformation Services (DTS) packages or package versions were saved, the Select Package dialog box
appears. Click the package or package version you want to open.

See Also

Saving a DTS Package to a Structured Storage File

How To (SQL Server 2000)

How to schedule a DTS package using the Schedule Package
option (Enterprise Manager)
How to schedule a DTS package using the Schedule Package option (Enterprise Manager)

To schedule a DTS package using the Schedule Package option

1. In the SQL Server Enterprise Manager console tree, expand Data Transformation Services, and then click either Local
Packages or Meta Data Services Packages.

2. In the details pane, right-click the Data Transformation Services (DTS) package you want to schedule, and then click
Schedule Package.

3. In the Edit Recurring Job Schedule dialog box, complete the required information.

Note The scheduled package will be executed by SQL Server Agent using the permissions specified during server registration. If
Windows Authentication was used, then SQL Server Agent will attempt to load the package using its own security, which may not
be sufficient to load the package. For more information see Handling Package Security in DTS.

See Also

Scheduling a DTS Package for Execution

How To (SQL Server 2000)

How to schedule a DTS package using SQL Server Agent
(Enterprise Manager)
How to schedule a DTS package using SQL Server Agent (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To schedule a DTS package using SQL Server Agent

1. In SQL Server Enterprise Manager console tree, expand Management, and then click SQL Server Agent.

2. In the details pane, right-click Jobs, and then click New Job.

3. On the General tab, complete the information to configure the new job.

4. Click the Steps tab, click New, and then do the following:

In the Step name box, type a name.

In the Type list, click Operating System Command (CmdExec).

In the Command text box, type the dtsrun command for the package.

Security Note The CmdExec command in the job can include privileged information in its dtsrun command switches.

Note Scheduled packages are run by SQL Server Agent and, as such, do not have the same shared drive letters or the same
permissions as the package creator.

See Also

Scheduling a DTS Package for Execution

How To (SQL Server 2000)

How to view or modify DTS package properties (Enterprise
Manager)
How to view or modify DTS package properties (Enterprise Manager)

To view or modify DTS package properties

1. With the Data Transformation Services (DTS) package open in DTS Designer, right-click the design sheet, and then click
Package Properties.

2. Click the tab you want, and then view or modify the values.

See Also

Viewing and Configuring DTS Package Properties

How To (SQL Server 2000)

How to use Disconnected Edit to modify DTS package
properties (Enterprise Manager)
How to use Disconnected Edit to modify DTS package properties (Enterprise Manager)

To use Disconnected Edit to modify DTS package properties

1. With the Data Transformation Services (DTS) package open in DTS Designer, right-click the design sheet, and then click
Disconnected Edit.

2. In the Edit All Package Properties dialog box, expand the property nodes in the left pane, and then double-click the
property group you want to edit.

3. In the right pane, select the property you want and click Edit.

4. In the Type list, choose a property, and then in the Value box, type a new property value.

Note Not all property values can be modified though the Disconnected Edit feature.

See Also

Viewing and Configuring DTS Package Properties

How To (SQL Server 2000)

How to save a DTS package to a Visual Basic file (Enterprise
Manager)
How to save a DTS package to a Visual Basic file (Enterprise Manager)

To save a DTS package to a Visual Basic file using the DTS Import/Export Wizard

On the Save, Schedule and Replicate Package screen, select the Save DTS Package check box, and then click Visual
Basic File.

To save a DTS package to a Visual Basic file using DTS Designer

1. On the Package menu, click Save As.

2. In the Location list, click Visual Basic File.

3. In the File Name box, type the name of the Microsoft® Visual Basic® file.

See Also

Saving a DTS Package to a Visual Basic File

How To (SQL Server 2000)

How To View Package Logs (Enterprise Manager)
How To View Package Logs (Enterprise Manager)

To view package logs

1. In SQL Server Enterprise Manager, expand Data Transformation Services.

2. Do one of the following:

Right-click Local Packages (if the Data Transformation Services (DTS) package log was saved to Microsoft® SQL
Server™) and then click Package Logs.

Right-click Meta Data Services Packages (if the package log was saved to SQL Server 2000 Meta Data Services),
and then click Package Logs.

Click Local Packages or Meta Data Services Packages, and in the details pane, right-click a package and click
Package Logs.

See Also

Using DTS Package Logs

How To (SQL Server 2000)

How to Enable Package Logging (Enterprise Manager)
How to Enable Package Logging (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To enable package logging

1. Open the Data Transformation Services (DTS) package for which you want to create a log.

2. On the Package menu, click Properties to display the DTS Package Properties dialog box.

3. Do one of the following:

Save package logs to Microsoft® SQL Server™ by clicking the Logging tab, selecting the Log package execution to
SQLServer check box, and then clicking an available server on which to save the package logs.

Security Note When possible, use Windows Authentication.

Save package logs to SQL Server 2000 Meta Data Services by clicking the Advanced tab, and then selecting the
Show lineage variables as source columns and Write lineage to repository check boxes. On the Package menu,
click Save As, and then in the Save DTS Package dialog box, in the Location list, select Meta Data Services.

See Also

How To View Package Logs

Using DTS Package Logs

How To (SQL Server 2000)

How to set a DTS package password (Enterprise Manager)
How to set a DTS package password (Enterprise Manager)

To set a DTS package password in DTS Designer

1. On the Package menu, click Save or Save As.

2. In the Location list, click either SQL Server or Structured Storage File.

3. Do one of the following:

Enter an Owner password. Assigning an Owner password puts limits on who can both edit and run the package.

Enter a User password. Assigning a User password puts limits only on who can edit the package. If you create a User
password, you must also create an Owner password.

See Also

Handling Package Security in DTS

How To (SQL Server 2000)

How to modify the persisting of authentication information
(Enterprise Manager)
How to modify the persisting of authentication information (Enterprise Manager)

To modify the persisting of authentication information in a DTS package

1. On the Data Transformation Services (DTS) Designer design sheet, double-click a connection.

2. In the Connection Properties dialog box, click Advanced.

3. Under the Value column, click the value for the Persist Security Info property.

4. Do one of the following:

Type 0 to disable the saving of authentication information with the DTS package.

Type 1 to persist the saving of authentication information.

See Also

Handling Package Security in DTS

How To (SQL Server 2000)

How to select the Turn on just-in-time debugging option
(Enterprise Manager)
How to select the Turn on just-in-time debugging option (Enterprise Manager)

 New Information - SQL Server 2000 SP3.

To select the Turn on just-in-time debugging option

1. In the SQL Server Enterprise Manager console tree, right-click the Data Transformation Services node, and then click
Properties.

2. Select the Turn on just-in-time debugging check box.

Security Note Running packages with just-in-time debugging turned on may reveal information about the system,
databases, and data.

How To (SQL Server 2000)

How to add ActiveX workflow scripts in DTS Designer
(Enterprise Manager)
How to add ActiveX workflow scripts in DTS Designer (Enterprise Manager)

To add ActiveX workflow scripts in DTS Designer

1. Right-click the task icon associated with step you want to configure, point to Workflow, and then click Workflow
Properties.

2. Click the Options tab, select the Use ActiveX Script check box, and then click Properties.

3. In the Microsoft® ActiveX® Script text box, enter the scripting code for the workflow step.

How To (SQL Server 2000)

How to execute a single package step in DTS Designer
(Enterprise Manager)
How to execute a single package step in DTS Designer (Enterprise Manager)

To execute a single package step in DTS Designer

1. On the Task toolbar, right-click the task you want to execute.

2. Click Execute Step.

How To (SQL Server 2000)

Transact-SQL
These procedures allow you to administer installations of SQL Server or administer SQL Server replication using Transact-SQL
statements.

How To (SQL Server 2000)

Administering SQL Server
Microsoft® SQL Server™ administration applications and their accompanying services are designed to assist the system
administrator with all administrative tasks related to maintaining and monitoring server performance and activities.

How To (SQL Server 2000)

Backing Up and Restoring Databases
The backup and restore component of Microsoft® SQL Server™ provides an important safeguard for protecting critical data
stored in SQL Server databases. Understanding how to create and restore database, differential database, transaction log, and file
and filegroup backups helps you implement this important safeguard.

How To (SQL Server 2000)

How to create a database backup (Transact-SQL)
How to create a database backup (Transact-SQL)

To create a database backup

1. Execute the BACKUP DATABASE statement to create the database backup, specifying:

The name of the database to back up.

The backup device where the database backup will be written.

2. Optionally, specify:

The INIT clause to overwrite the backup media, and write the backup as the first file on the backup media. If no existing
media header exists, one is automatically written.

The SKIP and INIT clauses to overwrite the backup media even if there are either backups on the backup media that
have not yet expired, or the media name does not match the name on the backup media.

The FORMAT clause when using media for the first time to completely initialize the backup media and rewrite any
existing media header.

The INIT clause is not required if the FORMAT clause is specified.

Important Use extreme caution when using the FORMAT or INIT clauses of the BACKUP statement, as this will destroy any
backups previously stored on the backup media.

Examples

This example backs up the entire MyNwind database to tape:

USE MyNwind
GO
BACKUP DATABASE MyNwind
 TO TAPE = '\\.\Tape0'
 WITH FORMAT,
 NAME = 'Full Backup of MyNwind'
GO

See Also

sp_addumpdevice

Database Backups

Appending Backup Sets

Differential Database Backups

Backing Up the master Database

Deleting a Database

Backing Up the model, msdb, and distribution Databases

Overwriting Backup Media

BACKUP

Reducing Recovery Times

Transaction Log Backups

Initializing Backup Media

How To (SQL Server 2000)

How to restore a database backup (Transact-SQL)
How to restore a database backup (Transact-SQL)

To restore a database backup

Important The system administrator restoring the database backup must be the only person currently using the database to be
restored.

1. Execute the RESTORE DATABASE statement to restore the database backup, specifying:

The name of the database to restore.

The backup device from where the database backup will be restored.

The NORECOVERY clause if you have a transaction log or differential database backup to apply after restoring the
database backup.

2. Optionally, specify:

The FILE clause to identify the backup set on the backup device to restore.

Examples

This example restores the MyNwind database backup from tape:

USE master
GO
RESTORE DATABASE MyNwind
 FROM TAPE = '\\.\Tape0'
GO

See Also

Database Backups

Setting Database Options

RESTORE

Identifying the Backup Set to Restore

Transaction Log Backups

Differential Database Backups

Rebuilding the master Database

Restoring the model, msdb, and distribution Databases

Reducing Recovery Times

How To (SQL Server 2000)

How to restart an interrupted backup operation (Transact-SQL)
How to restart an interrupted backup operation (Transact-SQL)

To restart an interrupted backup operation

Execute the interrupted BACKUP statement again, specifying:
The same clauses used in the original BACKUP statement.

The RESTART clause.

Examples

This example restarts an interrupted database backup operation:

-- Create a database backup of the MyNwind database
BACKUP DATABASE MyNwind
 TO MyNwind_1
-- The backup operation halts due to power outage.
-- Repeat the original BACKUP statement specifying WITH RESTART
BACKUP DATABASE MyNwind
 TO MyNwind_1
 WITH RESTART

See Also

BACKUP

Database Backups

How To (SQL Server 2000)

How to restart an interrupted restore operation (Transact-SQL)
How to restart an interrupted restore operation (Transact-SQL)

To restart an interrupted restore operation

Important The system administrator restoring the backup must be the only person currently using the database to be restored.

Execute the interrupted RESTORE statement again, specifying:
The same clauses used in the original RESTORE statement.

The RESTART clause.

Examples

This example restarts an interrupted restore operation:

-- Restore a database backup of the MyNwind database
RESTORE DATABASE MyNwind
 FROM MyNwind_1
GO
-- The restore operation halted prematurely.
-- Repeat the original RESTORE statement specifying WITH RESTART
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH RESTART
GO

See Also

Database Backups

RESTORE

Copying Databases

How To (SQL Server 2000)

How to create a transaction log backup (Transact-SQL)
How to create a transaction log backup (Transact-SQL)

To create a transaction log backup

1. Execute the BACKUP LOG statement to back up the transaction log, specifying:

The name of the database to which the transaction log to back up belongs.

The backup device where the transaction log backup will be written.

2. Optionally, specify:

The INIT clause to overwrite the backup media, and write the backup as the first file on the backup media. If no existing
media header exists, one is automatically written.

The SKIP and INIT clauses to overwrite the backup media even if there are either backups on the backup media that
have not yet expired, or the media name does not match the name on the backup media.

The FORMAT clause, when using media for the first time, to completely initialize the backup media and rewrite any
existing media header.

The INIT clause is not required if the FORMAT clause is specified.

Important Use extreme caution when using the FORMAT or INIT clauses of the BACKUP statement as this will destroy any
backups previously stored on the backup media.

Examples

This example creates a transaction log backup for the MyNwind database to the previously created named backup device,
MyNwind_log1:

BACKUP LOG MyNwind
 TO MyNwind_log1
GO

See Also

BACKUP

Transaction Log Backups

Restoring a Database to a Prior State

Reducing Recovery Times

File and Filegroup Backup and Restore

How To (SQL Server 2000)

How to backup the transaction log when the database is
damaged (Transact-SQL)
How to back up the transaction log when the database is damaged (Transact-SQL)

To create a backup of the currently active transaction log

1. Execute the BACKUP LOG statement to back up the currently active transaction log, specifying:

The name of the database to which the transaction log to back up belongs.

The backup device where the transaction log backup will be written.

The NO_TRUNCATE clause to back up the transaction log without truncating the inactive part of the transaction log.

This clause allows the active part of the transaction log to be backed up even if the database is inaccessible, provided
that the transaction log file(s) is accessible and undamaged.

2. Optionally, specify:

The INIT clause to overwrite the backup media, and write the backup as the first file on the backup media. If no existing
media header exists, one is automatically written.

The SKIP and INIT clauses to overwrite the backup media, even if there are either backups on the backup media that
have not yet expired, or the media name does not match the name on the backup media.

The FORMAT clause, when using media for the first time, to completely initialize the backup media and rewrite any
existing media header.

The INIT clause is not required if the FORMAT clause is specified.

Important Use extreme caution when using the FORMAT or INIT clauses of the BACKUP statement as this will destroy any
backups previously stored on the backup media.

Examples

This example backs up the currently active transaction log for the MyNwind database even though MyNwind has been
damaged and is inaccessible. The transaction log, however, is undamaged and accessible:

BACKUP LOG MyNwind
 TO MyNwind_log1
 WITH NO_TRUNCATE
GO

See Also

BACKUP

Transaction Log Backups

Restoring a Database to a Prior State

Reducing Recovery Times

File and Filegroup Backup and Restore

How To (SQL Server 2000)

How to apply a transaction log backup (Transact-SQL)
How to apply a transaction log backup (Transact-SQL)

It is not possible to apply a transaction log backup:

Unless the database or differential database backup preceding the transaction log backup is restored first.

Unless all preceding transaction logs created since the database or differential database were backed up are applied first.

If the database has already recovered and all outstanding transactions have either been rolled back or rolled forward.

To apply a transaction log backup

1. Execute the RESTORE LOG statement to apply the transaction log backup, specifying:

The name of the database to which the transaction log will be applied.

The backup device where the transaction log backup will be restored from.

The NORECOVERY clause if you have another transaction log backup to apply after the current one, otherwise specify
the RECOVERY clause.

2. Repeat Step 1 for each transaction log backup you need to apply.

Examples

A. Applying a single transaction log backup

This example applies a transaction log backup to the MyNwind database.

RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH RECOVERY
GO

B. Applying multiple transaction log backups

This example applies multiple transaction log backups to the MyNwind database.

RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH NORECOVERY
GO
RESTORE LOG MyNwind
 FROM MyNwind_log3
 WITH RECOVERY
GO

See Also

Transaction Log Backups

RESTORE

Reducing Recovery Times

File and Filegroup Backup and Restore

How To (SQL Server 2000)

How to create a differential database backup (Transact-SQL)
How to create a differential database backup (Transact-SQL)

To create a differential database backup

Important It is not possible to create a differential database backup unless the database has been backed up first.

1. Execute the BACKUP DATABASE statement to create the differential database backup, specifying:

The name of the database to back up.

The backup device where the database backup will be written.

The DIFFERENTIAL clause, to specify that only the parts of the database that have changed after the last database
backup was created are backed up.

2. Optionally, specify:

The INIT clause to overwrite the backup media, and write the backup as the first file on the backup media. If no existing
media header exists, one is automatically written.

The SKIP and INIT clauses to overwrite the backup media even if there are either backups on the backup media that
have not yet expired, or the media name does not match the name on the backup media.

The FORMAT clause when using media for the first time to completely initialize the backup media and rewrite any
existing media header.

The INIT clause is not required if the FORMAT clause is specified.

Important Use extreme caution when using the FORMAT or INIT clauses of the BACKUP statement as this will destroy any
backups previously stored on the backup media.

Examples

This example creates a full and a differential database backup for the MyNwind database.

-- Create a full database backup first.
BACKUP DATABASE MyNwind
 TO MyNwind_1
 WITH INIT
GO
-- Time elapses.
-- Create a differential database backup, appending the backup
-- to the backup device containing the database backup.
BACKUP DATABASE MyNwind
 TO MyNwind_1
 WITH DIFFERENTIAL
GO

See Also

BACKUP

Differential Database Backups

Reducing Recovery Times

How To (SQL Server 2000)

How to restore a differential database backup (Transact-SQL)
How to restore a differential database backup (Transact-SQL)

To restore a differential database backup

1. Execute the RESTORE DATABASE statement, specifying the NORECOVERY clause, to restore the database backup preceding
the differential database backup. For more information, see How to restore a database backup.

2. Execute the RESTORE DATABASE statement to restore the differential database backup, specifying:

The name of the database to which the differential database backup will be applied.

The backup device where the differential database backup will be restored from.

The NORECOVERY clause if you have transaction log backups to apply after the differential database backup is
restored, otherwise specify the RECOVERY clause.

Examples

A. Restoring a database and differential database backup

This example restores a database and differential database backup of the MyNwind database.

-- Assume the database is lost at this point. Now restore the full
-- database. Specify the original full backup and NORECOVERY.
-- NORECOVERY allows subsequent restore operations to proceed.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY
GO
-- Now restore the differential database backup, the second backup on
-- the MyNwind_1 backup device.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH FILE = 2,
 RECOVERY
GO

B. Restoring a database, differential database, and transaction log backup

This example restores a database, differential database, and transaction log backup of the MyNwind database.

-- Assume the database is lost at this point. Now restore the full
-- database. Specify the original full backup and NORECOVERY.
-- NORECOVERY allows subsequent restore operations to proceed.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY
GO
-- Now restore the differential database backup, the second backup on
-- the MyNwind_1 backup device.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH FILE = 2,
 NORECOVERY
GO
-- Now restore each transaction log backup created after
-- the differential database backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY
GO

See Also

Differential Database Backups

RESTORE

Reducing Recovery Times

How To (SQL Server 2000)

How to recover a database without restoring (Transact-SQL)
How to recover a database without restoring (Transact-SQL)

To recover a database without restoring

Execute the RESTORE DATABASE statement, specifying:
The name of the database to be recovered.

The RECOVERY clause.

Examples

This example recovers the MyNwind database without restoring from a backup.

-- Restore database using WITH RECOVERY.
RESTORE DATABASE MyNwind
 WITH RECOVERY

See Also

Recovering a Database Without Restoring

RESTORE

How To (SQL Server 2000)

How to restore to the point of failure (Transact-SQL)
How to restore to the point of failure (Transact-SQL)

To restore to the point of failure

1. Execute the BACKUP LOG statement using the NO_TRUNCATE clause to back up the currently active transaction log.

2. Execute the RESTORE DATABASE statement using the NORECOVERY clause to restore the database backup.

3. Execute the RESTORE LOG statement using the NORECOVERY clause to apply each transaction log backup.

4. Execute the RESTORE LOG statement using the RECOVERY clause to apply the transaction log backup created in Step 1.

Examples

This example backs up the currently active transaction log of the MyNwind database, even though MyNwind is inaccessible, and
then restores the database to the point of failure using previously created backups:

-- Back up the currently active transaction log.
BACKUP LOG MyNwind
 TO MyNwind_log2
 WITH NO_TRUNCATE
GO
-- Restore the database backup.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY
GO
-- Restore the first transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
-- Restore the final transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY
GO

See Also

RESTORE

Restoring a Database to a Prior State

How To (SQL Server 2000)

How to set up, maintain, and bring online a standby server
(Transact-SQL)
How to set up, maintain, and bring online a standby server (Transact-SQL)

Setting up a standby server generally involves creating a database backup and periodic transaction log backups at the primary
server, and then applying those backups, in sequence, to the standby server. The standby server is left in a read-only state
between restores. When the standby server needs to be made available for use, any outstanding transaction log backups,
including the backup of the active transaction log, from the primary server, are applied to the standby server and the database is
recovered.

To create backups on the primary server

1. Execute the BACKUP DATABASE statement to create the database backup.

2. Execute the BACKUP LOG statement to create a transaction log backup.

3. Repeat Step 2 for each transaction log you want to create over time.

To set up and maintain the standby server

1. Execute the RESTORE DATABASE statement using the STANDBY clause to restore the database backup created in Step 1 on
the primary server. Specify the name of the undo file that contains the contents of data pages before uncommitted
transactions affecting those pages were rolled back.

2. Execute the RESTORE LOG statement using the STANDBY clause to apply each transaction log created in Step 2 on the
primary server.

3. Repeat Step 2 for each transaction log created on the primary server.

To bring the standby server online (primary server failed)

1. Execute the BACKUP LOG statement using the NO_TRUNCATE clause to back up the currently active transaction log. This is
the last transaction log backup that will be applied to the standby server when the standby server is brought online. For
more information, see How to create a backup of the currently active transaction log.

2. Execute the RESTORE LOG statement using the STANDBY clause to apply all transaction log backups, including the active
transaction log backup created in Step 1, that have not yet been applied to the standby server.

3. Execute the RESTORE DATABASE WITH RECOVERY statement to recover the database and bring up the standby server.

Examples

This example sets up the MyNwind database on a standby server. The database can be used in read-only mode between restore
operations.

-- Restore the initial database backup on the standby server.
USE master
GO
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH STANDBY = 'c:\undo.ldf'
GO
-- Apply the first transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH STANDBY = 'c:\undo.ldf'
GO
-- Apply the next transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH STANDBY = 'c:\undo.ldf'
GO
-- Repeat for each transaction log backup created on the

-- primary server.
--
-- Time elapses..
--
-- The primary server has failed. Back up the
-- active transaction log on the primary server.
BACKUP LOG MyNwind
 TO MyNwind_log3
 WITH NO_TRUNCATE
GO
-- Apply the final (active) transaction log backup
-- to the standby server. All preceding transaction
-- log backups must have been already applied.
RESTORE LOG MyNwind
 FROM MyNwind_log3
 WITH STANDBY = 'c:\undo.ldf'
GO
-- Recover the database on the standby server,
-- making it available for normal operations.
RESTORE DATABASE MyNwind
 WITH RECOVERY
GO

See Also

RESTORE

Restoring a Database to a Prior State

Using Standby Servers

How To (SQL Server 2000)

How to restore to a point in time (Transact-SQL)
How to restore to a point in time (Transact-SQL)

To restore to a point in time

1. Execute the RESTORE DATABASE statement using the NORECOVERY clause.

2. Execute the RESTORE LOG statement to apply each transaction log backup, specifying:

The name of the database to which the transaction log will be applied.

The backup device from where the transaction log backup will be restored.

The RECOVERY and STOPAT clauses. If the transaction log backup does not contain the requested time (for example, if
the time specified is beyond the end of the time covered by the transaction log), a warning is generated and the
database remains unrecovered.

Examples

This example restores a database to its state as of 10:00 A.M. on July 1, 1998, and illustrates a restore operation involving multiple
logs and multiple backup devices.

-- Restore the database backup.
RESTORE DATABASE MyNwind
 FROM MyNwind_1, MyNwind_2
 WITH NORECOVERY
GO
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH RECOVERY, STOPAT = 'Jul 1, 1998 10:00 AM'
GO
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY, STOPAT = 'Jul 1, 1998 10:00 AM'
GO

See Also

RESTORE

Restoring a Database to a Prior State

RESTORE HEADERONLY

How To (SQL Server 2000)

How to restore the master database (Transact-SQL)
How to restore the master database (Transact-SQL)

To restore the master database

1. Start Microsoft® SQL Server™ in single-user mode.

2. Execute the RESTORE DATABASE statement to restore the master database backup, specifying:

The backup device from where the master database backup will be restored.

Examples

This example restores the master database backup from tape without using a permanent (named) backup device.

USE master
GO
RESTORE DATABASE master
 FROM TAPE = '\\.\Tape0'
GO

See Also

RESTORE

Restoring the master Database from a Current Backup

How to start the default instance of SQL Server in single-user mode (Command Prompt)

How To (SQL Server 2000)

How to back up files and filegroups (Transact-SQL)
How to back up files and filegroups (Transact-SQL)

To back up files and filegroups

Execute the BACKUP DATABASE statement to create the file and filegroup backup, specifying:
The name of the database to back up.

The backup device where the database backup will be written.

The FILE clause for each file to back up.

The FILEGROUP clause for each filegroup to back up.

Examples

This example performs a backup operation with files and filegroups for the MyNwind database.

-- Back up the MyNwind file(s) and filegroup(s)
BACKUP DATABASE MyNwind
 FILE = 'MyNwind_data_1',
 FILEGROUP = 'new_customers',
 FILE = 'MyNwind_data_2',
 FILEGROUP = 'first_qtr_sales'
 TO MyNwind_1
GO

See Also

BACKUP

File and Filegroup Backup and Restore

How To (SQL Server 2000)

How to restore files and filegroups (Transact-SQL)
How to restore files and filegroups (Transact-SQL)

To restore files and filegroups

Important The system administrator restoring the files and filegroups must be the only person currently using the database to
be restored.

1. Execute the RESTORE DATABASE statement to restore the file and filegroup backup, specifying:

The name of the database to restore.

The backup device from where the database backup will be restored.

The FILE clause for each file to restore.

The FILEGROUP clause for each filegroup to restore.

The NORECOVERY clause. If the files have not been modified after the backup was created, specify the RECOVERY
clause.

2. If the files have been modified after the file backup was created, execute the RESTORE LOG statement to apply the
transaction log backup, specifying:

The name of the database to which the transaction log will be applied.

The backup device from where the transaction log backup will be restored.

The NORECOVERY clause if you have another transaction log backup to apply after the current one; otherwise, specify
the RECOVERY clause.

The transaction log backups, if applied, must cover the time when the files and filegroups were backed up until the
end of log (unless ALL database files are restored).

Examples

This example restores the files and filegroups for the MyNwind database. Two transaction logs will also be applied, to restore the
database to the current time.

USE master
GO
-- Restore the files and filesgroups for MyNwind.
RESTORE DATABASE MyNwind
 FILE = 'MyNwind_data_1',
 FILEGROUP = 'new_customers',
 FILE = 'MyNwind_data_2',
 FILEGROUP = 'first_qtr_sales'
 FROM MyNwind_1
 WITH NORECOVERY
GO
-- Apply the first transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
-- Apply the last transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY
GO

See Also

RESTORE

File and Filegroup Backup and Restore

How To (SQL Server 2000)

How to restore files and filegroups over existing files
(Transact-SQL)
How to restore files and filegroups over existing files (Transact-SQL)

To restore files and filegroups over existing files

Important The system administrator restoring the files and filegroups must be the only person currently using the database to
be restored.

1. Execute the RESTORE DATABASE statement to restore the file and filegroup backup, specifying:

The name of the database to restore.

The backup device from where the database backup will be restored.

The FILE clause for each file to restore.

The FILEGROUP clause for each filegroup to restore.

The REPLACE clause to specify that each file can be restored over existing files of the same name and location.

The NORECOVERY clause. If the files have not been modified after the backup was created, specify the RECOVERY
clause.

2. If the files have been modified after the file backup was created, execute the RESTORE LOG statement to apply the
transaction log backup, specifying:

The name of the database to which the transaction log will be applied.

The backup device from where the transaction log backup will be restored.

The NORECOVERY clause if you have another transaction log backup to apply after the current one; otherwise, specify
the RECOVERY clause.

The transaction log backups, if applied, must cover the time when the files and filegroups were backed up.

Examples

This example restores the files and filegroups for the MyNwind database, and replaces any existing files of the same name. Two
transaction logs will also be applied to restore the database to the current time.

USE master
GO
-- Restore the files and filesgroups for MyNwind.
RESTORE DATABASE MyNwind
 FILE = 'MyNwind_data_1',
 FILEGROUP = 'new_customers',
 FILE = 'MyNwind_data_2',
 FILEGROUP = 'first_qtr_sales'
 FROM MyNwind_1
 WITH NORECOVERY,
 REPLACE
GO
-- Apply the first transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
-- Apply the last transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY
GO

See Also

RESTORE

Copying Databases

How To (SQL Server 2000)

How to restore files to a new location (Transact-SQL)
How to restore files to a new location (Transact-SQL)

To restore files to a new location

Important The system administrator restoring the files must be the only person currently using the database to be restored.

1. Optionally, execute the RESTORE FILELISTONLY statement to determine the number and names of the files in the database
backup.

2. Execute the RESTORE DATABASE statement to restore the database backup, specifying:

The name of the database to restore.

The backup device from where the database backup will be restored.

The MOVE clause for each file to restore to a new location.

The NORECOVERY clause. If the files have not been modified since the backup was created, specify the RECOVERY
clause.

3. If the files have been modified after the file backup was created, execute the RESTORE LOG statement to apply the
transaction log backup, specifying:

The name of the database to which the transaction log will be applied.

The backup device from where the transaction log backup will be restored.

The NORECOVERY clause if you have another transaction log backup to apply after the current one; otherwise, specify
the RECOVERY clause.

The transaction log backups, if applied, must cover the time when the files and filegroups were backed up.

Examples

This example restores two of the files for the MyNwind database that were originally located on the C:\ drive to new locations on
the D: \drive. Two transaction logs will also be applied to restore the database to the current time. The RESTORE FILELISTONLY
statement is used to determine the number and logical and physical names of the files in the database being restored.

USE master
GO
-- First determine the number and names of the files in the backup.
RESTORE FILELISTONLY
 FROM MyNwind_1
-- Restore the files for MyNwind.
RESTORE DATABASE MyNwind
 FROM MyNwind_1
 WITH NORECOVERY,
 MOVE 'MyNwind_data_1' TO 'D:\MyData\MyNwind_data_1.mdf',
 MOVE 'MyNwind_data_2' TO 'D:\MyData\MyNwind_data_2.ndf'
GO
-- Apply the first transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log1
 WITH NORECOVERY
GO
-- Apply the last transaction log backup.
RESTORE LOG MyNwind
 FROM MyNwind_log2
 WITH RECOVERY
GO

See Also

RESTORE

Copying Databases

How To (SQL Server 2000)

How to restore a database with a new name (Transact-SQL)
How to restore a database with a new name (Transact-SQL)

To restore a database with a new name

1. Optionally, execute the RESTORE FILELISTONLY statement to determine the number and names of the files in the database
backup.

2. Execute the RESTORE DATABASE statement to restore the database backup, specifying:

The new name for the database.

The backup device from where the database backup will be restored.

The NORECOVERY clause if you have transaction log backups to apply after the file backups are restored. Otherwise,
specify the RECOVERY clause.

The transaction log backups, if applied, must cover the time when the files were backed up.

The MOVE clause for each file to restore to a new location if the file names already exist. For example, creating a copy
of an existing database on the same server for testing purposes may be necessary. In this case, the database files for
the original database already exist, and so different file names need to be specified when the database copy is created
during the restore operation.

Examples

This example creates a new database called MyNwind2_Test. MyNwind2_Test is a copy of the existing MyNwind2 database
that comprises two files: MyNwind2_data and MyNwind2_log. Because the MyNwind2 database already exists, the files in the
backup need to be moved during the restore operation. The RESTORE FILELISTONLY statement is used to determine the number
and names of the files in the database being restored.

USE master
GO
-- First determine the number and names of the files in the backup.
-- MyNwind_2 is the name of the backup device.
RESTORE FILELISTONLY
 FROM MyNwind_2
-- Restore the files for MyNwind2_Test.
RESTORE DATABASE MyNwind2_Test
 FROM MyNwind_2
 WITH RECOVERY,
 MOVE 'MyNwind2_data' TO 'D:\MyData\MyNwind2_Test_data.mdf',
 MOVE 'MyNwind2_log' TO 'D:\MyData\MyNwind2_Test_log.ldf'
GO

See Also

RESTORE

Copying Databases

How To (SQL Server 2000)

Managing Servers
Microsoft® SQL Server™ server management comprises a wide variety of administration tasks, including:

Registering servers and assigning passwords.

Reconfiguring network connectivity.

Configuring linked servers. This allows you to execute distributed queries and distributed transactions on OLE DB data
sources across the enterprise.

Configuring remote servers.This allows you to use one SQL Server installation to execute a stored procedure residing on
another SQL Server installation.

Configuring standby and failover servers.

Setting server configuration options.

Managing SQL Server messages.

Setting the polling intervals.

In most cases, you do not need to reconfigure the server. The default settings for the server components, configured during SQL
Server setup, allow you to run SQL Server immediately after it is installed. However, server management is necessary in those
situations where you want to add new servers, set up special server configurations, change the network connections, or set server
configuration options to improve SQL Server performance.

How To (SQL Server 2000)

How to set up a remote server to allow the use of remote
stored procedures (Transact-SQL)
How to set up a remote server to allow the use of remote stored procedures (Transact-SQL)

To set up a remote server to allow the use of remote stored procedures

1. Run the following code on the first server running Microsoft® SQL Server™:

EXEC sp_addlinkedserver ServerName1, N'SQL Server'
EXEC sp_addlinkedserver ServerName2
EXEC sp_configure 'remote access', 1
RECONFIGURE
GO

2. Stop and restart the first SQL Server.

3. Run the following code on the second SQL Server. Make sure you are logging in using SQL Server Authentication.

-- The example shows how to set up access for a login 'sa'
-- from ServerName1 on ServerName2.
EXEC sp_addlinkedserver ServerName2, local
EXEC sp_addlinkedserver ServerName1
EXEC sp_configure 'remote access', 1
RECONFIGURE
GO
-- Assumes that the login 'sa' in ServerName2 and ServerName1
-- have the same password.
EXEC sp_addremotelogin ServerName1, sa, sa
GO

4. Stop and restart the second SQL Server.

5. Using the sa login, you can now execute a stored procedure on the second SQL Server from the first SQL Server.

See Also

sp_addremotelogin

sp_configure

sp_addlinkedserver

RECONFIGURE

How To (SQL Server 2000)

How to disable a remote server setup (Transact-SQL)
How to disable a remote server setup (Transact-SQL)

To disable a remote server setup

1. Run the following code on the second server running Microsoft® SQL Server™.

EXEC sp_remoteoption ServerName1,sa, sa, trusted, false
EXEC sp_dropremotelogin ServerName1, sa, sa
RECONFIGURE
GO

EXEC sp_configure 'remote access', 0
EXEC sp_dropserver ServerName1
EXEC sp_dropserver ServerName2
RECONFIGURE
GO

2. Stop and restart the second SQL Server.

3. Run the following code on the first SQL Server:

EXEC sp_configure 'remote access', 0
EXEC sp_dropserver ServerName2
EXEC sp_dropserver ServerName1
RECONFIGURE
GO

4. Stop and restart the first SQL Server.

See Also

sp_configure

sp_remoteoption

sp_dropremotelogin

RECONFIGURE

sp_dropserver

How To (SQL Server 2000)

How to set up and perform a log shipping role change
(Transact-SQL)
How to set up and perform a log shipping role change (Transact-SQL)

Log shipping supports the changing of roles, which requires these basic steps:

1. Create a Data Transformation Services (DTS) package to copy the current primary server to the current secondary server.

2. Create a job to back up syslogins from the current primary server, copy the file to a directory on the current secondary
server, and then execute the DTS package.

3. Perform the role change to set the current secondary server as the current primary server.

Before performing a log shipping role change, a maintenance plan for this log shipping pair must exist on the secondary server. A
maintenance plan can be created using the Database Maintenance Plan Wizard, or by adding a server as a secondary server using
the Add Secondary dialog box found in the user interface of the primary database maintenance plan.

To create a DTS package to copy the logins from the current primary server to the current secondary server

1. Create a DTS package on the current primary server using DTS Designer.

The package should use the Transfer Logins Task, located in the list of tasks in the designer.

2. In the Transfer Logins dialog box on the Source tab, in the Source server list, enter the source server (the current primary
server).

3. Click either Use Windows Authentication or Use SQL Server Authentication.

4. On the Destination tab, in the Destination server list, enter the destination server (the current secondary server).

5. Click either Use Windows Authentication or Use SQL Server Authentication.

6. On the Logins tab, click either All server logins detected at package runtime or Logins for selected databases.

7. Save the package.

To create a job to back up syslogins from the current primary server, copy the file to a directory on the current
secondary server, and then execute the DTS package

1. Click New Job to open the New Job Properties dialog box on the General tab. On the current primary server, create a job
owned by sa or a login with sysadmin rights to both servers.

2. On the Steps tab, click New to open the New Job Step dialog box, and then create the following job steps:

BCP Out

In the Type list, select Operating System Command (CmdExec). In the Command text box, enter the command as
follows:

bcp master..syslogins out localpath\syslogins.dat /N /S current_primary_servername /U sa /P
sa_password

Click the Advanced tab, and then in the On success action list, select Go to the next step. In the On failure action
list, select Quit the job reporting failure.

Copy File

In the Type list, select Transact-SQL Script (T-SQL). In the Database list, specify master. In the Command text box,
enter the command as follows:

EXEC xp_cmdshell 'copy localpath\syslogins.dat destination_share'

Click the Advanced tab, and then in the On success action list, select Go to the next step. In the On failure action
list, select Quit the job reporting failure.

Transfer Logins

In the Type list, select Operating System Command (CmdExec). In the Command text box, enter the command as
follows:

DTSRun /Scurrent_primary_server /Uuser_nName /Ppassword /Npackage_name /Mpackage_password

3. In the New Job Properties dialog box, click the Schedules tab, and then create a job schedule that runs either one time or
on a recurrent basis.

It is recommended that the job run as close to the time of role change as possible so that the job obtains the most current login
information from the primary server.

To perform the role change to make the current secondary server the current primary server

You must be a SQL Server administrator to perform a server role change.

1. Run sp_change_primary_role on the instance of SQL Server marked as the current primary server. The example shows
how to make the primary database stop being the primary database. current_primary_dbname is the name of the current
primary database.

EXEC sp_change_primary_role
 @db_name = 'current_primary_dbname',
 @backup_log = 1,
 @terminate = 0,
 @final_state = 2,
 @access_level = 1
GO

2. Run sp_change_secondary_role on the instance of SQL Server marked as the current secondary server. The example
shows how to make the secondary database the primary database. current_secondary_dbname is the name of the current
secondary database.

EXEC sp_change_secondary_role
 @db_name = 'current_secondary_dbname',
 @do_load = 1,
 @force_load = 1,
 @final_state = 1,
 @access_level = 1,
 @terminate = 1,
 @stopat = NULL
GO

3. Run sp_change_monitor_role on the instance of SQL Server marked as the monitor. The example shows how to change
the monitor to reflect the new primary database. new_source_directory is the path to the location where the primary server
dumps the transaction logs.

EXEC sp_change_monitor_role
 @primary_server = 'current_primary_server_name',
 @secondary_server = 'current_secondary_server_name',
 @database = 'current_secondary_dbname',
 @new_source = 'new_source_directory'
GO

4. Run sp_resolve_logins on the instance of SQL Server now marked as the primary server (the former secondary server).
You must run the stored procedure from the target database.

The example shows how to resolve the logins on the new primary server against the logins from the former primary server.
destination_path is the destination share specified in the Copy File job step. filename is the same as specified in the BCP Out
job step. dbname is the name of the new primary database.

EXEC sp_resolve_logins

 @dest_db = 'dbname',
 @dest_path = 'destination_path',
 @filename = 'filename'
GO

The former secondary server is now the current primary server and is ready to assume the function of a primary server. The
former primary is no longer part of a log shipping pair. You must add the former primary server as a secondary server to the new
primary server to establish a log shipping pair between the two databases.

See Also

sp_change_monitor_role

sp_change_primary_role

sp_change_secondary_role

sp_resolve_logins

How To (SQL Server 2000)

How to set up a Log Shipping Monitor (Transact-SQL)
How to set up a Log Shipping Monitor (Transact-SQL)

To set up a Log Shipping Monitor on an instance of SQL Server

Execute these stored procedures on the server running the instance of Microsoft® SQL Server™ 2000 that will monitor log
shipping.

1. Run sp_add_log_shipping_primary to notify the monitor server which machine will be the primary in the log shipping
pair. The output of the stored procedure will be the primary_id, which will be used by the
sp_add_log_shipping_secondary stored procedure.

2. Run sp_add_log_shipping_secondary to notify the monitor server which machine will be the secondary in the log
shipping pair.

Examples

This example sets up a log shipping monitor for an existing log shipping pair of the Northwind database. You will need to have
set up log shipping using the Database Maintenance Plan Wizard prior to setting up this monitor manually. Note that a monitor is
created during the wizard setup as well.

EXEC sp_add_log_shipping_primary
 @primary_server_name = 'MyPrimaryServer',
 @primary_database_name = 'Northwind',
 @maintenance_plan_id = '9B4E380E-11D2-41FC-9BA5-A8EB040A3DEF',
 @backup_threshold = 15,
 @threshold_alert = 14420,
 @threshold_alert_enabled = 1,
 @planned_outage_start_time = 0,
 @planned_outage_end_time = 0,
 @planned_outage_weekday_mask = 0

EXEC sp_add_log_shipping_secondary
 @primary_id = 1,
 @secondary_server_name = 'MySecondaryServer',
 @secondary_database_name = 'Northwind',
 @secondary_plan_id = 'B5C330FF-1081-4FCB-83D0-955DDFB56BA5',
 @copy_enabled = 1,
 @load_enabled = 1,
 @out_of_sync_threshold = 15,
 @threshold_alert = 14421,
 @threshold_alert_enabled = 1,
 @planned_outage_start_time = 0,
 @planned_outage_end_time = 0,
 @planned_outage_weekday_mask = 0,
 @allow_role_change = 0
GO

See Also

sp_add_log_shipping_primary

sp_add_log_shipping_secondary

How To (SQL Server 2000)

How to remove a log shipping pair from the Log Shipping
Monitor (Transact-SQL)
How to remove a log shipping pair from the Log Shipping Monitor (Transact-SQL)

To remove a log shipping pair from a Log Shipping Monitor on an instance of Microsoft® SQL Server™ 2000

Run sp_delete_log_shipping_monitor_info on the monitor server. This informs the monitor server which log shipping
pair will be deleted. Note that the actual log shipping pair is not deleted. Only the monitor will be affected by this operation.

Optionally, run sp_delete_database_backuphistory on the primary and secondary servers. This removes backup history
information about members of the deleted log shipping pair.

Examples

This example removes a log shipping pair from a Log Shipping Monitor for an existing log shipping pair of the Northwind
database:

EXEC sp_delete_log_shipping_monitor_info
 @primary_server_name = 'MyPrimaryServer',
 @primary_database_name = 'Northwind',
 @secondary_server_name = 'MySecondaryServer',
 @secondary_database_name = 'Northwind'
GO

Optionally, the following stored procedure call can be used to remove backup history information about the deleted members of
a log shipping pair. Execute this command on each of the primary and secondary servers:

EXEC sp_delete_database_backuphistory 'Northwind'
GO

sp_delete_log_shipping_monitor_info

''''''''

How To (SQL Server 2000)

Automating Administrative Tasks
Many of the repetitive tasks performed when administering a Microsoft® SQL Server™ system can be automated.

Jobs and tasks can be defined to run at specific times or after specific events. These jobs are most often defined using SQL Server
Enterprise Manager, but they can also be defined using Transact-SQL statements.

How To (SQL Server 2000)

How to create a job (Transact-SQL)
How to create a job (Transact-SQL)

To create a job

1. Execute sp_add_job to create a job.

2. Execute sp_add_jobstep to create one or more job steps.

3. Execute sp_add_jobschedule to create a job schedule.

Note It is recommended that you execute sp_add_jobserver after sp_add_jobstep for maximum efficiency in communicating
job changes to all involved servers.

Because local jobs are cached by the local SQL Server Agent, any modifications implicitly force SQL Server Agent to recache the
job. Because SQL Server Agent does not cache the job until sp_add_jobserver is called, it is more efficient to call
sp_add_jobserver last.

See Also

Defining Jobs

System Stored Procedures (SQL Server Agent Procedures)

How To (SQL Server 2000)

How to create a master SQL Server Agent job (Transact-SQL)
How to create a master SQL Server Agent job (Transact-SQL)

To create a master SQL Server Agent job

1. Execute sp_add_job to create a job.

2. Execute sp_add_jobstep to create one or more job steps.

3. Execute sp_add_jobschedule to create a job schedule.

4. Execute sp_add_jobserver to specify the target servers on which the job is to run.

Note It is recommended that you execute sp_add_jobserver after sp_add_jobstep for maximum efficiency in communicating
job changes to all involved servers.

Changes to master SQL Server Agent jobs must be propagated to all involved target servers. Because target servers do not
initially download the job until sp_add_jobserver is called, it is recommended that all job steps and job schedules for a particular
job be created before executing sp_add_jobserver. Otherwise, sp_post_msx_operation must be subsequently called to request
that the target server(s) redownload the modified job.

See Also

How to create a master SQL Server Agent job (Transact-SQL)

System Stored Procedures (SQL Server Agent Procedures)

How To (SQL Server 2000)

How to modify a master SQL Server Agent job (Transact-SQL)
How to modify a master SQL Server Agent job (Transact-SQL)

To change the scheduling details for a job definition

Execute sp_update_jobschedule.

To add, change, or remove steps from a job by working with the job steps

1. Execute sp_add_jobstep to add new job steps.

2. Execute sp_update_jobstep to change pre-existing job steps.

3. Execute sp_delete_jobstep to delete a pre-existing job.

To modify the target server(s) associated with a job

1. Execute sp_delete_jobserver to delete a server currently associated with a job.

2. Execute sp_add_jobserver to associate a server with the current job.

Note A master SQL Server Agent job cannot be targeted at both local and remote servers.

See Also

Creating Jobs

System Stored Procedures (SQL Server Agent Procedures)

How To (SQL Server 2000)

How to create an operator (Transact-SQL)
How to create an operator (Transact-SQL)

To create an operator for a local job

Execute sp_add_operator.

To create an operator for a master SQL Server Agent

1. Execute sp_add_operator to specify the master SQL Server Agent operator.

2. Execute sp_add_targetsvrgrp_member to add the specified target server to the target server group

3. Execute sp_msx_enlist to enlist the target server in the job.

4. Execute the steps in How to create a master SQL Server Agent job (Transact-SQL) to create a master SQL Server Agent job.

See Also

Defining Operators

System Stored Procedures (SQL Server Agent Procedures)

How To (SQL Server 2000)

How to modify an operator (Transact-SQL)
How to modify an operator (Transact-SQL)

To modify a local operator

Execute sp_update_operator.

To modify an operator for a master SQL Server Agent

1. Execute sp_msx_defect to remove the target server from the master SQL Server Agent.

2. Execute sp_update_operator to change the operator.

See Also

Modifying and Viewing Operators

System Stored Procedures (SQL Server Agent Procedures)

How To (SQL Server 2000)

Monitoring Server Performance and Activity
There are a variety of tools and techniques that can be used to monitor Microsoft® SQL Server™ 2000. The general reasons for
monitoring SQL Server are:

Determining if performance improvements can be made.

Determining user activity to find out what queries users are issuing and who is connecting to SQL Server.

Troubleshooting problems.

Testing applications.

How To (SQL Server 2000)

How to create a trace (Transact-SQL)
How to create a trace (Transact-SQL)

To create a trace

1. Execute sp_trace_create with the required parameters to create a new trace. The new trace will be in a stopped state (status
is 0).

2. Execute sp_trace_setevent with the required parameters to select the events and columns to trace.

3. Optionally, execute sp_trace_setfilter to set any or a combination of filters.

sp_trace_setevent and sp_trace_setfilter can be executed only on existing traces that are stopped.

Important Unlike regular stored procedures, parameters of all SQL Profiler stored procedures (sp_trace_xx) are strictly
typed and do not support automatic data type conversion. If these parameters are not called with the correct input
parameter data types, as specified in the argument description, the stored procedure will return an error.

See Also

Creating and Managing Traces and Templates

sp_trace_create

sp_trace_setevent

How To (SQL Server 2000)

How to set a trace filter (Transact-SQL)
How to set a trace filter (Transact-SQL)

To set a trace filter

1. If the trace is already running, execute sp_trace_setstatus specifying @status = 0 to stop the trace.

2. Execute sp_trace_setfilter to configure the type of information to retrieve for the event being traced.

Important Unlike regular stored procedures, parameters of all SQL Profiler stored procedures (sp_trace_xx) are strictly
typed and do not support automatic data type conversion. If these parameters are not called with the correct input
parameter data types, as specified in the argument description, the stored procedure will return an error.

See Also

Creating and Managing Traces and Templates

Limiting Traces

sp_trace_setfilter

sp_trace_setstatus

System Stored Procedures (SQL Profiler Procedures)

How To (SQL Server 2000)

How to modify an existing trace (Transact-SQL)
How to modify an existing trace (Transact-SQL)

To modify an existing trace

1. If the trace is already running, execute sp_trace_setstatus specifying @status = 0 to stop the trace.

2. To modify trace events, execute sp_trace_setevent, specifying the changes through the parameters. Listed in order, they
are:

@traceid (Trace ID)

@eventid (Event ID)

@columnid (Column ID)

@on (ON)

When modifying the @on parameter, keep in mind its interaction with the @columnid parameter:

ON Column ID Result
ON (1) NULL Event is turned on.

All columns are cleared.
 NOT NULL Column is turned on for the specified event.
OFF (0) NULL Event is turned off.

All columns are cleared.
 NOT NULL Column is turned off for the specified event.

Important Unlike regular stored procedures, parameters of all SQL Profiler stored procedures (sp_trace_xx) are strictly
typed and do not support automatic data type conversion. If these parameters are not called with the correct input
parameter data types, as specified in the argument description, the stored procedure will return an error.

See Also

Creating and Managing Traces and Templates

Modifying Templates

sp_trace_setevent

System Stored Procedures (SQL Profiler Procedures)

How To (SQL Server 2000)

How to view a saved trace (Transact-SQL)
How to view a saved trace (Transact-SQL)

To view a specific trace

Execute fn_trace_getinfo specifying the ID of the trace on which information is needed. This function will return a table
listing the trace, trace property, and information about the property.

Invoke the function this way:

SELECT *
FROM ::fn_trace_getinfo(trace_id)

To view all existing traces

Execute fn_trace_getinfo specifying "0" or the term "default". This function will return a table listing all the trace, their
properties, and information about these properties.

Invoke the function this way:

SELECT *
FROM ::fn_trace_getinfo(default)

See Also

Creating and Managing Traces and Templates

fn_trace_getinfo

Viewing and Analyzing Traces

How To (SQL Server 2000)

How to view filter information (Transact-SQL)
How to view filter information (Transact-SQL)

To view filter information

Execute fn_trace_getfilterinfo specifying the ID of the trace on which filter information is needed. This function will return
a table listing the filters, the column on which the filters are applied, and the value on which the filter is applied.

Invoke the function this way:

SELECT *
FROM ::fn_trace_getfilterinfo(trace_id)

See Also

Creating and Managing Traces and Templates

fn_trace_getfilterinfo

System Stored Procedures (SQL Profiler Procedures)

Viewing and Analyzing Traces

How To (SQL Server 2000)

How to delete a trace (Transact-SQL)
How to delete a trace (Transact-SQL)

To delete a trace

1. Execute sp_trace_setstatus specifying @status = 0 to stop the trace.

2. Execute sp_trace_setstatus specifying @status = 2 to close the trace and delete its information from the server.

Note A trace must be stopped first before it can be closed.

See Also

Creating and Managing Traces and Templates

Deleting Traces

sp_trace_setstatus

System Stored Procedures (SQL Profiler Procedures)

How To (SQL Server 2000)

Integrating SQL Server with Other Tools
Microsoft® SQL Server™ applications can reference Automation objects in Transact-SQL statements. SQL Server can also use
MAPI-compliant e-mail systems to send and receive e-mails.

How To (SQL Server 2000)

How to create an OLE Automation object (Transact-SQL)
How to create an OLE Automation object (Transact-SQL)

To create an OLE Automation object

1. Call sp_OACreate to create the object.

2. Use the object.

Call sp_OAGetProperty to get a property value.

Call sp_OASetProperty to set a property to a new value.

Call sp_OAMethod to call a method.

Call sp_OAGetErrorInfo to get the most recent error information.

3. Call sp_OADestroy to destroy the object.

Note All of these steps must be performed within a single Transact-SQL statement batch. All created OLE objects are destroyed
automatically at the end of each statement batch.

See Also

System Stored Procedures

Data Type Conversions Using OLE Automation Stored Procedures

How to debug a custom OLE Automation server (Transact-SQL)

OLE Automation Sample Script

How To (SQL Server 2000)

How to debug a custom OLE Automation server (Transact-SQL)
How to debug a custom OLE Automation server (Transact-SQL)

You can debug a custom OLE Automation server created by using 32-bit Microsoft® Visual Basic® version 4.0. To do this, Visual
Basic must be installed on the Microsoft SQL Server™ computer, and SQL Server must be running under the same Microsoft
Windows NT® user account as Visual Basic. SQL Server must be started from the command prompt and independently of the
Windows NT Service Control Manager (by using the sqlservr /c command), or the SQL Server service must be started under the
same Windows NT user account used to log on to the system.

To debug a custom OLE Automation server

1. Load your custom OLE Automation server project into Visual Basic.

2. Set breakpoint(s) on the desired lines of source code.

3. On the Run menu, click Start With Full Compile.

This registers and runs your custom OLE Automation server.

4. Use the OLE Automation stored procedures to call the OLE objects exposed by your custom OLE Automation server.

When a breakpoint is hit, the Visual Basic debugger is activated.

For more information, see your documentation for Visual Basic.

A custom, in-process OLE server, created using 32-bit Visual Basic 4.0, must have an error handler (specified with the On Error
GoTo statement) for the Class_Initialize and Class_Terminate subroutines. The error handlers will prevent unhandled errors
from occurring in the subroutines. Unhandled errors in the Class_Initialize and Class_Terminate subroutines can cause
unpredictable SQL Server problems, such as a SQL Server access violation. Error handlers for other subroutines are also
recommended.

See Also

System Stored Procedures

How to create an OLE Automation object (Transact-SQL)

Data Type Conversions Using OLE Automation Stored Procedures

OLE Automation Sample Script

How To (SQL Server 2000)

How to use SQL Mail (Transact-SQL)
How to use SQL Mail (Transact-SQL)

 New Information - SQL Server 2000 SP3.

SQL Mail uses several extended stored procedures that are necessary for mail enabling. These extended stored procedures are
included in a dynamic-link library, SQLMAP70.DLL, which is installed with Microsoft® SQL Server™ 2000.

For security reasons, you should limit permissions for all SQL Mail stored procedures and extended stored procedures to
members of the sysadmin fixed server role.

To process e-mail messages manually

1. In SQL Query Analyzer, start a SQL Server Mail client session by executing xp_startmail.

2. To find the ID of the next unread message in the mail box, execute xp_findnextmsg.

3. To read a message or attachment, execute xp_readmail (using a specific message ID), and use the output variable in a
SELECT statement to display the message in the result pane.

4. To delete a message, execute xp_deletemail (using a specific message ID).

xp_deletemail deletes message, but does not delete any attachments. You must delete them manually. You can suppress
the generation of attachments by setting the suppress_attach parameter for xp_readmail to TRUE. For more information
about security concerns with attachments, see xp_readmail.

xp_deletemail does not keep a log of deleted messages or users who deleted the messages. This may cause auditing
problems in an environment where several users have permission to execute xp_deletemail. To minimize this problem,
limit permissions for xp_deletemail to members of the sysadmin fixed server role.

5. To send a message or a query result set to specified recipients, execute xp_sendmail (with the query in the message body).

6. Stop the SQL Server Mail client session by executing xp_stopmail.

To process multiple e-mail messages as a scheduled job

1. In SQL Query Analyzer, start a SQL Server Mail client session by executing xp_startmail.

2. Execute sp_processmail to find, read, respond to, and delete multiple messages.

3. Stop the SQL Server Mail client session by executing xp_stopmail.

See Also

sp_processmail

xp_sendmail

xp_deletemail

xp_startmail

xp_findnextmsg

xp_stopmail

xp_readmail

How To (SQL Server 2000)

Replication
Microsoft® SQL Server™ 2000 replication is the process of copying and distributing data and database objects from one
database to another and then synchronizing between databases for consistency.

Using replication, you can distribute data to different locations, to remote or mobile users over a local area network, using a dial-
up connection, and over the Internet. Replication also allows you to enhance application performance, physically separate data
based on how it is used (for example, to separate online transaction processing (OLTP) and decision support systems), or
distribute database processing across multiple servers.

How To (SQL Server 2000)

Replication Types
Microsoft® SQL Server™ 2000 provides the following types of replication that you can use in your distributed applications:

Snapshot replication

Transactional replication

Merge replication

Each type provides different capabilities depending on your application and different levels of ACID properties of transactions and
site autonomy. For example, merge replication allows users to work and update data autonomously, although ACID properties are
not assured. Instead, when servers are reconnected, all sites in the replication topology converge to the same data values.
Transactional replication maintains transactional consistency, but Subscriber sites are not as autonomous as they are in merge
replication because Publishers and Subscribers generally must be connected reliably and continuously for updates to be
propagated to Subscribers.

It is common for the same application to use multiple replication types and options. Some of the data in the application may not
require any updates at Subscribers, some sets of data may require updates infrequently, with updates made at only one or a few
servers, while other sets of data may need to be updated daily at multiple servers.

Which type of replication you choose for your application depends on your requirements based on distributed data factors,
whether or not data will need to be updated at the Subscriber, your replication environment, and the needs and requirements of
the data that will be replicated. For more information, see Planning for Replication.

Each type of replication begins with generating and applying the snapshot at the Subscriber, so it is important to understand
snapshot replication in addition to any other type of replication and options you choose.

How To (SQL Server 2000)

How to set row- or column-level tracking for an article
(Transact-SQL)
How to set row- or column-level tracking for an article (Transact-SQL)

If you are adding a merge article to a publication, set the @column_tracking parameter of the replication stored procedure
sp_addmergearticle to true for column-level tracking or to false for row-level tracking.

If you are changing the properties of an existing inactive merge article in a publication, set the @property = parameter of
the replication stored procedure sp_changemergearticle to column_tracking, and then set the @value = parameter to
true for column-level tracking or to false for row-level tracking.

If this property is changed after the publication has active subscriptions, the current snapshot will become obsolete and existing
subscriptions will be marked for reinitialization.

How To (SQL Server 2000)

How to choose a resolver (Transact-SQL)
How to choose a resolver (Transact-SQL)

If you are using stored procedures to create a publication and want to specify the resolver, set the @article_resolver =
parameter of the replication stored procedure sp_addmergearticle to the name of the custom resolver. If the custom
resolver is a stored procedure, also set the @resolver_info = parameter to the name of the stored procedure.

If you are changing the resolver properties of an existing merge article in a publication, set the @property = parameter of
the replication stored procedure sp_changemergearticle to article_resolver, and then set the @value = parameter to the
name of the custom resolver. If the custom resolver is a stored procedure, execute a second sp_changemergearticle
statement, set the @property = parameter to resolver_info, and then set the @value = parameter to the name of the
stored procedure.

How To (SQL Server 2000)

Implementing Replication (Transact-SQL)
Whether you are using snapshot replication, transactional replication, or merge replication, the following stages will help you
implement replication.

Stage Tasks
Configuring Replication Identify the Publisher, Distributor, and Subscribers in

your topology. Use SQL Server Enterprise Manager,
SQL-DMO, scripts, or Transact-SQL system stored
procedures to configure the Publisher, create a
distribution database, and enable Subscribers.

Publishing Data and Database
Objects

Create the publication and define the data and
database object articles in the publication, and apply
any necessary filters to data that will be published.

Subscribing to Publications Create push, pull, or anonymous subscriptions to
indicate what publications need to be propagated to
individual Subscribers and when.

Applying the Initial Snapshot Indicate where to save snapshot files, whether they are
compressed, and scripts to run before or after
applying the initial snapshot.

Specify to have the Snapshot Agent apply the
snapshot at the Subscriber immediately after creating
a subscription or at a specified time.

Apply the snapshot manually by saving it to a network
location or to removable media that can be
transported to the Subscriber, and then applying the
Snapshot files manually at the Subscriber.

Synchronizing Data Synchronizing data occurs when the Snapshot, Log
Reader, or Merge Agent runs and updates are
propagated between Publisher and Subscribers.

For snapshot replication, the snapshot will be
reapplied at the Subscriber.

For transactional replication, updates will be
propagated to Subscribers.

If using updatable subscriptions with either snapshot
replication or transactional replication, data will be
propagated from the Subscriber to the Publisher and
to other Subscribers.

For merge replication, data is synchronized during the
merge process when data changes at all servers are
converged and conflicts, if any, are detected and
resolved.

How To (SQL Server 2000)

How to Configure Publishing and Distribution (Transact-SQL)
How to Configure Publishing and Distribution (Transact-SQL)

1. Execute sp_adddistributor at the server that will be the Distributor.

2. Execute sp_adddistributiondb at the Distributor to create a new distribution database.

3. Execute sp_adddistpublisher at each server that will be a Publisher using the Distributor.

On the master database on the Publisher, execute sp_replicationdboption for each database that will be a publication database.

How To (SQL Server 2000)

How to Modify Publisher and Distributor Properties (Transact-
SQL)
How to Modify Publisher and Distributor Properties (Transact-SQL)

To view Distributor properties

1. Execute sp_helpdistributor to list information about the Distributor, distribution database, working directory, and SQL
Server Agent user account.

2. Execute sp_helpdistributiondb to return properties of the specified distribution database.

To modify a Distributor

1. Execute sp_changedistributor_property to modify Distributor properties.

2. Execute sp_changedistributiondb to modify distribution database properties.

To add a password to a Distributor

Execute sp_add_distributor specifying the password parameter.

To change a password on a Distributor

Execute sp_changedistributor_password.

To create a new distribution database

Execute sp_adddistributiondb to create a new distribution database and install the distribution schema.

To add a Publisher to a distribution database

Execute sp_adddistpublisher n times to define each Publisher that uses the Distributor.

To remove a Publisher from a distribution database

Execute sp_dropdistpublisher to drop a Publisher that is also the Distributor.

How To (SQL Server 2000)

How To Disable Publishing and Distribution (Transact-SQL)
How To Disable Publishing and Distribution (Transact-SQL)

To disable a Distributor (Transact-SQL)

1. Execute sp_dropdistpublisher to drop a Publisher that is also the Distributor.

2. Execute sp_dropdistributiondb to delete the distribution database.

3. Execute sp_dropdistributor to remove the Distributor designation from the server.

To delete a distribution database (Transact-SQL)

Execute sp_dropdistributiondb to delete a distribution database.

To manually remove replication on a Publisher without connecting to the Distributor (Transact-SQL)

Execute sp_dropdistributor with @no_checks=1 and @ignore_distributor=1.

How To (SQL Server 2000)

How to Create Publications and Define Articles (Transact-SQL)
How to Create Publications and Define Articles (Transact-SQL)

To create a snapshot or transactional publication

1. Execute sp_replicationdboption to enable publication of the current database.

2. Execute sp_addpublication with repl_freq set to snapshot to define the publication.

3. Execute sp_addpublication_snapshot to create a Snapshot Agent, set the publication agent_id, and place the schema and
data into the replication working directory.

4. Execute sp_addarticle n times to define each article in the publication.

To define an article for a snapshot or transactional publication

1. Execute sp_addarticle to define an article.

2. Execute sp_articlefilter to filter a table horizontally.

3. Execute sp_articlecolumn to filter a table vertically.

4. Execute sp_articleview to create the synchronization object for an article when a table is filtered vertically or horizontally.

To create a merge publication

1. Execute sp_replicationdboption to enable publication of the current database.

2. Execute sp_addmergepublication to define the publication.

3. Execute sp_addpublication_snapshot to create a Snapshot Agent and place the schema and data into the replication
working directory.

4. Execute sp_addmergearticle n times to define each article in the publication.

To define a merge article

1. Execute sp_addmergearticle to define an article.

2. Execute sp_addmergefilter to create a partitioned publication.

How To (SQL Server 2000)

How to Modify Publications and Articles (Transact-SQL)
How to Modify Publications and Articles (Transact-SQL)

To view snapshot or transactional publication properties

Execute sp_helppublication to display information about a publication.

To view merge publication properties

Execute sp_helpmergepublication to display information about a publication.

To modify publication properties

Execute sp_changepublication to modify the properties of a publication.

To modify merge publication properties

Execute sp_changemergepublication to modify the properties of a publication.

To view article properties for a snapshot or transactional publication

1. Execute sp_helparticle to display information about an article.

2. Execute sp_helparticlecolumns to display all columns in the table underlying an article.

To view merge article properties

1. Execute sp_helpmergearticle to display information about a merge article.

2. Execute sp_helpmergefilter to display information about merge filters.

To modify article properties for a snapshot or transactional publication

Execute sp_changearticle to change the properties of an article.

To modify merge article properties

1. Execute sp_changemergearticle to change the properties of an article.

2. Execute sp_changemergefilter to change the properties of a filter.

How To (SQL Server 2000)

How to Delete Publications and Articles (Transact-SQL)
How to Delete Publications and Articles (Transact-SQL)

To delete a snapshot or transactional publication

1. Execute sp_dropsubscription to delete all snapshot subscriptions.

2. Execute sp_droppublication to delete the publication and all of its articles.

3. Execute sp_replicationdboption to disable replication of the current database.

Note Do not call sp_replicationdboption to disable publication of the current database if you are deleting only one publication
and you still want to publish from the database.

To delete an article for a snapshot or transactional publication

Execute sp_droparticle to delete an article from a publication.

To delete a merge publication

1. Execute sp_dropmergesubscription to delete all merge subscriptions.

2. Execute sp_mergesubscription_cleanup to remove merge configuration meta data for all merge articles in the
subscription database.

3. Execute sp_dropmergepublication to delete the publication and all of its articles.

4. Execute sp_replicationdboption to disable replication of the current database.

Note Do not call sp_replicationdboption to disable publication of the current database if you are deleting only one publication
and you want to publish from the database.

To delete a merge article

Execute sp_dropmergearticle to delete an article from a publication.

How To (SQL Server 2000)

How to Create a Push Subscription (Transact-SQL)
How to Create a Push Subscription (Transact-SQL)

To add a push subscription for a snapshot publication (Transact-SQL)

1. Execute sp_addsubscriber to register the Subscriber at the Publisher.

2. Execute sp_addpublication with allow_push set to TRUE to enable push subscriptions.

3. Execute sp_addsubscription to create the subscription.

To create a push subscription (transactional)

1. Execute sp_addsubscriber to register the Subscriber at the Publisher.

2. Execute sp_addpublication with allow_push set to true to enable push subscriptions.

3. Execute sp_addsubscription to create the subscription.

To add a push subscription (merge)

1. Execute sp_addsubscriber to register the Subscriber at the Publisher.

2. Execute sp_addmergepublication with allow_push set to true to enable push subscriptions.

3. Execute sp_addmergesubscription to create the subscription.

How To (SQL Server 2000)

How to Modify a Push Subscription (Transact-SQL)
How to Modify a Push Subscription (Transact-SQL)

To view push subscription properties for a snapshot publication

1. Execute sp_helpsubscription to list subscription information associated with a particular publication, article, Subscriber, or
set of subscriptions.

2. Execute sp_helpsubscriberinfo to display information about a Subscriber.

To modify push subscription properties for a snapshot publication

1. Execute sp_changesubscriber to change Subscriber options.

2. Execute sp_changesubstatus to change Subscriber status.

To view push subscription properties for a transactional publication

1. Execute sp_helpsubscription to list subscription information associated with a particular publication, article, Subscriber, or
set of subscriptions.

2. Execute sp_helpsubscriberinfo to display information about a Subscriberexecute.

To modify push subscription properties for a transactional publication

1. Execute sp_changesubscriber to change Subscriber options.

2. Execute sp_changesubstatus to change Subscriber status.

To view push subscription properties for a merge publication

Execute sp_helpmergesubscription to list subscription information associated with a particular publication, article,
Subscriber, or set of subscriptions.

To modify push subscription properties for a merge publication

Execute sp_changemergesubscription to change Subscriber options.

How To (SQL Server 2000)

How to Delete a Push Subscription (Transact-SQL)
How to Delete a Push Subscription (Transact-SQL)

To delete a push subscription to a snapshot publication

1. Execute sp_dropsubscription to delete the subscription.

2. Execute sp_dropsubscriber to remove the registration entry of the Subscriber.

Note It is not necessary to drop a Subscriber unless you are dropping the last publication to which it subscribes.

To delete a push subscription to a transactional publication

1. Execute sp_dropsubscription to delete the subscription.

2. Execute sp_dropsubscriber to remove the registration entry of a Subscriber.

Note It is not necessary to drop a Subscriber unless you are dropping the last publication to which it subscribes.

To delete a push subscription to a merge publication

1. Execute sp_dropmergesubscription to delete the subscription.

2. Execute sp_mergesubscription_cleanup to remove merge configuration meta data for all merge articles in the
subscription database.

How To (SQL Server 2000)

How to Create a Pull Subscription (Transact-SQL)
How to Create a Pull Subscription (Transact-SQL)

To add a pull subscription to a snapshot publication

1. Execute sp_addpublication with allow_pull set to true to enable pull subscriptions at the Publisher.

2. Execute sp_addsubscriber to register the Subscriber at the Publisher.

3. Execute sp_addsubscription to create the subscription at the Publisher.

4. Execute sp_addpullsubscription to create the pull subscription at the Subscriber.

3. Execute sp_addpullsubscription_agent to create a scheduled job for the Distribution Agent at the Subscriber.

To create a pull subscription (transactional)

1. Execute sp_addpublication with allow_pull set to TRUE to enable pull subscriptions at the Publisher.

2. Execute sp_addsubscriber to register the Subscriber at the Publisher.

3. Execute sp_addsubscription to create the subscription at the Publisher.

4. Execute sp_addpullsubscription to create the pull subscription at the Subscriber.

5. Execute sp_addpullsubscription_agent to create a scheduled job for the Distribution Agent at the Subscriber.

To add a pull subscription (merge)

1. Execute sp_addmergepublication with allow_pull set to TRUE to enable pull subscriptions at the Publisher.

2. Execute sp_addsubscriber to register the Subscriber at the Publisher.

3. Execute sp_addmergesubscription to create the subscription at the Publisher.

4. Execute sp_addmergepullsubscription to create the subscription at the Subscriber.

5. Execute sp_addmergepullsubscription_agent to create a scheduled job for the Distribution Agent at the Subscriber.

How To (SQL Server 2000)

How to View or Modify Pull or Anonymous Subscriptions
(Transact-SQL)
How to View or Modify Pull or Anonymous Subscriptions (Transact-SQL)

To view pull and anonymous subscription properties for a snapshot publication

1. Execute sp_helpsubscription to list subscription information associated with a particular publication, article, Subscriber, or
set of subscriptions.

2. Execute sp_helppullsubscription to display information about one or more subscriptions at the Subscriber.

3. Execute sp_helpsubscriberinfo to display information about the Subscriber.

To modify pull and anonymous subscription properties for a snapshot publication

1. Execute sp_changesubscriber to change Subscriber options.

2. Execute sp_changesubstatus to change Subscriber status.

To view pull and anonymous subscription properties (transactional)

1. Execute sp_helpsubscription to list subscription information associated with a particular publication, article, Subscriber, or
set of subscriptions.

2. Execute sp_helppullsubscription to display information about one or more subscriptions at the Subscriber.

3. Execute sp_helpsubscriberinfo to display information about the Subscriber.

To modify pull and anonymous subscription properties (transactional)

1. Execute sp_changesubscriber to change Subscriber options.

2. Execute sp_changesubstatus to change Subscriber status.

To view pull and anonymous subscription properties (merge)

Execute sp_helpmergepullsubscription to list subscription information associated with a particular publication, article,
Subscriber, or set of subscriptions.

To modify pull and anonymous subscription properties (merge)

Execute sp_changemergepullsubscription to change Subscriber options.

How To (SQL Server 2000)

How to Delete a Pull Subscription (Transact-SQL)
How to Delete a Pull Subscription (Transact-SQL)

To delete a pull subscription to a snapshot publication

1. Execute sp_dropsubscription to delete the subscription.

2. Execute sp_dropsubscriber to remove the registration entry of the Subscriber.

To delete a pull subscription (transactional)

1. Execute sp_dropsubscription to delete the subscription.

2. Execute sp_dropsubscriber to remove the registration entry of the Subscriber.

3. Execute sp_droppullsubscription at the Subscriber.

To delete a pull subscription (merge)

1. Execute sp_dropmergepullsubscription to delete the subscription.

2. Execute sp_mergesubscription_cleanup to remove merge configuration meta data for all merge articles in the
subscription database.

How To (SQL Server 2000)

How to Create an Anonymous Subscription (Transact-SQL)
How to Create an Anonymous Subscription (Transact-SQL)

To add an anonymous subscription to a snapshot publication (Transact-SQL)

1. Execute sp_addpublication with allow_pull, allow_anonymous, and immediate_sync set to TRUE to enable anonymous
subscriptions.

2. Execute sp_addpullsubscription to create the anonymous subscription at the Subscriber.

3. Execute sp_addpullsubscription_agent to create a scheduled job for the Distribution Agent at the Subscriber.

To add an anonymous subscription (transactional)

1. Execute sp_addpublication with allow_pull, allow_anonymous, and immediate_sync set to TRUE to enable anonymous
subscriptions.

2. Execute sp_addpullsubscription to create the anonymous subscription at the Subscriber.

3. Execute sp_addpullsubscription_agent to create a scheduled job for the Distribution Agent at the Subscriber.

To add an anonymous subscription to a merge publication

1. Execute sp_addmergepublication with allow_pull and allow_anonymous set to TRUE to enable anonymous subscriptions
at the Publisher.

2. Execute sp_addmergepullsubscription to create the anonymous subscription at the Subscriber.

3. Execute sp_addmergepullsubscription_agent to create a scheduled job for the anonymous Merge Agent at the
Subscriber.

How To (SQL Server 2000)

How to Delete an Anonymous Subscription (Transact-SQL)
How to Delete an Anonymous Subscription (Transact-SQL)

To disable snapshot publications that allow anonymous subscriptions

1. Execute sp_droparticle n times to delete each article in the publication.

2. Execute sp_droppublication to delete the publication.

3. Execute sp_replicationdboption to disable replication of the current database.

Note Anonymous subscriptions are unknown to the Publisher. The preceding steps disable all anonymous subscriptions to a
publication by dropping the publication.

To disable transactional publications that allow anonymous subscriptions

1. Execute sp_droparticle n times to delete each article in the publication.

2. Execute sp_droppublication to delete the publication.

3. Execute sp_replicationdboption to disable replication of the current database.

Note Anonymous subscriptions are unknown to the Publisher. The preceding steps disable all anonymous subscriptions to a
publication by dropping the publication.

To disable merge publications that allow anonymous subscriptions

1. Execute sp_dropmergearticle n times to delete each article in the publication.

2. Execute sp_dropmergepublication to delete the publication.

3. Execute sp_mergesubscription_cleanup to remove merge configuration meta data for all merge articles in the
subscription database.

4. Execute sp_replicationdboption to disable replication of the current database.

Note Anonymous subscriptions are unknown to the Publisher. The preceding steps disable all anonymous subscriptions to a
publication by dropping the publication.

How To (SQL Server 2000)

How to Browse and Copy Snapshot Files (Transact-SQL)
How to Browse and Copy Snapshot Files (Transact-SQL)

To browse snapshot files

For transactional publications, execute the sp_browsesnapshotfolder Transact-SQL system stored procedure at the
Publisher.

For merge publications, execute the sp_browsemergesnapshotfolder Transact-SQL system stored procedure at the
Publisher.

To copy snapshot files

For transactional publications, execute the sp_copysnapshot Transact-SQL system stored procedure at the Publisher.

For merge publications, execute the sp_copymergesnapshot Transact-SQL system stored procedure at the Publisher.

How To (SQL Server 2000)

How to Apply Schema Changes on Publication Databases
(Transact-SQL)
How to Apply Schema Changes on Publication Databases (Transact-SQL)

To add columns to an article

Execute the sp_repladdcolumn stored procedure and set the following parameters.
Parameter Function
@source_object Names the table to which the column will be added.
@column Names the column to be added.
@typetext Defines the column (data type information, default

value, and so on.). In the SQL for the column
definition, you must either specify a default value or
allow NULL values.

For information about the syntax required to define
the column, see ALTER TABLE.

@publication_to_add Lists the names of the publications to which you will
add the column; you can also use the values all or
none.

@force_invalidate_snapshot When set equal to 0, current snapshot with previous
schema information is still available in case it is
needed. This parameter affects only publications
created with the immediate_sync option.

@force_reinit_subscription When set equal to 1, schema changes commands will
not be propagated to Subscribers. All subscriptions
affected by the schema change will be reintialized
except for nosync subscriptions, for which no action
is taken.

To drop columns from an article

Execute the sp_repldropcolumn stored procedure and set the following parameters.
Parameter Function
@source_object Names the table from which the column will be

dropped.
@column Names the column to be dropped.
@force_invalidate_snapshot When set equal to 0, current snapshot with previous

schema information is still available in case it is
needed. This parameter affects only publications
created with the immediate_sync option.

@force_reinit_subscription When set equal to 1, schema changes commands will
not be propagated to Subscribers. All subscriptions
affected by the schema change will be reintialized
except for nosync subscriptions, for which no action
is taken.

How To (SQL Server 2000)

How to Publish Data Over the Internet (Transact-SQL)
How to Publish Data Over the Internet (Transact-SQL)

To publish over the Internet using snapshot replication (Transact-SQL)

When defining the publication, execute sp_addpublication with enabled_for_internet set to TRUE to enable Internet
subscriptions.

To publish on the Internet using transactional replication (Transact-SQL)

When defining the publication, execute sp_addpublication with enabled_for_internet set to TRUE to enable Internet
subscriptions.

To publish on the Internet using merge replication

When defining the publication, execute sp_addmergepublication with enabled_for_internet set to TRUE to enable Internet
subscriptions.

How To (SQL Server 2000)

Replication Options (Transact-SQL)
Replication Options allow you to configure replication in a manner best suited to your application and environment.

Option
Type of

Replication Benefits
Filtering
Published Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters allow you to create vertical and/or
horizontal partitions of data that can be
published as part of replication. By distributing
partitions of data to different Subscribers, you
can:

Minimize the amount of data sent over the
network.

Reduce the amount of storage space
required at the Subscriber.

Customize publications and applications
based on individual Subscriber
requirements.

Reduce conflicts because the different data
partitions can be sent to different
Subscribers.

Updatable
Subscriptions
(Immediate
Updating,
Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate updating and queued updating
options allow users to update data at the
Subscriber and either propagate those updates
to the Publisher immediately or store the
updates in a queue.

Updatable subscriptions are best for replication
topologies where replicated data is mostly read,
and occasionally updated at the Subscriber when
Publisher, Distributor, and Subscriber are
connected most of the time and when conflicts
caused my multiple users updating the same
data are infrequent.

Transforming
Published Data

Snapshot
Replication

Transactional
Replication

You can leverage the data movement,
transformation mapping and filtering capabilities
of Data Transformation Services (DTS) during
replication. With transformable subscriptions,
you can:

Create custom partitions for snapshot and
transactional publications.

Transform the data as it is being published
with data type mappings (for example,
integer to real data type), column
manipulations (for example, concatenating
first name and last name columns into
one), string manipulations, and functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate synchronization partners allow
Subscribers to merge publications to synchronize
data with servers other than the Publisher at
which the subscription originated. This allows the
Subscriber to synchronize data when the original
Publisher is unavailable, and is also useful for
mobile Subscribers that may have access to a
faster or more reliable network connection with
an alternate server.

Optimizing
Synchronization

Merge
Replication

By optimizing synchronization during merge
replication, you can store more information at
the Publisher instead of transferring that
information over the network to the Subscriber.
This improves synchronization performance over
a slow network connection, but requires
additional storage at the Publisher.

Attachable
Subscription
Databases

Snapshot
Replication

Transactional
Replication

Merge
Replication

Attachable subscription databases allow you to
transfer a database with replicated data and
subscriptions from one Subscriber to another.
After the database is attached to the new
Subscriber, the database at the new Subscriber
will automatically receive its own pull
subscriptions to the publications at those
Publishers. This saves you the time and effort of
creating subscription databases and
subscriptions at multiple Subscribers.

How To (SQL Server 2000)

How to validate Subscriber information (Transact-SQL)
How to validate Subscriber information (Transact-SQL)

When creating a merge publication, execute the sp_addmergepublication system stored procedure and at the
@validate_subscriber_info parameter, list the functions that are being used to retrieve Subscriber information.

For example, if you are using SUSER_SNAME() in your dynamic filter, the parameter should read:
@validate_subscriber_info=N'SUSER_SNAME()'.

How To (SQL Server 2000)

Administering and Monitoring Replication (Transact-SQL)
SQL Server replication provides tools to administer and monitor replication agents, replication alerts, and replication processes so
that you can ensure that replication is meeting the needs of your applications and your organization.

Monitoring replication will help you:

Set the profiles, schedules and notifications for replication agents.

Troubleshoot agent activity including verifying when agents last ran, monitoring agent activity.

Troubleshoot agent errors.

Ensure that data values are the same at the Publisher and at Subscribers.

How To (SQL Server 2000)

How to create a replication agent profile (Transact-SQL)
How to create a replication agent profile (Transact-SQL)

To create a replication agent profile.

1. Execute sp_add_agent_profile.

2. Execute sp_add_agent_parameter.

To set the default profile for a type of replication agent

1. Execute sp_update_agent_profile.

2. Execute sp_help_agent_profile.

3. Execute sp_help_agent_parameter.

To view or modify a replication agent profile

1. Execute sp_help_agent_profile.

2. Execute sp_help_agent_parameter.

3. Execute sp_update_agent_profile.

To delete a replication agent profile

Execute sp_drop_agent_profile.

How To (SQL Server 2000)

Replication Security (Transact-SQL)
Replication security is an important part of the design and implementation of your distributed application. Replication applies the
data changes made elsewhere on the network to the database at your server and vice-versa.

The decentralized availability of replicated data increases the complexity of managing or restricting access to that data.
Microsoft® SQL Server™ 2000 replication uses a combination of security mechanisms to protect the data and business logic in
your application:

Role requirements

By mapping user logins to specific SQL Server 2000 roles, SQL Server 2000 allows users to perform only those replication
and database activities authorized for that role. Replication grants certain permission to the sysadmin fixed server role, the
db_owner fixed database role, the current login, and the public role. For example, only members of the sysadmin server
role can configure replication.

Distributor administrative link security

SQL Server 2000 provides a secure administrative link between the Distributor and a remote Publisher. Publishers can be
treated as trusted or nontrusted.

Snapshot folder security

The operating system or FTP service prevents users from accessing specific files on the server. The user must have a valid
login to read or write the files used in the replication process.

Registered subscribers

SQL Server 2000 allows you to limit access to publications to either registered Subscribers that are well-known to the
Publisher, anonymous, or Subscribers that have logins in the publication access list. SQL Server 2000 uses linked server
definitions for heterogeneous Subscribers to secure the replication of data with heterogeneous data sources.

Publication access lists

By supporting publication access lists (PAL) on each server, SQL Server 2000 allows you to determine which logins have
access to publications. SQL Server 2000 creates the PAL with default logins, but you can add or delete logins from the list.

Agent login security

By supporting agent login security, SQL Server 2000 requires each user to supply a valid login account to connect to the
server. Replication agents are required to use valid logins when connecting to Publishers, Distributors, and Subscribers.
However, agents also can use different logins and security modes when connecting to different servers simultaneously.

Immediate-updating Subscriber security

For immediate-updating Subscribers, SQL Server 2000 replication applies security mechanisms to the Publisher-RPC link
and Publisher stored procedures.

When used together, these security mechanisms provide the highest safeguards for the data and business logic in your
application.

How To (SQL Server 2000)

How to add or change a password on a Distributor
How to add or change a password on a Distributor

To add a password to a Distributor

Execute sp_add_distributor specifying the password parameter.

To change a password on a Distributor

Execute sp_changedistributor_password.

How To (SQL Server 2000)

To grant or revoke access to a publication
To grant or revoke access to a publication

To grant access to a publication

Execute sp_grant_publication_access.

To revoke access to a publication

Execute sp_revoke_publication_access.

How To (SQL Server 2000)

OLE DB
To use the Microsoft OLE DB Provider for SQL Server (SQLOLEDB), you have to understand how to make a connection to the
server, execute the command, and process the results.

How To (SQL Server 2000)

Processing Results (OLE DB)
Processing results in an OLE DB application involves first determining the characteristics of the result set, and then retrieving the
data into program variables. If the command executes a stored procedure, you also must know how to process return codes and
output parameters from the stored procedures.

How To (SQL Server 2000)

Execute stored procedure (using ODBC CALL syntax) and
process return codes and output parameters (OLE DB)

 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ stored procedures can have integer return codes and output parameters. The return codes and output
parameters are sent in the last packet from the server and are therefore not available to the application until the rowset is
completely released. If the command returns multiple results, output parameter data is available when
IMultipleResults::GetResult returns DB_S_NORESULT or the IMultipleResults interface is completely released, whichever
occurs first.

To process return codes and output parameters

1. Construct an SQL statement that uses the ODBC CALL escape sequence. The statement should use parameter markers for
each input/output, and output parameter, and for the procedure return value (if any). For input parameters, you can use the
parameter markers or hard code the values.

2. Create a set of bindings (one for each parameter maker) by using an array of DBBINDING structure.

3. Create an accessor for the defined parameters by using the IAccessor::CreateAccessor method. CreateAccessor creates
an accessor from a set of bindings.

4. Fill in the DBPARAMS structure.

5. Call the Execute command (in this case, a call to a stored procedure).

6. Process the rowset and release it by using the IRowset::Release method.

7. Process the return code and output parameter values received from the stored procedure.

The example shows processing a rowset, a return code, and an output parameter. Result sets are not processed. Here is the
sample stored procedure used by the application.

USE pubs
DROP PROCEDURE myProc
GO

CREATE PROCEDURE myProc
 @inparam int,
 @outparam int OUTPUT

AS
SELECT title, price
FROM titles WHERE royalty > @inparam
SELECT @outparam = 100

IF (@outparam > 0)
 RETURN 999
ELSE
 RETURN 888
GO

The complete sample code is in this file: InitializeAndEstablishConnection_A.cpp. You can download an archive containing the
sample from the SQL Server Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Execute stored procedure (using RPC syntax) and process
return codes and output parameters (OLE DB)

 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ stored procedures can have integer return codes and output parameters. The return codes and output
parameters are sent in the last packet from the server and are therefore not available to the application until the rowset is
completely released. If the command returns multiple results, output parameter data is available when
IMultipleResults::GetResult returns DB_S_NORESULT or the IMultipleResults interface is completely released, whichever
occurs first.

To process return codes and output parameters

1. Construct an SQL statement that uses the RPC escape sequence.

2. Call the ICommandWithParameters::SetParameterInfo method to describe parameters to the provider. Fill in the
parameter information in an array of PARAMBINDINFO structures.

3. Create a set of bindings (one for each parameter maker) by using an array of DBBINDING structure.

4. Create an accessor for the defined parameters by using the IAccessor::CreateAccessor method. CreateAccessor creates
an accessor from a set of bindings.

5. Fill in the DBPARAMS structure.

6. Call the Execute command (in this case, a call to a stored procedure).

7. Process the rowset and release it by using the IRowset::Release method.

8. Process the return code and output parameter values received from the stored procedure.

The example shows processing a rowset, a return code, and an output parameter. Result sets are not processed. Here is the
sample stored procedure used by the application.

USE pubs
DROP PROCEDURE myProc
GO

CREATE PROCEDURE myProc
 @inparam int,
 @outparam int OUTPUT

AS
SELECT title, price
FROM titles WHERE royalty > @inparam
SELECT @outparam = 100

IF (@outparam > 0)
 RETURN 999
ELSE
 RETURN 888
GO

The complete sample code is in this file: InitializeAndEstablishConnection_B.cpp. You can download an archive containing the
sample from the SQL Server Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Execute user-defined function and process return code (OLE
DB)

 New Information - SQL Server 2000 SP3.

In this example a user-defined function is executed and the return code is printed. Here is the sample user-defined function used
by the application.

DROP FUNCTION fn_RectangleArea
GO
CREATE FUNCTION fn_RectangleArea
 (@Width int,
@Height int)
RETURNS int
AS
BEGIN
 RETURN (@Width * @Height)
END
GO

The complete sample code is in this file: InitializeAndEstablishConnection_C.cpp. You can download an archive containing the
sample from the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to fetch rows from a result set (OLE DB)
 New Information - SQL Server 2000 SP3.

To fetch rows from a result set

The complete sample code is in this file: FetchRowsFromResultSet.cpp. You can download an archive containing the sample from
the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Processing Large Data
SQLOLEDB exposes the ISequentialStream interface to support consumer access to Microsoft® SQL Server™ ntext, text and
image data types as binary large objects (BLOBs).

How To (SQL Server 2000)

How to set large data (OLE DB)
 New Information - SQL Server 2000 SP3.

To pass a pointer to its own storage object, the consumer creates an accessor that binds the value of the BLOB column and then
calls the IRowsetChange::SetData or IRowsetChange::InsertRow methods.

To set BLOB data

1. Create a DBOBJECT structure describing how the BLOB column should be accessed. Set the dwFlag element of the
DBOBJECT structure to STGM_READ and set the iid element to IID_ISequentialStream (the interface to be exposed).

2. Set the properties in the DBPROPSET_ROWSET property group so the rowset is updatable.

3. Create a set of bindings (one of each column) by using an array of DBBINDING structures. Set the wType element in the
DBBINDING structure to DBTYPE_IUNKNOWN, and the pObject element to point to the DBOBJECT structure you created.

4. Create an accessor using the binding information in the DBBINDINGS array of structures.

5. Call GetNextRows to fetch next rows into the rowset. Call GetData to read the data from the rowset.

6. To set the data, create a storage object containing the data (and also the length indicator), and then call
IRowsetChange::SetData (or IRowsetChange::InsertRow) with the accessor that binds the BLOB column.

The example shows how to set BLOB data. The example creates a table, adds a sample record, fetches that record in the rowset,
and then sets the value of the BLOB field:

The complete sample code is in this file: WorkingWithBLOBs.cpp. You can download an archive containing the sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft® Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Enumerating OLE DB Data Sources
SQLOLEDB has an enumerator that a consumer can call to search for accessible data sources. Consumers should use enumerators
to search for data sources, rather than searching the registry directly. In that way, the consumers will continue to work if the
registry information changes.

How To (SQL Server 2000)

How to enumerate OLE DB data sources (OLE DB)
 New Information - SQL Server 2000 SP3.

To list the data sources visible to the SQLOLEDB enumerator, the consumer calls the ISourcesRowset::GetSourcesRowset
method. This method returns a rowset of information about the currently visible data sources.

Depending on the network library used, the appropriate domain is searched for the data sources. For Named Pipes, it is the
domain to which the client is logged on. For AppleTalk, it is the default zone. For SPX/IPX, it is the list of Microsoft® SQL Server™
installations found in the bindery. For Banyan VINES, it is the SQL Server installations found on the local network. Multiprotocol
and TCP/IP sockets are not supported.

When the server is turned off or on, it can take few minutes to update the information in these domains.

To enumerate OLE DB data sources

1. Retrieve the source rowset by calling ISourceRowset::GetSourcesRowset.

2. Find the description of the enumerators rowset by calling GetColumnInfo::IColumnInfo.

3. Create the binding structures from the column information.

4. Create the rowset accessor by calling IAccessor::CreateAccessor.

5. Fetch the rows by calling IRowset::GetNextRows.

6. Retrieve data from the rowset's copy of the row by calling IRowset::GetData and process it.

The complete sample code is in this file: ListDataSourcesWithEnumerator.cpp. You can download an archive containing the
sample from the SQL Server Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Bulk-Copying Rowsets
SQLOLEDB implements the provider-specific IRowsetFastLoad interface to expose support for Microsoft® SQL Server™ bulk
copying from a consumer to a SQL Server table.

How To (SQL Server 2000)

How to bulk copy data using IRowsetFastLoad (OLE DB)
 New Information - SQL Server 2000 SP3.

The consumer notifies SQLOLEDB of its need for bulk copying by setting the SQLOLEDB provider-specific property
SSPROP_ENABLEFASTLOAD to VARIANT_TRUE. With the property set on the data source, the consumer creates a SQLOLEDB
session. The new session allows the consumer access to IRowsetFastLoad.

To bulk copy data into a SQL Server table

1. Establish a connection to the data source.

2. Set the SQLOLEDB provider-specific data source property SSPROP_ENABLEFASTLOAD to VARIANT_TRUE. With this
property set to VARIANT_TRUE, the newly created session allows the consumer access to IRowsetFastLoad.

3. Create a session requesting the IOpenRowset interface.

4. Call IOpenRowset::OpenRowset to open a rowset that includes all the rows from the table (in which data is to be copied
using bulk-copy operation).

5. Do the necessary bindings and create an accessor using IAccessor::CreateAccessor.

6. Set up the memory buffer from which the data will be copied to the table.

7. Call IRowsetFastLoad::InsertRow to bulk copy the data in to the table.

The following example illustrates the use of IRowsetFastLoad for bulk copying of the records into a table. In this example, 10
records are added to the table IRFLTable. You need to create the table IRFLTable in the database.

The complete sample code is in this file: BulkCopyRecords.cpp. You can download an archive containing the sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

If you installed the sample files, the code sample is in this directory: C:\Program Files\Microsoft SQL
Server\80\Tools\DevTools\Samples\HowTo\OLE DB.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Obtaining a FAST_FORWARD cursor
Consumers can request different cursor behaviors in a rowset by setting certain rowset properties. If the consumer does not set
any of these rowset properties, or sets them all to their default values, SQLOLEDB implements the rowset using a default result
set. If any one of these properties are set to a value other than the default, SQLOLEDB implements the rowset using server
cursors.

How To (SQL Server 2000)

How to obtain FAST_FORWARD cursor
 New Information - SQL Server 2000 SP3.

To obtain a forward-only, read-only cursor, set the rowset properties, DBPROP_SERVERCURSOR, DBPROP_OTHERINSERT,
DBPROP_OTHERUPDATEDELETE, DBPROP_OWNINSERT, DBPROP_OWNUPDATEDELETE to VARIANT_TRUE.

To obtain FAST_FORWARD cursor

1. Establish a connection to the data source.

2. Set the rowset properties, DBPROP_SERVERCURSOR, DBPROP_OTHERINSERT, DBPROP_OTHERUPDATEDELETE,
DBPROP_OWNINSERT, DBPROP_OWNUPDATEDELETE should be set to VARIANT_TRUE

3. Execute the command.

The following example shows how to set the rowset properties to obtain a FAST_FORWARD cursor. After the properties are set, a
SELECT statement is executed to find the first and last names of authors in the pubs database.

The complete sample code is in this file: GetFastForwardCursor.cpp. You can download an archive containing the sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Using Bookmarks
Bookmarks allow consumers to return quickly to a row. The bookmark column is the column 0 in the rowset.

How To (SQL Server 2000)

How to retrieve rows using bookmarks (OLE DB)
 New Information - SQL Server 2000 SP3.

The consumer sets the dwFlag field value of the binding structure to DBCOLUMNSINFO_ISBOOKMARK to indicate that the
column is used as bookmark. The consumer also sets the rowset property DBPROP_BOOKMARKS to VARIANT_TRUE. This allows
column 0 to be present in the rowset. IRowsetLocate::GetRowsAt is then used to fetch rows starting with the row specified an
offset from a bookmark.

To retrieve rows using bookmarks

1. Establish a connection to the data source.

2. Set the rowset property DBPROP_IRowsetLocate property to VARIANT_TRUE.

3. Execute the command.

4. Set the dwFlags field of the binding structure to DBCOLUMNSINFO_ISBOOKMARK flag for the column that will be used as
a bookmark.

5. Use IRowsetLocate::GetRowsAt to fetch rows, starting with the row specified by an offset from the bookmark.

The following example shows how to fetch rows using a bookmark. In this example, the fifth row is retrieved from the result set
produced from the execution of a SELECT statement.

The complete sample code is in this file: GetRowsUsingBookmark.cpp. You can download an archive containing the sample from
the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Fetching Columns Using IRow::GetColumns (or IRow::Open)
and ISequentialStream

 New Information - SQL Server 2000 SP3.

Large data can be bound or retrieved using the ISequentialStream interface. For bound columns, the status flag indicates if the
data is truncated by setting DBSTATUS_S_TRUNCATED.

To fetch columns using IRow::GetColumns (or IRow::Open) and ISequentialStream

1. Establish a connection to the data source.

2. Execute the command (in this example, ICommandExecute::Execute() is called with IID_IRow).

3. The column data can be fetched using IRow::Open() or IRow::GetColumns().
a. IRow::Open() can be used to open an ISequentialStream on the row. Specify DBGUID_STREAM to indicate that the

column contains a stream of binary data (IStream or ISequentialStream can then be used to read the data from the
column).

b. If IRow::GetColumns() is used, then the pData element of DBCOLUMNACCESS structure is set to point to a stream
object.

4. ISequentialStream::Read() is used repeatedly to read the specified number of bytes into the consumer buffer.

Here is the sample table used by the application:

USE pubs
GO

IF EXISTS (SELECT name FROM sysobjects WHERE name = 'MyTable')
 DROP TABLE MyTable
GO

CREATE TABLE MyTable
(
 col1 int,
 col2 varchar(50),
 col3 char(50),
 col4 datetime,
 col5 float,
 col6 money,
 col7 sql_variant,
 col8 binary(50),
 col9 text,
 col10 image
)
GO

/* Enter data. */
INSERT INTO MyTable
values
(
 10,
 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 '11/1/1999 11:52 AM',
 3.14,
 99.95,
 CONVERT(nchar(50), N'AbCdEfGhIjKlMnOpQrStUvWxYz'),
 0x123456789,
 REPLICATE('AAAAABBBBB', 500),
 REPLICATE(0x123456789, 500)
)
GO

The complete sample code is in this file: FetchColumns_A.cpp. You can download an archive containing the sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

http://go.microsoft.com/fwlink/?LinkID=4172

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Fetching Columns Using IRow::GetColumns (OLE DB)
 New Information - SQL Server 2000 SP3.

The IRow interface allows direct access to columns of a single row in the result set. Thus, IRow is an efficient way to retrieve
columns from a result set with one row.

To fetch columns using IRow::GetColumns

1. Establish a connection to the data source.

2. Execute the command (in the following example, ICommandExecute::Execute() is called with IID_IRow).

3. Execute IRow::GetColumns() to fetch one or more columns in the resulting row. If you want to find the actual column size
before fetching data, set the pData in DBCOLUMNACCESS to NULL. The call to IRow::GetColumns() returns only the
column width. Another call the IRow::GetColumns() will fetch the data.

4. Execute IRow::GetColumns() until all the columns you need are accessed. The columns must be accessed in sequence.

This example shows how to fetch a single row using IRow. It also illustrates two ways to access columns in the row:

Fetching columns in groups

Obtaining the column width first and then fetching the column data.

Here is the sample table used by the application:

USE pubs
GO

IF EXISTS (SELECT name FROM sysobjects WHERE name = 'MyTable')
 DROP TABLE MyTable
GO

CREATE TABLE MyTable
(
 col1 int,
 col2 varchar(50),
 col3 char(50),
 col4 datetime,
 col5 float,
 col6 money,
 col7 sql_variant,
 col8 binary(50),
 col9 text,
 col10 image
)
GO
INSERT INTO MyTable
values
(
 10,
 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 '11/1/1999 11:52 AM',
 3.14,
 99.95,
 CONVERT(nchar(50), N'AbCdEfGhIjKlMnOpQrStUvWxYz'),
 0x123456789,
 REPLICATE('AAAAABBBBB', 500),
 REPLICATE(0x123456789, 500)
)
GO

The complete sample code is in this file: FetchColumns_B.cpp. You can download an archive containing the sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter

http://go.microsoft.com/fwlink/?LinkID=4172

their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Setting XML as a Command Using ICommandStream and
Retrieving the Results as an XML Document

 New Information - SQL Server 2000 SP3.

The ICommandStream interface can be used to set XML documents as a command, and the results can be retrieved as an XML
document.

Executing Templates with XPath Queries

The following XML template consisting of an XPath query is specified as a command using ICommandStream:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:xpath-query mapping-schema="Schema.xml">Employees</sql:xpath-query>
</ROOT>

The XPath query in the template is executed against the following mapping schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Employees" >
<AttributeType name="EmployeeID" />
<AttributeType name="FirstName" />
<AttributeType name="LastName" />
<attribute type="EmployeeID" />
<attribute type="FirstName" />
<attribute type="LastName" />
</ElementType>
</Schema>

The query returns all of the employee elements. With default mapping, the <Employees> element maps to the Employees table
in the Northwind database.

To set XML as a command and retrieving result as an XML document

1. Initialize and establish a connection to the database.

2. Obtain ICommandStream interface on ICommand.

3. Set the necessary command properties. In this example, provider specific property SSPROP_STREAM_BASEPATH is set to
the directory where the mapping schema and the template files are stored.

4. Use ICommandStream::SetCommandStream to specify the command stream. In this example, the XML template being
executed is read from a file. This is useful when you want to execute large XML templates.

5. Execute the XML command using ICommand::Execute, requesting IID_ISequentialStream interface ID.

6. Process the result. In this example, the XML read from the stream is displayed on the screen.

The complete sample code is in this file: XMLCommandAndRetrieve.cpp. You can download an archive containing the sample
from the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++® version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

Passing Parameters to Templates

This example shows how parameter values can be passed to XML commands. This XML template is specified as a command:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:header><sql:param name='CategoryName'>Confections</sql:param></sql:header>

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

<sql:query>select * from Categories where CategoryName = @CategoryName for XML AUTO</sql:query>
</ROOT>

The template includes an SQL query. The query requires a value for its parameter (@CategoryName). If no parameter value is
passed, the default value (Condiments) is used.

In passing parameter values to a template, the parameter name and value both must be specified.

The complete sample code is in this file: PassParameterToXML.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed with Microsoft Visual C++ version 6.0, and may expose properties of the Microsoft Foundation
Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

ODBC
To use the Microsoft® SQL Server™ 2000 ODBC driver, you must be able to create ODBC data sources and ensure that the server
has the correct version of the catalog stored procedures. To code an ODBC application that uses SQL Server, you must know how
to allocate ODBC handles, set attributes, connect to an instance of SQL Server, execute queries, and process results.

How To (SQL Server 2000)

Configuring the SQL Server ODBC Driver (ODBC)
Before using ODBC applications with Microsoft® SQL Server™ 2000, you must know how to upgrade the version of the catalog
stored procedures on earlier versions of SQL Server and add, delete, and test data sources.

How To (SQL Server 2000)

How to add a data source (ODBC)
 New Information - SQL Server 2000 SP3.

You can add a data source by using ODBC Administrator, programmatically (by using SQLConfigDataSource), or by creating a
file.

To add a data source by using ODBC Administrator

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click ODBC.

3. Click the User DSN, System DSN, or File DSN tab, and then click Add.

4. Click SQL Server, and then click Finish.

5. Complete the Steps in the Create a New Data Source to SQL Server Wizard.

To add a data source programmatically

Call SQLConfigDataSource with the fOption set to either ODBC_ADD_DSN or ODBC_ADD_SYS_DSN.

To add a file data source

Call SQLDriverConnect with a SAVEFILE=file_name parameter in the connect string. If the connect is successful, the ODBC
driver creates a file data source with the connection parameters in the location pointed to by the SAVEFILE parameter.

Examples

A. Create a data source using SQLConfigDataSource

The complete sample code is in this file: CreateDataSourceUsingSQLConfigDataSource.cpp. You can download a file containing
this sample from the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

B. Create a file data source

Use the SAVEFILE keyword in SQLDriverConnect to create a file data source, and then use SQLDriverConnect to connect with
the file data source. This example has been simplified by removing error handling.

The complete sample code is in this file: CreateFileDataSourceAndConnect.cpp. You can download a file containing this sample
from the SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++ version 6.0, and may
expose properties of the Microsoft Foundation Classes.

See Also

Adding or Deleting an ODBC Data Source

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkID=4172

How To (SQL Server 2000)

How to delete a data source (ODBC)
 New Information - SQL Server 2000 SP3.

You can delete a data source by using ODBC Administrator, programmatically (by using SQLConfigDataSource), or by deleting a
file.

To delete a data source by using ODBC Administrator

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click 32bit ODBC.

3. Click the User DSN, System DSN, or File DSN tab.

4. Click the data source to delete.

5. Click Remove, and then confirm the deletion.

To delete a user or system data source programmatically

Call SQLConfigDataSource with the fOption parameter set to either ODBC_REMOVE_DSN or ODBC_REMOVE_SYS_DSN.

To delete a file data source

1. On the Start menu, point to Settings, and then click Control Panel.

2. Double-click 32bit ODBC.

3. Click the File DSN tab.

4. Click the file DSN to delete.

5. Click Remove.

Examples

This example shows data source removal by using SQLConfigDataSource. It has been simplified by removing error checking.

#include <stdio.h>
#include <windows.h>
#include "sql.h"
#include <odbcinst.h>

int main() {

RETCODE retcode;

UCHAR *szDriver = "SQL Server";
UCHAR *szAttributes = "DSN=MyFileDSN";

retcode = SQLConfigDataSource(NULL,
 ODBC_REMOVE_DSN,
 szDriver,
 szAttributes);
}

See Also

Deleting a Data Source

How To (SQL Server 2000)

How to upgrade the catalog stored procedures
This procedure is needed only when:

Running a new Microsoft® SQL Server™ 2000 ODBC driver against an earlier version of SQL Server.

Running a new SQL Server OLE DB provider against an earlier version of SQL Server.

Referencing an earlier version of SQL Server in an sp_addlinkedserver, OPENROWSET, or OPENQUERY statement running
on a new version of SQL Server. These statements use the SQL Server OLE DB provider to access the target SQL Server.

To ensure the proper operation of the SQL Server OLE DB provider or SQL Server ODBC driver, you must use the Instcat.sql script
that comes with your new version of SQL Server to upgrade the catalog stored procedures on the earlier version of SQL Server.
For example, when running the SQL Server version 7.0 ODBC driver against SQL Server 6.5, you must run the SQL Server 7.0
version of Instcat.sql against SQL Server 6.5.

To upgrade the catalog stored procedures

To upgrade the catalog stored procedures, the system administrator runs a script by using the isql utility. To run isql, the
computer must be installed as a client workstation for SQL Server. The system administrator should back up the master database
before running Instcat.sql.

At a command prompt, use the isql utility to run the Instcat.sql script. For example:

C:> ISQL -Usa -Psa_password -Sserver_name -ilocation\Instcat.sql

Arguments

sa_password

Is the password of the system administrator.

server_name

Is the name of the server on which SQL Server resides.

location

Is the full path of the location of Instcat.sql. You can use Instcat.sql from an installed SQL Server (the default location is
C:\Mssql7\Install) or from the SQL Server compact disc (the default location is D:\platform where D: is the CD-ROM drive letter
and platform is the appropriate server platform directory, such as 386).

The Instcat.sql script generates many messages. Most of these indicate how rows were affected by Transact-SQL statements
issued by the script. These messages can be ignored, although the output should be scanned for messages that indicate an
execution error. When Instcat.sql is run against a version 6.0 SQL Server, the message generated about the object
sp_MS_upd_sysobj_category not existing can be ignored. The last message should indicate that Instcat.sql completed successfully.

The Instcat.sql script fails when there is not enough space available in the master database to store the catalog stored procedures
or to log the changes to existing procedures. If the Instcat.sql script fails, contact your system administrator.

See Also

Upgrading the Catalog Stored Procedures

How To (SQL Server 2000)

Connecting to SQL Server (ODBC)
Initializing an ODBC application involves allocating environment and connection handles, setting attributes for the handles to
tailor the behavior of the driver and server, and then connecting to Microsoft® SQL Server™ 2000.

How To (SQL Server 2000)

How to allocate handles and connect to SQL Server (ODBC)
 New Information - SQL Server 2000 SP3.

To allocate handles and connect to SQL Server

1. Include the ODBC header files Sql.h, Sqlext.h, Sqltypes.h.

2. Include the Microsoft® SQL Server™ 2000 driver-specific header file, Odbcss.h.

3. Call SQLAllocHandle with a HandleType of SQL_HANDLE_ENV to initialize ODBC and allocate an environment handle.

4. Call SQLSetEnvAttr with Attribute set to SQL_ATTR_ODBC_VERSION and ValuePtr set to SQL_OV_ODBC3 to indicate the
application will use ODBC 3.x-format function calls.

5. Optionally, call SQLSetEnvAttr to set other environment options or SQLGetEnvAttr to get environment options.

6. Call SQLAllocHandle with a HandleType of SQL_HANDLE_DBC to allocate a connection handle.

7. Optionally, call SQLSetConnectAttr to set connection options or SQLGetConnectAttr to get connection options.

8. Call SQLConnect to use an existing data source to connect to SQL Server.

Or

Call SQLDriverConnect to use a connection string to connect to SQL Server.

A minimum complete SQL Server connection string has one of two forms:

DSN=dsn_name;UID=login_id;PWD=password;

DRIVER={SQL Server};SERVER=server;UID=login_id;PWD=password;

If the connection string is not complete, SQLDriverConnect can prompt for the required information. This is controlled by
the value specified for the DriverCompletion parameter.

Or

Call SQLBrowseConnect multiple times in an iterative fashion to build the connection string and connect to SQL Server.

9. Optionally, call SQLGetInfo to get driver attributes and behavior for the SQL Server data source.

10. Allocate and use statements.

11. Call SQLDisconnect to disconnect from SQL Server and make the connection handle available for a new connection.

12. Call SQLFreeHandle with a HandleType of SQL_HANDLE_DBC to free the connection handle.

13. Call SQLFreeHandle with a HandleType of SQL_HANDLE_ENV to free the environment handle.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

Examples

A. Allocate handles, then connect by using SQLConnect

The example shows allocating an environment handle and a connection handle, then connecting by using SQLConnect. It has
been simplified by removing much of the error checking.

The complete sample code is in this file: AllocateEnvironmentHandleAndConnectionHandle.cpp. You can download a file
containing this sample from the SQL Server Downloads page at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=9504
http://go.microsoft.com/fwlink/?LinkID=4172

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

B. Connect to SQL Server w ithout an existing ODBC data source

This example shows a call to SQLDriverConnect to connect to an instance of SQL Server without requiring an existing ODBC
data source. By passing an incomplete connection string to SQLDriverConnect it causes the ODBC driver to prompt the user to
enter the missing information.

#define MAXBUFLEN 255

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc1 = SQL_NULL_HDBC;
SQLHSTMT hstmt1 = SQL_NULL_HSTMT;

SQLCHAR ConnStrIn[MAXBUFLEN] =
 "DRIVER={SQL Server};SERVER=MyServer";

SQLCHAR ConnStrOut[MAXBUFLEN];
SQLSMALLINT cbConnStrOut = 0;

// Make connection without data source. Ask that driver
// prompt if insufficient information. Driver returns
// SQL_ERROR and application prompts user
// for missing information. Window handle not needed for
// SQL_DRIVER_NOPROMPT.
retcode = SQLDriverConnect(hdbc1, // Connection handle
 NULL, // Window handle
 ConnStrIn, // Input connect string
 SQL_NTS, // Null-terminated string
 ConnStrOut, // Address of output buffer
 MAXBUFLEN, // Size of output buffer
 &cbConnStrOut, // Address of output length
 SQL_DRIVER_PROMPT);

See Also

SQLFreeHandle

SQLGetInfo

SQLBrowseConnect

SQLSetConnectAttr

SQLDriverConnect

SQLSetEnvAttr

SQLGetConnectAttr

How To (SQL Server 2000)

Executing Queries (ODBC)
Executing an SQL statement in an ODBC application requires allocating a statement handle, setting statement attributes, and
preparing and executing the SQL statement.

How To (SQL Server 2000)

How to use a statement (ODBC)
 New Information - SQL Server 2000 SP3.

To use a statement

1. Call SQLAllocHandle with a HandleType of SQL_HANDLE_STMT to allocate a statement handle.

2. Optionally, call SQLSetStmtAttr to set statement options or SQLGetStmtAttr to get statement attributes.

To use server cursors, you must set cursor attributes to values other than their defaults.

3. Optionally, if the statement will be executed several times, prepare the statement for execution with SQLPrepare.

4. Optionally, if the statement has bound parameter markers, bind the parameter markers to program variables by using
SQLBindParameter. If the statement was prepared, you can call SQLNumParams and SQLDescribeParam to find the
number and characteristics of the parameters.

5. Execute a statement directly by using SQLExecDirect.

Or

If the statement was prepared, execute it multiple times by using SQLExecute.

Or

Call a catalog function, which returns results.

6. Process the results by binding the result set columns to program variables, by moving data from the result set columns to
program variables by using SQLGetData, or a combination of the two methods.

Fetch through the result set of a statement one row at a time.

Or

Fetch through the result set several rows at a time by using a block cursor.

Or

Call SQLRowCount to determine the number of rows affected by an INSERT, UPDATE, or DELETE statement.

If the SQL statement can have multiple result sets, call SQLMoreResults at the end of each result set to see if there are
additional result sets to process.

7. After results are processed, the following actions may be necessary to make the statement handle available to execute a new
statement:

If you did not call SQLMoreResults until it returned SQL_NO_DATA, call SQLCloseCursor to close the cursor.

If you bound parameter markers to program variables, call SQLFreeStmt with Option set to SQL_RESET_PARAMS to
free the bound parameters.

If you bound result set columns to program variables, call SQLFreeStmt with Option set to SQL_UNBIND to free the
bound columns.

To reuse the statement handle, go to Step 2.

8. Call SQLFreeHandle with a HandleType of SQL_HANDLE_STMT to free the statement handle.

See Also

Allocating a Statement Handle

Constructing an SQL Statement

Direct Execution

Freeing a Statement Handle

Prepared Execution

SQLBindParameter

SQLDescribeParam

SQLFreeHandle

SQLGetData

SQLGetStmtAttr

SQLMoreResults

SQLRowCount

SQLSetStmtAttr

How To (SQL Server 2000)

How to set cursor options (ODBC)
To set cursor options

Call SQLSetStmtAttr to set or SQLGetStmtAttr to get the statement options that control cursor behavior.
Foption Specifies

SQL_ATTR_CURSOR_TYPE Cursor type of forward-only, static, dynamic,
or keyset-driven

SQL_ATTR_CONCURRENCY Concurrency control option of read-only,
locking, optimistic using timestamps, or
optimistic using values

SQL_ATTR_ROW_ARRAY_SIZE Number of rows retrieved in each fetch
SQL_ATTR_CURSOR_SENSITIVITY Cursor that does or does not show updates to

cursor rows made by other connections
SQL_ATTR_CURSOR_SCROLLABLE Cursor that can be scrolled forward and

backward

The default values for these attributes (forward-only, read-only, rowset size of 1) do not use server cursors. To use server
cursors, at least one of these attributes must be set to a value other than the default, and the statement being executed must
be a single SELECT statement or a stored procedure that contains a single SELECT statement. When using server cursors,
SELECT statements cannot use clauses not supported by server cursors: COMPUTE, COMPUTE BY, FOR BROWSE, and INTO.

You can control the type of cursor used either by setting SQL_ATTR_CURSOR_TYPE and SQL_ATTR_CONCURRENCY, or by
setting SQL_ATTR_CURSOR_SENSITIVITY and SQL_ATTR_CURSOR_SCROLLABLE. You should not mix the two methods of
specifying cursor behavior.

Examples

A. Allocate a statement handle, set a dynamic cursor type with row versioning optimistic concurrency, and then execute a SELECT

retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1);
retcode = SQLSetStmtAttr(hstmt1, SQL_ATTR_CURSOR_TYPE,
 (SQLPOINTER)SQL_CURSOR_DYNAMIC,
 SQL_IS_INTEGER);
retcode = SQLSetStmtAttr(hstmt1, SQL_ATTR_CONCURRENCY,
 (SQLPOINTER)SQL_CONCUR_ROWVER,
 SQL_IS_INTEGER);
retcode = SQLExecDirect(hstmt1,
 "SELECT au_lname FROM authors",
 SQL_NTS);

B. Allocate a statement handle, set a scrollable, sensitive cursor, and then execute a SELECT

retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1);
// Set the cursor options and execute the statement.
retcode = SQLSetStmtAttr(hstmt1, SQL_ATTR_CURSOR_SCROLLABLE,
 (SQLPOINTER)SQL_SCROLLABLE,
 SQL_IS_INTEGER);
retcode = SQLSetStmtAttr(hstmt1, SQL_ATTR_CURSOR_SENSITIVITY,
 (SQLPOINTER)SQL_INSENSITIVE,
 SQL_IS_INTEGER);
retcode = SQLExecDirect(hstmt1,
 "select au_lname from authors",
 SQL_NTS);

See Also

Constructing SQL Statements for Cursors

SQLGetStmtAttr

SQLSetStmtAttr

How To (SQL Server 2000)

How to execute a statement directly (ODBC)
 New Information - SQL Server 2000 SP3.

To execute a statement directly and one time only

1. If the statement has parameter markers, use SQLBindParameter to bind each parameter to a program variable. Fill the
program variables with data values, and then set up any data-at-execution parameters.

2. Call SQLExecDirect to execute the statement.

3. If data-at-execution input parameters are used, SQLExecDirect returns SQL_NEED_DATA. Send the data in chunks by using
SQLParamData and SQLPutData.

To execute a statement multiple times by using column-wise parameter binding

1. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_PARAMSET_SIZE to the number of sets (S) of parameters.

Set SQL_ATTR_PARAM_BIND_TYPE to SQL_PARAMETER_BIND_BY_COLUMN.

Set the SQL_ATTR_PARAMS_PROCESSED_PTR attribute to point to a SQLUINTEGER variable to hold the number of
parameters processed.

Set SQL_ATTR_PARAMS_STATUS_PTR to point to an array[S] of SQLUSSMALLINT variables to hold the parameter
status indicators.

2. For each parameter marker:

Allocate an array of S parameter buffers to store data values.

Allocate an array of S parameter buffers to store data lengths.

Call SQLBindParameter to bind the parameter data value and data length arrays to the statement parameter.

Set up any data-at-execution text or image parameters.

Put S data values and S data lengths into the bound parameter arrays.

3. Call SQLExecDirect to execute the statement. The driver efficiently executes the statement S times, once for each set of
parameters.

4. If data-at-execution input parameters are used, SQLExecDirect returns SQL_NEED_DATA. Send the data in chunks by using
SQLParamData and SQLPutData.

To execute a statement multiple times by using row-wise parameter binding

1. Allocate an array[S] of structures, where S is the number of sets of parameters. The structure has one element for each
parameter, and each element has two parts:

The first part is a variable of the appropriate data type to hold the parameter data.

The second part is a SQLINTEGER variable to hold the status indicator.

2. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_PARAMSET_SIZE to the number of sets (S) of parameters.

Set SQL_ATTR_PARAM_BIND_TYPE to the size of the structure allocated in Step 1.

Set the SQL_ATTR_PARAMS_PROCESSED_PTR attribute to point to a SQLUINTEGER variable to hold the number of
parameters processed.

Set SQL_ATTR_PARAMS_STATUS_PTR to point to an array[S] of SQLUSSMALLINT variables to hold the parameter
status indicators.

3. For each parameter marker, call SQLBindParameter to point the parameter's data value and data length pointer to their
variables in the first element of the array of structures allocated in Step 1. If the parameter is a data-at-execution parameter,
set it up.

4. Fill the bound parameter buffer array with data values.

5. Call SQLExecDirect to execute the statement. The driver efficiently executes the statement S times, once for each set of
parameters.

6. If data-at-execution input parameters are used, SQLExecDirect returns SQL_NEED_DATA. Send the data in chunks by using
SQLParamData and SQLPutData.

Column-wise and row-wise binding are more typically used in conjunction with SQLPrepare and SQLExecute than with
SQLExecDirect.

Examples

The example shows executing a SELECT statement by using SQLExecDirect. It has been simplified by removing all error checking.

The complete sample code is in this file: SELECTWithSQLExecDirect.cpp. You can download a file containing this sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

See Also

Binding Parameters

Direct Execution

SQLBindParameter

SQLPutData

SQLSetStmtAttr

Using Statement Parameters

http://go.microsoft.com/fwlink/?LinkID=4172

How To (SQL Server 2000)

How to prepare and execute a statement (ODBC)
 New Information - SQL Server 2000 SP3.

To prepare a statement once, and then execute it multiple times

1. Call SQLPrepare to prepare the statement.

2. Optionally, call SQLNumParams to determine the number of parameters in the prepared statement.

3. Optionally, for each parameter in the prepared statement:

Call SQLDescribeParam to get parameter information.

Bind each parameter to a program variable by using SQLBindParam. Set up any data-at-execution parameters.

4. For each execution of a prepared statement:

If the statement has parameter markers, put the data values into the bound parameter buffer.

Call SQLExecute to execute the prepared statement.

If data-at-execution input parameters are used, SQLExecute returns SQL_NEED_DATA. Send the data in chunks by
using SQLParamData and SQLPutData.

To prepare a statement with column-wise parameter binding

1. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_PARAMSET_SIZE to the number of sets (S) of parameters.

Set SQL_ATTR_PARAM_BIND_TYPE to SQL_PARAMETER_BIND_BY_COLUMN.

Set the SQL_ATTR_PARAMS_PROCESSED_PTR attribute to point to a SQLUINTEGER variable to hold the number of
parameters processed.

Set SQL_ATTR_PARAMS_STATUS_PTR to point to an array[S] of SQLUSSMALLINT variables to hold parameter status
indicators.

2. Call SQLPrepare to prepare the statement.

3. Optionally, call SQLNumParams to determine the number of parameters in the prepared statement.

4. Optionally, for each parameter in the prepared statement, call SQLDescribeParam to get parameter information.

5. For each parameter marker:

Allocate an array of S parameter buffers to store data values.

Allocate an array of S parameter buffers to store data lengths.

Call SQLBindParameter to bind the parameter data value and data length arrays to the statement parameter.

If the parameter is a data-at-execution text or image parameter, set it up.

If any data-at-execution parameters are used, set them up.

6. For each execution of a prepared statement:

Put the S data values and S data lengths into the bound parameter arrays.

Call SQLExecute to execute the prepared statement.

If data-at-execution input parameters are used, SQLExecute returns SQL_NEED_DATA. Send the data in chunks by
using SQLParamData and SQLPutData.

To prepare a statement with row-wise bound parameters

1. Allocate an array[S] of structures, where S is the number of sets of parameters. The structure has one element for each
parameter, and each element has two parts:

The first part is a variable of the appropriate data type to hold the parameter data.

The second part is a SQLINTEGER variable to hold the status indicator.

2. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_PARAMSET_SIZE to the number of sets (S) of parameters.

Set SQL_ATTR_PARAM_BIND_TYPE to the size of the structure allocated in Step 1.

Set the SQL_ATTR_PARAMS_PROCESSED_PTR attribute to point to a SQLUINTEGER variable to hold the number of
parameters processed.

Set SQL_ATTR_PARAMS_STATUS_PTR to point to an array[S] of SQLUSSMALLINT variables to hold parameter status
indicators.

3. Call SQLPrepare to prepare the statement.

4. For each parameter marker, call SQLBindParameter to point the parameter data value and data length pointer to their
variables in the first element of the array of structures allocated in Step 1. If the parameter is a data-at-execution parameter,
set it up.

5. For each execution of a prepared statement:

Fill the bound parameter buffer array with data values.

Call SQLExecute to execute the prepared statement. The driver efficiently executes the SQL statement S times, once
for each set of parameters.

If data-at-execution input parameters are used, SQLExecute returns SQL_NEED_DATA. Send the data in chunks by
using SQLParamData and SQLPutData.

Examples

The example shows executing a SELECT statement by using SQLPrepare and SQLExecute. It has been simplified by removing all
error checking.

The complete sample code is in this file: SELECTWithSQLPrepareAndSQLExecute.cpp. You can download a file containing this
sample from the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

See Also

Binding Parameters

SQLBindParameter

SQLDescribeParam

SQLPrepare

http://go.microsoft.com/fwlink/?LinkID=4172

SQLPutData

SQLSetStmtAttr

Prepared Execution

Using Statement Parameters

How To (SQL Server 2000)

Processing Results (ODBC)
Processing results in an ODBC application involves first determining the characteristics of the result set, then retrieving the data
into program variables by using either SQLBindCol or SQLGetData.

How To (SQL Server 2000)

How to retrieve result set information (ODBC)
 New Information - SQL Server 2000 SP3.

To get information about a result set

1. Call SQLNumResultCols to get the number of columns in the result set.

2. For each column in the result set:

Call SQLDescribeCol to get information about the result column.

Or

Call SQLColAttribute to get specific descriptor information about the result column.

See Also

Determining the Characteristics of a Result Set

How to process results (ODBC)

SQLColAttribute

SQLDescribeCol

SQLNumResultCols

How To (SQL Server 2000)

How to process results (ODBC)
 New Information - SQL Server 2000 SP3.

To process results

1. Retrieve result set information.

2. If bound columns are used, for each column you want to bind to, call SQLBindCol to bind a program buffer to the column.

3. For each row in the result set:

Call SQLFetch to get the next row.

If bound columns are used, use the data now available in the bound column buffers.

If unbound columns are used, call SQLGetData one or more times to get the data for unbound columns after the last
bound column. Calls to SQLGetData should be in increasing order of column number.

Call SQLGetData multiple times to get data from a text or image column.

4. When SQLFetch signals the end of the result set by returning SQL_NO_DATA, call SQLMoreResults to determine if another
result set is available.

If it returns SQL_SUCCESS, another result set is available.

If it returns SQL_NO_DATA, no more result sets are available.

If it returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, call SQLGetDiagRec to determine if the output from a PRINT
or RAISERROR statement is available.

If bound statement parameters are used for output parameters or the return value of a stored procedure, use the data now
available in the bound parameter buffers. Also, when bound parameters are used, each call to SQLExecute or
SQLExecDirect will have executed the SQL statement S times, where S is the number of elements in the array of bound
parameters. This means that there will be S sets of results to process, where each set of results comprises all of the result
sets, output parameters, and return codes usually returned by a single execution of the SQL statement.

Note that when a result set contains compute rows, each compute row is made available as a separate result set. These
compute result sets are interspersed within the normal rows and break normal rows into multiple result sets.

5. Optionally, call SQLFreeStmt with an fOption of SQL_UNBIND to release any bound column buffers.

6. If another result set is available, go to Step 1.

To cancel processing a result set before SQLFetch returns SQL_NO_DATA, call SQLCloseCursor.

Examples

The example shows how to use either SQLBindCol or SQLGetData. It has been simplified by removing all error checking. The
program can be compiled with either the SQLBindCol function or the SQLGetData function commented out, the resulting
executable operates the same.

The complete sample code is in this file: SQLBindColOrSQLGetData.cpp. You can download a file containing this sample from the
Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

See Also

Assigning Storage (Binding)

http://go.microsoft.com/fwlink/?LinkID=4172

Determining the Characteristics of a Result Set

Fetching Result Data

How to retrieve result set information (ODBC)

SQLBindCol

SQLCloseCursor

SQLFreeStmt

SQLGetData

SQLMoreResults

How To (SQL Server 2000)

Using Cursors (ODBC)
To use cursors, you must first set connection and statement attributes that control ODBC cursor behavior. Cursors allow an
application to retrieve multiple rows on each fetch and execute UPDATE, INSERT, or DELETE statements at the current location of
the cursor.

How To (SQL Server 2000)

How to use cursors (ODBC)
To use cursors

1. Call SQLSetStmtAttr to set the desired cursor attributes:

Set the SQL_ATTR_CURSOR_TYPE and SQL_ATTR_CONCURRENCY attributes (this is the preferred option).

Or

Set the SQL_CURSOR_SCROLLABLE and SQL_CURSOR_SENSITIVITY attributes.

2. Call SQLSetStmtAttr to set the rowset size by using the SQL_ATTR_ROW_ARRAY_SIZE attribute.

3. Optionally, call SQLSetCursorName to set a cursor name if positioned updates will be done by using the WHERE CURRENT
OF clause.

4. Execute the SQL statement.

5. Optionally, call SQLGetCursorName to get the cursor name if positioned updates will be done by using the WHERE
CURRENT OF clause and a cursor name was not supplied with SQLSetCursorName in Step 3.

6. Call SQLNumResultCols to get the number of columns (C) in the rowset.

7. Use column-wise binding.

Or

Use row-wise binding.

8. Fetch rowsets from the cursor as desired.

9. Call SQLMoreResults to determine if another result set is available.

If it returns SQL_SUCCESS, another result set is available.

If it returns SQL_NO_DATA, no more result sets are available.

If it returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, call SQLGetDiagRec to determine if the output from a PRINT
or RAISERROR statement is available.

If bound statement parameters are used for output parameters or the return value of a stored procedure, use the data now
available in the bound parameter buffers.

When bound parameters are used, each call to SQLExecute or SQLExecDirect will have executed the SQL statement S
times, where S is the number of elements in the array of bound parameters. This means that there will be S sets of results to
process, where each set of results comprises all of the result sets, output parameters, and return codes usually returned by a
single execution of the SQL statement.

Note that when a result set contains compute rows, each compute row is made available as a separate result set. These
compute result sets are interspersed within the normal rows and break normal rows into multiple result sets.

10. Optionally, call SQLFreeStmt with an fOption of SQL_UNBIND to release any bound column buffers.

11. If another result set is available, go to Step 6.

In Step 9, calling SQLMoreResults on a partially processed result set clears the remainder of the result set. Another way to clear a
partially processed result set is to call SQLCloseCursor.

You can control the type of cursor used by either setting SQL_ATTR_CURSOR_TYPE and SQL_ATTR_CONCURRENCY, or by setting
SQL_ATTR_CURSOR_SENSITIVITY and SQL_ATTR_CURSOR_SCROLLABLE. You should not mix the two methods of specifying
cursor behavior.

See Also

How Cursors Are Implemented

How to use rowset binding (ODBC)

SQLFreeStmt

SQLGetCursorName

SQLMoreResults

SQLNumResultCols

SQLSetStmtAttr

Using Default Result Sets

How To (SQL Server 2000)

How to use rowset binding (ODBC)
To use column-wise binding

1. For each bound column

Allocate an array of R (or more) column buffers to store data values, where R is number of rows in the rowset.

Optionally, allocate an array of R (or more) column buffers to store data lengths.

Call SQLBindCol to bind the column's data value and data length arrays to the column of the rowset.

2. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset (R).

Set SQL_ATTR_ROW_BIND_TYPE to SQL_BIND_BY_COLUMN.

Set the SQL_ATTR_ROWS FETCHED_PTR attribute to point to a SQLUINTEGER variable to hold the number of rows
fetched.

Set SQL_ATTR_ROW_STATUS_PTR to point to an array[R] of SQLUSSMALLINT variables to hold the row-status
indicators.

3. Execute the statement.

4. Each call to SQLFetch or SQLFetchScroll retrieves R rows and transfers the data into the bound columns.

To use row-wise binding

1. Allocate an array[R] of structures, where R is the number of rows in the rowset. The structure has one element for each
column, and each element has two parts:

The first part is a variable of the appropriate data type to hold the column data.

The second part is a SQLINTEGER variable to hold the column status indicator.

2. Call SQLSetStmtAttr to set the following attributes:

Set SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset (R).

Set SQL_ATTR_ROW_BIND_TYPE to the size of the structure allocated in Step 1.

Set the SQL_ATTR_ROWS_FETCHED_PTR attribute to point to a SQLUINTEGER variable to hold the number of rows
fetched.

Set SQL_ATTR_PARAMS_STATUS_PTR to point to an array[R] of SQLUSSMALLINT variables to hold the row-status
indicators.

3. For each column in the result set, call SQLBindCol to point the data value and data length pointer of the column to their
variables in the first element of the array of structures allocated in Step 1.

4. Execute the statement.

5. Each call to SQLFetch or SQLFetchScroll retrieves R rows and transfers the data into the bound columns.

See Also

How Cursors Are Implemented

How to use cursors (ODBC)

SQLBindCol

SQLFetchScroll

SQLSetStmtAttr

Using Default Result Sets

How To (SQL Server 2000)

How to fetch and update rowsets (ODBC)
To fetch and update rowsets

1. Optionally, call SQLSetStmtAttr with an fOption of SQL_ROW_ARRAY_SIZE to change the number of rows (R) in the
rowset.

2. Call SQLFetch or SQLFetchScroll to get a rowset.

3. If bound columns are used, use the data values and data lengths now available in the bound column buffers for the rowset.

If unbound columns are used, for each row call SQLSetPos with Operation set to SQL_POSITION to set the cursor position;
then, for each unbound column:

Call SQLGetData one or more times to get the data for unbound columns after the last bound column of the rowset.
Calls to SQLGetData should be in order of increasing column number.

Call SQLGetData multiple times to get data from a text or image column.

4. Set up any data-at-execution text or image columns.

5. Call SQLSetPos or SQLBulkOperations to set the cursor position, refresh, update, delete, or add row(s) within the rowset.

If data-at-execution text or image columns are used for an update or add operation, handle them.

6. Optionally, execute a positioned UPDATE or DELETE statement, specifying the cursor name (available from
SQLGetCursorName) and using a different statement handle on the same connection.

See Also

Bookmarking Rows

Changing Rows with Positioned Operations

Scrolling and Retrieving Rows

SQLFetchScroll

SQLGetCursorName

SQLGetData

SQLSetStmtAttr

How To (SQL Server 2000)

Performing Transactions (ODBC)
In ODBC, transactions cannot span connections. ODBC applications can use the standard ODBC transaction management
functions to work with transactions on individual connections. ODBC applications can also use the Microsoft Distributed
Transaction Coordinator (MS DTC) to include multiple Microsoft® SQL Server™ connections in a single transaction, even when
the connections are to separate servers.

How To (SQL Server 2000)

How to use Microsoft Distributed Transaction Coordinator
(ODBC)
To update two or more SQL Servers by using MS DTC

1. Connect to MS DTC by using the MS DTC OLE DtcGetTransactionManager function. For information about MS DTC, see
Microsoft Distributed Transaction Coordinator.

2. Call SQLDriverConnect once for each Microsoft® SQL Server™ connection you want to establish.

3. Call the MS DTC OLE ITransactionDispenser::BeginTransaction function to begin an MS DTC transaction and obtain a
Transaction object that represents the transaction.

4. Call SQLSetConnectAttr one or more times for each ODBC connection you want to enlist in the MS DTC transaction.
SQLSetConnectAttr must be called with an fOption of SQL_ATTR_ENLIST_IN_DTC and a vParam of the Transaction object
(obtained in Step 3).

5. Call SQLExecDirect once for each SQL Server you want to update.

6. Call the MS DTC OLE ITransaction::Commit function to commit the MS DTC transaction. The Transaction object is no
longer valid.

To perform a series of MS DTC transactions, repeat Steps 3 through 6.

To release the reference to the Transaction object, call the MS DTC OLE ITransaction::Return function.

To use an ODBC connection with an MS DTC transaction, and then use the same connection with a local SQL Server transaction,
call SQLSetConnectAttr with a vParam of SQL_DTC_DONE.

Note You can also call SQLSetConnectAttr and SQLExecDirect in turn for each SQL Server instead of calling them as
suggested earlier in Steps 4 and 5.

See Also

Performing Distributed Transactions

SQLDriverConnect

SQLSetConnectAttr

How To (SQL Server 2000)

Running Stored Procedures (ODBC)
The Microsoft® SQL Server™ ODBC driver supports executing stored procedures as remote stored procedures. Executing a stored
procedure as a remote stored procedure allows the driver and the server to optimize the performance of executing the procedure.

How To (SQL Server 2000)

How to call stored procedures (ODBC)
When a SQL statement calls a stored procedure using the ODBC CALL escape clause, the Microsoft® SQL Server™ driver sends
the procedure to SQL Server using the remote stored procedure call (RPC) mechanism. RPC requests bypass much of the
statement parsing and parameter processing in SQL Server and are faster than using the Transact-SQL EXECUTE statement.

To run a procedure as an RPC

1. Construct a SQL statement that uses the ODBC CALL escape sequence. The statement uses parameter markers for each
input, input/output, and output parameter, and for the procedure return value (if any):

{? = CALL procname (?,?)}

2. Call SQLBindParameter for each input, input/output, and output parameter, and for the procedure return value (if any).

3. Execute the statement with SQLExecDirect.

Note If an application submits a procedure using the Transact-SQL EXECUTE syntax (as opposed to the ODBC CALL escape
sequence), the SQL Server ODBC driver passes the procedure call to SQL Server as a SQL statement rather than as an RPC. Also,
output parameters are not returned if the Transact-SQL EXECUTE statement is used.

See Also

Batching Stored Procedure Calls

Running Stored Procedures

Calling a Stored Procedure

SQLBindParameter

Procedures

How To (SQL Server 2000)

How to process return codes and output parameters (ODBC)
 New Information - SQL Server 2000 SP3.

Microsoft® SQL Server™ stored procedures can have integer return codes and output parameters. The return codes and output
parameters are sent in the last packet from the server and are not available to the application until SQLMoreResults returns
SQL_NO_DATA.

To process return codes and output parameters

1. Construct a SQL statement that uses the ODBC CALL escape sequence. The statement should use parameter markers for
each input, input/output, and output parameter, and for the procedure return value (if any).

2. Call SQLBindParameter for each input, input/output, and output parameter, and for the procedure return value (if any).

3. Execute the statement with SQLExecDirect.

4. Process result sets until SQLFetch or SQLFetchScroll returns SQL_NO_DATA while processing the last result set or until
SQLMoreResults returns SQL_NO_DATA. At this point, the variables bound to the return code and output parameters are
filled with returned data values.

Examples

The example shows processing a return code and output parameter. Error-checking code is removed to simplify this example.

The complete sample code is in this file: ProcessReturnCodes.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Managing text and image Columns (ODBC)
The Microsoft® SQL Server™ ODBC driver supports using text and image parameters and retrieving data from text, ntext, and
image columns in result sets.

How To (SQL Server 2000)

How to use data-at-execution parameters (ODBC)
 New Information - SQL Server 2000 SP3.

To use data-at-execution text, ntext, or image parameters

1. When calling SQLBindParameter to bind a program buffer to the statement parameter:

Use a pcbValue of SQL_LEN_DATA_AT_EXEC(length) where length is the total length of the text, ntext, or image
parameter data in bytes.

Use an rgbValue of a program-defined parameter identifier.

2. Calling SQLExecDirect or SQLExecute returns SQL_NEED_DATA, which indicates that data-at-execution parameters are
ready for processing.

3. For each data-at-execution parameter:

Call SQLParamData to get the program-defined parameter ID. It will return SQL_NEED_DATA if there is another data-
at-execution parameter.

Call SQLPutData one or more times, to send the parameter data, until length is sent.

4. Call SQLParamData to indicate that all the data for the final data-at-execution parameter is sent. It will not return
SQL_NEED_DATA.

Examples

The example shows using SQLPutData to fill the data in a data-at-execution text parameter. Error-checking code is removed to
simplify this example.

The complete sample code is in this file: FillDataAtExecution.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft® Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Bound vs. Unbound text and image Columns

SQLBindParameter

Data-at-execution and text, ntext, or image Columns

SQLPutData

Managing text and image Columns

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to use data-at-execution columns (ODBC)
 New Information - SQL Server 2000 SP3.

To use data-at-execution text, ntext, or image columns

1. For each data-at-execution column, put special values into the buffers previously bound by SQLBindCol:

Into the pcbValue data value buffer, put SQL_LEN_DATA_AT_EXEC(length) where length is the total length of the text,
ntext, or image column data in bytes.

Into the rgbValue data length buffer, put a program-defined column identifier.

2. Calling SQLSetPos returns SQL_NEED_DATA, which indicates that data-at-execution columns are ready for processing.

3. For each data-at-execution column:

Call SQLParamData to get the column array pointer. It will return SQL_NEED_DATA if there is another data-at-
execution column.

Call SQLPutData one or more times to send the column data, until length is sent.

4. Call SQLParamData to indicate that all the data for the final data-at-execution column is sent. It will not return
SQL_NEED_DATA.

Examples

The example shows using SQLGetData to retrieve the data from a data-at-execution text column. Error-checking code was
removed to simplify this example.

The complete sample code is in this file: RetrieveDataAtExecution.cpp. You can download an archive containing the sample from
the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Bound vs. Unbound text and image Columns

SQLBindCol

Data-at-execution and text/ntext/image Columns

SQLPutData

Managing text and image Columns

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

Profiling ODBC Driver Performance (ODBC)
The Microsoft® SQL Server™ ODBC driver has two driver-specific options for profiling the performance of the driver.

The SQL Server ODBC driver can log performance statistics in file. The log file is a tab-delimited file that can be analyzed in any
spreadsheet supporting tab-delimited files, such as Microsoft Excel.

The driver can also log long-running queries (queries that do not get a response from the server in a specified length of time).
These queries can later be analyzed by programmers and database administrators.

How To (SQL Server 2000)

How to profile driver performance data (ODBC)
 New Information - SQL Server 2000 SP3.

To log driver performance data using ODBC Administrator

1. In Control Panel, double-click 32-bit ODBC.

2. Click the User DSN, System DSN, or File DSN tab.

3. Click the data source for which to log performance.

4. Click Configure.

5. Navigate the Microsoft SQL Server Configure DSN Wizard to the page with Log ODBC driver statistics to the log file.

6. Select Log ODBC driver statistics to the log file. In the box, place the name of the file where the statistics should be
logged. Optionally, click Browse to browse the file system for the statistics log.

To log driver performance data programmatically

1. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA_LOG and vParam set to the full path and file name
of the performance data log file. For example:

"C:\\Odbcperf.log"

2. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA and vParam set to SQL_PERF_START to start
logging performance data.

3. Optionally, call SQLSetConnectAttr with fOption set to SQL_COPT_SS_LOG_NOW and vParam set to NULL to write a tab-
delimited record of performance data to the performance data log file. This can be done multiple times as the application
runs.

4. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA and vParam set to SQL_PERF_STOP to stop
logging performance data.

To pull driver performance data into an application

1. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA and vParam set to SQL_PERF_START to start
profiling performance data.

2. Call SQLGetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA and pvParam set to the address of a pointer to a
SQLPERF structure. The first such call sets the pointer to the address of a valid SQLPERF structure that contains current
performance data. The driver does not continually refresh the data in the performance structure. The application must
repeat the call to SQLGetConnectAttr anytime it needs to refresh the structure with more current performance data.

3. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_DATA and vParam set to SQL_PERF_STOP to stop
logging performance data.

The SQLPERF structure is defined in Odbcss.h as follows:

typedef struct sqlperf
{
 // Application profile statistics
 DWORD TimerResolution;
 DWORD SQLidu;
 DWORD SQLiduRows;
 DWORD SQLSelects;
 DWORD SQLSelectRows;
 DWORD Transactions;
 DWORD SQLPrepares;
 DWORD ExecDirects;
 DWORD SQLExecutes;

 DWORD CursorOpens;
 DWORD CursorSize;
 DWORD CursorUsed;
 LDOUBLE PercentCursorUsed;
 LDOUBLE AvgFetchTime;
 LDOUBLE AvgCursorSize;
 LDOUBLE AvgCursorUsed;
 DWORD SQLFetchTime;
 DWORD SQLFetchCount;
 DWORD CurrentStmtCount;
 DWORD MaxOpenStmt;
 DWORD SumOpenStmt;

 // Connection statistics
 DWORD CurrentConnectionCount;
 DWORD MaxConnectionsOpened;
 DWORD SumConnectionsOpened;
 DWORD SumConnectionTime;
 LDOUBLE AvgTimeOpened;

 // Network statistics
 DWORD ServerRndTrips;
 DWORD BuffersSent;
 DWORD BuffersRec;
 DWORD BytesSent;
 DWORD BytesRec;

 // Time statistics
 DWORD msExecutionTime;
 DWORD msNetworkServerTime;

} SQLPERF;

Examples

The example shows both the creation of a performance data log file and displaying performance data directly from the SQLPERF
data structure. Error-checking code is removed to simplify this example.

The complete sample code is in this file: CreateAndDisplayPerformanceLog.cpp. You can download an archive containing the
sample from the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft® Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Profiling ODBC Driver Performance

SQLSetConnectAttr

SQLGetConnectAttr

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to log long-running queries (ODBC)
 New Information - SQL Server 2000 SP3.

To log long-running queries using ODBC Administrator

1. In Control Panel, double-click 32-bit ODBC.

2. Click the User DSN, System DSN, or File DSN tab.

3. Click the data source for which to log long-running queries.

4. Click Configure.

5. Navigate the Microsoft SQL Server Configure DSN Wizard to the page with Save long-running queries to the log file.

6. Select Save long-running queries to the log file. In the box, place the name of the file where the long-running queries
should be logged. Optionally, click Browse to browse the file system for the query log.

7. Set a query time-out interval, in milliseconds, in the Long query time (milliseconds) box.

To log long-running queries data programmatically

1. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_QUERY_LOG and vParam set to the full path and file
name of the long-running query log file. For example:

C:\\Odbcqry.log

2. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_QUERY_INTERVAL and vParam set to the time-out
interval, in milliseconds.

3. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_QUERY and vParam set to SQL_PERF_START to start
logging long-running queries.

4. Call SQLSetConnectAttr with fOption set to SQL_COPT_SS_PERF_QUERY and vParam set to SQL_PERF_STOP to stop
logging long-running queries.

Examples

The example shows the creation of a long-running query log file. Error-checking code is removed to simplify this example.

The complete sample code is in this file: LogLongRunningQuery.cpp. You can download an archive containing the sample from
the Microsoft® SQL Server™ Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Profiling ODBC Driver Performance

SQLSetConnectAttr

SQLGetConnectAttr

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to process ODBC errors (ODBC)
 New Information - SQL Server 2000 SP3.

Two ODBC function calls can be used to retrieve ODBC messages: SQLGetDiagRec and SQLGetDiagField. To obtain primary
ODBC-related information in the SQLState, pfNative, and ErrorMessage diagnostic fields, call SQLGetDiagRec until it returns
SQL_NO_DATA. For each diagnostic record, SQLGetDiagField can be called to retrieve individual fields. All driver-specific fields
must be retrieved using SQLGetDiagField.

SQLGetDiagRec and SQLGetDiagField are processed by ODBC Driver Manager, not an individual driver. ODBC Driver Manager
does not cache driver-specific diagnostic fields until a successful connection has been made. Calling SQLGetDiagField for driver-
specific diagnostic fields is not possible before a successful connection. This includes the ODBC connection commands, even if
they return SQL_SUCCESS_WITH_INFO. Driver-specific diagnostic fields will not be available until the next ODBC function call.

Examples

The example shows a simple error handler that calls SQLGetDiagRec for the standard ODBC information. It then tests for a valid
connection, and if there is, it calls SQLGetDiagField for the Microsoft® SQL Server™ ODBC driver-specific diagnostic fields.

The complete sample code is in this file: ProcessODBCErrors.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

Handling Errors and Messages

SQLGetDiagField

Diagnostic Records and Fields

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to bulk copy with the SQL Server ODBC driver (ODBC)
When used with Microsoft® SQL Server™ version 7.0, the SQL Server ODBC driver supports the same bulk copy functions
supported by the DB-Library API.

How To (SQL Server 2000)

How to bulk copy without a format file (ODBC)
 New Information - SQL Server 2000 SP3.

To bulk copy without a format file

1. Allocate an environment handle and a connection handle.

2. Set SQL_COPT_SS_BCP and SQL_BCP_ON to enable bulk copy operations.

3. Connect to Microsoft® SQL Server™.

4. Call bcp_init to set the following information:

The name of the table or view to bulk copy from or to.

The name of the data file that contains the data to copy into the database or that receives data when copying from the
database.

The name of a data file to receive any bulk copy error messages (specify NULL if you do not want a message file).

The direction of the copy: DB_IN from the file to the view or table, or DB_OUT to the file from the table or view.

5. Call bcp_exec to execute the bulk copy operation.

When DB_OUT is set with these steps, the file is created in native format. The file can then be bulk copied into a server by
following these same steps, except that DB_OUT is set instead of DB_IN. This works only if both the source and target tables have
exactly the same structure.

Examples

The example shows using bulk copy functions to create a native mode data file. Most error-checking code was removed to
simplify this example.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

The complete sample code is in this file: BulkCopyNativeMode.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

The data file created by this sample is a native mode file. To bulk copy the data back into the table, recompile the application after
changing the bcp_init call from BCP_OUT to BCP_IN. To use the file as native-mode input to the bcp utility, enter at a command
prompt:

bcp MyDB..DateTable in c:\BCPODBC.bcp /n /SMyServer
/Usa /PMyPassWord

See Also

bcp_exec

Using Data Files and Format Files

bcp_init

http://go.microsoft.com/fwlink/?LinkId=9504
http://go.microsoft.com/fwlink/?LinkID=4172

How To (SQL Server 2000)

How to bulk copy a SELECT result set (ODBC)
 New Information - SQL Server 2000 SP3.

To bulk copy out the result set of a SELECT statement

1. Allocate an environment handle and a connection handle.

2. Set SQL_COPT_SS_BCP and SQL_BCP_ON to enable bulk copy operations.

3. Connect to Microsoft® SQL Server™.

4. Call bcp_init to set the following information:

Specify NULL for the szTable parameter.

The name of the data file that receives result set data.

The name of a data file to receive any bulk copy error messages (specify NULL if you do not want a message file).

The direction of the copy: DB_OUT.

5. Call bcp_control, set eOption to BCPHINTS and place in iValue a pointer to a SQLTCHAR array containing the SELECT
statement.

6. Call bcp_exec to execute the bulk copy operation.

When using these steps the file is created in native format. You can convert the data values to other data types by using
bcp_colfmt, for more information, see the How to create a bulk copy format file (ODBC) section.

Examples

The example shows using bulk copy functions to bulk copy out the result set of a SELECT statement. Most error-checking code is
removed to simplify this example.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

The complete sample code is in this file: BulkCopySelectResult.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

bcp_init

bcp_control

bcp_exec

http://go.microsoft.com/fwlink/?LinkId=9504
http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to create a bulk copy format file (ODBC)
 New Information - SQL Server 2000 SP3.

To create a bulk copy format file

1. Allocate an environment handle and a connection handle.

2. Set SQL_COPT_SS_BCP and SQL_BCP_ON to enable bulk copy operations.

3. Connect to Microsoft® SQL Server™.

4. Call bcp_init to set the following information:

The name of the table or view to bulk copy from or to.

The name of the data file that contains the data to copy into the database or that receives data when copying from the
database.

The name of a data file to receive any bulk copy error messages (specify NULL if you do not want a message file).

The direction of the copy: DB_OUT to the file from the table or view.

5. Call bcp_columns to set the number of columns.

6. Call bcp_colfmt for each column to define its characteristics in the data file.

7. Call bcp_writefmt to create a format file describing the data file to be created by the bulk copy operation.

8. Call bcp_exec to execute the bulk copy operation.

A bulk copy operation run in this way creates both a data file containing the bulk copied data and a format file describing the
layout of the data file.

Examples

The example shows using bulk copy functions to create both a data file and a format file. Error-checking code was removed to
simplify this example.

The complete sample code is in this file: BulkCopyWithFormat.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

To bulk copy this data file back into the database, see How to bulk copy using a format file. To use this data file as the input to the
bcp utility, enter at a command prompt:

bcp pubs..BCPDate in C:\Bcpodbc.bcp /fc:\Bcpfmt.fmt /SMyServer
/Usa /PMyPassWord

See Also

bcp_colfmt

bcp_writefmt

bcp_columns

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How to bulk copy by using a format file (ODBC)

bcp_exec

Using Data Files and Format Files

bcp_init

How To (SQL Server 2000)

How to bulk copy by using a format file (ODBC)
 New Information - SQL Server 2000 SP3.

To bulk copy by using a format file

1. Allocate an environment handle and a connection handle.

2. Set SQL_COPT_SS_BCP and SQL_BCP_ON to enable bulk copy operations.

3. Connect to Microsoft® SQL Server™.

4. Call bcp_init to set the following information:

The name of the table or view to bulk copy from or to.

The name of the data file that contains the data to copy into the database or that receives data when copying from the
database.

The name of a data file to receive any bulk copy error messages (specify NULL if you do not want a message file).

The direction of the copy: DB_IN from the file to the table or view.

5. Call bcp_readfmt to read the format file describing the data file to be used by the bulk copy operation.

6. Call bcp_exec to execute the bulk copy operation.

Examples

The example shows using bulk copy functions with both a data file and a format file. Error-checking code was removed to simplify
this example.

The complete sample code is in this file: FillDataAtExecution.cpp. You can download an archive containing the sample from the
SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

bcp_exec

How to bulk copy by using a format file

bcp_init

Using Data Files and Format Files

bcp_readfmt

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

How To (SQL Server 2000)

How to bulk copy data from program variables (ODBC)
 New Information - SQL Server 2000 SP3.

To use bulk copy functions directly on program variables

1. Allocate an environment handle and a connection handle.

2. Set SQL_COPT_SS_BCP and SQL_BCP_ON to enable bulk copy operations.

3. Connect to Microsoft® SQL Server™.

4. Call bcp_init to set the following information:

The name of the table or view to bulk copy from or to.

Specify NULL for the name of the data file.

The name of an data file to receive any bulk copy error messages (specify NULL if you do not want a message file).

The direction of the copy: DB_IN from the application to the view or table or DB_OUT to the application from the table
or view.

5. Call bcp_bind for each column in the bulk copy to bind the column to a program variable.

6. Fill the program variables with data, and call bcp_sendrow to send a row of data.

7. After several rows have been sent, call bcp_batch to checkpoint the rows already sent. It is good practice to call bcp_batch
at least once per 1000 rows.

8. After all rows have been sent, call bcp_done to complete the operation.

You can vary the location and length of program variables during a bulk copy operation by calling bcp_colptr and bcp_collen.

Use bcp_control to set various bulk copy options. Use bcp_moretext to send text, ntext, and image data in segments to the
server.

Examples

The example shows using bulk copy functions to bulk copy data from program variables to SQL Server using bcp_bind and
bcp_sendrow. Error-checking code is removed to simplify this example.

The complete sample code is in this file: BulkCopyFromVariables.cpp. You can download an archive containing the sample from
the SQL Server Downloads page at this Microsoft Web site.

This sample was developed for ODBC version 3.0 or later. It was developed with Microsoft Visual C++® version 6.0, and may
expose properties of the Microsoft Foundation Classes.

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users to enter
their credentials at run time. Avoid storing credentials in a file. If you must persist credentials, you should encrypt them with the
Win32 cryptoAPI.

See Also

bcp_batch

bcp_init

bcp_bind

bcp_sendrow

bcp_done

http://go.microsoft.com/fwlink/?LinkID=4172
http://go.microsoft.com/fwlink/?LinkId=9504

Bulk Copying from Program Variables

SQL Server 2000 (64-bit)

SQL Server Home Page

Differences Between 32-bit and 64-bit Releases

SQL Server Books Online (64 - bit)

Technical Support

Microsoft Product Support Services (PSS)
Microsoft SQL Server Support
Knowledge Base (KB) Search
Microsoft TechNet
Microsoft Windows Hardware Compatibility List
Troubleshooting

Microsoft Accessibility Web Site

SQL Server Printed Documentation

White Papers

Feedback

Samples

Web Links

Microsoft SQL Server Product Web Site
Microsoft SQL Server Developer Center
Professional Association for SQL Server
SQL Server Magazine
Microsoft Newsgroups
MSDN Online
Microsoft SQL Server Web Site, English Query Page
Microsoft SQL Server Web Site, Analysis Services Page
XML Developer Center

http://www.microsoft.com/isapi/redir.dll?prd=productsupport
http://www.microsoft.com/isapi/redir.dll?Prd=support&Ar=sqlbook&Olcid=0x0409&Clcid=0x0409
http://www.microsoft.com/isapi/redir.dll?Prd=Support&Ar=SearchKB
http://www.microsoft.com/isapi/redir.dll?Prd=technet&Ar=sql
http://www.microsoft.com/isapi/redir.dll?prd=hardware compatibility list
http://www.microsoft.com/isapi/redir.dll?Prd=accessibility&Ar=enable
http://www.iseminger.com/wprs/sql
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=sqlserver
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home
http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=sqlserver
http://www.sqlpass.org/
http://www.sqlmag.com/
news://msnews.microsoft.com
http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=eq
http://www.microsoft.com/isapi/redir.dll?Prd=SQL&Sbp=Analysis Services&Ar=OLAP
http://www.microsoft.com/isapi/redir.dll?prd=xml

SQL Server 2000 (64-bit)

Introducing SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) provides full native support for the 64-bit version of the Microsoft Windows® operating
system. This version of SQL Server 2000 provides many of the features of the 32-bit version, as well as providing support for the
extended 64-bit hardware. SQL Server 2000 (64-bit) takes advantage of the large memory capabilities of the 64-bit Windows
platform, including support for up to 32 terabytes of physical memory. SQL Server 2000 (64-bit) provides new levels of scalability
while providing complete compatibility with the 32-bit version of SQL Server 2000.

Topic Description
About This Release (64-bit) Outlines what is new in this release.
Editions of SQL Server 2000 (64-bit) Describes the different editions of SQL

Server 2000 (64-bit).
Differences Between 64-bit and 32-bit
Releases (64-bit)

Describes differences you may observe in
the 64-bit version of SQL Server 2000.

Sending Feedback (64-bit) Provides instructions for commenting on
this documentation.

Additional Resources (64-bit) Describes where to go on the Web for
help and information.

SQL Server 2000 (64-bit)

About This Release (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This release of Microsoft® SQL Server™ 2000 (64-bit) includes the SQL Server 2000 (64-bit) Enterprise Edition. To run this
release of SQL Server 2000 (64-bit), you must use the 64-bit Microsoft Windows® operating system: the 64-bit versions of the
Windows® Server 2003 family.

Documentation for This Release

To see the setup documentation file, open the Setupsql.chm file in the following location: Systemdrive:\Program Files\Microsoft
SQL Server\80\SetupBootstrap\Help\1033\.

After Setup completes, you can view the documentation for SQL Server by clicking the Help button, pressing the F1 key in dialog
boxes or interface elements, or from the Start menu by selecting Programs, Microsoft SQL Server, and then Books Online.

SQL Server 2000 (64-bit)

Editions of SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This release of Microsoft® SQL Server™ 2000 (64-bit) is available in these editions:

SQL Server 2000 Enterprise Edition (64-bit)

Used as a production database server with a 64-bit processor. Supports most of the features available in the 32-bit version of SQL
Server 2000, and scales to the performance levels required to support the largest Web sites and enterprise online transaction
processing (OLTP) and data warehousing systems. It has three installation features, SQL Server, Analysis Server, and Books
Online, as well as several subfeatures. The default is for Setup to install all three features and all subfeatures. On the Feature
Selection page of the Installation Wizard, you can choose and configure the features to install. For more information, see
Features of SQL Server 2000 (64-bit).

SQL Server 2000 (64-bit)

Differences Between 64-bit and 32-bit Releases (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This section describes differences you need to consider when installing and using the 64-bit version of Microsoft® SQL Server™
2000.

Setup and Installation

Windows Installer-Based

SQL Server 2000 (64-bit) uses the Windows Installer to completely integrate the installation of SQL Server features in a single
feature tree. Minimum and typical installation modes are no longer implemented. Setup initially displays the feature tree with all
available features selected. Administrators can customize installations by choosing items on the feature tree and changing
installation paths.

Setup Feature Tree Interaction with Parent/Child Features

In this release of SQL Server 2000 (64-bit), child feature selection is more limited than in the 32-bit version of SQL Server 2000.
For example, the Tools feature installs all tools; there is no option to select individual tools. Similarly, Server Components are
limited to SQL Server and the Full-Text Search Engine. The full selection of child features will be enabled in the next major release.

Connectivity-Only Option Not Supported

The Connectivity-Only option is not implemented during the SQL Server 2000 (64-bit) Setup. The Connectivity-Only option in
previous versions installed Microsoft Data Access Components (MDAC) and JET. JET is not available for the 64-bit version of SQL
Server 2000. MDAC 64-bit components are installed by the 64-bit versions of the Windows® Server 2003 family as part of its
core components.

Remote Installation

SQL Server 2000 (64-bit) does not support remote installation.

Previous Version Upgrades

Previous versions of SQL Server for the 32-bit computer are not supported to run on the 64-bit platform; upgrades of 32-bit
instances are not supported in this release.

Data Migration

Data migration from SQL Server 2000 to SQL Server 2000 (64-bit) is supported. Attaching a 32-bit database to a 64-bit instance
is possible by using detach/attach or backup/restore in 32-bit Enterprise Manager. You can move databases back and forth
between 32-bit and 64-bit versions of SQL Server. Migrating data from SQL Server version 7.0 is also supported using the same
methods. Downgrading data to SQL Server 7.0 from SQL Server 2000 (64-bit) is not supported.

Documentation for Both SQL Server 2000 SP3 and SQL Server 2000 (64-bit)

This release of Books Online includes documentation for both SQL Server 2000 Service Pack 3 (SP3) and SQL Server 2000 (64-
bit). The Books Online table of contents is organized by platform: 64-bit content is grouped together in a node entitled "SQL
Server 2000 (64-bit)," and 32-bit topics are grouped together in a node called "SQL Server 2000."

Content specific to the 64-bit platform is identified below the topic title as follows: "This topic applies only to SQL Server 2000
(64-bit)." All 64-bit topics also include "64-bit" in the topic title. Topics that include content for SP3 changes in behavior include
the following tag below the topic title: "New Information – SQL Server 2000 SP3." Not all 32-bit topics have been updated for
SP3.

Index entries for 32-bit and 64-bit content have been combined. As a result, keyword searches may return a combined list of 32-
bit and 64-bit topics. Topics that apply to the 64-bit SQL Server can be identified by the "64-bit" tag in the topic title, and also by
the tag below the topic title that states, "This topic applies only to SQL Server 2000 (64-bit)."

Maintenance

Feature Maintenance

SQL Server 2000 (64-bit) uses Add or Remove Programs in Control Panel to fully support the addition and removal of
individual features, as well as to remove instances of SQL Server. You can also use the Setup user interface or command line for
installation maintenance. Feature maintenance for clustered installations is not supported.

Instance Maintenance

Maintenance activities on existing installations are supported with Add or Remove Programs in Control Panel as well as by the
Setup program. Each installed instance (except for clustered installations) is listed in the Add or Remove Programs dialog box.
Any non-cluster instance may be removed or changed with the Add or Remove Programs. Instance maintenance may also be
performed on the setup command line by specifying features on the command line or in an .ini file. For information about cluster
maintenance, see the section on failover clustering at the end of this topic.

Editions and Components

Supported Editions

For this release, only the Enterprise Edition is available. The SQL Server 2000 (64-bit) Desktop Engine is not available.

Network Libraries

The Network Library configuration page is not included in SQL Server 2000 (64-bit). Setup initially enables Shared Memory,
Named Pipes, and TCP/IP. Use the SQL Server Network Utility to change the settings that enable or disable protocols.
Configuration of Network Libraries is not supported in Setup, but is still supported by the SQL Server Network Utility. Configure
client network libraries using the Client Network Utility (cliconfg.exe) included with the 64-bit versions of the Windows Server
2003 family.

Services

The Service Account dialog supports the SQL Server Service (MSSQLSERVER, MSSQL$<instancename>), the SQL Agent Service
(SQLSERVERAGENT, SQLAgent$<instancename>), and the Analysis Services (MSSQLServerOLAPService) account. The Remote
Account Information dialog supports the Cluster Setup Admin account for use when installing a virtual server. Command-line
support for configuration of these accounts is also provided.

Code Samples

Code samples are not installed by Setup.

English Query

English Query is not supported.

Analysis Services

Analysis Services Integrated into SQL Server Setup

Analysis Services can be installed at the same time as the SQL Server relational database engine and other SQL Server
components. It is part of the Windows Installer feature tree, in which you can select the features you want to include in your
installation. Analysis Services appears in the feature tree with Data and SQL Repository child features.

Analysis Services Uses the SQL Server Repository

The 64-bit version of Analysis Services uses SQL Server instead of Jet (.MDB) for its meta data repository. If the full SQL Server is
not installed with Analysis Services, the SQL Repository child feature installs the core SQL Server files and enables you to specify
the location of these files.

Tools and Utilities

Graphical User Interface Management Tools

To administer a 64-bit SQL Server or Analysis Server with management tools like Enterprise Manager or Analysis Manager, you
must use the 32-bit tools on a 32-bit server to remotely administer the 64-bit server. The only 64-bit tools included with this
release are the Server Network Utility, the Service Manager, and the command line utilities.

Distributed Transaction Coordinator (DTC) Installed with the 64-bit versions of the Windows Server 2003 family

DTC is part of the 64-bit versions of the Windows Server 2003 family operating system and is no longer installed as part of the
SQL Server 2000 (64-bit) setup. The DTC service can no longer be managed from the SQL Server Service Manager. To manage
this service, use Services in the 64-bit versions of the Windows Server 2003 family Administrative Tools.

Data Transformation Services (DTS) components for 64-bit servers are not available in this release. Note the resulting
functionality changes:

A DTS package can be saved on the 64-bit server, and a DTS package can be run against a SQL Server 2000 (64-bit) dataset,
but the package must run from a 32-bit machine that is set up with SQL Server 2000 tools.

The Copy Database Wizard will not be able to run on a 64-bit server or target a 64-bit server. Data migration from SQL
Server 2000 to SQL Server 2000 (64-bit) is supported. Attaching a 32-bit database to a 64-bit instance is possible by using
either the detach/attach or the backup/restore technique. You can move databases back and forth between 32-bit and 64-
bit versions of SQL Server.

If you are using Meta Data Services (MDS) to store a DTS package, you must manage and store the DTS package on a 32-bit
server.

Transformable push subscriptions are not supported. Pull subscriptions from a 32-bit installation of SQL Server 2000
should work with a 64-bit Publisher or Distributor.

SQL Mail

SQL Mail is not supported in this release of SQL Server 2000 (64-bit). The following extended procedures and stored procedures
are not supported, as they are part of the SQL Mail functionality:

xp_startmail

xp_stopmail

xp_sendmail

xp_readmail

xp_deletemail

xp_findnextmsg

sp_processmail

However, SQL Agent Mail in SQL Server 2000 (64-bit) can be configured remotely by Enterprise Manager, if your client
remotely connects using SQL Server 2000 Service Pack 3.0 or later.

To configure SQL Agent Mail, you must use Microsoft Outlook® Express to use an existing mail account.

To create a mail account for SQL Agent Mail using Outlook Express

1. From the Start menu, select Outlook Express.

2. From the Tools menu, select Accounts. . .

3. On the Internet Accounts dialog box, click Add, and then click Mail. This will allow you to create a new mail account by
launching the Internet Connection Wizard.

4. On the Your Name dialog box in the Display name box, enter the name you would like to be the sender of all SQL Agent e-
mail messages.

5. On the Internet E-mail Address dialog box in the E-mail address box, enter the e-mail account to use to send SQL Agent e-
mail messages. For example: someone@example.com.

6. On the E-mail Server Names dialog box in the My incoming mail server is a box, select POP3 for the server type.

7. In the Incoming mail (POP3, IMAP, or HTTP) server box, enter the name of the POP3 server. If you are only using this
account for SQL Agent Mail, it is not necessary to select a valid POP3 server name, as SQL Agent Mail does not receive mail.

8. In the Outgoing mail (SMTP) server box, enter a valid SMTP server name to be used to send SQL Agent messages.

9. On the Internet Mail Logon dialog box in the Account Name box, enter the account you wish to use for sending SQL Agent
Mail notifications.

10. Click Next.

11. Click Finish.

If you are using Outlook Express 6.0 or later, you must configure this application so that it does not send an alert when SQL Agent

Mail is accessing your Outlook Express account.

To configure SQL Agent Mail with Outlook Express 6.0

1. From the Outlook Express Tools menu, select Options . . .

2. Select the Security tab, and clear the "Warn me when other applications try to send mail as me" check box.

3. Click OK.

If you already have an SMTP Outlook Express profile created, you can use that profile for SQL Agent Mail by setting it as the
default account.

To use an existing SMTP Outlook Express Mail Account for SQL Agent Mail

1. From the Start menu, select Outlook Express.

2. From the Tools menu, select Accounts. . .

3. On the Internet Accounts dialog box, select the mail account to set as the default, and click the Set as Default button. This
must be a POP3/SMTP account for SQL Agent Mail to work.

If you would like to change the name of your mail account after you have set it as the default, you can rename it to SQLAgentMail.
The same mail account name will be used in configuring SQL Agent Mail in Enterprise Manager.

To change the name of your profile for SQL Agent Mail

1. From the Start menu, select Outlook Express.

2. From the Tools menu, select Accounts. . .

3. On the Internet Accounts dialog box, select the default account and click the Properties button.

4. On the Properties dialog box, type the name for the profile in the Mail Account box.

After you have created a mail account for SQL Agent Mail, you can configure SQL Agent Mail using Enterprise Manager.

To select the mail account in Enterprise Manager for SQL Agent Mail

1. On the Agent Properties dialog box, select the General tab.

2. In the Mail profile box, select the previously configured Outlook Express mail account.

For more information about SQL Agent Mail functionality, see the 32-bit SQL Server 2000 Books Online.

Client Tools Only

Installing only the Tools feature from the feature tree can facilitate a Client Tools Only installation. Note that the SQL Server
graphical user interface management tools are not included with this release, except for the SQL Server Network Utility and the
Service Manager. The command-line tools are available.

Supported Tools

Tools must be installed from the SQL Server 2000 (64-bit) RTM CD. Tools from any other CD cannot be installed as part of an
instance of SQL Server 2000 (64-bit). To utilize management tools like Enterprise Manager, use a 32-bit instance of SQL Server
where management tools are installed to remotely administer instances of SQL Server 2000 (64-bit).

Record Unattended File

A Template.ini file is provided and can be modified for unattended installations. SQL Server 2000 (64-bit) does not support the
record unattended file functionality.

Development Tools

The Development Tools feature is not included in the feature tree. The SQL Debugging Interface (SDI) is installed by Setup, but is
included in the core SQL Server Engine component. The other development tools available in SQL Server 2000 (32-bit) (headers
and libraries, MDAC SDKs, and the Backup/Restore API) are not installed by Setup.

For more information on MDAC and the status of its components, see the MDAC Roadmap

DB-Library

The DB-Library programming model is not supported in SQL Server 2000 (64-bit), and it has not been ported to the 64-bit
Windows operating system. The DB-Library API has not been enhanced beyond the level of SQL Server version 6.5. All DB-Library
applications can work with SQL Server 2000, but only as 6.5-level clients. Features introduced in SQL Server 2000 and SQL Server

http://go.microsoft.com/fwlink/?LinkId=9866

version 7.0 are not supported for DB-Library applications.

Registry Rebuild and Rebuild Master

Registry Rebuild and Rebuild Master are implemented differently in the 64-bit version of SQL Server 2000 than in the 32-bit
version. In the 64-bit version, SQL Server 2000 takes advantage of the self-repairing features provided by Windows Installer. In
addition, the REINSTALL and REINSTALLMODE properties on the setup command line are available to explicitly rebuild the
registry, reinstall corrupted or missing files, reinstall corrupted or missing shortcuts, and rebuild the master databases. These
properties can be specified on the command line or in an .ini file.

Failover Clustering

Cluster Support

Installation of a failover cluster is supported for a single cluster definition. Feature maintenance for clustered installations is not
supported. A template .ini file is provided that enables all supported cluster features.

Cluster Maintenance

Because only a single cluster definition is supported, feature maintenance with Add or Remove Programs in Control Panel for
clustered installations is not supported. Clustered instances are displayed by Add or Remove Programs, but changes are not
allowed. Setup supports adding or removing a node with either the graphical user interface or the command line. Setup also
supports changing or adding an IP address. Cluster uninstall is supported by Setup.

SQL Server 2000 (64-bit)

Sending Feedback (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

We welcome your suggestions and comments about the documentation for this release of Microsoft® SQL Server™ 2000 (64-
bit). You can send e-mail feedback about the documentation by clicking the mail icon at the top of the screen. General product
support and feedback are not available through the documentation feedback process.

SQL Server 2000 (64-bit)

Additional Resources (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

If you have questions about the Microsoft® SQL Server™ 2000 (64-bit) Setup, you can access the microsoft.public.sqlserver.setup
newsgroup on the msnews.microsoft.com news server to participate in discussions. You can also find peer-based support through
this newsgroup.

Access to special newsgroups for this limited release is described in the agreement and instructions for the release.

The following table provides Web resources for additional information about Microsoft SQL Server.

For information on Go to
Microsoft SQL Server The Microsoft SQL Server Web site.
Analysis Services The Analysis Services Web page on the

Microsoft Web site.

http://go.microsoft.com/fwlink/?linkid=1697
http://go.microsoft.com/fwlink/?linkid=1945

SQL Server 2000 (64-bit)

Copyright Disclaimer (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This document, including sample applications herein, is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including samples, URL and other Internet
Web site references, is subject to change without notice. The entire risk of the use or the results of the use of this document
remains with the user.

The primary purpose of a sample is to illustrate a concept, or a reasonable use of a particular statement or clause. Most samples
do not include all of the code that would normally be found in a full production system, as a lot of the usual data validation and
error handling is removed to focus the sample on a particular concept or statement. Technical support is not available for these
samples or for the provided source code.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein are fictitious and no
association with any real company, organization, product, person, or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document
may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©1988-2003 Microsoft Corporation. All rights reserved.

Active Directory, ActiveX, BackOffice, CodeView, Developer Studio, FoxPro, JScript, Microsoft, Microsoft Press, Microsoft SQL
Server, MSDN, MS-DOS, Outlook, PivotChart, PivotTable, PowerPoint, Visual Basic, Visual C++, Visual Studio, Win32, Win64,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Version: 8.00.002

SQL Server 2000 (64-bit)

Preparing to Install SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The topics in this section provide information that you may need to know during the installation of Microsoft® SQL Server™
2000 (64-bit).

Topic Description
Hardware and Software Requirements (64-
bit)

Describes hardware and software required
to install and run SQL Server 2000 (64-bit).

Product Specifications (64-bit) Provides feature, capacity, configuration,
and memory specifications for SQL Server
2000 (64-bit).

Working with Named and Multiple
Instances of SQL Server (64-bit)

Provides background information to install
a named instance or multiple instances of
SQL Server.

File Paths for SQL Server 2000 (64-bit) Provides the locations of files copied to the
disk by Setup.

Creating Windows Service Accounts (64-
bit)

Describes Microsoft Windows® service
accounts required to run SQL Server
services.

Features of SQL Server 2000 (64-bit) Describes the features that can be included
in a SQL Server 2000 (64-bit) installation.

SQL Server 2000 (64-bit)

Hardware and Software Requirements (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The minimum hardware and software requirements for running Microsoft® SQL Server™ 2000 (64-bit) are listed in the following
tables.

Hardware Requirements

This table shows hardware requirements for installing SQL Server 2000 (64-bit).

Hardware Minimum requirements
Computer Intel® Itanium™ and Itanium II processors with 64-bit CPU
Memory (RAM)1 Enterprise Edition: 1 GB
Hard disk space2 SQL Server database components: 190 to 320 MB

Analysis Services: 230 MB
Books Online only: 40 MB

Monitor VGA or higher resolution
800x600 or higher resolution required for the SQL Server
graphical tools

Pointing device Microsoft Mouse or compatible
CD-ROM drive Required

1 Additional memory may be required, depending on configuration and operating system requirements.
2 Actual requirements will vary based on your system configuration and the applications and features you choose to install.

Note SQL Server 2000 (64-bit) does not have a hardware compatibility list (HCL). If your computer meets the minimum
requirements listed in the preceding table, SQL Server 2000 software should work on the hardware certified for use with the
Microsoft Windows® operating system. For more information about hardware certified for use with the Windows operating
system, see the Microsoft Windows Hardware Compatibility List at the Microsoft Web site

Operating System Requirements

You must use the 64-bit versions of the Windows® Server 2003 family operating system.

Internet Requirements

This table shows Internet requirements related to using SQL Server 2000 (64-bit).

Component Requirement
Internet software Microsoft Internet Explorer 6.0 is required to view the

online documentation (HTML Help). This software is
included with the 64-bit versions of the Windows Server
2003 family operating system.

Internet Information
Services

If writing XML applications, see the System Requirements
for IIS Virtual Directory Management topic in the SQL
Server 2000 32-bit Books Online.

Network Software Requirements

The 64-bit versions of the Windows Server 2003 family have built-in network software.

Note TCP/IP must be enabled at the operating system level before installing SQL Server 2000 (64-bit). For more information, see
Configuring Network Libraries (64-bit).

SQL Server 2000 (64-bit) activates the TCP/IP Sockets, Shared Memory, and Named Pipes libraries by default. To configure the
network libraries after you set up SQL Server 2000 (64-bit), use the Server Network Utility (go to the Start menu, point to
Programs, and click the Microsoft SQL Server program group).

Supported Clients

http://go.microsoft.com/fwlink/?linkid=3239

SQL Server 2000 (64-bit) supports the following clients: Windows XP Professional, Windows 2000 Professional, Windows NT®
Workstation, Windows ME, Windows 98, Windows 95, Apple Macintosh®, OS/2, and UNIX. Macintosh, OS/2, and UNIX do not
support the SQL Server graphical tools and require ODBC client software from a third-party vendor.

SQL Server 2000 (64-bit)

Product Specifications (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Topic Description
Features Supported by the Editions of SQL
Server 2000 (64-bit)_ (64-bit)

The component features supported by
different editions of Microsoft® SQL
Server™ 2000 (64-bit).

Maximum Capacity Specifications (64-bit) Maximum capacities supported by
Microsoft SQL Server 2000 (64-bit).

Configuration Option Specifications (64-bit) Minimum and maximum limits for
computer resources managed by SQL
Server 2000 (64-bit).

Memory Used by SQL Server Objects
Specifications (64-bit)

Approximate memory requirements of
objects

SQL Server 2000 (64-bit)

Features Supported by the Editions of SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This topic summarizes the features supported by the different editions of Microsoft® SQL Server™ 2000 (64-bit).

For more information about the amount of physical memory SQL Server 2000 can address, and the number of CPUs each edition
supports in symmetric multiprocessor (SMP) computers, see Maximum Capacity Specifications (64-bit).

Database Engine Features Supported by the Editions of SQL Server 2000 (64-bit)

This table shows the database engine features and the editions of SQL Server 2000 (64-bit) that support them.

Database engine feature Enterprise Edition
Multiple Instance Support Supported
Failover Clustering Supported
Failover Support in SQL Server
Enterprise Manager

Supported

Log Shipping Supported
Parallel DBCC Supported
Parallel CREATE INDEX Supported
Enhanced Read-ahead and Scan Supported
Indexed Views Supported
Federated Database Server Supported
System Area Network (SAN) Support Supported
Graphical DBA and Developer Utilities,
Wizards

Partial Support

Graphical Utilities Support for
Language Settings

Partial Support

Full-Text Search Supported

Note SQL Mail is not supported in this release of SQL Server 2000 (64-bit). However, SQL Agent Mail in SQL Server 2000 (64-
bit) can be configured remotely by Enterprise Manager, if your client remotely connects using SQL Server 2000 Service Pack 3.0
or later. For more information, see Differences Between 64-bit and 32-bit Releases (64-bit).

Replication Features Supported by the Editions of SQL Server 2000 (64-bit)

This table shows replication features and the editions of SQL Server 2000 (64-bit) that support them.

Replication feature Enterprise
Edition

Snapshot Replication Supported
Transactional Replication Supported
Merge Replication Supported
Immediate Updating Subscriptions Supported
Queued Updating Subscribers Supported

The 64-bit edition of SQL Server 2000 does not support the following:

Microsoft Jet push subscriptions for merge replication, because a 64-bit version of the Microsoft Jet data provider is not
available.

Transactional or snapshot push subscriptions for ODBC or OLE DB subscribers, unless the subscriber provides a 64-bit
ODBC or OLE DB driver. Check with your vendor for availability of a 64-bit driver.

Transformable push subscriptions, because the necessary 64-bit Data Transformation Services (DTS) components are
currently unavailable. Pull subscriptions from a 32-bit installation of SQL Server 2000 should work with a 64-bit Publisher
or Distributor.

Analysis Services Features Supported by the Editions of SQL Server 2000 (64-bit)

This table shows the Analysis Services features and the editions of SQL Server 2000 (64-bit) that support them.

Analysis Services feature Enterprise Edition
Analysis Services Supported
User-defined OLAP Partitions Supported
Linked OLAP Cubes Supported
ROLAP Dimension Support Supported
HTTP Internet Support Supported
Custom Rollups Supported
Calculated Cells Supported
Writeback to Dimensions Supported
Very Large Dimension Support1 Supported
Actions Supported
Real-time OLAP Supported
Distributed Partitioned Cubes Supported
Data Mining Supported

1 With the 64-bit version of Analysis Services, it is not necessary to use the Very Large Dimension Manager (VLDM) to configure
for very large dimensions. Because of the 64-bit virtual address space, Analysis Services handles very large dimensions
automatically.

SQL Server 2000 (64-bit)

Maximum Capacity Specifications (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The first table specifies maximum capacities that are the same for all editions of Microsoft® SQL Server™ 2000. The second and
third tables specify capacities that vary by edition of SQL Server 2000 and the operating system.

This table specifies the maximum sizes and numbers of various objects defined in Microsoft SQL Server databases, or referenced
in Transact-SQL statements. The table does not include the SQL Server 2000 Windows® CE Edition.

 Maximum sizes/numbers
Object SQL Server 2000 (32-bit) SQL Server 2000 (64-bit)

Batch size 65,536 * Network Packet
Size1

65,536 * Network Packet
Size1

Bytes per short string
column

8,000 8,000

Bytes per text, ntext, or
image column

2 GB-2 2 GB-2

Bytes per GROUP BY,
ORDER BY

8,060 8,060

Bytes per index 900 9002

Bytes per foreign key 900 900
Bytes per primary key 900 900
Bytes per row 8,060 8,060
Bytes in source text of a
stored procedure

Lesser of batch size or 250
MB

Lesser of batch size or 250
MB

Clustered indexes per table 1 1
Columns in GROUP BY,
ORDER BY

Limited only by number of
bytes

Limited only by number of
bytes

Columns or expressions in
a GROUP BY WITH CUBE or
WITH ROLLUP statement

10 10

Columns per index 16 16
Columns per foreign key 16 16
Columns per primary key 16 16
Columns per base table 1,024 1,024
Columns per SELECT
statement

4,096 4,096

Columns per INSERT
statement

1,024 1,024

Connections per client Maximum value of
configured connections

Maximum value of
configured connections

Database size 1,048,516 TB 1,048,516 TB
Databases per instance of
SQL Server

32,767 32,767

Filegroups per database 256 256
Files per database 32,767 32,767
File size (data) 32 TB 32 TB
File size (log) 32 TB 32 TB
Foreign key table
references per table

253 253

Identifier length (in
characters)

128 128

Instances per computer 16 16
Length of a string
containing SQL statements
(batch size)

65,536 * Network packet
size1

65,536 * Network packet
size1

Locks per connection Maximum locks per server Maximum locks per server
Locks per instance of SQL
Server

Up to approximately
16,000,000 (limited by
memory)

Limited only by memory

Nested stored procedure
levels

32 32

Nested subqueries 32 32
Nested trigger levels 32 32
Nonclustered indexes per
table

249 249

Objects concurrently open
in an instance of SQL
Server4

2,147,483,647 per database
(depending on available
memory)

2,147,483,647 per database
(depending on available
memory)

Objects in a database 2,147,483,6473 2,147,483,6473

Parameters per stored
procedure

1,024 1,024

REFERENCES per table 253 253
Rows per table Limited by available

storage
Limited by available storage

Tables per database Limited by number of
objects in a database3

Limited by number of
objects in a database3

Tables per SELECT
statement

256 256

Triggers per table Limited by number of
objects in a database3

Limited by number of
objects in a database3

UNIQUE indexes or
constraints per table

249 nonclustered and 1
clustered

249 nonclustered and 1
clustered

1 Network Packet Size is the size of the tabular data scheme (TDS) packets used to communicate between applications and the
relational database engine. The default packet size is 4 KB, and is controlled by the network packet size configuration option.
2 The maximum number of bytes in any key cannot exceed 900 in SQL Server 2000. You can define a key using variable-length
columns whose maximum sizes add up to more than 900, provided no row is ever inserted with more than 900 bytes of data in
those columns. For more information, see the Maximum Size of Index Keys topic in SQL Server 2000 32-bit Books Online.
3 Database objects include all tables, views, stored procedures, extended stored procedures, triggers, rules, defaults, and
constraints. The sum of the number of all these objects in a database cannot exceed 2,147,483,647.

Maximum Numbers of Processors Supported by the Editions of SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit) Enterprise Edition supports 32 processors on symmetric multiprocessing (SMP) computers.

SQL Server 2000 (64-bit)

Configuration Option Specifications (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 contains improved algorithms for controlling computer resources. Many of the options that must
be configured manually in earlier versions of SQL Server are managed dynamically in SQL Server 2000. These configuration
settings can be viewed with the stored system procedure sp_configure.

Several configuration options are still specified in SQL Server 2000; however, instead of specifying the size of a static allocation,
the options now specify the upper limit for the number of objects allocated dynamically as needed. These options are marked
with an asterisk (*) in this table. The information in this table does not pertain to the SQL Server 2000 Windows® CE Edition.

 SQL Server 2000 (32-bit) SQL Server 2000 (64-bit)
Configuration

values
Minimum Maximum Minimum Maximum

affinity mask -
2,147,483,648

2,147,483,647 -
2,147,483,648

2,147,483,647

affinity64 mask -
2,147,483,648

2,147,483,647

allow updates 0 1 0 1
AWE enabled1 0 1 0 1
c2 audit mode 0 1 0 1
cost threshold for
parallelism

0 32,767 0 32,767

Cross DB
Ownership
Chaining

0 1 0 1

cursor threshold -1 2,147,483,647 -1 2,147,483,647
default full-text
language

0 2,147,483,647 0 2,147,483,647

default language 0 9,999 0 9,999
fill factor (percent) 0 100 0 100
index create
memory (K)

704 2,147,483,647 704 2,147,483,647

IO_affinity_mask2 -
2,147,483,648

2,147,483,648 -
2,147,483,648

2,147,483,648

lightweight
pooling

0 1 0 1

locks 5,000* 2,147,483,647* 5,000* 2,147,483,647*
max degree of
parallelism

0 32 0 32

max server
memory (MB)

4 2,147,483,647* 4* 2,147,483,647*

max text repl size 0 2,147,483,647 0 2,147,483,647
max worker
threads

10 32,767 32 32,767

media retention 0 365 0 365
min memory per
query (K)

512 2,147,483,647 512 2,147,483,647

min server memory
(MB)

0* 2,147,483,647* 0* 2,147,483,647*

nested triggers
(bytes)

0 1 0 1

network packet
size

512 65,535 512 65,536

open objects 0* 2,147,483,647* 0* 2,147,483,647*
priority boost 0 1 0 1

query governor
cost limit

0 2,147,483,647 0 2,147,483,647

query wait (sec) -1 2,147,483,647 -1 2,147,483,647
recovery interval
(min)

0 32,767 0 32,767

remote access 0 1 0 1
remote login
timeout (sec)

0 2,147,483,647 0 2,147,483,647

remote proc trans 0 1 0 1
remote query
timeout (sec)

0 2,147,483,647 0 2,147,483,647

scan for startup
procs

0 1 0 1

set working set size 0 1 0 1
show advanced
options

0 1 0 1

two digit year
cutoff

1,752 9,999 1,753 9,999

user connections 0* 32,767 (server)*
3

0* 32,767
(instance)* 3

user options 0 32,767 0 32,767

* Lower or upper limit for objects allocated dynamically.
1 This configuration parameter exists but is ignored by the 64-bit version of SQL Server 2000.
2 The IO affinity can be a hex, octal, or decimal string. On Win64™, the range can be 0 to 0xffffffffffffffff in hex, or 1 to
18446744073709551615 decimal. Invalid representations will be set to 0. Note: The IO_affinity_mask switch should be used in
conjunction with the affinity mask configuration option. Users should not enable a CPU for both the IO_affinity_mask switch and
affinity_mask options. See Microsoft Knowledge Base article Q298402 on the Microsoft Web site for additional detail.
3 The concurrent workload governor in SQL Server 2000 Personal Edition limits performance when more than 5 batches are
executed concurrently.

http://go.microsoft.com/fwlink/?linkid=3238

SQL Server 2000 (64-bit)

Memory Used by SQL Server Objects Specifications (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This table lists the approximate amount of memory used by different objects in Microsoft® SQL Server™ 2000.

 Object Size
Object SQL Server 2000 (32-

bit)
SQL Server 2000 (64-bit)

Lock 64 bytes plus 32 bytes
per owner

88 bytes plus 56 bytes per owner

Open database 4848 bytes plus 1648
bytes per file and 336
bytes per file group

4984 bytes plus 1720 bytes per file
and 384 bytes per file group

Open object1 276 bytes plus 1824
bytes per index opened
on the object2

376 bytes plus 1872 bytes per index
opened on the object2

User connection 12 KB + (3 * Network
Packet Size)3

12 KB + (3 * Network Packet Size)3

1 Open objects include all tables, views, stored procedures, extended stored procedures, triggers, rules, defaults, and constraints.
2 Indexes can be opened on tables or views.
3 Network Packet Size is the size of the tabular data scheme (TDS) packets used to communicate between applications and the
relational database engine. The default packet size is 4 KB, and is controlled by the network packet size configuration option.

SQL Server 2000 (64-bit)

Working with Named and Multiple Instances of SQL Server (64-
bit)

 This topic applies only to SQL Server 2000 (64-bit).

With Microsoft® SQL Server™ 2000 (64-bit), you have the option of installing multiple copies, or instances, of SQL Server on one
computer. When setting up a new installation of SQL Server 2000 or maintaining an existing installation, you can specify it as:

The default instance of SQL Server.

This is the instance of SQL Server that is accessed by supplying the computer name as the name of the SQL Server. An
installation does not have to have a default instance. However, if you install multiple instances on a single computer, only
one instance can be the default instance. Applications using client software from earlier versions of SQL Server can connect
to a default instance.

A named instance of SQL Server.

A computer can run up to 15 named instances of SQL Server concurrently (16 instances including the default instance), as
long as it has sufficient resources to support them. A named instance is identified by the network name of the computer
plus an instance name, in the format computername\instancename, where instancename is the name provided for the
instance during Setup. Most applications must use SQL Server 2000 client components to connect to a named instance. For
naming rules, see Naming Instances (64-bit).

Each instance has its own separate folder for storing the server program files, and the data files for each instance can be placed
wherever you choose. Each instance also has its own SQL Server Agent service. The tools for all instances are installed only once.

Multiple Instances

Multiple instances occur when you have more than one instance of SQL Server 2000 (64-bit) installed on one computer. Each
instance operates independently from any other instance on the same computer, and applications can connect to any of the
instances. The number of instances that can run on a single computer depends on resources available. The maximum number of
instances supported in SQL Server 2000 (64-bit) is 16.

A named instance of SQL Server 2000 (64-bit) can be installed at any time: before, after, or instead of installing the default
instance of SQL Server 2000 (64-bit). When you install SQL Server 2000 (64-bit) on a computer with no existing installations of
SQL Server, Setup specifies the installation of a default instance. You can choose to install SQL Server 2000 (64-bit) as a named
instance by choosing the Named Instance option in the Instance Name dialog box.

Each named instance is made up of a distinct set of services and can have completely different settings for collations and other
options. The directory structure, registry structure, and service names all reflect the specific instance name you specify.

Service Names for Default and Named Instances

When you install a default instance of SQL Server, the service names are MSSQLServer and SQLServerAgent.

When you install a named instance of SQL Server, the service names are changed to:

MSSQL$instancename for the MSSQLServer service.

SQLAgent$instancename for the SQLServerAgent service.

The Microsoft Distributed Transaction Coordinator and Microsoft Search services are installed only once, and can be used
simultaneously by every installed instance of SQL Server.

See Also

Naming Instances (64-bit)

Network Protocols for Named Instances (64-bit)

SQL Server 2000 (64-bit)

Network Protocols for Named Instances (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The default network libraries for Microsoft® SQL Server™ 2000 (64-bit) are Named Pipes, Shared Memory, and TCP/IP.
Additional protocols can be added, but Multiprotocol, Banyan VINES, and AppleTalk are not supported. When you install a default
instance of SQL Server 2000, the standard network addresses are enabled. For example, Named Pipes uses \\.\pipe\sql\query, and
TCP/IP sockets connect to port 1433.

When you select a named instance, only the Named Pipes and TCP/IP protocols are supported. Named Pipes defaults to a
network address of \\.\pipe\MSSQL$instancename\Sql\Query. The port address used by TCP/IP is chosen dynamically by default
the first time the instance is started.

This release of the 64-bit version of SQL Server 2000 does provide for configuring network libraries during Setup. After you
install SQL Server 2000, you can use the SQL Server Network Utility to configure the network libraries. Refer to SQL Server 2000
Books Online for additional information about configuring the network libraries.

See Also

Working with Named and Multiple Instances of SQL Server (64-bit)

Configuring Network Libraries (64-bit)

SQL Server 2000 (64-bit)

File Paths for SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

An installation of Microsoft® SQL Server™ 2000 (64-bit) can consist of one or more separate instances. These can consist of the
default instance and/or one or more named instance. An instance, default or named, has its own set of program and data files as
well as common files. The following illustration shows file locations for SQL Server 2000 (64-bit) installed with the default
instance and one named instance, Instance1. Both instances have a full set of data and executable files. Common files used by
both the default instance and any named instances are installed in the folder systemdrive\Program Files\Microsoft SQL Server\80.

The following figure shows the default locations for installing SQL Server in systemdrive\Program Files\Microsoft SQL Server,
normally on drive C.

The location for both the program and data files for the default instance of SQL Server is systemdrive\Program Files\Microsoft
SQL Server\Mssql. The default location for the named instance in this case is systemdrive\Program Files\Microsoft SQL
Server\Mssql$Instance1. During setup, you can specify a different file path for both the program and the data files. Setup also
installs files in the Microsoft Windows® system folder. The location for these system files cannot be changed.

The remainder of this topic details locations for files installed by Setup for SQL Server 2000 (64-bit).

Program and Data File Locations

The program folder is the root folder where Setup creates folders for program and other files that typically do not change as you
use SQL Server. These folders do not contain data, log, or backup files, or replication data, so the space required by these files
does not change greatly.

Note Data and program files cannot be installed on a removable disk drive.

This data file is the root folder where Setup creates folders that contain database and log files, as well as directories for the system
log, backup, and replication data. Setup creates database and log files for the master, model, tempdb, msdb, pubs, and
Northwind databases. The SQL Server data file path should be located on a drive with free space available for these files to grow.

Note Data files cannot be installed on a file system using compression.

Each instance of SQL Server has its own program and data files.

Data and Program File Locations for the Default Instance of SQL Server

For the default instance of SQL Server, the default SQL Server program and data folder name (Mssql) is used as the default

instance name in the folder that you specify. If you do not specify a location, this is normally in the systemdrive\Program
Files\Microsoft SQL Server\ folder. For the default instance of SQL Server, the default directories are:

systemdrive\Program Files\Microsoft SQL Server\Mssql\Binn (for program files)

systemdrive\Program Files\Microsoft SQL Server\Mssql\Data (for data files)

During setup, you can change the location for the default instance. For example, if you specify that the default instance be installed
at D:\MySqlDir, the file paths are:

D:\MySqlDir\Mssql\Binn (for program files)

D:\MySqlDir\Mssql\Data (for data files)

Data and Program File Locations for a N amed Instance of SQL Server

Each named instance of SQL Server has a specific location for its program files and another for its data files. These file locations
are different from those of the default instance of SQL Server.

Note A named instance is not necessarily the same as a multiple instance. You can have a single named instance or you can have
multiple named instances. For more information, see Working with Named and Multiple Instances of SQL Server (64-bit).

For each named instance of SQL Server that you install, with the name instancename, the default directories are:

systemdrive\Program Files\Microsoft SQL Server\MSSQL$instancename\Binn (for executable files).

systemdrive\Program Files\Microsoft SQL Server\MSSQL$instancename\Data (for data files).

You can specify file paths other than the default locations for program and data file for named instances. For example, if you
specify that the instance named "AnInstance" be installed at D:\MySqlDir, the paths are:

D:\MySqlDir\MSSQL$AnInstance\Binn (for program files)

D:\MySqlDir\MSSQL$AnInstance\Data (for data files)

File Locations for Shared Tools

Shared tools are installed by default at systemdrive\Program Files\Microsoft SQL Server\80\Tools. This folder contains files
shared by all instances of SQL Server 2000, both the default and any named instances of SQL Server. Tools include this help file
(Setupsql.chm), Dev Tools, and other components.

Shared tools that are still in the 32-bit format but used by the 64-bit version of SQL Server are located in systemdrive\Program
Files (x86)\Microsoft SQL Server\80\Tools. These files include all of Books Online for SQL Server 2000. This location cannot be
changed.

Analysis Services File Locations

Analysis Services includes program files, data files, and the meta data repository. The default location for Analysis Services
program files is systemdrive\Program Files\Microsoft Analysis Services\Bin. The default location for the data files is
systemdrive\Program Files\Microsoft Analysis Services\Data. The Data folder stores multidimensional data for the objects defined
on the Analysis server.

The default locations for both the program and data folders can be changed during setup. However, Analysis Services should not
be installed to a folder that uses characters from a double-byte character set (DBCS) in the path or folder name. Install Analysis
Services to a folder that uses only single-byte characters in the path and folder name.

In SQL Server 2000 (64-bit), Analysis Services uses SQL Server to host its repository (OLAPRepository.mdf), which stores meta
data for objects stored on the Analysis server. The default location for the repository database file is systemdrive\Program
Files\Microsoft SQL Server\Mssql$instancename\data, where instancename is the name of the instance with which you install
Analysis Services.

Note The Setup program allows installation of only one copy of Analysis Services with a single instance. With the installation of
subsequent instances, Analysis Services does not appear on the Feature Selection page of Setup.

When you install Analysis Services, the Setup program also installs the core SQL Server program files to support the Analysis

Services repository, even if you do not install the SQL Server components. If you do not want SQL Server and Analysis Services to
share the same core SQL Server program files, install Analysis Services in one instance and SQL Server in another instance.

Specifying File Paths

During Setup you can change the installation path for the following features:

Feature Default path1,2

SQL Server
 Server Components \Program Files\Microsoft SQL Server
 Data Files \Program Files\Microsoft SQL Server\Mssql\Data
Analysis Services
 Analysis Server \Program Files\Microsoft Analysis Services
 Data Files \Program Files\Microsoft Analysis Services\Data
 SQL Repository3 \Program Files\Microsoft SQL Server\Mssql\
 Data Files4 \Program Files\Microsoft SQL Server\Mssql\Data

1 The default paths shown here are for the default instance. For a named instance, Mssql changes to Mssql$instancename, where
instancename is the name of the instance.
2 The default drive for these locations is systemdrive, normally drive C.
3 Specifies the location of the SQL Server program files (if you do not select to install SQL Server Server Components). For more
information, see Analysis Services (64-bit).
4 Specifies the location for the Analysis Services repository database. For more information, see Analysis Services (64-bit).

Note When adding features to an existing installation, you cannot change the location of a previously installed feature, nor can
you specify the location for a new feature.

When you specify an installation path during Setup for the server components or data files, the Setup program uses the instance
name in addition to specified location for program and data files. Setup does not use the instance name for tools and other
shared files. Setup also does not use any instance name for the Analysis Services program and data files, although it does for the
Analysis Services repository.

Finding Install Locations

If you are uncertain about instance paths, the following registry key provides the path for any named instance:

HKLM\Software\Microsoft\Microsoft SQL Server\instancename\Setup\SQLPath

The following registry key provides the path for the default instance:

HKLM\Software\Microsoft\MSSQLServer\Setup\SQLPath

You can use the REG QUERY tool available with the 64-bit versions of the Windows® Server 2003 family operating system to
query the registry and get the installation path of a particular instance. Run the following at the command prompt, inserting the
appropriate instance name:

REG QUERY HKLM\Software\Microsoft\Microsoft SQL Server\instancename\Setup /v SQLPath

Or run the following command for the default instance:

REG QUERY HKLM\Software\Microsoft\MSSQLServer\Setup /v SQLPath

For more information about the REG QUERY tool command syntax, type REG QUERY /? on the command line.

SQL Server 2000 (64-bit)

Creating Windows Service Accounts (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) has three service accounts on the 64-bit versions of the Windows® Server 2003 family
operating system: Microsoft SQL Server, SQL Server Agent, and Analysis Services. These services appear in the list of installed
services in Services, in Administrative Tools, which you can find in Control Panel. The following table shows each service name
and the term used to refer to the default and named instances of SQL Server, as displayed in Services.

Service Default Instance Named Instance
Microsoft SQL Server MSQLSERVER MSSQL$instancename
SQL Server Agent SQLSERVERAGENT SQLAgent$instancename
Analysis Services MSSQLServerOlapService

Typically, these services are assigned the same user account, either the local system account or a domain user account. However,
during Setup you can customize the settings for each service.

Using the Local System Account

The local system account does not require a password, does not have network access rights, and restricts your SQL Server
installation from interacting with other servers.

Using a Domain User Account

A domain user account uses Windows Authentication so that the same login used for connecting to the network is also used for
connecting to SQL Server. A domain user account is typically used because many server-to-server activities can be performed
only with a domain user account. For example:

Remote procedure calls.

Replication.

Backing up to network drives.

Heterogeneous joins that involve remote data sources.

Analysis Services linked cubes.

Requirements for Domain User Account

All domain user accounts must have permission to:

Access and change the SQL Server folder (\Programs Files\Microsoft SQL Server\Mssql).

Access and change the .mdf, .ndf, and .ldf database files.

Log on as a service.

Read and write registry keys at and under:
HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer (default instance)

HKEY_LOCAL_MACHINE\Software\Microsoft\Microsoft SQL Server (any named instance)

HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQLServer (default instance)

HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQL$Instance (any named instance)

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Peflib

Analysis Services domain accounts should have the following permissions:

Access and change the Analysis Services folder (Program Files\Microsoft Analysis Services\).

Log on as a service.

Read and write registry keys at and under:
HKEY_LOCAL_MACHINE\Software\Microsoft\OLAP Server

HKEY_LOCAL_MACHINE\System\CurrentControlset\Services\MSSQLServerOLAPService

In addition, a domain user account must be able to read and write corresponding registry keys for these services:
SQLAgent$instancename, MSSEARCH, and MSDTC.

This table shows additional permissions required for specified functionalities.

Service Permission Functionality
SQL Server Network write privileges Write to a mail slot using

xp_sendmail.
SQL Server Act as part of operating

system and replace a
process level token

Run xp_cmdshell for a user
other than a SQL Server
administrator.

SQL Server Member of local Power
Users or local
Administrators group

Add and delete SQL Server
objects in Active Directory.

SQL Server Agent Member of the local
Administrators group

Create CmdExec and
ActiveScript jobs belonging
to someone other than a
SQL Server administrator.

Use the auto restart feature.

Use run-when-idle jobs.
MSSQLServerOLAPService Member of the OLAP

Administrators group
To use the Analysis Manager
2000 administration tool.

Changing User Accounts

To change the password or other properties of any SQL Server related service after installing SQL Server, go to Control Panel,
click Administrative Tools, and then click Services. If you are administering the 64-bit Server remotely from a 32-bit SQL
Server, you can also use SQL Server Enterprise Manager. If you change the Windows password for any service account, be sure to
also change the password setting for the service. A service that logs on to a user account cannot start without the current
password setting for the account.

SQL Server 2000 (64-bit)

Features of SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

During setup of Microsoft® SQL Server™ 2000 (64-bit), you can choose features and subfeatures to install, to remove, or to add if
not included in an initial installation of SQL Server. Before you begin the Setup Wizard, familiarize yourself with the different
features and decide which ones are appropriate for your installation.

SQL Server Management Tools (64-bit)

Server Components (64-bit)

Analysis Services (64-bit)

Books Online (64-bit)

Choosing Features and Options to Install

SQL Server can be used in a number of different contexts; not all features and options of SQL Server are needed for every
installation. You may have a database server, an Internet server, or require a database on a client computer. If you are running
database client/server applications you may or may not require a database on your computer. You may need tools to administer a
database server, or you may want to run applications that access an instance of SQL Server. You may want an Analysis server for
online analytical processing (OLAP) and data mining. Installation choices for these and other SQL Server configurations are
described in the following paragraphs.

Installing SQL Server on a Database Server

If you are creating a database server, install SQL Server 2000 (64-bit) Enterprise Edition. On a 64-bit database server, you can
install a default instance of the SQL Server 2000 (64-bit) relational database engine. You can also install one or more named
instances of the SQL Server 2000 (64-bit) relational database engine. Other than specifying an instance name, the setup choices
for installing a named instance are similar to those for installing a default instance.

Using SQL Server w ith an Internet Server

On an Internet server, such as a server running Microsoft Internet Information Services (IIS), you typically install the SQL Server
2000 Management Tools. SQL Server 2000 (64-bit) does not include graphical tools (other than the Server Network Utility and
the Service Manager), but it does support the same command-line tools that are supported by the 32-bit version of SQL Server
2000. These include the client connectivity features used by an application connecting to an instance of SQL Server. In addition,
the client tools include the utility for configuring the virtual roots needed for applications to access SQL Server through URLs.

After installing the SQL Server tools, configure the virtual roots that support accessing an instance of SQL Server through a URL.
For more information about configuring the virtual roots, see the "Using IIS Virtual Directory Management for SQL Server Utility"
topic (64-bit) in the SQL Server 2000 32-bit Books Online.

Note Although you can install an instance of SQL Server on a computer running IIS, this is typically not recommended and may
be done only for small Web sites that have a single server computer. Most Web sites have their middle-tier IIS system on one
server or cluster of servers, and their databases on a separate server or federation of servers. For more information about
federations, see the "Federated SQL Server 2000 Servers" topic in SQL Server 2000 32-bit Books Online.

Installing Analysis Services

If you require an Analysis server for online analytical processing (OLAP) and data mining, install Analysis Services. You can choose
to install Analysis Server, which comes with SQL Server. The SQL Server 2000 (64-bit) Analysis Services uses a SQL Server
repository, so Setup always installs Analysis Services with an instance of SQL Server including the core SQL Server program files,
even if you choose not to install the SQL Server database components. If you want SQL Server and Analysis server on the same
computer, but sharing different core database server files, then install them separately in separate instances.

SQL Server 2000 (64-bit)

SQL Server Management Tools (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

These features can be installed from the Management Tools category on the Select Features page of the Installation Wizard.
Management tools are included when the option for Client Tools Only is selected as an initial installation choice.

Server Network Utility

Used to manage the server Net-Libraries.

Service Manager

Used to start, stop, and pause the Microsoft® SQL Server™ components on the server.

Command Prompt Utilities

Used to manage the SQL Server components and databases on the server from the command line.

Location1 Utilities
\Program Files\Microsoft SQL Server\80\Tools\Binn Bcp

osql
scm

\Program Files\Microsoft SQL Server\80\COM distrib
logread
qrdrsvc
replmerg
snapshot

\Program Files\Microsoft SQL Server\MSSQL\Binn
also
\Program Files\Microsoft SQL Server\MSSQL$instancename\Binn

sqlagent
sqlmaint
sqlsrvr

1 The default drive for these locations is systemdrive, normally drive C.

Unsupported Tools

Other server management tools available with the 32-bit versions of SQL Server (such as SQL Server Enterprise Manager, SQL
Server Profiler, SQL Query Analyzer, MS DTC Client Support, and Conflict Viewer) are not supported in this release of SQL Server
2000 (64-bit). You can use them with a 32-bit installation of SQL Server 2000 on a 32-bit machine in order to remotely manage a
SQL Server 2000 (64-bit) installation. For additional information, see Configuring SQL Server 2000 (64-bit).

See Also

Specifying SQL Server Features (64-bit)

SQL Server 2000 (64-bit)

Server Components (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Choosing to install the Server Components installs the Microsoft® SQL Server™ relational database engine and other core tools.
If any SQL Server program files are installed, the SQL Server component must be installed.

Note When installing the SQL Server component, the Setup program also installs the bcp, isql, and osql utilities, ODBC, OLE DB,
and DB-Library.

Data Files

Specifies the location for the SQL Server catalog files. This specifies the root location where Setup creates the folders that contain
database and log files, as well as directories for the system log, backup, and replication data. Setup creates database and log files
for the master, model, tempdb, msdb, pubs, and Northwind databases. For an instance installed with Analysis Services, it can
also contain the OLAPRepository and Foodmart 2000 databases as well as the Analysis Services query log OLAPQueryLog (see
the Analysis Services (64-bit) component for more information).

Full-Text Search

Installs the Microsoft full-text search engine (Microsoft Search service), which extends the ability to search on character columns
beyond the basic equality and LIKE operators.

See Also

Specifying SQL Server Features (64-bit)

SQL Server 2000 (64-bit)

Analysis Services (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 Analysis Services is a server for online analytical processing (OLAP) and data mining. Analysis
Services manages multidimensional cubes of data for analysis and provides rapid client access to cube information.

Setup installs only one copy of Analysis Services with a single instance of SQL Server 2000. If you run Setup again to install an
additional instance of SQL Server 2000, Setup does not display Analysis Services in the feature tree. Analysis Services uses that
instance of SQL Server 2000 to support its meta data repository. Analysis Services is not otherwise limited to a single instance of
SQL Server 2000, and it can connect to not only any instance of SQL Server but to any ODBC or OLE DB data source.

In this release of SQL Server 2000 (64-bit), the Analysis Services management tools are not included. To administer Analysis
Services remotely, use a 32-bit version of SQL Server 2000 Analysis Services installed on a 32-bit computer.

Data Files

This is a required option for the path to the Analysis server data files.

SQL Repository

Analysis Services uses SQL Server for a repository to store its object meta data (cubes, dimensions, and so on). By default, this
database is located as follows:

systemdrive\Program Files\Microsoft SQL Server\MSSQL$instancename\Data\OLAPRepository.mdf

$InstanceName specifies the instance name for a named instance of SQL Server 2000 (omitted for the default instance). The SQL
Repository option in Setup allows you to change the location for these data files.

When you choose to install Analysis Services, Setup installs the Analysis Services program files and the SQL Server Desktop
Engine. If you choose to install both the Server Components and Analysis Server, Analysis server will use the database server
program files installed with that instance of SQL Server to support its repository. If you do not wish to have the SQL Server
database server and Analysis Services share the same SQL Server program files, you can install separate copies of the SQL Server
program files by performing two installations, one with SQL Server only and one with Analysis Services only.

SQL Server 2000 (64-bit) Analysis Services does not include Analysis Manager. You can manage the 64-bit version of Analysis
Services remotely from a 32-bit version of Analysis Manager 2000 installed on a 32-bit computer. However, to administer
Analysis Server remotely, your user name must be in the Administrators group or the OLAP Administrators group on the 64-bit
Windows® operating system.

Data Files

Data Files under the SQL Repository option in Setup specifies the location for the repository. Note that when installed in the same
instance, the Server Components Data Files and the Analysis Services SQL Repository Data Files also use the same Installation
path setting; so changing one of these settings changes the other.

Client Components

Installs the client components for Analysis Services. These are binary executables and related files for the Analysis Services client.

See Also

Locating Folders and Files (64-bit)

Specifying SQL Server Features (64-bit)

SQL Server 2000 (64-bit)

Books Online (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The SQL Server Books Online feature of the Microsoft® SQL Server™ 2000 (64-bit) installation includes both the full SQL Server
Books Online for SQL Server 2000 and online Help. Online Help is available by clicking the Help button or pressing the F1 key in
dialog boxes and interface elements. Another way of obtaining the full SQL Server Books Online for SQL Server 2000 is to
download it from the SQL Server Product Documentation page at the Microsoft Web site.

Selecting to install this feature installs the complete documentation set on your local drive in the default shared tools locations:
systemdrive\Program Files (X80)\Microsoft SQL Server\80\Tools\Books\1033. To view Books Online, click Start, point to
Programs, point to Microsoft SQL Server, and then click Books Online.

How to access SQL Server Books Online

SQL Setup

How to access SQL Server Books Online for SQL Server (64-bit)

Note In this release of Microsoft SQL Server 2000 (64-bit), the Books Online available on the Start menu is from the 32-bit SQL
Server 2000 product. Most of the documentation applies for both the 32-bit and 64-bit products. Documentation specific to the
64-bit product is contained in the Setupsql.chm file (located in systemdrive\Program Files\Microsoft SQL
Server\80\SetupBootstrap\Help\1033\).

See Also

Specifying SQL Server Features (64-bit)

http://go.microsoft.com/fwlink/?linkid=3288

SQL Server 2000 (64-bit)

Installing SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Read this To
Overview Read a quick summary of the steps

involved in the Microsoft® SQL Server™
2000 (64-bit) Setup, and how long the
process takes. The remaining topics are
ordered in the setup sequence.

Starting Setup (64-bit) Start the installation of SQL Server or any
of its features.

Specifying SQL Server Features (64-bit) Specify the SQL Server features to install.
Naming Instances (64-bit) Specify whether to install the default

instance or a named instance, and the
name for a named instance.

Specifying Service Accounts (64-bit) Specify accounts used to run the services
corresponding to the features that you are
installing.

Defining the Authentication Mode (64-bit) Specify whether to use Windows
Authentication only or to allow both
Windows and SQL Server Authentication
to verify users.

Specifying the Collation Setting (64-bit) Modify the collation settings for your SQL
Server installation.

Choosing the Licensing Mode (64-bit) Choose whether to use per-seat or per-
processor licensing.

SQL Server 2000 (64-bit)

Overview (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

To install any or all of the features of Microsoft® SQL Server™ 2000 (64-bit), use the Windows Installer service, which is common
to many Microsoft products. Windows Installer enables you to use the Add or Remove Programs option in Control Panel to add
or remove features in an existing installation. You can also run Setup.exe on the SQL Server 2000 (64-bit) compact disc to install
SQL Server 2000 (64-bit) or to modify an existing installation. Users should run Setup.exe for an initial installation so that
bootstrap files get installed on the destination machine.

If you wish to install a new instance of SQL Server 2000 (64-bit), specify in the Installation Wizard that you are installing a new
instance of SQL Server rather than working with an existing instance, enter registration information, and review the End User
License Agreement (EULA). You then select the server features that you want to install. Then, depending on your previous
selections, you may provide an instance name, specify service accounts, specify the authentication mode, make any changes to the
collation settings, choose the appropriate licensing model, and confirm your setup.

The entire process for setup on a nonclustered server takes about 15 to 20 minutes. The lengthiest part of installation, along with
the copying of files, is building and configuring the SQL Server master database, which stores configuration information and
information about all other databases, as well as many system stored procedures.

Copying the master database occurs automatically, so if you accept the default collation, the Installation Wizard simply copies a
mostly prebuilt master database from the Master.mdf and Mastlog.ldf files on the CD-ROM. The Installation Wizard completes
this task with some additional configuration for your particular setup. Setup can take longer if you do not accept the default
collation. If you change the default collation setting, the Installation Wizard will reindex the master database.

SQL Server 2000 (64-bit)

Starting Setup (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This topic describes how to start installing Microsoft® SQL Server™ 2000 (64-bit) or its features on a single server. For installing
SQL Server on a clustered server, see Failover Clustering (64-bit).

To start Setup using the SQL Server 2000 (64-bit) CD-ROM, insert the disk in the CD-ROM drive. You can launch the Installation
Wizard by running Setup.exe in the root folder of the product CD. To run Setup from a network drive, navigate to the installation
location on the shared drive, and then run Setup.exe.

If this is the first installation of SQL Server on the local server, Setup displays the Welcome page. If Setup detects that SQL Server
has already been installed on the local server, the first page of the wizard provides the following two options for the installation.

Choose this To
Start a new installation Install a local instance of SQL Server or, if

a cluster is detected, a failover cluster.
This release of SQL Server 2000 (64-bit)
supports installation only on the local
machine.

Work with an existing installation Change or remove an existing instance of
SQL Server 2000 (64-bit).

For more information about working with an existing installation, see Maintaining a SQL Server Installation (64-bit).

For a new or additional instance of SQL Server or any of its features, select the option to Start a new installation. To install an
instance on the local computer, choose Local Instance in the box, and click Next to display the Welcome page.

On the Welcome page, click Next to display the Registration Information page of the wizard. On the Registration
Information page, enter your name. When installing on a network server, you can provide the name of a user responsible for
using or administering the server. You can also enter your company name, although it is not required.

To complete the Registration Information page, you must enter the 25-character product key. (You can find the product key on
the yellow sticker in the CD liner notes or the CD sleeve). For a network installation, request the product key from the network or
SQL Server administrator. This option is displayed only for the first installation on a server.

The next page of the wizard displays a standard Microsoft Software License Agreement. Read the agreement and click Yes to
accept it and continue Setup. If you choose not to accept the terms of the agreement, click No and the Installation Wizard will
close.

After you accept the terms of the Software License Agreement, the Installation Wizard displays the Feature Selection page, on
which you choose the program features to install. For details about your choices, see Specifying SQL Server Features (64-bit).

See Also

Working with Named and Multiple Instances of SQL Server (64-bit)

Setup Mode (64-bit)

Registration Information (64-bit)

SQL Server 2000 (64-bit)

Specifying SQL Server Features (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Feature Selection page of the Installation Wizard to select the features to include in an installation of SQL Server 2000
(64-bit). The features are displayed in a tree showing features and subfeatures. Expand any feature with a plus sign (+) next to it to
view subfeatures. When you select a feature, the feature description pane displays more information about the feature, including
the disk space it requires. It also shows the disk space required by any subfeatures that you have selected to install with the parent
feature.

To change whether to install a feature during setup, click the icon for the feature and then select one of the following options:

Will be installed on local hard drive

Installs the selected feature, but permits you to choose not to install optional subfeatures under it.

Entire feature will be installed on local hard drive

Installs the selected feature and any subfeatures under it.

Entire feature will be unavailable

Removes the selected feature and all subfeatures under it from the installation. This option does not appear on the menu when a
subfeature is required by its parent feature.

To assess the space required by a feature and the available disk space on different drives, first select the feature and then click
Disk Cost. When you select a feature associated with an installation path, the path appears under Installation path. To change
where Setup puts the files for the feature, click Browse and specify a different location.

The following features are available for installation by the Installation Wizard. By default, all these features are initially selected for
installation.

SQL Server Management Tools

Select this feature to install server tools to create a relational database server with administrative capabilities.

Server Components

Select this feature to install the SQL Server relational database engine and other core tools. If you select either the Data Files or
Full-Text Search Engine subfeatures, you will also automatically install the SQL Server feature as well.

Analysis Services

Select this feature to install SQL Server 2000 Analysis Services, which includes online analytical processing (OLAP) and data
mining. The Analysis Server will install its own process, MSSQLServerOLAPService, separate from the 64-bit SQL Server process.
Although Analysis Services can connect to multiple instances of SQL Server running on a single computer, you cannot install
multiple instances of Analysis Services on a single computer. Analysis Services will appear in the feature tree until it is installed on
the server. Analysis Services uses the SQL Server program files associated with the instance with which it was installed to support
its repository.

Books Online

Select this feature to install the online documentation for SQL Server 2000. This documentation can be opened from the Start
menu by choosing Books Online in the Microsoft SQL Server program group.

See Also

Feature Selection (64-bit)

File Paths for SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit)

Naming Instances (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Client applications must connect to an instance of Microsoft® SQL Server™ 2000 (64-bit) to work with a database. Each instance
is made up of a distinct set of services and can have completely different settings for collations and other options. The directory
structure, registry structure, and service names all reflect the specific instance name you identify during setup. An instance can be
either the default instance or a named instance.

Use the Setup Mode page of the Installation Wizard to specify whether to install the default instance or a named instance. The
default instance is identified by the network name of the computer on which it is running and does not require a client to specify
the name of the instance to make a connection. A named instance is identified by the network name of the computer plus the
instance name, in the format computername\instancename.

Multiple Instances

SQL Server 2000 (64-bit) supports multiple instances on a single server or processor. A computer can run multiple instances of
SQL Server concurrently, and each instance runs independently of other instances. A server can have only one default instance of
SQL Server, but multiple named instances up to the resources available on the computer. The maximum number of instances
supported in SQL Server 2000 (64-bit) is 16.

Note SQL Server 2000 (64-bit) Enterprise Edition licenses permit multiple instances of SQL Server without additional licenses.
Other editions may technically support multiple instances but require a separate license for each instance installed on a server.
For complete details, refer to the licensing agreement packaged with your product.

A named instance can be installed either as the first or only instance, or in a subsequent installation of SQL Server. The first time
you install SQL Server 2000 (64-bit) on a computer with no existing installations of SQL Server, Setup specifies the installation of
the default instance, although you can choose to install SQL Server as a named instance without installing the default instance
first.

Creating a Named Instance

To create a named instance, choose Named instance on the Instance Name page of the Installation Wizard and type an
instance name. An instance name must begin with a letter or an underscore (_), and can contain numbers, letters, or other
characters. SQL Server sysnames and reserved keywords should not be used as instance names. For example, the term "default"
should not be used as an instance name because it is a reserved keyword used by Setup.

Instance Naming Rules

Complete rules for naming an instance are as follows:

An instance name is not case-sensitive.

Instance names must follow the rules for SQL Server identifiers and cannot be reserved keywords (for example, an instance
name cannot be the terms "default" or "MSSQLServer").

Acceptable letters are those defined by Unicode Standard 2.0, which includes Latin characters a-z and A-Z, in addition to
letter characters from other languages. For details, see The Unicode Standard page at the Unicode Web site.

The first character of an instance name must be a Unicode Standard letter, an underscore (_), or a number sign (#).

Subsequent characters in an instance name can be Unicode Standard letters, decimal numbers from Basic Latin or other
national scripts, the dollar sign ($), a number sign (#), or an underscore (_).

The following characters are not allowed in instance names: embedded spaces, special characters, the backslash (\), the
comma (,), the colon (:), or the "at" sign (@).

See Also

Instance Name (64-bit)

Working with Named and Multiple Instances of SQL Server (64-bit)

http://www.unicode.org/

SQL Server 2000 (64-bit)

Specifying Service Accounts (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Service Account page of the Installation Wizard to specify Setup login accounts to the following Microsoft® SQL Server
2000™ services.

Service Description
SQL Server (MSSQLSERVER, or
MSSQL$instancename for a named
instance)

Provides the core relational database
functionality of SQL Server.

SQL Server Agent (SQLSERVERAGENT, or
SQLAgent$instancename for a named
instance)

Provides the capability to schedule regular
commands, schedule replication, supply a
method for dealing with errors, contact
SQL Server operators when errors occur,
as well as other support functions.

Analysis Services
(MSSQLServerOLAPService)

Provides the Analysis Services engine for
OLAP and data mining functionality.
Although Analysis Services is installed
with an instance and uses the core
relational functionality provided by that
instance, it is installed in a separate
location and is not identified using the
instance name. Analysis Services can be
installed with only one instance of SQL
Server 2000 (64-bit) on a server.

During Setup, you can configure these services to use one of the following Microsoft Windows® accounts:

Local system account

Local user account

Domain user account

You can specify the same account for all the services or a different account for each of the services. The selection you use depends
on the functionality required of your SQL Server 2000 (64-bit) installation.

Local System Account

SQL Server 2000 (64-bit) can be run using the local system account if SQL Server does not require access to network resources
and is not configured for replication. The following permissions must be set for the local system account for SQL Server 2000
(64-bit) to perform its tasks correctly:

For the default instance

Full control on the Microsoft SQL Server folder, by default:
systemdrive\Program Files\Microsoft SQL Server\MSSQL

Full control of all .mdf, .ndf, and .ldf database files.

Full control on the registry keys at and under:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQLSERVER

For a named instance

Full control on the Microsoft SQL Server folder, by default:

systemdrive\Program Files\Microsoft SQL Server\MSSQL$instancename

Full control of all .mdf, .ndf, and .ldf database files.

Full control on the registry keys at and under the following:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQL$instancename

For the Analysis Services service

Full control on the Microsoft Analysis Services folder, by default:
systemdrive\Program Files\Microsoft Analysis Services

Full control on the registry keys at and under the following:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQLServerOLAPService

Local User Account

If SQL Server 2000 (64-bit) is configured to use a Windows local user account, the account must fulfill the same restrictions as
apply for a local system account, with the addition that it must be granted Log on as a service permission.

To create or maintain a SQL Server 2000 (64-bit) failover cluster, you must be logged on to the computer with administrator
privileges; that is, you must be a member of the Administrators local group of the computer or the domain. For clustering, this
means that you must be an administrator of all nodes of the cluster.

Domain User Account

Configuring SQL Server 2000 (64-bit) with a domain user account provides the greatest flexibility. Some examples of functionality
provided by a domain user include:

Replication

Backing up to and restoring from network drives

Performing heterogeneous joins that involve remote data sources

Ability to define remote partitions on an Analysis server

Ability to process linked cubes with an Analysis server

For SQL Server 2000 (64-bit) to perform its tasks, the domain user account must be configured like the local user account
discussed earlier. In addition, extended functionality is available by adding further permissions described in the following table.

Service Permission Functionality
SQL Server Network write permissions Read/Write to remote

backups, data loads, and so
on

SQL Server Act as part of the operating
system and replace process
level token

Run xp_cmdshell for a user
other than a SQL Server
administrator

SQL Server Agent Member of the
Administrators local group

Create CmdExec and
ActiveScript jobs
belonging to someone other
than a SQL Server
administrator

SQL Server Agent Member of the
Administrators local group

Use the autorestart feature

SQL Server Agent Member of the
Administrators local group

Use run-when-idle jobs

Analysis Services Member of OLAP
Administrators group on
remote server

Link to source cube on
remote Analysis server

Analysis Services Permissions to data sources
accessed by Analysis
Services

Required for processing
objects

To take advantage of maximum functionality in SQL Server 2000 (64-bit), the domain user account should be a member of the
Administrators local group.

If you specify a remote data storage location for Analysis Services, you must use a domain account with access to that location.

See Also

Creating Windows Service Accounts (64-bit)

Service Account (64-bit)

SQL Server 2000 (64-bit)

Defining the Authentication Mode (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ uses an authentication process to validate users against SQL Server or Microsoft Windows® account
credentials. On the Authentication Mode page of the Installation Wizard, you can choose one of the following.

Windows Authentication Mode

When a user connects through a Windows user account, SQL Server validates the account name and password using information
in the Windows operating system. This mode provides the highest level of security, and is recommended when backward
compatibility is not an issue.

With Windows Authentication, SQL Server achieves login security integration with Windows by using the security attributes of a
network user to control login access. A user's network security attributes are established at the time the network login and
password are validated by a Windows domain controller. When a network user tries to connect, SQL Server uses Windows to
determine the validated network user name, verifies the identity of the user, and then permits or denies access based on the
network user name. In this security mode, only trusted connections are allowed.

Administrators of SQL Server can be granted access to SQL Server through the Windows group membership, and this group can
be assigned the sysadmin server role. However, Windows administrators can give anyone sysadmin permissions on SQL Server
2000 (64-bit), as they are able to add any user to the appropriate Windows group. If Windows administrators should not have the
ability to give themselves or others sysadmin access to SQL Server, then only individual Windows accounts should be assigned
to the role of sysadmin.

Note For added security when you choose Windows Authentication mode, you can use the sp_password stored procedure to set
up a password for the system administrator (sa) account. This guards against the risk of the installation being switched to Mixed
Mode at a later time without a password for the sa account.

Security Note When possible, use Windows Authentication.

Mixed Mode

Allows users to connect using Windows Authentication or SQL Server Authentication. Users who connect through a Windows
user account can make use of trusted connections (connections validated by Windows) in either Windows Authentication Mode or
Mixed Mode.

SQL Server Authentication is provided for backward compatibility, because applications written for SQL Server version 7.0 or
earlier may require the use of SQL Server logins and passwords. Some application developers may prefer SQL Server
Authentication because of familiarity. SQL Server Authentication may also be required for connections with client devices that are
not running the Windows NT® 4.0, Windows 2000, or Windows XP operating systems.

If you choose Mixed Mode, it is strongly recommended that you assign a strong password for the sa login. In this case, it is
recommended that the sa login not be used for day-to-day administration and the password be locked in a safe for emergency
access only.

For additional information about authentication, see the "Managing Security" section of "Administering SQL Server" in SQL
Server 2000 Books Online.

See Also

Authentication Mode (64-bit)

SQL Server 2000 (64-bit)

Specifying the Collation Setting (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Collation Settings page of the Installation Wizard to modify default collation settings. Use the Collation designator
option to match collation settings in instances of Microsoft® SQL Server™ 2000 (64-bit). Use the SQL Collations option to match
settings that are compatible with the sort orders in earlier versions of SQL Server.

Collation Designator

Change the default settings for the Collation designator (Microsoft Windows® collation) and sort order options only if your
installation of SQL Server must match the collation settings used by another instance of SQL Server 2000, or if it must match the
Windows locale of another computer.

Collation designator

Select the name of a specific Windows collation from the list. For example:

Use Latin1_General for the U.S. English character set (code page 1252).

Use Modern_Spanish for all variations of Spanish, which also use the same character set as U.S. English (code page 1252).

Use Arabic for all variations of Arabic, which use the Arabic character set (code page 1256).

Use Japanese_Unicode for the Unicode version of Japanese (code page 932), which has a different sort order from
Japanese, but the same code page (932).

For more information, see the "Windows Collation Sorting Styles" topic in SQL Server 2000 32-bit Books Online. (64-bit)

Sort order

Select Sort order options to use with the selected Collation designator. Binary is the fastest sorting order, and is case-sensitive.
If Binary is selected, the Case-sensitive, Accent-sensitive, Kana-sensitive, and Width-sensitive options are not available. For
more information, see the "Windows Collation Sorting Styles" topic in SQL Server 2000 32-bit Books Online. (64-bit)

SQL Collations

The SQL Collations option is used for compatibility with earlier versions of SQL Server. Select this option to match settings
compatible with SQL Server version 7.0, SQL Server version 6.5, or earlier. For more information, see the "Using SQL Collations"
topic in SQL Server 2000 32-bit Books Online. (64-bit)

For more information, see the "Specifying the Collation Setting" topic in SQL Server 2000 32-bit Books Online.

SQL Server 2000 (64-bit)

Choosing the Licensing Mode (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) supports two client access licensing modes, one based on devices and one based on
processors.

A device in this context can be a workstation, terminal, or any other device running a SQL Server application connected to
an instance of SQL Server.

A processor refers to a central processing unit (CPU) installed on a computer running an instance of SQL Server 2000. One
computer may have multiple processors installed, requiring multiple processor licenses.

Once a licensing mode is set, you cannot change modes without uninstalling and reinstalling the product. After you install SQL
Server, you can use SQL Server 2000 Licensing in Control Panel to add device or processor licenses.

Note Do not confuse the SQL Server licensing utility with the Windows licensing utility, also found in Control Panel.

Examine the licensing agreement packaged with SQL Server 2000 to find the type and quantity of licenses that were purchased
with the product. Then on the Licensing Mode page of the Installation Wizard, choose one of the following two options:

Per Seat

This licensing mode requires a license for the computer running SQL Server 2000 (64-bit) as well as Client Access Licenses (CALs)
for each client device that connects to the server. An example of a device is a personal computer, workstation, terminal, personal
digital assistant, or mobile phone. A specified number of CALs is included with the server license and the server software. If you
choose this option, next to devices, type the number of CALs purchased for SQL Server 2000 (64-bit).

Processor License

This licensing mode requires a single license for each CPU in the computer running SQL Server. A processor license includes
access for an unlimited number of users to connect from the corporate local area network (LAN), a wide area network (WAN), or
the Internet. If you choose this option, next to processors, type the number of Processor licenses purchased for SQL Server 2000
(64-bit).

Per Seat licensing is often more economical for networks in which relatively few clients connect to SQL Server on your network
(for example, 75 or fewer devices for the Enterprise Edition). Processor licensing is usually more economical for an installation
that provides access to SQL Server databases over the Internet or that supports a large number of users within a LAN or WAN.
With Processor licensing, SQL Server can take advantage of each installed processor on the computer and support an unlimited
number of client devices.

For additional information about current pricing and licensing rules, see the Microsoft SQL Server Web page.

Important Licensing for Microsoft SQL Server 2000 (64-bit) is governed by the End User Licensing Agreement (EULA) that
accompanies the product. This agreement governs all uses and the explanations provided here are not intended to replace the
terms of the EULA.

See Also

Licensing Mode (64-bit)

http://go.microsoft.com/fwlink/?LinkId=1697

SQL Server 2000 (64-bit)

Failover Clustering (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

In Microsoft® SQL Server™ 2000 Enterprise Edition (64-bit), failover clustering provides high availability support. For example,
during an operating system failure or a planned upgrade, you can configure one node of a failover cluster to fail over to any other
node in the failover cluster configuration.

To install, configure, and maintain a failover cluster, use SQL Server Setup. As there are no previous 64-bit versions of SQL Server,
you cannot upgrade an existing failover cluster to a SQL Server 2000 (64-bit) failover cluster. Also be aware that support for
multiple instances of SQL Server differs in the failover clustering scenario: you can create multiple virtual servers in a cluster, but
each virtual server can have only one instance of SQL Server installed.

Use failover clustering to:

Install SQL Server on multiple nodes in a failover cluster. You are limited only by the number of nodes supported by the
operating system.

Before installing failover clustering, you must install the Microsoft Cluster Service (MSCS) and the 64-bit versions of the
Windows® Server 2003 family (additional 64-bit versions of the Windows operating system for servers will be available for
later releases of SQL Server 2000 [64-bit]). Because there is no 64-bit version of Windows NT® 4.0 or Windows 2000, you
cannot install SQL Server 2000 (64-bit) with Windows NT 4.0 or Windows 2000.

To use failover clustering, you must follow specific installation steps. For more information, see Handling a Failover Cluster
Installation (64-bit).

Specify multiple IP addresses for each virtual server.

With SQL Server 2000 (64-bit), you can specify multiple IP addresses for each server, which allows you to use all available
network IP subnets. This provides alternate ways to connect if one subnet fails, and increasing network scalability. For
example, with a single network adaptor, a network failure can disrupt communications. But with multiple network cards in
the server, each network can be on a different IP subnet. If one subnet fails, at least one connection can continue to function.
If a router fails, MSCS continues to function, and all IP addresses still work. However, if the network card on the local
computer fails, communication still may be disrupted. For more information, see Creating a Failover Cluster (64-bit).

Administer a failover cluster from any node in the clustered SQL Server configuration. For more information, see Creating a
Failover Cluster (64-bit).

Allow one virtual server to fail over to any other node in the virtual server failover cluster configuration. For more
information, see Creating a Failover Cluster (64-bit).

Add or remove nodes from the failover cluster configuration using the Setup program. For more information, see
Maintaining a Failover Cluster (64-bit).

Reinstall or rebuild a virtual server on any node in the failover cluster without affecting the other nodes. For more
information, see Maintaining a Failover Cluster (64-bit).

Perform full-text queries by using Microsoft Search service with failover clustering. For more information, see Using SQL
Server Tools with Failover Clustering (64-bit).

SQL Server 2000 (64-bit)

Failover Clustering Support (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

In Microsoft® SQL Server™ 2000 Enterprise Edition (64-bit), the number of nodes supported for failover clustering depends on
the operating system. Some operating systems may require fibre channels for clustering. Because there is no 64-bit version of
Windows NT® 4.0 or Windows 2000, you cannot install SQL Server 2000 (64-bit) on Windows NT 4.0 or Windows 2000.

The following tools, features, and services are supported with SQL Server 2000 (64-bit) failover clustering:

Microsoft Search service. For more information, see Using SQL Server Tools with Failover Clustering (64-bit).

Replication. For more information, see Creating a Failover Cluster (64-bit).

Service Control Manager. For more information, see Using SQL Server Tools with Failover Clustering (64-bit).

In addition, the following tools can be used for failover clustering with SQL Server 2000 (64-bit), but only if they are administered
remotely from a 32-bit computer. You cannot run these tools directly on a SQL Server 2000 (64-bit) computer. To get the SQL
Server 2000 tools, you must install them on a 32-bit computer. For more information, see Configuring SQL Server 2000 (64-bit).

SQL Server Enterprise Manager. For more information, see Using SQL Server Tools with Failover Clustering (64-bit).

SQL Profiler. For more information, see Using SQL Server Tools with Failover Clustering (64-bit).

SQL Query Analyzer. For more information, see Using SQL Server Tools with Failover Clustering (64-bit).

The following feature is not supported for failover clustering:

SQL Server 2000 Analysis Services

SQL Server 2000 (64-bit)

Handling a Failover Cluster Installation (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

When you install a Microsoft® SQL Server™ 2000 (64-bit) failover cluster, you must:

Ensure that the operating system is installed properly and designed to support failover clustering. For more information
about what to do before installing a failover cluster, see Before Installing Failover Clustering (64-bit).

Consider whether the SQL Server tools, features, and components you want to use are supported with failover clustering.
For more information, see Failover Clustering Support (64-bit).

Consider whether failover clustering is dependent on the products you want to use. For more information, see Failover
Clustering Dependencies (64-bit).

Consider how to create a new failover cluster. For more information about creating a new failover cluster configuration, see
Creating a Failover Cluster (64-bit).

SQL Server 2000 (64-bit)

Before Installing Failover Clustering (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Before you install a Microsoft® SQL Server™ 2000 (64-bit) failover cluster, you must select the operating system on which your
computer will run. Note that for the present release, only one operating system is available: the 64-bit versions of the Windows®
Server 2003 family. For future releases of SQL Server 2000 (64-bit), additional 64-bit Windows operating systems will be
available. You also must install Microsoft Cluster Service (MSCS).

Preinstallation Checklist

Before you begin the installation process, verify that:

Your hardware is listed on the Hardware Compatibility List for the 64-bit versions of the Windows Server 2003 family.

The hardware system must appear under the category of cluster. Individual cluster components added together do not
constitute an approved system. Only systems purchased as a cluster solution and listed in the cluster group are approved.
When checking the list, specify cluster as the category. All other categories are for OEM use.

Special hardware compatibility testing is necessary when implementing a failover server cluster on a Storage Area Network
(SAN). The entire solution must be on the Multi-Cluster Device Hardware Compatibility List. This is also true when
implementing failover cluster nodes in different geographic locations. The entire solution must be on the Geographic
Cluster Hardware Compatibility List.

MSCS has been installed completely on at least one node before you run the 64-bit versions of the Windows Server 2003
family simultaneously on all nodes.

WINS is properly installed. For guidelines, go to this Microsoft Web site, and search for the following article:

Q258750 Recommended Private "Heartbeat" Configuration on Cluster Server

The disk drive letters for the cluster-capable disks are the same on both servers.

You have disabled NetBIOS for all private network cards before beginning SQL Server Setup.

You have cleared the system logs in all nodes and viewed the system logs again. Ensure that the logs are free of any error
messages before continuing.

Also be sure to review the tutorial for Windows Cluster Installation at this Microsoft Web site. For more information about any of
these steps, please see your Windows documentation.

For information about installing SQL Server 2000 (64-bit) failover clustering, see Creating a Failover Cluster (64-bit).

http://go.microsoft.com/fwlink/?linkid=3238
http://go.microsoft.com/fwlink/?linkid=3237

SQL Server 2000 (64-bit)

Creating a Failover Cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

To create a Microsoft® SQL Server™ 2000 failover cluster, you must create and configure a virtual server. Running SQL Server
Setup does this. This topic explains the elements of a virtual server, as well as important information about naming a virtual
server. It also lists basic steps for creating a failover cluster.

Elements of a Virtual Server

A virtual server contains:

A combination of one or more disks in a Microsoft Cluster Service (MSCS) cluster group.

Each MSCS cluster group can contain at most one virtual SQL Server.

A network name for each virtual server. This network name is the virtual server name.

One or more IP addresses that are used to connect to each virtual server.

One instance of SQL Server 2000 (64-bit), including a SQL Server resource, a SQL Server Agent resource, and a full-text
resource.

If an administrator uninstalls the instance of SQL Server 2000 (64-bit), the virtual server, including all IP addresses and the
network name, is also removed from the MSCS SQL Server cluster group.

A failover cluster can run across one or more actual computers that are participating nodes of the cluster and that are using the
64-bit versions of the Windows® Server 2003 family operating system. However, a SQL Server virtual server always appears on
the network as a single computer.

Naming a Virtual Server

SQL Server 2000 (64-bit) depends on distinct registry keys and service names within the failover cluster so that operations will
continue correctly after a failover. Therefore, the name you provide for the instance of SQL Server 2000 (64-bit), including the
default instance, must be unique across all nodes in the failover cluster, as well as across all virtual servers within the failover
cluster. For example, if all instances failed over to a single server, their service names and registry keys should each be distinct
from one another.

Additionally, you must use the virtual server name to connect to a SQL Server 2000 (64-bit) virtual server. You cannot use the
node name of the computer it happens to be running on at the time. This ensures that you will always be able to connect to the
virtual server using the same name. SQL Server 2000 (64-bit) does not listen on the IP address of the local servers. SQL Server
listens only on the clustered IP addresses created during the setup of a virtual server for SQL Server 2000 (64-bit).

Usage Considerations

Before you create a failover cluster, consider the following:

In a failover cluster configuration, the network name and IP address of your SQL Server virtual server should not be used
for any other purposes, such as file sharing. If you want to create a file share resource, you should use a different network
name and IP address.

Important SQL Server 2000 (64-bit) supports both Named Pipes and TCP/IP Sockets over TCP/IP within a failover cluster.
However, it is strongly recommended that you use TCP/IP Sockets in a clustered configuration.

If you need high-availability servers in replication, use an MSCS cluster file share as your snapshot folder when configuring
a Distributor on a failover cluster. In the case of server failure, the distribution database will be available and replication will
continue to be configured at the Distributor.

Also, when creating publications, specify the MSCS cluster file share for the additional storage of snapshot files or as the location
from which Subscribers apply the snapshot. This way, the snapshot files are available to all nodes of the cluster and to all
Subscribers that must access it. For more information, see the "Alternate Snapshot Locations" and "Publishers, Distributors, and
Subscribers" topics in the SQL Server 2000 32-bit Books Online.

To use encryption with a failover cluster, install the server certificate with the fully qualified DNS name of the virtual server

on all nodes in the failover cluster. For example, if you have a two-node cluster, with nodes named
"test1.redmond.corp.microsoft.com" and "test2.redmond.corp.microsoft.com" and a virtual SQL Server "Virtsql", you need to
get a certificate for "virtsql.redmond.corp.microsoft.com" and install the certificate on both nodes. You can then check the
Force protocol encryption check box on the Server Network Utility to configure your failover cluster for encryption. Do
not enable the Force protocol encryption check box until you have certificates installed on all participating nodes in your
virtual server.

The cluster service must check whether the virtual SQL Server is running by using the IsAlive thread. This requires
connecting to the server using a trusted connection. You should ensure that the account the cluster services is configured to
run as is an administrator on all nodes in the cluster, and that the BUILTIN\Administrators group has permission to log into
SQL Server. These permissions are set by default, so this only applies if you change permissions on the cluster nodes.

Creating a Failover Cluster

To create a failover cluster, you must be a local administrator with permission to log on as a service and to act as part of the
operating system on all computers in the failover cluster.

Here are the basic steps for creating a failover cluster using the Setup program:

1. Identify the information you need to create your virtual server (for example, cluster disk resource, IP addresses, and network
name) and the nodes available for failover.

This configuration must take place before you run the Setup program. You configure this through Cluster Administrator in
the 64-bit versions of the Windows Server 2003 family. You need one MSCS group for each virtual server you want to set
up.

2. Start the Setup program to begin your installation. After you enter all necessary information, the Setup program installs a
new instance of SQL Server binaries on the local disk of each computer in the virtual server and installs the system
databases on the specified cluster disk. The binaries are installed in exactly the same path on each cluster node, so you must
ensure that each node has a local drive letter in common with all the other nodes in the cluster.

If any resource (including SQL Server) fails for any reason, the resources will either be re-started on the same node or the
group will move to an available failover cluster node (depending on the failover cluster threshold configuration). The
available failover cluster node will be one of the nodes defined as available nodes for the virtual server during SLQ Server
setup.

3. Install one instance of SQL Server 2000 (64-bit), creating a new virtual server and all resources.

How to create a new failover cluster

SQL Setup

SQL Setup (64-bit)

How to install a one-node failover cluster

SQL Setup

SQL Setup (64-bit)

You can also create a failover cluster using the .ini file provided with SQL Server Setup. For more information about installing
using the .ini file, see SQL Server 2000 (64-bit) Setup Command.

SQL Server 2000 (64-bit)

Failover Clustering Example (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The following example illustrates how to configure Microsoft® SQL Server™ 2000 (64-bit) failover clustering.

CLUSTERNODEA and CLUSTERNODEB are two computers in a failover cluster. Run SQL Server Setup on CLUSTERNODEA to
create a default instance of SQL Server on a virtual server named "SQLCLUSTA." This virtual server can run on either
CLUSTERNODEA or CLUSTERNODEB. From this point forward, connect to the server by specifying "SQLCLUSTA" as the server
name in the connection string.

Run the Setup program again on CLUSTERNODEB. Create a named instance "Inst1" on a new virtual server named "SQLCLUSTB"
(this must be installed in a different Microsoft Cluster Service [MSCS] cluster group). This virtual server can run on either
CLUSTERNODEA or CLUSTERNODEB. From this point forward, connect to the server by specifying "SQLCLUSTB\Inst1" as the
connection string.

The two virtual servers are running in the MSCS cluster consisting of CLUSTERNODEA and CLUSTERNODEB. Other than that, they
are completely separate from each other. Each virtual server resides in a different MSCS cluster group, and each has a different
set of IP addresses, a distinct network name, and data files that reside on a separate set of shared cluster disks.

When a failover occurs for any resource in an MSCS cluster group, all resources that are members of that group also fail over. For
SQLCLUSTA, any failure (from the disk resources, IP address, the network name, or the installations of SQL Server 2000 [64-bit]
within the virtual server) causes all members of the cluster group to fail over when the failover threshold is reached.

The following illustration is a two-node cluster with binaries and data. Each virtual server in this illustration must have exclusive
ownership of the disk on which the data and log files are located.

SQL Server 2000 (64-bit)

Failover Clustering Dependencies (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

There are several products that interact with Microsoft® SQL Server™ 2000 (64-bit) failover clustering. To ensure that your
failover cluster functions properly, you need to understand the underlying dependencies that failover clustering has on other
products.

Microsoft Distributed Transaction Coordinator (MS DTC)

SQL Server 2000 (64-bit) requires Microsoft Distributed Transaction Coordinator (MS DTC) in the cluster for distributed queries
and two-phase commit transactions, as well as for some replication functionality. After you install the 64-bit versions of the
Windows® Server 2003 family, and configure your cluster, you must configure MS DTC to work in a cluster by using the Cluster
Administrator. Using the Cluster Administrator, go to New/Resource, and create the MS DTC resource. It is recommended that
the MS DTC resource not be in the cluster group.

Running M S DTC in Clustered M ode

When MS DTC is running in clustered mode, you can create only one MS DTC resource on the entire cluster.

Any process running on any node in the cluster can use MS DTC. These processes simply call the MS DTC Proxy and the MS DTC
Proxy automatically forwards MS DTC calls to the MS DTC transaction manager that is controlling the entire cluster.

If the node running the MS DTC transaction manager fails, the MS DTC transaction manager is automatically restarted on another
node in the cluster. The newly restarted MS DTC transaction manager reads the MS DTC log file on the shared cluster disk to
determine the outcome of pending and recently completed transactions. Resource managers reconnect to the MS DTC transaction
manager and perform recovery to determine the outcome of pending transactions. Applications reconnect to MS DTC so they can
initiate new transactions.

For example, suppose the MS DTC transaction manager is active on system B. The application program and resource manager on
system A call the MS DTC proxy. The MS DTC proxy on system A forwards all MS DTC calls to the MS DTC transaction manager on
system B.

If system B fails, the MS DTC transaction manager on system A will take over. It will read the entire MS DTC log file on the shared
cluster disk, perform recovery, and then serve as the transaction manager for the entire cluster.

Note The MS DTC transaction manager, MS DTC Proxy, and Component Services administrative tools are installed on each node
of a the 64-bit versions of the Windows Server 2003 family cluster. The cluster uses Microsoft Cluster Services (MSCS) as part of
the setup of the 64-bit versions of the Windows Server 2003 family.

To manually install MS DTC on the 64-bit versions of the Windows Server 2003 family (running MSCS)

1. Install the 64-bit versions of the Windows Server 2003 family on each node in the cluster.

2. Select Start, point to Programs, point to Administrative Tools, and then click Cluster Administrator.

3. In the left pane, select the name of the cluster.

4. Right-click, and then click the Create Group menu item. This creates a new group in the cluster.

For more information about using MS DTC in a cluster configuration, see your Windows documentation.

SQL Server 2000 (64-bit)

Maintaining a Failover Cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

After you have installed a Microsoft® SQL Server™ 2000 (64-bit) failover cluster, you can change or repair your existing setup.
For example, you can add additional nodes to a virtual server in a failover cluster, run a clustered instance as a stand-alone
instance, remove a node from a clustered instance, or recover from failover cluster failure.

Adding a Node to an Existing Virtual Server

During SQL Server Setup, you are given the option of maintaining an existing virtual server. If you choose this option, you can add
other nodes to your failover cluster configuration at a later time. You can add up to three additional nodes to an existing virtual
server configured to run on one node.

To add a node to an existing virtual server

SQL Setup

SQL Setup (64-bit)

Removing a Node from an Existing Failover Cluster

You can remove a node from a virtual server (for example, if a node is damaged). Each node in a virtual SQL Server is considered
a peer, and you can remove any node.

A removed node can be added back to a failover cluster at any time. For example, a removed node can be rebuilt after a failure
and added back to the failover cluster. Alternatively, if a node is temporarily unavailable and later comes back online, and an
instance of SQL Server 2000 (64-bit) from the affected virtual server is still in place, the Setup program removes this instance
from the computer before installing the binaries on the node again.

Note A damaged node does not have to be available to be removed, but the removal process will not uninstall any of the
binaries from the unavailable node.

To remove a node from an existing failover cluster

SQL Setup

SQL Setup (64-bit)

Running a Clustered Instance of SQL Server as a Stand-Alone Instance

Usually, you run a clustered instance of SQL Server under the control of Microsoft Cluster Service (MSCS). However, it may be
necessary to run a clustered instance of SQL Server as a stand-alone instance (for example, when you want to perform
administrative operations like running an instance of SQL Server in single-user mode). To connect to a clustered instance of SQL
Server 2000 in stand-alone mode using sockets, both the IP address and network name resources must be online for the virtual
server on which the instance was installed.

If these resources cannot be online, connect using Named Pipes. However, you must create an alias on the client side to talk to the
pipe name on which the instance of SQL Server is listening. Use SQL Server Network Utility to find out the pipe name. For more
information, see the "SQL Server Network Utility" topic in the SQL Server 2000 32-bit Books Online. For more information, see
Failover Cluster Troubleshooting (64-bit).

Recovering from Failover Cluster Failure

Usually, failover cluster failure is due to one of these causes:

Hardware failure in Node 1 of a two-node cluster. This hardware failure could be caused by a failure in the SCSI card or the
operating system.

To recover from this failure, first remove the failover cluster using the Setup program.

To remove a failover clustered instance

SQL Setup

SQL Setup (64-bit)

To recover from failover cluster failure in Scenario 1

SQL Setup

SQL Setup (64-bit)

Node 1 is down or offline, but not irretrievably broken. This could be caused by an operating system failure. However,
recovering from operating system failure using the steps below can take time. If the operating system failure can be
recovered easily, avoid using this technique.

To recover from this failure, first remove the failover cluster using the Setup program.

To remove a failover clustered instance

SQL Setup

SQL Setup (64-bit)

To recover from failover cluster failure in Scenario 2

SQL Setup

SQL Setup (64-bit)

Changing Service Accounts

You should not change the passwords for any of the SQL Server service accounts when a failover cluster node is down or offline.
If you have to do this, you will need to reset the password again using SQL Server Enterprise Manager when all nodes are back
online. To use SQL Server Enterprise Manager on your SQL Server 2000 (64-bit) installations, you must administer the tool
remotely from a 32-bit computer.

If the service account for SQL Server is not an administrator in a cluster, the administrative shares cannot be deleted on any nodes
of the cluster. The administrative shares must be available in a cluster for SQL Server to function.

Do not use the same account for the SQL Server service account and the Cluster service account. If the password changes for the
Cluster service account, your SQL Server installation will fail.

See Also

Handling a Failover Cluster Installation (64-bit)

SQL Server 2000 (64-bit)

Using SQL Server Tools with Failover Clustering (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

You can use Microsoft® SQL Server™ 2000 (64-bit) failover clustering with a variety of SQL Server tools and services. However,
to get some of the SQL Server 2000 tools and services, you must install them on a 32-bit computer and administer them
remotely. Review the following usage considerations.

Full-Text Queries: Available on SQL Server 2000 (64-bit)

To use the Microsoft Search service to perform full-text queries with failover clustering, consider the following:

An instance of SQL Server 2000 (64-bit) must run on the same system account on all failover cluster nodes in order for full-
text queries to work on failover clusters. Note that this is a general requirement of failover clustering, and is not specific to
Microsoft Search service.

You must change the start-up account for SQL Server 2000 (64-bit) in the failover cluster using SQL Server Enterprise
Manager. If you use Control Panel or the Services Application in the 64-bit versions of the Windows® Server 2003 family,
you will break the full-text configuration for SQL Server.

SQL Server Enterprise Manager: Only Available on SQL Server 2000 (32-bit)

To use SQL Server Enterprise Manager with failover clustering, consider the following:

You must change the start-up account for SQL Server 2000 (64-bit) in the failover cluster by using SQL Server Enterprise
Manager. If you use Control Panel or the Services Application in the 64-bit versions of the Windows Server 2003 family, you
could break your server configuration.

When creating or altering databases, you will only be able to view the cluster disks for the local virtual server.

If you are browsing a table through SQL Server Enterprise Manager and lose the connection to SQL Server during a failover,
you will see the error message, "Communication Link Failure." You must press the ESCAPE key and undo the changes to exit
out of the SQL Server Enterprise Manager window. You cannot click Run Query, save any changes, or edit the grid.

If you use SQL Server Enterprise Manager to reset the properties of the SQL Server service account, you will be prompted to
restart SQL Server. When SQL Server is running in a failover cluster configuration, this will bring the full text and SQL Agent
resources offline, as well as SQL Server. However, when SQL Server is restarted, it will not bring the full text or SQL Agent
resources back online. You must start those resources manually using the Windows Cluster Administrator utility.

Service Control Manager: Available on SQL Server 2000 (64-bit)

Use the Service Control Manager to start or stop a clustered instance of SQL Server. You cannot pause a clustered instance of SQL
Server.

SQL Profiler: Only Available on SQL Server 2000 (32-bit)

You can use SQL Profiler with failover clustering. However, if you experience a failover on a server where you are running a SQL
Profiler trace, you must restart the trace when the server is back online to continue tracing.

SQL Query Analyzer: Only Available on SQL Server 2000 (32-bit)

You can use SQL Query Analyzer with failover clustering. However, if you experience a failover on a server where you are
executing a query, you must restart the query when the server is back online to continue execution.

SQL Mail: Not Available on SQL Server 2000 (64-bit)

You cannot use SQL Mail with SQL Server 2000 (64-bit). However, SQL Agent Mail in SQL Server 2000 (64-bit) can be configured
remotely by Enterprise Manager, if your client remotely connects using SQL Server 2000 Service Pack 3.0 or later. For more
information, see Differences Between 64-bit and 32-bit Releases (64-bit).

SQL Server 2000 (64-bit)

Failover Cluster Troubleshooting (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This topic provides information about:

Resolving the most common Microsoft® SQL Server™ 2000 (64-bit) failover clustering usage issues.

Optimizing failover cluster performance.

Using failover clustering with extended stored procedures that use COM objects.

Resolving Common Usage Issues

The following list describes common usage issues and explains how to resolve them:

SQL Server 2000 (64-bit) cannot log on to the network after it migrates to another node.

SQL Server service account passwords must be identical on all nodes, or else the node cannot restart a SQL Server service
that has migrated from a failed node.

It is recommended that you change the SQL Server service account passwords using SQL Server Enterprise Manager
(administered remotely from a 32-bit computer). If you do not, and you change the SQL Server service account passwords
on one node, you must also change the passwords on all other nodes. SQL Server Enterprise Manager does this
automatically.

SQL Server cannot access the cluster disks.

A node cannot recover cluster disks that have migrated from a failed node if the shared cluster disks use a different letter
drive. The disk drive letters for the cluster disks must be the same on both servers. If they are not, review your original
installation of the operating system and Microsoft Cluster Service (MSCS). For more information, see the 64-bit versions of
the Windows® Server 2003 family.

Failover is caused by the failure of one particular service, such as full-text search or SQL Server Agent.

To prevent the failure of specific services from causing the SQL Server group to fail over, configure those services using
Cluster Administrator in the 64-bit versions of the Windows Server 2003 family. For example, to prevent the failure of the
full-text search service from causing a failover of SQL Server, clear the Affect the Group check box on the Advanced tab
of the Full Text Properties dialog box. However, if SQL Server causes a failover, the full-text search service will restart.

SQL Server will not start automatically.

You cannot start a failover cluster automatically using SQL Server. You must use Cluster Administrator in MSCS to
automatically start a failover cluster.

If the Network Name is offline and you cannot connect using TCP/IP, you must use Named Pipes.

To connect using Named Pipes, create an alias using the Client Network Utility to connect to the appropriate computer. For
example, if you have a cluster with two nodes (Node A and Node B), and a virtual server (Virtsql) with a default instance, you
can connect to the server that has the Network Name resource offline by doing the following:

1. Determine on which node the group containing the instance of SQL Server is running by using the Cluster
Administrator. For this example, it will be Node A.

2. Start the SQL Server service on that computer using net start. For more information about using net start, see Starting
SQL Server Manually.

3. Start the SQL Server Network Utility on Node A. View the pipe name on which the server is listening. It should be
similar to \\.\$$\VIRTSQL\pipe\sql\query.

4. On the client computer, start the Client Network Utility.

5. Create an alias SQLTEST1 to connect through Named Pipes to this pipe name. To do this, enter Node A as the server

name and edit the pipe name to be \\.\pipe\$$\VIRTSQL\sql\query. Connect to this instance using the alias SQLTEST1
as the server name.

For more information, see Client Net-Libraries and Network Protocols.

Optimizing Failover Clustering Performance

To optimize performance when using failover clustering, consider the following:

If your disk controller is not external to your clustered computer, you must turn off write-caching within the controller to
prevent data loss during a failover.

Write-back caching cannot be used on host controllers in a cluster without hindering performance. However, if you use
external controllers, you continue to provide performance benefits. External disk arrays are not affected by failover
clustering and can sync the cache correctly, even across a SCSI bus.

It is recommended that you do not use the cluster drive for file shares. Using these drives impacts recovery times and can
cause a failover of the cluster group due to resource failures.

Determine and set your maximum memory size (MAX Memory). MAX Memory is equal to the total memory available, less
memory for the operating system, and less memory for other cluster resources. Divide the remaining memory between the
SQL Servers installed to find your MAX memory for SQL Server.

Using Extended Stored Procedures and COM Objects

When you use extended stored procedures with a failover clustering configuration, all extended stored procedures need to be
installed on the shared cluster disk. This is to ensure that when a node fails over, the extended stored procedures can still be used.

If the extended stored procedures use COM components, the administrator needs to register the COM components on each node
of the cluster. The information for loading and executing COM components must be in the registry of the active node in order for
the components to be created. Otherwise, the information will remain in the registry of the computer on which the COM
components were first registered. For more information, see the "Extended Stored Procedure Architecture" topic in the SQL
Server 2000 32-bit Books Online.

SQL Server 2000 (64-bit)

Upgrading to a SQL Server 2000 (64-bit) Failover Cluster
 This topic applies only to SQL Server 2000 (64-bit).

Because there are no previous 64-bit versions of SQL Server, you cannot upgrade an existing failover cluster to a SQL Server
2000 (64-bit) failover cluster.

SQL Server 2000 (64-bit)

Installing SQL Server from the Command Line (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The Microsoft® SQL Server™ 2000 (64-bit) Setup.exe program can be run from the command line.

If the user chooses to run Setup.exe from the command line rather than by double-clicking on Setup.exe, there are several
command line switches that can be specified. Note that in order to perform an unattended installation, either /qn or /qb must be
specified; otherwise the complete graphical user interface will be displayed. For unattended virtual server installation /qn must be
specified.

SQL Server 2000 (64-bit) Setup Command

Running Setup to Install SQL Server 2000 (64-bit)

Reinstalling SQL Server 2000 (64-bit)

Cluster Command-Line Support (64-bit)

SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit) Setup Command
 This topic applies only to SQL Server 2000 (64-bit).

The Microsoft® SQL Server™ 2000 (64-bit) Setup.exe program provides a command line interface in addition to the graphical
user interface provided when Setup is run from My Computer or Windows Explorer. Use the properties described in this topic to
define settings for customizing the way Setup.exe installs SQL Server 2000. These property settings can be specified either on the
command line or in an .ini file specified by the /settings argument.

Important For all path-related parameters in setup, use of a trailing backslash (\) is required.

The following syntax shows the three different command lines to show help, to install an instance, or to remove an instance.

Syntax

setup /?

setup

 [/i package_file]
 {/settings ini_file | property1=setting1 property2=setting2 ...}
 [{/qn|/qb}]

 [/l*v log_file]

setup /x package_file
 [/qn

 [/l*v log_file]

Arguments

/?

Displays a syntax summary of the setup switches.

/i package_file

This argument is not required to install a new instance. It specifies the name of the Microsoft Windows® installation package file
(an .msi file) to be used to install an instance of SQL Server 2000 or any of its features. You should specify the complete path to
the file following the /i or /x switch. Place the .msi file in the same folder as Setup.exe. Msi files are located in the setup
subdirectory from the root directory of the CD. If this parameter is omitted, Setup automatically chooses the next unused .msi file
for the installation. For maintaining an existing installation you can instead specify the product code from the ProductCode
registry key. For the default instance, use HKEY_Local_Machine\Software\Microsoft\MSSQLServer\Setup:ProductCode. For a
named instance, use HKEY_Local_Machine\Software\Microsoft SQL Server\instancename\Setup:ProductCode.

To uninstall a failover cluster, do not use this argument. Use the NODELIST property with an empty list.

/settings ini_file

Specifies the name of an .ini file containing settings for the Setup Properties (listed later in this topic). Place the .ini file in the same
folder as Setup.exe. If you use this argument, properties should be set in the .ini file, not in the setup command line. For more
information, see Specifying Setup Properties with an .ini File (64-bit).

property1=setting1 property2=setting2 ...

Sets a value for a setup property, which may have a string or a value setting. You only need to include the property settings that
are required for an installation. The properties and their settings are described later in this topic. Spaces are permitted in a
character string setting but the string must then be enclosed between double quotation marks: "string". For any double quotation
character included within the string setting, you must place an additional double-quotation character ("") as an escape code. End
paths for folder locations with a backward slash:

INSTALLSQLDIR="C:\Program Files\Microsoft SQL Server\"

If the /settings argument is used to specify an .ini file, properties should be set in the .ini file, not on the setup command line.

/x package_file

Specifies the Windows Installer installation package file (an .msi file) to use when uninstalling an instance of SQL Server 2000.

You must specify the name of the same installation package file that was used to install the instance of SQL Server. Specify the
complete path to the file following the /x switch.

/qn

In order to perform an unattended installation, you must specify either /qn or /qb. The /qn switch specifies that Setup run with
no user interface. This argument is required for unattended failover cluster installations.

/qb

In order to perform an unattended installation, you must specify either /qn or /qb. This argument specifies that Setup show only
the basic user interface. Only dialog boxes displaying progress information are displayed.

This argument cannot be used for failover cluster installations.

/l*v log_file

Specifies that the verbose log be created. If this argument is omitted, a non-verbose log is created and saved in the %TEMP%
location as Sqlrunn.log (where n represents an enumeration for the installation). Another log, Sqlstpn.log is always created for
every installation in the %TEMP% location.

Properties

ADDLOCAL="feature_selection"

Specifies the features to be installed with the current instance either for a new instance or for maintaining an existing instance.
The feature_selection list is a comma-delimited list composed of the following features:

Feature Description
SQL_Server,
SQL_Tools,
SQL_Headers_Libs,
SQL_Engine,
SQL_Replication,
SQL_Data_Files,
SQL_DevTools

SQL Server features that are all required
when you install SQL Server.

SQL_FullText Full-text search engine.
AnalysisServices,
Analysis_Server,
AnalysisDataFiles,
AnalysisSQL,
AnalysisSQLData,
AnalysisClient

Analysis Services features that are all
required when you install Analysis
Services.

Books_Online Books Online.

If ADDLOCAL is omitted, Setup performs a complete installation of all features. If adding features to an existing installation,
specify only those features that you are adding. For example, to add Analysis Services to an existing installation, specify the
following property setting:

ADDLOCAL=SqlRun,AnalysisServices,Analysis_Server,AnalysisDataFiles,AnalysisSQL,AnalysisSQLData,AnalysisClient

This property is not used to install the SQL Server 2000 Desktop Engine.

This property cannot be used for failover cluster installations.

AGTACCOUNT="domain\logon_name"

Specifies the SQL Server Agent service account domain and logon name. Use AGTPASSWORD to specify the password that
corresponds to the logon name. The default if this property is omitted is the local system account.

This property is required for failover cluster installations.

AGTPASSWORD="password"

Specifies the SQL Server Agent service account password that corresponds to the logon name specified by AGTACCOUNT.

This property is required for failover cluster installations.

Caution If this property is omitted, the sa password will be set to NULL. Microsoft recommends that you use Windows

Authentication security mode (integrated security). If you must use SQL Server Authentication, you should immediately change
the password.

AGTAUTOSTART={1|0}

Specifies whether the SQL Server Agent service is started automatically when the Microsoft Windows® operating system is
restarted. Specify 1 to enable or 0 to disable automatic restart. The default if this property is omitted is 1. The SQL Server Agent
service requires the SQL Server service to start, so if you specify 1 for this property then the SQLAUTOSTART property setting is
also set to 1 (even if you specify SQLAUTOSTART=0).

BLANKSAPWD=1

Specifies that the sa password should be set to NULL. The password string specified by this property is hidden and not written to
the log file.

CALLBACK=Dllname!CallbackFunctionName

Specifies the name of the DLL containing the Windows Installer callback function, as well as the name of the callback function.

COLLATION="collation_designator"

Specifies the SQL Server collation that will be used as the default collation for this instance of SQL Server. The default collation
depends on the Windows locale setting. For a list of Windows locales and their corresponding collation designators, see the
"Windows Collation Designators" topic in SQL Server 2000 32-bit Books Online. (64-bit)

COMPANYNAME="company_name"

Specifies the name for the company registering this product. If this property is omitted, the company name for the operating
system is used. If the name contains any spaces, enclose it between double quotation marks.

INSTALLOLAPDIR="OLAP_executable_folder_path"

Specifies the folder where the Analysis Services executable files are installed. The default path is systemdrive\Program
Files\Microsoft Analysis Services\. For all path-related parameters, use of a trailing backslash (\) is required. Install Analysis
Services to a folder that uses only single-byte characters in the path and name.

This property cannot be used for failover cluster or MSDE installations.

INSTALLOLAPDATADIR="OLAP_data_folder_path"

Specifies the folder where the Analysis Services cubes are built. The default path is systemdrive\Program Files\Microsoft Analysis
Services\Data\.

This property cannot be used for failover cluster or MSDE installations.

INSTALLSQLDIR="SQL_executable_folder_path"

Specifies the folder where the SQL Server executable files are installed. The default path is systemdrive\Program Files\Microsoft
SQL Server\. SQL Server then locates program files for the default instance in systemdrive\Program Files\Microsoft SQL
Server\MSSQL. For a named instance, it locates program files in systemdrive\Program Files\Microsoft SQL
Server\MSSQL$instancename.

For installation of a failover cluster, this property is required, and SQL_executable_folder_path must be located on a local drive
with a drive letter that exists on all nodes in the cluster definition.

INSTALLSQLDATADIR="data_folder_path"

Specifies the folder where the SQL Server system databases are built. The default path is systemdrive\Program Files\Microsoft
SQL Server\. SQL Server then locates database files for the default instance in systemdrive\Program Files\Microsoft SQL
Server\MSSQL\Data. For a named instance, it locates program files in systemdrive\Program Files\Microsoft SQL
Server\MSSQL$instancename\Data.

For installation of a failover cluster, this property is required, and data_folder_path must be located on shared drive that is a
member of the cluster group specified for installation (see the GROUP property).

INSTANCENAME="instance_name"

Specifies the name of the instance. If this property is omitted, the instance is installed as a default instance. See Naming Instances
(64-bit) for complete rules to name an instance.

This property is optional for failover cluster installations. If you want to assign an instance name to your cluster installation, then
include this property setting.

PIDKEY=cd_key

Specifies the 25-character product identification key required for installation of SQL Server 2000. You can find this number on the
yellow sticker in the installation CD liner notes or on the CD case. This property is required.

This property is not used to install the SQL Server 2000 Desktop Engine.

OLAPACCOUNT="domain\logon_name"

Specifies the MSSQLServerOLAPService service account domain and logon name. Use OLAPPASSWORD to specify the password
that corresponds to the logon name. The default if this property is omitted is the local system account.

This property is not used to install the SQL Server 2000 Desktop Engine.

This property cannot be used for failover cluster installations.

OLAPAUTOSTART={1|0}

Specifies whether the MSSQLServerOLAPService service is started automatically when the Windows operating system is
restarted. Specify 1 to enable or 0 to disable automatic restart. The default if this property is omitted is 1.

This property is not used to install the SQL Server 2000 Desktop Engine.

This property cannot be used for failover cluster installations.

OLAPPASSWORD="password"

Specifies the MSSQLServerOLAPService service account password that corresponds to the logon name specified by
OLAPACCOUNT.

This property is not used to install the SQL Server 2000 Desktop Engine.

This property cannot be used for failover cluster installations.

Caution If this property is omitted, the sa password will be set to NULL. Microsoft recommends that you use Windows
Authentication security mode (integrated security). If you must use SQL Server Authentication, you should immediately change
the password.

PERPROCESSOR="per_processor_license"

Specifies the number of per processor licenses purchased. If you use the PERPROCESSOR property, do not use the PERSEAT
property.

This property is not used to install the SQL Server 2000 Desktop Engine.

PERSEAT="per_seat_license"

Specifies the number of per seat licenses purchased. If you use the PERSEAT property, do not use the PERPROCESSOR property.

This property is not used to install the SQL Server 2000 Desktop Engine.

REINSTALL=All

Specifies that Setup install all previously installed SQL Server 2000 (64-bit) features. The only value supported is All. This
property must always be used with REINSTALLMODE.

REINSTALLMODE={omus|amus}

Specifies the level of processing performed by Setup. Use REINSTALLMODE=omus when resuming a failed setup. With this
option, the entire installation is verified and completed. REINSTALLMODE=omus also rebuilds the registry for a corrupted
Microsoft SQL Server installation. Use REINSTALLMODE=amus to rebuild the system databases (for example, to change the
server collation or to rebuild the master database after a hard drive failure). When you use REINSTALLMODE=amus, you can
modify the security settings (SECURITY and SAPWD) and the collation (COLLATION).

REMOVE="feature_selection"

Specifies the features that will be removed from an existing installation. The feature_selection list is a comma-delimited list
containing features listed under ADDLOCAL. To completely remove an instance, use the /x argument on the setup command
line.

This property cannot be used for failover cluster installations.

SAPWD="sa_password"

Specifies the sa password when you use the SECURITYMODE=SQL property. The password string specified by this property is

hidden and not written to the log file.

Caution If this property is omitted, the sa password will be set to NULL. Microsoft recommends that you use Windows
Authentication security mode (integrated security). If you must use SQL Server Authentication, you should immediately change
the password.

SECURITYMODE=SQL

Configures the installed instance to use SQL Server (Mixed Mode) Authentication. The default if you omit this property is to use
Windows Authentication and place the Windows local Administrators group in the SQL Server sysadmin fixed server roll. When
you use this property, you can use SAPWD to specify the sa password for SQL Server Authentication.

Note Microsoft recommends that you use Windows Authentication security mode (integrated security). If you must use SQL
Server Authentication, you should immediately change the password

SQLACCOUNT="domain\logon_name"

Specifies the SQL Server service account domain and logon name. Use SQLPASSWORD to specify the password that corresponds
to the logon name. The default if this property is omitted is the local system account.

This property is required for failover cluster installations.

SQLAUTOSTART={0|1}

Specifies whether the SQL Server service is started automatically when the Windows operating system is restarted. Specify 1 to
enable or 0 to disable automatic restart. The default if this property is omitted is 1.

SQLPASSWORD="password"

Specifies the SQL Server service account password that corresponds to the logon name specified by SQLACCOUNT.

This property is required for failover cluster installations.

Caution If this property is omitted, the sa password will be set to NULL. Microsoft recommends that you use Windows
Authentication security mode (integrated security). If you must use SQL Server Authentication, you should immediately change
the password.

UPGRADE=1

Specifies that Windows Installer is upgrading the instance specified by INSTANCENAME. If INSTANCENAME is not specified,
then the default instance is upgraded. The only supported value is 1.

Note Upgrades are not supported for this release of SQL Server 2000 (64-bit).

UPGRADEPWD="password"

Specifies the password for the login account specified by the UPGRADEUSER property setting. This can be omitted if the login
account has a blank password.

Security Note It is recommended that you not use blank passwords; instead, use strong passwords.

This property is not used to install the SQL Server 2000 Desktop Engine.

UPGRADEUSER="login_account"

Specifies that Setup connect to the instance using SQL Server Authentication using the specified login account. The login account
must be a member of the sysadmin fixed server role.

It is recommended that you not use this property, so that Setup uses Windows Authentication to connect to the instance. Omitting
this property requires Setup to run under a Windows domain or computer account that has been included in the SQL Server
sysadmin fixed server role.

This property is not used to install the SQL Server 2000 Desktop Engine.

USERNAME="user_name"

Specifies the name for the user registering this product. If this property is omitted, the user name for the operating system is
used. If the name contains any spaces, enclose it between double quotation marks.

Cluster Specific Properties

ADMINACCOUNT="domain\login_name"

Specifies the domain and the administrator account name that is used to spawn processes to remote nodes during Setup only.
This account must be a valid administrator on all nodes in the cluster. This property is optional only if the only node affected is the
node on which Setup is being run.

ADMINPASSWORD="admin_password"

Specifies the cluster administrator password that corresponds to the account name specified by ADMINACCOUNT.

GROUP="cluster_group_name"

Specifies the cluster group name. This is the group that contains the disk to which the shared data files are written and that
contains SQL Server resources. The node that owns the cluster group must be specified by the NODELIST property.

IP="ip_address1,network_name1"

IP="ip_address2,network_name2"

Specify one or more IP addresses that are used to connect to each virtual server. Only one address per network adaptor is
permitted, although this property can be used multiple times, once for each network adaptor.

NODELIST="node1_name,node2_name"

Specifies the cluster nodes that are part of the virtual server definition. This list is comma-delimited. To add a node to an existing
virtual server definition, execute the original command line or .ini file with the new node added to the NODELIST property setting.
To remove a node from an existing virtual server definition, execute the original command line or .ini file with the node removed
from the NODELIST property setting. To uninstall a cluster, simply provide an empty NODELIST or omit the NODELIST property
completely.

VS="virtual_server_name"

Specifies the name of the virtual server. This is the name that users see when they connect to the virtual server. For more
information, see Creating a Failover Cluster (64-bit). This name must be 15 characters or less and follow the naming rules for a
computer name.

See Also

Running Setup to Install SQL Server 2000 (64-bit)

Reinstalling SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit)

Running Setup to Install SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Run the Setup command to install Microsoft® SQL Server™ 2000 (64-bit) or any of its features. Run Setup in either of the
following ways:

Execute Setup.exe from a batch command file or from the command prompt. When using this method, setup switches are
specified in the same way they would be specified for any other command prompt utility.

Execute Setup.exe from within an application setup executable file, using a method similar to the Microsoft Win32®
CreateProcess() function. In this case, setup switches are specified in a character string passed in using the
lpCommandLine parameter. For information about using CreateProcess() to execute Setup.exe, see the "Desktop Engine
Installation Samples" topic in the SQL Server 2000 32-bit Books Online (64-bit).

To perform an unattended installation use the /qn or /qb argument. The /qn argument provides for a silent installation,
displaying no user interface dialog boxes. The /qb argument displays only dialog boxes showing progress information, such as
the dialog box that prompts users to restart after setting up SQL Server. For an unattended installation of a failover cluster, you
must use /qn.

The preferred method for removing an instance of SQL Server 2000 is to use Add or Remove Programs in Control Panel, or to
run Setup.exe from the desktop or Windows Explorer. However, you can use the setup command line to uninstall SQL Server for
an unattended operation or from another application. To uninstall an instance of SQL Server 2000 using the setup command line,
call Setup.exe using the /x switch to specify the same .msi file that was used to install that instance. For example, to uninstall a
named instance installed with a custom installation package file named MyCustom.msi, execute:

Setup /x MyCustom.msi

Instead of an .msi file, you can specify the product code from the ProductCode registry key. For the default instance use
HKEY_Local_Machine\Software\Microsoft\MSSQLServer\Setup:ProductCode. For a named instance use
HKEY_Local_Machine\Software\Microsoft SQL Server\instancename\Setup:ProductCode.

SQL Server 2000 (64-bit)

Specifying Setup Properties with an .ini File (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Optionally, the setup command line properties can be specified using an .ini file. On the setup command line, use the /settings
ini_file argument to specify the .ini file. The first line in the .ini file must contain the string [Options].

The \Template.ini file on the SQL Server 2000 (64-bit) installation compact disc provides detailed instructions for creating an ini
file. The format of the .ini file is illustrated in this example:

[Options]
USERNAME=MyName
COMPANYNAME=MyCompany
PIDKEY=ABCDE12345FGHIJ67890KLMNO
INSTALLSQLDIR="C:\Program Files\Microsoft SQL Server\"
INSTALLSQLDATADIR="C:\Program Files\Microsoft SQL Server\"
INSTANCENAME=MyInstance
SQLACCOUNT=MyDomain/MyAccount
SQLPASSWORD=MyPassword
...

Important Property settings that contain spaces must be enclosed between double quotation marks, and paths must always end
with a backslash (\) character.

You can also use an .ini file to specify property settings for an existing installation of SQL Server 2000. To maintain an existing
instance using an .ini file, you must also include the /i package_file argument on the command line to specify the package file for
the instance. Include the /i on the command line with the /settings argument. For example:

setup /i sqlrun01.msi /settings myinstance.ini /l*v c:\myinstance.log

Alternatively, you can specify the product code from the ProductCode registry key. For the default instance use
HKEY_Local_Machine\Software\Microsoft\MSSQLServer\Setup:ProductCode. For a named instance use
HKEY_Local_Machine\Software\Microsoft SQL Server\instancename\Setup:ProductCode.

See Also

SQL Server 2000 (64-bit) Setup Command

SQL Server 2000 (64-bit)

Reinstalling SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

If an attempt to install an instance of Microsoft® SQL Server™ 2000 (64-bit) fails (for reasons such as specifying an incorrect
login account or using a Microsoft Windows® account that does not have sufficient file permissions), you may want to resume
Setup after correcting the error condition. This includes installations using either SQL Server 2000 (64-bit) Setup or the merge
modules in a Windows Installer installation process.

When resuming the installation process, you must specify two installation options in addition to the options that were specified in
the original installation attempt:

REINSTALL=All

Specifies that SQL Server 2000 Setup install all SQL Server 2000 features. The only value supported is All.

REINSTALLMODE={omus|amus}

Specifies the level of processing performed by SQL Server 2000 Setup. Specify REINSTALLMODE=omus when resuming a failed
setup. With this option, the entire installation process is verified and completed. Specify REINSTALLMODE=amus when you have
to rebuild only the master database, such as after a failure of the disk drive holding the master database.

See Also

SQL Server 2000 (64-bit) Setup Command

Repairing a SQL Server Installation (64-bit)

SQL Server 2000 (64-bit)

Cluster Command-Line Support (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The following syntax shows the arguments and properties used by the setup command line for a failover cluster. For complete
documentation of the arguments and properties, see SQL Server 2000 (64-bit) Setup Command.

Syntax

setup /? |

 [
 {[/i package_file]
 {[/settings ini_file]
 |[USERNAME="user_name"]
 [COMPANYNAME="company_name"]
 PIDKEY=cd_key
 INSTALLSQLDIR="SQL_executable_folder_path"
 INSTALLSQLDATADIR="data_folder_path"
 [REMOVE="feature_selection"]
 [INSTANCENAME="instance_name"]
 SQLACCOUNT="domain\logon_name"
 SQLPASSWORD="password"]]
 AGTACCOUNT="domain\logon_name"
 AGTPASSWORD="password"]]
 [SQLAUTOSTART={0|1}]
 [AGTAUTOSTART={1|0}]
 [SECURITYMODE=SQL]
 [SAPWD="sa_password"]
 [COLLATION="collation_designator"]
 [PERPROCESSOR="per_processor_license"
 |PERSEAT="per_seat_license"]
 [UPGRADE=1
 [UPGRADEUSER="login_account"
 [UPGRADEPWD="password"]]
 [CALLBACK=Dllname!CallbackFunctionName]
 [REINSTALL=All

 REINSTALLMODE={omus|amus}]
 VS="virtual_server_name"
 IP="ip_address1network_name1"
 [IP="ip_address1network_name2" ...]
 NODELIST="node1_name,node2_name"
 GROUP="cluster_group_name"
 ADMINACCOUNT="domain\login_name"
 ADMINPASSWORD="admin_password"]}]
 /qn
 [/l*v log_file]
]

To install Microsoft® SQL Server™ 2000 (64-bit) on a failover cluster, you must run the setup command line on the cluster. The
following property settings (except for INSTANCENAME, which is optional) are required.

Property Comment
VS Specifies the name of the virtual server. The

name can have up to 15 characters and must
adhere the same rules as any computer name.

IP Specifies the IP addresses. Use one entry for
each network adapter. The format is "IP
address,network", for example IP="172.26.16.77,
Local Area Connector 2".

NODELIST Specifies the nodes for your virtual server. The
nodes must exist in the cluster. To add a node to
the virtual server definition, execute the original
command line with the new node added to the
NODELIST property setting. To remove a node,
execute the original command line with the
node removed from the property setting. To
uninstall a cluster, run the command line with
an empty NODELIST (or omit it completely).

ADMINACCOUNT
ADMINPASSWORD

Specifies an account used to spawn processes to
remote nodes during setup only. This user
account must be in the administrators group on
all nodes that are to be included in the virtual
server. This account must be defined.

INSTALLSQLDIR The drive letter in the path must exist on all
nodes in the cluster.

INSTALLSQLDATADIR Specifies a location on a shared disk that is a
member of the cluster group.

SQLACCOUNT Required
SQLPASSWORD Required
AGTACCOUNT Required
AGTPASSWORD Required
INSTANCENAME Optional. If you would like to have an instance

name for the virtual server, then include this
property setting.

SQL Server 2000 (64-bit)

Maintaining a SQL Server Installation (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The preferred methods of maintaining an installation of Microsoft® SQL Server™ 2000 (64-bit) are either to use Add or Remove
Programs in Control Panel or to run the SQL Server 2000 Setup program. These applications support adding and removing
features of an installed instance of SQL Server 2000 (64-bit) or completely removing an instance. You can also specify property
settings on the setup command line. Using the command line, you can also verify and repair an existing installation, repair the
master database, and repair registry entries. Maintenance options are described in the following topics.

Read this To
Adding or Removing SQL Server Features
(64-bit)

Add or remove SQL Server features in an
installed instance of SQL Server 2000 (64-
bit).

Removing a SQL Server Installation (64-
bit)

Remove an instance of SQL Server 2000
(64-bit).

Repairing a SQL Server Installation (64-
bit)

Repair a broken installation and rebuild
the master database or the registry keys
for an instance of SQL Server 2000 (64-
bit).

Viewing Setup Log Files (64-bit) Find descriptions and directory locations
of Setup log files.

Upgrading to SQL Server 2000 (64-bit) Find out about support for upgrading
existing installations on the 64-bit
platform.

SQL Server 2000 (64-bit)

Adding or Removing SQL Server Features (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

You can add or remove individual features in an instance of Microsoft® SQL Server™ 2000 (64-bit). To add or remove a feature,
run Add or Remove Programs in Control Panel and choose to change an instance of SQL Server. This starts the Installation
Wizard and lets you choose whether to change the installed features or completely remove all features. After you choose to
change the installed features, the wizard displays the Feature Selection page described in Specifying SQL Server Features (64-
bit). The remaining steps in the wizard depend on which features you choose to install or remove.

Note For a failover cluster installation, you cannot use Add or Remove Programs to add or remove features in an instance. You
must use the Setup.exe graphical interface or the command line.

You can also add or remove features by running the SQL Server 2000 Setup program from the desktop or from Windows
Explorer. When Setup starts, you can choose to work with an existing instance rather than installing a new instance. This displays
the Feature Selection page and additional pages to complete the task. In this setup mode, you cannot change the location of a
previously installed feature, nor can you specify the location for a new feature.

How to add or remove features in an instance of SQL Server 2000

SQL Setup

SQL Setup (64-bit)

You can also add or remove features on the setup command line for SQL Server 2000 (64-bit). The command line is useful for a
silent operation or to maintain SQL Server using another application, although the preferred methods to add or remove features
are through Add or Remove Programs or Setup run from the desktop. On the setup command line, use the ADDLOCAL
property to specify features to add to an instance of SQL Server 2000. Use the REMOVE property to specify features to remove.
For more information, see SQL Server 2000 (64-bit) Setup Command.

See Also

Running Setup to Install SQL Server 2000 (64-bit)

Removing a SQL Server Installation (64-bit)

Repairing a SQL Server Installation (64-bit)

SQL Server 2000 (64-bit)

Removing a SQL Server Installation (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use Add or Remove Programs in Control Panel to change or remove an instance of Microsoft® SQL Server™ 2000 (64-bit).
When you remove the default or a named instance of SQL Server 2000, the data files and registry keys for the instance are
deleted. To remove all instances of SQL Server 2000, each instance must be removed separately.

Note For a failover cluster installation, you cannot use Add or Remove Programs to remove an instance. You must use the
Setup.exe graphical interface or the command line.

Tools and other shared files cannot be removed until all instances of SQL Server 2000 have been removed from a computer
because these files are shared among all the installed instances. After SQL Server 2000 is uninstalled, some files may remain.

You can remove SQL Server from an instance without removing Analysis Services. However, because Analysis Services uses SQL
Server core program files for its repository, Add or Remove Programs does not remove the SQL Server core program files from
the instance unless you also remove Analysis Services. For more information, see Analysis Services (64-bit).

How to remove SQL Server 2000

SQL Setup

How to remove SQL Server 2000 (64-bit)

Add or Remove Programs or Setup run from the desktop are the preferred methods to remove features, but the command line
is useful for a silent operation or to maintain SQL Server using another application. You can use the /x="packagefile" argument
on the setup command line to remove an instance of SQL Server 2000. Specify the name of the same installation package (.msi)
file that was used to install the instance of SQL Server. Place the file in the same folder as Setup.exe. For more information, see
SQL Server 2000 (64-bit) Setup Command.

If you do not know which .msi file was used to install the instance, then use the product code for the instance. The product code
for the default instance can be gathered from the following registry key:

HKEY_Local_Machine\Software\Microsoft\MSSQLServer\Setup:ProductCode

The product code for any named instance can be gathered from the following registry key:

HKEY_Local_Machine\Software\Microsoft SQL Server\instancename\Setup:ProductCode

See Also

Running Setup to Install SQL Server 2000 (64-bit)

Adding or Removing SQL Server Features (64-bit)

SQL Server 2000 (64-bit)

Repairing a SQL Server Installation (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

You can use the setup command line with the REINSTALL and REINSTALLMODE properties to repair an instance of Microsoft®
SQL Server™ 2000 (64-bit). The REINSTALL property triggers the reinstallation of program files and the REINSTALLMODE
property specifies the type of reinstall. Its two different settings, amus and omus, both repair and verify an instance of SQL
Server. Additionally, the amus setting repairs a corrupted master database and the omus setting rebuilds the registry. These
properties can be specified on the command line or in an .ini file.

Rebuilding the Registry

Use the setup command line with the REINSTALL=ALL and REINSTALLMODE=omus property settings to rebuild the registry
for a corrupted installation of SQL Server 2000 (64-bit). Running Setup.exe with these property settings rebuilds, verifies, and
repairs the installation of an instance in addition to rebuilding the registry.

Important To rebuild the registry, you must use the same package file and choices that you entered during the initial installation.
If you do not know this information, first uninstall and then reinstall SQL Server rather than using the command line.

Rebuilding the Master Database

Use the setup command line with the REINSTALL=ALL and REINSTALLMODE=amus property settings to rebuild the master
database for a corrupted installation of SQL Server 2000 (64-bit). Running Setup.exe with these property settings rebuilds,
verifies, and repairs the installation of an instance in addition to rebuilding the system databases. When you use
REINSTALLMODE=amus, you can modify the security settings (SECURITYMODE and SAPWD) and the collation setting
(COLLATION).

Security Note When possible, use Windows Authentication. Do not leave the sa password blank; always use strong passwords.

See Also

SQL Server 2000 (64-bit) Setup Command

Running Setup to Install SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit)

Viewing Setup Log Files (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The following table describes log files created by SQL Server setup processes.

File Name Description Location
SqlstpX.log Each installation

creates sqlstpX.log
files, where X is a
sequence number.
This log file
contains output
from the Windows
Installer and other
information about
setup.

%Temp%

SqlrunX.log
(Standalone
installation)

A non-verbose1 log
is created as
SqlrunX.log, where
X represents an
enumeration for
the installation.
This log files
contains setup
procedure
information.

%Temp%

SqlrunX.log
(Failover
installation)

Setup always
creates a
SqlrunX.log
verbose log file on
all failover nodes,
where X represents
an enumeration for
the installation.
This log file
contains setup
procedure
information.

%Temp% (On the node where Setup is
launched)

%Windir% (On the remote nodes)

Dasetup.log This is the
Microsoft Data
Access
Components
(MDAC) setup log
file.

%Windir%

Errorlog.log This is the SQL
Server error log
file.

The default location for this error log is
C:\Program Files\Microsoft SQL
Server\Mssql\Log\Errorlog. For a named
instance, the error log would be in \Microsoft
SQL
Server\Mssql$<instancename>\Log\Errorlog.

1 Setup can be run using the command line option '/L*v' to create a verbose log file (for example, setup.exe /L*v
c:\SQL_Server_verbose.log). Verbose log files are useful when you are investigating setup problems.

SQL Server 2000 (64-bit)

Upgrading to SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Upgrades are not supported for this release of SQL Server 2000 (64-bit). The 32-bit versions of SQL Server are not supported on
the 64-bit Microsoft Windows® operating system, so you cannot upgrade from a previous 32-bit release of SQL Server
(including SQL Server 2000 [32-bit], SQL Server version 7.0, or SQL Server version 6.5) to SQL Server 2000 (64-bit).

SQL Server 2000 (64-bit)

Configuring SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

After Setup completes the installation of Microsoft® SQL Server™ 2000 (64-bit), you can further configure SQL Server using
graphical and command prompt utilities. All the command prompt utilities available for the 32-bit version of SQL Server 2000 are
also provided with SQL Server 2000 (64-bit). Of the graphical tools, only the Server Network Utility and the SQL Server Service
Manager are provided with this release of SQL Server 2000 (64-bit). The Client Network Utility is provided by the operating
system, as part of Microsoft Data Access Components (MDAC). The other graphical tools can only be installed with the 32-bit
version of SQL Server 2000 on the 32-bit Microsoft Windows® operating system, and are not supported on the 64-bit Windows
operating system. However, you can use the graphical tools installed with the 32-bit version of SQL Server 2000 to remotely
manage 64-bit SQL Server features.

Icon Tool or utility Support
SQL Server Enterprise Manager
SQL Server groups, server registration,
server options (databases, objects,
logins, users, and permissions),
administrative tasks for servers,
management wizards

Remote administration from the
32-bit SQL Server 2000.
See "SQL Server Enterprise
Manager" in SQL Server Books
Online.

Analysis Manager
Analysis servers, data sources, cubes,
data mining models, storage, security,
dimensions, and security roles

Remote administration from the
32-bit SQL Server 2000.
See "Analysis Manager" in SQL
Server Books Online.

SQL Query Analyzer
SQL statements, batches, and scripts

Remote administration from the
32-bit SQL Server 2000.
See the "SQL Query Analyzer
Help" section in SQL Server
Books Online.

SQL Profiler
Events for SQL services

Remote administration from the
32-bit SQL Server 2000.
See "Monitoring with SQL
Profiler" in SQL Server Books
Online.

Client Network Utility
Net-Libraries and server alias names
From a command prompt or the Run
command, run Cliconfg.exe.

MDAC tool on the 64-bit versions
of the Windows® Server 2003
family operating system.
See "Client Network Utility" in
SQL Server Books Online.

Server Network Utility
Server Net-Libraries

Supported for SQL Server 2000
(64-bit).
Note that Net-Library
configuration is not made during
Setup and, if necessary, must be
made with this utility.
See "Server Network Utility" in
SQL Server Books Online.

Import and Export Data
Data transformation

Command line support only.
See "dtsrun Utility" in SQL Server
Books Online.

SQL Server Service Manager
SQL Server log on services (Microsoft
Search, MSSQLServerOLAPService, SQL
Server, SQL Server Agent)

Supported for SQL Server 2000
(64-bit).
See "SQL Server Service
Manager" in SQL Server Books
Online.

SQL Server 2000 Licensing
Per Seat or Per Processor licenses

In Control Panel.
See Licensing Mode (64-bit) and
Choosing the Licensing Mode
(64-bit).

Setup
SQL Server instances and features

Supported by Windows Installer
in SQL Server 2000 (64-bit).

SQL Server 2000 (64-bit)

Using the Start Menu (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Some graphical interface tools are accessible through the Microsoft® SQL Server™ program group in the Programs group on
the Start menu. These tools are:

Books Online

Server Network Utility

Service Manager

Additionally, you can open Control Panel to start the following:

SQL Server 2000 Licensing

The command line tools may also be started with the Run command on the Start menu, or from a command prompt. For more
information, see SQL Server Management Tools (64-bit).

SQL Server 2000 (64-bit)

System and Sample Databases (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

When Microsoft® SQL Server™ 2000 (64-bit) is installed, Setup creates the databases and log files shown in this table.

Database Database file Log file
master Master.mdf Mastlog.mdf
distmdl Distmdl.mdf Distmdl.ldf
model Model.mdf Modellog.ldf
msdb Msdbdata.mdf Msdblog.ldf
tempdb Tempdb.mdf Templog.ldf
pubs Pubs.mdf Pubs_log.ldf
Northwind Northwnd.mdf Northwnd.ldf

The following Analysis Services database files appear only in the instance with which Analysis Services is installed.

Database Database file Log file
olapquerylog OLAPQueryLog.mdf OLAPQueryLog.ldf
olaprepository OLAPRepository.mdf OLAPRepository.ldf
Foodmart 2000 Foodmart 2000.mdf Foodmart 2000.ldf

The default location of the database and log files is systemdrive\Program Files\Microsoft SQL Server\Mssq\Data for the default
instance, and systemdrive\Program Files\Microsoft SQL Server\Mssq$instancename\Data for a named instance. The databases
installed with an instance may not include all those shown above, depending on the features installed with the instance.

The system databases are master, distmdl, model, msdb, and tempdb. The sample databases, pubs, Northwind, and
Foodmart 2000 are provided as learning tools. (Names of these databases are case sensitive.) Many of the examples in SQL
Server Books Online are based on the sample databases.

SQL Server 2000 (64-bit)

Locating Folders and Files (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The following tables and illustration show the default locations of folders and files for Microsoft® SQL Server™ 2000 (64-bit).
Depending on the options you install, some of the files listed in the tables may not appear on your computer, and others not listed
may be included.

Paths listed here are default paths, and may vary if locations were changed during installation. Both program and data file
locations can be changed, but the location of shared tools cannot be changed.

Shared Files for All Instances of SQL Server 2000

This table shows the locations for the shared files for both default and named instances of SQL Server 2000.

Location1 Description
\Program Files\Microsoft SQL
Server\80\Com

Dynamic-link libraries (DLLs) for Component
Object Model (COM) objects

\Program Files\Microsoft SQL
Server\80\Com\Binn\Resources\1033

Resource files (RLLs) used by the DLLs in this
COM folder (Note: 1033 is for U.S. English;
localized versions use different numbers for
the folder name.)

\Program Files\Microsoft SQL
Server\80\Setup Bootstrap

Files installed by Setup to support the setup
operation

\Program Files\Microsoft SQL
Server\80\Tools\Binn

The 64-bit versions of the Windows® Server
2003 family client executable files

\Program Files\Microsoft SQL
Server\80\Tools\Binn\Resources\1033

Resource files used by the DLLs in the
Tools\Binn folder

\Program Files\Microsoft SQL
Server\80\Tools\DevTools\

Header files, library files, and sample
programs for use by developers

1 The default drive for these locations is systemdrive, normally drive C.

Program and Data Files for the Default Instance of SQL Server 2000

This table shows the locations of the program and data files for the default instance of SQL Server 2000. These are the default file
locations, which can be changed during installation. For a named instance, these folders are located similarly in
systemdrive\Program Files\Microsoft SQL Server\Mssql$instancename, where instancename is the name of the instance.

Location1 Description
\Program Files\Microsoft SQL
Server\Mssql\Backup

Default location for backup files

\Program Files\Microsoft SQL
Server\Mssql\Binn

The 64-bit versions of the Windows Server 2003
family server executable files and DLL files for
extended stored procedures

\Program Files\Microsoft SQL
Server\Mssql\Binn\Resources\1033

Resource files used by the DLLs in this Binn
folder

Program Files\Microsoft SQL
Server\Mssql\Data

System and sample database files, including the
repository and sample database files for Analysis
Services (for the default or named instance of
SQL Server with which you install Analysis
Services)

\Program Files\Microsoft SQL
Server\Mssql\Ftdata

Full-text catalog files

\Program Files\Microsoft SQL
Server\Mssql\Install

Scripts run during Setup and resulting output
files

\Program Files\Microsoft SQL
Server\Mssql\Log

Error log files

\Program Files\Microsoft SQL
Server\Mssql\Repldata

Working folder for replication tasks

1 The default drive for these locations is systemdrive, normally drive C.

Program and Data Files for Analysis Services

This table shows the locations of the program and data files for Analysis Services. These are the default file locations, which can be
changed during installation.

Location1 Description
\Program Files\Analysis Services\Bin The 64-bit versions of the Windows

Server 2003 family server executable files
and DLL files

\Program Files\Analysis Services\Data Analysis server databases

1 The default drive for these locations is systemdrive, normally drive C.

Note that the Analysis Services repository and sample data files are installed in the SQL Data folder for the default or named
instance of SQL Server with which you install Analysis Services. See the previous table, under "Program and Data Files for the
Default Instance of SQL Server 2000."

File Locations for 32-bit SQL Server Files

Some shared SQL Server 2000 program files have been transferred directly to the 64-bit platform. These files include SQL Server
Books Online.

This table shows the locations for the shared files for both default and named instances of SQL Server 2000.

Location1 Description
\Program Files (x86)\Microsoft SQL
Server\80\Tools\Binn

Executable and DLL files

\Program Files (x86)\Microsoft SQL
Server\80\Tools\Binn\Resources\1033

RLL files

\Program Files (x86)\Microsoft SQL
Server\80\Tools\Books\

SQL Server 2000 Books Online

1 The default drive for these locations is systemdrive, normally drive C.

File Locations for the Default Instance of SQL Server 2000

This illustration shows the file locations for the default instance of SQL Server 2000 (64-bit).

SQL Server 2000 (64-bit)

Changing Passwords and User Accounts (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) services accounts and passwords are linked to Microsoft Windows® user accounts and
passwords. Changes in one location may require changes in the other.

Changing SQL Server Services Accounts After Installation

After you have installed SQL Server 2000 (64-bit), use Services in the Administrative Tools of the 64-bit versions of the
Windows® Server 2003 family to change the assigned password or other properties of any service related to SQL Server. Each
service must be changed individually. The new user account takes effect when the service is restarted. You should not change the
passwords for any of the SQL Server service accounts when a failover cluster node is down or offline. If you have to do this, you
will need to reset the password again when all nodes are back online.

Note You can also manage services related to an instance of SQL Server 2000 (64-bit) from SQL Server Enterprise Manager on a
32-bit installation of SQL Server 2000.

If you select to change the current service account for SQL Server to a non-administrator account (and the current service account
for SQL Server is not an administrator account), the Valid Administrator Login dialog box is displayed. SQL Server must have
administrator privileges to change security entries, so you must enter the user name, password, and domain to impersonate the
non-administrator service account you have selected.

Once you have specified this information, all objects are granted full-control permission. The location of the objects is determined
by the following:

Permissions are set for all files in the binary and data installation locations for the specific instances.

Registry permissions depend on whether the instance is default or named:

For a default instance, permissions are applied only to the entries listed below the HKLM\Software\Microsoft\MSSQLServer
entry:

Client

MSSQLServer

Providers

Replication

Setup

SQLServerAgent

SQLServerSCP

Tracking

For a named instance, permissions are applied to the entire HKLM\Software\Microsoft\Microsoft SQL Server\instancename
entry.

The following rights are granted to the accounts:

SeServiceLogonRight, which allows the account to run as a service.

SeLockMemoryPrivilege, which allows the account to use the AWE memory feature of SQL Server.

SeTcbPrivilege, which allows the account to impersonate other accounts.

If you are running SQL Server in a failover cluster configuration, permissions are also set for all files in the binary and data
installation locations for all nodes in the cluster. Permission is also granted for the service account on the Cluster Object.

Changing the current service account for SQL Server to a non-administrator account causes existing full-text catalogs to become
inaccessible. Either rebuild and perform a full population of all catalogs belonging to this instance of SQL Server, or switch back to
an account with administrator permissions.

To change the MSSQLServer services login account information

SQL Setup

Services (64-bit)

If your Windows password changes after SQL Server 2000 is installed (for example, your password expires), you must also revise
the user account information for SQL Server services in Windows.

For more information about creating the 64-bit versions of the Windows Server 2003 family user accounts, granting advanced
user rights, setting password expiration, and managing group memberships, see the the 64-bit versions of the Windows Server
2003 family documentation. For additional information, see the topics "Creating Security Accounts" and "Security Architecture" in
SQL Server Books Online.

SQL Server 2000 (64-bit)

Renaming a Server (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

When you change the name of the computer that is running Microsoft® SQL Server™ 2000 (64-bit), the new name is recognized
during SQL Server startup. You do not have to run Setup again to reset the computer name.

You can connect to SQL Server using the new computer name after you have restarted the server. However, to correct the
sysservers system table, you should run these procedures manually:

sp_dropserver old_name
GO
sp_addserver new_name, local
GO

When you have more than one instance of SQL Server on the computer, change the sysservers system table information by
running the stored procedures this way:

sp_dropserver old_servername\instancename
GO
sp_addserver new_servername\instancename, local
GO

Issues with Remote Logins and Replication

If the computer has any remote logins (for example, if it is a replication Publisher or Distributor), sp_dropserver may generate an
error similar to this:

Server: Msg 15190, Level 16, State 1, Procedure sp_dropserver, Line 44
There are still remote logins for the server 'SERVER1'.

To resolve the error, you may need to drop remote logins for this server. If replication is installed, disable replication using SQL
Server Enterprise Manager from a 32-bit installation on the 64-bit server. Then run the sp_dropserver stored procedure.

To disable replication using the SQL Server Enterprise Manager

1. Expand a server group, and then expand the Distributor (the server that contains the distribution database).

2. Right-click the replication folder and then select Disable Publishing.

3. Complete the steps in the Disable Publishing and Distribution Wizard.

SQL Server 2000 (64-bit)

Distributing Disk Images of an Installation (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) includes the same method as the 32-bit version of SQL Server 2000 for distributing a disk
image of an installation. When an installation is first created, it is marked as a new installation. When the server is restarted after
installation, SQL Server 2000 verifies that the server name has not changed. If the server name has changed, an automatic
correction is made.

This functionality allows Independent Service Vendors to install SQL Server 2000, stop the server, clone the disk image, and then
distribute it as required. On the first startup of the distributed server, the name correction is made.

This process can be done only one time. If the server is restarted and then stopped, you must create a new SQL Server installation
to be distributed as an image during deployment.

SQL Server 2000 (64-bit)

Configuring Network Libraries (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Unlike the 32-bit version, Microsoft® SQL Server™ 2000 (64-bit) does not provide for configuring Network Libraries during
Setup. Shared Memory, Named Pipes, and TCP/IP are enabled by default during Setup. To make any changes to these settings,
such as enabling or disabling protocols, use the SQL Server Network Utility, which is in the Microsoft SQL Server program
group on the Start menu.

SQL Server 2000 (64-bit)

Setting Configuration Options for the Affinity Mask (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This section introduces two affinity mask options that you can use with Microsoft® SQL Server™ 2000 (64-bit) to control CPU
affinity. SQL Server 2000 (64-bit) supports processor affinity with two different affinity mask options: affinity mask Option (64-
bit) and affinity64 mask Option (64-bit).

SQL Server 2000 (64-bit)

affinity mask Option (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

An association between a thread and a processor is called processor affinity, and such an association is generally beneficial for the
performance of Microsoft® SQL Server™. At the operating system level, however, Microsoft Windows® sometimes moves
process threads among different processors in order to handle multitasking. While the operating system performs more
efficiently because of this technique, SQL Server performance can actually be reduced under heavy system loads, as each
processor cache is repeatedly reloaded with data.

SQL Server 2000 (64-bit) supports processor affinity by means of two affinity mask options: affinity mask and affinity64 mask.
For more information about the affinity64 mask option, see affinity64 mask Option (64-bit).

Note The affinity64 mask option is only available for SQL Server 2000 (64-bit).

The affinity mask option, also available in previous releases of SQL Server, dynamically controls CPU affinity. Use the affinity
mask option to increase performance on multiprocessor (SMP) systems with more than four microprocessors operating under
heavy load. You can associate a thread with a specific processor and specify which processors SQL Server will use. You can also
exclude SQL Server activity from processors given specific workload assignments by the Windows 2000 or Windows Server 2003
operating system.

If you set affinity mask to 1 (that is, you set a bit representing a processor to 1), that processor is selected for thread assignment.
When you set affinity mask to 0 (the default), the 64-bit versions of the Windows® Server 2003 family scheduling algorithms
set the thread's affinity. When you set affinity mask to any nonzero value, SQL Server affinity interprets the value as a bit mask
that specifies those processors eligible for selection.

By segregating SQL Server threads from running on particular processors, the 64-bit versions of the Windows Server 2003 family
can better evaluate the system's handling of processes specific to Windows. For example, you can use the affinity mask option to
evaluate whether an additional network interface card (NIC) increases performance or assess NIC performance with increasing
loads.

The values for affinity mask are as follows:

A one-byte affinity mask covers up to 8 CPUs in a multiprocessor computer.

A two-byte affinity mask covers up to 16 CPUs in a multiprocessor computer.

A three-byte affinity mask covers up to 24 CPUs in a multiprocessor computer.

A four-byte affinity mask covers up to 32 CPUs in a multiprocessor computer.

Because setting the SQL Server processor affinity option is an advanced operation, it is recommended that it be used only when
necessary. In most cases, the the 64-bit versions of the Windows Server 2003 family default affinity provides the best
performance.

Note You can use the Windows System Monitor to view and analyze individual processor usage.

Consider the following as an example of setting the affinity mask option: if processors 1, 2, and 5 are selected as available with
bits 1, 2, and 5 set to 1 and bits 0, 3, 4, 6, and 7 set to 0, a hexadecimal value of 0x26 or the decimal equivalent of 38 is specified.
Number the bits from right to left. The rightmost bit is bit 0. Set bits 1, 2, and 5 (the third, fifth, and sixth bits) to 1. The number
calculated from setting the specified bits is binary 00100110, which is decimal 38 or hexadecimal 0x26.

These are affinity mask values for an eight-processor system.

Decimal value Binary bit mask Allow SQL Server threads on processors
1 00000001 0
3 00000011 0 and 1
7 00000111 0, 1, and 2
15 00001111 0, 1, 2, and 3
31 00011111 0, 1, 2, 3, and 4
63 00111111 0, 1, 2, 3, 4, and 5
127 01111111 0, 1, 2, 3, 4, 5, and 6 (isolates SQL Server

activity from DPC processor only)

affinity mask is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you can
change affinity mask only when show advanced options is set to 1. This setting takes effect immediately.

For more information, see the following topics in SQL Server 2000 32-bit Books Online:

Monitoring with System Monitor

RECONFIGURE

Setting Configuration Options

sp_configure

SQL-DMO Objects and SQL Server Administration

SQL Server 2000 (64-bit)

affinity64 mask Option (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

An association between a thread and a processor is called processor affinity, and such an association is generally beneficial for the
performance of Microsoft® SQL Server™. At the operating system level, however, Microsoft Windows® sometimes moves
process threads among different processors in order to handle multitasking. While the operating system performs more
efficiently because of this technique, SQL Server performance can actually be reduced under heavy system loads, as each
processor cache is repeatedly reloaded with data.

Microsoft SQL Server 2000 (64-bit) supports processor affinity by means of two affinity mask options: affinity mask and
affinity64 mask. For more information about the affinity mask option, see affinity mask Option (64-bit)

Note The affinity64 mask option is only available for SQL Server 2000 (64-bit).

The affinity64 mask option, new in SQL Server 2000 (64-bit), dynamically controls CPU affinity on 64-bit systems. Use the
affinity64 mask option to increase performance on 64-bit symmetric multiprocessor (SMP) systems with more than 32
microprocessors operating under heavy load.

Because affinity64 mask is a 32-bit value, this option controls a maximum of 32 processors. The 32-bit mask that affinity64
mask option holds supports the upper 32 bits of a 64-bit mask, if there are 64 processors. Thus, to set affinity on either a 32- or
64-bit system with fewer than 33 processors, you only need to manipulate the affinity mask option. To set affinity on a system
with 33 to 64 processors, you must manipulate both the affinity mask option and the affinity64 mask option, treating the two
32-bit values as if they were one 64-bit value for the purpose of identifying your affinity to the system. For more information on
setting affinity for the first 32 processors, see affinity mask Option (64-bit).

If you set affinity64 mask to 1 (that is, you set a bit representing a processor to 1), that processor is selected for thread
assignment. When you set affinity64 mask to 0 (the default), the the 64-bit versions of the Windows® Server 2003 family
scheduling algorithms set the thread's affinity. When you set affinity64 mask to any nonzero value, SQL Server affinity
interprets the value as a bit mask that specifies those processors eligible for selection. Excluding SQL Server threads from running
on particular processors helps evaluate the system's handling of processes specific to the 64-bit versions of the Windows Server
2003 family. For example, you can use affinity64 mask to evaluate whether an additional network interface card (NIC) increases
performance or assess NIC performance with increasing loads.

Because setting the SQL Server processor affinity option is a specialized operation, it is recommended that it be used only when
necessary. In most cases, the the 64-bit versions of the Windows Server 2003 family default affinity provides the best
performance.

Note You can use the Windows System Monitor to view and analyze individual processor usage.

affinity64 mask is an advanced option. If you are using the sp_configure system stored procedure to change the setting, you
can change affinity64 mask only when show advanced options is set to 1. This setting takes effect immediately.

SQL Server 2000 (64-bit)

How To (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This set of How To topics includes common procedures used in installing Microsoft® SQL Server™ 2000 (64-bit).

How to install SQL Server 2000 (64-bit)

How to change SQL Server services login account information (64-bit)

How to change SQL Server services login account information remotely (64-bit)

How to set up SQL Server from a command prompt (64-bit)

How to add or remove features in an instance of SQL Server 2000 (64-bit)

How to access SQL Server Books Online (64-bit)

How to create a case-sensitive instance of SQL Server 2000 (64-bit)

How to remove SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit)

How to install SQL Server 2000 (non-clustered installations
only) (64-bit)

 This topic applies only to SQL Server 2000 (64-bit).

To install SQL Server 2000

1. Insert the Microsoft® SQL Server™ 2000 (64-bit) compact disc in your CD-ROM drive.

If you are installing from a network location, share the installation files and connect to the location from the computer
where you want to install the program.

2. In the root folder of the compact disc or installation location on the network, double-click Setup.exe.

3. Click Start a new installation.

Local Instance is the only selection for this release of SQL Server 2000 (64-bit).

Important For installation of a failover cluster, do not continue this procedure. See How to create a new failover cluster
(Setup) (64-bit).

4. On the Welcome page, click Next.

5. On the Registration Information page, enter the user name, company, and product key.

6. On the Software License Agreement page, read the license agreement and click Yes to accept the license agreement.
Clicking No ends Setup.

7. On the Feature Selection page, you can select or remove features installed with SQL Server 2000, and you can change
installation locations of features.

For additional information about the features of SQL Server 2000, see Feature Selection (64-bit).

Note To install all of the features of SQL Server 2000 in their default locations, make no changes and accept the default
settings.

8. On the Instance Name page, if the Default instance option is available, you can install either the default or a named
instance. If the Default instance option is not available, a default instance has already been installed, and you can install
only a named instance.

To install the default instance, click the Default instance check box.

To install a named instance, click the Named instance check box, and type a name for the instance. For more
information, see Naming Instances (64-bit).

9. On the Service Account page, configure the logon account information for SQL Server 2000 service accounts.

Select the Advanced check box to configure the different service accounts separately.

10. On the Authentication Mode page, accept the default setting.

Security Note When possible, use Windows Authentication.

To use Mixed Mode, see Defining the Authentication Mode (64-bit).

11. On the Collation Settings page, change the default settings for collation and sort order only if your installation of SQL
Server must match the collation settings used by another instance of SQL Server, or if it must match the Windows locale of
another computer.

If you need to match collation settings in instances of SQL Server or match the Microsoft Windows® locale of another
computer, see Specifying the Collation Setting (64-bit).

12. On the Licensing Mode page, make selections according to your license agreement.

Click Help for information about licensing or see your system administrator.

13. On the Ready to Install page, click Install.

See Also

Installing SQL Server 2000 (64-bit)

How to add or remove features in an instance of SQL Server 2000 (Setup) (64-bit)

SQL Server 2000 (64-bit)

How to change SQL Server services login account information
(64-bit)

 This topic applies only to SQL Server 2000 (64-bit).

To change SQL Server services login account information

1. In Administrative Tools in Control Panel, double-click the Services icon.

2. In the Services right pane, double-click the service you want to configure.
Service For

MSSQLSERVER The default instance of Microsoft SQL
Server™.

MSSQL$instancename A named instance of SQL Server, where
instancename is the name of the
instance.

SQLSERVERAGENT SQL Server Agent for the default
instance.

SQLAgent$instancename SQL Server Agent for a named instance,
where instancename is the name of the
instance.

MSSQLServerOLAPService SQL Server 2000 Analysis Services.

3. On the Log On tab, click This account, and change the password or account information.

Note For SQL Server to start successfully, the account must be a member of the local Administrators group. To provide
network access, it must also be a domain account.

See Also

How to change SQL Server services login account information remotely (64-bit)

Creating Windows Service Accounts (64-bit)

SQL Server 2000 (64-bit)

How to change SQL Server services login account information
remotely (64-bit)

 This topic applies only to SQL Server 2000 (64-bit).

Note This version of Microsoft® SQL Server™ 2000 (64-bit) does not install SQL Server Enterprise Manager. This procedure
describes how to use SQL Server Enterprise Manager on the Microsoft Windows® 2000 operating system to remotely manage
the 64-bit version of SQL Server 2000.

Note If Microsoft SQL Server files are encrypted, you must decrypt the files before you can change the SQL Server service
accounts. If you do not decrypt the files and then reset the SQL Server service accounts, you cannot decrypt the files.

To change the MSSQLServer service login (Enterprise Manager)

1. Expand a server group.

2. Right-click a server, and then click Properties.

3. In the SQL Server Properties dialog box, click the Security tab.

4. In the Startup service account box, the option for This Account is selected, indicating that the SQL Server service account
is a Windows domain account. Enter changes as necessary for the account and password.

Note For SQL Server to start successfully, the account must be a member of the local Administrators group on the remote
computer where SQL Server is installed. To provide network access, it must also be a domain account.

To change the SQLServerAgent service login (Enterprise Manager)

Note The Windows account must be a member of the sysadmin fixed server role to run SQL Server Agent.

1. Expand a server group, and then expand a server.

2. Expand Management.

3. Right-click SQL Server Agent, and then click Properties.

4. In the SQL Server Agent Properties dialog box, click the General tab.

5. In the Service startup account box, enter the appropriate account and password.

See Also

How to change SQL Server services login account information (64-bit)

Creating Windows Service Accounts (64-bit)

Changing Passwords and User Accounts (64-bit)

Creating Windows Service Accounts (64-bit)

SQL Server 2000 (64-bit)

How to set up SQL Server from a command prompt (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

You can run the SQL Server 2000 (64-bit) Setup program directly from a command prompt or in a batch file.

To run an unattended installation directly from a command prompt

1. On a command prompt or in a batch file, use Setup.exe from the root folder of the SQL Server edition you want to install.

2. Use arguments and properties as needed.

For the Setup command syntax, arguments, and properties, see SQL Server 2000 (64-bit) Setup Command.

To create an .ini file in which to specify properties, use the Template.ini file in the root folder of your compact disc.

See Also

Running Setup to Install SQL Server 2000 (64-bit)

SQL Server 2000 (64-bit)

How to add or remove features in an instance of SQL Server
2000 (64-bit)

 This topic applies only to SQL Server 2000 (64-bit).

To add features to an instance using Add or Remove Programs

1. In Control Panel, double-click the Add or Remove Programs icon.

2. Under Currently installed programs, click the instance of Microsoft® SQL Server™ to configure, and then click Change.

3. On the Change or Remove page, click Change Installed Features.

4. On the Feature Selection page, you can select or remove features installed with SQL Server 2000.

5. Click Next, and then follow the instructions on subsequent wizard pages.

To add features to an instance using Setup

1. From the desktop or Windows Explorer, start Setup.exe on the SQL Server 2000 (64-bit) compact disc.

2. On the Setup Mode page of the Installation Wizard, click Work with an existing installation.

3. In the drop-down list, select the instance that you want to maintain.

4. Click Next, and then on the Change or Remove page, click Change Installed Features.

5. On the Feature Selection page, you can select or remove features installed with SQL Server 2000.

6. Click Next, and then follow the instructions on subsequent wizard pages.

See Also

How to remove SQL Server 2000 (64-bit)

How to install SQL Server 2000 (Setup) (64-bit)

SQL Server 2000 (64-bit)

How to access SQL Server Books Online (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Note This version of Microsoft® SQL Server™ 2000 (64-bit) includes the SQL Server 2000 (32-bit) Books Online. For setup and
documentation differences between the two versions, refer to the Readme.txt file on the installation disk and to this SQL Server
Setup Help file (Setupsql.chm) in the SQL Server 2000 (64-bit) installation folder.

To access SQL Server Books Online for SQL Server from the Start menu

On the Start menu, point to Programs and Microsoft SQL Server, and then click Books Online.

This opens the Microsoft SQL Server 2000 (32-bit) Books Online.

To create a shortcut to the 64-bit SQL Server Setup Help file

1. Locate the Setup Bootstrap Setupsql.chm file on your computer. (The default location is systemdrive\Program
Files\Microsoft SQL Server\80\SetupBootstrap\Help\1033.)

2. Right-click Setupsql.chm, and then click Create Shortcut.

3. Copy the shortcut to the desktop, where you can use it to access the 64-bit SQL Server Setup help.

SQL Server 2000 (64-bit)

How to create a case-sensitive instance of SQL Server 2000 (64-
bit)

 This topic applies only to SQL Server 2000 (64-bit).

Important Change the default settings for this and the sort order only if your installation of SQL Server must match the collation
settings used by another instance of SQL Server 2000, or if it must match the Windows locale of another computer.

To create a case-sensitive instance of SQL Server 2000

1. Run Microsoft® SQL Server™ Setup.

2. Click Start a new installation.

3. Follow instructions on the Welcome, Registration Information, and Software License Agreement pages.

4. On the Feature Selection page, choose to install Server Components (this is the default setting). You can change or leave
other default settings.

5. On the Instance Name page:

To create a case-sensitive default instance, click the Default instance (this is available only if there is no default
instance already installed).

To create a case-sensitive named instance, click Named instance, and type an instance name.

6. On the Service Account and Authentication Mode pages, change or accept the default settings.

Security Note When possible, use Windows Authentication.

7. On the Collation Settings page, you have two options:

To make a Windows Locale collation case-sensitive, select Collation designator and then select the correct collation
designator from the list. Select the Case-sensitive check box. If the Binary check box is selected, clear it.

To make a SQL collation case-sensitive, select SQL Collations, and then select the correct collation name.

For more information about collation options, click Help. When you finish setting the options, click Next.

8. On the Licensing Mode page, make selections according to your license agreement.

9. On the Ready to Install page, click Install.

See Also

Specifying the Collation Setting (64-bit)

SQL Server 2000 (64-bit)

How to remove SQL Server 2000 (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

To remove an instance of SQL Server 2000

1. In Control Panel, double-click the Add or Remove Programs icon.

2. Select the named or default instance of Microsoft® SQL Server™ 2000, and click Remove.

To remove all instances of SQL Server 2000

1. In Control Panel, click Add or Remove Programs.

2. Repeat the removal process for each instance of SQL Server 2000 that is installed.

To remove an instance using Setup

1. In My Computer or Windows Explorer, start Setup.exe on the SQL Server 2000 (64-bit) compact disc.

2. On the Setup Mode page of the Installation Wizard, click Work with an existing installation.

3. In the drop-down list, select the instance that you want to remove.

4. Click Next, and then on the Change or Remove page, click Remove Microsoft SQL Server.

5. Follow the instructions on subsequent wizard pages.

SQL Server 2000 (64-bit)

How To Create or Maintain a Failover Cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

The How To topics in this section contain information on creating or maintaining a failover cluster. Before you create a
Microsoft® SQL Server™ 2000 (64-bit) failover cluster, you must configure Microsoft Cluster Services (MSCS) by using the
Cluster Administrator.

SQL Server 2000 (64-bit)

How to create a new failover cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Important Before you create a Microsoft® SQL Server™ 2000 (64-bit) failover cluster, you must configure Microsoft Cluster
Service (MSCS) by using the Cluster Administrator in the 64-bit versions of the Windows® Server 2003 family (additional 64-bit
Windows operating systems will be available for future releases of SQL Server 2000 [64-bit]). Note the group that contains the
cluster drive you want SQL Server to use by using Cluster Administrator before you run SQL Server Setup. You need this
information to create a new failover cluster.

To create a new failover cluster

1. On the Setup Mode page, select Start a new installation. In the drop down box, select Virtual Server. Click Next.

2. On the Welcome page of the Microsoft SQL Server Installation Wizard, click Next.

3. On the Registration Information page, enter the user name and company. Click Next.

4. On the Software License Agreement page, read the license agreement. If you agree, click Yes.

5. On the Virtual Server Name page, enter a virtual server name. This is the name of the new virtual server you are creating,
so it should be unique across the network. Click Next.

6. On the Cluster Group Selection page, select the group that contains the drive you want to use for SQL Server from the
Available Cluster Groups. The selected cluster group is where the SQL Server virtual server resources will be placed. If you
select the group containing the cluster quorum resource, a warning will be displayed recommending you do not install to
the cluster quorum resource. Click Next.

7. On the Failover Clustering page, enter one IP address for each network you wish to configure for client access. That is,
enter one IP address for each network on which the virtual server will be available to clients on a public (or mixed) network.
Select the network for which you want to enter an IP address, and then enter the IP address. Click Add.

The network address and the subnet are displayed. The subnet is supplied by MSCS. Continue to enter IP addresses for each
installed network until you have populated all desired networks with an IP address. Click Next.

8. On the Instance Name page, choose a default instance or specify a named instance. To specify a named instance, select
Named Instance, and then enter the name for the named instance. Click Next.

Important You cannot name an instance DEFAULT or MSSQLSERVER. For more information, see the "Working with
Named and Multiple Instances of SQL Server 2000" topic in the SQL Server 2000 32-bit Books Online. Names must follow
rules for SQL Server identifiers. For more information, see the "Using Identifiers" topic in the SQL Server 2000 32-bit Books
Online.

9. On the Configure Nodes page, select the nodes to include in the virtual server cluster definition. All available nodes (by
default) are included in the Selected Nodes list. You can remove any nodes you do not wish to include by clicking Remove
until only the desired nodes appear in the Selected Nodes list. Any nodes that are unavailable are displayed in the
Unavailable Nodes list, as well as the reason the node is unavailable. Click Next.

Note In Microsoft® SQL Server™ 2000 Enterprise Edition (64-bit), the number of nodes supported for failover clustering
depends on the operating system.

10. On the Remote Account Information page, enter the login credentials for the remote cluster node, including the
Username, Password, and Domain. The login credentials must have local administrator privileges on all node(s) of the
cluster and its resources. This dialog will only appear if you are installing a remote node(s). Click Next.

11. On the Installation Folder page, choose the destination drive and directory name for the SQL Server program files. By
default, all available drives will be in the Program Files and Data Files drop down lists. You must select a drive that is
available on every node of the cluster. Then choose the destination drive and directory name for the SQL Server data files.
You will be required to select a clustered drive resource that is contained within the cluster group you chose earlier. Click
Next.

12. On the Service Account page, select the login credentials for the service accounts. Enter the Username, Password, and
Domain of the Domain User account for the virtual server. All service accounts for a virtual server must be domain
accounts. Check the Advanced box to specify the Username, Password, and Domain for specific services. Select the
service from the Service list. The account for the SQL Server Agent service must be an administrator on all nodes of the
cluster. Do not use the same account that was assigned to the Cluster service. Click Next.

13. On the Authentication Mode page, choose the authentication mode to use. If you change the selection from Windows
Authentication Mode to Mixed Mode (Windows Authentication and SQL Server Authentication), you need to enter
and confirm a password for the sa login, or choose to set a blank password. Setting a blank password is not recommended.
Click Next.

Security Note When possible, use Windows Authentication.

Security Note Do not use a blank password. Use a strong password.

14. On the Collation Settings page, choose the sorting behavior for your server. Click Next.

15. On the Licensing Mode page, select Per Seat or Processor License for SQL Server. Enter the appropriate number of
licenses. Click Next.

16. On the Ready to Install page, click Install to proceed with the installation.

17. On the Completing the Microsoft SQL Server Installation Wizard page, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from the Setup program when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

SQL Server 2000 (64-bit)

How to create a one-node failover cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

1. On the Setup Mode page, select Start a new installation. In the drop down box, select Virtual Server. Click Next.

2. On the Welcome page of the Microsoft SQL Server Installation Wizard, click Next.

3. On the Registration Information page, enter the user name and company. Click Next.

4. On the Software License Agreement page, read the license agreement. If you agree, click Yes.

5. On the Virtual Server Name page, enter a virtual server name. This is the name of the new virtual server you are creating,
so it should be unique across the network. Click Next.

6. On the Cluster Group Selection page, select the group that contains the drive you want to use for SQL Server from the
Available Cluster Groups. The selected cluster group is where the SQL Server virtual server resources will be placed. If you
select the group containing the cluster quorum resource, a warning will be displayed recommending you do not install to
the cluster quorum resource. Click Next.

7. On the Failover Clustering page, enter one IP address for each network you wish to configure for client access. That is,
enter one IP address for each network on which the virtual server will be available to clients on a public (or mixed) network.
Select the network for which you want to enter an IP address, and then enter the IP address. Click Add.

The network address and the subnet are displayed. The subnet is supplied by MSCS. Continue to enter IP addresses for each
installed network until you have populated all desired networks with an IP address. Click Next.

8. On the Instance Name page, choose a default instance or specify a named instance. To specify a named instance, select
Named Instance, and then enter the name for the named instance. Click Next.

Important You cannot name an instance DEFAULT or MSSQLSERVER. For more information about naming instances of
SQL Server 2000, see Working with Named and Multiple Instances of SQL Server 2000. Names must follow rules for SQL
Server identifiers. For more information about naming conventions for identifiers, see Using Identifiers.

9. On the Configure Nodes page, remove all nodes from the Selected Nodes list by clicking Remove. The only node that
will be installed with the virtual server should be listed in the Required Node list. Any nodes that are unavailable are
displayed in the Unavailable Nodes list, as well as the reason the node is unavailable. Click Next.

10. On the Remote Account Information page, enter the login credentials for the remote cluster node, including the
Username, Password, and Domain. The login credentials must have local administrator privileges. This dialog will only
appear if you are installing to a remote node. Click Next.

11. On the Installation Folders page, choose the destination drive and directory name for the SQL Server program files. By
default, all available drives will be in the Program Files and Data Files drop down lists. You must select a drive that is
available on every node of the cluster. Then choose the destination drive and directory name for the SQL Server data files.
You will be required to select a clustered drive resource that is contained within the cluster group you chose earlier. Click
Next.

12. On the Service Account page, select the login credentials for the service accounts. Enter the Username, Password, and
Domain of the Domain User account for the virtual server. All service accounts for a virtual server must be domain
accounts. Check the Advanced box to specify the Username, Password, and Domain for specific services. Select the
service from the Service list. The account for the SQL Server Agent service must be an administrator for the cluster node.
Do not use the same account that was assigned to the Cluster service.

13. On the Authentication Mode page, choose the authentication mode to use. If you change the selection from Windows
Authentication Mode to Mixed Mode (Windows Authentication and SQL Server Authentication), you need to enter
and confirm a password for the sa login, or choose to set a blank password. Setting a blank password is not recommended.
Click Next.

Security Note When possible, use Windows Authentication.

14. On the Collation Settings page, choose the sorting behavior for your server. Click Next.

15. On the Licensing Mode page, select Per Seat or Processor License for SQL Server. Enter the appropriate number of
licenses. Click Next.

16. On the Ready to Install page, click Install to proceed with the installation.

17. On the Completing the Microsoft SQL Server Installation Wizard page, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from the Setup program when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

SQL Server 2000 (64-bit)

How to add a node to an existing virtual server (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

1. On the Setup Mode page, select Work with an existing installation. In the drop down box, select the virtual server to
add nodes to. Click Next.

2. On the Change or Remove page, click Maintain the Virtual Server.

3. On the Failover Clustering page, click Next.

You do not need to enter an IP address, unless you wish to add a new one, or modify an existing address.

4. On the Configure Nodes page, ensure that all nodes to add to the virtual server are in the Selected Nodes list. Click Next.

5. On the Remote Account Information page, enter the login credentials for the remote cluster node, including the
Username, Password, and Domain. The login credentials must have local administrator privileges on all nodes of the
cluster and the cluster resources. This dialog will only appear if you are installing remote nodes. Click Next.

6. On the Service Account page, select the login credentials for the service accounts. Enter the Username, Password, and
Domain of the Domain User account for the virtual server. All service accounts for a virtual server must be domain
accounts. Check the Advanced box to specify the Username, Password, and Domain for specific services. Select the
service from the Service list. The account for the SQL Server Agent service must be a local administrator on all nodes of the
cluster. Do not use the same account that was assigned to the Cluster service.

7. On the Ready to Update page, click Install to begin updating your virtual server.

8. On the Completing the Microsoft SQL Server Installation Wizard page, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from the Setup program when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

SQL Server 2000 (64-bit)

How to remove a node from an existing failover cluster (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

1. On the Setup Mode page, select Work with an existing installation. In the drop down box, select the installation to
remove a node from. Click Next.

2. On the Change or Remove page, click Maintain the Virtual Server.

3. On the Failover Clustering page, click Next. You do not need to enter an IP address.

4. On the Configure Nodes page, select the node to remove from the Selected Nodes list. Click Remove, and then click
Next.

5. On the Remote Account Information page, enter the login credentials for the remote cluster node, including the
Username, Password, and Domain. The login credentials must have administrator privileges on all nodes of the cluster.
This dialog will only appear if you are removing remote nodes. Click Next.

6. On the Ready to Update page, click Install to begin updating your virtual server and remove the selected node from your
failover cluster.

7. On the Completing the Microsoft SQL Server Installation Wizard page, click Finish.

If you are instructed to restart the computer, do so now. It is important to read the message from the Setup program when
you are done with installation. Failure to restart any of the specified nodes may cause failures when you run the Setup
program in the future on any node in the failover cluster.

SQL Server 2000 (64-bit)

How to remove a failover clustered instance (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

1. On the Setup Mode page, select Work with an existing installation. In the drop down box, select the installation to
remove. Click Next.

2. On the Change or Remove page, click Remove Microsoft SQL Server.

3. On the Remove Microsoft SQL Server page, click Remove.

SQL Server 2000 (64-bit)

How to recover from failover cluster failure in Scenario 1 (64-
bit)

 This topic applies only to SQL Server 2000 (64-bit).

In this scenario, failure is caused by hardware failure in Node 1 of a two-node cluster. This hardware failure could be caused, for
example, by the failure of a disk controller or the operating system.

1. After Node 1 fails, the Microsoft® SQL Server™ 2000 (64-bit) failover cluster fails over to Node 2.

2. Run SQL Server Setup and remove Node 1. For more information, see How to remove a failover clustered instance (Setup)
(64-bit).

3. Evict Node 1 from Microsoft Cluster Service (MSCS). To evict a node from MSCS, from Node 2, open Cluster Administrator,
and right-click the node to remove, and then click Evict Node.

4. Install new hardware to replace the failed hardware in Node 1.

5. Install the operating system. For more information about which operating system to install and specific instructions on how
to do this, see Before Installing Failover Clustering (64-bit).

6. Install MSCS and join the existing cluster using the Cluster Administrator. For more information, see Before Installing
Failover Clustering (64-bit).

7. Run the Setup program on Node 2 and add Node 1 back to the failover cluster. For more information, see How to add
nodes to an existing virtual server (Setup) (64-bit).

SQL Server 2000 (64-bit)

How to recover from failover cluster failure in Scenario 2 (64-
bit)

 This topic applies only to SQL Server 2000 (64-bit).

In Scenario 2, failure is caused by Node 1 being down or offline but not irretrievably broken. This could be caused, for example, by
an operating system failure.

1. After Node 1 fails, the Microsoft® SQL Server™ 2000 (64-bit) failover cluster fails over to Node 2.

2. Run SQL Server Setup and remove Node 1. For more information, see How to remove a failover clustered instance (Setup)
(64-bit).

3. Resolve the problem with Node 1.

4. Ensure that the Microsoft Cluster Service (MSCS) cluster is working and all nodes are online.

5. Run the Setup program on Node 2 and add Node 1 back to the failover cluster. For more information, see How to add
nodes to an existing virtual server (Setup) (64-bit). If you need to change domains for a SQL Server failover cluster, search
on KB Article Q319016 in the Microsoft Knowledge Base at the Microsoft Web site.

http://go.microsoft.com/fwlink/?linkid=3238

SQL Server 2000 (64-bit)

User Interface Reference (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

This section describes the installation options of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard. Options include
installing the SQL Server relational database engine, Analysis Services, installing a failover cluster, or changing or removing a
current installation. The Installation Wizard has the following pages.

Topic Description
Setup Mode (64-bit) Describes choosing between a new

installation and working with an existing
one

Registration Information (64-bit) Covers the product registration options
for SQL Server

Feature Selection (64-bit) Describes how to add and remove SQL
Server features

Instance Name (64-bit) Outlines guidelines for naming instances
Service Account (64-bit) Describes how to assign login accounts to

SQL Server services
Authentication Mode (64-bit) Discusses security options for your

installation
Collation Settings (64-bit) Covers options for controlling language

and sort order in SQL Server
Licensing Mode (64-bit) Describes licensing mode options
Backward Compatibility (64-bit) Describes backward compatibility

considerations for cross-database
ownership chaining

Error Reporting (64-bit) Describes error reporting options for SQL
Server components

Virtual Server Name (64-bit) Describes how to name a failover cluster
Cluster Group Selection (64-bit) Covers selecting cluster group options
Failover Clustering (64-bit) Discusses failover clustering options
Configure Nodes (64-bit) Defines options for configuring cluster

nodes
Remote Account Information (64-bit) Outlines options for setting up a remote

account for the virtual server in a failover
cluster

Installation Folders (64-bit) Discusses options for specifying where
SQL Server program files and data files
will be installed

SQL Server 2000 (64-bit)

Setup Mode (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Setup Mode page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to choose whether to create a new
installation or work with an existing instance of SQL Server.

Options

Start a new installation

Creates a new installation of SQL Server 2000. Choose this option to create either a default or a named instance of SQL Server, or
a SQL Server failover cluster. You can use this option to install any or all of the following features: the SQL Server relational
database engine, Analysis Services, or Books Online. If a cluster is detected, Virtual server is selected by default. If no cluster is
detected, Local Instance is the only selection for this release of SQL Server 2000 (64-bit).

Work with an existing installation

Enables you to add or remove SQL Server features. If you currently have an instance of the beta release of SQL Server 2000 (64-
bit) installed on your computer, your options for working with an existing database will be to utilize the backup/restore or
detach/attach processes to preserve your current databases

See Also

Starting Setup (64-bit)

SQL Server 2000 (64-bit)

Registration Information (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Registration Information page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to enter identification
information used to register your copy of SQL Server (64-bit).

Options

Name

Type your name. When installing SQL Server on a network server, provide the name of a user responsible for administering the
server. A user name is required to continue Setup.

Company

Enter the name of your company. For a personal copy of the product, you can provide your name again. This information is
optional.

Product Key

If the Product Key fields do not auto-populate, enter the 25-character Product Key for the installation copy of SQL Server 2000
(64-bit). You can find the Product Key on the yellow sticker in the CD liner notes or on the CD case. If you are installing from a
network location, request the Product Key from the network or SQL Server administrator. The Product Key is required to continue
Setup.

See Also

Starting Setup (64-bit)

SQL Server 2000 (64-bit)

Feature Selection (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Feature Selection page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to choose which SQL Server
features to install. This dialog is displayed both when you run the SQL Server Setup program and after you choose Add or
Remove Programs in Control Panel. For an existing installation, you can use this page to add or remove features.

Options

The Feature Selection page consists of two panes. The left pane shows in a tree view the features that you can install. Expand a
feature to view its subfeatures. When you click a feature or subfeature, the Feature Description box in the right pane describes the
selection and displays its disk space requirements.

To add or remove a feature, click the icon representing the feature and choose one of the following options from the drop-down
list:

Will be installed on local hard drive
Installs the selected feature in the location shown under Installation Path.

Entire feature will be installed on local hard drive
Installs the selected feature and all subfeatures. Expand the feature to view subfeatures.

Entire feature will be unavailable
For a new installation of SQL Server, choose this option if you do not want to install the selected feature. For an existing
installation, choose this option to remove the feature from the installation. After you select this option, a red X will appear on
the menu icon for the feature, and the icon on any parent features in the tree view will appear shaded.

The Feature Selection page also offers the following options:

Installation path

Shows the folder where files for the selected feature will be installed. This option is displayed only for features with an installation
path that users can configure.

Browse

Click this to change the location where the selected feature will be installed.

Disk Cost

Click this to examine the available space for installing to different disks on the computer. After examining the disk space on your
computer in the Disk Cost dialog box, you can click Resume to continue installing SQL Server or Exit to quit Setup.

See Also

Specifying SQL Server Features (64-bit)

SQL Server 2000 (64-bit)

Instance Name (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Instance Name page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to specify whether to create a
default instance or a named instance of SQL Server. A default instance name will be used unless you choose a named instance.

Options

Default instance

Choose this option to install a default instance of SQL Server 2000. If this option is disabled, it is because Setup has detected a
default instance of SQL Server already installed on this computer. A computer can host only one default instance; all other
instances must be named.

Named instance

Choose this option to enter a new instance name. Note the following when naming an instance of SQL Server:

Instance names are not case-sensitive.

Instance names cannot contain "Default" or "MSSQLServer."

The first character in the instance name must be a letter, an underscore (_), or a number sign (#). Acceptable letters are those
defined by Unicode Standard 2.0, including Latin characters a-z, A-Z, and letter characters from other languages. Numbers
and the ampersand sign (&) are not allowed.

Subsequent characters can be letters defined by Unicode Standard 2.0, decimal numbers from Basic Latin or other national
scripts, the dollar sign ($), number sign (#), or an underscore (_).

Embedded spaces or other special characters are not allowed in instance names; nor are the backslash (\), comma (,), colon
(:), or at sign (@).

The identifier may not be a reserved keyword. If you enter a reserved keyword as part of the instance name, an error occurs
with the message: "The instance name specified is invalid."

Note Only characters that are valid in the current Microsoft Windows® code page can be used in SQL Server instance
names. If an unsupported Unicode character is used, an error occurs.

SQL Server 2000 (64-bit)

Service Account (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Service Account page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to assign a login account to
these SQL Server services: SQL Server, SQL Server Agent, and Analysis Services. The actual services configured on this page
depend on the features you have selected to install.

You can assign either the local system account or a domain user account to all SQL Server services. You can also configure each
service account individually, and specify whether the services start automatically. The default is to use the same account for each
service and to start each service automatically. To use the default setting, enter the domain name, username, and password, and
then click Next.

If you want to customize settings for individual services, select the Advanced check box, and then change the settings for each
service in the Service list.

Note To change options that you set on the Service Account page at a later time, run the Services application in Control Panel.

Options

Advanced

Select this check box to assign specific login accounts to different services.

If this check box is not selected, the same account and settings are used for all SQL Server 2000 services.

Service

Select any of the following services to customize their settings.

Select this To configure
SQL Server Service settings for the Microsoft SQL

Server relational database engine
SQL Server Agent Service settings for Microsoft SQL

Server Agent
Analysis Services Service settings for Microsoft SQL

Server Analysis Services

Service Settings

Select service settings as required.

Use the Local System account
The local system account does not require a password to connect to SQL Server on the same computer. However, the local
system account may restrict the SQL Server installation from interacting with other servers.

Use a Domain User account
A domain user account uses Windows Authentication to set up and connect to SQL Server. By default, account information
appears for the domain user account currently logged on to the computer.

Username
Accept or change the domain username.

Password
Enter the domain password.

Domain
Accept or change the domain name assigned to the account.

Auto-start service
Select this check box to automatically start the services when your operating system is started. If the Advanced check box is
cleared, this option applies to all the services; if the Advanced check box is selected, this option applies only to the service
shown in the Service field.

Note The SQL Server Agent service is dependent on SQL Server. If you select this check box separately for the SQL Server
Agent, it will also be selected and dimmed for SQL Server.

See Also

Specifying Service Accounts (64-bit)

SQL Server 2000 (64-bit)

Authentication Mode (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Authentication Mode page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to choose the security
(authentication) mode for this installation. If you select Mixed Mode, you can enter and confirm the SQL Server system
administrator (sa) password. After a device completes a successful connection to SQL Server, the security mechanism is the same
for both modes.

Options

Windows Authentication Mode

When a user connects through a Microsoft Windows® user account, SQL Server validates the account name and password using
information in the Windows operating system. This is the recommended authentication mode.

Security Note When possible, use Windows Authentication.

Mixed Mode (Windows Authentication or SQL Server Authentication)

Allows users to connect using Windows Authentication or SQL Server Authentication. Users who connect through a Windows
user account can make use of trusted connections (connections validated by Windows) in either Windows Authentication Mode or
Mixed Mode.

Note SQL Server Authentication is used for validating SQL Server login accounts. SQL Server Authentication is provided for
backward compatibility only. Microsoft recommends use of Windows Authentication mode.

Enter Password

Enter and confirm the system administrator (sa) login for SQL Server Authentication. SQL Server passwords can contain from 1 to
128 characters, including any combination of letters, symbols, and numbers. If you choose Mixed Mode authentication, you must
enter a password before you can continue to the next page of the Installation Wizard.

If you leave the sa password field blank, the Installation Wizard launches a confirmation dialog box when you continue Setup. This
dialog box recommends that you set a strong password to secure your database server, even if you are using Windows
Authentication. To set a non-blank password, click No on the confirmation dialog box. You will return to the Authentication Mode
page where you can set your sa password. To leave your sa password blank and proceed with Setup, click Yes on the
confirmation dialog box to confirm your choice to set a blank sa password. The Installation Wizard will then proceed with Setup.

Caution Leaving the sa login password blank is strongly discouraged, because users can then connect to SQL Server as
administrators, risking inadvertent or malicious data corruption or loss.

See Also

Defining the Authentication Mode (64-bit)

SQL Server 2000 (64-bit)

Collation Settings (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Collation Settings page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to modify default collation
settings that SQL Server uses for language and sorting purposes. Change the Collation designator option only if your
installation of SQL Server must match the collation settings used by another instance of SQL Server 2000, or must match the
Windows locale of another computer. Use the SQL Collations option to match settings that are compatible with the sort orders in
earlier versions of SQL Server.

Options

Collation designator

Designates the collation to be used by this instance of SQL Server 2000. The default setting for this is the Microsoft Windows®
locale setting for your computer (the Language for non-Unicode programs setting or the closest equivalent from the
Regional and Language Options in Control Panel). Change the default settings for this and the sort order only if your
installation of SQL Server must match the collation settings used by another instance of SQL Server 2000, or if it must match the
Windows locale of another computer.

In the list, select the name of a specific Windows collation. For example:

Use Latin1_General for the U.S. English character set (code page 1252).

Use Modern_Spanish for all variations of Spanish, which also use the same character set as U.S. English (code page 1252).

Use Arabic for all variations of Arabic, which use the Arabic character set (code page 1256).

Use Japanese_Unicode for the Unicode version of Japanese (code page 932), which has a different sort order from
Japanese, but the same code page (932).

For more information, see the "Windows Collation Sorting Styles" topic in the SQL Server 2000 32-bit Books Online.

Sort order

Specifies the sort order to use with the Collation designator selected. Binary is the fastest sorting order and is case-sensitive. If
Binary is selected, the Case-sensitive, Accent-sensitive, Kana-sensitive, and Width-sensitive options are not available. For
more information, see the "Windows Collation Sorting Styles" topic in the SQL Server 2000 32-bit Books Online.

SQL Collations

The SQL Collations option is used for compatibility with earlier versions of SQL Server. Select this option to match settings
compatible with SQL Server version 7.0, SQL Server version 6.5, or earlier. For more information, see the "Using SQL Collations"
topic in the SQL Server 2000 32-bit Books Online.

For more information, see the "Specifying the Collation Setting" topic in the SQL Server 2000 32-bit Books Online.

SQL Server 2000 (64-bit)

Licensing Mode (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Licensing Mode page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to set the licensing mode that
enables your clients to access SQL Server.

Options

Examine the licensing agreement packaged with SQL Server 2000 to find the type and quantity of licenses that were purchased
with the product. Then on the Licensing Mode page of the Installation Wizard, choose one of the following two options:

Per Seat

This licensing mode requires a license for the computer running SQL Server as well as a Client Access License (CAL) for each
client device that connects to the server. An example of a client device is a personal computer, workstation, terminal, personal
digital assistant, or mobile phone. A specified number of CALs are included with the server license and the server software. If you
choose this option, next to Devices, type the number of CALs purchased for SQL Server.

Processor License

This licensing mode requires a single license for each CPU in the computer running SQL Server. A processor license includes
access for an unlimited number of users to connect from a corporate local area network, a wide area network, or the Internet. If
you choose this option, next to Processors, type the number of processor licenses purchased for SQL Server.

See Also

Choosing the Licensing Mode (64-bit)

SQL Server 2000 (64-bit)

Backward Compatibility (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Microsoft® SQL Server™ 2000 (64-bit) provides options for configuring cross-database ownership chaining. The following
information will help you determine whether to apply the default cross-database ownership chaining behavior during Setup, or
override the changes and allow cross-database ownership chaining for all user databases. In addition, this topic provides
information about configuring support for cross-database ownership chaining after installation.

Ownership Chaining

All database objects have owners. When an object--such as a stored procedure, view, or user-defined function--references other
objects, an "ownership chain" is established. SQL Server uses the ownership chain to determine how to check permissions.

When the same user owns the source object (the view, stored procedure, or user-defined function) and all target objects
(underlying tables, views, or other objects), the ownership chain is said to be "unbroken." When the ownership chain is unbroken,
SQL Server checks permissions on the source object but not on the target objects.

Ownership chaining simplifies security management by allowing users to grant permissions on views, stored procedures, and
user-defined functions instead of on individual objects in the database. For example, a user who owns several tables can create a
view that includes data from the tables. The user can then grant permissions on the view instead of on the individual tables.

Cross-Database Ownership Chaining

Cross-database ownership chaining occurs when a source object depends on objects in other databases.

A cross-database ownership chain works in the same way as ownership chaining within a database, except that an unbroken
ownership chain is based on all the object owners being mapped to the same login account.

Therefore, in a cross-database ownership chain, if the source object in the source database and the target objects in the target
databases are owned by the same login account, SQL Server does not check permissions on the target objects.

For example, if two databases are owned by the same login account, the dbo users in these databases are mapped to the same
login account. If cross-database ownership chaining is enabled for these databases, source objects in the dbo schema can access
target objects in the dbo schema of both databases.

Risks Associated with Cross-Database Ownership Chaining

Ownership chaining within a database is a useful application design technique; however, Microsoft does not recommend cross-
database ownership chaining because of security risks. These risks are due to the actions that users with high-level privileges can
perform:

Database owners and members of the db_ddladmin or db_owners database roles can create objects owned by other
users. These objects can potentially target objects in other databases. This means that if you enable cross-database
ownership chaining, you must fully trust these users with data in all databases.

Users with the CREATE DATABASE permission can create new databases and attach existing databases. If cross-database
ownership chaining is enabled, these users can access objects in other databases from newly created or attached databases.

Even though Microsoft recommends turning off cross-database ownership chaining for maximum security, there are some
environments where you can fully trust your highly-privileged users; for applications in those environments, you can enable
cross-database ownership chaining at the database or instance level.

Setup Dialog Box Options

Use the following information to determine whether to select or clear the Enable cross-database ownership chaining for all
databases check box:

When the box is cleared, Setup applies a change that, by default, turns off cross-database ownership chaining for all user
databases. After installation, you can turn on cross-database ownership chaining for individual user databases using the
db_option system stored procedure. This cross-database security enhancement enables you to configure which databases
can be accessed from within other databases.

If you select the check box, you are overriding the security enhancement and choosing to allow cross-database ownership
chaining for all databases. Selecting the check box therefore exposes your system to the security risks described above.

Regardless of which option you choose during Setup, you can later modify server and database support for cross-database
ownership chaining.

Configuring Cross-Database Ownership Chaining After Installation

If, after running Setup, you need to change the cross-database ownership chaining configuration, use the new options in the
sp_configure and sp_dboption stored procedures:

Configure cross-database ownership chaining support for the instance of SQL Server with the new Cross DB Ownership
Chaining option of sp_configure. When this option is set to 0, you can control cross-database ownership chaining at the
database level using sp_dboption. When this option is set to 1, cross-database ownership chaining is on in all user
databases.

If you change this option, include the RECONFIGURE option to reconfigure the instance without having to restart it. For
example, use the following command to allow cross-database ownership chaining in all databases:

EXEC sp_configure 'Cross DB Ownership Chaining', '1'; RECONFIGURE

Configure cross-database ownership chaining at the database level with the new db chaining option of sp_dboption.
When this option is set to false, the database cannot participate in cross-database ownership chaining as either the source
or target database. When this option is set to true, the database can participate in a cross-database ownership chain. By
default, this option is false for all user databases after installation.

The following command turns on cross-database ownership chaining for the Northwind database:

EXEC sp_dboption 'Northwind', 'db chaining', 'true'

You cannot turn off cross-database ownership chaining for the master, tempdb, and msdb databases. You cannot turn on
cross-database ownership chaining for the model database, which is used as a template for user databases.

The effects of sp_dboption are manifested only when the Cross DB Ownership Chaining option of sp_configure is set to
0.

For more information, see the following topics in the SQL Server 2000 32-bit Books Online:

"Using Ownership Chains"

"sp_configure"

"Setting Configuration Options"

"sp_dboption"

SQL Server 2000 (64-bit)

Error Reporting (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Error Reporting page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to enable error reporting.

Microsoft SQL Server error reporting is disabled by default. You can enable it during installation through SQL Server Setup or
Analysis Services Setup, or after installation through the SQL Server Enterprise Manager Server Properties dialog box or the
Analysis Manager Server Properties dialog box (from a remote client running SQL Server 2000 SP3).

Enabling error reporting while running SQL Server Setup or Analysis Services Setup allows SQL Server error reporting for the
SQL Server database engine, SQL Server Agent, and SQL Server Analysis Services. If you run SQL Server Setup and enable error
reporting, and later run Analysis Services Setup, error reporting will automatically be enabled for the Analysis Services, as well as
the SQL Server database engine and SQL Server Agent.

If you enable this feature, SQL Server is configured to send a report to Microsoft automatically if a fatal error occurs in the SQL
Server database engine, in SQL Server Agent, or in SQL Server Analysis Services. Microsoft uses error reports to improve SQL
Server functionality, and treats all information as confidential.

Information about errors is sent over a secure (https) connection to Microsoft, where it is stored with limited access. Alternatively,
this information can be sent to your own Corporate Error Reporting server. See this Microsoft Web site for more information
about setting up a Corporate Error Reporting server. The error report contains the following information:

The condition of SQL Server when the problem occurred.

The operating system version and computer hardware information.

Your Digital Product ID, which can be used to identify your license.

The network IP address of your computer.

Information from memory or file(s) of the process that caused the error.

Microsoft does not intentionally collect your files, name, address, e-mail address, or any other form of personal information. The
error report can, however, contain customer-specific information from the memory or file(s) of the process that caused the error.
Although this information can potentially be used to determine your identity, Microsoft does not use this information for that
purpose. For the Microsoft error reporting data collection policy, see this Microsoft Web site.

If you enable error reporting and a fatal error occurs, you may see a response from Microsoft in the Windows Event log that
points to a Microsoft Knowledge Base article on a particular error. A response may look similar to the following example:

Source = MSSQLServerOlapServicesDW

EventID = 1010

data =http://support.microsoft.com/support/misc/kblookup.asp?id=

To disable error reporting for the SQL Server database engine and SQL Server Agent, go to SQL Server Properties (General Tab)
in Enterprise Manager (from a remote client running SQL Server 2000 SP3) and clear the Enable the error reporting feature
check box. To disable error reporting for Analysis Services, go to Server Properties in Analysis Manager (from a remote client
running SQL Server 2000 SP3) and clear the Enable the error reporting feature check box. If error reporting is enabled for
both SQL Server (database engine and SQL Server Agent) and Analysis Services, you must disable error reporting for SQL Server
and Analysis Services individually.

http://go.microsoft.com/fwlink/?LinkId=9309
http://go.microsoft.com/fwlink/?LinkId=9310

SQL Server 2000 (64-bit)

Virtual Server Name (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Virtual Server Name page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to specify the virtual server
name.

Options

Virtual Server Name

Enter the name of a virtual server. The virtual server name must be a unique name in your network's domain.

See Also

Creating a Failover Cluster (64-bit)

SQL Server 2000 (64-bit)

Cluster Group Selection (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Cluster Group Selection page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to select the Microsoft
Cluster Service (MSCS) cluster group. The selected cluster group is where the SQL Server virtual server resources will be placed.

Options

Available Cluster Groups

Select the MSCS cluster group where the SQL Server virtual server resources will be placed. If you select the group containing the
cluster quorum resource, a warning will be displayed. It is recommended that you do not install to the cluster quorum resource.

Unavailable Cluster Groups

Any MSCS cluster groups that are unavailable are listed with the reason they are unavailable.

See Also

Creating a Failover Cluster (64-bit)

SQL Server 2000 (64-bit)

Failover Clustering (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Failover Clustering page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to define the IP address
configuration for the virtual server.

Options

Virtual Server Name

Displays the name of the virtual server for which you are defining an IP address.

Network to use

Select the network for which you want to enter an IP address.

IP Address

Enter the IP address for each network you want to configure for client access. That is, enter one IP address for each network on
which the virtual server will be available to clients on a public (or mixed) network.

Network Address

Displays the network address supplied by the Microsoft Cluster Service.

Network Subnet

Displays the network subnet supplied by the Microsoft Cluster Service.

Add

Click to add a network and IP address for each installed network, until you have populated all desired networks with an IP
address.

Remove

Click to remove the selected network and IP address from the Selected Networks and IP Addresses box for an installed
network.

Selected Networks and IP Addresses

Displays any selected networks and IP addresses configured for the virtual server.

See Also

Creating a Failover Cluster (64-bit)

SQL Server 2000 (64-bit)

Configure Nodes (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Configure Nodes page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to select the cluster nodes to
include in the virtual server's cluster definition.

Options

Available Nodes

Displays the node(s) available to be included in the virtual server definition. Click Add to move an available node to the Selected
Nodes list.

Selected Nodes

Displays the node(s) selected to be included in the virtual server definition.

Add

Click to move the selected node from the Available Nodes list to the Selected Nodes list, thereby adding the node to the virtual
server definition.

Remove

Click to remove a selected node from the Selected Nodes list. This will remove the node from the virtual server.

Required Node

Displays the required node. The required node owns the cluster group where the SQL Server data files are installed.

Unavailable Nodes

Displays a list of unavailable nodes, and the reason each node is unavailable.

See Also

Creating a Failover Cluster (64-bit)

SQL Server 2000 (64-bit)

Remote Account Information (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Remote Account Information page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to enter remote
account information for the virtual server.

Options

Username

Enter a username that is a valid local administrator account for all node(s) of the cluster.

Password

Enter a password for the selected valid local administrator account for all node(s) of the cluster.

Domain

Enter the domain for the selected domain user account, which is a valid local administrator account for all node(s) of the cluster.

See Also

Creating a Failover Cluster (64-bit)

SQL Server 2000 (64-bit)

Installation Folders (64-bit)
 This topic applies only to SQL Server 2000 (64-bit).

Use the Installation Folders page of the Microsoft® SQL Server™ 2000 (64-bit) Installation Wizard to specify the folders to
which the SQL Server program files and data files will be installed.

Options

Program Files

Select the destination drive and folder name for the SQL Server program files. For clustered configurations, you must select a
local drive that is available on every node of the cluster.

Available Space

Displays the available space for the selected drive.

Required Space

Displays the required space for the SQL Server program files.

Data Files

Select the destination drive and folder name for the SQL Server data files. For clustered configurations, you must select a cluster
drive in the group you selected earlier.

Available Space

Displays the available space for the selected drive.

Required Space

Displays the required space for the SQL Server data files.

See Also

Creating a Failover Cluster (64-bit)

SQL Server Notification Services Books Online

Notification Services Home Page

 Highlights of Notification Services Books Online

 Notification Services overview

 Installing Notification Services

 Building a sample application

 Building Notification Services applications

 Deploying and administering applications

 Additional Information on the Web

 Notification Services Web site

 SQL Server home page

 Microsoft Product Support Services

 MSDN Online

 Using Notification Services Books Online

 Getting Started with Books Online

 Using Notification Services Books Online

http://go.microsoft.com/fwlink/?LinkId=8188
http://go.microsoft.com/fwlink/?LinkId=8282
http://go.microsoft.com/fwlink/?LinkId=8158
http://go.microsoft.com/fwlink/?LinkId=8285

SQL Server Notification Services Books Online

Getting Started with Notification Services Books Online
Use this table for quick access to documentation for Microsoft® SQL Server™ Notification Services.

To learn about See
Notification Services overview,
architecture, and user scenarios

Introducing SQL Server Notification
Services

Installing or removing Notification
Services

Installing Notification Services

Notification Services programming
overview

Introducing Notification Services
Programming

Building a sample application Stock Application Walk-Through
Building notification applications Building Notification Services Applications

Programming Reference

Deploying and managing Notification
Services applications

Deploying and Administering Notification
Services

Tools and Utilities Reference

Defining security accounts and
permissions

Managing Security

Analyzing performance Performance Monitoring and Reporting

Stored Procedure Reference

Application definition file (ADF) reference Application Definition File Reference
Configuration file reference Configuration File Reference
NSControl command reference NSControl Commands
FAQ, troubleshooting, and event logs Troubleshooting

This documentation is provided for informational purposes only. Microsoft makes no warranties, either express or implied, in this
document. See the link at the bottom of this page for the full copyright notice.

SQL Server Notification Services Books Online

Documentation Conventions
The following conventions are used in Notification Services Books Online to distinguish elements of text.

Convention Used for
UPPERCASE Transact-SQL keywords and SQL elements.
Initial Capitals Paths and file names.
Bold Database names, table names, column names, stored

procedures, command prompt utilities, menus, commands,
dialog box options, programming elements, and text that must
be typed exactly as shown.

Italic User-supplied variables, relationships, and phrasings.
Monospace Code samples, examples, display text, and error messages.

SQL Server Notification Services Books Online

Displaying Information in Notification Services Books Online
To display information in Notification Services Books Online, use these documentation features:

Expand text
The expand text feature, designated by the plus sign (+), is used to provide additional information within a topic. To view the
information, click the plus sign, and a new text window appears. To close the window, click the minus sign (-). When you print a
topic, the expanded text also prints.

See Also icon
The See Also icon appears at the top of those topics that contain related topics. Click the icon to see the list of related topics.

SQL Server Notification Services Books Online

Using Notification Services Books Online
Notification Services Books Online is the online documentation provided with Notification Services. Notification Services Books
Online appears in a window that contains these panes:

Navigation pane
This pane is located on the left and contains the Contents, Index, Search, and Favorites tabs. The topics on the Contents tab
are organized hierarchically by task or subject.

Topic pane
This pane is located on the right and displays the selected topic or the default topic.

Toolbar pane
This pane is located below the Notification Services Books Online title bar and contains the navigation and command buttons.

From the Navigation pane you can find information in Notification Services Books Online by:

Navigating through the Contents tab.
Typing a keyword from the Index tab.
Typing a word or phrase and performing a search from the Search tab.

For more information about these navigation options, see Finding a Topic.

Using the Toolbar Buttons

You can find topics in Notification Services Books Online by using these navigational buttons on the toolbar:

Previous
Displays the previous topic listed in the table of contents.

Next
Displays the next topic listed in the table of contents.

Back
Displays the last topic you viewed.

Forward
Displays the next topic in a previously displayed sequence of topics.

Home
Displays the Notification Services Books Online home page.

Note The toolbar in your Help Viewer might not contain all of the following navigational buttons.

Other buttons on the toolbar are:

Hide
Hides the Navigation pane. When the Navigation pane is hidden, click Show to show the Navigation pane. If you close
Notification Services Books Online with the Navigation pane hidden, the pane is hidden the next time you open Notification
Services Books Online.

Locate
Displays the location of a topic in the Navigation pane.

Font
Changes the font size in the Topic pane.

Print
Prints the selected topic, with the option to print all subtopics.

Options
Changes several options for viewing topics, and provides another way to explore the documentation.

Navigating Notification Services Books Online

Here are some tips for navigating Notification Services Books Online:

To return to the Notification Services home page, click Home on the toolbar.
Colored, underlined text indicates links to other topics. To link to another topic, including Web pages, click the colored,
underlined text.
Many topics contain a list of related topics, titled See Also. To jump to a related topic, click the title of the topic you want to
view.
If you use a particular topic often, you can add it to your Favorites list. For more information, see Finding a Topic.
For shortcut menu commands, right-click the Contents tab or the Topic pane. For more information, see Using Accessibility
Features in Notification Services Books Online.

Copying and Printing a Help Topic

To copy or print a topic, use these procedures.

To copy a topic

1. In the Topic pane, right-click the topic you want to copy, and then click Select All.
2. Right-click again, and then click Copy. This copies the topic to the Clipboard.
3. Open the document to which you want to copy the topic.
4. Position your cursor where you want the information to appear.
5. On the Edit menu, click Paste.

Note If you want to copy only part of a topic, select the text you want to copy, right-click, and then click Copy.

To print a topic

There are several ways to print a topic:

Right-click the Topic pane, and then click Print.
Click the Print icon on the toolbar.
On the Contents tab in the Navigation pane, right-click the topic or book name, and then click Print.

Notification Services Books Online displays two dialog boxes for printing:

If you are using the Contents tab in the Navigation pane, and the Navigation pane is the active pane, Notification Services
Books Online displays the Print Topics dialog box. If you are using Microsoft Internet Explorer version 5.5, do not click
Print the Selected headings and all subtopics, as the subtopics might not print.
In all other cases, Notification Services Books Online displays the Print dialog box. If you are using Internet Explorer version
5.5 or Internet Explorer 5 and you click Print all linked topics on the Options tab, linked topics may not always print.

Using the Shortcut Menu Commands

This table shows the shortcut menu commands you can use to display and customize information.

Command Description

Right-click in the table of contents,
and then click Close All.

Closes all books or folders. This command
works only if the Contents tab is displayed.

Right-click, and then click Print. Prints the topic.

These commands can be accessed using the keyboard. Press SHIFT+F10 to display the shortcut menu, and then click the
appropriate shortcut keys. Or, enable MouseKeys, a feature that enables you to move the mouse cursor using the numeric keypad.
Use a MouseKey combination to display the shortcut menu, and then click the appropriate shortcut keys. For more information on
MouseKeys, see the Microsoft Windows documentation.

SQL Server Notification Services Books Online

Changing the Way Topics Appear
The size and position of the Notification Services Books Online window and the Navigation and Topic panes can be changed
easily:

To resize the Navigation or Topic pane, point to the divider between the two panes. When the pointer changes to a double-
headed arrow, drag the divider right or left.
To shrink or enlarge Notification Services Books Online, point to any corner of the Notification Services Books Online
window. When the pointer changes to a double-headed arrow, drag the corner.
To change the height or width of Notification Services Books Online, point to the top, bottom, left, or right edge of the
Notification Services Books Online window. When the pointer changes to a double-headed arrow, drag the edge.
To reposition the Notification Services Books Online window on your screen, click the title bar and drag the window to a
new position.

Note When you open Notification Services Books Online, it appears with the size and position settings that
were last specified.

SQL Server Notification Services Books Online

Finding a Topic
To find a topic in Notification Services Books Online, use the tabs in the Navigation pane:

Click the Contents tab to browse the table of contents, which is an expandable, hierarchical list of topics.
Click the Index tab to see a list of index entries, and then type a term that you want to search for or scroll through the list of
terms. Topics are often indexed under more than one entry.
Click the Search tab and then type the word to locate every occurrence of a word or phrase that may be contained in
Notification Services Books Online. For more information, see Using the Search Tab.

Note The results of a search are displayed in three columns: Title, Location, and Rank. The ranking of topics
under the Rank column is not determined by any standard (for example, alphabetical order or most number of
hits). Do not use the ranking to determine which topics to view.

Click the navigation buttons on the toolbar. For more information, see Using Notification Services Books Online.

Creating and Using the Favorites List

The Favorites list provides a convenient way to access topics that you frequently refer to.

To create a list of favorite topics, locate the topic you want to make a favorite topic, click the Favorites tab, and then click
Add.
To return to a favorite topic, click the Favorites tab, select the topic, and then click Display.
If you want to rename a topic, on the Favorites tab, select the topic, and then type a new name in the Current topic box.
To remove a favorite topic, on the Favorites tab, select the topic, and then click Remove.

Accessing a Topic Using a URL

You can use a URL to direct someone to a topic in Notification Services Books Online.

To direct someone to a topic in Notification Services Books Online

1. On the page to which you want to direct someone, in the Navigation pane, right-click the topic, and then click Jump to URL.
2. Copy the URL that appears in the Current URL box, and then paste it in an e-mail or other document.
3. Instruct the person receiving the URL on how to paste the URL in the Jump to this URL dialog box.

The URL can also be pasted in the Address box in Microsoft Internet Explorer. However, this will not bring up Notification
Services Books Online; only the topic that you selected will be displayed.

SQL Server Notification Services Books Online

Using the Search Tab
Using the Search Tab

Notification Services Books Online includes a Search tab that allows you to search through every word in Notification Services
Books Online to find a match. For example, if you perform a full-text search on the word "index", every topic that contains the
word "index" is listed. You can precisely define a search by using wildcard expressions, nested expressions, and Boolean operators.
You can request similar word matches, search only the topic titles, or search the results of an earlier search.

All instances of search terms that are found in the topic files can appear highlighted. To specify highlighting, click the Options
button, and then click Search Highlight On. If you are viewing a long topic, only the first 500 instances of a search word or
phrase are highlighted. This feature works only with Microsoft Internet Explorer 4.0 or later.

Searching for Topics

A search consists of the word or phrase you want to find. You can use wildcard expressions, nested expressions, Boolean
operators, similar word matches, a previous results list, or topic titles to further define your search.

The basic rules for formulating queries are:

Searches are not case-sensitive, so you can type your search in uppercase or lowercase characters.
You can search for any combination of letters (a-z) and numbers (0-9).
Punctuation marks such as the period, colon, semicolon, comma, and hyphen are ignored during a search.
Group the elements of your search using double quotation marks or parentheses to set apart each element. You cannot
search for quotation marks.

If you are searching for a file name with an extension, you should group the entire string in double quotation marks
("filename.ext"). Otherwise, the period breaks the file name into two separate terms. The default operation between terms is AND,
which is the logical equivalent to "filename AND ext".

To find information with full-text search

1. Click the Search tab, and then type the word or phrase you want to find.
2. Click the arrow button to add Boolean operators to your search.
3. Click List Topics, select the topic you want, and then click Display.
4. To sort the topic list, click the Title, Location, or Rank column heading.

Note The ranking of topics under the Rank column is not determined by any standard (for example,
alphabetical order or most hits). Do not use the ranking to determine which topics to view.

Searching for Words or Phrases

You can search for words or phrases and use wildcard expressions. Wildcard expressions allow you to search for one or more
characters using a question mark or asterisk. The table describes the results of these different kinds of searches.

Search for Example Results
A single word select Topics that contain the word "select".

(You will also find its grammatical
variations, such as "selector" and
"selection".)

A phrase "new operator"
or
new operator

Topics that contain the literal phrase
"new operator" and all its grammatical
variations.

Without the quotation marks, the query
is equivalent to specifying "new AND
operator", which will find topics
containing both of the individual words,
instead of the phrase.

Wildcard expressions esc*
or
80?86

Topics that contain the terms "ESC",
"escape", "escalation", and so on. The
asterisk cannot be the only character in
the term.

Topics that contain the terms "80186",
"80286", "80386", and so on. The
question mark cannot be the only
character in the term.

Select the Match similar words check box at the bottom of the Search tab to include minor grammatical variations for the
phrase you search.

Defining Search Terms

The AND, OR, NOT, and NEAR operators enable you to precisely define your search by creating a relationship between search
terms. The following table shows how you can use each of these operators. If an operator is not specified, AND is used. For
example, the query "spacing border printing" is equivalent to "spacing AND border AND printing".

Search for Example Results
Both terms in the same
topic.

dib AND palette Topics containing both the words "dib"
and "palette".

Either term in a topic. raster OR vector Topics containing either the word
"raster" or the word "vector" or both.

The first term without
the second term.

ole NOT dde Topics containing the word "OLE", but
not the word "DDE".

Both terms in the same
topic, close together.

user NEAR kernel Topics containing the word "user"
within eight words of the word "kernel".

The characters |, &, and ! do not work as Boolean operators (you must use OR, AND, and NOT).

Note You must define a search phrase that begins with AND, OR, NOT, or NEAR with double quotation marks;
otherwise, these words are interpreted as operators, and the search cannot be performed. For example, a search for
the phrase NOT FOR REPLICATION returns an error message, and a search for the phrase "NOT FOR REPLICATION"
succeeds.

Using N ested Expressions When Searching

Nested expressions allow you to create complex searches for information. For example, "control AND ((active OR dde) NEAR
window)" finds topics containing the word "control" along with the words "active" and "window" close together, or containing
"control" along with the words "dde" and "window" close together.

The basic rules for searching Help topics using nested expressions are:

You can use parentheses to nest expressions within a query. The expressions in parentheses are evaluated before the rest of
the query.
If a query does not contain a nested expression, it is evaluated from left to right. For example: "Control NOT active OR dde"
finds topics containing the word "control" without the word "active", or topics containing the word "dde". On the other hand,
"control NOT (active OR dde)" finds topics containing the word "control" without either of the words "active" or "dde".
You cannot nest expressions more than five levels deep.

To search only the last group of topics from a previous search

This feature enables you to narrow a search that results in too many topics found. You can search through your results list from a
previous search by using this option.

1. On the Search tab, select the Search previous results check box.
2. Click List Topics, select the topic you want, and then click Display.

If you want to search through all of the files in Notification Services Books Online, this check box must be cleared. If you have
previously used this feature, when you click the Search tab, this check box will be selected.

To find words similar to your search term

This feature enables you to include minor grammatical variations for the phrase you search. For example, a search on the word
"add" finds "add", "adds", and "added".

1. Click the Search tab, type the word or phrase you want to find, and then select the Match similar words check box.
2. Click List Topics, select the topic you want, and then click Display.

This feature locates only variations of the word with common suffixes. For example, a search on the word "add" finds "added", but
it does not find "additive".

To search for words in the titles of Notification Services Books Online topics

1. Click the Search tab, type the word or phrase you want to find, and then select the Search titles only check box.
2. Click List Topics, select the topic you want, and then click Display.

SQL Server Notification Services Books Online

Using Accessibility Features in Notification Services Books
Online
The following topics describe the accessibility features that can be used for navigating Notification Services Books Online.

For more information about accessibility features and services, see the Accessibility page at the Microsoft Accessibility Web site.

Changing the Appearance of the Text

The formatting, font, and color of the text in Notification Services Books Online can be changed.

To change formatting or styles for accessibility

1. On the Options menu, click Internet Options, and then click Accessibility.
2. In the Accessibility dialog box, select the options you want, and then click OK.

These changes do not apply to the Navigation pane or toolbar of Notification Services Books Online. This procedure also changes
your accessibility settings for Microsoft Internet Explorer.

To change the font size of a topic

On the Options menu, click Internet Options, and then click Fonts.

These changes do not apply to the Navigation pane or toolbar of Notification Services Books Online. This procedure also changes
your font settings for Internet Explorer.

To change colors in the Topic pane of Notification Services Books Online

1. In Microsoft Internet Explorer, on the Tools menu, click Internet Options.
2. On the General tab, click Colors.
3. In the Colors dialog box, select the options you want, and then click OK.
4. To apply the new color settings, in the Internet Options dialog box, click OK.

These changes do not apply to the Navigation pane or toolbar of Notification Services Books Online. This procedure also changes
your color settings for Internet Explorer.

Using Keyboard Shortcuts

The following tables show the keyboard shortcuts that can be used for navigating Notification Services Books Online.

N otification Services Books Online

To Press
Close Notification Services Books Online. ALT+F4
Switch between Notification Services Books
Online and other open windows.

ALT+TAB

Display the Options menu. ALT+O
Change Internet Explorer settings. The Internet
Options dialog box contains accessibility
settings. To change these settings, click the
General tab, and then click Accessibility.

ALT+O, and then press I

Hide or show the Navigation pane. ALT+O, and then press T
Print a topic. ALT+O, and then press P
Move back to the previous topic. ALT+LEFT ARROW, or ALT+O, and

then press B
Move forward to the next topic (provided you
have just previously viewed it).

ALT+RIGHT ARROW, or ALT+O,
and then press F

Turn on or off search highlighting. ALT+O, and then press O

http://go.microsoft.com/fwlink/?LinkId=8287

Switch between the Navigation pane and the
Topic pane.

F6

Scroll through the table of contents, displaying
each topic as you scroll.

ALT+UP ARROW, or ALT+DOWN
ARROW

Scroll through a topic. UP ARROW and DOWN ARROW,
or PAGE UP and PAGE DOWN

Scroll through all the links in a topic or through
all the options on a Navigation pane tab.

TAB

Display the Documentation Feedback form. SHIFT+CTRL+F
Display the See Also topics for a particular topic. SHIFT+CTRL+S

Contents Tab

To Press
Display the Contents tab. ALT+C
Open and close a book or folder. Numeric keypad PLUS SIGN and

MINUS SIGN, or LEFT ARROW and
RIGHT ARROW

Select a topic. DOWN ARROW and UP ARROW
Display the selected topic. ENTER

Index Tab

To Press
Display the Index tab. ALT+N
Type a keyword to search for. ALT+W, and then type the word
Select a keyword in the list. UP ARROW and DOWN ARROW
Display the associated topic. ALT+D

Search Tab

To Press
Display the Search tab. ALT+S
Type a keyword to search for. ALT+W, and then type the word
Start a search. ALT+L
Select a topic in the results list. ALT+T, and then UP ARROW and

DOWN ARROW
Display the selected topic. ALT+D
Search for a word or phrase in a topic. CTRL+F
Search for a keyword in the result list of a prior
search.

ALT+U

Search for words similar to the keyword. For
example, to find words such as "running" and
"runs" for the keyword "run."

ALT+M

Search only through topic titles. ALT+R

Favorites Tab

To Press
Display the Favorites tab. ALT+I
Add the currently displayed topic to the
Favorites list.

ALT+A

Select a topic in the Favorites list. ALT+P, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D
Remove the selected topic from the list. ALT+R

SQL Server Notification Services Books Online

Accessibility for People with Disabilities
Microsoft is committed to making its products and services easier for everyone to use. This topic provides information about the
following features, products, and services that make Microsoft Windows® 2000, Windows XP, and Notification Services more
accessible for people with disabilities:

Accessibility of Notification Services
Features and hints for customizing Windows 2000 or Windows XP
Microsoft services for people who are deaf or hard-of-hearing
Microsoft software documentation online, or on audiocassette, floppy disk, or CD
Third-party utilities that enhance accessibility
Other products and services for people with disabilities

Note The information in this section applies only to users who license Microsoft products in the United States.
If you obtained this product outside the United States, your package contains a subsidiary information card
listing Microsoft support services telephone numbers and addresses. You can contact your subsidiary to find out
whether the types of products and services described in this section are available in your area.

Notification Services Accessibility Features

In addition to Windows and Windows NT accessibility products and services, the following features make Notification Services
more accessible for people with disabilities.

The Help Viewer

The Help Viewer for Microsoft HTML Help is the tool through which you read the product documentation. It is equipped with
accessibility features, including shortcut keys for navigation and commands. The Help Viewer also uses some of the accessibility
features of Microsoft Internet Explorer. For example, it allows you to change the colors of the display on your computer screen.
For more information, see Using Notification Services Books Online.

Customizing Windows

There are many ways you can customize Windows operating systems to make your computer more accessible.

Accessibility features have been built into Windows since the introduction of Windows 95. These features are useful for
individuals who have difficulty typing or using a mouse, have moderately impaired vision, or who are deaf or hard-of-hearing.
The features can be installed during setup, or you can add them later from your Windows installation disks.

For information about installing and using these features, look up "accessibility" in the Windows Help Index.

You also can use Control Panel and other built-in features to adjust the appearance and behavior of Windows to suit varying
vision and motor abilities. These include adjusting colors and sizes, sound volume, and the behavior of the mouse and keyboard.

Dvorak keyboard layouts make the most frequently typed characters on a keyboard more accessible if you have difficulty using
the standard QWERTY layout. There are three Dvorak layouts: one if you are a two-handed user, one if you type with your left
hand only, and one if you type with your right hand only. You do not need to purchase any special equipment to use these
features.

The specific features available, and whether they are built-in or must be obtained separately, depend on which operating system
you are using.

Microsoft Services for People Who Are Deaf or Hard-of-Hearing

If you are deaf or hard-of-hearing, complete access to Microsoft product and customer services is available through a text
telephone (TTY/TDD) service.

Customer Service

You can contact the Microsoft Sales Information Center on a text telephone by dialing (800) 892-5234 between 6:30 A.M. and
5:30 P.M. Pacific time.

Technical Assistance

For technical assistance in the United States, you can contact Microsoft Technical Support on a text telephone at (425) 635-4948
between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday, excluding holidays. In Canada, dial (905) 568-9641
between 8:00 A.M. and 8:00 P.M. eastern time, Monday through Friday, excluding holidays. Microsoft support services are subject
to the prices, terms, and conditions in place at the time the service is used.

Microsoft Documentation in Alternative Formats

In addition to the standard forms of documentation, many Microsoft products are available in other formats to make them more
accessible.

If you have difficulty reading or handling printed documentation, you can obtain many Microsoft publications from Recording for
the Blind & Dyslexic, Inc. RFB&D distributes these documents to registered, eligible members of their distribution service, either
on audio cassettes or on floppy disks. The RFB&D collection contains more than 80,000 titles, including Microsoft product
documentation and books from Microsoft Press®. You can download many of these books from the Microsoft Accessibility page
at the Microsoft Accessibility Web site.

For more information, contact Recording for the Blind & Dyslexic at the following address or phone numbers:

Recording for the Blind & Dyslexic, Inc.
20 Roszel Road
Princeton, NJ 08540

Phone:
Fax:
Web:

(609) 452-0606
(609) 987-8116
http://www.rfbd.org/

Utilities to Enhance Accessibility

A wide variety of hardware and software products are available to make personal computers easier to use for people with
disabilities. Among the different types of products available for the Windows operating systems are:

Programs that enlarge or alter the color of information on the screen for people with visual impairments
Programs that describe information on the screen in Braille or synthesized speech for people who are blind or have
difficulty reading
Hardware and software utilities that modify the behavior of the mouse and keyboard
Programs that enable people to "type" by using a mouse or their voice
Word or phrase prediction software that allow users to type more quickly and with fewer keystrokes
Alternative input devices, such as single switch or puff-and-sip devices, for people who cannot use a mouse or a keyboard

Getting More Accessibility Information

In addition to the features and resources already described in this section, other products, services, and resources for people with
disabilities are available from Microsoft and other organizations.

Microsoft

Microsoft provides a catalog of accessibility aids that can be used with the Windows operating system. You can obtain this catalog
from our Web site or by phone:

Microsoft Sales Information
Center
One Microsoft Way
Redmond, WA 98052-6393

Web:
Voice telephone:
Text telephone:

Microsoft Accessibility Web site
(800) 426-9400
(800) 892-5234

Trace R&D Center

The Trace R&D Center at the University of Wisconsin-Madison publishes a database of more than 18,000 products and other
information for people with disabilities. The database is available on their site on the World Wide Web. The Trace R&D Center also
publishes a book, titled Trace ResourceBook, which provides descriptions and photographs of about 2,000 products.

To obtain these materials, contact:

Trace R&D Center University of
Wisconsin-Madison
5901 Research Park Boulevard
Madison, WI 53719-1252

Web:
Fax:

http://trace.wisc.edu/
(608) 262-8848

http://go.microsoft.com/fwlink/?LinkId=8287
http://www.rfbd.org/
http://go.microsoft.com/fwlink/?LinkId=8287
http://trace.wisc.edu/

SQL Server Notification Services Books Online

Additional Notification Services Resources
This table provides Internet resources for information about Notification Services and related products and technologies.

Resource Address
Notification Services Web site http://www.microsoft.com/sql/NS/
Microsoft Product Support
Services

http://support.microsoft.com/directory

Microsoft newsgroups news://news.microsoft.com/
Microsoft Windows Hardware
Compatibility List

http://www.microsoft.com/hcl

Microsoft MSDN® http://msdn.microsoft.com
Professional Association for SQL
Server

http://www.sqlpass.org/

Microsoft SQL Server Developer
Center

http://msdn.microsoft.com/sql/

SQL Server Magazine http://www.sqlmag.com/
Microsoft SQL Server Support http://support.microsoft.com/support/sql
TechNet site http://www.microsoft.com/technet/
Microsoft SQL Server http://www.microsoft.com/sql
XML Web Services http://www.msdn.microsoft.com/xml/default.asp

http://go.microsoft.com/fwlink/?LinkId=8188
http://go.microsoft.com/fwlink/?LinkId=8158
news://news.microsoft.com/
http://go.microsoft.com/fwlink/?LinkId=8286
http://go.microsoft.com/fwlink/?LinkId=8285
http://www.sqlpass.org/
http://go.microsoft.com/fwlink/?LinkId=8284
http://www.sqlmag.com/
http://go.microsoft.com/fwlink/?LinkId=8633
http://go.microsoft.com/fwlink/?LinkId=8283
http://go.microsoft.com/fwlink/?LinkId=8282
http://go.microsoft.com/fwlink/?LinkId=3515

SQL Server Notification Services Books Online

Microsoft SQL Server Notification Services Copyright and
Disclaimer
Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless
otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and
events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail
address, logo, person, place or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording,
or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 1988-2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, MSDN, SQL Server, Visual Basic, Visual C++, Visual C#, Visual
Studio, and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

SQL Server Notification Services Books Online

Introducing SQL Server Notification Services
Microsoft® SQL Server™ Notification Services is a platform for developing and deploying applications that generate and send
notifications to users. Notifications are personalized, timely messages that can be sent to a wide variety of devices.

Notifications reflect the preferences of the subscriber. The subscriber enters a subscription to express an interest in information.
For example, "notify me when the stock price of ADCP reaches $70.00," or "notify me when the strategy document my team is
writing is updated."

A notification can be generated and sent to the user as soon as a triggering event occurs. Or, a notification can be generated and
sent on a predetermined schedule specified by the user. The user's subscription specifies when the notification should be
generated and sent to the user.

Notifications can be sent to a wide variety of devices. For example, a notification can be sent to a user's cellular phone, personal
digital assistant (PDA), Microsoft Windows Messenger, or e-mail account. Because these devices often accompany the user,
notifications are ideal for sending high-priority information.

Notification applications are valuable for many reasons, such as the following:

Notification applications enable you to send critical information to customers, partners, and employees. The notifications
can contain links that enable the recipient to browse to a Web site to retrieve more information or to acknowledge receipt of
the information.
Notification applications allow you to forge more valuable and longer lasting relationships with your customers by
providing more tailored and timely services to them.
Notification applications allow you to increase revenue by making it easier for customers to initiate business transactions
with you.
Notification applications allow you to make you employees more effective by providing them with the information they
need, whenever and wherever they need it.
Notification applications allow you to empower mobile users over a wide variety of devices.

Notification Services makes it possible to build and deploy a notification application quickly, and to scale the application to
support millions of users. Notification Services consists of:

A simple yet powerful Notification Services programming framework that enables you to quickly create and deploy
notification applications. The programming framework is based on XML and Transact-SQL.
A reliable, high-performance, scalable engine that runs notification applications. The engine is built on the Microsoft .NET
Framework and Microsoft SQL Server 2000.

The topics that this section covers are described in the following table.

Topic Description
Business Scenarios Provides Notification Services application

scenarios that illustrate how you can use
Notification Services.

What Is Notification Services? Explains what Notification Services is, how
it operates, and what benefits it provides.

Notification Services Architecture Describes the architecture behind
collecting events and subscriptions,
generating notifications, and formatting
and distributing those notifications.

Notification Services Programming
Framework

Provides an overview of the application
development process.

Deployment Architecture Explains how Notification Services
applications are deployed and
administered.

Security, Reliability, Scalability, and
Availability

Explains how Notification Services
provides security, reliability, scalability,
and availability for notification
applications.

Integrating Notification Services Describes how Notification Services can
integrate with other technologies.

SQL Server Notification Services Books Online

Business Scenarios
Notification Services can be used for a wide variety of applications. The following scenarios provide examples of how you can use
notification applications.

Consumer Applications

You can use Notification Services to send notifications to customers:

A brokerage firm can send stock and fund prices based on customer-defined criteria. The notification can contain a link that
enables the customer to buy or sell shares.
A financial institution can send bank account balances and overdraft notifications.
An airline can send information about flight arrivals and delayed departures.
A real estate agent can send listings that match a client's criteria for a new home.

Line of Business Applications

You can use Notification Services to monitor business data:

A customer requires immediate attention, as reported by your customer relations management (CRM) system. The text of
the customer request is sent to the account manager.

Operational Applications

You can use Notification Services to send notifications about company operations:

When a machine on an assembly line needs attention, the assembly line manager receives a notification about which
machine is down and what the error is.
When a production server's event log receives a critical error, the on-call support technician receives a notification that
contains the error message.

Business Intelligence Applications

You can use Notification Services to track critical company data:

A database maintains the current inventory of all products. When the inventory of network cards in the South East region
goes below 50, an application receives a notification. That notification tells the application to send an order for more
network cards.

Employee Communication

You can use Notification Services to ensure employees are informed about their projects:

You and a coworker are creating a critical proposal. When the proposal is updated, you receive a notification.
You are working on a new product and need to keep informed of product-related research. When a new report is available
from the corporate library, you receive an e-mail that contains a link to the report.

See Also

Deployment Architecture

Notification Services Architecture

Notification Services Programming Framework

What Is Notification Services?

SQL Server Notification Services Books Online

What Is Notification Services?
Notification Services is a programming framework for creating applications that generate and send notifications, as well as a
platform for hosting those applications. Using the programming framework, you can quickly create applications to generate and
send notifications to subscribers. After creating the application, you can deploy the application on the Notification Services
platform.

The topics that this section covers are described in the following table.

Topic Description
What Does Notification Services Do? Explains, at a high level, how Notification

Services uses events and subscriptions to
create notifications.

How Does Notification Services Work? Explains how Notification Services obtains
events and subscriptions, generates
notifications, and distributes those
notifications.

Why Use Notification Services? Explains the benefits of using Notification
Services instead of other notification
solutions.

SQL Server Notification Services Books Online

What Does Notification Services Do?
A notification application generates and sends messages to users who have subscribed to the application. To understand
notification applications, it is important to define key terms:

A subscriber is a person or application that receives notifications.
A subscription is an expressed request for specific information, such as a stock price or the scores of a sports team, and the
destination for notifications.
An event is a piece of information that subscribers are interested in. A stock price at a specific time is an event, as is a sports
score, or a product delivery message. Almost any real-world occurrence can be expressed as a Notification Services event.
A notification is a message that contains information related to a subscription. A notification might contain a message
about a new high value for a specific stock or the final score for a game.

The following illustration shows the basic operation of a Notification Services application.

The application produces notifications as follows:

1. Subscribers create subscriptions related to the application.
2. The application collects events.
3. Notification Services, using Transact-SQL queries, matches subscriptions to events.
4. When an event and subscription match, Notification Services generates a notification.
5. Notification Services then formats the notification and sends it to a delivery service.

A good example of a notification application is a stock application. A subscriber could create a subscription to be notified about
stock ADCP if the stock price goes above 70, and to receive the notification on a cell phone. The application collects stock data
from a stock ticker. Each time a batch of stock prices arrives, Notification Services compares subscriptions to the current set of
events. If stock ADCP goes above 70, Notification Services creates a notification, formats it, and sends it to a delivery service that
forwards the notification to the subscriber's cell phone.

See Also

How Does Notification Services Work?

Notification Services Architecture

Why Use Notification Services?

SQL Server Notification Services Books Online

How Does Notification Services Work?
A Notification Services application collects events and subscriptions, generates notifications, and then distributes the notifications
to external delivery services, such as a Simple Mail Transfer Protocol (SMTP) server. Notification Services accomplishes these
tasks as follows:

1. Notification Services stores subscriber and subscription data in SQL Server databases. Using the subscription
management objects, part of the Notification Services API, you can create a custom subscription management application
to manage subscriber and subscription data.

2. Using event providers, Notification Services collects event data and stores the event data in the application's database. For
example, the file system watcher event provider monitors a directory for XML event data. Using this event provider, you can
drop XML event files in the directory, and the event provider reads the XML events and submits them to the application
database.

Event providers can be run by the event provider host component, or can run independently of Notification Services. For
more information, see Event Collection Architecture.

3. The generator matches subscriptions and events and generates notifications. The generator runs on a regular interval
defined for the application, ensuring that subscriptions are evaluated on a regular basis. The application developer writes
Transact-SQL queries that determine how subscriptions are evaluated and what information goes into the notifications.

4. The distributor formats notifications and sends them to subscribers using one or more delivery services. The application
developer specifies the transformation from raw data to a formatted notification using a content formatter such as XSLT.

The following illustration shows how Notification Services implements this architecture.

The Notification Services platform uses the NS$instance_name service to run notification applications. This service, the primary
component of the Notification Services engine, runs the three internal functions: the event provider, the generator, and the
distributor.

See Also

Deployment Architecture

Notification Services Architecture

Why Use Notification Services?

SQL Server Notification Services Books Online

Why Use Notification Services?
Notification Services allows you to develop and deploy a notification application easily and quickly by building on and
customizing the Notification Services programming framework. This framework provides a wide range of services for your
application, including the following:

Support for both event-triggered and scheduled subscriptions. Scheduled subscriptions work for all time zones supported
by Microsoft Windows and they automatically handle daylight saving time transitions.
Integration with the Microsoft Visual Studio® .NET development environment to make application development easier.
Standard event providers that make it easy to submit events to the system.
Standard delivery protocols that make it easy to send notifications.
Automatic management of the flow of events and notifications through applications.
Automatic management of obsolete data, such as expired events and old notifications data. You specify a schedule and
Notification Services removes the data.
Automatic logging of delivery attempts and retry of delivery failures.
Custom formatting of notifications in multiple languages and for multiple devices.
Integration with the Microsoft Windows Performance tool.
Automatic logging of errors and warnings in the application event log.

Performance and Scalability

Notification Services applications perform extremely well even if your application must support thousands or millions of
subscribers because of a set-oriented processing model.

In all applications that send notifications, the basic requirement is to evaluate subscriptions at the right times, either when an
event related to the subscription is available, or according to a schedule.

In either case, this requirement can be met for small applications by simply defining each subscription as its own query and
running the queries as appropriate. However, for large numbers of subscriptions, running thousands or millions of individual
queries does not scale well.

Notification Services avoids this problem by relying on the fact that subscriptions typically share a common structure. Thousands
of users might want to know the result of a sporting event. Millions of users might want to get stock price notifications. Because
such subscriptions share a common structure, the subscription queries can be parameterized. For example, instead of writing
individual queries such as "SELECT Price FROM StockData WHERE StockName=ADCP AND StockValue > 50" for each
subscription, you can write a parameterized query such as "SELECT Price FROM StockData WHERE StockName=@StockName
AND StockValue=@StockValue". In essence, there are just a few subscription templates, and individual subscribers are simply
filling out parameters to customize the template.

The impact of this design is significant. Rather than treating subscriptions as individual queries, Notification Services treats them
as parameter data, making evaluation of large numbers of subscriptions a set-oriented data processing problem well suited for
database engines. This set-oriented processing is the foundation of the Notification Services programming framework.

In this set-oriented model, subscriptions are evaluated by simply executing a database join between the new events that have
arrived and the large set of subscriptions. Notification Services can implement the following broad categories of subscriptions:

Simple event-triggered subscriptions that are evaluated as soon as events are available
Subscriptions that are evaluated according to their own schedules
Subscriptions that use past and present events
Subscriptions based on application state
Subscriptions that use external databases

Using the set-oriented Notification Services model, application developers can quickly create a robust and scalable notification
application. Application development is easy and performance gains are large.

See Also

How Does Notification Services Work?

Notification Services Architecture

SQL Server Notification Services Books Online

Notification Services Architecture
The Notification Services platform provides an interface for collecting subscriber and subscription data, and contains components
that collect events and generate, format, and distribute notifications. In addition to the built-in components, Notification Services
enables you to create custom components for collecting events and formatting notifications.

This section provides information about what these components are and how they work.

The topics that this section covers are described in the following table.

Topic Description
Subscription Management
Architecture

Describes how subscriptions are submitted to
databases and used by Notification Services
applications.

Event Collection Architecture Describes how event providers collect events.
Subscription Processing
Architecture

Describes how the notification generator uses
events and subscriptions to create notifications.

Notification Formatting and
Delivery Architecture

Describes how the notification distributor formats
and delivers notifications.

SQL Server Notification Services Books Online

Subscription Management Architecture
To send notifications, a Notification Services application must have information about subscribers, the information that the
subscribers are interested in, and information about where to send the information. Subscription management is the process of
managing this subscriber, subscription, and subscriber device data.

Subscription management is handled by a custom subscription management application written by an application developer. This
application, which can be a Web application or standard Microsoft Windows application, writes the subscriber, subscription, and
subscriber device data to the proper databases. The developer uses subscription management objects supplied with Notification
Services to simplify the application development process.

The following illustration shows how the subscription management objects are used by a subscription management application
to communicate with Notification Services.

Notification Services stores the subscriber and subscriber device data in a central Notification Services database and it stores
subscription data in application-specific databases. This storage method allows applications to share the global subscriber data
while separately storing subscriptions for each application.

When a Notification Services application is running, the application uses the subscription data to generate notifications and then
uses the subscriber data to format and distribute the notification. Subscription and subscriber data is key to Notification Services
operation.

See Also

Developing Subscription Management Applications

Event Collection Architecture

Notification Formatting and Delivery Architecture

Subscription Processing Architecture

SQL Server Notification Services Books Online

Event Collection Architecture
Event collection is the process of obtaining event data from one or more sources such as XML files, applications, or databases, and
making this information available to a notification application. In Notification Services, event collection is the job of event
providers.

Each application uses one or more event providers for gathering events. Each event provider submits data to the application using
one of the four event APIs: a managed API, a COM API that uses the managed API, an XML API, and a SQL Server API. A high-level
view of how these providers function is shown in the following illustration.

The managed API uses the Event and EventCollector objects to submit single events. Using the names of the fields in an
event table, an application submits an Event object to the event collector, which then writes the data to the event table.

The COM API uses COM interop to expose the event classes as COM interfaces.

The XML API provides a way to bulk-load XML data. The XML event provider collects an XML document or stream from an
event source and submits the data to the XMLLoader, which then writes the events to the event table.
The SQL Server API uses stored procedures to load event data from database objects. Two typical ways of using the SQL
Server event provider are to invoke the provider using a stored procedure and to run a query according to a schedule. The
event provider receives a result set and writes it to the event table using the API stored procedures.

Standard and Custom Event Providers

Application developers can write their own custom event providers using any of the APIs listed above, or they can use one of the
standard event providers supplied with Notification Services, such as the Scheduled SQL or file system watcher event providers.

Custom event providers allow the application developer to provide functionality not available from one of the standard event
providers. For example, the developer might want to collect data from a comma-delimited file from a stock ticker. Using the
Notification Services API, the developer can create an event provider with this functionality. For more information about custom
event providers, see Developing a Custom Event Provider.

Hosted and Independent Event Providers

An event provider is either hosted or independent.

Hosted event providers run within Notification Services. Hosted event providers can either run continuously or be invoked
according to a schedule defined in the application definition file (ADF). These event providers are run by a Notification Services
component called the event provider host. The event provider host runs using the same schedule as the generator component;
the schedule is defined in the ADF.

Independent event providers run as external applications and submit events on their own schedule. For example, an event
provider hosted by Internet Information Services (IIS) that exposes a Web method for submitting events is an independent event
provider. An event provider that is hosted inside a process you write is also an independent event provider.

Batching of Events

Event providers write events in batches. Writing events in batches allows the generator to more efficiently process event data by
comparing subscriptions with multiple (maybe thousands) of events at one time. This batch-oriented processing improves
application performance.

When the provider commits the event batch, the generator processes the batch. For more information about batching, see
Batching in the Notification Services System.

See Also

Notification Formatting and Delivery Architecture

Subscription Management Architecture

Subscription Processing Architecture

SQL Server Notification Services Books Online

Subscription Processing Architecture
After events are collected in an event table, subscriptions can be processed. Evaluating subscriptions against events is the job of
the generator.

To generate notifications, the application developer creates one or more rules for the application. These rules are written as
Transact-SQL queries that specify how events and subscriptions relate, as well as any other conditions that must be met to
generate a notification.

In a simple application, when the generator fires a rule, the application evaluates all available subscriptions against the current
batch of events. When a single event matches a single subscription, the notification generator creates a notification. This
notification contains data about the event; it also references data about the subscriber, the subscriber device, and other
information required for distribution.

The notification is not actually sent at the instant it is created. Instead, the generator writes the notification to an internal
notification table. When a batch of notifications is ready, the notifications are formatted and distributed by the distributor.

Notification generation can be more complex than immediately matching an event to a subscription. Notifications can be
generated according to a subscription-defined schedule and can use historical data.

If an application supports scheduled subscriptions, when the generator processes the scheduled subscriptions, it sees only
subscriptions that are due for evaluation. For example, if the generator runs every 15 minutes, at 8:00 A.M. the generator
evaluates all subscriptions that are scheduled between 7:45 A.M. and 8:00 A.M.

If an application uses historical data, the application can store data in a supplemental table called a chronicle. Applying rules
written for the application, the application uses data in these tables to store events or generate notifications.

Rule Types

The operation of the generator is controlled by the Transact-SQL rules defined for the application. You can create the following
types of rules:

Event chronicle rules store or update the history of events in chronicle tables defined by the application developer. Each
time the generator runs, it fires this type of rule first.
Subscription event rules generate notifications for event-triggered subscriptions. This type of rule runs after the event
chronicle rule if an associated batch of events is available. This type of rule can also manage chronicle tables.
Subscription scheduled rules generate notifications for scheduled subscriptions. This type of rule runs after the event
chronicle rule for any related subscriptions that are due to be processed. This type of rule can also manage chronicle tables.

Quanta

The generator runs according to a schedule defined by the quantum time period in the application definition file (ADF). The
quantum determines how often the generator wakes up and fires rules. The quantum period can be as short as a few seconds or
as long as you want it to be. A short quantum period causes the generator to run more frequently and consume more system
resources. A long quantum interval causes a longer delay between the arrival of events and the generation of notifications.

See Also

Defining the <QuantumDuration> Element

Event Collection Architecture

Notification Formatting and Delivery Architecture

Subscription Management Architecture

Subscription Rules

SQL Server Notification Services Books Online

Notification Formatting and Delivery Architecture
The formatting and distribution of notifications is the job of the distributor. After the generator creates a batch of notifications, the
distributor reads the subscriber data in each notification to determine what formatting is required. The distributor then formats
the notification and sends it using a delivery channel to a delivery service, such as a Simple Mail Transfer Protocol (SMTP) server.

Message Formatting

Part of creating an application is defining how raw notification data is transformed into readable messages. Using a formatting
method such as XSLT, the application developer creates a content formatter for every combination of device and locale. For
example, an application that supports the English and French locales and Systems Management Server (SMS) and SMTP devices
requires four separate content formatters.

The distributor reads each notification to obtain the subscriber delivery device and locale. The distributor then matches the
combination of device and locale to a specific content formatter to generate the formatted message.

The formatted message can contain a combination of the raw notification data, data that is computed at formatting time, and text
specified by the content formatter. These options allow for professional and user-friendly notification text and the inclusion of
Web links.

Delivery Channels

Notification Services itself does not handle the final delivery of notifications. Instead, Notification Services uses delivery channels,
which are like pipes to delivery services such as SMTP servers. Notification Services sends the notifications to one or more
delivery channels, which package the notifications into a protocol packet and then send them to the delivery services. The delivery
services handle the final delivery on their own.

Notification Services includes the following common protocols, which support a standard set of delivery channels for notification
applications. Multiple delivery channels can be configured for each of these protocols:

The SMTP protocol for sending notifications to Microsoft Exchange Server or other SMTP servers.
The extensible HTTP protocol, which can be used for SOAP, SMS, .NET Alerts, and other HTTP-related protocols.
The file protocol for sending notifications to operating system files; used primarily for debugging applications.

The application developer can define additional protocols. For more information about standard and custom protocols, see
Standard Delivery Protocols and Developing a Custom Delivery Protocol.

To support delivery retry, performance monitoring, and troubleshooting, Notification Services retains information about the
delivery of notifications in the notification table. Delivery channels invoke a delivery channel callback to report delivery successes
and failures for individual notifications. The callback updates the notification table to reflect the success or failure of each
notification.

You can configure Notification Services to automatically retry failed delivery attempts, how often retry is attempted, and how long
to retry delivery before marking a notification as failed.

Delivery Options

In addition to standard message-by-message formatting and delivery, Notification Services offers two options: digest delivery,
which groups multiple notifications to an individual subscriber in a single message; and multicast delivery, which sends a single
notification to multiple subscribers. For example:

If multiple notifications are likely to be sent to individual subscribers, such as price information for multiple stocks, the
developer can group notifications using digest delivery. All of the subscriber's notifications within a notification batch can be
grouped and sent as a single notification. Digest delivery reduces the formatting and distribution load on the system.
If an application produces notifications that are likely to be the same for many subscribers, such as stock prices or weather

reports, the developer can choose multicast delivery. This method allows notifications to be formatted once and then sent to
multiple subscribers, which improves performance by reducing the formatting load on the system.

See Also

Event Collection Architecture

Subscription Management Architecture

Subscription Processing Architecture

SQL Server Notification Services Books Online

Notification Services Programming Framework
The Notification Services programming framework facilitates quick application development. The primary task for application
development is to create the application definition file (ADF). Depending on your application, there might be some additional
tasks.

Developing a notification application using the standard components typically requires the following steps:

1. Define the application in the ADF. This file contains information about events, event providers, subscriptions, notifications,
and application settings. Using this file, you define the structure of data, queries used to process data, how notifications are
formatted and delivered, and operational parameters for your application.

There can be a few additional tasks, depending on the entries in the ADF. For example, if you use the file system watcher
event provider, you must create an XML Schema definition language (XSD) file that defines the XML event schema. If you
choose to format notifications using XSLTs, you must create one or more XSLT files that convert the notification data into a
readable message.

2. Create a subscription management application using the Notification Services API. The Notification Services API provides a
number of classes (for managed code) and interfaces (for unmanaged code) to simplify the collection and submission of
subscriber and subscription data.

When you are ready to test or deploy the application, do the following:

1. Configure an instance of Notification Services by creating a configuration file. An instance is a named configuration of
Notification Services that hosts one or more applications. The configuration file defines the name of the instance, names the
applications hosted by the instance, and configures databases, protocols, and delivery channels for the instance.

2. Use the NSControl Create command to create the instance and then use NSControl Register to register it. NSControl
Create creates the instance and application databases. NSControl Register registers the instance of Notification Services,
and optionally creates the NS$instance_name service that runs the Notification Services engine and the performance
counters used to monitor the instance.

3. Activate the subscription management application.

If you use Microsoft Visual Studio® .NET for application development, you can use it to create the ADF, subscription management
application, and configuration file. Also, NSControl commands can be run from Visual Studio .NET using batch files.

See Also

Building Notification Services Applications

NSControl Commands

Walkthrough: Creating a Stock Notification Application

SQL Server Notification Services Books Online

Deployment Architecture
A Notification Services system consists of Notification Services, notification applications, databases, and subscription
management applications. When you deploy applications, you configure where these items are located and how they operate.

The topics that this section covers are described in the following table.

Topic Description
System Architecture Describes the components of a

Notification Services system.
Instances and Versions Describes instances, how they are used by

applications, and how system scale-out is
accomplished through instance
configuration. Also describes how to use
multiple versions of Notification Services.

Application Deployment Describes how applications are deployed
using instances.

Administration Outlines the system administration tasks.

SQL Server Notification Services Books Online

System Architecture
When you deploy a Notification Services application, you must configure and support more than Notification Services. You must
also consider the data storage system, the subscription collection and management system, and the delivery systems that are
involved.

The SQL Server database engine provides storage for instance and application data. Because the databases are critical to
notification applications, the configuration of the database system is a key to application performance. For information about
configuring the database engine, see Database Considerations and Defining the Instance Database.

The system where subscription management applications run, such as Internet Information Services (IIS), is also part of the
notification application. For information about configuring the subscription management system, see Database Considerations.

The associated delivery systems, such as Simple Mail Transfer Protocol (SMTP) servers, receive notifications from Notification
Services and send the notifications to subscribers. For information about configuring delivery options, see Defining Delivery
Channels.

A high-level view of the relationships among these components is shown in the following illustration.

See Also

Administration

Application Deployment

Instances and Versions

SQL Server Notification Services Books Online

Instances and Versions
Instances and versions are two important factors when deploying a Notification Services system. Depending on application
requirements and optimal configurations, you might run multiple instances and multiple versions on a single system, or you
might deploy an instance across multiple servers.

Instances

Notification Services is based on instances. An instance is a single, named configuration of Notification Services that hosts a set of
applications. The applications hosted by an instance use the same configuration and can be administered as a group. Instances
also provide the following benefits:

Each instance has its own registry entries and service, allowing one instance to run separately from other instances.
All applications hosted by an instance share the same set of subscriber data. (This can influence which applications you want
to group under a single instance.)
Instances can be scaled across multiple servers, providing flexible configuration and allowing higher data throughput.

When an administrator deploys Notification Services, a configuration file specifies the name of the instance plus its database
system, database settings, applications, protocols, and delivery channels. The administrator then creates the instance using the
NSControl administration utility.

Instance deployment scenarios

An instance of Notification Services can be deployed on a single server or on multiple servers. A single-server deployment hosts
all processes — event provider host, generator, and distributor — on one server, as shown in the following illustration.

In the single-server scenario, the event provider host, generator, and distributor processes are all hosted by a single server. The
event provider collects data, the generator processes subscriptions, and the distributor formats notifications and distributes them
to the delivery services.

The administrator configures this system by creating the instance and registering the instance on that server.

A variation of this model uses a remote database server, such as the one shown in the following illustration.

When an instance must be scaled out to support larger applications, the event provider host, generator, and distributor processes
can be located on multiple servers. The following illustration shows one sample scale-out configuration.

This system uses three servers to host the Notification Services instance. Server NS1 hosts the event provider and generator
processes, while servers NS2 and NS3 host the distributor process, which formats the notifications and distributes them to the
delivery services.

The administrator configures this system by creating the instance, registering the instance on each server, and then enabling only
the components (event provider host, generator, or distributor) that run on that server.

Version Support

You can install multiple versions of Notification Services on a single system. This arrangement allows multiple instances to each
run a different version of Notification Services if required. It also allows a single instance to be easily upgraded or downgraded.

The following illustration shows two instances running different versions of Notification Services on one server.

Instance NS$Inst1 is running version 2.0, and instance NS$Inst2 is running version 2.1. Both are using the same database system
and the same set of delivery services.

See Also

Administration

Application Deployment

Configuring and Deploying Instances

System Architecture

SQL Server Notification Services Books Online

Application Deployment
Notification Services applications are deployed using instances. Deploying an application requires you to have all the files that
support the instance, such as the application definition file (ADF) and any custom objects. You must also specify application
information in the instance configuration file. When you create the instance, the hosted applications are deployed with the
instance.

Deployment Tasks

An administrator creates an instance by first creating a configuration file and then using a command prompt utility called
NSControl to create and register the instance. The configuration file contains the following information:

Instance settings, such as the instance name and the database server name
Instance database properties that configure files and filegroups
A list of applications hosted by the instance
Protocols supported by the instance
Delivery channel instances for delivering formatted notifications to delivery services

Sample Deployment

The following illustration shows a set of applications deployed on two instances of Notification Services.

In this configuration, the Stock and Weather instances are on a Notification Services server and all databases are on a database
server. The applications are configured as follows:

The Funds and Index applications are hosted by the Stock instance. Both applications use the configuration data in the
StockNSMain instance database. The Funds application database is StockFunds, and the Index application database is
StockIndex.
The Europe application is hosted by the Weather instance. The instance database is WeatherNSMain, and the application
database is WeatherEurope.

Deploying the applications in this way allows the Funds and Index applications to share subscriber data and delivery configuration
with each other, but allows the Weather application to have its own set of subscribers and its own delivery configuration. The two
instances also can use different versions of Notification Services.

See Also

Administration

Instances and Versions

System Architecture

SQL Server Notification Services Books Online

Administration
The system administrator is responsible for deploying Notification Services applications. Ensuring that applications operate
optimally requires careful planning and installation, configuration, management, and monitoring.

Planning and installation is the process of defining what infrastructure is necessary for applications, planning the system
architecture, and then installing system components on each server. For more information, see Installing Notification Services.

Configuration is the process of creating Notification Services instances. Configuration requires version management and careful
planning so that system maintenance and upgrades cause minimal service interruptions. Configuration typically consists of the
following tasks:

Creating a configuration file.
Using the NSControl Create command to create the instance and NSControl Register to register it.
Loading subscription data or deploying a subscription application.
Enabling the instance of Notification Services.
Starting the NS$instance_name service or services that run the instance.

For more information, see Configuring and Deploying Instances.

Administration is similar to the administration of SQL Server databases. The following list contains typical management tasks:

Data backup. The data maintained by the notification application is critical and needs regular backup. SQL Server supports
a number of backup/restore facilities and tools, which you can configure using SQL Server Enterprise Manager.
Data vacuuming. Because notification applications collect event data and generate notification data, this data accumulates
in the database and must be periodically removed. This process, which is called "vacuuming," is configured per application
in the application definition file (ADF).
Reacting to problems. Infrequently, an application might exhibit a problem related to a bad event feed, a subscriber that is
not valid, or a failing delivery channel. To react to these situations, the Notification Services platform provides control
commands to disable specific components of the system or specific subscribers. Once the problems have been identified
and solved, the components or subscribers can be enabled again.
Instance updates. Infrequently, notification applications must be updated to reflect new functionality created by the
application developer. Notification Services provides NSControl Update to update a deployed instance with new
application logic, without losing the existing subscription data.

Monitoring is extremely important for proper system operation. When an application is in production, the system administrator
must monitor the application to ensure that Notification Services is receiving events and also generating and distributing
notifications. Additionally, it is very important to make sure the delivery service is delivering the notifications.

The following objects are available to assist with monitoring:

Performance counters
Status and historical reports
Event log messages

For more information, see Performance Monitoring and Reporting.

See Also

Administering Notification Services

Application Deployment

Instances and Versions

System Architecture

SQL Server Notification Services Books Online

Security, Reliability, Scalability, and Availability
An enterprise system must be secure, reliable, scalable, and available. Notification Services addresses these requirements in the
programming framework and in the architecture of the server running Notification Services.

Security

Notification Services, the Microsoft .NET Framework, and SQL Server incorporate design features that allow application
developers and administrators to enforce end-to-end security for the applications and the overall deployment:

Notification Services uses industry-standard Web security models to communicate across the Internet using wired and
wireless devices. It uses standard Microsoft Windows security mechanisms and SQL Server 2000–based security
mechanisms to protect the server.
Individual Notification Services instances are isolated from each other using SQL Server 2000–based security mechanisms.
This ensures that multiple instances can be hosted on the same computers while safeguarding the security of each
individual instance.
Individual subscribers are isolated from each other because of the programming paradigm that notification applications
support. As a result, each subscription is processed as though it were the only subscription in the system.
Application developers can extend Notification Services by defining their own event providers. These are run as managed
code supported by the .NET Framework, thereby ensuring that they do not compromise the security of the server.

Reliability

SQL Server 2000 has a highly reliable database engine that stores data and processes subscriptions. Notification Services, by
using managed code for custom components, ensures that custom components do not compromise the stability of the system.
Notification Services benefits in the following ways:

The subscription data managed by Notification Services is stored in SQL Server 2000, a highly robust database server that
supports write-ahead logging and failover clustering.
The processing of events, subscriptions, and notifications in Notification Services is fully transactional, thereby providing
additional reliability guarantees. Note that some delivery protocols (for example, Simple Mail Transfer Protocol or SMTP) do
not provide guaranteed delivery of messages; however, the Notification Services platform has retry logic that enables an
application to resend messages to attempt delivery again.
Application developers can build reliable event providers and reliable delivery protocols, for example, based on Message
Queuing (also known as MSMQ), thereby achieving complete end-to-end reliability.

Scalability

Notification Services supports high-throughput applications with thousands of incoming events per minute, millions of
subscriptions matched, and thousands of notifications delivered per minute on a multiprocessor Windows–based server.
Applications can scale in several ways:

Subscription logic can be run in parallel, benefiting from scale-up efficiencies in the underlying SQL Server database engine.
Notification Services is multithreaded and scales up when run on a multiprocessor computer.
The Notification Services service can be deployed on one server and the Notification Services database can be deployed on
another server. This configuration is very efficient because notification generation is performed on the database server
while notification formatting is performed on the Notification Services server.
A single instance can support multiple event providers and multiple distributors. You can distribute the event providers,
generator, and distributors across two or more servers. The ability to scale out the distributors is important in deployments
where there are large notification volumes with significant formatting and delivery overheads.
For further scale-out, you can partition subscriptions across multiple Notification Services instances, each of which operates
independently. Because the application model makes the subscriptions independent of each other, such partitioning is
natural, which makes notification applications highly scalable. You must implement subscription partitioning in your
application. Notification Services does not currently partition subscriptions for you automatically.

Availability

In an instance of Notification Services, all data and state is maintained in the SQL Server database server. Only transient data is
maintained in the event provider, generator, and distributor. This is a critical aspect of the design, because it makes system

availability solely dependent on the availability of the database server.

SQL Server is a reliable database server with a variety of high-availability technologies, including SQL Server 2000 failover
clustering, log shipping, and transactional replication. The database server can be configured to handle hardware failures
seamlessly.

See Also

Notification Services Architecture

Why Use Notification Services?

SQL Server Notification Services Books Online

Integration with Other Technologies
Notification Services applications can capture events from multiple sources and send notifications to users and applications.

Notification Services provides several mechanisms for capturing events from external processes and applications. Notification
Services includes a set of standard event providers that can capture data from common event sources such as XML files or SQL
tables. Developers can write custom event providers using managed APIs, unmanaged APIs, and SQL Server stored procedure
APIs to capture events from other event sources.

Notification Services can send notifications using several delivery protocols. Common protocols like Simple Mail Transfer
Protocol (SMTP) and a file protocol are included with Notification Services. The product also contains a configurable HTTP
protocol, which can be customized to implement a variety of HTTP and SOAP-based delivery protocols.

Use with Other Microsoft Technologies

Notification Services integrates with other key Microsoft technologies to gather notification content and deliver notifications to
subscribers. The following examples illustrate how Notification Services can integrate with these other technologies.

.N ET Alerts

Notification Services and Microsoft .NET Alerts are complementary technologies. After Notification Services generates
notifications, the .NET Alerts Web service can deliver the notifications to subscribers using a variety of devices, such as e-mail,
Microsoft Windows Messenger, and mobile phones.

M essage Queuing and BizTalk

Messages from a queue can be events to a notification application, and notifications can be sent to Message Queuing queues
(also known as MSMQ queues) or to Microsoft BizTalk® through custom delivery channels.

See Also

Developing a Custom Delivery Protocol

Notification Services Architecture

SQL Server Notification Services Books Online

Installing Notification Services
Microsoft® SQL Server™ Notification Services can be installed on one server or many servers. Depending on your system
configuration, you must install Notification Services on one or more of the following servers:

Any server that hosts a Notification Services instance.
The server that hosts the databases used by the instance.
Any server that hosts an independent event provider.
Any server that hosts a subscription management application.

This section provides information about installing and removing Notification Services, instructions for installing or removing one
or more components, and documentation for the Setup pages.

The topics that this section covers are described in the following table.

Topic Description
Editions of Notification Services Explains the differences between

Notification Services Enterprise Edition and
Standard Edition.

Preparing to Install Notification Services Provides hardware and software
requirements, information about multiple
version support, installation permissions,
and file information.

Installing Components Describes the process of installing
Notification Services and related
components.

Running Setup from the Command Line Explains how to create and use an install
script.

Reinstalling Notification Services Provides instructions for repairing or
reinstalling a version of Notification
Services.

Removing Notification Services Provides instructions for removing a
version of Notification Services.

Setup Pages Documents the Setup pages.

SQL Server Notification Services Books Online

Editions of Notification Services
Notification Services is available in two editions: Standard Edition and Enterprise Edition. Standard Edition runs with SQL Server
Standard Edition, and Enterprise Edition runs with SQL Server Enterprise Edition.

Notification Services Standard Edition is intended for small to medium applications that run on one server. Some options,
including the number of generator threads, distributor threads, notifications per batch, and delivery choices, are limited in
Standard Edition.

Notification Services Enterprise Edition is intended for medium to large applications. Instances of Notification Services that run on
Enterprise Edition can be scaled across multiple servers. With Enterprise Edition, you can customize the number of generator and
distributor threads as well as the size of notification batches. It also supports multicast delivery.

The following table shows the differences between the two editions.

Feature Standard Edition Support Enterprise Version
Support

Scale-out Not supported Supported
Generator threads per

instance
1 Up to 25

Distributor threads per
instance

Up to 3 Unlimited

Notification batch size Fixed sizes Can be adjusted
Multicast delivery Not supported Supported

See Also

Hardware Configurations

<MulticastDelivery> Element

<NotificationBatchSize> Element

<ThreadPoolSize> Element (<Distributor>)

<ThreadPoolSize> Element (<Generator>)

SQL Server Notification Services Books Online

Preparing to Install Notification Services
Before you install Notification Services components, you must ensure that the servers meet all hardware and software
requirements. When you install components of Notification Services, the account used to perform the installation must have
adequate privileges.

This section includes information about hardware and software requirements and the permissions required for installation. It also
includes information about the files that are to be installed and how Notification Services supports multiple versions of these files
on a single server.

The topics that this section covers are described in the following table.

Topic Description
Hardware and Software Requirements Provides hardware requirements for the

engine components and software
requirements for the engine components,
database components, documentation, and
samples.

Permissions Required for Installation Documents the permissions required to
install Notification Services components.

Files and File Locations Lists the files that will be installed and the
locations where they are installed.

Multiple Version Support Explains how multiple version support for
Notification Services works.

SQL Server Notification Services Books Online

Hardware and Software Requirements
The minimum hardware and software requirements for installing and running Notification Services are listed in the following
tables.

Hardware Requirements

This table shows hardware requirements for installing the Notification Services engine components. For database system
hardware requirements, see "Hardware and Software Requirements for Installing SQL Server 2000" in SQL Server Books Online.

Hardware Requirement
Computer Pentium 450 megahertz (MHz) minimum;

Pentium 733 MHz or higher
recommended.

Memory (RAM) 128 megabytes (MB) minimum; 256 MB or
more recommended.

Hard disk space Notification Services components: 10 MB.

If the databases are on the same server as
Notification Services, additional disk space
is required for your database tables, log
files, and temporary database tables.

Software Requirements

Notification Services consists of engine components, client components, database components, samples, and documentation.
Each of these components can be installed by itself, or components can be installed together. Some components have software
prerequisites; that software must be installed before you can install the component.

The following sections describe the software prerequisites for the Notification Services components.

N otification Services Engine Components

This table shows the software that must be installed before installing the engine components.

Software Requirement
Operating System Microsoft Windows® 2000 SP2 (or higher)

or Windows XP Professional.
Microsoft Data Access Components
(MDAC)

MDAC version 2.6 or higher, required to
install the Microsoft .NET Framework; also
required by Microsoft SQLXML.

SQL Server 2000 Client Tools SQL Server 2000 client tools, required by
SQLXML.

Microsoft SQLXML SQLXML version 3.0 or higher.

Note Microsoft recommends SQLXML 3.0
SP1 or higher.

Microsoft .NET Framework Microsoft .NET Framework version
1.0.3705 or higher.

You can find some of the Notification Services prerequisite software at the Microsoft Download Center Web page. Select the
name of the prerequisite from the product list, select your operating system, and then click Find It. SQLXML is also available at
the SQL Server Downloads Web page.

Install the SQL Server client tools from SQL Server 2000 Setup.

Client Components

The following table shows the software that must be installed before installing the client components.

Software Requirement

http://go.microsoft.com/fwlink/?LinkId=7733
http://go.microsoft.com/fwlink/?LinkId=7731

Operating system Windows 2000 SP2 or Windows XP
Professional.

Microsoft Data Access Components
(MDAC)

MDAC 2.6 or higher, required to install the
.NET Framework.

.NET Framework .NET Framework version 1.0.3705 or
higher.

Bulk Event Submission Subcomponent

The bulk event submission subcomponent, which supports use of the SQLXML bulk loader, is used for submitting events in bulk
from XML files. The following table shows the software that must be installed before installing the bulk event submission
component.

Software Requirement
SQL Server client tools SQL Server 2000 client tools, required by

SQLXML.
SQLXML SQLXML 3.0 or higher.

Note Microsoft recommends SQLXML 3.0
SP1 or higher.

Database Components

The following table shows the software that must be installed before installing database components.

Software Requirement
SQL Server SQL Server 2000 Standard Edition, SQL

Server 2000 Enterprise Edition, or SQL
Server 2000 Developer Edition.

Note Microsoft recommends the most
recent service pack for SQL Server 2000.

Documentation Components

The following table shows the software that must be installed before installing documentation components.

Software Requirement
Internet software Microsoft Internet Explorer 5.01 or higher.

Sample Applications

There are no software requirements for installing the sample applications. However, you must install the engine and database
components somewhere (either on the same server or on other servers) to be able to use the sample applications.

The sample applications include a Microsoft Visual Studio® .NET solution file that can be used to edit and run the samples. If you
have Visual Studio .NET, you can use the solution files.

For more information, see Notification Services Programming Samples.

Setup Requirements

Before Setup can install Notification Services components, Windows Installer version 2.0 must be installed on the computer.
Setup checks for Windows Installer 2.0 and installs it if necessary. If Setup installs Windows Installer, you are prompted to reboot
after the Notification Services installation is complete.

See Also

Installing Components

Notification Services Programming Samples

Permissions Required for Installation

SQL Server Notification Services Books Online

Permissions Required for Installation
The permissions required to install Notification Services depend on the components you are installing. Engine and client
components require local system permissions; database components require both local system and SQL Server permissions. If
you are installing all components on a server, you must have the required permissions for every component.

Engine Components

When you are installing Notification Services engine components, the account you are using must have local administrator
privileges.

The Notification Services NS$instance_name service is not created during software installation, so the service is not installed
using these permissions or any default system permissions. You create the service and define a security account for the service
after installation, when you create a new instance of Notification Services. For more information, see Registering and
Unregistering an Instance.

Client Components

When you are installing the client components, the account you are using must have local administrator privileges.

Database Components

When you are installing database components, the account you are using must have local administrator privileges as well as be a
member of the SQL Server sysadmin server role. Membership in sysadmin is required because installing database components
adds a set of extended stored procedures to the master database.

See Also

Preparing to Install Notification Services

SQL Server Notification Services Books Online

Files and File Locations
By default, Notification Services is installed to %PROGRAMFILES%\Program Files\Microsoft SQL Server Notification Services. You
can alter this location during setup.

The following folders and files are added when installing Notifications Services:

vN.N.NNNN.N Folder

The root folder uses the Notification Services version number as its name. It contains the Bin, Docs, Samples, and XML Schemas
folders. It also contains the Readme.txt file, which contains late-breaking information, and the NSOnWeb.url file, which is a Web
link to the Notification Services home page.

Bin Folder

The Bin folder contains all of the binary Notification Services files, such as executables and DLLs, as well as command files. The Bin
folder is created when you install the engine components or the client components.

File Description
EventLogMessages.dll Resource file that provides information

about Notification Services events to the
event log.

GrantXpExec.cmd Command you can use to grant rights to
run the Notification Services extended
stored procedures to the account used by
the NS$instance_name service. For more
information, see GrantXPExec Utility.

InstallXPs.cmd Command you can use to install the
Notification Services extended stored
procedures to additional instances of SQL
Server. For more information, see
InstallXPs Utility.

Microsoft.SqlServer.NotificationServices.dll Notification Services core DLL.
Microsoft.SqlServer.NotificationServices.tlb Type library used by Notification Services

to register types for COM interoperability.
Nscontrol.exe Executable file that runs the NSControl

command prompt utility. Do not run this
file. For more information, see
NSControl Commands.

Nsservice.exe Executable file used to run the
Notification Services NS$instance_name
service. (Installed with engine
components only.) Do not run this file
from this location. For more information,
see Starting and Stopping a Service.

Nsservice.exe.config Configuration file that controls the
logging levels for the Notification
Services NS$instance_name service. Edit
the values in this file to control logging.
For more information, see Configuring
Notification Services Event Logging.

RegisterXPs.sql Transact-SQL script that registers the
Notification Services extended stored
procedures in SQL Server. This script is
run by Setup, so you do not need to run
this script manually.

RevokeXpExec.cmd Command you can use to revoke rights to
run the Notification Services extended
stored procedures. For more information,
see RevokeXPExec Utility.

SetNSVars.cmd Command used by Notification Services
to set general environment variables and
open a command prompt window.
Instead of running this command, you
can open the command prompt window
from Start/Program Files/Microsoft SQL
Server Notification Services.

SqlXmlBulkLoad.dll Managed DLL used to facilitate the use of
the SQLXML bulk loader.

UninstallXPs.cmd Command you can use to remove the
Notification Services extended stored
procedures from an instance of SQL
Server. For more information, see
UninstallXPs Utility.

UnregisterXPs.sql Transact-SQL script that removes the
Notification Services extended stored
procedures from SQL Server. Running
this script manually is sometimes
necessary. When uninstalling, Setup does
not prompt for a SQL Server user name
and password and does not prompt for
the server name.

The Bin folder also contains language-specific folders, such as de (German), es (Spanish), and fr (French). Each folder contains a
DLL that contains language-specific resources for Notification Services.

Docs Folder

The Docs folder contains Notification Services documentation. This folder is installed if you install the documentation
components.

The Docs folder contains one folder for each installed language. Each language folder, such as en (English), contains the following
files.

File Description
Sqlntsv.chm Notification Services HTML Help

documentation file. Running this file
opens SQL Server Notification Services
Books Online.

Sqlntsv.hx* Documentation files used by Microsoft
Visual Studio® .NET. If Visual Studio is
installed, you will be able to access the
documentation in the Visual Studio .NET
Help pane.

Samples Folder

The Samples folder contains all of the files for running the sample applications supplied with Notification Services. This folder is
installed if you install the sample applications component during setup.

For more information about the files in the Samples folder, see Notification Services Programming Samples.

XM L Schemas Folder

The XML Schemas folder contains the XML schemas for the application definition file (ADF) and the configuration file. These files
are required by Notification Services. You can view these files to look at the XML schemas.

File Description
ApplicationDefinitionFileSchema.xsd The XML schema definition for the ADF.

For more information about the elements
described in this file, see the Application
Definition File Reference.

ConfigurationFileSchema.xsd The XML schema definition for the
configuration file. For more information
about the elements described in this file,
see the Configuration File Reference.

SQL Server

When you install the database components, an extended stored procedure DLL is installed in the selected SQL Server Binn folder.
The name of this file is Microsoft_SqlServer_NotificationServices_XP_X_X_XXXX_X.dll, where X_X_XXXX_X is the Notification
Services version number.

SQL Server Notification Services Books Online

Multiple Version Support
Over time, as successive versions of Notification Services are released, you might want to host applications that require different
versions of Notification Services on the same system. Notification Services allows multiple versions of itself to be installed on one
system, and allows each instance to use a different version. Also, having multiple versions on one system allows you to upgrade
and downgrade instances (and their applications) as needed.

A version is a numbered release of Notification Services. The version number is represented in four parts:
<Major>.<Minor>.<Build>.<Revision>. For example, a build number might be 2.0.3520.3.

Each version of Notification Services is installed to a folder with a name that matches the version number, and is registered
independently of any other versions. For example, version 2.0.3520.3 is installed (by default) in the following directory:

C:\Program Files\Microsoft Notification Services\v2.0.3520.3

This naming scheme enables individual versions to be installed and uninstalled without affecting other installed versions of
Notification Services.

All Notification Services components are labeled with a version number, as are some components created by developers and
administrators. Notification Services checks the version number when creating an instance to verify that all components use the
same product version.

See Also

Application Definition File Reference

Configuration File Reference

Configuring and Deploying Instances

SQL Server Notification Services Books Online

Installing Components
An instance of Notification Services can run on a variety of system configurations. For example, the instance and the databases
can all be on one server, the databases can be on a remote server, and the instance can be scaled across several servers.
Additionally, you might have subscription management applications or independent event providers located on a remote server.

Notification Services Setup supports the different system configurations by allowing you to install one or more of the following
components on a server:

The engine components, which must be installed on the server that runs an instance of Notification Services.
The client components, which must be installed on servers that host independent event providers and subscription
management applications. These components contain the interfaces used by your independent event providers and
subscription management applications. The NSControl commands, which you can use to administer an instance of
Notification Services, are also installed.
The database components, which must be installed on the SQL Server 2000 database engine system. The database
components include extended stored procedures used to generate notifications.
The sample applications, which can be installed on a development server. This component is a set of sample applications
that you can use to become familiar with Notification Services. You can run the samples from within Microsoft Visual
Studio® .NET.
The documentation components, which can be installed anywhere you want to have access to the Notification Services
documentation.

During installation, you can select one or more components to install. The installation program checks the server for requirements
and selects only the components that can be installed.

Note If SQL Server 2000 is installed but not started, installation of the database components fails.

The topics that this section covers are described in the following table.

To Install See
All components Installing All Components
Engine components only Installing Engine Components
Client components only Installing Client Components
Database components only Installing Database Components
Database components on
additional instances of SQL Server

Installing Database Components on Additional
Instances of SQL Server

Documentation only Installing Documentation
Samples only Installing Sample Applications

See Also

Notification Services Programming Samples

Preparing to Install Notification Services

Running Setup from the Command Line

Setup Options

SQL Server Notification Services Books Online

Installing All Components
When an instance of Notification Services and the database engine are located on one server, you can install all components on
that server. You typically use a single-server configuration for development and for smaller applications.

To install all components

1. Ensure that all prerequisite software is installed. For more information, see Hardware and Software Requirements.
2. Run Notification Services Setup.
3. On the Custom Setup page, make sure that all components are available: engine components, client components, database

components, documentation, and sample applications.

If one of these components is not available, the computer does not meet the minimum requirements for that component.

4. If you have multiple instances of the database engine installed, select one instance on the Database Components Setup
page.

5. On the SQL Server Login Information page, select the type of authentication used to log in to SQL Server. Enter the user
name and password if required.

6. On the Ready to Install the Program page, click Install.

See Also

Notification Services Programming Samples

Preparing to Install Notification Services

Running Setup from the Command Line

Setup Options

SQL Server Notification Services Books Online

Installing Engine Components
A server that runs an instance of Notification Services must have the engine components installed. If an instance of Notification
Services is distributed across multiple servers, each server must have the engine components installed.

To install the engine components

1. Ensure that engine component prerequisite software is installed. For more information, see Hardware and Software
Requirements.

2. Run Notification Services Setup.
3. On the Custom Setup page, do the following:

Click Engine Components, and then select This feature will be installed on local hard drive.
Click each of the other components, and then select This feature will not be available.

4. On the Ready to Install the Program page, click Install.

See Also

Installing Components

Preparing to Install Notification Services

Running Setup from the Command Line

Setup Options

SQL Server Notification Services Books Online

Installing Client Components
Client components include the Notification Services API and the NSControl commands. These components are required for:

Subscription management applications. These applications use the Notification Services API to interact with Notification
Services subscriber and subscription data; you must use the NSControl commands to register the instance on the server.
Independent event providers use the Notification Services API to submit events to the application databases; you must use
the NSControl commands to register the instance on the server.
Remote administration servers must have the NSControl commands so you can administer instances and applications.

The bulk event submission subcomponent, which supports use of the Microsoft SQLXML bulk loader, is used for submitting XML
data to SQL Server. If your independent event provider or subscription management application submits XML data, you must
install this component. However, installing this component requires the SQL Server client tools to be installed. Because the client
tools can be used to access databases, it is best not to install them unless necessary.

Note All of the client components are included in the engine components. If you have already installed the engine
components on the server, you do not need to install the client components.

To install the client components

1. Ensure that the client component prerequisite software is installed. For more information, see Hardware and Software
Requirements.

2. Run Notification Services Setup.
3. On the Custom Setup page, do the following:

Click Client Components, and then select This feature will be installed on local hard drive.
If an application requires the SQLXML bulk loader component, click Bulk Event Submission, and then select This
feature will be installed on local hard drive.
Click each of the other components, and then select This feature will not be available.

4. On the Ready to Install the Program page, click Install.

See Also

Installing Components

Preparing to Install Notification Services

Running Setup from the Command Line

Setup Options

SQL Server Notification Services Books Online

Installing Database Components
The system that hosts the Notification Services databases must have the database components installed. Installing the database
components adds the Notification Services extended stored procedures that are used to create and distribute notifications.

To install the database components

1. Ensure that the SQL Server 2000 database engine is installed and started.

Setup does not attempt to start SQL Server.

2. Run Notification Services Setup.
3. On the Custom Setup page, do the following:

Click Database Components, and then select This feature will be installed on local hard drive.
Click each of the other components, and then select This feature will not be available.

4. If you have multiple instances of SQL Server 2000 installed, select one instance on the Database Components Setup page.
5. On the SQL Server Login Information page, select the type of authentication to use to log in to SQL Server. Enter the user

name and password if required.
6. On the Ready to Install the Program page, click Install.

Note If you install the database components using SQL Server authentication, extended stored procedures
added during setup are not removed after if Notification Services is later uninstalled. For information about
removing the database components, see Removing Notification Services.

See Also

Installing Components

Installing Database Components on Additional Instances of SQL Server

Preparing to Install Notification Services

Running Setup from the Command Line

Setup Options

SQL Server Notification Services Books Online

Installing Database Components on Additional Instances of
SQL Server
When you install database components using Notification Services Setup, the components are installed on one instance of SQL
Server only. You select the instance on the Database Components Setup page. If you want to install the database components on
another instance of SQL Server on the same computer, you must use the InstallXPs command prompt utility.

To install database components to another instance

1. Install the Notification Services engine components on a server.

You can run the InstallXPs command remotely, so you do not need to install the engine components on a remote database
server.

2. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

3. Type the following command to install the database components:

installxps server_name\sql_instance "sql_binn_path" sql_login password

The database components are installed on the specified instance of SQL Server.

See Also

Installing Components

Installing Database Components

InstallXPs Utility

UninstallXPs Utility

SQL Server Notification Services Books Online

Installing Documentation
When you install the documentation components, Setup installs an HTML Help file that contains programming, administration,
and reference information. Setup will also register the documentation with Microsoft Visual Studio® NET. This enables you to
view the documentation in the Visual Studio .NET Help pane.

To install documentation

1. Run Notification Services Setup.
2. On the Custom Setup page, do the following:

Click Documentation, and then select This feature will be installed on local hard drive.
Click each of the other components, and then select This feature will not be available.

3. On the Ready to Install the Program page, click Install.

See Also

Running Setup from the Command Line

Installing Components

Preparing to Install Notification Services

Setup Options

SQL Server Notification Services Books Online

Installing Sample Applications
Notification Services provides a set of sample applications to help you develop your own applications. The samples require a
complete system (engine components, client, and database components) to run, and they also require Microsoft Visual Studio®
.NET for full functionality. You can examine sample XML and batch files without any of these other components.

For additional information about the Notification Services samples, see Notification Services Programming Samples.

To install the sample applications

1. Run Notification Services Setup.
2. On the Custom Setup page, do the following:

Click Sample Applications, and then select This feature will be installed on local hard drive.
Click each of the other components, and then select This feature will not be available.

3. On the Ready to Install the Program page, click Install.

See Also

Running Setup from the Command Line

Installing Components

Preparing to Install Notification Services

Setup Options

SQL Server Notification Services Books Online

Running Setup from the Command Line
Notification Services Setup uses Microsoft Windows® Installer, which supports installation from the command line. Using the
command-line syntax, you can create a batch file for unattended installation and removal of Notification Services.

Important If you install or uninstall Notification Services in silent mode from the command line, look in the
application log to determine whether the operation was successful.

The downloaded installation file is a self-extracting installation file, MicrosoftSQLServerNotificationServices.exe, that contains a
setup bootstrap file (Setup.exe), a Windows Installer database (Microsoft SQL Server Notification Services.msi) and a .cab file
(Data1.cab). Running MicrosoftSQLServerNotificationServices.exe automatically runs Setup.exe.

Command-line arguments are passed to Setup.exe or Windows Installer by passing them directly to
MicrosoftSQLServerNotificationServices.exe.

Command-Line Arguments for MicrosoftSQLServerNotificationServices.exe

MicrosoftSQLServerNotificationServices.exe accepts the command-line arguments that are presented in the following table.

Argument Description
-s Extracts the compressed file in silent mode (no dialog

boxes). MicrosoftSQLServerNotificationServices.exe
suppresses the progress indicator that is otherwise
displayed while its contents are expanded to a
temporary location.

-f path Specifies a location to store Setup.exe, Microsoft SQL
Server Notification Services.msi, and Data1.cab when
they are expanded.

-e Extracts the setup files without running Setup.

To expand the contents of
MicrosoftSQLServerNotificationServices.exe without
launching Setup.exe, specify this option without any
arguments.

-a setup_arguments Passes the remaining arguments to Setup.exe.

Command-Line Arguments for Setup.exe

Setup.exe supports the command-line arguments that are presented in the following table. These areguments are passed in from
the MicrosoftSQLServerNotificationServices.exe -a argument.

Argument Description
-s Runs Setup.exe in silent mode (no dialog boxes).
-vmsi_arguments Passes msi_arguments to Notification Services.msi;

do not include a space between -v and
msi_arguments. If specifying multiple arguments,
enclose msi_arguments in quotation marks.

-x Uninstalls Notification Services.

Command-Line Arguments for Microsoft SQL Server Notification Services.msi

Microsoft SQL Server Notification Services.msi accepts the following command-line arguments, which are passed in from the
Setup.exe -v argument.

Argument Description

-q[n|b|r|f] Sets user interface (UI) level:

n = no UI

b = basic UI (progress only, no
prompts)

r = reduced UI (dialog at the end of
installation)

f = full UI

-L Specifies log file options. To log all
messages to log_file_name, use -L*v
log_file_name. To log error messages
only, use -Le log_file_name.

ADDLOCAL=components|
REMOVE=components|
REINSTALL=components

Specifies one of these options to
install (ADDLOCAL), remove
(REMOVE), or reinstall (REINSTALL)
one or more components.

You can either specify ALL to install or
remove all components, or you can
use a comma-separated list of
components. A list of component
names appears below.

INSTALLDIR=path Installs Notification Services to the
location specified by path.

SQLSERVERNAME=sql_server_instance_name If you install the database
components, specify the SQL Server
instance name using this argument.
Specify a default instance using only
the computer name. Specify a named
instance using the computer\instance
format. If you do not use this
argument, the database components
are installed to the default instance.

SQLUSERNAME=sysadmin_user_name To install the database components
using SQL Server Authentication,
specify the user name of a SQL Server
system administrator using this
argument.

SQLPASSWORD=sysadmin_password Specify the password of the user
name specified with SQLUSERNAME.

ALLUSERS=1 To make the Notification Services
Start menu items available to all
users, use this argument. If you do
not use this argument, Notification
Services Start menu items are
available only for the account that
installs Notification Services.

For more information about these and additional command-line options, see Windows Installer Command Line Options in the
Microsoft MSDN® Library.

Component Names

Each component that can be installed from Notification Services Setup can also be installed from the command line using the
ADDLOCAL argument for Microsoft Windows Installer. To install a component from a command prompt, you must use the
correct command-line name. The full name and command-line name for each component is shown in the following table.

Full Name Command-Line Name
Engine components EngineComponents

http://go.microsoft.com/fwlink/?LinkId=7771

Client components ClientComponents
Microsoft SQLXML bulk loader
components

BulkEvents

Database components DBComponents
Documentation Documentation
Sample applications Samples
All components ALL (default value)

Note The BulkEvents option, if specified without ClientComponents, installs the client components.
ClientComponents, if specified without BulkEvents, installs the SQLXML bulk loader components if the prerequisite
software is already installed.

If you specify BulkEvents when the SQLXML and SQL Server client tools are not installed, Setup fails. If you were
running Setup in silent mode (no dialogs), Setup writes a message to the application log.

Interaction Between Setup Components

If you run Setup from the command line using MicrosoftSQLServerNotificationServices.exe, you can pass arguments from
MicrosoftSQLServerNotificationServices.exe to Microsoft SQL Server Notification Services.msi using Setup.exe. For example, you
can run the following command:

MicrosoftSQLServerNotificationServices.exe -s -a -s -v"/qn"

The first -s argument extracts the files without displaying the setup screens. The -a argument passes all following arguments to
Setup.exe. The second -s argument runs Setup.exe in silent mode. The last argument, -v, passes the /qn parameter to Microsoft
Windows Installer, which runs the .msi package in silent mode.

The following table shows the parameters supplied to MicrosoftSQLServerNotificationServices.exe and the arguments passed to
other Setup files.

File Supplied or Passed Parameters
MicrosoftSQLServerNotificationServices.exe -s -a -s -v"/qn"
Setup.exe -s -v"/qn"
Windows Installer /qn

Examples

The following examples show how to run Setup from the command line.

Extracting files to C:\Temp without running Setup

This example shows how to extract the Setup files, Setup.exe, Microsoft SQL Server Notification Services.msi, and Data1.cab, to
C:\Temp without running Setup:

MicrosoftSQLServerNotificationServices.exe –f C:\Temp -e

Installing all components using Windows Authentication

This example shows how to install all components of Notification Services using Windows Authentication to install the database
components to the default instance of SQL Server:

MicrosoftSQLServerNotificationServices.exe -s -a -s -v"/qn"

Installing all components using SQL Server Authentication

This example shows how to install all components of Notification Services using SQL Server Authentication to install the database
components to the default instance of SQL Server:

MicrosoftSQLServerNotificationServices.exe -s -a -s
 -v"/qn SQLUSERNAME=user_name SQLPASSWORD=password"

Installing all components to a named instance of SQL Server using Windows Authentication

This example shows how to install all components of Notification Services using Windows Authentication to install the database
components to a named instance of SQL Server:

MicrosoftSQLServerNotificationServices -s -a -s
 -v"/qn SQLSERVERNAME=computer\sql_instance"

Installing engine components to a specified location and installing database components to a named instance of SQL
Server using Windows Authentication

This example shows how to install the engine components to C:\NS\ and the database components to a named instance of SQL
Server using Windows Authentication:

MicrosoftSQLServerNotificationServices -s -a -s
 -v"/qn ADDLOCAL=EngineComponents,DBComponents
 SQLSERVERNAME=computer\sql_instance INSTALLDIR=\"c:\NS\""

Removing all installed components using Windows Authentication

This example shows how to remove all installed components:

MicrosoftSQLServerNotificationServices.exe -s -a -x -v"/qn"

Removing database components using Windows Authentication

This example shows how to remove the database components from a named instance of SQL Server using Windows
Authentication:

MicrosoftSQLServerNotificationServices.exe -s -a -s
 -v"/qn REMOVE=DBComponents SQLSERVERNAME=computer\sql_instance"

Removing database components using SQL Server Authentication

This example shows how to remove the database components using SQL Server Authentication:

MicrosoftSQLServerNotificationServices.exe -s -a -s
 -v"/qn REMOVE=DBComponents SQLSERVERNAME=computer\sql_instance
 SQLUSERNAME=user_name SQLPASSWORD=password"

See Also

Installing Components

Setup Options

SQL Server Notification Services Books Online

Reinstalling Notification Services
Setup supports reinstalling Notification Services to add or remove components, or to repair files or registry entries. If you attempt
to install a version of Notification Services that is already registered on the server, Setup displays the Program Maintenance page,
where you can modify, repair, or remove Notification Services.

To reinstall or repair Notification Services

1. Run Notification Services Setup.
2. On the Program Maintenance page, do one of the following:

If you want to add or remove components, click Modify.
If you need to repair a Notification Services installation, click Repair.

Repair reinstalls and repairs the components you previously installed.

3. Modify or repair the installation using the instructions provided in Installing Components.

See Also

Removing Notification Services

Program Maintenance Page

SQL Server Notification Services Books Online

Removing Notification Services
Removing Notification Services removes components that were installed by Notification Services Setup.

Setup removes a single version of Notification Services. If multiple versions are installed on the computer, the selected version is
uninstalled, and all other versions remain operational.

Setup does not check for applications using the version of Notification Services, nor does it delete configured instances of
Notification Services. You must run the NSControl Delete command to remove databases and the NSControl Unregister
command to unregister the instance.

Note Uninstalling the database components removes the version-specific extended stored procedures required by
Notification Services. Before removing the database components, make sure no other installations of Notification
Services use that SQL Server instance and the same version of Notification Services.

To remove Notification Services

1. To delete any installed samples and their databases, run the RemoveSamplesDB command.

The RemoveSamplesDB.cmd file is in the Samples folder of the Notification Services installation.

2. Stop all instances of Notification Services that use the version you are removing.

For more information, see Starting and Stopping Services.

3. If you used SQL Server Authentication to install the database components, use the UninstallXPs command to remove the
database components.

Setup does not prompt for a SQL Server user name and password. The UninstallXPs.cmd file is in the Bin folder of the
Notification Services installation.

4. To delete an instance and its databases, do the following:
a. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
b. Type the following command to delete the instance and application databases:

nscontrol delete -name instance_name -server database_server_name

c. Type the following command to unregister the instance and delete the NS$instance_name service and the
performance counters (if installed):

nscontrol unregister -name instance_name

5. In Control Panel, double-click Add/Remove Programs.
6. Select Microsoft SQL Server Notification Services, and then click Remove.
7. Follow the on-screen instructions.

If you unintentionally remove a version of Notification Services, you can simply reinstall that version. For more information, see
Installing Components or Reinstalling Notification Services.

To remove database components from an instance of SQL Server

If you installed database components using the InstallXPs command or SQL Server Authentication, you must remove the
database components using the UninstallXPs command.

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Type the following command to remove the database components:

uninstallxps computer\instance "sql_server_binn_folder"
 sql_login password

The SQL login and password arguments are necessary only if you must use SQL Server Authentication to remove the

database components.

See Also

RemoveSamplesDB Utility

UninstallXPs Utility

InstallXPs Utility

SQL Server Notification Services Books Online

Setup Pages
Notification Services Setup contains several pages for configuring installation options. The options on these pages control which
Notification Services components are installed. This section describes the installation options.

The topics that this section covers are described in the following table.

Topic Description
Customer Information Page Documents the Customer Information

page.
Custom Setup Page Documents the Custom Setup page.
Database Components Setup Page Documents the Database Components

Setup page.
SQL Server Login Information Page Documents the SQL Server Login

Information page.
Change Current Destination Folder Page Documents the Change Current

Destination Folder page.
Program Maintenance Page Documents the Program Maintenance

page.

See Also

Installing Components

SQL Server Notification Services Books Online

Customer Information Page
On the Customer Information setup page in Setup, you supply information about who is installing and running Notification
Services. This information is required.

Options

User name
Enter your name or the name of the person who will be using this installation of Notification Services.

Organization
Enter the name of the organization that owns this installation, such as your company name.

Install this application for
Specifies who will have access to this installation of Notification Services.

Anyone who uses this computer

Adds the Notification Services items to the Start menu for all users.

Only for me

Adds the Notification Services items to the Start menu of the account that is installing Notification Services.

See Also

Setup Options

SQL Server Notification Services Books Online

Custom Setup Page
On the Custom Setup page in Setup, you select the components to install. The options depend on which prerequisite software,
such as the Microsoft .NET Framework and SQL Server 2000, is available on the server.

Options

Engine Components
Specifies the installation option for the Notification Services engine components. The engine components run event collection,
notification generation, formatting, and delivery, and also include the interfaces for subscription management applications.
These components do not include database components, documentation, or samples.

You can choose to install or not install the engine components. Right-click the icon next to the component name to change the
installation option.

This option is available only if the .NET Framework is installed on the server.

Client Components
Specifies the installation option for the Notification Services client components, which are used by subscription management
applications and independent event providers that run on a remote server.

You can choose to install or not install the client components. Right-click the icon next to the component name to change the
installation option.

This option is available only if the .NET Framework is installed on the server.

Bulk Event Submission
Specifies the installation option for the Microsoft SQLXML bulk loader, which is for submitting event data.

You can choose to install or not install the bulk event submission components. Right-click the icon next to the component name
to change the installation option.

This option is available only if the SQL Server client tools are installed on the server.

Database Components
Specifies the installation option for the database components. The database components are the extended stored procedures
installed in the SQL Server master database that enable Notification Services processing. This component does not include the
engine components, documentation, or samples.

You can choose to install or not install the database components. Right-click the icon next to the component name to change
the installation option.

This option is available only if SQL Server 2000 is installed on the server.

Documentation
Specifies the installation option for the documentation. The documentation is an HTML Help file that contains programming,
administration, and reference information. If Microsoft Visual Studio® .NET is installed on the computer before the
documentation components are installed, Setup registers the documentation with Visual Studio .NET.

You can choose to install or not install the documentation. Right-click the icon next to the component name to change the
installation option.

Sample Applications
Specifies the installation option for the sample applications. The samples can be run on computers that host engine
components.

You can choose to install or not install the samples. Right-click the icon next to the component name to change the installation
option.

Install to
Shows the path where the components will be installed. You can change the location by clicking the Change button.

Change
Displays the Change Current Destination Folder page, where you can select a different installation location.

Help
Displays information about custom installation icons.

Space
Displays information about the combined disk space requirements for the installation option you have selected.

See Also

Setup Options

SQL Server Notification Services Books Online

Database Components Setup Page
On the Database Components Setup page in Setup, you select an instance of SQL Server for installation of the database
components. This page appears only if the database server has multiple instances of SQL Server 2000 installed.

Options

SQL Server
Lists the instances of SQL Server 2000 installed on the local computer. You must select the instance of SQL Server where you
want to install the database components. You must have sysadmin privileges on the instance where you are installing the
components.

The default instance of SQL Server uses the computer name only. Named instances of SQL Server use the computer name
followed by the instance name (computer\instance_name).

See Also

Setup Options

SQL Server Notification Services Books Online

SQL Server Login Information Page
On the SQL Server Login Information page in Setup, you choose the authentication mode used to install the database
components. The user name and password are used during installation, and are not saved.

Options

Windows Authentication
If Mixed Mode is enabled on the SQL Server instance and your Microsoft Windows account has sysadmin privileges, select this
mode. Your Windows account credentials are used to log in to SQL Server and install the database components.

SQL Server Authentication
If Mixed Mode is not enabled on the instance you selected, or if you must use SQL Server Authentication to provide your
sysadmin login and password, select this mode.

SQL User Name

Enter your SQL Server login. The login account must have sysadmin privileges, as this account is used to install database
components.

SQL Password

Enter the password associated with the SQL Server login.

See Also

Setup Options

SQL Server Notification Services Books Online

Change Current Destination Folder Page
On the Change Current Destination Folder page in Setup, you can change the destination for the Notification Services program
and supporting files. This page appears if you click the Change button on the Custom Setup page.

Options

Look in
Click to browse to a destination folder. You also can create new folders using the New Folder button.

Folder name
Type the destination folder for installation.

See Also

Setup Options

SQL Server Notification Services Books Online

Program Maintenance Page
During Setup, the Program Maintenance page appears if you attempt to install a version of Notification Services that is already on
the server.

Options

Modify
Allows you to change the components that are installed. You can then add or remove the engine components, database
components, or documentation and samples. The components available on the Custom Setup page depend on which
prerequisite software, such as Microsoft .NET Framework and SQL Server, is available on the server.

Repair
Repairs Notification Services components by adding missing files and fixing corrupt files, shortcuts, and registry entries.

Remove
Removes Notification Services components from the server.

See Also

Setup Options

SQL Server Notification Services Books Online

Walkthrough: Creating a Stock Notification Application
This walkthrough teaches you how to build and debug a simple Microsoft® SQL Server™ Notification Services application. After
installing the walkthrough files, you will start the walkthrough with a very simple Notification Services sample application and
add new capabilities to it as you complete each numbered task. At the end of most tasks, you will run the application and verify
the functionality that you have added. For example, after one task, you will add functionality to allow the application to capture
and store events, and then run the application to see this process in action. As you complete each task, you learn key application
development and debugging concepts.

The walkthrough is based on the Stock sample application that is shipped with Notification Services. This sample application is
designed to deliver notifications about stock prices to users, based on when the stock price crosses a specified threshold, or at a
time specified by the user.

If you complete the full walkthrough you will get the greatest benefit, but it can be used in a modular fashion as well. You can pick
it up at any task (after installing the walkthrough files) and complete only that task in order to learn more about that specific item.

The walkthrough describes exactly what you must do at each step. It also describes exactly what source code changes are made
during each step, so you can follow along in the code. The most beneficial approach is to update the source code as you go, and
run and debug the resulting application at each step.

This walkthrough consists of 14 main tasks:

1. Design the application. For more information about this task, see Task 1: Designing the Application.
2. Perform an initial build of the application. For more information about this task, see Task 2: Performing an Initial Build of the

Application.
3. Add the event class. For more information about this task, see Task 3: Adding the Event Class.
4. Add the event-driven subscription class. For more information about this task, see Task 4: Adding the Event-Driven

Subscription Class.
5. Add a notification generation rule. For more information about this task, see Task 5: Adding a Notification Generation Rule.
6. Add the notification class. For more information about this task, see Task 6: Adding the Notification Class.
7. Configure the content formatter. For more information about this task, see Task 7: Configuring the Content Formatter.
8. Add the file system watcher event provider. For more information about this task, see Task 8: Adding the File System

Watcher Event Provider.
9. Add the standard Simple Mail Transfer Protocol (SMTP) delivery protocol. For more information about this task, see Task 9:

Adding the Standard SMTP Delivery Protocol.
10. Add the custom HttpLogger delivery protocol. For more information about this task, see Task 10: Adding the Custom

HttpLogger Delivery Protocol.
11. Design the scheduled subscription. For more information about this task, see Task 11: Designing the Scheduled

Subscription.
12. Add the event chronicle table. For more information about this task, see Task 12: Adding the Event Chronicle Table.
13. Add the scheduled subscription class. For more information about this task, see Task 13: Adding the Scheduled Subscription

Class.
14. Review the subscription management application. For more information about this task, see Task 14: Reviewing the

Subscription Management Application.

Important To begin the walkthrough, you must first install the walkthrough files. For detailed information, see
Before You Start: Installing the Walkthrough.

SQL Server Notification Services Books Online

Before You Start: Installing the Walkthrough
The walkthrough uses the Stock programming sample that is shipped with Notification Services. Before you begin the
walkthrough, you will need to install and import the walkthrough files.

Install the Walkthrough Files

Follow these steps to install the samples to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples directory (InstallLocation is the location where Notification Services has been installed).

1. Make sure that your computer has all the prerequisites for running the Notification Services samples. For more information
about these requirements, see Programming Sample Requirements.

2. Open a command prompt window, and then navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples directory.

3. Run the SetupSamples.cmd script, which will set permissions for the programming samples and configure Internet
Information Services (IIS) to run the samples.

For more information about setting up the programming samples, see Setting Up and Removing Programming Samples.

4. Extract the Walkthrough.zip file to the existing \Samples\Stock subdirectory of the Notification Services installation
directory. Use the Extract function of the WinZip program to do this. Make sure the Use Folder Names check box is
selected in the Extract dialog box. This action adds files to the existing subdirectories in this location.

The Walkthrough.zip file contains a series of application definition files (ADFs) and configuration files that you will add to
the AppDefinition project in the sample application solution. Each ADF and configuration file name corresponds to the task
that takes that file as input. For example, appADF.task2.xml and appConfig.task2.xml are the files used in Task 2 of the
walkthrough.

The Walkthrough.zip file also contains several scripts that add sample subscribers, subscriptions, events, and the like. You
will also add these scripts to the AppDefinition project as part of the sample application solution.

Import the Walkthrough Files

Follow these steps to import the walkthrough files to the Microsoft Visual Studio® .NET solution for the Stock sample and
prepare it for use.

1. In Microsoft Windows® Explorer, navigate to the /Samples/Stock subdirectory of the Notification Services installation
directory.

2. Double-click the Stock.sln file to open it in Visual Studio .NET.
3. If the Solution Explorer pane is not open, click Solution Explorer on the View menu to open it.
4. In the Solution Explorer pane, right-click AppDefinition, point to Add, and then click Add Existing Item.
5. In the Add Existing Item dialog box, click All Files (*.*) in the Files of type list.
6. Navigate to the \Samples\Stock\AppDefinition directory.
7. Select all of the .sql files, and then click Open to add these files to the Solution Explorer pane.
8. Select all of the .vbs files, and then click Open to add these files to the Solution Explorer pane.
9. Select all of the appConfig.taskn.xml files, and then click Open to add these files to the Solution Explorer pane.

10. Select all of the appADF.taskn.xml files, and then click Open to add these files to the Solution Explorer pane.
11. Select the PortfolioSummary.xslt file, and then click Open to add this file to the Solution Explorer pane.
12. In Windows Explorer, right-click the \Samples\Stock\SetProjectVars.cmd file, and then click Edit to open it.
13. In theSetProjectVars.cmdfile, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task2.xml

14. Save and close the file.

Your tutorial configuration is now complete.

SQL Server Notification Services Books Online

Task 1: Designing the Application
In this task you will accomplish the following:

Review the components that must be considered when designing a Notification Services application.

In this task you will focus on conceptual issues. You will make no changes to the solution files.

To design an application in Notification Services, you must determine the structure of the events and subscriptions that your
application will accept as input, and the structure of the notifications that it will produce. When designing the subscriptions that
produce notifications, you must decide whether to produce notifications on a schedule, notifications based on event arrival, or
both. You present the structure of this notification information in a series of schemas. You must then formulate rules for
generating the notifications. You must also determine a format for the notifications. Finally, you must document the application.
The following sections in task 1 cover these steps.

Determine the Subscription Schemas

First, you decide what kinds of subscriptions you want to provide to your subscribers. The Stock sample provides both scheduled
and event-driven subscriptions.

The Stock sample can notify a subscriber as soon as a specified stock reaches a specified price. For example, the subscriber
can request a notification as soon as Adventure Works Cycles stock reaches sixty dollars. This is called an event-triggered
subscription.

In the Stock sample, this subscription schema requires a stock symbol fieldand a stock trigger price field.

The Stock sample can also deliver a notification that lists the highest price reached by a particular stock as of a specified
time of day. For example, a subscriber can request a notification containing the highest price reached by Adventure Works
Cycles stock as of 15:30 GMT every weekday. This is called a scheduled subscription, because the notification is triggered at
a scheduled time.

In contrast to the event-triggered subscription schema, the only field required for this subscription schema is one to contain
the stock symbol to be tracked. (You should not specify a field to contain the schedule, because Notification Services does
this for you automatically. Notification Services automatically creates the table that stores the schedule when you define the
subscription class in the ADF and include a scheduled rule.)

The Stock sample keeps only subscription data fields in its two subscription schemas. In addition to the subscription data fields,
you could choose to keep other information with your subscriptions.

For example, the subscriber device name is commonly included in each subscription. Specifying the target subscriber device
would allow subscribers with more than one device to target one subscription at one device and another subscription at another
device.

It is also common to keep the subscriber locale — a code that identifies the subscribers' language and country/region — in each
subscription. Specifying the locale would allow subscribers to receive notifications in their preferred language. Your application
could use this information when formatting notifications. For example, your application could support both French and English
notifications for subscribers in Canada.

For more information about defining subscription fields, see Subscription Fields.

Determine the Notification Schemas

After you determine the subscription type and structure, you decide what information you want each notification to contain. Here
is the content of the two notification schemas for the Stock sample application:

The notification schema for the event-driven subscription contains the stock symbol, the current stock price, and a URL that
allows the subscriber to retrieve more information regarding the stock.
The notification schema for the scheduled subscription contains the stock symbol, the highest price reached as of the time
specified by the subscriber, and a URL that allows the subscriber to retrieve more information regarding the stock.

Determine the Event Source

After you determine the notification structure, you decide where to obtain the event data needed by your application. The Stock
sample obtains its event data from an XML sample event data file, and from sample event data that you enter through the

application's event submission intranet or Web page.

Note A Notification Services application can use the standard Notification Services event providers to obtain its event
data from XML data files or from a SQL Server database. You can obtain event data from virtually any source, if you
develop a custom event provider for that source.

Determine the Event Schema

Next, you decide what information you require each event to contain. The Stock sample requires events that contain stock price
information. Therefore the event schema must contain fields for the stock symbol and the current stock price.

Determine the Notification Generation Rules

After you determine the event source and event schema, you create the notification generation rules that combine events and
subscriptions to produce notifications.

The notification generation rule for the event-driven subscriptions compares the stock symbol and price in the event with
the stock symbol and trigger price in the subscription. When the event information fulfills subscription requirements, the
notification generation rule generates a notification. Notification Services automatically fires this rule each time an event
batch of a particular event class (specified in the rule) arrives.
The notification generation rule for the scheduled subscriptions compares the stock symbol in the event chronicle table with
the stock symbol in the subscription. The event chronicle table contains one record for each stock symbol. This chronicle
record contains the highest daily price for the stock. Notification Services automatically fires a stock chronicle rule each time
a new batch of stock events arrives. This chronicle rule updates the stock price in the chronicle table whenever the stock
reaches a new high price. When the time specified in the scheduled subscription arrives, the scheduled subscription rule
locates the chronicle record corresponding to the stock symbol specified in the subscription. It then generates a notification
containing the stock price from the chronicle table. The prices in the chronicle table are reset to zero at the end of each day.

Chronicle tables are used to store event or subscription information for later use. You will add an event chronicle table later in the
walkthrough, when you are adding a scheduled subscription class.

Determine the Notification Formatting

After you determine the notification generation rules, you decide on the appearance of the notification that you want to send to
the subscriber.

The notification produced by the event-driven subscription looks like this:

Thank you for using SQL Server Notification Services.

AWKS is now trading at: $60.00

Click here to see the quote detail: http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=AWKS

The notification produced by the scheduled subscription looks like this:

Thank you for using SQL Server Notification Services.

AWKS highest trade: $60.00

Click here to see the quote detail: http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=AWKS

Document the Application Design

Finally, after you determine the notification formatting, you should write down your application design in a design document. For
each event-driven subscription, specify the following schema information. You will add this information to the ADF for the Stock
sample over the course of tasks 1 through 9. In task 11, you will define and document the elements required for a scheduled
subscription.

Event schema:

StockSymbol nvarchar(6) not null

StockPrice decimal(18,5) null

Event-driven subscription schema:

DeviceName nvarchar(255) not null

SubscriberLocale nvarchar(10) not null

StockSymbol nvarchar(6) not null

StockTriggerValue decimal(18,5) null

Event-driven notification schema:

StockSymbol nvarchar(6) not null

StockPrice decimal(18,5) null

Subscription event notification generation rule:

SELECT e.StockSymbol, e.StockPrice
FROM StockEvents e, StockSubscriptions s
WHERE e.StockSymbol = s.StockSymbol AND
e.StockPrice > s.StockTriggerValue

XSLT file:

This is the content of the Application.xslt file, which you will use in task 7 to produce formatted notifications.

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="notifications">
 <html>
 <body>
 <xsl:apply-templates/>
 <i>
 Thank you for using SQL Server Notification Services.
 </i>

 </body>
 </html>
 </xsl:template>
 <xsl:template match="notification">
 <xsl:value-of select="StockSymbol" /> is now trading at:
$<xsl:value-of select="StockPrice" />

 Click here to see the quote detail:
 <a>
 <xsl:attribute name="href">
 http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=<xsl:value-of
select='StockSymbol'/>
 </xsl:attribute>
 http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=<xsl:value-of
select="StockSymbol"/>

 </xsl:template>
</xsl:stylesheet>

Task 1 Summary

After completing all the steps in this task, you should now have a basic understanding of the key design elements of a Notification
Services application: schemas that determine the structure of events, subscriptions, and notifications in your application; rules that
match event and subscription information to produce notifications; and .xslt files that are used with the Notification Services
standard XSLT content formatter to produce formatted notifications.

SQL Server Notification Services Books Online

Task 2: Performing an Initial Build of the Application
In this task you will accomplish the following:

Review the initial configuration file.
Review the initial application definition file (ADF).
Review the Notification Services Rebuild command.
Build your application for the first time using Microsoft Visual Studio® .NET.

Review the Configuration File

Follow these steps to become familiar with the initial configuration file for the walkthrough.

1. In the Solution Explorer pane of Visual Studio .NET, expand the AppDefinition project, and then double-click the
appConfig.task2.xml file.

At this point you notice that the configuration file contains just a few elements:

An <InstanceName> element that specifies the Notification Services instance name.
A <SqlServerSystem> element that specifies the SQL Server instance that will host the Notification Services
databases.
An <Applications> node that contains the basic application information for the Stock sample.
A <DeliveryChannels> node that defines a delivery channel that uses the standard File delivery protocol provided by
Notification Services.

2. When you have finished reviewing the configuration file, close the file.

Review the ADF

Follow these steps to read through the initial application definition file for the walkthrough.

1. In the Solution Explorer pane, double-click the appADF.task2.xml file to view the ADF.

At this point you notice that the ADF contains these elements:

A <Version> node that you can use to label the ADF with version information. In this node, the <Build> element
contains the portion of the version number that indicates the build of the application. The value of the <Build>
element should be updated each time you update the ADF.
A <History> node that you can use to track when your ADF was originally created and when it was last changed.
Empty <SubscriptionClasses> and <NotificationClasses> nodes. You will be filling in these nodes during the
walkthrough.
<Generator> and <Distributor> nodes, which contain the name of the system where the generator and distributor
run. The system name is passed in as a parameter, specified as %ParameterName%.
Several basic application execution settings.

2. When you have finished reviewing the ADF, close the file.

Review the Notification Services Rebuild Command

In an upcoming walkthrough task, you will invoke the Rebuild command to build your Notification Services application in Visual
Studio .NET. The Rebuild command deletes the existing instance and application for this programming sample (if they exist), and
then creates a new instance and application for the sample.

The Rebuild command is customized, and works by invoking the RunRebuild.cmd script. Follow these steps to review what the
RunRebuild.cmd script does and how it works.

1. In the Solution Explorer pane, expand the BuildScripts directory in the AppDefinition project, and then double-click the
RunRebuild.cmd script to open it.

Reading through the RunRebuild.cmd script, you notice that it does two things:

Invokes the NSControl Delete command. In this walkthrough, the command deletes the StockInstanceNSMain and

StockInstanceStock databases.
Invokes the RunCreate.cmd script to re-create the Stock databases.

2. When you have finished reviewing the RunRebuild.cmd script, close the file.
3. In the BuildScripts directory, double-click the RunCreate.cmd script to open it.

The RunCreate.cmd script does four things:

Ensures that the Events and Notification subdirectories of the sample directory exist and are empty.
Invokes the NSControl Create command, passing in the name of your configuration file as an argument. The
configuration file contains a reference to the ADF. NSControl Create validates the ADF and the configuration file, and
creates the StockInstanceNSMain and StockInstanceStock SQL Server databases.
Invokes the NSControl Enable command to enable the new instance for the sample.
Calls the GrantPermissions.cmd script to grant permissions on the instance and application databases to the Web and
service accounts.

4. When you have finished reviewing the RunCreate.cmd script, close the file.

The output from the Rebuild command is always displayed in the Output pane of Visual Studio .NET. Whenever you invoke the
command, always look through the output carefully to verify that the command completed successfully.

Note For more information about the Notification Services commands used in the Visual Studio .NET solutions for
the samples, see Programming Sample Structure.

Build the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild.

A new Stock instance and application are created, overwriting the existing instance and application (if they exist).

2. In the Output pane, scroll through the results of the Rebuild command to verify that the command succeeded.
3. In the Server Explorer pane, navigate to the StockInstanceNSMain and StockInstanceStock databases.

These are the databases generated by NSControl Create.

4. In the Server Explorer pane, click the Services node, and then locate NS$StockInstance.

NS$StockInstance is the name of the Notification Services service that was created by the NSControl Register command
when you ran the SetupSamples.cmd script.

Task 2 Summary

After completing all the steps in this task, you should now have a basic understanding of the ADF and configuration file structures,
as well as an idea of how the Rebuild command works. You should also have your first build of the application.

SQL Server Notification Services Books Online

Task 3: Adding the Event Class
In this task you will accomplish the following:

Update the configuration file setting.
Add an event class and an event provider, and then rebuild your application.
Submit events using a simple Transact-SQL script.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task2.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task3.xml

4. Save and close the file.

Add the Event Class

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task3.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <EventClasses>
 <EventClass>
 <EventClassName>StockEvents</EventClassName>
 <Schema>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>nvarchar(6)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>decimal(18,5) </FieldType>
 <FieldTypeMods>null</FieldTypeMods>
 </Field>
 </Schema>
 <IndexSqlSchema>
 <SqlStatement>CREATE INDEX StockEventsIndex ON StockEvents (StockSymbol
)</SqlStatement>
 </IndexSqlSchema>
 </EventClass>
 </EventClasses>

3. Place your cursor in the ADF, immediately in front of the <SubscriptionClasses> element.
4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Leave the file open.

By adding this node, you have added the StockEvents event class. (The <EventClassName> element specifies the name of the
event class.) The event table will be created using the two fields specified in the <Schema> node. The <IndexSqlSchema> node
creates an index on the event table to make stock event retrieval more efficient. Indexes are optional, but having the right index
can make data retrieval much more efficient. You can omit indexes when you first develop your application and then add them

later after all of your match rules are implemented and working. At that point, you can use all the normal SQL Server query
optimization tools to decide what indexes are required.

For more information about the <EventClass> elements, see Defining an Event Class.

Add the Event Provider

1. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Providers>
 <NonHostedProvider>
 <ProviderName>EventCreator</ProviderName>
 </NonHostedProvider>
 </Providers>

2. Place your cursor in the appADF.task3.xml file, immediately in front of the <Generator> node.
3. On the Edit menu, click Paste as HTML to paste the code in the ADF.
4. Save and close the ADF.

Notification Services events can originate from both hosted and independent event providers. Hosted event providers run inside
the NS$instance_name service. They are started when the service is started, they run while the service runs, and they are stopped
when the service is stopped. Independent event providers, on the other hand, run independently of Notification Services.

You must declare all event providers in the <Providers> section of the ADF. Notification Services requires that every event
provider identify itself when submitting events. Self-identification allows Notification Services to tag every event batch with the
name of the provider that submitted the batch.

For more information about event providers, see Collecting Events With an Event Provider and Defining an Event Provider.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Submit Events

Your application is now ready to accept events. You can use the AddEvents.sql script to submit events. The AddEvents.sql script
adds events to an event table in the StockInstanceStock database. In a later task you will learn how to submit XML events using
the file system watcher event provider.

Review the AddEvents.sql Script

1. In the Solution Explorer pane, right-click the AddEvents.sql script, click Open With, click Source Code (Text) Editor, and
then click Open.

Reading through the AddEvents.sql script, you notice that it does four things:

Invokes the NSEventBeginBatchStockEvents stored procedure to begin a new event batch. This stored procedure
returns a bigint output parameter representing the EventBatchId value.
Invokes the NSEventWriteStockEvents stored procedure once for each event it submits. Each call to this stored
procedure requires the EventBatchId value as an input parameter.
Invokes the NSEventFlushBatchStockEvents stored procedure to commit the event batch.
Invokes the NSEventBatchDetails stored procedure to return information on the event batch and events, so you can
confirm that they were submitted.

You can use these event collection stored procedures to submit events from a database trigger or stored procedure that you
write. The walkthrough introduces this event collection and submission model first because this approach is both useful and
simple.

2. When you have finished reviewing the AddEvents.sql script, close the file.

Associate AddEvents.sql w ith SQL Query Analyzer

1. In the Solution Explorer pane, right-click the AddEvents.sql script, and then click Open With.
2. Click Add.
3. In the Add Programs dialog box, click Browse and navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe

file.
4. Select the isqlw.exe file, and then click Open.
5. Click OK.
6. Click Set as Default, and then click Close.

Add Events

1. In the Solution Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Task 3 Summary

After completing all the steps in this task, you should now have a working event class, and some sample event data entered into
your application. Refer to the Related Topics list for more information on the Notification Services event collection stored
procedures.

See Also

NSEventBeginBatch<EventClassName>

NSEventFlushBatch<EventClassName>

NSEventSubmitBatch<EventClassName>

NSEventWrite<EventClassName>

Using the Event Collection Stored Procedures

SQL Server Notification Services Books Online

Task 4: Adding the Event-Driven Subscription Class
In this step you will accomplish the following:

Update the configuration file setting.
Add the subscription class, and then rebuild your application.
Add subscribers, subscriber devices, and subscriptions using some simple Microsoft Visual Basic® Scripting Edition
(VBScript) scripts.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task3.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task4.xml

4. Save and close the file.

Add the Subscription Class

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task4.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <SubscriptionClass>
 <SubscriptionClassName>StockSubscriptions</SubscriptionClassName>
 <Schema>
 <Field>
 <FieldName>DeviceName</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>nvarchar(10)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>nvarchar(6)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockTriggerValue</FieldName>
 <FieldType>decimal(18,5) </FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 </Schema>
 </SubscriptionClass>

3. Place your cursor in the ADF between the <SubscriptionClasses> and </SubscriptionClasses> elements.
4. On the Edit menu, click Paste as HTML to paste the code in the ADF.

5. Save and close the ADF.

By replacing this node, you have added the StockSubscriptions subscription class. (The <SubscriptionClassName> element
specifies the name of the subscription class.) The subscription table will be created using the four fields specified in the
<Schema> node.

You have included DeviceName and SubscriberLocale fields in each subscription. DeviceName allows the subscriber to
specify which device should receive the notification. For example, one subscriber might want to receive notifications on his cell
phone while another wants to receive notifications via e-mail. SubscriberLocale can be used by the content formatter
component to format the notification in the subscriber's language.

Note For more information about the <SubscriptionClass> elements, see Defining a Subscription Class. For more
information about defining subscription fields, see Subscription Fields.

Notification Services stores each subscription in a subscription table in the StockInstanceStock database. Typically, subscribers
enter subscriptions through a subscription management application that you provide. You determine how many subscriptions a
subscriber can create.

Notification Services stores one record in the StockInstanceNSMain database for each subscriber. Each subscriber is identified
by a unique SubscriberId field. You can assign any value that you want to the SubscriberId field. For example, you might use an
e-mail address, an employee number, or a Microsoft .NET Passport user ID to identify a subscriber.

Notification Services stores one record for each device for each subscriber in the StockInstanceNSMain database. If one
subscriber has three devices that receive notifications (a phone, an e-mail account, and pager, for example), you will have three
subscriber device records for that subscriber. Each subscriber device is identified by the combination of SubscriberId and
DeviceName fields. You decide how device names are assigned. You might allow the subscriber to pick his device names, such
as "MyPhone" or "Bob'sEmailAccount." Alternatively, you might assign standard device names based upon device type or some
other criterion, such as "PhoneDevice," "SMSDevice," or "EmailDevice."

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Add Subscriber, Subscriber Device, and Subscription Information

Review the AddSubscribers.vbs and AddSubscriptions.vbs Scripts

You can use the AddSubscribers.vbs script to add subscribers and subscriber devices. The AddSubscribers.vbs script is written in
VBScript. It illustrates how to use the Subscriber, SubscriberDevice, and Subscription classes that Notification Services
provides to submit data to the system. It also illustrates how you can call Notification Services interfaces from COM components.
Notification Services is written in managed code (C#) and is designed to be accessible from both managed and unmanaged code.

1. In the Solution Explorer pane, right-click the AddSubscribers.vbs script, click Open With, click Source Code (Text) Editor,
and then click Open.

Reading through the AddSubscribers.vbs script, you notice that it does two things:

It adds subscribers to the subscribers table in the StockInstanceNSMain database. It does this by using a Subscriber
object. For more information about using a Subscriber object, see Managing Subscribers and Subscriber Class.
It adds subscriber devices to the subscriber devices table in the StockInstanceNSMain database. It does this by using
a SubscriberDevice object. For more information about using a SubscriberDevice object, see Managing Subscriber
Devices and SubscriberDevice Class.

2. Review and then close the script.
3. Right-click the AddSubscriptions.vbs script, click Open With, click Source Code (Text) Editor, and then click Open.

The AddSubscriptions.vbs script adds subscriptions to a subscriptions table in the StockInstanceStock database. It does
this by using a Subscription object. For more information about using a Subscription object, see Managing Subscriptions
and Subscription Class.

4. Review and then close the script.

Run the AddSubscribers.vbs and AddSubscriptions.vbs Scripts

1. In the Solution Explorer pane, right-click AddSubscribers.vbs, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

View Subscriber and Subscriber Device Information

Review the ViewSubscribersAndDevices.sql Script

1. In the Solution Explorer pane, right-click the ViewSubscribersAndDevices.sql script.
2. Click Open With, click Source Code (Text) Editor, and then click Open.

The ViewSubscribersAndDevices.sql script queries the NSSubscriberDeviceView view and returns subscriber and
subscriber device information. Notification Services automatically creates this view in each Notification Services instance
database.

3. Review and then close the ViewSubscribersAndDevices.sql script.

Associate ViewSubscribersAndDevices.sql w ith SQL Query Analyzer

1. In the Solution Explorer pane, right-click the ViewSubscribersAndDevices.sql script, and then click Open With.
2. Click Add.
3. Click Browse, and then navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe file.
4. Select the isqlw.exe file, and then click Open.
5. Click OK.

The Add Programs dialog box closes.

6. Click Set as Default, and then click Close.

Run ViewSubscribersAndDevices.sql

1. In the Solution Explorer pane, double-click the ViewSubscribersAndDevices.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the subscriber and subscriber device information returned by the query.
4. Close SQL Query Analyzer.

View Subscription Information

Review the ViewSubscriptions.sql Script

1. In the Solution Explorer pane, right-click the ViewSubscriptions.sql file, click Open With, click Source Code (Text) Editor,
and then click Open.

The ViewSubscriptions.sql script queries a view and returns subscription information. Notification Services creates one SQL
Server view for each subscription class, which can be used to look at current subscription information. Notification Services
uses the naming convention NSSubscriptionClassNameView, so in this case the view will be NSStockSubscriptionsView.

2. Review and then close ViewSubscriptions.sql script.

Associate ViewSubscriptions.sql w ith SQL Query Analyzer

1. In the Solution Explorer pane, right-click the ViewSubscriptions.sql script, click Open With, and then click Add.
2. Click Browse, and then navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe file.
3. Select the isqlw.exe file, and then click Open.
4. Click OK.

The Add Programs dialog box closes.

5. Click Set as Default, and then click Close.

Run ViewSubscriptions.sql

1. Double-click the ViewSubscriptions.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button in the toolbar to run the script.
3. Review the subscription information returned by the query.
4. Close SQL Query Analyzer.

Task 4 Summary

After completing all the steps in this task, you should now have a working subscription class, and some sample subscriber,
subscriber device, and subscription data entered in your application.

SQL Server Notification Services Books Online

Task 5: Adding a Notification Generation Rule
In this step you will accomplish the following:

Update the configuration file setting.
Add the notification generation rule, and then rebuild your application.
Run your notification generation rule.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task4.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task5.xml

4. Save and close the file.

Add the Notification Generation Rule

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task5.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <EventRules>
 <EventRule>
 <RuleName>StockSubscriptionsEventRule</RuleName>
 <!-- This sample notification generation rule writes
 its results to a temporary table. This is a good
 way to debug your notification generation rule. -->
 <Action>
 IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = N'TempResults')
 DROP TABLE TempResults
 SELECT s.SubscriberId, s.DeviceName, s.SubscriberLocale,
 e.StockSymbol, e.StockPrice
 INTO TempResults
 FROM StockEvents e, StockSubscriptions s
 WHERE e.StockSymbol = s.StockSymbol
 AND e.StockPrice > s.StockTriggerValue
 </Action>
 <EventClassName>StockEvents</EventClassName>
 </EventRule>
 </EventRules>

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you
want to use these characters in ADF data, you must use entity references to replace them. For more information
about using reserved characters, see Reserved Characters.

3. Place your cursor in the ADF, immediately following the end tag of the /SubscriptionClasses/SubscriptionClass/Schema
section.

4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Save and close the ADF.

The notification generation rule is critical to the Notification Services application. The rule matches events and subscriptions to
produce notifications. It can be specified in an <EventRule> node, as shown above, or in a <ScheduledRule> node, which you
will see when adding the scheduled subscription class in Task 13.

The notification generation rule is a Transact-SQL SELECT statement. It can include data from chronicle tables (covered in a later
task of in this walkthrough), and any other tables you want. These tables can be located in the Notification Services databases or
in other SQL Server databases. You can also make use of all of the facilities of SQL Server, including calling stored procedures or
extended stored procedures.

When the Notification Services service is running, the notification generation rule for the event-driven subscription class fires
when the generator detects that a new event batch that is associated with the event class has arrived. You associate an event-
driven notification generation rule with its event class by specifying the <EventClassName> element in the <EventRule> node.

The generator function is replaced in this task of the walkthrough by the NSPrepareRuleFiring and NSExecuteRuleFiring
stored procedures. These stored procedures are useful when testing rules. NSPrepareRuleFiring prepares the Notification
Services application database for a rule firing by scheduling each interval, called a quantum, for generator firing, and otherwise
setting up the system to execute a rule. NSExecuteRuleFiring prepares and runs Notification Services application rules. For
more information about setting quantum intervals, see Defining the Application Execution Settings. For more information about
NSPrepareRuleFiring, see NSPrepareRuleFiring. For more information about NSExecuteRuleFiring, see NSExecuteRuleFiring.

Rebuild the Application

1. In the Solution Explorer pane, right-click AppDefinition, and then click Rebuild. This drops and recreates the databases,
deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Solution Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

Run the Notification Generation Rule

Follow these steps to run the notification generation rule.

Disable the Generator

First, disable the generator function, so that the rule-firing stored procedures will execute properly.

1. Open a command prompt window, and then navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Bin directory.

2. Type the following command:

nscontrol disable -name StockInstance -generator

Notification generation is disabled.

Submit Events

1. In the Solution Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.

Note the value in the EndCollectionTime column in the third result set.

Fire the Rule

1. In SQL Query Analyzer, open a new Query window.
2. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSSetQuantumClockDate 'EndCollectionTime'

3. Replace the EndCollectionTime argument with the EndCollectionTime value you noted in the previous step, "Submit Events."
This must be a datetime value in UTC format, like '2002-06-12 00:00:00'.

4. Run the query.

The quantum clock is set so that the quantum prepared by NSPrepareRuleFiring in the next step will be the quantum in
which your events were submitted. This ensures that the events you just submitted are used for comparison with your
subscription data when the rule is fired in the next step.

5. From this online Help topic, copy the following Transact-SQL statement, and then paste it into the Query window:

EXEC NSPrepareRuleFiring 0, 0
EXEC NSExecuteRuleFiring 0, 0

When the generator is invoked by running these stored procedures, it determines whether any event batches fall in the
current quantum. The generator discovers the event batch you submitted in the previous step, determines its event class
name, and determines that the StockSubscriptionsEventRule must be fired for this event class.

The generator then constructs the StockEvents view over the NSStockEventsEvents table. This view contains only those
events that belong to the selected event batch for this quantum.

The generator finally invokes the StockSubscriptionsEventRule. The event rule matches the events in the StockEvents
view with the subscriptions in the StockSubscriptions table and writes the resulting notifications to the TempResults
table.

6. Run the query and review the result sets.
7. Close SQL Query Analyzer.

View the Rule Firing Results

Review the RuleFiringResults.sql Script

1. In the Solution Explorer pane, right-click the RuleFiringResults.sql script.
2. Click Open With, click Source Code (Text) Editor, and click Open.

The script opens.

Reading through the RuleFiringResults.sql script, you notice that it does three things:

It displays the contents of the StockEvents view. This view is always created during rule firing, and contains just the
events to be processed (instead of the entire contents of the NSStockEventsEvents table).
It displays the contents of the NSStockSubscriptionsView view.
It displays the contents of the TempResults table.

3. Review and close the RuleFiringResults.sql script.

Associate RuleFiringResults.sql w ith SQL Query Analyzer

1. In the Solution Explorer pane, right-click the RuleFiringResults.sql script, and then click Open With.
2. Click Add.
3. Click Browse and navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe file.
4. Select the isqlw.exe file, and then click Open.
5. Click OK.

The Add Programs dialog box closes.

6. Click Set as Default, and click Close.

Run RuleFiringResults.sql

1. In the Solution Explorer pane, double-click the RuleFiringResults.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the event, subscription, and rule processing results returned by the queries.
4. Close SQL Query Analyzer.

Task 5 Summary

After completing all the steps in this task, you should now have an idea of how Notification Services rules work, and be familiar
with the type of information that is generated each time a rule is fired.

SQL Server Notification Services Books Online

Task 6: Adding the Notification Class
In this step you will accomplish the following:

Update the configuration file setting.
Add the notification class, update the notification generation rule to call the notification function, and then rebuild your
application.
Generate notifications, format them using the default NoOp.xslt file and standard Notification Services XSLT content
formatter, and view the resulting notifications.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task5.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task6.xml

4. Save and close the file.

Add the Notification Class

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task6.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <NotificationClass>
 <NotificationClassName>StockNotifications</NotificationClassName>
 <Schema>
 <Fields>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>nvarchar(6)</FieldType>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>decimal(18,5) </FieldType>
 </Field>
 </Fields>
 </Schema>
 <ContentFormatter>
 <ClassName>XsltFormatter</ClassName>
 <Arguments>
 <Argument>
 <Name>XsltBaseDirectoryPath</Name>
 <Value>%_BaseDirectoryPath_%\AppDefinition</Value>
 </Argument>
 <Argument>
 <Name>XsltFileName</Name>
 <Value>NoOp.xslt</Value>
 </Argument>
 </Arguments>
 </ContentFormatter>
 <Protocols>
 <Protocol>

 <ProtocolName>File</ProtocolName>
 </Protocol>
 </Protocols>
 <ExpirationAge>PT2H</ExpirationAge>
 </NotificationClass>

3. Place your cursor in the ADF, between the <NotificationClasses> and </NotificationClasses> elements.
4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Leave the ADF open.

By replacing this node, you have added the StockNotifications notification class.

The <NotificationClassName> element specifies the name of the notification class.

The notification table is created using the fields specified in the /NotificationClasses/NotificationClass/Schema/Fields
section.

The <ContentFormatter> node specifies the information necessary to format notifications of this notification class, including the
content formatter component to be used, and the arguments that the content formatter requires.

The <Protocols> node specifies the protocols (such as SMTP or HTTP) used to deliver notifications of this class, and provides any
field values that might be needed to create a notification message using the specified protocol.

For more information about the <NotificationClass> elements, see Defining a Notification Class.

Update the Subscription Event Rule

1. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Action>
 SELECT dbo.StockNotificationsNotify(
 s.SubscriberId, s.DeviceName,
 s.SubscriberLocale, e.StockSymbol, e.StockPrice)
 FROM StockEvents e, StockSubscriptions s
 WHERE e.StockSymbol = s.StockSymbol
 AND e.StockPrice > s.StockTriggerValue
 </Action>

2. Highlight the existing /SubscriptionClasses/SubscriptionClass/EventRules/EventRule/Action element in the ADF.
3. On the Edit menu, click Paste as HTML to replace the ADF code with the copied code.
4. Save and close the ADF.

A notification generation rule generates notifications by calling the NotificationClassNameNotify function, in this case
StockNotificationsNotify. Notification Services automatically creates a notification function for each notification class, based on
the defined notification schema. For more information about the notification function, see Using Notification Functions.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Solution Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

Run the Notification Generation Rule

Follow these steps to run the notification generation rule.

Disable the Generator

First, disable the generator function, so that the rule-firing stored procedures execute properly.

1. Open a command prompt window, and then navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Bin directory.

2. Type the following command:

nscontrol disable -name StockInstance -generator

The generator function is disabled.

Submit Events

1. In the Solution Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.

Note the value in the EndCollectionTime column in the third result set.

Fire the Rule

1. In SQL Query Analyzer, open a new Query window, and then select StockInstanceStock in the database list on the toolbar.
2. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSSetQuantumClockDate 'EndCollectionTime'

3. Replace EndCollectionTime with the EndCollectionTime value you noted in the previous step, "Submit Events." This must be
a datetime value in UTC format, such as '2002-06-12 00:00:00'.

4. Run the query.

The quantum clock is set so that the quantum prepared by NSPrepareRuleFiring in the next few steps is the quantum in
which your events were submitted. This ensures that the events you just submitted are used for comparison with your
subscription data when the rule is fired in the next step.

5. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSPrepareRuleFiring 0, 0
EXEC NSExecuteRuleFiring 0, 0

6. Run the query.
7. Review the result sets.

Note the QuantumId value returned for the row in the third result set that lists StockSubscriptionsEventRule as the
RuleName value.

View the Quantum Information

1. In the Query window, delete the Transact-SQL statement you added in the previous step, "Fire the Rule."
2. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSQuantumDetails QuantumId

3. Replace the QuantumId argument with the QuantumId value you noted in the rule firing results.

4. Run the query.
5. Review the result sets to see the details of the quantum that was processed by the rule firing.

In the fifth result set, note the NotificationBatchId value returned for the row that lists StockNotifications as the
NotificationClassName value.

View the Notification Information

1. In the Query window, delete the Transact-SQL statement you added in the previous step, "View the Quantum Information".
2. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSNotificationBatchDetails N'StockNotifications', NotificationBatchId

3. Replace the NotificationBatchId argument with the NotificationBatchID value you noted in the NSQuantumDetails results.
4. Run the query.
5. Look at the result sets to review notification details.
6. Close SQL Query Analyzer.

Task 6 Summary

After completing all the steps in this task, you should now have a working notification class entered into your application, and be
able to produce and view notification data.

SQL Server Notification Services Books Online

Task 7: Configuring the Content Formatter
In this step you will accomplish the following:

Update the configuration file setting.
Generate and view unformatted notifications produced with the NoOp.xslt file. This will allow you to see the notifications as
they are produced by the system, with no additional formatting.
Replace the NoOp.xslt file with the Application.xslt file, and then rebuild your application.
Generate and view the formatted notifications produced with the Application.xslt file. This will allow you to see the
notifications formatted with supporting text.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task6.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task7.xml

4. Save and close the file.

Rebuild the Application

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, right-click the AppDefinition project, and then click Rebuild.
This drops and recreates the databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Generate Unformatted Notifications

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Server Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Stop the N S$StockInstance Service

1. Allow the service to run for about 60 seconds in order to generate notifications.
2. Return to the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the Unformatted Notifications

Review the ViewN otifications.sql script

1. In the Solution Explorer pane, expand the AppDefinition project, right-click the ViewNotifications.sql script, click Open With,
click Source Code (Text) Editor, and then click Open.

The ViewNotifications.sql script runs the NSNotificationBatchDetails stored procedure to return notification information.

2. Review and close the script.

Associate ViewN otifications.sql w ith SQL Query Analyzer

1. In the Solution Explorer pane, right-click the ViewNotifications.sql script, and then click Open With.
2. Click Add.
3. Click Browse and navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe file.
4. Select the isqlw.exe file, and then click Open.
5. Click OK.

The Add Programs dialog box closes.

6. Click Set as Default, and then click Close.

Run ViewN otifications.sql

This script allows you to view the notification data in the database.

1. In the Solution Explorer pane, double-click the ViewNotifications.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the notification information returned by the query.
4. Close SQL Query Analyzer.

View the Unformatted N otifications

This step allows you to view the unformatted notifications after they are written to a file.

1. Using Microsoft Notepad, open the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test\Test1\Notifications\StockNotification.txt file.

You will see one unformatted notification for each subscriber.

2. Review the data, and then close and delete the file.

Modify the Content Formatter

1. In the Solution Explorer pane, expand the AppDefinition project, and then open the appADF.task7.xml file .
2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Argument>
 <Name>XsltFileName</Name>
 <Value>Application.xslt</Value>
 </Argument>

3. Place your cursor in the ADF, and select the existing XsltFileName argument in the
/NotificationClasses/NotificationClass/ContentFormatter/Arguments section.

4. On the Edit menu, click Paste as HTML to replace the ADF code with the copied code.
5. Save and close the ADF.

View the Application.xslt File

The Application.xslt file provides formatting for stock notifications.

1. In the Solution Explorer pane, locate the Application.xslt file, and then double-click it to open it.

Notice that the formatting file inserts the StockSymbol value into the formatted notification by referring to <xsl:value-of
select="StockSymbol" />. It inserts the StockPrice value into the formatted notification by referring to <xsl:value-of
select="StockPrice" />. These values map to the /NotificationClasses/NotificationClass/Schema/Fields elements in
the ADF.

2. Close the file.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to verify that the Rebuild command succeeded.

Generate Formatted Notifications

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Server Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Stop the N S$StockInstance Service

1. Allow the service to run for about 60 seconds in order to generate notifications.
2. In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the Formatted Notifications

Run ViewN otifications.sql

This script allows you to view the notification data in the database.

1. In the Solution Explorer pane, double-click the ViewNotifications.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the notification information returned by the query.
4. Close SQL Query Analyzer.

View the Formatted N otifications

This step allows you to view the formatted notifications after they are written to a file.

1. Using Microsoft Notepad, open the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test\Test1\Notifications\StockNotification.txt file.

You will see one formatted notification for each subscriber.

2. Review the data, and then close and delete the file.

Task 7 Summary

After completing all the steps in this task, you should be able to configure a content formatter and produce formatted
notifications.

SQL Server Notification Services Books Online

Summary: Tasks 1 - 7
You have now completed a notification application that provides event-driven subscriptions. In the process you carried out the
following tasks:

Designed the application by specifying the event, subscription, and notification schemas; the notification generation rule;
and the appearance of the formatted notification.
Got the core of the application working by entering events, subscribers, subscriber devices, and subscriptions using simple
scripts.
Implemented and tested your notification generation rules.
Formatted your notifications and delivered them using the file delivery channel.

After you have your basic application working, complete the application by implementing your subscription management
application, and then configuring or implementing any additional event providers, content formatters, and delivery protocols your
application will use.

This approach is recommended for Notification Services application development generally.

Looking Forward

You now have an application that produces formatted notifications. The next tasks will show you how to extend the functionality
of the application by automating event input and providing additional options for notification delivery. You will learn how to
configure the file system watcher event provider to enter XML events, as well as how to use standard SMTP and custom
HttpLogger delivery to deliver notifications.

SQL Server Notification Services Books Online

Task 8: Adding the File System Watcher Event Provider
In this step you will accomplish the following:

Update the configuration file setting.
Configure the file system watcher event provider to enter events into the system, and then rebuild your application.
Test the file system watcher event provider.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task7.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task8.xml

4. Save and close the file.

Configure the File System Watcher Event Provider

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task8.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <HostedProvider>
 <ProviderName>StockEP</ProviderName>
 <ClassName>FileSystemWatcherProvider</ClassName>
 <SystemName>%_NSSystem_%</SystemName>
 <Arguments>
 <Argument>
 <Name>WatchDirectory</Name>
 <Value>%_EventsDir_%</Value>
 </Argument>
 <Argument>
 <Name>SchemaFile</Name>
 <Value>%_BaseDirectoryPath_%\AppDefinition\EventsSchema.xsd</Value>
 </Argument>
 <Argument>
 <Name>EventClassName</Name>
 <Value>StockEvents</Value>
 </Argument>
 </Arguments>
 </HostedProvider>

3. Place your cursor in the ADF, immediately in front of the <NonHostedProviders> start tag.
4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Save and close the ADF.

Rebuild the Application

1. Right-click the AppDefinition project, and then click Rebuild. This drops and recreates the databases, deleting all data that
was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Review the XSD Event Schema

1. In the Solution Explorer pane, locate the EventsSchema.xsd file, and then double-click it to open it.

This file contains the XSD schema for the StockEvents event class. The file system watcher event provider uses this schema
when loading stock events. The XSD event schema must match the /EventClasses/EventClass/Schema section of the ADF
defined for the StockEvents event class.

2. Review and close the file.

Review the Sample Event Data

1. In the Solution Explorer pane, locate the EventsData.xml file in the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test directory, and then double-click it.

The EventsData.xml file contains the sample event data, which must match the event schema defined in the
/EventClasses/EventClass/Schema section of the ADF and in the EventsSchema.xsd file.

2. Review the sample event data, and then close EventsData.xml.

Submit Events

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Server Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open.

Add the Event File to the File Watcher Directory

1. In Windows Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test directory.

2. Copy the EventData.xml file from that directory to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test\Events subdirectory.

The file system watcher event provider detects the arrival of the event file. It loads the event data from the file into the event
table, and renames the event file with the suffix yyyymmdd-hhmmss.mmm.done to indicate that the event file has been
processed successfully.

Stop the N S$StockInstance Service

1. Allow the service to run for about 60 seconds in order to process the event file.
2. In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the Quantum Information

Review the ViewQuantum.sql script

1. In the Server Explorer pane, expand the AppDefinition project.
2. Right-click the ViewQuantum.sql script, click Open With, click Source Code (Text) Editor, and then click Open.

The ViewQuantum.sql script runs the NSQuantumList stored procedure to return quantum information.

3. Review and close the script.

Associate ViewQuantum.sql w ith SQL Query Analyzer

1. In the Server Explorer pane, right-click the ViewQuantum.sql script, and then click Open With.

2. Click Add.
3. Click Browse, and then navigate to the InstallLocation\Microsoft SQL \80\Tools\Binn\isqlw.exe file.
4. Select the isqlw.exe file, and then click Open.
5. Click OK.

The Add Programs dialog box closes.

6. Click Set as Default, and then click Close.

Run ViewQuantum.sql

This script allows you to view the quantum information.

1. In the Server Explorer pane, double-click the ViewQuantum.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the quantum information returned by the query.

In the result sets, note the value in the QuantumId column for the row that has a value greater than 0 in the
EventNotificationsGenerated column.

4. Open a new query window in SQL Query Analyzer.
5. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSQuantumDetails QuantumId

6. Replace the QuantumId argument with the QuantumId value you noted in the NSQuantumList results.
7. Run the query.
8. Review the result sets.

In the third result set, note the value of the EventBatchId column returned for the row that lists StockEvents as the
EventClassName value.

View the Events

1. In the Query window, delete the Transact-SQL statement you added in the previous step, "Run ViewQuantum.sql".
2. From this online Help topic, copy and paste the following Transact-SQL statement into the Query window:

EXEC NSEventBatchDetails N'StockEvents', EventBatchId

3. Replace the EventBatchId argument with the EventBatchId value you noted in the NSQuantumDetails results.
4. Run the query.
5. Review event details in the result set.
6. Close SQL Query Analyzer.

Task 8 Summary

After completing all the steps in this task, you should be able to configure the file system watcher event provider and use it to add
events to the system.

SQL Server Notification Services Books Online

Task 9: Adding the Standard SMTP Delivery Protocol
In this step you will accomplish the following:

Update the configuration file setting.
Configure the Simple Mail Transfer Protocol (SMTP) standard delivery protocol to deliver notifications via e-mail, and then
rebuild your application.
Test SMTP notification delivery.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task8.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task9.xml

4. Save and close the file.

Add the SMTP Delivery Channel

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appConfig.task9.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
 </DeliveryChannel>

3. Place your cursor in the appConfig.task9.xml file, immediately following the end tag of the existing FileChannel delivery
channel in the <DeliveryChannels> node.

4. On the Edit menu, click Paste as HTML to paste the code in the configuration file.
5. Save and close the configuration file.

Add the SMTP Protocol to the Notification Class

1. In the Solution Explorer pane, expand the AppDefinition project, and then open the appADF.task9.xml file.
2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>'Stock notification: '+CONVERT
(NVARCHAR(30), GETDATE())</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>'html'</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>

 <SqlExpression>'sender@adventure-works.com'
</SqlExpression>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>'Normal'</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 </Fields>
 </Protocol>

3. Place your cursor in the ADF, immediately following the end tag of the existing File protocol in the
/NotificationClasses/NotificationClass/Protocols section.

4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Save and close the ADF.

The application formats the notification content (called the body). The delivery protocol formats the notification message (called
the envelope) that encloses the body. The delivery protocol might need information from you in order to format the envelope.
This information is specified in the /NotificationClasses/NotificationClass/Protocols/Protocol/Fields section of the ADF. For
example, you might need to provide the Subject and Priority values when sending an e-mail message. For more information
about setting the SMTP protocol arguments, see SMTP Delivery Protocol.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to verify that the Rebuild command succeeded.

Stop the Simple Mail Transfer Protocol (SMTP) Service

By stopping the service, you prevent the e-mail message from being sent, ensuring that you can find the formatted e-mail file in
the Inetpub\mailroot\Pickup directory.

1. In Windows 2000, go to Control Panel, open Administrative Tools, and then click Services.

–or–

In Windows XP, go to Control Panel, open Performance and Maintenance, open Administrative Tools, and then click
Services.

2. Right-click Simple Mail Transfer Protocol (SMTP), and then click Properties.
3. In the Startup Type box, select Manual.
4. Click OK.
5. Right-click Simple Mail Transfer Protocol (SMTP), and then click Stop.

Generate Notifications for SMTP Delivery

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Server Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddEmailSubscriptions.vbs script, and then click Open With.

4. Select the wscript.exe file again, and then click Open to run the script.

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Stop the N S$StockInstance Service

1. Allow the service to run for about 2 minutes in order to generate and distribute the notifications.
2. In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the Notifications

1. In Windows Explorer, navigate to the Inetpub\mailroot\Pickup directory.

This directory contains one .eml file for each notification.

2. Double-click any of the e-mail files.

The notification opens in Outlook Express.

3. Review the e-mail notifications.
4. Delete the .eml files after viewing them.

Task 9 Summary

After completing all the steps in this task, you should be able to configure a delivery channel and a notification class to use the
SMTP protocol to deliver notifications.

SQL Server Notification Services Books Online

Task 10: Adding the Custom HttpLogger Delivery Protocol
The HttpLogger task shows you how to configure a custom delivery protocol. For additional information about developing a
custom HTTP-based delivery protocol, see Developing a Custom Delivery Protocol.

In this step you will accomplish the following:

Update the configuration file setting.
Configure the HttpLogger custom delivery protocol to deliver notifications via HTTP, and then rebuild your application.
Test HTTP notification delivery.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task9.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task10.xml

4. Save and close the file.

Add the HTTPLogger Protocol

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appConfig.task10.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Protocols>
 <Protocol>
 <ProtocolName>HttpLogger</ProtocolName>
 <ClassName>HttpExtension</ClassName>
 </Protocol>
 </Protocols>

3. Place your cursor in the configuration file, immediately following the end tag of the <Applications> node.
4. On the Edit menu, click Paste as HTML to paste the code in the configuration file.
5. Leave the configuration file open.

Add the HTTPLoggerChannel Delivery Channel

1. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <DeliveryChannel>
 <DeliveryChannelName>HttpLoggerChannel</DeliveryChannelName>
 <ProtocolName>HttpLogger</ProtocolName>
 <Arguments>
 <Argument>
 <Name>ProtocolProviderClassName</Name>
 <Value>NSSamples.HttpLoggerDeliveryProtocol</Value>
 </Argument>
 <Argument>
 <!-- The ProtocolProviderAssemblyName value points
 to the custom provider assembly, which must be created
 before the application is run. This can be done from
 within Visual Studio by loading the Stock solution,

 right clicking the CustomDeliveryProtocol project
 and choosing Build. -->
 <Name>ProtocolProviderAssemblyName</Name>

<Value>%BaseDirectoryPath%\CustomDeliveryProtocol\bin\HttpLoggerDeliveryProtocol.dll<
/Value>
 </Argument>
 <Argument>
 <Name>PostURL</Name>
 <Value>http://localhost/NSSamples/Stock/HttpLogger.aspx</Value>
 </Argument>
 <Argument>
 <Name>UserName</Name>
 <Value>UserThatHasPermissionsToPost</Value>
 </Argument>
 <Argument>
 <Name>Password</Name>
 <Value>Password</Value>
 </Argument>
 <Argument>
 <Name>Encoding</Name>
 <Value>ISO-8859-1</Value>
 </Argument>
 <Argument>
 <Name>ContentType</Name>
 <Value>text/html</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>

2. Place your cursor in the configuration file, immediately following the end tag of the existing EmailChannel delivery channel
in the <DeliveryChannels> node.

3. Click Paste as HTML on the Edit menu to paste in the code.
4. Save and close the configuration file.

Add the HttpLogger Protocol to the Notification Class

1. In the Solution Explorer pane, expand the AppDefinition project, and then open the appADF.task10.xml file.
2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <Protocol>
 <ProtocolName>HttpLogger</ProtocolName>
 <Fields>
 <Field>
 <FieldName>escaping</FieldName>
 <SqlExpression>'yes'</SqlExpression>
 </Field>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>'Stock notification:'+CONVERT
(NVARCHAR(30), GETDATE())</SqlExpression>
 </Field>
 <Field>
 <FieldName>SubscriberId</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 </Fields>
 </Protocol>

3. Place your cursor in the ADF, immediately following the end tag of the existing SMTP protocol in the
/NotificationClasses/NotificationClass/Protocols section.

4. On the Edit menu, click Paste as HTML to paste the code in the ADF.
5. Save and close the ADF.

The application formats the notification content (the body). The delivery protocol formats the notification message (the envelope)
that encloses the body. The delivery protocol might need information from you in order to format the envelope. This information
is specified in the /NotificationClasses/NotificationClass/Protocols/Protocol/Fields section of the ADF.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Rebuild the Subscription Management Application

1. In the Solution Explorer pane, right-click the Subscribe project, and then click Rebuild.
2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Generate Notifications for HTTP Delivery

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Add Subscriber, Subscriber Device, and Subscription Data

1. In the Server Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddHttpSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Stop the N S$StockInstance Service

1. Allow the service to run for about 2 minutes in order to generate and distribute the notifications.
2. In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the N otifications

1. When the build has completed, open a Web browser, and go to http://localhost/NSSamples/Stock/HttpLogger.aspx.

Note If you are using Microsoft Internet Explorer, you must configure it to bypass the proxy server for local addresses in
order to access this page.

2. On the Web page, click Test Post .

The response to the post will report "Successfully saved posted data to DirectoryLocation".

Task 10 Summary

After completing all the steps in this task, you should be able to configure a delivery channel and notification class to use a
custom delivery protocol for delivering notifications.

SQL Server Notification Services Books Online

Task 11: Designing the Scheduled Subscription
In this task you will accomplish the following:

Review the components that must be added to support scheduled subscriptions.

In this task you will focus on conceptual issues. You will make no changes to the solution files.

The Stock sample can support scheduled subscriptions, which deliver notifications at the times specified by the subscribers. In the
Stock sample, a scheduled subscription notification contains the highest price reached by a specified stock at the time the
notification was generated. For example, a subscriber can request a notification at 3:30 P.M. each day containing the highest price
reached by Adventure Works Cycles.

For each scheduled subscription, you must specify:

The event schema. Both subscription classes use the same events, so you already specified the event schema for the
application in Task 2.
The scheduled subscription schema.
The event chronicle table schema. The event chronicle table stores event data so that it is available at the time that the
scheduled subscription comes due.
The scheduled notification schema.
The event chronicle rule, which updates the event chronicle table each time new events are submitted.
The notification generation rule for combining events with scheduled subscriptions to produce notifications. This rule is
defined in a /SubscriptionClasses/SubscriptionClass/ScheduledRules/ScheduledRule section of the ADF, because it
creates notifications for a scheduled subscription.
The XSLT file that determines the appearance of the formatted notification.

You should write down your application design in a design document. For each scheduled subscription, specify the following
information. In this task, you will define and document the elements required for a scheduled subscription.

Scheduled subscription schema:

DeviceName nvarchar(255) not null

SubscriberLocale nvarchar(10) not null

StockSymbol nvarchar(6) not null

The DeviceName and SubscriberLocale fields are often kept in the subscription table. They contain subscriber information that
must be passed to the notification function when notifications are created.

The StockSymbol field identifies the stock that the subscriber wants to monitor.

There are no fields defined to track the subscription's schedule. Notification Services keeps the schedule information in a separate
system table that it creates and manages for you.

For more information about defining subscription fields, see Subscription Fields.

Event chronicle schema:

StockSymbol nvarchar(6) not null

StockPrice decimal(18,5) null

The event chronicle table contains one record for each StockSymbol value. This record contains the highest StockPrice value
reached by that stock. When the time specified in the scheduled subscription arrives, the subscription scheduled rule extracts the
StockPrice value for the appropriate StockSymbol value from the event chronicle table, and generates a notification containing
this price.

Scheduled notification schema:

StockSymbol nvarchar(6) not null

StockPrice decimal(18,5) null

The notification fields for this notification schema are identical to those of the notification schema related to the event-driven

subscription. The difference between these schemas is in the XSLT file used for formatting.

Event chronicle ru le:

The event chronicle rule updates the event chronicle when a new StockSymbol value appears or a stock price reaches a new high.

/*Insert symbol if not already in the chronicle.*/
INSERT INTO StockEventsChron (StockSymbol, StockPrice)
SELECT e.StockSymbol, e.StockPrice
FROM StockEvents e
WHERE e.StockSymbol NOT IN (SELECT StockSymbol from StockEventsChron)
/*Update value in the chronicle if the event price is greater than the value in the
chronicle.*/
UPDATE StockEventsChron
SET StockPrice = e.StockPrice
FROM StockEvents e, StockEventsChron c
WHERE e.StockSymbol = c.StockSymbol AND e.StockPrice > c.StockPrice

Subscription scheduled notification generation rule:

Select the stock price from the event chronicle table based on matching the subscription and event chronicle stock symbols.

SELECT e.StockSymbol, e.StockPrice
FROM StockEventsChron e, PortfolioSubscriptions s
WHERE e.StockSymbol = s.StockSymbol

XSLT file:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="notifications">
 <html>
 <body>
 <xsl:apply-templates/>
 <i>
 Thank you for using SQL Server Notification Services.
 </i>

 </body>
 </html>
 </xsl:template>
 <xsl:template match="notification">
 <xsl:value-of select="StockSymbol" /> highest trade: $<xsl:value-of
select="StockPrice" />

 Click here to see the quote detail:
 <a>
 <xsl:attribute name="href">
 http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=<xsl:value-of
select='StockSymbol'/>
 </xsl:attribute>
 http://moneycentral.msn.com/scripts/webquote.dll?ipage=qd&Symbol=<xsl:value-of
select="StockSymbol"/>

 </xsl:template>
</xsl:stylesheet>

Task 11 Summary

After completing all the steps in this task, you should understand the basic concepts used in designing a scheduled subscription
class.

SQL Server Notification Services Books Online

Task 12: Adding the Event Chronicle Table
In this step you will accomplish the following:

Update the configuration file setting.
Add an event chronicle table and an event chronicle rule to the application definition file (ADF), and then rebuild your
application.
Submit events using simple test scripts, and then verify that the event chronicle table is being updated.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task10.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task12.xml

4. Save and close the file.

Add the Event Chronicle Table and Rule

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task12.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <ChronicleRule>
 <RuleName>StockEventsChronRule</RuleName>
 <Action>
 INSERT INTO StockEventsChron (StockSymbol, StockPrice)
 SELECT e.StockSymbol, e.StockPrice
 FROM StockEvents e
 WHERE e.StockSymbol
 NOT IN (SELECT StockSymbol from StockEventsChron)
 UPDATE StockEventsChron
 SET StockPrice = e.StockPrice
 FROM StockEvents e, StockEventsChron c
 WHERE e.StockSymbol = c.StockSymbol
 AND e.StockPrice > c.StockPrice
 </Action>
 <ActionTimeout>P0DT0H10M10S</ActionTimeout>
 </ChronicleRule>
 <Chronicles>
 <Chronicle>
 <ChronicleName>StockEventsChronRule</ChronicleName>
 <SqlSchema>
 <SqlStatement>
 IF EXISTS(
 SELECT name
 FROM dbo.sysobjects
 WHERE name = 'StockEventsChron')
 DROP TABLE dbo.StockEventsChron
 CREATE TABLE StockEventsChron
 (
 [StockSymbol] nvarchar(6),
 [StockPrice] decimal(18,5)

)
 </SqlStatement>
 </SqlSchema>
 </Chronicle>
 </Chronicles>

3. Place your cursor in the ADF, immediately following the end tag of the existing
EventClasses/EventClass/IndexSqlSchema section.

4. On the Edit menu, click Paste as HTML to paste the code in the file.
5. Save and close the ADF.

Rebuild the Application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to ensure that the Rebuild command succeeded.

Submit Initial Events and Review the Chronicle Data

Start the N S$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. In SQL Query Analyzer, review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Review the Event Chronicle Table Data

1. Wait about 60 seconds.
2. In the Server Explorer pane, navigate to the StockInstanceStock database.
3. Right-click Tables, and then click Refresh.
4. Right-click the StockEventsChron table, and then click Retrieve Data from Table.

Review the data in the table; it should contain the following values:

StockSymbol StockPrice
AWKS 67.68
ADCP 90
ASHK 19

5. Close the table when you are finished.

Submit Additional Events and Review the Chronicle Data

Submit Events

1. In the Server Explorer pane, double-click the AddMoreEvents.sql script.

The script launches in SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.

3. Close SQL Query Analyzer when the script finishes.

Review the Updated Event Chronicle Table Data

1. Wait for about 60 seconds.
2. In the Server Explorer pane, navigate to the StockInstanceStock database.
3. Right-click Tables, and then click Refresh.
4. Right-click the StockEventsChron table, and then click Retrieve Data from Table.

Review the data in the table; it should contain the following values:

StockSymbol StockPrice
AWKS 70
ADCP 90
ASHK 19

Only the price of AWKS has changed.

5. Close the table when you are finished.

Stop the N otification Services service

In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

Task 12 Summary

After completing all the steps in this task, you should have an understanding of how to use chronicle tables to save event
information for use with scheduled subscriptions.

SQL Server Notification Services Books Online

Task 13: Adding the Scheduled Subscription Class
In this step you will accomplish the following:

Update the configuration file setting.
Add a scheduled subscription class, a scheduled notification generation rule, and a scheduled notification class to the ADF,
and then rebuild your application.
Add scheduled subscriptions using a simple test script.

Update the Configuration File Setting

1. In Microsoft Windows® Explorer, navigate to the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock directory.

2. Right-click the SetProjectVars.cmd file, and then click Edit.
3. In the SetProjectVars.cmd file, replace this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task12.xml

with this line:

set NSConfigFile=%BaseDirectoryPath%\AppDefinition\appConfig.task13.xml

4. Save and close the file.

Add the Scheduled Subscription Class

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then open the
appADF.task13.xml file.

2. From this online Help topic, select the following code lines, right-click in the selection, and then click Copy.

 <SubscriptionClass>
 <SubscriptionClassName>
 PortfolioSubscriptions
 </SubscriptionClassName>
 <Schema>
 <Field>
 <FieldName>DeviceName</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>nvarchar(10)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>nvarchar(6)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 </Schema>
 <IndexSqlSchema>
 <SqlStatement>
 CREATE INDEX PortfolioSubscriptionsIndex
 ON PortfolioSubscriptions (StockSymbol)
 </SqlStatement>
 </IndexSqlSchema>
 <ScheduledRules>
 <ScheduledRule>
 <RuleName>PortFolioSubscriptionsRule</RuleName>

 <Action>
 SELECT dbo.StockNotificationsNotify(
 s.SubscriberId, s.DeviceName, s.SubscriberLocale,
 e.StockSymbol, e.StockPrice)
 FROM StockEventsChron e, PortfolioSubscriptions s
 WHERE e.StockSymbol = s.StockSymbol
 </Action>
 </ScheduledRule>
 </ScheduledRules>
 </SubscriptionClass>

3. Place your cursor in the ADF, immediately following the end tag of the existing SubscriptionClasses/SubscriptionClass
section.

4. On the Edit menu, click Paste as HTML to paste the code in the file.
5. Leave the ADF open.

Add the Scheduled Notification Class

1. Copy the following code.

 <NotificationClass>
 <NotificationClassName>
 PortfolioNotifications
 </NotificationClassName>
 <Schema>
 <Fields>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>nvarchar(6)</FieldType>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>decimal(18,5) </FieldType>
 </Field>
 </Fields>
 </Schema>
 <ContentFormatter>
 <ClassName>XsltFormatter</ClassName>
 <Arguments>
 <Argument>
 <Name>XsltBaseDirectoryPath</Name>
 <Value>%_BaseDirectoryPath_%\AppDefinition</Value>
 </Argument>
 <Argument>
 <Name>XsltFileName</Name>
 <Value>PortfolioSummary.xslt</Value>
 </Argument>
 </Arguments>
 </ContentFormatter>
 <DigestDelivery>true</DigestDelivery>
 <MulticastDelivery>false</MulticastDelivery>
 <Protocols>
 <Protocol>
 <ProtocolName>File</ProtocolName>
 </Protocol>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>

 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>'Portfolio notification: '+CONVERT
(NVARCHAR(30), GETDATE())</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>'html'</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>'sender@adventure-works.com'
</SqlExpression>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>'Normal'</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 </Fields>
 </Protocol>
 </Protocols>
 <ExpirationAge>PT2H</ExpirationAge>
 </NotificationClass>

2. Place your cursor in the ADF, immediately following the end tag of the existing NotificationClasses/NotificationClass
section.

3. On the Edit menu, click Paste as HTML to paste the code in the file.
4. Save and close the ADF.

Rebuild the application

1. In the Solution Explorer pane, right-click the AppDefinition project, and then click Rebuild. This drops and recreates the
databases, deleting all data that was entered previously.

2. Scroll through the results displayed in the Output pane to verify that the Rebuild command succeeded.

Add Subscriber, Subscriber Device, and Scheduled Subscription Data

1. In the Solution Explorer pane, right-click the AddSubscribers.vbs script, and then click Open With.
2. Select the wscript.exe file, and then click Open to run the script.
3. Right-click the AddScheduledSubscriptions.vbs script, and then click Open With.
4. Select the wscript.exe file again, and then click Open to run the script.

The script runs for about a minute. It adds one subscription for every minute of the day, for a total of 1440 scheduled
subscriptions. By adding all these subscriptions, you ensure that the application will generate a scheduled notification within
one minute, regardless of when you run it.

View the Scheduled Subscription Information

1. Open SQL Query Analyzer, and select StockInstanceStock from the list on the toolbar.
2. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXECUTE NSScheduledSubscriptionDetails N'PortfolioSubscriptions', 'StartTime',
'EndTime'

3. Replace the StartTime and EndTime arguments with time values spanning the current day, for example '2002-06-12

00:00:00' and '2002-06-12 23:59:'59'.
4. Run the query.
5. Look at the result set to review the subscription information.

Note the subscriber ID for one of the rows returned.

6. Delete the Transact-SQL statement.
7. From this online Help topic, copy the following Transact-SQL statement, and then paste it in the Query window:

EXEC NSScheduledSubscriptionList N'subscriberId', 'StartTime', 'EndTime'

8. Replace the subscriberId argument with the subscriber ID you noted in step 5; replace StartTime and EndTime with time
values spanning the current day, for example, '2002-06-12 00:00:00' and '2002-06-12 23:59:'59'.

9. Run the query.
10. Look at the result set to review the detailed subscription information for one subscriber.
11. Close SQL Query Analyzer.

Start the NS$StockInstance Service

1. In the Server Explorer pane, click the Services node.
2. Right-click NS$StockInstance, and then click Start.

Generate Scheduled Notifications

Submit Events

1. In the Server Explorer pane, double-click the AddEvents.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 3, please refer to the Submit Events section of that task for instructions on associating the
AddEvents.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the event and event batch results returned by NSEventBatchDetails.
4. Close SQL Query Analyzer.

Stop the N S$StockInstance Service

1. Allow the service to run for about 2 minutes in order to generate and distribute the notifications.
2. In the Server Explorer pane, right-click NS$StockInstance, and then click Stop.

View the Scheduled Notifications

1. Using Microsoft Notepad, open the InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock\Test\Test1\Notifications\StockNotification.txt file.

2. Review the StockNotification.txt contents.
3. Close and delete the file.

Task 13 Summary

After completing all the steps in this task, you should have a working scheduled subscription class in your application, and have
the system populated with data from associated subscribers, subscriber devices, and subscriptions.

SQL Server Notification Services Books Online

Task 14: Reviewing the Subscription Management Application
In this task you will accomplish the following:

Review the sample subscription management application code.
Test the subscription management application.

Review the Code

1. In the Solution Explorer pane of Microsoft Visual Studio® .NET, expand the AppDefinition project, and then double-click the
Default.aspx file.

The file opens. This file implements the sample subscription management application.

2. On the View menu, click Code.

The Default.aspx.cs file opens.

3. Review the subscription management application code.
4. Close the Default.aspx.cs and Default.aspx files.

Rebuild the Subscription Management Application

1. In the Solution Explorer pane of Microsoft Visual Studio, right-click Subscribe, and then click Rebuild.
2. Scroll through the results displayed in the Output pane to verify that the Rebuild command succeeded.

Test the Subscription Management Application

1. Open a Web browser, and go to http://localhost/nssamples/stock.

The application displays the Stock Alerts Sample Web page in Internet Explorer.

2. In the Stock symbol field, enter ADCP.
3. In the Alert me when the price goes above field, enter 50.
4. Click Alerts SignUp.
5. Close the Web browser.

View Subscriber and Subscriber Device Information

1. In the Solution Explorer pane, double-click the ViewSubscribersAndDevices.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 4, please refer to the View Subscriber and Subscriber Device Information section of that task for
instructions on associating the ViewSubscribersAndDevices.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the subscriber and subscriber device information returned by the query.
4. Close SQL Query Analyzer.

View the Subscriptions

1. In the Server Explorer pane, double-click the ViewSubscriptions.sql script.

The script launches in SQL Query Analyzer.

Note If you skipped Task 4, please refer to the View Subscription Information section of that task for instructions on
associating the ViewSubscriptions.sql script with SQL Query Analyzer.

2. Connect to SQL Server in SQL Query Analyzer, and then click the green arrow button on the toolbar to run the script.
3. Review the subscription information returned by the query.
4. Close SQL Query Analyzer.

Task 14 Summary

After completing all the steps in this task, you should be able to input subscriber and subscription information through the
subscription management application.

SQL Server Notification Services Books Online

Walkthrough Summary
You have completed the Notification Services walkthrough - congratulations! You should now have a working Stock application
that performs all the following actions:

Accepts events from a file system watcher event provider.
Accepts subscriber, subscriber device, and subscription data from a Web application.
Produces both event-driven and scheduled subscriptions.
Outputs formatted notifications.
Uses both the standard SMTP delivery protocol and a custom HttpLogger delivery protocol to create notification messages
and hand them off to external delivery systems for delivery.

SQL Server Notification Services Books Online

Building Notification Services Applications
The Building Notification Services Applications section provides information about defining and developing the components
needed to create an application in Microsoft® SQL Server™ Notification Services.

The topics that this section covers are described in the following table.

Topic Description
Introducing Notification Services
Programming

Reviews aspects of system workflow that
affect development. Also discusses
developer responsibilities and
development planning.

Application Settings Discusses the available application
settings, and how to define them in the
application definition file (ADF).

Events Discusses how to define an event class,
and how event providers are used to
provide event data to the system. Reviews
the standard event providers that are ship
with Notification Services.

Subscriptions Discusses how to define a subscription
class.

Notifications Discusses how to define a notification
class. Also discusses how content
formatters are used to format notification
data, and how delivery channels make use
of delivery protocols to route notification
messages for delivery. Reviews the
standard content formatter and delivery
protocols that are shipped with
Notification Services.

Instance and Application APIs Provides examples of how to use the
Notification Services classes that provide
access to Notification Services instances
and applications.

Developing Subscription Management
Applications

Provides examples of how to use the
Notification Services classes that permit
creation and maintenance of subscription-
related data.

Developing Custom Notification Services
Components

Provides examples of how to use the
Notification Services classes and interfaces
to develop custom event providers,
content formatters, and delivery protocols.

Notification Services Programming
Samples

Provides information about the sample
applications provided with Notification
Services.

SQL Server Notification Services Books Online

Introducing Notification Services Programming
Notification services are key to getting important information to users when they want it, wherever they are. There is a wide
variety of possible notification applications. One organization might use them to increase traffic at an e-commerce site by
notifying customers of sale items. Another might use them to push corporate information, like meeting reminders or sales
information, out to its employees.

Notification Services allows you to create and deploy notification applications quickly and easily. The Notification Services APIs
streamline the input of event, subscriber, and subscription data. The Notification Services engine provides functions to seamlessly
generate, format, and route notifications to external delivery systems based on this information.

Notification Services is designed to integrate with existing notification delivery services. Notification Services hands notification
messages to these services for transport to the subscriber's target device. SMS phone delivery is a good example of an external
delivery service, although this service is not required for a Notification Services application.

Some of the benefits of programming with the Notification Services framework are:

Speed of development: An application can be prototyped in days rather than months.
Cost of development: Most of the underlying application requirements are provided by the Notification Services
infrastructure, so you can concentrate on the details of your applications.
Ability to leverage existing knowledge: Notification Services uses popular technologies like Transact-SQL, XML, and the
Microsoft .NET Framework to implement its components. You do not have to learn a proprietary language to create
Notification Services applications.
Programmability: Event providers, subscription management applications, and notification formatting and delivery
mechanisms can be tailored to your business needs. The Notification Services APIs can be used to capture data from any
new or existing application that you create.

The topics that the Introducing Notification Services Programming section covers are described in the following table.

Topic Description
Notification Services System Reviews the components that make up a

Notification Services system, and discusses
the basic workflow.

Developer Responsibilities Discusses the Notification Services
components that the application developer
must provide.

SQL Server Notification Services Books Online

Notification Services System
The Notification Services system provides a standardized way to collect event and subscription data, and then produce
notifications based on this information.

1. Information about subscribers, subscriber devices, and subscriptions comes into the system through a subscription
management application, which uses the Notification Services APIs to submit this information to the system.

2. Events are submitted to the system in batches by an event provider, which is optionally hosted by the Notification Services
provider host component.

3. The Notification Services generator uses rules to match events with subscriptions. Each firing of a notification generation
rule produces a batch of notifications.

4. The Notification Services distributor then passes the raw notification data to a content formatter to be formatted, and then
passes the formatted notification data to a delivery protocol to be packaged into messages. Finally the messages are handed
off to one or more external delivery systems for delivery to subscriber devices.

For more information about how the Notification Services architecture works, see Notification Services Architecture.

SQL Server Notification Services Books Online

Notification Services Components
Notification Services Components

A Notification Services application runs on a platform based on the Notification Services engine and SQL Server. Many
applications also use Internet Information Services (IIS) to host their subscription management application or custom event
providers, although this is not required, and is not provided as part of Notification Services.

A Notification Services application is composed of six primary components:

The Notification Services platform, consisting of the Notification Services engine (which contains the provider host,
generator, and distributor components) and the Notification Services SQL Server databases. The platform stores system
data and provides functions for notification generation and distribution.
Two metadata files: the configuration file, which describes the configuration information for a Notification Services instance,
and the application definition file (ADF), which defines the data and structure of a Notification Services application. When
NSControl Create is run, it uses these files to set up the Notification Services instance and applications, including the SQL
Server tables and other objects.
The subscription management application, which manages subscriber and subscription information and adds, updates, and
deletes it in Notification Services.
One or more event providers, which gather event data and submit it to Notification Services.
One or more content formatters, which take raw notification data after it has been generated and format it appropriately for
display on the target device.
One or more delivery protocols, which create a notification message and then route the message to the external delivery
service that delivers the message to the target device.

SQL Server Notification Services Books Online

Notification Generation Process
Notification Generation Process

Notification Services uses database processing to manage large volumes of data, subscriptions, events, and notifications. The
purpose of a Notification Services application is to generate notifications for delivery to subscribers. The notification generation
process flows as follows.

Event information comes into the system through one or more event providers, which might operate in conjunction with the
provider hosting function of the Notification Services engine. This information can come in randomly, as events occur that meet
particular criteria, or it can be inserted on a scheduled basis. Older event data that has already been used to generate notifications
can be cleaned out of the system using the vacuumer.

Subscriber and subscription information comes into the system through a subscription management application that the
developer provides. This information is entered as end users choose to subscribe to a notification service, rather than on any sort
of scheduled basis.

The generator function of the Notification Services engine matches the event and subscription data by using a notification
generation rule. Firing this rule produces new batches of notification data based on the results. The generator is run on a
scheduled basis, which is determined by the developer or system administrator and specified in the application definition file
(ADF).

The distributor function of the Notification Services engine formats the notification data, and then distributes the resulting
notifications. The distributor is run on a scheduled basis, as determined by the system administrator. Older notification data that
has already been used to generate notifications can be cleaned out of the system using the vacuumer.

See Also

Generating Notifications

Using Notification Generation Rules

SQL Server Notification Services Books Online

Batching in the Notification Services System
Batching in the Notification Services System

Wherever possible, Notification Services data is handled in batches for the sake of efficiency. Event data and notification data are
both batched.

When a single event is written to the system and there is not an event batch open, then one is created automatically. The initial
event and subsequent events are associated with this batch. The event provider that is providing these events must be
programmed to close the current event batch periodically. When this batch of events is closed, the associated events are
submitted for use in notification generation. A new event batch is created with the next new event submission, and the cycle starts
again.

When events are written to the system as a group, each group is automatically assigned an event batch. When the writing process
is completed, the event batch is closed and becomes available for notification generation.

Notification batches are automatically generated and closed by the generator function. No API access is provided to notification
batches. However, if you use Notification Services Enterprise Edition, you can configure the size of notification batches to meet
your application requirements.

Each time the notification generation process is started, a new notification batch record is created. Each notification record
generated from that point in time until the process has finished will be associated with this batch. When processing is complete,
the current notification batch is closed. This makes the notifications in this batch available for processing by the distributor. A new
notification batch record is then created the next time the notification generation process is started, and the cycle starts again.

SQL Server Notification Services Books Online

Developer Responsibilities
The application developer is responsible for designing the Notification Services application, and then creating those elements that
require programming. The system administrator is responsible for installing, configuring, and managing Notification Services. The
individuals serving in these roles must work together when planning the system, to ensure that the system is written and
configured to be optimal for their particular environment and business purposes.

Developer Responsibilities

SQL Server Notification Services Books Online

Planning for Notification Services Development
Planning for Notification Services Development

Metrics concerning the expected type and volume of input and output from your application are important to consider before you
begin the implementation of your Notification Services application. Careful review of these metrics in combination with a
thorough analysis of requirements for your proposed application will allow you to develop a system that successfully meets your
business goals.

Planning Checklist

Use the following questions as a guide when you plan your application.

What are the schemas of the events and subscriptions you want your application to accept, and the notifications you want it to produce? What are the schemas of any
chronicle tables you want to use?

Getting all the schemas right can prevent you from having to make updates to your application later. In a production
environment, making application updates can involve inconvenient manual data migration between the old and the rebuilt tables.

Also consider how your event, subscription, and chronicle schemas affect your application rules. These schemas are used to create
the event, subscription, and chronicle tables you reference in your Transact-SQL rules. Make sure that your rules can be expressed
with as few joins and as short a WHERE clause as is possible with your data. Good table design leads to optimized rules, which in
turn provide better application performance. Also, knowing the structure of your rules early on can help you make good decisions
regarding whether and how to index any of these tables.

What is the configuration of the SQL Server instance that you want to use to host the N otification Services application database?

Work with your database administrator to learn how the SQL Server instance is deployed and configured. Use this information in
the application definition file (ADF) to specify values in the <Database> node that will provide the best performance and
reliability for your application.

What technologies do you plan to use to implement your subscription management application?

You can implement your subscription management application in managed code using the Microsoft .NET Framework and any of
the languages it supports. A managed code application can directly access the Notification Services classes. You can also
implement it in unmanaged code like Microsoft ASP pages, Microsoft Visual Basic®, or Microsoft C++®, using .NET COM
wrappers to access the Notification Services APIs. Determining which implementation to use helps you determine what
technologies you must install on each server, and can help you plan better for scaling and failover.

How much data do you expect to have in the system, both in itially and after the application has been deployed for a while?

Estimate the number of records expected in each of the Notification Services tables. Knowing this can help you to appropriately
plan for optimizing execution times for rule queries, creating SQL Server indexes and filegroups for your tables, and setting values
for the generator and distributor functions.

Knowing the expected size of the event, chronicle, and notification tables can also help you plan an appropriate vacuuming
schedule for removing obsolete data from your system to improve performance.

Do you want to offer scheduled notifications, event-driven notifications, or both?

The two types of notifications have some differences in implementation. Knowing which types you want to offer helps you plan a
realistic development schedule.

What size in kilobytes do you expect an average notification record to be?

Knowing the size range of notification records and resultant notification messages can help you determine realistic delivery times
based on the delivery protocols you choose to implement.

What volume of notifications do you expect to deliver, for both base times and peak times?

Volume information can help you gauge expected application performance. For instance, you will want to verify that the delivery
mechanism you decide on is capable of processing that volume of notifications in a timely manner. It can also help you determine

the optimal values for the application execution settings in the application definition file (ADF).

Do you want to use standard N otification Services components, or do you plan to implement custom components?

Custom components can provide very specific and powerful functionality for your application, but they take additional resources
to design, develop, and test.

Do you need to integrate the N otification Services application with external databases or th ird-party applications?

Integration requirements can affect many aspects of the Notification Services application, such as system performance, data
formatting options, and notification delivery.

SQL Server Notification Services Books Online

Common System Configurations
Common System Configurations

Considering the common configurations can be helpful when planning for your notification application. While there are many
possible configurations for a Notification Services system, four configurations are particularly common. Each of these
configurations has its strengths, and is recommended for particular business scenarios.

Single Server

In a single-server configuration, all components run on one server, which is typically a 2-CPU or 4-CPU server. This includes SQL
Server, and all the Notification Services engine components (the provider host, generator, and distributor). This server also acts as
the Web server for the subscription management application.

This configuration is recommended for smaller Notification Services applications that operate within an intranet. It is not
recommended for Internet applications, due to the security issues raised by having the Web server and the database on the same
server.

Application Server/Web Server

In an application server/Web server configuration, all components are divided across two servers. The SQL Server database and
all Notification Services engine components (the provider host, generator, and distributor) run on one server, which is typically a
2-CPU or 4-CPU server. The other server acts as the Web server for the subscription management application.

This configuration is recommended for small Internet applications, which are likely to require that their subscription management
applications reside on a Web server located outside the company firewall. It is also recommended for medium-sized intranet
applications, where the resources needed for the application would be too much for a single server.

Database Server/Application Server/Web Servers

In this configuration, all components are divided among three or more servers. SQL Server runs on one server, and all the
Notification Services engine components (the provider host, generator, and distributor) run on another server. These servers are
typically 4-CPU servers. One or more additional servers act as Web servers for the subscription management application.

This is the most common configuration for large intranet applications and medium-to-large Internet applications.

Database Server/Application Server/Web Servers plus Failover

Customers who are especially concerned about availability can use SQL Server failover clustering. This allows several servers to
be associated, so that the database can failover from one server to another if an error occurs. The Notification Services engine
components (the provider host, generator, and distributor) can run on a separate server, with an additional backup server
available for failover of these application functions. One or more additional servers act as Web servers for the subscription
management application. The servers used in this configuration are typically 4-CPU servers, at least for the database and
application components.

This configuration is recommended for large intranet applications and medium–to-large Internet applications that require high
availability.

See Also

For more information about SQL Server clustering, see "Failover Clustering" in SQL Server Books Online.

SQL Server Notification Services Books Online

Application Creation
Application Creation

The typical course of development for a Notification Services application is as follows:

1. Design the application by creating an application definition file (ADF) that defines the application.
a. Specify one or more event classes in the ADF. Each event class corresponds to one particular kind of event accepted by

the application. For more information, see Defining an Event Class.
b. Specify one or more notification classes in the ADF. Each notification class corresponds to one particular kind of

notification generated by the application. For more information, see Defining a Notification Class.
c. Specify one or more subscription classes in the ADF. Each subscription class corresponds to one particular kind of

subscription accepted by the application. Specifying a subscription class includes writing rules, which are Transact-
SQL statements that either generate notifications or update chronicle tables. Rules are invoked when an event
provider submits a new batch of events, or on a scheduled basis, depending on the rule type. For more information,
see Defining a Subscription Class.

d. Create one or more notification generation rules (in a subscription class in an ADF) that will match your event data
with your subscription data to produce notifications. For more information, see Subscription Rules.

2. Make sure that a configuration file exists for the Notification Services instance that will host your application. Creating the
configuration file is usually the task of the system administrator. For more information about creating the configuration file,
see Creating a Configuration File.

3. Build the application using the NSControl utility. This utility takes all of the information specified in the ADF, and sets up the
SQL Server database and tables needed for the application. For example, an event table is created for each event class you
define, and a subscription table is created for each subscription class you define. For more information, see NSControl
Commands.

4. Write some simple scripts, for example in Transact-SQL or Microsoft Visual Basic®, to enter sample subscriber, subscriber
device, subscription, and event data that conforms to the requirements of your application.

5. Run this basic version of your application to test your notification generation rules and make sure they are producing
notifications as expected. For this step, use the NoOp.xslt file (available in the programming sample applications provided
with Notification Services) with the standard XSLT content formatter, and the standard File delivery protocol, to make the
notifications very easy to produce.

6. Create or modify a subscription management application to submit information about subscribers, subscriber devices, and
subscriptions to the system with the Notification Services APIs. For more information, see Developing Subscription
Management Applications.

7. Define an event provider that monitors an external entity and generates an event each time something noteworthy happens.
You can configure one of the standard event providers included with Notification Services, or develop a custom event
provider tailored to your specific business needs. For more information about deploying a standard event provider, see
Standard Event Providers. For details about creating a custom event provider, see Developing a Custom Event Provider.

8. Optionally, create one or more XSLT files for use by the standard XSLT content formatter. These XSL transforms are used to
format the raw notification data appropriately for display, based on the language, locale, and device type of the recipient.
Alternatively, you can develop a custom content formatter tailored to your specific business needs. For more information
about using the standard XSLT content formatter, see XSLT Content Formatter. For details about creating a custom content
formatter, see Developing a Custom Content Formatter.

9. Complete the application settings in the ADF, to optimize application performance and manage system resource
consumption. For more information, see Application Settings.

10. Optionally, develop a custom delivery protocol tailored to your specific business needs. For details about creating a custom
delivery protocol, see Developing a Custom Delivery Protocol.

11. Test and then deploy your application. For more information about deployment, see Deployment Architecture.

Note Notification Services provides a number of stored procedures to assist you in testing and troubleshooting
your application. For more information, see Stored Procedure Reference.

SQL Server Notification Services Books Online

Notification Services Programming Interfaces
Notification Services Programming Interfaces

Notification Services components use several programming interfaces. Here is an overview of the technologies necessary for
developing each component:

Application defin ition files (ADFs)

XML

ADFs are developed and maintained as XML documents. Configuration files are also developed and maintained using XML.

Transact-SQL

Transact-SQL queries are used to create application rules, which govern notification generation as well as maintenance of
application data within a Notification Services instance. Transact-SQL statements can also be used in the definitions of indexes
and chronicle tables in the ADF.

Subscription management application

Notification Services APIs

Managed code classes that allow you to add, update, and delete subscribers, subscriber devices, and subscriptions. These APIs can
be used from managed code, and through COM interop from unmanaged code.

File system watcher event provider (optional)

XML

Events submitted to the file system watcher event provider must be in XML format.

XSD

The file system watcher event provider requires the developer to provide a SQL-annotated XML schema file that describes the
structure of the events contained in the XML files it processes.

SQL Server event provider (optional)

Transact-SQL

Transact-SQL event collection stored procedures are automatically created for each Notification Services application that is
created. The standard SQL Server event provider uses these stored procedures along with Transact-SQL queries that you provide
to submit SQL Server data as events.

XSLT content formatter (optional)

XSLT

The standard XSLT content formatter requires one or more XSLT files to apply to the raw notification data in order to produce
formatted content. Applications that use custom content formatters are not required to use XSLT.

Custom event providers, content formatters, and delivery protocols

Notification Services APIs

Managed code classes and interfaces allow you to create custom components that interoperate with Notification Services. They
can be used from managed code, and through COM interop from unmanaged code.

Transact-SQL

Transact-SQL event collection stored procedures are automatically created for each Notification Services application that is
created. You can use these stored procedures along with any Transact-SQL queries you provide to create custom event providers
that submit SQL Server data as events.

SQL Server Notification Services Books Online

COM Interop with Notification Services
COM Interop with Notification Services

All Notification Services APIs are developed in managed code. However, the majority of Notification Services classes have been
developed to be used from unmanaged code as well, through COM interop. If you are integrating notification services into an
existing unmanaged application, then you will probably need to continue to use unmanaged code for your subscription
management application. The COM interop solution is provided for this purpose.

If you have installed multiple versions of Notification Services, and are using COM interop, your code uses the APIs from the most
recently installed version of Notification Services. This is not necessarily the highest version number of Notification Services. Such
a discrepancy can occur because the Program ID (under HKEY_CLASSES_ROOT) is of the form
"Microsoft.SqlServer.NotificationServices.NSInstance", and always points to the most recently installed version.

To enable COM interop with Notification Services classes, you must add the Microsoft.NotificationServer.ComInterop.tlb file to
your Microsoft Visual Basic® or Microsoft Visual C++® project.

The following Notification Services classes implement interfaces to be used in COM interop:

ApplicationEnumeration
DeliveryChannel
DeliveryChannelEnumeration
Event
EventClass
EventClassEnumeration
EventCollector
InstanceEnumeration
NSApplication
NSInstance
NSInstanceDescription
Subscriber
SubscriberDevice
SubscriberDeviceEnumeration
SubscriberEnumeration
SubscriberLocale
SubscriberLocaleEnumeration
Subscription
SubscriptionClass
SubscriptionClassEnumeration
SubscriptionEnumeration
TimeZone
TimeZoneEnumeration

These classes provide a parameter-less constructor and an Initialize method for creating and initializing an object in unmanaged
code. For overloaded methods in these classes, the most extensive overload is provided to the COM caller, and method
parameters are made optional in order to provide equivalent functionality.

For more information about using COM interop, refer to COM Interoperability in Visual Basic and Visual C# in the Microsoft
MSDN® Library.

http://go.microsoft.com/fwlink/?LinkId=8074

SQL Server Notification Services Books Online

Application Settings
You can define application settings in several sections of the application definition file (ADF). (For more information about the
ADF, see Application Definition File Reference.) These settings specify such things as the computers that host Notification Services,
and execution schedules for Notification Services functions. They also document metadata about the ADF itself, such as
modification history.

The Application Settings section is divided into the following topics:

Topic Description
Defining Application Parameters Describes how to use the

<ParameterDefaults> node of the
ADF to maintain information about
application parameters.

Maintaining Version Information Describes how to use the <Version>
node of the ADF to maintain application
version information.

Maintaining History Information Shows how to use the <History> node
of the ADF to maintain ADF
modification history.

Defining Application Database Information Describes how to use the <Database>
node of the ADF to maintain
information about the SQL Server
database that this application uses.

Specifying Generator Settings Discusses how different settings for the
<Generator> elements can affect
system operation. Walks through the
population of the <Generator> node
with information about the generator
that this application uses.

Specifying Distributor Settings Discusses how different settings for the
<Distributor> elements can affect
system operation. Walks through the
population of the <Distributors> node
with information about the distributors
that this application uses.

Defining the Application Execution Settings Discusses how different settings for the
<ApplicationExecutionSettings>
elements can affect system operation.
Walks through the population of the
<ApplicationExecutionSettings>
node with information relating to
application execution, such as how
frequently the generator fires.

SQL Server Notification Services Books Online

Defining Application Parameters
To ensure consistent values for elements that are used in several different nodes in your application definition file (ADF), you can
use a <ParameterDefaults> node to define application parameters. You can specify parameters in the ADF, the configuration
file, or both. The files where the parameters are specified will determine their precedence of use; parameters inherited from the
configuration file take precedence over those defined in the ADF.

Note Microsoft recommends that you use parameters to pass in any sensitive information that your application
requires, rather than hardcoding this information in clear text in the ADF. A good example of where you might want to
use parameters is if you need to supply user name or password information for use as an argument value.

See Also

Defining Parameters in Both the ADF and the Configuration File

Defining Parameters in the ADF

Inheriting Configuration File Parameters

SQL Server Notification Services Books Online

Defining Parameters in the ADF
Defining Parameters in the ADF

One way to specify the parameters you want to use in your application is by creating a <ParameterDefaults> node in your
application definition file (ADF). Within the <ParameterDefaults> node, you must create a <Parameter> node for each
parameter that you require. The <Parameter> node has two required child elements: <Name> and <Value>.

Note You must exclude the <ParameterDefaults> node from the ADF if you do not specify any application
parameters.

Once you define a parameter in your <ParameterDefaults> node, you use a variable to specify the value of that parameter in
other elements in the ADF. The variable name is always the parameter name with a percent sign (%) before and after it (for
example %RetryInterval%.)

<ParameterDefaults> Example

The following example shows how to create a <ParameterDefaults> node. This example creates a parameter for the retry
interval, which is then used in the protocol execution settings in the notification class:

<ParameterDefaults>
 <Parameter>
 <Name>SysName</Name>
 <Value>SERVER01</Value>
 </Parameter>
 <Parameter>
 <Name>RetryInterval</Name>
 <Value>P0DT00H15M00S</Value>
 </Parameter>
</ParameterDefaults>
...
<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>%RetryInterval%</RetryDelay>
 </RetrySchedule>
 </ProtocolExecutionSettings>
 </Protocol>
 </Protocols>
 </NotificationClass>
</NotificationClasses>

See Also

<Name> Element (<Parameter>)

<Parameter> Node

<ParameterDefaults> Node

<Value> Element (<Parameter>)

SQL Server Notification Services Books Online

Inheriting Configuration File Parameters
Inheriting Configuration File Parameters

An alternative to defining parameters in your application definition file (ADF) is to inherit parameters that are defined in the
/Applications/Application/Parameters section of the configuration file. If you choose this method, you must make certain that
the configuration file supplies the parameters — otherwise the applications will fail to be created.

Configuration File Parameters Example

The following example shows how to set a parameter in the configuration file that will then be used in the ADF. A parameter that
represents the name of the server that hosts Notification Services is set in the configuration file, and then inherited in the ADF:

<!--Configuration File-->
...
<Applications>
 <Application>
 ...
 <Parameters>
 <Parameter>
 <Name>NSSysName</Name>
 <Value>SLEIPNIR</Value>
 </Parameter>
 </Parameters>
 </Application>
</Applications>

<!--ADF-->
...
<!--No parameter defaults are specified.-->
...
<Distributors>
 <Distributor>
 <!--The value of SystemName will be SLEIPNIR. -->
 <SystemName>%NSSysName%</SystemName>
 <ThreadPoolSize>3</ThreadPoolSize>
 </Distributor>
</Distributors>

SQL Server Notification Services Books Online

Defining Parameters in Both the ADF and the Configuration
File
Defining Parameters in Both the ADF and the Configuration File

Including the same parameter in both the configuration file and the application definition file (ADF) provides a backup parameter
value for your application in the ADF. That way, if the parameter is accidentally removed from the configuration file, your
application has a fallback value. When you specify it in both places, the value you specify in the configuration file always overrides
the value you specify in the ADF.

ADF and Configuration File Parameters Example

The following example shows how parameter precedence works when a parameter is set in both the configuration file and the
ADF. A parameter that represents the name of the server that hosts Notification Services is set in both the configuration file and
the ADF; the configuration file setting will override the ADF setting:

<!--Configuration File-->
...
<Applications>
 <Application>
 ...
 <Parameters>
 <Parameter>
 <Name>NSSysName</Name>
 <Value>SLEIPNIR</Value>
 </Parameter>
 </Parameters>
 </Application>
</Applications>

<!--ADF-->
...
<ParameterDefaults>
 <Parameter>
 <ParameterName>NSSysName</ParameterName>
 <ParameterValue>GRANE</ParameterValue>
 </Parameter>
</ParameterDefaults>
...
<Distributors>
 <Distributor>
 <!--The value of the system name will be SLEIPNIR. -->
 <SystemName>%NSSysName%</SystemName>
 <ThreadPoolSize>3</ThreadPoolSize>
 </Distributor>
</Distributors>

SQL Server Notification Services Books Online

Maintaining Version Information
You can associate version numbers with an application definition file (ADF) to track changes made to the ADF. You can document
this information by creating a <Version> node in the ADF. Notification Services does not verify the version information that
appears in the ADF, so this action is not required; however, maintaining version information is a recommended practice.

Note If you choose not to document version information, you must exclude the <Version> node from the ADF.

The <Version> node consists of four required child elements:

<Major>
<Minor>
<Build>
<Revision>

<Version> Example

The following example shows how to create a <Version> node. It sets a version number of 1.0.24.8 for the application:

<Version>
 <Major>1</Major>
 <Minor>0</Minor>
 <Build>24</Build>
 <Revision>8</Revision>
</Version>

See Also

<Build> Element

<Major> Element

<Minor> Element

<Revision> Element

<Version Node>

SQL Server Notification Services Books Online

Maintaining History Information
To see when the application definition file (ADF) was created and when it was last modified, you can create a <History> node in
your ADF. This history information is for your own use, and is not referenced or validated in any way by Notification Services.

Note If you choose not to document history information, you must exclude the <History> node from the ADF.

The <History> node has four required child elements:

<CreationDate>
<LastModifiedDate>
<CreationTime>
<LastModifiedTime>

<History> Example

The following example shows how to create a <History> node. It records the application creation time as 10:30 GMT on
9/22/2001, and the application last update time as 22:30 GMT on 10/25/2001:

<History>
 <CreationDate>2001-09-22</CreationDate>
 <CreationTime>10:30:00</CreationTime>
 <LastModifiedDate>2001-10-25</LastModifiedDate>
 <LastModifiedTime>22:30:00</LastModifiedTime>
</History>

See Also

<CreationDate> Element

<CreationTime> Element

<History> Node

<LastModifiedDate> Element

<LastModifiedTime> Element

SQL Server Notification Services Books Online

Defining Application Database Information
If you want to create your application database using other than SQL Server defaults, you can specify the database information in
the <Database> node of your application definition file (ADF). In the absence of this information, SQL Server defaults are used
when creating the application database.

Note If you choose not to specify application database information, you must exclude the <Database> node from
the ADF.

The <Database> node has four optional child elements:

<NamedFileGroup>
<LogFile>
<DefaultFileGroup>
<CollationName>

Each of these elements is summarized in the following sections.

For further general information about SQL Server databases and physical files, see "CREATE DATABASE" and "Physical Database
Files and Filegroups" in SQL Server Books Online.

<Database> Example

The following example shows how to create a <Database> node for an application that has two named filegroups, Primary and
Secondary, and a log file named StockLog. It uses the Secondary filegroup as its default filegroup, and uses the
SQL_Latin1_General_Cp437_BIN collation:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 <FileSpec>
 <LogicalName>StockPrimary</LogicalName>
 <FileName>C:\SQLData\StockPrimary.mdf</FileName>
 <Size>2GB</Size>
 <MaxSize>5GB</MaxSize>
 <GrowthIncrement>500MB</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 <FileSpec>
 <LogicalName>StockSecondary1</LogicalName>
 <FileName>D:\Data\StockSecondary1.ndf</FileName>
 <Size>1000MB</Size>
 <MaxSize>5000MB</MaxSize>
 <GrowthIncrement>25%</GrowthIncrement>
 </FileSpec>
 <FileSpec>
 <LogicalName>StockSecondary2</LogicalName>
 <FileName>D:\Data\StockSecondary2.ndf</FileName>
 </FileSpec>
 </NamedFileGroup>
 <LogFile>
 <LogicalName>StockLog</LogicalName>
 <FileName>E:\Logs\StockLog.ldf</FileName>
 </LogFile>
 <DefaultFileGroup>Secondary</DefaultFileGroup>
 <CollationName>SQL_Latin1_General_Cp437_BIN</CollationName>
</Database>

See Also

<CollationName> Element

<Database> Node

<DefaultFileGroup> Element

<LogFile> Node

<NamedFileGroup> Node

SQL Server Notification Services Books Online

Defining a <NamedFileGroup> Node
Defining a <NamedFileGroup> Node

A <NamedFileGroup> node contains information about the application database data files in a particular SQL Server filegroup.
SQL Server provides filegroups to simplify database administration, as well as to allow for optimal allocation of system data
across multiple physical disks. For more information about SQL Server filegroups, see "Files and Filegroups" in SQL Server Books
Online.

You can optionally specify one or more <NamedFileGroup> nodes in the <Database> node. If you create any
<NamedFileGroup> nodes, then one of the nodes must represent the primary filegroup for your application, and must be
named Primary. The primary filegroup is used as the default for your application database files if no <DefaultFileGroup>
element is specified.

The <NamedFileGroup> node contains two required child elements: <FileGroupName> and the <FileSpec> node. These
elements are summarized in the following sections.

<FileGroupName> Element

The <FileGroupName> element must contain the name of the SQL Server filegroup that the associated <NamedFileGroup>
node describes.

<FileSpec> Node

The <FileSpec> node contains information about a data file that resides on the filegroup specified in the <FileGroupName>
element. You can specify one or more <FileSpec> nodes in the <NamedFileGroup> node.

The <FileSpec> node contains five child elements:

<LogicalName> (required)
<FileName> (required)
<Size> (optional)
<MaxSize> (optional)
<GrowthIncrement> (optional)

Note If you choose not to specify one or more of the optional child elements <Size>, <MaxSize>, or
<GrowthIncrement>, you must exclude those nodes from the ADF.

<NamedFileGroup> Example

The following example shows how to create <NamedFileGroup> nodes for two named filegroups, Primary and Secondary. The
Secondary filegroup uses two <FileSpec> nodes to specify multiple physical files in which to place the data:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 <FileSpec>
 <LogicalName>StockPrimary</LogicalName>
 <FileName>C:\SQLData\StockPrimary.mdf</FileName>
 <Size>2GB</Size>
 <MaxSize>5GB</MaxSize>
 <GrowthIncrement>500MB</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 <FileSpec>
 <LogicalName>StockSecondary1</LogicalName>
 <FileName>D:\Data\StockSecondary1.ndf</FileName>
 <Size>1000MB</Size>
 <MaxSize>5000MB</MaxSize>
 <GrowthIncrement>25%</GrowthIncrement>
 </FileSpec>
 <FileSpec>
 <LogicalName>StockSecondary2</LogicalName>

 <FileName>D:\Data\StockSecondary2.ndf</FileName>
 </FileSpec>
 </NamedFileGroup>
 ...
</Database>

See Also

<FileGroupName> Element

<FileName> Element (<FileSpec>)

<FileSpec> Node

<GrowthIncrement> Element (<FileSpec>)

<LogicalName> Element (<FileSpec>)

<MaxSize> Element (<FileSpec>)

<NamedFileGroup> Node

<Size> Element (<FileSpec>)

SQL Server Notification Services Books Online

Defining a <LogFile> Node
Defining a <LogFile> Node

A <LogFile> node contains information about an application database log file. You can optionally specify one or more
<LogFile> nodes in the <Database> node.

The <LogFile> node contains five child elements:

<LogicalName> (required)
<FileName> (required)
<Size> (optional)
<MaxSize> (optional)
<GrowthIncrement> (optional)

Note If you choose not to specify one or more of the optional child elements <Size>, <MaxSize>, or
<GrowthIncrement>, you must exclude those nodes from the application definition file (ADF).

<LogFile> Example

The following example shows how to create a <LogFile> node for the application log file:

<Database>
 ...
 <LogFile>
 <LogicalName>StockLog</LogicalName>
 <FileName>E:\Logs\StockLog.ldf</FileName>
 <Size>750MB</Size>
 <MaxSize>2GB</MaxSize>
 <GrowthIncrement>250MB</GrowthIncrement>
 </LogFile>
 ...
</Database>

See Also

<FileName> Element (<LogFile>)

<GrowthIncrement> Element (<LogFile>)

<LogFile> Node

<LogicalName> Element (<LogFile>)

<MaxSize> Element (<LogFile>)

<Size> Element (<LogFile>)

SQL Server Notification Services Books Online

Defining a <DefaultFileGroup> Element
Defining a <DefaultFileGroup> Element

You can specify the name of the default SQL Server filegroup in the <DefaultFileGroup> element. This filegroup must be one of
those specified in a <NamedFileGroup> node.

Note You must exclude the <DefaultFileGroup> element from the <Database> node if you choose not to use it.

<DefaultFileGroup> Example

The following example shows how to create a <DefaultFileGroup> element, which defines the Secondary filegroup as the
default for this application:

<Database>
 ...
 <DefaultFileGroup>Secondary</DefaultFileGroup>
 ...
</Database>

See Also

<DefaultFileGroup> Element

SQL Server Notification Services Books Online

Defining a <CollationName> Element
Defining a <CollationName> Element

You specify the name of the default collation in the <CollationName> element. This determines the character set and sort order
used by the application database. Its value must be the full collation name of either a Microsoft Windows or a SQL Server
collation. If you do not provide a <CollationName> value, the application database collation is the same as the default collation
of the SQL Server instance that hosts the database.

Note You must exclude the <CollationName> element from the <Database> node if you choose not to use it.

The <CollationName> value of all application databases in a SQL Server Notification Services instance must match that of the
instance's NSMain database.

For more information about how SQL Server uses collations, see "COLLATE" in SQL Server Books Online.

<CollationName> Example

The following example shows how to create a <CollationName> element, which sets the collation used by this application:

<Database>
 ...
 <CollationName>SQL_Latin1_General_Cp437_BIN</CollationName>
</Database>

See Also

<CollationName> Element

SQL Server Notification Services Books Online

Specifying Generator Settings
The generator function governs the rule processing for a notification application. Settings for the generator are specified in the
<Generator> node. These settings determine which server hosts the generator, and how many threads the generator can use
when processing application rules. The values you specify for the generator settings should be considered in terms of a trade-off
between improving application speed and monopolizing system resources.

See Also

Generator Settings Considerations

Populating the <Generator> Node

SQL Server Notification Services Books Online

Generator Settings Considerations
Generator Settings Considerations

The <ThreadPoolSize> element is the only <Generator> node setting that has any performance implications. In Notification
Services Enterprise Edition, you can use the <ThreadPoolSize> element in the <Generator> node to provide a balance between
improving application speed and monopolizing system resources. In Notification Services Standard Edition, <ThreadPoolSize>
must be omitted or set to 1. Any other value generates an error when NSControl is run to create or update the application.

The Notification Services generator attempts to fire all event chronicle rules in parallel, followed by all subscription rules (both
event rules and scheduled rules). The generator attempts to utilize all threads available within the thread pool while executing
rules.

The event chronicle rules maintain event chronicle table data. Because subscription rules might reference the event chronicle
tables, these tables must be updated before subscription rules are processed. Therefore the generator never processes event
chronicle rules in parallel with subscription rules.

The <ThreadPoolSize> value determines how many operating system threads the generator can use in this parallel processing.
In a Standard Edition system, the <ThreadPoolSize> value is always 1. If the <ThreadPoolSize> element is not defined in an
Enterprise Edition system, the system allocates up to 25 threads per processor for parallel rule execution. The actual number of
threads allocated is determined by an optimization algorithm.

The default thread allocation attempts to provide a dedicated thread for each rule that is processed, thereby ensuring maximum
throughput. If you specify a higher value for <ThreadPoolSize>, this might burden the system with thread-switching overhead
without improving application performance.

However, you can provide a lower value for <ThreadPoolSize> if the consumption of processor time is a concern on your
system. If you lower the thread pool size, the speed of the generator processing decreases, thereby decreasing the generator's
demand on system resources.

SQL Server Notification Services Books Online

Populating the <Generator> Node
Populating the <Generator> Node

Each instance of Notification Services provides one generator function. You must maintain information about the computer that
hosts the generator. This information is stored in the <Generator> node of the application definition file (ADF). You are required
to define this node.

The <Generator> node has two child elements:

<SystemName> (required)
<ThreadPoolSize> (optional)

The <SystemName> element specifies the computer name of the server that hosts the Notification Services instance that
provides your generator function.

The <ThreadPoolSize> element specifies the number of threads on which the generator can process. The value of the
<ThreadPoolSize> element determines the amount of work that the generator can perform in parallel, and affects the overall
speed of the Notification Services system. In the case of Notification Services Standard Edition, the only valid <ThreadPoolSize>
value is 1.

Note You must exclude the <ThreadPoolSize> element from the <Generator> node if you do not use it; in this
case the generated default value is used. This default value is 1 in the case of Notification Services Standard Edition, or
some number determined by an optimization algorithm in the case of Notification Services Enterprise Edition.

<Generator> Example

The following example shows how to create a <Generator> node. The generator for this instance runs on a server named SIF,
and will process application rules on one thread:

<Generator>
 <SystemName>SIF</SystemName>
 <ThreadPoolSize>1</ThreadPoolSize>
</Generator>

See Also

<Generator> Node

<SystemName> Element (<Generator>)

<ThreadPoolSize> Element (<Generator>)

SQL Server Notification Services Books Online

Specifying Distributor Settings
The distributor function governs notification formatting and delivery for a notification application. Each Notification Services
instance can have one or more distributors. Settings for a distributor can be specified in the <Distributors> node. These settings
determine which server hosts a distributor, how frequently it runs, and how many threads it can use when processing work items.
The values you specify for the distributor settings should be considered in terms of a trade-off between improving application
speed and monopolizing system resources.

SQL Server Notification Services Books Online

Distributor Settings Performance Considerations
Distributor Settings Performance Considerations

The <QuantumDuration> and <ThreadPoolSize> elements both have implications for system performance.

<QuantumDuration> Element

A quantum is a block of time used by Notification Services to determine how frequently to trigger system functions. You can use
the <QuantumDuration> element to trade off between application speed and resource consumption, based on the specifics of
your system.

The <QuantumDuration> element determines how frequently the distributor checks for available work items. (For more detail
about work items, see Distributing Notifications.) You can use the <QuantumDuration> value to optimize distributor
performance relative to the workload on the server. Smaller quantum durations cause more frequent firing of the distributor,
which means faster notification formatting and delivery for the application. Smaller quantum durations also mean that the
distributor takes up more processor time overall, and therefore requires more resources on the server.

<ThreadPoolSize> Element

In Notification Services Enterprise Edition, you can use the <ThreadPoolSize> element in the <Distributor> node to provide a
balance between improving application speed and monopolizing system resources. In Notification Services Standard Edition, the
<ThreadPoolSize> value must be between 1 and 3. Any other value generates an error when NSControl is run to create or
update the application. In Notification Services Enterprise Edition, the <ThreadPoolSize> value is unlimited.

Each Notification Services distributor attempts to process available work items as quickly as possible. The distributor attempts to
perform parallel processing and utilize all threads available within the thread pool while processing work items.

The <ThreadPoolSize> value determines how many operating system threads the distributor can use in this parallel processing.
In a Standard Edition system, this is between 1 and 3 threads, with 3 threads being used if no <ThreadPoolSize> element is
defined. In an Enterprise Edition system, the system imposes no limit on the number of threads used in parallel work item
processing. It uses as many as are available if no <ThreadPoolSize> element is defined.

You can provide a lower value for <ThreadPoolSize> if the consumption of processor time is a concern on your system. If you
lower the thread pool size, the speed of the distributor processing decreases, thereby decreasing the distributor's demand on
system resources.

SQL Server Notification Services Books Online

Populating a <Distributor> Node
Populating a <Distributor> Node

You must maintain information about the distributors your Notification Services application uses. This information is stored in the
<Distributors> node of the application definition file (ADF). You are required to define this node.

Within the <Distributors> node, you must create a <Distributor> node for each distributor that services your application. The
<Distributor> node has three child elements:

<SystemName> (required)
<ThreadPoolSize> (optional)
<QuantumDuration> (optional)

The <SystemName> element specifies the computer name of the server that hosts the NS$instance_name service that provides
the distributor function.

The <ThreadPoolSize> element specifies the number of threads on which the distributor can process. The value of the
<ThreadPoolSize> element determines the amount of work that the distributor can perform in parallel, and affects the overall
speed of the Notification Services system.

Note You must exclude the <ThreadPoolSize> element from the <Distributor> node if you do not use it. In the
case of Notification Services Standard Edition, the <ThreadPoolSize> value default of 3 is used. In the case of
Notification Services Enterprise Edition, the system uses as many threads as are available to process current work
items.

The <QuantumDuration> element specifies the duration of a distributor quantum. The quantum determines how frequently the
distributor fires.

Note You must exclude the <QuantumDuration>element from the <Distributor> node if you do not use it. The
system default of a 1-minute quantum duration is used in this case.

<Distributor> Example

The following example shows how to create a <Distributors> node. One distributor runs on the server THORFINN, using a
distributor quantum period of 30 seconds and a thread pool size of 1. The other distributor runs on the server BIFROST, using a
distributor quantum period of 15 seconds and a thread pool size of 3:

<Distributors>
 <Distributor>
 <SystemName>THORFINN</SystemName>
 <ThreadPoolSize>1</ThreadPoolSize>
 <QuantumDuration>P0DT00H00M30S</QuantumDuration>
 </Distributor>
 <Distributor>
 <SystemName>BIFROST</SystemName>
 <ThreadPoolSize>3</ThreadPoolSize>
 <QuantumDuration>P0DT00H00M15S</QuantumDuration>
 </Distributor>
</Distributors>

See Also

<Distributor> Node

<QuantumDuration> Element (<Distributor>)

<SystemName> Element (<Distributor>)

<ThreadPoolSize> Element(<Distributor>)

SQL Server Notification Services Books Online

Defining Application Execution Settings
To maintain execution information about your application, you can create an <ApplicationExecutionSettings> node in your
application definition file (ADF).

Note You must exclude the <ApplicationExecutionSettings> node from the ADF if you choose not to specify
application settings. System defaults are used in that case.

The <ApplicationExecutionSettings> node has ten optional child elements:

<QuantumDuration>
<ChronicleQuantumLimit>
<SubscriptionQuantumLimit>
<ProcessEventsInOrder>
<PerformanceQueryInterval>
<EventThrottle>
<SubscriptionThrottle>
<NotificationThrottle>
<DistributorLogging>
<Vacuum>

<ApplicationExecutionSettings> Example

The following example shows how to create an <ApplicationExecutionSettings> node. It sets a generator quantum period of 5
minutes, with a chronicle quantum limit of 25 quanta (125 minutes, or just over 2 hours), and a subscription quantum limit of 12
quanta (60 minutes, or 1 hour). It uses sub-quantum sequencing, and runs the performance query once every hour. The event and
notification throttles both allow 5,000 records to be processed per quantum, while the subscription throttle allows 3,000 records
to be processed per quantum. The distributor logs notification pre-delivery information and notification delivery status, but not
the notification text. Vacuuming runs from 3:00 A.M. to 5:00 A.M. and from 11:00 P.M. to 1:00 A.M. every day, removing data older
than 3 days:

<ApplicationExecutionSettings>
 <QuantumDuration>P0DT00H05M00S</QuantumDuration>
 <ChronicleQuantumLimit>25</ChronicleQuantumLimit>
 <SubscriptionQuantumLimit>12</SubscriptionQuantumLimit>
 <ProcessEventsInOrder>true</ProcessEventsInOrder>
 <PerformanceQueryInterval>P0DT01H00M00S</PerformanceQueryInterval>
 <EventThrottle>5000</EventThrottle>
 <SubscriptionThrottle>3000</SubscriptionThrottle>
 <NotificationThrottle>5000</NotificationThrottle>
 <DistributorLogging>
 <LogBeforeDeliveryAttempts>true</LogBeforeDeliveryAttempts>
 <LogStatusInfo>true</LogStatusInfo>
 <LogNotificationText>false</LogNotificationText>
 </DistributorLogging>
 <Vacuum>
 <RetentionAge>P3DT00H00M00S</RetentionAge>
 <VacuumSchedule>
 <Schedule>
 <StartTime>23:00:00</StartTime>
 <Duration>P0DT02H00M00S</Duration>
 </Schedule>
 <Schedule>
 <StartTime>03:00:00</StartTime>
 <Duration>P0DT02H00M00S</Duration>
 </Schedule>
 </VacuumSchedule>
 </Vacuum>
</ApplicationExecutionSettings>

See Also

<ApplicationExecutionSettings> Node

Defining the <ChronicleQuantumLimit> Element

Defining the <DistributorLogging> Node

Defining the <EventThrottle> Element

Defining the <NotificationThrottle> Element

Defining the <PerformanceQueryInterval> Element

Defining the <ProcessEventsInOrder> Element

Defining the <QuantumDuration> Element

Defining the <SubscriptionQuantumLimit> Element

Defining the <SubscriptionThrottle> Element

Defining the <Vacuum> Node

SQL Server Notification Services Books Online

Defining the <QuantumDuration> Element
Defining the <QuantumDuration> Element

A quantum is a block of time used by Notification Services to determine how frequently to trigger system functions. You can use
the <QuantumDuration> element to trade off between application speed and resource consumption, based on the specifics of
your system.

The <QuantumDuration> element determines how frequently the generator fires to process the application rules. You can use
the <QuantumDuration> setting to optimize generator performance relative to the workload on the server. Smaller quantum
durations cause more frequent firing of the generator, which means more frequent rule processing and greater application speed.
Smaller quantum durations also mean that the generator takes up more processor time overall, and therefore requires more
resources on the server.

The <QuantumDuration> element is optional. If it is not specified, the generator default of a 1-minute quantum duration is
used.

<QuantumDuration> Example

The following example shows how to create a <QuantumDuration> element. It sets the quantum duration period to 5 minutes.

<ApplicationExecutionSettings>
 <QuantumDuration>P0DT00H05M00S</QuantumDuration>
 ...
</ApplicationExecutionSettings>

See Also

<QuantumDuration> Element

SQL Server Notification Services Books Online

Defining the <ChronicleQuantumLimit> Element
Defining the <ChronicleQuantumLimit> Element

The Notification Services system sometimes finds it necessary to skip the work that is due to be processed within a particular
quantum, because the system is overloaded or down altogether. The <ChronicleQuantumLimit> element in the
<ApplicationExecutionSettings> node is used to determine the number of quanta prior to the current quantum in which event
chronicle rules must be processed. If the generator falls behind, then work in quanta earlier than those specified by
<ChronicleQuantumLimit> is skipped so that the generator can catch up.

The <ChronicleQuantumLimit> value can be used to optimize generator performance relative to the workload on the server.
Smaller quantum limits permit the generator to do less work when falling behind, and therefore it can catch up more easily. With
smaller quantum limits, more event chronicle rules can go unprocessed, which will affect the event data that goes into the system
and the notification data that it generates.

You can use the <ChronicleQuantumLimit> value to trade off between application speed and data correctness, based on the
specifics of your system. You must specify the <ChronicleQuantumLimit> value as a non-negative integer.

<ChronicleQuantumLimit> is optional. If it is not specified, the chronicle quantum limit default of 1,440 quanta is used (1 day if
the default <QuantumDuration> of 1 minute is used).

You can specify a value of 0 for the <ChronicleQuantumLimit> element to indicate that all chronicle rules for all quanta should
always be processed.

Note You must exclude the <ChronicleQuantumLimit> element from the <ApplicationExecutionSettings>
node if you do not specify a value for it. The system default is used in this case.

<ChronicleQuantumLimit> Example

The following example shows how to create a <ChronicleQuantumLimit> element. It sets the chronicle quantum limit to 25
quanta.

<ApplicationExecutionSettings>
 ...
 <ChronicleQuantumLimit>25</ChronicleQuantumLimit>
 ...
</ApplicationExecutionSettings>

See Also

<ChronicleQuantumLimit> Element

SQL Server Notification Services Books Online

Chronicle Quantum Limit Illustration
Chronicle Quantum Limit Illustration

In the following illustration, the Notification Services system has not been able to process quantum 1 through quantum 8, and
<ChronicleQuantumLimit> is set to 4.

The generator processes the event chronicle rules for the event batches (E9 – E12) that arrived in quanta 5 through 8, which are
the last four quanta. If the <SubscriptionQuantumLimit> value has not been exceeded, the subscription event rules for event
batches E1 - E8 (which arrived prior to quantum 5), are also processed, but their event chronicle rules are not applied.

See Also

Defining the <SubscriptionQuantumLimit> Element

SQL Server Notification Services Books Online

Defining the <SubscriptionQuantumLimit> Element
Defining the <SubscriptionQuantumLimit> Element

The Notification Services system sometimes finds it necessary to skip the work that is due to be processed within a particular
quantum, because the system is overloaded or down altogether. The <SubscriptionQuantumLimit> element in the
<ApplicationExecutionSettings> node is used to determine the number of quanta prior to the current quantum in which
subscription rules (both event and scheduled) must be processed. If the generator falls behind, then work in quanta earlier than
those specified by <SubscriptionQuantumLimit> is skipped so that the generator can catch up.

The <SubscriptionQuantumLimit> value can be used to optimize generator performance relative to the workload on the
server. Smaller quantum limits permit the generator to do less work when falling behind, and therefore it can catch up more
easily. With smaller quantum limits, more subscription rules can go unprocessed, which might cause some notifications not to be
generated that otherwise would have been.

You can use the <SubscriptionQuantumLimit> value to trade off between application speed and data correctness, based on the
specifics of your system. You must specify the <SubscriptionQuantumLimit> value as a non-negative integer.

<SubscriptionQuantumLimit> is optional. If it is not specified, the subscription quantum limit default of 30 quanta is used (30
minutes if the default <QuantumDuration> of 1 minute is used).

You can specify a value of 0 for the <SubscriptionQuantumLimit> element to indicate that all subscription rules for all quanta
should always be processed.

Note You must exclude the <SubscriptionQuantumLimit> element from the <ApplicationExecutionSettings>
node if you do not specify a value for it. The system default is used in this case.

<SubscriptionQuantumLimit> Example

The following example shows how to create a <SubscriptionQuantumLimit> element. It sets the chronicle quantum limit to 12
quanta.

<ApplicationExecutionSettings>
 ...
 <SubscriptionQuantumLimit>12</SubscriptionQuantumLimit>
 ...
</ApplicationExecutionSettings>

See Also

<SubscriptionQuantumLimit> Element

SQL Server Notification Services Books Online

Subscription Quantum Limit Illustration
Subscription Quantum Limit Illustration

In the following illustration, the Notification Services system has not been able to process quantum 1 through quantum 8, and
<SubscriptionQuantumLimit> is set to 2.

The generator processes the subscription rules for all subscriptions that come up for processing in quanta 7 and 8, which are the
last two quanta. For any subscriptions that should have been processed prior to quantum 7, the subscription rules are skipped
and notifications are not generated.

SQL Server Notification Services Books Online

Defining the <ProcessEventsInOrder> Element
Defining the <ProcessEventsInOrder> Element

Notification Services provides two options for determining how application rules are processed. You can specify whether event
and subscription rules are fired for each event batch arrival time (known as sub-quantum sequencing), or whether they are fired
once per quantum period, regardless of event batch arrival time (known as quantum sequencing). These two modes provide you
with fine control in balancing data correctness against generator performance in your application.

Sub-quantum sequencing processes event batches in order of arrival. All event batches are processed one at a time in
chronological order. The system guarantees that each event batch is processed first by the event chronicle rule, and then by any
subscription event rules. Scheduled subscriptions are also processed chronologically, so they never contain events arriving in the
system after their scheduled processing times.

Quantum sequencing processes event batches in quantum order. Some systems do not require the strict in-order guarantee
provided by sub-quantum sequencing, and can take advantage of the performance benefit of not having to provide such a
guarantee. All event batches received within the quantum are processed together for efficiency as if the arrival time occurred just
after the last quantum duration expired. The generator processes all timed subscriptions as scheduled for the last moment of the
quantum period. Therefore the only ordering guarantee for rule firings within a quantum using quantum sequencing is the
following:

1. Event chronicle rules
2. Subscription event rules
3. Subscription scheduled rules

The <ProcessEventsInOrder> element of the <ApplicationExecutionSettings> node documents this information. You must
specify a Boolean value for this element, with true indicating that sub-quantum sequencing has been selected and false
indicating that quantum sequencing has been selected.

Note You must exclude the <ProcessEventsInOrder> element from the <ApplicationExecutionSettings> node if
you do not specify a value for it. Quantum sequencing is used in this case.

<ProcessEventsInOrder> Example

The following example shows how to create a <ProcessEventsInOrder> element. It specifies that sub-quantum sequencing is
used by this application.

<ApplicationExecutionSettings>
 ...
 <ProcessEventsInOrder>true</ProcessEventsInOrder>
 ...
</ApplicationExecutionSettings>

See Also

<ProcessEventsInOrder> Element

Quantum Sequencing Illustration

Sub-Quantum Sequencing Illustration

SQL Server Notification Services Books Online

Quantum Sequencing Illustration
Quantum Sequencing Illustration

Quantum sequencing of eight quanta is shown in the following illustration.

Processing of these quanta results in the following rule firing schedule:

Quantum Event batch and timed subscription
processing

Process quantum 1 Event batches E1, E2, and E3 are processed
together.

No timed subscriptions to process.

Process quantum 2 Event batches E4 and E5 are processed
together.

Timed subscription T1 is processed.

Process quantum 3 Event batches E6 and E7 are processed
together.

Timed subscription T2 is processed.

Process quantum 4 Event batch E8 is processed.

Timed subscriptions T3 and T4 are
processed together.

Process quantum 5 Event batches E9 and E10 are processed
together.

Timed subscription T5 is processed.

Process quantum 6 Event batch E11 is processed.

Timed subscriptions T6 and T7 are
processed together.

Process quantum 7 Event batch E12 is processed.

Timed subscriptions T8 and T9 are
processed together.

Process quantum 8 No event batches to process.

Timed subscriptions T10, T11, and T12 are
processed together.

SQL Server Notification Services Books Online

Sub-Quantum Sequencing Illustration
Sub-Quantum Sequencing Illustration

Sub-quantum sequencing of eight quanta is shown in the following illustration.

Processing of these quanta results in the following rule firing schedule:

Quantum Event batch and timed subscription
processing

Process quantum 1 Event batches E1, E2, and E3 are processed
sequentially.

No timed subscriptions to process.

Process quantum 2 Event batches E4 and E5 are processed
sequentially.

Timed subscription T1 is processed.

Process quantum 3 Event batch E6 is processed.

Timed subscription T2 is processed.

Event batch E7 is processed.

Process quantum 4 Event batch E8 is processed.

Timed subscriptions T3 and T4 are
processed together.

Process quantum 5 Timed subscription T5 is processed.

Event batches E9 and E10 are processed
sequentially.

Process quantum 6 Timed subscription T6 is processed.

Event batch E11 is processed.

Timed subscription T7 is processed.

Process quantum 7 Timed subscriptions T8 and T9 are
processed together.

Event batch E12 is processed.

Process quantum 8 Timed subscriptions T10, T11, and T12 are
processed together.

No event batches to process.

SQL Server Notification Services Books Online

Defining the <PerformanceQueryInterval> Element
Defining the <PerformanceQueryInterval> Element

Some Notification Services performance counters are updated at periodic intervals rather than continuously. The
<PerformanceQueryInterval> element of the <ApplicationExecutionSettings> node specifies the intervals at which these
counters are updated.

Calculating the performance counters requires an amount of processing overhead that might affect system performance. You can
use the <PerformanceQueryInterval> setting to trade off between the frequency of counter updates and the performance of
the system.

Note You must exclude the <PerformanceQueryInterval> element from the <ApplicationExecutionSettings>
node if you do not specify a value for it. The default value of 1 minute is used in this case.

The following performance counters are affected by the <PerformanceQueryInterval> value:

Event Batches Awaiting Generation
Event Batches in Collection
Event Batches Submitted
Total Events
Subscribers Added
Subscribers Enabled
Subscribers Disabled
Subscriptions Added
Subscriptions Added per Minute
Subscriptions Enabled
Subscriptions Disabled
Batches in Generation
Batches Awaiting Distribution
Notifications Awaiting Distribution
Batches Successfully Delivered
Notifications Successfully Delivered
Batches Failed Delivery
Notifications Failed Delivery
Batches in Retry
Notifications in Retry
Batches Expired
Notifications Expired

These counters are updated only on the server that hosts the generator, and only when the application is enabled.

The remaining counters do not require as much overhead to calculate, and so are not affected by the
<PerformanceQueryInterval> setting.

<PerformanceQueryInterval> Example

The following example shows how to create a <PerformanceQueryInterval> element. It specifies that the affected performance
counters are updated once per hour.

<ApplicationExecutionSettings>
 ...
 <PerformanceQueryInterval>P0DT01H00M00S</PerformanceQueryInterval>
 ...
</ApplicationExecutionSettings>

See Also

<PerformanceQueryInterval> Element

SQL Server Notification Services Books Online

Defining the <EventThrottle> Element
Defining the <EventThrottle> Element

The <EventThrottle> element in the <ApplicationExecutionSettings> node is used to determine the number of events per
event class that can be processed by the generator within a quantum period.

This setting is meant to provide a way to limit the number of events coming in to the system, in order to prevent malicious users
from generating very large numbers of events as part of a denial-of-service attack. If the <EventThrottle> value is exceeded, an
error is thrown in order to alert the system administrator to the potential problem. Notification Services aborts a quantum when
the <EventThrottle> value is exceeded.

<EventThrottle> is optional. If it is not specified, the event throttle default of 1,000 is used.

You can specify a value of 0 for the <EventThrottle> element to allow an unlimited number of events per event class to be
processed.

Note You must exclude the <EventThrottle> element from the <ApplicationExecutionSettings> node if you do
not specify a value for it. The system default is used in this case.

<EventThrottle> Example

The following example shows how to create an <EventThrottle> element. It specifies that 5000 events per event class can be
processed per quantum.

<ApplicationExecutionSettings>
 ...
 <EventThrottle>5000</EventThrottle>
 ...
</ApplicationExecutionSettings>

See Also

<EventThrottle> Element

SQL Server Notification Services Books Online

Defining the <SubscriptionThrottle> Element
Defining the <SubscriptionThrottle> Element

The <SubscriptionThrottle> element in the <ApplicationExecutionSettings> node is used to determine, per rule firing, the
number of subscriptions of each subscription class that can be processed by the generator within a quantum period. This setting
is only used with subscription scheduled rules.

This setting is meant to provide a way to limit the number of subscriptions processed by the system, in order to prevent malicious
users from generating very large numbers of subscriptions as part of a denial-of-service attack. If the <SubscriptionThrottle>
value is exceeded, an error is thrown in order to alert the system administrator to the potential problem. Notification Services
aborts a quantum when the <SubscriptionThrottle> value is exceeded.

<SubscriptionThrottle> is optional. If it is not specified, the subscription throttle default of 1,000 is used.

You can specify a value of 0 for the <SubscriptionThrottle> element to allow an unlimited number of subscriptions per
subscription class to be processed.

Note You must exclude the <SubscriptionThrottle> element from the <ApplicationExecutionSettings> node if
you do not specify a value for it. The system default is used in this case.

<SubscriptionThrottle> Example

The following example shows how to create a <SubscriptionThrottle> element. It specifies that 3000 subscriptions per
subscription class can be processed per quantum.

<ApplicationExecutionSettings>
 ...
 <SubscriptionThrottle>3000</SubscriptionThrottle>
 ...
</ApplicationExecutionSettings>

See Also

<SubscriptionThrottle> Element

SQL Server Notification Services Books Online

Defining the <NotificationThrottle> Element
Defining the <NotificationThrottle> Element

The <NotificationThrottle> element in the <ApplicationExecutionSettings> node is used to determine, per rule firing, the
number of notifications of each notification class that can be processed by the generator within a quantum period.

This setting is meant to provide a way to limit the number of notifications generated by the system, in order to prevent malicious
users from generating very large numbers of notifications as part of a denial-of-service attack. If the <NotificationThrottle>
value is exceeded, an error is thrown in order to alert the system administrator to the potential problem. Notification Services
causes the subscription rules associated with notification generation to fail when the <NotificationThrottle> value is exceeded.
Other rules within the quantum and all future quantum processing proceed normally.

<NotificationThrottle> is optional. If it is not specified, the notification throttle default of 1,000 is used.

You can specify a value of 0 for the <NotificationThrottle> element to allow an unlimited number of notifications per
notification class to be processed.

Note You must exclude the <NotificationThrottle> element from the <ApplicationExecutionSettings> node if
you do not specify a value for it. The system default is used in this case.

<NotificationThrottle> Example

The following example shows how to create a <NotificationThrottle> element. It specifies that 5000 notifications per
notification class can be processed per quantum.

<ApplicationExecutionSettings>
 ...
 <NotificationThrottle>5000</NotificationThrottle>
 ...
</ApplicationExecutionSettings>

See Also

<NotificationThrottle> Element

SQL Server Notification Services Books Online

Defining the <DistributorLogging> Node
Defining the <DistributorLogging> Node

The distributor can maintain various levels of logging to keep track of notification delivery information. This information is
important when troubleshooting notification delivery issues, or in applications where notification delivery must be guaranteed
and audited. You can use the settings in the <DistributorLogging> node to configure the appropriate logging level for your
application. The Notification Services default of using the highest level of logging is used, which also uses more system resources
and might affect application speed.

Note You must exclude the <DistributorLogging> node from the <ApplicationExecutionSettings> node if you
do not specify a value for it.

The <LogBeforeDeliveryAttempt> element contains a Boolean value that indicates whether the distributor makes an entry in
the distributor log before sending out a notification message. The default of this element is true.

The <LogStatusInfo> element contains a Boolean value that indicates whether the distributor logs the delivery status
information for each notification message it has attempted to send. The default of this element is true.

The <LogNotificationText> element contains a Boolean value that indicates whether or not the distributor logs the full text of
any notification delivery information returned from the delivery protocol. Notification Services will always log information for a
failed delivery. Setting this option to true logs this information for successful deliveries as well. The default of this element is true.

Note Setting <LogNotificationText> to true is useful when getting your application up and running, but it can
have an adverse effect on performance in a production environment. Once you have your application deployed, you
should consider setting the <LogNotificationText> value to false if you do not specifically require the information
that it provides.

Note All the <DistributorLogging> child elements are optional. If you do not specify a value for any one of them,
you must exclude it from the <DistributorLogging> node.

<DistributorLogging> Example

The following example shows how to create a <DistributorLogging> node. It specifies that the distributor logs all notification
pre-delivery information and notification delivery status, but does not log the notification text itself.

<ApplicationExecutionSettings>
 ...
 <DistributorLogging>
 <LogBeforeDeliveryAttempts>true</LogBeforeDeliveryAttempts>
 <LogStatusInfo>true</LogStatusInfo>
 <LogNotificationText>false</LogNotificationText>
 </DistributorLogging>
 ...
</ApplicationExecutionSettings>

See Also

<DistributorLogging> Node

<LogBeforeDeliveryAttempts> Element

<LogNotificationText> Element

<LogStatusInfo> Element

SQL Server Notification Services Books Online

Defining the <Vacuum> Node
Defining the <Vacuum> Node

The Notification Services vacuumer function deletes obsolete event, notification, and batch header data from the system. It
operates automatically, according to the information specified in the <Vacuum> element of the
<ApplicationExecutionSettings> node. It runs based on the intervals specified in the <Schedule> element, and uses the
<RetentionAge> value to determine what data is expired and available for deletion.

Vacuuming is essential because it reclaims disk space. By keeping the number of records in the system to a minimum, it also
improves the speed with which SQL Server can search the application tables.

The following tables are vacuumed:

NSQuantum1
NSRuleFirings1
NSEventClassNameEventBatches
NSEventClassNameEvents
NSNotificationClassNameNotificationBatches
NSNotificationClassNameNotifications
NSDistributorWorkItems
NSDistributionLog

There is one vacuumer per application.

In general, it is best to schedule the vacuumer to operate at low usage times for your application. You can tune the vacuuming
intervals to suit the needs of your application. Less frequent or shorter vacuuming intervals decrease the vacuumer's use of
system resources, but also lead to an increase in disk space requirements to accommodate the expired but unremoved data. Lack
of vacuuming can also degrade application performance, as table sizes increase and extend the length of time needed to perform
database operations on them.

The default <RetentionAge> value is P7DT0H or 1 week.

All /VacuumSchedule/Schedule/StartTime values must be specified in UTC format.

The default /VacuumSchedule/Schedule/Duration value is 6 hours, or until the next schedule start time, whichever comes
first. For more information about setting the vacuumer schedule, see Running the Vacuumer.

<Vacuum> Example

The following example shows how to create a <Vacuum> node. It specifies that vacuuming runs from 3:00 A.M. to 5:00 A.M. and
from 11:00 P.M. to 1:00 A.M. every day, removing data older than 3 days.

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 <RetentionAge>P3DT00H00M00S</RetentionAge>
 <VacuumSchedule>
 <Schedule>
 <StartTime>23:00:00</StartTime>
 <Duration>P0DT02H00M00S</Duration>
 </Schedule>
 <Schedule>
 <StartTime>03:00:00</StartTime>
 <Duration>P0DT02H00M00S</Duration>
 </Schedule>
 </VacuumSchedule>
 </Vacuum>
</ApplicationExecutionSettings>

See Also

<RetentionAge> Element

<Vacuum> Node

<VacuumSchedule> Node

SQL Server Notification Services Books Online

Running the Vacuumer
Running the Vacuumer

The vacuumer runs based on the information defined in the <Vacuum> element of the <ApplicationExecutionSettings>
node. The vacuumer cannot be enabled or disabled individually; it can only be enabled or disabled along with the entire
application. Notification Services restarts the vacuumer automatically if it terminates abnormally.

When the vacuumer starts, it reads the system clock on the database server. It then identifies all expired data by comparing the
current time with the interval specified in the <RetentionAge> element.

For example, assume the following is true:

The current time is 22:00:00 on January 28.
The retention age is set to three days.
There is event data that is time-stamped at 19:00:00 on January 25.

Given these facts, the event data expired at 19:00:00 on January 28, so the vacuumer identifies and deletes it.

Note The vacuumer checks once per minute to see if it should run. This can lead to a variation of up to a minute
between the actual duration of the vacuuming interval and the interval specified by the user. In cases where the
vacuumer starts after the specified start time, but before a minute has elapsed, the duration of the vacuuming period
will be shorter by that time difference.

The vacuumer limits the number of records it deletes in one unit of work, based on a maximum number of records per table,
thereby limiting the duration of each unit of work. This allows the vacuumer to function without overtaxing system resources and
application processing time.

Each time the vacuumer completes a unit of work, it checks the system clock to see if it has exceeded the value of the
/ApplicationExecutionSettings/Vacuum/VacuumSchedule/Schedule/Duration element, if one is specified. It also checks
the database to see if its associated application has been disabled. If either of these events occurs, then the vacuumer stops, logs a
message in the event log, and sleeps until the next scheduled vacuuming interval.

Vacuuming intervals are not permitted to overlap. Notification Services determines when they would overlap, and stops the
earlier interval when the later one starts. For example, these intervals:

<StartTime>: 13:00 <Duration>: 2 hours
<StartTime>: 14:00 <Duration>: 2 hours

are converted to:

<StartTime>: 13:00 <Duration>: 1 hour
<StartTime>: 14:00 <Duration>: 2 hours

The vacuumer creates entries in the event log to report notable actions or errors.

SQL Server Notification Services Books Online

Events
In Notification Services, you must define each event that your application will accept. You document these event definitions as
event classes in your application definition file (ADF). When the notification application is set up using NSControl Create, the
event class information is used to implement SQL Server objects (like tables and indexes) that will manage the data for this event
class.

Components called event providers collect event data and write it to Notification Services. You must document in the ADF any
event providers that your application uses.

The topics that the Events section covers are described in the following table.

Topic Description
Collecting Events with an Event
Provider

Describes how event providers collect and submit
events to the system.

Event Chronicles Discusses how event chronicle tables and event
chronicle rules can be used to provide event data
to scheduled subscriptions, and to prevent
redundant notifications for event-driven
subscriptions.

Defining an Event Class Discusses how to define an event class in your
ADF.

Defining an Event Provider Discusses how to define an event provider in your
ADF.

Standard Event Providers Describes the standard event providers that come
with Notification Services, and discusses how to
implement them.

SQL Server Notification Services Books Online

Collecting Events with an Event Provider
An event provider collects event data and transmits it to Notification Services. Each collected event is persisted as a single row in
the event table of the application database.

Event providers can monitor and gather data in a number of ways, such as:

Watching directories for file additions, and then creating events based on the content of the added files.
Checking system and application log files for certain types of entries.
Trapping alerts from applications.
Monitoring Web pages.
Tracking changes in database tables.
Gathering data from Web services.

An event provider can gather data from any resource you want to use, provided that you can write an application that retrieves
events from this resource.

SQL Server Notification Services Books Online

Implementing Event Providers
Implementing Event Providers

Event providers use three means to write data to the application database:

Event and EventCollector classes: An Event object is created that encapsulates the data of a single event. This Event
object is handed off to an EventCollector object, which writes the event to the event table.
EventLoader class: An EventLoader object is created that takes an XML document or a Stream object as a source of
events. It writes the events to the event table.
Event collection stored procedures: SQL Server stored procedures are called to write data from another database table or
query to the event table.

Event providers are implemented as assemblies that monitor event sources and gather information. An event provider can be
hosted by Notification Services, or it can operate as an independent non-hosted event provider.

To be hosted by Notification Services, the event provider must implement one of two interfaces. Continuous event providers
implement the IEventProvider interface, while scheduled event providers implement the IScheduledEventProvider interface.
These interfaces allow Notification Services to make calls to initialize, run, and stop an event provider.

Event providers can also be implemented to run independently of Notification Services. These independent event providers do
not implement the IEventProvider or IScheduledEventProvider interfaces. They interact with Notification Services only to
introduce events. These independent event providers are either standalone assemblies or they are hosted by another application
platform such as Internet Information Services (IIS).

Document all event providers used by your application, both hosted and independent, in the <Providers> node of the application
definition file (ADF). This allows Notification Services to tag every event batch with the name of the event provider that submitted
it, which can be helpful information when you are troubleshooting or generating system statistics.

Standard Event Providers

To help you get a Notification Services application developed and deployed quickly, Notification Services comes with two
standard event providers. In addition, you can develop custom event providers that are tailored to your environment and event
sources.

You can use the standard event providers in your application by specifying predefined values in the <Provider> node in the ADF.
You customize event providers for use in your application by providing the values for their initialization arguments. For more
information about using these event providers, see Standard Event Providers.

The Notification Services API provides the IEventProvider and IScheduledEventProvider interfaces; the Event, EventLoader,
and EventCollector classes; and some SQL Server stored procedures to assist you in creating custom event providers. For more
information about this topic, see Developing a Custom Event Provider.

SQL Server Notification Services Books Online

Event Collection Models
Event Collection Models

Two sets of event collection models are used by Notification Services event providers. One set, the data gathering models,
determines how the event provider collects events. The other set, the data submission models, determines how the event collector
submits events to the application. Most event providers implement one model from each of the two sets.

Data Gathering Models

Your event provider can retrieve new information in one of two ways: pushing or pulling.

Push M odel

The event provider can wait for information to be pushed, or sent to it, when an event occurs. For example, a customer enters a
request using a form on your Web site. When she confirms the request through your user interface, you can include code that
calls the event provider dynamic-link library (DLL) and passes the information to it. In this case the event provider never looks for
new data. It always uses data pushed from the event source.

Pull M odel

Alternatively, the event provider can pull information from a source by checking that source every so often and gathering any
new or updated data it finds. (The pull task of periodically checking for and retrieving updated data is also referred to as polling.)

For example, suppose you want to be notified every time the headline story on your favorite news page changes. You can
implement an event provider that monitors that page and looks for changes to the headline text. When the text does change, the
event provider gathers the new headline data for input into the Notification Services system. The event provider in this case is
responsible for pulling the data it needs. Data is never sent to the event provider from the event source.

Data Submission Models

Your event provider submits new data to your application based on one of two models: either on a schedule, or on the occurrence
of an event that meets predefined criteria.

Scheduled M odel

A scheduled event provider runs periodically, based on the settings implemented by the application developer in the application
definition file (ADF). It starts running, retrieves and submits any new event data, and then shuts down until the next scheduled
trigger time.

For example, suppose you want your event provider to periodically provide new stock price data. You can implement a scheduled
event provider that runs every five minutes and calls a Web service to get the latest stock price information. The event provider
here runs only on the schedule determined by the settings in the /Providers/HostedProvider/Schedule section of the ADF.

Event-Driven M odel

An event-driven event provider typically runs continuously, monitoring an event source. Only when data is made available that
meets its criteria for collection does it create and submit an event. Alternatively, an event-driven event provider can also run in
response to a callback function or some other external stimulus. This external function is what determines that there is valid event
data to collect, and it uses the event provider as the means of collecting that data.

For example, imagine that you want to provide notifications composed of aggregated financial data to members of your
accounting department. You create a file with this data, and then add the file to an operating system directory that you are
monitoring with an event provider. The addition of this file triggers the event provider, which reads the contents of the new file,
and writes an event containing the relevant information to Notification Services. In this case, the event provider creates events
only in response to file additions to a particular directory. If there are no changes to that directory, then the event provider does
not create and submit any events.

SQL Server Notification Services Books Online

Event Chronicles
In Notification Services, events are always processed in batches. An event batch consists of one or more events. An event batch is
processed by the notification generation routine only once (except for limited circumstances involving system failures or restarts),
and event-driven notifications are produced at this time. After notification generation is complete, the event data in that batch is
treated as expired, and is later removed from the system.

However, you might still need to use this event data to produce notifications for scheduled subscriptions, or for other application
requirements such as data warehousing. You can use event chronicle tables and rules to store and maintain event data from
processed event batches. Event chronicle rules maintain current event information in event chronicle tables.

For more information about event chronicles, see Event Chronicle Tables and Event Chronicle Rules.

SQL Server Notification Services Books Online

Event Chronicle Tables
Event Chronicle Tables

An event chronicle table is the mechanism for maintaining current event information within Notification Services. Two common
reasons for using event chronicle tables are to provide data for scheduled subscriptions, by updating the table with current event
data each time an event batch is processed, and to store information about the ranges or history of the event data, for use in
preventing duplicate notifications. You can define multiple event chronicle tables if your application requires saving event
information for these or other purposes.

Document event chronicle table information in the /EventClasses/EventClass/Chronicles section of your application definition
file (ADF).

SQL Server Notification Services Books Online

Event Chronicle Rules
Event Chronicle Rules

If you choose to use event chronicle tables in your application, you must define the event chronicle rules that maintain their data.
You define Transact-SQL queries within the rule to insert, update, or delete data in the chronicle tables, in order to keep it in a
usable state for your application. For instance, each time a new event batch is processed, you might want to delete all existing data
in an event chronicle table and then insert the fresh event data.

Event chronicle rules can be defined in the <ChronicleRule> node of an event class, or in the <EventRules> node of a
subscription class. If you want the event chronicle rule to affect chronicle data before notifications are generated, you should
define it in the <ChronicleRule> node of an event class. If you want the event chronicle rule to affect chronicle data after
notifications are generated, you should define it in the <EventRules> node of a subscription class.

If the event chronicle rule is specified in the event class <ChronicleRule> node, it is run each time the generator processes an
event batch that contains events of that event class. If it is specified in the subscription class <EventRules> node, it is run each
time event-driven notifications are generated for that subscription class.

In addition to event chronicle rules, notification generation rules and subscription chronicle rules are also defined as part of
subscription classes. The execution of the event class rules and subscription class rules depends on the arrival of event batches for
the event class. The rules specified in the event class <ChronicleRule> node run first, followed by any rules specified in the
subscription class <EventRules> node. If any of the <ChronicleRule> rules fail to execute, all <EventRules> rules associated
with the same event class are also marked as failed for the remainder of the current generator quantum. Any rules specified in the
subscription class <ScheduledRules> node execute when any scheduled subscription of that subscription class comes due, so
the success or failure of <ChronicleRule> or <EventRules> rules has no impact on their execution schedule.

See Also

Subscription Chronicles

Subscription Rules

SQL Server Notification Services Books Online

Example: Providing Data to Scheduled Subscriptions
Example: Providing Data to Scheduled Subscriptions

The following example shows the use of an event chronicle table to provide event data for scheduled subscriptions. In this
example, a weather update application notifies users about the forecast for their area each day.

Every hour on the hour, weather information is updated in the application database. Your scheduled subscription is defined to
give you a weather update notification at 08:15 GMT every weekday.

At 08:00 GMT, a new batch of events arrives with the latest weather information. This information is used to generate any event-
driven subscriptions, and then is used to refresh the information in the WeatherEventChron event chronicle table, as shown in
the following Transact-SQL code:

<EventClasses>
 <EventClass>
 ...
 <ChronicleRule>
 <RuleName>WeatherChronUpdate</RuleName>
 <!-- Delete all current WeatherEventChron records, and then
 insert the latest forecast records into WeatherEventChron -->
 <Action>
 DELETE WeatherEventChron
 INSERT WeatherEventChron
 (EventId, Location, Forecast)
 SELECT EventId, Location, Forecast
 FROM WeatherEvents
 </Action>
 </ChronicleRule>
 ...
 </EventClass>
</EventClasses>

The notification generation rule defined in a subscription scheduled rule for this application uses the event chronicle table to
provide event data for its scheduled subscriptions. Using an event chronicle table allows it to provide this information quickly,
from internal database tables, instead of retrieving this information from an event provider each time a scheduled subscription is
due:

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRule>
 <RuleName>WeatherScheduledSubs</RuleName>
 <!-- Provide data from WeatherEventChron
 based on a location match. -->
 <Action>
 SELECT dbo.WeatherNotificationNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale,
 C.Location, C.Forecast)
 FROM WeatherSubscriptions S JOIN WeatherEventChron C
 ON S.Location = C.Location
 </Action>
 </ScheduledRule>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

SQL Server Notification Services Books Online

Example: Comparing Event Data to Prevent Duplicate
Notifications
Example: Comparing Event Data to Prevent Duplicate Notifications

The following example shows the use of an event chronicle table to avoid redundant notifications based on previously received
event data — only new, unique data is sent out to subscribers. In this example, a news update application notifies users about the
new headlines on a particular news Web site.

Your event-driven subscription is defined to notify you any time a new headline is posted to the news Web site. The news Web
site provides no way for the event provider to know when the headline changes, so the event provider collects the contents of the
headline element every 15 minutes. The data for the morning is shown in the following table.

Time in News headline
09:00 GMT Political Gridlock in Olympia
09:15 GMT Political Gridlock in Olympia
09:30 GMT Wildfire in the Cascades

You receive a notification based on the 09:00 GMT data, containing the current headline, "Political Gridlock in Olympia." After the
event batch is processed and your notification is generated, a row for the current headline is inserted in the event chronicle table
by an event chronicle rule that is defined for this application.

The notification generation rule defined in the subscription rules for this application uses the event chronicle table to prevent
duplicate notifications. It does this by excluding any events whose headline value already exists in the event chronicle table:

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 <RuleName>GenerateNewsNotifications</RuleName>
 <!-- Provide Headline data that does not
 already exist in NewsEventChron. -->
 <Action>
 SELECT dbo.NewsNotificationNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale,
 E.Headline, E.BrowseBackURL)
 FROM NewsSubscriptions S, NewsEvents E
 WHERE E.Headline
 NOT IN (SELECT Headline from NewsEventChron)
 INSERT NewsEventChron(Headline)
 SELECT NewsEvents.Headline
 FROM NewsEvents
 WHERE NewsEvents.Headline
 NOT IN (SELECT Headline FROM NewsEventChron)
 </Action>
 </EventRule>
 </EventRules>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

Based on this example, the notification process proceeds as follows:

The first headline, "Political Gridlock in Olympia," is not in the chronicle table, and is sent to you as a notification. The
chronicle table is then updated with this headline.
The second headline, "Political Gridlock in Olympia," is identical to an existing record (from the first headline) in the
chronicle table. It is not sent to you, and the chronicle table is not updated.
The third headline, "Wildfire in the Cascades," is not in the chronicle table, and is sent to you as a notification. The chronicle
table is then updated with this headline.

SQL Server Notification Services Books Online

Example: Using Event Data High Values to Prevent Duplicate
Notifications
Example: Using Event Data High Values to Prevent Duplicate Notifications

The following example shows the use of an event chronicle table to prevent redundant notifications based on the highest values
for event data during a specified time period. In this example, a stock notification application provides users with notifications
when their selected stocks cross predefined thresholds.

The application gets new stock event data every 20 minutes from a Web service. The data for the morning is shown in the
following table.

Time in Event data stock symbol Event data stock price ($USD)
09:00 GMT AWKS 69.98
09:20 GMT AWKS 70.35
09:40 GMT AWKS 70.87
10:00 GMT AWKS 71.55
10:20 GMT AWKS 72.00

Your own event-driven subscription is for a notification when AWKS stock reaches a value of $71.00 (US dollars) or greater. You
therefore receive a notification based on the 10:00 GMT data. After the event batch is processed and your notification is
generated, the high value for the day so far, $71.55, is entered or updated in the event chronicle table by an event chronicle rule
that is defined for this application.

The 10:20 GMT event data arrives for processing. The notification generation rule defined in the subscription rules for this
application uses the event chronicle table to prevent duplicate notifications. It does this by excluding any subscriptions whose
trigger price has already been passed today, based on the value in the event chronicle table:

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 <RuleName>GenerateStockNotifications</RuleName>
 <!-- Provide notifications to subscriptions
 whose trigger price is between the new price
 and the last high price. -->
 <Action>
 SELECT dbo.StockNotificationNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale,
 E.StockSymbol, E.StockPrice)
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 WHERE S.StockTriggerPrice <= E.StockPrice
 AND S.StockTriggerPrice > C.StockHighPrice
 INSERT StockEventChron(StockSymbol, StockHighPrice)
 SELECT StockEvents.StockSymbol, StockEvents.StockPrice
 FROM StockEvents
 WHERE StockEvents.StockSymbol
 NOT IN (SELECT StockSymbol FROM StockEventChron)
 UPDATE StockEventChron
 SET StockEventChron.StockHighPrice = StockEvents.StockPrice
 FROM StockEvents JOIN StockEventChron
 ON StockEvents.StockSymbol = StockEventChron.StockSymbol
 WHERE StockEvents.StockPrice >
 StockEventChron.StockHighPrice
 </Action>
 </EventRule>
 </EventRules>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

Note The greater-than sign (>) and the less-than sign (<) are reserved characters in XML. If you need to use these
characters in Transact-SQL statements, you must use the entity references > and < to replace them. For more
information about using reserved characters in the application definition file (ADF), see Reserved Characters.

Any subscription with a trigger price of $71.55 or lower has already received a notification, and does not receive another. Any
subscription that has a trigger price greater than the stored high price of $71.55, but less than or equal to the new high price of
$72.00, receives a notification. After notifications are generated, the event chronicle rule again updates the event chronicle table
with the latest data.

SQL Server Notification Services Books Online

Defining an Event Class
You define an event that you want to gather for your Notification Services application by creating an event class in your
application definition file (ADF). You can define one or more event classes for each application you develop.

Event class information is stored in the /EventClasses/EventClass section of the ADF. You must create one <EventClass> node
for each event class that you require.

Follow these steps to define an event class:

1. Name your event class. For more information, see Naming the Event Class.
2. Define the fields in your event class. Event providers that gather events of this class use these field definitions to validate

their event data. These fields are used to provide the schema for the event table in SQL Server that stores the event data. For
more information, see Defining the Event Fields.

3. Optionally, designate the SQL Server filegroup on which the event table should be created. If you do not specify a filegroup,
the event table is automatically created on the default filegroup for the application database. For more information, see
Designating the Filegroup.

4. If you want to index your event table, provide Transact-SQL statements to create one or more indexes on your event table.
For more information, see Creating the Indexing Statement.

5. If you use event chronicle tables in your application, define a chronicle rule associated with this event class. The chronicle
rule defines queries that manipulate data in one or more event chronicle tables. For more information, see Defining
Chronicle Rules.

6. If you use event chronicle tables in your application, also define one or more event chronicle tables associated with this
event class. For more information, see Defining Chronicle Tables.

For more information about the <EventClass> node, see <EventClass> Node.

Note The Notification Services stored procedure NSDiagnosticEventClass can be used to gather information about
an event class. For more information about this stored procedure, see NSDiagnosticEventClass.

Example: Defining an Event Class

The following example shows how to create an <EventClass> node. It defines an event class that provides stock information to a
notification application:

<EventClasses>
 <!--Example definition of a stock event class. -->
 <EventClass>
 <!--Name of the event class. -->
 <EventClassName>StockEvents</EventClassName>
 <!--Event fields are defined in the Schema section. -->
 <Schema>
 <!--Define the stock symbol field. -->
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <!--Define the stock price field. -->
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>money</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 </Schema>
 <!--Name of the SQL Server filegroup
 on which the event table will be created. -->
 <FileGroup>Primary</FileGroup>
 <!--The Transact-SQL statement that creates
 an index on the event table. -->
 <IndexSqlSchema>
 <SqlStatement>
 CREATE CLUSTERED INDEX StockIndex
 ON StockEvents (StockSymbol)
 </SqlStatement>
 </IndexSqlSchema>

 <!--The rules that determine the state of the data
 in the event chronicle table. -->
 <ChronicleRule>
 <RuleName>StockEventChronRule</RuleName>
 <Action>
 INSERT StockEventChron
 (StockSymbol, StockHighPrice)
 SELECT StockEvents.StockSymbol, StockEvents.StockPrice
 FROM StockEvents
 WHERE StockEvents.StockSymbol
 NOT IN (SELECT StockSymbol FROM StockEventChron)
 UPDATE StockEventChron
 SET StockEventChron.StockHighPrice = StockEvents.StockPrice
 FROM StockEvents JOIN StockEventChron
 ON StockEvents.StockSymbol = StockEventChron.StockSymbol
 WHERE StockEvents.StockPrice > StockEventChron.StockHighPrice
 </Action>
 <ActionTimeout>P0DT00H05M00S</ActionTimeout>
 </ChronicleRule>
 <Chronicles>
 <!--The Transact-SQL statement that determines the
 structure of the event chronicle table. -->
 <Chronicle>
 <ChronicleName>StockEventChron</ChronicleName>
 <SqlSchema>
 <SqlStatement>
 IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'StockEventChron')
 DROP TABLE StockEventChron
 </SqlStatement>
 <SqlStatement>
 CREATE TABLE StockEventChron
 (
 StockSymbol char(10),
 StockHighPrice money
 PRIMARY KEY (StockSymbol)
)
 </SqlStatement>
 </SqlSchema>
 </Chronicle>
 </Chronicles>
 </EventClass>
</EventClasses>

SQL Server Notification Services Books Online

Naming the Event Class
Naming the Event Class

Document the event class name in the <EventClassName> element of the application definition file (ADF).

For more information, see <EventClassName> Element (<EventClass>).

Example

The following example shows how to create an <EventClassName> element. It specifies the name StockEvents for the event
class:

<EventClassName>StockEvents</EventClassName>

SQL Server Notification Services Books Online

Defining the Event Fields
Defining the Event Fields

Determine the fields you need for storing your event data. Document the event fields in the <Schema> section of the
<EventClass> node of the application definition file (ADF). Create one <Field> node in the <Schema> section for each field you
define.

The <Field> node has three child elements:

<FieldName> (required)
<FieldType> (required)
<FieldTypeMods> (optional)

For more information about the <Field> node, see <Field> Node (/EventClass/Schema).

<FieldName> Element

Document the field name in the required <FieldName> element.

For more information, see <FieldName> Element (/EventClass/Schema/Field).

<FieldType> Element

Document the field data type in the required <FieldType> element. The field data types must conform to SQL Server data types.

Important You cannot specify an event data field as an Identity column in SQL Server. Notification Services already
uses the Identity property to specify a system-generated EventId field.

For more information, see <FieldType> Element (/EventClass/Schema/Field).

<FieldTypeMods> Element

Document null and default settings in the optional <FieldTypeMods> element. These settings must conform to SQL Server
Transact-SQL syntax conventions.

Note You must exclude the <FieldTypeMods> element from the <Field> node if you do not use it.

For more information, see <FieldTypeMods> Element (/EventClass/Schema/Field).

Example

The following example shows how to create a <Schema> node. Two event fields are defined: a 10-character stock symbol field,
and a stock price field that accepts monetary data:

<Schema>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>money</FieldType>
 <FieldTypeMods>NOT NULL DEFAULT 10</FieldTypeMods>
 </Field>
</Schema>

SQL Server Notification Services Books Online

Designating the Filegroup
Designating the Filegroup

SQL Server provides filegroups to simplify database administration and allow optimal allocation of system data across multiple
physical disks. Optimized data allocation can be critical to the performance of high-volume Notification Services applications.

For more information about SQL Server filegroups, see "Files and Filegroups" in SQL Server Books Online.

Specify the name of the filegroup on which you want the event table created in the <FileGroup> element of the <EventClass>
node. The filegroup that you name must be one of the filegroups defined as a <NamedFileGroup> in the <Database> node.

Note You must exclude the <FileGroup> element from the <EventClass> node if you do not use it. Your event
table will be created on the default filegroup for the application database in this case.

For more information, see <FileGroup> Element (<EventClass>).

Example

The following example shows how to create a <FileGroup> element. The Primary filegroup is selected as the filegroup for the
event table:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 ...
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 ...
 </NamedFileGroup>
 ...
</Database>
...
<EventClasses>
 <EventClass>
 ...
 <FileGroup>Primary</FileGroup>
 ...
 </EventClass>
</EventClasses>

SQL Server Notification Services Books Online

Creating the Indexing Statement
Creating the Indexing Statement

You can significantly enhance the performance of a Notification Services application by creating appropriate indexes. Indexes
speed the location of particular records based on the data in a specified field. Indexes are automatically used when processing a
Transact-SQL query, provided that using the indexes improves query performance. (SQL Server makes this determination.)

For more information about SQL Server indexes, see "Table Indexes" in SQL Server Books Online. Microsoft strongly encourages
you to review this documentation to better understand how the performance of your application can be enhanced by this feature.

Note Indexes defined in the <IndexSqlSchema> node of an <EventClass> node are created against a SQL Server
view that bears an identical name to the event table. This view contains only the most recent events, instead of the full
set of all of the events in the system. Using this subset of events in a view significantly improves rule processing time
by reducing the number of records involved.

The <IndexSqlSchema> node has one required child element, <SqlStatement>. For more information, see <IndexSqlSchema>
Node (<EventClass>).

In an <IndexSqlSchema> node, use Transact-SQL CREATE INDEX statements in <SqlStatement> elements to define any
indexes you want. Use the event class name (for example, StockEvents) for the event table name. For more information, see
<SqlStatement> Element (/EventClass/IndexSqlSchema).

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you need to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the application definition file (ADF), see Reserved Characters.

Note You must exclude the <IndexSqlSchema> node from the <EventClass> node if you do not use it.

Example

The following example shows how to create an <IndexSqlSchema> node. It creates an index named StockIndex on the
StockSymbol field of the StockEvents table in the application database:

<IndexSqlSchema>
 <SqlStatement>
 CREATE INDEX StockIndex
 ON StockEvents (StockSymbol)
 </SqlStatement>
</IndexSqlSchema>

SQL Server Notification Services Books Online

Defining Chronicle Rules
Defining Chronicle Rules

If you are using event chronicle tables, you must define a chronicle rule. The chronicle rule contains the Transact-SQL queries that
manipulate the data in the event chronicle tables.

Document chronicle rule information in the <ChronicleRule> node of the <EventClass> node. Define the Transact-SQL queries
that determine the actions of the rule in the <Action> element.

Note You must exclude the <ChronicleRule> node from the <EventClass> node if you do not use it.

The <ChronicleRule> node has three child elements:

<RuleName> (required)
<Action> (required)
<ActionTimeout> (optional)

For more information, see <ChronicleRule> Node.

<RuleName> Element

Document the rule name in the <RuleName> element of the <ChronicleRule> node. For more information, see <RuleName>
Element (<ChronicleRule>).

<Action> Element

Define one or more Transact-SQL statements in the <Action> element, specifying the actions that this rule should take. You can
either define a Transact-SQL query directly, or call a stored procedure (of the format EXEC storedProcedureName) that provides
the same functionality. For more information about creating Transact-SQL queries, see "Query Fundamentals" in SQL Server
Books Online.

Use the event class name (for example, StockEvents) for the event table name.

All statements that you define in the <Action> element are part of the same transaction, so either they will all complete
successfully or they all will be rolled back. If the event chronicle rule fails, an error is written to the system log. Also, any event
subscription rules that are associated with events of this class are not fired.

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you need to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the application definition file (ADF), see Reserved Characters.

For more information, see <Action> Element (<ChronicleRule>).

<ActionTimeout> Element

The <ActionTimeout> element specifies the permitted length of time for statements in the <Action> element to complete. If
they are not completed during this time, the transaction containing them is rolled back, and an error is written to the system log.

Note You must exclude the <ActionTimeout> element from the <ChronicleRule> node if you do not use it.

For more information, see <ActionTimeout> Element (<ChronicleRule>).

Example

The following example shows how to create a <ChronicleRule> node. It creates the event chronicle rule StockEventChronRule,
which first inserts new stock data into the chronicle table, and then updates existing stock records in the chronicle table. This rule
is permitted five minutes to complete successfully:

<ChronicleRule>
 <RuleName>StockEventChronRule</RuleName>
 <Action>
 INSERT StockEventChron
 (StockSymbol, StockHighPrice)
 SELECT StockEvents.StockSymbol, StockEvents.StockPrice

 FROM StockEvents
 WHERE StockEvents.StockSymbol
 NOT IN (SELECT StockSymbol FROM StockEventChron)
 UPDATE StockEventChron
 SET StockEventChron.StockHighPrice = StockEvents.StockPrice
 FROM StockEvents JOIN StockEventChron
 ON StockEvents.StockSymbol = StockEventChron.StockSymbol
 WHERE StockEvents.StockPrice > StockEventChron.StockHighPrice
 </Action>
 <ActionTimeout>P0DT00H05M00S</ActionTimeout>
</ChronicleRule>

For more information about event chronicle rules, see Event Chronicles.

SQL Server Notification Services Books Online

Defining Chronicle Tables
Defining Chronicle Tables

Event chronicle tables can store event data for use by scheduled subscriptions, or for any other purpose that you devise for your
application. You can define one or more event chronicle tables.

Document chronicle table information in the /EventClasses/EventClass/Chronicles section of your application definition file
(ADF). Create one <Chronicle> node in the <Chronicles> section for each event chronicle table you want.

Note You must exclude the <Chronicles> node from the <EventClass> node if you do not use it.

The <Chronicle> node has two required child elements:

<ChronicleName>
<SqlSchema>

For more information, see <Chronicle> Node (/EventClass/Chronicles).

<ChronicleName> Element

Document the chronicle name in the <ChronicleName> element. For consistency, the chronicle name you define here and the
name of the chronicle table you create in the <SqlSchema> element should be the same. For more information, see
<ChronicleName> Element (/EventClass/Chronicles/Chronicle).

<SqlSchema> Node

Document the schemas for creating your event chronicle tables in the <SqlSchema> node. The <SqlSchema> node has one
required child element, <SqlStatement>. For more information, see <SqlSchema> Node (/EventClass/Chronicles/Chronicle).

At the top of the <SqlSchema> node, include a <SqlStatement> element with a Transact-SQL statement to check for any
chronicle tables you are about to create, and drop them if they exist. Then use Transact-SQL CREATE TABLE statements in
additional <SqlStatement> elements to define any chronicle tables you want. Define one Transact-SQL CREATE TABLE statement
for each chronicle table that you want; this statement must include the table name, and the field names and their data types. It can
also include arguments for constraints, and any other optional CREATE TABLE parameters. You can also include a CREATE INDEX
statement to create an index on your event chronicle table.

You can develop the schema with any text editor, although SQL Query Analyzer, which is installed with SQL Server, is
recommended for ease of use. This tool provides templates for creating tables and other objects on the Templates tab of its
Object Browser.

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you need to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the ADF, see Reserved Characters.

For more information about creating SQL Server tables, see "CREATE TABLE" in SQL Server Books Online.

Example

The following example shows how to create a <Chronicles> node. It creates the event chronicle table StockEventChron, which
consists of the StockSymbol and StockPrice fields:

<Chronicles>
 <!--The Transact-SQL statement that determines the
 structure of the event chronicle table. -->
 <Chronicle>
 <ChronicleName>StockEventChron</ChronicleName>
 <SqlSchema>
 <SqlStatement>
 IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'StockEventChron')
 DROP TABLE StockEventChron
 </SqlStatement>
 <SqlStatement>
 CREATE TABLE StockEventChron

 (
 StockSymbol char(10),
 StockHighPrice money
 PRIMARY KEY (StockSymbol)
)
 </SqlStatement>
 </SqlSchema>
 </Chronicle>
</Chronicles>

For more information about event chronicle tables, see Event Chronicles.

SQL Server Notification Services Books Online

Defining an Event Provider
You document the event providers that your Notification Services application uses in your application definition file (ADF). You
can use one or more event providers to provide event data to your application.

You specify hosted event provider information in the /Providers/HostedProvider section of the ADF, and independent event
provider information in the /Providers/NonHostedProvider section of the ADF. You create one <HostedProvider> or
<NonHostedProvider> node for each event provider that you have defined.

Follow these steps to define an event provider:

1. Name your event provider. For more information, see Naming the Event Provider.
2. If you are defining a hosted event provider (either standard or custom), document the class name of your event provider.

This step is not required for independent event providers. For more information, see Documenting the Event Provider Class
Name.

3. If you are defining a custom hosted event provider, document the assembly name of your event provider. This step is not
required for independent event providers or standard event providers. For more information, see Documenting the Event
Provider Assembly Name.

4. If you are defining a hosted event provider, identify the server that runs the provider function of Notification Services. This
step is not required for independent event providers. For more information, see Identifying the Notification Services System
Computer.

5. If you are defining a scheduled event provider, define the schedule for your event provider. This step is required only for
scheduled hosted event providers. This step is not required for event-driven or independent event providers. For more
information, see Defining the Event Provider Schedule.

6. If you are defining a hosted event provider that requires arguments, define the arguments that should be passed to your
event provider each time it is initialized. This step is unnecessary for event providers that do not require any arguments, or
for independent event providers. For more information, see Defining the Event Provider Arguments.

For more information about the <HostedProvider> node, see <HostedProvider> Node. For more information about the
<NonHostedProvider> node, see <NonHostedProvider> Node.

Note The Notification Services stored procedures NSDiagnosticEventProvider and NSEventBatchDetails can be
used to gather information about an event provider and submitted events. For more information about these stored
procedures, see NSDiagnosticEventProvider and NSEventBatchDetails.

Example: A Hosted Event Provider Definition

This example shows how to document a custom hosted event provider named StockEP:

<Providers>
 <!-- Example definition of a hosted event provider. -->
 <HostedProvider>
 <!-- Name of the event provider. -->
 <ProviderName>StockEP</ProviderName>
 <!-- Name of the event provider's class. -->
 <ClassName>StockData.StockProvider</ClassName>
 <!-- Name of the event provider's assembly. -->
 <AssemblyName>C:\EventProviders\CustomProviders\StockProvider.dll</AssemblyName>
 <SystemName>%SYSNAME%</SystemName>
 <!-- Schedule that determines the run
 times of the event provider. -->
 <Schedule>
 <StartTime>22:00:00</StartTime>
 <Interval>P0DT00H05M00S</Interval>
 </Schedule>
 <!-- Arguments required to initialize the event provider. -->
 <Arguments>
 <Argument>
 <Name>URL</Name>
 <Value>www.microsoft.com/stockvalues</Value>
 </Argument>
 </Arguments>
 </HostedProvider>
</Providers>

Example: An Independent Event Provider Definition

This example shows how to document a custom independent event provider named EventWatcher:

<Providers>
 <!-- Example definition of an independent event provider. -->
 <NonHostedProvider>
 <!-- Name of the event provider. -->
 <ProviderName>EventWatcher</ProviderName>
 </NonHostedProvider>
</Providers>

SQL Server Notification Services Books Online

Naming the Event Provider
Naming the Event Provider

Define the event provider name in the <ProviderName> element.

For more information about the <ProviderName> element, see <ProviderName> Element (<HostedProvider>) or
<ProviderName> Element (<NonHostedProvider>).

Example

The following example shows how to create a <ProviderName> element. It specifies the name StockEP for the event provider:

<ProviderName>StockEP</ProviderName>

SQL Server Notification Services Books Online

Documenting the Event Provider Class Name
Documenting the Event Provider Class Name

You must document the class name of the class that implements any hosted event provider. For custom hosted event providers,
the class name must conform to the Microsoft .NET Framework naming convention of namespace.className. For more
information about namespace naming conventions, see Namespace Naming Guidelines in the Microsoft MSDN® Library.

For standard Notification Services event providers, the class name should be provided without the namespace, simply as
className. For more information about implementing the standard Notification Services event providers, see Standard Event
Providers.

Enter the class name in the <ClassName> element. For more information, see <ClassName> Element (<HostedProvider>).

Example

The following example shows how to create a <ClassName> element. It specifies that the event provider is implemented by the
StockProvider class in the StockData namespace:

<ClassName>StockData.StockProvider</ClassName>

http://go.microsoft.com/fwlink/?LinkId=7311

SQL Server Notification Services Books Online

Documenting the Event Provider Assembly Name
Documenting the Event Provider Assembly Name

You must specify the location of the assembly that contains the hosted event provider class in the <AssemblyName> element.
This must be done for any custom hosted event providers that you create. Standard Notification Services event providers do not
require this information.

You must provide the full path and the assembly file name as the value for the <AssemblyName> element.

Note If you are documenting a standard Notification Services event provider, you must exclude the
<AssemblyName> element from the <HostedProvider> node.

For more information, see <AssemblyName> Element (<HostedProvider>).

Example

The following example shows how to create an <AssemblyName> element. It specifies that the StockProvider.dll assembly
contains the event provider implementation class:

<AssemblyName>C:\EventProviders\CustomProviders\StockProvider.dll</AssemblyName>

SQL Server Notification Services Books Online

Identifying the Notification Services System Computer
Identifying the Notification Services System Computer

You must identify the name of the server that runs the provider host function provided by the Notification Services engine.
Document this information in the <SystemName> element.

You will rarely define this value at development time. Most often, an application parameter is used to pass this information in
from a setting in the configuration file or from the command line. For more information about using application parameters, see
Defining Application Parameters.

For more information, see <SystemName> Element (<HostedProvider>).

Example

The following example shows how to create a <SystemName> element. It specifies that the provider host runs on the server
represented by the %SYSNAME% parameter:

<SystemName>%SYSNAME%</SystemName>

SQL Server Notification Services Books Online

Defining the Event Provider Schedule
Defining the Event Provider Schedule

The event provider schedule (optional) determines when a scheduled hosted event provider is started for the first time, and how
frequently it runs thereafter. Define the schedule in the <Schedule> node of the <HostedProvider> node.

Note You must exclude the <Schedule> node from the <HostedProvider> node if you do not use it.

The <Schedule> node contains two child elements:

<StartTime> (optional)
<Interval> (required)

For more information, see <Schedule> Node (<HostedProvider>).

<StartTime> Element

You can use the <StartTime> element to determine how the schedule intervals fall within a 24-hour period. The time value itself
is not used, but rather the general time period it specifies. For example:

Your <StartTime> element has a value of 10:00:00, and your <Interval> element is set for 5 minutes. When your
application starts, it waits until the first even five-minute interval that occurs, and then runs every 5 minutes thereafter.
So, if your application was started at 14:38 GMT, your event provider waits until the first interval that is divisible by 5
(14:40 GMT), then runs at 14:40 GMT, 14:45 GMT, and so on.

You must specify the <StartTime> element value in coordinated universal time (UTC) notation.

Note You must exclude the <StartTime> element from the <HostedProvider> node if you do not use it. If you do
not specify a start time, the event provider starts when your application starts, and then runs at intervals based on
when the system came on line. For example, if you have an interval of 5 minutes, and you start your application at
11:22 GMT, your event provider runs at 11:22 GMT, 11:27 GMT, 11:32 GMT, and so on.

For more information, see <StartTime> Element (/HostedProvider/Schedule).

<Interval> Element

Use the <Interval> element to specify how often the event provider should be triggered. For more information, see <Interval>
Element.

Example

The following example shows how to create a <Schedule> node. It specifies that the event provider runs at the first five-minute
interval after it is started, and then every five minutes thereafter:

<Schedule>
 <StartTime>22:00:00</StartTime>
 <Interval>P0DT00H05M00S</Interval>
</Schedule>

SQL Server Notification Services Books Online

Defining the Event Provider Arguments
Defining the Event Provider Arguments

Define any arguments that your hosted event provider requires, and provide the requisite argument values.

If you are using a Notification Services standard event provider, you document the predefined arguments that are required, and
you then specify the application-specific values you want to provide for them. For a custom event provider, define any arguments
you choose to use, and also provide values for them.

Document event provider arguments in the <Arguments> section of the <HostedProvider> node. Create one <Argument>
node within the <Arguments> section for each argument you define.

Note You must exclude the <Arguments> node from the <HostedProvider> node if you do not use it.

Each <Argument> node has two required child elements:

<Name>
<Value>

For more information, see <Argument> Node (/HostedProvider/Arguments).

You specify the argument name in the <Name> element. For more information about the <Name> element, see <Name>
Element (/HostedProvider/Arguments/Argument).

You specify the argument value in the <Value> element. For more information about the <Value> element, see <Value>
Element (/HostedProvider/Arguments/Argument).

Example

The following example shows how to create an <Argument> node. The defined argument supplies the URL that the event
provider uses to locate new stock price information:

<Arguments>
 <Argument>
 <Name>URL</Name>
 <Value>www.microsoft.com/stockvalues</Value>
 </Argument>
</Arguments>

SQL Server Notification Services Books Online

Standard Event Providers
Notification Services provides two standard event providers to assist you in getting a Notification Services application developed
and deployed quickly:

File System Watcher Event Provider: This event provider monitors an operating system directory, and is triggered when an
XML file is added to the directory. It reads the file contents into memory, and then uses an EventLoader object to write the
event information to the event table.
SQL Server Event Provider: This event provider uses a developer-defined Transact-SQL query to poll a database table for
changes or additions to its data. It then uses Notification Services–provided stored procedures to create events based on
this new or updated data, and to write these events to the event table.

SQL Server Notification Services Books Online

File System Watcher Event Provider
File System Watcher Event Provider

The file system watcher event provider is a standard event provider implemented within
Microsoft.SqlServer.NotificationServices.dll. It is a standard component of Notification Services.

The file system watcher event provider uses the FileSystemWatcher class defined in the Microsoft .NET Framework class library
to monitor .xml file additions to a given directory. When a new file with a .xml extension is dropped into the designated directory,
the file system watcher event provider loads the file into memory, and then uses an EventLoader object provided by Notification
Services to write the event information into the event table.

Important The XML source file should be created and populated in a different directory than the one being
monitored by the file system watcher event provider. This is to prevent the event provider from attempting to pick up
the source file immediately after it has been created, possibly while you are still writing events to it.

When the event batch has been written to the database, the XML source file is renamed to indicate that it has been processed. The
new file name is the original file name, to which is appended the date and time of its processing, a counter value to differentiate
files processed at the same time, and a .done extension.

For example, if a file named Alerts.xml were processed on September 9, 2001 at 10:34:22, it would be renamed to
Alerts.xml.20010922-103422.countervalue.done.

Files that are being added to the monitored directory must be in XML format. You must provide a run-time argument to this event
provider specifying the path and name of a SQL-annotated XML schema file that transforms the XML data into the event data
format.

The file system watcher event provider can only process properly formatted XML files. Proper formatting consists of being able to
be transformed by the specified SQL-annotated XML schema file. If an invalid XML file is added to the monitored directory, and
the file system event provider cannot successfully process it, the event provider logs an error in the event log and then renames
the suspect file so that it is not picked up for processing again. If a non-XML file is added to the monitored directory, it is ignored.

The file system watcher event provider processes all valid files that are already present in the directory when the event provider is
started. After that, it processes new files as they are added. Updates to existing files in the directory are not processed, because
these changes do not cause the event provider to fire.

If you need functionality beyond that of reading event data from new files, you can create a custom event provider. More
information about this can be found in Developing a Custom Event Provider.

Example: SQL-Annotated XML Schema File

The following schema defines the structure for the StockEvents event class.

You must provide the sql:relation annotation for the event element. Its value is modified at run time to be the name of the event
table associated with the specified event class:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="event" sql:relation="StockEvents">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="StockSymbol" type="xsd:string" />
 <xsd:element name="StockPrice" type="xsd:float" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

For more information about creating a SQL-annotated XML schema file, see SQLXML and XML Mapping Technologies in the
Microsoft MSDN® Library.

http://go.microsoft.com/fwlink/?LinkId=7310

SQL Server Notification Services Books Online

Defining the File System Watcher Event Provider
Defining the File System Watcher Event Provider

The file system watcher event provider must be defined in the /Service/Providers/HostedProvider section of the application
definition file (ADF). The following list reviews the elements in this section and provides the required values for each of them:

<ProviderName> (required)

This value must be a unique name within your application.

<ClassName> (required)

This value must be "FileSystemWatcherProvider".

<AssemblyName> (not used)

This element is not used. Notification Services looks at the Microsoft.SqlServer.NotificationServices.dll assembly for standard
event provider information.

<SystemName> (required)

This value must be the name of the computer that runs the provider host function of Notification Services.

<Schedule> and child elements (not used)

This node is not used with this event provider. The file system watcher event provider is a continuous provider, and so does not
need defined scheduling information.

<Arguments> and child elements

The file system watcher event provider requires three named arguments as initialization parameters. You can specify them in any
order:

WatchDirectory specifies the full path and name of the directory that the event provider monitors as its value. Both
standard and Universal Naming Convention (UNC) naming conventions can be used.
EventClassName specifies the name of the event class that defines the events that the event provider gathers. You must
provide the event class name as documented in the /EventClasses/EventClass/EventClassName section of the ADF as
the argument value.
SchemaFile specifies the full path to a file containing the SQL-annotated XML schema used to transform the XML file data
into the appropriate event format.

Note The SQL-annotated XML schema provided in the SchemaFile argument must handle all of the fields
defined in the event class. If an event field is missing from the schema file, the file system watcher event
provider fails with an "80004005: the statement has been terminated" error, and an .err file is created in the
watch directory.

For more information about defining an event provider, see Defining an Event Provider.

File System Watcher Event Provider Definition

The following code example shows how to document an implementation of the file system watcher event provider named
StockWatcher:

<Providers>
 <HostedProvider>
 <ProviderName>StockWatcher</ProviderName>
 <ClassName>FileSystemWatcherProvider</ClassName>
 <SystemName>NSSERVER01</SystemName>
 <Arguments>
 <Argument>
 <Name>WatchDirectory</Name>
 <Value>C:\StockInfo\NewEvents</Value>
 </Argument>
 <Argument>
 <Name>EventClassName</Name>
 <Value>StockEvents</Value>
 </Argument>

 <Argument>
 <Name>SchemaFile</Name>
 <Value>C:\Schemas\StockEventSchema.xsd</Value>
 </Argument>
 </Arguments>
 </HostedProvider>
</Providers>

SQL Server Notification Services Books Online

SQL Server Event Provider
SQL Server Event Provider

The event provider in Notification Services is a standard event provider implemented within
Microsoft.SqlServer.NotificationServices.dll. It is a standard component of Notification Services. It uses a developer-defined
Transact-SQL query to identify and query a database table for event data. The SQL Server event provider uses SQL Server stored
procedures to collect new event data and submit the data directly to the event table. Additional Transact-SQL queries can also be
specified to do processing before and after gathering the event data. All of these queries are passed as arguments to the SQL
Server event provider when it is initialized.

If you want to use SQL Server data to create your events, but need functionality beyond that of querying a table, develop a custom
event provider. For more information, see Developing a Custom Event Provider.

SQL Server Notification Services Books Online

Defining the SQL Server Event Provider
Defining the SQL Server Event Provider

The SQL Server event provider must be defined in the /Providers/HostedProvider section of the application definition file
(ADF). The following list reviews the elements in this section and provides their required values:

<ProviderName> (required)

This value must be a unique name within your application.

<ClassName> (required)

This value must be "SQLProvider".

<AssemblyName> (not used)

This element is not used. Notification Services looks at the Microsoft.SqlServer.NotificationServices.dll assembly for standard
event provider information.

<SystemName> (required)

This value must be the name of the computer that runs the provider host function of Notification Services.

<Schedule> and child elements (required)

These values follow the same conventions specified in Defining an Event Provider.

<Arguments> and child elements

The SQL Server event provider can take three named arguments to act as initialization parameters. You can specify them in
any order:

EventsQuery (required) gathers event data as its value. The only restriction on this query is that it must return columns that
map to the event fields specified in the /EventClasses/EventClass/Schema section of the ADF. Values for all of the event
fields must be returned.

The SQL Server event provider runs against the local SQL Server instance. If you want to use a table on a remote server in
your EventsQuery query, create a linked server. This allows you to use four-part names (server.db.owner.object) to access
objects on the remote server. For more information, see "Configuring Linked Servers" in SQL Server Books Online.

PostQuery (optional) does any processing that is required after event data is gathered as its value.
EventClassName (required) specifies the name of the event class for which this event provider is configured to submit
events.

For more information about defining an event provider, see Defining an Event Provider.

SQL Server Event Provider Definition

The following code example shows how to document an implementation of the SQL Server event provider named SQLStock:

<Providers>
 <HostedProvider>
 <ProviderName>SQLStock</ProviderName>
 <ClassName>SQLProvider</ClassName>
 <SystemName>SLEIPNIR</SystemName>
 <Schedule>
 <Interval>P0DT00H00M60S</Interval>
 </Schedule>
 <Arguments>
 <Argument>
 <Name>EventsQuery</Name>
 <Value>SELECT StockSymbol, StockPrice FROM StockTable</Value>
 </Argument>
 <Argument>
 <Name>EventClassName</Name>
 <Value>StockEvents</Value>
 </Argument>
 </Arguments>
 </HostedProvider>

</Providers>

SQL Server Notification Services Books Online

Subscriptions
Subscriptions determine what notifications subscribers receive. A service that offers daily weather updates, for example, typically
allows subscribers to request weather information for specific cities, rather than sending everyone the same nationwide forecast.

Subscriptions also determine when subscribers receive notifications. Subscriptions can be scheduled for specific times. A
subscriber to a service that offers traffic updates, for example, can schedule her subscription to provide traffic notifications at
16:45 Greenwich Mean Time (GMT) every weekday. Other subscriptions can permit notifications to be sent at any time, depending
on what event information comes into the system.

Additionally, subscriptions can store information about the target devices for the notifications. For instance, a subscriber can have
news alerts sent to his instant messaging service during the day, and have traffic alerts sent to his cell phone during commuting
hours.

The topics that the Subscriptions section covers are described in the following table.

Topic Description
Collecting Subscription-Related Information Describes how subscription-related

information is submitted to the
Notification Services system.

Subscription Models Describes the notification delivery
models that subscriptions can
implement.

Subscription Fields Discusses required and optional
subscription fields that the developer
specifies in the application definition
file (ADF).

Subscription Rules Discusses how to use notification
generation queries to produce
notifications. Includes usage of the
notification function and
recommendations for creating an
efficient query.

Subscription Chronicles Discusses how subscription chronicle
tables and subscription chronicle rules
can be used to select notification data
based on the content of a prior
notification.

Defining a Subscription Class Discusses how to define a subscription
class in the ADF.

SQL Server Notification Services Books Online

Collecting Subscription-Related Information
You develop a subscription management application as a component of your Notification Services system to collect subscriber,
subscription, and subscriber device information. Many subscription management applications are Web-based, using Microsoft
ASP or ASP.NET technology.

You must use the subscription-related classes provided by the Notification Services API to write data to or retrieve data from the
Notification Services databases. These classes can be used natively in managed code or via COM interop in unmanaged code.

See Also

Managing Subscriber Devices

Managing Subscribers

Managing Subscriptions

Subscriber Class

SubscriberDevice Class

Subscription Class

SQL Server Notification Services Books Online

Subscription Models
Subscriptions are either scheduled or event-driven. Scheduled subscriptions provide notifications at a user-defined time, while
event-driven subscriptions provide notifications based on when events occur.

Scheduled Subscriptions

Scheduled subscriptions deliver their related notifications at times specified when the subscription is created or updated. The
delivery time can be based on frequency, time of day, or specific days or dates. Some possibilities are:

Every day at 09:00 GMT
Mondays and Fridays at noon
17:00 GMT on the first and fifteenth of every month
Yearly at 15:00 GMT on March 7

Scheduled subscriptions often pull data from the event chronicle table. An event chronicle table can be used as a storage system
for event information. It is updated each time a new batch of events comes into the Notification Services system, so that it always
has the most recent data. That way, when the time for the scheduled notification arrives, the system can save time by simply
getting the latest data from an internal table, instead of having to go through the event provider to get the same data from the
event source.

Scheduled subscriptions are appropriate for any application in which you want the subscriber to be able to define the times at
which they receive notifications. Scheduled subscriptions work particularly well for predictable events about relatively static data.
Weather and traffic updates are good examples of this type of data.

Event-Driven Subscriptions

In contrast with scheduled subscriptions, event-driven subscriptions deliver their notifications immediately after processing the
related event (although you might want to specify blackout periods during which no notifications are delivered). This type of
subscription pulls its data directly from the event table.

Randomly occurring events about time-sensitive data are good candidates for event-driven subscriptions. Auction updates or
breaking news alerts are good examples of this type of data.

SQL Server Notification Services Books Online

Subscription Fields
In Notification Services, each subscription is stored as a row in a subscription table. The subscription table is created with the
assumption that every subscription record requires certain fields. Other fields are optional, as they are specific to the application.
Optional fields are defined in the application definition file (ADF).

The SubscriptionId and SubscriberId fields are included in the subscription table automatically, and do not need to be
defined in the ADF. SubscriptionId is a bigint identity column, while SubscriberId is an nvarchar(255) column.
The Enabled field is included automatically in every subscription record. Setting this Boolean field to false suspends
notification generation for this subscription, without removing the record from the database. The Enabled field default is
true.
The data fields that define your subscription class must be specified by you in the
/SubscriptionClasses/SubscriptionClass/Schema section of the ADF. These fields are optional, depending on the
specifics of the application. For more information about defining application-specific subscription fields, see Defining
Subscription Fields.
The subscriber device name and subscriber locale fields are required by the notification function, which matches
subscription and event information to produce notifications. They are usually specified in the
/SubscriptionClasses/SubscriptionClass/Schema section of the ADF as well. Alternatively, you can provide this
information from user profile preference information or from some other source in more complex application scenarios.

Although including the subscriber device name in every subscription is common, it is not required. For example, there is no
need to keep a device name in your subscriptions if your application always delivers notifications by e-mail and you use the
subscriber's e-mail address as the subscriber ID. In this case you can simply pass a constant device name, such as "email
device", when you generate a notification. Alternatively, you might decide not to include the subscriber's device name in the
subscription because you always select the device name dynamically when you generate the notification. For example, your
application might select the device based on time of day. During business hours you could send all notifications to a
subscriber's business e-mail account; during off-hours you might send critical notifications to the subscriber's phone and all
other notifications to the subscriber's home e-mail account.

Wherever this information resides, it must be provided to Notification Services by specifying these fields as parameters to
the notification function. For more information about the notification function, see Using Notification Functions.

The subscriber device name, in conjunction with the subscriber ID, is used to identify the subscriber device record that is
associated with this subscription. The subscriber device record contains the information about the recipient device, such as its
type and address. This information is used to format the notification data appropriately for display, and to route the notification
message for delivery.

The subscriber locale is used to identify the language and country/region of the recipient. This information is used to format the
notification data appropriately for display.

If you choose to define the subscriber device name and subscriber locale fields in your ADF, you must specify them as follows:

<Field>
 <FieldName>SubscriberDeviceName</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
</Field>
<Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>nvarchar(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
</Field>

For more information about the field elements and what they represent, see Defining a Subscription Class.

SQL Server Notification Services Books Online

Subscription Rules
Notification Services subscriptions have two types of rules associated with them, subscription event rules and subscription
scheduled rules.

Subscription event rules can contain notification generation rules to generate notifications for event-driven subscriptions,
and event chronicle rules to maintain information in event chronicle tables. Subscription event rules are defined as part of a
subscription class, and reference a specific event class. Every subscription class can have multiple subscription event rules
defined.

An event chronicle rule should be defined as a subscription event rule if you want the event chronicle rule to affect chronicle
data after notifications are generated. If you want the event chronicle rule to affect chronicle data before notifications are
generated, you should define it in the <ChronicleRule> node of an event class.

Subscription scheduled rules can contain notification generation rules to generate notifications for scheduled
subscriptions, and subscription chronicle rules to maintain information in subscription chronicle tables. Subscription
chronicle tables maintain information about notification data previously sent to fulfill a subscription. This information can be
used to select the data for future notifications based on data that has already been sent. Subscription scheduled rules are
defined as part of a specific subscription class, and a single subscription class can have multiple subscription scheduled
rules.

A subscription class can include multiple rules of both event and scheduled rule types. There is no guarantee of order regarding
the firing of rules of the same type. For example, you might have two subscription scheduled rules (each defined in a separate
<ScheduledRule> node), one that generates notifications, and one that updates a subscription chronicle table. There should be
no application logic that depends on one rule firing before the other; Notification Services can fire them in any order.

The execution of the event class and subscription class rules depends on the arrival of event batches for the event class. The event
chronicle rule executes first, followed by any subscription event rules. If the event chronicle rule fails to execute, all subscription
event rules associated with the same event class are also marked as failed for the remainder of the current generator quantum.
Subscription scheduled rules execute when scheduled subscriptions of that subscription class come due, so the success or failure
of an event chronicle or subscription event rule has no impact on the execution schedule of a subscription scheduled rule.

Note The Notification Services stored procedures NSPrepareRuleFiring and NSExecuteRuleFiring can be helpful
in testing and troubleshooting rules. For more information about these stored procedures, see NSPrepareRuleFiring
and NSExecuteRuleFiring.

Do not use rules to update the event or subscription tables. The subscription and event tables of a Notification
Services system are likely to be among the largest in terms of number of records. Transact-SQL statements operating
directly on these tables will of necessity take longer and require more system resources to process, and therefore
should not be used in rule statements.

For more information about event chronicle rules, see Event Chronicle Rules.

SQL Server Notification Services Books Online

Using Notification Generation Rules
Using Notification Generation Rules

In order to generate notifications, you must specify at least one notification generation rule in your subscription class. This rule
invokes a notification function to create notifications.

Notification generation rules can be defined in either an <EventRule> node or a <ScheduledRule> node of the
<SubscriptionClass> node. You can also define notification generation rules in both nodes. In an <EventRule> node, a
notification generation rule provides notifications for event-driven subscriptions, and typically matches the most recent batch of
events from the events table with the subscription information to produce notifications. In a <ScheduledRule> node, a
notification generation rule provides notifications for scheduled subscriptions, and typically matches data in an event chronicle
table (which is updated with each batch of events processed) to subscription information to produce notifications. Rules can also
use data from other sources (non–Notification Services tables or stored procedures, for example) to produce notifications.

Note Notifications might not be distributed in the same order in which they are generated. The Notification Services
distributor has internal logic that determines the order in which notifications are passed to the content formatter. Thus
if you write a notification generation rule using a SELECT statement and use an ORDER BY clause to specify
notification order, this order will not necessarily be honored by the distributor.

Note A good way to test a notification generation rule is to write the SELECT results to a temporary table, before
incorporating the use of the notification function. This allows you to check the results and ensure that the rule is
returning the data you expect.

SQL Server Notification Services Books Online

Using Notification Functions
Using Notification Functions

Notification functions are created when the system administrator runs NSControl Create or NSControl Update to create or
modify a notification application. During the setup process, Notification Services reads the application definition file (ADF) for the
application and creates a SQL Server user-defined function for each notification class. The fields used in this notification function
are drawn from the notification schema specified in the /NotificationClasses/NotificationClass/Schema/Fields section of the
ADF. The notification function name is the concatenation of the notification class name and the word "Notify".

The following code example shows the notification generation query for a notification class called NewsNotification:

/* This statement would be part of a subscription rule,
and would appear in either an
<EventRule> or a <ScheduledRule> node
in a <SubscriptionClass> node in the ADF. */
SELECT NewsNotificationNotify(S.SubscriberId, S.SubscriberDeviceName,
S.SubscriberLocale, E.Headline, E.BrowseBackURL)
FROM NewsSubscribers S JOIN NewsEvents E
ON S.SiteName = E.SiteName

As illustrated in the example, in the call to the notification function you must specify these fields in the following order:

SubscriberID
SubscriberDeviceName
SubscriberLocale
All the notification fields you defined in the /NotificationClasses/NotificationClass/Schema/Fields section of the ADF

You cannot specify any computed fields in the notification function.

The Notification Services distributor function later uses the subscriber device name and subscriber locale information to format
and deliver the notification.

When you use a notification function, a row of raw notification data is written to the notification table. Using the notification
function is the only valid way to create a notification in the Notification Services system.

Notification functions also participate in the creation of notification batches. The first time a notification function is called for each
firing of a rule, the system creates a new notification batch record. All notifications produced by the processing statement of this
rule are included in this new notification batch. When the notification generation is complete, the Notification Services generator
function closes this batch so that the new notifications can be distributed.

SQL Server Notification Services Books Online

Writing Efficient Notification Generation Queries
Writing Efficient Notification Generation Queries

It is very important that the Transact-SQL statements you use in application rules are optimized for rapid execution. Rule
performance is key to the overall speed of the Notification Services system. The faster the rules execute, the less time it takes to
maintain application information and generate notification data. This is especially true of the notification generation rule. To
ensure that you make the notification generation rule as efficient as possible, keep the following guidelines in mind when you are
developing it:

In a notification generation rule, the WHERE clause specifies the conditions that define a match between subscription and
event records. It is important that you keep the WHERE clause as brief as possible, and avoid lengthy arguments.
If you have many OR operators in your WHERE clause, the additional table reads increase the processing time for the
statement and slow down the Notification Services system as a result. For instance, in the following statement, the database
engine must read through the event table three times, once for each of the LIKE comparisons:

SELECT NewsNotificationNotify(S.SubscriberId, S.SubscriberDeviceId, S.LocaleId,
E.Headline, E.BrowseBackURL)
FROM NewsSubscribers S JOIN NewsEvents E
ON S.SiteName = E.SiteName
WHERE (E.Headline LIKE '%president%'
OR E.Headline LIKE '%government%'
OR E.Headline LIKE '%congress%')

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you
want to use these characters in your Transact-SQL statements, you must use entity references to replace them.
For more information about using reserved characters in the application definition file (ADF), see Reserved
Characters.

SQL Server provides several tools and many guidelines for optimizing query performance. You are encouraged to take
advantage of these resources to design efficient notification generation queries. For more information, see "Query Tuning"
in SQL Server Books Online.

Note Specifying indexes on your event, subscription, and chronicle tables can improve rule performance. You
can use the <IndexSqlSchema> element when defining an event or subscription class to specify one or more
indexes on an event or subscription table. You may use an <SqlStatement> element when defining a chronicle
to specify an index on a chronicle table.

SQL Server Notification Services Books Online

Subscription Chronicles
A common use of subscription chronicle tables is to store notification data so it can be used by your application after that
notification has been sent. You can define one or more subscription chronicle tables in the
/SubscriptionClasses/SubscriptionClass/Chronicles section of your application definition file (ADF).

You can define one or more rules to manipulate subscription chronicle table data. These rules contain named sets of Transact-SQL
queries that insert, update, and delete data in the chronicle tables, in order to keep it in an appropriate state for use by your
application. You document these rules in the /SubscriptionClasses/SubscriptionClass/ScheduledRules or the
/SubscriptionClasses/SubscriptionClass/EventRules section of your ADF. These nodes are also used to document notification
generation rules. For more information about subscription rules, see Subscription Rules.

The most common use of subscription chronicle tables is for storing data about sent notifications, so that this information can be
used to determine the appropriate data for the next notification. To provide time-conditional data, your application needs to either
determine when you last received a notification or compare sent notification data against current event data to determine what
information is new.

A good example of when to use a subscription chronicle table is in the case of a subscription that provides news updates. It should
provide you with only the news information that has been added since your last notification. If the news event data has no date or
time information, you must use the story headers to provide a basis for comparison. By storing the story headers that were
included in previous notifications, and comparing them to the new event data, you can exclude duplicate story headers from the
next notification.

SQL Server Notification Services Books Online

Example: Using a Subscription Chronicle Table
Example: Using a Subscription Chronicle Table

The following code example shows the use of a subscription chronicle table to determine appropriate data for a new notification
based on non-timestamp data in prior notifications sent to the subscriber. In this example, a news update application notifies
users about the headlines on a particular news site.

Your scheduled subscription is defined to provide you with notifications every day at 12:00 GMT, containing any new headlines
that have arrived since your last notification.

The headline data for the last few days is shown in the following table.

Day News headlines
Monday Political Gridlock in Olympia

Wildfire in Eastern Washington

Fugitive Jaywalker Arrested

Tuesday Political Gridlock in Olympia

Wildfire in Eastern Washington

Mt. Rainier Shows Activity

You receive notifications at 12:00 GMT based on the Monday data.

After your notification is generated, rows are written to the subscription chronicle table by the subscription scheduled rule that is
defined for this application, identifying your subscription ID and each headline you received.

At 12:00 GMT on Tuesday, your scheduled subscription is due again. The notification generation rule defined in the subscription
scheduled rule for this application checks the subscription chronicle table as part of processing notifications. It compares each
incoming headline to those you have already received, based on the values in the subscription chronicle table. If the headline in
the new event batch and the headline in the subscription chronicle table do not match, then a notification with the new headline is
generated and sent out to you.

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>
 <ScheduledRule>
 <RuleName>MyScheduledRule</RuleName>
 <Action>
 SELECT dbo.NewsNotificationNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale, E.Headline,
 E.BrowseBackURL)
 FROM NewsSubscriptions S, NewsEvents E
 WHERE NOT EXISTS (SELECT C.SubscriptionId, C.Headline
 FROM NewsEventChron C
 WHERE C.SubscriptionId = S.SubscriptionId
 AND C.Headline = E.Headline)
 INSERT INTO NewsEventChron
 (SubscriptionId, Headline)
 SELECT DISTINCT SubscriptionId, Headline
 FROM NewsSubscriptions, NewsEvents
 WHERE NewsEvents.Headline NOT IN
 (SELECT Headline FROM NewsEventChron)
 </Action>
 </ScheduledRule>
 </ScheduledRules>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

SQL Server Notification Services Books Online

Defining a Subscription Class
You define the types of subscriptions your Notification Services application will accept by creating subscription classes in your
application definition file (ADF). You can define one or more subscription classes for each Notification Services application you
develop.

Follow these steps to define a subscription class:

1. Name your subscription class. For more information, see Naming the Subscription Class.
2. Define the fields that make up your subscription class. The field definitions validate any subscription data supplied by a

subscription management application. They are also used by Notification Services to create the SQL Server subscription
table, which stores the subscription data. SQL Server table creation occurs when the application is added to Notification
Services by the system administrator, using the NSControl Create or NSControl Update command. For more
information, see Defining Subscription Fields.

3. Optionally, designate the SQL Server filegroup for the subscription table. If you do not specify a filegroup, the subscription
table is automatically created on the same filegroup as the application database. For more information, see Designating the
Filegroup.

4. If you want to index your subscription table, provide Transact-SQL statements to create one or more indexes on your
subscription table. For more information, see Creating the Indexing Statement.

5. You might have an <EventRules> node if you define the event rules associated with this subscription class. You must have
at least one notification generation rule defined in either the <EventRules> or the <ScheduledRules> node if you want to
generate notifications. Event rules are named sets of one or more Transact-SQL queries that either create notifications or
manipulate the data in a subscription chronicle table. Event rules are processed each time a new event batch is processed.
For more information about defining event rules, see Defining Event Rules.

6. You might have a <ScheduledRules> node if you define the scheduled rules associated with this subscription class. You
must have at least one notification generation rule defined in either the <EventRules> or the <ScheduledRules> node if
you want to generate notifications. Scheduled rules are named sets of one or more Transact-SQL queries that create
notifications or manipulate the data in a subscription chronicle table. Scheduled rules are processed whenever a scheduled
subscription of this class comes due. For more information, see Defining Scheduled Rules.

7. If you need subscription chronicle tables in your application, define one or more subscription chronicle tables associated
with this subscription class. The subscription chronicle tables store subscription data for use in your application. For
instance, you might use a subscription chronicle table to store information about the last notification delivered to a
subscriber, and generate the next notification based only on data that has come in during the intervening time. For more
information, see Defining Chronicle Tables.

All of this information is stored in the /SubscriptionClasses/SubscriptionClass section of the ADF for the application that uses
this subscription class. You create one <SubscriptionClass> node for each subscription class that you have defined.

Note The Notification Services stored procedure NSDiagnosticSubscriptionClass can be used to gather
information about a subscription class. For more information about this stored procedure, see
NSDiagnosticSubscriptionClass.

Example: Defining a Subscription Class

The following code example shows the definition for the Stock subscription class.

<SubscriptionClasses>
 <SubscriptionClass>
 <SubscriptionClassName>StockSubscriptions</SubscriptionClassName>
 <Schema>
 <Field>
 <FieldName>SubscriberDeviceName</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>nvarchar(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>

 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockTriggerPrice</FieldName>
 <FieldType>money</FieldType>
 <FieldTypeMods>NOT NULL DEFAULT 10</FieldTypeMods>
 </Field>
 </Schema>
 <FileGroup>Secondary</FileGroup>
 <IndexSqlSchema>
 <SqlStatement>
 CREATE INDEX StockSubIndex
 ON StockSubscriptions (SubscriberId)
 </SqlStatement>
 </IndexSqlSchema>
 <EventRules>
 <EventRule>
 <RuleName>StockSubscriptionNotifyRule</RuleName>
 <Action>
 SELECT dbo.EventNotificationsNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale,
 E.StockSymbol, E.StockPrice)
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 WHERE S.StockTriggerPrice <= E.StockPrice
 AND S.StockTriggerPrice > C.StockHighPrice
 INSERT StockSubscriptionChron
 (SubscriberId, StockSymbol, StockPrice)
 SELECT S.SubscriberId, S.StockSymbol, E.StockPrice
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 </Action>
 <ActionTimeout>P0DT00H01M00S</ActionTimeout>
 <EventClassName>StockEvents</EventClassName>
 </EventRule>
 </EventRules>
 <ScheduledRules>
 <ScheduledRule>
 <RuleName>StockSubScheduledRule</RuleName>
 <Action>
 SELECT dbo.ScheduledNotificationsNotify
 (S.SubscriberId, S.SubscriberDeviceName, S.SubscriberLocale,
 C.StockSymbol, C.StockPrice)
 FROM StockSubscriptions S JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 WHERE S.StockTriggerPrice <= C.StockHighPrice
 GROUP BY S.StockSymbol, C.StockHighPrice
 INSERT StockSubscriptionChron
 (SubscriberId, StockSymbol, StockPrice)
 SELECT S.SubscriberId, S.StockSymbol, C.StockHighPrice
 FROM StockSubscriptions S JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 </Action>
 <ActionTimeout>P0DT00H00M45S</ActionTimeout>
 </ScheduledRule>
 </ScheduledRules>
 <Chronicles>
 <Chronicle>
 <ChronicleName>StockSubscriptionChron</ChronicleName>
 <SqlSchema>
 <SqlStatement>
 IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'StockSubscriptionChron')
 DROP TABLE StockSubscriptionChron
 </SqlStatement>
 <SqlStatement>
 CREATE TABLE StockSubscriptionChron
 (
 SubscriberId bigint,
 StockSymbol char(10),

 StockPrice money
 PRIMARY KEY (SubscriberId)
);
 </SqlStatement>
 </SqlSchema>
 </Chronicle>
 </Chronicles>
 </SubscriptionClass>
</SubscriptionClasses>

SQL Server Notification Services Books Online

Naming the Subscription Class
Naming the Subscription Class

Document the subscription class name in the <SubscriptionClassName> element of the application definition file (ADF).

For more information, see <SubscriptionClassName> Element.

Example

The following example creates a subscription class with the name StockSubscriptions in the ADF:

<SubscriptionClassName>StockSubscriptions</SubscriptionClassName>

SQL Server Notification Services Books Online

Defining the Subscription Fields
Defining the Subscription Fields

Determine the fields you need for storing your subscription data. Document the subscription fields in the <Schema> section of
the <SubscriptionClass> node of the application definition file (ADF). Create one <Field> node in the <Schema> section for
each field you define.

The <Field> node has three child elements:

<FieldName> (required)
<FieldType> (required)
<FieldTypeMods> (optional)

These elements are summarized later in this topic. For more information, see <Field> Node (</SubscriptionClass/Schema>).

<FieldName> Element

Document the field name in the required <FieldName> element.

For more information, see <FieldName> Element (/SubscriptionClass/Schema/Field).

<FieldType> Element

Document the field data type in the required <FieldType> element. The field data types must conform to SQL Server data types.

Important You cannot specify a subscription data field as a SQL Server Identity column. Notification Services already
uses the Identity property to specify a system-generated SubscriptionId field.

For more information, see <FieldType> Element (/SubscriptionClass/Schema/Field).

<FieldTypeMods> Element

Document null and default settings in the optional <FieldTypeMods> element. These settings must conform to SQL Server
Transact-SQL syntax conventions.

Note You must exclude the <FieldTypeMods> element from the <Field> node if you do not use it.

For more information, see <FieldTypeMods> Element (/SubscriptionClass/Schema/Field).

Example

In this example, two subscription fields are defined: a 10-character stock symbol field and a stock trigger price field that accepts
monetary data. A 255-character subscriber device name field and a 10-character subscriber locale field are also specified, to store
subscriber information in the subscription:

<Schema>
 <Field>
 <FieldName>SubscriberDeviceName</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>nvarchar(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>StockTriggerPrice</FieldName>
 <FieldType>money</FieldType>
 <FieldTypeMods>NOT NULL DEFAULT 10</FieldTypeMods>

 </Field>
</Schema>

SQL Server Notification Services Books Online

Designating the Filegroup
Designating the Filegroup

SQL Server provides filegroups to simplify database administration and allow optimal allocation of system data across multiple
physical disks. Optimized data allocation can be critical to the performance of high-volume Notification Services applications.

For more information about SQL Server filegroups, see "Files and Filegroups" in SQL Server Books Online.

Specify the name of the filegroup on which you want the subscription table created in the <FileGroup> element of the
<SubscriptionClass> node. The filegroup named must be one of the filegroups defined in the <NamedFileGroup> node of the
<Database> node.

Note You must exclude the <FileGroup> element from the <SubscriptionClass> node if you do not use it. Your
subscription table will be created on the default filegroup for the application database in this case.

For more information, see <FileGroup> Element (<SubscriptionClass>).

Example

In the following code example, the Secondary filegroup is selected as the filegroup for the subscription table:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 ...
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 ...
 </NamedFileGroup>
 ...
</Database>
...
<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <FileGroup>Secondary</FileGroup>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

SQL Server Notification Services Books Online

Creating the Indexing Statement
Creating the Indexing Statement

You can significantly enhance the performance of a Notification Services application by creating appropriate indexes. Indexes
speed the location of particular records based on the data in a specified field. Indexes are automatically used when processing a
Transact-SQL query, provided that using the indexes improves query performance (SQL Server makes this determination).

For more information about SQL Server indexes, see "Table Indexes" in SQL Server Books Online. You are strongly encouraged to
review this documentation to better understand how the performance of your application can be enhanced by this feature.

The <IndexSqlSchema> node has one required child element, <SqlStatement>. In an <IndexSqlSchema> node, use
Transact-SQL CREATE INDEX statements in <SqlStatement> elements to define any indexes you want. Use the subscription class
name (for example, StockSubscriptions) for the subscription table name.

For more information, see <SqlStatement> Element (/SubscriptionClass/IndexSqlSchema).

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you want to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the application definition file (ADF), see Reserved Characters.

Note You must exclude the <IndexSqlSchema> node from the <SubscriptionClass> node if you do not use it.

For more information, see <IndexSqlSchema> Element (<SubscriptionClass>).

Example

This example specifies that an index named StockSubIndex will be created on the SubscriberID field of the StockSubscriptions
table in the application database:

<IndexSqlSchema>
 <SqlStatement>
 CREATE INDEX StockSubIndex
 ON StockSubscriptions (SubscriberId)
 </SqlStatement>
</IndexSqlSchema>

SQL Server Notification Services Books Online

Defining Event Rules
Defining Event Rules

If you are providing event-driven subscriptions, you must define one or more event rules. These event rules must contain the
notification generation rules that create the notifications for event-driven subscriptions. The event rules are executed each time a
new event batch is processed. The notification generation rule matches event data from the event table with the subscription
information, and uses a notification function to generate a notification based on this match.

For more information about notification generation rules and notification functions, see Using Notification Generation Rules and
Using Notification Functions.

Document event rule information in the <EventRules> section of your application definition file (ADF). Create one <EventRule>
node for each event rule you define.

The <EventRule> node has four child elements:

<RuleName> (required)
<Action> (required)
<ActionTimeout> (optional)
<EventClassName> (required)

These elements are summarized later in this topic. For more information, see <EventRule> Node.

<RuleName> Element

Document the name of the rule in the <RuleName> element of the <EventRule> node.

For more information, see <RuleName> Element (<EventRule>).

<Action> Element

Define one or more Transact-SQL statements in the <Action> element, specifying the actions that this rule should take. You can
either define a Transact-SQL query directly, or call a stored procedure (of the format EXEC storedProcedureName) that provides
the same functionality.

Use the subscription and event class names (for example, StockSubscriptions and StockEvents) for the subscription and event
table names.

All statements that you define in the <Action> element are part of the same transaction, so either they all will complete
successfully or they all will be rolled back. If the subscription event rule fails, an error is written to the system log.

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you want to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the ADF, see Reserved Characters.

For more information about creating Transact-SQL queries, see "Query Fundamentals" in SQL Server Books Online.

For more information, see <Action> Element (<EventRule>).

<ActionTimeout> Element

The <ActionTimeout> element specifies the permitted length of time for statements in the <Action> element to complete. If
they are not completed during this time, the transaction containing them is rolled back, and an error is written to the system log.

Note You must exclude the <ActionTimeout> element from the <EventRule> node if you do not use it.

For more information, see <ActionTimeout> Element (<EventRule>).

<EventClassName> Element

Document the event class associated with the execution of the subscription event rule in the <EventClassName> element. Only
the processing of event batches of the specified event class causes execution of the associated rule.

For more information, see <EventClassName> Element (<EventRule>).

Example

The following code example creates the subscription event rule StockSubscriptionEventRule. This rule creates event-driven
notifications, and also loads notification data into the StockSubscriptionChron table, for use in data mining on subscription trends.
It is executed whenever an event batch containing events of the StockEvents class is processed. This rule is permitted one minute
to complete successfully:

<EventRules>
 <EventRule>
 <RuleName>StockSubscriptionEventRule</RuleName>
 <Action>
 SELECT dbo.EventNotificationsNotify(S.SubscriberId,
 S.SubscriberDeviceName, S.SubscriberLocale,
 E.StockSymbol, E.StockPrice)
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 WHERE S.StockTriggerPrice <= E.StockPrice
 AND S.StockTriggerPrice > C.StockHighPrice
 INSERT StockSubscriptionChron
 (SubscriberId, StockSymbol, StockPrice)
 SELECT S.SubscriberId, S.StockSymbol, E.StockPrice
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 </Action>
 <ActionTimeout>P0DT00H01M00S</ActionTimeout>
 <EventClassName>StockEvents</EventClassName>
 </EventRule>
</EventRules>

SQL Server Notification Services Books Online

Defining Scheduled Rules
Defining Scheduled Rules

If you are providing scheduled subscriptions, you must define one or more scheduled rules. These scheduled rules must contain
the notification generation rules that create the notifications for scheduled subscriptions. The scheduled rules are executed each
time a scheduled subscription of the subscription class comes due. The notification generation rule matches event data from an
event chronicle table with the subscription information, and uses a notification function to generate a notification based on this
match.

For more information about notification generation rules and notification functions, see Using Notification Generation Rules and
Using Notification Functions.

Document scheduled rule information in the <ScheduledRules> section of your application definition file (ADF). Create one
<ScheduledRule> node for each scheduled rule you define.

The <ScheduledRule> node has three child elements:

<RuleName> (required)
<Action> (required)
<ActionTimeout> (optional)

These elements are summarized later in this topic. For more information, see <ScheduledRule> Node.

<RuleName> Element

Document the name of the rule in the <RuleName> element of the <ScheduledRule> node.

For more information, see <RuleName> Element (<ScheduledRule>).

<Action> Element

Define one or more Transact-SQL statements in the <Action> element, specifying the actions that this rule should take. You can
either define a Transact-SQL query directly or call a stored procedure (of the format EXEC storedProcedureName) that provides
the same functionality.

Use the subscription and event class names (for example, StockSubscriptions and StockEvents) for the subscription and event
table names.

All statements that you define in the <Action> element are part of the same transaction, so either they will all complete
successfully or they all will be rolled back. If the subscription scheduled rule fails, an error is written to the system log.

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you want to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the ADF, see Reserved Characters.

For more information about creating Transact-SQL queries, see "Query Fundamentals" in SQL Server Books Online. For more
information about this element, see <Action> Element (<ScheduledRule>).

<ActionTimeout> Element

The <ActionTimeout> element specifies the permitted length of time for statements in the <Action> element to complete. If
they are not completed during this time, the transaction containing them is rolled back and an error is written to the system log.

Note You must exclude the <ActionTimeout> element from the <ScheduledRule> node if you do not use it.

For more information, see <ActionTimeout> Element (<ScheduledRule>).

Example

This example creates the subscription schedule rule StockSubScheduledRule. This rule creates scheduled notifications, and also
loads notification data into the StockSubscriptionChron table, for use in data mining on subscription trends. It is executed
whenever a scheduled subscription of the subscription class comes due. This rule is permitted 45 seconds to complete
successfully:

<ScheduledRules>
 <ScheduledRule>
 <RuleName>StockSubScheduledRule</RuleName>
 <Action>
 SELECT dbo.ScheduledNotificationsNotify
 (S.SubscriberId, S.SubscriberDeviceName, S.SubscriberLocale,
 C.StockSymbol, C.StockPrice)
 FROM StockSubscriptions S JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 WHERE S.StockTriggerPrice <= C.StockHighPrice
 GROUP BY S.StockSymbol, C.StockHighPrice
 INSERT StockSubscriptionChron
 (SubscriberId, StockSymbol, StockPrice)
 SELECT S.SubscriberId, S.StockSymbol, C.StockHighPrice
 FROM StockSubscriptions S JOIN StockEventChron C
 ON S.StockSymbol = C.StockSymbol
 </Action>
 <ActionTimeout>P0DT00H00M45S</ActionTimeout>
 </ScheduledRule>
</ScheduledRules>

SQL Server Notification Services Books Online

Defining Chronicle Tables
Defining Chronicle Tables

Subscription chronicle tables can store previously sent notification data, which can be used to help determine data that should be
sent in future notifications. You can define one or more subscription chronicle tables.

Document chronicle table information in the /SubscriptionClasses/SubscriptionClass/Chronicles section of your application
definition file (ADF). Create one <Chronicle> node in the <Chronicles> section for each subscription chronicle table you want.

Note You must exclude the <Chronicles> node from the <SubscriptionClass> node if you do not use it.

The <Chronicle> node has two required child elements:

<ChronicleName>
<SqlSchema>

These elements are summarized later in this topic. For more information, see <Chronicle> Node (/SubscriptionClass/Chronicles).

<ChronicleName> Element

Document the chronicle name in the <ChronicleName> element. For consistency, the chronicle name you define here and the
name of the chronicle table you create in the <SqlSchema> element should be the same.

For more information, see <ChronicleName> Element (/SubscriptionClass/Chronicles/Chronicle).

<SqlSchema> Node

Document the schemas for creating your subscription chronicle tables in the <SqlSchema> node. The <SqlSchema> node has
one required child element, <SqlStatement>.

For more information, <SqlSchema> Node (/SubscriptionClass/Chronicles/Chronicle).

At the top of the <SqlSchema> node, include a <SqlStatement> element with a Transact-SQL statement to check for any
chronicle tables you are about to create, and drop them if they exist. Then use Transact-SQL CREATE TABLE statements in
additional <SqlStatement> elements to define any chronicle tables you want. Define one Transact-SQL CREATE TABLE statement
for each chronicle table that you want; this statement must include the table name, and the field names and their data types. It can
also include arguments for constraints, and any other optional CREATE TABLE parameters. You can also include a CREATE INDEX
statement to create an index on your subscription chronicle table.

You can develop the schema with any text editor, although SQL Query Analyzer, which is installed with SQL Server, is
recommended for ease of use. This tool provides templates for creating tables and other objects. Find it on the Templates tab of
the SQL Object Browser.

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you want to
use these characters in your Transact-SQL statements, you must use entity references to replace them. For more
information about using reserved characters in the ADF, see Reserved Characters.

For more information about creating SQL Server tables, see "CREATE TABLE" in SQL Server Books Online.

Example

The following code example creates the subscription chronicle table StockSubscriptionChron, which consists of the SubscriberID,
StockSymbol, and StockPrice fields. This chronicle table stores information about the notification content sent to subscribers, so
that it can be used in data mining procedures:

<Chronicles>
 <Chronicle>
 <ChronicleName>StockSubscriptionChron</ChronicleName>
 <SqlSchema>
 <SqlStatement>
 IF EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'StockSubscriptionChron')
 DROP TABLE StockSubscriptionChron
 </SqlStatement>
 <SqlStatement>

 CREATE TABLE StockSubscriptionChron
 (
 SubscriberId bigint,
 StockSymbol char(10),
 StockPrice money
 PRIMARY KEY (SubscriberId)
);
 </SqlStatement>
 </SqlSchema>
 </Chronicle>
</Chronicles>

SQL Server Notification Services Books Online

Notifications
A notification is a set of data that is produced as a result of matching an event with a subscription that has been set up with a
Notification Services application. The notification data consists of the event information that meets the subscription requirements,
as well as any additional information the developer wishes to include. The notification is packaged as a message (if appropriate
for the delivery protocol) and handed off to an external delivery system for delivery to the subscriber's device.

For example, consider a stock notification application that alerts subscribers to changes in stock prices based on a trigger price
that the subscribers specify. A particular subscription is for Adventure Works Cycles stock (represented by the symbol AWKS)
passing the price of $71.00 (US). The subscriber speaks French, and wants to receive her notifications on her cellular phone.

The application defines the type of data sent in the notification, in this case information about changes in stock price. The
subscription defines what stock data is provided, in this case information about the price of Adventure Works Cycles stock
crossing a specific threshold. The subscription information is also likely to determine how the notification is formatted, and when
it is generated. This subscriber needs to have her notification formatted with French text, and packaged so that it can be delivered
to her cell phone.

Note The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-
mail address, logo, person, places, or events is intended or should be inferred.

The topics that the Notifications section covers are described in the following table.

Topic Description
Generating Notifications Describes the components and workflow of the

notification generation process.
Formatting Notifications Describes the components and workflow of the

notification formatting process.
Distributing Notifications Describes the components and workflow of the

notification distribution process.
Defining a Notification Class Discusses how to define a notification class in your

application definition file.
XSLT Content Formatter Describes the standard XSLT content formatter

installed with Notification Services, and discusses
how to implement it.

Standard Delivery Protocols Describes the standard delivery protocols installed
with Notification Services, and discusses how to
implement delivery channels that use them.

SQL Server Notification Services Books Online

Generating Notifications
Notification Services generates notifications based on the subscriptions and events that are entered into the system. It does this
by using a notification generation rule, which matches subscription information to event data. When the event data fulfills the
subscription requirements, a notification is created and added to the current notification batch. This batch is closed when all of the
new events are processed, which makes the notifications it contains available to the distributor for formatting and distribution.
You can specify a notification generation rule in either the event rules or the scheduled rules for a subscription class, or both.

A subscription class can provide both event-driven and scheduled subscriptions. You must create rules to handle either or both of
these types of subscriptions, depending on your application, when you create your subscription class. Whether a particular
subscription is event-driven or scheduled determines when notifications for that subscription are generated and subsequently
delivered, and what table is used to provide the event data used in the notification generation rule.

Generating Notifications from Event-Driven Subscriptions

An event-driven subscription has a notification generated for it whenever an incoming event matches the subscription
information. For example, an event-driven subscription to a stock update application might specify that a notification be
generated when Adventure Works Cycles stock reaches a particular price. You specify a notification generation rule in the
/SubscriptionClasses/SubscriptionClass/EventRules section of the application definition file (ADF) that matches the
subscription information with the event data in the event table to produce a notification. In the preceding example, the
subscription and event data would be matched based on having the same stock symbol, and having the stock price of the event
data be equal to or greater than the trigger stock price specified in the subscription data.

Generating Notifications from Scheduled Subscriptions

A scheduled subscription has a notification generated for it at specific times, provided there is matching event information to
provide the notification content. For example, a scheduled subscription to a weather update application might specify that a
notification containing the forecast for the local area be generated every weekday morning at 08:00 GMT. To produce a
notification, you specify a notification generation rule in the /SubscriptionClasses/SubscriptionClass/ScheduledRules section
of the ADF that matches the subscription information with the event data in a chronicle table (which is used to store event data
state; for more information see Event Chronicles). In the preceding example, the subscription and event data would be matched
based on having the same local area ID.

The Generator

The generator function of the Notification Services engine handles notification generation. It fires according to a time period you
define in the /ApplicationExecutionSettings/QuantumDuration section of the ADF.

Each time the generator fires, it executes the event chronicle rules, the event subscription rules, and the scheduled subscription
rules defined for your application. It applies these rules to all unprocessed event batches that have arrived before or during the
current quantum, and to all scheduled subscriptions whose schedule intervals fall within the current quantum.

The output from each firing of the generator is raw notification data, which is stored in batches in the notification table. The
generator usually produces one batch per rule firing, except if a notification batch size value is specified. In that case, it breaks up
the batch into smaller batches to ensure that the batch size requirements are met. The notification batch size value is defined in
the /NotificationClasses/NotificationClass/NotificationBatchSize section of the ADF. In Notification Services Standard
Edition, the <NotificationBatchSize> value must be 0. In Notification Services Enterprise Edition, the
<NotificationBatchSize> value is configurable.

Note The Notification Services stored procedures NSDiagnosticNotificationClass and
NSNotificationBatchDetails can be used to gather information about generated notifications. For more information

about these stored procedures, see NSDiagnosticNotificationClass and NSNotificationBatchDetails.

For more information about the details of generator functioning and how this affects system performance, see Specifying
Generator Settings. For more information about rule actions and firing order, see Subscription Rules.

SQL Server Notification Services Books Online

Formatting Notifications
In Notification Services, notification generation populates the notification table with batches of raw notification data. After a set of
notification batches is completed by the generator function, the batches are made available for formatting by the distributor
function. Notification formatting aggregates the notification data, which is composed of notification fields and recipient
information, and then formats this data appropriately for its destination device and specified locale.

The work item is the unit on which notification formatting is performed. Each completed notification batch is partitioned into work
items by the distributor, which allows the system to take advantage of parallel processing. A work item consists of all the
notifications in a batch that are to be distributed through the same delivery channel. The number of work items created per
notification batch is based on the number of delivery channels configured for this application, so that there is optimal distribution
of the workload.

Aggregating Notification Data

The first step in the formatting process involves aggregating the notification data. The notification fields are selected from the
notification table, and the computed field values are generated. The data from these two sources is then gathered together into a
single dataset. After it is aggregated, the notification data is then passed to a content formatter.

Aggregation of the data into digest and multicast notifications is also handled at this time, as appropriate. Digest delivery is a way
of combining several notifications for the same subscriber into a single notification. Multicast delivery is a way of formatting
shared notification data only once and then sending it to multiple subscribers. Multicast delivery is available only in Notification
Services Enterprise Edition. Both of these distribution options affect how notification data is grouped and formatted.

The subscriber device name field and the subscriber locale field are considered "built-in" notification fields. They are never
explicitly declared in the /NotificationClasses/NotificationClass/Schema section of the application definition file (ADF).
Instead, these fields are provided as parameters to the notification function, which is used in a subscription rule to generate
notifications. Recipient information, such as the delivery channel, and the subscriber's language as indicated by the locale, is
looked up from the Notification Services databases.

Formatting Notification Data

Using the aggregated dataset, the content formatter formats the notification fields for display, by using the recipient information
to determine the appropriate formatting.

Formatting takes into account such information as the subscriber locale and the device type, in order to provide notification text in
an appropriate language, and to format the content to be displayed correctly on the target device.

When formatting is complete, the content formatter creates a string containing the formatted notification data. The distributor
passes this string along to the delivery protocol, which is the Notification Services component that creates the notification
message and hands it off to an external delivery system to be delivered to the recipient.

Formatting with the Distributor

The distributor function of the Notification Services engine handles notification formatting and distribution. It creates work items,
shepherds them through the formatting and distribution processes as provided by the content formatter and delivery protocol
components, and then handles delivery retries if necessary. A distributor runs continuously, requesting work items whenever it
has processing cycles available. You might have several distributors servicing your application, with each processing a separate
work item from the same batch. Distributors might also process several work items in parallel. These options allow for sharing of
the processing load for formatting and distribution, and can affect the speed of your application.

For more information about the details of distributor functioning and how this affects system performance, see Specifying
Distributor Settings.

SQL Server Notification Services Books Online

Formatting Digest Notifications
Formatting Digest Notifications

It is often useful to group several individual notifications into one larger notification within one notification batch, if they are all
destined for the same subscriber. For example, think of a subscriber who subscribes to traffic update notifications for several
potential routes to her office. Rather than send these notifications separately, you can group them into a single notification, which
aggregates their content.

Aggregating several notifications into one is called digest delivery. A notification that consists of an aggregation of several other
notifications is referred to as a digest notification. The first notification in the set that forms the digest notification is called the
digest head notification and the remaining notifications are called digest trailer notifications. The message body is composed of
the aggregated information from all the notifications. The <DigestDelivery> element in the
/NotificationClasses/NotificationClass section of the application definition file (ADF) enables digest delivery for a notification
class. If the value of this element is true, then the notifications of this class in a notification batch are grouped together if they
contain common SubscriberId, DeviceName, and SubscriberLocale values.

In a Notification Services Enterprise Edition system, do not specify digest delivery if you have already specified multicast delivery
for a notification class. These options are mutually exclusive. If you do specify both options, the NSControl command fails.

Using <DigestGrouping> to Group Notifications

Notifications can also use match fields to narrow grouping criteria. The <DigestGrouping> element, located in both the
/NotificationClasses/NotificationClass/Schema/Fields/Field and
/NotificationClasses/NotificationClass/Schema/ComputedFields/ComputedField sections of the ADF, indicates whether a
field should be used when grouping notifications. The <DigestGrouping> element is available for both regular and computed
notification fields. If <DigestGrouping> is true, then the value of the given field is used in selecting notifications to be grouped.
Notifications are grouped together only if they have the same subscriber ID, the same device name, and the same value in the
given field.

You can use as many match fields as you want in grouping criteria. The more match fields you use, the smaller and more specific
your digest notifications will be. However, using more match fields also imposes greater processing requirements, so you should
balance use of these fields with application performance considerations.

Processing Digest Delivery Notifications

Each time a distributor processes a work item, it looks for notification data that satisfies the digest grouping criteria and then
groups it together. Digesting never occurs across work item or batch boundaries. Notification data in different notification batches
or different work items is never digested together.

If digest delivery is being used, then the distributor creates what amounts to an array of datasets for each digest notification. Each
element in the array contains the data from one of the originating notifications. This array of datasets is passed to the content
formatter, which is responsible for resolving these datasets into a single formatted notification.

See Also

Digest Delivery

SQL Server Notification Services Books Online

Formatting Multicast Notifications
Formatting Multicast Notifications

In many cases, the same notification data is sent to multiple subscribers. For example, all subscribers who have subscriptions to
the weather forecast for Tokyo, receive the same weather data in their notifications. In these cases, it is not necessary to format
the notification data for each subscriber. Formatting can simply be applied to the data once, and this formatted output can then be
sent to each subscriber. A notification that contains an aggregation of several subscribers that receive identical data is referred to
as a multicast notification.

Formatting the data once and then sending it to multiple subscribers is referred to as multicast delivery. The
<MulticastDelivery> element in the /NotificationClasses/NotificationClass section of the application definition file (ADF)
enables multicast delivery for a notification class. If the value of this element is true, notifications of this class that contain
identical notification data are formatted only once, and then routed to the appropriate list of subscribers. Multicast delivery is
available only in Notification Services Enterprise Edition.

In an Enterprise Edition system, do not specify multicast delivery if you have already specified digest delivery for a notification
class. These two options are mutually exclusive. If you do specify both options, the NSControl command fails.

Note Multicast notifications and delivery can increase the performance of your application, by reducing the
processing load on the distributor. Microsoft recommends that you take advantage of this feature if you have the
Enterprise Edition and if it is appropriate for your application.

Processing Multicast Notifications

For notification classes in which multicast delivery is enabled, the distributor takes these actions to format multicast notifications:

It groups the rows in the notifications table by the values for the device type field, subscriber locale field, notification data fields,
and computed fields. It sends one set of notification data to the content formatter for each group, and then caches the formatted
data that is produced.

It builds a list of subscribers to whom the formatted content should be sent: the subscriber in the first row is added to the list, and
then the subscribers in each subsequent row, where the values for the notification and computed fields are the same. The
duplicate data contained in these subsequent rows is not sent to the content formatter.

As soon as a row is encountered with different notification and computed field values, the current formatted content and the
current subscriber list are handed off to the delivery protocol. Then the process repeats: the data for this next group of
notifications is formatted and cached, and a new subscriber list is created.

Multicast Notification Requirements

For multicast delivery to work properly, multicast notifications must not contain any subscriber-specific information , because the
same formatted output is being sent to many subscribers. The distributor does not pass any recipient information to the content
formatter when multicast delivery is specified. If the content formatter is programmed to use recipient information for formatting,
it fails.

Important Notification Services does not prevent incorporation of subscriber-specific information from sources
outside of Notification Services, such as external tables, into the notification data during the formatting process.

It is the responsibility of the developer to ensure that any external information that the content formatter adds to the
notification data is non-recipient-specific if it is to be used in multicast notifications.

Also, content formatting is often device specific and locale specific. Therefore, multicast delivery is not possible for notifications
that have different device type or subscriber locale information. If you have a notification batch in which all the other notification
data is the same but the locale or device type varies, then there will be one formatting pass for each group of notifications that
share the same subscriber locale and device type. This means that the recipient groups for each multicast notification are smaller,
and more multicast notifications are generated.

Note Multicast delivery in Notification Services can be used even if the delivery protocol does not support true
multicast delivery in the networking sense. Selecting multicast delivery in Notification Services allows the system to
aggregate identical notifications, so that formatting is done just once, which improves performance. One set of
formatted data and a list of subscribers are handed off to the delivery protocol. The delivery protocol then delivers
these notifications using multicast delivery if it has the capability, or one at a time if it does not.

Limiting Multicast Recipients

For reliability or performance reasons, you might want to consider limiting the number of subscribers that receive a single
multicast notification. You can set the limit in the <MulticastRecipientLimit> element, in the
/NotificationClasses/NotificationClass/Protocols/Protocol/ProtocolExecutionSettings section of the ADF. Fewer
recipients for each multicast notification means that more notifications must be generated. This can affect the speed and resource
consumption of your application.

See Also

Multicast Delivery

SQL Server Notification Services Books Online

Content Formatting
Content Formatting

Content formatting is handled by the content formatter component of the distributor, after the notification data has been
aggregated. This component is implemented as a class in a managed code assembly.

Each notification class uses one content formatter to handle the formatting of its data. The selected content formatter is specified
in the /NotificationClasses/NotificationClass/ContentFormatter section of the application definition file (ADF).

A content formatter takes notification data as input, packaged into an array. For standard delivery, there is only one element in the
array, which contains the information for a single notification record. For digest delivery, there are multiple elements in the array,
each of which contains the data from one of the component notifications.

The content formatter then formats the notification fields for display, using the recipient information included in the notification
data to determine the appropriate formatting. If digest delivery is enabled, the content formatter is also responsible for
appropriately combining the component notification information. When the content formatter is finished with its task, it creates a
string containing the formatted data. The distributor passes this string, along with some notification header information that it
generates, to the delivery protocol.

Internally, a content formatter can use any technique to format the notification fields. It can be as simple as using basic string
manipulation, or it can be more complex, using XSL transforms or Microsoft ASP.NET rendering.

Notification Services provides an XSLT content formatter to assist you in quickly developing an application. It can be used in your
application after you specify some basic information about it in your ADF. For more information about the standard content
formatter, see XSLT Content Formatter.

You can also develop a custom content formatter. The Notification Services API provides an interface to assist you with this. For
more information about creating a custom content formatter, see Developing a Custom Content Formatter.

SQL Server Notification Services Books Online

Distributing Notifications
In Notification Services, formatted notifications are distributed through delivery channels and handed off to external delivery
services. A delivery channel represents a delivery pipe to a particular endpoint. A delivery channel has two elements: a delivery
protocol, and the configuration/addressing information required to identify the endpoint.

The delivery protocol creates the notification message and routes it to an external delivery system, based on the string of
formatted data it receives from the content formatter as well as distributor-generated headers that contain recipient data
and protocol-specific information. It is implemented as a class in a managed code assembly. A delivery protocol implements
a well-known protocol, such as Simple Mail Transfer Protocol (SMTP), making it accessible to the Notification Services
instance. Custom delivery protocols are specified in the <Protocols> section of the configuration file. (Notification Services
is already aware of the standard delivery protocols it provides, so developers are not required to document them.)
The configuration/addressing information permits the Notification Services instance to interact with the delivery channel. It
includes all non-application-specific information needed to deliver notifications. It can include such information as the name
of the delivery protocol assembly, the server name for the delivery service gateway, and authentication information —
depending on what external delivery service is being used. Instance configuration information is specified in the
<DeliveryChannels> section of the configuration file.

Additionally, notification-specific information is needed by the delivery protocol in order to create and route notification
messages. This information can include such information as the device address, the notification subject line, and the notification
message priority, depending on the protocol being used. Notification-specific protocol information is specified in the
/NotificationClasses/NotificationClass/Protocols/Protocol section of the application definition file (ADF).

Several delivery channels might use the same delivery protocol to communicate with different external delivery systems.

For instance, you might send mail by several different mail gateways, all using the SMTP delivery protocol. Each gateway would
have a different delivery channel entry in the configuration file, because each would require different information about accessing
a mail server. These are considered different delivery channel instances, yet because they all use the same protocol, they are of the
same delivery channel type.

The distributor determines which delivery channel should handle a particular notification by looking at the subscriber device
specified as the target for this notification. It then determines which delivery channel is associated with this device by reading this
information from the subscriber device record.

Notification Services provides several standard delivery protocols to assist you in defining delivery channels for your applications.
For more information, see Standard Delivery Protocols.

You can also develop a custom delivery protocol. Notification Services provides the IDeliveryProtocol interface to assist you
with this. For more information, see Developing a Custom Delivery Protocol.

The distributor function of the Notification Services engine handles notification formatting and distribution. For more information
about the details of distributor functioning and how this affects system performance, see Specifying Distributor Settings.

SQL Server Notification Services Books Online

Specifying Protocol Information
Specifying Protocol Information

You specify delivery protocol information in the Notification Services system by following these steps:

1. If you have any custom delivery protocols, declare them in the <Protocols> node of the configuration file. (Notification
Services is aware of all standard delivery protocols it provides, so they do not need to be declared here.)

2. Define each delivery channel (including its delivery protocol) in the <DeliveryChannels> node of the configuration file.
3. For each notification class, declare all delivery protocols that the notification class supports in the

/NotificationClasses/NotificationClass/Protocols section of your application definition file (ADF). Multiple delivery
protocols can be specified for each notification class. Header fields that are required for notification delivery are defined in
the <Fields> node of this section. These header fields are provided to the delivery protocol that creates and routes the
notification message.

4. Design your subscription management application to specify the delivery channel that each subscriber device record uses.
This can be hard-coded or you can allow the user to select a value. The delivery channel specified must be one of the
delivery channels defined in the <DeliveryChannels> node of your configuration file. The delivery channel determines
which delivery protocol creates the notification messages that are used to fulfill this subscription.

5. Pass the subscriber ID, subscriber device name, and subscriber locale fields to the notification function in the notification
generation rule. This information is saved with the other raw notification data. The subscriber device name and subscriber
locale are usually contained in the subscription information, but alternatively can be retrieved from other locations. This
information identifies the subscriber device record from which to retrieve the delivery channel information. This in turn
determines the delivery protocol used to create and route the notification message, and the external delivery system used
for message delivery.

SQL Server Notification Services Books Online

Example: Stock Update Application
Example: Stock Update Application

The following example shows a stock update application that allows subscribers to receive notifications in several ways.
Subscriber X wants his notifications to be delivered as e-mail to his cellular phone. To have the notification successfully delivered,
the system administrator, the application developer, and subscriber X take the following steps:

1. In the configuration file, the system administrator defines the Mail1 delivery channel, which uses the Simple Mail Transfer
Protocol (SMTP) delivery protocol and enables e-mail notifications using the MS01 mail server:

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>Mail1</DeliveryChannelName>
 <ProtocolName>SMTP<ProtocolName>
 <Arguments>
 <Argument>
 <Name>SmtpServer</Name>
 <Value>MS01</Value>
 </Argument>
 <Argument>
 <Name>BodyEncoding</Name>
 <Value>utf-16</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

2. In the application definition file (ADF), the application developer creates the StockNotifications notification class, which
provides stock notification delivery via SMTP:

<NotificationClasses>
 <NotificationClasses>
 <NotificationClassName>StockNotifications</NotificationClassName>
 ...
 <Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>
 'The price of ' + StockSymbol
 + ' is now ' + StockPrice
 </SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>
 'stockquotes@microsoft.com'
 </SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>

 <SqlExpression>'Normal'</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>'html'</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 ...
 </ProtocolExecutionSettings>
 </Protocol>
 </Protocols>
 </NotificationClass>
</NotificationClasses>

3. In the ADF, the application developer creates the StockSubscriptions subscription class, which consumes stock events to
produce notifications of the StockNotifications notification class:

<SubscriptionClasses>
 <SubscriptionClass>
 <SubscriptionClassName>StockSubscriptions</SubscriptionClassName>
 ...
 <EventRule>
 <RuleName>CreateEmailNotifications</RuleName>
 <Action>
 SELECT dbo.StockNotificationsNotify(
 S.SubscriberId, S.SubscriberDeviceName,
 S.SubscriberLocale, E.StockSymbol, E.StockPrice)
 FROM StockSubscriptions S JOIN StockEvents E
 ON S.StockSymbol = E.StockSymbol
 WHERE S.StockTriggerValue <= E.StockPrice
 </Action>
 <ActionTimeout>P0DT00H01M00S</ActionTimeout>
 <EventClassName>StockEvents</EventClassName>
 </EventRule>
 ...
 </SubscriptionClass>
</SubscriptionClasses>

4. Subscriber X enters the subscriber device information for his cellular phone in a subscription management application. He
selects a delivery channel as part of creating the subscriber device record. In this case, subscriber X selects the Mail1 delivery
channel.

(The subscription management application developer must ensure that subscribers are restricted to valid delivery channels
for the device type they enter.)

5. Subscriber X now enters a subscription to the stock update service, specifying the subscriber device record that represents
his cellular phone as the target device. In this case, subscriber X creates a subscription of the StockSubscriptions class.

When a stock event comes in, the following actions occur:

1. StockSubscriptions subscriptions are matched to the incoming event, and StockNotifications notifications are generated.
2. The notification data for subscriber X is passed to the content formatter, formatted, and output as a string.
3. The distributor generates a notification header for subscriber X's notification. This notification header includes delivery

information like device address and delivery channel, and the values of the protocol fields defined in the StockNotifications
notification class.

4. The distributor passes the notification header and the string containing the formatted notification data to the Simple Mail
Transfer Protocol (SMTP) delivery protocol, which is selected based on the delivery channel information retrieved from
subscriber X's subscriber device record.

5. The SMTP delivery protocol constructs an SMTP message based on this information. The body contains the formatted
notification data, and the header uses the notification header information.

6. The message is handed off to the SMTP transport for delivery to the external MS01 mail server, which ultimately delivers
the message to the subscriber's device.

Note The SMTP delivery protocol is provided as a standard part of Notification Services. It makes the SMTP
mail delivery protocol available to Notification Services instances. No configuration file entry is needed, because
SMTP is a Notification Services standard delivery protocol.

SQL Server Notification Services Books Online

Digest Delivery
Digest Delivery

One option for notification delivery is digest delivery: grouping several individual notifications for one subscriber into one larger
notification, called a digest notification. For example, a subscriber can subscribe to traffic update notifications for several potential
routes to her office. Rather than being sent separately, these notifications are grouped into a single digest delivery.

Digest delivery is disabled by default. If both digest delivery and multicast delivery are specified, the NSControl command fails.
Digest notifications are delivered in exactly the same manner as standard notifications.

The collection and aggregation of the notification data is performed when the distributor processes the work item that contains
the notifications. For more information, see Formatting Digest Notifications.

SQL Server Notification Services Books Online

Multicast Delivery
Multicast Delivery

Multiple subscribers often receive identical notification data, such as the weather forecast for Tokyo. In these cases, it is possible to
format that notification data once, and then send it to each subscriber. Formatting the data once and then sending it to multiple
subscribers is referred to as multicast delivery. Multicast delivery is available only in Notification Services Enterprise Edition.

Multicast delivery is disabled by default. If both digest delivery and multicast delivery are specified, the NSControl command
fails.

The notification data is cached and the subscriber list is created when the distributor processes the work item that contains the
notifications. Once the formatted notification data and subscriber list are handed off to the delivery protocol, the delivery protocol
determines whether it is appropriate to send a single message to all the subscribers, or to send one message to each, based on
the protocol being implemented.

For more information about the formatting process for multicast notifications, see Formatting Multicast Notifications.

SQL Server Notification Services Books Online

Handling Delivery Failures
Handling Delivery Failures

The distributor provides several mechanisms for handling notification delivery failures. As the developer, you must specify the
parameters that determine how your application uses these mechanisms.

All the delivery failure parameters except for expiration age are specified for each delivery protocol for each notification class. For
a given notification class, all notifications that are delivered using the specified delivery protocol have the same delivery failure
handling, even if they are delivered using different delivery channels.

The expiration age is specified for the whole notification class. All notifications for the given notification class have the same
expiration age, regardless of the delivery protocols or delivery channels they use.

Note The Notification Services stored procedures NSDiagnosticDeliveryChannel and
NSDiagnosticFailedNotifications can be helpful in troubleshooting delivery failures. For more information about
these stored procedures, see NSDiagnosticDeliveryChannel and NSDiagnosticFailedNotifications.

Important Notification Services receives limited error feedback from the external delivery systems. Most failures
result in a generic "delivery failure" error in the event log. If you receive consistent delivery failures, it might indicate a
configuration issue. Check the delivery channel settings in the configuration file, and the protocol field values for the
notification classes in the application definition file (ADF) in such a circumstance.

SQL Server Notification Services Books Online

Retry Logic
Retry Logic

The distributor can re-attempt the delivery of notifications when a prior delivery attempt has failed. It does this on a per-protocol
basis, using the /NotificationClasses/NotificationClass/Protocols/Protocol/ProtocolExecutionSettings/RetrySchedule
value to determine how many retries are attempted and when they occur. If you do not want any retries, you can exclude the
<RetrySchedule> node from the application definition file (ADF).

The retry logic is applied at the distributor work item level. If any notifications in a work item cannot be delivered, then the
distributor work item itself is considered to have failed. The distributor can re-attempt delivery of the distributor work item at a
later time, according to the information specified in the <RetrySchedule> node. When this happens, only the notifications that
could not be delivered during the previous delivery attempt are included in the retry. Notifications that were successfully
delivered during a previous delivery attempt are ignored during a retry. There is one exception: if a delivery failure occurs and the
delivery status of a notification cannot be determined, retries are attempted that might result in the subscriber receiving duplicate
notifications.

The <RetrySchedule> node contains a list of <RetryDelay> elements, each of which specifies a time duration value. After the
initial failure of a distributor work item, the distributor waits the amount of time specified in the first <RetryDelay> element
before re-attempting delivery of the work item. If this attempt also fails, the distributor waits the amount of time specified in the
next <RetryDelay> element, and then makes another attempt. This process continues until the intervals specified by all
<RetryDelay> elements have been exhausted, or until the undelivered notifications expire, whichever comes first.

Retry delays are relative to each other, not relative to the original failure time. The distributor waits the full time specified in the
next <RetryDelay> element before attempting delivery again.

For example, suppose you have three retry delays specified: the first for 15 minutes, the second for 30 minutes, and the third for
one hour. Assuming the initial delivery failure occurred at 13:00 GMT, the first retry occurs at 13:15 GMT, the second at 13:45
GMT, and the third at 14:45 GMT.

The <RetryDelay> values do not affect the firing schedule of the distributor. These values represent minimum delays; the actual
delay between attempts might be longer. Each time the distributor fires, it determines which <RetryDelay> intervals have
passed, and then re-attempts the distributor work items to which they apply.

If your server experiences prolonged downtime, more than one retry delay interval might pass without the distributor attempting
a retry. If this occurs, the distributor immediately performs one retry attempt on those distributor work items that have not
expired when the server comes back online. It then resumes the retry delay schedule, and waits the amount of time specified in
the second missed delay interval before trying again.

For example, suppose you have four retry delays specified: the first for 15 minutes, the second for 30 minutes, the third for 45
minutes, and the fourth for one hour. The initial delivery failure occurs at 13:00 GMT, and the first retry occurs at 13:15 GMT. The
server then goes down until 16:00 GMT. When the server comes back online, a retry occurs immediately, replacing the first retry
delay that was missed (in this case the delay interval of 30 minutes). If this retry fails, then the next retry occurs at 16:45 GMT per
the third specified retry delay interval.

Expiration Age

You can specify an expiration age for notifications with time-sensitive data. If the notifications are not delivered within the time
period specified, then the distributor ceases trying to deliver them, even if there are retry delay intervals remaining. For instance,
suppose you set an expiration age of two hours. If your 14:00 GMT notification batch cannot send successfully by 16:00 GMT, then
those notifications expire and no further delivery attempts are made.

You specify an expiration age for notifications by using the <ExpirationAge> element in the notification class definition. If you
choose not to use this element, you must exclude it from the <NotificationClass> node. In that case, notifications never expire.
The distributor continues to attempt delivery of them until the retry schedule is exhausted.

SQL Server Notification Services Books Online

Managing Event Log Entries
Managing Event Log Entries

The distributor writes entries to the event log to document notification delivery failures. It uses the
<FailuresBeforeLoggingEvent> and the <FailureEventLogInterval> elements defined in the notification class to determine
when to do this.

The <FailuresBeforeLoggingEvent> element specifies the number of failures that must occur before the distributor writes an
entry to the event log. The <FailureEventLogInterval> element specifies the minimum amount of time that must pass between
writes to the event log, regardless of how many failures occur. This allows you to control the number of writes to the event log, so
multiple errors do not cause hundreds of duplicate event log entries.

For example, suppose the <FailuresBeforeLoggingEvent> value is set to 5 and the <FailureEventLogInterval> value is set to
ten minutes. The first time five failures occur, an event log entry is written. After that, regardless of how many failures occur, no
further entries are written to the event log until after ten minutes has passed. After ten minutes, the
<FailuresBeforeLoggingEvent> count begins again. If five failures occur, another event log entry is written.

These two parameters together allow you to configure the error logging to fit the needs of your application, based on known
information about the reliability of the network and on the quality of service you want.

Note Developers might want to leave the values of the <FailuresBeforeLoggingEvent> and
<FailureEventLogInterval> elements at their default settings while developing an application. These settings cause
all errors to be logged, which simplifies testing.

SQL Server Notification Services Books Online

Handling Prolonged Failure
Handling Prolonged Failure

In cases where delivery failure occurs because of a prolonged network outage, rather than transient network conditions, the
distributor aborts delivery attempts in order to avoid flooding the network. The behavior of the distributor in this situation is
controlled by the <FailuresBeforeAbort> element.

The <FailuresBeforeAbort> element specifies the number of consecutive delivery failures that must occur before the distributor
aborts the delivery of a work item. If this specified number of consecutive failures occurs, the distributor writes an error message
to the event log and then halts processing.

There are also several settings available to control distributor logging levels for the application as a whole. These settings can be
configured to provide the optimal amount of log information for troubleshooting your application. For more information about
these settings, see Defining the <DistributorLogging> Node.

SQL Server Notification Services Books Online

Defining a Notification Class
You define the notifications your Notification Services application will provide by creating notification classes in your application
definition file (ADF). You can define one or more notification classes for each Notification Services application you develop.

Follow these steps to define a notification class:

1. Name your notification class. See Naming the Notification Class for more information.
2. Define the fields in your notification class. These fields provide the data that can be sent to your subscribers. They are also

used to create the SQL Server notification table, which stores the notification data, and the notification function, which is
used in subscription rules to create notifications. For more information, see Defining the Notification Fields.

3. Optionally, designate the SQL Server filegroup for the notification table. If you do not specify a filegroup, the notification
table is automatically created on the same filegroup as the application database. For more information, see Designating the
Filegroup.

4. Declare the content formatter that this notification class is to use. The content formatter takes the raw notification data and
formats it appropriately for display. For more information, see Documenting the Content Formatter.

5. Indicate whether this notification class uses digest delivery. Digest delivery means that all notifications for the same
subscriber that are generated by one execution of the notification generation rule are grouped and handled as a single
notification. For more information, see Setting the Digest Delivery Option.

6. If you are using Notification Services Enterprise Edition, indicate whether this notification class uses multicast delivery.
Multicast delivery means that all notifications that share identical data and are in the same distributor work item are
formatted just once, and then this formatted data is sent out to all subscribers. For more information, see Setting the
Multicast Delivery Option.

7. If you are using Notification Services Enterprise Edition, specify a notification batch size for notifications of this class. For
more information, see Specifying a Notification Batch Size.

8. Specify one or more delivery protocols that this notification class is to use for notification delivery. This consists of
specifying header or other notification-specific information required for messages created by this delivery protocol. For
more information, see Documenting the Delivery Protocols.

9. Specify an expiration age for notifications of this class. For more information, see Specifying the Notification Expiration Age.

All of this information is stored in the /NotificationClasses/NotificationClass section of the ADF. You create one
<NotificationClass> node for each notification class that you define.

Example: Defining a Notification Class

The following code example shows the definition for the StockNotifications notification class:

<NotificationClasses>
 <NotificationClass>
 <NotificationClassName>StockNotifications</NotificationClassName>
 <Schema>
 <Fields>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>money</FieldType>
 </Field>
 </Fields>
 </Schema>
 <FileGroup>Secondary</FileGroup>
 <ContentFormatter>
 <ClassName>Stock.StockFormatter</ClassName>
 <AssemblyName>C:\CustomCFs\StockFormatter.dll</AssemblyName>
 <Arguments>
 <Argument>
 <Name>OutputHTML</Name>
 <Value>true</Value>
 </Argument>
 </Arguments>
 </ContentFormatter>
 <DigestDelivery>true</DigestDelivery>

 <NotificationBatchSize>100</NotificationBatchSize>
 <Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>%SubjectLine%</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>%fromAddress%</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <FieldReference>DeviceAddress</FieldReference>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>%mailPriority%</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>"html"</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>P0DT00H15M00S</RetryDelay>
 <RetryDelay>P0DT00H30M00S</RetryDelay>
 <RetryDelay>P0DT01H00M00S</RetryDelay>
 </RetrySchedule>
 <FailuresBeforeAbort>20</FailuresBeforeAbort>
 <MulticastRecipientLimit>10</MulticastRecipientLimit>
 <WorkItemTimeout>P0DT00H30M00S</WorkItemTimeout>
 </ProtocolExecutionSettings>
 </Protocol>
 </Protocols>
 <ExpirationAge>P0DT02H30M00S</ExpirationAge>
 </NotificationClass>
</NotificationClasses>

SQL Server Notification Services Books Online

Naming the Notification Class
Naming the Notification Class

Document the notification class name in the <NotificationClassName> element of the application definition file (ADF). For
more information, see <NotificationClassName> Element.

Example

The following example creates a notification class with the name StockNotifications:

<NotificationClassName>StockNotifications</NotificationClassName>

SQL Server Notification Services Books Online

Defining the Notification Fields
Defining the Notification Fields

Define the fields that make up the notification in the <Schema> section of the <NotificationClass> node of the application
definition file (ADF).

The <Schema> node has two child nodes:

<Fields> (required)
<ComputedFields> (optional)

Fields that store data within a database table are defined in the <Fields> node. Fields whose data should be computed at
notification distribution time are defined in the <ComputedFields> node.

Note You must exclude the <ComputedFields> node from the <Schema> node if you do not use it.

The <Fields> and <ComputedFields> nodes in turn have <Field> and <ComputedField> nodes, each of which defines a
single field for this notification class.

<Field> Node

The <Field> node has three child elements:

<FieldName> (required)
<FieldType> (required)
<DigestGrouping> (optional)

For more information, see <Field> Node (/Schema/Fields).

<FieldName> Element

Document the field name in the required <FieldName> element.

For more information, see <FieldName> Element (/NotificationClass/Schema/Fields/Field).

<FieldType> Element

Document the field data type in the required <FieldType> element. The field data types must conform to SQL Server data types.

Important You cannot specify a notification data field as a SQL Server Identity column. Notification Services already
uses the Identity property to specify a system-generated NotificationId field.

For more information, see <FieldType> Element (/NotificationClass/Schema/Fields/Field).

<DigestGrouping> Element

Document the field to be used for matching when grouping notifications. Notifications with the same SubscriberId,
SubscriberLocale, and DeviceName values that also have matching values in any <DigestGrouping> fields are grouped into
one notification.

Note You must exclude the <DigestGrouping> element from the <Field> node if you do not use it.

For more information, see <DigestGrouping> Element (<Field>).

<ComputedField> Node

The <ComputedField> node has three child elements:

<FieldName> (required)
<SqlExpression> (required)
<DigestGrouping> (optional)

For more information, see <ComputedField> Node.

<FieldName> Element

Document the field name in the required <FieldName> element.

For more information, see <FieldName> Element (/NotificationClass/Schema/ComputedFields/ComputedField).

<SqlExpression> Element

This element contains the Transact-SQL expression that computes the data for this field. Any Transact-SQL expression that can be
evaluated as part of a SELECT query in the application database can be referenced in an <SqlExpression> element. This includes
use of arbitrary constants, making SQL function calls, and referring to data in chronicle tables. If you use a string constant as a
<SqlExpression> value, it must be enclosed in apostrophes (expressed as the entity reference ' in the ADF).

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you need to
use these characters in your expressions, you must use entity references to replace them. For more information about
using reserved characters in the ADF, see Reserved Characters.

For more information, see <SqlExpression> Element (<ComputedField>).

<DigestGrouping> Element

Document the field to be used for matching when grouping notifications. Notifications with the same SubscriberID and
DeviceName values that also have matching values in any <DigestGrouping> fields are grouped into one notification.

Note You must exclude the <DigestGrouping> element from the <ComputedField> node if you do not use it.

For more information, see <DigestGrouping> Element (<ComputedField>).

Example

In the following code example, two notification fields are defined: a 10-character stock symbol field, and a stock value field that
accepts monetary data. Additionally, a computed field is defined that determines how much the stock price has changed:

<Schema>
 <Fields>
 <Field>
 <FieldName>StockSymbol</FieldName>
 <FieldType>char(10)</FieldType>
 <DigestGrouping>true<DigestGrouping>
 </Field>
 <Field>
 <FieldName>StockPrice</FieldName>
 <FieldType>money</FieldType>
 </Field>
 </Fields>
 <ComputedFields>
 <ComputedField>
 <FieldName>StockPriceChange</FieldName>
 <!--The event table name is the combination
 of the event class name ("Stock") and the word "Events".-->
 <!--The event chronicle name is the name you gave the
 chronicle table when you created it in the event class
 definition in the ADF.-->
 <SqlExpression>
 (StockEvents.StockPrice – StockEventChron.StockLastValue)
 </SqlExpression>
 </ComputedField>
 </ComputedFields>
</Schema>

SQL Server Notification Services Books Online

Designating the Filegroup
Designating the Filegroup

SQL Server provides filegroups to simplify database administration and allow optimal allocation of system data across multiple
physical disks. Optimized data allocation can be critical to the performance of high-volume Notification Services applications.

For more information about SQL Server filegroups, see "Files and Filegroups" in SQL Server Books Online.

Specify the name of the filegroup on which you want the notification table created in the <FileGroup> element of the
<NotificationClass> node. The filegroup named must be one of the filegroups defined as a <NamedFileGroup> in the
<Database> node.

Note You must exclude the <FileGroup> element from the <NotificationClass> node if you do not use it. Your
notification table is created on the default filegroup for the application database in this case.

For more information, see <FileGroup> Element (<NotificationClass>).

Example

In the following example, the Primary filegroup is selected as the default filegroup for the notification table:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 ...
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 ...
 </NamedFileGroup>
 ...
</Database>
...
<NotificationClasses>
 <NotificationClass>
 ...
 <FileGroup>Primary</FileGroup>
 ...
 </NotificationClass>
</NotificationClasses>

SQL Server Notification Services Books Online

Documenting the Content Formatter
Documenting the Content Formatter

The <ContentFormatter> node contains information about the class that provides content formatting functionality to this
notification class. This class is part of a managed code assembly, and contains all the functions necessary to format your raw
notification data appropriately for the locales, languages, and devices you support for subscriptions to this application.

The <ContentFormatter> node has three child elements:

<ClassName> (required)
<AssemblyName> (required for custom content formatters)
<Arguments> (optional)

For more information about the <ContentFormatter> node, see <ContentFormatter> Node.

<ClassName> Element

You must document the class name of the class that implements the content formatter. For custom content formatters, the class
name must be fully qualified, including any namespace prefix.

For more information about namespace naming conventions, see Namespace Naming Guidelines in the Microsoft MSDN®
Library.

For the standard XSLT content formatter that is installed with Notification Services, the class name should be provided without the
namespace, simply as XsltFormatter. For more information about implementing the XSLT content formatter, see XSLT Content
Formatter.

Enter the class name in the <ClassName> element.

For more information about the <ClassName> element, see <ClassName> Element (<ContentFormatter>).

<AssemblyName> Element

You must specify the location of the assembly that contains the content formatter class in the <AssemblyName> element. This
must be done for any custom content formatters that you create. The standard Notification Services XSLT content formatter does
not require this information.

You must provide the full path and the assembly file name as the value for the <AssemblyName> element.

Note If you are declaring the standard Notification Services XSLT content formatter, you must exclude the
<AssemblyName> element from the <ContentFormatter> node.

For more information, see <AssemblyName> Element (<ContentFormatter>).

<Arguments> Node

Document arguments in the <Arguments> section of the <ContentFormatter> node. These are the arguments that must be
passed to the content formatter when it is initialized. Create one <Argument> node for each argument in the <Arguments>
section.

Note You must exclude the <Arguments> node from the <ContentFormatter> node if you do not use it.

Each <Argument> node has two required child elements:

<Name>
<Value>

For more information, see <Argument> Node (/ContentFormatter/Arguments).

You specify the argument name in the <Name> element. You specify the argument value in the <Value> element.

For more information about the <Name> element, see <Name> Element (/ContentFormatter/Arguments/Argument). For more
information about the <Value> element, see <Value> Element (/ContentFormatter/Arguments/Argument).

Example

http://go.microsoft.com/fwlink/?LinkId=7311

In the following code example, the Stock.StockFormatter class provides the content formatting functionality, and is implemented
in the StockFormat.dll file. It takes a single argument that tells it to display the content in an HTML format:

<ContentFormatter>
 <ClassName>Stock.StockFormatter</ClassName>
 <AssemblyName>C:\CustomCFs\StockFormat.dll<AssemblyName>
 <Arguments>
 <Argument>
 <Name>OutputHTML</Name>
 <Value>true</Value>
 </Argument>
 </Arguments>
</ContentFormatter>

SQL Server Notification Services Books Online

Setting the Digest Delivery Option
Setting the Digest Delivery Option

The <DigestDelivery> element indicates whether notifications of this class are digested. Specify true as the value to enable
digest delivery. Specifying false, or excluding this element from the <NotificationClass> node, disables digest delivery.

Note You must exclude the <MulticastDelivery> element from the <NotificationClass> node if you have
Notification Services Standard Edition, or if you have Notification Services Enterprise Edition and you do not use this
element.

For more information about the <DigestDelivery> element, see <DigestDelivery> Element. For more information about the
implications of using this option, see Formatting Digest Notifications.

Example

This example enables digest delivery for a notification class on an Enterprise Edition system:

<DigestDelivery>true</DigestDelivery>

SQL Server Notification Services Books Online

Setting the Multicast Delivery Option
Setting the Multicast Delivery Option

The <MulticastDelivery> element indicates whether notifications of this class are multicasted. Specify true as the value to
enable multicast delivery. Specifying false, or excluding this element from the <NotificationClass> node, disables multicast
delivery.

Note You must exclude the <NotificationBatchSize> element from the <NotificationClass> node if you have
Notification Services Standard Edition, or if you have Notification Services Enterprise Edition and you do not use this
element. If it is excluded in an Enterprise Edition system, there is no limit to the number of notifications that can be
included in a single batch.

For more information about the <MulticastDelivery> element, see <MulticastDelivery> Element. For more information about
the implications of using this option, see Formatting Multicast Notifications.

Example

This example enables multicast delivery for a notification class on an Enterprise Edition system:

<MulticastDelivery>true</MulticastDelivery>

SQL Server Notification Services Books Online

Specifying a Notification Batch Size
Specifying a Notification Batch Size

The <NotificationBatchSize> element documents the maximum number of notifications that can be included in a batch for a
given notification class.

The generator usually produces one batch per rule firing, unless a notification batch size value is specified. If you do specify this
value, the generator breaks up the batch into smaller batches to ensure that the batch size requirements are met.

Note You must exclude the <NotificationBatchSize> element from the <NotificationClass> node if you do not
use it. In this case, there is no limit to the number of notifications that can be included in a single batch.

For more information, see <NotificationBatchSize> Element.

Example

This example sets the notification batch size for a notification class to 100:

<NotificationBatchSize>100</NotificationBatchSize>

SQL Server Notification Services Books Online

Documenting the Delivery Protocols
Documenting the Delivery Protocols

The <Protocols> node documents the delivery protocols that are supported by a given notification class. Each delivery protocol
has a <Protocol> child node in the <Protocols> node.

Each <Protocol> node has three child elements:

<ProtocolName> (required)
<Fields> (required)
<ProtocolExecutionSettings> (optional)

For more information, see <Protocol> Node.

Note You must exclude the <ProtocolExecutionSettings> node from the <Protocol> node if you do not use it.

Important You must document every delivery protocol that a notification class uses, even if the delivery protocol
requires no header field information (for example, the File delivery protocol). Notification Services uses this protocol
information to determine what protocols are valid for delivering notifications of this class.

<ProtocolName> Element

Determine the name of the delivery protocol: either a well-known protocol like Simple Mail Transfer Protocol (SMTP), or the name
of a custom delivery protocol that you have documented in the <Protocols> node of the configuration file. Document this name
in the <ProtocolName> element. The configuration file entry provides the mapping between an application developer-assigned
delivery protocol name and the class name of its implementation.

For more information, see <ProtocolName> Element.

<Fields> Node

The <Fields> node documents all the header fields that are required for a message that is to be created and routed by this
delivery protocol. For each of the header fields, create a <Field> child node in the <Fields> node. These fields are provided to the
DeliverNotification method of the class that implements the delivery protocol as a set of name/value pairs. The values are
computed at notification delivery time.

A <Field> node consists of two required child elements:

<FieldName>
either <FieldReference> or <SqlExpression>

For more information, see <Field> Node (/Protocol/Fields).

<FieldName> Element

Document the name of the header field in the required <FieldName> element.

For more information, see <FieldName> Element (/Protocol/Fields/Field).

<FieldReference> or <SqlExpression> Element

If the header field value already exists in one of the notification fields or computed fields, use the <FieldReference> element. The
<FieldReference> element specifies the name of the notification field whose value should be used in this header field. Both
regular and computed notification fields can be used to provide this value.

For more information, see <FieldReference> Element.

If the header field value does not yet exist in a notification field, use the <SqlExpression> element. The <SqlExpression>
element contains the Transact-SQL expression that computes the data for this field. Any Transact-SQL expression that can be
evaluated as part of a SELECT query in the application database can be referenced in a <SqlExpression> element. This includes
expressions such as arbitrary constants and making SQL function calls. If you use a string constant as a <SqlExpression> value,
it must be enclosed in apostrophes, which in turn must be expressed as the entity reference ' in the application definition
file (ADF).

An <SqlExpression> element can also take an application parameter as a value. Application parameters are defined in the
<ParameterDefaults> node of the ADF. For more information about using application parameters, see Defining Application
Parameters and <SqlExpression> Element (/Protocol/Fields/Field).

Note There are several reserved characters in the Notification Services XML vocabulary (>, <, ', ", &, %). If you need to
use these characters in your Transact-SQL expressions, you must use entity references to replace them. For more
information about using reserved characters in the ADF, see Reserved Characters.

<ProtocolExecutionSettings> Node

The <ProtocolExecutionSettings> node has six optional child elements:

<RetrySchedule>
<FailuresBeforeLoggingEvent>
<FailureEventLogInterval>
<FailuresBeforeAbort>
<MulticastRecipientLimit>
<WorkItemTimeout>

Note Any child element that is not used must be excluded from the <ProtocolExecutionSettings> node.

For more information, see <ProtocolExecutionSettings> Node.

<RetrySchedule> Node

The <RetrySchedule> node consists of one or more <RetryDelay> elements. Each <RetryDelay> element defines a period of
time after a failed notification delivery attempt that a retry should be attempted. If the retry attempted at the time specified by the
first <RetryDelay> element fails, then another retry attempt is made at the time specified by the second <RetryDelay> element,
and so forth.

For more information, see <RetrySchedule> Node.

<FailuresBeforeLoggingEvent> Element

The <FailuresBeforeLoggingEvent> element defines the number of failures that are to occur before a system event log entry is
created to document the failure.

For more information, see <FailuresBeforeLoggingEvent> Element.

<FailureEventLogInterval> Element

The <FailureEventLogInterval> element specifies the minimum amount of time that must pass before consecutive failure
events are logged.

For more information, see <FailureEventLogInterval> Element.

<FailuresBeforeAbort> Element

The <FailuresBeforeAbort> element defines the number of retry attempts that are permissible before aborting any further
attempts.

For more information, see <FailuresBeforeAbort> Element.

<MulticastRecipientLimit> Element

The <MulticastRecipientLimit> element limits the number of recipients allowed for each multicast notification. This element is
available only in Notification Services Enterprise Edition.

Note You must exclude the <MulticastRecipientLimit> element from the <ProtocolExecutionSettings> node if
you have Notification Services Standard Edition.

For more information, see <MulticastRecipientLimit> Element.

<WorkItemTimeout> Element

The <WorkItemTimeout> element specifies the amount of time a distributor thread can take in order to complete a work item
assigned to it. If the <WorkItemTimeout> value is exceeded, the work item is canceled for that thread. The work item is then
returned to the pool of available work items, so that it can be picked up by another thread and processed. This prevents a work
item from being lost, which can occur when a work item is assigned to a thread for processing, but is not actually completed
because of some error.

For more information, see <WorkItemTimeout> Element.

Example

The following code example specifies Simple Mail Transfer Protocol (SMTP) as a valid delivery protocol for creating and routing
notifications of this class, and provides values for the fields required to create an SMTP message. Notifications sent using this
protocol have three redelivery attempts if initially unsuccessful: the first at 15 minutes after the initial attempt, the second 30
minutes after that, and the final attempt one hour later. If you are using multicast delivery, it limits each multicast notification to
10 recipients. Work items time out after 10 minutes. This example assumes an Enterprise Edition system:

<Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>%SubjectLine%</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>%fromAddress%</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <FieldReference>DeviceAddress</FieldReference>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>%mailPriority%</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>"html"</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>P0DT00H15M00S</RetryDelay>
 <RetryDelay>P0DT00H30M00S</RetryDelay>
 <RetryDelay>P0DT01H00M00S</RetryDelay>
 </RetrySchedule>
 <FailuresBeforeAbort>20</FailuresBeforeAbort>
 <MulticastRecipientLimit>10</MulticastRecipientLimit>
 <WorkItemTimeout>P0DT00H10M00S</WorkItemTimeout>
 </ProtocolExecutionSettings>
 </Protocol>
</Protocols>

SQL Server Notification Services Books Online

Specifying the Notification Expiration Age
Specifying the Notification Expiration Age

The <ExpirationAge> element allows you to specify the length of time permitted for notification re-sends before the notification
data is determined to be out of date. If Notification Services cannot successfully deliver a notification before it expires, it abandons
the notification without delivering it. If you do not specify an expiration age, notifications never expire.

Note You must exclude the <ExpirationAge> element from the <NotificationClass> node if you do not use it.

For more information, see <ExpirationAge> Element.

Example

This example sets the expiration age of this notification class to 1 hour, 45 minutes, and 30 seconds:

<ExpirationAge>PT01H45M30S</ExpirationAge>

SQL Server Notification Services Books Online

XSLT Content Formatter
Notification Services provides a standard XSLT content formatter to assist you in getting a Notification Services application
developed and deployed quickly. This content formatter allows you to specify an XSL transform to be applied to the raw
notification data. This XSL transform makes all the formatting changes that are required to prepare the notification data for
display.

For each notification it formats, the XSLT content formatter reads an XSL transform from a directory, and creates an intermediate
XML document in memory, which contains the notification data. It then applies the XSL transform to this intermediate XML
document, which results in the final formatted content. A string containing the formatted content is then passed to a delivery
protocol.

You must supply one or more identically named XSLT files, one for each subscriber locale and device type name combination you
support. Place each XSLT file in a separate directory. Notification Services selects the appropriate file at run time, based on the
device type and subscriber locale specified in the notification data. You also need to document the XSLT file name and the base
directory in the application definition file (ADF).

Note You can debug an XSLT file by loading the unformatted XML notifications into a document object model (DOM),
applying the NoOp.xslt file that comes with the Notification Services sample applications, and examining the resulting
formatted notifications. This is easier than debugging the XSLT file inside Notification Services.

If you need functionality that cannot be addressed by applying XSL transforms to your notification data, you can create a custom
content formatter. For more information, see Developing a Custom Content Formatter.

SQL Server Notification Services Books Online

Creating the XSLT File
Creating the XSLT File

You must create your XSLT file to transform XML data of the following form:

<Notifications>
 <Notification>
 <Field_Name>field_value</Field_Name>
 </Notification>
</Notifications>

All values in the intermediate XML will be strings.

If the notifications have been aggregated for digest delivery, there will be many <Notification> elements in the XML document.
Otherwise, there will only be a single <Notification> element. Each <Notification> element will contain one or more elements
that contain the notification data. The names of these elements will reflect the names of the notification fields, and their values will
be the values of the notification fields. The notification data will consist of notification fields from the notification table as well as
computed notification fields.

Note Consider adding a "for more information" URL to the formatted notification as part of the transform process.
Using a URL reduces the amount of notification data to be delivered, yet makes it easy for subscribers to retrieve more
information if they choose.

Example

In the following example, a notification record with the two fields StockSymbol (value of AWKS) and StockPrice (value of 55.02)
has the following intermediate XML:

<notifications>
 <notification>
 <StockSymbol>AWKS</StockSymbol>
 <StockPrice>55.02</StockPrice>
 </notification>
</notifications>

There is no guarantee about the order of the elements in the intermediate XML.

Any field value in the intermediate XML that represents a date or a number will be in the form appropriate for the locale of the
notification. For example, a date for an English-United States locale will be in the MM/DD/YYYY format, while a date for a
Japanese-Japan locale will be in the YYYY/MM/DD format. It is up to the application developer to do any additional translation or
formatting transformations on the notification contents.

SQL Server Notification Services Books Online

XSLT File Location
XSLT File Location

Information about the subscriber locale and device type of the recipient is supplied to the content formatter as part of the
notification data. The subscriber locale is identified using the set of locale strings that are shipped with Notification Services. The
device type is identified using the set of devices supported by the application, as specified by the developer.

These values are not directly available to you to use in the XSLT file. Notification Services uses them to select from among the
XSLT files that you provide, based on the XSLT file location.

The base directory that you specify in the application definition file (ADF) is the root directory under which your XSLT files are
found. The XSLT file can reside in a subdirectory of the base directory, to allow for specific transforms based on locale and device
type.

Notification Services expects to find one subdirectory under the base directory for each combination of locale and device type that
is to have a specific transformation. These directories should follow this format:

XSLTBaseDirectory\SubscriberLocale\DeviceType

The subscriber locale and device type elements are optional.

Example

In the following example, you want to provide transformations for the combinations shown in the following table.

Recipient information XSLT path
French, Canada, all device types BaseDirectory\fr-CA\transform.xsl
English, Canada, all device types BaseDirectory\en-CA\transform.xsl
English, United States, cellular
phones

BaseDirectory\en-
US\CellularPhoneDeviceTypeName\transform.xsl

English, United States, all other
device types

BaseDirectory\en-US\transform.xsl

The content formatter searches for an XSLT file that matches the locale and device type information of the notification it is
processing, going from the most specific match to the least specific match. The search process looks for matching directories in
the following order:

XSLTBaseDirectory\SubscriberLocale\DeviceType
XSLTBaseDirectory\SubscriberLocale
XSLTBaseDirectory\DeviceType
XSLTBaseDirectory

SQL Server Notification Services Books Online

Defining the XSLT Content Formatter
Defining the XSLT Content Formatter

Define the XSLT content formatter in the /NotificationClasses/NotificationClass/ContentFormatter section of the application
definition file (ADF). The following list reviews the elements in this section and provides their required values:

<ClassName> (required)
This value must be XsltFormatter.

<AssemblyName> (not used)
This element is not used with the XSLT content formatter.

<Arguments> and child elements
The XSLT content formatter takes three named arguments as initialization parameters. You can specify them in any order:

XsltBaseDirectory (required) specifies the directory that serves as the root location of all of your XSLT files.
XsltFileName (required) specifies the name of the XSLT file used to transform the raw notification data into the
appropriate format for display.
DisableEscaping (optional) provides a Boolean value that indicates that the event data contains xml or html data, and
prevents further transformation of the data. If this argument is not specified the default is false.

XSLT Content Formatter Definition

<ContentFormatter>
 <ClassName>XsltFormatter</ClassName>
 <Arguments>
 <Argument>
 <Name>XsltBaseDirectory</Name>
 <Value>C:\TransformDirectory</Value>
 <Argument>
 <Argument>
 <Name>XsltFileName</Name>
 <Value>StockTransform.xsl</Value>
 <Argument>
 </Arguments>
</ContentFormatter>

SQL Server Notification Services Books Online

Standard Delivery Protocols
Notification Services provides several standard delivery protocols to assist you in defining delivery channels for a Notification
Services instance.

The following standard delivery protocols are shipped with Notification Services:

File Delivery Protocol: Creates an ASCII text file containing the notification data.
SMTP Delivery Protocol: Creates and routes the notification message for delivery by Microsoft Exchange or other Simple
Mail Transfer Protocol (SMTP) mail systems.

SQL Server Notification Services Books Online

File Delivery Protocol
File Delivery Protocol

The File delivery protocol writes notification data to a text file, using the name you specify for the file in the application definition
file (ADF).

Defining a Delivery Channel Using the File Delivery Protocol

Define the delivery channel in the /DeliveryChannels/DeliveryChannel section of the configuration file. The following list
reviews the elements in this section and provides their required values:

<DeliveryChannelName> (required)
This value can be any string that conforms to XML naming conventions. It must be unique within the Notification Services
instance.

<ProtocolName> (required)
This value must be File.

<Arguments> and child elements
The File delivery protocol requires two named arguments as initialization parameters.

FileName (required) specifies the full path and name of the text file that you want the delivery protocol to create.
Encoding (optional) specifies the encoding that will be used by the file that is produced. All encoding formats returned by
the GetEncoding method of the Encoding class in the Microsoft .NET Framework are acceptable values. If this argument
is not specified, the encoding default of utf-8 is used.

File Delivery Channel Configuration File Definition

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>FileChannel1</DeliveryChannelName>
 <!-- "File" is a well-known protocol name. It does not
 require a corresponding entry in the Protocols section
 of the configuration file. -->
 <ProtocolName>File</ProtocolName>
 <Arguments>
 <Argument>
 <Name>FileName</Name>
 <Value>C:\Results\StockNotification.txt</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

Defining File Delivery Protocol Information in the ADF

Define the notification-specific File delivery protocol information in the
NotificationClasses/NotificationClass/Protocols/Protocol section of the ADF. The following list reviews the elements in this
section and provides their required values:

<ProtocolName> (required)
This value must be File.

<Fields> and child elements (not used)
This node is not used with the File delivery protocol.

Important You must document the File delivery protocol in the ADF for every notification class that uses it, despite
the fact that this delivery protocol requires no protocol header field information. Notification Services uses this
protocol information to determine what protocols are valid for delivering notifications of that class.

File Delivery Protocol ADF Definition

<Protocols>
 <Protocol>
 <ProtocolName>File</ProtocolName>
 <ProtocolExecutionSettings>

 ...
 </ProtocolExecutionSettings>
 </Protocol>
<Protocols>

SQL Server Notification Services Books Online

SMTP Delivery Protocol
SMTP Delivery Protocol

The Simple Mail Transfer Protocol (SMTP) delivery protocol creates and routes notification messages for delivery by Microsoft
Exchange or other SMTP mail systems.

Defining a Delivery Channel Using the SMTP Delivery Protocol

Define the delivery channel in the /DeliveryChannels/DeliveryChannel section of the configuration file. The following list
reviews the elements in this section and provides the values required by the SMTP delivery protocol:

<DeliveryChannelName> (required)
This value can be any string that conforms to XML naming conventions. It must be unique within your application.

<ProtocolName> (required)
This value must be SMTP.

<Arguments> and child elements
The SMTP delivery protocol takes two named arguments as initialization parameters.

SmtpServer specifies a server to which all e-mail notifications are delivered. If this property is not set, mail is queued on
the local system by default, ensuring that the calling program does not block network traffic.

If the SmtpServer property is set to a single forwarding server, then local e-mail queuing on the Notification Services
server can be avoided.

BodyEncoding specifies the string format required by the SMTP server. All encoding formats returned by the
GetEncoding method of the Encoding class in the Microsoft .NET Framework are acceptable values. Not all platforms
support all encodings; if an encoding is not supported by the deployed platform, a NotSupportedException is thrown.

Note You cannot specify connection information (like name and password) for the SMTP server as part of the
delivery channel configuration. Establishment of a connection to the configured SMTP server is handled by the
operating system.

SMTP Delivery Protocol Configuration File Definition

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>SMTPServer1</DeliveryChannelName>
 <!-- "SMTP" is a well-known protocol name. It does not
 require a corresponding entry in the Protocols section
 of the configuration file. -->
 <ProtocolName>SMTP</ProtocolName>
 <Arguments>
 <Argument>
 <Name>SmtpServer</Name>
 <Value>MJOLLNIR</Value>
 </Argument>
 <Argument>
 <Name>BodyEncoding</Name>
 <Value>utf-16</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

Defining SMTP Delivery Protocol Information in the ADF

Define the notification-specific SMTP delivery protocol information in the
/NotificationClasses/NotificationClass/Protocols/Protocol section of the application definition file (ADF). The following list
reviews the elements in this section and provides their required values:

<ProtocolName> (required)
This value must be SMTP.

<Fields> and child elements

The SMTP delivery protocol allows five fields to be specified for use in the header of the notification message, in the order
presented. If you use a string constant as a <SqlExpression> value in any of these fields, it must be enclosed in apostrophes
(expressed as the entity reference ' in the ADF).

Subject (required) specifies the expression that represents the subject line to be displayed in the e-mail.
From (required) specifies the sending e-mail address to be displayed in the e-mail.
To (required) must specify the address of the target device for standard notifications. This field must be blank for a
notification class that is providing multicast notifications.
Priority (optional) specifies the priority with which the notification e-mail is to be sent, using the values appropriate for
the mail subsystem that will be delivering the message. For example, with Microsoft Exchange you would specify Low,
Normal, or High. The notification priority default is Normal if no other value is specified.
BodyFormat (optional) takes either Text or Html as its value, depending on what the intended format is for the
notification data provided by the content formatter. The notification format default is Text if no value is specified.

SMTP Delivery Protocol ADF Definition

<Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>
 'The price of ' + StockSymbol
 + ' is now ' + StockPrice
 </SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>
 'stockquotes@microsoft.com'
 </SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>'Normal'</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>'html'</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 ...
 </ProtocolExecutionSettings>
 </Protocol>
</Protocols>

SQL Server Notification Services Books Online

Instance and Application APIs
Notification Services provides several classes for accessing Notification Services instance and application information.

These classes provide limited administrative access to your Notification Services instances and applications. Objects of these
classes are required for the initialization of most other Notification Services classes.

The topics that this section covers are described in the following table.

Topic Description
Notification Services Instance Classes Reviews the classes that provide

information about or references to
Notification Services instances.

Notification Services Application Classes Reviews the classes that provide
information about or references to
Notification Services applications.

SQL Server Notification Services Books Online

Notification Services Instance Classes
The InstanceEnumeration, NSInstanceDescription, and NSInstance classes provide access to Notification Services instances
and their properties. These classes are provided by the Notification Services API, and can be found in the
Microsoft.SqlServer.NotificationServices namespace.

InstanceEnumeration Class

The InstanceEnumeration class is primarily used to iterate through the available Notification Services instances on the local
computer. You can also return an NSInstanceDescription object by supplying an instance name to an InstanceEnumeration
object's indexer.

NSInstanceDescription Class

The NSInstanceDescription class provides descriptive information about a specified Notification Services instance. You can use
the Item property of an InstanceEnumeration object to return an NSInstanceDescription object. The
NSInstanceDescription class is often used for administrative purposes, to programmatically discover information about the
Notification Services instances on a server. This information can then be used to create an NSInstance object. The
NSInstanceDescription class provides properties to get the following values for the instance:

InstanceName
Gets the name of the instance.

DBServerName
Gets the machine name of the server that hosts the SQL Server instance that contains the Notification Services instance
database.

Version
Gets the Notification Services version of the instance.

NSInstance Class

The NSInstance class acts as a programmatically accessible reference to a specified Notification Services instance. It is often used
to initialize other Notification Services classes. The NSInstance class provides properties to get or set the following values for the
instance:

InstanceName
Gets the name of the instance.

SqlPassword
Sets the SQL Server password for the account used to access the instance database. This property is required only in
environments where mixed security (SQL Server and Windows Authentication) rather than integrated security (only Windows
Authentication) is being used with SQL Server.

SqlUser
Sets the SQL Server user name for the account used to access the instance database. This property is required only in
environments where mixed security (SQL Server and Windows Authentication) rather than integrated security (only Windows
Authentication) is being used with SQL Server.

Version
Gets the Notification Services version of the instance. A single server can host multiple instances of Notification Services, and
each of these instances can be a different version.

See Also

InstanceEnumeration Class

NSInstance Class

NSInstanceDescription Class

SQL Server Notification Services Books Online

Obtaining a Reference to a Notification Services Instance
Obtaining a Reference to a Notification Services Instance

You will often need to obtain a reference to a particular Notification Services instance. This reference is used to initialize other
Notification Services classes that represent instance-specific data. Use an object of the NSInstance class to obtain this reference.

The following classes require an NSInstance object for initialization:

Subscriber, SubscriberEnumeration
SubscriberDevice, SubscriberDeviceEnumeration
DeliveryChannelEnumeration
SubscriberLocaleEnumeration
TimeZoneEnumeration
NSApplication, ApplicationEnumeration

Managed Code Example

You can create and initialize the NSInstance object in managed code by using the parameterized constructor to pass in the name
of the desired Notification Services instance. The NSInstance object will be usable immediately.

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

COM Interop Example

You can create and initialize the NSInstance object via COM interop by using the parameter-less constructor to create the object,
and then calling the Initialize method to initialize it.

Dim myInstance

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

See Also

NSInstance Constructor

NSInstance.Initialize Method

SQL Server Notification Services Books Online

Verifying Instance Properties
Verifying Instance Properties

You might want to verify an NSInstance object before using it. Calling Verify tests the connection to the instance database, to
verify that it is reachable. This allows you to force any connection-related errors for the NSInstance object at one place in your
application, before you use it to initialize other objects.

Use the Verify method of the NSInstance object to perform verification.

Managed Code Example

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

COM Interop Example

Dim myInstance

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Verify the NSInstance object.
myInstance.Verify

See Also

NSInstance.Verify Method

SQL Server Notification Services Books Online

Getting and Setting Instance Information
Getting and Setting Instance Information

You can retrieve descriptive information about a Notification Services instance from an NSInstanceDescription or NSInstance
object. In general, use the NSInstanceDescription object to retrieve information in order to create an NSInstance object, in
cases where you must discover this information at run time.

The primary use of an NSInstance object is to gain access to other instance objects, like subscribers. However, you can also
retrieve instance information from an NSInstance object.

Both NSInstance and NSInstanceDescription objects provide instance name and version information. NSInstanceDescription
additionally provides the name of the server that hosts the SQL Server instance containing the Notification Services instance
database. NSInstance additionally provides properties to set SQL Server login information for the Notification Services instance
database, if you use SQL Server Authentication rather than Windows Authentication as your SQL Server security mode.

Important Microsoft strongly recommends that you use Windows Authentication rather than SQL Server
Authentication. Windows Authentication provides better security features, such as secure validation and encryption of
passwords, auditing, password expiration, minimum password length, and account lockout after multiple invalid login
requests.

Managed Code Example: Using an NSInstance Object to Get Instance Information

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

//Display the instance information.
txtInstanceName.Text = myInstance.InstanceName;
txtVersion.Text = myInstance.Version;

Managed Code Example: Using an NSInstanceDescription Object to Get Instance Information

string instanceName = "MyInstanceName";

//Create the InstanceEnumeration object.
Microsoft.SqlServer.NotificationServices.InstanceEnumeration myInstanceEnumeration = new
Microsoft.SqlServer.NotificationServices.InstanceEnumeration();

//Use the InstanceEnumeration object to step through
//the collection of NSInstanceDescription objects.
foreach (Microsoft.SqlServer.NotificationServices.NSInstanceDescription nsi in
myInstanceEnumeration)
{
 //Display the instance information.
 Console.Writeline("Instance Name is " + nsi.InstanceName);
 Console.Writeline("Version is " + nsi.Version);
 Console.Writeline("Database Server is " + nsi.DBServerName);
}

COM Interop Example: Using an NSInstance Object to Get Instance Information

Dim myInstance

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Verify the NSInstance object.
myInstance.Verify

'Display the instance information.
Wscript.Echo "InstanceName", myInstance.InstanceName
Wscript.Echo "Version", myInstance.Version
Wscript.Echo

COM Interop Example: Using an NSInstanceDescription Object to Get Instance Information

Dim myInstanceEnumeration

set myInstanceEnumeration =
Wscript.CreateObject("Microsoft.SqlServer.NotificationServices.InstanceEnumeration")

for each nsInstanceDescription in myInstanceEnumeration
 Wscript.Echo "InstanceName", nsInstanceDescription.InstanceName
 Wscript.Echo "DBServerName", nsInstanceDescription.DBServerName
 Wscript.Echo "Version", nsInstanceDescription.Version
 Wscript.Echo
next

See Also

InstanceEnumeration Class

NSInstance Class

NSInstanceDescription Class

SQL Server Notification Services Books Online

Notification Services Application Classes
The NSApplication and ApplicationEnumeration classes provide access to Notification Services applications and their
properties. These classes are provided by the Notification Services API, and can be found in the
Microsoft.SqlServer.NotificationServices namespace.

ApplicationEnumeration Class

The ApplicationEnumeration class is used primarily to iterate through the applications within a specified Notification Services
instance. You can also select a specific application by supplying its application name to an ApplicationEnumeration object's
indexer.

NSApplication Class

The NSApplication class acts as a programmatically accessible reference to a specified application within a specified Notification
Services instance. It is often used to initialize other Notification Services classes. The NSApplication class provides properties to
get the following values for the application:

ApplicationName
Gets the name of the application.

Version
Gets the version number of the application, as specified in the application definition file (ADF).

See Also

ApplicationEnumeration Class

NSApplication Class

SQL Server Notification Services Books Online

Obtaining a Reference to a Notification Services Application
Obtaining a Reference to a Notification Services Application

You will often need to obtain a reference to a particular Notification Services application. This reference initializes other
Notification Services classes that represent application-specific data. Use an object of the NSApplication class to do this.

The following classes require an NSApplication object for initialization:

Subscription, SubscriptionEnumeration
SubscriptionClassEnumeration
Event
EventCollector
EventLoader
EventClassEnumeration

Managed Code Example

The following code example shows that you can create and initialize the NSApplication object by using the parameterized
constructor to pass in the name of the application and an NSInstance object representing the Notification Services instance that
hosts it. NSApplication will be usable immediately.

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

COM Interop Example

The following code example shows that you can create and initialize the NSApplication object via COM interop by using the
parameter-less constructor to create the object, and then calling the Initialize method to initialize it.

Dim myInstance, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Verify the NSInstance object.
myInstance.Verify

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

See Also

NSApplication Constructor

NSApplication.Initialize Method

SQL Server Notification Services Books Online

Verifying Application Properties
Verifying Application Properties

You might want to verify an NSApplication object before using it. Calling Verify tests the connection to the application
database, to verify that it is reachable. This allows you force any connection-related errors for the NSApplication object at one
place in your application, before you use it to initialize other objects.

Use of the NSApplication Verify method also invokes the Verify method on the NSInstance object used to initialize the
NSApplication object. You can use a single Verify call to validate both objects in this way.

Use the Verify method of the NSApplication object to perform verification.

Managed Code Example

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Verify the NSApplication object.
myApplication.Verify();

COM Interop Example

Dim myInstance, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Verify the NSInstance object.
myInstance.Verify

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Verify the NSApplication object.
myApplication.Verify

See Also

NSApplication.Verify Method

SQL Server Notification Services Books Online

Getting Application Information
Getting Application Information

The primary use of an NSApplication object is to gain access to other application objects, like events and subscriptions.
However, you can also retrieve application information, like application name and version, from an NSApplication object.

Managed Code Example

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Verify the NSApplication object.
myApplication.Verify();

//Display the application information.
txtAppName.Text = myApplication.ApplicationName;
txtAppVersion.Text = myApplication.Version;

COM Interop Example

Dim myInstance, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Verify the NSInstance object.
myInstance.Verify

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Verify the NSApplication object.
myApplication.Verify

'Display the application information.
Wscript.Echo "ApplicationName", myApplication.ApplicationName
Wscript.Echo "Version", myApplication.Version
Wscript.Echo

See Also

NSApplication Class

SQL Server Notification Services Books Online

Developing Subscription Management Applications

Subscriber and subscription information is entered into the Notification Services system by a subscription management
application. This is often a Web application based on Microsoft Active Server Page (ASP page) or ASP.NET technologies. You are
required to develop this application, but the Notification Services API provides a number of classes to simplify the collection and
submission of subscriber and subscription data. It also supplies several enumeration classes, to make it easy to select values for
user options such as device types, time zones, and subscriber locales.

For more information about using ASP and ASP.NET, see Active Server Pages and ASP.NET in the Microsoft MSDN® Library.

The topics that this section covers are described in the following table.

Topic Description
Subscription Management Application
Security

Discusses the options available when
setting up the accounts that the
subscription management application is
to use.

Managing Subscribers Describes how to use the Notification
Services Subscriber and
SubscriberEnumeration classes to
enter and maintain subscriber
information.

Managing Subscriber Devices Describes how to use the Notification
Services SubscriberDevice and
SubscriberDeviceEnumeration
classes to enter and maintain
subscriber device information.
Discusses how to use the
DeliveryChannel class, along with its
related enumeration class, to provide
information from a standard
Notification Services table to your user
interface.

Managing Subscriptions Describes how to use the Notification
Services Subscription and
SubscriptionEnumeration classes to
enter and maintain subscription
information. Discusses how to use the
SubscriberLocale and TimeZone
classes, along with their related
enumeration classes, to provide
information from standard Notification
Services tables to your user interface.

http://go.microsoft.com/fwlink/?LinkId=7567
http://go.microsoft.com/fwlink/?LinkId=7568

SQL Server Notification Services Books Online

Subscription Management Application Security
The subscription management application must use accounts when accessing the Notification Services databases. You have
several options for setting up these accounts: you can use a local account, a domain account, or SQL Server Authentication.

Using a Local Account

The subscription management application can use a local account only when it runs on the same server as the SQL Server
instance that hosts the Notification Services databases. A convenient account to use in this situation is the ASPNET account, which
is created automatically when the Microsoft .NET Framework is installed. The Notification Services sample applications use this
account when deployed in a single-server configuration.

Using A Domain Account

The subscription management application can use a domain account in two situations: when it runs on the same server as the
SQL Server instance that hosts the Notification Services databases; and when it accesses a SQL Server instance on another
computer.

Using a domain account allows you to use Windows Authentication, which provides better security features than SQL Server
Authentication, such as secure validation and encryption of passwords, auditing, password expiration, minimum password length,
and account lockout after multiple invalid login requests.

Using SQL Server Authentication

The subscription management application can use SQL Server Authentication in the same situations as for using a domain
account: both when it runs on the same server as the SQL Server instance that hosts the Notification Services databases, and
when it accesses a SQL Server instance on another computer.

Important Microsoft strongly recommends that you specify a domain account for use by the subscription
management application rather than using SQL Server Authentication.

For more information about adding login accounts and database users, see "sp_grantlogin" and "sp_grantdbaccess" in SQL Server
Books Online.

See Also

Notification Services Database Roles

SQL Server Notification Services Books Online

Managing Subscribers
The Subscriber and SubscriberEnumeration classes provide a way to enter, update, and delete subscriber information. These
classes are provided by the Notification Services API, and can be found in the Microsoft.SqlServer.NotificationServices
namespace.

Subscriber Class

The Subscriber class provides the following properties for the subscriber:

Enabled
Indicates whether the subscriber is currently enabled to receive notifications. The default value is true.

SubscriberId
Indicates a particular subscriber record. Notification Services does not generate this value; it must be generated by your
application or specified by the end user.

The Subscriber class contains subscriber data, which is usually passed to it through the subscription management application
user interface. A Subscriber object creates or updates a single subscriber record at a time. You must use a Subscriber object to
update subscriber information once the information has been entered into the Notification Services system.

SubscriberEnumeration Class

The SubscriberEnumeration class represents the set of subscribers in a Notification Services instance. You select a specific
subscriber record by supplying its subscriber ID to the indexer of a SubscriberEnumeration object, or you can step through all
the subscribers in a Notification Services instance one at a time.

See Also

Subscriber Class

SubscriberEnumeration Class

SQL Server Notification Services Books Online

Creating a Subscriber Object
Creating a Subscriber Object

You must create a Subscriber object to add, delete, or update subscriber information in the Notification Services system.

Managed Code Example

The following code example shows how to create and initialize the Subscriber object by using the parameterized constructor to
pass in the name of the desired Notification Services instance. The Subscriber object is usable immediately:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

COM Interop Example

The following code example shows how to create and initialize the Subscriber object via COM interop, by using the parameter-
less constructor to create the object and then calling the Initialize method to initialize it:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

See Also

Subscriber Constructor

Subscriber.Initialize Method

SQL Server Notification Services Books Online

Adding a Subscriber Record
Adding a Subscriber Record

The Subscriber object exposes properties that allow you to set the SubscriberId value and indicate whether the subscriber is
enabled to receive notifications. The Add method of this object writes that data to the Notification Services database.

Managed Code Example

The following code example shows how to use a Subscriber object in managed code to add a subscriber:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the properties that describe the subscriber record.
mySubscriber.Enabled = chkEnabled.Checked;
mySubscriber.SubscriberId = txtID.Text;

//Add the subscriber record to the database.
mySubscriber.Add();

COM Interop Example

The following code example shows how to use a Subscriber object in unmanaged code to add a subscriber:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

'Set the properties that describe the subscriber record.
mySubscriber.SubscriberId = subscriberId
mySubscriber.Enabled = true

'Add the subscriber record to the database.
mySubscriber.Add

See Also

Subscriber.Add Method

SQL Server Notification Services Books Online

Updating a Subscriber Record
Updating a Subscriber Record

You must use the Update method of the Subscriber class to modify existing subscriber data in the Notification Services
database.

Managed Code Example

The following code example shows how to use a Subscriber object in managed code to update a subscriber:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct subscriber
//record is updated.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Change subscriber data, then update the database.
mySubscriber.Enabled = true;
mySubscriber.Update();

COM Interop Example

The following code example shows how to use a Subscriber object in unmanaged code to update a subscriber:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

'Set the subscriber ID so that the correct subscriber
'record is updated.
mySubscriber.SubscriberId = subscriberId

'Change subscriber data, then update the database.
mySubscriber.Enabled = false
mySubscriber.Update

See Also

Subscriber.Update Method

SQL Server Notification Services Books Online

Deleting a Subscriber Record
Deleting a Subscriber Record

The Delete method of the Subscriber class deletes an existing subscriber record in the Notification Services database. In enabled
Notification Services applications, deleting a subscriber record automatically deletes all subscriber devices and subscriptions
associated with that subscriber ID. In disabled Notification Services applications, deleting a subscriber record causes associated
subscriptions to be orphaned.

Managed Code Example

The following code example shows how to use a Subscriber object in managed code to delete a subscriber:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct subscriber
//record is deleted.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Delete the subscriber.
mySubscriber.Delete();

COM Interop Example

The following code example shows how to use a Subscriber object in unmanaged code to delete a subscriber:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

'Set the subscriber ID so that the correct subscriber
'record is deleted.
mySubscriber.SubscriberId = subscriberId

'Delete the subscriber.
mySubscriber.Delete

See Also

Subscriber.Delete Method

SQL Server Notification Services Books Online

Deleting Related Subscription Information
Deleting Related Subscription Information

The DeleteSubscriptions method of the Subscriber class deletes existing subscription records for a given subscriber. You can
delete all related subscriptions, just the subscriptions for one application, or just the subscriptions for one subscription class in
one application.

Managed Code Example: Delete All Subscriptions

The following code example shows how to use a Subscriber object in managed code to delete all subscriptions belonging to a
single subscriber:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct
//records are affected.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Delete all subscriptions of all subscription classes
//in all applications for this subscriber.
mySubscriber.DeleteSubscriptions();

Managed Code Example: Delete Subscriptions for One Application

The following code example shows how to use a Subscriber object in managed code to delete all subscriptions to one application
belonging to a single subscriber:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct
//records are affected.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Delete the subscriptions for the given application.
mySubscriber.DeleteSubscriptions(myApplication);

Managed Code Example: Delete Subscriptions of One Subscription Class in One Application

The following code example shows how to use a Subscriber object in managed code to delete all subscriptions of one
subscription class in one application belonging to a single subscriber:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct
//records are affected.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Delete the subscriptions for the given
//subscription class in the given application.
mySubscriber.DeleteSubscriptions(myApplication,subscriptionClassName);

COM Interop Example: Delete All Subscriptions

The following code example shows how to use a Subscriber object in unmanaged code to delete all subscriptions belonging to a
single subscriber:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

'Set the subscriber ID so that the correct
'records are affected.
mySubscriber.SubscriberId = subscriberId

'Delete all subscriptions of all subscription classes
'in all applications for this subscriber.
mySubscriber.DeleteSubscriptions Nothing, ""

COM Interop Example: Delete Subscriptions of One Subscription Class in One Application

The following code example shows how to use a Subscriber object in unmanaged code to delete all subscriptions of one
subscription class in one application belonging to a single subscriber:

Dim myInstance, mySubscriber, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")

mySubscriber.Initialize myInstance

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Set the subscriber ID so that the correct
'records are affected.
mySubscriber.SubscriberId = subscriberId

'Delete the subscriptions for the given
'subscription class in the given application.
mySubscriber.DeleteSubscriptions myApplication, subscriptionClassName

See Also

Subscriber.DeleteSubscriptions Method

SQL Server Notification Services Books Online

Getting a Subscriber's Devices and Subscriptions
Getting a Subscriber's Devices and Subscriptions

The Subscriber class provides the GetSubscriptions and GetDevices methods, to give access to subscriber device and
subscription records related to a specified subscriber.

You use the GetSubscriptions method of the Subscriber class to return a SubscriptionEnumeration object that represents the
collection of all the subscriptions of one subscription class in one application for the specified subscriber.

You use the GetDevices method of the Subscriber class to return a SubscriberDeviceEnumeration object that represents the
collection of all the devices for the specified subscriber.

Managed Code Example: Return Subscriptions

The following code example shows how to use a Subscriber object in managed code to return all subscriptions belonging to a
single subscriber:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";
string subscriptionFieldName = "MySubscriptionFieldName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct
//records are retrieved.
mySubscriber.SubscriberId = txtSubscriberId.Text;

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Retrieve the subscriber's subscriptions.
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration
mySubscriptionEnumeration =
mySubscriber.GetSubscriptions(myApplication, subscriptionClassName);

foreach(Microsoft.SqlServer.NotificationServices.Subscription subscription in
mySubscriptionEnumeration)
{
 myList.Items.Add(subscription[subscriptionFieldName].ToString());
}

Managed Code Example: Return Devices

The following code example shows how to use a Subscriber object in managed code to return all devices belonging to a single
subscriber:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID so that the correct
//records are retrieved.

mySubscriber.SubscriberId = txtSubscriberId.Text;

//Retrieve the subscriber's devices.
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration
mySubscriberDeviceEnumeration = mySubscriber.GetDevices();

foreach(Microsoft.SqlServer.NotificationServices.SubscriberDevice subscriberDevice in
mySubscriberDeviceEnumeration)
{
 myList.Items.Add(subscriberDevice.DeviceName);
}

COM Interop Example: Return Subscriptions

The following code example shows how to use a Subscriber object in unmanaged code to return all subscriptions belonging to a
single subscriber:

Dim myInstance, mySubscriber, myApplication, mySubscriptionEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
const subscriptionFieldName = "MySubscriptionFieldName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Retrieve the subscriber's subscriptions.
set mySubscriptionEnumeration = mySubscriber.GetSubscriptions(myApplication,
subscriptionClassName)

for each subscription in mySubscriptionEnumeration
 if subscription.SubscriberId = subscriberId then
 Wscript.Echo "Field Value", subscription.GetFieldValue(subscriptionFieldName)
 WScript.Echo
 end if
next

COM Interop Example: Return Devices

The following code example shows how to use a Subscriber object in unmanaged code to return all devices belonging to a single
subscriber:

Dim myInstance, mySubscriber, mySubscriberDeviceEnumeration

const instanceName = "MyInstanceName"
const subscriberId = "TestSubscriber"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")

mySubscriber.Initialize myInstance

'Set the subscriber ID so that the correct
'records are retrieved.
mySubscriber.SubscriberId = subscriberId

'Retrieve the subscriber's devices.
set mySubscriberDeviceEnumeration = mySubscriber.GetDevices

for each subscriberDevice in mySubscriberDeviceEnumeration
 Wscript.Echo "Device Name", subscriberDevice.DeviceName
 WScript.Echo
next

See Also

Subscriber.GetDevices Method

Subscriber.GetSubscriptions Method

SQL Server Notification Services Books Online

Managing Subscriber Devices
The SubscriberDevice and SubscriberDeviceEnumeration classes provide a way to enter, update, and delete the target
devices that subscribers use to receive notifications. These classes are provided by the Notification Services API, and can be found
in the Microsoft.SqlServer.NotificationServices namespace.

SubscriberDevice Class

The SubscriberDevice class provides the following properties for the subscriber device:

DeviceAddress
Provides the address for this device. For example, a telephone number might be the address for a system management
software (SMS) device.

DeliveryChannelName
Provides the delivery channel for this device. This value must be selected from the delivery channels defined for the Notification
Services instance. The delivery channel determines how the notification is sent to this device, including the networking protocol
that must be used to deliver the notification message packet.

DeviceName
Provides a user-defined value that identifies this subscriber device record.

DeviceTypeName
Identifies what kind of device this is, for instance a cell phone or a pager. You must determine the list of devices your application
can support.

SubscriberId
Identifies the subscriber to whom this device belongs. A subscriber record with this subscriber ID must already exist in the
Notification Services database.

The SubscriberDevice class represents subscriber device data, which is usually passed to it by the subscription management
application user interface. A SubscriberDevice object creates or updates a single subscriber device record at a time. You must
use a SubscriberDevice object to update subscriber device information once it has been entered into the Notification Services
system.

You decide how many devices each subscriber can have, and how the DeviceName value is assigned. If you allow subscribers to
have more than one device, you might want to let them pick their own device names. If you allow subscribers to have only one
device, you might want to assign standard device names, based on the device type or some other criterion.

Although including the subscriber device name in every subscription is common, it is not required. For example, there is no need
to keep a device name in your subscriptions if your application always delivers notifications via e-mail and you use the
subscriber's e-mail address as their subscriber ID. In this case you can simply pass a constant device name, such as "email device",
when you generate a notification. Alternatively, you might decide not to include the subscriber's device name in the subscription
because you always select the device name dynamically when you generate the notification. For example, your application might
select the device based on time of day. During business hours you could send all notifications to a subscriber's business e-mail
account; during off-hours you might send critical notifications to the subscriber's phone and all other notifications to the
subscriber's home e-mail account.

SubscriberDeviceEnumeration Class

The SubscriberDeviceEnumeration class represents the set of subscriber devices for a given subscriber in a Notification
Services instance. You can select a specific subscriber device by supplying its device name to the indexer of a
SubscriberDeviceEnumeration object.

See Also

SubscriberDevice Class

SubscriberDeviceEnumeration Class

SQL Server Notification Services Books Online

Creating a SubscriberDevice Object
Creating a SubscriberDevice Object

You must create an object of the SubscriberDevice class to add, delete, and update subscriber device information in the
Notification Services system.

Managed Code Example

The following code example shows how to create and initialize the SubscriberDevice object by using the parameterized
constructor to pass in the name of the desired Notification Services instance. The SubscriberDevice object is usable immediately:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

COM Interop Example

The following code example shows how to create and initialize the SubscriberDevice object via COM interop, by using the
parameter-less constructor to create the object and then calling the Initialize method to initialize it:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

See Also

SubscriberDevice Constructor

SubscriberDevice.Initialize Method

SQL Server Notification Services Books Online

Adding a Subscriber Device
Adding a Subscriber Device

The SubscriberDevice object exposes properties that allow you to set information about what type of device this is, what
subscriber it belongs to, and how to deliver notifications to it. The Add method of this object writes that data to the Notification
Services database.

Managed Code Example

The following code example shows how to use a SubscriberDevice object in managed code to add a subscriber device:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Set the properties that describe the subscriber device record.
mySubscriberDevice.SubscriberId = txtSubscriberId.Text;
mySubscriberDevice.DeviceAddress = txtAddress.Text;
mySubscriberDevice.DeliveryChannelName = ddChannels.SelectedItem.Value;
mySubscriberDevice.DeviceTypeName = ddTypes.SelectedItem.Value;
mySubscriberDevice.DeviceName = txtDeviceName.Text;

//Add the subscriber record to the database.
mySubscriberDevice.Add();

COM Interop Example

The following code example shows how to use a SubscriberDevice object in unmanaged code to add a subscriber device:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

mySubscriberDevice.SubscriberId = Request.Form("SubscriberId")
mySubscriberDevice.DeviceAddress = Request.Form("DeviceAddress")
mySubscriberDevice.DeliveryChannelName = Request.Form("DeliveryChannel")
mySubscriberDevice.DeviceTypeName = Request.Form("DeviceType")
mySubscriberDevice.DeviceName = Request.Form("DeviceName")
mySubscriberDevice.Add

See Also

SubscriberDevice.Add Method

SQL Server Notification Services Books Online

Updating a Subscriber Device
Updating a Subscriber Device

Use the Update method of the SubscriberDevice class to modify existing subscriber device data in the Notification Services
database.

Managed Code Example

The following code example shows how to use a SubscriberDevice object in managed code to update a subscriber device:

string instanceName = "MyInstanceName";
string deviceName = txtDeviceName.Text;

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Set the subscriber ID and device name
//so that the correct record is updated.
mySubscriberDevice.SubscriberId = txtSubscriberId.Text;
mySubscriberDevice.DeviceName = deviceName;

//Modify the subscriber device properties
//and update the record.
mySubscriberDevice.DeviceAddress = txtAddress.Text;
mySubscriberDevice.DeliveryChannelName = ddChannels.SelectedItem.Value;
mySubscriberDevice.DeviceTypeName = ddTypes.SelectedItem.Value;
mySubscriberDevice.Update();

COM Interop Example

The following code example shows how to use a SubscriberDevice object in unmanaged code to update a subscriber device:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

'Set the subscriber ID and device name
'so that the correct record is updated.
mySubscriberDevice.SubscriberId = Request.Form("SubscriberId")
mySubscriberDevice.DeviceName = Request.Form("DeviceName")

'Change a subscriber device property
'and update the record.
mySubscriberDevice.DeviceAddress = Request.Form("DeviceAddress")
mySubscriberDevice.DeliveryChannelName = Request.Form("DeliveryChannel")
mySubscriberDevice.DeviceTypeName = Request.Form("DeviceType")
mySubscriberDevice.Update

See Also

SubscriberDevice.Update Method

SQL Server Notification Services Books Online

Deleting a Subscriber Device
Deleting a Subscriber Device

The Delete method of the SubscriberDevice class deletes an existing subscriber device record in the Notification Services
database.

Managed Code Example

The following code example shows how to use a SubscriberDevice object in managed code to delete a subscriber device:

string instanceName = "MyInstanceName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Set the subscriber ID and device name
//so that the correct record is deleted.
mySubscriberDevice.SubscriberId = txtSubscriberId.Text;
mySubscriberDevice.DeviceName = txtDeviceName.Text;

//Delete the subscriber device.
mySubscriberDevice.Delete();

COM Interop Example

The following code example shows how to use a SubscriberDevice object in unmanaged code to delete a subscriber device:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

'Set the subscriber ID and device name
'so that the correct record is deleted.
mySubscriberDevice.SubscriberId = Request.Form("SubscriberId")
mySubscriberDevice.DeviceName = Request.Form("DeviceName")

'Delete the subscriber device.
mySubscriberDevice.Delete

See Also

SubscriberDevice.Delete Method

SQL Server Notification Services Books Online

Populating a Delivery Channel List
Populating a Delivery Channel List

You might want to provide a drop-down list of delivery channels in your application user interface, so that users can select valid
delivery channels for their subscriber devices. The DeliveryChannel and DeliveryChannelEnumeration classes can be used to
provide this information.

It is possible that not all of the delivery channels offered in a Notification Services instance are appropriate for all of your
applications. It is up to you to ensure that your user interface offers only those delivery channels that are valid for the application
that is being subscribed to.

Managed Code Example

The following code example shows how to use a DeliveryChannelEnumeration object in
managed code to populate a dropdown list in your subscription management
application:using Microsoft.SqlServer.NotificationServices;
public class AppSubscriberDevices
{
 void Page_Load(Object sender, System.EventArgs e)
 {
 string instanceName = "MyInstanceName";

 //Create the NSInstance object.
 NSInstance myInstance = new NSInstance(instanceName);

 if(!IsPostBack)
 {
 //Create the DeliveryChannelEnumeration object.
 DeliveryChannelEnumeration myDeliveryChannelEnumeration = new
 DeliveryChannelEnumeration(myInstance);

 //Step through the enumeration, populating
 //the drop-down list as you go.
 foreach(DeliveryChannel deliveryChannel in myDeliveryChannelEnumeration)
 {
 if (deliveryChannel.ProtocolName == "SMTP")
 {
 ddDeliveryChannel.Items.Add(deliveryChannel.DeliveryChannelName);
 }
 }
 }
 }
}

COM Interop Example

The following code example shows how to use a DeliveryChannelEnumeration object in unmanaged code to populate a drop-
down list in your subscription management application:

<%

Dim myInstance, myDeliveryChannelEnumeration

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the DeliveryChannelEnumeration object.
set myDeliveryChannelEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
")
myDeliveryChannelEnumeration.Initialize myInstance

'Step through the enumeration, populating
'the drop-down list as you go.
for each deliveryChannel in myDeliveryChannelEnumeration
 if deliveryChannel.ProtocolName = "SMTP" then
 populateSelect = populateSelect & "<OPTION>"
 populateSelect = populateSelect & deliveryChannel.DeliveryChannelName
 populateSelect = populateSelect & "</OPTION>"
 end if
next
%>
<SELECT NAME="Delivery Channels" SIZE="1">
<%=populateSelect%>
</SELECT>

See Also

DeliveryChannel Class

DeliveryChannelEnumeration Class

SQL Server Notification Services Books Online

Managing Subscriptions
The Subscription and SubscriptionEnumeration classes provide a way to enter, update, and delete subscriptions. These classes
are provided by the Notification Services API, and can be found in the Microsoft.SqlServer.NotificationServices namespace.

Subscription Class

The Subscription class provides the following properties for the subscription:

Enabled
Indicates whether the subscription is currently enabled to generate notifications. This default value is true.

FieldCount
Returns the number of developer-defined data fields in this subscription record.

HasTimedRule
Returns true if the subscription class that this subscription implements has one or more scheduled subscription rules defined
for it.

Item
Gets or sets the value of a data field in the subscription. This property serves as the class indexer in C#.

ScheduleRecurrence
Sets the recurrence information for a scheduled subscription. This property must be used in conjunction with the
ScheduleStart property.

ScheduleStart
Sets the start date and time for a scheduled subscription. This property must be used in conjunction with the
ScheduleRecurrence property.

SubscriberId
Is the application-defined identifier of the subscriber who receives this subscription.

SubscriptionId
Is generated and used internally by Notification Services to identify this subscription.

The Subscription class represents subscription data, which is usually passed to it by the subscription management application
user interface. A Subscription object creates or updates a single subscription record at a time. You must use a Subscription
object to update subscription information once it has been entered into Notification Services.

SubscriptionEnumeration Class

The SubscriptionEnumeration class represents the set of subscriptions for a given subscriber in a Notification Services
application. You can select a specific subscription record by supplying its subscription ID to the indexer of a
SubscriptionEnumeration object.

See Also

Subscription Class

SubscriptionEnumeration Class

SQL Server Notification Services Books Online

Creating a Subscription Object
Creating a Subscription Object

You must create an object of the Subscription class to add, delete, and update subscription information in a Notification Services
application.

Managed Code Example

The following code example shows how to create and initialize the Subscription object, by using the parameterized constructor
to pass in the name of the desired Notification Services application and the name of the subscription class that this subscription
implements. The Subscription object is usable immediately:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

COM Interop Example

The following code example shows how to create and initialize the Subscription object via COM interop, by using the parameter-
less constructor to create the object and then calling the Initialize method to initialize it:

Dim myInstance, myApplication, mySubscription

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

See Also

Subscriber.Initialize Method

Subscription Constructor

SQL Server Notification Services Books Online

Adding a Subscription
Adding a Subscription

The Subscription object exposes properties that allow you to set subscription information such as the subscriber ID, the fields
that define the subscription data, and whether the subscription is enabled to generate notifications.

The Add method of this object writes that data to the application database, and returns the system-generated SubscriptionId for
the subscription. The SubscriptionId is stored as a 64-bit integer in the database, but is returned to the application as a string.

Note The values for the ScheduleStart and ScheduleRecurrence properties of the Subscription class must
conform to the Notification Services subset of the ICalendar interface specification. For more information about
constructing valid values for these properties, see Subscription.ScheduleRecurrence Property and
Subscription.ScheduleStart Property.

Managed Code Example

The following code example shows how to use the Item method of the Subscription class to set the value of the application-
specific subscription fields:

using Microsoft.SqlServer.NotificationServices;
using System.Text;

public class AppSubscriptions
{
 private string AddSubscription(string instanceName, string
 applicationName, string subscriptionClassName, string subscriberId)
 {
 //Create the NSInstance object.
 NSInstance myInstance = new NSInstance(instanceName);

 //Create the NSApplication object.
 NSApplication myApplication = new NSApplication(myInstance, applicationName);

 //Create the Subscription object.
 Subscription mySubscription = new Subscription(myApplication,
 subscriptionClassName);

 //Set the properties that describe the subscription record.
 mySubscription.Enabled = true;
 mySubscription.SubscriberId = subscriberId;

 //Set the subscription data fields (as defined in the ADF),
 //using the indexer to set fields by field name.
 mySubscription["DeviceName"] = txtDeviceName.Text;
 mySubscription["SubscriberLocale"] = ddLocales.SelectedItem.Value;
 mySubscription["StockSymbol"] = txtStockSymbol.Text;
 mySubscription["StockTriggerValue"] = txtStockValue.Text;

 //Set the recurrence of the subscription.
 //This property is only used with scheduled subscriptions.
 //You can provide a list from which the user
 //can choose recurrence frequencies that comply with
 //the subset of the ICalendar specification that is
 //used by Notification Services.
 mySubscription.ScheduleRecurrence = ddRecur.SelectedItem.Value;

 //Set the start date and time of the subscription.
 //This property is used only with scheduled subscriptions.
 //You must provide lists from which the user
 //can choose time zone, date, and time components in order
 //to build a start date/time string that complies with
 //the subset of the ICalendar specification that is
 //used by Notification Services.
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat(
 "TZID={0}:{1}{2}{3}T{4}{5}{6}",
 ddTimeZones.SelectedItem.ToString().Trim(),

 DateTime.Now.Year.ToString("D4"),
 DateTime.Now.Month.ToString("D2"),
 DateTime.Now.Day.ToString("D2"),
 ddHours.SelectedItem.ToString().Trim(),
 ddMinutes.SelectedItem.ToString().Trim(),
 ddSeconds.SelectedItem.ToString().Trim());
 mySubscription.ScheduleStart = sb.ToString();

 //Add the subscription to the database.
 string subscriptionId = mySubscription.Add();
 return subscriptionId;
 }
}

COM Interop Example

The following code example shows how to use the SetFieldValue method of the Subscription class to set the value of the
application-specific subscription fields:

Sub AddSubscription(subscriptionClassName, subscriberId)

Dim myInstance, myApplication, mySubscription, subscriptionId

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the Subscriptionobject.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

'Set the properties that describe the subscription record.
mySubscription.SubscriberId = Request.Form("SubscriberId")
mySubscription.Enabled = true

'Set the subscription data fields
'(as defined in the ADF).
mySubscription.SetFieldValue "DeviceName", Request.Form("DeviceName")
mySubscription.SetFieldValue "SubscriberLocale", Request.Form("Locale")
mySubscription.SetFieldValue "StockSymbol", Request.Form("Symbol")
mySubscription.SetFieldValue "StockTriggerValue", Request.Form("Price")

'Set the recurrence of the subscription.
'This property is used only with scheduled subscriptions.
'You must provide a list from which the user
'can choose recurrence frequencies that comply with
'the subset of the ICalendar specification that is
'used by Notification Services.
mySubscription.ScheduleRecurrence = Request.Form("Schedule")

'Set the start date and time of the subscription.
'This property is used only with scheduled subscriptions.
'You must provide lists from which the user
'can choose time zone, date, and time components in order
'to build a start date/time string that complies with
'the subset of the ICalendar specification that is
'used by Notification Services.
start = "TZID" & Request.Form("TimeZones")
start = start & Request.Form("Year")
start = start & Request.Form("Month")
start = start & Request.Form("Day")

start = start & Request.Form("Hours")
start = start & Request.Form("Minutes")
start = start & Request.Form("Seconds")
mySubscription.ScheduleStart = start

'Add the subscription to the database.
subscriptionId = mySubscription.Add

See Also

Subscriber.Add Method

Subscriber.Item Property

Subscriber.SetFieldValue Method

SQL Server Notification Services Books Online

Updating a Subscription
Updating a Subscription

You must use the Update method of the Subscription class to modify existing subscription data in the Notification Services
database.

Managed Code Example

The following code example shows how to use the Item method of the Subscription class to set the value of the application-
specific subscription fields:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Set the subscription ID so that
//the correct record is updated.
mySubscription.SubscriptionId = txtSubscriptionId.Text;

//Update the subscription record.
 mySubscription["DeviceName"] = txtDeviceName.Text;
 mySubscription["SubscriberLocale"] = ddLocales.SelectedItem.Value;
 mySubscription["StockSymbol"] = txtStockSymbol.Text;
mySubscription["StockTriggerValue"] = txtStockValue.Text;
mySubscription.Update();

COM Interop Example

The following code example shows how to use the SetFieldValue method of the Subscription class to set the value of the
application-specific subscription fields:

Dim myInstance, myApplication, mySubscription

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

'Set the subscription ID so that

'the correct record is updated.
mySubscription.SubscriptionId = Request.Form("SubscriptionId")

'Update the subscription record.
mySubscription.SetFieldValue "DeviceName", Request.Form("DeviceName")
mySubscription.SetFieldValue "SubscriberLocale", Request.Form("Locale")
mySubscription.SetFieldValue "StockSymbol", Request.Form("Symbol")
mySubscription.SetFieldValue "StockTriggerValue", Request.Form("Price")
mySubscription.Update

See Also

Subscriber.Item Property

Subscriber.SetFieldValue Method

Subscriber.Update Method

SQL Server Notification Services Books Online

Deleting a Subscription
Deleting a Subscription

The Delete method of the Subscription class deletes an existing subscription record in the Notification Services database.

Managed Code Example

The following code example shows how to use the Item method of the Subscription class to get the value of the application-
specific subscription fields:

using Microsoft.SqlServer.NotificationServices;
public class AppSubscriptions
{
 private void DeleteSubscription(string instanceName, string
 applicationName, string subscriptionClassName, string
 subscriberId, string deleteSymbol)
 {
 //Create the NSInstance object.
 NSInstance myInstance = new NSInstance(instanceName);

 //Create the NSApplication object.
 NSApplication myApplication = new NSApplication(myInstance, applicationName);

 //Create the SubscriptionEnumeration object.
 //This constructor returns the subscriptions for
 //the specified application, subscription class, and subscriber.
 SubscriptionEnumeration mySubEnum = new SubscriptionEnumeration
 (myApplication, subscriptionClassName, subscriberId);

 //Step through the subscriptions, locate the one
 //that should be removed, and delete it.
 foreach(Subscription mySubscription in mySubEnum)
 {
 if ((string)mySubscription["StockSymbol"] == deleteSymbol)
 {
 mySubscription.Delete();
 }
 }
 }
}

COM Interop Example

Tthe following code example shows how to use the GetFieldValue method of the Subscription class to get the value of the
application-specific subscription fields:

Dim myInstance, myApplication, mySubscriptionEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

subscriberId = Request.Form("SubscriberId")
deleteSymbol = Request.Form("Remove")

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the SubscriptionEnumeration object.
'This constructor returns the subscriptions for

'the specified application, subscription class, and subscriber.
set mySubscriptionEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration")
mySubscriptionEnumeration.Initialize myApplication, subscriptionClassName, subscriberId

'Step through the subscriptions, locate the one
'that should be removed, and delete it.
for each subscription in mySubscriptionEnumeration
 if subscription.GetFieldValue("StockSymbol") = deleteSymbol then
 subscription.Delete
 end if
next

See Also

Subscriber.Delete Method

Subscriber.GetFieldValue Method

Subscriber.Item Property

SQL Server Notification Services Books Online

Getting Subscription Field Information
Getting Subscription Field Information

The Subscription class provides the GetFieldName and GetFieldOrdinal methods to give access to subscription field
information.

The GetFieldName method of the Subscription class returns the name of a field by providing its ordinal number. The
GetFieldOrdinal method of the Subscription class returns the ordinal of a field by providing its name.

Managed Code Example: Getting a Field Name

The following code example shows how to use a Subscription object in managed code to return subscription field name
information:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";
int ordinal = 2;

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Return the name for a field identified by ordinal.
string fieldName = mySubscription.GetFieldName(ordinal);

Managed Code Example: Getting a Field Ordinal

The following code example shows how to use a Subscription object in managed code to return subscription field ordinal
information:

string instanceName = "MyInstanceName";
string applicationName= "MyApplicationName";
string subscriptionClassName= "MySubscriptionClassName";
string fieldName = "MySubscriptionFieldName";

//Create the NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create the NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Return the ordinal for a field identified by name.
int ordinal = mySubscription.GetFieldOrdinal(fieldName);

COM Interop Example: Getting a Field Name

The following code example shows how to use a Subscription object in unmanaged code to return subscription field name
information:

Dim myInstance, myApplication, mySubscription, ordinal, fieldName

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

ordinal = 2

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize nsApplication, subscriptionClassName

'Get the name for a field identified by ordinal.
fieldName = mySubscription.GetFieldName(ordinal)
Wcript.Echo "Subscription Field ", fieldName

COM Interop Example: Getting a Field Ordinal

The following code example shows how to use a Subscription object in unmanaged code to return subscription field ordinal
information:

Dim myInstance, myApplication, mySubscription, ordinal, fieldName

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

fieldName = "MySubscriptionFieldName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create the Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize nsApplication, subscriptionClassName

'Get the name for a field identified by ordinal.
ordinal = mySubscription.GetFieldOrdinal(fieldName)
Wcript.Echo "Subscription Ordinal ", ordinal

See Also

Subscriber.GetFieldName Method

Subscriber.GetFieldOrdinal Method

SQL Server Notification Services Books Online

Populating a Subscriber Locale List
Populating a Subscriber Locale List

You can provide a drop-down list of subscriber locales in your application user interface, so that users can select valid subscriber
locales for their subscriptions. You are not required to include subscriber locale information in the subscription record, and can
collect it from another source. However, providing it as part of the subscription information is common.

The SubscriberLocale and SubscriberLocaleEnumeration classes can be used to provide this information.

Managed Code Example

The following code example shows how to use a SubscriberLocaleEnumeration object in managed code to populate a drop-
down list in your subscription management application:

using Microsoft.SqlServer.NotificationServices;
public class AppSubscribers
{
 void Page_Load(Object sender, System.EventArgs e)
 {
 string instanceName = "MyInstanceName";

 //Create the NSInstance object.
 NSInstance myInstance = new NSInstance(instanceName);

 if(!IsPostBack)
 {
 //Create the SubscriberLocaleEnumeration object.
 SubscriberLocaleEnumeration mySubscriberLocaleEnumeration = new
 SubscriberLocaleEnumeration(myInstance);

 //Step through the enumeration, populating
 //the drop-down list as you go.
 foreach(SubscriberLocale subscriberLocale in mySubscriberLocaleEnumeration)
 {
 ddSubscriberLocale.Items.Add(subscriberLocale.Locale);
 }
 }
 }
}

COM Interop Example

The following code example shows how to use a SubscriberLocaleEnumeration object in unmanaged code to populate a drop-
down list in your subscription management application:

<%
Dim myInstance, mySubscriberLocaleEnumeration

const instanceName = "MyInstanceName"

'Create the NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create the SubscriptionLocaleEnumeration object.
set mySubscriberLocaleEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeratio
n")
mySubscriberLocaleEnumeration.Initialize myInstance

'Step through the enumeration, populating
'the drop-down list as you go.
for each subscriberLocale in mySubscriberLocaleEnumeration
 populateSelect = populateSelect & "<OPTION>"
 populateSelect = populateSelect & subscriberLocale.Locale

 populateSelect = populateSelect & "</OPTION>"
next
%>
<SELECT NAME="Locales" SIZE="1">
<%=populateSelect%>
</SELECT>

See Also

SubscriberLocale Class

SubscriberLocaleEnumeration Class

SQL Server Notification Services Books Online

Populating a Time Zone List
Populating a Time Zone List

You can provide a drop-down list of time zones in your application user interface, so that users can select valid time zones for the
schedule information of their scheduled subscriptions.

The TimeZone and TimeZoneEnumeration classes can be used to provide this information.

Managed Code Example

The following code example shows how to use a TimeZoneEnumeration object in managed code to populate a drop-down list
in your subscription management application:

using Microsoft.SqlServer.NotificationServices;
public class AppSubscribers
{
 void Page_Load(Object sender, System.EventArgs e)
 {
 string instanceName = "MyInstanceName";
 string language = "en";

 //Create the NSInstance object.
 NSInstance myInstance = new NSInstance(instanceName);

 if(!IsPostBack)
 {
 //Create the TimeZoneEnumeration.
 TimeZoneEnumeration myTimeZoneEnumeration = new TimeZoneEnumeration(myInstance,
 language);

 //Step through the enumeration, populating
 //the drop-down list as you go. Note that the TimeZone
 //reference must include the namespace, because there is
 //an identically named class in the System namespace.
 foreach(Microsoft.SqlServer.NotificationServices.TimeZone
 timeZone in myTimeZoneEnumeration)
 {
 ddTimeZone.Items.Add(timeZone.TimeZoneName);
 }
 }
 }
}

COM Interop Example

The following code example shows how to use a TimeZoneEnumeration object in unmanaged code to populate a drop-down
list in your subscription management application:

<%
Dim myInstance, myTimeZoneEnumeration

const instanceName = "MyInstanceName"

set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

set myTimeZoneEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.timeZoneEnumeration")
myTimeZoneEnumeration.Initialize myInstance

for each timeZone in myTimeZoneEnumeration
 if timeZone.TimeZoneId >=2 and timeZone.TimeZoneId <=40 then
 populateSelect = populateSelect & "<OPTION>"
 populateSelect = populateSelect & timeZone.TimeZoneName
 populateSelect = populateSelect & "</OPTION>"
 end if

next
%>
<SELECT NAME="Time Zones" SIZE="1">
<%=populateSelect%>
</SELECT>

See Also

TimeZone Class

TimeZoneEnumeration Class

SQL Server Notification Services Books Online

Developing Custom Notification Services Components
You can create a complete notification application using Notification Services standard components. However, Notification
Services also provides APIs for developing custom versions of these components, so that you can tailor them to your
requirements. You can create custom event providers and content formatters for use within your notification applications, and
custom delivery protocols for use within your Notification Services instances.

Note For added security, you can use the Caspol.exe utility provided by Microsoft Visual Studio® .NET in order to set
appropriate code access permissions on the assemblies containing event providers, content formatters, and delivery
protocols. Notification Services assemblies require the FullTrust permission set. You must determine the appropriate
permissions for any custom assemblies you create or purchase.

The topics that this section covers are described in the following table.

Developing a Custom Event Provider Discusses how to use Notification
Services–provided classes, interfaces,
and stored procedures to create
custom event providers.

Developing a Custom Content Formatter Discusses how to use Notification
Services–provided classes and
interfaces to create custom content
formatters.

Developing a Custom Delivery Protocol Discusses how to use Notification
Services–provided classes and
interfaces to create custom delivery
protocols.

Debugging a Custom Component Discusses how to debug a custom
component that is hosted by
Notification Services.

SQL Server Notification Services Books Online

Developing a Custom Event Provider
Notification Services provides two standard event providers to assist you in rapid application development. However, you might
want to gather event data from data sources that the standard event providers are not designed to monitor, or you might need to
tailor the event data to meet particular application requirements. If this is the case, you must develop a custom event provider.

Custom event providers can be hosted or independent. Hosted event providers are run by the Notification Services provider host
component. Hosted event providers are easier to develop, because some of their processes (like loading and scheduling) can be
handled by Notification Services. Hosted event providers can also be enabled and disabled like other Notification Services
components.

Independent event providers operate outside of the Notification Services system. Independent event providers are useful if you
have existing infrastructure that you want to use to submit events.

There are three possible ways that a custom event provider can submit event information to a Notification Services application:

Using data from an XML source: You create an EventLoader object to write one or more events from an XML data source to
the application database.
Using data from SQL Server tables: You use predefined event collection stored procedures to write one or more events from
a SQL Server data source to the application database. One set of these stored procedures is created for each event class that
is defined. This method is also useful when you can take advantage of business logic that is defined within SQL Server
stored procedures.
Using any other data sources: You create an Event object for each event, and then use an EventCollector object to collect
one or more events into a batch and submit it to the application database.

You must document the event provider information in the application definition file (ADF).

When implementing a custom event provider, you must use one of the event collection APIs to submit events to the system. The
Event, EventCollector, and EventLoader classes are available in the Microsoft.SqlServer.NotificationServices namespace.
The event collection stored procedures are available in the application database.

All the event submission methods support a similar model of event submission. Events are submitted to the database in batches.
They become visible to the application only when the event batch is committed, which is a step in the event submission process.

You implement your custom event provider as a class in either a managed or an unmanaged component. The component can
reside anywhere. You must document the full path to the event provider assembly or DLL file in the ADF. You can include the
business logic within the coded component, or by calling Transact-SQL stored procedures.

SQL Server Notification Services Books Online

Independent Event Providers
Independent Event Providers

Independent event providers operate externally to the Notification Services system, interacting with it only to provide event data.
They do not implement the IEventProvider or IScheduledEventProvider interfaces that are provided by Notification Services.

An independent event provider can be hosted by a different service, such as Internet Information Services (IIS). As an example, a
Microsoft ASP.NET page can act as an independent event provider. Every time a user fills out a form from an ASP.NET page and
submits it, one or more new events can be generated, based on the contents of the form.

Although they are not hosted by Notification Services, independent event providers must still use one of the Notification Services
event collection APIs to write events to the application database.

Accessing Notification Services with an Independent Event Provider

An independent event provider must be able to identify the Notification Services instance and application to which it provides
data. As the developer of the event provider, you are responsible for establishing the relationship between your custom
independent event provider and the correct Notification Services instance and application. There are two ways to do this:

Using the InstanceEnumeration and ApplicationEnumeration classes that are included in the Notification Services API
to programmatically select the appropriate instance and application names at run time. For more information about using
an InstanceEnumeration object, see Notification Services Instance Classes. For more information about using an
ApplicationEnumeration object, see Notification Services Application Classes. Microsoft recommends this approach if
your application accesses more than one Notification Services application.
Providing the instance and application names as initialization parameters to the independent event provider. Microsoft
recommends this approach if your application accesses only one Notification Services application.

However they are determined, the instance and application names are necessary in order to use any of the event collection APIs.

SQL Server Notification Services Books Online

Hosted Event Providers
Hosted Event Providers

Hosted event providers rely on the provider host component of the Notification Services engine to initialize, run, and terminate
them. There are two kinds of hosted event providers:

Scheduled event providers, which are invoked by the provider host on a predefined schedule and submit events during the
scheduled intervals.
Continuous event providers, which are invoked by the provider host once when the application starts, and then run
continuously and submit events as they come in.

For details about how these models differ, see Event Collection Models.

Your hosted event provider must implement either the IEventProvider interface or the IScheduledEventProvider interface.
These interfaces are accessible in the Microsoft.SqlServer.NotificationServices namespace.

The IEventProvider and IScheduledEventProvider interfaces are identical in their public members. However, Notification
Services explicitly distinguishes between the two, based on the way they are invoked by the provider host.

A scheduled event provider must implement the IScheduledEventProvider interface, and must have an associated schedule and
optionally a start time defined in the application definition file (ADF). An exception is thrown if a schedule is not provided for an
event provider that implements the IScheduledEventProvider interface.

A continuous event provider must implement the IEventProvider interface, and must not have a schedule or start time defined in
the ADF. An exception is thrown if a schedule is defined for an event provider that implements the IEventProvider interface.

SQL Server Notification Services Books Online

Using the IEventProvider and IScheduledEventProvider
Interfaces
Using the IEventProvider and IScheduledEventProvider Interfaces

The IEventProvider and IScheduledEventProvider interfaces provide the following methods:

Initialize allows the provider host to inform the event provider to initialize itself prior to running.
Run allows the provider host to ask the event provider to start collecting events.
Terminate allows the provider host to ask the event provider to stop collecting events, and release any resources it is
holding.

To create a custom hosted event provider, you must create a class that implements IEventProvider or
IScheduledEventProvider, and then implement the methods inherited from the interface within this class. Finally you code the
functionality for these methods that is appropriate for your application.

The provider host calls Initialize when the system starts. This method passes required parameters to the event provider so that it
can prepare to start running. The provider host calls the Terminate method for the provider if the Initialize call doesn't return
within five minutes.

For a continuous event provider, the provider host calls Run after the call to Initialize returns successfully. For a scheduled event
provider, the provider host calls Run on every scheduled interval after the call to Initialize returns successfully. The event
provider must return from the Run method immediately. If collecting and submitting events is likely to take the event provider
more than a couple of minutes, you must program the event provider to gather and submit events on a separate thread. This is
more likely to be the case when using a continuous event provider. If you choose to have multiple threads running in parallel, and
if event order is important to your application, make sure to synchronize the threads so that they submit events to the database in
the same order in which they were created. The provider host calls the Terminate method and stops the event provider if the
event provider does not return from the Run call within five minutes.

Note When using a scheduled event provider to poll a data source for new information, Microsoft recommends that
you persist "watermark" information that can be used to determine what event data is new. For instance, you might
want to save the date and time of the last event batch submission in a database. That way, you will have the data
available to refer to in case of system outages for which you must restart the event provider.

The provider host calls the Terminate method to tell the event provider to stop collecting events. This happens if the service is
stopping, if the provider appears to be not responding (for example, if it doesn't return from the Run or Initialize calls within the
specified time-out), or if the provider requests to be stopped.

Example: Event Provider

In the following code example, the event provider reads a log file and creates events for any entries with the type Error:

using System;
using System.Collections.Specialized;
using Microsoft.SqlServer.NotificationServices;
using System.Diagnostics;

namespace EventProviderNamespace
{
 public class MyEventProvider : IScheduledEventProvider
 {
 NSApplication myApplication;
 EventCollector myEventCollector;
 string eventProviderName;
 StringDictionary arguments;
 string logName;
 DateTime eventDate;
 string eventClassName;

 public MyEventProvider()
 {
 //Add constructor logic here if required.
 }

 //Implement the IScheduledEventProvider.Initialize method.
 public void Initialize(
 NSApplication application,
 string providerName,
 StringDictionary args,
 StopHandler stopDelegate)
 {
 this.eventProviderName = providerName;
 this.arguments = args;
 this.myApplication = application;

 //This event provider requires three arguments:
 //the event log to check, the date used
 //to filter the events returned, and the
 //name of the event class.
 if (3 == arguments.Count)
 {
 this.logName = arguments["logName"];
 this.eventDate = System.Convert.ToDateTime(arguments["eventDate"]);
 this.eventClassName = arguments["eventClass"];
 }

 //Add code to validate the values
 //of the arguments here.

 //Create the event collector.
 this.myEventCollector = new EventCollector(myApplication, eventProviderName);
 }

 //Implement the IScheduledEventProvider.Run method.
 public bool Run()
 {
 bool returnValue = true;

 try
 {
 //Open the event log & review the latest entries.
 EventLog myLog = new EventLog();
 myLog.Log = logName;
 Event myEvent = new Event();
 myEvent.Initialize(myApplication, eventClassName);
 foreach(EventLogEntry entry in myLog.Entries)
 {
 if(entry.TimeWritten >= eventDate)
 if(entry.EntryType == EventLogEntryType.Error)
 {
 //Create an event to convey the event log data.
 myEvent["LogName"] = logName;
 myEvent["Message"] = entry.Message;
 myEvent["Source"] = entry.Source;
 myEventCollector.Write(myEvent);
 }
 }

 //Commit the event batch.
 int eventsSubmitted = myEventCollector.Commit();
 myEvent = null;
 }
 catch (Exception e)
 {
 //Provide error handling here.
 }
 return returnValue;
 }

 //Implement the IScheduledEventProvider.Terminate method.
 public void Terminate()
 {
 myEventCollector.Dispose();
 }
 }
}

SQL Server Notification Services Books Online

Implementing the Initialize Method
Implementing the Initialize Method

The Initialize method requires four arguments:

application
A reference to an NSApplication object that represents the application to which this event provider writes event data. For
more information, see NSApplication Class.

providerName
A string specifying the event provider name, as specified in the /Providers/HostedProvider/ProviderName section of the
application definition file (ADF).

args
A reference to a StringDictionary object containing the argument names and values for this event provider. The argument
information is retrieved from the /Providers/HostedProvider/Arguments section of the ADF.

stopDelegate
A reference to a StopHandler delegate, which can be used by the event provider to contact the provider host and request
termination. This delegate is supplied as part of the Notification Services API.

The Initialize method does not have a return value.

The Initialize method has a five-minute time-out window. If initialization has not completed within that time, an event is logged
and the event provider's Terminate method is called.

You use the values provided in the args argument to set class variables and prepare the event provider to run. This often involves
setting information about the event source that the event provider monitors, and the event class that defines the events that the
event provider creates.

The Initialize method is called when the provider host starts running. The event provider performs initialization and returns as
soon as initialization is complete. The provider host always calls Initialize before calling the Run or Terminate method.

Example: Initialize

//Implement the IScheduledEventProvider.Initialize method.
public void Initialize(
 Microsoft.SqlServer.NotificationServices.NSApplication application,
 string providerName,
 System.Collections.Specialized.StringDictionary args,
 Microsoft.SqlServer.NotificationServices.StopHandler stopDelegate)
{
 this.eventProviderName = providerName;
 this.arguments = args;
 this.myApplication = application;

 //This event provider requires three arguments:
 //the event log to check, the date used
 //to filter the events returned, and the
 //name of the event class.
 if (3 == arguments.Count)
 {
 this.logName = arguments["logName"];
 this.eventDate = System.Convert.ToDateTime(arguments["eventDate"]);
 this.eventClassName = arguments["eventClass"];
 }

 //Validate the values of the arguments here.

 //Create the event collector.
 this.myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication,
eventProviderName);
}

SQL Server Notification Services Books Online

Implementing the Run Method
Implementing the Run Method

The Run method does not require any arguments. It returns a Boolean value that indicates whether the provider is running
successfully (true) or whether the provider host must call its Terminate method (false).

The Run method has a five-minute time-out window. If it does not return within that time period, an event is logged and the
event provider's Terminate method is called.

Hosted event providers are expected to catch and handle their own exceptions. If the exceptions are not handled, the provider host
logs the unhandled error, and then invokes the Terminate method on the event provider.

Implementing the Run Method in Continuous Event Providers

Continuous event providers are started when the notification application is started, and they run continuously while the
application is active. When the system administrator starts the application, the provider host calls the Initialize and Run methods
on the continuous event provider just once. The Run method must return within the five-minute time-out period. Once started, a
continuous event provider runs and submits events until its Terminate method is called.

An event provider must return false from the Run method to let the provider host know something is wrong and that it is not
going to continue to run. A scheduled event provider gets this opportunity at each interval. However, a non-scheduled event
provider gets invoked only once and therefore it has no way to notify the provider host that something has gone wrong. In this
situation you can use the StopHandler delegate. This is passed to the event provider as an argument to the Initialize method, so
that the event provider can invoke it if it needs to be terminated.

Implementing the Run Method in Scheduled Event Providers

Scheduled event providers are initialized once and are then called on a periodic basis. You control the frequency with which the
event provider is called by specifying a schedule in the /Providers/HostedProvider/Schedule section of the application
definition file (ADF). When the system administrator starts the notification application, the provider host calls the Initialize
method on the scheduled event provider. The provider host reads the schedule information for this event provider, and then calls
the event provider's Run method as indicated by the schedule.

All event providers can collect and submit events from within the Run method. However, a scheduled event provider must return
from the Run call before the next scheduled interval. If the event provider has not returned when the next scheduled interval
arrives, the provider host waits until the next interval to call Run again.

To avoid missing calls, a scheduled event provider must always return from the Run method call on time. Make sure that you set
the schedule of the event provider so that it can complete its tasks and return in a timely fashion.

Example: Run

//Implement the IScheduledEventProvider.Run method.
public bool Run()
{
 bool returnValue = true;

 try
 {
 //Open the event log and review the latest entries.
 System.Diagnostics.EventLog myLog = new System.Diagnostics.EventLog();
 myLog.Log = logName;
 Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event();
 myEvent.Initialize(myApplication, eventClassName);
 foreach(System.Diagnostics.EventLogEntry entry in myLog.Entries)
 {
 if(entry.TimeWritten >= eventDate)
 if(entry.EntryType == System.Diagnostics.EventLogEntryType.Error)
 {
 //Create an event to convey the event log data.
 myEvent["LogName"] = logName;
 myEvent["Message"] = entry.Message;
 myEvent["Source"] = entry.Source;
 myEventCollector.Write(myEvent);

 }
 }

 //Commit the event batch.
 int eventsSubmitted = myEventCollector.Commit();
 myEvent = null;
 }
 catch (System.Exception e)
 {
 //Provide error handling here.
 }
 return returnValue;
}

SQL Server Notification Services Books Online

Implementing the Terminate Method
Implementing the Terminate Method

The Terminate method does not require any arguments, and does not have a return value.

When the provider host calls the Terminate method, the event provider must stop collecting new events, write any pending
events to the application database, release any resources it is holding, and return from the Terminate method call. If the event
provider does not return from the Terminate method call within one minute, the provider host stops the event provider
unconditionally.

If the Terminate method fails to handle an exception, the provider host logs the unhandled error, and the event provider is
terminated.

Example: Terminate

//Implement the IScheduledEventProvider.Terminate method.
public void Terminate()
{
 myEventCollector.Dispose();
}

To refer to the full code for the event provider, look at the example in Using the IEventProvider and IScheduledEventProvider
Interfaces.

For more information, see IEventProvider.Terminate Method or IScheduledEventProvider.Terminate Method.

SQL Server Notification Services Books Online

Implementing an Event Provider Using the Event and
EventCollector Classes
Implementing an Event Provider Using the Event and EventCollector Classes

You can use the Event and EventCollector classes in an event provider when working with any event source that can provide
events as individual units. These classes can be found in the Microsoft.SqlServer.NotificationServices namespace.

You use an object of the Event class to encapsulate the data for a single event. Which data fields are provided by the Event object
depends on the schema of the event class that is used to initialize the Event object.

The Event class provides properties to set the following values for an event:

FieldCount
Returns the number of data fields in the event record.

Item
Gets or sets the value of a data field for an event. This property serves as the indexer in C#.

Once you have created an Event object and populated it with event data, you submit it to an EventCollector object, using the
EventCollector.Write method. You create, populate, and submit one Event object for each event record that you want to create.
You can reuse the Event object after each call to EventCollector.Write. The EventCollector object gathers the events written to
it into a batch, and then adds the event batch to the application database when you call the EventCollector.Commit method.
Following a Commit call, the EventCollector object is cleared and ready to create a new event batch.

The EventCollector object also provides an Abort method. Call this method if you want to discard the current event batch.

See Also

Event Class

EventCollector Class

SQL Server Notification Services Books Online

Creating an Event Object
Creating an Event Object

You can create and initialize the Event object by using the parameterized constructor to pass in an NSApplication object that
represents the desired Notification Services application, and the name of the event class that defines the events that are to be
created. The Event object is usable at once.

Example

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";

//Get the Notification Services instance.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Get the Notification Services application.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

See Also

Event Class

SQL Server Notification Services Books Online

Creating a Disconnected Event Object
Creating a Disconnected Event Object

It is possible to create an Event object without calling its Initialize method. Doing this allows you to create a "disconnected"
Event object that does not have a reference to a Notification Services application, and is not on the same system as any running
NS$instance_name service. This technique can be useful for such things as serializing an arbitrary event in a Message Queueing
message (also known as an MSMQ message). In order to use this technique, you must know the event class name and the event
field names at development time.

Example

//Initialize the Event object.
Event myEvent = new Event();
myEvent.EventClassName = "StockEvents";

myEvent.FieldNames.Add("StockSymbol");
myEvent.FieldValues.Add(String.Empty);

myEvent.FieldNames.Add("StockPrice");
myEvent.FieldValues.Add(String.Empty);

//Use the Event object.
myEvent["StockSymbol"] = "AWKS";
myEvent["StockPrice"] = "58.35";

//Add code to send the Event object.

SQL Server Notification Services Books Online

Creating an EventCollector Object
Creating an EventCollector Object

You can create and initialize the EventCollector object by using the parameterized constructor to pass in an NSApplication
object that represents the desired Notification Services application, and the name of the event provider that hosts the
EventCollector. The EventCollector object is usable at once.

Example

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";

//Get the Notification Services instance.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Get the Notification Services application.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the EventCollector object.
Microsoft.SqlServer.NotificationServices.EventCollector myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication, eventClassName);

See Also

EventCollector Class

SQL Server Notification Services Books Online

Using Event and EventCollector Objects to Add Events
Using Event and EventCollector Objects to Add Events

Once your Event and EventCollector objects are created, you use them to capture event data, collect it into batches, and write it
to the application database.

You use the Write method of EventCollector to add event records to a batch, and then the Commit method of EventCollector
to submit the event batch to the Notification Service system. An event batch can consist of one or more event records; you must
determine the event batch size for your application, by calling the Commit method of the EventCollector when appropriate.

In a hosted event provider, the Write and Commit methods are called in the Run method, or in a custom method called by the
Run method.

If you need to discard an event batch due to an error, you use the EventCollector.Abort method. This method is called in a catch
block in the Run method, or in a custom method called by the Run method.

Example

In this managed code example, the Item method of the Event class is used to set the value of the developer-defined event fields.
In unmanaged (native) code, this would be done using the Event.SetFieldValue method:

public bool Run()
{
 //These variables would normally be defined for
 //the class. They would be set based on the values
 //provided by the args argument of the Initialize method.
 string instanceName = "MyInstanceName";
 string applicationName = "MyApplicationName";
 string eventClassName = "MyEventClassName";

 bool returnValue = true;

 try
 {
 //Get the Notification Services instance.
 Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

 //Get the Notification Services application.
 Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

 //Create the Event object.
 Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

 //Create the EventCollector object.
 Microsoft.SqlServer.NotificationServices.EventCollector myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication, eventClassName);

 //Create and initialize a proxy class for a weather Web service.
 MyWeatherService.Method weatherMethod = new MyWeatherService.Method();

 //Create an array for the areas for which you want forecasts.
 string[] areas = {"Bellevue", "Issaquah", "Redmond", "Seattle"};

 //Step through the array and select event information.
 for(int i = 0; i < areas.Length; i++)
 {
 //Set the event fields in the MyEvent object.
 myEvent["Area"] = areas[i];
 myEvent["Forecast"] = weatherMethod.Forecast(areas[i]);

 //Write the event to the EventCollector.
 myEventCollector.Write(myEvent);
 }

 //Submit the event batch to the

 //Notification Services application database.
 int eventsSubmitted = myEventCollector.Commit();
 myEvent = null;
 }
 catch(System.Exception e)
 {
 //Handle errors by using myEventCollector.Abort() to
 //discard the current event batch if necessary.
 }
 return returnValue;
}

SQL Server Notification Services Books Online

Getting Event Field Information
Getting Event Field Information

The Event class provides the GetFieldName and GetFieldOrdinal methods to give access to event field information.

You use the GetFieldName method of the Event class to return the name of a field by providing its ordinal.

You use the GetFieldOrdinal method of the Event class to return the ordinal of a field by providing its name.

Example: Getting a Field Name

//Return the name for a field identified by ordinal.
int ordinal = 2;
string fieldName = myEvent.GetFieldName(ordinal);

Example: Getting a Field Ordinal

//Return the ordinal for a field identified by name.
string fieldName = "StockSymbol";
int ordinal = myEvent.GetFieldOrdinal(fieldName);

See Also

Event Class

SQL Server Notification Services Books Online

Using the EventLoader Class
Using the EventLoader Class

You can use the EventLoader class when working with an XML document or stream object to create one or more event records.

You use the EventLoader.LoadXML method to write the events provided by an XML data source into the Notification Services
application database as an event batch.

The EventLoader class has an EventSchema property. This property is used to set the name of the SQL-annotated XML schema
file that maps the data from the XML document structure to the event class structure.

For more information about authoring an SQL-annotated XML schema file, see Authoring and Using Custom Schemas
Backgrounder in the Microsoft MSDN® Library.

See Also

EventLoader Class

http://go.microsoft.com/fwlink/?LinkId=8036

SQL Server Notification Services Books Online

Creating an EventLoader Object
Creating an EventLoader Object

You can create and initialize the EventLoader object by using the parameterized constructor to pass in an NSApplication object
that represents the desired Notification Services application, the name of the event provider that is to host the EventLoader, the
name of the event class that defines the events that are to be created, and the name of the SQL-annotated XML schema file that
maps the data from the XML document structure to the event class structure. The EventLoader object is usable at once.

Example

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string eventProviderName = "MyEventProviderName";
string eventSchema = "MyEventSchemaPathAndName";

//Get the Notification Services instance.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Get the Notification Services application.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create the EventLoader object.
Microsoft.SqlServer.NotificationServices.EventLoader myEventLoader = new
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema);

See Also

EventLoader Class

SQL Server Notification Services Books Online

Using an EventLoader Object to Add Events
Using an EventLoader Object to Add Events

Once your EventLoader object is created, you can use it to write an event batch of one or more records from an XML data source
to the Notification Services application database. You use the LoadXml method to accomplish this.

Example

public bool Run()
{
 //These variables would normally be defined for
 //the class. They would be set based on the values
 //provided by the args argument of the Initialize method.
 string instanceName = "MyInstanceName";
 string applicationName = "MyApplicationName";
 string eventClassName = "MyEventClassName";
 string eventProviderName = "MyEventProviderName";
 string eventSchema = "MyEventSchemaPathAndName";
 string xmlDoc = "MyXMLDocPathAndName";

 bool returnValue = true;
 System.DateTime dt = System.DateTime.Now;

 try
 {
 //Get the Notification Services instance.
 Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

 //Get the Notification Services application.
 Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance,
applicationName);

 //Create the EventLoader object.
 Microsoft.SqlServer.NotificationServices.EventLoader myEventLoader = new
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema);

 //Write the event records from the XML data
 //source to the application database.
 int eventsSubmitted = myEventLoader.LoadXml(xmlDoc);
 }
 catch(System.Exception e)
 {
 //Add code to handle errors here.
 }
 return returnValue;
}

See Also

EventLoader Class

SQL Server Notification Services Books Online

Using the Event Collection Stored Procedures
Using the Event Collection Stored Procedures

You can use the standard event collection stored procedures when working with a SQL Server event source, or when you want to
take advantage of business logic that you can have already defined in other SQL Server stored procedures.

One set of standard event collection stored procedures is automatically generated for each event class that you create. These
stored procedures allow an event provider to submit events directly to the event table from a SQL Server–based event source. The
event collection stored procedures reside in the application database. The name of the stored procedure is a concatenation of the
stored procedure name and the name of the event class to which it belongs.

The standard event collection stored procedures are as follows:

NSEventBeginBatchEventClassName provides the event batch ID to be used for the events that are being created. It takes
the name of the event provider that is submitting the event data as an input parameter, and returns the batch ID of the new
event batch.
NSEventWriteEventClassName inserts a single event record into the event table. It takes the event batch ID to which this
event belongs as an input parameter, as well as a list of values for the event data fields. It does not have a return value.
NSEventFlushBatchEventClassName either commits or discards the event batch. It takes the event batch ID of the event
batch that it acts on as an input parameter, as well as a flag to indicate whether to discard or to commit the batch. It does
not have a return value.
NSEventSubmitBatchEventClassName encapsulates the functionality of the three previously described stored
procedures. It first creates a new event batch by calling NSEventBeginBatchEventClassName. Then it associates one or
more event records with the new event batch, and writes them to the event table. NSEventSubmitBatchEventClassName
does not use the NSEventWriteEventClassName stored procedure to do this, because that procedure is designed to
submit a single event record. It instead provides similar functionality for one or more event records, by executing the query
you provide to select a set of rows and submit them as events. Finally, NSEventSubmitBatchEventClassName commits
the event batch by calling NSEventFlushBatchEventClassName.

NSEventSubmitBatchEventClassName takes the following input parameters:

The name of the event provider that is submitting the events.
The text of the Transact-SQL query that is to be used to select the records that are to be submitted as events. The
schema of the records generated by the query must match the schema of the event table to which they are being
submitted.
The text of the Transact-SQL query that is to be used to do any post-processing cleanup or state maintenance, like
updating tables or deleting any temporary objects.

Use the NSEventBeginBatchEventClassName, NSEventFlushBatchEventClassName, and NSEventWriteEventClassName
stored procedures in combination to write single events to the application database. Use the
NSEventSubmitBatchEventClassName stored procedure to write multiple events to the application database.

See Also

NSEventBeginBatch<EventClassName>

NSEventFlushBatch<EventClassName>

NSEventSubmitBatch<EventClassName>

NSEventWrite<EventClassName>

SQL Server Notification Services Books Online

Using the Event Collection Stored Procedures to Add Events
Using the Event Collection Stored Procedures to Add Events

You can run the event collection stored procedures from within both managed and unmanaged code, using any appropriate
mechanism available in the language with which you are working.

A common way to execute a stored procedure from within managed code is to use a SqlCommand object. You can specify a
stored procedure and its arguments in the SqlCommand object, and then execute the procedure using its ExecuteNonQuery
method.

Example: Adding a Single Event

public bool Run()
{
 //These variables would normally be defined for
 //the class. They would be set based on the values
 //provided by the args argument of the Initialize method.
 string instanceName = "MyInstanceName";
 string applicationName = "MyApplicationName";
 string eventClassName = "MyEventClassName";
 string eventProviderName = "MyEventProviderName";

 bool returnValue = true;
 System.Data.SqlClient.SqlConnection conn = null;

 try
 {
 //Set the connection to SQL Server.
 conn = new System.Data.SqlClient.SqlConnection();
 conn.ConnectionString = string.Format("Integrated Security=SSPI; Data
Source=MySQLServer;Initial Catalog=MyApplicationDatabaseName");
 conn.Open();

 //Use NSEventBeginBatchEventClassName
 //to create a new event batch and return the ID.
 System.Data.SqlClient.SqlCommand cmd = new
System.Data.SqlClient.SqlCommand(string.Format("\"NSEventBeginBatch{0}\"",
eventClassName));
 cmd.Connection = conn;
 cmd.CommandType = System.Data.CommandType.StoredProcedure;
 cmd.Parameters.Add("@ProviderName", eventProviderName);
 System.Data.SqlClient.SqlParameter param = cmd.Parameters.Add("@EventBatchId",
System.Data.SqlDbType.BigInt);
 param.Direction = System.Data.ParameterDirection.Output;
 cmd.ExecuteNonQuery();
 long eventBatchId = (long)cmd.Parameters["@EventBatchId"].Value;

 //Use NSEventWriteEventClassName
 //to write the event to the database.
 cmd.Parameters.Clear();
 cmd.CommandText = string.Format("\"NSEventWrite{0}\"", eventClassName);
 cmd.Parameters.Add("@EventBatchId", eventBatchId);
 cmd.Parameters.Add("@City", "Redmond");
 cmd.Parameters.Add("@Date", "3/12/02");
 cmd.Parameters.Add("@Low", 50.0);
 cmd.Parameters.Add("@High", 55.5);
 cmd.Parameters.Add("@Forecast", "Partly cloudy");
 cmd.ExecuteNonQuery();

 //Use NSEventFlushBatchEventClassName
 //to commit the event batch.
 cmd.Parameters.Clear();
 cmd.CommandText = string.Format("\"NSEventFlushBatch{0}\"", eventClassName);
 cmd.Parameters.Add("@EventBatchId", eventBatchId);
 long eventsSubmitted = (long)cmd.ExecuteScalar();
 }
 catch(System.Data.SqlClient.SqlException ex)
 {

 //Add code to handle the exception here.
 }
 finally
 {
 if (null != conn)
 {
 conn.Close();
 conn = null;
 }
 }
 return true;
}

SQL Server Notification Services Books Online

Developing a Custom Content Formatter
Notification Services provides a standard XSLT content formatter to assist you in rapid application development. However, you
might want to format your notification data to meet particular application requirements in a way that is not provided by this
content formatter. If this is the case, you must develop a custom content formatter.

You must implement the IContentFormatter interface that is provided by Notification Services within your custom content
formatter, in order for it to interoperate with the Notification Services distributor. The IContentFormatter interface is available in
the Microsoft.SqlServer.NotificationServices namespace.

Each notification class has information specified about the content formatter it uses in the
/NotificationClasses/NotificationClass/ContentFormatter section of the application definition file (ADF). If you create a
custom content formatter, you must declare it and specify the values for any arguments that it requires in each notification class
that uses it.

Your custom content formatter must be implemented as a class in a managed code assembly. This assembly can reside anywhere,
with the full path to the assembly provided in the ADF when the content formatter is declared.

Important Your custom content formatter runs with the same privileges as the NS$instance_name service. This gives
the content formatter significant permissions on the system, such as adding and deleting files. It is up to you as the
developer to ensure that your custom content formatter is robustly coded, and does not adversely affect system data
or performance.

SQL Server Notification Services Books Online

Using the IContentFormatter Interface
Using the IContentFormatter Interface

The IContentProvider interface provides the following methods:

Initialize allows the distributor to initialize the content formatter and prepare it to start running.
FormatContent allows the distributor to pass notification data to the content formatter, so that it can be formatted and
then output for use by a delivery protocol. This method processes regular or multicast notifications one at a time, and digest
notifications as a group.
Close allows the distributor to tell the content formatter to shut down.

The sequence of calls begins with Initialize, followed by a series of FormatContent calls, one for each notification to be
formatted. Close is the last method in the sequence to be called. After Close has returned, FormatContent is not called again,
unless the calling sequence is started over, with a new call to Initialize.

To create a custom content formatter that implements this interface, you must create a class that implements
IContentFormatter, and then implement the methods inherited from the interface within this class. You then code the
functionality for these methods that is appropriate for your application. For example, if your application provides both regular and
digest notifications, your content formatter must be able to correctly format both types of notification.

Content Formatter Example

In the following code example, the content formatter concatenates notification text blocks with localized notification values to
produce formatted notification content:

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Text;
using Microsoft.SqlServer.NotificationServices;

namespace TestFormatter
{
 public class MyContentFormatter : IContentFormatter
 {
 private bool digest = false;
 string introText = null;
 string midText = null;
 string endText = null;
 string browseBackUrl = null;

 public MyContentFormatter()
 {
 //Add constructor logic here if required.
 }

 //Implement the IContentFormatter.Initialize method.
 public void Initialize(
 StringDictionary arguments,
 bool digest)
 {
 this.digest = digest;

 //This content formatter requires four arguments:
 //the three text blocks to insert as notification
 //text, and the browse-back URL to display.
 if (4 == arguments.Count)
 {
 this.introText = arguments["introText"];
 this.midText = arguments["midText"];
 this.endText = arguments["endText"];
 this.browseBackUrl = arguments["URL"];
 }

 //Validate the values of the arguments here.
 }

 //Format the notification content.
 public string FormatContent(
 string subscriberLocale,
 string deviceTypeName,
 RecipientInfo recipientInfo,
 Hashtable[] rawContent)
 {
 StringBuilder contentString = new StringBuilder();

 try
 {
 StringWriter myWriter = new StringWriter(contentString);
 CultureInfo recipientCulture = GetCulture(subscriberLocale);

 foreach (Hashtable notification in rawContent)
 {
 myWriter.Write(introText);
 myWriter.Write(LocalizeNotificationData(notification["StockSymbol"],
recipientCulture));
 myWriter.Write(midText);
 myWriter.Write(LocalizeNotificationData(notification["StockPrice"],
recipientCulture));
 myWriter.Write(endText);
 myWriter.Write(browseBackUrl);
 }
 myWriter.Close();
 }
 catch (Exception e)
 {
 //Add code to handle errors here.
 }
 return contentString.ToString();
 }

 //Gets the culture information for the recipient.
 private CultureInfo GetCulture(string subscriberLocale)
 {
 CultureInfo culture = null;
 culture = CultureInfo.CreateSpecificCulture(subscriberLocale);
 return culture;
 }

 //Localizes the notification data.
 private string LocalizeNotificationData(object notificationField, CultureInfo
recipientCulture)
 {
 string localizedString;
 IFormattable formattable = notificationField as IFormattable;
 if (formattable != null)
 {
 const string DEFAULT_FORMAT = null;
 localizedString = formattable.ToString(DEFAULT_FORMAT, recipientCulture);
 }
 else
 {
 localizedString = notificationField.ToString();
 }
 return localizedString;
 }

 //Implement the IContentFormatter.Close method.
 public void Close()
 {
 //Release any system resources here.
 }
 }
}

SQL Server Notification Services Books Online

Implementing the Initialize Method
Implementing the Initialize Method

The Initialize method requires two arguments:

arguments
A reference to a StringDictionary object that contains the named arguments for the content formatter. These arguments are
defined in the NotificationClasses/NotificationClass/ContentFormatter/Arguments section of the application definition
file (ADF).

digest
A Boolean value indicating whether the notification class for which the formatter is being used has digest delivery enabled.

The Initialize method does not have a return value.

Initialize Example

//Implement the IContentFormatter.Initialize method.
public void Initialize(
 System.Collections.Specialized.StringDictionary arguments,
 bool digest)
{
 this.digest = digest;

 //This content formatter requires four arguments:
 //the three text blocks to insert as notification
 //text, and the browse-back URL to display.
 if (4 == arguments.Count)
 {
 this.introText = arguments["introText"];
 this.midText = arguments["midText"];
 this.endText = arguments["endText"];
 this.browseBackUrl = arguments["URL"];
 }
 //Validate the values of the arguments here.
}

To refer to the full code for the content formatter, look at the example in Using the IContentFormatter Interface.

For more information, see IContentFormatter.Initialize Method.

SQL Server Notification Services Books Online

Implementing the FormatContent Method
Implementing the FormatContent Method

The FormatContent method requires four arguments:

subscriberLocale
A string providing the locale information, which can be used to determine how the notification is formatted with regards to
language, date/time/currency formatting, and so on. For more information about these codes, see Subscriber Locale Codes.

deviceTypeName
A string providing the name that identifies the type of target device for this notification. The value of this string is specified in
the subscriber device record of the target device for the notification. You can make use of this information in your content
formatter processing, to format the notification to display appropriately on the recipient device.

recipientInfo
A reference to a RecipientInfo object containing information about the subscriber who is to receive the notification. This
information is composed of a subscriber ID and a device address. The RecipientInfo class is provided as part of the
Notification Services API.

rawContent
A reference to an array of Hashtable objects containing the raw notification data. Each hash table represents a single
notification, with entries for each notification and computed field. The array contains only one Hashtable object, unless digest
delivery is used. If that is the case, there is one Hashtable object for each notification in the digest group.

FormatContent returns a string that is the formatted notification data.

Your custom content formatter can internally use any technique to produce the formatted string. A simple approach might use
basic string manipulation; more complex approaches might use XSL transforms or Microsoft ASP.NET rendering.

The FormatContent method provides a good place to implement filtering or encoding of notification content for security
purposes. For example, as a security precaution, you might want to limit the total size of the notification content string produced.

Example: FormatContent

//Format the notification content.
public string FormatContent(
 string subscriberLocale,
 string deviceTypeName,
 Microsoft.SqlServer.NotificationServices.RecipientInfo recipientInfo,
 System.Collections.Hashtable[] rawContent)
{
 System.Text.StringBuilder contentString = new System.Text.StringBuilder();

 try
 {
 System.IO.StringWriter myWriter = new System.IO.StringWriter(contentString);
 System.Globalization.CultureInfo recipientCulture = GetCulture(subscriberLocale);

 foreach (System.Collections.Hashtable notification in rawContent)
 {
 myWriter.Write(introText);
 myWriter.Write(LocalizeNotificationData(notification["StockSymbol"],
recipientCulture));
 myWriter.Write(midText);
 myWriter.Write(LocalizeNotificationData(notification["StockPrice"],
recipientCulture));
 myWriter.Write(endText);
 myWriter.Write(browseBackUrl);
 }
 myWriter.Close();
 }
 catch (System.Exception e)
 {
 //Add code to handle errors here.
 }
 return contentString.ToString();
}

//Get the culture info for the recipient.

private System.Globalization.CultureInfo GetCulture(subscriberLocale)
{
 System.Globalization.CultureInfo culture = null;
 culture = System.Globalization.CultureInfo.CreateSpecificCulture(subscriberLocale);
 return culture;
}

//Localizes the notification data.
private string LocalizeNotificationData(object notificationField,
System.Globalization.CultureInfo recipientCulture)
{
 string localizedString;
 System.IFormattable formattable = notificationField as System.IFormattable;

 if (formattable != null)
 {
 const string DEFAULT_FORMAT = null;
 localizedString = formattable.ToString(DEFAULT_FORMAT, recipientCulture);
 }
 else
 {
 localizedString = notificationField.ToString();
 }
 return localizedString;
}

SQL Server Notification Services Books Online

Implementing the Close Method
Implementing the Close Method

The Close method does not accept any parameters, and has no return value.

The distributor calls Close to make the content formatter shut down.

Example: Close

//Implement the IContentFormatter.Close method.
public void Close()
{
 //Release any system resources here.
}

To refer to the full code for the content formatter, look at the example in Using the IContentFormatter Interface.

For more information about the IContentFormatter.Close method, see IContentFormatter.Close Method.

SQL Server Notification Services Books Online

Developing a Custom Delivery Protocol
Notification Services provides several standard delivery protocols to assist you in creating delivery channels. However, you might
want to deliver notifications using a different protocol than those provided by the standard components. If this is the case, you
must develop a custom delivery protocol. The delivery protocol component implements the message creation and transport
requirements of a protocol, thereby making it accessible within the Notification Services system.

You must implement one of two interfaces that are provided by Notification Services within your custom delivery protocol, in
order for it to interoperate with the Notification Services distributor.

The IHttpProtocolProvider interface is provided to make it easy to develop a custom HTTP-based delivery protocol. It simplifies
custom delivery protocol development in the case of HTTP-based protocols by providing all of the HTTP-related functionality, so
that you need to provide code only to format the envelope and process the response.

The IDeliveryProtocol interface is to be used for custom delivery protocols that implement other protocols, or for HTTP-based
delivery protocols that require more flexibility than IHttpProtocolProvider provides.

Both of these interfaces are available in the Microsoft.SqlServer.NotificationServices namespace.

You must declare each custom delivery protocol you develop in the <Protocols> node of the configuration file. You must then
define a delivery channel that uses the custom delivery protocol in the <DeliveryChannels> node of the configuration file.

Finally, you must document the notification-specific information required by that delivery protocol in the
/NotificationClasses/NotificationClass/Protocols section of the application definition file (ADF).

The following fields are used internally by Notification Services. You must not create protocol fields (specified in the
/NotificationClasses/NotificationClass/Protocols/Protocol/Fields section of the ADF) with these names:

DeliveryChannelName
DeliveryStatusCode
DeviceAddress
DeviceName
DeviceTypeName
DistributorWorkItemId
ExpirationTime
LinkNotificationId
NotificationId
NotificationBatchId
SentTime
SubscriberId
SubscriberLocale

The NotificationId, SubscriberId, DeviceName, DeviceTypeName, DeviceAddress, and SubscriberLocale fields are exposed by
Notification Services, and can be used in the SQL expressions for protocol fields.

Your custom delivery protocol must be implemented as a class in a managed code assembly. This assembly can reside anywhere,
with the full path to the assembly provided in the configuration file when the delivery protocol is documented.

SQL Server Notification Services Books Online

Using the IDeliveryProtocol Interface
Using the IDeliveryProtocol Interface

The IDeliveryProtocol interface provides the following methods:

Initialize allows the delivery protocol to be initialized by the distributor prior to running.
DeliverNotification allows the distributor to pass formatted notification data to the delivery protocol, so that it can create
the notification message, and route it to the external delivery system. This method is called once for each notification
message that must be created and delivered.
Flush allows the distributor to make the delivery protocol complete any pending deliveries.
Close allows the distributor to make the delivery protocol release any resources it is using, and prepare it for shutdown.

The sequence of calls begins with Initialize, followed by a series of DeliverNotification calls, one for each message to be sent.
Flush can be called before or after any of the DeliverNotification calls (but never in parallel with a DeliverNotification call).
Close is the last method in the sequence to be called. After Close has returned, DeliverNotification and Flush is not called
again, unless the calling sequence is started over, with a new call to Initialize.

The methods on a single delivery protocol instance are called only by a single thread, so accesses to instance data do not need to
be thread-safe. Multiple protocol instances might possibly be called on multiple threads, so accesses to shared class-wide data
must be thread safe.

Important The distributor does not enforce any time-outs on the IDeliveryProtocol methods. The delivery protocol
classes are considered to be trusted, tested code. If any of the methods stop responding, then the distributor thread
that calls them stops responding. If this happens on enough threads, distributor operation might halt.

To create a custom delivery protocol that implements this interface, you must create a class that implements IDeliveryProtocol
and then implement the methods inherited from the interface within this class. Finally, you must code the functionality for these
methods that is appropriate for your application.

Example: Delivery Protocol

In the following code example, the delivery channel sends notifications to a stored procedure in a SQL Server database:

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;
using System.Text;
using Microsoft.SqlServer.NotificationServices;

namespace TestProtocol
{
 public class myDeliveryProtocol : IDeliveryProtocol
 {
 private bool multicast = false;
 private NotificationStatusCallback notificationStatusCallback = null;
 private string server = null;
 private string database = null;
 private string sproc = null;
 private string appName = null;
 private int commandTimeout = 0;
 private string connectionString = null;

 public myDeliveryProtocol()
 {
 //Add constructor logic here if required.
 }

 //Implement the IDeliveryProtocol.Initialize method.
 public void Initialize(
 StringDictionary channelArgs,
 bool multicast,
 NotificationStatusCallback notificationStatusCallback)

 {
 this.multicast = multicast;
 this.notificationStatusCallback = notificationStatusCallback;

 //This delivery protocol requires five arguments:
 //-the SQL Server instance to connect to.
 //-the SQL Server database to use.
 //-the SQL Server stored procedure to receive notifications.
 //-the name of the application making the connection.
 //-the time-out period for the command.
 if (5 == arguments.Count)
 {
 this.server = channelArgs["Server"];
 this.database = channelArgs["Database"];
 this.sproc = channelArgs["SProc"];
 this.appName = channelArgs["AppName"];
 this.commandTimeout = Int32.Parse(channelArgs["CommandTimeout"]);
 }

 //Validate the values of the arguments here.

 //Build the connection string.
 StringBuilder connectionStringBuilder = new StringBuilder();
 connectionStringBuilder.AppendFormat("Data Source={0}; Initial Catalog={1};
Integrated Security=true; App={2}",server,database,appName);

 connectionString = connectionStringBuilder.ToString();
 }

 //Implement the IDeliveryProtocol.DeliverNotification method.
 public void DeliverNotification(
 NotificationHeaders[] notificationHeaders,
 string body)
 {
 bool successfulDelivery = false;
 Exception failureException = null;

 try
 {
 //Get a connection to SQL Server.
 using (SqlConnection myConnection = new SqlConnection(connectionString))
 {
 //Prepare the SqlCommand object.
 SqlCommand myCommand = myConnection.CreateCommand();
 myCommand.CommandTimeout = commandTimeout;
 myCommand.CommandType = CommandType.StoredProcedure;
 myCommand.CommandText = sproc;

 //Call the stored procedure for each recipient.
 foreach(NotificationHeaders notificationHeader in notificationHeaders)
 {
 //Reset the parameters.
 myCommand.Parameters.Clear();

 //Set the procedure parameters.
 if (null != notificationHeader.ProtocolFields)
 {
 foreach (string protocolField in
notificationHeader.ProtocolFields.Keys)
 {
 myCommand.Parameters.Add(String.Format("@{0}", protocolField),
notificationHeader.ProtocolFields[protocolField]);
 }
 }
 //Execute the command.
 myCommand.ExecuteNonQuery();
 successfulDelivery = true;
 }
 }
 }
 catch (Exception ex)
 {

 failureException = ex;
 //Handle any exceptions here; for instance,
 //write exception information to the event log.
 }
 finally
 {
 SendStatus(notificationHeaders, successfulDelivery, body, failureException);
 }
 }

 //Builds up a statusInfo message, creates a
 //NotificationStatus object, and calls
 //the notificationStatusCallback delegate.
 private void SendStatus(
 NotificationHeaders[] notificationHeaders,
 bool successfulDelivery,
 string body,
 Exception failureException)
 {
 if (null != notificationStatusCallback)
 {
 ArrayList statusList = new ArrayList(notificationHeaders.Length);
 string statusInfo;

 //Set some notification status parameters
 //based on delivery success or failure.
 string notificationText;
 if (null == failureException)
 {
 statusInfo = "";
 notificationText = "";
 }
 else
 {
 statusInfo = failureException.Message;
 notificationText = body;
 }

 object timeStamp = DateTime.UtcNow;

 //Create a NotificationStatus object for
 //each notification and add it to an array.
 for (int i = 0; i < notificationHeaders.Length; i++)
 {
 NotificationHeaders notificationHeader = notificationHeaders[i];
 statusList.Add(new
NotificationStatus(notificationHeader.NotificationState, successfulDelivery, statusInfo,
notificationText, timeStamp));
 }

 //Pass the array of NotificationStatus objects
 //to the NotificationStatusCallback delegate.

notificationStatusCallback((NotificationStatus[])statusList.ToArray(typeof(NotificationSt
atus)));
 }
 }

 //Implement the IDeliveryProtocol.Flush method.
 public void Flush()
 {
 //Notification delivery by this protocol
 //is synchronous and completes in the
 //DeliverNotification call, so there
 //is nothing for Flush to do.
 }

 //Implement the IDeliveryProtocol.Close method.
 public void Close()
 {
 //No resources are held beyond the
 //sychronous call to DeliverNotification

 //so there are no resources for Close to release.
 }
 }
}

SQL Server Notification Services Books Online

Implementing the Initialize Method
Implementing the Initialize Method

The Initialize method accepts three arguments:

channelArgs
A reference to a StringDictionary object containing the named arguments for this delivery protocol.

multicast
A Boolean value indicating whether multicast delivery is being used.

nsc
A NotificationStatusCallback delegate. This delegate is provided as part of the Notification Services API. The delegate is used
to report notification delivery status to the distributor.

The arguments passed in the channelArgs argument are retrieved from the /DeliveryChannels/DeliveryChannel/Arguments
section of the configuration file for the delivery channel in which the protocol is being used. They are defined by the developer,
based on the information that the custom delivery protocol requires in order to initialize successfully.

The Initialize method does not have a return value.

Example: Initialize

public void Initialize(
 System.Collections.Specialized.StringDictionary channelArgs,
 bool multicast,
 Microsoft.SqlServer.NotificationServices.NotificationStatusCallback
notificationStatusCallback)
{
 this.multicast = multicast;
 this.notificationStatusCallback = notificationStatusCallback;

 //This delivery protocol requires five arguments:
 //-the SQL Server instance to connect to.
 //-the SQL Server database to use.
 //-the SQL Server stored procedure to receive notifications.
 //-the name of the application making the connection.
 //-the time-out period for the command.
 if (5 == arguments.Count)
 {
 this.server = channelArgs["Server"];
 this.database = channelArgs["Database"];
 this.sproc = channelArgs["SProc"];
 this.appName = channelArgs["AppName"];
 this.commandTimeout = System.Int32.Parse(channelArgs["CommandTimeout"]);
 }

 //Validate the values of the arguments here.

 //Build the connection string.
 System.Text.StringBuilder connectionStringBuilder = new System.Text.StringBuilder();
 connectionStringBuilder.AppendFormat("Data Source={0}; Initial Catalog={1}; Integrated
Security=true; App={2}",server,database,appName);

 connectionString = connectionStringBuilder.ToString();
}

SQL Server Notification Services Books Online

Implementing the DeliverNotification Method
Implementing the DeliverNotification Method

The DeliverNotification method accepts two arguments:

headersList
A reference to an array of NotificationHeaders objects containing the information needed to create the notification message
and route it to the external delivery system. Each NotificationHeaders object contains an opaque NotificationState object,
which is a RecipientInfo object that provides information about the recipient, and a StringDictionary object containing the
values of the protocol fields specified in the /NotificationClasses/NotificationClass/Protocols/Protocol section of the
application definition file (ADF). The array contains only one NotificationHeaders object, unless multicast delivery is used. If
that is the case, there is one NotificationHeaders object for each notification recipient. The NotificationHeaders,
NotificationState, and RecipientInfo classes are provided as part of the Notification Services API.

body
A string containing the formatted notification data that was produced by the content formatter.

The DeliverNotification method does not have a return value.

The distributor calls a delivery protocol's DeliverNotification method once for each message to be delivered. In the case of
multicast delivery, each call to DeliverNotification can contain data from more than one notification. The delivery protocol
creates the notification message from this information, and routes the message for delivery. The message routing to the external
delivery system can be accomplished in any way that is available to the developer and valid for the target delivery system. Often,
this involves using transport mechanisms provided by the operating system.

The delivery protocol must use the notification status callback (whose delegate was passed to the Initialize method in the nsc
argument) to pass a NotificationStatus object to the distributor for each notification passed as a NotificationHeaders object
to the DeliverNotification method. The NotificationStatus object provides details on the outcome of each notification delivery
attempt. Each NotificationStatus object contains the following fields:

NotificationState: An object used to convey notification information to the delivery protocol. The NotificationState
object is passed to the delivery protocol for the express purpose of being passed back again as part of the notification
delivery status information in a NotificationStatus object. The information contained in the NotificationState object is
not used within the delivery protocol.
succeeded: A Boolean value indicating whether the notification message was handed off to the external delivery system
successfully.
statusInfo: Additional delivery status information, such as an error message, or a text description of a status code. The
value of statusInfo can be null if it is not needed by the delivery protocol.
notificationText: The content of the notification message. The value of notificationText can be null if it is not needed by the
delivery protocol.
timeStamp: The time of the delivery attempt. The value of timeStamp can be null if it is not needed by the delivery
protocol. If it is used, the time must be specified as a Universal Time Coordinate (UTC) time.

If multiple notifications are passed in a single call to DeliverNotification (that is, if the headersList array contains multiple
NotificationHeaders objects), a NotificationStatus object must be provided to the distributor for each notification. This can be
accomplished either by calling the notification status callback multiple times, or by passing multiple NotificationStatus objects
to the notification status callback in a single call.

Determine when your implementation should invoke the notification status callback by balancing your requirement for
application performance with your requirement for accuracy.

Each call to the notification status callback results in a round-trip to the database server. Sending multiple NotificationStatus
objects in a single call improves performance by reducing the round-trips to the server. This requires the protocol implementation
to cache the individual notification status values in memory until a sufficient number of them are collected. This situation leaves
open the possibility of sending duplicate notifications if a server failure occurs and causes that in-memory cache to be lost before
the status for those notifications is reported. You can mitigate this possibility by reporting the status of each notification
individually immediately after it is sent, but this strategy results in more round-trips and some performance impact.

Important If DeliverNotification throws an exception, you must not invoke the status callback for any of the
notification headers passed in that call to DeliverNotification. Any exception thrown in this method is treated as a
delivery failure. The notification delivery status is automatically set to Failed, thereby eliminating the need to set the
status by using the callback.

DeliverNotification Example

//Implement the IDeliveryProtocol.DeliverNotification method.
public void DeliverNotification(
 Microsoft.SqlServer.NotificationServices.NotificationHeaders[] notificationHeaders,
 string body)
{
 bool successfulDelivery = false;
 System.Exception failureException = null;

 try
 {
 //Get a connection to SQL Server.
 using (System.Data.SqlClient.SqlConnection myConnection = new
System.Data.SqlClient.SqlConnection(connectionString))
 {
 //Prepare the SqlCommand object.
 System.Data.SqlClient.SqlCommand myCommand = myConnection.CreateCommand();
 myCommand.CommandTimeout = commandTimeout;
 myCommand.CommandType = System.Data.CommandType.StoredProcedure;
 myCommand.CommandText = sproc;

 //Call the stored procedure for each recipient.
 foreach(Microsoft.SqlServer.NotificationServices.NotificationHeaders
notificationHeader in notificationHeaders)
 {
 //Reset the parameters.
 myCommand.Parameters.Clear();

 //Set the procedure parameters.
 if (null != notificationHeader.ProtocolFields)
 {
 foreach (string protocolField in notificationHeader.ProtocolFields.Keys)
 {
 myCommand.Parameters.Add(string.Format("@{0}", protocolField),
notificationHeader.ProtocolFields[protocolField]);
 }
 }
 //Execute the command.
 myCommand.ExecuteNonQuery();
 successfulDelivery = true;
 }
 }
 }
 catch (System.Exception ex)
 {
 failureException = ex;
 //Handle exception; for instance, write
 //exception information to the event log.
 }
 finally
 {
 SendStatus(notificationHeaders, successfulDelivery, body, failureException);
 }
}

//Builds up a statusInfo message, creates a
//NotificationStatus object, and calls
//the notificationStatusCallback delegate.
private void SendStatus(
 Microsoft.SqlServer.NotificationServices.NotificationHeaders[] notificationHeaders,
 bool successfulDelivery,
 string body,
 System.Exception failureException)
{
 if (null != notificationStatusCallback)
 {
 System.Collections.ArrayList statusList = new
System.Collections.ArrayList(notificationHeaders.Length);
 string statusInfo;

 //Set some notification status parameters

 //based on delivery success or failure.
 string notificationText;
 if (null == failureException)
 {
 statusInfo = "";
 notificationText = "";
 }
 else
 {
 statusInfo = failureException.Message;
 notificationText = body;
 }

 object timeStamp = System.DateTime.UtcNow;

 //Create a NotificationStatus object for
 //each notification and add it to an array.
 for (int i = 0; i < notificationHeaders.Length; i++)
 {
 Microsoft.SqlServer.NotificationServices.NotificationHeaders notificationHeader
= notificationHeaders[i];
 statusList.Add(new
Microsoft.SqlServer.NotificationServices.NotificationStatus(notificationHeader.Notificati
onState, successfulDelivery, statusInfo, notificationText, timeStamp));
 }

 //Pass the array of NotificationStatus objects
 //to the NotificationStatusCallback delegate.

notificationStatusCallback((Microsoft.SqlServer.NotificationServices.NotificationStatus[]
)

statusList.ToArray(typeof(Microsoft.SqlServer.NotificationServices.NotificationStatus)));
 }
}

SQL Server Notification Services Books Online

Implementing the Flush Method
Implementing the Flush Method

The Flush method does not accept any parameters, and does not have a return value.

The Flush method is called by the distributor when it wants the delivery protocol to complete any notifications that are pending
for message creation or for routing to the external delivery system.

Flush must either complete or abort any pending operations before returning. The Flush method can impose a time-out on
pending operations (the value of which can be specified as a parameter or a hard-coded argument in the
/NotificationClasses/NotificationClass/Protocols/Protocol section of the application definition file (ADF) or the
/DeliveryChannels/DeliveryChannel/Arguments section of the configuration file), but this is implementation-specific, and is
not enforced by the distributor.

You can use calls to the Flush method to do such things as either wait for or terminate an outstanding transaction. If it makes
sense for your application, you can also use Flush to submit all outstanding status callbacks as a batch, thereby making a single
round-trip to the server.

Important When creating a custom delivery protocol, you must ensure that status callbacks for all notifications that
have not yet had their delivery status recorded are sent before the Flush method finishes. Status callbacks return
status to the distributor by using the NotificationStatusCallback delegate. Failure to return status for any
outstanding notifications can result in distribution errors. This is due to the fact that no callbacks are allowed after the
Flush method finishes, and notification delivery status information might therefore be incomplete.

Example

//Implement the IDeliveryProtocol.Flush method.
public void Flush()
{
 //Notification delivery by this protocol
 //is synchronous and completes in the
 //DeliverNotification call, so there
 //is nothing for Flush to do.
}

To refer to the full code for the delivery protocol, look at the example in Using the IDeliveryProtocol Interface.

For more information, see IDeliveryProtocol.Flush Method.

SQL Server Notification Services Books Online

Implementing the Close Method
Implementing the Close Method

The Close method does not accept any parameters, and does not have a return value.

The distributor calls the Close method to cause the delivery protocol to shut down, at which time it releases all resources. If the
delivery protocol implements asynchronous delivery, and there are outstanding requests at the time Close is called, these
requests must be either completed or aborted before Close returns.

Example

//Implement the IDeliveryProtocol.Close method.
public void Close()
{
 //No resources are held beyond the
 //sychronous call to DeliverNotification
 //so there are no resources for Close to release.
}

To refer to the full code for the delivery protocol, look at the example in Using the IDeliveryProtocol Interface.

For more information, see IDeliveryProtocol.Close Method.

SQL Server Notification Services Books Online

Using the IHttpProtocolProvider Interface
Using the IHttpProtocolProvider Interface

The IHttpProtocolProvider interface provides the following methods:

Initialize allows the delivery protocol to be initialized by the distributor prior to running.
FormatEnvelope allows the distributor to pass formatted notification data to the delivery protocol, which then uses this
information to create the HTTP envelope.
ProcessResponse allows the delivery protocol to receive and process the HTTP response from the server.
Close allows the distributor to make the delivery protocol release any resources it is using, and prepares it for shutdown.

The sequence of calls begins with Initialize, followed by a pair of FormatEnvelope and ProcessResponse calls, one pair for
each message to be sent. Close is the last method in the sequence to be called. After Close has returned, FormatEnvelope and
ProcessResponse are not called again, unless the calling sequence is started over, with a new call to Initialize.

The IHttpProtocolProvider interface works in conjunction with the internal HttpExtension class provided by Notification
Services. This class wraps most of the basic functionality required when implementing an HTTP-based delivery protocol, including
issuing requests and receiving responses from an HTTP server. The developer only needs to create the message envelope and
process the HTTP response, using the methods that the IHttpProtocolProvider interface provides.

The distributor does not enforce any time-outs on the IHttpProtocolProvider methods. The delivery protocol classes that
provide the implementations are considered to be trusted, tested code. If any of the methods stop responding, then the distributor
thread that calls them stops responding. If this happens on enough threads, distributor operation might halt.

To create a custom delivery protocol that implements this interface, you must create a class that implements
IHttpProtocolProvider and then create the methods inherited from the interface within this class. Finally, you must code the
functionality for these methods that is appropriate for your application.

HTTP Delivery Protocol Example

In the following code example, the HTTP delivery protocol uses an XSLT file in combination with the protocol fields to build an
envelope:

using System;
using System.Collections.Specialized;
using System.Text;
using System.Net;
using System.Xml;
using System.IO;
using Microsoft.SqlServer.NotificationServices;

namespace HttpProtocol
{
 public class MyHttpDeliveryProtocol: IHttpProtocolProvider
 {

 public MyHttpDeliveryProtocol()
 {
 //Add constructor logic here if required.
 }

 //Implement the IHttpProviderProtocol.Initialize method.
 public void Initialize(StringDictionary channelArguments)
 {
 //Process initialization parameters
 //if any are necessary.
 }

 //Implement the IHttpProviderProtocol.FormatEnvelope method.
 public string FormatEnvelope(
 StringDictionary protocolFields,
 string requestBody)
 {
 //Use a StringBuilder, a StringWriter, and
 //an XmlTextWriter to create the XML string.
 StringBuilder myStringBuilder = new StringBuilder();

 StringWriter myStringWriter = new StringWriter(myStringBuilder);
 XmlTextWriter myWriter = new XmlTextWriter(myStringWriter);
 //Create the envelope.
 myWriter.WriteStartElement("soap:envelope");
 //Create the header.
 myWriter.WriteStartElement("soap:header");
 myWriter.WriteStartElement("username");
 myWriter.WriteString(protocolFields["userName"]);
 myWriter.WriteEndElement();
 myWriter.WriteStartElement("password");
 myWriter.WriteString(protocolFields["password"]);
 myWriter.WriteEndElement();
 myWriter.WriteEndElement();
 //Create the body.
 myWriter.WriteStartElement("soap:body");
 myWriter.WriteString(requestBody);
 myWriter.WriteEndElement();
 //Close the envelope.
 myWriter.WriteEndElement();

 string envelope = myStringBuilder.ToString();

 myWriter.Close();

 return envelope;
 }

 //Implement the IHttpProviderProtocol.ProcessResponse method.
 public bool ProcessResponse(
 HttpStatusCode statusCode,
 String responseBody,
 bool postSuccess)
 {
 if(postSuccess)
 {
 return postSuccess;
 }
 else
 {
 return(false);
 //You could log the responseBody info here.
 }
 }

 //Implement the IHttpProviderProtocol.Close method.
 public void Close()
 {
 //Release any system resources here.
 }
 }
}

SQL Server Notification Services Books Online

IHttpProtocolProvider Delivery Protocol Configuration File
Settings
IHttpProtocolProvider Delivery Protocol Configuration File Settings

Your custom IHttpProtocolProvider delivery protocol must be declared in a <Protocol> node within the <Protocols> section
of the configuration file. Then, in a <DeliveryChannel> node within the <DeliveryChannels> section of the configuration file,
you must declare one or more delivery channels that use the custom IHttpProtocolProvider delivery protocol. Each of the
elements for these two nodes is described in the following sections.

<Protocol> Elements

The following list reviews the elements that are required in the <Protocol> declaration for the custom IHttpProtocolProvider
delivery protocol:

<ProtocolName>
A string that conforms to XML naming conventions. It must be unique within your application.

<ClassName>
You must specify the value "HttpExtension" for this element.

IHttpProtocolProvider Protocol Example

<Protocols>
 <Protocol>
 <ProtocolName>SMSDeliveryProtocol</ProtocolName>
 <ClassName>HttpExtension</ClassName>
 </Protocol>
</Protocols>

<DeliveryChannel> Elements

The following list reviews the elements that are required in the <DeliveryChannel> declaration for the custom
IHttpProtocolProvider delivery protocol:

<DeliveryChannelName>
A string that conforms to XML naming conventions. It must be unique within your application.

<ProtocolName>
The same value that you specified for the <ProtocolName> element in the <Protocol> declaration.

<Arguments> and child elements
Initialization parameters for a custom IHttpProtocolProvider delivery protocol. It can accept some or all of the following
arguments. (Required arguments are noted.)

ProtocolProviderClassName (required) provides the name of the class you have created that implements the
IHttpProtocolProvider interface.
ProtocolProviderAssemblyName (required) provides the name of the assembly containing the class that implements
the IHttpProtocolProvider interface.
PostUrl (required) provides the URL to be used to connect to the service to which the notification is to be delivered.
UserName provides the user name required for authentication.
Password provides the password required for authentication.
Domain provides the Windows domain that the IIS server uses for digest authentication.
Group provides a user name or other unique string that the HTTP server can use to group requests.
ConnectionLimit provides the maximum number of connections to the service that one distributor can create. If no value
is specified, the default is 2.
AsyncPosts provides the number of outstanding requests (requests that have not been responded to) that one distributor
can have with a service. If no value is specified, the default is 16.
MaxShutdown provides the amount of time in seconds that the distributor can wait for an HTTP request to complete. If
no value is specified, the default is 180.
ProxyServer provides the name of the proxy server that this delivery channel uses to access service beyond the local
network.

ProxyPort provides the port number that this delivery channel uses for communication. If no value is specified, the
default is 80.
Encoding specifies the string format required by the HTTP server. All encoding formats returned by the GetEncoding
method of the Encoding class in the Microsoft .NET Framework are acceptable values. Not all platforms support all
encodings; if an encoding is not supported by the deployed platform, a NotSupportedException is thrown.
ContentType specifies the HTTP content type of the request.
SoapAction specifies the intent of the SOAP HTTP request. The permissible values for this argument are dependent upon
the SOAP server that is being used.

IHttpProtocolProvider Delivery Channel Example

<DeliveryChannels>
 <DeliveryChannel>
 <ChannelName>SMSChannel</ChannelName>
 <ProtocolName>SMSDeliveryProtocol</ProtocolName>
 <Arguments>
 <Argument>
 <Name>ProtocolProviderClassName</Name>
 <Value>MyHttpDeliveryProtocol</Value>
 </Argument>
 <Argument>
 <Name>ProtocolProviderAssemblyName</Name>
 <Value>%AppPath%\SMSProtocol.dll</Value>
 </Argument>
 <Argument>
 <Name>PostURL</Name>
 <Value>%URL%</Value>
 </Argument>
 <!-- Additional arguments specific to the HTTP-based
 protocol being implemented. -->
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

SQL Server Notification Services Books Online

Implementing the Initialize Method
Implementing the Initialize Method

The Initialize method is called in order to prepare the delivery protocol to run. The Initialize method accepts one argument,
channelArguments. This provides a reference to a StringDictionary object containing the names and values of the arguments
for this delivery protocol.

The arguments passed in the channelArguments argument are retrieved from the
/DeliveryChannels/DeliveryChannel/Arguments section of the configuration file. They are defined by the developer, based on
the information that the custom delivery protocol requires in order to initialize successfully.

The Initialize method does not have a return value.

Initialize Example

//Implement the IHttpProviderProtocol.Initialize method.
public void Initialize(System.Collections.Specialized.StringDictionary channelArguments)
{
 //Process initialization parameters
 //if any are necessary.
}

To refer to the full code for the delivery protocol, look at the example in Using the IHttpProtocolProvider Interface.

For more information, see IHttpProtocolProvider.Initialize Method.

SQL Server Notification Services Books Online

Implementing the FormatEnvelope Method
Implementing the FormatEnvelope Method

The FormatEnvelope method returns a string containing the appropriately formatted envelope. The FormatEnvelope method
accepts two arguments:

protocolFields
A StringDictionary object containing the names and values of the protocol fields specified in the
/NotificationClasses/NotificationClass/Protocols/Protocol section of the application definition file (ADF).

requestBody
A string containing the formatted notification data that was produced by the content formatter. This becomes the body of the
HTTP request.

FormatEnvelope Example

//Implement the IHttpProviderProtocol.FormatEnvelope method.
public string FormatEnvelope(
 System.Collections.Specialized.StringDictionary protocolFields,
 string requestBody)
{
 //Use a StringBuilder, a StringWriter, and
 //an XmlTextWriter to create the XML string.
 System.Text.StringBuilder myStringBuilder = new System.Text.StringBuilder();
 System.IO.StringWriter myStringWriter = new System.IO.StringWriter(myStringBuilder);
 System.Xml.XmlTextWriter myWriter = new System.Xml.XmlTextWriter(myStringWriter);
 //Create the envelope.
 myWriter.WriteStartElement("soap:envelope");
 //Create the header.
 myWriter.WriteStartElement("soap:header");
 myWriter.WriteStartElement("username");
 myWriter.WriteString(protocolFields["userName"]);
 myWriter.WriteEndElement();
 myWriter.WriteStartElement("password");
 myWriter.WriteString(protocolFields["password"]);
 myWriter.WriteEndElement();
 myWriter.WriteEndElement();
 //Create the body.
 myWriter.WriteStartElement("soap:body");
 myWriter.WriteString(requestBody);
 myWriter.WriteEndElement();
 //Close the envelope.
 myWriter.WriteEndElement();

 string envelope = myStringBuilder.ToString();

 myWriter.Close();

 return envelope;
}

SQL Server Notification Services Books Online

Implementing the ProcessResponse Method
Implementing the ProcessResponse Method

The ProcessResponse method returns a Boolean value indicating whether the post was successful. The ProcessResponse
method accepts three arguments:

httpResponseCode
A reference to an HttpStatusCode object that contains the HTTP response code.

responseBody
A string containing the body of the HTTP response.

postSuccess
A Boolean value indicating whether Notification Services thinks the post was successful.

The postSuccess argument indicates whether the protocol thinks the delivery succeeded. This post status can conflict with the
actual delivery status. For instance, the post might have succeeded at the HTTP level, but the delivery itself might have failed. This
additional status information is supplied in the responseBody argument. You must evaluate this response body to determine the
actual delivery status, and then set the return value to indicate success or failure.

Example

//Implement the IHttpProviderProtocol.ProcessResponse method.
public bool ProcessResponse(
 System.Net.HttpStatusCode statusCode,
 string responseBody,
 bool postSuccess)
{
 if(postSuccess)
 {
 return postSuccess;
 }
 else
 {
 return(false);
 //You could log the responseBody info here.
 }
}

To refer to the full code for the delivery protocol, look at the example in Using the IHttpProtocolProvider Interface.

For more information, see IHttpProtocolProvider.ProcessResponse Method.

SQL Server Notification Services Books Online

Implementing the Close Method
Implementing the Close Method

The distributor calls the Close method to cause the delivery protocol to shut down, at which time it releases all resources. If the
delivery protocol implements asynchronous delivery, and there are outstanding requests at the time Close is called, these
requests are either completed or abandoned before Close returns.

The Close method does not accept any arguments, and does not have a return value.

Example

//Implement the IHttpProviderProtocol.Close method.
public void Close()
{
 //Release any system resources here.
}

To refer to the full code for the delivery protocol, look at the example in Using the IHttpProtocolProvider Interface.

For more information, see IHttpProtocolProvider.Close Method.

SQL Server Notification Services Books Online

Debugging a Custom Component
To call a custom component that is hosted by Notification Services, you must build and run a Notification Services application that
calls the component. You cannot use this method to debug an independent event provider, because the thread of execution for
such an event provider is not provided by nsservice.exe.

If Notification Services is running as the NS$instance_name service, you can start the service and attach a debugger to the
running process.

Alternatively, you can run nsservice.exe as a console application to debug application components in Microsoft Visual Studio .NET.
To do this, follow these steps:

1. In Visual Studio .NET, right-click the project containing the custom component, click on Properties, select Configuration
Properties in the left pane, and then select Debugging.

2. In the Start Action section, set the Debug Mode field to "Program", and then set the Start Application field to the fully
qualified path to nsservice.exe.

3. In the Start Options section, set the Command Line Arguments field to "instance_name -a", where instance_name is the
name of the instance you want to debug.

4. Place a breakpoint in the custom component code wherever you want the debugger to stop.
5. Start the solution.
6. Drop events into the system in whatever way the application requires, so that the application starts processing.

SQL Server Notification Services Books Online

Notification Services Programming Samples
Notification Services includes a set of programming samples to illustrate application development in a variety of scenarios. The
samples are installed by default to C:\Program Files\Microsoft Notification Services\VersionNumber\Samples.

This section covers each of these samples, as well as more general information on sample structure, deployment, and security.
The topics are described in the following table.

Topic Description
Programming Sample Structure Provides information about the projects

and files used in the samples.
Programming Sample Requirements Provides information about the software

and configuration settings needed to run
the samples.

Setting Up and Removing Programming
Samples

Provides information on installing and
removing the samples.

Changing Sample Reference Paths Discusses the manual changes you must
make to the samples if you have installed
Notification Services to a non-default
location.

Configuring the Subscribe Project for
Debugging

Describes how to configure the
subscription management application
project in a sample for debugging in
Microsoft Visual Studio® .NET.

Resolving Common Issues Provides troubleshooting information for
commonly encountered problems.

Stock Sample Provides information about the Stock
sample, which is developed in Microsoft
C#™, and provides event-driven and
scheduled subscriptions.

Flight Sample Provides information about the Flight
sample, which is developed in Microsoft
Visual Basic® .NET, and provides event-
driven subscriptions.

Weather Sample Provides information about the Weather
sample, which is developed in C#, and
provides scheduled subscriptions.

Realtor Sample Provides information about the Realtor
sample, which is developed in C#, and
provides event-driven subscriptions.

SQL Server Notification Services Books Online

Programming Sample Structure
Each programming sample included with Notification Services is implemented as a Microsoft Visual Studio .NET solution. A
solution serves as a container for storing information about one or more projects and associated items. The solutions use several
standard projects to identify and separate application components. These projects in turn contain standard files, which perform
such tasks as defining the application metadata, providing build scripts, and implementing the subscription management
application. You will use these projects and files to build and run the samples.

All samples build to a Debug configuration. If you use the CopySample.cmd script to copy a sample application for use as a
development template, don't forget to change the configuration setting in the solution properties from Debug to Release before
you deploy your application.

Important Visual Studio .NET creates files in the directory Samples\SampleName\Subscribe\obj\Debug. The files in
this directory can be read by anyone. This poses a security threat if the sample is deployed in an environment where a
hostile user might access that computer. Once the sample is built, this folder is no longer required and can be safely
deleted. However, it is re-created each time the sample is built.

The solution for each sample contains the AppDefinition and Subscribe projects. The Stock sample also includes a
CustomDeliveryProtocol project. Each of these projects is described in this section.

AppDefinition Project

The AppDefinition project contains the files that describe the application metadata, and the scripts used to create and update the
application.

Application metadata files

appADF.xml
The application definition file (ADF) for the sample.

appConfig.xml
The configuration file for the sample.

Application.xslt
An XSL transform file that you can use with the Notification Services standard XSLT content formatter to format notification
data for this application. This XSL transform file provides simple formatted data in a sample-specific manner. In the Realtor
sample this file is named RealtorInfo.xslt.

NoOp.xslt
An XSL transform file that you can use with the Notification Services standard XSLT content formatter to format notification
data for this application. The NoOp.xslt file writes the notification information in exactly the same format that it receives it,
without any additional processing. This XSL transform is useful for debugging, and is used by default in the Flight programming
sample and for one of the two notification classes in the Stock sample.

EventSchema.xsd
The XML schema that defines the structure of the event class used in this application.

ApplicationDefinitionFileSchema.xsd
The XML schema that defines the structure of a Notification Services ADF. It is provided for reference information and also to
enable IntelliSense when working in the ADF.

ConfigurationFileSchema.xsd
The XML schema that defines the structure of a Notification Services configuration file. It is provided for reference information
and also to enable IntelliSense when working in the configuration file.

Application build scripts

BuildScripts
The BuildScripts subfolder contains the following scripts, which are used to create and update the application.

RunBuild.cmd
Builds the application. For a new application, this script runs the RunCreate.cmd script; for an existing application it runs the
NSControl Disable command and then the NSControl Update command. This script is run when you select the Build action,
which you access by right-clicking the project name in the Solution Explorer pane of Visual Studio .NET.

Note If you build the samples by using direct NSControl commands instead of the sample script files, you must
manually copy the required Microsoft.SqlServer.NotificationServices.dll and Subscribe.dll files to the
Samples\SampleName\Subscribe\bin directory. Otherwise, the sample subscription pages return an error about the
DLLs not being found.

RunClean.cmd
Removes the application and deletes the sample databases using NSControl Delete. This script is run when you select the
Clean action, which you access by right-clicking the project in the Solution Explorer pane of Visual Studio .NET.

RunCreate.cmd
Creates the sample instance and application using NSControl Create, and enables the instance using NSControl Enable. It
calls the GrantPermissions.cmd script to add the ASPNET Windows account (which is created when you install the
Microsoft.NET Framework) and the NS$instance_name service account as SQL Server login accounts. It then adds the accounts
to appropriate roles in the instance database. In the Realtor programming sample, RunCreate.cmd also calls
CreateRealtorDB.cmd to create the Realtor database.

RunRebuild.cmd
Rebuilds the application. Deletes the sample databases using NSControl Delete, and then runs the RunCreate.cmd script. This
script is run when you select the Rebuild action accessed by right-clicking the AppDefinition project.

RunService.cmd
Runs the NS$instance_name service as a command-line application.

GrantPermissions.cmd
Sets up the required SQL Server login accounts and permissions. Adds the ASPNET SQL Server login account to appropriate
roles in the instance database. If the NS$instance_name service uses SQL Server Authentication to access the databases, then
that login account is also given appropriate permissions to the instance database if you specify the password for that account as
a parameter to GrantPermissions.cmd.

Subscribe Project

The Subscribe project contains the files associated with the subscription management application for this application. If this
application accepts event data through a Web page, those files will appear here as well.

Default.aspx
The subscription management page. The code behind this file is in Default.aspx.cs (or Default.aspx.vb in the Flight sample
application).

EventSubmission.aspx
The event submission page. This file appears only in the Stock sample application. The code behind this file is in
EventSubmission.aspx.cs.

CustomDeliveryProtocol Project

The CustomDeliveryProtocol project is used only in the Stock sample application. It contains the files for a custom delivery
protocol that the Stock sample application uses. The code for this project is in HttpLoggerDeliveryProtocol.cs, the class file that
defines the custom delivery protocol.

SQL Server Notification Services Books Online

Programming Sample Requirements
All the programming samples included with Notification Services create Notification Services instances and databases, so
Microsoft strongly recommends that you run the samples only on a development or testing server, not on a production server.

To run correctly, the Notification Services sample applications require the environment shown in the following table.

Operating
System

Microsoft Windows® 2000 Server (SP2 or later).

Microsoft Windows XP.

Applications Microsoft SQL Server Notification Services.

Microsoft Visual Studio .NET (with Microsoft Visual C#™,
Microsoft Visual C++®, and Microsoft Visual Basic®
components installed).

SQL Server 2000 (Standard, Developer, or Enterprise
Edition).

Microsoft SQLXML 3.0

Note If you install Visual Studio .NET before
installing SQL Server, you must manually add
the SQL Server client utilities location to the
C++ path. For details, see Configuring Visual
Studio .NET

Running
Services

Simple Mail Transfer Protocol (SMTP).

IIS Admin.

World Wide Web Publishing Service.

Note To send e-mail notifications, you must
configure the Windows SMTP service to relay
messages and start running. For more
information, see "Configuring the SMTP Service"
later in this topic.

Accounts Accounts under which the subscription management
application, the NS$instance_name service, and the Visual
Studio .NET Build commands (based on calls to the
NSControl utility) will run.

Valid Windows accounts and SQL Server login accounts for
any users who will be working with the samples.

For more information about these accounts and their
required permissions, see Required Accounts and
Permissions.

Installing Software for Samples Deployment

All Notification Services sample applications require SQL Server, Notification Services, Visual Studio .NET, and Internet
Information Services (IIS). Microsoft recommends that you install all this software on a single server to make it easy to deploy the
samples.

If you choose to deploy the samples in a multi-server environment instead, you must install the required software as follows.

The server running the samples must have:

The Notification Services engine components, client components, sample applications, and documentation.
Visual Studio .NET (with Visual C#, Visual C++, and Visual Basic components installed).
All services that are noted in the "Running Services" row of the preceding table.
The SQL Server 2000 client utilities.

The server running the databases must have:

The Notification Services database components.
SQL Server 2000 (Standard, Developer, or Enterprise Edition).

Configuring the SMTP Service

To send e-mail notifications, you must configure the Simple Mail Transport Protocol (SMTP) service to relay messages and start
running. If the SMTP service is not configured to relay messages or is not running, the notifications generated by the sample
applications are delivered to the \inetpub\mailroot\queue directory. Depending on the configuration of your SMTP service, the
messages might appear in a different \inetpub\mailroot folder, such as \pickup or \badmail. For more information about
configuring SMTP, see Using SMTP for Outgoing Messages in the Microsoft MSDN® Library.

http://go.microsoft.com/fwlink/?LinkId=7742

SQL Server Notification Services Books Online

Required Accounts and Permissions
Required Accounts and Permissions

As part of setting up the Notification Services programming samples, you must provide the Windows accounts under which the
following components will run: the subscription management application, the NS$instance_name service, and the Microsoft
Visual Studio .NET Build commands (based on calls to the NSControl utility). These Windows accounts must also have SQL
Server login accounts in order to create, access, and modify the Notification Services databases. Notification Services does not
create SQL Server login accounts, so you must ensure that all accounts that require access to the databases have SQL Server login
accounts before using the samples. (When you run the SetupSamples.cmd script, Notification Services automatically grants
database permissions to these accounts.)

You must also have valid Windows accounts and SQL Server login accounts for all users who access the samples.

For more information about adding login accounts and database users, see "sp_addlogin", "sp_grantlogin", and
"sp_grantdbaccess" in SQL Server Books Online.

See Also

Subscription Management Application Account

NS$instance_name Service Account

Visual Studio .NET Build Command (NSControl Utility) Account

User Accounts

SQL Server Notification Services Books Online

Subscription Management Application Account
Subscription Management Application Account

In Notification Services, the subscription management application uses the ASPNET Windows account by default to access the
Notification Services databases. The ASPNET account is created automatically when the Microsoft .NET Framework is installed.

To check for the ASPNET account on the computer where you have your programming samples, open the User Accounts directory
in Control Panel. If the ASPNET account was not created during your installation of Microsoft Visual Studio .NET, run
windows_directory\Microsoft.NET\Framework\v1.0.3705\aspnet_regiis.exe to create it.

Because ASPNET is a local account, it cannot be granted access to a remote SQL Server instance. Therefore, when using the
ASPNET account, you must install SQL Server on the server where the samples are installed.

Accessing a Remote SQL Server Instance

To access a SQL Server instance on another computer, you can configure the subscription management application to use a
domain account instead of the default ASPNET account. Using a domain account allows you to use Windows Authentication,
which provides better security features than SQL Server Authentication, such as secure validation and encryption of passwords,
auditing, password expiration, minimum password length, and account lockout after multiple invalid login requests. Alternatively,
if you cannot use Windows authentication, you can use SQL Server Authentication.

To use a domain account to access a remote instance

1. In Microsoft Windows Explorer, expand the Notification Services installation directory, and navigate to the Samples
directory.

2. Right-click the SetGlobalVars.cmd script, and then click Edit.
3. Replace this line:

set SubscriptionApplicationAccount=%NSHost%\ASPNET

with this line:

set SubscriptionApplicationAccount=DOMAIN\User

4. Ensure that the domain account you specify has been given a SQL Server login account (by using the sp_grantlogin stored
procedure), and has been added as a user to the instance and application databases.

When you run the SetupSamples.cmd script, this account is granted the necessary database permissions.

To use SQL Server Authentication to access a remote instance

Important Microsoft strongly recommends that you specify a domain account for use by the subscription
management application rather than using SQL Server Authentication.

1. Define a SQL Server login name and password for your subscription management application to use.
2. Grant the login account user access to the instance and application databases.
3. Add the user to the NSSubscriberAdmin role in those databases.
4. Record the SQL Server authorization information in a secure location, like a registry key with appropriate access control

entries (ACEs) in its access control list (ACL).
5. In the Solution Explorer pane of Visual Studio .NET, expand the Subscribe project, right-click the Default.aspx file, and then

click View Code.
6. In the Page_Load method, remove the comment delimiters from the following two lines, and replace the "sqluser" and

"sqlpassword" values with code that retrieves the appropriate authorization information from the secure location:

// instance.SqlUser = "sqluser";
// instance.SqlPassword = "sqlpassword";

7. In the Solution Explorer pane, right-click the \Samples\Common\NSUtility.cs file, click View Code, and make the same
changes in the NSUtility constructor that you did in step 6.

8. Right-click the Subscribe project, and then click Rebuild.

When you run the SetupSamples.cmd script, this account will be granted the necessary database permissions.

Note If you want to allow Web applications to submit event data, add the SQL Server login account of the
subscription management application to the NSEventProvider database role.

For more information about adding login accounts and database users, see "sp_addlogin," "sp_grantlogin," and
"sp_grantdbaccess" in SQL Server Books Online.

See Also

Notification Services Database Roles

SQL Server Notification Services Books Online

NS$instance_name Service Account
NS$instance_name Service Account

In Notification Services, the NS$instance_name service requires an account in order to access local and network resources, to
send messages with Simple Mail Transfer Protocol (SMTP), and to access the SQL Server databases in environments where SQL
Server Authentication is used.

The SetupSamples.cmd script creates the NS$instance_name service. When you run this script, you must specify the account
under which the NS$instance_name service runs. Specify one of the following types of accounts:

A domain user account. Microsoft strongly recommends running the NS$instance_name service under a domain account
(domain\username). You can either obtain a custom domain account from your domain administrator (recommended), or
use your own domain account. Using a domain account, you can more easily control access to network resources and to
local or remote SQL Server databases. Additionally, if you use a custom domain account, you can limit the permissions
granted to only those required by the service.
A local user account. You can run the NS$instance_name service under a local user account (computer\username) if the
databases are located on the same system as the NS$instance_name service, or if you use SQL Server Authentication to
access the databases (regardless of database locations).
The NetworkService account. This account is available only on Microsoft Windows XP. Using this account makes it
difficult to control which services have access to network resources, including remote SQL Server databases. All services
running under the NetworkService account are mapped to the domain\remotecomputername$ domain account when
accessing network resources.

The NetworkService account cannot send notifications using the SMTP delivery protocol because the account is not a
member of the local Administrators group. Because the Stock sample provided with Notification Services does not use
SMTP, you can run the NS$StockInstance service under the NetworkService account.

The LocalSystem account. Microsoft strongly discourages using the LocalSystem account, because this account has
unrestricted access to all local resources. Also, with this account it is impossible to control which services have access to
network resources, including remote SQL Server databases. All services running under the LocalSystem account are
mapped to the domain\remotecomputername$ domain account when accessing network resources.

The account under which the NS$instance_name service runs must have the following permissions and characteristics:

Read and write permissions for the Notification Services directory (InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber).
The ability to log on as a service.
The ability to read and write registry keys in HKEY_LOCAL_MACHINE\Software\Microsoft\NotificationServices,
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services, and their subkeys.
Modify permission in the folder from which the event provider reads events, if the sample uses the standard
FileSystemWatcher event provider (as do the Stock, Flight, and Weather sample applications provided with Notification
Services).
Modify permission in the folder to which the delivery protocol writes notifications, if the sample uses the File delivery
protocol (as do the Stock, Flight, and Weather sample applications).
Membership in the local Administrators group, if the sample uses the SMTP delivery protocol (as do the Flight, Weather,
and Realtor sample applications).

If you must use SQL Server Authentication to connect to the Notification Services databases, provide a SQL Server user name and
password for the NS$instance_name service when you run SetupSamples.cmd. The SQL Server user name and password are
encrypted and stored in the registry. The SQL Server login account specified must be a user in the master database, so that the
service has the access necessary to run extended stored procedures.

Important Microsoft strongly recommends that you specify a domain account for use by the NS$instance_name
service instead of using SQL Server Authentication. Using a domain account allows you to use Windows
Authentication, which provides better security features, such as secure validation and encryption of passwords,
auditing, password expiration, minimum password length, and account lockout after multiple invalid login requests.

See Also

Notification Services Database Roles

SQL Server Notification Services Books Online

Visual Studio .NET Build Command (NSControl Utility) Account
Visual Studio .NET Build Command (NSControl Utility) Account

In Notification Services, the Microsoft Visual Studio .NET Build commands require an account to access the NSControl utility.
They use NSControl to create the NS$instance_name service on the server, and to create and update the Notification Services
databases.

This account must have permissions to create services and write to the registry, and so must be a member of the local
Administrators group. In addition, you must ensure either that this account is a SQL Server login account, or that a separate SQL
Server login account is also provided for its use. The SQL Server login account must be assigned to the sysadmin fixed server
role.

See Also

Notification Services Database Roles

SQL Server Notification Services Books Online

User Accounts
User Accounts

For any users who will be working with the programming samples provided as part of Notification Services, valid Windows
accounts and SQL Server login accounts must be provided.

The user who runs SetupSamples.cmd to set up the samples must have a SQL Server login account that is a member of the SQL
Server sysadmin fixed server role, or must be able to supply the user name and password of a login account that is a member of
the SQL Server sysadmin fixed server role. The sysadmin permissions are required to add new database users to SQL Server, to
add users to database roles, and to create and delete SQL Server databases.

Note The end user who runs the installation procedures for the Notification Services samples is set by SQL Server as
the database owner (dbo) for each of the sample SQL Server databases that are created. The login name for the dbo
user corresponds to the SQL Server login account for the end user.

See Also

Notification Services Database Roles

SQL Server Notification Services Books Online

Configuring Visual Studio .NET
Configuring Visual Studio .NET

The programming samples provided as part of Notification Services make use of SQL Server client utilities, such as the osql
utility. These utilities must be available on the local computer.

If you installed Microsoft Visual Studio .NET before installing SQL Server, the SQL Server utilities did not get registered with
Visual Studio .NET. If this is the case, you must add the SQL Server client utilities location to the C++ path.

To register SQL Server client utilities

1. In Visual Studio .NET, click the Tools menu, and then click Options.
2. In the Options dialog box, expand Projects in the left pane, and then click VC++ Directories.
3. In the Show directories for box, select Executable Files.
4. In the Executable Directories pane, look for Install_location\Microsoft SQL Server\80\Tools\BINN.

If this directory is not present, click the folder icon to add a new line to the list of directories, and then click the ellipsis
button (...) at the end of the new line to browse to this directory.

5. Click OK.

SQL Server Notification Services Books Online

Setting Up and Removing Programming Samples
Setting up the sample applications provided as part of Notification Services involves assigning appropriate permissions in SQL
Server to the required sample accounts, setting some system variables, and creating an Internet Information Services (IIS) virtual
directory for the samples.

Note Before setting up the programming samples, verify that your system has the required software installed and
the required accounts created. For more information, see Programming Sample Requirements.

Setting Up the Samples

You can accomplish all three setup tasks at once by running the SetupSamples.cmd script, which is located in the Samples
directory (InstallPath\Microsoft SQL Server Notification Services\VersionNumber\Samples). You must run SetupSamples.cmd to
configure the system for running the samples, even if you plan to use only one of the samples.

The SetupSamples.cmd script is available from the command line. To use it, open a command prompt window and navigate to the
Samples directory. For more information about the SetupSamples.cmd script, see SetupSamples.cmd.

Removing the Samples

You can remove all the Notification Services samples at once by running the RemoveSamplesDB.cmd script, which is located in
the Samples directory of the Notification Services installation directory.

The RemoveSamplesDB.cmd script is available from the command line. To use it, open a command prompt window and navigate
to the Samples directory. For more information about this utility, see RemoveSamplesDB.cmd.

SQL Server Notification Services Books Online

Changing Sample Reference Paths
If you have installed Notification Services to a non-default location, you must set the reference path to the
Microsoft.SqlServer.NotificationServices.dll file in all projects except the AppDefinition project.

To set the sample reference paths manually

1. In the Solution Explorer pane of Microsoft Visual Studio .NET, expand the project, expand the References folder, right-click
Microsoft.SqlServer.NotificationServices, and then click Remove.

2. Right-click the References folder again, and then click Add Reference.
3. Click the ellipsis button (...), and then navigate to the InstallPath\Microsoft SQL Server Notification

Services\VersionNumber\bin directory.
4. Double-click Microsoft.SqlServer.NotificationServices.dll, and then click OK.

SQL Server Notification Services Books Online

Configuring the Subscribe Project for Debugging
The Subscribe project can be configured so that your Web page code can be debugged in Microsoft Visual Studio .NET.

To configure the subscription management application project for debugging

1. In the Solution Explorer pane of Visual Studio .NET, right-click the Subscribe project, and then click Properties.
2. In the left pane, click Configuration Properties, and then select Debugging.
3. In the right pane, do the following:

Under Debuggers, change Enable ASP.NET Debugging to True.
Under Start Action, change Debug Mode to URL.
Under Start Action, type http://localhost/nssamples/samplename/default.aspx for the Start URL value.

4. Click OK.
5. Right-click the Subscribe project, click Debug, and then select Start new instance to start the debugger.

SQL Server Notification Services Books Online

Resolving Common Issues
The following table lists common errors that occur in the programming samples included with Notification Services, and presents
recommended resolutions.

Error message Action
InstallPath\Microsoft SQL Server Notification
Services\VersionNumber\Samples\SampleApplication\Subscribe\Default.aspx.cs(19):
The type or namespace name 'SqlServer' does not exist in the class or namespace
'Microsoft' (are you missing an assembly reference?).

Add the missing reference to
Microsoft.SqlServer.NotificationServices.dll.
For more information, see Changing
Sample Reference Paths.

Error trying to run project: Unable to start debugging on the web server. The project
is not configured to be debugged.

Click No when asked whether you want to
disable debugging for Microsoft ASP.NET
pages for this project.

Open a command prompt window, and
navigate to the Subscribe project directory
for the given sample application.

Run SetupSample.cmd to re-create the
Internet Information Services (IIS) virtual
directories.

Running the project requires setting an initial web page. Right-click the Default.aspx file, and then
click Set As Start Page.

SQL Server Notification Services Books Online

Stock Sample
The Stock programming sample that is shipped with Notification Services provides both event-driven and scheduled
subscriptions based on stock information. The scheduled subscription generates a digest notification containing portfolio
information on a selected stock. This notification is delivered at a predefined time every day. The event-driven subscription
generates a notification whenever a selected stock crosses a predefined threshold value.

Language

Microsoft ASP.NET and Microsoft C#

Notification Services Features

Event Class
Features

Event chronicle table and rule.

Subscription
Class Features

Multiple subscription classes, providing scheduled and
event-driven subscriptions.

Notification
Class Features

Multiple notification classes.

One notification class uses digest delivery.

Event
Providers

Notification Services file system watcher event provider.

Independent WebEventCreator event provider.

Content
Formatters

Notification Services XSLT content formatter.

Delivery
Protocols

File delivery protocol.

Custom HttpLogger delivery protocol, which uses the
IHttpProtocolProvider interface.

Building the Sample

You can use the following steps to build the Stock application.

To build the Stock sample application

1. In Microsoft Windows® Explorer, navigate to the Stock directory, and then open the Stock.sln solution file in Microsoft
Visual Studio .NET.

2. Right-click the AppDefinition project, and then click Build.

This action creates the NS$StockInstance service and sets up the StockInstanceNSMain and StockInstanceStock
databases.

3. Right-click the Subscribe project, and then click Build.

This creates the subscription management and event submission applications.

4. Right-click the CustomDeliveryProtocol project, and then click Build.

This creates the custom delivery protocol DLL.

5. In Windows 2000, go to Control Panel, double-click Administrative Tools, double-click Services, right-click
NS$StockInstance, and then click Start.

–or–

In Windows XP, go to Control Panel, double-click Performance and Maintenance, double-click Administrative Tools,
double-click Services, right-click NS$StockInstance, and then click Start.

–or–

Open a command prompt window, and then type net start NS$StockInstance.

Sample Workflow

The following steps outline the way information is entered into and processed by the Stock sample application in order to create
notifications.

1. On the subscription management page, enter a stock symbol to be tracked. Clear the Include this stock in a daily
summary check box, specify a trigger price for the stock, and then click Alerts Signup.

This will create an event-driven subscription.

2. Select the Include this stock in a daily summary check box, specify a time zone and time, and then click Alerts Signup.

This will create a scheduled subscription.

3. On the event submission page, submit stock price data for the stock you have entered.

This page uses the WebEventCreator event provider to write the event data to the application database.

4. The event chronicle rule adds and updates stock values in the chronicle table, so that each stock's highest value for the day
is recorded

5. For the event-driven notifications, the Notification Services generator processes the subscription event rule, which joins the
event chronicle data with subscription data, based on the following conditions:

The stock price in the event chronicle table is greater than or equal to the stock price in the subscriptions table.
The stock symbol in the event chronicle table is equal to the stock symbol in the subscriptions table.

6. For the scheduled notifications, the Notification Services generator processes the subscription scheduled rule at the time
specified for the scheduled subscription. Subscription and event chronicle data is matched based on the stock symbol in the
chronicle table matching the stock symbol in the subscription table. The sum of each stock value is generated to provide the
notification information.

7. A notification is created for each match found.
8. The Notification Services distributor formats notifications using the Notification Services XSLT content formatter and the

Application.xslt file.
9. By default, the Notification Services distributor sends all notifications using the HttpLoggerChannel delivery channel, which

uses the custom HttpLogger delivery protocol.

HttpLogger posts the notification data to the URL specified in the HttpLoggerChannel delivery channel definition in the
appConfig.xml file. The default URL is http://localhost/NSSamples/Stock/HttpLogger.aspx. The code for this page is available
in Samples\Stock\Subscribe\HttpLogger.aspx.cs.

Note You can test the HttpLogger.aspx page by loading it in your browser and clicking Test Post.

You can change the subscriptions to use the File delivery protocol by editing the imgbtnAlertsSignup_Click method in
Default.aspx.cs. If the File delivery protocol is used, the notifications are written to InstallPath\Microsoft Notification
Services\VersionNumber\Samples\Stock\Test\Notifications\FileNotifications.txt.

The sample code does not provide a method to update a subscriber's delivery information. Once a subscriber has been
entered in the database you must remove that subscriber to update her delivery preference. The update functionality could
be added to the user interface for a production application.

Testing the Sample

You can generate sample notifications by using the test data and the RunSample.cmd script. To do this, you can open a command
prompt window, navigate to the specific sample subdirectory (InstallPath\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Stock), and then run the script. This action loads subscriber, subscription, and event data into
the system; generates notifications based on it; and then formats the notifications and writes them to a text file. Some notifications
are written to the HttpLogger.aspx page, and some are written to InstallPath\Microsoft Notification
Services\VersionNumber\Samples\Stock\Test\FileNotifications.txt. The delivery of notifications using the HttpLogger fails if the
CustomDeliveryProtocol project has not been built.

Removing the Sample

To remove the databases associated with the Stock application, open the Stock solution in Visual Studio .NET, right-click the
AppDefinition project, and then click Clean.

To fully remove the instance, including the databases, IIS virtual directory, and service registration, you can use the
RemoveSample.cmd script. For more information, see Setting Up and Removing Programming Samples.

SQL Server Notification Services Books Online

Flight Sample
The Flight sample application that is shipped with Notification Services provides event-driven subscriptions. It sends a notification
e-mail message to the end user when an airline flight between two specified locations is offered at or below the target price the
user has indicated.

Language

Microsoft ASP.NET and Microsoft Visual Basic .NET

Notification Services Features

Event Class
Features

Basic event class.

Subscription
Class Features

Subscription class providing event-driven subscriptions.

Notification
Class Features

Notification class uses digest delivery.

Event
Providers

Notification Services FileSystemWatcher event provider.

Content
Formatters

Notification Services XSLT content formatter.

Delivery
Protocols

File delivery protocol.

Simple Mail Transfer Protocol (SMTP) delivery protocol.

Building the Sample

You can use the following steps to build the Flight application.

To build the Flight sample application

1. In Microsoft Windows® Explorer, navigate to the Flight directory, and then open the Flight.sln solution file in Microsoft
Visual Studio .NET.

2. Right-click the AppDefinition project, and then click Build.

This action creates the NS$FlightInstance service and sets up the FlightInstanceNSMain and FlightInstanceFlight
databases.

3. Right-click the Subscribe project, and then click Build.

This action creates the subscription management application.

4. In Windows 2000, go to Control Panel, double-click Administrative Tools, double-click Services, right-click
NS$FlightInstance, and then click Start.

–or–

In Windows XP, go to Control Panel, double-click Performance and Maintenance, double-click Administrative Tools,
double-click Services, right-click NS$FlightInstance, and then click Start.

–or–

Open a command prompt window, and then type net start NS$FlightInstance.

Sample Workflow

The following steps outline the way information is entered into and processed by the Flight sample application in order to create
notifications.

1. Use the subscription management page to specify flight origin and destination information, a ticket price, and optionally an
airline, following the directions provided on the page.

This information will determine when a digest notification for the event-driven subscription will be generated.

2. Copy EventData.xml from the Flight\Test directory to the Events subdirectory, which is monitored by a file system watcher
event provider.

3. The contents of the event file are read by the event provider and submitted to the sample application database.
4. The Notification Services generator processes the subscription event rule, which joins the event data with subscription data,

and creates notifications if the following conditions are met:

The event ticket price is less than the subscription ticket price.
The event departure airport equals the subscription departure airport.
The event arrival airport equals the subscription arrival airport.
The event airline equals the subscription airline (if specified).

5. A notification is created for each match found.
6. The Notification Services distributor formats notifications using the Notification Services XSLT content formatter and the

Application.xslt file.
7. The Notification Services distributor sends the notifications using the EmailChannel delivery channel, which uses the SMTP

delivery protocol.

In order to send email notifications, the Windows SMTP service must be configured to relay messages and it must be
running. If the Windows SMTP service is not running or is not configured to relay messages, the notifications generated by
the sample applications will be delivered to the \inetpub\mailroot\queue directory. Depending on the configuration of your
SMTP service, the messages may appear in another folder under \inetpub\mailroot, such as \pickup or \badmail. For more
information on configuring SMTP, please see Using SMTP for Outgoing Messages in the Microsoft MSDN® Library.

Testing the Sample

You can generate sample notifications by using the test data and the RunSample.cmd script. To do this, you can open a command
prompt window, navigate to the specific sample subdirectory (InstallPath\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Flight), and then run the script. This action loads subscriber, subscription, and event data into
the system; generates notifications based on it; and then formats the notifications and writes them to a text file. Because this
sample uses both the File and SMTP delivery protocols, some of the notifications are sent to your SMTP service, and some are
written to the InstallPath\Microsoft Notification Services\VersionNumber\Samples\Flight\Test\FileNotifications.txt file.

Removing the Sample

To remove the databases associated with the Flight application, open the Flight solution in Visual Studio .NET, right-click the
AppDefinition project, and then click Clean.

To fully remove the instance, including the databases, IIS virtual directory, and service registration, you can use the
RemoveSample.cmd script. For more information, see Setting Up and Removing Programming Samples.

http://go.microsoft.com/fwlink/?LinkId=7742

SQL Server Notification Services Books Online

Weather Sample
The Weather sample application that is shipped with Notification Services provides scheduled subscriptions. It sends a notification
e-mail message containing the weather forecast to the subscriber at a specific time every morning.

Language

Microsoft ASP.NET and Microsoft C#

Notification Services Features

Event Class
Features

Event chronicle table and rule.

Subscription
Class Features

Subscription class providing scheduled subscriptions.

Notification
Class Features

Notification class uses digest delivery.

Event
Providers

Notification Services FileSystemWatcher event provider.

Content
Formatters

Notification Services XSLT content formatter.

Delivery
Protocols

File delivery protocol.

Simple Mail Transfer Protocol (SMTP) delivery protocol.

Building the Sample

To build the Weather sample application, follow these steps:

To build the Weather sample application

1. In Microsoft Windows® Explorer, navigate to the Weather directory, and then open the Weather.sln solution file in
Microsoft Visual Studio .NET.

2. Right-click the AppDefinition project, and then click Build.

This action creates the NS$WeatherInstance service and sets up the WeatherInstanceNSMain and
WeatherInstanceWeather databases.

3. Right-click the Subscribe project and select Build.

This action creates the subscription management application.

4. In Windows 2000, go to Control Panel, double-click Administrative Tools, double-click Services, right-click
NS$WeatherInstance, and then click Start.

–or–

In Windows XP, go to Control Panel, double-click Performance and Maintenance, double-click Administrative Tools,
double-click Services, right-click NS$WeatherInstance, and then click Start.

–or–

Open a command prompt window, and then type net start NS$WeatherInstance.

Sample Workflow

The following steps outline the way information is entered into and processed by the Weather sample application in order to
create notifications.

1. Use the subscription management page to specify the city for which you want to receive a forecast, following the directions
provided on the page. Specify delivery time and frequency.

This information will determine when a digest notification for the scheduled subscription will be generated.

2. Copy EventData.xml from the Weather\Test directory into the Events subdirectory.
3. The contents of the event file are read by the event provider and submitted to the sample application database.
4. The event chronicle rule adds new forecast information to the event chronicle table.
5. When the time for the scheduled subscription arrives, the Notification Services generator processes the subscription

scheduled rule. Subscription and event chronicle data is matched based on the city information.
6. A notification is created for each match found.
7. The Notification Services distributor formats notifications using the XSLT content formatter and the Application.xslt file.
8. The Notification Services distributor sends the notifications using the EmailChannel delivery channel, which uses the SMTP

delivery protocol.

In order to send email notifications, the Windows SMTP service must be configured to relay messages and it must be
running. If the Windows SMTP service is not running or is not configured to relay messages, the notifications generated by
the sample applications will be delivered to the \inetpub\mailroot\queue directory. Depending on the configuration of your
SMTP service, the messages may appear in another folder under \inetpub\mailroot, such as \pickup or \badmail. For more
information on configuring SMTP, please see Using SMTP for Outgoing Messages in the Microsoft MSDN® Library.

Testing the Sample

You can generate sample notifications by using the test data and the RunSample.cmd script. To do this, you can open a command
prompt window, navigate to the specific sample subdirectory (InstallPath\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Weather), and then run the script. This action loads subscriber, subscription, and event data
into the system; generates notifications based on it; and then formats the notifications. Because this sample uses both the File and
SMTP delivery protocols, some of the notifications are sent to your SMTP service, and some are written to the
InstallPath\Microsoft Notification Services\VersionNumber\Samples\Weather\Test\FileNotifications.txt file.

Removing the Sample

To remove the databases associated with the Weather application, open the Weather solution in Visual Studio .NET, right-click the
AppDefinition project, and then select Clean.

To fully remove the instance, including the databases, IIS virtual directory, and service registration, you can use the
RemoveSample.cmd script. For more information, see Setting Up and Removing Programming Samples.

http://go.microsoft.com/fwlink/?LinkId=7742

SQL Server Notification Services Books Online

Realtor Sample
The Realtor sample application that is shipped with Notification Services provides event-driven subscriptions. It sends a
notification e-mail message when a house goes on the market that has specified features and falls within the target price range.

Language

Microsoft ASP.NET and Microsoft C#

Notification Services Features

Event Class
Features

Basic event class.

Subscription
Class Features

Subscription class providing event-driven subscriptions.

Notification
Class Features

Notification class uses multicast delivery. (Multicast is
available only in Notification Services Enterprise Edition.)

Event
Providers

Event stored procedures run by SQL trigger in an external
database.

Content
Formatters

Notification Services XSLT content formatter.

Delivery
Protocols

Simple Mail Transfer Protocol (SMTP) delivery protocol.

Building the Sample

To build the Realtor sample application, follow these steps:

To build the Realtor sample application

1. In Microsoft Windows Explorer, navigate to the Realtor directory and open the Realtor.sln solution file in Microsoft Visual
Studio .NET.

2. Right-click the AppDefinition project, and then click Build.

This action creates the NS$RealtorInstance service and sets up the RealtorInstanceNSMain and RealtorInstanceRealtor
databases.

3. Right-click the Subscribe project, and then click Build.

This action creates the subscription management and event submission applications.

4. In Windows 2000, go to Control Panel, double-click Administrative Tools, double-click Services, right-click
NS$RealtorInstance, and then click Start.

–or–

In Windows XP, go to Control Panel, double-click Performance and Maintenance, double-click Administrative Tools,
double-click Services, right-click NS$RealtorInstance, and then click Start.

–or–

Open a command prompt window, and then type net start NS$RealtorInstance.

Sample Workflow

The following steps outline the way information is entered into and processed by the Realtor sample application in order to create
notifications.

1. Use the subscription management page to enter information about the house features that interest you, following the
directions provided on the page.

This information will determine when a notification for the event-driven subscription will be generated.

2. Open SQL Query Analyzer, type in this Transact-SQL statement, and run it:

INSERT INTO RealtorDB..Listings values (N'2828 28th Ave SE',
N'BusyKids', 4, 3, 350000, N'A cute house with a great view. Contact
Jamie Reding or attend the open house on Sunday.')

Running this query will insert sample data into the database that matches the subscription you have entered per the
directions on the subscription management application page.

3. The Notification Services generator processes the subscription event rule, which joins the event data with subscription data,
and creates notifications if the following conditions are met:

The house price is equal to or less than the subscription specified price.
The event listing ID is equal to the subscription listing ID.
The event school district is equal to the subscription school district.
The event number of bedrooms is equal to the subscription number of bedrooms.
The event number of bathrooms is equal to the subscription number of bathrooms.

4. A notification is created for each match found.
5. The Notification Services distributor formats notifications using the Notification Services XSLT content formatter and the

RealtorInfo.xslt file.
6. The Notification Services distributor sends the notifications using the EmailChannel delivery channel, which uses the SMTP

delivery protocol.

In order to send email notifications, the Windows SMTP service must be configured to relay messages and it must be
running. If the Windows SMTP service is not running or is not configured to relay messages, the notifications generated by
the sample applications will be delivered to the \inetpub\mailroot\queue directory. Depending on the configuration of your
SMTP service, the messages may appear in another folder under \inetpub\mailroot, such as \pickup or \badmail. For more
information on configuring SMTP, please see Using SMTP for Outgoing Messages in the Microsoft MSDN® Library.

Testing the Sample

You can generate sample notifications by using the test data and the RunSample.cmd script. To do this, you can open a command
prompt window, navigate to the specific sample subdirectory (InstallPath\Microsoft SQL Server Notification
Services\VersionNumber\Samples\Realtor), and then run the script. This action loads subscriber, subscription, and event data into
the system; generates notifications based on it; and then formats the notifications and writes them to a text file. The notifications
are sent to the SMTP service.

The Realtor sample application uses a trigger on an external database to enter events into the application database. That trigger is
fired when you perform an insert using the osql utility. If you are not using Windows Authentication to access SQL Server (that is,
if you specified an account for SqlServerAdminName when running the SetupSamples.cmd script), you will be prompted for the
SqlServerAdminName account password while RunSample.cmd is running.

Removing the Sample

To remove the databases associated with the Realtor application, open the Realtor solution in Visual Studio .NET, right-click the
AppDefinition project, and then click Clean.

To fully remove the instance, including the databases, IIS virtual directory, and service registration, you can use the
RemoveSample.cmd script. For more information, see Setting Up and Removing Programming Samples.

http://go.microsoft.com/fwlink/?LinkId=7742

SQL Server Notification Services Books Online

Deploying and Administering Notification Services
A Microsoft® SQL Server™ Notification Services administrator performs tasks related to running notification applications in a
production environment. These tasks include the following:

Plan the system configuration for the instances of Notification Services, the databases, and any subscription management
applications. This typically requires you to answer questions like "Will Notifications Services be located on the same server
as the SQL Server database engine?" and "What availability configuration will the instances of Notification Services use?"
Install Notification Services on all servers that will host the Notification Services applications and databases, and on any
server that will host a subscription management application.
Deploy Notification Services applications by configuring instances that host the applications. For each instance, you will
create an XML configuration file and use the NSControl command prompt utility to create, register, and enable the
instance.

Depending on the application, you might also need to load subscription data into the instance and application databases.

After the instance is configured, start the NS$instance_name service for the instance to start the application.

After the applications are deployed, you must monitor the transition of data through the system, from events coming into
the system, to notification generation, to notification delivery. Notification Services provides stored procedures,
performance counters, and event log messages for monitoring system activity.
You also must manage the data in the instance and application databases. This requires you to back up the instance and
application databases, ensure that vacuuming is effectively removing stale data, and update instances and applications as
necessary.

The topics that the Administering Notification Services section covers are described in the following table.

Topic Description
Planning a Notification Services System Describes the tasks involved in planning a

Notification Services system and shows
possible hardware configurations for
scaling out an application.

Configuring and Deploying Instances Describes how to configure and deploy an
instance of Notification Services.

Managing Instances and Applications Describes the day-to-day tasks for
administering instances and applications,
including backup and restore tasks,
vacuuming, and methods for managing
availability.

Managing Services Describes how to configure, start, and stop
the NS$instance_name service that runs
an instance of Notifications Services.

Managing Security Discusses system security and security
requirements.

Monitoring Performance and Activity Documents the performance counters and
reports.

SQL Server Notification Services Books Online

Planning a Notification Services System
To plan a deployment of Notification Services, you must determine the availability requirements of the applications hosted by the
instance, and the hardware required to support the applications. This section contains information about typical deployment
hardware configurations and other considerations for the system that supports your notification applications.

The topics that this section covers are described in the following table.

Topic Description
Hardware Configurations Illustrates common hardware

configurations, and discusses the benefits
of each scenario.

Notification Services Considerations Provides information to help you plan
your Notification Services applications.

Database Considerations Provides information to help you plan
your database system.

Database Resource Planning Provides advice to help you estimate
database sizes.

Subscription Management Application
Considerations

Provides information to help you plan
subscription management applications.

SQL Server Notification Services Books Online

Hardware Configurations
Hardware configuration depends on three factors: how much processing power is required, how much delivery throughput is
needed, and where your servers are located. If you have a small notification application that is completely located behind a
firewall, you might host Notification Services, databases, and subscription management on one server. However most medium to
large applications benefit from multiple servers. Very large applications can be scaled out across several servers, and applications
that require very high availability can use failover clustering.

Sample Configurations

Because Notification Services can be deployed in several ways, it helps to look at some sample hardware configurations. This
section illustrates several hardware configurations: single server, remote database server, scale out, and clustering for high
availability.

The topics that this section covers are described in the following table.

Topic Description
Single-Server Configurations Shows the simplest configuration for a

Notification Services system.
Remote Database Server Configuration Shows a common configuration that has

Notification Services on one server and
the databases on a second server.

Scale-Out Configurations Shows how an application can be scaled
out to provide more processing power for
receiving events, generating notifications,
and formatting and delivering
notifications.

High-Availability Configurations Shows how availability can be managed
for databases and for the Notification
Services engine.

SQL Server Notification Services Books Online

Single-Server Configurations
Single-Server Configurations

For development systems and for small to medium applications that do not require the availability provided by clustering, you
can collocate Notification Services and the database engine on a single server. If you are not placing the subscription
management applications on the Internet, the subscription management applications also can be installed on this server.

Single-server installations are simple to configure; however, Microsoft does not recommend hosting Notification Services, the
database engine, and potentially a Web server on a single server for critical systems or for systems expected to support high
volumes of notifications.

The recommended number of CPUs and amount of disk space depend on the processing and storage requirements of the system.
A development system might have only one CPU and enough disk space for testing; a production server should have two to four
CPUs and enough disk space to store event, notification, subscription, and subscriber data at peak periods. Additionally, in
production, the database files, log files, and tempdb database should all be located on separate physical disks.

It is critical to monitor the CPU, memory and disk usage of production servers hosting Notification Services or SQL Server to
watch for bottlenecks or contention problems. If the single server cannot support processing requirements, consider using the
remote database server configuration. For more information, see Remote Database Server Configuration.

See Also

Database Considerations

Database Resource Planning

Hardware Configurations

Notification Services Considerations

Single-Server Deployment (SQL Server Authentication)

Single-Server Deployment (Windows Authentication)

SQL Server Notification Services Books Online

Remote Database Server Configuration
Remote Database Server Configuration

A typical configuration for medium to large Notification Services applications uses one server to host the Notification Services
engine and another server to host the Notification Services instance and application databases. The following illustration shows
an example of a remote database server configuration.

The servers that host the databases and Notification Services engine each do a part of the processing work. The server that hosts
the Notification Services engine collects events and formats and distributes notifications; the database server generates
notifications. The two servers require about the same amount of processing power. However, the server that hosts the database
engine needs much more disk space because this server contains event, subscriber, subscription, and notification data.

The number of CPUs and amount of disk space depend on the processing and storage requirements of the system. Each
Notification Services server and the database server should have two to four CPUs. The database server should have enough disk
space to store event, notification, subscription, and subscriber data at peak periods. Additionally, the database files, log files, and
tempdb database should all be located on separate physical disks.

See Also

Database Considerations

Database Resource Planning

Hardware Configurations

Notification Services Considerations

Remote Database Server Deployment (Windows Authentication)

Remote Database Server (SQL Server Authentication)

SQL Server Notification Services Books Online

Scale-Out Configurations
Scale-Out Configurations

If a single server cannot handle the number of notifications produced by an instance of Notification Services, you can scale out the
Notification Services engine. The following illustration shows a system that uses three servers for the Notification Services engine:
one server hosts the generator and event collection components, and two other servers host the distributor components.

Note that the generator is located with the event provider host. This is because generator process does not entail significant CPU
or disk overhead; most of the generator work is performed on the database server. The generator can be hosted on another
server if event collection requires its own server.

Note The generator for each application can be hosted on its own server, but each application uses only a single
generator.

The recommended number of CPUs and the amount of disk space depend on the processing and storage requirements of the
system. Each Notification Services server and the database server should have two to four CPUs. The database server should have
enough disk space to store event, notification, subscription, and subscriber data during peak periods. Additionally, the database
files, log files, and tempdb database should be located on separate physical disks.

Distributor Scale-Out

The distributor of an application that sends many notifications can fall behind because formatting notifications is processor
intensive, and notification distribution requires adequate bandwidth to the systems that deliver notifications. To minimize this
problem you can scale the distributor across multiple servers by defining multiple distributors in the application definition file
(ADF). The distributors automatically pick up available distribution work items as notification batches become available.

Event Provider Host Scale Out

Depending on the number of events your applications collect, you may need to run the event provider host on more than one
server. Event collection scale-out is not as common as distributor scale out.

See Also

Database Considerations

Database Resource Planning

Hardware Configurations

Notification Services Considerations

Scale-Out Deployment (SQL Server Authentication)

Scale-Out Deployment (Windows Authentication)

SQL Server Notification Services Books Online

High-Availability Configurations
High-Availability Configurations

High-availability configurations are similar to other configurations of Notification Services, except that they use clustering.

A failover cluster is a group of independent servers running Microsoft Cluster Service and working collectively as a single system.
The purpose of a failover cluster is to keep applications running during server failures and planned outages. If one of the servers
in the cluster becomes unavailable, resources and applications move to another available cluster node.

For an effective Notification Services clustering solution, you must cluster the SQL Server database engine and the Notification
Services engine.

The first failover clustering example shows the clustered version of a single-server configuration. Notification Services and the
databases are on the same server. If one server fails, the other server picks up all processing. External applications, such as
subscription management applications, connect to a virtual server name that represents the cluster.

The second failover clustering example shows the clustered version of the remote database configuration. In this example, the
SQL Server data engine uses a two-server failover cluster, and Notification Services also uses a two-server failover cluster.
External applications, such as subscription management applications, connect to SQL Server using the virtual name for the SQL
Server failover cluster.

See Also

Database Considerations

Database Resource Planning

Hardware Configurations

Notification Services Considerations

SQL Server Notification Services Books Online

Notification Services Considerations
The hardware needed for the each system at peak load periods is critical in planning the system that hosts the Notification
Services engine. The processing and disk requirements of each part of the system are also important.

Peak Load Periods

Plan your hardware configuration based on peak load periods. For example, if a traffic reporting application supports scheduled
subscriptions, and most users want traffic updates between 7:00 A.M. and 9:00 A.M. and between 4:00 P.M. and 6:00 P.M., you
need to plan the system based on these periods, including peaks within these periods, not 24-hour averages.

Hardware Usage Patterns

When planning the servers that host your notification applications and databases, consider the following:

Notification generation is disk intensive, requiring heavy use of tempdb. Because generation occurs on the database server,
the disk subsystem of the server that hosts the databases typically limits how many notifications an application can
generate.

Therefore, you can improve the performance of SQL Server by using fast disk drives served by high-performance
controllers. Adding more storage capacity may increase notification generation capacity, but using fast drives with fast
controllers will significantly improve performance.

Notification delivery is usually limited by processing power and delivery bandwidth. Formatting notifications requires ample
processing power, and delivering notifications requires adequate bandwidth to the systems that deliver notifications.

See Also

Application Settings

Planning a Notification Services System

SQL Server Notification Services Books Online

Database Considerations
Notification Services databases are created when you deploy an instance of Notification Services. Other than defining database
parameters in the configuration file and the application definition file (ADF), you do not configure databases; however, you must
configure SQL Server properly for optimal performance. Use the following guidelines when configuring SQL Server.

Database Recommendations

For optimal performance, security, and recoverability, Microsoft makes the following recommendations for Notification Services
databases.

Log Files

Processing events and notifications creates high activity in log files. This activity can decrease read and write times for other
operations, potentially hurting the performance of the entire system. To optimize performance, put log files on a dedicated
physical disk using the <LogFile> element in the configuration file and ADFs.

tempdb

Notification Services makes extensive use of the tempdb database. For example, every time events are matched to subscriptions,
SQL Server creates temporary tables. Because tempdb is critical and is heavily used, it is important to minimize resizing by
defining this database with an adequate initial size and to reduce resource contention by placing it on a separate physical disk.

The tempdb database is re-created at its initial size each time SQL Server starts. If tempdb has an initial size that is too small and
the database is set to autogrow, the autogrow process will use more system resources than during normal operation, which can
impair system performance. You can avoid this overhead by using ALTER DATABASE to increase the initial size of tempdb and to
increase the autogrow percentage.

For more information, see "Optimizing tempdb Performance" in SQL Server Books Online.

Indexes

Indexes are critical for optimal Notification Services performance. First, indexes can greatly improve the performance of joins.
Second, once an event and subscription match occurs, data must be retrieved from other tables to generate the actual notification
with delivery instructions. Indexes can help SQL Server retrieve this data faster.

When Notification Services databases are created, indexes should be defined in the ADF for most tables. However, additional
indexes may enhance the performance of those queries.

To define additional indexes, you can examine the Transact-SQL code defined in the application ADFs, and either create your own
indexes or use the SQL Server Index Tuning Wizard, which suggests indexes.

For more information, see "Designing an Index" in SQL Server Books Online.

Database Recovery M odel

To ensure that data is not lost, back up all Notification Services databases frequently using the Full Recovery model. This allows
you to create a complete database backup periodically, and then create differential and transaction log backups as required.

To ensure that the transaction log does not fill, back up the database and log files on a frequent, regular schedule. For more
information about database backups, see Backing Up and Recovering Notification Services.

You can also monitor database and transaction log files using System Monitor, a part of the Microsoft Windows Performance tool.
For example, the SQL Server: Databases performance object contains the Percent Log Used performance counter to monitor
how full the transaction log is. For more information on SQL Server performance objects, see "Using SQL Server Objects" in SQL
Server Books Online.

User Connections

Connections are a critical resource. Application data is stored in SQL Server databases, and the processing of events requires the
applications to request and receive data from SQL Server; if there are not enough connections available, errors can occur.

Microsoft recommends setting the Maximum Concurrent User Connections value to zero, meaning that the number of
connections is limited only by the SQL Server maximum. For more information, see "user connections Option" in SQL Server
Books Online.

Database Authentication

Notification Services supports Windows Authentication as well as SQL Server Authentication; it does not require SQL Server
Authentication for any functionality. Windows Authentication has certain benefits that make it superior to SQL Server
Authentication in most applications, such as secure Authentication, encryption of passwords, auditing, password expiration,
minimum password length, and account lockout after multiple invalid login requests.

For these reasons, Microsoft strongly recommends that you use Windows Authentication. For more information about security
configuration, see Managing Security.

If you must use SQL Server Authentication, you must specify a SQL Server user name and password to be used by the
NS$instance_name service when you register the instance of Notification Services. For more information, see Registering and
Unregistering an Instance.

See Also

Database Resource Planning

Defining Application Database Information

Defining the Instance Database

Planning a Notification Services System

SQL Server Notification Services Books Online

Database Resource Planning
When you initially create your instance and application databases, you should define the databases with adequate file sizes in the
configuration file and application definition files (ADFs). Generous initial file sizes and adequate disk space reduce the chance that
the databases will run out of space, which causes databases to resize (temporarily degrading performance) and which can even
cause an application to stop processing data.

The adequate file sizes for your databases depend on the estimated number of subscribers, subscriptions, events, and
notifications that the instance and application will support. Use the following guidelines to plan database sizes.

Application Database Sizes

Each application database stores subscriptions, events, notifications, application status information, possibly historical data in the
form of chronicles, and metadata about the application.

Event and notification data is removed according to the schedule defined by the <Vacuum> node of the ADF. In this node, the
developer also specifies a retention age for data. Use the combination of retention age and vacuuming schedule to estimate how
much event and notification data will collect in the application database.

Once you determine how much event and notification data will accumulate in the database before the vacuuming process
removes the data, you can use the SQL Server database sizing methods to estimate the size of the application database.

To plan the database size for an application, gather the following information:

The estimated number of events that will be collected during peak periods before the events are removed by the vacuuming
process, and the size of each event row as determined by the event class fields in the ADF.
The estimated total number of subscriptions that you expect for the application, and the size of each subscription row as
determined by the subscription class fields in the ADF.
The estimated number of notifications generated before the notifications are removed by the vacuuming process. If using
distributor logging, double the number of notifications. Use the notification class fields in the ADF to determine the size of
each notification row.
The amount of metadata. Application databases typically contain 5 to 10 MB of metadata.
Chronicle tables and indexes. These objects add to the size of the database.

Application database size estimates can be difficult to determine because of indexes and application settings. For more
information on estimating database sizes, see "Estimating the Size of a Database" in SQL Server Books Online.

Instance Database Size

The data in an instance database is much more stable than data in application databases. If you can estimate the number of
subscribers and the number of subscriber devices, you should be able to estimate the instance database size. To estimate the size,
gather the following information:

The total number of expected subscribers for all applications hosted by the instance.
The size of each subscriber row.
The total number of expected subscriber devices.
Metadata. Estimate the amount of metadata for your instance at 2 MB.

The following equation can be used to estimate the instance database size:

instance database size =
2 * ((number_of_subscribers * subscriber_row_size (in bytes))
+ (number_of_subscriber_devices * 200 bytes)
+ 2 MB metadata)

Log File Sizes

The application database is typically a very active database, with many transactions. This activity can cause the transaction log to
grow quickly. You should therefore start with a log file size equal to 25 percent of the initial application database size. You can use
the same estimate for the instance database log file. If the log is truncated during log file backups or during a checkpoint, the log
maintains a reasonable size. For more information, see "Truncating the Transaction Log" in SQL Server Books Online.

See Also

Database Considerations

Defining Application Database Information

Defining the Instance Database

Planning a Notification Services System

SQL Server Notification Services Books Online

Subscription Management Application Considerations
Subscription management applications are external to Notification Services but use the Notification Services subscription
management objects to create and modify subscriber and subscription data. A subscription management application can be a
Web application or a Microsoft Windows application. The only requirement is that it must use the subscription management
objects provided with Notification Services.

Not all notification applications use subscription management applications. For example, some enterprise applications contain a
relatively unchanging set of subscribers and subscriptions, making a separate application unnecessary.

The sample applications provided with Notification Services, as well as the deployment scenarios, show the use of Microsoft
ASP.NET-based subscription management applications.

Location

A subscription management application can be located on the database server or on a separate server. The configuration of the
application varies according to the location. If your subscription management application is for internal use only, such as an
intranet-based Web page, locating the application on the database server might be an adequate solution. However, do not put the
subscription management application on the database server if the application is publicly available: you should never put your
databases on Internet servers.

Security

The subscription management application must have access to the instance and application databases in order to read and write
subscriber and subscription data. To connect to SQL Server, the application can use Windows Authentication or SQL Server
Authentication. Microsoft recommends Windows Authentication because it is more secure and easier to manage.

The optimal security configuration for the subscription management application depends on the location of the application and
the security model. For more information, see Subscription Management Application Deployment Scenarios.

See Also

Developing Subscription Management Applications

Planning a Notification Services System

SQL Server Notification Services Books Online

Configuring and Deploying Instances
To deploy one or more Notification Services applications, you must first configure an instance of Notification Services to host the
application, and then deploy the instance. This section describes how to configure and deploy instances.

The topics that this section covers are described in the following table.

Topic Description
Creating a Configuration File Explains the purpose of a configuration

file and helps you create one.
Deploying an Instance Provides the basic steps for deploying an

instance of Notification Services.
Notification Services Deployment
Scenarios

Contains step-by-step instructions for
deploying Notification Services instances
using different system configurations and
security models.

Subscription Management Application
Deployment Scenarios

Contains step-by-step instructions for
deploying Microsoft ASP.NET-based
subscription management applications
locally or remotely using Microsoft
Windows® Authentication or SQL Server
Authentication.

Providing Access to the Notification
Services Assembly and Localized
Resource Files

Explains how to provide access to the
Notification Services assembly and
localized resource files for an Microsoft
ASP.NET-based application.

SQL Server Notification Services Books Online

Creating a Configuration File
Each instance of Notification Services is defined by a configuration file. This file contains information about the instance, general
information about the instance's applications with pointers to the application definitions, and information about delivery channels
and protocols. When you deploy the instance, the data in the configuration file is used to create an instance database.

The topics that this section covers are described in the following table.

Topic Description
Specifying File Version and History Explains how to use the <Version> and

<History> nodes of the configuration
file.

Specifying the Instance Name Explains how to use the
<InstanceName> element of the
configuration file to provide a name for
the instance.

Specifying the Database System Name Explains how to use the
<SqlServerSystem> element of the
configuration file to specify which
instance of SQL Server hosts the
Notification Services instance and
application databases.

Defining the Instance Database Explains how to use the <Database>
node of the configuration file to configure
the instance database.

Configuring Applications Explains how to use the <Applications>
node of the configuration file to define
the applications hosted by the instance.

Configuring Protocols Explains how to use the <Protocols>
node of the configuration file to define
custom protocols used by delivery
channels.

Configuring Delivery Channels Explains how to use the
<DeliveryChannels> node of the
configuration file to define one or more
delivery channels used to deliver
notifications

Configuring Argument Encryption Explains how to use the
<EncryptArguments> node to encrypt
event provider and delivery channel
arguments that are stored in databases.

Configuration File Parameters Explains how to use the
<ParameterDefaults> node of the
configuration file to specify values for
configuration file parameters.

See Also

Application Definition File Reference

Configuration File Reference

Configuration File Samples

SQL Server Notification Services Books Online

Specifying File Version and History
Specifying File Version and History

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

The configuration file contains a <Version> node for specifying the configuration file version number and a <History> node for
keeping a history of your configuration file. The <Version> and <History> nodes of the configuration file are not required.

Keep the following in mind for these nodes:

When you create or update an instance, Notification Services adds a row to the NSVersionInfo table that contains the
version number from the <Version> node of the configuration file. If the version number is missing, Notification Services
uses the last version number from the database. If no version is available in the database, Notification Services enters
0.0.0.0.
History information is not added to the database and is not used by Notification Services. You can use the history
information for your own purposes, or you can omit the <History> node.

For more information and examples, see <Version> Node and <History> Node.

See Also

Configuration File Samples

Creating a Configuration File

SQL Server Notification Services Books Online

Specifying the Instance Name
Specifying the Instance Name

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you must specify a unique name for the instance using the <InstanceName> element. This name is
used for the following objects:

The instance database is named instance_nameNSMain.
The application database names are a concatenation of instance_name and application_name. (The application name is
defined in the <Application> node.)
The Windows service that runs the instance of Notification Services is named NS$instance_name.

Because the instance name is used by these objects, it must follow naming conventions for all of them:

A service name cannot contain quotation marks (double quotes).
SQL Server object names are limited to 128 characters.
SQL Server object names must follow the naming rules for regular identifiers. For more information, see "Using Identifiers"
in SQL Server Books Online.

Important Do not use case to make an instance name unique; Notification Services instance names are not
case sensitive. For example, Notification Services does not distinguish between MyInstance and myinstance.

For more information and examples, see <InstanceName> Element.

Naming Recommendations

Since the instance name is used for several objects, and the database names are a concatenation of the instance name and
"NSMain" or the application name, it is best to keep the instance name short, and to name the instance based on unchanging
entities. For example, you might want to name the instance according to a target audience, a functional unit of your company, or a
product.

It is best to avoid using the names of organization units (which can change frequently), an application, or the server on which the
instance is running.

A good instance name is something short and self-explanatory like Broker or Internet01. You can then give each application a
short and self-explanatory name, and use meaningful names for databases and objects. If you name your instance Broker and
your application Stocks, for example, your instance database is named BrokerNSMain, and your application database is named
BrokerStocks. If you add an application named Bonds, the application database name is BrokerBonds.

See Also

Configuration File Samples

Creating a Configuration File

SQL Server Notification Services Books Online

Specifying the Database System Name
Specifying the Database System Name

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you must use the <SqlServerSystem> element to specify which instance of SQL Server 2000 stores
instance and application data.

For a default instance of SQL Server, the <SqlServerSystem> value is simply the name of the computer that hosts the SQL
Server 2000 databases. For a named instance of SQL Server, the <SqlServerSystem> value must be in the form
computer\instance_name.

For small to medium notification applications, Notification Services and the database engine might be located on the same
computer. For larger applications, the database engine is typically on a remote server.

For more information and examples, see <SqlServerSystem> Element.

See Also

Configuration File Samples

Creating a Configuration File

Deployment Scenarios

Hardware Configurations

SQL Server Notification Services Books Online

Defining the Instance Database
Defining the Instance Database

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you can define properties of the instance database and log files using the <Database> node.

The <Database> node is optional. However, if you do not specify database properties, the database engine creates the instance
database using the model database as a template. Unless you have customized the model database, these database settings
might not provide the best performance for your particular situation.

The <Database> node uses the following structure:

<Database>
 <NamedFileGroup>
 <FileGroupName>
 <FileSpec>
 <LogicalName>
 <FileName>
 <Size>
 <MaxSize>
 <GrowthIncrement>
 <LogFile>
 <LogicalName>
 <FileName>
 <Size>
 <MaxSize>
 <GrowthIncrement>
 <DefaultFileGroup>
 <CollationName>

The nodes and elements of the <Database> node are discussed in the following sections.

Filegroups and Database Files

In the <NamedFileGroup> node of the <Database> node you can define one or more filegroups for the instance database files
and then specify the properties of one or more database files per filegroup.

It is best to locate the instance database (and application databases) on a separate physical disk from the tempdb database and
the log files. Use the <FileName> element to specify the location of the instance database file. For more database
recommendations, see Database Considerations.

For more information about this node, see <NamedFileGroup> Node. For more information about using database files and
filegroups, see "Files and Filegroups" in SQL Server Books Online.

Log Files

In the <LogFile> node of the <Database> node you can define one or more log files for the instance transaction log. The
transaction log is a serial record of all modifications that have occurred in the database as well as the transaction that performed
each modification.

The transaction log is critical to database operation and recovery. For optimal performance, place the transaction log on a
separate physical disk from the database files and the tempdb database. Use the <FileName> element to specify the location of
the transaction log file. For more recommendations, see Database Considerations.

Default File Group

At any time, exactly one filegroup is designated as the default filegroup. When objects are created in the database without an
assigned filegroup, they are assigned to this filegroup. Initially, the PRIMARY filegroup is the default filegroup.

You can use the <DefaultFileGroup> element to specify one of the <FileGroupName> values as the default filegroup.

For more information, see "Default Filegroups" in SQL Server Books Online.

Collation Name

If your instance and application databases must use a different collation from the default collation for the instance of SQL Server,
specify the collation name using the <CollationName> element. The instance database and the databases for all applications
hosted by that instance must use the same collation.

For more information, see <CollationName> Element.

See Also

ADF <Database> Node

Configuration File <Database> Node

Configuration File Samples

Creating a Configuration File

SQL Server Notification Services Books Online

Configuring Applications
Configuring Applications

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

In the <Applications> section of the configuration file, specify which notification applications are hosted by the instance. You can
specify one or more applications.

The <Applications> node is a container for all <Application> nodes. Each <Application> element has a set of child elements
that define application settings, such as the application name, a base directory path that points to application files, and application
parameters that are passed into the application definition file.

For more information and examples, see <Applications> Node and <Application> Node.

See Also

Configuration File Samples

Creating a Configuration File

SQL Server Notification Services Books Online

Configuring Protocols
Configuring Protocols

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you can use the <Protocols> node to specify custom protocols supported by the instance. A
protocol is a set of rules that endpoints use to communicate with each other. Notification Services supplies two standard
protocols: SMTP and File. If applications use these protocols, you do not need to define the protocols in the <Protocols> section
of the configuration file.

If an application uses one or more custom protocols, you must include information about each protocol in the <Protocols> node.
If you do not know whether the application uses custom protocols, look at the <Protocols> elements in the application definition
file.

Each custom protocol should have a name, a class name, and an assembly name.

For more information, see <Protocols> Node and <Protocol> Node.

Note To use the Internet Information Services (IIS) SMTP delivery protocol, which is used in the Flight, Weather, and
Realtor sample applications, the account that the NS$instance_name service runs under must be a member of the
local Administrators group. For more information, see <Protocol> Node.

See Also

Configuration File Samples

Creating a Configuration File

Developing a Custom Delivery Protocol

SQL Server Notification Services Books Online

Configuring Delivery Channels
Configuring Delivery Channels

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you must use the <DeliveryChannels> node to specify one or more delivery channels. A delivery
channel is an instance of a delivery protocol. The <DeliveryChannel> node that defines a single delivery channel can provide
information used to deliver notifications, such as server names, user names, and passwords.

The structure of the <DeliveryChannels> node looks like this:

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>
 <ProtocolName>
 <Arguments>

Important Because of the SMTP implementation used by the Microsoft .NET Framework, you can define only one
SMTP delivery channel per instance. If you define two SMTP delivery channels, notifications might go to the wrong
SMTP servers.

Note The .NET Framework implementation of SMTP does not support user names and passwords.

When a subscriber creates a subscription, the subscription is associated with a delivery channel. When a notification is delivered,
the notification is sent via the selected delivery channel using the protocol specified for that delivery channel.

For example, the subscription management application might use a subscriber device named "E-mail." When the subscriber
selects "E-mail" from a dialog box and enters an e-mail address, the subscription management application assigns delivery
channel Email01 to the subscription and then writes the information about the subscriber device (e-mail), address, and delivery
channel to the instance database.

The definition of the Email01 delivery channel, using the IIS SMTP protocol, looks like this:

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>Email01</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
 </DeliveryChannel>
</DeliveryChannels>

For more information, see <DeliveryChannels> Node and <DeliveryChannel> Node.

See Also

Configuration File Samples

Creating a Configuration File

Developing a Custom Delivery Protocol

Standard Delivery Protocols

SQL Server Notification Services Books Online

Configuring Argument Encryption
Configuring Argument Encryption

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

Within the configuration file, you can use the <EncryptArguments> element to encrypt arguments for delivery channels and
event providers that are stored in the instance database and application databases.

Delivery channel arguments and event provider arguments may contain sensitive data, such as a password for a delivery channel.
Encryption makes it difficult for any user with access to the databases to view this data.

You can turn argument encryption on by setting the value in the <EncryptArguments> element to true. (By default, the value is
false.) If you turn on argument encryption, you must provide an encryption key when you run NSControl Create to create the
databases and when you run NSControl Register to register the instance.

The database columns that store the delivery channel and event provider arguments are encrypted, and the NS$instance_name
service uses the key to read the arguments when necessary.

Important Argument encryption protects the data in the databases, but does not do so for the data in the
configuration files and ADFs. To protect this data, you can use command-line arguments to pass values into the
configuration file and ADFs. If that is not a reasonable solution for your applications, secure the configuration file and
ADFs if they contain sensitive information.

For more information, see <EncryptArguments> Element.

See Also

Configuration File Samples

Creating a Configuration File

Using Parameters in the Configuration File

SQL Server Notification Services Books Online

Using Parameters in the Configuration File
Using Parameters in the Configuration File

Each instance of Notification Services has a configuration file. This file contains information about the instance, general
information about the instance's applications, and information about delivery channels and protocols.

You can hard code configuration file values for each element of the configuration file, or you can use parameters. If you use
parameters in the configuration file, you can define default values for the parameters in the <ParameterDefaults> node.

For example, if the instance hosts two applications, and the files for the two applications are located in similar locations, you can
use the same parameter in the <BaseDirectoryPath> values for the applications. The parameterized values look like this:

<BaseDirectoryPath>%BaseDirPath%\Stock</BaseDirectoryPath>
...
<BaseDirectoryPath>%BaseDirPath%\Weather</BaseDirectoryPath>

You can then supply the value for %BaseDirPath% in the <ParameterDefaults> node, like this:

<ParameterDefaults>
 <Parameter>
 <Name>BaseDirPath</Name>
 <Value>C:\Notification Services\Applications</Value>
 </Parameter>
</ParameterDefaults>

When you run the NSControl Create or NSControl Update command, "C:\Notification Services\Applications" is substituted for
%BaseDirPath% where it appears in the configuration file.

The values in the <ParameterDefaults> node are default values. You can override these values on the command line when you
run NSControl Create or NSControl Update.

You should specify values on the command line when you do not want to store values in the configuration file (such as
passwords) or when you do not want to use the values in the <ParameterDefaults> node.

For more information about specifying parameter values on the command line, see NSControl Commands.

See Also

<Parameter> Node (<ParameterDefaults>)

SQL Server Notification Services Books Online

Deploying an Instance
When you deploy an instance, you create the NS$instance_name service that runs the instance, create the instance and
application databases, define security, and then enable and start the instance. This section provides instructions for completing
these tasks.

The process of deploying an instance depends on the system configuration. For information about creating a configuration file for
an instance, see Creating a Configuration File. For step-by-step instructions for a variety of configurations, see Notification
Services Deployment Scenarios.

The topics that this section covers are described in the following table.

Topic Description
Deployment Overview Describes the basic steps for deploying

an instance of Notification Services.
Creating a Deployment Directory
Structure

Lists the instance and application files
needed for deployment, and provides
recommendations for the directory
structure.

Registering and Unregistering an Instance Describes registration and provides
instructions for registering and
unregistering an instance on different
types of servers.

Creating Instance and Application
Databases

Explains how to create databases based
on the configuration file and application
definition files (ADFs).

Configuring Security for an Instance Provides a high-level description of
Notification Services security
requirements.

Enabling and Disabling an Instance Explains how to turn components of a
Notification Services instance on and off.

Starting and Stopping an Instance Provides information about starting and
stopping the NS$instance_name service.

See Also

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Deployment Overview
Deployment Overview

Notification Services uses instances to deploy applications. Each instance hosts one or more notification applications.

An instance is configured through an XML configuration file, which contains pointers to application definition files (ADFs). Each
ADF defines a single application. When you deploy an instance, Notification Services uses the configuration file to create an
instance database, and then uses each referenced ADF to create an application database.

Deploying an instance also creates the NS$instance_name service that runs the instance and its applications.

The Deployment Process

To deploy an instance of Notification Services, follow these steps:

1. Plan the instance and gather information.

Determine the system configuration for the instance, such as which server hosts the database, which servers host the
instance, and where the subscription management application is hosted. For more information, see Hardware
Configurations.
Determine the security model that the instance will use. The NS$instance_name service can use either Windows
Authentication or SQL Server Authentication to connect to SQL Server. Microsoft recommends Windows
Authentication.
Determine the account that the NS$instance_name service will run under. The account can be a domain account, a
local account, or a built-in account. For more information, see NS$instance_name Service Account Security.
Obtain the ADF and operational files, such as XSLT files and custom components, for all applications hosted by the
instance. These files are required to create an instance. For more information, see Creating a Deployment Directory
Structure.
Create a configuration file for each instance, if an application developer has not provided one.

2. Install Notification Services.
3. Grant access to SQL Server for the account used by NS$instance_name. The NS$instance_name service requires access to

the instance, application, and master databases, so it must have access to SQL Server.
4. Grant permission to run the Notification Services extended stored procedures for the account used by NS$instance_name.

The service runs these extended stored procedures to generate notifications and perform other key tasks. For more
information about granting these permissions, see SQL Server Permissions for NS$instance_name.

5. Register the instance of Notification Services.

Registration adds information about the instance to the registry and optionally creates the NS$instance_name service. You
must register the instance on each server that hosts the instance as well as on servers that host subscription management
applications and independent event providers. For more information, see Registering and Unregistering an Instance.

6. Create the instance and application databases.

The NSControl Create command reads the instance data from the configuration file and creates the instance database; it
then reads the application data from each associated ADF and creates application databases. For more information, see
Creating Instance and Application Databases.

Note You can create the instance databases before registering the instance if you prefer.

7. Grant access to the instance and application databases for the SQL Server login account used by the service, and then add
the account to the NSRunService database role in each database.

8. Enable the instance.

The NSControl Enable command activates components of Notification Services. For more information, see Enabling and
Disabling an Instance.

9. Start the instance.

Start the instance by starting the NS$instance_name service. At this point, Notification Services starts its event collection,
notification generation, and distribution functions for all enabled components. For more information, see Starting and

Stopping an Instance.

You can now test the applications. You may need to bulk load subscriber and subscription data at this time. Without subscriber,
subscriber device, subscription, and event data, the applications cannot generate notifications.

Deployment Options

Notification Services supports several deployment configurations:

You can deploy the Notification Services instance and the databases on one server.
You can deploy the Notification Services instance and the databases on separate servers. This configuration requires you to
separately install the database components on the database server.
The Notification Services instance can be deployed across multiple servers, providing scale-out options for large
applications. You must install Notification Services on each server that runs the Notification Services instance and
subscription management applications, and then register the instance. You must also install Notification Services on the
server that hosts the instance and application databases.

For detailed instructions about deploying Notification Services in these configurations, see Notification Services Deployment
Scenarios.

SQL Server Notification Services Books Online

Creating a Deployment Directory Structure
Creating a Deployment Directory Structure

Each application for Notification Services should have its own folder for application files. For example, if you have a stock quote
application and a weather reporting application, create one application directory for the stock application and another application
directory for the weather application.

For each application, the path to this folder is specified in the configuration file. Notification Services uses this path to find the
application files.

An application directory typically contains the following files:

Any XML schemas describing event schemas
Any XSLT files used to format notifications
DLLs for any custom event providers specific to the application
DLLs for any custom content formatters specific to the application
DLLs for any custom delivery protocols specific to the application

These files are referred to as operational files because they are used while the application is running.

Because the configuration file and application definition files (ADFs) are used only when deploying the instance or when updating
the application, you should consider storing these files in another directory. By storing these files separately, you can provide a
higher level of security for them. The following section provides recommendations for a creating a directory structure that
separates operational files from deployment files.

Deployment Directory Recommendations

Microsoft recommends using two file shares for instance and application files: NSSourceFiles and NSDataFiles. Create
NSSourceFiles to contain the configuration file and ADFs and create NSDataFiles to contain the operational files.

N SSourceFiles

The NSSourceFiles share contains only the files necessary to create and update the instance of Notification Services. This includes
the configuration file and the ADFs.

The NSSourceFiles share uses a simple structure. Each instance has one directory under NSSourceFiles, and this directory
contains all files used when creating and updating the instance. The following list shows a sample directory structure:

NSSourceFiles

Instance01

Instance02

You should control security at the instance-directory level. By controlling security this way, you can grant Full Control to the
Everyone group for the NSSourceFiles share and then set permissions for each instance directory. (Make sure to clear the
Inherit from parent check box for the directories within the NSSourceFiles share.) Setting security at the instance-directory level
makes it clear who has permissions in each directory, and makes it easier to debug security issues.

Grant the following permissions to the NSSourceFiles directory:

Grant Full Control permissions to the computer\Administrators group.
Grant Modify permissions to the account used to deploy the instance.

N SDataFiles

The NSDataFiles share contains operational files used when the instance and its applications are running.

The NSDataFiles directory uses a structure that mimics the instances and their applications. Each instance has one directory within
NSDataFiles. The instance directory contains a directory named Common that contains custom objects that can be used by all
applications, and one directory for each application hosted by the instance. The application directory might contain directory for
event drops, event schemas, and content formatters. The following list shows a sample directory structure:

NSDataFiles

Instance01

Common

CustomContentFormatters

CustomDeliveryProtocols

CustomEventProviders

wwwroot

Application01

XSDs

ContentFormatters

en

Email

File

SMS

fr

Email

File

SMS

Instance02

...

You should control security at the instance-directory level. By controlling security this way, you can grant the Everyone group
Full Control for the NSDataFiles share and then set permissions for each instance directory. (Make sure to clear the Inherit from
parent check box for the directories within the NSDataFiles share.) Setting security at the instance-directory level makes it clear
who has permissions in each directory, and makes it easier to debug security issues.

Grant the following permissions to the NSDataFiles directory:

Grant Full Control permissions to the computer\Administrators group.
Grant Modify permissions to the accounts used to deploy and monitory the instance.
Grant Modify permissions to the account used by the NS$instance_name service.

M apping N etwork Drives

If your NSDataFiles and NSSourceFiles directories are located on a network share, you can map network drives to these
directories to simplify access to the shares. Mapping a network drive enables you to assign a drive letter, such as T, to a UNC path,
such as \\Server1\NotificationServicesFiles\NSSourceFiles.

The benefit of mapping network drives is illustrated by the following NSControl Create examples.

UNC Path

NSControl Create –in
\\Server1\NotificationServicesFiles\NSSourceFiles\Instance01\Instance01Config.xml

Mapped Network Drive Path

NSControl Create –in S:\Instance01\Instance01Config.xml

If you use mapped network drives in your configuration file or ADFs, each server that runs the NS$instance_name service must
map the same drive letters to the NSDataFiles share.

For more information about mapping network drives, see your Windows documentation.

See Also

File and Folder Security

SQL Server Notification Services Books Online

Registering and Unregistering an Instance
Registering and Unregistering an Instance

Registering an instance of Notification Services creates the NS$instance_name service, creates performance counters on the local
server, and adds information to the registry. You must register the instance on the following servers:

Each server that runs the NS$instance_name service. The service runs the event provider host, generator, and distributor
components. For scaled-out configurations, the service runs on multiple servers.
Each server that runs a subscription management application. If the subscription management application runs on its own
server, do not create the NS$instance_name service when registering the instance.
Each server that runs an independent event provider. If the independent event provider runs on its own server or the
database server, do not create the NS$instance_name service when registering the instance.

If the database server does not also run the Notification Services instance or the client components, do not register the instance
on this server.

To register an instance of Notification Services and create the NS$instance_name service

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to register the instance:

nscontrol register -name instance_name -service
 -serviceusername "service_username"
 -servicepassword "service_password"

If using SQL Server Authentication to connect to SQL Server, you must also use the -sqlusername and -sqlpassword
arguments.

To register an instance of Notification Services without creating the service

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to register the instance:

nscontrol register -name instance_name

To remove an instance from a server, you must delete the instance and also unregister it. Unregistering an instance removes
registry entries, removes the NS$instance_name service (if present), and deletes the performance counters for the service.

To unregister an instance of Notification Services

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to register the instance:

nscontrol unregister -name instance_name

See Also

Deploying an Instance

NSControl Register

NSControl Unregister

SQL Server Notification Services Books Online

Creating Instance and Application Databases
Creating Instance and Application Databases

When you deploy an instance of Notification Services, you must create an instance database and application databases. These
databases are defined by the configuration file and the application definition files (ADFs). These databases store information used
when the instance and applications are running, including subscriber, subscription, event, and notification data.

To create the databases, use the NSControl Create command.

To create an instance of Notification Services

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to create the databases:

nscontrol create -in configuration_filename

If the configuration file or ADFs use parameters, your NSControl Create command might contain additional arguments.
For more information, see NSControl Create.

If you need to update existing instance and application databases, use the NSControl Update command. If you need to delete the
databases, use the NSControl Delete command. For more information about managing instances and applications after
deployment, see Managing Instances and Applications.

See Also

Deploying an Instance

NSControl Delete

NSControl Update

SQL Server Notification Services Books Online

Configuring Security for an Instance
Configuring Security for an Instance

Deploying an instance of Notification Services requires defining security for the application and for those who administer and
monitor the application. The following list describes the accounts used by an instance:

The NS$instance_name Windows service runs under a local, domain, or built-in Windows account. The service uses this
account to access local and network resources, and possibly to access databases.
If you cannot grant database permissions to the account the service runs under, the service uses a SQL Server login account
to access databases.
The NSControl commands, used to deploy and administer instances, are run in the context of the user. Each command
requires specific permissions, so you might use one or more user accounts to run these commands.
A subscription management application uses an account to execute stored procedures that read and write data in the
instance and application databases.
Custom event providers require connections to SQL Server to execute stored procedures that write data to an application
database.

The NS$instance_name service requires permissions in the instance and application databases. The service must be a member of
the NSRunService role in each database, and must be granted permission to run the Notification Services extended stored
procedures using the GrantXPExec utility.

For more information about the security requirements of Notification Services instances and applications, see Managing Security.
For step-by-step instructions, see Notification Services Deployment Scenarios.

See Also

GrantXPExec Utility

SQL Server Notification Services Books Online

Enabling and Disabling an Instance
Enabling and Disabling an Instance

When you create the NS$instance_name service by registering an instance of Notification Services, all components of the
instance are initially disabled. Before starting the instance, you must enable them.

Enabling an instance sets flags in the database. The NS$instance_name services that run the instance check these flags to see if
the instance, application, and components are enabled. For example, if only the distributor component is running on a server, the
NS$instance_name service checks the instance, application, and distributor flags. If any of these flags are disabled, the distributor
thread for the instance or application does not run.

When you deploy an instance of Notification Services, you will probably enable all components. You typically disable components
only when you update an instance, or when you need to test or troubleshoot the instance.

Component Effect
Events If enabled, runs the event provider host

component, which collects events. You can
control event provider host operation at the
instance, application, and server level.

Generator If enabled, runs the generator component,
which creates notifications.

Distributor If enabled, runs the distributor, which formats
and distributes notifications. You can control
distributor operation at the instance,
application, and server level.

Subscriptions If enabled, allows subscriptions to be added,
deleted, and modified. Subscriptions are
enabled or disabled at the instance level. They
cannot be controlled at the application level.

Subscribers If enabled, allows subscriber data to be added,
deleted, and modified. Subscribers are
enabled or disabled at the instance level. They
cannot be controlled at the application level.

Application application_name Allows you to enable or disable an
application, or one or more components for a
single application.

Instance instance_name Allows you to enable or disable the instance
as a whole, or one or more components for
all applications hosted by the instance.

To enable all components of an instance

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to enable the instance:

nscontrol enable -name instance_name

To enable a single component that was previously disabled

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to enable a component:

nscontrol enable -name instance_name –component

For more information, see NSControl Enable.

To disable all components of an instance

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to disable the instance:

nscontrol disable -name instance_name

To disable a single component of an instance

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to disable a component:

nscontrol disable -name instance_name -component

For more information, see NSControl Enable.

To view the status of an instance, application, or component

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Type the following command to view the status of the instance:

nscontrol status -name instance_name

See Also

NSControl Disable

NSControl Enable

SQL Server Notification Services Books Online

Starting and Stopping an Instance
Starting and Stopping an Instance

An instance of Notification Services is run by a Windows service named NS$instance_name. Each instance has one service on
each server the instance runs on. When the service is started, all enabled components start processing available data.

To start or stop an instance of Notification Services

Starting and Stopping Services

To configure automatic startup and restart

Configuring Services

SQL Server Notification Services Books Online

Notification Services Deployment Scenarios
Deploying an instance of Notification Services requires several steps. These steps vary depending on the system configuration.
For example, if Notification Services and the databases are located on one server, you perform all deployment steps on that
server. However, if the databases are located on a remote server, you must install the database components on the database
server.

This section contains several deployment scenarios, and provides step-by-step instructions for deploying an instance of
Notification Services for each scenario.

The topics that this section covers are described in the following table.

Topic Description
Windows Authentication Deployment
Scenarios

Provides deployment instructions for
scenarios that use Windows
Authentication to connect to SQL Server.

SQL Server Authentication Deployment
Scenarios

Provides deployment instructions for
scenarios that use SQL Server
Authentication to connect to SQL Server.

See Also

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Windows Authentication Deployment Scenarios
Windows Authentication Deployment Scenarios

An instance of Notification Services must be able to access its instance and application databases. To access them, the
NS$instance_name service that runs the instance must be able to connect to SQL Server. These connections use Windows
Authentication or SQL Server Authentication.

This section contains instructions for deploying an instance of Notification Services that uses Windows Authentication to connect
to SQL Server. Microsoft recommends Windows Authentication because it uses Windows credentials instead of using credentials
stored in a SQL Server database.

The topics that this section covers are described in the following table.

Topic Description
Single-Server Deployment (Windows
Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services that uses Windows
Authentication to connect to a local
database server.

Remote Database Server Deployment
(Windows Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services that uses Windows
Authentication to connect to a remote
database server.

Scale-Out Deployment (Windows
Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services on multiple servers if the
instance uses Windows Authentication to
connect to SQL Server.

See Also

SQL Server Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Single-Server Deployment (Windows Authentication)
Single-Server Deployment (Windows Authentication)

This scenario shows how to deploy an instance of Notification Services on a server that also hosts the databases (and possibly the
subscription management system) using Windows Authentication. Typically, you would use a single-server deployment for small
to medium applications.

The following picture shows the hardware configuration for this deployment scenario. The server, named NS1, has multiple disk
drives to improve the performance of the databases and notification applications.

The disk layout depicts an optimal configuration. You can use other disk configurations. For more information, see Database
Considerations.

Prerequisites

You have previously installed the operating system and SQL Server 2000 on NS1 and have applied all applicable service
packs and updates. For more information, see Hardware and Software Requirements.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Note If you print this topic, the steps contained within each task will automatically appear in the printout.

Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the domain accounts access to SQL Server.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the

domain\NSService account requires permissions in the master database. Before you can grant database permissions to these
accounts, you must grant access to SQL Server by creating login IDs.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following four environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name
Set NSSourceFilesRoot=instance_source_file_root
Set ConfigFileName=%NSSourceFilesRoot%\%InstanceName%\config_file_name.xml

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. Type the following command to create a SQL Server login ID for the domain\NSService account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\NSService'"

4. Type the following command to create a SQL Server login ID for the domain\Ops account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\Ops'"

5. Leave the command prompt window open for the next procedure.

Grant the domain\NSService account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. Follow these steps to grant the account access to the master database, and then grant the necessary permissions.

1. In the open command prompt window, type the following command to grant the domain\NSService account access to the
master database:

osql -E -S %SQLServer% -Q "USE master
 EXEC sp_grantdbaccess 'domain\NSService'"

2. Type the following command to grant the domain\NSService account permission to run the Notification Services extended
stored procedures.

GrantXpExec "domain\NSService"

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword "[password]" -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the domain\NSService account. This is also a good time to grant
database permissions to the domain\Ops account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the domain\NSService account access to the instance database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

3. Type the following command to grant the domain\NSService account access to the application database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the domain\Ops account access to the instance database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

5. Type the following command to grant the domain\Ops account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Remote Database Server Deployment (Windows
Authentication)
Remote Database Server Deployment (Windows Authentication)

This scenario shows how to deploy an instance of Notification Services when the databases are located on a remote server and
you can use Windows Authentication to connect to SQL Server. This deployment is more scalable than the single-server
deployment, and is a good solution for medium to large applications.

The following picture shows the hardware configuration for this deployment scenario. The scenario uses two servers: NS1 and
SQL1. NS1 hosts the instance of Notification Services, and SQL1 hosts the instance and application databases. NS1 can use one
or two disk drives; the number of drives is not critical on this server. However, SQL1 has multiple disk drives to improve the
performance of the databases.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have previously installed the operating system on NS1 and have applied all applicable service packs and updates. For
more information, see Hardware and Software Requirements.
You have previously installed the operating system and SQL Server 2000 on SQL1 and have applied all applicable service
packs and updates.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Note If you print this topic, the steps within each procedure will appear in the printout.

NS1 Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the domain\NSService account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the account access to the master database, and then grant the necessary permissions.

1. In the open command prompt window, type the following command to grant the domain\NSService account access to the
master database:

osql -E -S %SQLServer% -Q "USE master
 EXEC sp_grantdbaccess 'domain\NSService'"

2. Type the following command to grant the domain\NSService account permission to run the Notification Services extended
stored procedures:

GrantXpExec "domain\NSService" -E -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword "[password]" -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the domain\NSService account. This is also a good time to grant
database permissions to the domain\Ops account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the domain\NSService account access to the instance database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

3. Type the following command to grant the domain\NSService account access to the application database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the domain\Ops account access to the instance database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

5. Type the following command to grant the domain\Ops account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable and then start the instance by
starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application, complete
those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

SQL1 Tasks

Install Notification Services database components.

Because this scenario uses a remote database server, the SQL1 server does not run the NS$instance_name service, and is not
used to administer the instance using the NSControl commands. For this reason, install only the database components on SQL1.

For more information, see Installing Database Components.

Grant the domain accounts access to SQL Server.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Before you can grant database permissions to these
accounts, you must grant access to SQL Server by creating login IDs.

Note Because this procedure does not require the Notification Services client tools, you can run this procedure

wherever the SQL Server client tools are installed. The SQL Server client tools must be installed on server NS1, so you
can run this procedure on NS1 if you prefer.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. On SQL1, this deployment scenario uses one environment variable:

Set SQLServer=database_server_name

When you run this command, the environment variable is active as long as the command prompt window is open.

3. Type the following command to create a SQL Server login ID for the domain\NSService account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\NSService'"

4. Type the following command to create a SQL Server login ID for the domain\Ops account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\Ops'"

5. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Scale-Out Deployment (Windows Authentication)
Scale-Out Deployment (Windows Authentication)

This scenario shows how to deploy an instance of Notification Services on multiple servers; in this scenario the databases are
located on a remote server and you use Windows Authentication to connect to SQL Server. This deployment scenario is for large
applications that need multiple servers for formatting and distributing notifications.

The following picture shows the hardware configuration for this deployment scenario. The scenario uses four servers: NS1, NS2,
NS3 and SQL1. NS1 hosts the event provider host and generator for an instance of Notification Services. NS2 and NS3 host
distributor components for an instance of Notification Services. SQL1 hosts the instance and application databases. NS1, NS2,
and NS3 can use one or two disk drives, because the number of drives is not critical on this server. However, SQL1 has multiple
disk drives to improve the performance of the databases.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have previously installed the operating system on NS1, NS2, and NS3 and have applied all applicable service packs and
updates. For more information, see Hardware and Software Requirements.
You have previously installed the operating system and SQL Server 2000 on SQL1 and have applied all applicable service
packs and updates.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Note If you print this topic, the steps within each procedure will appear in the printout.

SQL1 Tasks

Install Notification Services database components.

Because this scenario uses a remote database server, the SQL1 server does not run the NS$instance_name service, and is not
used to administer the instance using the NSControl commands. For this reason, install only the database components on SQL1.
For more information, see Installing Database Components.

Grant the domain accounts access to SQL Server.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Before you can grant database permissions to these
accounts, you must grant access to SQL Server by creating login IDs.

Note Because this procedure does not require the Notification Services client tools, you can run this procedure
wherever the SQL Server client tools are installed. The SQL Server client tools must be installed on server NS1, so you
can run this procedure on NS1, NS2, or NS3 if you prefer.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. On SQL1, this deployment scenario uses one environment variable:

Set SQLServer=database_server_name

When you run this command, the environment variable is active as long as the command prompt window is open.

3. Type the following command to create a SQL Server login ID for the domain\NSService account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\NSService'"

4. Type the following command to create a SQL Server login ID for the domain\Ops account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\Ops'"

5. Close the command prompt window.

NS1 Tasks

In this scale-out scenario, NS1 is used as the administrative server. This means that the databases are created from this server, not
from NS2 and NS3, and permissions to run the extended stored procedures are granted from this server, not from NS2 or NS3.

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the domain\NSService account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the domain\NSService account access to the master database and then grant the
necessary permissions.

1. In the open command prompt window, type the following command to grant the domain\NSService account access to the
master database:

osql -E -S %SQLServer% -Q "USE master
 EXEC sp_grantdbaccess 'domain\NSService'"

2. Type the following command to grant the domain\NSService account permission to run the Notification Services extended
stored procedures.

GrantXpExec "domain\NSService" -E -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword "[password]" -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the domain\NSService account. This is also a good time to grant
database permissions to the domain\Ops account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the domain\NSService account access to the instance database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

3. Type the following command to grant the domain\NSService account access to the application database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the domain\Ops account access to the instance database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

5. Type the following command to grant the domain\Ops account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable the event and generator components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start it
by starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName% -events -generator

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

NS2 and NS3 Tasks

NS2 and NS3 run the distributors in this scale-out scenario.

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword "[password]" -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

2. Leave the command prompt window open for the next procedure.

Enable the distributor component and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the distributor component of
the instance and then start the component by starting the NS$instance_name service.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName% -distributor

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Clustered Single Server Deployment (Windows Authentication)
Clustered Single Server Deployment (Windows Authentication)

This scenario shows how to deploy an instance of Notification Services on a failover cluster using Windows Authentication; this
configuration is similar to the single-server deployment scenario, but provides the availability offered by clustering. Typically, you
would use this scenario for small to medium applications that require very high availability.

The following picture shows the hardware configuration for this deployment scenario. The servers, named NS1 and NS2, each
have Notification Services and SQL Server 2000 installed. The NS$instance_name service is configured as a "Generic Service,"
allowing it to fail over to another server when necessary.

This configuration uses shared drives for the cluster quorum resource, all database files, and all operational files. Sharing drives
allows the cluster to access the drives independent of which server in the cluster is active.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have installed Windows 2000 Advanced Server or Datacenter on NS1 and NS2 and have applied all applicable service
packs and updates. For more information, see Hardware and Software Requirements.
Windows Cluster Service is installed and running on NS1 and NS2. For more information, see the Step-by-Step Guide to
Installing Cluster Service Web page.
You have added a cluster group resource named NSGroup to the cluster. This scenario assumes that the group contains the
following resources:

NSGroup resources Description
Cluster Name: NSCluster Network name of server cluster
SQL Server: SQLVS1 Network name of SQL Server virtual

node
F, G, H, I, K Shared disk drives available to the

cluster
SQLData File share to the H drive, which is the

location of the database files
SQLLogs File share to the I drive, which is the

location of the database log files
SQLTempDB File share to the J drive, which is the

location of the SQL Server tempdb
database

You have installed an instance of SQL Server on both nodes of the cluster, creating a virtual SQL Server. For more
information, see "Creating a Failover Cluster" in SQL Server Books Online.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created the NSDataFiles and NSSourceFiles directories, and have granted the necessary permissions to your
account, the domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment

http://go.microsoft.com/fwlink/?LinkId=8619

Directory Structure. You create a cluster file share resource for each of these directories during deployment.

Note If you print this topic, all tasks and their step-by-step instructions will appear in the printout.

NS1 Tasks

Move the cluster group to node NS1.

Node NS1 must own the cluster group NSGroup to complete these procedures. If NSGroup is not on NS1, you must use Cluster
Administrator to move it to NS1.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup, and then look at the Owner column in the right pane.
4. If the Owner column indicates that NS2 owns the cluster group, right-click NSGroup, and then click Move.

NSGroup is now available to NS1.

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Make available the NSDataFiles and NSSourceFiles shares.

The network shares for the NSDataFiles and NSSouceFiles directories must be available to the cluster. To, you must add them to
the cluster resource group and then map network drives.

1. Create the NSDataFiles and NSSourceFiles directories on drive K. For more information, see Creating a Deployment
Directory Structure.

2. Create the NSDataFiles share in the cluster group.
a. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
b. In the left pane, expand Groups.
c. Right-click NSGroup, point to New, and then select Resource.
d. On the New Resource page, enter the following information:

Name: NSDataFiles

Resource type: File Share

Group: NSGroup

e. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, and then click Add to move them to
the Possible owners list.

f. On the Dependencies page, select K: in the Available resources list, and then click Add to move it to the Resource
dependencies list.

g. On the File Share Parameters page, verify that the following information is entered:

Share name: NSDataFiles

Path: K:\NSDataFiles

User limit: Maximum allowed

h. Click Finish to add the share to the cluster group.
3. In the right pane of Cluster Administrator, right-click NSDataFiles, and then click Bring Online.
4. Map the NSDataFiles share to drive S. For more information about mapping network drives, see your Windows

documentation.
5. Create the NSSourceFiles share in the cluster group.

a. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
b. In the left pane, expand Groups.
c. Right-click NSGroup, point to New, and then click Resource.

d. On the New Resource page, enter the following information:

Name: NSSourceFiles

Resource type: File Share

Group: NSGroup

e. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, and then click Add to move them to
the Possible owners list.

f. On the Dependencies page, select K: in the Available resources list, and then click Add to move them to the
Resource dependencies list.

g. On the File Share Parameters page, verify that the following information is entered:

Share name: NSSourceFiles

Path: K:\NSSourceFiles

User limit: Maximum allowed

h. Click Finish to add the share to the cluster group.
i. Right-click NSSourceFiles, and then click Bring Online.

6. Map the NSSourceFiles share to drive T. For more information about mapping network drives, see your Windows
documentation.

7. Secure the folders. For more information, see Creating a Deployment Directory Structure.
8. Copy source files and operational files to the proper NSSourceFiles and NSDataFiles directories.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges; the Users group provides the basic privileges. You grant additional privileges
during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the domain accounts access to SQL Server.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Before you can grant database permissions to these
accounts, you must grant access to SQL Server by creating login IDs.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following four environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name
Set NSSourceFilesRoot=path_to_NSSourceFiles
Set ConfigFileName=%NSSourceFilesRoot%\%InstanceName%\config_file_name.xml

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. Type the following command to create a SQL Server login ID for the domain\NSService account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\NSService'"

4. Type the following command to create a SQL Server login ID for the domain\Ops account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\Ops'"

5. Leave the command prompt window open for the next procedure.

Grant the domain\NSService account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. Follow these steps to grant the account access to the master database, and then grant the necessary permissions.

1. In the open command prompt window, type the following command to grant the domain\NSService account access to the
master database:

osql -E -S %SQLServer% -Q "USE master
 EXEC sp_grantdbaccess 'domain\NSService'"

2. Type the following command to grant the domain\NSService account permission to run the Notification Services extended
stored procedures.

GrantXpExec "domain\NSService" -E -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Register the instance of Notification Services.

Registering the instance creates the NS$instance_name service, which runs the instance of Notification Services.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword service_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

2. Leave the command prompt window open for the next procedure.

Create a Generic Service resource for NS$instance_name.

Generic Service resources enable Windows services, such as NS$instance_name, to be used as cluster resources. If node NS1 fails,
the cluster resource group fails over to NS2, and the NS$instance_name service starts on NS2.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. Open Groups.
3. Right-click NSGroup, point to New, and then click Resource.
4. On the New Resource page, enter the following information:

Name: instance_name

Resource type: Generic Service

Group: NSGroup.

5. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, and then click Add to move them to the
Possible owners list.

6. On the Dependencies page, select SQL Server in the Available resources list, and then click Add to move it to the
Resource dependencies list.

7. On the Generic Service Parameters page, type the following information:

Service name: NS$instance_name

8. On the Registry Replication page, click Finish.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the domain\NSService account. This is also a good time to grant
database permissions to the domain\Ops account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the domain\NSService account access to the instance database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

3. Type the following command to grant the domain\NSService account access to the application database and to add the
account to the NSRunService database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\NSService'
 EXEC sp_addrolemember 'NSRunService', 'domain\NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the domain\Ops account access to the instance database and to add the account to
the NSMonitor and NSAnalysis database roles:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

5. Type the following command to grant the domain\Ops account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\Ops'
 EXEC sp_addrolemember 'NSMonitor', 'domain\Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'domain\Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start it
by starting the NS$instance_name service.

Note Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
you might want to complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Close the command prompt window.

Important Do not bring the Generic Service online at this time; bring the Generic Service online after configuring
NS2.

NS2 Tasks

Move the cluster group to node NS2.

Node NS2 must own the cluster group NSGroup to complete these procedures. If NSGroup is not on NS2, you must use Cluster
Administrator to move it to NS2.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup, and then look at the Owner column in the right pane.
4. If the Owner column indicates that NS1 owns the cluster group, right-click NSGroup, and then click Move.

NSGroup should now be available to NS2.

Install Notification Services.

Install the Notification Services engine on NS2. You can install additional components such as documentation, but other
components are not required for deployment. Do not install the sample applications on production servers. For more
information about installing components, see Installing Notification Services.

Map network drives.

To match the mappings on NS1, map the NSSourceFiles share to drive S and the NSDataFiles share to drive T. For more
information about mapping network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS2; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Register the instance of Notification Services.

Registering the instance creates the NS$instance_name service, which runs the instance of Notification Services. The service must
be registered on NS2 in case of a failover.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword service_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

4. Close the command prompt window.

Bring the Generic Service online.

To start the instance of Notification Services, bring the Generic Service online. If you want to start the service on NS1, move the
cluster group to NS1 before performing these steps.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup.
4. In the right pane, right-click Generic Service, and click Bring Online.

You have now deployed the instance of Notification Services on a two-node cluster.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

SQL Server Authentication Deployment Scenarios
SQL Server Authentication Deployment Scenarios

An instance of Notification Services must be able to access its instance and application databases. To access these databases, the
NS$instance_name service that runs the instance must be able to connect to SQL Server. These connections can use Windows
Authentication or SQL Server Authentication.

This section contains instructions for deploying an instance of Notification Services that uses SQL Server Authentication to
connect to SQL Server.

Important Microsoft recommends Windows Authentication because it uses the more secure Windows credentials
instead of using credentials stored in a SQL Server database.

The topics that this section covers are described in the following table.

Topic Description
Single-Server Deployment (SQL Server
Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services that uses SQL Server
Authentication to connect to a local
database server.

Remote Database Server (SQL Server
Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services that uses SQL Server
Authentication to connect to a local
database server.

Scale-Out Deployment (SQL Server
Authentication)

Provides step-by-step instructions for
deploying an instance of Notification
Services on multiple servers if the
instance uses SQL Server Authentication
to connect to SQL Server.

SQL Server Notification Services Books Online

Single-Server Deployment (SQL Server Authentication)
Single-Server Deployment (SQL Server Authentication)

This scenario shows how to deploy an instance of Notification Services on a server that also hosts the databases and you use SQL
Server Authentication to connect to SQL Server. Typically, you would use a single-server deployment for small to medium
applications.

The following picture shows the hardware configuration for this deployment scenario. The server, named NS1, has multiple disk
drives to improve the performance of the databases and the notification applications.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Note If you print this topic, the steps within each procedure will appear in the printout.

Prerequisites

You have previously installed the operating system and SQL Server 2000 on NS1 and have applied all applicable service
packs and updates. For more information, see Hardware and Software Requirements.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Create SQL Server login accounts for the domain accounts.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the

domain\NSService account requires permissions in the master database. Because you are using SQL Server Authentication, you
cannot grant SQL Server access directly to the domain accounts. Instead you must create SQL Server login accounts that the
NS$instance_name service and the people who monitor the instance can use.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following four environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name
Set NSSourceFilesRoot=instance_source_file_root
Set ConfigFileName=%NSSourceFilesRoot%\%InstanceName%\config_file_name.xml

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. Type the following command to create a SQL Server login for the domain\NSService account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'NSService', 'sql_password'"

4. Type the following command to create a SQL Server login for the domain\Ops account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'Ops', 'sql_password'"

5. Leave the command prompt window open for the next procedure.

Grant the NSService login permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the login account used by the service access to the master database, and then grant the
necessary permissions.

1. In the open command prompt window, type the following command to grant the NSService login account access to the
master database:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE master EXEC sp_grantdbaccess 'NSService'"

2. Type the following command to grant the NSService login account permission to run the Notification Services extended
stored procedures.

GrantXpExec "NSService" -U dba_user_name -P dba_password
 -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService -servicepassword "service_password"
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance,
creates registry entries for the instance, and provides a SQL Server ID and password that the service uses to connect to SQL
Server.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the NSService login account. This is also a good time to grant
database permissions to the Ops login account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the NSService login account access to the instance database and to add the account
to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

3. Type the following command to grant the NSService login account access to the application database and to add the
account to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the Ops login account access to the instance database and to add the account to the
NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

5. Type the following command to grant the Ops login account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate

notifications. If you have not configured an event source and deployed your subscription management application,
complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Remote Database Server Deployment (SQL Server
Authentication)
Remote Database Server Deployment (SQL Server Authentication)

This scenario shows how to deploy an instance of Notification Services when the databases are located on a remote server and
you must use SQL Server Authentication to connect to SQL Server. This deployment is more scalable than the single-server
deployment, and is a good solution for medium to large applications.

The following picture shows the hardware configuration for this deployment scenario. The scenario uses two servers: NS1 and
SQL1. NS1 hosts the instance of Notification Services, and SQL1 hosts the instance and application databases. NS1 can use one
or two disk drives; the number of drives is not critical on this server. However, SQL1 has multiple disk drives to improve the
performance of the databases.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have previously installed the operating system on NS1 and have applied all applicable service packs and updates. For
more information, see Hardware and Software Requirements.
You have previously installed the operating system and SQL Server 2000 on SQL1 and have applied all applicable service
packs and updates.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Note If you print this topic, the steps within each procedure will appear in the printout.

NS1 Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the NSService login account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the login account used by the service access to the master database, and then grant the
necessary permissions.

1. In the open command prompt window, type the following command to grant the NSService login account access to the
master database:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE master EXEC sp_grantdbaccess 'NSService'"

2. Type the following command to grant the NSService login account permission to run the Notification Services extended
stored procedures.

GrantXpExec "NSService" -U dba_user_name -P dba_password
 -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService -servicepassword "service_password"
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance,
creates registry entries for the instance, and provides a SQL Server ID and password that the service uses to connect to SQL
Server.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and the ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the NSService login account. This is also a good time to grant
database permissions to the Ops login account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the NSService login account access to the instance database and to add the account
to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

3. Type the following command to grant the NSService login account access to the application database and to add the
account to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the Ops login account access to the instance database and to add the account to the
NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

5. Type the following command to grant the Ops login account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

SQL1 Tasks

Install Notification Services database components.

Because this scenario uses a remote database server, the SQL1 server does not run the NS$instance_name service, and is not
used to administer the instance using the NSControl commands. For this reason, install only the database components on SQL1.

For more information, see Installing Database Components.

Create SQL Server login accounts for the domain accounts.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Because you are using SQL Server Authentication, you
cannot grant SQL Server access directly to the domain accounts. Instead you must create SQL Server login accounts that can be
used by the NS$instance_name service and the people who monitor the instance.

Note Because this procedure does not require the Notification Services client tools, you can run this procedure
wherever the SQL Server client tools are installed. The SQL Server client tools must be installed on server NS1, so you
can run this procedure on NS1 if you prefer.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. On SQL1, this deployment scenario uses one environment variable:

Set SQLServer=database_server_name

When you run this command, the environment variable is active as long as the command prompt window is open.

3. Type the following command to create a SQL Server login account for the domain\NSService account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'NSService', 'sql_password'"

4. Type the following command to create a SQL Server login account for the domain\Ops account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'Ops', 'sql_password'"

5. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Scale-Out Deployment (SQL Server Authentication)
Scale-Out Deployment (SQL Server Authentication)

This scenario shows how to deploy an instance of Notification Services on multiple servers; in this scenario the databases are
located on a remote server, and you use SQL Server Authentication to connect to SQL Server. This deployment scenario is for
large applications that need multiple servers for formatting and distributing notifications.

The following picture shows the hardware configuration for this deployment scenario. The scenario uses four servers: NS1, NS2,
NS3, and SQL1. NS1 hosts the event provider host and generator for instance of Notification Services. NS2 and NS3 host
distributor components for an instance of Notification Services. SQL1 hosts the instance and application databases. NS1, NS2,
and NS3 can use one or two disk drives; the number of drives is not critical on this server. However, SQL1 has multiple disk drives
to improve the performance of the databases.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have previously installed the operating system on NS1, NS2, and NS3 and have applied all applicable service packs and
updates. For more information, see Hardware and Software Requirements.
You have previously installed the operating system and SQL Server 2000 on SQL1 and have applied all applicable service
packs and updates.
You are running these procedures under an account that has administrative permissions on the server and is a member of
the sysadmin fixed server role in SQL Server 2000.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name
service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created file shares for source files and data files, and have granted the necessary permissions to your account, the
domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment Directory
Structure.

Note If you print this topic, the steps within each procedure will appear in the printout.

SQL1 Tasks

Install Notification Services database components.

Since this scenario uses a remote database server, the SQL1 server does not run the NS$instance_name service, and is not used
to administer the instance using the NSControl commands. For this reason, install only the database components on SQL1.

For more information, see Installing Database Components.

Create SQL Server login accounts for the domain accounts.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Because you are using SQL Server Authentication, you
cannot grant SQL Server access directly to the domain accounts. Instead you must create SQL Server login accounts that the
NS$instance_name service and the people who monitor the instance can use.

Note Because this procedure does not require the Notification Services client tools, you can run this procedure

wherever the SQL Server client tools are installed. The SQL Server client tools must be installed on server NS1, so you
can run this procedure on NS1 if you prefer.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. On SQL1, this deployment scenario uses one environment variable:

Set SQLServer=database_server_name

When you run this command, the environment variable is active as long as the command prompt window is open.

3. Type the following command to create a SQL Server login account for the domain\NSService account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'NSService', 'sql_password'"

4. Type the following command to create a SQL Server login account for the domain\Ops account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'Ops', 'sql_password'"

5. Close the command prompt window.

NS1 Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Grant the NSService login account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the login account used by the service access to the master database, and then grant the
necessary permissions.

1. In the open command prompt window, type the following command to grant the NSService login account access to the
master database:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE master EXEC sp_grantdbaccess 'NSService'"

2. Type the following command to grant the NSService login account permission to run the Notification Services extended
stored procedures.

GrantXpExec "NSService" -U dba_user_name -P dba_password
 -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService -servicepassword "service_password"
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance,
creates registry entries for the instance, and provides a SQL Server ID and password that the service uses to connect to SQL
Server.

2. Leave the command prompt window open for the next procedure.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and the ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the NSService login account. This is also a good time to grant
database permissions to the Ops login account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"

2. Type the following command to grant the NSService login account access to the instance database and to add the account
to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

3. Type the following command to grant the NSService login account access to the application database and to add the
account to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the Ops login account access to the instance database and to add the account to the
NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

5. Type the following command to grant the Ops login account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable the generator and events components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by starting the NS$instance_name service.

Important Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
complete those tasks before performing the following steps.

1. Type the following command to enable the generator and event provider host:

nscontrol enable -name %InstanceName% -generator -events

Enabling the instance in this way runs only the generator and event provider host on NS1 when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

NS2 and NS3 Tasks

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Map network drives. (Optional)

Mapping network drives can simplify access to source files (files you use when you deploy an instance) and data files (files used
while the instance is running).

To learn how to map network drives, see Creating a Deployment Directory Structure. For more information about mapping
network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS1; the Users group provides the basic privileges. You will grant
additional privileges during the deployment process. For more information on adding accounts to a local group, see your
Windows documentation.

Create the NS$instance_name service.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService -servicepassword "service_password"
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance,
creates registry entries for the instance, and provides a SQL Server ID and password that the service uses to connect to SQL
Server.

2. Leave the command prompt window open for the next procedure.

Enable the distributor component and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by starting the NS$instance_name service.

1. Type the following command to enable the distributor component:

nscontrol enable -name %InstanceName% -distributor

Enabling the instance in this way runs only the distributor when you start the service.

2. Type the following command to start the instance:

net start NS$%InstanceName%

3. Close the command prompt window.

You have now deployed the instance of Notification Services.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Clustered Single Server (SQL Server Authentication)
Clustered Single Server (SQL Server Authentication)

This scenario shows how to deploy an instance of Notification Services on a cluster using SQL Server Authentication; this
configuration is similar to the single-server deployment scenario, but provides the availability offered by clustering. Typically, you
would use this scenario for small to medium applications that require very high availability.

The following picture shows the hardware configuration for this deployment scenario. The servers, named NS1 and NS2, both
have Notification Services and SQL Server 2000 installed. The NS$instance_name service is configured as a "Generic Service",
allowing it to fail over to another server when necessary.

The configuration uses shared drives for the cluster quorum resource, all database files, and all operation files for the instance of
Notification Services. Sharing drives allows the cluster to access the drives independent of which server in the cluster is active.

The cluster quorum resource, required for every cluster, maintains the configuration data necessary for recovery of the cluster.
This data, in the form of recovery logs, contains details of all of the changes that have been applied to the cluster database. This
provides node-independent storage for cluster configuration and state data.

The disk layout shown in this picture depicts an optimal configuration. You can use other disk configurations. For more
information, see Database Considerations.

Prerequisites

You have installed Windows 2000 Advanced Server or Datacenter on NS1 and NS2.and have applied all applicable service
packs and updates. For more information, see Hardware and Software Requirements.
Windows Cluster Service is installed and running on NS1 and NS2. For more information, see the Step-by-Step Guide to
Installing Cluster Service Web page.
You have added a cluster group resource, named NSGroup, to the cluster. This scenario assumes that the group contains
the following resources:

NSGroup resources Description
Cluster Name: NSCluster Network name of server cluster
SQL Server: SQLVS1 Network name of SQL Server virtual

node
F, G, H, I, K Shared disk drives available to the

cluster
SQLData File share to the H drive, which is the

location of the database files
SQLLogs File share to the I drive, which is the

location of the database log files
SQLTempDB File share to the J drive, which is the

location of the SQL Server tempdb
database

You have installed SQL Server on both nodes of the cluster, creating a virtual SQL Server instance. For more information,
see "Creating a Failover Cluster" in SQL Server Books Online. (All references to SQL Server are to the virtual server name.)
You are running these procedures under an account that has administrative permissions on the server, and you are using a
SQL Server login account that is a member of the sysadmin fixed server role.
You or your domain administrator have created two domain accounts: domain\NSService (used by the NS$instance_name

http://go.microsoft.com/fwlink/?LinkId=8619

service) and domain\Ops (used by anyone who monitors performance and runs reports).
You have created the NSDataFiles and NSSourceFiles directories, and have granted the necessary permissions to your
account, the domain\NSService account, and the domain\Ops account. For more information, see Creating a Deployment
Directory Structure. You create a cluster file share resource for each of these directories during deployment.

Note If you print this topic, all tasks and their step-by-step instructions will appear in the printout.

NS1 Tasks

Move the cluster group to node NS1

Node NS1 must own the cluster group NSGroup to complete these procedures. If NSGroup is not on NS1, you must use Cluster
Administrator to move it to NS1.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup, and then look at the Owner column in the right pane.
4. If the Owner column indicates that NS2 owns the cluster group, right-click NSGroup, and then click Move.

NSGroup should now be available to NS1.

Install Notification Services.

Install the Notification Services engine and database components on NS1. You can install additional components, such as
documentation, but other components are not required for deployment. Do not install the sample applications on
production servers.

For more information about installing components, see Installing Notification Services.

Add the NSDataFiles and NSSourceFiles shares to the cluster resource group and then map network drives.

The network shares for the NSDataFiles and NSSouceFiles directories must be available to the cluster. To make these shares
available, you must add them to the cluster group.

1. Create the NSDataFiles and NSSourceFiles directories on drive K. For more information, see Creating a Deployment
Directory Structure.

2. Create the NSDataFiles share in the cluster group.
a. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
b. In the left pane, expand Groups.
c. Right-click NSGroup, point to New, and then click Resource.
d. On the New Resource page, enter the following information:

Name: NSDataFiles

Resource type: File Share

Group: NSGroup

e. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, then click Add to move them to the
Possible owners list.

f. On the Dependencies page, select K: in the Available resources list, then click Add to move it to the Resource
dependencies list.

g. On the File Share Parameters page, verify that the following information is entered:

Share name: NSDataFiles

Path: K:\NSDataFiles

User limit: Maximum allowed

h. Click Finish to add the share to the cluster group.
3. In the right pane of Cluster Administrator, right-click NSDataFiles, and then click Bring Online.
4. Map the NSDataFiles share to drive S. For more information about mapping network drives, see your Windows

documentation.
5. Create the NSSourceFiles share in the cluster group.

a. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
b. In the left pane, expand Groups.
c. Right-click NSGroup, point to New, and then select Resource.
d. On the New Resource page, enter the following information:

Name: NSSourceFiles

Resource type: File Share

Group: NSGroup

e. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, and then click Add to move them to
the Possible owners list.

f. On the Dependencies page, select K: in Available resources list, and then click Add to move them to Resource
dependencies list.

g. On the File Share Parameters page, verify that the following information is entered:

Share name: NSSourceFiles

Path: K:\NSSourceFiles

User limit: Maximum allowed

h. Click Finish to add the share to the cluster group.
i. Right-click NSSourceFiles, and then click Bring Online.

6. Map the NSSourceFiles share to drive T. For more information about mapping network drives, see your Windows
documentation.

7. Secure the folders. For more information, see Creating a Deployment Directory Structure.
8. Copy source files and operational files to the proper NSSourceFiles and NSDataFiles directories.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges; the Users group provides the basic privileges. You grant additional privileges
during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Create SQL Server login accounts for the domain accounts.

The domain\NSService and domain\Ops accounts must be able to access the Notification Services databases. Additionally, the
domain\NSService account requires permissions in the master database. Because you are using SQL Server Authentication, you
cannot grant SQL Server access directly to the domain accounts. Instead, you must create SQL Server login accounts that can be
used by the NS$instance_name service and the people who monitor the instance.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following four environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name
Set NSSourceFilesRoot=instance_source_file_root
Set ConfigFileName=%NSSourceFilesRoot%\%InstanceName%\config_file_name.xml

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. Type the following command to create a SQL Server login account for the domain\NSService account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q

 "EXEC sp_addlogin 'NSService', 'sql_password'"

4. Type the following command to create a SQL Server login account for the domain\Ops account:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'Ops', 'sql_password'"

5. Leave the command prompt window open for the next procedure.

Grant the NSService login account permission to run extended stored procedures.

To generate and send notifications, the NS$instance_name service must be able to run the Notification Services extended stored
procedures. The following steps grant the login account used by the service access to the master database, and then grant the
necessary permissions.

1. In the open command prompt window, type the following command to grant the NSService login account access to the
master database:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE master EXEC sp_grantdbaccess 'NSService'"

2. Type the following command to grant the NSService login account permission to run the Notification Services extended
stored procedures.

GrantXpExec "NSService" -U dba_user_name -P dba_password
 -S %SQLServer%

3. Leave the command prompt window open for the next procedure.

Register the instance of Notification Services.

Now that the account used by the NS$instance_name service is available, you can create the service.

1. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword service_password
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance,
creates registry entries for the instance, and provides a SQL Server ID and password that the service uses to connect to SQL
Server.

2. Leave the command prompt window open for additional procedures.

Create a Generic Service resource for NS$instance_name.

Generic Service resources enable Windows services, such as NS$instance_name, to be used as cluster resources. If node NS1 fails,
the cluster resource group fails over to NS2, and the NS$instance_name service starts on NS2.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. Open Groups.
3. Right-click NSGroup, point to New, and then click Resource.
4. On the New Resource page, enter the following information:

Name: instance_name

Resource type: Generic Service

Group: NSGroup

5. On the Possible Owners page, select NS1 and NS2 in the Available nodes list, and then click Add to move them to
Possible owners list.

6. On the Dependencies page, select SQL Server in the Available resources list, and then click Add to move it to Resource
dependencies list.

7. On the Generic Service Parameters page, type the following information:

Service name: NS$instance_name

8. On the Registry Replication page, click Finish.

Create the databases and grant database permissions.

NSControl Create uses data from the configuration file and the ADFs to create the instance and application databases. After you
create the databases, you can grant database permissions to the domain\NSService account. This is also a good time to grant
database permissions to the domain\Ops account.

1. In the open command prompt window, type the following command to create the instance and application databases:

nscontrol create -in "%ConfigFileName%"
 -sqlusername dba_user_name -sqlpassword dba_password

2. Type the following command to grant the NSService login account access to the instance database and to add the account
to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

3. Type the following command to grant the NSService login account access to the application database and to add the
account to the NSRunService database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'NSService'
 EXEC sp_addrolemember 'NSRunService', 'NSService'"

If the instance hosts multiple applications, repeat this step for each application database.

4. Type the following command to grant the Ops login account access to the instance database and to add the account to the
NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

5. Type the following command to grant the Ops login account access to the application database and to add the account to
the NSMonitor and NSAnalysis database roles.

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'Ops'
 EXEC sp_addrolemember 'NSMonitor', 'Ops'
 EXEC sp_addrolemember 'NSAnalysis', 'Ops'"

If the instance hosts multiple applications, repeat this step for each application database.

Enable all components and then start the instance.

After you have created the databases and have granted the necessary permissions, you can enable the instance and then start the
instance by bringing the Generic Service online.

Note Without event, subscriber, subscriber device, and subscription data, Notification Services will not generate
notifications. If you have not configured an event source and deployed your subscription management application,
you might want to complete those tasks before performing the following steps.

1. Type the following command to enable the instance:

nscontrol enable -name %InstanceName%
 -sqlusername dba_user_name -sqlpassword dba_password

Enabling the instance in this way allows all components, including the event provider host, the generator, and the
distributor, to run when you start the service.

2. Close the command prompt window.

NS2 Tasks

Move the cluster group to node NS2.

Node NS2 must own the cluster group NSGroup to complete these procedures. If NSGroup is not on NS2, you must use Cluster
Administrator to move it to NS2.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup, and then look at the Owner column in the right pane.
4. If the Owner column indicates that NS1 owns the cluster group, right-click NSGroup, and then click Move.

NSGroup should now be available to NS2.

Install Notification Services.

Install the Notification Services engine on NS2. You can install additional components, such as documentation, but other
components are not required for deployment. Do not install the sample applications on production servers.

For more information about installing components, see Installing Notification Services.

Map network drives.

To match the mappings on NS1, map the NSSourceFiles share to drive S and the NSDataFiles share to T. For more information
about mapping network drives, see your Windows documentation.

Grant local Windows permissions to the domain accounts.

This scenario uses two domain accounts: domain\NSService and domain\Ops.

Add the domain\NSService and domain\Ops accounts to the local Users group.

These domain accounts require few privileges on NS2; the Users group provides the basic privileges. You grant additional
privileges during the deployment process. For more information on adding accounts to a local group, see your Windows
documentation.

Register the instance of Notification Services.

Registering the instance creates the NS$instance_name service, which runs the instance of Notification Services. The service must
be registered on NS2 in case of a failover.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following environment variables:

Set InstanceName=instance_name
Set SQLServer=database_server_name

When you run these commands, the environment variables are active as long as the command prompt window is open.

Your instance and applications may require additional environment variables. To reduce typing, you can create a batch file
that contains all environment variables for your instance, and then run this batch file after you open the command prompt
window.

3. In the open command prompt window, type the following command:

nscontrol register -name %InstanceName% -server %SQLServer%
 -serviceusername domain\NSService
 -servicepassword service_password
 -sqlusername NSService -sqlpassword sql_password -service

The NSControl Register command creates the service; it also creates performance counters used to monitor the instance
and creates registry entries for the instance.

4. Close the command prompt window.

Bring the Generic Service online.

To start the instance of Notification Services, bring the Generic Service online. If you want to start the service on NS1, move the
cluster group to NS1 before performing these steps.

1. In Control Panel, open Administrative Tools, and then open Cluster Administrator.
2. In the left pane, expand Groups.
3. Select NSGroup.
4. In the right pane, right-click Generic Service, and then click Bring Online.

You have now deployed the instance of Notification Services on a two-node cluster.

See Also

NSControl Create

NSControl Enable

NSControl Register

SQL Server Authentication Deployment Scenarios

Subscription Management Application Deployment Scenarios

Windows Authentication Deployment Scenarios

SQL Server Notification Services Books Online

Subscription Management Application Deployment Scenarios
Subscription management applications are typically Web-based applications that subscribers can use to create and manage
subscriptions. The steps for deploying a subscription management application depend on whether the application is deployed on
the database server or on a remote server, and whether the application uses Windows Authentication or SQL Server
Authentication to connect to SQL Server.

This section contains several deployment scenarios for ASP.NET-based subscription management applications. Each scenario
provides step-by-step instructions for deploying the subscription management application.

Scenario Steps

Follow these steps to deploy a subscription management application:

1. Determine whether the application will be located on the database server or on a remote server. Only intranet-based
applications should be deployed on the database server. Most Internet-based applications are deployed on an existing Web
server.

2. Determine the security model used by the application. If possible, use Windows Authentication, since it is more secure and
easier to manage.

3. If the subscription management application is located on a server that does not host the Notification Services instance,
install the Notification Services client components and register the instance.

4. Grant database permissions to the account used by the subscription management application to connect to SQL Server.

The topics that this section covers are described in the following table.

Topic Description
Deploying a Subscription Management
Application on the Database Server
(Windows Authentication)

Provides step-by-step instructions for
deploying a subscription management
application on the database server, using
Windows Authentication.

Deploying a Subscription Management
Application on a Remote Server
(Windows Authentication)

Provides step-by-step instructions for
deploying a subscription management
application on a server that does not host
the databases, using Windows
Authentication.

Deploying a Subscription Management
Application on the Database Server (SQL
Server Authentication)

Provides step-by-step instructions for
deploying a subscription management
application on the database server, using
SQL Server Authentication.

Deploying a Subscription Management
Application on a Remote Server (SQL
Server Authentication)

Provides step-by-step instructions for
deploying a subscription management
application on a server that does not host
the databases, using SQL Server
Authentication.

See Also

Notification Services Deployment Scenarios

SQL Server Notification Services Books Online

Deploying a Subscription Management Application on the
Database Server (Windows Authentication)
Deploying a Subscription Management Application on the Database Server (Windows Authentication)

For intranet-based notification applications, your subscription management application might be on the same server as the
instance and application databases. Having your application and databases together simplifies deployment because you do not
need to create a domain account that the subscription management application uses to connect to SQL Server.

This scenario shows how to deploy a Microsoft ASP.NET-based subscription management application using Windows
Authentication. ASP.NET-based applications can use a built-in account named ASPNET. If the application is an ASP-based
application (not ASP.NET), you must create define a different account for the application.

Prerequisites

The ASPNET account exists on the database server. The Microsoft .NET Framework Setup program creates this account. If
the ASPNET account does not exist, you can create the account by running the following command (for version 1.0.3705):

%windir%\Microsoft.NET\Framework\v1.0.3705\ASPNET_REGIIS.exe –I

You have added the application to Internet Information Services (IIS), but have not yet configured security for the
application.

Note If you print this topic, the steps within each procedure will appear in the printout.

Tasks

Install Notification Services client components, if necessary.

Install the Notification Services client components on the database server. If you have already installed the engine
components on this server, you do not need to install the client components.

For more information about installing components, see Installing Notification Services.

Register the instance, if necessary.

The subscription management application requires the instance of Notification Services to be registered so it can locate the
databases. If the database server hosts only the database components (not the engine components), the instance was not
previously registered. Register the instance using NSControl Register.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following environment variables:

Set SQLServer=database_server_name
Set InstanceName=instance_name
Set AppName=application_name

When you run this command, the environment variables are active as long as the command prompt window is open.

3. Type the following command to register the instance:

nscontrol register -name %InstanceName% -server %SQLServer%

This registers the instance on SQL1. The –service option is omitted to avoid installing the NS$instance_name service.

4. Leave the command prompt window open for the next procedure.

Grant the computer\ASPNET account access to SQL Server.

The computer\ASPNET account must be able to access the Notification Services databases. Before you can grant database
permissions to this account, you must grant access to SQL Server by creating a login ID.

1. In the open command prompt window, type the following command to create a SQL Server login ID for the
computer\ASPNET account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'computer\ASPNET'"

2. Leave the command prompt window open for the next procedure.

Grant database access and permissions to the SQL Server login account.

After creating the login account for computer\ASPNET, grant permissions in the instance and application databases. The
subscription management application manages subscriber data in the instance database and subscription data in the application
databases.

1. In the open command prompt window, type the following command to grant the computer\ASPNET account access to the
instance database and add it to the NSSubscriberAdmin database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess ' computer\ASPNET'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'computer\ASPNET'"

2. Type the following command to grant the computer\ASPNET account access to an application database and add it to the
NSSubscriberAdmin database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'computer\ASPNET'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'computer\ASPNET'"

If the subscription management application manages subscriptions for multiple applications, repeat this step for each
application database.

3. Ensure that the subscription management application has access to the Notification Services assembly and any necessary
localized resource files. For more information, see Providing Access to the Notification Services Assembly and Localized
Resource Files.

You can now use the subscription management application to manage subscribers and subscriptions for the instance of
Notification Services.

See Also

Notification Services Deployment Scenarios

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Deploying a Subscription Management Application on a
Remote Server (Windows Authentication)
Deploying a Subscription Management Application on a Remote Server (Windows Authentication)

For Internet-based notification applications, your subscription management application is typically deployed on an existing
Internet Information Services (IIS) Web server.

This scenario shows how to deploy a Microsoft ASP.NET-based subscription management application on a remote IIS server using
Windows Authentication. This scenario requires a domain account that your subscription management application uses to
connect to SQL Server. The procedures in this topic show you how to create this login account and grant the necessary
permissions.

Prerequisites

You (or your domain administrator) have created a domain account used by the ASP.NET-based application. This is required
to allow an application on a remote server to connect to SQL Server using Windows Authentication.
You have added the application to Internet Information Services (IIS), but have not yet configured security for the
application.
You have already deployed the instance of Notification Services, which created the instance and application databases on
the database server.

Note If you print this topic, the steps within each procedure will appear in the printout.

IIS Server Tasks

Install the client components.

Install the Notification Services client components on the IIS server. The client components include the Notification Services
subscription management objects and the NSControl utility. The client components do not require a Notification Services
license.

For more information about installing components, see Installing Notification Services.

Register the instance.

The subscription management application requires the instance of Notification Services to be registered so it can locate the
databases. Register the instance using NSControl Register.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following environment variables:

Set SQLServer=database_server_name
Set InstanceName=instance_name

When you run these commands, the environment variables are active as long as the command prompt window is open.

3. In the open command prompt window, type the following command to register the instance without creating the
NS$instance_name service:

nscontrol register -name %InstanceName% -server %SQLServer%

4. Ensure that the subscription management application has access to the Notification Services assembly and any necessary
localized resource files. For more information, see Providing Access to the Notification Services Assembly and Localized
Resource Files.

5. Close the command prompt window.

Configure security for ASP.NET-based applications.

Important The following procedure changes the account used by all ASP.NET-based applications on the IIS server to run under

the domain\ASPNET account. This may not be compatible with existing ASP.NET-based applications.

1. Using Notepad, open the Machine.config file.

This file should be located at %windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG.

2. Locate the <processModel> element. This element has several attributes, including userName and password.
3. Set the userName value to domain\ASPNET and the password value to the password for the domain ASPNET account.

The element should look like this:

<processModel
 ...
 userName="domain\ASPNET"
 password="aspnet_password"
 ...
/>

4. Save the Machine.config file.
5. Grant the domain\ASPNET account Full Control to the %windir%Microsoft.NET\Framework\v1.0.3705\Temporary ASP.NET

Files folder.

For more information on granting permissions to folders, see your Windows documentation.

6. Restart IIS to apply the changes.

Database Server Tasks

Grant the domain\ASPNET account access to SQL Server.

The domain\ASPNET account must be able to access the Notification Services databases. Before you can grant database
permissions to this account, you must grant access to SQL Server.

1. In the open command prompt window, type the following command to grant SQL Server access to the domain\ASPNET
account:

osql -E -S %SQLServer% -Q "EXEC sp_grantlogin 'domain\ASPNET'"

2. Leave the command prompt window open for the next procedure.

Grant database access and permissions to the SQL Server login account.

After granting SQL Server access to domain\ASPNET, grant permissions in the instance and application databases. The
subscription management application manages subscriber data in the instance database and subscription data in the application
databases.

1. In the open command prompt window, type the following command to grant the domain\ASPNET account access to the
instance database and add it to the NSSubscriberAdmin database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'domain\ASPNET'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'domain\ASPNET'"

2. Type the following command to grant the domain\ASPNET account access to an application database and add it to the
NSSubscriberAdmin database role:

osql -E -S %SQLServer% -Q "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'domain\ASPNET'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'domain\ASPNET'"

If the subscription management application manages subscriptions for multiple applications, repeat this step for each
application database.

You can now use the subscription management application to manage subscribers and subscriptions for the instance of

Notification Services.

See Also

Notification Services Deployment Scenarios

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Deploying a Subscription Management Application on the
Database Server (SQL Server Authentication)
Deploying a Subscription Management Application on the Database Server (SQL Server Authentication)

For intranet-based notification applications, your subscription management application might be on the same server as the
instance and application databases. Keeping your application and databases together simplifies deployment because you do not
need to create a domain account that the subscription management application uses to connect to SQL Server.

This scenario shows how to deploy a Microsoft ASP.NET-based subscription management application using SQL Server
Authentication for connections to the databases. You must define a SQL Server login account that your subscription management
application uses to connect to SQL Server. The procedures in this topic show you how to create this login account and grant the
necessary permissions.

Prerequisites

The subscription management application was developed to use a SQL Server login account for connections to SQL Server.
For the purpose of this scenario, the account is called SMA.
You have added the application to Internet Information Services (IIS), but have not yet configured security for the
application.

Note If you print this topic, the steps within each procedure will appear in the printout.

Tasks

Install Notification Services client components, if necessary.

Install the Notification Services client components on the database server. If you have already installed the engine
components on this server, you do not need to install the client components.

For more information about installing components, see Installing Notification Services.

Register the instance, if necessary.

The subscription management application requires the instance of Notification Services to be registered so that it can locate the
databases. If the database server hosts only the database components (not the engine components), the instance was not
previously registered. Register the instance using the NSControl Register command.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses one environment variable:

Set SQLServer=database_server_name
Set InstanceName=instance_name
Set AppName=application_name

When you run this command, the environment variable is active as long as the command prompt window is open.

3. In the open command prompt window, type the following command to register the instance without creating the
NS$instance_name service:

nscontrol register -name %InstanceName% -server %SQLServer%

4. Leave the command prompt window open for the next procedure.

Create the SMA SQL Server login account.

The subscription management application uses the SMA SQL Server login account to connect to SQL Server. You must create the
login account and assign a password.

1. In the open command prompt window, type the following command to create the SMA login account and define a

password:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'SMA', 'sql_password'"

2. Leave the command prompt window open for the next procedure.

Grant database access and permissions to the SMA login account.

After creating the SMA login account, grant permissions in the instance and application databases. The subscription management
application manages subscriber data in the instance database and subscription data in the application databases.

1. In the open command prompt window, type the following command to grant the SMA login account access to the instance
database and add it to the NSSubscriberAdmin database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'SMA'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'SMA'"

2. Type the following command to grant the SMA login account access to an application database and add it to the
NSSubscriberAdmin database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'SMA'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'SMA'"

If the subscription management application manages subscriptions for multiple applications, repeat this step for each
application database.

3. Ensure that the subscription management application has access to the Notification Services assembly and any necessary
localized resource files. For more information, see Providing Access to the Notification Services Assembly and Localized
Resource Files.

You can now use the subscription management application to manage subscribers and subscriptions for the instance of
Notification Services.

See Also

Notification Services Deployment Scenarios

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Deploying a Subscription Management Application on a
Remote Server (SQL Server Authentication)
Deploying a Subscription Management Application on a Remote Server (SQL Server Authentication)

For Internet-based notification applications, your subscription management application is typically deployed on an existing
Internet Information Services (IIS) Web server.

This scenario shows how to deploy a Microsoft ASP.NET-based subscription management application on a remote IIS server using
SQL Server Authentication to connect to the databases. You must define a SQL Server login account that your subscription
management application uses to connect to SQL Server. The procedures in this topic show you how to create this login account
and grant the necessary permissions.

Prerequisites

The subscription management application was developed to use a SQL Server login account for connections to SQL Server.
For the purpose of this scenario, the account is called SMA.
You have added the application to Internet Information Services (IIS), but have not yet configured security for the
application.
You have already deployed the instance of Notification Services, which created the instance and application databases on
the database server.

Note If you print this topic, the steps within each procedure will appear in the printout.

IIS Server Tasks

Install the client components.

Install the Notification Services client components on the IIS server. The client components include the Notification Services
subscription management objects and the NSControl utility. The client components do not require a Notification Services
license.

For more information about installing components, see Installing Notification Services.

Register the instance.

The subscription management application requires the instance of Notification Services to be registered so that it can locate the
databases. Register the instance using NSControl Register.

1. On the Start menu, point to Programs\Notification Services, and then click Notification Services Command Prompt
to open a command prompt window.

2. Set any necessary environment variables. This deployment scenario uses the following environment variables:

Set SQLServer=database_server_name
Set InstanceName=instance_name

When you run these commands, the environment variables are active as long as the command prompt window is open.

3. In the open command prompt window, type the following command to register the instance without creating the
NS$instance_name service:

nscontrol register -name %InstanceName% -server %SQLServer%

4. Ensure that the subscription management application has access to the Notification Services assembly and any necessary
localized resource files. For more information, see Providing Access to the Notification Services Assembly and Localized
Resource Files.

5. Close the command prompt window.

Database Server Tasks

Create the SMA SQL Server login account.

The subscription management application uses the SMA SQL Server login account to connect to SQL Server. You must create the
login account and assign a password.

1. Set any necessary environment variables. The procedures on the database server use the following environment variables:

Set SQLServer=database_server_name
Set InstanceName=instance_name
Set AppName=application_name

When you run these commands, the environment variables are active as long as the command prompt window is open.

2. In the open command prompt window, type the following command to create the SMA login account and define a
password:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "EXEC sp_addlogin 'SMA', 'sql_password'"

3. Leave the command prompt window open for the next procedure.

Grant database access and permissions to the SMA login account.

After creating the SMA login account, grant permissions in the instance and application databases. The subscription management
application manages subscriber data in the instance database and subscription data in the application databases.

1. In the open command prompt window, type the following command to grant the SMA login account access to the instance
database and add it to the NSSubscriberAdmin database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%NSMain
 EXEC sp_grantdbaccess 'SMA'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'SMA'"

2. Type the following command to grant the SMA login account access to an application database and add it to the
NSSubscriberAdmin database role:

osql -U dba_user_name -P dba_password -S %SQLServer% -Q
 "USE %InstanceName%%AppName%
 EXEC sp_grantdbaccess 'SMA'
 EXEC sp_addrolemember 'NSSubscriberAdmin', 'SMA'"

If the subscription management application manages subscriptions for multiple applications, repeat this step for each
application database.

You can now use the subscription management application to manage subscribers and subscriptions for the instance of
Notification Services.

See Also

Notification Services Deployment Scenarios

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Providing Access to the Notification Services Assembly and
Localized Resource Files
When deploying a subscription management application, a non-hosted event provider, or another application that interacts with
the Notification Services API, you must provide a way for the application to locate the Notification Services assembly (which
contains the Notification Services API classes) and localized resource files. Applications use these files to interact with Notification
Services and to write event messages to the local application log.

You can provide access to the files for all applications running on the server, or you can provide access for a single application. To
provide access for applications, register the assembly and localized resource files with the global assembly cache. To provide
access for a single application, copy the assembly to the Bin folder of the application, and copy the localized resource files to the
Bin\language_code folders of the application.

The primary reason to provide access for a single application instead of all applications is security. If you do not want all
applications to be able to interact with Notification Services, do not register the assembly or resource files with the global
assembly cache.

The following procedures assume you have already installed the Notification Services client components on the server that hosts
the subscription management applications.

To register files in the global assembly cache for use by all applications

1. Open a command prompt window.
2. Go to the Microsoft .NET Framework directory, where the Gacutil.exe file is located. For the .NET Framework version

1.0.3705, type the following:

CD %windir%\Microsoft.NET\Framework\v1.0.3705

3. Type the following command to register the assembly and the English resources in the global assembly cache:

GACUTIL /i "%ProgramFiles%\Microsoft SQL Server Notification
 Services\vx.x.xxxx.x\Bin\
 Microsoft.SqlServer.NotificationServices.dll"

4. To register resources for a language other than English, type the following command:

GACUTIL /i "%ProgramFiles%\Microsoft SQL Server Notification
 Services\vx.x.xxxx.x\Bin\language_code\
 Microsoft.SqlServer.NotificationServices.resources.dll"

Repeat this step for each non-English language any subscription management applications support.

To provide access to the files for a single application

1. Open a command prompt window.
2. Copy the assembly to the Bin directory of the application. For example, for an ASP.NET-based subscription management

application located at \\Webserver\Wwwroot\SMAroot\Bin, type the following:

Copy "%ProgramFiles%\Microsoft SQL Server Notification Services
 \vx.x.xxxx.x\Bin\Microsoft.SqlServer.NotificationServices.dll"
 \\webserver\wwwroot\smaroot\bin

3. Copy the localized resource files to the proper Bin\language_code folders. For example, for an ASP.NET-based subscription
management application located at \\Webserver\Wwwroot\SMAroot\Bin, type the following:

Copy "%ProgramFiles%\Microsoft SQL Server Notification Services
 \vx.x.xxxx.x\Bin\language_code\
 Microsoft.SqlServer.NotificationServices.resources.dll"
 \\WebServer\wwwroot\smaroot\bin\language_code

Repeat this step for each non-English language any subscription management applications support.

See Also

Subscription Management Application Deployment Scenarios

SQL Server Notification Services Books Online

Managing Instances and Applications
After you deploy an instance of Notification Services, you might need to update the instance and its applications. Notification
Services supports updating instances and applications with the NSControl command prompt utility.

In addition to maintaining the instance and application configurations, you must ensure that the built-in data removal process,
called vacuuming, is running. This removes obsolete data from an application database, which improves performance and saves
disk space.

Another management task is backing up databases and other instance and application files on a regular schedule, and periodically
testing the restore process in preparation for possible hardware failures or data loss.

The topics that this section covers are described in the following table.

Topic Description
Updating Instances and Applications Provides information and instructions for

updating or deleting an instance that is
deployed.

Removing Obsolete Data Provides information and instructions for
removing obsolete data in Notification
Services application databases.

Backing Up and Recovering
Notification Services

Provides information and instructions for
backing up and restoring Notification Services
databases, configuration data, and operational
data.

See Also

Event Messages

Managing Security

Managing Services

Performance Monitoring and Reporting

Troubleshooting

SQL Server Notification Services Books Online

Updating Instances and Applications
After you deploy an instance of Notification Services, you might need to update the operational parameters of the instance, such
as delivery channels. You also can add and delete applications from the instance and modify existing applications.

In Notification Services you update an instance by updating its configuration file. You update applications hosted by the instance
by editing the application definition files (ADFs), updating the configuration file as necessary for the application updates. You then
apply the changes using the NSControl utility.

You also might need to remove an application from an instance, or delete an instance completely. These actions also are
supported by NSControl.

The topics that this section covers are described in the following table.

Topic Description
Updating Instance Properties Explains how to use NSControl Update

to update changes to the configuration
file.

Adding an Application to an Instance Provides instructions for adding an
application to a deployed instance of
Notification Services.

Updating an Application Provides instructions for updating a single
application while other applications
remain operational.

Removing an Application from an Instance Provides instructions for removing an
application from a deployed instance of
Notification Services.

Enabling and Disabling an Instance,
Application, or Component

Explains how to enable or disable an
instance, one or more instance
components, or one or more of its hosted
applications.

Re-Registering an Instance Explains how to re-register an instance
using NSControl Register.

Starting and Stopping a Deployed
Instance

Explains how to start or stop an instance
by starting or stopping its
NS$instance_name service.

Deleting an Instance Explains how to delete an instance using
NSControl commands.

See Also

Configuring and Deploying Instances

Managing Security

Managing Services

Performance Monitoring and Reporting

SQL Server Notification Services Books Online

Updating Instance Properties
Updating Instance Properties

After creating an instance of Notification Services, you might need to update properties of the instance, such as the available
delivery channels. You update instance properties by updating the configuration file, temporarily disabling the instance, applying
the changes using NSControl Update, and then enabling the instance.

During the update process, NSControl Update reads your updated configuration file and compares it with the metadata in the
existing instance database to determine which changes were made.

You can add or delete applications, delivery protocols, and delivery channels in the configuration file. You can change the
database system name, but doing so will not move the instance to a new server. You cannot update the instance name or
database properties; to change these properties, you must create a new instance. For complete information about which
configuration file elements can be updated, see the Configuration File Reference.

Note NSControl Update also reads each application definition file (ADF) and compares the information in those
files to the metadata in the application databases. If there are differences in the ADFs, NSControl Update updates the
applications also. For more information, see Updating an Application.

To update instance properties

1. Using an XML editor, update the configuration file.
2. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
3. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
4. Type the following command to disable the instance:

nscontrol disable -name instance_name

5. Type the following command to stop the NS$instance_name service:

net stop NS$instance_name

6. Type the following command to apply the changes made in the configuration file:

nscontrol update -in configuration_filename

If the instance or application uses command-line parameters, your NSControl Update command will contain additional
arguments. For more information, see NSControl Update.

7. To update performance counters, stop the NS$instance_name service and re-register the instance using NSControl Register.
If you do not use the performance counters or do not need them to be updated, do not perform this step.

8. Type the following command to enable the instance:

nscontrol enable -name instance_name

9. Type the following command to start the NS$instance_name service:

net start NS$instance_name

See Also

Adding an Application to an Instance

Deleting an Instance

NSControl Disable

NSControl Enable

NSControl Update

Removing an Application from an Instance

Re-Registering an Instance

SQL Server Notification Services Books Online

Adding an Application to an Instance
Adding an Application to an Instance

A Notification Services instance can host multiple applications. Two important benefits of using one instance for multiple
applications are that the applications share the same set of subscribers, and the applications can be administered as a group.

You can add applications after you deploy an instance. To add an application, you gather application files, add the information
about the application to the configuration file, and then update the instance using NSControl Update.

Note Before adding an application, gather the application definition file (ADF) and all operational files, such as XML
Schema definition language (XSD), XSLT, or custom component files.

To add an application to a deployed instance

1. Create or obtain the ADF for the new application.
2. In the configuration file, do the following:

Add an <Application> node to define the application.
Add any custom protocols to the <Protocols> node and any additional delivery channels to the
<DeliveryChannels> node.
If necessary for the new application, add default parameter values using the <ParameterDefaults> node.

3. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
4. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
5. Type the following command to disable the instance:

nscontrol disable -name instance_name

6. Type the following command to apply the changes made in the configuration file:

nscontrol update -in configuration_filename

If the instance or application uses command-line parameters, your NSControl Update command will contain additional
arguments. For more information, see NSControl Update.

7. To update performance counters, stop the NS$instance_name service and re-register the instance using NSControl Register.

This step updates performance counters, user names, and passwords. If you do not use the performance counters or do not
need them to be updated, do not perform this step.

8. Type the following command to enable the instance:

nscontrol enable -name instance_name

See Also

Configuration File Reference

Removing an Application from an Instance

Updating Instances and Applications

SQL Server Notification Services Books Online

Updating an Application
Updating an Application

After you deploy a Notification Services instance, you can update individual applications hosted by the instance. You update an
application by updating the application definition file (ADF), modifying any of the operational files (such as by adding or deleting
XSLT files or custom components), and then using the NSControl Update command to apply the changes.

To update a single application, you do not need to stop or disable the entire instance. You can leave other applications hosted by
the instance running while you update a single application. However, if you also change values in the configuration file, you must
disable the entire instance before applying the update.

When you update an application, consider the following:

If you change a subscription class in the ADF, NSControl Update usually must create a new subscriptions table. NSControl
Update backs up the existing table. For more information, see NSControl Update.
Updating an application typically deletes event and notification data. Plan to resubmit any batches of events that have not
been processed before the update, or any batches of events that would have been processed while the application is being
updated.

Important You can rename the application in the configuration file. However, this is considered a change to the
instance properties, so it requires you to disable the instance. When you apply the name change, Notification
Services creates a new application database, but does not delete the old database.

To update one application with no configuration changes

1. Update the elements in the ADF and any operational files, such as XSLT files and DLLs for custom components.
2. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
3. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
4. Type the following command to disable the application:

nscontrol disable -name instance_name -application application_name

5. Type the following command to apply the changes made in the ADF:

nscontrol update -in configuration_filename

If the instance or application uses command-line parameters, your NSControl Update command will contain additional
arguments. For more information, see NSControl Update.

6. To update performance counters, stop the NS$instance_name service and re-register the instance using NSControl Register.

This updates performance counters, user names, and passwords. If you do not use the performance counters or do not need
to update them, do not perform this step.

7. From a command prompt, type the following command to enable the application:

nscontrol enable -name instance_name -application application_name

See Also

Adding an Application to an Instance

Removing an Application from an Instance

Updating Instances and Applications

SQL Server Notification Services Books Online

Removing an Application from an Instance
Removing an Application from an Instance

After you deploy a Notification Services instance, you might determine that you need to remove an application. For example, you
might want to permanently delete an obsolete application or move the application to another instance.

When you remove an application from an instance, Notification Services simply disassociates the application from the instance.
Notification Services does not delete the application database or any of the application files from the server. You can manually
delete the databases by using Transact-SQL or SQL Server Enterprise Manager.

Important Do not use the NSControl Delete command to remove applications from an instance. NSControl
Delete deletes the instance database and the application databases for all applications hosted by the instance.

To remove an application from a deployed instance

1. In the configuration file, do the following:

Remove the <Application> node that represents the application.
Remove any application-specific custom protocols from the <Protocols> node.
Remove any application-specific delivery channels from the <DeliveryChannels> node.
Remove any application-specific default parameter values from the <ParameterDefaults> node.

2. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
3. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
4. Type the following command to disable the instance:

nscontrol disable -name instance_name

5. Type the following command to apply the changes made in the configuration file:

nscontrol update -in configuration_filename

If the instance or application uses command-line parameters, your NSControl Update command will contain additional
arguments. For more information, see NSControl Update.

6. To update performance counters, stop the NS$instance_name service and re-register the instance using NSControl Register.

This updates performance counters, user names, and passwords. If you do not use the performance counters or do not need
them to be updated, do not perform this step.

7. Type the following command to enable the instance:

nscontrol enable -name instance_name

See Also

Adding an Application to an Instance

Configuration File Reference

NSControl Disable

NSControl Enable

NSControl Register

NSControl Update

SQL Server Notification Services Books Online

Enabling and Disabling an Instance, Application, or Component
Enabling and Disabling an Instance, Application, or Component

After you deploy an instance, you might need to temporarily stop the instance, a single application hosted by the instance, or a
component of an instance or application for maintenance or troubleshooting reasons. You stop an instance, application, or
component using the NSControl Disable command. You can later enable the component using NSControl Enable.

Note If you disable the generator component (or if you disable an instance or application) the clock that controls
quantum processing stops. When you enable the generator, the generator attempts to catch up to the current real-
time clock. This might have some impact on how quickly new notifications are generated, depending on the level of
activity in the application. The application definition file (ADF) defines the limit for how many previous quantum
periods the generator attempts to process using the <SubscriptionQuantumLimit> and
<ChronicleQuantumLimit> values.

To enable an instance, application, or component

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run the NSControl Enable command to enable the instance. For more information, see NSControl Enable.

To disable an instance, application, or component

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run the NSControl Disable command to disable the instance. For more information, see NSControl Disable.

To view the status of an instance, application, or component

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run the NSControl Status command to view the status. For more information, see NSControl Status.

See Also

Starting and Stopping an Instance

SQL Server Notification Services Books Online

Re-Registering an Instance
Re-Registering an Instance

After you create a Notification Services instance, you register the instance on each server where the instance runs using
NSControl Register. Registering the instance creates the NS$instance_name service, registers the service with Microsoft
Windows®, updates user names and passwords for the service, and creates performance counters.

There are times when you need to re-register the instance to update this information:

If you add or remove an application, re-registering the application updates the performance counters.
If the NS$instance_name service uses SQL Server Authentication to connect to SQL Server, you must re-register the
instance to update the SQL Server user name and password.
You can change the user name and password of the account the service runs under by re-registering the instance.
If performance counters become corrupted, re-registering the instance might fix the problem.

To register or re-register an instance of Notification Services

1. If the NS$instance_name service is running, stop the service. For more information, see Starting and Stopping a Service.
2. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
3. Type the following command to unregister the instance:

nscontrol unregister -name instance_name

4. Run the NSControl Register command. The arguments you use will vary depending on your system configuration. For
more information, see NSControl Register.

See Also

Configuring an NS$instance_name Service

Managing Security

Registering and Unregistering an Instance

SQL Server Notification Services Books Online

Stopping and Restarting a Deployed Instance
Stopping and Restarting a Deployed Instance

On each server that hosts a Notification Services instance, the instance is run by a Windows service named NS$instance_name.
Stopping the service stops the Notification Services instance on the local server. If the instance runs on that server only, the
instance is completely stopped. If the instance is scaled out across multiple servers, stopping the NS$instance_name service on
that server stops the processing only on that server.

When possible, use the NSControl Disable command to stop components of an instance without stopping the entire instance.

Stopping a deployed instance of Notification Services has varying effects, depending on which components are run by the service
you are stopping:

Generator component: Notification Services stops collecting event data and stops generating notifications. However, the clock
that controls quantum processing stops. When you restart the service that runs the generator, the generator attempts to catch up
to the current clock time, and past-due processing takes priority. When you re-start the instance, this can have a minor or major
impact on how quickly new notifications are generated (depending on the activity level of the application). The application
definition file (ADF) defines the limit for how many previous quantum periods the generator attempts to process using the
<SubscriptionQuantumLimit> and <ChronicleQuantumLimit> values.

Event provider component: Events cannot be collected. You might need to resubmit any event batches that was submitted
while the event provider component is disabled.

Distributor component: Notifications cannot be delivered. When you restart the service, there might be a backlog of
notifications to deliver.

You can use the NSSnapshotApplications stored procedure to determine how far behind all the applications hosted by an
instance have fallen (based on the number of quantum periods the generator is running behind), both when the instance is
stopped and when it is running. This can help you determine whether quanta will be skipped when you restart an instance.

To stop an instance of Notification Services

From a command prompt, type:

net stop NS$instance_name

To restart an instance of Notification Services

From a command prompt, type:

net start NS$instance_name

See Also

NSControl Disable

Starting and Stopping a Service

SQL Server Notification Services Books Online

Deleting an Instance
Deleting an Instance

Deleting a Notification Services instance deletes the instance and application databases. After deleting the instance, you must
unregister the instance to remove performance counters, the NS$instance_name service, and registry entries.

Important Deleting an instance is an irreversible action. If you have not backed up your databases, all data in those
databases is permanently lost. However, if you remove an application from an instance, databases are not deleted. For
more information, see Removing an Application from an Instance.

Before deleting a deployed instance, develop a plan for migrating any subscriber and subscription data to new instances if
necessary. Data Transformation Services and the bcp utility are two SQL Server tools you can use for transferring data from a
database to a destination.

When you delete an instance, the Notification Services extended stored procedures in the master database are not removed
because the instance cannot detect whether other instances are using the extended stored procedures.

To delete a Notification Services instance

1. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
2. From the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
3. Type the following command to delete the instance:

nscontrol delete -name instance_name -server database_server_name

4. Type the following command to unregister the instance:

nscontrol unregister -name instance_name

See Also

Backing Up and Recovering Notification Services

NSControl Delete

NSControl Unregister

Removing Notification Services

UninstallXPs Utility

SQL Server Notification Services Books Online

Removing Obsolete Data
If too much data accumulates in your Notification Services application database, it can affect performance in two ways. First, large
tables affect query performance, because there is excess data for SQL Server to search. Second, when data files become large, SQL
Server might automatically increase the file size; this operation consumes system resources.

Notification Services uses a process called vacuuming to remove obsolete data from application databases. Vacuuming is a
process that runs automatically for each application according to a schedule defined for the application.

When a developer creates an application, the developer can define a custom retention age for data. This is the minimum age for
events, notifications, and other data before the vacuuming process can remove the data. The developer can also define a custom
vacuuming schedule. This schedule determines when the vacuuming process begins and how long it runs. If the developer does
not define a custom retention age and schedule, the application uses the default settings. For more information, see the reference
topics for the <Vacuum> Node.

When applications are running, you must ensure that the vacuuming process is running. If vacuuming is running, but the
application requires a different vacuuming configuration, you can update vacuuming by updating the application definition file
(ADF). If necessary, you can run vacuuming manually.

The topics that this section covers are described in the following table.

Topic Description
Verifying Vacuuming Provides methods for confirming that the

vacuumer process is running as scheduled.
Modifying the Vacuuming Schedule Provides instructions for updating the

vacuuming schedule in the ADF and then
applying these changes to the application.

Running Vacuuming Manually Provides instructions for running the
vacuumer process using a stored
procedure.

See Also

Defining the <Vacuum> Node

<Vacuum> Node

SQL Server Notification Services Books Online

Verifying Vacuuming
Verifying Vacuuming

For every application, you should periodically check to ensure that vacuuming is running as scheduled. If large amounts of data
accumulate in the application database, application performance might decline, and the database might run out of disk space.
Notification Services provides stored procedures and performance counters for monitoring applications, which you can use to
monitor vacuuming.

The NSSnapshotApplications stored procedure returns five vacuuming values for each application:

VacuumerSystemName: The name of the computer system running the vacuumer.
LastTimeVacuumingOccurred: The date and time the last vacuuming period started.
SecondsSinceLastVacuum: The elapsed time, in seconds, since the vacuumer last ran.
LastTimeVacuumEventCount: The number of events removed when the vacuumer last ran.
LastTimeVacuumNotificationsCount: The number of notifications removed when the vacuumer last ran.

The NS$instance_name: Vacuumer performance object provides performance counters relevant to vacuumer processing. You
monitor the counters provided by this object to determine whether the vacuumer component is timing out and how many quanta
have been vacuumed or are ready to be vacuumed.

Vacuuming removes notifications only if they have been delivered or if they have expired. Vacuuming removes events only if they
have been processed. Vacuuming removes quanta only if the notifications and events associated with them have been removed. If
data that you expect to be removed is not yet removed, then there is likely a dependent piece of data that cannot yet be removed.

See Also

Modifying the Vacuuming Schedule

NS$instance_name: Vacuumer Object

NSSnapshotApplications

SQL Server Notification Services Books Online

Modifying the Vacuuming Schedule
Modifying the Vacuuming Schedule

To adjust the vacuuming schedule for a Notification Services application, you must update the application definition file (ADF) and
then update the application.

The ADF contains a section named <ApplicationExecutionSettings>; within this section is a <Vacuum> node. This node
defines the retention age of data and the schedule used to run the vacuumer. For more information about defining a vacuuming
schedule, see Defining the <Vacuum> Node.

If you modify the vacuuming schedule, configure the schedule so that vacuuming runs at times of low system activity. Vacuuming
consumes system resources and might cause lower application performance while the vacuumer is running.

To modify the vacuuming schedule and apply the changes

1. Open the ADF for the application you want to update.
2. Add or edit the <Vacuum> node in the <ApplicationExecutionSettings> node by doing the following:

To change the minimum age for data that should be removed, change the <RetentionAge> value. For more
information, see <RetentionAge> Element.
To change the schedule, modify the <VacuumSchedule> node. For more information, see <VacuumSchedule>
Node.

3. Back up the instance and application databases. For more information, see Backing Up Databases and Other Files.
4. From the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification

Services Command Prompt to open a command prompt window.
5. Type the following command to disable the application:

nscontrol disable -name instance_name -application application_name

6. Type the following command to update the application:

nscontrol update -in configuration_filename

If the instance or application uses command-line parameters, your NSControl Update command will contain additional
arguments. For more information, see NSControl Update.

7. To update performance counters, stop the NS$instance_name service and re-register the instance using NSControl Register.

This updates performance counters, user names, and passwords. If you do not use the performance counters or do not need
them to be updated, do not perform this step.

8. Type the following command to enable the application:

nscontrol enable -name instance_name -application application_name

See Also

Application Definition File Reference

NSControl Disable

NSControl Enable

NSControl Register

NSControl Update

Removing Obsolete Data

SQL Server Notification Services Books Online

Running Vacuuming Manually
Running Vacuuming Manually

The best way to remove obsolete data from an application database is to let the vacuumer run as scheduled. If the vacuuming
schedule is not optimal, change the schedule in the application definition file (ADF) and then update the application. You should
run vacuuming manually only if you determine that vacuuming has not run as scheduled and there is an urgent need to remove
obsolete data.

Important Do not run the vacuumer manually when the vacuumer is running or is scheduled to run. Application
errors might occur, resulting in no data being removed. Look at the ADF to determine the vacuuming schedule. If the
ADF does not contain a <Vacuum> node, the application uses the default vacuuming schedule. For more information,
see Defining the <Vacuum> Node.

Use the NSVacuum stored procedure, located in the application database, to run vacuuming manually. For more information, see
NSVacuum.

See Also

Removing Obsolete Data

SQL Server Notification Services Books Online

Backing Up and Recovering Notification Services
Backing up instances of Notification Services should be a regular maintenance task. Without backups of the instance and
application database files, operational files, configuration file, and application definition files (ADFs), you cannot recover
applications to a point in time.

When you recover an instance, Notification Services determines the last completed quantum from the application database and
resumes processing from that point, possibly skipping quanta according to settings in the ADF. Because of this, and because
subscriber and subscription data is located in the instance and application databases, frequent backups are important for optimal
application recovery.

The topics that this section covers are described in the following table.

Topic Description
Planning for Recovery Provides lists of the software and

information you need when recovering
Notification Services instances, and
provides recommendations for creating
your own recovery plan.

Backing Up Databases and Other Files Explains what files need to be backed up
so you can recover an instance of
Notification Services.

Recovering Notification Services Provides step-by-step instructions for
recovering an instance of Notification
Services.

SQL Server Notification Services Books Online

Planning for Recovery
Planning for Recovery

Use the following lists to get started with planning for the recovery of Notification Services applications.

Even though these lists can help you plan for recovery, it is important to develop your own recovery lists and instructions for your
applications because each application and deployment is unique.

Software

Ensure that the following software is available for recovery:

Operating system media
SQL Server 2000 media
Notification Services Setup program
Notification Services prerequisite software
Any service packs or patches applied to the operating system, SQL Server, or Notification Services
Any operational files used by Notification Services applications, such as custom components, XML Schema definition
language (XSD) files, and XSLT files
Configuration files and application definition files (used only for instance and application updates)
Subscription management applications

Security Information

Ensure that the following security information is available to those who will restore the instance:

User names and passwords that the NS$instance_name services run under.
If using SQL Server Authentication, the SQL Server user name and password used by the NS$instance_name service to
connect to SQL Server.
User names and passwords used by subscription management applications.
The local or domain user account used to install software and run NSControl commands.
The SQL Server administrator account used to run NSControl commands.

See Also

Backing Up Databases and Other Files

Recovering Notification Services

SQL Server Notification Services Books Online

Backing Up Databases and Other Files
Backing Up Databases and Other Files

To back up an instance of Notification Services, you must back up database and operational files (such as XSLT files used to
format notifications), and the files used to configure the instance and applications.

Backing Up Database Files

Each instance has one instance database and one or more application databases. The instance database contains information
about the Notification Services instance, including subscriber and subscriber device data. The application databases contain all
application-specific information, including the events, subscriptions, notifications, and information about the state of the
application.

For Notification Services, the best recovery model is Full. Using the database, differential, and transaction log backups provided by
the Full recovery model enables you to restore the instance and application databases to a point in time. An example schedule for
backups could be full database backups each night, differential backups every 3 hours, and transaction log backups every 30
minutes. Using this model, even if the hard drive that stores the transaction log is damaged, you should be able to restore the
instance to within 30 minutes of the failure.

For more information about SQL Server recovery models, see "Using Recovery Models" in SQL Server Books Online.

Important Back up the instance and application databases on the same schedule. This ensures that the databases are
at the same operational state, and reduces the likelihood of application errors after recovery.

Backing Up Operational Files

Other than the database files, most instances require additional files during operation. For example, an application that uses the
file system watcher event provider uses one or more XSD files that describe event data. Any application that uses XSLT to format
notifications has one or more XSLT files. And any application that uses custom objects has additional files for those custom
objects.

To recover an instance, you must have all operational files for all applications hosted by the instance. If these other files are not
available, parts of the applications will fail when restored.

Because these other operational files typically change less often than the database files, you probably do not need to back up
these files as often as the database files. But you should either store the source files using a version control system or back up the
files whenever you change them.

Backing Up Configuration and ADF Files

The configuration file and the application definition files (ADFs) are not required by the instance and its applications when the
applications are running. However, you use these files whenever you update the instance or applications. If you do not have
backups of these files available, you must re-create these files if the original files are lost. For this reason, you should either store
these files in a version control system or back up the files whenever you change them.

Because these files sometimes contain passwords or other information that you do not want others to see, you should secure all
backups of these files.

See Also

Recovering Notification Services

SQL Server Notification Services Books Online

Recovering Notification Services
Recovering Notification Services

When you recover an instance of Notification Services, you are recovering the instance and application databases or the
Notification Services engine components, or possibly both.

Important Depending on your system configuration, your recovery instructions might vary from the ones below. It is
very important that you test system recovery and create your own recovery instructions for your instances and
applications.

Important If an instance of Notification Services is scaled out across multiple servers, the servers must be restored
with the same names or you must update the configuration file and application definition files (ADFs) and then run the
NSControl Update command.

Recovering Notification Services Only

If you must recover Notification Services, but have not lost the instance and application databases, you only have to install
Notification Services, register all instances, and then start the instances.

To recover Notification Services only, without database recovery

1. Rebuild the server, installing the operating system, Notification Services prerequisites, any necessary service packs, and then
Notification Services. For more information, see Installing Notification Services.

2. Restore any operational files that were lost.

The operational files, such as custom components, Extensible Schema definition language (XSD) files for the file system
watcher event provider, and XSLT files for notification formatting, should be installed to a central location; the location is
specified in the configuration file.

3. If you are using local Windows accounts for the NS$instance_name service or for running NSControl commands, restore
the local accounts.

4. Register the instance using NSControl Register.
5. From a command prompt, type the following command to start the instance:

net start ns$instance_name

Recovering Databases Only

If the instance and application databases are lost, you can restore the databases to the point of the most recent backup plus the
current transaction log, if available.

To recover instance and application databases

1. Gather the backups of the instance and application databases.
2. Rebuild the database server, installing SQL Server 2000 and any necessary service packs or patches.
3. Install the Notification Services database components. For more information, see Installing Database Components.
4. Restore the instance and application databases. For more information about restoring databases, see "Using Recovery

Models" in SQL Server Books Online.
5. Restore security. For more information, see User Accounts Required by Notification Services Applications.
6. From a command prompt, type the following command to start the instance:

net start ns$instance_name

Restoring Notification Services and the Databases

If you lose the Notification Services engine components and the databases, it is best to restore the databases first. The only reason
is that the databases must be available before you can restore security and then start the instance.

To restore an instance of Notification Services and its databases

1. Gather the backups of the databases and other operational files.
2. Restore the database server by doing the following:

a. Rebuild the server, installing SQL Server 2000 and necessary service packs or patches, and then install the Notification
Services database components.

b. Restore the instance and application databases. For more information about restoring databases, see "Using Recovery
Models" in SQL Server Books Online.

3. Restore Notification Services engine components by doing the following:
a. Rebuild the server or servers that run the Notification Services instance. These are the servers that run the event

providers, the generator, and the distributors.
b. Restore security. For more information, see User Accounts Required by Notification Services Applications.
c. Register the instance using NSControl Register.

4. From a command prompt, type the following command to start the instance:

net start ns$instance_name

See Also

Backing Up Databases and Other Files

SQL Server Notification Services Books Online

Managing Services
The Notification Services engine is run by a Windows service named NS$instance_name (referred to within the Notification
Services documentation as "the NS$instance_name service" or simply "the service"). The service runs the event provider,
generator, and distributor components.

The service controls the operation of the instance and its associated applications. The service can be started and stopped, which
starts and stops the instance, and individual components of the service can be enabled and disabled, providing control over the
operation of the instance.

You install the service when you register an instance of Notification Services.

After you install the service, you must enable and start the instance when you want to run the Notification Services instance and
its applications. You can configure the service for automatic startup and automatic restart.

Depending on system configuration, an instance has one or more services associated with it:

If Notification Services is installed on one server, one service runs the event provider, generator, and distributor
components.
If Notification Services is installed on multiple servers for scalability, one service is installed on each server. Each instance
can have one generator, zero to many hosted event providers, and one or more distributors.

Because one service can run all components of Notification Services, you must enable or disable the event provider, generator,
and distributor components as needed. For example, you can run the event provider and generator on one server, and the
distributor on another server. An instance of this sort would have two services: one on each server.

Note Multiple server deployment is available only in Notification Services Enterprise Edition.

The NS$instance_name service topics that this section covers are described in the following table.

Topic Description
Installing an NS$instance_name Service Provides instructions for installing the

NS$instance_name service on a server.
Configuring an NS$instance_name
Service

Explains how to configure
NS$instance_name service startup and
restart behavior.

Enabling and Disabling Service
Components

Explains how to enable and disable
components of the NS$instance_name
service, entire instances, or individual
applications, for testing or for scaling out.

Starting and Stopping an
NS$instance_name Service

Explains how to start and stop a
NS$instance_name service from a
command prompt and from the Services
application.

See Also

Event Messages

NSControl Register

NS$instance_name Service Account Security

SQL Server Notification Services Books Online

Installing an NS$instance_name Service
Any server that hosts one or more components of a Notification Services application must have the NS$instance_name service
installed. Installing the service involves the following steps:

1. Install the Notification Services core components on the server. This installs the binary files required by the service.
2. Register an instance using NSControl Register with the -service argument. This installs the service and registers the

instance in the Windows registry.

The service is registered with the name NS$instance_name, where instance_name is the name of the instance as defined in
the configuration file.

After installing the service, you must start the service and enable its components in order to start an instance and its associated
applications.

Scale-Out Configurations

If your Notification Services instance is scaled out across multiple servers, you must first install Notification Services Enterprise
Edition and then install the service by registering the instance on each of those servers.

Information in the application definition file (ADF) specifies which components run on each server. Specify the server that runs
each component using the <Providers>, <Generator>, <Distributors> nodes.

Note If you are running Notification Services Standard Edition, the event provider host, generator, and distributors
must all run on the same server. Scale-out is not supported.

See Also

Enabling and Disabling Service Components

Installing Notification Services

NSControl Register

Registering and Unregistering an Instance

Starting and Stopping Services

SQL Server Notification Services Books Online

Configuring an NS$instance_name Service
Configuring an NS$instance_name service in Notification Services involves setting service startup and restart options and
establishing security credentials for the service. For example, you can configure a service to start automatically when the
computer starts. A service can also attempt to restart automatically if it stops for any reason.

To start an NS$instance_name service when the computer starts

1. In Control Panel, double-click Administrative Tools, and then double-click Services.
2. Double-click the NS$instance_name service.
3. In the Startup type box, select Automatic.

The service for the instance is now configured to start whenever the computer starts. If components are enabled, this means the
applications hosted by the instance start processing notifications when the server starts.

To restart an NS$instance_name service automatically

1. In Control Panel, double-click Administrative Tools, and then double-click Services.
2. Double-click the NS$instance_name service, and then click the Recovery tab.
3. In the First Failure, Second Failure, and Subsequent Failures boxes, select Restart the service.
4. In the Restart service after box, enter 0.

The service will now attempt to restart immediately after a failure.

Configuring Service Security

Each NS$instance_name service runs in the context of a user-defined Windows security account or a built-in service account, such
as the NetworkService account in Microsoft Windows® XP. You must ensure that the account associated with the service has the
correct permissions to access any other necessary resources, such as the database server and other servers in a scale-out
configuration.

In addition, the account associated with the service must have permission to access the instance and application databases and to
run the Notification Services extended stored procedures in the master database.

If SQL Server uses Windows Authentication, you can assign database permissions to the NS$instance_name service account
by adding that account to the appropriate roles in the databases and then using the GrantXPExec command to grant
extended stored procedure execute permissions to that account. For more information, see GrantXPExec Utility.
If you cannot use Windows integrated security, you must assign a SQL Server user name and password to the service by
using NSControl Register, and then you must add that account to the appropriate roles in the databases. After assigning
the SQL Server account to the service, use the GrantXPExec command to grant extended stored procedure execute
permissions to that account.

In Windows XP and newer operating systems, if you do not specify the serviceusername argument when using NSControl
Register, the NetworkService account is used. In Windows 2000 the serviceusername argument is required.

For information about service account security, see NS$instance_name Service Account Security.

To define security for an NS$instance_name service

From a command prompt, run NSControl Register.

Use the serviceusername and servicepassword arguments to establish the security context. If the service account must
use SQL Server Authentication to log in to SQL Server, assign a SQL Server login ID and password to the service account
also, using sqlusername and sqlpassword. Otherwise, integrated security is used by default. You must grant database
permissions to the account used by the service.

Important Microsoft recommends using integrated security for SQL Server login.

To change the security account for an NS$instance_name service using NSControl Register

From a command prompt, run NSControl Register.

Use the serviceusername and servicepassword arguments to establish the security context. If the service account must
use SQL Server Authentication to log in to SQL Server, assign a SQL Server login ID and password to the service account

also, using sqlusername and sqlpassword. Otherwise, integrated security is used by default You must grant database
permissions to the account used by the service.

To change the security account for an NS$instance_name service using the Services application

1. In Control Panel, double-click Administrative Tools and then double-click Services.
2. Double-click the NS$instance_name service, and then click the Log On tab.
3. Type the account name in the This account box, and then type the password in the Password and Confirm password

boxes.

Note Microsoft does not recommend using the LocalSystem service account because it is a highly privileged
service account on the local computer and is not able to access network resources.

See Also

GrantXPExec Utility

Installing the Windows Service

NS$instance_name Service Account Security

Starting and Stopping Services

SQL Server Notification Services Books Online

Enabling and Disabling Service Components
The NS$instance_name service controls the operation of the Notification Services event provider, generator, and distributor
components and the ability to add and delete subscribers and subscriptions. Each of the components can be enabled and
disabled. When a component is enabled, it can run on that server. When a component is disabled, it does not run on that server.

When you deploy an instance of Notification Services, you will probably enable all components. (If using only independent event
providers, do not enable events.) You typically disable components only when you update an instance, or when you need to test
or troubleshoot the instance.

To enable instances, applications, and components

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run NSControl Enable.

To disable instances, applications, and components

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run NSControl Disable.

To view the status of an instance, application, or component

1. On the Start menu, point to Programs\Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt to open a command prompt window.

2. Run NSControl Status.

See Also

Enabling and Disabling an Instance

Starting and Stopping Services

SQL Server Notification Services Books Online

Starting and Stopping a Service
Starting an NS$instance_name service in Notification Services activates all enabled components of the service. This allows the
enabled components to collect events, generate notifications, and distribute notifications.

Stopping a service stops the processing of the enabled components. Instead of stopping an entire service, you can also disable
instances, components of instances, and applications. For more information, see Enabling and Disabling Service Components.

Starting an NS$instance_name Service

You can start an instance of Notification Services manually from a command prompt or from the Services application, whichever
is more convenient.

To start a service from a command prompt

From a command prompt, type:

net start NS$instance_name

To start a service from the Services application

1. In Control Panel, double-click Administrative Tools, and then double-click Services.
2. Double-click the NS$instance_name service.
3. Click Start.

Stopping an NS$instance_name Service

You can stop an instance of Notification Services manually from a command prompt or from the Services application, whichever
is more convenient.

To stop a service from a command prompt

From a command prompt, type:

net stop NS$instance_name

To stop a service from the Services application

1. In Control Panel, double-click Administrative Tools, and then double-click Services.
2. Double-click the NS$instance_name service.
3. Click Stop.

See Also

Enabling and Disabling Service Components

Troubleshooting

SQL Server Notification Services Books Online

Managing Security
Securing Notification Services primarily involves providing the proper access to databases used by Notification Services. All
access to event, subscription, and notification data is controlled through database security. Any user or application that must read
or write this data, including the Microsoft Windows service, NS$instance_name, that runs an instance of Notification Services,
must have permissions granted on the appropriate database objects.

Administrators must have permissions to register, create, and update instances and to monitor the performance of instances and
applications. To perform these activities, the administration accounts must have the proper permissions in Windows and in
instance and application databases.

To simplify database permissions, Notification Services includes a set of predefined database roles in each database. These roles
are used by applications and administrators to perform necessary functions.

The topics that this section covers are described in the following table.

Topic Description
User Accounts Required by Notification
Services Applications

Discusses the user accounts and
permissions required by Notification
Services instances and applications.

File and Folder Security Explains why file and folder security is
important, and provides some guidelines
for configuring this security.

Notification Services Database Roles Describes the predefined database roles
available for Notification Services.

Security Recommended Practices Provides recommended practices for
managing Notification Services security.

See Also

Permissions Required for Installation

SQL Server Notification Services Books Online

User Accounts Required by Notification Services
An instance of Notification Services runs in the context of a user account. When you deploy or administer an instance of
Notification Services, you perform these actions in the context of a user account. The following list shows the required and
optional user accounts used to deploy, run, and administer instances of Notification Services:

Windows account. The NS$instance_name service is a Microsoft Windows service that runs under a local, domain, or
built-in Windows account. The service uses this account to access local and network resources, and possibly to access
databases.
SQL Server login account. If you cannot use Windows Authentication for connections to SQL Server, you can define a SQL
Server login account that the service uses to connect to SQL Server.
NSControl user account. The NSControl commands, used to deploy and administer instances, are run in the context of a
user. Each command requires specific permissions, so you might use one or more user accounts to run these commands.
Subscription management application account. If using a subscription management application, this application uses
an account to execute stored procedures that read and write data in the instance and application databases.

The NS$instance_name service, the NSControl commands, and subscription management applications each have different
security requirements in SQL Server. Even though they can all use the same account to connect to SQL Server, it is typically best
to limit the permissions on each application or component to the minimum required for each one. For this reason, use separate
accounts for each application or component and grant minimal permissions to the database user accounts through predefined
database roles.

The topics that this section covers are described in the following table.

Topic Description
NS$instance_name Service Account
Security

Lists the types of accounts that can be
used by the NS$instance_name service,
and the permissions required by the
service.

SQL Server Permissions for
NS$instance_name

Explains the SQL Server permissions
required by the NS$instance_name
service and how to grant those
permissions.

Administration Permissions Describes the requirements for running
NSControl commands.

Subscription Management Application
Permissions

Lists the types of accounts that can be
used by subscription management
applications, and provides instructions for
granting permissions to these accounts.

SQL Server Notification Services Books Online

NS$instance_name Service Account Security
NS$instance_name Service Account Security

The NS$instance_name service is the key to Notification Services operation. This service runs the instance of Notification Services
and all applications hosted by the instance. To ensure that the service has the permissions it requires, you must properly
configure security for the service.

The service runs in the context of a Microsoft Windows account. You specify the account that the service runs under when you
create the service using the NSControl Register command.

Service Account Types

The NS$instance_name service can run under the following account types:

A domain user account. Microsoft strongly recommends running the NS$instance_name service under a domain account
(which uses the format domain\username). A domain account makes it easier to control access to network resources and to
databases. For optimal control of permissions granted to the service, ask your domain administrator to create a custom
account for the service.
A local user account. You can create a user account on the local computer and run the NS$instance_name service under
that account (which uses the format computer\username). If the databases are located on the same computer, you can also
grant database permissions to this user account. If the databases are located on a remote computer, you must configure a
SQL Server login account for the service.
The NT AUTHORITY\NetworkService account. This is a built-in account that is available with Windows XP only.
Microsoft discourages using the NetworkService account for the NS$instance_name service. All services running under the
NetworkService account are mapped to the domain\remotecomputername$ domain account when accessing network
resources. Because multiple services can use this account, it is difficult to control which services have access to network
resources and to SQL Server databases.
The NT AUTHORITY\LocalSystem account. This is a built-in account. Microsoft strongly discourages using the
LocalSystem account for the NS$instance_name service because this account has unrestricted access to all local resources.
Also, all services running under the LocalSystem account are mapped to the domain\remotecomputername$ domain
account when accessing network resources. Because multiple services can use this account, it difficult to control which
services have access to network resources and to SQL Server databases.

Windows Permissions Required by the Service Account

The account under which the NS$instance_name service runs must have the following permissions:

Read permission in the Notification Services folder (Program Files\Microsoft SQL Server Notification Services\vn.n.n.n) and
subfolders. By default, only members of the local Administrators and Power Users groups have access to the files within
these folders.
Permission to log on as a service. This right is granted by the NSControl Register command when you create the service.
Permission to read and write registry keys at the following registry locations:
HKEY_LOCAL_MACHINE\Software\Microsoft\NotificationServices and
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services.
Read and modify permissions in the events folder. For applications using the file system watcher event provider, the event
provider must be able to read and rename files in the folder where events are dropped. This requires the service to have
read and modify permissions in that folder.
Write permission in the notifications folder. For applications using the File delivery protocol to post notifications, the service
account must have the write permission in the folder where the notifications are written.
Possibly membership in the local Administrators group. If an application hosted by the instance uses the Internet
Information Services (IIS) Simple Mail Transfer Protocol (SMTP) service to send notifications, the distributor must send
those notifications in the context of an administrator. So, for any NS$instance_name service that runs the distributor
component and sends notifications through IIS SMTP, the service account must be a member of the local Administrators
group.

Important The service also must have permissions in the SQL Server databases used by the instance. For more
information, see SQL Server Permissions for NS$instance_name.

See Also

Managing Services

SQL Server Notification Services Books Online

SQL Server Permissions for NS$instance_name
SQL Server Permissions for NS$instance_name

The account under which the NS$instance_name service runs must have the proper permissions in the SQL Server databases
used by the instance. This includes permissions in the instance database, each of the application databases, and the master
database.

When you create the service, you specify an account that the NS$instance_name service uses to connect to SQL Server. This
account can be either the Microsoft Windows account that the service runs under or a SQL Server login account, depending on
which form of Authentication you use:

Windows Authentication: If you use Windows Authentication to connect to SQL Server, you can grant SQL Server access
to the account that the NS$instance_name service runs under.
SQL Server Authentication: If you use SQL Server Authentication for connections to SQL Server, you specify a SQL Server
login account to be used by the service when you create the service.

You must use the GrantXPExec command to grant the account permission to run the Notification Services extended stored
procedures. You must also grant permissions in the instance and application databases.

This section contains instructions for granting access to SQL Server using Windows Authentication or SQL Server Authentication,
and then granting database permissions.

Topic Description
Configuring SQL Server Access for
Windows Authentication

Describes how to configure SQL Server
access for the NS$instance_name service
when using Windows Authentication for
connections to SQL Server.

Configuring SQL Server Access for SQL
Server Authentication

Describes how to configure SQL Server
access for the NS$instance_name service
when using SQL Server Authentication for
connections to SQL Server.

Granting Database Permissions Describes how to grant database
permissions to the account used by the
NS$instance_name service to connect to
SQL Server.

See Also

NS$instance_name Service Account Security

SQL Server Notification Services Books Online

Configuring SQL Server Access for Windows Authentication
Configuring SQL Server Access for Windows Authentication

If you can use Windows Authentication for connections to SQL Server, you can grant SQL Server access to the account the
NS$instance_name service runs under.

Use the following procedure to grant SQL Server access to the account that the NS$instance_name service runs under, grant
permission to run the Notification Services extended stored procedures, and create the service.

To grant SQL Server access using Windows Authentication

1. Grant the domain or local account used by the NS$instance_name service access to SQL Server using the sp_grantlogin
stored procedure. Use the SQL Server osql command or SQL Query Analyzer to execute the stored procedure.

2. Grant the account access to the master database using the sp_grantdbaccess stored procedure. This is necessary in order
to grant execute permission for extended stored procedures, which are defined in the master database. Use the SQL Server
osql command or SQL Query Analyzer to run the stored procedure.

Note To grant permission to execute extended stored procedures, you must be a member of the sysadmin
fixed server role.

3. Grant the account permission to execute the Notification Services extended stored procedures using the GrantXPExec
command. This command is located in the Notification Services Bin folder.

4. Create the NS$instance_name service using the NSControl Register command with the -name, -service, -
serviceusername, and -servicepassword arguments.

Example

The following example assumes the domain account Corporate\StockService already exists and has the Microsoft Windows
permissions required by the NS$Stock service:

osql -E
USE master
EXEC sp_grantlogin 'Corporate\StockService'
GO
EXEC sp_grantdbaccess 'Corporate\StockService'
GO
QUIT
GrantXpExec "Corporate\StockService"
NSControl Register -name Stock -service -serviceusername Corporate\StockService -
servicepassword [Password]

See Also

Configuring SQL Server Access for Windows Authentication

Granting Database Permissions

SQL Server Notification Services Books Online

Configuring SQL Server Access for SQL Server Authentication
Configuring SQL Server Access for SQL Server Authentication

If you must use SQL Server Authentication for connections to SQL Server, you must create a SQL Server login account for the
service, grant extended stored procedure permissions to the login account, and then assign the SQL Server login account to the
NS$instance_name service using the NSControl Register command.

Use the following procedure to create a SQL Server login account for the NS$instance_name service, grant permission to run the
Notification Services extended stored procedures, and create the service.

To grant SQL Server access using SQL Server Authentication

1. If necessary, create a domain or local account for the service.
2. Create a SQL Server login account for the service account with the sp_addlogin stored procedure. Use the SQL Server osql

command or SQL Query Analyzer to run the stored procedure.
3. Grant the SQL Server login account access to the master database using the sp_grantdbaccess stored procedure. This is

necessary in order to grant execute permission for extended stored procedures, which are defined in the master database.
Use the SQL Server osql command or SQL Query Analyzer to run the stored procedure.

Note To grant permission to execute extended stored procedures, you must be a member of the sysadmin
fixed server role.

4. Grant the SQL Server login account permission to execute the Notification Services extended stored procedures using the
GrantXPExec command. This command is located in the Notification Services Bin folder.

5. Create the NS$instance_name service using the NSControl Register command with the -name, -service, -
serviceusername, -servicepassword, -sqlusername, and -sqlpassword arguments.

Example

The following example adds the SQLStockService login account to SQL Server and grants access to the master database. The
account is then granted permission to execute the Notification Services extended stored procedures. Finally, the NS$StockInstance
service is created using the NSControl Register command. The example assumes that you are running all commands in a
command prompt window:

osql -E
USE master
EXEC sp_addlogin 'SQLStockService', '[Password]'
GO
EXEC sp_grantdbaccess 'SQLStockService'"
GO
QUIT
GrantXpExec "SQLStockService"
NSControl Register -name StockInstance -service -serviceusername Corporate/StockService -
servicepassword [Password] -sqlusername SQLStockService -sqlpassword [Password]

See Also

Configuring SQL Server Access for Windows Authentication

Granting Database Permissions

SQL Server Notification Services Books Online

Granting Database Permissions
Granting Database Permissions

In addition to SQL Server access and the ability to run the Notification Services extended stored procedures, the
NS$instance_name service must have permissions in the instance database and the application databases for all applications
hosted by the instance. The following permissions are required by the service:

If the NS$instance_name service runs the event provider, generator, and distributor processes, the account must be a
member of the NSRunService role in the instance database and in each application database.
For a scaled-out instance, you can use different service accounts on each server. If a server runs only a subset of these
processes, the service account can obtain permissions through the NSEventProvider, NSGenerator, or NSDistributor
roles.

The process for granting database permissions is the same for Microsoft Windows accounts and SQL Server login accounts.

To grant database permissions to the service account

1. Ensure that the instance and application databases exist. These databases are created when you run the NSControl Create
command.

2. Grant database access to the service account using the sp_grantdbaccess stored procedure. You must do this in the
instance database and in the database for each application that is hosted by the instance.

3. In each database in which you granted permissions, add the service's database user account to the NSRunService role (or
to one of the other roles mentioned above) using the sp_addrolemember stored procedure.

Example

The following code grants database access to the Corporate\StockService login account, and then adds the database user to the
NSRunService role. This example assumes that you have created the databases using NSControl Create, and that you are using
SQL Query Analyzer to run the Transact-SQL statements:

USE StockInstanceNSMain
EXEC sp_grantdbaccess 'Corporate\StockService'
EXEC sp_addrolemember 'NSRunService', 'Corporate\StockService'
USE StockInstanceStock
EXEC sp_grantdbaccess 'Corporate\StockService'
EXEC sp_addrolemember 'NSRunService', 'Corporate\StockService'

See Also

Configuring SQL Server Access for SQL Server Authentication

Configuring SQL Server Access for Windows Authentication

SQL Server Notification Services Books Online

Administration Permissions
Administration Permissions

Two groups of administrators typically perform administration tasks for Notification Services: the administrators who create and
register instances, and the administrators who control and monitor instances (sometimes referred to as an operations group).

The commands used to create, register, update, and delete an instance require specific privileges because these commands can
create, alter, or delete applications. These actions require the account that runs the associated NSControl commands to be a
member of the local Administrators group or a member of the sysadmin or dbcreator fixed server role.

The commands used by the operations group to enable or disable components and to retrieve information about the instance
require a lower level of privileges. These privileges can be granted by adding the accounts used by the operations group to the
Notification Services database roles, such as NSAdmin and NSAnalysis.

The NSControl commands and the permissions required to run the commands are shown in the following table.

NSControl Command Windows Permissions SQL Server Permissions
NSControl Create None. Member of dbcreator or

sysadmin fixed server role.
NSControl Delete None. Member of dbcreator or

sysadmin fixed server role.
NSControl Disable None. Member of NSAdmin or

db_owner database role, or of
sysadmin or dbcreator fixed
server role.

NSControl
DisplayArgumentKey

Member of
Administrators or
Power Users group, or
you are running the
command in the context
of the account that the
NS$instance_name
service runs under.

None.

NSControl Enable None. Member of NSAdmin or
db_owner database role, or of
sysadmin or dbcreator fixed
server role.

NSControl ListVersions Member of local
Administrators group.

None.

NSControl Register Member of local
Administrators group.

None.

NSControl Status Member of the local
Administrators group
on all servers that host
the instance of
Notification Services.

Member of NSAnalysis,
NSDistributor,
NSEventProvider,
NSGenerator, NSReader,
NSRunService,
NSSubscriberAdmin, or
NSVacuum database roles; or
of sysadmin fixed server role.

NSControl Unregister Member of local
Administrators group.

None.

NSControl Update None. Member of db_owner
database role, or of sysadmin
fixed server role.

NSControl Upgrade None. Member of db_owner
database role, or of sysadmin
fixed server role.

See Also

NSControl Commands

Permissions Required for Installation

SQL Server Notification Services Books Online

Subscription Management Application Permissions
Subscription Management Application Permissions

Subscription management applications are custom applications that manage the subscriber and subscription data for Notification
Services applications. Subscription management applications are typically Web applications, but can be Microsoft Windows
applications.

Subscription management applications must have access to the instance and application databases. Subscription management
applications execute stored procedures that read data from and write data to these databases. The applications can connect to the
SQL Server database engine using either Windows Authentication or SQL Server Authentication.

When a developer creates a subscription management application, the developer must choose one of the following types of
account for connections to the SQL Server database engine:

A local or domain Windows account. The server that hosts SQL Server must be in the same domain as the subscription
management application. If using a local account, the subscription management application and SQL Server must be on the
same server. Otherwise, the subscription management application must use a SQL Server login account.
A SQL Server login account.
The ASPNET account used by ASP applications. This is a local account created when you install the Microsoft .NET
Framework.

You must ensure that the account used by the subscription management application can connect to SQL Server and has the
proper database permissions.

To grant database access to a subscription management application

1. Determine which type of account is used for the SQL Server connection. If you did not develop the application, either
contact the application developer or examine the source code.

2. Grant SQL Server access to the account using one of the following methods:

If the account is a local or domain Windows account or the ASPNET account, use the sp_grantlogin stored procedure
to grant the account access to SQL Server.
If the account is a SQL Server login account, use the sp_addlogin stored procedure to create the login account.

3. Grant database access using the sp_grantdbaccess stored procedure. You must do this in the instance database and in the
database for each application that uses the subscription management application.

4. In each database to which you added the account, add the database user account to the NSSubscriberAdmin database
role. Do this using the sp_addrolemember stored procedure.

Example: Windows Authentication

The following code grants SQL Server access to the Corporate\Subscriber domain account, grants database access to the account,
and then adds the account to the NSSubscriberAdmin database role in the instance and application databases. This example
assumes that the databases have already been created using NSControl Create, and that you are using SQL Query Analyzer to
run the Transact-SQL statements:

USE master
EXEC sp_grantlogin 'Corporate\Subscriber'
USE StockInstanceNSMain
EXEC sp_grantdbaccess 'Corporate\Subscriber'
EXEC sp_addrolemember 'NSSubscriberAdmin', 'Corporate\Subscriber'
USE StockInstanceStock
EXEC sp_grantdbaccess 'Corporate\Subscriber'
EXEC sp_addrolemember 'NSSubscriberAdmin', 'Corporate\Subscriber'

Example: SQL Server Authentication

The following code creates a SQL Server login account named SQLSubscriber, grants database access to the login account, and
then adds the user to the NSSubscriberAdmin database role in the instance and application databases. The example assumes
that the databases have already been created using NSControl Create, and that you are using SQL Query Analyzer to run the
Transact-SQL statements:

USE master
EXEC sp_addlogin 'SQLSubscriber', '[Password]'
USE StockInstanceNSMain
EXEC sp_grantdbaccess 'SQLSubscriber'
EXEC sp_addrolemember 'NSSubscriberAdmin', 'SQLSubscriber'
USE StockInstanceStock
EXEC sp_grantdbaccess 'SQLSubscriber'
EXEC sp_addrolemember 'NSSubscriberAdmin', 'SQLSubscriber'

See Also

NS$instance_name Service Account Security

SQL Server Notification Services Books Online

File and Folder Security
In addition to securing your Notification Services application and your subscription management applications, you must also
manage access to files and folders used by your applications.

Separating Run-Time Files from Configuration Files

Each instance of Notification Services has a configuration file. Each application has an application definition file (ADF). These files
are required when creating or updating an instance of Notification Services, but are not required when the instance and its
applications are running because all operational data from these files is stored in databases. However, these files might contain
information about your instance and application that, if a malicious user were to see it, could compromise security.

Applications do use some files at run time. For example, if an application uses the file system watcher event provider, the provider
requires an XML Schema definition language (XSD) file that documents the event schema. If using XSLT to format notifications,
the application requires XSLT files that specify how the notifications are formatted. These files must be accessible by the account
that the NS$instance_name service runs under.

To ensure that applications can access run-time files and that the configuration file and ADF are secure, consider separating the
run-time files from other files and then customizing security at the folder level. For more information, see Creating a Deployment
Directory Structure.

Securing Folders

The account that the NS$instance_name service runs under must have access to necessary folders. This includes access to the
folders where application components are located, where events are posted, and where notifications are posted. For more
information, see NS$instance_name Service Account Security.

You also must limit access to these folders so that malicious users cannot submit event data, pick up notifications, or read files.
For example, if you use the file system watcher event provider or a similar provider that reads event data dropped to a folder, you
must make sure that the NS$instance_name service is able to read files dropped to that folder, but that no malicious users can
write to that folder.

Depending on the level of security you require, you can secure these files in the following ways:

You can use NTFS permissions to restrict access to the folders and all of their files. For more information about NTFS
permissions, see your Microsoft Windows documentation.
If you are concerned about unauthorized disclosure of data, you can use the Encrypting File System (EFS) to encrypt specific
files and folders. For more information about EFS, see your Windows documentation.

See Also

Configuring and Deploying Instances

SQL Server Notification Services Books Online

Notification Services Database Roles
When you create an instance of Notification Services, Notification Services creates database roles in the instance and application
databases. The NS$instance_name service, subscription management applications, custom objects, and administrators use the
roles to obtain necessary permissions in the databases. These roles make the assignment of database permissions much easier.

The instance and application databases contain the same Notification Services database roles. The following table lists these roles
and their permissions. Database roles and their permissions can be changed by members of the sysadmin fixed server role or the
db_owner or db_securityadmin database roles.

Role Permissions
NSAnalysis Can execute stored procedures that produce reports

for performance analysis and troubleshooting.

Users in this role can read all tables in the database,
which might be necessary for ad hoc reports.

This role also has NSReader permissions.

NSAdmin Can run NSControl Enable and NSControl
Disable commands to enable and disable instances,
applications, and components.

Members of the db_owner database role and the
sysadmin and dbcreator fixed server roles can also
run NSControl Enable and NSControl Disable.

NSDistributor Can execute stored procedures that perform SELECT
and UPDATE operations on notification and
distributor work tables.

Use this role for the NS$instance_name service
account when a distributor is located on its own
server and has a unique service account.

This role also has NSReader permissions.

NSEventProvider Can execute stored procedures that perform INSERT
operations on the event tables, and SELECT, INSERT,
and UPDATE operations on the event batch tables.

Event providers require the permissions associated
with this role. Use this role for independent event
providers and for the NS$instance_name service
account when an event provider is located on its
own server and has a unique service account.

This role also has NSReader permissions.

NSGenerator Can execute stored procedures used by the
generator. Use this role for the NS$instance_name
service account when a generator is located on its
own server and has a unique service account.

Use this role for stand-alone generator services if
you do not want to add them to the NSRunService
role.

User-written rules in the application definition file
(ADF) are executed using the permissions of this
role.

This role also has NSReader permissions.

NSMonitor Can execute stored procedures that collect
performance data.

This role also has NSReader permissions.

NSReader Can execute stored procedures that read the
configuration tables.

NSRunService This role has the combined permissions of the
NSEventProvider, NSGenerator, NSDistributor,
NSReader, NSMonitor, and NSVacuumer roles.

Important Assign this role to the
account used by the NS$instance_name
service to log in to SQL Server. The
service requires these permissions to
evaluate subscriptions and generate
notifications.

This role also has NSReader permissions.

NSSubscriberAdmin Can execute stored procedures that read, update,
and delete rows from subscriber and subscription-
related tables.

Note Notification Services automatically
cascades the deletion of a subscriber
record to all related subscriptions, in all
applications, even if the user deleting the
subscriber record does not have access
to the application databases.
Subscription removal is performed using
the permissions of the database owner.

This role also has NSReader permissions.

NSVacuum Can execute stored procedures that remove obsolete
data from the application databases.

This role also has NSReader permissions.

Note One of the generator stored procedures issues CREATE TABLE and CREATE VIEW statements. These tables are
owned by the user that invokes the stored procedure. For this reason, the NSGenerator and NSRunService roles are
members of the db_owner role in the application databases.

To view the permissions assigned to these database roles, use the sp_helprotect system stored procedure. For more information
about sp_helprotect, see SQL Server Books Online.

See Also

Administration Permissions

SQL Server Notification Services Books Online

Security Recommended Practices
Microsoft recommends the following practices to help you protect your data and applications from malicious users and accidental
user actions.

Notification Services Security Practices

Run the NS$instance_name service under a weak domain or local account. Do not use the LocalSystem or NetworkService
service account or any account in the Administrators group.

However, if you are using a delivery protocol that requires the account that the service runs under to have additional
privileges, you must use higher privileges. For example, sending notifications using an Internet Information Services (IIS)
SMTP server requires the account under which the service runs to be a member of the local Administrators group.

Ensure that the password used by the service account is a strong password. For more information about strong passwords,
see "Creating Strong Passwords" in the Microsoft Windows documentation.
Ensure that all code run by the NS$instance_name service, such as custom event providers, content formatters, and
protocols, is from a trusted source. Notification Services assumes that code listed in the application definition file (ADF)
comes from a trusted source.
Secure all folders containing configuration files or application data. For more information about securing files and folders,
see File and Folder Security.

SQL Server Security Practices

When installing SQL Server, never allow a blank sa password, even if you select the integrated security mode. This
guarantees that if the security mode changes to mixed mode, the sa account will still have a password.
Use Windows Authentication whenever possible. Windows Authentication provides advanced security features, such as
policies for password length, complexity, and expiration. Note that if the NS$instance_name service uses a SQL Server user
name and password to connect to SQL Server, this user name and password are encrypted and stored in the registry.
If you use SQL Server Authentication, use strong passwords for the SQL Server login accounts and change the passwords
periodically.
Do not grant unnecessary permissions to the public role in each database. The public role is a special database role to
which every database user belongs, and cannot be dropped from the database. Notification Services does not use the
public role.
Do not grant database access to the guest user account. The guest user account allows a SQL Server login account that
does not have a database user account to access a database.
Consider encrypting the database files using NTFS file encryption. This can decrease performance, so you must weigh
optimal performance against file security.

Network Communications Security Practices

To reduce the possibility of intruders viewing data as it is being transferred between Notification Services and the database,
use encrypted communication between client applications and SQL Server. For more information, see "Using Encryption
Methods" in SQL Server Books Online.
If you are using an HTTP protocol to post data to a Web server, and if the Web server supports SSL, post the notification
using an address that starts with https://. This form of address encrypts the data that is sent to the Web server.

Physical Security Practices

Ensure that your servers are located in an area that is adequately secured. If a malicious user can physically access the server, the
server is not secure.

See Also

File and Folder Security

Notification Services Database Roles

User Accounts Required by Notification Services Applications

SQL Server Notification Services Books Online

Performance Monitoring and Reporting
When applications are in use, it is important to monitor their status and health. You must make sure that events are arriving,
notifications are being generated, and notifications are being distributed. Monitoring performance enables you to observe
application status and to determine whether the current system configuration is adequate for the volume of events and
notifications being processed.

Notification Services provides collections of performance counters, called performance objects, that report on the status of
components, applications, and instances; and performance reports that help you analyze the current and historical performance of
your instances and applications. You also can use SQL Server utilities to monitor the databases used by Notification Services.

The topics that this section covers are described in the following table.

Topic Description
Choosing Monitoring Tools Lists the monitoring tools and provides

guidance on when to use each tool.
Tips for Evaluating Performance Describes recommended practices for

monitoring Notification Services.
Notification Services Performance Objects Documents the performance objects

available in Notification Services.
Using Performance Logs and Alerts Explains how to use performance counter

logs and alerts to monitor Notification
Services applications.

Notification Services Performance Reports Describes the reports available in
Notification Services and explains how to
use the reports to analyze performance.

See Also

Event Messages

Stored Procedure Reference

SQL Server Notification Services Books Online

Choosing Monitoring Tools
SQL Server provides a comprehensive set of tools for monitoring. Your choice of tool depends on the type of monitoring you
need and the events to be monitored. For example, monitoring can be accomplished using Notification Services performance
objects or stored procedures in SQL Server.

Performance objects, events, Notification Services stored procedures, and SQL Server system stored procedures provide various
ways to monitor Notification Services instances and applications.

Notification Services Performance Objects

System Monitor, a part of the Microsoft Windows Performance tool, enables you to perform real-time monitoring of application
performance using predefined performance objects that contain performance-related counters. System Monitor collects counts,
rates, and averages about resources and processing, such as notification processing, system CPU activity, and database sizes.

To access performance objects

1. In Control Panel, open Administrative Tools, and then open Performance.
2. In the Windows Performance tool, click System Monitor.
3. Right-click the System Monitor details pane, and then click Add Counters.
4. In the Add Counters dialog box, select the performance objects you want for NS$instance_name services, and then select

the counters and instances you want.

Notification Services Events

The application log of Event Viewer contains messages about errors, warnings, and other information that occurs for various
events in Notification Services. You can use the application log data to troubleshoot instances and applications.

To access the application event log

1. In Control Panel, open Administrative Tools, and then open Event Viewer.
2. In the Windows Performance tool, click Application Log.

In the Application Log details pane, the Source column for all Notification Services events contains the service name in the
format NS$instance_name.

Notification Services Stored Procedures

Notification Services provides its own set of stored procedures for reporting, debugging, and manually running processes
separate from those available from SQL Server. For more information, see Notification Services Performance Reports and the
Stored Procedure Reference.

SQL Profiler

SQL Profiler enables you to monitor server and database activity, such as deadlocks, fatal errors, and query activity. You can
capture SQL Profiler data to a SQL Server table or a file for later analysis. It also has a trace feature that you can use for planning
indexes.

Note Monitoring too many events at one time increases the processing load on the server. Monitor only the events
that are necessary for analyzing current performance issues.

For more information about SQL Profiler, see "Monitoring with SQL Profiler" in SQL Server Books Online.

SQL Server System Stored Procedures and Functions

The following SQL Server system stored procedures and functions are useful for monitoring database activity:

sp_who
Provides snapshot information about current SQL Server users and processes, including the currently executing statement and
whether the statement is blocked. This is a Transact-SQL alternative to viewing user activity in the current activity window in
SQL Server Enterprise Manager.

sp_spaceused
Displays an estimate of the current amount of disk space used by a table or database. This is a Transact-SQL alternative to

viewing database usage in SQL Server Enterprise Manager.
sp_monitor

Displays statistics, including CPU usage, I/O usage, and the amount of idle time since sp_monitor was last executed.
built-in functions

Display snapshot statistics about SQL Server activity since the server was started; these statistics are stored in predefined SQL
Server counters. For example, @@CPU_BUSY contains the amount of time the CPU has been executing SQL Server code;
@@CONNECTIONS contains the number of SQL Server connections or attempted connections; and @@PACKET_ERRORS
contains the number of network packets occurring on SQL Server connections.

For more information about these system stored procedures and functions, see SQL Server Books Online.

See Also

Notification Services Performance Objects

Tips for Evaluating Performance

Using Performance Logs and Alerts

Using Reports to Analyze Performance

SQL Server Notification Services Books Online

Tips for Evaluating Performance
You evaluate the status of Notification Services by monitoring the flow of events and notifications through the system. When
monitoring the system, you want to ensure that:

Events are arriving and being collected by the event providers.
Events are accumulating in the event tables and the generator is processing the event batches and generating notifications
in a timely manner.
Notifications are accumulating in the notification tables and the distributor is formatting notifications and delivering them
to the delivery channels.
The external delivery system is accepting the formatted notifications and is reporting errors for rejected notifications.
The generator is processing all notifications in a timely manner, and is not skipping quanta.
The vacuuming process is occurring as scheduled in the application definition file (ADF).
The CPU and disks are operating well within their capacity.
Database and log files are not filling up and either auto-growing too frequently or running out of space.

Monitoring Production Applications

Monitoring trends and peak requirements will help you to plan system growth. Notification Services applications typically have
peak periods and quiet periods because subscribers tend to want information delivered at similar times and because large
batches of events often arrive at the same times each day. For this reason, it is very important to monitor applications during peak
periods, establish performance baselines, and then compare performance over time.

For applications in production, you should always monitor critical performance counters and set alerts to notify operators of poor
performance. You can set alerts using Performance Logs and Alerts, a part of the Microsoft Windows Performance tool.

Responding to Performance Problems

When you encounter performance problems, use all the tools available to determine what is causing the problem. Here are some
possible remedies for performance problems:

Place database files, log files, and the tempdb database on three separate physical disks. The performance for generating
notifications on the database system is often limited by disk resources.
Configure indexes for the application rules (event chronicle rules, subscription event rules, and subscription scheduled rules)
to tune the application.
Do not run queries against the instance and application databases during peak processing periods because you might be
creating temporary locks on resources needed by Notification Services.
Ensure that the CPU resources are adequate for distribution, which is typically CPU-bound.
Ensure that your server has adequate bandwidth to the delivery services to deliver notifications. For example, using only one
network card to deliver notifications to an SMTP server limits the number of notifications your applications can send.
Ensure that applications are tuned for the best performance. To tune an application, you might need to adjust several
elements in the application definition file, especially elements in the <ApplicationExecutionSettings> node.

For any performance problems, it is important to isolate the problem by looking at performance counters, using reports, and
examining the application log to see what errors are occurring.

See Also

Choosing Monitoring Tools

Notification Services Performance Objects

Using Performance Logs and Alerts

Using Reports to Analyze Performance

SQL Server Notification Services Books Online

Notification Services Performance Objects
Notification Services has three types of performance objects: component, application, and instance. These objects contain
counters for monitoring performance at different system levels of a Notification Services instance:

Component-level objects monitor the state of the components on the local server. You cannot use these objects to
monitor a single application on a multiple-application instance or to monitor an entire instance if the instance is distributed
across multiple servers.
Application-level objects monitor the status of a Notification Services application by querying the application database,
and can be used on any server that runs the instance that hosts the application.
Instance-level objects monitor subscriber activity by querying the instance database, and can be used on any server that
hosts the instance.

Component-Level Objects

Notification Services provides the component-level performance objects shown in the following table.

Topic Description
NS$instance_name: Delivery Channels
Object

Provides information about an individual
delivery channel.

NS$instance_name: Distributors Object Provides information about an individual
distributor.

NS$instance_name: Event Providers
Object

Provides information about an individual
event provider.

NS$instance_name: Generator Object Provides information about the generator
component for the instance.

These component-level objects monitor the components as they are updated on the system where the component runs.

Application-Level Objects

Notification Services provides the application-level performance objects shown in the following table.

Topic Description
NS$instance_name: Events Object Provides information about events for an

application.
NS$instance_name: Notifications Object Provides information about notifications

created by an application.
NS$instance_name: Subscriptions Object Provides information about the

subscriptions for an application.
NS$instance_name: Vacuumer Object Provides information about the

application vacuuming process.

These application-level objects query the application databases, and can be run on any server that has the NS$instance_name
service installed and running, but the counter data reflects only the activity that takes place on the local server.

Instance-Level Objects

Notification Services provides the instance-level performance object shown in the following table.

Topic Description
NS$instance_name:Subscribers Object Provides information about the

subscribers for an instance of Notification
Services.

The instance-level object queries the application databases, and can be run on any server that has the NS$instance_name service
installed and running, but the counter data reflects only the activity that takes place on the local server.

See Also

Choosing Monitoring Tools

Notification Services Performance Reports

Using Performance Logs and Alerts

SQL Server Notification Services Books Online

NS$instance_name: Delivery Channels Object
NS$instance_name: Delivery Channels Object

The NS$instance_name: Delivery Channels object provides counters for monitoring delivery channels configured for a
Notification Services instance.

The delivery channel counters monitor one or all delivery channels on the local server. If the NS$instance_name service is
installed on the local server but no distributors are enabled on that server, the counters are available but do not return data.

Counter Description Purpose
Messages Written
To Transport

Total number of messages written
by the selected delivery channel
since the distributor started.

Use to determine the activity
level of one or all delivery
channels.

Messages Written
To Transport Rate

Number of messages written per
second by the selected delivery
channel.

Use to determine how
delivery channel activity
changes over time.

After selecting a counter, select an instance. You can select All instances, which returns values for all delivery channels on the
local server, or you can select just one of the delivery channel names, all of which are defined in the configuration file.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Distributors Object
NS$instance_name: Distributors Object

The NS$instance_name: Distributors object provides counters for monitoring the distributor components of a Notification
Services instance.

The distributor counters monitor one or all distributors on the local server. If the NS$instance_name service is installed on the
local server but no distributors are enabled on that server, the counters are available but do not return data.

Counter Description Purpose
Delivery Requests
Failed

Total number of failed
delivery requests since the
distributor started.

Ideally this number should be
zero.

Flags delivery problems.

Delivery Requests
Succeeded

Total number of delivery
requests successfully sent
since the distributor started.

A delivery request can include
multiple notifications if
multicast is enabled.

Use to determine the delivery
activity of a distributor, and to
compare against the Format
Requests Succeeded counter
to determine whether
notifications are being formatted
but not delivered.

Format Requests
Failed

Total number of format
requests that failed since the
distributor started.

Ideally this number should be
zero.

Flags format request problems.

Check the event log for content
formatter errors, and check
whether the data being sent to
the content formatter is valid
and can be transformed.

Format Requests
Rate

Number of format requests
per second.

Use to determine the activity
level of the distributor at
different times. This can help
with system planning, and can
help plan resources for peak
periods.

Format Requests
Succeeded

Total number of successful
format requests since the
distributor started.

When using multicast or
digest delivery, one format
request can be for multiple
notifications because
notifications can be combined
into a single message.

Use to determine the formatting
activity level of a distributor.

Also monitor CPU activity,
because formatting is CPU
intensive. This information can
help you determine when you
need to scale up or scale out
distribution.

Notification
Bodies

Total number of notification
bodies formatted since the
distributor started.

When using multicast or
digest delivery, the number of
formatted notification bodies
should be lower than the
number of notifications to be
delivered, and equal to the
number of successful
formatting requests.

Compare to the Notification
Headers counter to determine
the ratio of notification bodies to
notification headers.

Notification
Headers

Total number of notification
headers since the distributor
started.

When using multicast or
digest delivery, the number of
headers formatted should be
equal to the number of
notifications delivered and
higher than the number of
successful formatting
requests.

Compare to the Notification
Bodies counter to determine the
ratio of notification headers to
notification bodies.

After selecting a counter, select an instance. You can select All instances, which returns values for all distributors on the local
server, or you can select one of the distributor instances; distributor instance names are a combination of the application name
and the distributor name, such as stock:stockdist1.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Event Providers Object
NS$instance_name: Event Providers Object

The NS$instance_name: Event Providers object provides counters for monitoring the event provider components of a
Notification Services instance.

The event provider counters monitor one or all event providers on the local server. If the NS$instance_name service is installed
on the local server but no event providers are enabled on that server, the counters are available but do not return data.

Counter Description Purpose
Event Batches
Aborted

Total number of event batches
that failed since the event
provider started.

Use to determine whether event
batches arrived, but were not
committed to the database. This
can indicate problems with the
database connections, an event
provider, event data, or an event
source.

Event Batches
Committed

Total number of event batches
committed since the event
provider started.

Use to determine how many
event batches the event provider
has submitted per event class.

Events Per Batch Average number of events per
event batch for the selected
event provider.

Use to analyze event batch sizes
for an individual event provider.

Events Received Total number of events
received since the event
provider started.

Use to determine the activity
level of an individual event
provider.

Events Received
Per Second

Number of input events
received per second for the
selected event provider.

Use to determine the activity
level of the event provider at
different times. This information
can be used to determine
whether you need to distribute
events, either submitting events
at different times or scaling out
event providers.

After selecting a counter, select an instance. You can select All instances, which returns values for all event providers on the local
server, or you can select one of the event provider instances; event provider instance names are a combination of the application
name and the event provider name, such as stock:provider1.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Events Object
NS$instance_name: Events Object

The NS$instance_name: Events object provides application-level counters. These counters monitor the events and event batches
of an application by running queries on the database server. These counters are available only on the server that hosts the
Notification Services generator.

Counter1 Description Purpose
Event Batches
Awaiting
Generation

Number of event batches
committed but not yet picked
up by the generator.

The generator must be
enabled and running for this
counter to be updated.

Use to identify potential
backlogs of event batches for an
application.

Event Batches In
Collection

Number of event batches in
process and not yet
committed.

Use to determine the current
event collection activity.

Event Batches
Submitted2

Number of event batches
submitted since the
application started.

Use to analyze the volume of
event batches handled by an
individual application.

Total Events2 Number of events received
since the application started.

Use to analyze the volume of
events received by an individual
application.

1 - Event counters are updated on a periodic basis using a performance monitoring thread that is hosted by the generator. The
update period is specified by the <PerformanceQueryInterval> element in the <ApplicationExecutionSettings> node of the
application definition file (ADF).

2 - Vacuuming, which removes data from the database, affects the value of this counter.

After selecting a counter, select an instance. You can select All instances, which returns values for all events for all applications
hosted by the instance, or you can select an event instance; event instance names are a combination of the application name and
the event class name, such as stock:stockevents.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Generator Object
NS$instance_name: Generator Object

The NS$instance_name: Generator object provides counters for monitoring generator threads of a Notification Services instance.
Each generator thread processes notifications for one application.

The generator counters monitor one or all generator threads on the local server. If the NS$instance_name service is installed on
the local server but the generator is not enabled on that server, the counters are available but do not return data.

Counter Description Use
Notifications
Generated Per
Second

Number of notifications
created per second.

Use to analyze the volume of
notifications produced by the
generator over time.

Quantums Behind Number of quanta that the
generator is falling behind.

Use to determine whether the
generator can keep up with the
current workload. This could be
due to other processes running
on the database system, the
need to improve performance on
the database system, or possibly
the need to improve
performance on the system that
runs the generator component.

Quantums Failed Number of failed quanta since
the generator started.

Quantum failure indicates that
at least one of the rules in the
quantum failed. Because rules
fire in parallel, multiple rules
can fail within a single
quantum.

Use to determine whether rule
firings are failing. An example of
a cause is a rule-firing timeout.
This could indicate problems
connecting to SQL Server or with
executing queries.

Quantums
Processed

Number of quanta processed
since the generator started.

If the generator is trying to
catch up, this number can be
higher than typically expected.

Use to determine how many
quanta have been processed.

Rule Firing Failures Number of failed rule firings
since the generator started.

Use to further analyze the
Quantums Failed counter.

The Rule Firing Failures
counter shows you how many
rule firings failed, which you can
use to troubleshoot rule
problems and connection
problems.

Rule Firings Number of rule firings since
the generator started.

Compare this value to the Rule
Firing Failures counter to see
the ratio of successfully fired
rules to failed rules.

Skipped Chronicle
Rule Firings

Number of quanta skipped for
chronicle rule firings since the
generator started.

Use to determine whether
chronicle rules have been
skipped, which can indicate stale
chronicle data or a problem with
chronicle rules.

Skipped Quantums Number of quanta the
generator skipped since the
generator started.

Use to determine whether
generation has fallen behind far
enough to skip rule firings.

To tune your applications, you
might need to adjust the
<QuantumDuration> and
<ChronicleQuantumLimit>
elements in the application
definition file (ADF).

Skipped
Subscription Rule
Firings

Number of quanta skipped for
subscription rule firings.

Used to determine whether
subscription rules are being
skipped, which indicates skipped
notifications.

To tune your applications, you
might need to adjust the
<QuantumDuration> and
<SubscriptionQuantumLimit>
elements in the ADF.

After selecting a counter, select an instance. You can select All instances, which returns values for all generator threads on the
local server, or you can select one of the generator thread instances; generator thread instance names are the same as application
names, such as stock.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Notifications Object
NS$instance_name: Notifications Object

The NS$instance_name: Notifications object provides application-level counters. These counters monitor the notifications and
notification batches of an application by running queries on the database server. These counters are available only on the server
that hosts the Notification Services generator.

Counter Description Use
Batches Number of notification

batches generated since the
application started.

Use to determine the activity
level of the generator, and to
compare against the Batches
Successfully Delivered
counter.

Batches Awaiting
Distribution1

Number of notification
batches waiting to be picked
up by the distributor.

Use to determine whether there
is a backlog of notification
batches.

A backlog could indicate that the
system should be scaled up or
scaled out. A backlog could also
exist during busy periods, and
might not indicate a problem.

Batches Expired1 Number of notification
batches containing expired
notifications. The counter
includes all expired batches
since the application last
started.

Use to determine whether
notifications are not being sent
because they have expired.

This can happen if the expiration
time elapses before all retries
are attempted due to a small
<ExpirationAge> value or a
prolonged delivery problem.

Batches Failed
Delivery1

Number of notification
batches that contain one or
more failed notifications. The
counter includes all failed
batches since the application
last started.

Use to determine whether there
is a distribution issue. For large
numbers of failed notifications,
check for errors from the
distributor, delivery channel, and
delivery service. For smaller
problems, check notification and
subscriber data.

"Failed" does not equal
"expired." Failed batches, but not
expired batches, might be tried
again.

Batches In
Generation1

Number of notification
batches currently being
created.

Use to determine the current
generator workload for the
application.

Batches In Retry1 Number of notification
batches currently in the
delivery retry queue.

Use to determine whether
notification delivery for the
application is initially failing. This
can help you troubleshoot
general delivery channel or
distributor issues.

Batches
Successfully
Delivered1, 2

Number of notification
batches successfully delivered
since the application last
started.

Use to compare against the
Batches counter to determine
whether batches generated are
being delivered.

Notifications Number of notifications
generated since the
application started.

If using multicast or digest
delivery, this number is the
count of notifications before
they are consolidated for
delivery.

Use to determine the number of
notifications the application is
generating.

Notifications
Awaiting
Distribution1

Number of notifications
waiting to be picked up by the
distributor.

Use to determine whether there
is a backlog of notifications.

This counter is similar to the
Batches Awaiting Distribution
counter, but provides the
notification count.

Notifications
Failed Delivery1

Number of notifications that
have failed the delivery
process since the application
last started.

Use to determine how many
notifications have failed in the
batches marked as failed. Each
batch marked as failed contains
one or more failed notifications.

Note Failed does not equal
expired. Failed notifications, but
not expired notifications, might
be tried again.

Notifications
Generated Per
Second/Class

Number of notifications
generated per second per
notification class.

This value takes the total
number of notifications
generated during the System
Monitor sampling interval,
and determines the number
per second for each
notification class.

Use to analyze the activity of all
notification classes.

Notifications
Successfully
Delivered1, 2

Number of notifications
successfully delivered since
the application last started.

Use to determine the number of
notifications the application has
sent.

1 – The counter is updated on a periodic basis using a performance monitoring thread hosted by the generator. The update
period is specified by the <PerformanceQueryInterval> element in the <ApplicationExecutionSettings> node of the
application definition file (ADF).

2 - Vacuuming, which removes data from the database, affects the value of this counter.

After selecting a counter, select a counter instance. You can select All instances, which returns values for all notifications for all
applications hosted by the instance, or you can select a specific notification instance; notification instance names are a
combination of the application name and the notification class name, such as stock:stocknotifications.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Subscribers Object
NS$instance_name: Subscribers Object

The NS$instance_name: Subscribers object provides instance-level counters. These counters monitor subscriber-related activity
for an instance by querying the instance database. Because these counters query a database, these counters can run on any server
that hosts the Notification Services instance.

Counter1 Description Use
Subscribers Added Number of subscribers added

since the instance last started.
Use to determine how many
subscribers are being added to
the system.

Subscribers
Disabled

Number of subscribers that
are currently marked as
disabled.

Subscribers are disabled on
an individual basis using the
Subscriber.Enabled property
followed by the
Subscriber.Update method.

Use to determine how many
subscribers cannot receive
notifications because their
accounts have been disabled
programmatically.

Subscribers
Enabled

Number of subscribers that
are currently marked as
enabled.

Subscribers can be enabled
on an individual basis using
the Subscriber.Enabled
property followed by the
Subscriber.Update method.

Use to determine how many
subscribers can receive
notifications.

1 - The subscribers counters are updated on a periodic basis using a performance monitoring thread that is hosted by the
generator. The update period is specified by the <PerformanceQueryInterval> element in the
<ApplicationExecutionSettings> node of the application definition file (ADF).

For subscribers counters, you do not need to select a counter instance. All subscribers are located in the instance database, so
selecting either All instances or _total returns the same values.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Subscriptions Object
NS$instance_name: Subscriptions Object

The NS$instance_name: Subscriptions object provides application-level counters. These counters monitor the subscription-
related activity of an application by running queries on the database server. Because application-level counters query databases,
these counters can run on any server that hosts the Notification Services instance.

Counter1 Description Use
Subscriptions
Added

Number of subscriptions
added since the application
started.

Notifications sent are often
proportional to the number of
subscriptions.

Use to analyze application
growth.

Subscriptions
Added Per Minute

Number of subscriptions
added per minute.

Use to determine application
growth, in terms of
subscriptions, over time.

Subscriptions
Disabled

Number of disabled
subscriptions. Subscriptions
are disabled at the API level
using NSControl Disable.

Use to determine how many
subscriptions cannot currently
produce notifications.

Subscriptions
Enabled

The total number of enabled
subscriptions. Subscriptions
are enabled at the API level
using NSControl Enable.

Use to determine how many
subscriptions currently can
produce notifications.

1 - Subscriptions counters are updated on a periodic basis using a performance monitoring thread hosted by the generator. The
update period is specified by the <PerformanceQueryInterval> element in the <ApplicationExecutionSettings> node of the
application definition file (ADF).

After selecting a counter, select a counter instance. You can select All instances, which returns values for all subscriptions for all
applications hosted by the instance, or you can select a subscription instance; the subscription instance name is a combination of
the application name and the subscription class name, such as stock:stocksubscriptions.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

NS$instance_name: Vacuumer Object
NS$instance_name: Vacuumer Object

The NS$instance_name: Vacuumer object provides counters for monitoring vacuumer progress for Notification Services
applications by running queries on the database server. Because vacuumer counters query databases, these counters can run on
any server that hosts the Notification Services instance.

Counter Description Use
Completed Periods Number of scheduled

vacuuming periods (or
intervals) that completed
successfully.

Use to determine how many
vacuuming periods successfully
removed data for all available
quanta.

Quantums
Remaining

Number of quanta considered
for vacuuming at the start of
the last vacuuming period, but
not vacuumed.

A nonzero value could
indicate a vacuuming backlog
or that items in the batches
still require processing.

Use to determine whether all the
quanta ready for vacuuming
were vacuumed.

Quantums
Vacuumed

Number of quanta
successfully vacuumed during
the last vacuuming period.

Use to determine whether
vacuuming is occurring as
scheduled.

Timeouts Number of vacuum periods
that ended due to the time
limit.

Use to determine whether
vacuuming is taking longer than
the allotted vacuuming period. If
so, vacuuming should occur
more frequently or the vacuum
period should be increased.

After selecting a counter, select a counter instance. You can select All instances, which returns values for all applications hosted
by the instance, or you can select an application name.

Important Performance counter instances are available only when the instance is running.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

Using Performance Logs and Alerts
Consistently monitoring performance requires the use of performance logs and alerts. Performance logs collect data from
performance counters at regular intervals, enabling you to analyze performance data at your convenience with robust reporting
tools, such as Microsoft Excel. Perfomance alerts enable you to define limits for counters, and then receive alerts when the counter
values are above or below the limit.

Creating a Performance Log

Create a performance log using Performance Logs and Alerts, a part of the Microsoft Windows Performance tool.

To create a performance log

1. In Control Panel, open Administrative Tools, and then open Performance.
2. In the Windows Performance tool, expand Performance Logs and Alerts, right-click Counter Logs, and then click New

Log Settings.
3. Type a name for the counter log, and then click OK.
4. Click Add to add as many counters as necessary for your Notification Services instance and other important values, such as

processor time, disk time, and database counters.

The number of counters you add does not have a significant impact on system performance.

5. When you have finished adding counters, click Close.
6. On the General tab, under Sample data every, configure a sampling interval: start with a moderate sampling interval, such

as 5 minutes, and then adjust the interval if necessary.

The shorter the interval, the more system resources and disk space will be used. Additionally, intervals shorter than the
quantum period can cause a performance report to show sporadic performance numbers, because you will have processing
spikes mixed with no activity.

7. On the Log Files tab, configure the properties of the log file. Comma-delimited files can be viewed later in reporting tools
such as Microsoft Excel.

8. On the Schedule tab, configure a monitoring schedule.

For more information about using counter logs, see the Performance Logs and Alerts documentation.

Analyzing Data from the Performance Log

One benefit of collecting counter data in a log file is that you can import the data to an application like Microsoft Excel and then
create charts that illustrate performance over time. You can collect these charts on a regular schedule and use them to compare
performance over time.

Setting Counter Alerts

Some counter values indicate an application problem. For example, for your application, you might want to know whether the
generator is more than 25 quanta behind or the number of failed delivery requests exceeds 20.

Using the alerts available in the Performance Logs and Alerts part of the Microsoft Windows Performance tool, you can write a
message to the event log, run an application, or send a network message in response to counters above or below a specified limit.

For more information about configuring performance alerts, see the Performance Logs and Alerts documentation.

See Also

Notification Services Performance Objects

SQL Server Notification Services Books Online

Notification Services Performance Reports
Notification Services provides performance reports to help administrators and developers monitor and troubleshoot instance and
application performance. The reports provide information on event collection, notification generation, delivery, average
notification latency, failed deliveries, and many other areas.

Reports are produced by running one of the stored procedures provided with Notification Services. The stored procedures return
various record sets, which can be used by other applications, such as Microsoft Excel.

The stored procedures are created and named when you run NSControl Create or NSControl Update and are customized per
instance and application.

The topics that this section covers are described in the following table.

Report Category Description
Overview of Performance Reports Lists the performance reports and

describes how you might use them.
Using Reports to Analyze Performance Provides a methodology for analyzing

application performance using reports.

See Also

Choosing Monitoring Tools

Notification Services Performance Objects

SQL Server Notification Services Books Online

Overview of Performance Reports
Overview of Performance Reports

Notification Services has five categories of performance reports: an instance report, diagnostic reports, detail reports, quantum
reports, and snapshot reports. Each report is produced by running a stored procedure provided with Notification Services.

Instance Report

The administrative history report is the only report focused at the instance level. This report provides an overview of system
health so that system administrators can quickly determine system performance over a period of time. The report contains counts
and averages for events, subscriptions, notifications, and notification delivery. The NSAdministrationHistory stored procedure,
which is in the instance database, produces this report.

Diagnostic Reports

Diagnostic reports are application-specific reports that provide detailed data for a time interval, such as the past 24 hours or
week. Use these reports to analyze application processing. The stored procedures that run these reports are in the instance
database.

The delivery channel diagnostic report provides information about the notifications delivered through a particular delivery
channel. Because a single notification class can deliver messages through multiple delivery channels, it can be difficult to diagnose
delivery channel issues through applications or notification classes. Use this report to analyze a particular delivery channel. The
NSDiagnosticDeliveryChannel stored procedure produces this report.

The event class diagnostic report provides information about the activity level of a particular event class. Included in this report
is information about event batch creation latency, event batch sizes, and the number of pending batches. The
NSDiagnosticEventClass stored procedure produces this report.

The event provider diagnostic report provides information about the events collected through a particular event provider.
Because an event class can have events collected by multiple event providers, it can be difficult to diagnose event provider issues
through applications or event classes. Use this report to analyze a particular event provider. The NSDiagnosticEventProvider
stored procedure produces this report.

The failed notification diagnostic report provides information about notifications that could not be delivered. The report
contains the application, notification class, and delivery channel names for each failed notification. The report also provides the
subscriber ID and the device address for the failed notification, as well as information about failures and retries. The
NSDiagnosticFailedNotifications stored procedure produces this report.

The notification class diagnostic report provides information about the activities of a particular notification class. Included in
this report are counts of notifications and notification batches, the average number of notifications created per second, and the
delivery success of those notifications. The NSDiagnosticNotificationClass stored procedure produces this report.

The subscription class diagnostic report provides information about the activities of a particular subscription class. Included in
this report are the number of scheduled subscriptions, the subscription processing latency, and the notifications generated from
these subscriptions. The NSDiagnosticSubscriptionClass stored procedure produces this report.

Detail Reports

Detail reports provide detailed information about event batches and their events, notification batches and their notifications, and
scheduled subscriptions. After looking at the higher-level reports such as the snapshot and diagnostic reports, you can use these
reports to look at the details of individual batches and subscriptions. The stored procedures that run these reports are located in
the application databases.

The event batch detail report provides information about a specified event batch. The report contains multiple result sets. One
result set contains general information about the event batch, such as the event provider name and the time the event batch was
collected. A second result set displays the events that were submitted in the event batch. The NSEventBatchDetails stored
procedure produces this report.

The notification batch detail report provides information about a specified notification batch. The report contains information
about the rule firing that produced the batch and the notifications contained in the batch. Use this report to troubleshoot
notification generation and to analyze the progression of notifications through the application. The NSNotificationBatchDetails
stored procedure produces this report.

The scheduled subscription detail report provides information about the scheduled subscriptions for a specified subscription

class. The report contains information about when each subscription was created, when it was last modified, and when it is
scheduled to run. The NSScheduledSubscriptionDetails stored procedure produces this report.

The scheduled subscription list report provides information about all scheduled subscriptions for a given subscriber. The
report shows the subscription ID, class name, and whether the subscriber and subscription are enabled, along with information
about the subscription schedules and time zones. The NSScheduledSubscriptionList stored procedure produces this report.

Quantum Reports

Quantum reports are application-specific reports that provide detailed data about application processing intervals, or quanta.
Examples of quantum data are the quantum execution time, notifications generated during the quantum, and rule firing details.
Use the following reports to analyze and troubleshoot application performance related to generator processing. The stored
procedures that run the reports are located in the application databases.

The quantum detail report provides detailed information about a specified quantum. Use this report to troubleshoot long-
running quanta and to analyze quantum processing. The NSQuantumDetails stored procedure produces the report.

The quantum execution time report provides information to help you identify problematic generator quanta, which you can
then use to analyze the quanta in more detail. The NSQuantumExecutionTime stored procedure produces the report.

The quantum failure report provides information about failed generator quanta. A quantum is failed if the quantum could not
complete required processing, such as event-triggered or scheduled subscription rule firings. The NSQuantumFailures stored
procedure produces the report.

The quantum list report provides information about quanta processed during a specified time period, and displays the quanta in
the order in which they ran. The NSQuantumList stored procedure produces the report.

The quantum performance report provides information about quanta in terms of how long each quantum executed. The result
set divides execution time into intervals, so you can see how many quanta executed within each time period. This can help you
troubleshoot long-running quanta. The NSQuantumPerformance stored procedure produces the reports.

The quanta skipped report provides information about skipped generator quantum processing. Quanta can be skipped if the
generator falls behind and quantum limits are set in the application definition file (ADF). The NSQuantumsSkipped stored
procedure produces the reports.

Snapshot Reports

Snapshot reports provide the current health status of an instance. These reports are used primarily by system administrators to
generate baselines and determine the current status of an instance against those baselines. The stored procedures that produce
these reports are located in the instance database.

The application snapshot reports provide information about the current state of all applications hosted by the instance. The
information includes data such as the generator, vacuumer, and subscriber activation states, information about the most recent
notification batch and vacuuming occurrence, and information about subscriber data. The NSSnapshotApplications stored
procedure produces the reports.

The delivery channels snapshot report provides information about the current state of the delivery channels configured across
the instance. The information includes data such as the distributor system name, activation state, the last time each delivery
channel processed work items, and the number of messages sent or failed. The NSSnapshotDeliveryChannels stored procedure
produces this report.

The events snapshot report provides information about the current state of the event classes configured for applications within
the instance. The information includes data about the application and event provider activation states, the last time the event
classes collected data, and how many events the event classes have submitted. The NSSnapshotEvents stored procedure produces
this report.

The providers snapshot report contains information about the current state of the event providers configured for applications
within the instance. The information includes data about the system that the event provider is running on, the activation state, the
most recent event class and batch collected by the provider, and the number of events collected. The NSSnapshotProviders stored
procedure produces this report.

The subscriptions snapshot report contains information about the subscriptions added to applications hosted by the instance.
The information includes the application name, the subscription class name, and the time the most recent subscription was added
to the application. The NSSnapshotSubscriptions stored procedure produces this report.

See Also

Performance Monitoring and Reporting

Using Reports to Analyze Performance

SQL Server Notification Services Books Online

Using Reports to Analyze Performance
Using Reports to Analyze Performance

When analyzing Notification Services performance, start by determining how an instance and its applications are performing. To
obtain this information, use the application snapshot report and the administrative report.

The application snapshot report, produced by the NSSnapshotApplications stored procedure. For example, you can use this
report to see whether the generator is running behind schedule or whether data is being removed by the vacuumer.

The administrative report, produced by the NSAdministrationHistory stored procedure. For example, you can use this report to
look for failed notification batches.

These reports help you determine whether your applications are performing as expected. If not, use the methodology below to
analyze poor performance.

Analyzing Poor Performance

Analyzing Notification Services applications begins with the generator quantum. The generator is the heart of Notification
Services, and beats on a regular time interval called a quantum. The application developer specifies the duration of a quantum
within the application definition file (ADF). The generator uses the quantum duration to determine how often to generate
notifications.

When analyzing performance problems, you typically look for quantum periods that did not complete as expected, and then
determine what happened during those quanta. Use the following methodology to locate interesting quanta, analyze those
quanta, and then analyze instance and application details.

Step 1: Determine a quantum of interest

The first step in analyzing a Notification Services application is to identify a set of relevant quantum periods. A quantum period
that is relevant to poor performance typically has one of the following characteristics:

The quantum is running longer than expected. This can be caused by several factors, and you must further analyze the
application to determine the cause.
The quantum is marked as failed. A quantum period can have failures for several reasons, such as that a rule did not run as
planned, or notification distribution failed.
The quantum was skipped. In an effort to keep the generator processing current data, you can configure the generator to
skip quantum periods when necessary. Skipped quanta are usually an effect of long-running quantum periods.

To help identify long-running, failed, or skipped quantum periods, Notification Services provides the quantum performance,
quantum execution time, quantum failure, and quanta skipped reports.

The quantum performance report categorizes quanta according to quantum execution times. This can help you determine how
long quanta are running in general. The NSQuantumPerformance stored procedure produces the reports.

The quantum execution time report contains quanta that are running longer than a specified time. Using the quantum IDs, you
can then analyze the quanta in more detail. The NSQuantumExecutionTime stored procedure produces the report.

The quantum failure report provides information about failed generator quanta. A quantum is failed if the quantum could not
complete required processing, such as rule firings. The NSQuantumFailures stored procedure produces the report.

The quanta skipped report provides information about skipped generator quanta. Quanta can be skipped if the generator falls
behind and quantum limits are set in the application definition file (ADF). The NSQuantumsSkipped stored procedure produces
the reports.

Scenario: Using the NSQuantumPerformance stored procedure, you might determine that quantum 188 ran twice as long as
all other quanta. The next step is to discover what happened during that quantum.

Step 2: Analyze detailed quantum information

Once a quantum of interest has been identified, determine what happened during the quantum. To obtain details about the
quantum, use the quantum detail and quantum list reports.

The quantum detail report provides detailed information about a specified quantum. Use this report to troubleshoot long-
running quanta or analyze quantum processing. The NSQuantumDetails stored procedure produces the report.

The quantum list report provides information about quanta processed during a specified time period, and displays the quanta in
the order in which they ran. The NSQuantumList stored procedure produces the report.

Scenario: Continuing the scenario introduced in step 1 above, you run the NSQuantumDetails stored procedure for quantum
188. According to the report, you discover that one of the rule firings consumed 90 percent of the quantum time. The next step is
to look at the event and notification batches for this and other quanta. Using this report, you note that event batch 60 and
notification batch 40 were processed during this quantum.

Step 3: Analyze detailed application data

After analyzing a quantum period, you might want to focus on the specific events, subscriptions, or notifications within the
quantum. The event batch details report, the scheduled subscription details report, and the notification batch detail report provide
very detailed information about application data.

The event batch details report provides information about a specific event batch for an event class. The report shows summary
information about the event batch, and then shows information about each event in the batch. The NSEventBatchDetails stored
procedure produces this report.

The scheduled subscription details report provides information about all the subscriptions in a subscription class. The
NSScheduledSubscriptionDetails stored procedure produces this report.

The notification batch detail report provides information about a specific notification batch for a notification class. The report
shows summary information about the notification batch, and then shows information about each notification in the batch. The
NSNotificationBatchDetails stored procedure produces this report.

You also can use any of the diagnostic or snapshot reports to look at applications in varying levels of detail.

Scenario: To conclude your analysis of quantum 188, you first run the NSNotificationBatchDetails stored procedure for event
batch 60 and notice that a large number of events were collected during this quantum. Using NSDiagnosticEventClass, you
determine that this event batch had substantially more events than most event classes, which shows you that the longer than
normal quantum execution time does not indicate an application problem but optimization of the application, such as optimizing
queries and adding indexes, might be required to improve performance.

See Also

Notification Services Performance Reports

Performance Monitoring and Reporting

SQL Server Notification Services Books Online

Programming Reference
This section provides information about the Microsoft® SQL Server™ Notification Services object model and the Notification
Services XML vocabulary.

The topics that this section covers are described in the following table.

Topic Description
Application Definition File Reference Provides reference information on the

nodes and elements in the application
definition file (ADF).

Configuration File Reference Provides reference information on the
nodes and elements in the configuration
file.

Notification Services Object Model
Reference

Provides reference information on the
Notification Services APIs.

Stored Procedure Reference Provides reference information on the
Notification Services stored procedures.

Table and View Reference Provides reference information on the
Notification Services tables and views.

Notification Services Code Reference Provides reference information on the
codes used by the Notification Services
system.

SQL Server Notification Services Books Online

Application Definition File Reference
An application definition file (ADF) is required for every notification application you create on the Notification Services platform.
The ADF stores all metadata that defines the application. This includes the structure of the events and subscriptions that the
application accepts as input, and the structure of the notifications it produces.

Your ADF must be an XML file that conforms to the ApplicationDefinitionFile.xsd schema. This schema can be found in the
installation directory of the Notification Services instance that you are using. It documents all the standard nodes that are used
when defining a Notification Services application.

An ADF contains a hierarchy of XML nodes, each containing elements that specify the application settings and structure. The ADF
must conform to the standards for well-formed XML, so all element names are case sensitive. Elements are always specified using
Pascal case, which means that the first character is uppercase and the first letter of any subsequent concatenated word is
uppercase.

All element values must conform to XML naming conventions. For more information about these conventions, see XML Textual
Content in the Microsoft MSDN® Library.

ADF Structure

http://go.microsoft.com/fwlink/?LinkId=7614

SQL Server Notification Services Books Online

Reserved Characters
In XML, some characters are reserved for internal use and you must replace them by entity references when they are used in data.
Additionally, the Notification Services XML vocabulary reserves the percent sign for use in denoting parameters.

The following table shows the reserved characters and the entity references that must replace them in all ADF data.

Character Meaning Entity reference
> Greater than >
< Less than <
' Apostrophe (single quote) '
" Quotation mark (double

quote)
"

& Ampersand &
% Percent %

SQL Server Notification Services Books Online

The XML Declaration
It is good practice to provide an XML declaration in every XML document. The application definition file (ADF), which is an XML
document, should have one.

The declaration identifies the version of XML being used, optionally indicates the encoding used by this document, and indicates
whether or not it relies on external documents for additional information. If no encoding attribute is found, the default for the
document is set to UTF-8. If an external document such as a document type definition (DTD) is read, the encoding is set to the
encoding value found in the external document. If no encoding is found in the external document, the default is again set to UTF-
8.

Your ADF XML declaration should appear as follows:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>

This indicates that you are using XML that complies with the version 1.0 specification, that the document uses UTF-8 encoding,
and that the document does not rely on any external documents for additional information.

SQL Server Notification Services Books Online

<Action> Element (<ChronicleRule>)
Provides a Transact-SQL statement that specifies the action to be taken in an event chronicle rule.

Structure

<EventClasses>
 <EventClass>
 ...
 <ChronicleRule>
 ...
 <Action>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Required once per <ChronicleRule>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ChronicleRule> Node

See Also

Defining Chronicle Rules

Event Chronicles

SQL Server Notification Services Books Online

<Action> Element (<EventRule>)
Provides a Transact-SQL statement that specifies the action to be taken in a subscription event rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 ...
 <Action>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Required once per <EventRule> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <EventRule> Node

See Also

Defining Event Rules

Subscription Rules

SQL Server Notification Services Books Online

<Action> Element (<ScheduledRule>)
Provides a Transact-SQL statement that specifies the action to be taken in a subscription scheduled rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>
 <ScheduledRule>
 ...
 <Action>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Required once per <ScheduledRule>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ScheduledRule> Node

See Also

Defining Scheduled Rules

Subscription Rules

SQL Server Notification Services Books Online

<ActionTimeout> Element (<ChronicleRule>)
Specifies an interval during which the Transact-SQL statements specified in the event chronicle <Action> element must
complete.

Structure

<EventClasses>
 <EventClass>
 ...
 <ChronicleRule>
 ...
 <ActionTimeout>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 30 minutes.
Occurrence Optional once per <ChronicleRule>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ChronicleRule> Node

Remarks

If an action does not complete in the time specified by <ActionTimeout>, the action is canceled and an error is recorded in the
event log.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining Chronicle Rules

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<ActionTimeout> Element (<EventRule>)
Specifies an interval during which the Transact-SQL statements specified in the subscription event <Action> element must
complete successfully.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 ...
 <ActionTimeout>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 30 minutes.
Occurrence Optional once per <EventRule> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <EventRule> Node

Remarks

If an action does not complete in the time specified by <ActionTimeout>, the action is canceled and an error is recorded in the
event log.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining Event Rules

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<ActionTimeout> Element (<ScheduledRule>)
Specifies an interval during which the Transact-SQL statements specified in the event scheduled <Action> element must
complete successfully.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>
 <ScheduledRule>
 ...
 <ActionTimeout>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 30 minutes.
Occurrence Optional once per <ScheduledRule>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ScheduledRule> Node

Remarks

If an action does not complete in the time specified by <ActionTimeout>, the action is canceled and an error is recorded in the
event log.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining Scheduled Rules

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<Application> Node
Provides the root element of an application definition file (ADF). Contains all elements that describe a single Notification Services
application.

Structure

<Application>

Node Characteristics

Characteristic Description
Occurrence Required once per ADF.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node None
Child Elements <ParameterDefaults> Node

<Version> Node

<History> Node

<Database> Node

<EventClasses> Node

<SubscriptionClasses> Node

<NotificationClasses> Node

<Providers> Node

<Generator> Node

<Distributors> Node

<ApplicationExecutionSettings> Node

Remarks

You can create an xmlns attribute for this element to specify the Notification Services namespace that is used in the ADF.

Namespaces are used in XML documents to identify the XML vocabulary used in the document. This makes it possible to have
identically named elements with different meanings and values and yet tell them apart. It is good practice to include the unique
namespace that identifies the XML vocabulary you are using.

Your <Application> node must appear as follows if you want to declare a namespace attribute:

<Application
xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ApplicationDefinitionFileSc
hema">

See Also

For more information about using XML namespaces, see Namespaces in an XML Document in the Microsoft MSDN® Library.

http://go.microsoft.com/fwlink/?LinkId=7341

SQL Server Notification Services Books Online

<ApplicationExecutionSettings> Node
Provides a parent location for defining the execution settings for this application.

Structure

<Application>
 ...
 <ApplicationExecutionSettings>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <QuantumDuration> Element

<ChronicleQuantumLimit> Element

<SubscriptionQuantumLimit> Element

<ProcessEventsInOrder> Element

<PerformanceQueryInterval> Element

<EventThrottle> Element

<SubscriptionThrottle> Element

<NotificationThrottle> Element

<DistributorLogging> Node

<Vacuum> Node

See Also

Defining the Application Execution Settings

SQL Server Notification Services Books Online

<Argument> Node (/ContentFormatter/Arguments)
Provides a location to define a single initialization argument for a content formatter.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 ...
 <Arguments>
 <Argument>

Node Characteristics

Characteristic Description
Occurrence Required one or more times per

<Arguments> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Arguments> Node

(<ContentFormatter>)
Child Elements <Name> Element

(/ContentFormatter/Arguments/Argument)

<Value> Element
(/ContentFormatter/Arguments/Argument)

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<Argument> Node (/HostedProvider/Arguments)
Provides a location to define a single initialization argument for a hosted event provider.

Structure

<Providers>
 <HostedProvider>
 ...
 <Arguments>
 <Argument>

Node Characteristics

Characteristic Description
Occurrence Required one or more times per

<Arguments> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Arguments> Node (<HostedProvider>)
Child Elements <Name> Element

(/HostedProvider/Arguments/Argument)

<Value> Element
(/HostedProvider/Arguments/Argument)

See Also

Defining the Event Provider Arguments

SQL Server Notification Services Books Online

<Arguments> Node (<ContentFormatter>)
Provides a location for collecting the initialization arguments for a content formatter.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 ...
 <Arguments>

Node Characteristics

Characteristic Description
Occurrence Optional once per <ContentFormatter>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ContentFormatter> Node
Child Elements <Argument> Node

(/ContentFormatter/Arguments)

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<Arguments> Node (<HostedProvider>)
Provides a location for collecting the initialization arguments for a hosted event provider.

Structure

<Providers>
 <HostedProvider>
 ...
 <Arguments>

Node Characteristics

Characteristic Description
Occurrence Optional once per <HostedProvider>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <HostedProvider> Node
Child Elements <Argument> Node

(/HostedProvider/Arguments)

See Also

Defining the Event Provider Arguments

SQL Server Notification Services Books Online

<AssemblyName> Element (<ContentFormatter>)
Specifies the assembly that contains the class that implements the content formatter functionality.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 ...
 <AssemblyName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None.
Occurrence Required once per <ContentFormatter>

node for custom components; not used
with Notification Services standard
components.

Updates Can be modified, but not added or
deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ContentFormatter> Node

Remarks

The value for <AssemblyName> must be the file name and path of a managed code assembly.

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<AssemblyName> Element (<HostedProvider>)
Specifies the assembly that contains the class that implements the hosted event provider functionality.

Structure

<Providers>
 <HostedProvider>
 ...
 <AssemblyName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None
Occurrence Required once per <HostedProvider>

node for custom components; not used
with Notification Services standard
components.

Updates Can be modified, but not added or
deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <HostedProvider> Node

Remarks

The value for <AssemblyName> must be the file name and path of a managed code assembly.

See Also

Documenting the Event Provider Assembly Name

SQL Server Notification Services Books Online

<Build> Element
Specifies the build component of the application version number.

Structure

<Version>
 ...
 <Build>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Version> Node

See Also

Maintaining Version Information

SQL Server Notification Services Books Online

<Chronicle> Node (/EventClass/Chronicles)
Provides a location for specifying information about one event chronicle table.

Structure

<EventClasses>
 <EventClass>
 ...
 <Chronicles>
 <Chronicle>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Chronicles>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Chronicles> Node (<EventClass>)
Child Elements <ChronicleName> Element

(/EventClass/Chronicles/Chronicle)

<SqlSchema> Node
(/EventClass/Chronicles/Chronicle)

Remarks

If you delete a <Chronicle> node, NSControl Update deletes and re-creates the event class to which it corresponds. This
includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important When you delete a <Chronicle> node, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining Event Chronicle Tables

Event Chronicles

SQL Server Notification Services Books Online

<Chronicle> Node (/SubscriptionClass/Chronicles)
Provides a location for specifying information about one subscription chronicle table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Chronicles>
 <Chronicle>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Chronicles>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Chronicles> Node

(<SubscriptionClass>)
Child Elements <ChronicleName> Element

(/SubscriptionClass/Chronicles/Chronicle)

<SqlSchema> Node
(/SubscriptionClass/Chronicles/Chronicle)

Remarks

If you delete a <Chronicle> node, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Chronicle Tables

Subscription Chronicles

SQL Server Notification Services Books Online

<ChronicleName> Element (/EventClass/Chronicles/Chronicle)
Specifies the user-defined name of the event chronicle table.

Structure

<EventClasses>
 <EventClass>
 ...
 <Chronicles>
 <Chronicle>
 <ChronicleName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Chronicle> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Chronicle> Node

(/EventClass/Chronicles)

Remarks

Microsoft recommends that the <ChronicleName> value be the name of the physical chronicle table as defined in the related
<SqlSchema> node.

If you update a <ChronicleName> element, NSControl Update deletes and re-creates the event class to which it corresponds.
This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important When you update a <ChronicleName> element, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Defining Event Chronicle Tables

SQL Server Notification Services Books Online

<ChronicleName> Element
(/SubscriptionClass/Chronicles/Chronicle)
Specifies the user-defined name of the subscription chronicle table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Chronicles>
 <Chronicle>
 <ChronicleName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Chronicle> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Chronicle> Node

(/SubscriptionClass/Chronicles)

Remarks

Microsoft recommends that the <ChronicleName> value be the same name as that of the physical chronicle table as defined in
the related <SqlSchema> node.

If you update a <ChronicleName> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Chronicle Tables

SQL Server Notification Services Books Online

<ChronicleQuantumLimit> Element
Specifies how far behind the real-time clock the logical clock can fall before it skips processing event chronicle rules in order to
catch up.

Structure

<ApplicationExecutionSettings>
 ...
 <ChronicleQuantumLimit>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1,440 quanta, which is 1,440 minutes or 1

day, assuming a <QuantumDuration>
value of 1 minute.

Occurrence Optional once per
<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining the <ChronicleQuantumLimit> Element

SQL Server Notification Services Books Online

<ChronicleRule> Node
Provides a location for defining one or more Transact-SQL statements that maintain data in event chronicle tables.

Structure

<EventClasses>
 <EventClass>
 ...
 <ChronicleRule>

Node Characteristics

Characteristic Description
Occurrence Optional once per <EventClass> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <EventClass> Node
Child Elements <RuleName> Element (<ChronicleRule>)

<Action> Element (<ChronicleRule>)

<ActionTimeout> Element
(<ChronicleRule>)

See Also

Defining Chronicle Rules

Event Chronicles

SQL Server Notification Services Books Online

<Chronicles> Node (<EventClass>)
Provides a location for defining one or more Transact-SQL statements that determine the table structure for the chronicle tables
used by the event class.

Structure

<EventClasses>
 <EventClass>
 ...
 <Chronicles>

Node Characteristics

Characteristic Description
Occurrence Optional once per <EventClass> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <EventClass> Node
Child Elements <Chronicle> Node

(/EventClass/Chronicles)

Remarks

If you add or delete the <Chronicles> node, NSControl Update deletes and re-creates the event class to which it corresponds.
This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important When you add or delete the <Chronicles> node, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Event Chronicles

SQL Server Notification Services Books Online

<Chronicles> Node (<SubscriptionClass>)
Provides a location for defining one or more Transact-SQL statements that determine the table structure for the chronicle tables
used by the subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Chronicles>

Node Characteristics

Characteristic Description
Occurrence Optional once per <SubscriptionClass>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node
Child Elements <Chronicle> Node

(/SubscriptionClass/Chronicles)

Remarks

If you add or delete the <Chronicles> node, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Subscription Chronicles

SQL Server Notification Services Books Online

<ClassName> Element (<ContentFormatter>)
Specifies the class name of the class that provides the content formatter functionality.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 <ClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <ContentFormatter>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ContentFormatter> Node

Remarks

The <ClassName> value must conform to Microsoft .NET class naming conventions.

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<ClassName> Element (<HostedProvider>)
Specifies the class name of the class that provides the hosted event provider functionality.

Structure

<Providers>
 <HostedProvider>
 <ClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <HostedProvider>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <HostedProvider> Node

Remarks

The <ClassName> value must conform to Microsoft .NET class naming conventions.

See Also

Documenting the Event Provider Class Name

SQL Server Notification Services Books Online

<CollationName> Element
Specifies the collation of the database, which determines the languages it supports and the sort order in which query results are
returned.

Structure

<Database>
 ...
 <CollationName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value The default collation of the SQL Server

instance.
Occurrence Optional once per <Database> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <Database> Node

Remarks

The <CollationName> value must conform to the SQL Server nvarchar data type. It also must be the name of a valid Windows
or SQL Server collation.

See Also

Specifying Application Database Information

SQL Server Notification Services Books Online

<ComputedField> Node
Provides a location for defining one specific computed notification class field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 ...
 <ComputedFields>
 <ComputedField>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<ComputedFields> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ComputedFields> Node
Child Elements <FieldName> Element

(/NotificationClass/Schema/ComputedFields/ComputedField)

<SqlExpression> Element (<ComputedField>)

<DigestGrouping> Element (<ComputedField>)

Remarks

Computed fields are never stored in the notifications table. Instead, they are computed immediately before the notification data is
passed to the content formatter. Computed fields allow you to make use of the formatting and calculation facilities of SQL Server.
Use of computed fields can improve the performance of your notification application, and reduce the work that you must do in
the content formatter. For instance, using a computed field is more efficient than calculating a field value in the Transact-SQL for a
rule, because it allows you to avoid writing additional data to the notification table.

If you add or delete a <ComputedField> node, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important When you add or delete a <ComputedField> node, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<ComputedFields> Node
Provides a location for all of the computed notification field definitions for one notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 ...
 <ComputedFields>

Node Characteristics

Characteristic Description
Occurrence Optional once per

/NotificationClass/Schema node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Schema> Node (<NotificationClass>)
Child Elements <ComputedField> Node

Remarks

If you add or delete the <ComputedFields> node, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important When you add or delete the <ComputedFields> node, any data existing in the original SQL Server tables
is permanently deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<ContentFormatter> Node
Specifies the content formatter used by the associated notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>

Node Characteristics

Characteristic Description
Occurrence Required once per <NotificationClass>

node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <NotificationClass> Node
Child Elements <ClassName> Element

(<ContentFormatter>)

<AssemblyName> Element
(<ContentFormatter>)

<Arguments> Node
(<ContentFormatter>)

See Also

Documenting the Content Formatter

Formatting Notifications

SQL Server Notification Services Books Online

<CreationDate> Element
Specifies the date the application definition file (ADF) was created.

Structure

<History>
 <CreationDate>

Element Characteristics

Characteristic Description
Data Type date.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <History> Node

Remarks

The format of the XML date data type is CCYY-MM-DD with an optional time zone indicator. For more information about XML
data types, see Primitive XML Data Types in the Microsoft MSDN® Library.

See Also

Maintaining History Information

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<CreationTime> Element
Specifies the time at which the application definition file (ADF) was created.

Structure

<History>
 <CreationTime>

Element Characteristics

Characteristic Description
Data Type time.
Default Value None.
Occurrence Required once per <History> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <History> Node

Remarks

The format of the XML time data type is HH:MM:SS.sss with an optional time zone indicator. For more information about XML data
types, see Primitive XML Data Types in the Microsoft MSDN® Library.

See Also

Maintaining History Information

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<Database> Node
Provides a parent location for collecting information about the SQL Server database used by this application.

Structure

<Application>
 ...
 <Database>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <NamedFileGroup> Node

<LogFile> Node

<DefaultFileGroup> Element

<CollationName> Element

Remarks

If no <Database> node is specified, all child elements revert to the defaults on the SQL Server instance being used.

See Also

Specifying Application Database Information

SQL Server Notification Services Books Online

<DefaultFileGroup> Element
Specifies one of the <NamedFileGroup> entries to be used as the default filegroup when creating SQL Server objects for this
application.

Structure

<Application>
 ...
 <Database>
 ...
 <DefaultFileGroup>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value The default filegroup of the SQL Server

instance being used.
Occurrence Optional once per <Database> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <Database> Node

See Also

Defining a <DefaultFileGroup> Element

SQL Server Notification Services Books Online

<DigestDelivery> Element
Indicates whether the associated notification class uses digest delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <DigestDelivery>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value false.
Occurrence Optional once per <NotificationClass>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

See Also

Setting the Digest Delivery Option

SQL Server Notification Services Books Online

<DigestGrouping> Element (<ComputedField>)
Indicates whether the value of the computed notification field is considered when grouping notifications for digest delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 <Schema>
 <ComputedFields>
 <ComputedField>
 ...
 <DigestGrouping>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value false.
Occurrence Optional once per <ComputedField>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ComputedField> Node

Remarks

If you add, delete, or update a <DigestGrouping> element, NSControl Update deletes and re-creates the notification class to
which it corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important When you add, delete, or update a <DigestGrouping> element, any data existing in the original SQL
Server tables is permanently deleted.

See Also

Defining the Notification Fields

Formatting Digest Notifications

SQL Server Notification Services Books Online

<DigestGrouping> Element (<Field>)
Indicates whether the value of the notification field is considered when grouping notifications for digest delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 <Schema>
 <Fields>
 <Field>
 ...
 <DigestGrouping>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value false.
Occurrence Optional once per <Field> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Schema/Fields)

Remarks

If you add, delete, or update a <DigestGrouping> element, NSControl Update deletes and re-creates the notification class to
which it corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important When you add, delete, or update a <DigestGrouping> element, any data existing in the original SQL
Server tables is permanently deleted.

See Also

Defining the Notification Fields

Formatting Digest Notifications

SQL Server Notification Services Books Online

<Distributor> Node
Provides a location for defining information about one of the distributors used by this application.

Structure

<Distributors>
 <Distributor>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<Distributors> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Distributors> Node
Child Elements <SystemName> Element (<Distributor>)

<ThreadPoolSize> Element
(<Distributor>)

<QuantumDuration> Element
(<Distributor>)

See Also

Specifying Distributor Settings

SQL Server Notification Services Books Online

<DistributorLogging> Node
Provides a location for specifying distributor logging settings for the application. These settings determine what types of
notification delivery information gets logged.

Structure

<ApplicationExecutionSettings>
 ...
 <DistributorLogging>

Node Characteristics

Characteristic Description
Occurrence Optional once per

<ApplicationExecutionSettings> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node
Child Elements <LogBeforeDeliveryAttempts> Element

<LogStatusInfo> Element

<LogNotificationText> Element

See Also

Defining the <DistributorLogging> Node

SQL Server Notification Services Books Online

<Distributors> Node
Provides a parent location for defining information about the distributors used by this application.

Structure

<Application>
 ...
 <Distributors>

Node Characteristics

Characteristic Description
Occurrence Required once per <Application> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <Distributor> Node

See Also

Specifying Distributor Settings

SQL Server Notification Services Books Online

<Duration> Element
Specifies how long the vacuumer will continue to run after it has been started.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 ...
 <VacuumSchedule>
 <Schedule>
 ...
 <Duration>

Element Characteristics

Characteristic Description
Data Type duration.
Default
Value

6 hours, or until the start of the next vacuuming interval, whichever comes
first.

Occurrence Optional once per
/ApplicationExecutionSettings/Vacuum/VacuumSchedule/Schedule
node.

Updates Can be added, deleted, and modified using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Schedule> Node (<VacuumSchedule>)

Remarks

The <Duration> element specifies the length of the vacuuming period. Vacuuming occurs daily, so the <Duration> value
cannot exceed 24 hours.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining the <Vacuum> Node

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<EventClass> Node
Provides a location for defining one event class.

Structure

<EventClasses>
 <EventClass>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<EventClasses> node.
Updates Can be added, deleted, and modified using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <EventClasses> Node
Child Elements <EventClassName> Element

(<EventClass>)

<Schema> Node (<EventClass>)

<FileGroup> Element (<EventClass>)

<IndexSqlSchema> Node (<EventClass>)

<ChronicleRule> Node

<Chronicles> Node (<EventClass>)

Remarks

If you delete an <EventClass> node, NSControl Update deletes the event class to which it corresponds, including all related
SQL Server tables and indexes.

Important If you delete an <EventClass> node, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining an Event Class

SQL Server Notification Services Books Online

<EventClasses> Node
Provides a parent location for defining the event classes used by this application.

Structure

<Application>
 ...
 <EventClasses>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <EventClass> Node

Remarks

If you delete an <EventClasses> node, NSControl Update deletes the event class to which it corresponds, including all related
SQL Server tables and indexes.

Important If you delete an <EventClasses> node, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining an Event Class

SQL Server Notification Services Books Online

<EventClassName> Element (<EventClass>)
Specifies the user-defined name of the event class.

Structure

<EventClasses>
 <EventClass>
 <EventClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <EventClass> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <EventClass> Node

Remarks

The name of an event class must conform to SQL Server identifier naming conventions. It also must be unique within the
application. For more information about SQL Server identifier naming conventions, see "Using Identifiers" in SQL Server Books
Online.

If you add, delete, or update the <EventClassName> element, NSControl Update deletes and re-creates the event class to
which it corresponds. This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you add, delete, or update the <EventClassName> element, any data existing in the original SQL
Server tables is permanently deleted.

See Also

Naming the Event Class

SQL Server Notification Services Books Online

<EventClassName> Element (<EventRule>)
Specifies the event class with which the associated rule interacts.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 ...
 <EventClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <EventRule> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <EventRule> Node

See Also

Defining Event Rules

SQL Server Notification Services Books Online

<EventRule> Node
Provides the definition of a single subscription event rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<EventRules> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <EventRules> Node
Child Elements <RuleName> Element (<EventRule>)

<Action> Element (<EventRule>)

<ActionTimeout> Element (<EventRule>)

<EventClassName> Element
(<EventRule>)

See Also

Defining Event Rules

SQL Server Notification Services Books Online

<EventRules> Node
Provides a location for all of the subscription event rule definitions for one subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>

Node Characteristics

Characteristic Description
Occurrence Optional once per <SubscriptionClass>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node
Child Elements <EventRule> Node

See Also

Defining Event Rules

SQL Server Notification Services Books Online

<EventThrottle> Element
Specifies the number of events that can be processed during a single generator quantum.

Structure

<ApplicationExecutionSettings>
 ...
 <EventThrottle>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1,000.
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining an <EventThrottle> Element

SQL Server Notification Services Books Online

<ExpirationAge> Element
Specifies the amount of time to elapse before unsent messages of the associated notification class are considered to have expired.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ExpirationAge>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value None.
Occurrence Optional once per <NotificationClass>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

Remarks

If no <ExpirationAge> value is specified, notifications never expire. Notification Services continues to attempt delivery of all
notifications until the retry schedule is exhausted.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

Notifications that have expired per the <ExpirationAge> value will be ignored during any delivery attempts.

See Also

Specifying the Notification Expiration Age

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<FailureEventLogInterval> Element
Specifies the minimum amount of time that must pass between writes to the event log, regardless of how many failures occur.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolExecutionSettings>
 ...
 <FailureEventLogInterval>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 0 minutes.
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

The <FailureEventLogInterval> element works in conjunction with the <FailureBeforeLoggingEvent> element, to allow you
to configure the error logging to fit the needs of your application.

See Also

Documenting the Delivery Protocols

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<FailuresBeforeAbort> Element
Specifies the number of failures that can occur in attempting to deliver a batch of notifications before the attempt is aborted and
an error is reported to the event log.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolExecutionSettings>
 ...
 <FailureBeforeAbort>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 20.
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<FailuresBeforeLoggingEvent> Element
Specifies the number of failures that can occur in attempting to deliver a batch of notifications before an error is reported to the
event log.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolExecutionSettings>
 ...
 <FailureBeforeLoggingEvent>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1.
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node

Remarks

The <FailureBeforeLoggingEvent> element works in conjunction with the <FailureEventLogInterval> element, to allow you
to configure the error logging to fit the needs of your application.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Field> Node (/EventClass/Schema)
Provides a location for defining one event class field.

Structure

<EventClasses>
 <EventClass>
 ...
 <Schema>
 <Field>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Schema>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Schema> Node (<EventClass>)
Child Elements <FieldName> Element

(/EventClass/Schema/Field)

<FieldType> Element
(/EventClass/Schema/Field)

<FieldTypeMods> Element
(/EventClass/Schema/Field)

Remarks

If you add or delete a <Field> node, NSControl Update deletes and re-creates the event class to which it corresponds. This
includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you add or delete a <Field> node, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Event Fields

SQL Server Notification Services Books Online

<Field> Node (/Protocol/Fields)
Provides a location for defining one protocol header field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <Fields>
 <Field>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Fields>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Fields> Node (<Protocol>)
Child Elements <FieldName> Element

(/Protocol/Fields/Field)

–and–

<SqlExpression> Element
(/Protocol/Fields/Field)

–or–

<FieldReference> Element

Remarks

If you add or delete a <Field> node, NSControl Update deletes and re-creates the notification class to which it corresponds. This
includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you add or delete a <Field> node, any data existing in the original SQL Server tables is permanently deleted.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Field> Node (/Schema/Fields)
Provides a location for defining one notification class field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 <Fields>
 <Field>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Fields>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Fields> Node (<Schema>)
Child Elements <FieldName> Element

(/NotificationClass/Schema/Fields/Field)

<FieldType> Element
(/NotificationClass/Schema/Fields/Field)

<DigestGrouping> Element (<Field>)

Remarks

If you add or delete a <Field> node, NSControl Update deletes and re-creates the notification class to which it corresponds. This
includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you add or delete a <Field> node, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<Field> Node (/SubscriptionClass/Schema)
Provides a location for defining one subscription class field.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Schema>
 <Field>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Schema>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Schema> Node (<SubscriptionClass>)
Child Elements <FieldName> Element

(/SubscriptionClass/Schema/Field)

<FieldType> Element
(/SubscriptionClass/Schema/Field)

<FieldTypeMods> Element
(/SubscriptionClass/Schema/Field)

Remarks

If you add or delete a <Field> node, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<FieldName> Element (/EventClass/Schema/Field)
Specifies the user-defined name of the event field.

Structure

<EventClasses>
 <EventClass>
 ...
 <Schema>
 <Field>
 <FieldName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/EventClass/Schema)

Remarks

Field names must conform to SQL Server identifier naming conventions. For more information about SQL Server identifier
naming conventions, see "Using Identifiers" in SQL Server Books Online.

Important You cannot name an event field EventBatchID or EventID. Notification Services already uses these two
field names internally.

If you update a <FieldName> element, NSControl Update deletes and re-creates the event class to which it corresponds. This
includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you update a <FieldName> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Event Fields

SQL Server Notification Services Books Online

<FieldName> Element
(/NotificationClass/Schema/ComputedFields/ComputedField)
Specifies the user-defined name of the computed notification field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 ...
 <ComputedFields>
 <ComputedField>
 <FieldName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <ComputedField>

node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <ComputedField> Node

Remarks

Field names must conform to SQL Server identifier naming conventions. For more information about SQL Server identifier
naming conventions, see "Using Identifiers" in SQL Server Books Online.

If you update a <FieldName> element, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FieldName> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<FieldName> Element
(/NotificationClass/Schema/Fields/Field)
Specifies the user-defined name of the notification field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 <Fields>
 <Field>
 <FieldName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Schema/Fields)

Remarks

Field names must conform to SQL Server identifier naming conventions. For more information about SQL Server identifier
naming conventions, see "Using Identifiers" in SQL Server Books Online.

Important The following fields are used internally by Notification Services. You must not create notification fields
with these names:

DeliveryChannelName
DeliveryStatusCode
DeviceAddress
DeviceName
DeviceTypeName
DistributorWorkItemId
ExpirationTime
LinkNotificationId
NotificationId
NotificationBatchId
SentTime
SubscriberId
SubscriberLocale

If you update a <FieldName> element, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FieldName> element, any data existing in the original SQL Server tables is permanently

deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<FieldName> Element (/Protocol/Fields/Field)
Specifies the user-defined name of the notification field.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <Fields>
 <Field>
 <FieldName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Protocol/Fields)

Remarks

Field names must conform to SQL Server identifier naming conventions. For more information about SQL Server identifier
naming conventions, see "Using Identifiers" in SQL Server Books Online.

If you update a <FieldName> element, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FieldName> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<FieldName> Element (/SubscriptionClass/Schema/Field)
Specifies the user-defined name of the subscription field.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Schema>
 <Field>
 <FieldName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node

(/SubscriptionClass/Schema)

Remarks

Field names must conform to SQL Server identifier naming conventions. For more information about SQL Server identifier
naming conventions, see "Using Identifiers" in SQL Server Books Online.

Important You cannot name a subscription field Created, Enabled, SubscriberId, SubscriptionId, or Updated.
Notification Services already uses these field names internally.

If you update a <FieldName> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<FieldReference> Element
Provides a reference to a notification field defined in the /NotificationClasses/NotificationClass/Schema/Fields section of
the application definition file (ADF) that can be used to supply a protocol field value.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <Fields>
 <Field>
 ...
 <FieldReference>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in length.
Default
Value

None.

Occurrence Optional once per
/NotificationClasses/NotificationClass/Protocols/Protocol/Fields/Field
node.

Updates Can be modified, but not added or deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Protocol/Fields)

Remarks

If you update a <FieldReference> element, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FieldReference> element, any data existing in the original SQL Server tables is
permanently deleted.

Important If a <FieldReference> element is not included in the <Field> node, a <SqlExpression> element must
be provided instead.</

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Fields> Node (<Protocol>)
Provides a location for all of the protocol header field definitions needed for one of the protocols used by the associated
notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <Fields>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Protocol> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Protocol> Node
Child Elements <Field> Node (/Protocol/Fields)

Remarks

If you update a <Fields> node, NSControl Update deletes and re-creates the notification class to which it corresponds. This
includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <Fields> node, any data existing in the original SQL Server tables is permanently deleted.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Fields> Node (<Schema>)
Provides a location for all of the non-computed notification field definitions for one notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 <Fields>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Schema> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Schema> Node (<NotificationClass>)
Child Elements <Field> Node (/Schema/Fields)

Remarks

If you update a <Fields> node, NSControl Update deletes and re-creates the notification class to which it corresponds. This
includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <Fields> node, any data existing in the original SQL Server tables is permanently deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<FieldType> Element (/EventClass/Schema/Field)
Specifies the SQL Server data type that the event field should implement.

Structure

<EventClasses>
 <EventClass>
 ...
 <Schema>
 <Field>
 ...
 <FieldType>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/EventClass/Schema)

Remarks

<FieldType> values must conform to SQL Server data types. For more information about SQL Server data types, see "Using Data
Types" in SQL Server Books Online.

If you update a <FieldType> element, NSControl Update deletes and re-creates the event class to which it corresponds. This
includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you update a <FieldType> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Event Fields

SQL Server Notification Services Books Online

<FieldType> Element (/NotificationClass/Schema/Fields/Field)
Specifies the SQL Server data type that the notification field should implement.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 <Fields>
 <Field>
 ...
 <FieldType>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Schema/Fields)

Remarks

If you update a <FieldType> element, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FieldType> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<FieldType> Element (/SubscriptionClass/Schema/Field)
Specifies the SQL Server data type that the subscription field should implement.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Schema>
 <Field>
 ...
 <FieldType>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Field> node.
Updates You can modify this element, but cannot

add or delete it. Use NSControl Update
to apply any modification.

Element Relationships

Relationship Elements
Parent Node <Field> Node

(/SubscriptionClass/Schema)

Remarks

<FieldType> values must conform to SQL Server data types. For more information about SQL Server data types, see "Using Data
Types" in SQL Server Books Online.

If you update a <FieldType> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<FieldTypeMods> Element (/EventClass/Schema/Field)
Specifies optional SQL Server field attributes for an event field, such as null and default values.

Structure

<EventClasses>
 <EventClass>
 ...
 <Schema>
 <Field>
 ...
 <FieldTypeMods>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Optional once per <Field> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/EventClass/Schema)

Remarks

<FieldTypeMods> values must conform to SQL Server Transact-SQL syntax conventions. For more information about this
syntax, see "CREATE TABLE" in SQL Server Books Online.

If you update a <FieldTypeMods> element, NSControl Update deletes and re-creates the event class to which it corresponds.
This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you update a <FieldTypeMods> element, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Defining the Event Fields

SQL Server Notification Services Books Online

<FieldTypeMods> Element (/SubscriptionClass/Schema/Field)
Specifies optional SQL Server field attributes for a subscription field, such as null and default values.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Schema>
 <Field>
 ...
 <FieldTypeMods>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Optional once per <Field> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node

(/SubscriptionClass/Schema)

Remarks

If you update a <FieldTypeMods> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<FileGroup> Element (<EventClass>)
Specifies the SQL Server filegroup on which the event table will be created.

Structure

<EventClasses>
 <EventClass>
 ...
 <FileGroup>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value The event table is created on the default

filegroup specified in the
/Database/DefaultFileGroup section of
the application definition file (ADF) if the
<FileGroup> element is not specified. If
the <DefaultFileGroup> element also is
not specified, then the default filegroup
for the SQL Server instance is used.

Occurrence Optional once per <EventClass> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <EventClass> Node

Remarks

The <FileGroup> value must map to one of the <NamedFileGroup> values defined in the <Database> node.

If you update a <FileGroup> element, NSControl Update deletes and re-creates the event class to which it corresponds. This
includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you update a <FileGroup> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Designating the Filegroup

SQL Server Notification Services Books Online

<FileGroup> Element (<NotificationClass>)
Specifies the SQL Server filegroup on which the notification table will be created.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <FileGroup>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value The notification table is created on the

default filegroup specified in the
/Database/DefaultFileGroup section of
the application definition file (ADF) if the
<FileGroup> element is not specified. If
the <DefaultFileGroup> element also is
not specified, then the default filegroup
for the SQL Server instance is used.

Occurrence Optional once per <NotificationClass>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

Remarks

The <FileGroup> value must map to one of the <NamedFileGroup> values defined in the <Database> node.

If you update a <FileGroup> element, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <FileGroup> element, any data existing in the original SQL Server tables is permanently
deleted.

See Also

Defining the Notification Fields

Designating the Filegroup

SQL Server Notification Services Books Online

<FileGroup> Element (<SubscriptionClass>)
Specifies the SQL Server filegroup on which the subscription table will be created.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <FileGroup>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value The subscription table is created on the

default filegroup specified in the
/Database/DefaultFileGroup section of
the application definition file (ADF) if the
<FileGroup> element is not specified. If
the <DefaultFileGroup> element also is
not specified, then the default filegroup
for the SQL Server instance is used.

Occurrence Optional once per <SubscriptionClass>
node

Updates Can be added, deleted, and modified
using NSControl Update

Element Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node

Remarks

The <FileGroup> value must map to one of the <NamedFileGroup> values defined in the <Database> node.

If you update a <FileGroup> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Designating the Filegroup

SQL Server Notification Services Books Online

<FileGroupName> Element
Specifies the user-defined name of the filegroup.

Structure

<Database>
 <NamedFileGroup>
 <FileGroupName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <NamedFileGroup>

node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <NamedFileGroup> Node

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<FileName> Element (<FileSpec>)
Specifies the file name and path of a physical data file used by the application database.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <FileName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None.
Occurrence Required once per <FileSpec> node.
Updateable Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <FileSpec> Node

Remarks

You must specify the file name of the application database data file in the <FileName> element. This is the full path and physical
file name of the data file.

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<FileName> Element (<LogFile>)
Specifies the file name and path of a physical log file used by the application database.

Structure

<Database>
 ...
 <LogFile>
 ...
 <FileName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None.
Occurrence Required once per <LogFile> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <LogFile> Node

Remarks

You must specify the file name of the application database log file in the <FileName> element. This is the full path and physical
file name of the log file.

See Also

Defining a <LogFile> Node.

SQL Server Notification Services Books Online

<FileSpec> Node
Provides a location for the information to create the application's data files.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<NamedFileGroup> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <NamedFileGroup> Node
Child Elements <LogicalName> Element (<FileSpec>)

<FileName> Element (<FileSpec>)

<Size> Element (<FileSpec>)

<MaxSize> Element (<FileSpec>)

<GrowthIncrement> Element
(<FileSpec>)

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<Generator> Node
Provides a parent location for defining information about the generator used by this application.

Structure

<Application>
 ...
 <Generator>

Node Characteristics

Characteristic Description
Occurrence Required once per <Application> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <SystemName> Element (<Generator>)

<ThreadPoolSize> Element
(<Generator>)

See Also

Specifying Generator Settings

SQL Server Notification Services Books Online

<GrowthIncrement> Element (<FileSpec>)
Specifies the increments by which the database size will increase when additional space is needed.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <GrowthIncrement>

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value Increases by the default database growth

increment specified for the SQL Server
instance.

Occurrence Optional once per <FileSpec> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <FileSpec> Node

Remarks

The <GrowthIncrement> value must be either the increment size or a percentage. If you choose to indicate the increment size,
the value must be a non-negative integer, with an optional suffix to indicate the unit of measure: kilobyte (KB), megabyte (MB),
gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is megabytes (MB). If you specify a
percentage, the database will grow by that percentage of the current database size if it runs out of room and needs to expand.

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<GrowthIncrement> Element (<LogFile>)
Specifies the file name and path of a physical log file used by the application database.

Structure

<Database>
 ...
 <LogFile>
 ...
 <GrowthIncrement>

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value Increases by the default database growth

increment specified for the SQL Server
instance.

Occurrence Optional once per <LogFile> node.
Updateable Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <LogFile> Node

Remarks

The <GrowthIncrement> value must be either the increment size or a percentage. If you choose to indicate the increment size,
the value must be a non-negative integer, with an optional suffix to indicate the unit of measure: kilobyte (KB), megabyte (MB),
gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is megabytes (MB). If you specify a
percentage, the log file will grow by that percentage of the current log file size if it runs out of room and needs to expand.

See Also

Defining a <LogFile> Node

SQL Server Notification Services Books Online

<History> Node
Provides a parent location for collecting application definition file (ADF) history information.

Structure

<Application>
 ...
 <History>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <CreationDate> Element

<CreationTime> Element

<LastModifiedDate> Element

<LastModifiedTime> Element

See Also

Maintaining History Information

SQL Server Notification Services Books Online

<HostedProvider> Node
Provides a location for specifying information about one hosted event provider used by this application.

Structure

<Providers>
 <HostedProvider>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per <Providers>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Providers> Node
Child Elements <ProviderName> Element

(<HostedProvider>)

<ClassName> Element
(<HostedProvider>)

<AssemblyName> Element
(<HostedProvider>)

<SystemName> Element
(<HostedProvider>)

<Schedule> Node (<HostedProvider>)

Arguments Node (<HostedProvider>)

See Also

Defining an Event Provider

SQL Server Notification Services Books Online

<IndexSqlSchema> Node (<EventClass>)
Provides a location for specifying the Transact-SQL statements needed for creating one or more indexes on an event table.

Structure

<EventClasses>
 <EventClass>
 ...
 <IndexSqlSchema>

Node Characteristics

Characteristic Description
Occurrence Optional once per <EventClass> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <EventClass> Node
Child Elements <SqlStatement> Element

(/EventClass/IndexSqlSchema)

Remarks

If you add or delete an <IndexSqlSchema> node, NSControl Update deletes and re-creates the event class to which it
corresponds. This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you add or delete an <IndexSqlSchema> node, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Creating the Indexing Statement

SQL Server Notification Services Books Online

<IndexSqlSchema> Node (<SubscriptionClass>)
Provides a location for specifying the Transact-SQL statements needed for creating one or more indexes on a subscription table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <IndexSqlSchema>

Node Characteristics

Characteristic Description
Occurrence Optional once per <SubscriptionClass>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node
Child Elements <SqlStatement> Element

(/SubscriptionClass/IndexSqlSchema)

Remarks

If you add or delete an <IndexSqlSchema> node, NSControl Update re-creates the subscription class to which it corresponds.
A new subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing
subscription table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be
done manually.

See Also

Creating the Indexing Statement

SQL Server Notification Services Books Online

<Interval> Element
Specifies how frequently after the initial start time the event provider is triggered to run.

Structure

<Providers>
 <HostedProvider>
 ...
 <Schedule>
 ...
 <Interval>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value None.
Occurrence Required once per

/HostedProvider/Schedule node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Schedule> Node (<HostedProvider>)

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

Important The value you specify for the interval must divide evenly within a 24-hour period. For instance, 15
minutes is a valid interval, causing the event provider to run 96 times within a 24-hour period. However, 14 minutes is
not a valid interval, because it implies that the event provider should run 102.86 times within a 24-hour period, which
does not divide evenly within a 24-hour period.

See Also

Defining the Event Provider Schedule

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<LastModifiedDate> Element
Specifies the date the application definition file (ADF) was last changed.

Structure

<History>
 ...
 <LastModifiedDate>

Element Characteristics

Characteristic Description
Data Type date.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <History> Node

Remarks

The format of the XML date data type is CCYY-MM-DD with an optional time zone indicator. For more information about XML
data types, see Primitive XML Data Types in the Microsoft MSDN® Library.

See Also

Maintaining History Information

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<LastModifiedTime> Element
Specifies the time the application definition file (ADF) was last changed.

Structure

<History>
 ...
 <LastModifiedTime>

Element Characteristics

Characteristic Description
Data Type time.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <History> Node

Remarks

The format of the XML time data type is HH:MM:SS.sss with an optional time zone indicator. For more information about XML data
types, see Primitive XML Data Types in the Microsoft MSDN® Library.

See Also

Maintaining History Information

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<LogBeforeDeliveryAttempts> Element
Indicates whether the distributor makes an entry in the distribution log before sending out a notification message.

Structure

<ApplicationExecutionSettings>
 ...
 <DistributorLogging>
 <LogBeforeDeliveryAttempts>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value true.
Occurrence Optional once per

<DistributorLogging> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <DistributorLogging> Node

See Also

Defining the <DistributorLogging> Node

SQL Server Notification Services Books Online

<LogFile> Node
Provides a location for the information to create the application database's log files.

Structure

<Database>
 ...
 <LogFile>

Node Characteristics

Characteristic Description
Occurrence Optional one or more times per

<Database> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Database> Node
Child Elements <LogicalName> Element (<LogFile>)

<FileName> Element (<LogFile>)

<Size> Element (<LogFile>)

<MaxSize> Element (<LogFile>)

<GrowthIncrement> Element (<LogFile>)

Remarks

If no <LogFile> node is defined, the log files for the application database will be created on the default filegroup of the SQL
Server instance being used.

See Also

Defining a <LogFile> Node

SQL Server Notification Services Books Online

<LogicalName> Element (<FileSpec>)
Specifies the logical name that will be used in SQL Server to refer to the filegroup defined in the <FileSpec> node.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 <LogicalName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None.
Occurrence Required once per <FileSpec> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <FileSpec> Node

Remarks

You must specify the logical name of the application database data file in the <LogicalName> element. The logical name is used
to refer to the file in all Transact-SQL statements.

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<LogicalName> Element (<LogFile>)
Specifies the logical name that will be used in SQL Server to refer to the filegroup defined in the <LogFile> node.

Structure

<Database>
 ...
 <LogFile>
 <LogicalName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 260 characters in

length.
Default Value None.
Occurrence Required once per <LogFile> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <LogFile> Node

Remarks

You must specify the logical name of the application database log file in the <LogicalName> element. The logical name is used
to refer to the file in all Transact-SQL statements.

See Also

Defining a <LogFile> Node

SQL Server Notification Services Books Online

<LogNotificationText> Element
Indicates whether the distributor logs the full text of any notification delivery information returned from the delivery protocol.

Structure

<ApplicationExecutionSettings>
 ...
 <DistributorLogging>
 ...
 <LogNotificationText>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value true.
Occurrence Optional once per

<DistributorLogging> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <DistributorLogging> Node

Remarks

Notification Services will always log information for a failed delivery. Setting this option to true will log this information for
successful deliveries as well.

See Also

Defining the <DistributorLogging> Node

SQL Server Notification Services Books Online

<LogStatusInfo> Element
Indicates whether the distributor logs the delivery status information for all messages it has attempted to send.

Structure

<ApplicationExecutionSettings>
 ...
 <DistributorLogging>
 ...
 <LogStatusInfo>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value true.
Occurrence Optional once per

<DistributorLogging> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <DistributorLogging> Node

See Also

Defining the <DistributorLogging> Node

SQL Server Notification Services Books Online

<Major> Element
Specifies the major component of the application version number.

Structure

<Version>
 <Major>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Version> Node

See Also

Maintaining Version Information

SQL Server Notification Services Books Online

<MaxSize> Element (<FileSpec>)
Specifies the maximum size to which the SQL Server physical database file can grow.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <MaxSize>

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value Unrestricted file growth.
Occurrence Optional once per <FileSpec> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <FileSpec> Node

Remarks

The <MaxSize> value must be a non-negative integer indicating the database size, with an optional suffix to indicate the unit of
measure: kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is
megabytes (MB).

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<MaxSize> Element (<LogFile>)
Specifies the maximum size to which the SQL Server physical log file can grow.

Structure

<Database>
 ...
 <LogFile>
 ...
 <MaxSize>

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value Unrestricted file growth.
Occurrence Optional once per <LogFile> node.
Updates Cannot be added, deleted, or modified.

Element Relationships

Relationship Elements
Parent Node <LogFile> Node

Remarks

The <MaxSize> value must be a non-negative integer indicating the file size, with an optional suffix to indicate the unit of
measure: kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is
megabytes (MB).

See Also

Defining a <LogFile> Node

SQL Server Notification Services Books Online

<Minor> Element
Specifies the minor component of the application version number.

Structure

<Version>
 ...
 <Minor>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Version> Node

See Also

Maintaining Version Information

SQL Server Notification Services Books Online

<MulticastDelivery> Element
Indicates whether the associated notification class uses multicast delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <MulticastDelivery>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value false.
Occurrence Optional once per <NotificationClass>

node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

Remarks

The <MulticastDelivery> value can be set to true only in Notification Services Enterprise Edition. It should be set to false or
excluded entirely when using Notification Services Standard Edition.

See Also

Setting the Multicast Delivery Option

SQL Server Notification Services Books Online

<MulticastRecipientLimit> Element
Specifies the number of recipients that can receive a single multicast notification message.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolExecutionSettings>
 ...
 <MulticastRecipientLimit>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 100.
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Name> Element (/ContentFormatter/Arguments/Argument)
Specifies the name of an initialization argument for a content formatter.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 <Arguments>
 <Argument>
 <Name>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Argument> Node

(/ContentFormatter/Arguments)

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<Name> Element (/HostedProvider/Arguments/Argument)
Specifies the name of an initialization argument for a hosted event provider.

Structure

<Providers>
 <HostedProvider>
 ...
 <Arguments>
 <Argument>
 <Name>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Argument> Node

(/HostedProvider/Arguments)

See Also

Defining the Event Provider Arguments

SQL Server Notification Services Books Online

<Name> Element (<Parameter>)
Specifies the name of an application parameter.

Structure

<ParameterDefaults>
 <Parameter>
 <Name>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Parameter> Node

See Also

Defining Application Parameters

SQL Server Notification Services Books Online

<NamedFileGroup> Node
Provides a location for defining a SQL Server filegroup to be used by this application for its data files.

Structure

<Database>
 <NamedFileGroup>

Node Characteristics

Characteristic Description
Occurrence Optional one or more times per

<Database> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Database> Node
Child Elements <FileGroupName> Element

<FileSpec> Node

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<NonHostedProvider> Node
Provides a location for specifying information about one independent event provider used by this application.

Structure

<Providers>
 ...
 <NonHostedProvider>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per <Providers>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Providers> Node
Child Elements <ProviderName> Element

(<NonHostedProvider>)

See Also

Defining an Event Provider

SQL Server Notification Services Books Online

<NotificationBatchSize> Element
For regular notifications, specifies the maximum number of notifications of the associated notification class that can be included
in a batch. For digest notifications, specifies the number of notification batches that will be created.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <NotificationBatchSize>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value Unlimited notifications per batch for

regular notifications.

1 notification batch for digest
notifications.

Occurrence Optional once per <NotificationClass>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

Remarks

<NotificationBatchSize> can be set to a non-zero value only in Notification Services Enterprise Edition.

See Also

Specifying a Notification Batch Size

SQL Server Notification Services Books Online

<NotificationClass> Node
Provides a location for defining one notification class.

Structure

<NotificationClasses>
 <NotificationClass>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per

<NotificationClasses> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <NotificationClasses> Node
Child Elements <NotificationClassName> Element

<Schema> Node (<NotificationClass>)

<FileGroup> Element
(<NotificationClass>)

<ContentFormatter> Node

<DigestDelivery> Element

<MulticastDelivery> Element

<NotificationBatchSize> Element

<Protocols> Node

<ExpirationAge> Element

Remarks

If you delete a <NotificationClass> node, NSControl Update deletes the notification table for the notification class. This
includes any data the table might contain.

See Also

Defining a Notification Class

SQL Server Notification Services Books Online

<NotificationClasses> Node
Provides a parent location for defining the notification classes used by this application.

Structure

<Application>
 ...
 <NotificationClasses>

Node Characteristics

Characteristic Description
Occurrence Required once per <Application> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <NotificationClass> Node

See Also

Defining a Notification Class

SQL Server Notification Services Books Online

<NotificationClassName> Element
Specifies the user-defined name of the notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 <NotificationClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <NotificationClass>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NotificationClass> Node

Remarks

The name of a notification class must conform to SQL Server identifier naming conventions. It also must be unique within the
application. For more information about SQL Server identifier naming conventions, see "Using Identifiers" in SQL Server Books
Online.

If you update the <NotificationClassName> element, NSControl Update deletes and re-creates the notification class to which
it corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update the <NotificationClassName> element, any data existing in the original SQL Server tables
is permanently deleted.

See Also

Naming the Notification Class

SQL Server Notification Services Books Online

<NotificationThrottle> Element
Specifies the number of notifications that can be processed during a single generator quantum.

Structure

<ApplicationExecutionSettings>
 ...
 <NotificationThrottle>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1,000.
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining the <NotificationThrottle> Element

SQL Server Notification Services Books Online

<Parameter> Node
Provides a location to define a single application parameter.

Structure

<ParameterDefaults>
 <Parameter>

Node Characteristics

Characteristic Description
Occurrence Required one or more times per

<ParameterDefaults> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ParameterDefaults> Node
Child Elements <Name> Element (<Parameter>)

<Value> Element (<Parameter>)

See Also

Defining Application Parameters

SQL Server Notification Services Books Online

<ParameterDefaults> Node
Provides a parent location for collecting application parameter information.

Structure

<Application>
 <ParameterDefaults>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <Parameter> Node

See Also

Defining Application Parameters

SQL Server Notification Services Books Online

<PerformanceQueryInterval> Element
Specifies how frequently system performance counters are updated.

Structure

<ApplicationExecutionSettings>
 ...
 <PerformanceQueryInterval>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 60 seconds.
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining the <PerformanceQueryInterval> Element

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<ProcessEventsInOrder> Element
Specifies whether Notification Services uses quantum sequencing or sub-quantum sequencing to process event and subscription
rules.

Structure

<ApplicationExecutionSettings>
 ...
 <ProcessEventsInOrder>

Element Characteristics

Characteristic Description
Data Type Boolean.
Default Value false (uses quantum sequencing).
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining the <ProcessEventInOrder> Element

SQL Server Notification Services Books Online

<Protocol> Node
Provides a location for defining a protocol that the associated notification class uses for notification message delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Protocols>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Protocols> Node
Child Elements <ProtocolName> Element

<Fields> Node (<Protocol>)

<ProtocolExecutionSettings> Node

Remarks

If you add or delete a <Protocol> node, NSControl Update deletes and re-creates the notification class to which it corresponds.
This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you add or delete a <Protocol> node, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<ProtocolExecutionSettings> Node
Provides a location for defining the execution settings for one specific protocol that the associated notification class uses for
notification message delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <ProtocolExecutionSettings>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Protocol> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Protocol> Node
Child Elements <RetrySchedule> Node

<FailuresBeforeLoggingEvent> Element

<FailureEventLogInterval> Element

<FailuresBeforeAbort> Element

<MulticastRecipientLimit> Element

<WorkItemTimeout> Element

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<ProtocolName> Element
Specifies the user-defined name of the protocol being used.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Protocol> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Protocol> Node

Remarks

For custom protocols, the <ProtocolName> value must map to the delivery protocol name as specified in the <Protocols>
section of the configuration file. For delivery protocols provided by Notification Services, you must specify the well-known name
of the protocol (SMTP, for example).

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<Protocols> Node
Provides a location for defining one or more protocols that the associated notification class will use for notification message
delivery.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationClass>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <NotificationClass> Node
Child Elements <Protocol> Node

Remarks

If you add or delete the <Protocols> node, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you add or delete the <Protocols> node, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<ProviderName> Element (<HostedProvider>)
Specifies the user-defined name of the hosted event provider.

Structure

<Providers>
 <HostedProvider>
 <ProviderName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <HostedProvider>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <HostedProvider> Node

Remarks

The <ProviderName> value must be unique within the application.

See Also

Naming the Event Provider

SQL Server Notification Services Books Online

<ProviderName> Element (<NonHostedProvider>)
Specifies the user-defined name of the independent event provider.

Structure

<Providers>
 <NonHostedProvider>
 <ProviderName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per

<NonHostedProvider> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <NonHostedProvider> Node

Remarks

The <ProviderName> value must be unique within the application.

See Also

Naming the Event Provider

SQL Server Notification Services Books Online

<Providers> Node
Provides a parent location for defining the event providers used by this application.

Structure

<Application>
 ...
 <Providers>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <HostedProvider> Node

<NonHostedProvider> Node

See Also

Defining an Event Provider

SQL Server Notification Services Books Online

<QuantumDuration> Element
(<ApplicationExecutionSettings>)
Defines the length of time for a generator quantum, which determines how frequently the generator function attempts to process
work.

Structure

<ApplicationExecutionSettings>
 <QuantumDuration>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 60 seconds.
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining the <QuantumDuration> Element

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<QuantumDuration> Element (<Distributor>)
Defines the length of time for a distributor quantum, which determines how frequently the distributor function attempts to
process work.

Structure

<Distributors>
 <Distributor>
 ...
 <QuantumDuration>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 60 seconds.
Occurrence Optional once per <Distributor> node.
Updateable Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Distributor> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Specifying Distributor Settings

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<RetentionAge> Element
Specifies the minimum age at which system data is considered to be obsolete and available for removal.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 <RetentionAge>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value Seven days.
Occurrence Optional once per <Vacuum> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Vacuum> Node

Remarks

Data is not removed any earlier than the period specified by the <RetentionAge> element, although it is not necessarily
removed immediately on expiration of the specified period.

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Defining the <Vacuum> Node

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<RetryDelay> Element
Specifies an interval for the distributor to wait before re-sending any messages that failed to deliver successfully during a
previous attempt.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 ...
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value None.
Occurrence Required once or more per

<RetrySchedule> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <RetrySchedule> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Documenting the Delivery Protocols

Retry Logic

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

<RetrySchedule> Node
Provides a location for defining the intervals at which notification messages of this notification class will be re-sent if prior
delivery attempts have failed.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 ...
 <ProtocolExecutionSettings>
 <RetrySchedule>

Node Characteristics

Characteristic Description
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node
Child Elements <RetryDelay> Element

See Also

Documenting the Delivery Protocols

Retry Logic

SQL Server Notification Services Books Online

<Revision> Element
Specifies the revision component of the application version number.

Structure

<Version>
 ...
 <Revision>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Version> Node

See Also

Maintaining Version Information

SQL Server Notification Services Books Online

<RuleName> Element (<ChronicleRule>)
Specifies the user-defined name of the event chronicle rule.

Structure

<EventClasses>
 <EventClass>
 ...
 <ChronicleRule>
 <RuleName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <ChronicleRule>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ChronicleRule> Node

Remarks

The <RuleName> value must be unique within the application.

See Also

Defining Chronicle Rules

Event Chronicles

SQL Server Notification Services Books Online

<RuleName> Element (<EventRule>)
Specifies the user-defined name of the subscription event rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <EventRules>
 <EventRule>
 <RuleName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <EventRule> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <EventRule> Node

Remarks

The <RuleName> value must be unique within the application.

See Also

Defining Event Rules

Subscription Rules

SQL Server Notification Services Books Online

<RuleName> Element (<ScheduledRule>)
Specifies the user-defined name of the subscription scheduled rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>
 <ScheduledRule>
 <RuleName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <ScheduledRule>

node.
Updateable Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ScheduledRule> Node

Remarks

The <RuleName> value must be unique within the application.

See Also

Defining Scheduled Rules

Subscription Rules

SQL Server Notification Services Books Online

<Schedule> Node (<HostedProvider>)
Specifies the schedule for a hosted event provider.

Structure

<Providers>
 <HostedProvider>
 ...
 <Schedule>

Node Characteristics

Characteristic Description
Occurrence Optional once per <HostedProvider>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <HostedProvider> Node
Child Elements <StartTime> Element

(/HostedProvider/Schedule)

<Interval> Element

Remarks

If no schedule is provided, the event provider runs continuously.

See Also

Defining the Event Provider Schedule

SQL Server Notification Services Books Online

<Schedule> Node (<VacuumSchedule>)
Specifies the schedule for the vacuumer function.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 ...
 <VacuumSchedule>
 <Schedule>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<VacuumSchedule> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <VacuumSchedule> Node
Child Elements <StartTime> Element

(/VacuumSchedule/Schedule)

<Duration> Element

See Also

Defining the <Vacuum> Node

SQL Server Notification Services Books Online

<ScheduledRule> Node
Provides a location for the definition of a single subscription scheduled rule.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>
 <ScheduledRule>

Node Characteristics

Characteristic Description
Occurrence Required once or more per

<ScheduledRules> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ScheduledRules> Node
Child Elements <RuleName> Element (<ScheduledRule>)

<Action> Element (<ScheduledRule>)

<ActionTimeout> Element
(<ScheduledRule>)

See Also

Defining Scheduled Rules

SQL Server Notification Services Books Online

<ScheduledRules> Node
Provides a location for all subscription scheduled rule definitions for one subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <ScheduledRules>

Node Characteristics

Characteristic Description
Occurrence Optional once per <SubscriptionClass>

node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node
Child Elements <ScheduledRule> Node

See Also

Defining Scheduled Rules

SQL Server Notification Services Books Online

<Schema> Node (<EventClass>)
Provides a location for defining the fields that make up an event class.

Structure

<EventClasses>
 <EventClass>
 ...
 <Schema>

Node Characteristics

Characteristic Description
Occurrence Required once per <EventClass> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <EventClass> Node
Child Elements <Field> Node (</EventClass/Schema>)

See Also

Defining the Event Fields

SQL Server Notification Services Books Online

<Schema> Node (<NotificationClass>)
Provides a location for defining the fields that make up a notification class.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>

Node Characteristics

Characteristic Description
Occurrence Required once per <NotificationClass>

node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <NotificationClass> Node
Child Elements <Fields> Node (<Schema>)

<ComputedFields> Node

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<Schema> Node (<SubscriptionClass>)
Provides a location for defining the fields that make up a subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Schema>

Node Characteristics

Characteristic Description
Occurrence Required once per <SubscriptionClass>

node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node
Child Elements <Field> Node

(/SubscriptionClass/Schema)

See Also

Defining Subscription Fields

SQL Server Notification Services Books Online

<Size> Element (<FileSpec>)
Specifies the initial size of the application database.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <Size

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value The default initial database size specified

for the SQL Server instance; usually 1
megabyte (MB).

Occurrence Optional once per <FileSpec> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <FileSpec> Node

Remarks

The <Size> value must be a non-negative integer indicating the database size, with an optional suffix to indicate the unit of
measure: kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is
megabytes (MB).

Important You can update the <Size> element for documentation purposes, but doing this has no effect on the
application database size. If you want to change the size of the application database, use the SQL Server database
administration tools to do so. NSControl Update issues a warning if you attempt to update <Database> or any of
its subordinate elements, and no changes will be applied to the database.

See Also

Defining a <NamedFileGroup> Node

SQL Server Notification Services Books Online

<Size> Element (<LogFile>)
Specifies the initial size of the application log file.

Structure

<Database>
 ...
 <LogFile>
 ...
 <Size>

Element Characteristics

Characteristic Description
Data Type string (see Remarks).
Default Value The default initial database size specified

for the SQL Server instance; usually 1
megabyte (MB).

Occurrence Optional once per <LogFile> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <LogFile> Node

Remarks

The <Size> value must be a non-negative integer indicating the file size, with an optional suffix to indicate the unit of measure:
kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB). If the suffix is not specified, the default unit of measure is megabytes
(MB).

Important You can update the <Size> element for documentation purposes, but doing this has no effect on the log
file size. If you want to change the size of the log file, use the SQL Server database administration tools to do so.
NSControl Update issues a warning if you attempt to update <Database> or any of its subordinate elements, and
no changes will be applied to the log file.

See Also

Defining a <LogFile> Node

SQL Server Notification Services Books Online

<SqlExpression> Element (<ComputedField>)
Specifies a valid Transact-SQL expression that provides the computed field value.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Schema>
 ...
 <ComputedFields>
 <ComputedField>
 ...
 <SqlExpression>

Element Characteristics

Characteristic Description
Data Type string, between 0 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <ComputedField>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ComputedField> Node

Remarks

If you update a <SqlExpression> element, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <SqlExpression> element, any data existing in the original SQL Server tables is
permanently deleted.

See Also

Defining the Notification Fields

SQL Server Notification Services Books Online

<SqlExpression> Element (/Protocol/Fields/Field)
Specifies a valid Transact-SQL expression that provides the protocol field value.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 ...
 <Fields>
 <Field>
 ...
 <SqlExpression>

Element Characteristics

Characteristic Description
Data Type string, between 0 and 4,000 characters in length.
Default
Value

None.

Occurrence Optional once per
/NotificationClasses/NotificationClass/Protocols/Protocol/Fields/Field
node.

Updates Can be modified, but not added or deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Field> Node (/Protocol/Fields)

Remarks

If you update a <SqlExpression> element, NSControl Update deletes and re-creates the notification class to which it
corresponds. This includes dropping and re-creating the SQL Server tables used by this notification class.

Important If you update a <SqlExpression> element, any data existing in the original SQL Server tables is
permanently deleted.

Important If a <SqlExpression> element is not included in the <Field> node, a <FieldReference> element must
be provided instead.

See Also

Documenting the Delivery Protocols

SQL Server Notification Services Books Online

<SqlSchema> Node (/EventClass/Chronicles/Chronicle)
Provides a location for the Transact-SQL statements that define the physical structure of an event chronicle table.

Structure

<EventClasses>
 <EventClass>
 ...
 <Chronicles>
 <Chronicle>
 ...
 <SqlSchema>

Node Characteristics

Characteristic Description
Occurrence Required once per <Chronicle> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Chronicle> Node (/EventClass/Chronicles)
Child Elements <SqlStatement> Element

(/EventClass/Chronicles/Chronicle/SqlSchema)

See Also

Defining Event Chronicle Tables

Event Chronicles

SQL Server Notification Services Books Online

<SqlSchema> Node (/SubscriptionClass/Chronicles/Chronicle)
Provides a location for the Transact-SQL statements that define the physical structure of a subscription chronicle table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Chronicles>
 <Chronicle>
 ...
 <SqlSchema>

Node Characteristics

Characteristic Description
Occurrence Required once per <Chronicle> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Chronicle> Node (/SubscriptionClass/Chronicles)
Child Elements <SqlStatement> Element

(/SubscriptionClass/Chronicles/Chronicle/SqlSchema)

See Also

Defining Subscription Chronicle Tables

Subscription Chronicles

SQL Server Notification Services Books Online

<SqlStatement> Element
(/EventClass/Chronicles/Chronicle/SqlSchema)
Specifies a Transact-SQL statement to create a SQL Server event chronicle table.

Structure

<EventClasses>
 <EventClass>
 ...
 <Chronicles>
 <Chronicle>
 ...
 <SqlSchema>
 <SqlStatement>

Element Characteristics

Characteristic Description
Data Type string, between 0 and 100,000 characters

in length.
Default Value None.
Occurrence Optional once or more per

<SqlSchema> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <SqlSchema> Node

(/EventClass/Chronicles/Chronicle)

Remarks

If you add, delete, or update a <SqlStatement> element, NSControl Update deletes the old chronicle table and creates a new,
empty chronicle table. The data from the old chronicle table is permanently deleted.

See Also

Defining Chronicle Tables

SQL Server Notification Services Books Online

<SqlStatement> Element (/EventClass/IndexSqlSchema)
Specifies a Transact-SQL statement to create a SQL Server index on the event table.

Structure

<EventClasses>
 <EventClass>
 ...
 <IndexSqlSchema>
 <SqlStatement>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Optional once or more per

<IndexSqlSchema> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <IndexSqlSchema> Node (<EventClass>)

Remarks

If you add, delete, or update a <SqlStatement> element, NSControl Update deletes and re-creates the event class to which it
corresponds. This includes dropping and re-creating the SQL Server tables and indexes used by this event class.

Important If you add, delete, or update a <SqlStatement> element, any data existing in the original SQL Server
tables is permanently deleted.

See Also

Creating the Indexing Statement

SQL Server Notification Services Books Online

<SqlStatement> Element
(/SubscriptionClass/Chronicles/Chronicle/SqlSchema)
Specifies a Transact-SQL statement to create a SQL Server subscription chronicle table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <Chronicles>
 <Chronicle>
 ...
 <SqlSchema>
 <SqlStatement>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Optional once or more per

<SqlSchema> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <SqlSchema> Node

(/SubscriptionClass/Chronicles/Chronicle)

Remarks

If you add, delete, or update a <SqlStatement> element, NSControl Update deletes the old chronicle table and creates a new,
empty chronicle table. The data from the old chronicle table is permanently deleted.

See Also

Defining Chronicle Tables

SQL Server Notification Services Books Online

<SqlStatement> Element (/SubscriptionClass/IndexSqlSchema)
Specifies a Transact-SQL statement to create a SQL Server index on the subscription table.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 ...
 <IndexSqlSchema>
 <SqlStatement>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 100,000 characters

in length.
Default Value None.
Occurrence Optional once or more per

<IndexSqlSchema> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <IndexSqlSchema> Node

(<SubscriptionClass>)

Remarks

If you update a <FieldType> element, NSControl Update re-creates the subscription class to which it corresponds. A new
subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld. Existing subscription
table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it must be done
manually.

See Also

Creating the Indexing Statement

SQL Server Notification Services Books Online

<StartTime> Element (/HostedProvider/Schedule)
Specifies the initial time after the application is set up that the event provider is to start running.

Structure

<Providers>
 <HostedProvider>
 ...
 <Schedule>
 <StartTime>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 512 characters in

length.
Default Value None.
Occurrence Optional once per

HostedProvider/Schedule node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Schedule> Node (<HostedProvider>)

Remarks

If no <StartTime> value is specified, the event provider starts running immediately after the application is set up.

The <StartTime> value must conform to the Microsoft .NET Framework string representation of a DateTime data type. The
<StartTime> value must be specified in Universal Coordinated Time (UTC).

See Also

Defining the Event Provider Schedule

SQL Server Notification Services Books Online

<StartTime> Element (/VacuumSchedule/Schedule)
Specifies the daily time when the vacuumer is to start running.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 ...
 <VacuumSchedule>
 <Schedule>
 <StartTime>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 512 characters in

length.
Default Value None.
Occurrence Required once per

/VacuumSchedule/Schedule node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Schedule> Node (<VacuumSchedule>)

Remarks

The <StartTime> value must conform to the Microsoft .NET Framework string representation of a DateTime data type. The
<StartTime> value must be specified in Universal Coordinated Time (UTC).

If you indicate a date as well as a time for this value, only the time portion is used. The vacuumer starts at the specified time on
the current day.

See Also

Defining the <Vacuum> Node

SQL Server Notification Services Books Online

<SubscriptionClass> Node
Provides a location for defining one subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per

<SubscriptionClasses> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <SubscriptionClasses> Node
Child Elements <SubscriptionClassName> Element

<Schema> Node (<SubscriptionClass>)

<FileGroup> Element
(<SubscriptionClass>)

<IndexSqlSchema> Node
(<SubscriptionClass>)

<EventRules> Node

<ScheduledRules> Node

<Chronicles> Node
(<SubscriptionClass>)

Remarks

If you delete a <SubscriptionClass> node, NSControl Update removes the subscription class, and renames the existing
subscription table to SubscriptionTableNameOld. Existing subscription table indexes are left unchanged.

See Also

Defining a Subscription Class

SQL Server Notification Services Books Online

<SubscriptionClasses> Node
Provides a parent location for defining the subscription classes used by this application.

Structure

<Application>
 ...
 <SubscriptionClasses>

Node Characteristics

Characteristic Description
Occurrence Required once per <Application> node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <SubscriptionClass> Node

See Also

Defining a Subscription Class

SQL Server Notification Services Books Online

<SubscriptionClassName> Element
Specifies the user-defined name of the subscription class.

Structure

<SubscriptionClasses>
 <SubscriptionClass>
 <SubscriptionClassName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 128 characters in

length.
Default Value None.
Occurrence Required once per <SubscriptionClass>

node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <SubscriptionClass> Node

Remarks

The name of a subscription class must conform to SQL Server identifier naming conventions. It also must be unique within the
application. For more information about SQL Server identifier naming conventions, see "Using Identifiers" in SQL Server Books
Online.

If you update the <SubscriptionClassName> element, NSControl Update re-creates the subscription class to which it
corresponds. A new subscription table is created, and the existing subscription table is renamed to SubscriptionTableNameOld.
Existing subscription table indexes are left unchanged. If you want to transfer data between the old and new subscription tables, it
must be done manually.

See Also

Naming the Subscription Class

SQL Server Notification Services Books Online

<SubscriptionThrottle> Element
Specifies the number of subscriptions that can be processed during a single generator quantum.

Structure

<ApplicationExecutionSettings>
 ...
 <SubscriptionThrottle>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1,000.
Occurrence Optional once per

<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining a <SubscriptionThrottle> Element

SQL Server Notification Services Books Online

<SubscriptionQuantumLimit> Element
Specifies how far behind the real-time clock the logical clock can fall before it skips processing subscription rules in order to catch
up.

Structure

<ApplicationExecutionSettings>
 ...
 <SubscriptionQuantumLimit>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 30 quanta, which is 30 minutes, assuming

a <QuantumDuration> value of 1
minute.

Occurrence Optional once per
<ApplicationExecutionSettings>
node.

Updates Can be added, deleted, and modified
using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node

See Also

Defining the <SubscriptionQuantumLimit> Element

SQL Server Notification Services Books Online

<SystemName> Element (<Distributor>)
Specifies the name of the server on which the distributor runs.

Structure

<Distributors>
 <Distributor>
 <SystemName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Distributor> node.
Updateable Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Distributor> Node

Remarks

IP addresses are not permitted as values for the <SystemName> element.

In Notification Services Standard Edition, all <SystemName> elements in an application must be identical. In Notification
Services Enterprise Edition, the generator, distributors, and event providers can be distributed on multiple systems.

See Also

Specifying a Distributor

SQL Server Notification Services Books Online

<SystemName> Element (<Generator>)
Specifies the name of the server on which the generator runs.

Structure

<Generator>
 <SystemName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <Generator> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Generator> Node

Remarks

IP addresses are not permitted as values for the <SystemName> element.

In Notification Services Standard Edition, all <SystemName> elements in an application must be identical. In Notification
Services Enterprise Edition, the generator, distributors, and event providers can be distributed on multiple systems.

See Also

Specifying Generator Settings

SQL Server Notification Services Books Online

<SystemName> Element (<HostedProvider>)
Specifies the name of the server on which the hosted event provider runs.

Structure

<Providers>
 <HostedProvider>
 ...
 <SystemName>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 255 characters in

length.
Default Value None.
Occurrence Required once per <HostedProvider>

node.
Updateable Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <HostedProvider> Node

Remarks

IP addresses are not permitted as values for the <SystemName> element.

In Notification Services Standard Edition, all <SystemName> elements in an application must be identical. In Notification Services
Enterprise Edition, the generator, distributors, and event providers can be distributed on multiple systems.

See Also

Identifying the Notification Services System Machine

SQL Server Notification Services Books Online

<ThreadPoolSize> Element (<Distributor>)
Specifies the number of threads that the distributor can use to process work items.

Structure

<Distributors>
 <Distributor>
 ...
 <ThreadPoolSize>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 3.
Occurrence Optional once per <Distributor> node.
Updateable Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Distributor> Node

Remarks

The value of the <ThreadPoolSize> element determines the amount of work the distributor can perform in parallel, and affects
the overall speed of the Notification Services system.

<ThreadPoolSize> can have values between 1 and 3 in Notification Services Standard Edition. The <ThreadPoolSize> value is
unlimited in Notification Services Enterprise Edition.

See Also

Specifying a Distributor

Specifying Distributor Settings

SQL Server Notification Services Books Online

<ThreadPoolSize> Element (<Generator>)
Specifies the number of threads that the generator can use to process event batches.

Structure

<Generator>
 ...
 <ThreadPoolSize>

Element Characteristics

Characteristic Description
Data Type Non-negative integer.
Default Value 1.
Occurrence Optional once per <Generator> node.
Updateable Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Generator> Node

Remarks

The number of threads allocated to the generator thread pool cannot exceed 25 threads per processor.

The value of the <ThreadPoolSize> element determines the amount of work that the generator can perform in parallel, and
affects the overall speed of the Notification Services system.

<ThreadPoolSize> can differ from the default only in Notification Services Enterprise Edition.

See Also

Specifying Generator Settings

SQL Server Notification Services Books Online

<Vacuum> Node
Provides a location for specifying vacuuming information for the application.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>

Node Characteristics

Characteristic Description
Occurrence Optional once per

<ApplicationExecutionSettings> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <ApplicationExecutionSettings> Node
Child Elements <RetentionAge> Element

<VacuumSchedule> Node

See Also

Defining the <Vacuum> Node

SQL Server Notification Services Books Online

<VacuumSchedule> Node
Provides a location for specifying the schedule for the vacuumer.

Structure

<ApplicationExecutionSettings>
 ...
 <Vacuum>
 ...
 <VacuumSchedule>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Vacuum> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Vacuum> Node
Child Elements <Schedule> Node (<VacuumSchedule>)

See Also

Defining the <Vacuum> Node

SQL Server Notification Services Books Online

<Value> Element (/ContentFormatter/Arguments/Argument)
Specifies the value of an initialization argument for a content formatter.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <ContentFormatter>
 <Arguments>
 <Argument>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Argument> Node

(/ContentFormatter/Arguments)

See Also

Documenting the Content Formatter

SQL Server Notification Services Books Online

<Value> Element (/HostedProvider/Arguments/Argument)
Specifies the value of an initialization argument for a hosted event provider.

Structure

<Providers>
 <HostedProvider>
 ...
 <Arguments>
 <Argument>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Argument> Node

(/HostedProvider/Arguments)

See Also

Defining the Event Provider Arguments

SQL Server Notification Services Books Online

<Value> Element (<Parameter>)
Specifies the value of an application parameter.

Structure

<ParameterDefaults>
 <Parameter>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type string, between 1 and 4,000 characters in

length.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified, but not added or

deleted, using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <Parameter> Node

Remarks

The value of the <Value> element must match the format of the element for which it supplies a parameter. For instance, if the
value is to specify information that uses a duration data type, it should follow the P0DT00H00M00S format.

See Also

Defining Application Parameters

SQL Server Notification Services Books Online

<Version> Node
Provides a parent location for collecting application version information.

Structure

<Application>
 ...
 <Version>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added and deleted using

NSControl Update.

Node Relationships

Relationship Elements
Parent Node <Application> Node
Child Elements <Major> Element

<Minor> Element

<Build> Element

<Revision> Element

Remarks

When updating the <Version> child elements, the complete version number must be greater than or equal to the previous
version number.

For example, as shown in the following table, updating from the initial version number of 2.1.24.0 to 2.1.24.1 is fine. However,
updating to 2.0.24.1 raises an error from NSControl Update.

Initial version number Acceptable update Invalid update
<Major>2</Major>
<Minor>1</Minor>
<Build>24</Build>
<Revision>0</Revision>

<Major>2</Major>
<Minor>1</Minor>
<Build>24</Build>
<Revision>1</Revision>

<Major>2</Major>
<Minor>0</Minor>
<Build>24</Build>
<Revision>1</Revision>

See Also

Maintaining Version Settings

SQL Server Notification Services Books Online

<WorkItemTimeout> Element
Specifies the amount of time a distributor thread can take to complete a work item assigned to it, before the job is canceled and
the work item is returned to the available work item pool.

Structure

<NotificationClasses>
 <NotificationClass>
 ...
 <Protocols>
 <Protocol>
 <ProtocolExecutionSettings>
 ...
 <WorkItemTimeout>

Element Characteristics

Characteristic Description
Data Type duration.
Default Value 15 minutes.
Occurrence Optional once per

<ProtocolExecutionSettings> node.
Updates Can be added, deleted, and modified

using NSControl Update.

Element Relationships

Relationship Elements
Parent Node <ProtocolExecutionSettings> Node

Remarks

The format of the XML duration data type is P0DT00H00M00S. For more information about XML data types, see Primitive XML
Data Types in the Microsoft MSDN® Library.

See Also

Documenting the Delivery Protocols

http://go.microsoft.com/fwlink/?LinkId=7343

SQL Server Notification Services Books Online

Configuration File Reference
A configuration file is a structured XML file that describes a single instance of Notification Services. The instance hosts one or
more applications, so the instance contains metadata about those applications. The configuration file also contains metadata
about the instance, database server, delivery protocols, and delivery channels.

The configuration file must conform to the ConfigurationFileSchema.xsd schema, which is in the Notification Services XML
Schemas folder.

The nodes and elements in the configuration file are described in this reference section. Use the links below to access information
about a node or element.

NotificationServicesInstance Node

Node Name Description
<NotificationServicesInstance>
Node

As the top node of the configuration file, contains
all other configuration file nodes and elements.

ParameterDefaults Node

Node or Element Name Description
<ParameterDefaults> Node Contains one or more <Parameter> nodes, which

provide default values for each parameter within the
configuration file.

<Parameter> Node
(<ParameterDefaults>)

Contains one name/value pair that provides a
default value for a parameter in the configuration
file.

<Name> Element
(/ParameterDefaults/Parameter)

Is the name of one parameter in the configuration
file.

<Value> Element
(/ParameterDefaults/Parameter)

Is the value of one parameter in the configuration
file.

Version Node

Node or Element Name Description
<Version> Node Contains elements that provide the Notification

Services version number used by the instance.
<Major> Element Is the major version number, which is the first

number in the product version string.
<Minor> Element Is the minor version number, which is the second

number in the product version string.
<Build> Element Is the build number, which is the third number in the

product version string.
<Revision> Element Is the revision number, which is the fourth number

in the product version string.

History Node

Node or Element Name Description
<History> Node Contains elements that provide the date and time of

the configuration file's creation and last
modification.

<CreationDate> Element Is the date the configuration file was created.
<CreationTime> Element Provides the time the configuration file was created.
<LastModifiedDate> Element Provides the date the configuration file was last

modified.
<LastModifiedTime> Element Provides the time the configuration file was last

modified.

InstanceName Element

Element Name Description
<InstanceName> Element Provides the logical name for the instance of

Notification Services.

SqlServerSystem Element

Element Name Description
<SqlServerSystem> Element Provides the name of an instance of SQL Server that

hosts the Notification Services instance database
and its application databases.

Database Node

Node or Element Name Description
<Database> Node Contains elements that specify database parameters

for the instance database, instance_nameNSMain.
The <Database> node contains information about
filegroups, the database files in those filegroups, and
the database log.

<NamedFileGroup> Node Contains elements that describe a filegroup used by
the database.

<FileGroupName> Element Provides the name of one filegroup used by the
instance database.

<FileSpec> Node Contains elements that describe the properties of
one database file.

<LogicalName> Element
(<FileSpec>)

Provides the name used to refer to the database file.

<FileName> Element
(<FileSpec>)

Provides the path and file name used by the
operating system when it creates a database file.

<Size> Element (<FileSpec>) Provides the initial size of the database file.
<MaxSize> Element
(<FileSpec>)

Provides the maximum size to which the database
file can grow.

<GrowthIncrement> Element
(<FileSpec>)

Is the amount of space that is added to the database
file each time new space is needed.

<LogFile> Node Contains elements that define one log file.
<LogicalName> Element
(<LogFile>)

Is the name used to refer to the log file.

<FileName> Element
(<LogFile>)

Is the path and file name used by the operating
system when it creates a log file.

<Size> Element (<LogFile>) Is the initial size of the log file.
<MaxSize> Element
(<LogFile>)

Is the maximum size to which the log file can grow.

<GrowthIncrement> Element
(<LogFile>)

Is the amount of space that is added to the log file
each time new space is needed.

<DefaultFileGroup> Element Specifies one of the <NamedFileGroup> entries
to be used as the default filegroup when creating
SQL Server objects for the instance.

<CollationName> Element Specifies the collation of the database, which
determines the languages supported by the
database, and the sort order in which query results
are returned.

Applications Node

Node or Element Name Description

<Applications> Node Contains one or more <Application> nodes,
each of which describes one application hosted
by the instance.

<Application> Node Contains elements that describe a single
notification application.

<ApplicationName> Element Is the logical name of the application.
<BaseDirectoryPath> Element Is the path of the application folder, which

contains application-related files such as the
ADF, XML, and XSLT files.

<ApplicationDefinitionFilePath>
Element

Specifies the file name of the ADF, and
optionally its relative path.

<Parameters> Node Contains an application-specific set of
parameters that are passed to the ADF.

<Parameter> Node
(/Application/Parameters)

Contains one name/value pair that provides a
value for a parameter in the ADF.

<Name> Element
(/Application/Parameters/Parameter)

Is the name of a parameter to be passed to the
ADF.

<Value> Element
(/Application/Parameters/Parameter)

Is the value of a parameter passed to the ADF.

Protocols Node

Node or Element Name Description
<Protocols> Node Contains one or more <Protocol> nodes, each of

which describes a custom delivery protocol used to
deliver messages.

<Protocol> Node Contains elements that describe a single custom
delivery protocol.

<ProtocolName> Element Is the name of a custom delivery protocol.
<ClassName> Element Is the class name for the delivery protocol, which is

within the assembly specified by the
<AssemblyName> element.

<AssemblyName> Element Is the path and file name of the assembly that
contains the delivery protocol class.

DeliveryChannels Node

Node or Element Name Description
<DeliveryChannels> Node Contains one or more

<DeliveryChannel> nodes that describe
all the delivery channels used by all
applications hosted by the instance.

<DeliveryChannel> Node Contains elements that describe the
properties of a single delivery channel
instance.

<DeliveryChannelName> Element Is the logical name of the delivery channel.
<ProtocolName> Element
(<DeliveryChannel>)

Is the name of the protocol, either standard
or custom, used by the delivery channel.

<Arguments> Node Contains one or more <Argument>
nodes that specify name/value pairs for
delivery channel arguments.

<Argument> Node Contains one name/value pair that
provides a value for a delivery channel
argument.

<Name> Element
(/DeliveryChannel/Arguments/Argument)

Is the name of one argument to be passed
to the delivery channel.

<Value> Element
(/DeliveryChannel/Arguments/Argument)

Is the value of one argument passed to the
delivery channel.

EncryptArguments Element

Element Name Description
<EncryptArguments> Element Specifies whether the instance encrypts delivery

channel and event provider arguments before
storing the values in the instance and application
databases.

See Also

Configuration File Conventions

Configuration File Samples

XML Declaration

SQL Server Notification Services Books Online

Configuration File Rules
The following rules apply to all configuration file nodes and elements in Notification Services:

Node and element names are case sensitive.
The nodes and elements in the configuration file must appear in the order defined by the schema. For an example, see
Complete Configuration File.
Optional nodes can be removed or can contain empty child elements.
In XML, some characters are reserved for internal use, so you must replace them with entity references. Additionally, the
Notification Services XML vocabulary reserves the percent sign (%) for denoting parameters.

The following table shows the reserved characters and the entity references that must replace them in the configuration file.

Character Meaning Entity Reference
> Greater than >
< Less than <
' Apostrophe (single quote) '
" Quotation mark (double

quote)
"

& Ampersand &
% Percent %

See Also

Configuration File Reference

SQL Server Notification Services Books Online

Configuration File Samples
The two samples that this section covers include one complete sample, which shows the use of optional parameters, and one
minimal sample, which shows the use of only the required parameters. You can use these samples as a reference when creating
your own configuration files.

Topic Description
Complete Configuration File Is a configuration file that shows both

optional and required nodes and
elements.

Minimal Configuration File Is a configuration file that shows only the
required nodes and elements.

See Also

Configuration File Reference

SQL Server Notification Services Books Online

Complete Configuration File
Complete Configuration File

This sample configuration file shows the use of all configuration file nodes and elements, including the optional
<ParameterDefaults>, <Version>, <History>, and <Database> nodes.

This sample configuration file requires values for the following five parameters:

%User%
%Pwd%
%InstanceName%
%System%
%BaseDirectoryPath%

Two of these parameters, %BaseDirectoryPath% and %System%, are provided with values in the <ParameterDefaults> node.
You provide values for the other parameters on the command line when running the NSControl Create or NSControl Update
command.

Example: Complete Configuration File XML

<?xml version="1.0" encoding="utf-8"?>
<!--Microsoft Notification Services "Configuration File"-->

<NotificationServicesInstance
xmlns:ns="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileSchema"
xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationF
ileSchema http://localhost/NotificationServices/ConfigurationFileSchema.xsd">

<!--Default Parameters-->
<ParameterDefaults>
 <Parameter>
 <Name>BaseDirectoryPath</Name>
 <Value>C:\Program Files\Microsoft Notification Services\%InstanceName%</Value>
 </Parameter>
 <Parameter>
 <Name>System</Name>
 <Value>MyServer</Value>
 </Parameter>
</ParameterDefaults>

<!--Version-->
<Version>
 <Major>2</Major>
 <Minor>0</Minor>
 <Build>162</Build>
 <Revision>1</Revision>
</Version>

<!--History-->
<History>
 <CreationDate>2001-09-22</CreationDate>
 <CreationTime>10:30:00</CreationTime>
 <LastModifiedDate>2002-4-22</LastModifiedDate>
 <LastModifiedTime>22:30:00</LastModifiedTime>
</History>

<!--Instance Name-->
<InstanceName>%InstanceName%</InstanceName>

<!--SQL Server machine name-->
<SqlServerSystem>%System%</SqlServerSystem>

<!--Database-->
<Database>

 <NamedFileGroup>
 <FileGroupName>primary</FileGroupName>
 <FileSpec>
 <LogicalName>PrimaryFG1</LogicalName>
 <FileName>%BaseDirectoryPath%\Primary.mdf</FileName>
 <Size>10MB</Size>
 <MaxSize>14MB</MaxSize>
 <GrowthIncrement>15%</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>MyFileGroup</FileGroupName>
 <FileSpec>
 <LogicalName>MyLogicalName</LogicalName>
 <FileName>%BaseDirectoryPath%\MyLogicalName.mdf</FileName>
 <Size>55MB</Size>
 <MaxSize>100MB</MaxSize>
 <GrowthIncrement>15%</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>MyDefault2</FileGroupName>
 <FileSpec>
 <LogicalName>MyLogicalDefault2</LogicalName>
 <FileName>%BaseDirectoryPath%\MyDefault2.mdf</FileName>
 <Size>1MB</Size>
 <MaxSize>3MB</MaxSize>
 <GrowthIncrement>15%</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
</Database>

<!--Applications-->
<Applications>
 <Application>
 <ApplicationName>Stock</ApplicationName>
 <BaseDirectoryPath>%BaseDirectoryPath%\Stock</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>StockADF.xml</ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>%System%</Value>
 </Parameter>
 <Parameter>
 <Name>NSSystem</Name>
 <Value>%System%</Value>
 </Parameter>
 </Parameters>
 </Application>
</Applications>

<!--Protocols-->
<Protocols>
 <Protocol>
 <ProtocolName>SMS</ProtocolName>
 <ClassName>Protocols.SMSProtocol</ClassName>
 <AssemblyName>SMS.dll</AssemblyName>
 </Protocol>
</Protocols>

<!--Delivery Channels-->
<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
 <Arguments>
 <Argument>
 <Name>User</Name>
 <Value>%User%</Value>
 </Argument>
 <Argument>
 <Name>Pwd</Name>

 <Value>%Pwd%</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
 <DeliveryChannel>
 <DeliveryChannelName>CustomSMSChannel</DeliveryChannelName>
 <ProtocolName>SMS</ProtocolName>
 <Arguments>
 <Argument>
 <Name>User</Name>
 <Value>%User%</Value>
 </Argument>
 <Argument>
 <Name>Pwd</Name>
 <Value>%Pwd%</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

<!--Argument Encryption Flag -->
<EncryptArguments>false</EncryptArguments>

</NotificationServicesInstance>

See Also

Configuration File Reference

Configuration File Samples

SQL Server Notification Services Books Online

Minimal Configuration File
Minimal Configuration File

This sample configuration file shows the sections and elements that must be included in a configuration file for the file to be valid.

This sample configuration file requires definitions for the following three parameters:

%InstanceName%
%System%
%BaseDirectoryPath%

You provide values for these three parameters on the command line when running the NSControl Create or NSControl Update
command.

Example: Minimal Configuration File XML

<?xml version="1.0" encoding="utf-8"?>
<NotificationServicesInstance>

<!--Instance Name-->
<InstanceName>%InstanceName%</InstanceName>

<!--SQL Server machine name-->
<SqlServerSystem>%System%</SqlServerSystem>

<!--Applications-->
<Applications>
 <Application>
 <ApplicationName>Stock</ApplicationName>
 <BaseDirectoryPath>%BaseDirectoryPath%</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>StockADF.xml</ApplicationDefinitionFilePath>
 </Application>
</Applications>

<!--Delivery Channels-->
<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
 </DeliveryChannel>
</DeliveryChannels>

</NotificationServicesInstance>

See Also

Configuration File Reference

Configuration File Samples

SQL Server Notification Services Books Online

XML Declaration
Declares the XML version and optionally declares the encoding and whether the file depends on any external resources.

<?xml version="1.0" encoding="UTF-8"? standalone="yes"?>

Attributes

Attribute Name Description
version Required.
encoding Optional. If used, the encoding declaration must

appear immediately after the version information in
the XML declaration, and must contain a value
representing an existing character encoding.

The encoding declaration identifies which encoding is
used to represent the characters in the document.
Although XML parsers can determine automatically
whether a document uses the UTF-8 or UTF-16
Unicode encoding, this declaration should be used in
documents that support other encodings.

standalone Optional. If used, the stand-alone declaration must
appear last in the XML declaration.

The stand-alone declaration indicates whether a
document relies on information from an external
source, such as external document type definition
(DTD), for its content.

Remarks

The XML declaration must appear as the first line of the document without other content or white space before the opening angle
bracket (<).

For additional information, see XML Declaration in the Microsoft MSDN® Library.

http://go.microsoft.com/fwlink/?linkid=7683

SQL Server Notification Services Books Online

<Application> Node
Contains elements that describe a single notification application hosted by the instance.

Structure

<Applications>
 <Application>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Applications> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <Applications> Node
Child Elements <ApplicationName> Element

<BaseDirectoryPath> Element

<ApplicationDefinitionFilePath> Element

<Parameters> Node

Remarks

If multiple applications are hosted by the instance, the configuration file contains multiple <Application> nodes, each with child
elements that describe an application.

Example

This example shows a complete <Application> node:

<Application>
 <ApplicationName>Stock</ApplicationName>
 <BaseDirectoryPath>C:\NSApps\Stock</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>StockADF.xml</ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>YourSqlServer</Value>
 </Parameter>
 <Parameter>
 <Name>NSSystem</Name>
 <Value>YourNSServer</Value>
 </Parameter>
 </Parameters>
</Application>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ApplicationDefinitionFilePath> Element
Is the file name, and optionally the path to, the application definition file (ADF).

Structure

<Applications>
 <Application>
 ...
 <ApplicationDefinitionFilePath>

Element Characteristics

Characteristic Description
Value string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <Application> node.
Updates Can be modified, and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Application> Node

Remarks

If the ADF file is in the folder specified by <BaseDirectoryPath>, use only the ADF name, such as StockADF.xml.

If the ADF file is not in the folder specified by <BaseDirectoryPath>, the <ApplicationDefinitionFilePath> value is a relative
path from <BaseDirectoryPath> to the ADF, such as ..\..\Datafiles\StockADF.xml, or is a fully qualified path, such as
D:\Datafiles\StockADF.xml or \\Server\Share\StockADF.xml.

Examples

The following examples show two ways to specify a value for the <ApplicationDefinitionFilePath> element.

Specifying only the ADF name

This example shows how to provide an ADF file name when the file is located in the <BaseDirectoryPath> folder:

<ApplicationDefinitionFilePath>StockADF.xml</ApplicationDefinitionFilePath>

Specifying a relative path to the ADF

This example shows how to specify a path relative to the <BaseDirectoryPath> folder:

<ApplicationDefinitionFilePath>..\..\ADFs\StockADF.xml</ApplicationDefinitionFilePath>

Specifying a fu lly qualified path to the ADF

This example shows how to specify a fully qualified path that is not relative to the <BaseDirectoryPath> folder:

<ApplicationDefinitionFilePath>D:\Datafiles\StockADF.xml</ApplicationDefinitionFilePath>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ApplicationName> Element
Is the logical name of the application, which must be unique within the configuration file. This is the only place where a name is
given to the application.

Structure

<Applications>
 <Application>
 <ApplicationName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 127 characters.
Default Value None.
Occurrence Required once per <Application> node.
Updates Can be modified, and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Application> Node

Remarks

The <ApplicationName> element allows a string of 1 to 255 characters. However, this name, plus the instance name, is used for
the application database name, and database names are limited to 128 characters. Because the application database name is a
concatenation of application and instance name, limit <ApplicationName> to a length that does not violate object naming rules.

Because this value is used to create SQL Server objects, follow the SQL Server rules for regular identifiers. Do not use SQL Server
reserved keywords or special characters. For more information, see "Using Identifiers" in SQL Server Books Online.

If you update <ApplicationName>, NSControl Update disassociates the existing application from the instance and creates a
new application with the new name. NSControl Update does not delete the old application database from SQL Server nor does
it transfer any data from the old application database to the new application database. When NSControl Update completes, you
can manually transfer data and then delete the old application database.

Example

This example shows how to specify an application name of Stock1:

<ApplicationName>Stock1</ApplicationName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Applications> Node
Contains one or more <Application> nodes, each of which describes an application hosted by the instance.

Structure

<NotificationServicesInstance>
 ...
 <Applications>

Node Characteristics

Characteristic Description
Occurrence Required once per <NotificationServicesInstance>

node.
Updates Cannot be added or deleted.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <Application> Node

Example

This example shows a complete <Applications> node with two applications. The example illustrates using parameters for the
<BaseDirectoryPath> element and passing values to the application definition file (ADF). Values for %BaseDirectoryPath%,
%DBSystem%, and %NSSystem% are specified either on the command line or in the <ParameterDefaults> section:

<Applications>
 <Application>
 <ApplicationName>Stock</ApplicationName>
 <BaseDirectoryPath>%BaseDirectoryPath%</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>StockADF.xml</ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>%DBSystem%</Value>
 </Parameter>
 <Parameter>
 <Name>NSSystem</Name>
 <Value>%NSSystem%</Value>
 </Parameter>
 </Parameters>
 </Application>
 <Application>
 <ApplicationName>Horoscope</ApplicationName>
 <BaseDirectoryPath>%BaseDirectoryPath%</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>HoroscopeADF.xml</ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>%DBSystem%</Value>
 </Parameter>
 <Parameter>
 <Name>NSSystem</Name>
 <Value>%NSSystem%</Value>
 </Parameter>
 </Parameters>
 </Application>
</Applications>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Argument> Node
Contains one name/value pair for a delivery channel argument. Typical uses of these arguments are to supply a posting URL or to
supply a user name and password for the delivery service.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 ...
 <Arguments>

 <Argument>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Arguments> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <Arguments> Node
Child Elements <Name> Element

(/DeliveryChannel/Arguments/Argument)

<Value> Element
(/DeliveryChannel/Arguments/Argument)

Remarks

Delivery channel arguments are dependent on the delivery channel protocol. Each protocol has its own requirements for
arguments that must be passed to the protocol with headers. Examples of delivery channel arguments are the server name, a user
name, or a password.

Notification Services does not validate delivery channel arguments when you create or update the instance.

Example

This example shows a complete <Argument> node. The delivery channel accepts a User argument. You can specify a value for
%User% on the command line or in the <ParameterDefaults> node.

Note Microsoft recommends that you do not store user name and password information in any plain text files.

<Argument>
 <Name>User</Name>
 <Value>%User%</Value>
</Argument>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Arguments> Node
Contains one or more <Argument> nodes that specify a name/value pair for delivery channel arguments. Typical uses of these
arguments are to supply a posting URL or to supply a user name and password for the delivery service.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 ...
 <Arguments>

Node Characteristics

Characteristic Description
Occurrence Optional once per <DeliveryChannel> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <DeliveryChannel> Node
Child Elements <Argument> Node

Example

This example shows three delivery channel arguments defined within the <Arguments> node. These arguments are passed to
the delivery channel to configure its use for sending notifications.

Note Microsoft recommends that you do not store user name and password information in any plain text files.

<Arguments>
 <Argument>
 <Name>Server</Name>
 <Value>//Exchange10</Value>
 </Argument>
 <Argument>
 <Name>User</Name>
 <Value>%User%</Value>
 </Argument>
 <Argument>
 <Name>Pwd</Name>
 <Value>%Pwd%</Value>
 </Argument>
</Arguments>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<AssemblyName> Element
Is the path and file name of the assembly that contains the protocol class.

Structure

<Protocols>
 <Protocol>
 ...
 <AssemblyName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Optional once per <Protocol> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Protocol> Node

Remarks

Do not use the <AssemblyName> element for built-in protocols, such as HttpExtension.

If you do not know the class and assembly names for the custom protocol, contact the developer who defined the custom
protocol. The assembly name is likely the name of a DLL and the class name is the class within the assembly for the protocol.

The assembly must either be located in the <BaseDirectoryPath> folder, or you must include the relative path to the assembly.

Example

This example shows how to specify that the short message service (SMS) protocol assembly is located in the SMS.dll file:

<AssemblyName>SMS.dll</AssemblyName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<BaseDirectoryPath> Element
Is the path of the application directory. This path is used to located files specific to the application, such as XML and XSLT files.

Structure

<Applications>
 <Application>
 ...
 <BaseDirectoryPath>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <Application> node.
Updates Can be modified, and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Application> Node

Example

This example shows how to specify the Stock folder as the application directory:

<BaseDirectoryPath>D:\Datafiles\Stock</BaseDirectoryPath>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Build> Element
Is the build number, which is the third number in the product version string. This number is used to distinguish between builds of
a release.

Structure

<Version>
 ...
 <Build>

Element Characteristics

Characteristic Description
Data Type and Length Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates The entire version number can be incremented, and

then updated using NSControl Update.

Element Relationships

Relationship Element or Node
Parent Node <Version> Node

Remarks

Use the build number if you want to specify which version of Notification Services the configuration file conforms to or to track
changes using your own numbering scheme.

The <Version> node is optional.

When the database is first created using NSControl Create, if you do not specify a version number, 0.0.0.0 is entered into the
database. For subsequent updates, the last version specified in the database is used.

A version number is always entered into the database regardless of any other changes in the application definition file (ADF) or
configuration file. This action lets the administrator know that NSControl Create or NSControl Update ran.

Example

This example shows how to specify the build number for version 2.0.153.1:

<Build>153</Build>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ClassName> Element
Is the class name for the protocol, which is either a built-in protocol (such as HttpExtension) or a class defined within the assembly
specified by the <AssemblyName> element. The assembly developer should provide this information.

Structure

<Protocols>
 <Protocol>
 ...
 <ClassName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 4,000 characters.
Default Value None.
Occurrence Required once per <Protocol> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Protocol> Node

Example

This example shows how to specify the name of the class within the assembly where the SMS protocol is defined:

<ClassName>Protocols.SMSProtocol</ClassName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<CollationName> Element
Specifies the collation of the database, which determines how SQL Server sorts and compares data.

Structure

<Database>
 ...
 <CollationName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Optional once per <Database> node.
Updates Cannot be modified.

Element Relationships

Relationship Element or Node
Parent Node <Database> Node

Remarks

If the collation must be different from the default collation for the instance of SQL Server, specify the collation name using this
element. The default is the collation setting of the model database.

Important The instance and its application databases must all use the same collation.

For more information, see "SQL Collation Name" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

The <CollationName> values specified in each application definition file (ADF) must be the same and must match the
<CollationName> values specified in the configuration file.

Example

This example shows how to specify a collation for the instance database. The collation uses the SQL_Latin1_General sort rules,
code page 1251, and is case insensitive and accent sensitive:

<CollationName>SQL_Latin1_General_CP1251_CI_AS</CollationName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<CreationDate> Element
Is the date the configuration file was created.

Structure

<History>
 <CreationDate>

Element Characteristics

Characteristic Description
Data Type and Length date.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <History> Node

Remarks

The format of the XML date data type is CCYY-MM-DD with an optional time zone indicator.

The <History> node is optional, but if you use it, you must include all child elements.

History information is not stored in the database and is ignored by NSControl Update.

Example

This example shows how to specify a configuration file creation date of January 21, 2002:

<CreationDate>2002-01-21</CreationDate>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<CreationTime> Element
Is the time the configuration file was created.

Structure

<History>
 ...
 <CreationTime>

Element Characteristics

Characteristic Description
Data Type and Length time.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <History> Node

Remarks

The format of the XML time data is HH:MM:SS.sss with an optional time zone indicator.

The <History> node is optional, but if you use it, you must include all child elements.

History information is not stored in the database and is ignored by NSControl Update.

Example

This example shows how to specify a configuration file creation time of 10:30 A.M.:

<CreationTime>10:30:00</CreationTime>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Database> Node
Contains elements that specify database parameters for the instance database, instance_nameNSMain.

Structure

<NotificationServicesInstance>
 ...
 <Database>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationServicesInstance>.
Updates Cannot be added or deleted after creating the instance.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <NamedFileGroup> Node

<LogFile> Node

<DefaultFileGroup> Element

<CollationName> Element

Remarks

If the configuration file does not contain a <Database> node, the instance database uses the model database as a template.

The specifications for each application database are contained in each application definition file (ADF).

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows a complete <Database> node. The %BaseDirectoryPath% value can be passed in from the command line
or can be specified in the <ParameterDefaults> node of the configuration file:

<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 <FileSpec>
 <LogicalName>PrimaryFG</LogicalName>
 <FileName>%BaseDirectoryPath%\Primary.mdf</FileName>
 <Size>10MB</Size>
 <MaxSize>20MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Stock</FileGroupName>
 <FileSpec>
 <LogicalName>StockFG</LogicalName>
 <FileName>%BaseDirectoryPath%\Stock.mdf</FileName>
 <Size>20MB</Size>
 <MaxSize>40MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <LogFile>
 <LogicalName>StockLog</LogicalName>

 <FileName>%BaseDirectoryPath%\Stock.ldf</FileName>
 <Size>3MB</Size>
 <MaxSize>6MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
 </LogFile>
 <DefaultFileGroup>Stock</DefaultFileGroup>
 <CollationName>SQL_Latin1_General_CP1251_CI_AS</CollationName>
</Database>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<DefaultFileGroup> Element
Specifies one of the <NamedFileGroup> entries to be used as the default file group when creating SQL Server objects for the
instance.

Structure

<Database>
 ...
 <DefaultFileGroup>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 128 characters.
Default Value DEFAULT, which indicates the Primary filegroup.
Occurrence Optional once per <Database> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <Database> Node

Remarks

If no filegroup is specified when creating new database objects, the objects are created in the default filegroup.

For more information about using filegroups, see "Files and Filegroups" in SQL Server Books Online.

If specified, the <DefaultFileGroup> value must be the same value as one of the <FileGroupName> values within the
<NamedFileGroup> node. This is not the same as a <LogicalName> value within a <FileSpec> node.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Examples

The following examples show two ways to specify the default filegroup.

Selecting the Primary filegroup as the default filegroup

If you want to use the Primary filegroup as the default filegroup, you do not need to specify the default. You can either omit the
<DefaultFileGroup> element, or you can specify an empty element as follows:

<DefaultFileGroup/>

Selecting a specific default filegroup

The following example shows how to specify that a filegroup with the name Stock should be the default filegroup:

<DefaultFileGroup>Stock</DefaultFileGroup>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<DeliveryChannel> Node
Contains elements that describe the properties of a single delivery channel instance.

Structure

<DeliveryChannels>
 <DeliveryChannel>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <DeliveryChannels>

node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <DeliveryChannels> Node
Child Elements <DeliveryChannelName> Element

<ProtocolName> Element (<DeliveryChannel>)

<Arguments> Node

Remarks

Each <DeliveryChannel> node contains a set of elements that describe the use of a protocol to deliver notifications. You can
define multiple delivery channels that use the same protocol. This is often necessary to distribute delivery among multiple
delivery services.

If you are using the Simple Mail Transfer Protocol (SMTP) protocol for a delivery channel, you can define only one SMTP delivery
channel. This is a limitation of the Microsoft .NET Framework SMTP implementation. If you define two SMTP delivery channels
that use different SMTP servers, notifications might go to the wrong servers.

One way to avoid this problem is to use the Internet Information Services (IIS) SMTP service with the Smart Host option. First,
configure the IIS SMTP service, and then configure your SMTP delivery channel as follows:

<DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
</DeliveryChannel>

For more information about configuring the IIS SMTP service, see Using SMTP for Outgoing Messages in the Microsoft MSDN®
Library.

Example

This example shows a complete <DeliveryChannel> node for an HTTP protocol:

<DeliveryChannel>
 <DeliveryChannelName>HTTPExtChannel</DeliveryChannelName>
 <ProtocolName>HTTP</ProtocolName>
 <Arguments>
 <Argument>
 <Name>Server</Name>
 <Value>//Server10</Value>
 </Argument>
 </Arguments>
</DeliveryChannel>

http://go.microsoft.com/fwlink/?LinkId=7742

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<DeliveryChannelName> Element
Contains the logical name of a delivery channel.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <DeliveryChannel> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <DeliveryChannel> Node

Remarks

The delivery channel name must be unique within the instance of SQL Server Notification Services.

Renaming a delivery channel is equivalent to deleting the old delivery channel and creating the new delivery channel. After you
rename the delivery channel, update any subscriber device records that contain the old delivery channel.

Example

This example shows how to specify that the name of the delivery channel is EmailChannel:

<DeliveryChannelName>EmailChannel</DeliveryChannelName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<DeliveryChannels> Node
Contains <DeliveryChannel> nodes that describe all the delivery channels used by all applications hosted by the instance.

Structure

<NotificationServicesInstance>
 ...
 <DeliveryChannels>

Node Characteristics

Characteristic Description
Occurrence Required once per <NotificationServicesInstance>

node.
Updates Cannot be deleted.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <DeliveryChannel> Node

Remarks

Delivery channels are used to deliver notifications. Each delivery channel is based on a protocol, either standard or custom, and
defines an instance of the use of a protocol to deliver notifications.

Example

This example shows a complete <DeliveryChannels> node. The %User% and %Pwd% values are passed in from the command
line or are specified in the <ParameterDefaults> node:

<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
 <Arguments>
 <Argument>
 <Name>Server</Name>
 <Value>//Exchange10</Value>
 </Argument>
 <Argument>
 <Name>User</Name>
 <Value>%User%</Value>
 </Argument>
 <Argument>
 <Name>Pwd</Name>
 <Value>%Pwd%</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<EncryptArguments> Element
Specifies whether the instance encrypts delivery channel and event provider arguments before storing the values in the instance
and application databases. These arguments can contain user names and passwords, so encrypting these values prevents users
from reading the values from the databases.

Structure

<NotificationServicesInstance>
 ...
 <EncryptArguments>

Element Characteristics

Characteristic Description
Data Type and Length Boolean (true or false).
Default Value false.
Occurrence Optional once per <NotificationServicesInstance>

node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node

Remarks

The Boolean values true and false must be lowercase.

If the <EncryptArguments> value is true, delivery channel and event provider arguments are encrypted before storing them in
the instance and application databases.

You must supply a key value when you run NSControl Register to create the NS$instance_name service that runs the instance,
and when you run NSControl Create to create instance and application databases.

You cannot change the key value after running NSControl Create.

Example

This example shows how to specify to encrypt arguments for an instance:

<EncryptArguments>true</EncryptArguments>

See Also

Application Definition File Reference

Configuration File Reference

NSControl Create

NSControl DisplayArgumentKey

NSControl Register

SQL Server Notification Services Books Online

<FileGroupName> Element
Is the name of a filegroup used by the instance database.

Structure

<Database>
 <NamedFileGroup>
 <FileGroupName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 128 characters.
Default Value None.
Occurrence Required once per <NamedFileGroup> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <NamedFileGroup> Node

Remarks

At least one file group must use the name Primary.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to give a filegroup the name Stock:

<FileGroupName>Stock</FileGroupName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<FileName> Element (<FileSpec>)
Is the path and file name used by the operating system when it creates the database file.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <FileName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <FileSpec> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <FileSpec> Node

Remarks

The path portion of the file name must specify a folder accessible by the instance of SQL Server and cannot specify a folder in a
compressed file system.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify that the database file is stored in a folder specified by the %BaseDirectoryPath% parameter
with the name Stock.mdf:

<FileName>%BaseDirectoryPath%\Stock.mdf</FileName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<FileName> Element (<LogFile>)
Is the path and file name used by the operating system when it creates a log file.

Structure

<Database>
 ...
 <LogFile>
 ...
 <FileName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <LogFile> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node Defining a <LogFile> Node

Remarks

The path portion of the file name must specify a folder accessible by the instance of SQL Server and cannot specify a folder in a
compressed file system.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify that the log file is stored in a folder specified by the %BaseDirectoryPath% parameter with
the name Stock.ldf:

<FileName>%BaseDirectoryPath%\Stock.ldf</FileName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<FileSpec> Node
Contains elements that describe database file properties.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <NamedFileGroup>

node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Node Relationships

Relationship Element or Node
Parent Node <NamedFileGroup> Node
Child Elements <LogicalName> Element (<FileSpec>)

<FileName> Element (<FileSpec>)

<Size> Element (<FileSpec>)

<MaxSize> Element (<FileSpec>)

<GrowthIncrement> Element (<FileSpec>)

Remarks

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows a complete <FileSpec> node:

<FileSpec>
 <LogicalName>StockFG</LogicalName>
 <FileName>C:\DataFiles\Stock.mdf</FileName>
 <Size>20MB</Size>
 <MaxSize>40MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
</FileSpec>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<GrowthIncrement> Element (<FileSpec>)
Is the amount of space added to the database file each time new space is needed.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <GrowthIncrement>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Default growth increment for the SQL Server instance,

typically 10 percent.
Occurrence Optional once per <FileSpec> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <FileSpec> Node

Remarks

Specify a whole number; do not include a decimal. The value can be specified in megabytes (MB), kilobytes (KB), gigabytes (GB),
terabytes (TB), or as a percentage (%). If a number is specified without an MB, KB, or % suffix, the default is MB. When % is
specified, the growth increment size is the specified percentage of the size of the file at the time the increment occurs.

The minimum growth value is 64 KB. The size specified is rounded to the nearest 64 KB. A value of 0 indicates no growth.

For more information see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify a growth increment of 20 percent. The database file grows by 20 percent each time the
database runs out of space, until the file reaches the maximum size specified by the <MaxSize> element:

<GrowthIncrement>20%</GrowthIncrement>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<GrowthIncrement> Element (<LogFile>)
Is the amount of space added to the log file each time new space is needed.

Structure

<Database>
 ...
 <LogFile>
 ...
 <GrowthIncrement>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Default growth increment for the SQL Server instance,

typically 10 percent.
Occurrence Optional once per <LogFile> node.
Updates Cannot be added, deleted, or modified after creating

the instance.

Element Relationships

Relationship Element or Node
Parent Node <LogFile> Node

Remarks

Specify a whole number; do not include a decimal. The value can be specified in megabytes (MB), kilobytes (KB), gigabytes (GB),
terabytes (TB), or as a percentage (%). If a number is specified without an MB, KB, or % suffix, the default is MB. When % is
specified, the growth increment size is the specified percentage of the size of the file at the time the increment occurs.

The minimum growth value is 64 KB. The size specified is rounded to the nearest 64 KB. A value of 0 indicates no growth.

For more information see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify a growth increment of 15 percent. The log file grows by 15 percent each time the log runs out
of space, until the file reaches the maximum size specified by the <MaxSize> element:

<GrowthIncrement>15%</GrowthIncrement>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<History> Node
Contains elements that provide historical information about the configuration file.

Structure

<NotificationServicesInstance>
 ...
 <History>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationServicesInstance>

node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <CreationDate> Element

<CreationTime> Element

<LastModifiedDate> Element

<LastModifiedTime> Element

Remarks

The <History> node is intended to help developers or administrators keep track of the changes to the configuration file, but the
use of this section is up to the file owner.

The <History> node is not used by or validated by SQL Server Notification Services. If you do not use the history information,
omit the entire section from the configuration file or use empty tags for child elements.

Example

This example shows a complete <History> node:

<History>
 <CreationDate>2002-01-21</CreationDate>
 <CreationTime>10:30:00</CreationTime>
 <LastModifiedDate>2002-04-28</LastModifiedDate>
 <LastModifiedTime>18:30:00</LastModifiedTime>
</History>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<InstanceName> Element
Is the logical name for the instance of SQL Server Notification Services.

Structure

<NotificationServicesInstance>
 ...
 <InstanceName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 122 characters.
Default Value None.
Occurrence Required once per <NotificationServicesInstance>

node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node

Remarks

Each instance on a computer must have a unique name. Do not rely on case to make an instance name unique. For example,
MyInstance and myinstance are not considered unique names. The commands used to create and register instances are not case
sensitive.

The <InstanceName> element accepts up to 255 characters. However, this name concatenated with "NSMain" is the instance
database name, and database names are limited to 128 characters. Also, application database names use a concatenation of
application and instance name, so limit <InstanceName> to a length that does not violate object naming rules.

Because this name is used to create SQL Server objects, follow the SQL Server rules for regular identifiers. Do not use SQL Server
reserved keywords or special characters. For more information, see "Using Identifiers" in SQL Server Books Online.

Example

This example shows how to specify an instance name of StockInstance:

<InstanceName>StockInstance</InstanceName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<LastModifiedDate> Element
Is the date the configuration file was last modified.

Structure

<History>
 ...
 <LastModifiedDate>

Element Characteristics

Characteristic Description
Data Type and Length date.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <History> Node

Remarks

The format of the XML date data type is CCYY-MM-DD with an optional time zone indicator.

The <History> node is optional, but if you do use it, you must include all child elements.

History information is not stored in the database and is ignored by NSControl Update.

Example

This example shows how to specify that the configuration file was last edited on April 29, 2002:

<LastModifiedDate>2002-04-29</LastModifiedDate>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<LastModifiedTime> Element
Is the time the configuration file was last modified.

Structure

<History>
 ...
 <LastModifiedDate>

Element Characteristics

Characteristic Description
Data Type and Length time.
Default Value None.
Occurrence Required once per <History> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <History> Node

Remarks

The format of the XML time data is HH:MM:SS.sss with an optional time zone indicator.

The <History> node is optional, but if you do use it, you must include all child elements.

History information is not stored in the database and is ignored by NSControl Update.

Example

This example shows how to specify that the configuration file was last edited at 6:30 P.M.:

<LastModifiedTime>18:30:00</LastModifiedTime>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<LogFile> Node
Specifies properties of a log file.

Structure

<Database>
 ...
 <LogFile>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per <Database> node.
Updates Cannot be added or deleted after creating the instance.

Node Relationships

Relationship Element or Node
Parent Node <Database> Node
Child Elements <LogicalName> Element (<LogFile>)

<FileName> Element (<LogFile>)

<Size> Element (<LogFile>)

<MaxSize> Element (<LogFile>)

<GrowthIncrement> Element (<LogFile>)

Remarks

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows a complete <LogFile> node:

<LogFile>
 <LogicalName>StockLog</LogicalName>
 <FileName>%BaseDirectoryPath%\Stock.ldf</FileName>
 <Size>3MB</Size>
 <MaxSize>6MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
</LogFile>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<LogicalName> Element (<FileSpec>)
Is the name used to refer to the database file.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 <LogicalName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <FileSpec> node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <FileSpec> Node

Remarks

The <LogicalName> element must be unique in the database and must conform to the rules for identifiers.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify that the logical name of a database file is StockFG:

<LogicalName>StockFG</LogicalName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<LogicalName> Element (<LogFile>)
Is the name used to refer to the log file.

Structure

<Database>
 ...
 <LogFile>
 <LogicalName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 260 characters.
Default Value None.
Occurrence Required once per <LogFile> node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <LogFile> Node

Remarks

The <LogicalName> element must be unique in the database and must conform to the rules for identifiers.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify that the logical name of a log file is StockLog:

<LogicalName>StockLog</LogicalName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Major> Element
Is the major version number, which is the first number in the product version string.

Structure

<Version>
 <Major>

Element Characteristics

Characteristic Description
Data Type and Length Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates The entire version number can be incremented, and

then updated using NSControl Update.

Element Relationships

Relationship Element or Node
Parent Node <Version> Node

Remarks

Use the major version number if you want to specify which version of Notification Services the configuration file conforms to, or
to track changes using your own numbering scheme.

The entire <Version> node is optional.

When the database is first created using NSControl Create, if you do not specify a version number, 0.0.0.0 is entered into the
database. For subsequent updates, the last version specified in the database is used.

A version number is always entered into the database regardless of any other changes in the application definition file (ADF) or
configuration file. This action lets the administrator know that NSControl Create or NSControl Update ran.

Example

This example shows how to specify the major version number for version 2.0.153.1:

<Major>2</Major>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<MaxSize> Element (<FileSpec>)
Is the maximum size to which the database file can grow.

Structure

<Database>
 <NamedFileGroup>
 ...
 <FileSpec>
 ...
 <MaxSize>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Unrestricted file growth.
Occurrence Optional once per <FileSpec> node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <FileSpec> Node

Remarks

You can use the kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffix. The default is MB. Specify a whole number; do
not include a decimal.

If <MaxSize> is not specified, the file grows until the disk is full.

For more information, see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify a maximum database file size of 20 MB:

<MaxSize>20MB</MaxSize>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<MaxSize> Element (<LogFile>)
Is the maximum size to which the log file can grow.

Structure

<Database>
 ...
 <LogFile>
 ...
 <MaxSize>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Unrestricted file growth.
Occurrence Optional once per <LogFile> node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <LogFile> Node

Remarks

You can use the kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffix. The default is MB. Specify a whole number; do
not include a decimal.

If <MaxSize> is not specified, the file grows until the disk is full.

For more information, see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to specify a maximum log file size of 6 MB:

<MaxSize>6MB</MaxSize>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Minor> Element
Is the minor version number, which is the second number in the product version string.

Structure

<Version>
 ...
 <Minor>

Element Characteristics

Characteristic Description
Data Type and Length Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates The entire version number can be incremented, and

then updated using NSControl Update.

Element Relationships

Relationship Element or Node
Parent Node <Version> Node

Remarks

When the database is first created using NSControl Create, if you do not specify a version number, 0.0.0.0 is entered into the
database. For subsequent updates, the last version specified in the database is used.

A version number is always entered into the database regardless of any other changes in the application definition file (ADF) or
configuration file. This action lets the administrator know that NSControl Create or NSControl Update ran.

Example

This example shows how to specify the minor version number for version 2.0.153.1:

<Minor>0</Minor>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Name> Element (/Application/Parameters/Parameter)
Is the name of a parameter to be passed to the application definition file (ADF).

Structure

<Applications>
 <Application>
 ...
 <Parameters>
 <Parameter>
 <Name>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Parameter> Node (/Application/Parameters)

Remarks

The name of the parameter must match the name of a parameter specified in the ADF.

Example

This example shows how to specify a value for the %DBSystem% parameter in the ADF. MyDBServer, specified by the <Value>
element, is substituted for %DBSystem% throughout the ADF:

<Parameter>
 <Name>DBSystem</Name>
 <Value>MyDBServer</Value>
</Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Name> Element (/DeliveryChannel/Arguments/Argument)
Is the name of an argument to be passed to the delivery channel.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 ...
 <Arguments>
 <Argument>
 <Name>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Argument> Node

Remarks

The name of an argument is determined by the delivery protocol specifications.

Example

This example shows how to specify an argument for a delivery channel. The argument has the name Server and the value
\\DeliveryServer10:

<Parameter>
 <Name>Server</Name>
 <Value>\\DeliveryServer10</Value>
</Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Name> Element (/ParameterDefaults/Parameter)
Is the name of a parameter in the configuration file.

Structure

<ParameterDefaults>
 <Parameter>
 <Name>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Parameter> Node (<ParameterDefaults>)

Remarks

This name must match the name of the parameter used in the configuration file, but does not start or end with the % character.
The parameter to be replaced must start and end with the % character.

Example

This example shows how to specify a default parameter value for the parameter named BaseDirPath. The NSControl utility
substitutes "C:\NS\Applications" wherever %BaseDirPath% appears in the configuration file, unless you specify another value on
the command line:

<Parameter>
 <Name>BaseDirPath</Name>
 <Value>C:\NS\Applications</Value>
</Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<NamedFileGroup> Node
Specifies that the disk files used to store the data portions of the database (data files) are defined explicitly by the child elements.

Structure

<Database>
 <NamedFileGroup>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per <Database> node.
Updates Cannot be added or deleted after creating the instance.

Node Relationships

Relationship Element or Node
Parent Node <Database> Node
Child Elements <FileGroupName> Element

<FileSpec> Node

Remarks

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows a complete <NamedFileGroup> node that specifies properties of the Primary filegroup:

<NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 <FileSpec>
 <LogicalName>PrimaryFG</LogicalName>
 <FileName>%BaseDirectoryPath%\Primary.mdf</FileName>
 <Size>10MB</Size>
 <MaxSize>20MB</MaxSize>
 <GrowthIncrement>20%</GrowthIncrement>
 </FileSpec>
</NamedFileGroup>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<NotificationServicesInstance> Node
Is the top node of the configuration file.

Structure

<NotificationServicesInstance
xmlns:ns="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileSchema"

xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationF
ileSchema">

Node Characteristics

Characteristic Description
Occurrence Required once per configuration file.
Updates Cannot be added or deleted.

Node Relationships

Relationship Element or Node
Parent Node None
Child Elements <ParameterDefaults> Node

<Version> Node

<History> Node

<InstanceName> Element

<SqlServerSystem> Element

<Database> Node

<Applications> Node

<Protocols> Node

<DeliveryChannels> Node

Remarks

The <NotificationServicesInstance> node follows the XML declaration (if the declaration is used) and contains namespace
references. For more information about namespaces, see Namespaces in an XML Document.

See Also

Application Definition File Reference

Configuration File Reference

http://go.microsoft.com/fwlink/?LinkId=7341

SQL Server Notification Services Books Online

<Parameter> Node (/Application/Parameters)
Contains one name/value pair that passes a value to a parameter in the application definition file (ADF).

Structure

<Applications>
 <Application>
 ...
 <Parameters>
 <Parameter>

Node Characteristics

Characteristic Description
Occurrence Optional once or more per <Application> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <Parameters> Node
Child Elements <Name> Element

(/Application/Parameters/Parameter)

<Value> Element (/Application/Parameters/Parameter)

Remarks

Parameters in the <Application> node are passed to the ADF when the instance is created or updated.

The parameter overrides any default settings specified in the ADF.

Example

This example shows how to specify a parameter for the ADF with the name DBSystem. MyDBServer, specified by the <Value>
element, is substituted for %DBSystem% in the ADF:

<Parameter>
 <Name>DBSystem</Name>
 <Value>MyDBServer</Value>
</Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Parameter> Node (<ParameterDefaults>)
Contains one name/value pair that provides a default value for a parameter in the configuration file.

Structure

<ParameterDefaults>
 <Parameter>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <ParameterDefaults>

node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <ParameterDefaults> Node
Child Elements <Name> Element (/ParameterDefaults/Parameter)

<Value> Element (/ParameterDefaults/Parameter)

Remarks

The parameter name and value can be provided on the command line, which overrides any defaults specified in this section.

If you do not need to specify default values for parameters, omit the entire section from the configuration file or use empty tags
for the child elements.

Example

This example shows a parameter node for the <ParameterDefaults> node. These parameters provide default values for
parameters within the configuration file:

 <Parameter>
 <Name>BaseDirPath</Name>
 <Value>C:\NS\Apps</Value>
 </Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ParameterDefaults> Node
Contains one or more <Parameter> nodes, which provide default values for parameters within the configuration file.

Structure

<NotificationServicesInstance>
 <ParameterDefaults>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationServicesInstance>

node.
Updates Can be added and deleted after creating the instance,

and then applied using NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <Parameter> Node (<ParameterDefaults>)

Remarks

The parameter name and value can be provided on the command line, which overrides any defaults specified in this section.

Example

This example shows a complete <ParameterDefaults> node with two default values specified:

<ParameterDefaults>
 <Parameter>
 <Name>BaseDirPath</Name>
 <Value>C:\NS\Apps</Value>
 </Parameter>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>SQL10</Value>
 </Parameter>
</ParameterDefaults>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Parameters> Node
Contains an application-specific set of parameters. The parameters are passed to the application definition file (ADF).

Structure

<Applications>
 <Application>
 ...
 <Parameters>

Node Characteristics

Characteristic Description
Occurrence Optional once per <Application> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <Application> Node
Child Elements <Name> Element

(/Application/Parameters/Parameter)

<Value> Element (/Application/Parameters/Parameter)

Remarks

These parameters are passed to the ADF when you create or update the instance by using the NSControl utility.

Example

This example shows a complete <Parameters> node. The parameter name and value are passed to the ADF:

<Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>YourDBServer</Value>
 </Parameter>
</Parameters>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Protocol> Node
Contains elements that describe a single custom delivery protocol used by one or more applications.

Structure

<Protocols>
 <Protocol>

Node Characteristics

Characteristic Description
Occurrence Required once or more per <Protocols> node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <Protocols> Node
Child Elements <ProtocolName> Element

<ClassName> Element

<AssemblyName> Element

Example

This example shows a complete <Protocol> node that defines the custom SMS protocol:

<Protocol>
 <ProtocolName>SMS</ProtocolName>
 <ClassName>Protocols.SMSProtocol</ClassName>
 <AssemblyName>SMS.dll</AssemblyName>
</Protocol>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ProtocolName> Element (<DeliveryChannel>)
Contains the name of the protocol, either standard or custom, used by the delivery channel.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 ...
 <ProtocolName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <DeliveryChannel> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <DeliveryChannel> Node

Remarks

The protocol name links a delivery protocol to a delivery channel in the configuration file.

Each protocol can be assigned to one or more delivery channels. If a single protocol is assigned to more than one delivery
channel, there are multiple instances of the delivery channel for the protocol.

Example

This example shows how to specify the custom protocol SMS for use by the delivery channel:

<ProtocolName>SMS</ProtocolName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<ProtocolName> Element (<Protocol>)
Contains the name of a custom protocol, which is also specified in the delivery channels sections of both the configuration file and
the application definition file (ADF).

Structure

<Protocols>
 <Protocol>
 <ProtocolName>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <Protocol> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Protocol> Node

Example

This example shows how to give a custom protocol the name SMS:

<ProtocolName>SMS</ProtocolName>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Protocols> Node
Contains information about any custom protocols used to deliver messages.

Structure

<NotificationServicesInstance>
 ...
 <Protocols>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationServicesInstance>

node.
Updates Can be added or deleted, and then updated using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <Protocol> Node

Remarks

Include the <Protocols> node only if custom protocols are used by any applications. If using only standard protocols, omit the
entire section or use empty tags.

Example

This example shows a complete <Protocols> node that contains the definition of one custom protocol:

<Protocols>
 <Protocol>
 <ProtocolName>SMS</ProtocolName>
 <ClassName>Protocols.SMSProtocol</ClassName>
 <AssemblyName>SMS.dll</AssemblyName>
 </Protocol>
</Protocols>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Revision> Element
Is the revision number, which is the fourth number in the product version string.

Structure

<Version>
 ...
 <Revision>

Element Characteristics

Characteristic Description
Data Type and Length Non-negative integer.
Default Value None.
Occurrence Required once per <Version> node.
Updates The entire version number can be incremented, and

then updated using NSControl Update.

Element Relationships

Relationship Element or Node
Parent Node <Version> Node

Remarks

When the database is first created using NSControl Create, if you do not specify a version number, 0.0.0.0 is entered into the
database. For subsequent updates, the last version specified in the database is used.

A version number is always entered into the database regardless of any other changes in the application definition file (ADF) or
configuration file. This action lets the administrator know that NSControl Create or NSControl Update ran.

Example

This example shows how to specify the revision number for version 2.0.153.1:

<Revision>1</Revision>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Size> Element (<FileSpec>)
Is the initial size of the database file.

Structure

<Database>
 <NamedFileGroup>
 <FileGroupName>
 <FileSpec>
 ...
 <Size>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Default file size for the SQL Server instance, which is

typically 1 MB.
Occurrence Optional once per <FileGroupName> node.
Updates You can update <Size> to document any changes you

made to the instance database manually, but changing
this element has no effect on the instance database.

Element Relationships

Relationship Element or Node
Parent Node <FileSpec> Node

Remarks

You can use the kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffix. The default is MB. Specify a whole number; do
not include a decimal.

The minimum value is 512 KB. The default size is 1 MB. The size specified for the Primary file must be at least as large as the
Primary file of the model database.

For more information see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to define the initial size of a database file as 10 MB:

<Size>10MB</Size>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Size> Element (<LogFile>)
Is the initial size of the log file.

Structure

<Database>
 ...
 <LogFile>
 ...
 <Size>

Element Characteristics

Characteristic Description
Data Type and Length string.
Default Value Default file size for the SQL Server instance, which is

typically 1 MB.
Occurrence Optional once per <LogFile> node.
Updates You can update <Size> to document any changes you

made to the log file manually, but changing this
element has no effect on the log file.

Element Relationships

Relationship Element or Node
Parent Node <LogFile> Node

Remarks

You can use the kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffix. The default is MB. Specify a whole number; do
not include a decimal.

The minimum value for <Size> is 512 KB. The default size is 1 MB.

For more information, see "CREATE DATABASE" in SQL Server Books Online.

If you need to change database attributes represented by any child elements of the <Database> node, use the SQL Server tools,
such as SQL Server Enterprise Manager.

Example

This example shows how to define the initial size of a log file as 3 MB:

<Size>3MB</Size>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<SqlServerSystem> Element
Contains the name of a SQL Server instance that hosts the instance database and its application databases.

Structure

<NotificationServicesInstance>
 ...
 <SqlServerSystem>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 1 and 255 characters.
Default Value None.
Occurrence Required once per <NotificationServicesInstance>

node.
Updates Cannot be modified after creating the instance.

Element Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node

Remarks

The name is specified in one of the following ways:

If Notification Services uses the default instance of SQL Server on the local computer or another computer, use the
computer name. For example, if the network name of the computer is DBServer01, use DBServer01. IP addresses are not
supported.
If Notification Services uses a named instance of SQL Server, use the computer name followed by a backslash and the
instance name. For example, if the computer name is DbServer01 and the instance of SQL Server is named NSData, use
DbServer01\NSData as the value.

Example

This example shows how to specify that the database server is DBServer01:

<SqlServerSystem>DBServer01</SqlServerSystem>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Value> Element (/Application/Parameters/Parameter)
Contains the value of a parameter to be passed to the application definition file (ADF).

Structure

<Applications>
 <Application>
 ...
 <Parameters>
 <Parameter>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 0 and 4,000 characters.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Parameter> Node (/Application/Parameters)

Example

This example shows how to specify a value for the DBSystem parameter in the ADF. DBServer01, specified by the <Value>
element, is substituted for %DBSystem% in the ADF:

<Parameter>
 <Name>DBSystem</Name>
 <Value>DBServer01</Value>
</Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Value> Element (/DeliveryChannel/Arguments/Argument)
Contains the value of an argument to be passed to the delivery channel.

Structure

<DeliveryChannels>
 <DeliveryChannel>
 ...
 <Arguments>
 <Argument>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 0 and 4,000 characters.
Default Value None.
Occurrence Required once per <Argument> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Argument> Node

Example

This example shows how to specify the value DeliveryServer10 for the Server argument:

<Argument>
 <Name>Server</Name>
 <Value>DeliveryServer10</Value>
</Argument>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Value> Element (/ParameterDefaults/Parameter)
Contains the value of a parameter used in the configuration file.

Structure

<ParameterDefaults>
 <Parameter>
 ...
 <Value>

Element Characteristics

Characteristic Description
Data Type and Length string of length between 0 and 4,000 characters.
Default Value None.
Occurrence Required once per <Parameter> node.
Updates Can be modified and then applied using NSControl

Update.

Element Relationships

Relationship Element or Node
Parent Node <Parameter> Node (<ParameterDefaults>)

Example

This example shows how to specify a default value of C:\NS\Apps for the parameter BaseDirPath:

 <Parameter>
 <Name>BaseDirPath</Name>
 <Value>C:\NS\Apps</Value>
 </Parameter>

See Also

Application Definition File Reference

Configuration File Reference

SQL Server Notification Services Books Online

<Version> Node
Contains information about the version of Notification Services used by the instance.

Structure

<NotificationServicesInstance>
 ...
 <Version>

Node Characteristics

Characteristic Description
Occurrence Optional once per <NotificationServicesInstance>

node.
Updates Can be added or deleted, and then applied using

NSControl Update.

Node Relationships

Relationship Element or Node
Parent Node <NotificationServicesInstance> Node
Child Elements <Major> Element

<Minor> Element

<Build> Element

<Revision> Element

Remarks

When the database is first created using NSControl Create, if you do not specify a version number, 0.0.0.0 is entered into the
database. For subsequent updates, the last version specified in the database is used.

A version number is always entered into the database regardless of any other changes in the application definition file (ADF) or
configuration file. This action lets the administrator know that NSControl Create or NSControl Update ran.

The Notification Services version number can be obtained by looking at the installation path for a particular installation of
Notification Services.

You do not need to specify version numbers, but if the file's schema does not match the schema required by the version of
Notification Services, the instance is not created or updated. The configuration file schema might change between versions, so
using version information can help keep configuration file versions organized.

If you do not specify the version information, omit the entire section from the configuration file or use empty tags for the child
elements.

Example

This example shows a complete version node for version 2.0.153.1:

<Version>
 <Major>2</Major>
 <Minor>0</Minor>
 <Build>153</Build>
 <Revision>1</Revision>
</Version>

See Also

Application Definition File Reference

Configuration File Reference

Configuration File Reference

SQL Server Notification Services Books Online

Notification Services Object Model Reference
This section documents the classes and interfaces of the Notification Services object model.

The following graphic illustrates the Notification Services API hierarchy.

See Also

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Microsoft.SqlServer.NotificationServices Namespace
The Microsoft.SqlServer.NotificationServices namespace contains all of the Notification Services classes and interfaces. This
includes:

All classes relating to Notification Services instances and applications.
All classes relating to creating and maintaining subscribers, subscriber devices, and subscriptions.
All classes relating to submitting events to the Notification Services system.
All interfaces used in developing custom Notification Services components.

This namespace is provided by the Microsoft.SqlServer.NotificationServices.dll assembly, which installs by default to C:\Program
Files\Microsoft Notification Services\VersionNumber\bin. To use this namespace in the Microsoft Visual Studio® .NET IDE, you
must browse for the Microsoft.SqlServer.NotificationServices.dll and add it to the references for the project.

Classes

ApplicationEnumerationClass Represents the collection of Notification
Services applications in a specified
Notification Services instance. Can be
used to return an NSApplication object.

DeliveryChannel Class Represents a Notification Services delivery
channel.

DeliveryChannelEnumeration Class Represents the collection of delivery
channels in a specified Notification
Services instance. Can be used to return a
DeliveryChannel object.

Event Class Encapsulates a single event, which is then
submitted to the Notification Services
application through an EventCollector
object.

EventClass Class Represents any event class defined in an
application definition file (ADF).

EventClassEnumeration Class Represents the collection of event classes
in a specified Notification Services
application.

EventCollector Class Accepts events as Event objects and
submits them to the application.

EventLoader Class Submits XML document event data to the
application.

InstanceEnumeration Class Represents the collection of local
Notification Services instances. Can be
used to return an
NSInstanceDescription object.

NotificationHeaders Class Used by the distributor to provide
notification routing and delivery
information to the delivery protocol
component.

NotificationStatus Class Used by a delivery protocol to provide
notification delivery status information
back to the distributor.

NSApplication Class Represents a specified Notification
Services application.

NSInstance Class Represents a specified Notification
Services instance.

NSInstanceDescription Class Provides descriptive information about a
specified Notification Services instance.

RecipientInfo Class Provides descriptive information about a
recipient.

Subscriber Class Represents a specified Notification
Services subscriber.

SubscriberDevice Class Represents a specified Notification
Services subscriber device.

SubscriberDeviceEnumeration Class Represents the collection of Notification
Services subscriber devices in a specified
Notification Services instance. Can be
used to return a SubscriberDevice
object.

SubscriberEnumeration Class Represents the collection of Notification
Services subscribers in a specified
Notification Services instance. Can be
used to return a Subscriber object.

SubscriberLocale Class Represents a Notification Services
subscriber locale.

SubscriberLocaleEnumeration Class Represents the collection of Notification
Services subscriber locales. Can be used to
return a SubscriberLocale object.

Subscription Class Represents a specified Notification
Services subscription.

SubscriptionClass Class Represents any subscription class defined
in an ADF.

SubscriptionClassEnumeration Class Represents the collection of subscription
classes in a specified Notification Services
application.

SubscriptionEnumeration Class Represents the collection of Notification
Services subscriptions in a specified
Notification Services application. Can be
used to return a Subscription object.

TimeZone Class Represents a time zone.
TimeZoneEnumeration Class Represents the collection of time zones.

Can be used to return a TimeZone object.

Interfaces

IContentFormatter Interface Provides a framework for developing a
content formatter.

IDeliveryProtocol Interface Provides a framework for developing a
delivery protocol.

IEventProvider Interface Provides a framework for developing a
hosted continuous event provider.

IHttpProtocolProvider Provides a framework for developing an
HTTP delivery protocol.

IScheduledEventProvider Interface Provides a framework for developing a
hosted scheduled event provider.

Delegates

NotificationStatusCallback Provides a means for a delivery protocol
to report notification delivery information
back to the system.

StopHandler Provides a means for an event provider to
request termination.

SQL Server Notification Services Books Online

ApplicationEnumeration Class
ApplicationEnumeration Class

Represents the collection of Notification Services applications in a given Notification Services instance.

For a list of all members of this type, see ApplicationEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.ApplicationEnumeration

Visual Basic .NET

NonInheritable Public Class ApplicationEnumeration
Implements IApplicationEnumeration, IEnumerable

C#

public sealed class ApplicationEnumeration : IApplicationEnumeration, IEnumerable

C++

public __gc __sealed class ApplicationEnumeration : public IApplicationEnumeration,
IEnumerable

JScript

public class ApplicationEnumeration implements IApplicationEnumeration, IEnumerable

Remarks

The ApplicationEnumeration class allows an application to iterate through the set of Notification Services applications in a
given Notification Services instance. It also provides an Item property to return an NSApplication object that represents a
specific Notification Services application. This class is used primarily for administrative purposes and for configuring subscription
management applications.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Members
ApplicationEnumeration Members

Public Constructors

ApplicationEnumeration Constructor Overloaded. Creates a new object of the
ApplicationEnumeration class.

Public Properties

Item Returns an NSApplication object, which
represents a specific Notification Services
application.

In C#, this property is the indexer for the
ApplicationEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
applications.

Initialize Initializes an object of the
ApplicationEnumeration class.

See Also

ApplicationEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Constructor
ApplicationEnumeration Constructor

Creates a new object of the ApplicationEnumeration class.

Overload List

Creates an uninitialized object of the ApplicationEnumeration class. It is used along with the Initialize method to support the
two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New ()

C#

public ApplicationEnumeration();

C++

public: ApplicationEnumeration();

JScript

public function ApplicationEnumeration();

Creates an object of the ApplicationEnumeration class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public ApplicationEnumeration(NSInstance);

C++

public: ApplicationEnumeration(NSInstance);

JScript

public function ApplicationEnumeration(NSInstance);

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Constructor ()
ApplicationEnumeration Constructor ()

Creates an uninitialized object of the ApplicationEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public ApplicationEnumeration();

C++

public: ApplicationEnumeration();

JScript

public function ApplicationEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize an ApplicationEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplicationEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an ApplicationEnumeration object.
set myApplicationEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.ApplicationEnumeration")
myApplicationEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Constructor (NSInstance)
ApplicationEnumeration Constructor (NSInstance)

Creates and initializes an object of the ApplicationEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public ApplicationEnumeration(NSInstance instance);

C++

public: ApplicationEnumeration(NSInstance instance);

JScript

public function ApplicationEnumeration(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the applications to be enumerated by this
ApplicationEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an ApplicationEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an ApplicationEnumeration object.
Dim myApplicationEnumeration As New
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an ApplicationEnumeration object.
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration myApplicationEnumeration
= new Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Properties
ApplicationEnumeration Properties

Public Properties

Item Returns an NSApplication object, which
represents a specific Notification Services
application.

In C#, this property is the indexer for the
ApplicationEnumeration class.

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration.Item Property
ApplicationEnumeration.Item Property

Gets a reference to a specific Notification Services application.

C#

In C#, this property is the indexer for the ApplicationEnumeration class.

Visual Basic .NET

Public Property Item(ByVal applicationName As String) As NSApplication

C#

public NSApplication this[string applicationName] {get;}

C++

public: __property NSApplication get_Item(String* applicationName);

JScript

returnValue = ApplicationEnumerationObject.Item(applicationName);
-or-
returnValue = ApplicationEnumerationObject(applicationName);

Parameters

applicationName

The name of the Notification Services application that you want returned.

Property Value

An NSApplication object, which represents a specific Notification Services application.

Exceptions

Exception Type Condition
IndexOutOfRangeException The requested application name does not

exist within the Notification Services
instance.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return an NSApplication object representing a specific
Notification Services application:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an ApplicationEnumeration object.
Dim myApplicationEnumeration As New
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance)

'Use the Item property to return an NSApplication object.
Dim myApplication As Microsoft.SqlServer.NotificationServices.NSApplication =
myApplicationEnumeration(applicationName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an ApplicationEnumeration object.
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration myApplicationEnumeration
= new Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance);

//Use the Item property to return an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication =
myApplicationEnumeration[applicationName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration Methods
ApplicationEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
applications.

Initialize Initializes an object of the
ApplicationEnumeration class.

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration.GetEnumerator Method
ApplicationEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of applications represented by the
ApplicationEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the ApplicationEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the Notification Services applications in an
ApplicationEnumeration object. An initialized ApplicationEnumeration object represents the collection of Notification
Services applications in a specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use an ApplicationEnumeration object to iterate through a set of Notification Services
applications. The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an ApplicationEnumeration object.
Dim myApplicationEnumeration As New
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance)

'Iterate through the applications.
Dim application As Microsoft.SqlServer.NotificationServices.NSApplication
For Each application In myApplicationEnumeration
 Console.WriteLine("Application Name: {0}, Version: {1}", application.ApplicationName,
application.Version)
Next application

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.

Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an ApplicationEnumeration object.
Microsoft.SqlServer.NotificationServices.ApplicationEnumeration myApplicationEnumeration
= new Microsoft.SqlServer.NotificationServices.ApplicationEnumeration(myInstance);

//Iterate through the applications.
foreach (Microsoft.SqlServer.NotificationServices.NSApplication application in
myApplicationEnumeration)
{
 Console.WriteLine("Application Name: {0}, Version: {1}", application.ApplicationName,
application.Version);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

ApplicationEnumeration.Initialize Method
ApplicationEnumeration.Initialize Method

Initializes an object of the ApplicationEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance);

JScript

public function Initialize(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the applications to be enumerated by this
ApplicationEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an ApplicationEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize an ApplicationEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplicationEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an ApplicationEnumeration object.
set myApplicationEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.ApplicationEnumeration")
myApplicationEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

ApplicationEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannel Class
DeliveryChannel Class

Represents a delivery channel in a specified Notification Services instance.

For a list of all members of this type, see DeliveryChannel Members.

System.Object

Microsoft.SqlServer.NotificationServices.DeliveryChannel

Visual Basic .NET

NonInheritable Public Class DeliveryChannel Implements IDeliveryChannel

C#

public sealed class DeliveryChannel : IDeliveryChannel

C++

public __gc __sealed class DeliveryChannel : public IDeliveryChannel

JScript

public class DeliveryChannel implements IDeliveryChannel

Remarks

This class exists to encapsulate a delivery channel and expose it for use in your subscription management application.

The DeliveryChannel class has no constructor. DeliveryChannel objects are returned by the
DeliveryChannelEnumeration.Item property.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

DeliveryChannel Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannel Members
DeliveryChannel Members

Public Properties

DeliveryChannelName Gets the name of the delivery channel.
ProtocolName Gets the name of the delivery protocol

component used by this delivery channel.

See Also

DeliveryChannel Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannel Properties
DeliveryChannel Properties

Public Properties

DeliveryChannelName Gets the name of the delivery channel.
ProtocolName Gets the name of the delivery protocol

component used by this delivery channel.

See Also

DeliveryChannel Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannel.DeliveryChannelName Property
DeliveryChannel.DeliveryChannelName Property

Gets the name of the delivery channel.

Visual Basic .NET

Public Property DeliveryChannelName As String

C#

public string DeliveryChannelName {get;}

C++

public: __property string get_DeliveryChannelName();

JScript

public function get DeliveryChannelName() : String;

Property Value

A string containing the delivery channel name.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannel Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannel.ProtocolName Property
DeliveryChannel.ProtocolName Property

Gets the name of the delivery protocol used by this delivery channel.

Visual Basic .NET

Public Property ProtocolName As String

C#

public string ProtocolName {get;}

C++

public: __property string get_ProtocolName();

JScript

public function get ProtocolName() : String;

Property Value

A string containing the delivery protocol name.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannel Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Class
DeliveryChannelEnumeration Class

Represents the collection of delivery channels available within a given Notification Services instance.

For a list of all members of this type, see DeliveryChannelEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration

Visual Basic .NET

NonInheritable Public Class DeliveryChannelEnumeration Implements
IDeliveryChannelEnumeration, IEnumerable

C#

public sealed class DeliveryChannelEnumeration : IDeliveryChannelEnumeration, IEnumerable

C++

public __gc __sealed class DeliveryChannelEnumeration : public
IDeliveryChannelEnumeration, IEnumerable

JScript

public class DeliveryChannelEnumeration implements IDeliveryChannelEnumeration,
IEnumerable

Remarks

The DeliveryChannelEnumeration class allows you to iterate through the set of delivery channels available within a given
Notification Services instance. It also provides an Item property to return a DeliveryChannel object that represents a specific
delivery channel. The primary use for this class is to allow you to populate a delivery channel drop-down box in your subscription
management application.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Members
DeliveryChannelEnumeration Members

Public Constructors

DeliveryChannelEnumeration Constructor Overloaded. Creates a new object of the
DeliveryChannel class.

Public Properties

Item Returns a DeliveryChannel object,
which represents a delivery channel.

In C#, this property is the indexer for the
DeliveryChannelEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the delivery
channels.

Initialize Initializes an object of the
DeliveryChannelEnumeration class.

See Also

DeliveryChannelEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Constructor
DeliveryChannelEnumeration Constructor

Creates a new object of the DeliveryChannelEnumeration class.

Overload List

Creates an uninitialized object of the DeliveryChannelEnumeration class. It is used along with the Initialize method to support
the two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public DeliveryChannelEnumeration();

C++

public: DeliveryChannelEnumeration();

JScript

public function DeliveryChannelEnumeration();

Creates a new object of the DeliveryChannelEnumeration class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public DeliveryChannelEnumeration(NSInstance);

C++

public: DeliveryChannelEnumeration(NSInstance);

JScript

public function DeliveryChannelEnumeration(NSInstance);

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Constructor ()
DeliveryChannelEnumeration Constructor ()

Creates an uninitialized object of the DeliveryChannelEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public DeliveryChannelEnumeration();

C++

public: DeliveryChannelEnumeration();

JScript

public function DeliveryChannelEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize a DeliveryChannelEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, myDeliveryChannelEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a DeliveryChannelEnumeration object.
set myDeliveryChannelEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
")
myDeliveryChannelEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Constructor (NSInstance)
DeliveryChannelEnumeration Constructor (NSInstance)

Creates and initializes an object of the DeliveryChannelEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public DeliveryChannelEnumeration(NSInstance instance);

C++

public: DeliveryChannelEnumeration(NSInstance instance);

JScript

public function DeliveryChannelEnumeration(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the delivery channels to be enumerated by
this DeliveryChannelEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a DeliveryChannelEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a DeliveryChannelEnumeration object.
Dim myDeliveryChannelEnumeration As New
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a DeliveryChannelEnumeration object.
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
myDeliveryChannelEnumeration = new
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Properties
DeliveryChannelEnumeration Properties

Public Properties

Item Returns a DeliveryChannel object,
which represents a delivery channel.

In C#, this property is the indexer for the
DeliveryChannelEnumeration class.

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration.Item Property
DeliveryChannelEnumeration.Item Property

Returns a reference to a delivery channel.

C#

In C#, this property is the indexer for the DeliveryChannelEnumeration class.

Visual Basic .NET

Public Property Item(ByVal deliveryChannelName As String) As DeliveryChannel

C#

public DeliveryChannel this[string deliveryChannelName] {get;}

C++

public: __property DeliveryChannel get_Item(String* deliveryChannelName);

JScript

returnValue = DeliveryChannelEnumerationObject.Item(deliveryChannelName);
-or-
returnValue = DeliveryChannelEnumerationObject(deliveryChannelName);

Parameters

deliveryChannelName

The name of the delivery channel that you want returned.

Property Value

A DeliveryChannel object, which represents a specific delivery channel.

Exceptions

Exception Type Condition
IndexOutOfRangeException The requested delivery channel name

does not exist within the Notification
Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a DeliveryChannel object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim deliveryChannelName As String = "MyDeliveryChannelName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a DeliveryChannelEnumeration object.
Dim myDeliveryChannelEnumeration As New
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance)

'Use the Item property to return a DeliveryChannel object.
Dim myDeliveryChannel As Microsoft.SqlServer.NotificationServices.DeliveryChannel =
myDeliveryChannelEnumeration(deliveryChannelName)

C#

string instanceName = "MyInstanceName";
string deliveryChannelName = "MyDeliveryChannelName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a DeliveryChannelEnumeration object.
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
myDeliveryChannelEnumeration = new
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance);

//Use the Item property to return a DeliveryChannel object.
Microsoft.SqlServer.NotificationServices.DeliveryChannel myDeliveryChannel =
myDeliveryChannelEnumeration[deliveryChannelName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration Methods
DeliveryChannelEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the delivery
channels.

Initialize Initializes an object of the
DeliveryChannelEnumeration class.

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration.GetEnumerator Method
DeliveryChannelEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of delivery channels represented by the
DeliveryChannelEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the DeliveryChannelEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the delivery channels in a
DeliveryChannelEnumeration object. An initialized DeliveryChannelEnumeration object represents the collection of delivery
channels in a specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use a DeliveryChannelEnumeration object to iterate through a set of delivery channels.
The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a DeliveryChannelEnumeration object.
Dim myDeliveryChannelEnumeration As New
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance)

'Iterate through the delivery channels.
Dim deliveryChannel As Microsoft.SqlServer.NotificationServices.DeliveryChannel
For Each deliveryChannel In myDeliveryChannelEnumeration
 Console.WriteLine("Delivery Channel Name: {0}", deliveryChannel.DeliveryChannelName)
Next deliveryChannel

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new

Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a DeliveryChannelEnumeration object.
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
myDeliveryChannelEnumeration = new
Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration(myInstance);

//Iterate through the delivery channels.
foreach (Microsoft.SqlServer.NotificationServices.DeliveryChannel deliveryChannel in
myDeliveryChannelEnumeration)
{
 Console.WriteLine("Delivery Channel Name: {0}", deliveryChannel.DeliveryChannelName);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

DeliveryChannelEnumeration.Initialize Method
DeliveryChannelEnumeration.Initialize Method

Initializes an object of the DeliveryChannelEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance);

JScript

public function Initialize(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the delivery channels to be enumerated by
this DeliveryChannelEnumeration object.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a DeliveryChannelEnumeration object created with the parameter-less
constructor.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

The following example shows how to create and initialize a DeliveryChannelEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, myDeliveryChannelEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a DeliveryChannelEnumeration object.
set myDeliveryChannelEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.DeliveryChannelEnumeration
")
myDeliveryChannelEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

DeliveryChannelEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Class
Event Class

Represents a single event.

For a list of all members of this type, see Event Members.

System.Object

Microsoft.SqlServer.NotificationServices.Event

Visual Basic .NET

<Serializable>
NonInheritable Public Class Event Implements IEvent

C#

[Serializable]
public sealed class Event : IEvent

C++

[Serializable]
public __gc __sealed class Event : public IEvent

JScript

public
 Serializable
class Event implements IEvent

Remarks

The Event object encapsulates the event data for a single event. A reference to the Event object is passed to an EventCollector
object, which writes the data to the application database.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Members
Event Members

Public Constructors

Event Constructor Overloaded. Creates a new object of the
Event class.

Public Properties

FieldCount Returns the number of developer-defined
event fields for this event, as specified in
the event class in the application definition
file (ADF).

Item Overloaded. Gets or sets the value of an
event data field in the event.

In C#, this property is the indexer for the
Event class.

Public Methods

GetFieldName Returns the name of a field in the event
record when passed a field ordinal.

GetFieldOrdinal Returns the ordinal of a field in the event
record when passed a field name.

GetFieldValue Returns the value of a field in the event
record when passed a field name. This
method is provided for COM
interoperability.

Initialize Initializes an object of the Event class with
an event class name and a reference to an
NSApplication object.

SetFieldValue Sets the value of a field in the event record
when passed a field name. This method is
provided for COM interoperability.

See Also

Event Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Constructor
Event Constructor

Creates a new object of the Event class.

Overload List

Creates an uninitialized object of the Event class. It is used along with the Initialize method to support the two-step class
initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public Event();

C++

public: Event();

JScript

public function Event();

Creates a new object of the Event class, and initializes it with a reference to an NSApplication object and an event class name.

Visual Basic .NET

Public Sub New(NSApplication, String)

C#

public Event(NSApplication, string);

C++

public: Event(NSApplication, String*);

JScript

public function Event(NSApplication, String);

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Constructor ()
Event Constructor ()

Creates an uninitialized object of the Event class.

Visual Basic .NET

Public Sub New()

C#

public Event();

C++

public: Event();

JScript

public function Event();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with an event class name and a reference to an NSApplication object before
it can be used.

Example

The following example shows how to create and initialize an Event object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, myApplication, myEvent

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventClassName = "MyEventClassName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an Event object.
set myEvent = WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Event")
myEvent.Initialize myApplication, eventClassName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Constructor (NSApplication, String)
Event Constructor (NSApplication, String)

Creates and initializes an object of the Event class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal eventClassName As String)

C#

public Event(NSApplication application, string eventClassName);

C++

public: Event(NSApplication application, String* eventClassName);

JScript

public function Event(application : NSApplication, eventClassName : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which the Event object provides event data.

eventClassName

A string containing the name of the event class that defines the event data provided by the Event object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

It is possible to construct an Event object without initializing it with an NSApplication object. In this case, the event class is not
verified, and event field names must be hard-coded. This can be useful in cases where you would like to use an Event object in an
application that does not have a direct connection to a Notification Services server, for example in a disconnected Message
Queuing (also known as MSMQ) scenario. For more information about using an Event object in this way, see Creating a
Disconnected Event Object.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an Event object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an Event object.
Dim myEvent As New Microsoft.SqlServer.NotificationServices.Event(myApplication,
eventClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event Properties
Event Properties

Public Properties

FieldCount Returns the number of developer-defined
event fields for this event, as specified in
the event class in the application definition
file (ADF).

Item Overloaded. Gets or sets the value of an
event data field in the event.

In C#, this property is the indexer for the
Event class.

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.FieldCount Property
Event.FieldCount Property

Returns the number of developer-defined event fields for this event, as specified in the event class in the application definition file
(ADF).

Visual Basic .NET

Public Property FieldCount As Integer

C#

public int FieldCount {get;}

C++

public: __property int get_FieldCount();

JScript

public function get FieldCount() : int;

Property Value

An integer representing the number of developer-defined event fields in an event class. These are the fields defined in the
/EventClasses/EventClass/Schema section of the ADF for the associated event class.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.Item Property
Event.Item Property

Gets or sets the value of an event data field in the event record.

C#

In C#, this property is the indexer for the Event class.

Overload List

Gets or sets the value of an event data field in the event record, using the field name as an identifier.

Visual Basic .NET

Public Property Item(String) As Object

C#

public object this[string] {get;set;}

C++

public: __property Object* get_Item(String*);

public: __property void set_Item(String*, Object*);

JScript

Event.Item (String)

Gets or sets the value of an event data field in the event record, using the field ordinal as an identifier.

Visual Basic .NET

Public Property Item(Integer) As Object

C#

public Object this[int] {get;set;}

C++

public: __property Object* get_Item(int);

public: __property void set_Item(int, Object*);

JScript

Event.Item (int)

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.Item Property (String)
Event.Item Property (String)

Gets or sets the value of an event data field in the event record, using the field name as an identifier.

Visual Basic .NET

Public Property Item(ByVal fieldName As String) As Object

C#

public object this[string fieldName] {get;set;}

C++

public: __property Object* get_Item(String* fieldName);
public: __property void set_Item(String* fieldName, Object*);

JScript

returnValue = EventObject.Item(fieldName);
EventObject.Item(fieldName) = value;
-or-
returnValue = EventObject(fieldName);
EventObject(fieldName) = value;

Parameters

fieldName

The name of the event field for which you want the value returned.

Property Value

An object that represents the field's value.

Exceptions

Exception Type Condition
IndexOutOfRangeException No event field can be identified using the

field name provided.

Example

SQL Server Notification Services Books Online

Event.Item Property (Int32)
Event.Item Property (Int32)

Gets or sets the value of an event data field in the subscription record, using the field ordinal as an identifier.

Visual Basic .NET

Public Property Item(ByVal fieldOrdinal As Integer) As Object

C#

public object this[int fieldOrdinal] {get;set;}

C++

public: __property Object* get_Item(int fieldOrdinal);
public: __property void set_Item(int fieldOrdinal, Object*);

JScript

returnValue = EventObject.Item(fieldOrdinal);
EventObject.Item(fieldOrdinal) = returnValue;
-or-
returnValue = EventObject(fieldOrdinal);
EventObject(fieldOrdinal) = returnValue;

Parameters

fieldOrdinal

The zero-based ordinal of the event field for which you want the value returned.

Property Value

An object that represents the field's value.

Exceptions

Exception Type Condition
IndexOutOfRangeException No event field can be identified using the

field ordinal provided.

Remarks

The Int32 overload of the Item property is not available through COM interop.

Example

SQL Server Notification Services Books Online

Event Methods
Event Methods

Public Methods

GetFieldName Returns the name of a field in the event
record when passed a field ordinal.

GetFieldOrdinal Returns the ordinal of a field in the event
record when passed a field name.

GetFieldValue Returns the value of a field in the event
record when passed a field name. This
method is provided for COM
interoperability.

Initialize Initializes an object of the Event class with
an event class name and a reference to an
NSApplication object.

SetFieldValue Sets the value of a field in the event record
when passed a field name. This method is
provided for COM interoperability.

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.GetFieldName Method
Event.GetFieldName Method

Gets the name of a field in the event record.

Visual Basic .NET

Public Function GetFieldName(ByVal fieldOrdinal As Integer) As String

C#

public string GetFieldName(int fieldOrdinal);

C++

public: String* GetFieldName(int fieldOrdinal);

JScript

public function GetFieldName(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the event field for which you want the name returned.

Return Value

A string containing the field name.

Example

Visual Basic .NET, C#

The following examples show how to use the GetFieldName method to get the name of an event field by providing the field
ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an Event object.
Dim myEvent As New Microsoft.SqlServer.NotificationServices.Event(myApplication,
eventClassName)

'Use the GetFieldName method to get a field name.
Dim fieldName As String = myEvent.GetFieldName(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.

Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

//Use the GetFieldName method to get a field name.
string fieldName = myEvent.GetFieldName(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.GetFieldOrdinal Method
Event.GetFieldOrdinal Method

Returns the zero-based ordinal of a field in the event record.

Visual Basic .NET

Public Function GetFieldOrdinal(ByVal fieldName As String) As Integer

C#

public int GetFieldOrdinal(string fieldName);

C++

public: int GetFieldOrdinal(String* fieldName);

JScript

public function GetFieldOrdinal(fieldName : String) : int;

Parameters

fieldName

The name of the event field for which you want the ordinal returned.

Return Value

An integer representing the zero-based field ordinal.

Example

Visual Basic .NET, C#

The following examples show how to use the GetFieldOrdinal method to get the ordinal of an event field by providing the field
name:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldName As String = "MyEventFieldName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an Event object.
Dim myEvent As New Microsoft.SqlServer.NotificationServices.Event(myApplication,
eventClassName)

'Use the GetFieldOrdinal method to get a field ordinal.
Dim fieldOrdinal As Integer = myEvent.GetFieldOrdinal(fieldName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string fieldName = "MyEventFieldName";

//Create an NSInstance object.

Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

//Use the GetFieldOrdinal method to get a field ordinal.
int fieldOrdinal = myEvent.GetFieldOrdinal(fieldName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.GetFieldValue Method
Event.GetFieldValue Method

Returns the value of a field in the event record.

Visual Basic .NET

Public Function GetFieldValue(ByVal fieldName As String) As Object

C#

public object GetFieldValue(string fieldName);

C++

public: Object* GetFieldValue(String* fieldName);

JScript

public function GetFieldValue(fieldName : String) : Object;

Parameters

fieldName

The name of the event field for which you want the value returned.

Return Value

An object that represents the field's value.

Remarks

This method is provided for COM interoperability, to allow callers from unmanaged code to get field values from an event record.

Example

The following example shows how to use the GetFieldValue method in unmanaged Microsoft Visual Basic® Scripting Edition
(VBScript) code to get the value of an event field:

Dim myInstance, myApplication, myEvent, fieldValue

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventClassName = "MyEventClassName"
const eventFieldName = "MyEventFieldName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an Event object.
set myEvent = WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Event")
myEvent.Initialize myApplication, eventClassName

'Use the SetFieldValue method to set a field value.
myEvent.SetFieldValue eventFieldName, "Test"

'Use the GetFieldValue method to return a field value.
fieldValue = myEvent.GetFieldValue(eventFieldName)
WScript.Echo "Field Value = " + fieldValue

WScript.Echo

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.Initialize Method
Event.Initialize Method

Initializes an object of the Event class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal eventClassName As String)

C#

public void Initialize(NSApplication application, string eventClassName);

C++

public: void Initialize(NSApplication application, String* eventClassName);

JScript

public function Initialize(application : NSApplication, eventClassName : String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the event class to be implemented by
this Event object.

eventClassName

A string containing the name of the event class that this Event object implements. This event class determines what event fields
this Event object exposes.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an Event object created with the parameter-less constructor.

Example

The following example shows how to create and initialize an Event object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, myApplication, myEvent

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventClassName = "MyEventClassName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an Event object.
set myEvent = WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Event")

myEvent.Initialize myApplication, eventClassName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Event.SetFieldValue Method
Event.SetFieldValue Method

Sets the value of a field in the event record.

Visual Basic .NET

Public Sub SetFieldValue(ByVal fieldName As String, ByVal newValue As Object)

C#

public void SetFieldValue(string fieldname, object newValue);

C++

public: void SetFieldValue(String* fieldName, Object* newValue);

JScript

public function SetFieldValue(fieldName : String, newValue: Object);

Parameters

fieldName

The name of the event field for which you want the value set.

newValue

The value to which you want the event field set.

Remarks

This method is provided for COM interoperability, to allow callers from unmanaged code to set field values for an event record.

Example

The following example shows how to use the SetFieldValue method in unmanaged Microsoft Visual Basic® Scripting Edition
(VBScript) code to set the value of an event field:

Dim myInstance, myApplication, myEvent

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventClassName = "MyEventClassName"
const eventFieldName = "MyEventFieldName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an Event object.
set myEvent = WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Event")
myEvent.Initialize myApplication, eventClassName

'Use the SetFieldValue method to set a field value.
myEvent.SetFieldValue eventFieldName, "Test"

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Event Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass Class
EventClass Class

Represents any event class that is specified in an application definition file (ADF). It is used to access the event class metadata, and
should not be confused with the Event class, which is used to encapsulate event information for a single event.

For a list of all members of this type, see EventClass Members.

System.Object

Microsoft.SqlServer.NotificationServices.EventClass

Visual Basic .NET

Public Class EventClass Implements IEventClass

C#

public class EventClass : IEventClass

C++

public class EventClass : public IEventClass

JScript

public class EventClass implements IEventClass

Remarks

The EventClass class provides access to the metadata of any event class defined in an ADF. It should not be confused with the
Event class, which provides a means of encapsulating a single event for submission to the application. The EventClass class
provides methods to return information about the event fields defined in the /EventClasses/EventClass/Schema section of the
ADF for the specified event class.

The EventClass class has no public constructor. Use EventClassEnumeration.Item to return an EventClass object.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass Members
EventClass Members

Public Properties

FieldCount Gets the number of fields specified in the
/EventClasses/EventClass/Schema section
of the application definition file (ADF) for this
event class.

EventClassName Gets the event class name specified in the
/EventClasses/EventClass/EventClassName
section of the ADF for this event class.

Public Methods

FieldName Gets the field name as specified in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
ordinal.

FieldOrdinal Gets the field ordinal of the field based on
its location in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
name.

FieldType Gets the field type as specified in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
ordinal.

FieldTypeMods Gets the field type modifiers as specified
in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
ordinal.

See Also

EventClass Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass Properties
EventClass Properties

Public Properties

FieldCount Gets the number of fields specified in the
/EventClasses/EventClass/Schema section
of the application definition file (ADF) for this
event class.

EventClassName Gets the event class name specified in the
/EventClasses/EventClass/EventClassName
section of the ADF for this event class.

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.FieldCount Property
EventClass.FieldCount Property

Gets the number of event fields specified in an event class.

Visual Basic .NET

Public Property FieldCount As Integer

C#

public int FieldCount {get;}

C++

public: __property int get_FieldCount();

JScript

public function get FieldCount() : int;

Property Value

An integer representing the number of event data fields in an event class. These are the fields defined in the
/EventClasses/EventClass/Schema section of the application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.EventClassName Property
EventClass.EventClassName Property

Gets the name of an event class.

Visual Basic .NET

Public Property EventClassName As String

C#

public string EventClassName {get;}

C++

public: __property String* get_EventClassName();

JScript

public function get EventClassName() : String;

Property Value

A string containing the event class name. This is specified in the /EventClasses/EventClass/EventClassName section of the
application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass Methods
EventClass Methods

Public Methods

FieldName Gets the field name as specified in the
/EventClasses/EventClass/Schema
section of the application definition file
(ADF) when passed a field ordinal.

FieldOrdinal Gets the field ordinal of the field based on
its location in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
name.

FieldType Gets the field type as specified in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
ordinal.

FieldTypeMods Gets the field type modifiers as specified
in the
/EventClasses/EventClass/Schema
section of the ADF when passed a field
ordinal.

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.FieldName Method
EventClass.FieldName Method

Gets the name of a field in the event class.

Visual Basic .NET

Public Function FieldName(ByVal fieldOrdinal As Integer) As String

C#

public string FieldName(int fieldOrdinal);

C++

public: String* FieldName(int fieldOrdinal);

JScript

public function FieldName(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the event class definition for which you want the name returned.

Return Value

A string containing the field name.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No event class field can be identified using

the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldName method to get the name of an event class field by providing the field
ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Use the EventClassEnumeration.Item
'to return an EventClass object.
Dim myEventClass As Microsoft.SqlServer.NotificationServices.EventClass =
myEventClassEnumeration(eventClassName)

'Use the FieldName method to get a field name.
Dim fieldName As String = myEventClass.FieldName(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Use the EventClassEnumeration.Item
//to return an EventClass object.
Microsoft.SqlServer.NotificationServices.EventClass myEventClass =
myEventClassEnumeration[eventClassName];

//Use the FieldName method to get a field name.
string fieldName = myEventClass.FieldName(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.FieldOrdinal Method
EventClass.FieldOrdinal Method

Gets the zero-based ordinal of a field in the event class.

Visual Basic .NET

Public Function FieldOrdinal(ByVal fieldName As String) As Integer

C#

public int FieldOrdinal(string fieldName);

C++

public: int FieldOrdinal(String* fieldName);

JScript

public function FieldOrdinal(fieldName : String) : int;

Parameters

fieldName

The name of the developer-defined field in the event class definition for which you want the ordinal returned.

Return Value

An integer representing the zero-based field ordinal.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No event class field can be identified using

the field name provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldOrdinal method to get the ordinal of an event class field by providing the field
name:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldName As String = "MyEventFieldName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Use the EventClassEnumeration.Item
'to return an EventClass object.
Dim myEventClass As Microsoft.SqlServer.NotificationServices.EventClass =
myEventClassEnumeration(eventClassName)

'Use the FieldOrdinal method to get a field ordinal.
Dim fieldOrdinal As Integer = myEventClass.FieldOrdinal(fieldName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string fieldName = "MyEventFieldName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Use the EventClassEnumeration.Item
//to return an EventClass object.
Microsoft.SqlServer.NotificationServices.EventClass myEventClass =
myEventClassEnumeration[eventClassName];

//Use the FieldOrdinal method to get a field ordinal.
int fieldOrdinal = myEventClass.FieldOrdinal(fieldName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.FieldType Method
EventClass.FieldType Method

Gets the data type of a field in the event class.

Visual Basic .NET

Public Function FieldType(ByVal fieldOrdinal As Integer) As String

C#

public string FieldType(int fieldOrdinal);

C++

public: String* FieldType(int fieldOrdinal);

JScript

public function FieldType(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the event class definition for which you want the data type returned.

Return Value

A string containing the data type of the event class field identified.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No event class field can be identified using

the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldType method to get the data type of an event class field by providing the field
ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Use the EventClassEnumeration.Item
'to return an EventClass object.
Dim myEventClass As Microsoft.SqlServer.NotificationServices.EventClass =
myEventClassEnumeration(eventClassName)

'Use the FieldType method to get a field data type.
Dim fieldType As String = myEventClass.FieldType(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Use the EventClassEnumeration.Item
//to return an EventClass object.
Microsoft.SqlServer.NotificationServices.EventClass myEventClass =
myEventClassEnumeration[eventClassName];

//Use the FieldType method to get a field data type.
string fieldType = myEventClass.FieldType(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClass.FieldTypeMods Method
EventClass.FieldTypeMods Method

Gets the field modifiers of a field in the event class.

Visual Basic .NET

Public Function FieldType(ByVal fieldOrdinal As Integer) As String

C#

public string FieldType(int fieldOrdinal);

C++

public: String* FieldType(int fieldOrdinal);

JScript

public function FieldType(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the event class definition for which you want the field modifiers returned.

Return Value

A string containing the field modifiers for this data field, if any are specified. Field modifiers include such information as whether
the field accepts null values, or has a default specified.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No event class field can be identified using

the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldTypeMods method to get the field modifiers of an event class field by
providing the field ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Use the EventClassEnumeration.Item
'to return an EventClass object.
Dim myEventClass As Microsoft.SqlServer.NotificationServices.EventClass =
myEventClassEnumeration(eventClassName)

'Use the FieldTypeMods method to get a field's modifiers.
Dim fieldTypeMods As String = myEventClass.FieldTypeMods(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Use the EventClassEnumeration.Item
//to return an EventClass object.
Microsoft.SqlServer.NotificationServices.EventClass myEventClass =
myEventClassEnumeration[eventClassName];

//Use the FieldTypeMods method to get a field's modifiers.
string fieldTypeMods = myEventClass.FieldTypeMods(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Class
EventClassEnumeration Class

Represents the collection of event classes in a given Notification Services application.

For a list of all members of this type, see EventClassEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.EventClassEnumeration

Visual Basic .NET

Public Class EventClassEnumeration
Implements IEventClassEnumeration, IEnumerable

C#

public class EventClassEnumeration : IEventClassEnumeration, IEnumerable

C++

public class EventClassEnumeration : public IEventClassEnumeration, IEnumerable

JScript

public class EventClassEnumeration implements IEventClassEnumeration, IEnumerable

Remarks

The EventClassEnumeration class allows an application to iterate through the set of event classes in a given Notification
Services application. It also provides an Item property to return an EventClass object that represents a specific event class.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Members
EventClassEnumeration Members

Public Constructors

EventClassEnumeration Constructor Overloaded. Creates a new object of the
EventClassEnumeration class.

Public Properties

Count Gets the count of event classes in the
specified Notification Services application.

Item Returns an EventClass object, which
represents a specific event class.

In C#, this property is the indexer for the
EventClassEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that allows
you to iterate through the event classes.

Initialize Initializes an object of the
EventClassEnumeration class.

See Also

EventClassEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Constructor
EventClassEnumeration Constructor

Creates a new object of the EventClassEnumeration class.

Overload List

Creates an uninitialized object of the EventClassEnumeration class. It is used along with the Initialize method to support the
two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public EventClassEnumeration();

C++

public: EventClassEnumeration();

JScript

public function EventClassEnumeration();

Creates an object of the EventClassEnumeration class, and initializes it with a reference to an NSApplication object.

Visual Basic .NET

Public Sub New(NSApplication)

C#

public EventClassEnumeration(NSApplication);

C++

public: EventClassEnumeration(NSApplication);

JScript

public function EventClassEnumeration(NSApplication);

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Constructor()
EventClassEnumeration Constructor()

Creates an uninitialized object of the EventClassEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public EventClassEnumeration();

C++

public: EventClassEnumeration();

JScript

public function EventClassEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSApplication object before it can be used.

Example

The following example shows how to create and initialize an EventClassEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventClassEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventClassEnumeration object.
set myEventClassEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventClassEnumeration")
myEventClassEnumeration.Initialize myApplication

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Constructor (NSApplication)
EventClassEnumeration Constructor (NSApplication)

Creates and initializes an object of the EventClassEnumeration class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication)

C#

public EventClassEnumeration(NSApplication application);

C++

public: EventClassEnumeration(NSApplication application);

JScript

public function EventClassEnumeration(application : NSApplication);

Parameters

application

An NSApplication object that represents the Notification Services application containing the event classes to be enumerated by
this EventClassEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an EventClassEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new

Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Properties
EventClassEnumeration Properties

Public Properties

Count Gets the count of event classes in the
specified Notification Services application.

Item Returns an EventClass object, which
represents a specific event class.

In C#, this property is the indexer for the
EventClassEnumeration class.

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration.Count Property
EventClassEnumeration.Count Property

Gets the count of event classes in a Notification Services application.

Visual Basic .NET

Public Property Count As Integer

C#

public int Count {get;}

C++

public: __property int get_Count();

JScript

public function get Count() : int;

Property Value

An integer representing the number of event classes in a Notification Services application.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration.Item Property
EventClassEnumeration.Item Property

Gets a reference to an event class.

C#

In C#, this property is the indexer for the EventClassEnumeration class.

Visual Basic .NET

Public Property Item(ByVal eventClassName As String) As EventClass

C#

public EventClass this[string eventClassName] {get;}

C++

public: __property EventClass get_Item(String* eventClassName);

JScript

returnValue = EventClassEnumerationObject.Item(eventClassName);
-or-
returnValue = EventClassEnumerationObject(eventClassName);

Parameters

eventClassName

The name of the event class that you want returned.

Property Value

An EventClass object, which represents a specific event class.

Exceptions

Exception Type Condition
IndexOutOfRangeException No event class can be identified using the

event class name specified.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return an EventClass object representing a specific event class:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Use the Item property to return an EventClass object.

Dim myEventClass As Microsoft.SqlServer.NotificationServices.EventClass =
myEventClassEnumeration(eventClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);
//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Use the Item property to return an EventClass object.
Microsoft.SqlServer.NotificationServices.EventClass myEventClass =
myEventClassEnumeration[eventClassName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration Methods
EventClassEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that allows
you to iterate through the event classes.

Initialize Initializes an object of the
EventClassEnumeration class.

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration.GetEnumerator Method
EventClassEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of event classes represented by the
EventClassEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the EventClassEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the event classes in an
EventClassEnumeration object. An initialized EventClassEnumeration object represents the collection of event classes in a
specified Notification Services application.

Example

Visual Basic .NET, C#

The following examples show how to use an EventClassEnumeration object to iterate through a set of event classes. The
GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventClassEnumeration object.
Dim myEventClassEnumeration As New
Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication)

'Iterate through the event classes.
Dim eventClass As Microsoft.SqlServer.NotificationServices.EventClass
For Each eventClass In myEventClassEnumeration
 Console.WriteLine("Event Class Name: {0}", eventClass.EventClassName)
Next eventClass

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);
//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventClassEnumeration object.
Microsoft.SqlServer.NotificationServices.EventClassEnumeration myEventClassEnumeration =
new Microsoft.SqlServer.NotificationServices.EventClassEnumeration(myApplication);

//Iterate through the event classes.
foreach (Microsoft.SqlServer.NotificationServices.EventClass eventClass in
myEventClassEnumeration)
{
 Console.WriteLine("Event Class Name: {0}", eventClass.EventClassName);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventClassEnumeration.Initialize Method
EventClassEnumeration.Initialize Method

Initializes an object of the EventClassEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication)

C#

public void Initialize(NSApplication application);

C++

public: void Initialize(NSApplication application);

JScript

public function Initialize(application : NSApplication);

Parameters

application

An NSApplication object that represents the Notification Services application containing the event classes to be enumerated by
this EventClassEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an EventClassEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize an EventClassEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventClassEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventClassEnumeration object.
set myEventClassEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventClassEnumeration")
myEventClassEnumeration.Initialize myApplication

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Class
EventCollector Class

Collects events into batches, and then writes them to the application database.

For a list of all members of this type, see EventCollector Members.

System.MarshalByRefObject

Microsoft.SqlServer.NotificationServices.EventCollector

Visual Basic .NET

NonInheritable Public Class EventCollector Implements MarshalByRefObject,
IEventCollector, IDisposable

C#

public sealed class EventCollector : MarshalByRefObject, IEventCollector, IDisposable

C++

public __gc __sealed class EventCollector : public MarshalByRefObject, IEventCollector,
IDisposable

JScript

public class EventCollector implements MarshalByRefObject, IEventCollector, IDisposable

Remarks

Once you have created an Event object and populated it with event data, you submit it to an EventCollector object, using the
EventCollector.Write method. You create an Event object, then populate and submit it once for each event record that you want
to create. The EventCollector object then gathers the events written to it into a batch, and adds the event batch to the application
database when the Commit method is called. The EventCollector is reinitialized to create a new event batch following a
Commit call.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Members
EventCollector Members

Public Constructors

EventCollector Constructor Overloaded. Creates a new object of the
EventCollector class.

Public Methods

Abort Discards the current event batch and all
event data associated with it.

Commit Submits an event batch to the application
database.

Dispose Disposes of the EventCollector object.
Releases all resources allocated for it and
leaves it unusable. Discards any event data
that has been written to the
EventCollector since the last Commit
call.

Initialize Initializes an object of the EventCollector
class with an event provider name and a
reference to an NSApplication object.

Write Writes one event, encapsulated as an
Event object, to the EventCollector
object.

See Also

EventCollector Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Constructor
EventCollector Constructor

Creates a new object of the EventCollector class.

Overload List

Creates an uninitialized object of the EventCollector class. It is used along with the Initialize method to support the two-step
class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public EventCollector();

C++

public: EventCollector();

JScript

public function EventCollector();

Creates a new object of the EventCollector class, and initializes it with a reference to an NSApplication object and an event
provider name.

Visual Basic .NET

Public Sub New(NSApplication, String)

C#

public EventCollector(NSApplication, string);

C++

public: EventCollector(NSApplication, String*);

JScript

public function EventCollector(NSApplication, String);

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Constructor ()
EventCollector Constructor ()

Creates an uninitialized object of the EventCollector class.

Visual Basic .NET

Public Sub New()

C#

public EventCollector();

C++

public: EventCollector();

JScript

public function EventCollector();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with an event provider name and a reference to an NSApplication object
before it can be used.

Example

The following example shows how to create and initialize an EventCollector object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventCollector

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventProviderName = "MyEventProviderName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventCollector object.
set myEventCollector =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventCollector")
myEventCollector.Initialize myApplication, eventProviderName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Constructor (NSApplication, String)
EventCollector Constructor (NSApplication, String)

Creates and initializes a new object of the EventCollector class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal eventProviderName As String)

C#

public EventCollector(NSApplication application, string eventProviderName);

C++

public: EventCollector(NSApplication application, String* eventProviderName);

JScript

public function EventCollector(application : NSApplication, eventProviderName : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which this EventCollector submits events.
Provided so that event statistics for the given event provider can be collected.

eventProviderName

A string containing the name of the event provider that hosts this EventCollector object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an EventCollector object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventProviderName As String = "MyEventProviderName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventCollector object.
Dim myEventCollector As New
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication, eventProviderName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventProviderName = "MyEventProviderName";

//Create an NSInstance object.

Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventCollector object.
Microsoft.SqlServer.NotificationServices.EventCollector myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication,
eventProviderName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector Methods
EventCollector Methods

Public Methods

Abort Discards the current event batch and all
event data associated with it.

Commit Submits an event batch to the application
database.

Dispose Disposes of the EventCollector object.
Releases all resources allocated for it and
leaves it unusable. Discards any event data
that has been written to the
EventCollector since the last Commit
call.

Initialize Initializes an object of the EventCollector
class with an event provider name and a
reference to an NSApplication object.

Write Writes one event, encapsulated as an
Event object, to the EventCollector
object.

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector.Abort Method
EventCollector.Abort Method

Discards the current event batch and all event data associated with it.

Visual Basic .NET

Public Sub Abort()

C#

public void Abort();

C++

public: void Abort();

JScript

public function Abort();

Remarks

An event provider calls the EventCollector.Write method to submit an event (encapsulated as an Event object) to an
EventCollector object. The EventCollector gathers all submitted events into an event batch. The event batch is submitted to the
Notification Services application database for processing when the event provider calls the EventCollector.Commit method.

The EventCollector creates a new event batch when the event provider first calls Write, and then again on the first Write call
after an Abort or Commit call.

An event provider can force the current batch to be discarded by calling the EventCollector.Abort method.

Example

Visual Basic .NET, C#

The following examples show how to use the Abort method to discard an event batch:

Visual Basic .NET

Try
 'Add event batch processing code here.
Catch e As System.Exception
 'Discard the event batch if there is an error.
 myEventCollector.Abort()
End Try

C#

try
{
 //Add event batch processing code here.
}
catch (System.Exception e)
{
 //Discard the event batch if there is an error.
 myEventCollector.Abort();
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector.Commit Method
EventCollector.Commit Method

Submits an event batch to the application database.

Visual Basic .NET

Public Function Commit() As Integer

C#

public int Commit();

C++

public: int Commit();

JScript

public function Commit() : int;

Return Value

An integer specifying how many events have been submitted in this Commit call.

Remarks

An event provider calls the EventCollector.Write method to submit an event (encapsulated as an Event object) to an
EventCollector object. The EventCollector gathers all submitted events into an event batch. The event batch is submitted to the
Notification Services application database for processing when the event provider calls the EventCollector.Commit method.

The EventCollector creates a new event batch when the event provider first calls Write, and then again on the first Write call
after an Abort or Commit call.

Example

Visual Basic .NET, C#

The following examples show how to use the Commit method to commit an event batch:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim eventProviderName As String = "MyEventProviderName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an Event object.
Dim myEvent As New Microsoft.SqlServer.NotificationServices.Event(myApplication,
eventClassName)

'Create an EventCollector object.
Dim myEventCollector As New
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication, eventProviderName)

'Add code to collect event information here.

'Commit the event batch to the application database.
Dim eventsWritten As Integer = myEventCollector.Commit()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string eventProviderName = "MyEventProviderName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

//Create an EventCollector object.
Microsoft.SqlServer.NotificationServices.EventCollector myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication,
eventProviderName);

//Add code to collect event information here.

//Commit the event batch to the application database.
int eventsWritten = myEventCollector.Commit();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector.Dispose Method
EventCollector.Dispose Method

Disposes of the EventCollector object.

Visual Basic .NET

Public Sub Dispose()

C#

public void Dispose();

C++

public: void Dispose();

JScript

public function Dispose();

Remarks

Calling this method releases all resources allocated for the EventCollector object, and leaves it unusable. Any event data that has
been written to the EventCollector since the last Commit call is discarded.

Example

Visual Basic .NET, C#

The following examples show how to use the Dispose method to dispose of an EventCollector object:

Visual Basic .NET

Try
 'Add event batch processing code here.
Catch e As System.Exception
 'Add error handling code here.
Finally
 'Dispose of the EventCollector object.
 myEventCollector.Dispose()
End Try

C#

try
{
 //Add event batch processing code here.
}
catch (System.Exception e)
{
 //Add error handling code here.
}
finally
{
 //Dispose of the EventCollector object.
 myEventCollector.Dispose();
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector.Initialize Method
EventCollector.Initialize Method

Initializes an object of the EventCollector class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal eventProviderName As
String)

C#

public void Initialize(NSApplication application, string eventProviderName);

C++

public: void Initialize(NSApplication application, String* eventProviderName);

JScript

public function Initialize(application : NSApplication, eventProviderName : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which this EventCollector submits events.
Provided so that event statistics for the given event provider can be collected.

eventProviderName

A string containing the name of the event provider that hosts this EventCollector object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an EventCollector object created with the parameter-less constructor.

Example

The following example shows how to create and initialize an EventCollector object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventCollector

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventProviderName = "MyEventProviderName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventCollector object.
set myEventCollector =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventCollector")

myEventCollector.Initialize myApplication, eventProviderName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventCollector.Write Method
EventCollector.Write Method

Writes one event to the EventCollector.

Visual Basic .NET

Public Function Write(ByVal event As Object) As Integer

C#

public int Write(object event);

C++

public: int Write(Object* event);

JScript

public function Write(event : Object) : int;

Parameters

eventClass

An Event object that encapsulates the data for a single event.

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.InvalidField argument

One of the fields in the event data fails to
meet a database requirement or a
constraint (such as a column data type).

NSException with an
NSEventEnum.MissingField argument

One of the fields in the event data fails to
meet a NOT NULL requirement in the
event table.

Remarks

An event provider calls the EventCollector.Write method to submit an event (encapsulated as an Event object) to an
EventCollector object. The EventCollector gathers all submitted events into an event batch. The event batch is submitted to the
Notification Services application database for processing when the event provider calls the EventCollector.Commit method.

The EventCollector creates a new event batch when the event provider first calls Write, and then again on the first Write call
after an Abort or Commit call.

Example

Visual Basic .NET, C#

The following examples show how to use the Write method to dispose of an EventCollector object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim eventProviderName As String = "MyEventProviderName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an Event object.
Dim myEvent As New Microsoft.SqlServer.NotificationServices.Event(myApplication,
eventClassName)

'Create an EventCollector object.
Dim myEventCollector As New
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication, eventProviderName)

'Add code here to populate the Event object.

'Use the Write method to write the event to the EventCollector.
myEventCollector.Write(myEvent)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string eventProviderName = "MyEventProviderName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an Event object.
Microsoft.SqlServer.NotificationServices.Event myEvent = new
Microsoft.SqlServer.NotificationServices.Event(myApplication, eventClassName);

//Create an EventCollector object.
Microsoft.SqlServer.NotificationServices.EventCollector myEventCollector = new
Microsoft.SqlServer.NotificationServices.EventCollector(myApplication,
eventProviderName);

//Add code here to populate the Event object.

//Use the Write method to write the event to the EventCollector.
myEventCollector.Write(myEvent);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventCollector Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Class
EventLoader Class

Provides a way to submit XML documents as events.

For a list of all members of this type, see EventLoader Members.

System.MarshalByRefObject

Microsoft.SqlServer.NotificationServices.EventLoader

Visual Basic .NET

NonInheritable Public Class EventLoader Implements MarshalByRefObject, IDisposable

C#

public sealed class EventLoader : MarshalByRefObject, IDisposable

C++

public __gc __sealed class EventLoader : public MarshalByRefObject, IDisposable

JScript

public class EventLoader implements MarshalByRefObject, IDisposable

Remarks

An EventLoader object is used to write XML data from files or Stream objects to the notification application.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Members
EventLoader Members

Public Constructors

EventLoader Constructor Overloaded. Creates a new object of the
EventLoader class.

Public Properties

EventSchema Sets the SQL-annotated XML schema file
that allows you to convert the event data
from the XML document format to the
event class format.

Public Methods

Dispose Disposes of the EventLoader object.
Releases all resources allocated for it and
leaves it unusable.

Initialize Initializes an object of the EventLoader
class.

LoadXml Overloaded. Submits the contents of an
XML document to the application
database.

See Also

EventLoader Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Constructor
EventLoader Constructor

Creates a new object of the EventLoader class.

Overload List

Creates an uninitialized object of the EventLoader class. It is used along with the Initialize method to support the two-step class
initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public EventLoader();

C++

public: EventLoader();

JScript

public function EventLoader();

Creates a new object of the EventLoader class, and initializes it with a reference to an NSApplication object, an event provider
name, an event class name, and a reference to an SQL-annotated XML schema file.

Visual Basic .NET

Public Sub New(NSApplication, String, String, String)

C#

public EventLoader(NSApplication, string, string, string);

C++

public: EventLoader(NSApplication, String*, String*, String*);

JScript

public function EventLoader(NSApplication, String, String, String);

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Constructor ()
EventLoader Constructor ()

Creates an uninitialized object of the EventLoader class.

Visual Basic .NET

Public Sub New()

C#

public EventLoader();

C++

public: EventLoader();

JScript

public function EventLoader();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSApplication object, an event provider name, an
event class name, and a reference to an SQL-annotated XML schema file before it can be used.

Example

The following example shows how to create and initialize an EventLoader object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventLoader

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventProviderName = "MyEventProviderName"
const eventClassName = "MyEventClassName"
const schemaFile = "MySchemaFilePathAndName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventLoader object.
set myEventLoader =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventLoader")
myEventLoader.Initialize myApplication, eventProviderName, eventClassName, schemaFile

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Constructor (NSApplication, String, String, String)
EventLoader Constructor (NSApplication, String, String, String)

Creates and initializes an object of the EventLoader class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal eventProviderName As _ String,
ByVal eventClassName As String, ByVal eventSchema As String)

C#

public EventLoader(NSApplication application, string eventProviderName, string
eventClassName, string eventSchema);

C++

public: EventLoader(NSApplication application, String* eventProviderName, String*
eventClassName, String* eventSchema);

JScript

public function EventLoader(application : NSApplication, eventProviderName : String,
eventClassName : String, eventSchema : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which this EventLoader submits events.

eventProviderName

A string containing the name of the event provider that hosts this EventLoader object.

eventClassName

The event class that defines the structure of the events that this EventLoader submits.

eventSchema

A string representing the path and name of an SQL-annotated XML schema file. This schema file must contain the event class
schema, and is used to convert the event data in the XML document to the expected format.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an EventLoader object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim eventProviderName As String = "MyEventProviderName"
Dim eventSchema As String = "MySchemaFilePathAndName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New

Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventLoader object.
Dim myEventLoader As New
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string eventProviderName = "MyEventProviderName";
string eventSchema = "MySchemaFilePathAndName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventLoader object.
Microsoft.SqlServer.NotificationServices.EventLoader myEventLoader = new
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema);

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Properties
EventLoader Properties

Public Properties

EventSchema Sets the SQL-annotated XML schema file
that allows you to convert the event data
from the XML document format to the
event class format.

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.EventSchema Property
EventLoader.EventSchema Property

Sets the event schema for the EventLoader object.

Visual Basic .NET

Public Property EventSchema

C#

public void EventSchema {set;}

C++

public: __property void set_EventSchema();

JScript

public function set EventSchema();

Remarks

This property expects a string representing the path and name of an SQL-annotated XML schema file. This schema file must
contain the event class schema, and is used to convert the event data in the XML document to the expected format.

Event schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="event" sql:relation="MyEventClassName">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="StockSymbol" type="xsd:string" />
 <xsd:element name="StockPrice" type="xsd:float" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader Methods
EventLoader Methods

Public Methods

Dispose Disposes of the EventLoader object.
Releases all resources allocated for it and
leaves it unusable.

Initialize Initializes an object of the EventLoader
class.

LoadXml Overloaded. Submits the contents of an
XML document to the application
database.

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.Dispose Method
EventLoader.Dispose Method

Disposes of the EventLoader object.

Visual Basic .NET

Public Sub Dispose()

C#

public void Dispose();

C++

public: void Dispose();

JScript

public function Dispose();

Remarks

Calling this method releases all resources allocated for the EventLoader object, and leaves it unusable.

Example

Visual Basic .NET, C#

The following examples show how to use the Dispose method to dispose of an EventLoader object:

Visual Basic .NET

Try
 'Add code to process event information here.
Catch e As System.Exception
 'Add code to handle errors here.
Finally
 'Dispose of the EventLoader object.
 myEventLoader.Dispose()
End Try

C#

try
{
 //Add code to process event information here.
}
catch (System.Exception e)
{
 //Add code to handle errors here.
}
finally
{
 //Dispose of the EventLoader object.
 myEventLoader.Dispose();
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.Initialize Method
EventLoader.Initialize Method

Initializes an object of the EventLoader class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal eventProviderName As _
String, ByVal eventClassName As String, ByVal eventSchema As String)

C#

public void Initialize(NSApplication application, string eventProviderName, string
eventClassName, string eventSchema);

C++

public: void Initialize(NSApplication application, String* eventProviderName, String*
eventClassName, String* eventSchema);

JScript

public function Initialize(application : NSApplication, eventProviderName : String,
eventClassName : String, eventSchema : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which this EventLoader object submits events.

eventProviderName

A string containing the name of the event provider that hosts this EventLoader object.

eventClassName

The event class that defines the structure of the events that this EventLoader object submits.

eventSchema

A string representing the path and name of an SQL-annotated XML schema file. This schema file must contain the event class
schema, and is used to convert the event data in the XML document to the expected format.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an EventLoader object created with the parameter-less constructor.

Example

The following example shows how to create and initialize an EventLoader object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication, myEventLoader

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const eventProviderName = "MyEventProviderName"
const eventClassName = "MyEventClassName"
const schemaFile = "MySchemaFilePathAndName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize an EventLoader object.
set myEventLoader =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.EventLoader")
myEventLoader.Initialize myApplication, eventProviderName, eventClassName, schemaFile

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.LoadXml Method
EventLoader.LoadXml Method

Submits the contents of an XML document to the application database.

Overload List

Submits the contents of an XML file to the application database.

Visual Basic .NET

Public Function LoadXml(String) As Integer

C#

public int LoadXml(string);

C++

public: int LoadXml(String*);

JScript

public function LoadXml(String) : int;

Submits the contents of an XML Stream object to the application database.

Visual Basic .NET

Public Function LoadXml(Stream) As Integer

C#

public int LoadXml(Stream);

C++

public: int LoadXml(Stream);

JScript

public function LoadXml(Stream) : int;

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.LoadXml Method (String)
EventLoader.LoadXml Method (String)

Submits the contents of an XML file to the application database.

Visual Basic .NET

Public Function LoadXml(ByVal eventDoc As String) As Integer

C#

public int LoadXml(string eventDoc);

C++

public: int LoadXml(String* eventDoc);

JScript

public function LoadXml(eventDoc : String) : int;

Parameters

eventDoc

A string representing the path and name of the XML file that contains the event data to be loaded.

Return Value

An integer specifying how many events have been submitted in this LoadXml call.

Example

Visual Basic .NET, C#

The following examples show how to use the LoadXml method to submit event data from an XML file to the application
database:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim eventProviderName As String = "MyEventProviderName"
Dim eventSchema As String = "MySchemaFilePathAndName"
Dim myXmlFile As String = "MyXMLFilePathAndName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventLoader object.
Dim myEventLoader As New
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema)

'Use the LoadXml method to load an XML document.
Dim eventsWritten As Integer = myEventLoader.LoadXml(myXmlFile)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";

string eventProviderName = "MyEventProviderName";
string eventSchema = "MySchemaFilePathAndName";
string myXmlFile = "MyXMLFilePathAndName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventLoader object.
Microsoft.SqlServer.NotificationServices.EventLoader myEventLoader = new
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema);

//Use the LoadXml method to load an XML document.
int eventsWritten = myEventLoader.LoadXml(myXmlFile);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

EventLoader.LoadXml Method (Stream)
EventLoader.LoadXml Method (Stream)

Submits the contents of a Stream object to the application database.

Visual Basic .NET

Public Function LoadXml(ByVal eventStream As Stream) As Integer

C#

public int LoadXml(Stream eventStream);

C++

public: int LoadXml(Stream eventStream);

JScript

public function LoadXml(eventStream : Stream) : int;

Parameters

eventStream

A Stream object containing the XML event data to be loaded.

Return Value

An integer specifying how many events have been submitted in this LoadXml call.

Remarks

This method can take an object of any of the classes that inherit from the System.IO.Stream class as its input parameter.
However, not all of these classes are truly applicable. The classes that are compatible with this method are:

BufferedStream
FileStream
MemoryStream

The Stream class itself is abstract, which means that it cannot be used directly. Instead, it serves as a base class from which other
classes can be derived.

Example

Visual Basic .NET, C#

The following examples show how to use the LoadXml method to submit XML event data from a Stream object to the
application database:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim eventClassName As String = "MyEventClassName"
Dim eventProviderName As String = "MyEventProviderName"
Dim eventSchema As String = "MySchemaFilePathAndName"
Dim myXmlFile As String = "MyXMLFilePathAndName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create an EventLoader object.
Dim myEventLoader As New
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema)

'Use the LoadXml method to load an XML document.
Dim myStream As New System.IO.FileStream(myXmlFile, System.IO.FileMode.Open)
Dim eventsWritten As Integer = myEventLoader.LoadXml(myStream)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string eventClassName = "MyEventClassName";
string eventProviderName = "MyEventProviderName";
string eventSchema = "MySchemaFilePathAndName";
string myXmlFile = "MyXMLFilePathAndName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create an EventLoader object.
Microsoft.SqlServer.NotificationServices.EventLoader myEventLoader = new
Microsoft.SqlServer.NotificationServices.EventLoader(myApplication, eventProviderName,
eventClassName, eventSchema);

//Use the LoadXml method to load an XML document.
System.IO.FileStream myStream = new System.IO.FileStream(myXmlFile,
System.IO.FileMode.Open);
int eventsWritten = myEventLoader.LoadXml(myStream);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

EventLoader Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration Class
InstanceEnumeration Class

Represents the collection of Notification Services instances hosted on the local computer.

For a list of all members of this type, see InstanceEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.InstanceEnumeration

Visual Basic .NET

NotInheritable Public Class InstanceEnumeration
Implements IInstanceEnumeration, IEnumerable

C#

public sealed class InstanceEnumeration : IInstanceEnumeration, IEnumerable

C++

public __gc __sealed class InstanceEnumeration : public IInstanceEnumeration, IEnumerable

JScript

public class InstanceEnumeration implements IInstanceEnumeration, IEnumerable

Remarks

The InstanceEnumeration class allows an application to iterate through the set of Notification Services instances available on
the local computer. It also provides an Item property to return information about a specific Notification Services instance as an
NSInstanceDescription object.

This class is used primarily for administrative purposes and for configuring subscription management applications.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration Members
InstanceEnumeration Members

Public Constructors

InstanceEnumeration Constructor Creates a new object of the
InstanceEnumeration class.

Public Properties

Item Returns an NSInstanceDescription
object, which provides information about
the Notification Services instance
identified by the specified instance name.

In C#, this property is the indexer for the
InstanceEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
instances.

See Also

InstanceEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration Constructor
InstanceEnumeration Constructor

Creates an object of the InstanceEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public InstanceEnumeration();

C++

public: InstanceEnumeration();

JScript

public function InstanceEnumeration();

Remarks

The InstanceEnumeration constructor can be used in both managed and unmanaged code, because it does not require any
parameters.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an InstanceEnumeration object in managed code:

Visual Basic .NET

'Create an InstanceEnumeration object.
 Dim myInstanceEnumeration As New
Microsoft.SqlServer.NotificationServices.InstanceEnumeration()

C#

//Create an InstanceEnumeration object.
Microsoft.SqlServer.NotificationServices.InstanceEnumeration myInstanceEnumeration = new
Microsoft.SqlServer.NotificationServices.InstanceEnumeration();

The following example shows how to create an InstanceEnumeration object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

'Create an InstanceEnumeration object.
set myInstanceEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.InstanceEnumeration")

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration Properties
InstanceEnumeration Properties

Public Properties

Item Returns an NSInstanceDescription
object, which provides information about
the Notification Services instance
identified by the specified instance name.

In C#, this property is the indexer for the
InstanceEnumeration class.

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration.Item Property
InstanceEnumeration.Item Property

Returns a reference to a Notification Services instance description.

C#

In C#, this property is the indexer for the InstanceEnumeration class.

Visual Basic .NET

Public Property Item(ByVal instanceName As String) As NSInstanceDescription

C#

public NSInstanceDescription this[string instanceName] {get;}

C++

public: __property NSInstanceDescription get_Item(String* instanceName);

JScript

returnValue = InstanceEnumerationObject.Item(instanceName);
-or-
returnValue = InstanceEnumerationObject(instanceName);

Parameters

instanceName

The name of the Notification Services instance for which a description is to be returned.

Property Value

An NSInstanceDescription object, which contains descriptive information about the specified Notification Services instance.

Exceptions

Exception Type Condition
IndexOutOfRangeException

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return an NSInstanceDescription object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an InstanceEnumeration object.
Dim myInstanceEnumeration As New
Microsoft.SqlServer.NotificationServices.InstanceEnumeration()

'Use the Item property to return an NSInstanceDescription object.
Dim myInstanceDescription As
Microsoft.SqlServer.NotificationServices.NSInstanceDescription =
myInstanceEnumeration(instanceName)

C#

string instanceName = "MyInstanceName";

//Create an InstanceEnumeration object.

Microsoft.SqlServer.NotificationServices.InstanceEnumeration myInstanceEnumeration = new
Microsoft.SqlServer.NotificationServices.InstanceEnumeration();

//Use the Item property to return an NSInstanceDescription object.
Microsoft.SqlServer.NotificationServices.NSInstanceDescription myInstanceDescription =
myInstanceEnumeration[instanceName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration Methods
InstanceEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
instances.

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

InstanceEnumeration.GetEnumerator Method
InstanceEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of Notification Services instance descriptions
represented by the InstanceEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the InstanceEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

You should use this method to return an IEnumerator interface that allows you to iterate through the Notification Services
instance descriptions in an InstanceEnumeration object.

Example

Visual Basic .NET, C#

The following examples show how to use an InstanceEnumeration object to iterate through a set of Notification Services
instance descriptions. The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

'Create an InstanceEnumeration object.
Dim myInstanceEnumeration As New
Microsoft.SqlServer.NotificationServices.InstanceEnumeration()

'Iterate through the instance descriptions.
Dim instanceDescription As Microsoft.SqlServer.NotificationServices.NSInstanceDescription
For Each instanceDescription In myInstanceEnumeration
 Console.WriteLine("Instance Name: {0}", instanceDescription.InstanceName)
Next instanceDescription

C#

//Create an InstanceEnumeration object.
Microsoft.SqlServer.NotificationServices.InstanceEnumeration myInstanceEnumeration = new
Microsoft.SqlServer.NotificationServices.InstanceEnumeration();

//Iterate through the instance descriptions.
foreach (Microsoft.SqlServer.NotificationServices.NSInstanceDescription
instanceDescription in myInstanceEnumeration)
{
 Console.WriteLine("Instance Name: {0}", instanceDescription.InstanceName);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

InstanceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders Class
NotificationHeaders Class

Provides notification header information to a delivery protocol.

For a list of all members of this type, see NotificationHeaders Members.

System.Object

Microsoft.SqlServer.NotificationServices.NotificationHeaders

Visual Basic .NET

Public Class NotificationHeaders

C#

public class NotificationHeaders

C++

public class NotificationHeaders

JScript

public class NotificationHeaders

Remarks

The NotificationHeaders class contains information that the delivery protocol uses to create the notification packet (if
necessary), and then route the notification message to the appropriate external delivery system.

The NotificationHeaders class has no public constructor. The distributor creates an object of this class and passes it to the
DeliverNotification method of the delivery protocol.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

NotificationHeaders Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders Members
NotificationHeaders Members

Public Properties

NotificationState Gets a NotificationState object that
contains notification information.

ProtocolFields Gets a StringDictionary object that
contains the protocol field information
needed to construct the notification
packet.

RecipientInfo Gets a RecipientInfo object that contains
notification recipient information.

See Also

NotificationHeaders Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders Properties
NotificationHeaders Properties

Public Properties

NotificationState Gets a NotificationState object that
contains notification information.

ProtocolFields Gets a StringDictionary object that
contains the protocol field information
needed to construct the notification
packet.

RecipientInfo Gets a RecipientInfo object that contains
notification recipient information.

See Also

NotificationHeaders Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders.NotificationState Property
NotificationHeaders.NotificationState Property

Gets a NotificationState object that contains notification information.

Visual Basic .NET

Public Property NotificationState As NotificationState

C#

public NotificationState NotificationState {get;}

C++

public: __property NotificationState get_NotificationState();

JScript

public function get NotificationState() : NotificationState;

Property Value

A NotificationState object that contains notification information.

Remarks

The NotificationState object is passed to the delivery protocol for the express purpose of being passed back again as part of the
notification delivery status information in a NotificationStatus object. The information contained in the NotificationState
object is not used within the delivery protocol.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationHeaders Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders.ProtocolFields Property
NotificationHeaders.ProtocolFields Property

Gets a StringDictionary object that contains the protocol field information needed to construct the notification packet.

Visual Basic .NET

Public Property ProtocolFields As StringDictionary

C#

public StringDictionary ProtocolFields {get;}

C++

public: __property StringDictionary get_ProtocolFields();

JScript

public function get ProtocolFields() : StringDictionary;

Property Value

A StringDictionary object that contains the protocol field information needed to construct the notification packet. The list of
protocol fields is drawn from the /NotificationClasses/NotificationClass/Protocols/Protocol/Fields section of the
application definition file (ADF). The values for these fields are derived from the notification data.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationHeaders Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationHeaders.RecipientInfo Property
NotificationHeaders.RecipientInfo Property

Gets a RecipientInfo object that contains notification recipient information.

Visual Basic .NET

Public Property RecipientInfo As RecipientInfo

C#

public RecipientInfo RecipientInfo {get;}

C++

public: __property RecipientInfo get_RecipientInfo();

JScript

public function get RecipientInfo() : RecipientInfo;

Property Value

A RecipientInfo object that contains notification recipient information.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationHeaders Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus Class
NotificationStatus Class

Provides notification delivery status information to the distributor.

For a list of all members of this type, see NotificationStatus Members.

System.Object

Microsoft.SqlServer.NotificationServices.NotificationStatus

Visual Basic .NET

NonInheritable Public Class NotificationStatus

C#

public sealed class NotificationStatus

C++

public __gc __sealed class NotificationStatus

JScript

public class NotificationStatus

Remarks

The NotificationStatus class is used by the delivery protocol component to pass notification delivery status information back to
the distributor. This is done by passing an array of NotificationStatus objects to the NotificationStatusCallback delegate.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus Members
NotificationStatus Members

Public Constructors

NotificationStatus Constructor Creates a new object of the
NotificationStatus class.

Public Properties

NotificationState Gets a NotificationState object that
contains notification information that
must be passed back to the distributor.

NotificationText Gets the notification text of the
notification.

StatusInfo Gets detailed delivery status information
about the notification.

Succeeded Gets a Boolean value indicating whether
the notification has been delivered
successfully.

TimeStamp Gets the date and time, in Universal Time
Coordinate (UTC) format, of notification
delivery.

See Also

NotificationStatus Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus Constructor
NotificationStatus Constructor

Creates an object of the NotificationStatus class, and initializes it with references to a NotificationState object, a Boolean value
indicating whether the delivery was a success, the delivery status, the notification text, and the delivery date and time. The
notification delivery time information must be provided in Universal Time Coordinate (UTC) format.

Visual Basic .NET

Public Sub New(ByVal notificationState As NotificationState, ByVal succeeded As Boolean,
ByVal statusInfo As String, ByVal notificationText As String, ByVal timeStamp As Object)

C#

public NotificationStatus(NotificationState notificationState, bool succeeded, string
statusInfo, string notificationText, object timeStamp);

C++

public: NotificationStatus(NotificationState notificationState, bool succeeded, String*
statusInfo, String* notificationText, Object* timeStamp);

JScript

public function NotificationStatus(notificationState : NotificationState, succeeded :
Boolean, statusInfo : String, notificationText : String, timeStamp : Object);

Parameters

notificationState

A NotificationState object that contains notification information needed by the distributor to correctly interpret the delivery
status information. The NotificationState object is passed to the delivery protocol in the DeliverNotification method, as part
of the NotificationHeaders object.

succeeded

A Boolean value that indicates whether the notification was successfully delivered. Can be null if not required.

statusInfo

A string containing any additional notification status information. Can be null or a zero-length string if the value is not required.

notificationText

A string containing the formatted notification data that the delivery protocol tried to deliver. Can be null or a zero-length string if
the value is not required.

timeStamp

An object representing the time of the delivery attempt. Can be null if not required.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a NotificationStatus object in managed code:

Visual Basic .NET

Imports Microsoft.SqlServer.NotificationServices

Private Function CreateStatus(ByVal header As NotificationHeaders, ByVal
successfulDelivery As Boolean, ByVal body As String, ByVal failureException As
NSException, ByVal notifState As NotificationState) As NotificationStatus

 Dim timeStamp As Object = DateTime.UtcNow
 Dim notification As NotificationHeaders = header
 Dim statusInfo As String = ""

 Dim notificationText As String = ""

 If Not (failureException Is Nothing) Then
 statusInfo = failureException.Message
 notificationText = body
 End If

 Dim status As New NotificationStatus(notifState, successfulDelivery, statusInfo,
notificationText, timeStamp)
 Return status

End Function 'CreateStatus

C#

using Microsoft.SqlServer.NotificationServices;

private NotificationStatus CreateStatus(NotificationHeaders header, bool
successfulDelivery, string body, NSException failureException, NotificationState
notifState)
{
 object timeStamp = DateTime.UtcNow;
 NotificationHeaders notification = header;
 string statusInfo = "";
 string notificationText = "";

 if (failureException != null)
 {
 statusInfo = failureException.Message;
 notificationText = body;
 }

 NotificationStatus status = new NotificationStatus(notifState, successfulDelivery,
statusInfo, notificationText, timeStamp);
 return status;
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus Properties
NotificationStatus Properties

Public Properties

NotificationState Gets a NotificationState object that
contains notification information that
must be passed back to the distributor.

NotificationText Gets the notification text of the
notification.

StatusInfo Gets detailed delivery status information
about the notification.

Succeeded Gets a Boolean value indicating whether
the notification has been delivered
successfully.

TimeStamp Gets the date and time, in Universal Time
Coordinate (UTC) format, of notification
delivery.

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus.NotificationState Property
NotificationStatus.NotificationState Property

Gets a NotificationState object that contains notification information that must be passed back to the distributor.

Visual Basic .NET

Public Property NotificationState As NotificationState

C#

public NotificationState NotificationState {get;}

C++

public: __property NotificationState get_NotificationState();

JScript

public function get NotificationState() : NotificationState;

Property Value

A NotificationState object that contains notification information that must be passed back to the distributor.

Remarks

The NotificationState object is passed to the delivery protocol in the DeliverNotification method, as part of the
NotificationHeaders object. NotificationState is passed to the delivery protocol for the express purpose of being passed back
again as part of the notification delivery status information in a NotificationStatus object. The information contained in
NotificationState is not used within the delivery protocol; the object must just be copied from NotificationHeaders to th
NotificationStatus.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus.NotificationText Property
NotificationStatus.NotificationText Property

Gets the notification text of the notification.

Visual Basic .NET

Public Property NotificationText As String

C#

public string NotificationText {get;}

C++

public: __property String* get_NotificationText();

JScript

public function get NotificationText() : String;

Property Value

A string containing the formatted notification data that the delivery protocol tried to deliver.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus.StatusInfo Property
NotificationStatus.StatusInfo Property

Gets the detailed delivery status information about the notification.

Visual Basic .NET

Public Property StatusInfo As String

C#

public string StatusInfo {get;}

C++

public: __property String* get_StatusInfo();

JScript

public function get StatusInfo() : String;

Property Value

A string containing any additional notification status information.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus.Succeeded Property
NotificationStatus.Succeeded Property

Indicates whether the notification has been delivered successfully.

Visual Basic .NET

Public Property Succeeded As Boolean

C#

public bool Succeeded {get;}

C++

public: __property bool get_Succeeded();

JScript

public function get Succeeded() : Boolean;

Property Value

A Boolean value that indicates whether the notification was successfully delivered.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatus.TimeStamp Property
NotificationStatus.TimeStamp Property

Gets the date and time, in Universal Time Coordinate (UTC) format, that the notification was delivered.

Visual Basic .NET

Public Property TimeStamp As Object

C#

public object TimeStamp {get;}

C++

public: __property Object* get_TimeStamp();

JScript

public function get TimeStamp() : Object;

Property Value

An object representing the time of the delivery attempt.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NotificationStatus Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Class
NSApplication Class

Represents a Notification Services application.

For a list of all members of this type, see NSApplication Members.

Microsoft.SqlServer.NotificationServices.Common.NSDBState

Microsoft.SqlServer.NotificationServices.NSApplication

Visual Basic .NET

Public Class NSApplication Implements INSApplication

C#

public class NSApplication : INSApplication

C++

public class NSApplication : public INSApplication

JScript

public class NSApplication implements INSApplication

Remarks

An NSApplication object represents a specific Notification Services application. Many Notification Services classes require a
reference to an NSApplication object in order to be initialized.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Members
NSApplication Members

Public Constructors

NSApplication Constructor Overloaded. Creates a new object of the
NSApplication class.

Public Properties

ApplicationName Gets the name of the Notification Services
application.

DatabaseName Gets the name of the Notification Services
application database.

Version Gets the version of the Notification
Services application.

Public Methods

Initialize Initializes an object of the NSApplication
class.

Verify Verifies the ApplicationName and
Version properties of the Notification
Services application.

See Also

NSApplication Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Constructor
NSApplication Constructor

Creates a new object of the NSApplication class.

Overload List

Creates an uninitialized object of the NSApplication class. It is used along with the Initialize method to support the two-step
class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public NSApplication();

C++

public: NSApplication();

JScript

public function NSApplication();

Creates a new object of the NSApplication class, and initializes it with a reference to an NSInstance object and the application
name.

Visual Basic .NET

Public Sub New(NSInstance, String)

C#

public NSApplication(NSInstance, string);

C++

public: NSApplication(NSInstance, String*);

JScript

public function NSApplication(NSInstance, String);

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Constructor ()
NSApplication Constructor ()

Creates an uninitialized object of the NSApplication class.

Visual Basic .NET

Public Sub New()

C#

public NSApplication();

C++

public: NSApplication();

JScript

public function NSApplication();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with an application name and a reference to an NSInstance object before it
can be used.

Example

The following example shows how to create and initialize an NSApplication object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Constructor (NSInstance, String)
NSApplication Constructor (NSInstance, String)

Creates and initializes a new object of the NSApplication class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance, ByVal applicationName As String)

C#

public NSApplication(NSInstance instance, string applicationName);

C++

public: NSApplication(NSInstance instance, String* applicationName);

JScript

public function NSApplication(instance : NSInstance, applicationName : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing this application.

applicationName

A string containing the name of the application.

Exceptions

Exception Type Condition
ArgumentNullException The applicationName or instance

argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an NSApplication object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Properties
NSApplication Properties

Public Properties

ApplicationName Gets the name of the Notification Services
application.

DatabaseName Gets the name of the Notification Services
application database.

Version Gets the version of the Notification
Services application.

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication.ApplicationName Property
NSApplication.ApplicationName Property

Gets the name of the Notification Services application.

Visual Basic .NET

Public Property ApplicationName As String

C#

public string ApplicationName {get;}

C++

public: __property String* get_ApplicationName();

JScript

public function get ApplicationName() : String;

Property Value

A string containing the name of the Notification Services application.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication.DatabaseName Property
NSApplication.DatabaseName Property

Gets the name of the Notification Services application database.

Visual Basic .NET

Public Property DatabaseName As String

C#

public string DatabaseName {get;}

C++

public: __property String* get_DatabaseName();

JScript

public function get DatabaseName() : String;

Property Value

A string containing the name of the Notification Services application database.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication.Version Property
NSApplication.Version Property

Gets the version of the Notification Services application.

Visual Basic .NET

Public Property Version As String

C#

public string Version {get;}

C++

public: __property String* get_Version();

JScript

public function get Version() : String;

Property Value

A string containing the version of the Notification Services application.

Remarks

The application version information is retrieved from the <Version> node of the application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication Methods
NSApplication Methods

Public Methods

Initialize Initializes an object of the NSApplication
class.

Verify Verifies the ApplicationName and
Version properties of the Notification
Services application.

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication.Initialize Method
NSApplication.Initialize Method

Initializes an object of the NSApplication class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance, ByVal applicationName As String)

C#

public void Initialize(NSInstance instance, string applicationName);

C++

public: void Initialize(NSInstance instance, String* applicationName);

JScript

public function Initialize(instance : NSInstance, applicationName : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing this application.

applicationName

A string containing the name of the application.

Exceptions

Exception Type Condition
ArgumentNullException The applicationName or instance

argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an NSApplication object created with the parameter-less constructor.

Example

The following example shows how to create and initialize an NSApplication object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, myApplication

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSApplication.Verify Method
NSApplication.Verify Method

Tests the connection to the application database.

Visual Basic .NET

Public Sub Verify()

C#

public void Verify();

C++

public: void Verify();

JScript

public function Verify();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.EditionMismatch argument

The database being accessed is of a
different Notification Services
edition than the NSApplication
object.

NSException with an
NSEventEnum.FailedToGetDatabaseOptions
argument

The database information for this
application could not be verified.

NSException with an
NSEventEnum.FailedToGetVersionInfo
argument

The version information for this
application could not be verified.

NSException with an
NSEventEnum.InstanceDatabaseNotFound
argument

The Notification Services instance
database could not be found.

NSException with an
NSEventEnum.InvalidApplicationName
argument

The application name set for the
NSApplication object is not valid.

NSException with an
NSEventEnum.SqlInvalidConnection
argument

The connection to the SQL Server
instance is not valid.

NSException with an
NSEventEnum.SqlLoginFailed argument

The login attempt on the SQL Server
instance failed.

These are the most common exceptions. Other exceptions are also possible, so you should always include a catch block for
NSException.

Remarks

Calling Verify tests the connection to the application database, to verify that it is reachable. This allows you to force any
connection-related errors for the NSApplication object at one place in your application, before you use it to initialize other
objects.

For information on setting up accounts for connection to the SQL Server instance, see the "sp_addlogin", "sp_grantlogin", and
"sp_grantdbaccess" topics in SQL Server Books Online.

Example

Visual Basic .NET, C#

The following examples show how to use the Verify method to validate NSApplication data:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Verify the NSApplication object.
myApplication.Verify()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Verify the NSApplication object.
myApplication.Verify();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSApplication Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Class
NSInstance Class

Represents a Notification Services instance.

For a list of all members of this type, see NSInstance Members.

Microsoft.SqlServer.NotificationServices.Common.NSDBState

Microsoft.SqlServer.NotificationServices.NSInstance

Visual Basic .NET

Public Class NSInstance Implements INSInstance

C#

public class NSInstance : INSInstance

C++

public class NSInstance : public INSInstance

JScript

public class NSInstance implements INSInstance

Remarks

An NSInstance object represents a specific Notification Services instance. Several Notification Services classes require a
reference to an NSInstance object in order to be initialized.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Members
NSInstance Members

Public Constructors

NSInstance Constructor Overloaded. Creates a new object of the
NSInstance class.

Public Properties

InstanceName Gets the name of the Notification Services
instance.

DatabaseName Gets the name of the Notification Services
instance database.

SqlPassword Sets the password of the SQL Server
account that this Notification Services
instance uses for access.

This property is used to support SQL
Server Authentication in environments
where SQL Server uses mixed mode
Authentication (both Microsoft Windows
and SQL Server Authentication). If the
SqlUser and SqlPassword properties are
not set, it is assumed that SQL Server is
using Windows Authentication, and login
is attempted with the current Windows
user account.

SqlUser Sets the user name of the SQL Server
account that this Notification Services
instance uses for access.

This property is used to support SQL
Server Authentication in environments
where SQL Server uses mixed mode
Authentication (both Windows and SQL
Server Authentication). If the SqlUser and
SqlPassword properties are not set, it is
assumed that SQL Server is using
Windows Authentication, and login is
attempted with the current Windows user
account.

Version Gets the version of the Notification
Services instance.

Public Methods

Initialize Initializes an object of the NSInstance
class.

Verify Verifies the InstanceName, SqlUser, and
SqlPassword properties of the
Notification Services instance.

See Also

NSInstance Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Constructor
NSInstance Constructor

Creates an object of the NSInstance class.

Overload List

Creates an uninitialized object of the NSInstance class. It is used along with the Initialize method to support the two-step class
initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public NSInstance();

C++

public: NSInstance();

JScript

public function NSInstance();

Creates an object of the NSInstance class, and initializes it with a Notification Services instance name.

Visual Basic .NET

Public Sub New(String)

C#

public NSInstance(string);

C++

public: NSInstance(String*);

JScript

public function NSInstance(String);

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Constructor ()
NSInstance Constructor ()

Creates an uninitialized object of the NSInstance class.

Visual Basic .NET

Public Sub New()

C#

public NSInstance();

C++

public: NSInstance();

JScript

public function NSInstance();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with an instance name before it can be used.

Example

The following example shows how to create and initialize an NSInstance object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Constructor (String)
NSInstance Constructor (String)

Creates and initializes an object of the NSInstance class.

Visual Basic .NET

Public Sub New(ByVal instanceName As String)

C#

public NSInstance(string instanceName);

C++

public: NSApplication(String* instanceName);

JScript

public function NSApplication(instanceName : String);

Parameters

instanceName

A string containing the name of the Notification Services instance.

Exceptions

Exception Type Condition
ArgumentNullException The instanceName argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an NSInstance object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Properties
NSInstance Properties

Public Properties

InstanceName Gets the name of the Notification Services
instance.

DatabaseName Gets the name of the Notification Services
instance database.

SqlPassword Sets the password of the SQL Server
account that this Notification Services
instance uses for access.

This property is only used in
environments that use mixed security
(both Microsoft Windows and SQL Server)
and SQL Authentication is desired. If the
SqlUser and SqlPassword properties are
not set, SQL Integrated Security is used
with the current Windows user.

SqlUser Sets the user name of the SQL Server
account that this Notification Services
instance uses for access.

This property is only used in
environments that use mixed security
(both Windows and SQL Server) and SQL
Authentication is desired. If the SqlUser
and SqlPassword properties are not set,
SQL Integrated Security is used with the
current Windows user.

Version Gets the version of the Notification
Services instance.

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.InstanceName Property
NSInstance.InstanceName Property

Gets the name of the Notification Services instance.

Visual Basic .NET

Public Property InstanceName As String

C#

public string InstanceName {get;}

C++

public: __property String* get_InstanceName();

JScript

public function get InstanceName() : String;

Property Value

A string containing the name of the Notification Services instance.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.DatabaseName Property
NSInstance.DatabaseName Property

Gets the name of the Notification Services instance database.

Visual Basic .NET

Public Property DatabaseName As String

C#

public string DatabaseName {get;}

C++

public: __property String* get_DatabaseName();

JScript

public function get DatabaseName() : String;

Property Value

A string containing the name of the Notification Services instance database.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.SqlPassword Property
NSInstance.SqlPassword Property

Sets the password of the SQL Server account that this Notification Services instance uses for access.

This property is used only in environments that use mixed security (both Microsoft Windows and SQL Server Authentication).

Visual Basic .NET

Public Property SqlPassword As String

C#

public string SqlPassword {set;}

C++

public: __property void set_SqlPassword(String*);

JScript

public function set SqlPassword(String);

Property Value

A string containing the password for the SQL Server login account.

Remarks

This property needs to be set only if you are using SQL Server Authentication on the SQL Server instance that hosts your
Notification Services databases.

NSInstance.SqlPassword is used in conjunction with the NSInstance.SqlUser property to specify the username and password
of the SQL Server login account that your application will use to access the Notification Services databases. If these values are not
specified, Windows Authentication will be used instead.

Important Microsoft strongly recommends that you use Windows Authentication rather than SQL Server
Authentication. Windows Authentication provides better security features, such as secure validation and encryption of
passwords, auditing, password expiration, minimum password length, and account lockout after multiple invalid login
requests.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.SqlUser Property
NSInstance.SqlUser Property

Sets the user name of the SQL Server account that this Notification Services instance uses for access.

This property is only used in environments that use mixed security (both Microsoft Windows and SQL Server Authentication).

Visual Basic .NET

Public Property SqlUser As String

C#

public string SqlUser {set;}

C++

public: __property void set_SqlUser(String*);

JScript

public function set SqlUser(String);

Property Value

A string containing the account name for the SQL Server login account.

Remarks

This property needs to be set only if you are using SQL Server Authentication on the SQL Server instance that hosts your
Notification Services databases.

NSInstance.SqlUser is used in conjunction with the NSInstance.SqlPassword property to specify the username and password
of the SQL Server login account that your application will use to access the Notification Services databases. If these values are not
specified, Windows Authentication will be used instead.

Important Microsoft strongly recommends that you use Windows Authentication rather than SQL Server
Authentication. Windows Authentication provides better security features, such as secure validation and encryption of
passwords, auditing, password expiration, minimum password length, and account lockout after multiple invalid login
requests.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.Version Property
NSInstance.Version Property

Gets the version of the Notification Services instance.

Visual Basic .NET

Public Property Version As String

C#

public string Version {get;}

C++

public: __property String* get_Version();

JScript

public function get Version() : String;

Property Value

A string containing the version of the Notification Services instance.

Remarks

The instance version information is determined by looking at the version of the Notification Services assembly that is being used.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance Methods
NSInstance Methods

Public Methods

Initialize Initializes an object of the NSInstance
class.

Verify Verifies the InstanceName, SqlUser, and
SqlPassword properties of the
Notification Services instance.

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.Initialize Method
NSInstance.Initialize Method

Initializes an object of the NSInstance class.

Visual Basic .NET

Public Sub Initialize(ByVal instanceName As String)

C#

public void Initialize(string instanceName);

C++

public: void Initialize(String* instanceName);

JScript

public function Initialize(instanceName : String);

Parameters

instanceName

A string containing the name of the Notification Services instance.

Exceptions

Exception Type Condition
ArgumentNullException The instanceName argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on an NSInstance object created with the parameter-less constructor.

Example

The following example shows how to create and initialize an NSInstance object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstance.Verify Method
NSInstance.Verify Method

Tests the connection to the instance database.

Visual Basic .NET

Public Sub Verify()

C#

public void Verify();

C++

public: void Verify();

JScript

public function Verify();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.EditionMismatch argument

The database being accessed is of a
different Notification Services
edition than the NSInstance object.

NSException with an
NSEventEnum.FailedToGetDatabaseOptions
argument

The database information for this
instance could not be verified.

NSException with an
NSEventEnum.FailedToGetVersionInfo
argument

The version information for this
instance could not be verified.

NSException with an
NSEventEnum.InstanceDatabaseNotFound
argument

The Notification Services instance
database could not be found.

NSException with an
NSEventEnum.SqlInvalidConnection
argument

The connection to the SQL Server
instance is not valid.

NSException with an
NSEventEnum.SqlLoginFailed argument

The login attempt on the SQL Server
instance failed.

These are the most common exceptions. Other exceptions are also possible, so you should always include a catch block for
NSException.

Remarks

Calling Verify tests the connection to the instance database, to verify that it is reachable. This allows you to force any connection-
related errors for the NSInstance object at one place in your application, before you use it to initialize other objects.

For information on setting up accounts for connection to the SQL Server instance, see the "sp_addlogin", "sp_grantlogin", and
"sp_grantdbaccess" topics in SQL Server Books Online.

Example

Visual Basic .NET, C#

The following examples show how to use the Verify method to validate NSInstance data:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.

Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Verify the NSInstance object.
myInstance.Verify()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Verify the NSInstance object.
myInstance.Verify();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstance Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription Class
NSInstanceDescription Class

Provides descriptive data about Notification Services instances.

For a list of all members of this type, see NSInstanceDescription Members.

System.Object

Microsoft.SqlServer.NotificationServices.NSInstanceDescription

Visual Basic .NET

NonInheritable Public Class NSInstanceDescription Implements INSInstanceDescription

C#

public sealed class NSInstanceDescription : INSInstanceDescription

C++

public __gc __sealed class NSInstanceDescription : public INSInstanceDescription

JScript

public class NSInstanceDescription implements INSInstanceDescription

Remarks

An NSInstanceDescription object represents the information about a specific Notification Services instance. The
InstanceEnumeration class provides an indexer that returns an NSInstanceDescription object.

The NSInstanceDescription class has no constructor. NSInstanceDescription objects are created by the
InstanceEnumeration.Item property.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

NSInstanceDescription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription Members
NSInstanceDescription Members

Public Properties

DBServerName Gets the computer name of the database
server that hosts this Notification Services
instance.

InstanceName Gets the name of the Notification Services
instance.

Version Gets the version of the Notification
Services instance.

See Also

NSInstanceDescription Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription Properties
NSInstanceDescription Properties

Public Properties

DBServerName Gets the computer name of the database
server that hosts this Notification Services
instance.

InstanceName Gets the name of the Notification Services
instance.

Version Gets the version of the Notification
Services instance.

See Also

NSInstanceDescription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription.DBServerName Property
NSInstanceDescription.DBServerName Property

Gets the name of the Notification Services database server.

Visual Basic .NET

Public Property DBServerName As String

C#

public string DBServerName {get;}

C++

public: __property String* get_DBServerName();

JScript

public function get DBServerName() : String;

Property Value

A string containing the computer name of the server that hosts the SQL Server instance that this Notification Services instance
uses.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstanceDescription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription.InstanceName Property
NSInstanceDescription.InstanceName Property

Gets the name of the Notification Services instance.

Visual Basic .NET

Public Property InstanceName As String

C#

public string InstanceName {get;}

C++

public: __property String* get_InstanceName();

JScript

public function get InstanceName() : String;

Property Value

A string containing the name of the Notification Services instance.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstanceDescription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NSInstanceDescription.Version Property
NSInstanceDescription.Version Property

Gets the version of the Notification Services instance.

Visual Basic .NET

Public Property Version As String

C#

public string Version {get;}

C++

public: __property String* get_Version();

JScript

public function get Version() : String;

Property Value

A string containing the version of the Notification Services instance.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

NSInstanceDescription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

RecipientInfo Class
RecipientInfo Class

Provides recipient information for a notification.

For a list of all members of this type, see RecipientInfo Members.

System.Object

Microsoft.SqlServer.NotificationServices.RecipientInfo

Visual Basic .NET

NonInheritable Public Class RecipientInfo

C#

public sealed class RecipientInfo

C++

public __gc __sealed class RecipientInfo

JScript

public class RecipientInfo

Remarks

The RecipientInfo class is used by the distributor to provide recipient information to content formatters and delivery protocols.

The RecipientInfo class has no public constructor. The distributor creates an object of this class and passes it to the
FormatContent method of the content formatter.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

RecipientInfo Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

RecipientInfo Members
RecipientInfo Members

Public Properties

DeviceAddress Gets the target device address for the
notification.

SubscriberId Gets the subscriber ID for the notification.

See Also

RecipientInfo Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

RecipientInfo Properties
RecipientInfo Properties

Public Properties

DeviceAddress Gets the target device address for the
notification.

SubscriberId Gets the subscriber ID for the notification.

See Also

RecipientInfo Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

RecipientInfo.DeviceAddress Property
RecipientInfo.DeviceAddress Property

Gets the target device address for the notification.

Visual Basic .NET

Public Property DeviceAddress As String

C#

public string DeviceAddress {get;}

C++

public: __property String* get_DeviceAddress();

JScript

public function get DeviceAddress() : String;

Property Value

A string containing the address of the target device for the given recipient.

Remarks

The format of the device address string varies according to the delivery protocol being used.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

RecipientInfo Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

RecipientInfo.SubscriberId Property
RecipientInfo.SubscriberId Property

Gets the subscriber ID for the notification. The SubscriberId value is dependent on the requirements of the Notification Services
instance and application. It can be a GUID, or any other identifier you choose to use.

Visual Basic .NET

Public Property SubscriberId As String

C#

public string SubscriberId {get;}

C++

public: __property String* get_SubscriberId();

JScript

public function get SubscriberId() : String;

Property Value

A string containing the subscriber ID of the given recipient.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

RecipientInfo Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Class
Subscriber Class

Represents an individual subscriber in a given Notification Services instance.

For a list of all members of this type, see Subscriber Members.

System.Object

Microsoft.SqlServer.NotificationServices.Subscriber

Visual Basic .NET

NonInheritable Public Class Subscriber Implements ISubscriber

C#

public sealed class Subscriber : ISubscriber

C++

public __gc __sealed class Subscriber : public ISubscriber

JScript

public class Subscriber implements ISubscriber

Remarks

An object of the Subscriber class represents a Notification Services subscriber. Subscriptions and subscriber devices in the
Notification Services system are associated with a subscriber by means of the subscriber ID.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Members
Subscriber Members

Public Constructors

Subscriber Constructor Overloaded. Creates a new object of the
Subscriber class.

Public Properties

Enabled Gets or sets the status of the subscriber
record. A value of true indicates the
subscriber is enabled to receive
notifications. This property default is true.

SubscriberId Gets or sets the subscriber ID for a
subscriber record.

Public Methods

Add Adds a subscriber record to the Notification
Services database.

Delete Deletes a subscriber record from the
Notification Services database.

DeleteSubscriptions Overloaded. Deletes subscriptions for a
subscriber.

GetSubscriptions Returns a SubscriptionEnumeration
object representing the subscriptions of one
subscription class in one application for a
specified subscriber.

GetDevices Returns a SubscriberDeviceEnumeration
object representing the devices for a
specified subscriber.

Initialize Initializes an object of the Subscriber class.
Update Modifies a subscriber record in the

Notification Services database.

See Also

Subscriber Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Constructor
Subscriber Constructor

Creates a new object of the Subscriber class.

Overload List

Creates an uninitialized object of the Subscriber class. It is used along with the Initialize method to support the two-step class
initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public Subscriber();

C++

public: Subscriber();

JScript

public function Subscriber();

Creates a new object of the Subscriber class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public Subscriber(NSInstance);

C++

public: Subscriber(NSInstance);

JScript

public function Subscriber(NSInstance);

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Constructor ()
Subscriber Constructor ()

Creates an uninitialized object of the Subscriber class.

Visual Basic .NET

Public Sub New()

C#

public Subscriber();

C++

public: Subscriber();

JScript

public function Subscriber();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize a Subscriber object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Constructor (NSInstance)
Subscriber Constructor (NSInstance)

Creates and initializes an object of the Subscriber class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public Subscriber(NSInstance instance);

C++

public: Subscriber(NSInstance instance);

JScript

public function Subscriber(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the subscriber.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a Subscriber object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Properties
Subscriber Properties

Public Properties

Enabled Gets or sets the status of the subscriber
record.

SubscriberId Gets or sets the subscriber ID for a
subscriber record.

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.Enabled Property
Subscriber.Enabled Property

Gets or sets the status of a subscriber.

Visual Basic .NET

Public Property Enabled As Boolean

C#

public bool Enabled {get;set;}

C++

public: __property bool get_Enabled();
public: __property void set_Enabled(bool);

JScript

public function get Enabled() : Boolean;
public function set Enabled(Boolean);

Property Value

A Boolean value indicating whether the subscriber is enabled.

Remarks

This property gets or sets the status of a subscriber, by changing the value of the Enabled field in the subscriber record.

The Enabled field is used to enable or disable a subscriber within the Notification Services system. When the Enabled status is
true, the subscriber is active, and can receive notifications. When the Enabled status is false, the subscriber and all of the
subscriber's subscriptions are disabled.

This property default is true.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.SubscriberId Property
Subscriber.SubscriberId Property

Gets or sets the identifier of the subscriber record.

Visual Basic .NET

Public Property SubscriberId As String

C#

public string SubscriberId {get;set;}

C++

public: __property String* get_SubscriberId();
public: __property void set_SubscriberId(String*);

JScript

public function get SubscriberId() : String;
public function set SubscriberId(String);

Property Value

A string containing the subscriber ID of the subscriber.

Remarks

The subscriber ID cannot be null or a zero-length string.

How the system interprets the uniqueness of a subscriber ID is dependent partially on the collation used by the instance database.
Trailing spaces and case changes are interpreted based on the collation used. For instance, some systems interpret
"mySubscriber" and "MySubscriber" as two different legitimate IDs, and others do not. Make sure you take your database
collation into account when planning the data verification code for your subscription management application.

Setting the subscriber ID in a procedure causes all subsequent update and delete actions to be performed on the record identified
by the subscriber ID that was set, and not on the record that was originally retrieved.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber Methods
Subscriber Methods

Public Methods

Add Adds a subscriber record to the Notification
Services database.

Delete Deletes a subscriber record from the
Notification Services database.

DeleteSubscriptions Overloaded. Deletes subscriptions for a
subscriber.

GetSubscriptions Returns a SubscriptionEnumeration
object representing the subscriptions of one
subscription class in one application for a
specified subscriber.

GetDevices Returns a SubscriberDeviceEnumeration
object representing the devices for a
specified subscriber.

Initialize Initializes an object of the Subscriber class.
Update Modifies a subscriber record in the

Notification Services database.

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.Add Method
Subscriber.Add Method

Adds a subscriber record to the Notification Services database.

Visual Basic .NET

Public Sub Add()

C#

public void Add();

C++

public: void Add();

JScript

public function Add();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.InvalidField argument

One of the fields in the subscriber data
fails to meet a database requirement or a
constraint (such as a column data type).

NSException with an
NSEventEnum.MissingField argument

One of the fields in the subscriber data
fails to meet a NOT NULL requirement in
the subscriber table.

Example

Visual Basic .NET, C#

The following examples show how to use the Add method to add a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set subscriber information.
mySubscriber.SubscriberId = txtID.Text

'Add the new subscriber record.
mySubscriber.Add()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set subscriber information.

mySubscriber.SubscriberId = txtID.Text;

//Add the new subscriber record.
mySubscriber.Add();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.Delete Method
Subscriber.Delete Method

Deletes a subscriber record from the Notification Services database.

Visual Basic .NET

Public Sub Delete()

C#

public void Delete();

C++

public: void Delete();

JScript

public function Delete();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.FailedToDeleteSubscriber
argument

The subscriber record could not be deleted
for some reason. Check the event log for
further details.

The subscriber record could not be
deleted. Check the event log for further
details.

The subscriber record could not be
deleted for some reason. Check the
event log for further details.

NSException with an
NSEventEnum.SubscribersDisabled
argument

The subscriber record is disabled. It
must be enabled in order to be deleted.

Remarks

The Delete method removes the subscriber and all associated subscriptions and subscriber devices.

If the subscriber ID is set in a procedure, the delete action is performed on the record identified by the subscriber ID that was set,
and not on the record that was originally retrieved.

Example

Visual Basic .NET, C#

The following examples show how to use the Delete method to delete a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriber record is deleted.
mySubscriber.SubscriberId = txtID.Text

'Delete the subscriber record from the database.
mySubscriber.Delete()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriber record is deleted.
mySubscriber.SubscriberId = txtID.Text;

//Delete the subscriber record from the database.
mySubscriber.Delete();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.DeleteSubscriptions Method
Subscriber.DeleteSubscriptions Method

Deletes subscriptions for a subscriber. All subscriptions can be deleted, or just those for a particular application or subscription
class, depending on the parameters that are passed to the method.

Overload List

Deletes all subscriptions for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions()

C#

public void DeleteSubscriptions();

C++

public: void DeleteSubscriptions();

JScript

public function DeleteSubscriptions();

Deletes all subscriptions in the specified Notification Services application for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions(NSApplication)

C#

public void DeleteSubscriptions(NSApplication);

C++

public: void DeleteSubscriptions(NSApplication);

JScript

public function DeleteSubscriptions(NSApplication);

Deletes all subscriptions in the specified Notification Services application, of the specified subscription class, for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions(NSApplication, String)

C#

public void DeleteSubscriptions(NSApplication, string);

C++

public: void DeleteSubscriptions(NSApplication, String*);

JScript

public function DeleteSubscriptions(NSApplication, String);

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.DeleteSubscriptions Method ()
Subscriber.DeleteSubscriptions Method ()

Deletes all subscriptions for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions()

C#

public void DeleteSubscriptions();

C++

public: void DeleteSubscriptions();

JScript

public function DeleteSubscriptions();

Example

Visual Basic .NET, C#

The following examples show how to use the DeleteSubscriptions method to delete all subscriptions for a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text

'Delete all subscriptions.
mySubscriber.DeleteSubscriptions()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text;

//Delete all subscriptions.
mySubscriber.DeleteSubscriptions();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.DeleteSubscriptions Method (NSApplication)
Subscriber.DeleteSubscriptions Method (NSApplication)

Deletes all subscriptions in the specified Notification Services application for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions(ByVal application As NSApplication)

C#

public void DeleteSubscriptions(NSApplication application);

C++

public: void DeleteSubscriptions(NSApplication application);

JScript

public function DeleteSubscriptions(application : NSApplication);

Parameters

application

An NSApplication object that represents the Notification Services application from which all subscriptions for this subscriber
should be deleted.

Example

Visual Basic .NET, C#

The following examples show how to use the DeleteSubscriptions method to delete all subscriptions in one Notification
Services application for a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text

'Delete subscriptions for an application.
mySubscriber.DeleteSubscriptions(myApplication)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.

Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text;

//Delete subscriptions for an application.
mySubscriber.DeleteSubscriptions(myApplication);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.DeleteSubscriptions Method (NSApplication,
String)
Subscriber.DeleteSubscriptions Method (NSApplication, String)

Deletes all subscriptions in the specified Notification Services application, of the specified subscription class, for one subscriber.

Visual Basic .NET

Public Sub DeleteSubscriptions(ByVal application As NSApplication, _
ByVal subscriptionClassName As String)

C#

public void DeleteSubscriptions(NSApplication application, string subscriptionClassName);

C++

public: void DeleteSubscriptions(NSApplication application, String*
subscriptionClassName);

JScript

public function DeleteSubscriptions(application : NSApplication, subscriptionClassName :
String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the subscription class from which all
subscriptions for this subscriber are to be deleted.

subscriptionClassName

A string containing the name of the subscription class from which all subscriptions for this subscriber are to be deleted.

Example

Visual Basic .NET, C#

The following examples show how to use the DeleteSubscriptions method to delete all subscriptions in one subscription class of
one Notification Services application for a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text

'Delete subscriptions for a subscription class.
mySubscriber.DeleteSubscriptions(myApplication, subscriptionClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriptions will be deleted.
mySubscriber.SubscriberId = txtID.Text;

//Delete subscriptions for a subscription class.
mySubscriber.DeleteSubscriptions(myApplication, subscriptionClassName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.GetSubscriptions Method
Subscriber.GetSubscriptions Method

Gets all subscriptions of the specified subscription class, in the specified Notification Services application, for one subscriber.

Visual Basic .NET

Public Function GetSubscriptions(ByVal application As NSApplication, ByVal _
subscriptionClassName As String) As SubscriptionEnumeration

C#

public SubscriptionEnumeration GetSubscriptions(NSApplication application, string
subscriptionClassName);

C++

public: SubscriptionEnumeration GetSubscriptions(NSApplication application, String*
subscriptionClassName);

JScript

public function GetSubscriptions(application : NSApplication, subscriptionClassName :
String) : SubscriptionEnumeration;

Parameters

application

An NSApplication object that represents the Notification Services application containing the subscription class for which all
subscriptions for this subscriber should be retrieved.

subscriptionClassName

A string containing the name of the subscription class for which all subscriptions for this subscriber should be retrieved.

Return Value

A SubscriptionEnumeration object that contains all subscriptions for the subscriber from the specified Notification Services
application and subscription class. To see all subscription classes for an application, use the SubscriptionClass class instead. For
more information, see SubscriptionClass Class.

Example

Visual Basic .NET, C#

The following examples show how to use the GetSubscriptions method to retrieve all subscriptions in one subscription class of
one Notification Services application for a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriptions will be retrieved.
mySubscriber.SubscriberId = txtID.Text

'Get the subscriptions.
mySubscriber.GetSubscriptions(myApplication, subscriptionClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriptions will be retrieved.
mySubscriber.SubscriberId = txtID.Text;

//Get the subscriptions.
mySubscriber.GetSubscriptions(myApplication, subscriptionClassName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.GetDevices Method
Subscriber.GetDevices Method

Gets all devices for one subscriber.

Visual Basic .NET

Public Function GetDevices() As SubscriberDeviceEnumeration

C#

public SubscriberDeviceEnumeration GetDevices();

C++

public: SubscriberDeviceEnumeration GetDevices();

JScript

public function GetDevices() : SubscriberDeviceEnumeration;

Return Value

A SubscriberDeviceEnumeration object that contains all devices for the subscriber.

Example

Visual Basic .NET, C#

The following examples show how to use the GetDevices method to retrieve all devices for a subscriber:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct devices will be retrieved.
mySubscriber.SubscriberId = txtID.Text

'Get the devices.
mySubscriber.GetDevices()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct devices will be retrieved.
mySubscriber.SubscriberId = txtID.Text;

//Get the devices.
mySubscriber.GetDevices();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.Initialize Method
Subscriber.Initialize Method

Initializes an object of the Subscriber class. Is used in conjunction with the parameter-less constructor to enable COM
interoperability.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance);

JScript

public function Initialize(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance that contains the subscriber.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a Subscriber object created with the parameter-less constructor.

Example

The following example shows how to create and initialize a Subscriber object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, mySubscriber

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a Subscriber object.
set mySubscriber =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscriber")
mySubscriber.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscriber.Update Method
Subscriber.Update Method

Updates the information in a subscriber record.

Visual Basic .NET

Public Sub Update()

C#

public void Update();

C++

public: void Update();

JScript

public function Update();

Exceptions

Exception Type Condition
IndexOutOfRangeException The subscriber ID specified for the

record to be updated does not match
the subscriber ID of any subscriber
records in the database.

NSException with an
NSEventEnum.FailedToUpdateSubscriber
argument

The subscriber record could not be
updated. Check the event log for
further details.

NSException with an
NSEventEnum.SubscribersDisabled
argument

The subscriber record is disabled. It
must be enabled in order to be
updated.

Remarks

If the subscriber ID is set in a procedure, all subsequent updates is performed on the record identified by the subscriber ID that
was set, and not on the record that was originally retrieved.

Example

Visual Basic .NET, C#

The following examples show how to use the Update method to modify subscriber information:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a Subscriber object.
Dim mySubscriber As New Microsoft.SqlServer.NotificationServices.Subscriber(myInstance)

'Set the subscriber ID, so that the
'correct subscriber record will be updated.
mySubscriber.SubscriberId = txtID.Text

'Modify subscriber information.
mySubscriber.Enabled = false

'Update the subscriber record.
mySubscriber.Update()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a Subscriber object.
Microsoft.SqlServer.NotificationServices.Subscriber mySubscriber = new
Microsoft.SqlServer.NotificationServices.Subscriber(myInstance);

//Set the subscriber ID, so that the
//correct subscriber record will be updated.
mySubscriber.SubscriberId = txtID.Text;

//Modify subscriber information.
mySubscriber.Enabled = false;

//Update the subscriber record.
mySubscriber.Update();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscriber Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Class
SubscriberDevice Class

Represents a device that can receive notifications.

For a list of all members of this type, see SubscriberDevice Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriberDevice

Visual Basic .NET

NonInheritable Public Class SubscriberDevice Implements ISubscriberDevice

C#

public sealed class SubscriberDevice : ISubscriberDevice

C++

public __gc __sealed class SubscriberDevice : public ISubscriberDevice

JScript

public class SubscriberDevice implements ISubscriberDevice

Remarks

An object of the SubscriberDevice class represents a device belonging to a subscriber that can be used to receive notifications.
Subscriber devices in the Notification Services system are associated with a subscriber by means of the subscriber ID.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Members
SubscriberDevice Members

Public Constructors

SubscriberDevice Constructor Overloaded. Creates a new object of the
SubscriberDevice class.

Public Properties

DeliveryChannelName Gets or sets the name of the delivery
channel a device uses.

DeviceAddress Gets or sets the address used to contact the
device.

DeviceName Gets or sets the device name.
DeviceTypeName Gets or sets the name of the device type

that describes a device.
SubscriberId Gets or sets the subscriber ID that identifies

the subscriber with which this device is
associated.

Public Methods

Add Adds a subscriber device record to the
Notification Services database.

Delete Deletes a subscriber device record from the
Notification Services database.

Initialize Initializes an object of the
SubscriberDevice class.

Update Modifies a subscriber device record in the
Notification Services database.

See Also

SubscriberDevice Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Constructor
SubscriberDevice Constructor

Creates a new object of the SubscriberDevice class.

Overload List

Creates an uninitialized object of the SubscriberDevice class. It is used along with the Initialize method to support the two-step
class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriberDevice();

C++

public: SubscriberDevice();

JScript

public function SubscriberDevice();

Creates a new object of the SubscriberDevice class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public SubscriberDevice(NSInstance);

C++

public: SubscriberDevice(NSInstance);

JScript

public function SubscriberDevice(NSInstance);

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Constructor ()
SubscriberDevice Constructor ()

Creates an uninitialized object of the SubscriberDevice class.

Visual Basic .NET

Public Sub New()

C#

public SubscriberDevice();

C++

public: SubscriberDevice();

JScript

public function SubscriberDevice();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize a SubscriberDevice object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Constructor (NSInstance)
SubscriberDevice Constructor (NSInstance)

Creates and initializes an object of the SubscriberDevice class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public SubscriberDevice(NSInstance instance);

C++

public: SubscriberDevice(NSInstance instance);

JScript

public function SubscriberDevice(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the subscriber device.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriberDevice object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDevice object.
Dim mySubscriberDevice As New
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Properties
SubscriberDevice Properties

Public Properties

DeliveryChannelName Gets or sets the name of the delivery
channel a device uses.

DeviceAddress Gets or sets the address used to contact the
device.

DeviceName Gets or sets the device name.
DeviceTypeName Gets or sets the name of the device type

that describes a device.
SubscriberId Gets or sets the subscriber ID that identifies

the subscriber with which this device is
associated.

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.DeliveryChannelName Property
SubscriberDevice.DeliveryChannelName Property

Gets or sets the name of the delivery channel a device uses.

Visual Basic .NET

Public Property DeliveryChannelName As String

C#

public string DeliveryChannelName {get;set;}

C++

public: __property String* get_DeliveryChannelName();
public: __property void set_DeliveryChannelName(String*);

JScript

public function get DeliveryChannelName() : String;
public function set DeliveryChannelName(String);

Property Value

A string containing the name of the delivery channel used by the subscriber device.

Remarks

The delivery channel contains the delivery information — the protocol used and the specific implementation of it in the given
environment — that determines how a notification is delivered to a device.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.DeviceAddress Property
SubscriberDevice.DeviceAddress Property

Gets or sets the address used to contact the device.

Visual Basic .NET

Public Property DeviceAddress As String

C#

public string DeviceAddress {get;set;}

C++

public: __property String* get_DeviceAddress();
public: __property void set_DeviceAddress(String*);

JScript

public function get DeviceAddress() : String;
public function set DeviceAddress(String);

Property Value

A string containing the address of the subscriber device.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.DeviceName Property
SubscriberDevice.DeviceName Property

Gets or sets the device name.

Visual Basic .NET

Public Property DeviceName As String

C#

public string DeviceName {get;set;}

C++

public: __property String* get_DeviceName();
public: __property void set_DeviceName(String*);

JScript

public function get DeviceName() : String;
public function set DeviceName(String);

Property Value

A string containing the name of the subscriber device.

Remarks

The device name, in combination with the subscriber ID, uniquely identifies this record in the subscriber devices table.

Note The combined length of the values in the DeviceName and SubscriberId columns cannot exceed 900 bytes.
This is 900 characters for single-byte data types (like char and varchar), or 450 characters for double-byte data types
(like nchar and nvarchar).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.DeviceTypeName Property
SubscriberDevice.DeviceTypeName Property

Gets or sets the name of the device type that describes a device.

Visual Basic .NET

Public Property DeviceTypeName As String

C#

public string DeviceTypeName {get;set;}

C++

public: __property String* get_DeviceTypeName();
public: __property void set_DeviceTypeName(String*);

JScript

public function get DeviceTypeName() : String;
public function set DeviceTypeName(String);

Property Value

A string containing the name of the device type that describes the subscriber device.

Remarks

The device type name describes what type of device this is, such as a cellular phone or an instant messaging account.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.SubscriberId Property
SubscriberDevice.SubscriberId Property

Gets or sets the subscriber ID that identifies the subscriber with which this device is associated.

Visual Basic .NET

Public Property SubscriberId As String

C#

public string SubscriberId {get;set;}

C++

public: __property String* get_SubscriberId();
public: __property void set_SubscriberId(String*);

JScript

public function get SubscriberId() : String;
public function set SubscriberId(String);

Property Value

A string containing the subscriber ID of the subscriber with which the subscriber device is associated.

Remarks

The subscriber ID, in combination with the device name, uniquely identifies this record in the subscriber devices table.

Note The combined length of the values in the DeviceName and SubscriberId columns cannot exceed 900 bytes.
This is 900 characters for single-byte data types (like char and varchar), or 450 characters for double-byte data types
(like nchar and nvarchar).

Setting the subscriber ID in a procedure can cause all subsequent update and delete actions to be performed on the record
identified by the subscriber ID that was set, and not on the record that was originally retrieved. This occurs in situations where a
record with a device name value identical to the record that was originally retrieved exists for the record identified by the
subscriber ID that was set.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice Methods
SubscriberDevice Methods

Public Methods

Add Adds a subscriber device record to the
Notification Services database.

Delete Deletes a subscriber device record from the
Notification Services database.

Initialize Initializes an object of the
SubscriberDevice class.

Update Modifies a subscriber device record in the
Notification Services database.

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.Add Method
SubscriberDevice.Add Method

Adds a subscriber device record to the Notification Services database.

Visual Basic .NET

Public Sub Add()

C#

public void Add();

C++

public: void Add();

JScript

public function Add();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.InvalidField argument

One of the fields in the subscriber device
data fails to meet a database requirement
or a constraint (such as a column data
type).

NSException with an
NSEventEnum.MissingField argument

One of the fields in the subscriber device
data fails to meet a NOT NULL
requirement in the subscriber device table.

Example

Visual Basic .NET, C#

The following examples show how to use the Add method to add a subscriber device:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDevice object.
Dim mySubscriberDevice As New
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance)

'Add code here to set subscriber device information.

'Add the new subscriber device record.
mySubscriberDevice.Add()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Add code here to set subscriber device information.

//Add the new subscriber device record.
mySubscriberDevice.Add();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.Delete Method
SubscriberDevice.Delete Method

Deletes a subscriber device record from the Notification Services database.

Visual Basic .NET

Public Sub Delete()

C#

public void Delete();

C++

public: void Delete();

JScript

public function Delete();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.FailedToDeleteSubscriberDevice
argument

The subscriber device record
could not be deleted. Check the
event log for further details.

Remarks

This method removes the subscriber device from the system.

Example

Visual Basic .NET, C#

The following examples show how to use the Delete method to delete a subscriber device:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDevice object.
Dim mySubscriberDevice As New
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance)

'Set the subscriber ID and the device name, so that
'the correct subscriber device record will be deleted.
mySubscriberDevice.SubscriberId = txtID.Text
mySubscriberDevice.DeviceName = txtDeviceName.Text

'Delete the subscriber device record from the database.
mySubscriberDevice.Delete()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDevice object.

Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Set the subscriber ID and the device name, so that
//the correct subscriber device record will be deleted.
mySubscriberDevice.SubscriberId = txtID.Text;
mySubscriberDevice.DeviceName = txtDeviceName.Text;

//Delete the subscriber device record from the database.
mySubscriberDevice.Delete();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.Initialize Method
SubscriberDevice.Initialize Method

Initializes an object of the SubscriberDevice class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance);

JScript

public function Initialize(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the subscriber device.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriberDevice object created with the parameter-less constructor.

Example

The following example shows how to create and initialize a SubscriberDevice object in unmanaged Microsoft Visual Basic®
Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberDevice

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberDevice object.
set mySubscriberDevice =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDevice")
mySubscriberDevice.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDevice.Update Method
SubscriberDevice.Update Method

Updates the information in a subscriber device record.

Visual Basic .NET

Public Sub Update()

C#

public void Update();

C++

public: void Update();

JScript

public function Update();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.AddSubscriberIdInvalid argument

The subscriber ID specified for
the subscriber device is not
valid.

NSException with an
NSEventEnum.FailedToUpdateSubscriberDevice
argument

The subscriber device record
could not be updated. Check the
event log for further details.

NSException with an NSEventEnum.InvalidField
argument

One of the fields in the
subscriber device data fails to
meet a database requirement or
a constraint (such as a column
data type).

NSException with an NSEventEnum.MissingField
argument

One of the fields in the
subscriber device data fails to
meet a NOT NULL requirement
in the subscriber device table.

Remarks

The update applies to the record identified by the combination of subscriber ID and device name.

Example

Visual Basic .NET, C#

The following examples show how to use the Update method to modify subscriber device information:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDevice object.
Dim mySubscriberDevice As New
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance)

'Set the subscriber ID and the device name, so that
'the correct subscriber device record will be updated.
mySubscriberDevice.SubscriberId = txtID.Text
mySubscriberDevice.DeviceName = txtDeviceName.Text

'Modify subscriber device information.

'Update the subscriber device record.
mySubscriberDevice.Update()

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice = new
Microsoft.SqlServer.NotificationServices.SubscriberDevice(myInstance);

//Set the subscriber ID and the device name, so that
//the correct subscriber device record will be deleted.
mySubscriberDevice.SubscriberId = txtID.Text;
mySubscriberDevice.DeviceName = txtDeviceName.Text;

//Modify subscriber device information.

//Update the subscriber device record.
mySubscriberDevice.Update();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDevice Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Class
SubscriberDeviceEnumeration Class

Represents the collection of devices for a given subscriber.

For a list of all members of this type, see SubscriberDeviceEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration

Visual Basic .NET

NonInheritable Public Class SubscriberDeviceEnumeration Implements
ISubscriberDeviceEnumeration, IEnumerable

C#

public sealed class SubscriberDeviceEnumeration : ISubscriberDeviceEnumeration,
IEnumerable

C++

public __gc __sealed class SubscriberDeviceEnumeration : public
ISubscriberDeviceEnumeration, IEnumerable

JScript

public class SubscriberDeviceEnumeration implements ISubscriberDeviceEnumeration,
IEnumerable

Remarks

The SubscriberDeviceEnumeration class allows an application to iterate through the set of devices for a given subscriber. It
also provides an Item property to return a SubscriberDevice object that represents a specific device.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Members
SubscriberDeviceEnumeration Members

Public Constructors

SubscriberDeviceEnumeration Constructor Overloaded. Creates a new object of the
SubscriberDeviceEnumeration class.

Public Properties

Item Returns a SubscriberDevice object, which
represents an individual device.

In C#, this property is the indexer for the
SubscriberDeviceEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the subscriber
devices.

Initialize Initializes an object of the
SubscriberDeviceEnumeration class.

See Also

SubscriberDeviceEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Constructor
SubscriberDeviceEnumeration Constructor

Creates a new object of the SubscriberDeviceEnumeration class.

Overload List

Creates an uninitialized object of the SubscriberDeviceEnumeration class. It is used along with the Initialize method to
support the two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriberDeviceEnumeration();

C++

public: SubscriberDeviceEnumeration();

JScript

public function SubscriberDeviceEnumeration();

Creates a new object of the SubscriberDeviceEnumeration class, and initializes it with a reference to an NSInstance object and
a subscriber ID. This object returns a collection of all devices for a single user.

Visual Basic .NET

Public Sub New(NSInstance, String)

C#

public SubscriberDeviceEnumeration(NSInstance, string);

C++

public: SubscriberDeviceEnumeration(NSInstance, String*);

JScript

public function SubscriberDeviceEnumeration(NSInstance, String);

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Constructor ()
SubscriberDeviceEnumeration Constructor ()

Creates an uninitialized object of the SubscriberDeviceEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public SubscriberDeviceEnumeration();

C++

public: SubscriberDeviceEnumeration();

JScript

public function SubscriberDeviceEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object and a subscriber ID before it can be
used.

Example

The following example shows how to create and initialize a SubscriberDeviceEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberDeviceEnumeration

const instanceName = "MyInstanceName"
subscriberId = "TestSubscriber"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

set mySubscriberDeviceEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeratio
n")
mySubscriberDeviceEnumeration.Initialize myInstance, subscriberId

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Constructor (NSInstance, String)
SubscriberDeviceEnumeration Constructor (NSInstance, String)

Creates and initializes an object of the SubscriberDeviceEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance, ByVal subscriberId As String)

C#

public SubscriberDeviceEnumeration(NSInstance instance, string subscriberId);

C++

public: SubscriberDeviceEnumeration(NSInstance instance, String* subscriberId);

JScript

public function SubscriberDeviceEnumeration(instance : NSInstance, subscriberId :
String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the subscriber devices.

subscriberId

A string containing the subscriber ID of the subscriber with whom the devices are associated.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriberDeviceEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim subscriberId As String = txtSubscriberId.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDeviceEnumeration object.
Dim mySubscriberDeviceEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId)

C#

string instanceName = "MyInstanceName";
string subscriberId = txtSubscriberId.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDeviceEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration

mySubscriberDeviceEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Properties
SubscriberDeviceEnumeration Properties

Public Properties

Item Returns a SubscriberDevice object, which
represents an individual device.

In C#, this property is the indexer for the
SubscriberDeviceEnumeration class.

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration.Item Property
SubscriberDeviceEnumeration.Item Property

Returns a reference to an individual device.

C#

In C#, this property is the indexer for the SubscriberDeviceEnumeration class.

Visual Basic .NET

Public Property Item(ByVal deviceName As String) As SubscriberDevice

C#

public SubscriberDevice this[string deviceName] {get;}

C++

public: __property SubscriberDevice get_Item(String* deviceName);

JScript

returnValue = SubscriberDeviceEnumerationObject.Item(deviceName);
-or-
returnValue = SubscriberDeviceEnumerationObject(deviceName);

Parameters

deviceName

The name of the subscriber device that you want returned.

Property Value

A SubscriberDevice object, which represents a target device for receiving notifications.

Exceptions

Exception Type Condition
IndexOutOfRangeException No record can be identified using the

subscriber device name provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a SubscriberDevice object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim subscriberId As String = txtSubscriberId.Text
Dim deviceName As String = txtDeviceName.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDeviceEnumeration object.
Dim mySubscriberDeviceEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId)

'Use the Item property to return a SubscriberDevice object.
Dim mySubscriberDevice As Microsoft.SqlServer.NotificationServices.SubscriberDevice =
mySubscriberDeviceEnumeration(deviceName)

C#

string instanceName = "MyInstanceName";
string subscriberId = txtSubscriberId.Text;
string deviceName = txtDeviceName.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDeviceEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration
mySubscriberDeviceEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId);

//Use the Item property to return a SubscriberDevice object.
Microsoft.SqlServer.NotificationServices.SubscriberDevice mySubscriberDevice =
mySubscriberDeviceEnumeration[deviceName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration Methods
SubscriberDeviceEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the subscriber
devices.

Initialize Initializes an object of the
SubscriberDeviceEnumeration class.

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration.GetEnumerator Method
SubscriberDeviceEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of subscriber devices represented by the
SubscriberDeviceEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the SubscriberDeviceEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the subscriber devices in a
SubscriberDeviceEnumeration object. An initialized SubscriberDeviceEnumeration object represents the collection of
devices for one subscriber in a specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use a SubscriberDeviceEnumeration object to iterate through a set of subscriber devices.
The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim subscriberId As String = txtSubscriberId.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDeviceEnumeration object.
Dim mySubscriberDeviceEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId)

'Iterate through the subscriber devices.
Dim subscriberDevice As Microsoft.SqlServer.NotificationServices.SubscriberDevice
For Each subscriberDevice In mySubscriberDeviceEnumeration
 Console.WriteLine("Device Name: {0}", subscriberDevice.DeviceName)
Next subscriberDevice

C#

string instanceName = "MyInstanceName";
string subscriberId = txtSubscriberId.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberDeviceEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration
mySubscriberDeviceEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeration(myInstance,
subscriberId);

//Iterate through the subscriber devices.
foreach (Microsoft.SqlServer.NotificationServices.SubscriberDevice subscriberDevice in
mySubscriberDeviceEnumeration)
{
 Console.WriteLine("Device Name: {0}", subscriberDevice.DeviceName);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberDeviceEnumeration.Initialize Method
SubscriberDeviceEnumeration.Initialize Method

Initializes an object of the SubscriberDeviceEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance, ByVal subscriberId As String)

C#

public void Initialize(NSInstance instance, string subscriberId);

C++

public: void Initialize(NSInstance instance, String* subscriberId);

JScript

public function Initialize(instance : NSInstance, subscriberId : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the subscriber devices.

subscriberId

A string containing the subscriber ID of the subscriber with whom the devices are associated.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriberDeviceEnumeration object created with the parameter-
less constructor.

Example

The following example shows how to create and initialize a SubscriberDeviceEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberDeviceEnumeration

const instanceName = "MyInstanceName"
subscriberId = "TestSubscriber"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

set mySubscriberDeviceEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberDeviceEnumeratio
n")
mySubscriberDeviceEnumeration.Initialize myInstance, subscriberId

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

SubscriberDeviceEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Class
SubscriberEnumeration Class

Represents the collection of subscribers in a given Notification Services instance.

For a list of all members of this type, see SubscriberEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriberEnumeration

Visual Basic .NET

NonInheritable Public Class SubscriberEnumeration Implements ISubscriberEnumeration,
IEnumerable

C#

public sealed class SubscriberEnumeration : ISubscriberEnumeration, IEnumerable

C++

public __gc __sealed class SubscriberEnumeration : public ISubscriberEnumeration,
IEnumerable

JScript

public class SubscriberEnumeration implements public ISubscriberEnumeration, IEnumerable

Remarks

The SubscriberEnumeration class allows an application to iterate through the set of subscribers in a given Notification Services
instance. It also provides an Item property to return a Subscriber object that represents a specific subscriber.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Members
SubscriberEnumeration Members

Public Constructors

SubscriberEnumeration Constructor Overloaded. Creates a new object of the
SubscriberEnumeration class.

Public Properties

Item Returns a Subscriber object, which
represents an individual subscriber.

In C#, this property is the indexer for the
SubscriberEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
subscribers.

Initialize Initializes an object of the
SubscriberEnumeration class.

See Also

SubscriberEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Constructor
SubscriberEnumeration Constructor

Creates a new object of the SubscriberEnumeration class.

Overload List

Creates an uninitialized object of the SubscriberEnumeration class. It is used along with the Initialize method to support the
two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriberEnumeration();

C++

public: SubscriberEnumeration();

JScript

public function SubscriberEnumeration();

Creates a new object of the SubscriberEnumeration class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public SubscriberEnumeration(NSInstance);

C++

public: SubscriberEnumeration(NSInstance);

JScript

public function SubscriberEnumeration(NSInstance);

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Constructor ()
SubscriberEnumeration Constructor ()

Creates an uninitialized object of the SubscriberEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public SubscriberEnumeration();

C++

public: SubscriberEnumeration();

JScript

public function SubscriberEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize a SubscriberEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberEnumeration object.
set mySubscriberEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberEnumeration")
mySubscriberEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Constructor (NSInstance)
SubscriberEnumeration Constructor (NSInstance)

Creates and initializes an object of the SubscriberEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public SubscriberEnumeration(NSInstance instance);

C++

public: SubscriberEnumeration(NSInstance instance);

JScript

public function SubscriberEnumeration(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the collection of subscribers.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriberEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberDevice object.
Dim mySubscriberEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberEnumeration(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberEnumeration mySubscriberEnumeration =
new Microsoft.SqlServer.NotificationServices.SubscriberEnumeration(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration Properties
SubscriberEnumeration Properties

Public Properties

Item Returns a Subscriber object, which
represents an individual subscriber.

In C#, this property is the indexer for the
SubscriberEnumeration class.

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration.Item Property
SubscriberEnumeration.Item Property

Returns a reference to an individual subscriber.

In C#, this property is the indexer for the SubscriberEnumeration class.

Visual Basic .NET

Public Property Item(ByVal subscriberId As String) As Subscriber

C#

public Subscriber this[string subscriberId] {get;}

C++

public: __property Subscriber get_Item(String* subscriberId);

JScript

returnValue = SubscriberEnumerationObject.Item(subscriberId);
-or-
returnValue = SubscriberEnumerationObject(subscriberId);

Parameters

subscriberId

The identifier of the subscriber that you want returned.

Property Value

A Subscriber object, which represents an individual subscriber.

Exceptions

Exception Type Condition
IndexOutOfRangeException No record can be identified using the

subscriber ID provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a Subscriber object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim subscriberId As String = txtID.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberEnumeration object.
Dim mySubscriberEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberEnumeration(myInstance)

'Use the Item property to return a Subscriber object.
Dim mySubscriber As Microsoft.SqlServer.NotificationServices.Subscriber =
mySubscriberEnumeration(subscriberId)

SQL Server Notification Services Books Online

SubscriberEnumeration Methods
SubscriberEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
subscribers.

Initialize Initializes an object of the
SubscriberEnumeration class.

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration.GetEnumerator Method
SubscriberEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of subscribers represented by the
SubscriberEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the SubscriberEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the subscribers in a
SubscriberEnumeration object. An initialized SubscriberEnumeration object represents the collection of subscribers in a
specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use a SubscriberEnumeration object to iterate through a set of subscribers. The
GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberEnumeration object.
Dim mySubscriberEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberEnumeration(myInstance)

'Iterate through the subscribers.
Dim subscriber As Microsoft.SqlServer.NotificationServices.Subscriber
For Each subscriber In mySubscriberEnumeration
 Console.WriteLine("Subscriber ID: {0}", subscriber.SubscriberId)
Next subscriber

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new

Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberEnumeration mySubscriberEnumeration =
new Microsoft.SqlServer.NotificationServices.SubscriberEnumeration(myInstance);

//Iterate through the subscribers.
foreach (Microsoft.SqlServer.NotificationServices.Subscriber subscriber in
mySubscriberEnumeration)
{
 Console.WriteLine("Subscriber ID: {0}", subscriber.SubscriberId);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberEnumeration.Initialize Method
SubscriberEnumeration.Initialize Method

Initializes an object of the SubscriberEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance, String* subscriberId);

JScript

public function Initialize(instance : NSInstance, subscriberId : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the collection of subscribers.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriberEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize a SubscriberEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberEnumeration object.
set mySubscriberEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberEnumeration")
mySubscriberEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocale Class
SubscriberLocale Class

Represents a valid subscriber locale.

For a list of all members of this type, see SubscriberLocale Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriberLocale

Visual Basic .NET

NonInheritable Public Class SubscriberLocale Implements ISubscriberLocale

C#

public sealed class SubscriberLocale : ISubscriberLocale

C++

public __gc __sealed class SubscriberLocale : public ISubscriberLocale

JScript

public class SubscriberLocale implements ISubscriberLocale

Remarks

An object of the SubscriberLocale class represents a valid subscriber locale.

This class exists to support a set of subscriber locale properties and expose them for use in your subscription management
application. The subscriber locale code is used to specify the language and country/region of the subscriber, so that notifications
can be appropriately formatted.

The SubscriberLocale class has no public constructor. Use the SubscriberLocaleEnumeration.Item property to obtain a
reference to a SubscriberLocale object.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriberLocale Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocale Members
SubscriberLocale Members

Public Properties

Locale Gets the locale string.

See Also

SubscriberLocale Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocale Properties
SubscriberLocale Properties

Public Properties

Locale Gets the locale string.

See Also

SubscriberLocale Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocale.Locale Property
SubscriberLocale.Locale Property

Gets the locale information.

Visual Basic .NET

Public Property Locale As String

C#

public string Locale {get;}

C++

public: __property String* get_Locale();

JScript

public function get Locale() : String;

Property Value

A string containing the locale information.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberLocale Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Class
SubscriberLocaleEnumeration Class

Represents the collection of subscriber locales available within a given Notification Services instance.

For a list of all members of this type, see SubscriberLocaleEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration

Visual Basic .NET

Public Class SubscriberLocaleEnumeration Implements ISubscriberLocaleEnumeration,
IEnumerable

C#

public class SubscriberLocaleEnumeration : ISubscriberLocaleEnumeration, IEnumerable

C++

public __gc __sealed class SubscriberLocaleEnumeration : public
ISubscriberLocaleEnumeration, IEnumerable

JScript

public class SubscriberLocaleEnumeration implements ISubscriberLocaleEnumeration,
IEnumerable

Remarks

The SubscriberLocaleEnumeration class allows an application to iterate through the set of valid subscriber locales. It also
provides an Item property to return a SubscriberLocale object that represents a specific locale.

This class allows you to populate a subscriber locale drop-down box in your subscription management application.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Members
SubscriberLocaleEnumeration Members

Public Constructors

SubscriberLocaleEnumeration Constructor Overloaded. Creates a new object of the
SubscriberLocaleEnumeration class.

Public Properties

Item Returns a SubscriberLocale object, which
represents a valid subscriber locale.

In C#, this property is the indexer for the
SubscriberLocaleEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the subscriber
locales.

Initialize Initializes an object of the
SubscriberLocaleEnumeration class.

See Also

SubscriberLocaleEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Constructor
SubscriberLocaleEnumeration Constructor

Creates a new object of the SubscriberLocaleEnumeration class.

Overload List

Creates an uninitialized object of the SubscriberLocaleEnumeration class. It is used along with the Initialize method to support
the two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriberLocaleEnumeration();

C++

public: SubscriberLocaleEnumeration();

JScript

public function SubscriberLocaleEnumeration();

Creates a new object of the SubscriberLocaleEnumeration class, and initializes it with a reference to an NSInstance object.

Visual Basic .NET

Public Sub New(NSInstance)

C#

public SubscriberLocaleEnumeration(NSInstance);

C++

public: SubscriberLocaleEnumeration(NSInstance);

JScript

public function SubscriberLocaleEnumeration(NSInstance);

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Constructor ()
SubscriberLocaleEnumeration Constructor ()

Creates an uninitialized object of the SubscriberLocaleEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public SubscriberLocaleEnumeration();

C++

public: SubscriberLocaleEnumeration();

JScript

public function SubscriberLocaleEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object before it can be used.

Example

The following example shows how to create and initialize a SubscriberLocaleEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberLocaleEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberLocaleEnumeration object.
set mySubscriberLocaleEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeratio
n")
mySubscriberLocaleEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Constructor (NSInstance)
SubscriberLocaleEnumeration Constructor (NSInstance)

Creates and initializes an object of the SubscriberLocaleEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance)

C#

public SubscriberLocaleEnumeration(NSInstance instance);

C++

public: SubscriberLocaleEnumeration(NSInstance instance);

JScript

public function SubscriberLocaleEnumeration(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance that contains the collection of subscriber locales.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriberLocaleEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberLocaleEnumeration object.
Dim mySubscriberLocaleEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance)

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberLocaleEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration
mySubscriberLocaleEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Properties
SubscriberLocaleEnumeration Properties

Public Properties

Item Returns a SubscriberLocale object, which
represents a valid subscriber locale.

In C#, this property is the indexer for the
SubscriberLocaleEnumeration class.

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration.Item Property
SubscriberLocaleEnumeration.Item Property

Returns a SubscriberLocale object, which represents a valid subscriber locale.

C#

In C#, this property is the indexer for the SubscriberLocaleEnumeration class.

Visual Basic .NET

Public Property Item(ByVal locale As String) As SubscriberLocale

C#

public SubscriberLocale this[string locale] {get;}

C++

public: __property SubscriberLocale get_Item(String* locale);

JScript

returnValue = SubscriberLocaleEnumerationObject.Item(locale);
-or-
returnValue = SubscriberLocaleEnumerationObject(locale);

Parameters

locale

The 10-character locale string of the locale that you want returned.

Property Value

A SubscriberLocale object, which represents a locale.

Exceptions

Exception Type Condition
IndexOutOfRangeException No record can be identified using the

locale provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a Locale object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim locale As String = "en-US"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberLocaleEnumeration object.
Dim mySubscriberLocaleEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance)

'Use the Item property to return a SubscriberLocale object.
Dim mySubscriberLocale As Microsoft.SqlServer.NotificationServices.SubscriberLocale =
mySubscriberLocaleEnumeration(locale)

C#

string instanceName = "MyInstanceName";
string locale = "en-US";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberLocaleEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration
mySubscriberLocaleEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance);

//Use the Item property to return a SubscriberLocale object.
Microsoft.SqlServer.NotificationServices.SubscriberLocale mySubscriberLocale =
mySubscriberLocaleEnumeration[locale];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration Methods
SubscriberLocaleEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the subscriber
locales.

Initialize Initializes an object of the
SubscriberLocaleEnumeration class.

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration.GetEnumerator Method
SubscriberLocaleEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of subscriber locales represented by the
SubscriberLocaleEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the SubscriberLocaleEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the subscriber locales in a
SubscriberLocaleEnumeration object. An initialized SubscribeLocaleEnumeration object represents the collection of
subscriber locales in a specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use a SubscriberLocaleEnumeration object to iterate through a set of subscriber locales.
The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a SubscriberLocaleEnumeration object.
Dim mySubscriberLocaleEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance)

'Iterate through the subscriber locales.
Dim subscriberLocale As Microsoft.SqlServer.NotificationServices.SubscriberLocale
For Each subscriberLocale In mySubscriberLocaleEnumeration
 Console.WriteLine("Locale: {0}", subscriberLocale.Locale)
Next subscriberLocale

C#

string instanceName = "MyInstanceName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new

Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a SubscriberLocaleEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration
mySubscriberLocaleEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeration(myInstance);

//Iterate through the subscriber locales.
foreach (Microsoft.SqlServer.NotificationServices.SubscriberLocale subscriberLocale in
mySubscriberLocaleEnumeration)
{
 Console.WriteLine("Locale: {0}", subscriberLocale.Locale);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriberLocaleEnumeration.Initialize Method
SubscriberLocaleEnumeration.Initialize Method

Initializes an object of the SubscriberLocaleEnumeration class. Is used in conjunction with the parameter-less constructor to
enable COM interoperability.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance)

C#

public void Initialize(NSInstance instance);

C++

public: void Initialize(NSInstance instance);

JScript

public function Initialize(instance : NSInstance);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the collection of subscriber locales.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriberLocaleEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize a SubscriberLocaleEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, mySubscriberLocaleEnumeration

const instanceName = "MyInstanceName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a SubscriberLocaleEnumeration object.
set mySubscriberLocaleEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriberLocaleEnumeratio
n")
mySubscriberLocaleEnumeration.Initialize myInstance

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriberLocaleEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Class
Subscription Class

Represents a single subscription.

For a list of all members of this type, see Subscription Members.

System.Object

Microsoft.SqlServer.NotificationServices.Subscription

Visual Basic .NET

NonInheritable Public Class Subscription Implements ISubscription

C#

public sealed class Subscription : ISubscription

C++

public __gc __sealed class Subscription : public ISubscription

JScript

public class Subscription implements ISubscription

Remarks

This class represents a single subscription within a specified Notification Services application, belonging to a single subscriber. It
provides an Item property to return application-specific subscription data fields.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Members
Subscription Members

Public Constructors

Subscription Constructor Overloaded. Creates a new object of the
Subscription class.

Public Properties

Enabled Gets or sets the status of the subscription
record. A value of true indicates the
subscription is enabled to generate
notifications. This property default is true.

FieldCount Returns the number of developer-defined
subscription fields for this subscription, as
specified in a subscription class in the
application definition file (ADF).

HasTimedRule Returns true if the subscription has one or
more scheduled subscription rules.

Item Overloaded. Gets or sets the value of a field
in the subscription.

In C#, this property is the indexer for the
Subscription class.

NSApplication Gets an NSApplication object
representing the Notification Services
application that contains this subscription.

ScheduleRecurrence Gets or sets the schedule recurrence
information. This property can be null if
ScheduleStart is also null; otherwise this
property must have a specified value.

ScheduleStart Gets or sets the schedule start date and
time. This property can be null if
ScheduleRecurrence is also null;
otherwise this property must have a
specified value.

SubscriberId Gets or sets the subscriber ID that identifies
the subscriber with which this subscription
is associated.

SubscriptionClass Gets a SubscriptionClass object
representing the subscription class that
defines this subscription.

SubscriptionId Gets or sets the subscription identifier for a
subscription record.

Public Methods

Add Adds a subscription record to the
application database.

Delete Deletes a subscription record from the
application database.

GetFieldName Returns the name of a subscription class
field when passed a field ordinal.

GetFieldOrdinal Returns the ordinal of a subscription class
field when passed a field name.

GetFieldValue Returns the value of a field in the
subscription record when passed a field
name. This method is provided for COM
interoperability.

Initialize Initializes an object of the Subscription
class.

SetFieldValue Sets the value of a field in the subscription
record when passed a field name. This
method is provided for COM
interoperability.

Update Modifies a subscription record in the
application database.

See Also

Subscription Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Constructor
Subscription Constructor

Creates a new object of the Subscription class.

Overload List

Creates an uninitialized object of the Subscription class. It is used along with the Initialize method to support the two-step class
initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public Subscription();

C++

public: Subscription();

JScript

public function Subscription();

Creates a new object of the Subscription class, and initializes it with a reference to an NSApplication object and a subscription
class name.

Visual Basic .NET

Public Sub New(NSApplication, String)

C#

public Subscription(NSApplication, string);

C++

public: Subscription(NSApplication, String*);

JScript

public function Subscription(NSApplication, String);

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Constructor ()
Subscription Constructor ()

Creates an uninitialized object of the Subscription class.

Visual Basic .NET

Public Sub New()

C#

public Subscription();

C++

public: Subscription();

JScript

public function Subscription();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSApplication object and a subscription class name
before it can be used.

Example

The following example shows how to create and initialize a Subscription object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, myApplication, mySubscription

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Constructor (NSApplication, String)
Subscription Constructor (NSApplication, String)

Creates and initializes an object of the Subscription class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal subscriptionClassName As _
String)

C#

public Subscription(NSApplication application, string subscriptionClassName);

C++

public: SubscriberEnumeration(NSApplication application, String* subscriptionClassName);

JScript

public function SubscriberEnumeration(application : NSApplication, subscriptionClassName
: String);

Parameters

application

An NSApplication object that represents the Notification Services application to which the Subscription object provides
subscription data.

subscriptionClassName

A string containing the name of the subscription class that defines the subscription data provided by the Subscription object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a Subscription object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Properties
Subscription Properties

Public Properties

Enabled Gets or sets the status of the subscription
record. A value of true indicates the
subscription is enabled to generate
notifications. This property default is true.

FieldCount Returns the number of developer-defined
subscription fields for this subscription, as
specified in the subscription class schema in
the application definition file (ADF).

HasTimedRule Returns true if the subscription has one or
more scheduled subscription rules.

Item Overloaded. Gets or sets the value of a field
in the subscription.

In C#, this property is the indexer for the
Subscription class.

NSApplication Gets an NSApplication object
representing the Notification Services
application that contains this subscription.

ScheduleRecurrence Gets or sets the schedule recurrence
information. This property can be null if
ScheduleStart is also null; otherwise this
property must have a specified value.

ScheduleStart Gets or sets the schedule start date and
time. This property can be null if
ScheduleRecurrence is also null;
otherwise this property must have a
specified value.

SubscriberId Gets or sets the subscriber ID that identifies
the subscriber with which this subscription
is associated.

SubscriptionClass Gets a SubscriptionClass object
representing the subscription class that
defines this subscription.

SubscriptionId Gets or sets the subscription identifier for a
subscription record.

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Enabled Property
Subscription.Enabled Property

Gets or sets the status of a subscription.

Visual Basic .NET

Public Property Enabled As Boolean

C#

public bool Enabled {get;set;}

C++

public: __property bool Enabled();
public: __property void set_Enabled(bool);

JScript

public function get Enabled() : Boolean;
public function set Enabled(Boolean);

Property Value

A Boolean value indicating whether the subscription is enabled.

Remarks

This property gets or sets the status of a subscription, by changing the value of the Enabled field in the subscription record.

The Enabled field allows you to enable or disable a subscription within the Notification Services system. When the Enabled
property value is true, the subscription is active and can generate notifications. When the Enabled property value is false, the
subscription is disabled.

This property default is true.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.FieldCount Property
Subscription.FieldCount Property

Returns the number of developer-defined subscription fields for this subscription, as specified in a subscription class schema in
the application definition file (ADF).

Visual Basic .NET

Public Property FieldCount As Integer

C#

public int FieldCount {get;}

C++

public: __property int get_FieldCount();

JScript

public function get FieldCount() : int;

Property Value

An integer representing the number of developer-defined data fields in a subscription class.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.HasTimedRule Property
Subscription.HasTimedRule Property

Indicates whether this subscription has one or more scheduled rules.

Visual Basic .NET

Public Property HasTimedRule As Boolean

C#

public bool HasTimedRule {get;}

C++

public: __property bool get_HasTimedRule();

JScript

public function get HasTimedRule() : Boolean;

Property Value

A Boolean value indicating whether the subscription class that defines this subscription has one or more subscription scheduled
rules. These rules are defined in the application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Item Property
Subscription.Item Property

Gets or sets the value of a field in the subscription record.

C#

In C#, this property is the indexer for the Subscription class.

Overload List

Gets or sets the value of a field in the subscription record, using the field name as an identifier.

Visual Basic .NET

Public Property Item(String) As Object

C#

public object this[string] {get;set;}

C++

public: __property Object* get_Item(String*);

public: __property void set_Item(String*, Object*);

JScript

Subscription.Item (String)

Gets or sets the value of a field in the subscription record, using the field ordinal as an identifier.

Visual Basic .NET

Public Property Item(Integer) As Object

C#

public Object this[int] {get;set;}

C++

public: __property Object* get_Item(int);

public: __property void set_Item(int, Object*);

JScript

Subscription.Item (int)

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Item Property (String)
Subscription.Item Property (String)

Gets or sets the value of a field in the subscription record, using the field name as an identifier.

Visual Basic .NET

Public Property Item(ByVal fieldName As String) As Object

C#

public Object this[string fieldName] {get;set;}

C++

public: __property Object* get_Item(String* fieldName);
public: __property void set_Item(String* fieldName, Object*);

JScript

returnValue = SubscriptionObject.Item(fieldName);
SubscriptionObject.Item(fieldName) = value;
-or-
returnValue = SubscriptionObject(fieldName);
SubscriptionObject(fieldName) = value;

Parameters

fieldName

The name of the subscription field for which you want the value returned.

Property Value

An object that represents the field's value.

Exceptions

Exception Type Condition
IndexOutOfRange No subscription field can be identified

using the field name provided.

Example

SQL Server Notification Services Books Online

Subscription.Item Property (Int32)
Subscription.Item Property (Int32)

Gets or sets the value of a field in the subscription record, using the field ordinal as an identifier.

Visual Basic .NET

Public Property Item(ByVal fieldOrdinal As Integer) As Object

C#

public Object this[int fieldOrdinal] {get;set;}

C++

public: __property Object* get_Item(int fieldOrdinal);
public: __property void set_Item(int fieldOrdinal, Object*);

JScript

returnValue = SubscriptionObject.Item(fieldOrdinal);
SubscriptionObject.Item(fieldOrdinal) = returnValue;
-or-
returnValue = SubscriptionObject(fieldOrdinal);
SubscriptionObject(fieldOrdinal) = returnValue;

Parameters

fieldOrdinal

The zero-based ordinal of the subscription field for which you want the value returned.

Property Value

An object that represents the field's value.

Exceptions

Exception Type Condition
IndexOutOfRange No subscription field can be identified

using the field ordinal provided.

Remarks

This property is not available in COM interop. Because only one overload of a given property or method can be made available in
COM interop, the String overload of the Item property was chosen because it is more widely used.

Example

SQL Server Notification Services Books Online

Subscription.NSApplication Property
Subscription.NSApplication Property

Gets an NSApplication object representing the Notification Services application that contains this subscription.

Visual Basic .NET

Public Property NSApplication As NSApplication

C#

public NSApplication NSApplication {get;}

C++

public: __property NSApplication get_NSApplication();

JScript

public function get NSApplication() : NSApplication;

Property Value

An NSApplication object representing the Notification Services application that contains this subscription.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.ScheduleRecurrence Property
Subscription.ScheduleRecurrence Property

Gets or sets the schedule recurrence information.

Visual Basic .NET

Public Property ScheduleRecurrence As String

C#

public string ScheduleRecurrence {get;set;}

C++

public: __property String* get_ScheduleRecurrence();
public: __property void set_ScheduleRecurrence(String*);

JScript

public function get ScheduleRecurrence() : String;
public function set ScheduleRecurrence(String);

Property Value

A string containing schedule recurrence information.

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.NotScheduledSubscription
argument

A subscription with no scheduled rules
(where the HasTimedRule property is
false) has attempted to specify values
for the ScheduleStart and
ScheduleRecurrence properties.

Remarks

The ScheduleRecurrence property can be null if the ScheduleStart property is also null; otherwise ScheduleRecurrence
must have a specified value. These properties are used together to assign a schedule to a subscription.

The value of the ScheduleRecurrence property must be in ICalendar interface format and use ICalendar recurrence rule
syntax. All alphabetic characters in the ScheduleRecurrence property value must be in upper case.

A subscription with no timed rules (where the HasTimedRule property is false) does not permit values to be specified for the
ScheduleStart and ScheduleRecurrence properties.

The ICalendar recurrence options are shown in the following table.

ICalendar Recurrence Options
FREQ=DAILY;
FREQ=WEEKLY;BYDAY=DaysOfWeekList;[BYMONTH=MonthsOfYearList;]
FREQ=MONTHLY;BYMONTHDAY=DaysOfMonthList;[BYMONTH=MonthsOfYearList;]
FREQ=YEARLY;BYMONTHDAY=DayOfMonth;BYMONTH=MonthOfYear;

The options that can be used to specify the schedule are:

DaysOfWeekList is [DayOfWeek | DayOfWeek,DaysOfWeekList]

DayOfWeek is [MO | TU | WE | TH | FR | SA | SU]

DaysOfMonthList is [DayOfMonth | DayOfMonth,DaysOfMonthList]

DayOfMonth is [1 | 2 | 3 | ... | 30 | 31]

MonthsOfYearList is [MonthOfYear | MonthOfYear,MonthsOfYearList]

MonthOfYear is [1 | 2 | 3 | ... | 11 | 12]

For example, a valid ScheduleRecurrence value for recurrences on the first and last three months, for the first, eleventh, and
fiftheenth days of those months, would be FREQ=MONTHLY;BYMONTHDAY=1,11,15;BYMONTH=1,2,3,10,11,12.

Example

Visual Basic .NET, C#

The following examples show how to use the ScheduleRecurrence property to set subscription schedule recurrence information:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Set subscription schedule recurrence information.
Dim myStringBuilder As New System.Text.StringBuilder()
myStringBuilder.AppendFormat("FREQ=MONTHLY;BYMONTHDAY={0};BYMONTH={1}", txtDays.Text,
txtMonths.Text)
mySubscription.ScheduleRecurrence = myStringBuilder.ToString()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Set subscription schedule recurrence information.
System.Text.StringBuilder myStringBuilder = new System.Text.StringBuilder();
myStringBuilder.AppendFormat(
 "FREQ=MONTHLY;BYMONTHDAY={0};BYMONTH={1}",
 txtDays.Text,
 txtMonths.Text);
mySubscription.ScheduleRecurrence = myStringBuilder.ToString();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.ScheduleStart Property
Subscription.ScheduleStart Property

Gets or sets the schedule start information.

Visual Basic .NET

Public Property ScheduleStart As String

C#

public string ScheduleStart {get;set;}

C++

public: __property String* get_ScheduleStart();
public: __property void set_ScheduleStart(String*);

JScript

public function get ScheduleStart() : String;
public function set ScheduleStart(String);

Property Value

A string containing schedule start information.

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.NotScheduledSubscription
argument

A subscription with no scheduled rules
(where the HasTimedRule property is
false) has attempted to specify values
for the ScheduleStart and
ScheduleRecurrence properties.

Remarks

The ScheduleStart property can be null if the ScheduleRecurrence property is also null; otherwise ScheduleStart must have
a specified value. These properties are used together to assign a schedule to a subscription.

A subscription with no timed rules (where the HasTimedRule property is false) does not permit values to be specified for the
ScheduleStart and ScheduleRecurrence properties.

You can specify the ScheduleStart value by using one of the following notations:

TZID=TimeZoneId: yyyymmdd T hhnnss

yyyymmdd T hhnnss Z

where the format indicates the following:

TimeZoneId is the time zone ID.
T is the uppercase character "T". It is the date-time separation character and it must appear between the date and time.
Z is the uppercase character "Z". It represents "UTC Time". It is equivalent to specifying "TZID=UTC Time:".
yyyy is the four-digit year.

[2000 | 2001 | 2002 | 2003 | ...]

mm is the two-digit month of the year.

[01 | 02 | 03 | ... | 11 | 12]

dd is the two-digit day of the month.

[01 | 02 | 03 | ... | 30 | 31]

hh is the two-digit hour in 24-hour time.

[00 | 01 | 02 | 03 | ... | 12 | 13 | ... | 22 | 23]

nn is the two-digit minute.

[00 | 01 | 02 | 03 | ... | 58 | 59]

ss is the two-digit second.

[00 | 01 | 02 | 03 | ... | 58 | 59]

Specifying the Notification Services time zone ID (returned by a TimeZoneEnumeration object) causes that subscription to be
enabled for the selected time zone. Otherwise, you must use the constant Z to indicate that you are using Universal Time
Coordinate (UTC) notation instead.

The time and time zone specify the local time of day at which the notification is generated. Notification Services uses the time
zone to convert the local time of day to Greenwich Mean Time (GMT) time. Notification Services is aware of daylight savings time
transitions and adjusts delivery times accordingly.

For example, a valid ScheduleStart value would be 20010501T093000Z.

Example

Visual Basic .NET, C#

The following examples show how to use the ScheduleStart property to set subscription schedule start information:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Set subscription schedule start information.
Dim myStringBuilder As New System.Text.StringBuilder()
myStringBuilder.AppendFormat("TZID={0}:{1}{2}{3}T{4}{5}{6}",
ddTimeZones.SelectedItem.ToString().Trim(), DateTime.Now.Year.ToString("D4"),
DateTime.Now.Month.ToString("D2"), DateTime.Now.Day.ToString("D2"),
ddHours.SelectedItem.ToString().Trim(), ddMinutes.SelectedItem.ToString().Trim(),
ddSeconds.SelectedItem.ToString().Trim())
mySubscription.ScheduleStart = myStringBuilder.ToString()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new

Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Set subscription schedule start information.
System.Text.StringBuilder myStringBuilder = new System.Text.StringBuilder();
myStringBuilder.AppendFormat("TZID={0}:{1}{2}{3}T{4}{5}{6}",
ddTimeZones.SelectedItem.ToString().Trim(), DateTime.Now.Year.ToString("D4"),
DateTime.Now.Month.ToString("D2"), DateTime.Now.Day.ToString("D2"),
ddHours.SelectedItem.ToString().Trim(), ddMinutes.SelectedItem.ToString().Trim(),
ddSeconds.SelectedItem.ToString().Trim ()); mySubscription.ScheduleStart =
myStringBuilder.ToString();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.SubscriberId Property
Subscription.SubscriberId Property

Gets or sets the subscriber ID for this subscription.

Visual Basic .NET

Public Property SubscriberId As String

C#

public string SubscriberId {get;set;}

C++

public: __property String* get_SubscriberId();
public: __property void set_SubscriberId(String*);

JScript

public function get SubscriberId() : String;
public function set SubscriberId(String);

Property Value

A string containing the subscriber ID for this subscription.

Exceptions

Exception Type Condition
IndexOutOfRangeException No related subscriber record can be

identified using the subscriber ID
provided.

Remarks

The subscriber ID identifies the subscriber with which this subscription is associated.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.SubscriptionClass Property
Subscription.SubscriptionClass Property

Gets a SubscriptionClass object representing the subscription class that defines this subscription.

Visual Basic .NET

Public Property SubscriptionClass As SubscriptionClass

C#

public SubscriptionClass SubscriptionClass {get;}

C++

public: __property SubscriptionClass get_SubscriptionClass();

JScript

public function get SubscriptionClass() : SubscriptionClass;

Property Value

A SubscriptionClass object representing the subscription class that defines this subscription.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.SubscriptionId Property
Subscription.SubscriptionId Property

Gets or sets the subscription identifier for a subscription record.

Visual Basic .NET

Public Property SubscriptionId As String

C#

public string SubscriptionId {get;set;}

C++

public: __property String* get_SubscriptionId();
public: __property void set_SubscriptionId(String*);

JScript

public function get SubscriptionId() : String;
public function set SubscriptionId(String);

Property Value

A string containing the subscription ID for this subscription.

Remarks

When a new subscription is added to the database, Notification Services assigns it a unique subscription ID. Notification Services
components use this subscription ID to identify the subscription.

Setting the subscription ID in a procedure causes all subsequent update and delete actions to be performed on the record
identified by the subscription ID that was set, and not on the record that was originally retrieved.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription Methods
Subscription Methods

Public Methods

Add Adds a subscription record to the
application database.

Delete Deletes a subscription record from the
application database.

GetFieldName Returns the name of a subscription class
field when passed a field ordinal.

GetFieldOrdinal Returns the ordinal of a subscription class
field when passed a field name.

GetFieldValue Returns the value of a field in the
subscription record when passed a field
name. This method is provided for COM
interoperability.

Initialize Initializes an object of the Subscription
class.

SetFieldValue Sets the value of a field in the subscription
record when passed a field name. This
method is provided for COM
interoperability.

Update Modifies a subscription record in the
application database.

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Add Method
Subscription.Add Method

Adds a subscription record to the application database.

Visual Basic .NET

Public Function Add() As String

C#

public string Add();

C++

public: String* Add();

JScript

public function Add() : String;

Return Value

A string containing the subscription ID of the new subscription.

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.InvalidField argument

One of the fields in the event data fails to
meet a database requirement or a
constraint (such as a column data type).

NSException with an
NSEventEnum.MissingField argument

One of the fields in the event data fails to
meet a NOT NULL requirement in the
event table.

NSException with an
NSEventEnum.FailedToAddSubscription
argument

The subscription record could not be
added. Check the event log for further
details.

Remarks

When a new subscription is added to the database, Notification Services assigns it a unique subscription ID. Notification Services
components use this subscription ID to identify the subscription.

Example

Visual Basic .NET, C#

The following examples show how to use the Add method to add a subscription:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,

subscriptionClassName)

'Add code to set subscription info here.

Dim subscriptionId As String = mySubscription.Add()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Add code to set subscription info here.

string subscriptionId = mySubscription.Add();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Delete Method
Subscription.Delete Method

Deletes a subscription record from the Notification Services database.

Visual Basic .NET

Public Sub Delete()

C#

public void Delete();

C++

public: void Delete();

JScript

public function Delete();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.FailedToDeleteSubscriptions
argument

The subscription record
could not be deleted. Check
the event log for further
details.

NSException with an
NSEventEnum.InvalidSubscriptionData argument

The subscription ID is set to
0.

NSException with an
NSEventEnum.SubscriptionsDisabledForApplication
argument

Subscription updates are
disabled for this
application.

Remarks

This method removes the subscription from the system.

Example

Visual Basic .NET, C#

The following examples show how to use the Delete method to delete a subscription:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Set the subscription ID, so that the
'correct subscription will be deleted.
mySubscription.SubscriptionId = txtID.Text

'Delete the subscription record from the database.
 mySubscription.Delete()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Set the subscription ID, so that the
//correct subscription will be deleted.
mySubscription.SubscriptionId = txtID.Text;

//Delete the subscription record from the database.
mySubscription.Delete();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.GetFieldName Method
Subscription.GetFieldName Method

Returns the name of a field in the subscription record.

Visual Basic .NET

Public Function GetFieldName(ByVal fieldOrdinal As Integer) As String

C#

public string GetFieldName(int fieldOrdinal);

C++

public: String* GetFieldName(int fieldOrdinal);

JScript

public function GetFieldName(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the subscription field for which you want the name returned.

Return Value

A string containing the field name.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the GetFieldName method to get the name of a subscription field by providing the
field ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Retrieve the field name.
Dim fieldName As String = mySubscription.GetFieldName(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Retrieve the field name.
string fieldName = mySubscription.GetFieldName(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.GetFieldOrdinal Method
Subscription.GetFieldOrdinal Method

Returns the ordinal of a field in the subscription record.

Visual Basic .NET

Public Function GetFieldOrdinal(ByVal fieldname As String) As Integer

C#

public int GetFieldOrdinal(string fieldName);

C++

public: int GetFieldOrdinal(String* fieldName);

JScript

public function GetFieldOrdinal(fieldName : String) : int;

Parameters

fieldName

The name of the subscription field for which you want the ordinal returned.

Return Value

An integer representing the zero-based field ordinal.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field name provided.

Example

Visual Basic .NET, C#

The following examples show how to use the GetFieldOrdinal method to get the ordinal of a subscription field by providing the
field name:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldName As String = "MySubscriptionFieldName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Retrieve the field ordinal.
Dim fieldOrdinal As Integer = mySubscription.GetFieldOrdinal(fieldName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
string fieldName = "MySubscriptionFieldName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Retrieve the field ordinal.
int fieldOrdinal = mySubscription.GetFieldOrdinal(fieldName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.GetFieldValue Method
Subscription.GetFieldValue Method

Returns the value of a field in the subscription record.

Visual Basic .NET

Public Function GetFieldValue(ByVal fieldName As String) As Object

C#

public object GetFieldValue(string fieldName);

C++

public: Object* GetFieldValue(String* fieldName);

JScript

public function GetFieldValue(fieldName : String) : Object;

Parameters

fieldName

The name of the subscription field for which you want the value returned.

Return Value

An object that represents the value of the field.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field name provided.

Remarks

This method is provided for COM interoperability, to allow callers from unmanaged code to get field values from a subscription
record. Managed callers do not use this method.

Example

The following example shows how to use the GetFieldValue method in unmanaged Microsoft Visual Basic® Scripting Edition
(VBScript) code to get the value of a subscription field:

Dim myInstance, myApplication, mySubscription, fieldValue

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
const fieldName = "MySubscriptionFieldName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a Subscription object.
set mySubscription =

WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

'Get the field value.
fieldValue = mySubscription.GetFieldValue(fieldName)

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Initialize Method
Subscription.Initialize Method

Initializes an object of the Subscription class with a subscription class name and a reference to an NSApplication object. Is used
in conjunction with the parameter-less constructor to enable COM interoperability.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal subscriptionClassName _
As String)

C#

public void Initialize(NSApplication application, string subscriptionClassName);

C++

public: void Initialize(NSApplication application, String* subscriptionClassName);

JScript

public function Initialize(application : NSApplication, subscriptionClassName : String);

Parameters

application

An NSApplication object that represents the Notification Services application to which the Subscription object provides
subscription data.

subscriptionClassName

A string containing the name of the subscription class that defines the subscription data that the Subscription object provides.
This determines what subscription fields this Subscription object exposes.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a Subscription object created with the parameter-less constructor.

Example

The following example shows how to create and initialize a Subscription object in unmanaged Microsoft Visual Basic® Scripting
Edition (VBScript) code:

Dim myInstance, myApplication, mySubscription

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")
mySubscription.Initialize myApplication, subscriptionClassName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.SetFieldValue Method
Subscription.SetFieldValue Method

Sets the value of a field in the subscription record.

Visual Basic .NET

Public Sub SetFieldValue(ByVal fieldName As String, ByVal newValue As Object)

C#

public void SetFieldValue(string fieldname, object newValue);

C++

public: void SetFieldValue(String* fieldName, Object* newValue);

JScript

public function SetFieldValue(fieldName : String, newValue : Object);

Parameters

fieldName

The name of the subscription field for which you want the value set.

newValue

The value to which you want the subscription field set.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field name provided.

Remarks

This method is provided for COM interoperability, to allow callers from unmanaged code to set field values for a subscription
record. Managed callers do not use this method.

Example

The following example shows how to use the SetFieldValue method in unmanaged Microsoft Visual Basic® Scripting Edition
(VBScript) code to set the value of a subscription field:

Dim myInstance, myApplication, mySubscription

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
const subscriptionFieldName = "MySubscriptionFieldName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a Subscription object.
set mySubscription =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.Subscription")

mySubscription.Initialize myApplication, subscriptionClassName

'Set the field value.
mySubscription.SetFieldValue subscriptionFieldName, "Test"

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Subscription.Update Method
Subscription.Update Method

Updates the information in a subscription record.

Visual Basic .NET

Public Sub Update()

C#

public void Update();

C++

public: void Update();

JScript

public function Update();

Exceptions

Exception Type Condition
NSException with an
NSEventEnum.FailedToUpdateSubscriptions
argument

The subscription record
could not be updated.
Check the event log for
further details.

NSException with an
NSEventEnum.InvalidSubscriptionData argument

The subscription ID is set to
0.

NSException with an
NSEventEnum.SubscriptionsDisabledForApplication
argument

Subscription updates are
disabled for this
application.

Remarks

The update applies to the record identified by the subscription ID.

Example

Visual Basic .NET, C#

The following examples show how to use the Update method to modify subscription information:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a Subscription object.
Dim mySubscription As New
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName)

'Set the subscription ID, so that the
'correct subscription will be updated.
mySubscription.SubscriptionId = txtID.Text

'Modify subscription info.

'Update the subscription record.
mySubscription.Update()

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription = new
Microsoft.SqlServer.NotificationServices.Subscription(myApplication,
subscriptionClassName);

//Set the subscription ID, so that the
//correct subscription will be updated.
mySubscription.SubscriptionId = txtID.Text;

//Modify subscription info.

//Update the subscription record.
mySubscription.Update();

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Subscription Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass Class
SubscriptionClass Class

Represents a subscription class, as specified in the application definition file (ADF) of a given application.

For a list of all members of this type, see SubscriptionClass Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriptionClass

Visual Basic .NET

Public Class SubscriptionClass Implements ISubscriptionClass

C#

public class SubscriptionClass : ISubscriptionClass

C++

public class SubscriptionClass : public ISubscriptionClass

JScript

public class SubscriptionClass implements ISubscriptionClass

Remarks

The SubscriptionClass class provides access to the metadata of any subscription class defined in an ADF. It should not be
confused with the Subscription class, which provides a means of adding, updating, or deleting a specified subscription in the
application. It provides methods to return information about the subscription fields defined in the
/SubscriptionClasses/SubscriptionClass/Schema section of the ADF for the specified subscription class.

The SubscriptionClass class has no public constructor. Use SubscriptionClassEnumeration.Item to return a
SubscriptionClass object.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass Members
SubscriptionClass Members

Public Properties

FieldCount Gets the number of fields specified in the
/SubscriptionClasses/SubscriptionClass/Schema section of the
application definition file (ADF) for this subscription class.

SubscriptionClassName Gets the subscription class name specified in the
/SubscriptionClasses/SubscriptionClass/SubscriptionClassName
section of the ADF for this subscription class.

Public Methods

FieldName Gets the field name as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field ordinal.

FieldOrdinal Gets the field ordinal of the field based on its
location in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field name.

FieldType Gets the field type as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field ordinal.

FieldTypeMods Gets the field type modifications as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field ordinal.

See Also

SubscriptionClass Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass Properties
SubscriptionClass Properties

Public Properties

FieldCount Gets the number of fields specified in the
/SubscriptionClasses/SubscriptionClass/Schema section of the
application definition file (ADF) for this subscription class.

SubscriptionClassName Gets the subscription class name specified in the
/SubscriptionClasses/SubscriptionClass/SubscriptionClassName
section of the ADF for this subscription class.

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.FieldCount Property
SubscriptionClass.FieldCount Property

Gets the number of subscription fields specified in a subscription class.

Visual Basic .NET

Public Property FieldCount As Integer

C#

public int FieldCount {get;}

C++

public: __property int get_FieldCount();

JScript

public function get FieldCount() : int;

Property Value

An integer representing the number of subscription data fields in a subscription class. These are the fields defined in the
/SubscriptionClasses/SubscriptionClass/Schema section of the application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.SubscriptionClassName Property
SubscriptionClass.SubscriptionClassName Property

Gets the name of a subscription class.

Visual Basic .NET

Public Property SubscriptionClassName As String

C#

public string SubscriptionClassName {get;}

C++

public: __property String* get_SubscriptionClassName();

JScript

public function get SubscriptionClassName() : String;

Property Value

A string containing the subscription class name. This is specified in the
/SubscriptionClasses/SubscriptionClass/SubscriptionClassName section of the application definition file (ADF).

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass Methods
SubscriptionClass Methods

Public Methods

FieldName Gets the field name as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the application definition file (ADF) when
passed a field ordinal.

FieldOrdinal Gets the field ordinal of the field based on its
location in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field name.

FieldType Gets the field type as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field ordinal.

FieldTypeMods Gets the field type modifications as specified in the
/SubscriptionClasses/SubscriptionClass/Schema
section of the ADF when passed a field ordinal.

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.FieldName Method
SubscriptionClass.FieldName Method

Gets the name of a field in the subscription class.

Visual Basic .NET

Public Function FieldName(ByVal fieldOrdinal As Integer) As String

C#

public string FieldName(int fieldOrdinal);

C++

public: String* FieldName(int fieldOrdinal);

JScript

public function FieldName(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the subscription class definition for which you want the name returned.

Return Value

A string containing the field name.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldName method to get the name of a subscription field by providing the field
ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Use the SubscriptionClassEnumeration.Item
'to return a SubscriptionClass object.
Dim mySubscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass =
mySubscriptionClassEnumeration(subscriptionClassName)

'Use the FieldName method to get a field name.
Dim fieldName As String = mySubscriptionClass.FieldName(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Use the SubscriptionClassEnumeration.Item
//to return a SubscriptionClass object.
Microsoft.SqlServer.NotificationServices.SubscriptionClass mySubscriptionClass =
mySubscriptionClassEnumeration[subscriptionClassName];

//Use the FieldName method to get a field name.
string fieldName = mySubscriptionClass.FieldName(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.FieldOrdinal Method
SubscriptionClass.FieldOrdinal Method

Gets the ordinal of a field in the subscription class.

Visual Basic .NET

Public Function FieldOrdinal(ByVal fieldName As String) As Integer

C#

public int FieldOrdinal(string fieldName);

C++

public: int FieldOrdinal(String* fieldName);

JScript

public function FieldOrdinal(fieldName : String) : int;

Parameters

fieldName

The name of the developer-defined field in the subscription class definition for which you want the ordinal returned.

Return Value

An integer representing the zero-based field ordinal.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field name provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldOrdinal method to get the ordinal of a subscription field by providing the field
name:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldName As String = "MySubscriptionFieldName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Use the SubscriptionClassEnumeration.Item
'to return a SubscriptionClass object.
Dim mySubscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass =
mySubscriptionClassEnumeration(subscriptionClassName)

'Use the FieldOrdinal method to get a field ordinal.
Dim fieldOrdinal As Integer = mySubscriptionClass.FieldOrdinal(fieldName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
string fieldName = "MySubscriptionFieldName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Use the SubscriptionClassEnumeration.Item
//to return a SubscriptionClass object.
Microsoft.SqlServer.NotificationServices.SubscriptionClass mySubscriptionClass =
mySubscriptionClassEnumeration[subscriptionClassName];

//Use the FieldOrdinal method to get a field ordinal.
int fieldOrdinal = mySubscriptionClass.FieldOrdinal(fieldName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.FieldType Method
SubscriptionClass.FieldType Method

Gets the data type of a field in the subscription class.

Visual Basic .NET

Public Function FieldType(ByVal fieldOrdinal As Integer) As String

C#

public string FieldType(int fieldOrdinal);

C++

public: String* FieldType(int fieldOrdinal);

JScript

public function FieldType(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the subscription class definition for which you want the data type
returned.

Return Value

A string containing the data type of the field.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldType method to get the data type of a subscription field by providing the field
ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Use the SubscriptionClassEnumeration.Item
'to return a SubscriptionClass object.
Dim mySubscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass =
mySubscriptionClassEnumeration(subscriptionClassName)

'Use the FieldType method to get a field data type.
Dim fieldType As String = mySubscriptionClass.FieldType(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Use the SubscriptionClassEnumeration.Item
//to return a SubscriptionClass object.
Microsoft.SqlServer.NotificationServices.SubscriptionClass mySubscriptionClass =
mySubscriptionClassEnumeration[subscriptionClassName];

//Use the FieldType method to get a field data type.
string fieldType = mySubscriptionClass.FieldType(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClass.FieldTypeMods Method
SubscriptionClass.FieldTypeMods Method

Gets the field modifiers of a field in the subscription class.

Visual Basic .NET

Public Function FieldType(ByVal fieldOrdinal As Integer) As String

C#

public string FieldType(int fieldOrdinal);

C++

public: String* FieldType(int fieldOrdinal);

JScript

public function FieldType(fieldOrdinal : int) : String;

Parameters

fieldOrdinal

The zero-based ordinal of the developer-defined field in the subscription class definition for which you want the field modifiers
returned.

Return Value

A string containing the field modifiers for this data field, if any are specified. Field modifiers include such information as whether
the field accepts null values, or has a default specified.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException No subscription field can be identified

using the field ordinal provided.

Example

Visual Basic .NET, C#

The following examples show how to use the FieldTypeMods method to get the field modifiers of a subscription field by
providing the field ordinal:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim fieldOrdinal As Integer = 0

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Use the SubscriptionClassEnumeration.Item
'to return a SubscriptionClass object.

Dim mySubscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass =
mySubscriptionClassEnumeration(subscriptionClassName)

'Use the FieldTypeMods method to get a field's modifiers.
Dim fieldTypeMods As String = mySubscriptionClass.FieldTypeMods(fieldOrdinal)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
int fieldOrdinal = 0;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Use the SubscriptionClassEnumeration.Item
//to return a SubscriptionClass object.
Microsoft.SqlServer.NotificationServices.SubscriptionClass mySubscriptionClass =
mySubscriptionClassEnumeration[subscriptionClassName];

//Use the FieldTypeMods method to get a field's modifiers.
string fieldTypeMods = mySubscriptionClass.FieldTypeMods(fieldOrdinal);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClass Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Class
SubscriptionClassEnumeration Class

Represents the collection of subscription classes in a given Notification Services application.

For a list of all members of this type, see SubscriptionClassEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration

Visual Basic .NET

Public Class SubscriptionClassEnumeration
Implements ISubscriptionClassEnumeration, IEnumerable

C#

public class SubscriptionClassEnumeration : ISubscriptionClassEnumeration, IEnumerable

C++

public class SubscriptionClassEnumeration : public ISubscriptionClassEnumeration,
IEnumerable

JScript

public class SubscriptionClassEnumeration implements ISubscriptionClassEnumeration,
IEnumerable

Remarks

The SubscriptionClassEnumeration class allows an application to iterate through the set of subscription classes in a given
Notification Services application. It also provides an Item property to return a SubscriptionClass object that represents a specific
subscription class. This class is used primarily in subscription management applications.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Members
SubscriptionClassEnumeration Members

Public Constructors

SubscriptionClassEnumeration
Constructor

Overloaded. Creates a new object of the
SubscriptionClassEnumeration class.

Public Properties

Count Gets the count of subscription classes in the
specified Notification Services application.

Item Returns a SubscriptionClass object, which
represents a specific subscription class.

In C#, this property is the indexer for the
SubscriptionClassEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that allows
you to iterate through the subscription classes.

Initialize Initializes an object of the
SubscriptionClassEnumeration class.

See Also

SubscriptionClassEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Constructor
SubscriptionClassEnumeration Constructor

Creates a new object of the SubscriptionClassEnumeration class.

Overload List

Creates an uninitialized object of the SubscriptionClassEnumeration class. It is used along with the Initialize method to
support the two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriptionClassEnumeration();

C++

public: SubscriptionClassEnumeration();

JScript

public function SubscriptionClassEnumeration();

Creates an object of the SubscriptionClassEnumeration class, and initializes it with a reference to an NSApplication object.

Visual Basic .NET

Public Sub New(NSApplication)

C#

public SubscriptionClassEnumeration(NSApplication);

C++

public: SubscriptionClassEnumeration(NSApplication);

JScript

public function SubscriptionClassEnumeration(NSApplication);

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Constructor ()
SubscriptionClassEnumeration Constructor ()

Creates an uninitialized object of the SubscriptionClassEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public SubscriptionClassEnumeration();

C++

public: SubscriptionClassEnumeration();

JScript

public function SubscriptionClassEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSApplication object before it can be used.

Example

The following example shows how to create and initialize a SubscriptionClassEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, mySubscriptionClassEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a SubscriptionClassEnumeration object.
set mySubscriptionClassEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumerati
on")
mySubscriptionClassEnumeration.Initialize myApplication

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Constructor (NSApplication)
SubscriptionClassEnumeration Constructor (NSApplication)

Creates and initializes an object of the SubscriptionClassEnumeration class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication)

C#

public SubscriptionClassEnumeration(NSApplication application);

C++

public: SubscriptionClassEnumeration(NSApplication application);

JScript

public function SubscriptionClassEnumeration(application : NSApplication);

Parameters

application

An NSApplication object that represents the Notification Services application containing the subscription classes to be
enumerated by this SubscriptionClassEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize an SubscriptionClassEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new

Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Properties
SubscriptionClassEnumeration Properties

Public Properties

Count Gets the count of subscription classes in the
specified Notification Services application.

Item Returns a SubscriptionClass object, which
represents a specific subscription class.

In C#, this property is the indexer for the
SubscriptionClassEnumeration class.

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration.Count Property
SubscriptionClassEnumeration.Count Property

Gets the count of subscription classes in a Notification Services application.

Visual Basic .NET

Public Property Count As Integer

C#

public int Count {get;}

C++

public: __property int get_Count();

JScript

public function get Count() : int;

Property Value

An integer representing the number of subscription classes in a Notification Services application.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration.Item Property
SubscriptionClassEnumeration.Item Property

Gets a reference to a subscription class.

C#

In C#, this property is the indexer for the SubscriptionClassEnumeration class.

Visual Basic .NET

Public Property Item(ByVal subscriptionClassName As String) As SubscriptionClass

C#

public SubscriptionClass this[string subscriptionClassName] {get;}

C++

public: __property SubscriptionClass get_Item(String* subscriptionClassName);

JScript

returnValue = SubscriptionClassEnumerationObject.Item(subscriptionClassName);
-or-
returnValue = SubscriptionClassEnumerationObject(subscriptionClassName);

Parameters

subscriptionClassName

The name of the subscription class that you want returned.

Property Value

A SubscriptionClass object, which represents a specific subscription class.

Exceptions

Exception Type Condition
IndexOutOfRangeException No subscription class can be identified

using the subscription class name
provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a SubscriptionClass object representing a specific
subscription class:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Use the Item property to return a SubscriptionClass object.
Dim mySubscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass =
mySubscriptionClassEnumeration(subscriptionClassName)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Use the Item property to return a SubscriptionClass object.
Microsoft.SqlServer.NotificationServices.SubscriptionClass mySubscriptionClass =
mySubscriptionClassEnumeration[subscriptionClassName];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration Methods
SubscriptionClassEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that allows
you to iterate through the subscription classes.

Initialize Initializes an object of the
SubscriptionClassEnumeration class.

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration.GetEnumerator Method
SubscriptionClassEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of subscription classes represented by the
SubscriptionClassEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the SubscriptionClassEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the subscription classes in a
SubscriptionClassEnumeration object. An initialized SubscriptionClassEnumeration object represents the collection of
subscription classes in a specified Notification Services application.

Example

Visual Basic .NET, C#

The following examples show how to use a SubscriptionClassEnumeration object to iterate through a set of subscription
classes. The GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionClassEnumeration object.
Dim mySubscriptionClassEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication)

'Iterate through the subscription classes.
Dim subscriptionClass As Microsoft.SqlServer.NotificationServices.SubscriptionClass
For Each subscriptionClass In mySubscriptionClassEnumeration
 Console.WriteLine("Subscription Class Name: {0}",
subscriptionClass.SubscriptionClassName)
Next subscriptionClass

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionClassEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration
mySubscriptionClassEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumeration(myApplication);

//Iterate through the subscription classes.
foreach (Microsoft.SqlServer.NotificationServices.SubscriptionClass subscriptionClass in
mySubscriptionClassEnumeration)
{
Console.WriteLine("Subscription Class Name: {0}",
subscriptionClass.SubscriptionClassName);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionClassEnumeration.Initialize Method
SubscriptionClassEnumeration.Initialize Method

Initializes an object of the SubscriptionClassEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication)

C#

public void Initialize(NSApplication application);

C++

public: void Initialize(NSApplication application);

JScript

public function Initialize(application : NSApplication);

Parameters

application

An NSApplication object that represents the Notification Services application containing the event classes to be enumerated by
this SubscriptionClassEnumeration object.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriptionClassEnumeration object created with the parameter-
less constructor.

Example

The following example shows how to create and initialize a SubscriptionClassEnumeration object in unmanaged Microsoft
Visual Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, mySubscriptionClassEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a SubscriptionClassEnumeration object.
set mySubscriptionClassEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionClassEnumerati
on")
mySubscriptionClassEnumeration.Initialize myApplication

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionClassEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Class
SubscriptionEnumeration Class

Represents the collection of subscriptions for a given subscriber.

For a list of all members of this type, see SubscriptionEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration

Visual Basic .NET

NonInheritable Public Class SubscriptionEnumeration Implements ISubscriptionEnumeration,
IEnumerable

C#

public sealed class SubscriptionEnumeration : ISubscriptionEnumeration, IEnumerable

C++

public __gc __sealed class SubscriptionEnumeration : public ISubscriptionEnumeration,
IEnumerable

JScript

public class SubscriptionEnumeration implements ISubscriptionEnumeration, IEnumerable

Remarks

The SubscriptionEnumeration class allows an application to iterate through the set of subscriptions for a given subscriber. The
set of subscriptions is defined by the parameters provided within the constructor or the Initialize method. It also provides an
Item property to return a Subscription object that represents a specific subscription.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Members
SubscriptionEnumeration Members

Public Constructors

SubscriptionEnumeration Constructor Overloaded. Creates a new object of the
SubscriptionEnumeration class.

Public Properties

Item Returns a Subscription object, which
represents an individual subscription.

In C#, this property is the indexer for the
SubscriptionEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
subscriptions.

Initialize Overloaded. Initializes an object of the
SubscriptionEnumeration class.

See Also

SubscriptionEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Constructor
SubscriptionEnumeration Constructor

Creates a new object of the SubscriptionEnumeration class.

Overload List

Creates an uninitialized object of the SubscriptionEnumeration class. It is used along with the Initialize method to support the
two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public SubscriptionEnumeration();

C++

public: SubscriptionEnumeration();

JScript

public function SubscriptionEnumeration();

Creates a new object of the SubscriptionEnumeration class, and initializes it with a subscription class name and a reference to
an NSApplication object. The set of subscriptions returned is all subscriptions associated with a particular application and
subscription class, regardless of subscriber.

Visual Basic .NET

Public Sub New(NSApplication, String)

C#

public SubscriptionEnumeration(NSApplication, string);

C++

public: SubscriptionEnumeration(NSApplication, String*);

JScript

public function SubscriptionEnumeration(NSApplication, String);

Creates a new object of the SubscriptionEnumeration class, and initializes it with a subscriber ID, a subscription class name, and
a reference to an NSApplication object. The set of subscriptions returned is all subscriptions associated with a single subscriber,
application, and subscription class.

Visual Basic .NET

Public Sub New(NSApplication, String, String)

C#

public SubscriptionEnumeration(NSApplication, string, string);

C++

public: SubscriptionEnumeration(NSApplication, String*, String*);

JScript

public function SubscriptionEnumeration(NSApplication, String, String);

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Constructor ()
SubscriptionEnumeration Constructor ()

Creates an uninitialized object of the SubscriptionEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public SubscriptionEnumeration();

C++

public: SubscriptionEnumeration();

JScript

public function SubscriptionEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSApplication object, a subscription class name, and
optionally a subscriber ID before it can be used.

Example

The following example shows how to create and initialize a SubscriptionEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, mySubscriptionEnumeration, subscriberId

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
subscriberId = Request.Form("SubscriberId")

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a SubscriptionEnumeration object.
set mySubscriptionEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration")
mySubscriptionEnumeration.Initialize myApplication, subscriptionClassName, subscriberId

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Constructor (NSApplication, String)
SubscriptionEnumeration Constructor (NSApplication, String)

Creates and initializes an object of the SubscriptionEnumeration class.

The set of subscriptions returned is all subscriptions associated with a particular application and subscription class, regardless of
subscriber.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal subscriptionClassName As String)

C#

public SubscriptionEnumeration(NSApplication application, string subscriptionClassName);

C++

public: SubscriptionEnumeration(NSApplication application, String*
subscriptionClassName);

JScript

public function SubscriptionEnumeration(application : NSApplication,
subscriptionClassName : String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the collection of subscriptions.

subscriptionClassName

A string containing the name of the subscription class.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriptionEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionEnumeration object.
Dim mySubscriptionEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName)

C#

string instanceName = "MyInstanceName";

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration
mySubscriptionEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Constructor (NSApplication, String,
String)
SubscriptionEnumeration Constructor (NSApplication, String, String)

Creates and initializes an object of the SubscriptionEnumeration class.

The set of subscriptions returned is all subscriptions associated with a single subscriber, application, and subscription class.

Visual Basic .NET

Public Sub New(ByVal application As NSApplication, ByVal subscriptionClassName As String,
_ ByVal subscriberId As String)

C#

public SubscriptionEnumeration(NSApplication application, string subscriptionClassName,
string subscriberId);

C++

public: SubscriptionEnumeration(NSApplication application, String* subscriptionClassName,
String* subscriberId);

JScript

public function SubscriptionEnumeration(application : NSApplication,
subscriptionClassName : String, subscriberId : String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the collection of subscriptions.

subscriptionClassName

A string containing the name of the subscription class.

subscriberId

A string containing the subscriber ID.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a SubscriptionEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim subscriberId As String = txtId.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionEnumeration object.
Dim mySubscriptionEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName, subscriberId)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
string subscriberId = txtId.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration
mySubscriptionEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName, subscriberId);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Properties
SubscriptionEnumeration Properties

Public Properties

Item Returns a Subscription object, which
represents an individual subscription.

In C#, this property is the indexer for the
SubscriptionEnumeration class.

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration.Item Property
SubscriptionEnumeration.Item Property

Returns a reference to an individual subscription.

C#

In C#, this property is the indexer for the SubscriptionEnumeration class.

Visual Basic .NET

Public Property Item(ByVal subscriptionId As String) As Subscription

C#

public Subscription this[string subscriptionId] {get;}

C++

public: __property Subscription get_Item(String* subscriptionId);

JScript

returnValue = SubscriptionEnumerationObject.Item(subscriptionId);
-or-
returnValue = SubscriptionEnumerationObject(subscriptionId);

Parameters

subscriptionId

The identifier of the subscription that you want returned.

Property Value

A Subscription object, which represents an individual subscription.

Exceptions

Exception Type Condition
IndexOutOfRangeException No subscription can be identified using

the subscription ID provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a Subscription object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim subscriberId As String = txtSubscriberId.Text
Dim subscriptionId As String = txtSubscriptionId.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionEnumeration object.
Dim mySubscriptionEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,

subscriptionClassName, subscriberId)

'Use the Item property to return a Subscription object.
Dim mySubscription As Microsoft.SqlServer.NotificationServices.Subscription =
mySubscriptionEnumeration(subscriptionId)

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
string subscriberId = txtSubscriberId.Text;
string subscriptionId = txtSubscriptionId.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration
mySubscriptionEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName, subscriberId);

//Use the Item property to return a Subscription object.
Microsoft.SqlServer.NotificationServices.Subscription mySubscription =
mySubscriptionEnumeration[subscriptionId];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration Methods
SubscriptionEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the
subscriptions.

Initialize Overloaded. Initializes an object of the
SubscriptionEnumeration class.

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration.GetEnumerator Method
SubscriptionEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of subscriptions represented by the
SubscriptionEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the SubscriptionEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the subscriptions in a
SubscriptionEnumeration object. An initialized SubscriptionEnumeration object represents the collection of subscriptions of
a particular subscription class for one subscriber in a specified Notification Services application.

Example

Visual Basic .NET, C#

The following examples show how to use a SubscriptionEnumeration object to iterate through a set of subscriptions. The
GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim applicationName As String = "MyApplicationName"
Dim subscriptionClassName As String = "MySubscriptionClassName"
Dim subscriberId As String = txtSubscriberId.Text

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create an NSApplication object.
Dim myApplication As New
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName)

'Create a SubscriptionEnumeration object.
Dim mySubscriptionEnumeration As New
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName, subscriberId)

'Iterate through the subscriptions.
Dim subscription As Microsoft.SqlServer.NotificationServices.Subscription
For Each subscription In mySubscriptionEnumeration
 Console.WriteLine("Subscription ID: {0}", subscription.SubscriptionId)
Next subscription

C#

string instanceName = "MyInstanceName";
string applicationName = "MyApplicationName";
string subscriptionClassName = "MySubscriptionClassName";
string subscriberId = txtSubscriberId.Text;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create an NSApplication object.
Microsoft.SqlServer.NotificationServices.NSApplication myApplication = new
Microsoft.SqlServer.NotificationServices.NSApplication(myInstance, applicationName);

//Create a SubscriptionEnumeration object.
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration
mySubscriptionEnumeration = new
Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration(myApplication,
subscriptionClassName, subscriberId);

//Iterate through the subscriptions.
foreach (Microsoft.SqlServer.NotificationServices.Subscription subscription in
mySubscriptionEnumeration)
{
 Console.WriteLine("Subscription ID: {0}", subscription.SubscriptionId);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration.Initialize Method
SubscriptionEnumeration.Initialize Method

Initializes an object of the SubscriptionEnumeration class. Is used in conjunction with the parameter-less constructor to enable
COM interoperability.

Overload List

Initializes an object of the SubscriptionEnumeration class. The set of subscriptions returned is all subscriptions associated with
a particular application and subscription class, regardless of subscriber.

Visual Basic .NET

Public Sub Initialize(NSApplication, String)

C#

public void Initialize(NSApplication, string);

C++

public: void Initialize(NSApplication, String*);

JScript

public function Initialize(NSApplication, String);

Initializes an object of the SubscriptionEnumeration class. The set of subscriptions returned is all subscriptions associated with
a single subscriber, application, and subscription class.

Visual Basic .NET

Public Sub Initialize(NSApplication, String, String)

C#

public void Initialize(NSApplication, string, string);

C++

public: void Initialize(NSApplication, String*, String*);

JScript

public function Initialize(NSApplication, String, String);

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration.Initialize Method (NSApplication,
String)
SubscriptionEnumeration.Initialize Method (NSApplication, String)

Initializes an object of the SubscriptionEnumeration class. The set of subscriptions returned is all subscriptions associated with
a particular application and subscription class, regardless of subscriber.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal subscriptionClassName As
_ String)

C#

public void Initialize(NSApplication application, string subscriptionClassName);

C++

public: void Initialize(NSApplication application, String* subscriptionClassName);

JScript

public function Initialize(application : NSApplication, subscriptionClassName : String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the collection of subscriptions.

subscriptionClassName

A string containing the name of the subscription class.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriptionEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize a SubscriptionEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, mySubscriptionEnumeration

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a SubscriptionEnumeration object.
set mySubscriptionEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration")
mySubscriptionEnumeration.Initialize myApplication, subscriptionClassName

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

SubscriptionEnumeration.Initialize Method (NSApplication,
String, String)
SubscriptionEnumeration.Initialize Method (NSApplication, String, String)

Initializes an object of the SubscriptionEnumeration class. The set of subscriptions returned is all subscriptions associated with
a single subscriber, application, and subscription class.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal subscriptionClassName As
_ String, ByVal subscriberId As String)

C#

public void Initialize(NSApplication application, string subscriptionClassName, string
subscriberId);

C++

public: void Initialize(NSApplication application, String* subscriptionClassName, String*
subscriberId);

JScript

public function Initialize(application : NSApplication, subscriptionClassName : String,
subscriberId : String);

Parameters

application

An NSApplication object that represents the Notification Services application containing the collection of subscriptions.

subscriptionClassName

A string containing the name of the subscription class.

subscriberId

A string containing the subscriber ID of the subscriber to whom all returned subscriptions must belong.

Exceptions

Exception Type Condition
ArgumentNullException The application argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a SubscriptionEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize a SubscriptionEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myApplication, mySubscriptionEnumeration, subscriberId

const instanceName = "MyInstanceName"
const applicationName = "MyApplicationName"
const subscriptionClassName = "MySubscriptionClassName"
subscriberId = "TestSubscriber"

'Create & initialize an NSInstance object.

set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize an NSApplication object.
set myApplication =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSApplication")
myApplication.Initialize myInstance, applicationName

'Create & initialize a SubscriptionEnumeration object.
set mySubscriptionEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.SubscriptionEnumeration")
mySubscriptionEnumeration.Initialize myApplication, subscriptionClassName, subscriberId

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

SubscriptionEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone Class
TimeZone Class

Represents a valid time zone. Exists to support a set of time zone properties and expose them for use in your subscription
management application.

For a list of all members of this type, see TimeZone Members.

System.Object

Microsoft.SqlServer.NotificationServices.TimeZone

Visual Basic .NET

NonInheritable Public Class TimeZone Implements ITimeZone

C#

public sealed class TimeZone : ITimeZone

C++

public __gc __sealed class TimeZone : public ITimeZone

JScript

public class TimeZone implements ITimeZone

Remarks

An object of the TimeZone class represents a valid time zone. A time zone ID is used in setting subscription schedule information.

The TimeZone class has no constructor. To create a TimeZone object, you must return one from the
TimeZoneEnumeration.Item property.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone Members
TimeZone Members

Public Properties

DaylightName Gets the daylight savings time name for the
time zone.

DisplayName Gets the language-independent name for
the time zone.

Language Gets the language for the time zone.
LocationName Gets the location name for the time zone.
StandardName Gets the standard time name for the time

zone.
TimeZoneId Gets the identifier for the time zone.
TimeZoneName Gets the Notification Services-assigned

name for the time zone.
UtcOffset Gets the Universal Time Coordinate (UTC)

offset value for the time zone.

See Also

TimeZone Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone Properties
TimeZone Properties

Public Properties

DaylightName Gets the daylight savings time name for the
time zone, for example, "Central Europe
Daylight Time".

DisplayName Gets the language-independent name for
the time zone.

Language Gets the language in which the selected
time zone information is stored.

LocationName Gets the location name for the time zone,
for example, "Central Europe Time".

StandardName Gets the standard name for the time zone,
for example, "Central Europe Standard
Time".

TimeZoneId Gets the identifier for the time zone.
TimeZoneName Gets the Notification Services–assigned

name for the time zone, for example, "
(GMT+01:00) Belgrade, Bratislava,
Budapest, Ljubljana, Prague".

UtcOffset Gets the Universal Time Coordinate (UTC)
offset value for the time zone.

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.DaylightName Property
TimeZone.DaylightName Property

Gets the daylight savings time name for the time zone, for example, "Central Europe Daylight Time".

Visual Basic .NET

Public Property DaylightName As String

C#

public string DaylightName {get;}

C++

public: __property String* get_DaylightName();

JScript

public function get DaylightName() : String;

Property Value

A string containing the daylight savings time name for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.DisplayName Property
TimeZone.DisplayName Property

Gets the language-independent display name for the time zone.

Visual Basic .NET

Public Property DisplayName As String

C#

public string DisplayName {get;}

C++

public: __property String* get_DisplayName();

JScript

public function get DisplayName() : String;

Property Value

A string containing the display name for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.Language Property
TimeZone.Language Property

Gets the language in which the selected time zone information is stored.

Visual Basic .NET

Public Property Language As String

C#

public string Language {get;}

C++

public: __property String* get_Language();

JScript

public function get Language() : String;

Property Value

A string containing the language for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.LocationName Property
TimeZone.LocationName Property

Gets the location name for the time zone, for example, "Central Europe Time".

Visual Basic .NET

Public Property LocationName As String

C#

public string LocationName {get;}

C++

public: __property String* get_LocationName();

JScript

public function get LocationName() : String;

Property Value

A string containing the location name for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.StandardName Property
TimeZone.StandardName Property

Gets the standard name for the time zone, for example, "Central Europe Standard Time".

Visual Basic .NET

Public Property StandardName As String

C#

public string StandardName {get;}

C++

public: __property String* get_StandardName();

JScript

public function get StandardName() : String;

Property Value

A string containing the standard name for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.TimeZoneId Property
TimeZone.TimeZoneId Property

Gets the identifier for the time zone.

Visual Basic .NET

Public Property TimeZoneId As Short

C#

public short TimeZoneId {get;}

C++

public: __property short get_TimeZoneId();

JScript

public function get TimeZoneId() : Int16;

Property Value

A short value containing the time zone identifier.

Remarks

The TimeZoneId property value can be used as part of the Subscription.ScheduleStart property value for scheduled
subscriptions.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.TimeZoneName Property
TimeZone.TimeZoneName Property

Gets the Notification Services–assigned name for the time zone, for example, "(GMT+01:00) Belgrade, Bratislava, Budapest,
Ljubljana, Prague".

Visual Basic .NET

Public Property TimeZoneName As String

C#

public string TimeZoneName {get;}

C++

public: __property String* get_TimeZoneName();

JScript

public function get TimeZoneName() : String;

Property Value

A string containing the time zone name.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZone.UtcOffset Property
TimeZone.UtcOffset Property

Gets the Universal Time Coordinate (UTC) offset value for the time zone.

Visual Basic .NET

Public Property UtcOffset As Integer

C#

public int UtcOffset {get;}

C++

public: __property int get_UtcOffset();

JScript

public function get UtcOffset() : int;

Property Value

An integer representing the UTC offset value for the time zone.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZone Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Class
TimeZoneEnumeration Class

Represents the collection of time zones available within a given Notification Services instance. This class allows you to populate a
time zone drop-down box in your subscription management application.

For a list of all members of this type, see TimeZoneEnumeration Members.

System.Object

Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration

Visual Basic .NET

Public Class TimeZoneEnumeration Implements ITimeZoneEnumeration, IEnumerable

C#

public class TimeZoneEnumeration : ITimeZoneEnumeration, IEnumerable

C++

public __gc __sealed class TimeZoneEnumeration : public ITimeZoneEnumeration, IEnumerable

JScript

public class TimeZoneEnumeration implements ITimeZoneEnumeration, IEnumerable

Remarks

The TimeZoneEnumeration class allows an application to iterate through the set of time zones available within a given
Notification Services instance. The set of time zones can be provided in any of the languages that Notification Services supports.
The language of the enumeration is selected when the TimeZoneEnumeration object is initialized. This class provides an Item
property to return a TimeZone object that represents a specific time zone.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Members
TimeZoneEnumeration Members

Public Constructors

TimeZoneEnumeration Constructor Overloaded. Creates a new object of the
TimeZoneEnumeration class.

Public Properties

Item Returns a TimeZone object, which
represents a valid time zone.

In C#, this property is the indexer for the
TimeZoneEnumeration class.

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the time
zones.

Initialize Initializes an object of the
TimeZoneEnumeration class.

See Also

TimeZoneEnumeration Class

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Constructor
TimeZoneEnumeration Constructor

Creates a new object of the TimeZoneEnumeration class.

Overload List

Creates an uninitialized object of the TimeZoneEnumeration class. It is used along with the Initialize method to support the
two-step class initialization required by COM interop.

Visual Basic .NET

Public Sub New()

C#

public TimeZoneEnumeration();

C++

public: TimeZoneEnumeration();

JScript

public function TimeZoneEnumeration();

Creates a new object of the TimeZoneEnumeration class, and initializes it with a reference to an NSInstance object, and a
string indicating the language to be used.

Visual Basic .NET

Public Sub New(NSInstance, String)

C#

public TimeZoneEnumeration(NSInstance, string);

C++

public: TimeZoneEnumeration(NSInstance, String*);

JScript

public function TimeZoneEnumeration(NSInstance, String);

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Constructor ()
TimeZoneEnumeration Constructor ()

Creates an uninitialized object of the TimeZoneEnumeration class.

Visual Basic .NET

Public Sub New()

C#

public TimeZoneEnumeration();

C++

public: TimeZoneEnumeration();

JScript

public function TimeZoneEnumeration();

Remarks

The parameter-less constructor is used in conjunction with the Initialize method to enable COM interoperability. After
construction, the resulting object must be initialized with a reference to an NSInstance object and a string containing the desired
language for the time zone data before it can be used.

Example

The following example shows how to create and initialize a TimeZoneEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myTimeZoneEnumeration

const instanceName = "MyInstanceName"
language = Request.Form("PreferredLanguage")

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a TimeZoneEnumeration object.
set myTimeZoneEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration")
myTimeZoneEnumeration.Initialize myInstance, language

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Constructor (NSInstance, String)
TimeZoneEnumeration Constructor (NSInstance, String)

Creates and initializes an object of the TimeZoneEnumeration class.

Visual Basic .NET

Public Sub New(ByVal instance As NSInstance, ByVal language As String)

C#

public TimeZoneEnumeration(NSInstance instance, string language);

C++

public: TimeZoneEnumeration(NSInstance instance, String* language);

JScript

public function TimeZoneEnumeration(instance : NSInstance, language : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the collection of time zones.

language

A string indicating the language in which the time zone data is to be returned.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Example

Visual Basic .NET, C#

The following examples show how to create and initialize a TimeZoneEnumeration object in managed code:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim language As String = ddPreferredLanguage.SelectedItem.Value

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a TimeZoneEnumeration object.
Dim myTimeZoneEnumeration As New
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language)

C#

string instanceName = "MyInstanceName";
string language = ddPreferredLanguage.SelectedItem.Value;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a TimeZoneEnumeration object.
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration myTimeZoneEnumeration = new
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language);

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Properties
TimeZoneEnumeration Properties

Public Properties

Item Returns a TimeZone object, which
represents a valid time zone.

In C#, this property is the indexer for the
TimeZoneEnumeration class.

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration.Item Property
TimeZoneEnumeration.Item Property

Returns a TimeZone object, which represents a valid time zone.

C#

In C#, this property is the indexer for the TimeZoneEnumeration class.

Visual Basic .NET

Public Property Item(ByVal timeZoneId As Short) As TimeZone

C#

public TimeZone this[short timeZoneId] {get;}

C++

public: __property TimeZone get_Item(short timeZoneId);

JScript

returnValue = TimeZoneEnumerationObject.Item(timeZoneId);
-or-
returnValue = TimeZoneEnumerationObject(timeZoneId);

Parameters

timeZoneId

The identifier of the time zone that you want returned.

Property Value

A TimeZone object, which represents a time zone.

Exceptions

Exception Type Condition
IndexOutOfRangeException No record can be identified using the time

zone ID provided.

Example

Visual Basic .NET, C#

The following examples show how to use the Item property to return a TimeZone object:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim timeZoneId As Short = 40
Dim language As String = ddPreferredLanguage.SelectedItem.Value

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a TimeZoneEnumeration object.
Dim myTimeZoneEnumeration As New
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language)

'Use the Item property to return a TimeZone object.
Dim myTimeZone As Microsoft.SqlServer.NotificationServices.TimeZone =
myTimeZoneEnumeration(timeZoneId)

C#

string instanceName = "MyInstanceName";
short timeZoneId = 40;
string language = ddPreferredLanguage.SelectedItem.Value;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a TimeZoneEnumeration object.
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration myTimeZoneEnumeration = new
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language);

//Use the Item property to return a TimeZone object.
Microsoft.SqlServer.NotificationServices.TimeZone myTimeZone =
myTimeZoneEnumeration[timeZoneId];

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration Methods
TimeZoneEnumeration Methods

Public Methods

GetEnumerator Returns an IEnumerator interface that
allows you to iterate through the time
zones.

Initialize Initializes an object of the
TimeZoneEnumeration class.

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration.GetEnumerator Method
TimeZoneEnumeration.GetEnumerator Method

Gets an IEnumerator interface that allows you to iterate through the collection of time zones represented by the
TimeZoneEnumeration object.

Visual Basic .NET

Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

C#

public IEnumerator GetEnumerator();

C++

public: IEnumerator* GetEnumerator();

JScript

public function GetEnumerator() : IEnumerator;

Return Value

An IEnumerator interface for the TimeZoneEnumeration object.

Implements

IEnumerable.GetEnumerator

Remarks

Use this method to return an IEnumerator interface that allows you to iterate through the time zones in a
TimeZoneEnumeration object. An initialized TimeZoneEnumeration object represents the collection of time zones in a
specified Notification Services instance.

Example

Visual Basic .NET, C#

The following examples show how to use a TimeZoneEnumeration object to iterate through a set of time zones. The
GetEnumerator method makes the For Each and foreach statements possible:

Visual Basic .NET

Dim instanceName As String = "MyInstanceName"
Dim language As String = ddPreferredLanguage.SelectedItem.Value

'Create an NSInstance object.
Dim myInstance As New Microsoft.SqlServer.NotificationServices.NSInstance(instanceName)

'Create a TimeZoneEnumeration object.
Dim myTimeZoneEnumeration As New
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language)

'Iterate through the time zones.
Dim timeZone As Microsoft.SqlServer.NotificationServices.TimeZone
For Each timeZone In myTimeZoneEnumeration
 Console.WriteLine("Time Zone ID: {0}", TimeZone.TimeZoneId)
Next timeZone

C#

string instanceName = "MyInstanceName";
string language = ddPreferredLanguage.SelectedItem.Value;

//Create an NSInstance object.
Microsoft.SqlServer.NotificationServices.NSInstance myInstance = new
Microsoft.SqlServer.NotificationServices.NSInstance(instanceName);

//Create a TimeZoneEnumeration object.
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration myTimeZoneEnumeration = new
Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration(myInstance, language);

//Iterate through the time zones.
foreach (Microsoft.SqlServer.NotificationServices.TimeZone timeZone in
myTimeZoneEnumeration)
{
 Console.WriteLine("Time Zone ID: {0}", timeZone.TimeZoneId);
}

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

TimeZoneEnumeration.Initialize Method
TimeZoneEnumeration.Initialize Method

Initializes an object of the TimeZoneEnumeration class.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance, ByVal language As String)

C#

public void Initialize(NSInstance instance, string language);

C++

public: void Initialize(NSInstance instance, String* language);

JScript

public function Initialize(instance : NSInstance, language : String);

Parameters

instance

An NSInstance object that represents the Notification Services instance containing the collection of time zones.

language

A string indicating the language in which the time zone data is to be returned.

Exceptions

Exception Type Condition
ArgumentNullException The instance argument is null.

Remarks

The Initialize method is used in conjunction with the parameter-less constructor to enable COM interoperability. It must be
called before any other property or method is called on a TimeZoneEnumeration object created with the parameter-less
constructor.

Example

The following example shows how to create and initialize a TimeZoneEnumeration object in unmanaged Microsoft Visual
Basic® Scripting Edition (VBScript) code:

Dim myInstance, myTimeZoneEnumeration

const instanceName = "MyInstanceName"
language = Request.Form("PreferredLanguage")

'Create & initialize an NSInstance object.
set myInstance =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.NSInstance")
myInstance.Initialize instanceName

'Create & initialize a TimeZoneEnumeration object.
set myTimeZoneEnumeration =
WScript.CreateObject("Microsoft.SqlServer.NotificationServices.TimeZoneEnumeration")
myTimeZoneEnumeration.Initialize myInstance, language

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP

Professional

See Also

TimeZoneEnumeration Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter Interface
IContentFormatter Interface

Provides a framework for developing a custom content formatter. A content formatter is used to format notification data for
display.

For a list of all members of this type, see IContentFormatter Members.

Microsoft.SqlServer.NotificationServices.IContentFormatter

Visual Basic .NET

Public Interface IContentFormatter

C#

public interface IContentFormatter

C++

public __gc __interface IContentFormatter

JScript

public interface IContentFormatter

Remarks

This interface provides a framework for developing a custom content formatter. Any custom content formatters that you develop
must implement this interface in order to interact with the Notification Services system.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

IContentFormatter Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter Members
IContentFormatter Members

Public Methods

Close Notifies the content formatter to release
any resources it is holding, and prepare for
shutdown.

FormatContent Passes raw notification data to the content
formatter for formatting.

Initialize Notifies the content formatter that it must
perform initialization.

See Also

IContentFormatter Interface

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter Methods
IContentFormatter Methods

Public Methods

Close Notifies the content formatter to release
any resources it is holding, and prepare for
shutdown.

FormatContent Passes raw notification data to the content
formatter for formatting.

Initialize Notifies the content formatter that it must
perform initialization.

See Also

IContentFormatter Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter.Close Method
IContentFormatter.Close Method

Closes the content formatter.

Visual Basic .NET

Public Sub Close()

C#

public void Close();

C++

public: void Close();

JScript

public function Close();

Remarks

The distributor calls this method to tell the content formatter to release any resources it is holding, and prepare for shutdown.

Example

For an example of how to implement the IContentFormatter.Close method, see Implementing the Close Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IContentFormatter Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter.FormatContent Method
IContentFormatter.FormatContent Method

Activates the content formatter to format notification data.

Visual Basic .NET

Public Sub FormatContent(ByVal subscriberLocale As String, ByVal deviceTypeName As
String, _ ByVal recipientInfo As RecipientInfo, ByVal _ rawContent() As Hashtable)

C#

public void FormatContent(string subscriberLocale, string deviceTypeName, RecipientInfo
recipientInfo, Hashtable[] rawContent);

C++

public: void FormatContent(String* subscriberLocale, String* deviceTypeName,
RecipientInfo recipientInfo, Hashtable[] rawContent);

JScript

public function FormatContent(subscriberLocale : String, deviceTypeName : String,
recipientInfo : RecipientInfo, rawContent : Hashtable[]);

Parameters

subscriberLocale

A string containing the subscriber locale information.

deviceTypeName

A string indicating the type of the target device for the notification.

recipientInfo

A RecipientInfo object containing the recipient's device address and subscriber ID data.

rawContent

An array of Hashtable objects containing the raw notification data that is to be formatted.

Remarks

The distributor uses this method to pass raw notification data to the content formatter and have it generate formatted content.

Example

For an example of how to implement the IContentFormatter.FormatContent method, see Implementing the FormatContent
Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IContentFormatter Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IContentFormatter.Initialize Method
IContentFormatter.Initialize Method

Initializes the content formatter.

Visual Basic .NET

Public Sub Initialize(ByVal arguments As StringDictionary, ByVal digest As Boolean)

C#

public void Initialize(StringDictionary arguments, bool digest);

C++

public: void Initialize(StringDictionary arguments, bool digest);

JScript

public function Initialize(arguments : StringDictionary, digest : Boolean);

Parameters

arguments

A StringDictionary object containing the names and values of the initialization arguments. The values in the StringDictionary
object are taken from the /Notification Classes/NotificationClass/ContentFormatter/Arguments section of the application
definition file (ADF).

digest

A Boolean value indicating whether the notification class for which the content formatter is being used has digest delivery
enabled. If this parameter is true, then multiple sets of notification data that are passed in a single call to FormatContent should
be aggregated into a single digest notification.

Remarks

The distributor calls this method to notify the content formatter that it must perform initialization. The arguments parameter
provides the initialization arguments for the content formatter. These arguments are defined in the
/NotificationClass/NotificationClasses/ContentFormatter/Arguments section of the ADF.

The digest parameter indicates whether digest delivery is being used as specified by the /Notification
Classes/NotificationClass/DigestDelivery setting in the ADF. The content formatter should store the value of this parameter,
and use it to decide whether to do digest aggregation in the call to the FormatContent method.

Example

For an example of how to implement the IContentFormatter.Initialize method, see Implementing the Initialize Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IContentFormatter Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol Interface
IDeliveryProtocol Interface

Provides a framework for developing a custom delivery protocol, which can be used by one or more delivery channels. A delivery
protocol is used to create a notification message and route it to an external delivery system for delivery.

For a list of all members of this type, see IDeliveryProtocol Members.

Microsoft.SqlServer.NotificationServices.IDeliveryProtocol

Visual Basic .NET

Public Interface IDeliveryProtocol

C#

public interface IDeliveryProtocol

C++

public __gc __interface IDeliveryProtocol

JScript

public interface IDeliveryProtocol

Remarks

This interface provides a framework for developing a custom delivery protocol. Any custom delivery protocols that you develop
must implement this interface in order to interact with the Notification Services system.

Note The IHttpProtocolProvider interface is offered to speed development of HTTP-based delivery protocols,
because these protocols are commonly candidates for custom development. The IDeliveryProtocol interface is to be
used for custom delivery protocols that implement other protocols, or for HTTP-based delivery protocols that require
more flexibility than IHttpProtocolProvider provides. For more information about the IHttpProtocolProvider
interface, see IHttpProtocolProvider Interface.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol Members
IDeliveryProtocol Members

Public Methods

Close Notifies the delivery protocol to release any
resources it is holding, and prepare for
shutdown.

DeliverNotification Passes formatted notification data to the
delivery protocol, which then generates the
notification message (if necessary) and
routes it to an external delivery system.

Flush Notifies the delivery protocol that it must
either complete or abort all pending
operations for notifications it is handling.

Initialize Notifies the delivery protocol that it must
perform initialization.

See Also

IDeliveryProtocol Interface

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol Methods
IDeliveryProtocol Methods

Public Methods

Close Notifies the delivery protocol to release any
resources it is holding, and prepare for
shutdown.

DeliverNotification Passes formatted notification data to the
delivery protocol, which then generates the
notification message (if necessary) and
routes it to an external delivery system.

Flush Notifies the delivery protocol that it must
either complete or abort all pending
operations for notifications it is handling.

Initialize Notifies the delivery protocol that it must
perform initialization.

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol.Close Method
IDeliveryProtocol.Close Method

Closes the delivery protocol.

Visual Basic .NET

Public Sub Close()

C#

public void Close();

C++

public: void Close();

JScript

public function Close();

Remarks

The distributor calls this method to tell the delivery protocol to release any resources it is holding, and prepare for shutdown.

Example

For an example of how to implement the IDeliveryProtocol.Close method, see Implementing the Close Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol.DeliverNotification Method
IDeliveryProtocol.DeliverNotification Method

Activates the delivery protocol to package the notification data (if necessary) and route it to the external delivery system.

Visual Basic .NET

Public Sub DeliverNotification(ByVal headersList() As NotificationHeaders, ByVal body As
String)

C#

public void DeliverNotification(NotificationHeaders[] headersList, string body);

C++

public: void DeliverNotification(NotificationHeaders[] headersList, String* body);

JScript

public function DeliverNotification(headersList : NotificationHeaders[], body: String);

Parameters

headersList

An array of NotificationHeaders objects containing the header information for the notifications to be delivered.

body

The formatted notification data that comprises the body of the notification message.

Remarks

The distributor uses this method to pass formatted notification data (created by the content formatter and passed as the body
parameter) and header information (collected by the distributor from the
/NotificationClass/NotificationClasses/Protocols/Protocol/Fields section of the ADF) to the delivery protocol. The delivery
protocol then generates the notification message (if necessary) and hands it off to an external delivery system.

Example

For an example of how to implement the IDeliveryProtocol.DeliverNotification method, see Implementing the
DeliverNotification Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol.Flush Method
IDeliveryProtocol.Flush Method

Tells the delivery protocol to either complete and send, or abort, any notifications it is currently processing.

Visual Basic .NET

Public Sub Flush()

C#

public void Flush();

C++

public: void Flush();

JScript

public function Flush();

Remarks

The distributor calls this method to notify the delivery protocol that it must either complete or abort all pending operations for
notifications it is handling.

Example

For an example of how to implement the IDeliveryProtocol.Flush method, see Implementing the Flush Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IDeliveryProtocol.Initialize Method
IDeliveryProtocol.Initialize Method

Initializes the delivery protocol.

Visual Basic .NET

Public Sub Initialize(ByVal channelArgs As StringDictionary, ByVal multicast As Boolean,
ByVal nsc As NotificationStatusCallback)

C#

public void Initialize(StringDictionary channelArgs, bool multicast,
NotificationStatusCallback nsc);

C++

public: void Initialize(StringDictionary channelArgs, bool multicast,
NotificationStatusCallback nsc);

JScript

public function Initialize(channelArgs : StringDictionary, multicast : Boolean, nsc :
NotificationStatusCallback);

Parameters

channelArgs

A StringDictionary object containing the names and values of the initialization arguments for the delivery channel in which the
protocol is being used.

multicast

A Boolean value indicating whether multicast delivery is being used.

nsc

A NotificationStatusCallback delegate that the delivery protocol can use to send notification delivery status information back
to the distributor.

Remarks

The distributor calls this method to notify the delivery protocol that it must perform initialization. The arguments parameter
provides the initialization arguments for the delivery protocol. The arguments parameter values are collected by the distributor
from the /DeliveryChannels/DeliveryChannel/Arguments section of the configuration file. The protocol should store the
value of the nsc parameter for later use to indicate notification status.

Example

For an example of how to implement the IDeliveryProtocol.Initialize method, see Implementing the Initialize Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IDeliveryProtocol Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider Interface
IEventProvider Interface

Provides a framework for developing a hosted continuous event provider. An event provider collects events and submits them to
a Notification Services application, where they are matched with subscription information to produce notifications.

For a list of all members of this type, see IEventProvider Members.

Microsoft.SqlServer.NotificationServices.IEventProvider

Visual Basic .NET

Public Interface IEventProvider

C#

public interface IEventProvider

C++

public __gc __interface IEventProvider

JScript

public interface IEventProvider

Remarks

This interface provides a framework for developing a hosted continuous event provider. Any custom continuous event providers
that you develop must implement this interface if you want them to interact with the provider host component of the
NS$instance_name service.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

IEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider Members
IEventProvider Members

Public Methods

Initialize Notifies the continuous event provider that
it must perform initialization.

Run Notifies the continuous event provider to
start collecting events.

Terminate Notifies the continuous event provider to
stop collecting events, and to release any
resources it is holding.

See Also

IEventProvider Interface

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider Methods
IEventProvider Methods

Public Methods

Initialize Notifies the continuous event provider that
it must perform initialization.

Run Notifies the continuous event provider to
start collecting events.

Terminate Notifies the continuous event provider to
stop collecting events, and to release any
resources it is holding.

See Also

IEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider.Initialize Method
IEventProvider.Initialize Method

Initializes the event provider.

Visual Basic .NET

Public Sub Initialize(ByVal application As NSApplication, ByVal providerName As String, _
ByVal args As StringDictionary, ByVal stopDelegate As StopHandler)

C#

public void Initialize(NSApplication application, string providerName, StringDictionary
args, StopHandler stopDelegate);

C++

public: void Initialize(NSApplication application, String* providerName, StringDictionary
args, StopHandler stopDelegate);

JScript

public function Initialize(application : NSApplication, providerName : String, args :
StringDictionary, stopDelegate : StopHandler);

Parameters

application

A NSApplication object that represents the Notification Services application to which this event provider delivers events.

providerName

A string containing the name of the event provider.

args

A StringDictionary object containing the names and values of the initialization arguments.

stopDelegate

A StopHandler delegate that the event provider can use to call back to the provider host to request termination.

Remarks

The provider host calls this method to notify the continuous event provider that it must perform initialization. The args parameter
provides the initialization arguments for the event provider. These arguments are defined in the
/Providers/HostedProvider/Arguments section of the application definition file (ADF).

Example

For an example of how to implement the IEventProvider.Initialize method, see Implementing the Initialize Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider.Run Method
IEventProvider.Run Method

Activates the event provider to begin collecting events.

Visual Basic .NET

Public Function Run() As Boolean

C#

public bool Run();

C++

public: bool Run();

JScript

public function Run() : Boolean;

Return Value

A Boolean value that indicates whether the event provider was able to run successfully.

Remarks

The provider host calls this method to tell the continuous event provider to start collecting events.

When the provider host calls the Run method, it provides a thread of execution to the event provider. The thread is handed back
to the provider host when the event provider returns from the Run call.

Run returns true if the continuous event provider is prepared to have its Run method called again; otherwise Run returns false.

Example

For an example of how to implement the IEventProvider.Run method, see Implementing the Run Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IEventProvider.Terminate Method
IEventProvider.Terminate Method

Terminates the event provider.

Visual Basic .NET

Public Sub Terminate()

C#

public void Terminate();

C++

public: void Terminate();

JScript

public function Terminate();

Remarks

The provider host calls this method to tell the continuous event provider to stop collecting events, and to release any resources it
is holding.

Example

For an example of how to implement the IEventProvider.Terminate method, see Implementing the Terminate Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider Interface
IHttpProtocolProvider Interface

Provides a framework for developing a custom HTTP-based delivery protocol.

For a list of all members of this type, see IHttpProtocolProvider Members.

Microsoft.SqlServer.NotificationServices.IHttpProtocolProvider

Visual Basic .NET

Public Interface IHttpProtocolProvider

C#

public interface IHttpProtocolProvider

C++

public __gc __interface IHttpProtocolProvider

JScript

public interface IHttpProtocolProvider

Remarks

This interface provides a framework for developing a custom HTTP-based delivery protocol. Because HTTP-based delivery
protocols are common candidates for custom development, this class interface is provided to simplify that type of development.
The IDeliveryProtocol interface is to be used for custom delivery protocols that implement other protocols, or for HTTP-based
delivery protocols that require more flexibility than IHttpProtocolProvider provides.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider Members
IHttpProtocolProvider Members

Public Methods

Close Notifies the delivery protocol to release any
resources it is holding, and prepare for
shutdown.

FormatEnvelope Passes formatted notification data to the
delivery protocol, which then uses this
information to create the HTTP envelope.

Initialize Notifies the delivery protocol that it must
perform initialization.

ProcessResponse Passes the HTTP response to the delivery
protocol for processing.

See Also

IHttpProtocolProvider Interface

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider Methods
IHttpProtocolProvider Methods

Public Methods

Close Notifies the delivery protocol to release any
resources it is holding, and prepare for
shutdown.

FormatEnvelope Passes formatted notification data to the
delivery protocol, which then uses this
information to create the HTTP envelope.

Initialize Notifies the delivery protocol that it must
perform initialization.

ProcessResponse Passes the HTTP response to the delivery
protocol for processing.

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider.Close Method
IHttpProtocolProvider.Close Method

Closes the delivery protocol.

Visual Basic .NET

Public Sub Close()

C#

public void Close();

C++

public: void Close();

JScript

public function Close();

Remarks

The distributor calls this method to tell the delivery protocol to release any resources it is holding, and prepare for shutdown.

Example

For an example of how to implement the IHttpProtocolProvider.Close method, see Implementing the Close Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider.FormatEnvelope Method
IHttpProtocolProvider.FormatEnvelope Method

The distributor uses this method to pass formatted notification data to the delivery protocol, which then uses this information to
create an appropriately formatted envelope.

Visual Basic .NET

Public Function FormatEnvelope(ByVal protocolFields As StringDictionary, ByVal
requestBody As String) As String

C#

public string FormatEnvelope(StringDictionary protocolFields, string requestBody);

C++

public: String* FormatEnvelope(StringDictionary protocolFields, String* requestBody);

JScript

public function FormatEnvelope(protocolFields : StringDictionary, requestBody: String) :
String;

Parameters

protocolFields

A StringDictionary object containing the protocol fields for the notifications to be delivered.

requestBody

The formatted notification data that comprises the body of the notification message.

Return Value

A string that contains the formatted envelope.

Remarks

You can use any appropriate mechanism to evaluate the values in the arguments and create the envelope. No send functionality
needs to be coded here; this is handled by the Notification Services internal HttpExtension class in combination with the
IHttpProvider interface.

Example

For an example of how to implement the IHttpProtocolProvider.FormatEnvelope method, see Implementing the
FormatEnvelope Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider.Initialize Method
IHttpProtocolProvider.Initialize Method

Initializes the delivery protocol.

Visual Basic .NET

Public Sub Initialize(ByVal channelArguments As StringDictionary)

C#

public void Initialize(StringDictionary channelArguments);

C++

public: void Initialize(StringDictionary channelArguments);

JScript

public function Initialize(channelArguments : StringDictionary);

Parameters

channelArguments

A StringDictionary object containing the arguments for the delivery channel in which the delivery protocol is being used.

Remarks

The distributor calls this method to notify the delivery protocol that it must perform initialization. The arguments parameter
provides the initialization arguments for the delivery protocol. The arguments parameter values are collected by the distributor
from the /DeliveryChannels/DeliveryChannel/Arguments section of the configuration file for the delivery channel in which
the protocol is being used. These delivery channel arguments are in turn passed to the IHttpProtocolProvider.Initialize
method.

Example

For an example of how to implement the IHttpProtocolProvider.Initialize method, see Implementing the Initialize Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IHttpProtocolProvider.ProcessResponse Method
IHttpProtocolProvider.ProcessResponse Method

The distributor uses this method to pass an HTTP response to the delivery protocol for processing.

Visual Basic .NET

Public Function ProcessResponse(ByVal httpResponseCode As HttpStatusCode, ByVal
responseBody As String, postSuccess As Boolean) As Boolean

C#

public bool ProcessResponse(HttpStatusCode httpResponseCode, string responseBody, bool
postSuccess);

C++

public: bool ProcessResponse(HttpStatusCode httpResponseCode, String* responseBody, bool
postSuccess);

JScript

public function ProcessResponse(httpResponseCode : HttpStatusCode, responseBody : String,
postSuccess : Boolean) : Boolean;

Parameters

httpResponseCode

An HttpStatusCode enumeration containing the HTTP response code.

responseBody

A string containing the HTTP response.

postSuccess

A Boolean value indicating whether the post was successful.

Return Value

A Boolean value indicating whether the post was successful.

Remarks

The postSuccess argument indicates whether the protocol thinks the delivery succeeded. This post status might conflict with the
actual delivery status. For instance, the post might have succeeded at the HTTP level, but the delivery itself might have failed. This
additional status information is supplied in the responseBody argument. You must evaluate the values of these arguments to
determine the actual delivery status, and then set the return value to indicate success or failure.

The simplest implementation of the ProcessResponse method is to return the postSuccess value that is passed to the
ProcessResponse as the return value. This is the case if the HTTP response code is the only success or failure indicator from the
remote delivery service (the target of the HTTP post).

Example

For an example of how to implement the IDeliveryProtocol.ProcessResponse method, see Implementing the ProcessResponse
Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IHttpProtocolProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider Interface
IScheduledEventProvider Interface

Provides a framework for developing a hosted scheduled event provider. An event provider collects events and submits them to a
Notification Services application, where they are matched with subscription information to produce notifications.

For a list of all members of this type, see IScheduledEventProvider Members.

Microsoft.SqlServer.NotificationServices.IScheduledEventProvider

Visual Basic .NET

Public Interface IScheduledEventProvider

C#

public interface IScheduledEventProvider

C++

public __gc __interface IScheduledEventProvider

JScript

public interface IScheduledEventProvider

Remarks

This interface provides a framework for developing a hosted scheduled event provider. Any custom scheduled event providers
that you develop must implement this interface if you want them to interact with the provider host function of the
NS$instance_name service.

Requirements

Namespace: Microsoft.SqlServer.NotificationServices

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

Assembly: Microsoft.SqlServer.NotificationServices.dll

See Also

IScheduledEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider Members
IScheduledEventProvider Members

Public Methods

Initialize Notifies the scheduled event provider that it
must perform initialization.

Run Notifies the scheduled event provider to
start collecting events.

Terminate Notifies the scheduled event provider to
stop collecting events, and to release any
resources it is holding.

See Also

IScheduledEventProvider Interface

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider Methods
IScheduledEventProvider Methods

Public Methods

Initialize Notifies the scheduled event provider that it
must perform initialization.

Run Notifies the scheduled event provider to
start collecting events.

Terminate Notifies the scheduled event provider to
stop collecting events, and to release any
resources it is holding.

See Also

IScheduledEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider.Initialize Method
IScheduledEventProvider.Initialize Method

Initializes the event provider.

Visual Basic .NET

Public Sub Initialize(ByVal instance As NSInstance, ByVal providerName As String, _ ByVal
args As StringDictionary, ByVal stopDelegate As StopHandler)

C#

public void Initialize(NSApplication application, string providerName, StringDictionary
args, StopHandler stopDelegate);

C++

public: void Initialize(NSApplication application, String* providerName, StringDictionary
args, StopHandler stopDelegate);

JScript

public function Initialize(application : NSApplication, providerName : String, args :
StringDictionary, stopDelegate : StopHandler);

Parameters

application

A NSApplication object that represents the Notification Services application to which this event provider delivers events.

providerName

A string containing the name of the event provider.

args

A StringDictionary object containing the names and values of the initialization arguments.

stopDelegate

A StopHandler delegate that the event provider can use to call back to the provider host to request termination.

Remarks

The provider host calls this method to notify the scheduled event provider that it must perform initialization. The args parameter
provides the initialization arguments for the event provider. These arguments are defined in the
/Providers/HostedProvider/Arguments section of the application definition file (ADF).

Example

For an example of how to implement the IEventProvider.Initialize method, see Implementing the Initialize Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IScheduledEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider.Run Method
IScheduledEventProvider.Run Method

Activates the event provider to begin collecting events.

Visual Basic .NET

Public Function Run() As Boolean

C#

public bool Run();

C++

public: bool Run();

JScript

public function Run() : Boolean;

Return Value

A Boolean value that indicates whether the event provider was able to run successfully.

Remarks

The provider host calls this method to tell the scheduled event provider to start collecting events.

Run returns true if the scheduled event provider has completed its current schedule interval and is prepared to exit. Otherwise,
Run returns false. A false return disables the event provider, no further calls to the Run method are invoked by the provider
host, and the Terminate method is called to allow the event provider to release any held resources.

Example

For an example of how to implement the IEventProvider.Run method, see Implementing the Run Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IScheduledEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

IScheduledEventProvider.Terminate Method
IScheduledEventProvider.Terminate Method

Terminates the event provider.

Visual Basic .NET

Public Sub Terminate()

C#

public void Terminate();

C++

public: void Terminate();

JScript

public function Terminate();

Remarks

The provider host calls this method to tell the scheduled event provider to stop collecting events, and to release any resources it is
holding.

Example

For an example of how to implement the IEventProvider.Terminate method, see Implementing the Terminate Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

IScheduledEventProvider Members

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

NotificationStatusCallback Delegate
NotificationStatusCallback Delegate

Used by delivery protocols to return delivery status information back to the distributor.

Visual Basic .NET

Public Delegate Sub NotificationStatusCallback(ByVal ParamArray status as
NotificationStatus[])

C#

public delegate void NotificationStatusCallback(params NotificationStatus[] status);

C++

public __gc __delegate void NotificationStatusCallback(NotificationStatus[] status);

JScript

In JScript, you can use the delegates in the Microsoft .NET Framework, but you cannot define your own.

Parameters

status

An array of NotificationStatus objects that contain notification delivery status information.

Remarks

The NotificationStatusCallback delegate allows a delivery protocol to return notification delivery status information to the
distributor.

For more information about how to use this delegate in a custom delivery protocol, see Implementing the DeliverNotification
Method and Implementing the Flush Method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

StopHandler Delegate
StopHandler Delegate

Allows an event provider to request termination.

Visual Basic .NET

Public Delegate Sub StopHandler()

C#

public delegate void StopHandler();

C++

public __gc __delegate void StopHandler();

JScript

In JScript, you can use the delegates in the Microsoft .NET Framework, but you cannot define your own.

Remarks

The StopHandler delegate allows an event provider to request termination. Invoking this delegate asynchronously calls the
Terminate method on the event provider in question.

The StopHandler delegate is passed to the event provider as a parameter to the Initialize method.

Requirements

Platforms: Windows 2000 Server, Windows 2000 Advanced Server, Windows 2000 Data Center Server, Windows XP
Professional

See Also

Microsoft.SqlServer.NotificationServices Namespace

SQL Server Notification Services Books Online

Stored Procedure Reference
Many administrative and informational activities in Notification Services can be performed through stored procedures. The stored
procedures are grouped into the categories shown in the following tables.

Debugging Stored Procedures
NSExecuteRuleFiring NSSetQuantumClock
NSPrepareRuleFiring NSSetQuantumClockDate
NSScheduledSubscriptionList NSVacuum

Event Submission Stored Procedures
NSEventBeginBatch<EventClassName> NSEventSubmitBatch<EventClassName>
NSEventFlushBatch<EventClassName> NSEventWrite<EventClassName>

Reporting Stored Procedures
NSAdministrationHistory NSSnapshotEvents
NSSnapshotApplications NSSnapshotProviders
NSSnapshotDeliveryChannels NSSnapshotSubscriptions

Troubleshooting and Analysis Stored Procedures
NSDiagnosticDeliveryChannel NSQuantumDetails
NSDiagnosticEventClass NSQuantumExecutionTime
NSDiagnosticEventProvider NSQuantumFailures
NSDiagnosticFailedNotifications NSQuantumList
NSDiagnosticNotificationClass NSQuantumPerformance
NSDiagnosticSubscriptionClass NSQuantumsSkipped
NSEventBatchDetails NSScheduledSubscriptionDetails
NSNotificationBatchDetails

Note Unless otherwise indicated, datetime values in Notification Services are in Universal Coordinated Time (UTC).

Note Unless documented otherwise, all system stored procedures return a value of 0 to indicate success. To indicate
failure, a nonzero value is returned.

Other Notification Services Stored Procedures

You might notice instance and application database stored procedures that are not covered in the Stored Procedure Reference.
These stored procedures are intended for internal use only. Calling them explicitly from your applications is not supported.

SQL Server Notification Services Books Online

NSAdministrationHistory
Produces the administrative history report for a Notification Services instance. The report contains information about all
applications hosted by the instance, including the events, notifications, and subscriptions processed during a defined time interval.

Syntax

NSAdministrationHistory
 [[@ApplicationName =] 'app_name'],
 [, [@ReportingIntervalInMinutes =] interval]
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of the Notification Services application, as defined in the configuration file. app_name is nvarchar(255) and has a
default value of NULL, which indicates to report on all applications hosted by the instance..

[@ReportingIntervalInMinutes =] interval
Is the number of minutes in each reporting interval. The report contains one row per interval. interval is int and has a default
value of 60, which indicates 60 minutes per reporting interval.

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime and
has a default value of one month prior to the @EndDateTime value. The result set provides information about all data that has
not been removed; the vacuumer process might have removed data after start_date_time.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. The end_date_time value has a data type of datetime. The default value is the result of
the GETUTCDATE function, which returns the time at which the stored procedure was invoked.

Return Code Values

None

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of the application

that the row
summarizes. This value
is NULL for the row
summarizing the
instance.

IntervalStartDateTime datetime Starting date and time
for the reporting
interval in UTC.

IntervalEndDateTime datetime Ending date and time
for the reporting
interval in UTC.

EventBatchCollectedCount int Number of event
batches collected
during the reporting
interval, based on the
event batch
EndCollectionTime
value.

EventsCollectedCount int Number of events
collected during the
reporting interval,
based on the event
batch
EndCollectionTime
value.

EventsCollectedPerSecond float During event collection,
average number of
events collected per
second during the
reporting interval.

EventBatchesAwaitingGeneration int Number of event
batches written to the
database but not
processed by the
generator.

EventBatchesInCollection int Number of event
batches in the event
collection stage during
the reporting interval.

NotificationBatchGeneratedCount int Number of notification
batches written during
the reporting interval,
based on the
notification batch
EndGenerationTime
value.

NotificationsGeneratedCount int Number of notifications
generated during the
reporting interval,
based on the
notification batch
EndGenerationTime
value.

NotificationsGeneratedPerSecond float Average number of
notifications generated
per second during the
reporting interval.

NotificationBatchesInGeneration int Number of notification
batches in the process
of being created by the
generator during the
reporting interval.

NotificationBatchesAwaitingDistribution int Number of notification
batches waiting to be
picked up by the
distributor during the
reporting interval.

NotificationsSuccessfulDeliveredCount int Number of notifications
successfully delivered
during the reporting
interval.

NotificationsFailedDeliveryCount int Number of notifications
that failed delivery and
were marked as expired
during the reporting
interval.

WorkItemsInProgress int Number of work items
being distributed
during the reporting
interval.

SubscriptionsAddedCount int Number of
subscriptions added to
the application during
the reporting interval.

ScheduledSubscriptionsAdded int Number of scheduled
subscriptions added to
the application during
the reporting interval.

SubscriptionsModified int Number of
subscriptions modified
in the application
during the reporting
interval.

SubscribersAddedCount int Number of subscribers
added to the instance
during the reporting
interval.

SubscriberDevicesAddedCount int Number of subscriber
devices added during
the reporting interval.

The device is assumed
to be added at the same
time the subscriber is
added.

SubscriberDevicesModifiedCount int Number of subscriber
devices updated during
the reporting interval.

The device is assumed
to be updated at the
same time the
subscriber is updated.

Remarks

The NSAdministrationHistory stored procedure is created when you run NSControl Create. It is located in instance databases.

The amount of data gathered by this report is limited by the vacuumer retention period specified in the <VacuumDuration>
node of the application definition file (ADF). Only data that has not been removed can be analyzed.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which Microsoft SQL Server is
running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example produces the administrative history report for the Stock application. Each reporting period is 120 minutes.
The report starts at 11:30 A.M. on April 22, 2002 and ends at 2:30 P.M. the same day:

EXEC NSAdministrationHistory N'Stock', 120,
 '2002-04-22 11:30:00', '2002-04-22 14:30:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticDeliveryChannel
Produces the delivery channel report for a Notification Services application. This report can help you analyze delivery channel
activity and failed notifications.

Syntax

NSDiagnosticDeliveryChannel
 [@ApplicationName =] 'app_name' ,
 [@DeliveryChannelName =] 'delivery_channel_name'
 [, [@ReportingInterval =] interval]
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of a Notification Services application, as defined in the configuration file. app_name is nvarchar(255) and has no
default value.

[@DeliveryChannelName =] 'delivery_channel_name'
Is the name of a delivery channel, as defined in the configuration file. delivery_channel_name is nvarchar(255) and has no
default value.

[@ReportingInterval =] interval
Is the number of generator quanta in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 1, which indicates one generator quantum per interval.

The quantum duration is defined in the application definition file (ADF).

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is (5 * <QuantumDuration> * @ReportingInterval) before the @EndDateTime value. Using the default value,
the result set contains at most five rows, each row representing one reporting interval.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
IntervalStartDateTime datetime Starting date and time for the

reporting interval in UTC.
IntervalEndDateTime datetime Ending date and time for the

reporting interval in UTC.
NotificationBatchesDelivered int Number of notification batches

delivered during the reporting
interval.

NotificationDeliveryAttempts int Number of notifications the
delivery channel attempted to send
during the reporting interval.

NotificationSuccessfulDeliveries int Number of notifications the
delivery channel successfully sent
during the reporting interval.

NotificationAttemptsFailed int Number of notifications the
delivery channel failed to send
during the reporting interval.

NotificationToMessageRatio float During the reporting interval, ratio
of notifications generated to
messages sent.

For digest or multicast delivery,
one message can include multiple
notifications. This column indicates
how many notifications, on
average, are included in digest or
multicast messages.

Remarks

The NSDiagnosticDeliveryChannel stored procedure is created when you run NSControl Create. It is located in each instance
database and calls a stored procedure in the application database.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example produces the delivery channel report for the Stock application and the FileChannel delivery channel. The
report includes 50 generator quanta in each row. The report starts at 5:00 P.M. on May 23, 2002 and ends at 6:00 P.M. the same
day:

EXEC NSDiagnosticDeliveryChannel N'Stock', N'FileChannel', 50,
 '2002-05-23 17:00', '2002-05-23 18:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticEventClass
Produces the event class report for a Notification Services application. This report can help you troubleshoot event collection and
can provide information about the processing of events by the application.

Syntax

NSDiagnosticEventClass
 [@ApplicationName =] 'app_name' ,
 [@EventClassName =] 'event_class_name'
 [, [@ReportingInterval =] interval]
 [, [@StartDateTime = 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of an application, as defined in the configuration file. app_name is nvarchar(255) and has no default value.

[@EventClassName =] 'event_class_name'
Is the name of an event class within the application. event_class_name is nvarchar(255) and has no default value.

[@ReportingInterval =] interval
Is the number of generator quanta in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 1, which indicates one generator quantum per interval.

The quantum duration is defined in the application definition file (ADF).

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is (5 *<QuantumDuration> * @ReportingInterval) before the @EndDateTime value. Using the default value,
the result set contains at most five rows, each row representing one reporting interval.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data
Type

Description

IntervalStartDateTime datetime Starting date and
time for the
reporting interval in
UTC.

IntervalEndDateTime datetime Ending date and
time for the
reporting interval in
UTC.

EventBatchesCollectedCount int Number of event
batches collected
within the reporting
interval, based on
the batch
EndCollectionTime
value.

UnfinishedEventBatches int Number of event
batches started
within the reporting
interval that do not
have an
EndCollectionTime
value.

AvgEventBatchEventCount float For event batches
collected during the
reporting interval,
average number of
events per batch.

AvgEventsCollectedPerSecond float For event batches
collected during the
reporting interval,
average number of
events collected per
second.

AvgGeneratorPickupWaitPerBatch float For event batches
collected during the
reporting interval,
average amount of
time, in seconds, it
took the generator
to fire an event
subscription rule
against the event
batch.

AvgEventChronicleRuleFiringTimePerBatch float For event batches
collected during the
reporting interval,
average time, in
seconds, it took for
the event chronicle
rule to run.

AvgEventSubscriptionRuleFiringTimePerBatch float For event batches
collected during the
reporting interval,
average time, in
seconds, it took for
the event
subscription rules to
run.

EventNotificationBatchCount int From the event
batches collected
during the reporting
interval, number of
notification batches
generated.

EventNotificationsGeneratedCount int From the event
batches collected
during the reporting
interval, number of
notifications
generated.

AvgEventNotificationBatchGenerationTime float For the event
batches collected
during the reporting
interval, average
time, in seconds, for
the generator to
create a notification
batch.

AvgEventNotificationBatchWaitTillDistribution float For the event
batches collected
during the reporting
interval, average
time, in seconds, that
notification batches
waited for the
distributor to pick up
distribution work
items.

EventNotificationDeliveryAttempts int Number of attempts
to deliver
notifications created
from events
collected during the
reporting interval.

EventNotificationSuccessfulDeliveries int For the event
batches collected
during the reporting
interval, number of
successful
notification
deliveries.

EventNotificationFailedAttempts int For the event
batches collected
during the reporting
interval, number of
failed notification
delivery attempts.

EventNotificationsDeliveryNotAttempted int For the event
batches collected
during the reporting
interval, number of
notifications the
distributor has not
yet attempted to
deliver.

EventNotificationsNotYetDelivered int For the event
batches collected
during the reporting
interval, number of
notifications that
have not yet been
delivered either due
to no attempt to
deliver or due to
failure when
attempted.

EventNotificationToMessageRatio float For the event
batches collected
during the reporting
interval, the ratio of
notifications
generated to
messages sent.

For digest or
multicast delivery,
one message can
include multiple
notifications. This
column indicates
how many
notifications, on
average, are
included in digest or
multicast messages.

AvgEventNotificationBatchSucceedDeliveryTime float For the notifications
generated from the
interval's event
batches, average
time to successfully
send the
notifications through
the distribution
process.

Remarks

The NSDiagnosticEventClass stored procedure is created when you run NSControl Create. It is located in each instance
database, and calls a stored procedure in the application database.

Event batches fall within the reporting interval when the EndCollectionTime value is greater than the IntervalStartDateTime
value and less than or equal to the IntervalEndDateTime value.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example produces the event class diagnostic report for the Stock application and StockEvents event class. The
report includes 40 generator quanta in each report interval. The report starts at 5:00 P.M. on May 23, 2002 and ends at 6:00 P.M.
the same day:

EXEC NSDiagnosticEventClass N'Stock', N'StockEvents', 40,
 '2002-05-23 17:00', '2002-05-23 18:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticEventProvider
Produces the event provider report for a Notification Services application. The report contains information about the events
collected through a specified event provider.

Syntax

NSDiagnosticEventProvider
 [@ApplicationName =] 'app_name' ,
 [@EventProviderName =] 'event_provider_name'
 [, [@ReportingInterval =] interval]
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of an application, as defined in the configuration file. app_name is nvarchar(255) and has no default value.

[@EventProviderName =] 'event_provider_name'
Is the name of an event provider within the application. event_provider_name is nvarchar(255) and has no default value.

[@ReportingInterval =] interval
Is the number of generator quanta in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 1, which indicates one generator quantum per interval.

The quantum duration is defined in the application definition file (ADF).

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is (5 * <QuantumDuration> * @ReportingInterval) before the @EndDateTime value. Using the default value,
the result set contains at most five rows, each row representing one reporting interval.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
IntervalStartDateTime datetime Starting date and time for the reporting

interval in UTC.
IntervalEndDateTime datetime Ending date and time for the reporting

interval in UTC.
EventBatchesSubmitted int Number of event batches submitted

through the event provider during the
reporting interval.

EventsSubmitted int Number of events submitted through
the event provider during the reporting
interval.

AvgTimeCollectingEvents float Average time in seconds the event
provider spent collecting events during
the reporting interval.

UnfinishedEventBatches int Number of event batches started by the
event provider during the reporting
interval that do not have an
EndCollectionTime value.

Remarks

The NSDiagnosticEventProvider stored procedure is created when you run NSControl Create. It is located in each instance

database, and calls a stored procedure in the application database.

Event batches fall within the reporting interval when the EndCollectionTime value is greater than IntervalStartDateTime and
less than or equal to IntervalEndDateTime.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

This example produces the event provider diagnostic report for the Stock application and StockEP event provider. The report
includes 50 generator quanta in each report interval. The report starts at 5:00 P.M. on May 23, 2002 and ends at 6:00 P.M. the
same day:

EXEC NSDiagnosticEventProvider N'Stock', N'StockEP', 50,
 '2002-05-23 17:00', '2002-05-23 18:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticFailedNotifications
Produces the failed notifications report for a Notification Services application. The report contains a list of failed notifications. Each
row in the report includes the notification and subscription classes that produced the notification, the subscriber the notification
would have been sent to, and information about delivery attempts. This information can be used to troubleshoot notification
delivery.

Syntax

NSDiagnosticFailedNotifications
 [@ApplicationName =] 'app_name' ,
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of an application, as defined in the configuration file. app_name is nvarchar(255) and has no default value.

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is the system start date and time.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

None

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of the application the failed

notification is from.
NotificationClassName nvarchar(255) Name of the notification class that

generated the notification.
DeliveryChannelName nvarchar(255) Name of the delivery channel that

attempted to deliver the notification.
NotificationBatchId bigint ID of the notification batch that

contains the failed notification.
NotificationId bigint ID of the failed notification.
SubscriberId nvarchar(255) ID number of the subscriber who

should have received the notification.
SubscriberDeviceAddress nvarchar(255) Address, such as an e-mail address, of

the device that should have received
the notification.

NumberOfDeliveryAttempts int Number of times the distributor
attempted to deliver the notification.

LastFailureTime datetime Date and time the notification delivery
last failed.

NextRetryTime datetime Next date and time the distributor will
attempt to deliver the message.

Remarks

The NSDiagnosticFailedNotifications stored procedure is created when you run NSControl Create. It is located in each
instance database, and calls a stored procedure in the application database.

The output is ordered by ApplicationName, NotificationClassName, DeliveryChannelName, and then SubscriberId.

The report does not relate notifications to individual subscriptions because more than one subscription can contribute to a

notification.

Notification Services does not store the reason for failure in the database. The delivery channel can write the reason to the event
log if the delivery service supports error logging.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example produces the failed notifications report for the Stock application. The report includes information for all
notifications that failed between 5:00 P.M. and 6:00 P.M. on May 23, 2002:

EXEC NSDiagnosticFailedNotifications N'Stock',
 '2002-05-23 17:00', '2002-05-23 18:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticNotificationClass
Produces the notification class report for a Notification Services application. The report provides information about the number of
notifications and notification batches processed by the notification class and whether the notifications are being successfully
delivered.

Syntax

NSDiagnosticNotificationClass
 [@ApplicationName =] 'app_name' ,
 [@NotificationClassName =] 'notification_class_name'
 [, [@ReportingInterval =] interval]
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of an application, as defined in the configuration file. app_name is nvarchar(255) and has no default value.

[@NotificationClassName =] 'notification_class_name'
Is the name of the notification class, as defined in the application definition file (ADF). notification_class_name is nvarchar(255)
and has no default value.

[@ReportingInterval =] interval
Is the number of generator quanta in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 1, which indicates one generator quantum per interval.

The quantum duration is defined in the application definition file (ADF).

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is (5 * <QuantumDuration> * @ReportingInterval) before the @EndDateTime value. Using the default value,
the result set contains at most five rows, each row representing one reporting interval.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

0 (success) or 1 (failure)

Result Set

Column Name Data Type Description
IntervalStartDateTime datetime Starting date and time

for the reporting interval
in UTC.

IntervalEndDateTime datetime Ending date and time for
the reporting interval in
UTC.

NotificationBatchesGenerated int Number of notification
batches generated by
the notification class
during the reporting
interval.

NotificationsGenerated int Number of notifications
generated by the
notification class during
the reporting interval.

NotificationsGeneratedPerSecond float For the notification class,
the number of
notifications generated
per second during the
reporting interval.

AvgNotificationBatchWaitTillDistribution float For the notification class,
average wait time before
the distributor picked up
a notification batch
during the reporting
interval.

NotificationDeliveryAttempts int For notification batches
generated during the
reporting interval,
number of delivery
attempts.

NotificationSuccessfulDeliveries int For notification batches
generated during the
reporting interval,
number of notifications
successfully delivered.

NotificationFailedAttempts int For notification batches
generated during the
reporting interval,
number of notifications
marked as failed.

NotificationsDeliveryNotAttempted int For notification batches
generated during the
reporting interval,
number of notifications
the distributor has not
yet attempted to deliver.

NotificationsNotYetDelivered int For notification batches
generated during the
reporting interval,
number of notifications
not yet delivered either
due to no attempt to
deliver or due to failure
when attempted.

NotificationToMessageRatio float For notification batches
generated during the
reporting interval, ratio
of notifications
generated to messages
sent.

For digest or multicast
delivery, one message
can include multiple
notifications. This
column indicates how
many notifications, on
average, are included in
digest or multicast
messages.

AvgNotificationBatchSucceedDeliveryTime float For notification batches
generated during the
reporting interval,
average time to
successfully send the
notifications through the
distribution process.

Remarks

The NSDiagnosticNotificationClass stored procedure is created when you run NSControl Create. It is located in each instance
database and calls a stored procedure in the application database.

Notification batches fall within a reporting interval when the EndGenerationTime value is greater than IntervalStartDateTime
and less than or equal to IntervalEndDateTime.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example produces the notification class diagnostic report for the Stock application and StockNotifications
notification class. The report includes 60 generator quanta in each report interval. The report starts at 5:00 P.M. on May 23, 2002
and ends at 6:00 P.M. the same day:

EXEC NSDiagnosticNotificationClass N'Stock', N'StockNotifications', 60, '2002-05-23
17:00', '2002-05-23 18:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSDiagnosticSubscriptionClass
Produces the subscription class diagnostic report for a Notification Services application. The report provides information, such as
rule firing times and the delivery of notifications based on the subscription class, that you can use to troubleshoot subscription
class processing.

Syntax

NSDiagnosticSubscriptionClass
 [@ApplicationName =] 'app_name' ,
 [@SubscriptionClassName =] 'subscription_class_name'
 [, [@ReportingInterval =] interval]
 [, [@StartDateTime =] 'start_date_time']
 [, [@EndDateTime =] 'end_date_time']

Arguments

[@ApplicationName =] 'app_name'
Is the name of an application, as defined in the configuration file. app_name is nvarchar(255) and has no default value.

[@SubscriptionClassName =] 'subscription_class_name'
Is the name of the subscription class, as defined in the application definition file (ADF). subscription_class_name is
nvarchar(255) and has no default value.

[@ReportingInterval =] interval
Is the number of generator quanta in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 1, which indicates one generator quantum per interval.

The quantum duration is defined in the application definition file (ADF).

[@StartDateTime =] 'start_date_time'
Is the report start date and time in UTC (Universal Time Coordinate or Greenwich mean time). start_date_time is datetime. The
default value is (5 * <QuantumDuration> * @ReportingInterval) before the @EndDateTime value. Using the default value,
the result set contains at most five rows, each row representing one reporting interval.

[@EndDateTime =] 'end_date_time'
Is the report end date and time in UTC. end_date_time is datetime. The default value is the result of the GETUTCDATE function,
which returns the time when the stored procedure is invoked.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data
Type

Description

IntervalStartDateTime datetime Starting date
and time for
the reporting
interval in
UTC.

IntervalEndDateTime datetime Ending date
and time for
the reporting
interval in
UTC.

SubscriptionsScheduledCount int Number of
scheduled
subscriptions
processed
during the
reporting
interval.

AvgScheduledSubscriptionWaitTime float For the
subscriptions
scheduled for
processing
during the
interval,
average lag
time between
the scheduled
time for the
subscription
and the actual
time the
generator
processed the
subscription.

AvgScheduledNotificationGenerationTime float For the
subscriptions
scheduled for
processing
during the
interval,
average time
the generator
used to create
raw
notification
data from
scheduled
subscriptions.

AvgScheduledSubscriptionRuleFiringTime float For the
subscriptions
scheduled for
processing
during the
interval,
average time
used to run
the scheduled
subscription
rule.

ScheduledNotificationBatchCount int For the
subscriptions
scheduled for
processing
during the
interval,
number of
notification
batches
created.

ScheduledNotificationCount int For the
subscriptions
scheduled for
processing
during the
interval,
number of
notifications
created.

AvgScheduledNotificationBatchWaitTillDistribution float Average time a
notification
generated
from a
scheduled
subscription
waited until
the distributor
picked it up for
distribution.

ScheduledNotificationDeliveryAttempts int For the
subscriptions
scheduled for
processing
during the
interval,
number of
attempts to
deliver
notifications.

ScheduledNotificationSuccessfulDeliveries int For the
subscriptions
scheduled for
processing
during the
interval,
number of
successful
notification
deliveries.

ScheduledNotificationFailedAttempts int For the
subscriptions
scheduled for
processing
during the
interval,
number of
failed
notification
delivery
attempts.

ScheduledNotificationsDeliveryNotAttempted int For the
subscriptions
scheduled for
processing
during the
interval,
number of
notifications
not yet
attempted to
be delivered.

ScheduledNotificationsNotYetDelivered int For the
subscriptions
scheduled for
processing
during the
interval,
number of
notifications
not yet
delivered
either due to
no attempt to
deliver or due
to failure when
attempted.

ScheduledNotificationToMessageRatio float For the
subscriptions
scheduled for
processing
during the
interval, ratio
of notifications
generated to
messages sent.

For digest or
multicast
delivery, one
message can
include
multiple
notifications.
This column
indicates how
many
notifications,
on average,
are included in
digest or
multicast
messages.

AvgScheduledNotificationBatchSucceedDeliveryTime float For the
subscriptions
scheduled for
processing
during the
interval,
average time
to send the
notifications
through the
distribution
process
successfully.

Remarks

The NSDiagnosticSubscriptionClass stored procedure is created when you run NSControl Create. It is located in each instance
database, and calls a stored procedure in the application database.

Scheduled subscriptions fall within the reporting interval when the firing time for the scheduled rule is greater than
IntervalStartDateTime and less than or equal to IntervalEndDateTime.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis and db_owner database roles who have permission to run the
Notifications Services extended stored procedures; this permission is granted using the GrantXPExec command. Members of the
sysadmin fixed server role have all necessary permissions.

Example

The following example produces the subscription class diagnostic report for the Stock application and StockSubscriptions
subscription class. The report includes 50 generator quanta in each report interval. The report starts at 5:00 P.M. on May 23, 2002
and ends at 6:00 P.M. the same day:

EXEC NSDiagnosticSubscriptionClass N'Stock', N'StockSubscriptions',
 50, '2002-05-23 17:00', '2002-05-23 18:00'

See Also

GrantXPExec Utility

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSEventBatchDetails
Returns detailed information about an event batch in a Notification Services application. One result set contains general
information about the event batch, such as the event provider name and the time the event batch was collected. A second result
set displays the events that were submitted in the event batch.

Syntax

NSEventBatchDetails
 [@EventClassName =] 'event_class_name' ,
 [@EventBatchId =] event_batch_id

Arguments

[@EventClassName =] 'event_class_name'
Is the name of an event class. event_class_name is nvarchar(255) and has no default value.

[@EventBatchId =] event_batch_id
Is the unique identifier of an event batch. event_batch_id is bigint and has no default value.

Return Code Values

None

Result Sets

NSEventBatchDetails produces two result sets. The first result set contains general information about the event batch.

Column Name Data Type Description
ProviderName nvarchar(255) Name of the event provider that

submitted the batch of events.
EventCount bigint Number of events in the event

batch.
StartCollectionTime datetime Date and time that event batch

collection started, in UTC (Universal
Time Coordinate or Greenwich
mean time).

EndCollectionTime datetime Date and time that event batch
collection ended, in UTC.

CollectionTimeInMS int Total time, in milliseconds, to collect
the batch of events.

The second result set contains details about the events submitted in the event batch, ordered by the EventId column.

Column Name Data Type Description
EventId bigint ID number used to identify an event.
Event_class_field_name
(1-n)

user defined Name of an event class field, as
defined in the application definition
file (ADF). Each field in the event
class is represented by a column in
the result set.

Remarks

The NSEventBatchDetails stored procedure is created when you run NSControl Create. It is located in application databases.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example shows how to produce the event batch details report for the Stock sample application. The report contains
two result sets. The first shows the event provider and event collection information for the event batch, and the second shows the
events submitted in the event batch:

EXEC NSEventBatchDetails N'StockEvents', 1

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSEventBeginBatchEventClassName
Creates a new event batch for a Notification Services application. You typically use this stored procedure to open a new event
batch so you can submit individual events using Transact-SQL. See the Remarks section for more information.

Syntax

NSEventBeginBatchEventClassName
 [@ProviderName =] 'event_provider_name',
 [@EventBatchId =] event_batch_variable OUTPUT

Arguments

[@ProviderName =] 'event_provider_name'
Is the name of the event provider submitting the events. event_provider_name is nvarchar(255) and has no default value.

[@EventBatchId =] event_batch_variable OUTPUT
Is the event batch identification number assigned to the event batch if created successfully. event_batch_variable is an output
variable of type bigint, with no default value.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
EventBatch bigint The event batch ID created

for the new event batch.

Remarks

The NSEventBeginBatchEventClassName stored procedure is created when you run NSControl Create. It is located in
application databases.

To submit individual events to an application using Transact-SQL, use NSEventBeginBatchEventClassName to open the batch,
NSEventWriteEventClassName to write individual events, and NSEventFlushBatchEventClassName to close the event batch.

To use a query to obtain a set of events and then submit them to an application, use NSEventSubmitBatchEventClassName.

Permissions

Execute permissions default to members of the NSEventProvider and NSRunService database roles, the db_owner fixed
database role, and the sysadmin fixed server role.

Example

The following example shows how to begin an event batch, write one event, and then close the event batch. The event provider for
the event batch is StockEP and the event batch ID number is returned in the @BatchID output parameter:

DECLARE @BatchID bigint
EXEC NSEventBeginBatchStockEvents N'StockEP', @BatchID OUTPUT
EXEC NSEventWriteStockEvents
 @EventBatchId=@BatchID,
 @StockSymbol=N'AWKS',
 @StockPrice=68.14
EXEC NSEventFlushBatchStockEvents @BatchID
SELECT @BatchID 'Event Batch'

This example assumes that you are using SQL Query Analyzer, because the event batch ID is returned in the SELECT statement so
you can see which event batch was created.

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSEventFlushBatchEventClassName
Closes an event batch that was opened by NSEventBeginBatchEventClassName. This stored procedure commits the event
collection transaction and then marks the event batch complete. You typically use this stored procedure if you are submitting
individual events using Transact-SQL. See the Remarks section for more information.

Syntax

NSEventFlushBatchEventClassName
 [@EventBatchId =] event_batch_ID
 [, [@EventCount =] number_of_events]

Arguments

[@EventBatchId =] event_batch_ID
Is the ID number of the event batch to commit. event_batch_ID is bigint and has no default value.

[@EventCount =] number_of_events
Is the number of events submitted for the event batch. The stored procedure obtains the default value by querying the event
table.

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
EventCount bigint Number of events submitted in the event batch.

This number is either specified in the
@EventCount argument or obtained by
querying the events table.

Remarks

The NSEventFlushBatchEventClassName stored procedure is created when you run NSControl Create. It is located in
application databases.

To submit individual events to an application using Transact-SQL, use NSEventBeginBatchEventClassName to open the batch,
NSEventWriteEventClassName to write individual events, and NSEventFlushBatchEventClassName to close the event batch.

To use a query to obtain a set of events and then submit them to an application, use NSEventSubmitBatchEventClassName.

Permissions

Execute permissions default to members of the NSEventProvider and NSRunService database roles, the db_owner fixed
database role, and the sysadmin fixed server role.

Example

The following example shows how to begin an event batch, write one event, and then close the event batch. The event provider for
the event batch is StockEP and the event batch ID number is returned in the @BatchID output parameter:

DECLARE @BatchID bigint
EXEC NSEventBeginBatchStockEvents N'StockEP', @BatchID OUTPUT
EXEC NSEventWriteStockEvents
 @EventBatchId=@BatchID,
 @StockSymbol=N'AWKS',
 @StockPrice=68.14
EXEC NSEventFlushBatchStockEvents @BatchID
SELECT @BatchID 'Event Batch'

This example assumes that you are using SQL Query Analyzer, because the event batch ID is returned in the SELECT statement so
you can see which event batch was created.

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSEventSubmitBatchEventClassName
Creates a new event batch, obtains a set of events from a query and then submits those events, optionally runs a post-processing
query, and then closes the event batch. Using a query as the event source enables you to submit multiple events at one time,
unlike the NSEventWriteEventClassName stored procedure.

Syntax

NSEventSubmitBatchEventClassName
 [@ProviderName =] 'event_provider_name' ,
 [@EventsQuery =] 'selection_query' ,
 [@PostQuery =] 'post_processing_query'

Arguments

[@ProviderName =] 'provider_name'
Is the name of the event provider that is submitting the events. provider_name is nvarchar(255) and must be one of the event
providers specified in the application definition file (ADF).

[@EventsQuery =] 'selection_query'
Is the text of the Transact-SQL query used to select the records to be submitted as events. The schema of the records generated
by the query must match the schema of the event table to which they are being submitted. selection_query is nvarchar(4000).

[@PostQuery =] 'post_processing_query'
Is the text of a Transact-SQL query used to do any post-processing cleanup or state maintenance, like updating chronicle tables
or deleting any temporary objects. post_processing_query is nvarchar(4000).

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
EventCount bigint Number of events submitted in the event batch.

This number is obtained by querying the event
table.

Remarks

The NSEventSubmitBatchEventClassName stored procedure is created when you run NSControl Create. It is located in
application databases.

To submit individual events to an application using Transact-SQL, use NSEventBeginBatchEventClassName to open the batch,
NSEventWriteEventClassName to write individual events, and NSEventFlushBatchEventClassName to close the event batch.

Permissions

Execute permissions default to members of the NSEventProvider and NSRunService database roles, the db_owner fixed
database role, and the sysadmin fixed server role.

Example

The following example shows how to use the NSEventSubmitBatchStockEvents stored procedure to obtain stock names and
prices from the Stocks table of the Market database, and then write the data to the NSStockEventsEvents table. This query
specifies an empty post-processing query:

EXEC NSEventSubmitBatchStockEvents
 @ProviderName = N'StockEP',
 @EventsQuery = 'SELECT StockSymbol, StockPrice
 FROM Market.dbo.Stocks',
 @PostQuery = ''

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSEventWriteEventClassName
Submits one event to the events table for the event class. You must use NSEventBeginBatchEventClassName to open a new
batch and NSEventFlushBatchEventClassName to close the batch. You can submit multiple events before closing the batch.

Syntax

NSEventWriteEventClassName
 [@EventBatchId =] event_batch_ID ,
 [@event_class_field_name =] event_class_field_value [, ...n]

Arguments

[@EventBatchId =] event_batch_ID
Is the ID of the event batch for the event. The event batch ID number must exist in the event batches table. event_batch_ID is
bigint and has no default value.

[@event_class_field_name =] event_class_field_value
Provides a name/value pair for an event class field. One event_class_field_name and event_class_field_value pair can be
supplied for each column in the event table. If the column has a default value or accepts NULL, the name/value pair is not
required.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The NSEventWriteEventClassName stored procedure is created when you run NSControl Create. It is located in application
databases.

To submit individual events to an application using Transact-SQL, use NSEventBeginBatchEventClassName to open the batch,
NSEventWriteEventClassName to write individual events, and NSEventFlushBatchEventClassName to close the event batch.

To use a query to obtain a set of events and then submit them to an application, use NSEventSubmitBatchEventClassName.

Permissions

Execute permissions default to members of the NSEventProvider and NSRunService database roles, the db_owner fixed
database role, and the sysadmin fixed server role.

Example

The following example shows how to begin an event batch, write one event, and then close the event batch. The event provider for
the event batch is StockEP and the event batch ID number is returned in the @BatchID output parameter:

DECLARE @BatchID bigint
EXEC NSEventBeginBatchStockEvents N'StockEP', @BatchID OUTPUT
EXEC NSEventWriteStockEvents
 @EventBatchId=@BatchID,
 @StockSymbol=N'AWKS',
 @StockPrice=68.14
EXEC NSEventFlushBatchStockEvents @BatchID
SELECT @BatchID 'Event Batch'

This example assumes that you are using SQL Query Analyzer, because the event batch ID is returned in the SELECT statement so
you can see which event batch was created.

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSExecuteRuleFiring
Prepares and runs Notification Services application rules. This enables you to manually run the generator, running rules to
generate notifications and manage state.

If a rule cannot be fired, the stored procedure attempts to prepare the next rule firing by creating the next quantum, materializing
the appropriate event and scheduled subscription views, and scheduling rule firings.

Syntax

NSExecuteRuleFiring
 [[@ReportExecutionResults =] report_flag]
 [, [@DisableQuantumLimits =] limit_flag]

Arguments

[@ReportExecutionResults =] report_flag

Indicates whether the stored procedure reports information about the execution of the rule firing. Nonzero values result in
information being returned about the rule firing. report_flag is tinyint and has a default value of 1.

[@DisableQuantumLimits =] limit_flag

Indicates whether the stored procedure observes the application-specified event chronicle quantum and subscription quantum
limits. A nonzero value causes the quantum scheduling to ignore the quantum limits. limit_flag is tinyint and has a default value
of 1.

Return Code Values

0 (success) or 1 (failure)

Result Sets

NSExecuteRuleFiring produces up to three result sets. The first result set contains information about any scheduled rules.

Column Name Data Type Description
QuantumId int ID number of the quantum that

contains the rule.
QuantumStartTime datetime Starting date and time, in UTC

(Universal Time Coordinate or
Greenwich mean time), of the
quantum containing the rule.

QuantumEndTime datetime Ending date and time, in UTC, of
the quantum containing the
rule.

RuleName nvarchar(255) Name assigned to the rule in
the application definition file
(ADF). If no rule is ready to run,
this value is NULL.

EventClassName nvarchar(255) For event-triggered rules, name
of the related event class. If the
rule is a scheduled subscription
rule, or if no rule is ready to
run, this value is NULL.

SubscriptionClassName nvarchar(255) Name of the related
subscription class. If the rule is
an event chronicle rule, or if no
rule is ready to run, the value is
NULL.

RuleFiringId int ID number that identifies the
prepared rule firing. The
column is NULL if no rule firing
is ready to run.

EventBatchId bigint ID number that identifies the
related event batch. If the rule is
not an event chronicle or event
subscription rule, the
application is not processing
events in order, or there is no
rule ready to run, the value is
NULL.

StartScanTime datetime Starting date and time, in UTC,
for a prepared scheduled
subscription rule. The starting
date and time must fall
between QuantumStartTime
and QuantumEndTime.

If the rule is not an event
chronicle or event subscription
rule, the application is not
processing events in order, or
there is no rule ready to run,
the value is NULL.

EndScanTime datetime Ending date and time, in UTC,
for a prepared scheduled
subscription rule. The ending
date and time must fall
between QuantumStartTime
and QuantumEndTime.

If the rule is not an event
chronicle or event subscription
rule, the application is not
processing events in order, or
there is no rule ready to run,
the value is NULL.

RemainingQuantumRuleFirings int Number of remaining rule
firings to complete rule firing
for the quantum. This number
count includes any prepared
rule firings, because they have
not run. If there are no rules to
prepare, this value is 0.

The second result set appears only if there are possible effects to any chronicles. The result set is ordered by
PossibleChronicleReferenceByRule.

Column Name Data Type Description
PossibleChronicleReferenceByRule nvarchar(255) Name of event chronicle

associated with a prepared
rule firing.

The third result set appears only if running the stored procedure created notifications. The result set contains information about
the notifications and is grouped by the NotificationClassName value.

Column Name Data Type Description
NotificationClassName nvarchar(255) Name of the notification class that

produced notifications.

NotificationBatchId bigint ID number of the notification batch
that contains the generated
notifications.

NotificationCount bigint Number of notifications generated
by the rule firing.

StartGenerationTime datetime Starting date and time, in UTC, for
the notification batch.

Remarks

The NSExecuteRuleFiring stored procedure is created when you run NSControl Create. It is located in application databases.

The generator must be disabled to run the NSExecuteRuleFiring stored procedure. Because this stored procedure manually
operates the generator, allowing the generator to run at the same time would make using this stored procedure difficult.

Permissions

Execute permissions default to members of the NSGenerator and NSRunService database roles, the db_owner fixed database
role, and the sysadmin fixed server role.

Example

The following example shows how to run prepared rules, reporting on the rule firing. The rule firing does not ignore quantum
limits specified in the ADF:

EXEC NSExecuteRuleFiring 0, 0

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSNotificationBatchDetails
Produces the notification batch details report for a Notification Services application. The report contains information about a
specified notification batch, such as the rule firing that produced the batch and the notifications contained in the batch. Use this
stored procedure to troubleshoot notification generation and to analyze the progression of notifications through the application.

Syntax

NSNotificationBatchDetails
 [@NotificationClassName =] 'notification_class_name' ,
 [@NotificationBatchId =] notification_batch_id

Arguments

[@NotificationClassName =] 'notification_class_name'
Is the name of a notification class. notification_class_name is nvarchar(255) and has no default value.

[@NotificationBatchId =] notification_batch_id
Is the unique identifier used to identify a notification batch. notification_batch_id is bigint and has no default value.

Return Code Values

None

Result Sets

NSNotificationBatchDetails produces two result sets. The first result set contains general information about the notification
batch.

Column Name Data Type Description
RuleFiringId int Unique ID of the rule

firing that produced
the notification
batch.

StartGenerationTime datetime Starting date and
time, in UTC, of the
notification batch
generation.

EndGenerationTime datetime Ending date and
time, in UTC, of the
notification batch
generation.

GenerationTimeInMS int Time, in milliseconds,
to complete the
notification batch.

NotificationBatchExpirationTime datetime Date and time, in
UTC, at which the
notification batch
expires. Notifications
are not delivered
after the expiration
date and time. If this
value is NULL, the
batch has no
expiration value.

NotificationCount int Number of
notifications in the
notification batch.

StatusDescription nvarchar(255) Current status of the
notification batch.

DistributionStartTime datetime Date and time, in
UTC, at which the
distributor started
processing
notifications from
the batch.

NotificationsWithNoDeliveryAttempt int Number of
notifications the
distributor has not
yet attempted to
deliver.

NotificationsSuccessfullyDelivered int Number of
successful
notification
deliveries from the
notification batch.

NotificationsFailedToDeliver int Number of failed
notification
deliveries from the
notification batch.

DeliveryAttempts int Number of attempts
made to deliver
notifications from
the notification
batch.

The second result set contains detailed information about notifications in the notification batch.

Column Name Data Type Description
NotificationId bigint ID number of the

notification within the
notification batch.

SubscriberId nvarchar(255) ID number of the
subscriber for the
notification.

DeviceName nvarchar(255) Name of the subscriber
device for the notification.

SubscriberLocale nvarchar(10) Name of the locale for the
notification.

DeliveryStatus nvarchar(255) Description of the current
delivery status for the
notification.

SentTime datetime Date and time, in UTC, at
which the notification was
successfully sent. If this
value is NULL, the
notification has not been
successfully sent.

LinkedParentNotification bigint If the notification was sent
in a digest or multicast
message, ID of the digest or
multicast message.

DeliveryChannel nvarchar(255) Name of the delivery
channel that sent the
notification.

DeliveryAttempts int Number of delivery
attempts made for the
notification.

NextRetryTime datetime The next available date and
time for a retry attempt
with the notification.

Notification_class_field_name
(1-n)

user defined The name of a notification
class field, as defined in the
application definition file
(ADF). Each field in the
notification class is
represented by a column in
the result set.

Remarks

The NSNotificationBatchDetails stored procedure is created when you run NSControl Create. It is located in application
databases.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

This example produces the two result sets specified earlier in this section for notification batch 1 of the StockNotifications
notification class:

EXEC NSNotificationBatchDetails N'StockNotifications', 1

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSPrepareRuleFiring
Prepares the Notification Services application database for a rule firing. This preparation ensures that a quantum has been
scheduled, event and scheduled subscription views are properly materialized for the quantum, and rule firings are scheduled for
the quantum based on the set of events and subscriptions available.

After the stored procedure completes, the application database has a state equivalent to what exists prior to rule execution during
normal generator operation.

Syntax

NSPrepareRuleFiring
 [[@ReportPossibleEventChronicleUsage =] chronical_usage_flag]
 [, [@DisableQuantumLimits =] quantum_limits_flag]

Arguments

[@ReportPossibleEventChronicleUsage =] chronical_usage_flag
Indicates whether the prepared rule firing procedure returns a list of possible event chronicles affected or used by the rule
firing. A nonzero value causes the routine to return a result set listing the set of event chronicles associated with the prepared
rule firing. chronical_usage_flag is tinyint and has a default value of 1.

[@DisableQuantumLimits =] quantum_limits_flag
Indicates whether the scheduling of a new quantum uses the <ChronicleQuantumLimit> and
<SubscriptionQuantumLimit> application execution settings. A nonzero value indicates that the stored procedure should not
use these settings to skip one or more quantum periods. quantum_limits_flag is tinyint and has a default value of 1.

Return Code Values

0 (success) or 1 (failure)

Result Sets

NSPrepareRuleFiring produces one or two result sets. The first result set contains information about the rule.

Column Name Data Type Description
QuantumId int ID number of the quantum that

contains the rule.
QuantumStartTime datetime Starting date and time, in UTC

(Universal Time Coordinate or
Greenwich mean time), of the
quantum containing the rule.

QuantumEndTime datetime Ending date and time, in UTC, of
the quantum containing the
rule.

RuleName nvarchar(255) Name assigned to the rule in
the application definition file
(ADF). If no rule is ready to run,
this value is NULL.

EventClassName nvarchar(255) For event-triggered rules, name
of the related event class. If the
rule is a scheduled subscription
rule, or if no rule is ready to
run, this value is NULL.

SubscriptionClassName nvarchar(255) Name of the related
subscription class. If the rule is
an event chronicle rule, or if no
rule is ready to run, the value is
NULL.

RuleFiringId int ID number that identifies the
prepared rule firing. The
column is NULL if no rule firing
is ready to run.

EventBatchId bigint ID number that identifies the
related event batch. If the rule is
not an event chronicle or event
subscription rule, the
application is not processing
events in order, or there is no
rule ready to run, the value is
NULL.

StartScanTime datetime Starting date and time, in UTC,
for a prepared scheduled
subscription rule. The starting
date and time must fall
between QuantumStartTime
and QuantumEndTime.

If the rule is not an event
chronicle or event subscription
rule, the application is not
processing events in order, or
there is no rule ready to run,
the value is NULL.

EndScanTime datetime Ending date and time, in UTC,
for a prepared scheduled
subscription rule. The ending
date and time must fall
between QuantumStartTime
and QuantumEndTime.

If the rule is not an event
chronicle or event subscription
rule, the application is not
processing events in order, or
there is no rule ready to run,
the value is NULL.

RemainingQuantumRuleFirings int Number of remaining rule
firings to complete rule firing
for the quantum. This number
count includes any prepared
rule firings, because they have
not run. If there are no rules to
prepare, this value is 0.

The second result set appears only if there are possible effects on the chronicles. The result set is ordered by
PossibleChronicleReferenceByRule.

Column Name Data Type Description
PossibleChronicleReferenceByRule nvarchar(255) Name of the event chronicle

associated with a prepared
rule firing.

Remarks

The NSPrepareRuleFiring stored procedure is created when you run NSControl Create. It is located in application databases.

This stored procedure can be executed only when the generator is in the disabled or disabled pending state.

The stored procedure can be called repetitively without calling NSExecuteRuleFiring, but the state in the application database
will not be altered. The only way to move the application database state beyond a prepared rule firing is to call

NSExecuteRuleFiring or to start the NS$instance_name service, if necessary.

Permissions

Execute permissions default to members of the NSGenerator and NSRunService database roles, the db_owner fixed database
role, and the sysadmin fixed server role.

Example

The following example shows how to prepare the database for the execution of scheduled rules, reporting on the possible use of
event chronicles. The rule firing does not ignore quantum limits specified in the ADF:

EXEC NSPrepareRuleFiring 0, 0

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumDetails
Returns detailed information about a specified quantum. Use this stored procedure to troubleshoot long-running quanta or
analyze quantum processing.

Syntax

NSQuantumDetails
 [@QuantumId =] quantum_id

Arguments

[@QuantumId =] quantum_id
Is the ID of a quantum for the report. quantum_id is int and has no default value. Use the NSQuantumList,
NSQuantumExecutionTime, and NSQuantumFailures stored procedures to obtain quantum IDs.

Return Code Values

None

Result Sets

NSQuantumDetails produces five result sets. The first result set contains general information about the quantum.

Column Name Data Type Description
QuantumStartTime datetime Quantum starting time in

UTC (Universal Time
Coordinate or Greenwich
mean time).

QuantumEndTime datetime Quantum ending time in
UTC; the end time is the
start time plus the quantum
duration.

QuantumStatusDescription nvarchar(255) Text that describes the
current status of the
quantum.

ExecutionTimeInMS int Time, in milliseconds, to
complete quantum
processing.

ExecutionStartTime datetime Date and time, in UTC, at
which the quantum started
processing notifications.

ExecutionEndTime datetime Date and time, in UTC, at
which the quantum stopped
processing notifications.

EventNotificationsGenerated bigint During quantum execution,
number of notifications
generated from event-
triggered rules.

ScheduledNotificationsGenerated bigint During quantum execution,
number of notifications
generated from scheduled
subscription rules.

ChronicleRuleFiringsSkipped nvarchar(255) Indicates whether event
chronicle rule firings were
skipped due to the chronicle
quantum limit for the
application.

SubscriptionRuleFiringsSkipped nvarchar(255) Indicates whether
subscription rule firings
were skipped due to the
subscription quantum limit
for the application.

The second result set contains information about quantum rule firings.

Column Name Data Type Description
RuleFiringId int Unique ID of a rule that fired during

the quantum.
RuleName nvarchar(255) Name of the rule, as defined in the

application definition file (ADF).
ExecutionTimeInMS int Time, in milliseconds, to complete

the rule firing.
PercentageQuantumTime numeric(7, 4) Percentage of overall quantum

execution time used to fire the rule.
ExecutionStartTime datetime Starting date and time, in UTC, for

the rule firing.
ExecutionEndTime datetime Ending date and time, in UTC, for

the rule firing.
RuleTypeDescription nvarchar(250) Describes the type of rule that was

executed; the type is event chronicle,
event subscription, or scheduled
subscription.

EventClassName nvarchar(255) Name of the event class that
supplied events for the rule firing. If
the rule firing type is scheduled
subscription, this column is NULL,
because these rules are not event
triggered.

EventCount bigint Number of events processed by the
rule.

EventBatchId bigint ID of the event batch containing
events for the rule. If the rule firing
type is scheduled subscription, or if
the application is not set to process
events in order, this column is
NULL.

SubscriptionClassName nvarchar(255) Name of the subscription class that
supplied subscriptions for the rule
firing. If the rule firing type is event
chronicle, this column is NULL.

SubscriptionCount bigint Estimated number of subscriptions
processed by the rule. The value is
estimated based on the current
state of the subscriptions in the
application database.

StartScanTime datetime Starting date and time, in UTC, for
the scheduled subscriptions used by
the rule. This column contains a
value only when the rule type is
scheduled subscription and the
application processes events in
order.

EndScanTime datetime Ending date and time, in UTC, for
the scheduled subscriptions used by
the rule. This column contains a
value only when the rule type is
scheduled subscription and the
application processes events in
order.

NotificationsGenerated int Number of notifications generated
by the rule firing.

The third result set contains information about event batches collected during the quantum.

Column Name Data Type Description
EventClassName nvarchar(255) Name of an event class that

submitted an event batch.
EventBatchId bigint ID of the event batch.
EventCount bigint Number of events in the event

batch.
StartCollectionTime datetime Date and time that event batch

collection started, in UTC.
EndCollectionTime datetime Date and time that event batch

collection ended, in UTC.
CollectionTimeInMS int Total time, in milliseconds, to collect

the batch of events.
ProviderName nvarchar(255) Name of the event provider that

submitted the batch of events.
SystemName nvarchar(255) Name of the system where the

event provider is running.

The fourth result set contains information about subscriptions processed during the quantum.

Column Name Data Type Description
SubscriptionClassName nvarchar(255) Name of a subscription class for

which subscriptions were
processed during the quantum.

EventSubscriptionCount bigint Estimated number of active
event-triggered subscriptions for
the subscription class during the
quantum period.

ScheduledSubscriptionCount bigint Estimated number of active
scheduled subscriptions for the
subscription class during the
quantum period.

The fifth report contains information about notifications generated during the quantum.

Column Name Data Type Description
NotificationClassName nvarchar(255) Name of the

notification class
that produced the
notification batch.

NotificationBatchId bigint Unique ID of a
notification batch
generated by a rule
firing within the
quantum.

RuleFiringId int Unique ID of the
rule firing that
produced the
notification batch.

NotificationCount int Number of
notifications in the
notification batch.

NotificationDeliveryAttempts int Number of
attempts made to
delivery
notifications from
the notification
batch.

NotificationSuccessfulDeliveries int Number of
successful
notification
deliveries from the
notification batch.

NotificationFailedAttempts int Number of failed
notification
deliveries from the
notification batch.

NotificationsDeliveryNotAttempted int Number of
notifications the
distributor has not
yet attempted to
deliver.

NotificationsNotYetDelivered int Number of
notifications the
distributor has not
yet successfully
delivered.

NotificationToMessageRatio float Ratio of
notifications
generated to
messages sent.

For digest or
multicast delivery,
one message can
include multiple
notifications. This
column indicates
how many
notifications, on
average, are
included in digest
or multicast
messages.

AvgNotificationBatchSucceedDeliveryTime float Average time, in
seconds, to send
the notifications
through the
distribution process
successfully.

Remarks

The NSQuantumDetails stored procedure is created when you run NSControl Create. It is located in application databases.

After obtaining the high-level details of a quantum, you might want to drill down into the specific events, subscriptions, or
notifications within a quantum. The following stored procedures provide this information:

NSEventBatchDetails
NSNotificationBatchDetails

NSScheduledSubscriptionDetails

Permissions

Execute permissions default to members of the NSAnalysis and db_owner database roles who have permission to run the
Notifications Services extended stored procedures; this permission is granted using the GrantXPExec command. Members of the
sysadmin fixed server role have all necessary permissions.

Example

The following example produces the five result sets listed earlier in this section for the first generator quantum of an application:

EXEC NSQuantumDetails 1

See Also

GrantXPExec Utility

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumExecutionTime
Returns information to help you identify long-running generator quanta, which you can then use to analyze the quanta in more
detail.

Syntax

NSQuantumExecutionTime
 [@MinExecutionTime =] min_time
 [, [@MaxExecutionTime =] max_time]
 [, [@SinceQuantumInitialized =] since_init]

Arguments

[@MinExecutionTime =] min_time
Specifies the minimum execution time for a quantum to be included in the report. min_time is int, is specified in seconds, and
has no default value.

[@MaxExecutionTime =] max_time

Specifies the maximum execution time for a quantum to be included in the report. max_time is int, is specified in seconds, and
has a default value of min_time plus 5.

[@SinceQuantumInitialized =] since_init
Specifies whether the report includes quanta prior to the last initialization of the quantum clock. since_init is tinyint and can be
either 0 or 1. The default is 1, which includes only quantum periods after the last initialization. 0 includes quantum periods prior
to the last initialization.

Return Code Values

None

Result Sets

Column Name Data Type Description
QuantumId int Unique ID of a quantum. You can

supply this ID to the
NSQuantumDetails stored
procedure to obtain additional
information about the quantum.

QuantumStatusDescription nvarchar(255) Text that describes the current
status of the quantum.

ExecutionTimeInMS bigint Number of milliseconds to
process the quantum.

QuantumStartTime datetime Quantum starting time in UTC
(Universal Time Coordinate or
Greenwich mean time).

QuantumEndTime datetime Quantum ending time in UTC; the
end time is the start time plus the
quantum duration.

ExecutionStartTime datetime Date and time, in UTC, when the
quantum started processing
notifications.

ExecutionEndTime datetime Date and time, in UTC, when the
quantum stopped processing
notifications.

QuantumDurationLimit nvarchar(20) Indicates whether the quantum
execution time was greater than
the quantum duration defined in
the application definition file
(ADF).

ChronicleQuantumLimit nvarchar(20) Indicates whether the quantum
execution time was greater than
<ChronicleQuantumLimit>*
<QuantumDuration> (defined
in the ADF).

SubscriptionQuantumLimit nvarchar(20) Indicates whether the quantum
execution time was greater than
<SubscriptionQuantumLimit>*
<QuantumDuration> (defined
in the ADF).

ChronicleRuleFiringCount int Number of event chronicle rule
firings in the quantum.

EventSubscriptionRuleFiringCount int Number of event subscription
rule firings in the quantum.

ScheduledSubscriptionRuleFiringCount int Number of scheduled
subscription rule firings in the
quantum.

EventNotificationsGenerated int During quantum execution,
number of notifications generated
from event-triggered rules.

ScheduledNotificationsGenerated int During quantum execution,
number of notifications generated
from scheduled subscription
rules.

Remarks

The NSQuantumExecutionTime stored procedure is created when you run NSControl Create. It is located in application
databases.

Once you have identified a quantum of interest, you might need to do further analysis. To get details about the quantum, use the
NSQuantumDetails stored procedure.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Examples

The following example shows how to produce a quantum execution time report for all quanta that took between 0 and 5 seconds
to execute since the last initialization:

EXEC NSQuantumExecutionTime 0

This example shows how to produce a quantum execution time report for all generator quanta that ran for longer than 30
seconds but less than 35 seconds:

EXEC NSQuantumExecutionTime 30, NULL, 0

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumFailures
Returns information about failed generator quanta. A quantum is failed if the quantum could not complete required processing.

Syntax

NSQuantumFailures

Return Code Values

None

Result Sets

The NSQuantumFailures result set is ordered by QuantumId.

Column Name Data Type Description
QuantumId int Unique ID of a quantum. You can

supply this ID to the
NSQuantumDetails stored
procedure to obtain additional
information about the quantum.

QuantumStatusDescription nvarchar(255) Text that describes the current
status of the quantum.

QuantumStartTime datetime Quantum starting time in UTC
(Universal Time Coordinate or
Greenwich mean time).

QuantumEndTime datetime Quantum ending time in UTC; the
end time is the start time plus the
quantum duration.

ExecutionTimeInMS int Number of milliseconds to
process the quantum.

ExecutionStartTime datetime Date and time, in UTC, at which
the quantum started processing
notifications.

ExecutionEndTime datetime Date and time, in UTC, at which
the quantum stopped processing
notifications.

Remarks

The NSQuantumFailures stored procedure is created when you run NSControl Create. It is located in application databases.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example shows how to create the failed quantum report for an application:

EXEC NSQuantumFailures

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumList
Produces the quantum list report for a Notification Services application. The report contains information about quanta processed
during a specified time period, and displays the quanta in the order in which they ran.

Syntax

NSQuantumList
 [@StartTime =] 'start_time' ,
 [@EndTime =] 'end_time'

Arguments

[@StartTime =] 'start_time'
Is the starting UTC (Universal Time Coordinate or Greenwich mean time) date and time for the range of generator quanta to be
included in the result set. start_time is datetime and has no default value.

[@EndTime =] end_time
Is the ending UTC date and time for the range of generator quanta to be included in the result set. end_time is datetime and
has no default value.

Return Code Values

None

Result Sets

The NSQuantumList result set is ordered by QuantumId.

Column Name Data Type Description
QuantumId int Unique ID of a quantum.

You can supply this ID to
the NSQuantumDetails
stored procedure to
obtain additional
information about the
quantum.

StartTime datetime Quantum starting time
in UTC (Universal Time
Coordinate or
Greenwich mean time).

EndTime datetime Quantum ending time in
UTC; the end time is the
start time plus the
quantum duration.

SkippedCount int Number of skipped
quantum periods prior
to this quantum.

QuantumStatusDescription nvarchar(255) Text that describes the
current status of the
quantum.

ExecutionTimeInMS int Number of milliseconds
to process the quantum.

ExecutionStartTime datetime Date and time, in UTC, at
which the quantum
started processing
notifications.

ExecutionEndTime datetime Date and time, in UTC, at
which the quantum
stopped processing
notifications.

EventNotificationsGenerated int During quantum
execution, number of
notifications generated
from event-triggered
rules.

ScheduledNotificationsGenerated int During quantum
execution, number of
notifications generated
from scheduled
subscription rules.

EventChronicleRuleFiringsSkipped nvarchar(255) Indicates whether event
chronicle rule firings
were skipped due to the
chronicle quantum limit
for the application.
Possible values are Yes
and No.

SubscriptionRuleFiringsSkipped nvarchar(255) Indicates whether
subscription rule firings
were skipped due to the
subscription quantum
limit for the application.
Possible values are Yes
and No.

Remarks

The NSQuantumList stored procedure is created when you run NSControl Create. It is located in application databases.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example shows all quanta that completed between 2:30 and 3:30 A.M. on May 22, 2002.

EXEC NSQuantumList '2002-05-22 02:30:00', '2002-05-22 03:30:00'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumPerformance
Returns information about the execution times for application quanta. The result set divides execution time into intervals, so you
can see how many quanta executed within each time period. This can help you troubleshoot long-running quanta.

Syntax

NSQuantumPerformance
 [[@ReportingInterval =] interval]
 [, [@SinceQuantumInitialized =] since_init]

Arguments

[@ReportingInterval =] interval
Is the length of time, in seconds, in each reporting interval. The report contains one row per interval. interval is int and has a
default value of 5, which indicates five seconds per interval.

[@SinceQuantumInitialized =] since_init
Specifies whether the report includes quanta prior to the last initialization of the quantum clock. since_init is tinyint, and can be
either 0 or 1. The default is 1, which includes only quantum periods after the last initialization. Specifying 0 includes quantum
periods prior to the last initialization.

Return Code Values

None

Result Sets

Column Name Data Type Description
MinimumExecutionTime int Quantum execution time, in

seconds, for the lower bound of the
reporting interval.

MaximumExecutionTime int Quantum execution time, in
seconds, for the upper bound of the
reporting interval.

CountOfQuantums int Count of quantum periods that
executed for a length of time greater
than or equal to the row's
Minimum Execution Time value,
but less than the row's Maximum
Execution Time value.

QuantumDuration nvarchar(255) Indicates whether the time range for
this row of the report includes times
longer than the quantum duration
defined in the application definition
file (ADF). Quantum execution that
takes longer than the quantum
duration causes the generator to fall
behind.

ChronicleQuantumLimit nvarchar(255) Indicates whether the time range for
this row of the report includes times
longer than the result of
<ChronicleQuantumLimit>*
<QuantumDuration> (defined in
the ADF). Quantum execution that
takes longer than this time can
cause chronicle rule firings to be
skipped. Possible values are Under,
Over, and Maybe over.

SubscriptionQuantum
Limit

nvarchar(255) Indicates whether the time range for
this row of the report includes times
longer than the result of
<SubscriptionQuantumLimit>*
<QuantumDuration> (defined in
the ADF). Quantum execution that
takes longer than this time causes
subscription rule firings to be
skipped. Possible values are Under,
Over, and Maybe over.

Remarks

The NSQuantumPerformance stored procedure is created when you run NSControl Create. It is located in application
databases.

The ChronicleQuantumLimit and SubscriptionQuantumLimit values indicate whether the quantum durations of quanta in
the reporting interval took less time or more time than that allowed for the application. The values in these columns indicate the
following:

Over indicates that the MinimumExecutionTime value is greater than the quantum limit; all quanta reported in the row
took longer than the quantum limit.
Under indicates that the MaximumExecutionTime value is less than the quantum limit; all quanta reported in the row
took less time than the quantum limit.
Maybe over indicates that the MinimumExecutionTime value is less than or equal to the quantum limit and the
MaximumExecutionTime value is greater than or equal to the quantum limit; some quanta might have run longer than
the MaximumExecutionTime value.

Permissions

Execute permissions default to members of the NSAnalysis database role, the db_owner fixed database role, and the sysadmin
fixed server role.

Example

The following example shows how to produce the quantum performance report using a reporting interval of 5 seconds, and using
the default value for @SinceQuantumInitialized. This includes only the quanta processed after the last quantum initialization:

EXEC NSQuantumPerformance

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSQuantumsSkipped
Returns information about skipped quantum processing in the Notification Services application. Quanta can be skipped if the
generator falls behind and quantum limits are set in the application definition file (ADF), or if limits are set for chronicle or
subscription rule firings.

Syntax

NSQuantumsSkipped

Return Code Values

None

Result Sets

The NSQuantumsSkipped result set is ordered by StartSkippedInterval.

Column Name Data Type Description
StartSkippedInterval datetime Starting date and time,

in UTC (Universal Time
Coordinate or
Greenwich mean time),
of the interval skipped
by the generator.

EndSkippedInterval datetime Ending date and time,
in UTC, of the interval
skipped by the
generator.

SkippedIntervalInSeconds int Number of seconds in
the skipped interval.

NumberOfQuantums int Number of quantum
periods skipped during
the interval.

EventChronicleRuleFiringsSkipped nvarchar(255) Indicates whether
event chronicle rule
firings were skipped
during the interval.
Possible values are
Yes and No.

SubscriptionRuleFiringsSkipped nvarchar(255) Indicates whether
subscription rule
firings were skipped
during the interval.
Possible values are
Yes and No.

Remarks

The NSQuantumsSkipped stored procedure is created when you run NSControl Create. It is located in application databases.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example shows how to run the NSQuantumsSkipped stored procedure for an application. The result set includes
all skipped quanta since the application started:

EXEC NSQuantumsSkipped

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSScheduledSubscriptionDetails
Returns detailed information about a subscription class in a Notification Services application. To use this stored procedure, the
subscription class must have scheduled subscription rules.

Syntax

NSScheduledSubscriptionDetails
 [@SubscriptionClassName =] 'sub_class_name' ,
 [@StartTime =] 'start_time' ,
 [@EndTime =] 'end_time'

Arguments

[@SubscriptionClassName =] 'sub_class_name'
Is the name of a subscription class. sub_class_name is nvarchar(255) and has no default value.

[@StartTime =] start_time
Is the starting UTC (Universal Time Coordinate or Greenwich mean time) date and time for the time period containing the
subscriptions of interest. start_time is datetime and has no default value.

[@EndTime =] end_time
Is the ending UTC date and time for the time period containing the subscriptions of interest. end_time is datetime and has no
default value. You cannot specify an end_time value greater than 24 hours past the start_time value.

Return Code Values

None

Result Sets

The NSScheduledSubscriptionDetails result set is ordered by ScheduleTime.

Column Name Data Type Description
SubscriptionId bigint Unique ID of the

scheduled subscription.
SubscriberId nvarchar(255) Unique ID of the

subscriber who owns the
subscription.

CreationDate datetime Date and time, in UTC, at
which the subscription
was created.

UpdateDate datetime Date and time, in UTC, at
which the subscription
was last updated.

Enabled bit Indicates whether the
subscription is currently
enabled or disabled. The
value 1 indicates that the
subscription is enabled.

ScheduleTime datetime Date and time, in UTC, at
which the subscription is
scheduled for processing.

Subscription_Class_Field_Name
(1-n)

user-defined The name of a
subscription class field, as
defined in the application
definition file (ADF). Each
field in the subscription
class is represented by a
column in the result set.

Remarks

The NSScheduledSubscriptionDetails stored procedure is created when you run NSControl Create. It is located in application
databases.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis and db_owner database roles who have permission to run the
Notifications Services extended stored procedures; this permission is granted using the GrantXPExec command. Members of the
sysadmin fixed server role have all necessary permissions.

Example

The following example shows how to produce the scheduled subscription report for the WeatherSubscriptions subscription class
of the Weather application. The report contains information about subscriptions that are scheduled to run on May 23, 2002, using
the UTC time values:

EXEC NSScheduledSubscriptionDetails N'WeatherSubscriptions',
 '2002-05-23 00:00:00', '2002-05-23 23:59:59'

See Also

GrantXPExec Utility

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSScheduledSubscriptionList
Produces the scheduled subscription list report for a Notification Services application. The report contains information about all
scheduled subscriptions for a given subscriber.

The results handle local time conversion and take into account daylight saving time offset changes with respect to the locale. The
results are useful for diagnosing why a subscription did not generate a notification at an expected time. It is common for users to
configure subscription information incorrectly, which results in notifications being generated at unexpected times.

Syntax

NSScheduledSubscriptionList
 [@SubscriberId =] 'subscriber_id' ,
 [@StartDate =] 'start_date']
 [, [@EndDate =] 'end_date']
 [, [@Language =] 'language_code']

Arguments

[@SubscriberId =] 'subscriber_id'
Is the unique identifier used to represent a subscriber in the Notification Services instance. subscriber_id is nvarchar(255) and
has no default value.

[@StartDate =] 'start_date'
Is the starting UTC (Universal Time Coordinate or Greenwich mean time) date and time for scheduled subscriptions. start_date
is datetime and has no default value.

[@EndDate =] 'end_date'
Is the ending UTC date and time for scheduled subscriptions. If not specified (or NULL), the default value is the start_date value
plus one day. end_date is datetime.

[@Language =] 'language_code'
Is one of the Notification Services languages, and specifies the language to include in the report. language_code is used to
return a subset of time zones from the NSTimeZoneNames table in the instance database. language_code is nvarchar(6) and
has a default value of 'en' (English).

For a complete list of language_code values, see the Language column of the instance database NSTimeZoneNames table. The
following table contains the list of language_code values for the standard SQL Server 2000 languages.

Language Code Description
de German
en English
es Spanish
fr French
it Italian
ja Japanese
ko Korean
zh-CHS Chinese (Simplified)
zh-CHT Chinese (Traditional)

Return Code Values

0 (success) or 1 (failure)

Result Sets

The NSScheduledSubscriptionList result set is ordered by SubscriptionClassName value and then by SubscriptionId value.

Column Name Data Type Description

SubscriberEnabled tinyint Indicates whether the subscriber is
currently enabled. A nonzero value
indicates that the subscriber is
enabled and can generate
notifications.

Use NSControl Enable to enable
subscribers.

SubscriptionClassName nvarchar(255) Name of the subscription class
containing the scheduled
subscription for the subscriber.

SubscriptionId bigint ID of a subscription for the
subscriber.

SubscriptionEnabled tinyint Indicates whether the subscription is
enabled. A nonzero value indicates
that the subscription is enabled and
can generate notifications.

Use NSControl Enable to enable
subscriptions.

ScheduleText nvarchar(2048) User-supplied schedule text for the
subscription.

UtcDateTime datetime Date and time, in UTC, at which the
scheduled subscription is to be
processed. If the value is NULL, the
subscription has no scheduled time
falling within the specified time
range.

LocalTimeZone nvarchar(100) Name of the local time zone for the
subscription.

Observing nvarchar(100) Indicates whether the subscription
observes daylight saving time. The
text string returned is the time zone
specific string.

LocalDateTime datetime Local date and time for the
scheduled subscription. The date and
time indicates whether the time zone
is in daylight saving time or standard
time. If the value is NULL, the
subscription has no scheduled time
falling within the specified time
range.

Remarks

The NSScheduledSubscriptionList stored procedure is created when you run NSControl Create. It is located in application
databases.

To determine the current UTC date and time, run SELECT GETUTCDATE() in SQL Query Analyzer. The current UTC time is derived
from the current local time and the time zone setting in the operating system of the computer on which SQL Server is running.

Permissions

Execute permissions default to members of the NSAnalysis and db_owner database roles who have permission to run the
Notifications Services extended stored procedures; this permission is granted using the GrantXPExec command. Members of the
sysadmin fixed server role have all necessary permissions.

Example

The following example shows how to produce a report of all scheduled subscriptions for May 24, 2002 in the Weather application

for subscriber "karen":

EXEC NSScheduledSubscriptionList N'karen',
 '2002-05-24', '2002-05-24 23:59:59'

See Also

GrantXPExec Utility

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSetQuantumClock
Resets the Notification Services application quantum clock to the starting time of a previous quantum. A new quantum is created
with the same UTC (Universal Time Coordinate or Greenwich mean time) start time as the quantum specified in the stored
procedure. This allows you to replay past quanta.

The following two scenarios show how you can use this stored procedure:

When testing an application, you can add one scheduled subscription, and then test that subscription by resetting the
quantum clock as needed.
When diagnosing system problems, you can reset the quantum clock and reproduce past system behavior. All processing,
such as event batches and timed subscriptions, is replayed exactly as in real time, as long as the NS$instance_name service
is running and the instance is enabled.

Syntax

NSSetQuantumClock
 [@QuantumId =] quantum_ID

Arguments

[@QuantumId =] quantum_ID
Is the unique identifier of a past quantum. quantum_id is bigint and has no default value.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The NSSetQuantumClock stored procedure is created when you run NSControl Create. It is located in application databases.

You must disable the generator before running NSSetQuantumClock. When you view the status using NSControl Status, the
generator status must be either disabled or disabled pending.

In the application definition file (ADF), ensure that the ChronicleQuantumLimit and SubscriptionQuantumLimit values are
zero, which means there is no limit to how far back you can process quanta. If nonzero limits are specified, the generator might
skip the quantum of interest.

Vacuumer processing removes data from the system. If you have removed data of interest, that processing of that data cannot be
replayed.

When Notification Services tries to catch up on prior quanta, the older quanta take precedence and are processed first. When you
initialize the quantum clock, be aware that new quanta might be processed later than scheduled.

Permissions

Execute permissions default to members of the NSGenerator and NSRunService database roles, db_owner fixed database role,
and sysadmin fixed server role.

Example

The following example shows how to reset the quantum clock to replay starting at quantum number 1. A new quantum is entered
into the NSQuantum1 table with a new quantum number, but a with StartTime value equal to the StartTime value of quantum
1:

EXEC NSSetQuantumClock 1

For example, if four quanta currently exist in the NSQuantum1 table, and quantum 1 started at 2002-05-23 17:23:37.640, when

you run this example, quantum 5 is entered with a start time of 2002-05-23 17:23:37.640. When you enable the generator, the
generator replays all quanta starting at quantum 1.

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSetQuantumClockDate
Resets the Notification Services application quantum clock to a specific time, which is useful for continually running an application
over the same time interval for testing purposes by setting an exact time, such as 9:00 Monday morning.

The following two scenarios show how you can use this stored procedure:

When testing an application, you can add one scheduled subscription, and then test that subscription by resetting the
quantum clock as needed.
When diagnosing system problems, you can reset the quantum clock and reproduce past system behavior. All processing,
such as event batches and timed subscriptions, is replayed exactly as in real time, as long as the service is running and the
instance is enabled.

Syntax

NSSetQuantumClockDate
 [@QuantumStartTime =] 'start_date_time'

Arguments

[@QuantumStartTime =] 'start_date_time'
Is a previous starting datetime value, in UTC (Universal Time Coordinate or Greenwich mean time), for the quantum clock. This
forces the generator to start a new quantum at a past time, replaying previous processing. Because the time is in the past, the
generator processes the quantum as soon as possible.

Return Code Values

0 (success) or 1 (failure)

Result Sets

None

Remarks

The NSSetQuantumClockDate stored procedure is created when you run NSControl Create. It is located in application
databases.

You must disable the generator before running NSSetQuantumClockDate. The generator status must be either disabled or
disabled pending.

NSSetQuantumClockDate initializes the quantum clock, so the @QuantumStartTime value is included within the first
quantum processed by the generator after running the procedure.

To find a quantum start time, use the NSQuantumList stored procedure. The result set shows start-time and end-time values for
each quantum in UTC.

In the application definition file (ADF), ensure that the <ChronicleQuantumLimit> and <SubscriptionQuantumLimit> values
are zero, which means there is no limit to how far back you can process quanta. If nonzero limits are specified, the generator
might skip the quantum of interest.

Vacuumer processing removes data from the system. If you have removed data of interest, the processing of that data cannot be
replayed.

When Notification Services tries to catch up on prior quanta, the older quanta take precedence and are processed first. When you
initialize the quantum clock, be aware that new quanta might be processed later than scheduled.

Permissions

Execute permissions default to members of the NSGenerator and NSRunService database roles, db_owner fixed database role,
and sysadmin fixed server role.

Example

The following example shows how to reset the quantum clock to replay what occurred on April 23, 2000 at 9:00 A.M. Pacific
daylight time. The equivalent UTC time is 17:00, and the EndTime column in the NSQuantum1 table shows the previous
quantum ended at 16:59:

EXEC NSSetQuantumClockDate '2002-04-23 16:59'

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSnapshotApplications
Produces the applications snapshot report, which provides information about the current state of all applications hosted by an
instance.

Syntax

NSSnapshotApplications

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of an

application.
ApplicationActivationState nvarchar(255) Activation state for

the application. The
state can be enabled
or disabled.

GeneratorActivationState nvarchar(255) Activation state for
the application
generator
component. The state
can be enabled,
enabled pending,
disabled, or disabled
pending.

QuantumsBehind int Number of quantum
durations the
generator is running
behind. The count
includes complete
quantum durations
that have passed, but
have not yet been
started for
processing.

For example, if the
quantum duration is
5 seconds and the
QuantumsBehind
value is 2, at least 10
seconds but not more
than 15 seconds have
passed since the last
quantum was
processed.

GeneratorSystemName nvarchar(255) Name of computer
system running the
generator service.

NotificationClassName nvarchar(255) Name of a
notification class
within the application.

LastTimeNotificationBatchGenerated datetime Date and time of the
last notification batch
to be generated for
the notification class.

SecondsSinceNotificationBatchGenerated int Elapsed time, in
seconds, since the last
notification batch was
generated.

LastNotificationBatchNotificationCount bigint The number of
notifications
generated in the last
batch for the
notification class.

LastTimeNotificationBatchDistributed datetime Date and time the last
notification batch was
picked up for
distribution.

SecondsSinceNotificationBatchDistributed int Elapsed time, in
seconds, since a
notification batch has
been picked up for
distribution.

VacuumerSystemName nvarchar(255) Name of the
computer system
running the
vacuuming service.

LastTimeVacuumingOccurred datetime Date and time of the
last successful
vacuuming of
notifications and
events.

SecondsSinceLastVacuum int Elapsed time, in
seconds, since the
vacuumer has run.

LastTimeVacuumEventCount bigint Number of events
vacuumed in the last
vacuuming.

LastTimeVacuumNotificationCount bigint Number of
notifications
vacuumed in the last
vacuuming.

SubscriberActivationState nvarchar(255) Activation state for
the subscriber APIs.
The state can be
enabled or disabled.

LastTimeSubscriberAdded datetime Date and time the
newest subscriber
was added to the
instance.

SecondsSinceSubscriberAdded int Elapsed time, in
seconds, since the
newest subscriber
was added to the
instance.

Remarks

The NSSnapshotApplications stored procedure is created when you run NSControl Create and is located in instance
databases.

The result set is ordered by the ApplicationName value and then by the NotificationClassName value.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example produces the application snapshot report for all applications hosted by an instance:

EXEC NSSnapshotApplications

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSnapshotDeliveryChannels
Produces the delivery channels report, which provides information about the current state of the delivery channels configured
across a Notification Services instance.

Syntax

NSSnapshotDeliveryChannels

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of an application.
ApplicationActivationState nvarchar(255) Activation state for the

application. The state can be
enabled or disabled.

DistributorName nvarchar(255) Name of a distributor used by
the application.

DistributorActivationState nvarchar(255) Activation state for the
distributor in the application.
The state can be enabled,
enabled pending, disabled, or
disabled pending.

SystemName nvarchar(255) Name of the computer system
where the distributor is running.

DeliveryChannelName nvarchar(255) Name of a delivery channel
used by the application.

LastNotificationClassDelivered nvarchar(255) Name of the notification class
that last had notifications
delivered.

LastTimeProcessedWorkItem datetime Date and time the last work
item was processed by the
delivery channel.

SecondsSinceWorkItemProcessed int Elapsed time, in seconds, since
the last work item was
processed.

AttemptedNotificationsSent bigint Number of notifications the
delivery channel attempted to
send.

SuccessfullySentNotifications bigint Number of notifications the
delivery channel successfully
sent.

FailedSendNotificationAttempts bigint Number of notifications the
delivery channel attempted to
send, but which ended as failed.

NotificationToMessageRatio float Ratio of notifications generated
for the delivery channel to
messages sent by the delivery
channel.

For digest or multicast delivery,
one message can include
multiple notifications. This
column indicates how many
notifications are sent, on
average, in a digest or multicast
message.

Remarks

The NSSnapshotDeliveryChannels stored procedure is created when you run NSControl Create. It is located in instance
databases.

The result set is ordered by the ApplicationName value, then by the DeliveryChannelName value, and then by the
DistributorName value.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example produces the delivery channels snapshot report for all applications hosted by an instance:

EXEC NSSnapshotDeliveryChannels

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSnapshotEvents
Produces the events snapshot report for a Notification Services instance. You can use this report to determine how long it has
been since an event class has received events from an event provider.

Syntax

NSSnapshotEvents

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of an application.
ApplicationActivationState nvarchar(255) Activation state for the

application. The state can be
enabled or disabled.

EventActivationState nvarchar(255) Activation state for events in
the application. This value
indicates whether events can
be submitted
programmatically, which is
different from an event
provider activation state. The
state can be enabled or
disabled.

EventClassName nvarchar(255) Name of an event class within
the application.

LastTimeEventBatchCollected datetime Date and time at which the last
event batch was collected for
the event class.

SecondsSinceEventBatchCollected int Elapsed time, in seconds, since
the last event class was
collected for the event class.

LastEventBatchEventCount bigint Number of events collected in
the last event batch for the
event class.

LastEventBatchProvider nvarchar(255) Name of the event provider
that submitted the last event
batch for the event class.

Remarks

The NSSnapshotEvents stored procedure is created when you run NSControl Create. It is located in instance databases.

The result set is ordered by the ApplicationName value and then by the EventClassName value.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example produces the events snapshot report for all applications hosted by an instance:

EXEC NSSnapshotEvents

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSnapshotProviders
Produces the event providers snapshot report for a Notification Services instance. The report contains information about each
event provider configured for an instance.

Syntax

NSSnapshotProviders

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of an application.
ApplicationActivationState nvarchar(255) Activation state of the

application. The state can be
enabled or disabled.

ProviderName nvarchar(255) Name of an event provider
used by the application.

ProviderActivationState nvarchar(255) Activation state of the event
provider. The state can be
enabled, enabled pending,
disabled, or disabled pending.

SystemName nvarchar(255) Name of computer system
where the event provider is
running.

LastEventClassCollected nvarchar(255) Name of the event class that
collected the last event batch
for the event provider.

LastTimeEventBatchCollected datetime Date and time at which the last
event batch was collected by
the event provider.

SecondsSinceEventBatchCollected int Elapsed time, in seconds, since
the last event batch was
collected for the event
provider.

NumberOfEventsInLastEventBatch bigint Number of events collected in
the last event batch.

Remarks

The NSSnapshotProviders stored procedure is created when you run NSControl Create. It is located in instance databases.

The result set is ordered by the ApplicationName value and then by the ProviderName value.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example produces the providers snapshot report for all applications hosted by an instance:

EXEC NSSnapshotProviders

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSSnapshotSubscriptions
Produces the subscriptions snapshot report for a Notification Services instance. The report contains information about the most
recent subscription addition for all subscription classes.

Syntax

NSSnapshotSubscriptions

Return Code Values

0 (success) or 1 (failure)

Result Sets

Column Name Data Type Description
ApplicationName nvarchar(255) Name of an application.
ApplicationActivationState nvarchar(255) Activation state of the

application. The state can be
enabled or disabled.

SubscriptionActivationState nvarchar(255) Activation state of the
subscription APIs for the
application. The state can be
enabled or disabled.

SubscriptionClassName nvarchar(255) Name of a subscription class
within the application.

LastTimeSubscriptionAdded datetime Date and time of the last
subscription added to the
application for the subscription
class.

SecondsSinceSubscriptionAdded int Elapsed time, in seconds, since
the last subscription was added
for the subscription class.

Remarks

The NSSnapshotSubscriptions stored procedure is created when you run NSControl Create. It is located in instance databases.

The result set is ordered by the ApplicationName value and then by the SubscriptionClassName value.

Permissions

Execute permissions default to members of the NSAnalysis database role, db_owner fixed database role, and sysadmin fixed
server role.

Example

The following example produces the subscriptions snapshot report for all applications hosted by an instance:

EXEC NSSnapshotSubscriptions

See Also

Notification Services Performance Reports

Stored Procedure Reference

SQL Server Notification Services Books Online

NSVacuum
Manually runs the vacuuming process, removing obsolete data from the application database. If the current vacuuming schedule
as defined in the application definition file (ADF) is not adequate, it is best to modify the schedule and update the application.
Running vacuuming manually is recommended only when absolutely necessary (for example, if the database is running out of
disk space).

Important Do not run the vacuumer manually when the vacuumer is running or is scheduled to run. Application
errors might occur, resulting in no data being removed.

Syntax

NSVacuum
 [@SecondsToRun =] max_vacuuming_time

Arguments

[@SecondsToRun =] max_vacuuming_time
Is the maximum number of seconds the vacuumer stored procedure can run. If the vacuumer removes all data before this time,
vacuuming stops at that point. If the vacuumer is not finished within this time, the vacuumer stops without removing all
obsolete data. The next time this stored procedure runs, vacuuming will resume at the point where it previously stopped.
max_vacuuming_time is int and has no default value.

Result Set

Column Name Data Type Description
Status int The current status of vacuuming.

Possible values are 0 (running), 2
(completed), and 3 (time limit
exceeded). You will not receive the
value 0 when running vacuuming
manually.

QuantumsVacuumed int Number of quanta successfully
removed from the database during
the current vacuuming period.

QuantumsRemaining int Number of quanta that could have
been removed, but were not
removed because the time limit was
exceeded.

Remarks

The NSVacuum stored procedure is created when you run NSControl Create. It is located in application databases.

Use the NSSnapshotApplications stored procedure or the NS$instance_name: Vacuumer performance object to monitor
vacuuming.

Permissions

Execute permissions default to members of the NSRunService and NSVacuum database roles, db_owner fixed database role,
and sysadmin fixed server role.

Example

The following example runs the vacuumer for five minutes:
EXEC NSVacuum 300

See Also

NS$instance_name: Vacuumer Object

NSSnapshotApplications

Removing Obsolete Data

<Vacuum> Node

SQL Server Notification Services Books Online

Table and View Reference
The Table and View Reference section provides information on the SQL Server tables used by Notification Services. It also
provides details on the standard views offered by Notification Services for working with the information in these tables.

The topics that this section covers are described in the following table.

Topic Description
Notification Services Tables Discusses how Notification Services uses

SQL Server tables.
Notification Services Views Provides details on the standard

Notification Services views.

See Also

Stored Procedure Reference

SQL Server Notification Services Books Online

Notification Services Tables
Notification Services instance and application databases contain many tables. These tables hold the following types of data:

Metadata, which is the data from the configuration file and the application definition file (ADF), normalized and stored in
tables.
Application data, such as events, subscriptions, and notifications.
Runtime data, such as event batches and notification batches.
Transient data generated by Notification Services when processing information.

Do not access these tables directly. The table names and definitions can change for several reasons. In the application databases,
temporary tables frequently get created and deleted as necessary. Other table names and definitions might change based on
application changes. Finally, tables are likely to be changed in future versions of Notification Services.

Instead, use the stored procedures and views provided with Notification Services to look at the data in the various tables. The
stored procedures and views are more efficient to use, because they combine data from different tables to show a consolidated
view or report for a specific purpose.

For more information about the Notification Services reporting stored procedures, see Stored Procedure Reference. For more
information about the Notification Services views, see Notification Services Views.

SQL Server Notification Services Books Online

Notification Services Views
SQL Server views provide a consolidated look at a set of data. Notification Services offers a number of standard views that you
can use to work with the data in the Notification Services tables. Microsoft strongly recommends that you use the views instead of
working with the tables directly, because tables can change between applications and between Notification Services versions.

The topics that this section covers are described in the following table.

Topic Description
NSFullTimeZones View Describes the NSFullTimeZones view,

which provides a list of the Notification
Services time zones.

NSSubscriberDeviceView View Describes the NSSubscriberDeviceView
view, which shows subscriber and
subscriber device information for the
instance.

NSSubscriptionClassNameView View Describes the
NSSubscriptionClassNameView view,
which shows all subscriptions for the
associated subscription class.

Additional views might appear in the instance and application databases. These views are used by Notification Services and
should not be used for other purposes.

See Also

Stored Procedure Reference

SQL Server Notification Services Books Online

NSFullTimeZones View
NSFullTimeZones View

Provides a view of the time zone codes shipped with Notification Services. It returns one row for each time zone, in each of the
nine languages in which Notification Services is shipped: Chinese (simplified), Chinese (traditional), English, French, German,
Italian, Japanese, Korean, and Spanish. For example, running a query to select all records for "Greenland Time" returns nine rows,
each containing the Greenland time zone information in one of the specified languages.

The information about time zones that the NSFullTimeZones view contains is shown in the following table.

Column Data type
TimeZoneId smallint
TimeZoneName nchar(35)
UtcOffset int
Language nvarchar(6)
LocationName nvarchar(100)
DisplayName nvarchar(100)
DaylightName nvarchar(100)
StandardName nvarchar(100)

Remarks

The NSFullTimeZones view is located in the instance database.

Permissions

This view is available to members of the sysadmin and db_owner server roles.

See Also

Notification Services Views

SQL Server Notification Services Books Online

NSSubscriberDeviceView View
NSSubscriberDeviceView View

Provides a view of subscriber and subscriber device information for all subscribers in the Notification Services instance.

The information about subscriber devices that the NSSubscriberDeviceView view contains is shown in the following table.

Column Data type
SubscriberId nvarchar(255)
Enabled bit
Created datetime
Updated datetime
DeviceName nvarchar(255)
DeviceTypeName nvarchar(255)
DeviceAddress nvarchar(255)
DeliveryChannelName nvarchar(255)

Remarks

The NSSubscriberDeviceView view is located in the instance database.

Permissions

This view is available to members of the sysadmin and db_owner server roles. It is also available to the NSAnalysis,
NSDistributor, NSEventProvider, NSGenerator, NSReader, NSRunService, NSSubscriberAdmin, and NSVacuum
Notification Services roles.

See Also

Notification Services Views

SQL Server Notification Services Books Online

NSSubscriptionClassNameView View
NSSubscriptionClassNameView View

Provides a view of the subscription records for the associated subscription class. Notification Services creates one view for each
subscription class, using the following naming convention: NSSubscriptionClassNameView.

For example, the Stock sample that ships with Notification Services has two subscription classes: StockSubscriptions and
PortfolioSubscriptions. The associated views are named NSStockSubscriptionsView and NSPortfolioSubscriptionsView.

The information about each subscription that the NSSubscriptionClassNameView view contains is shown in the following table.

Column Data type
SubscriberId nvarchar(255)
Created datetime
Updated datetime
Enabled nvarchar(8)
Schedule (scheduled subscriptions only) nvarchar(2048)
Subscription_class_field_name
(1-n)

user-defined

Remarks

The NSSubscriptionClassNameView views are located in application databases.

Permissions

This view is available to members of the sysadmin and db_owner server roles, and to the NSAnalysis Notification Services role.

Example

The following query selects the full set of columns from the NSStockSubscriptionsView view:

SELECT SubscriberId, Created, Updated, Enabled, DeviceName, SubscriberLocale,
StockSymbol, StockTriggerValue
FROM NSStockSubscriptionsView
ORDER BY SubscriberId

See Also

Notification Services Views

SQL Server Notification Services Books Online

Notification Services Code Reference
The Notification Services Code Reference section contains information on the standard codes and values that are used by
Notification Services.

The topics that this section covers are described in the following table.

Topic Description
Subscriber Locale Codes Describes the subscriber locale codes

for Notification Services.
Time Zone Codes Describes the time zone codes for

Notification Services.

SQL Server Notification Services Books Online

Subscriber Locale Codes
The subscriber locale codes in the following table ship with Notification Services.

Subscriber Locale LanguageCountryRegion
af Afrikaans
af-ZA Afrikaans - South Africa
ar Arabic
ar-AE Arabic - United Arab Emirates
ar-BH Arabic - Bahrain
ar-DZ Arabic - Algeria
ar-EG Arabic - Egypt
ar-IQ Arabic - Iraq
ar-JO Arabic - Jordan
ar-KW Arabic - Kuwait
ar-LB Arabic - Lebanon
ar-LY Arabic - Libya
ar-MA Arabic - Morocco
ar-OM Arabic - Oman
ar-QA Arabic - Qatar
ar-SA Arabic - Saudi Arabia
ar-SY Arabic - Syria
ar-TN Arabic - Tunisia
ar-YE Arabic - Yemen
az Azeri
az-AZ-Cyrl Azeri (Cyrillic) - Azerbaijan
az-AZ-Latn Azeri (Latin) - Azerbaijan
be Belarusian
be-BY Belarusian - Belarus
bg Bulgarian
bg-BG Bulgarian - Bulgaria
ca Catalan
ca-ES Catalan - Catalan
cs Czech
cs-CZ Czech - Czech Republic
da Danish
da-DK Danish - Denmark
de German
de-AT German - Austria
de-CH German - Switzerland
de-DE German - Germany
de-LI German - Liechtenstein
de-LU German - Luxembourg
div Dhivehi
div-MV Dhivehi - Maldives
el Greek
el-GR Greek - Greece
en English

en-AU English - Australia
en-BZ English - Belize
en-CA English - Canada
en-CB English - Caribbean
en-GB English - United Kingdom
en-IE English - Ireland
en-JM English - Jamaica
en-NZ English - New Zealand
en-PH English - Philippines
en-TT English - Trinidad and Tobago
en-US English - United States
en-ZA English - South Africa
en-ZW English - Zimbabwe
es Spanish
es-AR Spanish - Argentina
es-BO Spanish - Bolivia
es-CL Spanish - Chile
es-CO Spanish - Colombia
es-CR Spanish - Costa Rica
es-DO Spanish - Dominican Republic
es-EC Spanish - Ecuador
es-ES Spanish - Spain
es-GT Spanish - Guatemala
es-HN Spanish - Honduras
es-MX Spanish - Mexico
es-NI Spanish - Nicaragua
es-PA Spanish - Panama
es-PE Spanish - Peru
es-PR Spanish - Puerto Rico
es-PY Spanish - Paraguay
es-SV Spanish - El Salvador
es-UY Spanish - Uruguay
es-VE Spanish - Venezuela
et Estonian
et-EE Estonian - Estonia
eu Basque
eu-ES Basque - Basque
fa Farsi
fa-IR Farsi - Iran
fi Finnish
fi-FI Finnish - Finland
fo Faroese
fo-FO Faroese - Faroe Islands
fr French
fr-BE French - Belgium
fr-CA French - Canada
fr-CH French - Switzerland
fr-FR French - France

fr-LU French - Luxembourg
fr-MC French - Monaco
gl Galician
gl-ES Galician - Galician
gu Gujarati
gu-IN Gujarati - India
he Hebrew
he-IL Hebrew - Israel
hi Hindi
hi-IN Hindi - India
hr Croatian
hr-HR Croatian - Croatia
hu Hungarian
hu-HU Hungarian - Hungary
hy Armenian
hy-AM Armenian - Armenia
id Indonesian
id-ID Indonesian - Indonesia
is Icelandic
is-IS Icelandic - Iceland
it Italian
it-CH Italian - Switzerland
it-IT Italian - Italy
ja Japanese
ja-JP Japanese - Japan
ka Georgian
ka-GE Georgian - Georgia
kk Kazakh
kk-KZ Kazakh - Kazakhstan
kn Kannada
kn-IN Kannada - India
ko Korean
kok Konkani
kok-IN Konkani - India
ko-KR Korean - Korea
ky Kyrgyz
ky-KZ Kyrgyz - Kazakhstan
lt Lithuanian
lt-LT Lithuanian - Lithuania
lv Latvian
lv-LV Latvian - Latvia
mk Macedonian
mk-MK Macedonian - FYROM
mn Mongolian
mn-MN Mongolian - Mongolia
mr Marathi
mr-IN Marathi - India
ms Malay

ms-BN Malay - Brunei
ms-MY Malay - Malaysia
nb-NO Norwegian (Bokml) - Norway
nl Dutch
nl-BE Dutch - Belgium
nl-NL Dutch - The Netherlands
nn-NO Norwegian (Nynorsk) - Norway
no Norwegian
pa Punjabi
pa-IN Punjabi - India
pl Polish
pl-PL Polish - Poland
pt Portuguese
pt-BR Portuguese - Brazil
pt-PT Portuguese - Portugal
ro Romanian
ro-RO Romanian - Romania
ru Russian
ru-RU Russian - Russia
sa Sanskrit
sa-IN Sanskrit - India
sk Slovak
sk-SK Slovak - Slovakia
sl Slovenian
sl-SI Slovenian - Slovenia
sq Albanian
sq-AL Albanian - Albania
sr-SP-Cyrl Serbian (Cyrillic) - Serbia
sr-SP-Latn Serbian (Latin) - Serbia
sv Swedish
sv-FI Swedish - Finland
sv-SE Swedish - Sweden
sw Swahili
sw-KE Swahili - Kenya
syr Syriac
syr-SY Syriac - Syria
ta Tamil
ta-IN Tamil - India
te Telugu
te-IN Telugu - India
th Thai
th-TH Thai - Thailand
tr Turkish
tr-TR Turkish - Turkey
tt Tatar
tt-RU Tatar - Russia
uk Ukrainian
uk-UA Ukrainian - Ukraine

ur Urdu
ur-PK Urdu - Pakistan
uz Uzbek
uz-UZ-Cyrl Uzbek (Cyrillic) - Uzbekistan
uz-UZ-Latn Uzbek (Latin) - Uzbekistan
vi Vietnamese
vi-VN Vietnamese - Vietnam
zh-CHS Chinese (Simplified)
zh-CHT Chinese (Traditional)
zh-CN Chinese - People's Republic of China
zh-HK Chinese - Hong Kong SAR
zh-MO Chinese - Macau SAR
zh-SG Chinese - Singapore
zh-TW Chinese - Taiwan

These values are stored in the NSSubscriberLocales table in the InstanceNameNSMain database for each Notification Services
instance.

SQL Server Notification Services Books Online

Time Zone Codes
The time zone codes in the following table ship with Notification Services.

Time Zone ID Time Zone Name UTC Offset
0 Dateline Time -12960000
1 Samoa Time -11880000
2 Hawaiian Time -10800000
3 Alaskan Time -9720000
4 Pacific Time -8640000
10 Mountain Time -7560000
15 US Mountain Time -7560000
20 Central Time -6480000
25 Canada Central Time -6480000
30 Mexico Time -6480000
33 Central America Time -6480000
35 Eastern Time -5400000
40 US Eastern Time -5400000
45 SA Pacific Time -5400000
50 Atlantic Time -4320000
55 SA Western Time -4320000
56 Pacific SA Time -4320000
60 Newfoundland Time -3780000
65 E. South America Time -3240000
70 SA Eastern Time -3240000
73 Greenland Time -3240000
75 Mid-Atlantic Time -2160000
80 Azores Time -1080000
83 Cape Verde Time -1080000
85 GMT Time 0
90 Greenwich Time 0
95 Central Europe Time 1080000
100 Central European Time 1080000
105 Romance Time 1080000
110 W. Europe Time 1080000
113 W. Central Africa Time 1080000
115 E. Europe Time 2160000
120 Egypt Time 2160000
125 FLE Time 2160000
130 GTB Time 2160000
135 Jerusalem Time 2160000
140 South Africa Time 2160000
145 Russian Time 3240000
150 Arab Time 3240000
155 E. Africa Time 3240000
158 Arabic Time 3240000
160 Iran Time 3780000
165 Arabian Time 4320000

170 Caucasus Time 4320000
175 Afghanistan Time 4860000
180 Ekaterinburg Time 5400000
185 West Asia Time 5400000
190 India Time 5940000
193 Nepal Time 6210000
195 Central Asia Time 6480000
200 Sri Lanka Time 6480000
201 N. Central Asia Time 6480000
203 Myanmar Time 7020000
205 SE Asia Time 7560000
207 North Asia Time 7560000
210 China Time 8640000
215 Malay Peninsula Time 8640000
220 Taipei Time 8640000
225 W. Australia Time 8640000
227 North Asia East Time 8640000
230 Korea Time 9720000
235 Tokyo Time 9720000
240 Yakutsk Time 9720000
245 AUS Central Time 10260000
250 Cen. Australia Time 10260000
255 AUS Eastern Time 10800000
260 E. Australia Time 10800000
265 Tasmania Time 10800000
270 Vladivostok Time 10800000
275 West Pacific Time 10800000
280 Central Pacific Time 11880000
285 Fiji Islands Time 12960000
290 New Zealand Time 12960000
300 Tonga Time 14040000
360 Coordinated Universal Time (UTC) 0

These values are stored in the NSTimeZones table in the NSMain database for each Notification Services instance. Additionally,
related time zone information, such as location and standard names, is in the NSTimeZoneNames table.

SQL Server Notification Services Books Online

Tools and Utilities Reference
Microsoft® SQL Server™ Notification Services has a set of tools that allow developers and administrators to install Notification
Services, build applications, and administer and configure instances and applications.

The topics that this section covers are described in the following table.

Topic Description
CopySample Utility Copies one of the Microsoft Visual

Studio® .NET programming sample
solutions to a new solution.

GrantXPExec Utility Grants permissions to execute the
extended stored procedures in the
Notification Services databases.

InstallXPs Utility Adds the database components to an
instance of SQL Server.

NSControl Commands Contains reference topics for the
NSControl command prompt utilities.

RemoveSamplesDB Utility Removes the databases used by the
Notification Services programming
samples.

RevokeXPExec Utility Revokes permissions to execute the
extended stored procedures in the
Notification Services databases.

SetupSample Utility Configures a single Notification Services
sample application after it has been
copied.

SetupSamples Utility Configures all the Notification Services
programming sample applications.

UninstallXPs Utility Removes the database components from
an instance of SQL Server.

See Also

Application Definition File Reference

Configuration File Reference

Notification Services Object Model Reference

Stored Procedures

SQL Server Notification Services Books Online

CopySample Utility
Creates a copy of an existing programming sample application in a new sample directory so that it can be used as a template
when developing a new application. Developers can use the new sample to create a new Notification Services instance.

Syntax

copysample
 source_sample_name
 destination_sample_name

Arguments

source_sample_name
Is the name of the directory that contains the sample application you want to copy.

destination_sample_name
Is the name for the new application and directory that is created within the Samples directory.

SQL Server Notification Services Books Online

GrantXPExec Utility
Grants permissions to run the Notification Services extended stored procedures. The account used by the NS$instance_name
service must have permission to run the extended stored procedures.

Syntax

GrantXPExec
 userName
 [osqlArgs]

Arguments

userName
Is the name of the account to which you are granting permissions. The account name is either a Microsoft Windows domain
account or local account or a SQL Server login account. The account must have a login account in the SQL Server instance and a
user account in the master database. If the userName value contains spaces, enclose the argument in quotation marks.

osqlArgs
Is one or more arguments to pass to the osql utility. For example, if you must use SQL Server Authentication to connect to SQL
Server, specify use a SQL Server user name and password using the -U and -P arguments of the osql utility. By default,
GrantXPExec passes -E to osql, instructing osql to use a trusted connection to SQL Server. If you pass any other arguments,
such as -S, the default -E argument is not passed by GrantXPExec.

For information about the osql utility, see "osql Utility" in SQL Server Books Online.

SQL Server Notification Services Books Online

InstallXPs Utility
Installs the database components to an instance of SQL Server. The InstallXPs command prompt utility is necessary because the
Setup program installs the database components for only one instance of SQL Server. If you have multiple instances of SQL
Server on one computer and you want to use more than one instance for Notification Services applications, you must install the
database components for each instance you want to use.

Syntax

installxps
 SqlServerInstanceName
 SqlServerInstanceBinnDirectory
 [login_ID password]

Arguments

SqlServerInstanceName
The name of the server that hosts the SQL Server instance.

SqlServerInstanceBinnDirectory
The path to the Binn directory for the SQL Server instance.

login_ID
The SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify the SQL Server login ID using this argument. This
argument must be used together with the password argument.

If you are using Microsoft Windows Authentication, do not specify the login_ID and password arguments.

password
Is the password associated with login_ID. This argument must be used together with the login_ID argument.

SQL Server Notification Services Books Online

NSControl Commands
NSControl is a command prompt utility for administering Notification Services. It provides commands for deploying,
configuring, monitoring, and controlling Notification Services instances and applications.

Syntax Conventions

The following rules apply to all commands of the NSControl utility:

Commands and arguments are case insensitive.
Command arguments must be preceded by either a hyphen (-) or a forward slash (/). The two are equivalent.
A space must appear between the argument and its value.
If a value contains a space, enclose the value in quotation marks.

NSControl Commands

The commands presented in the following table are available in NSControl.

Topic Description
NSControl Create Creates a new instance of Notification Services.
NSControl Delete Deletes an existing instance of Notification Services.
NSControl Disable Disables the specified Notification Services

components.
NSControl
DisplayArgumentKey

Displays the key used to encrypt delivery channel and
event provider arguments.

NSControl Enable Enables the specified Notification Services
components.

NSControl ListVersions Displays information about the installed versions and
registered instances of Notification Services.

NSControl Register Registers an instance of Notification Services.
NSControl Status Displays the current enabled or disabled status of

instances and applications.
NSControl Unregister Unregisters an instance of Notification Services.
NSControl Update Updates an existing instance of Notification Services.
NSControl Upgrade Upgrades an instance from Standard Edition to

Enterprise Edition, or to a newer version of
Notification Services.

See Also

Deployment Overview

SQL Server Notification Services Books Online

NSControl Create
Creates the instance and application databases for a new instance of Notification Services.

Syntax

nscontrol create
 [-help] |
 -in configuration_filename
 [-sqlusername login_ID -sqlpassword password]
 [-argumentkey key]
 [parameter_name=value [,...n]]
 [-nologo]

Arguments

-help
Displays the command syntax.

-in configuration_filename
Is the path and file name of the configuration file that defines the instance. If the file is in the current directory, the path is not
required.

-sqlusername login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify a login ID with this argument. This argument must be
used together with the -sqlpassword argument.

If you are using Microsoft Windows Authentication to log in to SQL Server, do not use the -sqlusername and -sqlpassword
arguments.

Important Microsoft recommends Windows integrated security.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-argumentkey key
Is the value used to encrypt delivery channel and event provider arguments that are stored in Notification Services databases.
This argument is required if the <EncryptArguments> value in the configuration file is true. You cannot change the key value
used by the instance after running NSControl Create. To use a different key, you must delete and then re-create the instance.

You must also specify the same key value when running NSControl Register and NSControl Update. NSControl Register
encrypts the key value and stores it in the registry.

parameter_name=value
Is a name/value pair used to pass parameters to the configuration file from the command line.

If the configuration file contains replaceable parameters for configuration values (such as %DBSystem%), specify the
parameter name and value on the command line using this argument.

For example, if the configuration file contains the following XML:

<SqlServerSystem>%DBSystem%</SqlServerSystem>

then specify the name and value using NSControl Create as follows:

nscontrol create -in config.xml DBSystem=MySQLServer

Parameters apply to values in the configuration file, but not to values in the application definition files (ADFs). To pass
parameters from the command line to the ADF, add a <Parameters> node to the <Application> node in the configuration file
and use replaceable parameters within that node.

In addition to specifying parameters on the command line, you also can use environment variables, such as
%COMPUTERNAME%. If you use environment variables as substitution parameters, note that command-line parameters take
precedence over environment variables if both are specified for a single parameter.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Delete
Deletes the instance database and application databases for an existing Notification Services instance.

Syntax

nscontrol delete
 [-help] |
 –name instance_name
 -server database_server_name
 [-force]
 [-sqlusername login_ID -sqlpassword password]
 [-nologo]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance to delete.

-server database_server_name
Is the name of the server that hosts the instance database. If you use a named instance of SQL Server to host the instance
database, you must specify both the server name and the instance name, using the format servername\instancename.

-force
Attempts to force the closure of any open database connections before deleting databases, without prompting the user. Without
the -force argument, if any processes have a database open, the NSControl Delete command cannot delete that database, but
does delete all other databases for the instance.

Note Using NSControl Delete without the -force argument when some databases have open connections can
leave the instance in an inconsistent state.

-sqlusername login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify a login ID with this argument. Also specify a
password using the -sqlpassword argument.

If you are using Microsoft Windows Authentication to log in to SQL Server, do not use the -sqlusername and -sqlpassword
arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Disable
Disables the specified Notification Services instance, application, or component.

Syntax

nscontrol disable
 [-help] |
 -name instance_name
 [< component > [...n]]
 [-server database_server_name]
 [-application application_name]
 [-sqlusername login_ID -sqlpassword password]
 [-nologo]
< component > ::=
 [-distributor [distributor_system_name]
 | -events [event_system_name]
 | -generator
 | -subscriptions
 | -subscribers]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance affected by the NSControl Disable command. See the -server argument for information about
using the -name argument with the -server argument.

<component>
Specifies the component to disable.

If you do not specify a component name, all components of the application or instance are disabled. If you specify a component
but do not specify an application name using the -application argument, then the specified component is disabled for all
applications hosted by the instance.

<component> can be one of the following arguments:

-distributor [distributor_system_name]

Disables the distributor components for the instance or application. If you specify a distributor system name, the distributor
components for only that system are disabled. Otherwise all the distributor components for the instance or application are
disabled.

-events [event_system_name]

Disables the event collection components for the instance or application. If you specify -events with a system name, event
collection on only that system is disabled. Otherwise all the event collection components for the instance or application are
disabled.

-generator

Disables the generator component.

-subscriptions

Disables the subscription management component.

-subscribers

Disables the APIs that add and delete subscribers at the instance level. If the subscriber components are disabled, then no
subscribers can be added or deleted.

-server database_server_name
Is the name of the server that hosts the instance database. Use the server name, such as MyServer. If you use a named instance
of SQL Server to host the instance database, you must specify the server and instance name using the format
servername\instancename.

When you run NSControl Disable on a system where the instance is registered, use the -name argument but not the -server
argument. NSControl determines the database server name by reading the instance's registry information.

When you run NSControl Disable on a system where the instance is not registered, you must use both the -name and -server
arguments, because NSControl needs both the system name and the instance name.

When the -server argument is specified, the registry values for the instance, if any, are ignored.

-application application_name
Is the name of the application that is having one or all components disabled. If you do not specify an application name,
components are disabled for all applications hosted by the instance.

-sqlusername login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify the login ID using this argument. Also specify a
password using the -sqlpassword argument.

If you are using Microsoft Windows Authentication, do not specify the -sqlusername and -sqlpassword arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl DisplayArgumentKey
Displays the value of the Notification Services key used to encrypt delivery channel and event provider arguments, if using
argument encryption.

nscontrol displayargumentkey
 –name instance_name

Arguments

-name instance_name
Is the name of an instance that uses an argument key.

SQL Server Notification Services Books Online

NSControl Enable
Enables the specified Notification Services instance, application, or component by setting flags in the instance database.

Syntax

nscontrol enable
 [-help] |
 -name instance_name
 [< component > [...n]]
 [-server database_server_name]
 [-application application_name]
 [-sqlusername login_ID -sqlpassword password]
 [-nologo]
< component > ::=
 [-distributor [distributor_system_name]
 | -events [event_system_name]
 | -generator
 | -subscriptions
 | -subscribers]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance affected by the NSControl Enable command. See the -server argument for information about
using the -name argument with the -server argument.

<component>
Specifies the component to enable.

If you do not specify a component name, all components of the application or instance are enabled. If you specify a component
but do not specify an application name using the -application argument, then the specified component is enabled for all
applications hosted by the instance.

-distributor [distributor_system_name]

Enables the distributor components for the instance or application. If you specify a distributor system name, the distributor
components for only that system are enabled. Otherwise all the distributor components for the instance or application are
enabled.

-events [event_system_name]

Enables the event collection components for the instance or application. If you specify -events with a system name, event
collection on only that system is enabled. Otherwise all the event collection components for the instance or application are
enabled.

-generator

Enables the generator component.

-subscriptions

Enables the subscription management component.

-subscribers

Enables the APIs that add and delete subscribers at the instance level. If the subscriber components are enabled then subscribers
can be added or deleted.

-server database_server_name
Is the name of the server that hosts the instance database. Use the server name, such as MyServer. If using a named instance of
SQL Server to host the instance database, you must specify the server and instance name using the format
servername\instancename.

When you run NSControl Enable on a system where the instance is registered, use the -name argument, but not the -server
argument. NSControl determines the database server name by reading the instance's registry information.

When you run NSControl Enable on a system where the instance is not registered, you must use both the-name and -server

arguments, because NSControl needs both the system name and the instance name.

When the -server argument is specified, the registry values for the instance, if any, are ignored.

-application application_name
Is the name of the application that is having one or all components enabled. If you do not specify an application name,
components are enabled for all applications hosted by the instance.

-sqlusername login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify a login ID with this argument. Also specify a
password using the -sqlpassword argument.

If you are using Microsoft Windows Authentication, do not specify the -sqlusername and -sqlpassword arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl ListVersions
Displays information about the installed versions and registered instances of Notification Services.

Syntax

nscontrol listversions
 [-help] |
 [-name instance_name]
 [-version version_number]
 [-nologo]

Arguments

-help
Displays the command syntax.

-name instance_name
Specifies an instance of Notification Services. If the -name argument is used, only the information for the specified instance is
listed and no version information is listed. Otherwise, the information for all instances is listed.

-version version_number
If the -version argument is used, the information for that version is listed and all the information for all instances that use that
version is listed. Otherwise, the information for all installed versions is listed.

The version number is specified in four parts, such as 1.2.3.4.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Register
Registers an instance of Notification Services. NSControl Register also can create and register an NS$instance_name service for
the instance and create performance objects for the instance.

Syntax

nscontrol register
 [-help] |
 -name instance_name
 [-server database_server_name]
 [-service
 [-serviceusername service_username -servicepassword password]
 [-sqlusername login_id -sqlpassword password]
 [-argumentkey key]
 [-nologo]]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance to register.

-server database_server_name
Is the name of the server that hosts the instance database. If you use a named instance of SQL Server to host the instance
database, you must specify both the server name and instance name, using the format servername\instancename.

-service
Creates the NS$instance_name service for the instance, registers the service, and creates performance counters for the instance.

When running NSControl Register on a server that does not run the event provider, generator, or distributor, do not specify
the -service argument. For example, on a Web server that requires access to the subscriber API you need to register the
instance, but you do not need to install the service.

-serviceusername service_username
Is the Microsoft Windows user name that the service uses to access local and remote objects. If the Notification Services system
is composed of multiple servers, this account must have permission to access Notification Services resources on those servers.

This argument must be used together with the -servicepassword argument. In Microsoft Windows® XP, if -serviceusername
and -servicepassword are not specified, the default account NT AUTHORITY\NetworkService is used. For Windows 2000,
-serviceusername and -servicepassword are required.

Note For security reasons, the service account should run with minimum permissions, not as an administrator or
as the LocalSystem service account. For more information, see NS$instance_name Service Account Security.

-servicepassword password
Is the password associated with -serviceusername. This argument must be used together with the -serviceusername
argument.

-sqlusername login_id
Is the SQL Server login ID used by the NS$instance_name service to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, you must specify both the -sqlusername and -sqlpassword
arguments.

If you are using Windows Authentication, do not specify the -sqlusername and -sqlpassword arguments.

Note If you assign a SQL Server user name and password to the service, this information is encrypted and stored in
the registry. To avoid storing this information, assign a Windows account as the service user name and then assign
database permissions to this account.

The best practice for optimal security is to assign a Windows account to the NS$instance_name service, and then
grant only the necessary permissions to that account for both network and SQL Server access.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-argumentkey key
Is the value is used to encrypt delivery channel and event provider arguments that are stored in Notification Services databases.
This argument is required if the <EncryptArguments> value in the configuration file is true. NSControl Register encrypts the
key value and stores it in the registry; this is required to allow the NS$instance_name service to read the encrypted arguments.
You cannot change the key after running NSControl Create.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Status
Displays the enabled or disabled state of the specified instance, applications, and their components in Notification Services. It also
displays the status of the NS$instance_name service or services associated with the instance.

Syntax

nscontrol status
 [-help] |
 -name instance_name
 [-server database_server_name]
 [-application application_name]
 [-sqlusername login_id -sqlpassword password]
 [-nologo]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance to report on.

-server database_server_name
Is the name of the server that hosts the instance of Notification Services.

When you run NSControl Status on a system where the instance is registered, use the -name argument but not the -server
argument. NSControl determines the database server name by reading the instance's registry information.

When you run NSControl Status on a system where the instance is not registered, you must use both the -name and -server
arguments, because NSControl needs both the server name and the instance name.

-application application_name
Is the name of the application you want status about.

-sqlusername login_id
If you are using SQL Server Authentication to log in to SQL Server, you must specify both the -sqlusername and -sqlpassword
arguments.

If you are using Microsoft Windows Authentication, do not specify the -sqlusername and -sqlpassword arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Unregister
Removes the instance from the registry, uninstalls the NS$instance_name service for the instance on the local server, and
removes the performance counters for the instance.

Syntax

nscontrol unregister
 [-help] |
 –name instance_name
 [-nologo]

Arguments

-help
Displays the command syntax.

-name instance_name
Specifies the instance to unregister.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Update
Updates the instance and application databases for an existing instance of Notification Services.

Syntax

nscontrol update
 [-help] |
 -in configuration_filename
 [-verbose]
 [-force]
 [-sqlusername login_id -sqlpassword password]
 [-argumentkey key]
 [parameter_name=value [,...n]]
 [-nologo]

Arguments

-help
Displays the command syntax.

-in configuration_filename
Is the path and file name of the configuration file that defines the instance. If the file is in the current directory, the path is not
required.

-verbose
Displays all information that has changed in the configuration file and the application definition file (ADF) as it is found. This is
useful for debugging or understanding exactly what actions NSControl Update is performing.

-force
Forces NSControl Update to proceed without prompting for approval after displaying the actions that will occur.

-sqlusername login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, you must specify both the -sqlusername and -sqlpassword
arguments.

If you are using Microsoft Windows Authentication, do not specify the -sqlpassword and -sqlpassword arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-argumentkey key
Is the same key value that was specified with NSControl Register and NSControl Create. This argument is required if the
<EncryptArguments> value in the configuration file is true. NSControl Update deciphers the argument values to verify that
the key is the same key as specified with NSControl Create. If the key value is the same, the update continues. You cannot
change the key after creating the instance.

parameter_name=value
Is a name/value pair used to pass parameters to the configuration file from the command line.

If the configuration file contains replaceable parameters for configuration values (such as %DBSystem%), specify the
parameter name and value on the command line using a name/value pair.

For example, if the configuration file contains the following XML:

<SqlServerSystem>%DBSystem%</SqlServerSystem>

then specify the name and value using NSControl Update as follows:

nscontrol update -in config.xml DBSystem=MySQLServer

Parameters apply to values in the configuration file, but not to parameters in the application definition file (ADF). To pass
parameters from the command line to the ADF, add a <Parameters> node to the <Application> node of the configuration
file and use replaceable parameters within that node.

In addition to specifying parameters on the command line, you also can use environment variables, such as
%COMPUTERNAME%. If using environment variables as substitution parameters, note that command-line parameters take
precedence over environment variables if both are specified for a single parameter.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

NSControl Upgrade
Upgrades an instance of Notification Services from Standard Edition to Enterprise Edition or to a newer version of Notification
Services.

Syntax

nscontrol upgrade
 [-help] |
 –name instance_name
 -server database_server_name
 [-sqlusername login_ID -sqlpassword password]
 [-nologo]

Arguments

-help
Displays the command syntax.

-name instance_name
Is the name of the instance to upgrade.

-server database_server_name
Is the name of the server that hosts the instance database. If you use a named instance of SQL Server to host the instance
database, you must specify both the server name and the instance name, using the format servername\instancename.

-sqlusername login_ID
Is the SQL Server login ID used by NSControl to log in to SQL Server.

If you must use SQL Server Authentication to connect to SQL Server, specify a login ID with this argument. Also specify a
password using the -sqlpassword argument.

If you are using Microsoft Windows Authentication to connect to SQL Server, do not use the -sqlusername and -sqlpassword
arguments.

-sqlpassword password
Is the password associated with the -sqlusername login ID. This argument must be used together with the -sqlusername
argument.

-nologo
Suppresses the product and version statement that appears when you run an NSControl command.

SQL Server Notification Services Books Online

RemoveSamplesDB Utility
Removes all default Notification Services programming samples.

Syntax

RemoveSamplesDB

Permissions

The account used to run RemoveSamplesDB must be a member of the local Administrators group (to create services) and a
member of the SQL Server sysadmin fixed server role (to create databases and grant permissions).

Remarks

The RemoveSamplesDB utility unregisters the instances, drops the instance and application databases, and removes the Internet
Information Services (IIS) virtual directory. It does this by calling the RunClean script (available in the BuildScripts subfolder of
the AppDefinition project), running NSControl Unregister, and then making the appropriate IIS changes.

Note If you run SetupSamples.cmd more than once with different parameters, the RemoveSamplesDB utility
removes only the databases of the last installed instance.

Example

The following example removes installed samples:

RemoveSamplesDB

See Also

SetupSample Utility

SetupSamples Utility

SQL Server Notification Services Books Online

RevokeXPExec Utility
Revokes permissions to run the Notification Services extended stored procedures.

Syntax

RevokeXPExec
 userName
 [osqlArgs]

Arguments

userName
Is the name of the account for which your are revoking permissions. If the userName value contains spaces, enclose the
argument in quotation marks.

osqlArgs
Is one or more osql arguments to pass to the osql utility. For example, if you must use SQL Server Authentication to connect to
SQL Server, specify a SQL Server user name and password using the -U and -P arguments. By default, RevokeXPExec passes -
E to osql, instructing osql to use a trusted connection to SQL Server. If you pass any other arguments, such as -S, the default -E
argument is not passed by RevokeXPExec.

For information about the osql utility, see "osql Utility" in SQL Server Books Online.

SQL Server Notification Services Books Online

SetupSample Utility
Configures a single Notification Services sample application.

Syntax

SetupSample
 ServiceUserName
 ServicePassword
 [ServiceSqlServerUserName]
 [ServiceSqlServerPassword]

Arguments

ServiceUserName
Is the account the NS$instance_name service runs under. This account is associated with the service when the service is
registered. The service must have the permissions specified in NS$instance_name Service Account Security.

If using Microsoft Windows integrated security to log in to SQL Server, make sure this account has permission to log in to SQL
Server.

ServicePassword
Is the password of the ServiceUserName account.

ServiceSqlServerUserName
Optional. Use only if the NS$instance_name service must connect to SQL Server using SQL Server Authentication. Make sure
this account has a SQL Server login account.

This account is added to the appropriate SQL Server roles in the instance database after the database is created by the
RunCreate.cmd script. If the account name or password changes, you will need to manually modify the SetGlobalVars.cmd
script and run the RunRebuild.cmd script.

ServiceSqlServerPassword
Optional. Specify only if you specify a ServiceSqlServerUserName value. This is the password of the ServiceSqlServerUserName
account. This password is encrypted and stored in the registry so the service can use the password when connecting to SQL
Server.

Important Microsoft strongly recommends that you use Windows Authentication rather than SQL Server
Authentication. Windows Authentication provides better security features, such as secure validation and encryption
of passwords, auditing, password expiration, minimum password length, and account lockout after multiple invalid
login requests.

SQL Server Notification Services Books Online

SetupSamples Utility
Configures the default Notification Services programming samples, registering the sample instances and modifying the
SetGlobalVars.cmd script.

Syntax

SetupSamples
 ServiceUserName
 ServicePassword
 SqlServerInstance
 [ServiceSqlServerUserName]
 [ServiceSqlServerPassword]
 [SqlServerAdminName]

Arguments

ServiceUserName
Is the account the NS$instance_name service runs under. This account is associated with the service when the service is
registered. The service must have the permissions specified in NS$instance_name Service Account Security.

If using Microsoft Windows integrated security to log in to SQL Server, make sure this account has a SQL Server login account.

ServicePassword
Is the password of the ServiceUsername account.

SqlServerInstance
Name of the SQL Server instance that is hosting the instance and application databases. If using the default SQL Server
instance, specify the computer name; otherwise, specify both the computer name and instance name in the form
computer\instance.

ServiceSqlServerUserName
Optional. Use only if the NS$instance_name service must connect to SQL Server using SQL Server Authentication. Make sure
this account has a SQL Server login account.

This account is added to the appropriate SQL Server roles in the instance database after the database is created by the
RunCreate.cmd script. If the account name or password changes, you will need to manually modify the SetGlobalVars.cmd
script and run the RunRebuild.cmd script.

ServiceSqlServerPassword
Optional. Specify only if you specify a ServiceSqlServerUserName value. This is the password of the ServiceSqlServerUserName
account. This password is encrypted and stored in the registry so the service can use the password when connecting to SQL
Server.

SqlServerAdminName
Optional. The SQL Server account used by SetupSamples to run SQL Server tools, such as osql. Specify this parameter only if
you use SQL Server Authentication. If this value is not supplied, Windows Authentication is used. This account must have the
permissions required by NSControl Create and NSControl Register.

Important Microsoft strongly recommends that you use Windows Authentication rather than SQL Server
Authentication. Windows Authentication provides better security features, such as secure validation and encryption
of passwords, auditing, password expiration, minimum password length, and account lockout after multiple invalid
login requests.

SQL Server Notification Services Books Online

UninstallXPs Utility
Removes the database components from an instance of SQL Server. The UninstallXPs utility is necessary because the Setup
program removes the database components from only the instance of SQL Server where the Setup program installed the
components. Setup does not remove database components installed by the InstallXPs utility.

Syntax

uninstallxps
 SqlServerInstanceName
 SqlServerInstanceBinnDirectory
 [login_ID password]

Arguments

SqlServerInstanceName
Is the name of the SQL Server instance.

SqlServerInstanceBinnDirectory
Is the path to the Binn directory for the SQL Server instance.

login_ID
Is the SQL Server login ID used to log in to SQL Server.

If you are using SQL Server Authentication to log in to SQL Server, specify the SQL Server login ID using this argument. This
argument must be used together with the password argument.

If the login_ID and password arguments are not specified, integrated security is used to log in to SQL Server.

password
Is the password associated with login_ID. This argument must be used together with the login_ID argument.

SQL Server Notification Services Books Online

Troubleshooting
When troubleshooting a problem in Microsoft® SQL Server™ Notification Services, you might find the solution by reading the
answers to frequently asked questions (FAQs), reading the solutions to common issues encountered by Notification Services
users, or configuring event messages and then viewing the messages in the application log.

Other current information can be found at the Notification Services home page.

The topics that this section covers are described in the following table.

Topic Description
Frequently Asked Questions Provides answers to questions frequently

asked of the Notification Services team
during presentations and support
sessions.

Notification Services Troubleshooting Provides information to help you resolve
some of the more common issues
encountered when using Notification
Services.

Event Messages Provides information about configuring
event logs and using event messages.

http://go.microsoft.com/fwlink/?linkid=8188

SQL Server Notification Services Books Online

Frequently Asked Questions
Microsoft has compiled the following list of questions commonly asked by users of Notification Services.

What is the difference between Notification Services and SQL Server Agent?

Answer

SQL Server Agent was created specifically to send messages to SQL Server administrators or perform predefined tasks based on
server or database conditions.

Notification Services collects data from just about any source, matches the events to subscriptions defined by many users, and
sends formatted messages using almost any protocol to almost any device that can receive messages.

Although you can customize SQL Server Agent to send messages to many users based on data values using triggers, SQL Server
Agent was not designed or intended to scale to thousands or millions of users. Notification Services, because of its scalability
model, can scale to millions of users, sending millions of notifications per day.

Also, as a development platform Notification Services provides features that reduce the time required to get an application up and
running. SQL Server Agent is not a development platform, so it does not offer similar features.

For more information about Notification Services, see Introducing SQL Server Notification Services.

Can I run multiple notification applications on one server?

Answer

Yes. You deploy instances of Notification Services; each instance can host one or more applications. You can run multiple
instances on one server; you also can run multiple versions of Notification Services on one server.

To determine how many applications to run on one server, you must look at the processing load each application is likely to place
on your server. If you run too many applications on one server, performance degrades.

For more information, see Planning a Notification Services System.

How long does it take to generate a notification from an event?

Answer

First, not all subscriptions are event triggered. Some subscriptions specify a schedule for notifications. In this case, notifications
are sent according to the defined schedule, not when the event arrives.

For event-triggered notifications, the latency between the occurrence of an event and the delivery of the notification depends
greatly on the application design. Here are the causes of notification latency:

Events must be submitted to Notification Services. The time between an event and when the event provider submits that
event in an event batch is one cause of latency.
The generator must "wake up" to generate notifications. The generator wakes up on a schedule determined by the value of
the <QuantumDuration> element in the <ApplicationSettings> node of the application definition file (ADF). If the
quantum duration is 60 seconds, there can be a 60-second delay before an event batch is used to create notifications.
The generator must match events to subscriptions in order to generate notifications. The matching is performed by one or
more Transact-SQL queries. The performance of these queries determines the latency involved with generating
notifications. In general, the more events and subscriptions evaluated at one time, the longer this process takes. Optimized
rules and well-chosen indexes can reduce matching latency.
The distributor must "wake up" to distribute notifications. The distributor wakes up on a schedule determined by the value
of the <QuantumDuration> element in the <Distributor> node of the ADF. As with the generator, if the quantum
duration is 60 seconds, there can be a 60-second delay before a notification batch is processed by the distributor.
The distributor must format notifications and package them for delivery. The formatting is performed by a content
formatter object. Complex formatting can take longer to perform than simple formatting, and sending the formatted
notification to a delivery service also takes some time. For example, posting a notification to an HTTP server can take up to
30 seconds.

After the distributor sends the notification to the delivery service, such as a Simple Mail Transfer Protocol (SMTP) server,
Notification Server has no control over the latency of sending notifications.

Each sample application has several batch files in a BuildScripts folder. What are these files?

Answer

The batch files in the Samples\sample_name\AppDefinition\BuildScripts directory run project-related commands. When you
deploy a Notification Services sample using Microsoft Visual Studio® .NET, you right-click a project and select commands, like
Build and Rebuild. These commands run the batch files.

Microsoft recommends that you do not use these scripts when deploying an instance of Notification Services to production
servers. For information about production deployment, see Deploying an Instance.

Do I need to install Microsoft Visual Studio .NET to develop Notification Services applications?

Answer

No, Visual Studio .NET is not required, but it can make development easier.

If you are developing an application that uses the standard event providers and content formatters, you can build the application
by creating an XML application definition file (ADF), and then defining an instance to host the application by creating an XML
configuration file. You can create these XML files using any text or XML editor.

If you are building custom event providers and content formatters, you can use the Microsoft Visual Studio .NET development
environment to create these objects. However, you are not required to use Visual Studio .NET. You can use any text editor to write
the code; you must install the Microsoft .NET Framework SDK and compile your code using the associated compiler.

The samples are packaged as Visual Studio .NET solutions, but you do not need to use Visual Studio to run them. The scripts to
build and run the samples can be run from a command prompt. For more information, see Programming Sample Structure.

If you install the Notification Services documentation after installing Visual Studio .NET, the documentation is integrated into the
Visual Studio .NET Help system. This provides context-sensitive help to the Notification Services documentation.

Comparing the hosted event provider with the independent event provider, what benefit does one provider have
over the other?

Answer

Implementing a hosted provider usually means less development work because the Notification Services instance loads the
Notification Services API and maintains the schedule used to activate the event provider. Hosted providers can also be enabled
and disabled like other Notification Services components and service.

Independent event providers are useful if you have existing infrastructure that can submit events, such as a customer relations
management application or a Web application. Independent event providers are listed in the application definition file (ADF) only
so that they can be referenced by subscription classes.

I already have a subscription management application written in unmanaged code. Can I call your API from my
application?

Answer

Yes. Notification Services provides COM objects that can be called from Microsoft Visual Basic® or Microsoft Visual C++®. For
more information, see COM Interop with Notification Services.

See Also

Notification Services Troubleshooting

SQL Server Notification Services Books Online

Notification Services Troubleshooting
Microsoft has compiled the following list of issues and solutions encountered by users of Notification Services.

Installation Troubleshooting

One or more components are not available on the Custom Setup page.

Solution

The Setup program analyzes the server to determine whether all prerequisites been installed for each component. If the
prerequisites for a component are not installed, you cannot install the component.

For more information about software prerequisites, see Hardware and Software Requirements.

The database components are not available, even though the prerequisite software for the database components is
installed.

Solution

To install the database components, run Setup on the server where SQL Server 2000 is installed. Setup must run locally to install
extended stored procedures to the SQL Server Binn directory and register the extended stored procedures. You must start the
SQL Server instance before installing database components to that instance. Notification Services supports only the Developer,
Standard, and Enterprise editions of SQL Server 2000.

Deployment and Administration Troubleshooting

Running NSControl Create fails due to timeout error.

Solution

The NSControl Create command has time limits for each of its operations. The database creation operation tends to take more
time than the other operations; the time limit for this operation is 10 minutes, which is normally more than adequate. However, if
the <FileSpec> elements in your ADF and configuration file specify very large database sizes (that is, several gigabytes),
NSControl Create still might time out; if it does, the following error message is displayed:

Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding.

Caught exception: Fail to run NS_directory\bin\nscontrol.exe create -in config_file arguments

To successfully run NSControl Create, you must reduce the database file sizes in the ADF and configuration file and then run
NSControl Create again. You then can increase the sizes of the database files using SQL Server Enterprise Manager or Transact-
SQL code.

Running NSControl Update fails.

Solution

The NSControl Update command might fail before completion because of errors in the ADF or the configuration file. Therefore,
before running NSControl Update, validate all ADFs and configuration files to reduce the possibility of this error occurring. If an
error does occur, fix the file and then run NSControl Update again.

It is also possible for NSControl Update to leave the instance in an inconsistent state after a failure. The best practice is to always
back up the instance and application databases before running NSControl Update, and restore the databases if NSControl
Update fails.

If you change subscription class metadata in the ADF, NSControl Update renames the existing subscription class table,
NSsubscription_classSubscriptions, to NSsubscription_classSubscriptionsOld to save the subscription data. If you later
update the same subscription class, when NSControl Update attempts to rename the table, the rename fails if
NSsubscription_classSubscriptionsOld still exists. To resolve this problem, rename or delete
NSsubscription_classSubscriptionsOld.

For more information, see NSControl Update.

The NS$instance_name service does not start.

Solutions

If the NS$instance_name service does not start, the service password might be incorrect, the instance name you are trying to start

might not be an exact match for the Notification Services instance name, or the Windows user account under which the service
has been configured to run might not have permissions to log on as a service. Try the following to resolve the problem:

Reset the password. When you use the Notification Services commands to configure a service password, and the
password contains special characters or was entered incorrectly, the NS$instance_name service will not start.

To resolve this error, update the password using the Microsoft Windows Services application:

1. In Control Panel, open Administrative Tools.
2. Open Services.
3. Right-click the NS$instance_name service (instance_name represents the name of the Notification Services instance),

and then click Properties.
4. On the Log On tab, type your password in the Password and Confirm Password boxes, and then click OK.
5. Right-click the service, and then click Start.

If the password is a valid for a domain or local account, the service should start. If the account does not have permissions to
log on as a service, resetting it from the Services application will grant it the appropriate permissions.

Start the service from the Services application. When you start the service using the Net Start command, the
characters used at the command line must match the Unicode characters used in the configuration file. If the characters do
not match, the instance cannot start.

To resolve this error, start the service using the Windows Services application:

1. In Control Panel, open Administrative Tools.
2. Open Services.
3. Right-click the NS$instance_name service (instance_name represents the name of the Notification Services instance),

and then click Start.

No errors appear in the event log.

Solution

If the NS$instance_name service does not start, but there are no errors in the application log to indicate the cause, your
application log may be full. To reconfigure the application log, do the following:

1. In Control Panel, open Administrative Tools.
2. Open Event Viewer.
3. Right-click Application, and then click Properties.
4. Do one or both of the following:

Increase the Maximum log size value.
Under When maximum log size is reached, select Overwrite events as needed.

Unexpected errors appear in the event log.

Solution

If you receive unexpected errors in Event Viewer, try restarting the service associated with the instance of Notification Services.

For example, if you remove an application from an instance while the service is running, and you then see errors in the event log
for the application you removed, restarting the service should stop these errors from appearing.

For more information, see Starting and Stopping a Service.

SSL security errors occur.

Solution

If you receive SSL security errors in the event log when creating an instance or running the NS$instance_name service,
Notification Services might not be able to connect to SQL Server.

To resolve this problem, obtain the latest service pack for SQL Server 2000. For more information, search for Knowledge Base
article Q302409 at the Microsoft Product Support Services Web site.

Internal query processor errors occur.

Solution

http://go.microsoft.com/fwlink/?linkid=8158

If you receive the following error in the event log, obtain the latest service pack for SQL Server 2000.

Internal Query Processor Error: The query processor could not produce a query plan.

Deadlock errors occur under stress.

Solution

When running under high volumes, you might receive the following messages in the application event log:

Notification Services Message: "The view of the event class could not be materialized."

SQL Server Message: "Transaction {} was deadlocked on {} resources with another process and has been chosen as the deadlock
victim. Rerun the transaction."

The fix for this error requires either a service pack update or a hotfix. For more information, search for Knowledge Base article
Q322868 at the Microsoft Product Support Services Web site.

Old events are reused, or disabled subscriptions receive notifications.

Solution

If you write subscription rules that access the events and subscriptions tables directly, obsolete events and disabled subscriptions
might be used to generate notifications.

Writing queries that directly use the events, notifications, subscriptions tables is not recommended. Instead, write your queries
using the class names defined in the application definition file (ADF).

For example, if the name of an event class defined in the ADF is StockEvent, use the table name StockEvent in your subscription
rule, not the actual table name in the database (which would be NSStockEventEvents).

Notification Services creates temporary tables with the current set of events, notifications, and subscriptions. The static tables in
the database contain obsolete data that will be removed by the vacuuming process.

For more information about writing subscription rules, see Subscription Rules.

Event Collection Troubleshooting

FileSystemWatcher event provider fails.

Solution

The FileSystemWatcher event provider might fail if the performance counters on the server become corrupted. If you receive the
following error in the event log, a performance counter is corrupted:

Event ID: 2980

Description: The FileSystemWatcher event provider failed to submit events.

Description: Object reference not set to an instance of an object.

If a performance counter is corrupted, the counter will not return values. To attempt to resolve the corruption, do the following:

1. If the NS$instance_name service is running, stop the service.
2. Close any applications that query the Notification Service performance counters, such as System Monitor.
3. Unregister the instance using NSControl Unregister.
4. Re-register the instance using NSControl Register.

This re-creates the performance counters for the instance. You might need to run these steps multiple times.

Delivery Troubleshooting

Generic delivery errors occur.

Solution

Some delivery errors can in fact be configuration errors. For example, if you incorrectly configure an SMTP delivery channel, when
Notification Services tries to deliver a notification using the delivery channel you might receive a message such as this:

SMTP Delivery Notification Generic Error

If you receive several errors like this, verify that your delivery channels are configured correctly. For more information, see

http://go.microsoft.com/fwlink/?linkid=8158

Standard Delivery Protocols.

SMTP delivery fails.

Solution

When using the Internet Information Services (IIS) SMTP protocol, Notification Services must look in an IIS directory to determine
where to deliver the notifications. Only administrators have privileges to access this information.

To use the IIS SMTP delivery protocol, which is used by the Flight, Weather, and Realtor sample applications, the account that the
NS$instance_name service runs under must be a member of the Administrators group.

Distributor times out.

Solution

If you receive various timeout errors in the event log, the distributor logging level might be too high. This typically occurs only
when the database system is processing high volumes of notifications, and cannot handle both the distribution and logging tasks.

To resolve the problem, set the values within the <DistributorLogging> node of the ADF to false. For more information, see
Defining the <DistributorLogging> Node.

Notifications are not delivered.

Solution

If notifications are not being sent from your application, check the following:

Are the notifications being generated?
Run the NSDiagnosticNotificationClass stored procedure in the instance database to verify that notifications are being
generated. Look in the NotificationsGenerated column for the interval at which you expected them to be generated. If
there are no notifications it is possible that there are no events or no subscriptions, or that the subscription class match
rules do not insert any notifications into the notification class function. For more information about the Notify function, see
Using Notification Functions.
Are there any events available?
Run the NSDiagnosticEventClass stored procedure in the instance database. Look in the EventBatchesCollectedCount
column to see if events arrived when you expected.
Are scheduled subscriptions properly scheduled?
Run the NSScheduledSubscriptionList and NSScheduledSubscriptionDetails stored procedures in the application database
to view subscription details.
Are notifications failing?
Run the NSDiagnosticFailedNotifications stored procedure to check for failed notifications.
Are the notifications going to the correct delivery channel?
Verify that the ADF defines the correct protocols for the notification class and that the subscriptions added to your
application are using the correct delivery channel.
Are your delivery channels functional?
Run the NSDiagnosticDeliveryChannel report to see if the delivery channels are operational.
Do the subscriber devices referred to in the notifications exist?
When calling the Notify function in your match rule, you must pass a subscriber ID and a device name. You must create a
subscriber device for this subscriber ID with this device name in your subscription management application using the
SubscriberDevice class.

These methods should help you determine why notifications are not being delivered.

Web Application Troubleshooting

Cannot access SQL Server from sample application ASP.NET pages.

Solution

If you receive the following error from a Microsoft ASP.NET Web page, the account used by the Web application has not been
granted access to SQL Server:

Error when loading ASP.NET subscription management page: System.Data.SqlClient.SqlException: Login failed for user
'domain\account'

To resolve this problem, do the following:

1. Grant login access to a domain account to be used by the subscription management application. In SQL Query Analyzer, run
EXEC sp_grantlogin 'domain\username'.

2. Edit the Samples\SetGlobalVars.cmd file and make sure the SubscriptionApplicationAccount value is set to the domain
account to which you granted access.

3. Run Sample\AppDefinition\BuildScripts\GrantPermissions.cmd.

Error when loading ASP.NET subscription management page.

Solution

If you receive the following error from an ASP.NET Web page, the account used by the Web application has not been added to the
NSSubscriberAdmin and NSEventProvider roles in the instance and application databases:

System.Data.SqlClient.SqlException: Cannot open database requested in login 'database'. Login fails. Login failed for user
'domain\account'.

To resolve this problem, do the following:

1. Edit the Samples\SetGlobalVars.cmd file and make sure the SubscriptionApplicationAccount value is set to the domain
account to which you granted access.

2. Run Sample\AppDefinition\BuildScripts\GrantPermissions.cmd.

See Also

Event Messages

Frequently Asked Questions

SQL Server Notification Services Books Online

Event Messages
Notification Services logs event messages to the application log, which is accessible from Microsoft Windows® Event Viewer.
These messages can assist you when troubleshooting system errors and performance problems.

Even if you are not currently having problems with Notification Services, you should check the event log periodically. Checking
the log on a regular schedule can help avoid significant system problems. For example, it is best to know as soon as possible if
events are not being collected or notifications are not being distributed.

The topics in this section provide information on configuring event logging, events created by Notification Services, and obtaining
more information about a particular event message. They are described in the following table.

Topic Description
Event Logging Overview Provides instructions for configuring

logging levels for the NS$instance_name
service and the distributor.

Configuring Notification Services Event
Logging

Describes how to change the logging
levels for Notification Services
components.

Viewing Supplemental Event Message
Information

Explains where to look for additional
information about Notification Services
event messages.

For additional information about using Event Viewer, open Event Viewer Help from the Event Viewer application.

See Also

Performance Monitoring and Reporting

SQL Server Notification Services Books Online

Event Logging Overview
Notification Services logs event messages to the Windows application log. You can use both of these event messages to monitor
the activity of an instance and its applications.

Managing the Event Log

Depending on the logging levels you configure, the application event log can grow very quickly. For example, if you log all
Notification Services events and log all notification deliveries for an application that sends thousands of notifications per hour, an
unmanaged event log can quickly fill up a disk.

To manage the event log, consider the following recommendations:

For applications on production servers (servers that are not devoted to development or testing), log only the events
required by your applications, such as error messages that can help you troubleshoot application problems. Some
applications might require a higher logging level because of service agreements for notification delivery; these applications
require more disk space for logging.
If a system is performing many writes to disk to populate the event log, application performance might diminish. This is
especially true for the system that hosts the Notification Services databases, since notification generation is a disk-intensive
process.
Configure a reasonable maximum event log size and set the overwrite option to match your logging needs. For example, if
you do not need events after three days, let the event log clear those events by choosing to overwrite events older than
three days.
Use filtering to show events from specific sources, such as a Notification Services instance. You can create a new view of a
log, and then define a filter for that view that shows only the events of interest. You can then export the events in the view to
one of the supported formats, such as a comma-delimited text file.
In Microsoft Windows XP, use the Eventquery command prompt utility to manage event logs from the command line. This
enables you to schedule tasks to display or save events that match specific criteria. For example, you could run the following
command to save all events from the NS$StockInstance event source to a text file:

Eventquery /l Application /fi "Source eq NS$StockInstance" >C:\Logs\NSLog.txt

In Windows 2000, the Eventlog.pl utility provide similar functionality. For more information, search for article Q318763 in
the Microsoft Knowledge Base.

For additional information about using event logs, open Event Viewer Help from Event Viewer.

http://go.microsoft.com/fwlink/?LinkId=8158

SQL Server Notification Services Books Online

Configuring Notification Services Event Logging
Most logging for Notification Services is controlled at the instance level. Each instance has a file named NSservice.exe.config.
Within this file are XML elements that control logging levels for various areas of Notification Services operation, such as the
NSControl utility, the NS$instance_name service, and Notification Services components. Each of these areas is represented by
one XML element.

To configure logging levels for these areas of Notification Services, edit the value attribute of the XML elements in this file.

To edit the NSservice.exe.config file

1. Open the Bin folder of the Notification Services installation.

The default installation folder is Program Files\Microsoft SQL Server Notification Services\vn.n.n.n\Bin.

2. Open the NSservice.exe.config file.

You can edit this file in the Microsoft Visual Studio® XML editor or in a text editor, such as Notepad.

3. For each of the items in the <switches> node, set the logging level by changing the value attribute.

In the following example, the LogAdministrative logging level is set to 3, which turns on logging for error, warning, and
informational events for the administrative components:

<add name="LogAdministrative" value="3"/>

Initially, each logging option is set to 2, which turns on logging for error and warning messages only.

4. Restart the NS$instance_name service to apply the logging changes.

NSservice.exe.config Logging Elements

The NSservice.exe.config file contains elements that control event logging from various components of Notification Services; they
are listed in the following table.

Element name Logging category
LogAdministrative NSControl command events
LogDistributor Distributor events
LogEventProvider Event provider events
LogEventCollector Event collector object events
LogGenerator Generator events
LogPerformanceMonitor Performance object events
LogService NS$instance_name service events
LogVacuumer Vacuumer events
LogOther Events for all other components, such as the

XsltFormatter and the standard delivery protocols

Logging Level Values

Logging levels determine which types of events are written to the event log. You can control the logging level by setting the
value attribute to one of the following values.

Value Description
0 Off
1 Error messages only
2 Error and warning messages
3 Error, warning, and informational messages
4 Verbose logging

See Also

Performance Monitoring and Reporting

SQL Server Notification Services Books Online

Viewing Supplemental Event Message Information
Notification Services event message text and supporting information is not provided in Notification Services Books Online.
Instead Notification Services uses the Web to provide updated information about event messages.

In Microsoft Windows XP, each event message in Windows Event Viewer contains a link to a Microsoft Web page that contains
additional information about the message.

To locate a Web page for an event message

1. In Event Viewer, double-click the event message.
2. Scroll to the bottom of the Description box.
3. After the "For more information, see Help and Support Center at" text, click the Web link.

Not all event messages have additional information on the Web. The Web pages are updated as Microsoft learns more about
which event messages benefit from more information.

See Also

Performance Monitoring and Reporting

SQL Server Notification Services Books Online

Glossary
Term Definition

.NET Framework An environment for building, deploying, and
running XML Web services and other applications.
The Microsoft® .NET Framework has two parts:
the common language runtime and the class
libraries, which include ASP.NET, Enterprise
Services, ADO.NET, and Microsoft Windows®
Forms.

acknowledged delivery A positive confirmation from either the system or
the recipient to Microsoft SQL Server™
Notification Services that a notification has been
delivered to the intended recipient.

ADF See definition for application definition file.
application An individual solution for matching events with

subscriptions and then formatting and delivering
the resulting notifications.

application database The database that stores user and system data for
one application. The application database contains
the events, subscriptions, and notifications for the
application. It also contains system meta data
including the schemas for the events,
subscriptions, and notifications for the application;
and the match rules for the application.

application definition file
(ADF)

An XML file that fully describes a single
Notification Services application. The ADF file
contains the schemas for the events,
subscriptions, and notifications; the rules for
matching events with subscriptions; and may
provide the name of the XSLT file used to format
generated notifications.

argument An initializing value passed to those components
of Notification Services that can accept it, such as
stored procedures, commands, event providers,
delivery protocols, and content formatters.

batch A set of data processed as a group. An event batch
is a set of events that are submitted to
Notification Services at one time. A notification
batch is a set of notifications that are generated
by one firing of a match rule.

chronicle A table that stores state information for a single
application. An example is an event chronicle,
which can store event data for use with scheduled
subscriptions.

component Within Notification Services, a component is a
major element of the Notification Services
platform such as the event collector, the
generator, the distributor, or the vacuumer.

computed field A value in a formatted notification that has been
computed using a Transact-SQL expression.

configuration file An XML file that contains the configuration data
for an instance of Notification Services. The
configuration file specifies the applications that
are hosted by the instance, the name of the
database server, the database properties, and the
delivery protocols and delivery channels.

content formatter The part of the distributor that turns raw
notification data into readable messages.

custom Created by an application developer, as opposed
to supplied as a standard part of Notification
Services.

delivery channel A pipeline between a distributor and a delivery
service.

delivery channel instance A single occurrence of a delivery channel. For
example, an instance of Notification Services can
use two File delivery channels; each File delivery
channel instance is one use of the File delivery
channel.

delivery channel type The protocol for a delivery channel, such as
Simple Mail Transfer Protocol (SMTP) or File.

delivery failure A notification that does not reach the intended
recipient.

delivery protocol The set of communication rules used to route
notification messages to external delivery
systems.

destination device A delivery location (hardware or application) to
which notifications are sent.

device A hardware or software component that can
accept output from Notification Services. A
hardware example is a cell phone; a software
example is Microsoft Outlook®.

device name A user-defined description of a particular device,
used in conjunction with the subscriber ID to
identify a specific subscriber device. A device
name must be provided to the notification
function as an input parameter.

device type A value from a developer-defined list that
specifies the types of devices that a given
application will support. A device type
corresponds to a single delivery channel.

digest delivery A method of sending notifications that combines
multiple notifications within a batch and sends the
resulting message to a subscriber.

disable To turn off a component or collection of
components. A disabled component does not
process data or perform other activities.

distributor The component of Notification Services that
formats notifications and sends them to external
delivery services.

enable To turn on a component or collection of
components.

event A noteworthy happening, such as a score change
in a sporting event or a price change for a stock.

event batch A set of one or more events submitted to
Notification Services at one time.

event chronicle A table that stores event state information.
event chronicle rule One or more Transact-SQL statements that

manage the data in the event chronicle. This type
of rule is fired each time an event batch for the
rule's event class is submitted to the system.

event class A single class defined by one <EventClass> node
in an application definition file. An <EventClass>
node defines the structure and properties of a
particular type of event.

Event class A class in the Notification Services API that
provides a way to encapsulate a single event.

event collection stored
procedures

System-generated stored procedures that an
application can call to submit events to the event
table in the application database. Notification
Services generates these stored procedures for
each event class defined in the application data
file. These stored procedures can be called from
SQL Server triggers or other SQL Server stored
procedures.

EventCollector class A class in the Notification Services API that
accepts Event objects as input, batches them, and
then submits them to the application database.

event-driven subscription A subscription in which notifications are
generated as soon as event data arrives that
matches the subscription.

EventLoader class A class in the Notification Services API that
accepts XML events and writes them to the
application database.

event provider A component that collects event data from one or
more event sources and submits the events to the
event tables in the application database.

event schema A SQL-annotated XML Schema definition
language (XSD) schema that maps event data to
an event schema defined in the application
definition file. Used by the EventLoader class.

event source The point of origin of an event.
event table A table in the application database that stores

event data. It is automatically generated based on
information in the application definition file each
time NSControl Create or NSControl Update is
run. Each row in the table is an event instance.

external delivery system A system, such as Microsoft Exchange Server, that
delivers formatted notifications to destination
devices.

file system watcher event
provider

An event provider supplied by Notification
Services that monitors a directory for the arrival
of XML event files, extracts XML event data from
these files, and submits these events to the event
table in the application database. The file system
watcher uses the event loader class to submit
events.

generator The component of Notification Services that
matches events to subscriptions and produces
notifications.

hosted event provider An event provider managed by the Notification
Services event provider host that gathers event
data from one or more event sources and submits
the events to an event table in the application
database.

independent event provider An event provider running outside the process
environment of Notification Services that gathers
event data from one or more event sources and
submits the events to an event table in the
application database.

instance A single, named configuration of Notification
Services that hosts one or more notification
applications. The applications share a set of
subscribers and use the same database system,
protocols, delivery channels, and version of
Notification Services. An administrator defines an
instance in a configuration file.

The NS$instance_name service runs an instance
of Notification Services.

instance database The instance_nameNSMain database, which
stores instance-specific data, including delivery
channel and subscriber information.

locale A code that denotes a language and a
country/region. For example, "fr-CA" represents
the French Canadian locale; "ja-JP" represents the
Japanese Japan locale. The content formatter can
use the locale to format a notification in the
culturally appropriate way.

message A formatted notification that has been processed
by the distributor for transmission by the delivery
protocol.

multicast delivery A method for delivering notifications that formats
a notification once and sends the resulting
message to multiple subscribers.

notification The data sent to the subscriber as the result of a
subscription. For event-triggered subscriptions,
Notification Services produces a notification each
time an input event matches the subscription. For
scheduled subscriptions, Notification Services
might produce a notification each time the
subscription is scheduled, if an event matches the
subscription.

notification class A single class defined by one
<NotificationClass> node in the application
definition file. A <NotificationClass> node
defines the structure and properties of a particular
type of notification.

notification delivery The transmission of a notification to a recipient.
notification formatting The transformation of notification data from its

unformatted to its formatted state. The formatted
notification is delivered to the recipient.

notification function The function generated by Notification Services
that is called in a notification generation rule to
write a notification to the notifications table.
Notification Services generates a
NotificationClassNameNotify() function for each
notification class defined in the application
definition file.

notification table A table that stores unformatted notification data.
Notification Services creates a notification table
for each notification class defined in the
application definition file.

NS$instance_name The name of the Windows service that runs an
instance of Notification Services. instance_name is
a placeholder for the actual instance name, such
as NS$StockInstance.

NSControl The command prompt utility for administering
Notification Services instances and applications.

parameter A value specified in the application definition file
or the configuration file that is used to provide a
value for another element.

platform The Notification Services engine and the
Notification Services SQL Server databases. The
platform stores system data and provides
functions for notification generation and
distribution.

protocol A set of rules that systems use when they
communicate. Examples are SMTP and HTTP. Each
protocol has specific header and body formatting
requirements and a message exchange model,
which are addressed by Notification Services via
the delivery protocol component.

provider host The component of Notification Services that hosts
event providers within the Notification Services
engine. At the application level, the provider host
is optional, since event providers can run
independently of Notification Services.

quantum A period of time defined in the application
definition file that sets the timing for generator
firing.

The plural form of quantum is quanta.

raw notification data The data that is written to the notification table. It
consists of fields of data that have not yet been
formatted for delivery.

register To configure a computer to be a part of a
Notification Services instance. NSControl
Register creates the NS$instance_name service,
configures security for the service, and creates
performance counters for the instance.

rule One or more Transact-SQL statements used to
generate notifications or to maintain data in
chronicle tables.

rule firing The process of executing one of the application
rules (event chronicle rules, subscription event
rules, and subscription scheduled rules) defined in
the application definition file. The rules are
Transact-SQL statements that process notification
data.

scheduled subscription A type of subscription in which notifications are
generated according to a schedule.

SQL Server event provider A stored procedure-based event provider that
gathers data from SQL Server and submits it to
the event table using the standard Notification
Services event collection stored procedures.

standard Supplied as a standard part of Notification
Services, as opposed to created by an application
developer (custom).

subscribe To enroll in an instance of Notification Services
and create a subscription for one or more
applications hosted by that instance.

subscriber The person or process to which notifications are
delivered.

Subscriber class A class in the Notification Services API used for
submitting subscriber information.

SubscriberDevice class A class in the Notification Services API used for
submitting subscriber device information.

subscriber locale An identifier that identifies the language and
country/region of a subscriber, such as "en-US." It
is often part of subscription data, but this is not
required; such information can be retrieved from
other sources. The subscriber locale must be
provided to the notification function as an input
parameter.

subscription An application-specific request to receive
notifications.

subscription chronicle The table that stores subscription state
information.

subscription class A single class defined by the
<SubscriptionClass> node in an application
definition file. The <SubscriptionClass> node
defines the structure and properties of a particular
type of subscription.

Subscription class A class in the Notification Services API used for
submitting subscription information.

subscription event rule A rule that processes information for event-driven
subscriptions. It may contain notification
generation rules or chronicle update rules. This
type of rule is fired each time a corresponding
batch of events is submitted.

subscription management
application

The application that subscribers use to submit and
manage their subscriptions. For each instance or
application, a developer can create a custom
interface for managing subscriptions. This
application must use Notification Services APIs to
submit data to the system.

subscription scheduled rule One or more Transact-SQL statements that
process information for scheduled subscriptions.
The rule can contain notification generation rules
or chronicle update rules. This type of rule is fired
each time a scheduled subscription is due for
processing.

successful delivery A notification that has been delivered to the
intended recipient.

time-out (adj, n); time out (v) A time limit for a process, such as firing a rule;
also the action of reaching the time limit. Multiple
processes in Notification Services can time out,
such as the rules, the vacuumer, and the delivery
service.

vacuumer The component that removes expired data from
Notification Services tables.

vacuuming The process of clearing obsolete data from a
Notification Services application according to a
schedule defined in the application definition file.

validation, semantic The process of confirming that the elements of an
XML file are logically valid. For example, semantic
validation might confirm that a value is numeric
and within a specified range.

validation, syntactic The process of confirming that an XML file
conforms to its schema.

work item The unit of work a distributor uses. One work item
constitutes all the notifications in a single batch
that use the same delivery channel.

XSL; XSLT Extensible Stylesheet Language (XSL) and
Extensible Stylesheet Language transformation
(XSLT).

Reporting Services - Using Reporting Services

Getting Started With Reporting Services
Use this table for quick access to documentation for Reporting Services version 1.0, a component of Microsoft® SQL Server™
2000. For more information about tutorials and samples you can use to learn about Reporting Services, see Reporting Services
Samples and Walkthroughs.

To learn about See
Reporting Services features, components,
workflow, and terminology

Introducing Reporting Services

Installing or removing Reporting Services
components

Installing Reporting Services

Configuring and maintaining reports,
report servers, and report server
databases in a production environment

Deploying and Administering Reporting
Services

Authoring and publishing reports using a
report design tool

Designing and Creating Reports

Basic operations such as selecting,
viewing, and printing reports, and
advanced operations such as centralized
management and configuring access to
reports and other items

Managing and Working With Published
Reports

Problem-solving and error message
information

Troubleshooting Reporting Services

Application programming interfaces (API)
and programming techniques

Reporting Services Programming

Reference documentation for the Report
Definition Language

Report Definition Language

Dialog box and page-level options, and
syntax for running command prompt
utilities

Tools and Utilities Reference

Step-by-step instruction for performing
tasks

Reporting Services How To

Step-by-step instruction for learning
specific skills

Reporting Services Samples and
Walkthroughs

This documentation is provided for informational purposes only. Microsoft makes no warranties, either express or implied, in this
document. See the link at the bottom of this page for the full copyright notice.

Reporting Services - Using Reporting Services

Documentation Conventions
The following conventions are used in Reporting Services Books Online to distinguish elements of text.

Convention Used for
UPPERCASE Transact-SQL keywords and SQL elements.
Initial Capitals Paths and file names.
Bold Database names, table names, column names, stored

procedures, command prompt utilities, menus, commands,
dialog box options, programming elements, and text that must
be typed exactly as shown.

Italic User-supplied variables, relationships, and phrasings.
Monospace Code samples, examples, display text, and error messages.

Reporting Services - Using Reporting Services

Using Reporting Services Books Online
Reporting Services Books Online is the online documentation provided with Microsoft SQL Server 2000 Reporting Services. For
more information on functionality of the Books Online viewer, open a local copy of Reporting Services Book Online, open this
topic, and then click "Microsoft Document Explorer 7.0 Help on Help".

Reporting Services - Using Reporting Services

Accessibility for People with Disabilities
Microsoft is committed to making its products and services easier for everyone to use. This topic provides information about the
following features, products, and services that make Microsoft Windows® and Microsoft SQL Server 2000 Reporting Services
more accessible for people with disabilities:

Accessibility of Reporting Services
Features and hints for customizing Windows
Microsoft services for people who are deaf or hard-of-hearing
Microsoft software documentation online, or on audiocassette, floppy disk, or CD
Third-party utilities that enhance accessibility
Other products and services for people with disabilities

Note The information in this section applies only to users who license Microsoft products in the United States.
If you obtained this product outside the United States, your package contains a subsidiary information card
listing Microsoft support services telephone numbers and addresses. You can contact your subsidiary to find out
whether the types of products and services described in this section are available in your area.

Reporting Services Accessibility Features

In addition to Windows accessibility products and services, the following features make Reporting Services more accessible for
people with disabilities.

The Help Viewer

The Help Viewer for Microsoft HTML Help is the tool through which you read the product documentation. It is equipped with
accessibility features, including shortcut keys for navigation and commands. The Help Viewer also uses some of the accessibility
features of Microsoft Internet Explorer. For example, it allows you to change the colors of the display on your computer screen.
For more information, see Using Reporting Services Books Online.

Customizing Windows

There are many ways you can customize Windows operating systems to make your computer more accessible.

Accessibility features have been built into Windows since the introduction of Windows 95. These features are useful for
individuals who have difficulty typing or using a mouse, have moderately impaired vision, or who are deaf or hard-of-hearing.
The features can be installed during setup, or you can add them later from your Windows installation disks.

For information about installing and using these features, look up "accessibility" in the Windows Help Index.

You also can use Control Panel and other built-in features to adjust the appearance and behavior of Windows to suit varying
vision and motor abilities. These include adjusting colors and sizes, sound volume, and the behavior of the mouse and keyboard.

Dvorak keyboard layouts make the most frequently typed characters on a keyboard more accessible if you have difficulty using
the standard QWERTY layout. There are three Dvorak layouts: one if you are a two-handed user, one if you type with your left
hand only, and one if you type with your right hand only. You do not need to purchase any special equipment to use these
features.

The specific features available, and whether they are built-in or must be obtained separately, depend on which operating system
you are using.

M icrosoft Services for People Who Are Deaf or Hard-of-Hearing

If you are deaf or hard-of-hearing, complete access to Microsoft product and customer services is available through a text
telephone (TTY/TDD) service.

Customer Service

You can contact the Microsoft Sales Information Center on a text telephone by dialing (800) 892-5234 between 6:30 A.M. and
5:30 P.M. Pacific time.

Technical Assistance

For technical assistance in the United States, you can contact Microsoft Technical Support on a text telephone at (425) 635-4948
between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday, excluding holidays. In Canada, dial (905) 568-9641
between 8:00 A.M. and 8:00 P.M. eastern time, Monday through Friday, excluding holidays. Microsoft support services are subject
to the prices, terms, and conditions in place at the time the service is used.

M icrosoft Documentation in Alternative Formats

In addition to the standard forms of documentation, many Microsoft products are available in other formats to make them more
accessible.

If you have difficulty reading or handling printed documentation, you can obtain many Microsoft publications from Recording for
the Blind & Dyslexic, Inc. RFB&D distributes these documents to registered, eligible members of their distribution service, either
on audio cassettes or on floppy disks. The RFB&D collection contains more than 80,000 titles, including Microsoft product
documentation and books from Microsoft Press®. You can download many of these books from the Microsoft Accessibility page
at Microsoft Accessibility site.

For more information, contact Recording for the Blind & Dyslexic at the following address or phone numbers:

Recording for the Blind & Dyslexic,
Inc.
20 Roszel Road
Princeton, NJ 08540

Phone:
Fax:
Web:

(609) 452-0606
(609) 987-8116
http://www.rfbd.org/

Utilities to Enhance Accessibility

A wide variety of hardware and software products are available to make personal computers easier to use for people with
disabilities. Among the different types of products available for the MS-DOS, Windows, and Windows NT operating systems are:

Programs that enlarge or alter the color of information on the screen for people with visual impairments
Programs that describe information on the screen in Braille or synthesized speech for people who are blind or have
difficulty reading
Hardware and software utilities that modify the behavior of the mouse and keyboard
Programs that enable people to "type" by using a mouse or their voice
Word or phrase prediction software that allow users to type more quickly and with fewer keystrokes
Alternative input devices, such as single switch or puff-and-sip devices, for people who cannot use a mouse or a keyboard

Getting M ore Accessibility Information

In addition to the features and resources already described in this section, other products, services, and resources for people with
disabilities are available from Microsoft and other organizations.

M icrosoft

Microsoft provides a catalog of accessibility aids that can be used with the Windows and Windows NT operating systems. You can
obtain this catalog from our Web site or by phone:

Microsoft Sales Information
Center
One Microsoft Way
Redmond, WA 98052-6393

Web:
Voice telephone:
Text telephone:

Microsoft Accessibility site.
(800) 426-9400
(800) 892-5234

Trace R&D Center

The Trace R&D Center at the University of Wisconsin-Madison publishes a database of more than 18,000 products and other
information for people with disabilities. The database is available on their site on the World Wide Web. The Trace R&D Center also
publishes a book, titled Trace ResourceBook, which provides descriptions and photographs of about 2,000 products.

To obtain these materials, contact:

Trace R&D Center University of
Wisconsin-Madison
5901 Research Park Boulevard
Madison, WI 53719-1252

Web:
Fax:

http://trace.wisc.edu/
(608) 262-8848

http://go.microsoft.com/fwlink/?linkid=20176
http://www.rfbd.org/
http://go.microsoft.com/fwlink/?linkid=20176
http://trace.wisc.edu/

Reporting Services - Using Reporting Services

Additional Reporting Services Resources
This table provides Internet resources for information about Reporting Services and related products and technologies.

Resource Address
Microsoft Support Services http://support.microsoft.com/directory
Microsoft newsgroups news://news.microsoft.com/
Microsoft Windows® Hardware
Compatibility List

http://www.microsoft.com/hcl

Microsoft MSDN® http://msdn.microsoft.com
Professional Association for SQL Server http://www.sqlpass.org/
Microsoft SQL Server Developer Center http://msdn.microsoft.com/sql/
SQL Server Magazine http://www.sqlmag.com/
Microsoft SQL Server Support http://support.microsoft.com/support/sql
TechNet site http://www.microsoft.com/technet/
Microsoft SQL Server http://www.microsoft.com/sql

http://go.microsoft.com/fwlink/?linkid=8158
news://news.microsoft.com/
http://go.microsoft.com/fwlink/?linkid=8286
http://go.microsoft.com/fwlink/?linkid=8285
http://www.sqlpass.org/
http://go.microsoft.com/fwlink/?linkid=8284
http://www.sqlmag.com/
http://go.microsoft.com/fwlink/?linkid=8633
http://go.microsoft.com/fwlink/?linkid=8283
http://go.microsoft.com/fwlink/?linkid=8282

Reporting Services - Using Reporting Services

Microsoft SQL Server Reporting Services Copyright and
Disclaimer
Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless
otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and
events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail
address, logo, person, place or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording,
or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 1988-2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, MSDN, SQL Server, Visual Basic, Visual C++, Visual C#, Visual
Studio, and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Adobe Portable Document Format is a registered copyright of Adobe Systems Incorporated.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Reporting Services - Introducing Reporting Services

Introducing Reporting Services
Microsoft® SQL Server™ 2000 Reporting Services is a new server-based reporting platform that you can use to create and
manage tabular, matrix, graphical, and free-form reports that contain data from relational and multidimensional data sources. The
reports that you create can be viewed and managed over a Web-based connection.

Reporting Services provides a complete set of services, tools, and application programming interfaces (APIs), but you do not have
to be a programmer to use Reporting Services. You can use the applications and tools included in Reporting Services to author,
publish, and manage reports. There is a tool or application that supports each phase of the report lifecycle. For those who do
program, an API is available to extend or integrate report capabilities into custom solutions.

Advantages of Web-enabled Reporting

You can build a reporting environment on top of your existing database server and Web server infrastructure. Reporting Services
provides a middle-tier server that runs under Internet Information Services. You can build reports that draw data from the data
servers you have in place for any data source type that has a .NET managed data provider, OLE DB provider, or ODBC data source.

Report deployment can also leverage existing infrastructure and skills. Users can access reports and management tools using a
browser and navigation skills they already have. Reports are accessed from a central store that is represented as a folder
hierarchy. You can create a reporting environment that organizes reports and collateral content in a folder hierarchy that you
design. Navigation, search, and subscription features help users locate and run the reports they need.

Reports can be rendered in both desktop and Web-oriented formats. You can build a wide range of reports that combine the
strengths of Web-based features and traditional reporting. You can create interactive, tabular, or free-form reports that retrieve
data at scheduled intervals or on-demand when the user opens a report. Matrix reports can summarize data for high-level
reviews, while providing supporting detail in drilldown reports. Parameterized reports can be used to filter data based on values
that are provided at run time. Users can choose from a variety of viewing formats to render reports on the fly in preferred formats
for data manipulation or printing.

Why Server-based Reporting?

Server-based reporting provides a way to centralize report storage and management, set policies and secure access to reports
and folders, control how reports are processed and distributed, and standardize how reports are used in your business.

Reporting Services is scaleable. You can install report servers on single-server, distributed, and Web farm configurations.

About the Platform

Reporting Services has a modular architecture. The platform is based on a report server engine that consists of processors and
services that obtain and process data. Processing is distributed across multiple components that can be extended or integrated
into custom solutions. Presentation processing occurs after the data is retrieved and is decoupled from data processing. This
feature allows multiple users to review the same report simultaneously in formats designed for different devices or quickly
change the viewing format of the report. With a single click, HTML becomes PDF or Microsoft Excel or XML.

The architecture is designed to support new kinds of data sources or output formats. The rendering extensions included with
Reporting Services are used to render reports in HTML and other formats for desktop applications such as Adobe Acrobat (PDF)
and Microsoft Excel, but developers can create other rendering extensions to take advantage of printer or device capabilities.

Developers can include reporting functionality in custom applications or extend reporting functionality to support custom
features. An API exposed as a Web service provides Simple Object Access Protocol (SOAP) and URL endpoints for easy integration
with new or existing applications and portals.

Getting M ore Information

The following table describes the topics in this section.

Topic Description
Using Reporting Services Describes scenarios for using Reporting

Services.
Reporting Services Features Summarizes Reporting Services features

by category.

Authoring, Managing, and Delivering
Reports

Explains reporting features and
functionality in the context of the report
lifecycle, which includes authoring,
publication, management, execution, and
access.

Report Terminology Describes important terms and concepts.
Reporting Services Component Overview Provides an architecture diagram and

component overview.

See Also

Getting Started With Reporting Services Books Online

Installing Reporting Services

Reporting Services - Introducing Reporting Services

Using Reporting Services
SQL Server 2000 Reporting Services provides a complete set of tools and applications that you can use to author, publish, and
manage reports. Reporting Services can be used in a variety of ways, depending on your level of technical expertise and what you
want to achieve. You can use visual tools to get right to work. Or if you are a programmer, you can embed Reporting Services
technology in your own custom solution.

Using Reporting Services Applications and Tools

You can use the applications and tools included with Reporting Services to create, view, and manage reports. No coding is
required. Reporting Services can be used out-of-the-box as a reporting solution for existing SQL Server databases, Analysis
Server databases, and other data source types.

Although report design and management tools are not difficult to use, they are not designed for novice users. To author reports,
you need to know how to connect to data sources, create queries, and optionally write expressions. To manage reports, it helps if
you understand system administration and middle-tier applications. For more information about using Reporting Services
applications, see Tools and Utilities Reference, Designing and Creating Reports, and Managing and Working with Published
Reports.

Adding Report Features to Your Application

You can add Reporting Services functionality to new or existing applications. Many applications include predefined reports that
provide information and analysis about application operations. If you are building an application that includes report features, you
can make Reporting Services part of your offering. You can add report functionality to existing applications by creating the
reports that you want to include, and then packaging the reports, report server engine, and report server database with your
application. At run time, when the user initiates an action that calls for a report, your application code invokes the report server
engine, which then retrieves the report definition from the report server database and processes the report with the latest data.
For more information, see Integrating Reporting Services into Applications.

Building Custom Design and Report Management Tools

The tools and applications included with Reporting Services are based on programmatic interfaces that are available to all users.
This means that you can replace the applications and tools included in Reporting Services with a custom tool set that you create.
To build a custom designer, you must study the report definition language to understand the structure of reports that you must
support in a design tool. To build a custom portal or report management tool, you must review the API to learn about the report
server management functions you must support. Reporting Services includes a WMI provider that you can use to develop
Windows-based tools used for server administration. For more information, see Report Definition Language, Using the Reporting
Services WMI Provider, and Reporting Services Programming.

Extending the Reporting Services Platform

Third-party vendors, consultants, and corporate developers can extend the report server platform to support custom functionality.
Extending the report server requires an understanding of software architecture and a detailed knowledge of the functionality that
you want to add. To build delivery extensions for a device or application, for example, you must understand the inner workings of
the device or application that you want to incorporate. To build a rendering extension, you must have expert knowledge of the
format that you want to support. The product documentation provides information about the integration points between custom
extensions and the report server; however, it does not provide guidance about writing to specific devices, formats, or applications.
For more information, see Reporting Services Programming, and Extending Reporting Services.

Getting Started

To evaluate Reporting Services and understand its features, you can create and then publish a report using the report-authoring
tool that comes with Reporting Services. After you publish a report, you can access the report through a URL or from Report
Manager. Follow a simple tutorial to learn the basic steps, or read overview topics that describe the report life cycle from start to
finish. For more information, see Walkthrough – Creating a Basic Report and Authoring, Managing, and Delivering Reports. For
more information about product documentation, see Getting Started with Reporting Services Books Online.

See Also

Installing Reporting Services

Introducing Reporting Services

Reporting Services Component Overview

Reporting Services Features

Reporting Services - Introducing Reporting Services

Authoring, Managing, and Delivering Reports
To understand Reporting Services functionality and how its components work together, you need to understand the lifecycle of a
report as it progresses through the authoring, management, and delivery phases. Each new phase in the lifecycle introduces a
new set of report features and functionality.

Report Lifecycle Diagram

The report lifecycle diagram below shows reporting phases, beginning with report authoring.

In the authoring phase, a report designer uses an authoring tool to create a report definition. A report definition is a blueprint of a
report, before the report is processed and rendered. The report definition contains layout, connection, and query information. For
more information about the authoring phase, see Report Authoring.

After a report definition is complete, the report designer publishes it to a report server where it becomes a managed report. In the
management phase, a report server administrator uses Report Manager to work with managed reports. A managed report is any
report that is saved in a report server and has properties and associated meta data that allow the report to be secured, scheduled,
moved, renamed, linked to other reports and deleted. For more information about the management phase, see Report
Management.

During report processing, a report definition is processed to get the data, merge the data with report layout, and render the
output into a format suitable for viewing. Report processing produces a generated report. Reports are processed either on-
demand, when a user selects a report from the report server, or according to a schedule.

After a report is generated, users can access it in a variety of ways. In the access and delivery phase, a report is viewed through an
application (for example, a Web browser or a Microsoft Office XP application such as Microsoft Excel), routed to a delivery target
such as an e-mail inbox, printer, or Web site. For more information about the access and delivery phase, see Report Access and
Delivery.

See Also

Reporting Services Component Overview

Introducing Reporting Services

Reporting Services - Introducing Reporting Services

Report Authoring
Report authoring is the process of creating a report definition through the use of report authoring tools. When you author a
report, you determine the report content (that is, the data and images), define expressions and other calculated fields, and design
the layout. Behind the scenes, the authoring tool transforms your design choices into a report definition based on Report
Definition Language (RDL). RDL is an XML grammar that completely defines the structure of a report.

To create reports, you can use Report Designer within Microsoft Visual Studio® .NET. Report Designer supports drag-and-drop
operations to create reports. Coding is required only if you want to add functionality. Reports that you build can be a simple
tabular report, or complex with many parts and scripted elements. If you already have Microsoft Access reports, you can import
them into Report Designer.

The Report Designer design environment includes local report processing and report-rendering functionality. From within the
project workspace, you can use the preview feature to see how the report comes together while you define the layout and
position the content.

Report authoring consists of the following steps:

1. Connect to the data source that you want to use.
2. Build a query that gets the data. Data is represented in a Fields list for subsequent drag-and-drop operations.
3. Lay out the report by dragging table, matrix, chart, and other report controls onto the design surface. For example, you can

drag a table control into the workspace if you are building a tabular report.
4. Add data to the report layout by dragging fields onto the report controls.
5. Set properties to customize the layout, add default values, and specify grouping and expressions.

Report authoring is work that you perform on the client, separate from the report server. After your report looks the way you
want, you can publish it to a report server, where it becomes available for general use.

Getting More Information

The following table describes the topics in this section. For more information about the next phase of the report lifecycle, see
Report Management.

Topic Description
Tutorial – Creating a Basic Report Teaches basic skills in report authoring,

including how to build and publish a
simple report.

Designing and Creating Reports Provides complete documentation about
designing, building, and publishing
reports.

Report Definition Language Contains reference topics for report
definition elements.

Extending Reporting Services Describes how developers can extend
report server functionality.

See Also

Authoring, Managing, and Delivering Reports

Reporting Services Component Overview

Reporting Services - Introducing Reporting Services

Report Management
One of the principal advantages of using Reporting Services is the capability to manage reports and related items from a central
location. Items that you can manage include reports, folders, data source connections, and resources. For these items, you define
security, properties, and in some cases, scheduled operations. You can also create shared schedules and shared data sources and
make them available for general use.

To manage reports and the reporting environment, you can use Report Manager.

Both end users and report server administrators can manage reports, but to different degrees. End users can publish and manage
reports in a personal workspace named My Reports. Report server administrators can enable end-user features, set default
values, and manage folders and shared objects, such as shared data source connections and shared schedules.

The management tasks that can be performed depend on the permissions of the user. For example, if a user does not have
permission to import reports, import functionality is not available to that user.

Report management includes the following tasks:

Organize the reporting environment by adding new folders to store collections of reports.
Enable features such as My Reports, report history, and e-mail report delivery.
Adjust the default security model as necessary to secure access to folders and reports by using role-based security.
Build shared schedules and shared data sources that you want to make available for general use.

You typically perform report management tasks through browser-based access to a report server. Although Reporting Services
includes many features that simplify report management, you can determine how much management overhead you want to
assume. For example, you can use the existing folders, features, default values, and security provided in a newly installed report
server with no additional customization.

In Reporting Services, report management and report server administration have different objectives. For more information about
how these responsibilities compare, see Content Management Overview.

Getting More Information

The following table describes the topics in this section. For more information about the next phase of the report lifecycle, see
Report Access and Delivery.

Topic Description
Managing Report Server Content Explains how to define, manage, and

maintain the report server namespace.
Managing Report Processing Provides an overview of report processing

and links to supporting topics.
Using Role-Based Security Explains the security model and

customization techniques for securing
reports and folders.

Deploying and Administering Reporting
Services

Describes how to deploy and configure
each component, and how to optimize
server performance.

Report Manager Provides information about using Report
Manager.

See Also

Authoring, Managing, and Delivering Reports

Reporting Services Component Overview

Reporting Services - Introducing Reporting Services

Report Access and Delivery
In Reporting Services, two methods are available for accessing and delivering reports: on-demand access that allows users to
select the reports they want from a report viewing tool, and push subscriptions, which automatically generate and deliver reports
to a destination.

To view a report on demand, the user selects a report from the report server folder hierarchy. Users can use Report Manager to
browse through the report server folders or search for specific reports.

To receive reports automatically, a user subscribes to a specific report or reports. When the report runs, the user is either notified
that the report is available, or the user receives a copy of the report by way of an e-mail message. Report server administrators
can build data-driven subscriptions that push reports to a large group of users. Data-driven subscriptions generate a recipient list
at run time. In a data-driven subscription, delivery settings are built from stored data (such as data in an employee database)
when the subscription is triggered.

Reporting Services supports a variety of viewing formats. After a report is displayed, the user can redisplay the report in another
format.

Getting M ore Information

The following table describes the topics in this section.

Topic Description
Managing and Working with Published
Reports

Describes how users navigate through
folders and search for, subscribe to, print,
and save reports.

Running Reports Describes ways of running a report and
viewing options.

Distributing Reports Through
Subscriptions

Provides information about creating and
managing subscription-based delivery.

Viewing Reports with Report Manager Provides information about running and
using Report Manager.

Viewing Reports with a Browser Describes how to access a report server
through a URL.

Extending Reporting Services Explains how developers can create
delivery extensions and other extensions
to add custom functionality to the report
server platform.

See Also

Authoring, Managing, and Delivering Reports

Reporting Services Component Overview

Reporting Services - Introducing Reporting Services

Reporting Services Features
This section describes features for report definitions, design, management, execution, access and delivery, architecture, and
programming. Links to additional information are provided at the end of each feature section.

Report Definition Features

Feature Description
Tabular, matrix, chart, and
free-form reports

You can build tabular reports for column-based data,
matrix reports for summarized data, chart reports for
graphical data, and free-form reports for everything
else. Free-form report layout is based on data regions,
which enclose controls and fields in a container that you
can move, nest, or arrange in a side-by-side layout.

Combine report types Tabular, matrix, and charted information can be used in
a single report.

Data source support You can populate reports with relational and
multidimensional data from SQL Server, Analysis
Services, and .NET provider data sources such as Oracle.
ODBC and OLE DB providers are also supported.

Graphical elements You can embed or reference images and other
resources that contain external information.

Parameterized reports You can add parameters to refine a query or filter a
dataset. Dynamic parameters get values at run time
based on user selections (the selection of one parameter
builds the value list for a second parameter).

Navigation Bookmarks and document maps provide navigation
options within a large report.

Interactive reports You can add interactive features by providing links to
related reports and reports that provide supporting
details. You can add scripted expressions in Visual Basic
.NET.

Aggregations You can aggregate and summarize data using controls
and expressions. Aggregates include sum, average, min,
max, count, and running totals.

Presentation formats Choose a presentation format when you open the
report, or after you open the report. You can choose
Web-oriented, page-oriented, and desktop application
formats. Formats include HTML, HTML with Office Web
Components, MHTML, Acrobat (PDF), TIFF, and Excel.

For more information about report definition features, see Designing and Creating Reports.

Report Design Features

Feature Description
Report Designer Report Designer is a full-featured report authoring

application that is hosted within the Visual Studio
environment. For more information, see Report
Designer.

Report Wizard Follow step-by-step instruction to create a report.
Import Reports Import existing Microsoft Access reports to create a

report definition. Use this feature to create a report
definition from an existing report.

Query builders Use query builders to create underlying queries for SQL
Server relational data and Analysis Services
multidimensional data.

Preview mode View design and layout changes in preview mode
before you publish.

Publishing and deployment Publish directly from Report Designer to a report server
test or production server.

For more information about report design, see Designing and Creating Reports.

Report Management Features

Feature Description
Report Manager Use a Web-based tool for managing and maintaining

reports and the reporting environment. Report Manager
is accessed from a report server. A browser is the only
client-side component.

Command line utilities Command-line utilities support report server
configuration, activation, key management, and scripted
operations.

Scripted administration Create and run scripts to automate server
administration tasks for deployed servers.

Report server folder
hierarchy

Create folders in the report server namespace to
organize reports for specific groups of users (for
example, folders for sales reports, human resources
reports, and operational reports).

Role-based security Use role-based security to control access to folders,
reports, and resources. Security settings follow an
inheritance pattern through the folder structure. You
can vary security at any branch to redefine user access
at the item level.

Role-based security works with Windows
authentication. A default security model provides initial
security. Security is in place when the product installs.
For more information, see Using Role-Based Security.

Job management Monitor and cancel pending or in-process reports.
Shared data sources and
Shared schedules

Create and manage data source connections and
schedules independently of the reports that they are
associated with.

Report history Use report history to store snapshot images of a report
over time. Report history balances live, Web-based
reporting with the need to maintain past reports for
future reference. You can add report snapshots on an ad
hoc basis or as a recurring scheduled operation.

Linked reports Repurpose an existing report by attaching a different set
of properties, parameter values, or security settings to a
named instance of a report. To the user, each linked
report appears to be a stand-alone report.

Server configuration Edit configuration files to customize e-mail delivery,
security, tracing, and more.

For more information about report management and server administration, see Managing Report Server Content and Deploying
and Administering Reporting Servicess.

Report Execution Features

Feature Description
Scheduling Scheduled operations are supported through SQL

Server Agent. You can schedule subscriptions, caching,
report history, and report execution.

Report execution properties Set processing options to prevent a large report from
running on demand. Control how and when reports are
processed.

Report caching Improve performance by caching large, frequently
accessed reports.

Report execution time-out
settings

Set time-out values to prevent a single report from
overloading system resources.

Optimized performance Queries are processed in parallel for high performance.
Reports are compiled as common language runtime
assemblies to further improve performance.

Performance monitoring Performance objects and counters provide data about
real-time processes. You can also use ASP.NET and SQL
Server performance objects to monitor the Web service
and report server.

For more information, see Managing Report Processing, Using Schedules, and Monitoring Performance.

Report Access and Delivery Features

Feature Description
On-demand access over
Web connection

Use a browser to navigate a folder hierarchy, which
provides a familiar metaphor for finding and working
with reports and other items. Reports can be referenced
from a Favorites list in a Web browser, or hyperlinked
from a corporate portal.

Report navigation Within a report, use page navigation, zoom in or out,
search, and export features to view a report in other
formats.

My Reports Use a personal workspace to store and manage reports
and other items.

My Subscriptions Access and organize subscriptions from a single
location.

Standard subscriptions Automate report delivery through a standard
subscription. You can use subscriptions to set report
presentation preferences. Users who prefer to view a
report in Microsoft Excel, for example, can specify that
format in a subscription.

Data driven subscriptions Automate report distribution through data-driven
subscriptions, which generate a recipient list and
delivery instructions at run time from an external data
source. Use a query and column-mapping information
to customize report output for a large number of users.

E-mail delivery Deliver a rendered report to a mailbox. Set delivery
options that control whether the report is delivered as a
link or attachment.

File share delivery Deliver a rendered report to a file share. Set delivery
options that control whether the report is overwritten or
added to an existing folder.

For more information, see Managing and Working With Published Reports and Distributing Reports Through Subscriptions.

Architecture Features

Feature Description
Multiple renderings Reports are processed in loosely coupled phases that

separate data processing from final rendering. This
enables multiple users to choose different rendering
options for the same report.

Modular architecture Reporting Services is composed of components.
Selected components are designed for extensibility.
Programmatic access is supported from managed code.

Web service and Windows
service

The report server is implemented as a Web service and
Windows service. The services work together to host,
process, and deliver reports.

For more information, see Reporting Services Component Overview and Authoring, Managing, and Delivering Reports.

Report Programming Features

Feature Description
Report Definition Language
(RDL)

RDL describes all possible elements of a report using an
XML grammar that is validated by an XML schema. The
report definition of an individual report is based on RDL
and contains instructions for realizing the design at run
time.

SOAP API Use Report Server Web service methods to access a
report server and report server engine
programmatically.

URL Access Access through parameterized URL strings. All reports
and items stored in a report server are addressable
through the report server namespace.

WMI Reporting Services includes a Windows Management
Instrumentation (WMI) provider that you can use to
manage the Report Server Windows service from code.

Extensible reports Add support for elements or features that are not
present in the existing RDL schema, and then build
custom tools and report rendering extensions to handle
the features you create.

Extensible delivery Create custom delivery extensions to route reports to
file shares, internal archive stores, or internal
applications.

Extensible data processing Create custom data processing extensions to query,
convert, or transform data.

Extensible rendering Create custom rendering extension to support report
presentation in application formats or Web-oriented
formats that are not provided with the product.

For more information, see Reporting Services Programming and Report Definition Language.

See Also

Introducing Reporting Services

Reporting Services Component Overview

Using Reporting Services

Authoring, Managing, and Delivering Reports

Reporting Services - Introducing Reporting Services

Report Terminology
The following list defines key reporting terms.

report definition
The blueprint for a report before the report is processed or rendered. A report definition contains information about the query
and layout for the report. For more information, see Report Definitions.

report snapshot
A report that contains data captured at a specific point in time. A report snapshot is actually a report definition that contains a
dataset instead of query instructions. For more information, see Report Snapshots.

rendered report
A fully processed report that contains both data and layout information, in a format suitable for viewing (such as HTML). Render
formats are temporary. When you open a report in a browser, you can choose from a variety of formats after the report is open.
When you use a subscription to run a report, you can lock in a specific format if you deliver the report to a file share location.
Rendered reports cannot be edited or saved back to a report server.

parameterized report
A published report that accepts input values through parameters. For more information, see Parameterized Reports.

linked report
A report that derives its definition through a link to another report. For more information, see Linked Reports.

report server administrator
A user with elevated privileges who can access all settings and content of a report server. A report server administrator is a user
who is assigned to the Content Manager role, the System Administrator role, or both. All local administrators are automatically
report server administrators, but additional users can become report server administrators for all or part of the report server
namespace.

folder hierarchy
A bounded namespace that uniquely identifies all reports, folders, shared data source items, and resources that are stored in
and managed by a report server. For more information, see Report Server Folder Namespace.

See Also

Managing Reports

Managing and Working with Published Reports

Reporting Services Component Overview

Reporting Services - Introducing Reporting Services

Report Definitions
Report definition files include a set of instructions that describe layout, and a query that retrieves report data at run time. Report
definitions are created in Report Designer and are realized at run time as a processed report. Although a report definition can be
complex, at a minimum it specifies a query and other report content, report properties, and report layout.

A report definition is composed of XML elements that conform to an XML grammar created for Reporting Services Report
Definition Language (RDL). RDL describes the XML elements, which encompass all possible variations that a report can assume.

About Report Definitions and .rdl Files

Report definitions can exist both as files on a file system and as report items in a report server.

On the file system, report definitions have a file extension of .rdl. Report authors create .rdl files using an authoring tool such as
Report Designer. After an .rdl file is created, it is published to a report server, where it becomes an item stored in a report server.
An .rdl file can also be uploaded from the file system into the report server, using upload features in Report Manager.

On a report server, reports are retrieved from a report server database and presented to users and applications as items in a
report server folder. Items managed and stored by a report server are distinct from files on a file system.

For more information about report server folder hierarchy, see Report Server Folder Namespace. For more information about
authoring reports and report definitions, see Designing and Creating Reports and Report Definition Language.

See Also

Report Authoring

Report Terminology

Reporting Services - Introducing Reporting Services

Linked Reports
A linked report is an existing report that runs with different properties and parameter values. You use a linked report when you
want to repurpose an existing report to support different report outcomes. To illustrate how linked reports are used, consider a
scenario where you define one linked report for Retail Sales and another linked report for Distributor Sales, both of which are
based on a single Company Sales report that shows sales data for all channels used by your sales organization.

In contrast with other reports that are created in Report Designer, linked reports are created in Report Manager. You can create
multiple linked reports from the same existing report. Creating a linked report requires that you first select a report that has
already been published to a report server, click a Create a linked report button, and then specify the following values to make
the report useful in a new context:

Name and Description. You can define a different name and description to distinguish a linked report from the existing
report.
Location. You can put the linked report in a folder that is different from the folder that contains the original report.
Parameters. You can specify a set of parameter values to use with the linked report. The capability of having different
parameter values for the report is typically the reason why you may want to define a linked report in the first place.
Report execution and Report history. You can set report execution and report history properties that vary from those set
on the original report.
Security. You can define role assignments that control access to the linked report.
Subscriptions. The subscriptions defined for a linked report are independent of those defined for the report upon which it
is based.

The only properties that you cannot set on a linked report are data source properties. A linked report always uses the data source
properties that are defined for the existing report. This is because the existing report provides the report definition. The report
definition includes data source connection information, the query that retrieves report data, and report layout.

Although linked reports are typically based on parameterized reports, a parameterized report is not required. You can create
linked reports whenever you want to deploy an existing report with different settings.

See Also

Creating, Modifying, and Deleting Linked Reports

Report Manager

Parameterized Reports

Report Terminology

Reporting Services - Introducing Reporting Services

Report Snapshots
A report snapshot is a report that contains layout information and a dataset that is retrieved at a specific point in time. Unlike on-
demand reports, which get up-to-date query results when you select them, report snapshots are processed on a schedule and
then saved to a report server. When you select a report snapshot for viewing, the report server retrieves the stored report from
the report server database, and shows the data and layout that were current for the report at the time the snapshot was created.

Report snapshots are not saved in a particular render format. Instead, report snapshots are rendered in a final viewing format
(such as HTML) only when a user or an application requests it. Deferred rendering makes a snapshot portable: the report can be
rendered in the correct format for the calling device or browser.

Report snapshots have two purposes. You can use them to create report history, and you can use them to control report
processing. The following sections provide more detail.

Using Snapshots in Report History

You can use report snapshots to keep a history of a report. By creating a series of report snapshots, you can build a history of a
report that shows how data changes over time. Report snapshots are used in report history because they contain the essential
elements of a report (query results and layout). Render formats have a temporary effect that can be reproduced when you choose
a format. In contrast, data and layout are essential features of a report instance: change either one and you have a report that is
fundamentally different from previous instances.

Using Snapshots to Control Report Processing

Report snapshots can also be used to control report processing, so that processing only occurs when you want it to. This is useful
when you have large reports that take a long time to process, or when you want to provide stable results for multiple users who
must work with identical sets of data. With volatile data, an on-demand report can produce different results from one minute to
the next. A report snapshot, by contrast, allows you to make valid comparisons against other reports or analytical tools that
contain data from the same point in time.

See Also

Creating Snapshots for Report Execution

Creating, Modifying, and Deleting Snapshots in Report History

Report Terminology

Reporting Services - Introducing Reporting Services

Parameterized Reports
A parameterized report uses input values to complete report or data processing. With a parameterized report, you can vary the
output of a report based on placeholder values that are set when the report runs.

Parameters can be used to complete a query that selects report data, to filter the result set that the query returns, or to drive
layout properties used for showing and hiding parts of a report. You can also specify dynamic parameters that populate a series
of dependent, drop-down parameter lists. For example, a drop-down list of Region parameter values can be used to later populate
a drop-down list of City parameter values.

You can use parameters with linked reports by pairing a specific parameter with each linked report to change the outcome. For
example, you can create a single regional sales report that shows the sales for all regions, and then use a parameter for each
linked report to filter data for a particular region. Specific parameter values can be stored with the report so that users do not
have to type values.

Not all parameters may be visible in the report at run time. A report author, report server administrator, or content manager can
specify which values to use and then hide the input fields on the report.

About Query Parameters and Report Parameters

Reporting Services supports two kinds of parameters:

Query parameters are used during data processing to select or filter data. Query parameters are specified in the syntax of a
data processing extension (an example of a SQL Server query parameter could be @EmpID). If a query parameter is
specified, a value must be provided to complete the SELECT statement or stored procedure that gets data for a report.
Report parameters are used during report processing to show a different aspect of the data. A report parameter is usually
used to filter a large set of records, but it can have other uses depending on the queries and expressions used in the report.
For more information, see Using Parameters in a Report.

See Also

Using Parameters in a Report

Running a Parameterized Report

Setting Parameter Properties for a Published Report

Setting Parameters in a Subscription

Report Terminology

Reporting Services - Introducing Reporting Services

Report Server Folder Namespace
The Reporting Services folder namespace is a hierarchy that contains predefined and user-defined folders. The namespace
uniquely identifies reports and other items that are stored in a report server. Conceptually, this folder hierarchy is similar to the
folder hierarchy in a Windows file system.

In Reporting Services, the folders you work with are virtual folders that are accessed over the Web. Neither the folders nor their
contents actually exist in a file system. Instead, they exist in a report server, but they appear as folders and items when you access
the report server through a browser or a Web-enabled application. When you select or locate a report, the path of folder names
becomes part of the URL for that report.

Predefined Folders

Predefined folders are reserved by Reporting Services; they cannot be moved, renamed, or deleted. The following table describes
predefined folders that anchor the folder hierarchy and provide a framework for several features.

Folder Purpose
Home The root node of the folder hierarchy.
My Reports This folder appears when you enable the My Reports

feature. It redirects users to a personal workspace
that is mapped to a subfolder of the Users folder.

Users This folder appears when you enable the My Reports
feature. It stores reports in a subfolder for each user.
Each subfolder name matches the user's name.

User-Defined Folders

User-defined folders include any folders created by an end user or report administrator with permission to add items to a folder.
For more information about creating folders and folder naming conventions, see Creating, Modifying, and Deleting Folders.

Icons and Items in Folders

Folders can contain a variety of items. Each item has a corresponding icon that distinguishes it from other items. For more
information, see Icons in Report Manager.

See Also

Navigating Folders in Report Manager

Navigating Folders in a Web Browser

Searching for Reports and Other Items

Reporting Services - Introducing Reporting Services

Reporting Services Component Overview
Microsoft® SQL Server™ Reporting Services architecture is a set of integrated components. The architecture is multi-tiered, with
an application layer, server layer, and data layer. The architecture is modular and scaleable, so a single installation can be spread
across multiple computers.

The following diagram indicates tools that are included with Reporting Services and SQL Server, and how custom tools that may
be provided by third-party vendors fit into the overall framework. It also shows the flow of requests and data among the server
components, and which components send and retrieve content from a data store.

Architecture Diagram

Architecture Topics

Topic Description
Report Manager Describes the Web tool used to access and

manage the contents of a report server
database.

Browser Types Supported by Reporting
Services

Describes the browsers that you can use
to view reports.

Report Designer Describes the report authoring tool
included with Reporting Services.

Report Server Command Line Utilities Describes the command line utilities that
you can use to administer a report server.

Report Server Introduces each component of the Report
Server.

Report Server Database Provides information about the report
server database that stores information
used by the Report Server.

Data Sources Supported by Reporting
Services

Provides information about the kinds of
data sources you can use to query for
report content.

Reporting Services Extensibility Describes the ways in which you can
extend the capabilities of Reporting
Services programmatically.

See Also

Introducing Reporting Services

Using Reporting Services

Reporting Services - Introducing Reporting Services

Report Server
The report server is the main component of Reporting Services. It is a Web service that exposes a set of programmatic interfaces,
which client applications can use to access the report server. Through its subcomponents, the report server handles report
requests; retrieves report properties, formatting information, and data; merges the formatting information with the data; and
renders the final report.

The report server component contains several subcomponents, which are discussed in this section. The following table describes
the topics in this section.

Topic Description
Programmatic Interfaces Describes the programmatic interfaces,

which accept SOAP and HTTP GET
requests, retrieve information from the
report server database, and pass the
information to other components.

Report Processor Describes the Report Processor
component, which retrieves the report
definition, combines it with data from the
data processing extension, and renders it
to the requested format with a rendering
extension.

Data Processing Extensions Describes the data processing extensions
that retrieve data from the report data
source.

Rendering Extensions Describes the report rendering extensions
that transform the report layout and data
into a device-specific format.

Report Server Database Describes the report server database,
which stores report definitions, meta data
and report history.

Scheduling and Delivery Processor Describes the Scheduling and Delivery
Processor component, which runs and
delivers report on a schedule.

Delivery Extensions Describes the delivery extensions that
deliver reports to specific devices or
formats.

See Also

Reporting Services Component Overview

Using Reporting Services

Authoring, Managing, and Delivering Reports

Reporting Services Features

Report Terminology

Reporting Services - Introducing Reporting Services

Programmatic Interfaces
The programmatic interfaces process all requests sent to the report server. This includes requests from Report Manager,
Scheduling and Delivery Processor, report-design tools, browsers, and third-party tools. The programmatic interfaces use Internet
Information Services (IIS) to receive requests.

Requests arrive at the report server in the form of SOAP and HTTP GET requests. The programmatic interfaces interact with the
report server database in response to these requests. When a report is requested, the interfaces initialize the Report Processor
component.

See Also

Report Server

Report Processor

Reporting Services Programming

Reporting Services - Introducing Reporting Services

Report Processor
The Report Processor component retrieves the report definition from the report server database and combines it with data from
the data source for the report. If an on-demand report is requested, the report definition and the data are sent to a rendering
extension to be transformed into a usable format, such as HTML. If a report snapshot is generated, the processed report is stored
in the report server database for later retrieval.

The following table describes the basic kinds of requests that Report Processor handles.

Request Action
User runs an on-demand report. Report Processor retrieves the report

definition, sends the request for data to a
data processing extension, combines the
report definition with the data, sends it to
a rendering extension, and returns the
rendered report.

Scheduling and Delivery Processor runs a
scheduled report (cache or snapshot), or a
user takes a snapshot on demand.

Report Processor retrieves the report
definition, sends the request for data to a
data processing extension, combines the
report definition with the data, and stores
the information in the report server
database.

User views a cached report or snapshot. Report Processor retrieves the cached
report or snapshot, sends it to a rendering
extension, and returns the rendered
report.

Processing Stages

A report is processed in two stages: execution and rendering. During the execution stage, the report data from the data processing
extension is combined with the report layout from the report definition. Data is processed by row for each section. Sections
include the report header and footer, group headers and footers, and detail. Aggregate functions and expressions are also
processed at this time.

During the rendering stage, the rendering extension paginates the report and processes expressions that cannot be processed
during the execution stage. The report is then rendered in the appropriate device-specific format. For more information, see
Managing Report Processing.

See Also

Report Server

Data Processing Extensions

Rendering Extensions

Reporting Services - Introducing Reporting Services

Data Processing Extensions
Data processing extensions process query requests from the Report Processor component by performing the following tasks:

Open a connection to a data source.
Analyze a query and return a list of field names.
Run a query against the data source and return a rowset.
Pass parameters to a query, if required.
Iterate through the rowset and retrieve data.

While all data processing extensions perform the tasks listed earlier, some extensions can also perform the following tasks:

Analyze a query and return a list of parameter names used in the query.
Analyze a query and return the list of fields used for grouping.
Analyze a query and return the list of fields used for sorting.
Provide a user name and password to connect to the data source.
Pass parameters with multiple values to a query.
Iterate through rows and retrieve auxiliary meta data.

Each data processing extension is specific to a particular type of data source. Reporting Services includes four data processing
extensions: SQL Server, Oracle, ODBC, and OLE DB. Reporting Services can also use any ADO.NET data provider. Developers can
use the extensibility model for Reporting Services to create additional data processing extensions. The following sections describe
the data processing extensions that are provided with Reporting Services.

SQL Server Data Processing Extension

The SQL Server data processing extension uses the .NET Framework Data Provider for SQL Server to connect to and retrieve data
from the SQL Server database engine. This extension can connect to SQL Server 7.0 or later. For SQL Server 6.5 and earlier, use
the OLE DB data processing extension.

OLE DB Data Processing Extension

The OLE DB data processing extension uses the .NET Framework Data Provider for OLE DB . Using this extension, the report server
can query any data source that has an OLE DB provider.

Analysis Services

To retrieve Analysis Services data, use the OLE DB Provider for OLAP Services 8.0. Queries against Analysis Services are written
using Multidimensional Expressions (MDX).

Oracle Data Processing Extension

The OLE DB data processing extension uses the Microsoft .NET Framework Data Provider for Oracle. This provider connects to and
retrieves data from Oracle using the Oracle Call Interface (OCI) as provided by Oracle Client software. Oracle 8i Release 3 (8.1.7)
Client or later must be installed on the report server for this provider to function.

ODBC Data Processing Extension

The OLE DB data processing extension uses the .NET Framework Data Provider for ODBC. This provider provides access to native
ODBC drivers the same way the OLE DB .NET Data Provider provides access to native OLE DB providers.

Additional Data Processing Extensions

For information about creating and implementing additional extensions, see Extending Reporting Services.

See Also

Report Server

Reporting Services - Introducing Reporting Services

Rendering Extensions
The report server uses rendering extensions to transform data and layout information from Report Processor into a device-
specific format. Reporting Services includes six rendering extensions: HTML, Excel, Text, XML, Image, and PDF. Developers can
create additional rendering extensions to generate reports in other formats. The following sections describe the rendering
extensions provided with Reporting Services..

HTML Rendering Extension

When you request a report from the report server, either through a URL or Report Manager, the report server uses the HTML
rendering extension to render the report.

Depending on the browser you use, the HTML rendering extension renders reports in either HTML 4.0 or HTML 3.2. Supported
HTML 4.0 browsers include:

Microsoft® Internet Explorer for Windows versions
Netscape Navigator for Windows version 7.1

HTML 3.2 is used for all other browsers that support HTML, such as earlier versions of the browsers mentioned previously and
Internet Explorer for Pocket PC. The HTML rendering extension generates all HTML using UTF-8 encoding.

The HTML rendering extension supports the MIME Encapsulation of Aggregate HTML Documents (MHTML) standard. The
rendering extension embeds resources such as images, documents, or other binary files as MIME structures within the report
HTML, in a single file. The encoded resources within the report increase the size of the report, but embedding the resources is
useful for clients that do not have access to resources stored on the report server or in another location. MHTML reports are also
useful for embedding within e-mail messages, because all resources are included with the report.

Excel Rendering Extension

The Excel rendering extension renders reports that can be viewed and modified in Microsoft Excel 2002 or later. This rendering
extension creates files in MHTML, which carry a MIME type of ms-excel and contain HTML meta tags and XML data islands that
are specific to Excel. While the Excel rendering extension renders HTML, the rendered report is intended to be viewed in Microsoft
Excel, not in a browser.

Resources, such as images, are embedded within the report. For more information about designing reports for the Excel
rendering extension, see Designing for Excel Output.

CSV Rendering Extension

The Comma-Separated Value (CSV) rendering extension renders reports in comma-delimited plain text files, without any
formatting. Users can then open these files with a spreadsheet application, such as Microsoft Excel, or any other program that
reads text files.

For more information about designing reports for the CSV rendering extension, see Designing for CSV Output.

XML Rendering Extension

The XML rendering extension renders reports in XML files. These XML files can then be stored or read by other programs.

The XML generated by the XML rendering extension is UTF-8 encoded.

Image Rendering Extension

The Image rendering extension renders reports to bitmaps or metafiles. The extension can render reports in the following formats:
BMP, EMF, GIF, JPEG, PNG, TIFF, and WMF. By default, the image is rendered in TIFF format, which can be displayed with the
default image viewer of your operating system (for example, Windows Picture and Fax Viewer). You can send the image to a
printer from the viewer.

Using the Image rendering extension to render reports ensures that the report looks the same on every client. (When a user views
a report in HTML, the appearance of that report can vary depending on the version of the user's browser, the user's browser
settings, and the fonts that are available.) The Image rendering extension renders the report on the server, so all users see the
same image. Because the report is rendered on the server, all fonts that are used in the report must be installed on the server.

PDF Rendering Extension

The PDF rendering extension renders reports in PDF files that can be opened and viewed with Adobe Acrobat 4.0 or later.

Additional Rendering Extensions

For more information about creating and implementing additional rendering extensions, see Extending Reporting Services.

See Also

Report Server

Design Considerations for Rendering

Reporting Services - Introducing Reporting Services

Report Server Database
The report server database is a SQL Server database that stores Reporting Services data such as report definitions, report meta
data, cached reports, snapshots, and resources. It also stores security settings, encrypted data, scheduling and delivery data, and
extension information.

The report server database can exist on a server or cluster that is separate from the report server, or it can be installed on the
same computer as the report server. For more information about installing and configuring the report server database, see
Installing Reporting Services.

The report server database is accessed through the report server. Report Manager, Report Designer, and the command line
utilities all use programmatic interfaces to communicate with the report server database. For more information about
programming for the report server database, see Reporting Services Extensibility.

See Also

Report Server

Administering a Report Server Database

Reporting Services - Introducing Reporting Services

Scheduling and Delivery Processor
The Scheduling and Delivery Processor component provides functionality for scheduling reports and delivering them to users.
Reports can be scheduled to run once or in a recurring pattern, and they can be delivered to users based on this schedule or on
the personalized schedules of the users. Scheduling and Delivery Processor performs two distinct tasks: running scheduled and
delivering reports to a specified device or location.

Scheduling

When a scheduled report runs, the report server produces a report snapshot. This report is stored in the report server database
for later retrieval. Multiple snapshots can be stored as report history.

Running reports on a schedule can help an administrator balance the load on the report server and on the databases that the
reports use as data sources. When users access a snapshot, they view data that has already been retrieved from the data source
and processed by Report Processor. This can help reduce the load on the source database and improve performance.

Scheduling and Delivery Processor processes its schedules using the SQL Server Agent. For more information about scheduling
reports, see Using Schedules.

Delivery

Users can subscribe to reports. Scheduling and Delivery Processor uses delivery extensions to deliver reports based on these
subscriptions. Reporting Services includes an e-mail delivery extension. After a report runs, it is delivered to a location specified
by the subscription. Using the delivery extension, Reporting Services can embed a report in an e-mail message, send a simple e-
mail notification to a pager or other device, or send the report as an attachment.

Developers can create additional delivery extensions to further extend the functionality of Scheduling and Delivery Processor. For
more information about delivery extensions, see Delivery Extensions.

Schedule Engine Processing and Configuration

Schedule processing is based on the local time of the report server that owns the schedule. The time format follows the Microsoft
Windows® operating system standard.

Schedule information is stored in the report server database. The report server queues the schedules that it stores and sends
them to the scheduling engine for processing at the appropriate times.

For the schedule engine, Reporting Services uses the SQL Server Agent service of the SQL Server instance that you specify during
Setup. The credentials under which SQL Server Agent runs are provided during installation. You should not reconfigure schedule
settings manually through configuration files. If you need to change the SQL Server instance that the report server uses, you
rerun Setup to make the change.

Schedules are not processed if SQL Server Agent is not running. For example, suppose a report snapshot is scheduled to run once
every Tuesday. On Monday, the SQL Server Agent service is stopped and then restarted the following Wednesday. The report
snapshot that was scheduled for Tuesday is not created when the service is started.

If the report server is stopped while schedules are in the SQL Server Agent queue, the server triggers the schedules even though
the report server is unavailable. Although the report server does not run the report or perform the scheduled operation, the status
information reflected by SQL Server Agent indicates that the schedule succeeded.

See Also

Reporting Services Component Overview

Delivery Extensions

Distributing Reports Through Subscriptions

Reporting Services - Introducing Reporting Services

Delivery Extensions
Scheduling and Delivery Processor uses delivery extensions to deliver reports to various locations. Reporting Services includes an
e-mail delivery extension and file share delivery extension. Developers can create additional delivery extensions to further extend
the functionality of Scheduling and Delivery Processor. A list of available delivery extensions and information about each one is
stored in the report server configuration file. For more information, see Reporting Services Configuration Files.

Delivery extensions are paired with subscriptions. When a user creates a subscription, he or she can choose one of the available
delivery extensions to determine how the report is delivered. For more information about managing subscriptions and delivery,
see Distributing Reports Through Subscriptions.

The following sections describe each delivery extension.

About the E-Mail Delivery Extension

Using the e-mail delivery extension, Scheduling and Delivery Processor can send an e-mail message though Simple Mail
Transport Protocol (SMTP) that includes either the report itself or a URL to the report. Short notices without the URL or report can
also be sent to pagers, phones, or other devices.

About the File Share Delivery Extension

Using the file share delivery extension, Scheduling and Delivery Processor can save reports to a file server. You can specify a
location, rendering format, file name, and overwrite options for the file you create. You can use file share delivery to archive
reports, and as part of a strategy for working with very large reports. For more information, see Archiving Reports and Running
Large Reports.

Additional Delivery Extensions

For information about creating and implementing additional delivery extensions, see Extending Reporting Services.

See Also

E-Mail Delivery in Reporting Services

File Share Delivery in Reporting Services

Scheduling and Delivery Processor

Reporting Services - Introducing Reporting Services

Report Manager
Report Manager is a Web-based report access and management tool that is included with Microsoft® SQL Server™ Reporting
Services. Report Manager can be used to perform the following tasks:

View, search, and subscribe to reports
Create and manage folders, linked reports, report history, schedules, data source connections, and subscriptions
Set properties and report parameters
Manage role definitions and assignments that control user access to reports and folders

Report Manager provides a user interface to a report server. The user interface consists of Web pages and controls. There are
pages for viewing items, setting properties, and creating and modifying subscriptions, schedules, shared data sources, and roles.
You can access items that are stored in a report server by navigating the folder hierarchy and clicking on items that you want to
view or update.

The ability to perform a task in Report Manager depends on user role assignment. A user who is assigned to a role that has full
permissions, such as a report server administrator, has access to the complete set of application menus and pages. A user
assigned to a role that has permissions to view and run reports, on the other hand, sees only the menus and pages that support
those activities.

Users can be assigned to multiple roles. Each user can have different role assignments for different report servers, or even for the
various reports and folders that are stored on a single server. Understanding how the role or roles to which you belong affect
your interactions with tools, reports, and report servers can help you anticipate the scope of operations that are available to you at
any given time. For more information about roles, see Understanding Role-based Security.

How to run Report Manager

To run Report Manager, type its URL in the address bar of a Web browser. By default, the URL is
http://<webservername>/reports.

If Reporting Services is installed on your local computer, you can also select Report Manager from the Start menu, from the SQL
Server program group.

Report Manager is installed during setup on the same computer as the report server. You can check the configuration files for the
name of the report server that it connects to. For more information, see Reporting Server Configuration Files.

See Also

Reporting Services Component Overview

Managing and Working With Published Reports

Viewing Reports With Report Manager

Reporting Services - Introducing Reporting Services

Report Designer
Report Designer is a tool that you can use to publish reports to a report server. Report Designer is integrated with Microsoft
Visual Studio® .NET 2003. You install Report Designer features into Visual Studio .NET using a setup program. After installation,
you can create reports by creating a new report project.

To create a report using Report Designer, you create a new project in Visual Studio and add a report or set of reports to it. You can
create tabular, matrix, or freeform reports. Tabular reports and matrix reports, also known as crosstab or pivot table reports, are
easily created using Report Wizard. Freeform reports, which can include tables, matrices, and any number of other elements, are
created using the familiar Visual Studio .NET interface.

While developing a report, you have the option of testing it locally, without publishing it to a report server. Report Designer can
use the same processing and rendering extensions that the server uses, ensuring that users see the report as it was intended
when they run it from the server.

You publish, or deploy, a report using the Visual Studio build process. Report Designer deploys the report to a report server that
you select, after which you can manage properties and security using administration tools such as Report Manager.

Most features of Report Definition Language (RDL) are available in Report Designer. For information about these features and
how to use Report Designer, see Designing and Creating Reports.

See Also

Reporting Services Component Overview

Designing and Creating Reports

Reporting Services - Introducing Reporting Services

Report Server Command Line Utilities
Reporting Services includes command line utilities that you can use to administer a report. The following utilities are available:

The rsconfig utility is a connection management utility.

Use this tool to modify the connection between a report server and report server database. The report server uses encrypted
connection information to access a database. Because the data is encrypted, you must use this tool to modify connection
information. For more information about syntax, see rsconfig Utility. To learn more about connection configuration, see
Configuring a Report Server Connection.

The rs utility is a script host that you can use to perform scripted operations.

Use this tool to run Visual Basic .NET scripts that copy data between report server databases, publish reports, create items in
a report server database, and more. For more information about syntax, see rs Utility. To learn more about using scripts to
administer a server, see Scripting Deployment and Administrative Tasks.

The rskeymgmt utility is an encryption key management tool that you can use to back up symmetric keys or delete
encrypted data used by a report server.

Use this tool to store encryption keys in case you need to recover a database. If the keys cannot be recovered, this tool
provides a way to delete encrypted content that you no longer use. For more information about syntax, see rskeymgmt
Utility. To learn more about key management and storage of sensitive data, see Storing Encrypted Data in a Report Server
Database and Managing Encryption Keys.

The rsactivate utility is a server activation tool that you can use to activate a report server instance on a Web farm.

Use this tool to activate service when you add a new report server to a Web farm or replace a failed one. Activating a service
creates a symmetric key that the new service uses to encrypt and decrypt data in a report server database. For more
information about syntax, see rsactivate Utility. To learn more server activation, see Activating a Report Server Instance.

See Also

Reporting Services Component Overview

Deploying and Administering Reporting Services

Reporting Services - Introducing Reporting Services

Reporting Services Extensibility
Reporting Services is a full-featured reporting platform implemented as a Web service. The client tools and extensions included
with Reporting Services use the same interfaces available to developers for building third-party applications. Developers can
extend Reporting Services in the following ways:

Create applications to manage a report server by using a Simple Access Object Protocol (SOAP) interface.
Create applications or use Web browsers to manipulate report output through URLs.
Create applications to configure a report server through Windows Management Instrumentation (WMI) classes.
Create additional rendering, delivery, security, and data processing extensions by using the Microsoft .NET Framework.
Create Report Definition Language (RDL) files that can include custom elements.

For more information, see Reporting Services Programming.

See Also

Reporting Services Component Overview

Using Reporting Services

Reporting Services - Introducing Reporting Services

Data Sources Supported by Reporting Services
Reporting Services retrieves report data using data processing extensions. Data processing extensions use ADO.NET managed
providers. Reporting Services provides extensions to retrieve data from the following data sources:

SQL Server 2000
SQL Server 7.0
SQL Server 2000 Analysis Services
Oracle
ODBC data sources
OLE DB data sources

Because Reporting Services is extensible, developers can create extensions that retrieve data from additional data sources.

Using Oracle Databases With Reporting Services Reports

You can build and deploy reports that use data from an Oracle database. Before you deploy the report, you must install Oracle
client tools on the report server that hosts the report. After you install the client tools, you must restart Internet Information
Services (IIS).

See Also

Reporting Services Component Overview

Reporting Services - Introducing Reporting Services

Browser Types Supported by Reporting Services
In Reporting Services, you use a browser to run reports and Report Manager, a Web-based tool for managing and viewing report
server content.

Although you can export reports to the formats of other desktop applications, the default rendering format for reports is HTML
3.2 or HTML 4.0; the browser type and version determine which format is used. Users can view reports with any browser that
supports HTML 3.2 or HTML 4.0; however, functionality may vary depending on the browser and whether scripting is enabled.

The following table lists the browsers to use for certain kinds of functionality.

This functionality Description Requires
Report Manager Web-based tool used for

report viewing and
management.

Microsoft Internet Explorer
6.0 with Service Pack 1
(SP1) or Internet Explorer
5.5 with SP2, with scripting
enabled.

Reports with scripted
features, rendered in HTML
4.0

Scripted features include
documentation maps,
bookmarks, and show/hide.
On the report toolbar,
scripted features include
zoom, search, refresh,
export, and help.

Microsoft Internet Explorer
6.0 with SP1, with scripting
enabled.

Microsoft Internet Explorer
5.5 with SP2, with scripting
enabled.

Netscape 7.1

Reports with non-scripted
features, rendered in HTML
3.2

Non-scripted features
consist of drill-through and
drill-down to additional
pages on a rendered report.

Microsoft Internet Explorer
5.01 with SP2.

Netscape 4.78.

Any of the previously noted
browsers, when scripting is
disabled.

See Also

Running Reports

Reporting Services Component Overview

Report Manager

Viewing Reports With Report Manager

Viewing Reports With a Browser

Reporting Services - Installing Reporting Services

Installing Reporting Services
Microsoft® SQL Server™ 2000 Reporting Services provides server-based reporting functionality that you can use with SQL
Server data sources and other data sources that are supported through Microsoft .NET data providers.

A complete installation of Reporting Services includes authoring tools, management tools, a report server engine, an API that is
exposed as a Web service, documentation, and sample reports and applications.

Reporting Services includes several components that are installed on both client and server computers. These components
include the report server, the report server database, Report Manager, Report Designer, and several command prompt utilities.
For more information about these components and how they relate to one another, see Selecting Components of Reporting
Services to Install and Reporting Services Component Overview.

To install Reporting Services components, you can either use a wizard to step through the process or you can install components
from a command prompt.

The following table describes the topics in this section.

Topic Description
Editions of Reporting Services Introduces the editions of Reporting

Services and explains the different
features supported by each edition.

Selecting Components of Reporting
Services to Install

Describes the components of Reporting
Services.

Installing a Report Server Web Farm Explains how to use Setup to install
multiple report server instances that can
be used in a server cluster.

Hardware Requirements for Reporting
Services

Describes the minimum hardware
requirements for the components and
types of computers the components are
installed on.

Software Requirements for Reporting
Services

Describes the minimum software
requirements for the components and
types of computers the components are
installed on.

System and User Accounts Used in
Reporting Services Installation

Explains the credential requirements for
component-to-component access.

Preparing to Install Provides recommendations and
information that you can use to make
informed choices during Setup.

Choosing the Reporting Services
Installation Method

Describes the methods available for
installing Reporting Services components.

Verifying an Installation of Reporting
Services

Describes ways to test your installation to
verify that the installation is functional.

Changing or Removing Reporting
Services Components

Describes ways to add or remove
Reporting Services, or individual
components, using both the command
prompt utility and the Setup program.

Reporting Services Installation Directories
and Registry Settings

Describes the directories in which
Reporting Services components are
installed.

Log Files Used During Installation Describes the logs files created during
installation that capture installation
information.

Troubleshooting an Installation of
Reporting Services

Describes errors you might encounter
while running Setup and steps to resolve
them.

See Also

Introducing Reporting Services

Reporting Services Component Overview

Reporting Services - Installing Reporting Services

Editions of Reporting Services
Reporting Services is available in Standard Edition, Enterprise Edition, Developer Edition, and Evaluation Edition. Editions vary by
licensing restrictions and by the features they support. For more information about features, see Features of Reporting Services.

Standard Edition

Standard Edition is designed for a production server in a single-computer configuration, which centralizes server-side report
processing, storage, and tools. Choose Standard Edition if you do not need to support a large number of users, and do not need to
support the dynamic distribution of reports to many users. The following features are not part of the Standard Edition:

Report Server Web farm deployment
Security extensions, including support for custom or forms-based authentication
Data-driven subscriptions
Support for more than 2 processors

Enterprise Edition

Enterprise Edition is designed for production servers that must meet the high-volume reporting requirements of a large
organization. Enterprise Edition supports all Reporting Services features, including data-driven subscriptions that derive recipient
information at run time from an employee database, custom security models, and Web farm deployment. It also supports
installation on a computer equipped with 4 or more processors. For more information about enterprise features, see Installing a
Report Server Web Farm, Enterprise Deployment Model, Data-Driven Subscriptions, and Implementing a Security Extension.

Developer Edition

Developer Edition is designed for developers who want to integrate or extend the report server engine for use with a custom
application, or who want to build custom tools beyond the tools that are included with Reporting Services. Developer Edition runs
on the largest variety of operating systems. Developer Edition supports the same features as Enterprise Edition, but it is licensed
for use as a test and development system, not as a production server.

Evaluation Edition

Evaluation Edition is designed to allow the user to test and evaluate all of the features of Reporting Services. Evaluation Edition is
identical to Developer Edition; however, Evaluation Edition is licensed for evaluation purposes, and ceases to function after 120
days.

See Also

Installing Reporting Services

Selecting Components of Reporting Services to Install

Choosing the Reporting Services Installation Method

Reporting Services - Installing Reporting Services

Selecting Components of Reporting Services to Install
Reporting Services consists of server-side and client-side components that can be installed together or separately. You can use
Setup to install all components on a single computer. You can also run Setup more than once to install a specific component, such
as Report Designer, on a different computer.

When a prerequisite for a component is missing, the component cannot be installed. If you are installing Reporting Services using
Setup, the component is omitted from the Feature Selection page. When you install Reporting Services from the command
prompt, if any such components are specified in the ADDLOCAL property, Setup terminates with an error. The components have
different hardware and software requirements. For more information on the hardware requirements, see Hardware Requirements
for Reporting Services. For more information on the software requirements, see Software Requirements for Reporting Services.

Server Components

The following server components are included with Reporting Services.

Important Report server and the SQL Server instance hosting the report server database must be in the same
domain or in a trusted domain.

Report Server and Report M anager

The report server is a stateless server that stores the meta data and object definitions in a report server database. The report
server is implemented as a Microsoft Windows® service and as a Web service that runs on a Web server. When the report server
component is installed, both the Windows service and Web service are installed. You can have one installation of report server on
one computer. Report server does not install as multiple instances on one computer.

Report Manager is used to manage report server content and view reports. You can access Report Manager through a virtual
directory address on a Web server. If you installed Report Manager locally, you can also use a shortcut on the SQL Server Start
menu. To access the shortcut, click Start, point to Programs, point to Microsoft SQL Server, and then point to Report Manager.

Report Server Database

The report server database is a SQL Server database that stores data used by a report server. MSDE and SQL Server Personal
Edition cannot host the report server database, though it can be used as a source of data for the reports.

Administrative Tools and Utilities

The following tools and utilities are included with Reporting Services. For more information on the utilities, see Tools and Utilities
Reference.

rsconfig Utility

The rsconfig utility is used to modify report server database connection settings after installation is complete. It is also used to set
encrypted account information used for unattended report processing. For more information, see rsconfig Utility.

rs Utility

With the rs utility, administrators can process Visual Basic scripts to perform common tasks repeatedly and run duplicate tasks on
different computers. For more information, see rs Utility.

rskeykgmt Utility

With the rskeymgmt utility, you can backup and restore the encryption keys used by the report server. For more information, see
rskeymgmt Utility.

rsactivate Utility

The rsactivate utility is used to initialize a report server installation. For more information, see rsactivate Utility.

Authoring Tools: Report Designer

Reporting Services includes a report authoring tool named Report Designer. Report Designer runs within the Visual Studio .NET

2003 environment. You can use Report Designer to create, edit, and preview reports, and then deploy them to a report server.

Documentation and Samples

This feature installs the complete documentation set for Reporting Services, code samples, report samples, and the
AdventureWorks2000 database. The documentation is installed to <Reporting Services installation directory>\Help\<language-
specific folder>. The code samples are installed to <Reporting Services installation directory>\Samples\Applications, and the
database installed to <Reporting Services installation directory>\Samples\Databases. Setup installs the sample database on a
local SQL Server instance. If you want to use a remote SQL Server instance, you can run Setup on that computer to install the
sample database.

To view Reporting Services Books Online after you complete Setup, click Start, point to Programs or All Programs, point to
Microsoft SQL Server, Reporting Services, and then click Reporting Services Books Online - <language>.

To view the samples, click Start, point to Programs or All Programs, point to Microsoft SQL Server, point to Reporting
Services, and then click Reporting Services Samples. The default setting is to not install any samples or the database. You must
explicitly select these items in the Feature Selection page of the Setup Wizard, or by using the RSSAMPLESFILELOC property in
the Setup command prompt.

See Also

Installing Reporting Services

Hardware Requirements for Reporting Services

Software Requirements for Reporting Services

Choosing the Reporting Services Installation Method

Reporting Services Component Overview

Reporting Services - Installing Reporting Services

Installing a Report Server Web Farm
A report server Web farm is a collection of report server instances that share the same report server database. Reporting Services
does not provide Web farm deployment functionality. To deploy Reporting Services in a Web farm, you can use network load
balancing (NLB) functionality provided through Windows servers, Microsoft Application Center, or third-party software that
supports Web farm deployment.

To create the report server nodes that will become part of a Web farm deployment, you use Setup. You must run Setup once on
each computer that you want to join to a Web farm. The first time you run Setup, you install a report server instance and create
the report server database that all of the report server nodes will use. When you run Setup to install additional report server
instances, you select the existing report server database and the report server instance you initially installed.

In order to join a report server instance to a Web farm, several prerequisites must be in place.

A report server installation and a report server database must already exist.
The Reporting Services edition must be Enterprise, Developer, or Evaluation. Standard cannot be used in a Web farm.
The computer on which you are installing the report server must not already have an existing report server instance
installed on it.
All of the computers in the Web farm must be in the same domain or in a trusted domain.

If these prerequisites are met, specify the name and server of an existing report server database during installation on the Report
Server Database page, or in the RSDATABASENAME and RSDATABASESERVER properties specified in a command line
statement. When you specify a database name that already exists, Setup assumes that a Web farm installation is being deployed
and checks the edition and version of the product. If the product edition is Standard (which does not support Web farms), an error
occurs and you will be prompted to provide a new database name.

If the edition supports Web farms and a connection to the existing database is validated, Setup displays the Report Server Web
Farm Setup page. In this page, you must specify the name of the computer that hosts the report server instance that was created
at the same time as the report server database.

Optionally, you can specify a Windows account to use to connect to the existing report server instance. If you are installing from
the command line (by specifying the RSWEBFARMSERVER property in the command prompt), you can specify the Windows
account through the RSWEBFARMACCOUNT and RSWEBFARMPASSWORD properties. If credentials are not specified, Setup
connects using the security context of the user running Setup. Once all data is gathered, Setup activates the new report server
installation into the Web farm. For more information on report server Web farms, see Enterprise Deployment Model.

See Also

Installing Reporting Services

Preparing to Install

Reporting Services Component Overview

Reporting Services - Installing Reporting Services

Hardware Requirements for Reporting Services
The minimum hardware requirements for Reporting Services are listed in the following tables.

Computer

The following requirements apply to a single computer that hosts all of the components in a single-server deployment model. For
recommendations about choosing computers to host server components, see Preparing to Install.

Hardware Minimum requirement
Computer (all components) PC with an Intel or compatible Pentium II

500 MHz or higher processor.

M emory (RAM)

Component RAM requirement
Reporting Services 256 MB, 512 MB or more recommended.

Memory requirements are for Reporting
Services only, and do not reflect additional
memory requirements of the operating
system.

Hard disk space

A Reporting Services installation uses 465 MB of disk space during Setup. This number includes space used for temporary files.
The following table describes the amount of disk space required by each component after Setup completes.

Component Disk space requirement
Report Server 50 MB
Microsoft .NET Framework 1.1 100 MB
Report Designer 30 MB.
Samples and Books Online 145 MB.

For more information on the supported operating systems and other software requirements, see Software Requirements for
Reporting Services.

See Also

Installing Reporting Services

Software Requirements for Reporting Services

Choosing the Reporting Services Installation Method

Reporting Services Component Overview

Reporting Services - Installing Reporting Services

Software Requirements for Reporting Services
This topic identifies the software prerequisites and requirements for each Reporting Services component. Prerequisites are items
that must be installed or configured on the computer that the components are being installed on in order for setup to run without
error. These prerequisites are shown in the Setup wizard.

Required software components are additional software components that should be installed on the computer, but the absence of
which will not cause setup to fail. However, their absence may cause features to not be available for installation, or features to not
work after setup has completed. You can configure the computer after setup has finished to get the features to work.

For example, during installation, you can select the report server to use Secure Sockets Layer (SSL). Setup checks to see if an SSL
certificate is present on the computer. If it is not, you will receive a message indicating that SSL is not available. You must either
install SSL and continue with the installation, or select to not use SSL at this time and later configure the report server for this
feature. These system requirements and prerequisites are verified and displayed to you on the System Requirements Check
dialog.

Setup Prerequisites

The following prerequisites are required by Setup.

Distributed Transaction Coordinator Service

Setup requires the Microsoft Distributed Transaction Coordinator (MS DTC) service. Before you run setup, verify that the startup
type for the service is set to Automatic or Manual. To view service state, point to Administrative Tools in Control Panel and click
Services. To change the startup type, right-click Distributed Transaction Coordinator, and then click Properties.

Installation points

You can run setup from the product CD-ROM, from a file share expressed in Universal Naming Convention (UNC) format, or from
a local folder. You cannot run setup from a mapped drive to a network share.

Component Setup Requirements

The following table lists the components of Reporting Services, and the required software and configuration settings on the
computer before a given component is installed.

Component Prerequisites
Report server Web server with ASP.NET and Internet

Information Services (IIS) 5.0 or higher.

MDAC 2.6 or higher.

Connection to SQL Server 2000 SP3a
instance.

Default Web site accessible through
http://<servername>.

For Windows 2003, the computer must be
configured as an application server.

For Windows 2003 to use the network
service account to run the ReportServer
service, you need SQL Server QFE 859. To
download the QFE, go to Microsoft
Support. Note that after you install the
hotfix, you cannot rename columns in
Enterprise Manager. Consider using a
different account if you do not want to
apply the hotfix.

http://go.microsoft.com/fwlink/?linkid=20411

Report Manager Web server with ASP.NET.

IIS 5.0 or later installed and configured.

Default website accessible through
http://<servername>.

Report server database Server with SQL Server 2000 SP3a.
Report Designer Client workstation with Microsoft Visual

Studio® .NET 2003 or another product
that provides the Visual Studio 2003 shell
(such as Visual Basic .NET 2003 or Visual
C# .NET 2003) and MDAC 2.6 or higher.

Administrative tools and utilities Client workstation with access to a report
server.

Reporting Services Books Online Client workstation, no prerequisites.
Sample reports and applications Client workstation, no prerequisites.

If you need to install the MDAC 2.6 prerequisite, you can download MDAC from Data Access Downloads. System requirements
and installation instructions are available with the download.

The following table associates the various Reporting Services editions with the client or server components available on each
operating system.

Edition Components Operating system
Evaluation Edition Server or client Win2000 with SP4, all

editions.

Windows 2003, all editions.

Standard Edition Server Windows 2000 Server with
SP4 or later.

Windows 2000 Advanced
Server with SP4 or later.

Windows 2000 Datacenter
Server with SP4 or later.

Windows Server 2003,
Standard Edition, Enterprise
Edition, or Datacenter
Edition.

Standard Edition Client Windows 2000, SP4 or later.

Windows XP Professional
with SP1 or later.

Enterprise Edition Server Windows 2000 Server with
SP4 or later.

Windows 2000 Advanced
Server with SP4 or later.

Windows 2000 Datacenter
Server with SP4 or later.

Windows Server 2003,
Standard Edition, Enterprise
Edition, or Datacenter
Edition..

Enterprise Edition, client
components only

Client Windows 2000, SP4 or later.

Windows XP Professional
with SP1 or later.

http://go.microsoft.com/fwlink/?linkid=19046

Developer Edition Server or Client Windows XP Professional
with SP1 or later.

Win2000 with SP4, all
editions.

Windows 2003, all editions.

General Requirements

This section lists the software components that are required for some features to function. They should be installed on the
computer that the Reporting Services components are being installed on, but their absence does not cause Setup to fail. However,
their absence may cause features to not be available for installation, or features to not work after Setup has completed.

Secure Sockets Layer

If you want to use Secure Sockets Layer (SSL) to secure data on your reports, an SSL certificate must be installed on the machine
and associated with the default web site on the machine that will be hosting the report server. Installing report server fails if the
checkbox regarding the use of SSL on the Reporting Services Virtual Directories dialog is checked, but an SSL certificate is not
installed on the machine that is hosting the report server and associated with the default web site. You can configure report server
to use SSL for requests that contain sensitive data either during Setup (SSL checkbox) or in the configuration file
(SecureConnectionLevel property).

If you configure the report server to use SSL during Setup, the certificate must be installed and associated with the Default web
site in IIS. Setup also checks the value of the Require Secure Channel (SSL) checkbox, which is located in the Directory Security tab
of the Default web site properties page. If the Require Secure Channel (SSL) checkbox is checked, then the configuration element
SecureConnectionLevel is set to 3, which is the most secure and restrictive level. Otherwise, the value of the
SecureConnectionLevel element is set to 2.

If, after Setup is run, the Require Secure Channel (SSL) checkbox is checked, the configuration file element
SecureConnectionLevel is not modified from 2 to 3. You must manually change the value. For more information on how to
change the SecureConnectionLevel in the configuration file, see Using Secure Web Service Methods.

Other Requirements

For viewing reports, users generally access reports and manage the report server through a Web browser. There are no minimum
operating system requirements for viewing published reports, except that the browser used to access the reports must support
HTML 3.2. For the browser used to access and manage a report server using Report Manager, the client computer must have
Microsoft Internet Explorer 6.0 with Service Pack 1 (SP1), with scripting enabled. For more information about browsers and their
use in viewing reports and managing reports, see Browser Types Supported by Reporting Services.

Edition Compatibility

Not all editions of Reporting Services can create a report server database on all editions of SQL Server 2000 SP3a. Setup
determines whether the SQL Server edition can support a report server database, based on the following table.

Edition of Reporting Services Valid edition of SQL Server
Standard Standard, Enterprise
Enterprise Standard, Enterprise
Developer Standard, Enterprise, Developer
Evaluation Standard, Enterprise, Developer, Evaluation

Component Update

When installing Reporting Services, several components need to be installed or updated in order for the installation to run
correctly. The Component Update dialog of the Setup wizard lists the features that will be installed or updated. The components
that are installed or updated may be one or more of the following:

Windows Installer 2.0
Microsoft .NET Framework version 1.1
Microsoft SQL Server 2000 Reporting Services Setup Support Files

Once these components have been installed, they cannot be uninstalled or rolled back by Setup.

See Also

Editions of Reporting Services

Introducing Reporting Services

Hardware Requirements for Reporting Services

Preparing to Install

Choosing the Reporting Services Installation Method

Reporting Services Component Overview

Selecting Components of Reporting Services to Install

Reporting Services - Installing Reporting Services

System and User Accounts Used in Reporting Services
Installation
During Setup, several pages prompt you for credentials. This topic describes what the credentials are used for. It also describes
other accounts that are used to complete Setup or perform ongoing operations.

Setup and the Reporting Services components use credentials in the following ways:

Setup uses the credentials of the user installing the product to logon to a SQL Server instance and create the report server
database.
The report server uses credentials to connect to the report server database at run time. You can use the service account, a
domain account, or a SQL Server login. You must specify which account to use during Setup.

Important SQL Server Hotfix 859 is required when you install a report server on Windows Server 2003, and
you use the Service Account credentials to connect to the SQL Server instance hosting the report server
database. Details about the Hotfix are described in Knowledge Base article 821334. If you do not want to apply
the Hotfix, you must choose a SQL Server instance located on a different operating system, or choose a different
credential type. To download the Hotfix, go to Microsoft Support.

The ReportServer Windows service uses credentials to log on to the system. You must specify a service account during
Setup.
The Report Server Web service uses the ASP.NET account. You cannot specify a different account.
Setup uses the IWAM_computername account to configure Internet Information Services (IIS). This account must be enabled
before you run Setup.
The IUSR_computername account must be enabled if you are using custom or forms-based authentication to authenticate
users to a report server.
A report server that is being added to a Web farm requires credentials to connect to a report server that already exists in a
Web farm. You can specify Windows credentials, or connect using the security context of the user running Setup. These
credentials need to have administrator permissions on the computer that is already part of the Web farm. For more
information, see Installing a Report Server Web Farm.

Credentials for Installation

The user who runs Setup must be a member of the local system administrator's group, and have permission to perform the
following tasks:

Create logins
Create roles
Create databases
Assign permissions to users

If you do not want to use the credentials of the user running Setup, alternative credentials can be supplied for creating the report
server database by using the command line setup utility.

Credentials for Ongoing Operations

Specify the credentials that are used for ongoing server connections on the Reporting Services Database Setup page of Setup.
You can specify either Windows Authentication or SQL Server Authentication credentials. If you specify a SQL Server account,
Setup creates the account if it does not already exist. If you specify a Windows account, the user account must already exist. The
account specified is granted public and RSExecRole roles for the report server database, and the RSExecRole role for the
master, msdb and ReportServerTempDB databases. Check with the database administrator if you are unsure about which
credentials to use.

See Also

Hardware Requirements for Reporting Services

Software Requirements for Reporting Services

Choosing the Reporting Services Installation Method

http://go.microsoft.com/fwlink/?linkid=20411

Report Server

Reporting Services - Installing Reporting Services

Preparing to Install
Before you install, review this section for information that can help you avoid errors during Setup. This topic includes hardware
recommendations and information about using a remote SQL Server or named instance, and describes the Web server
configuration that Setup expects.

Recommended Reading

Before you run Setup, you should read the following topics. Understanding the requirements and accounts used by Reporting
Services can help you make informed decisions before and during Setup:

Hardware Requirements for Reporting Services
Software Requirements for Reporting Services
System and User Accounts Used in Reporting Services Installation

Choosing Computers

If you anticipate a high-volume of users or report processing, consider using multiple servers to host the Reporting Services
components. Report server and Report Manager should run together on a computer that has ASP.NET and Internet Information
Services (IIS) 5.0 or later installed. You can scale a report server installation by running multiple report server instances in a Web
farm. You cannot have multiple report server instances on a single computer.

The report server database can be installed on a remote SQL Server instance, or in a cluster. Installing the database on a separate,
fast computer provides the best performance. The primary factor in improving performance is to speed disk access on the
computer hosting the report server database.

Domain Controllers

You can host a report server on a domain controller. If the domain controller runs on Windows 2003 server, no additional steps
are necessary in order for Reporting Services to install and run properly. On Windows 2000 server, Reporting Services installs
properly on a domain controller, but is not activated. In this case, you should perform the following tasks to complete the report
server installation. You can perform these tasks before or after running Setup. If you perform them after Setup, you must run
rsactivate.exe manully.

Grant Impersonate Privilege to the IWAM_<machine> account. For more information, see the Knowledge Base Article
"IWAM Account Is Not Granted the Impersonate Privilege for ASP.NET 1.1 on a Windows 2000 Domain Controller with SP4"
(KB 824308).
Remove the IWAM_<machine> account from the Guest group. Guest users cannot store or maintain encrypted content. For
more information, see the Knowledge Base Article "Roaming Profiles Cannot Create Key Containers" (KB 265357).
Reboot the computer.
Run rsactivate if you are performing these steps after Setup is complete.

On both Windows 2000 and Windows 2003, if you are using a Windows account to connect to the report server database, the
Windows user must be granted the privilege to log on locally to the domain controller on which the report server is running, even
if the report server database is on a different computer. Domain users are not granted this permission by default.

Underscore Characters in Computer N ames

Avoid using a computer that has an underscore in the computer name. Report server does not persist session state information
on computers that have an underscore character in the computer name and that have been patched with Internet Explorer
Security Patch MS01-055. The security patch prevents cookies from being set on client computers that have an underscore in
their names, breaking the session management features of Reporting Services. Recommended solutions are documented in
Microsoft Knowledge Base article 316112.

Choosing a Remote SQL Server Instance

During Setup, you can choose whether to create the report server database on a local or remote SQL Server instance. If you
decide to use a remote SQL Server instance, consider carefully which credentials the report server should use to connect to the
SQL Server instance. Setup does not automatically filter out credential types that are not valid for this configuration. Generally,
you should avoid choosing Service Account credentials if the SQL Server is a remote instance and you are using an account with
reduced privileges (such as Network Service) to run the report server. Instead, consider using a SQL Server login account

(recommended) or domain user account to make the connection.

If the remote SQL Server instance runs as Local System, you can use Windows credentials and any valid domain account to
connect to the report server database.
If the remote SQL Server instance runs as a domain user, you must specify that same domain user account for the report
server connection.

Another alternative is to use SQL Server authentication to connect to the remote SQL Server. If you use a SQL Server login, it does
not matter what account the remote server instance runs under.

To specify these values, use the Report Server Database page of the Setup wizard.

Note Before you run Setup, disable Terminal Services on the computer on which Setup runs. Terminal Services can
interfere with a report server connection to a remote SQL Server instance during Setup. Specifically, Setup attempts to
access the remote SQL Server instance using a System account. If the logon fails, an unexpected database error occurs.
If you configured Windows Server 2003 for the Terminal Services role, you should remove the role until installation is
complete.

Choosing a Named Instance

In some cases, Setup will return an error that a local account does not have network access. This error can occur if you install
Reporting Services on Windows XP or Windows 2000, and the local SQL Server is a named instance. When checking for a local
SQL Server instance, Setup compares the computer name to the instance name. If the names do not match, Setup assumes that
the SQL Server instance is not local.

Web Server Configuration

The report server and Report Manager are accessed through virtual directories that are created and configured during setup. How
your Web server is configured can have a large effect on your Reporting Services installation.

Default Web Site or Application Pool

If you are using IIS 5.x, Setup defines the virtual directories under the default Web site. If you are using IIS 6.x, Setup uses the
default application pool. If the default Web site or application pool is not available, Setup will continue, but your installation will
not work once Setup is finished.

IP Address M apping

Reporting Services requires that the default Web site IP address is mapped to (All Unassigned). To verify this setting, open the
Default Web Site Properties dialog box in Internet Information Services. The IP address is specified on the Web Site tab.

M iddle-Tier Applications

If you are running other middle-tier applications, IIS configuration may have been adjusted to run those programs, and some of
those adjustments may prevent a report server from running as expected. For example, if you installed Windows SharePoint
services, session state is most likely turned off. In contrast, a report server requires that session state be enabled. For more
information about running these applications side by side, see Troubleshooting a Side-by-Side Installation of Reporting Services
and Windows SharePoint Services.

Enable the IWAM _ Account to Prevent Setup Error 25619

Setup uses IWAM_computername account to configure IIS. Disabling the account results in Setup error code 25619. To avoid this
error, enable the account before running Setup.

Install IIS 5.0 or Later

To install IIS on Windows Server 2003, click Add or Remove Programs in Control Panel. In the Add or Remove Programs
dialog box, click Add/Remove Windows Components. The Windows Component Wizard appears. In the Windows Components
page, select the Application Server check box. Click Next to configure the component. Click Finish to close the wizard.

For all other operating systems, you can install IIS by clicking Add or Remove Programs, and then clicking Add/Remove
Windows Components. The Windows Component Wizard appears. In the Windows Components page, select the Internet
Information Services (IIS) check box. Click Next to configure the component. Click Finish to close the wizard.

ASP.NET Configuration

Report Manager is an ASP.NET application. If you are installing Report Manager, you must have ASP.NET installed and configured.
Setup requires that version 1.1.4322 of ASP.NET be registered with IIS. If you are installing Reporting Services on Windows Server
2003, ASP.NET must be running as Network Service.

Install and Configure ASP.N ET Version 1.1

ASP.NET is required for the Report Server and the Report Manager components. On Windows Server 2003, ASP.NET must run as
Network Service (this is the default logon account for ASP.NET).

To enable ASP.NET on Windows Server 2003, you can use Configure Your Server Wizard or Add or Remove Programs. To enable
ASP.NET using Configure Your Server Wizard, add the Application Server role to the server. To enable ASP.NET using Add or
Remove Programs, click Add/Remove Windows Components. The Windows Component Wizard appears. In the Windows
Components page, select the Application Server check box, and click Details. In the Application Server dialog, select the
ASP.NET check box. Click OK to return to the Windows Components dialog. Click Next to configure the components. Click Finish
to close the wizard.

For all other operating systems, perform the following steps.

1. Verify that Microsoft .NET Framework v1.1 is installed. You can confirm that it is installed by searching your disk for the
Microsoft.NET\Framework\v1.1.4322 folder. You can also click Add or Remove Programs in Control Panel and confirm
that Microsoft .NET Framework 1.1 is shown in the Currently installed programs list.

2. Verify that IIS is installed. You can confirm that IIS is installed by clicking Add or Remove Programs, and then clicking
Add/Remove Windows Components. The Windows Component Wizard appears. In the Windows Components page,
verify that Internet Information Services (IIS) is checked. If not, check it, and click Next to configure the components. Click
Finish to close the wizard.

3. Run aspnet_regiis -i from the %windir%\Microsoft.Net\Framework\v1.1.4322 folder.

For more information on the ASP.NET mappings, see Microsoft Knowledge Base article 306005: "HOWTO: Repair IIS Mapping
After You Remove and Reinstall IIS" at Microsoft Support.

See Also

Installing Reporting Services

Selecting Components of Reporting Services to Install

http://go.microsoft.com/fwlink/?linkid=22579

Reporting Services - Installing Reporting Services

Choosing the Reporting Services Installation Method
You can install Microsoft Reporting Services using the Setup installation wizard, using an executable, or filling in the values in a
template file and running the executable with the template file as input.

The wizard is a step-by-step process in which you select options that correspond to specific property values. The executable
allows you to specify the property values from the command line, while the template file, which is an.ini text file, allows you to
type in all the property values into the text file, and execute the command line using the text file as the input. The executable, with
or without the .ini text file, gives you the ability to install Reporting Services silently, without interaction or prompts. A silent
installation of Reporting Services is ideal for test scenarios or as part of a large-scale enterprise deployment.

The following table lists the topics that describe the installation options in more detail.

Installation Type Description
Installing Reporting Services Using Setup Install Reporting Services using a wizard

that guides you through the installation
process and prompts for the necessary
information.

Installing Reporting Services from the
Command Line

Install Reporting Services from the
command line, specifying property values
at the command line, or to be read from a
text file.

Performing an Unattended Installation of
Reporting Services

Install Reporting Services in silent mode
from the command line.

Once the installation is complete, you can verify that the components are installed and running. For more information, see
Verifying an Installation of Reporting Services.

See Also

Installing Reporting Services

Hardware Requirements for Reporting Services

Software Requirements for Reporting Services

System and User Accounts Used in Reporting Services Installation

Reporting Services - Installing Reporting Services

Installing Reporting Services Using Setup
Two methods are available for installing Reporting Services: a graphical setup wizard that prompts you for the information it
requires, and a command prompt utility that requires you to provide information for each required parameter. This topic explains
how to install Reporting Services components by using the Setup wizard. For more information about installing Reporting
Services from the command prompt, see Installing Reporting Services from the Command Line.

You can install only one instance of Reporting Services per computer. Named and multiple instances are not supported.

Depending on the components that you install, you may be prompted to provide login credentials, virtual directory names, and
other information to complete the installation.

Typically, you use Setup to install selected components locally. You can install the Report Designer client component on any
computer, with any edition of Reporting Services.

There are many screens that you will see when running the Setup wizard. For a table that describes many of the screens, see
Setup User Interface Reference.

See Also

Installing Reporting Services

Hardware Requirements for Reporting Services

Software Requirements for Reporting Services

Verifying an Installation of Reporting Services

Troubleshooting an Installation of Reporting Services

Reporting Services - Installing Reporting Services

Installing Reporting Services from the Command Line
The Reporting Services setup.exe program provides a command prompt interface in addition to the graphical Setup program. Use
the properties described in this section to customize the way in which Setup.exe installs Reporting Services components. You can:

Specify settings for these properties on the command prompt
Specify and save settings in an initialization (.ini) file that you specify with the /settings option.
Add or remove features to an installation of Reporting Services.
Remove Reporting Services.
Run an unattended installation.

Reporting Services Setup Command Line Syntax

The following syntax shows three setup command lines: the first one displays Help, the second one creates an installation, and the
third one removes an installation.

Syntax

setup /?

setup
 [/i package_file | package_code]
 {/settings ini_file | property1=setting1 property2=setting2 ...}
 [{/qn}]
 [/l*v log_file]

setup /x package_code
 [/qn]
 [/l*v log_file]

Arguments

Note All parameters that contain a path require the use of a trailing backslash (\), as shown in the following example:

RSDATABASELOGFILELOCATION ="C:\Program Files\Microsoft SQL Server\"

Quotation marks are required only if an argument value contains a space.

/?

Displays the syntax for the setup arguments.

/i package_file | package_code

Specifies the name of the Windows installation package file (an .msi file) to be used to install Reporting Services. If the /i
argument is not specified, or if package_file does not include a fully qualified path, ensure that the .msi file is in the same folder as
setup.exe. To run setup in maintenance mode, use the /i argument with the package_file argument to specify the installation to
be maintained, or use the /i argument with the package_code argument if the .msi file provided by Reporting Services was used
for the installation.

In Reporting Services setup, there will be only one package file with multiple package codes so the package code must be
specified

The package code is written to the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\80\Reporting
Services:ProductCode

/settings ini_file

Specifies the name of an .ini file that contains settings for the setup properties, which are listed later in this topic. If you use this
argument, properties should be set in the .ini file, not on the setup command line. If you are performing an installation through
the user interface while using the /settings argument, the user interface will be pre-populated with the data in the .ini file. If
ini_file name does not include a fully qualified path, be sure to place the .ini file in the same folder as setup.exe.

property1=setting1 property2=setting2 ...

Sets a value for a setup property, which may have a string value or numeric value. You only need to include the property settings
that are required for an installation. Spaces are permitted in a setting that contains character strings but the string must be
enclosed in double quotation marks. If a double quotation character is included in the string, you must add an additional double-
quotation character ("") as an escape code. For more information about setup properties and their values, see "Properties" later in
this topic.

/x package_code

Specifies the Windows Installer installation package code to use when uninstalling Reporting Services. You must specify the
package code of the installation package that was used to install Reporting Services. If package_code does not include a fully
qualified path, be sure to place the .msi file in the same folder as setup.exe.

/qn

Specifies that setup runs unattended with no setup user interface.

/l*v log_file

Specifies the name and path to a verbose log file containing all Windows Installer log options. If you do not specify this argument,
no log file is created.

Properties

When you install Reporting Service from the command line, you can specify the following properties. You can specify properties
either on the command line or in an .ini file, but not both. If conflicting entries are provided, the entry on the command line is
used.

INSTALLDIR="Reporting_Services_executable_folder_path"

Specifies the folder in which the Reporting Services executable files are installed. The default path is %system drive%:\Program
Files\Microsoft SQL Server.

USERNAME="user_name"

Specifies the user name for the user who is registering the product.

COMPANYNAME="company_name"

Specifies the name of the company for which the product is registered.

REINSTALL=All

Specifies that Setup or Windows Installer install all previously installed Reporting Services features. The only value supported is
All.

REINSTALLMODE={ omus | amus }

Specifies the level of processing performed by Setup or Windows Installer. Specify REINSTALLMODE=omus when resuming a
failed setup attempt. With this option, the entire installation process is verified and completed. This option reinstalls all files,
shortcuts, and icons that are missing or that are from an older version, and rewrites registry entries.

REINSTALLMODE=amus when files have become corrupted, such as after a failure of the disk drive that holds the Reporting
Services components. This option reinstalls all files, shortcuts, and icons regardless of version, and rewrites registry entries

The following table describes the meaning of each letter in the omus and amus property value.

Code Option
o Reinstall if file is missing or if an older

version is present.
a Reinstall all files, regardless of checksum

or version.

m Rewrite all required registry entries from
the Registry table that go to the
HKEY_LOCAL_MACHINE or
HKEY_CLASSES_ROOT registry hive.
Rewrite all information from the Class
table, Verb table, PublishComponent
table, ProgID table, MIME table, Icon
table, Extension table, and AppID table.
Reinstall all qualified components.

u Rewrite all required registry entries from
the Registry table that go to the
HKEY_CURRENT_USER or HKEY_USERS
registry hive.

s Reinstall all shortcuts and re-cache all
icons, overwriting any existing shortcuts
and icons.

PERSEAT="per_seat_license"

Specifies the number of per seat licenses purchased. Note that the PERSEAT or PERPROCESSOR property can be used, but not
both.

PERPROCESSOR="per_processor_license"

Specifies the number of per processor licenses purchased. Note that the PERSEAT or PERPROCESSOR property can be used, but
not both.

PIDKEY=cdkey

Required. Specifies the 25-character product identification key that is required for installation.

RSACCOUNT="domain\logon_name"

Optional. Default value is the default built-in account for the current operating system.

This property applies to the RS_Server feature selection.

Specifies the account under which the ReportServer service runs. The domain name is limited to 254 characters, and the account
name is limited to 20 characters. If a value is not supplied for RSACCOUNT, the following table shows the default built-in account
selected.

Operating system Account
Windows 2000 Local System
Windows XP Local System
Windows Server 2003 Network Service

RSPASSWORD="password"

Optional. Default value is null password.

This property applies to the RS_Server feature selection.

Specifies the password that corresponds to the user name specified for the RSACCOUNT property. The password is limited to
255 characters.

RSAUTOSTART={ 1 | 0 }

Optional. Default value is true (1).

This property applies to the RS_Server feature selection.

Specifies whether the ReportServer service is started automatically when Windows is restarted. When the ReportServer service is
registered with the operating system, the service's startup type is set according to this value. Specify true (1) to enable the service
to start automatically or false (0) to disable the service from starting automatically.

RSVIRTUALDIRECTORYSERVER="virtualdirectory"

Optional. Default value is ReportServer.

This property applies to the RS_Server feature selection.

Specifies the virtual directory for the report server. The path given in the virtualdirectory portion of the argument is relative to the
server URL. Setup creates an IIS virtual directory under the default web site with the name specified, and points to the <install
directory>\Reporting Services\ReportServer folder. The virtual directory name is limited to 50 characters, and the characters used
in the name must comply with IIS naming conventions. The following table shows the characters that are not valid in virtual
directory names.

Character Character
\ (backslash) " (quotation mark)
/ (slash mark) < > (angles brackets)
: (colon) | (vertical bar)
* (asterisk) ; (semicolon)
? (question mark) @ (at sign)
= (equal symbol) & (ampersand)
+ (plus sign) $ (dollar sign)
{ } (braces) ^ (circumflex)
[] (brackets) ` (accent grave)
, (comma) . (period)

RSVIRTUALDIRECTORYMANAGER ="virtualdirectory"

Optional. Default value is Reports.

This property applies to the RS_Manager feature selection.

Specifies the virtual directory for Report Manager. Setup creates an IIS virtual directory with the name specified, and points to the
<install directory>\Reporting Services\ReportManager folder. The path given in the virtualdirectory portion of the argument is
relative to the server URL.

RSDATABASESERVER="servername\instancename"

Optional. Default value is the default instance of SQL Server on the local machine.

This property applies to the RS_Server feature selection.

Specifies the SQL Server instance that hosts the report server database. All editions of Reporting Services require SQL Server
2000 with SP3a or later. For Standard Edition, the instance of SQL Server must be local. For all others, it can either be local or
available over the network. The servername portion of the parameter can be a hostname, or an IP address. Reporting Services
does not support MSDE as a SQL Server instance.

RSDATABASENAME = "ReportServerDatabase"

Optional. Default value is ReportServer.

This property applies to the RS_Server feature selection.

Specifies the name of the report server database that the report server will use to store its metadata. If the database does not
exist, it is created. If the database name entered in this property already exists, it is assumed that a web farm installation is being
done. Setup checks the edition and version of the product. If the product is Standard, which does not support web farms, or the
version is an incorrect version, an error occurs and a new name must given. If the edition supports web farms, the existing
database is used, and the report server is activated as part of the web farm. Note that when an existing database is used, the
RSWEBFARMSERVER property must also be specified.

The RSDATABASENAME name must contain a minimum of 1 character, and not exceed the maximum length of 117 characters.
The name must be generated according to the following rules.

The first character must be a letter, as defined by the Unicode Standard 2.0, or an underscore "_" character. The characters
"@" and "#" are not allowed as the starting characters of a database name, as these characters have special meaning in SQL.
The second and subsequent characters can be any letter, as defined by the Unicode Standard 2.0, or decimal numbers from
either Basic Latin or other national scripts, or the "@", "$", "#", or "_". Note that a Transact-SQL reserved words are not
allowed as an identifier, whether created in uppercase or lowercase as SQL Server reserves both versions of the reserved
words.
Embedded spaces or special characters are not allowed.

RSDATABASEDATAFILELOCATION="database_file_location"

Optional. Default location is the location where the SQL Server instance exists that is hosting the report server database.

This property applies to the RS_Server feature selection.

Specifies the folder where the report server database data file is stored. The folder must exist and be on the same computer that
hosts the SQL Server instance that is hosting the report server database. This option is ignored when using an existing report
server database.

RSDATABASELOGFILELOCATION = "database_logfile_location"

Optional. Default location is the location where the SQL Server instance exists that is hosting the report server database.

This property applies to the RS_Server feature selection.

Specifies the folder where the report server database log files are stored. The folder must exist and be on the same computer that
hosts the SQL Server instance that is hosting the report server database. This property is ignored when using an existing report
server database.

RSSETUPACCOUNT="logon_name"

Optional. Default value is the credentials of the user running Setup to connect to the server.

This property applies to the RS_Server feature selection.

Specifies the SQL Server logon that is used by Setup to connect and create databases on the instance of SQL Server specified in
the RSDATABASESERVER property.

The account must be an administrator, and have permission to perform the following tasks:

Create logins
Create roles
Create databases
Assign permissions to users

RSSETUPPASSWORD="password"

Optional if RSSETUPACCOUNT is not specified. Default value is null.

This property applies to the RS_Server feature selection.

Specifies the password for SQL Server logon credentials specified in RSSETUPACCOUNT. This property is required if
RSSETUPACCOUNT is specified.

RSSQLACCOUNT="domain\logon_name"

Optional. Default login is the account used by RSACCOUNT.

This property applies to the RS_Server feature selection.

Specifies the user account that the report server uses to connect to the report server database at run time. The domain name is
limited to 254 characters, and the account name is limited to 20 characters. If the RSSQLACCOUNT is a SQL login, you must
specify a RSDATABASESECURITY MODE of "SQL" as RSDATABASESECURITY defaults to a Windows login.

The account is granted public and RSExecRole roles for the report server database, and the RSExecRole role for the master,
msdb and ReportServertempDB databases. The account can be either a Windows account or a SQL Server login. When a
Windows account is specified, the account is added as a login user to the database server specified in RSDATABASESERVER.
When an SQL Server account is specified, the SQL account is created on the database server that is specified in the
RSDATABASESERVER if it does not already exist, and is granted login permissions.

RSSQLPASSWORD="password"

Optional if RSSQLACCOUNT is not specified. Default value must be supplied if RSSQLACCOUNT is specified, and cannot be
blank.

This property applies to the RS_Server feature selection.

Specifies the password for the SQL Server credentials specified in RSSQLACCOUNT. The password is limited to 255 characters.
This is a required property when RSSQLACCOUNT is specified, unless RSSQLACCOUNT is an operating system built-in account.
When RSSQLACCOUNT is a built-in account, then RSSQLPASSWORD is ignored. Setup does not create the account specified in
RSSQLACCOUNT when a blank password is specified in RSSQLPASSWORD.

RSDATABASESECURITYMODE="SQL"

Optional. If not supplied, RSSQLACCOUNT is assumed to be a Windows user account.

This property applies to the RS_Server feature selection.

Specifies that the account specified in RSSQLACCOUNT is a SQL Server logon account, not a Windows account. When
RSDATABASESECURITYMODE is specified, the value must be "SQL".

RSEMAILSMPTSERVER="servername"

Optional. No default value.

This property applies to the RS_Server feature selection.

Specifies the SMTP server that is used to deliver reports. The servername can be a hostname, or an IP address.

RSEMAILFROM="from@ext.com"

Optional. No default value.

This property applies to the RS_Server feature selection.

Specifies the e-mail address that appears in the From line a report is delivered through e-mail.

RSREDIRECTTOMANAGER = {0|1}

Optional. Default value is false (0).

This property applies to the RS_Manager feature selection.

Specifies that Setup will add redirection from the top-level Web site to the Report Manager virtual directory.

RSUSESSL = {0|1}

Optional. Default is false (0).

This property applies to the RS_Server feature selection.

Specifies whether the report server requires Secure Sockets Layer (SSL) connections when communicating sensitive data. If you
set this value to false (0), SSL is not used. If you set this value to true (1), the SSL security level is set to 2, which means that most
APIs require SSL. For more information about the APIs that require SSL, see Using Secure Web Service Methods.

Important Deployment fails if SSL is set to true (1) during setup, but an SSL certificate is not installed on the
computer.

RSSAMPLESFILELOC = "path"

Optional. Default is the Reporting Services installation directory.

This property applies to the RS_Samples feature selection.

Specifies the path where the samples are installed.

RSSAMPLESDATABASESERVER =
"servername\instance"

Optional. Default location is the value specified in RSDATABASESERVER. If RSDATABASESERVER is not specified, the default
location is the default instance on the local machine.

This property applies to the RS_AdventureWorks feature selection.

Specifies the SQL Server instance where the sample database is installed, and it must be an instance on the local machine. The
servername portion of the parameter can be a hostname, or an IP address. You cannot install the sample database in a SQL Server
instance other than the one into which the report server is being installed.

RSWEBFARMSERVER = servername\instancename

Optional. No default value.

This property applies to the RS_Server feature selection.

Specifies the computer which is running the report server installation that uses the existing report server database. The
servername portion of the parameter can be a hostname, or an IP address. The RSWEBFARMSERVER does not have a default
value if not explicitly specified. A valid database must be given in RSDATABASENAME and exist on the server given in
RSDATABASESERVER. If the edition of Reporting Services being installed does not support web farms, Setup returns an error.

RSWEBFARMACCOUNT = "domain\username"

Optional. Default account is the context of the user running Setup.

Specifies the Windows account that has permission to administer computer that was specified in the RSWEBFARMSERVER
property.

RSWEBFARMPASSWORD = "password"

Optional. Default value is null.

This property applies to the RS_Server feature selection.

Specifies the password for the username specified in the RSWEBFARMACCOUNT property.

ADDLOCAL = "feature_selection"

Specifies the features to be installed either for a new or existing installation. Features are specified as a comma-delimited list.
When you install particular features, you must also specify certain properties for the installation to be successful. The following
table lists each feature and any properties that are required.

The following table lists the properties available for each component. The feature selection column is the feature_selection
parameter used with the ADDLOCAL or REMOVE properties when adding or removing components using the command prompt.

Component Feature selection value Available properties
Report Server Web
service and
Windows service

RS_Server RSACCOUNT,
RSPASSWORD,
RSAUTOSTART,
RSVIRTUALDIRECTORYSERVER,
RSDATABASESERVER,
RSDATABASENAME,
RSDATABASEFILELOCATION,
RSDATABASELOGFILELOCATION,
RSSETUPACCOUNT,
RSSETUPPASSWORD,
RSSQLACCOUNT,
RSSQLPASSWORD,
RSEMAILSMPTSERVER,
RSEMAILFROM,
RSDATABASESECURITYMODE,
RSUSESSL,
RSWEBFARMSERVER,
RSWEBFARMACCOUNT,
RSWEBFARMPASSWORD

Report Manager RS_Manager RSVIRTUALDIRECTORYMANAGER,
RSREDIRECTTOMANAGER

Report Designer RS_Designer None
Administration
tools

RS_Admin_Tools None

Product
documentation

RS_BooksOnline_<language> None

Sample reports,
sample applications

RS_Samples RSSAMPLESFILELOC

AdventureWorks
OLTP database

RS_AdventureWorks RSSAMPLESDATABASESERVER

Important When a prerequisite is missing, the associated component cannot be installed. If the affected component
is specified on the command line in the ADDLOCAL property, setup terminates with an error.

Note Be sure to specify RSDATABASELOGFILELOCATION and RSDATABASEFILELOCATION in the same setup
operation. If you specify RSDATABASELOGFILELOCATION by itself, a setup error will occur.

Note When running an unattended setup on a Windows 2000 server, specifying a domain user account for the
RSACCOUNT requires that you specify a SQL Server login for RSSQLACCOUNT. Otherwise, you will get an activation
error at the end of setup.

REMOVE = "feature_selection"

Specifies the features to be removed. The feature-selection list can contain installed features, where the features are the same as
those for ADDLOCAL. The feature-selection list should be comma-delimited. The list of feature_selection values is shown in the
ADDLOCAL property.

Specifying Setup Command Prompt Properties with an .ini File

Optionally, you can specify setup command prompt properties using an .ini file. On the setup command line, use the /settings
ini_file argument to specify the .ini file. The first line in the .ini file must contain the string [Options]. An outline of an .ini file,
Template.ini, is included with the product. It is not installed when Reporting Services is installed. However, you can find it on the
product CD-ROM or the location of where you installed Reporting Services from, and copy it to your local machine for
modification. The Template.ini file on the SQL Server 2000 Reporting Services installation CD-ROM provides detailed instructions
for creating an .ini file and contains a template with parameters that you can fill in. Find the parameters that are not commented,
and then provide the appropriate value for each parameter. The following example illustrates the format of the .ini file and shows
the use of some of the Reporting Services arguments:

[Options]
USERNAME=MyName
COMPANYNAME=MyCompany
INSTALLDIR="C:\Program Files\Microsoft SQL Server\"
RSAUTOSTART=1
RSVIRTUALDIRECTORYSERVER=ReportServer
RSEMAILFROM="myEmail@hotmail.com"
...

See Also

Installing Reporting Services

Reporting Services - Installing Reporting Services

Performing an Unattended Installation of Reporting Services
Performing an unattended installation can only be done from the command prompt. To perform an unattended installation of
Reporting Services, run setup.exe from the command line, and specify the /qn argument to suppress the graphical user interface.
The /qn provides for a silent installation, displaying no user interface dialog boxes. For more information on running setup from
the command line, see Installing Reporting Services from the Command Line.

When installing the components, there are groups of properties for each component that must be specified and have values in
order for the installation to succeed. This is true whether the installation is a new installation, or whether the component is being
added later.

For a list of the available properties for each component, see the ADDLOCAL parameter in Installing Reporting Services from the
Command Line.

See Also

Installing Reporting Services

Reporting Services - Installing Reporting Services

Verifying an Installation of Reporting Services
You can verify that the installation was successful by performing a few simple tests.

To verify that the report server is installed and running

Perform one of the following tests:

Open the Services window and verify that the ReportServer service is running.

To view the ReportServer service, open Services: Click Start, point to Control Panel, double-click Administrative Tools,
and then double-click Services. When the list of services appears, scroll to ReportServer. The status should be Started.

Open a browser and type the virtual directory of the report server in the address bar. The address consists of the server
name and the virtual directory name that you specified for the report server during Setup. By default, the report server
virtual directory is named ReportServer. You can use the following URL to verify report server installation:
http://<servername>/ReportServer.

To verify that Report Manager is installed and running

Perform one of the following tests:

Open a browser and type the virtual directory of Report Manager in the address bar. The address consists of the server
name and the virtual directory name that you specified for the Report Manager during Setup. By default, the Report
Manager virtual directory is Reports. You can use the following URL to verify Report Manager installation:
http://<servername>/Reports.
Select the Report Manager shortcut from the SQL Server program group of the Start menu.
Create a new folder or upload a file to test whether definitions are passed back to the report server database. If these
operations are successful, the connection is functional.

To verify that Report Designer is installed and running

Perform one of the following tests:

Open Visual Studio, and open an existing project. Select one of the installed samples.
Open Visual Studio and create a new report project using the Report Project Wizard. For more information on using the
Report Project Wizard, see How to create a report project (Report Project Wizard).
Run a script file (.rss) in the script environment to test Web service operations on the specified report server. For more
information on running a sample script, see Sample Scripts.

See Also

Installing Reporting Services

Reporting Services - Installing Reporting Services

Changing or Removing Reporting Services Components
As you work with Reporting Services over time, you may want to change which components are installed, or move components
to a different server. This topic provides tips and techniques that you can use to change what components are installed. A new
installation creates a new installation of Reporting Services on the computer.

If the existing components need their configuration changed, such as the connection string that provides authentication between
the report server and report server database, you can use tools instead of reinstalling the components with new properties. For
more information about managing an existing installation, see Administering Reporting Services Components.

Reinstalling or Repairing Reporting Services Features

To reinstall an existing component with new properties, reinstall the component with the new properties you need. If using the
command prompt, when you select a component to be removed, and then select the same component to be installed, Setup will
remove the component first, then reinstall it with the new parameters specified.

The repair of an installation is achieved through a reinstallation of all existing components. When repairing an installation, all
components are repaired. When using the command prompt, use the REINSTALL="all" or REINSTALLMODE={ omus | amus }
property. For more information on the description of the properties and their values, see Installing Reporting Services from the
Command Line.

Adding Reporting Services Features

Run Setup and selecting the option Change Installed Components to modify the components that are installed.
Through Add/Remove Programs in Control Panel and choosing Change Installed Components
Run Setup, and select the components to add on the Feature Selection page
By running the command line setup program and using the ADDLOCAL="feature_selection"

For a list of the available properties for each component, see the ADDLOCAL parameter in Installing Reporting Services from the
Command Line.

Important When a prerequisite is missing, the associated component cannot be installed. If the affected component
is specified on the command line in the ADDLOCAL property, Setup terminates with an error.

Removing Reporting Services features

Run the command line setup program and use the REMOVE="feature_selection" property.
Run Setup and select the server or client components that you want to remove from the Feature Selection page.
Run the command prompt setup program and use the REMOVE="feature_selection" property. The
REMOVE="feature_selection" property specifies features to be removed from an existing installation in a comma-delimited
format. The feature_selection list is shown in the table in "Adding Reporting Services Features."

Removing a Complete Installation of Reporting Services

Use Add or Remove Programs in Control Panel. Select Microsoft SQL Server Reporting Services, and click Remove.
Run Reporting Services Setup.exe at the command prompt with no parameters. On the Change or Remove Instance
screen, select Remove Microsoft SQL Server Reporting Services to remove the entire Reporting Services installation.
Run the command prompt setup.exe /x parameter to uninstall the entire installation.

When an entire installation of Reporting Services is removed, there are additional components that need to be removed after the
uninstall is complete. When Reporting Services is uninstalled, the following items are not removed:

AdventureWorks database, if installed.
SQL Server Agent jobs used to schedule the processing of reports.
Installation and trace log files. Trace logs are located at Microsoft SQL Server\MSSQL\Reporting Services\LogFiles.
Reporting Services. The log files for the installation are located at For more information, see Reporting Services Trace Logs.
ReportServer and ReportServerTempDB databases.

To remove the databases, delete the database manually. The log files must also be deleted manually. For more information about
removing the SQL Server Agent jobs, see "Modifying and Viewing Jobs" in SQL Server 2000 Books Online. For more information
about how to delete a database, see "Deleting a Database" in SQL Server 2000 Books Online.

Moving the Report Server Database to a Different Server

The report server database contains the state for the report server, including the folder structure that forms the report server
namespace, report definitions, report snapshots, subscriptions, schedules, data source connection references, and server
properties.

To move the report server database, copy the database by using the Copy Database Wizard. After the database has been copied,
run rsconfig.exe to change the connection string from the report server to the report server database.

For more information about how to move a database, see "Using the Copy Database Wizard" in SQL Server 2000 Books Online.

For more information about changing the report server connection information, see rsconfig Utility.

Modifying Connections Between the Report Server and Report Server Database

To use a different instance of SQL Server than the one selecting during installation, use the RSConfig utility to modify the
parameters stored in the configuration file that control which database the report server connects to. This changes the connection
string. You then need to activate the report server and if you have a key, apply the key. For more information about the RSConfig
utility, see Configuring a Report Server Connection. For more information about activating the report server, see rsactivate Utility.

See Also

Installing Reporting Services

Reporting Services - Installing Reporting Services

Reporting Services Installation Directories and Registry
Settings
Reporting Services installs many new files and registry keys. This topic contains the information regarding the directories where
Reporting Services components are stored, and the registry keys created or updated by the installation.

Reporting Services is installed in the folder Reporting Services, created under the default location of SQL Server on the local
machine, which is C:\Program Files\Microsoft SQL Server\MSSQL\. The Reporting Services folder is created if it does not already
exist. This folder becomes the base installation directory for the Reporting Services components.

The installation directories can be overridden during Setup, in either the Feature Selection dialog, using Browse, or in the
command prompt, by specifying a property on the INSTALLDIR property.

Server Components

Directory Description
MSSQL\Reporting Services\ReportServer Report server-related files
MSSQL\Reporting
Services\ReportServer\Bin

Executables and assemblies

MSSQL\Reporting
Services\ReportManager

Files related to Report Manager

MSSQL\Reporting
Services\ReportManager\Bin

Executables and assemblies

MSSQL\Reporting
Services\ReportManager\Images

Image files required by Report Manager

MSSQL\Reporting
Services\ReportManager\js

Javascript files required by Report
Manager

MSSQL\Reporting
Services\ReportManager\Styles

Cascading style sheet for Report Manager

MSSQL\Reporting
Services\ReportManager\Webctrl_client

Files required by Microsoft Internet
Explorer Web Controls

MSSQL\Reporting
Services\ReportManager\Pages

Web pages required for presentation to
the user

Client Components

The following table describes the folder structure for Reporting Services client component files.

Directory Description
C:\Program Files\Microsoft SQL
Server\80\Tools\Report Designer

Report Designer files

Miscellaneous Administrative Utilities

The following table describes the folder structure for miscellaneous administrative utilities.

Directory Description
<drive>:\Program Files\Microsoft SQL
Server\80\Tools\Binn

The RS scripting utility.

<drive>:\Program Files\Microsoft SQL
Server\80\Tools\Binn

The RSKeyMgmt encryption key
management utility.

<drive>:\Program Files\Microsoft SQL
Server\80\Tools\Binn

The RSActivate used to activate a report
server instance.

<drive>:\Program Files\Microsoft SQL
Server\80\Tools\Binn

The RSConfig modifies database
connection configuration information, and
is also used to set encrypted account
information used for unattended report
processing.

Log File Folders

The following table describes the folder structure for the log files created by Setup. Additional log files are created by the report
server to record information about server operations and status. For more information on these log files, see Checking Reporting
Services Log Files.

Directory Description
C:\Program Files\Microsoft SQL
Server\80\RS Setup
Bootstrap\Log\RSSTP_.CAB.

A .cab folder containing information
required to diagnose setup errors. This
folder is generated if Setup fails.

RSSTP<integer>.log Bootstrapper log file for Setup, located in
the .cab folder.

RSMSI<integer>.CAB Windows Installer log file, located in the
.cab folder.

Note Write and delete permissions for the Web service account, the Windows NT service account, and the account
used by ASP.NET are added to the Log folder by Setup. Any existing permission on this folder are not removed.

Documentation

The following table describes the folder structure for Reporting Services documentation default installation.

Directory Description
C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Help\<language-specific folder>

Reporting Services documentation.

C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportServer\<language-specific
folder>

Language-specific HTML Viewer F1 Help
documentation.

MSSQL\Reporting
Services\ReportManager\<language dir
name>\Help

Language-specific Report Manager F1
Help files.

C:\Program Files\Microsoft SQL
Server\80\RS Setup
Bootstrap\Help\<language code>

Language-specific Help for installing
Reporting Services.

Samples

The following table describes the folder structure for where the samples are installed.

Directory Description
C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Samples\Applications

Sample applications for Reporting
Services using the .NET Framework.

C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Samples\Databases

AdventureWorks OLTP database for use
with the sample reports.

C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Samples\Extensions

Sample extensions for Reporting Services
using the .NET Framework.

C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Samples\Reports

Report samples highlighting report server
features.

C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\Samples\Scripts

Scripts for Reporting Services using Visual
Basic .NET.

Registry Settings

Setup writes the version of the Reporting Services product to a registry hive. The hive location is

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\Reporting Services. The key is generated when report
server or Report Manager is installed. The following table describes the version key information.

Key name Type Description
Version SZ Contains what version of

Reporting Services is
installed. It is the version
number of the installation of
Reporting Services installed
on the computer, regardless
of product version.

Setup also creates a registry hive to contain information about the settings assigned to Reporting Services. The hive is located at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\80\Reporting Services. The following table describes the
setting information stored in the keys in the hive.

Key name Type Description
RSConfigFilePath SZ Created when report server

is installed, this key contains
the path to the configuration
file for report server.

WAConfigFilePath SZ Created when Report
Manager is installed, this
key contains the path to the
configuration file for Report
Manager.

RSVirtualDir SZ Created when report server
is installed, this key contains
the name of the virtual
directory for the report
server.

WAVirtualDir SZ Created when Report
Manager is installed, this
key contains the name of
the virtual directory for the
Report Manager.

See Also

Installing Reporting Services

Reporting Services - Installing Reporting Services

Log Files Used During Installation
Reporting Services Setup creates two logs files during installation: one for the bootstrapper and one for the Setup .msi. files.
When Setup fails, a Watson error reporting .cab file is generated, and it contains the two log files.

The CAB file is located at C:\Program Files\Microsoft SQL Server\80\RS Setup Bootstrap\Log\RSSTP_.CAB. The .CAB file contains
both the bootstrapper log file, and the Windows installer log file.

Bootstrapper Log File

The bootstrapper log file is called RSSTP<integer>.log, where <integer> is increased by one until the file name is unique. The
newest log file has the highest number. The log file is not localized. The following table describes the minimal entries contained in
the bootstrapper log file.

Log element name Output Description
Startup message Microsoft SQL Server

Reporting Services Setup
beginning at DayOfWeek
Month Day Time Year

Provides the time and date
Setup was executed. Time is
given in 24-hour notation.

Function start <Func Name='function
name'>

The name of each function
when it is entered.

Function end <EndFunc Name='function
name' Return='Int return
code' GetLastError='Int
return error code'>

The name of each function
when it exits and a status
code.

Prerequisite <Prerequisite Name=
Prerequisite name'
Return='FOUND' |
'MISSING'>

The name of the
prerequisite and whether it
was found or missing.

Functions executed by the bootstrapper can write additional information to the log file as needed to provide status on actions that
are being taken.

Windows Installer Log File

The Windows Installer log file records all actions taken by the Setup MSI. The log file is written in the standard Windows Installer
logging format.

The Setup MSI log file is called RSMSI<integer>.log, where <integer> is increased by one until a unique filename is achieved.

Watson Error Support

Reporting Services Setup is integrated with Watson error reporting. If Setup fails, Reporting Services uses the Watson error
libraries to generate a .cab file containing information that is required to diagnose the error. The following information is included
in the .cab file:

Bootstrapper log file
Windows Installer log file
Any log file generated by the installation of an external component for which a merge module was not provided
A readme file generated dynamically, in HTML format, containing a summary of the files that are included. For each file, the
readme specifies the original location, the name of the product that created the file, and a link to the file itself
Event viewer entries that are related to Setup
Output of version and prerequisite checking performed by the bootstrapper

The .cab file is named RSSTP_.CAB, and is written to the C:\Program Files\Microsoft SQL Server\80\RS Setup Bootstrap\Log
directory.

If Setup fails, the Watson Error dialog box appears, and you can submit the error to Microsoft over the Internet.

Additional log files are created by the report server to record information about server operations and status. For more
information on these log files, see Checking Reporting Services Log Files.

See Also

Installing Reporting Services

Changing or Removing Reporting Services Components

Troubleshooting an Installation of Reporting Services

Reporting Services - Installing Reporting Services

Troubleshooting an Installation of Reporting Services
This topic lists errors you might encounter while running Setup and describes how to resolve them.

Note If the information in this topic does not resolve your problem, please check the language-specific Readme files
located at C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services.

Some complex errors have additional content requirements. The following errors and problems are documented in separate
topics. Click on the following links to view the topics. All other errors are documented in the "Miscellaneous Setup Problems"
section in this topic.

Troubleshooting Activation Errors

Troubleshooting a Side-by-Side Installation of Reporting Services and Windows SharePoint Services

Troubleshooting Service Credential Errors

Miscellaneous Setup Problems

Reboot required if setup fails

You may be required to restart your computer if Setup fails. Specifically, if certain prerequisites are missing, Setup will not
continue. In some cases, a reboot is necessary to fully clear the setup process from your system.

SQLSpars.rll file is missing

An error message about a missing sqlspars.rll file may occur when installing Reporting Services on a computer that is running a
Spanish or Portuguese version of the operating system. You can work around this error by performing the following steps:

1. Create a local folder named C:\MSRS and copy the installation files to the folder. You can use folder names that are different
from the ones suggested in these steps as long as the folder names are short and do not include spaces.

2. Create a folder named C:\RSInstallTemp.
3. Open a command prompt window and run the following command:

msiexec /i C:\MSRS\Setup\bootmsi.dat /lfarmviewcup C:\mylog.log
INSTALLDIR=c:\RSInstallTemp

4. Ignore all errors.
5. After the command completes, run setup.exe.

Report Server Evaluation Edition Stops Working

Reporting Services Evaluation Edition stops working 120 days after the date of installation. When the evaluation period expires,
the report server ceases to run or fails on start-up.

Error Installing Performance M onitor Objects

Reporting Services Setup may encounter performance counters that were not removed during the uninstall of a previous
instance.

In such a case, the following error message is displayed:

Installing Performance Monitor Objects

Error 183

You can safely ignore the error and continue Setup.

SQL Setup failed to connect to the database service for server configuration

This error can occur when you install a report server on a computer that is configured to use Terminal Services, and you have
selected a remote SQL Server instance to host the report server database. To work around this error, turn off Terminal Services
while running Setup.

Setup error 25619

Setup uses IWAM_computername account to configure IIS. Disabling the account results in Setup error code 25619. This error
will also occur if you are installing a report server on Windows XP and Distributed Transaction Coordinator service is not running.
To work around this error, enable the account or start the service, and then rerun Setup.

N etwork access error for a local account

In some cases, Setup will return an error that a local account does not have network access. This error can occur if you install
Reporting Services on Windows XP or Windows 2000, and the local SQL Server is a named instance. When checking for a local
SQL Server instance, Setup compares the computer name to the instance name. If the names do not match, Setup assumes that
the SQL Server is not local.

ASP.N ET installation or configuration errors

If you receive the error, "ASP.NET version 1.1 is not installed or is incorrectly configured", during Setup, and ASP.NET is already
installed, run aspnet_regiis -i from the %windir%\Microsoft.Net\Framework\v1.1.4322 folder.

See Also

Installing Reporting Services

Troubleshooting Reporting Services

Reporting Services - Installing Reporting Services

Troubleshooting Activation Errors
Activation or initialization errors include the following error messages:

Initialization error 1603
Failure initializing the Web service
The service has not generated a public key

The RPC server is not responding

These errors occur when Setup cannot start the Report Server Web service. When the error occurs during Setup, it is because one
or more of the following conditions exist (more information about each condition is provided further on in this topic):

The ReportServer Windows service was not running during Setup.
Internet Information Services (IIS) configuration for the default Web site includes settings that Setup does not expect.
ASP.NET 1.1.4322 is not registered with IIS.
A remote SQL Server instance used to host the report server database does not run as Local System.
A non-default application pool identity in IIS 6.0 was used for a report server.
ASP.NET is not running as Network Service on Windows Server 2003.
IIS 6.0 is running in Compatibility Mode.

To get details about the error, ping the report server to view any errors returned by IIS. You can also view the setup log file
(rsmsi*.log) for more information. To do this:

1. Open a browser window and type http://localhost/reportserver.

The resulting HTTP message or error code may indicate a permission error, network error, or some other error. In many
cases, you can use the information provided to resolve the problem and complete setup.

2. On the Start menu, click Run, type %temp%, and click OK. Choose the rsmsi_<timestamp>.log file that was created for the
current installation.

Choosing Retry, Cancel, or Ignore

When an initialization error occurs, you can click Retry, Cancel, or Ignore.

Click Retry if you think the issue is related to the ReportServer Windows service not running. First, manually start the
ReportServer Windows service:

In Control Panel, point to Administrative Tools, click Services, and verify Report Server status. If it is not started, right-
click Report Server, and click Start on the General tab.

If retrying does not resolve the issue, click Ignore to troubleshoot your installation later.

The following conditions indicate a Windows service issue:

The error "Failure initializing the Web service: The RPC server is not listening" occurs during the final stages of Setup.
The error "Initializing Report Service, Error Code 1603" appears on the Setup Error page.
The error that you see when you navigate to http://localhost/reportserver is "The report server installation is not activated."

Click Cancel if you want more time to investigate your options for resolving the error. Clicking Cancel rolls back Setup. Consider
canceling Setup if you are installing a report server on a Web server that hosts other middle-tier applications and you want to
avoid disrupting service to those applications. Report server requires that the default Web site be configured to use ASP.NET
1.1.4322. If you have other applications that do not share this requirement, you may want to select a different Web server to host
your report server installation.

Click Ignore if you want to continue Setup and initialize the report server, or troubleshoot ASP.NET or IIS configuration issues
after Setup is complete. Continuing Setup is recommended if the error occurs because the ReportServer Windows service could
not be started during Setup, and clicking Retry did not work.

To initialize the report server, start the ReportServer Windows service, and then run the Rsactivate utility from a command
prompt. By default, the path to the configuration file is c:\Program files\Microsoft SQL Server\MSSQL\Reporting
Services\Reportserver\RSReportServer.config. If you chose a different install location, you must update the path accordingly. Be

sure to restart IIS after you activate the report server. The following syntax initializes a local report server installation:

From a command prompt, run rsactivate -c"<path to rsreportserver.config>"

To register ASP.NET 1.1.4322

1. From a command prompt, run C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_regiis.exe -i
2. Give the accounts <computername>\ASPNET and <computername>\Network Service (for Windows Server 2003 systems

only) read-write permission to two folders:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\Temporary ASP.NET Files

C:\WINDOWS\Temp

3. Re-run Setup.
4. During setup, clear the Use Secure Sockets Layer check box (if you do not have a certificate for your Web server)

Specifying a Remote SQL Server Instance

In this case, the following additional message is appended to the activation error: Unable to connect to the database. In the setup
log files, you may also see an entry that describes a logon failure for user (null).

Specifying a N on-default Application Pool Identity in IIS 6.0

When you install Reporting Services on Windows Server 2003, Setup assumes that the Report Server Web service is running as
Network Service. If you have configured IIS to use a different identity for the default application pool, Setup fails with error 1603
late in the installation process. An error also occurs if you reconfigure the identity after Reporting Services is installed. In this case,
you will get an access denied error ("Access to the path <path>\global.asax is denied.").

The access denied error occurs because the Web service identity is reflected in the credentials used by the Web service to log on
to the SQL Server instance that hosts the report server database. The identity value is stored in the rsreportserver.config file as an
encrypted value. The value is created during setup, and can only be modified later by running the rsconfig utility. To work around
the access denied error, run rsconfig to reset the connection information to the original value, Network Service.

To determine which application pool is used by the report server, open IIS, expand Web Sites, expand Default Web Site, right-
click Report Server, and then click Properties to view the value for application pool (the default value configured during setup is
DefaultAppPool). To determine the identity that is used by the application pool, open IIS, expand Application Pools, right-click a
pool (for example, DefaultAppPool), and then click Properties. Click Identity to view or modify the identity used by the
application pool.

ASP.N ET Is N ot Running as N etwork Service

Setup error 1603 can also occur when ASP.NET is not running as Network Service, and you use Service Credentials as the
credential type for logging on to the SQL Server instance that hosts the report server database. When the error occurs, you can
continue Setup, but the report server will not be in working order when Setup is finished.

To activate the report server and complete the installation, you must reset the identity to Network Service and run several
command line utilities included with Reporting Services. The command line utilities mentioned in the following steps are all
located in C:\Program Files\Microsoft SQL Server\80\Tools\Binn.

1. Configure the application pool used by the report server to use Network Service (note that the Report Server Web service
requires Network Service in this release).

2. Run rskeymgmt with the -d argument to delete all encrypted content. You can type rskeymgmt -? to get help about
specific arguments.

3. Run rsconfig utility to specify report server connection information (you must specify these arguments: -s, -d, -a, -u, -p).
You can type rsconfig -? to get help about specific arguments.

4. Restart both IIS and the ReportServer Windows service.
5. Run rsactivate utility to activate the server (you must specify these arguments: -c, -u, -p). For argument -c, enclose the path

information in quotation marks. You can type rsactivate -? to get more help about specific arguments.

Running IIS 6.0 in Compatibility M ode

This error also occurs when you run IIS 6.0 in IIS 5.0 compatibility mode. In this case, the default account for ASP.NET is
<computername>\ASPNET. To change the ASPNET account to Network Service, you must first clear the check box Run WWW

service in IIS 5.0 isolation mode (located on the Service tab of the Web Sites Properties dialog). Note that IIS 6.0
automatically runs in compatibility mode when you upgrade a Windows 2000 server to Windows Server 2003.

See Also

Troubleshooting an Installation of Reporting Services

Reporting Services - Installing Reporting Services

Troubleshooting a Side-by-Side Installation of Reporting
Services and Windows SharePoint Services
To enable a side-by-side installation of Reporting Services and Windows SharePoint Services, perform the following steps.

1. While installing Reporting Services, you may experience activation failures. Ignore any activation errors that occur.
2. Add the Reporting Services virtual directories to the Windows SharePoint Services list of exclusions. If you installed

Reporting Services using the default virtual directories, run the following at the command prompt:

STSADM.EXE -o addpath -url http://localhost/ReportServer -type exclusion

and

STSADM.EXE -o addpath -url http://localhost/Reports -type exclusion

3. Add the following under the HttpModules configuration element of the SharePoint Web.config file if it does not already
exist. By default, the SharePoint Web.config file is located at C:\Inetpub\wwwroot.

<HttpModules>
 <add name="Session" type="System.Web.SessionState.SessionStateModule"/>

In addition to adding the session state module, you must also enable session state for the pages element by changing the
enableSessionState attribute from false to true. The entry in the configuration files should look like the following:

<pages enableSessionState="true" enableViewState="true" enableViewStateMac="true"
validateRequest="false" />

4. From the Internet Information Services (IIS) Manager, ensure that the report server is in an application pool that is separate
from the SharePoint server. The report server management user interface, Report Manager, can remain in the same
application pool to which it was originally installed. To assign the report server to a separate application pool, you must first
create a new application pool. After you have created a new application pool, expand Web Sites, expand Default Web Site,
right-click the report server virtual root that you created during setup (the default is ReportServer), and then click
Properties. From the Application pool drop-down list, select the newly created application pool. For more information about
application pools, see your Internet Information Services documentation.

5. Finally, use the rsactivate utility to activate the local instance of Reporting Services. You need to install Administrative Tools
and Utilities as part of Reporting Services setup in order to use the rsactivate utility. By default, rsactivate is located at
C:\Program Files\Microsoft SQL Server\80\Tools\Binn. If you installed your report server to the default location, run the
following at the command prompt:

rsactivate -c "C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\RSReportServer.config"

See Also

Troubleshooting an Installation of Reporting Services

Reporting Services - Installing Reporting Services

Troubleshooting Service Credential Errors
If the service account specified for report server is not authorized to access the network and the SQL Server instance chosen to
host the report server database is on a remote computer, Setup displays the following message:

"The service account provided for Report Server does not have permission to access the network, and therefore, cannot be used
to access a report server database that is hosted on a remote computer.

You can either complete Setup then later use the Configuration Utility to set the database credentials Report Sever needs to
access the remote computer, or you can go back to the service account pages in Setup to provide a different service account or
you can choose a local instance of SQL Server to host the report server database.

Do you want to continue Setup and set the database credentials later?"

If you click Yes Setup continues and installs the report server database on the remote computer.

Note The report server will not function until you change the database credentials by using the rsconfig utility. For
more information, see Configuring a Report Server Connection.

If you click No, Setup stops and does not advance to the next screen. You must either specify a different service account with
credentials to the remote computer, or choose a local SQL Server instance to host the report server database.

For more information about the rsconfig utility, see Configuring a Report Server Connection.

See Also

Installing Reporting Services

Troubleshooting Reporting Services

Reporting Services - Deploying and Administering Reporting Services

Deploying and Administering Reporting Services
This section contains topics for system and database administrators who must support or deploy a report server installation.

Note Deploying and administering a report server and report server database requires knowledge of Web servers,
Microsoft® SQL Server™, and ASP.NET applications.

The following table describes the topics in this section.

Topic Description
Deployment and Administration Tools Describes tools and applications that you

can use to configure and maintain a
Reporting Services installation.

Scripting Deployment and Administrative
Tasks

Provides information about automating
administrative functions through script
files.

Planning for Deployment Compares the deployment configurations,
describes database requirements,
provides checklists, and explains how
Reporting Services can be deployed in a
multilingual environment.

Configuring Reporting Services
Components

Provides information about settings used
to configure a report server, Report
Manger, and Report Designer.

Configuring Server Security Describes Web server and database server
security systems that affect a report server
installation.

Starting and Stopping the Report Server
Service

Explains how to start and stop the Report
Server Windows service, and verify the
status of the Report Server Web service.

Activating a Report Server Instance Describes activation process and steps
when adding a report server to a Web
farm or modifying an existing installation.

Monitoring Performance Describes different approaches for
monitoring report server performance
and provides information about
performance counters.

Checking Reporting Services Log Files Describes the log files used by Reporting
Services components and how to use log
file information.

Administering a Report Server Database Contains overview and administration
information about the report server
database that provides internal storage for
a report server.

Note Server administration topics and content management topics are located in different sections of Books Online.
A separate section contains information for content managers who need to know about report management, role-
based security, report distribution, and report processing. For more information about these areas, see Managing and
Working With Published Reports.

See Also

Reporting Services Component Overview

Installing Reporting Services

Report Server Database

Report Server

Reporting Services - Deploying and Administering Reporting Services

Deployment and Administration Tools
You can use the following tools and technologies to deploy and manage reports, components, and applications.

Report Deployment Tools

To deploy a report, you publish it to a report server. After a report is published, you can use a browser or Report Manager to
make reports available for viewing. You can use the following tools to publish and view reports.

Tool Use
Report Designer Report Designer provides several approaches for publishing report

definitions to a report server. For more information, see Testing
Reports and Deploying Reports to a Production Environment.

Report Manager Report Manager is a Web-based application that you can use to
view reports. You can run Report Manager on a production server
to provide end-user access to reports that you deploy. For more
information, see Viewing Reports with Report Manager.

You can also use Report Manager to upload a Report Definition
Language (.rdl) file to a report server. For more information, see
Uploading Files to a Folder.

Browser You can use a browser connection to view reports that you have
published to a report server. For more information, see Viewing
Reports with a Browser.

Component Deployment Tools

You can use the following tools and applications to deploy and manage components.

Tool Description
Setup You can use Setup to install individual components or a

combination of components. You can also use Setup to install a Web
farm. Setup creates the report server database, establishes default
security, configures Internet Information Services (IIS) for the report
server and Report Manager, and specifies the Microsoft Windows®
accounts that the services run under. For more information, see
Installing Reporting Services.

Enterprise
Manager and
Query Analyzer

You can use Enterprise Manager to back up, restore, and replicate a
report server database, or to define a SQL Server login to use for the
connection between the report server and the report server
database. You can use Query Analyzer to run Transact-SQL
commands against the report server database. For more
information, see Administering a Report Server Database.

Internet
Information
Services

You can use IIS to modify security on the virtual directories used to
access the report server and Report Manager. For more information,
see Configuring Web Host Security for a Report Server.

Report Manager You can use Report Manager to set application security through the
role-based authorization model, specify report execution time-outs,
enable selected features, and set limits that control report
processing. For more information, see Report Manager and
Managing and Working With Published Reports.

rs utility You can use rs.exe to run scripts on a report server. You can use
scripts to copy content between report server databases, publish
reports, and more. For more information, see Scripting Deployment
and Administrative Tasks and rs Utility.

rsactivate utility You can use rsactivate.exe to activate a report server in a Web farm
or recover from a hardware failure. For more information, see
Activating a Report Server Instance and rsactivate Utility.

rsconfig utility You can use rsconfig.exe to modify the connection string and
credentials that are used to authenticate a report server connection.
For more information, see Configuring a Report Server Connection
and rsconfig Utility.

rskeymgmt
utility

You can use rskeymgmt.exe to back up encryption keys used by the
report server. For more information, see Managing Encryption Keys
and rskeymgmt Utility.

Text editor You can use a text editor to view and modify settings in
configuration files. For more information, see Reporting Services
Configuration Files

Microsoft
Application
Center

Application Center is a Web application deployment and
management tool from Microsoft. Microsoft recommends that you
use Application Center to deploy and manage a report server Web
farm. For more information about Application Center, go to the
Application Center Web site.

Application Deployment Tools

Reporting Services does not include application deployment tools. You must use the tools and technologies available through
your application development environment to deploy custom applications.

If you are building custom extensions, you can read topics in Books Online to find out about deployment requirements. For more
information, see Deploying a Delivery Extension and Deploying a Data Processing Extension.

See Also

Deploying and Administering Reporting Services Components

Report Server Command Line Utilities

Browser Types Supported by Reporting Services

Reporting Services Component Overview

http://go.microsoft.com/fwlink/?linkid=20210

Reporting Services - Deploying and Administering Reporting Services

Scripting Deployment and Administrative Tasks
Using scripts, developers and report server administrators can easily and efficiently perform repetitive tasks on a report server, or
duplicate work from one server to another. You can use scripting with Reporting Services in the following ways:

Automate Repetitive Tasks

Repetitive tasks suitable for scripting include canceling running jobs, publishing reports, and verifying report delivery to specific
recipients.

Duplicate an Environment and Settings on Another Server

Use scripts to copy folders, shared data sources, resources, reports, role assignments, and settings from one server to another.
You can write a script for one report server instance, and then run it on another server to re-create the report server namespace. If
you have multiple report servers in your deployment, you can run the script on each server individually to configure all servers in
the same way. The following list describes the steps for migrating reports from one server to another.

1. Set your script variable to the URL of the source report server.
2. Use GetReportDefinition Method and GetProperties Method to retrieve the report definition and the properties of the

report.
3. Set the URL to point to the destination server.
4. Use CreateReport Method, passing the properties returned from GetProperties and the report definition returned by

GetReportDefinition.

By using a combination of get and create methods, you can perform similar steps to migrate settings, folders, shared data
sources, and resources. For more information about the methods available to you, see ReportingService Class.

Note that scripts run under the Windows credentials of the user running the script unless credentials are explicitly set. For more
information about script samples installed with Books Online, see Sample Scripts. For more information on how to format and
run a script file, see Scripting with the rs Utility and the Web Service.

See Also

Deploying and Administering Reporting Services Components

Report Server Command Line Utilities

Browser Types Supported by Reporting Services

Reporting Services Component Overview

Reporting Services - Deploying and Administering Reporting Services

Planning for Deployment
Deploying a Reporting Services in a production environment requires an assessment of user requirements, the volume of report
activity that you need to support, and an understanding of how the server and reports will be accessed. Once you know the
objectives that your Reporting Services installation must support, you can make decisions about deployment models and the
amount of disk space that you must allocate to the report server database. To simplify the deployment process, this section
provides checklists that describe the sequence of tasks that must be performed in order to complete a deployment. This section
also contains information for users who are planning to deploy Reporting Services in a multilingual environment.

The following table describes the topics in this section.

Topic Description
Standard Deployment Model Describes a deployment model that puts

components on a single server.
Enterprise Deployment Model Describes scale-out strategies for

distributing components across multiple
servers and how to join multiple report
servers into a single Web farm. It also
includes a brief section about configuring
a report server for Internet access.

Report Server Database Requirements Describes the factors that contribute to
database size requirements.

Server Deployment Checklist Provides a list of ordered tasks that you
can follow to deploy components.

Report Deployment Checklist Provides a list of ordered tasks that you
can follow to deploy reports.

Deploying Reporting Services in a Global
Environment

Explains how Reporting Services
components respond to locale and culture
settings.

See Also

Deploying and Administering Reporting Services Components

Deployment and Administration Tools

Reporting Services - Deploying and Administering Reporting Services

Standard Deployment Model
If you are deploying Reporting Services in a corporate workgroup or in a small- to medium-sized business, consider installing and
running the server components in a standard deployment configuration. The standard deployment model describes a
configuration where the Report Server and Report Manager components are installed on a single computer running a Microsoft
Windows® server-based operating system. The report server database requires a SQL Server instance, which may be located on
the local computer or on a remote computer. A standard configuration supports the following server-side components:

Report Server
Report Manager
Report server database (on a local or remote server)

Report server and Report Manager components have a combination of prerequisites that must be satisfied by a single computer.
Report Designer is a client-side component, so it does not need to be installed with the server components. For more information
about component requirements, see Software Requirements for Reporting Services.

The following diagram shows the standard deployment model where the report server database is located on a remote server.

Choosing a Standard Configuration

The standard deployment topology is required if you are running the Standard Edition of Reporting Services. It is also
recommended if you are evaluating the product or developing an application based on the Reporting Services platform. This
deployment model is not intended for organizations that have high-availability or high-volume reporting requirements.

Database Requirements

A primary consideration in choosing where to host the report server database is disk space availability. If you have a remote SQL
Server that has extra capacity, you should use a remote server. Although the footprint of a report server database may be small
initially, disk space requirements can grow significantly at run time depending on how you run reports and the number of users
accessing the report server. For more information, see Report Server Database Requirements.

Important The SQL Server instance hosting the report server database must be in the same domain as the report
server or in a trusted domain with the report server.

See Also

Reporting Services Component Overview

Installing Reporting Services

Reporting Services - Deploying and Administering Reporting Services

Enterprise Deployment Model
This topic describes the deployment model that you can implement to support a large installation. It also includes a brief section
about configuring a report server for Internet access.

Clustering Support in Reporting Services

Reporting Services supports clustering so that you can create a highly available and scalable report server installation. A report
server Web farm consists of multiple report servers that share a single report server database (or a cluster of report server
databases). You must use additional software to configure and manage the cluster. You can cluster report servers, report server
databases, or both.

A report server database can be part of a SQL Server failover cluster. After you install Reporting Services, you can use features in
SQL Server 2000 to create a cluster based on the existing report server database. Whether you use a single database or a
database cluster, the configuration you use is transparent to a report server.

The following diagram shows multiple report servers and report server databases deployed in separate clusters.

Requirements

All report servers must be Enterprise Edition, Developer Edition, or Evaluation Edition. Standard Edition does not support the Web
farm feature.

You must also have third-party software that provides clustering functionality. Microsoft recommends the use of Microsoft
Application Center or third-party software to create and maintain a report server Web farm. You can also use Windows server
features to create a Network Load Balancing (NLB) cluster.

Steps for Deploying a Report Server Web Farm

The following steps are necessary for deploying two or more report servers in a Web farm.

1. Run Setup to install a report server instance and create a report server database. The report server database can be local or
on a remote SQL Server instance.

Important Report server and the SQL Server instance hosting the report server database must be in the same
domain or in a trusted domain.

2. Run Setup again on a second computer to install a second report server. Specify the report server database that you created
in step 1. You can choose any combination of features except the Adventure Works sample database (the database may
already be installed; furthermore, you can only install the sample database on a local SQL Server). For more information, see
Installing a Report Server Web Farm.

3. Repeat step 2 until you have installed all of the report servers that will be part of the Web farm.
4. Install and configure Web farm software that provides clustering and load balancing functionality. Microsoft recommends

the use of Microsoft Application Center or third-party software to create and maintain a report server Web farm. You can
also use Windows server features to create a Network Load Balancing (NLB) cluster.

Deploying a Report Server NLB Cluster

If you know how to implement and maintain NLB clusters, you can deploy a report server Web farm using the functionality
available in a Microsoft Windows server-based operating system.

At the time that this documentation was written, Reporting Services has been tested on an NLB cluster that includes an Active
Directory domain controller, three report servers, a dedicated computer hosting a SQL Server instance for the report server
database, and a large number of client computers running a variety of operating systems. In addition to the main network
connection, the report servers were connected to a hub through secondary network cards. Windows product documentation
recommends the use of a second network card to offload network traffic generated by the NLB nodes.

After you have installed Reporting Services software (steps 1 through 3 noted in the previous topic), choose one of the report
servers as the first NLB node. You can use the default values to configure the node. After the first node is configured, you can join
additional nodes to the cluster.

Deploying a Report Server for Internet Access

Settings in the rswebapplication.config file provide values that are used to direct requests from Report Manager to a report
server. By default, the configuration file includes ReportServerUrl. Report Manager uses this value to find the report server that
contains server state information and stored items. In an intranet deployment model, the Report Manager connects to a report
server using a network name (for example, http://server01/reportserver).

To access a report server on the Internet, you must add a ReportServerExternalURL configuration setting that specifies the fully
qualified domain name of the report server. The external client uses this value to access a report server. In this scenario, the
browser that is hosting Report Manager must send a fully qualified domain name when making requests on behalf of Report
Manager to the report server.

The following example illustrates the syntax for ReportServerExternalURL:

<ReportServerExternalURL>reports.adventure-works.com</ReportServerExternalURL>

See Also

Installing Reporting Services

Reporting Services - Deploying and Administering Reporting Services

Report Server Database Requirements
A report server database provides internal storage to one or more report servers. Disk space requirements can vary widely and
are difficult to predict. Variables include the number of servers and users that are serviced by a single database, and whether you
persist full reports that include data (for example, cached reports or report history).

To understand your disk space requirements, you must monitor the database size over time and during high-use periods. For
more information about which tools and techniques to use, see Monitoring Performance.

All of the items that are described in this topic are allocated space in a report server database. Although each item is discussed
separately, you cannot allocate or control space for individual item categories. For example, you cannot specify maximum limits
for resources, caching, or report history. When estimating database size requirements, you must consider all of these items as a
whole.

Reports, Folders, Shared Data Source Items, and Metadata

Report definitions, folders, shared data source items, and other metadata such as schedules, subscriptions, and properties are
stored in a report server database. The amount of space that is required for storing these items is small in comparison to the
other items discussed in this topic.

Resources

Resources are stored as binary large objects (BLOBs). If you are storing image files and collateral documents with your reports,
the amount of space that you allocate to resources can be small. However, if you are using resources as part of an archiving
strategy (for example, uploading a generated report as a PDF file), your storage requirements for resources could be very large.

Session State Information

Session state information is stored in temporary tables that grow in response to the number of open sessions. Space
requirements vary based on the number of users. One row is created for each new session. Unless you have a very large number
of users, session state data is not a significant consideration in estimating database size requirements.

Cached Reports

Cached reports are stored in temporary tables for a period of time (a cached copy may expire after a number of minutes or at a
scheduled time). A cached report includes query results. It can be far larger than the report definition upon which it is based. If
caching reports is part of your performance plan, you should allocate a sizeable amount of space for these reports.

For parameterized reports, a separate cached report can be created for every combination of parameter values. For example, if a
report has a Region parameter that accepts North, South, East, and West as values, a cached copy for each region may be created.

Report History Snapshots and Report Execution Snapshots

Snapshots, whether they are saved as report history or used only for performance gains, are stored in the report server database
(not in temporary tables). As with cached reports, these items may include a large row set. If you are using report history to
archive reports, you must plan on allocating more space over time to accommodate additional snapshots.

See Also

Reporting Services Component Overview

Installing Reporting Services

Reporting Services - Deploying and Administering Reporting Services

Server Deployment Checklist
This topic describes steps for deploying a report server. These steps identify the decisions you must make and the information
you need to complete server deployment. Following these steps can help you avoid errors that occur when a system is not
properly configured or fully deployed.

Before You Install

Before you run Setup, you must have a Web server, a SQL Server instance, and several accounts that can be used by Report
Server services. The computers you choose must satisfy minimum software and hardware requirements. For more information,
see Hardware Requirements for Reporting Services and Software Requirements for Reporting Services.

1. Decide on a Web server to host the report server. It can be any server that runs Internet Information Services (IIS) 5.0 or
later. If you have one that is already configured for Web applications and it meets the minimum memory requirements, you
can use it. If you choose a Web server that is hosting other server-based Web applications, additional testing and
configuration may be required to ensure that the applications operate correctly with each other on the same server. For
example, if you are running Windows SharePoint Services and Reporting Services on the same Web server, you must
perform additional steps to complete a Reporting Services deployment. For more information, see the readme.

2. Verify that the Web server is configured to use the .NET Framework version 1.1.4322. You can do this by examining the
application configuration properties of the default Web site:

a. In Internet Information Services, right-click Default Web Site and click Properties.
b. Click Home Directory, and then click Configuration.
c. Find .asax in the list of application mappings. The value in the executable path for .asax (and for other ASP.NET file

extensions) should be %Windows%\MicrosoftNET\Framework\v1.1.4322.
3. Decide on a SQL Server instance to host the report server database. You can use a local or remote SQL Server instance. You

should choose an instance that is on a computer that has the storage capacity to accommodate your reports. For more
information about the disk space requirements, see Report Server Database Requirements.

4. Verify that the instance of SQL Server that hosts the report server database is physically secure. A malicious user who gains
access to the report server database with permission to change the content or modify the schema is a serious security risk.
To reduce this threat, ensure that the SQL Server instance hosting the report server database is physically secure from
intruders.

5. Decide which accounts to use for Report Server services. Reporting Services requires three accounts:
a. Report Server Windows service requires an account to log on to the local system. Microsoft recommends that you use

Local System if you are installing on Windows 2000. For more information about this recommendation, see Service
Account.

b. Report Server Web service requires an account to log on to the local system. Because it is an ASP.NET application, it
runs using the ASPNET account. If you are running Windows 2000, you cannot specify a different account to use
during Setup; you must use the account that is defined for ASP.NET. If you are running Windows Server 2003, the
default is Network Service, but you can choose to run the service as Local System.

c. Report Server Web service requires an account to log on to the SQL Server instance that hosts the report server
database. You can specify a domain account, a SQL Server login, or Local System. You can also use the credentials that
the Report Server Web service uses to log on to the system. For more information, see Report Server Database Setup.

6. (Optional.) Find the name of the SMTP server that provides e-mail service to your organization. If you know the name of
your SMTP server and a valid account to use, you can configure a report server to support e-mail report distribution during
Setup. You can also perform these steps after Setup if you do not have an SMTP server immediately available. For more
information, see Configuring a Report Server for E-Mail Delivery.

Run Setup

After you have decided on which servers to use and know which accounts you want to specify for each service, you are ready to
run Setup. You run Setup on the Web server that hosts the Reporting Services server-side components. For more information
about running Setup, see Installing Reporting Services.

After Setup Completes

Perform the following tasks after Setup is finished to complete the deployment:

1. Install Oracle client tools on the report server if your reports use the Microsoft .NET Framework Data Provider for Oracle.

After you install the client tools, you must restart IIS.
2. (Optional.) Create entries for multiple domain name servers that can be used by the Report Scheduling and Delivery

Processor in the event of a denial of service attack on an external server (such as an e-mail server) that is the recipient of
report delivery. This step is not required, but it mitigates a possible security threat by providing a report server with an
alternative way of delivering reports if the primary DNS server is unavailable.

3. Verify that SQL Agent is running on the SQL Server instance that is hosting the report server database. SQL Agent must be
running before users define subscriptions and other scheduled operations.

4. Back up the symmetric key that supports encryption on a report server. For more information, see Managing Encryption
Keys.

5. Ping the Report Server Web service to make sure it is running. In a browser window, type http://localhost/reportserver.
6. If you are using IIS 6.0 to host the report server, verify that the Web server name is a trusted site. Otherwise, certain pages in

Report Manager will not open correctly.
7. Use Report Manager to enable features and server access:

a. In a browser window, type http://localhost/reports. This is the virtual directory for Report Manager.
b. Click Site Settings to open the Site Settings page. You can set options to enable features and set maximum limits. For

more information about the options, click Help.
c. Click Configure site-wide security, and then click New Role Assignment.
d. Type the name of group account for which you want to grant access to the report server. For widespread access, you

can specify Everyone (a built-in IIS account) or Users (a built-in Windows domain account).
e. Select System User, and then click OK.
f. Click Home, click Properties, and then click New Role Assignment.
g. Type the name of the group account you specified in step d.
h. Select Browser, and then click OK.

The last set of steps that you perform in Report Manager result in role assignments that allow report users to access a report
server. A new installation of Reporting Services grants report server access to local administrators only. Local administrator
access is defined through a default role assignment that is created during Setup. Only users who are members of the built-in
Administrators group have automatic access to a report server. To make a report server available to other users, you must create
two role assignments (one for system-level access and one for item-level access).

Consider creating more role assignments if you want to support additional levels of access (for example, report authors who
publish reports to a report server should have Publisher rights to the report server). Role assignments control all access to a
report server, so it is important that you understand how to create and manage role assignments on your system. For more
information, see Using Role-Based Security and Predefined Role Assignments.

See Also

Deploying and Administering Reporting Services Components

URL Access

Report Server HTML Viewer Help

Reporting Services Component Overview

Installing Reporting Services

Report Deployment Checklist

Reporting Services - Deploying and Administering Reporting Services

Report Deployment Checklist
There are two primary deployment scenarios for making reports available for general use. You can use Report Manager, the
viewing tool included with Reporting Services, or you can embed URLs to published reports on an existing corporate portal.

For more information about publishing and deploying reports through Report Designer, see Debugging and Publishing Reports.
For more information about using Report Manager to upload finished reports to a report server, see Uploading Files to a Folder.

Deploying Reports Through Report Manager

The easiest way to make reports available to users is through Report Manager. Report Manager can be configured to support an
end-user mode that provides view-only access to reports on a report server. Administration features that are typically available in
Report Manager can be hidden from users who do not have local administrator account access. To support this mode, you create
role assignments that map specific user or group accounts to the Browser role (or another role that includes view-only tasks).

Deploying Reports on a Corporate Portal

Reports that have been published to a report server are accessible through a URL address. You can place URLs to published
reports on a portal Web page. If you are using a portal server, the portal software must support access to hyperlinked content.
When the user clicks a link to a report URL, the report is processed on the report server and then returned to the client browser.
An HTML viewer provides a report toolbar and supports interactive report features, so you can open a report through its URL
address without having to install a client component or configure the portal in any special way.

For best results, you should open the report in a new browser window. You can edit the report URL to set parameters that select a
specific rendering format or hide the report toolbar. For more information, see URL Access.

Report Deployment Overview

The following sections provide general information that is useful for any deployment.

Deploying Oracle Reports

You can build and deploy reports that use data from an Oracle database. Before you deploy the report, you must install Oracle
client tools on the report server that hosts the report. After you install the client tools, you must restart Internet Information
Services (IIS).

Stage Reports Before Deploying

You can create a separate folder to stage the report. Report authors can publish the report to a staging folder so that you can test
and configure it before making it available for general use. After the report is configured, you can move it to a target folder. For
more information, see How to move an item.

You can omit this step if you are not concerned about users accessing the report before it is fully configured. For more
information about folders, see Creating, Modifying, and Deleting Folders and Securing Folders.

Configure Data Sources

After a report is published to a report server, you can configure its data source to modify connection information and credentials.
If the report supports subscriptions or scheduled report history, or if it runs as a report execution snapshot, you must configure
the data source to use stored credentials or no credentials. For more information about data source properties that you can set,
see Modifying Data Source Properties.

Restrict Access to the Data Source

Because a report server never writes back to an external data source, you do not need to be concerned about data corruption
from a report server user. However, a report server does run queries against external data sources. For this reason, unauthorized
access to sensitive data is a security risk that you must address. To mitigate this threat, do one of the following to ensure that only
authorized users have access to the external data sources used by reports:

Require user authentication to external data sources. You can configure a report to prompt users for credentials before the
data is retrieved for the report.
Create least-privilege login accounts for the database server. For example, if you are using a SQL Server database, you can

create a login named data reader that has only the db_datareader role assigned to it. You can then specify credentials for
data reader in the Data Source properties page of a report.

Set Query Time-outs

You can set a query timeout value on the database server to minimize the possibility of any one query consuming too many
processing resources on the database server. SQL Server instances have a query time-out value by default. You can set this value
in SQL Server. You can also specify a query time-out value for the report that is passed to the SQL Server instance. For more
information, see Setting Time-out Values.

Configure Report Execution Properties

Reports are configured by default to run on demand. This means that the queries that are defined for the report are executed
against the data source each time a user selects a report. If you do not want a report to run on demand, you can set report
execution properties to control when and how the report is run. For more information, see Managing Report Processing.

Configure Report History Properties

You can keep a history of a report by saving snapshots of the report. You can schedule when a snapshot is added to report
history, or you can add a snapshot manually. For more information, see Managing Report History.

Create Subscriptions

As part of report deployment, you can create subscriptions that distribute reports to users through e-mail or to a file share. You
can create subscriptions at any time. You can also allow users to create individual subscriptions. There are several ways to
subscribe to reports. For more information about report distribution strategies, see Distributing Reports Through Subscriptions
and Creating, Modifying, and Deleting Subscriptions.

See Also

Deploying and Administering Reporting Services Components

URL Access

Report Server HTML Viewer Help

Report Manager

Server Deployment Checklist

Reporting Services - Deploying and Administering Reporting Services

Deploying Reporting Services in a Global Environment
Reporting Services includes localized language resources for Setup, Report Designer, Report Manager, HTML Viewer, and all
messages that are returned from a report server. Reporting Services is localized into all languages supported by SQL Server. The
resources for all supported languages are installed during Setup. You do not need to run a separate installation program to add
support for additional languages.

For server-side components such as Report Manager and HTML Viewer, the language resource that is in effect for any given user
is determined at run time. Both the client application (usually a browser) and the operating system of the computer running the
report server play a part in determining which language resource is used. This topic explains how the browser and operating
system locale settings affect language resource selection at run time.

In addition to the localization issues discussed above, this topic also provides information about report language settings, explains
which items are not localized, and describes the effect of time zones and clock settings on a report server and reports.

Language Settings for Reports and Report Designer

In Report Designer, you can set the language on a report to show the formatted values (such as dates, currency, and numbers) of
a specific language. Setting the language on a report is recommended if you deploy the report in a multilingual environment. If
you do not set a language, the client application determines the formats that are used. Different client locales will show different
formatting on the same report, which may be confusing to users who do not understand the effect that language settings have on
a report. For more information, see Localizing Reports.

For Report Designer itself, the language resource that is applied to the report-authoring environment is the same as the language
version used for Visual Studio. For example, if you are running a Japanese version of Visual Studio, the Japanese language
resource for Report Designer is used. If you are running a language version of Visual Studio that is not supported by Reporting
Services, the neutral resource language is used instead. For more information about neutral resources, see "Operating System
Language Settings" later in this topic. For more information about neutral resources in general, see Microsoft Visual Studio .NET
product documentation.

Browser Language Settings

The browser language setting is the primary factor in determining which language resource is used by the report server for that
client connection. For example, a user who accesses a Japanese report server using a French version of Internet Explorer will work
with French versions of Report Manager, HTML Viewer, and the report server folder namespace. In addition, all errors, warnings,
and informational messages will be returned in French.

Note that only the user interface components are affected by client language settings. The reports that you view and manage
retain the language settings that were previously set for the report. In a multilingual environment, these factors may combine in
such a way that multiple languages are displayed to a user within the same browser page. For example, if you use a French client
to access a Japanese report, both French and Japanese characters are displayed to the user in the following ways:

Report Manager and the report toolbar will be in French because the client application is in French.
The report will be in Japanese (as will any report history snapshots of the report, parameter properties, or subscription
properties that are set for the report) because the report language property is set to Japanese.

Operating System Language Settings

The language of the operating system determines the neutral resource that is used if a match cannot be found between a client
application and a Reporting Services language. If a client application connects to a report server in an unsupported language, the
neutral resources are returned to the application.

A few items are always articulated in the language that corresponds to the operating system language setting, regardless of client
application locale. The following table describes these items.

Item Description
Predefined roles Reporting Services installs with several predefined roles

(Browser, Publisher, Content Manager, My Reports, System
Administrator, and System User) that are articulated in the
language resource of the operating system that runs the report
server.

Users folder, and My
Reports folder

These folder names are reserved when the My Reports feature
is enabled. This feature requires a fixed folder structure. Because
the report server manages reserved names, reserved folder
names are articulated in the language resource of the operating
system that runs the report server.

Nonlocalized Items

Reporting Services does not include multilanguage support for log files, the AdventureWorks sample database, sample reports,
and sample applications. These items are available only in English.

Time Zones and Clock Settings

A report server always uses the local time of the computer on which it is installed. You cannot configure it to use a different time
zone. If a client application points to a report server in a different time zone, the report server time zone is used to execute a
scheduled operation. In Report Manager, the time zone is indicated on each scheduling page so that you know exactly when a
scheduled operation will occur.

Changing the Time Zone

If you change the time zone on a computer hosting a report server, you must restart Internet Information Services (IIS) in order
for the time zone change to take effect.

Timestamp values of existing generated reports (for example, report history snapshots) are synchronized to the new time zone
setting. If you generated a report history snapshot at 9:00 A.M., and then reset the time zone ahead one time zone, the timestamp
on the generated snapshot will change from 9:00 A.M. to 10:00 A.M.

Schedules retain existing settings, except that they are mapped to the new time zone. For example, if a schedule runs at 2:00 A.M.
Pacific Standard Time and you change the time zone to East Australia Standard Time, the schedule runs at 2:00 A.M. East Australia
Standard Time.

Property timestamp values (for example, the time at which a folder or linked report item is created) are not synchronized to a new
time zone setting. If you create an item on June 25 at 9:00 A.M., and then reset the time zone or clock, the timestamp remains
June 25 at 9:00 A.M.

Changing the Clock Settings

Changing the computer clock has no effect on existing timestamp values (for example, if you move the clock forward an hour, the
timestamps of report history snapshots do not change). There may be a delay of 10 seconds before the Scheduling and Delivery
Processor uses the new setting. The actual delay may vary if you modified polling interval settings in the configuration files.

See Also

Deploying and Administering Reporting Services Components

Deployment and Administration Tools

Securing Reports for Global Access

Reporting Services - Deploying and Administering Reporting Services

Configuring Reporting Services Components
The following table describes the topics in this section.

Topic Description
Configuring a Report Server Connection Describes how to modify the connection

string that provides authentication
between the report server and the report
server database.

Configuring a Report Server for E-Mail
Delivery

Describes how to configure a report
server to support e-mail report
distribution.

Configuring a Report Server for Tracing Describes how to set tracing levels for
Reporting Services components.

Configuring an Account for Unattended
Report Processing

Describes how to configure a user account
to process reports in unattended mode.

See Also

Configuring Server Security

Reporting Services - Deploying and Administering Reporting Services

Configuring a Report Server Connection
After installation, you may need to modify the user name, password, and authentication mode that the report server uses to
connect to the report server database. These values are encrypted. Reporting Services includes rsconfig utility that you can use to
modify encrypted connection information.

Connecting to a Report Server Database

A report server must access the report server database that stores the items and metadata managed by the server. Because the
report server database is a SQL Server database, you can use either Windows Authentication or SQL Server Authentication.

The connection information used to establish the connection is initially defined during setup. However, if you want to modify the
connection information, or if you are moving components to different computers, you can run rsconfig to correct it.

Running rsconfig

The rsconfig utility is a console application that you run from a command line. You can run this tool on a local or remote
computer to modify the connection information used by a report server instance.

When you run the utility, you specify parameters to set connection information. These parameters change the values of the
connection information stored in the configuration file on the local or remote computer. You can modify the user name,
password, and authentication mode used by the report server to connect to the report server database. The tool manages
connection information for a single instance of the report server.

For more information about syntax and errors, see rsconfig Utility and Error Reporting for rsconfig Utility.

See Also

Deploying and Administering Reporting Services

Configuring Reporting Services Components

Reporting Services - Deploying and Administering Reporting Services

Configuring a Report Server for E-Mail Delivery
Reporting Services includes an e-mail delivery extension so that you can distribute reports through an existing e-mail server.
Before it can be used, you must configure the report server to make e-mail delivery available to your users. Report server e-mail
delivery is implemented on Collaboration Data Objects (CDO), and requires a Simple Mail Transport Protocol (SMTP) server. The
e-mail delivery extension does not provide support for digitally signing or encrypting outgoing mail messages.

To configure a report server to use the SMTP server, you must provide the following:

Item Description
SMTP server address Specifies the UNC name of the server. Include the domain

name if necessary. If you are using a Microsoft Exchange
server, you must specify the name of the SMTP gateway to
that server. If you specify the name of the Exchange server,
you will get an error during subscription processing.

This value is specified in the SMTPServer configuration
setting.

An e-mail address Specifies an e-mail address that appears in the From line of
the message.

This value is specified in the From configuration setting.

You can specify additional settings to modify how e-mail delivery is used in your installation. E-mail delivery settings are stored in
configuration files. Values can be specified during setup, or by editing the rsreportserver configuration file after setup is complete.

Report Server E-Mail is the default delivery extension. The default delivery extension is specified through the
DefaultDeliveryExtension setting in rswebapplication.config. For more information about e-mail delivery of reports, see E-Mail
Delivery in Reporting Services.

RSReportServer Configuration File Settings

The following settings are in the rsreportserver.config configuration file. The descriptions include information from CDO for
Windows 2000 product documentation. For more information, see the CDO documentation on MSDN.

Setting Description Values
SMTPServer Specifies a string value

indicating the address of
the mail server. An
alternative way to specify
the SMTP server is through
an IP address.

An IP address, a DNS
resolvable name such
as 177.177.0.2, or the
name of any computer
hosting the SMTP
service.

This value is required.

SMTPServerPort Specifies an integer value
indicating the port on
which the SMTP service
uses to detect incoming
connections. Port 25 is
typically used to send e-
mail.

SMTPAccountName Contains a string value that
assigns Outlook® Express
account name. You can set
this value if your SMTP
server is configured to use
it in some way; otherwise
you can leave it blank. Use
From to specify an e-mail
account used to send
reports.

SMTPConnectionTimeout Specifies an integer value
indicating the number of
seconds to wait for a valid
socket connection with the
SMTP service before timing
out. The default is 30
seconds, but this value is
ignored if SendUsing is
set to 2.

SMTPServerPickupDirectory Specifies a string value
indicating the pickup
directory for the local
SMTP service.

SMTPUseSSL Specifies a Boolean value
that can be set to use
Secure Sockets Layer (SSL)
when sending an SMTP
message over the network.
This setting can be used
when the SendUsing
element is set to 2.

SendUsing Specifies which method to
use for sending messages.

To send report
subscriptions through e-
mail using a local POP3
server hosted on a
Windows 2003 server, you
must set the value to 1.

Valid integers

1=sends a message
using the local SMTP
service pickup directory.

2=sends the message
using the network
SMTP service.

SMTPAuthenticate Specifies an integer value
that indicates the kind of
authentication to use when
sending messages to an
SMTP service over a TCP/IP
connection.

0=no authentication.

1=basic authentication.
Credentials are passed
in clear text using either
sendusername and
senduserpassword, or
postusername and
postuserpassword
fields.

2= NTML (NT LanMan)
authentication. The
security context of the
current process is used
to authenticate the
service.

From Specifies an e-mail address
from which reports are
sent in the format
abc@host.xyz. The address
appears on the From line
of an outgoing e-mail
message.

This value is required. It
should be a valid e-mail
account, but it does not
have to be.

EmbeddedRenderFormats Specifies the rendering
format used to encapsulate
a report within the body of
an e-mail message. Images
within the report are
subsequently embedded
within the report.

Valid values are
MHTML and HTML4.0.

PrivilegedUserRenderFormats Specifies rendering formats
that a user can select from
for a report subscription
when subscribing is
enabled through the
"Manage all subscriptions"
task

If this value is not set,
all render formats that
are not purposely
excluded are available
to use.

ExcludedRenderFormats Purposely excludes formats
that do not work well with
e-mail delivery.

HTMLOWC

SendEmailToUserAlias This value works with
DefaultHostName.

When
SendEmailToUserAlias is
set to true, users who
define individual
subscriptions are
automatically specified as
recipients of the report. The
To field is hidden. If this
value is false, the To field is
visible. Set this value to
true if you want maximum
control over report
distribution.

true=The e-mail
address of the user
creating the
subscription is used.
This is the default value.

false=Any e-mail
address can be
specified.

DefaultHostName This value works with
SendEmailToUserAlias.

Specifies a string value
indicating the host name to
append to the user alias
when the
SendEmailToUserAlias is
set to true.

The value is a DNS
name or IP address.

PermittedHosts Limits report distribution
by explicitly specifying
which hosts can receive e-
mail delivery. Only e-mail
accounts defined for the
host are valid recipients.
Include the value
DefaultHostName in
PermittedHosts.

Value must be one or
more DNS names or IP
addresses. By default,
this value is not set.

If the value is not set,
there are no restrictions
on who can receive e-
mailed reports.

See Also

Delivery Extensions

Reporting Services - Deploying and Administering Reporting Services

Configuring a Report Server for Tracing
You can specify the level of information that gets recorded to trace logs and which components are traced. All configuration
settings that affect tracing are located in the ReportingServicesService.config file and the Web.config file in the c:\Program
Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer directory.

The settings in this file apply to all trace logs that are created by Reporting Services components. You cannot assign different trace
levels for different component trace logs. For more information about specific settings, see ReportingServicesService
Configuration File.

Setting Tracing Levels

To vary the amount of information that gets generated, modify the DefaultTraceSwitch configuration setting. Tracing levels
range from 0 (none) to verbose mode.

Turning Off Tracing

You can turn off tracing if you do not want the log files to be created. Tracing is either on or off for all trace logs. You cannot turn
off tracing for a specific component. To turn off tracing, set the output level to 0.

See Also

Reporting Services Trace Logs

Reporting Services - Deploying and Administering Reporting Services

Configuring an Account for Unattended Report Processing
You can configure a special account to use for unattended report processing (that is, to support subscriptions, scheduled report
history generation, and scheduled updates to a report execution snapshot). This account is used for special-case reports that do
not use credentials, which is an uncommon scenario for most reports.

The common scenario for reports that support unattended report processing is to use stored credentials that are specified as a
data source property. These credentials are saved as encrypted values in a report server database. The stored credentials can be
Windows credentials or a SQL Server login. The report server retrieves stored credentials when a report process is triggered by a
schedule or event, and then uses the credentials to access the data source that provides data to a report. If all of your reports use
credentials (either stored, prompted, or delegated) to access a data source, you do not need to configure a special account for no-
credential access.

For reports that do not use credentials (as specified through the Credentials are not required option in the Data Source
property page), you must provide account information that the report server can use to connect to the computer hosting the
remote data source.

How to Configure the Account

The account is specified in the rsreportserver.config file. Because the account information is encrypted, you must use the rsconfig
utility to set a user name, password, and domain. Only after you specify this account can you support the Credentials are not
required option for your reports.

To specify the account, use the -e argument of rsconfig. Specifying the -e argument for rsconfig directs the utility to write the
account information to the configuration file. You do not need to specify a path to rsreportserver.config. Follow these steps to
configure the account.

1. Create a domain account that has access only to computers and servers that provide data or services to a report server.
2. Open a command prompt: On the Start menu, click Run, type cmd in the text box, and then click OK.
3. Type the following command to configure the account:

rsconfig -e -m<computername> -s<sqlservername> -u<domain/username> -p<password>

The rsconfig utility supports other arguments in addition to those specified in the command, but those arguments are not used
to configure the account. You can omit -m and -s if you are configuring a local report server instance.

See Also

Configuring Reporting Services Components

Data Sources Properties Page

RSReportServer Configuration File

rsconfig Utility

Specifying Credential and Connection Information

Reporting Services - Deploying and Administering Reporting Services

Reporting Services Configuration Files
Reporting Services stores component information in four configuration files that are copied to the file system during setup.
Configuration files contain a combination of internal-use-only and user-defined values. User-defined values are specified during
installation, through tools, and by manually editing the configuration files.

Modifying Configuration Files

Configuration settings are specified as either XML elements or attributes. If you understand XML and configuration files, you can
use a text or code editor to modify user-definable settings. Some settings must be modified through tools. For example, encrypted
values such as those used to configure a report server connection must be specified through the Setup program or the rsconfig
command line utility.

If you modify a configuration setting manually and the change is valid, the configuration setting is seamlessly incorporated into
the current server session. If the change is not valid (for example, if you inadvertently introduce a syntax error), the report server
logs an error to the Windows application log and the change is ignored. The report server continues to use the last known, valid
configuration setting until the service is restarted. Once the service is restarted, any configuration setting errors will become
apparent. For more information about starting the service, see Starting and Stopping the Report Server Service.

Not all configuration settings can be modified. If you modify a setting that is reserved for internal use, you may disable your
installation. Generally, editing configuration settings is not recommended unless you are trying to solve a specific problem. You
can use the information provided in this section to learn which settings are safe to change. For more information about
configuration files, see the .NET Framework product documentation.

Configuration File Overview

Reporting Services includes a variety of configuration files. There is a Web.config file for each of the two ASP.NET applications
included with Reporting Services. The Web.config files contain settings that are typically found in files of this type. Additional
application-specific configuration settings are stored in component configuration files described in the table below. The following
table describes all of the configuration files that are included with Reporting Services.

File Description
\ReportManager\Web.config Report Manager Web.config file
\ReportServer\Web.config Report Server Web.config file
ReportingServicesService.exe.config Stores configuration settings used by the

Report Server service. For more
information, see ReportingServicesService
Configuration File.

RSMgrPolicy.config,
RSPreviewPolicy.config,
RSSrvPolicy.config

Stores component security policy
information. For more information, see
Using Reporting Services Security Policy
Files.

RSReportDesigner.config Stores configuration settings used by
Report Designer. For more information,
see RSReportDesigner Configuration File.

RSReportServer.config Stores configuration settings used by the
report server engine. For more
information, see RSReportServer
Configuration File.

RSWebApplication.config Stores configuration settings used by
Report Manager. For more information,
see RSWebApplication Configuration File.

See Also

Deploying and Administering Reporting Services Components

Extending Reporting Services

rsconfig Utility

Reporting Services - Deploying and Administering Reporting Services

ReportingServicesService Configuration File
ReportingServicesService Configuration File

ReportingServicesService.exe.config includes settings that configure tracing.

File Location

This file is located in the \Reporting Services\Report Server\Bin folder.

Editing Guidelines

You can modify this file to rename the log file or increase or decrease trace levels. Do not modify any of the other settings. For
more information about trace logs, see Checking Reporting Services Log Files and Configuring a Report Server for Tracing.

Configuration Settings

The following table provides information about specific settings. Settings are presented in the order in which they appear in the
configuration file.

Setting Description Values
DefaultTraceSwitch Specifies the level of

information that is reported
to trace logs. Each level
includes the information
reported by all lower-
numbered levels. Disabling
tracing is not
recommended.

0= Disables tracing
1= Exceptions and restarts
2= Exceptions, restarts, warnings
3= Exceptions, restarts, warnings,
status messages (default)
4= Verbose mode

FileSizeLimitMb Specifies an upper limit on
trace log size. The file is
measured in megabytes.

0 to max integer.

The default is 32.

KeepFilesForDays Specifies the number of
days after which a trace log
file will be deleted.

0 to max integer.

The default is 14.

FileName Specifies the first portion of
the log file name. The value
specified by Prefix
completes the rest of the
name.

ReportServerService_

Prefix Specifies a generated value
that distinguishes one log
instance from another. By
default, timestamp values
are appended to trace log
file names.

Do not modify this setting.

tid, time

TraceListeners Specifies a target for
outputting trace log content.
You can specify multiple
targets using a comma to
separate each one.

DebugWindow (default)

File (default)

StdOut

TraceFileMode Specifies whether trace logs
contain data for a 24-hour
period. You should have
one unique trace log for
each component on each
day. Do not modify this
value.

Unique (default)

Components Specifies the components
for which trace logs are
created. The default value is
all. Other valid values for
this setting include the
names of internal
components. Do not modify
this value.

all

See Also

Reporting Services Configuration Files

Reporting Services - Deploying and Administering Reporting Services

RSReportDesigner Configuration File
RSReportDesigner Configuration File

RSReportDesigner.config stores settings about the rendering and data processing extensions available to Report Designer. Data
processing extension information is stored in the Data element. Rendering extension information is stored in the Render
element. The Designer element enumerates the query builders that are used in Report Designer.

SecureConnectionLevel, InstanceName, SessionCookies, SessionTimeoutMinutes, and ReportCodePermissions are
report server settings. Report Designer uses embedded report server functionality to preview reports. These settings support
report server operations. For more information about report server configuration settings, see RSReportServer Configuration File.

File Location

This file is located in the \SQL Server\80\Tools\Report Designer folder.

Editing Guidelines

Do not modify the settings in this file unless you are deploying or removing a custom extension. The rest of this topic describes
configuration settings for rendering extensions, data processing extensions, and query builders.

Configuration Settings for Rendering Extensions

The Render element enumerates the rendering extensions that are available to Report Designer for preview purposes. The set of
rendering extensions that are used for preview should be identical to those installed with the report server. For more information
about rendering extensions included with Reporting Services, see Rendering Extensions.

Setting Description
Name Specifies the rendering extension. If you are

invoking a rendering extension through code,
use this value to call a specific extension.

Type Specifies the fully qualified class name of the
extension class, plus the library name, comma
separated.

Visible Specifies whether the name appears in any
user interface. This value can be True (default)
or False. If True, it appears in user interfaces.

Configuration Settings for Data Processing Extensions

The Data element enumerates the data processing extensions that are available to Report Designer for the purpose of connecting
to data sources that provide data to reports. The set of data processing extensions used in Report Designer may be identical to
those installed with the report server. If you are adding or removing custom extensions, see Deploying a Data Processing
Extension.

Setting Description
Name Specifies the data processing extension.
Type Specifies the fully qualified class name of the

extension class, plus the library name, comma
separated.

Configuration Settings for Query Builders

The Designer element enumerates the query builders that are available to Report Designer. Query builders provide a user
interface for constructing queries that retrieve data used in reports. Query builders may vary for different data processing
extensions. By default, Reporting Services provides one visual data tool user interface for all data processing extensions that are
included in the product. However, if you are building or using third-party data processing extensions, other query builder
interfaces may apply.

See Also

Reporting Services Configuration Files

Rendering Extensions

Data Processing Extensions

Reporting Services - Deploying and Administering Reporting Services

RSWebApplication Configuration File
RSWebApplication Configuration File

RSWebApplication.config stores configuration settings for Report Manager. It also specifies settings used for report distribution
and the number of open connections per user.

File Location

This file is located in the \Reporting Services\ReportManager folder.

Editing Guidelines

You can edit this file to limit the number of open connections, change the default delivery extension, and change the default
rendering format for each delivery extension. Do not modify the ReportServerURL setting.

Configuration Settings

The following table provides information about specific settings. Settings are presented in the order in which they appear in the
configuration file.

Setting Description Values
ReportServerURL This value is the address of

the report server used by
Report Manager.

"http://<server>/<Report
Server virtual directory>"

DeliveryUI Specifies the delivery
extensions that can be used
with subscriptions.

Report Server Email

Report Server FileShare

DefaultDeliveryExtension Specifies whether a delivery
extension is the default.
Report Server E-Mail is the
default delivery extension.

If more than one extension
contains a value of true, the
first extension is considered
the default extension.

True

False

Configuration Specifies configuration
options for a delivery
extension. You can set a
default rendering format for
each delivery extension.

To specify a default
rendering format, choose
a value from the render
section of the
rsreportserver.config file.

MaxActiveReqForOneUser Specifies the maximum
number of simultaneous
connections that a single user
can open to the report server.
Once the limit is reached,
further connection requests
from the user are denied.

0 to max integer.

0 indicates no limit on
the number of
connections.

The default is 20.

DisplayErrorLink Displays a link to the
Microsoft Help and Support
site. This link appears in error
messages. Users can link to
the site to view updated error
message content.

True (default)

False

See Also

Reporting Services Configuration Files

RSReportServer Configuration File

Reporting Services - Deploying and Administering Reporting Services

RSReportServer Configuration File
RSReportServer Configuration File

RSReportServer.config stores settings that are used for report server connections, multi-instance or Web farm configurations,
session and cache management, services, subscription and delivery, and report execution (rendering, data processing, and event
processing).

File Location

This file is located in the \Reporting Services\ReportServer folder.

Editing Guidelines

You can use the rsconfig utility to modify encrypted connection and user account values. You can use a text editor to modify the
security level, the number of open connections per user, and e-mail delivery settings.

Configuration Settings

The following table provides information about specific settings. Settings are presented in the order in which they appear in the
configuration file.

Setting Description Values
Dsn, ConnectionType,
LogonUser, LogonDomain,
LogonCred

Specifies encrypted values
used by a report server to
connect to a report server
database. For more
information, see Configuring
a Report Server Connection

<encrypted>

InstanceID An identifier for the SQL
Server instance hosting the
report server database.

<SQL Server
instance name>

InstallationID An identifier for the report
server installation.

<GUID>

SecureConnectionLevel Specifies the degree of
security of the Web service
connection. For more
information, see Using
Secure Web Service
Methods.

0 through 3, where
0 is least secure.

InstanceName Specifies the name of a
component instance. Do not
modify this setting.

Microsoft.Reports

ProcessRecycleOptions Specifies whether the
ASP.NET worker process is
recycled when severe errors
occur. Specify 0 to allow
recycling.

0 (default)

1

CleanupCycleMinutes Specifies the number of
minutes after which old
sessions and expired
snapshots are removed
from the report server
databases.

0 to max integer.

The default is 10.

SQLCommandTimeoutSeconds This configuration setting is
not documented in this
release.

0 to max integer.

The default is 60.

MaxActiveReqForOneUser Specifies the maximum
number of simultaneous
connections that a single
user can open to the report
server. Once the limit is
reached, further connection
requests from the user are
denied. For more
information, see Limiting the
Number of Open
Connections.

0 to max integer.

0 indicates no limit
on the number of
connections.

The default is 20.

DatabaseQueryTimeout Specifies the number of
seconds after which a
connection to the report
server database times out.

0 to max integer.

The default is 120.

RunningRequestsScavengerCycle Specifies how often
orphaned and expired
requests are canceled. This
value is specified in seconds.

0 to max integer.

The default is 60.

RunningRequestsDbCycle Specifies how often the
report server evaluates
running jobs to check
whether they have exceeded
report execution time outs,
and to present running job
information in the Manage
Jobs page of Report
Manager. This value is
specified in seconds.

0 to max integer.

The default is 60.

RunningRequestsAge Specifies an interval in
seconds after which the
status of a running job
changes from new to
running. A running job is
stored in the report server
temporary database.

0 to max integer.

The default is 30.

MaxScheduleWait Specifies the number of
seconds the Report Server
service waits for a schedule
to be updated by SQL Server
Agent service when Next
Run Time is requested.

0 to max integer.

The default is 5.

DisplayErrorLink Indicates whether a link to
the Microsoft Help and
Support site is displayed
when errors occur. This link
appears in error messages.
Users can link to the site to
view updated error message
content.

True (default)

False

IsSchedulingService Specifies whether a thread is
dedicated to ensuring that
schedules in the report
server database match those
in the SQL Server Agent
database.

True (default)

False

IsNotificationService Specifies whether the report
server dedicates a thread to
polling the notification table
in the report server database
to determine if there are
pending notifications.

True (default)

False

IsEventService Specifies whether service
processes events in the
event queue.

True (default)

False

PollingInterval Specifies the interval, in
seconds, between polls of
the event table by the report
server.

0 to max integer.

The default is 10.

MemoryLimit Specifies that the Worker
App domain should be
recycled when the worker
process consumes a certain
percentage of the available
memory. When this value is
reached, the part of the
service that polls events and
renders reports is recycled.

0 to max integer.

The default is 60.

RecycleTime Specifies a recycle time for
the Worker App domain,
measured in minutes.

0 to max integer.

The default is 720.

MaxAppDomainUnloadTime Specifies a wait time during
which the Worker App
domain is allowed to unload.
If the unload does not occur
during this time period, the
process is stopped. This
value is specified in minutes.

0 to max integer.

The default is 30.

MaxQueueThreads Specifies the maximum
number of threads
dedicated to polling the
event table in the report
server database.

0 to max integer.

The default is 0.

UrlRoot Used by delivery extensions
to complete the URL for
items stored on the report
server. It is also used by the
rsactivate utility when
activating a report server.
This value is specified during
Setup.

A valid URL

UnattendedExecutionAccount Specifies a user name,
password, and domain used
by the report server to run a
report in unattended mode.
These values are encrypted.
Use the rsconfig utility to
set these values. For more
information, see Configuring
an Account for Unattended
Report Processing.

<encrypted>

PolicyLevel Specifies the security policy
configuration file. For more
information, see Using
Reporting Services Security
Policy Files

Rssrvrpolicy.config

Delivery Specifies default and
(possibly custom) delivery
extensions used to distribute
reports through
subscriptions. For more
information, see Delivery
Extensions.

Render Specifies default and
(possibly custom) rendering
extensions used in report
presentation. For more
information, see Rendering
Extensions.

Data Specifies default and
(possibly custom) data
processing extensions used
to process queries. For more
information, see Data
Processing Extensions.

Security Specifies default and custom
security extensions used to
support authentication. For
more information, see
Implementing a Security
Extension.

EventProcessing Specifies default event
handlers. You cannot create
custom event handlers in
this release.

See Also

Reporting Services Configuration Files

rsconfig Utility

Activating a Report Server

Reporting Services - Deploying and Administering Reporting Services

Configuring Server Security
This section provides information about system security settings that are in effect for a report server. Reporting Services uses
Internet Information Services (IIS) and Windows security to authenticate users to a report server. Each user who requires access to
a report server must have a valid Windows user account or be a member of a Windows group account. You can include accounts
from other domains as long as those domains are trusted. The accounts must have access to the Web server hosting the report
server, and must be subsequently assigned to roles in order to gain access to specific report server operations. For more
information about role-based access, see Using Role-Based Security.

Trusted and single domains are a requirement for passing Windows credentials. Unlimited passing of credentials only occurs if
you enable Kerberos V5 for your servers. If Kerberos is not enabled, credentials can only be passed once before they expire. For
more information about configuring credentials for multiple computer connections, see Best Practices for Authenticating Server
and Data Source Connections.

The following table describes the topics in this section.

Topic Description
Configuring Web Host Security for a
Report Server

Describes the security functionality
provided through IIS and ASP.NET that is
the basis for report server security.

Limiting the Number of Open
Connections

Explains how to mitigate a denial of
service attack by limiting the number of
open connections.

Best Practices for Authenticating Server
and Data Source Connections

Provides recommendations on how to
configure accounts and credentials in a
mixed server environment.

Securing Reports for Global Access Recommends specific strategies for
enabling report access over an Internet
connection.

See Also

Deploying and Administering Reporting Services Components

Managing Data Source Connections

Specifying Credential and Connection Information

Using Role-Based Security

Reporting Services - Deploying and Administering Reporting Services

Configuring Web Host Security for a Report Server
This topic describes the security settings in Internet Information Server (IIS) that you can use to achieve different deployment
objectives with your report server. Web host security is defined during setup for both the report server and Report Manager
virtual directories. After setup is complete, you can use IIS to view properties that define directory security.

Authentication M ethods

IIS authenticates a user connection to a report server and Report Manager. Although IIS supports a number of authentication
options, a default installation of Reporting Services requires that you use Windows authentication or Basic authentication to
access Reporting Services components. The following list describes the authentication approaches that you can use:

Anonymous access is required if you are using forms-based authentication (supported by a custom security extension that
you provide). If you are not using a custom security extension, you should avoid using Anonymous access with a report
server. You will not be able to vary role assignments in a meaningful way. For more information, see Securing Reports for
Global Access and Implementing a Security Extension.
Basic authentication is recommended only for deployments that include Secure Sockets Layer (SSL). Microsoft recommends
that you use a separate report server if your security model includes Basic authentication. A report server will always choose
Windows authentication (NTLM) over Basic authentication, even if the hosting Web server is configured to use both.
Integrated Windows authentication is the default authentication type for the report server and Report Manager virtual
directories. Setup always configures directory security to use this method.
Digest authentication is not a supported authentication option.

Execute Permissions

You can specify levels of program execution for specific virtual directories. Reporting Services requires that Report Manager
support Scripts and Executables. Report server does not require scripts or execution process support.

See Also

Configuring Server Security

Using Secure Web Service Methods

Reporting Services - Deploying and Administering Reporting Services

Limiting the Number of Open Connections
The report server manages the number of outstanding URL and Web service requests. You can set an upper limit on the number
of requests that are open and in process for each user. When the upper limit is reached, all subsequent requests are dropped.
Setting an upper limit is a precautionary step that you can take to mitigate a denial of service attack.

To limit the number of open connections, specify the MaxActiveReqForOneUser configuration setting in the
rsreportserver.config file. By default, this value is set to 20. For more information, see RSReportServer Configuration File.

See Also

Configuring Server Security

Deploying and Administering Reporting Services

Managing Report Processing

Reporting Services - Deploying and Administering Reporting Services

Best Practices for Authenticating Server and Data Source
Connections
Reporting Services uses Windows security to authenticate users. Typically, when connecting from one computer to another,
Windows credentials can be used for one connection (that is, they can be passed once to another computer). If additional
connections are required, you must use another set of credentials, use another authentication service, or develop a strategy that
provides for multiple connections.

Connection Strategies

If connections between users, a report server, and external data sources require two or more computer connections, you must use
one or more of the following strategies to make the connections succeed.

Enable Kerberos so that credentials can be delegated to other computers without limit.
Use SQL Server authentication to connect a report server to a report server database. For reports that retrieve data from a
SQL Server database, configure the data source of the report to use SQL Server authentication to logon to SQL Server.
Use stored credentials or prompted credentials to query external data sources for report data.

See Also

Configuring Server Security

Specifying Credential and Connection Information

Reporting Services - Deploying and Administering Reporting Services

Securing Reports for Global Access
The default security model in Reporting Services is based on Windows authentication. Windows authentication works best if you
are deploying Reporting Services in an intranet scenario. However, if your deployment model requires Internet or extranet access,
you may need to supplement or replace Windows authentication with a custom authentication scheme that gives you more
control over how external users are granted access to the report server.

In this release of Reporting Services, you can supplement or replace the default Windows security extension with a custom
security extension that you create and deploy. The following requirements and recommendations apply to custom security:

Custom security extensions are supported in the Enterprise Edition of Reporting Services. The Standard Edition does not
support custom security.
Custom security should include a Web form that collects the user name and password, which are then processed and
stored. You should use Secure Sockets Layer (SSL) to ensure that this information is transmitted securely.
Custom security requires that you configure the Web server to use Anonymous Access.

Alternatives to Custom Security Extensions

If you want to support external users but do not want to code a custom security extension, you can use Windows authentication
or Microsoft Active Directory. The following guidelines describe how to support this scenario:

Create a low-privileged domain user account with read-only permissions. The account must have access to the computer
hosting the report server.
Create role assignments that map the user account to specific items in the report server folder hierarchy. You can limit
access to read-only operations by choosing the Browser predefined role for the role assignment.
Configure data source connections to use Windows NT Integrated Security if you want to access a data source using the
security context of the user. Alternatively, you can use stored credentials that specify a different account. This approach is
useful if you want to query the external data source using an account that is different from the account that allows access to
the report server. For more information about these options, see Specifying Credential and Connection Information.

See Also

Configuring Web Host Security for a Report Server

Implementing a Security Extension

Deploying Reporting Services in a Global Environment

Configuring Server Security

Configuring Security Through Role Assignments

Reporting Services - Deploying and Administering Reporting Services

Starting and Stopping the Report Server Service
A report server runs as a Windows service and as a Web service. The services work together and support different aspects of
report server functionality. For example, all scheduling and delivery processing is performed by the Windows service, while all
programmatic calls into a report server are supported through the Web service.

You can start and stop Report Server Windows service using the Windows Services tool. You cannot pause and resume the
service. There are no start parameters. While there are no explicit dependencies, SQL Server Agent should also be running if you
support any scheduled operations on your server.

The Report Server Windows service starts automatically when you restart the computer.

To verify whether the Windows service is running, do the following:

1. On the Start menu, point to Programs, point to Administrative Tools, and click Services.
2. Scroll to ReportServer.
3. In the Status column, verify that the report server status is Started.

Service Account Requirements

SQL Server Agent service must run under a domain account account if you configured the report server to connect to SQL Server
using a domain account and Windows authentication (as opposed to a SQL Server login or Service Account). When the report
server runs as a domain user, the report server creates SQL Server Agent jobs that are owned by that domain account. Before SQL
Server Agent can route a task to the Scheduling and Delivery Processor, SQL Server Agent must have permission to access job
information for jobs owned by a domain account. If SQL Server Agent happens to run as a local user account, the service will not
have permission to access domain account information, and report subscription and delivery will subsequently fail.

About the Report Server Web Service

Starting, pausing, resuming, and stopping a service is not generally part of Web service management. ASP.NET starts and stops
the Web service as part of managing the service. In most cases, you do not need to start or stop the Web service yourself. If you
want to restart the Report Server Web service, you must restart Internet Information Services (IIS).

To verify whether the Web service is running, you can ping the service by typing http://localhost/reportserver in a browser
URL address.

See Also

Deploying and Administering Reporting Services Components

Reporting Services - Deploying and Administering Reporting Services

Activating a Report Server
In Reporting Services, an activated server is one that can encrypt and decrypt data in a report server database. Activating a report
server is required when a report server is installed, but is not in operation (that is, the server returns an
"RSReportServerNotActivated" error in response to user and service requests).

A report server requires activation when you use rsconfig utility to add a report server to a Web farm. The rsconfig utility does
not perform all of the deployment steps that a report server requires to be in operation. Activating a report server completes the
deployment by creating a symmetric key used for reversible encryption. Because the Report Server Web service and the Report
Sever Windows service run under two different user accounts, each service stores a copy of the symmetric key in the report
server database.

The symmetric key is created by Report Sever Windows service when it first runs (either during setup or when you activate a
report server manually). During activation, the Windows service pings the Web service, which in turn gets its copy of the
symmetric key from the Windows service. This means that the first time the Web service runs, the Windows service must also be
running.

How to Activate a Report Server

To activate a report server, you can use rsactivate, which is a console application that you run from a command line. When you
run the utility, you specify parameters to select a report server instance to be activated.

Note You can also use the Reporting Services WMI Provider to activate a report server. For more information, see
Using the Reporting Services WMI Provider.

You must be a local administrator to run rsactivate. You can activate either a local or a remote report server. If you are activating
a report server to join it to a Web farm, you must run rsactivate locally on a report server that is already part of a Web farm, and
then specify the -m argument to select the remote report server that you want to activate. Internet Information Services (IIS) must
be configured and running on the computer that has the report server you want to activate.

1. Start the Report Server Windows service if it is not already running. For more information, see Starting and Stopping the
Report Server Service.

2. Open a command prompt: On the Start menu, click Run, type cmd in the text box, and then click OK.
3. At the command prompt, type rsactivate and the parameter values you want to set. The following example illustrates how

to use rsactivate to add a remote report server instance to a Web farm. The -m argument specifies the report server on a
remote computer. The following command must be issued from the computer that is already part of the Web farm. The -u
and -p passwords specify local administrator credentials to the remote computer.

rsactivate -m<remotecomputername> -u<username> -p<password>

4. Restart IIS.

A report server will be activated only if there is a match between the installation identifier and the public key. If the match
succeeds, a symmetric key is created that permits reversible encryption. If the match fails, the report server is disabled, in which
case you may be required to delete any encrypted data. For more information about encryption keys used by a report server, see
Managing Encryption Keys.

In some cases, activating a report server is one step in a series of steps that result in restoring or recovering a report server
installation. For more information, see Administering a Report Server Database.

How to Confirm a Report Server Activation

You can take the following actions to verify that the report server is activated.

Open Report Manager. Report Manager should open successfully. If you see an RSReportServerNotActivated error, the
activation did not succeed.
In the report server database, open the Keys table and confirm that there are two entries for each report server. There
should be one entry for the Report Server Windows service and one for the Web service.

See Also

Deploying and Administering Reporting Services Components

rsactivate Utility

Storing Encrypted Data in a Report Server Database

Reporting Services - Deploying and Administering Reporting Services

Renaming a Report Server Computer
Renaming a computer causes a corresponding name change for the Web server and SQL Server instance (if it is on the same
computer). In some cases, Reporting Services is not functional after a computer name change. If you are running a Windows 2000
server and the ReportServer Windows service runs as Local System, the ReportServer Windows service no longer starts
automatically when you restart the computer. If you are running Windows Server 2003, the service will start, but you cannot
connect to the report server database. To restore service after a computer name change, follow these steps:

Run rsconfig at the command line to update the encrypted connection information in the report server database. Use this
syntax when running rsconfig (your values may be different).

rsconfig -s<NewServerName> -dreportserver -aSQL -uSA -p<SAPassword>

Reset IIS. To do this at the command line, type iisreset.
In the RSWebApplication.config file, modify the ReportServerURL setting to reflect the new server name.
In the RSReportServer.config file, modify the URLRoot setting to reflect the new server name.
Update the URL property of the program item used to access Report Manager from the Start menu. To do this, point to
Start, point to Program Files, point to Microsoft SQL Server, point to Reporting Services, right-click on Report
Manager. On the Web Document page, update the URL to the new server name.
Open Report Manager and update any shared data sources or report-specific data sources that contain references to the old
computer name.

If you are running Windows 2000 server, perform these additional steps:

Manually start the ReportServer Windows service.
Run rsactivate at the command line. Use this syntax when running rsactivate (note that your actual values may be
different if you did not install to the default path).

rsactivate -c"%installdir%\Reporting Services\ReportServer\RSReportServer.config"

Reset IIS. To do this at the command line, type iisreset.

Note For a period of time, the report server and Report Manager may continue to be available under the
previous name if you are using Windows Internet Naming Service (WINS) on your corporate network. WINS
maps an IP address to each computer it services. Once WINS refreshes the IP address for the renamed
computer, the old computer name can no longer be used to access a report server or Report Manager.

See Also

Deploying and Administering Reporting Services Components

Starting and Stopping the Report Server Service

rsactivate Utility

rsconfig Utility

Reporting Services - Deploying and Administering Reporting Services

Monitoring Performance
You can monitor report server performance to evaluate server activity, observe trends, diagnose system bottlenecks, or gather
data to determine whether the current configuration is adequate. Use a combination of technologies and tools to get
comprehensive information about how the system is performing:

Microsoft® Windows® servers can provide information through the Performance tool, Performance Logs and Alerts, and
Task Manager.
SQL Server utilities can provide information about the report server database and temporary databases used for caching
and session management. For more information, see the performance evaluation section in SQL Server Books Online.
Reporting Services includes performance counters and events that can be used to collect information about report
processing and resource consumption. Two performance objects can be used to monitor the status and activity of instances
and components. You can choose Reporting Services to monitor report server performance, or Scheduling and Delivery
Processor to monitor scheduled operations and report delivery.

Note Report Manager uses ASP.NET performance counters. You can use ASP.NET performance counters to
monitor Report Manager performance. Custom performance counters are provided only for report servers and
Scheduling and Delivery Processor.

If you have multiple report server instances on a single machine, you can monitor the instances together or separately. Choosing
which instances to include is part of adding a counter. For more information about using the Performance tool and adding
counters, see the Microsoft Windows product documentation.

The following table describes the topics in this section.

Topic Description
Performance Counters for Report Server Describes the performance counters used

by the report server.
Performance Counters for Scheduling and
Delivery Processor

Describes the performance counters used
by Scheduling and Delivery Processor.

See Also

Deploying and Administering Reporting Services Components

Reporting Services Component Overview

Reporting Services - Deploying and Administering Reporting Services

Performance Counters for Report Server
The Reporting Services performance object includes the following report server counters.

Counter Description
Active Sessions Number of active sessions. This counter provides a count

of all browser sessions.
Cache Hits/Sec Number of requests per second for cached reports.
Cache Misses/Sec Number of requests per second that failed to return a

report from cache. Use this counter to find out whether
the resources used for caching (disk or memory) are
sufficient.

First Session
Requests/Sec

Number of new user sessions that are started from the
report server cache each second.

Memory Cache Hits/Sec Number of times per second that reports were retrieved
from the in-memory cache. In-memory cache is a part of
the cache that stores reports in CPU memory. When in-
memory cache is used, the report server does not query
SQL Server for cached content.

Memory Cache
Misses/Sec

Number of times per second that reports could not be
retrieved from the in-memory cache.

Next Session
Requests/Sec

Number of requests per second for reports that are open
in an existing session.

Report Requests Number of reports that are currently active and being
handled by the report server.

Reports Executed/Sec Number of successful report executions per second. This
counter provides statistics on report volume. Use this
counter with Request/Sec to compare execution to
report requests that can be returned from cache.

Requests/Sec Number of requests per second made to the report
server. This counter tracks all types of requests that are
handled by the report server.

Total Cache Hits Total number of requests for reports from cache since
the service started. This counter is reset whenever
ASP.NET stops the Web service.

Total Cache Misses Total number of times that a report could not be
returned from cache since the service started. This
counter is reset whenever ASP.NET stops the Web
service. Use this counter to determine whether disk
space and memory are sufficient.

Total Memory Cache Hits Total number of cached reports that were returned from
the in-memory cache since the service started. This
counter is reset whenever ASP.NET stops the Web
service. In-memory cache is a part of the cache that
stores reports in CPU memory. When in-memory cache
is used, the report server does not query SQL Server for
cached content.

Total Memory Cache
Misses

Total number of cache misses against the in-memory
cache since the service started. This counter is reset
whenever ASP.NET stops the Web service.

Total Processing Failures Total number of report processing failures that have
occurred since the service started. This counter is reset
whenever ASP.NET stops the Web service. Processing
failures can originate from the report processor or any
extension.

Total Rejected Threads Total number of data processing threads rejected for
asynchronous processing, and subsequently handled as
a synchronous process in the same thread. Each data
source is processed on one thread. If the volume of
threads exceeds capacity, threads will be rejected for
asynchronous processing, and will be processed in a
serial manner.

Total Reports Executed Total number of reports that executed successfully since
the service started. This counter is reset whenever
ASP.NET stops the Web service.

Total Requests Total number of all requests made to the report server
since the service started. This counter is reset whenever
ASP.NET stops the Web service.

See Also

Monitoring Performance

Performance Counters for Scheduling and Delivery Processor

Reporting Services - Deploying and Administering Reporting Services

Performance Counters for Scheduling and Delivery Processor
The Scheduling and Delivery Processor performance object includes a collection of counters used to track report processing that
is initiated through scheduled operations. Scheduled operations can include subscription and delivery, report execution
snapshots, and report history.

This performance object is used to monitor the Report Server Windows service. If you are running a report server in a Web farm,
the counts apply to the current server and not the Web farm as a whole.

Counter Description
Cache Flushes/Sec Number of cache flushes per second.
Cache Hits/Sec Number of requests per second for cached reports.
Cache Misses/Sec Number of requests per second that failed to return a

report from cache.
Delivers/Sec Number of report deliveries per second, from any

delivery extension.
Events/Sec Number of events processed per second. Events that are

monitored include SnapshotUpdated and
TimedSubscription.

Memory Cache Hits/Sec Number of times per second that reports were retrieved
from the in-memory cache.

Memory Cache
Misses/Sec

Number of times per second that reports could not be
retrieved from the in-memory cache.

Report Requests Number of reports that are currently active and being
handled by the report server. Use this counter to
evaluate caching strategy. Requests are made to specific
rendering extensions. There may be significantly more
requests than report executions.

Reports Executed/Sec Number of successful report executions per second.
Snapshot Updates/Sec Number of scheduled updates per second for report

execution snapshots.
Total App Domain
Recycles

Total number of application domain recycles since the
service started.

Total Cache Flushes Total number of report server cache updates since the
service started. This counter is reset when the application
domain recycles.

Total Cache Hits Total number of requests for reports from cache since
the service started. This counter is reset when the
application domain recycles.

Total Cache Misses Total number of times that a report could not be
returned from cache since the service started. This
counter is reset when the application domain recycles.
Use this counter to determine whether you need more
disk space or memory.

Total Deliveries Total number of reports delivered by the Scheduling and
Delivery Processor, for all delivery extensions. This
counter is reset when the App domain is recycled.

Total Events Total number of events since the service started. This
counter is reset when the application domain recycles.

Total Memory Cache Hits Total number of cached reports that were returned from
the in-memory cache since the service started. This
counter is reset when the application domain recycles.

Total Memory Cache
Misses

Total number of cache misses against the in-memory
cache since the service started. This counter is reset
when the application domain recycles.

Total Processing Failures Total number of report processing failures that have
occurred since the service started. This counter is reset
when the application domain recycles. Processing
failures can originate from the report processor or any
extension.

Total Rejected Threads Total number of data processing threads rejected for
asynchronous processing, and subsequently handled as
a synchronous process in the same thread.

Total Report Executions Total number of reports executed.
Total Requests Total number of reports that executed successfully since

the service started. This counter is reset when the
application domain recycles.

Total Snapshot Updates Total number of report execution snapshot updated
since the service started. This counter is reset when the
application domain recycles.

See Also

Monitoring Performance

Performance Counters for Report Server

Reporting Services - Deploying and Administering Reporting Services

Checking Reporting Services Log Files
A report server uses a variety of log files to record information about server operations and status. The following logs contain
report sever information:

The Microsoft Windows Application log contains information about report server events.
Windows Performance logs contain report server performance data. You can create performance logs, and then choose
counters that determine which data to collect. For more information, see Monitoring Performance.
Report Server execution log contains data about specific reports, including when a report was run, who ran it, where it was
delivered, and which rendering format was used.
Reporting Services trace logs contain very detailed information that is useful if you are debugging an application or
investigating an issue or event.
Log files are also created during Setup. If Setup fails or succeeds with warnings or other messages, you can examine the log
files to troubleshoot the problem. For more information, see Log Files Used During Installation.

The following table describes the topics in this section.

Topic Description
Windows Application Log Describes the event sources and types. For

more information about specific events,
see Report Server Events.

Reporting Services Trace Logs Explains how to find, view, and manage
component trace logs.

Report Server Execution Log Provides information about report
processing activity.

Querying and Reporting on Report
Execution Log Data

Explains how to extract data from a report
server execution log so that you can run
queries and reports on log data.

See Also

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Deploying and Administering Reporting Services

Windows Application Log
Reporting Services writes event messages to the Windows application log. The Windows application log collects information
about events that are generated by the applications running on the local system. You can use the Event Viewer to view the log file
and to filter the messages it contains. For more information about event messages, see Report Server Events. For more
information about Windows application log or Event Viewer, see the Windows product documentation.

Reporting Services provides three event sources:

Report Server (Report Server Windows service)
Report Manager
Scheduling and Delivery Processor

Reporting Services does not provide a way to turn off application event logging for a report server or control which events are
logged. The schema that describes report server event logging is fixed. You cannot extend the schema to support custom events.

The following table describes the event types that the report server writes to the application event log.

Event type Description
Information An event that describes a successful operation (for example,

when the report server services starts)
Warning An event that indicates a potential problem (for example, low

disk space).
Error An event that describes a significant problem (for example, the

service did not start).
Success Audit A security event that describes a successful logon.
Failure Audit An event that is logged when a logon attempt fails.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Deploying and Administering Reporting Services

Reporting Services Trace Logs
Trace logs contain highly detailed information about report server operations. Trace logs include redundant information that is
recorded in other log files, plus additional information that is not otherwise available. Trace logs are useful if you are debugging
an application that includes a report server, or investigating a specific problem that was written to the event log or execution log.

Finding Trace Logs

Reporting Services provides three trace log files, which are located at \Microsoft SQL Server\<SQL Server Instance>\Reporting
Services\LogFiles. They are described in the following table.

Log file name Description
ReportServerService_<timestamp>.log Trace log for the Report Server Windows

service and Web service.
ReportServerWebApp_<timestamp>.log Trace log for Report Manager.
ReportServer_<timestamp>.log Trace log for the report server engine.

Viewing Log Information

Trace logs are text files. You can use any text editor to view a log. The following information can be found in a trace log:

System information, including operating system, version, number of processors, and memory.
Reporting Services component and version information.
Events logged the Application log.
Exceptions generated by the report server.
Low resource warnings logged by a report server.
Inbound SOAP envelopes and summarized outbound SOAP envelopes.
HTTP header, stack trace, and debug trace information.

You can review trace logs to determine whether a report delivery occurred, who received the report, and how many delivery
attempts were made. Trace logs also record report execution activity and the environment variables that are in effect during
report processing. Errors and exceptions are also entered into trace logs. For example, you may find report timeout errors
(indicated as a ThreadAbortExceptions entry).

M anaging Log File Content

Trace logs are created daily, starting with the first entry that occurs after midnight (local time). The local time of the computer is
used for naming the trace log. By default, trace logs are deleted after fourteen days. You can determine how long the files are kept
by setting the KeepFilesForDays configuration setting. For more information about configuration settings that affect tracing, see
ReportingServicesService Configuration File. Tracing configuration settings can also be found in the \ReportManager\Web.config
and \ReportServer\Web.config files.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

Troubleshooting Reporting Services

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Deploying and Administering Reporting Services

Report Server Execution Log
The report server execution log contains information about the reports that execute on the server or on multiple servers in a
single Web farm. You can use the report execution log to find out how often a report is requested, what formats are used the
most, and what percentage of processing time is spent on each processing phase.

The following list describes the data that is captured in the report execution log:

Name of the report server instance that handled the request.
Report identifier.
User identifier.
Request type (either user or system).
Rendering format.
Parameter values used for a report execution.
Start and stop times that indicate the duration of a report process.
Percentage of time spent retrieving the data, processing the report, and rendering the report.
Source of the report execution (1=Live, 2=Cache, 3=Snapshot, 4=History).
Status (either rsSuccess or an error code; if multiple errors occur, only the first error is recorded).
Size of rendered reports in bytes.
Number of rows returned from queries.

Viewing Log Information

The report server logs data about report execution into an internal database table. This table does not provide complete
information by itself, nor does it present data in a format that is understandable to users.

To view report execution data, you must run a DTS package that Reporting Services provides to extract the data from the
execution log and put it into a table structure that you can query. For more information, see Querying and Reporting on Report
Execution Log Data.

M anaging Log File Content

You can turn report execution logging on or off by selecting options in Report Manager on the Site Settings page. On this page,
you can also specify how long you want to keep log entries. By default, this value is 60 days. Entries that exceed this date are
removed at 2:00 A.M. every day.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Deploying and Administering Reporting Services

Querying and Reporting on Report Execution Log Data
To view report server log information, you must run a DTS package that Reporting Services provides to extract the data from the
execution log and put it into a table structure that you can query. The internal table in the report server database does not present
the data in a format that is accessible to users. The DTS package resolves this problem by collecting all of the data you need and
putting it into a table structure that you can understand.

Setting Up

Before you start, you must create a database. Other files that you need are located in the \80\Tools\Reporting
Services\ExecutionLog folder. These files include cleanup.sql, createtables.sql, rsexecutionlog_update.dts, and
rsexecutionlog_update.ini. If the files are located in a different path, you must perform step 2 in the next section, "Extracting
Execution Log Data".

If you use non-default values, you must also edit an .ini file. You only need to perform these steps once.

1. In Enterprise Manager, create a new database that the DTS package can use as the destination data source. Use the name
RSExecutionLog if you want to use the default name. Note that you must use this name if you want to run the DTS
package from within DTS Designer.

2. In Query Analyzer, open createtables.sql and then click Execute on the Query menu to add tables to the database. Be sure
to select the database you created in step 2 before you run the script.

3. Using Notepad, edit rsexecutionlog_update.ini to specify the report server database (target) and the execution log
database (destination). If you are using default database names (reportserver and RSExecutionLog, respectively), you do not
need to modify this file.

Extracting Execution Log Data

Follow these steps to extract execution log data.

1. In Enterprise Manager, right-click Data Transformation Packages, click Open Package, navigate to the folder that
contains the files, and RSExecutionLog_Update, and then click OK.

2. (Optional.). If the path to the files is different from the default path, edit the DTS package global variable sConfigINI.

On the Package menu, click Properties.
Click Global Variables.
In sConfigINI, type the full path and file name of the .ini file (for example, "c:\logfolder\rsexecutionlog_update.ini"),
and then click OK.

3. On the Package menu, click Execute to run the DTS package.

Viewing Execution Log Data

Reporting Services includes several reports that you can use to view execution log data. The report definition and project files are
located in the \Extras\Execution Log Sample Reports folder on the product CD-ROM. To publish these reports to a report server,
do the following:

1. Navigate to the \Extras\Execution Log Sample Reports folder on the product CD-ROM, and then double-click
executionlog.sln to open the solution in Visual Studio.

2. Right-click the ExecutionLog project, and then click Properties.
3. In TargetServerURL, specify the URL to the report server that will host the reports, and then click OK. If you are publishing

to a local report server instance, you can use the default value http://localhost/reportserver.
4. Right-click the ExecutionLog project, and then click Deploy to publish the reports.
5. Open Report Manager. For instructions on how to do this, see Report Manager.
6. Open the ExecutionLog folder. If Report Manager was open before you published, you may need to refresh the browser

window to view the folder.

These reports use a shared data source named RSExecutionLog that defines a connection to the RSExecutionLog database on a
local SQL Server. If you used a remote SQL Server instance or a different database name, you must edit the data source to use the
correct values.

To learn more about building reports, follow a simple tutorial to learn the basic steps. For more information, see Walkthrough -

Creating a Basic Report.

Refreshing Execution Log Data

You can run the DTS package periodically to get updated information from the execution log. New log entries are appended to the
existing entries. The DTS package does not remove old entries or historical data. Examples of historical data might include users
who no longer run reports on a report server, computer names that are no longer in service, or reports that no longer exist.

If you do not want historical data, you can run cleanup.sql to clear out the execution log database.

The DTS package follows these steps to ensure that entries are not duplicated:

Determine the end date of the last entry added to the execution log database.
Open the execution log tables in the report server database, and then find all entries added after the end date.
Get the new entries, and get related data from other report server database tables.
Copy all the data to the execution log database.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Deploying and Administering Reporting Services

Administering a Report Server Database
Report server database provides internal storage for the report server. The database is created during setup. A temporary
database is also created to store session and caching information. The table structure for both databases is optimized for server
operations and should not be modified or tuned. Microsoft may change the change table structure from one release to the next. If
you modify or extend the database, you may limit or prevent the capability to perform future upgrades or apply service packs.
You may also introduce changes that impair report server operations.

All access to a report server database must be handled through the report server. You can use report server management tools
(such as Report Manager) or programmatic interfaces such as URL access or the Report Server Web service. To gather metrics
about report server performance and activity, see Managing Performance and Querying and Reporting on Report Execution Log
Data.

In Reporting Services, database administration refers to backing up and restoring a report server database, and managing the
encryption keys that are used to encrypt and decrypt sensitive data.

To administer a report server database, you use a combination of tools:

SQL Server tools can be used to backup and restore the database (for example, SQL Server Enterprise Manager).
Report server command line utilities can be used to manage the connection and copy data. You can use Rsconfig utility to
manage the connection. If you want to automate administrative tasks or copy data between report server databases, use the
Rs utility. For more information, see Deployment and Administration Tools.

The following table describes the topics in this section.

Topic Description
Storing Encrypted Data in a Report Server
Database

Provides information about sensitive and
encrypted data stored in a report server
database.

Managing Encryption Keys Explains how to back up and restore
encryption keys, and how to delete
encrypted data that cannot be recovered.

About the Report Server Temporary Database

Each report server database uses a related temporary database to store session data, cached reports, and work tables that are
generated by the report server. The temporary database is bound by the same name as the report server database.

If you delete the temporary database, you must run Setup to create a new version. Reporting Services does not recreate the
database if it is missing, nor does it repair missing or modified tables.

You can back up the temporary database if you want to avoid having to run Setup in the event that the temporary database is
deleted. If you back up the temporary database and subsequently restore it, you should delete the contents. Generally, it is safe to
delete the contents of the temporary database at any time. However, you must restart the report server after you clear the
contents.

See Also

Deploying and Administering Reporting Services

Programmatic Interfaces

Report Server Database

Report Server Database Requirements

Starting and Stopping the Report Server Service

Reporting Services - Deploying and Administering Reporting Services

Storing Encrypted Data in a Report Server Database
Reporting Services stores encrypted values in the report server database and in configuration files. Most of the encrypted values
are credentials that can be used to access a remote computer. This topic describes which values are encrypted, the encryption
functionality used in Reporting Services, and other sources of confidential data that you should know about.

Encrypted Values

The following list describes the values that are stored in a report server database.

Connection information and credentials used by a report server to connect to a report server database.

These values are specified and encrypted during setup, but can be updated later when you use rsconfig utility. These values
are stored in the rsreportserver.config file.

Stored credentials used by a report server to connect to external data sources that provide data to a report.

These values are defined when you configure data source information for a report, and then stored as encrypted values in a
report server database. For more information, see Specifying Credential and Connection Information.

A user account used by the report server to connect to a report server database, used to support unattended report
processing for reports that do not use credentials.

This account is required under certain circumstances and can only be created through rsconfig. This value is stored in the
rsreportserver.config file. You must create this account manually. For more information, see Configuring an Account for
Unattended Report Processing.

The symmetric key used for reversible encryption.

This value is also created during setup, and then stored as an encrypted value in the report server database. There is one
symmetric key created for each report server that uses the database. Because the Report Server Web service and the Report
Sever Windows service run under two different user accounts, the report server database stores two copies of the
symmetric key, one for each service.

Encryption Functionality in Reporting Services

Reporting Services uses cryptography functionality that is available through the Windows operating system. Both symmetric and
asymmetric encryption is used. Encrypted content on the report server is encrypted with a symmetric key. The symmetric key is
itself encrypted with an asymmetric public key that corresponds to the computer and the user account under which the Report
Server Windows service runs.

Other Sources of Confidential Data

A report server stores other data that is not encrypted, yet may contain sensitive information that you want to protect. Specifically,
report history snapshots and report execution snapshots contain query results that may include data that is intended for a small
group of users. If you are using snapshot functionality for reports that contain confidential data, be aware that users who can
open tables in a report server database may be able to view portions of a stored report. Otherwise, the role assignments that
apply to the report determine who can view the report and its report history.

See Also

Administering a Report Server Database

Managing Encryption Keys

Reporting Services Configuration Files

Reporting Services - Deploying and Administering Reporting Services

Managing Encryption Keys
Reporting Services uses encryption keys to secure credentials, connection information, and accounts that are used in server
operations. Encryption keys are created during setup. As soon as you finish installing Reporting Services, you should make a copy
of the symmetric key that supports reversible encryption. If you ever need to repair a Reporting Services installation due to
changes in computer name, instance name, or user account values, you can apply the key to make the report server database
operational. If for some reason the keys cannot be restored, you can recover the database by deleting the encrypted data and
respecifying any values that require encryption.

Copying Encryption Keys to Disk

Reporting Services provides the rskeymgmt utility that you can use to extract a copy of the encryption key from the report server
database. The utility writes the key to a file that you specify, and then scrambles the key using a password that you provide. After
the file is created, you must store it in a secure location and remember the password that is used to unlock the file. Follow these
steps to create a backup of the encryption key.

1. Insert a diskette into the floppy disk drive.
2. Run rskeymgmt.exe locally on the computer that hosts the report server. You must use the -e extract argument to copy the

keys, provide a fully-qualified file name, and specify a password. The following example illustrates the arguments you must
specify:

rskeymgmt -e -fa:\rsdbkey.txt -p<password>

3. Store the diskette in a secure location.

Apply Encryption Keys to a Report Server Database

In some cases, modifications that you make to an existing Reporting Services installation can temporarily disable a report server
database. The error message "rsReportServerDisabled" occurs when this condition is present. The following changes can produce
this error:

Modifying the user account that is used to run the Report Server Web service.
Modifying the SQL Server instance name (a report server instance is based on a SQL Server instance name).
Modifying the computer name of an installation (for example, when a hardware failure or upgrade occurs, and you reinstall
or apply a disk image to a new computer). Even if the new computer uses the same name as the old computer, the
installation ID in RSReportServer.config will not be valid for the new computer.

To repair a Reporting Services installation, it helps if you have a copy of the encryption key on file. You must also know the
password that unlocks the file. If you have the key and the password, you can run rskeymgmt utility to return the report server
database to operation.

Note You can still recover a report server database if you do not have key backup. In this case, you must delete
encrypted data and respecify all encrypted values used in your installation. Deleting encrypted data is discussed later
in this topic.

Follow these steps to apply the encryption key to the report server database:

1. Insert the diskette that contains the backup copy of the encryption key.
2. Run rskeymgmt.exe locally on the computer that hosts the report server. You must use the -a apply argument to copy the

keys, provide a fully-qualified file name, and specify a password. The following example illustrates the arguments you must
specify:

rskeymgmt -a -fa:\rsdbkey.txt -p<password>

3. Restart Internet Information Service (IIS).

Deleting Unusable Encrypted Content

If you cannot enable a report server database, you must delete the encrypted values that are used in your Reporting Services
installation. You can use rskeymgmt utility to remove the values.

Follow these steps to apply the encryption key to the report server database:

1. Run rskeymgmt.exe locally on the computer that hosts the report server. You must use the -d apply argument. The
following example illustrates the argument you must specify:

rskeymgmt -d

2. Restart Internet Information Service (IIS).

After the values are removed, you must re-specify the values as follows:

1. Run rsconfig utility to specify a report server connection. This step replaces the report server connection information. For
more information, see Configuring a Report Server Connection and rsconfig Utility.

2. If you are supporting unattended report execution for reports that do not use credentials, run rsconfig to specify the
account used for this purpose. For more information, see Configuring an Account for Unattended Report Processing.

3. For each report and shared data source that uses stored credentials, you must retype the user name and password. For
more information, see Specifying Credential and Connection Information.

4. Open and resave each subscription. Subscriptions retain residual information about the encrypted credentials deleted
during the rskeymgmt delete operation. You can update the subscription by opening and saving it. You do not need to
modify or recreate it.

For more information about encrypted values and how they are stored, see Storing Encrypted Data in a Report Server Database.

See Also

rskeymgmt Utility

Administering a Report Server Database

Reporting Services - Designing and Creating Reports

Designing and Creating Reports
Microsoft® SQL Server™ 2000 Reporting Services stores report definitions in the report server database. These report definitions
are created using Report Definition Language (RDL), an XML format that describes each element in a report, including the data
model, format, and expressions.

Reporting Services includes Report Designer, a tool for creating and publishing report definitions. Report Designer resides in the
Microsoft Visual Studio® .NET shell and provides access to all report definition features. Developers can also create custom tools
for creating, publishing, and managing reports. For more information, see Reporting Services Programming.

You do not have to know RDL or how Reporting Services stores reports and resources in order to use Report Designer to create
and publish reports.

The following table describes the topics in this section.

Topic Description
Report Design Basics Provides conceptual information about

the elements and properties of a report.
Building Reports Describes how to use Report Designer to

create and publish reports.
Design Considerations for Rendering Discusses special considerations for

specific output formats.

See Also

Using Reporting Services

Reporting Services - Designing and Creating Reports

Report Design Basics
Report design is usually a two-part process that consists of defining data and arranging items on a page. With Microsoft® SQL
Server® Reporting Services, data definition involves specifying a data source and defining a query. You can then use data regions
such as tables, matrixes, lists, and charts to display the data on the report and add other report items to the report layout. All
report items have properties that determine how the items appear on the report. You can also add functionality that allows users
to interact with a rendered report.

The following table describes the topics in this section.

Topic Description
Working with Data Discusses data sources, datasets, and

fields.
Understanding Report Layout and
Rendering

Discusses arrangement of report items,
pagination, and rendering.

Understanding Data Regions Defines the four types of data regions:
table, matrix, list, and chart.

Working with Items in a Report Defines report items that can be used in a
report: text box, image, line, rectangle, and
subreport.

Providing User Interactivity Discusses parameters, links, hiding, and
the document map.

See Also

Designing and Creating Reports

Building Reports

Design Considerations for Rendering

Report Lifecycle Overview

Reporting Services - Designing and Creating Reports

Working with Data
When you write a report, you usually begin with the underlying report data. This includes setting up a connection to a data source,
defining a query, and defining a list of fields that you want to use in the report. Reporting Services uses data sources, datasets,
and fields to define the data behind a report.

Data Sources

A Reporting Services data source contains information about a connection to a database. This includes information such as a
server name, a database name, and user credentials. The information contained within a data source varies depending on the type
of database. Reporting Services supports SQL Server, Analysis Services, Oracle, ODBC, and OLE DB. OLE DB can be used to
connect to a variety of databases. Reporting Services is also extensible; developers can create additional data processing
extensions that data sources can use to connect to other sources of data.

A data source can be contained solely within a single report, or it can be shared by several reports. The definition for a report-
specific data source is stored within the report itself, while the definition for a shared data source is stored in a separate file on the
report server. A report can contain one data source (report-specific or shared) or many.

Datasets

A Reporting Services dataset contains information about the query to be used by a report. A dataset includes a pointer to a data
source, the query, and information about the data, such as collation and case sensitivity. A dataset also includes a list of fields to
be used by the report.

A report can contain multiple datasets. These datasets can be used by different data regions on the report, or they can be used to
provide dynamic lists of parameters. For information about data regions, see Understanding Data Regions.

Fields

Each dataset in a report contains a list of fields. Typically, the fields refer to columns or fields returned by the query in the dataset.
Fields that refer to database fields contain a pointer to the database field and a name property. You can use the name property to
provide a friendly name in place of the name of the database field. In addition to database fields, the fields list can contain
calculated fields. Calculated fields contain a name and an expression. The expression can be as simple as a concatenation of two
database fields (for example, first name and last name), or it can be used to perform complex calculations.

Some query languages are flexible enough so that a query can be written to return friendly field names and perform calculations,
making changes to the fields list unnecessary. The fields list is especially useful when using a database or query language that
does not provide this flexibility.

See Also

Report Design Basics

Defining Report Data

Reporting Services - Designing and Creating Reports

Understanding Report Layout and Rendering
A report consists of three main areas: a page header, a page footer, and the body. The page header and footer repeat the same
content at the top and bottom of each page of the report. You can place report items such as images, text boxes, and lines in
headers and footers. The body of the report contains the report data. In addition to the report items that you can place in a header
or footer, you can place data regions, which display the data from a dataset, anywhere in the report body.

The placement of report items in a report is completely freeform. With Reporting Services, you are not limited to "bands" of data
in a report. You can place data regions with different sets of data side-by-side. Certain report items can also contain other report
items. For data regions, this means that you can nest groups of data within other groups. For more information about data
regions, see Understanding Data Regions. For more information about report items, see Working with Items in a Report.

Rendering

When you run a report, the report server combines the layout from the report definition with the data from the data source, and
renders the report in a specified format. The report server uses extensions to perform much of this work: a data processing
extension is used to retrieve the data based on the type of data source, and a rendering extension is used to provide report output
based on the selected format. Different extensions can change the way data is processed and the report is rendered. For more
information, see Design Considerations for Rendering.

Pagination

Pagination in a report is determined by the page size of the report and any page breaks placed on report items. Rendering
extensions that support page size, such as image and PDF, format the data in the report to fit within each page. Rendering
extensions that do not support page size, such as HTML, render all data between page breaks on a single page. All rendering
extensions that support page breaks on items will start a new page after each page break in the report. For more information
about working with page size and page breaks, and the formats that support each, see Working with Multiple Pages.

See Also

Report Design Basics

Reporting Services - Designing and Creating Reports

Understanding Data Regions
Data regions are report items that display repeated rows of data from underlying datasets. These rows can be displayed in a table,
matrix, list, or chart.

Table

A table is a data region that presents data row by row. Table columns are static. Table rows expand downwards to accommodate
the data. You can add groups to tables, which organize data by selected fields or expressions. For information about adding a
table to a report using Report Designer, see Adding a Table.

Matrix

A matrix is also known as a crosstab. A matrix data region contains both columns and rows that expand to accommodate the data.
A matrix can have dynamic columns and rows, which are repeated with groups of data; and static columns and rows, which are
fixed. Columns or rows can be contained within other columns or rows, which can be used to group data. For information about
adding a matrix to a report using Report Designer, see Adding a Matrix.

List

A list is a data region that presents data arranged in a freeform fashion. You can arrange report items to create a form, with text
boxes, images, and other data regions placed anywhere within the list. For information about adding a list to a report using
Report Designer, see Adding a List.

Chart

A chart presents data graphically. Examples of charts include bar, pie, and line charts, but many more styles are supported. For
information about adding a chart to a report using Report Designer, see Adding a Chart.

Nested Data Regions

You can nest data regions within other data regions. For example, if you want to create a sales record for each sales person in a
database, you can create a list with text boxes and an image to display information about the employee, and then add table and
chart data regions to show the employee's sales record.

Grouping and Sorting

All data regions support grouping and sorting. Table, matrix, and list elements each have their own grouping and sorting
properties.

While tables and matrices provide multiple levels of grouping within a single data region, lists have only one group. To create
nested groups using lists, you place a list within another list. For information about grouping and sorting using Report Designer,
see Grouping Data in a Report and Sorting Data in a Report.

See Also

Report Design Basics

Working with Data Regions

Reporting Services - Designing and Creating Reports

Working with Items in a Report
A report in Reporting Services uses report items to display data and graphical elements. In addition to the data regions table,
matrix, list, and chart, report items also include text box, image, line, rectangle, and subreport.

Text Box

Text boxes display all text data in a report. A table or matrix cell include a text boxes by default to display data. Text boxes can be
placed anywhere on a report and can contain labels, fields, or calculated data. You use expressions to define data in text boxes. For
information about adding a text box to a report using Report Designer, see Adding a Text Box.

Image

Images display binary image data in a report. An image report item can use a URL to display an image stored on a Web server,
display embedded image data, or display an image from binary data in a database. Reporting Services supports .bmp, .jpeg, .gif,
and .png files. For information about adding an image to a report using Report Designer, see Adding an Image.

Line

Lines are graphical elements that you can place anywhere on a page. A line is defined with a start and end point and can have a
number of styles (for example, weight and color) assigned to it. A line has no data associated with it. For information about adding
a line to a report using Report Designer, see Adding a Line.

Rectangle

Rectangles can be used in two ways: as a graphical element and as a container for other report items. When you place report
items within a rectangle, you can move them with the rectangle. This is useful for keeping numerous text boxes and other items
together in a report. For information about adding a rectangle to a report using Report Designer, see Adding a Rectangle.

Subreport

A subreport is an item in a report that points to another report on the report server. The report that the subreport refers to can be
a full report that can also run on its own, or it can be a report that looks best when embedded within the main report. When you
define a subreport, you can also define parameters to filter data in the subreport.

When deciding whether to use a subreport, you may want to consider using a data region instead. Because the report server
processes each instance of a subreport as a separate report, performance can be an issue. Data regions provide much of the same
functionality and flexibility as subreports, but with better performance.

For information about adding a subreport to a report using Report Designer, see Adding a Subreport.

Item Properties

All items in a report, including groups, table and matrix columns and rows, the above items, and the report itself, have properties
associated with it. These properties govern the appearance and behavior of the item. For information about the properties
associated with an item, see the documentation for that item.

See Also

Report Design Basics

Adding Fields to a Report

Working with Graphical Elements

Reporting Services - Designing and Creating Reports

Providing User Interactivity
You can design reports that provide users with a way to interact with the data. In environments that support interactivity, such as
HTML 4.0, users can select parameters to filter data, click links that take them to other reports, expand and collapse rows in a table
or matrix, or use a document map to navigate through the report.

Parameters

You can use report parameters to solicit values from the user. These values can be passed to a parameter in a query, passed to a
filter, or they can be used in expressions within the report. A report parameter can provide a simple text box into which a user
types a value, or it can provide a list of valid values from which the user must choose. This list can be static, or it can be updated
dynamically with data from a dataset.

You can also define a default value to be used by a report when it runs, which can be a static value or one retrieved from a
dataset. For information about adding parameters to a report using Report Designer, see Using Parameters in a Report.

Filters

You can use filters to filter report data after it has been retrieved from the data source. You can place filters on datasets and data
regions.

Filters are different than query parameters in that when you use a query parameter, the returned data is filtered at the source.
When you use a filter, the entire data set is retrieved, and then the filter is applied to retrieved data. This is useful for snapshot
reports, in which the data is retrieved and stored with the snapshot report. Using filters, you can still limit the data the report
displays, while still using the static snapshot data. Filters are also useful when the data source does not support the use of query
parameters to filter data.

For information about adding filters to a report using Report Designer, see Adding Filters to a Report.

Links

You can also add links to a report. When you add a link to a text box or image, you can specify one of three types of links:

A drillthrough report link provides a link to another report on the report server, and can pass parameter values to the
report.
A link to a URL provides a link to a Web page, typically outside the report server.
A bookmark link provides a link to a bookmark, or anchor, within the current report.

For information about adding links using Report Designer, see Working with Links.

Hiding Items

Each item in a report has a set of properties that determine whether the item is visible or hidden. You can use these properties to
hide items on a report, conditionally hide data based on other data in the report, and provide an item that the user clicks to toggle
items between visible and hidden. For example, you can create a drilldown report that shows summary data when the report is
first loaded and shows detail rows when users click a particular text box.

For information about hiding items in a report using Report Designer, see Drilldown Reports and Hiding Items.

Document Map

Another way a user can interact with a report is through a document map. In HTML Viewer, a document map appears as a table of
contents next to the report. Users can click an item in the table, and the browser jumps to that item in the report.

To add items to a document map, you associate a document map label with each item. For information about adding items to a
document map using Report Designer, see Adding a Document Map.

See Also

Report Design Basics

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Building Reports
Microsoft® SQL Server™ Reporting Services includes Report Designer, a complete report authoring tool that is hosted within the
Microsoft Visual Studio® environment. To build a report in Report Designer, you create the report, add data, and arrange the
layout of the data and graphical elements. You can also add interactive features to your report and manipulate the output by
using expressions. When the report is complete, you can use Report Designer to preview the report and publish it directly to the
report server.

When you create a report using Report Designer or another tool, you are actually creating a report definition. A report definition
contains information about the data source, the structure of the data, and the layout of the data and objects on the report. A
report definition is stored as a Report Definition Language (RDL) file within a report project, which is included in a Visual Studio
.NET solution.

This section describes how to use Report Designer to create reports. However, you can create a report in any application that can
generate RDL files. For more information, see Report Definition Language.

The following table describes the topics in this section.

Topic Description
Ways to Create a Report Discusses methods for creating reports.
Defining Report Data Describes how to add data to your report

and work with data in the report.
Defining Report Appearance Describes how to arrange data and

graphical elements on the report.
Adding Interactive Features Discusses how to add interactive

components to your report.
Using Expressions Describes how to manipulate report

output by using expressions and includes
information about summarizing data and
using formulas.

Debugging and Publishing Reports Describes how to debug your report and
publish it to a report server.

To use Report Designer, you must first install it using Reporting Services setup. Report Designer requires Visual Studio .NET 2003.
For more information, see Installing Reporting Services.

See Also

Designing and Creating Reports

Report Design Basics

Design Considerations for Rendering

Report Lifecycle Overview

Report Designer

Reporting Services - Designing and Creating Reports

Ways to Create a Report
In Report Designer, you can create a report in three ways. You can create a blank report and manually add queries and layout. You
can use Report Wizard, which automatically creates a table or matrix report based on information you provide. You can also
import an existing report from Microsoft Access.

Because a report definition is an XML document, you can create and edit reports using other tools. You can edit Report Definition
Language (RDL) code using a text editor or a third-party tool designed for editing Reporting Services reports.

Report Designer uses the Reporting Services Simple Object Access Protocol (SOAP) API to publish reports to a report server. If
you use another tool that does not publish reports directly to a report server, you can upload reports using Report Manager.

The following table describes the topics in this section.

Topic Description
Working with Report Designer and Visual
Studio

Discusses using Report Designer to build
reports.

Creating a Report Project Describes how to create a report project
using Report Designer.

Creating a Report Using Report Wizard Describes how to create a report using
Report Wizard.

Creating a Blank Report Describes how to create a blank report
using Report Designer.

Importing Reports from Access Describes how to import a report from a
Microsoft Access project file into Report
Designer.

Working Directly with Report Definition
Language

Discusses RDL and how to work with it
directly.

See Also

Building Reports

Defining Report Data

Defining Report Appearance

Adding Interactive Features

Using Expressions

Debugging and Publishing Reports

Report Designer

Reporting Services - Designing and Creating Reports

Working with Report Designer and Visual Studio
You can use Report Designer to create reports that take advantage of all the report features of Reporting Services. Report
Designer provides a graphical interface in which you can define data source and query information, place data regions and fields
on the report, define the report layout, and set up interactive features.

Report Designer resides within Visual Studio .NET 2003. This section provides basic information about the Visual Studio
environment. For more information about Visual Studio .NET, see the Visual Studio .NET documentation or this Microsoft Web
site.

Note Using Report Designer through a Remote Desktop or Terminal Services connection is not supported.

The following table describes the topics in this section.

Topic Description
Managing Solutions, Projects, and Items Discusses how items are organized within

projects and solutions in Visual Studio and
how to manage them using Solution
Explorer.

The Visual Studio Environment Discusses windows, options, and other
user interface elements within Visual
Studio.

Visual Studio Font Settings

Some controls on Report Designer dialogs may extend off the edge of the dialog or not appear on the dialog at all. This is due to
some fonts settings within Visual Studio causing Report Designer dialogs to display incorrectly. To resolve this issue, set the font
properties for Visual Studio to default settings.

1. On the Tools menu, click Options.
2. In the Environment folder, click Fonts and Colors.
3. In Show settings for, select Dialogs and Tool Windows, and then click Use Defaults.

Note This problem can also be caused by using Large or Extra Large fonts in Windows. If the problem persists,
ensure that the system font size is set to Normal in the display properties for Windows.

See Also

Ways to Create a Report

Managing Reports

Report Designer

http://go.microsoft.com/fwlink/?linkid=18593

Reporting Services - Designing and Creating Reports

Managing Solutions, Projects, and Items
Managing Solutions, Projects, and Items

This section introduces solutions, projects, and items in Visual Studio. In addition, this section discusses Solution Explorer, which
you can use to view and manage these items.

This section contains the following topics.

Topic Description
Introduction to Solutions, Projects, and
Items

Discusses solutions, projects, and items.

Using Solution Explorer Introduces Solution Explorer, which
provides you with an organized view of
items within solutions and projects.

See Also

Working with Report Designer and Visual Studio

Reporting Services - Designing and Creating Reports

Introduction to Solutions, Projects, and Items
Introduction to Solutions, Projects, and Items

Visual Studio .NET provides solutions and projects as containers for managing files. The objects that these containers hold are
called items.

A project is a set of files, plus related metadata such as component references and build instructions. Projects generally produce
one or more output files when built. The files in a project depend on the type of project. For example, report projects contain
reports, shared data sources, and resources.

A solution includes one or more projects, plus files and metadata that help define the solution as a whole.

Solutions and projects contain items that represent the files that you need to create your solution. Use these containers to:

Manage settings for your solution as a whole or for individual projects.
Use Solution Explorer to handle the details of file management.

This section contains the following topics.

Topic Description
Solutions as Containers Provides additional information about

solutions as containers.
Projects as Containers Provides additional information about

projects as containers.
Multi-Project Solutions Describes working with multiple projects in a

single solution.

See Also

Managing Solutions, Projects, and Items

Using Solution Explorer

Reporting Services - Designing and Creating Reports

Solutions as Containers
Solutions as Containers

Solutions manage the way sets of projects are configured, built, and deployed. A solution can include just one project, or several
projects built jointly by a development team. A complex application might even require multiple solutions.

Solutions allow you to concentrate on developing and deploying your projects, instead of sorting through all the details of
managing project files, components, and objects. A Visual Studio solution allows you to:

Work on multiple projects within the same instance of Visual Studio.
Work on items using settings and options that apply to an entire set of projects.
Use Solution Explorer to help design and build your solution.

Visual Studio automatically generates a solution when you create a new project. You can then add other projects to the solution
as needed. You can also create blank solutions without projects.

To help you manage the projects and files in a solution, Solution Explorer provides a graphical view of the entire solution. Solution
Explorer can also provide folders for non-project items.

Visual Studio stores the definition for a solution in two files: a solution definition (.sln) file and a solution user options (.suo) file.

The solution definition file stores the metadata defining your solution:

Projects that are associated with the solution.
Items available at the solution level that are not associated with a particular project.
Solution build configurations that specify the project configurations to apply in each type of build.

The metadata stored in the solution user options file is used to customize the Visual Studio environment whenever the solution is
active.

See Also

Introduction to Solutions, Projects, and Items

Projects as Containers

Multi-Project Solutions

Reporting Services - Designing and Creating Reports

Projects as Containers
Projects as Containers

Projects are containers within a solution for logically managing, building, and storing items.

Project Templates

Visual Studio can accommodate a number of predefined project templates. Report Designer provides two report templates,
Report Project Wizard and Report Project. For more information about these templates, see Creating a Report Project.

To access a template, on the File menu, point to New, and then click Project. In the New Project dialog, click the desired project
type, and then click the desired project template. Click OK.

Projects and their templates allow you to concentrate on the specific functionality you want to implement as the project handles
common management and build tasks for you. For more information, see Project Items.

Project Defin ition Files

Each project contains a project definition file containing metadata specific to that project. The extension for the definition file and
the actual content of the file are determined by the type of project it defines. In general, the project file stores the configuration
and build settings you specify for the project and its set of items. Some projects keep a list of the files associated with the project
and their locations.

When an item is added to a project, the location of the item's physical source file on disk is also added to the definition file for the
project. If the item is later removed from the project, this information is deleted from the definition file. For more information, see
Project Items.

See Also

Introduction to Solutions, Projects, and Items

Solutions as Containers

Multi-Project Solutions

Reporting Services - Designing and Creating Reports

Project Properties
Project Properties

The project container contains project-wide properties, as well as configuration settings that are limited to certain build
configurations of the project.

The following properties apply to all of a project's configurations:

Project name
Project location

These properties are displayed in the Properties window.

Configuration settings are those properties that apply exclusively to a specific configuration for a project. For a report project,
these properties apply primarily to publishing, and include:

Start item
Overwrite data sources
Target folder
Target URL

These properties are displayed in the project property pages. For more information about these properties and deploying reports,
see Debugging and Publishing Reports.

See Also

Projects as Containers

Project Items

Reporting Services - Designing and Creating Reports

Project Items
Project Items

Report project items include reports, shared data sources, and resources within the project container. These items represent
physical files.

Visual Studio provides a number of predefined templates for creating items. You can use these templates to create the items that
you might need to develop your project.

For more information about how projects manage items, see Item Management in Projects later in this topic. For information
about item management within a specific language or project type, see the Visual Studio, Report Designer, or other
documentation specific to the language or project type.

Item M anagement in Projects

Project templates contain the items you need to administer or create your project. The project template you select determines
how that project manages these items, as well as the commands and capabilities available in Solution Explorer. Although you can
control where you want files saved and stored, the project template also determines whether or not the location is significant in
building and managing the files.

In Report Designer, all files for a project must reside within the same physical directory. This directory is called the project
directory. For each item that appears in the project in Solution Explorer, a physical file exists in the project directory.

See Also

Projects as Containers

Project Properties

Project Items

Reporting Services - Designing and Creating Reports

Multi-Project Solutions
Multi-Project Solutions

A solution can contain multiple projects that you can open, close, and save together. Each project in a solution can in turn contain
multiple files or items. The types of items contained within a project depend on the development language used to create them.

The logical relationship between a solution and its components does not necessarily mirror the way the solution and its
components are stored on disk. If you create an application consisting of multiple projects, you might consider creating a solution
directory in storage to contain your local (non-Web) projects, solution files (.sln and .suo), and any shared solution items.

When you create a multi-project solution, the first project created becomes the startup project by default. When you build an
entire solution, projects are built in the order they were added to the solution. Dependent projects are built after the projects on
which they depend.

See Also

Introduction to Solutions, Projects, and Items

Solutions as Containers

Projects as Containers

Reporting Services - Designing and Creating Reports

Using Solution Explorer
Using Solution Explorer

Solution Explorer is a window within Visual Studio that allows you to view and manage items and perform item management
tasks in a solution or a project. It also allows you to use the Visual Studio editors to work on files outside the context of a solution
or project.

This section contains the following topics.

Topic Description
Solution Explorer Concepts Covers concepts such as tree view,

selections, and commands in Solution
Explorer.

Working with Solution Explorer Describes how to add, edit, and delete
solutions, projects, and items.

See Also

Managing Solutions, Projects, and Items

Introduction to Solutions, Projects, and Items

Reporting Services - Designing and Creating Reports

Solution Explorer Concepts
Solution Explorer Concepts

Solution Explorer provides an organized view of your solutions, projects, and items, which are displayed as objects within an
hierarchical list. The toolbar in this window contains commonly used commands for viewing and managing a highlighted object.

Tree View

This standard Solution Explorer view presents the active solution as a logical container for one or more projects and the items
associated with them. These are displayed hierarchically as objects in a tree.

You can open project items for modification and perform other management tasks directly from this view. Because different kinds
of projects store items in different ways, the folder structure in Solution Explorer does not necessarily reflect the actual physical
storage of the items listed. For more information, see Project Items.

When Track Active Item in Solution Explorer is selected in the Projects and Solutions page of the Options dialog box,
Solution Explorer automatically opens the folder for the active item, scrolls to its tree view node, and selects its name. The selected
item changes as you work with different files within a project or solution, or different components within Visual Studio. When this
option is cleared, the selection in Solution Explorer does not change automatically.

To associate a file with a solution but not with a specific project, add the file directly to the solution. A new node for the added file
will then appear within the Solution Items folder. Other files not yet associated either with the active solution or with any of its
projects are placed in the Miscellaneous folder. These are generally files opened or created on your local drive while working with
a project.

Note To display all miscellaneous files in tree view, select Show Miscellaneous files in Solution Explorer in the
Documents page of the Options dialog box.

Selection

Selecting a solution, project, or item in the list dynamically updates the commands that are available. You can double-click a file to
display it in the designer, tool, or editor associated with the file's type. You can change the default editor for some file types by
right-clicking the file and then clicking Open With on the shortcut menu. A list of available editors appears.

M ultiple Selection

You can select multiple items in a single project or multiple items spanning several projects by using standard file selection
techniques. Select multiple items to perform batch operations (simultaneously opening multiple files for editing, for example) or
to determine or edit the intersecting properties of two or more items. When you select multiple items, the commands shown
represent those common to all selected items.

Commands

Solution Explorer supports management commands for a variety of tasks. For example, if you select a file in a report project, you
can use the Delete command to delete the file permanently. You can open files, add and remove items, and perform other
management tasks. Each project template provides its own folders and icons for indicating the nature of the items in the project.
You can add folders and items to meet the needs of your individual development project. The icons can indicate a variety of
information about an item. For example, depending on the project, you might see an icon indicating that an item is a query, or
that a file is under source control. Each project template also determines which tools and designers are associated with a file type,
as well as the commands available for item management.

Displayed Items and Containers

Items are displayed in Solution Explorer based on an item's relationship with project and solution containers. Items can be related
in the following ways:

As project items, which appear under a project folder in Solution Explorer; for example, forms, source files, and classes. For
more information, see Project Items.
As miscellaneous files, which are files that are not associated with either a project or a solution, and that are located in the
Miscellaneous folder.

Generally, you can identify how the project manages an item, based on the project template.

Moving and Copying Items

The target project always determines the outcome of drag or cut-and-paste operations in Solution Explorer. For more
information, see Working with Solution Explorer.

Removing or Deleting Project Items

The Remove command is available in projects that manage both files and links, as well as projects that manage links only. When
you remove a file from your project, the file is disassociated from the project and disappears from Solution Explorer. However,
removed files remain in storage.

The Delete command applies exclusively to projects that manage both files and links, as well as projects that manage links only.
Deleted items are permanently removed from file storage and disassociated from the project.

See Also

Using Solution Explorer

Working with Solution Explorer

Reporting Services - Designing and Creating Reports

Working with Solution Explorer
Working with Solution Explorer

To view instructions about working with Visual Studio and Solution Explorer, click a topic in the following list:

How to create a new solution (Visual Studio)
How to open an existing solution (Visual Studio)
How to create a project (Visual Studio)
How to add an existing project to a solution (Visual Studio)
How to change the default location for projects (Visual Studio)
How to modify project properties and configuration settings (Visual Studio)
How to add a new project item (Visual Studio)
How to add an existing item to a project (Visual Studio)
How to copy an item (Visual Studio)
How to delete or remove a project or an item (Visual Studio)
How to move an item (Visual Studio)
How to rename solutions, projects, and items (Visual Studio)
How to delete a solution (Visual Studio)

See Also

Using Solution Explorer

Solution Explorer Concepts

Reporting Services - Designing and Creating Reports

The Visual Studio Environment
The Visual Studio Environment

Visual Studio .NET 2003 provides a rich environment for administering and developing solutions. This section discusses the Visual
Studio environment.

The following table describes the topics in this section.

Topic Description
Window Management Lists the types of windows in the Visual Studio

environment, and explains how to manage
windows.

Editing Code Within Visual
Studio

Describes features for editing code.

Setting Properties Explains how to set properties on an item.
Using the Toolbox Explains how to manipulate and use the Toolbox to

add controls to your project's designers.

See Also

Working with Report Designer and Visual Studio

Reporting Services - Designing and Creating Reports

Window Management
Window Management

Visual Studio includes numerous tools and options to help you manage windows.

The following table describes the topics in this section.

Topic Description
Window Types Covers how tool and document windows behave, including

Dockable and Auto Hide modes.
Arranging Windows Describes how to organize window positions within the

Visual Studio environment.
Navigating Within
Visual Studio

Describes how to switch between windows within Visual
Studio and how to bookmark HTML documents and Help
topics.

See Also

The Visual Studio Environment

Editing Code Within Visual Studio

Using the Toolbox

Reporting Services - Designing and Creating Reports

Window Types
Window Types

Visual Studio contains two window types: tool windows and document windows. These two window types behave in slightly
different ways.

Tool windows and document windows cannot be grouped together.

Interface M odes

The Visual Studio environment supports two different interface modes: Multiple Document Interface (MDI) and Tabbed
Documents. To change modes, on the Tools menu, click Options, click Environment, click General, and then select Tabbed
documents or MDI environment.

Tabbed Documents Mode

This mode tabs document windows together. The Visual Studio environment uses this mode by default. Drag tabbed documents
by their tabs.

Note Use CTRL+TAB to cycle through the documents open in the editor. Similar to ALT+TAB in Windows, pressing
CTRL+TAB cycles through the most recently used, open documents.

Multiple Document Interface Mode

In MDI mode, the Visual Studio environment provides a parent window as a visual and logical container for all tool
and document windows.

Tool Windows

Tool windows are listed on the View menu and are defined by the current project.

You can arrange tool windows in the Visual Studio environment to:

Show or hide automatically.
Tab link with other tool windows.
Dock against the edges of Visual Studio.
Float over.
Display on other monitors.

In addition, you can display more than one instance of certain tool windows at a time. You can create another instance of a tool
window by clicking New Window on the Window menu. Also, you can determine how the Close and Auto Hide buttons affect
a group of tool windows docked together.

Document Windows

Document windows are created when you open or create items. The list of open document windows appears in the Window
menu in the current window stacking order, with the top-most window listed first.

The ways in which you manage your document windows depends greatly upon the interface mode. You can choose to work in
either Multiple Document Interface (MDI) or Tabbed Document mode. Experiment with these settings to create a document
editing environment that satisfies your needs and preferences.

Dockable Windows

In Tabbed Document mode, you can control whether document windows are dockable by selecting or clearing Dockable on the
Window menu. In MDI mode, document windows are not dockable.

Note Some document windows within the Visual Studio environment are actually tool windows that have the
dockable trait turned off. To dock these windows, choose Dockable from the Window menu.

Tiled and Cascading Windows

Windows can be arranged into cascading stacks or tiled only in MDI mode.

Tab Groups

Tab groups extend your ability to manage limited workspace while working with two or more open documents or designers. You
can organize multiple document windows into either vertical or horizontal tab groups and easily shuffle documents from one Tab
Group to another. Tab groups are available only in Tabbed Documents mode.

Split Windows

Split windows allow you to divide your document into two independently scrolling sections. Split windows are useful when you
need to view two places at once in a document.

To split a window, click Split on the Window menu. Click Remove Split on the Window menu to view your document as a
single window.

Recycling Windows

In addition, you can choose to have a document window display each new file or designer within the same window. Select Re-use
current document window, if saved, available on the Documents page under the Environment folder in the Options dialog
box.

Note Newly opened files or designers re-use the same window as long as the existing document in that window does
not have unsaved changes.

Displaying Help Topics in Windows

Help topics can be displayed internally or externally. These options are available on the Help page under the Environment folder
in the Options dialog box.

Note Changes to these settings do not take effect until the Visual Studio environment is restarted.

Internal Help displays help topics in a Web browser window inside the Visual Studio environment. Internal Help windows are
dockable, floating, and can use Auto Hide like other tool windows. Using internal Help is recommended when you are accessing
Help topics as needed.

External Help displays help topics in an external application, the Microsoft Document Explorer. Topic and tool windows such as
Contents and Index can be docked and hidden. However, these windows cannot be auto hidden or docked in the Visual Studio
environment. Using external Help is recommended when you wish to study the contents of the documentation in greater depth.

See Also

Window Management

Arranging Windows

Navigating Within Visual Studio

Reporting Services - Designing and Creating Reports

Arranging Windows
Arranging Windows

Visual Studio has two types of windows: tool windows and document windows. You can increase the viewing and editing space
for code development, depending on how you arrange the windows. You can:

Tab-dock several windows.
Dock tool windows to an edge of the development environment.
Minimize tool windows along any edge of the development environment.
Put windows on different monitors.
Tile document windows.

For more information on the differences between tool and document windows, see Window Types.

For a document window, select Tabbed Documents on the General pane under the Environment option in the Options
dialog box. The documents in the editor are automatically maximized and linked together.
For a tool window, follow the steps below.

Docking Tool Windows

You can make tool windows dockable or not dockable by selecting or clearing Dockable on the Window menu. When a tool
window is dockable, it floats on top of the other windows or it snaps to a side of a window. When a tool window is not dockable, it
appears as a document window.

Hiding Tool Windows Automatically

Tool windows support a feature called Auto Hide. Auto Hide allows you to see more of your code at one time by minimizing tool
windows along the edges of the Visual Studio environment window. You can do this only in Multiple Document Interface (MDI)
mode.

When a window is hidden, the name and icon are visible on a tab at the edge of the Visual Studio environment window. Move
your cursor over the tab to display the hidden windows. The window slides back into view and is ready for use. When an auto-
hidden window is not in use, it automatically slides back to its tab on the edge of the Visual Studio window.

Other Window Functions

If you use two monitors, you can move tool windows between them. Also, if you want to view more than one document at a time
while editing code, you can tile documents.

To view instructions about working with windows in Visual Studio, click the following topic:

How to work with windows (Visual Studio)

See Also

Window Management

Window Types

Navigating Within Visual Studio

Reporting Services - Designing and Creating Reports

Navigating Within Visual Studio
Navigating Within Visual Studio

You can use various techniques to move among documents in Visual Studio.

M oving Among Open Documents

Visual Studio provides several ways to quickly move among open documents. The most common methods are cycling to each
open document and directly activating a visible document.

For information about moving through files, see Navigating Code and Text.

Bookmarking HTM L Documents and Help Topics

Visual Studio includes a Web browser, which allows you to view HTML files and Web pages from within the Visual Studio
environment. Also, Help topics are HTML files. You can bookmark any of these items and view them again later.

To view instructions about navigating within Visual Studio, click the following topic:

How to navigate within Visual Studio (Visual Studio)

See Also

Window Management

Window Types

Arranging Windows

Reporting Services - Designing and Creating Reports

Editing Code Within a Visual Studio
Editing Code Within Visual Studio

To edit code, use the Editor. The Editor is supported by a language-specific service that checks for syntax and usage errors. In
Report Designer, the Editor is used to edit a report's RDL.

The Editor has several features to simplify the process of writing and editing code, depending on your programming language,
the type of project, and the options set for the Editor in the Options dialog of the Tools menu.

There are two ways to open the Editor:

From Solution Explorer, by expanding a folder, right-clicking an item within the folder, and clicking View Code.
Clicking the item and then clicking Code in the View menu.

Note If you share files with users at other sites that use distinct code pages, you should save your file with the
appropriate Unicode code page to prevent errors when reading the file.

Also, when saving files for UNIX or Macintosh, be sure to save your files with the appropriate document format. On the File menu,
click Save As, Save with Encoding from the down arrow next to the Save button, and then choose Unix or Macintosh under
Line Endings.

The following table describes the topics in this section.

Topic Description
Navigating Code and Text Explains how to navigate in the Editor.
Editing Text Explains how to work with text.
Managing the Editor and View Explains how to change views in the Editor.

See Also

The Visual Studio Environment

Window Management

Using the Toolbox

Reporting Services - Designing and Creating Reports

Navigating Code and Text
Navigating Code and Text

You can move through text using:

Mouse and navigation keys.
Bookmarks.
Incremental search.
The Go To command.
The Navigate Backward and Navigate Forward buttons on the Standard toolbar.

N avigating with the M ouse and Keyboard

The most common way to navigate text is with the mouse and navigation keys:

Use the LEFT ARROW and RIGHT ARROW keys to move one character at a time, or in combination with the CTRL key to
move one word at a time. Up and down arrow keys move one line at a time.
Click a location to place the cursor there.
Use the scroll bars or scroll wheel on the mouse to move through the text.
Use the HOME, END, PAGE UP, and PAGE DOWN keys to move through the text.
Use CTRL+PAGE UP and CTRL+PAGE DOWN to move the insertion point to the top or bottom of the window, respectively.
Use CTRL+UP ARROW and CTRL+DOWN ARROW to scroll the view without moving the insertion point.

N avigating with Bookmarks

To edit a document elsewhere and then return to your original location, add a bookmark.

Note Some project types may not support bookmarks.

Incremental Search

Incremental search helps you navigate directly to locations in the current document as you enter the search characters.

Go To Command

Use the Go To command to go to a specific line number. To make line numbering visible, in the Options dialog box, click Text
Editor, click All Languages, click General, and then select Line numbers.

N avigate Backward/N avigate Forward Buttons

Use the Navigate Backward button on the Standard toolbar to navigate to previously visited locations in the document, and
then use the Navigate Forward button to return afterwards. (You can also press CTRL+MINUS SIGN to navigate backward and
CTRL+SHIFT+MINUS SIGN to navigate forward.) These buttons are particularly useful when using commands that take you far
away from where you are currently working and you want to return to that location quickly. The Editor stores locations when you
move in a single command more than several lines away from where you are currently working, or if you edit in a location that is
not adjacent to the last place you edited.

To view instructions about navigating code and text, click the following topic:

How to navigate code and text (Visual Studio)

See Also

Editing Code Within Visual Studio

Navigating Code and Text

Reporting Services - Designing and Creating Reports

Editing Text
Editing Text

Whether you are editing code or plain text, the Editor works the same and functions like other text editors. For code that is part of
a project, the project's programming language support may provide automatic statement completion, syntax checking, keyword
colorization, and other services. For information about moving around in a document, see Navigating Code and Text.

Selecting Text

The Editor has two text selection modes:

Stream Mode. The selection acts similarly to the standard Microsoft Windows multiline edit control. Selection is a one-
dimensional stream from the start of the file to the end. Entire lines are selected when you move to the next or a previous
line. To select an entire line, click the Selection Margin (on the far left of the Editor window).
Column (Box) Mode Rectangular boxes of code are selected. When you press ALT and click the mouse, and then drag it
over text, only the rectangular portion of text you highlight is selected instead of the whole line. The selection includes any
character that intersects with the rectangle defined by the beginning character (anchor character) and the last character in
the selection. If the selection width is zero, then whole lines are selected.

Dragging and Dropping Text

You can select text and then drag and drop it in another location. You can drag it to places such as the following:

A different location in the current editor.
Another editor.
The Windows Recycle Bin.
The Toolbox to save snippets of code for copying into other documents later.

Some project types may allow you to drop text in other tool windows or document windows.

You can drag text into any tab under the Toolbox (except the Clipboard Ring), and then later either drag the text back or double-
click its button in the ToolBox to paste it.

To turn on drag-and-drop text editing, from the Tools menu, click Options. Click Text Editor, and then select Drag and drop
text editing.

To view instructions about editing text, click the following topic:

How to edit text (Visual Studio)

See Also

Editing Code Within Visual Studio

Navigating Code and Text

Window Management

Reporting Services - Designing and Creating Reports

Managing the Editor and View
Managing the Editor and View

The Editor gives you a number of ways to control the view of your code.

Changing the View M ode

Visual Studio features a view mode called Tabbed Documents, which allows you to open multiple editors and documents
simultaneously and access them through tabs at the top of the Editor. You can alternatively open Visual Studio in Multiple
Document Interface (MDI) mode, which joins windows without the tabs, and allows each window to be tiled, minimized, and so
on.

Creating N ew Windows

You can create multiple Editor windows on a single document so that you can view different parts of it simultaneously. You can
also view different parts of the file simultaneously by splitting the pane horizontally, but when you create a new window, each
window is full-sized. You can also create a new document window in the Visual Studio environment.

An Editor window can also be split into two separate parts for easier editing.

Word Wrap

When you activate Word Wrap, the horizontal scrollbar is removed and lines of code that exceed the width of the Editor's window
size automatically wraps to the next displayed line rather than scrolling off the side of the window.

Enabling Virtual Space M ode

In Virtual Space mode, the Editor acts as if the space past the end of each line is filled with an infinite number of spaces, allowing
code lines to continue off the side of the visible screen area.

Displaying Line N umbers

You can turn on line numbering in your code. Line numbers are useful for navigating code. For more information, see Navigating
Code and Text.

Note Turning on line numbering does not mean that the document will print with line numbers. For line numbers to
print, you must select the Line numbers check box in the Page Setup command on the File menu.

Enabling Full Screen M ode

You can choose to hide all tool windows and view only document windows by enabling Full Screen mode.

To view instructions about managing the editor and view, click the following topic:

How to manage the code editor and view (Visual Studio)

See Also

Editing Code Within Visual Studio

Navigating Within Visual Studio

Window Management

Reporting Services - Designing and Creating Reports

Setting Properties
Setting Properties

Properties describe the state and the behavior of an item in Visual Studio.

Use the Properties window to view and set the design-time properties for an item. For example, in the Report Designer you can
use the Properties window to set the name of an item on a report. While editing a report, you can use the Properties window to
view the properties of the selected report item.

Note Report Designer also provides dialog boxes to edit report item properties. For more information, see the
documentation for the report item you want to edit.

Setting a Single Property for M ultiple Items

You can specify the same property value for a group of items.

Note If you select multiple objects of different types, the Properties window displays only the properties that are
common to all the selected objects.

To view instructions about setting properties, click the following topic:

How to set properties (Visual Studio)

See Also

Editing Code Within Visual Studio

Reporting Services - Designing and Creating Reports

Using the Toolbox
Using the Toolbox

The Toolbox always displays two tabs, a General tab and a Clipboard Ring tab. As you open an editor or designer, other tabs
and tools are added. You also can add custom tabs and tools to the Toolbox. For more information, see Managing Tabs and Items
in the Toolbox later in this topic.

You can select and drag items, text, and controls from the Toolbox onto forms, pages, and designers, and drag items from these
sources back into the Toolbox for reuse later. For example, you can drag a report item onto a report.

Managing Tabs and Items in the Toolbox

There are several ways to customize the appearance of Toolbox tabs and their items. For example, you can do the following:

Add and remove custom tabs.
Add and remove items on tabs.
Rename tabs and items on tabs.
Show all tabs, or conceal those that are not in use.
Display the tools on a tab as compact icons or in labeled lists.
Sort all items on a tab alphabetically.
Reposition items on a tab.

The Toolbox displays the General and Clipboard Ring tabs by default. Additional tabs are then displayed as you work in the
various designers and editors.

To view instructions about using the toolbox, click the following topic:

How to use the toolbox (Visual Studio)

See Also

The Visual Studio Environment

Window Management

Editing Code Within Visual Studio

Reporting Services - Designing and Creating Reports

Creating a Report Project
The first step in creating a report in Report Designer is to create a report project. A report project acts as a container for report
definitions and resources. Every file in the report project is published to the report server when the project is deployed. When you
create a project for the first time, a solution is also created as a container for the project. You can add multiple projects to a single
solution.

Information about the debug and production servers is stored at the project level. For more information about testing and
publishing reports, see Debugging and Publishing Reports.

There are two ways to create a report project. You can create a report project that contains a single blank report, or you can create
a report project and report using the Report Project Wizard.

To view instructions about creating report projects, click a topic in the following list:

How to create a report project (Report Designer)
How to create a report project (Report Project Wizard)

See Also

Ways to Create a Report

Reporting Services - Designing and Creating Reports

Creating a Report Using Report Wizard
Report Wizard is a tool within Report Designer that guides you through the process of creating a report. You can use Report
Wizard to select report data and shape it into a tabular or matrix report.

When you start Report Wizard, a Welcome page appears. This page describes the basic steps you take to produce your report.
You can choose not to view this page again, so that the next time you run Report Wizard, it starts with the first step. The following
sections in this topic describe the steps in Report Wizard.

Select a Data Source

The first step in creating a report is to define a data source. Report Wizard provides a list of all shared data sources in the report
project, in addition to an option to create a new data source.

Design a Query

The next step is to design a query. You can type the query string or you can build it using Query Designer. For information about
Query Designer, see Querying a Data Source.

Choose a Report Type

The next step is to select the type of report you want. You can choose a tabular or matrix report. A tabular report has a fixed
number of columns. A matrix, or crosstab, report has a variable number of columns based on the results of the query.

If you select a tabular report, Report Wizard steps you through the process of selecting fields by which to group and defining a
layout and style for the report. If you select a matrix report, the wizard steps you through the process of selecting fields to include
in the matrix rows, columns, and data areas; and defining a layout and style for the report.

Choose a Style

The next step is to apply a style to the report using a style template. Select a template to apply styles such as font, color, and
border style to the report.

Report Designer provides four style templates: Bold, Casual, Corporate, and Compact. You can alter existing templates or add new
ones by editing the StyleTemplates.xml file in the \80\Tools\Report Designer\Business Intelligence Wizards\Reports\Styles folder
in the Microsoft SQL Server program folder. This folder is located on the computer on which Report Designer is installed.

Note It is recommended that you back up the templates file before changing it.

N ame the Report

The final step is to name the report and verify the fields that will be included in the report. When all steps are completed, Report
Designer creates the report. The report appears within the report project.

To view instructions about creating reports using the Report Wizard, click a topic in the following list:

How to create a report (Report Wizard)
How to create a report project (Report Project Wizard)

See Also

Ways to Create a Report

Creating a Report Project

Creating a Blank Report

Reporting Services - Designing and Creating Reports

Creating a Blank Report
A blank report contains no information about data or layout. You can choose to create a blank report when you want to control
each step in the report creation process. After you create a blank report, the first step is to connect to a data source and set up a
query. Subsequent steps include adding data regions and fields and defining the report layout. For more information about
working with data, see Defining Report Data. For more information about report layout, see Defining Report Appearance.

To view instructions about creating reports, click a topic in the following list:

How to create a report (Report Designer)

See Also

Ways to Create a Report

Creating a Report Project

Creating a Report Using Report Wizard

Reporting Services - Designing and Creating Reports

Importing Reports from Access
You can use Report Designer to import reports from a Microsoft Access database (.mdb) or project (.adp) file. Report Designer
converts each report within the database or project file to RDL and saves it within the designated report project.

Note Access 2002 or later must be installed on the same computer that Report Designer is installed on in order to
use the import feature.

Note The data source for the Access reports must be available when the reports are imported.

When you use the import feature, all reports in the database or project file are imported. If your Access file contains many reports,
you may want to create a separate report project into which to import the reports, and then open the individual RDL files in your
main report project. You may have to edit the reports after they are imported into Report Designer.

To view instructions about importing reports from Microsoft Access, click a topic in the following list:

How to import reports from Microsoft Access (Report Designer)

When the import process encounters items that are not supported, such as modules and some controls, they are displayed in the
Task List window as build errors. Check this list to make sure the imported reports still contain the features you want. For more
information about supported Access features, see Supported Access Report Features.

Differences Between Access Reports and Reporting Services Reports

Page layout in Microsoft Access is different than in Reporting Services. Access arranges items on the page using "bands," that is,
sections arranged vertically on the page These sections may include report header, report footer, page header, page footer,
groups, and detail. Reporting Services provides a more flexible layout. Data regions provide grouping and detail, and you can
place multiple data regions anywhere in the body of the report, even side-by-side. It also includes a "banded" page header and
footer, similar to the page header and footer in Access.

When a report is imported from Access into Report Designer, the page header and footer from the Access report are converted
into a Reporting Services report page header and footer. Groups and detail are converted into a list data region. The report header
and footer are placed into the body of the report, rather than in a separate "band." This may result in item placement that is
slightly different than what is in the Access report.

Note In some Access reports, report items that appear to be adjacent to each other may actually overlap. When the
report is imported using Report Designer, this overlap is not corrected and may lead to unexpected results when the
report is run.

See Also

Ways to Create a Report

Supported Access Report Features

Reporting Services - Designing and Creating Reports

Supported Access Report Features
Supported Access Report Features

When you import a report into Report Designer, the import process converts the Microsoft Access report into a Reporting
Services Report Definition Language (RDL) file. Reporting Services supports several features of Access; however, because of
differences between Access and Reporting Services, some items are modified slightly or are not supported. This topic describes
how Access report features are converted to RDL.

Data Sources

Reporting Services supports OLE DB data sources, such as SQL Server. If you are importing reports from an Access project (.adp)
file, the connection string for the data source is taken from the connection string in the .adp file. If you are importing reports from
an Access database (.mdb) file, the connection string may point to the Access database and you may have to correct it after the
reports are imported. If the data source for the Access report is a query, the query information is stored without modification in
the RDL. If the data source for the Access report is a table, the conversion process creates a query based on the table name and
the fields in the table.

Note Some queries contain code that is specific to Access. Access code is not imported with the report. Also, if a
query contains embedded strings, the report may not import correctly. To correct this, replace the strings with a
character code. For example, replace the comma (,) character with CHAR(34).

Note The import process does not properly pass the semicolon (;) or XML markup characters (<, >, etc.) in connection
string information. If a connection string contains a semicolon or XML markup character, you will have to manually set
the password in the new report after the report is imported.

Note The import process does not import the connection or general timeout settings in the connection string. You
may have to adjust these settings after the report is imported.

Note If you import a report that has a query that contains query parameters, the query will not be converted when
the report is imported. To import the query with the report, temporarily replace the query parameters in the Access
report with hard-coded values, and then replace them with query parameters after the report is imported.

Reports w ith M odules

Custom Microsoft Visual Basic® code contained within modules is not converted. If Report Designer encounters code during the
import process, a warning is generated and displayed in the Task List window.

Report Controls

Reporting Services supports the following Access controls and includes them in converted report definitions:

Image
Label
Line
Rectangle
SubForm
SubReport

Note While a SubReport control is converted within the main report, the subreport itself is converted
separately.

TextBox

Reporting Services does not support the following controls:

BoundObjectFrame
CheckBox
ComboBox
CommandButton
CustomControl

ListBox
ObjectFrame
OptionButton
TabControl
ToggleButton

If Report Designer encounters any of these controls during the import process, a warning is generated and displayed in the Task
List window.

Other controls, like ActiveX and Office Web Components, are not imported. For example, if an Access report contains an OWC
Chart control, it will not be converted when the report is imported. The control must be added manually after the report is
imported.

Report Properties

Reporting Services supports the following properties that are available through the Access user interface. Properties available
only in code are not supported and are not listed here:

BackColor
BackStyle
BorderColor
BorderStyle
BorderWidth
BottomMargin
CanGrow (textbox)
CanShrink (textbox)
Caption
FontBold
FontItalic
FontName
FontSize
FontUnderline
FontWeight
ForceNewPage
ForeColor
Height
HideDuplicates
Hyperlink
IsHyperlink
IsVisible
KeepTogether (group)
Left
LeftMargin
LineSlant
LineSpacing
LinkChildFields
LinkMasterFields
NewRowOrCol
PageFooter
PageHeader
Pages
Picture
PictureTiling (report)
ReadingOrder
RepeatSection

RightMargin
RunningSum
SizeMode
TextAlign
Top
TopMargin
Width

Reporting Services does not support the following properties:

CanGrow (section)
CanShrink (section)
DecimalPlaces
FastLaserPrinting
Filter
FilterOn
Format
FormatConditions
GrpKeepTogether
KeepTogether (section)
NumeralShapes
Orientation
PaintPalette
PaletteSource
PictureAlignment
PicturePages
PictureSizeMode
PictureTiling (image)
ScrollBars
SpecialEffect
Vertical

Grouping

Access defines a group level using a combination of three properties: the group expression, the GroupOn property, and the
GroupInterval property. A group that does not have a group header or footer is merged with the group contained within it. If the
group does not contain another group, sorting is applied to the detail section and the group is dropped.

Expressions

Access uses expressions to specify values that appear in text boxes. Access uses Visual Basic as its expression language in addition
to some aggregate functions. Report Designer converts these expressions.

Functions

A Reporting Services report definition uses Visual Basic .NET as its native expression language, while Access 2002 uses Visual
Basic for Applications (VBA). The following lists describe the functions that are supported by Reporting Services.

Array Functions

Reporting Services supports the following array functions:

LBound
UBound

Conversion Functions

Reporting Services supports the following conversion functions:

Asc

CBool
CByte
CCur
CDate
CDbl
CDec
Chr
Chr$
CInt
CLng
CSng
CStr
CVar
CVDate
Format
FormatCurrency
FormatDateTime
FormatNumber
FormatPercent
Hex
Hex$
Nz
Oct
Oct$
Str
Str$
StrConv
Val

Reporting Services does not support the following conversion functions:

GUIDFromString
StringFromGUID

Database Functions

Reporting Services supports the following database functions:

CreateReport
GetObject
HyperlinkPart
Partition

Reporting Services does not support the following database functions:

CodeDb
CreateControl
CreateForm
CreateGroupLevel
CreateObject
CreateReportControl
CurrentDb
CurrentUser
DeleteControl
DeleteReportControl
Eval

IMEStatus
SysCmd

Date/Time Functions

Reporting Services supports the following date/time functions:

Date
Date$
DateAdd
DateDiff
DatePart
DateSerial
DateValue
Day
Hour
Minute
Month
MonthName
Now
Second
Time
Time$
Timer
TimeSerial
TimeValue
Weekday
WeekdayName
Year

DDE/OLE Functions

Reporting Services does not support the following DDE/OLE functions:

DDE
DDEIntitate
DDERequest
DDESend
LoadPicture

Domain Aggregate Functions

Reporting Services does not support the following domain aggregate functions:

DAvg
DCount
DFirst
DLast
DLookup
DMax
DMin
DStDev
DStDevP
DSum
DVar
DVarP

Error Handling Functions

Reporting Services supports the following error handling functions:

Err
Error
Error$
IsError

Reporting Services does not support the following error handling function:

CVErr

Financial Functions

Reporting Services supports the following financial functions:

DDB
FV
IPmt
IRR
MIRR
NPer
NPV
Pmt
PPmt
PV
Rate
SLN
SYD

Interaction Functions

Reporting Services supports the following interaction functions:

Command
Command$
CurDir
CurDir$
DeleteSetting
Dir
Dir$
Environ
Environ$
EOF
FileAttr
FileDateTime
FileLen
FreeFile
GetAllSettings
GetAttr
GetSetting
Loc
LOF
QBColor
RGB
SaveSetting
Seek
SetAttr

Shell
Spc
Tab

Reporting Services does not support the following interaction functions:

DoEvents
In
Input
Input$

Inspection Functions

Reporting Services supports the following inspection functions:

IsArray
IsDate
IsEmpty
IsError
IsNull
IsNumeric
IsObject
TypeName
VarType

Reporting Services does not support the following inspection function:

IsMissing

Math Functions

Reporting Services supports the following math functions:

Abs
Atn
Cos
Exp
Fix
Int
Log
Rnd
Round
Sgn
Sin
Sqr
Tan

Message Functions

Reporting Services does not support the following message functions:

InputBox
InputBox$
MsgBox

Program Flow Functions

Reporting Services supports the following program flow functions:

Choose
IIf

Switch

SQL Aggregate Functions

Reporting Services supports the following SQL aggregate functions:

Avg
Count
Max
Min
StDev
StDevP
Sum
Var
VarP

Text Functions

Reporting Services supports the following text functions:

Format
Format$
InStr
InStrRev
LCase
LCase$
Left
Left$
Len
LTrim
LTrim$
Mid
Mid$
Replace
Right
Right$
RTrim
Space
Space$
StrComp
StrConv
String
String$
StrReverse
Trim
Trim$
UCase
UCase$

Constants

Access does not support special Visual Basic constants (for example, vbTrue) in expressions, so no conversion is necessary.
However, there is one exception: the keyword Null is converted to System.DbNull.Value.

Parameters

During the import process, Report Designer scans each expression within a report for variables that do not correspond to field
names or controls. These variables are added to report parameters.

The data type for stored procedure parameters is always imported as string. After the report is imported, you must manually
change the parameter to use the correct data type.

Object Names

Access allows fields to have the same name as controls; Reporting Services does not. Visual Basic 6.0 allows spaces in variable
names; Visual Basic .NET does not. The import process replaces the names of all such objects with valid names and assigns unique
names if more than one object has the same name. Each expression is scanned and the names of variables that correspond to
renamed objects are replaced with the new names.

Rectangles and Containment

In a Reporting Services report definition, rectangles can contain other report items. Any rectangle larger than the report item and
which overlaps more than 90 percent of its area becomes a container for the report item.

Bitmaps

All bitmaps that are embedded within a report are converted to .bmp format when the report is imported, regardless of their
initial format. For example, if your report includes .jpg and .gif files, the resulting resources imported with the report are .bmp
files. The bitmaps are stored as embedded images in the report. For information about Embedded Images, see Adding an Image.

Other Considerations

In addition to the previous items, the following information applies to reports imported from Access:

Conditional formatting is not converted.
The description field in report properties in Access is not converted.

See Also

Importing Reports from Access

Reporting Services - Designing and Creating Reports

Working Directly with Report Definition Language
When you write a report in Report Designer, the report is saved as an XML file with the Report Definition Language (RDL)
extension .rdl. You can edit this file in Report Designer, a text editor, or any tool in which you can edit XML. In Report Designer,
you can access RDL by viewing the code for the report.

Note Editing RDL directly can result in a report that cannot be published to the report server or cannot run. As with
any XML file, ensure that XML-specific characters used within elements are properly encoded.

To view instructions about accessing RDL, click a topic in the following list:

How to access RDL (Report Designer)

Report Designer creates RDL files according to the Report Definition Language XML Schema. When you publish the report, the
report server uses the schema to validate the XML contained within the RDL file.

If you wish to include elements that are not part of the RDL schema, you can place them within the Custom element. Elements
within the Custom element can be read by custom rendering extensions, but are ignored by the rendering extensions provided
with Reporting Services. For example, you can use the Custom element to store comments within the report. For more
information, see Custom Element.

See Also

Ways to Create a Report

Report Definition Language

Reporting Services - Designing and Creating Reports

Localizing Reports
You can create localized reports, but Reporting Services does not provide special facilities for doing so. Data is retrieved from the
data source verbatim and placed into the layout you define. Similarly, report meta data is not translated or localized, nor is the
XML grammar of the report definition language.

Although Reporting Services tools and applications are localized, Reporting Services does not include language conversion
features; for example, for translating Japanese data into English data. If you use a French version of Report Manager to select a
report that contains German characters, the application displays a report that contains German content, while the access and
report manipulation features are in French. However, if you have localized data in separate columns or tables, you can create a
dynamic query that selects from different columns or tables based on input from a report parameter. For more information about
dynamic queries, see Using Dynamic Queries.

Locale

While the report itself is not localized by Reporting Services, you can set a locale on the report and on individual text boxes by
using the Language property. In this way, you can define how fields are displayed in a report. If there is no language information
set on the text box, the language of the report is used. If the language of the report is not set, the language of the Web browser is
used. If the language of the Web browser is not set, the language of the operating system of the report server is used. For
example, if you set a specific language on a text box that displays date information, then that text box is always displayed with the
date format for that language even if the report, Web browser or server is set to a different language.

It is recommended that you set a specific language on text boxes that, if the language of the report or report server changes, could
change the meaning of the data. For example, if no language is set on a text box that displays currency, the currency symbol could
change as the language of the report changes. Unless the currency is converted through the query or through custom code, this
could result in the incorrect currency symbol being displayed with the data.

Locale is featured in the Product Catalog sample report. For more information, see Reporting Services Sample Reports.

To view instructions about setting locale on a report or text box, click the following topic:

How to set locale on a report or text box (Report Designer)

See Also

Ways to Create a Report

Deploying Reporting Services in a Global Environment

Reporting Services - Designing and Creating Reports

Defining Report Data
After creating a new report, you define connection information for the report and specify a query. Connection information is
stored in the report definition as a data source. Query information is stored in the report definition as a dataset. A report can
contain multiple datasets. Once datasets are defined, you can create data regions that contain fields to display report data.

The following table describes the topics in this section.

Topic Description
Connecting to a Data Source Describes data sources and how to create

them.
Querying a Data Source Describes datasets and how to use them

to retrieve data from a data source.
Filtering Data Describes various methods of filtering

data in a report.
Working with Data Regions Describes data regions such as table,

matrix, list, and chart.
Adding Fields to a Report Discusses fields and how to display data in

a report.

See Also

Building Reports

Reporting Services - Designing and Creating Reports

Connecting to a Data Source
The first step in defining a dataset in a report is to define a data source. A data source contains connection information, such as
the data source type, a connection string, and credentials. Reporting Services provides the following types of data sources: SQL
Server, Oracle, ODBC, and OLE DB. You can retrieve data from Analysis Services using an OLE DB data source. Developers can
create data processing extensions to provide additional types of data sources. The connection information stored in a data source
varies depending on the data source type. You can store a data source within a report or you can specify a shared data source,
which is defined separately in Report Designer and saved on the report server when reports are published.

Data sources do not contain query information. Query information is contained within datasets, which use data sources to
connect to a database. For more information, see Querying a Data Source.

Note You must create a data source in Report Designer, not Server Explorer. Report Designer does not use data
sources created in Server Explorer.

Shared Data Sources

You can create a data source that multiple reports can share. A shared data source provides a single point of entry for connection
information. If you have multiple reports that all use the same data source, and the connection information for those reports
changes, you only have to change the connection information once for all reports. This is useful when moving reports from a test
environment to a production environment.

When you create a shared data source in Report Designer, it is stored as a separate file in the report project. This file is an XML
document that contains the name of the data source, a data source ID, and connection information. When you publish the reports
in the project, the data source is also published. If the data source already exists on the server, the OverwriteDataSources
property for the project determines whether the data source in the project overwrites the data source on the server. You can
change this property through the deployment properties for the project. After the report is published, the data source exists
alongside the other reports in the project and can be managed separately.

To view instructions about working with a shared data source, click a topic in the following list:

How to create or edit a shared data source (Report Designer)
How to set deployment properties (Report Designer)

Report Specific Data Sources

You can also create a data source within a report that is available only to that report. Multiple datasets in a report can use the data
source, but datasets within other reports cannot. You use a report-specific data source when only one report requires a specific
connection and you do not want to manage the data source separately after it is published. After the report is published, the data
source is managed as part of the properties for the report.

To view instructions about working with a report-specific data source, click the following topic:

How to create a report-specific data source (Report Designer)

Common Connection Strings

To connect to SQL Server 2000, you must set the data source type to Microsoft SQL Server. The following example shows a
connection string for the AdventureWorks database on a local SQL Server default instance.

data source="(local)";initial catalog=AdventureWorks

To connect to an Analysis Services 2000 server, you must set the data source type to OLE DB. The following example shows a
connection string for the FoodMart 2000 database on a local Analysis Services server.

Provider=MSOLAP.2;Data Source=localhost;Initial Catalog=FoodMart 2000

To connect to an Oracle server, you must set the data source type to Oracle. The Oracle client tools must be installed on the
Report Designer computer and on the report server. The following example shows a connection string for the an Oracle server
with a name of myserver.

Data Source=myserver

You can also use OLE DB and ODBC to connect to other sources of data. For example, you can specify the OLE DB data source
type, select the OLE DB Provider for Microsoft Directory Services, and connect to your local Active Directory.

Note It is recommended that you not add login information such as passwords to the connection string. Report
Designer provides a separate tab on the Data Source dialog box that you can use to enter credentials.

See Also

Defining Report Data

Managing Data Source Connections

Reporting Services - Designing and Creating Reports

Querying a Data Source
The query information for a report is stored in a dataset. A dataset contains a pointer to the data source, the query itself,
parameters, and collation information. The query that is contained in a dataset varies depending on the data source type.

The following table describes the topics in this section.

Topic Description
Retrieving Relational Data from a SQL
Server Database

Discusses how to retrieve data from a SQL
Server database.

Retrieving Multidimensional Data from
Analysis Services

Discusses how to retrieve data from an
Analysis Services database.

Retrieving Data from Other Data Sources Discusses how to retrieve data from other
OLE DB data sources.

Using Dynamic Queries Describes how to alter the structure of a
query through an expression.

Working with Multiple Datasets Describes how to use more than one
dataset in a report.

See Also

Defining Report Data

Reporting Services - Designing and Creating Reports

Retrieving Relational Data from a SQL Server Database
Retrieving Relational Data from a SQL Server Database

After creating a SQL Server data source, you can build a dataset that uses that data source to query the SQL Server database.
When you create a dataset, you can indicate how you want to retrieve the data: by specifying a table, by specifying a stored
procedure, or by defining a query. You can also specify properties such as Timeout and CaseSensitivity, and define which report
parameters pass values to query parameters.

To view instructions about creating a dataset, click the following topic:

How to create a dataset (Report Designer)

Using Generic Query Designer

When you create a SQL Sever dataset, Report Designer displays a generic query designer. This designer consists of two panes: a
query pane and a results pane. You can use the generic designer to write queries that are not supported by the graphical interface.
Unlike the graphical query designer, the generic query designer does not check query syntax or restructure the query.

Using Graphical Query Designer

Report Designer also provides a graphical query designer that you can use to design Transact-SQL queries. This view is divided
into four areas, or panes.

Pane Function
Diagram Displays graphic representations of the tables in the query. Use this

pane to select fields and define relationships between tables.
Grid Displays a list of fields returned by the query. Use this pane to define

aliases, sorting, filtering, grouping, and parameters.
SQL Displays the Transact-SQL query represented by the diagram and grid

panes. Use this pane to write or update a query using Transact-SQL
query language.

Result Displays the results of the query. To run the query, right-click in any
pane, and then click Run.

Changing information in any of the first three panes will affect the other two. For example, adding a table in the diagram pane will
automatically add the table to the Transact-SQL query in the SQL pane. Adding a field to the query in the SQL pane will
automatically add the field to the list in the grid pane and update the table in the diagram pane.

To perform actions within a certain pane, such as adding a table to the diagram pane, right-click within the pane and then click the
desired menu item.

Note If you create or update a query using the query designer, but do not switch to Layout view before saving the
report, your changes to the query may not be saved. To ensure that your query is saved, switch to Layout view before
saving the report.

Using Query Parameters

If your query contains parameters, Report Designer automatically creates corresponding report parameters in the report when
you type the query. When the report runs, values for the report parameters are passed to the query parameters. For example, the
following SQL query creates a report parameter named EmpID:

SELECT FirstName, LastName FROM Employee WHERE EmployeeID = @EmpID

You can manage the relationship between report parameters and query parameters on the Parameters tab of the Dataset dialog
box. Queries with parameters that are tied to report parameters do not require the DECLARE statement.

Although report parameters are created automatically from query parameters, you manage report parameters separately in the
report layout view. Also, if you change the name of a query parameter, or delete a query parameter, the report parameter that
corresponds to the query parameter is not automatically changed or deleted. You can remove the report parameter by using the
Report Parameters dialog box. For more information, see Using Parameters in a Report.

Using Stored Procedures

You can use stored procedures to return data in a dataset. To do this, set the command type for the dataset to StoredProcedure,
and then provide the name of the stored procedure. Reporting Services supports stored procedures that return only one set of
data.

If a stored procedure has a parameter with a default value, you can access that value in Reporting Services by using the DEFAULT
keyword as a value for the parameter. If the query parameter is tied to a report parameter, the user can type or select the word
DEFAULT in the input box for the report parameter.

See Also

Querying a Data Source

Connecting to a Data Source

Reporting Services - Designing and Creating Reports

Retrieving Multidimensional Data from Analysis Services
Retrieving Multidimensional Data from Analysis Services

After creating an Analysis Services data source, you can build a dataset that uses that data source to query the Analysis Services
database. Queries are written using Multidimensional Expressions (MDX). When the query is run, the resulting data is converted
to a flattened rowset for use in the report.

When you create an Analysis Services dataset, the generic query designer is displayed. This designer consists of two panes: a
query pane and a results pane. You can type the MDX query in the query pane and check the returned data in the results pane.

To view instructions about creating a dataset, click the following topic:

How to create a dataset (Report Designer)

Using Parameters in MDX

Parameters are not supported by the OLAP data provider. However, you can use a query expression to change an MDX query
based on parameters or other data in the report. For more information about dynamic queries, see Using Dynamic Queries.

See Also

Querying a Data Source

Connecting to a Data Source

Reporting Services - Designing and Creating Reports

Retrieving Data from Other Data Sources
Retrieving Data from Other Data Sources

You can retrieve data from any source of data that can be accessed through OLE DB or ODBC.

To view instructions about creating a dataset, click the following topic:

How to create a dataset (Report Designer)

Retrieving Data from Oracle

When you create a dataset based on an Oracle data source, you can use the graphical or generic query designer to design queries
for the report. Although the queries you write are specific to Oracle, the designer is the same designer that is used for datasets
based on SQL Server. For information about the graphical and generic query designers, see Retrieving Relational Data from a SQL
Server Database.

You can use one of two data processing extensions to connect to an Oracle database: the Oracle data processing extension, or the
OLE DB data processing extension using the Oracle data provider.

Support for parameters in Oracle depends on the data provider that is used to connect to the Oracle database. If your query
contains named parameters (for example, SELECT * FROM <table> WHERE <column name> = :ParameterName) then you must
use the Oracle data processing extension. If your query contains unnamed parameters (for example, SELECT * FROM <table>
WHERE <column name> = ?), then you must use the OLE DB data processing extension and select Microsoft OLE DB Provider for
Oracle as a data provider.

Note In some cases, the graphical query designer does not function correctly with parameters in an Oracle query. If
your query contains parameters, use the generic query designer.

Retrieving Data from OLE DB and ODBC

The graphical query designer does not support all OLE DB and ODBC data sources. If the graphical query designer returns
undesired results, use the generic query designer.

Populating the Fields List

When you create a query and then view the results of the query or switch to Layout view, Report Designer attempts to
automatically populate the Fields list. For some data sources, Report Designer may be unable to retrieve field data and populate
the Fields list. There are several steps you can take to resolve this issue.

Make sure that you have permissions to retrieve field information from the database. For some data sources, you may have
permissions to access the table or object, but not have permissions to view the columns within the table or object.
Refresh the fields list. In Data view, click the Refresh Fields button. Report Designer will attempt to retrieve field
information and populate the Fields list.
Run the query in the generic query designer. The graphical query designer may not be able to run queries against some
data sources.
Construct the Fields list manually. In Data view, click the Edit Selected Dataset (...) button. On the Fields tab, for Field
Name, type the name of the field as you want it to appear in Report Designer. For Type, select Database Field, and for
Value, type the name of the column as it is returned from the table or object. Repeat these steps for each field that you
want to use in your report.

See Also

Querying a Data Source

Connecting to a Data Source

Reporting Services - Designing and Creating Reports

Using Dynamic Queries
Using Dynamic Queries

You can use expressions in queries to create queries that change based on values in the report. Using dynamic queries, you can
alter the basic structure of a query when the report is run. For example, you could write an expression that changes the table or
fields from which data is retrieved based on the user's locale information.

You must use the generic query designer to write a query expression. Also, if you use an expression for a query, Report Designer
cannot automatically derive fields and parameters from the query. You must manually define all of the fields that the query is
expected to return. You must also manually define report and query parameters. One way to simplify this process is to write a
normal query that returns the same fields and uses the same parameters that the query expression does. Report Designer can use
this query to automatically derive the fields and parameters. After this is done, you can change the query to an expression.

A walkthrough demonstrates how to create a report that uses a dynamic query. For more information, see Walkthrough - Using a
Dynamic Query in a Report.

See Also

Querying a Data Source

Reporting Services - Designing and Creating Reports

Working with Multiple Data Sets
Working with Multiple Datasets

When you use multiple data regions in a report, you can configure each data region to use a different dataset. For example, you
can add a chart to a report that shows a summary of sales information for a store based on one dataset, and a detail table of
recent orders based on another dataset. If a report uses only one dataset, all data regions use that dataset by default.

You manage datasets in the Data view. For information about creating datasets, see Retrieving Relational Data from a SQL Server
Database, Retrieving Multidimensional Data from Analysis Services, and Retrieving Data from Other Data Sources. After you
define a dataset, you can associate a data region with it.

To view instructions about associating a data region with a dataset, click a topic in the following list:

How to associate a data region with a dataset (Report Designer)

See Also

Querying a Data Source

Reporting Services - Designing and Creating Reports

Filtering Data
There are several ways to dynamically filter data in a report: using parameters, using filters, and using a dynamic query. The
method you choose depends on the capabilities of the data source, performance requirements, persistence of the dataset, and
how complex you want the report to be.

Using Parameters

To filter data at the source, use parameters. To use parameters, write a query that contains query parameters. Report Designer will
attempt to detect any query parameters and automatically create report parameters that supply the query parameters with data.
You can also manually associate query parameters with report variables through the Parameters tab of the Dataset dialog box.

To view instructions about associating query parameters with values on the report, click the following topic:

How to associate a query parameter with a report parameter (Report Designer)

Not all data sources support query parameters. In this case, you may want to use a filter or a dynamic query.

Using Filters

You can also apply filters to a dataset or data region. Filters limit the data that is displayed to the user after all of the data is
retrieved from the dataset. Use filters when the data source does not support query parameters. Also use filters when persisted
reports, such as snapshots, are run by users that view different sets of data. The full dataset is retrieved, stored on the report
server, and then any number of users can use report parameters to filter the stored data for the report. .

For more information about filters, see Adding Filters to a Report.

Because the full set of data is retrieved and then filtered on the report server, the report may not perform as well as a report that
filters data at the source using query parameters.

Using Dynamic Queries

You can use dynamic queries to completely alter the structure of the report. You can use the expression in a dynamic query to
change the way the query uses parameters, fields, and clauses. For more information about dynamic queries, see Using Dynamic
Queries.

See Also

Defining Report Data

Reporting Services - Designing and Creating Reports

Working with Data Regions
A data region is an area on a report that contains data from a data source that is repeated. Types of data regions are list, matrix,
table, and chart.

The following table describes the topics in this section.

Topic Description
Adding a Table Describes tables and how to add them to a

report.
Adding a Matrix Describes matrices and how to add them

to a report.
Adding a List Describes lists and how to add them to a

report.
Adding a Chart Describes charts and how to add them to

a report.
Grouping Data in a Report Discusses how to use grouping within

data regions.
Sorting Data in a Report Discusses how to use sorting within data

regions.

You can put multiple data regions on a report. You can also nest data regions. There are no limits on the number of data regions
you can have, aside from how it may affect performance on the report server. Multiple data regions that are not nested are not
linked and can exist above, below or beside each other.

Data regions can share parameters, other global variables, and datasets. Parameters exist outside data regions, so any field or
property that uses an expression can reference the parameter collection.

Repeating Data Regions

You can use nested data regions to display the same data region multiple times in your report. For example, you can create a sales
order data report that repeats a single sales order table multiple times, once for each employee. You do this by creating another
data region, such as a list, and setting the grouping on that data region to employee. You would then place the table inside of the
data region. Datasets for both data regions must be the same. If you need to create a report that uses grouping like this (such as
in a master-detail page) but with different datasets, use a subreport.

Empty Data Regions

When the dataset for a data region returns no data, the data region is not rendered. Instead, a text box is rendered that displays
the value of the NoRows property. You can edit the NoRows property in the Property window of Report Designer. The
appearance properties for the data region (for example, Color, Font, and Padding) apply to the NoRows text box.

Data Regions and Other Report Items

In some rendering formats, as a data region expands, the position of other report items can change. This occurs if a report item is
placed below the bottom edge of a table, matrix, or list, or to the right of the right edge of a matrix. For example, if you place a text
box below and to the left of a table, the table will push the text box down as it expands. However, if you place the same text box
directly to the left of the table, but not below it, it will stay in position to the side of the table.

If you want a report item to stay in place to the side or above a data region as it expands, create a rectangle, place it above the
bottom edge or to the left of the right edge of the data region, and then place the report item within the rectangle. The rectangle
stays in place next to the data region, and the report item stays within the rectangle.

See Also

Defining Report Data

Reporting Services - Designing and Creating Reports

Adding a Table
Adding a Table

A table is a data region in which data is arranged into columns and rows. Tables have a static set of columns, and the number of
rows in the table depends on the data in the dataset.

Using Report Designer, you can define tables that contain table headers, table footers, group headers, group footers, and detail
rows. Your tables can contain as many columns as you want. Cells within the table can also span multiple columns.

When you choose a tabular report in Report Wizard, a table is automatically added to the report. For more information, see
Creating a Report Using Report Wizard. You can also add a table to a new blank report or an existing report.

Working with Tables

In Report Designer, you add a table by selecting the table control from the Toolbox and placing it on the report. After the table is
on the report, you can add columns and rows.

In Report Designer, you work with columns, rows, and the table by interacting with handles. Handles are gray boxes that appear
above and next to the table when it is selected. The handles that run across the top of the table are column handles. The handles
that run down the side of the table are row handles. The handle where the column and row handles meet is the corner handle.
You can perform most actions with columns, rows, and the table by right-clicking on column handles, row handles, or the corner
handle, respectively.

To view instructions about working with tables, click a topic in the following list:

How to add, move or delete a table (Report Designer)
How to insert or delete a column (Report Designer)
How to insert or delete a row (Report Designer)

Adding Content to a Table

After you add a table, you can add fields to the table. Each cell in the table contains a text box by default. You can type any
expression into any cell, or you can change the item within the cell to another item (for example, change a text box in a cell to an
image).

To view instructions about adding content to a table, click a topic in the following list:

How to add a field to report layout (Report Designer)
How to add an expression (Report Designer)
How to change an item within a cell (Report Designer)

Each table on a report is associated with a dataset. If the report contains a single dataset, the table is automatically associated with
that dataset when you place it on the report. If the report contains multiple datasets, you must associate the table with the correct
dataset. To view instructions about changing the dataset for a table, click the following topic:

How to associate a data region with a dataset (Report Designer)

Grouping and Sorting

Data in a table can be placed into groups. For example, for a table that contains a list of cities by country and region, you would
place country in a group, region in a group within the country group, and cities in detail.

To view instructions about grouping and sorting, click a topic in the following list:

How to add a group to a table (Report Designer)
How to add sorting to a table (Report Designer)

You can also insert and delete columns; header, footer, and detail rows; and group header and footer rows.

Merging Cells

Multiple contiguous cells within a table can be combined into a single cell. This is known as a column span or a cell merge. Cells

can only be combined across columns. When you merge cells, only the data in the first cell is preserved. If data exists in other
cells, the data is removed. Merged cells can be split into their original columns.

To merge cells, select the cells, right-click the selected cells, and then click Merge Cells. To split merged cells, right-click the
merged cells, and then click Split Cells.

Adding Subtotals

To add a subtotal to a table, add an aggregate expression to a cell in a group row. For example, if you have a table that is grouped
by product category, product subcategory, and product, and you want to display a sum of sales by category and subcategory, you
would place the expression =Sum(Fields!Sales.Value) in the group header or footer rows for category and subcategory. Sum is
an aggregate function. Reporting Services will calculate the sum of the values within the group and display the subtotal.

For information about aggregate functions, see Aggregate Functions.

See Also

Working with Data Regions

Reporting Services - Designing and Creating Reports

Adding a Matrix
Adding a Matrix

A matrix is a data region in which data is arranged into columns and rows. Matrices provide functionality similar to crosstabs and
pivot tables. Unlike a table, which has a static set of columns, matrix columns can be dynamic. Using Report Designer, you can
define matrices that contain static and dynamic rows and columns.

When you choose a matrix report in Report Wizard, a matrix is automatically added to the report. For more information, see
Creating a Report Using Report Wizard. You can also add a matrix to a new or existing report.

Working with Matrices

When you first create a matrix in Report Designer, the matrix displays four cells. The upper-left cell is the corner cell. You can use
the corner cell to display a label for the matrix, or you can leave it empty. The upper-right cell is a column header, which can
contain a field or expression by which to group the data. The lower-left cell is a row header, which also can contain a field or
expression by which to group the data. The lower-right cell contains an aggregate expression for the detail data.

When the report runs, dynamic column headers expand right (or left, if the Direction property of the matrix is set to RTL) for as
many columns as there are groups. Dynamic rows expand down the page. The data that appears in the detail cells are aggregates
based on the intersections of columns and rows.

To view instructions about working with matrices, click the following topic:

How to add, move or delete a matrix (Report Designer)

Adding Content to a Matrix

After you add a matrix, you can add fields to the matrix. Each cell in the matrix contains a text box by default. You can type any
expression into any cell, or you can change the item within the cell to another item (for example, change a text box in a cell to an
image).

To view instructions about adding content to a table, click a topic in the following list:

How to add a field to report layout (Report Designer)
How to add an expression (Report Designer)
How to change an item within a cell (Report Designer)

Each matrix on a report is associated with a dataset. If the report contains a single dataset, the matrix is automatically associated
with that dataset when you place it on the report. If the report contains multiple datasets, you must associate the matrix with the
correct dataset. To view instructions about changing the dataset for a matrix, click the following topic:

How to associate a data region with a dataset (Report Designer)

Dynamic Columns and Rows (Groups)

You can add additional dynamic columns and rows to the default matrix. Dynamic columns and rows are used to group data by
field. When you add a new dynamic column by creating a new column or row header, the new header is nested within the original
header. When the report runs, the new header is repeated within the original header. For example, a nested dynamic column or
row can have a header containing a field for region, and within that header, another header that contains a field for city.

You can add dynamic columns and rows by dragging fields from the fields list onto the matrix. When you drag a field onto a
matrix that has an existing column or row header, you can choose to place the field on the inside or outside of the header. Report
Designer displays a bar on the top or bottom of an existing column header, or to the left or right of an existing row header,
depending on where you drag the field. For example, to create a new dynamic column that contains an existing dynamic column,
you would drag the field to the existing column header, position it so that a bar is displayed on the top border of the header cell,
and then drop the field.

To view instructions about working with matrices, click the following topic:

How to add a dynamic column or row to a matrix (Report Designer)

Static Columns and Rows

You can also add static rows and columns to display additional detail data. When you add a static column or row, Report Designer
divides the header in two, but instead of arranging the headers so that one header resides within the other, each detail cell is
displayed side-by-side with headers that contain a static label. For example, a static column or row can be a detail cell with a field
for projected revenue, next to another detail cell with a field for actual revenue.

To view instructions about working with matrices, click the following topic:

How to add a static column or row to a matrix (Report Designer)

Sorting

You can sort data within a matrix by any expression. To view instructions about sorting, click the following topic:

How to add sorting to a matrix (Report Designer)

Adding Subtotals

To add a subtotal to a matrix, add a subtotal to an individual group within the matrix. Groups do not have subtotals by default. To
add a subtotal to a group, right-click the group column or row header and then click Subtotal. This will open a new header for
the subtotal. Reporting Services will calculate the subtotal based on the aggregate in the data cell for the group.

For information about aggregate functions, see Aggregate Functions.

Displaying Data on Either Side of Row Headers

You are not limited to displaying row headers on the side of the matrix. You can move the row headers inward, so that columns of
data appear before the row headers. To do this, modify the GroupsBeforeRowHeaders property for the matrix. You can access
this property through the Properties window or the General tab of the Matrix Properties dialog box. The value for this property
is an integer; a value of 2 will display two groups of matrix data before displaying the column containing the row headers.

See Also

Working with Data Regions

Reporting Services - Designing and Creating Reports

Adding a List
Adding a List

A list is a data region that is repeated with each group or row in the dataset. A list can be used for free-form reports or in
conjunction with other data regions. Using Report Designer, you can define lists that contain any number of report items. A list
can be nested within another list to provide multiple groupings of data.

To view instructions about working with lists, click a topic in the following list:

How to add, move or delete a list (Report Designer)
How to add a group to a list (Report Designer)
How to add a sorting to a list (Report Designer)
How to add a field to report layout (Report Designer)
How to associate a data region with a dataset (Report Designer)

See Also

Working with Data Regions

Reporting Services - Designing and Creating Reports

Adding a Chart
Adding a Chart

A chart is a data region that displays a graphical representation of the data in a report. You can add charts of different types and
specify values and category and series groups. You can also change the style of the chart to include different colors, symbols, and
3D effects.

To view instructions about working with charts, click a topic in the following list:

How to add, move or delete a chart (Report Designer)
How to add data to a chart (Report Designer)
How to associate a data region with a dataset (Report Designer)

Chart Data

Data for charts in Reporting Services is organized into three areas: values, category groups, and series groups.

Values

When you define a chart, you add at least one value series to the chart. Values determine the size of the chart element for each
category group. For example, values determine the height of a column in a column chart and the size of a slice in a pie chart.

Value series are static. If you define a single value series and no series groups, a single chart element is displayed for each
category group. For example, a simple column chart with one value series displays a single column for each category group. If you
define multiple values, the chart will display a chart element for each value series. If there are multiple value series, the chart
legend displays the name of each value series.

In most charts, you will group data by category. In this case, you must use an aggregate expression for the value expressions in
the chart. You do not need an aggregate expression if you are not grouping data, that is, there is one category value for each value
in the dataset. However, you do need an aggregate expression if you are using series groups.

Category Groups

Use category groups to group data. Categories provide the labels for chart elements. For example, in a column chart, category
labels are placed on the x-axis of the chart, one for each set of columns.

You can nest category groups. When you define multiple category groups, each category is nested within another category. For
example, in a column chart that displays products by model, the first category group would be model, and the second category
group would be product. The column chart would display groupings of products by model on the x-axis.

Series Groups

Series groups are optional. You can use series to add an additional dimension of data to a report. For example, in a column chart
that displays sales by product, you can add a series group to display data by year for each. Series groups labels are placed in the
legend of the chart.

Series groups are dynamic. Using a series group results in one chart element for each value in the group. When combined with
categories, this can result in a large number of chart elements. In a simple chart with a single value series and no series groups,
the chart displays one chart element (for example, a column) for each category. In a complex chart that uses category groups with
series groups, the chart displays a chart element for each series group for each category.

Chart Types

Reporting Services supports the following chart types: column, bar, line, pie, scatter, bubble, area, doughnut, and stock.

Column

A column chart displays series as sets of vertical columns that are grouped by category. Values are represented by the height of
the columns as measured by the y-axis. Category labels are displayed on the x-axis. Column charts are typically used to compare
values between categories.

The types of column charts are as follows:

Column chart
Stacked column chart
100% stacked column chart

Bar

A bar chart displays series as sets of horizontal bars that are grouped by category. Values are represented by the length of the
bars as measured by the x-axis. Category labels are displayed on the y-axis. Bar charts are typically used to compare values
between categories.

The types of bar charts are as follows:

Bar chart
Stacked bar chart
100% stacked bar chart

Line

A line chart displays series as a set of points connected by a line. Values are represented by the height of the point as measured
by the y-axis. Category labels are displayed on the x-axis. Line charts are typically used to compare values over time.

The types of line charts are as follows:

Line chart
Smooth line chart

Pie

A pie chart displays value data as percentages of the whole. Categories are represented by individual slices. The size of the slice is
determined by the value. Pie charts are typically used to show percentages.

The types of pie charts are as follows:

Pie chart
Exploded pie chart

Series groups are ignored for pie charts.

XY (Scatter)

An XY or scatter chart displays series as a set of points. Values are represented by the position of the point in the chart space.
Categories are represented by different points in the chart. Scatter charts are typically used to compare distinct values across
categories.

The types of scatter charts are as follows:

XY scatter chart
Scatter with data points connected by lines
Scatter with data points connected by smoothed lines

Bubble

A bubble chart displays series as a set of symbols. Values are represented by the position of the point in the chart space and the
size of the symbol. Categories are represented by different symbols in the chart.

There is one type of bubble chart, named bubble chart.

Area

An area chart displays series as a set of points connected by a line, with an area filled in below the line. Values are represented by
the height of the point as measured by the y-axis. Category labels are displayed on the x-axis. Area charts are typically used to
compare values over time.

The types of area charts are as follows:

Area chart
Stacked area chart
100% stacked area chart

Doughnut

A doughnut chart displays value data as percentages of the whole. Categories are represented by individual slices. The size of the
slice is determined by the value. Doughnut charts are typically used to show percentages.

The types of doughnut charts are as follows:

Doughnut chart
Exploded doughnut chart

Series groups are ignored for doughnut charts.

Stock

A stock chart displays series as a set of lines with markers for high, low, close, and open values. Values are represented by the
height of the marker as measured by the y-axis. Category labels are displayed on the x-axis.

The types of stock charts are as follows:

High-low-close chart
Open-high-low-close chart
Candlestick chart

Chart Appearance

You can change the appearance of the plot and chart areas, the x- and y-axes, and legend in a chart. You can also apply a three-
dimensional effect to the chart.

Note The gradient plot area fill does not appear when the three-dimensional effect is applied.

Note If you use a font size larger than 10 pt in the chart legend, some legend labels may be truncated. This may only
be visible in larger font sizes.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company Web site at www.dundas.com.

See Also

Working with Data Regions

http://www.dundas.com/

Reporting Services - Designing and Creating Reports

Grouping Data in a Report
Grouping Data in a Report

The data within each of the data regions (table, matrix, and list) can be grouped by fields and expressions. You can use groups
inside of a table to provide logical sections of data within the table. You can also add subtotals and other expressions to the group
header or footer. In a matrix, groups are displayed as dynamic columns or rows. You can nest groups within other groups, and
you can also add subtotals. You can use lists to provide separate groups in a report, or you can place lists within lists for nested
groups.

To view instructions about adding grouping to data regions, click a topic in the following list:

How to add a group to a table (Report Designer)
How to add a dynamic column or row to a matrix (Report Designer)
How to add a group to a list (Report Designer)

Recursive Hierarchies

A recursive hierarchy is a hierarchy of data in which all parent-child relationships are represented in the data. For example, an
organization chart displaying manager-employee relationships can be created using a recursive hierarchy. In such a hierarchy, the
table would have columns for employee ID and manager ID. The manager ID would refer to the employee ID of another
employee, resulting in a hierarchy of employees.

To build a recursive hierarchy, you must set certain properties for a group within a data region. Use a field containing a unique ID
(for example, the employee ID) as the group expression, and then use a field containing the ID of the parent (for example, the
manager ID) in the Parent property. A group that is defined as a recursive hierarchy (that is, a group that uses the Parent
property) can have only one group expression.

Use the following walkthrough to create a recursive hierarchy using the Employee table in the AdventureWorks database. This
walkthrough assumes that you know how to create reports, datasets, queries, and tables. For information about these features,
see the documentation about these features.

1. In Data view, create a dataset based on the AdventureWorks database.
2. In the dataset, use the following query:

SELECT FirstName, LastName, EmployeeID, ManagerID
FROM Employee
ORDER BY LastName, FirstName

3. In Layout view, create a table.
4. In the first detail cell of the table, type the following expression:

=Fields!FirstName.Value & " " & Fields!LastName.Value

5. Right-click the table corner, and then click Properties.
6. On the Group tab, click Details Grouping.
7. On the General tab, in the Expression box, type or select the following expression:

=Fields!EmployeeID.Value

8. In the Parent Group box, type or select the following expression:

=Fields!ManagerID.Value

Level Function

You can use the Level function in text box padding to indent employee names based on their level in the hierarchy. To do so with
the table in the above example, use the following expression for the left padding of the text box in the first detail cell:

=Convert.ToString(2 + (Level()*10)) & "pt"

The padding properties all require a string in the format nnxx, where nn is a number and xx is the unit of measure. By default,
padding for a textbox is 2pt. The above expression builds a string that uses the Level function to increase the size of the padding

based on level. For example, a row with a level of 1 would result in a padding of 12pt (2 + (1*10)), and a row with a level of 3
would result in a padding of 32pt (2 + (3*10)).

For information about the Level function, see Level Function.

See Also

Working with Data Regions

Adding a Table

Adding a Matrix

Adding a List

Adding a Chart

Reporting Services - Designing and Creating Reports

Sorting Data in a Report
Sorting Data in a Report

The data within each of the data regions (table, matrix, and list) can be sorted by fields and expressions.

To view instructions about adding sorting to data regions, click a topic in the following list:

How to add a sorting to a table (Report Designer)
How to add a sorting to a matrix (Report Designer)
How to add sorting to a list (Report Designer)

Interactive Sorting

You can use report parameters to sort data in a report based on user input. There are two ways that you do this: create a dynamic
query to change the sort order of a result set based on a parameter, or use a parameter to change the sorting properties of a data
region. You can also use different methods to supply the parameter to the report.

Using a Dynamic Query

One way to sort data in a report is to use a query expression to vary the query based on a parameter value. For example, you
could change the ORDER BY clause of a Transact-SQL query that retrieves data from the Employee table and sorts the data by first
name, last name, or title.

In this example, there is a parameter called SortOrder that contains a list of available values: FirstName, LastName, and Title.
These values correspond to the columns in the Employee table from which data is retrieved. The parameter also includes a default
value of LastName, so that the report sorts employees by last name by default when it is run. For information about report
parameters, see Using Parameters in a Report.

Note The values in the available values list must be the names of the columns in the database, not the field names in
the report. In many cases, these names are similar, but they can differ.

The query in the report is dynamic, an expression that constructs the query based on the parameter value. The following
expression, when used as the query in a data set, sorts the resulting data by the value in the SortOrder report parameter. For
more information about dynamic queries, see Using Dynamic Queries.

="SELECT FirstName, LastName, Title FROM Employee ORDER BY " & Parameters!SortOrder.Value

Sorting with in a Data Region

Another way to sort data is to supply the parameter value to the sort expression in a data region. For example, you could change
the sort expression for the Product table on the report, so that it sorts by product name or price.

The parameter in this example is similar to the one in the example for dynamic queries. There is a parameter called SortOrder,
that contains a list of available values: Name and ListPrice. These values correspond to the fields in the field list. The parameter
also includes a default value of Name, so that the report sorts products by name by default when it is run. For information about
report parameters, see Using Parameters in a Report.

Note The values in the available values list must be the names of the fields in the fields list, not the columns in the
database. In many cases, these names are similar, but they can differ.

The sort expression for the Product table in the report includes the SortOrder parameter. The following expression, when used in
the sort expression, sorts the data in the table by the value in the SortOrder report parameter. For information about how to add
sorting to a table or other data region, see the links provided previously in this topic.

=Fields(Parameters!SortOrder.Value).Value

Appearance of the Report Parameter

If you create a parameter and use it in a way similar to the previous examples, the user will see a list box from which they can
choose the parameter value. When the user runs the report, the data is sorted by the chosen value. However, instead of providing
a list box, you may want to provide a link in the table the user can click to sort the data. To do this, add a URL action to the text box
that contains the text you want the user to click (for example, the text box in a column header).

The following expression, when used in a URL action, provides a link that sorts the data in the table by list price. Global properties
are used to construct the URL based on the location of the report on the report server when it is run. This is useful if you do not
know where the report will reside on the server. Also included is a parameter that turns off the toolbar. This hides the parameter
lists, but it also hides page controls.

= Globals!ReportServerUrl & "?" & Globals!ReportFolder & "/" & Globals!ReportName &
"&SortOrder=ListPrice&rc:Toolbar=false"

Note This link may function only after the report is published to a report server. You may experience unexpected
results when it is used in Report Designer preview.

For information about using URL actions, see Adding a Hyperlink. For information about constructing a URL that runs a report,
see URL Access.

See Also

Working with Data Regions

Reporting Services - Designing and Creating Reports

Adding Fields to a Report
In Report Designer, a field represents a field, or column, in a database. A field can be a direct link to the database field or alias, or it
can be a calculated field that is based on fields in the database. Fields can be used in an expression for the value of a text box or
image.

The following table describes the topics in this section.

Topic Description
Working with the Fields List Discusses the Report Designer fields list.
Adding a Text Box Describes text boxes and how to add them

to a report.
Working with Data-Bound Images Describes data-bound images and how to

add them to a report.

See Also

Defining Report Data

Reporting Services - Designing and Creating Reports

Working with the Fields List
Working with the Fields List

The Fields window displays a list of fields for each dataset. When a dataset is created, Report Designer retrieves a list of fields
from the data source and populates the list. A field can be either a database field or a calculated field. A database field contains the
name of the field from the query. A calculated field contains an expression. You can use calculated fields to provide additional
fields that are not in the database and that are not calculated in the query. All fields have names. By default, a database field has
the same name as the column name from the query, but it can be changed. Calculated fields must be given a name when they are
created.

You can drag a field from the fields list onto the report. If you drag a field onto the report body, list, or other unstructured area,
Report Designer will create a text box with a field expression in it. If you drag a field onto a structured area like a table or a matrix
cell, or onto an existing text box, a field expression is placed in the cell or text box.

To view instructions about working with fields, click a topic in the following list:

How to add, edit or delete a field in the fields list (Report Designer)

See Also

Adding Fields to a Report

Reporting Services - Designing and Creating Reports

Adding a Text Box
Adding a Text Box

A text box is an item in a report that contains an expression. This expression can contain static text, point to a field in the database,
or calculate data.

To view instructions about working with text boxes, click a topic in the following list:

How to add, move, or delete a text box (Report Designer)
How to add a field to report layout (Report Designer)
How to add an expression (Report Designer)

The following table provides examples of expressions that you can use in a text box.

Expression Description
="This is static text" Displays a static text label.
=Fields!UnitCost.Value Displays the value of the UnitCost field.
=Fields!TotalUnits.Value *
Fields!UnitCost.Value

Multiplies the value of the TotalUnits field
and the UnitCost field and displays the
result.

=Sum(Fields!TotalUnits.Value) Calculates the sum of the TotalUnits field
across all rows in the group.

Growing and Shrinking a Text Box

By default, text boxes are a static size. If you want to expand a text box vertically based on its contents, modify the CanGrow
property for the text box. If you want to allow the text box to shrink based on its contents, modify the CanShrink property for the
text box. You can access these properties through the Properties window or through the Textbox Properties dialog box.

See Also

Adding Fields to a Report

Using Expressions

Reporting Services - Designing and Creating Reports

Working with Data-Bound Images
Working with Data-Bound Images

Using Report Designer, you can add images that are stored in a database to your report. You use the same image control as the
one used for static images, but with a set of properties that indicate that the image is stored in a database.

To view instructions about working with data-bound images, click a topic in the following list:

How to add a data-bound image (Report Designer)

See Also

Adding Fields to a Report

Reporting Services - Designing and Creating Reports

Defining Report Appearance
Reports in Reporting Services can include a variety of graphical and style elements. A report can span multiple pages, with a
header and footer that are repeated on each page; can contain graphical elements such as images and lines; and can have any
number of fonts, colors, and styles, which can be static or dynamic. Subreports and controls can also be displayed within a report.

The following table describes the topics in this section.

Topic Description
Adding a Header and Footer Describes headers and footers and how to

add them to a report.
Working with Multiple Pages Discusses how to set up reports with

multiple pages.
Writing Multi-column Reports Discusses the graphical elements of a

report, such as rectangles, lines, and
images.

Working with Graphical Elements Discusses the graphical elements of a
report, such as rectangles, lines, and
images.

Applying Style Properties to Items in a
Report

Discusses style properties and how they
apply to report items.

Adding Conditional Formatting Discusses how to display items
dynamically and apply style to a report.
This topic also includes information about
special visual effects, such as green-bar
reports.

Adding a Subreport Describes subreports and how to add
them to a report.

See Also

Defining Report Data

Reporting Services - Designing and Creating Reports

Adding a Header and Footer
A report can contain a header and footer that run along the top and bottom of each page, respectively. Headers and footers can
contain text, images, and other report items, but they cannot contain data regions, subreports, or an item that refers directly to a
field.

In Report Designer, page headers and footers are displayed on the first and last page of a report by default. You can suppress
page headers and footers on the first and last page of the report. To change this setting, change the PrintOnFirstPage or
PrintOnLastPage property for the header or footer.

Report headers and footers are not the same as the headers and footers in a table. For information about table headers and
footers, see Adding a Table.

To view instructions about working with headers and footers, click a topic in the following list:

How to add or remove a page header or footer (Report Designer)
How to hide a page header or footer on the first or last page (Report Designer)

Displaying Data in a Page Header or Footer

Page headers and footers can contain static content, but they are more commonly used to display varying content like page
numbers or information about the contents of a page.

You cannot refer directly to a field in a text box in a page header or footer. (For example, you cannot use the expression
=Fields!LastName.Value.) To display field information in a page header or footer, place the field expression in a text box in the
body of the report, and then refer to that text box in the page header or footer. The following expression displays the contents of
the first instance of the LastName text box on the page:

=First(ReportItems!LastName.Value)

You cannot use aggregate functions on report items in the report body. You can only use an aggregate function on a report item
(like the First() function described previously) in a page header or footer.

For common expressions in page headers and footers, see Common Expressions.

Adding a Page N umber to a Footer

One of the more common uses for a footer is to display a page number. To display a page number in the footer of a report, create
a text box in the footer and add the following expression:

="Page " & Globals.PageNumber

For more information about expressions, see Using Expressions.

Adding a Report Border

You can add a border to a report by adding borders to the headers, footers, and report body. In the header, add a left, top, and
right border. In the body, add a left and right border. In the footer, add a left, bottom, and right border. If you do not use headers
in your report, you can place borders around just the report body.

If you add a report border that appears on the page header and footer, do not suppress the header and footer on the first and last
pages of the report. If you do, the border may appear cut off at the top or bottom of the first and last pages of the report.

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Working with Multiple Pages
A report can consist of multiple pages of data. Reports rendered by rendering extensions that support page breaks can have page
breaks at the beginning or end of a designated report item. Additionally, reports rendered by rendering extensions that support
page size have automatic page breaks based on the page size.

You can add page breaks at the beginning or the end of a rectangle, table, matrix, list, chart, or group. Reports rendered by
rendering extensions that do not support page size display all data within the item or group on a single page, with remaining
items or groups displayed on subsequent pages. Reports rendered by rendering extensions that support page size apply page
breaks based on the page size, in addition to applying page breaks at beginning or end of the item. By default, report items do not
have page breaks. To add a page break to the beginning or end of an item, change the PageBreakAtEnd or PageBreakAtStart
property for the item.

You can also define the page size for a report. Rendering extensions that support page size create page breaks based on the page
size. Rendering extensions that do not support page size ignore page size. To change the page size for a report, change the
PageHeight and PageWidth properties of the report.

Note The width of a report can be greater than the width of the page. If a report that is wider than the specified page
size is rendered by a rendering extension that supports page size, the resulting report may flow horizontally across
multiple pages. If you have designed a report to be one page wide, but it renders across multiple pages, check that the
width of the report is not larger than the page width.

To view instructions about working with multiple pages, click a topic in the following list:

How to add a page break (Report Designer)
How to change page size (Report Designer)

The following table describes the rendering extensions that are provided with Reporting Services and the page break options that
they support.

Rendering extension Page break on item or
group

Page size

HTML Yes No
Excel Yes No
CSV No No
XML No No
Image Yes Yes
PDF Yes Yes

Large Reports and Page Breaks

If you design a report that returns large amounts of data, you can improve performance of the report during rendering and
viewing by using page breaks. Some rendering extensions, such as HTML, render reports as a single page if there are no page
breaks. Because of this, reports with large amounts of data may become too large to be opened in a Web browser. To prevent this,
place page breaks on the report.

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Writing Multi-column Reports
Reporting Services supports multiple columns in a report. When you define more than one column in a report, Report Designer
calculates the width of the columns in the report based on the number of columns, the width of the report, and the width of the
space between columns. It then displays a decreased design surface so that you can place report items on the report that will fit
within the column.

Columns "snake" within the report. For example, a list box placed within a multi-column report will display data from the top left
of the page to the bottom left of the page, and then continue the list in the adjacent column at the top of the page. You can define
as many columns you wish.

To view instructions about adding columns to a report, click the following topic:

How to add columns to a report (Report Designer)

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Working with Graphical Elements
You can use rectangles, lines, and images to create visual effects within a report. Rectangles and lines are not associated with data.
Images can either be static or based on data in a database.

The following table describes the topics in this section.

Topic Description
Adding a Rectangle Describes rectangles and how to add them

to a report.
Adding a Line Describes lines and how to add them to a

report.
Adding an Image Describes images and how to add them to

a report.

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Adding a Rectangle
Adding a Rectangle

A rectangle is an item within a report that contains other items. You can use a rectangle to display a box around a set of items.
When you move the rectangle, the items that are contained within the rectangle move along with it.

You can use rectangles as containers to group items together. This makes it easier to move items in Report Designer, but it also
has an effect on rendering. For example, a table will push items down if they are positioned below the data region. To anchor an
item in place, you can place the report item inside of a rectangle that has an upper edge above the lower edge of the table.

To view instructions about working with rectangles, click the following topic:

How to add a rectangle (Report Designer)

See Also

Working with Graphical Elements

Reporting Services - Designing and Creating Reports

Adding a Line
Adding a Line

A line is an item within a report that draws a line from one point on the report to another. It is used solely for visual effect.

To view instructions about working with lines, click the following topic:

How to add a line (Report Designer)

See Also

Working with Graphical Elements

Reporting Services - Designing and Creating Reports

Adding an Image
Adding an Image

An image is an item within a report that contains a reference to an image that is stored on the report server, embedded within the
report, or stored in a database. An image can be a logo or picture, or it can be a picture that is repeated with rows of data. You can
also use an image as a background for certain report items.

When you use a server-based image in a report, the image item contains a path that points to an image on the report server. This
image can be one that already exists, or you can publish image files to a report server from a project in Report Designer. (Within
Report Designer, these images are known as project images.) When you use an embedded image, however, the image data is
stored within the report definition and does not exist as a separate file.

Server-based images work well for logos and static pictures that are shared among several reports or Web pages. Embedded
images ensure that the images are always available to the report, but they cannot be shared. Report definitions with server-based
images are smaller than definitions with embedded images.

Images can also be displayed from binary data stored in a database. For example, the pictures that appear alongside product
names in a product list are database images. For more information, see Working with Data-Bound Images.

To view instructions about adding an image to a report, click the following topic:

How to add an image (Report Designer)

Embedding Images

You can embed images in a report so that all image data is stored within the report definition. When you embed an image, Report
Designer MIME-encodes the image and stores it as text in the report definition. Using an embedded image ensures that the image
is always available to the report, but it also increases the size of the report definition.

To view instructions about embedding an image, click the following topic:

How to embed an image in a report (Report Designer)

Project Images

You can store images in the report project. When the reports in the project are published, the images are also published to the
same location. When you use a project image in a report, the image source is External and the value for the image is the name of
the image, using a relative URL path (for example, image1.jpg).

To view instructions about adding a project image, click the following topic:

How to add an image to a project (Report Designer)

Background Images

You can use an image as a background image in the body of the report or in a rectangle, text box, list, matrix, or table. A
background image has the same properties as an image. You can also specify how the image is repeated to fill the background of
the item.

Note Some rendering extensions, like the HTML rendering extension, render the background image for the report
body in the body, the page header, and the page footer. You can define a separate background image for the page
header and footer, but if no image is defined, the report uses the background image of the body. Other rendering
extensions, like the Image rendering extension, do not render the body background image in the page header and
footer.

To view instructions about adding a background image, click the following topic:

How to add a background image to an item (Report Designer)

See Also

Working with Graphical Elements

Reporting Services - Designing and Creating Reports

Applying Style Properties to Items in a Report
Each item in a report can be associated with style properties. These properties include border style, color, font style, and padding.
Some styles are not available to all report items. For example, font style properties apply only to a text box or subtotal, because
only those items can contain text. You can apply the same border style and padding properties to all sides of a report item, or you
can apply different styles to each side of the item.

You apply a style property to an item in Report Designer by selecting the item and editing the properties in the properties dialog
box for the item or by changing the property for the item in the Properties window.

Note The FontFamily property lists all fonts that are available on the local computer. If the font that you want exists
on the report server but not on the local computer, you can type the name of the font. Any fonts used in a report
definition must exist on the report server or client computer for the text to display properly. For example, reports
rendered with the Image rendering extension require the fonts to be installed on the server. Reports rendered with the
HTML rendering extension require the fonts to be installed on the client computer.

The following table describes each style property.

Style property Description
BackgroundColor The color of the background of the item.
BackgroundGradientType The direction in which the background gradient is

displayed.
BackgroundGradientEndColor The end color of the background gradient. If

omitted, the item has no background gradient.
BackgroundImage An image to display as the background of the item.
BorderColor The color of the border of the item.
BorderStyle The style of the border of the item. For example,

dotted, dashed, or solid.
BorderWidth The width of the border of the item.
Calendar The calendar to use to format dates.
Color The color of the text in the item.
Direction Indicates the direction of the text.
FontFamily The name of the font to use for the text in the item.
FontSize The size of the font in points.
FontStyle The style of the font for the text in the item. For

example, italic.
FontWeight The thickness of the font for the text in the item.
Format The .NET Framework formatting string to apply to

the item. For example, C for currency.
Language The primary language of the text.
LineHeight The height of a line of text. If not specified, the

height is based on the font size.
NumeralLanguage The digit format to use, based on the language

property.
NumeralVariant The variant of digit format to use.
PaddingBottom The amount of space to insert between the bottom

edge of the item and the text or image in the item.
PaddingLeft The amount of space to insert to the between the

left edge of the item and the text or image in the
item.

PaddingRight The amount of space to insert between the right
edge of the item and the text or image in the item.

PaddingTop The amount of space to insert between the top edge
of the item and the text or image in the item.

TextAlign The horizontal alignment of the text in the item. For
example, left, right, or center.

TextDecoration Indicates a special effect to apply to the font for the
text in the item. For example, underline.

UnicodeBiDi The level of bidirectional embedding.
VerticalAlign The vertical alignment of the text in the item. For

example, top, middle, or bottom.
WritingMode Indicates the direction of the text.

Note Some TextDecoration styles may not display in some environments. For example, the Overline text
decoration does not display in a chart.

The Borders Toolbar

Report Designer provides a borders toolbar that you can use to change the border style of the selected report items. To apply
borders through the toolbar, select the report item, table, or matrix cell. On the toolbar, select the border style, the border width,
and the border color, and then select the borders to which you want to apply the style. The borders available on the toolbar vary
depending on which report items are selected. For example, you can only apply style to the outer border of a text box, but multiple
borders are available for multiple cells in a table. The style is not applied until you select the borders on the toolbar.

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Adding Conditional Formatting
You can design a report so that different styles are applied to items based on the data in the report. For example, negative
numbers in a report can be displayed in red.

To make styles dynamic, use an expression instead of a static value for the style properties of the item. For example, to make a text
box return a negative value in red for the field Profit, use the following expression in the Color property of the text box:

=iif(Fields!Profit.Value < 0, "Red", "Black")

Creating a Green-Bar Report

To apply a green-bar effect (alternating colors every other row) to a table in a report, use the following expression in the
BackgroundColor property of each text box in the detail row:

=iif(RowNumber(Nothing) Mod 2, "PaleGreen", "White")

You can build expressions based on a number of functions. For more information, see Using Expressions.

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Formatting Text
You can set the format of a text box by updating the Format property with a formatting string. For example, you can set a text box
for a number field to display the number as currency. You can use .NET formatting strings or a custom formatting string for the
Format property.

Note To apply formatting to a text box, the text box must contain an expression, for example,
=Fields!LineTotal.Value or =1000. If the text box is not an expression, that is, if the text in the text box does not
begin with the equal (=) sign, then the text is interpreted as a string, and formatting does not apply.

Formatting Numbers

The following table describes common .NET number formatting strings.

Format string Name
C or c Currency
D or d Decimal
E or e Scientific
F or f Fixed-point
G or g General
N or n Number
P or p Percentage
R or r Round-trip
X or x Hexadecimal

You can modify many of the format strings to include a precision specifier, for example, a formatting string of D0 formats the
number so that it has no digits after the decimal point. You can also use custom formatting strings, for example, #,###.

Formatting Dates

The following table describes common .NET date formatting strings.

Format string Name
d Short date
D Long date
t Short time
T Long time
f Full date/time (short time)
F Full date/time (long time)
g General date/time (short time)
G General date/time (long time)
M or m Month day
R or r RFC1123 pattern
Y or y Year month

You can also a use custom formatting strings, for example, dd/MM/yy.

For more information about .NET formatting strings, see this Microsoft Web site.

See Also

Defining Report Appearance

http://go.microsoft.com/fwlink/?linkid=9256

Reporting Services - Designing and Creating Reports

Adding a Subreport
A subreport is an item that displays another report inside the body of a main report. The report that the subreport displays is
stored on a report server, usually in the same folder as the parent report. You can set up the parent report to pass parameters to
the subreport. A subreport can be repeated within data regions, using a parameter to filter data in each instance of the subreport.

If you have used subreports in the past to display separate groups of data, consider using data regions (tables, matrices, lists, or
charts) instead. Reports with data regions instead of subreports may perform better than reports that include subreports. When
you run a report that contains a subreport, the report server has to process each report. If the report contains data regions
instead, the report server processes only one report.

Use data regions when you need to nest groups of data from the same data source within a single data region. Use subreports if
you need to nest groups of data from different data sources within a single data region, reuse a subreport in multiple parent
reports, or display a standalone report inside of another report. You can create a "briefing book" by placing multiple subreports
inside the body of another report.

Note In Report Designer, if you preview a report that contains subreports, and then change the subreport, the
preview may not be updated. To see the changes click the Refresh button.

Using Parameters in Subreports

You can pass parameters from the parent report to the subreport. To do this, you must define a report parameter in the report
that you use as the subreport. When you place the subreport in the parent report, you can select the report parameter and a value
to pass to the report parameter.

Note The parameter that you select from the subreport is a report parameter, not a query parameter. For more
information about parameters, see Using Parameters in a Report.

You can place a subreport in the main body of the report, or in a data region. If you place a subreport in a data region, the
subreport will repeat with each instance of the group or row in the data region. To pass a value from the group or row to the
subreport, in the subreport value property, use a field expression for the field containing the value you want to pass to the
subreport parameter.

To view instructions about working with subreports, click the following topic:

How to add a subreport and parameters (Report Designer)

See Also

Defining Report Appearance

Reporting Services - Designing and Creating Reports

Adding Interactive Features
Reports in Reporting Services can contain a variety of features that provide interactivity to users. Users can influence the
appearance of a report and the data it contains by typing or selecting a value before running the report. A user can show or hide
items in a report and click links that go to other reports or Web pages. Reporting Services also provides a document map, which
acts as a table of contents. A user can click items in the document map to jump to areas within a report.

The following table describes the topics in this section.

Topic Description
Using Parameters in a Report Describes parameters and how to add

them to a report.
Adding Filters to a Report Describes filters and how to add them to a

report.
Drilldown Reports and Hiding Items Describes how to add show-and-hide

functionality to items on a report. This
feature can be used for drilldown reports.

Working with Links Discusses hyperlinks, drillthrough reports,
and bookmark links.

Adding a Document Map Describes the document map and how to
add it to a report.

See Also

Building Reports

Reporting Services - Designing and Creating Reports

Using Parameters in a Report
You can add parameters to a report to manipulate data the report contains. Report parameters can be used to pass values to an
underlying query, to pass values to a filter, or as variables for calculating data within the report. A report parameter text box is
usually presented to the user when they run the report, but a report can also use a default parameter without presenting the
choice to the user.

When you create a parameter, you must give the parameter a name. Parameter names are required, and must be unique within
the report. You can also set a data type for the parameter. A data type is required, and is set to String by default. You can also
specify whether the parameter will take a null value, and whether it will take a blank value. You can also define a prompt for the
user, set available values for the user to choose from, and set a default value for the parameter.

Prompt

When the report is run in a browser, the parameter is displayed in a box at the top of the report. To set the text that is displayed
next to the box, set a prompt for the parameter. The prompt can be the name of the parameter or directions to the user, for
example, "Year" or "Select a year". If the prompt is left blank, and a default parameter value is specified, the default value is used,
and the input box for the parameter is not displayed when the user runs the report. If prompt is left blank, and no default
parameter value is specified, the report cannot run.

Data Type

By default, the data type for a report parameter is String. If you add a report parameter that requires a data type other than
String, you must change the data type of the report parameter. For example, if you create a query that uses a query parameter to
filter data in a number field, you must change the report parameter that is created to type Float or Integer.

Available Values

You can define a list of values that the user can choose from when the user runs the report. These are called available values or
valid values. An available values list contains a set of value/label pairs. When the report is run, the user sees the label. When the
user selects a label, the corresponding value is used as the parameter value .

There are two kinds of available values lists: nonqueried and queried. When you specify a nonqueried list, you can define a static
list of value/label pairs. The entire list is contained within the report parameter definition. Each value and label can be a static
value or can be generated from an expression.

Specifying a queried available values list causes the report server to retrieve a set of values and labels from a dataset when the
report is run. When you specify a queried available values list, you select the dataset, the field to use for value, and the field to use
for label. It is recommended that you create a simplified dataset to be used specifically by the parameter, rather than using a more
complicated dataset that is also used by data regions within the report. Using the same dataset for both the valid values list and
the data regions in the report may produce unexpected results in the valid values list. For information about creating datasets, see
Querying a Data Source.

Default Value

You can also define a default value for the parameter. If all parameters in a report have default values, the report will immediately
display data when the report is run. If at least one parameter does not have a default value, then the report will only display data
after the user enters all parameter values and runs the report.

There are two kinds of default values, nonqueried and queried. A nonqueried default value can be a static value or an expression.
When you use a queried default value, you specify the dataset and field from which to retrieve the default value. If the query
returns multiple rows, a value from the first row of the returned dataset is used. For information about creating datasets, see
Querying a Data Source.

You can also choose to not specify a default value. If you do this, you must specify a prompt.

Adding a Report Parameter

To view instructions about working with parameters, click the following topic:

How to add, edit or delete a report parameter (Report Designer)

Query Parameters

When you create a query that contains a query parameter, a report parameter is automatically created based on the name of the
query parameter. If you remove or change the name of the query parameter, the corresponding report parameter is not removed
or renamed. For more information about queries and query parameters, see Querying a Data Source.

Using Parameters to Sort Data

You can use parameters to add sorting to a report. For more information, see Sorting Data in a Report.

Cascading Parameters

You can define a set of parameters where the list of values for one parameter depends on the value chosen in another parameter.
For example, the first parameter could present a list of divisions within the company. When the user selects a division, the second
parameter is updated with a list of departments within the division. A third parameter could then display a list of employees
within the selected department. The value for the employee parameter could then be used to filter the report to a particular
employee. This process of filtering a list of parameter values based on a value from another parameter is known as cascading,
dependent, or hierarchical parameters.

To create the cascading parameters in the above example, using queried available values lists, do the following:

1. Create a dataset named Divisions containing a query that retrieves a list of divisions. This should be a simple query, with
columns for Division and DivisionID, as in the following SQL query.

SELECT DivisionID, DivisionName FROM Divisions ORDER BY DivisionName

2. Create a dataset named Departments containing a query that retrieves a list of departments, filtered by division, as in the
following SQL query.

SELECT DepartmentID, DepartmentName FROM Departments WHERE DivisionID = @Division
ORDER BY DepartmentName

3. Create a dataset named Employees containing a query that retrieves a list of employees, filtered by department, as in the
following SQL query.

SELECT FirstName + ' ' + LastName AS EmployeeName, EmployeeID FROM Employees WHERE
DepartmentID = @Department ORDER BY LastName, FirstName

4. Edit the Division report parameter. The parameter already exists because the @Division query parameter was used in the
Departments dataset. Specify a queried available values list that uses the Division dataset, setting the label to
DivisionName and the value to DivisionID.

5. Edit the Department report parameter. The parameter already exists because the @Department query parameter was
used in the Employees dataset. Specify a queried available values list that uses the Department dataset, setting the label
to DepartmentName and the value to DepartmentID.

6. Create a new parameter and give it a name of Employee. Set the prompt to "Employee". Specify an available values list that
uses the Employees dataset, setting the label to EmployeeName and the value to EmployeeID.

7. Use the value from the Employee parameter to filter the data in the report to the employee.

For information about creating datasets, For information about creating datasets, see Querying a Data Source. For information
about creating and modifying report parameters, see the above section titled "Adding a Report Parameter."

The order of the parameters determines the order in which the parameters are displayed on the report. Order is important for
cascading parameters because it also determines the order in which the parameter queries are run. Parameters that are
dependent on other parameters must be placed after the parameters on they depend.

Rapidly Changing Valid Values

When you specify available values that change rapidly, the values can become obsolete before the report is run. This can result in
a user selecting a value from the list that is no longer valid by the time the user submits the value and runs the report. To avoid
this, write queries that return datasets that will not change in the time a typical user takes to select a value and run the report.

Also avoid rapidly changing nonqueried values. For example, if you provide the current date as an available value, write an
expression that uses the DateTime.Today property instead of the DateTime.Now property. This eliminates the rapidly changing
time portion of the value.

See Also

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Adding Filters to a Report
You can add filters to datasets and data regions to filter data after it has been retrieved from the data source. This is useful for
reports in which you want to retrieve all data from the data source before applying a filter, or for reports that use a data source
that does not support the use of query parameters to filter data.

To view instructions about working with filters, click the following topic:

How to add a filter (Report Designer)

See Also

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Drilldown Reports and Hiding Items
Occasionally, you may want to place items on a report but hide them from view when the report is rendered. You can also cause a
report item to toggle between visible and hidden when the user clicks on another report item, or you can hide a report item based
on the contents of another report item. You can hide any report item, including groups, columns, or rows in a table or matrix.

The primary use of hidden items is to provide a report that shows summary data but also provides a way for the user to drill
down into detail data. To create this drilldown effect, select the group, column, or row to hide, set its hidden state to True, and
then set the toggle item to the name of a text box in a containing group. When the report is rendered, the user can click the text
box to expand and collapse the detail data.

Note When you create a drilldown report, the visibility information must be set on the group, column, or row that
you want to hide, not a single text box in the row or column. If you set these options on just the text box, the rows or
columns will not collapse.

To view instructions about hiding report items, click a topic in the following list:

How to hide an item (Report Designer)
How to add a visibility toggle to an item (Report Designer)

Note Some rendering extensions may render hidden items. For example, the XML rendering extension
provided with Reporting Services renders all report items, regardless of whether they are hidden. By contrast,
the HTML rendering extension does not render hidden items; hidden items are not visible even in the HTML
source.

Note The show-and-hide toggle on report items is supported only by rendering extensions that support user
interactivity, such as the HTML rendering extension.

See Also

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Working with Links
You can add links to reports so that the user can open Web pages or other reports, or jump to another location within the same
report.

The following table describes the topics in this section.

Topic Description
Adding a Hyperlink Describes how to use hyperlinks to Web

pages.
Adding a Drillthrough Report Link Describes how to use drillthrough report

links to other reports.
Adding a Bookmark Link Describes how to use bookmark links to

other areas in a report.

See Also

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Adding a Hyperlink
Adding a Hyperlink

You can add a hyperlink to a report item so that a user can access a Web page by clicking the item. A hyperlink can be a static URL
or an expression that evaluates to a URL. If you have a field in a database that contains URLs, the expression can contain that field,
resulting in a dynamic list of hyperlinks in the report. You can add hyperlinks only to text boxes and images.

To view instructions about adding hyperlinks, click the following topic:

How to add a hyperlink (Report Designer)

See Also

Working with Links

Reporting Services - Designing and Creating Reports

Adding a Drillthrough Report Link
Adding a Drillthrough Report Link

A drillthrough report is a report that a user opens by clicking a link within another report. Drillthrough reports commonly contain
details about an item that is contained in an original summary report. For example, you might have a sales summary report with a
list of orders and sales totals. When a user clicks an order number in the summary list, another report opens that contains details
about the order.

A drillthrough report typically contains parameters that are passed to it by the summary report. In this the above sales summary
report example, the drillthrough report contains a parameter that takes an order ID as a value. The summary report includes a
drillthrough report link for each order number that opens the target detail report when clicked and passes the order ID to it.

Any report that is stored on the report server can be a drillthrough report. You can add drillthrough links only to text boxes and
images.

To view instructions about adding drillthrough links, click the following topic:

How to add a drillthrough report link (Report Designer)

See Also

Working with Links

Reporting Services - Designing and Creating Reports

Adding a Bookmark Link
Adding a Bookmark Link

A bookmark link is a link that a user clicks to move to another area or page in a report. You set up bookmarks by setting a
bookmark on a report item to which users can jump, and by adding a bookmark link on the item you want the users to click to
jump to the item with the bookmark. You can set bookmarks on any report item, but you can add bookmark links only to text
boxes and images.

To view instructions about using bookmarks, click a topic in the following list:

How to set a bookmark (Report Designer)
How to add a bookmark link (Report Designer)

See Also

Working with Links

Reporting Services - Designing and Creating Reports

Adding a Document Map
You can use a document map in a report to provide users with a way to navigate to certain areas of the report. When you view an
HTML, Excel, or PDF report, a document map appears along the side of the report. Clicking items in the document map refreshes
the report and displays the area of the report that corresponds to the item in the document map.

To create a document map, you add document map labels to report items. If any report items have a label, a document map is
automatically generated when a user views the report in HTML Viewer.

To view instructions about working with document maps, click the following topic:

How to add items to a document map (Report Designer)

See Also

Adding Interactive Features

Reporting Services - Designing and Creating Reports

Using Expressions
All report items that display data use expressions to retrieve data from fields and perform calculations. Expressions are used in
report items and properties with functions that provide aggregate data and formatting.

The following table describes the topics in this section.

Topic Description
Manipulating Data with Expressions Discusses expressions and how to use

them in report items.
Using Global Collections Discusses international formatting

functions and how to use them within
expressions.

Using Functions Discusses functions and how to use them
within expressions.

Writing Custom Code Discusses custom assemblies and how to
use them in a report.

See Also

Building Reports

Reporting Services - Designing and Creating Reports

Manipulating Data with Expressions
Reporting Services supports expressions that are written in Microsoft Visual Basic® .NET. You can use these expressions to
calculate the value of a report item, or to calculate values for style and formatting properties or other report item properties.

Fields

The most basic type of expression is one that displays a field value in a text box. This is called a field expression. To link a database
field to a report item, the expression must include the Fields collection, the name of the field, and the Value property. For
example, the following expression displays a product name in a text box:

=Fields!Product.Value

An expression can be a short expression that refers to a field object or a long expression that supports decision functions or
formatting based on fields or other report items. Expressions in report items and properties must begin with an equal character
(=). If you do not begin text with this character, the text will be evaluated as a string. Examples of expressions are as follows:

This expression concatenates the FirstName field and the LastName field.

=Fields!FirstName.Value & " " & Fields!LastName.Value

This expression performs a sum aggregation on the LineTotal field.

=Sum(Fields!LineTotal.Value)

For more information about the Fields collection, see Using Global Collections.

Conditional Formatting

You can use expressions to manipulate the style of a report item. For example, you can write an expression for the Color property
of a text box that displays the data in a different color depending on the data. An example of conditional formatting is as follows.

This expression, used in the Color property of a text box, displays the value in red if the value in the Cost field is greater than
the value in the Revenue field. If the condition is not met, the text appears black.

=IIf(Fields!Cost.Value > Fields!Revenue.Value, "Red", "Black")

For more information about conditional formatting, see Adding Conditional Formatting.

Report Functions

Reporting Services provides a host of built-in functions that you can use in expressions. These include standard aggregate
functions like Sum, Min, Max, and Count, in addition to functions like RowNumber and RunningValue. For a full list of
functions with descriptions, see Using Functions.

Class References and Custom Code

Expressions within a report can also contain references to the classes within the Microsoft.VisualBasic, System.Convert, and
System.Math namespaces. If you use classes or functions from other system namespaces, you must use the full namespace, for
example, System.Collections.ArrayList.

If you need additional functionality not provided by report functions or by the default classes, you can use custom code, another
standard assembly, or a report code block. You do this by building a custom assembly and then by referencing that assembly
from within an expression. For more information, see Writing Custom Code.

Query Expressions

The query contained within a dataset can be an expression. You can use this feature to design reports in which the query changes
based on input from the user, data in other datasets, or other variables. For more information about queries, see Querying a Data
Source.

Using Locale

You can use the locale settings on a client computer to determine how a report appears to the user. For example, you can create a
report that uses a different query expression based on the locale information returned by the User.Language global variable. The
query may change to retrieve localized information from a different column depending on the language returned. You can also
use an expression in the language settings of the report or report items based on this variable.

While you can change the language settings of a report, you must be careful about any display issues this may cause. For
example, changing the locale setting of the report can change the date format in the report, but it can also change the currency
format. Unless there is a conversion process in place for the currency, this may cause the incorrect currency symbol to be
displayed in the report. To avoid this, set the language information on the individual items that you want to change, or set the
item with the currency data to a specific language.

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Using Global Collections
Reporting Services provides five global object collections that you can use in expressions: Fields, Globals, Parameters,
ReportItems, and User. To access these collections, you can use standard Visual Basic collection syntax. Examples of this syntax is
as follows:

Collection!ObjectName

=User!Language

Collection.Item("ObjectName")

=User.Item("Language")

Collection("ObjectName")

=User("Language")

You can also use property syntax to access items in the Globals and User collections. An example of this is as follows:

Collection.ObjectName

=Globals.PageNumber

Members of the Globals and Users collections return variants. If you want to use a global variable in an expression that requires
a specific data type, you must first cast the variable. For example, CDate(Globals!ExecutionTime).

Fields

The Fields collection contains the fields within the current dataset. They are typically used to display data in text boxes in a report,
but they can also be used in other report items, properties, and functions. Items within the Fields collection have two properties,
Value and IsMissing. The Value property returns the value that was retrieved for the field in the dataset. The IsMissing property
indicates whether the field exists in the dataset. This is useful for queries that return variable sets of fields. The Value property of
missing fields is Null.

The most common syntax for accessing a field object is property syntax, for example, Fields!Product.Value. You can also use the
collection syntax described above. Some data providers provide additional properties for a field. You can access these properties
using the collection syntax. If the data provider does not support the property, or the field is not found when the query is
executed, the value for the property is Null for properties of type String and Object, and zero for properties of type Integer.

A report contains one virtual Fields collection for each dataset in the report. Fields must be unique within a collection, but the
same field name can exist in multiple collections. When referring to a field within a data region, the dataset for the data region
determines which collection is used. When referring to a field within an aggregate expression, the dataset for the scope
determines which collection is used.

Globals

The Globals collection contains the global variables for the report. The following table describes the members of the Globals
collection.

Member Type Description
ExecutionTime DateTime The date and time that the report began to run.
PageNumber Integer The current page number. Can be used only in

page header and footer.
ReportFolder String The full path to the folder containing the report.

This does not include the report server URL.
ReportName String The name of the report as it is stored in the report

server database.
ReportServerUrl String The URL of the report server on which the report

is being run.
TotalPages Integer The total number of pages in the report. Can be

used only in page header and footer.

Examples of global variables are as follows:

This expression, placed in a text box in the footer of a report, provides page number and total pages in the report.

=Globals.PageNumber & " of " & Globals.TotalPages

This expression provides the name of the report and the time it was run. The time is formatted with the .NET formatting
string for short date.

=Globals.ReportName & ", dated " & Format(Globals.ExecutionTime, "d")

Parameters

The Parameters collection contains the report parameters within the report. Parameters can be passed to queries, used in filters,
or used in other functions that alter the report appearance based on the parameter. Items within the Parameters collection have
two properties, Value and Label. The Value property returns the value for the parameter, for example, EmployeeID. The Label
property returns the user-friendly label for the parameter, for example, EmployeeName. If no label is specified, the value of the
Label property is the same as the Value property. If more than one label is associated with the same value, the first matching
label is used. Parameters can be accessed through either the property syntax or the collection syntax.

ReportItems

The ReportItems collection contains the text boxes within the report. Items within the ReportItems collection have only one
property: Value. The value for a ReportItems item can be used to display or calculate data from another field in the report. To
access the value of the current text box, use Me.Value or simply Value. Me.Value and Value cannot be used inside aggregate
functions. Use the full syntax to access the value of a text box from within one of these functions.

An example of a report item expression is as follows:

This expression, placed in the a text box, displays the value of a text box named Textbox1.

=ReportItems!Textbox1.Value

User

The User collection contains data for the user that is running the report. The following table describes the members of the User
collection.

Member Type Description
Language String The language ID of the user running the report.
UserID String The ID of the user running the report.

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Using Functions
You can use functions within expressions to manipulate the data within report items, properties, and other areas in the report. The
following table describes the topics in this section.

Topic Description
Aggregate Functions Describes functions that you can use to

aggregate data in datasets, data regions,
and groupings.

Other Functions Describes other functions that are
available within Reporting Services.

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Aggregate Functions
Aggregate Functions

You can use functions within expressions to provide aggregate data. For example, you can calculate a sum of all values in a
particular field by using the Sum function. You can use aggregate functions in expressions for any report item.

Standard Aggregates

The following table describes the standard aggregate functions that are supported by Reporting Services.

Function Description
Avg Returns the average of all non-null values from the specified

expression.
Count Returns a count of the values from the specified expression.
CountDistinct Returns a count of all distinct values from the specified

expression.
CountRows Returns a count of rows within the specified scope.
First Returns the first value from the specified expression.
Last Returns the last value from the specified expression.
Max Returns the maximum value from all non-null values of the

specified expression.
Min Returns the minimum value from all non-null values of the

specified expression.
StDev Returns the standard deviation of all non-null values of the

specified expression.
StDevP Returns the population standard deviation of all non-null

values of the specified expression.
Sum Returns a sum of the values of the specified expression.
Var Returns the variance of all non-null values of the specified

expression.
VarP Returns the population variance of all non-null values of the

specified expression.

Running Aggregates

The following table describes the running aggregate functions that are supported by Reporting Services.

Function Description
RowNumber Returns a running count of all rows in the specified scope.
RunningValue Uses a specified function to return a running aggregate of the

specified expression.

Custom Aggregates

The following table describes the custom aggregate functions that are supported by Reporting Services.

Function Description
Aggregate Returns a custom aggregate of the specified expression, as

defined by the data provider.

Scope

Each aggregate function uses the Scope parameter, which defines the scope in which the aggregate function is performed. A valid
scope is the name of a grouping, dataset, or data region. Only groupings or data regions that directly or indirectly contain the
expression can be used as a scope. For expressions within data regions, Scope is optional for all aggregate functions. If you omit
the Scope parameter, the scope of the aggregate is the innermost data region or grouping to which the report item belongs.
Specifying a scope of Nothing sets the scope to the outermost data region to which the report item belongs.

For expressions outside of data regions, Scope refers to a dataset. If a report contains more than one dataset, Scope is required. If
a report contains only one dataset and Scope is omitted, the scope is set to the dataset. You cannot specify the Nothing keyword
for report items outside of a data region.

You cannot use the Scope parameter in page headers or footers.

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Aggregate Function
Aggregate Function

Returns a custom aggregate of the specified expression, as defined by the data provider.

Syntax

Aggregate(Expression, Scope)

Parameters

Expression
The expression on which to perform the aggregation. The expression must be a simple field reference.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. All group
expressions for the specified scope must contain simple field references. For more information about the Scope parameter, see
Aggregate Functions.

Return Type

Return type is determined by the data provider. Returns Nothing if the data provider does not support this function or data is not
available.

Remarks

All containing groups for the item that uses this function must have simple field references as their group expressions.

Example

The following code example provides a custom aggregation of line item totals in the Order grouping or data region:

Aggregate(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Avg Function
Avg Function

Returns the average of all non-null values of the specified expression.

Syntax

Avg(Expression, Scope)

Parameters

Expression
(Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float.

Example

The following example provides an average of all values in the Cost field contained in the outermost data region:

Avg(Fields!Cost.Value, Nothing)

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Count Function
Count Function

Returns a count of the non-null values of the specified expression.

Syntax

Count(Expression, Scope)

Parameters

Expression
(Variant or Binary) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.
Using an expression counts all non-null values of the specified expression.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns an Integer.

Example

The following code example provides a count of employees in the outermost data region:

Count(Fields!EmployeeID.Value, Nothing)

The following code example provides a count of all orders in the Orders grouping or data region:

Count(Fields!OrderID.Value, "Orders")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

CountDistinct Function
CountDistinct Function

Returns a count of all distinct values of the specified expression.

Syntax

CountDistinct(Expression, Scope)

Parameters

Expression
(Variant) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns an Integer.

Example

The following code example provides a count of managers in the Department grouping or data region:

CountDistinct(Fields!ManagerID.Value, "Department")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

CountRows Function
CountRows Function

Returns a count of rows within the specified scope.

Syntax

CountRows(Scope)

Parameters

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns an Integer.

Example

The following code example provides a count of rows in the Department grouping or data region:

CountRows("Department")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

First Function
First Function

Returns the first value of the specified expression.

Syntax

First(Expression, Scope)

Parameters

Expression
(Variant or Binary) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Determined by the type of expression.

Remarks

The First function returns a value after all sorting has been applied to the data.

Example

The following code example returns the first product number in the Category grouping or data region:

First(Fields!ProductNumber.Value, "Category")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Last Function
Last Function

Returns the last value of the specified expression.

Syntax

Last(Expression, Scope)

Parameters

Expression
(Variant or Binary) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Determined by the type of expression.

Remarks

The Last function returns a value after all sorting has been applied to the data.

Example

The following code example provides the last product number in the Category grouping or data region:

Last(Fields!ProductNumber.Value, "Category")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Max Function
Max Function

Returns the maximum value of all non-null values of the specified expression.

Syntax

Max(Expression, Scope)

Parameters

Expression
(Variant) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Determined by the type of expression.

Example

The following code example provides the highest total in the Year grouping or data region:

Max(Fields!OrderTotal.Value, "Year")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Min Function
Min Function

Returns the minimum value of all non-null values of the specified expression.

Syntax

Min(Expression, Scope)

Parameters

Expression
(Variant) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Determined by the type of expression.

Example

The following code example provides the lowest total in the innermost containing grouping or data region:

Min(Fields!OrderTotal.Value)

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

RowNumber Function
RowNumber Function

Returns a running count of all rows in the specified scope.

Syntax

RowNumber(Scope)

Parameters

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If a dataset is specified, the running value is not reset throughout the entire dataset. If a grouping is specified, the
running value is reset when the group expression changes. If a data region is specified, the running value is reset for each new
instance of the data region. For more information about the Scope parameter, see Aggregate Functions.

Return Type

Returns an Integer.

Example

The following code example provides a running count of rows in the outermost data region:

RowNumber(Nothing)

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

RunningValue Function
RunningValue Function

Returns a running aggregate of the specified expression.

Syntax

RunningValue(Expression, Function, Scope)

Parameters

Expression
(Data type is determined by the aggregate function specified in Function.) The expression on which to perform the aggregation.
The expression cannot contain aggregate functions.

Function
(Enum) The name of the aggregate function to apply to the expression. This function cannot be RunningValue, RowNumber,
or Aggregate.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If a dataset is specified, the running value is not reset throughout the entire dataset. If a grouping is specified, the
running value is reset when the group expression changes. If a data region is specified, the running value is reset for each new
instance of the data region. For more information about the Scope parameter, see Aggregate Functions.

Return Type

Determined by the aggregate function that is specified in the Function parameter.

Remarks

Restrictions for RunningValue are also determined by the aggregate function specified in the Function parameter. For more
information, see the topic for the aggregate function that you are interested in using.

Example

The following code example provides a running sum of the cost field in the outermost data region:

RunningValue(Fields!Cost.Value, Sum, Nothing)

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

StDev Function
StDev Function

Returns the standard deviation of all non-null values of the specified expression.

Syntax

StDev(Expression, Scope)

Parameters

Expression
(Integer or Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float.

Example

The following code example provides the standard deviation of line item totals in the Order grouping or data region:

StDev(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

StDevP Function
StDevP Function

Returns the population standard deviation of all non-null values of the specified expression.

Syntax

StDevP(Expression, Scope)

Parameters

Expression
(Integer or Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float.

Example

The following code example provides the population standard deviation of line item totals in the Order grouping or data region:

StDevP(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Sum Function
Sum Function

Returns a sum of the values of the specified expression.

Syntax

Sum(Expression, Scope)

Parameters

Expression
(Integer or Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float. Returns a Decimal for decimal expressions and a Double for all other expressions.

Example

The following code example provides a sum of line item totals in the Order grouping or data region:

Sum(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Var Function
Var Function

Returns the variance of all non-null values of the specified expression.

Syntax

Var(Expression, Scope)

Parameters

Expression

(Integer or Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float. Returns a Decimal for decimal expressions and a Double for all other expressions.

Example

The following code example provides the variance of line item totals in the Order grouping or data region:

Var(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

VarP Function
VarP Function

Returns the population variance of all non-null values of the specified expression.

Syntax

VarP(Expression, Scope)

Parameters

Expression
(Integer or Float) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. If Scope is specified, the aggregate function applies to all data in the dataset, grouping, or data region. For more
information about the Scope parameter, see Aggregate Functions.

Return Type

Returns a Float. Returns a Decimal for decimal expressions and a Double for all other expressions.

Example

The following code example provides a population variance of line item totals in the Order grouping or data region:

VarP(Fields!LineTotal.Value, "Order")

See Also

Aggregate Functions

Reporting Services - Designing and Creating Reports

Other Functions
Other Functions

Reporting Services provides additional functions that you can use within expressions. The following table describes these
functions.

Function Description
InScope Indicates whether the current instance of an item is within the

specified scope.
Level Returns the current level of depth in a recursive hierarchy.
Previous Returns the previous instance from the specified scope.

See Also

Using Functions

Reporting Services - Designing and Creating Reports

InScope Function
InScope Function

Indicates whether the current instance of an item is within the specified scope.

Syntax

InScope(Scope)

Parameters

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the function.

Return Type

Returns a Boolean.

Remarks

The InScope function is useful in data regions that have dynamic scoping, such as a matrix. For example, InScope can be used in
a drillthrough link in a matrix cell to provide a different report name and different sets of parameters depending on which cell is
clicked. An example of this is as follows:

This expression, used as the report name in a drillthrough link, opens the ProductDetail report if the clicked cell is in the
Month grouping, and the ProductSummary report if it is not.

=Iif(InScope("Month"), "ProductDetail", "ProductSummary")

This expression, used in the Omit property of a drillthrough report parameter, will pass the parameter to the target report
only if the clicked cell is in the Product grouping.

=Not(InScope("Product"))

Example

The following code example indicates whether the current instance of the item is within the Product dataset, data region, or
grouping:

InScope("Product")

See Also

Other Functions

Reporting Services - Designing and Creating Reports

Level Function
Level Function

Returns the current level of depth in a recursive hierarchy.

Syntax

Level(Scope)

Parameters

Scope
(String) The name of a dataset, grouping, or data region that contains the report items to which to apply the aggregate
function. Scope is optional.

Return Type

Returns an Integer. If Scope specifies a dataset or data region, or specifies a nonrecursive grouping (that is, a grouping with no
Parent element), Level returns 0. If Scope is omitted, it returns the level of the current scope. For more information about the
Scope parameter, see Aggregate Functions.

Remarks

The value returned by the Level function is zero based; that is, the first level in a hierarchy is 0.

The Level function can be used to provide indentation in a recursive hierarchy, such as an employee list. For more information
about recursive hierarchies, see Grouping Data in a Report.

Example

The following code example provides the level of row in the Employees grouping:

Level("Employees")

See Also

Other Functions

Reporting Services - Designing and Creating Reports

Previous Function
Previous Function

Returns the previous instance from the specified scope.

Syntax

Previous(Expression, AggFunction, PreviousScope, AggScope)

Parameters

Expression
(Variant or Binary) The expression on which to perform the aggregation. The expression cannot contain aggregate functions.

AggFunction
(Enum) The aggregate value to return. AggFunction must be specified if AggScope is specified, but may be omitted for detail
scope.

PreviousScope
(String) The name of a grouping that that contains the current scope. For more information about the Scope parameter, see
Aggregate Functions.

AggScope
(String) The name of a grouping that that contains the current scope. For more information about the Scope parameter, see
Aggregate Functions.

Return Type

Returns a Variant or Binary.

See Also

Other Functions

Reporting Services - Designing and Creating Reports

Writing Custom Code
You can write custom code that is used in expressions throughout a report. You can do this in two ways: embedding code within a
report, or by referring to methods within a custom assembly. Use embedded code for complex functions or functions that are
used multiple times in a single report. Use code assemblies to maintain code in a single place and share it across multiple reports.

Embedded Code

To use code within a report, you add a code block to the report. This code block can contain multiple methods. Methods in
embedded code must be written in Visual Basic .NET and must be instance based.

To view instructions about adding code to a report, click the following topic:

How to add code to a report (Report Designer)

Methods in embedded code are available through a globally defined Code member. You access these by referring to the Code
member and method name. The following example calls the method ToUSD which converts the StandardCost field value to a
dollar value:

=Code.ToUSD(Fields!StandardCost.Value)

Custom Assemblies

To use custom assemblies in report design, you must first create the assembly, make it available to Report Designer, add a
reference to the assembly in the report, and then use an expression within the report to refer to the methods within that
assembly. When the report is deployed to the report server, you must also deploy the custom assembly to the report server.

For information about creating a custom assembly and making it available to Reporting Services, see Using Custom Assemblies
with Reports.

To view instructions about adding a reference to a report, click the following topic:

How to add an assembly reference to a report (Report Designer)

To refer to custom code in an expression, you must call the member of a class within the assembly. How you do this depends on
whether the method is static or instance based. Static methods within a custom assembly are available globally within the report.
You can access static methods in expressions by namespace, class, and method name. The following example calls the method
ToGBP which converts the StandardCost field value from dollar to pounds sterling:

=CurrencyConversion.DollarCurrencyConversion.ToGBP(Fields!StandardCost.Value)

Instance-based methods are available through a globally defined Code member. You access these by referring to the Code
member, and then the instance and method name. The following example calls the instance method ToEUR which converts the
StandardCost field value from dollar to euro:

=Code.m_myDollarCoversion.ToEUR(Fields!StandardCost.Value)

Note In Report Designer, a custom assembly is loaded once and is not unloaded until you close Visual Studio. If you
preview a report, make changes to a custom assembly used in the report, and then preview the report again, the
changes will not appear in the second preview. To reload the assembly, close and reopen Visual Studio and the
preview the report.

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Common Expressions
Some expressions are commonly used in reports. These include expressions to change the appearance of data in a report, change
properties of report items, and affect how data is retrieved. This topic describes some expressions that can be used for common
tasks within a report.

Many expressions within a report contain functions. You can write expressions that use functions from the
Microsoft.VisualBasic, System.Convert, and System.Math namespaces, or you can add references to other assemblies or
custom code.

Functions

Most functions within a report are Visual Basic and report functions. You can format data, apply logic, and access report metadata
using these functions.

Visual Basic Functions

You can use Visual Basic functions to manipulate the data that is displayed in text boxes or that is used for parameters, properties,
or other areas of the report. This section provides examples demonstrating a few of these functions; for more information about
Visual Basic functions, see the Visual Basic .NET documentation. You can also use classes from .NET Framework; for more
information, see the .NET Framework Class Library documentation.

Date Functions

You can use Visual Basic functions to provide date information in your report.

The following expression contains the Today function, which provides the current date. This expression can be used in a text
box to display the date on the report, or in a parameter to filter data based on the current date.

=Today()

The DateAdd function is useful for supplying a range of dates based on a single parameter. The following expression
provides a date that is six months after the date from a parameter named StartDate.

=DateAdd(DateInterval.Month, 6, Parameters!StartDate.Value)

The following expression contains the Year function, which displays the year for a particular date. You can use this to group
dates together or to display the year as a label for a set of dates. This expression provides the year for a given group of
order dates. The Month function and other functions can also be used to manipulate dates. For more information, see the
Visual Basic .NET documentation.

=Year(Fields!OrderDate.Value)

String Functions

You can use Visual Basic functions to manipulate strings in your report.

You can format dates and numbers within a string with the Format function. The following expression displays values of the
StartDate and EndDate parameters in long date format.

=Format(Parameters!StartDate.Value, "D") & " through " &
Format(Parameters!EndDate.Value, "D")

If the text box contains only a date or number, you should use the Format property of the text box to apply formatting
rather than the Format function within the text box.

The Right, Len, and InStr functions are useful for returning a substring, for example, trimming DOMAIN\username to just
the user name. The following expression returns a portion of a string to the right of a backslash (\) character from a
parameter named User:

=Right(Parameters!User.Value, Len(Parameters!User.Value) -
InStr(Parameters!User.Value, "\"))

The following expression results in the same value as the previous one, using members of the .NET Framework String class
instead of Visual Basic functions:

=Parameters!User.Value.Substring(Parameters!User.Value.IndexOf("\")+1,
Parameters!User.Value.Length-Parameters!User.Value.IndexOf("\")-1)

Decision Functions

You can use Visual Basic functions to evaluate an input value and return another value depending on the result..

The Iif function returns one of two values depending on whether the expression evaluated is true or not. The following
expression uses the Iif function to return a Boolean value of True if the value of LineTotal exceeds 100. Otherwise it returns
False:

=Iif(Fields!LineTotal.Value > 100, True, False)

The following expression uses multiple Iif functions (also known as "nested Iifs") to return one of three values depending on
the value of PctComplete:.

=Iif(Fields!PctComplete.Value >= .8, "Green", Iif(Fields!PctComplete.Value >= .5,
"Amber", "Red"))

The following expression also returns one of three values based on the value of PctComplete, but uses the Switch function
instead, which returns the value associated with the first expression in a series that evaluates to true:

=Switch(Fields!PctComplete.Value >= .8, "Green", Fields!PctComplete.Value >= .5,
"Amber", Fields!PctComplete.Value < .5, "Red")

Report Functions

Reporting Services provides additional report functions that you can use to manipulate data within a report. This section provides
examples for two of these functions. For more information about report functions and examples, see Using Functions.

The Sum function can total the values in a grouping or data region. This function can be useful in the header or footer of a
table group. The following expression displays the sum of data in the Order grouping or data region:

=Sum(Fields!LineTotal.Value, "Order")

An expression containing the RowNumber function, when used in a text box within a data region, displays the row number
for each instance of the text box in which the expression appears. This function can be useful to number rows in a table. It
can also be useful for more complex tasks, like providing page breaks based on number of rows. For more information, see
"Page Breaks" later in this topic. T

The following expression displays the row number from the first row in the outermost data region to the last. The Nothing
keyword indicates that the function will begin counting at the first row in the outermost data region. To begin counting
within child data regions, use the name of the data region.

=RowNumber(Nothing)

Appearance of Report Data

You can use expressions to manipulate how data appears on a report. For example, you can display the values of two fields in a
single text box, display information about the report, or affect how page breaks are inserted in the report.

Page Headers and Footers

When designing a report, you may want to display the name of the report and page number in the report footer. To do this, you
can use the following expressions:

The following expression provides the name of the report and the time it was run. It can be placed in a text box in the report
footer or in the body of the report. The time is formatted with the .NET formatting string for short date:

=Globals.ReportName & ", dated " & Format(Globals.ExecutionTime, "d")

The following expression, placed in a text box in the footer of a report, provides page number and total pages in the report:

=Globals.PageNumber & " of " & Globals.TotalPages

You can also refer in the report header or footer to report items from the body of the report. The following examples describe
how to display the first and last values from a page in the page header, similar to what you might find in a directory listing. The
example assumes a data region that contains a text box named LastName.

The following expression, placed in a text box on the left side of the page header, provides the first value of the LastName
text box on the page:

=First(ReportItems!LastName.Value)

The following expression, placed in a textbox on the right side of the page header, provides the last value of the LastName
text box on the page:

=Last(ReportItems!LastName.Value)

You can apply aggregates to a report item reference in a page header or footer. (You cannot apply an aggregate to a report item
reference in the report body, however.) The following example describes how to display a page total. The example assumes a data
region that contains a text box named Cost.

The following expression, placed in the page header or footer, provides the sum of the values in the Cost text box for the
page:

=Sum(ReportItems!Cost.Value)

Note You can refer to only one report item per expression in a page header or footer.

Page Breaks

In some reports, you may want to place a page break at the end of a specified number of rows instead of, or in addition to, on
groups or report items. To do this, create a group in a data region (typically a group immediately outside the detail), add a page
break to the group, and then add a group expression to group by a specified number of rows.

The following expression, when placed in the group expression, assigns a number to each set of 25 rows. When a page
break is defined for the group, this results in a page break every 25 rows.

=Int((RowNumber(Nothing)-1)/25)

Properties

Expressions are not only used to display data in text boxes. They can be used to change how properties are applied to report
items. You can change style information for a report item, or alter its visibility.

Formatting

You can use expressions to vary the appearance of report items in a report.

The following expression, when used in the Color property of a text box, changes the color of the text depending on the
value of the Profit field:

=Iif(Fields!Profit.Value < 0, "Red", "Black")

The following expression, when used in the BackgroundColor property of a report item in a data region, alternates the
background color of each row between pale green and white:

=Iif(RowNumber(Nothing) Mod 2, "PaleGreen", "White")

Visibility

You can show and hide items in a report using the visibility properties for the report item. In a data region such as a table, you can
initially hide detail rows based on the value in an expression.

The following expression, when used for initial visibility of detail rows in a group, shows the detail rows for all sales

exceeding 90 percent in the PctQuota field:

=Iif(Fields!PctQuota.Value>.9, False, True)

Report Data

Expressions can be used to manipulate the data that is used in the report. You can refer to parameters and other report
information. You can even alter the query that is used to retrieve data for the report.

Parameters

You can use expressions in a parameter to vary the default value for the parameter. For example, you could use a parameter to
filter data to a particular user based on the user ID that is used to run the report.

The following expression, when used as the default value for a parameter, collects the user ID of the person running the
report:

=User!UserID

You can use the following expression to refer to the parameter in a query parameter, filter expression, text box, or other
areas of the report. This example assumes that the parameter is named User:

=Parameters!User.Value

Queries

In some complex reports, you may want to vary the query that is used to retrieve data for the report. For example, you may want
to provide users with a list of departments by which to filter data, or allow them to view data for all departments. In Transact-SQL,
this requires different queries: one with a WHERE clause, and one without. You can use a query expression to build a dynamic
query that changes depending on user input.

This expression, when used as the command text in a SQL Server dataset, builds a query that retrieves all data if the user
selects All (All is tied to a value of 0 in the parameter), or builds a query with a WHERE clause if the user selects a specific
department.

="SELECT FirstName, LastName, Title FROM Employee" & IIf(Parameters!Department.Value
= 0,""," WHERE (DepartmentID = " & Parameters!Department.Value & ")") & " ORDER BY
LastName"

For more information about this query and how to use dynamic queries, see Walkthrough - Using a Dynamic Query in a Report.

Custom Code

You can use custom code within a report. Custom code is either embedded within a report or stored in a custom assembly which
is used in the report. For more information about custom code, see Writing Custom Code.

The following example calls the embedded code method ToUSD, which converts the StandardCost field value to a dollar
value:

=Code.ToUSD(Fields!StandardCost.Value)

See Also

Using Expressions

Reporting Services - Designing and Creating Reports

Debugging and Publishing Reports
When you have finished designing a report, you can test the report by previewing it and publishing it to a test server. When the
report is in its final form, you can use Report Designer to publish the report to a production server.

The following table describes the topics in this section.

Topic Description
Testing Reports Discusses testing reports by using the

preview feature of Report Designer.
Deploying Reports to a Production
Environment

Discusses publishing reports to a report
server.

See Also

Building Reports

Reporting Services - Designing and Creating Reports

Testing Reports
Testing Reports

When you design a report, you may want to view it before publishing it to a production environment. You can do this in several
ways: by using the preview tab of Report Designer, by using the preview window in Report Designer, and by publishing the report
to a report server in a test environment.

The Preview Tab

You can preview a report in Report Designer by clicking the Preview tab. This runs the report locally, using the same report
processing and rendering functionality that is provided with the report server. The report that is displayed is an interactive image;
you can select parameters, click links, view the document map, and expand and collapse hidden areas of the report. You can also
export the report to any of the installed rendering formats.

For more information about previewing reports, see the following topic:

How to preview a report (Report Designer)

The Preview Window

Another way to preview a report is to run the report project in a debug configuration. There are three ways to run a project:

By clicking Start on the Debug menu.
By clicking the Start button.
By pressing F5.

If you use a project configuration that builds the report but does not deploy it, the report that is specified in the StartItem
property of the current configuration opens in a separate preview window. This is how the DebugLocal configuration behaves.
The preview window displays the report in the same way and has the same functionality as the Preview tab. For more
information about project configurations, see Deploying Reports to a Production Environment.

Note Before debugging a report, you must set a start item. To do this, in Solution Explorer, right-click the report
project, click Properties, and then in StartItem, select the name of the report to display.

If you wish to preview a particular report that is not the start item for the project, select a configuration that builds the report but
does not deploy it, right-click the report, and then click Run. You must choose a configuration that does not deploy the report (for
example, the DebugLocal configuration). If you choose a configuration that does deploy the report, the report will be published to
the report server instead of displaying locally in a preview window.

Print Preview

When you first view a report on the Preview tab or in the preview window, the view of the report resembles a report produced
by the HTML rendering extension. The preview is not HTML, but the layout and pagination of the report is similar to HTML output.

You can change the view to represent a printed report by switching to print preview mode. On the Preview tab or in the preview
window, click the Print Preview button on the preview toolbar. The report will display as though it were on a physical page. This
view resembles the output produced by the Image and PDF rendering extensions. The preview is not an image or PDF file, but the
layout and pagination of the report is similar the output in those formats.

Publishing to a Test Server

You can also test reports by publishing them to a test server. Publishing a report to a test server is the same as publishing one to
a production server. For information about publishing a report, see Deploying Reports to a Production Environment.

See Also

Debugging and Publishing Reports

Reporting Services - Designing and Creating Reports

Deploying Reports to a Production Environment
Deploying Reports to a Production Environment

Once you have designed and tested a report or set of reports, you use Report Designer to publish the reports to a production
report server. The process for publishing to a test server and to a production server is the same.

Publishing Multiple Reports

When you deploy a report project, you publish all reports in that project. Report Designer supports multiple project
configurations. Report Designer provides three configurations by default: DebugLocal, Debug, and Production. You can use the
DebugLocal configuration to view reports in a local preview window, the Debug configuration to publish reports to a test server,
and the Production configuration to publish reports to a production server. You can also add additional configurations. For
example, you can add a configuration that publishes reports to a test server.

Each project configuration contains properties. There are several properties that you can set for a report project.

Property Description
StartItem A debug property that contains the name of the report

to display in the preview window or in a browser
window when the report project is run.

OverwriteDataSources A deployment property that indicates whether to
overwrite an existing data source on the server. Set this
to False if you do not want to overwrite the existing
data source. Set it to True to republish the data source
information to the server.

TargetFolder A deployment property that contains the name of the
folder in which to store the published reports. By
default, this is the name of the report project.

TargetServerURL A deployment property that contains the URL of the
target report server, for example,
http://servername/reportserver. Before you publish a
report, you must set this property to a valid report
server URL.

There are three ways to debug or deploy reports in a project:

By clicking Start on the Debug menu.
By clicking the Start button.
By pressing F5.

Two Configuration Manager properties in each project determine how Report Designer runs a report project: the Build property
and the Deploy property The following table describes the way each property affects how a report project is run.

If... Then...
Build is selected Report Designer builds the report project and reports

errors in the Task List window.
Build is not selected Report Designer does not build the project; errors are

only detected by the report server or preview process.
Deploy is selected The reports in the project are published to the report

server as defined in the Deployment properties for the
project.

Deploy is not selected Report Designer displays the report in a local preview
window.

All project properties can be accessed through the project property pages. To access these properties, in Solution Explorer, right-
click the report project and then click Properties. To open Configuration Manager, click Configuration Manager.

For more information about publishing reports, see one of the following topics:

How to set deployment properties (Report Designer)
How to publish reports (Report Designer)

Publishing a Single Report

If you do not want to publish all reports in a project, you can choose to publish a single report. To do this, select a configuration
that deploys the report (for example, the Production configuration), right-click the report, and then click Run. The target server
URL and folder must be configured as explained earlier in this topic.

Build and Deploy

In addition to running a project or report as described previously in this topic, you can also choose to directly build or deploy the
project or report. These options are available when you right-click a report or project, or on the Build menu for the solution or
project. The following table describes these options.

Option Description
Build The project or reports are built, but not deployed or displayed. This

option can be used to check for errors in the report.
Deploy The project or reports are built and deployed. If the current

configuration builds the reports but does not deploy them, a report is
displayed in the preview window. If the current configuration deploys
the report, the report or reports are published to the report server. The
difference between Deploy and Start (or Run) is that a browser
window is not opened when you use Deploy.

See Also

Debugging and Publishing Reports

Managing Report Server Content

Reporting Services - Designing and Creating Reports

Design Considerations for Rendering
When you create a report using Report Designer or some other tool, you create an XML representation of the report called a
report definition.

The report definition uses Report Definition Language, an XML schema created specifically for Reporting Services. This schema
contains all elements of the report, including data source information, layout, and report properties. For a full description of
Report Definition Language, see Report Definition Language.

Along with the report definition, you can store resources for your report. These resources can be bitmap images, documents, or
any other kind of file. For more information about resources and folders, see Managing Folders.

The definition you create is stored in the report server database to be retrieved and combined with data by the Report Processor
component. The Report Processor then calls a rendering extension to render the file to a specific device. The resulting report can
vary from one rendering extension to the next. For example, the output from the Text rendering extension will look very different
than the output from the XML rendering extension. If your reports will be processed by multiple rendering extensions, you will
need to design your reports accordingly.

The following table describes design considerations for various rendering extensions.

Topic Description
Designing for HTML Output Discusses design issues and

considerations specific to the HTML
rendering extension.

Designing for Microsoft Excel Output Discusses design issues and
considerations specific to the Excel
rendering extension.

Designing for CSV Output Discusses design issues and
considerations specific to the CSV
rendering extension.

Designing for XML Output Discusses design issues and
considerations specific to the XML
rendering extension.

Designing for Image Output Discusses design issues and
considerations specific to the Image
rendering extension.

Designing for PDF Output Discusses design issues and
considerations specific to the PDF
rendering extension.

See Also

Designing and Creating Reports

Report Design Basics

Building Reports

Reporting Services - Designing and Creating Reports

Designing for HTML Output
The HTML rendering extension renders a report in HTML format. The rendering extension can produce the following types of
HTML: HTML 3.2, HTML 4.0, MHTML, or HTML with Office Web Components. The rendering extension can also produce fully
formed HTML pages or fragments of HTML to embed in other HTML pages.

The HTML rendering extension renders a report in HTML 4.0 for Internet Explorer versions 5.5 and 6, and Netscape 7.1. Reports
for all other browsers, including Pocket Internet Explorer and Netscape 4.78, are rendered in HTML 3.2.

HTML 4.0 reports conform to the HTML 4.0 and Cascading Style Sheets level 2 (CSS2) specifications, with some exceptions. HTML
3.2 reports conform to the HTML 3.2 specification, but some styles may be included to improve appearance. All HTML is
generated with UTF-8 encoding.

Positioning of Items

The HTML rendering extension builds a table in HTML to contain the items in each set of report items. Items are positioned within
the table to preserve the layout of the report. If the set of report items contain only one report item, the report item is rendered
without the table. All locations and item sizes are expressed in millimeters (mm). Differences in sizes and positions less than 0.2
mm are rendered as 0 mm.

HTML does not support item overlap. If a report item overlaps another item, the items are arranged so that they do not overlap.
This may result in items appearing on the page in different positions than was designed. In some cases, items may appear to not
overlap in a design tool, but in fact do overlap. The size and position properties for the report items will reveal the true position of
the report items. To determine the position of overlapping items, the rendering extension first considers the value of the Top
element for the items, then the value of the Left element, and then the value of ZIndex.

Pagination

The HTML rendering extension renders pages as separate HTML pages, also known as "sections," as follows:

Page breaks will render when the following items are placed within a list with a page break or placed directly within the
body of the report:

Rectangles with PageBreakAtEnd or PageBreakAtStart set to True.
Lists or list groups with PageBreakAtEnd or PageBreakAtStart set to True.
Tables or table groups with PageBreakAtEnd or PageBreakAtStart set to True. The table must have at least one
visible column. All parent groups for a table group must be visible.
Matrices or row groups with PageBreakAtEnd or PageBreakAtStart set to True.
Subreports with any of the above items.

Items that begin above an item that contains a page break will appear on the page before the page break.

The HTML rendering extension will attempt to render all page breaks in items as described previously; however, two items with
page breaks that are positioned next to each other on the page may yield unpredictable results. Items that have page breaks and
that are contained within a table, matrix, or rectangle may also yield unpredictable results.

Any item placed next to an item with a page break will be rendered on the same page if the top of the item is above the bottom of
the item with the page break. For example, a text box that is placed directly to the right of a table that has a page break at the end
of the table will appear on the same page as the table. A text box that is placed to the right of and below the bottom of the same
table will appear on the next page.

The HTML rendering extension will also insert page breaks at the approximate height of the page as defined in the properties for
the report. This is primarily to prevent a large report with no page breaks from generating extremely large HTML pages when
rendered.

Rendering

When you render a report using the HTML rendering extension, you can specify several device information settings, including the
following:

Browser type
Whether to render the HTML as a fragment or as a full HTML document
Visibility of the document map
Visibility of the parameters area

Visibility of the toolbar
Search information
Stream information
Zoom information
The ID of a bookmark to display
The target for hyperlinks

For more information about device information settings, see Device Information Settings.

Additional Topics

The following table describes the topics in this section.

Topic Description
Data Regions in HTML Rendering Describes how data regions are rendered

by the HTML rendering extension.
Report Items in HTML Rendering Describes how report items are rendered

by the HTML rendering extension
Page Layout in HTML Rendering Describes how report layout and

properties are rendered by the HTML
rendering extension.

MHTML Reports Describes how MHTML reports are
rendered by the HTML rendering
extension.

HTML Reports with Office Web
Components

Describes how Office Web Components
(OWC) are rendered by the HTML
rendering extension.

See Also

Design Considerations for Rendering

Reporting Services - Designing and Creating Reports

Data Regions in HTML Rendering
The HTML rendering extension renders the layout of data regions and data as elements in an HTML file. How each item is
rendered varies depending on the data region.

Data Regions

Data regions (table, matrix, list, chart) are rendered as TD elements within the table for the containing ReportItems RDL element.
The following table describes how common data region subelements are rendered in the TD element by the HTML rendering
extension. Subelements specific to each data region are discussed later in this topic.

RDL element Renders as
KeepTogether The page-break-inside property of the TD element is set to

avoid (HTML 4.0).
NoRows Text in place of the data region if the data region contains

no rows. The text is rendered in a text box. Page break
properties are ignored, and style properties for the data
region are applied to the text. If no text is specified in
NoRows, no data region or text is rendered.

List

A list is rendered as a DIV tag in the HTML document. The DIV tag contains the child items of the list.

Grouping

The Label RDL element within the Grouping element provides the text in the document map for the report.

Matrix

A matrix is rendered as a TABLE tag in the HTML document. This table contains the matrix corner, columns, and rows, in separate
cells. A TR tag is rendered for each column element and each row value or subtotal.

Corner

The Corner RDL element is rendered as a TD tag in the HTML document. This tag contains ROWSPAN attribute with a value
equal to the number of column elements, and a COLSPAN attribute with a value equal to the number of row elements.

ColumnGrouping

The ColumnGrouping RDL element is rendered as a TR tag in the HTML document. This tag contains a TD element for each data
value and subtotal, and also has a COLSPAN attribute with a value equal to the number of columns in the column grouping.
Hidden column groupings display a subtotal in place of the hidden columns.

The Height element within the ColumnGrouping RDL element determines the height of the column grouping TR tag.

RowGrouping

The RowGrouping RDL element is rendered as a TR tag for each row value or subtotal in the HTML document. This tag contains
a TD element for each data value and subtotal, and also has a ROWSPAN attribute with a value equal to the number of rows in
the row grouping. Hidden row groupings display a subtotal in place of the hidden rows.

The Width element within the RowGrouping RDL element determines the width of the row grouping TR tag.

Subtotal

The Subtotal RDL element is rendered as a TD tag containing the name of the subtotal. This TD tag also has a COLSPAN or
ROWSPAN attribute.

MatrixCell

The report items contained within a matrix cell are rendered as TD tags for each row and column. The height and width of the TD
element is determined by the width of the matrix column and the height of the matrix row.

Table

A table is rendered as a TABLE tag in the HTML document. This table contains the table header, table footer, columns, rows, and
details in separate cells. A table with all of its contents hidden will still render its background color and borders.

TableColumn

The Width element within the TableColumn RDL element determines the width of the column.

TableRow

Each row is rendered as a TR tag in the HTML document. The Height element within the TableRow RDL element determines the
height of the table row TR tag.

Header

The entire set of header TR tags are repeated on each page if the value for RepeatOnNewPage is True. For HTML 4.0, a header
row is enclosed in a THEAD element.

Footer

The entire set of footer TR tags are repeated on each page if the value for RepeatOnNewPage is True. For HTML 4.0, a header
row is enclosed in a THEAD element.

TableCell

A table cell is rendered as a TD tag in the HTML document.

Chart

A chart is rendered as an IMG tag in the HTML document.

See Also

Designing for HTML Output

Reporting Services - Designing and Creating Reports

Report Items in HTML Rendering
The HTML rendering extension renders the layout of report items and data as elements in an HTML file. How each item is
rendered varies depending on the report item.

ReportItems

The ReportItems RDL element is rendered as a TABLE element by the HTML rendering extension. The TR elements within the
table are rendered according to the extension's positioning algorithm. If the ReportItems element contains one child item, that
item is rendered directly. If the ReportItems element contains no child items, the table is not rendered in HTML.

Items within the ReportItems RDL element (table, matrix, list, chart, line, rectangle, text box, image, and subreport) are rendered
within the table as TD elements. The following table describes how common report item subelements are rendered in the TD
element by the HTML rendering extension. Subelements specific to each report item are discussed later in this topic.

RDL element Renders as
Name Ignored
Top Determines the top position of the item. Also determines

which item is positioned first in the case of overlapping
items.

Left Determines the left position of the item. Also determines
which item is positioned first in the case of overlapping
items.

Height The HEIGHT attribute for items with a height that cannot
change.

Width The WIDTH attribute for items with a width that cannot
change.

ZIndex Determines which item is position first in the case of
overlapping items.

Label The TITLE attribute. Also rendered as the ALT attribute for
images.

HTML does not support overlapping items, and will position these items next to each other on the page. To determine the position
of overlapping items, the rendering extension first considers the value of the Top element for the items, then the value of the Left
element, and then the value of ZIndex.

Line

Horizontal and vertical lines are rendered as a table border, and are clipped by other elements. Diagonal lines that are not
overlapped with other items are drawn using VML. Diagonal lines that are overlapped are not rendered. Diagonal lines are not
rendered if the output format is HTML 3.2.

Rectangle

A rectangle is drawn using the TD element in HTML4.0, and as a separate TABLE element with a single cell in HTML 3.2. If there is
a single item within the rectangle, it is rendered directly within that element. If there is more than one item inside the rectangle, an
additional TABLE element is created and the items are rendered inside that table.

Textbox

A text box is rendered as a DIV element that contains a SPAN attribute in the HTML document. If the output format is HTML 3.2,
the text box is rendered as a TABLE element with a single cell. The following table describes how elements in the Hyperlink RDL
element are rendered by the HTML rendering extension.

RDL element Renders as
Value The text inside the DIV, TABLE, or TD element.
HideDuplicates Item is not rendered when the data is the same as the

previous record and is not the first instance on the page.

The CanGrow and CanShrink RDL elements are rendered by the HTML rendering extension as follows:

CanGrow CanShrink HTML 4.0 HTML 3.2
False False The height and

width of the text box
are rendered;
overflow is hidden.

The height and
width of the text box
are rendered.

True False The height and
width of the text box
are rendered;
overflow is visible.

The width of the text
box is rendered. The
height is ignored.

False True The text is rendered
inside a parent DIV
element. Height and
width of the DIV are
rendered; overflow
is hidden.

The height and
width of the text box
are rendered.

True True The width of the text
box is rendered,
overflow-y is visible,
and overflow-x is
hidden. Height is
ignored.

The width of the text
box is rendered. The
height is ignored.

Image

An image is rendered as an IMG tag in the HTML document. The following table describes how elements in the Image RDL
element are rendered by the HTML rendering extension.

RDL element Renders as
Source The SRC attribute on the IMG tag.

The Sizing RDL element is rendered by the HTML rendering extension as follows:

Sizing HTML 4.0 HTML 3.2
Clip The IMG tag is placed inside a

DIV tab and overflow is hidden.
The height and width are
applied to the DIV as styles.

Width and height are converted
to pixels and rendered as
attributes.

Fit Width and height are rendered
as styles.

Width and height are converted
to pixels and rendered as
attributes.

FitProportional The IMG tag is placed inside a
DIV tag and overflow is hidden.
The height and width are
applied to the DIV tag as styles.
If JavaScript is enabled, a Jscript
script is included to resize the
image after it is downloaded to
the browser.

Width and height are converted
to pixels and rendered as
attributes.

Autosize Width and height are not
rendered.

Width and height are not
rendered.

Subreport

An subreport is rendered as a DIV tag in the HTML document. The contents of the report are rendered as HTML inside the DIV
tag. If the subreport fails, an error is shown in a text box on the report.

See Also

Designing for HTML Output

Reporting Services - Designing and Creating Reports

Page Layout in HTML Rendering
The HTML rendering extension renders the layout of report items and data as elements in an HTML file. How each item is
rendered varies depending on the report item.

Report

Elements within the Report RDL element are rendered as elements, or tags, within the HEAD section of the HTML document. The
following table describes how elements in the Report RDL element are rendered by the HTML rendering extension.

RDL element Renders as
Name <TITLE>value of Name RDL element</TITLE>
Description <META NAME="Description" CONTENT="value of

Description RDL element">
Author <META NAME="Author" CONTENT="value of Author RDL

element">
AutoRefresh <META HTTP-EQUIV="Refresh" CONTENT="value of

AutoRefresh RDL element">

Body

The contents of the Body RDL element are rendered in the BODY section of the HTML document. The BODY section contains a
DIV tag which includes information for height, width, and border. Items contained within the Body RDL element are rendered as
children of the BODY HTML element.

The following table describes how elements in the Body RDL element are rendered by the HTML rendering extension.

RDL element Renders as
Height The height attribute of the DIV HTML element.
Width The width attribute of the DIV HTML element.
Page Height Ignored.
Page Width Ignored.
Columns Ignored.
ColumnSpacing Ignored

Note Multiple ("snaking") columns in the report body are not supported by the HTML rendering extension. All reports
are rendered with a single column by the HTML rendering extension.

PageHeader

The page header is rendered as a DIV tag at the top of each page. The contents of the page header are contained within a TABLE
tag. The following table describes how elements in the PageHeader RDL element are rendered by the HTML rendering extension.

RDL element Renders as
Height The height of the TABLE HTML element.
PrintOnFirstPage Indicates whether the page header is included on the first

page.
PrintOnLastPage Indicates whether the page header is included on the last

page.

PageFooter

The page footer is rendered as a DIV tag at the bottom of each page. The contents of the page footer are contained within a
TABLE tag. The following table describes how elements in the PageFooter RDL element are rendered by the HTML rendering
extension.

RDL element Renders as
Height The height of the TABLE HTML element
PrintOnFirstPage Indicates whether the page footer is included on the first

page.

PrintOnLastPage Indicates whether the page footer is included on the last
page.

Custom

The Custom RDL element is ignored by the HTML rendering extension.

Hyperlink

A hyperlink that is part of a report item is rendered as an A tag in the HTML document. The following table describes how
elements in the Hyperlink RDL element are rendered by the HTML rendering extension.

RDL element Renders as
URL The HREF attribute on the A tag.

Visibility

If the value for the Hidden RDL subelement is True, and the ToggleItem element is not set, then the report item is not rendered.
If ToggleItem is set, the toggle image is displayed next to a toggle item. When the image is clicked, the report server refreshes
the HTML to include the report item.

ToggleImage

If a text box has a child ToggleImage element, then a small + or - image is rendered to the left of the text in the textbox, inside
the border and padding.

Style

Style elements are rendered as CSS styles for HTML 4.0 and as HTML attributes for HTML 3.2. For HTML 4.0, a single CSS style is
rendered for each report item. The names of the styles are unique across reports and subreports. The following table indicates
how RDL style attributes map to HTML styles.

RDL style Description HTML 4.0 HTML 3.2
BorderColor Color of the border border bordercolor
BorderStyle Style of the border border Ignored
BorderWidth Width of the border border border
BackgroundColor Color of the

background
background-color bgcolor

BackgroundImage URL of the
background image

background-image background

BackgroundRepeat Repeat pattern of
background image

background-repeat Ignored (repeat)

FontStyle Style of font
(Normal, Italic)

font-style <I>

FontSize Size of font font-family
FontWeight Weight of text font-weight
TextDecoration Decoration of text

(Underline,
Strikethrough)

text-decoration <U>

TextAlign Horizontal alignment
of text

text-align align

VerticalAlign Vertical alignment of
text

vertical-align valign

Color Color of text color color
PaddingLeft Size of padding

between left border
and text

padding-left Ignored

PaddingRight Size of padding
between right
border and text

padding-right Ignored

PaddingTop Size of padding
between top border
and text

padding-top Ignored

PaddingBottom Size of padding
between bottom
border and text

padding-bottom Ignored

LineHeight Height of the lines of
text

Line-height Ignored

Direction Right-to-left or left-
to-right

DIR attribute Ignored

Language Language of the text LANG attribute Ignored
UnicodeBiDi Override of the bi-

directional algorithm
unicode-bidi <BDO>

Note Due to the different tags used for HTML 4.0 and HTML 3.2, the same items may appear differently between the
two formats. For example, the tags used to control font weight are more precise in HTML 4.0. Depending on the font
weight, text that is bold in HTML 4.0 may not appear bold in HTML 3.2.

Note Borders with a border style of Double and a border width of less than 2 pt are rendered as a single line by the
HTML rendering extension. A border with a border style of Double must have a border width of at least 2 pt to
display both lines.

See Also

Designing for HTML Output

Reporting Services - Designing and Creating Reports

MHTML Reports
The HTML rendering extension can render reports in MHTML (MIME Encapsulation of Aggregate HTML Documents), also
described as Web archive. MHTML extends HTML to embed encoded objects, such as images, in the HTML document. Although it
is actually the HTML rendering extension that renders MHTML, this functionality may also be referred to as the MHTML rendering
extension.

The HTML rendering extension can render MHTML as a fragment or as a full MHTML document. If the MHTML is a fragment, the
HEAD, HTML, and BODY tags of the MHTML document are removed. Only the contents of the BODY tag are rendered. This is
useful for embedding the MHTML in the HTML produced by another application.

Rendering

When you render an MHTML report using the HTML rendering extension, you can specify the following device information
settings:

Whether JavaScript can be used in the report
Whether to render the MHTML as a fragment or as a full MHTML document

For more information about device information settings, see Device Information Settings.

See Also

Designing for HTML Output

Reporting Services - Designing and Creating Reports

HTML Reports with Office Web Components
The HTML rendering extension can render HTML reports with embedded Office Web Components (OWC). If a report includes a
matrix, the matrix is rendered in an OWC PivotTable control. Tables, charts, and lists are not rendered in OWC.

OWC is a set of ActiveX controls. The following requirements must be met to view data in an OWC control:

If OWC is rendered on the client, the Web browser used to display reports must support ActiveX.
The device information setting for ActiveX controls must not be set to False.
OWC must be on the client or the client must be able to download OWC.

If your Web browser cannot load OWC, the user is given the option to download OWC or to view the report without the control.
The download location of OWC is a Microsoft web site. The specific site varies depending on the language of the client computer.
You can change the download location by changing the OWCDownloadLocation element in the RSReportServer.config file.

Note The find function on the report toolbar searches the report only. It does not search the contents of an OWC
control.

Matrix as PivotTable

When a report is rendered to HTML with OWC, data in a matrix will render as an OWC PivotTable. The PivotTable control cannot
display all items that can appear in a matrix, however. A matrix that includes the following will not display as a PivotTable:

Any data region (table, chart, matrix, or list)
Image
Subreport
More than one group expression in a grouping
Both static columns and static rows
Dynamic columns or rows nested inside static columns or rows
Data size is larger than 262,144 rows

See Also

Designing for HTML Output

Reporting Services - Designing and Creating Reports

Designing for Microsoft Excel Output
The Excel rendering extension installed for Reporting Services is compatible with Microsoft Excel from Office XP 2002 and later; it
translates the report object model to an Excel spreadsheet and preserves Excel formulas where possible, but it does not transfer
all the layout and original design of the report into Excel. Because of this, you need to take certain considerations into account
when designing for Excel output.

The following table describes the topics in this section.

Topic Description
Excel Rendering Overview Describes the basic concepts of rendering

a report into Excel.
Excel Rendering Limitations Describes limitations in Excel that may

cause errors in the report when rendering
to Excel.

Data Regions in Excel Rendering Describes how Excel renders charts, lists,
tables, and matrices.

Report Items in Excel Rendering Describes how Excel renders rectangles,
text boxes, images, subreports, hyperlinks,
and bookmarks.

Expressions in Excel Rendering Describes how expressions in the report
are translated into Excel formulas.

Page Layout in Excel Rendering Describes the document map, page
orientation, pagination. section breaks,
and item visibility.

Visibility of Report Items Describes how report items hidden from
view are exported into Excel.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Excel Rendering Overview
When a report is exported to Excel, each page in the report becomes a worksheet. There is a limit to the number of worksheets
that Excel can have per workbook, and an error is generated if the limit is exceeded. The rendering extension builds a tabular
structure out of the report, including nested items.

Excel supports only a predefined set of colors. When rendering, Excel takes the colors used on the report and maps them to the
best match. Excel does not support background images for individual cells. The background images for report items are ignored
by the Excel rendering extension.

Several formatting options are configurable. The configurable items include:

Whether to convert formulas to text strings
Removing cells from the report, depending on their size

These items are configured through the use of device information settings.

Blank row or columns that are smaller than a 0.125 inches are removed from the report by default to save space. The default size
can be changed using the RemoveSpace device information setting; to do this, modify the URL access string by appending the
string &rc:RemoveSpace=<size>in, where <size> is the desired size, in inches.

You can also control whether formulas in the report are converted to Excel formulas, or if formula generation is suppressed. This
is done through the use of the OmitFormulas device information setting. For more information on OmitFormulas, see
Expressions in Excel Rendering.

The following is an example of how to export the Product Catalog sample to Excel, and suppress formula generation using device
information settings on the URL.
http://servername/reportserver?
%2fSampleReports%2fProduct+Catalog&rs:Command=Render&rs:Format=EXCEL&rc:OmitFormulas=true

For more information about the device information settings, see Excel Device Information Settings. For more information on
using the device information settings on the URL, see Using Parameter Prefixes on a URL.

Excel rendering is available through HTML Viewer. The rendering extension can also be called using a custom interface, which can
be used to pass custom device information settings. For information about using the Excel rendering extension with a custom
application, see Reporting Services Programming. For more information about the HTML Viewer, see HTML Viewer.

The exported report becomes an .xls file and returns the Excel MIME type of application/vnd.ms-excel. The files are MIME
version 1.0.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Excel Rendering Limitations
There are limitations on reports that are exported to Excel. The most significant are the following:

Support for ActiveX controls is not provided.
The maximum number of rows in Excel is 65536. This is checked by the rendering extension, and an error is displayed in
Excel if the limit is exceeded.
The maximum number of columns in Excel is 256. This is checked by the rendering extension, and an error is displayed in
Excel if the limit is exceeded.
The maximum column width in Excel is 255 characters or 1726.5 points. This is not checked by the rendering extension.
The maximum number of characters in a cell is 32767. This is not checked by the rendering extension.
There is a limit to the number of worksheets that Excel can have per workbook. Each section in the HTML becomes a
worksheet; if the report is large and exceeds the number of worksheets, an error is displayed in Excel if the limit is exceeded.
Excel supports only the following border line widths: 0.5 pt., 1.0 pt., and 1.5 pt.
The maximum number of levels for nested outlines is 7.
Multiple ("snaking") columns in the report body are not supported by the Excel rendering extension. All reports are rendered
with a single column by the Excel rendering extension.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Data Regions in Excel Rendering
A data region is an area on a report containing data from a data source. Types of data regions are charts, lists, tables, and
matrices. This topic describing rendering behavior when exporting data regions to Excel.

Charts

Charts are rendered as pictures, not Excel charts. A chart is rendered the same way as an image element.

Lists

List elements show only their contents. The list is rendered for each data row or data group in Excel. Items in the list are
positioned on the worksheet relative to their location in the report, which can lead to unexpected results. For this reason, lists are
not recommended for incorporation in reports designed to be rendered in Excel.

Tables

Tables in reports are rendered as rows and columns of cells in Excel. Page breaks on report items inside a table cell are ignored.

Matrices

Matrices in reports are rendered as a set of formatted cells in the Excel file, much like the report in HTML. Matrix subtotals are not
rendered as formulas, and the matrix is not rendered as an Excel PivotTable. For groups, when a group is expanded, both the
detail and the subtotal row is displayed. This is different than how groups are shown when viewing them in the HTML Viewer. In
the HTML Viewer, when groups are expanded, the subtotal is hidden and the detail is displayed. For an example of this behavior,
view the Company Sales report in the HTML Viewer, then Export it to Excel. For more information, see Sample Report - Company
Sales.

Note Any data region nested inside of a table or matrix data region is not supported. An error is displayed in Excel if
this layout is encountered.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Report Items in Excel Rendering
Report items are items other than data regions (tables, matrices, lists, and charts). If a report item is in a container, such as a
rectangle or list, the coordinates for the item are relative to the container. For example, if the report item is defined in a rectangle,
the coordinates of the individual item are relative to the rectangle.

This topic describes the rendering behavior when exporting text boxes, rectangles, images, subreports, and actions to Excel.

Text boxes

When the Textbox element is rendered in Excel, the data type may be converted to one of the data types available in Excel.
Numeric values convert to the value of the number with full precision, and a period as a decimal separator. Boolean values of 0
and 1 convert to the strings "true" or "false".

Rectangles

Rectangles are converted to groups of cells. If rectangles contain other items, the rectangle becomes a region of cells, and the
border and background color of the rectangle is applied to the region of cells. The borders are converted to cell borders, and the
background is converted to background colors for the contained cells. This applies to all items that act as rectangular free-form
layout areas, including lists, the body, the page header, and page footer.

Page breaks are translated according to the values of the attributes PageBreakAtStart and PageBreadAtEnd defined in the
rectangle item. If there are no items contained in the rectangle, no page breaks are created.

Images

An image can be a logo or picture, or it can be a picture that is repeated with rows of data. You can also use an image as a
background for certain report items. When you use a URL-based image in a report, the image item contains a URL that points to
an image on the report server or a separate Web server. When images are rendered to Excel, they are rendered as static pictures.

Subreports

A subreport is an item in a report that points to another report on the report server. When rendering to Excel, subreports are
rendered as rectangles in the current report, containing the contents of the other report. The subreport is rendered on the same
Excel worksheet as the parent report, not on a separate Excel sheet. However, a subreport is not rendered if there is no data
associated with the subreport.

The border of a subreport is rendered, and the name given to the report item may not be unique across the subreports.

Actions

When a hyperlink, a bookmark link, or a drillthrough link is created on a report, an Action element is created in Report Definition
Language (RDL). The following table describes how Excel translates actions.

Action child elements Excel translation
Hyperlink Becomes a hyperlink in the worksheet.
BookmarkLink Becomes a hyperlink pointing to the name of the report

item.
Drillthrough Becomes a hyperlink pointing to the report referenced

by the drillthrough link.

For more information on the Action element, see Action Element.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Expressions in Excel Rendering
Expressions are used in reports to calculate the value of a report item, or to calculate values for style and formatting properties or
other report item properties. Reporting Services supports expressions that are written in Microsoft® Visual Basic® .NET. When
rendering to Excel, the Microsoft Visual Basic .NET formulas are translated to Excel formulas when possible. The formula must
only refer to report items, on the current page of the report and not directly to field values. The report item references are
converted to an appropriate cell reference. For more information on expressions in a report, see Manipulating Data with
Expressions.

Formulas defined in Report Definition Language (RDL) using Visual Basic .NET expressions are allowed to use "+" for string
concatenation. However, Excel does not support the "+" operator for string concatenation. So for formulas to be translated
correctly, the report should use the "+" operator to denote addition on numeric operands, and the "&" to denote concatenation on
string operands.

Formulas and Functions for Text Boxes

Not all text box operators and functions are supported when a report is exported to Excel. Using operators and functions that are
not allowed causes the formula conversion to fail. Instead, the calculated value of the formula is placed in the cell as a constant.

The following operators are allowed:

: + - / * ^ & < <= <> = > >=

The following functions are allowed:

Abs, Atan, Choose, Cos, DateValue, Day, DDB, Exp, FV, Hour, Int, Ipmt, Left, Minute, Month, Now, Nper, Pmt, PPmt, Pv, Rate, Right,
Second, Sign, Sin, Sln, Sqrt, Syd, Tan, Today, Year.

Additional Visual Basic .NET functions are allowed, but are translated to an appropriate Excel function name during conversion.
The table below maps these function names.

Visual Basic .NET function Excel function
Asc Code
Cdate DateValue
Chr Char
DateSerial Date
Hex Dec2Hex
Iif If
Lcase Lower
Oct Dec2Oct
Ucase Upper

For all other cases, such as an unsupported expression, a formula is not generated for Excel. Instead, the value is placed in directly
in the cell. When you want no formulas generated in Excel for the entire report, only the values, you can use the device
information setting of OmitFormulas to suppress formula generation. For more information on OmitFormulas and other device
information settings, see Device Information Settings.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Page Layout in Excel Rendering
A report can consist of multiple pages of data. Reports that are generated by rendering extensions that support page breaks can
have page breaks at the beginning or end of a designated report item. Excel is a rendering extension that preserves layout and
page breaks in an exported report. To see how to add a page break, see How to add a page break (Report Designer).

The layout of the data becomes a tabular structure, generated from the entire report, including any nested items. Cells are merged
as necessary to let report items cover their allotted area.

Any blank rows or columns smaller than a user-configurable value are removed to reduce the amount of blank space in the Excel
spreadsheet. This size is adjustable through the RemoveSpace device information setting; the default value is one-eighth inch.
Explicit blank rows or columns in a table or matrix are not removed. For more information on the RemoveSpace setting, see
Device Information Settings.

Rows and columns are sized to match the layout of the original report. If the layout has too many rows or columns for Excel, the
rendering extension generates an error and the report is not processed. Overlapping elements are handled by placing them next
to each other.

Document Map

A document map provide users a way to navigate to specific areas of the report. When you view the report using HTML Viewer, a
document map appears along the side of the report. Clicking items in the document map refreshes the report and displays the
area of the report that corresponds to the item in the document map. When you export a report containing a document map to
Excel, the document map is rendered as the first worksheet, with a name of "Document Map". Each of the nodes in the document
map are listed in the first column of this sheet, and each cell is indented to reflect its level in the document map. An Excel outline is
also created with the same structure as the document map outline. Each document map cell links to the sheet and cell of the item
that it represents. For example, if the Product Catalog is exported to Excel, the document map contains a cell with the value
"Accessory". Clicking on this cell brings you to the worksheet that contains the accessories. The document map sheet can be
turned off by setting the device information setting OmitDocumentMap to true. If this device information setting is not found,
then a document map sheet is rendered by default. To see how the document map is rendered in Excel, the Product Catalog
sample contains a document map that you can export to Excel. For more information, see Sample Report - Product Catalog.

Page Orientation

The paper height and width are compared to an internal table containing the most common paper sizes and orientations. If there
is a match, that paper size is used, and the orientation is set to Portrait. If the height and width isn't found, the internal paper size
table is searched again with the width and height reversed. If a match is found, then the paper size is used but the orientation set
to Landscape. If still no match is found, orientation is determined by comparing the height to the width. If the paper height is
greater than the width, the orientation is set to Portrait; otherwise it is set to Landscape. Columns and column spacing are
ignored.

Page Headers

The page header is rendered as rows in the report. The Excel properties of Freeze Panes and Split, found in the Window menu
of the worksheet, keep the page header rows visible on the screen. The property Print titles, found in the Page Setup dialog,
contains values in both Rows to repeat at top and Columns to repeat at left so that those rows are repeated on each page of
the report.

Page Footers

The Excel footer has a restriction of 255 characters. Excel truncates the string if it contains more than 255 characters.

Pagination

All page break information is written into the worksheet for printer pagination. However, tables, matrices, and rectangles that
contain other elements that have page breaks may not render properly.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Visibility of Report Items
Report items can be hidden from the user viewing the report. You can hide them from view when the report is rendered in HTML,
you can cause a report item to toggle between visible and hidden when the user clicks on another report item, or you can hide
them based on the contents of other report items. You can hide any report item, including groups, columns, or rows in a table or
matrix. You can also define matrices that contain static and dynamic rows and columns. When the report runs, dynamic column
headers expand right for as many columns as there are groups. They can instead expand to the left if the Direction property of
the matrix is set to RTL.

Hidden report items render differently when exporting into Excel depending on the data region type being hidden.

For matrices, if the matrix is collapsed when viewed in HTML, exporting to Excel expands it. All rows and columns are visible. For
an example of how a matrix is expanded when exported to Excel, export the Foodmart Sales report to Excel. For more information
on the Foodmart Sales report, see Sample Report - Foodmart Sales.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Designing for CSV Output
The Comma-Separated Value (CSV) rendering extension renders reports in comma-delimited plain text files, without any
formatting. It uses a string character delimiter to separate fields and rows, with the string character delimiter configurable to be a
character other than a comma. The resulting file can be opened in a spreadsheet program like Microsoft Excel or used as an
import format for other programs. The exported report becomes a .csv file and returns a MIME type of text/plain. The files are
MIME version 1.0.

When rendered using the default settings, a CSV report has the following characteristics:

The first record contains headers for all the columns in the report.
All rows have the same number of columns.
The default field delimiter string is a comma (,).
The record delimiter string is the carriage return and line feed (<cr><lf>).
The text qualifier string is a quotation mark (").
If the text contains an embedded delimiter string or qualifier string, the text qualifier is placed around the text, and the
embedded qualifier strings are doubled.
Formatting and layout are ignored.

To render a report, the CSV rendering extension iterates through the Report Object Model produced by the report processor. The
following elements are ignored during processing:

PageHeader
PageFooter
Custom
Line
Image
ActiveXControl

The remaining report items are sorted, from top to bottom, then left to right. Each item is then rendered to a column. If the report
has nested data items like lists or tables, the parent items are repeated in each record.

The following table lists the considerations applied to items when rendering to CSV.

Item Rendering behavior
Text box Renders the contents of the text box. The

data is formatted according to the item's
Format property.

Table Renders by expanding the table and
creating a row and column for each row
and column at the lowest level of detail.
Subtotal rows and columns do not have
column or row headings. Drillthrough
reports are not supported.

Matrix Renders by expanding the matrix and
creating a row and column for each row
and column at the lowest level of detail.
Subtotal rows and columns do not have
column or row headings.

List Renders a record for each detail row or
instance in the list.

Rectangle Renders its contents as nested items. The
parent item is repeated for each instance
of the contents.

Subreport Renders its contents as nested items. The
parent item is repeated for each instance
of the contents.

Chart Renders a row for one set of the data
values, and columns for the other set of
data values.

The CSV rendering extension uses default values for several configurable device information settings, such as what character to
use as the field delimiter, record delimiter, and qualifier. These device information settings can be accessed and changed through
a custom application, and you can control the rendering of data, default delimiters, and page breaks through the use of the device
information settings. The field delimiter, record delimiter, and text qualifier can be changed using the FieldDelimiter,
RecordDelimiter, and Qualifier device information settings. To control page breaks, the SuppressLineBreaks setting is a
Boolean that specifies whether line breaks are removed when the data is rendered. When SuppressLineBreaks is true, line
breaks and carriage returns are replaced by a single space. The Extension setting allows you to specify what file extension is used
for the text file, while the Encoding setting lets you change the encoding from the default of Unicode to either ASCII, UTF-7, or
UTF-8. Lastly, the NoHeader setting indicates whether the header row should be skipped when rendering. For more information
on the device information settings, see Device Information Settings.

Note The structure of the matrix data region in CSV may change in upcoming releases of Reporting Services.

See Also

Design Considerations for Rendering

Reporting Services Programming

Reporting Services - Designing and Creating Reports

Designing for XML Output
The XML rendering extension returns a report in XML format. The schema for the report XML is specific to the report, and contains
data only. Layout information is not rendered by the XML rendering extension. The XML generated by this extension can be
imported into a database, used as an XML data message, or sent to a custom application.

General Rules

The following table describes how report items are rendered.

Item Rendering behavior
Report Renders as the top-level element of the

XML document.
Data regions Renders as an element within the element

for its container.
Group and detail sections Each instance renders as an element

within the element for its container.
Text box Renders as an attribute or element within

its container.
Rectangle Renders as an element within its

container.
Matrix column groups Renders as elements within row groups.

Reports that are rendered using the XML rendering extension also have the following considerations:

XML elements and attributes are rendered in the order that they appear in the report definition.
Pagination is ignored.
Page headers and footers are ignored.
Hidden items that cannot be made visible through a toggle are not rendered. Initially visible items and hidden items that can
be made visible through a toggle are rendered.
Image, CustomReportItem, and Line are ignored.

Data Types

The text box element or attribute is assigned an XSD data type based on the values that the text box displays.

If all text box values are Assigned data type is
Int16, Int32, Int64, UInt16, UInt32,
UInt64, Byte, SByte

xsd:integer.

Decimal (or Decimal and any integer or
byte data type)

xsd:decimal

Float (or Decimal and any integer or byte
data type)

xsd:float

Double (or Decimal and any integer or
byte data type)

xsd:double

DateTime xsd:dateTime
Boolean xsd:boolean
String, Char xsd:string
Other xsd:string

XML Elements and Attributes

For information about how the XML rendering extension renders each of the elements in the report definition, see Elements and
Attributes in XML Rendering.

Custom Formats and XSL Transformations

XML files produced by the XML rendering extension can be transformed into almost any format using XSL Transformations
(XSLT). This functionality can be used to produce data in formats not already supported by existing rendering extensions. Consider

using the XML rendering extension and XSLT before attempting to create your own rendering extension. For more information,
see Applying Transformations to XML Output.

Rendering

When you render a report using the XML rendering extension, you can specify several device information settings, including the
following:

A transformation (XSLT) to apply to the XML
The MIME type of the XML document
Whether to apply format strings to data
Whether to indent the XML output
Whether to include the XML schema name
The encoding for the XML document
The file extension of the XML document

For more information about device information settings, see Device Information Settings.

Additional Topics

The following table describes the topics in this section.

Topic Description
Elements and Attributes in XML Rendering Describes how each of the elements in the

report definition are rendered by the XML
rendering extension.

Applying Transformations to XML Output Describes how to apply XSL
Transformations (XSLT) to XML output.

See Also

Design Considerations for Rendering

Reporting Services - Designing and Creating Reports

Elements and Attributes in XML Rendering
The XML rendering extension renders report items as elements or attributes in an XML document. Each element can have a set of
attributes or subelements associated with it. The attributes or elements vary depending on the report item.

Report

Report is the XML root node. It contains attributes that specify schema information for the XML document and the report name.

The XSD is specified in the XML root node as follows:

<Report xmlns="SchemaName" xmlns:sxi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="SchemaName ReportURL&rs:ImageID=SchemaName" Name="ReportName">

The following table describes how the attributes and elements in the Report RDL element are rendered by the XML rendering
extension.

RDL attribute Renders as
Name The Name attribute of the root element.

Textbox

The following table describes how the attributes and elements in the Textbox RDL element are rendered by the XML rendering
extension. The text box name and value are rendered as an element or as an attribute depending on the value of the
DataElementStyle RDL element for the text box.

RDL element Renders as
DataElementName The name of the text box element or attribute. If

DataElementName is not specified, the name is the name
of the text box in the RDL.

Value The value of the data in the text box.

Table

The following table describes how the attributes and elements in the Table RDL element are rendered by the XML rendering
extension. The table is rendered as an element.

RDL element Renders as
DataElementName The name of the table element. If DataElementName is

not specified, the name of the element is the name of the
table in the RDL.

Header All items in the header are rendered as subelements or
attributes of the table element.

Footer All items in the footer are rendered as subelements or
attributes of the table element.

TableGroup The first TableGroup element is rendered as a subelement
of the table element. Each subsequent TableGroup
element is rendered as a subelement of the group instance
for the previous TableGroup element. This results in
nested groups of data.

Details A subelement of each group instance for the last
TableGroup element. If there are no table groups, Details
is rendered as a subelement of the table element.

TableGroup

The following table describes how the attributes and elements in the TableGroup RDL element are rendered by the XML
rendering extension. The table groups are rendered as elements.

RDL element Renders as

DataCollectionName
(Grouping)

The name of the table group element. If
DataCollectionName is not specified, the name of the
element is the name specified in the DataElementName
element plus the string _Collection.

DataElementName
(Grouping)

The name of the group instance element. Group instance
elements are subelements of the table group element. If
DataElementName is not specified, the name of the
element is the name of the grouping in the RDL.

Header All items in the header are rendered as subelements or
attributes of the group instance element.

Footer All items in the header are rendered as subelements or
attributes of the group instance element.

Details

The following table describes how the attributes and elements in the Details RDL element are rendered by the XML rendering
extension. Details is rendered as an element.

RDL element Renders as
DataCollectionName
(Grouping)

The name of the details element. If DataCollectionName
is not specified, the name of the element is the name
specified in the DataElementName element plus the
string _Collection. If Details has no grouping, the name of
the element is Detail_Collection.

DataElementName
(Grouping)

The name of the group instance element. Group instance
elements are subelements of the details element. If
DataElementName is not specified, the name of the
element is the name of the grouping in the RDL. If Details
has no grouping, the name of the element is Detail.

DetailsRows All items in the detail rows are rendered as subelements or
attributes of the group instance element.

Matrix

The following table describes how the attributes and elements in the Matrix RDL element are rendered by the XML rendering
extension. The matrix is rendered as an element.

RDL element Renders as
DataElementName The name of the matrix element. If DataElementName is

not specified, the name of the element is the name of the
matrix in the RDL.

Corner All items in the corner are rendered as subelements or
attributes of the matrix element.

RowGrouping The first RowGrouping element is rendered as a
subelement of the matrix element. Each subsequent
RowGrouping element is rendered as a subelement of the
group instance for the previous RowGrouping element.
This results in nested groups of data.

ColumnGrouping The first ColumnGrouping element is rendered as a
subelement of each group instance for the last
RowGrouping element. Each subsequent
ColumnGrouping element is rendered as a subelement of
the group instance for the previous ColumnGrouping
element.

MatrixCell The Cell subelement within each group instance for the last
ColumnGrouping element. All items in the matrix cell are
rendered as subelements or attributes of the Cell element.

RowGrouping

The following table describes how the attributes and elements in the RowGrouping RDL element are rendered by the XML

rendering extension. A row grouping is rendered as an element.

RDL element Renders as
DataCollectionName
(Grouping)

The name of the row grouping element. If
DataCollectionName is not specified, the name of the
element is the name specified in the DataElementName
element plus the string _Collection. This is not used for
static row groupings.

DataElementName
(Grouping)

The name of the group instance element. Group instance
elements are subelements of the row grouping element. If
DataElementName is not specified, the name of the
element is the name of the grouping in the RDL. For static
row groupings, the name of the element is the value of
DataElementName for the text box in the group header is
used. If there is no text box for a static row header, the
name of the element is RowN where N is a number
assigned to the row grouping.

ReportItems All items in the row grouping are rendered as subelements
or attributes of the parent of the row grouping element.

Subtotal A sibling element to the row grouping element. This
element contains a matrix cell. The name of this element is
the name specified in the DataElementName element for
the subtotal. If no name is specified, the name of the
element is Total.

Note Subtotals are not rendered by default. The XML rendering extension renders subtotals only if the value of the
DataElementOutput RDL element for the subtotal is Output.

ColumnGrouping

The following table describes how the attributes and elements in the ColumnGrouping RDL element are rendered by the XML
rendering extension. A column grouping is rendered as an element.

RDL element Renders as
DataCollectionName
(Grouping)

The name of the column grouping element. If
DataCollectionName is not specified, the name of the
element is the name specified in the DataElementName
element plus the string _Collection. This is not used for
static column groupings.

DataElementName
(Grouping)

The name of the group instance element. Group instance
elements are subelements of the column grouping element.
If DataElementName is not specified, the name of the
element is the name of the grouping in the RDL. For static
column groupings, the name of the element is the value of
DataElementName for the text box in the group header is
used. If there is no text box for a static column header, the
name of the element is ColumnN where N is a number
assigned to the column grouping.

ReportItems All items in the column grouping are rendered as
subelements or attributes of the parent of the column
grouping element.

Subtotal As a sibling element to the column grouping element. This
element contains a matrix cell. The name of this element is
the name specified in the DataElementName element for
the subtotal. If no name is specified, the name of the
element is Total.

Note Subtotals are not rendered by default. The XML rendering extension renders subtotals only if the value of the
DataElementOutput RDL element for the subtotal is Output.

List

The following table describes how the attributes and elements in the List RDL element are rendered by the XML rendering
extension. The list is rendered as an element.

RDL element Renders as
DataElementName The name of the list element. If DataElementName is not

specified, the name of the element is the name of the list in
the RDL.

DataCollectionName
(Grouping)

Not used.

DataElementName
(Grouping)

The name of the group instance element. Group instance
elements are subelements of the list element. If
DataElementName is not specified, the name of the
element is the name of the grouping in the RDL. If the list
has no grouping, the name of the element is Detail.

ReportItems All items in the list are rendered as subelements or
attributes of the parent of the group instance element.

Subreport

The following table describes how the attributes and elements in the Subreport RDL element are rendered by the XML rendering
extension. A subreport is rendered as a Report element in the rendered XML. The contents of the subreport are rendered within
this Report element.

RDL element Renders as
DataElementName The name attribute for the subreport element. If

DataElementName is not specified, the name for the
attribute is the name of the subreport in the RDL.

The value of the DataElementStyle in the main report overrides the value of DataElementStyle in the subreport. Also, the
namespace and XSLT attributes are not used for a Report element for a subreport.

Rectangle

The following table describes how the attributes and elements in the Rectangle RDL element are rendered by the XML rendering
extension. The rectangle is rendered as an element.

RDL element Renders as
DataElementName The name of the rectangle element. If DataElementName

is not specified, the name of the element is the name of the
rectangle in the RDL.

See Also

Designing for XML Output

Reporting Services - Designing and Creating Reports

Applying Transformations to XML Output
You can use the XML rendering extension to produce XML files that can be transformed into almost any format using XSL
Transformations (XSLT). You can use the XML rendering extension and XSLT to produce formats that are not supported by
existing rendering extensions.

There are three common scenarios in which you would use XSLT:

Data transfer. You can transform the XML output from Reporting Services into another XML format that can be read by
another application.
Text rendering. You can transform an XML report into a plain text file.
HTML rendering. You can create HTML or other documents from an XML report.

The XML produced by the XML Rendering Extension is specific to the report. Because of this, the XSLT that you write has to be
specific to the report.

Note For security reasons, Reporting Services does not support XSLT with embedded Visual Basic code.

The following XSL, when saved to a file and uploaded to the report server, can be used to transform the Product Catalog sample
report into a list of product models in plain text.

XML

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text" encoding="utf-8" media-type="text/plain"/>
<xsl:strip-space elements="*"/>

<xsl:template match="/">
 <xsl:text>Product Models</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="Report">
 <xsl:for-each select="ProductTable/ProductTable_Group1_Collection/ProductTable_Group1">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="@Category"/>
 <xsl:for-each select="ProductTable_Group2_Collection/ProductTable_Group2">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="@SubCategory"/>
 <xsl:for-each select="ProductTable_Group3_Collection/ProductTable_Group3">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="@Model"/>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:for-each>
 <xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

To transform the sample report, you can use device information settings in the URL used to run the report. For example, the
following URL runs the report, applies the transformation, and outputs the file with an extension of txt. This example assumes
that the XSL from the previous example is stored with the name ProductModels.xsl in the same folder as the Product Catalog
report on the report server.

http://localhost/reportserver?/SampleReports/Product+Catalog&rs:Command=Render&rs:Format=
XML&rc:OmitSchema=True&rc:FileExtension=txt&rc:XSLT=ProductModels.xsl

You are not limited to using Reporting Services to transform your XML report using XSLT. You can also retrieve the XML from the
report server and apply the XSLT using your own application.

Note The XSL file used in this example is specific to the Product Catalog sample report. If a different report is used, or
the Product Catalog report is altered, the file may not be transformed correctly.

See Also

Designing for XML Output

Reporting Services - Designing and Creating Reports

Designing for Image Output
The Image rendering extension renders a report to a bitmap or metafile. By default, the Image rendering extension produces a
TIFF file of the report, which can be viewed in multiple pages. When the client receives the image, it can be displayed in an image
viewer and printed.

The Image rendering extension can generate files in any of the formats supported by GDI+: BMP, EMF, GIF, JPEG, PNG, and TIFF.
For TIFF format, the file name of the primary stream is ReportName.tif. For all other formats, which render as a single page per
file, the file name is ReportName_Page.ext where ext is the file extension for the chosen format.

Report Appearance

The Image rendering extension processes the report by assembling all elements of the report on a virtual page (or set of pages)
on the server, then creating an image from that virtual page. With extensions like the HTML rendering extension, you rely on the
client browser to display the final report to the user. This can lead to varying user experiences, based on browser versions,
settings and fonts. With an image, you are assured that each user is viewing the same font and layout.

Because the report is rendered on the report server, you will need to make sure that the appropriate fonts are installed on it.

Positioning of Items

Many items can change size when they are rendered in a report. For example, text boxes can grow or shrink depending on the
data contained within them. Matrices and tables expand based on rows of data. Items appear and disappear as they are shown
and hidden. When the Image rendering extension renders a page, it calculates the sizes of each item and then positions the items
around it. For example, a text box below a table is moved down as the table expands.

If an item overlaps another item, the value of the ZIndex element in the report definition for those items determines how the
items are rendered. The item with the higher ZIndex value is rendered on top of the item with a lower ZIndex value.

Page Header and Footer

The page header and footer are rendered inside the margins of the report. The space for the page header and footer is always
reserved, even if the header or footer is not rendered on a particular page. Page headers and footers span all columns that may
exist in the body of the report.

Pagination

The size of the page produced by the Image rendering extension is determined by the page width and height for the report, plus
margins. This can be overridden by device information settings when the report is rendered.

The body width and the page width of the report can be different. If the body width is greater than the page width, a single "page"
of a report displays on two physical pages. If the body width is smaller than the page width, extra white space is displayed on the
page.

An item below a page break is pushed onto the start of a new page. If the page break is inside a container such as a rectangle, the
container is split between pages.

Keep Together

Items on a report can be set to keep together on a single page. For some items, such as data regions, this must be explicitly set on
the item. For others, such as table rows, items are kept together, if possible. If the item contains no page breaks and its height is
less than the height than the available area on the page, the whole item is rendered on that page. If the item does not fit, a page
break is placed at the beginning of the item and it is rendered on the next page. If a report item or set of report items is larger
than the page, the item will split when it reaches the bottom of the page. Items that repeat on new pages will display once on each
page on which the related item appears.

The following table describes how individual items keep together on a page.

Item Behavior
List If the KeepTogether property for the list is True, all

repeating instances of the list are kept together, unless the
list contains a page break.

Table If the KeepTogether property for the table is True, all rows
of the table are kept together, unless they contain a page
break.

Matrix If the KeepTogether property for the list is True, all cells of
a matrix are kept together, unless they contain a page
break.

Chart A chart is always kept together.
Table row A table row is always kept together, unless it contains a

page break.
Table column A table column is always kept together.
Table group header A table group header and the first detail row following the

header are kept together.
Table group footer A table group footer and the last previous detail row before

the footer are kept together.
Matrix row A matrix row is always kept together, unless it contains a

page break.
Matrix column A matrix column is always kept together, unless it contains

a page break.
Rectangle A rectangle is always kept together, unless it contains a

page break.
Image An image is always kept together.
Line A line is always kept together.
Text box A text box is always kept together. If it must split, it splits

between lines, never in the middle of a line.
Subreport A subreport is not kept together.
Table group A table group is not kept together.
Matrix group A matrix group is not kept together.

Rendering

When you render a report using the Image rendering extension, you can specify several device information settings, including the
following:

A range of pages to render
Page width and height
Margin size
Number of columns and column spacing
Resolution of the image
Format of the image
Color depth of the image

For more information about device information settings, see Device Information Settings.

Additional Topics

The following table describes the topics in this section.

Topic Description
Data Regions in Image Rendering Describes how data regions are rendered

by the Image rendering extension.
Report Items in Image Rendering Describes how report items are rendered

by the Image rendering extension
Page Layout in Image Rendering Describes how report layout and

properties are rendered by the Image
rendering extension.

See Also

Design Considerations for Rendering

Reporting Services - Designing and Creating Reports

Data Regions in Image Rendering
The Image rendering extension renders the layout of data regions and the data contained within them as a static image. How each
data region is rendered varies depending on the data region.

Matrix

The following table describes how the elements in the Matrix RDL element are rendered by the Image rendering extension.

RDL element Renders as
KeepTogether If the KeepTogether property for the list is True, all cells of

a matrix are kept together, unless they contain a page
break.

NoRows Text in place of the matrix if the matrix contains no rows.
The text is rendered in a text box. Page break properties are
ignored, and style properties for the matrix are applied to
the text. If no text is specified in NoRows, then no matrix or
text is rendered.

PageBreakAtStart The matrix is displayed on a new page.
PageBreakAtEnd Items below the matrix are displayed on a new page.

Corner

Items in the corner that have a width or height of 100 percent are sized to fill the corner. Otherwise, they are clipped if they do not
fit within the corner.

MatrixColumn

The contents of the MatrixColumn element are rendered inside a cell. If the width or height is 100 percent, the items in the cell
are sized to fit. If they do not fit within the cell, the items within the cell are clipped. If the matrix contains a page break, column
headers are repeated on each page on which the matrix appears.

MatrixRow

The contents of the MatrixRow element are rendered inside a cell. If the width or height is 100 percent, the items in the cell are
sized to fit. If they do not fit within the cell, the items within the cell are clipped. If the matrix contains a page break, row headers
are repeated on each page on which the matrix appears.

Subtotal

Subtotals are rendered as a text box. Styles for the matrix are applied to this text box.

MatrixCell

Items within the MatrixCell element are rendered inside a cell. Items with percentage widths or heights are sized to the cell;
otherwise, the contents of the cell can increase the size of the cell.

The following table describes how the elements in the MatrixCell RDL element are rendered by the Image rendering extension.

RDL element Renders as
Height Determines the minimum height of the cell.
Width Determines the minimum width of the cell.

Table

A table is rendered as a grid. If the table has borders, they are drawn around the table. The following table describes how the
elements in the Table RDL element are rendered by the Image rendering extension.

RDL element Renders as

KeepTogether If the KeepTogether property for the table is True, all rows
of the table are kept together, unless they contain a page
break.

NoRows Text in place of the table if the table contains no rows. The
text is rendered in a text box. Page break properties are
ignored, and style properties for the table are applied to the
text. If no text is specified in NoRows, no table or text is
rendered.

PageBreakAtStart The table is displayed on a new page.
PageBreakAtEnd Items below the table are displayed on a new page.

TableColumn

The following table describes how the elements in the TableColumn RDL element are rendered by the Image rendering
extension.

RDL element Renders as
Width Determines the minimum width of the column.

Header and Footer

The table Header and Footer elements are rendered as rows of rectangles that contain the report items for the rows. The
following table describes how the elements in the Header and Footer RDL elements are rendered by the Image rendering
extension.

RDL element Renders as
RepeatOnNewPage If the table spans multiple pages, repeats the row on each

page. Page breaks within a header or footer on a new page
are ignored.

TableRow

The TableRow element is rendered as a row of rectangles that contain the report items for the row. The following table describes
how the elements in the TableRow RDL element are rendered by the Image rendering extension.

RDL element Renders as
Height Determines the minimum height of the row.

TableGroup

The TableGroup element defines a group in a table. The Header element is rendered first, followed by the instances of
TableRow that contain details, and finally the Footer element. If there is no room on the page for the header and one row below
it, the header is moved to the next page. If there is no room on the page for the footer and one row above it, those two rows are
moved to the next page.

TableCell

Items within the TableCell element are rendered inside a cell. If the contents of a cell do not fit within the cell, the contents of the
cell can increase the size of the cell.

Chart

The following table describes how the elements in the Chart RDL element are rendered by the Image rendering extension.

RDL element Renders as
KeepTogether A chart is always kept together.
NoRows Text in place of the chart if the chart contains no rows. The

text is rendered in a text box. Page break properties are
ignored, and style properties for the chart are applied to the
text. If no text is specified in NoRows, no chart or text is
rendered.

PageBreakAtStart The chart is displayed on a new page.
PageBreakAtEnd Items below the chart are displayed on a new page.

List

The following table describes how the elements in the List RDL element are rendered by the Image rendering extension.

RDL element Renders as
KeepTogether If the KeepTogether property for the list is True, all

repeating instances of the list are kept together, unless the
list contains a page break.

NoRows Text in place of the list if the list contains no rows. The text
is rendered in a text box. Page break properties are ignored,
and style properties for the list are applied to the text. If no
text is specified in NoRows, no list or text is rendered.

PageBreakAtStart The list is displayed on a new page.
PageBreakAtEnd Items below the list are displayed on a new page.

The border of the list and the items inside the list are also rendered.

Grouping

The following table describes how the elements in the Grouping RDL element are rendered by the Image rendering extension.

RDL element Renders as
PageBreakAtStart The group is displayed on a new page.
PageBreakAtEnd Groups and items below the group are displayed on a new

page.

RepeatWith

The item is repeated with the data region on each page that the data region appears. The position of the item is relative to the
position of the data region.

See Also

Designing for Image Output

Reporting Services - Designing and Creating Reports

Report Items in Image Rendering
The Image rendering extension renders the layout of report items and data as a static image. How each item is rendered varies
depending on the report item.

ReportItems

The items within the ReportItems element are rendered as described later in this topic. For each report item, the Name and
Label subelements are ignored. The Top, Left, Height, Width, and ZIndex subelements determine how items are placed on the
page. For more information about positioning, see Designing for Image Output.

Textbox

A text box is rendered as wrapped text inside of a rectangle. The following table describes how elements in the Textbox RDL
element are rendered by the Image rendering extension.

RDL element Renders as
Value Text with appropriate style properties.
CanGrow If CanGrow is True, the text box expands vertically to fit the

text. If CanGrow is False, the text is clipped.
CanShrink If CanShrink is True, and the height of the text is smaller

than the height of the text box, the text box is shrunk to fit.
HideDuplicates The text in the text box is not rendered if the data is the

same as the preceding record. The text is shown if it is in
the first text box on the page.

Image

The following table describes how elements in the Image RDL element are rendered by the Image rendering extension.

RDL element Renders as
Value If the value of the Source RDL element is External, the

image is retrieved from this URL and rendered. Otherwise,
the image is retrieved from image data and rendered. If the
image cannot be retrieved, a red X image is displayed.

Sizing The appearance of the image is determined by the Sizing
RDL element. If the value of Sizing is Clip, the image is
sized to match the output resolution, and then is clipped at
the specified height and width. If the value is Fit, the image
is sized to the specified height and width. If the value is
FitProportional, the image is sized to the specified height or
width, keeping the original proportion of the image. If the
value is AutoSize, the image is sized to match the output
resolution, ignoring height and width.

Line

The Line element is rendered with all the appropriate style properties.

Rectangle

The Rectangle element is rendered with all the appropriate style properties. The contents are drawn inside the rectangle, and the
rectangle grows to accommodate its contents.

Subreport

A subreport is rendered by the Image rendering extension. Page breaks within a subreport are rendered as though the subreport
were a rectangle. If the subreport does not run, an error displays in place of the subreport.

BackgroundImage

Repeated background images are repeated within the containing item. Images are cropped at the edge of the containing item.
Background images are drawn under the items in the container.

BorderStyle

Borders are drawn around an item as specified in the Top, Right, Left, and Bottom elements for the various border properties.
The size of the spacing for dotted and dashed spacing is the same regardless of resolution.

When borders are drawn, half of the border is drawn inside the item, and half is drawn outside an item. For example, a text box
with a border width of 4 pixels will display with 2 pixels of the border inside the text box and 2 pixels of the border outside the text
box.

Fonts

Because the report is rendered on the server, the fonts used in the report must also reside on the server. If the font does not exist
on the server, the GenericSerif GDI+ font is used. If the value for the FontWeight element is 700, 800, 900, Bold, or Bolder, the
font is rendered as bold.

Padding

Text is positioned within a report item based on the values of the PaddingLeft, PaddingRight, PaddingTop, and
PaddingBottom elements. The space for the padding begins at the edges of the box, not counting borders. If the padding is less
than half the border width, the border overlaps the text.

TextDecoration

In the TextDecoration element, a value of Underline displays as a line beneath the text. A value of LineThrough displays as a
strikeout. Overline is not supported.

See Also

Designing for Image Output

Reporting Services - Designing and Creating Reports

Page Layout in Image Rendering
The Image rendering extension renders the layout of report items and data as a static image. How each item is rendered varies
depending on the report item.

Report

Subelements of the Report RDL element are ignored, except for the Body element.

Body

The Body element is rendered as the contents of the page. The Height and Width elements are ignored. The PageHeight,
PageWidth, Columns, and ColumnSpacing elements affect how the report is paginated. A border renders as the border of the
body, inside the margins of the report.

PageHeader

The page header is rendered at the top of each page, unless the value of the PrintOnFirstPage or PrintonLastPage element is
False. The height of the page header is fixed. Any items within the page header that grow larger than the height of the page
header are clipped.

The following table describes how elements in the PageHeader RDL element are rendered by the Image rendering extension.

RDL element Renders as
Height The height of the page header.
PrintOnFirstPage Indicates whether the page header is included on the first

page.
PrintOnLastPage Indicates whether the page header is included on the last

page.

PageFooter

The page footer is rendered at the bottom of each page, unless the value of the PrintOnFirstPage or PrintonLastPage element
is False. The height of the page footer is fixed. Any items within the page footer that grow larger than the height of the page
footer are clipped.

The following table describes how elements in the PageFooter RDL element are rendered by the Image rendering extension.

RDL element Renders as
Height The height of the page footer.
PrintOnFirstPage Indicates whether the page footer is included on the first

page.
PrintOnLastPage Indicates whether the page footer is included on the last

page.

Custom

The Custom element is ignored by the Image rendering extension.

Hyperlink

The Hyperlink element is ignored by the Image rendering extension.

Visibility

The item is rendered based on the current visible state of the item.

See Also

Designing for Image Output

Reporting Services - Designing and Creating Reports

Designing for PDF Output
The PDF rendering extension renders a report to files that can be opened in Adobe Acrobat. The PDF rendering extension is based
on the Image rendering extension, with some differences. For information common to the Image rendering extension and the PDF
rendering extension, see Designing for Image Output. This topic describes features that are specific to the PDF rendering
extension.

The PDF rendering extension produces files with the extension PDF. These files are PDF 1.3, which is compatible with Adobe
Acrobat 4 or later.

Metadata

The PDF rendering extension writes the following information to the PDF file.

PDF property Created from
Title The Name attribute of the Report RDL element
Author The Author RDL element
Subject The Description RDL element
Creator Reporting Services product name and version
Producer Rendering extension name and version
CreationDate Report execution time in PDF datetime format

Bookmarks

The PDF rendering extension renders the document map as PDF bookmarks. Only bookmarks for items in the rendered pages are
included. Bookmarks are not included if the report is a single page.

Hyperlinks

Hyperlinks are rendered by the PDF rendering extension. When a user clicks on a hyperlink, the linked pages are opened in the
browser.

Fonts

The PDF rendering extension does not embed fonts. Fonts that are used in the report must be installed on the report server and
on the client computers used to view the report.

Images

If an image in the report is originally stored in JPEG format, the rendered PDF will contain that image in JPEG format. Images
originally stored in other formats are rendered in PNG format.

Rendering

When you render a report using the PDF rendering extension, you can specify several device information settings, including the
following:

A range of pages to render
Page width and height
Margin size
Number of columns and column spacing
Resolution of the PDF

For more information about device information settings, see Device Information Settings.

See Also

Design Considerations for Rendering

Reporting Services - Managing and Working With Published Reports

Managing and Working With Published Reports
Microsoft® SQL Server™ Reporting Services supports end-to-end management of reports and the reporting environment. To
manage and work with published reports, use Report Manager. You can use Report Manager to configure end-user access to
reports and report server folders, set options that determine how and when reports are run, manage report distribution, and
manage report processing.

The following table describes the topics in this section. For more information about administering a report server or report server
database, see Deploying and Administering Reporting Services.

Topic Description
Configuring Report Access Describes the settings and properties that

affect end-user access to a report.
Viewing Reports With Report Manager Explains how to view reports, navigate

folders, search for items, use My Reports,
and identify the icons used in Report
Manager.

Viewing Reports With a Browser Explains how to use a browser to access
reports and navigate folders.

Running Reports Provides information about how to run
and refresh reports, with additional
instruction for working with large and
parameterized reports.

Printing, Exporting, and Saving Reports Provides links to topics about printing,
exporting, and saving reports.

Managing Report Server Content Provides information about managing
reports, report history, My Reports,
resources, and folders.

Managing Data Source Connections Explains how to manage connectivity to
the external data sources that provide
content for reports.

Distributing Reports Through
Subscriptions

Describes subscription and delivery used
to distribute reports.

Using Schedules Provides information about creating and
managing schedules, which are used to
automate report processing.

Managing Report Processing Provides information about report
execution, session management, caching,
and job management.

See Also

Report Management

Report Manager

Report Server Folder Namespace

Reporting Services Samples and Walkthoughs

Reporting Services - Managing and Working With Published Reports

Configuring Report Access
Report server administrators can configure a report server to control how users access published reports and work with Report
Manager. This topic explains how report server administrators can affect the interaction between users, tools, and reports.

Role-Based Access to Reports and Other Items

Reporting Services uses a role-based security model to control access to folders and reports. Two default role assignments are
defined during Setup. These role assignments expose management capability to local administrators. You must define additional
role assignments to grant access to other users. For instructions, see Server Deployment Checklist.

After setup, a report server administrator can add or modify role assignments to determine what folders and reports are available
to specific user accounts. Your report server administrator can tell you about the specific roles that are defined for your report
server. To learn more about role-based security, see Using Role-Based Security.

Report Presentation and Viewing Options

One of the primary uses of Reporting Services is to support report distribution over a Web connection. Because Reporting
Services is designed for Web-based reporting, reports that are opened in Report Manager or a browser are initially presented in
HTML. Users can view on-demand reports in an alternative format.

In general, report server administrators cannot "lock in" a fixed viewing format for reports that are accessed on-demand.
However, viewing options can be set for reports that are delivered through subscriptions, specifically those that are delivered to a
file share. If the report is delivered in a specific format to a file share, users cannot select other formats for viewing the report. For
more information, see Running Reports.

E-Mail Delivery Options

Report server administrators can configure a report server to control whether and how reports are distributed through e-mail.
Restrictions can be applied to e-mail hosts, e-mail address fields, report delivery options (for example, whether it can be delivered
as a link or attachment), and rendering formats. For more information, see Configuring a Report Server for E-Mail Delivery.

Report Execution Options

Report server administrators can configure reports to run at certain times, to use prompted passwords, or use a specific data
source. If a report uses parameters, a report server administrator can determine whether parameter values are stored or
prompted, and whether to use default values. For more information, see Configuring Report Execution.

My Reports

Report server administrators must enable this feature to make it available for use. For more information, see Managing My
Reports.

See Also

Managing Report Server Content.

Report Manager

Running a Parameterized Report

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Viewing Reports with Report Manager
Report Manager is a Web-based tool that includes features for viewing and managing reports. Depending on how you configure
role assignments, viewing and navigation operations can be exposed to users who have minimal access to a report server.
Management features are available to users who have appropriate permissions.

Starting Report Manager

Users and administrators who do not have Reporting Services installed on their computer must access Report Manager through
the Report Manager URL. The following example shows the default URL of Report Manager:
http://exampleWebServerName/reports

Users who have Reporting Services installed on a local computer can use a shortcut to open Report Manager. From the Start
menu, point to Programs, point to Microsoft SQL Server, and then click Report Manager.

Finding Reports

To select a report, you can search for a report by name or description, or browse report server folders to find the report you want.
For more information, see Searching for Reports and Other Items and Navigating Folders in Report Manager.

Running Reports

After you find a report, you can click the report name to run it. For more information about opening reports in Report Manager,
see How to open and close reports and Running Reports.

See Also

Report Manager

Icons in Report Manager

Running Large Reports

Running a Parameterized Report

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Searching for Reports and Other Items
You can use Report Manager to search a report server for specific items by name or description. You can search for published
reports, folders, shared data sources, and resources. You cannot search for schedules, owners, role assignments, specific
snapshots in report history, or subscriptions. The search is performed on the report server database where the items are stored.
Performing a file system search will not return search results for items managed by a report server.

To search for items, type a search string in the Search for text box at the top of the page. Searches begin at the top node in the
folder hierarchy and then proceed through every branch. If you do not have permission to access a specific branch, that branch is
skipped. This applies to My Reports folders that belong to other users, and to other folders that are not generally available. Only
reports and items that you have permission to view are included in the search results.

To search for an item by name or description, specify all or part of the text that you want to match. The search string is not case
sensitive. You cannot use search operators such as plus (+) or minus (–) symbols to require or exclude search criteria.

To search for specific text within a report, use the toolbar at the top of the report. For more information, see HTML Viewer.

Note Additional search functionality may be included in custom applications that connect to the report server engine.
For more information about programmable search functionality, see FindItems Method.

See Also

Navigating Folders in Report Manager

Report Manager

Using My Reports

Running Reports

Reporting Services - Managing and Working With Published Reports

Navigating Folders in Report Manager
In Reporting Services, published reports and folders are represented as a hierarchy similar to those of file systems and Web sites.
To find the reports that you want to run, you can browse through the folder hierarchy.

Not all reports that are visible in the folder hierarchy are accessible. Some reports may prompt you for your user name and
password to determine whether you can access the data source for the report.

About Folder Navigation in Report Manager

To navigate through the folder hierarchy, use the Contents page, which appears automatically when you run Report Manager. It
shows the contents of any folder. By default, it opens at the root folder (Home); as such, the Contents page for Home is the start
page for the application. For more information, see Contents Page.

Navigating Up and Down the Folder Hierarchy

Report Manager does not include the tree view that is often used in file management systems. Instead, the folder path is displayed
as a row of links at the top of the page. Folder names are listed in sequence, starting with the root folder (Home). As you open
each additional folder, the folder name is added to the folder path at the top of the page. When you open a report, the name of
the report is also added to the folder path.

Use the following techniques to navigate through a folder hierarchy:

To view the contents of a folder, click the folder name on the Contents page. A folder page opens, displaying the contents of
the folder.
To navigate down through the folder hierarchy, open a subfolder of the current folder. Folders contain reports, resources,
shared data source items, and other folders. Clicking a folder icon opens the folder, showing the contents of the hierarchy
one level down.
To navigate up through the folder hierarchy, in the row of links at the top of the page, click the name of the folder whose
contents you want to see.

Using the Browser Back Button

Reports are always cached by the browser session, so if you open a report, you can usually return to it by clicking the Back
button. This is true even if you were required to supply a user name and password to run the report. You cannot really close a
rendered report until you close the browser. You can also use the Back button to scroll through folder pages that you have
previously opened.

See Also

Icons in Report Manager

Searching for Reports and Other Items

Report Manager

Report Server Folder Namespace

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Using My Reports
The My Reports folder is a personal workspace that you can use to store and work with reports that you own. Other folders are
public and typically require users to have advanced permissions to add to or modify folder contents. In contrast, the My Reports
folder is a user-managed workspace. You can add or remove reports and folders and save linked reports with personalized
settings.

Conceptually, the My Reports folder is similar to the My Documents folder in the Windows file system. Although each user has a
folder called My Reports, the folder that each accesses is different from all other users'. Except for report server administrators,
other users cannot access the contents of the My Reports folder that belongs to you.

The My Reports feature is optional and can be disabled by a report server administrator. If it is enabled, you will see a My Reports
folder in the Home folder, which you can access using the Report Manager or a Web browser. For more information, see
Navigating Folders in Report Manager.

The text string "My Reports" is localized based on the locale of the report server. For more information about using Reporting
Services in a multilingual environment, see Deploying Reporting Services in a Global Environment.

Ways to Use My Reports

My Reports is empty until you add reports, folders, and other items. Here are some ways to add content to My Reports.

Create a personal linked report and store it in My Reports. Not all reports are available for linking. For more information,
see Creating, Modifying, and Deleting Linked Reports.
Upload a report definition (.rdl) file or other files from the file system. You can upload any file, but the report server only
processes report files that have an .rdl file extension. For more information, see Report Definitions and Uploading Files to a
Folder.
Create and publish your own reports to My Reports. This requires report design expertise and Report Designer, which runs
in a Visual Studio environment. For more information, see Designing and Creating Reports.

Usually, permissions on My Reports allow you to manage the folder yourself. However, the report server administrator ultimately
determines which tasks users can perform. If insufficient permissions prevent you from working with My Reports, see your report
server administrator.

Searching My Reports

When you search a report server database, the contents of your My Reports folder are included in the search, while the contents
of other user's My Reports folders are excluded. Search results list only the reports to which you have access.

See Also

Managing My Reports

Report Server Folder Namespace

Searching for Reports and Other Items

Reporting Services - Managing and Working With Published Reports

Icons in Report Manager
The following table describes the icons that are used in Report Manager. For more information about the icons that appear in the
report toolbar, see HTML Viewer.

Icon Item Action
Report Click the report icon or name to open

the report. The report opens in a
separate window.

Linked report Click the report icon or name to open
the linked report. The report opens in
a separate window.

Folder Click the folder icon or name to open
the folder.

Subscription Click a subscription icon or
description to edit a subscription.

Data-driven subscription Click a data-driven subscription icon
or description to edit a subscription.

Resource Click the resource icon or name to
open the resource. The resource
opens in a separate window.

Shared data source item Click a shared data source icon to
open the property pages, report list,
and subscription list of the data
source.

Property page Click the property icon to access
additional pages to set properties and
security.

See Also

Navigating Folders in Report Manager

Report Manager

Reporting Services - Managing and Working With Published Reports

Viewing Reports with a Browser
You can use any supported Web browser to view a report through a direct connection to a report server. Every report has a URL address on a report server. You can open the report you want
by typing the report URL address. Alternatively, you can point a browser to the report server, and then navigate the report server folder hierarchy to select the report you want to view. For
more information, see Navigating Folders in a Web Browser.

Note If you are accessing a report from a handheld device, you must use a browser to open a report. Report Manager is not scaled for handheld devices.

Typing the URL Address of a Report

You can open a report directly from a report server by typing the URL of the report. A report URL includes the name of the Web server, the name of the report server virtual directory, and the
fully qualified name of the report. (A fully qualified name includes the path to the report, and concludes with the name of the report itself.) The following example illustrates how a report URL
might look:
http://exampleWebServerName/reportserver?/foldercontainingreports/orders

Typing a Complex URL Address

A report URL can be complex. URL syntax uses URL encoding to represent spaces and to separate parameters. If you are typing a URL for a report that includes spaces in the path, parameter
values, or a rendering extension, you must incorporate encoded characters into the URL to get the results you expect. The following example illustrates a report URL that includes encoding for
spaces in the path name, parameters, and a rendering extension:
http://exampleWebServerName/reportserver?/foldercontainingreports/employee+sales+summary&ReportYear=2004&ReportMonth=06&EmpID=24&rs:Command=Render&rs:Format=HTML4.0

For more information about the technical aspects of accessing a report through a URL, including information on how a URL is constructed, see URL Access.

Using the Browser Back Button

Reports are always cached by the browser session, so if you open a report, you can usually return to it by clicking the Back button. This is true even if you were required to supply a user
name and password to run the report. You cannot close a rendered report until you close the browser. You can also use the Back button to scroll through folder pages that you have
previously opened.

See Also

Browser Types Supported by Reporting Services

Navigating Folders in Report Manager

Viewing Reports with Report Manager

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Navigating Folders in a Web Browser
You can use a Web browser to navigate report server folders and run reports. Reports and items are displayed as links in the
folder hierarchy. You can click links to run a report, open a resource or folder, or view the contents of a shared data source.

Navigating the folder hierarchy is useful if you do not know the URL of a report. You can specify the report server virtual directory
to open a browser connection at the root node of the folder hierarchy, and then click folder links to navigate through the
hierarchy.

A report server URL includes the name of the Web server and the name of the report server virtual directory. The following
example shows the default URL of a report server:
http://exampleWebServerName/reportserver

When you access a report server virtual directory, you see only the folders, reports, and uploaded items to which you have access.
The user interface shows only the folder hierarchy and basic information, such as creation or modification date, file size, and item
type for individual items:

A link with no other indicator is a report.
The tag <ds> indicates a shared data source.
The tag <dir> indicates a folder item.
A file extension indicates a resource. The file extension identifies the MIME type of the resource. For example, .jpg indicates
an image in JPEG format.

The following diagram illustrates a folder hierarchy as it appears in a browser window.

See Also

Browser Types Supported by Reporting Services

Navigating Folders in Report Manager

Viewing Reports with a Browser

Managing and Working With Published Reports

Reporting Services - Managing and Working With Published Reports

Session Management in Reporting Services
Reporting Services uses browser sessions to maintain consistency while viewing reports. Sessions are based on browser
connections, not authenticated users. A new session is created each time you open a report in a browser window.

Once you establish a browser session, you continue to work with the version of the report that was opened when the session
began, even if the report is later modified on the report server. For example, if you open a report at 11:00 P.M., and a report
author republishes the same report at 11:01 P.M., your session will contain the version that you opened for the duration of the
session.

If you refresh a report within the same session, the report server may serve up a revised version. Different refresh options
produce different results. For more information, see Running Reports.

Session management information is stored in the report server temporary database. If you restart the server or perform a
database recovery operation, session state is not restored. For more information about session management, see Identifying
Session State.

See Also

Managing Report Processing

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Running Reports
This topic describes the ways that you can run a report, viewing options, and the effects of refresh operations on an open report.

Note Reporting Services uses browser sessions to maintain consistency while viewing reports. For more information,
see Session Management in Reporting Services.

Ways to Run a Report

Reporting Services provides two different models for running reports:

On demand. The report runs when you navigate to the report and open it.
Subscription based. The report server uses subscription information to run the report at a specific time and deliver it to
your e-mail inbox or some other destination.

You can use Report Manager or a browser to view reports on demand. If you are running a large report or a parameterized
report, there are additional factors to consider. To define a subscription, you must use Report Manager. The following table
describes topics that provide more information about running reports.

Topic Description
Viewing Reports with Report Manager Explains how to start Report Manager and

run on-demand reports.
Viewing Reports with a Browser Explains how to connect to and run a

report using a browser.
Running Large Reports Provides recommendations for running

large reports.
Running a Parameterized Report Provides information about running a

parameterized report.
Creating, Modifying, and Deleting
Subscriptions

Describes subscription definition steps.

Note On-demand reports usually contain the most current data. However, a report server administrator can set
options that retrieve a previously generated report from cache instead. For more information, see Configuring Report
Access and Auditing and Verifying Report Runs.

Viewing Options

Reporting Services provides several ways to view a published report. You can use a browser, Report Manager, or a desktop
application.

Using a Browser or Report M anager

Reports that you open in a browser or Report Manager render as HTML in an HTML viewer. The viewer includes a report toolbar
that you can use to navigate through the pages in a report, zoom in or out, search for specific report content, and more. The
following illustration shows the report toolbar within a Report Manager window. The report toolbar also appears in a browser
window at the top of a report when you access reports through a URL.

Reporting Services opens the report in HTML 3.2 or HTML 4.0 format. The format that is used depends on the format that the
browser supports. Once you open a report, you can export it to other viewing formats, including those of desktop applications.
The easiest way to select and run a report is to open Report Manager and then search for or navigate to the report that you want
to view. For step-by-step instruction on how to open reports, see How to open and close a report.

Using a Desktop Application

You can bypass browser viewing entirely and use a desktop application (such as Microsoft Excel) as your report viewer instead. To
do this, define a subscription that specifies a desktop application format and a file share destination. The report server generates
your report as an application file, appends a file extension, and saves the report as a file on your hard drive. You can then use
Microsoft Excel (or another application) instead of a browser to view your report.

Refreshing a Report

You can refresh a report in three different ways. Each approach produces different results.

Option Result
Refresh button on the browser
window

Reloads the report from the session cache.
Session caches are created when a user opens
a report.

 button on report toolbar Reloads the report from report server
database if the report is cached or runs as a
snapshot; if the report runs on-demand,
clicking this icon reruns the query that
retrieves report data.

CTRL+F5 keyboard combination Produces the same result as clicking the
Browser Refresh button on the report
toolbar.

See Also

Viewing Reports with Report Manager

Viewing Reports with a Browser

HTML Viewer

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Running a Parameterized Report
A parameterized report is a report that uses input values to complete report processing. Familiar examples of parameterized reports
include those that filter by a regional value, a product category, or an identifier. Parameters are typically used to complete a query that
selects data for the report. If you manage or run a parameterized report, you need to understand how parameter selections affect the
report you are working with.

Note A report author defines the parameters used in a report. After the report is published, you can modify some
parameter properties to change which values are used and how the values are obtained.

Storing and Prompting for Parameter Values

To get a parameter value at run time, you can store a value with the report or prompt the user to type or select a value. Storing a
parameter value with a report is useful if you want the report to always process with a specific value. For example, if a regional office
has a dedicated Web site, you can host a regional sales report on the Web site that always uses a specific region code.

You can also prompt users to type or select the value to use when they open the report. When you configure a report to prompt for
parameter values, input fields are provided so that the user can type specific values. After typing the values, a user clicks View Report
to run the report. If the values are valid, the report appears. If the values are not valid, you will either get an error message or an empty
report. If you use stored parameter values, the report opens without displaying input fields or the View Report button. All users who
run the report use the same parameter value.

If the report includes query-based parameters, and the data source requires each user to login, the user will be prompted for
credentials before the parameter input fields are displayed on the page. In this case, the credentials must be provided in order to
retrieve parameter values.

To run a report that requires parameters, you typically must know which values to type. In some cases, a report can include drop-down
lists of values from which to choose. If the fields are empty, ask the report author which values to use.

To set parameter properties (including default values) on a report, use Report Manager. For more information, see Setting Parameter
Properties for a Published Report and Setting Parameters in a Subscription.

Setting Parameters on a Report URL

Another way to run a parameterized report is through a URL. You can specify one or more parameters in encoded name-value pairs,
using the ampersand character (&) to separate them.

Null parameters use special syntax; you must specify isnull for a null value. The following example illustrates multiple parameters for
null and constant values:
http://exampleWebServerName/reportserver?/foldercontainingreports/orders&division=mailorder®ion=west&sales:isnull

Parameters with multiple values are specified by repeating the parameter name; for example,
http://exampleWebServerName/reportserver?/foldercontainingreports/orders®ion=east®ion=west

If one of the values is null (that is, isnull), all other values specified for that same parameter are ignored.

Boolean parameters are specified with a value of 0 or 1.

Float parameters must include the decimal separator of the server locale.

DateTime parameters must be specified with the format YYYY-MM-DDTHH:MM:SS, which is based on the International Organization
for Standardization (ISO) 8601 standard.

See Also

Parameterized Reports

Running Reports

Viewing and Running Reports

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Running Large Reports
If you are working with a large report, you must choose report generation, rendering, and delivery options that can accommodate
large documents.

Report size is largely determined by the row set that comes back from the query. The non-data portion of a report consists of
layout information and a query, and is not a determining factor in the final size of a large, generated report.

To estimate the size of a report after it is processed, review the row count that is returned from the query. If it is many thousands
or hundreds of thousands of rows, you should follow the recommendations in this topic. You can also deliver the report to a file
share and check the size of the file. To determine the size of an unprocessed report (that is, the report definition), check the size of
the .rdl file.

Note For reports that contain volatile data, report size can change dramatically from one report run to the next. In
this case, you must monitor the data source to determine how data volatility affects your report and whether you need
to follow the steps prescribed in this topic.

Configuration Recommendations

Recommendations for report execution, report history, and report access include the following items:

Design the report to support pagination. The report server sends a report one page at a time. If the report includes
pagination, you can control how much data is streamed to the browser. For more information, see Working with Multiple
Pages. If adding page breaks is not an option, you should configure the report to run as a report execution snapshot. This
recommendation is described next.
Configure the report to run as a report execution snapshot. Do not set a time-out value for report execution. Use a schedule
to determine when the report data is refreshed.

Configuring a report to run as a report execution snapshot prevents it from running on demand. Never run a large report
on demand because it will almost never succeed. The HTML rendering format that is used to initially render a report opens a
report in a browser, and most browsers cannot accommodate very large documents. For example, a report that contains
5,000 rows of data almost certainly cannot be viewed in a browser in a single page.

Configure the report to use a shared data source if you want flexibility in determining whether the report is processed. One
advantage to using a shared data source is that you can disable it so that it cannot be used to get data for the report.
Disabling the data source prevents report processing.

Regardless of whether you use a shared data source or report-specific data source, you must use stored credentials for the
data source connection. Stored credentials are required for the report distribution strategy described later in this topic.

Disable report history (optional) if you want to conserve disk space. The recommendations for report distribution that are
offered later in this topic provide an alternative to storing a large report in report history. To disable report history, clear all
the check boxes on the History properties page.
Configure the report to use item-level security. Limit access to users who define the subscription and manage the report.

Specifying item-level security allows you to control access to the report. By default, users can open any report that they can
view in the folder hierarchy. Even if you configure a report to run as a snapshot, users who can view the report item in a
folder can open the report. If the report is very large, the report will hang the browser when a user opens the report in
Report Manager.

To restrict access to the report, edit item security by replacing the default role assignments with new ones that allow access
to just those users who need to create the subscription or manage the report.

Rendering Recommendations

Before you configure report distribution, it is important to know which rendering clients can accommodate large documents. The
recommended format is Acrobat (PDF), but you can choose from any format that supports pagination. You can specify the format
when you define how the report is distributed. For more information about format recommendations, see Exporting Reports.

Distribution Recommendations

Report distribution is achieved through subscriptions. Subscription and delivery features are important for working with large
reports. Through a subscription definition, you control how the report is distributed and rendered. You can use either a standard

subscription or a data-driven subscription to deliver the report. Recommendations for subscription and delivery include the
following:

Configure a subscription to use Acrobat (PDF).
Configure a subscription to use file share delivery. Use a desktop application to work with the report after it is generated.
Set permissions on the file share to determine who can view the report. Note that once the report is on the file share, it is no
longer controlled or secured by Reporting Services.

If you want to be notified when the report is updated, create a second subscription that uses e-mail delivery to send a notification
only.

See Also

Distributing Reports Through Subscriptions

Report Size and Limits

Setting Report Execution Properties

Specifying Credential and Connection Information

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Report Size and Limits
The report server does not limit the size of a report definition. However, ASP.NET imposes a maximum size for items that are
posted to the server. By default, this limit is 4 megabytes (MB), or 4,168 kilobytes (KB). If you upload or publish a report definition
that exceeds this limit to a report server, you receive an HTTP exception. In this case, you can modify the default by increasing the
value of the maxRequestLength element in the Machine.config file.

For the most part, report definitions rarely exceed 4 MB. A more typical size is less than 100 KB. However, if you include
embedded images, the encoding of those images can result in large report definitions that cause an HTTP exception.

ASP.NET imposes this limit to reduce the threat of denial of service attacks against the server. Increasing the value of the upper
limit undermines some of the protection that this limit provides. Increase the value only if you are confident that the benefit of
doing so outweighs any additional security risk.

Determining the Size of a Report That Includes Data

Reporting Services does not measure the size of a report that includes data. To determine the size of a rendered report, you
should export the report and save it to a file. The format you choose may affect the file size. Consider saving a report in multiple
formats to compare the file size.

Note Report size can vary at run time, where changes in size are attributed to how much data is returned. For
example, parameterized reports may be larger or smaller based on which parameter values you provide.

See Also

Exporting Reports

Saving Reports

Managing Report Processing

Reporting Services - Managing and Working With Published Reports

Printing, Exporting, and Saving Reports
This section provides information about printing, saving, and exporting reports.

Topic Description
Printing Reports Explains how to print reports.
Exporting Reports Explains how to export reports to other

viewing formats.
Saving Reports Explains how to save reports for use in

other applications.

See Also

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Printing Reports
To print a report that has been published to a report server, use Report Manager or a browser to open the report that you want to
print. After you open the report, you must export it to a format that is designed for print output.

Exporting your report places the report in a different viewer; you can use the print features of the viewer to print your report.
Export formats that are recommended for printing include Acrobat (PDF), Web archive (MHTML), and TIFF. You can select any one
of these formats once the report is open. You must have Acrobat Reader installed on your computer before you can export to
Acrobat (PDF) format. Note that if you choose Web archive, the report may include the report path at the bottom of every page.
You can set browser options to omit path information on a printed page.

Printing a report in the default HTML format is not recommended. If your report extends beyond one page, only the first page will
be printed. HTML report pages may also include additional page elements that you do not necessarily want to include in a printed
report.

Note You can print a report from within Report Designer if you set the report in print preview. You can also publish
reports from within Report Designer and then print the report from report server. For more information about
publishing a report, see Debugging and Publishing Reports.

Steps for Printing a Report

Follow these steps to print a published report.

 Action Topic
1 Open a report in Report Manager. How to open and close a report
2 Export the report to Acrobat (PDF), TIFF, or

Web archive.
How to export a report

3 On the File menu, click Print. See the Online Help of the viewer
that you selected.

About TIFF Viewers

If you choose to export to TIFF, the report server places the report in a viewing tool that is associated with the TIFF file type.
Although the tool used depends on which version of Microsoft Windows you have, it is usually Windows Picture and Fax Viewer.
The default resolution corresponds to a screen resolution of 96 dots per inch (dpi). You can increase the resolution to 300 dpi or
600 dpi to match the capabilities of your printer. Printing at higher resolutions takes longer, so you should increase the dpi value
only if you require it.

Automating Report Printing

If you want to send a report directly to a printer, you can use the SOAP API to automate report printing. There are two approaches
to consider. Both approaches require knowledge of programming techniques and the Reporting Services API:

Program a custom print delivery extension that can be used with subscriptions. Users or report server administrators can
schedule a subscription to a specific report, and then choose the print delivery extension that you provide to route the
report to a printer. For more information, see Implementing a Delivery Extension.
Program a custom application feature that uses the Render method to format the report in a printable format (for example,
TIFF) and then send it to a printer. This is the easiest approach because it requires the least amount of coding. For more
information, see ReportService.Render Method.

See Also

Opening Reports

Report Manager

Exporting Reports

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Exporting Reports
Reporting Services supports export formats so that you can open a report in other viewers. Each export format is supported by a
rendering extension. For example, HTML format is supported through the HTML rendering extension.

An exported report is temporary. Once you close the viewer, the report is no longer in the export format that you selected. If you
want to retain an exact copy of a report as it exists at a specific point in time, save the report as a file. For more information, see
Saving Reports.

Choosing Export Formats

Each format offers different advantages. Some formats are associated with viewers that offer interactive features that you can use
to analyze report data. Other formats produce reports in formats that are optimal for export operations, pagination, or print
output. The following table summarizes and recommends specific formats.

Format Description Recommendations
TIFF Renders a report in a

page-oriented format.
This format is recommended for printing. It
is not recommended for large reports.

Acrobat
(PDF) File

Opens a report in the
Adobe Acrobat Reader.

Choose this format for large reports,
paginated reports, and for reports that are
delivered as a file.

Web archive Renders a report in
MHTML. The report opens
in Internet Explorer.

This format produces a self-contained,
portable report (embeds images within the
report). Choose this format to view reports
offline or for e-mail based delivery.

Excel Renders a report in
Microsoft Excel.

This format is useful for report data that
you want to manipulate offline or in
Microsoft Excel. Avoid this format for large
reports.

This format requires Microsoft Excel version
10 from Office 2002 or version 11 from
Office 2003.

XML Renders a report in XML.
The report opens in a
browser.

The purpose of this format is to copy report
data from report server to other
applications or servers.

CSV Renders a report in
comma-delimited format.
The report opens in a
viewing tool associated
with CSV file formats.

This format produces the smallest file size.
The purpose of this format is to copy report
data from report server to other
applications or servers.

HTML with
Office Web
Components

Renders a report in an
Office Web Component
that loads within the
browser window.

This format provides interactive features
that you can use to manipulate a report that
is connected to a report server. This format
requires that you have Office Web
Components version 10 from Office 2002
installed on your client computer.

HTML is not listed in Report Manager as an export format. However, HTML is the format used to initially render the report. If your
browser support HTML4.0, that is the format that is used. Otherwise, HTML3.2 is used.

Pagination and Export Formats

Pagination is supported for Acrobat (PDF), HTML, and TIFF. It is not supported for MHTML, Excel, XML, or CSV. For Acrobat (PDF),
pagination is based on paper size. HMTL pagination is not based on physical dimensions. Pages are separated by page breaks that
you add to a report, but the actual length may vary from page to page. Check the Product Catalog sample report to view an
example of pagination in HTML format. For more information, see Product Catalog.

How to Export a Report

To export a report, first open the report and then select an export format from a drop-down list on the report toolbar. Each export

format is associated with a type of viewer. The file associations defined for the local computer determine which viewer is used
with a particular file type. The following diagram shows the list of formats available by default from the report toolbar.

To view instructions about exporting a report, see How to export a report.

See Also

Saving Reports

Managing and Working with Published Reports

Rendering Extensions

Reporting Services - Managing and Working With Published Reports

Saving Reports
You can save a published report to a local file on the file system if you want to keep a permanent copy of a report. Saving a report
as a file disconnects it from the report server. To save a report, you must first export it as a single file to a format that can store the
report and any external resources that it may use. Recommended export formats include Acrobat (PDF), Excel, TIFF, and Web
archive. After you export the report, you use the viewing program to save the file to disk. The report that you save gets the file
extension of the export format. For more information, see Exporting Reports.

You can also use Reporting Services to vary or create new instance of a report on the server. You can use report history to
captures snapshot of a report over time, and you can use linked reports to create variations of a report.

Note In Reporting Services, you cannot copy items that have been published to a report server. If you want to
duplicate a report, you can either create a linked report, or save a report definition and then upload it as a separate
item.

Saving a Report Definition File

Before a report is published to a report server, it exists as a report definition file on the file system. Report definition files have an
.rdl file extension.

You can save a report definition in Report Designer the same way you save any file in Visual Studio. If you want to save a report
after it has been published, use Report Manager. A report definition file that you save from a published report is equivalent to the
version that was originally published to a report server database. If you modified the report after it was published (for example, if
you modified parameter properties), those changes are not reflected in the report definition that you save.

To save a report definition file from Report Manager, open the General Properties page of the report that you want to save, and
then click the Edit link to open the report definition in a viewing program. From that program, save the report as an .rdl file. For
more information, see General Properties Page (Reports).

Saving a Report as a Report History Snapshot

You can create a report snapshot to save a copy of a report that contains a static set of data. Snapshots are not saved to a file
share, but they can be used to capture and keep data from a specific date and time. Report snapshots are subject to storage
policies that can limit the number of snapshots that are retained. If you want more control over how long the report snapshot is
saved, choose another approach.

Using a Linked Report to Create a Report Copy

You can create a linked report from an existing published report. A linked report is the same report as the published report, except
that you can apply different properties and security to the linked version.

A linked report is modified if the underlying report on which the link is based is modified. If the report must stay the same, choose
another approach or create your own report that is identical to the report you are interested in.

Using Subscriptions to Keep Report Copies

You can subscribe to a report to keep a copy of the report in your e-mail inbox, stored as an attachment or embedded message.
Unlike embedded or attached reports, hyperlinked reports that are stored in e-mail messages are connected to a report server
and can be updated or deleted. E-mail attachments and messages are subject to the storage policies of the e-mail server. If you
want to keep a report longer than those policies allow, consider another approach.

See Also

Creating, Modifying, and Deleting Linked Reports

Creating, Modifying, and Deleting Snapshots in Report History

Creating, Modifying, and Deleting Subscriptions

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Managing Report Server Content
The following table describes the topics in this section.

Topic Description
Content Management Overview Describes content management tasks and

tools, and identifies important report
management operations.

Managing Reports Provides information about managing
reports, resources, report history, and the
My Reports folder.

Managing Report History Explains how to create and manage a
store of previously generated reports.

Managing My Reports Explains how to enable and manage the
My Reports feature.

Managing Resources Describes resources and resource
management.

Managing Folders Explains how to create, modify, and delete
folders, and how to add items to a folder.

See Also

Deploying and Administering Reporting Services

Managing and Working With Published Reports

Reporting Services - Managing and Working With Published Reports

Content Management Overview
In Reporting Services, content management consists of managing the items stored in a report server database. To manage items
effectively, you need to know the tasks that a content manager performs and which content management operations have a
cascading effect on users or other items.

Note Content management is different from server administration. For more information about how to manage the
environment in which a report server runs, see Deploying and Administering Reporting Services.

Content Management Tasks

Content management includes the following tasks:

Securing the report server site and items in the report server database by applying the role-based security provided with
Reporting Services.
Structuring the report server folder hierarchy by adding, modifying, and deleting folders.
Setting defaults and properties that apply to items managed by the report server. For example, you can set baseline
maximum values that determine report history storage policies.
Creating shared data source items that can be used in place of report-specific data source connections. A publisher or
content manager can select a data source that is different from the one originally defined for a report; for example, to
replace a reference to a test database with a reference to a production database.
Creating data-driven subscriptions that generate recipient lists by retrieving data from a data store.
Balancing report-processing demands that are placed on the server by scheduling report processing and specifying which
ones can be run on demand and which ones are loaded from cache.

Management tasks are organized into two predefined roles: System Administrator and Content Manager. By default, a user
who is a local system administrator is automatically assigned to both roles. He or she can assign additional users to either role to
delegate management responsibilities.

The Content Manager role includes a complete set of item-level tasks. Initially, the role assignment that maps a local
system administrator to a Content Manager role is in effect for the root folder for the report server (Home) and all child
folders and content.
The System Administrator role includes tasks that provide access to site-level settings.

For more information about these predefined roles, see System Administrator Role and Content Manager.

Understanding the Side Effects of Content Management Operations

In a few key instances, management operations have far-reaching side effects. Knowing in advance what those operations are can
help you avoid mistakes.

The following content management operations may produce unintended consequences for you or your users:

Changing role definitions. Role definitions are used server wide. Because a role definition may have widespread use, never
change a role definition to address a narrowly scoped problem. For example, if a user requires privileges that are not
covered by an existing role definition to access a report, create a new role definition that addresses the user's access
requirement instead of modifying an existing role definition that specifies security settings for a large number of users or
groups. For more information about security recommendations, see Configuring Security.
Lowering the maximum number of report snapshots that are kept in report history. You can set a report history property
that limits the number of snapshots that are retained. If the number of snapshots that are stored in history exceed the new
lower limit, some snapshots will be deleted. If users rely on report history for a permanent record of reports, you may delete
reports that still have a purpose. For more information, see Managing Report History.
Deleting a report definition that is associated with linked reports. All linked reports obtain query and layout information
from existing report definitions. If you delete a report definition that provides this information to one or more linked
reports, the linked reports become invalid. For more information, see Creating, Modifying, and Deleting Linked Reports.

See Also

Managing Report Server Content

Managing Folders

Using Role-Based Security

Managing and Working with Published Reports

Reporting Services - Managing and Working With Published Reports

Managing Reports
Reporting Services provides a number of features for managing reports. The following table describes the topics in this section.

Topic Description
Setting Report Properties Describes the properties that affect

reports.
Setting Parameter Properties for a
Published Report

Explains how to set parameters for a
report.

Adding, Modifying, and Deleting Reports Provides information about working with
reports within the folder hierarchy.

Creating, Modifying, and Deleting Linked
Reports

Explains how to create and modify linked
reports, and describes the effects of
deleting a linked report.

See Also

Managing Folders

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Setting Report Properties
Setting Report Properties

After a report is published, you can set properties that change the text that appears in the Report Manager user interface, how
users access the report, how the report server connects to external data sources, and whether the report runs on demand or on a
schedule.

To set report properties, use Report Manager. Only users who have appropriate permissions can set properties. If you are using
default security, local administrators can set properties. If you are using custom role assignments instead of default security, your
role assignment must include the task Manage reports.

The following table describes the various pages in Report Manager that you use to set report properties.

Use this page To
General Properties Page (Reports) View or modify general properties of the

current report, edit or replace the
underlying report definition, create a
linked report, and delete or move the
report.

Parameters Properties Page View or modify values of parameterized,
published reports.

Data Sources Properties Page View or modify properties of data sources
that provide content for the current report.

Execution Properties Page View or modify run-time execution
properties of the current report.

Security Properties Page (Items) View or modify security settings for a
report.

See Also

Report Manager

Report Terminology

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Setting Parameter Properties for a Published Report
Setting Parameter Properties for a Published Report

A parameterized report is a report that accepts input values used in report processing. Parameters are defined in Report Designer
when you create the report. After a report is published, you can modify parameter properties using Report Manager to do the
following:

Run a report with preset parameter values that a user never sees.
Open a report with a default parameter value that can be used or replaced with a different value to produce a different
outcome.
Open a report with no parameter value specified. You can specify a null value to return an unfiltered result set.
Open a personalized report that gets user-specific information based on a value that a user provides (for example, a
personal identification number to obtain a balance on an account or payroll stub).

Parameter properties that you set in Report Manager for a published report are generally preserved if you republish the report
definition from Report Designer. If the report definition is republished as the same report, and parameter names and data types
remain the same, your property settings are retained. If you add or delete parameters in the report definition, or change the data
type or name of an existing parameter, you may need to change the parameter properties in the published report.

Not all parameters can be modified in all cases. If a report parameter gets a default value from a query, that value cannot be
modified in Report Manager. Default parameter values that are designated at "Query-based" are defined in the report definition
and cannot be modified in Report Manager.

Report execution options can affect how parameters are processed. A report that runs from a snapshot cannot use parameters
that are derived from a query unless the query includes default values for the parameters. For more information about query
parameters, see Parameterized Reports.

Setting Parameter Properties

The way in which you set a parameter property depends on how the parameter is specified in the original report. You can always
change the prompt string and the property that determines whether the parameter is visible to users. However, you cannot
always change the default value if the value is derived from a query. In this case, the text string "QueryBased" appears next to the
parameter.

To set parameter properties, open the Parameters Properties page of the report. You can modify the following properties:

The Has Default property determines whether the report can be processed without input from the user. If a parameter
does not have a default, a user must provide one before the report can be processed.
The Default Value property can be a constant or null (if the parameter accepts null values). It cannot be set to an
expression.
The Prompt property determines whether the display and input fields are visible to users. Clearing this check box removes
all indications that the report uses parameters.
The Prompt String property specifies text that appears next to the parameter. This text can be a label or a longer text string
that provides usage instructions.

You cannot delete, rename, reorder, or change the data type of parameters in a published report. To change these properties, you
must modify the report definition.

Validating Parameter Values

To verify whether a value you specified is valid, run the report. Errors that are related to parameter processing appear in the
Report Manager Error page. To investigate the problem further, you can view the logs files. For more information, see Checking
Reporting Services Log Files.

Setting Parameters in Subscriptions

In addition to using the Parameters Properties page, you can also set parameter values when you create a subscription. Each user
who subscribes to a report can specify parameter values that are stored with and used by the subscription. For more information,
see Setting Parameters in a Subscription.

See Also

Running a Parameterized Report

Filtering Data Using Parameters

Parameterized Reports

Parameters Properties Page

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Adding, Modifying, and Deleting Reports
Adding, Modifying, and Deleting Reports

Use this topic to learn about adding, modifying, and deleting reports.

Tools and Steps

To add, modify, or delete a report, use Report Manager. To view instructions about adding and removing items, click a topic in the
following list.

How to upload an item

How to delete a report or item

How to create a linked report

Adding Reports

You can add new reports to a report server in two ways. If you are a report author, you can use Report Designer to publish a
report to the server. If you are not a report author, you can use the Upload File page in Report Manager to publish a Report
Definition Language (.rdl) file from the file system to the report server.

You can also add report items by creating linked reports. A linked report is an item in a report server folder. A linked report wraps
an existing report with a different set of parameter values or properties. You can move, rename, and delete the linked report
without affecting the report upon which it is based.

Another way to add a report without creating one in Report Designer is to save the report definition of an existing report to the
file system, and then upload it as a separate item to a report server. The following section describes the steps.

Modifying and Replacing a Published Report Definition

After a report is published to a report server, you can modify report properties to rename the report, add or modify the
description, or move or delete the report. You can make small modifications to the report definition by editing the XML structure
of the report. However, this is not recommended unless you are making a very minor change. Any changes that you make to the
XML structure of a published report will not be preserved if the report is republished.

To view or modify a report definition, open the General Properties page of the report, and then click Edit. A read-only version of
the report definition (as originally published from Report Designer) opens in either Visual Studio or a code editor. You can view
the XML structure of the report, save the report definition to the file system, or modify the XML to make specific changes.

To replace the report definition of a published report, or to upload a modified version that you just saved, open the General
Properties page of the report, and then click Update. An Import Report page opens (identical to the Upload File page) so that you
can select an .rdl file to upload.

If you are replacing a report definition, the file that you select is copied to the report server. The properties, subscriptions, report
history, and security settings of the current report remain intact. If the report uses parameters, and the name or data type is
different from the original report, you must reset any parameter properties that you previously set.

Deleting Reports

When you delete a report, the report and all associated meta data for that report are removed from the report server database.
Deleted meta data includes report history and subscriptions (including data-driven subscriptions). If the report is associated with
linked reports, the linked reports become invalid.

See Also

Uploading Files to a Folder

Designing and Creating Reports

Creating, Modifying, and Deleting Linked Reports

Managing Report Server Content

Report Manager

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Linked Reports
Creating, Modifying, and Deleting Linked Reports

A linked report wraps an existing report with a different set of parameter values or properties. You can move, rename, and delete
the linked report without affecting the report upon which it is based.

Tools and Steps

To create, modify, or delete a linked report, use Report Manager. To view instructions about linked reports, click a topic in the
following list:

How to create a linked report

How to delete a report or item

Creating Linked Reports

Linked reports are created in Report Manager and are based on existing reports already published to a report server. You can
create multiple linked reports from a published report. You cannot create a linked report from another linked report.

When you create a linked report, you choose an existing report on which to base the linked report. The report that you choose for
the linked report determines the report content and layout. If the report uses parameters, you can set the parameter value in the
linked report to a value that is different from that specified in the base report. For more information about parameters, see Setting
Parameter Properties for a Published Report.

Not all published reports can be used as a basis for a linked report. Content managers or report server administrators can prevent
specific users or groups from creating linked reports by removing the "Create linked reports" task from the role assignments that
are in effect for a given report.

Modifying a Linked Report

After you create a linked report, you can set its properties just as you would modify the properties of any other report: by
changing permissions, parameters, or properties. You can also change the link to point to a different report definition.

Depending on your changes, the query that obtains the data and the layout may be different from the previous report definition.
As long as the revisions do not invalidate the existing settings of the linked report, the linked report continues to run using the
new definition.

To place a linked report in a different folder, you must have permission to add content to that folder (meaning, you must be a
member of the Publisher role or Content Manager role for the target folder).

Deleting a Linked Report

There are no special considerations for deleting a linked report. You can follow the same steps that you use to delete any item.
However, if you delete the report definition on which linked reports are based, all linked reports related to the report definition
become invalid. If this occurs, you must do one of the following:

Delete the linked report item. Deleting the linked report item removes all information about it from the report server
database.
Choose another report definition as the basis for the linked report. The name of the report definition is noted on the General
Properties page of a linked report. If the original report definition is no longer available, you can select a different one by
updating the property. Note that if the new report definition is not equivalent to the previous one, some settings of the
linked report may not be valid. For example, if a linked report includes parameter settings and the new report definition
does not support those parameters, the parameters for the linked report no longer work. For more information about how
to update the report definition for a linked report, see Adding, Modifying, and Deleting Reports and Choose Link Page.

Report history is retained for linked reports as long as the item exists, even if the linked report is no longer valid. If you choose
another report definition for the linked report, all subsequent report history includes layout and data from the updated report
definition.

See Also

Linked Reports

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Managing Report History
Report history is a collection of previously run copies of a report. You can use report history to maintain a record of a report over
time.

Report history is not intended for reports that contain confidential or personal data. For this reason, report history can include
only those reports that query a data source using a single set of credentials (either stored credentials or credentials used for
unattended report execution) that are available to all users who run a report.

Report history is an extension of a report. If you move a report, report history moves with it. However, if you modify a report or
delete its data source, existing report history is preserved. Report history consists of report snapshots, instances of a report that
contain layout information and data obtained from an external data source at specific points in time. Each snapshot in report
history captures a report as it was when the snapshot was created. If you change the layout or delete the data source, snapshots in
report history remain intact. For more information about report snapshots, see Report Snapshots.

Viewing and Managing Report History

You can view report history through the tabbed History page that appears when you navigate to a report in Report Manager. Any
user who has access to a report can view report history for that report. These permissions are provided by the "View reports" task.
You can only view report history for one report at a time. You cannot view in one place all the history of all reports stored in the
report server database.

You can manage report history by setting properties that determine how report history is created and stored. You can set
properties at the server level or for individual reports. Managing report history is supported through the "Manage report history"
task. For more information, see Setting Report History Properties.

To view or manage report history, use Report Manager. For more information about opening a report and the pages you use to
view report history, see How to open and close a report and Report History Page.

Viewing Report History Snapshots Through a URL

You can isolate a single snapshot from report history to view it separately or to send it to a recipient through e-mail. To do this,
you must access the report through its URL and attach a rendering parameter that identifies the snapshot you want. The following
example URL illustrates the syntax:

http://<servername>/ReportServer?/My%20Reports/Employee%20Directory&rs:Command=Render&rs:
historyID=03/20/2003%2011:02:06

The rs:historyID rendering parameter specifies that the specific report history snapshot be retrieved from report history. The
value indicates which report snapshot to return. The date is in the format YYYY-MM-DDTHH:MM:SS based on the International
Organization for Standardization (ISO) 8601 standard.

See Also

Archiving Reports

Creating, Modifying, and Deleting Snapshots in Report History

Report Manager

Report Snapshots

Viewing Reports with Report Manager

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Setting Report History Properties
Setting Report History Properties

You can use Report Manager to set properties on report history to determine how it is created and to limit the number of report
snapshots that are stored. You can set properties at the server level or for individual reports:

Server properties for report history are located on the Site Settings page. These settings determine default values that set an
upper limit on how many snapshots can be stored in report history. The values apply to all reports that use default settings.
Report-specific properties for report history are located on the History properties page of each report. Properties that you
set at the report level override the default values that are set at the server level. In addition to report history storage limits,
you can set properties that determine how report history is created.

Report history uses the security settings of the report with which it is associated. You cannot secure individual report snapshots.
For more information about server properties and report history settings for individual reports, see Site Settings Page and History
Properties Page.

Raising and Lowering Report History Limits

You can raise and lower report history limits to determine how many report snapshots are kept in report history. You can modify
report history limits at any time. When report history reaches the maximum limit, older snapshots are removed as new snapshots
appear. If you lower the report history limit, the report server deletes older snapshots to conform to lowered limits.

Setting Properties to Automate Report History

For any given report, you can set properties on the History properties page that determine how report history is generated. You
can set any or all of the options.

To allow users to generate report snapshots manually, click Allow history to be created manually. Enabling this option causes
the New Snapshot button to appear on the History page, which lists all snapshots in report history. Users can click the button to
create new snapshots.

To store copies of report execution snapshots, click Store all report execution snapshots in history. A report execution
snapshot is similar to a report history snapshot in composition, except that it is refreshed at scheduled intervals (rather than
preserved indefinitely). Clicking this option allows you to maintain all copies of a report execution snapshot that are created. For
more information about report execution snapshots, see Setting Report Execution Properties and Creating Snapshots for Report
Execution.

To add report snapshots to report history automatically, click Use the following schedule to add snapshots to report history
to define a schedule that captures report history snapshots at specific days and times.

See Also

Managing Report History

Creating, Modifying, and Deleting Snapshots in Report History

Report Snapshots

Report Manager

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Snapshots in Report History
Creating, Modifying, and Deleting Snapshots in Report History

Report history is a collection of report snapshots. You can maintain report history by adding and deleting snapshots, or by
modifying properties that affect report history storage.

Creating Snapshots in Report History

To create report history, your role assignment must include the "Manage report history" task. To view report history, your role
assignment must include the "View reports" task. Report history is available to all users who have access to the report. You cannot
selectively enable or disable report history for a subset of users.

To create a snapshot in report history, the report must be able to run unattended. This means that the report must use stored
credentials or no credentials at all. Furthermore, if the report uses parameters, you must specify default values to use when the
report runs. You can specify stored credentials and parameter values in the property pages for the report. For more information,
see Data Sources Properties Page and Parameters Properties Page.

When you create a report snapshot, the following elements are stored along with the report snapshot in the report server
database:

The result set (that is, the data in the report, retrieved through the credentials specified in the Data Sources properties page
of the report).
The underlying report definition, as it exists at the time the snapshot was created. If the report definition was subsequently
modified after the snapshot was generated, those changes are not reflected in the snapshot.
Parameter values that are used to obtain or filter the result set.
Embedded resources, such as images. External resources that are linked to a report are not stored with the report snapshot.

You can add snapshots to report history through a schedule or by creating snapshots manually. The ways in which report history
can be created and the number of report snapshots that can be stored are determined by settings. For more information, see
Setting Report History Properties.

Snapshots in report history are identified by the date and time they were created. The date and time is based on when the query
executed.

Snapshots can be created for any report that can run unattended. If a report produces an error, a snapshot is not created. Reports
that produce warnings, yet still run, can be used to generate snapshots.

Modifying Properties and Deleting Report History

Once a report snapshot exists, you cannot modify it. However, you can modify the properties and settings that affect report
history. In some cases, modifying report history limits can cause deletion of report snapshots. Report history can be deleted in the
following ways:

Manually delete snapshots singly or in groups. You can delete snapshots by using the History page. Select the check box
next to the snapshot that you want to delete, and then click Delete.

To delete snapshots, you must access report history through each report individually. You cannot delete all report history
stored on a report server in a bulk operation.

Lower the report history limit to reduce the number of snapshots that are stored. If report history uses the default report
history limit, lowering the value for the server reduces report history to the new limit. If report history uses a report-specific
setting, lowering that value reduces excess report history for that report.

When the report server deletes report history to conform to lowered limits, older reports are deleted first.

Report history is also deleted when you delete a report. For example, if you delete a monthly sales report because you are
replacing it with a newer version, all report history that is associated with the report is also deleted. However, if you move a
report, all report history moves with it.

See Also

Managing Report History

Report Snapshots

Report Manager

Setting Report History Properties

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Archiving Reports
Archiving Reports

Reporting Services does not provide specific features for formally archiving your reports. If you require an electronic copy of a
report that is identical to a report that you have distributed, choose one of approaches described in this topic.

Saving Reports

If you have a small number of reports to archive, consider saving a report as a file. You can save a report in a page format (such as
PDF or TIFF) and place it in a protected shared directory on the network. Alternatively, you can upload a PDF or TIFF report that
you have saved as a resource item if you want to keep all copies of a report, regardless of the format, in the report server
database. For more information about saving a report, see Saving Reports.

Using File Share Delivery

If you have a large number of reports to archive, create a subscription that delivers the report to a file. For this approach, you
must create a subscription for each report, choose a file share to store the reports, and define a schedule that determines when
the file is created. Once you define a subscription, the report server can run the report unattended and add report files to the
archive using the schedule that you provide. You can also create single-use schedules if you want to archive reports on an
occasional basis. For more information about subscriptions and file share delivery, see File Share Delivery in Reporting Services
and Subscription Overview.

Using Report History

You can also use the Report History feature to create historical copies. You can then back up the report server database and store
the backup in a safe location for future use. All report history (along with reports, shared data source items, folders, subscriptions,
and shared schedules) is stored in the report server database. You can create a backup to maintain a permanent copy of report
history and meta data such as subscription information that indicates the recipients of a report.

Log information is not stored in report server database. If you require a permanent record of report runs, you must back up the
log files separately.

See Also

Managing Report History

Auditing and Verifying Report Runs

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Managing My Reports
The My Reports folder is a personal workspace for each user who logs in to a report server with a valid domain account. This
special-purpose folder provides storage for work-in-progress reports, reports that are not intended for wide distribution, or
reports that have been modified to fit a need. You cannot restrict the number or size of items that are stored in a My Reports
folder, or configure a My Reports folder to be shared among users.

Technically, My Reports maps the name of a virtual folder that each user sees (My Reports) to a master Users Folders folder and
unique subfolder based on user name. When a user accesses his or her My Reports folder, the user is actually redirected to his or
her subfolder under Users Folders. Each subfolder provides storage for the reports and items a user adds to his or her My Reports
folder.

The My Reports feature is optional. When you install a report server, My Reports is disabled by default. For more information
about enabling this feature, see Enabling and Disabling My Reports. For more information about using or securing My Reports,
see Using My Reports and Securing My Reports.

How User Folders Are Created

The Users Folders folder is created when the report server is installed. Subsequent user-based subfolders are created when a user
opens My Reports for the first time (for example, by clicking My Reports in Report Manager). Each folder name is in the following
format:

/Users Folders/username/My Reports

Only users with valid system accounts are allocated folders. If a user name contains special characters, it is created with escape
character equivalents. Escape character equivalents are listed in the following table.

Character Escape value Example
(space) [] Firstname Lastname

becomes
Firstname[]Lastname

\ (backslash) Replaced with a single
space character

DomainName\Username
becomes
DomainName Username

@ (at symbol) [at] username@hotmail.com
becomes
username[at]hotmail.com

& (ampersand) [amp] username@company&company.com
becomes
username[at]company[amp]company.com

$ (dollar sign) [dollar] User $Name
becomes
User[][dollar]Name

See Also

Using My Reports

Securing My Reports

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Enabling and Disabling My Reports
Enabling and Disabling My Reports

The My Reports feature allocates personal storage in the report server database so that users can save reports that they own. As a
report server administrator, you can enable or disable this feature or change how the feature works by modifying the security
settings that control what users can do with this workspace.

The My Reports feature is disabled by default. You can either enable or disable the feature for all users, but you cannot enable it
for a subset of users. Most users and organizations find this feature valuable; study the advantages and disadvantages presented
later in this topic to determine whether it is a good fit for your organization.

How to Enable and Disable My Reports

To enable My Reports using Report Manager, use the Site Settings page to set the Enable each user to have a My Reports
folder option. The role definition used for My Reports determines what actions are supported in the My Reports workspace. For
example, if the My Reports role excludes "Create linked reports," users cannot create linked reports in the My Reports folders . For
more information, see Site Settings Page and Securing My Reports.

To deactivate My Reports, clear Enable each user to have a My Reports folder. Deactivating My Reports removes for users all
visible indications of the My Reports folder. The folders that provide actual storage (that is, the subfolders in Users Folders) must
be deleted manually once the feature is disabled. Only users who have permission to delete folders can do so.

When M y Reports Is Activated

Once the feature is activated, users see a My Reports folder located under the root folder, Home. In addition to a My Reports
folder, report server administrators also see a Users Folders folder that contains the subfolder for each user.

While the feature is activated, Users Folders and its subfolders cannot be deleted. Furthermore, the name "My Reports" becomes a
reserved name for folders created under the root node (Home).

If you activate My Reports after it has been deactivated, the report server creates a new Users Folders folder if one does not
already exist. If Users Folders exists, the report server adds new subfolders as users log on to their My Reports folders.

When M y Reports Is Deactivated

Once the feature is deactivated, the name "My Reports" is no longer reserved; users can create a personal folder named My
Reports under the Home folder. In addition, redirection from My Reports to user-specific My Reports subfolders is no longer
performed. Lastly, any report links that include a user-specific My Reports folder in the URL address will no longer work.

For more information about folder hierarchy and protected folders, see Report Server Folder Namespace.

Choosing to Use My Reports

Deciding whether to use My Reports depends on whether you want to dedicate server resources to support user workspace. My
Reports is a powerful feature that allows users to have control over information resources that help them do their jobs. It also
provides a way for users to work with reports that are not intended for general use. One of the most compelling reasons to use
My Reports is that it provides secure, manageable support for the segment of users who need to author and review reports.
Without this feature, you may find yourself creating folders and security policies for various users on an ad hoc basis. As users
and user needs change, this approach results in ever-increasing numbers of folders and policies that are difficult to maintain over
time.

Note that if you do activate My Reports, the report server creates a My Reports folder for every user with a domain account who
clicks the My Reports link, even if the user does not want or need a My Reports folder. There is no systematic way to determine
which folders are being used. You must review the folders manually to see whether they contain anything.

See Also

Managing My Reports

Using My Reports

Securing My Reports

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Managing Resources
A resource is content that is external to a report that you can keep in a report server database. A report server does not process
resources; however, many resources are associated with Multipurpose Internet Mail Extension (MIME) types that can be processed
and viewed within a browser window. Examples of resources you might commonly use with reports include the following:

JPEG files or other images that contain charts or graphical content.
A Microsoft Word or Excel document that supplements or provides information about a report.
A text file that contains a readme or policy information for accessing content over an extranet connection.

When authoring a report, you can use Report Designer to add images to a report definition and hyperlinks to resources that are
managed by a report server (that is, resources that have been uploaded or published to a report server). Image information, such
as a URL for a file, is stored with the report in the report server database. If a resource URL cannot be resolved, a red 'X' appears in
the report where the image or hyperlink should be.

You can add resources to a report server database by uploading them from the file system. You can set properties and security on
resources. You can also move resources to different folders. To view instructions about resources, click a topic in the following list:

How to upload a file

How to delete a report or item

How to move an item

See Also

Uploading Files to a Folder

Managing Report Server Content

General Properties Page (Resources)

Reporting Services - Managing and Working With Published Reports

Managing Folders
Folders provide the navigation structure and addresses of all items stored in a report server. Folders also provide the foundation
for item-level security. Role assignments that you define for specific folders extend to the items in that folder and to additional
folders that branch from that folder.

Reporting Services provides a very simple folder structure that consists of a root node and reserved folders that support the
optional My Reports feature. In Report Manager, the root node is named Home. If you are using a browser to connect directly to a
report server, the root node is the name of the report server virtual directory. From the root node, you can create additional
folders to organize the reports and items you want to store.

Working with report server folders is similar to working with folders on a file system. You can add content to a folder, move items
between folders, modify folder names or locations, and delete folders that are no longer required. For more information about the
folder hierarchy, see Report Server Folder Namespace.

The following table describes the topics in this section.

Topic Description
Creating, Modifying, and Deleting Folders Provides information about building and

maintaining the folder hierarchy.
Uploading Files to a Folder Explains how to add content to folders by

uploading files.
Moving Items Explains how to move content from folder

to folder.

See Also

Creating, Modifying, and Deleting Linked Reports

Managing Reports

Managing Report Server Content

Navigating Folders in Report Manager

Report Manager

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Folders
Creating, Modifying, and Deleting Folders

Use this topic to learn about creating, modifying, and deleting folders.

Tools and Steps

To work with folders, use Report Manager. To view instructions for folder management, click a topic in the following list:

How to create a folder

How to delete a folder

How to modify folder properties

How to move an item

Requirements

How you work with folders depends on tasks that are part of your role assignment. If you are using default security, local
administrators can create and manage folders. If you use custom role assignments, the role assignment must include tasks that
support folder management. For more information about role assignments and tasks, see Using Role-Based Security and Tasks
and Permissions.

To do this Include these tasks
Create, view, and delete folders, and set
folder properties

Manage folders

View the items in a folder View folders
Add non-folder items to a folder Manage reports, Manage data sources,

Manage resources

Creating Folders

You can create a folder within any accessible folder in the hierarchy. Folders are always created in-place; therefore, before you
create the folder, navigate to the place in the folder hierarchy where you want the folder to be. After a folder exists, you can set its
properties.

Modifying Folder Properties

After a folder is created, you can modify properties to rename the folder, add or modify the description, or move the folder to
another location. These properties are available on the General properties page for the folder. For more information about setting
properties that control access to a folder, see Securing Folders.

Deleting Folders and Folder Contents

When you delete a folder, you delete all of the items that it contains. Before you delete a folder, you should inspect its contents to
determine whether it contains items that may be referenced or used by other items in another part of the folder hierarchy.
Referenced items include report definitions that support linked reports, shared data sources, and resources.

If you delete a report that has one or more linked reports that reference it, the linked reports will become invalid after you delete
the report. You cannot determine in advance which linked reports are affected, because a report does not retain information
about linked reports that are based on it. You can, however, review the properties of a linked report to find out which report it is
based on. In contrast, shared data source items list all reports that currently use the item so that you can easily determine whether
the connection information is in use. For more information, see Creating, Modifying, and Deleting Shared Data Sources. Finally,
resources that are used by reports do not identify those reports.

Before you delete a folder, consider whether you need to retain the report history of any report you are about to delete or a
report-specific construct (such as a data-driven subscription) that is part of a report. If you may need any of this information,
move the item out of the folder before you delete the folder.

See Also

Report Server Folder Namespace

Moving Items

Navigating Folders in Report Manager

Report Manager

Managing Report Server Content

Tasks and Permissions

Reporting Services - Managing and Working With Published Reports

Uploading Files to a Folder
Uploading Files to a Folder

You can upload files from the file system and store them in a report server database. What happens when you upload a file
depends on the file type. Uploading an .rdl file is equivalent to publishing a report. Uploading any other file adds it to the report
server database as a single binary object.

Uploading a file to the report server creates a copy of the original file on the report server. The original file is not actually moved.
You can subsequently move or delete the version that is stored in the report server database without affecting the original file.

In Report Manager, files that you upload to a report server database are represented in the folder hierarchy. A report icon
indicates an .rdl file:

Other uploaded files are considered resources. Resources can be any file type. If the file extension matches a known MIME type,
an icon for that MIME type is used to identify the resource type. Otherwise, a generic file icon indicates a resource:

Before you can upload a file, you must have permission to do so. Permission to upload an item is conveyed through the "Manage
folders" task. If My Reports is enabled, each user can upload files to the My Reports folder that he or she owns.

Tools and Steps

To upload items, use Upload File page in Report Manager. For more information, see Upload File Page.

When you upload a file, it is always placed in the folder that is currently selected. You can navigate to the folder that you want to
contain the item first, or you can upload a file and then move it to a final location later. For more information, see Moving Items.

See Also

Managing Resources

Navigating Folders in Report Manager

Report Manager

Reporting Services - Managing and Working With Published Reports

Moving Items
Moving Items

You can move reports, linked reports, resources, folders, and shared data sources to different folder locations in the report server
folder hierarchy. When you move an item, all properties (including security settings) move with the item to the new location.
When you move a folder, all items contained within the folder move also.

In Report Manager, the items that you can move are indicated in the folder hierarchy. The following table shows the icon for each
movable item.

Icon Moveable item
Report
Linked report
Folder
Generic resource
Shared data source

Not all items that you work with can be moved. You cannot move items that are extensions of a report, such as subscriptions or
report history. Those items move with their associated reports. Similarly, you cannot move items, such as shared schedules, that
exist outside of the folder hierarchy. Finally, you cannot move items if you lack permission to do so. Permission to move an item is
conveyed when the following tasks are selected in your role assignment for the item in question: "Manage reports," "Manage
folders," and "Manage data sources."

Tools and Steps

To move items, use Report Manager. For more information, see How to move an item.

Alternatively, you can move folders and reports using the General properties page. For more information, see General Properties
Page (Folders) and General Properties Page (Reports).

See Also

Navigating Folders in Report Manager

Icons in Report Manager

Report Manager

Move Items Page

Uploading Files to a Folder

Managing Report Server Content

Reporting Services - Managing and Working With Published Reports

Managing Data Source Connections
A report server connects to external data sources to retrieve data used in reports and data-driven subscriptions. In Reporting
Services, a data source is a named collection of properties that describe a connection to an external data source. A data source
contains the following parts:

Name of the data processing extension used to process the query
Connection string used to locate the data source
Credentials used to access the data source

Connection information is typically defined when you create a report or data-driven subscription. However, you can specify a
different data source or modify the data source properties after a report is published.

A data source connection can be embedded in a report or subscription, or defined as a shared data source item. A shared data
source item is a separate item that is managed by a report server. You can create a shared data source item that defines a
connection to a frequently used data source, and then reference it whenever you need connection information for that data
source.

Note Managing a connection to a report data source is not the same as managing the report server connection to the
report server database. For more information about report server connections, see Configuring a Report Server
Connection.

The following table describes the topics in this section.

Topic Description
Shared Data Sources and Report-Specific
Data Sources

Compares shared data source items to
report-specific data source connections.

Modifying Data Source Properties Describes the data source properties that
you can set.

Creating, Modifying, and Deleting Shared
Data Sources

Explains how to create, modify, and delete
a shared data source.

Specifying Credential and Connection
Information

Explains how to specify credentials for
local and remote connections, and
provides recommendations for specific
login options.

See Also

Connecting to a Data Source

Data Sources Supported by Reporting Services

Data Processing Extensions

Managing and Working With Published Reports

Working with Data

Reporting Services - Managing and Working With Published Reports

Shared Data Sources and Report-Specific Data Sources
Reporting Services provides two ways to define connections to the data sources used in reports and data-driven subscriptions.
Both approaches have a similar composition, so you can switch between report-specific data source connections and shared data
source items if one approach offers functionality that you want to use. The difference between the two approaches is in how the
connection data is stored and managed.

Report-Specific Data Sources

A report-specific data source embeds the description of a data source connection in the report definition. Embedded data source
connection information can be used only by the report that contains the information. The connection information is internal to the
report or subscription (for example, if you view the XML syntax of the report, you can see the connection information in the XML).
To define and manage report-specific data sources, use the Data Source Properties page of a report. For more information, see
Modifying Data Source Properties.

Shared Data Sources

A shared data source is a stand-alone item that describes a data source connection. You can create a shared data source item to
provide connection information to multiple reports. You can create and manage a shared data source separately from the reports
and data-driven subscriptions that use it.

A shared data source is reusable across many reports and subscriptions. You can move a shared data source to different folder
locations, name a shared data source, and set security to determine its availability. The following icon indicates a shared data
source item in the folder hierarchy:

Shared data sources are useful when you have data sources that you use often. Examples of shared data sources that may be
useful include the following:

A connection to a production server that supports business operations
A connection to a frequently-used test server
A connection to an employee database to support data-driven subscriptions

Using a shared data source makes it easier to adjust for changes to the data source. If you move or rename the database or
change the database login, you can update the connection string once to effect a corresponding change in all the reports and
subscriptions that use the data. You can also disable a shared data source item to prevent report processing.

See Also

Connecting to a Data Source

Creating, Modifying, and Deleting Shared Data Sources

Data Sources Properties Page

Defining Report Data

New Data Source Page

Managing Data Source Connections

Modifying Data Source Properties

Report Manager

Reporting Services - Managing and Working With Published Reports

Modifying Data Source Properties
You can modify the data source connection properties that are used to retrieve data for published reports. This topic explains how
to modify the data source properties of a report-specific data source connection. For more information about modifying shared
data sources, see Creating, Modifying, and Deleting Shared Data Sources.

To modify properties of a report-specific data source connection, use Report Manager to navigate to the report, and then click the
Properties tab at the top of the page. Each report includes a collection of property pages, including a Data Source properties page
that specifies details about a connection. A single report can support multiple connections if it contains multiple datasets. In this
case, the collection of data source properties are repeated for each dataset used by the report.

A data source connection can be modified in the following ways:

Switch between a report-specific data source connection and a shared data source. You can select an existing shared data
source that provides the connection data you want to use.
Update a connection string. A connection string is used to access the data source. Minimum requirements and syntax vary
for different data providers. The following example illustrates a connection string to the sample Adventure Works Cycles
database:

data source="exampleservername";initial catalog=AdventureWorks2000

Specify different credentials or a different authentication mode. How you specify credentials determines whether additional
functionality is available. Specifically, any report that runs on a schedule must use stored credentials.

When you specify credential information, you specify it for all users who access a report. For example, if you provide your
user name and password as stored credentials, all users who run the report will use your credentials. For more information,
see Specifying Credential and Connection Information.

Select a different data processing extension. The data processing extension must correspond to the data source type you are
accessing. For more information, see Data Processing Extensions.

See Also

Connecting to a Data Source

Creating, Modifying, and Deleting Shared Data Sources

Managing Data Source Connections

Report Manager

Shared Data Sources and Report-Specific Data Sources

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Shared Data Sources
Use this topic to learn about creating, modifying, and deleting shared data sources. For more information about modifying
properties of a report-specific data source, see Modifying Data Source Properties.

Tools and Steps

Use the New Data Source Page in Report Manager to create shared data sources.

To view instructions about shared data source items, click a topic in the following list:

How to create a shared data source

How to delete a report or other item

Requirements

Whether you can create or update a shared data source depends on tasks that are part of your role assignment. If you are using
default security, only local administrators can create and manage shared data sources. If you use custom role assignments, each
role assignment must include the Manage data sources task.

Shared data sources specify a data processing extension to use with the data source. The data processing extension that you want
to use must be available to the report server. For more information about data processing extensions included with Reporting
Services, see Data Processing Extensions.

Creating a Shared Data Source Item

You can create shared data source items to define reusable connection information that can be used in reports and data-driven
subscriptions. A shared data source item is stored in a report server. It consists of the following parts:

A name that identifies the item within the report server folder hierarchy.
A description that provides information about the data source connection.
A connection type that identifies the data processing extension to use with the data source.
The connection string used to log on to the database.
Credential information that identifies how credentials are obtained, what values are to be used, and how they are to be used
after the database connection is made. For more information, see Specifying Credential and Connection Information.

A shared data source item does not contain query information used to retrieve data. The query is always kept within a report
definition. Shared data sources can also be created through Report Designer. For more information, see Connecting to a Data
Source.

After you create a shared data source, you can set properties, apply security settings, move or rename it, or take it offline to
prevent report processing while maintenance operations are performed on the external data source.

A shared data source item appears in the report server folder namespace as a separate item that you can move, rename, secure,
or delete. The following icon indicates a shared data source item:

Modifying a Shared Data Source Item

You can modify a shared data source item in Report Manager by changing its properties, connection string, and credentials. If you
rename or move a shared data source item to another location in the report server folder hierarchy, the path information in all
reports or subscriptions that reference the shared data source are updated accordingly.

For more information, see Data Sources Properties Page and Securing Shared Data Source Items.

Deleting a Shared Data Source Item

Deleting a shared data source item disables all reports and subscriptions that use it. To identify all the items that refer to the data
source before you delete the reference, view the contents of the tabbed Reports page and Subscriptions page associated with the
data source. You can access these pages when you open the data source item. After you delete the data source, the list of reports
and subscriptions that reference it is no longer available.

See Also

Connecting to a Data Source

Managing Data Source Connections

Report Manager

Shared Data Sources and Report-Specific Data Sources

Reporting Services - Managing and Working With Published Reports

Specifying Credential and Connection Information
A report server uses credentials to connect to external data sources that provide content to reports or recipient information to a
data-driven subscription. You can specify credentials that use the following authentication mechanisms:

Windows Authentication (Integrated).
Authentication provided by a database server (for example, SQL Server authentication). You can use database security to
authenticate users to data sources that provide content to a report.

Note Credentials are also used to authenticate users who access a report server. Information about
authenticating users to a report server is provided in another topic. To learn more, see Configuring Server
Security.

Connecting to Remote Data Sources

The data sources that provide content to reports may be hosted on remote servers. To retrieve data for a report, a report server
must connect to the server using a set of credentials that you provide in advance or that are obtained from the user at run time
(for more information, see "Getting Credentials at Run Time" later in this topic).

The network environment determines the kinds of connections you can support. For example, if you are using trusted domains,
you can use the delegation and impersonation features available in Windows Authentication to support connections across
multiple servers.

If your network does not support this topology, you will need to work around connection constraints. Depending on how your
domain is configured, Windows credentials can be passed across one computer connection before they expire. A user connection
to a report server counts as the first connection. If the user opens a report that retrieves data from a remote server, that login
counts as a second connection and will fail if you are using Windows Authentication and Kerberos is not enabled.

If enabling Kerberos is not an option, consider using either stored credentials or a combination of Windows Authentication and
database authentication. For example, you can use Windows Authentication to connect a client to a report server, and then
configure the report to use database authentication to access an external data source. Another option is to locate the report data
sources on the same computer that hosts the report server.

For more information about specific recommendations, see Best Practices for Authenticating Server and Data Source Connections.

Getting Credentials at Run Time

In reports and data-driven subscriptions, you can set data source properties to specify how credentials are obtained when the
report is executed. Options for specifying credentials include prompting users to type a user name and password, using the
Windows credentials of the user running the report, storing credentials in a report server database, or using no credentials at all.

Prompted Credentials

Use the prompted credentials approach only with reports that run on demand. You can instruct users to type Windows credentials
or database credentials if you are using SQL Server security or another security model.

To use Windows Authentication, you must select Use as Windows credentials when connecting to the data source.
Otherwise, the report server passes credentials to the database server that hosts the external data source. If the database server is
not configured to use the login you provide, the connection will fail.

This approach is recommended for reports that contain confidential data. It is also useful in avoiding credential passing from the
report server to an external data source.

Windows N T Integrated Security

When you use the Windows NT Integrated Security option, the report server passes the credentials of the user accessing the
report to the server hosting the external data source. In this case, the user is not prompted to type a user name or password.

This approach is recommended if Kerberos is enabled. If Kerberos is not enabled, you should only use this approach if all the
servers that you want to access are located on the same computer. For more information, see "Connecting to Remote Data
Sources" earlier in this topic.

Stored Credentials

You can store the credentials used to access an external data source. Credentials are stored in reversible encryption in the report
server database. Credentials are not stored in the report definition. You can specify one set of stored credentials for each data
source used in a report. The credentials you provide retrieve the same data for every user who runs the report.

Stored credentials are recommended as part of a strategy for accessing remote database servers. For more information, see
"Connecting to Remote Data Sources" earlier in this topic.

Stored credentials are required if you want to support subscriptions, or schedule report history generation or report snapshot
refreshes. When a report is processed on demand, the user's credentials are used to access the data source. When a report is
processed on a schedule, the report server is the agent that executes the report. Because there is no user context in place, the
report server must get credential information from the report server database to get the data from a data source.

The user name and password that you specify can be used as Windows credentials or database login credentials. If you specify
Windows credentials, the report server passes the credentials to Windows for subsequent authentication. Otherwise, the
credentials are passed to the database server for authentication.

Using Impersonation with Stored Credentials

You can also use credentials to impersonate the identity of another user. For SQL Server databases, using the impersonation
options sets the SETUSER function. For more information about SETUSER, search SQL Server Books Online.

Important Do not use impersonation for reports that support subscriptions or that use schedules to generate report
history or refresh a report execution snapshot.

N o Credentials

You can configure a data source connection to use no credentials. Because Microsoft recommends that you always use credentials
to access a data sources, this approach is not advised. However, you may choose to run a report with no credentials in the
following cases:

The remote database does not require credentials.
The credentials are passed in the connection string (recommended only for secure connections).
The report is a subreport that uses the credentials of the parent report.

Under these conditions, the report server connects to a remote data source using a special account that you must define in
advance. The report server never connects to a remote server using its service credentials. For this reason, you must specify an
account that the report server can use to make the connection. For more information about creating this account, see Configuring
an Account for Unattended Report Processing.

Setting Credentials Programmatically

You can set credentials in your code to control access to reports and to the report server. For more information, see Data Sources
and Connection Methods.

See Also

Connecting to a Data Source

Managing Data Source Connections

Report Manager

Reporting Services - Managing and Working With Published Reports

Distributing Reports Through Subscriptions
Microsoft® SQL Server™ Reporting Services supports report subscription and delivery features. These features work together. All
subscriptions require a delivery extension that routes a single report in some way to a target destination. Reporting Services
delivery extensions are included in a report server installation. You can choose e-mail delivery and file share delivery for the
subscriptions you create.

The capability to create, delete, modify, and view a subscription depends on your role assignment. For more information, see
Subscription and Delivery Availability.

The following table describes the topics in this section.

Topic Description
Subscription Overview Describes the types and components of a

subscription, and scenarios for using
subscriptions.

Data-Driven Subscriptions Provides information about using data-
driven subscriptions to customize report
output at run time.

E-Mail Delivery in Reporting Services Describes report server e-mail delivery
operation and configuration.

File Share Delivery in Reporting Services Describes report server file share delivery
operation and configuration.

Creating, Modifying, and Deleting
Subscriptions

Provides an overview and links to detailed
topics about subscription definition.

Managing Subscriptions Contains information about subscription
processing, oversight, and control.

See Also

Using Schedules

Delivery Extensions

Managing and Working With Published Reports

Reporting Services - Managing and Working With Published Reports

Subscription Overview
A subscription is a standing request to deliver a report at a specific time or in response to an event, and then to have that report
presented in a way that you define. Subscriptions provide an alternative to running a report on demand. On-demand reporting
requires that you actively select the report each time you want to view the report. In contrast, subscriptions can be used to
schedule and then automate the delivery of the most up-to-date report.

Standard and Data-Driven Subscriptions

Reporting Services supports two kinds of subscriptions: standard, and data-driven. Standard subscriptions are created and
managed by individual users. A standard subscription consists of static values that cannot be varied during subscription
processing. For each standard subscription, there is exactly one set of report presentation options, delivery options, and report
parameters.

Data-driven subscriptions are dynamic in that the values used for specifying presentation, delivery, and parameter values are
retrieved at run time from a data source, and then used to complete subscription processing. You can use data-driven
subscriptions if you have a very large recipient list (for example, all employees in an organization), or if you want to vary report
output for each recipient. Data-driven subscriptions generate subscription data from a data source. To use data-driven
subscriptions, you must have expertise in building queries and an understanding of how parameters are used. Report server
administrators typically create and manage these subscriptions. For more information, see Data-Driven Subscriptions.

E-Mail, File Share, and Custom Delivery

Subscriptions use delivery extensions to distribute a report in a specific way and format. When a user creates a subscription, he or
she can choose one of the available delivery extensions to determine how the report is delivered. Reporting Services includes
support for e-mail and file share distribution. Developers can create additional delivery mechanisms to route reports to other
locations.

Parts of a Subscription

A subscription consists of the following parts:

A report that can run unattended (that is, a report that uses stored credentials or no credentials).
A delivery method (for example, e-mail) and settings for the mode of delivery (such as an e-mail address).
Conditions for processing the subscription, which is expressed as an event.

Usually, the conditions for running a report are time-based. For example, you may want to run a particular report every
Tuesday at 3:00 P.M. GMT. However, if the report runs as a snapshot, you can specify that the subscription runs whenever
the snapshot is refreshed.

Parameters used when running the report.

Parameters are optional and are specified only for reports that accept parameter values. Because a subscription is typically
user-owned, the parameter values that are specified vary from subscription to subscription. For example, sales managers for
different divisions will use parameters that return data for their division. All parameters must have a value explicitly defined,
or have a valid default value.

Subscription information is stored with individual reports in a report server database. You cannot manage subscriptions
separately from the report to which they are associated. Note that subscriptions cannot be extended to include descriptions, other
custom text, or other elements. Subscriptions can contain only the items listed earlier.

The following topics provide additional overview information.

Topic Description
Subscription and Delivery Scenarios Describes user scenarios that subscription

functionality supports.
Customizing Report Delivery for
Individual Users

Drills into special-case scenarios
supported by data-driven subscriptions.

See Also

Creating, Modifying, and Deleting Subscriptions

Distributing Reports Through Subscriptions

Managing Subscriptions

E-Mail Delivery in Reporting Services

File Share Delivery in Reporting Services

Reporting Services - Managing and Working With Published Reports

Subscription and Delivery Scenarios
Subscription and Delivery Scenarios

You can use subscription and delivery functionality to achieve a variety of objectives that vary in complexity and scope.

The following table describes scenarios for using the subscription and delivery functionality that installs with Reporting Services.
If you are a developer, you can create custom delivery extensions to support additional scenarios. For more information, see
Implementing a Delivery Extension.

Objective Description
Push reports out to users in your
organization

Create a subscription and specify a group alias or
e-mail alias to receive a report that you want to
distribute.

You can have Reporting Services determine the
subscriber list at run time. If you want to send the
same report to a group or organization that has a
changing list of members, you can use a query to
derive the subscription list at run time. Examples
include sending a retirement benefits report to all
employees who are retiring in the next month, or
a sales awards report to the top ten sales people
for each quarter.

Offload report distribution Users can select which reports they want to use.
Note that subscription processing can be
controlled separately from report processing. For
more information, see Subscription Processing.

View reports off-line Users can select PDF or Web archive formats in a
subscription. These formats are recommended for
viewing reports off-line.

Archive reports to a file share Reports that you want to archive can be sent
directly to a file share that you back up on a
nightly schedule.

Send large reports to disk Large reports that take too long to load in a
browser can be sent to a file share, in a format
that can be viewed in a desktop application.

Target a desktop application as a
viewing device

If you want to work with a report as a Microsoft
Excel file, you can create a subscription that sends
the report as an Excel file. If you have a common
file share that stores the working documents for a
specific work group, you can specify the file share
in the subscription.

Customize report output for
individual users

Use data-driven subscriptions to customize report
output, delivery options, and report parameter
settings at run time. The subscription uses a query
to get input values from a data source at run time.

You can use data-driven subscriptions to perform
a mail-merge operation that sends a report to a
list of subscribers that is determined at the time
the subscription is processed.

For more information, see Customizing Report
Delivery for Individual Users.

See Also

Creating, Modifying, and Deleting Subscriptions

Data-Driven Subscriptions

Distributing Reports Through Subscriptions

Reporting Services - Managing and Working With Published Reports

Customizing Report Delivery for Individual Users
Customizing Report Delivery for Individual Users

Data-driven subscription functionality provides a way to customize report output and delivery at run time. The following example
provides an illustration about how you can use data-driven subscriptions to target report delivery for individual users. In this
example, suppose you want to distribute a monthly report to key customers that includes special pricing for items in each product
category the customer buys from. Each part of this objective can be broken down into smaller requirements:

Monthly delivery introduces scheduling and delivery requirements. Implied in this requirement is the capability to have the
report run automatically and on a recurring basis.
Only customers that purchase in volume should get the pricing report.
Customers should receive pricing information for the product categories they buy from; no customer should receive an
empty report.
Only items that are discounted in the current month should be included in the report.

Report server uses queries and relationships that you define in the subscription to produce and send different copies of the same
report to different users. The following list summarizes the queries and relationships that you would define for this scenario:

Build a report that contains a query that retrieves data from the product database about discounted items for the current
month. Design the report so that users can see the items grouped by product category. For each item, include columns that
show the regular price and discounted price.
Build a data-driven subscription that contains a query that selects the customers that meet your criteria, their contact names
and e-mail addresses, the product categories they purchase from, and their preferred format for reports (for example,
HTML, PDF, or Excel). This query is performed against a customer database or another data store that contains subscriber
data.
Within the subscription, specify how contact names, e-mail addresses, and preferred formats in the query results are
mapped to delivery option settings.
Specify how the product categories in the query results are mapped to report parameter settings.
Define a schedule that specifies a run time of the first day of every month. When the subscription is triggered, the report
server runs the query to get a subscriber list, produces reports that vary by product category, renders the report in
customer-specific formats, and e-mails the report to each individual.

To achieve this degree of personalization in a subscription, you must have a data store that includes the subscriber data (for
example, customer names and e-mail addresses). The data store must be in a format that is supported by a data processing
extension. Delivery options (such as which rendering format to use, whether to include a link or an embedded report) must be
associated with individual subscribers in the subscriber database.

To achieve personalization in the report itself, the report you are distributing must use parameters to support variable output. In
this example, the query that provides data to the report must combine customer data (what does a customer buy) with product
data (product categories, product name, price, and discount). For more information, see Filtering Data.

See Also

Data-Driven Subscriptions

Walkthrough - Creating a Data-Driven Subscription

Subscription Overview

Reporting Services - Managing and Working With Published Reports

Data-Driven Subscriptions
A data-driven subscription provides a way to deliver reports to a list of subscribers that is determined at run time. The purpose of
this type of subscription is to customize report output at run time for each recipient of a delivery.

Another use for data-driven subscriptions is to support the wide distribution of a report with a fluctuating list of subscribers. For
example, you can use data-driven subscriptions to distribute a report throughout a large organization where subscribers vary
from one month to the next, distribute a report on retirement benefits to all employees who are retiring at the end of the month,
or use other criteria that determines group membership from an existing set of users.

A data-driven subscription differs from a standard subscription in the way it gets subscription information. A data-driven
subscription gets some settings from a data source at run time, and other settings from the subscription definition. Fixed aspects
of a data-driven subscription include the report that is delivered, the delivery extension, connection information to an external
data source that contains subscriber data, and a query. Dynamic settings of the subscription are obtained from the row set
produced by the query, including a subscriber list and user-specific delivery extension preferences or parameter values. This data
is retrieved from a data source each time the subscription is processed.

The following topics provide more information about data-driven subscriptions.

Topics Description
Customizing Report Delivery for
Individual Users

Explains how data-driven subscriptions
can be used to personalize and target
report distribution

Subscription Processing Describes how reports are processed for
data-driven subscriptions.

Creating, Modifying, and Deleting Data-
Driven Subscriptions

Explains how to create, modify, or delete a
data-driven subscription.

Using an External Data Source for
Subscriber Data

Provides information about the data
sources that you can use for a data-driven
subscription.

Walkthrough - Creating a Data-Driven
Subscription

Provides step-by-step instruction for
learning how to create a data-driven
subscription.

See Also

Distributing Reports Through Subscriptions

Subscription Overview

Reporting Services - Managing and Working With Published Reports

E-Mail Delivery in Reporting Services
Reporting Services includes an e-mail delivery extension that provides a way to e-mail a report to individual users or groups. The
e-mail delivery extension is configured during setup. It can also be configured through configuration files after setup is complete.

To distribute or receive a report by e-mail, you define either a standard subscription or a data-driven subscription. You can
subscribe to and request delivery for only one report at a time. You cannot create a subscription that delivers multiple reports in a
single e-mail message. For more information, see Creating, Modifying, and Deleting Subscriptions.

E-Mail Delivery Options

Report server e-mail delivery can deliver reports in the following ways.

Send a notification and a hyperlink to the generated report.
Send a notification in the Subject: line of an e-mail message. By default, the Subject: line includes variables that are replaced
by report-specific information when the subscription is processed. You can also combine these variables with static text. You
can modify the text in the Subject: line for each subscription.

@ReportName specifies the name of the report.

@ExecutionTime specifies when the report was executed.

Send an embedded or attached report. The rendering format and browser determine whether the report is embedded or
attached.

If your browser supports HTML 4.0 and MHTML, and you choose the Web archive rendering format, the report is
encapsulated as part of the message. All other rendering formats (CSV, PDF, and so on) deliver reports as attachments. You
can disable attachment and embedding in the configuration file.

Reporting Services does not check the size of the attachment or message before sending the report. If the attachment or
message exceeds the maximum limit allowed by your mail server, the report will not be delivered. Choose one of the other
delivery options (such as URL or notification) if the report is large.

How you set delivery options in a subscription page determines which approach is used to deliver a report. For example, if you
select Include Link, the e-mail message will include a hyperlink to the report. For more information, see How to create an e-mail
subscription.

E-Mail Settings in a Subscription Page

When you subscribe to a report, the e-mail delivery settings you work with vary depending on whether your role assignment
includes the "Manage individual subscriptions" task or the "Manage all subscriptions" task.

Task Available settings
Manage individual subscriptions Shows fields that enable a user to automate and

deliver a report to himself or herself. In this mode,
fields that accept e-mail aliases are not available.

Manage all subscriptions Shows fields that support wider distribution,
including To:, Cc:, Bcc:, and Reply-To: fields,
providing additional ways to route a report to
more subscribers. The availability of e-mail alias
fields is defined through configuration file settings.

Specifying E-Mail Addresses

If report delivery occurs within your intranet and you are using a Microsoft Exchange server, type the e-mail alias (as if you were
sending e-mail to a coworker). If delivery is to an external e-mail account, type the full e-mail address. If you specify additional e-
mail addresses to add others to your subscription, subscribers get an exact copy of the report that is produced from this
subscription.

The report server does not validate e-mail addresses or obtain e-mail addresses from an e-mail server. You must know in
advance which e-mail addresses you want to use. By default, you can e-mail reports to any valid e-mail account within or outside
of your organization. Configuration settings can be used, however, to restrict e-mail delivery to hosts that you identify by name. If
you want to guarantee that e-mailed reports are delivered only to e-mail accounts of the host computer of your organization, you

can specify the host name in a configuration setting. You can specify additional hosts if you want to support e-mail delivery to
people that are not members of your organization.

The e-mail message used to deliver the report must be sent from an e-mail account that is defined on the e-mail server. The e-
mail account is used for all reports delivered by the e-mail delivery extension; you cannot specify multiple accounts or vary the
account for individual reports. A configuration setting specifies the e-mail account.

E-Mail Server Connections

The report server connects with an e-mail server using a standard connection. It does not use communication that has been
encrypted using Secure Sockets Layer (SSL). The e-mail server must be a remote or local Simple Mail Transport Protocol (SMTP)
server located on the same network as the report server. A configuration setting specifies the SMTP server. For more information,
see Configuring a Report Server for E-Mail Delivery.

See Also

Role Assignments

Tasks and Permissions

Distributing Reports Through Subscriptions

Subscription Processing

Data-Driven Subscriptions

Reporting Services - Managing and Working With Published Reports

File Share Delivery in Reporting Services
Reporting Services includes a file share delivery extension so that you can deliver a report to a folder. The file share delivery
extension is available by default and requires no additional configuration.

To distribute a report to a file share, you define either a standard subscription or a data-driven subscription. You can subscribe to
and request delivery for only one report at a time. For more information about working with subscriptions, see Creating,
Modifying, and Deleting Subscriptions. For more information about defining a file delivery, see How to create a file share
subscription.

Target Folders

You must specify an existing folder as the target folder. The report server does not create folders on the file system. The file share
location must be specified in Uniform Naming Convention (UNC) format that includes the computer's network name. Do not
include trailing backslashes. The following example illustrates a UNC path:

\\exampleservername\c$\reportarchive\operations\2003

File Formats

Reports can be rendered in a variety of file formats, such as HTML or Excel. The rendering format that you select for the
subscription is used to save the report in a specific file format. For example, choosing Excel saves the report as a Microsoft Excel
file. Although you can choose from any supported rendering format, some formats work better than others when rendering to a
file. For more information, see Choosing Report Presentation Formats in a Subscription.

Report Files

Unlike reports that are hosted and managed by a report server, reports that are delivered to a file are static documents. The file
type is the application format that corresponds to the rendering format selected for the subscription. Interactive features that are
defined for the report are represented as static elements in a file. A matrix report shows the top-level view of the report; you
cannot expand rows and columns to view supporting data. If the report includes charts, the default presentation is used. If the
report links through to another report, the link is rendered as static text.

See Also

Creating, Modifying, and Deleting Subscriptions

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Subscriptions
This section contains topics about defining and updating standard subscriptions that deliver a single report instance, and data-
driven subscriptions that can be used to customize report output for each recipient.

To work with any subscription, you must have permission to do so. For more information about subscription availability, see
Subscription and Delivery Availability.

Topic Description
Setting Parameters in a Subscription Provides information about specifying

report parameters to use during
subscription processing.

Choosing Rendering Formats in a
Subscription

Provides recommendations for specifying
a viewing format for each mode of
delivery.

Creating, Modifying, and Deleting
Standard Subscriptions

Describes how to define and update
standard subscriptions.

Creating, Modifying, and Deleting Data-
Driven Subscriptions

Describes how to define and update data-
driven subscriptions.

Using an External Data Source for
Subscriber Data

Provides information about external data
sources used in data-driven subscriptions.

See Also

Distributing Reports Through Subscriptions

Data-Driven Subscriptions

Managing Subscriptions

Subscription Overview

E-Mail Delivery in Reporting Services

File Share Delivery in Reporting Services

Reporting Services - Managing and Working With Published Reports

Setting Parameters in a Subscription
Setting Parameters in a Subscription

When you define a subscription to a parameterized report, you can specify which parameter to use during subscription
processing. You can only specify parameters in a subscription to reports that run on demand. If you are subscribing to a
parameterized report that runs as a report execution snapshot, your subscription must use the parameter values defined for the
snapshot. For more information about report execution options, see Setting Report Execution Properties.

Specifying Subscription Parameters for On-Demand Reports

If a report runs on demand and it takes a parameter, you can define which parameter value to use during subscription processing.
This parameter value can vary from a default or preset value that applies to the report to which you are subscribing. For example,
suppose you have a Call Service report that uses a Time Period parameter to return customer service requests for the current day,
week, or month. If the default parameter value for the report is set to today, your subscription can use a different parameter
value (such as week or month) to produce a report that contains weekly or monthly figures.

Parameters for Report Snapshots

Parameterized reports that run as report execution snapshots use the parameter values defined for the report snapshot. Your
subscription cannot override a parameter value that is defined for a snapshot. For example, suppose you are subscribing to a
Western regional sales report that runs as a report execution snapshot, and the snapshot specifies Western as a regional
parameter value. In this case, if you create a subscription to this report, you must use the parameter value Western in your
subscription.

To provide a visual indication that the parameter is ignored, Report Manager sets the parameter fields that you cannot modify in
your subscription to read-only fields.

If you change a parameter value in the report execution snapshot after the subscription is defined, the report server deactivates
the subscription. Deactivating the subscription provides an indication that the report has been modified. To activate the
subscription, open and then save the subscription.

See Also

Parameterized Reports

Setting Parameter Properties for a Published Report

Subscription Processing

Troubleshooting Subscription and Delivery Problems

Creating, Modifying, and Deleting Standard Subscriptions

Creating, Modifying, and Deleting Data-Driven Subscriptions

Reporting Services - Managing and Working With Published Reports

Choosing Report Presentation Formats in a Subscription
Choosing Report Presentation Formats in a Subscription

When you create a subscription, you can choose which rendering format to use with the delivered report.

If you are using file share or e-mail delivery, choose a format that delivers the report in a single file, where all images and related
content are included in the report. Suitable formats include Web archive, Acrobat (PDF), TIFF, and Excel.

Avoid the formats HTML3.2, HTML4.0, and HTML with Office Web Components. If your report includes images, the HTML3.0 and
4.0 formats will not include them in the file. HTML with Office Web Components is not recommended because it is designed for
user interaction, which cannot be supported in a report that is delivered as a static file. Note that when you use Report Manager to
create a standard subscription, HTML formats are excluded automatically.

How to Specify a Format

If you are specifying the delivery through Report Manager, you can choose the format from a drop-down list. If you are specifying
a delivery programmatically or through a query (as supported by data-driven subscriptions), use the text strings as defined in the
rsreportserver.config file. The rendering extension names in the configuration file vary slightly from the rendering formats
displayed in Report Manager. For example, TIFF in Report Manager is equivalent to IMAGE in the configuration file.

For more information about formats, see Exporting Reports.

See Also

E-Mail Delivery in Reporting Services

File Share Delivery in Reporting Services

Distributing Reports Through Subscriptions

Creating, Modifying, and Deleting Standard Subscriptions

Creating, Modifying, and Deleting Data-Driven Subscriptions

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Standard Subscriptions
Creating, Modifying, and Deleting Standard Subscriptions

Subscriptions are always defined through the report on which they are based. After you define a subscription, you can access it in
Report Manager through the My Subscriptions page or the Subscriptions tab of a specific report.

A user who creates a subscription owns that subscription. Each user can modify or delete the subscriptions that he or she owns.
Ownership cannot be changed or transferred among users. Depending on configuration file settings, users may be able to add
additional users to a subscription (for example, a manager adds the e-mail addresses of his or her direct reports so that they each
receive a copy of the report). Whether this is supported depends on whether the To: field is visible when defining individual
subscriptions. For more information, see Configuring Report Server for E-Mail Delivery.

This topic provides information about standard subscriptions that are created and managed by individual users. Data-driven
subscriptions have different requirements and steps, and are discussed in a separate topic. For more information, see Creating,
Modifying, and Deleting Data-Driven Subscriptions.

Tools and Steps

Use the New / Edit Subscription page in Report Manager to create, modify and delete subscriptions.

To view instructions about subscription operations, click a topic in the following list:

How to open property, subscription, and report history pages

How to create an e-mail subscription

How to create a file share subscription

How to modify or delete a subscription

Requirements

Before you can create a subscription to a report, the following prerequisites must be met:

The report must use stored credentials or no credentials. A subscription cannot be created if the report requires user input
prior to running (for example, a report that requires that the user type a user name and password). For more information,
see Specifying Credential and Connection Information.
You must have access to the report. Before you can subscribe to a report, you must have permission to view it.
Your role assignment must support the ability to create a subscription for the report. Specifically, the role assignment must
include the "Manage individual subscriptions" task. For more information about tasks, see Tasks and Permissions.

Creating Subscriptions

You can create multiple subscriptions for a single report to vary the subscription options; for example, you can specify different
parameter values to produce two versions of a report, such as a Western region sales report and an Eastern region sales report.
However, the reverse is not true; you cannot use a single standard subscription to produce multiple versions of a report. If you
want to produce multiple versions of a report, you must use a data-driven subscription.

For each subscription that you create, you must specify how the report is to be delivered, and parameter values if the report uses
parameters.

Specifying Delivery Options

Delivery features are determined by the delivery extension you choose. A delivery extension is a module that supports some
manner of distribution. Reporting Services includes two delivery extensions, e-mail and file share. Additional delivery extension
may be available through third-party vendors. For more information, see Choosing Report Presentation Formats in a
Subscription.

Specifying Parameter Values

If the report uses parameters, a parameter value must be specified with the report itself, or in the subscription you define. If you
do not want to specify a constant value, you can set the parameter value to use the default.

The report server will verify that specified parameter values are correct. If you specify a parameter value that is not valid, your
subscription will not run. If you are unsure, run the report using the parameter values you want, to see whether you get the
results you expect. For more information, see Setting Parameters in a Subscription.

Modifying a Subscription

You can modify a subscription at any time. If you modify a subscription while it is being processed, the updated settings are used
if they are saved to the report server database before the delivery extension receives the subscription data. Otherwise, the existing
settings are used.

To locate a subscription, use the My Subscriptions page. You cannot search for subscriptions directly, nor can you search for a
subscription based on owner name, trigger information, status information, and so forth.

Subscriptions can also be modified or deleted by report server administrators.

Note A report server administrator cannot manage from one place all the individual subscriptions that are in use on
a given report server. However, report server administrators can access each individual subscription to modify or
delete it.

Deleting a Subscription

If you want to end a subscription and you cannot locate the subscription easily, make a note of the report you are receiving and
search for it by name. Once you access the report, you can remove yourself from the subscription. If you cannot locate the
subscription, the subscription may be a data-driven subscription. For more information, see your report server administrator.

A subscription is deleted automatically if the underlying report is deleted. If you delete a subscription while it is being processed,
the subscription stops if the delete operation occurs before the delivery extension receives subscription data. Otherwise, the
subscription continues to be processed.

See Also

Managing Subscriptions

Data-Driven Subscriptions

Distributing Reports Through Subscriptions

Report Manager

Subscription Overview

Using My Subscriptions

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Data-Driven Subscriptions
Creating, Modifying, and Deleting Data-Driven Subscriptions

Before you can subscribe to reports, a report server administrator must enable subscription creation and management at the user
level. Subscription support is enabled by default. If you cannot create subscriptions, see your report server administrator.

Tools and Steps

To work with a data-driven subscription, use the Create Data-Driven Subscription pages in Report Manager to create a new
subscription or modify an existing subscription. These pages walk you through each step of creating or modifying a subscription.
To access a subscription after it is created, use the My Subscriptions page and the Subscriptions list of a report. For more
information about how to open these pages, see Create Data-driven Subscription Page, Subscriptions Page, and My Subscriptions
Page.

To view instructions about subscription operations, click a topic in the following list:

How to open property, subscription, and report history pages

How to modify or delete a subscription

Walkthrough - Creating a Data-Driven Subscription

Managing and Deleting a Data-driven Subscription

A data-driven subscription that is in progress can be stopped or deleted through the Manage Jobs page of Report Manager. If you
want to temporarily prevent a subscription from processing, you can modify the schedule that triggers the subscription. For more
information, see Managing Subscriptions.

To delete a data-driven subscription, select it from the My Subscriptions page or a Subscriptions page and then click Delete.

Creating and Modifying a Data-driven Subscription

Before you can define a data-driven subscription, the following requirements must be satisfied.

Requirements Description
Report requirements The report upon which the subscription is based must use

stored credentials or no credentials to retrieve its content.
For more information, see Specifying Credential and
Connection Information.

User requirements The author of the subscription must have permission to
access the report, create the subscription, and access the
external data source that contains subscriber data.
Accessing the report and creating the subscription are
supported through the "Manage reports" and "Manage all
subscriptions" tasks. For more information about tasks, see
Tasks and Permissions.

To create a data-driven subscription, select a report that uses stored credentials or no credentials. Open the Subscriptions page of
the report, and then click New Data-driven Subscription to open the Create Data-Driven Subscription pages.

To modify a data-driven subscription, open the My Subscriptions page to select the subscription you want to modify. You can also
open the Subscriptions list of the report. The following icon indicates a data-driven subscription:

You can modify any value that is already specified. All values are presented as they were first created, except for the password that
is used to access the subscriber data store. You must retype the password every time you modify values on the second page or
any subsequent page.

Steps for Defining a Data-driven subscription

Creating a data-driven subscription consists of the steps indicated next. For each step, you complete input fields in the Create
Data-Driven Subscription pages. The number of pages you must provide values for and the input fields themselves vary based on

the delivery extension you use, whether you use a shared data source item to connect to the subscriber data source, and whether
the subscription requires a schedule to trigger processing.

Step 1 - Specify a description (optional), a delivery extension, and whether you plan to reference an existing shared data source or
define a new data source connection for this subscription.

Step 2 - Specify the external data source that contains subscriber data. The data source connection includes the data processing
extension used to process the query, a connection string, and stored credentials. Credentials must be either stored or not required
for the connection. Depending on your selections in the previous step, this step consists of selecting a shared data source or
specifying a new connection.

Important Credentials used to connect to a subscriber data source are not passed back to Report Manager. If you
modify the subscription later, you must retype in this page the credentials used to connect to the data source.

Step 3 - Specify the query or command that gets subscriber data. The query should produce one row for each subscriber. If you
are using the report server e-mail delivery extension, the query should return an e-mail alias for each subscriber. The number of
deliveries that are made is based on the number of rows returned by the query. If the row set consists of 10,000 rows, the
subscription delivers 10,000 reports.

If the query is time-consuming to process, you can increase the time-out value to accommodate additional processing.

For this step, the query must be validated before you continue. Validation does not process the query, but it does return a list of
all columns that are in the row set so that you can reference the columns in subsequent selections. If the query fails to validate,
you cannot continue the definition. A query can fail to validate if the connection to the data source is not valid or if the query
syntax is incorrect.

Step 4 - Specify delivery extension settings. Settings that you see in the page are specific to the delivery extension you selected.
The Create Data-Driven Subscription pages extract this information from the delivery extension. For more information, see
Choosing Report Presentation Formats in a Subscription.

Important If you are using the report server e-mail delivery extension, and you specify a static value for the
subscriber for the To: field, Cc: field, Bcc: field or Reply-To: field, be aware that the subscriber receives one delivery for
each row in the row set. If the row set is extensive, you run the risk of overwhelming the capacity of the subscriber's
mailbox. For example, if the query returns 20 rows of subscriber data, and you specify your e-mail address in the To:
field, you will get 20 copies of the report delivered to your e-mail inbox.

Step 5 - Specify report parameters, if they exist. For more information, see Setting Parameters in a Subscription and Setting
Parameter Properties for a Published Report.

Step 6 - Specify conditions for processing the subscription. You can specify a schedule, or you can trigger the subscription to
coincide with updates to a report execution snapshot. Processing for data-driven subscriptions is the same as processing for
standard subscriptions. For more information, see Subscription Processing.

Step 7- Save the subscription.

See Also

Creating, Modifying, and Deleting Standard Subscriptions

Distributing Reports Through Subscriptions

Subscription Processing

Report Manager

Managing Subscriptions

Walkthrough - Creating a Data-Driven Subscription

Reporting Services - Managing and Working With Published Reports

Using an External Data Source for Subscriber Data
Using an External Data Source for Subscriber Data

In a data-driven subscription, the subscriber list is determined by a query that retrieves data from an external data source, or a
command that serves the same purpose. The query or command syntax must be valid for a data processing extension installed
with your report server.

Each row returned by the query contains values for a single subscriber. If you are using the report server e-mail delivery
extension, the query should contain an e-mail alias for each subscriber. If you are using another delivery extension, an address
must be provided as destination for the delivery.

In addition to subscriber e-mail aliases, you can make use of other values that might be available in the data source. For example,
an employee database might contain employee identification numbers, hire dates, job titles, and office location information that
can be used to filter report data. If the report accepts parameters that are based on these or other available column data, you can
map the parameter to the appropriate column.

You can also add user-specific, report-related preferences to the external data source so that you can incorporate these
preferences in the subscription. For example, for each user, you can create values to reflect user preferences for a rendering
format and to reflect preferences for delivering a report as a link or e-mail attachment.

To make use of additional values in your subscription, you must create a query or command that returns a row set that contains
those values. During subscription definition, the query is processed at an early stage. The columns in the row set are then made
available so that you can complete the subscription by selecting the columns you want to use.

Modifying the Subscriber Data Source

The following modifications to the subscriber data source can prevent the subscription from running: removing columns that are
referenced in the subscription, modifying the table structure of the data source, and changing data type and other column
properties. If you make any of these changes, you must update the subscription.

See Also

Creating, Modifying, and Deleting Data-Driven Subscriptions

Data-Driven Subscriptions

Distributing Reports Through Subscriptions

Subscription Processing

Reporting Services - Managing and Working With Published Reports

Managing Subscriptions
This section contains topics about subscription processing, oversight, and control. Subscription management varies for standard
subscriptions and data-driven subscriptions. Standard subscriptions are typically user-owned and managed. In contrast, data-
driven subscriptions are typically created and maintained by a report server administrator.

Topic Description
Using My Subscriptions Explains how to use the My Subscriptions

page to manage the subscriptions you
own.

Subscription and Delivery Availability Provides information about settings that
affect how you use subscriptions and
whether you can manage them.

Subscription Processing Describes how subscriptions are
processed, delivery status, and how
delivery results vary for each subscription
type.

Controlling Report Distribution Describes configuration settings and
delivery options you can use to control the
distribution of reports.

Monitoring Subscription Status Describes how you can determine
whether a subscription succeeded or
failed, as well as the effects of report
changes on existing subscriptions.

See Also

Creating, Modifying, and Deleting Subscriptions

Reporting Services - Managing and Working With Published Reports

Using My Subscriptions
Using My Subscriptions

Report Manager includes a My Subscriptions page that organizes all of your subscriptions into one place. You can use My
Subscriptions to view, modify, and delete existing subscriptions. However, you cannot use it to create subscriptions.

Within My Subscriptions, you can sort subscriptions by folder, report, description, trigger, last run, or status. All values are sorted
alphabetically except for Last Run, which is in chronological order.

My Subscriptions shows only the subscriptions that you create. It does not list subscriptions that are owned by other users, even if
you are added as a subscriber to those subscriptions. Data-driven subscriptions that a report administrator defines for you are
also not represented here.

You cannot search for subscriptions by name, nor can you search for subscriptions based on trigger information, status
information, and so forth. For more information, see Creating, Modifying, and Deleting Subscriptions.

To access My Subscriptions, click My Subscriptions from the Report Manager menu.

See Also

Data-driven Subscriptions

Distributing Reports Through Subscriptions

Managing Subscriptions

Subscription Overview

Reporting Services - Managing and Working With Published Reports

Subscription and Delivery Availability
Subscription and Delivery Availability

Subscription and delivery features are available by default (e-mail delivery requires configuration before it can be used). The
default delivery extensions include report server e-mail and file share delivery. Unless you create or install custom delivery
extensions, these are the only distribution methods available to subscriptions. All delivery extensions installed on a report server
are available to any user who has the capability of creating a subscription to a given report.

Subscription features are available to users through two tasks:

The "Manage individual subscriptions" task conveys the capability to create, modify, and delete subscriptions by a specific
user, for a specific report. Role assignments that include this task allow a user to manage the subscriptions that he or she
creates.
The "Manage all subscriptions" task conveys the capability to access and modify all subscriptions. It also conveys the
capability to create data-driven subscriptions.

Depending on how you use roles, you can provide subscription functionality to selected groups of users by enabling or disabling
subscription tasks for different roles.

Disabling Subscriptions

To disable subscriptions, clear the "Manage individual subscriptions" task from the role. When you disable subscriptions, the
Subscription page in Report Manager is not available, and the My Subscriptions page appears to be empty (but is not deleted)
even if it previously contained subscriptions. Note that existing subscriptions are not removed and will continue to execute. For
more information about deleting subscriptions, see Creating, Modifying, and Deleting Subscriptions.

Disabling Delivery Extensions

Delivery extensions are configured in report server configuration files. To remove a delivery extension, you can edit configuration
files. After you remove a delivery extension, it is no longer selectable in Report Manager. Removing a delivery extension can result
in inactive subscriptions.

See Also

Configuring Security

E-Mail Delivery in Reporting Services

Distributing Reports Through Subscriptions

Managing Subscriptions

Reporting Services Configuration Files

Reporting Services - Managing and Working With Published Reports

Subscription Processing
Subscription Processing

This topic provides information about subscription processing, characteristics of a delivered report, and triggering a subscription.

Subscription Processing Overview

Reporting Services includes the Scheduling and Delivery Processor that provides functionality for scheduling reports and
delivering them to users. The report server responds to events that it monitors on an ongoing basis. When an event occurs that
matches the conditions defined for a subscription, the report server reads the subscription to determine how to process and
deliver the report. After the delivery extension is running, the report server extracts delivery information from the subscription
and passes it to the delivery extension.

The delivery extension renders the report in the format defined in the subscription and then delivers the report or notification to
the specified destination. If a report cannot be delivered, an entry is logged to the report server log file. If you want to support
retry operations, you can configure the report server to re-attempt the delivery if the first attempt fails.

Processing a Standard Subscription

Standard subscriptions produce one report instance. The report is delivered to a single file share location or to the e-mail
addresses specified in the subscription. The report layout and data do not vary for any of the subscribers named in a standard
subscription. If the report uses parameters, a standard subscription is processed with a single value for each parameter in the
report.

Processing a Data-Driven Subscription

Data-driven subscriptions can produce many report instances that are delivered to multiple destinations. The report layout does
not vary, but data in a report can vary if parameter values are passed in from a subscriber result set. Delivery options that affect
how the report is rendered, and whether it is included in the mail message or as a hyperlink can also vary from subscriber to
subscriber when the values are passed in from the row set.

Data-driven subscriptions can produce a large number of deliveries. Report server creates a delivery for each row in the row set
that is returned from the subscription query. Understanding how the subscriber list is created is important if you want to avoid
erroneous deliveries. For e-email delivery, erroneous deliveries can occur when you specify static values in the To field. The static
values that you specify for subscriber names do not override the subscriber list. If you specify three e-mail addresses as static
values, and the subscription query returns 30 rows, each of the three subscribers will receive 30 deliveries.

Report Delivery Characteristics

Reports that are delivered through standard subscriptions are typically rendered as static reports. These reports are either based
on the most recent report execution snapshot, or generated as a static report for the purpose of completing a delivery. If you
choose the Include Link option in a subscription to a report that runs on demand, the report server runs the report when you
click the hyperlink.

Note Reports that are delivered through a URL remain connected to the report server and can be updated or deleted
between viewings. The delivery options you choose for your subscription determine whether the report is delivered as
a URL, embedded within the body of an e-mail message, or sent as an attachment.

Reports that are delivered through a data-driven subscription may be regenerated while the subscription is being processed. The
report server does not lock in a specific instance of a report or its dataset to complete a data-driven subscription. If the
subscription uses different parameter values for different subscribers, the report server regenerates the report to produce the
required result. If the underlying data is updated after the first report copy is created and delivered, users who get reports later in
the process may see data that is based on different result set. You can use a report that runs as a snapshot to ensure that the
same report instance is delivered to all subscribers. However, if a scheduled update to the snapshot occurs while the subscription
is processing, users may still get different data in their reports.

Triggering Subscription Processing

The report server uses events to trigger subscription processing. There are two kinds of events: a time-driven event that is
specified in a schedule, and a snapshot update event.

Snapshot Update Events

You can define a subscription that is triggered whenever a report is updated with new data. This option is available only for
reports that run as a snapshot, based on report execution properties that are set on the report.

Schedule-based Events

You can also use a schedule to determine when a subscription is triggered. For reports that run only on demand or from cache,
schedules are the only option for subscription definition.

If you create a scheduled subscription for a report that runs as a snapshot, the report will be delivered at the time you specify.
However, the report itself may have been processed much earlier. Report execution snapshots are processed on the schedule that
defines when the snapshot is updated. That is the only time that the report is run. For example, if a report server administrator
specifies that a report snapshot is refreshed at 2 A.M., subscriptions that schedule that same report for 4 P.M. and 7 P.M. receive
the report that was generated at 2 A.M. For more information about scheduled report generation, see Setting Report Execution
Properties.

See Also

Distributing Reports Through Subscriptions

Managing Subscriptions

Monitoring Subscription Status

Scheduling and Delivery Processor

Subscription Overview

Reporting Services - Managing and Working With Published Reports

Controlling Report Distribution
Controlling Report Distribution

You can configure a report server to reduce the risks associated with e-mail and file share distribution.

Securing Reports

The first step in controlling report distribution is to secure the report against unauthorized access. To be used in a subscription, a
report must use a stored set of credentials that do not vary for individual deliveries. Any user who can access the report in the
report server namespace can run it and possibly distribute it. To prevent this from occurring, you must limit report access to only
those users who require it. For more information, see Securing Reports and Resources and Securing Folders.

Highly confidential reports that use database security to authorize access cannot be distributed by way of subscription.

Security Note Reports are transported as files. The risks and safeguards that apply to files apply equally to reports
that are saved to disk or sent as attachments. Any user who has access to a file can distribute or use the file at his or
her discretion.

Controlling E-Mail Delivery

You can configure a report server to limit e-mail distribution to specific host domains. For example, you can prevent a report
server from delivering a report to all domains except those listed in the configuration file.

You can also set configuration settings to hide the To field in a subscription. In this case, reports are delivered only to the user
defining the subscription. However, after a report is sent to a user, you cannot explicitly prevent it from being forwarded.

The most effective way to control report distribution is to configure a report server to send only a report server URL. Report
server uses Windows Authentication and role-based authorization model to control access to a report. If a user accidentally
receives through e-mail a report that he or she is not authorized to view, the report server will not display the report.

Controlling File Share Delivery

File share delivery is used to send a report to a file on a hard disk. Once the file has been saved to disk, it is no longer subject to
the role-based security model that the report server uses to control user access. To secure a report that has been delivered to disk,
you can place ACLs on the file itself or on the folder that contains it. Additional security options may be available, depending on
your operating system.

See Also

Configuring a Report Server for E-Mail Delivery

Distributing Reports Through Subscriptions

Managing Subscriptions

Reporting Services - Managing and Working With Published Reports

Monitoring Subscription Status
Monitoring Subscription Status

Individual users can monitor the status of a subscription using the My Subscriptions page or a Subscriptions tab in Report
Manager. Subscription pages include columns that indicate when the subscription was last run and the status of the subscription.
If an error occurs during delivery, an entry is made in the report server trace log. Errors that occur while a subscription is being
processed are indicated in the Status column. Status values include the following:

Status Description
New subscription Appears when you first create the

subscription.
Inactive Appears when a subscription is cannot be

processed. For more information, see
"Managing Inactive Subscriptions" later in
this topic.

Done: <number> processed of <number>
total; <number> errors.

Shows the status of a data-driven
subscription execution; this message is
from the Scheduling and Delivery
Processor.

<number> processed The number of notifications that the
Scheduling and Delivery Processor
successfully delivered or is no longer
attempting to deliver. When a data-driven
delivery completes, the number of
processed notifications should equal the
total number of generated notifications.

<number> total The total number of notifications
generated for the last delivery for the
subscription.

<number> error The number of notifications that the
Scheduling and Delivery Processor could
not deliver or is no longer attempting to
deliver.

Failure sending mail: the transport failed
to connect to the server.

Indicates that the report server did not
connect to the mail server; this message is
from the e-mail delivery extension. .

File <filename> was written to <path>. Indicates that the delivery to the file share
location was successful; this message is
from the file share delivery extension.

An unknown error occurred when writing
file.

Indicates that the delivery to the file share
location did not succeed; this message is
from the file share delivery extension.

Failure connecting to the destination
folder, <path>. Verify the destination
folder or file share exists.

Indicates that the folder you specified
could not be found; this message is from
the file share delivery extension.

The file <filename> could not be written
to <path>. Attempting to retry.

Indicates that the file could not be updated
with a newer version; this message is from
the file share delivery extension.

Failure writing file <filename>:
<message>

Indicates that the delivery to the file share
location did not succeed; this message is
from the file share delivery extension.

<custom status messages> Status messages about delivery success
and failure, provided by delivery
extensions. If you are using a third-party
or custom delivery extension, additional
status messages may be provided.

Status messages are updated when the subscription is scheduled to process. If the trigger never occurs (for example, a report

execution snapshot is never refreshed or a schedule never runs), the status message will not be updated.

Report server administrators can review the reportserverservice_*.log files to determine subscription delivery status. For e-mail
delivery, report server log files include a record of processing and deliveries to specific e-mail accounts.

The log file does not include information about whether the report was opened, or whether the delivery actually succeeded.
Successful delivery means that there were no errors generated by the Scheduling and Delivery Processor, and that the report
server connected to the mail server. If the e-mail resulted in an undeliverable message error in the user mailbox, that information
will not be included in the log file. For more information about log files, see Check Reporting Services Log Files.

Report server administrators can also monitor standard subscriptions that are currently processing. Data-driven subscriptions
cannot be monitored. For more information, see Managing a Running Process.

If a subscription cannot be delivered (for example, if the mail server is unavailable), the delivery extension retries the delivery. A
configuration setting specifies the number of attempts to make. The default value is no retries. In some cases, the report might
have been processed without data (for example, if the data source is offline), in which case text to that effect is provided in the
body of the message.

Managing Inactive Subscriptions

If a subscription becomes inactive, you should either delete it or reactivate it by resolving the underlying conditions that prevent it
from being processed. Subscriptions can become inactive if conditions occur that prevent processing. These conditions include:

Removing or uninstalling the delivery extension specified in the subscription.
Changing credential settings from stored to integrated or prompted values.
Changing a parameter name or data type in the report definition and then republishing a report. If a subscription includes a
parameter that is no longer valid, the subscription becomes inactive. For more information, see Setting Parameters in a
Subscription.
Changing the execution mode of a report (for example, modifying an on-demand report so that it runs as a report execution
snapshot). For more information, see Setting Report Execution Properties.

An inactive subscription is indicated by a message in the subscription itself. The message includes information about the cause
and what steps you should take to reactivate the subscription.

When conditions cause the subscription to become inactive, the subscription reflects this fact when the report server runs the
subscription. If a subscription is scheduled to deliver a report every Friday at 2:00 A.M., and the delivery extension it uses was
uninstalled on Monday at 9:00 A.M., the subscription will not reflect its inactive state until Friday at 2:00 A.M.

See Also

Managing Subscriptions

Troubleshooting Subscription and Delivery Problems

Distributing Reports Through Subscriptions

Reporting Services - Managing and Working With Published Reports

Using Schedules
You can schedule reports and subscriptions to run at specific times or during off-peak hours. Schedules can run once or on a
continuous basis at intervals of hours, days, weeks, or months. You can:

Schedule report delivery in a standard or data-driven subscription.
Schedule report history generation so that new snapshots are added to report history at regular intervals.
Schedule when to refresh the data of a report execution snapshot.
Schedule the expiration of a cached report to occur at a predefined time so that it can be subsequently refreshed.

You can use report-specific schedules or shared schedules. Shared schedules are defined separately, and then referenced in
reports and subscriptions that need schedule information.

The following table describes the topics in this section. For more information about the scheduling engine used in Reporting
Services, see Scheduling and Delivery Processor.

Topic Description
Shared Schedules and Report-Specific
Schedules

Describes the two kinds of schedules that
you can create to support time-driven
operations.

Creating, Modifying, and Deleting
Schedules

Explains how to create, modify, and delete
shared and report-specific schedules.

Pausing and Resuming Shared Schedules Explains how to pause and resume
schedules that are in process.

See Also

Creating, Modifying, and Deleting Snapshots in Report History

Distributing Reports Through Subscriptions

Data-Driven Subscriptions

Report Caching in Reporting Services

Reporting Services - Managing and Working With Published Reports

Shared Schedules and Report-Specific Schedules
Reporting Services provides shared schedules and report-specific schedules that you can use to support time-driven operations.
Both types of schedules yield the same output and have an almost identical composition in how they specify dates, times, and
duration. The differences between the schedules can be summarized as follows:

Shared schedules are multipurpose items that contain ready-to-use schedule information. You create a shared schedule
once, and then reference it in a subscription or property page when you need to specify schedule information.
Report-specific schedules are defined in the context of an individual report, subscription, or report execution operation to
determine cache expiration or snapshot updates. These schedules are created inline when you define a subscription or set
report execution properties. You can create a report-specific schedule if a shared schedule does not provide the frequency
or recurrence pattern that you need.

Because shared schedules are system-level items, creating a shared schedule requires system-level permissions, unlike a report-
specific schedule. For this reason, a report server administrator or content manager typically creates the shared schedules that are
available on your server. In contrast, report-specific schedules can be created by individual users.

Shared schedules can be centrally managed, paused, and resumed. In contrast, you must edit a report-specific schedule manually
to prevent it from running. For more information about frequency options that schedules support, see New Schedule / Edit
Schedule Page.

Managing Shared Schedules

To manage shared schedules, use the Shared Schedules page in Report Manager. From this page, you can view all the shared
schedules that are defined for the server, pause and resume schedules, and select schedules to modify or delete. The Shared
Schedules page summarizes the following information about the state of each schedule: frequency, owner, expiration date, and
status.

You can tell whether a shared schedule is actively used by inspecting the values in the Last Run date, Next Run date, and Status
fields on the Shared Schedules page. If a schedule no longer runs because it has expired, the expiration date appears in the Status
field. You can also view the Reports page of a given Shared Schedule. This page lists all reports that use the shared schedule. You
can also view log files to determine whether reports have been run at the times specified by the schedule. For more information,
see Checking Reporting Services Log Files.

See Also

Creating, Modifying, and Deleting Schedules

Using Schedules

Pausing and Resuming Shared Schedules

Scheduling and Delivery Processor

Shared Schedules Page

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Schedules
Use this topic to learn about creating, modifying, and deleting schedules.

Tools and Steps

To work with schedules, use Report Manager. To view instructions about schedules, click a topic in the following list:

How to create, modify, or delete a custom schedule

How to create, modify, or delete a shared schedule

Requirements

Reporting Services uses SQL Server Agent as the scheduling engine. SQL Server Agent must be running if you want to create a
scheduled operation.

How you work with a schedule depends on tasks that are part of your role assignment. If you are using default security, local
administrators can create and manage any schedule. If you use custom role assignments, the role assignment must include tasks
that support scheduled operations.

To do this Include this task
Create, modify, or delete shared schedules Manage shared schedules
Select shared schedules View shared schedules
Create, modify, or delete report-specific
schedules in a user-defined subscription

Manage individual subscriptions

Create, modify, or delete report-specific
schedules for all other scheduled
operations

Manage report history, manage all
subscriptions, manage reports

For more information about security in Reporting Services, see Using Default Security, Configuring Security Through Role
Assignments and Tasks and Permissions.

Creating and Modifying Schedules

Creating and modifying a schedule consists of setting frequency options that determine when the schedule runs.

Shared schedules are created as separate items. After they are created, you reference them when defining a subscription or
some other scheduled operation.
Report-specific schedules are created when you define a subscription or set report execution properties; filling out schedule
information is part of defining a subscription or setting properties. To define a report-specific schedule, you open the report
or subscription that uses it.

You can create or modify a schedule at any time. However, if a schedule begins to run before your modifications are complete, the
earlier version of the schedule is used. The revised schedule does not take effect until you save it.

If you are modifying a shared schedule, you can pause it before you make changes. The changes take effect when you resume the
schedule.

Deleting Schedules

All schedules, whether shared or report specific, must be deleted manually. If you delete a shared schedule that is in use, all
references to it are replaced with report-specific schedules.

Deleting a schedule and causing it to expire are different. An expiration date is used to stop a schedule but does not delete it.
Because schedules are used to automate so many features, they are never deleted automatically. Expired schedules provide
evidence to report server administrators as to why an automated process has suddenly stopped. Without the presence of the
expired schedule, a report server administrator can misdiagnose the problem or spend unnecessary time trying to troubleshoot a
fully functional process.

A report-specific schedule that has expired remains attached to the report. You can determine if a schedule has expired by
checking its end date. An expired shared schedules remains in the Shared Schedules list. The Status field indicates whether the
schedule has expired. You can reinstate the schedule by extending the end date, or you can remove the schedule reference if you

no longer need it.

See Also

Using Schedules

Pausing and Resuming Shared Schedules

Scheduling and Delivery Processor

Reporting Services - Managing and Working With Published Reports

Pausing and Resuming Shared Schedules
You can pause and resume a shared schedule that is in use. Pausing a shared schedule provides a way to temporarily freeze a
schedule that is used to trigger report processing and subscriptions. Only shared schedules can be paused and resumed. You
cannot pause report-specific schedules.

To pause and resume a shared schedule, use the Shared Schedules page in Report Manager. For more information, see Shared
Schedules Page.

You cannot pause and resume report processing that is in progress; you can only pause and resume schedules that are in the
scheduling queue of SQL Agent. A job that is in progress is outside the scope of the scheduling engine. However, you can monitor
and delete jobs that are running. For more information, see Managing a Running Process.

While a shared schedule is paused, all report processing associated with the schedule is deferred until the schedule is resumed.

After you resume a shared schedule, report processing occurs at the next scheduled time, using the local time of the report server.
Any reports are skipped that did not run because a shared schedule was paused. This principle applies to both time-based and
event-driven schedules. The schedule initiates report processing when the next event (for example, a scheduled update to a report
cache) is detected.

See Also

Using Schedules

Creating, Modifying, and Deleting Schedules

Reporting Services - Managing and Working With Published Reports

Managing Report Processing
Report execution refers to processing that takes place when a user or the report server accesses a report. During report execution,
the report server processes a report in stages that include report processing, data processing, and rendering.

Report processing begins with a published report definition. A report definition contains one or more queries, layout information,
and code references or expressions. Report and data processing combine a resulting dataset with layout information in the report
definition to construct a report in an intermediate format that can be saved for fast retrieval, or directed to a rendering extension
that processes it into a format that the user sees. After processing is complete, reports are compiled as a common language
runtime assembly and executed on the report server.

The report server can use the intermediate format in a variety of ways. Caching, snapshots, and report history are all features that
use reports stored in intermediate format.

When a report is accessed, either through on-demand or push access, the report server either performs end-to-end processing, or
returns a report saved in intermediate format that is subsequently rendered in a specific format. Report execution settings
determine which outcome occurs. If a report server administrator specifies that a report be accessed from cache or as a snapshot,
the intermediate format is retrieved from the report server database and then rendered for viewing. Otherwise, all stages of
processing are performed.

The following diagram shows the progression of a report as it moves through different processing phases. Data and report
processing are performed on a report definition, resulting in a report that is in the intermediate format. Reports that are in
intermediate format are subsequently rendered to a specific viewing format.

The following table describes the topics in this section.

Topic Description
Configuring Report Execution Describes ways of configuring a report to

process a certain way, and how to set time
out values.

Managing a Running Process Provides information about viewing,
pausing, and canceling a running process.

Verifying a Report Run Explains ways of determining when a
report was executed.

See Also

Configuring Reporting Services Components

Deploying and Administering Reporting Services Components

Managing and Working With Published Reports

Report Manager

Starting and Stopping the Report Server Service

Reporting Services - Managing and Working With Published Reports

Configuring Report Execution
Reporting services provides configuration options so that you can control how system resources are used or how a report runs.
The following topics describe settings and approaches that you can use.

After the server or reports are operational, you can use Windows system management tools and Report Manager to monitor and
cancel in-process jobs. For more information, see Monitoring Performance and Managing a Running Process.

Topic Description
Setting Report Execution Properties Provides information about controlling

when and how a report is executed.
Creating Snapshots for Report Execution Describes how to use snapshots to

perform a timed report execution.
Report Caching in Reporting Services Provides information about temporary

report storage.
Setting Time-out Values Provides information about setting time

outs on query and report processing.

See Also

Configuring Reporting Services Components

Managing and Working With Published Reports

Report Manager

Reporting Services - Managing and Working With Published Reports

Setting Report Execution Properties
Setting Report Execution Properties

You can set report execution properties to control how a report is processed. Execution properties must be set for each report
individually.

To set report execution properties, open the report in Report Manager, and then navigate to the Execution properties page. For
more information, see Execution Properties Page.

Report Execution Modes

You can run a report either on demand or as a snapshot. The following section describes each approach.

Running Reports On Demand

You can specify that a report query a data source each time a user runs the report, resulting in on-demand reports that contain
the most up-to-date data. A new instance of the report is created for each user who opens or requests the report; each new
instance contains the results of a query. With this approach, if ten users open the report simultaneously, ten queries are sent to
the data source for processing.

Running Reports On Demand From Cache

To enhance performance, you can specify a report (and data) to be cached temporarily when a user runs the report. The cached
copy is subsequently available to other users who access the same report. With this approach, if ten users open the report, the
actions of the first user result in report processing. The report is subsequently cached, and the remaining nine users view the
report that is retrieved from cache.

Cached reports are removed from the cache at intervals that you define. You can specify intervals in minutes, or you can schedule
a specific date and time to empty the cache. For more information, see Report Caching in Reporting Services.

Running Reports From Snapshots

You can regulate report and query processing by running a report from a snapshot. A snapshot is a report stored in intermediate
format. Both the data and the report are stored together in the report server database when the snapshot is generated. With this
approach, the query process that gets the data is separate from the process that renders the report in a viewing format. Final
processing takes place when a user requests the report.

You can schedule snapshots to be generated at specific times (for example, during off-peak hours when system resources are not
in heavy use). You can also schedule how often the snapshot is refreshed. For example, if you want to refresh the data on a daily
basis, you can schedule a snapshot to be generated every night at 11:00 P.M.

Refreshing a report snapshot replaces the previous version. If you want to keep all copies of a report snapshot, set report history
properties to copy report execution snapshots to report history. For more information, see Setting Report History Properties. For
more information about snapshot generation, see Creating Snapshots for Report Execution.

Execution M ode M odifications and Subscription Processing

Changing how a report is run affects subscriptions that have been previously defined for that report. If you modify execution
properties so that a report runs in a different mode (for example, modifying report snapshots so that it runs as an on-demand
report), the report server deactivates the subscription to indicate that the parameters in your subscription will no longer be used.

To activate the subscription, open and then save the subscription. When you open the subscription, the report server updates the
subscription parameter values to those specified for the snapshot. For more information about subscriptions, see Distributing
Reports Through Subscription and Delivery.

See Also

Managing Report Processing

Pausing Report and Subscription Processing

Report Manager

Report Snapshots

Security Properties Page (Items)

Subscription Processing

Reporting Services - Managing and Working With Published Reports

Creating Snapshots for Report Execution
Creating Snapshots for Report Execution

A report snapshot is a report that contains layout information and a dataset that is retrieved at a specific point in time. You can
run a report as a report snapshot to prevent the report from being run at arbitrary times (for example, during a scheduled
backup). A report snapshot is usually created and subsequently refreshed on a schedule, allowing you to time exactly when report
and data processing will occur. If a report is based on queries that take a long time to run, or on queries that use data from a data
source that you prefer no one access during certain hours, you should run the report as a snapshot to avoid these situations.

A report snapshot is stored in a report server database, where it is subsequently retrieved when a user opens the report. All
requests for the report, whether from users or processes (such as subscriptions), are served by the snapshot stored in the report
server database. When a report execution snapshot is updated, it is overwritten with a newer instance. The report server does not
save previous versions of a report execution snapshot unless you specifically set options to do this. For more information, see
Setting Report History Properties.

You cannot create a snapshot for every report. If a report prompts users for credentials or uses the security context of the user
requesting the report, it cannot run as a snapshot. For more information, see Specifying Credential and Connection Information.

Creating Snapshots for Parameterized Reports

You can create a snapshot for a report using one set of parameter values. If a parameterized report supports multiple values for a
single parameter (for example, an EmployeeID parameter that takes an employee-specific value), only one of those values is
stored with the snapshot. If a user requests the report using a different parameter value, the value is ignored. The snapshot that
the user sees is based on the parameter value that is stored with the snapshot.

Synchronizing Report Changes to a Stored Snapshot

If you modify a report definition or properties of a published report, the snapshot reflects those changes when it is refreshed. A
schedule determines when a snapshot is refreshed. You can also use the Create a snapshot of the report when the apply
button is selected option in the Execution properties page to refresh the snapshot. Changing underlying conditions does not
invalidate a stored snapshot.

See Also

Managing Report Processing

Creating, Modifying, and Deleting Snapshots in Report History

Setting Report Execution Properties

Report Snapshots

Report Manager

Reporting Services - Managing and Working With Published Reports

Report Caching in Reporting Services
Report Caching in Reporting Services

A report server can keep a copy of a processed report and return that copy when a user opens the report. This practice is called
caching. Caching can shorten the time required to retrieve a report if the report is large or is accessed frequently. If the server is
rebooted, all cached instances are reinstated when the ReportServer service comes back online.

Caching is a performance-enhancement technique. The contents of the cache are volatile and can change as reports are added,
replaced, or removed. If you require a more predictable caching strategy, you should create a snapshot. For more information, see
Creating Snapshots for Report Execution.

Cached Instances

A cached instance of a report is based on the intermediate format of a report. The report server generally caches one instance of a
report based on the report name. However, if a report can contain different data based on query parameters, multiple versions of
the report may be cached at any given time. For example, suppose you have a parameterized report that takes a region code as a
parameter value. If four different users specify four unique region codes, four cached copies will be created.

The first user who runs the report with a unique region code creates a cached report that contains data for that region.
Subsequent users who request a report using the same region code get the cached copy.

Not all reports can be cached. If a report prompts users for credentials or uses Windows Authentication, it cannot be cached.

Preloading the Cache

You can use the data-driven subscription feature to populate the cache with a collection of parameterized report instances.
Populating the cache is achieved through a specialized rendering extension, named the Null Delivery Provider, that is available
when you define a data-driven subscription. When you specify the Null Delivery Provider, the report server targets the report
server database as the delivery destination.

This feature is especially useful if you want to cache multiple instances of a parameterized report, where different parameter
values are used to produce different report instances. Note that you can only specify query-based parameters on the report. In
contrast with other delivery extensions, the Null Delivery Provider does not have delivery settings that you can set or drive
through a subscription definition.

When you define the subscription, you can schedule how often the reports are delivered to cache. Note that the Execution
properties of the report must include cache expiration settings in order for new copies to be delivered. This setting must be
consistent with the schedule you define. For example, if you define a subscription that runs every night, the cache should also
expire every night prior to the subscription run time. If the Execution properties do not include expiration times, newer deliveries
will be ignored.

For more information about using data-driven subscriptions, see Data-Driven Subscriptions.

Refreshing the Cache

The report server caches reports based on report execution options. Execution options determine whether a report is cached and
the length of time it stays in cache. After some number of minutes or at a scheduled time, the cache is emptied. The cache stays
empty until a new report execution operation occurs and a new copy of the report is cached. For more information, see Setting
Report Execution Properties.

To a user, report execution options are invisible. There is no indication that a report originates from the cache or is a freshly
processed report. The only evidence available to a user of how a report is executed is the date and time that the report ran. If the
date or time is not current and the report is not a snapshot, the report was retrieved from cache.

You cannot delete the cache directly unless you use the SOAP API. If you use Report Manager to set caching options, you can set a
schedule or specify a time period after which the cache expires. When a cached report expires it is removed from cache so that a
newer version can be stored.

Scheduling Cache Expiration

You can schedule cache expiration on a recurring date and time. If a cached copy of a report exists when the scheduled time
occurs, it is removed. You can use a shared schedule or report-specific schedule that applies only to cache expiration. If you use a
shared schedule and it is subsequently paused, the cache does not expire while the schedule is inoperative. If the shared schedule

is subsequently deleted, a copy of the schedule settings is saved as a report-specific schedule.

If a schedule expires or if the scheduling engine is unavailable at a cache expiration date, the report server runs a live report until
scheduled operations can be resumed (by either extending the schedule or starting the scheduling service).

Other Conditions that Cause Cache Expiration

A cached report can also be invalidated in response to the following events: the report definition is modified, report parameters
are modified, data source credentials change, or report execution options change. If you delete a report that is stored in cache, the
cached version is also deleted.

If a report cannot be rendered from a cached instance for any reason (for example, if the parameter values that a user specifies
are different from those used to produce the cached report), the report server reruns the report.

See Also

Managing Report Processing

Setting Report Execution Properties

Report Snapshots

Managing and Working With Published Reports

Reporting Services - Managing and Working With Published Reports

Setting Time-out Values
Setting Time-out Values

You can specify time-out values to set limits on how system resources are used. Report server supports two time-out values:

A query time-out value is the number of seconds that the report server waits for a response from the database. This value is
defined in a report.
A report execution time-out value is the maximum number of seconds that report processing can continue before it is
stopped. This value is defined at the system level. You can vary this setting for individual reports.

Most time-out errors occur during query processing. If you are encountering time-out errors, try increasing the query time-out
value. If necessary, adjust the report execution time-out value so that it is larger than the query time-out. The time period should
be sufficient to complete both query and report processing.

Setting a Query Time-Out

Query time-out values are specified during report authoring when you define a dataset. You can also specify a query time-out
value for data-driven subscriptions. The time-out value is stored with the report, in the Timeout element of the report definition.
By default, this value is set to 30 seconds. For more information, see How to create a dataset (Report Designer).

Users who have permission to modify the properties of a published report can reset this value by editing the report definition file.
For more information about modifying the report definition of a published report, see Adding, Modifying, and Deleting Reports.

Setting a Report Execution Time-Out

You can set the report execution time-out value to limit the amount of time that a report server uses to process a report. Report
execution time-out values can be specified in Report Manager. You can set a default value for all reports in the Site Settings page,
and then override that value in the Execution properties page for a specific report. By default, the value is set to 1800 seconds.

How Report Execution Time-Out Values are Evaluated

The report server evaluates running jobs at 60 second intervals. At each 60 second interval, the report server compares actual
process time against the report execution time-out value. If the processing time for a report exceeds the report execution time-out
value, report processing will stop.

Note that if you specify a time-out value that is smaller than 60 seconds, the report may execute in full if processing starts and
completes during the quiet part of the cycle when the report server is not evaluating running jobs. For example, if you set a time-
out value of 10 seconds for a report that takes 20 seconds to run, the report will process in full if report execution starts early in
the 60 second cycle.

Note You can set the RunningRequestsDbCycle setting in the RSReportServer.config file to change the frequency
of how often running jobs are evaluated.

See Also

Deploying and Administering Reporting Services Components

Listing and Canceling In-Progress Jobs

Managing Resource Consumption on a Report Server

Report Manager

Reporting Services - Managing and Working With Published Reports

Managing a Running Process
You can use Report Manager to view a list of ongoing report processes, and to cancel a running process.

To manage and tune report server performance, you can set performance counters to monitor specific aspects of report server
processing. For more information, see Monitoring Performance.

Topic Description
Listing and Canceling In-Progress Jobs Describes how to view or cancel user and

system jobs that are in progress.
Pausing Report and Subscription
Processing

Describes temporary measures you can
use to stop a report from running.

See Also

Deploying and Administering Reporting Services Components

Managing Report Processing

Report Manager

Reporting Services - Managing and Working With Published Reports

Listing and Canceling In-Progress Jobs
Listing and Canceling In-Progress Jobs

Report Manager provides a Manage Jobs page that you can use to list or cancel the reports and standard subscriptions that are
processing on the server or on a report server Web farm. You cannot list or cancel data-driven subscriptions.

A job is in progress if any of the following processes are underway: query execution, report processing, and report rendering.

You can manage both user jobs and system jobs. A user job is any job that is initiated by an individual user. This includes
accessing a report on demand, generating a report history snapshot on demand, and creating a non-scheduled report execution
snapshot. An in-progress standard subscription is also a user job. A system job is a job that is initiated by the report server.
System jobs include scheduled report execution snapshots, scheduled report history snapshots, and data-driven subscriptions.

Note You can also manage jobs programmatically and through script. For more information, see ListJobs Method,
CancelJobs Method, andScript for Canceling Running Jobs.

Listing Jobs

A process must be running for a minimum of 30 seconds before it appears on the page. To view any changes in status for the
processing jobs, you must click the Refresh toolbar button in the browser window. For more information about what you can
view, see Manage Jobs Page.

Canceling Jobs

Not all jobs can be effectively cancelled. Processing may complete before the cancel operation can be performed. More likely, a
query is failing to progress on the database server and cannot be cancelled by the report server. A report server does not cancel
processes that run on other servers. Microsoft recommends that you use query time-out values to shut down queries that take
too long to execute. For more information, see Setting Time-out Values.

In rare circumstances, a process or the server may be in a state where a cancel operation cannot succeed. In this case, you may
need to restart the server to clear the process. For more information, see Starting and Stopping the Report Server Service.

See Also

Deploying and Administering Reporting Services Components

Manage Jobs Page

Managing Resource Consumption on a Report Server

Report Manager

Reporting Services - Managing and Working With Published Reports

Pausing Report and Subscription Processing
Pausing Report and Subscription Processing

You cannot pause a report or subscription directly. However, you can interrupt report and subscription processing at points prior
to the process starting or when a data source connection is made. You can also prevent a report or subscription from processing
by making it inaccessible to users.

The following strategies can be used to temporarily prevent a process from occurring.

Disable a Shared Data Source

One advantage to using shared data sources is that you can disable it to prevent a report or data-driven subscription from
running. Disabling a shared data source disconnects the report from its external source. While it is disabled, the data source is
unavailable to all reports and subscriptions that use it. To disable a shared data source, open the data source in Report Manager
and clear the Enable this data source check box.

Note that the report still loads even if the data source is unavailable. The report does not contain data, but users with appropriate
permissions can access the property pages, security settings, report history, and subscription information associated with the
report.

Pause a Shared Schedule

If a report or subscription runs from a shared schedule, you can pause the schedule to prevent processing. All report and
subscription processing that is driven by the schedule is deferred until the schedule is resumed. For more information, see
Pausing and Resuming Shared Schedules.

Modify Role Assignments to Prevent Access

The best way to make a report unavailable is to temporarily remove the role assignment that provides access to the report. This
approach can be used on all reports regardless of how the data source connection is made. This approach targets only the report,
without affecting the operation of other reports or items.

To remove the role assignment, open the Security Properties page of the report in Report Manager. If the report inherits security
from a parent, you can click Edit Item Security to create a restrictive security policy that omits role assignments that provide
widespread access (for example, you can remove a role assignment that provides access to Everyone, and keep the role
assignment that provides access to a small group of users, such as Administrators).

See Also

Deploying and Administering Reporting Services Components

Managing Report Processing

Report Manager

Security Properties Page (Items)

Subscription Processing

Reporting Services - Managing and Working With Published Reports

Verifying a Report Run
To view information about the status of report processing, you can use log files or refer to status information that is displayed
with the report in Report Manager.

The report execution logs provide comprehensive information about report execution, including the name of the report, the name
of the user who ran the report, report execution time, and the delivery extension used to distribute the report. To view and analyze
this data, you can copy the report execution log into database tables that are easy to query and report on.

Log files contain many entries about report execution and other server activity. Because log files contain so much data, you may
want to use Report Manager if you only want to verify when the report last ran. If you require additional information, you must
view the log files.

Note Report Manager does not show the processing times of reports that run on demand.

The following table describes how to view the processing date and time for various types of reports.

For this type of
report

Date and time information is
located here

To view the information, do
the following

A report that
runs as a report
snapshot

On the Contents page. For more
information, see Contents Page.

1. Locate the folder that
contains the report.

2. Set the folder in Details
view.

3. Note the date and time in
the When Run column.

A snapshot in
report history

On the History Properties page.
For more information, see
History Properties Page.

1. Open the report.
2. Click the Properties page.
3. Click the History tab.
4. Note the date and time in

the When Run column.

A cached report In the schedule used to create
and refresh the cached report.

1. Open the report.
2. Click the Properties page.
3. Click the Execution tab.
4. Open the schedule.

See Also

Checking Reporting Services Log Files

Managing Report Processing

Report Manager

Reporting Services - Managing and Working With Published Reports

Using Role-Based Security
Microsoft® SQL Server™ 2000 Reporting Services uses role-based authorization and Windows Authentication to determine who
can perform operations and access items on a report server.

Role-based authorization categorizes into roles the set of actions that a user can perform. Examples of roles that are useful on a
report server include Content Manager, Publisher, and Browser.

All users interact with a report server within the context of a role. A user can have multiple roles, and the operations that are
supported by a role determine the actions that a user can perform. Roles can vary across users and for different items. For
example, a user who is a member of the Content Manager role for one report may be a member of the Browser role for another
report.

To ensure that your report server is secure from the start, Reporting Services provides default security through a set of predefined
roles that are assigned to built-in Windows accounts. Default security consists of role assignments that grant access to local
administrators. You must create additional role assignments to make the report server accessible to other user and group
accounts. For instructions, see Server Deployment Checklist.

To work with role-based security, use Report Manager.

This section describes the Reporting Services security model, the default security implementation, and how to add more role
assignments. The following table describes the topics in this section.

Topic Description
Reporting Services Security Model Introduces the Reporting Services security

model and describes key components.
Using Default Security Describes the preset role assignments and

role definitions that control access to a
report server.

Configuring Security Through Role
Assignments

Explains how to configure security and
provides best practices for customizing
security.

See Also

Configuring Server Security

Managing and Working with Published Reports

Tasks and Permissions

Securing Reports for Global Access

Reporting Services - Managing and Working With Published Reports

Reporting Services Security Model
Reporting Services uses a role-based security model to control access to reports, folders, and other items that are managed by a
report server. The model maps a specific user or group to a role, and the role describes how that user or group is to access a
given report or item. The security model consists of the following components:

A user or a group account that can be authenticated by Windows security or another authentication mechanism.
Role definitions that define a set of actions or operations. Examples of role definitions include System Administrator,
Content Manager, and Publisher.
Securable items for which you want to control access. Examples of securable items include folders, reports, and resources.

The combination of all these elements is characterized as a role assignment. In Reporting Services, role assignments provide the
security context for items and the report server itself.

Reporting Services provides an authorization model, but it does not include an authentication component. In order for
authorization to work, the underlying network security must be able to authenticate the users and groups who access the report
server. In this release, authentication is performed by the Windows operating system. You can also use custom authentication if
you create a security extension to support it. For more information, see Implementing a Security Extension.

If you have already worked with an application that uses role-based security, you may be familiar with these basic concepts. If you
are not familiar with role-based security, or if you want to find out how the Reporting Services implementation compares with
other models, see Understanding Role-Based Security.

The following table describes the topics in this section.

Topic Description
Understanding Role-Based Security Introduces roles and contrasts Reporting

Services role-based security with the
security models of other products.

Securable Items Describes items that you can secure.
Role Assignments Describes the elements of a role

assignment.
Role Definitions Describes the elements of a role definition.
Tasks and Permissions Introduces the basic components of report

server security.
Minimum Security and Security Lockout Describes the minimum level of security

that you must have and explains how
system lockouts are prevented.

See Also

Configuring Security Through Role Assignments

Configuring Server Security

Using Role-Based Security

Report Server Folder Namespace

Using Default Security

Reporting Services - Managing and Working With Published Reports

Understanding Role-based Security
Understanding Role-Based Security

The Reporting Services role-based security model is similar to the role-based security models of other technologies. Like the
security models of other products, Reporting Services security is based on the premise that you can classify or categorize user
interaction with a system or resources, and then map user or group accounts to those categories. For example, the System
Administrator role is common to many role-based models and is assigned to users who have administrator privileges on a
server.

A role-based security model grants end-user access to specific operations through role membership. All users who are members
of a role can perform the operations that are defined for the role.

Role-based security is flexible and scalable, particularly when you use it with group accounts. You can map group accounts to role
definitions, and then allow the changing membership of those groups to automatically adjust for new report users coming into
the organization or moving to different positions in the organization, and other report users exiting the organization.

See Also

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Securable Items
Securable Items

A securable item is any item stored and managed by a report server that can be secured independently of other items. Each type
of item has a set of permissions that are associated with it. Other constructs, such as schedules and subscriptions, are not
explicitly associated with permissions, and therefore are not secured directly. Schedules and subscriptions operate within the
security context of a report.

Security is inherited within the folder hierarchy (that is, the folder namespace of a report server). The security that is defined for a
folder is automatically inherited by all reports, shared data sources, resources, and subfolders that folder contains. You override
inherited security by defining security for individual items.

The following table lists securable items and describes their characteristics.

Item Characteristics
Folders Folder security applies to the folder itself and the items it

contains. The Home folder is the root node of the folder
hierarchy. Security that you set for this folder establishes the
initial security settings for all subordinate folders, reports,
resources, and shared data sources in the folder hierarchy.

My Reports is a special-purpose folder that is secured through
an implied role assignment based on a dedicated role. For more
information, see Securing My Reports.

Reports Reports and linked reports can be secured to control access and
the range of actions that users can perform, such as changing
the properties of a given report.

Report history is secured through the report that contains the
history. You cannot secure individual snapshots within report
history.

Report security is not affected by the execution options you set
for the report. For example, you secure a report that runs as a
cached report the same way you secure a report that runs as a
snapshot.

Resources Resources can be secured to control access to the resource itself
and its properties.

Only stand-alone resources can be secured as separate items.
Resources that are embedded within a report cannot be secured
separately from that report.

Shared Data Sources Shared data sources can be secured to control which users can
change their settings.

See Also

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Role Assignments
Role Assignments

A role assignment is a security policy that defines the tasks that users or groups can perform on specific items or branches of the
report server folder hierarchy. You can think of the folder hierarchy in spatial terms, as areas or zones that can be secured to
different degrees for different users.

To cover all the ways in which various users can work with a folder or report, you can create multiple role assignments, one for
each user or group account. If many users and groups need the same kind of access, you must create a separate role assignment
for each one, even if the tasks and permissions are identical for all users. If one or two of those users require elevated privileges
(for example, if you want to delegate management tasks to one or two individuals), the role assignment for those users must
include role definitions that provide a greater level of access.

Access to the contents of a report server is controlled by role assignments. The report server requires at least one role assignment
that provides system-level access and another that provides item-level access. All parts of the folder hierarchy must be covered by
at least one role assignment. You cannot create an unsecured item or system or manipulate settings in a way that produces an
unsecured item or system. Because item-level security can be inherited through folders in the folder hierarchy, you can delete role
assignments for specific items because the item can assume the role assignments of the item directly above it in the hierarchy.

The following diagram illustrates a role assignment that maps a group and a specific user to a Publisher role that describes
access to Folder B.

Users and Groups in Role Assignments

The users or group accounts that you specify in a role assignment are domain accounts. The report server references, but does
not create or manage, users and groups from a Microsoft Windows domain (or another security model if you are using a custom
security extension). The authentication process is handled outside of the report server.

Of all the role assignments that apply to any given item, no two can specify the same user or group. For example, you cannot
define two role assignments that include the user account for John Chen.

If a user account is also a member of a group account, and you have role assignments for both, the combined set of tasks for both
role assignments are available to the user. For example, suppose John Chen is a member of the Branch Managers group and you
have role assignments for both John and Branch Managers. In this case, the sum total of tasks selected for both role assignments
determine how John accesses a particular item.

If you add a user to a group that is a already part of a role assignment, you must reset Internet Information Services (IIS) in order

for the role assignment to take effect for that user. For example, suppose you have an existing group named Sales Managers that
has content management permissions for the Product Sales folder. Now suppose you add John Chen's user account to the Sales
Managers group. Although a role assignment already exists for Sales Managers, John will not get content management
permissions on the Product Sales folder until IIS is reset.

Predefined Role Assignments

By default, predefined role assignments are implemented that allow users to view the contents of a report server and local
administrators to manage it. These role assignments are generic and provide minimal access to any user who has permission to
access the Web server that hosts the report server. If you replace predefined role assignments with custom role assignments that
include specific user accounts, only those users can access the items covered by the role assignments.

For more information about the predefined role assignments that provide default security, see Predefined Role Assignments. For
more information about creating custom role assignments, see Configuring Security Through Role Assignments.

See Also

Securing My Reports

Using Role-Based Security

Managing My Reports

Reporting Services - Managing and Working With Published Reports

Role Definitions
Role Definitions

A role definition is a collection of tasks that relate to a specific function; for example, content management or system
administration. Conceptually, a role definition is similar to a job description that identifies the functions an employee performs.

A role definition works with a role assignment to control access to reports and other items on a report server. Within a given role
assignment, the role definition specifies the set of tasks a user can perform. It provides the rules used by the report server to
enforce security. When a user attempts to perform an operation, such as create a new folder, the report server first evaluates the
role definition to see what tasks are allowed. If the task is included in the role definition, the request is submitted.

Creating or modifying a role definition involves adding or removing tasks. Item-level tasks can be combined to create role
definitions that are used for working with items, such as reports or folders. System-level tasks can be combined into role
definitions that are used for management of the report server site.

You can assign multiple users and groups to each role. Just as you might have more than one sales manager in your organization,
you might have more than one user assigned to the Content Manager role for a report server.

A role becomes operative only when it is used in a role assignment. For more information about how roles provide security, see
Role Assignments.

About Predefined Role Definitions

Reporting Services includes predefined role definitions. These role definitions map to report-related functions that are commonly
found in organizations. There are several management-based role definitions. There is also a Browser role definition for end
users who view reports. For more information, see Predefined Roles Overview and Creating, Modifying, and Deleting Role
Definitions.

See Also

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Tasks and Permissions
Tasks and Permissions

In Reporting Services, tasks are all possible actions that a user or administrator performs. There are twenty tasks in all. Some
examples of tasks include "View reports," "Manage reports," and "Manage report server properties."

Tasks are predefined. You cannot create custom tasks or modify the ones provided either programmatically or through a tool.

Each task consists of a set of permissions, which are also predefined. For example, the "Manage folders" task contains the
permissions create and delete folders, and view and update folder properties. Users never interact with permissions directly.
Users are granted permissions indirectly through the tasks that are included in role definitions. These permissions allow access to
specific report server functionality. For example, users who have permission to subscribe to reports can use subscription-related
pages and buttons in Report Manager to create and manage subscriptions. Users who do not have permission do not see
subscription-related pages in Report Manager.

To work, a task must be assigned to a role that is actively used in a security policy. A task that is not assigned to a role has no
impact on user actions or security. The following diagram shows how permissions are combined into tasks, and how tasks are
combined into role definitions that can be used for specific role assignments.

Tasks fall into two categories: system level and item level. A role can include tasks only from a single category. The following table
describes each category of tasks.

Category Description
Item-Level Tasks Actions that are performed on items

managed by a report server, such as
folders, reports, and resources.

System-Level Tasks Actions that are performed at the system
level, such as managing jobs or shared
schedules that can be used with many
items.

See Also

Role Definitions

Predefined Roles Overview

Using Default Security

Configuring Security Through Role Assignments

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Item-Level Tasks
Item-Level Tasks

An item-level task is a collection of permissions that relate to a report, folder, resource, or shared data source. Reporting Services
also includes system-level tasks that apply to the report server site as a whole. For more information, see System-Level Tasks. For
more information about tasks and permissions in general, see Tasks and Permissions.

Note If you are working with these tasks programmatically, you must use methods that support item-level tasks. For
more information, see ListTasks and ListRoles.

The following table lists item-level tasks, identifies the collection of permissions that are included in each task, and the items to
which the permissions apply. Permissions are listed for informational purposes only, to provide a more exact description of the
functionality available through each task.

Task Item Permissions
Create linked reports Reports Create Link

Read Properties
Manage all subscriptions Reports Read Properties

Create Any Subscription
Delete Any Subscription
Read Any Subscription
Update Any Subscription

Manage data sources Folders Create Data Source
 Data Sources Update Properties

Delete
Update Content
Read Properties

Manage folders Folders Create Folder
Delete
Update Properties
Read Properties

Manage individual subscriptions Reports Read Properties
Create Subscription
Delete Subscription
Read Subscription
Update Subscription

Manage report history Reports Read Properties
Create Report History
Delete Report History
Execute
Read Policy
Update Policy
List Report History

Manage reports Folders Create Report
 Reports Read Properties

Delete
Update Properties
Update Parameters
Read Data Sources
Update Data Sources
Read Report Definition
Update Report Definition
Execute
Read Policy
Update Policy

Manage resources Folders Create Resource

 Resources Update Properties
Delete
Update Content
Read Properties

Set security for individual items Reports Read Security Policies
Update Security Policies

 Resources Read Security Policies
Update Security Policies

 Data sources Read Security Policies
Update Security Policies

 Folders Read Security Policies
Update Security Policies

View data sources Data sources Read Content
Read Properties

View folders Folders Read Properties
Execute And View
List Report History

View resources Resources Read Content
Read Properties

See Also

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

System-Level Tasks
System-Level Tasks

A system-level task is a collection of permissions that relate to operations that apply to the report server site as a whole.
Reporting Services also includes item-level tasks that apply to specific items. For more information, see Item-Level Tasks. For
more information about tasks and permissions in general, see Tasks and Permissions.

Note If you are working with these tasks programmatically, you must use methods that support system-level tasks.
For more information, see ListSystemTasks and ListSystemRoles.

The following table identifies the collection of permissions for each system task. Permissions are listed for informational purposes
only, to provide a more exact description of the functionality available through each task.

Task Permissions
Generate events Generate Events
Manage jobs Read System Properties

Update System Properties
Manage report server properties Read System Properties

Update System Properties
Manage roles Create Roles

Delete Roles
Read Role Properties
Update Role Properties

Manage shared schedules Create Schedules
Manage report server security Read System Security Policies

Update System Security Policies
View report server properties Read System Properties
View shared schedules Read Schedules

See Also

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Minimum Security and Security Lockouts
Minimum Security and Security Lockouts

Although you can modify the default and custom role assignments, you cannot remove all role assignments, leaving the report
server unsecured. At minimum, each report server must have one system role assignment that defines access at the system level,
and one item-level role assignment that defines access to the folder hierarchy. You cannot remove all role assignments.

As a precaution against lockout, members of the local Administrators group can always access a report server to change site
settings (system role assignments, item-level role definitions, and system-level role definitions) no matter what role assignments
are set. If you inadvertently set role assignments in such a way that all users are locked out, a local administrator can always reset
security.

Having access to a report server is not the same as having full access to all the reports and the data it contains. To ensure that
highly privileged users such as local administrators cannot access confidential reports, you must secure the reports at the data-
access level, requiring users to provide credentials to view the report. For more information, see Specifying Credential and
Connection Information.

See Also

Configuring Security Through Role Assignments

Configuring Server Security

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Using Default Security
Reporting Services installs with default security that is configured during setup. Default security is provided through role
assignments that match the built-in local administrators Windows group with predefined report server roles. The predefined roles
describe supported operations on the report server folder hierarchy as well as the system as a whole. Because built-in groups
cannot be deleted, each report server is installed with the default role assignments in effect.

The following table describes the topics in this section.

Topic Description
Predefined Role Assignments Explains the role assignments that provide

default security to local administrators,
and recommends additional role
assignments to extend report server
access to report users.

Predefined Roles Overview Describes the predefined roles and the
tasks each one supports.

See Also

Configuring Security Through Role Assignments

Using Role-Based Security

Tasks and Permissions

Reporting Services - Managing and Working With Published Reports

Predefined Role Assignments
Predefined Role Assignments

Reporting Services provides default security through role assignments that are configured during setup. These role assignments
define access for local administrators. The preset role assignments consist of built-in Windows accounts, roles, and a security
context. The following table summarizes the predefined assignments.

Built-in group Role Securable item
Administrators System Administrator System
Administrators Content Manager Folder hierarchy starting at

the Home folder (the root
node)

Notice that two role assignments are necessary to provide wide-ranging access to a report server. System-level role assignments
support operations that apply to the report server site as a whole. Item-level role assignments provide access to the folder
hierarchy. These two security zones are mutually exclusive.

Extending Access to Other Users

To open a report server to other users, you must create additional role assignments. One option to consider is using built-in
accounts such as Everyone (an Internet Information Services account) or Users (a global domain account), and then assign those
accounts to roles that provide read-only access to a report server.

The following table shows a combination of roles that are easy to define if you want to provide limited access to a large group of
users right away. For step by step instructions, see Server Deployment Checklist.

Built-in group Role Securable item
Everyone System User System
Everyone Browser Folder hierarchy starting at

the Home folder (the root
node)

Security Note The built-in Everyone and Users groups include all user accounts that have access to your Web
server or that are defined in your domain. If you do not want to provide view-only access to this many users, you
should choose different accounts.

When you define role assignments for report users, you should define two to cover both the system and folder hierarchy.

For many organizations, four role assignments can provide adequate access for administrators and the majority of users who
require reports and reporting features. However, you can easily add to these role assignments to accommodate particular users
who have different access requirements. Typically, any additional role assignments that you create involve folders or reports that
relate to specific users or groups; for example, suppose a sales group stores its reports in a specific set of folders. To support the
reporting activity of this group, you may want to add role assignments to these folders that give individuals on the sales team the
capability to manage those folders and their contents.

If you plan to deploy confidential reports, create role assignments that allow you to stage and test those reports in a secure
manner and that allow only authorized users to view them. For more information, see Configuring Security Through Role
Assignments.

See Also

Creating, Modifying, and Deleting Role Assignments

Role Assignments

Securable Items

Predefined Roles Overview

Using Default Security

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Predefined Roles Overview
Predefined Roles Overview

Reporting Services includes a small set of predefined roles that relate to report-related functions commonly performed in an
organization. You can modify these roles or replace them with roles.

The following table describes the predefined roles.

Use this predefined role For users and groups who need to
Browser Role Run reports and navigate through the folder structure.
Content Manager Role Define a folder structure for storing reports and other

items, set security at the item level, and view and
manage the items stored by the server.

Publisher Role Publish content to a report server.
My Reports Role Build reports for personal use or store reports in a user-

owned folder.
System Administrator Role Enable features and set defaults, set site-wide security,

define create role definitions, and manage jobs.
System User Role View the schedule information in a shared schedule, or

view other basic information about the report server.

See Also

Using Role-Based Security

Configuring Security Through Role Assignments

Predefined Role Assignments

Reporting Services - Managing and Working With Published Reports

Browser Role
Browser Role

The Browser role is a predefined role that includes tasks that are useful for a user who views reports but does not necessarily
author or manage them. This role provides basic capabilities for conventional use of a report server. Without these tasks, it may
be difficult for users to use a report server.

The following table describes the tasks that are included in the Browser role definition.

Task Description
View reports Run a report and view report properties.
View resources View resources and resource properties.
View folders View folder contents and navigate the folder

hierarchy.
Manage individual subscriptions Create, view, modify, and delete user-owned

subscriptions to reports and linked reports, and
create schedules in support of those subscriptions.

You can modify the Browser role to suit your needs. For example, you can remove the "Manage individual subscriptions" task if
you do not want to support subscriptions, or you can remove the "View resources" task if you do not want users to see collateral
documentation or other items that might be uploaded to the report server database.

At a minimum, this role should support both the "View reports" task and the "View folders" tasks to support viewing and folder
navigation. You should not remove the "View folders" task unless you want to eliminate folder navigation. Likewise, you should
not remove the "View reports task" unless you want to prevent users from seeing reports. These kinds of modifications suggest
the need for a custom role definition that is applied selectively for a specific group of users. For more information about creating
custom role definitions, see Configuring Security Through Role Assignments.

The Browser role can be used to supplement default security. You can include the role in new role assignments that extend report
server access to report users. For more information, see Using Default Security and Predefined Role Assignments.

See Also

Item-Level Tasks

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Content Manager Role
Content Manager Role

The Content Manager role is a predefined role that includes tasks that are useful for a user who manages reports and Web
content, but does not necessarily author reports or manage a Web server or SQL Server instance. A content manager deploys
reports, manages data source connections, and makes decisions about how reports are used. All item-level tasks are selected by
default for the Content Manager role definition. The following table lists the tasks that are included in the Content Manager
role.

Task Description
Create linked reports Create linked reports that are based on a

non-linked report.
Manage all subscriptions View, modify, and delete any subscription

for reports and linked reports, regardless
of who owns the subscription. This task
also supports the creation of data-driven
subscriptions.

Manage data sources Create and delete shared data source
items, view and modify data source
properties and content.

Manage folders Create, view, and delete folders, and view
and modify folder properties.

Manage individual subscriptions Create, view, modify, and delete user-
owned subscriptions to reports and linked
reports.

Manage report history Create, view, and delete report history,
view report history properties, and view
and modify settings that determine
snapshot limits and how caching works.

Manage reports Add and delete reports, modify report
parameters, view and modify report
properties, view and modify data sources
that provide content to the report, view
and modify report definitions, and set
security policies at the report level.

Manage resources Create, modify, and delete resources, and
view and modify resource properties.

Set security policies for items Define security policies for reports, linked
reports, folders, resources, and data
sources. For more information, see
Securable Items.

View data sources View shared data source items in the
folder hierarchy.

View reports Run reports and view report properties.
View resources View resources and resource properties.
View folders View folder contents and navigate

through the folder hierarchy.

This role is intended for trusted users who have overall responsibility for managing and maintaining report server content. You
can remove tasks from this definition, but doing so may introduce ambiguity into what can be managed. For example, removing
the "View reports" task from this role definition would prevent a Content Manager from viewing report contents, making
changes to parameter and credential settings difficult to verify.

The Content Manager role is used in default security. For more information, see Using Default Security.

See Also

Item-level Tasks

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Publisher Role
Publisher Role

The Publisher role is a built-in role definition that includes tasks that are useful for a user who adds content to a report server.

This role is predefined for your convenience. It is not used in default security. This role is intended for users who author reports in
Report Designer and then publish those reports to a report server.

The following table lists the tasks that are included in the Publisher role.

Task Description
Create linked reports Create linked reports and publish them to

a report server folder.
Manage data sources Create and delete shared data source

items, view and modify data source
properties and content.

Manage folders Create, view, and delete folders, view and
modify folder properties.

Manage reports Add and delete reports, modify report
parameters, view and modify report
properties, view and modify data sources
that provide content to the report, view
and modify report definitions, and set
security policies at the report level.

Manage resources Create, modify, and delete resources, view
and modify resource properties.

You can modify the Publisher role to suit your needs. For example, you can remove the "Create linked reports" task if you do not
want users to be able to create and publish linked reports, or you can add the "View folders" task so that users can navigate
through the folder hierarchy when selecting a location for a new item.

At a minimum, users who publish reports from Report Designer need the "Manage reports" task in order to be able to add a
report to the report server. If the user must publish reports that use shared data sources or external files, you should also include
"Manage data sources" and "Manage resources." If the user also requires the ability to create a folder as part of the publishing
process, you must also include "Manage folders."

See Also

Item-Level Tasks

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

My Reports Role
My Reports Role

The My Reports role is a predefined role that includes a set of tasks that are useful for users of the My Reports feature. This role
definition includes tasks that grant administrative permissions to users over the My Reports folders that they own.

Although you can choose another role to use with the My Reports feature, it is recommended that you choose one that is used
exclusively for My Reports security. For more information, see Securing My Reports.

The following table lists tasks that are included in the My Reports role.

Task Description
Create linked reports Create linked reports that are based on reports that

are stored in the user's My Reports folder.
Manage folders Create, view, and delete folders, and view and

modify folder properties.
Manage data sources Create and delete shared data source items, view

and modify data source properties and content.
Manage individual subscriptions Create, view, modify, and delete subscriptions for

reports and linked reports.
Manage reports Add and delete reports, modify report parameters,

view and modify report properties, view and modify
data sources that provide content to the report,
view and modify report definitions, and set security
policies at the report level.

Manage resources Create, modify, and delete resources, and view and
modify resource properties.

View reports Run reports that are stored in the user's My Reports
folder and view report properties.

View data sources View shared data source items in the folder
hierarchy.

View resources View resources and resource properties.
View folders View folder contents.

You can modify this role to suit your needs. However, it is recommended that you keep the "Manage reports" task and the
"Manage folders" task to enable basic content management. In addition, this role should support all view-based tasks so that
users can see folder contents and run the reports that they manage.

Although the "Set security policies for items" task is not part of the role definition by default, you can add this task to the My
Reports role so that users can customize security settings for subfolders and reports.

See Also

Item-Level Tasks

Using My Reports

Managing My Reports

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

System Administrator Role
System Administrator Role

The System Administrator role is a predefined role that includes tasks that are useful for a report server administrator who has
overall responsibility for a report server, but not necessarily for the content within it. The following table lists tasks that are
included in the System Administrator role.

Task Description
Manage jobs View and cancel jobs that are running. For more

information, see Managing a Running Process.
Manage report server properties View and modify properties that apply to the report

server and to items that the report server manages.

This task supports renaming Report Manager,
enabling My Reports, and setting report history
defaults.

Manage roles Create, view, and modify, and delete role
definitions.

Members of the System Administrator role can
use the Site Settings page to manage roles.

Manage shared schedules Create, view, modify, and delete shared schedules
that are used to run or refresh reports.

Manage report server security View and modify system-wide role assignments

The System Administrator role is used in default security. For more information, see Using Default Security.

See Also

System Tasks

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

System User Role
System User Role

The System User role is a predefined role that includes tasks that allow users to view basic information about the report server.
The following table lists tasks that are included in the System User role definition.

Task Description
View report server properties View properties that apply to the report server, such

as the application name, whether My Reports is
enabled, and report history defaults.

If you remove this task from the System User role,
the Site Settings page is not available. Also, the
application title is not displayed at the top of each
page. By default, the title for Report Manager is
"SQL Server Reporting Services."

View shared schedules View shared schedules that are used to run reports
or refresh a report.

If you remove this task from the System User role,
users cannot select shared schedules to use with
subscriptions and other scheduled operations.

The System User role can be used to supplement default security. You can include the role in new role assignments that extend
report server access to report users. For more information, see Using Default Security and Predefined Role Assignments.

See Also

System Tasks

Predefined Roles Overview

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Configuring Security Through Role Assignments
In Reporting Services, all roles can be modified, including the predefined roles that are configured during setup. You can rename
the predefined role definitions or replace them with custom definitions. Suppose your organization is already familiar with a set
of roles in use for another application, such as System Administrator, Subscriber, Document Administrator, and Document
Author. If these roles correspond to how you think users will access a report server, you can apply the more familiar
nomenclature to report server role definitions. You can either rename the predefined role definitions or create new role
definitions that correspond to the role classification system that you already know.

Note Although you can use any intellectual work or analysis you may have already done for other role-based
applications in use at your organization, you cannot import the security constructs into Reporting Services.

This section explains how to modify default security to support additional users, groups, and access requirements. You can change
system-level security or item-level security. Configuring security can be summarized into the following steps:

1. Navigate to the area or item that you want to secure.
2. Create a role assignment that specifies user or group accounts.
3. Choose a role for the role assignment that describes how you want users or groups to access the item.

Because role-based security is context sensitive, you must navigate to a specific item, such as a folder or a report, before you
create a role assignment.

To manage security effectively, use the default security and supplement it with a minimum set of role assignment that provide
access to report users, and then follow the principle of "setting security by exception," (that is, change or add security to
accommodate special cases, but not otherwise).

Use the following table to find more information about specific tasks.

To See this topic
Add users or modify access for current
users

Creating, Modifying, and Deleting Role
Assignments

Change system-level security Setting System-Level Security
Set security for specific items Navigating Folders in Report Manager

Securing Reports and Resources

Securing Folders

Securing My Reports

Securing Shared Data Source Items

Create role definitions that describe access
for particular classes of users

Creating, Modifying, and Deleting Role
Definitions

See Also

Using Role-Based Security

Configuring Server Security

Tasks and Permissions

Reporting Services - Managing and Working With Published Reports

Securing Reports and Resources
Securing Reports and Resources

You can set security for individual reports and resources to control the degree of access that users have to these items. By default,
users cannot run reports or view resources until you create role assignments that grant them access to the report server. Users
who are members of the Administrators built-in group can run reports, view resources, modify properties, and delete the items.

In general, you set security at the report and resource level because you want to vary the default settings for a specific item. If you
do not want to define security at such a low level, you can use the role assignments that are provided through the parent folder.

When you set security for an individual report or resource, you typically do so to hide the report or resource from users who do
not need to know that the report or resource exists, or to increase or enrich the level of access for a report or item. These
objectives are not mutually exclusive. You can restrict access to a report to a smaller set of users, and provide all or some of them
with additional privileges to manage the report.

You may need to create multiple role assignments to achieve your objectives. For example, suppose you have a report that you
want to make accessible to the users Ann and Fernando, and Human Resource Managers. Ann and Fernando must be able to
manage the report, but the Human Resource Managers only need to run it. To accommodate all of these users, you would create
three separate role assignments, one to make Ann a content manager of the report, one to make Fernando a content manager of
the report, and one to support view-only tasks for the Human Resource Managers group.

Once you set security on a report or resource, those settings stay with the item even if you move the item to a new location. For
example, if you move a report that only a few people are authorized to access, the report continues to be available to just those
users even if you move it to a folder that has a relatively open security policy.

Securing Confidential Reports

Reports that contain confidential information should be secured at the data-access layer, by requiring users to provide credentials
to access sensitive data. For more information, see Specifying Credential and Connection Information. You can also secure a
folder to make it inaccessible to unauthorized users. For more information, see Securing Folders.

See Also

Using Role-Based Security

Securing Shared Data Source Items

Reporting Services - Managing and Working With Published Reports

Securing Folders
Securing Folders

Folder security is the foundation for securing all content in a report server. Because security is inherited throughout the folder
structure, you can designate large or small sections of the folder hierarchy to allow for certain kinds of access.

High-security folders can be used to store confidential reports or as staging areas; for example, you can have a folder that you use
to test reports before moving them to final location. To control access to this area, you can define one role assignment that allows
only report authors to add and delete items, and a second role assignment that allows testers to run reports but not add or
remove items. Because the role assignments are defined explicitly for testers and report authors, no other users (except for local
system administrators) can access the folder.

Low-security folders can be used to store reports that you want to be easily accessible; for example, to store a report of employee
contact information that is generated weekly from an employee database or a weekly sales report that you want all users in your
organization to be able to access.

Folder security forms the basis of item-level security, starting with the root node of the report server folder hierarchy, the Home
folder. Because security is inherited, it is advisable to set a fairly restrictive security policy on the Home folder. Reporting Services
predefined role assignments do exactly that by providing view-only access to most users.

More than other forms of item-level security (such as securing a single report or resource), the role assignments that you create
for a folder can have far-reaching consequences. The role assignment for a folder can be used by new items as they are added to
the folder, a fact that you want to consider when defining folder security.

When creating role assignments for folders, consider the tasks listed in the following table.

Select this task To give users access to
View folders The folder item in the folder hierarchy and read-only

properties that indicate when the folder was created and
modified.

Users cannot view items in the folder unless role
assignments also include "View reports," "View resources,"
and "View data sources."

Manage folders The General Properties page, which specifies the name,
description, and creation and modification information. This
task allows users to change the name or description, or
move the folder to another location.

The New Folder page, which allows users to create
subfolders. This task also allows users to add new folders.

For more information, see General Properties Page (Folders)
and New Folder Page.

Manage reports The Upload File page, which allows users to add reports
from the file system to a folder.

For more information, see Upload File Page.

Manage data sources The New Data Source page, which allows users to add new
shared data source items to a folder.

For more information, see New Data Source Page.

Set security on items The Security properties page. Users who can open this page
have control over how they and other users access the
folder. This task must be used with either "View folders" or
"Manage folders." If it is not, it will have no effect because
the user will not be able to select the item.

For more information, see Security Properties Page (Items).

See Also

Securing Reports and Resources

Securing Shared Data Source Items

Using Role-Based Security

Report Server Folder Namespace

Navigating Folders in Report Manager

Navigating Folders in a Web Browser

Reporting Services - Managing and Working With Published Reports

Securing My Reports
Securing My Reports

The My Reports feature provides a user-managed workspace for working with reports. In order to serve its intended purpose, the
My Reports folder requires less restrictive permissions than other folders that are available for general use. Users who only have
permissions to view and run reports in other folders require an expanded set of permissions to manage their My Reports folders
and content that they own. Reporting Services provides a specialized role assignment and role definition for this purpose.

Role Assignment for My Reports

The role assignment for My Reports has preset elements and is automatically created for each user who activates a My Reports
folder. Having the report server automatically assign security is especially useful for organizations that use My Reports widely
because administrators do not have to enable access for each My Reports user.

A My Reports role assignment consists of the following elements:

The user's My Reports folder, which is located in Users Folders\<username>\My Reports folder.
The user account, which is determined when the My Reports folder is activated. A folder is activated when a user clicks a My
Reports folder in Report Manager or when publishing a report to a My Reports folder from Report Designer. This folder is
also activated when a user requests properties on the My Reports link.
The predefined role definition for My Reports, which is the same for all users.

Role Definition for My Reports

The My Reports role definition includes tasks that support content management of a My Reports folder. The My Reports role is
intended to be a single-purpose role. Although you can choose it for any item-level security policy, you should avoid doing so to
minimize the chance that you will modify it to accommodate other folder requirements. Reserving the My Reports role for the
My Reports feature can help you maintain a consistent experience for users.

By default, only report server administrators modify the My Reports role. You can customize the My Reports role by changing
the tasks it contains. You can also substitute a different role. For more information, see My Reports Role.

Denying Access to My Reports

You can prevent users from accessing My Reports by:

Disabling My Reports on the Site Settings page. For more information, see Enabling and Disabling My Reports.
Removing all tasks from the My Reports role.

When you disable My Reports, the link to a My Reports folder is removed from Report Manager. The underlying folder structure
that supports My Reports (that is, the Users Folders folder and subfolders) is still available and can be accessed if a user knows
the folder path. Removing tasks from My Reports role ensures that access is prevented.

See Also

Managing My Reports

Securing Reports and Resources

Securing Folders

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Securing Shared Data Source Items
Securing Shared Data Source Items

You can set security on a shared data source item to enable or disable access to it.

A user who has minimal access to a shared data source (for example, the access granted through the Browser role) can view the
list of reports that use the item, provided the user is also authorized to view the reports themselves.

A user who has additional access (such as that granted through the Content Manager role) can view and set properties for the
shared data source.

To set security, you create a role assignment that specifies which user or group account has access to the shared data source.
Users who have access to a shared data source item can change its name, description, connection string, or credential
information.

When creating role assignments for shared data sources, consider the tasks listed in the following table.

Select this task To give users access to
View data sources The shared data source item in the folder hierarchy. Without

this task, users may not be aware that the data source is
available.

Manage data sources The General Properties page, which specifies the name,
description, and connection information. This task is also
used to display a shared data source item in the folder
hierarchy. If you choose this task, you can omit the "View
data source" task.

For more information, see Data Sources Properties Page.

Set security on items The Security properties page. Users who can open this page
can control how they and other users access the shared data
source. This task must be used with either "View data
source" or "Manage data sources" tasks. If it is not, it has no
effect because the user cannot select the item.

For more information, see Security Properties Page (Items).

See Also

Managing Data Source Connections

Securing Folders

Securing Reports and Resources

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Role Definitions
Creating, Modifying, and Deleting Role Definitions

A role definition is a named collection of tasks that define a kind of user access. Role definitions provide information for role
assignments. Specifically, they describe which tasks a user is allowed to perform in connection with a folder, report, or other item.

Role definitions can contain either item-level or system-level tasks. You cannot combine tasks from both levels into a single role
definition.

Reporting Services includes several predefined roles to accommodate various categories of users. You can create additional roles
if the predefined roles are insufficient. You can modify or delete either the predefined roles or the custom roles you create, as long
as you do not invalidate the last remaining role assignment for your report server.

Because the number of tasks that you can work with is relatively small, you typically do not need a large number of role
definitions. Creating or modifying a role definition requires careful consideration. If you create too many roles, the roles become
difficult to maintain and manage. If you modify an existing role, you may not know the various places in which it is used or how
users will be affected by the modification. Role-based security is central to the security model of Reporting Services and
understanding its implications is important. For more information, see Role Definitions and Reporting Services Security Model.

Tools and Steps

Use Report Manager to create, modify, and delete role definitions. You can create both system-level and item-level role definitions
on the Site Settings page. You can also create item-level role definitions while creating a role assignment.

To create, modify, or delete an item-level role, use the New Role page or the Edit Role page. For more information, see New Role /
Edit Role Page.

To create, modify, or delete a system-level role, use the New System Role page or the Edit System Role page. For more
information, see New System Role / Edit System Role Page.

To view instructions about role definitions, click a topic in the following list:

How to create a role definition

How to modify a role definition

How to delete a role definition

To view all of the role definitions created for your reporting environment, open the Item-Level Roles page or the System-Level
Roles page. These pages show you all of the exiting role definitions. However, they do not indicate whether a role definition is
used by a role assignment. For more information, see Item-Level Roles Page and System Roles Page.

Creating a Role Definition

To create a role definition, you must have permission to do so. The "Set security for individual items" task provides these
permissions. By default, administrators and users who are assigned to the Content Manager role can perform this task.

A role definition must have a unique name. To be valid, the role definition must contain at least one task. For more information,
see Tasks and Permissions.

A role definition cannot be associated with a specific folder or branch in the report server namespace. Any new role definitions
that you create are available to any role assignment.

Modifying or Deleting a Role Definition

Because role definitions are available to any role assignment, modifying a role definition affects all role assignments that use it.

Use caution when deleting a role definition that is in use; there is no undo. Even if you re-create a previously deleted role
definition with the same name and task list, any role assignments that used that role definition will not be associated with the re-
created role definition.

You cannot delete the role definition that is selected for the My Reports feature as long as that feature is enabled. Before you can
delete the role definition used for My Reports, you must first disable the feature or select a different role definition to use with it.
For more information, see Managing My Reports.

You also cannot delete a role definition if it is part of the sole role assignment that provides security for a report server. A report

server requires at least one item-level role assignment and one system-level role assignment. If you delete all role assignments
except for these two, any role definitions that are part of these role assignments cannot be deleted.

See Also

Predefined Roles Overview

Role Definitions

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Creating, Modifying, and Deleting Role Assignments
Creating, Modifying, and Deleting Role Assignments

A role assignment is a security policy that determines whether a user or group can access a specific item and perform an
operation. A role assignment consists of one or more user or group account names and one or more role definitions. A role
assignment is always created in the context of a specific item or branch in the report server folder hierarchy. You navigate to a
specific folder or item to create a role assignment for it. If you are creating a system-level role assignment, you navigate to the
Site Settings page instead.

Reporting Services includes two predefined role assignments, which provide default security for local administrators. You can
modify the assignments, and you must add new assignments to make a report server accessible to report users.

This topic explains how to set security for individual items. For more information about setting security at the system level, see
Setting System-Level Security.

Tools and Steps

Use Report Manager to access the item you want to secure. To view instructions about role assignments, click a topic in the
following list:

How to create a role assignment

How to modify or delete a role assignment

Creating a Role Assignment

To create a role assignment, open the property pages of the item that you want to secure. To enable widespread access, you
should choose an item that is high in the folder hierarchy (for example, the root node Home). You can then create subsequent role
assignments to lock down specific areas of the folder hierarchy.

Creating a role assignment includes specifying a domain user or group account. If the account is on a domain other than the one
that contains the report server, include the domain name. You must create a separate role assignment for each user or group
account. You cannot specify two accounts in the same assignment.

After you specify an account, you can choose one or more role definitions. The role definitions are additive. The combined set of
all tasks from all definitions are supported in the assignment.

Modifying a Role Assignment

You can modify a role assignment at any time. Your changes take effect when you save the role assignment. User sessions are not
affected by role assignment changes. If a user has a report open, and you modify a role assignment to deny access, the user can
continue using the report as long as the session is active.

If you add a user to a group that is a already part of a role assignment, you must reset Internet Information Services (IIS) in order
for the role assignment to take effect for that user. For example, suppose you have an existing group named Sales Managers that
has content management permissions for the Product Sales folder. Now suppose you add John Chen's user account to the Sales
Managers group. Although a role assignment already exists for Sales Managers, John will not get content management
permissions on the Product Sales folder until IIS is reset.

To modify a role assignment, you must open the Edit Role Assignment page. You can only modify one role assignment at a time.
You cannot perform a global search-and-replace operation to change role definition names or role assignment settings, or to find
all the role assignments that include a specific user or group.

Deleting a Role Assignment

You can delete role assignments by selecting the checkbox by each assignment you want to delete, and then clicking Delete. You
can also delete role assignments by clicking Revert to Parent Security. When you click this button, the existing role assignments
for the item are deleted, and those that are provided through a parent item are used instead.

See Also

Role Assignments

Role Definitions

Predefined Role Assignments

Using Role-Based Security

Reporting Services - Managing and Working With Published Reports

Setting System-Level Security
Setting System-Level Security

In Reporting Services, you set security at the system level by creating role assignments that give selected users the capability to
perform tasks that affect the report server site as a whole. These tasks include creating shared schedules, managing jobs, and
setting properties. System-level security does not convey access to items in the report server folder hierarchy. For more
information, see Securable Items.

Tools and Steps

Use the Site Settings page in Report Manager to set system-level security. For more information, see Site Settings Page.

Requirements for changing system-level security include the "Manage the security settings of the report server" task.

To create, modify, or delete a system-level role assignment, use the New System Role Assignment or Edit System Role
Assignment page. For more information, see New System Role Assignment / Edit System Role Assignment Page.

To view instructions about system role assignments, click a topic in the following list:

How to create a system role assignment

How to modify or delete a system role assignment

See Also

Creating, Modifying, and Deleting Role Assignments

Predefined Role Assignments

Using Role-Based Security

Reporting Services - Troubleshooting Reporting Services

Troubleshooting Reporting Services
The troubleshooting information in this section addresses issues that may cause problems but do not necessarily generate an
error or warning.

You can find additional troubleshooting information in error message documentation and in the log files that are used by
Microsoft® SQL Server™ 2000 Reporting Services components. For information about troubleshooting setup, see
Troubleshooting an Installation of Reporting Services.

The following table describes the topics in this section.

Topic Description
Troubleshooting HTTP Errors Provides information and tips for

resolving HTTP errors.
Troubleshooting Report Problems Provides information and tips for

resolving authoring and rendering
problems.

Troubleshooting Report Processing
Problems

Provides information and tips for
resolving report processing and execution
problems.

Troubleshooting Server and Database
Problems

Provides information and tips for
resolving connection issues.

Troubleshooting Subscription and
Delivery Problems

Provides information and tips for
resolving subscription and delivery
problems.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Troubleshooting Reporting Services

Troubleshooting HTTP Errors
HTTP errors are issued by Internet Information Server (IIS). This section describes HTTP errors that can occur when you attempt to
connect to a report server or Report Manager.

HTTP 404 File or directory not found

This error indicates that there is a problem with the virtual directory configuration. In IIS, navigate to the report server virtual
directory, and right-click Properties. On the Virtual Directory tab, click Configuration, select the extension, and click Edit.
Make sure that Check that the file exists (or Verify that the file exists) is cleared.

HTTP 500 Internal server error

Reporting Services requires version 1.1.4322 of the .NET Framework. This error can occur when the report server or Report
Manager virtual directories are mapped to version 1.0.3705. To check the application mapping, navigate to the report server
virtual directory, and right-click Properties. On the Virtual Directory tab, click Configuration, scroll to the .aspx extension, and
read the Executable Path value. If it is set to v1.0.3705, you must configure the virtual directory to use 1.1.4322. Follow the
instructions provided in Knowledge Base Article 306005 to map v1.1.4322 to IIS.

See Also

Troubleshooting Reporting Services

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Troubleshooting Reporting Services

Troubleshooting Report Problems
Saving and exporting problems

Some export formats require a client component. If a required client component is not installed, the export does not occur. If you
want to open a report in Acrobat (PDF) format so that you can print it, you must have Acrobat Reader installed on your computer.
You can download Acrobat Reader from the Adobe Web site. HTML with Office Web Components is another format that requires
a client component. You can download Office Web Components from Microsoft.

If you save a report that has interactive features (for example, matrix reports or reports that include hyperlinks), those features will
not be reflected in a report that you save as a static file.

If you save a report in an interactive format (specifically, HTML with Office Web Components), the resulting file will contain errors
and missing images. The HTML with Office Web Components format is not intended for static files.

Toggle items do not work

If a report generates without errors, but toggle items do not work (for example, you click an expand (+) and nothing happens),
check the name of the computer hosting the report server. If the computer name includes an underscore, this is a known issue.
There is no workaround. If you want to support toggle items, you must use a computer that does not include underscore
characters in the name.

See Also

Troubleshooting Reporting Services

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Troubleshooting Reporting Services

Troubleshooting Report Processing Problems
Large reports take too long to render

HTML parsers are not efficient at rendering very large HTML pages. If you are having trouble rendering a report, choose a format
that produces a smaller file (CSV is recommended for this scenario). If you cannot choose an alternate format (the report toolbar
is not available), you can define a subscription to set a rendering format and deliver the report as a static document to a file share.
For more information, see File Share Delivery in Reporting Services.

An unexpected error occurred during report processing

If you are running as local administrator on the report server, you can view the call stack if you right-click the page and select
View Source. Additional information is provided in the call stack.

Images and charts do not load when using Run As to run a report

You can use the Microsoft Windows Run As command to view a report using a different security context. In some circumstances,
reports that include charts may not load correctly. The report server caches charts as temporary Internet files when you open the
report. If you do not have permission to access the folders that contain the cached files, the charts may be missing from the
report.

See Also

Troubleshooting Reporting Services

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Troubleshooting Reporting Services

Troubleshooting Server and Database Problems
Report M anager is slow to start up

Report Manager requires extra time to load the initial page. Additional wait time is required to start ASP.NET. After the initial page
opens in the Web browser, later application pages open much faster.

Selected pages in Report M anager do not open

If you are using IIS 6.0 with default settings to host a report server, you must add the Web server name as a Trusted Site (for
example, http://mywebservername). If the Web server is not a trusted site, the New Folder page, New Data Source page, and
Upload File page will not open from the Contents tab. In addition, the frameset used in Report Manager help will not open
correctly.

Report M anager or the report server runs very slowly

In some circumstances, ASP.NET applications run very slowly on computers that run anti-virus software. If the report server Web
service is restarting frequently, and you are running anti-virus software, you can obtain an ASP.NET fix from Microsoft Product
Support Services.

Symptoms include Web applications or Application Domains restarting for no apparent reason, slow performance, session
restarts, and more. Search the Knowledge Base for article 821438 for more information about the symptoms, cause, and
resolution.

You can find out whether there are excessive server restarts by viewing the number of reportserver_<timestamp>.log files. A new
log is created each time the server starts. A large collection of logs created at very short intervals is an indication that the
conditions described in article 821438 exist on your server.

Connection error, where login failed for <servername>\ASPN ET

You can get an rsConnectionError error that shows a failed login for ASP.NET when you configure a data source to use
prompted or stored Windows credentials, and the report server hosting the report runs under a domain user account on a
Windows 2000 server. When installing Reporting Services on a Windows 2000 server, Microsoft recommends that you use the
built-in account (NT AUTHORITY/SYSTEM). If you use a domain user account (even one that has local administrator privileges),
it will limit your choices on how to configure a data source connection for a report. Specifically, you cannot use prompted or
stored Windows credentials to connect to external data sources.

For more information about data source configuration and configuring report server connection information, see Specifying
Credential and Connection Information and Configuring a Report Server Connection.

Unexpected error (General network error)

This error indicates a data source connection error. You should check the connection string, and verify that you have permission
to access the data source. If you are using Windows Authentication to access a data source, you must have permission to access
the computer that hosts the data source.

Unexpected error (Login failed for user <user name>)

This error occurs when credentials are passed across multiple computer connections. If you are using Windows Authentication,
and Kerberos is not enabled, this error occurs when credentials are passed across more than one computer connection. This error
occurs even if you are using credentials that are valid on every computer you attempt to access. For more information about how
to work around this issue, see Best Practices for Authenticating Server and Data Source Connections.

See Also

Troubleshooting Reporting Services

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Troubleshooting Reporting Services

Troubleshooting Subscription and Delivery Problems
Unable to send reports using e-mail w ith Windows 2003 Server and POP3 server

If you have a Post Office Protocol version 3 (POP3) e-mail server running on under Windows 2003 Server, you may not be able to
send reports using the local POP3 server. If you configure the report server to send e-mail with the local POP3 Server, and create
a subscription that sends a report, you may receive the following error message:

Failure sending mail: <error message>

where <error message> is replaced with additional error message information returned from Collaboration Data Objects (CDO).

To resolve this problem, set the value of the SendUsing element in the Rsreportserver.config file to 1, and that of the
SMTPServer property to empty. You will also need to give a value for the SMTPServerPickupDirectory property. For more
information about configuring e-mail delivery of reports, see Configuring a Report Server for E-Mail Delivery.

Failure sending mail: The server rejected the sender address. The server response was: 454 5.7.3 Client does not have permission to submit mail to th is server

This error occurs when you specify an Exchange server as the SMTPServer. To use an Exchange server for e-mail delivery, you
must specify the name of the SMTP gateway configured for your Exchange server.

Subscriptions are not processing

Subscriptions can fail under these conditions.

The schedule used to trigger the report has expired. For subscriptions that trigger off of a report snapshot update, the
schedule used to refresh the snapshot may be expired.
The report server, SQL Agent, or the e-mail server is not running.
The report is undeliverable (for example, it is too big).
The computer used for file delivery is not running or the file share is configured for read-only access.
The delivery extension specified in the subscription has been uninstalled or disabled.
The credential settings changed from stored to integrated or prompted values.
Parameter name or data type changed in the report definition and the report was republished. If a subscription includes a
parameter that is no longer valid, the subscription becomes inactive.

See Also

Troubleshooting Reporting Services

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services Error Messages

Error Message List
The report server generates the error messages described in this section. The following list is incomplete. Help for additional error
messages will be provided as information becomes available.

Error Description
rsAccessDenied The permissions granted to user '{0}' are

insufficient for performing this operation.
rsBatchNotFound The batch '{0}' cannot be found. This error

occurs when the batch was not previously
opened by the CreateBatch method. It also
occurs when a batch has been open too
long and times out as a result.

rsCannotActivateSubscription The selected subscription cannot be
activated at this time. The delivery
extension no longer exists.

rsCannotDeleteRootPolicy The security policy associated with the
root folder cannot be deleted.

rsCannotSubscribeToEvent The event type '{0}' cannot be subscribed
to.

rsDataSourceDisabled The report server cannot process the
report. A data source associated with the
report has been disabled.

rsDataSourceNotFound The data source '{0}' cannot be found in
this report.

rsDeliveryExtensionNotFound An attempt has been made to use a
delivery extension that is not registered
for this report server.

rsElementTypeMismatch The value provided for the XML element
<{0}> is not valid for its type. It cannot be
converted from a string value to the type
that is required.

rsEmptyRole The custom role you are creating does not
contain any tasks. A role definition must
contain at least one task.

rsEvaluationCopyExpired This copy of the Evaluation Edition of
Reporting Services has expired.

rsEventLogSourceNotFound Event source {0} does not exist.
rsFailedToDecryptConfigInformation Failed to decrypt config file item {0}.
rsInheritedPolicy The item '{0}' inherits its security policy

from its parent item. Inherited policies
cannot be deleted.

rsInternalError An internal error occured on the report
server. See the error log for more details.

rsInvalidDataSourceCredentialSetting The current action cannot be completed
because the user data source credentials
that are required to execute this report are
not stored in the report server database.

rsInvalidDataSourceReference The report server cannot process the
report. The data source connection
information has been deleted.

rsInvalidElement The value of XML element <{0}> is not
valid. Check the documentation for
information about valid values.

rsInvalidElementCombination The combination of values for element
<{0}> and <{1}> are not valid for this
parameter.

https://msdn.microsoft.com/en-us/library/aa256421(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256422(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256423(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256424(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256438(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256369(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256378(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256432(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256407(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256429(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256382(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256436(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256385(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256406(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256375(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256405(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256384(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256367(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256376(v=sql.80).aspx

rsInvalidItemName The name of the item '{0}' is not valid. The
name must be less than {1} characters
long, must not start with slash; other
restrictions apply. Check the
documentation for complete set of
restrictions.

rsInvalidItemPath The path of the item '{0}' is not valid. The
full path must be less than {1} characters
long, must start with slash; other
restrictions apply. Check the
documentation for complete set of
restrictions.

rsInvalidMove Cannot move '{0}': The destination folder
'{1}' is a subfolder of the source folder
'{0}'.

rsInvalidParameter The value of parameter '{0}' is not valid.
Check the documentation for information
about valid values.

rsInvalidParameterCombination Invalid combination of parameter values
has been provided to the function call.

rsInvalidPolicyDefinition The policy '{0}' is not valid. The policy is
either empty or the same user or group
name is used more than once.

rsInvalidReportLink The report server cannot perform the
operation on the report. The report link is
no longer valid.

rsInvalidReportServerDatabase The version of the report server database
is either in a format that is not valid, or it
cannot be read. The found version is '{0}'.
The expected version is '{1}'. To continue,
update the version of the report server
database and verify access rights.

rsInvalidRSEditionConfiguration This edition of Reporting Services does
not support web farm deployment.

rsInvalidSearchOperator The search operator '{0}' is not valid.
Check the documentation for a list of valid
search operators.

rsItemAlreadyExists The item '{0}' already exists.
rsItemNotFound The item '{0}' cannot be found.
rsItemPathLengthExceeded The path for item '{0}' exceeds the

maximum length of {1}. The path includes
the name of the item itself, plus the names
of the parent folders that contain it.

rsJobWasCanceled An administrator has canceled the job.
rsMissingElement The required XML element <{0}> is

missing from the input XML.
rsMixedTasks A custom role cannot contain both

system-level and non-system-level tasks
in the same role definition. You must
specify different roles for each category of
tasks.

rsOperationNotSupported This operation is not supported in this
edition of Reporting Services

rsOperationPreventsUnattendedExecution The operation is not allowed in this case.
Changing report parameters or data
sources to the specified values would
prevent the report from being executed
unattended.

https://msdn.microsoft.com/en-us/library/aa256412(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256420(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256371(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256370(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa179194(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256408(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256377(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256379(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256403(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256395(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256419(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256439(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256387(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256381(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256380(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256397(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256392(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256394(v=sql.80).aspx

rsParameterTypeMismatch The value provided for the parameter '{0}'
is not valid for its type. It cannot be
converted from a string value to the type
that is required.

rsReadOnlyProperty The property '{0}' is read-only and cannot
be modified.

rsReadOnlyReportParameter The report parameter '{0}' is read-only
and cannot be modified.

rsReportHistoryNotFound The report snapshot '{1}' cannot be found
for report '{0}'. The snapshot identifier
cannot be located in the report server
database.

rsReportNotReady The selected report is not ready for
viewing. The report is still being rendered
or a report snapshot is not available.

rsReportParameterTypeMismatch The value provided for the report
parameter '{0}' is not valid for its type. It
cannot be converted from a string value to
the type that is required.

rsReportParameterValueNotSet This report requires a default or user-
defined value for the report parameter
'{0}'. To run or subscribe to this report,
you must provide a parameter value.

rsReportServerDatabaseLogonFailed The report server cannot open a
connection to the report server database.
Logon Failed.

rsReportServerDisabled Unable to encrypt or decrypt data
managed by the Report Server instance.
Please refer to the Reporting Services
online help for guidance in enabling this
functionality.

rsReportServerNotActivated The report server installation has not been
activated. Please refer to the Reporting
Services online help for guidance in
activating a report server installation.

rsReportTimeoutExpired The timeout for operation has expired; the
operation has been canceled.

rsReservedItem The folder '{0}' is reserved and cannot be
created, deleted, or moved.

rsReservedRole The role {0} is reserved or in use and
cannot be deleted. You cannot delete
reserved roles.

rsRoleAlreadyExists The role '{0}' already exists and cannot be
created. This error occurs for both system-
level and non-system-level roles alike.

rsRoleNotFound The role '{0}' cannot be found.
rsScheduleAlreadyExists The schedule '{0}' already exists and

cannot be created or renamed. This error
occurs when the schedule name is not
unique.

rsScheduleNotFound The schedule '{0}' cannot be found. The
schedule identifier that is provided to an
operation cannot be located in the report
server database.

rsSchedulerNotResponding The schedule engine is not responding.
rsSecureConnectionRequired The operation you are attempting requires

a secure connection (HTTPS).
rsServerBusy The Report Server is busy at this time.

Please retry this operation at a later time

https://msdn.microsoft.com/en-us/library/aa256400(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256434(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256398(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256437(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256431(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256404(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256410(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256402(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256415(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256383(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256413(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256396(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256401(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256399(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256388(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256391(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256386(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256368(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256390(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256433(v=sql.80).aspx

rsServerConfigurationError The Report Server has encountered a
configuration error; more details in the log
files

rsStreamNotFound The stream cannot be found. The stream
identifier that is provided to an operation
cannot be located in the report server
database.

rsSubscriptionNotFound The subscription cannot be found. The
subscription identifier that is provided to
an operation cannot be located in the
report server database.

rsTaskNotFound The task '{0}' does not exist.
rsUnknownEventType An attempt has been made to use event

type '{0}' that is not registered for this
report server.

rsUnknownReportParameter An attempt was made to set a report
parameter '{0}' that is not defined in this
report.

rsUnknownUserName The user or group name '{0}' is not
recognized.

rsWrongItemType The operation you are attempting on item
'{0}' is not applicable to this item type.

https://msdn.microsoft.com/en-us/library/aa256409(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256435(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256373(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256374(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256393(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256372(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256389(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa256425(v=sql.80).aspx

Reporting Services - Reporting Services Error Messages

Command Line Utility Errors
This section provides error message documentation for the command line utilities included with Reporting Services. For more
information, see Report Server Command Line Utilities.

The following table describes the topics in this section.

Topic Description
Error Reporting for rs Utility Contains error message descriptions for

rs.exe, the report server script host tool.
Error Reporting for rsactivate Utility Contains error message descriptions for

rsactivate.exe, the report server activation
tool.

Error Reporting for rsconfig Utility Contains error message descriptions for
rsconfig.exe, the report server connection
management tool.

Error Reporting for rskeymgmt Utility Contains error message descriptions for
rskeymgmt.exe, the report server key
management tool.

See Also

Administering Reporting Services Components

Checking Reporting Services Log Files

Reporting Services Error Messages

Troubleshooting Reporting Services

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Reporting Services Error Messages

Error Reporting for rs Utility
The rs utility error messages are displayed in the command prompt window. If you turn on tracing, the error code is included in
the trace. The following table shows the error messages that can be returned, and their associated error codes.

Error code Message
CompilerFailed The specified script failed to compile with

the following errors: <errors>
ConnectionFailed Could not connect to server: <serverURL>
DuplicateCommandLineOption Duplicate option <argument>.
DuplicateVariable Duplicate variable <name>
InvalidAuthorizationMethod Unrecognized authentication method:

<authmethod>.
InvalidCommandLineOption Unrecognized option <argument>.
InvalidTimeoutValue Invalid timeout value <value>. The

timeout value must be a non-negative
integer.

InvalidVariableName Invalid variable name <name>.
InvalidVariableSpecification Variable specification <value> is not of

the form name=value.
MissingOptionValue Value expected for option <argument>.
MissingRequiredOption Missing required option <argument>.
MissingSomeAuthorizationValues Missing username, password, or

authentication method.
ScriptException Unhandled exception. <details>

See Also

Administering Reporting Services Components

Command Line Utility Errors

rs Utility

Troubleshooting Reporting Services

Reporting Services - Reporting Services Error Messages

Error Reporting for rsactivate Utility
The rsactivate utility error messages are displayed in the command prompt window. If you turn on tracing, the error code is
included in the trace. The following table shows the error messages that can be returned, and their associated error codes.

Error code Message
InvalidCommandLineArgument Unrecognized argument <argument

name>.
DuplicateCommandLineArgument Duplicate argument <argument name>.
MissingArgumentValue Value expected for argument <argument

name>.
MissingRequiredArgument Missing required argument <argument

name>.
ConnectionFailed Could not connect to report server

database.
ConfigurationFileNotFound Could not find configuration file

<configuration file name>.
NotPermissioned User does not have permission to access

configuration file <configuration file
name>.

See Also

Administering Reporting Services Components

Command Line Utility Errors

rsactivate Utility

Troubleshooting Reporting Services

Reporting Services - Reporting Services Error Messages

Error Reporting for rsconfig Utility
The rsconfig utility error messages are displayed in the command prompt window. If you turn on tracing, the error code is
included in the trace. The following table shows the error messages that can be returned, and their associated error codes.

Error code Message
ConnectionFailed Could not connect to server: <server name>.
DuplicateCommandLineArgument Duplicate argument <argument name>.
ErrorSave Error saving changes on <argument>.
InstanceNotFound No report server instances found on

<computername>.
InvalidAuthenticationMethod Unrecognized authentication method:

<authmethod>. The authentication method must
be either Windows or SQL.

InvalidCommandLineArgument Unrecognized argument<argument name>.
InvalidUserName Invalid user name <argument name>. The

expected format is domain\\user.
MachineNotFound Unable to connect to <machine name>.
MissingArgumentValue Value expected for argument <argument name>
MissingRequiredArgument A required option is missing: <argument name>.
MissingSomeAuthorizationValues Missing a username, password, or authentication

method.
MoreThanOneInstance More than one instance of report server is

installed.
NoWMIClass Unable to find Reporting Services WMI class on

<argument>. Reporting Services may not be
installed.

NoWMINamespace Unable to find Reporting Services WMI
namespace on <argument>. Reporting Services
may not be installed.

See Also

Configuring a Report Server Connection

Command Line Utility Errors

rsconfig Utility

Administering Reporting Services Components

Reporting Services - Reporting Services Error Messages

Error Reporting for rskeymgmt Utility
The rskeymgmt utility error messages are displayed in the command prompt window. If you turn on tracing, the error code is
included in the trace. The following table shows the error messages that can be returned, and their associated error codes.

Error code Message
InvalidCommandLineArgument Unrecognized argument <argument name>.
DuplicateCommandLineArgument Duplicate argument <argument name>.
MissingArgumentValue Value expected for argument <argument name>.
MissingRequiredArgument Missing required argument <argument name>.
ConnectionFailed Could not connect to report server database.
ConfigurationFileNotFound Could not find configuration file <file name>.
NotPermissioned User does not have permission to access

configuration file <file name>.
ErrorReadingFromFile Error reading key from file <file name>.
ErrorWritingToFile Error writing key to file <file name>.

See Also

Administering Reporting Services Components

Command Line Utility Errors

rskeymgmt Utility

Troubleshooting Reporting Services

Reporting Services Configuration Files

Reporting Services - Reporting Services Error Messages

Report Server Events
The following report server events are recorded in the Windows application log.

Event
ID

Type Category Source Description

106 Error Scheduling Report Server SQL Server Agent must
be running when you
define a scheduled
operation (for example,
report subscription and
delivery).

107 Error Startup/Shutdown Report Server

Scheduling and
Delivery Processor

<Source> cannot
connect to the report
server database. For
more information, see
Troubleshooting Server
and Database Problems.

108 Error Extension Report Server

Report Manager

<Source> cannot load a
delivery, data
processing, or
rendering extension.

Most likely, this is a
result of an incomplete
deployment or removal
of an extension. For
more information, see
Deploying a Data
Processing Extension
and Deploying a
Delivery Extension.

109 Information Management Report Server

Report Manager

A configuration file has
been modified. For
more information, see
Reporting Services
Configuration Files.

110 Warning Management Report Server

Report Manager

A setting in one of the
configuration files has
been modified such that
it is no longer valid. A
default value will be
used instead. For more
information, see
Reporting Services
Configuration Files.

111 Error Logging Report Server

Report Manager

<Source> cannot create
the trace log. For more
information, see
Reporting Services
Trace Logs.

112 Warning Security Report Server The report server has
detected a possible
denial of service attack.
For more information,
search on denial of
service attack in Books
Online.

113 Error Logging Report Server The report server
cannot create a
performance counter.

114 Error Startup/Shutdown Report Manager Report Manager cannot
connect to the Report
Server service.

115 Warning Scheduling Scheduling and
Delivery Processor

A scheduled task in the
SQL Server Agent
queue has been
modified or deleted.

116 Error Internal Report Server

Report Manager

Scheduling and
Delivery Processor

An internal error
occurred.

117 Error Startup/Shutdown Report Server The report server
database is an invalid
version. For more
information, see
Troubleshooting Server
and Database Problems.

118 Warning Logging Report Server

Report Manager

The trace log is not at
the expected directory
location; a new trace log
will be created in the
default directory. For
more information, see
Reporting Services
Trace Logs.

119 Error Activation Report Server

Scheduling and
Delivery Processor

<Source> has not been
granted access to the
contents of the report
server database.

120 Error Activation Report Server The symmetric key
cannot be decrypted.
Most likely, the there
has been a change to
the account that the
service runs as. For
more information, see
Managing Encryption
Keys.

121 Error Startup/Shutdown Report Server Remote Procedure Call
(RPC) Service failed to
start.

122 Warning Delivery Scheduling and
Delivery Processor

Scheduling and Delivery
Processor cannot
connect to the SMTP
server that is used for e-
mail delivery. For more
information about
SMTP server
connections, see
Configuring a Report
Server for E-Mail
Delivery.

123 Warning Logging Report Server

Report Manager

The report server failed
to write to the trace log.
For more information
about trace logs, see
Reporting Services
Trace Logs.

124 Information Activation Report Server The Report Server
service has been
activated. For more
information about
activation, see
Activating a Report
Server Instance.

125 Information Activation Report Server The key used for
encrypting data was
successfully extracted.
For more information
about keys, see
Managing Encryption
Keys.

126 Information Activation Report Server The key used for
encrypting data was
successfully applied. For
more information about
keys, see Managing
Encryption Keys.

127 Information Activation Report Server Encrypted content was
successfully removed
from the report server
database. For more
information about
deleting non-
recoverable encrypted
data, see Managing
Encryption Keys.

128 Error Activation Report Server Reporting Services
components from
different editions
cannot be used
together.

129 Error Management Report Server

Scheduling and
Delivery Processor

An encrypted
configuration file
setting in cannot be
decrypted.

130 Error Management Report Server

Scheduling and
Delivery Processor

<Source> cannot find
the configuration file.
Configuration files are
required by the report
server.

131 Error Security Report Server

Scheduling and
Delivery Processor

An encrypted user data
value could not be
decrypted.

132 Error Security Report Server A failure occurred
during encryption of
user data. The value
cannot be saved.

133 Error Management Report Server

Report Manager

Scheduling and
Delivery Processor

A configuration file
failed to load. This error
may occur if the XML is
not valid.

134 Error Management Report Server The report server failed
to encrypt values for a
setting in a
configuration file.

See Also

Checking Reporting Services Log Files

Reporting Services Error Messages

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Reporting Services Programming
You have several programming opportunities available to you through Microsoft® SQL Server™ Reporting Services. You can use
the existing features and capabilities of Reporting Services to build custom reporting and management tools into Web sites and
Windows applications, or you can extend the Reporting Services platform.

Extending the Reporting Services platform includes creating new components and resources that can be used for data access,
report delivery and more. You can market these components and resources to companies that are using Reporting Services in
their organization.

The following table describes the topics in this section.

Topic Description
Introducing Reporting Services
Programming

Introduces the Reporting Services Web
service, URL access, WMI programming,
and extensibility.

Integrating Reporting Services into
Applications

Provides an overview of how to use
Reporting Services to integrate reporting
into custom applications. Describes when
to use direct URL access and when to use
the Web service to access the report
server.

Reporting Services Web Service Provides an overview of the Reporting
Services Web service, a Simple Object
Access Protocol (SOAP) API.

URL Access Describes how to use URL-based requests
for accessing and running parameterized
reports.

Using the Reporting Services WMI
Provider

Describes how to use the Reporting
Services WMI provider to integrate report
server management and configuration
functionality into custom administration
applications.

Understanding Code Access Security in
Reporting Services

Describes how to use .NET Framework
Code Access Security for your extensions
and custom assemblies in Reporting
Services.

Extending Reporting Services Describes how to extend Reporting
Services by developing custom data
processing and delivery extensions.

Generating Report Definition Language
Programmatically

Describes how to generate Report
Definition Language (RDL)
programmatically.

Using Custom Assemblies with Reports Describes how to use custom assemblies
with Reports by including code references
within the report definition.

Programming Reference Contains reference topics with detailed
information about the Reporting Services
SOAP API and the extensibility API.

Reporting Services - Reporting Services Programming

Introducing Reporting Services Programming
Reporting Services provides a full-featured set of APIs that you can use to integrate Reporting Services with custom business
applications and extend its functionality. The following sections summarize the programmable aspects of Reporting Services.

Full-Featured Web Service

The Reporting Services Web service provides a single entry point to the full functionality of the report server. The Web service
uses Simple Object Access Protocol (SOAP) over HTTP and is designed to act as a communications interface between client
programs and the report server. The Web service and its methods expose the functionality of the report server and allow you to
create custom tools for any part of the report lifecycle, from management to execution. For more information about developing
applications using the Reporting Services Web service, see Reporting Services Web Service.

URL-Based Commands

Reporting Services supports a rich set of URL-based requests that you can use as a quick and easy access point for report
navigation and viewing. You can use this technology in conjunction with the Reporting Services Web service to integrate a
complete reporting solution into your custom business applications. URL access is particularly useful when integrating reports as
part of a Web portal or when viewing reports from a Web browser. For more information about accessing reports using URL
access, see URL Access.

Comprehensive WMI Provider

The Reporting Services WMI provider is built on standard Windows Management Instrumentation (WMI) technology for
accessing control and management information in an enterprise environment. The WMI provider for Reporting Services serves as
an instance provider, mapping the Report Server XML configuration elements to a series of classes, which include methods that
you can call to add, remove, or modify report server configuration information. The Reporting Services WMI provider is an
excellent tool with which to build customized report server management applications. For more information about using the WMI
provider, see Using the Reporting Services WMI Provider.

Modular Extensions

The modular architecture of Reporting Services is designed for extensibility. A managed code API is available so that you can
easily develop, install, and manage extensions consumed by many Reporting Services components. You can create assemblies
using the Microsoft .NET Framework and add new Reporting Services rendering, security, delivery, and data processing
functionality to meet your evolving business needs. For more information about creating and implementing Reporting Services
extensions, see Extending Reporting Services.

Report Definition Language Programming

Report Definition Language (RDL) is a set of instructions that describe layout and query information for a report. RDL is
composed of Extensible Markup Language (XML) elements that conform to an XML grammar created for Reporting Services. RDL
describes the XML elements, which encompass all possible variations that a report can assume. You can add your own custom
functions for controlling report item values, styles, and formatting by accessing code assemblies from within report definition
files. Moreover, RDL can be generated programmatically. You can build third-party tools and applications that generate RDL in
much the same way that Report Designer generates RDL. For more information about using custom assemblies with reports, see
Using Custom Assemblies with Reports. For more information about generating RDL with custom applications, see Generating
Report Definition Language Programmatically.

See Also

Integrating Reporting Services into Applications

Programming Reference

Reporting Services Programming

Reporting Services - Reporting Services Programming

Integrating Reporting Services into Applications
Reporting Services is an open and extensible reporting platform, designed to provide developers with a comprehensive set of
APIs for developing solutions built on Reporting Services. There are two options for integrating Reporting Services into custom
applications: URL access and the Reporting Services Web service, also known as the Reporting Services SOAP API. You must
decide how your application will use the report server technology and what functionality you will be providing your users before
you can settle on a programming approach. Certain facets of Reporting Services programmability are better suited for particular
integration scenarios. For example, if your application requires only that users view and navigate individually rendered reports,
you should consider using URL access. Direct URL access provides report navigation functionality in a Web browser or supported
HTML viewer. It is the fastest, most efficient way to render reports. URL access does not use the Web service interface, but rather
provides direct access to the server. URL access is straightforward, quick, and efficient. It is your best choice for integrating the
viewing of reports into your applications.

The Web service provides similar rendering and viewing capabilities through a variety of Web operations. However, the Web
service provides additional functionality for managing the contents of a report server through an extensive set of Web methods
that are not available through URL access. For scenarios in which the management of reports, subscriptions, data sources, and
other report server database items is a requirement, the Web service is the best integration choice. The Web service is a single
entry point to the full report-management functionality of the report server.

In some cases, integrating Reporting Services into your custom business applications requires a combination of the two
programming approaches. Report Manager, the report access and management Web application that is included with Reporting
Services, is an example of one such application. Report Manager is a comprehensive report viewing and management tool. Report
Manager uses Web service methods to enable users to create and manage reports, folders, linked reports, report history,
schedules, data sources, and subscriptions. Users can also use Report Manager to set properties, report parameters and to
manage role definitions and assignments that control user authentication. Whereas the Web service is used to provide access to
management functionality in Report Manager, report viewing and navigation is accomplished through URL access. Report
Manager is one such application that uses the versatility and comprehensiveness of the Web service methods for report
management and the efficiency of direct URL access for report viewing.

The following table describes the topics in this section.

Topic Description
Choosing Between URL Access and SOAP Describes how to decide the best

approach to integrating Reporting
Services report navigation and
management functionality into your
existing business applications.

Integrating Reporting Services Using URL
Access

Describes how to integrate Reporting
Services report navigation into your
existing business applications using URL
access.

Integrating Reporting Services Using
SOAP

Describes how to integrate Reporting
Services report navigation and
management into your existing business
applications using the SOAP API.

See Also

Report Manager

Programming Reference

Reporting Services Programming

Reporting Services Web Service

Reporting Services - Reporting Services Programming

Choosing Between URL Access and SOAP
Integrating Reporting Services into custom applications can be challenging. The challenge, however, is not the complexity of the
programming model or APIs, but the many possible ways to integrate it. Reporting Services was designed from the ground up as
a developer platform, and as such, it is built with programming flexibility in mind. With flexibility comes the need to make
important decisions about integrating Reporting Services report navigation and management functionality into your existing
business applications.

There are two ways to integrate Reporting Services into custom applications: URL access and the Reporting Services SOAP API.
Which to use depends on several factors. In some cases, integrating Reporting Services into your custom business applications
requires a you to use both URL access and SOAP. You should ask the following questions:

What type of enterprise reporting functionality do you or your end users require? Do you need a simple way to launch and
navigate reports, or do you need more advanced report server management features from your custom business solution?
In which type of environment do your users typically operate? Is your business application a Web application or a Windows
application? How easily can your end users switch from a Win32 environment to a Web environment? What type of control
do you need over the environment in which reports are run and managed?

Once you have answered the previous questions, you can decide how to integrate Reporting Services into your IT infrastructure.
Typically, URL access is preferred for viewing and navigating individual reports. URL access enables you to freely and quickly
navigate reports without the overhead of the Web service. In addition, URL access is currently the only programming technique
that uses the full HTML Viewer for report navigation, which includes the report toolbar. In addition, URL access provides better
performance than SOAP because it bypasses the marshalling of SOAP requests to and from the server. In integration scenarios
that require quick and easy access to reports with built-in tools for viewing and navigation, URL access is the better choice.

Note Report server URL access supports HTML Viewer and the extended functionality of the report toolbar. The
SOAP API does not support this type of rendered report. You need to design and develop your own report toolbar, if
you render reports using SOAP.

For more information about the report toolbar, see HTML Viewer.

For more information about URL access, see URL Access.

URL access is useful for viewing reports, but it does not provide the report and namespace management functionality that can be
essential to any enterprise reporting scenario. In this case, the broad and rich functionality of the Reporting Services SOAP API is
recommended. With the SOAP API you can manage and deploy reports, create schedules, configure server properties, manage the
report server namespace, create subscriptions, and more. The SOAP API exposes the complete set of management functionality in
Reporting Services. The SOAP API can also enable report viewing and navigation through the Render method of the API.
However, viewing reports through the SOAP API does not enable the built-in viewing functionality of the report toolbar, nor does
it automatically handle the report interactivity that URL access provides.

For more information about the Reporting Services SOAP API, see Reporting Services Web Service.

In the majority of cases, URL access and SOAP calls are both required to meet your reporting needs. SOAP is used when initially
connecting to the report server database and presenting the available list of reports in a user interface and URL access is used to
actually access and navigate individual reports.

For an example of combining URL access and the Web service to provide integrated reporting, see RSExplorer Sample Windows
Application.

See Also

Integrating Reporting Services into Applications

Integrating Reporting Services Using SOAP

Integrating Reporting Services Using URL Access

Programming Reference

Reporting Services Programming

Reporting Services - Reporting Services Programming

Integrating Reporting Services Using URL Access
With URL access, you access reports through a report server URL. A URL request enables you to access a specific report server as
well as the reports, resources, and other items in the report server database. You can also customize the report viewing and
navigation experience for your users. The query string of the URL contains device information settings as well as report
parameters targeted at your report and the chosen rendering output. The way the report server handles URL requests depends on
the parameters, parameter prefixes, and type of item that you are accessing through the URL.

You can use URL access to embed hyperlinks to reports and other report server items in the applications that you develop,
whether in a Windows or Web environment.

Note The topics in the section provide you with some basic ideas for integration. You can use the information to
begin to design and develop your own Reporting Services integration scenarios.

The following table describes the topics in this section.

Topic Description
Using URL Access from a Web Application Describes how to use URL access to

integrate Reporting Services into a Web
environment.

Using URL Access from a Windows
Application

Describes how to use URL access to
integrate Reporting Services into a Win32
environment.

See Also

Integrating Reporting Services into Applications

URL Access

Reporting Services - Reporting Services Programming

Using URL Access from a Web Application
Using URL Access from a Web Application

URL access in Reporting Services is specifically designed to enable access to individual reports over a network. This type of access
is best for integrating report viewing and navigation into a custom Web application. You can use the following integration
scenarios with URL access and Web applications:

Address a URL to a specific report server from a Web site or portal.
Use a form POST method and pass query string parameters to a report server URL using form fields.

URL Access Through Direct Addressing

The most straightforward method of URL access is direct addressing: a user or application simply directs a URL address to a
report server. The user or application can also supply parameters to the URL that can affect the appearance of the report or
resource that is being accessed. A URL can target a report server through the address bar of a Web browser, or a URL can be the
source of an IFrame that is part of a larger Web application or portal. You can include hyperlinks to reports on various Web pages
of your portal, as well as target a specific frame for the report or open a new browser window in the process.

In the following example, the hyperlink targets a frame named "main", which might be different from the one that includes the
hyperlink. The hyperlink might be part of Web portal.

<a href="http://server/reportserver?/SampleReports/Territory Sales
Drilldown&rs:Command=Render&rc:LinkTarget=main"
target="main">Click here for the Territory Sales Drilldown sample report

In the previous example, the device information setting LinkTarget is passed with a value of "main" in the query string of the
URL. This ensures that any drillthrough hyperlinks in the report also target the frame named "main".

For more information about device information settings, see Device Information Settings.

URL access through direct addressing is a straightforward approach to accessing the report server through a URL. However, URL
access of this kind has its limitations. Although the HTTP specification does not limit the maximum number of characters in a URL
address, many servers and browsers do. In some cases, a 256-character limit is imposed. To get around this limitation, you can
use POST requests using form submission. With POST requests, the name/value pairs of the query string cannot be directly
modified by a user. In addition, the name/value pairs of the query string are not part of the URL, thus enabling you to provide
much longer and more complex parameter lists. For more information, see "URL Access Through a Form POST Method" later in
this topic.

Note Internet Explorer has a maximum URL length of 2,083 characters. This limit applies to both POST and GET
request URLs. POST, however, is not limited by the size of the URL for submitting name/value pairs as part of a form,
because they are transferred in the header and not the URL.

For an example of an IFrame that uses direct URL addressing to access a report server, see ReportViewer Sample ASP.NET Server
Control

URL Access Through a Form POST Method

When a user requests data from a report server using URL addressing, the HTTP request uses the GET method. This is equivalent
to any form submission where METHOD="GET". Moreover, the user typically sees the URL for the report server (for example, on
the address line of the browser), so the user may be able to view or modify the actual URL query string (the part of the URL that
follows the ? character). The user might also note the particular URL request and report server parameters for later use. In
addition, URL requests or form submissions that use METHOD="GET" are limited by the maximum number of characters that a
server or Web browser can process.

By contrast, with forms submission using METHOD="POST" and input fields, an application can make report server URL access
requests that are more "hidden" from users and cannot be modified from the current form. In addition, the length of the URL for
submitting name/value pairs as part of the form is unlimited, because the name/value pairs are transferred in the header and not
the URL. The following sample HTML demonstrates the use of a form that you can use to target a report server with a specific URL
and pass query string parameters as part of the form's input fields.

<FORM id="frmRender" action="http://server/reportserver?/SampleReports/Territory Sales
Drilldown"
 method="post" target="_self">

 <INPUT type="hidden" name="rs:Command" value="Render">
 <INPUT type="hidden" name="rc:LinkTarget" value="main">
 <INPUT type="hidden" name="rs:Format" value="HTML4.0">
 <INPUT type="submit" value="Button">
</FORM>

In the previous example, if a user clicks the button on the form, the report server returns an HTML-rendered report targeted at the
current frame. A comparable URL access string might look like the following:

http://server/reportserver?/SampleReports/Territory Sales
Drilldown&rs:Command=Render&rc:LinkTarget=main&rs:Format=HTML4.0

See Also

Integrating Reporting Services into Applications

Integrating Reporting Services Using URL Access

Report Server URL Access from a Windows Application

URL Access

Reporting Services - Reporting Services Programming

Using URL Access from a Windows Application
Using URL Access from a Windows Application

Although URL access to a report server is optimized for a Web environment, you can also use URL access to embed Reporting
Services into your Windows applications. However, URL access that involves Windows Forms still requires the use of Web
browser technology. You can use the following integration scenarios with URL access and Windows Forms:

Launch a predefined or user-defined report from a Windows Form by starting Internet Explorer programmatically.
Use a Web browser control on a Windows Form to display a report.

Starting Internet Explorer from a Windows Form

You can use the Process class of the System.Diagnostics namespace to access a process that is running on a computer. The
Process class is a useful .NET Framework construct for starting, stopping, controlling, and monitoring applications. To view a
specific report in your report server database, you can launch the IExplore process, passing in the URL to the report. The
following code example can be used to start Internet Explorer, passing a specific report URL when the user clicks a button on a
Windows Form:

Visual Basic

Private Sub viewReportButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles viewReportButton.Click
 ' Build the URL access string based on values supplied by a user
 Dim url As String = serverUrlTextBox.Text + "?" & reportPathTextBox.Text & _
 "&rs:Command=Render" & "&rs:Format=HTML4.0"

 ' If the user does not activate a toolbar check box,
 ' turn the toolbar off in the HTML Viewer
 If toolbarCheckBox.Checked = False Then
 url += "&rc:Toolbar=False"
 End If
 ' load report in the Web browser
 Try
 System.Diagnostics.Process.Start("IExplore", url)
 Catch
 MessageBox.Show("The system could not launch the specified report using Internet
Explorer.", _
 "An error has occurred", MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
End Sub 'viewReportButton_Click

C#

// Sample click event for a Button control on a Windows Form
private void viewReportButton_Click(object sender, System.EventArgs e)
{
 // Build the URL access string based on values supplied by a user
 string url = serverUrlTextBox.Text + "?" + reportPathTextBox.Text +
 "&rs:Command=Render" + "&rs:Format=HTML4.0";

 // If the user does not check the toolbar check box,
 // turn the toolbar off in the HTML Viewer
 if (toolbarCheckBox.Checked == false)
 url += "&rc:Toolbar=False";

 // load report in the Web browser
 try
 {
 System.Diagnostics.Process.Start("IExplore", url);
 }

 catch (Exception)
 {
 MessageBox.Show(
 "The system could not launch the specified report using Internet Explorer.",
 "An error has occurred", MessageBoxButtons.OK, MessageBoxIcon.Error);
 }

}

For more information about the specific syntax of a report server URL access string, see URL Access Syntax.

Embedding a Browser Control on a Windows Form

If you do not want to launch your report to an external Web browser for viewing, you can embed a Web browser seamlessly as
part of your Windows Form using the Web Browser control. Although not natively available in the .NET Framework, you can
include the Web Browser control with any .NET Windows application through interop marshalling. The Web Browser control is
part of the Internet Controls Library (shdocvw.dll).

To add the Web Browser control to your Windows Form

1. Create a new Windows Application in either Visual C# .NET or Visual Basic .NET.
2. Add the Web Browser control to your toolbox. To do this, click Add/Remove Toolbox Items on the Tools menu.

The Customize Toolbar dialog box opens.

3. In the Customize Toolbar dialog box, click the COM Components tab, place a check mark beside Microsoft Web
Browser, and then click OK.

The Web browser control labeled Microsoft Web Browser is added to your toolbox.

4. Drag the Web browser control onto the design surface of your Windows Form.

The Web browser control named axWebBrowser1 is added to the Form.

You direct the Web browser to a URL by calling its Navigate method. You can therefore assign a specific URL access string to
your Web browser control at run-time using the following code:

Visual Basic

Dim url As String = "http://localhost/reportserver?/SampleReports/Company
Sales&rs:Command=Render"
axWebBrowser1.Navigate(url)

C#

Object optional = null;
string url = "http://localhost/reportserver?/SampleReports/Company
Sales&rs:Command=Render";
axWebBrowser1.Navigate(url, ref optional, ref optional, ref optional, ref optional);

See Also

Integrating Reporting Services into Applications

Integrating Reporting Services Using SOAP

Integrating Reporting Services Using URL Access

URL Access

Reporting Services - Reporting Services Programming

Integrating Reporting Services Using SOAP
You can access reports through the use of a report server URL. However, URL requests are not sufficient for enabling users to
access the management and administrative functionality of the report server. For management and server administration, you
need to build your custom applications using the Reporting Services SOAP API, also known as the Reporting Services Web
service. By using the SOAP API you have access to almost 100 different API functions as well as the complete set of rendering and
navigational functionality of URL access. The SOAP API does not give you access to the HTML Viewer and toolbar when viewing
and navigating a specific report; however, with the functionality of the SOAP API, you could develop your own, custom toolbars
for report navigation.

Note The topics in the section provide you with some basic ideas for integration. You can use the information here to
begin to design and develop your own Reporting Services integration scenarios.

The following table describes the topics in this section.

Topic Description
Using the SOAP API in a Windows
Application

Describes how to use the SOAP API to
integrate Reporting Services into a Web
environment.

Using the SOAP API in a Web Application Describes how to use the SOAP API to
integrate Reporting Services into a Win32
environment.

See Also

Integrating Reporting Services into Applications

Building Applications Using the Web Service and the .NET Framework

Reporting Services - Reporting Services Programming

Using the SOAP API in a Windows Application
Using the SOAP API in a Windows Application

You can access the full functionality of the report server through the Reporting Services SOAP API. The SOAP API is a Web service
and, as such, can be easily accessed to provide enterprise reporting features to your custom business applications. You can access
the Web service in a Windows application simply by developing specialized code that makes calls to the service. Using the .NET
Framework, you can generate a proxy class that exposes the properties and methods of the Web service and enables you to use a
familiar infrastructure and tools to build business applications built on Reporting Services technology.

Integrating Report Management Functionality Using Windows Forms

Unlike URL access, the SOAP API exposes the complete set of management functions that are available through the report server.
This means that the entire administrative functionality of Report Manager, the Reporting Services Web administration tool, is
available to developers through SOAP. As such, you can develop a complete management and administration tool using Windows
Forms. For example, in your Windows application, you might want to enable your users to retrieve the contents of the report
server namespace. To do this, you could use the Web service method ListChildren to list all the items in the report server
database and then use a Listview, Treeview, or Combobox control to display those items to your users. The following Web service
code might be used to retrieve the current list of available reports in a user's My Reports folder when a user clicks a button on a
form:

Visual Basic

' Button click event that retrieves a list of reports from
' the My Reports folder and displays them in a combo box
Private Sub listReportsButton_Click(sender As Object, e As System.EventArgs)
 ' Create a new Web service object and set credentials
 ' to Windows Authentication
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Return the list of items in My Reports
 Dim items As CatalogItem() = rs.ListChildren("/My Reports", False)

 Dim ci As CatalogItem
 For Each ci In items
 ' If the item is a report, add it to
 ' a combo box
 If ci.Type = ItemTypeEnum.Report Then
 catalogComboBox.Items.Add(ci.Name)
 End If
 Next ci
End Sub 'listReportsButton_Click

C#

// Button click event that retrieves a list of reports from
// the My Reports folder and displays them in a combo box
private void listReportsButton_Click(object sender, System.EventArgs e)
{
 // Create a new Web service object and set credentials
 // to Windows Authentication
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Return the list of items in My Reports
 CatalogItem[] items = rs.ListChildren("/My Reports", false);

 foreach (CatalogItem ci in items)
 {
 // If the item is a report, add it to
 // a combo box
 if (ci.Type == ItemTypeEnum.Report)
 catalogComboBox.Items.Add(ci.Name);
 }
}

From there, you might enable users to select the report from the Combobox and preview the report on the form either using a

Web browser control or an image control.

Enabling Report Viewing and Navigation Using Windows Forms

You can use the SOAP API to render reports to any of the supported rendering formats using the Render method. There are slight
disadvantages to enabling report viewing and navigation through SOAP:

You cannot take advantage of the built-in functionality of the report toolbar that is included with the HTML Viewer through
URL access.
If you render to HTML, you must separately render any images or resources as additional streams using the RenderStream
method.
There is a slight performance advantage to rendering reports using URL access over using the SOAP API.

However, the Render method of the SOAP API can be used to render reports and save them to various output formats
programmatically. This is an advantage over URL access, which requires user interaction. When you render a report using the
SOAP API Render method, you can render to any of the supported output formats. One technique for including rendered reports
on a Windows Form using SOAP is to render the report to an image and then set the source of a picture box control to that image.
The following code might be used to enable previewing of the first page of a report on a Windows Form:

Visual Basic

Private Sub previewButton_Click(sender As Object, e As System.EventArgs)
 ' Create the proxy object and set credentials to
 ' Windows Authentication
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim result() As Byte
 Dim streamIDs() As String
 Dim optionalString As String = Nothing
 Dim optionalParams As ParameterValue() = Nothing
 Dim optionalWarnings As Warning() = Nothing

 ' Render the first page of the report
 result = rs.Render("/SampleReports/Product Catalog", "IMAGE", Nothing, _
 "<DeviceInfo><OutputFormat>EMF</OutputFormat><StartPage>1</StartPage>
</DeviceInfo>", _
 Nothing, Nothing, Nothing, optionalString, optionalString, optionalParams,
optionalWarnings, streamIDs)

 ' Retrieve the number of pages of the report.
 ' This is useful if you want to render additional
 ' pages other than page 1.
 Dim numberOfPages As Integer = streamIDs.Length + 1

 ' Create a memory stream of the rendered report
 Dim stream As New MemoryStream(result)

 ' Set the report size to the picture box and
 ' set the image source of the picture box to the report.
 ' It is a good idea to size the picture box
 ' to dimensions typical of the size of your report pages
 previewPictureBox.SizeMode = PictureBoxSizeMode.StretchImage
 previewPictureBox.Image = Image.FromStream(stream)
End Sub ' previewButton_Click

C#

private void previewButton_Click(object sender, System.EventArgs e)
{
 // Create the proxy object and set credentials to
 // Windows Authentication
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 byte[] result;
 string[] streamIDs;
 string optionalString = null;
 ParameterValue[] optionalParams = null;
 Warning[] optionalWarnings = null;

 // Render the first page of the report
 result = rs.Render("/SampleReports/Product Catalog", "IMAGE", null,
 "<DeviceInfo><OutputFormat>EMF</OutputFormat><StartPage>1</StartPage>
</DeviceInfo>",
 null, null, null, out optionalString, out optionalString, out optionalParams,
 out optionalWarnings, out streamIDs);

 // Retrieve the number of pages of the report.
 // This is useful if you want to render additional
 // pages other than page 1.
 int numberOfPages = streamIDs.Length + 1;

 // Create a memory stream of the rendered report
 MemoryStream stream = new MemoryStream(result);

 // Set the report size to the picture box and
 // set the image source of the picture box to the report.
 // It is a good idea to size the picture box
 // to dimensions typical of the size of your report pages
 previewPictureBox.SizeMode = PictureBoxSizeMode.StretchImage;
 previewPictureBox.Image = Image.FromStream(stream);
}

In the above example, the report is rendered to enhanced meta file (EMF) format using the device information setting
OutputFormat of the Image rendering extension. It is then converted from a byte array to a MemoryStream object. From there,
the Image property of the picture box is set to the report image to display. The number of pages in the report is also stored so
that it can be used later for report page navigation.

Other integration possibilities include adding functionality for adding and removing items from the report server database,
setting item security, modifying report server database items, managing scheduling and delivery, and more.

See Also

Building Applications Using the Web Service and the .NET Framework

Integrating Reporting Services into Applications

Render Method

RenderStream Method

Using the SOAP API in a Web Application

Using the SOAP API in a Windows Application

Reporting Services - Reporting Services Programming

Using the SOAP API in a Web Application
Using the SOAP API in a Web Application

You can access the full functionality of the report server through the Reporting Services SOAP API. Because it's a Web service, the
SOAP API can be easily accessed to provide enterprise reporting features to your custom business applications. You access the
Web service from a Web application in much the same way that you access the SOAP API from a Windows application. You
develop specialized code that makes calls to the service. Using the .NET Framework, you can generate a proxy class that exposes
the properties and methods of the Web service and enables you to use a familiar infrastructure and tools to build business
applications on Reporting Services technology.

The first step in configuring your Web application is to enable impersonation from the Web service client. With impersonation,
ASP.NET applications can execute with the identity of the client on whose behalf they are operating. Here you rely on Internet
Information Services (IIS) to authenticate the user and either pass an authenticated token to the ASP.NET application or, if unable
to authenticate the user, pass an unauthenticated token. In either case, the ASP.NET application impersonates whichever token is
received if impersonation is enabled. You can enable impersonation on the client, by modifying the Web.config file of the client
application as follows:

<!-- Web.config file. -->
<identity impersonate="true"/>

Note Impersonation is disabled by default.

For more information about ASP.NET impersonation, see this Microsoft Web site

Once you have enabled impersonation, you might render a report to a Web page using the following Visual Basic code:

Visual Basic

' Create Web proxy object and set credentials
Dim rs As New ReportingService
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

' Render the report as an HTML4.0 fragment using the Web service
Dim results As [Byte]()
results = rs.Render("/SampleReports/Company Sales", "HTML4.0", Nothing, _
 <DeviceInfo><HTMLFragment>True</HTMLFragment></DeviceInfo>, Nothing, _
 Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing)

' Write the results to the current Web page
Response.BinaryWrite(results)

You can also use your Web application to manage a report server and its contents. Report Manager, included with Reporting
Services, is an example of a Web application that is completely built using ASP.NET and the Reporting Services SOAP API; you
could add the report management functionality of Report Manager to your custom Web applications. For example, you might
want to return a list of available reports in the report server database and display them in a ASP.NET Listbox control for your
users to choose from. The following code connects to the report server database and returns a list of items in the report server
database. The available reports are then added to a Listbox control, which displays the path of each report:

Visual Basic

Private Sub Page_Load(sender As Object, e As System.EventArgs)
 ' Create a Web service proxy object and set credentials
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Return a list of catalog items in the report server database
 Dim items As CatalogItem() = rs.ListChildren("/", True)

 ' For each report, display the path of the report in a Listbox
 Dim ci As CatalogItem
 For Each ci In items
 If ci.Type = ItemTypeEnum.Report Then
 catalogListBox.Items.Add(ci.Path)
 End If
 Next ci
End Sub ' Page_Load

http://go.microsoft.com/fwlink/?linkid=21572

C#

private void Page_Load(object sender, System.EventArgs e)
{
 // Create a Web service proxy object and set credentials
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Return a list of catalog items in the report server database
 CatalogItem[] items = rs.ListChildren("/", true);

 // For each report, display the path of the report in a Listbox
 foreach(CatalogItem ci in items)
 {
 if (ci.Type == ItemTypeEnum.Report)
 catalogListBox.Items.Add(ci.Path);
 }
}

Reporting Services report management functionality is just as easily accessed from a Web application as from a Windows
application. From a Web application, you can add and remove items from the report server database, set item security, modify
report server database items, manage scheduling and delivery, and more.

See Also

Building Applications Using the Web Service and the .NET Framework

Integrating Reporting Services into Applications

Report Manager

Using the SOAP API in a Web Application

Using the SOAP API in a Windows Application

Reporting Services - Reporting Services Programming

Reporting Services Web Service
The Reporting Services Web service is an Extensible Markup Language (XML) Web service with a Simple Object Access Protocol
(SOAP) API. You can use the Web service to add the functionality of Reporting Services to your business applications.

The following table describes the topics in this section.

Topic Description
Introducing the Web Service Provides an overview of the Reporting

Services Web Service.
Web Service Features Describes Reporting Services Web service

features and methods.
The Role of SOAP in Reporting Services Provides an overview of SOAP and how it

is used in the Reporting Services Web
service.

Accessing the SOAP API Describes the Web Service Description
Language (WSDL) and provides a URL for
accessing the Reporting Services WSDL
file.

User Requirements for Web Service
Development

Describes the software, hardware, and
background knowledge requirements for
accessing the Reporting Services Web
service.

Building Applications Using the Web
Service and the .NET Framework

Contains information about developing
applications and Web services that call the
Reporting Services SOAP API.

Scripting with the rs Utility and the Web
Service

Provides an overview of the Reporting
Services scripting environment.

See Also

Introducing Reporting Services Programming

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Introducing the Web Service
Microsoft® SQL Server™ Reporting Services provides a single entry point to the full functionality of the report server: the
Reporting Services Web service. The Web service uses Simple Object Access Protocol (SOAP) over HTTP and acts as a
communications interface between client programs and the report server. The Web service and its methods expose the
functionality of the report server and allow you to create custom tools for any part of the report life cycle, from management to
execution.

There are three primary ways to develop Reporting Services applications based on the Web service. You can:

Develop applications using Visual Studio .NET and the .NET Framework SDK. For more information about using the .NET
Framework to build Web service applications, see Building Applications Using the Web Service and the .NET Framework.
Develop applications using the rs utility (RS.exe) tool, the Reporting Services script environment. With Reporting Services
and Visual Basic scripts, you can run any of the Reporting Services Web service operations. For more information about
scripting in Reporting Services, see Scripting with the rs Utility and the Web Service.
Develop applications using any SOAP-enabled set of development tools. For more information, see The Role of SOAP in
Reporting Services.

Programming Diagram

See Also

Introducing Reporting Services Programming

Reporting Services Web Service

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Web Service Features
The Reporting Services Web service encompasses several categories of methods that are based on component features. These
methods are members of the ReportingService class, which is generated through a proxy class tool such as wsdl.exe that ships
with the Microsoft .NET Framework SDK. For more information about the Reporting Services Web service and the .NET
Framework, see Building Applications Using the Web Service and the .NET Framework.

The following table describes the topics in this section.

Topic Description
Report Server Namespace Management
Methods

Describes methods that you can use to
manage the report server database.
Specifically you can manage folders and
resources and set item properties.

Authorization Methods Describes methods that you can use to
manage tasks, roles, and policies.

Data Sources and Connection Methods Describes methods you can use to set and
manage data source connection and
credential information for reports.

Report Parameters Methods Describes methods that you can use to set
and retrieve parameters for reports.

Rendering and Execution Methods Describes methods that you can use to
manage report execution, rendering, and
caching.

Report History Methods Describes methods that you can use to
create and manage report history
snapshots.

Scheduling Methods Describes methods that you can use to
create and manage shared schedules that
are used by the report server.

Subscription and Delivery Methods Describes methods that you can use to
create and manage subscriptions and
report delivery.

Linked Reports Methods Describes methods that you can use to
create and manage linked reports.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Reporting Services Web Service Library

ReportingService Class

Reporting Services - Reporting Services Programming

Report Server Namespace Management Methods
Report Server Namespace Management Methods

You can use these methods to manage the report server database. Specifically you can manage reports, folders, and resources.

CancelBatch cancels a batch that was initiated by a call to the CreateBatch method.
CancelJob cancels execution of a job.
CreateBatch creates a batch that executes multiple methods within a single transaction.
CreateFolder adds a folder to the report server database.
CreateReport adds a new report to the report server database.
CreateResource adds a new resource to the report server database.
DeleteItem removes an item from the report server database.
ExecuteBatch executes all methods associated with a batch within the scope of a single transaction.
FindItems returns the items that match the search criteria specified in a report server database search.
FireEvent triggers an event based on the supplied parameters.
GetItemType retrieves the type of an item in the report server database, if the item exists.
GetProperties returns the values of one or more properties on an item in the report server database.
GetReportDefinition returns the report definition of a report.
GetResourceContents returns the contents of a specified resource.
GetSystemProperties returns one or more system properties.
ListChildren returns a list of report server database items that are located under the specified item.
ListEvents returns a list of event extensions as they appear in the report server configuration file.
ListJobs returns a list of jobs running on the report server.
ListExtensions returns a list of extensions that are configured for a given extension type.
MoveItem moves or renames an item.
SetProperties sets one or more properties of an item in the report server database.
SetReportDefinition sets the report definition for a report in the report server database.
SetResourceContents specifies the content of a resource.
SetSystemProperties sets one or more system properties.
ValidateExtensionSettings Validates extension settings.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Authorization Methods
Authorization Methods

You can use these methods to manage tasks, roles, and policies.

CreateRole adds a new role to the report server database.
DeleteRole deletes a role from the report server database.
GetPermissions returns the user permissions that are associated with a particular item in the report server database.
GetPolicies returns the policies that are associated with a particular item in the report server database.
GetRoleProperties returns role meta data properties and a collection of associated tasks.
GetSystemPermissions returns the user's system permissions.
GetSystemPolicies returns the system policies, including groups and roles with which they are associated.
InheritParentSecurity deletes the policies associated with a particular item in the report server database and sets the security
policies for the item to those of its parent.
ListRoles returns the names and descriptions of roles that are managed by the report server.
ListSecureMethods returns a list of Simple Object Access Protocol (SOAP) methods that require a secure connection when
invoked. The SecureConnectionLevel setting of the report server is used to determine which methods are returned.
ListSystemRoles returns the names and descriptions of system roles.
ListSystemTasks returns the names and descriptions of system tasks.
ListTasks returns the names and descriptions of tasks that are managed by the report server.
SetPolicies sets the policies that are associated with a particular item in the report server database.
SetRoleProperties sets role metadata properties and associates a set of tasks with a role.
SetSystemPolicies sets the system policy that defines groups and their associated roles.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Data Sources and Connection Methods
Data Sources and Connection Methods

You can use these methods to set and manage data source connections and credentials.

CreateDataSource creates a new data source in the report server database.
DisableDataSource disables a data source that is enabled.
EnableDataSource enables a data source that is disabled.
GetDataSourceContents returns the contents of a data source.
GetReportDataSourcePrompts returns the prompt strings for each data source that is associated with a report.
GetReportDataSources returns the values of properties that are associated with the data sources of a report.
ListReportsUsingDataSource returns a list of reports that are associated with a data source in the report server database.
SetDataSourceContents sets the contents of a data source.
SetReportDataSources sets the properties that are associated with the data sources of a report.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Report Parameters Methods
Report Parameters Methods

You can use these methods to set and retrieve parameters for reports.

GetReportParameters returns the parameters for a report.
SetReportParameters sets report parameter properties for a specified report.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Rendering and Execution Methods
Rendering and Execution Methods

You can use these methods to manage report execution, rendering and caching.

FlushCache removes an individual report from the cache.
GetCacheOptions returns the cache configuration for a report and the settings that determine when the cached copy of the
report expires.
GetExecutionOptions returns the execution options and associated settings for an individual report.
GetRenderResource retrieves the contents of a resource.
Render processes the specified report and renders it in a specified format.
RenderStream returns a stream associated with a rendered report.
SetCacheOptions configures a report for caching and provides settings that specify when the cached copy of the report
expires.
SetExecutionOptions sets the execution options and associated execution properties for an individual report.
UpdateReportExecutionSnapshot generates a snapshot for a report.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Report History Methods
Report History Methods

You can use these methods to create and manage report history snapshots.

CreateReportHistorySnapshot generates a report history snapshot of a specified report.
DeleteReportHistorySnapshot deletes a report history snapshot for a given report.
GetReportHistoryLimit returns the report history snapshot limit for a specified report.
GetReportHistoryOptions returns the report history snapshot option setting and properties generated for a report.
ListReportHistory returns a list of individual report history snapshots that are associated with a report.
SetReportHistoryLimit specifies how many snapshots of a report the report server retains before deleting them from the
report server database.
SetReportHistoryOptions sets the property of the report that specifies when a report history snapshot is created.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Scheduling Methods
Scheduling Methods

You can use these methods to create and manage shared schedules utilized by the report server.

CreateSchedule creates a new shared schedule.
DeleteSchedule deletes a shared schedule based on a specific schedule ID.
GetScheduleProperties returns the values of properties of a shared schedule.
ListScheduledReports returns a list of reports that are associated with a shared schedule.
ListSchedules returns a list of all shared schedules.
PauseSchedule pauses the execution of a given schedule.
ResumeSchedule resumes a shared schedule that has been paused.
SetScheduleProperties sets the value of properties of a shared schedule.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Subscription and Delivery Methods
Subscription and Delivery Methods

You can use these methods to create and manage subscriptions and delivery of reports.

CreateDataDrivenSubscription creates a data-driven subscription for a specified report.
GetDataDrivenSubscriptionProperties returns the properties for a data-driven subscription.
CreateSubscription adds a subscription item to the report server database.
DeleteSubscription deletes a subscription item from the report server database.
GetSubscriptionProperties returns the properties of a subscription item.
ListSubscriptions returns a list of subscriptions that have been created by users of the report server.
PrepareQuery returns a data set containing the fields retrieved by the delivery query for a data-driven subscription.
SetDataDrivenSubscriptionProperties sets the values of properties of a data-driven subscription.
SetSubscriptionProperties sets the values of properties of a subscription.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Linked Reports Methods
Linked Reports Methods

You can use these methods to create and manage linked reports in a report server.

CreateLinkedReport adds a new linked report to the report server database.
GetReportLink returns the name of the report that is used for the report definition of the specified linked report.
ListLinkedReports returns a list of the reports that are linked to a specified report.
SetReportLink specifies the report that is used for the report definition of a linked report.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

Web Service Features

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

The Role of SOAP in Reporting Services
The Reporting Services Web Service uses Simple Object Access Protocol (SOAP) messaging to send text-based commands over a
network. These commands take the form of XML text that is sent over the World Wide Web using HTTP. By using SOAP as its
communication protocol, the Reporting Services Web service allows applications and components to exchange data with the
report server using an open and widely accepted infrastructure. The SOAP standard is defined at http://www.w3.org/TR/SOAP.

Any client application can act as a SOAP client as long as it is SOAP-aware and can send SOAP requests. Report Manager is one
such SOAP client. It provides an interface to the report server database in which all reports and report-related content is stored.
End users can use the application to browse through and manage reports and folders in the report server namespace. Report
Manager is built on the Reporting Services Web service infrastructure.

A report server acts as a SOAP server, a SOAP-aware service that can accept requests from SOAP clients and create appropriate
responses. The server handles the requests and sends encoded responses back to the client.

SOAP messages in Reporting Services take many different forms, depending on the type of request made by the client. The
following example represents a simple SOAP client request to remove an item from the report server database:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <DeleteItem xmlns="http://www.microsoft.com/sql/ReportingServer">
 <item>/Samples/Report1</item>
 </DeleteItem>
 </soap:Body>
</soap:Envelope>

The SOAP itself requires that messages be put into an envelope, with the bulk of the message inside a Body element. In this
example, the body contains a call to the DeleteItem method, which takes a string parameter representing the path of the item to
delete. You can create a .NET client proxy class that encapsulates all SOAP operations into methods. The following C# method
represents the SOAP example given earlier:

public void DeleteItem(string item);

The response from the server might look like the following:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <DeleteItemResponse xmlns="http://www.microsoft.com/sql/ReportingServer" />
 </soap:Body>
</soap:Envelope>

The DeleteItem method as part of a proxy class has no return value, so an empty response is returned.

See Also

Accessing the SOAP API

Report Manager

Report Server

Reporting Services Web Service

http://go.microsoft.com/fwlink?linkid=6025

Reporting Services - Reporting Services Programming

Accessing the SOAP API
The Reporting Services Web service is an XML Web service with a Simple Object Access Protocol (SOAP) API that consists of
methods and a set of complex type objects that you can use to access the complete functionality of Reporting Services. To call the
service, you must reference the Reporting Services Web Services Description Language (WSDL).

Referencing the Reporting Services WSDL

To call a Web service successfully, you must know how to access the service, what operations the service supports, what
parameters the service expects, and what the service returns. WSDL provides this information in an XML document that can be
read or processed by a computer.

WSDL can be consumed by development kits that support SOAP and Web services, such as the Microsoft .NET Framework SDK.

The following examples shows the format of the URL to the Reporting Services WSDL file:

http://server/reportserver/ReportService.asmx

The following table describes each element in the URL.

URL element Description
server The name of the server on which the report server is

deployed.
reportserver The name of the folder that contains the XML Web

service. This is configured during setup.
ReportService.asmx The Uniform Resource Indicator (URI) to the Reporting

Services Web service..

For more information about the WSDL format, see the World Wide Web Consortium (W3C) WSDL specification at
http://www.w3.org/TR/wsdl.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

http://go.microsoft.com/fwlink?linkid=6864

Reporting Services - Reporting Services Programming

User Requirements for Web Service Development
Developing applications using the Reporting Services Web service requires:

A deployment computer that has Internet Information Services (IIS) 5.0 or higher, a network connection, the capability to
send requests using SOAP 1.1 and HTTP 1.1 protocols, and the capability to parse XML.
Microsoft Internet Explorer 5.5 or later installed on a computer with an Internet connection to access the report server.
Microsoft Visual Studio .NET or the Microsoft .NET Framework SDK installed on a computer if you want to develop and
deploy Reporting Services applications using the Microsoft .NET Framework.
An in-depth understanding of Microsoft Reporting Services features and capabilities.
A firm understanding of SOAP and XML Web services.
Development experience in a .NET Framework language such as C# or Visual Basic, if you plan to use the .NET Framework
as your development platform.

See Also

Report Manager

Reporting Services Web Service

Reporting Services - Reporting Services Programming

Building Applications Using the Web Service and the .NET
Framework
With the Microsoft® .NET Framework, you can use familiar programming constructs, such as methods, primitive types, and user-
defined complex types to work with Web services. The .NET Framework contains an infrastructure and tools you can use to create
Web service clients that can call any World Wide Web Consortium (W3C) standards-compliant Web service.

A Reporting Services Web service client is any component or application that communicates with a report server using Simple
Object Access Protocol (SOAP) messages.

To create a Reporting Services Web service client using the .NET Framework, follow these basic steps:

1. Create a proxy class for the Web service.

To do this, add a proxy class or Web reference to your development project, reference the proxy class in your client code,
and create an instance of that proxy. For more information, see Creating the Web Service Proxy.

2. Authenticate the Web service client with the report server.

To do this, set the service object's Credentials property equal to the credentials of an authenticated user on the report
server. For more information, see Web Service Authentication.

3. Call the method of the proxy class corresponding to the Web service operation that you want to invoke.

To do this, call a Web service method and supply the necessary arguments. For more information about the Web service
methods, see Web Service Features. For more information about calling the methods, see Calling Web Service Methods.

For a step-by-step walkthrough explaining how to access the Reporting Services Web service, see Walkthrough – Accessing the
Reporting Services Web Service Using Visual Basic or Visual C#.

The following table describes the topics in this section.

Topic Description
Creating the Web Service Proxy Describes the ways to add a proxy class to

your development project using Microsoft
.NET Framework.

Web Service Authentication Describes how calls to the Reporting
Services Web service are authenticated.

Calling Web Service Methods Describes how to use the SOAP API to call
Web service methods in Visual Studio
.NET.

Setting the Url Property of the Web
Service

Explains how to programmatically direct
your Web service proxy to a new server
URL after you have created your Web
reference.

Supplying Web Service Method
Arguments

Describes how to invoke a Web service
method and supply method arguments.

Omitting Values for Optional Web Service
Objects

Describes how to omit values for optional
Web service objects.

Using Secure Web Service Methods Describes the SecureConnectionLevel
setting and the way in which it affects the
use of the Reporting Services Simple
Object Access Protocol (SOAP) API.

Device Information Settings Describes the device information settings
that are used to render reports to different
formats.

Reporting Services E-mail Delivery
Settings

Describes the settings that are used to
deliver reports using report server e-mail.

Using Reporting Services SOAP Headers Explains the use of SOAP headers in
Reporting Services.

Exception Handling in Reporting Services Provides information about the way in
which Reporting Services handles errors.

See Also

Reporting Services Web Service

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Creating the Web Service Proxy
Creating the Web Service Proxy

A client and a Web service can communicate using SOAP messages, which encapsulate the input and output parameters as XML.
A proxy class maps parameters to XML elements and then sends the SOAP messages over a network. In this way, the proxy class
frees you from having to communicate with the Web service at the SOAP level and allows you to invoke Web service methods in
the any development environment that supports SOAP and Web service proxies.

There are two ways to add a proxy class to your development project using the Microsoft .NET Framework: with the WSDL tool in
the .NET Framework, and by adding a Web reference in Microsoft Visual Studio® .NET. The following sections discuss this subject
in further detail.

Adding the Proxy Using the WSDL Tool

The Microsoft .NET Framework SDK includes the Web Services Description Language tool (Wsdl.exe), a utility that you can use to
generate a Web service proxy for use in the.NET Framework development environment. The most common way to create a client
proxy in any of the .NET languages that support Web services (currently C# and Visual Basic® .NET) is to use the WSDL tool.

To add a proxy class to your project using Wsdl.exe

1. From a command prompt, use Wsdl.exe to create a proxy class, specifying (at a minimum) the URL to the Reporting Services
Web service.

For example, the following command prompt statement specifies a URL:

wsdl /language:CS http://myserver/reportserver/reportservice.asmx

The WSDL tool accepts a number of command-prompt arguments for generating a proxy. The preceding example specifies
the .NET language C# and generates a C# file called ReportingService.cs. If the example had specified Visual Basic, the
example would have generated a proxy file with the name ReportingService.vb. This file is created in the directory from
which you run the command.

2. Compile the proxy class into an assembly file (with the extension .dll) and reference it in your project, or add the class as a
project item.

Note When you add a proxy class to your project manually, you need to add a reference to
System.Web.Services.dll. If you add the proxy using a Web reference in Visual Studio .NET, the reference is
automatically created for you. For more information, see "Adding the Proxy Using a Web Reference in Visual
Studio .NET" later in this topic.

After you add the proxy class as an item to your project, the associated file appears in Solution Explorer.

3. To call the service programmatically, create an instance of the proxy class.

The following code example shows the syntax for creating an instance of the ReportingService proxy class in a project:

Visual Basic

Dim service As New ReportingService()

C#

ReportingService service = new ReportingService();

For more information about the Wsdl.exe tool, including its full syntax, see "Web Services Description Language Tool" in the
Microsoft .NET Framework SDK documentation. For a full explanation of Web service proxies, see "Creating an XML Web Service
Proxy" in the Microsoft .NET Framework SDK documentation.

Adding the Proxy Using a Web Reference in Visual Studio .NET

A Web reference enables a project to consume one or more Web services. Visual Studio .NET enables users to add Web service
references to projects by following a few simple steps.

To add a Web reference to a project

1. In Solution Explorer, select the project that will consume the Web service.
2. On the Project menu, click Add Web Reference.

The Add Web Reference dialog box opens.

3. In the URL field, enter the complete path to the Reporting Services Web service.

A simplified URL for the Reporting Services Web service might look like this:

http://myserver/reportserver/reportservice.asmx

The URL contains the domain in which the Reporting Services Web service is deployed, the name of the folder containing
the service, and the name of the discovery file for the service. For a complete description of the different URL elements, see
Accessing the SOAP API.

A description of the methods and properties provided by the Web service appears in the Browser pane on the left.

Note For more information about the items associated with the Reporting Services Web service, see Web
Service Features.

4. Verify that your project can use the Reporting Services Web service, and that you have appropriate permission to access the
report server.

Security Note When you open a project for editing that includes a Web reference, a local proxy file for the Web
service consumed runs in a process of devenv.exe started by a trusted user: yourself. Opening projects or
components in the integrated development environment (IDE) can execute code on your local machine.

5. In the Web reference name field, enter a name that you will use in your code to access the Reporting Services Web service
programmatically.

6. Select the Add Reference button to create a reference in your application to the Web service.

The new reference appears in Solution Explorer under the Web References node for the active project, named as specified
in the Web reference name field.

7. In Solution Explorer, expand the Web References folder to note the namespace for the Web reference classes that are
available to the items in your project.

After adding a Web reference to your project, the associated files are displayed in a folder within the Web References folder
of Solution Explorer.

After you add the Web reference, use the following syntax to create an instance of the proxy class:

Visual Basic

Dim rs As New myNamespace.myReferenceName.ReportingService()

C#

myNamespace.myReferenceName.ReportingService rs = new
myNamespace.myReferenceName.ReportingService();

You can also add a using (Import in Visual Basic) directive to the Reporting Services Web service reference. If you use this
directive, you do not need to fully qualify the types in the namespace. To do this, add the following code to your file:

Visual Basic

Import myNamespace.myReferenceName

C#

using myNamespace.myReferenceName;

See Also

Reporting Services Web Service

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Web Service Authentication
Web Service Authentication

You can use either Windows Authentication or Basic authentication to authenticate the calls made to the Reporting Services Web
service. Any client that makes SOAP requests to the report server must implement the client portion of one of the supported
authentication protocols. If you are developing using the Microsoft .NET Framework, you can use the managed code HTTP classes
to implement authentication. Using these APIs makes it easy to send authentication information along with the SOAP requests.

If you do not have appropriate credentials before you make a call to the Web service, the call fails. At run time, you can pass
credentials to the Web service by setting the Credentials property of the client-side object that represents the Web service before
you call its methods.

Note The authentication method that you use depends on the security settings for your report server virtual directory
in Internet Information Services (IIS). For more information about virtual directory security, see the IIS documentation.

The following sections contain example code that sends credentials using the .NET Framework.

Windows Authentication

The following code passes Windows credentials to the Web service:

Visual Basic

Dim rs As New ReportingService()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

C#

ReportingService rs = new ReportingService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

Basic Authentication

The following code passes Basic credentials to the Web service:

Visual Basic

Dim rs As New ReportingService()
rs.Credentials = New System.Net.NetworkCredential("username", "password", "domain")

C#

ReportingService service = new ReportingService();
service.Credentials = new System.Net.NetworkCredential("username", "password", "domain");

The credentials must be set before you call any of the methods of the Reporting Services Web service. If you do not set the
credentials, you receive the error code an HTTP 401 Error: Access Denied. You must authenticate the service before you use it, but
after you have set the credentials, you do not need to set them again as long as you continue to use the same service variable
(such as rs).

Security Note When possible, use Windows Authentication. If Windows Authentication is not available, prompt users
to enter their credentials at run time. Avoid storing credentials in a file. If you must store credentials, you should
encrypt them using the Microsoft Win32® CryptoAPI. For more information about the Win32 CryptoAPI, see this
Microsoft Web site.

Custom Authentication

Reporting Services includes a programming API that provides developers with the opportunity to design and develop custom
authentication extensions, known as security extensions. For more information, see Implementing a Security Extension.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service

http://go.microsoft.com/fwlink/?linkid=9504

Reporting Services - Reporting Services Programming

Calling Web Service Methods
Calling Web Service Methods

When you use a .NET Framework proxy class to call Web service operations, you do so by using the methods of that class. These
methods respond like any other method of a class in the .NET Framework library. All Web service methods have public access and
require you to supply the appropriate number of arguments and argument types. Once you have created an instance of the proxy
class in your development project, you can call the methods to perform reporting operations via the report server. The following
C# code illustrates the use of the ListChildren method of the ReportingService proxy class. The code is used to make a
recursive call to the Web service that returns an array of CatalogItem[] objects that contains a list of all items in the report server
database:

Visual Basic

Dim rs As New ReportingService()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
Dim items As CatalogItem() = rs.ListChildren("/", True)

C#

ReportingService rs = new ReportingService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
CatalogItem[] items = rs.ListChildren("/", true);

See Also

Building Applications Using the Web Service and the .NET Framework

Introducing the Web Service

ListChildren Method

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Setting the Url Property of the Web Service
Setting the Url Property of the Web Service

At any time in your Microsoft .NET Framework applications, you can modify the base URL of the Reporting Services Web service
to which your application is currently directed. To do this, simply set the Url property of the service object. For example:

Visual Basic

Dim rs As New ReportingService()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
rs.Url = "http://myserver/reportserver/reportservice.asmx"

C#

ReportingService service = new ReportingService();
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
rs.Url = "http://myserver/reportserver/reportservice.asmx";

For more information about creating the initial Web service proxy, see Creating the Web Service Proxy.

The following example retrieves a report definition from one report server and uses that definition to create an identical report on
a different report server:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials
 ' Set the base Web service URL of the source server
 rs.Url = "http://mySourceServer/reportserver/reportservice.asmx"

 Dim reportName As String = "/SampleReports/Company Sales"
 Dim reportDefinition As Byte() = Nothing

 Try
 ' Get the report definition of a report on a source server
 reportDefinition = rs.GetReportDefinition(reportName)
 ' Set the base Web service URL of the destination server
 rs.Url = "http://myDestinationServer/reportserver/reportservice.asmx"
 ' Create a copy of the report on the destination server
 rs.CreateReport("Company Sales Copy", "/", False, reportDefinition, Nothing)
 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
 // Set the base Web service URL of the source server
 rs.Url = "http://mySourceServer/reportserver/reportservice.asmx";

 string reportName = "/SampleReports/Company Sales";
 byte[] reportDefinition = null;

 try

 {
 reportDefinition = rs.GetReportDefinition(reportName);
 // Set the base Web service URL of the destination server
 rs.Url = "http://myDestinationServer/reportserver/reportservice.asmx";
 // Create a copy of the report on the destination server
 rs.CreateReport("Company Sales Copy", "/", false, reportDefinition, null);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

Building Applications Using the Web Service and the .NET Framework

CreateReport

GetReportDefinition

Reporting Services Web Service

Reporting Services - Reporting Services Programming

Supplying Web Service Method Arguments
Supplying Web Service Method Arguments

A Reporting Services Web service method sends a request to the service at a given URL using SOAP over HTTP. The service
receives the request, processes it, and then returns a response. These requests and responses are in the form of XML documents.
In some cases, a Web service method can have optional input parameters. Even if an input parameter for a Web service method is
optional, you must still set the parameter value to null (Nothing in Visual Basic). Setting this parameter value sets the element
value for that parameter in the SOAP request to null. If you use a .NET Framework proxy class, you must supply a null in place of
the optional parameter instead of omitting it.

The following example uses the CreateFolder method to create a new folder named Product Sales in the Sales folder. By
supplying a null value for the folder properties, no user-specific properties are supplied for the folder:

// C#
rs.CreateFolder("Product Sales", "/Sales", null);

Complex Data Types

The core service class of the Reporting Services Web Service is ReportingService, which you use to invoke the SOAP operations
or Web methods of the proxy class. To support this class and its methods, Reporting Services includes user-defined, complex data
types that are specific to the input and output parameters of the Web service methods. These complex data types are part of the
generated proxy class, which you can use when developing in the Microsoft .NET Framework environment.

When you generate a proxy class, the complex data types that are defined in the WSDL file are represented by the classes of the
proxy, which include properties that correspond to the various SOAP elements of the complex data type. Sequences of these data
types become arrays of objects that you can enumerate through in your code. This eliminates the need to work directly with the
XML structures sent in SOAP messages. The .NET Framework handles that translation for you.

See Also

Building Applications Using the Web Service and the .NET Framework

CreateFolder Method

Reporting Services Web Service

Reporting Services Web Service Library

ReportingService Class

Reporting Services - Reporting Services Programming

Omitting Values for Optional Web Service Objects
Omitting Values for Optional Web Service Objects

Properties of several of the Reporting Services Web service complex types have an accompanying property known as the
Specified property. The name of the property consists of the original property name with the word "Specified" appended to it. The
presence of this property indicates that a value for the original property may sometimes be omitted. This is a direct result of the
translation from the Web Service Description Language (WSDL) to a .NET Framework proxy class. For example, the Web service
property Enabled of the complex type DataSourceDefinition has an accompanying property named EnabledSpecified. If you
are building an application and do not want to set a value for the Enabled property, you do not have to supply a value for
Enabled; the default value of true is used. However, you still need to set EnabledSpecified to false. If you supply a value for the
Enabled property, you need to set EnabledSpecified equal to true. This is the case for writable properties. For read-only
properties, you do not need to take any action.

Important Failure to specify a property using the above-mentioned technique can result in unpredictable Web
service behavior.

The data types that usually require you to handle the additional Specified property are Boolean, DateTime, and Enumeration.

For an example, see CreateDataSource Method.

See Also

Building Applications Using the Web Service and the .NET Framework

DataSourceDefinition Class

Enabled Property

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Using Secure Web Service Methods
Using Secure Web Service Methods

Certain Reporting Services Web service methods may require a secure connection when you invoke them. The methods that
require a secure connection are determined by the SecureConnectionLevel setting in the RSReportServer.config file. The value
of the setting is an integer value with a valid range of 0 to 3. The following table lists the values.

Level Description Web Methods Requiring SSL
0 Least secure. The report server

does not check for a secure
connection when Web service
methods are invoked.
However, all calls to the Web
service can still be made to the
report server over a secure
connection.

None.

1 Minimally secure. All Web
service calls that are made over
an insecure connection and
which might pass sensitive
data such as user credentials
are rejected. However, this
setting does not guarantee
security. It is still possible for
sensitive data sent by the client
to the report server to be
exposed before the report
server handles the request and
rejects it.

Render (when the credential setting
for the report that is being rendered
is set to prompt), CreateDataSource,
GetDataSourceContents,
SetDataSourceContents,
GetReportDataSources,
SetReportDataSources, CreateReport,
GetReportDefintion,
SetReportDefinition,
CreateDataDrivenSubscription,
SetDataDrivenSubscriptionProperties,
GetDataDrivenSubscriptionProperties,
and PrepareQuery.

2 Secure. All rendered reports
and all Web service calls
require a secure connection.
This includes all calls to the
Render method and requests
for rendered reports made
through URL access. Using this
secure connection level,
subscription delivery can
include only URLs to reports.
Rendered reports cannot be
embedded or included in a
delivery.

All Level 1 methods, Render (all calls),
and RenderStream.

3 Most secure. All calls made to
the Reporting Services SOAP
API require a secure
connection.

All.

Security Note The SecureConnectionLevel setting can only determine how the report server handles Web service
requests. The report server does not control sensitive data that is sent by client applications. You should ensure that
client applications do not transmit sensitive data over an insecure connection. If possible, use Secure Sockets Layer
(SSL) encryption in all cases where user credentials and sensitive report data are sent over a network.

You can use the ListSecureMethods method of the Web service to return a list of Web service methods that require a secure
connection according to the current configuration of the report server. In an SSL scenario, you should evaluate the list of methods
that are returned by ListSecureMethods and change the scheme name of the Web service URI to https or http depending on the
method being called.

See Also

Building Applications Using the Web Service and the .NET Framework

ListSecureMethods Method

Reporting Services Web Service

Reporting Services - Reporting Services Programming

Reporting Services Properties
Reporting Services Properties

The report server defines a set of system properties that are global to the report server and a set of item properties that are
associated with an individual item stored in the report server database. Properties defined by the report server cannot be deleted,
and in some cases they are read-only. An application can extend system properties and item properties by adding additional user-
defined properties to the system and item properties. The following Web service methods retrieve and set Reporting Services
properties:

GetProperties returns the values of one or more properties on an item in the report server database.
GetSystemProperties returns one or more system properties.
SetProperties sets one or more properties of an item in the report server database.
SetSystemProperties sets one or more system properties.

The following topics discuss Reporting Services properties in greater detail.

Topic Description
Report Server Item Properties Describes the item-specific properties in

Reporting Services
Report Server System Properties Describes the system-specific properties

in Reporting Services

See Also

Building Applications Using the Web Service and the .NET Framework

GetProperties Method

GetSystemProperties Method

Reporting Services Web Service

Reporting Services Web Service Library

SetProperties Method

SetSystemProperties Method

Reporting Services - Reporting Services Programming

Report Server Item Properties
Report Server Item Properties

Item properties are properties that are specific to items in the report server database. Such items include reports, linked reports,
folders, resources, and data sources.

The following item property names are reserved. You cannot create user-defined properties of the same name. You can read or
modify many of these properties using the Web service methods.

Item Properties

The following properties apply to all items in the report server database.

Property Description
CreatedBy The name of the user who originally

added the item to the report server
database.

CreationDate The date and time the item was added to
the report server database.

Description The description of the item.
Hidden A value that indicates whether the item is

visible and available to users.
ID The ID of an item in the report server

database.
ModifiedBy The name of the user who last modified

the item in the report server database.
ModifiedDate The date and time the user last modified

the item.
Name The name of an item in the report server

database.
Path The full path name of the item. The path of

any item in the report server database has
a maximum character length of 260.

Size The size, in bytes, of an item in the report
server database.

Type The type of an item in the report server
database.

VirtualPath The virtual path to an item in the report
server database. The value of the
VirtualPath property is the path under
which a user expects to see the item. For
example, a report called report1, which is
located in the user's personal My Reports
folder, has a virtual path of /My Reports.
The actual path of the item is
/Users/username/My Reports.

Folder Properties

In addition to the item properties listed previously, the following property applies to folders in the report server database.

Property Description
Reserved A value returned by the GetProperties

method for folders that are reserved by
the report server. Reserved folders include
Users, My Reports, and /. Reserved folders
cannot be modified or removed.

Report Properties

In addition to the item properties listed previously, the following properties apply to reports in the report server database.

Property Description
Language The dominant language of the information

presented in a report. The value is the RFC
1766 language code such as "en-us" for
US English. If a value is not specified in the
Style element associated with the Body
element in the report definition, the
default value is the language of the report
server.

ReportProcessingTimeout The time-out, in minutes, for an individual
report. If this value is set, the report server
attempts to stop the processing of a
report when the specified time has
elapsed. Valid values are -1 through
2,147,483,647. If the value is -1, the report
does not time out during processing. If the
value is 0, the value of the system
property ReportProcessingTimeout is
used for the report processing time-out.
The default value is 0. For more
information, see Report Server System
Properties.

ExecutionDate The date and time at which a report
execution snapshot was last created for a
report.

CanRunUnattended A value that indicates whether a report
can be run unattended on a schedule. If
this property is set to true, default values
for report parameters are defined and
data source credentials are stored with the
report, or credential retrieval option is set
to None. If this property is set to false,
the prerequisites for running a report
unattended are not met.

HasParameterDefaultValues A value that indicates whether the report
has valid default values set for all report
parameters. The value is also true if a
report does not have report parameters. If
this property set to false, one or more
report parameters do not have a valid
default value.

HasDataSourceCredentials A value that indicates that the credential
retrieval option set for all data sources
associated with the report is either None
or Store. If this property is set to a value
of false, a credential retrieval option set
for one of the data sources associated
with the report is either Integrated or
Prompt.

IsSnapshotExecution A value that indicates whether the report
is a snapshot execution.

HasScheduleReadyDataSources A value that indicates whether the data
sources of a report are configured to
support scheduled execution. If this
property is set to a value of false, A user
cannot subscribe to the report.

Resource Properties

In addition to the item properties listed previously, the following property applies to resources in the report server database.

Property Description
MimeType The MIME type of a resource in the report

server database.

See Also

Building Applications Using the Web Service and the .NET Framework

CatalogItem Class

GetProperties Method

ListChildren Method

Reporting Services Web Service

Reporting Services Web Service Library

SetProperties Method

Reporting Services - Reporting Services Programming

Report Server System Properties
Report Server System Properties

The following system property names are reserved. You cannot create user-defined properties of the same name. You can read or
modify many of these properties using the Web service methods.

Property Description
SiteName The name of the report server site

displayed on the user interface. The
default value is Microsoft Report Server.
This property can be an empty string. The
maximum length is 8,000 characters.

SystemSnapshotLimit The maximum number of snapshots that
are stored for a report. Valid values are -1
through 2,147,483,647. If the value is –1,
there is no snapshot limit.

SystemReportTimeout The default report processing timeout
value, in minutes, for all reports managed
in the report server namespace. This value
can be overridden at the report level. If
this property is set, the report server
attempts to stop the processing of a
report when the specified time has
expired. Valid values are -1 through
2,147,483,647. If the value is -1, reports in
the namespace do not time out during
processing. The default value is 5.

UseSessionCookies Indicates whether the report server should
use session cookies when communicating
with client browsers. The default value is
true.

SessionTimeout The length of time, in minutes, that a
session remains active. The default value
is 10.

EnableMyReports Indicates whether the My Reports feature
is enabled. A value of true indicates that
the feature is enabled.

MyReportsRole The name of the role used when creating
security policies on user's My Reports
folders. The default value is My Reports
Role.

EnableExecutionLogging Indicates whether report execution
logging is enabled. The default value is
true.

ExecutionLogDaysKept The number of days to keep report
execution information in the execution log.
Valid values for this property include 0
through 2,147,483,647. If the value is 0
entries are not deleted from the Execution
Log table. The default value is 90.

See Also

Building Applications Using the Web Service and the .NET Framework

GetSystemProperties Method

Reporting Services Web Service

Reporting Services Web Service Library

SetSystemProperties Method

Reporting Services - Reporting Services Programming

Device Information Settings
Device Information Settings

Device information settings in Reporting Services are used to pass rendering parameters to a rendering extension. Those in the
Reporting Services Web service are passed as a DeviceInfo XML element and processed by the report server. Those using URL
access are passed as URL parameters. Because device information settings have default values, they are considered optional
arguments in the rendering process. However, you can use device information settings to customize rendering and to override
the default values that are supplied by the server.

Passing Device Information Using the Render Method

You can pass device information settings to a rendering extension when rendering a report using the Web service method
Render. The following XML string can be passed to the Render method to create an HTML fragment when rendering to HTML.

<DeviceInfo>
 <Toolbar>False</Toolbar>
 <HTMLFragment>True</HTMLFragment>
</DeviceInfo>

When a report is rendered as an HTML fragment, the content of the report is contained within a TABLE element without the use of
an HTML or BODY element. You can use the HTML fragment to incorporate the report in an existing HTML document. For more
information about the Render method, see Render Method. For more information about device information settings for HTML
output, see HTML Device Information Settings.

Passing Device Information Using URL Access

You can also pass device information settings through URL access. The following URL access string can be passed to the report
server to create an HTML fragment.

http://servername/reportserver?/SampleReports/Sales Order
Detail&rs:Command=Render&rc:Format=HTML4.0&rc:Toolbar=False&rc:HTMLFragment=True

For more information, see Specifying Device Information Settings on a URL.

The following topics provide a detailed list of the device information settings that are used with the available rendering extensions
in Reporting Services.

Topic Description
CSV Device Information Settings Describes the device information settings

that are associated with CSV rendering
output.

Excel Device Information Settings Describes the device information settings
that are associated with Excel rendering
output.

HTML Device Information Settings Describes the device information settings
that are associated with HTML rendering
output.

IMAGE Device Information Settings Describes the device information settings
that are associated with IMAGE rendering
output.

MHTML Device Information Settings Describes the device information settings
that are associated with MHTML rendering
output.

PDF Device Information Settings Describes the device information settings
that are associated with PDF rendering
output.

XML Device Information Settings Describes the device information settings
that are associated with XML rendering
output.

See Also

Reporting Services Web Service Library

ReportingService.Render Method

Reporting Services - Reporting Services Programming

CSV Device Information Settings
CSV Device Information Settings

The device information settings for the CSV rendering extension allow delimiters and qualifiers to be changed and line break
handling to be specified. The extension of the file can also be submitted, as well as the encoding and inclusion of header rows in
the output. Because delimiters are likely to be special characters, you should encode them in a CDATA section, if the settings are
written as XML.

The following table lists the device information settings for rendering in Text format.

Setting Value
Encoding One of the character encoding schemas:

ASCII, UTF-7, UTF-8, or Unicode. The
default value is Unicode.

Extension The file extension to put on the result. The
default value is .CSV.

FieldDelimiter The delimiter string to put in the result.
The default value is a comma (,).

NoHeader Indicates whether the header row is
excluded from the output. The default
value is false.

Qualifier The qualifier string to put around results
that contain the field delimiter or record
delimiter. If the results contain the
qualifier, the qualifier is repeated. The
Qualifier setting must be different from
the FieldDelimiter and RecordDelimiter
settings. The default value is a quotation
mark (").

RecordDelimiter The record delimiter to put at the end of
each record. The default value is <cr><lf>.

SuppressLineBreaks Indicates whether line breaks are removed
from the data included in the output. The
default value is false. If the value is true,
the FieldDelimiter, RecordDelimiter,
and Qualifier settings cannot be a space
character

See Also

Device Information Settings

Reporting Services Web Service Library

Render Method

Reporting Services - Reporting Services Programming

Excel Device Information Settings
Excel Device Information Settings

The following table lists the device information settings for rendering in Excel format.

Setting Value
OmitDocumentMap Indicates whether to omit the document

map for reports that support it. The
default value is false.

OmitFormulas Indicates whether to omit formulas from
the rendered report. The default value is
false.

RemoveSpace Indicates whether to omit rows or
columns that do not contain data and are
smaller than the given size. Use this
setting to remove extra rows or columns
that do not contain report items. You must
include an integer or decimal value
followed by "in" (for example, 0.5in). The
default value is 0.125in.

See Also

Device Information Settings

Reporting Services Web Service Library

ReportingService.Render Method

Reporting Services - Reporting Services Programming

HTML Device Information Settings
HTML Device Information Settings

The following table lists the device information settings for rendering in HTML format.

Setting Value
BookmarkID The bookmark ID to jump to in the report.
DocMap Indicates whether to show or hide the report

document map. The default value of this
parameter is true.

DocMapID The document map ID to scroll to in the report.
EndFind The number of the last page to use in the search.

For example, a value of 5 indicates that the last
page to be searched is page 5 of the report. The
default value is the number of the current page.
Use this setting in conjunction with the
StartFind setting.

FallbackPage The number of the page to display if a search or
a document map selection fails. The default value
is the number of the current page.

FindString The text to search for in the report. The default
value of this parameter is an empty string.

GetImage Gets a particular icon for the HTML Viewer user
interface.

HTMLFragment Indicates whether an HTML fragment is created
in place of a full HTML document. An HTML
fragment includes the report content in a TABLE
element and omits the HTML and BODY
elements. The default value is false. If you are
rendering to HTML using the Render method of
the SOAP API, you need to set this device
information to true if you are rendering a report
with images. Rendering using SOAP with the
HTMLFragment property set to true creates
URLs containing session information that can be
used to properly request images. The images
must be uploaded resources in the report server
database.

Icon The icon of a particular rendering extension.
JavaScript Indicates whether JavaScript is supported in the

rendered report.
LinkTarget The target for hyperlinks in the report. You can

target a window or frame by providing the name
of the window, like LinkTarget=window_name,
or you can target a new window using
LinkTarget=_blank. Other valid target names
include _self, _parent, and _top.

Parameters Indicates whether to show or hide the
parameters area of the toolbar. If you set this
parameter to a value of true, the parameters
area of the toolbar is displayed. The default value
of this parameter is true.

Section The page number of the report to render. A value
of 0 indicates that all sections of the report are
rendered. The default value is 1.

StartFind The number of the page on which to begin the
search. The default value is the number of the
current page. Use this setting in conjunction with
the EndFind setting.

StreamRoot The path used for prefixing the value of the src
attribute of the IMG element in the HTML report
returned by the report server. By default, the
report server provides the path. You can use this
setting to specify a root path for the images in a
report (for example,
http://myserver/resources/companyimages).

StyleStream Indicates whether styles and scripts are created
as a separate stream instead of in the document.
The default value is false.

Toolbar Indicates whether to show or hide the toolbar. If
the value of this parameter is false, all remaining
options (except the document map) are ignored.
If you omit this parameter, the toolbar is
automatically displayed for rendering formats
that support it. The default of this parameter is
true. The Report Viewer toolbar is rendered
when you use URL access to render a report. The
toolbar is not rendered through the SOAP API.
However, the Toolbar device information setting
affects the way that the report is displayed when
using the SOAP method Render. If the value of
this parameter is true when using SOAP to
render to HTML, only the first section of the
report is rendered. If the value is false, the entire
HTML report is rendered as a single HTML page.

Type The short name of the browser type (for
example, "IE5") as defined in browscap.ini.

Zoom The report zoom value as an integer percentage
or a string constant. Standard string values
include Page Width and Whole Page. This
parameter is ignored by versions of Microsoft
Internet Explorer earlier than Internet Explorer
5.0 and all non-Microsoft browsers. The default
value of this parameter is 100.

See Also

Device Information Settings

Render Method

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Image Device Information Settings
Image Device Information Settings

The following table lists the device information settings for rendering in IMAGE format.

Setting Value
ColorDepth The pixel depth of the color range

supported by the image output. Valid
values are 1, 4, 8, 24, and 32. The default
value is 24. ColorDepth is only supported
for TIFF rendering and is otherwise
ignored by the report server for other
image output formats.

Columns The number of columns to set for the
report. This value overrides the report's
original settings.

ColumnSpacing The column spacing to set for the report.
This value overrides the report's original
settings.

DpiX The resolution of the output device in x-
direction. The default value is 96.

DpiY The resolution of the output device in y-
direction. The default value is 96.

EndPage The last page of the report to render. The
default value is the value for StartPage.

MarginBottom The bottom margin value, in inches, to set
for the report. You must include an integer
or decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginLeft The left margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginRight The right margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginTop The top margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

OutputFormat One of the Graphics Device Interface (GDI)
supported output formats: BMP, EMF, GIF,
JPEG, PNG, or TIFF.

PageHeight The page height, in inches, to set for the
report. You must include an integer or
decimal value followed by "in" (for
example, 11in). This value overrides the
report's original settings.

PageWidth The page width, in inches, to set for the
report. You must include an integer or
decimal value followed by "in" (for
example, 8.5in). This value overrides the
report's original settings.

StartPage The first page of the report to render. A
value of 0 indicates that all pages are
rendered. The default value is 1.

See Also

Device Information Settings

Render Method

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MHTML Device Information Settings
MHTML Device Information Settings

The following table lists the device information settings for rendering in Web archive (MHTML) format.

Setting Value
JavaScript Indicates whether JavaScript is supported

in the rendered report.
MHTML Fragment Indicates whether an MHTML fragment is

created in place of a full MHTML
document. An MHTML fragment includes
the report content in a TABLE element and
omits the HTML and BODY elements. The
default value is false.

See Also

Device Information Settings

Reporting Services Web Service Library

Render Method

Reporting Services - Reporting Services Programming

PDF Device Information Settings
PDF Device Information Settings

The following table lists the device information settings for rendering in PDF format.

Setting Value
Columns The number of columns to set for the

report. This value overrides the report's
original settings.

ColumnSpacing The column spacing to set for the report.
This value overrides the report's original
settings.

DpiX The resolution of the output device in x-
direction. The default value is 300.

DpiY The resolution of the output device in y-
direction. The default value is 300.

EndPage The last page of the report to render. The
default value is the value for StartPage.

MarginBottom The bottom margin value, in inches, to set
for the report. You must include an integer
or decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginLeft The left margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginRight The right margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

MarginTop The top margin value, in inches, to set for
the report. You must include an integer or
decimal value followed by "in" (for
example, 1in). This value overrides the
report's original settings.

PageHeight The page height, in inches, to set for the
report. You must include an integer or
decimal value followed by "in" (for
example, 11in). This value overrides the
report's original settings.

PageWidth The page width, in inches, to set for the
report. You must include an integer or
decimal value followed by "in" (for
example, 8.5in). This value overrides the
report's original settings.

StartPage The first page of the report to render. A
value of 0 indicates that all pages are
rendered. The default value is 1.

See Also

Device Information Settings

Reporting Services Web Service Library

Render Method

Reporting Services - Reporting Services Programming

XML Device Information Settings
XML Device Information Settings

The following table lists the device information settings for rendering in XML format.

Setting Value
XSLT The path in the report server namespace

of an XSLT to apply to the XML file, for
example /Transforms/myxslt. The xsl file
must be a published resource on the
report server and you must access it
through a report server item path. The
value of this setting is applied after any
XSLT that is specified in the report. If the
XSLT setting is applied, the OmitSchema
setting is ignored.

MIMEType The Multipurpose Internet Mail Extensions
(MIME) type of the XML file.

UseFormattedValues Indicates whether to render the formatted
value of a text box when generating the
XML data. A value of false indicates that
the underlying value of the text box is
used.

Indented Indicates whether to generate indented
XML. The default value of false generates
non-indented, compressed XML.

OmitSchema Indicates whether to omit the schema
name from the XML and to omit an XSD.
The default value is false.

Encoding One of the character encoding schemas:
ASCII, UTF-8, or Unicode. The default value
is UTF-8.

FileExtension The file extension to use for the generated
file.

Schema Indicates whether the XML schema
definition (XSD) is rendered or whether
the actual XML data is rendered. A value of
true indicates that an XSD is rendered.
The default value is false.

See Also

Device Information Settings

Reporting Services Web Service Library

Render Method

Reporting Services - Reporting Services Programming

Reporting Services Delivery Extension Settings
Reporting Services Delivery Extension Settings

Reporting Services includes an e-mail delivery extension and a file share delivery extension. E-mail delivery provides a way to
send a report to individual users or groups through e-mail. File share delivery enables you to automatically send rendered reports
to a file share on your network. You can use either one of the supported delivery extensions with standard subscriptions or data-
driven subscriptions. You pass delivery settings that are specific to the type of delivery extension whenever you call the
CreateSubscripton, CreateDataDrivenSubscription, SetSubscriptionProperties, and
SetDataDrivenSubscriptionProperties methods. To retrieve a list of delivery settings programmatically, use the
GetExtensionSettings method.

Note Delivery extension settings are case-sensitive.

E-Mail Delivery Settings

The following table lists the e-mail delivery settings for subscriptions that use report server e-mail.

Setting Value
TO The e-mail address that appears on the To

line of the e-mail message. Multiple e-mail
addresses are separated by semicolons.
Required.

CC The e-mail address that appears on the Cc
line of the e-mail message. Multiple e-mail
addresses are separated by semicolons.
Optional.

BCC The e-mail address that appears on the
Bcc line of the e-mail message. Multiple e-
mail addresses are separated by
semicolons. Optional.

ReplyTo The e-mail address that appears in the
Reply-To header of the e-mail message.
The value must be a single e-mail address.
Optional.

IncludeReport A value that indicates whether to include
the report in the e-mail delivery. A value
of true indicates that the report is
delivered in the body of the e-mail
message.

RenderFormat The name of the rendering extension to
use to generate the rendered report. The
name must correspond to one of the
visible rendering extensions installed on
the report server. This value is required if
the IncludeReport setting is set to a
value of true.

Priority The priority with which the e-mail
message is sent. Valid values are LOW,
NORMAL, and HIGH. The default value is
NORMAL.

Subject The text in the subject line of the e-mail
message.

Comment The text included in the body of the e-mail
message.

IncludeLink A value that indicates whether to include a
link to the report in the body of the e-mail.

File Share Delivery Settings

The following table lists the file share delivery settings for subscriptions.

Setting Value
FILENAME The name of the file that is saved to disk.
FILEEXTN Indicates whether to include a file

extension for the rendered report. The
value is either true or false.

PATH The folder path or UNC file share path to
which to save the report.

RENDER_FORMAT The format of the report that is saved to
disk.

USERNAME The username required to access the
network resource or disk.

PASSWORD The password required to access the
network resource or disk.

WRITEMODE The write mode to use when accessing the
disk. Valid values are None, Overwrite,
and AutoIncrement.

See Also

CreateDataDrivenSubscription Method

CreateSubscription Method

GetExtensionSettings Method

Reporting Services Web Service Library

SetDataDrivenSubscriptionProperties Method

SetSubscriptionProperties Method

Reporting Services - Reporting Services Programming

Using Reporting Services SOAP Headers
Using Reporting Services SOAP Headers

Communication with a Web service method using SOAP follows a standard format. Part of this format is the data that is encoded
in an XML document. The XML document consists of a root Envelope element, which in turn consists of a required Body element
and an optional Header element. The Body element contains the data specific to the message. The optional Header element can
contain additional information not directly related to the particular message. Each child element of the Header element is called a
SOAP header.

Although the SOAP headers can contain data related to the message, they typically contain information processed by
infrastructure within a Web server.

The Reporting Services Web service defines four classes for use in the SOAP header: BatchHeader, ItemNamespaceHeader,
ServerInfoHeader, and SessionHeader.

The following topics discuss the use of Reporting Services SOAP headers in greater detail.

Topic Description
Batching Methods Describes how to batch multiple

operations in a single transaction using
BatchHeader in Reporting Services.

Identifying Session State Describes how to manage session state in
Reporting Services using SessionHeader.

Setting the Item Namespace for the
GetProperties Method

Describes how to retrieve properties
based on the path of an item or the ID of
an item using the GetProperties method
and the ItemNamespaceHeader SOAP
header.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Batching Methods
Batching Methods

The use of SOAP headers in Reporting Services enables you to include multiple Web service methods in a single operation.
Methods run within the scope of a single database transaction, in the order in which they are called.

Rollback is one advantage of using multiple-method batch operations. If an error occurs on any of the method calls while a batch
is running, the report server stops running the batch and rolls back any previous operations. This is an advantage in a case where
a method call that is associated with a batch depends on the successful completion of the other method calls in that batch.

The Web service does not provide locking semantics for multiple-method batch operations. Rows in the report server database
are not locked for updating until the message is sent to the server and the execute command is called.

There are also no concurrency controls to guarantee that the database has not changed since the data was last read. If two clients
modify the same item, the last update succeeds if the parameters are still valid (for example, the item has not been renamed).

The following example calls the CreateFolder method three times and runs these calls as a single batch. If any of the calls to
CreateFolder fail, the entire batch is canceled.

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Sub Main(args() As String)
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim bh As New BatchHeader()

 bh.BatchId = service.CreateBatch()
 rs.BatchHeaderValue = bh1
 rs.CreateFolder("New Folder1", "/", "")
 rs.CreateFolder("New Folder2", "/", "")
 rs.CreateFolder("New Folder3", "/", "")

 Console.WriteLine("Creating folders...")
 rs.BatchHeaderValue = bh1
 rs.ExecuteBatch()
 Console.WriteLine("Folders created successfully.")

 rs.BatchHeaderValue = Nothing
 End Sub
End Class

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 static void Main(string[] args)
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 BatchHeader bh = new BatchHeader();

 bh1.BatchId = service.CreateBatch();
 rs.BatchHeaderValue = bh;
 rs.CreateFolder("New Folder1", "/", "");
 rs.CreateFolder("New Folder2", "/", "");
 rs.CreateFolder("New Folder3", "/", "");

 Console.WriteLine("Creating folders...");
 rs.BatchHeaderValue = bh1;
 rs.ExecuteBatch();

 Console.WriteLine("Folders created successfully.");

 rs.BatchHeaderValue = null;
 }
}

See Also

CancelBatch Method

CreateBatch Method

CreateFolder

Reporting Services Web Service Library

Using Reporting Services SOAP Headers

Reporting Services - Reporting Services Programming

Identifying Session State
Identifying Session State

Hypertext Transfer Protocol (HTTP) is a connectionless and stateless protocol, which means that it does not automatically indicate
whether different requests come from the same client or even whether a single browser instance is still actively viewing a page or
site. Sessions create a logical connection to maintain state between server and client over HTTP. The user-specific information
relevant to a particular session is known as the session state.

Session management is correlating an HTTP request with other previous requests generated from the same session. Without
session management, these requests appear unrelated to the Web service because of the connectionless and stateless nature of
the HTTP protocol.

Reporting Services provides an infrastructure for managing session state. While they are communicating to a report server,
clients use session state to manage report viewing and user navigation to other pages in a report, and to show or hide sections of
a report. A unique session exists for each client application running on a client computer.

In general, the lifetime of a session starts when a user navigates to a browser or client application and selects a report to view
within it. The session ends when the user closes the application, even if the user navigates to and views additional reports before
closing the application.

From a Web service perspective, the lifetime starts when the Web service method Render is called. The session ends when all of
the reports associated with the session have timed out. Applications can use the same session when making multiple requests to
the Web service methods Render and RenderStream.

While a report is in session, the underlying report stored in the report server database can change. For example, the report
definition can change, the report can be deleted or moved, and user permissions can change. If the report is in an active session, it
is not affected by changes made to the underlying report (that is, the report stored in the report server database).

You can also manage a report session using URL access commands. For more information, see Managing Report Sessions on a
URL.

In the following code example, each active session is identified and tracked using the SessionID property of the SOAP header
SessionHeader. The SessionID property contains only valid ASCII characters that are permitted on URLs.

The following example shows the use of the SessionId property for tracking and identifying active sessions:

Visual Basic

Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Try
 Dim result As Byte() = Nothing
 Dim reportPath As String = "/Samples/Employee Sales Summary"
 Dim format As String = "HTML4.0"
 Dim historyID As String = Nothing
 Dim startPage As Integer = 1

 ' Set the device info settings for the rendering format.
 Dim deviceInfo As String = String.Format(" _
 <DeviceInfo><Toolbar>{0}</Toolbar><StartPage>{1}</StartPage></DeviceInfo>",
"False", startPage)

 ' Prepare report parameter.
 Dim parameters(2) As ParameterValue
 parameters(0) = New ParameterValue()
 parameters(0).Name = "EmpID"
 parameters(0).Value = "38"
 parameters(1) = New ParameterValue()
 parameters(1).Name = "ReportMonth"
 parameters(1).Value = "6" ' June
 parameters(2) = New ParameterValue()
 parameters(2).Name = "ReportYear"
 parameters(2).Value = "2004"

 Dim credentials As DataSourceCredentials() = Nothing
 Dim showHideToggle As String = Nothing

 Dim encoding As String
 Dim mimeType As String
 Dim warnings As Warning() = Nothing
 Dim reportHistoryParameters As ParameterValue() = Nothing
 Dim streamIDs As String() = Nothing

 rs.SessionHeaderValue = New SessionHeader()

 ' Make the first call to Render.
 Console.WriteLine("Call to Render.")

 result = rs.Render(reportPath, format, historyID, deviceInfo, parameters,
 credentials, showHideToggle, encoding, mimeType, reportHistoryParameters,
warnings, streamIDs)

 Console.WriteLine("SessionID after call to Render: {0}",
rs.SessionHeaderValue.SessionId)
 Console.WriteLine(("Execution date and time: " +
rs.SessionHeaderValue.ExecutionDateTime))
 Console.WriteLine(("Is new execution: " + rs.SessionHeaderValue.IsNewExecution))

 ' Change device info start page to page two.
 startPage = 2

 ' Set the device info settings for the rendering format.
 deviceInfo = String.Format("<DeviceInfo><Toolbar>{0}</Toolbar><StartPage>{1}
</StartPage></DeviceInfo>",
 "False", startPage)

 ' Make the second call to Render.
 Console.WriteLine("Second call to Render.")

 result = rs.Render(reportPath, format, historyID, deviceInfo, parameters,
 credentials, showHideToggle, encoding, mimeType, reportHistoryParameters,
warnings, streamIDs)

 Console.WriteLine("SessionID after call to Render: {0}",
rs.SessionHeaderValue.SessionId)
 Console.WriteLine(("Execution date and time: " +
rs.SessionHeaderValue.ExecutionDateTime))
 Console.WriteLine(("Is new execution: " + rs.SessionHeaderValue.IsNewExecution))

 Catch e As Exception
 Console.WriteLine((e.Message + ": " + e.StackTrace))
 End Try
End Sub 'Main

C#

static void Main()
{
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 try
 {
 byte[] result = null;
 string reportPath = "/Samples/Employee Sales Summary";
 string format = "HTML4.0";
 string historyID = null;
 int startPage = 1;

 // Set the device info settings for the rendering format.
 string deviceInfo = String.Format(
 @"<DeviceInfo><Toolbar>{0}</Toolbar><StartPage>{1}</StartPage></DeviceInfo>",
"False", startPage);

 // Prepare report parameter.
 ParameterValue[] parameters = new ParameterValue[3];
 parameters[0] = new ParameterValue();
 parameters[0].Name = "EmpID";
 parameters[0].Value = "38";

 parameters[1] = new ParameterValue();
 parameters[1].Name = "ReportMonth";
 parameters[1].Value = "6"; // June
 parameters[2] = new ParameterValue();
 parameters[2].Name = "ReportYear";
 parameters[2].Value = "2004";

 DataSourceCredentials[] credentials = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 Warning[] warnings = null;
 ParameterValue[] reportHistoryParameters = null;
 string[] streamIDs = null;

 rs.SessionHeaderValue = new SessionHeader();

 // Make the first call to Render.
 Console.WriteLine("Call to Render.");

 result = rs.Render(reportPath, format, historyID, deviceInfo, parameters,
 credentials, showHideToggle, out encoding, out mimeType,
 out reportHistoryParameters, out warnings, out streamIDs);

 Console.WriteLine("SessionID after call to Render: {0}",
rs.SessionHeaderValue.SessionId);
 Console.WriteLine("Execution date and time: " +
rs.SessionHeaderValue.ExecutionDateTime);
 Console.WriteLine("Is new execution: " + rs.SessionHeaderValue.IsNewExecution);

 // Change device info start page to page two.
 startPage = 2;

 // Set the device info settings for the rendering format.
 deviceInfo = String.Format(@"<DeviceInfo><Toolbar>{0}</Toolbar><StartPage>{1}
</StartPage></DeviceInfo>", "False", startPage);

 // Make the second call to Render.
 Console.WriteLine("Second call to Render.");

 result = rs.Render(reportPath, format, historyID, deviceInfo, parameters,
 credentials, showHideToggle, out encoding, out mimeType,
 out reportHistoryParameters, out warnings, out streamIDs);

 Console.WriteLine("SessionID after call to Render: {0}",
rs.SessionHeaderValue.SessionId);
 Console.WriteLine("Execution date and time: " +
rs.SessionHeaderValue.ExecutionDateTime);
 Console.WriteLine("Is new execution: " + rs.SessionHeaderValue.IsNewExecution);

 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message + ": " + e.StackTrace);
 }
}

The following output is similar to what you might see as a result of running the preceding code example. The SessionId property
for both calls to the Render method contain the same value. The report itself does not run again when Render is called a second
time:

Call to Render.
SessionID after call to Render: eno4juntb0biaa551x1lu43k
Execution date and time: 2003-02-10T10:38:15
Is new execution: True
Second call to Render.
SessionID after call to Render: eno4juntb0biaa551x1lu43k
Execution date and time: 2003-02-10T10:38:15
Is new execution: False

See Also

Render Method

RenderStream Method

Reporting Services Web Service Library

SessionId Property

Using Reporting Services SOAP Headers

Reporting Services - Reporting Services Programming

Setting the Item Namespace for the GetProperties Method
Setting the Item Namespace for the GetProperties Method

You can use the ItemNamespaceHeader SOAP header in Reporting Services to retrieve item properties based on two different
item identifiers: the full path of the item or the ID of the item.

When you make a call to the GetProperties method, you normally pass as an argument the full path of the item for which you
want to retrieve properties. By using ItemNamespaceHeader, you can set the SOAP header for your method call to enable you
to use GetProperties by passing the ID of the item as an identifier. You can use the following code to retrieve the values for item
properties based on the ID of the item.

Note By default, you do not need to set a value for the ItemNamespaceHeader, if you pass to the GetProperties
method the full path name as the item identifier.

Visual Basic

Imports System
Imports System.Collections

Class Sample
 Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials
 Dim items() As CatalogItem

 Try
 ' Need the ID property of items. Normally, you would already have
 ' this stored somewhere.
 items = rs.ListChildren("/SampleReports", False)

 ' Set the item namespace header to be GUID-based
 rs.ItemNamespaceHeaderValue = New ItemNamespaceHeader()
 rs.ItemNamespaceHeaderValue.ItemNamespace = ItemNamespaceEnum.GUIDBased

 ' Call GetProperties with item ID.
 If Not (items Is Nothing) Then
 Dim item As CatalogItem
 For Each item In items
 Dim properties As [Property]() = rs.GetProperties(item.ID, Nothing)
 Dim property As [Property]
 For Each property In properties
 Console.WriteLine(([property].Name + ": " + [property].Value))
 Next property
 Console.WriteLine()
 Next item
 End If

 Catch e As Exception
 Console.WriteLine((e.Message + ": " + e.StackTrace))
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Collections;
using GetPropertiesApplication.ReportingServices;

class Sample
{
 static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
 CatalogItem[] items;

 try

 {
 // Need the ID property of items. Normally, you would already have
 // this stored somewhere.
 items = rs.ListChildren("/SampleReports", false);

 // Set the item namespace header to be GUID-based
 rs.ItemNamespaceHeaderValue = new ItemNamespaceHeader();
 rs.ItemNamespaceHeaderValue.ItemNamespace = ItemNamespaceEnum.GUIDBased;

 // Call GetProperties with item ID.
 if (items != null)
 {
 foreach(CatalogItem item in items)
 {
 Property[] properties = rs.GetProperties(item.ID, null);
 foreach (Property property in properties)
 {
 Console.WriteLine(property.Name + ": " + property.Value);
 }
 Console.WriteLine();
 }
 }
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See Also

GetProperties Method

ItemNamespaceHeader Class

Reporting Services Web Service Library

Using Reporting Services SOAP Headers

Reporting Services - Reporting Services Programming

Introducing Exception Handling in Reporting Services
Exception Handling in Reporting Services

If your application (that is, your SOAP client) sends a request to a Web service that the service is unable to process, the service
returns a SOAP exception to the client. Handling exceptions thrown by the Reporting Services Web service is an important part of
the applications that you develop, because you can return specific information to users when errors occur. Exception handling can
also help to make the user experience more clear when something unexpected happens in your application.

This section contains specific information about handling exceptions, preventing user input that is not valid, and returning
meaningful error information to users. For general information about exception handling, see "Handling and Throwing
Exceptions" in the Microsoft .NET Framework SDK documentation.

The following table describes the topics in this section.

Topic Description
Introducing Exception Handling in
Reporting Services

Provides an overview of exceptions in
Reporting Services and the role of SOAP
in returning errors from a Web service.

Best Practices for Reporting Services
Exception Handling

Provides recommendations on how to
handle exceptions in Reporting Services.

Reporting Services SoapException Class Describes the SoapException class in
Reporting Services.

See Also

Building Applications Using the Web Service and the .NET Framework

Reporting Services - Reporting Services Programming

Handling Exceptions in Reporting Services
Introducing Exception Handling in Reporting Services

When a Reporting Services SOAP API client request cannot be completed, the report server returns an error rather than the
expected results of the call. When a call cannot complete, an error for the Reporting Services Web service is returned as a SOAP
Fault XML element. The key descriptive element of the fault is the detail element, which includes all of the error information
provided by the report server as well as any additional Web service error information. The key information in the detail element
is the report server error code. Based on the message and error code, you can determine the next appropriate action to take in
your applications. For more information about SOAP faults, see the World Wide Web Consortium (W3C) Web site at
http://www.w3.org/TR/SOAP.

SOAP Faults and the .NET Framework

In the Microsoft .NET Framework, if an error occurs in a client request to the Web service, the report server communicates the
error to the client code that calls the Web service by throwing a SoapException object. The SoapException wraps the
information contained in a SOAP fault. The Detail property of the SoapException maps to the detail element in the SOAP fault.
ASP.NET client applications and applications written using Microsoft Visual Studio® .NET languages should implement the
catching of the SoapException object with a try/catch block and use the Detail property of the SoapException to take
appropriate action. For more information about the SoapException class and the Detail property in Reporting Services, see
Reporting Services SoapException Class. For more information about the SoapException class, see the Microsoft .NET
Framework SDK documentation.

See Also

Detail Property

Exception Handling in Reporting Services

Reporting Services SoapException Class

http://go.microsoft.com/fwlink?linkid=6025

Reporting Services - Reporting Services Programming

Best Practices for Reporting Services Exception Handling
Best Practices for Reporting Services Exception Handling

In developing your applications built on Reporting Services, you can prevent your application from throwing exceptions, or, in the
case when exceptions do occur, provide clear and concise error messages to the user. Presenting clear messages and controlling
program flow helps users obtain the results they expect from your applications. Make sure to deal with all error cases about
which you know, and add adequate exception handling to prevent your applications from ending unexpectedly. An application
that sends requests to the Reporting Services Web service should do the following:

Avoid causing exceptions by preventing as many invalid requests as possible.
Catch exceptions and provide specific error-handling code whenever possible.
Deal with error cases that do not throw exceptions.

The following table describes the topics in this section.

Topic Description
Preventing Invalid Requests Describes techniques for preventing

requests that are not valid from being sent
to the report server.

Using Try/Catch Blocks Describes how to further enhance the
reliability of your application with
try/catch blocks.

Dealing with Warnings and Cases that Do
Not Cause Exceptions

Explains how to handle error cases that do
not result in an exception being thrown by
Reporting Services.

Using the Detail Property to Handle
Specific Errors

Explains how to programmatically handle
specific errors by using the Detail
property of the SoapException object.

See Also

Detail Property

Exception Handling in Reporting Services

Reporting Services SoapException Class

Reporting Services - Reporting Services Programming

Preventing Invalid Requests
Preventing Invalid Requests

You can prevent some types of exceptions from being thrown by analyzing your application flow and ensuring that the requests
being sent to the report server are valid. For example, In applications that enable users to add or update the name of a report, data
source, or other report server item, you should validate the text that a user might enter. You should always check for reserved
characters before sending the request to a report server. This is one technique that is used to prevent exceptions from being
thrown. For this and other cases, use conditional if statements or other logical constructs in your code to alert the user that they
have not met the conditions necessary to send requests to the report server. In the following, simplified C# example, users are
presented with a friendly error message when they attempt to create a report with a name that contains a forward slash (/)
character.

// C#
private void PublishReport()
{
 int index;
 string reservedChar;
 string message;

 // Check the text value of the name text box for "/",
 // a reserved character
 index = nameTextBox.Text.IndexOf(@"/");

 if (index != -1) // The text contains the character
 {
 reservedChar = nameTextBox.Text.Substring(index, 1);
 // Build a user-friendly error message
 message = "The name of the report cannot contain the reserved character " +
 "\"" + reservedChar + "\". " +
 "Please enter a valid name for the report. " +
 "For more information about reserved characters, " +
 "see the help documentation";

 MessageBox.Show(message, "Invalid Input Error");
 }
 else // Publish the report
 {
 Byte[] definition = null;
 Warning[] warnings = null;
 string name = nameTextBox.Text;

 FileStream stream = File.OpenRead("MyReport.rdl");
 definition = new Byte[stream.Length];
 stream.Read(definition, 0, (int) stream.Length);
 stream.Close();
 // Create report with user-defined name
 warnings = rs.CreateReport(name, "/Samples", false, definition, null);
 MessageBox.Show("Report: {0} created successfully", name);
 }
}

You can study the SOAP Exception Errors table to learn about the types of errors that can be prevented before requests are sent to
the report server. For more information about further enhancing the previous example using try/catch blocks, see Using
Try/Catch Blocks.

See Also

Exception Handling in Reporting Services

Reporting Services SoapException Class

Reporting Services - Reporting Services Programming

Using Try/Catch Blocks
Using Try/Catch Blocks

After you limit invalid requests to the report server by adding your own conditional statements to the code that you write, you
should supply adequate exception handling through the use of try/catch blocks. This technique provides another layer of
protection against requests that are not valid. If a request to the report server is encased in a try block and that request causes the
report server to throw an exception, the exception is caught in the catch block, thus preventing your application from ending
unexpectedly. Once the exception is caught, you can use the exception to either instruct the user to do something differently, or
just let the user know, in a friendly way, that an error has occurred. You can then use a finally block to clean up any resources. The
following example uses try/catch blocks to further enhance the reliability of the exception handling code.

// C#
private void PublishReport()
{
 int index;
 string reservedChar;
 string message;

 // Check the text value of the name text box for "/",
 // a reserved character
 index = nameTextBox.Text.IndexOf(@"/");

 if (index != -1) // The text contains the character
 {
 reservedChar = nameTextBox.Text.Substring(index, 1);
 // Build a user-friendly error message
 message = "The name of the report cannot contain the reserved character " +
 "\"" + reservedChar + "\". " +
 "Please enter a valid name for the report. " +
 "For more information about reserved characters, " +
 "consult the online documentation";

 MessageBox.Show(message, "Invalid Input Error");
 }
 else // Publish the report
 {
 Byte[] definition = null;
 Warning[] warnings = null;
 string name = nameTextBox.Text;

 try
 {
 FileStream stream = File.OpenRead("MyReport.rdl");
 definition = new Byte[stream.Length];
 stream.Read(definition, 0, (int) stream.Length);
 stream.Close();
 // Create report with user-defined name
 warnings = rs.CreateReport(name, "/Samples", false, definition, null);
 MessageBox.Show("Report: {0} created successfully", name);
 }

 // Catch expected exceptions beginning with the most specific,
 // moving to the least specific
 catch(IOException ex)
 {
 MessageBox.Show(ex.Message, "File IO Exception");
 }

 catch (SoapException ex)
 {
 // The exception is a SOAP exception, so use
 // the Detail property's Message element.
 MessageBox.Show(ex.Detail["Message"].InnerXml, "SOAP Exception");
 }

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "General Exception");

 }
 }
}

Ideally, you should generate a general exception-handling plan to avoid unnecessary duplication of try/catch blocks.

See Also

Exception Handling in Reporting Services

Reporting Services SoapException Class

Reporting Services - Reporting Services Programming

Dealing with Warnings and Cases that Do Not Cause Exceptions
Dealing with Warnings and Cases that Do Not Cause Exceptions

Some error cases do not result in an exception being thrown by Reporting Services. For example, when you use the
CreateReport method to publish a new report to a report server, any warnings that occur are returned as an array of Warning[]
objects. These warnings should be handled and displayed so that appropriate action can be taken.

Visual Basic

Try
 warnings = rs.CreateReport(name, parentFolder, False, definition, Nothing)

 If Not (warnings Is Nothing) Then
 Dim warning As Warning
 For Each warning In warnings
 Console.WriteLine(warning.Message)
 Next warning
 Else
 Console.WriteLine("Report {0} created successfully with no warnings", name)
 End If

Catch ex As SoapException
 Console.WriteLine(ex.Detail("Message").InnerXml)
End Try

C#

try
{
 warnings = rs.CreateReport(name, parentFolder, false, definition, null);

 if (warnings != null)
 {
 foreach (Warning warning in warnings)
 {
 Console.WriteLine(warning.Message);
 }
 }
 else
 Console.WriteLine("Report {0} created successfully with no warnings", name);
}

catch (SoapException ex)
{
 Console.WriteLine(ex.Detail["Message"].InnerXml);
}

Another way to handle error cases is to evaluate the return values of certain methods. For example, the FindItems method can be
used to search for specific items in the report server database. If no items are found that match the search criteria, a null array of
CatalogItem[] objects is returned. You should evaluate the array, check for null, and let the user know if no items were found.

See Also

CatalogItem Class

CreateReport

Exception Handling in Reporting Services

FindItems

Reporting Services SoapException Class

Warning Class

Reporting Services - Reporting Services Programming

Using the Detail Property to Handle Specific Errors
Using the Detail Property to Handle Specific Errors

To further classify exceptions, Reporting Services returns additional error information in the InnerText property of the child
elements in the SOAP exception's Detail property. Because the Detail property is an XmlNode object, you can access the inner
text of the Message child element using the following code. For more information, see "Detail Property" in the Microsoft .NET
Framework SDK documentation.

Visual Basic

Try
' Code for accessing the report server
Catch ex As SoapException
 ' The exception is a SOAP exception, so use
 ' the Detail property's Message element.
 Console.WriteLine(ex.Detail("Message").InnerXml)
End Try

C#

try
{
 // Code for accessing the report server
}
catch (SoapException ex)
{
 // The exception is a SOAP exception, so use
 // the Detail property's Message element.
 Console.WriteLine(ex.Detail["Message"].InnerXml);
}

The following line of code writes the specific error code being returned in the SOAP Exception to the console.

Visual Basic

Console.WriteLine(ex.Detail("ErrorCode").InnerXml)

C#

Console.WriteLine(ex.Detail["ErrorCode"].InnerXml);

You could also evaluate the error code and perform specific actions.

Visual Basic

Try
' Code for accessing the report server
Catch ex As SoapException
 If ex.Detail("ErrorCode").InnerXml = "rsInvalidItemName" Then
 End If ' Perform an action based on the specific error code
End Try

C#

try
{
 // Code for accessing the report server
}
catch (SoapException ex)
{
 if (ex.Detail["ErrorCode"].InnerXml == "rsInvalidItemName")
 {
 // Perform an action based on the specific error code
 }
}

For a list of all of the available child elements contained in the Detail property, see Detail Property.

See Also

Exception Handling in Reporting Services

Reporting Services SoapException Class

SoapException Errors Table

Reporting Services - Reporting Services Programming

Reporting Services SoapException Class
Reporting Services SoapException Class

You should address specific Reporting Services errors that you know the user might cause. For example, in an application where
you ask the user to create a folder, it might be possible for the user to try to create a folder that already exists. As the developer,
you do not have control over what the user enters in the folder name and path fields of your application, but you do have control
over what the user experience is when someone incidentally tries to create an item that already exists.

To make it easier for the developer to catch specific error conditions, Reporting Services classifies an error code for the exception
and returns the classification of the error using properties from the SoapException class. For more information, see
"SoapException Class" in the Microsoft .NET Framework SDK documentation.

The following table lists the public properties of the SoapException class.

Public property Description
Actor The code that caused the exception. The

value is the URL to the Web service
method.

Detail Application-specific error information. The
value is set by the report server and is in
XML format. For more information, see
Detail Property and Using the Detail
Property to Handle Specific Errors.

HelpLink A URL or URN to a Help file associated
with the error. The value is usually set by
the Web service and it sets a URL to
Microsoft Help and Support. Because
Reporting Services supports multiple help
links for errors that occur, the report
server sets help link information as part of
the Detail property. For more
information, see HelpLink Element.

Message A descriptive, localized message that
describes the error. This text might appear
in the application UI.

See Also

Exception Handling in Reporting Services

SoapException Errors Table

Reporting Services - Reporting Services Programming

Detail Property
Detail Property

The Detail property of the Reporting Services SoapException class has the following XML structure:

Elements

Detail
The top-level element that contains all other error detail elements.

ErrorCode
The Reporting Services-specific error code.

HttpStatus
The HTTP status code.

Message
The error message and the error code assigned by the report server.

HelpLink
The Help link URL to a Web site at which further information about the error can be found. For more information, see HelpLink
Element.

LinkID
Information not available for this release.

ProductName
The name of the product. The default value is Microsoft SQL Server Reporting Services.

ProductVersion
The version of Reporting Services. The maximum length is 15 characters. The format of the version number should be as
follows: 8.00.0xxx.00.

ProductLocaleId
The locale ID or language ID of the application's INTL DLL (for example, 0x41A).

OperatingSystem
The operating system Reporting Services is installed on. Valid values include 0 for operating system independent, 1 for
Windows 2000, and 16 for Windows XP.

CountryLocaleId
The locale ID or language ID of the operating system. For example, the value for the French version of Windows is 0x040c.

MoreInformation
An XML string that contains nested exceptions that occurred while the method ran.

Source
A child element of MoreInformation. The source of the error.

Message
A child element of MoreInformation. The error message of a nested exception. This element includes XML attributes for
ErrorCode and HelpLink.

Warnings
An XML string that contains the warnings returned from report processing.

See Also

Exception Handling in Reporting Services

Reporting Services SoapException Class

Using the Detail Property to Handle Specific Errors

Reporting Services - Reporting Services Programming

HelpLink Element
HelpLink Element

The HelpLink element of the Detail property is a URL string that is generated by the report server. The URL targets a Web page
managed by Microsoft Help and Support and provides additional help and knowledge base articles about specific errors that
occur in Reporting Services. The URL has the following syntax:

http://www.microsoft.com/products/ee/transform.aspx?EvtSrc=value&EvtID=value&ProdName=value&ProdVer=value

The following table lists the arguments of the HelpLink URL.

Argument Value
EvtSrc "Microsoft.ReportingServices.Diagnostics.ErrorStrings.resources.Strings"
EvtID The report server error code, for example, rsReservedItem.
ProdName "Microsoft SQL%20Server%20Reporting%20Services". The value of the

product name is URL encoded.
ProdVer The version number of Reporting Services. A value of "8.00" indicates

SQL Server 2000 Reporting Services.

The following example illustrates the HelpLink URL that is returned for error code rsReservedItem. This error occurs when a
user attempts to modify or delete a reserved item in Reporting Services:

http://www.microsoft.com/products/ee/transform.aspx?
EvtSrc=Microsoft.ReportingServices.Diagnostics.ErrorStrings.resources.Strings
&EvtID=rsReservedItem&ProdName=Microsoft%20SQL%20Server%20Reporting%20Services&ProdVer=8.
00

You can access the HelpLink element in your code using the SoapException class.

Visual Basic

Try
 rs.DeleteItem("/Report1")

Catch e As SoapException
 Console.WriteLine(e.Detail("HelpLink").InnerXml)
End Try

C#

try
{
 rs.DeleteItem("/Report1");
}

catch (SoapException e)
{
 Console.WriteLine(e.Detail["HelpLink"].InnerXml);
}

See Also

Exception Handling in Reporting Services

Reporting Services SoapException Class

Using the Detail Property to Handle Specific Errors

Reporting Services - Reporting Services Programming

SoapException Errors Table
SoapException Errors Table

The report server generates errors and error messages in the SOAP exception based on errors that occur in Reporting Services.
The following table shows the errors that are accessible when methods through a SoapException in the Reporting Services Web
service. It is organized by the method or methods that throw the exception.

Method(s) Error code
ALL rsEvaluationCopyExpired
ALL rsFailedToDecryptConfigInformation
ALL rsInvalidRSEditionConfiguration
ALL rsReportServerNotActivated
ALL rsServerBusy
ALL rsReportServerServiceUnavailable
ALL rsReportServerDisabled
ALL except GetPermissions,
GetRenderResource,
GetSystemPermissions, ListEvents, and
ListSecureMethods

rsAccessDenied

ALL except CreateBatch, ExecuteBatch,
GetSystemPolicies,
GetSystemPermissions,
GetSystemProperties, ListEvents, ListJobs,
ListRoles, ListSchedules,
ListSecureMethods, ListSubscriptions,
ListSystemRoles, ListSystemTasks,
ListTasks

rsMissingParameter

CreateDataDrivenSubscription,
CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateReportHistorySnapshot,
CreateResource, CreateSubscription,
DeleteItem,
DeleteReportHistorySnapshot,
DisableDataSource, EnableDataSource,
FindItems, FlushCache, GetCacheOptions,
GetDataSourceContents,
GetExecutionOptions, GetPermissions,
GetPolicies, GetProperties,
GetReportDataSourcePrompts,
GetReportDataSources,
GetReportDefinition,
GetReportHistoryLimit,
GetReportHistoryOptions, GetReportLink,
GetReportParameters,
GetResourceContents, GetRoleProperties,
GetServerDateTime, IheritParentSecurity,
ListChildren, ListLinkedReports,
ListReportHistory,
ListReportsUsingDataSource,
ListSchedules, ListSubscriptions,
ListSubscriptionsUsingDataSource,
MoveItem, Render, RenderStream,
SetCacheOptions,
SetDataSourceContents,
SetExecutionOptions, SetPolicies,
SetProperties, SetReportDataSources,
SetReportDefinition,
SetReportHistoryLimit,
SetReportHistoryOptions, SetReportLink,
SetReportParameters,
SetResourceContents,
UpdateReportExecutionSnapshot,
ValidateExtensionSettings

rsItemNotFound

CancelBatch,
CreateDataDrivenSubscription,
CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateReportHistorySnapshot,
CreateResource, CreateRole,
CreateSchedule, CreateSubscription,
DeleteItem,
DeleteReportHistorySnapshot,
DeleteRole, DeleteSchedule,
DeleteSubscription, DisableDataSource,
EnableDataSource, ExecuteBatch,
FindItems, FlushCache,
GetResourceContents,
GetServerDateTime, MoveItem,
PauseSchedule, ResumeSchedule,
SetCacheOptions,
SetDataDrivenSubscriptionProperties,
SetDataSourceContents,
SetExecutionOptions, SetPolicies,
SetProperties, SetReportDataSources,
SetReportDefinition,
SetReportHistoryLimit,
SetReportHistoryOptions, SetReportLink,
SetReportParameters,
SetResourceContents, SetRoleProperties,
SetScheduleProperties,
SetSubscriptionProperties,
SetSystemPolicies, SetSystemProperties,
UpdateReportExecutionSnapshot,
ValidateExtensionSettings

rsBatchNotFound

CreateDataDrivenSubscription,
CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateReportHistorySnapshot,
CreateResource, CreateSubscription,
DeleteItem,
DeleteReportHistorySnapshot,
DisableDataSource, EnableDataSource,
FindItems, FlushCache, GetCacheOptions,
GetDataSourceContents,
GetExecutionOptions, GetItemType,
GetPermissions, GetPolicies,
GetProperties,
GetReportDataSourcePrompts,
GetReportDataSources,
GetReportDefinition,
GetReportHistoryLimit,
GetReportHistoryOptions, GetReportLink,
GetResourceContents,
GetServerDateTime, IheritParentSecurity,
ListChildren, ListLinkedReports,
ListReportHistory, ListSchedules,
ListSubscriptionsUsingDataSource,
MoveItem, Render, RenderStream,
SetCacheOptions,
SetDataSourceContents,
SetExecutionOptions, SetPolicies,
SetProperties, SetReportDataSources,
SetReportDefinition,
SetReportHistoryLimit,
SetReportHistoryOptions, SetReportLink,
SetReportParameters,
SetResourceContents,
SetSubscriptionProperties,
UpdateReportExecutionSnapshot,
ValidateExtensionSettings

rsInvalidItemPath

CreateDataDrivenSubscription,
CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateReportHistorySnapshot,
CreateResource, CreateSubscription,
DeleteReportHistorySnapshot,
DisableDataSource, EnableDataSource,
FindItems, FlushCache, GetCacheOptions,
GetDataSourceContents,
GetExecutionOptions,
GetReportDataSourcePrompts,
GetReportDataSources,
GetReportDefinition,
GetReportHistoryLimit,
GetReportHistoryOptions, GetReportLink,
GetReportParameters,
GetResourceContents,
GetServerDateTime,
GetSystemProperties, ListChildren,
ListLinkedReports, ListReportHistory,
ListReportsUsingDataSource,
ListSchedules, ListSubscriptions,
ListSubscriptionsUsingDataSource,
MoveItem, Render, RenderStream,
SetCacheOptions,
SetDataSourceContents,
SetExecutionOptions,
SetReportDataSources,
SetReportDefinition,
SetReportHistoryLimit,
SetReportHistoryOptions, SetReportLink,
SetReportParameters,
SetResourceContents,
UpdateReportExecutionSnapshot,
ValidateExtensionSettings

rsWrongItemType

CreateReport, CreateResource,
DeleteReportHistorySnapshot,
DeleteSchedule, DeleteSubscription,
GetDataDrivenSubscriptionProperties,
GetSubscriptionProperties, ListChildren,
ListScheduledReports, PauseSchedule,
Render, RenderStream, ResumeSchedule,
SetCacheOptions,
SetDataDrivenSubscriptionProperties,
SetReportHistoryLimit,
SetReportHistoryOptions,
SetScheduleProperties,
SetSubscriptionProperties

rsParameterTypeMismatch

CreateDataDrivenSubscription,
CreateDataSource, CreateSchedule,
CreateSubscription, FindItems,
GetReportParameters, PrepareQuery,
Render, SetCacheOptions,
SetDataDrivenSubscriptionProperties,
SetDataSourceContents, SetPolicies,
SetReportDataSources,
SetReportParameters,
SetScheduleProperties,
SetSubscriptionProperties,
SetSystemPolicies

rsMissingElement

CreateDataDrivenSubscription,
CreateDataSource, CreateSchedule,
CreateSubscription, PrepareQuery,
Render, SetCacheOptions,
SetDataDrivenSubscriptionProperties,
SetDataSourceContents, SetProperties,
SetReportDataSources,
SetReportParameters,
SetScheduleProperties,
SetSubscriptionProperties,
SetSystemProperties

rsInvalidElement

CreateDataDrivenSubscription,
CreateSchedule, CreateSubscription,
FindItems, GetRenderResource,
PrepareQuery, Render, RenderStream,
SetCacheOptions,
SetDataDrivenSubscriptionProperties,
SetExecutionOptions, SetProperties,
SetReportHistoryOptions,
SetReportParameters,
SetScheduleProperties,
SetSubscriptionProperties,
SetSystemProperties

rsElementTypeMismatch

CreateDataSource, CreateRole,
GetDataDrivenSubscriptionProperties,
GetRenderResource, ListExtensions,
Render,
SetDataDrivenSubscriptionProperties,
SetDataSourceContents,
SetExecutionOptions,
SetReportHistoryLimit,
SetReportHistoryOptions,
SetScheduleProperties

rsInvalidParameter

CreateDataDrivenSubscription,
CreateReportHistorySnapshot,
CreateSubscription, PrepareQuery,
SetDataDrivenSubscriptionProperties,
SetExecutionOptions,
SetReportHistoryOptions,
SetSubscriptionProperties

rsInvalidDataSourceCredentialSetting

CreateDataDrivenSubscriptionProperties,
CreateReportHistorySnapshot,
CreateSchedule, CreateSubscription,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties,
UpdateReportExecutionSnapshot

rsReportParameterValueNotSet

CreateDataDrivenSubscription,
CreateSubscription,
GetExtensionSettings,
GetRenderResource, Render,
RenderStream,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsMultipleExtensionsFoundInAssembly

CreateDataDrivenSubscriptionProperties,
CreateSubscription, Render,
SetCacheOptions, SetExecutionOptions,
SetReportParameters,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsReportParameterTypeMismatch

CreateSchedule, CreateSubscription,
DeleteSchedule, PauseSchedule,
ResumeSchedule, SetCacheOptions,
SetExecutionOptions,
SetScheduleProperties,
SetSubscriptionProperties

rsSchedulerNotResponding

DeleteSchedule, GetScheduleProperties,
ListScheduledReports, PauseSchedule,
ResumeSchedule, SetCacheOptions,
SetExecutionOptions,
SetScheduleProperties

rsScheduleNotFound

CreateDataDrivenSubscriptionProperties,
CreateSubscription, Render,
SetReportParameters,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsReadOnlyReportParameter

CreateDataDrivenSubscriptionProperties,
CreateSubscription,
GetReportParameters, Render,
SetReportParameters,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsUnknownReportParameter

DeleteSubscription,
GetDataDrivenSubscriptionProperties,
GetSubscriptionProperties,
SetDataDrivenSubscriptionProperties,
SetExecutionOptions,
SetSubscriptionProperties

rsSubscriptionNotFound

CreateDataDrivenSubscription,
CreateSubscription,
GetExtensionSettings,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsDeliveryExtensionNotFound

CreateDataDrivenSubscription,
CreateSubscription,
GetExtensionSettings,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsDeliveryError

CreateDataDrivenSubscription,
GetDataDrivenSubscriptionProperties,
PrepareQuery,
SetDataDrivenSubscriptionProperties

rsSecureConnectionRequired

CreateDataDrivenSubscription,
CreateSubscription,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsCannotSubscribeToEvent

CreateDataDrivenSubscription,
CreateSubscription, FireEvent,
SetDataDrivenSubscriptionProperties,
SetSubscriptionProperties

rsUnknownEventType

CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateResource, MoveItem

rsItemPathLengthExceeded

CopyItem, CreateFolder, CreateReport,
CreateResource, DeleteItem

rsReservedItem

CreateDataSource,
SetDataSourceContents,
SetReportDataSources

rsInvalidElementCombination

SetCacheOptions, SetExecutionOptions,
SetReportHistoryOptions

rsInvalidParameterCombination

CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateResource, MoveItem

rsInvalidItemName

CreateDataSource, CreateFolder,
CreateLinkedReport, CreateReport,
CreateResource, MoveItem

rsItemAlreadyExists

CreateFolder, CreateLinkedReport,
CreateReport, CreateResource,
SetProperties

rsReadOnlyProperty

GetPolicies, GetSystemPolicies,
SetPolicies, SetSystemPolicies

rsInvalidPolicyDefinition

SetCacheOptions,
SetDataSourceContents,
SetReportDataSources,
SetReportParameters

rsOperationPreventsUnattendedExecution

CreateReportHistorySnapshot, Render,
PrepareQuery,
UpdateReportExecutionSnapshot

rsInvalidDataSourceReference

CreateReportHistorySnapshot,
PrepareQuery, Render,
UpdateReportExecutionSnapshot

rsDataSourceDisabled

CreateReport, PrepareQuery,
SetReportDefinition

rsProcessingError

GetRenderResource, Render,
RenderStream

rsInvalidReportLink

DeleteReportHistorySnapshot, Render,
RenderStream

rsReportHistoryNotFound

SetCacheOptions, SetExecutionOptions,
SetReportHistoryOptions

rsReportMayNotBeScheduled

CreateDataDrivenSubscription,
GetDataDrivenSubscriptionProperties,
SetDataDrivenSubscriptionProperties

rsOperationNotSupported

CreateDataSource,
SetDataSourceContents,
SetReportDataSources

rsDataExtensionNotFound

DeleteRole, SetPolicies,
SetRoleProperties

rsRoleNotFound

DeleteReportHistorySnapshot, Render,
RenderStream

rsParametersNotSpecified

GetReportParameters,
SetReportParameters

rsNotSupported

SetReportParameters,
UpdateReportExecutionSnapshot

rsReportSnapshotNotEnabled

CreateSchedule, SetScheduleProperties rsScheduleAlreadyExists
CreateRole, SetRoleProperties rsTaskNotFound
CreateRole, SetRoleProperties rsMixedTasks
ListSubscriptions, SetPolicies rsUnknownUserName
MoveItem rsInvalidMove
RenderStream rsStreamNotFound
RenderStream rsMissingSessionId
Render rsReportNotReady
Render rsAssemblyNotPermissioned
SetExecutionOptions rsReportSnapshotEnabled
FindItems rsInvalidSearchOperator
SetReportDataSources rsDataSourceNotFound
PrepareQuery, Render rsDataSourceNoPrompt
PrepareQuery rsCannotPrepareQuery

DeleteRole rsReservedRole
CreateRole rsEmptyRole
InheritParentSecurity rsInheritedPolicy
CreateRole rsRoleAlreadyExists
InheritParentSecurity rsCannotDeleteRootPolicy
CancelJob rsJobWasCanceled
ListSecureMethods rsServerConfigurationError

See Also

Exception Handling in Reporting Services

Reporting Services Error Messages

Reporting Services SoapException Class

Using the Detail Property to Handle Specific Errors

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Scripting with the rs Utility and the Web Service
Developers and report server administrators can perform operations on a report server through the use of the rs utility (RS.exe).
Using this utility, you can programmatically administer a report server using Visual Basic .NET scripts.

Reporting Services scripts can be used to run any of the Reporting Services Web service operations. Script files take a certain
format and are written in Visual Basic .NET. Scripting can be used to copy security to multiple reports on a server, to add and
delete items, to copy report server items from one server to another and more.

The following topics discuss Reporting Services scripting in greater detail.

Topic Description
Formatting the Reporting Services Script
File

Describes the format of a script file in
Reporting Services

Running a Reporting Services Script File Explains how to run a script file using the
scripting environment

See Also

Reporting Services Web Service

Reporting Services Web Service Library

rs Utility

Reporting Services - Reporting Services Programming

Formatting the Reporting Services Script File
Formatting the Reporting Services Script File

A Reporting Services script is a Visual Basic .NET code file, written against a proxy that is built on Web Service Description
Language (WSDL), which defines the Reporting Services SOAP API. A script file is stored as a Unicode or UTF-8 text file with the
extension .rss.

The script file acts as a Visual Basic module and can contain user defined procedures and module-level variables. For the script file
to run successfully, it must contain the Main procedure. The Main procedure is the starting point for your script file, and it is the
first procedure that is accessed when your script file runs. Main is where you can add your Web service operations and run your
user defined subprocedures. The minimum structure you need to execute a report server script file is the Main procedure. The
following code creates a Main procedure:

Public Sub Main()
 ' Your code goes here.
End Sub

The script environment automatically connects to the report server, creates the Web proxy class, and generates a reference
variable (rs) to the Web service proxy object. Individual statements that you create need only to refer to the rs module-level
variable to perform any of the Web service operations that are available in the Web service library. The following Visual Basic
code calls the Web service method ListChildren within a script file:

Public Sub Main()
 Dim items() As CatalogItem
 items = rs.ListChildren("/", True)

 Dim item As CatalogItem
 For Each item In items
 Console.WriteLine(item.Name)
 Next item
End Sub

Security Note User credentials are managed by the script environment and passed through command prompt
arguments through the use of RS.exe. Although you can use the "rs" variable to set the authentication of the Web
service, it is recommended that you use the script environment. You do not need to authenticate the Web service in
the script file itself. For more information about authenticating the script environment, see rs Utility

You do not declare namespaces within the script file. The scripting environment makes several useful .NET Framework
namespaces available to you: System.Web.Services, System.Web.Services.Protocols, System.Xml, and System.IO.

See Also

Developer Samples

ListChildren Method

Reporting Services Web Service

Reporting Services Web Service Library

rs Utility

Reporting Services - Reporting Services Programming

Running a Reporting Services Script File
Running a Reporting Services Script File

Reporting Services script files are run from the command prompt using the Reporting Services script environment (RS.exe).
RS.exe has many command prompt arguments available for you to use. For more information about the command prompt
options, see rs Utility.

Sample Command Lines

Run Script.rss in the script environment designating the target report server. Windows Authentication is applied by default:

rs –i Script.rss -s http://servername/reportserver

Run Script.rss in the script environment specifying a user name and password for authenticating the Web service calls:

rs –i Script.rss -s http://servername/reportserver -u myusername -p mypassword

Run Script.rss in the script environment specifying a server time-out of 30 seconds:

rs –i Script.rss -s http://servername/reportserver -l 30

Run Script.rss in the script environment specifying a global script variable called report.

rs –i Script.rss -s http://servername/reportserver -v report="Company Sales"

Run Script.rss in the script environment specifying that the Web service operations in the script file are run as a batch.

rs –i Script.rss -s http://servername/reportserver -b

See Also

Developer Samples

ListChildren Method

Reporting Services Web Service

Reporting Services Web Service Library

rs Utility

Reporting Services - Reporting Services Programming

URL Access
The report server is accessible through URL requests. URL requests contain parameters that are processed by the report server.
The way in which the report server handles URL requests depends on the parameters, parameter prefixes, and type of item that
are included in the URL. For more information about specific parameter prefixes, see Using Parameter Prefixes on a URL.

You can use URL access to embed hyperlinks to reports and other report server items in the applications that you develop. Report
server URLs adhere to the URL formatting guidelines as proposed by the joint World Wide Web Consortium W3C/IETF draft
standard. URL access is compatible with most Internet browsers or applications that support standard URL addressing.

The following table describes the topics in this section.

Topic Description
URL Access Syntax Describes the syntax for accessing the

report server directly through a URL.
Using Parameter Prefixes on a URL Lists the parameter prefixes available for

use in URL access.
Using the Command Parameter Describes how to use URL commands.
Using a URL to Access Report Server
Items

Describes how to reference a report server
item in a URL.

Using URL Access Parameters Describes the URL access parameters that
are available for configuring the way in
which reports are displayed in the viewer.

Rendering a Report using URL Access Describes how to run reports through URL
access.

Specifying a Rendering Format on a URL Describes the parameters used to specify
particular rendering formats.

Passing a Report Parameter on a URL Describes how to pass report parameters
to a report using a URL.

Managing Report Sessions on a URL Describes how to use URL commands to
manage session state.

Rendering Report History Snapshots
Using URL Access

Describes how to render a report history
snapshot using URL commands.

Setting Data Source Credentials on a URL Describes how to use URL commands to
set data source credentials.

Specifying Device Information Settings on
a URL

Describes how to use URL commands to
pas device info settings.

See Also

Integrating Reporting Services Using URL Access

Introducing Reporting Services Programming

Reporting Services Programming

Viewing and Running Reports

Reporting Services - Reporting Services Programming

URL Access Syntax
You can access the report server by using a URL. URL requests can contain multiple parameters that are listed in any order.
Parameters are separated by an ampersand (&) and name/value pairs are separated by an equal sign (=).

Syntax

http://server/virtualroot?[/pathinfo]&prefix:param=value[&prefix:param=value]...n]

Arguments

server
The name of the computer on which the report server is running.

vitualroot
The name of the virtual root of the report server.

?
Denotes the item path and parameter portion of the URL.

[/pathinfo]
The full path name of the item being accessed in the report server database.

&
Used to separate name and value pairs of parameters

prefix
Optional. A parameter prefix that accesses a specific process running within the report server. If a parameter prefix for a
parameter is not included, the parameter is processed by the report server as a report parameter.

Note If you include a report parameter in a URL, do not preface the report parameter with a parameter prefix.

param
The parameter name.

value
URL text corresponding to the value of the parameter being used.

Example

The following example renders a report in the HTML 4.0 format:

http://servername/reportserver?/SampleReports/Employee Sales
Summary&rs:Command=Render&rs:format=HTML4.0

Note Any space characters in the URL string are replaced with the characters "%20," according to URL encoding
standards. Similarly, a space character in the parameter portion of the URL is replaced with a plus character (+) and a
semicolon in any portion of the string is replaced with the characters "%3A." Browsers should automatically perform
the proper URL encoding. You do not have to encode any of the characters manually.

See Also

URL Access

Reporting Services - Reporting Services Programming

Using Parameter Prefixes on a URL
Parameter prefixes are used with URL parameters to access the report server. You can specify multiple parameter prefixes in a
URL. The following table lists parameter prefix that the report server can parse.

Note Parameters that are not prefixed are treated as report parameters.

Use this prefix To
rc Supply a rendering extension with specific

device information settings. For more
information about device information
settings and URL access, see Specifying
Device Information Settings on a URL. This
prefix is also used with commands that
are targeted at the HTML Viewer. For
more information about HTML Viewer
commands, see Using URL Access
Parameters.

rs Target the report server with specific
parameters. For more information about
targeting the server with specific
commands, see Using URL Access
Parameters.

dsu Specify a user name with which to access
a data source. For more information, see
Setting Data Source Credentials on a URL.

dsp Specify a password with which to access a
data source. For more information, see
Setting Data Source Credentials on a URL.

See Also

URL Access

Reporting Services - Reporting Services Programming

Using the Command Parameter
You can include the Command parameter prefixed with rs: in a URL. The value of the parameter determines the type of request
made to the report server by the client. The following table describes values that are supported by the Command parameter.

Use this value To
GetDataSourceContents Display the properties of a given shared

data source. The properties are displayed
as XML.

GetResourceContents Render a resource and display it in an
HTML page. Using this value equates to
calling the Web service method
GetResourceContents directly.

ListChildren Display children of the item passed to the
URL are displayed within a generic item-
navigation page. Using this value equates
to calling the ListChildren method.

Render Render the specified report. Using this
value equates to calling the Render
method.

Note A URL can contain only one Command parameter. If a URL includes multiple Command parameters, an error is
returned. If the Command parameter is specified in a URL without an accompanying value, the Command parameter
is ignored.

Example

The following example generates a generic item-navigation page that you can use to view all the child items of your Samples
folder:

http://servername/reportserver?/SampleReports&rs:Command=ListChildren

See Also

GetResourceContents Method

URL Access

ListChildren Method

Render Method

Reporting Services - Reporting Services Programming

Using a URL to Access Report Server Items
The way in which the report server responds to a URL depends on the type of item supplied in the URL. The following sections
describe how the report server responds to URL requests for different types of items.

Report

If a report is referenced in a URL, the report runs and is rendered based on the parameters supplied in the URL. If you do not
include the parameter string rs:Command=Render or other parameters in the URL, the report is displayed in HTML Viewer. The
format of the report depends on your browser and browser version. For more information, see Viewing and Running Reports.

Note If you omit the line rs:Command=Render, the report server must evaluate the item type and select the
appropriate command value. Use rs:Command=Render in the URL to improve the performance of the report server.

Resource

If a resource is referenced in a URL, the resource is returned. You can access and view images and other resources in your
browser by using a URL. If a resource is not compatible with your browser, you may be prompted to open or save the file or
resource to disk

Data Source

If a data source is referenced in a URL, the data source is displayed if you are an authenticated user with Read Contents
permission on the data source. Accessing a data source in this way is similar to calling the Web service method
GetDataSourceContents. For more information, see GetDataSourceContents Method.

When you access the data source, the XML representation of the DataSourceDefinition property of the data source appears in
browsers that support XML. The DataSourceDefinition XML structure might look similar to the following example:

<DataSourceDefinition>
 <Extension>SQL</Extension>
 <ConnectString>Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security
Info=False;Initial Catalog=AdventureWorks;Data Source=MYSERVER1;</ConnectString>
 <CredentialRetrieval>Integrated</CredentialRetrieval>
 <WindowsCredentials>False</WindowsCredentials>
 <ImpersonateUser>False</ImpersonateUser>
 <Prompt />
 <Enabled>True</Enabled>
</DataSourceDefinition>

The connection string is returned based on the SecureConnectionLevel setting of the report server. For more information about
the SecureConnectionLevel setting, see Using Secure Web Service Methods.

Note To improve server performance, include the line rs:Command=GetDataSourceContents immediately after the
path to the shared data source.

Folder

If a folder is referenced in a URL, a generic folder-navigation page is returned. The HTML page contains links to the subfolders,
reports, data sources, and resources contained in the requested folder. The user interface you see is similar to the directory
browsing mode used by Microsoft Internet Information Server. The version number, including the build number, of the report
server is also displayed below the folder listing. The format of the version number might look similar to the following example:

"Microsoft SQL Server Reporting Services Version 8.00.0xxx.00"

See Also

URL Access

Reporting Services - Reporting Services Programming

Using URL Access Parameters
You can use the following parameters as part of a URL to configure the look and feel of your reports. The most common
parameters are listed in this section. Parameters are case insensitive and begin with the parameter prefix rs: if directed to the
report server and rc: if directed to HTML Viewer. You can also specify parameters that are specific to devices or rendering
extensions. For more information about device-specific parameters, see Specifying Device Information Settings on a URL.

HTML Viewer Commands

The following table describes the URL access parameters that are prefixed with rc: and are used to target the HTML Viewer.

Use this parameter To
Toolbar Show or hide the toolbar. If the value of

this parameter is false, all remaining
options (except the document map) are
ignored. If you omit this parameter, the
toolbar is automatically displayed for
rendering formats that support it. The
default of this parameter is true.

Parameters Show or hide the parameters area of the
toolbar. If you set this parameter to a
value of true, the parameters area of the
toolbar is displayed. The default value of
this parameter is true.

DocMap Show or hide the report document map.
The default value of this parameter is true.

DocMapID Set the document map ID to scroll to in
the report.

Zoom Set the report zoom value as an integer
percentage or a string constant. Standard
string values include Page Width and
Whole Page. This parameter is ignored
by versions of Microsoft Internet Explorer
earlier than Internet Explorer 5.0 and all
non-Microsoft browsers. The default value
of this parameter is 100.

Section Set the number of the page in the report
to display. Any value that is greater than
the number of pages in the report displays
the last page. Any value that is less than 0
displays page 1 of the report. The default
value of this parameter is 1.

FindString The text to search for in the report. The
default value of this parameter is an
empty string.

StartFind Specify the last section to search. The
default value of this parameter is the last
page of the report.

EndFind Set the number of the last page to use in
the search. For example, a value of 5
indicates that the last page to be searched
is page 5 of the report. The default value is
the number of the current page. Use this
parameter in conjunction with the
StartFind parameter.

FallbackPage Set the number of the page to display if a
search or a document map selection fails.
The default value is the number of the
current page.

GetImage Get a particular icon for the HTML Viewer
user interface.

Icon Get the icon of a particular rendering
extension.

You can pass additional parameters on a URL to direct the output for HTML rendering. For more information, see HTML Device
Information Settings.

Report Server Commands

The following table describes the URL access parameters that are prefixed with rs: and are used to target the report server.

Use this parameter To
Command Specify the last section to search. The

default value of this parameter is the last
page of the report.

Format Specify the format in which to render a
report. Common values include HTML3.2,
HTML4.0, HTMLOWC, MHTML, IMAGE,
EXCEL, CSV, PDF, XML, and NULL. For
more information, see Specifying a
Rendering Format on a URL.

Snapshot Render a report based on a report history
snapshot. For more information, see
Rendering Report History Snapshots
Using URL Access.

Examples

The following example hides the HTML Viewer toolbar by setting the rc:Toolbar parameter value to false:

http://servername/reportserver?/Sales/YearlySalesSummary&rs:Command=Render&rs:Format=HTML
4.0&rc:Toolbar=false

The following example passes a hard coded parameter and hides the input field for user-supplied parameters:

http://servername/reportserver?/Sales/YearlySalesSummary&rs:Command=Render&rs:Format=HTML
4.0&rc:Parameters=false&Year=2002

The following example uses the rc:Zoom parameter to set the zoom property of the report to Page Width:

http://servername/reportserver?/Sales/YearlySalesSummary&rs:Command=Render&rs:Format=HTML
4.0&rc:Zoom=Page Width

The following example toggles section 13 of the report:

http://servername/reportserver?/Sales/YearlySalesSummary&rs:Command=Render&rs:ShowHideTog
gle=13

See Also

URL Access

Using Parameter Prefixes on a URL

Reporting Services - Reporting Services Programming

Rendering a Report using URL Access
You can run a report using URL access by specifying the Command parameter with a value of Render. You must use the
parameter prefix rs: with this parameter. This renders the specified report in the default rendering format for the browser you are
using to access the report server. Using the Render value for the Command parameter equates to calling the Render method in
the Reporting Services Web service. For more information about the Render method, see Render Method. For more information
about the Command parameter, see Using the Command Parameter.

Note If you omit rs:Command=Render from the URL string, the report is rendered by default. For more information,
see Using a URL to Access Report Server Items

Example

The following example uses the Command parameter to render the specified report:

http://servername/reportserver?/Sales/YearlySalesByCategory&rs:Command=Render

See Also

Render Method

URL Access

Reporting Services - Reporting Services Programming

Specifying a Rendering Format on a URL
You can optionally specify the format in which to render a report by using the Format parameter. You must use the rs: parameter
prefix with this parameter.

Valid values for this parameter are based on the report rendering extensions that are installed on the report server being
accessed. You can use the ListExtensions method, provided in the Reporting Services Web service, to determine which rendering
extensions are installed on a particular instance of the report server. Common extensions are HTML3.2, HTML4.0, HTMLOWC,
MHTML, IMAGE, EXCEL, CSV, PDF, XML, and NULL. If a specified rendering extension is not installed on the report server, the
report is not rendered and an error is generated and displayed in the browser.

If you do not include the Format parameter as part of the URL, the report server detects the browser and renders the report in the
appropriate HTML format.

Example

The following example renders a report in HTML 4.0 format:

http://servername/reportserver?/Sales/YearlySalesSummary&rs:Format=HTML4.0&rs:Command=Ren
der

See Also

URL Access

Reporting Services - Reporting Services Programming

Passing a Report Parameter on a URL
You can pass report parameters to a report by including them in a URL. These URL parameters are not prefixed, because they are
passed directly to the report processing engine. For more about report parameters, see Running a Parameterized Report.

To set a report parameter on a URL, simply add the parameter name followed by the equals sign (=) followed by the value of the
parameter. The syntax would be param=value.

Note If your report contains a parameter that has a default value and the value of the Prompt property is false
(Prompt User is not checked in Report Manager), then you cannot pass a value for that parameter on a URL. This
provides administrators an option for preventing end users from adding or modifying the values of certain
parameters.

Example

The following example uses the report parameter EmployeeID to render the specified report:

http://server/reportserver?/Sales/Northwest/Employee Sales
Report&rs:Command=Render&EmployeeID=1234

See Also

URL Access

Reporting Services - Reporting Services Programming

Managing Report Sessions on a URL
Applications can submit a session ID through a URL. You can manage sessions by supplying one of the following parameters:

rs:SessionID identifies an established active session between the client application and the report server. The value of this
parameter is set to the session identifier.
rs:ClearSession=true directs the report server to remove a report from session. All report instances associated with an
authenticated user are removed from session. (A report instance is defined as the same report run multiple times with
different report parameter values.)

You can specify the session ID as a cookie or as part of the URL. When the report server has been configured not to use session
cookies, the first request without a specified session ID results in a redirection with a session ID. For more information about
report server sessions, see Identifying Session State.

See Also

URL Access

Reporting Services - Reporting Services Programming

Rendering Report History Snapshots Using URL Access
You can render a report based on a report history snapshot by supplying the Snapshot parameter and setting its value to a valid
snapshot ID. You must use the rs: parameter prefix with the Snapshot parameter.

If you omit this parameter, the report is rendered according to the report execution and cache management option settings of the
report server. For more information about report execution, see Setting Execution Properties.

Example

The following example filters the report data based on two distinct values:

http://server/reportserver?/SampleReports/Company Sales&rs:Snapshot=2003-04-07T13:40:02

See Also

URL Access

Reporting Services - Reporting Services Programming

Searching a Report using URL Access
You can search a report for a specific set of text using URL access. To search a report, set the value of the rc:FindString parameter
on a URL equal to the text for which you want to search. Additionally, use the rc:StartFind and rc:EndFind parameters to narrow
your search to specific pages within the report.

The following URL access example searches for the first occurrence of the text "Mountain-400" in the Product Catalog sample
report starting with page one and ending with page five:

http://server/Reportserver?/SampleReports/Product
Catalog&rs:Command=Render&rc:StartFind=1&rc:EndFind=5&rc:FindString=Mountain-400

For more information about using URL access parameters, see Using URL Access Parameters. For more information about the
Product Catalog sample report, see Reporting Services Sample Reports.

See Also

URL Access

Reporting Services - Reporting Services Programming

Setting Data Source Credentials on a URL
You can provide data source credentials in a URL by including the prefix:datasourcename=value parameter string, where prefix is
either dsu (for user name) or dsp (for password) and datasourcename is the name of the data source for which to supply
credentials.

A user name and password are used when a report server must connect to an external data source to retrieve report data. You can
specify multiple data sources as part of the URL string.

You should pass values for these parameters only when the credential setting for a connection is set to Prompt. If these
parameters are not specified and the credential setting is set to Prompt, the report is not executed. If the credential setting is not
set to Prompt, the values are ignored. For more about data source properties and settings, see Managing Data Source
Connections

User names and passwords are transmitted as clear text unless the user or application uses Secure Sockets Layer (SSL). You
cannot transmit credentials using a URL if the SecureConnectionLevel setting is set to a value of 1 or greater. For more
information, see Using Secure Web Service Methods.

Security Note It is highly recommended that you use secure protocols when passing credentials to the server via a
URL. When possible, use SSL encryption. Avoid transmitting passwords in clear text.

See Also

URL Access

Reporting Services - Reporting Services Programming

Specifying Device Information Settings on a URL
Device information settings are parameters that are passed to a rendering extension. If you use the methods of the Reporting
Services Web service to render a report, a DeviceInfo XML element is passed as an input parameter. Child elements of the
DeviceInfo element are specific to the device information settings of different rendering extensions. You can include device
information settings in a URL by using the rc:tag=value parameter string, where tag is the name of the device information
settings element being accessed. For more information about device information settings in Reporting Services, see Device
Information Settings.

Example

The following example sets the format of the specified report to JPEG by using the OutputFormat device information setting of
the image rendering extension:

http://servername/reportserver?/SampleReports/Employee Sales
Summary&EmployeeID=38&rs:Command=Render&rs:Format=IMAGE&rc:OutputFormat=JPEG

See Also

URL Access

Reporting Services - Reporting Services Programming

Using the Reporting Services WMI Provider
Windows Instrumentation (WMI) classes have been included in Reporting Services to allow report server and Report Manager
components to be controlled on local and remote computers, to provide a way to discover the machines in the network that are
running a report server Web service, and to activate a report server instance into a web farm. System administrators and database
administrators can use these classes to make changes to the configurations of the report server and Report Manager after
installation is complete, or to perform local or remote server administration tasks. Tasks include modifying the database
connection credentials between the report server and the report server database, modifying the name of the report server
database, and changing the URL that defines the installation path to the report server instance or Report Manager.

The classes installed to support these functions are as follows:

The MSReportServer_ConfigurationSetting class represents the installation and run-time parameters of a report server
instance. These parameters are stored in the RSReportServer.config configuration file for the report server.
The MSReportServerReportManager_ConfigurationSetting class represents the installation and run-time parameters of
a Report Manager instance. These parameters are stored in the RSWebApplication.config configuration file for Report
Manager.

The namespace used to obtain information about Reporting Services in the code samples shown in this topic is the
System.Management namespace, found in the .NET Framework. The System.Management namespace provides a set of managed
code classes through which .NET Framework applications can access and manipulate management information. For more
information on using the Reporting Services WMI classes using the System.Management namespace, see "Accessing
Management Information with System.Managment" in the .NET Framework SDK.

If the computer has multiple instances of a report server installed, the administrator needs to point to the exact instance on the
computer whose properties are being modified. To directly find the instance, each class contains a property that is defined as a
key. This key property uniquely identifies a report server installation. The property defined as a key is the PathName property.
The value of this property is the path to the RSReportServer.config configuration file, including the name of the configuration file.
For most installations, this path would be similar to the following example:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\rsreportserver.config

Once the MSReportServer_ConfigurationSetting class is created, you can populate the key and search the computer for an
instance of the report server or Report Manager that matches that key. If found, populate the management collection with the rest
of the values from that instance. The other method of obtaining information is by populating a collection, and looping through the
management class to display the information. If you are running this code from Visual Studio .NET, add a project reference to
System.Management. Also, it is assumed that the RSReportServer.config configuration file is located in C:\Program
Files\Microsoft SQL Server\MSSQL.n\Reporting Services\ReportServer\bin. The descriptions for the methods in the
System.Management class can be found in the Microsoft Visual Studio .NET SDK.

The preferred way of finding information on your report server installations is to enumerate through the WMI instance collection.
The example below shows how to find properties on every report server instance by creating a collection, and looping through
the collection to display the properties.

C#

using System;
using System.Management;
using System.IO;
[assembly:CLSCompliant(true)]

class Class1
{
 [STAThread]
 static void Main(string[] args)
 {
 const string WmiNamespace = @"\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8";
 const string WmiRSClass =
 @"\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8:MSReportServer_ConfigurationSe
tting";
 ManagementClass serverClass;
 ManagementScope scope;
 scope = new ManagementScope(WmiNamespace);

 // Connect to the Reporting Services namespace.
 scope.Connect();
 // Create the server class.
 serverClass = new ManagementClass(WmiRSClass);
 // Connect to the management object.
 serverClass.Get();
 if (serverClass == null)
 throw new Exception("No class found");

 // Loop through the instances of the server class.
 ManagementObjectCollection instances = serverClass.GetInstances();

 foreach(ManagementObject instance in instances)
 {
 Console.Out.WriteLine("Instance Detected");
 PropertyDataCollection instProps = instance.Properties;
 foreach(PropertyData prop in instProps)
 {
 string name = prop.Name;
 object val = prop.Value;
 Console.Out.Write("Property Name: " + name);
 if (val != null)
 Console.Out.WriteLine(" Value: " + val.ToString());
 else
 Console.Out.WriteLine(" Value: <null>");
 }
 }
 }
}

For more information about the properties that can be read, or changed, on the report server and Report Manager, see Reporting
Services WMI Provider. For more information on the properties specific to the report server, see
MSReportServer_ConfigurationSetting Class.For more information on the properties specific to the Report Manager, see
MSReportServerReportManager_ConfigurationSetting Class. For information on the default installation of the configuration files,
see Reporting Services Installation Directories and Registry Settings.

See Also

Using the Reporting Services WMI Provider

Reporting Services - Reporting Services Programming

Understanding Code Access Security in Reporting Services
The Microsoft® .NET Framework provides a rich security system that can run code in tightly constrained, administrator-defined
security contexts. The .NET Framework system that secures code is referred to as code access security (or evidence-based
security). Under code access security, a user may be trusted to access a resource, but if the code the user executes is not trusted,
access to the resource will be denied.

Security based on code, as opposed to specific users, permits security to be expressed for custom assemblies or data, delivery,
rendering, and security extensions that you develop for Reporting Services. Your extension code may be executed by any number
of users of Reporting Services, all of which are unknown at development time. The custom assemblies or extensions that you
develop require specific security policies in Reporting Services. These security policies are represented as types in the .NET
Framework. For a more complete understanding of code access security in the .NET Framework, see "Code Access Security" at this
Microsoft Web site.

The following table describes the topics in this section:

Topic Description
Introducing Code Access Security in
Reporting Services

Introduces code access security and policy
configuration for custom assemblies and
extensions in Reporting Services.

Why Reporting Services Needs Code
Access Security

Explains the reason for Reporting Services
implementation of code access security.

Understanding Security Policies Describes the various assembly types in
Reporting Services and how code access
security affects code permissions.

Using Reporting Services Security Policy
Files

Describes the different Reporting Services
components and the corresponding policy
configuration files.

See Also

Programming Reference

Reporting Services Programming

http://go.microsoft.com/fwlink/?linkid=23273

Reporting Services - Reporting Services Programming

Introducing Code Access Security in Reporting Services
Code access security centers around these core concepts: evidence, code groups, and named permission sets. In Reporting
Services, the Report Manager, Report Designer, and Report Server components each have a policy file that configures code access
security for custom assemblies as well as data, delivery, rendering, and security extensions. The following sections provide an
overview of code access security. For more detailed information about the topics covered in this section, see "Security Policy
Model" at this Microsoft Web site.

Evidence

Evidence is the information that the common language runtime (CLR) uses to determine a security policy for code assemblies.
Evidence indicates to the runtime that code has a particular characteristic. Common forms of evidence include digital signatures
and the location of an assembly. Evidence can also be custom designed to represent other information that is meaningful to the
application.

Both assemblies and application domains receive permissions based on evidence. For example, the location of an assembly that
Reporting Services is attempting to access is one common form of evidence for weak-named assemblies. This is known as URL
evidence. URL evidence for a custom data processing extension deployed to a report server might be "C:\Program Files\Microsoft
SQL Server\MSSQL\Reporting Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll". The strong
name or digital signature of an assembly is another common form of evidence. In this case, the evidence is the public key
information for an assembly.

Code Groups

A code group is a logical grouping of code that has a specified condition for membership. Any code that meets the membership
condition is included in the group. Administrators configure a security policy by managing code groups and their associated
permission sets.

A membership condition for a code group is based on evidence. For example, a URL membership for a code group is based on
URL evidence. The common language runtime (CLR) uses identifying characteristics such as URL evidence to describe the code
and to determine whether a group's membership condition has been met. For example, if the membership condition of a code
group is "code in the assembly C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll", the runtime examines the evidence to
determine whether the code originates from that location. An example of a configuration entry for this type of code group might
look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyCodeGroup"
 Description="Code group for my data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll"
 />
</CodeGroup>

You should work with your system administrator or application deployment expert to determine the type of code access security
and code groups that your custom assemblies or Reporting Services extensions require.

Named Permission Sets

A named permission set is a set of permissions that administrators can associate with a code group. Most named permission sets
consist of at least one permission, a name, and description for the permission set. Administrators can use named permission sets
to establish or modify the security policy for code groups. More than one code group can be associated with the same named
permission set. The CLR provides built-in named permission sets; among these are Nothing, Execution, Internet,
LocalIntranet, Everything, and FullTrust.

Note Custom data, delivery, rendering, and security extensions in Reporting Services must run under the FullTrust
permission set. Work with your system administrator to add the appropriate code group and membership conditions
for your Reporting Services extensions.

You can associate your own custom levels of permissions for custom assemblies that you use with reports. For example, if you

http://go.microsoft.com/fwlink/?linkid=21954&clcid=0x409

want to allow an assembly to access a specific file, you can create a new named permission set with specific file I/O access and
then assign the permission set to your code group. The following permission set grants read-only access to the file MyFile.xml:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="MyNewFilePermissionSet"
 Description="A special permission set that grants read access to my file.">
 <IPermission class="FileIOPermission"
 version="1"
 Read="C:\MyFile.xml"/>
 <IPermission class="SecurityPermission"
 version="1"
 Flags="Assertion, Execution"/>
</PermissionSet>

A code group that you grant this permission set might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="MyNewFilePermissionSet"
 Name="MyNewCodeGroup"
 Description="A special code group for my custom assembly.">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\MyCustomAssembly.dll"/>
</CodeGroup>

See Also

Understanding Code Access Security in Reporting Services

Reporting Services - Reporting Services Programming

Why Reporting Services Needs Code Access Security
Why does Reporting Services use code access security, when doing so makes developing and deploying custom assemblies and
extensions more laborious? Although the report server is built on ASP.NET technology, there is a substantial difference between a
typical ASP.NET application and the report server. A typical ASP.NET application does not execute user code. In contrast, Reporting
Services' open and extensible architecture allows users to be able to develop using the Code element of the report definition or to
define specialized functionality into a custom assembly for use in reports. Furthermore, developers can design and deploy
powerful extensions that enhance the capabilities of the server. With this power and flexibility comes the need to provide as much
protection and security as possible.

Users of Reporting Services can use any .NET assembly in their reports and natively call upon all of the functionality of assemblies
deployed to the Global Assembly Cache. The only thing that the report server can control is what permissions are given for report
expressions and loaded custom assemblies. In Reporting Services, custom assemblies receive Execute only permissions by
default.

See Also

Understanding Code Access Security in Reporting Services

Reporting Services - Reporting Services Programming

Understanding Security Policies
Any code that is executed by a report server must be part of a specific code access security policy. These security policies consist
of code groups that map evidence to a set of named permission sets. Often, code groups are associated with a named permission
set that specifies the allowable permissions for code in that group. The runtime uses evidence provided by a trusted host or by the
loader to determine which code groups the code belongs to and, therefore, which permissions to grant the code. Reporting
Services adheres to this security policy architecture as defined by the .NET Framework common language runtime (CLR). The
following sections describe the various types of code in Reporting Services and the policy rules associated with them.

Report Server Assemblies

Report server assemblies are those that contain code that is part of the Reporting Services product. Reporting Services is written
using managed code assemblies; all of these assemblies are strong-named (that is, digitally signed). The code groups for these
assemblies are defined using the StrongNameMembershipCondition, which provides evidence based on public key
information for the assembly's strong name. The code group is granted the FullTrust permission set.

Report Server Extensions (Rendering, Data, Delivery, and Security)

Report server extensions are custom data, delivery, rendering, and security extensions that you or other third-parties create in
order to extend the functionality of Reporting Services. You must grant FullTrust to these extensions or assembly code in the
policy configuration files associated with the Reporting Services component you are extending. Extensions shipped as a part of
Reporting Services are signed with the report server public key and receive the FullTrust permission set.

Important You must modify the Reporting Services policy configuration files to allow FullTrust for any third-party
extensions. If you do not add a code group with FullTrust for your custom extensions, they cannot be used by the
report server.

For more information about the policy configuration files in Reporting Services, see Using Reporting Services Security Policy Files.

Expressions Used in Reports

Report expressions are inline code expressions or user-defined methods contained within the Code element of a report definition
language file. There is a code group that is already configured in the policy files that grants these expressions the Execution
permission set by default. The code group looks like the following:

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="Execution"
 Name="Report_Expressions_Default_Permissions"
 Description="This code group grants default permissions for code in report expressions
and Code element. ">
 <IMembershipCondition
 class="StrongNameMembershipCondition"
 version="1"
 PublicKeyBlob="002400..."
 />
</CodeGroup>

Execution permission allows code to run (execute), but not to use protected resources. All expressions found within a report are
compiled into an assembly (called an "expression host" assembly) that is stored as a part of the compiled report. When the report
is executed, the report server loads the expression host assembly and makes calls into that assembly to execute expressions.
Expression host assemblies are signed with a specific key that is used to define the code group for all expression hosts.

Report expressions reference report object model collections (fields, parameters, etc.) and perform simple tasks like arithmetic
and string operations. Code that performs these simple operations only requires Execution permission. By default, user-defined
methods in the Code element and any custom assemblies are granted Execution permission in Reporting Services. Thus, for
most expressions, the current configuration does not require that you modify any security policy files. To grant additional
permissions to expression host assemblies, an administrator needs to modify the policy configuration files of the report server
and Report Designer, and change the report expressions code group. Because it is a global setting, changing default permissions
for the expression hosts affects all reports. For this reason, it is highly recommended that you place all code that requires
additional security into a custom assembly. Only this assembly will be granted the permissions you need.

Security Note Code that calls external assemblies or protected resources should be incorporated into a custom

assembly for use in reports. Doing so gives you more control over the permissions requested and asserted by your
code. You should not make calls to secure methods within the Code element. Doing so requires you to grant
FullTrust to the report expression host and grants all custom code full access to the CLR.

Caution Do not grant FullTrust to the code group for a report expression host. If you do, you enable all report
expressions to make protected system calls.

Custom Assemblies Referenced in Reports

Some report expressions can call third-party code assemblies, also known in Reporting Services as custom assemblies. The report
server expects these assemblies to have at least Execution permission in the policy configuration files. By default, policy files that
ship with Reporting Services grant Execution permission to all assemblies starting from the 'My Computer' zone. You can grant
additional permissions to custom assemblies as needed.

In some cases, you may need to perform an operation that requires specific code permissions in a report expression. Typically,
this means that a report expression needs to make a call to a secured CLR library method (such as one that accesses files or the
system registry). The .NET Framework documentation describes the code permissions that are required to make this secure call; to
execute the call, the calling code must be granted these specific, secure permissions. If you make the call from a report expression
or the Code element, the expression host assembly must be granted the appropriate permissions. However, once you grant the
expression host the permissions, all code that runs in any expression in any report is now granted that specific permission. It is
much more secure to make the call from a custom assembly and grant that custom assembly the specific permissions.

See Also

Introducing Code Access Security in Reporting Services

Understanding Code Access Security in Reporting Services

Reporting Services - Reporting Services Programming

Using Reporting Services Security Policy Files
Reporting Services stores component security policy information in three configuration files that are copied to the file system
during setup. These configuration files can contain a combination of internal-use and user-defined security policies for code
assemblies in Reporting Services. The three configuration files correspond to three securable components in Reporting Services:
The report server and Windows service, the Report Manager Web application, and the Report Designer preview window.

Note There are two preview modes for Report Designer: the preview tab and the pop-up preview window that is
launched when your Report Project is started in DebugLocal mode. The Preview tab is not a securable component
and does not apply security policy settings. The preview window is meant to simulate the report server functionality
and therefore has a policy configuration file that you or an administrator must modify to use custom assemblies and
custom extensions in Report Designer.

The security policy configuration files contain security class information, some default named permission sets, and the code
groups for assemblies in Reporting Services. The policy configuration files of Reporting Services are similar to the security.config
file that determines the code group hierarchy and permission sets associated with machine and enterprise level policies in the
.NET Framework. The location of this file is C:\WINDOWS\Microsoft.NET\Framework\v1.2.21213\CONFIG\security.config.

Policy Files in Reporting Services

The following table lists the policy configuration files in Reporting Services, their locations (assuming a default installation), and
their respective functions.

File name Location (default installation) Description
rssrvpolicy.config C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer The report

server policy
configuration
file. These
security
policies
primarily
affect report
expressions
and custom
assemblies
once a report
is deployed
to a report
server. This
policy file
also affects
custom data,
delivery,
rendering
and security
extensions
deployed to
the report
server.

rsmgrpolicy.config C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager Report
Manager
policy
configuration
file. These
security
policies affect
all
assemblies
that extend
Report
Manager; for
example,
subscription
user interface
extensions
for custom
delivery.

rspreviewpolicy.config C:\Program Files\Microsoft SQL Server\80\Tools\ReportDesigner The Report
Designer
stand-alone
preview
policy
configuration
file. These
security
policies affect
custom
assemblies
and report
expressions
that are used
in reports
during
preview and
development.
These
policies also
affect custom
extensions,
such as data
processing
extensions,
that are
deployed to
Report
Designer.

Modifying Configuration Files

Configuration settings are specified as either XML elements or attributes. If you understand XML and configuration files, you can
use a text or code editor to modify user-definable settings. Security configuration files contain information about the code group
hierarchy and permission sets associated with a policy level in Reporting Services. It is recommended that you use the .NET
Framework Configuration Utility (Mscorcfg.msc) or Code Access Security Policy Utility (Caspol.exe) to modify security policies in
the security.config file first, so that policy changes correspond to valid XML configuration elements for policy files. Once you have
done that, you can cut and paste the new code groups and permission sets from security.config to the policy file for the
component to which you are adding code permissions.

Important You should backup your policy configuration files prior to making any changes.

Using this approach accomplishes two things. First, it enables you to use a visual tool to build your code groups and permission
sets for Reporting Services. This is much easier than writing XML configuration elements from scratch. Secondly, it ensures that

you do not corrupt the security policy configuration files with malformed XML elements and attributes. For more information
about the Code Access Security Policy Utility, see this Microsoft Web site.

Before modifying policy configuration files, you should read all the information available in this section and related topics.
Modifying the policy configuration of Reporting Services can have a significant security impact on how Reporting Services
components execute external code modules.

See Also

Understanding Code Access Security in Reporting Services

Understanding Security Policies

http://go.microsoft.com/fwlink/?linkid=23272

Reporting Services - Reporting Services Programming

Extending Reporting Services
The modular architecture of Reporting Services is designed for extensibility. A managed code API is available so that you can
easily develop, install, and manage extensions consumed by many Reporting Services components. You can create private or
shared assemblies using the Microsoft .NET Framework and add new Reporting Services functionality to meet your evolving
business needs.

Types of Extensions

The unique extensibility architecture of Reporting Services enables developers to extend specific features of the product and its
components. Currently, broad support exists for extending the data processing capabilities of Reporting Services. The data
processing API includes familiar, .NET data provider constructs and conventions that enable developers to build additional data
processing into Reporting Services. These data processing extensions add functionality to both the report server and Report
Designer, enabling seamless integration of custom data into reports.

Another supported extension is the delivery extension. The delivery API is fully integrated with the .NET Framework architecture,
enabling a wide variety of delivery mechanisms to be used when sending report notifications to users. You can extend the server
to provide custom delivery to users and you can extend the subscription management pages of Report Manager to enable
subscriptions that use custom delivery extensions.

Reporting Services includes several other extensions that are not yet fully documented in this release of Books Online. For
upcoming documentation or development kits, visit the Reporting Services Web site.

The following table describes the topics in this section.

Topic Description
Implementing a Data Processing Extension Describes the requirements and steps for

implementing a data processing extension
for Reporting Services.

Implementing a Delivery Extension Describes the requirements and steps for
implementing a delivery extension for
Reporting Services.

Implementing a Rendering Extension Contains an introduction to developing
rendering extensions.

Implementing a Security Extension Contains an introduction to developing
security extensions.

Security Considerations for Extensions Describes security issues related to
developing and deploying Reporting
Services extensions.

See Also

Reporting Services Extension Library

http://go.microsoft.com/fwlink/?linkid=19951

Reporting Services - Reporting Services Programming

Implementing a Data Processing Extension
The following table describes the topics in this section.

Topic Description
Introducing Data Processing Extensions Introduces how to write a custom data

processing extension for Reporting
Services.

Getting Started with a Data Processing
Extension Implementation

Describes the requirements for
implementing a custom data processing
extension.

Implementing a Connection Class for a
Data Processing Extension

Describes the attributes of a connection,
and how to implement your own
Connection class for your data
processing extension.

Implementing a Command Class for a
Data Processing Extension

Describes the attributes of a command,
and how to implement your own
Command class for your data processing
extension.

Implementing a DataReader Class for a
Data Processing Extension

Describes the attributes of a data reader
and how to implement your own
DataReader class for your data
processing extension.

Using an External Dataset with Reporting
Services

Describes how to expose your custom
DataSet objects to the report server for
consumption.

Deploying a Data Processing Extension Describes how to deploy your data
processing extension.

Debugging Data Processing Extension
Code

Describes how to debug code in your data
processing extensions.

Removing a Data Processing Extension Describes how to remove a data
processing extension from a report server
or Report Designer.

For a sample of a fully implemented data processing extension, see Sample File Share Data Processing Extension.

See Also

Extending Reporting Services

Sample File Share Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Introducing Data Processing Extensions
Data processing extensions in Reporting Services enable Reporting Services to connect to a data source and retrieve data; they
also serve as a bridge between a data source and a dataset. Reporting Services data processing extensions are modeled after a
subset of the .NET data provider interfaces.

The following table lists the data processing extensions included with Reporting Services.

Data processing extension Description
Data processing extension for SQL Server Uses the SQL Server .NET data provider to

connect to and retrieve data from the SQL
Server database engine.

Data processing extension for OLE DB Uses the OLE DB .NET data provider. With
this extension, the report server can query
any data source that has an OLE DB
provider.

Data processing extension for Oracle Uses the Oracle .NET data provider. With
this extension, the report server can access
Oracle data sources through Oracle client
connectivity software.

Data processing extension for ODBC Uses an ODBC driver. With this extension,
the report server can access data in any
database for which there is an ODBC
driver.

You can use the Reporting Services data processing API to add custom data processing to your report server.

Note Reporting Services has built-in support for data providers in the .NET Framework. If you have already
implemented a full .NET data provider, you do not need to implement a Reporting Services data processing extension.
However, you should consider extending your .NET data provider to include Reporting Services-specific functionality,
which includes secure connection credentials and server-side aggregates.

Each of the data processing extensions included with Reporting Services uses a common set of interfaces. This ensures that each
extension implements comparable functionality.

You can develop data processing extensions for your own data sources, or you can use the interfaces to add an additional layer of
data processing to common database infrastructures. You can deploy your custom data processing extensions to enable seamless
integration of data into the existing report servers in your organization. You can also use them as part of a custom reporting suite
that you provide to your consumers.

The advantages to implementing a custom Reporting Services data processing extension include:

A simplified data access architecture, often with better maintainability and improved performance.

The ability to directly expose extension-specific functionality to consumers.
A specific interface for your consumers to access your data source within Reporting Services.

Data Extension Process Flow

Before developing your custom data extension, you should understand how the report server uses data extensions to process
data. You should also understand the constructors and methods that are called by the report server.

The illustration shows the following sequence of events:

1. The report server creates a connection object and passes in the connection string and credentials associated with the report.
2. The command text of the report is used to create a command object. In the process, the data processing extension may

include code that parses the command text and creates any parameters for the command.
3. Once the command object and any parameters are processed, a data reader is generated that returns a result set and

enables the report server to associate the report data with the report layout.

See Also

Extending Reporting Services

Getting Started with a Data Processing Extension Implementation

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Getting Started with a Data Processing Extension
Implementation
When implementing a Reporting Services data processing extension, you should define the following:

The interfaces and classes you will implement.
The constructors, methods, properties, and events you will implement.
The naming convention for your classes.
The namespace for your Reporting Services data processing extension.
The DLL that will contain your data processing extension.

The following table describes the topics in this section.

Topic Description
User Requirements for Implementing a
Data Processing Extension

Describes the software, hardware, and
background knowledge requirements for
implementing your own Reporting
Services data processing extension.

Preparing to Implement a Data Processing
Extension

Describes the interfaces available when
implementing a Reporting Services data
processing extension, as well as when you
are required to implement a particular
interface.

Creating a Data Processing Extension
Library

Describes assigning a namespace for your
Reporting Services data processing
extension and compiling your data
processing extension into a library DLL.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Developer Requirements for Implementing a Data Processing
Extension
Developer Requirements for Implementing a Data Processing Extension

Developing a Reporting Services data processing extension requires you to have:

A deployment computer with Report Designer or a report server installed.
A development computer with Microsoft Visual Studio .NET 2003 or the Microsoft .NET Framework SDK installed.
An in-depth understanding of Microsoft Reporting Services features and capabilities.
An in-depth understanding of ADO.NET architecture, .NET data providers, ADO.NET data sets, and the common ADO.NET
interfaces.
Development experience in a .NET language such as C# or Visual Basic .NET.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Preparing to Implement a Data Processing Extension
Preparing to Implement a Data Processing Extension

Before you implement your Reporting Services data processing extension, you should define the interfaces to implement. You
may want to provide extension-specific implementations of the entire set of interfaces, or you may simply want to focus your
implementation on a subset, such as the IDataReader and IDbCommand interfaces in which clients would interact primarily
with a result set as a DataReader object and would use your Reporting Services data processing extension as a bridge between
the result set and your data source.

If your Reporting Services data processing extension will not support a particular property or method, implement the property or
method as no-operation. If a client expects a particular behavior, throw a NotSupportedException exception.

Note A no-operation implementation of a property or method only applies to the properties and methods of those
interfaces that you choose to implement. Optional interfaces that you choose not to implement should be left out of
your data processing extension assembly. For more information about whether an interface is required or optional,
see the table later in this section.

Each Reporting Services data processing extension must provide the following functionality:

Open a connection to a data source.
Analyze a query and return a list of field names for the result set.
Execute a query against the data source and return a row set.
Pass single-valued parameters to the query.
Iterate through rows in the row set and retrieve data.

Each data processing extension can be extended to include the following functionality:

Analyze a query and return a list of parameter names used in the query.
Analyze a query and return the list of fields by which the query is grouped.
Analyze a query and return the list of fields by which the query is sorted.
Provide a user name and password to connect to the data source that is independent of the connection string.
Iterate through rows in the row set and retrieve auxiliary metadata about the data values.
Aggregate data at the server.

The following table describes the available interfaces and whether implementation is required or optional.

Interface Description Implementation
IDbConnection Represents a unique

session with a data source.
In the case of a client/server
database system, the
session may be equivalent
to a network connection to
the server.

Required

IDbConnectionExtension Represents additional
connection properties that
can be implemented by
Reporting Services data
processing extensions
regarding security and
authentication.

Optional

IDbTransaction Represents a local
transaction.

Required

IDbTransactionExtension Represents additional
transaction properties that
can be implemented by
Reporting Services data
processing extensions.

Optional

IDbCommand Represents a query or
command that is used
when connected to a data
source.

Required

IDbCommandAnalysis Represents additional
command information for
analyzing a query and
returning a list of
parameter names used in
the query.

Optional

IDataParameter Represents a parameter or
name/value pair that is
passed to a command or
query.

Required

IDataParameterCollection Represents a collection of
all parameters relevant to a
command or query.

Required

IDataReader Provides a method of
reading a forward-only,
read-only stream of data
from your data source.

Required

IDataReaderExtension Provides a method of
reading one or more
forward-only streams of
result sets, obtained by
executing a command at a
data source. This interface
provides additional support
for field aggregates.

Optional

IExtension Provides the base class for
a Reporting Services data
processing extension. Also
enables an implementer to
include a localized name for
the extension and to pass
configuration settings from
the configuration file to the
extension.

Required

You can implement data processing extensions in one of two ways:

Your data processing extension classes can implement the .NET data provider interfaces and optionally the extended data
processing extension interfaces provided by Reporting Services.
Your data processing extension classes can implement the data processing extension interfaces provided by Reporting
Services and optionally the extended data processing extension interfaces.

The data processing extension interfaces are identical to a subset of the .NET data provider interfaces, methods, and properties,
whenever possible. For more information about implementing a full .NET data provider, see "Implementing a .NET Framework
Data Provider" in your Microsoft .NET Framework SDK documentation.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Creating a Data Processing Extension Library
Creating a Data Processing Extension Library

Each Reporting Services data processing extension you create should be assigned to a unique namespace and built into a library
or assembly file. The exact name of the namespace is not important, but it must be unique and not shared with any other
extension. Microsoft uses the namespace Microsoft.ReportingServices.DataProcessing for the data processing extensions that
ship with Reporting Services. You should create your own unique namespaces for your company's data processing extensions.

The following example shows the code to begin a Reporting Services data processing extension, which uses the namespaces that
contain the data processing interfaces and any utility classes.

Visual Basic

Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports Microsoft.ReportingServices.Interfaces

Namespace CompanyName.ExtensionName
 ...

C#

using System;
using Microsoft.ReportingServices.DataProcessing;
using Microsoft.ReportingServices.Interfaces;

namespace CompanyName.ExtensionName
{
 ...

When compiling a Reporting Services data processing extension, you must supply to the compiler a reference to
Microsoft.ReportingServices.Interfaces.dll, because the data processing extension interfaces are contained there. The
Microsoft.ReportingServices.DataProcessing namespace is needed to implement the data processing extension interfaces and
the Microsoft.ReportingServices.Interfaces namespace is needed to implement the IExtension interface. For example, if all
the files containing the code to implement a Reporting Services data processing extension, written in C#, were in a single
directory with the extension .cs, the following command would be issued from that directory to compile the files stored in
CompanyName.ExtensionName.dll.

csc /t:library /out:CompanyName.ExtensionName.dll *.cs /r:System.dll
/r:Microsoft.ReportingServices.Interfaces.dll

The following code example shows the command that would be used for Visual Basic files, with the extension .vb.

vbc /t:library /out:CompanyName.ExtensionName.dll *.vb /r:System.dll
/r:Microsoft.ReportingServices.Interfaces.dll

Note You can also design, develop, and build your delivery extension using Visual Studio. For more information
about developing assemblies in Visual Studio, see your Visual Studio .NET 2003 documentation.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing a Connection Class for a Data Processing
Extension
The Connection object represents a database connection or similar resource, and is the starting point for users of a Reporting
Services data processing extension. It represents connections to database servers, though any entity with similar behavior can be
exposed as an IDbConnection.

To implement a Connection object, create a class that implements IDbConnection and optionally implements
IDbConnectionExtension.

In your implementation, you must ensure that a connection is created and opened before commands can be executed. Ensure that
your implementation requires clients to open and close connections explicitly, rather than having your implementation open and
close connections implicitly for the client. Perform your security checks when the connection is obtained; requiring an existing
connection for the other classes in your Reporting Services data processing extension will then ensure that security checks are
always performed when working with your data source.

The properties of the desired connection are represented as a connection string. It is strongly recommended that Reporting
Services data processing extensions support the ConnectionString property using the familiar name/value pair system defined
by OLE DB.

Note Connection objects are often resource-intensive to obtain, so you may want to consider pooling connections
or other techniques to mitigate this.

IDbConnection inherits from IExtension. You must implement the IExtension interface as part of your connection class
implementation. The IExtension interface enables a class to implement a localized extension name and to process extension-
specific configuration information stored in the Reporting Services configuration file.

Your Connection object contains the LocalizedName property through its implementation of IExtension. It is strongly
recommended that Reporting Services data processing extensions support the LocalizedName property, so that users encounter
a familiar, localized name for the extension in a user interface, such as Report Manager.

IExtension also enables your Connection object to retrieve and process custom configuration data stored in the
RSReportServer.config file. For more information about processing custom configuration data, see SetConfiguration Method.

The class that implements IExtension is not unloaded from memory when the rest of your data processing extension classes are
unloaded. Because of this, you can use your Extension class to store cross-connection state information or to store data that can
be cached in memory. Your Extension class remains in memory as long as the report server is running.

You can extend your Connection class to include support for credentials in Reporting Services by implementing
IDbConnectionExtension. When you implement the Integrated, Username, and Password properties of the
IDbConnectionExtension interface, you enable the Integrated check box and Username and Password text boxes of the Data
Source dialog in Report Designer. This enables Report Designer to store and retrieve credentials for data sources that support
authentication. The credentials are stored securely and used when rendering reports in preview mode.

Note Implementing IDbConnectionExtension implicitly requires you to implement the members of the
IDbConnection and IExtension interfaces.

For a sample Connection class implementation, see Sample File Share Data Processing Extension.

See Also

Extending Reporting Services

IDbConnection Interface

IDbConnectionExtension Interface

IExtension Interface

Implementing a Data Processing Extension

LocalizedName Property

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing a Command Class for a Data Processing
Extension
The Command object formulates a request and passes it on to the data source. The command text can take many different
syntactical forms, including text and XML. If results are returned, the Command object returns results as a DataReader object.

To create a Command class, implement IDbCommand. Implement the ExecuteReader method to return a result set as a
DataReader object. The ExecuteReader method of your Commmand class should include an implementation that takes a
CommandBehavior enumeration as an argument. If you deploy your data processing extension to Report Designer, provide an
implementation that handles a CommandBehavior.SchemaOnly case in the ExecuteReader method. A schema-only
implementation is used to supply Report Designer with a fields list. The DataReader object returned by the ExecuteReader
method needs to contain type and name information for the fields, or columns, in your result set.

Optionally, your Command class can implement IDbCommandAnalysis. This interface enables an implementing class to
analyze a query and return a list of parameters in the query. The functionality of the IDbCommandAnalysis interface is only
used in Report Designer. When you implement IDbCommandAnalysis, you enable users of Report Designer to be prompted for
parameters whenever a report is run in preview mode. In addition, you can view the parameters in the Parameters tab of the
Data Set dialog.

Note You should not implement IDbCommandAnalysis if your custom data processing extensions does not
support parameters.

For a sample Command class implementation, see Sample File Share Data Processing Extension.

See Also

CommandBehavior Enumeration

ExecuteReader Method

Extending Reporting Services

IDbCommand Interface

IDbCommandAnalysis Interface

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing a DataReader Class for a Data Processing
Extension
The DataReader object enables a client to retrieve a read-only, forward-only stream of data from a data source. Results are
returned as the query executes, and are stored in the network buffer on the client until you request them using the Read method
of the DataReader class. To create a DataReader class, implement IDataReader and optionally implement
IDataReaderExtension. Using a DataReader object increases application performance both by retrieving data as soon as it is
available, rather than waiting for the entire results of the query to be returned, and (by default) storing only one row at a time in
memory, reducing system overhead.

After creating an instance of your Command class, you create a DataReader object by calling Command.ExecuteReader to
retrieve rows from the data source. The DataReader implementation must provide two basic capabilities: forward-only access
over the result sets obtained by executing a command, and access to the column types, names, and values within each row.
Clients use the Read method of the DataReader object to obtain a row from the results of the query.

In Report Designer, your DataReader object is used to retrieve a list of fields as well as schema information about the result set.
This is accomplished by implementing the GetName, GetValue, GetFieldType, and GetOrdinal methods of the IDataReader
interface.

The IDataReaderExtension interface allows you to supply specific, aggregation information about your result set. For more
information, see IDataReaderExtension Interface.

For a sample DataReader class implementation, see Sample File Share Data Processing Extension.

See Also

Extending Reporting Services

IDataReader Interface

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Using an External Dataset with Reporting Services
The DataSet object is central to supporting disconnected, distributed data scenarios with ADO.NET. The DataSet is a memory-
resident representation of data that provides a consistent relational programming model regardless of the data source. It can be
used with multiple different data sources, with XML data, or to manage data local to the application. The DataSet object
represents a complete set of data including related tables, constraints, and relationships among the tables. Because of the
DataSet object's versatility in storing and exposing data, your data may often be processed and transformed into a DataSet
object before any reporting on that data occurs.

With Reporting Services data processing extensions, you can integrate into Reporting Services data processing any custom
DataSet objects that are created by external applications. To accomplish this, you create a custom data processing extension in
Reporting Services that acts as a bridge between your DataSet object and the report server. Most of the code for processing this
DataSet object is contained in the DataReader class that you create.

The first step in exposing your DataSet object to the report server is to implement a provider specific method in your
DataReader class that can populate a DataSet object. For example, if you want to simply load static data into a DataSet object,
you could do so using the following provider-specific method in your DataReader class.

Visual Basic

'Private members of the DataReader class
Private m_dataSet As System.Data.DataSet
Private m_currentRow As Integer

'Method to create a data set
Friend Sub CreateDataSet()
 ' Create a data set.
 Dim ds As New System.Data.DataSet("myDataSet")
 ' Create a data table.
 Dim dt As New System.Data.DataTable("myTable")
 ' Create a data column and set various properties.
 Dim dc As New System.Data.DataColumn()
 dc.DataType = System.Type.GetType("System.Decimal")
 dc.AllowDBNull = False
 dc.Caption = "Number"
 dc.ColumnName = "Number"
 dc.DefaultValue = 25
 ' Add the column to the table.
 dt.Columns.Add(dc)
 ' Add 10 rows and set values.
 Dim dr As System.Data.DataRow
 Dim i As Integer
 For i = 0 To 9
 dr = dt.NewRow()
 dr("Number") = i + 1
 ' Be sure to add the new row to the DataRowCollection.
 dt.Rows.Add(dr)
 Next i

 ' Fill the data set.
 ds.Tables.Add(dt)

 ' Use a private variable to store the data set in your
 ' DataReader.
 m_dataSet = ds

 ' Set the current row to -1.
 m_currentRow = - 1
End Sub 'CreateDataSet

C#

// Private members of the DataReader class
private System.Data.DataSet m_dataSet;
private int m_currentRow;

// Method to create a data set
internal void CreateDataSet()
{

 // Create a data set.
 System.Data.DataSet ds = new System.Data.DataSet("myDataSet");
 // Create a data table.
 System.Data.DataTable dt = new System.Data.DataTable("myTable");
 // Create a data column and set various properties.
 System.Data.DataColumn dc = new System.Data.DataColumn();
 dc.DataType = System.Type.GetType("System.Decimal");
 dc.AllowDBNull = false;
 dc.Caption = "Number";
 dc.ColumnName = "Number";
 dc.DefaultValue = 25;
 // Add the column to the table.
 dt.Columns.Add(dc);
 // Add 10 rows and set values.
 System.Data.DataRow dr;
 for(int i = 0; i < 10; i++)
 {
 dr = dt.NewRow();
 dr["Number"] = i + 1;
 // Be sure to add the new row to the DataRowCollection.
 dt.Rows.Add(dr);
 }

 // Fill the data set.
 ds.Tables.Add(dt);

 // Use a private variable to store the data set in your
 // DataReader.
 m_dataSet = ds;

 // Set the current row to -1.
 m_currentRow = -1;
}

Once you create or retrieve your data set, you can use the DataSet object in your implementations of the Read, GetValue,
GetName, GetOrdinal, GetFieldType, and FieldCount members of the DataReader class. The following code could be used to
expose your DataSet object to Reporting Services.

Visual Basic

public bool Read()
{
 _currentRow++;
 if (m_currentRow >= _dataSet.Tables[0].Rows.Count)
 {
 return (false);
 }
 else
 {
 return (true);
 }
}

public int FieldCount
{
 // Return the count of the number of columns, which in
 // this case is the size of the column metadata
 // array.
 get { return m_dataSet.Tables[0].Columns.Count; }
}

public string GetName(int i)
{
 return m_dataSet.Tables[0].Columns[i].ColumnName;
}

public Type GetFieldType(int i)
{
 // Return the actual Type class for the data type.
 return m_dataSet.Tables[0].Columns[i].DataType;
}

public Object GetValue(int i)
{
 return m_dataSet.Tables[0].Rows[m_currentRow][i];
}

public int GetOrdinal(string name)
{
 // Look for the ordinal of the column with the same name and return it.
 // Returns -1 if not found.
 return m_dataSet.Tables[0].Columns[name].Ordinal;
}

C#

public bool Read()
{
 _currentRow++;
 if (m_currentRow >= _dataSet.Tables[0].Rows.Count)
 {
 return (false);
 }
 else
 {
 return (true);
 }
}

public int FieldCount
{
 // Return the count of the number of columns, which in
 // this case is the size of the column metadata
 // array.
 get { return m_dataSet.Tables[0].Columns.Count; }
}

public string GetName(int i)
{
 return m_dataSet.Tables[0].Columns[i].ColumnName;
}

public Type GetFieldType(int i)
{
 // Return the actual Type class for the data type.
 return m_dataSet.Tables[0].Columns[i].DataType;
}

public Object GetValue(int i)
{
 return m_dataSet.Tables[0].Rows[m_currentRow][i];
}

public int GetOrdinal(string name)
{
 // Look for the ordinal of the column with the same name and return it.
 // Returns -1 if not found.
 return m_dataSet.Tables[0].Columns[name].Ordinal;
}

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Deploying a Data Processing Extension
Once you have written and compiled your Reporting Services data processing extension into a .NET Framework library, you need
to make it discoverable by the report server and by Report Designer. This is as easy as copying the extension to the appropriate
directories and adding entries to the appropriate Reporting Services configuration files.

Configuration-File Extension Element

Data processing extensions that you deploy to the report server or Report Designer need to be entered as Extension elements in
the configuration files. These files are RSReportServer.config for the report server and RSReportDesigner.config for Report
Designer.

The following table describes the attributes for the Extension element for data processing extensions.

Attribute Description
Name A unique name for the extension, for

example, "SQL" for the SQL Server data
processing extension or "OLEDB" for the
OLE DB data processing extension. The
maximum length for the Name attribute
is 255 characters. The name must be
unique among all entries within the
Extensions element of a configuration
file.

Type A comma-separated list that includes the
fully qualified namespace along with the
name of the assembly.

Visible A value of false indicates that the data
processing extension should not be visible
in user interfaces. If the attribute is not
included, the default value is true.

For more information about the RSReportServer.config or RSReportDesigner.config files, see Reporting Services Configuration
Files.

The following table describes the topics in this section.

Topic Description
Deploying a Data Processing Extension to
a Report Server

Describes how to deploy your data
processing extension to a report server.

Deploying a Data Processing Extension to
Report Designer

Describes how to deploy your data
processing extension to Report Designer.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Deploying a Data Processing Extension to a Report Server
Deploying a Data Processing Extension to a Report Server

Report servers use data processing extensions for retrieving and processing data in rendered reports. You should deploy your
data processing extension assembly to a report server as a private assembly. You also need to make an entry in the report server
configuration file, RSReportServer.config.

To deploy the assembly

1. Copy your assembly from your staging location to the bin directory of the report server on which you want to use the data
processing extension. The default location of the report server bin directory is C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer\bin.

2. After the assembly file is copied, open the RSReportServer.config file. The RSReportServer.config file is located in the
ReportServer directory. You need to make an entry in the configuration file for your data processing extension assembly file.
You can open the configuration file with Visual Studio .NET or a simple text editor, such as Notepad.

3. Locate the Data element in the RSReportServer.config file. An entry for your newly created data processing extension
should be made in the following location:

<Extensions>
 <Data>
 <Your extension configuration information goes here>
 </Data>
</Extensions>

4. Add an entry for your data processing extension. Your entry should include an Extension element with values for Name
and Type, and might look like the following:

<Extension Name="ExtensionName" Type="CompanyName.ExtensionName.MyConnectionClass,
MyExtensionAssembly" />

The value for Name is the unique name of the data processing extension. The value for Type is a comma-separated list that
includes an entry for the fully qualified namespace of your class that implements the IExtension and IDbConnection
interfaces, followed by the name of your assembly (not including the .dll file extension). By default, data processing
extensions are visible. To hide an extension from user interfaces, such as Report Manager, add a Visible attribute to the
Extension element, and set it to false.

5. Finally, add a code group for your custom assembly that grants FullTrust permission for your extension. You do this by
adding the code group to the rssrvpolicy.config file located by default in C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer. Your code group might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyExtensionCodeGroup"
 Description="Code group for my data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\MyExtensionAssembly.dll"
 />
</CodeGroup>

URL membership is only one of many membership conditions you might choose for your data processing extension. For
more information about code access security in Reporting Services, see Understanding Code Access Security in Reporting
Services.

Verifying the Deployment

You can verify whether your data processing extension was deployed successfully to the report server by using the Web service
method ListExtensions. You can also open Report Manager and verify that your extension is included in the list of available data

sources. For more information about ListExtensions, see ReportingService.ListExtensions Method. For more information about
Report Manager and data sources, see Creating, Modifying, and Deleting Data Sources.

See Also

Deploying a Data Processing Extension

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Deploying a Data Processing Extension to Report Designer
Deploying a Data Processing Extension to Report Designer

Report Designer uses data processing extensions for retrieving and processing data while you are designing reports. You should
deploy your data processing extension assembly to Report Designer as a private assembly. You also need to make an entry in the
Report Designer configuration file, RSReportDesigner.config.

To deploy the assembly

1. Copy your assembly from your staging location to the Report Designer directory. The default location of the Report
Designer directory is C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer.

2. After the assembly file is copied, open the RSReportDesigner.config file. The RSReportDesigner.config file is also located in
the Report Designer directory. You need to make an entry in the configuration file for your data processing extension
assembly file. You can open the configuration file with Visual Studio .NET or with a simple text editor, such as Notepad.

3. Locate the Data element in the RSReportDesigner.config file. An entry for your newly created data processing extension
should be made in the following location:

<Extensions>
 <Data>
 <Your extension configuration information goes here>
 </Data>
</Extensions>

4. Add an entry for your data processing extension which includes an Extension element with values for the Name, Type,
and Visible attributes. Your entry might look like the following:

<Extension Name="ExtensionName" Type="CompanyName.ExtensionName.MyConnectionClass,
AssemblyName" />

The value for Name is the unique name of the data processing extension. The value for Type is a comma-separated list that
includes an entry for the fully qualified namespace of your class that implements the IExtension and IDbConnection
interfaces, followed by the name of your assembly (not including the .dll file extension). By default, data processing
extensions are visible. To hide an extension from user interfaces, such as Report Designer, add a Visible attribute to the
Extension element, and set it to false.

5. Finally, add a code group for your custom assembly that grants FullTrust permission for your extension. You do this by
adding the code group to the rspreviewpolicy.config file located by default in C:\Program Files\Microsoft SQL
Server\80\Tools\ReportDesigner. Your code group might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyExtensionCodeGroup"
 Description="Code group for my data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL
Server\80\Tools\ReportDesigner\MyExtensionAssembly.dll"
 />
</CodeGroup>

URL membership is only one of many membership conditions you might choose for your data processing extension. For
more information about code access security in Reporting Services, see Understanding Code Access Security in Reporting
Services.

Generic Query Designer

Report Designer provides a generic query designer that you can use with custom data processing extensions. This designer
consists of two panes: a query pane and a results pane. You can use the generic designer to write queries that are not supported
by the graphical interface. Unlike the graphical query designer, the generic query designer does not check query syntax or

restructure the query.

To enable the generic query designer for a custom extension

Add the following entry to the RSReportDesigner.config file under the Designer element, replacing the Name attribute
with the name that you provided in previous entries.

<Extension Name="ExtensionName"
Type="Microsoft.ReportDesigner.Design.GenericQueryDesigner,Microsoft.ReportingService
s.Designer"/>

Verifying the Deployment

Before you can verify deployment, you must close all instances of Visual Studio .NET on your local computer. After you have
ended all current sessions, you can verify whether your data processing extension was deployed successfully to Report Designer
by creating a new Report Project in Visual Studio .NET. Your extension should be included in the list of available data source types
when you create a new data set for your report.

See Also

Deploying a Data Processing Extension

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Debugging Data Processing Extension Code
Microsoft® .NET Framework provides several debugging tools that can help you analyze your data processing extension code
and locate errors in it. The tool that works best will depend on what you are trying to accomplish. For the purpose of this topic, the
debugging tool of choice is Visual Studio .NET 2003.

To debug your data processing extension code

1. Launch Visual Studio .NET 2003, and open your data processing extension project.
2. Build the project, and deploy your data processing extension assembly and the accompanying .pdb file to the Report

Designer. For more information about deployment, see Deploying a Data Processing Extension to Report Designer.
3. Open a new Report Project in Visual Studio while leaving your data processing extension code open in a separate window

of Visual Studio.
4. Navigate to the window of Visual Studio that contains your data processing extension project and set some break points in

your code.
5. With the data processing extension project window still active, click Process on the Debug menu.

The Processes dialog opens.

6. From the list of processes, select the devenv.exe process that corresponds to your Report Project and click Attach. When the
Attach to Process dialog opens, make sure that the program types Common Language Runtime and Native are
selected, and then click OK.

7. Define your report data source using the Data tab of the Report Project. You will most likely use the Generic Query
Designer to execute a query against your custom data source. This should invoke the debugger and execute code
corresponding to your break points.

8. Step through your code using the F11 key. For more information about using Visual Studio for debugging, see your Visual
Studio .NET documentation.

See Also

Deploying a Data Processing Extension

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Removing a Data Processing Extension
To remove a Reporting Services data processing extension, simply remove the Extension element for your data processing
extension from the configuration file. If you made entries for a report server as well as Report Designer, remove the Extension
element from both the RSReportServer.config and RSReportDesigner.config files. After the configuration information is removed,
the data processing extension is no longer available to the component.

See Also

Extending Reporting Services

Implementing a Data Processing Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing a Delivery Extension
The following table lists the topics in this section.

Topic Description
Introducing Delivery Extensions Introduces how to write a custom delivery

extension for Reporting Services.
Getting Started with a Delivery Extension
Implementation

Describes the requirements for
implementing a custom delivery
extension.

Implementing the IDeliveryExtension
Interface for a Delivery Extension

Describes the attributes of a delivery
extension, and how to implement your
own delivery extension class.

Using the Notification Class for a Delivery
Extension

Describes the attributes of a Notification
class and how to use it in your delivery
extension implementation.

Using the Setting Class for a Delivery
Extension

Describes the attributes of a Setting class
and how to use it in your delivery
extension implementation.

Using the
IDeliveryReportServerInformation
Interface for a Delivery Extension

Describes the attributes of a
IDeliveryReportServerInformation
interface and how to use it in your
delivery extension implementation.

Using the Report Class for a Delivery
Extension

Describes the attributes of a Report class
and how to use it in your delivery
extension implementation.

Using the RenderedOutputFile Class for a
Delivery Extension

Describes the attributes of a
RenderedOutputFile class and how to
use it in your delivery extension
implementation.

Implementing the
ISubscriptionBaseUIUserControl Interface
for a Delivery Extension

Describes the attributes of a delivery
extension user control and how to
implement your own user interface for a
subscription.

Deploying a Delivery Extension Describes how to deploy your delivery
extension.

Debugging Delivery Extension Code Describes how to debug code in your
delivery extension.

Removing a Delivery Extension Describes how to remove a delivery
extension from a report server.

See Also

Extending Reporting Services

Sample Printer Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Introducing Delivery Extensions
Reporting Services enables users to create and publish reports that, once created and published, can be delivered to various
locations. In addition, Reporting Services includes several delivery extensions and a delivery API that enable developers to create
additional delivery extensions to further extend the functionality of delivery in Reporting Services.

The following table lists the delivery extensions included with Reporting Services.

Delivery extension Description
Report Server E-Mail Uses an SMTP server to e-mail reports to

individual users or groups.
Report Server File Share Used to distribute reports within your

organization to network file shares.
Provides the ability to automatically copy
a report to a file share on a designated
schedule.

Delivery extensions are paired with subscriptions. When creating a subscription, a user can choose one of the available delivery
extensions to determine how the report is delivered. In Reporting Services, subscriptions are located in the report server database.
When an event occurs, Reporting Services matches the event against subscriptions contained in the report server database. For
each subscription tied to the event, the report server creates a notification. For data-driven subscriptions, a notification is created
for each recipient. Once a notification is created, the report server invokes a particular delivery extension and passes in values for
the extensions settings specified in the notification. The delivery extension sends the notification to the user as specified by the
selected delivery extension.

Delivery extensions implement the Reporting Services delivery extension API. By supporting the Reporting Services delivery
extension API, delivery extensions are able to receive notifications from the report server and provide status of the notification.

The report server does not manage delivery destinations for notifications and reports. Gathering destination information is
accomplished through the code you write in your delivery extension.

Subscriptions and Delivery Extensions

Client applications create subscriptions that use delivery extensions using two methods of the Reporting Services Web service:
CreateSubscription and CreateDataDrivenSubscription. For modifying subscriptions that already exist, the
SetSubscriptionProperties and SetDataDrivenSubscriptionProperties methods are used. When creating a subscription, the

user also selects a delivery extension for the subscription and enters values for the required extension settings. When a user saves
a subscription, it is stored in the report server database. Subscriptions create notifications based on a schedule or an event. When
a delivery begins, the selected delivery extension first loads any configuration data from the configuration file. Next, the extension
settings for the subscription are retrieved and values are set. Finally, the Deliver method is called and the notification is sent.

See Also

CreateDataDrivenSubscription Method

CreateSubscription Method

Getting Started with a Delivery Extension Implementation

Implementing a Delivery Extension

Reporting Services Extension Library

SetDataDrivenSubscriptionProperties Method

SetSubscriptionProperties Method

Reporting Services - Reporting Services Programming

Getting Started with a Delivery Extension Implementation
Before implementing a Reporting Services delivery extension, you should define the following:

The specific classes you will use to accomplish your custom delivery.
The constructors, methods, properties, and events you will implement for your delivery.
The naming convention for your classes.
The namespace for your Reporting Services delivery extension.
The DLL that will contain your delivery extension.

The following table describes the topics in this section.

Topic Description
User Requirements for Implementing a
Delivery Extension

Describes the software, hardware, and
background knowledge requirements for
implementing your own Reporting
Services delivery extension.

Preparing to Implement a Delivery
Extension

Describes the interfaces and classes
available when implementing a Reporting
Services delivery extension, as well as
issues to consider before implementation.

Creating a Delivery Extension Library Describes assigning a namespace for your
Reporting Services delivery extension and
compiling your delivery extension into a
library DLL.

See Also

Extending Reporting Services

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Developer Requirements for Implementing a Delivery
Extension
Developer Requirements for Implementing a Delivery Extension

Developing a Reporting Services delivery extension requires you to have:

A deployment computer with a report server installed.
A development computer with Microsoft Visual Studio .NET 2003 or the Microsoft .NET Framework SDK installed.
An in-depth understanding of Microsoft Reporting Services features and capabilities, specifically subscription and delivery.
An in-depth understanding of ASP.NET and Web controls if you are planning to implement your own subscription user
interface for Report Manager.
Development experience in a .NET language such as C# or Visual Basic .NET.

See Also

Extending Reporting Services

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Preparing to Implement a Delivery Extension
Preparing to Implement a Delivery Extension

Before you implement your Reporting Services delivery extension, you should define the interfaces to implement. You first need
to decide how your delivery extension will be used, what settings your delivery extension will require, and the specific
functionality you will need to implement in order to deliver report notifications.

Each Reporting Services delivery extension must provide the following functionality:

An IExtension interface implementation that represents the extension and a localized extension name.
An IDeliveryExtension implementation that creates a delivery extension that can be used to deliver report notifications to
end users.
The ability to process specific user data for a subscription.

Each delivery extension can be enhanced to include the following functionality:

An ASP.NET user control implementation that enables end users to use Report Manager to create report subscriptions that
use the delivery extension.

The following table describes the available interfaces and classes for delivery extensions.

Interface or class Description
IExtension Interface Represents an extension in Reporting

Services.
IDeliveryExtension Interface Represents a delivery extension in

Reporting Services.
IDeliveryReportServerInformation
Interface

Contains information about the report
server that is required by delivery
extensions. For example, a list of the
available rendering extensions.

Setting Class Represents a setting for an extension.
Notification Class Contains subscription information that

delivery extensions use to deliver reports.
Report Class Represents report-specific information and

methods that enable delivery extensions to
deliver reports to users.

RenderedOutputFile Class Represents the output from a rendering
extension. A RenderedOutputFile object
contains the associated file name and type
information that is required by the delivery
extension in order to process the stream
returned by the rendering extension.

ISubscriptionBaseUIUserControl
Interface

A user control that represents the means to
retrieve delivery extension-specific
subscription information from the user in
Report Manager (for example, an e-mail
addresses or the path to a file share).

See Also

Extending Reporting Services

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Creating a Delivery Extension Library
Creating a Delivery Extension Library

Each Reporting Services delivery extension you create should be assigned to a unique namespace and built into a library or
assembly file. The exact name of the namespace is not important, but it must be unique and not shared with any other extension.
You should create your own unique namespaces for your company's delivery extensions.

The following example shows the code to begin a Reporting Services delivery extension, which uses the namespaces that contain
the delivery interfaces and any utility classes.

Visual Basic

Imports System
Imports Microsoft.ReportingServices.Interfaces

Namespace CompanyName.ExtensionName
 ...

C#

using System;
using Microsoft.ReportingServices.Interfaces;

namespace CompanyName.ExtensionName
{
 ...

When compiling a Reporting Services delivery extension, you must supply to the compiler a reference to
Microsoft.ReportingServices.Interfaces.dll, because the delivery extension interfaces and classes are contained there. The
Microsoft.ReportingServices.Interfaces namespace is needed to implement the IExtension interface, the IDeliveryExtension
interface, and more. For example, if all the files containing the code to implement a Reporting Services delivery extension, written
in C#, were in a single directory with the extension .cs, the following command would be issued from that directory to compile the
files stored in CompanyName.ExtensionName.dll.

csc /t:library /out:CompanyName.ExtensionName.dll *.cs /r:System.dll
/r:Microsoft.ReportingServices.Interfaces.dll

The following code example shows the command that would be used for Visual Basic files, with the extension .vb.

vbc /t:library /out:CompanyName.ExtensionName.dll *.vb /r:System.dll
/r:Microsoft.ReportingServices.Interfaces.dll

Note You can also design, develop, and build your delivery extension using Visual Studio. For more information
about developing assemblies in Visual Studio, see your Visual Studio .NET 2003 documentation.

See Also

Extending Reporting Services

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing the IDeliveryExtension Interface for a Delivery
Extension
Your delivery extension class is used to deliver report notifications to users based on the contents of the notifications. The delivery
extension class also provides infrastructure for validating user settings that are passed to the delivery extension. In addition, your
delivery extension class should contain specific properties that clients can use to gain information about the name of the
extension, the settings that the extension supports, and the rendering formats that are available to the delivery extension.

To create a delivery extension class, implement IDeliveryExtension and IExtension. The IDeliveryExtension interface enables
your delivery extension to deliver report notifications using the Deliver method and to validate incoming extension settings using
the ValidateUserData method. The IExtension interface enables your delivery extension to implement a localized extension
name and to process extension-specific configuration information stored in the Reporting Services configuration file. By
implementing IExtension, your delivery extension contains the LocalizedName property. It is strongly recommended that
Reporting Services delivery extensions support the LocalizedName property, so that users encounter a familiar name for the
extension in a user interface, such as Report Manager.

Your delivery extension must also implement the ExtensionSettings property of the IDeliveryExtension interface. The report
server uses the value returned by the ExtensionSettings property to evaluate the settings that a delivery extension requires.
Clients that interact with delivery extensions use the GetExtensionSettings method of the Reporting Services Web service to
return a list of settings for the delivery extension.

You can also use your delivery extension class to retrieve and process custom configuration data stored in the
RSReportServer.config file. For more information about processing custom configuration data, see SetConfiguration Method.

For a sample IDeliveryExtension class implementation, see Sample Printer Delivery Extension.

See Also

Deliver Method

ExtensionSettings Property

GetExtensionSettings Method

IDeliveryExtension Interface

IExtension Interface

Implementing a Delivery Extension

LocalizedName Property

Reporting Services Extension Library

ValidateUserData Method

Reporting Services - Reporting Services Programming

Using the Notification Class for a Delivery Extension
The Notification class is located in the Microsoft.ReportingServices.Interfaces namespace and represents subscription
information that delivery extensions use for delivering reports. The Notification class provides a number of properties that can
be used to render the reports for delivery, determine the status of the notification, and set user data.

When an event fires that is associated with a subscription that uses your custom delivery extension, a notification is created that
contains a Report object. The Report object encapsulates the functionality needed to render a given report to a supported
rendering format and contains report-specific properties, such as the URL to the report on the server and the name of the report.
For more information about the Report class, see Using the Report Class for a Delivery Extension.

You pass the Notification object to the Deliver method of your delivery extension. Your Deliver method should contain specific
code to process the notification and to deliver the report.

For an example of how to use the Notification class, see Sample Printer Delivery Extension.

Retry Functionality

Reporting Services allows you to create a retry queue for notifications that cannot immediately be delivered. After the report
server invokes the Deliver method of a delivery extension, the delivery extension can request that the report server retry the
delivery at a later point in time. If this occurs, the report server places the notification in an internal queue and retries the delivery
after a specific period of time has elapsed. Administrators can configure the maximum number of retry attempts that the report
server performs and the period between retries in the delivery extension section of the RSReportServer.config file using the
MaxNumberOfRetries XML element and the PeriodBetweenRetries XML element. Notifications are removed from the retry
queue if delivery later succeeds or if the maximum number of retry attempts is reached. If delivery fails after the maximum
number of retries, the notification is discarded.

See Also

Deliver Method

Implementing a Delivery Extension

Notification Class

Report Class

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Using the Setting Class for a Delivery Extension
The Setting class is located in the Microsoft.ReportingServices.Interfaces namespace and represents information about
extension settings for a delivery extension. The Setting class provides infrastructure for storing information about the settings
that are required in order for a delivery extension to function properly. For example, in Report Server E-Mail delivery, a user is
required to supply settings specific to e-mail delivery, such as the recipient's address, the sender's address, the subject line of the
e-mail, and more. Undoubtedly, your custom delivery providers will require the user to supply specific settings in order for the
delivery extension to deliver notifications and reports.

The Setting class is used when implementing the ExtensionSettings property of the IDeliveryExtension interface. The Setting
class is also used for processing the extension setting data that is supplied by a user when a subscription or notification is created.

For an example of how to use the Setting class, see Sample Printer Delivery Extension.

See Also

ExtensionSettings Property

Implementing a Delivery Extension

Setting Class

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Using the IDeliveryReportServerInformation Interface for a
Delivery Extension
The IDeliveryReportServerInformation interface exposes several properties that you can use to retrieve information about a
report server. You can use this information to deliver notifications and reports. When implementing your delivery extension class,
you implement the ReportServerInformation property as required by the IDeliveryExtension interface. The
ReportServerInformation property returns an object that implements the IDeliveryReportServerInformation interface. From
this object you can get a list of rendering extensions currently supported by the report server.

The following for loop could be used to store a list of rendering extensions currently available on the report server in an
ArrayList object.

Visual Basic

Dim renderFormats As New ArrayList()
Dim e As Microsoft.ReportingServices.Interfaces.Extension
For Each e In ReportServerInformation.RenderingExtension
 If e.Visible Then
 renderFormats.Add(e.Name)
 End If
Next e

C#

ArrayList renderFormats = new ArrayList();
foreach (Microsoft.ReportingServices.Interfaces.Extension e in
ReportServerInformation.RenderingExtension)
{
 if (e.Visible)
 {
 renderFormats.Add(e.Name);
 }
}

For more information about the IDeliveryReportServerInformation interface, see IDeliveryReportServerInformation Interface.

See Also

ReportServerInformation Property

Implementing a Delivery Extension

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Using the Report Class for a Delivery Extension
The Report class represents a report in the report server database. Any subscription is associated with a specific report. The
report is contained in the notification. Your delivery extension can use the Report object that is part of the notification to render
the report. The Report object also contains report-specific properties such as the URL to the report on the report server and the
name of the report. These properties can all be used as part of your delivery provider.

The Render method of the Report class can be used to render a report. The Render method returns an array of one or more
RenderedOutputFile objects that together comprise a single rendered report. The first RenderedOutputFile object is the
rendered report; any other RenderedOutputFile objects are resources that must be delivered along with the report data, for
example, an HTML file and associated images. Rendering extensions that are single-stream rendering extensions (IMAGE, PDF,
MHTML, and Excel) return only one RenderedOutputFile object in the array.

The RenderedOutputFile object, which contains the report stream, can be included as part of a delivery.

For a an example of how to use the Report class, see Sample Printer Delivery Extension.

See Also

Implementing a Delivery Extension

Render Method

RenderedOutputFile Class

Report Class

Reporting Services Extension Library

Using the RenderedOutputFile Class for a Delivery Extension

Reporting Services - Reporting Services Programming

Using the RenderedOutputFile Class for a Delivery Extension
The RenderedOutputFile class represents a data stream and information about the data stream's associated properties. The
Data property of the RenderedOutputFile class is used to represent a rendered report or report resource as a Stream object.

The Render method of the Report object returns an array of one or more RenderedOutputFile objects that together constitute
a single rendered report. The first RenderedOutputFile object is the rendered report; any other RenderedOutputFile objects
are resources that must be delivered along with the report data, for example, an HTML file and associated images. Rendering
extensions that are single-stream rendering extensions (IMAGE, PDF, MHTML, and EXCEL) return only one RenderedOutputFile
object in the array.

For a an example of how to use the RenderedOutputFile class, see Sample Printer Delivery Extension.

See Also

Implementing a Delivery Extension

Render Method

RenderedOutputFile Class

Reporting Services Extension Library

Report Class

Using the RenderedOutputFile Class for a Delivery Extension

Reporting Services - Reporting Services Programming

Implementing the ISubscriptionBaseUIUserControl Interface
for a Delivery Extension
Delivery extensions for Reporting Services can contain an implementation of a subscription user interface (UI) for gathering
extension-specific information in Report Manager. The UI is invoked when a user creates a new subscription or modifies an
existing one. When a new subscription is being created, the UI displays suitable default values and enables users to interact with
the delivery provider. When a subscription is being modified, the UI is pre-populated with the information in the current
subscription.

Delivery extensions provide subscription UI as a WebForm user control. The report server incorporates the user control defined
by the delivery extension when displaying the subscriptions UI. The base interface that provides abstract methods enabling this
functionality is the ISubscriptionBaseUIUserControl interface. This interface ensures that common operations, such as
validation of input values, are correctly performed. Additionally, the base user control supplies a set of default properties that are
used by the report server for consistency across subscriptions. These properties are required by delivery extensions that are
integrated with Report Manager.

You can implement the ISubscriptionBaseUIUserControl interface in a delivery provider in order to build a subscription UI for
Report Manager. The ISubscriptionBaseUIUserControl interface provides infrastructure for enabling users to enter values for
subscription settings, for processing the settings needed for the delivery extension, and for validating the settings.

Note You are not required to implement the ISubscriptionBaseUIUserControl interface as part of your delivery
extension. Subscriptions that use your delivery extension can always be created through the SOAP API methods
CreateSubscription and CreateDataDrivenSubscription instead. For more information about the SOAP API
features for managing subscription and delivery, see Subscription and Delivery Methods.

The ISubscriptionBaseUIUserControl interface extends IExtension. Your user control that implements
ISubscriptionBaseUIUserControl must also inherit from System.Web.UI.WebControls.WebControl. For more information
about the WebControl class, see your .NET Framework Developer's Guide.

For a an example of how to use the ISubscriptionBaseUIUserControl interface, see Sample Printer Delivery Extension.

See Also

Implementing a Delivery Extension

ISubscriptionBaseUIUserControl Interface

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Deploying a Delivery Extension
Delivery extensions supply their configuration information in the form of an XML configuration file. The XML file conforms to the
XML schema defined for delivery extensions. Delivery extensions provide infrastructure for setting and modifying the
configuration file.

If a delivery extension is replaced or upgraded, all subscriptions that reference the delivery extension remain valid.

Once you have written and compiled your Reporting Services delivery extension into a .NET Framework library, you must copy
the extension to the appropriate directory and add an entry to the appropriate Reporting Services configuration file, so the report
server can locate it.

Configuration-File Extension Element

Delivery extensions that you deploy to the report server need to be entered as Extension elements in the configuration file. The
configuration file for the report server is RSReportServer.config.

The following table describes the attributes for the Extension element for delivery extensions.

Attribute Description
Name A unique name for the extension; for

example, "Report Server E-Mail" for the e-
mail delivery extension or "Report Server
FileShare" for the file share delivery
extension. The maximum length for the
Name attribute is 255 characters. The
name must be unique among all entries
within the Extensions element of a
configuration file. If a duplicate name is
present, the report server returns an error.

Type A comma-separated list that includes the
fully qualified namespace along with the
name of the assembly.

Visible A value of false indicates that the delivery
extension should not be visible in user
interfaces. If the attribute is not included,
the default value is true.

For more information about the RSReportServer.config file, see Reporting Services Configuration Files.

Deploying the Extension to the Report Server

The report server uses delivery extensions for processing and delivering notifications or reports. You should deploy your delivery
extension assembly to the report server as a private assembly. You also need to make an entry in the report server configuration
file, RSReportServer.config.

To deploy the assembly

1. Copy your assembly from your staging location to the bin directory of the report server on which you want to use the
delivery extension. The default location of the report server bin directory is C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer\bin.

Important If you are attempting to overwrite an existing delivery extension assembly, you must first stop the
ReportServer service before copying the updated assembly. Restart your service after the assembly is through
copying.

2. After the assembly file is copied, open the RSReportServer.config file. The RSReportServer.config file is located in the
ReportServer directory. You need to make an entry in the configuration file for your delivery extension assembly file. You
can open the configuration file with Visual Studio .NET or a simple text editor, such as Notepad.

3. Locate the Delivery element in the RSReportServer.config file. An entry for your newly created delivery extension should be
made in the following location:

<Extensions>

 <Delivery>
 <Your extension configuration information goes here>
 </Delivery>
</Extensions>

4. Add an entry for your delivery extension. Your entry should include an Extension element with values for Name and Type,
and might look like the following:

<Extension Name="My Delivery Extension Name"
Type="CompanyName.ExtensionName.MyDeliveryExtensionClass, AssemblyName" />

The value for Name is the unique name of the delivery extension. The value for Type is a comma-separated list that
includes an entry for the fully qualified namespace of your class that implements the IDeliveryExtension interface,
followed by the name of your assembly (not including the .dll file extension). By default, delivery extensions are visible. To
hide an extension from user interfaces, such as Report Manager, add a Visible attribute to the Extension element, and set it
to false.

5. Finally, add a code group for your custom assembly that grants FullTrust permission for your delivery extension. You do
this by adding the code group to the rssrvpolicy.config file located by default in C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer. Your code group might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyExtensionCodeGroup"
 Description="Code group for my delivery extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\MyExtensionAssembly.dll"
 />
</CodeGroup>

URL membership is only one of many membership conditions you might choose for your delivery extension. For more
information about code access security in Reporting Services, see Understanding Code Access Security in Reporting
Services.

Deploying the Extension to Report Manager

If your delivery extension implements the ISubscriptionBaseUIUserControl interface, your delivery extension can be used with
the Report Manager Subscription page. To make the subscription user interface available, you need to deploy your extension to
Report Manager.

To deploy the assembly

1. Copy your assembly from your staging location to the bin directory of Report Manager. The default location of the Report
Manager bin directory is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager\bin.

2. After the assembly file is copied, open the RSWebApplication.config file. The RSWebApplication.config file is located in the
ReportManager directory. You need to make an entry in the configuration file for your delivery extension assembly file. You
can open the configuration file with Visual Studio .NET or a simple text editor, such as Notepad.

3. Locate the DeliveryUI element in the RSWebApplication.config file. An entry for your newly created delivery extension
should be made in the following location:

<Extensions>
 <DeliveryUI>
 <Your extension configuration information goes here>
 </DeliveryUI>
</Extensions>

4. Add an entry for your delivery extension. Your entry should include an Extension element with values for Name and Type,
and might look like the following:

<Extension Name="My Delivery Extension Name"

Type="CompanyName.ExtensionName.MyDeliveryUIExtensionClass, AssemblyName" />

The value for Name is the unique name of the delivery extension. The value for Type is a comma-separated list that
includes an entry for the fully qualified namespace of your class that implements the ISubscriptionBaseUIUserControl
interface, followed by the name of your assembly (not including the .dll file extension).

Important The value of the Name attribute must be identical for both the Report Server and Report Manager
configuration file entries. If they are not identical, your server configuration is not valid.

5. Finally, add a code group for your custom assembly that grants FullTrust permission for your delivery extension. You do
this by adding the code group to the rsmgrpolicy.config file located by default in C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportManager. Your code group might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyExtensionCodeGroup"
 Description="Code group for my delivery UI extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportManager\bin\MyExtensionAssembly.dll"
 />
</CodeGroup>

URL membership is only one of many membership conditions you might choose for your delivery extension. For more
information about code access security in Reporting Services, see Understanding Code Access Security in Reporting
Services.

Verifying the Deployment

You can verify whether your delivery extension was deployed successfully to the report server by using the Web service method
ListExtensions. You can also open Report Manager and verify that your extension is included in the list of available delivery
extensions for a subscription. For more information about ListExtensions, see ListExtensions Method. For more information
about Report Manager and subscriptions, see Distributing Reports Through Subscriptions.

See Also

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Debugging Delivery Extension Code
Microsoft® .NET Framework provides several debugging tools that can help you analyze your delivery extension code and locate
errors in it. The tool that works best will depend on what you are trying to accomplish. For the purpose of this topic, the
debugging tool of choice is Visual Studio .NET 2003.

To debug your delivery extension code

1. Launch Visual Studio .NET 2003 and open your delivery extension project.
2. Build the project and deploy your delivery extension assembly and the accompanying .pdb file to the Report Server and

Report Manager. For more information about deployment, see Deploying a Delivery Extension.
3. If you have written a subscription user interface to extend Report Manager, open Internet Explorer and navigate to Report

Manager while leaving your delivery extension code open in Visual Studio. If you do not have a subscription user interface
deployed for Report Manager, simply open the client application from which you call your delivery extension using the
SOAP API.

4. Navigate to Visual Studio and your delivery extension project, and set some break points in your code.
5. With the delivery extension project still the active window, click Process on the Debug menu.

The Processes dialog opens.

6. From the list of processes, select the aspnet_wp.exe process (or w3wp.exe if your application is deployed on IIS 6.0), and
click Attach. When the Attach to Process dialog opens, make sure that the program types Common Language Runtime
and Native are selected, and then click OK..

7. Define a new subscription using your delivery extension. You will most likely use Report Manager or the SOAP API. This
should invoke the debugger and execute code corresponding to your break points.

8. Step through your code using the F11 key. For more information about using Visual Studio for debugging, see your Visual
Studio .NET documentation.

See Also

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Removing a Delivery Extension
To remove a Reporting Services delivery extension, simply remove the Extension element for your delivery extension from the
configuration file. After the configuration information is removed, the delivery extension is no longer available to the report
server.

Once a delivery extension's corresponding Extension element is removed from the configuration file, it is no longer registered
with the report server. The report server removes the entry from the list of delivery extensions and deactivates any subscriptions
which use that delivery extension. When a delivery extension is removed, users are no longer able to select it as a method of
notification.

See Also

Implementing a Delivery Extension

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Implementing a Rendering Extension
A rendering extension is a module of a report server that transforms report data and layout information into a device-specific
format. Reporting Services includes six rendering extensions: HTML, Excel, Text, XML, Image, and PDF. You can create additional
rendering extensions to generate reports in other formats.

To determine which rendering extensions are available, you can view the list of installed extensions in the RSReportServer.config
file. The RSReportServer.config file is located in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin folder, if the default installation location was selected during installation.

Note The documentation to support custom rendering extension development is not yet complete. Microsoft is
working to make documentation available soon. For the latest technical resources, visit the Reporting Services Web
site.

The following table describes the rendering extensions that are included with Reporting Services.

Extension name Description
XML Renders a report in XML. The report opens

in a browser. Applying additional
transformations to this XML output may
be a cost-effective way to avoid
developing your own rendering extension.

CSV Renders a report in comma-delimited
format. The report opens in a viewing tool
associated with CSV file formats.

IMAGE Renders a report in a page-oriented
format. The format is shown as TIFF in the
Export list of the report toolbar.

PDF Opens a report in Adobe Acrobat Reader.
The format is shown as Acrobat (PDF)
File in the Export list of the report
toolbar.

EXCEL Renders a report in Microsoft Excel.
HTML4.0 (part of the HTML rendering
extension)

Renders the report in HTML. HTML4.0 is
used if your browser supports it.
Otherwise, HTML3.2 is used.

HTML 3.2 (part of the HTML rendering
extension)

HTML is the format used to initially render
the report. HTML4.0 is used if your
browser supports it. Otherwise, HTML3.2
is used.

MHTML (part of the HTML rendering
extension)

Renders a report in MHTML. The report
opens in Internet Explorer. The format is
shown as Web Archive in the Export list
of the report toolbar.

HTMLOWC (part of the HTML rendering
extension)

Renders a report in an Office Web
Component that loads within the browser
window. The format is shown as HTML
with Office Web Components in the
Export list of the report toolbar.

NULL Does not render a report to a specific
format. This rendering extension is useful
for placing reports in cache in anticipation
of a high volume of requests for a given
report. Null rendering should be used in
conjunction with a scheduled execution or
delivery.

For more information on the recommended formats and their uses, see "Exporting Reports" in SQL Server 2000 Reporting
Services Books Online.

Writing Custom Rendering Extensions

http://go.microsoft.com/fwlink/?linkid=19951

Before you decide to create a custom rendering extension, you should evaluate simpler alternatives. You can:

Create a modified version of an existing rendering extension.
Customize rendered output by specifying device information settings for existing extensions.
Add custom formatting and presentation features by combining XSL Transformations (XSLT) with the output of the XML
rendering format.

Writing a custom rendering extension is difficult to do as well as to learn.. A rendering extension must typically support all
possible combination of report elements. The report object model is extensive (the classes, interfaces, methods, and properties
that you must implement number in the hundreds), and the documentation and samples are not yet at a level that can support
you through a challenging development project.

If you must render a report in a format that is not included with Reporting Services, you can write your own managed code
implementation of a rendering extension. The rendering extension code must implement the IRenderingExtension interface,
which is required by the report server. Each of the rendering extensions implemented by Microsoft and shipped with Reporting
Services uses a common set of interfaces. This ensures that each extension implements comparable functionality and reduces the
complexity of the rendering code in the core of the report server.

Available Documentation

As stated previously, the documentation to support custom rendering extension development is not yet complete. Microsoft is
working to make documentation available soon. For the latest technical resources, visit the Reporting Services Web site.

See Also

Extending Reporting Services

Reporting Services Extension Library

http://go.microsoft.com/fwlink/?linkid=19951

Reporting Services - Reporting Services Programming

Implementing a Security Extension
A security extension enables the authentication and authorization of users or groups in Reporting Services. Reporting Services
enables different users to log into a report server and, based on their identities, perform different tasks or operations. By default,
Reporting Services uses a Windows-based extension to authenticate the identities of users who claim to have Windows accounts
on the system. For authorization, Reporting Services uses a role-based security system similar to the role-based security models
of other technologies. For more information about role-based security in Reporting Services, see Understanding Role-Based
Security.

Although Reporting Services supports authentication and authorization of Windows NT users or groups, you may need to extend
the Reporting Services security system to accommodate custom security in your enterprise. Custom authentication and
authorization may be appropriate for extending Reporting Services in the following cases:

You have an internet or extranet application where users do not have Windows accounts.
You need for users to have a single sign-on experience, which authenticates and authorizes users to multiple applications in
a custom business solution that includes Reporting Services.
You have a custom user store for user names and passwords or you are using Lightweight Directory Access Protocol (LDAP)
to authenticate users and to set security policies.

Security extensions are .NET-managed assemblies that support the interfaces described in the
Microsoft.ReportingServices.Interfaces Namespace documentation.

Note The report server does not support authentication and authorization of users through multiple security
extensions..

Security Note To secure communication between clients and the report server, user credentials must be sent over a
network using a combination of Secure Sockets Layer (SSL) and Internet Protocol Security (IPSec). This includes the
connectivity between an application and the Reporting Services Web service and the communication between a
custom security extension and custom security authority.

WARNING – Security Risk

Designing authentication and authorization mechanisms requires a high degree of computer programming expertise, and failure
to take appropriate security measures can result in a serious security risk. For example, improperly encrypting, storing, or
retrieving user credentials can open up your report server to unauthorized users, as can improperly authorizing Reporting
Services operations. Accordingly, extending the authentication and authorization functionality of Reporting Services is not
recommended without the assistance of Microsoft support professionals.

If you have any questions or concerns regarding Reporting Services security extensions, please contact Microsoft Consulting
Services (MCS), Premier Support Services (PSS), or another Microsoft support services representative.

Available Documentation

Although the programmatic interfaces for developing a custom security extension are documented in Books Online, detailed
development and deployment information for security extensions is not available at this time. Further documentation for this
feature will be available outside of Books Online. For the latest technical resources, visit the Reporting Services Web site.

See Also

Extending Reporting Services

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services Extension Library

http://go.microsoft.com/fwlink/?linkid=19951

Reporting Services - Reporting Services Programming

Security Considerations for Extensions
Every application that targets the common language runtime (CLR) must interact with the CLR security system. When such an
application runs, it is automatically evaluated and given a set of permissions by the CLR. Depending on the permissions that the
application receives, it either continues running or generates a security exception. The local security settings and policies in the
security policy configuration files for a particular report server define the code permissions that an assembly receives.

Before requesting permissions, you need to be aware of the resources and protected operations your extension code is planning
to use, and you also need to know which permissions protect those resources and operations. In addition, you need to keep track
of any resources accessed by any class library methods that are called by the extension components. For more information, see
"Requesting Permissions" in the .NET Framework Developer's Guide.

Extensions deployed to a report server must run as fully trusted, meaning that your extension needs to be part of a code group
that is granted the FullTrust permission set. This also means that your extension may have access to certain server resources and
operations available through the CLR depending on the user that is being authenticated for a particular report. For more
information about code groups and extensions, see Introducing Code Access Security in Reporting Services.

Security Note Reporting Services enforces .NET Framework security for all of its extensions.

The following conditions apply to the deployment of data processing, delivery, rendering, and security extensions in Reporting
Services:

Only the local administrator has permission to deploy an extension.
Only users with the appropriate read/write permissions can change the configuration files for the Reporting Services
component that is being extended.
Only privileged users have permission to edit the security policy files and enable code access security for an extension.

For more information about code access security in Reporting Services, see Understanding Code Access Security in Reporting
Services.

For more information about .NET Framework security, see ".NET Framework Security" in your .NET Framework Developer's Guide.

Initialization of Extension Assemblies

When extensions are first loaded into memory by the report server, they use the service account credentials, because some
extension assemblies require specific permissions to access system resources, to read configuration files, and to load other,
dependent assemblies. After an assembly has been loaded and initialized, however, all subsequent calls to extension assemblies
use the credentials of the user account that is currently logged on.

See Also

Extending Reporting Services

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Generating Report Definition Language Programmatically
Report Definition Language (RDL) is a set of instructions that describe layout and query information for a report. RDL is
composed of Extensible Markup Language (XML) elements that conform to an XML grammar created for Reporting Services. RDL
describes the XML elements, which encompass all possible variations that a report can assume.

RDL promotes the interoperability of commercial reporting products by defining a common schema that enables the interchange
of report definitions as a standard way of communicating using reports.

RDL is not a programmatic interface or protocol like HTTP or ODBC. It does not specify how report definitions are passed between
applications or how reports are processed. Because RDL is fully encapsulated, you can write code that interprets an RDL
document without having to know anything about the source application. Any protocol or programmatic interface that works with
XML can be used with RDL. RDL is:

An XML schema for report definitions.
An interchange format for businesses and third parties.
An extensible and open schema that supports additional namespaces and custom elements.

There are two primary agents that interact with RDL: consumers and producers. Consumers are applications that can interpret
RDL and generate reports that can be viewed by end users. Consumers must be able to read RDL, retrieve data, and produce a
report output format that can be displayed in a human or machine-readable report. An example of a consumer of RDL is the
report server.

Producers, on the other hand, are applications that can generate RDL based on input from tools that enable users to design and
create reports. One example of a producer of RDL is Report Designer.

Because of the open and extensible nature of RDL, a variety of tools and applications can be built that generate RDL based on its
XML schema. One of the easiest ways to generate RDL from an application is to use the Microsoft .NET Framework classes of the
System.Xml namespace. One class in particular, the XmlTextWriter class, can be used to write RDL according to the
specification and compliance level agreed upon by the consumer and producer. With XmlTextWriter, you can generate a
complete report definition from start to finish in any Microsoft .NET application. For more on the XmlTextWriter class and the
System.Xml namespace, see the Microsoft .NET Framework Developer's Guide.

For an example of how to build a simple application that generates RDL, see Walkthrough – Generating RDL Using the .NET
Framework.

See Also

Report Definition Language

Reporting Services Programming

Reporting Services - Reporting Services Programming

Using Custom Assemblies with Reports
In Reporting Services, you can write custom code for report item values, styles, and formatting. For example, you can use custom
code to format currencies based on locale, flag certain values with special formatting, or apply other business rules that are in
practice for your company. One way to include this code in your reports is to create a custom code assembly using the .NET
Framework that you can reference from within your report definition files. The server calls the functions in your custom
assemblies when a report is run. Custom assemblies can be used to retrieve specialized functions that you plan to use in your
reports.

The following table describes the topics in this section.

Topic Description
Referencing Assemblies in an RDL File Describes how to reference your custom

assemblies in a report definition language
file.

Deploying a Custom Assembly Describes how to deploy a custom
assembly to Report Designer and the
report server.

Using Strong Named Custom Assemblies Describes how to use custom assemblies
with strong names.

Asserting Permissions in Custom
Assemblies

Describes how to deploy custom
assemblies with limited and specific
permissions and how to assert those
permissions in code.

Accessing Custom Assemblies Through
Expressions

Describes how to call custom assembly
methods as report expressions in your
report definitions.

Initializing Custom Assembly Objects Describes how to initialize values for
custom assembly objects called from a
report.

Debugging Custom Assemblies Describes how to debug your custom
assembly code.

See Also

Report Definition Language

Reporting Services Programming

Reporting Services - Reporting Services Programming

Referencing Assemblies in an RDL File
To support the use of custom code assemblies in report definition files, two Report Definition Language (RDL) elements are
included in the RDL specification: the CodeModules element and the Classes element.

The CodeModules element enables you to refer to managed code assemblies in report expressions. CodeModules is a top-level
element that contains the reference to the assembly that you use in your report definition files to call specialized functions. An
entry in a report definition that supports the use of a custom assembly might look like the following:

<CodeModules>
 <CodeModule>CurrencyConversion, Version=1.0.1363.31103, Culture=neutral,
PublicKeyToken=null</CodeModule>
</CodeModules>

You can manually add CodeModule elements to your RDL file or you can use the Code tab of the Report Properties dialog to
add references to assemblies in your report. For more information, see Writing Custom Code.

The Classes element supports the use of instance members in a report definition. Classes is a top-level element that contains a
reference to the class name and an instance name. An entry in a report definition that supports the use of instance members
might look like the following:

<Classes>
 <Class>
 <ClassName>CurrencyConversion.DollarCurrencyConversion</ClassName>
 <InstanceName>m_myDollarConversion</InstanceName>
 </Class>
</Classes>

For more information, see Accessing Custom Assemblies Through Expressions.

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Deploying a Custom Assembly
You need to place custom assemblies in the application folders of Report Designer and the report server. Additionally, to use
custom assemblies you need to edit the configuration file rssrvpolicy.config for the report server and the configuration file
rspreviewpolicy.config for the Report Designer preview window. By default, custom assemblies are granted Execution
permission in Reporting Services.

Note There are two preview modes for Report Designer: the preview tab and the pop-up preview window that is
launched when your report project is started in DebugLocal mode. The preview tab executes all report expressions
using the FullTrust permission set and does not apply security policy settings. The pop-up preview window is meant
to simulate the report server functionality and therefore has a policy configuration file that you or an administrator
must modify to use custom assemblies in Report Designer. This pop-up preview also locks the custom assembly.
Therefore, you need to close the preview window in order to modify or update your custom assembly code.

To deploy a custom assembly

1. Copy your custom assembly from your build location to the report server bin folder or the Report Designer folder. The
default location of the bin folder for the report server is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin. The default location of the Report Designer is C:\Program Files\Microsoft SQL
Server\80\Tools\Report Designer.

2. Open the appropriate configuration file. The default location of rssrvpolicy.config is C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer. The default location of rspreviewpolicy.config is C:\Program
Files\Microsoft SQL Server\80\Tools\Report Designer.

3. Add a code group for your custom assembly if you need to increase code permissions beyond the default execution
permissions. For more information, see Understanding Code Access Security in Reporting Services.

Updating Custom Assemblies

At some point, you may need to update a version of a custom assembly that is currently being referenced by several published
reports. If that assembly already exists in the bin directory of the report server or Report Designer and the version number of the
assembly is incremented or changed in some way, the currently published reports will no longer work properly. You will need to
update the version of the assembly that is referenced in the CodeModules element of the report definition and republish the
reports.

If you know that you will frequently update a custom assembly and your currently published reports need to reference the new
assembly, you may want to consider using the same version number across all updates of a particular assembly. If you do not
need your currently published reports to reference the new version of the assembly, you can deploy your custom assembly to the
Global Assembly Cache. The Global Assembly Cache can maintain multiple versions of the same assembly, so that your current
reports can reference the previous version of your assembly and your newly published reports can reference the updated
assembly. Yet another approach would be to set the binding redirect of the report server to force a redirect of all requests for the
old assembly to the new assembly. You would need to modify the report server Web.config file and the report server
ReportService.exe.config file. The entry might look like the following:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="neutral" />
 <bindingRedirect oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Using Strong-Named Custom Assemblies
A strong name identifies an assembly and includes the assembly's text name, four-part version number, culture information (if
provided), a public key, and a digital signature stored in the assembly's manifest.

A strong name uniquely identifies an assembly to the common language runtime (CLR) and ensures binary integrity. To use
strong-named assemblies with reports, you must allow your strong-named assembly to be called by partially trusted code using
the assembly attribute AllowPartiallyTrustedCallersAttribute.

Using AllowPartiallyTrustedCallersAttribute

You can use AllowPartiallyTrustedCallersAttribute to allow strong-named assemblies to be called by Report Designer or the
report server in report expressions. Using AllowPartiallyTrustedCallersAttribute is the recommended way to incorporate
strong-named assemblies into your reports.

Security Note Before deploying an assembly that contains AllowPartiallyTrustedCallersAttribute to your report
server, you should review what operations and resources its public members can access. Always perform a security
review before deploying custom assemblies to your report server.

To allow partially trusted code to call strong-named assemblies

In your assembly attribute file, add the following assembly-level attribute:

Visual Basic

<assembly:AllowPartiallyTrustedCallers>

C#

[assembly:AllowPartiallyTrustedCallers]

AllowPartiallyTrustedCallersAttribute is only effective when applied by a strong-named assembly at the assembly level. For
more information about applying attributes at the assembly level, see "Applying Attributes" in the Microsoft .NET Framework SDK
documentation.

Caution The presence of this assembly-level attribute prevents the default behavior of placing FullTrust
LinkDemand security checks, making the assembly callable from any other partially trusted assembly.

When AllowPartiallyTrustedCallersAttribute is present, all other security checks function as intended, including any class-level
or method-level declarative security attributes that are present. This attribute blocks only the implicit, fully trusted caller demand.

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Asserting Permissions in Custom Assemblies
By default, custom assembly code runs with the limited Execution permission set. In some cases, you may wish to implement a
custom assembly that makes secured calls to protected resources within your security system (such as a file or the registry). In
order to accomplish this, you must do the following:

1. Identify the exact permissions that your code needs in order to make the secured call. If this is a method that is part of a
.NET Framework library, this information should be included in the method documentation.

2. Modify the report server policy configuration files in order to grant the custom assembly the required permissions. For
more information about the security policy configuration files, see Using Reporting Services Security Policy Files.

3. Assert the required permissions as part of the method in which the secure call is made. This is required because the custom
assembly code that is called by the report server is part of the report expression host assembly which runs with Execution
by default. The Execution permission set enables code to run (execute), but not to use protected resources.

4. Mark the custom assembly with AllowPartiallyTrustedCallersAttribute if it is signed with a strong name. This is required
because custom assemblies are called from a report expression that is part of the report expression host assembly, which by
default is not granted FullTrust; thus it is a 'partially trusted' caller. For more information, see Using Strong Named Custom
Assemblies.

Security Note Whenever you implement custom assemblies for use in your report expressions, you should
only grant narrowly targeted permissions to these assemblies to mitigate the risk of the assembly code being
misused. Granting FullTrust or other broad-reaching permission sets is not recommended.

Implementing a Secure Call

You can modify the policy configuration files to grant your assembly specific permissions. For example, if you were writing a
custom assembly to handle currency conversion, you might need to read the current currency exchange rates from a file. To
retrieve the rate information, you would need to add an additional security permission, FileIOPermission, to your permission set
for the assembly. You can make the following additional entry in the policy configuration file:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="CurrencyRatesFilePermissionSet"
 Description="A special permission set that grants read access to my currency rates
file.">
 <IPermission class="FileIOPermission"
 version="1"
 Read="C:\CurrencyRates.xml"/>
 <IPermission class="SecurityPermission"
 version="1"
 Flags="Execution, Assertion"/>
</PermissionSet>

You then add a code group that references that permission set:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="CurrencyRatesFilePermissionSet"
 Name="MyNewCodeGroup"
 Description="A special code group for my custom assembly.">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\CurrencyConversion.dll"/>
</CodeGroup>

The previous entry represents a permission set and a code group for your assembly.

In order for your code to acquire the appropriate permission, you must assert the permission within your custom assembly code.
For example, if you want to add read-only access to an XML file, C:\CurrencyRates.xml, you must add the following code to your
method:

// C#
FileIOPermission permission = new FileIOPermission(FileIOPermissionAccess.Read,
@"C:\CurrencyRates.xml");
try
{

 permission.Assert();
 // Load the XML currency rates file
 XmlDocument doc = new XmlDocument();
 doc.Load(@"C:\CurrencyRates.xml");
...

You can also add the assertion as a method attribute:

[FileIOPermissionAttribute(SecurityAction.Assert, Read=@"C:\CurrencyRates.xml")]

For more information, see ".NET Framework Security" in the .NET Framework Developer's Guide.

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Accessing Custom Assemblies Through Expressions
Once you have created a custom assembly, made it available to Report Designer or the report server, added the appropriate
security policy, and added a reference to your custom assembly in your report definition, you can access the members of the
classes in your assembly using report expressions. To refer to custom code in an expression, you must call the member of a class
within the assembly. How you do this depends on whether the method is static or instance based.

Calling Static Members from a Report Definition File

Static members belong to the class or type itself and not to an instantiated object. These members can be accessed by directly
calling them from the class. You should use static members to call custom functions in a report whenever possible, because static
members perform best. To call a static member, you need to reference it as an expression that takes the form
=Namespace.Class.Method.

To call static members

To call a static member, set your expression equal to the fully qualified name of the member, which includes the namespace,
class name, and member name. The following example calls a method ToGBP which converts the StandardCost field value
from dollars to pounds sterling and displays it in a report:

=CurrencyConversion.DollarCurrencyConversion.ToGBP(Fields!StandardCost.Value)

Important Information Regarding Static Fields and Properties

Currently, all reports are executed in the same application domain. This means that reports with user-specific, static data expose
this data to other instances of the same report. This condition might make it possible for the static data of one user to be available
to all users currently running a particular report. For this reason, it is highly recommended that you not use static fields or
properties in custom assemblies or in the Code element; instead, use instance fields or properties in your reports. Static methods
can still be used, because they do not store state or data.

Security Note Do not use static fields or properties in a custom assembly or Code element used by a report. Doing
so may expose data for one user of the report to all users currently running instances of that report.

Calling Instance Members from a Report Definition File

If your custom assembly contains instance members that you need to access in a report definition, you must add an instance
name for your class to the report. You can add an instance name for a class using the Code tab of the Report Properties dialog.
For more information about adding instances of classes to a report, see Writing Custom Code.

To call a static member, you need to reference it as an expression that takes the form =Code.IntanceName.Method.

To call instance members

To call an instance member of a custom assembly, you must reference the Code keyword followed by the instance name
and the method. The following example calls an instance method ToEUR which converts the StandardCost field value from
dollars to euros and displays it in a report:

=Code.m_myDollarCoversion.ToEUR(Fields!StandardCost.Value)

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Initializing Custom Assembly Objects
In some cases, you may need to initialize property and field values in your custom assembly classes when you instantiate them.
You will most likely need to initialize your custom classes with values available to you from the report's global object collections.
You do this by overriding the OnInit method of the Code object of a report. To access OnInit, use the Code element of the report
definition. There are two techniques for initializing property or field values of the classes in your custom assembly that you plan
to use in your report: You can either declare and create a new instance of your class using OnInit, or you can call a publicly
available method using OnInit.

Global Object Collections and Initialization

Several collections are available to you for initializing your custom class variables. You can use the Globals, Parameters, and
User collections. The Fields and ReportItems collections are not available to you at the point in the report lifecycle when the
OnInit method is invoked. You may want to initialize your custom class based on the current language of the user accessing the
report. Your Code element might look like the following:

<Code>
 Dim m_myClass As MyClass

 Protected Overrides Sub OnInit()
 m_myClass = new MyClass(User!Language, Paramters!Territory)
 End Sub
</Code>

One way to initialize the property and field values of a class as shown previously is to declare your class and create a new instance
of it by calling an overridden constructor.

Another way to initialize the property and field values of the classes in your custom assemblies is to call a publicly available
method that you define from the OnInit method. You first need to add an instance name for your class in the report definition
file. Once you have added the appropriate assembly reference and instance name, you can call your initialization method to
initialize property and field values for your class. Your OnInit method might look like the following:

<Code>
 Protected Overrides Sub OnInit()
 m_myClass.MyInitializationMethod(User!Language, Paramters!Territory)
 End Sub
</Code>

For more information about adding an assembly reference and instance name for your custom class, see How to add an assembly
reference to a report (Report Designer).

For more information about the global object collections, see Using Global Collections.

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Debugging Custom Assemblies
The Microsoft® .NET Framework provides several debugging tools that can help you analyze your custom assembly code and
locate errors in it. The best tool will depend on what you are trying to accomplish. For the purpose of this topic, the debugging
tool of choice is Visual Studio® .NET 2003.

The recommended way to design, develop, and test custom assemblies is to create a solution that contains both your test reports
and your custom assembly.

To debug using a single instance of Visual Studio

1. Create a new report project using Visual Studio.

At the time you create a report project, Visual Studio also creates a solution to contain it.

2. Add a new Class Library project to the existing solution. Make sure that the report project is set as the startup project. For
more information about how to accomplish this, see your Visual Studio .NET documentation.

3. In Solution Explorer, select the solution.
4. On the View menu, click Property Pages.

The Solution Property Pages dialog box opens.

5. In the left pane, expand Common Properties if necessary, and click Project Dependencies. Select the report project from
the Project drop-down list. Select your assembly project in the Depends On list.

6. Click OK to save the changes, and close the Property Pages dialog.
7. In Solution Explorer, select your custom assembly project.
8. On the View menu, click Property Pages.

The Solution Property Pages dialog box opens.

9. In the left pane, expand Configuration Properties, and click Build.
10. On the Build page, enter the path to the Report Designer folder (by default, C:\Program Files\Microsoft SQL

Server\80\Tools\Report Designer) in the Output Path text box. This builds and deploys an updated version of your custom
assembly directly to Report Designer before your report is executed.

11. Once you have designed your report and developed your custom assembly, set breakpoints in your custom assembly code.
12. Run the report under DebugLocal mode by pressing the F5 key. When the report executes in the pop-up preview window,

the debugger hits any breakpoints that correspond to executable code in your assembly. Use F11 to step through your
custom assembly code.

To debug using two instances of Visual Studio

1. Launch Visual Studio .NET 2003 and open your custom assembly project.
2. Build the project, and deploy your custom assembly and the accompanying .pdb file to the Report Designer. For more

information about deployment, see Deploying a Custom Assembly.
3. Open up a report project that uses your custom assembly while leaving your custom assembly code open in a separate

instance of Visual Studio.
4. Navigate to the instance of Visual Studio that contains your custom assembly project and set some break points in your

code.
5. With the custom assembly project still the active window, click Process on the Debug menu.

The Processes dialog opens.

6. From the list of processes, select the devenv.exe process that corresponds to your Report Project and click Attach. When the
Attach to Process dialog opens, make sure that the program types Common Language Runtime and Native are
selected, and then click OK.

7. Define the expressions that you will use in your report from your custom assembly and design your report.
8. When you are finished designing your report, click the Preview tab.

The report executes, and the custom assembly code should break at your predefined break points.

Note Using the Preview tab does not enforce code permissions for the assembly. For a complete test, which
includes any code access security errors, start the report project under the DebugLocal configuration setting.

9. Step through your code using the F11 key. For more information about using Visual Studio for debugging, see your Visual
Studio .NET documentation.

See Also

Using Custom Assemblies with Reports

Reporting Services - Reporting Services Programming

Programming Reference
The Reporting Services Reference topics contain programmer reference material for developing custom solutions using
Reporting Services.

The following table describes the topics in this section.

Topic Description
Reporting Services Web Service Library Contains reference material specific to

Reporting Services Web Service methods
and corresponding complex types.

Reporting Services Extension Library Contains reference material specific to the
extension API library for the Reporting
Services extensibility features.

Reporting Services WMI Provider Contains reference material specific to the
Reporting Services WMI provider classes.

See Also

Reporting Services Programming

Reporting Services - Reporting Services Programming

Reporting Services Web Service Library
The Reporting Services Web Service class library is a library of classes and value types that are included in the Reporting Services
SOAP API. These classes and values include all of the functionality of the Reporting Services Web service. To call the Web service,
use the methods and properties of the ReportingService class. This class is the primary entry point for calling the Web service.
For more information, see ReportingService Class.

Classes

Class Description
ActiveState Represents information about the active

state of a subscription. It is returned by
methods that query subscription
properties.

BatchHeader Represents a batch header that supports
the use of multi-method operations that
run within a single transaction.

CatalogItem Represents an item in the report server
database.

DailyRecurrence Represents the interval, in days, on which
a scheduled report runs.

DataRetrievalPlan Represents settings that are required to
retrieve data from the delivery query for
data-driven subscription.

DataSetDefinition Represents information about a set of
data to display in a report.

DataSource Represents a data source in the report
server database.

DataSourceCredentials Represents data source credential
information.

DataSourceDefinition Represents a data source definition in the
report server database.

DataSourceDefinitionOrReference Represents a data source definition or a
reference to a data source.

DataSourcePrompt Represents the name of a data source and
the prompt to display to a user.

DataSourceReference Represents a reference to a shared data
source.

DaysOfWeekSelector Represents the days of the week on which
a scheduled report is run.

Event Represents an event registered with
Report Server.

ExpirationDefinition Represents an expiration for a cached
report.

Extension Represents an extension registered with
Report Server.

ExtensionParameter Represents a device information setting
for an extension.

ExtensionSettings Represents a delivery extension and its
configurable settings.

Field Represents a field within the data set of a
report.

InvalidDataSourceReference Represents a state in which a data source
reference is no longer valid.

ItemNamespaceHeader Represents the identifier that is used to
retrieve item properties.

Job Represents a user or system job currently
being processed by Report Server.

MinuteRecurrence Represents the interval, in minutes, on
which a scheduled report is run.

MonthsOfYearSelector Represents the months of the year in
which a scheduled report is run.

MonthlyDOWRecurrence Represents the dates on which a
scheduled report is run, typically by
month, week, and day of the week.

MonthlyRecurrence Represents the day of the month on which
a scheduled report is run.

NoSchedule Represents a state in which there are no
schedules associated with a report's
execution or snapshot history settings.

ParameterValue Represents data that is used in
parameterized reports or in delivery
extension settings.

Policy Represents groups, users, and their roles
that are associated with items in the
report server database.

Property Represents the properties of an item in
the report server database.

QueryDefinition Represents a query that is executed to
retrieve the data for a report.

RecurrencePattern Represents the recurrence pattern of a
schedule definition.

ReportHistorySnapshot Represents a report history snapshot.
ReportParameter Represents a report parameter.
Role Represents a role in the report server

database.
ReportingService Contains the methods and properties

related to calling the Reporting Services
Web service.

Schedule Represents a schedule and its properties.
ScheduleDefinition Represents a defined schedule.
ScheduleDefinitionOrReference Represents a schedule definition or a

reference to a shared schedule.
ScheduleExpiration Represents a schedule that defines when a

cached copy of a report expires.
ScheduleReference Represents a reference to a shared

schedule.
SearchCondition Represents the properties of an item for

which to search in the report server
database.

ServerInfoHeader Represents server information for
Reporting Services.

SessionHeader Represents state information for sessions
in Report Server

Subscription Represents a subscription in the report
server database.

Task Represents Report Server tasks.
TimeExpiration Represents the time, in minutes, that

defines when a cached copy of a report
expires.

ValidValue Represents a valid value for an extension
setting.

Warning Represents a list of errors or warnings
returned from report processing.

WeeklyRecurrence Represents the number of weeks and
which day(s) of the week on which a
scheduled report runs.

Enumerations

Enumeration Description
BooleanOperatorEnum Describes the logical operator that is

applied when connecting search
conditions in a report server database
search. This is similar to connecting the
conditions in a WHERE clause.

ConditionEnum Describes the type of comparison to
perform between the properties and the
values during a search.

CredentialRetrievalEnum Describes the credential retrieval setting
of a data source.

ExecutionSettingEnum Describes the current execution setting of
a report.

ExtensionTypeEnum Describes the type of an extension
registered with a report server.

ItemNamespaceEnum Describes the namespace identifier used
to retrieve property information for an
item in the report server database.

ItemTypeEnum Describes the type of an item in the report
server database.

JobActionEnum Describes the process that initiated a job.
JobStatusEnum Describes the status of a job.
JobTypeEnum Describes the type of job.
ParameterStateEnum Specifies the state of a report parameter.
ParameterTypeEnum Specifies the data type of a parameter in

the Type property of the ReportParameter
class.

ScheduleStateEnum Describes the current state of a schedule.
SensitivityEnum Describes the sensitivity of a given type:

kanatype, case, or accent.
WeekNumberEnum Describes the week of the month in which

a scheduled report is run.

See Also

Reporting Services Reference

Reporting Services Web Service

Reporting Services - Reporting Services Programming

ActiveState Class
Represents information about the active state of a subscription. An ActiveState object is returned by methods that query
subscription properties.

Visual Basic

Public Class ActiveState
 Member of [Namespace]

C#

public class ActiveState
 Member of [Namespace]

Public Properties

DeliveryExtensionRemoved Indicates whether a delivery extension that
is specified in a subscription has been
removed from the report server database.
Boolean. Read-only.

InvalidParameterValue Indicates whether a parameter value that
is persisted with a subscription is valid.
Boolean. Read-only.

MissingParameterValue Indicates whether a parameter exists in a
report that does not have a value specified
for it in a subscription. Boolean. Read-
only.

SharedDataSourceRemoved Indicates whether a shared data source
that is used by a subscription has been
removed. Boolean. Read-only.

UnknownReportParameter Indicates that a report parameter is not
recognized as part of the parameter list
for the report. Boolean. Read-only.

Remarks

An ActiveState object is returned as output by the GetSubscriptionProperties method.

The active state of a subscription indicates whether a subscription is currently active and valid. If there is a problem with the
subscription, the active state of a subscription can be queried programmatically to determine what the cause of the problem is.
More than one error condition can cause a subscription to be inactive. Subscriptions that are inactive are not processed by the
report server until the cause of the error is resolved.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeliveryExtensionRemoved Property
ActiveState.DeliveryExtensionRemoved Property

Indicates whether a delivery extension that is specified in a subscription has been removed from the report server database.
Boolean. Read-only.

Visual Basic

Public Dim DeliveryExtensionRemoved As Boolean
 Member of [Namespace].ActiveState

C#

public bool DeliveryExtensionRemoved;
 Member of [Namespace].ActiveState

Remarks

The value for the DeliveryExtensionRemoved property has a corresponding DeliveryExtensionRemovedSpecified property
in the Web service proxy class. Because DeliveryExtensionRemoved is read-only and cannot be set by end users, you do not
need to specify this property. For more information about specifying properties, see Omitting Values for Optional Web Service
Objects.

See Also

ActiveState Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

InvalidParameterValue Property
ActiveState.InvalidParameterValue Property

Indicates whether a parameter value that is persisted with a subscription is valid. Boolean. Read-only.

Visual Basic

Public Dim DeliveryExtensionRemoved As Boolean
 Member of [Namespace].ActiveState

C#

public bool DeliveryExtensionRemoved;
 Member of [Namespace].ActiveState

Remarks

A value of true can indicate that the data type of the parameter has changed.

The value for the InvalidParameterValue property has a corresponding InvalidParameterValueSpecified property in the
Web service proxy class. Because InvalidParameterValue is read-only and cannot be set by end users, you do not need to
specify this property. For more information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ActiveState Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MissingParameterValue Property
ActiveState.MissingParameterValue Property

Indicates whether a parameter exists in a report that does not have a value specified for it in a subscription. Boolean. Read-only.

Visual Basic

Public Dim MissingParameterValue As Boolean
 Member of [Namespace].ActiveState

C#

public bool MissingParameterValue;
 Member of [Namespace].ActiveState

Remarks

A value of true can indicate that a parameter was added to the report but not given a corresponding value in the subscription.

The value for the MissingParameterValue property has a corresponding MissingParameterValueSpecified property in the
Web service proxy class. Because MissingParameterValue is read-only and cannot be set by end users, you do not need to
specify this property. For more information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ActiveState Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SharedDataSourceRemoved Property
ActiveState.SharedDataSourceRemoved Property

Indicates whether a shared data source that is used by a subscription has been removed. Boolean. Read-only.

Visual Basic

Public Dim SharedDataSourceRemoved As Boolean
 Member of [Namespace].ActiveState

C#

public bool SharedDataSourceRemoved;
 Member of [Namespace].ActiveState

Remarks

The value for the SharedDataSourceRemoved property has a corresponding SharedDataSourceRemovedSpecified property
in the Web service proxy class. Because SharedDataSourceRemoved is read-only and cannot be set by end users, you do not
need to specify this property. For more information about specifying properties, see Omitting Values for Optional Web Service
Objects.

See Also

ActiveState Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

UnknownReportParameter Property
ActiveState.UnknownReportParameter Property

Indicates that a report parameter is not recognized as part of the parameter list for the report. Boolean. Read-only.

Visual Basic

Public Dim UnknownReportParameter As Boolean
 Member of [Namespace].ActiveState

C#

public bool UnknownReportParameter;
 Member of [Namespace].ActiveState

Remarks

The value for the UnknownReportParameter property has a corresponding UnknownReportParameterSpecified property in
the Web service proxy class. Because UnknownReportParameter is read-only and cannot be set by end users, you do not need
to specify this property. For more information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ActiveState Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

BatchHeader Class
Represents a batch header that supports the use of multi-method operations that run within a single transaction. For more
information about batch headers, see Batching Methods.

Visual Basic

Public Class BatchHeader
 Inherits SoapHeader
 Member of [Namespace]

C#

public class BatchHeader : SoapHeader
 Member of [Namespace]

Public Properties

BatchID The batch ID that is associated with a
single database transaction in which
multiple Web service methods run. String.

Remarks

The BatchHeader class is used with the BatchHeaderValue property in a SOAP header.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

BatchId Property
Batchheader.BatchID Property

Gets or sets the batch ID that is associated with a single database transaction in which multiple Web service methods run. String.

Visual Basic

Public Dim BatchID As String

C#

public string BatchID;

Remarks

Set the BatchID property equal to the batch ID value that is returned by the CreateBatch method.

See Also

Batching Methods

BatchHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

BooleanOperatorEnum Enumeration
Describes the logical operators that connect search conditions in a report server database search.

Visual Basic

Public Enum BooleanOperatorEnum
 Member of [Namespace]

C#

public enum BooleanOperatorEnum
 Member of [Namespace]

Remarks

BooleanOperatorEnum is passed as input to the FindItems method.

BooleanOperatorEnum is used in conjunction with SearchCondition[] objects to perform a search for items in the report server
database.

M embers

Name Description
And A logical operator indicating that all of the

operands must meet the search
conditions.

Or A logical operator indicating that only one
of the operands must meet the search
conditions.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CatalogItem Class
Represents an item in the report server database.

Visual Basic

Public Class CatalogItem
 Member of [Namespace]

C#

public class CatalogItem
 Member of [Namespace]

Public Properties

CreatedBy The name of the user who originally
added the item to the report server
database. String. Read-only.

CreationDate The date and time the item was added to
the report server database. DateTime.
Read-only.

Description The description of the item. String.
ExecutionDate The date and time at which a report

execution snapshot was last created for a
report. DateTime. Read-only.

Hidden Indicates whether the item is hidden.
Boolean.

ID The ID of an item in the report server
database. String. Read-only.

MimeType The Multipurpose Internet Mail Extensions
(MIME) type of a resource in the report
server database. String. Read-only.

ModifiedBy The name of the user who last modified
the item in the report server database.
DateTime. Read-only.

ModifiedDate The date and time the user last modified
the item. DateTime. Read-only.

Name The name of an item in the report server
database. String. Read-only.

Path The full path name of the item. String.
Read-only.

Size The size, in bytes, of an item in the report
server database. Integer.

Type The type of an item (ItemTypeEnum
object) in the report server database.

VirtualPath The virtual path to an item in the report
server database. String.

Remarks

User-defined properties are not represented in CatalogItem objects. To retrieve user-defined properties, use the Property class
with the GetProperties method.

CatalogItem is returned as output by the FindItems, ListChildren, ListLinkedReports, and ListScheduledReports methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreatedBy Property
CatalogItem.CreatedBy Property

The name of the user who originally added the item to the report server database. String. Read-only.

Visual Basic

public Dim CreatedBy As String
 member of [Namespace].CatalogItem

C#

public string CreatedBy;
 member of [Namespace].CatalogItem

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreationDate Property
CatalogItem.CreationDate Property

The date and time that the item was added to the report server database. DateTime. Read-only.

Visual Basic

public Dim CreationDate As DateTime
 member of [Namespace].CatalogItem

C#

public DateTime CreationDate;
 member of [Namespace].CatalogItem

Remarks

The value is stored as the local time of the computer running the report server. All date and time information is formatted
according to the International Organization for Standardization (ISO) 8601 standard.

The value for the CreationDate property has a corresponding CreationDateSpecified property in the Web service proxy class.
Because CreationDate is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
CatalogItem.Description Property

The description of an item. String.

Visual Basic

public Dim Description As String
 member of [Namespace].CatalogItem

C#

public string Description;
 member of [Namespace].CatalogItem

Remarks

The maximum length of the description is 512 characters.

You can modify the Description property of an item in the report server database using the SetProperties method.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExecutionDate Property
CatalogItem.ExecutionDate Property

The date and time at which a report execution snapshot was last created for a report. DateTime. Read-only.

Visual Basic

public Dim ExecutionDate As DateTime
 member of [Namespace].CatalogItem

C#

public DateTime ExecutionDate;
 member of [Namespace].CatalogItem

Remarks

The value is stored as the local time of the computer running the report server. All date and time information is formatted
according to the ISO 8601 standard.

The ExecutionDate property is returned only by items that are reports.

The value for the ExecutionDate property has a corresponding ExecutionDateSpecified property in the Web service proxy
class. Because ExecutionDate is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Hidden Property
CatalogItem.Hidden Property

Indicates whether an item is hidden on the user interface. Boolean.

Visual Basic

public Dim Hidden As Boolean
 member of [Namespace].CatalogItem

C#

public bool Hidden;
 member of [Namespace].CatalogItem

Remarks

You can modify the Hidden property of an item in the report server database using the SetProperties method.

The default value of this property is false.

The value for the Hidden property has a corresponding HiddenSpecified property in the Web service proxy class. Because
Hidden is read-only and cannot be set by end users, you do not need to specify this property. For more information about
specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ID Property
CatalogItem.ID Property

The ID of an item in the report server database. String. Read-only.

Visual Basic

public Dim ID As String
 member of [Namespace].CatalogItem

C#

public string ID;
 member of [Namespace].CatalogItem

Remarks

The ID remains the same even if the item is moved or renamed.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MimeType Property
CatalogItem.MimeType Property

The Multipurpose Internet Mail Extensions (MIME) type of a resource in the report server database. String. Read-only.

Visual Basic

public Dim MimeType As String
 member of [Namespace].CatalogItem

C#

public string MimeType;
 member of [Namespace].CatalogItem

Remarks

The MimeType property is included only for resources in the report server database.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ModifiedBy Property
CatalogItem.ModifiedBy Property

The name of the user who last modified the item. String. Read-only.

Visual Basic

public Dim ModifiedBy As String
 member of [Namespace].CatalogItem

C#

public string ModifiedBy;
 member of [Namespace].CatalogItem

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ModifiedDate Property
CatalogItem.ModifiedDate Property

The date and time the user last modified the item. DateTime. Read-only.

Visual Basic

public Dim ModifiedDate As DateTime
 member of [Namespace].CatalogItem

C#

public DateTime ModifiedDate;
 member of [Namespace].CatalogItem

Remarks

The value is stored as the local time of the computer running the report server. All date and time information is formatted
according to the ISO 8601 standard.

The value for the ModifiedDate property has a corresponding ModifiedDateSpecified property in the Web service proxy class.
Because ModifiedDate is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
CatalogItem.Name Property

The name of an item in the report server database. String.

Visual Basic

public Dim Name As String
 member of [Namespace].CatalogItem

C#

public string Name;
 member of [Namespace].CatalogItem

Remarks

The Name property does not include the full path name of the item. To retrieve the full path name of an item, use the Path
property.

You can modify the Name property of an item using the MoveItem method. Attempting to modify the Name property using the
SetProperties method results in an exception being thrown with error code rsReadOnlyProperty.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Path Property
CatalogItem.Path Property

The full path name of an item in the report server database. String.

Visual Basic

public Dim Path As String
 member of [Namespace].CatalogItem

C#

public string Path;
 member of [Namespace].CatalogItem

Remarks

You can modify the Path property of an item using the MoveItem method. Attempting to modify the Path property using the
SetProperties method results in an exception being thrown with error code rsReadOnlyProperty.

The path of any item in the report server database has a maximum character length of 260.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Size Property
CatalogItem.Size Property

The size, in bytes, of an item in the report server database. Integer. Read-only.

Visual Basic

public Dim Size As Integer
 member of [Namespace].CatalogItem

C#

public int Size;
 member of [Namespace].CatalogItem

Remarks

Only items of type Report and Resource include the Size property.

The value for the Size property has a corresponding SizeSpecified property in the Web service proxy class. Because Size is read-
only and cannot be set by end users, you do not need to specify this property. For more information about specifying properties,
see Omitting Values for Optional Web Service Objects.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Type Property
CatalogItem.Type Property

The type of an item (ItemTypeEnum object) in the report server database. Read-only.

Visual Basic

public Dim Type As [Namespace].ItemTypeEnum
 member of [Namespace].CatalogItem

C#

public [Namespace].ItemTypeEnum Type;
 member of [Namespace].CatalogItem

Remarks

The following table lists the various types of items.

Item type Description
Unknown An item in the report server database that

is not associated with any known type.
Folder A folder in the report server database.
Report A report in the report server database.
Resource A resource in the report server database.
LinkedReport A linked report in the report server

database.
DataSource A data source in the report server

database.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

VirtualPath Property
CatalogItem.VirtualPath Property

The virtual path to an item in the report server database. String. Read-only.

Visual Basic

public Dim VirtualPath As String
 member of [Namespace].CatalogItem

C#

public string VirtualPath;
 member of [Namespace].CatalogItem

Remarks

The VirtualPath property is associated with items in the My Reports folder. For more information about My Reports, see Using
My Reports.

See Also

CatalogItem Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ConditionEnum Enumeration
Describes the type of comparison to perform between a SearchCondition object and the properties and values of items in the
report server database.

Visual Basic

Public Enum ConditionEnum
 Member of [Namespace]

C#

public enum ConditionEnum
 Member of [Namespace]

Remarks

Use the ConditionEnum enumeration with the Condition property of the SearchCondition class.

M embers

Member name Description
Contains Searches on any part of the item's

property value that contains the search
condition.

Equals Searches for an exact match of the item
property and value to the
SearchCondition object.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CredentialRetrievalEnum Enumeration
Describes the credential retrieval settings for a data source.

Visual Basic

Public Enum CredentialRetrievalEnum
 Member of [Namespace]

C#

public enum CredentialRetrievalEnum
 Member of [Namespace]

Remarks

Use the CredentialRetrievalEnum enumeration with the CredentialRetrieval property of the DataSourceDefinition class.

M embers

Name Description
Prompt The user is prompted to provide

credentials each time the data source is
accessed.

Store Credentials are stored as part of the data
source definition.

Integrated Credentials are passed through Windows
Authentication.

None Credentials are not passed to the data
source.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DailyRecurrence Class
Represents the intervals at which a scheduled report runs. Intervals are specified in days.

Visual Basic

public Class DailyRecurrence
 Inherits [Namespace].RecurrencePattern
 Member of [Namespace]

C#

public class DailyRecurrence : [Namespace].RecurrencePattern
 Member of [Namespace]

Public Properties

DaysInterval The intervals at which a scheduled report
runs. Intervals are specified in days.
Integer.

Remarks

Use the DailyRecurrence class with the Item property of the ScheduleDefinition class to specify a recurrence pattern in minutes.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DaysInterval Property
DailyRecurrence.DaysInterval Property

The intervals at which a scheduled report runs. Intervals are specified in days. Integer.

Visual Basic

Public Dim DaysInterval As Integer
 Member of [Namespace].DailyRecurrence

C#

public int DaysInterval;
 Member of [Namespace].DailyRecurrence

Remarks

Valid values for the DaysInterval property range from 1 to 365.

See Also

DailyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataRetrievalPlan Class
Represents settings that are required to retrieve data from the delivery query for data-driven subscriptions.

Visual Basic

Public Class DataRetrievalPlan
 Member of [Namespace]

C#

public class DataRetrievalPlan
 Member of [Namespace]

Public Properties

DataSet The dataset (DataSetDefinition object) that
contains the delivery query that is
executed against the data source in a data-
driven subscription.

Item The data source
(DataSourceDefinitionOrReference object)
from which data is retrieved.

Remarks

A DataRetrievalPlan object is returned as output by the GetDataDrivenSubscriptionProperties method and is passed as input to
the CreateDataDrivenSubscription and SetDataDrivenSubscriptionProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSet Property
DataRetrievalPlan.DataSet Property

The dataset (DataSetDefinition object) that contains the delivery query that is executed against the data source in a data-driven
subscription.

Visual Basic

public Dim DataSet As [Namespace].DataSetDefinition
 member of [Namespace].DataRetrievalPlan

C#

public [Namespace].DataSet DataSet;
 member of [Namespace].DataRetrievalPlan

See Also

DataRetrievalPlan Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Item Property
DataRetrievalPlan.Item Property

The data source (DataSourceDefinitionOrReference object) from which data is retrieved.

Visual Basic

Public Dim Item As [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace].DataRetrievalPlan

C#

public [Namespace].DataSourceDefinitionOrReference Item;
 Member of [Namespace].DataRetrievalPlan

See Also

DataRetrievalPlan Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSetDefinition Class
Represents information about a set of data to display in a report.

Visual Basic

Public Class DataSetDefinition
 Member of [Namespace]

C#

public class DataSetDefinition
 Member of [Namespace]

Public Properties

AccentSensitivity One of the SensitivityEnum values,
indicating whether the data in the data set
is accent sensitive.

AccentSensitivitySpecified Indicates whether a value for the
AccentSensitivity property is specified.
Boolean.

CaseSensitivity One of the SensitivityEnum values,
indicating whether the data in the data set
is case sensitive.

CaseSensitivitySpecified Indicates whether a value for the
CaseSensitivity property is specified.
Boolean.

Collation Specifies the locale that is used for the
collation sequence by which the data in
the dataset is sorted. The Collation
property uses the standard SQL Server
collation codes. String.

Fields The fields (Field[] objects) in the dataset.
KanatypeSensitivity One of the SensitivityEnum values,

indicating whether the data in the dataset
is kanatype sensitive, which distinguishes
between the two types of Japanese kana
characters: Hiragana and Katakana.

KanatypeSensitivitySpecified Indicates whether a value for the
KanatypeSensitivity property is
specified. Boolean.

Name The name of the dataset. String.
Query The query information (QueryDefinition

object) required to retrieve data from the
data source.

WidthSensitivity One of the SensitivityEnum values,
indicating whether the data in the data set
is width sensitive.

WidthSensitivitySpecified Indicates whether a value for the
WidthSensitivity property is specified.
Boolean.

Remarks

Use the DataSetDefinition class with the DataSet property of the DataRetrievalPlan class.

A DataSetDefinition object is returned as output by the PrepareQuery method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

AccentSensitivity Property
DataSetDefinition.AccentSensitivity Property

One of the SensitivityEnum values, indicating whether the data in the data set is accent sensitive.

Visual Basic

public Dim AccentSensitivity As [Namespace].SensitivityEnum
 member of [Namespace].DataSetDefinition

C#

public [Namespace].SensitivityEnum AccentSensitivity;
 member of [Namespace].DataSetDefinition

Remarks

The value for the AccentSensitivity property can be omitted. To omit this property, set the AccentSensitivitySpecified property to
false. If you set a value for the AccentSensitivity property, you must also set the AccentSensitivitySpecified property to true.
For more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

AccentSensitivitySpecified Property
DataSetDefinition.AccentSensitivitySpecified Property

Indicates whether a value for the AccentSensitivity property is specified. Boolean.

Visual Basic

public Dim AccentSensitivitySpecified As Boolean
 member of [Namespace].DataSetDefinition

C#

public bool AccentSensitivitySpecified;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CaseSensitivity Property
DataSetDefinition.CaseSensitivity Property

One of the SensitivityEnum values, indicating whether the data in the data set is case sensitive.

Visual Basic

public Dim CaseSensitivity As [Namespace].SensitivityEnum
 member of [Namespace].DataSetDefinition

C#

public [Namespace].SensitivityEnum CaseSensitivity;
 member of [Namespace].DataSetDefinition

Remarks

The value for the CaseSensitivity property can be omitted. To omit this property, set the CaseSensitivitySpecified property to
false. If you set a value for the CaseSensitivity property, you must also set the CaseSensitivitySpecified property to true. For
more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CaseSensitivitySpecified Property
DataSetDefinition.CaseSensitivitySpecified Property

Indicates whether a value for the CaseSensitivity property is specified. Boolean.

Visual Basic

public Dim CaseSensitivitySpecified As Boolean
 member of [Namespace].DataSetDefinition

C#

public bool CaseSensitivitySpecified;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Collation Property
DataSetDefinition.Collation Property

The locale that is used for the collation sequence by which the data in the dataset is sorted. The Collation property uses the
standard SQL Server collation codes. String.

Visual Basic

public Dim Collation As String
 member of [Namespace].DataSetDefinition

C#

public string Collation ;
 member of [Namespace].DataSetDefinition

Remarks

If a value for the Collation property is not specified, the report server attempts to derive the collation setting by querying the
data provider.

If the data provider does not support collation or if the server returns an unsupported value, the default value of the Collation
property is the locale setting for the server. For more information about collations, see "Specifying Collations" in your SQL Server
Books Online.

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Fields Property
DataSetDefinition.Fields Property

The fields (Field[] objects) in the dataset.

Visual Basic

public Dim Fields() As [Namespace].Field
 member of [Namespace].DataSetDefinition

C#

public [Namespace].Field[] Fields;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

KanatypeSensitivity Property
DataSetDefinition.KanatypeSensitivity Property

One of the SensitivityEnum values, indicating whether the data in the dataset is kanatype sensitive, which distinguishes between
the two types of Japanese kana characters: Hiragana and Katakana.

Visual Basic

public Dim KanatypeSensitivity As [Namespace].SensitivityEnum
 member of [Namespace].DataSetDefinition

C#

public [Namespace].SensitivityEnum KanatypeSensitivity;
 member of [Namespace].DataSetDefinition

Remarks

The value for the KanatypeSensitivity property can be omitted. To omit this property, set the KanatypeSensitivitySpecified
property to false. If you set a value for the KanatypeSensitivity property, you must also set the KanatypeSensitivitySpecified
property to true. For more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

KanatypeSensitivitySpecified Property
DataSetDefinition.KanatypeSensitivitySpecified Property

Indicates whether a value for the KanatypeSensitivity property is specified. Boolean.

Visual Basic

public Dim KanatypeSensitivitySpecified As Boolean
 member of [Namespace].DataSetDefinition

C#

public bool KanatypeSensitivitySpecified;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
DataSetDefinition.Name Property

The name of the dataset. String.

Visual Basic

public Dim Name As String
 member of [Namespace].DataSetDefinition

C#

public string Name;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Query Property
DataSetDefinition.Query Property

The query definition (QueryDefinition object) that is required to retrieve data from the data source.

Visual Basic

public Dim Query As [Namespace].QueryDefinition
 member of [Namespace].DataSetDefinition

C#

public [Namespace].Query QueryDefinition;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WidthSensitivity Property
DataSetDefinition.WidthSensitivity Property

One of the SensitivityEnum values, indicating whether the data in the data set is width sensitive.

Visual Basic

public Dim WidthSensitivity As [Namespace].SensitivityEnum
 member of [Namespace].DataSetDefinition

C#

public [Namespace].SensitivityEnum WidthSensitivity;
 member of [Namespace].DataSetDefinition

Remarks

The value for the WidthSensitivity property can be omitted. To omit this property, set the WidthSensitivitySpecified property to
false. If you set a value for the WidthSensitivity property, you must also set the WidthSensitivitySpecified property to true.
For more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WidthSensitivitySpecified Property
DataSetDefinition.WidthSensitivitySpecified Property

Indicates whether a value for the WidthSensitivity property is specified. Boolean.

Visual Basic

public Dim WidthSensitivitySpecified As Boolean
 member of [Namespace].DataSetDefinition

C#

public bool WidthSensitivitySpecified;
 member of [Namespace].DataSetDefinition

See Also

DataSetDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSource Class
Represents a data source in the report server database.

Visual Basic

Public Class DataSource
 Member of [Namespace]

C#

public class DataSource
 Member of [Namespace]

Public Properties

Item The data source definition
(DataSourceDefinition object) or a
reference to a shared data source
(DataSourceReference object).

Name The name of the data source. String.

Remarks

DataSource is returned as output by the GetReportDataSources method and is passed as input to the SetReportDataSources
method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Item Property
DataSource.Item Property

A DataSourceDefinitionOrReference object that represents a data source definition (DataSourceDefinition object) or a reference to
a shared data source (DataSourceReference object).

Visual Basic

Public Dim Item As [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace].DataSource

C#

public [Namespace].DataSourceDefinitionOrReference Item;
 Member of [Namespace].DataSource

See Also

DataSource Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
DataSource.Name Property

The name of a data source in the report server database. String.

Visual Basic

public Dim Name As String
 member of [Namespace].DataSource

C#

public string Name;
 member of [Namespace].DataSource

See Also

DataSource Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceCredentials Class
Represents data source credentials.

Visual Basic

Public Class DataSource
 Member of [Namespace]

C#

public class DataSource
 Member of [Namespace]

Public Properties

DataSourceName The name of the data source to which to
pass credentials. String.

Password The password to use when connecting to a
data source. String.

UserName The user name that the report server uses
to connect to a data source. String.

Remarks

Use the DataSourceCredentials class with the Render method to pass credentials to an external data source.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceName Property
DataSourceCredentials.DataSourceName Property

The name of the data source to which to pass credentials. String.

Visual Basic

public Dim DataSourceName As String
 member of [Namespace].DataSourceCredentials

C#

public string DataSourceName;
 member of [Namespace].DataSourceCredentials

See Also

DataSourceCredentials Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Password Property
DataSourceCredentials.Password Property

The password that the report server uses to connect to an external data source. String.

Visual Basic

public Dim Password As String
 member of [Namespace].DataSourceCredentials

C#

public string Password;
 member of [Namespace].DataSourceCredentials

Remarks

Security Note Do not use a blank password. Use a strong password.

See Also

DataSourceCredentials Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

UserName Property
DataSourceCredentials.UserName Property

The user name that the report server uses to connect to an external data source. String.

Visual Basic

public Dim UserName As String
 member of [Namespace].DataSourceCredentials

C#

public string UserName;
 member of [Namespace].DataSourceCredentials

See Also

DataSourceCredentials Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceDefinition Class
Represents a data source definition in the report server database.

Visual Basic

Public Class DataSourceDefinition
 Inherits [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

C#

public class DataSourceDefinition : [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

Public Properties

ConnectString The connection string for a data source.
String.

CredentialRetrieval One of the CredentialRetrievalEnum
values, indicating the way in which the
report server retrieves data source
credentials.

Enabled Indicates whether a data source is
enabled. Boolean.

EnabledSpecified Indicates whether a value for the Enabled
property is specified.

Extension The name of the data source extension:
SQL, OLEDB, ODBC, or a custom
extension. String.

ImpersonateUser Indicates whether the report server
attempts to impersonate a user by using
stored credentials after a data processing
extension has established an
authenticated connection to a data source.
Boolean.

ImpersonateUserSpecified Indicates whether a value for the
ImpersonateUser property is specified.

Password The password that the report server uses
to connect to a data source. String.

Prompt The prompt that the report server displays
to the user when prompting for
credentials. String.

UserName The user name that the report server uses
to connect to a data source. String.

WindowsCredentials Indicates whether the report server passes
user-provided or stored credentials as
Windows credentials when connecting to
a data source. Boolean.

Remarks

Use the DataSourceDefinition class with the Item property of the DataSource class.

DataSourceDefinition is returned as output by the GetDataSourceContents method and is passed as input to the
CreateDataSource and SetDataSourceContents methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ConnectString Property
DataSourceDefinition.ConnectString Property

The connection string for a data source. String.

Visual Basic

public Dim ConnectString As String
 member of [Namespace].DataSourceDefinition

C#

public string ConnectString;
 member of [Namespace].DataSourceDefinition

Remarks

You must supply a value for the ConnectString property. If you want to omit this property, set the value equal to an empty string
(""). Omitting ConnectString or setting its value equal to null (Nothing in Visual Basic) results in a SOAP exception with error
code rsInvalidXML.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CredentialRetrieval Property
DataSourceDefinition.CredentialRetrieval Property

One of the CredentialRetrievalEnum values, indicating the way in which the report server retrieves data source credentials.

Visual Basic

public Dim CredentialRetrieval As [Namespace].CredentialRetrievalEnum
 member of [Namespace].DataSourceDefinition

C#

public [Namespace].CredentialRetrievalEnum CredentialRetrieval ;
 member of [Namespace].DataSourceDefinition

Remarks

Data source definitions that are associated with subscriptions or data-driven subscriptions must have CredentialRetrieval
properties that are set to Store.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Enabled Property
DataSourceDefinition.Enabled Property

Indicates whether a data source is enabled. Boolean.

Visual Basic

public Dim Enabled As Boolean
 member of [Namespace].DataSourceDefinition

C#

public bool Enabled;
 member of [Namespace].DataSourceDefinition

Remarks

The default value of this property is true.

The value for the Enabled property can be omitted if the property is set for a data source that is associated with a single report.
To omit this property, set the EnabledSpecified property to false. If you set a value for the Enabled property, you must also set
the EnabledSpecified property to true. For more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

EnabledSpecified Property
DataSourceDefinition.EnabledSpecified Property

Indicates whether a value for the Enabled property is specified. Boolean.

Visual Basic

public Dim EnabledSpecified As Boolean
 member of [Namespace].DataSourceDefinition

C#

public bool EnabledSpecified;
 member of [Namespace].DataSourceDefinition

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Extension Property
DataSourceDefinition.Extension Property

The name of the data source extension: SQL, OLEDB, ODBC, or a custom extension. String.

Visual Basic

public Dim Extension As String
 member of [Namespace].DataSourceDefinition

C#

public string Extension;
 member of [Namespace].DataSourceDefinition

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ImpersonateUser Property
DataSourceDefinition.ImpersonateUser Property

Indicates whether the report server attempts to impersonate a user by using stored credentials after a data processing extension
has established an authenticated connection to a data source. Boolean.

Visual Basic

public Dim ImpersonateUser As Boolean
 member of [Namespace].DataSourceDefinition

C#

public bool ImpersonateUser ;
 member of [Namespace].DataSourceDefinition

Remarks

A value of true causes the report server to attempt to impersonate a user for subsequent data source operations after a data
processing extension has established an authenticated connection to the data source. A value of false causes the report server to
pass credentials to the data source for each data source operation. The default value of this property is false.

Impersonation is performed only when the CredentialRetrieval property is set to Store. A SOAP exception is thrown with an error
code of rsInvalidElementCombination if a value for ImpersonateUser is submitted when CredentialRetrieval is set to
Prompt or Integrated.

The value for the ImpersonateUser property can be omitted. To omit this property, set the ImpersonateUserSpecified property to
false. If you set a value for the ImpersonateUser property, you must also set the ImpersonateUserSpecified property to true.
For more information, see Omitting Values for Optional Web Service Objects.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ImpersonateUserSpecified Property
DataSourceDefinition.ImpersonateUserSpecified Property

Indicates whether a value for the ImpersonateUser property is specified. Boolean.

Visual Basic

public Dim ImpersonateUserSpecified As Boolean
 member of [Namespace].DataSourceDefinition

C#

public bool ImpersonateUserSpecified;
 member of [Namespace].DataSourceDefinition

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Password Property
DataSourceDefinition.Password Property

The password that the report server uses to connect to a data source. String.

Visual Basic

public Dim Password As String
 member of [Namespace].DataSourceDefinition

C#

public string Password;
 member of [Namespace].DataSourceDefinition

Remarks

The maximum length of the password is 127 characters.

A SOAP exception is thrown with the error rsInvalidElementCombination if a value is not submitted when the
CredentialRetrieval property is set to Store. The same error is returned if CredentialRetrieval is set to Prompt or Integrated
and a value for Password is submitted.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Prompt Property
DataSourceDefinition.Prompt Property

The prompt that the report server displays to the user when prompting for credentials. String.

Visual Basic

public Dim Prompt As String
 member of [Namespace].DataSourceDefinition

C#

public string Prompt;
 member of [Namespace].DataSourceDefinition

Remarks

Use the Prompt property when the CredentialRetrieval property is set to Prompt. If you do not specify a value for Prompt in a
report definition, the default value is "Specify a user name and password for data source [name]", where [name] is the name of
the data source.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

UserName Property
DataSourceDefinition.UserName Property

The user name that the report server uses to connect to a data source. String.

Visual Basic

public Dim UserName As String
 member of [Namespace].DataSourceDefinition

C#

public string UserName;
 member of [Namespace].DataSourceDefinition

Remarks

A SOAP exception is thrown with the error rsInvalidElementCombination if a value is not submitted when the
CredentialRetrieval property is set to Store. The same error is returned if CredentialRetrieval is set to Prompt or Integrated
and a value for UserName is submitted.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WindowsCredentials Property
DataSourceDefinition.WindowsCredentials Property

Indicates whether the report server passes user-provided credentials or stored credentials as Windows credentials when
connecting to a data source. Boolean.

Visual Basic

public Dim WindowsCredentials As Boolean
 member of [Namespace].DataSourceDefinition

C#

public bool WindowsCredentials ;
 member of [Namespace].DataSourceDefinition

Remarks

A value of true indicates that the report server should pass user-provided or stored credentials. The default value of this property
is false.

The value of the WindowsCredentials property is valid only when the CredentialRetrieval property is set to Prompt or Store.
The value of WindowsCredentials is ignored if CredentialRetrieval is set to Integrated.

See Also

DataSourceDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceDefinitionOrReference Class
Represents a data source definition or a reference to a shared data source.

Visual Basic

Public Class DataSourceDefinitionOrReference
 Member of [Namespace]

C#

public class DataSourceDefinitionOrReference
 Member of [Namespace]

Remarks

Methods of the ReportingService class use objects that inherit DataSourceDefinitionOrReference. The following table
describes classes that implement DataSourceDefinitionOrReference.

Class Description
DataSourceDefinition Represents a data source definition in the

report server database.
DataSourceReference Represents a reference to a shared data

source in the report server database.
InvalidDataSourceReference Indicates that a data source reference is no

longer valid.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourcePrompt Class
Represents the name of a data source and the prompt to display to a user.

Visual Basic

Public Class DataSourcePrompt
 Member of [Namespace]

C#

public class DataSourcePrompt
 Member of [Namespace]

Public Properties

Name The name of a data source. String.
DataSourceID The unique ID of a data source. String.
Prompt The prompt to display when the report

server prompts for user credentials.
String.

Remarks

DataSourcePrompt is returned as output by the GetReportDataSourcePrompts method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
DataSourcePrompt.Name Property

The name of a data source. String.

Visual Basic

public Dim Name As String
 member of [Namespace].DataSourcePrompt

C#

public string Name;
 member of [Namespace].DataSourcePrompt

See Also

DataSourcePrompt Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceID Property
DataSourcePrompt.DataSourceID Property

The unique ID of a data source. String.

Visual Basic

public Dim DataSourceID As String
 member of [Namespace].DataSourcePrompt

C#

public string DataSourceID;
 member of [Namespace].DataSourcePrompt

See Also

DataSourcePrompt Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Prompt Property
DataSourcePrompt.Prompt Property

The prompt that the report server displays when prompting for user credentials. String.

Visual Basic

public Dim Prompt As String
 member of [Namespace].DataSourcePrompt

C#

public string Prompt;
 member of [Namespace].DataSourcePrompt

Remarks

This property is available only when the CredentialRetrieval property of the data source is set to Prompt.

See Also

DataSourcePrompt Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DataSourceReference Class
Represents a reference to a shared data source.

Visual Basic

Public Class DataSourceReference
 Inherits [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

C#

public class DataSourceReference : [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

Public Properties

Reference A reference to a shared data source.
String.

Remarks

You can use the DataSourceReference class with the Item property of the DataSource class to get or set a reference to a shared
data source.

The DataSourceReference class is associated with shared data sources. For more information about data sources, see Shared
Data Sources and Report-Specific Data Sources.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Reference Property
DataSourceReference.Reference Property

A reference to a shared data source. String.

Visual Basic

Public Dim Reference As String
 Member of [Namespace].DataSourceReference

C#

public string Reference;
 Member of [Namespace].DataSourceReference

Remarks

The value of the Reference property is the full path name to the shared data source.

See Also

DataSourceReference Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DaysOfWeekSelector Class
Represents the days of the week on which a scheduled report runs.

Visual Basic

Public Class DaysOfWeekSelector
 Member of [Namespace]

C#

public class DaysOfWeekSelector
 Member of [Namespace]

Public Properties

Friday Indicates whether a scheduled report runs
on Friday. Boolean.

Monday Indicates whether a scheduled report runs
on Monday. Boolean.

Saturday Indicates whether a scheduled report runs
on Saturday. Boolean.

Sunday Indicates whether a scheduled report runs
on Sunday. Boolean.

Thursday Indicates whether a scheduled report runs
on Thursday. Boolean.

Tuesday Indicates whether a scheduled report runs
on Tuesday. Boolean.

Wednesday Indicates whether a scheduled report runs
on Wednesday. Boolean.

Remarks

Use the DaysOfWeekSelector class with the DaysOfWeek property of the MonthlyDOWRecurrence class and the DaysOfWeek
property of the WeeklyRecurrence class to indicate the days of the week on which a scheduled report runs.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Friday Property
DaysOfWeekSelector.Friday Property

Indicates whether a scheduled report runs on Friday. Boolean.

Visual Basic

Public Dim Friday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Friday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Monday Property
DaysOfWeekSelector.Monday Property

Indicates whether a scheduled report runs on Monday. Boolean.

Visual Basic

Public Dim Monday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Monday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Saturday Property
DaysOfWeekSelector.Saturday Property

Indicates whether a scheduled report runs on Saturday. Boolean.

Visual Basic

Public Dim Saturday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Saturday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Sunday Property
DaysOfWeekSelector.Sunday Property

Indicates whether a scheduled report runs on Sunday. Boolean.

Visual Basic

Public Dim Sunday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Sunday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Thursday Property
DaysOfWeekSelector.Thursday Property

Indicates whether a scheduled report runs on Thursday. Boolean.

Visual Basic

Public Dim Thursday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Thursday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Tuesday Property
DaysOfWeekSelector.Tuesday Property

Indicates whether a scheduled report runs on Tuesday. Boolean.

Visual Basic

Public Dim Tuesday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Tuesday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Wednesday Property
DaysOfWeekSelector.Wednesday Property

Indicates whether a scheduled report runs on Wednesday. Boolean.

Visual Basic

Public Dim Wednesday As Boolean
 Member of [Namespace].DaysOfWeekSelector

C#

public bool Wednesday;
 Member of [Namespace].DaysOfWeekSelector

See Also

DaysOfWeekSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Event Class
Represents an event registered with the report server.

Visual Basic

Public Class Event
 Member of [Namespace]

C#

public class Event
 Member of [Namespace]

Public Properties

Type The name of an event that is registered
with the report server. String. Read-only.

Remarks

You use events with Reporting Services subscriptions. For more information about report subscriptions, see Distributing Reports
Through Subscriptions.

Event is returned as output by the ListEvents method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Type Property
Event.Type Property

The name an event that is registered with the report server. String. Read-only.

Visual Basic

public Dim Type As String
 member of [Namespace].Event

C#

public string Type;
 member of [Namespace].Event

See Also

Event Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExecutionSettingEnum Enumeration
Describes the current execution setting of a report.

Visual Basic

Public Enum ExecutionSettingEnum
 Member of [Namespace]

C#

public enum ExecutionSettingEnum;
 Member of [Namespace]

Remarks

The ExecutionSettingEnum enumeration is returned as output by the GetExecutionOptions method and is passed as input to
the SetExecutionOptions method.

M embers

Name Description
Live The report runs with current data.
Snapshot The report runs based on a snapshot in

report history.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExpirationDefinition Class
Represents the expiration setting for a cached report.

Visual Basic

Public Class ExpirationDefinition
 Member of [Namespace]

C#

public class ExpirationDefinition
 Member of [Namespace]

Remarks

Methods of the ReportingService class use objects that inherit ExpirationDefinition. The following table lists classes that
implement ExpirationDefinition.

Class Description
ScheduleExpiration Represents a schedule that defines when a

cached copy of a report expires.
TimeExpiration Represents the time, in minutes, that

defines when a cached copy of a report
expires.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Extension Class
Represents an extension that is registered with the report server.

Visual Basic

Public Class Extension
 Member of [Namespace]

C#

public class Extension
 Member of [Namespace]

Public Properties

ExtensionType The extension type (ExtensionTypeEnum
enumeration). Read-only.

Name The name of the extension. String. Read-
only.

LocalizedName The localized name to be used for display
purposes on a user interface. String.
Read-only.

Visible Indicates whether an extension is visible in
the user interface. Boolean.

Remarks

Extension is returned as output by the ListExtensions method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExtensionType Property
Extension.ExtensionType Property

The extension type (ExtensionTypeEnum enumeration). Read-only.

Visual Basic

public Dim ExtensionType As [Namespace].ExtensionTypeEnum
 member of [Namespace].Extension

C#

public [Namespace].ExtensionTypeEnum ExtensionType;
 member of [Namespace].Extension

Remarks

The ExtensionType property does not return the ExtensionTypeEnum value All.

See Also

Extension Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Extension.Name Property

The name of the extension. String. Read-only.

Visual Basic

public Dim Name As String
 member of [Namespace].Extension

C#

public string Name;
 member of [Namespace].Extension

Remarks

An example of a value for the Name property is the data processing extension OLE DB.

See Also

Extension Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

LocalizedName Property
Extension.LocalizedName Property

The localized name to be used for display purposes on a user interface. String. Read-only.

Visual Basic

public Dim LocalizedName As String
 member of [Namespace].Extension

C#

public string LocalizedName;
 member of [Namespace].Extension

Remarks

The value of the LocalizedName property is retrieved from the LocalizedName property of the extension. For more
information about the IExtension interface and its properties, see IExtension Interface.

See Also

Extension Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Visible Property
Extension.Visible Property

Indicates whether an extension is visible in the user interface. Boolean.

Visual Basic

public Dim Visible As Boolean
 member of [Namespace].Extension

C#

public bool Visible;
 member of [Namespace].Extension

See Also

Extension Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExtensionParameter Class
Represents a setting for an extension.

Visual Basic

Public Class ExtensionParameter
 Member of [Namespace]

C#

public class ExtensionParameter
 Member of [Namespace]

Public Properties

DisplayName The name of the extension setting that is
displayed to the user. String. Read-only.

Encrypted Indicates whether the extension parameter
value should be encrypted in the report
server database. Boolean. Read-only.

Error An error that describes a problem with the
value of the setting. String. Read-only.

IsPassword Indicates whether the extension parameter
value should be returned in calls to the
SOAP API. Boolean. Read-only.

Name The name of the device information
setting. String. Read-only.

ReadOnly Indicates whether the setting is read-only.
Boolean. Read-only.

Required Indicates that a value for the setting must
be provided. Boolean. Read-only.

ValidValues A set of values (ValidValue[] objects) that
can be configured for the setting.

Value A string that represents the value of an
extension parameter. String.

Remarks

A ExtensionParameter object is returned as output by the GetExtensionSettings and ValidateExtensionSettings methods.

When ExtensionParameter objects are returned by the GetExtensionSettings method, the default settings and values are
returned. When ExtensionParameter objects are returned by ValidateExtensionSettings, the settings are returned to include
any error properties for the settings. For more information about the Error property of a setting, see Error Property.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DisplayName Property
ExtensionParameter.DisplayName Property

The name of the extension setting that is displayed to the user. String. Read-only.

Visual Basic

Public DisplayName As String
 Member of [Namespace].ExtensionParameter

C#

public string DisplayName;
 Member of [Namespace].ExtensionParameter

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Encrypted Property
ExtensionParameter.Encrypted Property

Indicates whether the extension parameter value should be encrypted in the report server database. Boolean. Read-only.

Visual Basic

Public Encrypted As Boolean
 Member of [Namespace].ExtensionParameter

C#

public bool Encrypted;
 Member of [Namespace].ExtensionParameter

Remarks

If a setting is marked as encrypted, the report server encrypts the data before storing it in the report server database.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Error Property
ExtensionParameter.Error Property

An error that describes a problem with the value of the setting. String. Read-only.

Visual Basic

Public Error As String
 Member of [Namespace].ExtensionParameter

C#

public string Error;
 Member of [Namespace].ExtensionParameter

Remarks

This property is only used only when a Setting object is returned as output, for example, when returned by the
ValidateExtensionSettings method.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

IsPassword Property
ExtensionParameter.IsPassword Property

Indicates whether the extension parameter value should be returned in calls to the SOAP API. Boolean. Read-only.

Visual Basic

Public IsPassword As Boolean
 Member of [Namespace].ExtensionParameter

C#

public bool IsPassword;
 Member of [Namespace].ExtensionParameter

Remarks

A value of true indicates that the value for the extension parameter should not be returned in any SOAP responses resulting from
calls to the SOAP API (for example, a call to the GetSubscriptionProperties or ListSubscriptions methods).

Security Note The report server does not encrypt extension parameters by default, regardless of the value for the
IsPassword property. The Encrypted property of the extension parameter must also be set to a value of true to
encrypt the extension parameter value in the report server database.

Client applications should use password fields to display an extension parameter that has a value of true for the IsPassword
property.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
ExtensionParameter.Name Property

The name of the device information setting. String. Read-only.

Visual Basic

Public Name As String
 Member of [Namespace].ExtensionParameter

C#

public string Name;
 Member of [Namespace].ExtensionParameter

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReadOnly Property
ExtensionParameter.ReadOnly Property

Indicates whether the setting is read-only. Boolean. Read-only.

Visual Basic

Public ReadOnly As Boolean
 Member of [Namespace].ExtensionParameter

C#

public bool ReadOnly;
 Member of [Namespace].ExtensionParameter

Remarks

Read-only settings are provided for use by client applications. A value for the parameter cannot be explicitly specified by a user.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Required Property
ExtensionParameter.Required Property

Indicates that a value for the setting is required. Boolean. Read-only.

Visual Basic

Public Required As Boolean
 Member of [Namespace].ExtensionParameter

C#

public bool Required;
 Member of [Namespace].ExtensionParameter

Remarks

The value for the Required property has a corresponding RequiredSpecified property in the Web service proxy class. Because
Required is read-only and cannot be set by end users, you do not need to specify this property. For more information about
specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ValidValues Property
ExtensionParameter.ValidValues Property

A set of values (ValidValue[] objects) that can be set for the Value property of an extension parameter.

Visual Basic

Public ValidValues() As ValidValue
 Member of [Namespace].ExtensionParameter

C#

public ValidValue[] ValidValues;
 Member of [Namespace].ExtensionParameter

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Value Property
ExtensionParameter.Value

A string that represents the value of an extension parameter. String.

Visual Basic

Public Value As String
 Member of [Namespace].ExtensionParameter

C#

public string Value;
 Member of [Namespace].ExtensionParameter

Remarks

When the Value property is returned by a call to the method GetExtensionSettings, the default value for the extension parameter
is returned if one exists.

See Also

ExtensionParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExtensionSettings Class
Represents a delivery extension and its configurable settings.

Visual Basic

Public Class ExtensionSettings
 Member of [Namespace]

C#

public class ExtensionSettings
 Member of [Namespace]

Public Properties

Extension A delivery extension (Extension object) for
a subscription.

ParameterValues The settings
(ParameterValueOrFieldReference[]
objects) for a delivery extension.

Remarks

An ExtensionSettings object is returned as output by the GetDataDrivenSubscriptionProperties and GetSubscriptionProperties
methods and passed as input to the CreateDataDrivenSubscription, CreateSubscription, SetDataDrivenSubscriptionProperties,
and SetSubscriptionProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Extension Property
ExtensionSettings.Extension Property

A delivery extension (Extension object) for a subscription.

Visual Basic

public Dim Extension As [Namespace].Extension
 member of [Namespace].ExtensionSettings

C#

public [Namespace].Extension Extension;
 member of [Namespace].ExtensionSettings

See Also

ExtensionSettings Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterValues Property
ExtensionSettings.ParameterValues Property

The settings (ParameterValueOrFieldReference[] objects) for a delivery extension.

Visual Basic

public Dim ParameterValues() As [Namespace].ParameterValueOrFieldReference
 member of [Namespace].ExtensionSettings

C#

public [Namespace]. ParameterValueOrFieldReference[] ParameterValues;
 member of [Namespace].ExtensionSettings

See Also

ExtensionSettings Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExtensionTypeEnum Enumeration
Describes the type of extension that is registered with the report server.

Visual Basic

Public Enum ExtensionTypeEnum
 Member of [Namespace]

C#

public enum ExtensionTypeEnum;
 Member of [Namespace]

Remarks

Use the ExtensionTypeEnum enumeration with the ExtensionType property of the Extension class.

ExtensionTypeEnum is passed as input to the ListExtensions method to indicate the type of extension that the method returns
as output.

M embers

Name Description
Delivery Describes a delivery extension type.
Render Describes a rendering extension type.
Data Describes a data processing extension

type.
All Describes all extension types.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Field Class
Represents a field within the dataset of a report.

Visual Basic

Public Class Field
 Member of [Namespace]

C#

public class Field
 Member of [Namespace]

Public Properties

Alias The alias of a field in a report. String.
Name The name of a field in a query. String.

Remarks

Use Field with the Fields property of the DataSetDefinition class.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Alias Property
Field.Alias Property

The alias of a field in a report. String.

Visual Basic

public Dim Alias As String
 member of [Namespace].Field

C#

public string Alias;
 member of [Namespace].Field

See Also

Field Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Field.Name Property

The name of a field in a query. String.

Visual Basic

public Dim Name As String
 member of [Namespace].Field

C#

public string Name;
 member of [Namespace].Field

See Also

Field Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

InvalidDataSourceReference Class
Represents a state in which a data source reference is no longer valid.

Visual Basic

Public Class InvalidDataSourceReference
 Inherits [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

C#

public class InvalidDataSourceReference : [Namespace].DataSourceDefinitionOrReference
 Member of [Namespace]

Remarks

An InvalidDataSourceReference object is used with the DataSource.Item property as output by the
ReportingService.GetReportDataSources method.

In most cases, an InvalidDataSourceReference object is returned when a shared data source has been deleted.

To evaluate whether a data source reference is valid, use the is keyword in C# (TypeOf/Is in Visual Basic) to determine the type of
object returned by the DataSource.Item property, as shown in the following C# code:

DataSource[] dataSource;
dataSource = service.GetReportDataSources("/MyReport");

foreach (DataSource ds in dataSource)
{
 if (ds.Item is InvalidDataSourceReference)
 {
 // Code to handle a corrupt or missing data source reference goes here...
 }
}

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ItemNamespaceEnum Enumeration
Describes the namespace identifier used to retrieve property information for an item in the report server database.

Visual Basic

Public Enum ItemNamespaceEnum
 Member of [Namespace]

C#

public enum ItemNamespaceEnum;
 Member of [Namespace]

Remarks

Use the ItemNamespaceEnum enumeration with the ItemNamespaceHeader class.

M embers

Name Description
PathBased The identifier used to retrieve an item's

properties with the GetProperties method
is the Path of the item in the report server
database.

GUIDBased The identifier used to retrieve an item's
properties with the GetProperties
method is the ID of the item in the report
server database.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ItemNamespaceHeader Class
Represents the identifier that is used to retrieve item properties.

Visual Basic

Public Class ItemNamespaceHeader
 Inherits SoapHeader
 Member of [Namespace]

C#

public class ItemNamespaceHeader : SoapHeader
 Member of [Namespace]

Public Properties

ItemNamespace Sets the identifier (ItemNamespaceEnum
enumeration) to use when retrieving item
properties.

Remarks

You can use the ItemNamespaceHeader SOAP header in Reporting Services to retrieve item properties based on two different
item identifiers: the full path name of the item or the ID of the item. For more information, see Setting the Item Namespace for the
GetProperties Method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ItemNamespace Property
ItemNamespaceHeader.ItemNamespace Property

Sets the identifier (ItemNamespaceEnum enumeration) to use when retrieving item properties.

Visual Basic

Public Dim ItemNamespace As ItemNamespaceEnum
 Member of [Namespace].ItemNamespaceHeader

C#

public ItemNamespaceEnum ItemNamespace;
 Member of [Namespace].ItemNamespaceHeader

See Also

ItemNamespaceHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ItemTypeEnum Enumeration
Describes the type of an item in the report server database.

Visual Basic

Public Enum ItemTypeEnum
 Member of [Namespace]

C#

public enum ItemTypeEnum;
 Member of [Namespace]

Remarks

Use the ItemTypeEnum enumeration with the Type property of the CatalogItem class.

M embers

Name Description
Unknown An item not associated with any known

type
Folder A folder
Report A report
Resource A resource
LinkedReport A linked report
DataSource A data source

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Job Class
Represents a user or system job that a report server is actively processing.

Visual Basic

Public Class Job
 Member of [Namespace]

C#

public class Job
 Member of [Namespace]

Public Properties

Action A JobActionEnum value that describes the
action that initiated the job. Read-only.

Description The name of the item with which the job is
currently associated. If the item is a data-
driven subscription, a description of the
data-driven delivery is returned. String.
Read-only.

JobID The unique ID of a job. String. Read-only.
Machine The name of the computer on which a job

is running. String. Read-only.
Name The name of the report with which a job is

associated. String. Read-only.
Path The full path to the report with which a job

is associated. String. Read-only.
StartDateTime The date and time that the job started.

DateTime. Read-only.
Status A JobStatusEnum value that describes the

status of a job. Read-only.
Type A JobTypeEnum value that describes the

type of the job. The possible values are
User and System. Read-only.

User The ID of the authenticated user who
initiated the job, if the job type is User. If
the job is a system job, System is
returned. String. Read-only.

Remarks

An array of Job objects is returned as output by the ListJobs method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Action Property
Job.Action Property

A JobActionEnum value that describes the action that initiated the job. Read-only.

Visual Basic

Public Dim Action As [Namespace].JobActionEnum
 Member of [Namespace].Job

C#

public [Namespace].JobActionEnum Action;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
Job.Description Property

The name of an item with which the job is currently associated. If the item is a data-driven subscription, a description of the data-
driven subscription is returned. String. Read-only.

Visual Basic

Public Dim Description As String
 Member of [Namespace].Job

C#

public string Description;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

JobID Property
Job.JobID Property

The unique ID of the job. String. Read-only.

Visual Basic

Public Dim JobID As String
 Member of [Namespace].Job

C#

public string JobID;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Machine Property
Job.Machine Property

The name of the computer on which the job is running. String. Read-only.

Visual Basic

Public Dim Machine As String
 Member of [Namespace].Job

C#

public string Machine;
 Member of [Namespace].Job

Remarks

If the job action is a data-driven delivery, the value of the Machine property is an empty string. To determine the action that
initiated the job, use the Action property.

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Job.Name Property

The name of the report with which the job is associated. String. Read-only.

Visual Basic

Public Dim Name As String
 Member of [Namespace].Job

C#

public string Name;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Path Property
Job.Path Property

The full path name of the report with which the job is associated. String. Read-only.

Visual Basic

Public Dim Path As String
 Member of [Namespace].Job

C#

public string Path;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

StartDateTime Property
Job.StartDateTime Property

The date and time that the job started. DateTime. Read-only.

Visual Basic

public Dim StartDateTime As DateTime
 member of [Namespace].Job

C#

public DateTime StartDateTime;
 member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Status Property
Job.Status Property

A JobStatusEnum value that describes the status of the job. Read-only.

Visual Basic

Public Dim Action As [Namespace].JobStatusEnum
 Member of [Namespace].Job

C#

public [Namespace].JobStatusEnum Action;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Type Property
Job.Type Property

A JobTypeEnum value that describes the type of the job. Read-only.

Visual Basic

Public Dim Action As [Namespace].JobTypeEnum
 Member of [Namespace].Job

C#

public [Namespace].JobTypeEnum Action;
 Member of [Namespace].Job

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

User Property
Job.User Property

The ID of the authenticated user who initiated the job, if the job type is User. If the job type is System, System is returned. String.
Read-only.

Visual Basic

Public Dim JobID As String
 Member of [Namespace].Job

C#

public string JobID;
 Member of [Namespace].Job

Remarks

Use the Type property to determine whether the job was initiated by a user or by the report server.

See Also

Job Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

JobActionEnum Enumeration
Describes the process that initiated the job.

Visual Basic

Public Enum JobActionEnum
 Member of [Namespace]

C#

public enum JobActionEnum ;
 Member of [Namespace]

Remarks

Use the JobActionEnum enumeration with the Action property of the Job class.

M embers

Name Description
Render The job was initiated by a data-driven

subscription.
Snapshot Creation The job was initiated by a report execution

snapshot.
Report History Creation The job was initiated by the creation of a

snapshot in report history.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

JobStatusEnum Enumeration
Describes the status of a job.

Visual Basic

Public Enum JobStatusEnum
 Member of [Namespace]

C#

public enum JobStatusEnum;
 Member of [Namespace]

Remarks

Use the JobStatusEnum enumeration with the Status property of the Job class.

M embers

Name Description
New The job is new and is currently being

processed.
Running The job is currently running.
CancelRequested A user made a request to cancel the job.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

JobTypeEnum Enumeration
Describes the type of a job.

Visual Basic

Public Enum JobStatusEnum
 Member of [Namespace]

C#

public enum JobStatusEnum;
 Member of [Namespace]

Remarks

Use the JobTypeEnum enumeration with the Job.Type property of the Job class.

M embers

Name Description
User The job was initiated by an authenticated

user.
System The job was initiated by the report server

through an automated process.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MinuteRecurrence Class
Represents the intervals, in minutes, at which a scheduled report runs.

Visual Basic

public Class MinuteRecurrence
 Inherits [Namespace].RecurrencePattern
 Member of [Namespace]

C#

public class MinuteRecurrence : [Namespace].RecurrencePattern
 Member of [Namespace]

Public Properties

MinutesInterval The interval, in minutes, at which a
scheduled report runs. Integer.

Remarks

Use a MinuteRecurrence object with the Item property of the ScheduleDefinition class to indicate the recurrence pattern of a
schedule in minutes.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MinutesInterval Property
MinuteRecurrence.MinutesInterval Property

The interval, in minutes, at which a scheduled report runs. Integer.

Visual Basic

Public Dim MinutesInterval As Integer
 Member of [Namespace].MinuteRecurrence

C#

public int MinutesInterval;
 Member of [Namespace].MinuteRecurrence

Remarks

Valid values for the MinutesInterval property range from 1 to Int32.MaxValue. For more information about Int32.MaxValue,
see your Microsoft .NET Framework SDK documentation.

See Also

MinuteRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MonthsOfYearSelector Class
Represents the months of the year in which a scheduled report runs.

Visual Basic

Public Class MonthsOfYearSelector
 Member of [Namespace]

C#

public class MonthsOfYearSelector
 Member of [Namespace]

Public Properties

April Indicates whether a scheduled report runs
in April. Boolean.

August Indicates whether a scheduled report runs
in August. Boolean.

December Indicates whether a scheduled report runs
in December. Boolean.

February Indicates whether a scheduled report runs
in February. Boolean.

January Indicates whether a scheduled report runs
in January. Boolean.

July Indicates whether a scheduled report runs
in July. Boolean.

June Indicates whether a scheduled report runs
in June. Boolean.

March Indicates whether a scheduled report runs
in March. Boolean.

May Indicates whether a scheduled report runs
in May. Boolean.

November Indicates whether a scheduled report runs
in November. Boolean.

October Indicates whether a scheduled report runs
in October. Boolean.

September Indicates whether a scheduled report runs
in September. Boolean.

Remarks

Use the MonthsOfYearSelector class with the MonthsOfYear property of the MonthlyDOWRecurrence and MonthlyRecurrence
classes to indicate the months in which a scheduled report runs.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

April Property
MonthsOfYearSelector.April Property

Indicates whether a scheduled report runs in April. Boolean.

Visual Basic

Public Dim April As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool April;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

August Property
MonthsOfYearSelector.August Property

Indicates whether a scheduled report runs in August. Boolean.

Visual Basic

Public Dim August As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool August;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

December Property
MonthsOfYearSelector.December Property

Indicates whether a scheduled report runs in December. Boolean.

Visual Basic

Public Dim December As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool December;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

February Property
MonthsOfYearSelector.February Property

Indicates whether a scheduled report runs in February. Boolean.

Visual Basic

Public Dim February As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool February;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

January Property
MonthsOfYearSelector.January Property

Indicates whether a scheduled report runs in January. Boolean.

Visual Basic

Public Dim January As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool January;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

July Property
MonthsOfYearSelector.July Property

Indicates whether a scheduled report runs in July. Boolean.

Visual Basic

Public Dim July As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool July;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

June Property
MonthsOfYearSelector.June Property

Indicates whether a scheduled report runs in June. Boolean.

Visual Basic

Public Dim June As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool June;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

March Property
MonthsOfYearSelector.March Property

Indicates whether a scheduled report runs in March. Boolean.

Visual Basic

Public Dim March As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool March;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

May Property
MonthsOfYearSelector.May Property

Indicates whether a scheduled report runs in May. Boolean.

Visual Basic

Public Dim May As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool May;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

November Property
MonthsOfYearSelector.November Property

Indicates whether a scheduled report runs in November. Boolean.

Visual Basic

Public Dim November As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool November;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

October Property
MonthsOfYearSelector.October Property

Indicates whether a scheduled report runs in October. Boolean.

Visual Basic

Public Dim October As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool October;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

September Property
MonthsOfYearSelector.September Property

Indicates whether a scheduled report runs in September. Boolean.

Visual Basic

Public Dim September As Boolean
 Member of [Namespace].MonthsOfYearSelector

C#

public bool September;
 Member of [Namespace].MonthsOfYearSelector

See Also

MonthsOfYearSelector Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MonthlyDOWRecurrence Class
Represents the dates on which a scheduled report runs, typically by month, week, and day of the week.

Visual Basic

public Class MonthlyDOWRecurrence
 Inherits [Namespace].RecurrencePattern
 Member of [Namespace]

C#

public class MonthlyDOWRecurrence : [Namespace].RecurrencePattern
 Member of [Namespace]

Public Properties

DaysOfWeek The days of the week
(DaysOfWeekSelector object) on which a
scheduled report runs.

MonthsOfYear The months of the year
(MonthsOfYearSelector object) in which a
scheduled report runs.

WhichWeek The week of the month
(WeekNumberEnum enumeration) in
which a scheduled report runs.

WhichWeekSpecified. Indicates whether a value for the
WhichWeek property is specified.
Boolean.

Remarks

Use the MonthlyDOWRecurrence class with the Item property of the ScheduleDefinition class to indicate a monthly, weekly, and
daily recurrence pattern in a schedule.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DaysOfWeek Property
MonthlyDOWRecurrence.DaysOfWeek Property

The days of the week (DaysOfWeekSelector object) on which a scheduled report runs.

Visual Basic

Public Dim DaysOfWeek As [Namespace].DaysOfWeekSelector
 Member of [Namespace].MonthlyDOWRecurrence

C#

public [Namespace].DaysOfWeekSelector DaysOfWeek;
 Member of [Namespace].MonthlyDOWRecurrence

See Also

MonthlyDOWRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MonthsOfYear Property
MonthlyDOWRecurrence.MonthsOfYear Property

The months of the year (MonthsOfYearSelector object) in which a scheduled report runs.

Visual Basic

Public Dim MonthsOfYear As [Namespace].MonthOfYearSelector
 Member of [Namespace].MonthlyDOWRecurrence

C#

public [Namespace].MonthOfYearSelector MonthsOfYear;
 Member of [Namespace].MonthlyDOWRecurrence

See Also

MonthlyDOWRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WhichWeek Property
MonthlyDOWRecurrence.WhichWeek Property

The week of the month (WeekNumberEnum enumeration) in which a scheduled report runs.

Visual Basic

Public Dim WhichWeek As [Namespace].WeekNumberEnum
 Member of [Namespace].MonthlyDOWRecurrence

C#

public [Namespace].WeekNumberEnum WhichWeek;
 Member of [Namespace].MonthlyDOWRecurrence

Remarks

The value for the WhichWeek property can be omitted. To omit this property, set the WhichWeekSpecified property to false. If
you set a value for the WhichWeek property, you must also set the WhichWeekSpecified property to true. For more
information, see Omitting Values for Optional Web Service Objects.

See Also

MonthlyDOWRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WhichWeekSpecified Property
MonthlyDOWRecurrence.WhichWeekSpecified Property

Indicates whether a value for the WhichWeek property is specified. Boolean.

Visual Basic

public Dim WhichWeekSpecified As Boolean
 member of [Namespace].MonthlyDOWRecurrence

C#

public bool WhichWeekSpecified;
 member of [Namespace].MonthlyDOWRecurrence

See Also

MonthlyDOWRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MonthlyRecurrence Class
Represents the days of the month on which a scheduled report runs.

Visual Basic

public Class MonthlyRecurrence
 Inherits [Namespace].RecurrencePattern
 Member of [Namespace]

C#

public class MonthlyRecurrence : [Namespace].RecurrencePattern
 Member of [Namespace]

Public Properties

Days The days of the month on which a
scheduled report runs. String.

MonthsOfYear The months of the year
(MonthsOfYearSelector object) in which a
scheduled report runs.

Remarks

Use the MonthlyRecurrence class with the Item property of the ScheduleDefinition class to indicate a monthly recurrence
pattern in a schedule.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Days Property
MonthlyRecurrence.Days Property

The days of the month on which a scheduled report runs. String.

Visual Basic

Public Dim Days As String
 Member of [Namespace].MonthlyRecurrence

C#

public string Days;
 Member of [Namespace].MonthlyRecurrence

Remarks

Valid values range from 1 to 31. The default value is 1. The string can include the comma (,); semi-colon (;); and dash (-) characters
to denote ranges of days. The following string value sets the days of the monthly recurrence pattern to the first, fourth, and sixth
through ninth days of each month: "1,4;6-9".

See Also

MonthlyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MonthsOfYear Property
MonthlyRecurrence.MonthsOfYear Property

The months of the year (MonthOfYearSelector object) in which a scheduled report runs.

Visual Basic

Public Dim MonthsOfYear As [Namespace].MonthOfYearSelector
 Member of [Namespace].MonthlyRecurrence

C#

public [Namespace].MonthOfYearSelector MonthsOfYear;
 Member of [Namespace].MonthlyRecurrence

See Also

MonthlyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

NoSchedule Class
Represents a state in which no schedules are associated with the execution or snapshot history settings of a report.

Visual Basic

Public Class NoSchedule
 Inherits [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

C#

public class NoSchedule : [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

Remarks

A NoSchedule object is passed as input to the SetExecutionOptions and SetReportHistoryOptions methods to indicate that a
report or report history snapshot does not run according to a schedule.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterFieldReference Class
Represents a field name that a report server uses to retrieve the value for a parameter. The ParameterFieldReference class is
used by data-driven subscriptions.

Visual Basic

Public Class ParameterFieldReference
 Inherits [Namespace].ParameterValueOrFieldReference
 Member of [Namespace]

C#

public class ParameterFieldReference : [Namespace].ParameterValueOrFieldReference
 Member of [Namespace]

Public Properties

FieldAlias The alias of a field reference that
represents a parameter for a data-driven
subscription. String.

ParameterName The name of a field reference that
represents a parameter for a data-driven
subscription. String.

Remarks

Use ParameterFieldReference with the ParameterValues property of the ExtensionSettings class.

ParameterFieldReference is returned as output by the GetDataDrivenSubscriptionProperties method and is passed as input to
the CreateDataDrivenSubscription and SetDataDrivenSubscriptionProperties and ValidateExtensionSettings methods.

Reporting Services - Reporting Services Programming

FieldAlias Property
ParameterFieldReference.FieldAlias Property

The alias of a field reference that represents a parameter for a data-driven subscription. String.

Visual Basic

public Dim FieldAlias As String
 member of [Namespace].ParameterFieldReference

C#

public string FieldAlias;
 member of [Namespace].ParameterFieldReference

See Also

ParameterFieldReference Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterName Property
ParameterFieldReference.ParameterName Property

The name of a field reference that represents a parameter for a data-driven subscription. String.

Visual Basic

public Dim ParameterName As String
 member of [Namespace].ParameterFieldReference

C#

public string ParameterName;
 member of [Namespace].ParameterFieldReference

See Also

ParameterFieldReference Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterStateEnum Enumeration
Specifies the state of a parameter.

Visual Basic

Public Enum ParameterStateEnum
 Member of [Namespace]

C#

public enum ParameterStateEnum;
 Member of [Namespace]

Remarks

Use the ParameterStateEnum enumeration with the State property of the ReportParameter class.

M embers

Name Description
HasValidValue A valid value for the parameter exists.
MissingValidValue A valid value for the parameter does not

exist.
HasOutstandingDependencies The parameter has outstanding

dependencies. This generally occurs when
the valid values or the default value of a
parameter is query-based and
dependencies exist that have not been
submitted to the GetReportParameters
method.

DynamicValuesUnavailable The parameter values are unavailable. This
state indicates that no valid, query-based
values were returned as a result of the
query.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterTypeEnum Enumeration
Specifies the data type of a parameter.

Visual Basic

Public Enum ParameterTypeEnum
 Member of [Namespace]

C#

public enum ParameterTypeEnum;
 Member of [Namespace]

Remarks

Use the ParameterTypeEnum enumeration with the Type property of the ReportParameter class.

M embers

Name Description
Boolean A Boolean data type that represents a

true or false condition.
DateTime A DateTime data type that represents the

date and time.
Float A Float data type that represents a

floating point decimal value.
Integer An Integer data type. Valid values range

from -2,147,483,648 through
2,147,483,647.

String A String data type that represents an
array of characters.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterValue Class
Represents data that is used in parameterized reports or in delivery extension settings.

Visual Basic

Public Class ParameterValue
 Inherits [Namespace].ParameterValueOrFieldReference
 Member of [Namespace]

C#

public class ParameterValue : [Namespace].ParameterValueOrFieldReference
 Member of [Namespace]

Public Properties

Label The label or alternate name for the
parameter. String

Name The parameter name. String.
Value The parameter value. String.

Remarks

A ParameterValue object is returned as output by the GetDataDrivenSubscriptionProperties and GetSubscriptionProperties
methods and is passed as input to the CreateDataDrivenSubscription, Render, RenderStream,
SetDataDrivenSubscriptionProperties, and SetSubscriptionProperties methods.

ParameterValue objects are used both in passing report parameters to reports and in passing settings to a delivery extension.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Label Property
ParameterValue.Label Property

The label or alternate name for the parameter . String.

Visual Basic

Public Dim Label As String
 Member of [Namespace].ParameterValue

C#

public string Label;
 Member of [Namespace].ParameterValue

Remarks

The label is used in cases where you need to display an alternate name value for a parameter to an end user.

See Also

ParameterValue Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
ParameterValue.Name Property

The name of a parameter. String.

Visual Basic

Public Dim Name As String
 Member of [Namespace].ParameterValue

C#

public string Name;
 Member of [Namespace].ParameterValue

See Also

ParameterValue Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Value Property
ParameterValue.Value Property

The value of a parameter. String.

Visual Basic

Public Dim Value As String
 Member of [Namespace].ParameterValue

C#

public string Value;
 Member of [Namespace].ParameterValue

See Also

ParameterValue Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ParameterValueOrFieldReference
Represents a user-supplied value or a field name that represents the value of a parameter.

Visual Basic

Public Class ParameterValueOrFieldReference
 Member of [Namespace]

C#

public class ParameterValueOrFieldReference
 Member of [Namespace]

Remarks

Methods of the ReportingService class use objects that inherit ParameterValueOrFieldReference. The following table describes
classes that implement ParameterValueOrFieldReference.

Class Description
ParameterFieldReference Represents a field name that a report

server uses to retrieve the value for a
parameter. The
ParameterFieldReference class is used
by data-driven subscriptions.

ParameterValue Represents data that is used in
parameterized reports.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Policy Class
Represents groups and users and their roles, which are associated with items in the report server database.

Visual Basic

Public Class Policy
 Member of [Namespace]

C#

public class Policy
 Member of [Namespace]

Public Properties

GroupUserName The name of a group or user. String.
Roles The roles (Role[] objects) that are

associated with a group or user.

Remarks

A Policy object is returned as output by the GetPolicies method and is passed as input to the SetPolicies method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GroupUserName Property
Policy.GroupUserName Property

The name of a group or user. String.

Visual Basic

Public Dim GroupUserName As String
 Member of [Namespace].Policy

C#

public string GroupUserName;
 Member of [Namespace].Policy

See Also

Policy Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Roles Property
Policy.Roles Property

The roles (Role[] objects) that are associated with a group or user.

Visual Basic

Public Dim Roles() As [Namespace].Role
 Member of [Namespace].Policy

C#

public [Namespace].Role[] Roles;
 Member of [Namespace].Policy

Remarks

Use the Name property of the Role class when setting or retrieving roles that are associated with a policy.

See Also

Policy Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Property Class
Represents the properties of an item in the report server database.

Visual Basic

Public Class Property
 Member of [Namespace]

C#

public class Property
 Member of [Namespace]

Public Properties

Name The property name. String.
Value The property value. String.

Remarks

Use the Property class to get or set both custom and built-in properties of an item in the report server database.

A Property object is returned as output by the GetProperties and GetSystemProperties methods and is passed as input to the
CreateDataSource, CreateFolder, CreateLinkedReport, CreateReport, CreateResource, GetProperties, GetSystemProperties,
SetProperties, and SetSystemProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Property.Name Property

The name of a property. String.

Visual Basic

Public Dim Name As String
 Member of [Namespace].Property

C#

public string Name;
 Member of [Namespace].Property

See Also

Property Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Value Property
Property.Value Property

The value of a property. String.

Visual Basic

Public Dim Value As String
 Member of [Namespace].Property

C#

public string Value;
 Member of [Namespace].Property

See Also

Property Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

QueryDefinition Class
Represents a query that retrieves the data for a data-driven subscription.

Visual Basic

Public Class QueryDefinition
 Member of [Namespace]

C#

public class QueryDefinition
 Member of [Namespace]

Public Properties

CommandText The query text that is executed in order to
obtain the report data. String.

CommandType The type of query. String.
Timeout The length of time (in seconds) that the

report server waits for a query to return
results before abandoning the query
attempt. Integer.

TimeoutSpecified Indicates whether a value for the Timeout
property is specified. Boolean.

Remarks

Use the QueryDefinition class with the Query property of the DataSetDefinition class.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CommandText Property
QueryDefinition.CommandText Property

The query text that is executed in order to obtain the data-driven subscription data. String.

Visual Basic

Public Dim CommandText As String
 Member of [Namespace].QueryDefinition

C#

public string CommandText;
 Member of [Namespace].QueryDefinition

See Also

QueryDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CommandType Property
QueryDefinition.CommandType Property

The type of query. String.

Visual Basic

Public Dim CommandType As String
 Member of [Namespace].QueryDefinition

C#

public string CommandType;
 Member of [Namespace].QueryDefinition

Remarks

For data-driven subscriptions, the value of CommandType is always Text.

See Also

QueryDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Timeout Property
QueryDefinition.Timeout Property

The length of time (in seconds) that the report server waits for a query to return results before abandoning the query attempt.
Integer.

Visual Basic

Public Dim Timeout As Integer
 Member of [Namespace].QueryDefinition

C#

public int Timeout;
 Member of [Namespace].QueryDefinition

Remarks

The default value of the Timeout property is 30.

The value for the Timeout property can be omitted. To omit this property, set the TimeoutSpecified property to false. If you set a
value for the Timeout property, you must also set the TimeoutSpecified property to true. For more information, see Omitting
Values for Optional Web Service Objects.

See Also

QueryDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

TimeoutSpecified Property
QueryDefinition.TimeoutSpecified Property

Indicates whether a value for the Timeout property is specified. Boolean.

Visual Basic

public Dim TimeoutSpecified As Boolean
 member of [Namespace].QueryDefinition

C#

public bool TimeoutSpecified;
 member of [Namespace].QueryDefinition

See Also

QueryDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

RecurrencePattern Class
Represents the recurrence pattern of a schedule definition.

Visual Basic

public Class RecurrencePattern
 Member of [Namespace]

C#

public class RecurrencePattern
 Member of [Namespace]

Remarks

Use the RecurrencePattern class with the Item property of the ScheduleDefinition class. You cannot use the RecurrencePattern
class directly in your application; instead, you must use one of its derived classes, which are described in the following table.

Class Description
MinuteRecurrence Represents the interval, in minutes, on

which a scheduled report runs.
DailyRecurrence Represents the interval, in days, on which

a scheduled report runs.
WeeklyRecurrence Represents the weeks interval and the

days of the week on which a scheduled
report runs.

MonthlyRecurrence Represents the days of the month on
which a scheduled report runs.

MonthlyDOWRecurrence Represents the day of week, the week
number in the month, and the month on
which a scheduled report runs.

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReportHistorySnapshot Class
Represents a report history snapshot.

Visual Basic

public Class ReportHistorySnapshot
 Member of [Namespace]

C#

public class ReportHistorySnapshot
 Member of [Namespace]

Public Properties

CreationDate The date and time that the report history
snapshot was added to the report server
database. DateTime. Read-only.

HistoryID The ID of the report history snapshot.
String. Read-only.

Size The size, in bytes, of a report history
snapshot. Integer. Read-only.

Remarks

A ReportHistorySnapshot object is returned as output by the ListReportHistory method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreationDate Property
ReportHistorySnapshot.CreationDate Property

The date and time that the report history snapshot was added to the report server database. DateTime. Read-only.

Visual Basic

public Dim CreationDate As DateTime
 member of [Namespace].ReportHistorySnapshot

C#

public DateTime CreationDate;
 member of [Namespace].ReportHistorySnapshot

Remarks

The value is stored as the local time of the computer running the report server .

See Also

ReportHistorySnapshot Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

HistoryID Property
ReportHistorySnapshot.HistoryID Property

The ID of the report history snapshot. String. Read-only.

Visual Basic

public Dim ID As String
 member of [Namespace].CatalogItem

C#

public string ID;
 member of [Namespace].CatalogItem

See Also

ReportHistorySnapshot Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Size Property
ReportHistorySnapshot.Size Property

The size, in bytes, of a report history snapshot. Integer. Read-only.

Visual Basic

public Dim Size As Integer
 member of [Namespace].ReportHistorySnapshot

C#

public int Size;
 member of [Namespace].ReportHistorySnapshot

See Also

ReportHistorySnapshot Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReportParameter Class
Represents a report parameter.

Visual Basic

public Class ReportParameter
 Member of [Namespace]

C#

public class ReportParameter
 Member of [Namespace]

Public Properties

AllowBlank Indicates whether an empty string is a
valid value for the parameter. Boolean.
Read-only.

DefaultValues The default value of the parameter. String.
DefaultValuesQueryBased Indicates whether the default values of the

parameter are based on a query. Boolean.
Read-only.

Dependencies A list of parameters whose values are
used to retrieve additional parameter
values in a query. String[]. Read-only.

MultiValue Indicates whether the parameter is a
multi-valued parameter. Boolean. Read-
only.

Name The name of the parameter. String. Read-
only.

Nullable Indicates whether the value of the
parameter can be null. Boolean.

Prompt The text that prompts the user parameter
values. String.

PromptUser Indicates whether the user is prompted for
the value of the parameter. Boolean.

PromptUserSpecified Indicates whether a value for the
PromptUser property is specified.
Boolean.

QueryParameter Indicates whether the parameter is used in
a query. Boolean. Read-only.

State Describes the state (ParameterStateEnum)
of the parameter. Read-only.

Type The data type (ParameterTypeEnum
enumeration) of the parameter. Read-
only.

ValidValues The available valid values (ValidValue[]
objects) for the parameter. Read-only.

ValidValuesQueryBased Indicates whether the parameter's valid
values are based on a query. Boolean.
Read-only.

Remarks

A ReportParameter object is returned as output by the GetReportParameters and Render methods and is passed as input to the
SetReportParameters method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

AllowBlank Property
ReportParameter.AllowBlank Property

Indicates whether an empty string is a valid value for the parameter. Boolean. Read-only.

Visual Basic

public Dim AllowBlank As Boolean
 member of [Namespace].ReportParameter

C#

public bool AllowBlank;
 member of [Namespace].ReportParameter

Remarks

The AllowBlank property is ignored if the value of the Type property is not a string.

The value for the AllowBlank property has a corresponding AllowBlankSpecified property in the Web service proxy class.
Because AllowBlank is read-only and cannot be set by end users, you do not need to specify this property. For more information
about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DefultValues Property
ReportParameter.DefaultValues Property

The default values of the parameter. String[].

Visual Basic

public Dim DefaultValues() As String
 member of [Namespace].ReportParameter

C#

public string[] DefaultValues;
 member of [Namespace].ReportParameter

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DefaultValuesQueryBased Property
ReportParameter.DefaultValuesQueryBased Property

Indicates whether the default values of the parameter are based on a query. Boolean. Read-only.

Visual Basic

public Dim DefaultValuesQueryBased As Boolean
 member of [Namespace].ReportParameter

C#

public bool DefaultValuesQueryBased;
 member of [Namespace].ReportParameter

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Dependencies Property
ReportParameter.Dependencies Property

A list of parameters whose values are used to retrieve additional parameter values in a query. String[]. Read-only.

Visual Basic

public Dim Dependencies() As String
 member of [Namespace].ReportParameter

C#

public string[] Dependencies;
 member of [Namespace].ReportParameter

Remarks

A value for this property is returned only if ValidValues or DefaultValues property is based on a parameterized query.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MultiValue Property
ReportParameter.MultiValue Property

Indicates whether the parameter can be a multi-value parameter. Boolean. Read-only.

Visual Basic

public Dim MultiValue As Boolean
 member of [Namespace].ReportParameter

C#

public bool MultiValue;
 member of [Namespace].ReportParameter

Remarks

The value for the MultiValue property has a corresponding MultiValueSpecified property in the Web service proxy class.
Because MultiValue is read-only and cannot be set by end users, you do not need to specify this property. For more information
about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
ReportParameter.Name Property

The name of the parameter. String. Read-only.

Visual Basic

Public Dim Name As String
 Member of [Namespace].ReportParameter

C#

public string Name;
 Member of [Namespace].ReportParameter

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Nullable Property
ReportParameter.Nullable Property

Indicates whether the value of the parameter can be null. Boolean. Read-only.

Visual Basic

public Dim Nullable As Boolean
 member of [Namespace].ReportParameter

C#

public bool Nullable;
 member of [Namespace].ReportParameter

Remarks

The value for the Nullable property has a corresponding NullableSpecified property in the Web service proxy class. Because
Nullable is read-only and cannot be set by end users, you do not need to specify this property. For more information about
specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Prompt Property
ReportParameter.Prompt Property

The text that prompts the user to provide parameter values. String.

Visual Basic

Public Dim Prompt As String
 Member of [Namespace].ReportParameter

C#

public string Prompt;
 Member of [Namespace].ReportParameter

Remarks

The default value for the Prompt property is retrieved from the report definition when a report is first published to the report
server database with the CreateReport method. If the report definition specifies an empty string, the report server sets the default
to the parameter name followed by a colon (:) character, for example, "EmployeeID:".

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

PromptUser Property
ReportParameter.PromptUser Property

Indicates whether the user is prompted for the value of the parameter. Boolean.

Visual Basic

public Dim PromptUser As Boolean
 member of [Namespace].ReportParameter

C#

public bool PromptUser;
 member of [Namespace].ReportParameter

Remarks

Report parameters that contain a value of false for the PromptUser property cannot be submitted as input arguments to the
Render method and cannot be used in URL access. If you submit a value for the parameter in this case an error is returned.

The value for the PromptUser property can be omitted. To omit this property, set the PromptUserSpecified property to false. If
you set a value for the PromptUser property, you must also set the PromptUserSpecified property to true.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

PromptUserSpecified Property
ReportParameter.PromptUserSpecified Property

Indicates whether a value for the PromptUser property is specified. Boolean.

Visual Basic

public Dim PromptUserSpecified As Boolean
 member of [Namespace].ReportParameter

C#

public bool PromptUserSpecified;
 member of [Namespace].ReportParameter

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

QueryParameter Property
ReportParameter.QueryParameter Property

Indicates whether the parameter is used in a query to an external data source. Boolean. Read-only.

Visual Basic

Public Dim QueryParameter As Boolean
 member of [Namespace].ReportParameter

C#

public bool QueryParameter;
 member of [Namespace].ReportParameter

Remarks

The value for the QueryParameter property has a corresponding QueryParameterSpecified property in the Web service proxy
class. Because QueryParameter is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

State Property
ReportParameter.State Property

Describes the state (ParameterStateEnum) of the parameter. Read-only.

Visual Basic

Public Dim Type As [Namespace].ParameterTypeEnum
 Member of [Namespace].ReportParameter

C#

public [Namespace].ParameterTypeEnum Type;
 Member of [Namespace].ReportParameter

Remarks

The value of the property may change based on input used during the validation of the parameter through the use of the
GetReportParameters method.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Type Property
ReportParameter.Type Property

The data type (ParameterTypeEnum) of the parameter. Read-only.

Visual Basic

Public Dim Type As [Namespace].ParameterTypeEnum
 Member of [Namespace].ReportParameter

C#

public [Namespace].ParameterTypeEnum Type;
 Member of [Namespace].ReportParameter

Remarks

The value for the Type property has a corresponding TypeSpecified property in the Web service proxy class. Because Type is
read-only and cannot be set by end users, you do not need to specify this property. For more information about specifying
properties, see Omitting Values for Optional Web Service Objects.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ValidValues Property
ReportParameter.ValidValues Property

The available valid values (ValidValue[] objects) for the parameter. Read-only.

Visual Basic

Public Dim ValidValues() As ValidValue
 member of [Namespace].ReportParameter

C#

public ValidValue[] ValidValues;
 member of [Namespace].ReportParameter

Remarks

You can display the valid values of a parameter to the user in a user interface.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ValidValuesQueryBased Property
ReportParameter.ValidValuesQueryBased Property

Indicates whether the parameter's valid values are based on a query. Boolean. Read-only.

Visual Basic

Public Dim ValidValuesQueryBased As Boolean
 member of [Namespace].ReportParameter

C#

public bool ValidValuesQueryBased;
 member of [Namespace].ReportParameter

Remarks

A value for the ValidValuesQueryBased property is only returned if valid values are associated with the parameter.

See Also

ReportParameter Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Role Class
Represents a role.

Visual Basic

Public Class Role
 Member of [Namespace]

C#

public class Role
 Member of [Namespace]

Public Properties

Description A description of a role. String.
Name A name of a role. String.

Remarks

A Role object is returned as output by the ListRoles and ListSystemRoles methods.

Use Role with the Roles property of the Policy class.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
Role.Description Property

The description of a role. String.

Visual Basic

Public Dim Description As String
 Member of [Namespace].Role

C#

public string Description;
 Member of [Namespace].Role

See Also

Role Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Role.Name Property

The name of a role. String.

Visual Basic

Public Dim Name As String
 Member of [Namespace].Role

C#

public string Name;
 Member of [Namespace].Role

See Also

Role Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReportingService Class
Contains the methods and properties that can be used to call the Reporting Services Web service.

Visual Basic

Public Class ReportingService Inherits
System.Web.Services.Protocols.SoapHttpClientProtocol
 Member of [Namespace]

C#

public class ReportingService : System.Web.Services.Protocols.SoapHttpClientProtocol
 Member of [Namespace]

Public M ethods

CancelBatch Cancels a batch that was initiated by a call
to the CreateBatch method.

CancelJob Cancels execution of a job.
CreateBatch Creates a batch that executes multiple

methods within a single transaction.
CreateDataDrivenSubscription Creates a data-driven subscription for a

specified report.
CreateDataSource Creates a new data source in the report

server database.
CreateFolder Adds a folder to the report server

database.
CreateLinkedReport Adds a new linked report to the report

server database.
CreateReport Adds a new report to the report server

database.
CreateReportHistorySnapshot Generates a report history snapshot of a

specified report.
CreateResource Adds a new resource to the report server

database.
CreateRole Adds a new role to the report server

database.
CreateSchedule Creates a new shared schedule.
CreateSubscription Creates a subscription for a specified

report in the report server database.
DeleteItem Deletes a specified item from the report

server database.
DeleteReportHistorySnapshot Deletes an individual report history

snapshot for a specified report. If errors
occur, the report history snapshot is not
deleted.

DeleteRole Deletes a specified role from the report
server database.

DeleteSchedule Deletes a shared schedule from the report
server database.

DeleteSubscription Deletes a subscription from the report
server database.

DisableDataSource Disables a data source that is enabled.
EnableDataSource Enables a data source that is disabled.
ExecuteBatch Executes all methods that are associated

with a batch ID within a single database
transaction.

FindItems Returns items that match the search
criteria specified in a search of the report
server database.

FireEvent Triggers an event based on the supplied
parameters.

FlushCache Invalidates the cache for an individual
report.

GetCacheOptions Returns the cache configuration for a
report and the settings that describe when
the cached copy of the report expires.

GetDataDrivenSubscriptionProperties Returns the properties of a data-driven
subscription.

GetDataSourceContents Returns the contents of a data source.
GetExecutionOptions Returns the execution option and

associated settings for an individual
report.

GetExtensionSettings Returns a list of settings for a given
extension.

GetItemType Retrieves the type of an item in the report
server database, if the item exists.

GetPermissions Returns the user permissions that are
associated with a particular item in the
report server database.

GetPolicies Returns the policies that are associated
with a particular item in the report server
database.

GetProperties Returns the value of one or more
properties of an item in the report server
database.

GetRenderResource Returns the resource for a specified
rendering extension format.

GetReportDataSourcePrompts Returns the prompt strings for each data
source that is associated with a specified
report.

GetReportDataSources Returns the values of properties that are
associated with the data sources of a
report.

GetReportDefinition Retrieves the report definition for a report.
GetReportHistoryLimit Returns the report history snapshot limit

for a specified report.
GetReportHistoryOptions Returns the report history snapshot

option and properties that are generated
for a report.

GetReportLink Returns the name of the report whose
report definition is used for the specified
linked report.

GetReportParameters Returns report parameter properties for a
specified report. The
GetReportParameters method can also
be used to validate parameter values
against parameters for a specified report.

GetResourceContents Returns the contents of a specified
resource.

GetRoleProperties Returns role information and a collection
of associated tasks.

GetScheduleProperties Returns the properties of a shared
schedule.

GetSubscriptionProperties Returns the properties of a specified
subscription.

GetSystemPermissions Retrieves the system permissions of the
current user.

GetSystemPolicies Returns the system policies, including
groups and associated roles.

GetSystemProperties Returns one or more system properties.
InheritParentSecurity Deletes the policies associated with an

item. As a result, the item inherits the
policies from its parent.

ListChildren Gets a list of children of a specified folder.
ListEvents Returns a list of events supported by the

report server.
ListExtensions Returns a list of extensions that are

configured for a given extension type.
ListJobs Returns a list of jobs that are running on

the report server.
ListLinkedReports Returns a list of reports that are linked to

a specified report.
ListReportHistory Returns a list of report history snapshots

and their properties for a specified report.
ListReportsUsingDataSource Returns a list of reports that are

associated with a shared data source.
ListRoles Returns the names and descriptions of

roles that the report server manages.
ListScheduledReports Returns a list of reports that are

associated with a shared schedule.
ListSchedules Returns a list of all shared schedules.
ListSecureMethods Returns a list of Simple Object Access

Protocol (SOAP) methods that require a
secure connection when invoked.

ListSubscriptions Returns a list of subscriptions that a user
has created for a given report. The list
includes both standard and data-driven
subscriptions.

ListSubscriptionsUsingDataSource Returns a list of subscriptions that are
associated with a given data source.

ListSystemRoles Returns the names and descriptions of
system roles.

ListSystemTasks Returns the names and descriptions of
system tasks.

ListTasks Returns the names and descriptions of
tasks that are managed by the report
server.

Logoff Logs out the current user making Web
service requests.

LogonUser Logs on a user and authenticates a user
request to the Reporting Services Web
service.

MoveItem Moves or renames an item.
PauseSchedule Pauses the execution of a given schedule.
PrepareQuery Returns a data set containing the fields

retrieved by the delivery query for a data-
driven subscription.

Render Processes the specified report and renders
it in a specified format.

RenderStream Returns a stream that is associated with a
rendered report. Examples of streams
include images and charts.

ResumeSchedule Resumes a shared schedule that has been
paused.

SetCacheOptions Configures a report for caching and
provides settings that specify when the
cached copy of the report expires.

SetDataDrivenSubscriptionProperties Sets the properties of a data-driven
subscription.

SetDataSourceContents Sets the contents of a data source.
SetExecutionOptions Sets the execution options and associated

execution properties for an individual
report.

SetPolicies Sets the policies that are associated with a
specified item .

SetProperties Sets one or more properties of a specified
item.

SetReportDataSources Sets the properties that are associated
with the data sources of a specified report.

SetReportDefinition Sets the report definition for a specified
report.

SetReportHistoryLimit Specifies the number of snapshots of a
report that the report server retains in the
report server database.

SetReportHistoryOptions Sets report history options that specify
when a report history snapshot is created
for a specified report.

SetReportLink Specifies the report that is used for the
report definition of an existing linked
report.

SetReportParameters Sets report parameter properties for a
specified report.

SetResourceContents Sets the contents of a resource.
SetRoleProperties Sets role properties and associates a

collection of tasks with a specified role.
SetScheduleProperties Sets the properties of a shared schedule.
SetSubscriptionProperties Sets the properties of a subscription.
SetSystemPolicies Sets the system policy that defines groups

and their associated roles.
SetSystemProperties Sets one or more system properties.
UpdateReportExecutionSnapshot Generates a report history snapshot for a

specified report.
ValidateExtensionSettings Validates Reporting Services extension

settings.

Public Properties

BatchHeaderValue The value (BatchHeader object) that
represents a unique, system-generated
batch ID for multi-method operations in
Reporting Services SOAP API.

ItemNamespaceHeaderValue The value (ItemNamespaceHeader object)
that represents the identifier used to
retrieve item properties.

ServerInfoHeaderValue The server-related information
(ServerInfoHeader object) that represents
the version of the report server.

SessionHeaderValue The session-related information
(SessionHeader object) that represents
state information for sessions in
Reporting Services.

Remarks

To use the Reporting Services Web Service Library, you must generate a proxy class in either C# or Microsoft® Visual Basic®
.NET, through which you can call the various Web service methods. For more information about generating a Reporting Services
proxy class using the Microsoft .NET Framework, see Accessing the SOAP API.

See Also

Creating the Web Service Proxy

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CancelBatch Method
ReportingService.CancelBatch Method

Cancels the batch that was initiated by a call to the CreateBatch method.

Visual Basic

Public Sub CancelBatch()
 Member of [Namespace].ReportingService

C#

public void CancelBatch();
 Member of [Namespace].ReportingService

Remarks

You must specify the ID of the batch that you want to cancel before calling the CancelBatch method. You can do this by setting
the BatchHeaderValue property of the Web service to a value equal to the batch ID that was generated when the batch was
created.

When the CancelBatch method is called, any method calls that are associated with the batch ID can no longer be executed. Any
attempt to execute a batch with a cancelled batch ID results in a SOAP exception with the error code rsBatchNotFound.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services Web Service Description Language (WSDL) and import
certain namespaces. For more information, see Compiling and Running Code Examples. The following code example cancels a
batch, attempts to execute it, and displays error details:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim bh As New BatchHeader()
 bh.BatchID = rs.CreateBatch()
 rs.BatchHeaderValue = bh
 rs.CreateFolder("New Folder1", "/", Nothing)
 rs.CreateFolder("New Folder2", "/", Nothing)
 rs.CreateFolder("New Folder3", "/", Nothing)

 Console.WriteLine("Cancelling current batch operation.")

 ' Cancel the current batch.
 Try
 rs.CancelBatch()

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try

 Try
 ' Generates an error because the batch has already been cancelled.
 rs.ExecuteBatch()
 Console.WriteLine("The batch executed successfully.")

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 Console.WriteLine("The batch was not executed.")

 Finally
 rs.BatchHeaderValue = Nothing
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 BatchHeader bh = new BatchHeader();
 bh.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh;
 rs.CreateFolder("New Folder1", "/", null);
 rs.CreateFolder("New Folder2", "/", null);
 rs.CreateFolder("New Folder3", "/", null);

 Console.WriteLine("Cancelling current batch operation.");

 // Cancel the current batch.
 try
 {
 rs.CancelBatch();
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }

 try
 {
 // Generates an error because the batch has already been cancelled.
 rs.ExecuteBatch();
 Console.WriteLine("The batch executed successfully.");
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 Console.WriteLine("The batch was not executed.");
 }

 finally
 {
 rs.BatchHeaderValue = null;
 }
 }
}

See Also

CreateBatch Method

ExecuteBatch Method

Exception Handling in Reporting Services

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CancelJob Method
ReportingService.CancelJob Method

Cancels the execution of a job.

Visual Basic

Public Sub CancelJob(_
 ByVal JobID As String _
)
 Member of [Namespace].ReportingService

C#

public void CancelJob(
 string JobID
);
 Member of [Namespace].ReportingService

Parameters

JobID
The ID of the job.

Permissions

Operation Description
Cancel Jobs Required to cancel a job in the report

server database.

Remarks

An error is returned if the job ID passed in the JobID parameter is not found. If you call this method using the ID of a job that has
already been cancelled, the report server ignores the operation.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example is a console application that enables users
to cancel all running jobs on a given report server:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim jobs As Job() = Nothing

 ' Return a list of current jobs.
 Try
 jobs = rs.ListJobs()

 ' Provides a prompt to cancel current jobs.
 If ListRunningJobs(jobs) Then
 Console.Write("Do you want to cancel these jobs (Y/N)?")
 Dim input As Integer = Console.Read()
 If [Char].ToLower(CChar(input)) = "y"c Then
 CancelRunningJobs(jobs, rs)
 End If

 End If
 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main

 ' Method to send a list of current jobs and their properties
 ' to standard output.
 Public Shared Function ListRunningJobs(jobs() As Job) As Boolean
 Dim runningJobCount As Integer = 0
 Console.WriteLine("Current Jobs")
 Console.WriteLine(("================================" + Environment.NewLine))
 Dim job As Job
 For Each job In jobs
 If job.Status = JobStatusEnum.Running Or job.Status = JobStatusEnum.New Then
 Console.WriteLine("--------------------------------")
 Console.WriteLine("JobID: {0}", job.JobID)
 Console.WriteLine("--------------------------------")
 Console.WriteLine("Action: {0}", job.Action)
 Console.WriteLine("Description: {0}", job.Description)
 Console.WriteLine("Machine: {0}", job.Machine)
 Console.WriteLine("Name: {0}", job.Name)
 Console.WriteLine("Path: {0}", job.Path)
 Console.WriteLine("StartDateTime: {0}", job.StartDateTime)
 Console.WriteLine("Status: {0}", job.Status)
 Console.WriteLine("Type: {0}", job.Type)
 Console.WriteLine("User: {0}" + Environment.NewLine, job.User)
 runningJobCount += 1
 End If
 Next job
 Console.Write("There are {0} running jobs. ", runningJobCount)
 If runningJobCount > 0 Then
 Return True
 Else
 Return False
 End If
 End Function 'ListRunningJobs

 Public Shared Sub CancelRunningJobs(jobs() As Job, rs As ReportingService)
 Try
 Dim job As Job
 For Each job In jobs
 If job.Status = JobStatusEnum.Running Or job.Status = JobStatusEnum.New Then
 rs.CancelJob(job.JobID)
 End If
 Next job
 Console.WriteLine("All jobs successfully canceled.")
 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'CancelRunningJobs
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Job[] jobs = null;

 // Return a list of current jobs.
 try
 {
 jobs = rs.ListJobs();

 // Provides a prompt to cancel current jobs.
 if (ListRunningJobs(jobs))
 {
 Console.Write("Do you want to cancel these jobs (Y/N)?");
 int input = Console.Read();
 if (Char.ToLower((char)input)== 'y')
 {
 CancelRunningJobs(jobs, rs);
 }
 }
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }

 // Method to send a list of current jobs and their properties
 // to standard output.
 public static bool ListRunningJobs(Job[] jobs)
 {
 int runningJobCount = 0;
 Console.WriteLine("Current Jobs");
 Console.WriteLine("================================" + Environment.NewLine);
 foreach (Job job in jobs)
 {
 if (job.Status == JobStatusEnum.Running ||
 job.Status == JobStatusEnum.New)
 {
 Console.WriteLine("--------------------------------");
 Console.WriteLine("JobID: {0}", job.JobID);
 Console.WriteLine("--------------------------------");
 Console.WriteLine("Action: {0}", job.Action);
 Console.WriteLine("Description: {0}", job.Description);
 Console.WriteLine("Machine: {0}", job.Machine);
 Console.WriteLine("Name: {0}", job.Name);
 Console.WriteLine("Path: {0}", job.Path);
 Console.WriteLine("StartDateTime: {0}", job.StartDateTime);
 Console.WriteLine("Status: {0}", job.Status);
 Console.WriteLine("Type: {0}", job.Type);
 Console.WriteLine("User: {0}" + Environment.NewLine, job.User);
 runningJobCount++;
 }
 }
 Console.Write("There are {0} running jobs. ", runningJobCount);
 if (runningJobCount > 0)
 return true;
 else
 return false;
 }

 public static void CancelRunningJobs(Job[] jobs, ReportingService rs)
 {
 try
 {
 foreach (Job job in jobs)
 {
 if (job.Status == JobStatusEnum.Running ||
 job.Status == JobStatusEnum.New)
 {
 rs.CancelJob(job.JobID);
 }
 }
 Console.WriteLine("All jobs successfully canceled.");
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateBatch Method
ReportingService.CreateBatch Method

Creates a batch that executes multiple methods within a single transaction.

Visual Basic

Public Function CreateBatch() As String
 Member of [Namespace].ReportingService

C#

public string CreateBatch()
 Member of [Namespace].ReportingService

Return Value

A string that uniquely identifies a batch operation.

Remarks

The ID returned by the CreateBatch method is used to group or batch subsequent Web service method calls. Each method
included in the batch must have the batch ID specified in the SOAP header. To batch the method calls using the .NET Framework,
you must first set the BatchHeaderValue property of the Web service proxy class to a value that is equal to that of a BatchHeader
object that contains a previously created batch ID.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example creates batch IDs for two new batches of
Web service method calls and executes the batches:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim bh1 As New BatchHeader()
 Dim bh2 As New BatchHeader()

 bh1.BatchID = rs.CreateBatch()
 rs.BatchHeaderValue = bh1
 rs.CreateFolder("New Folder1", "/", Nothing)
 rs.CreateFolder("New Folder2", "/", Nothing)
 rs.CreateFolder("New Folder3", "/", Nothing)

 bh2.BatchID = rs.CreateBatch()
 rs.BatchHeaderValue = bh2
 rs.DeleteItem("/New Folder1")
 rs.DeleteItem("/New Folder2")
 rs.DeleteItem("/New Folder3")

 rs.BatchHeaderValue = bh1

 ' Create folders using a batch header 1.
 Try
 rs.ExecuteBatch()
 Console.WriteLine("Folders created successfully.")

 Catch e As SoapException

 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try

 rs.BatchHeaderValue = bh2

 ' Delete folders using batch header 2.
 Try
 rs.ExecuteBatch()
 Console.WriteLine("Folders deleted successfully.")

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())

 Finally
 rs.BatchHeaderValue = Nothing
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 BatchHeader bh1 = new BatchHeader();
 BatchHeader bh2 = new BatchHeader();

 bh1.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh1;
 rs.CreateFolder("New Folder1", "/", null);
 rs.CreateFolder("New Folder2", "/", null);
 rs.CreateFolder("New Folder3", "/", null);

 bh2.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh2;
 rs.DeleteItem("/New Folder1");
 rs.DeleteItem("/New Folder2");
 rs.DeleteItem("/New Folder3");

 rs.BatchHeaderValue = bh1;

 // Create folders using a batch header 1.
 try
 {
 rs.ExecuteBatch();
 Console.WriteLine("Folders created successfully.");
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }

 rs.BatchHeaderValue = bh2;

 // Delete folders using batch header 2.
 try
 {
 rs.ExecuteBatch();
 Console.WriteLine("Folders deleted successfully.");
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());

 }

 finally
 {
 rs.BatchHeaderValue = null;
 }
 }
}

See Also

Batching Methods

CancelBatch Method

ExecuteBatch Method

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateDataDrivenSubscription Method
ReportingService.CreateDataDrivenSubscription Method

Creates a data-driven subscription for a specified report.

Visual Basic

Public Sub CreateDataDrivenSubscription(_
 ByVal Report As String, _
 ByVal ExtensionSettings As [Namespace].ExtensionSettings, _
 ByVal DataRetrievalPlan As [Namespace].DataRetrievalPlan, _
 ByVal Description As String, _
 ByVal EventType As String, _
 ByVal MatchData As String, _
 ByVal Parameters() As [Namespace].ParameterValue _
) As String
 Member of [Namespace].ReportingService

C#

public string CreateDataDrivenSubscription(
 string Report,
 [Namespace].ExtensionSettings ExtensionSettings,
 [Namespace].DataRetrievalPlan DataRetrievalPlan,
 string Description,
 string EventType,
 string MatchData,
 [Namespace].ParameterValueOrFieldReference[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report for which to create a data-driven subscription.

ExtensionSettings
An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

DataRetrievalPlan
A DataRetrievalPlan object that provides settings that are required to retrieve data from a delivery query. The
DataRetrievalPlan object contains a reference to a DataSetDefinition object and a DataSourceDefinitionOrReference object.

Description
A meaningful description that is displayed to users.

EventType
The type of event that triggers the data-driven subscription. The valid values are TimedSubscription or SnapshotUpdated.

MatchData
The data that is associated with the specified EventType parameter. This parameter is used by an event to match the data-driven
subscription with an event that has fired.

Parameters
An array of ParameterValueOrFieldReference[] objects that contains a list of parameters for the report.

Return Value

A subscription ID, which uniquely identifies the data-driven subscription in the report server database.

Permissions

Operation Description
Create Subscription Required to create a new subscription in

the report server database based in a
report that the subscription creator owns.

Create Any Subscription Required to create a new subscription for
any report.

Remarks

You can use the GetExtensionSettings method to retrieve a list of the required settings for a delivery extension. You must pass
values for these required settings in the ExtensionSettings parameter. For information about e-mail delivery settings, see
Reporting Services Reporting Services E-mail Delivery Settings.

The DataRetrievalPlan parameter takes a DataRetrievalPlan object as its argument. The DataRetrievalPlan object contains a
dataset with a delivery query. The CommandType property of the delivery query (QueryDefinition object) is set to Text by
default for data-driven subscriptions and does not have to be specified. If you specify a value for the CommandType property,
the value must be Text.

The data source provided or referenced in the dataset for the delivery query must have a CredentialRetrieval setting of Store.

Values for delivery extension settings and parameters can be set to either static values or to field references. When a field
reference is specified for delivery extension setting or a parameter, the value of the setting or parameter is data driven. The
dataset with the delivery query has a set of fields (Field[] objects) that are mapped to delivery extension settings
(ExtensionParameter[] objects) and report parameter values (ParameterValue[] objects). All fields referenced in delivery
extension settings and report parameter values must correspond to the fields in the dataset. If the delivery query does not return
a field that is specified in a delivery extension setting or a parameter value, the report server raises an error when the subscription
is processed.

The value of the EventType parameter must correspond to an event that is configured for the report server. The two events that
are used to create subscriptions are TimedSubscription and SnapshotUpdated. Use the ListEvents method to return a list of all
events configured for the report server.

The value of the MatchData parameter depends on the event type. If the event is a TimedSubscription event, a
ScheduleDefinition object is required as the MatchData parameter. You must first serialize the ScheduleDefinition object as
XML in order to pass it as a string value and create a subscription based on the schedule. The XML structure might look like the
one in the following example:

<ScheduleDefinition>
 <WeeklyRecurrence>
 <StartDateTime>2003-02-24T09:00:00-08:00</StartDateTime>
 <WeeksInterval>1</WeeksInterval>
 <DaysOfWeek>
 <Monday>True</Monday>
 </DaysOfWeek>
 </WeeklyRecurrence>
</ScheduleDefinition>

The value of the StartDateTime element when passed as an XML string should correspond to the date format ISO 8601. This
international date and time standard is the extended format CCYY-MM-DDThh:mm:ss+/-Z where "CC" represents the century,
"YY" the year, "MM" the month and "DD" the day. The letter "T" is the date and time separator and "hh", "mm", "ss" represent hour,
minute and second respectively. This representation may be immediately followed by a "Z" to indicate Coordinated Universal
Time (UTC) or, to indicate the time zone, i.e. the difference between the local time and Coordinated Universal Time, immediately
followed by a sign, + or -, followed by the difference from UTC represented as hh:mm.

If the schedule definition for a TimedSubscription is a shared schedule, you must pass the schedule ID of the shared schedule as
the MatchData parameter. The schedule ID is passed as a String, for example, "4608ac1b-fc75-4149-9e15-5a8b5781b843". The
schedule ID can be obtained by calling the ListSchedules method.

You can use the XmlSerializer class to convert your object class to an XML string automatically. For more information about the
XmlSerializer class, see "System.Xml.XmlSerializer Class" in the Microsoft .NET Framework documentation.

If the event is a SnapshotUpdated subscription, the value of MatchData should be null (or Nothing in Visual Basic).

Using this method sets the LastExecuted property of the report to none, the Status property of the subscription to new
subscription, and the Active property of the subscription to true. The ModifiedBy and ModifiedDate properties of the report
are also updated.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses CreateDataDrivenSubscription to
add a new data-driven subscription to the report server database:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim report As String = "/SampleReports/Employee Sales Summary"
 Dim description As String = "My new data driven subscription"

 ' Set the extension setting as report server email.
 Dim settings As New ExtensionSettings()
 settings.Extension = "Report Server Email"

 ' Set the extension parameter values.
 Dim extensionParams(7) As ParameterValueOrFieldReference

 Dim [to] As New ParameterFieldReference() ' Data-driven.
 [to].ParameterName = "TO"
 [to].FieldAlias = "EmailAddress"
 extensionParams(0) = [to]

 Dim replyTo As New ParameterValue()
 replyTo.Name = "ReplyTo"
 replyTo.Value = "dank@adventure-works.com"
 extensionParams(1) = replyTo

 Dim includeReport As New ParameterValue()
 includeReport.Name = "IncludeReport"
 includeReport.Value = "False"
 extensionParams(2) = includeReport

 Dim renderFormat As New ParameterValue()
 renderFormat.Name = "RenderFormat"
 renderFormat.Value = "HTML4.0"
 extensionParams(3) = renderFormat

 Dim priority As New ParameterValue()
 priority.Name = "Priority"
 priority.Value = "NORMAL"
 extensionParams(4) = priority

 Dim subject As New ParameterValue()
 subject.Name = "Subject"
 subject.Value = "Your sales report"
 extensionParams(5) = subject

 Dim comment As New ParameterValue()
 comment.Name = "Comment"
 comment.Value = "Here is the link to your report."
 extensionParams(6) = comment

 Dim includeLink As New ParameterValue()
 includeLink.Name = "IncludeLink"
 includeLink.Value = "True"
 extensionParams(7) = includeLink

 settings.ParameterValues = extensionParams

 ' Create the data source for the delivery query.
 Dim delivery As New DataSource()
 delivery.Name = ""
 Dim dataSourceDefinition As New DataSourceDefinition()
 dataSourceDefinition.ConnectString = "data source=(local);initial catalog=Employee"
 dataSourceDefinition.CredentialRetrieval = CredentialRetrievalEnum.Store
 dataSourceDefinition.Enabled = True
 dataSourceDefinition.EnabledSpecified = True
 dataSourceDefinition.Extension = "SQL"
 dataSourceDefinition.ImpersonateUserSpecified = False
 dataSourceDefinition.UserName = "username"
 dataSourceDefinition.Password = "runUnAtt1"

 delivery.Item = dataSourceDefinition

 ' Create the fields list.
 Dim fieldsList(1) As Field
 fieldsList(0) = New Field()
 fieldsList(0).Name = "EmailAddress"
 fieldsList(0).Alias = "EmailAddress"
 fieldsList(1) = New Field()
 fieldsList(1).Name = "EmpID"
 fieldsList(1).Alias = "EmpID"

 ' Create the data set for the delivery query.
 Dim dataSetDefinition As New DataSetDefinition()
 dataSetDefinition.AccentSensitivitySpecified = False
 dataSetDefinition.CaseSensitivitySpecified = False
 dataSetDefinition.KanatypeSensitivitySpecified = False
 dataSetDefinition.WidthSensitivitySpecified = False
 dataSetDefinition.Fields = fieldsList
 Dim queryDefinition As New QueryDefinition()
 queryDefinition.CommandText = "Select * from MailList"
 queryDefinition.CommandType = "Text"
 queryDefinition.Timeout = 45
 queryDefinition.TimeoutSpecified = True
 dataSetDefinition.Query = queryDefinition
 Dim results As New DataSetDefinition()
 Dim changed As Boolean

 Try
 results = rs.PrepareQuery(delivery, dataSetDefinition, changed)
 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerText.ToString())
 End Try

 Dim dataRetrieval As New DataRetrievalPlan()
 dataRetrieval.DataSet = results

 ' Set the event type and match data for the delivery.
 Dim eventType As String = "TimedSubscription"
 Dim matchData As String = "<ScheduleDefinition>" & _
 "<StartDateTime>2003-04-14T19:15:00-07:00</StartDateTime>" & _
 "<WeeklyRecurrence><WeeksInterval>1</WeeksInterval>" & _
 "<DaysOfWeek>" & _
 "<Monday>True</Monday><Tuesday>True</Tuesday><Wednesday>True</Wednesday>
<Thursday>True</Thursday><Friday>True</Friday>" & _
 "</DaysOfWeek></WeeklyRecurrence>" & _
 "</ScheduleDefinition>"

 ' Set the report parameter values.
 Dim parameters(2) As ParameterValueOrFieldReference

 Dim empID As New ParameterFieldReference() ' Data-driven.
 empID.ParameterName = "EmpID"
 empID.FieldAlias = "EmpID"
 parameters(0) = empID

 Dim reportYear As New ParameterValue()
 reportYear.Name = "ReportYear"
 reportYear.Value = "2004"
 parameters(1) = reportYear

 Dim reportMonth As New ParameterValue()
 reportMonth.Name = "ReportMonth"
 reportMonth.Value = "6" ' June
 parameters(2) = reportMonth

 Try
 Dim subscriptionID As String = rs.CreateDataDrivenSubscription(_
 report, settings, dataRetrieval, description, eventType, matchData,
parameters)
 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerText.ToString())
 End Try

 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string report = "/SampleReports/Employee Sales Summary";
 string description = "My new data driven subscription";

 // Set the extension setting as report server email.
 ExtensionSettings settings = new ExtensionSettings();
 settings.Extension = "Report Server Email";

 // Set the extension parameter values.
 ParameterValueOrFieldReference[] extensionParams =
 new ParameterValueOrFieldReference[8];

 ParameterFieldReference to = new ParameterFieldReference(); // Data-driven.
 to.ParameterName = "TO";
 to.FieldAlias = "EmailAddress";
 extensionParams[0] = to;

 ParameterValue replyTo = new ParameterValue();
 replyTo.Name = "ReplyTo";
 replyTo.Value ="dank@adventure-works.com";
 extensionParams[1] = replyTo;

 ParameterValue includeReport = new ParameterValue();
 includeReport.Name = "IncludeReport";
 includeReport.Value = "False";
 extensionParams[2] = includeReport;

 ParameterValue renderFormat = new ParameterValue();
 renderFormat.Name = "RenderFormat";
 renderFormat.Value = "HTML4.0";
 extensionParams[3] = renderFormat;

 ParameterValue priority = new ParameterValue();
 priority.Name = "Priority";
 priority.Value = "NORMAL";
 extensionParams[4] = priority;

 ParameterValue subject = new ParameterValue();
 subject.Name = "Subject";
 subject.Value = "Your sales report";
 extensionParams[5] = subject;

 ParameterValue comment = new ParameterValue();
 comment.Name = "Comment";
 comment.Value = "Here is the link to your report.";
 extensionParams[6] = comment;

 ParameterValue includeLink = new ParameterValue();
 includeLink.Name = "IncludeLink";
 includeLink.Value = "True";
 extensionParams[7] = includeLink;

 settings.ParameterValues = extensionParams;

 // Create the data source for the delivery query.
 DataSource delivery = new DataSource();
 delivery.Name = "";
 DataSourceDefinition dataSourceDefinition = new DataSourceDefinition();

 dataSourceDefinition.ConnectString = "data source=(local);initial
catalog=Employee";
 dataSourceDefinition.CredentialRetrieval = CredentialRetrievalEnum.Store;
 dataSourceDefinition.Enabled = true;
 dataSourceDefinition.EnabledSpecified = true;
 dataSourceDefinition.Extension = "SQL";
 dataSourceDefinition.ImpersonateUserSpecified = false;
 dataSourceDefinition.UserName = "username";
 dataSourceDefinition.Password = "runUnAtt1";
 delivery.Item = dataSourceDefinition;

 // Create the fields list.
 Field[] fieldsList = new Field[2];
 fieldsList[0] = new Field();
 fieldsList[0].Name = "EmailAddress";
 fieldsList[0].Alias = "EmailAddress";
 fieldsList[1] = new Field();
 fieldsList[1].Name = "EmpID";
 fieldsList[1].Alias = "EmpID";

 // Create the data set for the delivery query.
 DataSetDefinition dataSetDefinition = new DataSetDefinition();
 dataSetDefinition.AccentSensitivitySpecified = false;
 dataSetDefinition.CaseSensitivitySpecified = false;
 dataSetDefinition.KanatypeSensitivitySpecified = false;
 dataSetDefinition.WidthSensitivitySpecified = false;
 dataSetDefinition.Fields = fieldsList;
 QueryDefinition queryDefinition = new QueryDefinition();
 queryDefinition.CommandText = "Select * from MailList";
 queryDefinition.CommandType = "Text";
 queryDefinition.Timeout = 45;
 queryDefinition.TimeoutSpecified = true;
 dataSetDefinition.Query = queryDefinition;
 DataSetDefinition results = new DataSetDefinition();
 bool changed;

 try
 {
 results = rs.PrepareQuery(delivery, dataSetDefinition, out changed);
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerText.ToString());
 }

 DataRetrievalPlan dataRetrieval = new DataRetrievalPlan();
 dataRetrieval.DataSet = results;

 // Set the event type and match data for the delivery.
 string eventType = "TimedSubscription";
 string matchData = @"<ScheduleDefinition>";
 matchData += @"<StartDateTime>2003-04-14T19:15:00-07:00</StartDateTime>
<WeeklyRecurrence><WeeksInterval>1</WeeksInterval>";
 matchData += @"<DaysOfWeek>";
 matchData += @"<Monday>True</Monday><Tuesday>True</Tuesday>
<Wednesday>True</Wednesday><Thursday>True</Thursday><Friday>True</Friday>";
 matchData += @"</DaysOfWeek></WeeklyRecurrence></ScheduleDefinition>";

 // Set the report parameter values.
 ParameterValueOrFieldReference[] parameters = new
ParameterValueOrFieldReference[3];

 ParameterFieldReference empID = new ParameterFieldReference(); // Data-driven.
 empID.ParameterName = "EmpID";
 empID.FieldAlias = "EmpID";
 parameters[0] = empID;

 ParameterValue reportYear = new ParameterValue();
 reportYear.Name = "ReportYear";
 reportYear.Value = "2004";
 parameters[1] = reportYear;

 ParameterValue reportMonth = new ParameterValue();
 reportMonth.Name = "ReportMonth";
 reportMonth.Value = "6"; // June
 parameters[2] = reportMonth;

 try
 {
 string subscriptionID = rs.CreateDataDrivenSubscription(
 report, settings, dataRetrieval, description, eventType, matchData,
parameters);
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerText.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateDataSource Method
ReportingService.CreateDataSource Method

Creates a new data source in the report server database.

Visual Basic

Public Sub CreateDataSource(_
 ByVal DataSource As String, _
 ByVal Parent As String, _
 ByVal Overwrite As Boolean, _
 ByVal Definition As [Namespace].DataSourceDefinition, _
 ByVal Properties() As [Namespace].Property _
)
 Member of [Namespace].ReportingService

C#

public void CreateDataSource(
 string DataSource,
 string Parent,
 bool Overwrite,
 [Namespace].DataSourceDefintion Definition,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The name of the data source.

Parent
The full path name of the parent folder that contains the data source.

Overwrite
A Boolean expression that indicates whether an existing data source with the same name in the location specified should be
overwritten.

Definition
A DataSourceDefinition object that describes the connection properties for the data source.

Properties
An array of Property[] objects that defines the property names and values to set for the data source.

Permissions

Operation Description
Create Data Source Required on the folder to which the data

source is being added.

Remarks

If errors occur, the data source is not created.

Security Note This method may pass sensitive data, including user credentials, over a network. When possible, use
Secure Sockets Layer (SSL) encryption when making Web service calls with this method. Depending on the
SecureConnectionLevel setting for the report server, you may be required to use SSL when invoking this method.
You can use the ListSecureMethods method to retrieve a list of methods that currently require a secure connection.
For more information about the SecureConnectionLevel setting, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example creates a new data source in the root folder
of the report server database:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim name As String = "AdventureWorks"
 Dim parent As String = "/"

 ' Define the data source definition.
 Dim definition As New DataSourceDefinition()
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated
 definition.ConnectString = "data source=(local);initial catalog=AdventureWorks"
 definition.Enabled = True
 definition.EnabledSpecified = True
 definition.Extension = "SQL"
 definition.ImpersonateUserSpecified = False
 'Use the default prompt string.
 definition.Prompt = Nothing
 definition.WindowsCredentials = False

 Try
 rs.CreateDataSource(name, parent, False, definition, Nothing)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string name = "AdventureWorks";
 string parent ="/";

 // Define the data source definition.
 DataSourceDefinition definition = new DataSourceDefinition();
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated;
 definition.ConnectString = "data source=(local);initial catalog=AdventureWorks";
 definition.Enabled = true;
 definition.EnabledSpecified = true;
 definition.Extension = "SQL";
 definition.ImpersonateUserSpecified = false;
 //Use the default prompt string.
 definition.Prompt = null;
 definition.WindowsCredentials = false;

 try
 {
 rs.CreateDataSource(name, parent, false, definition, null);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateFolder Method
ReportingService.CreateFolder Method

Adds a folder to the report server database.

Visual Basic

Public Sub CreateFolder(_
 ByVal Folder As String, _
 ByVal Parent As String, _
 ByVal Properties() As [Namespace].Property _
)
 Member of [Namespace].ReportingService

C#

public void CreateFolder(
 string Folder,
 string Parent,
 [Namespace].Property[] Properties
)
 Member of [Namespace].ReportingService

Parameters

Folder
The name of the new folder.

Parent
The full path name of the parent folder to which to add the new folder.

Properties
An array of Property[] objects that defines the property names and values to set for the folder.

Permissions

Operation Description
Create Folder Required for creating a subfolder within a

folder.

Remarks

The length of the full path name for the new folder cannot exceed 260 characters; otherwise, a SOAP exception is thrown with the
error code rsItemLengthExceeded.

Folder names cannot be null, consist of empty strings, or contain the following reserved characters:
: ? ; @ & = + $, \ * > < | . "
You can use the forward slash character (/) to separate items in the full path name of the folder, but you cannot use it at the end
of the folder name.

If My Reports is enabled, a SOAP exception is thrown with the error code rsItemAlreadyExists if you attempt to create a folder
named "My Reports" in the root folder of the report server database.

Adding a folder to the report server database modifies the ModifiedBy and ModifiedDate properties of the parent folder.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the CreateFolder method to create a
folder in the report server database:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Create a custom property for the folder.
 Dim newProp As New [Property]()
 newProp.Name = "Department"
 newProp.Value = "Finance"
 Dim props(0) As [Property]
 props(0) = newProp

 Dim folderName As String = "Budget"

 Try
 rs.CreateFolder(folderName, "/", props)
 Console.WriteLine("Folder created: {0}", folderName)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Create a custom property for the folder.
 Property newProp = new Property();
 newProp.Name = "Department";
 newProp.Value = "Finance";
 Property[] props = new Property[1];
 props[0] = newProp;

 string folderName = "Budget";

 try
 {
 rs.CreateFolder(folderName, "/", props);
 Console.WriteLine("Folder created: {0}", folderName);
 }

 catch(SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateLinkedReport Method
ReportingService.CreateLinkedReport Method

Adds a new linked report to the report server database.

Visual Basic

Public Sub CreateLinkedReport(_
 ByVal Report As String, _
 ByVal Parent As String, _
 ByVal Link As String, _
 ByVal Properties() As [Namespace].Property _
)
 Member of [Namespace].ReportingService

C#

public void CreateLinkedReport(
 string Report,
 string Parent,
 string Link,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Report
The name of the new linked report.

Parent
The full path name of the parent folder to which to add the new report.

Link
The full path name of the report that will be used for the report definition.

Properties
An array of Property[] objects that defines the property names and values to set for the linked report.

Permissions

Operation Description
Create Link Required to link a report to the given

report item.
Create Report Required for creating a report within a

folder.

Remarks

A linked report has the same properties as a standard report, but it does not contain its own report definition. A linked report
cannot reference another linked report.

The creator of a linked report must have permission to read the definition of the report that the linked report references; however,
this level of permission is not required to run a linked report.

Using the CreateLinkedReport method changes the ModifiedBy and ModifiedDate properties of the parent folder.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example creates a linked report:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim prop As New [Property]()
 prop.Name = "Description"
 prop.Value = "A new linked report"
 Dim props(0) As [Property]
 props(0) = prop

 Try
 rs.CreateLinkedReport(_
 "Employee Sales Report2", "/SampleReports", "/SampleReports/Employee Sales
Summary", props)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Property prop = new Property();
 prop.Name = "Description";
 prop.Value = "A new linked report";
 Property[] props = new Property[1];
 props[0] = prop;

 try
 {
 rs.CreateLinkedReport("Employee Sales Report2", "/SampleReports",
 "/SampleReports/Employee Sales Summary", props);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateReport Method
ReportingService.CreateReport Method

Adds a new report to the report server database.

Visual Basic

Public Function CreateReport(_
 ByVal Report As String, _
 ByVal Parent As String, _
 ByVal Overwrite As Boolean, _
 ByVal Definition() As Byte, _
 ByVal Properties() As [Namespace].Property _
) As [Namespace].Warning()
 Member of [Namespace].ReportingService

C#

public [Namespace].Warning[] CreateReport(
 string Report,
 string Parent,
 bool Overwrite,
 Byte[] Definition,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Report
The name of the new report.

Parent
The full path name of the parent folder to which to add the report.

Overwrite
A Boolean expression that indicates whether an existing report with the same name in the location specified should be
overwritten.

Definition
The report definition to publish to the report server.

Properties
An array of Property[] objects that contains the property names and values to set for the report.

Return Value

An array of Warning[] objects that describes any warnings that occurred when the report definition was validated.

Permissions

Operation Description
Create Report Required for creating a report within the

specified parent folder.

Remarks

If errors occur, the report is not created.

Adding a report to the report server database modifies the ModifiedBy and ModifiedDate properties of the parent folder.

Security Note This method may pass sensitive data, including user credentials, over a network. When possible, use
SSL encryption when making Web service calls with this method. Depending on the SecureConnectionLevel setting
for the report server, you may be required to use SSL when invoking this method. You can use the ListSecureMethods
method to retrieve a list of methods that currently require a secure connection. For more information about the
SecureConnectionLevel setting, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example publishes a report in the form of a Report
Definition Language (RDL) file to a report server database:

Visual Basic

Imports System
Imports System.IO
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As [Byte]() = Nothing
 Dim warnings As Warning() = Nothing
 Dim name As String = "MyReport"

 Try
 Dim stream As FileStream = File.OpenRead("MyReport.rdl")
 definition = New [Byte](stream.Length) {}
 stream.Read(definition, 0, CInt(stream.Length))
 stream.Close()

 Catch e As IOException
 Console.WriteLine(e.Message)
 End Try

 Try
 warnings = rs.CreateReport(name, "/Samples", False, definition, Nothing)

 If Not (warnings Is Nothing) Then
 Dim warning As Warning
 For Each warning In warnings
 Console.WriteLine(warning.Message)
 Next warning

 Else
 Console.WriteLine("Report: {0} created successfully with no warnings", name)
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.IO;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Byte[] definition = null;
 Warning[] warnings = null;
 string name = "MyReport";

 try
 {
 FileStream stream = File.OpenRead("MyReport.rdl");
 definition = new Byte[stream.Length];
 stream.Read(definition, 0, (int) stream.Length);

 stream.Close();
 }

 catch(IOException e)
 {
 Console.WriteLine(e.Message);
 }

 try
 {
 warnings = rs.CreateReport(name, "/Samples", false, definition, null);

 if (warnings != null)
 {
 foreach (Warning warning in warnings)
 {
 Console.WriteLine(warning.Message);
 }
 }

 else
 Console.WriteLine("Report: {0} created successfully with no warnings", name);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }

 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateReportHistorySnapshot Method
ReportingService.CreateReportHistorySnapshot Method

Generates a report history snapshot of a specified report.

Visual Basic

Public Function CreateReportHistorySnapshot(_
 ByVal Report As String _
 ByRef Warnings() As [Namespace].Warning _
) As String
 Member of [Namespace].ReportingService

C#

public string CreateReportHistorySnapshot(
 string Report
 out [Namespace].Warning[] Warnings
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Warnings
[out] An array of Warning[] objects that lists warnings that occurred during report processing.

Return Value

A string that represents the date and time stamp of the snapshot. This string is used as a unique identifier for the historical
snapshot.

Permissions

Operation Description
Create Report History Required to create a report history

snapshot.
Execute And View Required on any sub-reports that are

contained within the primary report.

Remarks

For the snapshot to be generated successfully, report history must be enabled for the report. To enable report history for a report,
use the SetReportHistoryOptions method. For more information about report history, see Managing Report History.

If the report contains subreports, query result sets from the subreports are persisted in the report history snapshot. Report
parameters that are passed to the report at the time the report is executed are also persisted.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateResource Method
ReportingService.CreateResource Method

Adds a new resource to the report server database.

Visual Basic

Public Sub CreateResource(_
 ByVal Resource As String, _
 ByVal Parent As String, _
 ByVal Overwrite As Boolean, _
 ByVal Contents() As Byte, _
 ByVal MimeType As String, _
 ByVal Properties() As [Namespace].Property _
)
 Member of [Namespace].ReportingService

C#

public void CreateResource(
 string Resource,
 string Parent,
 bool Overwrite,
 Byte[] Contents,
 string MimeType,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Resource
The name of the new resource.

Parent
The full path name of the parent folder to which to add the new resource.

Overwrite
A Boolean expression that specifies whether to overwrite an existing resource with the same name and path. The default value
is false.

Contents
The contents of the resource file.

MimeType
The Multipurpose Internet Mail Extensions (MIME) type of the resource. The maximum size is 260 characters.

Properties
An array of Property[] objects that defines the property names and values to set for the resource.

Permissions

Operation Description
Create Resource Required for creating a resource within

the specified parent folder.

Remarks

If errors occur, the resource is not created.

Adding a resource to the report server database modifies the ModifiedBy and ModifiedDate properties of the parent folder.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateRole Method
ReportingService.CreateRole Method

Adds a new role to the report server database.

Visual Basic

Public Sub CreateRole(_
 ByVal Name As String, _
 ByVal Description As String, _
 ByVal Task() As [Namespace].Task _
)
 Member of [Namespace].ReportingService

C#

public void CreateRole(
 string Name,
 string Description,
 [Namespace].Task[] Tasks
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the new role. The value of this parameter must be between 1 and 260 characters long.

Description
A description of the new role. The value of this parameter must be between 1 and 512 characters long.

Tasks
An array of Task[] objects that represents the tasks to set for the role. Only the TaskID property of the Task object is submitted
to create a role.

Permissions

Operation Description
Create Roles Required for creating a role in the report

server database.

Remarks

The Name and Description parameters are required and should not be set to null (Nothing in Visual Basic). The value for Name
must be unique.

You must assign at least one task to the role. You cannot combine system-level and item-level tasks within a single role. For more
information about tasks, see Tasks and Permissions.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the CreateRole method to create a
user role that has permissions to view folders and reports:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim name As String = "Report Browser"
 Dim desc As String = "View folders and reports."
 Dim setTasks(2) As Task
 setTasks(0) = New Task()
 setTasks(1) = New Task()
 setTasks(2) = New Task()

 Try
 Dim returnedTasks As Task() = rs.ListTasks()

 Dim t As Task
 For Each t In returnedTasks
 If t.Name = "View reports" Then
 setTasks(0) = t

 Else
 If t.Name = "View folders" Then
 setTasks(1) = t

 Else
 If t.Name = "View resources" Then
 setTasks(2) = t
 End If
 End If
 End If
 Next t
 rs.CreateRole(name, desc, setTasks)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string name = "Report Browser";
 string desc = "View folders and reports.";
 Task[] setTasks = new Task[3];
 setTasks[0] = new Task();
 setTasks[1] = new Task();
 setTasks[2] = new Task();

 try
 {
 Task[] returnedTasks = rs.ListTasks();

 foreach(Task t in returnedTasks)
 {
 if (t.Name == "View reports")
 {
 setTasks[0] = t;
 }

 else if (t.Name == "View folders")
 {
 setTasks[1] = t;
 }

 else if (t.Name == "View resources")
 {
 setTasks[2] = t;

 }
 }

 rs.CreateRole(name, desc, setTasks);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateSchedule Method
ReportingService.CreateSchedule Method

Creates a new shared schedule.

Visual Basic

Public Function CreateSchedule(_
 ByVal Name As String, _
 ByVal ScheduleDefinition As [Namespace].ScheduleDefinition _
) As String
 Member of [Namespace].ReportingService

C#

public string CreateSchedule(
 string Name,
 [Namespace].ScheduleDefinition ScheduleDefinition
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the schedule.

ScheduleDefinition
A ScheduleDefintion[] object that defines the properties and values for the schedule.

Return Value

A string value representing the ID of the newly-created schedule.

Permissions

Operation Description
Create Schedules Required for creating a new shared

schedule.

Remarks

If an error occurs when the CreateSchedule method executes, the schedule is not created and no schedule ID is returned.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example creates a shared schedule in the report
server database that runs every weekday at 2:00 P.M., starting March 3, 2003:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As New ScheduleDefinition()
 Dim scheduleID As String = ""

 ' Create the schedule definition.
 definition.StartDateTime = New DateTime(2003, 3, 1, 14, 0, 0)

 Dim recurrence As New WeeklyRecurrence()
 Dim days As New DaysOfWeekSelector()
 days.Monday = True
 days.Tuesday = True
 days.Wednesday = True
 days.Thursday = True
 days.Friday = True
 days.Saturday = False
 days.Sunday = False
 recurrence.DaysOfWeek = days
 recurrence.WeeksInterval = 1
 recurrence.WeeksIntervalSpecified = True
 definition.Item = recurrence

 Try
 scheduleID = rs.CreateSchedule("My Schedule", definition)
 Console.WriteLine("Schedule created with ID {0}", scheduleID)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ScheduleDefinition definition = new ScheduleDefinition();
 string scheduleID = "";

 // Create the schedule definition.
 definition.StartDateTime = new DateTime(2003, 3, 1, 14, 0, 0);
 WeeklyRecurrence recurrence = new WeeklyRecurrence();
 DaysOfWeekSelector days = new DaysOfWeekSelector();
 days.Monday = true;
 days.Tuesday = true;
 days.Wednesday = true;
 days.Thursday = true;
 days.Friday = true;
 days.Saturday = false;
 days.Sunday = false;
 recurrence.DaysOfWeek = days;
 recurrence.WeeksInterval = 1;
 recurrence.WeeksIntervalSpecified = true;
 definition.Item = recurrence;

 try
 {
 scheduleID = rs.CreateSchedule("My Schedule", definition);
 Console.WriteLine("Schedule created with ID {0}", scheduleID);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

CreateSubscription Method
ReportingService.CreateSubscription Method

Creates a subscription for a specified report in the report server database.

Visual Basic

Public Function CreateSubscription(_
 ByVal Report As String, _
 ByVal ExtensionSettings As [Namespace].ExtensionSettings, _
 ByVal Description As String, _
 ByVal EventType As String, _
 ByVal MatchData As string, _
 ByVal Parameters() As ParameterValue _
) As String
 Member of [Namespace].ReportingService

C#

public string CreateSubscription(
 string Report,
 [Namespace].ExtensionSettings ExtensionSettings,
 string Description,
 string EventType,
 string MatchData,
 [Namespace].ParameterValue[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report for which to create a subscription.

ExtensionSettings
An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

Description
A meaningful description that is displayed to users.

EventType
The type of event that triggers the subscription. The valid values are TimedSubscription or SnapshotUpdated.

MatchData
The data that is associated with the specified EventType parameter. This parameter is used by an event to match the
subscription with an event that has fired.

Parameters
An array of ParameterValue[] objects that contains a list of parameters for the report.

Return Value

A subscription ID, which uniquely identifies the subscription in the report server database.

Permissions

Operation Description
Create Subscription Required to create a new subscription in

the report server database based in a
report that the subscription creator owns.

Create Any Subscription Required to create a new subscription for
any report.

Remarks

You can use the GetExtensionSettings method to retrieve a list of required settings for a delivery extension. You must pass values
for these required settings in the ExtensionSettings parameter. For information about e-mail delivery settings, see Reporting
Services Reporting Services Delivery Extension Settings.

The value of the EventType parameter must correspond to an event that is configured for the report server. The two events that
are used to create subscriptions are TimedSubscription and SnapshotUpdated. Use the ListEvents method to return a list of all
events configured for the report server.

The value of the MatchData parameter depends on the event type. If the event is a TimedSubscription event, a
ScheduleDefinition object is required as the MatchData parameter. You must first serialize the ScheduleDefinition object as
XML in order to pass it as a string value and create a subscription based on the schedule. The XML structure might look like the
one in the following example:

<ScheduleDefinition>
 <WeeklyRecurrence>
 <StartDateTime>2003-02-24T09:00:00-08:00</StartDateTime>
 <WeeksInterval>1</WeeksInterval>
 <DaysOfWeek>
 <Monday>True</Monday>
 </DaysOfWeek>
 </WeeklyRecurrence>
</ScheduleDefinition>

The value of the StartDateTime element when passed as an XML string should correspond to the date format ISO 8601. This
international date and time standard is the extended format CCYY-MM-DDThh:mm:ss+/-Z where "CC" represents the century,
"YY" the year, "MM" the month and "DD" the day. The letter "T" is the date and time separator and "hh", "mm", "ss" represent hour,
minute and second respectively. This representation may be immediately followed by a "Z" to indicate Coordinated Universal
Time (UTC) or, to indicate the time zone, i.e. the difference between the local time and Coordinated Universal Time, immediately
followed by a sign, + or -, followed by the difference from UTC represented as hh:mm.

If the schedule definition for a TimedSubscription is a shared schedule, you must pass the schedule ID of the shared schedule as
the MatchData parameter. The schedule ID is passed as a String, for example, "4608ac1b-fc75-4149-9e15-5a8b5781b843". The
schedule ID can be obtained by calling the ListSchedules method.

You can use the XmlSerializer class to convert your object class to an XML string automatically. For more information about the
XmlSerializer class, see "System.Xml.XmlSerializer Class" in the Microsoft .NET Framework documentation.

If the event is a SnapshotUpdated subscription, the value of MatchData should be null (or Nothing in Visual Basic).

Using this method sets the LastExecuted property of the report to none, the Status property of the subscription to new
subscription, and the Active property of the subscription to true. The ModifiedBy and ModifiedDate properties of the report
are also updated.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses CreateSubscription to add a new
subscription to the report server database:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim report As String = "/SampleReports/Employee Sales Summary"
 Dim desc As String = "Send email to anyone@microsoft.com"
 Dim eventType As String = "TimedSubscription"
 Dim scheduleXml As String = "<ScheduleDefinition><StartDateTime>2003-02-
24T09:00:00-08:00</StartDateTime><WeeklyRecurrence>" & _
 "<WeeksInterval>1</WeeksInterval><DaysOfWeek><Monday>True</Monday></DaysOfWeek>
</WeeklyRecurrence></ScheduleDefinition>"

 Dim extensionParams(7) As ParameterValue

 extensionParams(0) = New ParameterValue()
 extensionParams(0).Name = "TO"
 extensionParams(0).Value = "dank@adventure-works.com"

 extensionParams(1) = New ParameterValue()
 extensionParams(1).Name = "ReplyTo"
 extensionParams(1).Value = "reporting@adventure-works.com"

 extensionParams(2) = New ParameterValue()
 extensionParams(2).Name = "IncludeReport"
 extensionParams(2).Value = "True"

 extensionParams(3) = New ParameterValue()
 extensionParams(3).Name = "RenderFormat"
 extensionParams(3).Value = "MHTML"

 extensionParams(4) = New ParameterValue()
 extensionParams(4).Name = "Subject"
 extensionParams(4).Value = "@ReportName was executed at @ExecutionTime"

 extensionParams(5) = New ParameterValue()
 extensionParams(5).Name = "Comment"
 extensionParams(5).Value = "Here is your daily sales report for Michael."

 extensionParams(6) = New ParameterValue()
 extensionParams(6).Name = "IncludeLink"
 extensionParams(6).Value = "True"

 extensionParams(7) = New ParameterValue()
 extensionParams(7).Name = "Priority"
 extensionParams(7).Value = "NORMAL"

 Dim parameter As New ParameterValue()
 parameter.Name = "EmpID"
 parameter.Value = "38"

 Dim parameters(1) As ParameterValue
 parameters(0) = parameter

 Dim matchData As String = scheduleXml
 Dim extSettings As New ExtensionSettings()
 extSettings.ParameterValues = extensionParams
 extSettings.Extension = "Report Server Email"

 Try
 rs.CreateSubscription(report, extSettings, desc, eventType, matchData,
parameters)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string report = "/SampleReports/Employee Sales Summary";
 string desc = "Send email to anyone@microsoft.com";
 string eventType = "TimedSubscription";
 string scheduleXml = @"<ScheduleDefinition>";
 scheduleXml += @"<StartDateTime>2003-02-24T09:00:00-08:00</StartDateTime>
<WeeklyRecurrence><WeeksInterval>1</WeeksInterval>";
 scheduleXml += @"<DaysOfWeek><Monday>True</Monday></DaysOfWeek>";
 scheduleXml += @"</WeeklyRecurrence></ScheduleDefinition>";

 ParameterValue[] extensionParams = new ParameterValue[8];

 extensionParams[0] = new ParameterValue();
 extensionParams[0].Name = "TO";
 extensionParams[0].Value = "dank@adventure-works.com";

 extensionParams[1] = new ParameterValue();
 extensionParams[1].Name = "ReplyTo";
 extensionParams[1].Value = "reporting@adventure-works.com";

 extensionParams[2] = new ParameterValue();
 extensionParams[2].Name = "IncludeReport";
 extensionParams[2].Value = "True";

 extensionParams[3] = new ParameterValue();
 extensionParams[3].Name = "RenderFormat";
 extensionParams[3].Value = "MHTML";

 extensionParams[4] = new ParameterValue();
 extensionParams[4].Name = "Subject";
 extensionParams[4].Value = "@ReportName was executed at @ExecutionTime";

 extensionParams[5] = new ParameterValue();
 extensionParams[5].Name = "Comment";
 extensionParams[5].Value = "Here is your daily sales report for Michael.";

 extensionParams[6] = new ParameterValue();
 extensionParams[6].Name = "IncludeLink";
 extensionParams[6].Value = "True";

 extensionParams[7] = new ParameterValue();
 extensionParams[7].Name = "Priority";
 extensionParams[7].Value = "NORMAL";

 ParameterValue parameter = new ParameterValue();
 parameter.Name = "EmpID";
 parameter.Value = "38";

 ParameterValue[] parameters = new ParameterValue[1];
 parameters[0] = parameter;

 string matchData = scheduleXml;
 ExtensionSettings extSettings = new ExtensionSettings();
 extSettings.ParameterValues = extensionParams;
 extSettings.Extension = "Report Server Email";

 try
 {
 rs.CreateSubscription(report, extSettings, desc, eventType, matchData,
parameters);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeleteItem Method
ReportingService.DeleteItem Method

Deletes a specified item from the report server database.

Visual Basic

Public Sub DeleteItem(_
 ByVal Item As String _
)
 Member of [Namespace].ReportingService

C#

public void DeleteItem(
 string Item
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Permissions

Operation Description
Delete Required for deleting folders, reports, and

associated resources. Users must have
delete permissions on each item within
the folder or on each resource that is
associated with the report to delete the
specified item successfully.

Remarks

The DeleteItem method not only deletes the specified item from the report server database, it also deletes additional items, such
as the subscriptions, schedules, and snapshots that are associated with the item.

If My Reports is enabled, a SOAP exception is thrown with the error code rsCannotDeleteReservedFolder if you attempt to
delete the /My Reports or /Users folder. You can check the properties of any item by using the GetProperties method. If the item
has a Reserved property set to a value of true, the item cannot be deleted.

Deleting an item in the report server database modifies the ModifiedBy and ModifiedDate properties of the parent item.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeleteReportHistorySnapshot Method
ReportingService.DeleteReportHistorySnapshot Method

Deletes an individual report history snapshot for a specified report. If errors occur, the report history snapshot is not deleted.

Visual Basic

Public Sub DeleteReportHistorySnapshot(_
 ByVal Report As String, _
 ByVal HistoryID As String _
)
 Member of [Namespace].ReportingService

C#

public void DeleteReportHistorySnapshot(
 string Report,
 string HistoryID
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

HistoryID
The ID of the report history snapshot to be deleted.

Permissions

Operation Description
Delete Report History Required to delete report history

snapshots that are associated with reports.

Remarks

Use the ListReportHistory method to retrieve the HistoryID property of the report history snapshot that you want to delete.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeleteRole Method
ReportingService.DeleteRole Method

Deletes a specified role from the report server database.

Visual Basic

Public Sub DeleteRole(_
 ByVal Name As String _
)
 Member of [Namespace].ReportingService

C#

public void DeleteRole(
 string Name
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the role.

Permissions

Operation Description
Delete Roles Required to delete roles from the report

server database.

Remarks

Deleting a role removes it from all policies with which the role is associated. If the role that is deleted is the only role that is
associated with a particular policy, the policy is also deleted and any item associated with the policy inherits new policies from its
parent.

You cannot delete the reserved role MyReportsRole.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeleteSchedule Method
ReportingService.DeleteSchedule Method

Deletes a shared schedule from the report server database.

Visual Basic

Public Sub DeleteSchedule(_
 ByVal ScheduleID As String _
)
 Member of [Namespace].ReportingService

C#

public void DeleteSchedule(
 string ScheduleID
);
 Member of [Namespace].ReportingService

Parameters

ScheduleID
The ID of the schedule.

Permissions

Operation Description
Delete Schedules Required to delete a shared schedule.

Remarks

Reports and subscriptions that run according to the schedule do not run if the schedule is deleted.

If the DeleteSchedule method is called while a report that is associated with the shared schedule is running, the report continues
to run. In that case, the schedule is assigned to the individual report.

Use the ListSchedules method to retrieve a current list of shared schedules in the report server database.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeleteSubscription Method
ReportingService.DeleteSubscription Method

Deletes a subscription from the report server database.

Visual Basic

Public Sub DeleteSubscription(_
 ByVal SubscriptionID As String _
)
 Member of [Namespace].ReportingService

C#

public void DeleteSubscription(
 string SubscriptionID
)
 Member of [Namespace].ReportingService

Parameters

SubscriptionID
The ID of the subscription.

Permissions

Operation Description
Delete Subscription Required on the report that is associated

with the subscription. This permission is
required for owners who want to delete
their own subscriptions.

Delete Any Subscription Required on the report that is associated
with a subscription. This permission is
required for administrators who want to
delete any subscriptions.

Remarks

To delete the subscription specified in the SubscriptionID parameter, a user must have Delete Subscription permissions on the
report that is associated with the subscription.

Use the ListSubscriptions method to retrieve a current list of subscriptions in the report server database.

Use this method to delete both standard and data-driven subscriptions.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DisableDataSource Method
ReportingService.DisableDataSource Method

Disables a data source that is enabled.

Visual Basic

Public Sub DisableDataSource(_
 ByVal DataSource As String _
)
 Member of [Namespace].ReportingService

C#

public void DisableDataSource(
 string DataSource
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Permissions

Operation Description
Update Content Required on the data source.

Remarks

Reports and data-driven subscriptions that refer to the data source do not run if the data source is disabled.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

EnableDataSource Method
ReportingService.EnableDataSource Method

Enables a data source that is disabled.

Visual Basic

Public Sub DisableDataSource(_
 ByVal DataSource As String _
)
 Member of [Namespace].ReportingService

C#

public void DisableDataSource(
 string DataSource
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Permissions

Operation Description
Update Content Required on the data source.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExecuteBatch Method
ReportingService.ExecuteBatch Method

Executes all methods that are associated with a batch ID within a single database transaction.

Visual Basic

Public Sub ExecuteBatch()
 Member of [Namespace].ReportingService

C#

public void ExecuteBatch();
 Member of [Namespace].ReportingService

Permissions

Users must have permissions on all operations that are included in the batch.

Remarks

All methods that are associated with the currently set batch ID are executed within the scope of a single database transaction in
the order in which they are called. The batch ID is contained in the SOAP header for each Web service operation.

To execute the batch, set the BatchHeaderValue property of the Web service to a value that is equal to the batch ID generated
when the batch was created.

If an error occurs in any of the method calls when the batch executes, the report server stops execution and rolls back any
previous operations. This provides a distinct advantage in a case when one method call depends on the successful execution of
the other method calls in the batch.

See Also

CancelBatch Method

CreateBatch Method

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

FindItems Method
ReportingService.FindItems Method

Returns items that match the search criteria specified in a search of the report server database.

Visual Basic

Public Function FindItems(_
 ByVal Folder As String, _
 ByVal Operator As String, _
 ByVal Properties As String _
) As [Namespace].CatalogItem()
 Member of [Namespace].ReportingService

C#

public [Namespace].CatalogItem[] FindItems(
 string Folder,
 string Operator,
 string Properties
);
 Member of [Namespace].ReportingService

Parameters

Folder
The full path name of the folder to search. To search the entire report server database, specify the root folder (/).

Operator
The logical operator that is applied to connect the search conditions. Possible values are AND and OR. The default value is
AND.

Conditions
An array of SearchCondition[] objects that defines the property names and values for which to search.

Return Value

An array of CatalogItem[] objects in the report server database that correspond to the specified search criteria.

Permissions

Operation Description
Read Properties Required on the folder that is passed as

the folder argument.

Remarks

The report server does not support wildcard characters in the middle of the search condition. Wildcard characters include %, _, [,],
^, and -. If a wildcard character is present, the report server treats the character literally.

The search functionality of FindItems is case insensitive.

Applications that use FindItems typically accept user input for specific properties and property values. The searchable properties
are Name, Description, CreatedBy, CreationDate, ModifiedBy, and ModifiedDate. The items that are returned are only those
for which a user has Read Properties permission.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example searches the report server database for all
reports whose names contain the word "Sales":

Visual Basic

Imports System

Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim items As CatalogItem() = Nothing
 Dim condition As New SearchCondition()
 condition.Condition = ConditionEnum.Contains
 condition.ConditionSpecified = True
 condition.Name = "Name"
 condition.Value = "Sales"

 Dim conditions(0) As SearchCondition
 conditions(0) = condition

 Try
 items = rs.FindItems("/", BooleanOperatorEnum.Or, conditions)

 If Not (items Is Nothing) Then
 Dim ci As CatalogItem
 For Each ci In items
 Console.WriteLine("Item {0} found at {1}", ci.Name, ci.Path)
 Next ci
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 CatalogItem[] items = null;
 SearchCondition condition = new SearchCondition();
 condition.Condition = ConditionEnum.Contains;
 condition.ConditionSpecified = true;
 condition.Name = "Name";
 condition.Value = "Sales";

 SearchCondition[] conditions = new SearchCondition[1];
 conditions[0] = condition;

 try
 {
 items = rs.FindItems("/", BooleanOperatorEnum.Or, conditions);

 if (items != null)
 {
 foreach (CatalogItem ci in items)
 {
 Console.WriteLine("Item {0} found at {1}", ci.Name, ci.Path);
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }

 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

FireEvent Method
ReportingService.FireEvent Method

Triggers an event based on the supplied parameters.

Visual Basic

Public Sub FireEvent(_
 ByVal EventType As String, _
 ByVal EventData As String _
)
 Member of [Namespace].ReportingService

C#

public void FireEvent(
 string EventType,
 string EventData
);
 Member of [Namespace].ReportingService

Parameters

EventType
The name of the event.

EventData
The data that is associated with the event.

Permissions

Operation Description
Generate Events Required to trigger events that are

configured in the report server.

Remarks

The EventType parameter is matched against the known set of events that are defined in the report server configuration file. If the
event is not in the report server configuration file, a SOAP exception is thrown with an error code of rsUnknownEventType. For
more information about events and the configuration file, see Reporting Services Configuration Files.

The FireEvent method does not verify or validate the data supplied in the EventData parameter. Any string value is valid,
including an empty string.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

FlushCache Method
ReportingService.FlushCache Method

Invalidates the cache for an individual report.

Visual Basic

Public Sub FlushCache(_
 ByVal Report As String _
)
 Member of [Namespace].ReportingService

C#

public void FlushCache(
 string Report
)
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Permissions

Operation Description
Generate Events Required to trigger events that are

configured in the report server.

Remarks

Calling the FlushCache method on a non-cached report does not produce an error.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetCacheOptions Method
ReportingService.GetCacheOptions Method

Returns the cache configuration for a report and the settings that describe when the cached copy of the report expires.

Visual Basic

Public Function GetCacheOptions(_
 ByVal Report As String, _
 ByRef Item As [Namespace].ExpirationDefinition _
) As Boolean
 Member of [Namespace].ReportingService

C#

public bool GetCacheOptions(
 string Report,
 out [Namespace].ExpirationDefinition Item
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Item
[out] An ExpirationDefinition object that defines either the time, in minutes, or the schedule upon which the cached copy expires.

Return Value

A value of true if a copy of an executed report is placed in cache; otherwise, a value of false. The default value is false.

Permissions

Operation Description
Read Policy Required on the report to view cache

policy settings.

Remarks

Use the return value of this method to evaluate whether the report is set to be cached. If the value is false, the method returns a
null (or Nothing in Visual Basic) for Item.

Use GetCacheOptions only if the execution option is configured to run on demand. For more information about the cache
settings of a report, see Report Caching in Reporting Services. For information about programmatically setting the caching
options of a report, see SetCacheOptions method.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetDataDrivenSubscriptionProperties Method
ReportingService.GetDataDrivenSubscriptionProperties Method

Returns the properties of a data-driven subscription.

Visual Basic

Public Function GetDataDrivenSubscriptionProperties(_
 ByVal DataDrivenSubscriptionID As String, _
 ByRef ExtensionSettings As [Namespace].ExtensionSettings, _
 ByRef DataRetrievalPlan As [Namespace].DataRetrievalPlan, _
 ByRef Description As String, _
 ByRef Active As [Namespace].ActiveState, _
 ByRef Status As String, _
 ByRef EventType As String, _
 ByRef MatchData As String, _
 ByRef Parameters() As [Namespace].ParameterValue _
) As String
 Member of [Namespace].ReportingService

C#

public string GetDataDrivenSubscriptionProperties(
 string DataDrivenSubscriptionID,
 out [Namespace].ExtensionSettings ExtensionSettings,
 out [Namespace].DataRetrievalPlan DataRetrievalPlan,
 out string Description,
 out [Namespace].ActiveState Active,
 out string Status,
 out string EventType,
 out string MatchData,
 out [Namespace].ParameterValue[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

DataDrivenSubscriptionID
The ID of the data-driven subscription.

ExtensionSettings
[out] An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

DataRetrievalPlan
[out] A DataRetrievalPlan object that contains a list of settings that are required to retrieve data from the delivery query for the
subscription.

Description
[out] A meaningful description that is displayed to users.

Active
[out] An ActiveState object that contains the active state of the subscription.

Status
[out] The status of the subscription.

EventType
[out] The type of event that triggers the subscription.

MatchData
[out] The data that is associated with the specified type of event. This parameter is used by an event to match the subscription
with an event that has fired.

Parameters
[out] An array of ParameterValue[] objects that contains a list of parameters for the report.

Return Value

The user ID of the owner of the data-driven subscription.

Permissions

Operation Description
Read Subscription Required for viewing the properties of a

subscription.
Read Any Subscription Required for administrators or users who

do not own the subscription to view the
subscription properties.

See Also

CreateDataDrivenSubscription Method

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetDataSourceContents Method
ReportingService.GetDataSourceContents Method

Returns the contents of a data source.

Visual Basic

Public Function GetDataSourceContents(_
 ByVal DataSource As String _
) As [Namespace].DataSourceDefinition
 Member of [Namespace].ReportingService

C#

public [Namespace].DataSourceDefinition GetDataSourceContents(
 string DataSource
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Return Value

A data source definition (DataSourceDefinition object) that contains the connection properties for the data source.

Permissions

Operation Description
Read Content Required on the data source to view its

connection properties.

Remarks

Security Note This method may pass sensitive data, including user credentials, over a network. When possible, use
SSL encryption when making Web service calls with this method. Depending on the SecureConnectionLevel setting
for the report server, you may be required to use SSL when invoking this method. You can use the ListSecureMethods
method to retrieve a list of methods that currently require a secure connection. For more information about the
SecureConnectionLevel setting, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetDataSourceContents method
to retrieve the data source definition of a shared data source and then displays the connection string and extension name as
console output:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As DataSourceDefinition = Nothing

 Try
 definition = rs.GetDataSourceContents("/SampleReports/AdventureWorks")

 Console.WriteLine("Connection String: {0}", definition.ConnectString)
 Console.WriteLine("Extension name: {0}", definition.Extension)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 DataSourceDefinition definition = null;

 try
 {
 definition = rs.GetDataSourceContents("/SampleReports/AdventureWorks");
 Console.WriteLine("Connection String: {0}", definition.ConnectString);
 Console.WriteLine("Extension name: {0}", definition.Extension);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetExecutionOptions Method
ReportingService.GetExecutionOptions Method

Returns the execution option and associated settings for an individual report.

Visual Basic

Public Function GetExecutionOptions(_
 ByVal Report As String, _
 ByRef Item As [Namespace].ScheduleDefinitionOrReference _
) As [Namespace].ExecutionSettingEnum
 Member of [Namespace].ReportingService

C#

public [Namespace].ExecutionSettingEnum GetExecutionOptions(
 string Report,
 out [Namespace].ScheduleDefinitionOrReference Item
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Item
[out] A ScheduleDefinitionOrReference object that represents a schedule definition or reference to a shared schedule.

Return Value

One of the ExecutionSettingEnum values.

Permissions

Operation Description
Read Policy Required to view the execution settings of

the report.
Read Schedules Required in some cases to view the

schedule properties if the schedule is
shared.

Remarks

The GetExecutionOptions method returns either a schedule definition (ScheduleDefintion object) or a reference to a shared
schedule (ScheduleReference object).

If the execution options for a report do not contain schedule information, the Item parameter is null (Nothing in Visual Basic).

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetExtensionSettings Method
ReportingService.GetExtensionSettings Method

Returns a list of settings for a given extension.

Visual Basic

Public Function GetExtensionSettings(_
 ByVal Extension As String _
) As [Namespace].ExtensionParameter()
 Member of [Namespace].ReportingService

C#

public [Namespace].ExtensionParameter[] GetExtensionSettings(
 string Extension
);
 Member of [Namespace].ReportingService

Parameters

Extension
The name of the extension as it appears in the report server configuration file. Valid values are Report Server Email and
Report Server FileShare.

Return Value

An array of ExtensionParameter[] objects that represents the list of known settings for a given extension.

Remarks

If the extension does not support any extension parameters, an empty list is returned.

Note Currently, the GetExtensionSettings method supports delivery extensions. Other extensions are not yet
supported by this method.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example retrieves information about the settings of
the Report Server e-mail delivery extension:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim extensionParams As ExtensionParameter() = Nothing

 Try
 extensionParams = rs.GetExtensionSettings("Report Server Email")

 Console.WriteLine("Settings retrieved.")

 If Not (extensionParams Is Nothing) Then
 Dim extensionParam As ExtensionParameter
 For Each extensionParam In extensionParams
 Console.WriteLine("Value: {0}", extensionParam.Value)
 Console.WriteLine("Name: {0}", extensionParam.Name)

 Console.WriteLine("ReadOnly: {0}", extensionParam.ReadOnly)
 Console.WriteLine("Required: {0}", extensionParam.Required)
 Next extensionParam
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ExtensionParameter[] extensionParams = null;

 try
 {
 extensionParams = rs.GetExtensionSettings("Report Server Email");

 Console.WriteLine("Settings retrieved.");

 if (extensionParams != null)
 {
 foreach (ExtensionParameter extensionParam in extensionParams)
 {
 Console.WriteLine("Value: {0}", extensionParam.Value);
 Console.WriteLine("Name: {0}", extensionParam.Name);
 Console.WriteLine("ReadOnly: {0}", extensionParam.ReadOnly);
 Console.WriteLine("Required: {0}", extensionParam.Required);
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetItemType Method
ReportingService.GetItemType Method

Retrieves the type of an item in the report server database, if the item exists.

Visual Basic

Public Function GetItemType(_
 ByVal Item As String _
) As Integer
 Member of [Namespace].ReportingService

C#

public int GetItemType(
 string Item
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Return Value

One of the ItemTypeEnum values.

Permissions

Operation Description
Read Properties Required to read the meta data properties

that are associated with an item.

Remarks

Use the ItemType property to determine the type of an item in the report server database. The following table lists the various
item types.

Item type Description
Unknown An item not associated with any known

type
Folder A folder
Report A report
Resource A resource
LinkedReport A linked report
DataSource A data source

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetPermissions Method
ReportingService.GetPermissions Method

Returns the user permissions that are associated with a particular item in the report server database.

Visual Basic

Public Function GetPermissions(_
 ByVal Item As String _
) As String
 Member of [Namespace].ReportingService

C#

public string GetPermissions(
 string Item
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Return Value

An array of String[] objects that contains a list of permissions that are associated with the assigned tasks and roles of the item for
the current user.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetPermissions method to
retrieve the permissions associated with the Company Sales report:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Try
 Dim permissions As [String]() = rs.GetPermissions("/SampleReports/Company
Sales")

 Dim perm As String
 For Each perm In permissions
 Console.WriteLine(perm)
 Next perm

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 try
 {
 String[] permissions = rs.GetPermissions("/SampleReports/Company Sales");

 foreach (string perm in permissions)
 {
 Console.WriteLine(perm);
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

Visual Basic, C#

The console output for this method might look like the following example:

Delete
Execute and View
Read Properties
Update Properties
Update Parameters
Read Data Sources
Update Data Sources
Read Report Definition
Update Report Definition
Create Subscription
Delete Subscription
Read Subscription
Delete Report History
Update Subscription
Create Any Subscription
Delete Any Subscription
Read Any Subscription
Read Security Policies
Update Security Policies
Update Any Subscription
Read Policy
Update Policy
List Report History
Create Report History
Execute
Create Link

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetPolicies Method
ReportingService.GetPolicies Method

Returns the policies that are associated with a particular item in the report server database.

Visual Basic

Public Function GetPolicies(_
 ByVal Item As String, _
 ByRef InheritParent As Boolean _
) As [Namespace].Policy[]
 Member of [Namespace].ReportingService

C#

public [Namespace].Policy[] GetPolicies(
 string Item,
 out bool InheritParent
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

InheritParent
A Boolean expression that indicates whether the item inherits policies from its parent.

Return Value

An array of Policy[] objects that contains the users and roles associated with the item.

Permissions

Operation Description
Read Security Policies Required to read the security policies that

are set on an item.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetPolicies method to discover
whether an item is provided a custom role assignment or whether the role assignment is inherited from a parent item. If the role
assignment is inherited, the code example traverses up the folder hierarchy of the report server database to determine from
which parent item the role assignment is inherited. The ListChildren method is used to retrieve the initial item list from the report
server database. The GetParentPath method of the code example is used to parse the string path of any report server item and
return the path of the parent item:

Visual Basic

Imports System
Imports System.Web.Services.Protocols
Imports System.Text.RegularExpressions

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Try
 Dim inheritParent As Boolean
 Dim rolePath As String
 Dim items As CatalogItem() = rs.ListChildren("/", True)

 Dim item As CatalogItem
 For Each item In items
 rolePath = item.Path
 rs.GetPolicies(rolePath, inheritParent)
 While inheritParent
 rolePath = GetParentPath(rolePath)
 rs.GetPolicies(rolePath, inheritParent)
 End While
 If item.Path = rolePath Then
 Console.WriteLine("The item {0} does not inherit it's role assignment.",
item.Path)
 Else
 Console.WriteLine("The item {0} inherits it's role assignment from {1}",
item.Path, rolePath)
 End If
 Next item

 Catch e As SoapException
 Console.WriteLine(e.Detail("Message").InnerXml)

 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try
 End Sub 'Main

 Private Shared Function GetParentPath(currentPath As String) As String
 Dim delimiter As String = "/"
 Dim rx As New Regex(delimiter)
 Dim childPath As String() = rx.Split(currentPath)

 Dim parentLength As Integer = childPath.Length - 1
 Dim parentPath(parentLength) As String

 Dim i As Integer
 For i = 0 To parentLength - 1
 parentPath(i) = childPath(i)
 Next i
 If parentPath.Length = 1 Then
 Return "/"
 Else
 Return String.Join("/", parentPath)
 End If
 End Function 'GetParentPath
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;
using System.Text.RegularExpressions;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 try
 {
 bool inheritParent;
 string rolePath;
 CatalogItem[] items = rs.ListChildren("/", true);
 foreach (CatalogItem item in items)
 {
 rolePath = item.Path;
 rs.GetPolicies(rolePath, out inheritParent);
 while (inheritParent)
 {
 rolePath = GetParentPath(rolePath);
 rs.GetPolicies(rolePath, out inheritParent);
 }

 if (item.Path == rolePath)
 Console.WriteLine("The item {0} does not inherit it's role assignment.",
item.Path);
 else
 Console.WriteLine("The item {0} inherits it's role assignment from {1}",
 item.Path, rolePath);
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail["Message"].InnerXml);
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }

 private static string GetParentPath(string currentPath)
 {
 string delimiter = "/";
 Regex rx = new Regex(delimiter);
 string[] childPath = rx.Split(currentPath);

 int parentLength = childPath.Length - 1;
 string[] parentPath = new string[parentLength];

 for (int i = 0; i < parentLength; i++)
 parentPath[i] = childPath[i];

 if (parentPath.Length == 1)
 return "/";
 else
 return String.Join("/", parentPath);
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetProperties Method
ReportingService.GetProperties Method

Returns the value of one or more properties of an item in the report server database.

Visual Basic

Public Function GetProperties(_
 ByVal Item As String, _
 ByVal Properties() As [Namespace].Property _
) As String
 Member of [Namespace].ReportingService

C#

public string GetProperties(
 string Item,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item or the ID of the item. The default value that must be passed for this argument is the full path
name of the item. To supply an ID, you must set the ItemNamespaceHeader SOAP header. For more information, see Setting the
Item Namespace for the GetProperties Method.

Properties
An array of Property[] objects that contains the properties for which you want to retrieve values.

Return Value

An array of Property[] objects that represents the properties of the specified item.

Permissions

Operation Description
Read Properties Required to read the meta data properties

that are associated with an item.

Remarks

Use the GetProperties method to retrieve the complete set of user-defined and reserved properties. To retrieve the standard
subset of reserved properties, use the ListChildren method. For a list of the reserved properties of items in the report server
database, see Report Server Item Properties.

If the Properties parameter is null (Nothing in Visual Basic), all properties for the specified item are returned. These include all
user-defined and built-in properties that are specific to the item.

You can pass the full path name of the item for the Item parameter or you can supply the ID of the item. For more information
about using SOAP headers to accomplish this, see Using Reporting Services SOAP Headers.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetProperties method to retrieve
the description associated with the Company Sales report:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Create the property to retrieve.
 Dim retrieveProp As New [Property]()
 retrieveProp.Name = "Description"
 Dim props(0) As [Property]
 props(0) = retrieveProp

 Try
 Dim properties As [Property]() = rs.GetProperties("/SampleReports/Company
Sales", props)

 Dim prop As [Property]
 For Each prop In properties
 ' Writes the description to the console.
 Console.WriteLine(prop.Value)
 Next prop

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Create the property to retrieve.
 Property retrieveProp = new Property();
 retrieveProp.Name = "Description";
 Property[] props = new Property[1];
 props[0] = retrieveProp;

 try
 {
 Property[] properties = rs.GetProperties("/SampleReports/Company Sales", props);

 foreach (Property prop in properties)
 {
 // Writes the description to the console.
 Console.WriteLine(prop.Value);
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetRenderResource Method
ReportingService.GetRenderResource Method

Returns the resource for a specified rendering extension format.

Visual Basic

Public Function GetRenderResource(_
 ByVal Format As String, _
 ByVal DeviceInfo As String, _
 ByRef MimeType As String _
) As Byte()
 Member of [Namespace].ReportingService

C#

public System.Byte[] GetRenderResource(
 string Format,
 string DeviceInfo,
 out string MimeType
);
 Member of [Namespace].ReportingService

Parameters

Format
The format of the rendering extension for which to retrieve the resource (HTML5, XML, IMAGE and so on).

DeviceInfo
The device-specific settings used by the rendering extension.

MimeType
The MIME type of the resource.

Return Value

The rendering extension resource as a Base 64-encoded byte array. For more information about this data type, see "Byte
Structure" in the .NET Framework documentation.

Remarks

An example of a rendering resource that is returned by the GetRenderResource method is the plus (+) image, which is used to
expand groups in the HTML rendering extension. The resource that the method returns depends on the DeviceInfo parameter that
is supplied. For more information about device information settings for rendering extensions, see Device Information Settings.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportDataSourcePrompts Method
ReportingService.GetReportDataSourcePrompts Method

Returns the prompt strings for each data source that is associated with a specified report.

Visual Basic

Public Function GetReportDataSourcePrompts(_
 ByVal Report As String _
) As String
 Member of [Namespace].ReportingService

C#

public string GetReportDataSourcePrompts(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Return Value

An array of DataSourcePrompt[] objects that represents the prompt strings for each data source that is associated with the
specified report.

Permissions

Operation Description
Read Properties Required on the report and on all data

source items to view the data source
prompt information.

Remarks

Data sources in the report server database include the DataSourceDefinition.CredentialRetrieval property, which you use to
determine how users are prompted for data source credentials. If a data source that is associated with a specific report references
a shared data source in the report server database and the CredentialRetrieval property is set to Prompt, the prompt string
from the data source item is returned.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportDataSource Method
ReportingService.GetReportDataSources Method

Returns the values of properties that are associated with the data sources of a report.

Visual Basic

Public GetReportDataSources(_
 ByVal Report As String _
) As [Namespace].DataSource()
 Member of [Namespace].ReportingService

C#

public [Namespace].DataSource[] GetReportDataSources(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Return Value

An array of DataSource[] objects that represents the data sources that are associated with a report and their properties.

Permissions

Operation Description
Read Data Sources Required on the report to view data

source properties. Required on any data
sources that exist as named items in the
report server database.

Remarks

Security Note This method may pass sensitive data, including user credentials, over a network. When possible, use
SSL encryption when making Web service calls with this method. Depending on the SecureConnectionLevel setting
for the report server, you may be required to use SSL when invoking this method. You can use the ListSecureMethods
method to retrieve a list of methods that currently require a secure connection. For more information about the
SecureConnectionLevel setting, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetReportDataSources method
to retrieve data source information that is stored in the report "Company Sales" and uses that data to create shared data sources
in the root folder:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim parent As String = "/"

 Dim dataSources As DataSource() = Nothing

 Try
 dataSources = rs.GetReportDataSources("/SampleReports/Company Sales")

 If Not (dataSources Is Nothing) Then
 Dim ds As DataSource
 For Each ds In dataSources
 If TypeOf ds.Item Is DataSourceDefinition Then
 Dim definition As DataSourceDefinition = CType(ds.Item,
DataSourceDefinition)
 rs.CreateDataSource(ds.Name, parent, definition, Nothing)
 End If
 Next ds
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string parent = "/";
 DataSource[] dataSources = null;

 try
 {
 dataSources = rs.GetReportDataSources("/SampleReports/Company Sales");

 if (dataSources != null)
 {
 foreach (DataSource ds in dataSources)
 {
 if (ds.Item is DataSourceDefinition)
 {
 DataSourceDefinition definition = (DataSourceDefinition) ds.Item;
 rs.CreateDataSource(ds.Name, parent, definition, null);
 }
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportDefinition Method
ReportingService.GetReportDefinition Method

Retrieves the report definition for a report.

Visual Basic

Public Function GetReportDefinition(_
 ByVal Report As String _
) As Byte()
 Member of [Namespace].ReportingService

C#

public Byte[] GetReportDefinition(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Return Value

The report definition as a Base 64-encoded byte array. For more information about this data type, see "Byte Structure" in the .NET
Framework documentation.

Permissions

Operation Description
Read Report Definition Required to read the report definition of

the report.

Remarks

Security Note This method may pass sensitive data, including user credentials, over a network. When possible, use
SSL encryption when making Web service calls with this method. Depending on the SecureConnectionLevel setting
for the report server, you may be required to use SSL when invoking this method. You can use the ListSecureMethods
method to retrieve a list of methods that currently require a secure connection. For more information about the
SecureConnectionLevel setting, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetReportDefinition method to
retrieve the definition of a report and store it as an XML document in the local file system:

Visual Basic

Imports System
Imports System.IO
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim reportName As String = "/SampleReports/Company Sales"
 Dim reportDefinition As Byte() = Nothing
 Dim doc As New System.Xml.XmlDocument

 Try
 reportDefinition = rs.GetReportDefinition(reportName)
 Dim stream As New MemoryStream(reportDefinition)

 doc.Load(stream)
 doc.Save("C:\Company Sales.rdl")

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())

 Catch e As IOException
 Console.WriteLine(e.Message)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.IO;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string reportName = "/SampleReports/Company Sales";
 byte[] reportDefinition = null;
 System.Xml.XmlDocument doc = new System.Xml.XmlDocument();

 try
 {
 reportDefinition = rs.GetReportDefinition(reportName);
 MemoryStream stream = new MemoryStream(reportDefinition);

 doc.Load(stream);
 doc.Save(@"C:\Company Sales.rdl");
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }

 catch (IOException e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportHistoryLimit Method
ReportingService.GetReportHistoryLimit Method

Returns the report history snapshot limit for a specified report.

Visual Basic

Public Function GetSnapshotLimit(_
 ByVal Report As String, _
 ByRef IsSystem As Boolean, _
 ByRef SystemLimit As Integer _
) As Integer
 Member of [Namespace].ReportingService

C#

public int GetSnapshotLimit(
 string Report,
 out bool IsSystem,
 out int SystemLimit
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

IsSystem
A Boolean expression that returns true if the report snapshot policy is set equal to the system limit. The parameter returns
false if the report has its own report history limit.

SystemLimit
The system report history limit.

Return Value

An integer value representing the history limit for the given report. Values can range from -1 to 2,147,483,647. If the value is set
to –1, all report history snapshots are saved.

Permissions

Operation Description
Read Policy Required to view the report history

snapshot limit policy for a report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportHistoryOptions Method
ReportingService.GetReportHistoryOptions Method

Returns the report history snapshot option and properties that are generated for a report.

Visual Basic

Public Function GetReportHistoryOptions(_
 ByVal Report As String, _
 ByRef Enabled As Boolean, _
 ByRef Option As String _
) As Boolean
 Member of [Namespace].ReportingService

C#

public bool GetReportHistoryOptions(
 string Report,
 out string Enabled,
 out string Option
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

KeepExecutionSnapshots
[out] A Boolean expression indicating whether report history is collected for the report. The default value is false.

Item
[out] A ScheduleDefinitionOrReference object that represents a schedule definition (ScheduleDefinition object), a reference to a
shared schedule (ScheduleReference object), or no schedule (NoSchedule object).

Return Value

A Boolean expression indicating whether report history is collected for the report. The default value is false.

Permissions

Operation Description
Read Policy Required to read the report history

snapshot properties for a report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportLink Method
ReportingService.GetReportLink Method

Returns the name of the report whose report definition is used for the specified linked report.

Visual Basic

Public Function GetReportLink(_
 ByVal Report As String _
) As String
 Member of [Namespace].ReportingService

C#

public string GetReportLink(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the linked report.

Return Value

The full path name of the report that contains the report definition for the specified linked report.

Permissions

Operation Description
Read Properties Required to read the report link for the

supplied report.

Remarks

If the report that contains the report definition for a linked report is located in the My Reports folder, the path returned is the true
path and not the virtual path to the report.

If a report is deleted that has linked reports associated with it, the linked reports no longer run.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetReportParameters Method
ReportingService.GetReportParameters Method

Returns report parameter properties for a specified report. The GetReportParameters method can also be used to validate
parameter values against parameters for a specified report.

Visual Basic

Public Function GetReportParameters(_
 ByVal Report As String _
 ByVal ForRendering As Boolean _
 ByVal HistoryID As String _
 ByVal ParameterValues() As [Namespace].ParameterValue _
 ByVal Credentials() As [Namespace].DataSourceCredential _
) As [Namespace].ReportParameter()
 Member of [Namespace].ReportingService

C#

public [Namespace].ReportParameter[] GetReportParameters(
 string Report,
 bool ForRendering,
 string HistoryID,
 [Namespace].ParameterValue[] ParameterValues,
 [Namespace].DataSourceCredential Credentials,
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

ForRendering
A Boolean expression that indicates how the parameter values are to be used. If set to a value of true, parameter properties
that are returned are based on the parameter data that was used during the execution of the report.

HistoryID
The ID of the report history snapshot. Set the ForRendering parameter to a value of true in order to retrieve parameter
properties for a report history snapshot. Set the value to null (Nothing in Visual Basic) if you are retrieving parameters for a
report that is not a report history snapshot.

ParameterValues
The parameter values (ParameterValue[] objects) that can be validated against the parameters of the report that are managed
by the report server.

Credentials
The data source credentials (DataSourceCredential[] objects) that can be used to validate query parameters.

Return Value

An array of ReportParameter[] objects that lists the parameters for the report.

Permissions

Operation Description
Read Properties Required on the report to view the

parameters.

Remarks

If the execution setting for the report is Snapshot, the parameter meta data that is returned is the data that was used when the
report history snapshot was created. If the execution setting for the report is Live, the parameter meta data returned represents
the parameter data that is associated with the specified report.

If you provide a value for the HistoryID parameter and set the ForRendering parameter to a value of true, the parameter meta
data returned represents the parameter data that was used when the report history snapshot was created. The value supplied for

HistoryID is ignored if ForRendering is set to false.

If ForRendering has a value of false, the parameter meta data returned represents the parameter data that is currently associated
with the specified report. If any parameters values are based on a query and you are interested in returning the query-based
parameters valid values list, you need to set ForRendering to true, In addition, for query based parameters, you need to ensure
that you have passed in all of the credential information required to return the query parameters.

When using the GetReportParameters method to validate parameters, the ParameterValues parameter is required.

If report parameters do not exist for the given report, an empty ReportParameter[] array is returned.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetReportParameters method to
retrieve a list of parameter meta data for a report and then displays the name of each parameter:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim report As String = "/SampleReports/Employee Sales Summary"
 Dim forRendering As Boolean = False
 Dim historyID As String = Nothing
 Dim values As ParameterValue() = Nothing
 Dim credentials As DataSourceCredentials() = Nothing
 Dim parameters As ReportParameter() = Nothing

 Try
 parameters = rs.GetReportParameters(report, historyID, forRendering, values,
credentials)

 If Not (parameters Is Nothing) Then
 Dim rp As ReportParameter
 For Each rp In parameters
 Console.WriteLine("Name: {0}", rp.Name)
 Next rp
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string report = "/SampleReports/Employee Sales Summary";
 bool forRendering = false;
 string historyID = null;
 ParameterValue[] values = null;
 DataSourceCredentials[] credentials = null;
 ReportParameter[] parameters = null;

 try
 {
 parameters = rs.GetReportParameters(report, historyID, forRendering, values,
credentials);

 if (parameters != null)
 {
 foreach (ReportParameter rp in parameters)
 {
 Console.WriteLine("Name: {0}", rp.Name);
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetResourceContents Method
ReportingService.GetResourceContents Method

Retrieves the contents of a resource.

Visual Basic

Public Function GetResourceContents(
 ByVal Resource As String
 ByRef MimeType As String
) As Byte()
 Member of [Namespace].ReportingService

C#

public Byte[] GetResourceContents(
 string Resource
 out string MimeType
);
 Member of [Namespace].ReportingService

Parameters

Resource
The full path name of the resource for which to retrieve the contents.

MimeType
The Multipurpose Internet Mail Extensions (MIME) type of the resource.

Return Value

The contents of the resource as a Base 64-encoded byte array.

Permissions

Operation Description
Read Resource Contents Required for reading the resource

contents of the specified report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetRoleProperties Method
ReportingService.GetRoleProperties Method

Returns role information and a collection of associated tasks.

Visual Basic

Public Function GetRoleProperties(
 ByVal Name As String,
 ByRef Description As String
) As [Namespace].Task[]
 Member of [Namespace].ReportingService

C#

public [Namespace].Task[] GetRoleProperties(
 string Name,
 out string Description
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the role.

Description
[out] The description of the role.

Return Value

An array of Task[] objects that represents the tasks that are associated with the role.

Permissions

Operation Description
Read Role Properties Required for reading the properties of a

role.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetScheduleProperties Method
ReportingService.GetScheduleProperties Method

Returns the properties of a shared schedule.

Visual Basic

Public Function GetScheduleProperties(_
 ByVal ScheduleID As String _
) As [Namespace].Schedule _
 Member of [Namespace].ReportingService

C#

public [Namespace].Schedule GetScheduleProperties(
 string ScheduleID
);
 Member of [Namespace].ReportingService

Parameters

ScheduleID
The ID of the schedule.

Return Values

A Schedule object that contains state information and the schedule definition for a single schedule.

Permissions

Operation Description
Read Schedules Required on the schedule to view its

properties.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example creates a shared schedule and then uses
the GetScheduleProperties method to retrieve the properties of the newly created schedule:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As New ScheduleDefinition()
 Dim scheduleID As String
 ' Create the schedule definition.
 definition.StartDateTime = New DateTime(2003, 3, 1, 14, 0, 0)
 Dim recurrence As New WeeklyRecurrence()
 Dim days As New DaysOfWeekSelector()
 days.Monday = True
 days.Tuesday = True
 days.Wednesday = True
 days.Thursday = True
 days.Friday = True
 days.Saturday = False
 days.Sunday = False
 recurrence.DaysOfWeek = days

 recurrence.WeeksInterval = 1
 recurrence.WeeksIntervalSpecified = True
 definition.Item = recurrence

 Try
 scheduleID = rs.CreateSchedule("My Schedule", definition)
 Console.WriteLine("Schedule created with ID {0}", scheduleID)

 rs.GetScheduleProperties(scheduleID)

 recurrence = CType(definition.Item, WeeklyRecurrence)
 Console.WriteLine(definition.StartDateTime)
 Console.WriteLine(definition.EndDate)

 days = recurrence.DaysOfWeek
 Console.WriteLine("Monday: {0}", days.Monday)
 Console.WriteLine("Tuesday: {0}", days.Tuesday)
 Console.WriteLine("Wednesday: {0}", days.Wednesday)
 Console.WriteLine("Thursday: {0}", days.Thursday)
 Console.WriteLine("Friday: {0}", days.Friday)
 Console.WriteLine("Saturday: {0}", days.Saturday)
 Console.WriteLine("Sunday: {0}", days.Sunday)
 Console.WriteLine("Weeks Interval: {0}", recurrence.WeeksInterval)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ScheduleDefinition definition = new ScheduleDefinition();
 string scheduleID;
 // Create the schedule definition.
 definition.StartDateTime = new DateTime(2003, 3, 1, 14, 0, 0);
 WeeklyRecurrence recurrence = new WeeklyRecurrence();
 DaysOfWeekSelector days = new DaysOfWeekSelector();
 days.Monday = true;
 days.Tuesday = true;
 days.Wednesday = true;
 days.Thursday = true;
 days.Friday = true;
 days.Saturday = false;
 days.Sunday = false;
 recurrence.DaysOfWeek = days;
 recurrence.WeeksInterval = 1;
 recurrence.WeeksIntervalSpecified = true;
 definition.Item = recurrence;

 try
 {
 scheduleID = rs.CreateSchedule("My Schedule", definition);
 Console.WriteLine("Schedule created with ID {0}", scheduleID);

 rs.GetScheduleProperties(scheduleID);

 recurrence = (WeeklyRecurrence) definition.Item;
 Console.WriteLine(definition.StartDateTime);
 Console.WriteLine(definition.EndDate);

 days = recurrence.DaysOfWeek;

 Console.WriteLine("Monday: {0}", days.Monday);
 Console.WriteLine("Tuesday: {0}", days.Tuesday);
 Console.WriteLine("Wednesday: {0}", days.Wednesday);
 Console.WriteLine("Thursday: {0}", days.Thursday);
 Console.WriteLine("Friday: {0}", days.Friday);
 Console.WriteLine("Saturday: {0}", days.Saturday);
 Console.WriteLine("Sunday: {0}", days.Sunday);
 Console.WriteLine("Weeks Interval: {0}", recurrence.WeeksInterval);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetSubscriptionProperties Method
ReportingService.GetSubscriptionProperties Method

Returns the properties of a specified subscription.

Visual Basic

Public Function GetSubscriptionProperties(
 ByVal SubscriptionID As String,
 ByRef ExtensionSettings As [Namespace].ExtensionSettings,
 ByRef Description As String,
 ByRef Active As [Namespace].ActiveState,
 ByRef Status As String,
 ByRef EventType As String,
 ByRef MatchData As String,
 ByRef Parameters() As [Namespace].ParameterValue
) As String
 Member of [Namespace].ReportingService

C#

public string GetSubscriptionProperties(
 string SubscriptionID,
 out [Namespace].ExtensionSettings ExtensionSettings,
 out string Description,
 out [Namespace].ActiveState Active,
 out string Status,
 out string EventType,
 out string MatchData,
 out [Namespace].ParameterValue[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

SubscriptionID
The ID of the subscription.

ExtensionSettings
[out] An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

Description
[out] A meaningful description that is displayed to users.

Active
[out] An ActiveState object that contains the active state of the subscription.

Status
[out] The status of the subscription.

EventType
[out] The type of event that triggers the subscription.

MatchData
[out] The data that is associated with the specified type of event. This is used by an event processing extension to match the
subscription with an event that has fired.

Parameters
[out] An array of ParameterValue[] objects that contains a list of parameters for the report.

Return Value

The user ID of the owner of the subscription.

Permissions

Operation Description
Read Subscription Required for viewing the properties of a

subscription.

Read Any Subscription Required for administrators or users who
do not own the subscription to view the
subscription properties.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the GetSubscriptionProperties
method to retrieve the properties of one of the subscriptions for the Product Catalog report, which is owned by the user
myDomain\myUserName. The subscription is not data driven, so the code assumes that all the settings for the delivery extension
are static parameter values (ParameterValue[] objects):

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim extSettings As ExtensionSettings
 Dim desc As String
 Dim active As ActiveState
 Dim status As String
 Dim eventType As String
 Dim matchData As String
 Dim values As ParameterValue() = Nothing
 Dim subscriptions As Subscription() = Nothing
 Dim extensionParams As ParameterValueOrFieldReference() = Nothing

 Try
 subscriptions = rs.ListSubscriptions("/SampleReports/Employee Sales Summary",
"Domain\username")

 If Not (subscriptions Is Nothing) Then
 rs.GetSubscriptionProperties(_
 subscriptions(0).SubscriptionID, extSettings, desc, active, status,
eventType, matchData, values)

 Console.WriteLine("Description: {0}", desc)
 Console.WriteLine("Status: {0}", status)
 Console.WriteLine("EventType: {0}", eventType)
 Console.WriteLine("matchData: {0}", matchData)
 Console.WriteLine("Extension: {0}", extSettings.Extension)

 extensionParams = extSettings.ParameterValues

 If Not (extensionParams Is Nothing) Then
 Dim extensionParam As ParameterValueOrFieldReference
 For Each extensionParam In extensionParams
 Console.WriteLine(_
 (CType(extensionParam, ParameterValue).Name + ": " +
CType(extensionParam, ParameterValue).Value))
 Next extensionParam
 End If

 If Not (values Is Nothing) Then
 Dim pv As ParameterValue
 For Each pv In values
 Console.WriteLine("Name: {0}", pv.Name)
 Console.WriteLine("Value: {0}", pv.Value)
 Next pv
 End If
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())

 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ExtensionSettings extSettings;
 string desc;
 ActiveState active;
 string status;
 string eventType;
 string matchData;
 ParameterValue[] values = null;
 Subscription[] subscriptions = null;
 ParameterValueOrFieldReference[] extensionParams = null;

 try
 {
 subscriptions = rs.ListSubscriptions("/SampleReports/Employee Sales Summary",
"Domain\\username");

 if (subscriptions != null)
 {
 rs.GetSubscriptionProperties(
 subscriptions[0].SubscriptionID, out extSettings, out desc, out active,
 out status, out eventType, out matchData, out values);

 Console.WriteLine("Description: {0}", desc);
 Console.WriteLine("Status: {0}", status);
 Console.WriteLine("EventType: {0}", eventType);
 Console.WriteLine("matchData: {0}", matchData);
 Console.WriteLine("Extension: {0}", extSettings.Extension);

 extensionParams = extSettings.ParameterValues;

 if (extensionParams != null)
 {
 foreach (ParameterValueOrFieldReference extensionParam in extensionParams)
 {
 Console.WriteLine(((ParameterValue)extensionParam).Name + ": " +
((ParameterValue)extensionParam).Value);
 }
 }

 if (values != null)
 {
 foreach (ParameterValue pv in values)
 {
 Console.WriteLine("Name: {0}", pv.Name);
 Console.WriteLine("Value: {0}", pv.Value);
 }
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetSystemPermissions Method
ReportingService.GetSystemPermissions Method

Retrieves the system permissions of the current user.

Visual Basic

Public Function GetSystemPermissions() As String
 Member of [Namespace].ReportingService

C#

public string GetSystemPermissions()
 Member of [Namespace].ReportingService

Return Value

An array of String[] objects that contains a list of permissions associated with the system tasks and roles to which the user is
assigned.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetSystemPolicies Method
ReportingService.GetSystemPolicies Method

Returns the system policies, including groups and associated roles.

Visual Basic

Public Function GetSystemPolicies() As [Namespace].Policy()
 Member of [Namespace].ReportingService

C#

public [Namespace].Policy[] GetSystemPolicies()
 Member of [Namespace].ReportingService

Return Value

An array of Policy[] objects that contains information about groups and their associated roles.

Permissions

Operation Description
Read System Security Policies Required to read the system policies.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

GetSystemProperties Method
ReportingService.GetSystemProperties Method

Returns the value of one or more system properties.

Visual Basic

Public Function GetSystemProperties(
 ByVal Properties() As [Namespace].Property
) As [Namespace].Property()
 Member of [Namespace].ReportingService

C#

public [Namespace].Property[] GetSystemProperties(
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Properties
An array of Property[] objects containing the names of the properties for which you want to retrieve values.

Return Value

An array of Property[] objects that contains the value of one or more system properties.

Permissions

Operation Description
Read System Properties Required to view the system properties.

Remarks

Use the GetSystemProperties method to retrieve the complete set of user-defined and reserved system properties. For a list of
the reserved, system properties in the report server database, see Report Server System Properties.

If the Properties parameter is null (Nothing in Visual Basic), the GetSystemProperties method returns all system properties.

If a requested property is not found, no error is returned. The property is returned with no value.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

InheritParentSecurity Method
ReportingService.InheritParentSecurity Method

Deletes the policies associated with an item. As a result, the item inherits the policies from its parent.

Visual Basic

Public Sub InheritParentSecurity(_
 ByVal Item As String _
)
 Member of [Namespace].ReportingService

C#

public void InheritParentSecurity(
 string Item
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Permissions

Operation Description
Update Security Policies Required for adding or editing policies on

a catalog item.

Remarks

When you delete the policies that are associated with an item, the item inherits the policies that are associated with its parent.
Policies that are deleted from an item are also deleted from child items that inherit those policies.

Policies cannot be deleted from the root folder in the report server database. Attempting to delete policies that are associated with
the root folder in the report server database results in a SOAP exception with the error code rsCannotDeleteRootPolicy.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListChildren Method
ReportingService.ListChildren Method

Gets a list of children of a specified folder.

Visual Basic

Public ListChildren(_
 ByVal Item As String, _
 ByVal Recursive As Boolean _
) As [Namespace].CatalogItem()
 Member of [Namespace].ReportingService

C#

public CatalogItem[] ListChildren(
 string Item,
 bool Recursive
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the parent folder.

Recursive
A Boolean expression that indicates whether to return the entire tree of child items below the specified item. The default value
is false.

Return Value

An array of CatalogItem[] objects. If no children exist, this method returns an empty CatalogItem object.

Permissions

Operation Description
Read Properties Required to read meta data properties

that are associated with an item.

Remarks

The ListChildren method returns only child items that the user has permission to view. The items that are returned may not
represent a complete list of child items of the specified parent item.

If the ListChildren method is called on the root of the report server database with My Reports enabled, the method returns an
array of CatalogItem[] objects containing properties for the folder My Reports. If the user is anonymous and My Reports is
enabled, the properties for My Reports are not returned when ListChildren is called on the root.

The ListChildren method can return the VirtualPath property of items in the report server database that support virtual paths.
The virtual path is the path under which a user expects to see the item. For example, a report called report1, which is located in the
user's personal My Reports folder, has a virtual path equal to /My Reports. The actual path of the item is /Users/Username/My
Reports.

The majority of the properties this method returns are read-only. For more information about item properties in Reporting
Services, see Report Server Item Properties.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example uses the ListChildren method to
read the contents of the root of the report server directory tree, and then stores the first item and its properties as an XML
document:

Visual Basic

Imports System
Imports System.IO
Imports System.Text
Imports System.Web.Services.Protocols
Imports System.Xml
Imports System.Xml.Serialization

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim items As CatalogItem() = Nothing

 ' Retrieve a list of all items from the report server database.
 Try
 items = rs.ListChildren("/", True)

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try

 ' Serialize the contents as an XML document and write the contents to a file.
 Try
 Dim fs As New FileStream("CatalogItems.xml", FileMode.Create)
 Dim writer As New XmlTextWriter(fs, Encoding.Unicode)

 Dim serializer As New XmlSerializer(GetType(CatalogItem()))
 serializer.Serialize(writer, items)

 Console.WriteLine("Server contents successfully written to a file.")

 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.IO;
using System.Text;
using System.Web.Services.Protocols;
using System.Xml;
using System.Xml.Serialization;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 CatalogItem[] items = null;

 // Retrieve a list of all items from the report server database.
 try
 {
 items = rs.ListChildren("/", true);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }

 // Serialize the contents as an XML document and write the contents to a file.
 try
 {

 FileStream fs = new FileStream("CatalogItems.xml", FileMode.Create);
 XmlTextWriter writer = new XmlTextWriter(fs, Encoding.Unicode);

 XmlSerializer serializer = new XmlSerializer(typeof(CatalogItem[]));
 serializer.Serialize(writer, items);

 Console.WriteLine("Server contents successfully written to a file.");
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListEvents Method
ReportingService.ListEvents Method

Returns a list of events supported by the report server.

Visual Basic

Public Function ListEvents() As [Namespace].Event()
 Member of [Namespace].ReportingService

C#

public [Namespace].Event[] ListEvents();
 Member of [Namespace].ReportingService

Return Value

An array of Event[] objects that contains events and their built-in properties.

Remarks

No specific report server permissions are required to view the event extensions that are listed in the configuration file. The user
must have Read permissions on the physical file.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListExtensions Method
ReportingService.ListExtensions Method

Returns a list of extensions that are configured for a given extension type.

Visual Basic

Public Function ListExtensions(_
 ByVal ExtensionType As [Namespace].ExtensionTypeEnum _
) As String
 Member of [Namespace].ReportingService

C#

public string ListExtensions(
 [Namespace].ExtensionTypeEnum ExtensionType
);
 Member of [Namespace].ReportingService

Parameters

ExtensionType
The extension type for which to list the configured extensions. Available values are Delivery, Render, Data, or All. For more
information, see ExtensionTypeEnum.

Return Value

Returns an array of Extension[] objects that contains the available extensions.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example retrieves a list of all supported data
processing extensions that are currently installed on the report server:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials
 ' Set the base Web service URL of the source server
 rs.Url = "http://servername/reportserver/reportservice.asmx"

 Dim extensions As Extension() = Nothing

 ' Retrieve a list of all supported data processing extensions.
 Try
 extensions = rs.ListExtensions(ExtensionTypeEnum.Data)

 If Not (extensions Is Nothing) Then
 Dim extension As Extension
 For Each extension In extensions
 Console.WriteLine("Name: {0}", extension.Name)
 Next extension
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Extension[] extensions = null;

 // Retrieve a list of all supported data processing extensions.
 try
 {
 extensions = rs.ListExtensions(ExtensionTypeEnum.Data);

 if (extensions != null)
 {
 foreach (Extension extension in extensions)
 {
 Console.WriteLine("Name: {0}", extension.Name);
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListJobs Method
ReportingService.ListJobs Method

Returns a list of jobs that are running on the report server.

Visual Basic

Public Function ListJobs() As [Namespace].Job()
 Member of [Namespace].ReportingService

C#

public [Namespace].Job[] ListJobs();
 Member of [Namespace].ReportingService

Return Value

An array of Job[] objects that contains jobs running on the report server.

Permissions

Operation Description
List Jobs Required to read meta data properties

that are associated with a job in the report
server database.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListLinkedReports Method
ReportingService.ListLinkedReports Method

Returns a list of reports that are linked to a specified report.

Visual Basic

Public Function ListLinkedReports(_
 ByVal Report As String _
) As [Namespace].CatalogItem()
 Member of [Namespace].ReportingService

C#

public [Namespace].CatalogItem[] ListLinkedReports(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Return Value

An array of CatalogItem[] objects representing the linked reports that are associated with the specified report.

Permissions

Operation Description
Read Properties Required to view a list of linked reports

that are associated with a report.

Remarks

The report that is referenced in the Report parameter must have associated linked reports. If the report that is passed in the
Report parameter does not have linked reports associated with it, an empty CatalogItems object is returned.

If an item other than a report is passed in the Report parameter, a SOAP exception is thrown with an error code of
rsWrongItemType.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListReportHistory Method
ReportingService.ListReportHistory Method

Returns a list of report history snapshots and their properties for a specified report.

Visual Basic

Public Function ListSnapshots(_
 ByVal Report As String _
) As [Namespace].ReportHistorySnapshot()
 Member of [Namespace].ReportingService

C#

public string ListSnapshots(
 [Namespace].ReportHistorySnapshot Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Return Value

An array of ReportHistorySnapshot[] objects that represent the report history snapshots of the report.

Permissions

Operation Description
List Report History Required to read the report history

properties for a given report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListReportsUsingDataSource Method
ReportingService.ListReportsUsingDataSource Method

Returns a list of reports that are associated with a shared data source .

Visual Basic

Public Function ListReportsUsingDataSource(_
 ByVal DataSource As String _
) As [Namespace].CatalogItem()
 Member of [Namespace].ReportingService

C#

public [Namespace].CatalogItem[] ListReportsUsingDataSource(
 string DataSource
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Return Value

An array of CatalogItem[] objects that represents the reports associated with the given data source.

Permissions

Operation Description
Read Properties Required on the report in order to view

the data source properties.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListRoles Method
ReportingService.ListRoles Method

Returns the names and descriptions of roles that the report server manages.

Visual Basic

Public Function ListRoles() As [Namespace].Role()
 Member of [Namespace].ReportingService

C#

public [Namespace].Role[] ListRoles()
 Member of [Namespace].ReportingService

Return Value

An array of Role[] objects that contains a collection of information about item-level roles.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListScheduledReports Method
ReportingService.ListScheduledReports Method

Returns a list of reports that are associated with a shared schedule.

Visual Basic

Public Function ListScheduledReports(_
 ByVal ScheduleID As String _
) As [Namespace].CatalogItem()
 Member of [Namespace].ReportingService

C#

public [Namespace].CatalogItem[] ListScheduledReports(
 string ScheduleID
);
 Member of [Namespace].ReportingService

Parameters

ScheduleID
The ID of the shared schedule.

Return Value

An array of CatalogItem[] objects that represents the reports that are associated with the specified shared schedule.

Permissions

Operation Description
Read Schedules Required on each report that is associated

with the schedule.

Remarks

The ListScheduledReports method only returns information about items for which the user has Read Properties permission. The
set of report items that are returned may not represent all of the reports that are associated with the specified shared schedule.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSchedules Method
ReportingService.ListSchedules Method

Returns a list of all shared schedules.

Visual Basic

Public Function ListSchedules() As [Namespace].Schedule()
 Member of [Namespace].ReportingService

C#

public [Namespace].Schedule[] ListSchedules()
 Member of [Namespace].ReportingService

Return Value

An array of Schedule[] objects that represents all shared schedules in the report server database.

Permissions

Operation Description
Read Schedules Required to view the schedules in the

report server database.

Remarks

If the report server does not contain any shared schedules, null is returned.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSecureMethods Method
ReportingService.ListSecureMethods Method

Returns a list of SOAP methods that require a secure connection when invoked.

Visual Basic

Public Function ListSecureMethods As String()
 Member of [Namespace].ReportingService

C#

public string[] ListSecureMethods()
 Member of [Namespace].ReportingService

Return Value

An array of String objects that represent the names of methods.

Remarks

The SecureConnectionLevel setting for the report server determines the list of SOAP methods that are returned by the
ListSecureMethods method. For more information, see Using Secure Web Service Methods.

Example

Visual Basic, C#

To compile this code example, you must reference the Reporting Services WSDL and import certain namespaces. For more
information, see Compiling and Running Code Examples. The following code example uses the ListSecureMethods method to
retrieve the methods that currently require a secure connection:

Visual Basic

Imports System

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim methods As String() = rs.ListSecureMethods()

 If Not (methods Is Nothing) Then
 Dim method As String
 For Each method In methods
 Console.WriteLine(method)
 Next method
 End If
 End Sub 'Main
End Class 'Sample

C#

using System;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string[] methods = rs.ListSecureMethods();

 if (methods != null)
 {

 foreach (string method in methods)
 {
 Console.WriteLine(method);
 }
 }
 }
}

Visual Basic, C#

The SecureConnectionLevel configuration file setting determines the list of methods that are returned. If
SecureConnectionLevel is set to 1, this code example writes the following output to the console:

CreateReport
GetReportDefinition
SetReportDefinition
CreateDataSource
GetDataSourceContents
SetDataSourceContents
SetReportDataSources
GetReportDataSources
CreateDataDrivenSubscription
SetDataDrivenSubscriptionProperties
GetDataDrivenSubscriptionProperties
PrepareQuery

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSubscriptions Method
ReportingService.ListSubscriptions Method

Returns a list of subscriptions that a user has created for a given report. The list includes both standard and data-driven
subscriptions.

Visual Basic

Public Function ListSubscriptions(_
 ByVal Report As String _
 ByVal Owner As String _
) As [Namespace].Subscription()
 Member of [Namespace].ReportingService

C#

public [Namespace].Subscription[] ListSubscriptions(
 string Report,
 string Owner
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Owner
The user name for which to retrieve the subscriptions.

Return Value

An array of Subscription[] objects that represents the user's subscriptions for a given report.

Permissions

Operation Description
Read Properties Required on the report in order to view its

associated subscriptions.

Remarks

You can supply a null (Nothing in Visual Basic) value for the Owner and Report parameter. The information that the
ListSubscriptions method returns varies depending on the parameters that are submitted:

If the values of both Owner and Report are null, the method returns all subscriptions for all reports that the current user has
permission to view.
If only the Owner parameter is submitted, the method returns all subscriptions for all reports that the specified user has
created and has permission to view. If only the Report parameter is submitted, the method returns all subscriptions for all
users of the specified report that the current user has permission to view.
If valid values are supplied for both the Owner parameter and Report parameter, the method returns all subscriptions for
the specified report that the specified user created and has permission to view.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following example code uses the ListSubscriptions method
to retrieve a list of subscriptions for the Employee Sales Summary report, which is owned by the user myDomain\myUserName:

Visual Basic

Imports System

Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim extSettings As ExtensionSettings
 Dim desc As String
 Dim active As ActiveState
 Dim status As String
 Dim eventType As String
 Dim matchData As String
 Dim values As ParameterValue() = Nothing
 Dim subscriptions As Subscription() = Nothing
 Dim extensionParams As ParameterValueOrFieldReference() = Nothing

 Try
 subscriptions = rs.ListSubscriptions("/SampleReports/Employee Sales Summary",
"myDomain\myUserName")

 If Not (subscriptions Is Nothing) Then
 ' Retrieve properties for the first subscription in the list.
 rs.GetSubscriptionProperties(_
 subscriptions(0).SubscriptionID, extSettings, desc, active, status,
eventType, matchData, values)

 Console.WriteLine("Description: {0}", desc)
 Console.WriteLine("Status: {0}", status)
 Console.WriteLine("EventType: {0}", eventType)
 Console.WriteLine("matchData: {0}", matchData)
 Console.WriteLine("Extension: {0}", extSettings.Extension)

 extensionParams = extSettings.ParameterValues

 If Not (extensionParams Is Nothing) Then
 Dim extensionParam As ParameterValueOrFieldReference
 For Each extensionParam In extensionParams
 Console.WriteLine(_
 (CType(extensionParam, ParameterValue).Name + ": " +
CType(extensionParam, ParameterValue).Value))
 Next extensionParam
 End If

 If Not (values Is Nothing) Then
 Dim pv As ParameterValue
 For Each pv In values
 Console.WriteLine("Name: {0}", pv.Name)
 Console.WriteLine("Value: {0}", pv.Value)
 Next pv
 End If
 End If

 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ExtensionSettings extSettings;

 string desc;
 ActiveState active;
 string status;
 string eventType;
 string matchData;
 ParameterValue[] values = null;
 Subscription[] subscriptions = null;
 ParameterValueOrFieldReference[] extensionParams = null;

 try
 {
 subscriptions = rs.ListSubscriptions("/SampleReports/Employee Sales Summary",
 @"myDomain\myUserName");

 if (subscriptions != null)
 {
 // Retrieve properties for the first subscription in the list.
 rs.GetSubscriptionProperties(subscriptions[0].SubscriptionID, out
extSettings, out desc, out active,
 out status, out eventType, out matchData, out values);

 Console.WriteLine("Description: {0}", desc);
 Console.WriteLine("Status: {0}", status);
 Console.WriteLine("EventType: {0}", eventType);
 Console.WriteLine("matchData: {0}", matchData);
 Console.WriteLine("Extension: {0}", extSettings.Extension);

 extensionParams = extSettings.ParameterValues;

 if (extensionParams != null)
 {
 foreach (ParameterValueOrFieldReference extensionParam in extensionParams)
 {
 Console.WriteLine(((ParameterValue)extensionParam).Name + ": " +
((ParameterValue)extensionParam).Value);
 }
 }

 if (values != null)
 {
 foreach (ParameterValue pv in values)
 {
 Console.WriteLine("Name: {0}", pv.Name);
 Console.WriteLine("Value: {0}", pv.Value);
 }
 }
 }
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSubscriptionsUsingDataSource Method
ReportingService.ListSubscriptionsUsingDataSource Method

Returns a list of subscriptions that are associated with a given data source.

Visual Basic

Public Function ListSubscriptionsUsingDataSource(_
 ByVal DataSource As String _
) As [Namespace].Subscription()
 Member of [Namespace].ReportingService

C#

public [Namespace].Subscription[] ListSubscriptionsUsingDataSource(
 string DataSource,
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Return Value

An array of Subscription[] objects that represents the subscriptions that are associated with a given data source.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSystemRoles Method
ReportingService.ListSystemRoles Method

Returns the names and descriptions of system roles.

Visual Basic

Public Function ListSystemRoles() As [Namespace].Role()
 Member of [Namespace].ReportingService

C#

public [Namespace].Role[] ListSystemRoles()
 Member of [Namespace].ReportingService

Return Value

An array of Role[] objects that contains a collection of information about system roles.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListSystemTasks Method
ReportingService.ListSystemTasks Method

Returns the names and descriptions of system tasks.

Visual Basic

Public Function ListSystemTasks() As [Namespace].Task()
 Member of [Namespace].ReportingService

C#

public [Namespace].Task[] ListSystemTasks()
 Member of [Namespace].ReportingService

Return Value

An array of Task[] objects that contains a collection of information about system tasks.

Remarks

System tasks contain a collection of operations that apply to all items in the report server database. Use this method to return
system-level tasks. For more information, see Tasks and Permissions.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ListTasks Method
ReportingService.ListTasks Method

Returns the names and descriptions of tasks that are managed by the report server.

Visual Basic

Public Function ListTasks() As [Namespace].Task()
 Member of [Namespace].ReportingService

C#

public [Namespace].Task[] ListTasks()
 Member of [Namespace].ReportingService

Return Value

An array of Task[] objects that contains a collection of information about item-level tasks.

Remarks

The tasks returned by this method are item-level tasks. For more information, see Tasks and Permissions.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Logoff Method
ReportingService.Logoff Method

Logs out the current user making Web service requests.

Visual Basic

Public Sub Logoff()
 Member of [Namespace].ReportingService

C#

public void Logoff();
 Member of [Namespace].ReportingService

Remarks

The Logoff method results in the invalidation of the authentication cookie for the user making the request.

Logoff must be called over SSL. The method fails if it is not called securely.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

LogonUser Method
ReportingService.LogonUser Method

Logs on a user and authenticates a user request to the Reporting Services Web service.

Visual Basic

Public Sub LogonUser(_
 ByVal userName As String _
 ByVal password As String _
 ByVal authority As String _
)
 Member of [Namespace].ReportingService

C#

public void LogonUser(
 string userName,
 string password
 string authority
);
 Member of [Namespace].ReportingService

Parameters

userName
The name of the user.

password
The password of the user.

authority
Optional. The specific authority to use when authenticating a user. For example, a Windows domain. Pass a value of null
(Nothing in Visual Basic) to omit this argument.

Remarks

The LogonUser method authenticates the specified user to the Report Server Web Service when custom authentication has been
configured.

LogonUser must be called over SSL. The method fails if it is not called securely. Upon successful authentication, the report server
Web service generates an authentication cookie and returns the cookie in the HTTPS header. The response is returned over SSL.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following example code can be used to enable custom
security authentication for Web service clients. In the following example, a simple console application is used to retrieve
credentials from the user. The ReportingService class is extended to include the necessary overridden methods for managing
authentication tickets:

Visual Basic

A VB.NET sample is not yet available for this method.

C#

namespace MySampleApplication
{
 class Sample
 {
 public static void Main()
 {
 // instantiate a new Web service proxy
 RSClient rs = new RSClient();

 // Pass credentials from the user
 NetworkCredential creds = rs.GetCredentials();
 rs.LogonUser(creds.UserName, creds.Password, null);

 try
 {
 if (rs.CheckAuthorized())
 {
 ItemTypeEnum type = rs.GetItemType("/");
 Console.WriteLine(type);
 }
 }

 catch (Exception)
 {
 Console.WriteLine("Exception on call to GetItemType.");
 }

 rs.SessionHeaderValue = new SessionHeader();

 // Render arguments
 byte[] result = null;
 string reportPath = "/SampleReports/Sales Order Detail";
 string format = "IMAGE";
 string historyID = null;
 string devInfo = @"<DeviceInfo><OutputFormat>GIF</OutputFormat></DeviceInfo>";
 // Use default parameter
 ParameterValue[] parameters = null;

 DataSourceCredentials[] credentials = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 Warning[] warnings = null;
 ParameterValue[] reportHistoryParameters = null;
 string[] streamIDs = null;

 try
 {
 result = rs.Render(reportPath, format, historyID, devInfo, parameters,
credentials,
 showHideToggle, out encoding, out mimeType, out reportHistoryParameters,
out warnings,
 out streamIDs);
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 // Write the contents of the report to file.
 try
 {
 FileStream stream = File.Create(@"C:\report.gif", result.Length);
 Console.WriteLine("File created.");
 stream.Write(result, 0, result.Length);
 Console.WriteLine("Result written to the file.");
 stream.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
 }
 // Class used to implement and extend the Reporting Services proxy
 // class. This extension enables cookie management.
 public class RSClient : ReportingService
 {
 public bool m_needLogon = false;
 private string m_authCookieName;
 private Cookie m_authCookie;

 public RSClient()
 {
 // Set the server URL
 base.Url = "http://localhost/reportserver/reportservice.asmx";
 // Set default credentials to integrated.
 Credentials = System.Net.CredentialCache.DefaultCredentials;
 }

 /// <summary>
 /// Gets the type of the item on the report server. Use the
 /// new modifier to hide the base implementation.
 /// </summary>
 public new ItemTypeEnum GetItemType(string item)
 {
 ItemTypeEnum type = ItemTypeEnum.Unknown;
 try
 {
 type = base.GetItemType(item);
 }

 catch(SoapException)
 {
 return ItemTypeEnum.Unknown;
 }

 return type;
 }

 /// <summary>
 /// Get whether the given credentials can connect to the report server.
 /// Returns false if not authorized. Other errors throw an exception.
 /// </summary>
 public bool CheckAuthorized()
 {
 try
 {
 GetItemType("/");
 }
 catch (WebException e)
 {
 if (! (e.Response is HttpWebResponse) ||
 ((HttpWebResponse)e.Response).StatusCode != HttpStatusCode.Unauthorized)
 {
 throw;
 }
 return false;
 }
 catch(InvalidOperationException)
 {
 // This condition could be caused by a redirect to a forms logon page
 Console.WriteLine("InvalidOperationException");
 if (m_needLogon)
 {
 NetworkCredential creds = Credentials as NetworkCredential;
 if (creds != null && creds.UserName != null)
 {
 try
 {
 base.CookieContainer = new CookieContainer();
 base.LogonUser(creds.UserName, creds.Password, null);
 return true;
 }
 catch (Exception)
 {
 return false;
 }
 }
 }
 else
 {
 throw;

 }
 }
 return true;
 }
 /// <summary>
 /// Enables users to enter credentials from the command prompt.
 /// </summary>
 public NetworkCredential GetCredentials()
 {
 Console.WriteLine("Please enter your credentials.");
 Console.Write("Username: ");
 string username = Console.ReadLine();
 Console.Write("Password: ");
 string password = Console.ReadLine();
 return new NetworkCredential(username, password);
 }

 protected override WebRequest GetWebRequest(Uri uri)
 {
 HttpWebRequest request;
 request = (HttpWebRequest)HttpWebRequest.Create(uri);
 request.Credentials = base.Credentials;
 request.CookieContainer = new CookieContainer();
 if (m_authCookie != null)
 {
 request.CookieContainer.Add(m_authCookie);
 }
 return request;
 }

 protected override WebResponse GetWebResponse(WebRequest request)
 {
 WebResponse response = base.GetWebResponse(request);
 string cookieName = response.Headers["RSAuthenticationHeader"];
 if (cookieName != null)
 {
 m_authCookieName = cookieName;
 HttpWebResponse webResponse = (HttpWebResponse)response;
 Cookie authCookie = webResponse.Cookies[cookieName];
 // save it away
 m_authCookie = authCookie;
 }
 // need to call logon
 if (response.Headers["RSNotAuthenticated"] != null)
 {
 m_needLogon = true;
 }
 return response;
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

MoveItem Method
ReportingService.MoveItem Method

Moves or renames an item.

Visual Basic

Public Sub MoveItem(_
 ByVal Item As String _
 ByVal Target As String _
)
 Member of [Namespace].ReportingService

C#

public void MoveItem(
 string Item,
 string Target
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Target
The new full path name of the item.

Permissions

Operation Description
Create Folder Required for creating a subfolder within a

folder.
Update Properties Required for adding or modifying

properties on folders, reports, and
resources.

Create Report Required on target folders.
Create Resource Required on target folders.

Remarks

The permissions required to perform this operation depend on the item type.

If an item inherits security policies from its parent, moving the item causes it to inherit the security policies of the target folder. If
an item does not inherit security policies from its parent, moving the item does not cause its security policies to change.

When My Reports is enabled, you cannot move the /My Reports or /Users folders. An attempt to do so produces a SOAP
exception with the error code rsInvalidMove.

Moving or renaming items in the report server database modifies the ModifiedBy and ModifiedDate properties of the item and
the source and target folders of the item.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following example code moves the Employee Sales Summary
report from the Samples folder to the root folder.

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim currentPath As String = "/SampleReports/Employee Sales Summary"
 Dim targetPath As String = "/Employee Sales Summary"

 Try
 rs.MoveItem(currentPath, targetPath)

 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string currentPath = "/SampleReports/Employee Sales Summary";
 string targetPath = "/Employee Sales Summary";

 try
 {
 rs.MoveItem(currentPath, targetPath);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

PauseSchedule Method
ReportingService.PauseSchedule Method

Pauses the execution of a given schedule.

Visual Basic

Public Sub PauseSchedule(
 ByVal ScheduleID As String
)
 Member of [Namespace].ReportingService

C#

public void PauseSchedule(
 string ScheduleID
);
 Member of [Namespace].ReportingService

Parameters

ScheduleID
The ID of the schedule.

Permissions

Operation Description
Update Schedules Required to pause schedules in the report

server database.

Remarks

Paused shared schedules cannot run until they are resumed. To resume a schedule, use the ResumeSchedule method.

The PauseSchedule method can be run in a batch operation.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

PrepareQuery Method
ReportingService.PrepareQuery Method

Returns a dataset containing the fields retrieved by the delivery query for a data-driven subscription.

Visual Basic

Public Function PrepareQuery(_
 ByVal DataSource As DataSource _
 ByVal DataSetDefinition As DataSet _
 ByRef Changed As Boolean _
) As [Namespace].DataSetDefinition
 Member of [Namespace].ReportingService

C#

public [Namespace].DataSetDefinition PrepareQuery(
 DataSource DataSource,
 DataSetDefinition DataSet,
 out bool Changed
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The data source for the delivery query.

DataSet
The dataset containing the delivery query and fields for a data-driven subscription.

Changed
A Boolean value that indicates whether the dataset that was passed to the method is different from the one returned by the
method. Use this property to determine whether the input dataset is different from the output dataset.

Return Value

A DataSetDefinition object that contains the fields and the delivery query that are retrieved from the given data source.

Remarks

Pass the dataset (DataSetDefinition object) that is returned by the PrepareQuery method as input to the
CreateDataDrivenSubscription and SetDataDrivenSubscriptionProperties methods.

The delivery query returns a set of fields that can be mapped to report parameter values and delivery extension settings for data-
driven subscriptions. Each row in the result set contains values for a single recipient, such as an e-mail address to which the report
is delivered.

The delivery query must be valid for one of the data processing extensions that are installed on the report server. For more
information, see Data Processing Extensions.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Render Method
ReportingService.Render Method

Processes a specific report and renders it in the specified format.

Visual Basic

Public Function Render(_
 ByVal Report As String _
 ByVal Format As String _
 ByVal HistoryID As String _
 ByVal DeviceInfo As String _
 ByVal Parameters() As [Namespace].ParameterValue _
 ByVal Credentials() As [Namespace].DataSourceCredentials _
 ByVal ShowHideToggle As String _
 ByRef Encoding As String _
 ByRef MimeType As String _
 ByRef ParametersUsed() As [Namespace].ParameterValue _
 ByRef Warnings() As [Namespace].Warning _
 ByRef StreamIds() As String _
) As Byte()
 Member of [Namespace].ReportingService

C#

public Byte[] Render(
 string Report,
 string Format,
 string HistoryID,
 string DeviceInfo,
 [Namespace].ParameterValue[] Parameters,
 [Namespace].DataSourceCredentials[] Credentials,
 string ShowHideToggle,
 out string Encoding,
 out string MimeType,
 out [Namespace].ParameterValue[] ParametersUsed,
 out [Namespace].Warning[] Warnings
 out string[] StreamIds);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Format
The format in which to render the report. This argument maps to a rendering extension. Supported extensions are XML, NULL,
CSV, IMAGE, PDF, HTML4.0, HTML3.2, MHTML, EXCEL, and HTMLOWC.

HistoryID
Optional. The unique identifier of a report history snapshot to render for the specified report. The identifier is based on the date
and time the report history was created.

DeviceInfo
An XML string that contains the device-specific content that is required by the rendering extension specified in the Format
parameter. For more information about device information settings for specific output formats, see Device Information Settings.

Parameters
Optional. An array of ParameterValue[] objects that represent the report-specific parameters.

Credentials
Optional. An array of DataSourceCredentials[] objects that contains the data source credentials.

ShowHideToggle
Optional. The Show/Hide toggle ID.

Encoding
[out] The encoding used when report server renders the contents of the report.

MimeType
[out] The MIME type of the rendered report.

ParametersUsed
[out] An array of ParameterValue[] objects representing the query parameters, if any, that are stored along with the report. This

parameter returns a value only if the report being rendered is a report history snapshot.
Warnings

[out] An array of Warning[] objects that describes any warnings that occurred during report processing.
StreamIds

[out] The stream identifiers. These IDs are passed to the RenderStream method. You can use them to render the external
resources (images, etc.) that are associated with a given report.

Return Value

A Byte[] array of the report in the specified format. For more information about this data type, see "Byte Structure" in the .NET
Framework documentation.

Permissions

Operation Description
Read Properties Required on the report and any

corresponding subreports being rendered.
Execute and View Required on the report and any

corresponding subreports being rendered.

Remarks

You can use the ListExtensions method to retrieve a list of supported rendering extensions.

A value for the SessionId property is automatically provided in the Sessionheader object when the call to the Render method is
made, and a new session is created. Subsequent calls to the Web service using the same proxy object are made by the report
server under the same session unless you explicitly clear the session. For more information about the SessionHeader class, see
SessionHeader Class.

Subsequent calls to the Render method can be made to retrieve additional report pages if the rendering extension supports
additional pages and searching. For more information about sessions in Reporting Services, see Identifying Session State.

If the report is a linked report, the definition is retrieved from the referenced report before execution.

If a value for the HistoryID parameter is not specified, based on the execution and cache management option set for the report,
the report can be executed and rendered directly from a data source or from a cached copy. For more information about
execution settings, see Setting Execution Properties.

The SessionHeader.IsNewExecution property is set to true when the rendered report that is returned was generated from a
query against its data sources. This property is set to false if the report is rendered directly from session or cache.

You can pass device information settings to the rendering extension you are targeting in the Render method to configure the
output of your report. For more information about device information settings, see Device Information Settings.

For multi-stream rendering extensions, such as HTML 3.2 and HTML 4.0, you can pass the stream ID's that are returned in the
StreamIds out parameter to the RenderStream method to render these external resources. Single-stream rendering extensions,
such as Web archive (MHTML) or Excel, do not return any additional stream ID's.

If you render a report to HTML using the Render method, you cannot use the report viewer toolbar as you can with a report that
is rendered using URL access. However, the Toolbar device information setting still affects the appearance of the report. If you set
Toolbar to a value of true, the report server only renders the first page of the HTML report. If you set the value to false, the
report server renders all pages into a single Web page, using <HR> tags as page delimiters.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example renders a report in HTML 4.0 and
saves it as an .htm file to disk:

Visual Basic

Imports System
Imports System.IO
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Render arguments
 Dim result As Byte() = Nothing
 Dim reportPath As String = "/SampleReports/Employee Sales Summary"
 Dim format As String = "MHTML"
 Dim historyID As String = Nothing
 Dim devInfo As String = "<DeviceInfo><Toolbar>False</Toolbar></DeviceInfo>"

 ' Prepare report parameter.
 Dim parameters(2) As ParameterValue
 parameters(0) = New ParameterValue()
 parameters(0).Name = "EmpID"
 parameters(0).Value = "38"
 parameters(1) = New ParameterValue()
 parameters(1).Name = "ReportMonth"
 parameters(1).Value = "6" ' June
 parameters(2) = New ParameterValue()
 parameters(2).Name = "ReportYear"
 parameters(2).Value = "2004"

 Dim credentials As DataSourceCredentials() = Nothing
 Dim showHideToggle As String = Nothing
 Dim encoding As String
 Dim mimeType As String
 Dim warnings As Warning() = Nothing
 Dim reportHistoryParameters As ParameterValue() = Nothing
 Dim streamIDs As String() = Nothing
 Dim sh As New SessionHeader()
 rs.SessionHeaderValue = sh

 Try
 result = rs.Render(reportPath, format, historyID, devInfo, parameters, _
 credentials, showHideToggle, encoding, mimeType, reportHistoryParameters,
warnings, streamIDs)
 sh.SessionId = rs.SessionHeaderValue.SessionId
 Console.WriteLine("SessionID after call to Render: {0}",
rs.SessionHeaderValue.SessionId)
 Console.WriteLine("Execution date and time: {0}",
rs.SessionHeaderValue.ExecutionDateTime)
 Console.WriteLine("Is new execution: {0}", rs.SessionHeaderValue.IsNewExecution)
 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 ' Write the contents of the report to an MHTML file.
 Try
 Dim stream As FileStream = File.Create("report.mhtml", result.Length)
 Console.WriteLine("File created.")
 stream.Write(result, 0, result.Length)
 Console.WriteLine("Result written to the file.")
 stream.Close()
 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.IO;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Render arguments
 byte[] result = null;
 string reportPath = "/SampleReports/Employee Sales Summary";
 string format = "MHTML";
 string historyID = null;
 string devInfo = @"<DeviceInfo><Toolbar>False</Toolbar></DeviceInfo>";

 // Prepare report parameter.
 ParameterValue[] parameters = new ParameterValue[3];
 parameters[0] = new ParameterValue();
 parameters[0].Name = "EmpID";
 parameters[0].Value = "38";
 parameters[1] = new ParameterValue();
 parameters[1].Name = "ReportMonth";
 parameters[1].Value = "6"; // June
 parameters[2] = new ParameterValue();
 parameters[2].Name = "ReportYear";
 parameters[2].Value = "2004";

 DataSourceCredentials[] credentials = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 Warning[] warnings = null;
 ParameterValue[] reportHistoryParameters = null;
 string[] streamIDs = null;
 SessionHeader sh = new SessionHeader();
 rs.SessionHeaderValue = sh;

 try
 {
 result = rs.Render(reportPath, format, historyID, devInfo, parameters,
credentials,
 showHideToggle, out encoding, out mimeType, out reportHistoryParameters, out
warnings,
 out streamIDs);
 sh.SessionId = rs.SessionHeaderValue.SessionId;
 Console.WriteLine("SessionID after call to Render: {0}",
 rs.SessionHeaderValue.SessionId);
 Console.WriteLine("Execution date and time: {0}",
 rs.SessionHeaderValue.ExecutionDateTime);
 Console.WriteLine("Is new execution: {0}",
 rs.SessionHeaderValue.IsNewExecution);
 }
 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 // Write the contents of the report to an MHTML file.
 try
 {
 FileStream stream = File.Create("report.mhtml", result.Length);
 Console.WriteLine("File created.");
 stream.Write(result, 0, result.Length);
 Console.WriteLine("Result written to the file.");
 stream.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See Also

RenderStream

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

RenderStream Method
ReportingService.RenderStream Method

Returns a stream that is associated with a rendered report. Examples of streams include images and charts.

Visual Basic

Public Function RenderStream(_
 ByVal Report As String _
 ByVal DeviceInfo As String _
 ByVal StreamID As String _
 ByVal HistoryID As String _
 ByVal Parameters() As [Namespace].ParameterValue _
 ByRef Encoding As String _
 ByRef MimeType As String _
) As Byte()
 Member of [Namespace].ReportingService

C#

public System.Byte[] RenderStream(
 string Report,
 string DeviceInfo,
 string StreamID,
 string HistoryID,
 [Namespace].ParameterValue[] Parameters,
 out string Encoding,
 out string MimeType
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

DeviceInfo
The device-specific content used by the rendering extension.

StreamID
The stream identifier.

HistoryID
Optional. The unique identifier of the report history snapshot for which to retrieve the stream. The identifier is based on the date
and time the report history was created. You can omit this parameter if the rendered report is not a report history snapshot.

Parameters
Optional. An array of ParameterValue[] objects that represent the report-specific parameters.

Encoding
[out] The encoding used to render the content of the report.

MimeType
[out] The MIME type of the stream.

Return Value

A Byte[] array of the requested stream. For more information about this data type, see "Byte Structure" in the .NET Framework
documentation.

Permissions

Operation Description
Read Properties Required on the report and any

corresponding subreports.
Execute and View Required on the report and any

corresponding subreports.

Remarks

The SessionId is automatically preserved in the SessionHeader between calls through the same proxy object. You must clear the
SessionHeader, if you do not want to preserve the session or would like to start a different session. For more information, see
SessionHeader Class.

If you are rendering a report with External images (meaning that the images are stored as items in the report server database),
you do not need to call RenderStream when rendering a report to HTML 4.0 using the Render method. In this case, you must
render the report with the device information setting HTMLFragment set to true. The report server automatically constructs the
URLs with the appropriate GUID reference for each secondary image stream. This is the easiest way in which to render a report to
HTML 4.0 using the SOAP API. You need to ensure that you give your users access to the virtual location to the images on the
report server. For more information about External images, see Adding an Image.

Example

Visual Basic, C#

To execute the following code example, you must reference the Reporting Services WSDL and import certain namespaces. The
following code example uses the StreamRoot device information setting to reference the image URLs of secondary streams in
your Web application and then renders a report to the HTML 4.0 output format. The sample then demonstrates how to render
each of the secondary image streams using the RenderStream method so that they can be referenced by a report written to a
Web page (ASP.NET Web Form):

Visual Basic

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Dim rs As New ReportingService

 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim results As Byte(), image As Byte()
 Dim streamids As String(), streamid As String

 ' Render the report to HTML4.0
 results = rs.Render("/SampleReports/Product Line Sales", "HTML4.0", _
 Nothing, "<DeviceInfo><StreamRoot>/WebApplication1/</StreamRoot></DeviceInfo>",
Nothing, _
 Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, streamids)

 ' For each image stream returned by the call to render,
 ' render the stream and save it to the application root
 For Each streamid In streamids
 image = rs.RenderStream("/SampleReports/Product Line Sales", "HTML4.0", streamid, _
 Nothing, Nothing, Nothing, Nothing, Nothing)

 Dim stream As System.IO.FileStream = _
 System.IO.File.OpenWrite("C:\Inetpub\wwwroot\WebApplication1\" & streamid)

 stream.Write(image, 0, CInt(image.Length))
 stream.Close()
 Next
 ' Write the rendered report to the Web form
 Response.BinaryWrite(results)

End Sub

C#

private void Page_Load(object sender, System.EventArgs e)
{
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 byte[] result;
 byte[] image;
 string[] streamIDs;
 string optionalString = null;
 ParameterValue[] optionalParams = null;
 Warning[] optionalWarnings = null;

 // Render the report to HTML4.0

 result = rs.Render("/SampleReports/Product Line Sales", "HTML4.0", null,
 "<DeviceInfo><StreamRoot>/WebApplication1/</StreamRoot></DeviceInfo>",
 null, null, null, out optionalString, out optionalString, out optionalParams,
 out optionalWarnings, out streamIDs);

 // For each image stream returned by the call to render,
 // render the stream and save it to the application root
 foreach (string streamID in streamIDs)
 {
 image = rs.RenderStream("/SampleReports/Product Line Sales", "HTML4.0", streamID,
 null, null, null, out optionalString, out optionalString);

 FileStream stream = File.OpenWrite(@"C:\Inetpub\wwwroot\WebApplication1\" +
streamID);
 stream.Write(image, 0, image.Length);
 stream.Close();
 }

 // Write the rendered report to the Web form
 Response.BinaryWrite(result);

}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ResumeSchedule Method
ReportingService.ResumeSchedule Method

Resumes a shared schedule that has been paused.

Visual Basic

Public Sub ResumeSchedule(
 ByVal ScheduleID As String
)
 Member of [Namespace].ReportingService

C#

public void ResumeSchedule(
 string ScheduleID
);
 Member of [Namespace].ReportingService

Parameters

ScheduleID
The ID of the schedule.

Permissions

Operation Description
Update Schedules Required for resuming a schedule.

Remarks

The ResumeSchedule method can be included in a batch operation.

No error is returned if ResumeSchedule is called on a schedule that is not paused.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetCacheOptions Method
ReportingService.SetCacheOptions Method

Configures a report for caching and provides settings that specify when the cached copy of the report expires.

Visual Basic

Public Sub SetCacheOptions(_
 ByVal Report As String _
 ByVal CacheReport As Boolean _
 ByVal Item As [Namespace].ExpirationDefinition _
)
 Member of [Namespace].ReportingService

C#

public void SetCacheOptions(
 string Report,
 bool CacheReport,
 [Namespace].ExpirationDefinition Item
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

CacheReport
A Boolean value that indicates whether a copy of the executed report is placed in cache. The default value is false.

Item
An ExpirationDefinition object representing either a schedule or an expiration time for the report in cache.

Permissions

Operation Description
Update Policy Required to set the cache options of a

report.

Remarks

Set the value for Item to null (Nothing in Visual Basic) if the CacheReport parameter is set to false. Supplying a value for the
Item parameter when CacheReport is set to false results in an error. Failure to provide a value for Item when CacheReport is set
to true also results in an error.

The SetCacheOptions method can be called only when the execution option for the report is set to Live. For more information
about setting execution options programmatically, see SetExecutionOptions.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetDataDrivenSubscriptionProperties Method
ReportingService.SetDataDrivenSubscriptionProperties Method

Sets the properties of a data-driven subscription..

Visual Basic

Public Function SetDataDrivenSubscriptionProperties(
 ByVal DataDrivenSubscriptionID As String _
 ByVal ExtensionSettings As [Namespace].ExtensionSettings _
 ByVal DataRetrievalPlan As [Namespace].DataRetrievalPlan _
 ByVal Description As String _
 ByVal Active As [Namespace].ActiveState _
 ByVal EventType As String _
 ByVal MatchData As String _
 ByVal Parameters() As [Namespace].ParameterValue _
) As String
 Member of [Namespace].ReportingService

C#

public string SetDataDrivenSubscriptionProperties(
 string DataDrivenSubscriptionID,
 [Namespace].ExtensionSettings ExtensionSettings,
 [Namespace].DataRetrievalPlan DataRetrievalPlan,
 string Description,
 [Namespace].ActiveState Active,
 string EventType,
 string MatchData,
 [Namespace].ParameterValue[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

DataDrivenSubscriptionID
The ID of the subscription.

ExtensionSettings
An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

DataRetrievalPlan
A DataRetrievalPlan object that contains a list of settings that are required to retrieve data from the delivery query for the
subscription.

Description
A meaningful description that is displayed to users.

EventType
[out] The type of event that triggers the subscription.

MatchData
[out] The data that is associated with the specified type of event. This data is used by an event processing extension to match the
subscription with an event that has fired.

Parameters
An array of ParameterValue[] objects that contains a list of parameters for the report.

Permissions

Operation Description
Update Subscription Required on a report for a user to add or

modify his or her subscriptions.
Update Any Subscription Required on a report for administrators

who need to modify other user's
subscriptions.

Remarks

In order for the data-driven subscription to run properly, the data source that the DataRetrievalPlan object references must

have a CredentialRetrieval property set to Store. For more information about the CredentialRetrieval property, see
CredentialRetrieval Property.

The Field objects contained in DataSet are checked against the fields that are mapped to delivery extension settings and report
parameter values. All fields that are referenced in delivery extension settings and report parameter values must also be
enumerated in the dataset.

No validation is performed to ensure that fields enumerated in the dataset are returned by the delivery query. If a field that is
enumerated in the dataset is not returned by the delivery query, the report server raises an error when the subscription is
processed.

The value of the EventType parameter must correspond to an event processing extension that is configured on the report server. If
an event is not handled by an event processing extension, a SOAP exception is thrown with the error code rsInvalidEvent. The
event must be handled by an event processing extension that creates notifications. When a value for the EventType parameter is
received, the event processing extension is queried to determine whether it creates notifications. If it does not, a SOAP exception is
thrown with the error code rsEventNonSubscribeable.

The value of the MatchData parameter depends on the event type. If the event is a TimedSubscription event, a
ScheduleDefinition object is required as the MatchData parameter. You must first serialize the ScheduleDefinition object as
XML in order to pass it as a string value and create a subscription based on the schedule. The XML structure might look like the
one in the following example:

<ScheduleDefinition>
 <WeeklyRecurrence>
 <StartDateTime>2003-02-24T09:00:00-08:00</StartDateTime>
 <WeeksInterval>1</WeeksInterval>
 <DaysOfWeek>
 <Monday>True</Monday>
 </DaysOfWeek>
 </WeeklyRecurrence>
</ScheduleDefinition>

The value of the StartDateTime element when passed as an XML string should correspond to the date format ISO 8601. This
international date and time standard is the extended format CCYY-MM-DDThh:mm:ss+/-Z where "CC" represents the century,
"YY" the year, "MM" the month and "DD" the day. The letter "T" is the date and time separator and "hh", "mm", "ss" represent hour,
minute and second respectively. This representation may be immediately followed by a "Z" to indicate Coordinated Universal
Time (UTC) or, to indicate the time zone, i.e. the difference between the local time and Coordinated Universal Time, immediately
followed by a sign, + or -, followed by the difference from UTC represented as hh:mm.

If the schedule definition for a TimedSubscription is a shared schedule, then you must pass the schedule ID of the shared
schedule as the MatchData parameter. The schedule ID is passed as a String, for example, "4608ac1b-fc75-4149-9e15-
5a8b5781b843". The schedule ID can be obtained by calling the ListSchedules method.

You can use the XmlSerializer class to automatically convert your object class into an XML string. For more information about
the XmlSerializer class, see "System.Xml.XmlSerializer Class" in the .NET Framework documentation.

If the event is a snapshot update subscription, the value of the MatchData parameter should be null (Nothing in Visual Basic).

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetDataSourceContents Method
ReportingService.SetDataSourceContents Method

Sets the contents of a data source.

Visual Basic

Public Sub SetDataSourceContents(
 ByVal DataSource As String _
 ByVal Definition As [Namespace].DataSourceDefinition _
) As String
 Member of [Namespace].ReportingService

C#

public void SetDataSourceContents(
 string DataSource,
 [Namespace].DataSourceDefinition Definition
);
 Member of [Namespace].ReportingService

Parameters

DataSource
The full path name of the data source.

Definition
A data source definition (DataSourceDefinition object) that contains the definition for the data source.

Permissions

Operation Description
Update Content Required on the data source to add or

modify its connection properties.

Remarks

To remove properties that are part of the data source definition, set the values of those properties to null (Nothing in Visual
Basic).

If you set the CredentialRetrieval property of the data source definition to Integrated or Prompt, do not supply values for
UserName or Password. Doing so results in a SOAP exception with the error code rsInvalidElementCombination.

If you set the CredentialRetrieval property of the data source definition to Integrated or Store, any value you supply for the
Prompt property is not saved.

With subscriptions, it may be necessary to store credentials in the report server database so that the subscriptions can run
unattended.

Setting the ConnectionString property of the data source definition to null (Nothing in Visual Basic) results in a SOAP
exception with the error code rsInvalidXML. If you do not want to supply a value for ConnectionString, set its value to an empty
string ("").

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following example code uses the SetDataSourceContents
method to set the data source definition for an existing data source named AdventureWorks:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New RSWebService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As New DataSourceDefinition()
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated
 definition.ConnectString = "data source=(local);initial catalog=AdventureWorks2000"
 definition.Enabled = True
 definition.EnabledSpecified = True
 definition.Extension = "SQL"
 definition.ImpersonateUser = False
 definition.ImpersonateUserSpecified = True
 definition.Prompt = Nothing
 definition.WindowsCredentials = False

 Try
 rs.SetDataSourceContents("/SampleReports/AdventureWorks", definition)

 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 RSWebService rs = new RSWebService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 DataSourceDefinition definition = new DataSourceDefinition();
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated;
 definition.ConnectString = "data source=(local);initial
catalog=AdventureWorks2000";
 definition.Enabled = true;
 definition.EnabledSpecified = true;
 definition.Extension = "SQL";
 definition.ImpersonateUser = false;
 definition.ImpersonateUserSpecified = true;
 definition.Prompt = null;
 definition.WindowsCredentials = false;

 try
 {
 rs.SetDataSourceContents("/SampleReports/AdventureWorks", definition);
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetExecutionOptions Method
ReportingService.SetExecutionOptions Method

Sets execution options and associated execution properties for a specified report.

Visual Basic

Public Sub SetExecutionOptions(
 ByVal Report As String _
 ByVal ExecutionSetting As [Namespace].ExecutionSettingEnum _
 ByVal Item As [Namespace].ScheduleDefinitionOrReference _
)
 Member of [Namespace].ReportingService

C#

public void SetExecutionOptions(
 string Report,
 [Namespace].ExecutionSettingEnum ExecutionSetting,
 [Namespace].ScheduleDefinitionOrReference Item
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

ExecutionSetting
One of the ExecutionSettingEnum values that describe when the report executes. The value can be either Live or Snapshot.

Item
The schedule definition or shared schedule (ScheduleDefinitionOrReference object) that the report server uses to execute a
report on a schedule.

Permissions

Operation Description
Update Policy Required to set the execution options of a

report.

Remarks

The Item parameter is valid only if the value of the ExecutionSetting parameter is Snapshot. Set the value of Item to null
(Nothing in Visual Basic) if ExecutionSetting is set to Live. If you are using a shared schedule, set the value of Item to a
ScheduleReference object, which references an existing shared schedule. If you are defining a unique schedule, set the value of
Item to the schedule definition (ScheduleDefinition object) that defines a unique schedule. If the execution options for a report are
based on a shared schedule and that shared schedule is deleted, the schedule is then associated with the individual report.

Changing the value of ExecutionSetting from Live to Snapshot can result in the removal of a report from the cache. If the report
is cached, the CacheReport parameter is set to false.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example uses the SetExecutionOptions
method to set the options for the Company Sales report to run as a snapshot on a schedule:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()

 Dim rs As New RSWebService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim definition As New DataSourceDefinition()
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated
 definition.ConnectString = "data source=(local);initial catalog=AdventureWorks2000"
 definition.Enabled = True
 definition.EnabledSpecified = True
 definition.Extension = "SQL"
 definition.ImpersonateUser = False
 definition.ImpersonateUserSpecified = True
 definition.Prompt = Nothing
 definition.WindowsCredentials = False

 Try
 rs.SetDataSourceContents("/SampleReports/AdventureWorks", definition)

 Catch e As SoapException
 Console.WriteLine(e.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 RSWebService rs = new RSWebService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 ScheduleDefinition definition = new ScheduleDefinition();

 // Create the schedule definition.
 definition.StartDateTime = new DateTime(2003, 2, 22, 10, 15, 0);
 MinuteRecurrence recurrence = new MinuteRecurrence();
 recurrence.MinutesInterval = 60;
 definition.Item = recurrence;

 // Apply execution settings
 try
 {
 rs.SetExecutionOptions("/SampleReports/Company Sales",
ExecutionSettingEnum.Snapshot, definition);
 }

 catch (SoapException ex)
 {
 Console.WriteLine(ex.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetPolicies Method
ReportingService.SetPolicies Method

Sets the policies that are associated with a specified item.

Visual Basic

Public Sub SetPolicies(_
 ByVal Item As String _
 ByVal Policies() As [Namespace].Policy _
)
 Member of [Namespace].ReportingService

C#

public void SetPolicies(
 string Item,
 [Namespace].Policy[] Policies
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Policies
An array of Policy[] objects that contains the groups and roles to set for the specified item.

Permissions

Operation Description
Update Security Policies Required for adding or editing policies on

a catalog item.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetProperties Method
ReportingService.SetProperties Method

Sets one or more properties of a specified item.

Visual Basic

Public Sub SetProperties(_
 ByVal Item As String _
 ByVal Properties() As [Namespace].Property _
)
 Member of [Namespace].ReportingService

C#

public void SetProperties(
 string Item,
 [Namespace].Property[] Properties
);
 Member of [Namespace].ReportingService

Parameters

Item
The full path name of the item.

Properties
An array of Property[] objects that defines the properties and values to set for the item.

Permissions

Operation Description
Update Properties Required for updating item properties and

associated meta data.

Remarks

You can create new user-defined properties for an item by passing a Properties object as a method argument. To remove a
property from an item, set the property to an empty value. You cannot remove reserved properties. For a list of reserved item
properties, see Report Server Item Properties.

If a specified property does not exist when the SetProperties method is called, the property is created and set to the value you
supply. If the property already exists, its value is overwritten. Setting an empty value for a property that does not exist has no
effect on the item or its properties.

If an error occurs, no properties are set.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example sets a new description for the
Company Sales report:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim props(0) As [Property]

 Dim setProp As New [Property]()
 setProp.Name = "Description"
 setProp.Value = "Sales by quarter and product category."
 props(0) = setProp

 Dim itemPath As String = "/SampleReports/Company Sales"

 Try
 rs.SetProperties(itemPath, props)
 Console.WriteLine("New description set on item {0}.", itemPath)

 Catch ex As SoapException
 Console.WriteLine(ex.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 RSWebService rs = new RSWebService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Property[] props = new Property[1];
 Property setProp = new Property();
 setProp.Name = "Description";
 setProp.Value = "Sales by quarter and product category.";
 props[0] = setProp;

 string itemPath = "/SampleReports/Company Sales";

 try
 {
 rs.SetProperties(itemPath, props);
 Console.WriteLine("New description set on item {0}.", itemPath);
 }

 catch (SoapException ex)
 {
 Console.WriteLine(ex.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportDataSources Method
ReportingService.SetReportDataSources Method

Sets the properties that are associated with the data sources of a specified report.

Visual Basic

Public Sub SetReportDataSources(_
 ByVal Report As String _
 ByVal DataSources() As [Namespace].DataSource _
)
 Member of [Namespace].ReportingService

C#

public void SetReportDataSources(
 string Report,
 [Namespace].DataSource[] DataSources
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

DataSources
An array of DataSource[] objects that contains a list of data sources and their associated properties.

Permissions

Operation Description
Update Data Sources Required on the report to update data

source properties.

Remarks

The report server throws an exception if the SetReportDataSources method is used to set the data source properties of a linked
report. If a data source that is passed in the DataSources parameter is not associated with the given report, a SOAP exception is
thrown with the error code rsDataSourceNotFound.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following example code uses the SetReportDataSources
method to set the data source definition for an existing shared data source named AdventureWorks:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample

 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim reference As New DataSourceReference()
 reference.Reference = "/SampleReports/AdventureWorks"
 Dim dataSources(1) As DataSource
 Dim ds As New DataSource()
 ds.Item = CType(reference, DataSourceDefinitionOrReference)
 ds.Name = "AdventureWorks"

 dataSources(0) = ds

 Try
 rs.SetReportDataSources("/SampleReports/Product Catalog", dataSources)
 Console.WriteLine("New reference set for the report.")

 Catch e As SoapException
 Console.WriteLine(e.Detail.InnerXml.ToString())
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 DataSourceReference reference = new DataSourceReference();
 reference.Reference = "/SampleReports/AdventureWorks";
 DataSource[] dataSources = new DataSource[1];
 DataSource ds = new DataSource();
 ds.Item = (DataSourceDefinitionOrReference) reference;
 ds.Name = "AdventureWorks";
 dataSources[0] = ds;

 try
 {
 rs.SetReportDataSources("/SampleReports/Product Catalog", dataSources);
 Console.WriteLine("New reference set for the report.");
 }

 catch (SoapException e)
 {
 Console.WriteLine(e.Detail.InnerXml.ToString());
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportDefinition Method
ReportingService.SetReportDefinition Method

Sets the report definition for a specified report.

Visual Basic

Public Function SetReportDefinition(_
 ByVal Report As String _
 ByVal Definition() As Byte _
) As [Namespace].Warning()
 Member of [Namespace].ReportingService

C#

public [Namespace].Warning[] SetReportDefinition(
 string Report,
 Byte[] Definition
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Definition
The report definition to register.

Return Value

An array of Warning[] objects that describes warnings that occurred while the report definition was being validated.

Permissions

Operation Description
Update Report Definition Required for updating a report definition.

Remarks

Changing the report definition for a report modifies the ModifiedBy, ModifiedDate, and Size properties of the report. The
Description property is not affected. Execution settings and snapshots remain valid for the report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportHistoryLimit Method
ReportingService.SetReportHistoryLimit Method

Specifies the number of snapshots of a report that the report server retains in the report server database.

Visual Basic

Public Sub SetReportHistoryLimit(_
 ByVal Report As String _
 ByVal UseSystem As Boolean _
 ByVal HistoryLimit As Integer _
)
 Member of [Namespace].ReportingService

C#

public void SetReportHistoryLimit(
 string Report,
 bool UseSystem,
 int HistoryLimit
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

UseSystem
A Boolean expression that, when set to true, sets the report history limit to the current system report history limit. A value of
false indicates that the report history limit corresponds to the value supplied in the HistoryLimit parameter.

HistoryLimit
The number of report history snapshots to store for the report. Values can range from -1 to 2,147,483,647. If the value is set to
–1, all report snapshots are saved.

Permissions

Operation Description
Update Policy Required to add or modify a report history

snapshot limit.

Remarks

If the UseSystem parameter is set to true, the report server ignores the HistoryLimit parameter.

Note If the value of HistoryLimit is changed, report history snapshots may be deleted.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportHistoryOptions Method
ReportingService.SetReportHistoryOptions Method

Sets report history options that specify when a report history snapshot is created for a specified report.

Visual Basic

Public Sub SetReportHistoryOption(_
 ByVal Report As String _
 ByVal EnableManualSnapshotCreation As Boolean _
 ByVal KeepExecutionSnapshots As Boolean _
 ByVal Item As [Namespace].ScheduleDefinitionOrReference _
)
 Member of [Namespace].ReportingService

C#

public void SetSnapshotSetting(
 string Report,
 bool EnableManualSnapshotCreation,
 bool KeepExecutionSnapshots,
 [Namespace].ScheduleDefinitionOrReference Item
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

EnableManualSnapshotCreation
Indicates whether report history snapshots can be created through the Web service method CreateReportHistorySnapshot. The
default value is true.

KeepExecutionSnapshots
Indicates whether report execution snapshots are collected for report history. The default value is false.

Item
The schedule definition (ScheduleDefintion object) or shared schedule (ScheduleReference object) that represents the schedule
information for the report history snapshot. If the report history snapshot is not created according to a schedule, pass a
NoSchedule object for this parameter.

Permissions

Operation Description
Update Policy Required to add or modify properties of a

report history snapshot.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportLink Method
ReportingService.SetReportLink Method

Specifies the report that is used for the report definition of an existing linked report.

Visual Basic

Public Sub SetReportLink(_
 ByVal Report As String _
 ByVal Link As String _
)
 Member of [Namespace].ReportingService

C#

public void SetReportLink(
 string Report,
 string Link
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the linked report.

Link
The full path name of the report that contains the report definition.

Permissions

Operation Description
Update Properties Required on the report passed in the

report parameter.
Create Link Required on the report passed in the link

parameter.

Remarks

If the report specified in the Report parameter already contains a report definition, a SOAP exception is thrown with error code
rsWrongItemType.

Using this method changes the ModifiedBy, ModifiedDate, and Size properties of the report.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetReportParameters Method
ReportingService.SetReportParameters Method

Sets report parameter properties for a specified report.

Visual Basic

Public Sub SetReportParameters(
 ByVal Report As String _
 ByVal Parameters() As [Namespace].ReportParameter _
)
 Member of [Namespace].ReportingService

C#

public void SetReportParameters(
 string Report,
 [Namespace].ReportParameter[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Parameters
An array of ReportParameter[] objects that contains a list of the report parameters properties.

Permissions

Operation Description
Update Parameters Required to set report parameters.

Remarks

The parameters specified for the SetReportParameters method must be defined in the original report definition.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetResourceContents Method
ReportingService.SetResourceContents Method

Sets the contents of a resource.

Visual Basic

Public Function SetResourceContents(_
 ByVal Resource As String _
 ByVal Contents() As Byte _
 ByVal MimeType As String _
) As Byte()
 Member of [Namespace].ReportingService

C#

public Byte[] SetResourceContents(
 string Resource,
 Byte[] Contents,
 string MimeType
);
 Member of [Namespace].ReportingService

Parameters

Resource
The full path name of the resource.

Contents
The contents of a resource in the form of a byte array.

MimeType
Optional. The MIME type of the resource. This is returned through an out parameter.

Permissions

Operation Description
Read Content Required for reading the contents of a

resource.

Remarks

A SOAP exception is thrown with the error code rsMissingParameter if the value of the Contents parameter is set to null
(Nothing in Visual Basic).

The report server does not validate the value of the MimeType parameter.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetRoleProperties Method
ReportingService.SetRoleProperties Method

Sets role properties and associates a collection of tasks with a specified role.

Visual Basic

Public Sub SetRoleProperties(_
 ByVal Name As String _
 ByVal Description As String _
 ByVal Tasks() As [Namespace].Task _
)
 Member of [Namespace].ReportingService

C#

public void SetRoleProperties(
 string Name,
 string Description,
 [Namespace].Task[] Tasks
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the role for which to set properties.

Description
Optional. A description of the role.

Tasks
An array of Task[] objects that represents the tasks to set for the role.

Permissions

Operation Description
Update Role Properties Required for setting properties of roles.

Remarks

When you use the SetRoleProperties method to change role properties, groups, users, and policies that are assigned to the role
are affected.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetScheduleProperties Method
ReportingService.SetScheduleProperties Method

Sets the properties of a shared schedule.

Visual Basic

Public Sub SetScheduleProperties(_
 ByVal Name As String _
 ByVal ScheduleID As String _
 ByVal ScheduleDefinition As [Namespace].ScheduleDefinition _
)
 Member of [Namespace].ReportingService

C#

public void SetScheduleProperties(
 string Name,
 string ScheduleID,
 [Namespace].ScheduleDefinition ScheduleDefinition
);
 Member of [Namespace].ReportingService

Parameters

Name
The name of the schedule.

ScheduleID
The ID of the schedule.

ScheduleDefinition
A ScheduleDefinition object that defines the schedule properties and values to set.

Permissions

Operation Description
Update Schedules Required to modify schedule properties.

Remarks

To remove a property from a shared schedule, set the property to null (Nothing in Visual Basic). Setting an empty value for a
property that does not exist has no effect on the schedule.

If you set the value of a property that already exists, the value is overwritten.

The SetScheduleProperties method does not stop execution of a scheduled operation when the method is invoked. If the
schedule is updated during a scheduled run, changes are reflected in subsequent runs.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetSubscriptionProperties Method
ReportingService.SetSubscriptionProperties Method

Sets the properties of a subscription.

Visual Basic

Public Sub SetSubscriptionProperties(_
 ByVal SubscriptionID As String _
 ByVal ExtensionSettings As [Namespace].ExtensionSettings _
 ByVal Description As String _
 ByVal EventType As String _
 ByVal MatchData As String _
 ByVal Parameters() As [Namespace].ParameterValue _
)
 Member of [Namespace].ReportingService

C#

public void SetSubscriptionProperties(
 string SubscriptionID,
 [Namespace].ExtensionSettings ExtensionSettings,
 string Description,
 string EventType,
 string MatchData,
 [Namespace].ParameterValue[] Parameters
);
 Member of [Namespace].ReportingService

Parameters

SubscriptionID
The ID of the subscription.

ExtensionSettings
An ExtensionSettings object that contains a list of settings that are specific to the delivery extension.

Description
A meaningful description that is displayed to users.

EventType
The type of event that triggers the subscription.

MatchData
The data that is associated with the specified type of event. This data is used by an event processing extension to match the
subscription with an event that has fired.

Parameters
An array of ParameterValue[] objects that contains a list of parameters for the report.

Permissions

Operation Description
Update Subscription Required for a user to add or modify his

or her subscriptions.
Update Any Subscription Required for administrators who need to

modify other user's subscriptions.

Remarks

The value of the EventType parameter must correspond to an event processing extension that is configured on the report server. If
the event type is not handled by an event processing extension, a SOAP exception is thrown with the error code rsInvalidEvent.
The event type must be handled by an event processing extension that creates notifications. When a value for the EventType
parameter is received, the event processing extension is queried to determine whether the event creates notifications. If it does
not, a SOAP exception is thrown with the error code rsEventNonSubscribeable.

The value of the MatchData parameter depends on the event type. If the event is a TimedSubscription event, a
ScheduleDefinition object is required as the MatchData parameter. You must first serialize the ScheduleDefinition object as

XML in order to pass it as a string value and create a subscription based on the schedule. The XML structure might look like the
one in the following example:

<ScheduleDefinition>
 <WeeklyRecurrence>
 <StartDateTime>2003-02-24T09:00:00-08:00</StartDateTime>
 <WeeksInterval>1</WeeksInterval>
 <DaysOfWeek>
 <Monday>True</Monday>
 </DaysOfWeek>
 </WeeklyRecurrence>
</ScheduleDefinition>

The value of the StartDateTime element when passed as an XML string should correspond to the date format ISO 8601. This
international date and time standard is the extended format CCYY-MM-DDThh:mm:ss+/-Z where "CC" represents the century,
"YY" the year, "MM" the month and "DD" the day. The letter "T" is the date and time separator and "hh", "mm", "ss" represent hour,
minute and second respectively. This representation may be immediately followed by a "Z" to indicate Coordinated Universal
Time (UTC) or, to indicate the time zone, i.e. the difference between the local time and Coordinated Universal Time, immediately
followed by a sign, + or -, followed by the difference from UTC represented as hh:mm.

If the schedule definition for a TimedSubscription is a shared schedule, you must pass the schedule ID of the shared schedule as
the MatchData parameter. The schedule ID is passed as a String, for example, "4608ac1b-fc75-4149-9e15-5a8b5781b843". The
schedule ID can be obtained by calling the ListSchedules method.

If the event is a snapshot update subscription, set MatchData parameter to null (Nothing in Visual Basic).

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetSystemPolicies Method
ReportingService.SetSystemPolicies Method

Sets the system policy that defines groups and associated roles.

Visual Basic

Public Sub SetSystemPolicies(
 ByVal Policies() As [Namespace].Policy
)
 Member of [Namespace].ReportingService

C#

public void SetSystemPolicies(
 [Namespace].Policy[] Policies
);
 Member of [Namespace].ReportingService

Parameters

Policies
An array of Policy[] objects that lists the policies to set for the system.

Permissions

Operation Description
Update System Security Policies Required for editing or adding system

policies.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SetSystemProperties Method
ReportingService.SetSystemProperties Method

Sets one or more system properties.

Visual Basic

Public Sub SetSystemProperties(_
 ByVal Properties As String _
)
 Member of [Namespace].ReportingService

C#

public void SetSystemProperties(
 string Properties
);
 Member of [Namespace].ReportingService

Parameters

Properties
An array of Property[] objects that defines the system properties and values to set for a report server.

Permissions

Operation Description
Update System Properties Required to modify system-level

properties.

Remarks

Users can add additional custom system properties that are not reserved by the system. If a property specified in the Property[]
array does not exist, it is created. If a value for a property exists, it is overwritten. You cannot create or remove reserved system
properties. Depending on the system property being set, the functionality of the report server may change. For a list of reserved
system properties, see Report Server System Properties. If errors occur, no properties are set.

You can remove the value of a property by setting the property to an empty value.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example creates a new system property
named Description in the report server database:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim setProp As New [Property]()
 setProp.Name = "Description"
 setProp.Value = "My report server that resides on the computer named RSSERVER1."
 Dim props(0) As [Property]
 props(0) = setProp

 Try
 rs.SetSystemProperties(props)
 Console.WriteLine("New site property set.")

 Catch ex As SoapException
 Console.WriteLine(ex.Detail.OuterXml)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Property setProp = new Property();
 setProp.Name = "Description";
 setProp.Value = "My report server that resides on the computer named RSSERVER1.";
 Property[] props = new Property[1];
 props[0] = setProp;

 try
 {
 rs.SetSystemProperties(props);
 Console.WriteLine("New site property set.");
 }

 catch (SoapException ex)
 {
 Console.WriteLine(ex.Detail.OuterXml);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

UpdateSnapshot Method
ReportingService.UpdateReportExecutionSnapshot Method

Generates a report history snapshot for a specified report.

Visual Basic

Public Sub UpdateSnapshot(_
 ByVal Report As String _
)
 Member of [Namespace].ReportingService

C#

public void UpdateSnapshot(
 string Report
);
 Member of [Namespace].ReportingService

Parameters

Report
The full path name of the report.

Permissions

Operation Description
Execute Required to generate an execution

snapshot for a report. If sub-reports are
present in the report, the user must have
Execute permission on the sub-reports.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ValidateExtensionSettings Method
ReportingService.ValidateExtensionSettings Method

Validates Reporting Services extension settings.

Visual Basic

Public Function ValidateExtensionSettings(_
 ByVal Extension As String _
 ByVal ParameterValues() As [Namespace].ParameterValueOrFieldReference _
) As String
 Member of [Namespace].ReportingService

C#

public ExtensionParameter[] ValidateExtensionSettings(
 string Extension,
 [Namespace].ParameterValueOrFieldReference[] ParameterValues
);
 Member of [Namespace].ReportingService

Parameters

Extension
The name of the extension as it appears in the report server configuration file. Valid values are Report Server Email and
Report Server FileShare.

ParameterValues
An array of ParameterValueOrFieldReference[] objects representing the settings to validate for the extension.

Return Value

An array of ExtensionParameter[] objects that contain validated extension settings and any required settings that were not
specified.

Remarks

The ExtensionParameter[] objects that are returned by the ValidateExtensionSettings method contain the following items:

All valid setting values specified in the ParameterValues parameter
Settings with values that are not valid contain an error message (Error property of the ExtensionParameter class)
The names of all required settings that were not specified in the ParameterValues parameter with a Required property of
the ExtensionParameter class set to a value of true.

Note Currently, the ValidateExtensionSettings method supports delivery extensions. Other extensions are not yet supported
by this method.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

BatchHeaderValue Property
ReportingService.BatchHeaderValue Property

The value (BatchHeader object) that represents a unique, system-generated batch ID for multi-method operations in the
Reporting Services SOAP API.

Visual Basic

public Dim BatchHeaderValue As [Namespace].BatchHeader
 Member of [Namespace].ReportingService

C#

public [Namespace].BatchHeader BatchHeaderValue;
 Member of [Namespace].ReportingService

Remarks

You can use the BatchHeaderValue property in the SOAP header for Web service calls that you want to batch.

To execute a batch, set the BatchHeaderValue property of the Web service to a value that is equal to the batch ID generated
when the batch was created. For example, the following C# code sets the BatchHeaderValue of the Web service to a value that is
equal to a previously created batch ID and then executes the batch:

rs.BatchHeaderValue = bh;
rs.ExecuteBatch();

For more information about creating a batch ID, see CreateBatch Method.

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example retrieves a list of items in a user's My
Reports folder and then deletes the items using a batch operation:

Visual Basic

Imports System
Imports System.Web.Services.Protocols

Class Sample
 Public Shared Sub Main()
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Return all items in the My Reports folder.
 Dim items As CatalogItem() = rs.ListChildren("/My Reports", False)

 Dim bh As New BatchHeader()
 bh.BatchID = rs.CreateBatch()
 rs.BatchHeaderValue = bh

 Dim item As CatalogItem
 For Each item In items
 Console.WriteLine((item.Path + " found."))
 rs.DeleteItem(item.Path)
 Console.WriteLine((item.Path + " deleted."))
 Next item

 Try
 rs.ExecuteBatch()
 Catch ex As SoapException
 Console.WriteLine(ex.Message)
 Finally
 rs.BatchHeaderValue = Nothing
 End Try

 End Sub 'Main
End Class 'Sample

C#

using System;
using System.Web.Services.Protocols;

class Sample
{
 public static void Main()
 {
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Return all items in the My Reports folder.
 CatalogItem[] items = rs.ListChildren("/My Reports", false);

 BatchHeader bh = new BatchHeader();
 bh.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh;

 foreach (CatalogItem item in items)
 {
 Console.WriteLine(item.Path + " found.");
 rs.DeleteItem(item.Path);
 Console.WriteLine(item.Path + " deleted.");
 }

 try
 {
 rs.ExecuteBatch();
 }
 catch (SoapException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 rs.BatchHeaderValue = null;
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ItemNamespaceHeaderValue Property
ReportingService.ItemNamespaceHeaderValue Property

The value (ItemNamespaceHeader object) that represents the identifier used to retrieve item properties.

Visual Basic

public Dim ItemNamespaceHeaderValue As [Namespace].ItemNamespaceHeader
 Member of [Namespace].ReportingService

C#

public [Namespace].ItemNamespaceHeader ItemNamespaceHeaderValue;
 Member of [Namespace].ReportingService

Remarks

You can use the ItemNamespaceHeaderValue property of the Web service to retrieve item properties based on two different
item identifiers: the full path name of the item or the ID of the item. For more information, see Setting the Item Namespace for the
GetProperties Method.

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ServerInfoHeaderValue Property
ReportingService.ServerInfoHeaderValue Property

The server-related information (ServerInfoHeader object) that represents the version of the report server.

Visual Basic

public Dim ServerInfoHeaderValue As [Namespace].ServerInfoHeader
 Member of [Namespace].ReportingService

C#

public [Namespace].ServerInfoHeader ServerInfoHeaderValue;
 Member of [Namespace].ReportingService

Example

Visual Basic, C#

To compile the following code example, you must reference the Reporting Services WSDL and import certain namespaces. For
more information, see Compiling and Running Code Examples. The following code example makes a call to the Web service and
then retrieves server information from the SOAP header:

Visual Basic

Imports System

Class Sample
 Shared Sub Main()
 ' Create proxy object and set service credentials to integrated
 Dim rs As New ReportingService()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Try
 ' Set the server info header
 rs.ServerInfoHeaderValue = New ServerInfoHeader()

 ' Make a call to the Web service
 Dim items As CatalogItem() = rs.ListChildren("/", False)

 ' Output the server version and edition to the console
 Console.WriteLine("Server version: {0}",
rs.ServerInfoHeaderValue.ReportServerVersionNumber)
 Console.WriteLine("Server edition: {0}",
rs.ServerInfoHeaderValue.ReportServerEdition)

 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;

class Sample
{
 static void Main()
 {
 // Create proxy object and set service credentials to integrated
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 try
 {
 // Set the server info header
 rs.ServerInfoHeaderValue = new ServerInfoHeader();

 // Make a call to the Web service
 CatalogItem[] items = rs.ListChildren("/", false);

 // Output the server version and edition to the console
 Console.WriteLine("Server version: {0}",
 rs.ServerInfoHeaderValue.ReportServerVersionNumber);
 Console.WriteLine("Server edition: {0}",
 rs.ServerInfoHeaderValue.ReportServerEdition);
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SessionHeaderValue Property
ReportingService.SessionHeaderValue Property

The session-related information (SessionHeader object) that represents state information for sessions in Reporting Services.

Visual Basic

public Dim SessionHeaderValue As [Namespace].SessionHeader
 Member of [Namespace].ReportingService

C#

public [Namespace].SessionHeaderValue SessionHeader;
 Member of [Namespace].ReportingService

See Also

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Schedule Class
Represents a schedule and its properties.

Visual Basic

Public Class Schedule
 Member of [Namespace]

C#

public class Schedule
 Member of [Namespace]

Public Properties

Creator The user name of the user who created
the schedule. String. Read-only.

Description A description of the schedule. String.
LastRunTime The date and time that the schedule was

last run. DateTime. Read-only.
Name The name of the schedule. String.
NextRunTime The date and time that the schedule will

run next. DateTime. Read-only.
ReferencesPresent Indicates whether a shared schedule is

referenced by reports and subscriptions.
Boolean. Read-only.

Definition The definition (ScheduleDefinition object)
of the schedule.

ScheduleID The unique, system-generated ID of the
schedule. String. Read-only.

State The state (ScheduleStateEnum
enumeration) of the schedule. Read-only.

Remarks

A Schedule object is returned as output by the GetScheduleProperties, GetSubscriptionProperties, and ListSchedules methods
and is passed as input to the CreateSubscription and SetSubscriptionProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Creator Property
Schedule.Creator Property

The name of the user who created the schedule. String. Read-only.

Visual Basic

Public Dim Creator As String
 Member of [Namespace].Schedule

C#

public string Creator;
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Definition Property
Schedule.Definition Property

The definition (ScheduleDefinition object) of the schedule.

Visual Basic

Public Dim Definition As [Namespace].ScheduleDefinition
 Member of [Namespace].Schedule

C#

public [Namespace].ScheduleDefinition Definition;
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
Schedule.Description Property

A description of the schedule. String.

Visual Basic

Public Dim Description As String
 Member of [Namespace].Schedule

C#

public string Description
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

LastRunTime Property
Schedule.LastRunTime Property

The date and time that the schedule was last run. DateTime. Read-only.

Visual Basic

Public Dim LastRunTime As DateTime
 Member of [Namespace].Schedule

C#

public DateTime LastRunTime;
 Member of [Namespace].Schedule

Remarks

The value for the NextRunTime property has a corresponding NextRunTimeSpecified property in the Web service proxy class.
Because NextRunTime is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Schedule.Name Property

The name of the schedule. String.

Visual Basic

Public Dim Name As String
 Member of [Namespace].Schedule

C#

public string Name;
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

NextRunTime Property
Schedule.NextRunTime Property

The date and time that the schedule will run next. DateTime. Read-only.

Visual Basic

Public Dim NextRunTime As DateTime
 Member of [Namespace].Schedule

C#

public DateTime NextRunTime;
 Member of [Namespace].Schedule

Remarks

The value for the NextRunTime property has a corresponding NextRunTimeSpecified property in the Web service proxy class.
Because NextRunTime is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReferencesPresent Property
Schedule.ReferencesPresent Property

Indicates whether a shared schedule is referenced by reports and subscriptions. Boolean. Read-only.

Visual Basic

Public Dim ReferencesPresent As Boolean
 Member of [Namespace].Schedule

C#

public bool References Present;
 Member of [Namespace].Schedule

Remarks

A value of true if the schedule is referenced by reports and subscriptions; otherwise, a value of false. This property is read-only.

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleID Property
Schedule.ScheduleID Property

The unique, system-generated ID of the schedule. String. Read-only.

Visual Basic

Public Dim ScheduleID As String
 Member of [Namespace].Schedule

C#

public string ScheduleID;
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

State Property
Schedule.State Property

The state (ScheduleStateEnum enumeration) of the schedule.

Visual Basic

Public Dim State As [Namespace].ScheduleStateEnum
 Member of [Namespace].Schedule

C#

public [Namespace].ScheduleStateEnum State;
 Member of [Namespace].Schedule

See Also

Schedule Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleDefinition Class
Represents a defined schedule.

Visual Basic

Public Class ScheduleDefinition
 Inherits [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

C#

public class ScheduleDefinition : [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

Public Properties

EndDate The end date and time of a schedule.
DateTime.

Item The recurrence pattern (RecurrencePattern
object) of a schedule.

StartDateTime The start date and time of a schedule.
DateTime.

Remarks

Use the ScheduleDefinition class with the Definition property of the Schedule class.

A ScheduleDefinition object is returned as output by the GetExecutionOptions and GetReportHistoryOptions methods and is
passed as input to the CreateSchedule, SetExecutionOptions, SetReportHistoryOptions, and SetScheduleProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

EndDate Property
ScheduleDefinition.EndDate Property

The end date and time of a schedule. DateTime.

Visual Basic

Public Dim EndDate As DateTime
 Member of [Namespace].Schedule

C#

public DateTime EndDate
 Member of [Namespace].Schedule

Remarks

The value for the EndDate property can be omitted. To omit this property, set the EndDateSpecified property to false. If you set a
value for the EndDate property, you must also set the EndDateSpecified property to true. For more information about
specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

ScheduleDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

EndDateSpecified Property
ScheduleDefinition.EndDateSpecified Property

Indicates whether a value for the EndDate property is specified. Boolean.

Visual Basic

public Dim EndDateSpecified As Boolean
 member of [Namespace].ScheduleDefinition

C#

public bool EndDateSpecified;
 member of [Namespace].ScheduleDefinition

See Also

ScheduleDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Item Property
ScheduleDefinition.Item Property

The recurrence pattern for a schedule.

Visual Basic

Public Dim Item As [Namespace].RecurrencePattern
 Member of [Namespace].Schedule

C#

public [Namespace].RecurrencePattern Item;
 Member of [Namespace].Schedule

Property Value

A RecurrencePattern object that represents the recurrence pattern.

Remarks

If you do not supply a value for the Item property in a schedule definition, the scheduled report runs only once.

See Also

ScheduleDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

StartDateTime Property
ScheduleDefinition.StartDateTime Property

The start date and time for a schedule. DateTime.

Visual Basic

Public Dim StartDateTime As DateTime
 Member of [Namespace].Schedule

C#

public DateTime StartDateTime;
 Member of [Namespace].Schedule

See Also

ScheduleDefinition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleDefinitionOrReference Class
Represents a schedule definition or a reference to a shared schedule.

Visual Basic

Public Class ScheduleDefinitionOrReference
 Member of [Namespace]

C#

public class ScheduleDefinitionOrReference
 Member of [Namespace]

Remarks

Methods of the ReportingService class use objects that inherit the ScheduleDefinitionOrReference class. The following table
describes classes that implement ScheduleDefinitionOrReference.

Class Description
NoSchedule Represents a state in which no schedule is

set as part of the execution settings for a
report.

ScheduleDefinition Represents a schedule definition.
ScheduleReference Represents a reference to a shared

schedule.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleExpiration Class
Represents a schedule that defines when a cached copy of a report expires.

Visual Basic

Public Class ScheduleExpiration
 Inherits [Namespace].ExpirationDefinition
 Member of [Namespace]

C#

public class ScheduleExpiration : [Namespace].ExpirationDefinition
 Member of [Namespace]

Public Properties

Item The scheduled expiration
(ScheduleDefinitionOrReference object) of
a cached report.

Remarks

A ScheduleExpiration object is returned as output by the GetCacheOptions method and is passed as input to the
SetCacheOptions method when a report in cache expires according to a schedule. For more information about the cache settings
for a report, see Managing Report Processing.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Item Property
ScheduleExpiration.Item

The scheduled expiration (ScheduleDefinitionOrReference object) of a cached report.

Visual Basic

Public Dim Item As [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace].ScheduleExpiration

C#

public [Namespace].ScheduleDefinitionOrReference Item;
 Member of [Namespace].ScheduleExpiration

See Also

ScheduleExpiration Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleReference Class
Represents a reference to a shared schedule.

Visual Basic

Public Class ScheduleReference
 Inherits [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

C#

public class ScheduleReference : [Namespace].ScheduleDefinitionOrReference
 Member of [Namespace]

Public Properties

Definition The definition (ScheduleDefinition object)
for a shared schedule.

ScheduleID The unique, system-generated ID of a
shared schedule. String.

Remarks

A ScheduleReference object is returned as output by the GetExecutionOptions and GetReportHistoryOptions methods and is
passed as input to the SetExecutionOptions and SetReportHistoryOptions methods.

Use ScheduleReference in methods that require a ScheduleDefinitionOrReference object to indicate that a report runs
according to a shared schedule. For more information about Reporting Services schedules, see Shared Schedules and Report-
specific Schedules.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Definition Property
ScheduleReference.Definition Property

The definition (ScheduleDefinition object) for a shared schedule.

Visual Basic

Public Dim Definition As [Namespace].ScheduleDefinition
 Member of [Namespace].ScheduleReference

C#

public [Namespace].ScheduleDefinition Definition;
 Member of [Namespace].ScheduleReference

See Also

ScheduleReference Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleID Property
ScheduleReference.ScheduleID Property

The unique, system-generated ID of a shared schedule. String.

Visual Basic

Public Dim ScheduleID As String
 Member of [Namespace].ScheduleReference

C#

public string ScheduleID;
 Member of [Namespace].ScheduleReference

See Also

ScheduleReference Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ScheduleStateEnum Enumeration
Describes the current state of a schedule.

Visual Basic

Public Enum ScheduleStateEnum
 Member of [Namespace]

C#

public enum ScheduleStateEnum;
 Member of [Namespace]

Remarks

Use the ScheduleStateEnum enumeration with the State property of the Schedule class.

M embers

Member name Description
Running Reports that are associated with the

schedule are currently running.
Ready Reports that are associated with the

schedule are ready to run at the next
appropriate time.

Paused The schedule is currently paused.
Expired The schedule has expired according to the

value of the EndDate property of the
schedule.

Failing An error occurred and reports that are
associated with the schedule cannot run.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SearchCondition Class
Represents the properties of an item for which to search in the report server database.

Visual Basic

Public Class SearchCondition
 Inherits [Namespace].Property
 Member of [Namespace]

C#

public class SearchCondition : [Namespace].Property
 Member of [Namespace]

Public Properties

Condition The type of comparison (ConditionEnum
enumeration) to perform between search
conditions and item properties in the
report server database.

ConditionSpecified Indicates whether a value for the
Condition property is specified. Boolean.

Name (inherited from Property) The name of the property. String.
Value (inherited from Property) The value of the property. String.

Remarks

A SearchCondition object is passed as input to the FindItems method.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Condition Property
SearchCondition.Condition Property

The type of comparison (ConditionEnum enumeration) to perform between search conditions and item properties in the report
server database.

Visual Basic

Public Dim Condition As [Namespace].ConditionEnum
 Member of [Namespace].SearchCondition

C#

public [Namespace].ConditionEnum Condition
 Member of [Namespace].SearchCondition

Remarks

The value for the Condition property can be omitted. To omit this property, set the ConditionSpecified property to false. If you
set a value for the Condition property, you must also set the ConditionSpecified property to true. For more information about
specifying properties, see Omitting Values for Optional Web Service Objects.

If you do not specify a value for the Condition property, the default enumeration value is ConditionEnum.Contains.

See Also

SearchCondition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ConditionSpecified Property
SearchCondition.ConditionSpecified Property

Indicates whether a value for the Condition property is specified. Boolean.

Visual Basic

public Dim ConditionSpecified As Boolean
 member of [Namespace].SearchCondition

C#

public bool ConditionSpecified;
 member of [Namespace].SearchCondition

See Also

SearchCondition Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SensitivityEnum Enumeration
Describes the sensitivity of a given type: kanatype, case, or accent.

Visual Basic

Public Enum SensitivityEnum
 Member of [Namespace]

C#

public enum SensitivityEnum;
 Member of [Namespace]

Remarks

Use the SensitivityEnum enumeration with the AccentSensitivity, CaseSensitivity, KanatypeSensitivity, WidthSensitivity
properties of the DataSetDefinition.

If Auto is specified, the report server attempts to derive the sensitivity setting by querying the data provider. The value defaults to
False if the data provider does not support the given sensitivity type.

M embers

Member name Description
True The type of sensitivity is supported.
False The type of sensitivity is not supported.
Auto The report server attempts to derive

sensitivity by querying the data provider.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ServerInfoHeader Class
Represents information about the report server.

Visual Basic

Public Class ServerInfoHeader
 Inherits SoapHeader
 Member of [Namespace]

C#

public class ServerInfoHeader : SoapHeader
 Member of [Namespace]

Public Properties

ReportServerVersionNumber The version of the report server. String.
Read-only.

ReportServerEdition The edition of the report server. The
different editions of Reporting Services
include Developer, Evaluation, Enterprise,
and Standard editions. String. Read-only.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReportServerVersionNumber Property
ServerInfoHeader.ReportServerVersionNumber Property

The version of the report server. String. Read-only.

Visual Basic

Public Dim ReportServerVersionNumber As String
 Member of [Namespace].ServerInfoHeader

C#

public string ReportServerVersionNumber;
 Member of [Namespace].ServerInfoHeader

Property Value

A String value that represents the version of the report server. The format of the version number is "8.00.0xxx.00", where xxx
represents the build number.

See Also

ServerInfoHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ReportServerEdition Property
ServerInfoHeader.ReportServerEdition Property

The edition of the report server. The different editions of Reporting Services include Developer, Evaluation, Enterprise, and
Standard editions.

Visual Basic

Public Dim ReportServerEdition As String
 Member of [Namespace].ServerInfoHeader

C#

public string ReportServerEdition;
 Member of [Namespace].ServerInfoHeader

Property Value

A String value that represents the product edition of the report server. Values are represented as Developer, Enterprise,
Evaluation, and Standard.

See Also

ServerInfoHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SessionHeader Class
Represents state information for sessions in the report server.

Visual Basic

Public Class SessionHeader
 Inherits SoapHeader
 Member of [Namespace]

C#

public class SessionHeader : SoapHeader
 Member of [Namespace]

Public Properties

SessionId The session that is ID associated with a
user session in the report server. String.
Read-only.

IsNewExecution Indicates whether the execution of a
report is a new execution. Boolean. Read-
only.

ExecutionDateTime The date and time of the execution of a
report in session. String. Read-only.

ExpirationDateTime Gets the expiration date and time of a
report in session. String. Read-only.

Remarks

The SessionHeader class is passed in the SessionHeaderValue property in the SOAP header.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SessionId Property
SessionHeader.SessionId Property

A unique ID that is used to identify the session. String. Read-only.

Visual Basic

Public Dim Property SessionId As String
 Member of [Namespace].SessionHeader

C#

public string SessionId;
 Member of [Namespace].SessionHeader

See Also

SessionHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

IsNewExecution Property
SessionHeader.IsNewExecution Property

Indicates whether the execution of a report is a new execution. Boolean. Read-only.

Visual Basic

Public Dim Property IsBrowserDisplay As Boolean
 Member of [Namespace].SessionHeader

C#

public bool IsNewExecution
 Member of [Namespace].SessionHeader

Remarks

A value of true indicates that the execution of the report is a new execution; otherwise, the value is false.

See Also

SessionHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExecutionDateTime Property
SessionHeader.ExecutionDateTime Property

The date and time of the execution of a report in session. String. Read-only.

Visual Basic

Public Dim ExecutionDateTime As String
 Member of [Namespace].SessionHeader

C#

public string ExecutionDateTime;
 Member of [Namespace].SessionHeader

Remarks

The value of the ExecutionDateTime property is a date and time string in International Organization for Standardization (ISO)
8601 format; for example, "2003-10-25T01:12:08".

See Also

SessionHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ExpirationDateTime Property
SessionHeader.ExpirationDateTime Property

The expiration date and time of a report in session. String.

Visual Basic

Public Dim ExpirationDateTime As String
 Member of [Namespace].SessionHeader

C#

public string ExpirationDateTime;
 Member of [Namespace].SessionHeader

Remarks

The value of the ExpirationDateTime property is a date and time string in International Organization for Standardization (ISO)
8601 format; for example, "2003-10-25T01:12:08".

See Also

SessionHeader Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Subscription Class
Represents a subscription in the report server database.

Visual Basic

Public Class Setting
 Member of [Namespace]

C#

public class Setting
 Member of [Namespace]

Public Properties

Active The active state (ActiveState object) of a
subscription. Read-only.

Description A description of the format and the
delivery method for the reports that are
associated with the subscription. String.

EventType The type of event that triggers the
subscription. String.

DeliverySettings The settings (ExtensionSettings object) that
are specific to the delivery extension of the
subscription.

IsDataDriven Indicates whether the subscription is data
driven. Boolean.

LastExecuted The date and time that the report server
last executed the report. The date and time
represents the most recent snapshot that is
captured in the report server database.
DateTime. Read-only.

ModifiedBy The name of the user who last modified
the subscription. String. Read-only.

ModifiedDate The date and time that the user last
modified the subscription. DateTime.
Read-only.

Owner The user name of the owner of the
subscription. String. Read-only.

Path The full path name of the report that is
associated with the subscription. String.

Report The name of the report that is associated
with the subscription. String.

Status The status of a subscription. String. Read-
only.

SubscriptionID The ID of the subscription. String.
VirtualPath The virtual path to the report (if the report

is located in the user's My Reports folder).
String.

Remarks

A Subscription object is returned as output by the ListSubscriptions and ListSubscriptionsUsingDataSource methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Active Property
Subscription.Active Property

The active state (ActiveState object) of a subscription. Read-only.

Visual Basic

Public Dim Active As [Namespace].ActiveState
 Member of [Namespace].Subscription

C#

public [Namespace].ActiveState Active;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
Subscription.Description Property

A description of the format and the delivery method for the reports that are associated with the subscription. String.

Visual Basic

Public Dim Description As String
 Member of [Namespace].Subscription

C#

public string Description;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

EventType Property
Subscription.EventType Property

The type of event that triggers the subscription. String.

Visual Basic

Public Dim EventType As String
 Member of [Namespace].Subscription

C#

public string EventType;
 Member of [Namespace].Subscription

Remarks

The event type must be an event that is registered with the report server. Valid events are returned by a call to the ListEvents
method.

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DeliverySettings Property
Subscription.DeliverySettings Property

The settings (ExtensionSettings object) that are specific to the delivery extension of the subscription.

Visual Basic

Public Dim DeliverySettings As [Namespace].ExtensionSettings
 Member of [Namespace].Subscription

C#

public [Namespace].ExtensionSettings DeliverySettings;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

IsDataDriven Property
Subscription.IsDataDriven Property

Indicates whether the subscription is data driven. Boolean.

Visual Basic

Public Dim IsDataDriven As Boolean
 Member of [Namespace].Subscription

C#

public bool IsDataDriven
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

LastExecuted Property
Subscription.LastExecuted Property

The date and time at which the report server last executed the report. The date and time represents the most recent snapshot that
is captured in the report server database. DateTime. Read-only.

Visual Basic

Public Dim LastExecuted As DateTime
 Member of [Namespace].Subscription

C#

public DateTime LastExecuted;
 Member of [Namespace].Subscription

Remarks

The value for the NextRunTime property has a corresponding NextRunTimeSpecified property in the Web service proxy class.
Because NextRunTime is read-only and cannot be set by end users, you do not need to specify this property. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ModifiedBy Property
Subscription.ModifiedBy Property

The name of the user who last modified the subscription. String. Read-only.

Visual Basic

Public Dim ModifiedBy As String
 Member of [Namespace].Subscription

C#

public string ModifiedBy;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ModifiedDate Property
Subscription.ModifiedDate Property

The date and time at which a user last modified the subscription. DateTime. Read-only.

Visual Basic

Public Dim ModifiedDate As DateTime
 Member of [Namespace].Subscription

C#

public DateTime ModifiedDate;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Owner Property
Subscription.Owner Property

The user name of the subscription owner. String. Read-only.

Visual Basic

Public Dim Owner As String
 Member of [Namespace].Subscription

C#

public string Owner;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Path Property
Subscription.Path Property

The full path name of the report that is associated with the subscription. String. Read-only.

Visual Basic

Public Dim Path As String
 Member of [Namespace].Subscription

C#

public string Path;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Report Property
Subscription.Report Property

The name of the report that is associated with the subscription. String.

Visual Basic

Public Dim Report As String
 Member of [Namespace].Subscription

C#

public string Report;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Status Property
Subscription.Status Property

The status of a subscription. String. Read-only.

Visual Basic

Public Dim Status As String
 Member of [Namespace].Subscription

C#

public string Status;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

SubscriptionID Property
Subscription.SubscriptionID Property

The unique, system-generated ID of the subscription. String. Read-only.

Visual Basic

Public Dim SubscriptionID As String
 Member of [Namespace].Subscription

C#

public string SubscriptionID;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

VirtualPath Property
Subscription.VirtualPath Property

The virtual path to the report (if the report is located in the user's My Reports folder). String. Read-only.

Visual Basic

Public Dim VirtualPath As String
 Member of [Namespace].Subscription

C#

public string VirtualPath;
 Member of [Namespace].Subscription

See Also

Subscription Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Task Class
Represents Reporting Services tasks.

Visual Basic

Public Class Task
 Member of [Namespace]

C#

public class Task
 Member of [Namespace]

Public Properties

Description A description of the task. String. Read-
only.

Name The name of the task. String. Read-only.
TaskID The unique identifier of the task. String.

Read-only.

Remarks

Tasks cannot be modified and additional tasks cannot be added to a report server.

A Task object is returned as output by the GetRoleProperties, ListSystemTasks, and ListTasks methods and is passed as input to
the CreateRole and SetRoleProperties methods.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Description Property
Task.Description Property

A description of the task. String. Read-only.

Visual Basic

Public Dim Description As String
 Member of [Namespace].Task

C#

public string Description;
 Member of [Namespace].Task

See Also

Task Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Name Property
Task.Name Property

The name of a task. String. Read-only.

Visual Basic

Public Dim Name As String
 Member of [Namespace].Task

C#

public string Name;
 Member of [Namespace].Task

See Also

Task Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

TaskID Property
Task.TaskID Property

The unique, built-in ID of a task. String. Read-only.

Visual Basic

Public Dim TaskID As String
 Member of [Namespace].Task

C#

public string TaskID;
 Member of [Namespace].Task

See Also

Task Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

TimeExpiration Class
Represents the time, in minutes, that defines when a cached copy of a report expires.

Visual Basic

public Class TimeExpiration
 Inherits [Namespace].ExpirationDefinition
 Member of [Namespace]

C#

public class TimeExpiration : [Namespace].ExpirationDefinition
 Member of [Namespace]

Public Properties

Minutes The number of minutes that passes before
a cached report expires. Integer.

Remarks

Use the DailyRecurrence class with the Item property of the ScheduleDefinition class to specify a recurrence pattern in minutes.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Minutes Property
TimeExpiration.Minutes Property

The number of minutes that passes before a cached report expires. Integer.

Visual Basic

Public Dim Minutes As Integer
 Member of [Namespace].TimeExpiration

C#

public int Minutes ;
 Member of [Namespace].TimeExpiration

Remarks

The time, in minutes, is represented by the range from 1 to 2,147,483,647.

See Also

TimeExpiration Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ValidValue Class
Represents a valid value for an extension setting.

Visual Basic

Public Class ValidValue
 Member of [Namespace]

C#

public class ValidValue
 Member of [Namespace]

Public Properties

Label The label for the valid value. String.
Value A valid value for the setting. String.

Remarks

Use ValidValue with the ValidValues property of the ExtensionParameter and ReportParameter classes.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Label Property
ValidValue.Label Property

The label for the valid value. String.

Visual Basic

Public Dim Name As String
 Member of [Namespace].ValidValue

C#

public string Name;
 Member of [Namespace].ValidValue

Remarks

The Label property is used in cases where you need to display an alternate name for the setting value to an end user. The Label
property might be used in the case where the value of the setting that is displayed to the end user is dependent on culture
information.

See Also

ValidValue Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Value Property
ValidValue.Value Property

A valid value for the setting. String.

Visual Basic

Public Dim Value As String
 Member of [Namespace].ValidValue

C#

public string Value;
 Member of [Namespace].ValidValue

See Also

ValidValue Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Warning Class
Represents a list of errors or warnings that are returned when a report is published or processed.

Visual Basic

Public Class Warning
 Member of [Namespace]

C#

public class Warning
 Member of [Namespace]

Public Properties

Code The error code that is assigned to the
warning by the report server. String.
Read-only.

Message A message that describes the error or
warning. String. Read-only.

ObjectName The name of an object in the report
definition that contributed to the warning.
String. Read-only.

ObjectType The severity type of the error or warning.
String. Read-only.

Severity A message that describes the error or
warning. String. Read-only.

Remarks

A Warning object is returned as output by the CreateReport, CreateReportHistorySnapshot, Render, and SetReportDefinition.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Code Property
Warning.Code Property

The error code that is assigned to the warning by the report server. String. Read-only.

Visual Basic

Public Dim Code As String
 Member of [Namespace].Warning

C#

public string Code;
 Member of [Namespace].Warning

See Also

Warning Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Message Property
Warning.Message Property

A message that describes the error or warning. String. Read-only.

Visual Basic

Public Dim Message As String
 Member of [Namespace].Warning

C#

public string Message;
 Member of [Namespace].Warning

See Also

Warning Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ObjectName Property
Warning.ObjectName Property

The name of the object in the report definition that contributed to the warning. String. Read-only.

Visual Basic

Public Dim ObjectName As String
 Member of [Namespace].Warning

C#

public string ObjectName;
 Member of [Namespace].Warning

See Also

Warning Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

ObjectType Property
Warning.ObjectType Property

The type of object in the report definition that caused the error or warning. String. Read-only.

Visual Basic

Public Dim ObjectType As String
 Member of [Namespace].Warning

C#

public string ObjectType;
 Member of [Namespace].Warning

See Also

Warning Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Severity Property
Warning.Severity Property

The severity type of the error or warning. String. Read-only.

Visual Basic

Public Dim Severity As String
 Member of [Namespace].Warning

C#

public string Severity;
 Member of [Namespace].Warning

Remarks

The possible values of the Severity property are Error and Warning.

See Also

Warning Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WeekNumberEnum Enumeration
Describes the week of the month in which a scheduled report runs.

Visual Basic

Public Enum WeekNumberEnum
 Member of [Namespace]

C#

public enum WeekNumberEnum;
 Member of [Namespace]

Remarks

Use the WeekNumberEnum enumeration with the WhichWeek property of the MonthlyDOWRecurrence class.

M embers

Member name Description
FirstWeek The report runs between the first and

seventh day of the month.
SecondWeek The report runs between the eighth and

fourteenth day of the month.
ThirdWeek The report runs between the fifteenth and

twenty-first day of the month.
FourthWeek The report runs between the twenty-

second and twenty-eighth day of the
month.

LastWeek The report runs during the last seven days
of the month.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WeeklyRecurrence Class
Represents the number of weeks and the days of the week on which a scheduled report runs.

Visual Basic

public Class WeeklyRecurrence
 Inherits [Namespace].RecurrencePattern
 Member of [Namespace]

C#

public class WeeklyRecurrence : [Namespace].RecurrencePattern
 Member of [Namespace]

Public Properties

DaysOfWeek The days of the week
(DaysOfWeekSelector object) on which a
scheduled report runs.

WeeksInterval The intervals at which a scheduled report
runs. Intervals are measured in weeks.
Integer.

WeeksIntervalSpecified Indicates whether a value for the
WeeksInterval property is specified.
Boolean.

Remarks

Use the WeeklyRecurrence class with the ScheduleDefinition.Item property to specify a recurrence pattern in minutes.

See Also

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

DaysOfWeek Property
WeeklyRecurrence.DaysOfWeek Property

The days of the week (DaysOfWeekSelector object) on which a scheduled report runs.

Visual Basic

Public Dim DaysOfWeek As [Namespace].DaysOfWeekSelector
 Member of [Namespace].WeeklyRecurrence

C#

public [Namespace].DaysOfWeekSelector DaysOfWeek;
 Member of [Namespace].WeeklyRecurrence

See Also

WeeklyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WeeksInterval Property
WeeklyRecurrence.WeeksInterval Property

The intervals, in weeks, at which a scheduled report runs. Integer.

Visual Basic

Public Dim WeeksInterval As Integer
 Member of [Namespace].WeeklyRecurrence

C#

public int DaysInterval;
 Member of [Namespace].WeeklyRecurrence

Remarks

Valid values range from 1 to 52. The default value is 1.

The value for the WeeksInterval property can be omitted. To omit this property, set the WeeksIntervalSpecified property to false.
If you set a value for the WeeksInterval property, you must also set the WeeksIntervalSpecified property to true. For more
information about specifying properties, see Omitting Values for Optional Web Service Objects.

See Also

WeeklyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

WeeksIntervalSpecified Property
WeeklyRecurrence.WeeksIntervalSpecified Property

Indicates whether a value for the WeeksInterval property is specified. Boolean.

Visual Basic

public Dim WeeksIntervalSpecified As Boolean
 member of [Namespace].WeeklyRecurrence

C#

public bool WeeksIntervalSpecified;
 member of [Namespace].WeeklyRecurrence

See Also

WeeklyRecurrence Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Programming

Reporting Services Extension Library
The Reporting Services Extension Library is a set of classes, interfaces, and value types that are included in Reporting Services.
This library provides access to system functionality and is designed to be the foundation on which .NET Framework applications
can be used to extend Reporting Services components.

N amespaces

The Reporting Services extension library provides the following namespaces:

Microsoft.ReportingServices.DataProcessing Namespace

Contains classes and interfaces that enable you to build components that extend the data processing capability of Reporting
Services.

Microsoft.ReportingServices.Interfaces Namespace

Contains classes and interfaces that enable you to construct and send custom notifications to users through your own delivery
extensions, and to build custom security extensions for Reporting Services.

See Also

Extending Reporting Services

Programming Reference

Reporting Services - Reporting Services Programming

Microsoft.ReportingServices.DataProcessing Namespace
The Microsoft.ReportingServices.DataProcessing namespace is modeled after a subset of the Microsoft .NET data provider
interfaces. These interfaces contain the minimal subset of the .NET data provider functionality needed by the report server to
process custom data, and do not reflect a fully implemented .NET data provider. You do not need to create a new data processing
extension for Reporting Services, if an existing data provider already implements the data processing extension interfaces. As in
the case of a .NET data provider, a Reporting Services data processing extension enables you to connect to a data source in order
to retrieve data.

Namespace Hierarchy

Interfaces

Interface Description
IDataParameter Represents a parameter to a Command

object.
IDataParameterCollection Collects all parameters relevant to a

Command object and their mappings to
record set columns, and is implemented
by Reporting Services data extensions that
access data sources.

IDataReader Provides a means of reading one or more
forward-only streams of result sets
obtained by executing a command at a
data source.

IDataReaderExtension Provides a means of reading one or more
forward-only streams of result sets
obtained by executing a command at a
data source. This interface extends
IDataReader to include data aggregation
information.

IDbCommand Represents a statement that is executed
while an open connection to a data source
exists.

IDbCommandAnalysis Represents additional command
information for analyzing a query and
returning a list of parameter names used
in the query.

IDbConnection Represents an open connection to a data
source.

IDbConnectionExtension Represents an open connection to a data
source. This interface extends
IDbConnection to include authentication
information.

IDbTransaction Represents a transaction to be performed
at a data source.

IDbTransactionExtension Represents additional transaction
properties that can be implemented by
Reporting Services data processing
extensions.

Enumerations

Enumeration Description
CommandBehavior Describes the results of the query and its

effect on the database.
CommandType Specifies how a command string is

interpreted.

See Also

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Microsoft.ReportingServices.DataProcessing Hierarchy
Microsoft.ReportingServices.DataProcessing Hierarchy

 System.ValueType

 System.Enum

 Microsoft.ReportingServices.DataProcessing.CommandBehavior

 Microsoft.ReportingServices.DataProcessing.CommandType

See Also

Microsoft.ReportingServices.DataProcessing Namespace

https://msdn.microsoft.com/en-us/library/aey3s293(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/1zt1ybx4(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CommandBehavior Enumeration
CommandBehavior Enumeration

Describes of the results of the query and its effect on the database.

Visual Basic

<Serializable>
Public Enum CommandBehavior

C#

[Serializable]
public enum CommandBehavior

C++

[Serializable]
__value public enum CommandBehavior

JScript

public
 Serializable
enum CommandBehavior

Remarks

The CommandBehavior values are used by the ExecuteReader method of IDbCommand and any classes derived from it.

A bitwise combination of these values may be used.

M embers

Member name Description Value
SchemaOnly The query returns column

information only, and does
not affect the database
state.

2

SingleResult The query returns a single
result set. Execution of the
query may affect the
database state.

1

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CommandType Enumeration
CommandType Enumeration

Specifies how a command string is interpreted.

Visual Basic

<Serializable>
Public Enum CommandType

C#

[Serializable]
public enum CommandType

C++

[Serializable]
__value public enum CommandType

JScript

public
 Serializable
enum CommandType

Remarks

When the CommandType property is set to StoredProcedure, set the CommandText property to the name of the stored
procedure. The command executes this stored procedure when you call ExecuteReader.

M embers

Member name Description
StoredProcedure The name of a stored procedure.
TableDirect When the CommandType property is set

to TableDirect, the CommandText
property should be set to the name of the
table or tables to be accessed. The user
may be required to use escape character
syntax or include qualifying characters if
any of the tables named contain any
special characters. All rows and columns
of the named table or tables will be
returned when you call one of the
Execute methods.

In order to access multiple tables, use a
comma-delimited list, without spaces or
padding, containing the names of the
tables to access. When the
CommandText property names multiple
tables, a join of the specified tables is
returned.

Text A text command.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing Namespace

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataParameter Interface
IDataParameter Interface

Represents a parameter to a Command object.

For a list of all members of this type, see IDataParameter Members.

Visual Basic

Public Interface IDataParameter

C#

public interface IDataParameter

C++

public __gc __interface IDataParameter

JScript

public interface IDataParameter

Remarks

The IDataParameter interface enables you to implement a Parameter class, which represents a parameter to a Command object. An application does not create an
instance of the IDataParameter interface directly, but creates an instance of a class that implements IDataParameter.

Classes that implement IDataParameter must implement the required members, and typically define additional members to add provider-specific functionality.

When you implement the IDataParameter interface, you should implement the following constructors:

Class Description
PrvParameter() Initializes a new instance of the

PrvDataParameter class.
PrvParameter(string parameterName,
object value)

Initializes a new instance of the
PrvDataParameter class with the
parameter name and an object that is the
value of the parameter.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDataParameter Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataParameter Members
IDataParameter Members

IDataParameter overview

Public Properties

ParameterName Gets or sets the name of the
IDataParameter.

Value Gets or sets the value of the parameter.

See Also

IDataParameter Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDataParameter Properties

The properties of the IDataParameter interface are listed here. For a complete list of IDataParameter interface members, see
IDataParameter Members.

Public Properties

ParameterName Gets or sets the name of the
IDataParameter.

Value Gets or sets the value of the parameter.

See Also

IDataParameter Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ParameterName Property
IDataParameter.ParameterName Property

Gets or sets the name of the IDataParameter.

Visual Basic

Property ParameterName As String

C#

string ParameterName {get; set;}

C++

String* get_ParameterName();
void set_ParameterName(String*);

JScript

abstract function get ParameterName() : String;
public abstract function set ParameterName(String);

Property Value

A string containing the name of the parameter.

Remarks

The ParameterName is specified in the form @paramname. You must set the ParameterName property before executing a command that relies on parameters.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataParameter Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Value Property
IDataParameter.Value Property

Gets or sets the value of the parameter.

Visual Basic

Property Value As Object

C#

object ParameterName {get; set;}

C++

__property Object* get_Value();
__property void set_Value(Object*);

JScript

function get Value() : Object;function set Value(Object);

Property Value

An Object that is the value of the parameter. The default value is Null.

Remarks

For input parameters, the value is bound to the IDbCommand that is sent to the server. For output and return value parameters, the value is set on completion of the
IDbCommand and after the IDataReader is closed.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataParameter Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataParameterCollection Interface
IDataParameterCollection Interface

Represents a collection of all parameters relevant to a Command object.

For a list of all members of this type, see IDataParameterCollection Members.

Visual Basic

Public Interface IDataParameterCollection
 Inherits IEnumerable

C#

public interface IDataParameterCollection : IEnumerable

C++

public __gc __interface IDataParameterCollection : public
 IEnumerable

JScript

public interface IDataParameterCollection implements IEnumerable

Remarks

The IDataParameterCollection interface enables you to implement a parameter collection.

An application does not create an instance of the IDataParameterCollection interface directly, but creates an instance of a class that implements
IDataParameterCollection.

Classes that implement IDataParameterCollection must implement the required members, and typically define additional members to add provider-specific functionality.

The Reporting Services IDataParameterCollection interface inherits from IEnumerable and requires that you implement an Add method. IEnumerable also requires that
you implement a GetEnumerator method. Because IDataParameterCollection is a type of IList, you can use an existing class for most of the implementation. For
example, if your DataParameter class inherits ArrayList, you can use the default implementation of the ArrayList.GetEnumerator method.

Notes to Implementers: When you implement the IDataParameterCollection interface, you should implement the following constructor:

Class Description
PrvParameterCollection() Initializes a new instance of the

PrvDataParameterCollection class.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family.

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDataParameterCollection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataParameterCollection Members
IDataParameterCollection Members

IDataParameterCollection overview

Public M ethods

Add Adds an IDataParameter to the
collection.

See Also

IDataParameterCollection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDataParameterCollection Methods

The methods of the IDataParameterCollection interface are listed here. For a complete list of IDataParameterCollection
interface members, see IDataParameterCollection Members.

Public M ethods

Add Adds an IDataParameter to the
collection.

See Also

IDataParameterCollection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Add Method
IDataParameterCollection.Add Method

Adds an object to the end of the parameter collection.

Visual Basic

Function Add(_
 ByVal value As IDataParameter _
) As Integer

C#

int Add(
 IDataParameter value
);

C++

int Add(
 IDataParameter* value

JScript

function Add(
 value : IDataParameter
) : int;

Parameters

value
The IDataParameter to add to the collection.

Return Value

The position into which the new element was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataParameterCollection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataReader Interface
IDataReader Interface

Provides a means of reading one or more forward-only streams of result sets obtained by executing a command at a data source, and is implemented by Reporting Services
Data Processing Extensions that access relational databases.

For a list of all members of this type, see IDataReader Members.

System.IDisposable
 Microsoft.ReportingServices.DataProcessing.IDataReader

Visual Basic

Public Interface IDataReader
 Inherits IDisposable

C#

public interface IDataReader : IDisposable

C++

public __gc __interface IDataReader : public IDisposable

JScript

public interface IDataReader implements IDisposable

Remarks

The IDataReader interface enables you to implement a DataReader class, which provides a means of reading one or more forward-only streams of result sets. For more
information about DataReader classes, see Implementing a DataReader Class for a Data Processing Extension.

An application does not create an instance of the IDataReader interface directly, but creates an instance of a class that implements IDataReader.

Classes that implement IDataReader must also implement the required members, and typically define additional members to add provider-specific functionality.

Changes made to a result set by another process or thread while data is being read may be visible to the user of a class that implements an IDataReader. However, the
precise behavior is both provider and timing dependent.

Users do not create an instance of a DataReader class directly. Instead, they obtain the DataReader through the ExecuteReader method of the Command object.
Therefore, you should mark DataReader constructors as internal.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

https://msdn.microsoft.com/en-us/library/aax125c9(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IDataReader Members
IDataReader Members

IDataReader overview

Public Properties

FieldCount Gets the number of fields in the data
reader.

Public M ethods

GetFieldType Gets the Type information corresponding
to the type of Object that would be
returned from GetValue.

GetName Gets the name of the field with the given
index.

GetOrdinal Return the index of the named field.
GetValue Return the value of the specified field.
Read Advances the IDataReader to the next

record.

See Also

IDataReader Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDataReader Properties

The properties of the IDataReader interface are listed here. For a complete list of IDataReader interface members, see
IDataReader Members.

Public Properties

FieldCount Gets the number of fields in the data
reader.

See Also

IDataReader Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

FieldCount Property
IDataReader.FieldCount Property

Gets the number of fields in the data reader.

Visual Basic

ReadOnly Property FieldCount As Integer

C#

int FieldCount {get;}

C++

int get_FieldCount();

JScript

abstract function get FieldCount() : int;

Property Value

When not positioned in a valid recordset, 0; otherwise the number of columns in the current record. The default value is -1.

Remarks

After executing a query that does not return rows, FieldCount returns -1.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDataReader Methods

The methods of the IDataReader interface are listed here. For a complete list of IDataReader interface members, see
IDataReader Members.

Public M ethods

GetFieldType Gets the Type information corresponding
to the type of object that is returned from
GetValue.

GetName Gets the name of the field with the given
index.

GetOrdinal Return the index of the named field.
GetValue Return the value of the specified field.
Read Advances the IDataReader to the next

record.

See Also

IDataReader Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

GetFieldType Method
IDataReader.GetFieldType Method

Gets the Type information corresponding to the type of object that is returned from GetValue.

Visual Basic

Function GetFieldType(_
 ByVal i As Integer _
) As Type

C#

Type GetFieldType(
 int i
);

C++

Type* GetFieldType(
 int i
);

JScript

function GetFieldType(
 i : int
) : Type;

Parameters

i
The index of the field to find.

Return Value

The Type information corresponding to the type of Object that would be returned from GetValue.

Exceptions

Exception type Condition
IndexOutOfRangeException The index passed was outside the range of

0 through FieldCount.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

FieldCount Property

GetValue Method

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

GetName Method
IDataReader.GetName Method

Gets the name of the field to find.

Visual Basic

Function GetName(_
 ByVal i Integer _
) As String

C#

string GetName(
 int i
);

C++

String* GetName(
 int i
);

JScript

function GetName(
 i : int
) : String;

Parameters

i
The index of the field to find.

Return Value

The name of the field, or the empty string ("") if there is no value to return.

Exceptions

Exception type Condition
IndexOutOfRangeException The index passed was outside the range of

0 through FieldCount.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

FieldCount Property

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

GetOrdinal Method
IDataReader.GetOrdinal Method

Return the index of the named field.

Visual Basic

Function GetOrdinal(_
 ByVal name As String _
) As Integer

C#

int GetOrdinal(
 string name;
);

C++

int* GetOrdinal(
 string name
);

JScript

function GetOrdinal(
 name : string
) : int;

Parameters

name
The name of the field to find.

Return Value

The index of the named field.

Remarks

GetOrdinal performs a case-sensitive lookup first. If it fails, a second case-insensitive search is made.

GetOrdinal is kana-width insensitive.

Because ordinal-based lookups are more efficient than named lookups, it is inefficient to call GetOrdinal within a loop. Save time by calling GetOrdinal once and assigning
the results to an integer variable for use within the loop.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

GetValue Method
IDataReader.GetValue Method

Return the value of the specified field.

Visual Basic

Function GetValue(_
 ByVal i As Integer _
) As Object

C#

object GetValue(
 int i
);

C++

Object* GetValue(
 int i
);

JScript

function GetValue(
 i : int
) : Object;

Parameters

i
The index of the field to find.

Return Value

The value of the field at the specified index.

Exceptions

Exception type Condition
IndexOutOfRangeException The index passed was outside the range of

0 through FieldCount.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

FieldCount Property

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Read Method
IDataReader.Read Method

Advances the IDataReader to the next record.

Visual Basic

Function Read() As Boolean

C#

bool Read();

C++

bool Read();

JScript

function Read() : Boolean;

Return Value

A value of true if there are more rows; otherwise, false.

Remarks

The default position of the IDataReader is prior to the first record. Therefore you must call Read to begin accessing any data.

While the data reader is in use, the associated connection is busy serving the IDataReader. This is the case until Close is called.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

Close Method

IDataReader Interface

IDataReader Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataReaderExtension Interface
IDataReaderExtension Interface

Provides a means of reading one or more forward-only streams of result sets obtained by executing a command at a data source, and is used by Reporting Services to
retrieve aggregation-specific information about a result set.

For a list of all members of this type, see IDataReaderExtension Members.

Visual Basic

Public Interface IDataReaderExtension
 Inherits IDataReader

C#

public interface IDataReaderExtension : IDataReader

C++

public __gc __interface IDataReaderExtension : public IDataReader

JScript

public interface IDataReaderExtension implements IDataReader

Remarks

The IDataReaderExtension interface enables you to implement an extension of the IDataReader interface, which you can use to provide a report server with aggregation
information about your result set. For more information about DataReader classes, see Implementing a DataReader Class for a Data Processing Extension.

An application does not create an instance of the IDataReaderExtension interface directly, but creates an instance of a class that implements IDataReaderExtension.

Classes that implement IDataReaderExtension must also implement the required members, and typically define additional members to add provider-specific
functionality. Because IDataReaderExtension inherits from IDataReader, you must also implement all of the IDataReader members as part of your DataReader class.

Changes made to a result set by another process or thread while data is being read may be visible to the user of a class that implements an IDataReaderExtension.
However, the precise behavior is both provider and timing dependent.

Users do not create an instance of a DataReader class directly. Instead, they obtain the DataReader through the ExecuteReader method of the Command object.
Therefore, you should mark DataReader constructors as internal.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.Reportingservices.Processing (in Microsoft.ReportingServices.Processing.dll)

See Also

IDataReaderExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDataReaderExtension Members
IDataReaderExtension Members

IDataReaderExtension overview

Public Properties

IsAggregateRow Indicates whether the current row
contains aggregate data.

AggregationFieldCount Gets the number of fields by which the
data is aggregated.

Public M ethods

IsAggregationField Indicates whether the data is aggregated
by the field with the given index.

See Also

IDataReaderExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDataReaderExtension Properties

The properties of the IDataReaderExtension interface are listed here. For a complete list of IDataReaderExtension interface
members, see IDataReaderExtension Members.

Public Properties

IsAggregateRow Indicates whether the current row
contains aggregate data.

AggregationFieldCount Gets the number of fields by which the
data is aggregated.

See Also

IDataReaderExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IsAggregateRow Property
IDataReaderExtension.IsAggregateRow Property

Indicates whether the current row contains aggregate data.

Visual Basic

ReadOnly Property IsAggregateRow As Boolean

C#

bool IsAggregateRow {get;}

C++

__property bool get_IsAggregateRow();

JScript

function get IsAggregateRow() : Boolean;

Property Value

A value of true if the current row contains aggregate data; otherwise, false.

Remarks

The IsAggregateRow property enables you to supply specific, aggregation information about your result set to the report server. Take, for instance, the following result set:

City State Sales
====================================
Seattle WA 150.65
Seattle (null) 150.65
Tacoma WA 75.54
Tacoma (null) 75.54
(null) WA 226.19
Portland OR 112.25
Portland (null) 112.25
(null) OR 112.25
(null) (null) 338.44

Your result set should return false for IsAggregateRow anytime all fields in the row of a result set contain data. In the previous example, you would return true for
IsAggregateRow anytime that columns in a row contain an aggregation field, such as in rows 2, 4, 5, 7, 8, and 9.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReaderExtension Interface

IDataReaderExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

AggregationFieldCount Property
IDataReaderExtension.AggregationFieldCount Property

Gets the number of fields by which the data is aggregated.

Visual Basic

ReadOnly Property AggregationFieldCount As Integer

C#

int AggregationFieldCount {get;}

C++

__property int get_AggregationFieldCount();

JScript

function get AggregationFieldCount() : int;

Property Value

When not positioned in a valid record set, 0; otherwise the number of aggregation columns in the current record. The default is -1.

Remarks

The AggregationFieldCount property enables you to supply specific, aggregation information about your result set to the report server. Take, for instance, the following
result set:

City State Sales
====================================
Seattle WA 150.65
Seattle (null) 150.65
Tacoma WA 75.54
Tacoma (null) 75.54
(null) WA 226.19
Portland OR 112.25
Portland (null) 112.25
(null) OR 112.25
(null) (null) 338.44

You should return an integer value representing the number of fields that are aggregation fields for each row in your result set. In the previous example,
AggregationFieldCount should return 2 for the first row, 1 for the second row, 2 for the third row and so forth. For row nine, AggregationFieldCount should return 0.

After executing a query that does not return rows, AggregationFieldCount should return -1.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReaderExtension Interface

IDataReaderExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDataReaderExtension Methods

The methods of the IDataReaderExtension interface are listed here. For a complete list of IDataReaderExtension interface
members, see IDataReaderExtension Members.

Public M ethods

IsAggregationField Indicates whether the data is aggregated
by the field with the given index.

See Also

IDataReaderExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IsAggregationField Method
IDataReaderExtension.IsAggregationField Method

Indicates whether the data is aggregated by the field with the given index.

Visual Basic

Function IsAggregationField(_
 ByVal fieldIndex As Integer _
) As Boolean

C#

bool IsAggregationField(
 int fieldIndex
);

C++

bool IsAggregationField(
 int fieldIndex
);

JScript

function IsAggregationField(
 fieldIndex : int
) : Boolean;

Parameters

fieldIndex
The index of the field within the record.

Return Value

A value of true if the current row is an aggregation field; otherwise, false.

Remarks

The IsAggregationField method enables you to supply specific, aggregation information about your result set to the report server. Take, for instance, the following result
set:

City State Sales
====================================
Seattle WA 150.65
Seattle (null) 150.65
Tacoma WA 75.54
Tacoma (null) 75.54
(null) WA 226.19
Portland OR 112.25
Portland (null) 112.25
(null) OR 112.25
(null) (null) 338.44

The IsAggregationField method returns a Boolean value for each row indicating that the field at the current index is an aggregation field, that is, the field is used in
aggregations. In the previous example, the fields at index 0 and index 1 for row one should return true. In contrast, field index 1 for row two should return false. For row
nine, both field index 0 and 1 should return false. Field index 2, the Sales field, returns false for all rows.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReaderExtension Interface

IDataReaderExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbCommand Interface
IDbCommand Interface

Represents a statement that is executed while an open connection to a data source exists.

For a list of all members of this type, see IDbCommand Members.

System.IDisposable
 Microsoft.ReportingServices.DataProcessing.IDbCommand

Visual Basic

Public Interface IDbCommand
 Inherits IDisposable

C#

public interface IDbCommand: IDisposable

C++

public __gc __interface IDbCommand : public IDisposable

JScript

public interface IDbCommand implements IDisposable

Remarks

The IDbCommand interface enables you to implement a Command class, which represents a statement that is executed at a data source. For more information about
Command classes, see Implementing a Command Class for a Data Processing Extension.

An application does not create an instance of the IDbCommand interface directly, but creates an instance of a class that implements IDbCommand.

Classes that implement IDbCommand must also implement all required members, and typically define additional members to add provider-specific functionality.

When you implement from the IDbCommand interface, you should implement the following constructors:

Item Description
PrvCommand() Initializes a new instance of the

PrvCommand class.
PrvCommand(string cmdText) Initializes a new instance of the

PrvCommand class with the text of the
query.

PrvCommand(string cmdText,
PrvTransaction transaction)

Initializes a new instance of the
PrvCommand class with the text of the
query, a PrvConnection, and the
PrvTransaction.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

https://msdn.microsoft.com/en-us/library/aax125c9(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IDbCommand Members
IDbCommand Members

IDbCommand overview

Public Properties

CommandText Gets or sets the text command to run
against the data source.

CommandTimeout Gets or sets the wait time before
terminating the attempt to execute a
command and generating an error.

CommandType Indicates or specifies how the
CommandText property is interpreted
(as text, a stored procedure, etc.).

Parameters Gets the IDataParameterCollection.
Transaction Gets or sets the transaction in which the

Command object of a Reporting Services
data provider executes.

Public M ethods

Cancel Attempts to cancels the execution of an
IDbCommand.

CreateParameter Creates a new instance of an
IDbDataParameter object.

ExecuteReader Executes the CommandText against the
Connection and builds an IDataReader.

See Also

IDbCommand Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDbCommand Properties

The properties of the IDbCommand interface are listed here. For a complete list of IDbCommand interface members, see
IDbCommand Members.

Public Properties

CommandText Gets or sets the text command to run
against the data source.

CommandTimeout Gets or sets the wait time before
terminating the attempt to execute a
command and generating an error.

CommandType Indicates or specifies how the
CommandText property is interpreted
(as text, a stored procedure, etc.).

Parameters Gets the IDataParameterCollection.
Transaction Gets or sets the transaction in which the

Command object of a Reporting Services
data provider executes.

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CommandText Property
IDbCommand.CommandText Property

Gets or sets the text command to run against the data source.

Visual Basic

Property CommandText As String

C#

string CommandText {get; set;}

C++

String* get_CommandText();
void set_CommandText(String*);

JScript

abstract function get CommandText() : String;
public abstract function set CommandText(String);

Property Value

The text command to execute. The default value is an empty string ("").

Remarks

When the CommandType property is set to StoredProcedure, set the CommandText property to the name of the stored procedure. The user may be required to use
escape character syntax if the stored procedure name contains any special characters. The command will call this stored procedure when you call one of the Execute
methods.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CommandTimeout Property
IDbCommand.CommandTimeout Property

Gets or sets the wait time before terminating the attempt to execute a command and generating an error.

Visual Basic

Property CommandTimeout As Integer

C#

int CommandTimeout {get; set;}

C++

int get_CommandTimeout();
void set_CommandTimeout(int);

JScript

abstract function get CommandTimeout() : int;
public abstract function set CommandTimeout(int);

Property Value

The time (in seconds) to wait for the command to execute. The default value is 30 seconds.

Exceptions

Exception type Condition
ArgumentException The property value assigned is less than 0.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CommandType Property
IDbCommand.CommandType Property

Indicates or specifies how the CommandText property is interpreted (as text, a stored procedure, etc.).

Visual Basic

Property CommandType As CommandType

C#

CommandType CommandType {get; set;}

C++

CommandType get_CommandType();
void set_CommandType(CommandType);

JScript

abstract function get CommandType() : CommandType;
public abstract function set CommandType(CommandType);

Property Value

One of the CommandType values. The default is Text.

Remarks

When the CommandType property is set to StoredProcedure, set the CommandText property to the name of the stored procedure. The user may be required to use
escape character syntax if the stored procedure name contains any special characters. The command will call this stored procedure when you call one of the Execute
methods.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Parameters Property
IDbCommand.Parameters Property

Gets the IDataParameterCollection.

Visual Basic

ReadOnly Property Parameters As IDataParameterCollection

C#

IDataParameterCollection Parameters {get;}

C++

IDataParameterCollection* get_Parameters();

JScript

abstract function get Parameters() : IDataParameterCollection;

Property Value

The parameters of the query or stored procedure.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Transaction Property
IDbCommand.Transaction Property

Gets or sets the transaction in which the Command object of a Reporting Services data provider executes.

Visual Basic

Property Transaction As IDbTransaction

C#

IDbTransaction Transaction {get; set;}

C++

IDbTransaction* get_Transaction();
void set_Transaction(IDbTransaction*);

JScript

abstract function get Transaction() : IDbTransaction;
public abstract function set Transaction(IDbTransaction);

Property Value

The transaction object of a Reporting Services data provider execution. The default value is a null reference (Nothing in Visual Basic).

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDbCommand Methods

The methods of the IDbCommand interface are listed here. For a complete list of IDbCommand interface members, see
IDbCommand Interface.

Public M ethods

Cancel Attempts to cancels the execution of an
IDbCommand.

CreateParameter Creates a new instance of an
IDbDataParameter object.

ExecuteReader Executes the CommandText against the
Connection and builds an IDataReader.

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Cancel Method
IDbCommand.Cancel Method

Attempts to cancel the execution of an IDbCommand.

Visual Basic

Sub Cancel()

C#

void cancel();

C++

void cancel();

JScript

function cancel();

Remarks

If there is nothing to cancel, nothing happens. However, if there is a command in process, and the attempt to cancel fails, no exception is generated.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CreateParameter Method
IDbCommand.CreateParameter Method

Creates a new instance of an IDataParameter object.

Visual Basic

Function CreateParameter() As IDataParameter

C#

IDataParameter CreateParameter();

C++

IDataParameter* CreateParameter();

JScript

function CreateParameter() : IDataParameter;

Return Value

An IDataParameter object.

Remarks

When inheriting from IDbCommand, a Reporting Services data provider implements a strongly typed version of CreateParameter.

The CreateParameter method is called by the report server to set the name and value for each query parameter in the command text. The parameter is then added to the
Parameters collection prior to the ExecuteReader method being called.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ExecuteReader Method
IDbCommand.ExecuteReader Method

Executes the CommandText against the Connection and builds an IDataReader.

Overload List

Executes the CommandText against the Connection and builds an IDataReader.

Visual Basic

Overloads Function ExecuteReader() As IDataReader

C#

IDataReader ExecuteReader();

C++

IDataReader* ExecuteReader();

JScript

function ExecuteReader() : IDataReader;

Executes the CommandText against the Connection, and builds an IDataReader using one of the CommandBehavior values.

Visual Basic

Overloads Function ExecuteReader(CommandBehavior) As IDataReader

C#

IDataReader ExecuteReader(CommandBehavior);

C++

IDataReader* ExecuteReader(CommandBehavior);

JScript

function ExecuteReader(CommandBehavior) : IDataReader;

See Also

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ExecuteReader Method()
ExecuteReader Method()

Executes the CommandText against the Connection and builds an IDataReader.

Visual Basic

Function ExecuteReader() As IDataReader

C#

IDataReader ExecuteReader();

C++

IDataReader* ExecuteReader();

JScript

function ExecuteReader() : IDataReader;

Return Value

An IDataReader object.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataReader Interface

IDbCommand Interface

IDbCommand Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ExecuteReader Method (CommandBehavior)
ExecuteReader Method (CommandBehavior)

Executes the CommandText against the Connection, and builds an IDataReader using one of the CommandBehavior values.

Visual Basic

Function ExecuteReader(_
 ByVal behavior As CommandBehavior _
) As IDataReader

C#

IDataReader ExecuteReader(
 CommandBehavior behavior
);

C++

IDataReader* ExecuteReader(
 CommandBehavior behavior
);

JScript

function ExecuteReader(
 behavior : CommandBehavior
) : IDataReader;

Parameters

behavior
The index of the field for which to retrieve properties.

Return Value

An IDataReader object.

Remarks

The caller must call the Open method of the Connection property.

When the CommandType property is set to StoredProcedure, the CommandText property should be set to the name of the stored procedure. The command executes this
stored procedure when you call ExecuteReader.

The IDataReader supports a special mode that enables large binary values to be read efficiently. For more information, see the "SequentialAccess setting for
CommandBehavior" in your .NET Framework documentation.

While the IDataReader is in use, the associated IDbConnection is busy serving the IDataReader. While in this state, no other operations can be performed on the
IDbConnection other than closing it.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbCommand Interface

IDbCommand Members

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbCommandAnalysis Interface
IDbCommandAnalysis Interface

Represents additional command information for analyzing a query and returning a list of parameter names used in the query.

For a list of all members of this type, see IDbCommandAnalysis Members.

System.IDisposable
 Microsoft.ReportingServices.DataProcessing.IDbCommandAnalysis

Visual Basic

Public Interface IDbCommandAnalysis
 Inherits IDisposable

C#

public interface IDbCommandAnalysis: IDisposable

C++

public __gc __interface IDbCommandAnalysis : public IDisposable

JScript

public interface IDbCommandAnalysis implements IDisposable

Remarks

The IDbCommandAnalysis interface enables you to add additional functionality for analyzing a query (command text) and retrieving a list of parameters used in that
query. The IDbCommandAnalysis interface can be used to build a custom data processing extension. For more information about Command classes, see Implementing a
Command Class for a Data Processing Extension.

An application does not create an instance of the IDbCommandAnalysis interface directly, but creates an instance of a class that implements IDbCommandAnalysis.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbCommandAnalysis Members

Microsoft.ReportingServices.DataProcessing Namespace

https://msdn.microsoft.com/en-us/library/aax125c9(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IDbCommandAnalysis Members
IDbCommandAnalysis Members

IDbCommand overview

Public M ethods

GetParameters Returns an IDataParameterCollection
object representing a list of parameters
used in the query.

See Also

IDbCommandAnalysis Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDbCommandAnalysis Methods

The methods of the IDbCommandAnalysis interface are listed here. For a complete list of IDbCommandAnalysis interface
members, see IDbCommandAnalysis Members.

Public M ethods

GetParameters Returns an IDataParameterCollection
object representing a list of parameters
used in the query.

See Also

IDbCommandAnalysis Interface

IDbCommandAnalysis Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

GetParameters Method
IDbCommandAnalysis.GetParameters Method

Returns an IDataParameterCollection object representing a list of parameters used in the query.

Visual Basic

Function GetParameters() As IDataParameterCollection

C#

IDataParameterCollection GetParameters();

C++

IDataParameterCollection* GetParameters();

JScript

function GetParameters() : IDataParameterCollection;

Return Value

An IDataParameterCollection object representing a list of parameters used in the query.

Remarks

This method is used by the Report Designer component to parse the command text of the query in order to retrieve a list of parameters. You can use the GetParameters
method to parse your own, custom command text in order to retrieve a list of parameters as part of your data processing extension implementation.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDataParameterCollection

IDbCommandAnalysis Interface

IDbCommandAnalysis Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbConnection Interface
IDbConnection Interface

Represents an open connection to a data source, and is implemented by Reporting Services data processing extensions that access relational databases.

For a list of all members of this type, see IDbConnection Members.

System.IDisposable
 Microsoft.ReportingServices.DataProcessing.IDbConnection

Visual Basic

Public Interface IDbConnection
 Inherits IDisposable, IExtension

C#

public interface IDbConnection : IDisposable, IExtension

C++

public __gc __interface IDbConnection : public IDisposable,
 IExtension

JScript

public interface IDbConnection implements IDisposable, IExtension

Remarks

The IDbConnection interface enables you to implement a Connection class, which represents a unique session with a data source. The IDbConnection interface can be
used to build a custom data provider. For more information about Connection classes, see Implementing a Connection Class for a Data Processing Extension.

An application does not create an instance of the IDbConnection interface directly, but creates an instance of a class that implements IDbConnection.

Classes that implement IDbConnection must implement all required members, and typically define additional members to add provider-specific functionality. Because
IDbConnection inherits from IExtension, you must also implement the IExtension members as part of your Connection class.

When you implement from the IDbConnection interface, you should also implement the following constructors:

Class Description
PrvConnection() Initializes a new instance of the

PrvConnection class.
PrvConnection(string connectionString) Initializes a new instance of the

PrvConnection class when given a string
containing the connection string.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbConnection Members

Microsoft.ReportingServices.DataProcessing Namespace

https://msdn.microsoft.com/en-us/library/aax125c9(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IDbConnection Members
IDbConnection Members

IDbConnection overview

Public Properties

ConnectionString Gets or sets the string used to open a
database.

ConnectionTimeout Gets the time to wait, while trying to
establish a connection, before terminating
the attempt and generating an error.

Public M ethods

BeginTransaction Overloaded. Begins a database
transaction.

Close Closes the connection to the database.
CreateCommand Creates and returns a Command object

associated with the connection.
Open Opens a database connection with the

settings specified by the
ConnectionString property of the
provider-specific Connection object.

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDbConnection Properties

The properties of the IDbConnection interface are listed here. For a complete list of IDbConnection interface members, see
IDbConnection Members.

Public Properties

ConnectionString Gets or sets the string used to open a
database.

ConnectionTimeout Gets the time to wait, while trying to
establish a connection. before terminating
the attempt and generating an error.

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ConnectionString Property
IDbConnection.ConnectionString Property

Gets or sets the string used to open a database.

Visual Basic

Property ConnectionString As String

C#

string ConnectionString {get; set;}

C++

__property String* get_ConnectionString();
__property void set_ConnectionString(String*);

JScript

function get ConnectionString() : String;function set
 ConnectionString(String);

Property Values

A string containing connection settings.

Remarks

The ConnectionString property can be set only while the connection is closed.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

IDbConnection Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

ConnectionTimeout Property
IDbConnection.ConnectionTimeout Property

Gets the time to wait, while trying to establish a connection, before terminating the attempt and generating an error.

Visual Basic

ReadOnly Property ConnectionTimeout As Integer

C#

int ConnectionTimeout {get;}

C++

int get_ConnectionTimeout();

JScript

abstract function get ConnectionTimeout() : int;

Property Values

The time (in seconds) to wait for a connection to open. The default value is 15 seconds.

Remarks

A value of 0 indicates no limit to the wait time, rather than no wait time, and should be avoided in a ConnectionString because it would cause the connection to attempt to
wait indefinitely.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

IDbConnection Members

ConnectionString Property

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDbConnection Methods

The methods of the IDbConnection interface are listed here. For a complete list of IDbConnection interface members, see
IDbConnection Members.

Public M ethods

BeginTransaction Overloaded. Begins a database
transaction.

Close Closes the connection to the database.
CreateCommand Creates and returns a Command object

associated with the connection.
Open Opens a database connection with the

settings specified by the
ConnectionString property of the
provider-specific Connection object.

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

BeginTransaction Method
IDbConnection.BeginTransaction Method

Begins a database transaction.

Visual Basic

Function BeginTransaction() As IDbTransaction

C#

IDbTransaction BeginTransaction();

C++

IDbTransaction* BeginTransaction();

JScript

function BeginTransaction() : IDbTransaction;

Return Value

An object representing the new transaction.

Remarks

Once the transaction has completed, you must explicitly commit or roll back the transaction by using the Commit or Rollback methods.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Close Method
IDbConnection.Close Method

Closes the connection to the database.

Visual Basic

Sub Close()

C#

void close();

C++

void close();

JScript

function close();

Remarks

The Close method rolls back any pending transactions. It then releases the connection to the connection pool, or closes the connection if connection pooling is disabled.

An application can call Close more than one time without generating an exception.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

Open Method

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

CreateCommand Method
IDbConnection.CreateCommand Method

Creates and returns a Command object associated with the connection.

Visual Basic

Function CreateCommand() As IDbCommand

C#

IDbCommand CreateCommand();

C++

IDbCommand* CreateCommand();

JScript

function CreateCommand() : IDbCommand;

Return Value

A Command object associated with the connection.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Open Method
IDbConnection.Open Method

Opens a database connection with the settings specified by the ConnectionString property of the provider-specific Connection object.

Visual Basic

Sub Open()

C#

void open();

C++

void open();

JScript

function open();

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnection Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbConnectionExtension Interface
IDbConnectionExtension Interface

Represents additional connection properties that can be implemented by Reporting Services data processing extensions.

For a list of all members of this type, see IDbConnectionExtension Members.

Visual Basic

Public Interface IDbConnectionExtension
 Inherits IDbConnection

C#

public interface IDbConnectionExtension : IDbConnection

C++

public __gc __interface IDbConnectionExtension : public
 IDbConnection

JScript

public interface IDbConnectionExtension implements IDbConnection

Remarks

The IDbConnectionExtension interface enables you to implement an extension of the IDbConnection interface, which adds additional functionality for authenticating a
connection to a data source. The IDbConnectionExtension interface can be used to build a custom data processing extension. For more information about Connection
classes, see Implementing a Connection Class for a Data Processing Extension.

An application does not create an instance of the IDbConnectionExtension interface directly, but creates an instance of a class that implements
IDbConnectionExtension.

Classes that implement IDbConnectionExtension must also implement all required members, and typically define additional members to add provider-specific
functionality. Because IDbConnectionExtension inherits from IDbConnection, you must also implement all of the IDbConnection members as part of your
Connection class including those members from IExtension.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbConnectionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbConnectionExtension Members
IDbConnectionExtension Members

IDbConnectionExtension overview

Public Properties

Impersonate Sets the username of the user that is
impersonated while queries are executed.
This property is ignored by the report
server if impersonation is not supported
by the data provider.

IntegratedSecurity Indicates whether the connection should
use integrated security rather than pass in
a username and password.

Password Gets or sets the password to use when
connecting to the database. Overrides any
password specified in the connection
string.

Username Gets or sets the username to use when
connecting to the database. Overrides any
username specified in the connection
string.

See Also

IDbConnectionExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDbConnectionExtension Properties

The properties of the IDbConnectionExtension interface are listed here. For a complete list of IDbConnectionExtension
interface members, see IDbConnectionExtension Members.

Public Properties

Impersonate Sets the username of the user that is
impersonated while queries are executed.
This property is ignored by the report
server if impersonation is not supported
by the data provider.

IntegratedSecurity Indicates whether the connection should
use integrated security rather than pass in
a username and password.

Password Gets or sets the password to use when
connecting to the database. Overrides any
password specified in the connection
string.

Username Gets or sets the username to use when
connecting to the database. Overrides any
username specified in the connection
string.

See Also

IDbConnectionExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Impersonate Property
IDbConnectionExtension.Impersonate Property

Sets the username of the user that is impersonated while queries are executed. This property is ignored by the report server if
impersonation is not supported by the data provider.

Visual Basic

Property Impersonate As String

C#

string Impersonate {set;}

C++

__property void set_Impersonate(String*);

JScript

function set Impersonate(String);

Property Value

The username of the user that is impersonated while queries are executed.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDbConnectionExtension Interface

IDbConnectionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IntegratedSecurity Property
IDbConnectionExtension.IntegratedSecurity Property

Indicates whether the connection should use integrated security rather than supply a username and password.

Visual Basic

Property IntegratedSecurity As Boolean

C#

bool IntegratedSecurity {get; set;}

C++

__property bool get_IntegratedSecurity();
__property void set_IntegratedSecurity(bool);

JScript

function get IntegratedSecurity() : Boolean;function set
 IntegratedSecurity(Boolean);

Property Value

A value of true if the connection should use integrated security for authentication; otherwise, false.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnectionExtension Interface

IDbConnectionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Password Property
IDbConnectionExtension.Password Property

Gets or sets the password to use when connecting to the database. Overrides any password specified in the connection string.

Visual Basic

Property Password As String

C#

string Password {get; set;}

C++

public: __property String* get_Password();
public: __property void set_Password(String*);

JScript

public function get Password() : String;
public function set Password(String);

Property Values

The password to use when authenticating the client.

Remarks

You can set the Username and password in order to specify alternate credentials with which to access the data source.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnectionExtension Interface

IDbConnectionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Username Property
IDbConnectionExtension.Username Property

Gets or sets the username to use when connecting to the database. Overrides any username specified in the connection string.

Visual Basic

Property Username As String

C#

string Username {get; set;}

C++

public: __property String* get_Username();
public: __property void set_Username(String*);

JScript

public function get Username() : String;
public function set Username(String);

Property Value

The user name to use when authenticating the client.

Remarks

You can set the username and Password in order to specify alternate credentials with which to access the data source.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbConnectionExtension Interface

IDbConnectionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbTransaction Interface
IDbTransaction Interface

Represents a transaction to be performed at a data source.

For a list of all members of this type, see IDbTransaction Members.

Visual Basic

Public Interface IDbTransaction
 Inherits IDisposable

C#

public interface IDbTransaction : IDisposable

C++

public __gc __interface IDbTransaction : public IDisposable

JScript

public interface IDbTransaction implements IDisposable

Remarks

The IDbTransaction interface enables you to implement a Transaction class, which represents the transaction to be performed at a data source.

An application does not create an instance of the IDbTransaction interface directly, but creates an instance of a class that implements IDbTransaction.

Classes that inherit IDbTransaction must implement the inherited members, and typically define additional members to add provider-specific functionality.

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbTransaction Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbTransaction Members
IDbTransaction Members

IDbTransaction overview

Public M ethods

Commit Commits the database transaction.
Rollback Rolls back a transaction from a pending

state.

See Also

IDbTransaction Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Methods
IDbTransaction Methods

The methods of the IDbTransaction interface are listed here. For a complete list of IDbTransaction interface members, see
IDbTransaction Members.

Public M ethods

Commit Commits the database transaction.
Rollback Rolls back a transaction from a pending

state.

See Also

IDbTransaction Interface

IDbTransaction Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Commit Method
IDbTransaction.Commit Method

Commits the database transaction.

Visual Basic

Sub Commit()

C#

void Commit();

C++

void Commit();

JScript

function Commit();

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbTransaction Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Rollback Method
IDbTransaction.Rollback Method

Rolls back a transaction from a pending state.

Visual Basic

Sub Rollback()

C#

void Rollback();

C++

void Rollback();

JScript

function Rollback();

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbTransaction Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbTransactionExtension Interface
IDbTransactionExtension Interface

Represents additional transaction properties that can be implemented by Reporting Services data processing extensions.

For a list of all members of this type, see IDbTransactionExtension Members.

Visual Basic

Public Interface IDbTransactionExtension
 Inherits IDbTransaction, IDisposable

C#

public interface IDbTransactionExtension : IDbTransaction,
 IDisposable

C++

public __gc __interface IDbTransactionExtension : public
 IDbTransaction, IDisposable

JScript

public interface IDbTransactionExtension implements IDbTransaction,
 IDisposable

Requirements

Namespace: Microsoft.ReportingServices.DataProcessing

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDbTransactionExtension Members

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

IDbTransactionExtension Members
IDbTransactionExtension Members

IDbTransactionExtension overview

Public Properties

AllowMultiConnection Indicates whether the provider extension
allows a single transaction to be used
across multiple connections.

See Also

IDbTransactionExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Properties
IDbTransactionExtension Properties

The properties of the IDbTransactionExtension interface are listed here. For a complete list of IDbTransactionExtension
interface members, see IDbTransactionExtension Members.

Public Properties

AllowMultiConnection Indicates whether the provider extension
allows a single transaction to be used
across multiple connections.

See Also

IDbTransactionExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

AllowMultiConnection Property
IDbTransactionExtension.AllowMultiConnection Property

Indicates whether the provider extension allows a single transaction to be used across multiple connections.

Visual Basic

ReadOnly Property AllowMultiConnection As Boolean

C#

bool AllowMultiConnection {get;}

C++

__property bool get_AllowMultiConnection();

JScript

function get AllowMultiConnection() : Boolean;

Property Value

A value of true if the provider allows a single transaction to be used across multiple connections; otherwise, false.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition, Windows XP Professional, Windows .NET Server family

See Also

IDbTransactionExtension Interface

Microsoft.ReportingServices.DataProcessing Namespace

Reporting Services - Reporting Services Programming

Microsoft.ReportingServices.Interfaces Namespace
The Microsoft.ReportingServices.Interfaces namespace contains classes and interfaces that enable you to construct and send
custom notifications to users. Using the members of this namespace, you can build your own, custom delivery extensions for
Reporting Services. In addition, you can use the classes and interfaces of this namespace to build security extensions for custom
authentication and authorization in Reporting Services.

Namespace Hierarchy

Classes

Class Description
AceCollection Represents a collection of access control

entries specifying access rights for one or
more trustees.

AceStruct Represents an access control entry for a
trustee (user, group, or computer) that
specifies the operations that a trustee can
perform on items in the report server
database.

CatalogOperationsCollection Represents a collection of catalog
operations.

DatasourceOperationsCollection Represents a collection of data source
operations.

Extension Represents an extension in Reporting
Services.

FolderOperationsCollection Represents a collection of data source
operations.

Notification Contains subscription information that
delivery extensions use to deliver reports.

OperationNames Contains a collection of fields that
correspond to the permissions in
Reporting Services.

RenderedOutputFile Represents the output from a rendering
extension. A RenderedOutputFile object
contains the associated filename and type
information that is required by the
delivery extension in order to process the
stream returned by the rendering
extension.

Report Represents report-specific information
and methods that enable delivery
extensions to deliver reports to users.

ReportOperationsCollection Represents a collection of report
operations.

ResourceOperationsCollection Represents a collection of resource
operations.

Setting Represents a setting for an extension.

Interfaces

Interface Description
IAuthenticationExtension Represents an authentication extension

that can be used to authenticate users in
Reporting Services.

IAuthorizationExtension Represents an authorization extension
that can be used to provide a way to
authorize users in Reporting Services.

IDeliveryExtension Represents a delivery extension in
Reporting Services.

IDeliveryReportServerInformation Contains information about the report
server that is required by delivery
extensions (for example, a list of available
rendering extensions).

IExtension Represents an extension in Reporting
Services.

ISubscriptionBaseUIUserControl Represents the means to retrieve delivery
extension-specific subscription
information from the user in Report
Manager (for example, an e-mail address,
or the path to a file share).

Delegates

Delegate Description
CreateStream This object is reserved for future use.

Enumerations

Enumeration Description
CatalogOperation Describes the operations that a user can

perform on the catalog.
DataSourceOperation Describes the operations that a user can

perform on a shared data source.
FolderOperation Describes the operations that a user can

perform on a folder.
ReportOperation Describes the operations that a user can

perform on a report.
ResourceOperation Describes the operations that a user can

perform on a resource.
SecurityItemType Describes the item associated with a

specific authorization request.

See Also

Reporting Services Extension Library

Reporting Services - Reporting Services Programming

Microsoft.ReportingServices.Interfaces Hierarchy
Microsoft.ReportingServices.Interfaces Hierarchy

System.Object

 Microsoft.ReportingServices.Interfaces.AceStruct

 Microsoft.ReportingServices.Interfaces.Extension

 Microsoft.ReportingServices.Interfaces.Notification

 Microsoft.ReportingServices.Interfaces.RenderedOutputFile

 Microsoft.ReportingServices.Interfaces.Report

 Microsoft.ReportingServices.Interfaces.Setting

 System.Collections.CollectionBase

 Microsoft.ReportingServices.Interfaces.AceCollection

 Microsoft.ReportingServices.Interfaces.CatalogOperationsCollection

 Microsoft.ReportingServices.Interfaces.DatasourceOperationsCollection

 Microsoft.ReportingServices.Interfaces.FolderOperationsCollection

 Microsoft.ReportingServices.Interfaces.ReportOperationsCollection

 Microsoft.ReportingServices.Interfaces.ResourceOperationsCollection

 System.Delegate

 System.MulticastDelegate

 Microsoft.ReportingServices.Interfaces.CreateStream

 System.ValueType

 System.Enum

 Microsoft.ReportingServices.Interfaces.CatalogOperation

 Microsoft.ReportingServices.Interfaces.DatasourceOperation

 Microsoft.ReportingServices.Interfaces.FolderOperation

 Microsoft.ReportingServices.Interfaces.ReportOperation

 Microsoft.ReportingServices.Interfaces.ResourceOperation

 Microsoft.ReportingServices.Interfaces.SecurityItemType

See Also

Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/y22acf51(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/1kswf507(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aey3s293(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/1zt1ybx4(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceCollection Class
AceCollection Class

Represents a collection of access control entries specifying access rights for one or more trustees.

For a list of all members of this type, see AceCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.AceCollection

Visual Basic

<Serializable>
NotInheritable Public Class AceCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class AceCollection : CollectionBase

C++

[Serializable]
public __gc __sealed class AceCollection : public CollectionBase

JScript

public
 Serializable
class AceCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

An AceCollection instance contains items of type AceStruct and is used to represent an access control list (ACL) for items in the
report server database.

An AceCollection identifies the trustees that are allowed access to a securable item in the report server database. When a user or
process tries to access a securable item, the security extension checks the access control entries in the object's access control entry
collection to determine whether to grant access to it. The security extension checks the access control entries in sequence until it
finds one or more that allow all the requested access rights. For more information about access checks, see
IAuthorizationExtension.CheckAccess Method.

An AceCollection is similar to an access control list in Windows NT. It is a list that tells a report server which access rights each
user has to a particular item in the report server database, such as a folder or an individual report. Each item has a security
descriptor that identifies its access control list. The list has an entry for each system user with access privileges. The most common
privileges include the ability to read properties, to update content, and to execute reports. Each access control list has one or more
access control entries consisting of the name of a user or group and the operations that user is allowed to perform. For each of
these users or groups, the access privileges are stated in a collection of enumerable operations. Generally, the system
administrator or the item owner creates the access control list for an object when setting report server policies through the
Reporting Services Web service. Management applications (like Report Manager) call the Web service methods SetPolicies and
SetSystemPolicies.

An AceCollection is passed as an argument to the CreateSecurityDescriptor method of the IAuthorizationExtension interface.
You implement CreateSecurityDescriptor to serialize the AceCollection and any other meta data that you require for your
security descriptor. You must also process the AceCollection for an item in the report server database when you implement the
CheckAccess method.

Requirements

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

AceCollection Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AceCollection Members
AceCollection Members

AceCollection overview

Public Constructors

AceCollection Constructor Initializes a new instance of the
AceCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the AceCollection instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
AceCollection class.

Public M ethods

Add Adds an object to the end of the
AceCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
AceCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the AceCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the AceCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the AceCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
Aceollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
AceCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
AceCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
AceCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
AceCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
AceCollection instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
AceCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the AceCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

AceCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceCollection Constructor
AceCollection Constructor

Initializes a new instance of the AceCollection class.

Visual Basic

Public Sub New()

C#

public AceCollection();

C++

public: AceCollection();

JScript

public function AceCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code

See Also

AceCollection Class | AceCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceCollection Properties
AceCollection Properties

The properties of the AceCollection class are listed here. For a complete list of AceCollection class members, see the
AceCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the AceCollection instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
AceCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the AceCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

AceCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
AceCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the AceCollection class.

Visual Basic

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As AceStruct

C#

public AceStruct this[
 int index
] {get;}

C++

public: __property AceStruct* get_Item(
 int index
);

JScript

returnValue = AceCollectionObject.Item(index);
-or-
returnValue = AceCollectionObject(index);

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides access to a specific element in the collection by using the following syntax: myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

AceCollection Class | AceCollection Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AceCollection Methods
AceCollection Methods

The methods of the AceCollection class are listed here. For a complete list of AceCollection class members, see the
AceCollection Members topic.

Public M ethods

Add Adds an object to the end of the
AceCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
AceCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the AceCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the AceCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
Aceollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
AceCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
AceCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
AceCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
AceCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
AceCollection instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
AceCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the AceCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

AceCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
AceCollection.Add Method

Adds an object to the end of the AceCollection.

Visual Basic

Public Function Add(_
 ByVal ace As AceStruct _
) As Integer

C#

public int Add(
 AceStruct ace
);

C++

public: int Add(
 AceStruct* ace
);

JScript

public function Add(
 ace : AceStruct
) : int;

Parameters

ace
An AceStruct object that represents an access control entry to add to the collection.

Return Value

The position into which the new access control entry was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

AceCollection Class | AceCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceStruct Class
AceStruct Class

An access control entry for a trustee (user, group, or computer) that specifies the operations that a trustee can perform on items
in the report server database.

For a list of all members of this type, see AceStruct Members.

System.Object
 Microsoft.ReportingServices.Interfaces.AceStruct

Visual Basic

<Serializable>
Public Class AceStruct

C#

[Serializable]
public class AceStruct

C++

[Serializable]
public __gc class AceStruct

JScript

public
 Serializable
class AceStruct

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

An AceStruct object contains collections of operations or permissions for an individual user, group or computer. A collection of
AceStruct objects constitutes an AceCollection, which functions as the access control list for an item in the report server database.

AceStruct objects are a critical component to the security descriptor that is associated with securable items in the report server
database. An AceStruct object is a data structure that contains the name of the principal user and the operations that the user is
allowed to perform on a particular item in the report server database. An AceStruct is similar to an access control entry that you
might be familiar with from other Microsoft server products, in that it is an element of an access control list (AceCollection
object in Reporting Services). When evaluating an AceCollection, you enumerate one or more AceStruct objects as part of the
collection. A simple access check using C# might look like the following:

// C#
AceCollection acl = DeserializeAcl(secDesc);
foreach(AceStruct ace in acl)
{
 if (userName == ace.PrincipalName)
 {
 foreach(FolderOperation aclOperation in ace.FolderOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
}

When working with access control entries, you do not specify operations or trustees. This is handled by the report server and the
Reporting Services Web service methods for setting policies and assigning roles. In your security extension, you need only
process the access control entries and grant or deny access based on a given set of conditions.

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AceStruct Members
AceStruct Members

AceStruct overview

Public Constructors

AceStruct Constructor Overloaded. Initializes a new instance of
the AceStruct class.

Public Fields

CatalogOperations Represents operations that users can
perform on catalog item types. Catalog
item types include roles, schedules,
system properties, and jobs.

DatasourceOperations Represents operations that users can
perform on data source item types.

FolderOperations Represents operations that users can
perform on folder item types.

PrincipalName A user, group or built-in account name.
ReportOperations Represents operations that users can

perform on report item types.
ResourceOperations Represents operations that users can

perform on resource item types.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

AceStruct Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceStruct Constructor
AceStruct Constructor

Overloaded. Initializes a new instance of the AceStruct class.

Overload List

Creates a new instance of the AceStruct class based on an existing AceStruct object.

[Visual Basic] Public Sub New(AceStruct)

[C#] public AceStruct(AceStruct);

[C++] public: AceStruct(AceStruct*);

[JScript] public function AceStruct(AceStruct);

Creates a new instance of the AceStruct class with the specified principal name.

[Visual Basic] Public Sub New(System.String)

[C#] public AceStruct(System.String);

[C++] public: AceStruct(System.String);

[JScript] public function AceStruct(System.String);

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AceStruct Constructor (AceStruct)
AceStruct Constructor (AceStruct)

Creates a new instance of the AceStruct class based on an existing AceStruct object.

Visual Basic

Public Sub New(_
 ByVal other As AceStruct _
)

C#

public AceStruct(
 AceStruct other
);

C++

public: AceStruct(
 AceStruct* other
);

JScript

public function AceStruct(
 other : AceStruct
);

Parameters

other
An existing ActStruct object.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace | AceStruct Constructor Overload List

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceStruct Constructor (System.String)
AceStruct Constructor (System.String)

Creates a new instance of the AceStruct class with the specified principal name.

Visual Basic

Public Sub New(_
 ByVal name As String _
)

C#

public AceStruct(
 string name
);

C++

public: AceStruct(
 String* name
);

JScript

public function AceStruct(
 name : String
);

Parameters

name
A user, group, or computer name.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace | AceStruct Constructor Overload List

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AceStruct Fields
AceStruct Fields

The fields of the AceStruct class are listed here. For a complete list of AceStruct class members, see the AceStruct Members
topic.

Public Fields

CatalogOperations Represents operations that users can
perform on catalog item types. Catalog
item types include roles, schedules,
system properties, and jobs.

DatasourceOperations Represents operations that users can
perform on data source item types.

FolderOperations Represents operations that users can
perform on folder item types.

PrincipalName A user, group or built-in account name.
ReportOperations Represents operations that users can

perform on report item types.
ResourceOperations Represents operations that users can

perform on resource item types.

See Also

AceStruct Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CatalogOperations Field
AceStruct.CatalogOperations Field

Represents operations that users can perform on catalog item types. Catalog item types include roles, schedules, system
properties, and jobs.

Visual Basic

Public CatalogOperations As CatalogOperationsCollection

C#

public CatalogOperationsCollection CatalogOperations;

C++

public: CatalogOperationsCollection* CatalogOperations;

JScript

public var CatalogOperations : CatalogOperationsCollection;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

DatasourceOperations Field
AceStruct.DatasourceOperations Field

Represents operations that users can perform on data source item types.

Visual Basic

Public DatasourceOperations As DatasourceOperationsCollection

C#

public DatasourceOperationsCollection DatasourceOperations;

C++

public: DatasourceOperationsCollection* DatasourceOperations;

JScript

public var DatasourceOperations : DatasourceOperationsCollection;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

FolderOperations Field
AceStruct.FolderOperations Field

Represents operations that users can perform on folder item types.

Visual Basic

Public FolderOperations As FolderOperationsCollection

C#

public FolderOperationsCollection FolderOperations;

C++

public: FolderOperationsCollection* FolderOperations;

JScript

public var FolderOperations : FolderOperationsCollection;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

PrincipalName Field
AceStruct.PrincipalName Field

A user, group or computer name.

Visual Basic

Public PrincipalName As String

C#

public string PrincipalName;

C++

public: String* PrincipalName;

JScript

public var PrincipalName : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ReportOperations Field
AceStruct.ReportOperations Field

Represents operations that users can perform on report item types.

Visual Basic

Public ReportOperations As ReportOperationsCollection

C#

public ReportOperationsCollection ReportOperations;

C++

public: ReportOperationsCollection* ReportOperations;

JScript

public var ReportOperations : ReportOperationsCollection;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ResourceOperations Field
AceStruct.ResourceOperations Field

Represents operations that users can perform on resource item types.

Visual Basic

Public ResourceOperations As ResourceOperationsCollection

C#

public ResourceOperationsCollection ResourceOperations;

C++

public: ResourceOperationsCollection* ResourceOperations;

JScript

public var ResourceOperations : ResourceOperationsCollection;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

AceStruct Class | AceStruct Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CatalogOperation Enumeration
CatalogOperation Enumeration

Describes the operations that a user can perform on the catalog.

Visual Basic

<Serializable>
Public Enum CatalogOperation

C#

[Serializable]
public enum CatalogOperation

C++

[Serializable]
__value public enum CatalogOperation

JScript

public
 Serializable
enum CatalogOperation

M embers

Member name Description
CancelJobs The user may cancel running jobs.
CreateRoles The user may create roles.
CreateSchedules The user may create schedules.
DeleteRoles The user may delete roles.
DeleteSchedules The user may delete schedules.
GenerateEvents The user may generate events within the

report server.
ListJobs The user may retrieve a list of running

jobs.
ReadRoleProperties The user may read role-specific properties

which include the individual tasks
associated with the roles.

ReadSchedules The user may read schedules.
ReadSystemProperties The user may read system properties.
ReadSystemSecurityPolicy The user may read security policies set at

the system level.
UpdateRoleProperties The user may modify role-specific

properties, which include the individual
tasks associated with the roles.

UpdateSchedules The user may modify schedules.
UpdateSystemProperties The user may modify system-level

properties.
UpdateSystemSecurityPolicy The user may modify security policies set

at the system level.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CatalogOperationsCollection Class
CatalogOperationsCollection Class

Represents a collection of catalog operations.

For a list of all members of this type, see CatalogOperationsCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.CatalogOperationsCollection

Visual Basic

<Serializable>
NotInheritable Public Class CatalogOperationsCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class CatalogOperationsCollection : CollectionBase

C++

[Serializable]
public __gc __sealed class CatalogOperationsCollection : public
 CollectionBase

JScript

public
 Serializable
class CatalogOperationsCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

A CatalogOperationsCollection object consists of a collection of CatalogOperation enumeration values that correspond to the
various catalog operations or actions that a user can perform in Reporting Services.

Operation collections and operation enumerations support authorization in Reporting Services. The operations collection is one of
the prime components of any access control entry (AceStruct object). The operations collection contains the list of operations
permitted on an item in the report server database for a given principal name. As demonstrated in previous examples, evaluating
the operation collections for an item is a key part of any Reporting Services authorization extension. There exists an operation
collection for each of the securable item types in Reporting Services, including the catalog (general system operations), folders,
reports, and resources.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

CatalogOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CatalogOperationsCollection Members
CatalogOperationsCollection Members

CatalogOperationsCollection overview

Public Constructors

CatalogOperationsCollection
Constructor

Initializes a new instance of the
CatalogOperationsCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the CatalogOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
CatalogOperationsCollection class.

Public M ethods

Add Adds an object to the end of the
CatalogOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
CatalogOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
CatalogOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
CatalogOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
CatalogOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
CatalogOperationsCollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
CatalogOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
CatalogOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
CatalogOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
CatalogOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
CatalogOperationsCollection instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
CatalogOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
CatalogOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

CatalogOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CatalogOperationsCollection Constructor
CatalogOperationsCollection Constructor

Initializes a new instance of the CatalogOperationsCollection class.

Visual Basic

Public Sub New()

C#

public CatalogOperationsCollection();

C++

public: CatalogOperationsCollection();

JScript

public function CatalogOperationsCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

CatalogOperationsCollection Class | CatalogOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CatalogOperationsCollection Properties
CatalogOperationsCollection Properties

The properties of the CatalogOperationsCollection class are listed here. For a complete list of CatalogOperationsCollection
class members, see the CatalogOperationsCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the CatalogOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
CatalogOperationsCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
CatalogOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

CatalogOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
CatalogOperationsCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the CatalogOperationsCollection class.

Visual Basic

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As CatalogOperation

C#

public CatalogOperation this[
 int index
] {get;}

C++

public: __property CatalogOperation get_Item(
 int index
);

JScript

returnValue = CatalogOperationsCollectionObject.Item(index);
-or-
returnValue = CatalogOperationsCollectionObject(index);

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides the ability to access a specific element in the collection by using the following syntax:
myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

CatalogOperationsCollection Class | CatalogOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CatalogOperationsCollection Methods
CatalogOperationsCollection Methods

The methods of the CatalogOperationsCollection class are listed here. For a complete list of CatalogOperationsCollection
class members, see the CatalogOperationsCollection Members topic.

Public M ethods

Add Adds an object to the end of the
CatalogOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
CatalogOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
CatalogOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
CatalogOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
Aceollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
CatalogOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
CatalogOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
CatalogOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
CatalogOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
CatalogOperationsCollection instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
CatalogOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
CatalogOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

CatalogOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
CatalogOperationsCollection.Add Method

Adds an object to the end of the CatalogOperationsCollection.

Visual Basic

Public Function Add(_
 ByVal operation As CatalogOperation _
) As Integer

C#

public int Add(
 CatalogOperation operation
);

C++

public: int Add(
 CatalogOperation operation
);

JScript

public function Add(
 operation : CatalogOperation
) : int;

Parameters

operation
The catalog operation to add to the collection.

Return Value

The position into which the new catalog operation was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code

See Also

CatalogOperationsCollection Class | CatalogOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CreateStream Delegate
CreateStream Delegate

This object is reserved for future use.

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

DatasourceOperation Enumeration
DatasourceOperation Enumeration

Describes the operations that a user can perform on a shared data source.

Visual Basic

<Serializable>
Public Enum DatasourceOperation

C#

[Serializable]
public enum DatasourceOperation

C++

[Serializable]
__value public enum DatasourceOperation

JScript

public
 Serializable
enum DatasourceOperation

M embers

Member name Description
Delete The user may delete a shared data source.
ReadAuthorizationPolicy The user may read the security policies

associated with a shared data source.
ReadContent The user may read the contents of a

shared data source.
ReadProperties The user may read properties associated

with a shared data source.
UpdateContent The user may modify the contents of a

shared data source.
UpdateDeleteAuthorizationPolicy The user may modify or delete the

security policies associated with a shared
data source.

UpdateProperties The user may modify the properties
associated with a shared data source.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

DatasourceOperationsCollection Class
DatasourceOperationsCollection Class

Represents a collection of data source operations.

For a list of all members of this type, see DatasourceOperationsCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.DatasourceOperationsCollection

Visual Basic

<Serializable>
NotInheritable Public Class DatasourceOperationsCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class DatasourceOperationsCollection :
 CollectionBase

C++

[Serializable]
public __gc __sealed class DatasourceOperationsCollection : public
 CollectionBase

JScript

public
 Serializable
class DatasourceOperationsCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

A DatasourceOperationsCollection object consists of a collection of DataSourceOperation enumeration values that correspond
to the various data source operations or actions that a user can perform in Reporting Services.

Operation collections and operation enumerations support authorization in Reporting Services. The operations collection is one of
the prime components of any access control entry (AceStruct object). The operations collection contains the list of operations
permitted on an item in the report server database for a given principal name. As demonstrated in previous examples, evaluating
the operation collections for an item is a key part of any Reporting Services authorization extension. There exists an operation
collection for each of the securable item types in Reporting Services, including the catalog (general system operations), folders,
reports, and resources.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

DatasourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Reporting Services - Reporting Services Programming

DatasourceOperationsCollection Members
DatasourceOperationsCollection Members

DatasourceOperationsCollection overview

Public Constructors

DatasourceOperationsCollection
Constructor

Initializes a new instance of the
DatasourceOperationsCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the DatasourceOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
DatasourceOperationsCollection class.

Public M ethods

Add Adds an object to the end of the
DatasourceOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
DatasourceOperationsCollection
instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
DatasourceOperationsCollection
instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
DatasourceOperationsCollection
instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
DatasourceOperationsCollection
instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
DatasourceOperationsCollection
instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
DatasourceOperationsCollection
instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
DatasourceOperationsCollection
instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
DatasourceOperationsCollection
instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
DatasourceOperationsCollection
instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
DatasourceOperationsCollection
instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
DatasourceOperationsCollection
instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
DatasourceOperationsCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

DatasourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

DatasourceOperationsCollection Constructor
DatasourceOperationsCollection Constructor

Initializes a new instance of the DatasourceOperationsCollection class.

Visual Basic

Public Sub New()

C#

public DatasourceOperationsCollection();

C++

public: DatasourceOperationsCollection();

JScript

public function DatasourceOperationsCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

DatasourceOperationsCollection Class | DatasourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

DatasourceOperationsCollection Properties
DatasourceOperationsCollection Properties

The properties of the DatasourceOperationsCollection class are listed here. For a complete list of
DatasourceOperationsCollection class members, see the DatasourceOperationsCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the DatasourceOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
DatasourceOperationsCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
DatasourceOperationsCollection
instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

DatasourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
DatasourceOperationsCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the DatasourceOperationsCollection class.

Visual Basic

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As DatasourceOperation

C#

public DatasourceOperation this[
 int index
] {get;}

C++

public: __property DatasourceOperation get_Item(
 int index
);

JScript

returnValue = DatasourceOperationsCollectionObject.Item(index);
-or-
returnValue = DatasourceOperationsCollectionObject(index);

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides access to a specific element in the collection by using the following syntax: myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

DatasourceOperationsCollection Class | DatasourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

DatasourceOperationsCollection Methods
DatasourceOperationsCollection Methods

The methods of the DatasourceOperationsCollection class are listed here. For a complete list of
DatasourceOperationsCollection class members, see the DatasourceOperationsCollection Members topic.

Public M ethods

Add Adds an object to the end of the
DatasourceOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
DatasourceOperationsCollection
instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
DatasourceOperationsCollection
instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
DatasourceOperationsCollection
instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
DatasourceOperationsCollection
instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
DatasourceOperationsCollection
instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
DatasourceOperationsCollection
instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
DatasourceOperationsCollection
instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
DatasourceOperationsCollection
instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
DatasourceOperationsCollection
instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
DatasourceOperationsCollection
instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
DatasourceOperationsCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

DatasourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
DatasourceOperationsCollection.Add Method

Adds an object to the end of the DatasourceOperationsCollection.

Visual Basic

Public Function Add(_
 ByVal operation As DatasourceOperation _
) As Integer

C#

public int Add(
 DatasourceOperation operation
);

C++

public: int Add(
 DatasourceOperation operation
);

JScript

public function Add(
 operation : DatasourceOperation
) : int;

Parameters

operation
The data source operation to add to the collection.

Return Value

The position into which the new data source operation was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

DatasourceOperationsCollection Class | DatasourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Extension Class
Extension Class

Represents an extension in Reporting Services.

For a list of all members of this type, see Extension Members.

System.Object
 Microsoft.ReportingServices.Interfaces.Extension

Visual Basic

Public Class Extension

C#

public class Extension

C++

public __gc class Extension

JScript

public class Extension

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Remarks

The Extension class of the Microsoft.ReportingServices.Interfaces namespace contains a read-only set of properties that can
be used to discover information about a report server and the extensions it supports. The RenderingExtension property of the
IDeliveryReportServerInformation interface contains a set of Extension objects that represent rendering extensions currently
installed on a report server. You can use this information to determine what rendering extensions are available for use by your
custom delivery provider.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Extension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Extension Members
Extension Members

Extension overview

Public Constructors

Extension Constructor Initializes a new instance of the Extension
class.

Public Properties

LocalizedName Gets the localized name of the extension
to be used for display purposes in a user
interface.

Name Gets the name of the extension as defined
in the configuration file. For example, a
delivery extension can return a value of
"Report Server E-mail".

Visible Indicates whether an extension is visible in
a user interface.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Extension Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Extension Constructor
Extension Constructor

Initializes a new instance of the Extension class.

Visual Basic

Public Sub New(_
 ByVal name As String, _
 ByVal localizedName As String, _
 ByVal visible As Boolean _
)

C#

public Extension(
 string name,
 string localizedName,
 bool visible
);

C++

public: Extension(
 String* name,
 String* localizedName,
 bool visible
);

JScript

public function Extension(
 name : String,
 localizedName : String,
 visible : Boolean
);

Parameters

name
The name of the extension as defined in the configuration file.

localizedName
The localized name of the extension to be used for display purposes in a user interface.

visible
Indicates whether an extension is visible in a user interface.

Remarks

You should not create a new instance of the Extension class.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

.NET Framework Security: Full trust for the immediate caller. This member cannot be used by partially trusted code. For more
information, see Using Libraries From Partially Trusted Code.

See Also

Extension Class | Extension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Properties
Extension Properties

The properties of the Extension class are listed here. For a complete list of Extension class members, see Extension Members.

Public Properties

LocalizedName Gets the localized name of the extension
to be used for display purposes in a user
interface.

Name Gets the name of the extension as defined
in the configuration file. For example, a
delivery extension can return a value of
"Report Server E-mail".

Visible Indicates whether an extension is visible in
a user interface.

See Also

Extension Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

LocalizedName Property
Extension.LocalizedName Property

Gets the localized name of the extension to be used for display purposes in a user interface.

Visual Basic

Public ReadOnly Property LocalizedName As String

C#

public string LocalizedName {get;}

C++

public: __property String* get_LocalizedName();

JScript

public function get LocalizedName() : String;

Property Value

The localized name of the extension.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Extension Class | Extension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Name Property
Extension.Name Property

Gets the name of the extension as defined in the configuration file. For example, a delivery extension can return a value of Report
Server E-mail.

Visual Basic

Public ReadOnly Property Name As String

C#

public string Name {get;}

C++

public: __property String* get_Name();

JScript

public function get Name() : String;

Property Value

The name of the extension as defined in the report server configuration file.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Extension Class | Extension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Visible Property
Extension.Visible Property

Indicates whether an extension is visible in a user interface.

Visual Basic

Public ReadOnly Property Visible As Boolean

C#

public bool Visible {get;}

C++

public: __property bool get_Visible();

JScript

public function get Visible() : Boolean;

Property Value

A Boolean value indicating whether the extension is visible.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Extension Class | Extension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

FolderOperation Enumeration
FolderOperation Enumeration

Describes the operations that a user can perform on a folder.

Visual Basic

<Serializable>
Public Enum FolderOperation

C#

[Serializable]
public enum FolderOperation

C++

[Serializable]
__value public enum FolderOperation

JScript

public
 Serializable
enum FolderOperation

M embers

Member name Description
CreateDatasource The user may create a shared data source

in the specified folder.
CreateFolder The user may add a subfolder to the

specified folder.
CreateReport The user may create a report in the

specified folder.
CreateResource The user may create a resource in the

specified folder.
Delete The user may delete the specified folder.

The user may delete the contents of the
folder if the user has delete permissions
on all items.

ReadAuthorizationPolicy The user may read the security policies
associated with the folder.

ReadProperties The user may read the extended folder
properties.

UpdateDeleteAuthorizationPolicy The user may update or delete the security
policy associated with the folder.

UpdateProperties The user may update or modify extended
folder properties.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

FolderOperationsCollection Class
FolderOperationsCollection Class

Represents a collection of folder operations.

For a list of all members of this type, see FolderOperationsCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.FolderOperationsCollection

Visual Basic

<Serializable>
NotInheritable Public Class FolderOperationsCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class FolderOperationsCollection : CollectionBase

C++

[Serializable]
public __gc __sealed class FolderOperationsCollection : public
 CollectionBase

JScript

public
 Serializable
class FolderOperationsCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

A FolderOperationsCollection object consists of a collection of FolderOperation enumeration values that correspond to the
various folder operations or actions that a user can perform in Reporting Services.

Operation collections and operation enumerations support authorization in Reporting Services. The operations collection is one of
the prime components of any access control entry (AceStruct object). The operations collection contains the list of operations
permitted on an item in the report server database for a given principal name. As demonstrated in previous examples, evaluating
the operation collections for an item is a key part of any Reporting Services authorization extension. There exists an operation
collection for each of the securable item types in Reporting Services, including the catalog (general system operations), folders,
reports, and resources.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

FolderOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Reporting Services - Reporting Services Programming

FolderOperationsCollection Members
FolderOperationsCollection Members

FolderOperationsCollection overview

Public Constructors

FolderOperationsCollection Constructor Initializes a new instance of the
FolderOperationsCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the FolderOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
FolderOperationsCollection class.

Public M ethods

Add Adds an object to the end of the
FolderOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
FolderOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
FolderOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
FolderOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
FolderOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
FolderOperationsCollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
FolderOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
FolderOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
FolderOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
FolderOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
FolderOperationsCollection instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
FolderOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
FolderOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

FolderOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

FolderOperationsCollection Constructor
FolderOperationsCollection Constructor

Initializes a new instance of the FolderOperationsCollection class.

Visual Basic

Public Sub New()

C#

public FolderOperationsCollection();

C++

public: FolderOperationsCollection();

JScript

public function FolderOperationsCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code

See Also

FolderOperationsCollection Class | FolderOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

FolderOperationsCollection Properties
FolderOperationsCollection Properties

The properties of the FolderOperationsCollection class are listed here. For a complete list of FolderOperationsCollection
class members, see the FolderOperationsCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the FolderOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
FolderOperationsCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
FolderOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

FolderOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
FolderOperationsCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the FolderOperationsCollection class.

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Visual Basic

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As FolderOperation

C#

public FolderOperation this[
 int index
] {get;}

C++

public: __property FolderOperation get_Item(
 int index
);

JScript

returnValue = FolderOperationsCollectionObject.Item(index);
-or-
returnValue = FolderOperationsCollectionObject(index);

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides the ability to access a specific element in the collection by using the following syntax:
myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

FolderOperationsCollection Class | FolderOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

FolderOperationsCollection Methods
FolderOperationsCollection Methods

The methods of the FolderOperationsCollection class are listed here. For a complete list of FolderOperationsCollection class
members, see the FolderOperationsCollection Members topic.

Public M ethods

Add Adds an object to the end of the
FolderOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
FolderOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
FolderOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
FolderOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
FolderOperationsCollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
FolderOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
FolderOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
FolderOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
FolderOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
FolderOperationsCollection instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
FolderOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
FolderOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

FolderOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
FolderOperationsCollection.Add Method

Adds an object to the end of the FolderOperationsCollection.

Visual Basic

Public Function Add(_
 ByVal operation As FolderOperation _
) As Integer

C#

public int Add(
 FolderOperation operation
);

C++

public: int Add(
 FolderOperation operation
);

JScript

public function Add(
 operation : FolderOperation
) : int;

Parameters

operation
The folder operation to add to the collection.

Return Value

The position into which the new folder operation was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

FolderOperationsCollection Class | FolderOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IAuthenticationExtension Interface
IAuthenticationExtension Interface

Represents an authentication extension in Reporting Services.

For a list of all members of this type, see IAuthenticationExtension Members.

Microsoft.ReportingServices.Interfaces.IExtension
 Microsoft.ReportingServices.Interfaces.IAuthenticationExtension

Visual Basic

Public Interface IAuthenticationExtension
 Inherits IExtension

C#

public interface IAuthenticationExtension : IExtension

C++

public gc interface IAuthenticationExtension : public
 IExtension

JScript

public interface IAuthenticationExtension implements IExtension

Remarks

The IAuthenticationExtension interface in Reporting Services enables your security extension to specify a custom way for the
report server to authenticate users. To create an authentication extension class, implement IAuthenticationExtension.

Your authentication extension should provide implementations for the LogonUser, GetUserInfo, and IsValidPrincipalName
methods. Implementing IAuthenticationExtension enables your security extension to validate user credentials against a
specified authority and enables the report server to access user information.

The primary way in which you can implement a custom authentication extension is through the use of Forms authentication. For
more information, see "Forms Authentication Provider" in your .NET Framework Developer's Guide.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

IAuthenticationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IAuthenticationExtension Members
IAuthenticationExtension Members

IAuthenticationExtension overview

Public M ethods

GetUserInfo Returns the current user identity.
IsValidPrincipalName Indicates whether the specified principal

name is valid.
LogonUser Creates a logon session for the user

associated with the given credentials.

See Also

IAuthenticationExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IAuthenticationExtension Methods
IAuthenticationExtension Methods

The methods of the IAuthenticationExtension interface are listed here. For a complete list of IAuthenticationExtension
interface members, see the IAuthenticationExtension Members topic.

Public M ethods

GetUserInfo Returns the current user identity.
IsValidPrincipalName Indicates whether the specified principal

name is valid.
LogonUser Creates a logon session for the user

associated with the given credentials.

See Also

IAuthenticationExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

GetUserInfo Method
IAuthenticationExtension.GetUserInfo Method

Returns the current user identity.

Visual Basic

Sub GetUserInfo(_
 <Out()> ByRef userIdentity As IIdentity, _
 <Out()> ByRef userId As IntPtr _
)

C#

void GetUserInfo(
 out IIdentity userIdentity,
 out IntPtr userId
);

C++

void GetUserInfo(
 [
 Out
] IIdentity** userIdentity,
 [
 Out
] IntPtr* userId
);

JScript

function GetUserInfo(
 userIdentity : IIdentity,
 userId : IntPtr
);

Parameters

userIdentity
[out] The identity of the current user. The value of IIdentity may appear in a user interface and should be human readable.

userId
[out] A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

Remarks

The report server calls the GetUserInfo method for each request to retrieve the current user identity.

Example

Visual Basic, C#

The following example code implements the GetUserInfo method by returning the principal identity of the current HTTP request.

Visual Basic

Public Sub GetUserInfo(ByRef userIdentity As IIdentity, ByRef userId As IntPtr)
 ' If the current user identity is not null,
 ' set the userIdentity parameter to that of the current user
 If Not (HttpContext.Current Is Nothing) And Not (HttpContext.Current.User Is Nothing)
Then
 userIdentity = HttpContext.Current.User.Identity
 Else
 userIdentity = Nothing
 End If
 ' initialize a pointer to the current user id to zero

 userId = IntPtr.Zero
End Sub 'GetUserInfo

C#

public void GetUserInfo(out IIdentity userIdentity, out IntPtr userId)
{
 // If the current user identity is not null,
 // set the userIdentity parameter to that of the current user
 if (HttpContext.Current != null
 && HttpContext.Current.User != null)
 {
 userIdentity = HttpContext.Current.User.Identity;
 }
 else
 userIdentity = null;

 // initialize a pointer to the current user id to zero
 userId = IntPtr.Zero;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code

See Also

IAuthenticationExtension Interface | IAuthenticationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IsValidPrincipalName Method
IAuthenticationExtension.IsValidPrincipalName Method

Indicates whether the specified principal name is valid.

Visual Basic

Function IsValidPrincipalName(_
 ByVal principalName As String _
) As Boolean

C#

bool IsValidPrincipalName(
 String* principalName
);

C++

public __gc class Extension

JScript

function IsValidPrincipalName(
 principalName : String
) : Boolean;

Parameters

principalName
The user, group, or computer name.

Return Value

Returns true if the supplied user name represents a valid principal name.

Remarks

The IsValidPrincipalName method is called by the report server when the report server sets security on an item. This method
validates that the user name is valid for the current authority, for example, a Windows domain. The principal name needs to be a
user, group, or computer account name. You may choose to provide an implementation of IsValidPrincipalName to provide
additional validation checks on the principal identity.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthenticationExtension Interface | IAuthenticationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

LogonUser Method
IAuthenticationExtension.LogonUser Method

Creates a logon session for the user associated with the given credentials.

Visual Basic

Function LogonUser(_
 ByVal userName As String, _
 ByVal password As String, _
 ByVal authority As String _
) As Boolean

C#

bool LogonUser(
 string userName,
 string password,
 string authority
);

C++

bool LogonUser(
 String* userName,
 String* password,
 String* authority
);

JScript

function LogonUser(
 userName : String,
 password : String,
 authority : String
) : Boolean;

Parameters

userName
The name associated with the credentials.

password
The password associated with the credentials.

authority
Optional. The specific authority to use to authenticate a user (for example, a Windows domain).

Remarks

Your implementation of LogonUser should validate your report server users against a store of user names and passwords. For
example, if you were using a Forms-based custom security extension, you might implement LogonUser to verify user names and
passwords stored securely in a configuration file or a database table.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthenticationExtension Interface | IAuthenticationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IAuthorizationExtension Interface
IAuthorizationExtension Interface

Represents an extension that can be used to extend the authorization feature of Reporting Services.

For a list of all members of this type, see IAuthorizationExtension Members.

Microsoft.ReportingServices.Interfaces.IExtension
 Microsoft.ReportingServices.Interfaces.IAuthorizationExtension

Visual Basic

Public Interface IAuthorizationExtension
 Inherits IExtension

C#

[CLSCompliant(false)]
public interface IAuthorizationExtension : IExtension

C++

[CLSCompliant(false)]
public __gc __interface IAuthorizationExtension : public
 IExtension

JScript

public
 CLSCompliant(false)
interface IAuthorizationExtension implements IExtension

Remarks

Authorization is the process of determining whether an identity should be granted the requested type of access to a given
resource in the report server database. This is accomplished in Reporting Services by storing and associating an access control list
(AceCollection object) with each system and item resource in the report server database. Your authorization extension should
provide an implementation of the CreateSecurityDescriptor method, which is called by the report server whenever a new role
assignment is created for an item in the report server database. Your implementation of CreateSecurityDescriptor must at a
minimum serialize the AceCollection. You can optionally serialize additional user information as part of the security descriptor.
Implement CheckAccess in order to evaluate whether a given user has the appropriate permissions to carry out a requested
operation. Your implementation of CheckAccess should de-serialize the security descriptor, evaluate each AceStruct object, and
check for a valid operation permission that corresponds to the username and the requested operation. If a matching operation is
found, CheckAccess should return true.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/ms154619(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IAuthorizationExtension Members
IAuthorizationExtension Members

IAuthorizationExtension overview

Public M ethods

CheckAccess Overloaded. Indicates whether a specified
user is authorized to access the item for a
given catalog operation.

CreateSecurityDescriptor Returns the security descriptor that is
stored with an individual item in the
report server database.

GetPermissions Returns the set of permissions granted a
specific user for an item in the report
server database.

See Also

IAuthorizationExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IAuthorizationExtension Methods
IAuthorizationExtension Methods

The methods of the IAuthorizationExtension interface are listed here. For a complete list of IAuthorizationExtension interface
members, see the IAuthorizationExtension Members topic.

Public M ethods

CheckAccess Overloaded. Indicates whether a user is
authorized to access an item in the report
server database for a given operation.

CreateSecurityDescriptor Returns the security descriptor that is
stored with an individual item in the
report server database.

GetPermissions Returns the set of permissions granted a
specific user for an item in the report
server database.

See Also

IAuthorizationExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CheckAccess Method
IAuthorizationExtension.CheckAccess Method

Indicates whether a user is authorized to access an item in the report server database for a given operation.

Overload List

Indicates whether a user is authorized to access an item in the report server database for a given catalog operation.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), CatalogOperation) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given array of catalog operations.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), CatalogOperation()) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation[]);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation[]);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], CatalogOperation[]) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given data source operation.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), DatasourceOperation) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], DatasourceOperation);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], DatasourceOperation);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], DatasourceOperation) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given folder operation.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), FolderOperation) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given array of folder operations.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), FolderOperation()) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation[]);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation[]);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], FolderOperation[]) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given report operation.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), ReportOperation) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ReportOperation);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ReportOperation);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], ReportOperation) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given resource operation.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), ResourceOperation) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation) : Boolean;

Indicates whether a user is authorized to access an item in the report server database for a given array of resource operations.

[Visual Basic] Overloads Function CheckAccess(System.String, System.IntPtr, System.Byte(), ResourceOperation()) As
Boolean

[C#] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation[]);

[C++] bool CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation[]);

[JScript] function CheckAccess(System.String, System.IntPtr, System.Byte[], ResourceOperation[]) : Boolean;

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], CatalogOperation)
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], CatalogOperation)

Indicates whether a user is authorized to access an item in the report server database for a given catalog operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperation As CatalogOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 CatalogOperation requiredOperation
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 CatalogOperation requiredOperation
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperation : CatalogOperation
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database.

Visual Basic

Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperation As CatalogOperation) As Boolean
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 ' First check to see if the user or group has an access control entry for the item
 If userName = ace.PrincipalName Then
 ' If an entry is found, return true if the given required operation
 ' is contained in the ACE structure
 Dim aclOperation As CatalogOperation
 For Each aclOperation In ace.CatalogOperations
 If aclOperation = requiredOperation Then
 Return True
 End If
 Next aclOperation
 End If
 Next ace
 Return False
End Function 'CheckAccess

Private Function DeserializeAcl(secDesc() As Byte) As AceCollection
 Dim bf As New BinaryFormatter()
 Dim sdStream As New MemoryStream(secDesc)
 Dim acl As AceCollection = CType(bf.Deserialize(sdStream), AceCollection)
 Return acl
End Function 'DeserializeAcl

C#

public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
CatalogOperation requiredOperation)
{
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 // First check to see if the user or group has an access control entry for the
item
 if (userName == ace.PrincipalName)
 {
 // If an entry is found, return true if the given required operation
 // is contained in the ACE structure
 foreach(CatalogOperation aclOperation in ace.CatalogOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

private AceCollection DeserializeAcl(byte[] secDesc)
{
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream sdStream = new MemoryStream(secDesc);
 AceCollection acl = (AceCollection)bf.Deserialize(sdStream);
 return acl;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], CatalogOperation[])
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], CatalogOperation[])

Indicates whether a user is authorized to access an item in the report server database for a given array of catalog operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperations() As CatalogOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 CatalogOperation[] requiredOperations
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 CatalogOperation requiredOperations[]
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperations : CatalogOperation[]
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database. The example makes use of the overloaded CheckAccess method that takes a

single operation as an argument.

Visual Basic

' Overload for array of catalog operations
Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperations() As CatalogOperation) As Boolean
 Dim operation As CatalogOperation
 For Each operation In requiredOperations
 If Not CheckAccess(userName, userToken, secDesc, operation) Then
 Return False
 End If
 Next operation
 Return True
End Function 'CheckAccess

C#

// Overload for array of catalog operations
public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
CatalogOperation[] requiredOperations)
{
 foreach(CatalogOperation operation in requiredOperations)
 {
 if (!CheckAccess(userName, userToken, secDesc, operation))
 return false;
 }
 return true;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], DatasourceOperation)
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], DatasourceOperation)

Indicates whether a user is authorized to access an item in the report server database for a given data source operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperation As DatasourceOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 DatasourceOperation requiredOperation
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 DatasourceOperation requiredOperation
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperation : DatasourceOperation
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database.

Visual Basic

Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperation As DatasourceOperation) As Boolean
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 ' First check to see if the user or group has an access control entry for the item
 If userName = ace.PrincipalName Then
 ' If an entry is found, return true if the given required operation
 ' is contained in the ACE structure
 Dim aclOperation As DatasourceOperation
 For Each aclOperation In ace.DatasourceOperations
 If aclOperation = requiredOperation Then
 Return True
 End If
 Next aclOperation
 End If
 Next ace
 Return False
End Function 'CheckAccess
Private Function DeserializeAcl(secDesc() As Byte) As AceCollection
 Dim bf As New BinaryFormatter()
 Dim sdStream As New MemoryStream(secDesc)
 Dim acl As AceCollection = CType(bf.Deserialize(sdStream), AceCollection)
 Return acl
End Function 'DeserializeAcl

C#

public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
DatasourceOperation requiredOperation)
{
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 // First check to see if the user or group has an access control entry for the
item
 if (userName == ace.PrincipalName)
 {
 // If an entry is found, return true if the given required operation
 // is contained in the ACE structure
 foreach(DatasourceOperation aclOperation in ace.DatasourceOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

private AceCollection DeserializeAcl(byte[] secDesc)
{
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream sdStream = new MemoryStream(secDesc);
 AceCollection acl = (AceCollection)bf.Deserialize(sdStream);
 return acl;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], FolderOperation)
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], FolderOperation)

Indicates whether a user is authorized to access an item in the report server database for a given folder operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperation As FolderOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 FolderOperation requiredOperation
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 FolderOperation requiredOperation
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperation : FolderOperation
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database.

Visual Basic

Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperation As FolderOperation) As Boolean
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 ' First check to see if the user or group has an access control entry for the item
 If userName = ace.PrincipalName Then
 ' If an entry is found, return true if the given required operation
 ' is contained in the ACE structure
 Dim aclOperation As FolderOperation
 For Each aclOperation In ace.FolderOperations
 If aclOperation = requiredOperation Then
 Return True
 End If
 Next aclOperation
 End If
 Next ace
 Return False
End Function 'CheckAccess

Private Function DeserializeAcl(secDesc() As Byte) As AceCollection
 Dim bf As New BinaryFormatter()
 Dim sdStream As New MemoryStream(secDesc)
 Dim acl As AceCollection = CType(bf.Deserialize(sdStream), AceCollection)
 Return acl
End Function 'DeserializeAcl

C#

public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
FolderOperation requiredOperation)
{
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 // First check to see if the user or group has an access control entry for the
item
 if (userName == ace.PrincipalName)
 {
 // If an entry is found, return true if the given required operation
 // is contained in the ACE structure
 foreach(FolderOperation aclOperation in ace.FolderOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

private AceCollection DeserializeAcl(byte[] secDesc)
{
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream sdStream = new MemoryStream(secDesc);
 AceCollection acl = (AceCollection)bf.Deserialize(sdStream);
 return acl;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], FolderOperation[])
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], FolderOperation[])

Indicates whether a user is authorized to access an item in the report server database for a given array of folder operations.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperations() As FolderOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 FolderOperation[] requiredOperations
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 FolderOperation requiredOperations[]
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperations : FolderOperation[]
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database. The example makes use of the overloaded CheckAccess method that takes a

single operation as an argument.

Visual Basic

' Overload for array of folder operations
Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperations() As FolderOperation) As Boolean
 Dim operation As FolderOperation
 For Each operation In requiredOperations
 If Not CheckAccess(userName, userToken, secDesc, operation) Then
 Return False
 End If
 Next operation
 Return True
End Function 'CheckAccess

C#

// Overload for array of folder operations
public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
FolderOperation[] requiredOperations)
{
 foreach(FolderOperation operation in requiredOperations)
 {
 if (!CheckAccess(userName, userToken, secDesc, operation))
 return false;
 }
 return true;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], ReportOperation)
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], ReportOperation)

Indicates whether a user is authorized to access an item in the report server database for a given report operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperation As ReportOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 ReportOperation requiredOperation
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 ReportOperation requiredOperation
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperation : ReportOperation
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database.

Visual Basic

Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperation As ReportOperation) As Boolean
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 ' First check to see if the user or group has an access control entry for the item
 If userName = ace.PrincipalName Then
 ' If an entry is found, return true if the given required operation
 ' is contained in the ACE structure
 Dim aclOperation As ReportOperation
 For Each aclOperation In ace.ReportOperations
 If aclOperation = requiredOperation Then
 Return True
 End If
 Next aclOperation
 End If
 Next ace
 Return False
End Function 'CheckAccess

Private Function DeserializeAcl(secDesc() As Byte) As AceCollection
 Dim bf As New BinaryFormatter()
 Dim sdStream As New MemoryStream(secDesc)
 Dim acl As AceCollection = CType(bf.Deserialize(sdStream), AceCollection)
 Return acl
End Function 'DeserializeAcl

C#

public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
ReportOperation requiredOperation)
{
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 // First check to see if the user or group has an access control entry for the
item
 if (userName == ace.PrincipalName)
 {
 // If an entry is found, return true if the given required operation
 // is contained in the ACE structure
 foreach(ReportOperation aclOperation in ace.ReportOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

private AceCollection DeserializeAcl(byte[] secDesc)
{
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream sdStream = new MemoryStream(secDesc);
 AceCollection acl = (AceCollection)bf.Deserialize(sdStream);
 return acl;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], ResourceOperation)
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], ResourceOperation)

Indicates whether a user is authorized to access an item in the report server database for a given resource operation.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperation As ResourceOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 ResourceOperation requiredOperation
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 ResourceOperation requiredOperation
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperation : ResourceOperation
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database.

Visual Basic

Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperation As ResourceOperation) As Boolean
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 ' First check to see if the user or group has an access control entry for the item
 If userName = ace.PrincipalName Then
 ' If an entry is found, return true if the given required operation
 ' is contained in the ACE structure
 Dim aclOperation As ResourceOperation
 For Each aclOperation In ace.ResourceOperations
 If aclOperation = requiredOperation Then
 Return True
 End If
 Next aclOperation
 End If
 Next ace
 Return False
End Function 'CheckAccess

Private Function DeserializeAcl(secDesc() As Byte) As AceCollection
 Dim bf As New BinaryFormatter()
 Dim sdStream As New MemoryStream(secDesc)
 Dim acl As AceCollection = CType(bf.Deserialize(sdStream), AceCollection)
 Return acl
End Function 'DeserializeAcl

C#

public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
ResourceOperation requiredOperation)
{
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 // First check to see if the user or group has an access control entry for the
item
 if (userName == ace.PrincipalName)
 {
 // If an entry is found, return true if the given required operation
 // is contained in the ACE structure
 foreach(ResourceOperation aclOperation in ace.ResourceOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

private AceCollection DeserializeAcl(byte[] secDesc)
{
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream sdStream = new MemoryStream(secDesc);
 AceCollection acl = (AceCollection)bf.Deserialize(sdStream);
 return acl;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

Reporting Services - Reporting Services Programming

CheckAccess Method (System.String, System.IntPtr,
System.Byte[], ResourceOperation[])
IAuthorizationExtension.CheckAccess Method (System.String, System.IntPtr, System.Byte[], ResourceOperation[])

Indicates whether a user is authorized to access an item in the report server database for a given array of resource operations.

Visual Basic

Function CheckAccess(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal secDesc() As Byte, _
 ByVal requiredOperations() As ResourceOperation _
) As Boolean

C#

bool CheckAccess(
 string userName,
 IntPtr userToken,
 byte[] secDesc,
 ResourceOperation[] requiredOperations
);

C++

bool CheckAccess(
 String* userName,
 IntPtr userToken,
 unsigned char secDesc __gc[],
 ResourceOperation requiredOperations[]
);

JScript

function CheckAccess(
 userName : String,
 userToken : IntPtr,
 secDesc : Byte[],
 requiredOperations : ResourceOperation[]
) : Boolean;

Parameters

userName
The name of the user requesting access to the report server.

userToken
A user account token. This token is primarily used by the report server as a handle to a Windows account in support of
credential management for Windows authentication.

secDesc
The security descriptor for the item.

requiredOperation
The operation being requested by the report server for a given user.

Return Value

Returns true if the currently authenticated user is granted access to the item based on the supplied operation and security
descriptor.

Example

Visual Basic, C#

The following example code uses the CheckAccess method to evaluate a user's authorization credentials against a security
descriptor for an item in the report server database. The example makes use of the overloaded CheckAccess method that takes a

single operation as an argument.

Visual Basic

' Overload for array of resource operations
Public Function CheckAccess(userName As String, userToken As IntPtr, secDesc() As Byte, _
 requiredOperations() As ResourceOperation) As Boolean
 Dim operation As ResourceOperation
 For Each operation In requiredOperations
 If Not CheckAccess(userName, userToken, secDesc, operation) Then
 Return False
 End If
 Next operation
 Return True
End Function 'CheckAccess

C#

// Overload for array of resource operations
public bool CheckAccess(string userName, IntPtr userToken, byte[] secDesc,
ResourceOperation[] requiredOperations)
{
 foreach(ResourceOperation operation in requiredOperations)
 {
 if (!CheckAccess(userName, userToken, secDesc, operation))
 return false;
 }
 return true;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace |
IAuthorizationExtension.CheckAccess Overload List

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

CreateSecurityDescriptor Method
IAuthorizationExtension.CreateSecurityDescriptor Method

Returns the security descriptor that is stored with an individual item in the report server database.

Visual Basic

Function CreateSecurityDescriptor(_
 ByVal acl As AceCollection, _
 ByVal itemType As SecurityItemType, _
 <Out()> ByRef stringSecDesc As String _
) As Byte()

C#

byte[] CreateSecurityDescriptor(
 AceCollection acl,
 SecurityItemType itemType,
 out string stringSecDesc
);

C++

unsigned char CreateSecurityDescriptor(
 AceCollection* acl,
 SecurityItemType itemType,
 [
 Out
] String** stringSecDesc
) __gc[];

JScript

function CreateSecurityDescriptor(
 acl : AceCollection,
 itemType : SecurityItemType,
 stringSecDesc : String
) : Byte[];

Parameters

acl
The access code list created by the report server for the item. It contains a collection of access code entries.

itemType
The type of item for which the security descriptor is created.

stringSecDesc
Optional. A user-friendly description of the security descriptor that can be used for debugging. This is not stored by the report
server.

Return Value

A serialized access code list.

Remarks

You implement this method to serialize the access code list that is applied to an item in the report server database.

A security descriptor describes the following:

The group or user that has some type of permission to perform operations on the item.
The item's type.
A discretionary access control list controlling access to the item.

You can control access to an item and its properties using a security descriptor. Using a Reporting Services security descriptor,
you can:

Grant a trustee access rights to an item and its properties.
Identify trustees using a principal name or user ID.
Set, retrieve, and modify the descriptor programmatically.

Each item's security descriptor is created by a call to the CreateSecurityDescriptor method and accessed by a call to
CheckAccess through the report server. This property is the item's descriptor in a serialized byte array. The descriptor is physically
stored in the report server database, which is internally based on a collection of access control entries. When you request an
access check on an item, the byte array is retrieved from the database and passed as an argument to the CheckAccess method.
When you set this property for an item, the AceCollection is passed and you, the developer, are required to create the binary
descriptor for the item.

Example

Visual Basic, C#

The following example code uses the CreateSecurityDescriptor method to serialize the access code list for an item in the report
server database. You can use this method to serialize additional security or authentication information as part of the security
descriptor.

Visual Basic

Public Function CreateSecurityDescriptor(acl As AceCollection, itemType As
SecurityItemType, _
 ByRef stringSecDesc As String) As Byte()
 ' Creates a memory stream and serializes the ACL for storage.
 Dim bf As New BinaryFormatter()
 Dim result As New MemoryStream()
 bf.Serialize(result, acl)
 stringSecDesc = Nothing
 Return result.GetBuffer()
End Function 'CreateSecurityDescriptor

C#

public byte[] CreateSecurityDescriptor(AceCollection acl, SecurityItemType itemType, out
string stringSecDesc)
{
 // Creates a memory stream and serializes the ACL for storage.
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream result = new MemoryStream();
 bf.Serialize(result, acl);
 stringSecDesc = null;
 return result.GetBuffer();
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

GetPermissions Method
IAuthorizationExtension.GetPermissions Method

Returns the set of permissions granted a specific user for an item in the report server database.

Visual Basic

Function GetPermissions(_
 ByVal userName As String, _
 ByVal userToken As IntPtr, _
 ByVal itemType As SecurityItemType, _
 ByVal secDesc() As Byte _
) As StringCollection

C#

StringCollection GetPermissions(
 string userName,
 IntPtr userToken,
 SecurityItemType itemType,
 byte[] secDesc
);

C++

StringCollection* GetPermissions(
 String* userName,
 IntPtr userToken,
 SecurityItemType itemType,
 unsigned char secDesc __gc[]
);

JScript

function GetPermissions(
 userName : String,
 userToken : IntPtr,
 itemType : SecurityItemType,
 secDesc : Byte[]
) : StringCollection;

Parameters

userName
The name of the user as returned by the GetUserInfo method of IAuthenticationExtension.

userToken
A pointer to the user ID returned by the GetUserInfo method.

itemType
The type of item in the report server database for which the permissions are returned.

secDesc
The security descriptor associated with the item.

Return Value

A StringCollection that contains the name of each permission associated with the user for a given item.

Remarks

The return value of this method provides underlying support for the Web service method ReportingService.GetPermissions.

Example

Visual Basic, C#

The following example code uses the GetPermissions method to evaluate the access code list for an item in the report server
database with regards to a specific user's authorization credentials. You use this method to provide a set of permissions that are

returned by the Web service method GetPermissions.

Visual Basic

Private Shared m_CatOperNames As Hashtable
Private Shared m_FldOperNames As Hashtable
Private Shared m_RptOperNames As Hashtable
Private Shared m_ResOperNames As Hashtable
Private Shared m_DSOperNames As Hashtable

Private Const NrRptOperations As Integer = 27
Private Const NrFldOperations As Integer = 9
Private Const NrResOperations As Integer = 7
Private Const NrDSOperations As Integer = 7
Private Const NrCatOperations As Integer = 15

Private Shared Sub InitializeMaps()

 ' create operation names data
 m_CatOperNames = New Hashtable()
 m_CatOperNames.Add(CatalogOperation.CreateRoles, OperationNames.OperCreateRoles)
 m_CatOperNames.Add(CatalogOperation.DeleteRoles, OperationNames.OperDeleteRoles)
 m_CatOperNames.Add(CatalogOperation.ReadRoleProperties,
OperationNames.OperReadRoleProperties)
 m_CatOperNames.Add(CatalogOperation.UpdateRoleProperties,
OperationNames.OperUpdateRoleProperties)
 m_CatOperNames.Add(CatalogOperation.ReadSystemProperties,
OperationNames.OperReadSystemProperties)
 m_CatOperNames.Add(CatalogOperation.UpdateSystemProperties,
OperationNames.OperUpdateSystemProperties)
 m_CatOperNames.Add(CatalogOperation.GenerateEvents, OperationNames.OperGenerateEvents)
 m_CatOperNames.Add(CatalogOperation.ReadSystemSecurityPolicy,
OperationNames.OperReadSystemSecurityPolicy)
 m_CatOperNames.Add(CatalogOperation.UpdateSystemSecurityPolicy,
OperationNames.OperUpdateSystemSecurityPolicy)
 m_CatOperNames.Add(CatalogOperation.CreateSchedules,
OperationNames.OperCreateSchedules)
 m_CatOperNames.Add(CatalogOperation.DeleteSchedules,
OperationNames.OperDeleteSchedules)
 m_CatOperNames.Add(CatalogOperation.ReadSchedules, OperationNames.OperReadSchedules)
 m_CatOperNames.Add(CatalogOperation.UpdateSchedules,
OperationNames.OperUpdateSchedules)
 m_CatOperNames.Add(CatalogOperation.ListJobs, OperationNames.OperListJobs)
 m_CatOperNames.Add(CatalogOperation.CancelJobs, OperationNames.OperCancelJobs)
 If m_CatOperNames.Count <> NrCatOperations Then
 Throw New Exception("Number of catalog names don't match.")
 End If

 m_FldOperNames = New Hashtable()
 m_FldOperNames.Add(FolderOperation.CreateFolder, OperationNames.OperCreateFolder)
 m_FldOperNames.Add(FolderOperation.Delete, OperationNames.OperDelete)
 m_FldOperNames.Add(FolderOperation.ReadProperties, OperationNames.OperReadProperties)
 m_FldOperNames.Add(FolderOperation.UpdateProperties,
OperationNames.OperUpdateProperties)
 m_FldOperNames.Add(FolderOperation.CreateReport, OperationNames.OperCreateReport)
 m_FldOperNames.Add(FolderOperation.CreateResource, OperationNames.OperCreateResource)
 m_FldOperNames.Add(FolderOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy)
 m_FldOperNames.Add(FolderOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy)
 m_FldOperNames.Add(FolderOperation.CreateDatasource,
OperationNames.OperCreateDatasource)
 If m_FldOperNames.Count <> NrFldOperations Then
 Throw New Exception("Number of folder names don't match.")
 End If

 m_RptOperNames = New Hashtable()
 m_RptOperNames.Add(ReportOperation.Delete, OperationNames.OperDelete)
 m_RptOperNames.Add(ReportOperation.ReadProperties, OperationNames.OperReadProperties)
 m_RptOperNames.Add(ReportOperation.UpdateProperties,
OperationNames.OperUpdateProperties)

 m_RptOperNames.Add(ReportOperation.UpdateParameters,
OperationNames.OperUpdateParameters)
 m_RptOperNames.Add(ReportOperation.ReadDatasource, OperationNames.OperReadDatasources)
 m_RptOperNames.Add(ReportOperation.UpdateDatasource,
OperationNames.OperUpdateDatasources)
 m_RptOperNames.Add(ReportOperation.ReadReportDefinition,
OperationNames.OperReadReportDefinition)
 m_RptOperNames.Add(ReportOperation.UpdateReportDefinition,
OperationNames.OperUpdateReportDefinition)
 m_RptOperNames.Add(ReportOperation.CreateSubscription,
OperationNames.OperCreateSubscription)
 m_RptOperNames.Add(ReportOperation.DeleteSubscription,
OperationNames.OperDeleteSubscription)
 m_RptOperNames.Add(ReportOperation.ReadSubscription,
OperationNames.OperReadSubscription)
 m_RptOperNames.Add(ReportOperation.UpdateSubscription,
OperationNames.OperUpdateSubscription)
 m_RptOperNames.Add(ReportOperation.CreateAnySubscription,
OperationNames.OperCreateAnySubscription)
 m_RptOperNames.Add(ReportOperation.DeleteAnySubscription,
OperationNames.OperDeleteAnySubscription)
 m_RptOperNames.Add(ReportOperation.ReadAnySubscription,
OperationNames.OperReadAnySubscription)
 m_RptOperNames.Add(ReportOperation.UpdateAnySubscription,
OperationNames.OperUpdateAnySubscription)
 m_RptOperNames.Add(ReportOperation.UpdatePolicy, OperationNames.OperUpdatePolicy)
 m_RptOperNames.Add(ReportOperation.ReadPolicy, OperationNames.OperReadPolicy)
 m_RptOperNames.Add(ReportOperation.DeleteHistory, OperationNames.OperDeleteHistory)
 m_RptOperNames.Add(ReportOperation.ListHistory, OperationNames.OperListHistory)
 m_RptOperNames.Add(ReportOperation.ExecuteAndView, OperationNames.OperExecuteAndView)
 m_RptOperNames.Add(ReportOperation.CreateResource, OperationNames.OperCreateResource)
 m_RptOperNames.Add(ReportOperation.CreateSnapshot, OperationNames.OperCreateSnapshot)
 m_RptOperNames.Add(ReportOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy)
 m_RptOperNames.Add(ReportOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy)
 m_RptOperNames.Add(ReportOperation.Execute, OperationNames.OperExecute)
 m_RptOperNames.Add(ReportOperation.CreateLink, OperationNames.OperCreateLink)
 If m_RptOperNames.Count <> NrRptOperations Then
 Throw New Exception("Number of report names don't match.")
 End If
 m_ResOperNames = New Hashtable()
 m_ResOperNames.Add(ResourceOperation.Delete, OperationNames.OperDelete)
 m_ResOperNames.Add(ResourceOperation.ReadProperties,
OperationNames.OperReadProperties)
 m_ResOperNames.Add(ResourceOperation.UpdateProperties,
OperationNames.OperUpdateProperties)
 m_ResOperNames.Add(ResourceOperation.ReadContent, OperationNames.OperReadContent)
 m_ResOperNames.Add(ResourceOperation.UpdateContent, OperationNames.OperUpdateContent)
 m_ResOperNames.Add(ResourceOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy)
 m_ResOperNames.Add(ResourceOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy)
 If m_ResOperNames.Count <> NrResOperations Then
 Throw New Exception("Number of resource names don't match.")
 End If

 m_DSOperNames = New Hashtable()
 m_DSOperNames.Add(DatasourceOperation.Delete, OperationNames.OperDelete)
 m_DSOperNames.Add(DatasourceOperation.ReadProperties,
OperationNames.OperReadProperties)
 m_DSOperNames.Add(DatasourceOperation.UpdateProperties,
OperationNames.OperUpdateProperties)
 m_DSOperNames.Add(DatasourceOperation.ReadContent, OperationNames.OperReadContent)
 m_DSOperNames.Add(DatasourceOperation.UpdateContent, OperationNames.OperUpdateContent)
 m_DSOperNames.Add(DatasourceOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy)
 m_DSOperNames.Add(DatasourceOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy)
 If m_DSOperNames.Count <> NrDSOperations Then
 Throw New Exception("Number of datasource names don't match.")
 End If

End Sub 'InitializeMaps

Public Function GetPermissions(userName As String, userToken As IntPtr, itemType As
SecurityItemType, _
 secDesc() As Byte) As StringCollection
 Dim permissions As New StringCollection()
 Dim acl As AceCollection = DeserializeAcl(secDesc)
 Dim ace As AceStruct
 For Each ace In acl
 If userName = ace.PrincipalName Then
 Dim aclOperation As CatalogOperation
 For Each aclOperation In ace.CatalogOperations
 If Not permissions.Contains(CStr(m_CatOperNames(aclOperation))) Then
 permissions.Add(CStr(m_CatOperNames(aclOperation)))
 End If
 Next aclOperation
 Dim aclOperation As ReportOperation
 For Each aclOperation In ace.ReportOperations
 If Not permissions.Contains(CStr(m_RptOperNames(aclOperation))) Then
 permissions.Add(CStr(m_RptOperNames(aclOperation)))
 End If
 Next aclOperation
 Dim aclOperation As FolderOperation
 For Each aclOperation In ace.FolderOperations
 If Not permissions.Contains(CStr(m_FldOperNames(aclOperation))) Then
 permissions.Add(CStr(m_FldOperNames(aclOperation)))
 End If
 Next aclOperation
 Dim aclOperation As ResourceOperation
 For Each aclOperation In ace.ResourceOperations
 If Not permissions.Contains(CStr(m_ResOperNames(aclOperation))) Then
 permissions.Add(CStr(m_ResOperNames(aclOperation)))
 End If
 Next aclOperation
 Dim aclOperation As DatasourceOperation
 For Each aclOperation In ace.DatasourceOperations
 If Not permissions.Contains(CStr(m_DSOperNames(aclOperation))) Then
 permissions.Add(CStr(m_DSOperNames(aclOperation)))
 End If
 Next aclOperation
 End If
 Next ace
 Return permissions
End Function 'GetPermissions

C#

private static Hashtable m_CatOperNames;
private static Hashtable m_FldOperNames;
private static Hashtable m_RptOperNames;
private static Hashtable m_ResOperNames;
private static Hashtable m_DSOperNames;

private const int NrRptOperations = 27;
private const int NrFldOperations = 9;
private const int NrResOperations = 7;
private const int NrDSOperations = 7;
private const int NrCatOperations = 15;

private static void InitializeMaps()
{

 // create operation names data
 m_CatOperNames = new Hashtable();
 m_CatOperNames.Add(CatalogOperation.CreateRoles,
OperationNames.OperCreateRoles);
 m_CatOperNames.Add(CatalogOperation.DeleteRoles,
OperationNames.OperDeleteRoles);
 m_CatOperNames.Add(CatalogOperation.ReadRoleProperties,
OperationNames.OperReadRoleProperties);
 m_CatOperNames.Add(CatalogOperation.UpdateRoleProperties,
OperationNames.OperUpdateRoleProperties);

 m_CatOperNames.Add(CatalogOperation.ReadSystemProperties,
OperationNames.OperReadSystemProperties);
 m_CatOperNames.Add(CatalogOperation.UpdateSystemProperties,
OperationNames.OperUpdateSystemProperties);
 m_CatOperNames.Add(CatalogOperation.GenerateEvents,
OperationNames.OperGenerateEvents);
 m_CatOperNames.Add(CatalogOperation.ReadSystemSecurityPolicy,
OperationNames.OperReadSystemSecurityPolicy);
 m_CatOperNames.Add(CatalogOperation.UpdateSystemSecurityPolicy,
OperationNames.OperUpdateSystemSecurityPolicy);
 m_CatOperNames.Add(CatalogOperation.CreateSchedules,
OperationNames.OperCreateSchedules);
 m_CatOperNames.Add(CatalogOperation.DeleteSchedules,
OperationNames.OperDeleteSchedules);
 m_CatOperNames.Add(CatalogOperation.ReadSchedules,
OperationNames.OperReadSchedules);
 m_CatOperNames.Add(CatalogOperation.UpdateSchedules,
OperationNames.OperUpdateSchedules);
 m_CatOperNames.Add(CatalogOperation.ListJobs,
OperationNames.OperListJobs);
 m_CatOperNames.Add(CatalogOperation.CancelJobs,
OperationNames.OperCancelJobs);
 if (m_CatOperNames.Count != NrCatOperations)
 {
 throw new Exception("Number of catalog names don't match.");
 }

 m_FldOperNames = new Hashtable();
 m_FldOperNames.Add(FolderOperation.CreateFolder,
OperationNames.OperCreateFolder);
 m_FldOperNames.Add(FolderOperation.Delete,
OperationNames.OperDelete);
 m_FldOperNames.Add(FolderOperation.ReadProperties,
OperationNames.OperReadProperties);
 m_FldOperNames.Add(FolderOperation.UpdateProperties,
OperationNames.OperUpdateProperties);
 m_FldOperNames.Add(FolderOperation.CreateReport,
OperationNames.OperCreateReport);
 m_FldOperNames.Add(FolderOperation.CreateResource,
OperationNames.OperCreateResource);
 m_FldOperNames.Add(FolderOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy);

m_FldOperNames.Add(FolderOperation.UpdateDeleteAuthorizationPolicy,OperationNames.OperUpd
ateDeleteAuthorizationPolicy);
 m_FldOperNames.Add(FolderOperation.CreateDatasource,
OperationNames.OperCreateDatasource);
 if (m_FldOperNames.Count != NrFldOperations)
 {
 throw new Exception("Number of folder names don't match.");
 }

 m_RptOperNames = new Hashtable();
 m_RptOperNames.Add(ReportOperation.Delete,
OperationNames.OperDelete);
 m_RptOperNames.Add(ReportOperation.ReadProperties,
OperationNames.OperReadProperties);
 m_RptOperNames.Add(ReportOperation.UpdateProperties,
OperationNames.OperUpdateProperties);
 m_RptOperNames.Add(ReportOperation.UpdateParameters,
OperationNames.OperUpdateParameters);
 m_RptOperNames.Add(ReportOperation.ReadDatasource,
OperationNames.OperReadDatasources);
 m_RptOperNames.Add(ReportOperation.UpdateDatasource,
OperationNames.OperUpdateDatasources);
 m_RptOperNames.Add(ReportOperation.ReadReportDefinition,
OperationNames.OperReadReportDefinition);
 m_RptOperNames.Add(ReportOperation.UpdateReportDefinition,
OperationNames.OperUpdateReportDefinition);
 m_RptOperNames.Add(ReportOperation.CreateSubscription,
OperationNames.OperCreateSubscription);

 m_RptOperNames.Add(ReportOperation.DeleteSubscription,
OperationNames.OperDeleteSubscription);
 m_RptOperNames.Add(ReportOperation.ReadSubscription,
OperationNames.OperReadSubscription);
 m_RptOperNames.Add(ReportOperation.UpdateSubscription,
OperationNames.OperUpdateSubscription);
 m_RptOperNames.Add(ReportOperation.CreateAnySubscription,
OperationNames.OperCreateAnySubscription);
 m_RptOperNames.Add(ReportOperation.DeleteAnySubscription,
OperationNames.OperDeleteAnySubscription);
 m_RptOperNames.Add(ReportOperation.ReadAnySubscription,
OperationNames.OperReadAnySubscription);
 m_RptOperNames.Add(ReportOperation.UpdateAnySubscription,
OperationNames.OperUpdateAnySubscription);
 m_RptOperNames.Add(ReportOperation.UpdatePolicy,
OperationNames.OperUpdatePolicy);
 m_RptOperNames.Add(ReportOperation.ReadPolicy,
OperationNames.OperReadPolicy);
 m_RptOperNames.Add(ReportOperation.DeleteHistory,
OperationNames.OperDeleteHistory);
 m_RptOperNames.Add(ReportOperation.ListHistory,
OperationNames.OperListHistory);
 m_RptOperNames.Add(ReportOperation.ExecuteAndView,
OperationNames.OperExecuteAndView);
 m_RptOperNames.Add(ReportOperation.CreateResource,
OperationNames.OperCreateResource);
 m_RptOperNames.Add(ReportOperation.CreateSnapshot,
OperationNames.OperCreateSnapshot);
 m_RptOperNames.Add(ReportOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy);

m_RptOperNames.Add(ReportOperation.UpdateDeleteAuthorizationPolicy,OperationNames.OperUpd
ateDeleteAuthorizationPolicy);
 m_RptOperNames.Add(ReportOperation.Execute,
OperationNames.OperExecute);
 m_RptOperNames.Add(ReportOperation.CreateLink,
OperationNames.OperCreateLink);
 if (m_RptOperNames.Count != NrRptOperations)
 {
 throw new Exception("Number of report names don't match.");
 }
 m_ResOperNames = new Hashtable();
 m_ResOperNames.Add(ResourceOperation.Delete,
OperationNames.OperDelete);
 m_ResOperNames.Add(ResourceOperation.ReadProperties,
OperationNames.OperReadProperties);
 m_ResOperNames.Add(ResourceOperation.UpdateProperties,
OperationNames.OperUpdateProperties);
 m_ResOperNames.Add(ResourceOperation.ReadContent,
OperationNames.OperReadContent);
 m_ResOperNames.Add(ResourceOperation.UpdateContent,
OperationNames.OperUpdateContent);
 m_ResOperNames.Add(ResourceOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy);
 m_ResOperNames.Add(ResourceOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy);
 if (m_ResOperNames.Count != NrResOperations)
 {
 throw new Exception("Number of resource names don't match.");
 }

 m_DSOperNames = new Hashtable();
 m_DSOperNames.Add(DatasourceOperation.Delete,
OperationNames.OperDelete);
 m_DSOperNames.Add(DatasourceOperation.ReadProperties,
OperationNames.OperReadProperties);
 m_DSOperNames.Add(DatasourceOperation.UpdateProperties,
OperationNames.OperUpdateProperties);
 m_DSOperNames.Add(DatasourceOperation.ReadContent,
OperationNames.OperReadContent);
 m_DSOperNames.Add(DatasourceOperation.UpdateContent,
OperationNames.OperUpdateContent);

 m_DSOperNames.Add(DatasourceOperation.ReadAuthorizationPolicy,
OperationNames.OperReadAuthorizationPolicy);
 m_DSOperNames.Add(DatasourceOperation.UpdateDeleteAuthorizationPolicy,
OperationNames.OperUpdateDeleteAuthorizationPolicy);
 if (m_DSOperNames.Count != NrDSOperations)
 {
 throw new Exception("Number of datasource names don't match.");
 }
}

public StringCollection GetPermissions(string userName, IntPtr userToken,
SecurityItemType itemType, byte[] secDesc)
{
 StringCollection permissions = new StringCollection();
 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 if (userName == ace.PrincipalName)
 {
 foreach(CatalogOperation aclOperation in ace.CatalogOperations)
 {
 if (!permissions.Contains((string)m_CatOperNames[aclOperation]))
 permissions.Add((string)m_CatOperNames[aclOperation]);
 }
 foreach(ReportOperation aclOperation in ace.ReportOperations)
 {
 if (!permissions.Contains((string)m_RptOperNames[aclOperation]))
 permissions.Add((string)m_RptOperNames[aclOperation]);
 }
 foreach(FolderOperation aclOperation in ace.FolderOperations)
 {
 if (!permissions.Contains((string)m_FldOperNames[aclOperation]))
 permissions.Add((string)m_FldOperNames[aclOperation]);
 }
 foreach(ResourceOperation aclOperation in ace.ResourceOperations)
 {
 if (!permissions.Contains((string)m_ResOperNames[aclOperation]))
 permissions.Add((string)m_ResOperNames[aclOperation]);
 }
 foreach(DatasourceOperation aclOperation in ace.DatasourceOperations)
 {
 if (!permissions.Contains((string)m_DSOperNames[aclOperation]))
 permissions.Add((string)m_DSOperNames[aclOperation]);
 }
 }
 }
 return permissions;
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

IAuthorizationExtension Interface | IAuthorizationExtension Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

IDeliveryExtension Interface
IDeliveryExtension Interface

Represents a delivery extension in Reporting Services.

For a list of all members of this type, see IDeliveryExtension Members.

Microsoft.ReportingServices.Interfaces.IExtension
 Microsoft.ReportingServices.Interfaces.IDeliveryExtension

Visual Basic

Public Interface IDeliveryExtension
 Inherits IExtension

C#

public interface IDeliveryExtension : IExtension

C++

public __gc __interface IDeliveryExtension : public IExtension

JScript

public interface IDeliveryExtension implements IExtension

Remarks

The IDeliveryExtension interface enables an you to implement a delivery extension class, which represents a way that report
notifications can be delivered to users. For more information about the IDeliveryExtension interface, see Implementing the
IDeliveryExtension Interface for a Delivery Extension.

An application does not create an instance of the IDeliveryExtension interface directly, but creates an instance of a class that
implements IDeliveryExtension.

Classes that implement IDeliveryExtension must implement all inherited members, and typically define additional members to
add the delivery provider-specific functionality. For example, the IDeliveryExtension interface defines the Deliver method. In
turn, the e-mail delivery provider that ships with Reporting Services implements the Deliver method in order to send reports
notifications via e-mail.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IDeliveryExtension Members
IDeliveryExtension Members

IDeliveryExtension overview

Public Properties

ExtensionSettings Contains a list of settings that are used by
the delivery extension. This property is
used by the ListExtensions Web service
method to return a list of supported
settings for the extension.

IsPrivilegedUser Indicates whether the user is allowed
access to all the functionality of the
extension.

ReportServerInformation Gets information about the report server
that the delivery extension requires in
order to perform deliveries.

Public M ethods

Deliver Delivers the report notification to a user
based on the contents of the notification.

ValidateUserData Used to determine whether a given set of
delivery extension settings are valid.

See Also

IDeliveryExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
IDeliveryExtension Properties

The properties of the IDeliveryExtension interface are listed here. For a complete list of IDeliveryExtension interface members,
see IDeliveryExtension Members.

Public Properties

ExtensionSettings Gets a list of settings that can be used for
the delivery extension.

IsPrivilegedUser Indicates whether the user is allowed
access to all the functionality of the
extension.

ReportServerInformation Gets information about the report server
that the delivery extension requires in
order to perform deliveries.

See Also

IDeliveryExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ExtensionSettings Property
IDeliveryExtension.ExtensionSettings Property

Gets a list of settings that are used by the delivery extension to create a notification or report.

Visual Basic

ReadOnly Property ExtensionSettings As Setting ()

C#

Setting[] ExtensionSettings {get;}

C++

__property Setting* get_ExtensionSettings();

JScript

function get ExtensionSettings() : Setting[];

Property Value

The settings of a delivery extension.

Remarks

Delivery extensions must implement the ExtensionSettings property. The report server uses the value returned by the
ExtensionSettings property to evaluate the settings that a delivery extension requires. Clients that interact with delivery
extensions use the GetExtensionSettings method of the Web service to return a list of settings for the delivery extension. If this
method is not properly implemented, clients cannot retrieve a list of settings for the extension and therefore cannot retrieve the
necessary information to use the delivery extension in subscriptions.

Example

Visual Basic .NET, C#

The following code example returns settings that might be used in a delivery provider that sends reports to a printer.

Visual Basic .NET

Visual Basic implementation not available for this release.

C#

private Setting[] m_settings = null;
// Public property implementation
public Setting[] ExtensionSettings
{
 get
 {
 if (m_settings == null)
 {
 m_settings = new Setting[3];
 m_settings[0] = new Setting();
 m_settings[0].Name = SubscriptionData.PRINTER;
 m_settings[0].ReadOnly = false;
 m_settings[0].Required = true;

 // Add the printer names that were retrieved from the
 // configuration file to the set of valid values for
 // the setting
 foreach (string printer in m_printers)
 {
 m_settings[0].AddValidValue(printer.ToString(), printer.ToString());
 }

 // Setting for page height
 m_settings[1] = new Setting();
 m_settings[1].Name = SubscriptionData.PAGEHEIGHT;
 m_settings[1].ReadOnly = false;
 m_settings[1].Required = true;
 m_settings[1].Value = "11";

 // Setting for page width
 m_settings[2] = new Setting();
 m_settings[2].Name = SubscriptionData.PAGEWIDTH;
 m_settings[2].ReadOnly = false;
 m_settings[2].Required = true;
 m_settings[2].Value = "8.5";
 }

 return m_settings;
 }
}

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryExtension Interface | IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IsPrivilegedUser Property
IDeliveryExtension.IsPrivilegedUser Property

Indicates whether the user is allowed access to all the functionality of the extension.

Visual Basic

Property IsPrivilegedUser As Boolean

C#

bool IsPrivilegedUser {set;}

C++

__property void set_IsPrivilegedUser(bool);

JScript

function set IsPrivilegedUser(Boolean);

Property Value

A Boolean value that indicates whether the user is allowed access to all the functionality of the extension. When set to false, the
extension prevents the user from accessing functionality as defined by the report server. The default value is false. If a user that
creates the subscription has Manage All Subscriptions permission as part of his or her defined role, the value of the property is
true.

This property is never set by your delivery extension. You must implement the IsPrivilegedUser property so that the report
server can properly manage it, but it is never used by your delivery extension code.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryExtension Interface | IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ReportServerInformation Property
IDeliveryExtension.ReportServerInformation Property

Gets information about the report server that the delivery extension requires in order to perform deliveries.

Visual Basic

Property ReportServerInformation As _
 IDeliveryReportServerInformation

C#

IDeliveryReportServerInformation ReportServerInformation {set;}

C++

__property void set_ReportServerInformation(IDeliveryReportServerInformation*);

JScript

function set ReportServerInformation(IDeliveryReportServerInformation);

Property Value

An IDeliveryReportServerInformation interface that can be used to obtain specific information about a report server prior to
delivering report notifications, for example, the list of installed rendering extensions.

Remarks

This property contains the names of rendering extensions supported by the server. Depending on the functionality of your
delivery extension, you should limit the available rendering extensions to only those supported by your delivery mechanism.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryExtension Interface | IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Methods
IDeliveryExtension Methods

The methods of the IDeliveryExtension interface are listed here. For a complete list of IDeliveryExtension interface members,
see IDeliveryExtension Members.

Public M ethods

Deliver Delivers the report notification to a user
based on the contents of the notification.

ValidateUserData Used to determine whether a given set of
delivery extension settings are valid.

See Also

IDeliveryExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Deliver Method
IDeliveryExtension.Deliver Method

Delivers the report notification to a user based on the contents of the notification.

Visual Basic

Function Deliver(_
 ByVal notification As Notification _
) As Boolean

C#

bool Deliver(
 Notification notification
);

C++

bool Deliver(
 Notification* notification
);

JScript

function Deliver(
 notification : Notification
) : Boolean;

Parameters

notification
A Notification object containing information required by the delivery extension to deliver a report.

Return Value

A Boolean value indicating whether or not the delivery was successful.

Remarks

The Deliver method causes the delivery extension to perform the tasks required to deliver the report notification to the user as
defined in the notification parameter. The method is intended for synchronous use only.

Before returning from the method, the delivery extension must update and save the Status and Retry properties of the
Notification object that is passed to the method.

Your Delivery method should return true to indicate whether that notification was delivered successfully; false if the notification
failed. When set to false, the report server retries the notification if the Retry property of the notification object is set to true, as
long as the max number of retries has not been reached.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryExtension Interface | IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ValidateUserData Method
IDeliveryExtension.ValidateUserData Method

Used to determine whether a given set of delivery extension settings are valid.

Visual Basic

Function ValidateUserData(_
 ByVal settings() As Setting _
) As Setting()

C#

Setting[] ValidateUserData(
 Setting[] settings
);

C++

Setting* ValidateUserData(
 Setting* settings[]
) [];

JScript

function ValidateUserData(
 settings : Setting[]
) : Setting[];

Parameters

settings
An array of Setting[] objects containing extension settings supplied by a client.

Return Value

An array of Setting[] objects containing extension settings that have been validated by the delivery extension.

Remarks

The ValidateUserData method is called whenever a subscription is created or modified. You should add code to the
ValidateUserData method to ensure that the values that a user has chosen for a delivery extension's settings meet the
requirements for delivery. For example, in e-mail delivery, you might want to ensure that the e-mail address that is supplied by
the user conforms to e-mail formatting standards. In printer delivery, you might want to validate the printer that a user chooses
against the known list of installed printers on the server.

If a particular setting that you validate contains an error condition, you should set the Error property of the setting that is not
valid. In addition, you can add default values for settings that are missing to prevent the delivery from failing.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryExtension Interface | IDeliveryExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IDeliveryReportServerInformation Interface
IDeliveryReportServerInformation Interface

Contains information about the report server that is required by delivery extensions. For example, a list of the available rendering
extensions.

For a list of all members of this type, see IDeliveryReportServerInformation Members.

Visual Basic

Public Interface IDeliveryReportServerInformation

C#

public interface IDeliveryReportServerInformation

C++

public __gc __interface IDeliveryReportServerInformation

JScript

public interface IDeliveryReportServerInformation

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IDeliveryReportServerInformation Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IDeliveryReportServerInformation Members
IDeliveryReportServerInformation Members

IDeliveryReportServerInformation overview

Public Properties

RenderingExtension An array of Extension[] objects
representing the rendering extensions
currently deployed on a report server.

ServerSettings Gets the setting values for the current
extension.

See Also

IDeliveryReportServerInformation Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
IDeliveryReportServerInformation Properties

The properties of the IDeliveryReportServerInformation interface are listed here. For a complete list of
IDeliveryReportServerInformation interface members, see IDeliveryReportServerInformation Members.

Public Properties

RenderingExtension An array of Extension[] objects
representing the rendering extensions
currently deployed on a report server.

ServerSettings Gets the setting values for the current
extension.

See Also

IDeliveryReportServerInformation Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

RenderingExtension Property
IDeliveryReportServerInformation.RenderingExtension Property

An array of Extension[] objects representing the rendering extensions currently deployed on a report server.

Visual Basic

ReadOnly Property RenderingExtension As Extension ()

C#

Extension[] RenderingExtension {get;}

C++

__property Extension* get_RenderingExtension();

JScript

function get RenderingExtension() : Extension[];

Property Value

A list of rendering extensions that are currently available on the report server.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryReportServerInformation Interface | IDeliveryReportServerInformation Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

ServerSettings Property
IDeliveryReportServerInformation.ServerSettings Property

Gets the setting values for the current extension.

Visual Basic

ReadOnly Property ServerSettings As Setting ()

C#

Setting[] ServerSettings {get;}

C++

__property Setting* get_ServerSettings();

JScript

function get ServerSettings() : Setting[];

Property Value

An array of Setting[] objects.

Remarks

This property is intended to be used only in delivery extension user interfaces. It enables the extension to retrieve any setting
information from the report server database for the current extension.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IDeliveryReportServerInformation Interface | IDeliveryReportServerInformation Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

IExtension Interface
IExtension Interface

Represents an extension in Reporting Services.

For a list of all members of this type, see IExtension Members.

Visual Basic

Public Interface IExtension

C#

public interface IExtension

C++

public __gc __interface IExtension

JScript

public interface IExtension

Remarks

The IExtension interface enables you to implement a localized extension name and to process extension-specific configuration
information stored in the Reporting Services configuration file. IExtension represents an extension in Reporting Services. The
IExtension interface can be used to build custom data, delivery and rendering extensions.

An application does not create an instance of the IExtension interface directly, but creates an instance of a class that implements
IExtension.

Classes that implement IExtension must implement all inherited members, and typically define additional members to add
provider-specific functionality.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

IExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IExtension Members
IExtension Members

IExtension overview

Public Properties

LocalizedName Gets the localized name of the extension
to be displayed in a user interface.

Public M ethods

SetConfiguration Used to pass custom configuration data to
an extension.

See Also

IExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
IExtension Properties

The properties of the IExtension interface are listed here. For a complete list of IExtension interface members, see IExtension
Members.

Public Properties

LocalizedName Gets the localized name of the extension
to be displayed in a user interface.

See Also

IExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

LocalizedName Property
IExtension.LocalizedName Property

Gets the localized name of the extension to be displayed in a user interface.

Visual Basic

ReadOnly Property LocalizedName As String

C#

string LocalizedName {get;}

C++

__property String* get_LocalizedName();

JScript

function get LocalizedName() : String;

Property Value

The localized name of the extension.

Remarks

The LocalizedName property is called by the report server to retrieve the localized name of the extension. Your extension should
set the localized name based on the locale of the calling thread. You can use the CultureInfo class in System.Globalization
namespace to discover the locale settings of the thread. For more information, see "System.Globalization Namespace" in the
Microsoft .NET Framework SDK documentation.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IExtension Interface | IExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Methods
IExtension Methods

The methods of the IExtension interface are listed here. For a complete list of IExtension interface members, see IExtension
Members.

Public M ethods

SetConfiguration Used to pass custom configuration data to
an extension.

See Also

IExtension Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

SetConfiguration Method
IExtension.SetConfiguration Method

Used to pass custom configuration data to an extension.

Visual Basic

Sub SetConfiguration(_
 ByVal configuration As String _
)

C#

void SetConfiguration(
 string configuration
);

C++

void SetConfiguration(
 String* configuration
);

JScript

function SetConfiguration(
 configuration : String
);

Parameters

configuration
The XML string from the configuration file that contains extension configuration data.

Remarks

Configuration data that you store in the configuration file for your custom extension takes the form of a Configuration element.
The Configuration element is a child element of the Extension element entry in the rsreportserver.config file. The XML structure
used in the configuration file might look like the one in the following example:

<Extension Name="My Extension"
Type="Microsoft.Samples.ReportingServices.MyExtension.ExtensionClass,Microsoft.Samples.Re
portingServices.MyExtension">
 <Configuration>
 <MyExtensionConfigurationData>
 <MyExtensionData1>Value</MyExtensionData1>
 <MyExtensionData2>Value</MyExtensionData2>
 </MyExtensionConfigurationData>
 </Configuration>
</Extension>

If no Configuration element is present for an extension entry in the configuration file, Reporting Services sets the value of the
configuration parameter to an empty string.

Note The Configuration element is not passed into the configuration argument. You should parse the inner XML of
the Configuration element, if you want to process configuration data.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

IExtension Interface | IExtension Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ISubscriptionBaseUIUserControl Interface
ISubscriptionBaseUIUserControl Interface

Represents the means to retrieve delivery extension-specific subscription information from the user (for example, e-mail
addresses).

For a list of all members of this type, see ISubscriptionBaseUIUserControl Members.

Microsoft.ReportingServices.Interfaces.IExtension
 Microsoft.ReportingServices.Interfaces.ISubscriptionBaseUIUserControl

Visual Basic

Public Interface ISubscriptionBaseUIUserControl
 Inherits IExtension

C#

public interface ISubscriptionBaseUIUserControl : IExtension

C++

public __gc __interface ISubscriptionBaseUIUserControl : public
 IExtension

JScript

public interface ISubscriptionBaseUIUserControl implements
 IExtension

Remarks

The ISubscriptionBaseUIUserControl interface enables you to implement a subscription user interface for Report Manager. For
more information about the ISubscriptionBaseUIUserControl interface, see Implementing the ISubscriptionBaseUIUserControl
Interface for a Delivery Extension.

An application does not create an instance of the ISubscriptionBaseUIUserControl interface directly, but creates an instance of
a class that implements ISubscriptionBaseUIUserControl.

Classes that implement ISubscriptionBaseUIUserControl must also implement all inherited members, and typically define
additional members to add the delivery provider-specific functionality. Classes that implement
ISubscriptionBaseUIUserControl must also inherit from System.Web.UI.WebControls.WebControl.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ISubscriptionBaseUIUserControl Members
ISubscriptionBaseUIUserControl Members

ISubscriptionBaseUIUserControl overview

Public Properties

Description Gets the description of the delivery that is
displayed in Report Manager.

IsPrivilegedUser Indicates whether the user is allowed
access to all the functionality of the
extension. When set to false, the
extension prevents the user from
accessing functionality as defined by the
extension. The default value is false.

ReportServerInformation Gets information about the report server
that the delivery extension requires in
order to perform deliveries.

UserData An array of Setting[] objects that define
the extension settings for a notification.

Public M ethods

Validate Used to determine whether the settings
for a delivery extension are valid.

See Also

ISubscriptionBaseUIUserControl Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
ISubscriptionBaseUIUserControl Properties

The properties of the ISubscriptionBaseUIUserControl interface are listed here. For a complete list of
ISubscriptionBaseUIUserControl interface members, see ISubscriptionBaseUIUserControl Members.

Public Properties

Description Gets the description of the delivery that is
displayed in Report Manager.

IsPrivilegedUser Indicates whether the user is allowed
access to all the functionality of the
extension.

ReportServerInformation Gets information about the report server
that the delivery extension requires in
order to perform deliveries.

UserData An array of Setting[] objects that define
the extension settings for a notification.

See Also

ISubscriptionBaseUIUserControl Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Description Property
ISubscriptionBaseUIUserControl.Description Property

Gets the description of the delivery that is displayed in Report Manager.

Visual Basic

ReadOnly Property Description As String

C#

string Description {get;}

C++

property String* get_Description();

JScript

function get Description() : String;

Property Value

The description of the delivery that is displayed in Report Manager.

Remarks

The description of the subscription appears in Report Manager after a user has selected values for the subscription settings and
set a defined schedule. The description is displayed on the Subscription page

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ISubscriptionBaseUIUserControl Interface | ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

IsPrivilegedUser Property
ISubscriptionBaseUIUserControl.IsPrivilegedUser Property

Indicates whether the user is allowed access to all the functionality of the extension.

Visual Basic

Property IsPrivilegedUser As Boolean

C#

bool IsPrivilegedUser {set;}

C++

__property void set_IsPrivilegedUser(bool);

JScript

function set IsPrivilegedUser(Boolean);

Property Value

A Boolean that indicates whether the user is allowed access to all the functionality of the extension. When set to false, the
extension prevents the user from accessing functionality as defined by the extension. The default value is false.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ISubscriptionBaseUIUserControl Interface | ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

ReportServerInformation Property
ISubscriptionBaseUIUserControl.ReportServerInformation Property

Gets information about the report server that the delivery extension requires in order to perform deliveries.

Visual Basic

Property ReportServerInformation As _
 IDeliveryReportServerInformation

C#

IDeliveryReportServerInformation ReportServerInformation {set;}

C++

__property void set_ReportServerInformation(IDeliveryReportServerInformation*);

JScript

function set ReportServerInformation(IDeliveryReportServerInformation);

Property Value

An IDeliveryReportServerInformation interface that can be used to obtain specific information about a report server prior to
delivering report notifications, for example, the list of installed rendering extensions.

Remarks

This property contains the names of rendering extensions supported by the server. Depending on the functionality of your
delivery extension, you should limit the available rendering extensions to only those supported by your delivery mechanism.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ISubscriptionBaseUIUserControl Interface | ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

UserData Property
ISubscriptionBaseUIUserControl.UserData Property

An array of Setting[] objects that define the extension settings for a notification.

Visual Basic

Property UserData As Setting ()

C#

Setting[] UserData {get; set;}

C++

__property Setting* get_UserData();
__property void set_UserData(Setting*[]);

JScript

function get UserData() : Setting[];function set
 UserData(Setting[]);

Property Value

An array of Setting[] objects set by the subscription owner.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ISubscriptionBaseUIUserControl Interface | ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

Methods
ISubscriptionBaseUIUserControl Methods

The methods of the ISubscriptionBaseUIUserControl interface are listed here. For a complete list of
ISubscriptionBaseUIUserControl interface members, see ISubscriptionBaseUIUserControl Members.

Public M ethods

Validate Used to determine whether the settings
for a delivery extension are valid.

See Also

ISubscriptionBaseUIUserControl Interface | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Validate Method
ISubscriptionBaseUIUserControl.Validate Method

Used to determine whether the settings for a delivery extension are valid.

Visual Basic

Function Validate() As Boolean

C#

bool Validate();

C++

bool Validate();

JScript

function Validate() : Boolean;

Return Value

A Boolean indicating whether the information specified in the UserData property is valid.

Remarks

You should implement this method to include your provider specific validation. The Validate method is called by Reporting
Services to validate user input through Report Manager.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ISubscriptionBaseUIUserControl Interface | ISubscriptionBaseUIUserControl Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

Notification Class
Notification Class

Represents subscription information that delivery extensions use to deliver reports.

For a list of all members of this type, see Notification Members.

System.Object
 Microsoft.ReportingServices.Interfaces.Notification

Visual Basic

MustInherit Public Class Notification

C#

public abstract class Notification

C++

public __gc __abstract class Notification

JScript

public abstract class Notification

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Notification Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Notification Members
Notification Members

Notification overview

Public Properties

Attempt Indicates how many times the report
server has attempted to deliver the
notification.

MaxNumberOfRetries Indicates the maximum number of times
the report server attempts to deliver the
notification. This value is based on
information contained in the delivery
extension's configuration file.

Owner The user name of the owner who
generated the notification. User name is in
the form of domain\alias.

Report A Report object containing information
about the report that is associated with
the subscription.

Retry Indicates that the report server should
retry delivering the notification.

Status A description of the status of the
notification. Displayed in the subscription
user interface.

UserData An array of Setting[] objects that defines
the values of the extension settings for the
notification.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

Save Saves changes made to a Notification
object in the associated subscription.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Constructors

Notification Constructor Initializes a new instance of the
Notification class.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Notification Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Notification Constructor
Notification Constructor

Initializes a new instance of the Notification class.

Visual Basic

Protected Sub New()

C#

protected Notification();

C++

protected: Notification();

JScript

protected function Notification();

Remarks

This constructor is called by derived class constructors to initialize state in this type.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
Notification Properties

The properties of the Notification class are listed here. For a complete list of Notification class members, see Notification
Members.

Public Properties

Attempt Indicates how many times the report
server has attempted to deliver the
notification.

MaxNumberOfRetries Indicates the maximum number of times
the report server attempts to deliver the
notification. This value is based on
information contained in the delivery
'extension's configuration file.

Owner The user name of the owner who
generated the notification. User name is in
the form of domain\alias.

Report A Report object containing information
about the report that is associated with
the subscription.

Retry Indicates that the report server should
retry delivering the notification.

Status A description of the status of the
notification. Displayed in the subscription
user interface.

UserData An array of Setting[] objects that defines
the values of the extension settings for the
notification.

See Also

Notification Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Attempt Property
Notification.Attempt Property

Indicates how many times the report server has attempted to deliver the notification.

Visual Basic

Public MustOverride ReadOnly Property Attempt As Integer

C#

public abstract int Attempt {get;}

C++

public: __property virtual int get_Attempt() = 0;

JScript

public abstract function get Attempt() : int;

Property Value

A Boolean value that indicates how many times the report server has attempted to deliver the notification.

Remarks

The number of attempt indicated by the value of the Attempt property includes the current attempt to deliver the notification.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

MaxNumberOfRetries Property
Notification.MaxNumberOfRetries Property

Indicates the maximum number of times the report server attempts to deliver the notification. This value is based on information
contained in the delivery extension's configuration file.

Visual Basic

Public MustOverride ReadOnly Property MaxNumberOfRetries As Integer

C#

public abstract int MaxNumberOfRetries {get;}

C++

public: __property virtual int get_MaxNumberOfRetries() = 0;

JScript

public abstract function get MaxNumberOfRetries() : int;

Property Value

The maximum number of times the report server retries to deliver the notification.

Remarks

This property is set in the Delivery element of the RSReportServer.config file.

<Delivery>
 <MaxNumberOfRetries>4</MaxNumberOfRetries>
 <Extension... />
</Delivery>

For more information about the report server configuration file, see Using Reporting Services Configuration Files.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Owner Property
Notification.Owner Property

The user name of the owner who generated the notification. User name is in the form of domain\alias.

Visual Basic

Public MustOverride ReadOnly Property Owner As String

C#

public abstract string Owner {get;}

C++

public: __property virtual String* get_Owner() = 0;

JScript

public abstract function get Owner() : String;

Property Value

The user name of the owner who generated the subscription.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Report Property
Notification.Report Property

A Report object containing information about the report that is associated with the subscription.

Visual Basic

Public MustOverride ReadOnly Property Report As Report

C#

public abstract Report Report {get;}

C++

public: __property virtual Report* get_Report() = 0;

JScript

public abstract function get Report() : Report;

Property Value

Information about the report that is associated with the notification.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Retry Property
Notification.Retry Property

Indicates that the report server should retry delivering the notification.

Visual Basic

Public MustOverride Property Retry As Boolean

C#

public abstract bool Retry {get; set;}

C++

public: __property virtual bool get_Retry() = 0;
public: __property virtual void set_Retry(bool) = 0;

JScript

public abstract function get Retry() : Boolean;
public abstract function set Retry(Boolean);

Property Value

A Boolean value indicating whether the report server should retry delivering the notification.

Remarks

If an error occurs based on a temporary condition you should set the value of retry to a value of true. If you set the Retry
property to a value of false, the report server does not retry delivering the notification.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Status Property
Notification.Status Property

The status of the notification. Displayed in the subscription user interface.

Visual Basic

Property Status As String

C#

string Status {set;}

C++

public: __property virtual void set_Status(String*) = 0;

JScript

public abstract function set Status(String);

Property Value

The status of the notification.

Remarks

The status is set by the extension. You should update the status of the notification in your delivery extension code when a delivery
is successful or when errors occur.

Consider localizing the value of the Status property to the current locale. Status is displayed in Report Manager on the
Subscriptions page.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

UserData Property
Notification.UserData Property

An array of Setting[] objects that defines the values of the extension settings for the notification.

Visual Basic

Public MustOverride ReadOnly Property UserData As Setting ()

C#

public abstract Setting[] UserData {get;}

C++

public: __property virtual Setting* get_UserData() = 0;

JScript

public abstract function get UserData() : Setting[];

Property Value

The setting values for the notification.

Remarks

The UserData property contains the setting values that were applied when the subscription for the notification was created. You
can use this information to pass the user's setting information to your custom delivery code.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Methods
Notification Methods

The methods of the Notification class are listed here. For a complete list of Notification class members, see Notification
Members.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

Save Saves changes made to a Notification
object in the associated subscription.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Notification Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Save Method
Notification.Save Method

Saves changes made to a Notification object in the associated subscription.

Visual Basic

Public MustOverride Sub Save()

C#

public abstract void Save();

C++

public: virtual void Save() = 0;

JScript

public abstract function Save();

Remarks

The Save method allows delivery extensions to update a subscription with changes made to the Notification object. Any
changes to the UserData and Status properties are written back to the subscription that was used to generate the Notification
object. The Save method allows delivery extensions to update the status of the subscription and to upgrade configuration
information without requiring a user to recreate a subscription.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Notification Class | Notification Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperationNames Class
OperationNames Class

Contains the field names and corresponding values for operations that users can perform on items in Reporting Services.

For a list of all members of this type, see OperationNames Members.

System.Object
 Microsoft.ReportingServices.Interfaces.OperationNames

Visual Basic

NotInheritable Public Class OperationNames

C#

public sealed class OperationNames

C++

public __gc __sealed class OperationNames

JScript

public class OperationNames

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

The OperationNames class contains fields that represent the constant string values for operation names in Reporting Services.
These operation names can be used by your security extension to return a list of permissions for a user of a given item in the
report server database. For more information, see the GetPermissions method of the IAuthorizationExtension interface.

You can develop Reporting Services Web service client applications in such a way as to provide functionality and appearance
based on the permissions of the current user. Client applications, such as Report Manager, rely on the Web service method
GetPermissions to return a set of permission names that correspond to operations in Reporting Services. When a client makes a
call to GetPermissions, the Web service responds with a set of permissions based on the item being accessed and the user
making the request. A typical call to the root or Home item in the report server database for a user that is assigned the Browser
role might look like the following:

// C# Web service code
string[] permissions = rs.GetPermissions("/");

foreach (string p in permissions)
{
 Console.WriteLine(p);
}

The above code returns a single permission for Browser users: Read Properties. The user is granted access to view the contents
and properties, but not to modify or delete the contents. Nor is the user allowed to update security policies or view data source
information. The Browser role is a very restrictive role.

Because clients can call GetPermissions in order to discover what permissions the user has, a client application can be tailored
for each user. In Report Manager, Browser users do not have access to the Security Properties or Data Source Properties
pages for a report. Nor is a Browser user permitted to see site settings or other administrator information, because Report
Manager makes a call to GetPermissions and determines ahead of time which pages and tabs to display. Because of a client
application's reliance on named permissions, your security extension must implement the GetPermissions method of the
IAuthorizationExtension interface.

To support your implementation of GetPermissions, the security extension API provides you with the OperationNames class,
which contains a set of constant fields representing each of the available permissions in Reporting Services. When you implement
GetPermissions, you should analyze the security descriptor for the item and the current user and return a list of permissions

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

based on the access control list for the current user.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperationNames Members
OperationNames Members

OperationNames overview

Public Constructors

OperationNames Constructor Initializes a new instance of the
OperationNames class.

Public Fields

OperCancelJobs Specifies the operation "Cancel Jobs".
OperCreateAnySubscription Specifies the operation "Create Any

Subscription".
OperCreateDatasource Specifies the operation "Create data

source".
OperCreateFolder Specifies the operation "Create

Folder".
OperCreateLink Specifies the operation "Create Link".
OperCreateReport Specifies the operation "Create

Report".
OperCreateResource Specifies the operation "Create

Resource".
OperCreateRoles Specifies the operation "Create

Roles".
OperCreateSchedules Specifies the operation "Create

Schedules".
OperCreateSnapshot Specifies the operation "Create

Report History".
OperCreateSubscription Specifies the operation "Create

Subscription".
OperDelete Specifies the operation "Delete".
OperDeleteAnySubscription Specifies the operation "Delete Any

Subscription".
OperDeleteHistory Specifies the operation "Delete

Report History".
OperDeleteRoles Specifies the operation "Delete

Roles".
OperDeleteSchedules Specifies the operation "Delete

Schedules".
OperDeleteSubscription Specifies the operation "Delete

Subscription".
OperExecute Specifies the operation "Execute".
OperExecuteAndView Specifies the operation "Execute and

View".
OperGenerateEvents Specifies the operation "Generate

Events".
OperListHistory Specifies the operation "List Report

History".
OperListJobs Specifies the operation "List Jobs".
OperManageSharedSchedules Specifies the operation "Manage

Shared Schedules".
OperReadAnySubscription Specifies the operation "Read Any

Subscription".

OperReadAuthorizationPolicy Specifies the operation "Read
Security Policies".

OperReadContent Specifies the operation "Read
Content".

OperReadDatasources Specifies the operation "Read Data
Sources".

OperReadParameters Specifies the operation "Read
Parameters".

OperReadPolicy Specifies the operation "Read Policy".
OperReadProperties Specifies the operation "Read

Properties".
OperReadReportDefinition Specifies the operation "Read Report

Definition".
OperReadRoleProperties Specifies the operation "Read Role

Properties".
OperReadSchedules Specifies the operation "Read

Schedules".
OperReadSubscription Specifies the operation "Read

Subscription".
OperReadSystemProperties Specifies the operation "Read System

Properties".
OperReadSystemSecurityPolicy Specifies the operation "Read System

Security Policies".
OperUpdateAnySubscription Specifies the operation "Update Any

Subscription".
OperUpdateContent Specifies the operation "Update

Content".
OperUpdateDatasources Specifies the operation "Update Data

Sources".
OperUpdateDeleteAuthorizationPolicy Specifies the operation "Update

Security Policies".
OperUpdateParameters Specifies the operation "Update

Parameters".
OperUpdatePolicy Specifies the operation "Update

Policy".
OperUpdateProperties Specifies the operation "Update

Properties".
OperUpdateReportDefinition Specifies the operation "Update

Report Definition".
OperUpdateRoleProperties Specifies the operation "Update Role

Properties".
OperUpdateSchedules Specifies the operation "Update

Schedules".
OperUpdateSubscription Specifies the operation "Update

Subscription".
OperUpdateSystemProperties Specifies the operation "Update

System Properties".
OperUpdateSystemSecurityPolicy Specifies the operation "Update

System Security Policies".

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

OperationNames Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

OperationNames Constructor
OperationNames Constructor

Initializes a new instance of the OperationNames class.

Visual Basic

Public Sub New()

C#

public OperationNames();

C++

public: OperationNames();

JScript

public function OperationNames();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace_rs1

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms154619(v=sql.80).aspx

Reporting Services - Reporting Services Programming

OperationNames Fields
OperationNames Fields

The fields of the OperationNames class are listed here. For a complete list of OperationNames class members, see the
OperationNames Members topic.

Public Fields

OperCancelJobs Specifies the operation "Cancel Jobs".
OperCreateAnySubscription Specifies the operation "Create Any

Subscription".
OperCreateDatasource Specifies the operation "Create data

source".
OperCreateFolder Specifies the operation "Create

Folder".
OperCreateLink Specifies the operation "Create Link".
OperCreateReport Specifies the operation "Create

Report".
OperCreateResource Specifies the operation "Create

Resource".
OperCreateRoles Specifies the operation "Create

Roles".
OperCreateSchedules Specifies the operation "Create

Schedules".
OperCreateSnapshot Specifies the operation "Create

Report History".
OperCreateSubscription Specifies the operation "Create

Subscription".
OperDelete Specifies the operation "Delete".
OperDeleteAnySubscription Specifies the operation "Delete Any

Subscription".
OperDeleteHistory Specifies the operation "Delete

Report History".
OperDeleteRoles Specifies the operation "Delete

Roles".
OperDeleteSchedules Specifies the operation "Delete

Schedules".
OperDeleteSubscription Specifies the operation "Delete

Subscription".
OperExecute Specifies the operation "Execute".
OperExecuteAndView Specifies the operation "Execute and

View".
OperGenerateEvents Specifies the operation "Generate

Events".
OperListHistory Specifies the operation "List Report

History".
OperListJobs Specifies the operation "List Jobs".
OperManageSharedSchedules Specifies the operation "Manage

Shared Schedules".
OperReadAnySubscription Specifies the operation "Read Any

Subscription".
OperReadAuthorizationPolicy Specifies the operation "Read

Security Policies".
OperReadContent Specifies the operation "Read

Content".

OperReadDatasources Specifies the operation "Read Data
Sources".

OperReadParameters Specifies the operation "Read
Parameters".

OperReadPolicy Specifies the operation "Read Policy".
OperReadProperties Specifies the operation "Read

Properties".
OperReadReportDefinition Specifies the operation "Read Report

Definition".
OperReadRoleProperties Specifies the operation "Read Role

Properties".
OperReadSchedules Specifies the operation "Read

Schedules".
OperReadSubscription Specifies the operation "Read

Subscription".
OperReadSystemProperties Specifies the operation "Read System

Properties".
OperReadSystemSecurityPolicy Specifies the operation "Read System

Security Policies".
OperUpdateAnySubscription Specifies the operation "Update Any

Subscription".
OperUpdateContent Specifies the operation "Update

Content".
OperUpdateDatasources Specifies the operation "Update Data

Sources".
OperUpdateDeleteAuthorizationPolicy Specifies the operation "Update

Security Policies".
OperUpdateParameters Specifies the operation "Update

Parameters".
OperUpdatePolicy Specifies the operation "Update

Policy".
OperUpdateProperties Specifies the operation "Update

Properties".
OperUpdateReportDefinition Specifies the operation "Update

Report Definition".
OperUpdateRoleProperties Specifies the operation "Update Role

Properties".
OperUpdateSchedules Specifies the operation "Update

Schedules".
OperUpdateSubscription Specifies the operation "Update

Subscription".
OperUpdateSystemProperties Specifies the operation "Update

System Properties".
OperUpdateSystemSecurityPolicy Specifies the operation "Update

System Security Policies".

See Also

OperationNames Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperationNames.OperCancelJobs Field
OperationNames.OperCancelJobs Field

Specifies the operation "Cancel Jobs".

Visual Basic

Public Const OperCancelJobs As String

C#

public const string OperCancelJobs;

C++

public: const String* OperCancelJobs;

JScript

public var OperCancelJobs : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateAnySubscription Field
OperationNames.OperCreateAnySubscription Field

Specifies the operation "Create Any Subscription".

Visual Basic

Public Const OperCreateAnySubscription As String

C#

public const string OperCreateAnySubscription;

C++

public: const String* OperCreateAnySubscription;

JScript

public var OperCreateAnySubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateDatasource Field
OperationNames.OperCreateDatasource Field

Specifies the operation "Create data source".

Visual Basic

Public Const OperCreateDatasource As String

C#

public const string OperCreateDatasource;

C++

public: const String* OperCreateDatasource;

JScript

public var OperCreateDatasource : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateFolder Field
OperationNames.OperCreateFolder Field

Specifies the operation "Create Folder".

Visual Basic

Public Const OperCreateFolder As String

C#

public const string OperCreateFolder;

C++

public: const String* OperCreateFolder;

JScript

public var OperCreateFolder : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateLink Field
OperationNames.OperCreateLink Field

Specifies the operation "Create Link".

Visual Basic

Public Const OperCreateLink As String

C#

public const string OperCreateLink;

C++

public: const String* OperCreateLink;

JScript

public var OperCreateLink : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateReport Field
OperationNames.OperCreateReport Field

Specifies the operation "Create Report".

Visual Basic

Public Const OperCreateReport As String

C#

public const string OperCreateReport;

C++

public: const String* OperCreateReport;

JScript

public var OperCreateReport : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateResource Field
OperationNames.OperCreateResource Field

Specifies the operation "Create Resource".

Visual Basic

Public Const OperCreateResource As String

C#

public const string OperCreateResource;

C++

public: const String* OperCreateResource;

JScript

public var OperCreateResource : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateRoles Field
OperationNames.OperCreateRoles Field

Specifies the operation "Create Roles".

Visual Basic

Public Const OperCreateRoles As String

C#

public const string OperCreateRoles;

C++

public: const String* OperCreateRoles;

JScript

public var OperCreateRoles : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateSchedules Field
OperationNames.OperCreateSchedules Field

Specifies the operation "Create Schedules".

Visual Basic

Public Const OperCreateSchedules As String

C#

public const string OperCreateSchedules;

C++

public: const String* OperCreateSchedules;

JScript

public var OperCreateSchedules : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateSnapshot Field
OperationNames.OperCreateSnapshot Field

Specifies the operation "Create Report History".

Visual Basic

Public Const OperCreateSnapshot As String

C#

public const string OperCreateSnapshot;

C++

public: const String* OperCreateSnapshot;

JScript

public var OperCreateSnapshot : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperCreateSubscription Field
OperationNames.OperCreateSubscription Field

Specifies the operation "Create Subscription".

Visual Basic

Public Const OperCreateSubscription As String

C#

public const string OperCreateSubscription;

C++

public: const String* OperCreateSubscription;

JScript

public var OperCreateSubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDelete Field
OperationNames.OperDelete Field

Specifies the operation "Delete".

Visual Basic

Public Const OperDelete As String

C#

public const string OperDelete;

C++

public: const String* OperDelete;

JScript

public var OperDelete : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDeleteAnySubscription Field
OperationNames.OperDeleteAnySubscription Field

Specifies the operation "Delete Any Subscription".

Visual Basic

Public Const OperDeleteAnySubscription As String

C#

public const string OperDeleteAnySubscription;

C++

public: const String* OperDeleteAnySubscription;

JScript

public var OperDeleteAnySubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDeleteHistory Field
OperationNames.OperDeleteHistory Field

Specifies the operation "Delete Report History".

Visual Basic

Public Const OperDeleteHistory As String

C#

public const string OperDeleteHistory;

C++

public: const String* OperDeleteHistory;

JScript

public var OperDeleteHistory : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDeleteRoles Field
OperationNames.OperDeleteRoles Field

Specifies the operation "Delete Roles".

Visual Basic

Public Const OperDeleteRoles As String

C#

public const string OperDeleteRoles;

C++

public: const String* OperDeleteRoles;

JScript

public var OperDeleteRoles : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDeleteSchedules Field
OperationNames.OperDeleteSchedules Field

Specifies the operation "Delete Schedules".

Visual Basic

Public Const OperDeleteSchedules As String

C#

public const string OperDeleteSchedules;

C++

public: const String* OperDeleteSchedules;

JScript

public var OperDeleteSchedules : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperDeleteSubscription Field
OperationNames.OperDeleteSubscription Field

Specifies the operation "Delete Subscription".

Visual Basic

Public Const OperDeleteSubscription As String

C#

public const string OperDeleteSubscription;

C++

public: const String* OperDeleteSubscription;

JScript

public var OperDeleteSubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperExecute Field
OperationNames.OperExecute Field

Specifies the operation "Execute".

Visual Basic

Public Const OperExecute As String

C#

public const string OperExecute;

C++

public: const String* OperExecute;

JScript

public var OperExecute : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperExecuteAndView Field
OperationNames.OperExecuteAndView Field

Specifies the operation "Execute and View".

Visual Basic

Public Const OperExecuteAndView As String

C#

public const string OperExecuteAndView;

C++

public: const String* OperExecuteAndView;

JScript

public var OperExecuteAndView : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperGenerateEvents Field
OperationNames.OperGenerateEvents Field

Specifies the operation "Generate Events".

Visual Basic

Public Const OperGenerateEvents As String

C#

public const string OperGenerateEvents;

C++

public: const String* OperGenerateEvents;

JScript

public var OperGenerateEvents : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperListHistory Field
OperationNames.OperListHistory Field

Specifies the operation "List Report History".

Visual Basic

Public Const OperListHistory As String

C#

public const string OperListHistory;

C++

public: const String* OperListHistory;

JScript

public var OperListHistory : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperListJobs Field
OperationNames.OperListJobs Field

Specifies the operation "List Jobs".

Visual Basic

Public Const OperListJobs As String

C#

public const string OperListJobs;

C++

public: const String* OperListJobs;

JScript

public var OperListJobs : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperManageSharedSchedules Field
OperationNames.OperManageSharedSchedules Field

Specifies the operation "Manage Shared Schedules".

Visual Basic

Public Const OperManageSharedSchedules As String

C#

public const string OperManageSharedSchedules;

C++

public: const String* OperManageSharedSchedules;

JScript

public var OperManageSharedSchedules : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadAnySubscription Field
OperationNames.OperReadAnySubscription Field

Specifies the operation "Read Any Subscription".

Visual Basic

Public Const OperReadAnySubscription As String

C#

public const string OperReadAnySubscription;

C++

public: const String* OperReadAnySubscription;

JScript

public var OperReadAnySubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadAuthorizationPolicy Field
OperationNames.OperReadAuthorizationPolicy Field

Specifies the operation "Read Security Policies".

Visual Basic

Public Const OperReadAuthorizationPolicy As String

C#

public const string OperReadAuthorizationPolicy;

C++

public: const String* OperReadAuthorizationPolicy;

JScript

public var OperReadAuthorizationPolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadContent Field
OperationNames.OperReadContent Field

Specifies the operation "Read Content".

Visual Basic

Public Const OperReadContent As String

C#

public const string OperReadContent;

C++

public: const String* OperReadContent;

JScript

public var OperReadContent : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadDatasources Field
OperationNames.OperReadDatasources Field

Specifies the operation "Read Data Sources".

Visual Basic

Public Const OperReadDatasources As String

C#

public const string OperReadDatasources;

C++

public: const String* OperReadDatasources;

JScript

public var OperReadDatasources : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadParameters Field
OperationNames.OperReadParameters Field

Specifies the operation "Read Parameters".

Visual Basic

Public Const OperReadParameters As String

C#

public const string OperReadParameters;

C++

public: const String* OperReadParameters;

JScript

public var OperReadParameters : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadPolicy Field
OperationNames.OperReadPolicy Field

Specifies the operation "Read Policy".

Visual Basic

Public Const OperReadPolicy As String

C#

public const string OperReadPolicy;

C++

public: const String* OperReadPolicy;

JScript

public var OperReadPolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadProperties Field
OperationNames.OperReadProperties Field

Specifies the operation "Read Properties".

Visual Basic

Public Const OperReadProperties As String

C#

public const string OperReadProperties;

C++

public: const String* OperReadProperties;

JScript

public var OperReadProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadReportDefinition Field
OperationNames.OperReadReportDefinition Field

Specifies the operation "Read Report Definition".

Visual Basic

Public Const OperReadReportDefinition As String

C#

public const string OperReadReportDefinition;

C++

public: const String* OperReadReportDefinition;

JScript

public var OperReadReportDefinition : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadRoleProperties Field
OperationNames.OperReadRoleProperties Field

Specifies the operation "Read Role Properties".

Visual Basic

Public Const OperReadRoleProperties As String

C#

public const string OperReadRoleProperties;

C++

public: const String* OperReadRoleProperties;

JScript

public var OperReadRoleProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadSchedules Field
OperationNames.OperReadSchedules Field

Specifies the operation "Read Schedules".

Visual Basic

Public Const OperReadSchedules As String

C#

public const string OperReadSchedules;

C++

public: const String* OperReadSchedules;

JScript

public var OperReadSchedules : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadSubscription Field
OperationNames.OperReadSubscription Field

Specifies the operation "Read Subscription".

Visual Basic

Public Const OperReadSubscription As String

C#

public const string OperReadSubscription;

C++

public: const String* OperReadSubscription;

JScript

public var OperReadSubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadSystemProperties Field
OperationNames.OperReadSystemProperties Field

Specifies the operation "Read System Properties".

Visual Basic

Public Const OperReadSystemProperties As String

C#

public const string OperReadProperties;

C++

public: const String* OperReadSystemProperties;

JScript

public var OperReadSystemProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperReadSystemSecurityPolicy Field
OperationNames.OperReadSystemSecurityPolicy Field

Specifies the operation "Read System Security Policies".

Visual Basic

Public Const OperReadSystemSecurityPolicy As String

C#

public const string OperReadSystemSecurityPolicy;

C++

public: const String* OperReadSystemSecurityPolicy;

JScript

public var OperReadSystemSecurityPolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateAnySubscription Field
OperationNames.OperUpdateAnySubscription Field

Specifies the operation "Update Any Subscription".

Visual Basic

Public Const OperUpdateAnySubscription As String

C#

public const string OperUpdateAnySubscription;

C++

public: const String* OperUpdateAnySubscription;

JScript

public var OperUpdateAnySubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateContent Field
OperationNames.OperUpdateContent Field

Specifies the operation "Update Content".

Visual Basic

Public Const OperUpdateContent As String

C#

public const string OperUpdateContent;

C++

public: const String* OperUpdateContent;

JScript

public var OperUpdateContent : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateDatasources Field
OperationNames.OperUpdateDatasources Field

Specifies the operation "Update Data Sources".

Visual Basic

Public Const OperUpdateDatasources As String

C#

public const string OperUpdateDatasources;

C++

public: const String* OperUpdateDatasources;

JScript

public var OperUpdateDatasources : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateDeleteAuthorizationPolicy Field
OperationNames.OperUpdateDeleteAuthorizationPolicy Field

Specifies the operation "Update Security Policies".

Visual Basic

Public Const OperUpdateDeleteAuthorizationPolicy As String

C#

public const string OperUpdateDeleteAuthorizationPolicy;

C++

public: const String* OperUpdateDeleteAuthorizationPolicy;

JScript

public var OperUpdateDeleteAuthorizationPolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateParameters Field
OperationNames.OperUpdateParameters Field

Specifies the operation "Update Parameters".

Visual Basic

Public Const OperUpdateParameters As String

C#

public const string OperUpdateParameters;

C++

public: const String* OperUpdateParameters;

JScript

public var OperUpdateParameters : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdatePolicy Field
OperationNames.OperUpdatePolicy Field

Specifies the operation "Update Policy".

Visual Basic

Public Const OperUpdatePolicy As String

C#

public const string OperUpdatePolicy;

C++

public: const String* OperUpdatePolicy;

JScript

public var OperUpdatePolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateProperties Field
OperationNames.OperUpdateProperties Field

Specifies the operation "Update Properties".

Visual Basic

Public Const OperUpdateProperties As String

C#

public const string OperUpdateProperties;

C++

public: const String* OperUpdateProperties;

JScript

public var OperUpdateProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateReportDefinition Field
OperationNames.OperUpdateReportDefinition Field

Specifies the operation "Update Report Definition".

Visual Basic

Public Const OperUpdateReportDefinition As String

C#

public const string OperUpdateReportDefinition;

C++

public: const String* OperUpdateReportDefinition;

JScript

public var OperUpdateReportDefinition : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateRoleProperties Field
OperationNames.OperUpdateRoleProperties Field

Specifies the operation "Update Role Properties".

Visual Basic

Public Const OperUpdateRoleProperties As String

C#

public const string OperUpdateRoleProperties;

C++

public: const String* OperUpdateRoleProperties;

JScript

public var OperUpdateRoleProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateSchedules Field
OperationNames.OperUpdateSchedules Field

Specifies the operation "Update Schedules".

Visual Basic

Public Const OperUpdateSchedules As String

C#

public const string OperUpdateSchedules;

C++

public: const String* OperUpdateSchedules;

JScript

public var OperUpdateSchedules : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateSubscription Field
OperationNames.OperUpdateSubscription Field

Specifies the operation "Update Subscription".

Visual Basic

Public Const OperUpdateSubscription As String

C#

public const string OperUpdateSubscription;

C++

public: const String* OperUpdateSubscription;

JScript

public var OperUpdateSubscription : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateSystemProperties Field
OperationNames.OperUpdateSystemProperties Field

Specifies the operation "Update System Properties".

Visual Basic

Public Const OperUpdateSystemProperties As String

C#

public const string OperUpdateSystemProperties;

C++

public: const String* OperUpdateSystemProperties;

JScript

public var OperUpdateSystemProperties : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

OperUpdateSystemSecurityPolicy Field
OperationNames.OperUpdateSystemSecurityPolicy Field

Specifies the operation "Update System Security Policies."

Visual Basic

Public Const OperUpdateSystemSecurityPolicy As String

C#

public const string OperUpdateSystemSecurityPolicy;

C++

public: const String* OperUpdateSystemSecurityPolicy;

JScript

public var OperUpdateSystemSecurityPolicy : String;

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

See Also

OperationNames Class | OperationNames Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

RenderedOutputFile Class
RenderedOutputFile Class

Represents the output from a rendering extension. A RenderedOutputFile object contains the associated filename and type
information that is required by the delivery extension in order to process the stream returned by the rendering extension.

For a list of all members of this type, see RenderedOutputFile Members.

System.Object
 Microsoft.ReportingServices.Interfaces.RenderedOutputFile

Visual Basic

MustInherit Public Class RenderedOutputFile

C#

public abstract class RenderedOutputFile

C++

public __gc __abstract class RenderedOutputFile

JScript

public abstract class RenderedOutputFile

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

RenderedOutputFile Constructor
RenderedOutputFile Constructor

Initializes a new instance of the RenderedOutputFile class.

Visual Basic

Protected Sub New()

C#

protected RenderedOutputFile();

C++

protected: RenderedOutputFile();

JScript

protected function RenderedOutputFile();

Remarks

This constructor is called by derived class constructors to initialize state in this type.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

RenderedOutputFile Members
RenderedOutputFile Members

RenderedOutputFile overview

Public Properties

Data The data stream that contains the report
that is output by the rendering extension.

Encoding The type of encoding for the file stream
returned by the Data property.

Extension The extension of the file returned by the
Data property. The extension matches the
file type specified in the Type property.

FileName The name of the report file in which the
stream should be saved.

Type The MIME type of the stream in the Data
property.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Constructors

RenderedOutputFile Constructor Initializes a new instance of the
RenderedOutputFile class.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

RenderedOutputFile Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Properties
RenderedOutputFile Properties

The properties of the RenderedOutputFile class are listed here. For a complete list of RenderedOutputFile class members, see
RenderedOutputFile Members.

Public Properties

Data The data stream that contains the report
that is output by the rendering extension.

Encoding The type of encoding for the file stream
returned by the Data property.

Extension The extension of the file returned by the
Data property. The extension matches the
file type specified in the Type property.

FileName The name of the report file in which the
stream should be saved.

Type The MIME type of the stream in the Data
property.

See Also

RenderedOutputFile Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Data Property
RenderedOutputFile.Data Property

The data stream that contains the report that is output by the rendering extension.

Visual Basic

Public MustOverride ReadOnly Property Data As Stream

C#

public abstract Stream Data {get;}

C++

public: __property virtual Stream* get_Data() = 0;

JScript

public abstract function get Data() : Stream;

Property Value

A data stream representing the rendered report.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Encoding Property
RenderedOutputFile.Encoding Property

The type of encoding for the file stream returned by the Data property.

Visual Basic

Public MustOverride ReadOnly Property Encoding As Encoding

C#

public abstract Encoding Encoding {get;}

C++

public: __property virtual Encoding* get_Encoding() = 0;

JScript

public abstract function get Encoding() : Encoding;

Property Value

The encoding of the report file stream.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Extension Property
RenderedOutputFile.Extension Property

The extension of the file returned by the Data property. The extension matches the file type specified in the Type property.

Visual Basic

Public MustOverride ReadOnly Property Extension As String

C#

public abstract string Extension {get;}

C++

public: __property virtual String* get_Extension() = 0;

JScript

public abstract function get Extension() : String;

Property Value

The file extension of the encoded data stream. Common file extensions for reports are HTM, XLS, and TIF.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

FileName Property
RenderedOutputFile.FileName Property

The name of the report file in which the stream should be saved.

Visual Basic

Public MustOverride ReadOnly Property FileName As String

C#

public abstract string FileName {get;}

C++

public: __property virtual String* get_FileName() = 0;

JScript

public abstract function get FileName() : String;

Property

The name of the report file.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Type Property
RenderedOutputFile.Type Property

The MIME type of the stream in the Data property.

Visual Basic

Public MustOverride ReadOnly Property Type As String

C#

public abstract string Type {get;}

C++

public: __property virtual String* get_Type() = 0;

JScript

public abstract function get Type() : String;

Property Value

The MIME type of the stream.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

RenderedOutputFile Class | RenderedOutputFile Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Report Class
Report Class

Represents report-specific information and methods that enable delivery extensions to deliver reports to users.

For a list of all members of this type, see Report Members.

System.Object
 Microsoft.ReportingServices.Interfaces.Report

Visual Basic

MustInherit Public Class Report

C#

public abstract class Report

C++

public __gc __abstract class Report

JScript

public abstract class Report

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Remarks

The Report class represents a report in the report server database. Any subscription is associated with a specific report. The
report is contained in the notification. Your delivery extension can use the Report object that is part of the notification to render
the report. For more information about the Report class, see Using the Report Class for a Delivery Extension.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Report Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Report Members
Report Members

Report overview

Public Properties

Date The server date and time at which the
report was executed.

Name The name of the report that is associated
with the notification.

URL The URL to the report on the report server.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

Render Renders a report in a specific format using
the information stored in the properties of
the Report object.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Constructors

Report Constructor Initializes a new instance of the Report
class.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection. In C# and
C++, finalizers are expressed using
destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Report Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Report Constructor
Report Constructor

Initializes a new instance of the Report class.

Visual Basic

MustInherit Public Class Report

C#

public abstract class Report

C++

public __gc __abstract class Report

JScript

public abstract class Report

Remarks

This constructor is called by derived class constructors to initialize state in this type.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Report Class | Report Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
Report Properties

The properties of the Report class are listed here. For a complete list of Report class members, see Report Members.

Public Properties

Date The server date and time at which the
report was executed.

Name The name of the report that is associated
with the notification.

URL The URL to the report on the report server.

See Also

Report Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Date Property
Report.Date Property

The server date and time at which the report was executed.

Visual Basic

Public MustOverride ReadOnly Property Date As DateTime

C#

public abstract DateTime Date {get;}

C++

public: __property virtual DateTime get_Date() = 0;

JScript

public abstract function get Date() : DateTime;

Property Value

The date and time at which the report was executed.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Report Class | Report Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Name Property
Report.Name Property

The name of the report that is associated with the notification.

Visual Basic

Public MustOverride ReadOnly Property Name As String

C#

public abstract string Name {get;}

C++

public: __property virtual String* get_Name() = 0;

JScript

public abstract function get Name() : String;

Property Value

The name of the report.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Report Class | Report Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

URL Property
Report.URL Property

The URL to the report on the report server.

Visual Basic

Public MustOverride ReadOnly Property URL As String

C#

public abstract string URL {get;}

C++

public: __property virtual String* get_URL() = 0;

JScript

public abstract function get URL() : String;

Property Value

The URL to the report. The URL is the full URL access string to the report. For more information, see URL Access.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Report Class | Report Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Methods
Report Methods

The methods of the Report class are listed here. For a complete list of Report class members, see Report Members.

Public M ethods

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures like hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

Render Renders a report in a specific format using
the information stored in the properties of
the Report object.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Report Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Render Method
Report.Render Method

Renders a report in a specific format using the information stored in the properties of the Report object.

Visual Basic

Public MustOverride Function Render(_
 ByVal renderFormat As String, _
 ByVal deviceInfo As String _
) As RenderedOutputFile()

C#

public abstract RenderedOutputFile[] Render(
 string renderFormat,
 string deviceInfo
);

C++

public: virtual RenderedOutputFile* Render(
 String* renderFormat,
 String* deviceInfo
) [] = 0;

JScript

public abstract function Render(
 renderFormat : String,
 deviceInfo : String
) : RenderedOutputFile[];

Parameters

renderFormat
The name of the format that is used to render the report. The format corresponds to one of the available rendering extensions
installed on the report server.

deviceInfo
An XML string that defines a list of extension parameters for the rendering extension that is used to format the report so that it
can be delivered correctly based on the requirements of the delivery extension.

Return Value

An array of RenderedOutputFile[] objects produced by the rendering extension selected in the renderFormat parameter.

Remarks

The Render method returns an array of one or more RenderedOutputFile objects that together constitute a single rendered
report. The first RenderedOutputFile object is the rendered report, whereas any subsequent RenderedOutputFile objects are
resources that must be delivered along with the report data (for example, an HTML file and associated images).

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Report Class | Report Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ReportOperation Enumeration
ReportOperation Enumeration

Describes the operations that a user can perform on a report.Visual Basic

<Serializable>
Public Enum ReportOperation

C#

[Serializable]
public enum ReportOperation

C++

[Serializable]
__value public enum ReportOperation

JScript

public
 Serializable
enum ReportOperation

M embers

Member name Description
CreateAnySubscription The user may create any subscription

associated with a given report.
CreateLink The user may link to a given report.
CreateResource The user may create a resource in a given

folder.
CreateSnapshot The user may create a report history

snapshot associated with the given report.
CreateSubscription The user may create a subscription

associated with a given report.
Delete The user may delete a report.
DeleteAnySubscription The user may delete any subscription

associated with a given report.
DeleteHistory The user may delete report history

snapshots associated with a given report.
DeleteSubscription Users may delete subscriptions of which

they are owners.
Execute A user may execute a report, but not view

it.
ExecuteAndView A user may execute and view and report.
ListHistory A user may view the report history

associated with a given report.
ReadAnySubscription Users may read the properties of any

subscription associated with a given
report.

ReadAuthorizationPolicy A user may read the security policy
associated with a given report.

ReadDatasource A user may read properties associated
with a report's data sources.

ReadPolicy A user may read the cache and snapshot
policies associated with a given report.

ReadProperties A user may read the properties associated
with a report.

ReadReportDefinition A user may read the report definition of a
given report.

ReadSubscription Users may read the properties associated
with report subscriptions of which they
are the owners.

UpdateAnySubscription A user may update or modify any
subscription associated with a given
report.

UpdateDatasource A user may update or modify single data
sources associated with a given report.
This does not include shared data source.

UpdateDeleteAuthorizationPolicy A user may modify or delete the security
policy associated with a given report.

UpdateParameters A user may update or modify the
parameter values associated with a given
report.

UpdatePolicy A user may modify or update the cache or
snapshot policies associated with a given
report.

UpdateProperties A user may modify or update the
properties associated with a given report.

UpdateReportDefinition A user may modify or update the report
definition of a report.

UpdateSubscription A user may modify or update report
subscriptions of which he or she is the
owner.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ReportOperationsCollection Class
ReportOperationsCollection Class

Represents a collection of report operations.

For a list of all members of this type, see ReportOperationsCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.ReportOperationsCollection

Visual Basic

<Serializable>
NotInheritable Public Class ReportOperationsCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class ReportOperationsCollection : CollectionBase

C++

[Serializable]
public __gc __sealed class ReportOperationsCollection : public
 CollectionBase

JScript

public
 Serializable
class ReportOperationsCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

A ReportOperationsCollection object consists of a collection of ReportOperation enumeration values that correspond to the
various folder operations or actions that a user can perform in Reporting Services.

Operation collections and operation enumerations support authorization in Reporting Services. The operations collection is one of
the prime components of any access control entry (AceStruct object). The operations collection contains the list of operations
permitted on an item in the report server database for a given principal name. As demonstrated in previous examples, evaluating
the operation collections for an item is a key part of any Reporting Services authorization extension. There exists an operation
collection for each of the securable item types in Reporting Services, including the catalog (general system operations), folders,
reports, and resources.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

ReportOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ReportOperationsCollection Members
ReportOperationsCollection Members

ReportOperationsCollection overview

Public Constructors

ReportOperationsCollection
Constructor

Initializes a new instance of the
ReportOperationsCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the ReportOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
ReportOperationsCollection class.

Public M ethods

Add Adds an object to the end of the
ReportOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
ReportOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
ReportOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
ReportOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
ReportOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
ReportOperationsCollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
ReportOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
ReportOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
ReportOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
ReportOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
ReportOperationsCollection instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
ReportOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
ReportOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

ReportOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ReportOperationsCollection Constructor
ReportOperationsCollection Constructor

Initializes a new instance of the ReportOperationsCollection class.

Visual Basic

Public Sub New()

C#

public ReportOperationsCollection();

C++

public: ReportOperationsCollection();

JScript

public function ReportOperationsCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

ReportOperationsCollection Class | ReportOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ReportOperationsCollection Properties
ReportOperationsCollection Properties

The properties of the ReportOperationsCollection class are listed here. For a complete list of ReportOperationsCollection
class members, see the ReportOperationsCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the ReportOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
ReportOperationsCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
ReportOperationsCollection instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

ReportOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
ReportOperationsCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the ReportOperationsCollection class.

VB

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As ReportOperation
[C#]
public ReportOperation this[
 int index
] {get;}
[C++]
public: __property ReportOperation get_Item(
 int index
);
[JScript]
returnValue = ReportOperationsCollectionObject.Item(index);
-or-
returnValue = ReportOperationsCollectionObject(index);

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides the ability to access a specific element in the collection by using the following syntax:
myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

ReportOperationsCollection Class | ReportOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ReportOperationsCollection Methods
ReportOperationsCollection Methods

The methods of the ReportOperationsCollection class are listed here. For a complete list of ReportOperationsCollection class
members, see the ReportOperationsCollection Members topic.

Public M ethods

Add Adds an object to the end of the
ReportOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
ReportOperationsCollection instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
ReportOperationsCollection instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
ReportOperationsCollection instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
ReportOperationsCollection instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
ReportOperationsCollection instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
ReportOperationsCollection instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
ReportOperationsCollection instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
ReportOperationsCollection instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
ReportOperationsCollection instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
ReportOperationsCollection instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
ReportOperationsCollection instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

ReportOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
ReportOperationsCollection.Add Method

Adds an object to the end of the ReportOperationsCollection.

Visual Basic

Public Function Add(_
 ByVal operation As ReportOperation _
) As Integer

C#

public int Add(
 ReportOperation operation
);

C++

public: int Add(
 ReportOperation operation
);

JScript

public function Add(
 operation : ReportOperation
) : int;

Parameters

operation
The report operation to add to the collection.

Return Value

The position into which the new report operation was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

ReportOperationsCollection Class | ReportOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ResourceOperation Enumeration
ResourceOperation Enumeration

Describes the operations that a user can perform on a resource.

Visual Basic

<Serializable>
Public Enum ResourceOperation

C#

[Serializable]
public enum ResourceOperation

C++

[Serializable]
__value public enum ResourceOperation

JScript

public
 Serializable
enum ResourceOperation

M embers

Member name Description
Delete The user may delete a given resource.
ReadAuthorizationPolicy The user may read the security policy

associated with a resource.
ReadContent The user may read the MIME content of a

resource.
ReadProperties The user may read resource properties.
UpdateContent The user may update or modify the MIME

content of a resource.
UpdateDeleteAuthorizationPolicy The user may update or delete the security

policy associated with a resource.
UpdateProperties The user may modify or update resource

properties.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ResourceOperationsCollection Class
ResourceOperationsCollection Class

Represents a collection of resource operations.

For a list of all members of this type, see ResourceOperationsCollection Members.

System.Object
 System.Collections.CollectionBase
 Microsoft.ReportingServices.Interfaces.ResourceOperationsCollection

Visual Basic

<Serializable>
NotInheritable Public Class ResourceOperationsCollection
 Inherits CollectionBase

C#

[Serializable]
public sealed class ResourceOperationsCollection : CollectionBase

C++

[Serializable]
public __gc __sealed class ResourceOperationsCollection : public
 CollectionBase

JScript

public
 Serializable
class ResourceOperationsCollection extends CollectionBase

Thread Safety

Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be
thread safe.

Remarks

A ResourceOperationsCollection object consists of a collection of ResourceOperation enumeration values that correspond to
the various folder operations or actions that a user can perform in Reporting Services.

Operation collections and operation enumerations support authorization in Reporting Services. The operations collection is one of
the prime components of any access control entry (AceStruct object). The operations collection contains the list of operations
permitted on an item in the report server database for a given principal name. As demonstrated in previous examples, evaluating
the operation collections for an item is a key part of any Reporting Services authorization extension. There exists an operation
collection for each of the securable item types in Reporting Services, including the catalog (general system operations), folders,
reports, and resources.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

ResourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7a03ybbb(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ResourceOperationsCollection Members
ResourceOperationsCollection Members

ResourceOperationsCollection overview

Public Constructors

ResourceOperationsCollection
Constructor

Initializes a new instance of the
ResourceOperationsCollection class.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the ResourceOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
ResourceOperationsCollection class.

Public M ethods

Add Adds an object to the end of the
ResourceOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
ResourceOperationsCollection
instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
ResourceOperationsCollection
instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
ResourceOperationsCollection
instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
ResourceOperationsCollection
instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

Protected M ethods

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
ResourceOperationsCollection
instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
ResourceOperationsCollection
instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
ResourceOperationsCollection
instance.

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
ResourceOperationsCollection
instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
ResourceOperationsCollection
instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
ResourceOperationsCollection
instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
ResourceOperationsCollection
instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
ResourceOperationsCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

ResourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ResourceOperationsCollection Constructor
ResourceOperationsCollection Constructor

Initializes a new instance of the ResourceOperationsCollection class.

Visual Basic

Public Sub New()

C#

public ResourceOperationsCollection();

C++

public: ResourceOperationsCollection();

JScript

public function ResourceOperationsCollection();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

ResourceOperationsCollection Class | ResourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ResourceOperationsCollection Properties
ResourceOperationsCollection Properties

The properties of the ResourceOperationsCollection class are listed here. For a complete list of
ResourceOperationsCollection class members, see the ResourceOperationsCollection Members topic.

Public Properties

Count (inherited from
System.Collections.CollectionBase)

Gets the number of elements contained in
the ResourceOperationsCollection
instance.

Item Gets or sets the element at the specified
index.

In C#, this property is the indexer for the
ResourceOperationsCollection class.

Protected Properties

InnerList (inherited from
System.Collections.CollectionBase)

Gets an ArrayList containing the list of
elements in the
ResourceOperationsCollection
instance.

List (inherited from
System.Collections.CollectionBase)

Gets an IList containing the list of
elements in the CollectionBase instance.

See Also

ResourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/8beysaaa(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/29541t7e(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/88sbw225(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Item Property
ResourceOperationsCollection.Item Property

Gets or sets the element at the specified index.

[C#] In C#, this property is the indexer for the ResourceOperationsCollection class.

Visual Basic

Public Default ReadOnly Property Item(_
 ByVal index As Integer _
) As ResourceOperation

C#

public ResourceOperation this[
 int index
] {get;}

C++

public: __property ResourceOperation get_Item(
 int index
);

JScript

returnValue = ResourceOperationsCollectionObject.Item(index);
-or-
returnValue = ResourceOperationsCollectionObject(index);

[JScript] In JScript, you can use the default indexed properties defined by a type, but you cannot explicitly define your own.
However, specifying the expando attribute on a class automatically provides a default indexed property whose type is Object
and whose index type is String.

Arguments [JScript]

index
The zero-based index of the element to get or set.

Parameters [Visual Basic, C# , C++]

index
The zero-based index of the element to get or set.

Property Value

The element at the specified index.

Remarks

This property provides the ability to access a specific element in the collection by using the following syntax:
myCollection[index].

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

ResourceOperationsCollection Class | ResourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

Reporting Services - Reporting Services Programming

ResourceOperationsCollection Methods
ResourceOperationsCollection Methods

The methods of the ResourceOperationsCollection class are listed here. For a complete list of ResourceOperationsCollection
class members, see the ResourceOperationsCollection Members topic.

Public M ethods

Add Adds an object to the end of the
ResourceOperationsCollection.

Clear (inherited from
System.Collections.CollectionBase)

Removes all objects from the
ResourceOperationsCollection
instance.

Equals (inherited from System.Object) Overloaded. Determines whether two
Object instances are equal.

GetEnumerator (inherited from
System.Collections.CollectionBase)

Returns an enumerator that can iterate
through the
ResourceOperationsCollection
instance.

GetHashCode (inherited from
System.Object)

Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

RemoveAt (inherited from
System.Collections.CollectionBase)

Removes the element at the specified
index of the
ResourceOperationsCollection
instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

OnClear (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when clearing the contents of the
ResourceOperationsCollection
instance.

OnClearComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after clearing the contents of the
ResourceOperationsCollection
instance.

OnInsert (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before inserting a new element into the
ResourceOperationsCollection
instance.

https://msdn.microsoft.com/en-us/library/725y1eeh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/x280baek(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/bs2atkcw(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/69te8b1k(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/2twk8t0t(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/h9d6483z(v=sql.80).aspx

OnInsertComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after inserting a new element into the
ResourceOperationsCollection
instance.

OnRemove (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when removing an element from the
ResourceOperationsCollection
instance.

OnRemoveComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after removing an element from the
ResourceOperationsCollection
instance.

OnSet (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
before setting a value in the
ResourceOperationsCollection
instance.

OnSetComplete (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
after setting a value in the
ResourceOperationsCollection
instance.

OnValidate (inherited from
System.Collections.CollectionBase)

Performs additional custom processes
when validating a value.

See Also

ResourceOperationsCollection Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/k0xahy38(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/9k4z3bkz(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/w34922x1(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/kxazbfw9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z2x8khsk(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/z7c3t367(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Add Method
ResourceOperationsCollection.Add Method

Adds an object to the end of the ResourceOperationsCollection.

Visual Basic

Public Function Add(_
 ByVal operation As ResourceOperation _
) As Integer

C#

public int Add(
 ResourceOperation operation
);

C++

public: int Add(
 ResourceOperation operation
);

JScript

public function Add(
 operation : ResourceOperation
) : int;

Parameters

operation
The resource operation to add to the collection.

Return Value

The position into which the new resource operation was inserted.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

.NET Framework Security:

Full trust for the immediate caller. This member cannot be used by partially trusted code. For more information, see Using
Libraries From Partially Trusted Code.

See Also

ResourceOperationsCollection Class | ResourceOperationsCollection Members | Microsoft.ReportingServices.Interfaces
Namespace

https://msdn.microsoft.com/en-us/library/8skskf63(v=sql.80).aspx

Reporting Services - Reporting Services Programming

SecurityItemType Enumeration
SecurityItemType Enumeration

Describes the item associated with a specific authorization request.

Visual Basic

<Serializable>
Public Enum SecurityItemType

C#

[Serializable]
public enum SecurityItemType

C++

[Serializable]
__value public enum SecurityItemType

JScript

public
 Serializable
enum SecurityItemType

M embers

Member name Description
Catalog Represents the entire report server

database.
Datasource Represents a data source item type.
Folder Represents a folder item type.
Report Represents a report item type.
Resource Represents a resource item type.
Unknown Represents an unknown item type.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows Server 2003 family

Assembly: Microsoft.Reportingservices.Interfaces (in Microsoft.Reportingservices.Interfaces.dll)

See Also

Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Setting Class
Setting Class

Represents a setting for an extension.

For a list of all members of this type, see Setting Members.

System.Object
 Microsoft.ReportingServices.Interfaces.Setting

Visual Basic

Public Class Setting

C#

public class Setting

C++

public __gc class Setting

JScript

public class Setting

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Remarks

The Setting class provides infrastructure for storing information about the settings that are required in order for a delivery
extension to function properly. For more information about the Setting class, see Using the Setting Class for a Delivery Extension.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

Setting Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

Setting Members
Setting Members

Setting overview

Public Constructors

Setting Constructor Initializes a new instance of the Setting
class.

Public Properties

DisplayName The localized name of the extension
setting that is displayed to the user.

Encrypted Indicates whether the extension setting
value should be encrypted in the report
server database.

Error An error that describes a problem with the
value of the setting.

Field The name of the field used to derive the
value of the setting.

IsPassword Indicates whether the setting value should
be returned in calls to the SOAP API.

Name The name of the setting.
ReadOnly Indicates whether a setting is read-only.
Required Indicates whether a value for the setting is

required by the extension.
ValidValues Lists a set of values that can be configured

for the setting.
Value The value of the setting.

Public M ethods

AddValidValue Adds a valid value for the setting.
Equals (inherited from System.Object) Overloaded. Determines whether two

Object instances are equal.
GetHashCode (inherited from

System.Object)
Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures such as hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection. In C# and
C++, finalizers are expressed using
destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Setting Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Setting Constructor
Setting Constructor

Initializes a new instance of the Setting class.

Visual Basic

Public Sub New()

C#

public Setting();

C++

public: Setting();

JScript

public function Setting();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
Setting Properties

The properties of the Setting class are listed here. For a complete list of Setting class members, see Setting Members.

Public Properties

DisplayName The localized name of the extension
setting that is displayed to the user.

Encrypted Indicates whether the extension setting
value should be encrypted in the report
server database.

Error An error that describes a problem with the
value of the setting.

Field The name of the field used to derive the
value of the setting.

IsPassword Indicates whether the setting value should
be returned in calls to the SOAP API.

Name The name of the setting.
ReadOnly Indicates whether a setting is read-only.
Required Indicates whether a value for the setting is

required by the extension.
ValidValues A set of values that can be configured for

the setting.
Value The value of the setting.

See Also

Setting Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

DisplayName Property
Setting.DisplayName Property

The localized name of the extension setting that is displayed to the user.

Visual Basic

Public Property DisplayName As String

C#

public string DisplayName {get; set;}

C++

public: __property String* get_DisplayName();
public: __property void set_DisplayName(String*);

JScript

public function get DisplayName() : String;
public function set DisplayName(String);

Property Value

A String representing the name of the setting that is displayed in a user interface, such as Report Manager.

Remarks

Use the display name in cases where you need to display an alternate name for the setting to an end user. The DisplayName
property might be used in the case where the displayed name of the setting is dependent on culture information.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Encrypted Property
Setting.Encrypted Property

Indicates whether the extension setting value should be encrypted in the report server database.

Visual Basic

Public Property Encrypted As Boolean

C#

public bool Encrypted {get; set;}

C++

public: __property bool get_Encrypted();
public: __property void set_Encrypted(bool);

JScript

public function get Encrypted() : Boolean;
public function set Encrypted(Boolean);

Property Value

A Boolean value indicating whether a value for the setting should be encrypted in the report server database.

Remarks

If a setting is marked as encrypted then the report server encrypts the data before storing it in the report server database.

Set the Encrypted property to true when the value of the setting may contain sensitive data such as a password.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Error Property
Setting.Error Property

An error that describes a problem with the value of the setting.

Visual Basic

Public Property Error As String

C#

public string Error {get; set;}

C++

public: __property String* get_Error();
public: __property void set_Error(String*);

JScript

public function get Error() : String;
public function set Error(String);

Property Value

An error message that describes a problem with the value of the setting.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Field Property
Setting.Field Property

The name of the field used to derive the value of the setting.

Visual Basic

Public Property Field As String

C#

public string Field {get; set;}

C++

public: __property String* get_Field();
public: __property void set_Field(String*);

JScript

public function get Field() : String;
public function set Field(String);

Property Value

A String value representing the name of the field that is used to derive the value of the setting.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

IsPassword Property
Setting.IsPassword Property

Indicates whether the setting value should be returned in calls to the SOAP API.

Visual Basic

Public Property IsPassword As Boolean

C#

public bool IsPassword {get; set;}

C++

public: __property bool get_IsPassword();
public: __property void set_IsPassword(bool);

JScript

public function get IsPassword() : Boolean;
public function set IsPassword(Boolean);

Property Value

A Boolean value indicating whether the setting value should be returned in calls to the SOAP API.

Remarks

A value of true indicates that the setting value should not be returned in any SOAP responses resulting from calls to the SOAP
API; otherwise, false.

If the IsPassword property is set to a value of true, then the report server does not return the value of the setting in any SOAP
API call that results in settings being returned (for example, calls to the GetSubscriptionProperties and ListSubscriptions methods).

Security Note The report server does not encrypt setting values by default, regardless of the value for the
IsPassword property. The Encrypted property of the extension parameter must also be set to a value of true to
encrypt the extension parameter value in the report server database.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Name Property
Setting.Name Property

The name of the setting.

Visual Basic

Public Property Name As String

C#

public string Name {get; set;}

C++

public: __property String* get_Name();
public: __property void set_Name(String*);

JScript

public function get Name() : String;
public function set Name(String);

Property Value

A String value representing the name of the setting.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ReadOnly Property
Setting.ReadOnly Property

Indicates whether a setting is read-only.

Visual Basic

Public Property ReadOnly As Boolean

C#

public bool ReadOnly {get; set;}

C++

public: __property bool get_ReadOnly();
public: __property void set_ReadOnly(bool);

JScript

public function get ReadOnly() : Boolean;
public function set ReadOnly(Boolean);

Property Value

A Boolean value indicating whether a setting is read-only.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Required Property
Setting.Required Property

Indicates whether a value for the setting is required by the extension.

Visual Basic

Public Property Required As Boolean

C#

public bool Required {get; set;}

C++

public: __property bool get_Required();
public: __property void set_Required(bool);

JScript

public function get Required() : Boolean;
public function set Required(Boolean);

Property Value

A Boolean value indicating whether a value for the setting is required.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ValidValues Property
Setting.ValidValues Property

A set of values that can be configured for the setting.

Visual Basic

Public Property ValidValues As StringCollection

C#

public StringCollection ValidValues {get; set;}

C++

public: __property StringCollection* get_ValidValues();
public: __property void set_ValidValues(StringCollection*);

JScript

public function get ValidValues() : StringCollection;
public function set ValidValues(StringCollection);

Property Value

A StringCollection representing the valid values for the setting.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Value Property
Setting.Value Property

The value of the setting.

Visual Basic

Public Property Value As String

C#

public string Value {get; set;}

C++

public: __property String* get_Value();
public: __property void set_Value(String*);

JScript

public function get Value() : String;
public function set Value(String);

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Methods
Setting Methods

The methods of the Report class are listed here. For a complete list of Report class members, see Setting Members.

Public M ethods

AddValidValue Adds a valid value for the setting.
Equals (inherited from System.Object) Overloaded. Determines whether two

Object instances are equal.
GetHashCode (inherited from

System.Object)
Serves as a hash function for a particular
type, for use in hashing algorithms and
data structures like hash tables.

GetType (inherited from
System.Object)

Gets the Type of the current instance.

ToString (inherited from
System.Object)

Returns a String that represents the
current Object.

Protected M ethods

Finalize (inherited from
System.Object)

Overridden. Allows an Object to attempt
to free resources and perform other
cleanup operations before the Object is
reclaimed by garbage collection.

In C# and C++, finalizers are expressed
using destructor syntax.

MemberwiseClone (inherited from
System.Object)

Creates a shallow copy of the current
Object.

See Also

Setting Class | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/d5171fyh(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/zdee4b3y(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/7bxwbwt2(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/4k87zsw7(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/57ctke0a(v=sql.80).aspx

Reporting Services - Reporting Services Programming

AddValidValue Method
Setting.AddValidValue Method

Adds a valid value for the setting.

Overload List

Adds a valid value using the ValidValue class.

Visual Basic

Overloads Sub AddValidValue(ValidValue)

C#

void AddValidValue(ValidValue);

C++

void AddValidValue(ValidValue*);

JScript

function AddValidValue(ValidValue);

Adds a valid value for a setting using a label and a value.

Visual Basic

Overloads Function AddValidValue(String, String)

C#

void AddValidValue(String, String);

C++

void AddValidValue(String*, String*);

JScript

function AddValidValue(String, String);

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AddValidValue Method(ValidValue)
AddValidValue Method(ValidValue)

Adds a valid value (ValidValue object) to the ValidValues array for the setting.

Visual Basic

Sub AddValidValue(_
 ByVal val As ValidValue _
)

C#

void AddValidValue(
 ValidValue val
);

C++

void AddValidValue(
 ValidValue* val
);

JScript

function SetConfiguration(
 val : ValidValueg
);

Parameters

val
A ValidValue object that contains the label and the value for the setting.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

AddValidValue Method(String, String)
AddValidValue Method(String, String)

Adds a valid value for the setting.

Visual Basic

Sub AddValidValue(_
 ByVal label As String _
 ByVal val As String _
)

C#

void AddValidValue(
 string label,
 string val
);

C++

void AddValidValue(
 String* label,
 String* val
);

JScript

function SetConfiguration(
 label : String,
 val : String
);

Parameters

label
The display value for the setting as presented in a user interface.

val
The actual value of the setting that is passed to the delivery extension.

Remarks

The label parameter of a setting can be used to support localized names of setting values. The label is displayed in a user
interface, such as Report Manager.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

Setting Class | Setting Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ValidValue Class
ValidValue Class

Represents a valid value for an extension setting.

For a list of all members of this type, see ValidValue Members.

System.Object
 Microsoft.ReportingServices.Interfaces.ValidValue

Visual Basic

Public Class ValidValue

C#

public class ValidValue

C++

public __gc class ValidValue

JScript

public class ValidValue

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread safe.

Remarks

The ValidValue class provides infrastructure for storing information about a valid value for an extension setting. Extension
settings can have multiple valid values that determine a fixed set of values for the setting. For more information about settings,
see Using the Setting Class for a Delivery Extension.

Requirements

Namespace: Microsoft.ReportingServices.Interfaces

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

Assembly: Microsoft.ReportingServices.Interfaces (in Microsoft.ReportingServices.Interfaces.dll)

See Also

ValidValue Members | Microsoft.ReportingServices.Interfaces Namespace

https://msdn.microsoft.com/en-us/library/e5kfa45b(v=sql.80).aspx

Reporting Services - Reporting Services Programming

ValidValue Constructor
ValidValue Constructor

Initializes a new instance of the ValidValue class.

Visual Basic

Public Sub New()

C#

public ValidValue();

C++

public: ValidValue();

JScript

public function ValidValue();

Remarks

The default constructor initializes any fields to their default values.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ValidValue Class | ValidValue Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

ValidValue Members
ValidValue Members

ValidValue overview

Public Constructors

ValidValue Constructor Initializes a new instance of the
ValidValue class.

Public Properties

Label The label of the setting value.
Value A valid value for the setting.

See Also

ValidValue Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Properties
ValidValue Properties

The properties of the ValidValue class are listed here. For a complete list of ValidValue class members, see ValidValue
Members.

Public Properties

Label The label of the setting value.
Value A valid value for the setting.

See Also

ValidValue Class | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Label Property
ValidValue.Label Property

The label of the setting value.

Visual Basic

Public Property Label As String

C#

public string Label {get; set;}

C++

public: __property String* get_Label();
public: __property void set_Label(String*);

JScript

public function get Label() : String;
public function set Label(String);

Property Value

A String representing the label of the setting that is displayed in a user interface, such as Report Manager.

Remarks

Use the label in cases where you need to display an alternate value name for the setting value to an end user. The Label property
might be used where the value of the setting that is displayed to the end user is dependent on culture information.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ValidValue Class | ValidValue Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Value Property
ValidValue.Value Property

A valid value for the setting.

Visual Basic

Public Property Value As String

C#

public string Value {get; set;}

C++

public: __property String* get_Value();
public: __property void set_Value(String*);

JScript

public function get Value() : String;
public function set Value(String);

Property Value

A String representing a valid value for the setting that is used by the delivery extension to deliver notifications.

Requirements

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000, Windows XP Home Edition,
Windows XP Professional, Windows .NET Server family

See Also

ValidValue Class | ValidValue Members | Microsoft.ReportingServices.Interfaces Namespace

Reporting Services - Reporting Services Programming

Reporting Services WMI Provider
The Report Server Windows Management Instrumentation (WMI) provider supports a number of WMI operations. With the
Report Server WMI Provider, you can write scripts and code to modify settings of the report server and Report Manager.

You can write script or code to manage a report server or Report Manager, using the Reporting Services WMI Provider objects.
For example, if you want to change whether integrated security is used when the report server connects to the report server
database, create an instance of the MSReportServer_ConfigurationSetting class and use the DatabaseIntegratedSecurity
property of the of the Report Server instance. The classes shown in the following table represent Reporting Services components.
The classes are defined in the namespace root\Microsoft\SqlServer\ReportingServices\v8. Each of the classes support read
and write operations. Create operations are not supported.

Classes

Class Description
MSReportServer_ConfigurationSetting Class Represents the installation

and run-time parameters of a
report server instance. These
parameters are stored in the
configuration file for the
report server.

MSReportServerReportManager_ConfigurationSetting
Class

Represents the installation
and run-time parameters of a
Report Manager instance.
These parameter are stored in
the configuration file for
Report Manager.

For more information about WMI operations, see the WMI SDK.

See Also

Reporting Services Reference

Reporting Services - Reporting Services Programming

MSReportServer_ConfigurationSetting Class
Represents the installation and run-time parameters of a report server instance. These parameters are stored in the configuration
file for the report server.

For a list of all members of this type, see MSReportServer_ConfigurationSetting Members.

Visual Basic .NET

Public Class MSReportServer_ConfigurationSetting

C#

public class MSReportServer_ConfigurationSetting

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread-safe.

Example

Visual Basic .NET, C#

To run the following code, add your server name in place of each <servername>. Correct the path to point to your installation
location, if not the default. The following code example iterates through each property in the
MSReportServer_ConfigurationSetting class, printing the name of each property and its value to the console:

Visual Basic .NET

Imports System
Imports System.Management
Imports System.IO

Module Module1
 Sub Main()
 Const WmiNamespace As String = "\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8"
 Const WmiRSClass As String = _
 "\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8:MSReportServer_ConfigurationSe
tting"

 Dim serverClass As ManagementClass
 Dim scope As ManagementScope
 scope = New ManagementScope(WmiNamespace)
 'Connect to the Reporting Services namespace.
 scope.Connect()

 'Create the server class.
 serverClass = New ManagementClass(WmiRSClass)
 'Connect to the management object.
 serverClass.Get()
 If serverClass Is Nothing Then Throw New Exception("No class found")

 'Loop through the instances of the server class.
 Dim instances As ManagementObjectCollection = serverClass.GetInstances()
 Dim instance As ManagementObject
 For Each instance In instances
 Console.Out.WriteLine("Instance Detected")
 Dim instProps As PropertyDataCollection = instance.Properties
 Dim prop As PropertyData
 For Each prop In instProps
 Dim name As String = prop.Name
 Dim val As Object = prop.Value
 Console.Out.Write("Property Name: " + name)
 If val Is Nothing Then
 Console.Out.WriteLine(" Value: <null>")
 Else
 Console.Out.WriteLine(" Value: " + val.ToString())

 End If
 Next
 Next
 End Sub
 End Module

C#

using System;
using System.Management;
using System.IO;
[assembly:CLSCompliant(true)]

class Class1
{
 [STAThread]
 static void Main(string[] args)
 {
 const string WmiNamespace = @"\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8";
 const string WmiRSClass =
 @"\\
<servername>\root\Microsoft\SqlServer\ReportingServices\v8:MSReportServer_ConfigurationSe
tting";
 ManagementClass serverClass;
 ManagementScope scope;
 scope = new ManagementScope(WmiNamespace);

 // Connect to the Reporting Services namespace.
 scope.Connect();
 // Create the server class.
 serverClass = new ManagementClass(WmiRSClass);
 // Connect to the management object.
 serverClass.Get();
 if (serverClass == null)
 throw new Exception("No class found");

 //Loop through the instances of the server class.
 ManagementObjectCollection instances = serverClass.GetInstances();

 foreach(ManagementObject instance in instances)
 {
 Console.Out.WriteLine("Instance Detected");
 PropertyDataCollection instProps = instance.Properties;
 foreach(PropertyData prop in instProps)
 {
 string name = prop.Name;
 object val = prop.Value;
 Console.Out.Write("Property Name: " + name);
 if (val != null)
 Console.Out.WriteLine(" Value: " + val.ToString());
 else
 Console.Out.WriteLine(" Value: <null>");
 }
 }
 }
}

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

MSReportServer_ConfigurationSetting Members
MSReportServer_ConfigurationSetting Members

Public Properties

DatabaseIntegratedSecurity Specifies whether integrated security is
used when the report server connects to
the report server database. This property
and the Impersonate property are
mutually exclusive.

DatabaseLogonName Specifies the user name to use when the
report server connects to and
communicates with the report server
database. This property is ignored when
the DatabaseIntegratedSecurity
property is set to true.

DatabaseLogonPassword Specifies the password to use in
combination with the user name when the
report server connects to and
communicates with the report server
database. This property is ignored when
the DatabaseIntegratedSecurity
property is set to true.

DatabaseLogonTimeout Specifies the number of seconds to wait
before an attempt to log on to the report
server database fails.

DatabaseName Specifies the name of the SQL Server
instance that hosts the report server
database.

DatabaseQueryTimeout Specifies the number of seconds that must
elapse before the report server assumes
the command failed or took too much
time to perform. The report server is
timing the querying against the SQL
catalog, not a data source for the report.

DatabaseServerName Specifies the name of the server on which
the report server database is installed.

Impersonate Indicates whether the report server should
impersonate a Windows user when
connecting to the database. This property
and the DatabaseIntegratedSecurity
property are mutually exclusive.

ImpersonateDomain Indicates the Windows domain of the user
that the report server should impersonate
when connecting to the report server
database. This property is ignored if the
Impersonate property is set to false.

ImpersonatePassword Indicates the password for the user
account that the report server uses when
connecting to the report server database.
This property is ignored if the
Impersonate property is set to false.

ImpersonateUserName Indicates the Windows user name that the
report server uses when connecting to the
report server database. This property is
ignored if the Impersonate property is
set to false.

InstanceID This object supports the Reporting Services
infrastructure and is not intended to be
used directly from your code.

InstanceName Specifies the name of a report server
instance on a specific computer.

PathName Specifies the installation path to a report
server instance.

UnattendedExecutionLogonName Specifies the logon user that the report
server impersonations when running an
unattended report.

UnattendedExecutionLogonPassword Specifies the password for the
UnattendedExecutionLogonName.

UnattendedExecutionLogonDomain Specifies the logon user that the report
server impersonates when it is running
reports unattended.

VirtualRoot Specifies the virtual root of a report server
instance.

Public M ethods

ActivateMachine Activates the report server instance in a
web farm. Also used to restore a single
report server instance.

See Also

MSReportServer_ConfigurationSetting Class

Reporting Services - Reporting Services Programming

MSReportServer_ConfigurationSetting Properties
MSReportServer_ConfigurationSetting Properties

Public Properties

DatabaseIntegratedSecurity Specifies whether integrated security is
used when the report server connects to
the report server database. This property
and the Impersonate property are
mutually exclusive.

DatabaseLogonName Specifies the user name to use when the
report server connects to and
communicates with the report server
database. This property is ignored when
the DatabaseIntegratedSecurity
property is set to true.

DatabaseLogonPassword Specifies the password to use in
combination with the user name when the
report server connects to and
communicates with the report server
database. This property is ignored when
the DatabaseIntegratedSecurity
property is set to true.

DatabaseLogonTimeout Specifies the number of seconds to wait
before an attempt to log on to the report
server database fails.

DatabaseName Specifies the name of the SQL Server
instance that hosts the report server
database.

DatabaseQueryTimeout Specifies the number of seconds that must
elapse before the report server assumes
the command failed or took too much
time to perform. The report server is
timing the querying against the SQL
catalog, not a data source for the report.

DatabaseServerName Specifies the name of the server on which
the report server database is installed.

Impersonate Indicates whether the report server should
impersonate a Windows user when
connecting to the database. This
propertyand the
DatabaseIntegratedSecurity property
are mutually exclusive.

ImpersonateDomain Indicates the Windows domain of the user
that the report server should impersonate
when connecting to the report server
database. This property is ignored if the
Impersonate property is set to false.

ImpersonatePassword Indicates the password for the user
account that the report server uses when
connecting to the report server database.
This property is ignored if the
Impersonate property is set to false.

ImpersonateUserName Indicates the Windows user name that the
report server uses when connecting to the
report server database. This property is
ignored if the Impersonate property is
set to false.

InstanceID This object supports the Reporting Services
infrastructure and is not intended to be
used directly from your code.

InstanceName Specifies the name of a report server
instance on a specific computer.

PathName Specifies the installation path to a report
server instance.

UnattendedExecutionLogonName Specifies the logon user that the report
server impersonations when running an
unattended report.

UnattendedExecutionLogonPassword Specifies the password for the
UnattendedExecutionLogonName.

UnattendedExecutionLogonDomain Specifies the logon user that the report
server impersonates when it is running
reports unattended.

VirtualRoot Specifies the virtual root of a report server
instance.

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseIntegratedSecurity Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseIntegratedSecurity Property

Specifies whether integrated security is used when the report server connects to the report server database. This property and the
Impersonate property are mutually exclusive. If both properties are specified, then DatabaseIntegratedSecurity is ignored. The
value given in the Impersonate property is used, and the values given in the ImpersonateUserName, ImpersonateDomain,
and ImpersonatePassword are used to connect to the report server database. Read/write.

Visual Basic .NET

Public Dim DatabaseIntegratedSecurity As Boolean

C#

public bool DatabaseIntegratedSecurity;

Property Values

A Boolean object that specifies whether integrated security is used.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseLogonName Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseLogonName Property

Specifies the user name that the report server uses when connecting to the report server database. This property is ignored if the
DatabaseIntegratedSecurity property is set to true. Read/write.

Visual Basic .NET

Public Dim DatabaseLogonName As String

C#

public string DatabaseLogonName;

Property Values

A String object that represents the user name.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseLogonPassword Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseLogonPassword Property

Specifies the password that is used in combination with the user name when the report server connects to the report server
database. This property is ignored when the DatabaseIntegratedSecurity property is set to true. Write-only.

Visual Basic .NET

Public Dim DatabaseLogonPassword As String

C#

public string DatabaseLogonPassword;

Property Values

A String object that represents the password.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseLogonTimeout Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseLogonTimeout Property

Specifies the number of seconds to wait before an attempt to log on to the report server database fails. A value of 0 indicates an
infinite wait time. Read/write.

Visual Basic .NET

Public Dim DatabaseLogonTimeout As UInt32

C#

public UInt32 DatabaseLogonTimeout;

Property Values

A 32-bit unsigned integer object that represents the number of seconds.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseName Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseName Property

Specifies the name of the SQL Server instance that hosts the report server database. Read/write.

Visual Basic .NET

Public Dim DatabaseName As String

C#

public string DatabaseName;

Property Values

A String object whose value represents the database instance name of the report server database.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseQueryTimeout Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseQueryTimeout Property

Specifies the number of seconds that must elapse before the report server assumes the command failed or took too much time to
perform. The report server is timing the querying against the SQL catalog, not a data source for the report. Read/write.

Visual Basic .NET

Public Dim DatabaseQueryTimeout As UInt32

C#

public UInt32 DatabaseQueryTimeout;

Property Values

A 32-bit unsigned integer object that represents the number of seconds that the query is allowed to run.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

DatabaseServerName Property (WMI)
MSReportServer_ConfigurationSetting.DatabaseServerName Property

Specifies the name of the server on which the report server database is installed. Read/write.

Visual Basic .NET

Public Dim DatabaseServerName As String

C#

public string DatabaseServerName;

Property Values

A String object that represents the name of the server.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

Impersonate Property (WMI)
MSReportServer_ConfigurationSetting.Impersonate Property

Indicates whether the report server should impersonate a Windows user when connecting to the report server database. This
property and the DatabaseIntegratedSecurity property are mutually exclusive. If both properties are specified, then
DatabaseIntegratedSecurity is ignored. The value given in this Impersonate property is used, and the values given in the
ImpersonateUserName, ImpersonateDomain, and ImpersonatePassword are used to connect to the report server database.
Read/write.

Visual Basic .NET

Public Dim Impersonate As Boolean

C#

public bool Impersonate;

Property Values

A Boolean object that indicates whether the report server should impersonate a Windows user when connecting to the report
server database.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

ImpersonateDomain Property (WMI)
MSReportServer_ConfigurationSetting.ImpersonateDomain Property

Indicates the Windows domain of the user that the report server should impersonate when connecting to the report server
database. This property is ignored if the Impersonate property is set to false. Read/write.

Visual Basic .NET

Public Dim ImpersonateDomain As String

C#

public string ImpersonateDomain;

Property Values

A String object that represents the Windows domain.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

ImpersonatePassword Property (WMI)
MSReportServer_ConfigurationSetting.ImpersonatePassword Property

Indicates the password for the user account that the report server uses when connecting to the report server database. This
property is ignored if the Impersonate property is set to false. Write-only.

Visual Basic .NET

Public Dim ImpersonatePassword As String

C#

public string ImpersonatePassword;

Property Values

A String object that represents the password.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

ImpersonateUserName Property
MSReportServer_ConfigurationSetting.ImpersonateUserName Property

Indicates the Windows user name that the report server uses when connecting to the report server database. This property is
ignored if the Impersonate property is set to false. Read/write.

Visual Basic .NET

Public Dim ImpersonateUserName As String

C#

public string ImpersonateUserName;

Property Values

A String object that represents the Windows user name.

Remarks

The Windows user name is specified in the format Domain\User.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

InstanceID Property (WMI)
MSReportServer_ConfigurationSetting.InstanceID Property

This object supports the Reporting Services infrastructure and is not intended to be used directly from your code.

Visual Basic .NET

public Dim InstanceID As String

C#

public string InstanceID;

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

InstanceName Property (WMI)
MSReportServer_ConfigurationSetting.InstanceName Property

Specifies the name of a report server instance on a specific computer. Read-only.

Visual Basic .NET

Public Dim InstanceName As String

C#

public string InstanceName;

Property Value

A String object that represents the name of the report server instance.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

PathName Property (WMI)
MSReportServer_ConfigurationSetting.PathName Property

Specifies the installation path of a report server instance. Read-only.

Visual Basic .NET

public Dim PathName As String

C#

public string PathName;

Property Values

A String object that represents the installation path.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

UnattendedExecutionLogonName Property (WMI)
MSReportServer_ConfigurationSetting.UnattendedExecutionLogonName Property

Specifies the logon user that the report server impersonations when running an unattended report. Read/write.

Visual Basic .NET

Public Dim UnattendedExecutionLogonName As String

C#

public string UnattendedExecutionLogonName;

Property Value

A String object that represents the logon user that the report server uses to impersonate when running unattended reports.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

UnattendedExecutionLogonPassword Property (WMI)
MSReportServer_ConfigurationSetting.UnattendedExecutionLogonPassword Property

Specifies the password for the UnattendedExecutionLogonName. Read/write.

Visual Basic .NET

Public Dim UnattendedExecutionLogonPassword As String

C#

public string UnattendedExecutionLogonPassword;

Property Value

A String object that represents the logon user that the report server uses to impersonate when running unattended reports.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

UnattendedExecutionLogonDomain
MSReportServer_ConfigurationSetting.UnattendedExecutionLogonDomain

Specifies the logon user that the report server impersonates when it is running reports unattended.

Visual Basic .NET

Public Dim UnattendedExecutionLogonDomain As String

C#

public string UnattendedExecutionLogonDomain;

Property Value

A String object that represents the Windows domain of the logon user that the report server impersonates when running reports
unattended.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

VirtualRoot Property (WMI)
MSReportServer_ConfigurationSetting.VirtualRoot Property

Specifies the virtual directory of a report server instance. Read-only.

Visual Basic .NET

Public Dim VirtualRoot As String

C#

public string VirtualRoot;

Property Value

A String object that represents the virtual root.

Example Code

MSReportServer_ConfigurationSetting Class

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

MSReportServer_ConfigurationSetting Methods
MSReportServer_ConfigurationSetting Methods

Public M ethods

ActivateMachine Activates the report server instance in a
web farm. Also used to restore a single
report server instance.

See Also

MSReportServer_ConfigurationSetting Class

Reporting Services - Reporting Services Programming

ActivateMachine Method (WMI)
MSReportServer_ConfigurationSetting.ActivateMachine Method

Activates the report server instancespecified by the InstanceID. Used to activate a report server instance in a Web farm, and also
used to restore a single report server instance.

Visual Basic .NET

Public Function ActivateMachine(InstanceID As String, ClientType as Integer) As HRESULT

C#

public HRESULT ActivateMachine(string InstanceID, int ClientType);

Parameters

InstanceID
A unique identifier which identifies the instance of the report server to activate.

ClientType
An integer whose value indicate the location to perform the activation request. A value of 0 indicate the activation request is for
the report server Web services. A value of 1 indicates the activation request is for the ReportServer service.

Return Value

Returns an HRESULT indicating success or failure of the method call. A value of 0 indicates that the report server instance was
successfully activated. If the activation was not successful, one of the following errors is returned.

Error message
ACT_E_CANT_CONNECT_CATALOG
ACT_E_SERVICE_NOT_ACTIVATED
ACT_E_SERVICE_DISABLED
ACT_E_UNEXPECTED_DB_ERROR
ACT_E_UNEXPECTED_DB_RESULT
ACT_E_ALREADY_ACTIVATED
ACT_E_NOT_ANNOUNCED
ACT_E_NOT_ADMIN
ACT_E_DB_IMPERSONATE_ERROR
ACT_E_CRYPT_IMPERSONATE_ERROR
ACT_E_CRYPT_EXPORT_ERROR

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServer_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

MSReportServerReportManager_ConfigurationSetting Class
The MSReportServerReportManager_ConfigurationSetting class represents the installation and run-time parameters of an
instance of Report Manager. These parameters stored in the configuration file for Report Manager.

For a list of all members of this type, see MSReportServerReportManager_ConfigurationSetting Members.

Visual Basic .NET

Public Class MSReportServerReportManager_ConfigurationSetting

C#

public class MSReportServerReportManager_ConfigurationSetting

Thread Safety

Any public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Any instance members are
not guaranteed to be thread-safe.

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

MSReportServerReportManager_ConfigurationSetting
Members
MSReportServerReportManager_ConfigurationSetting Members

Public Properties

InstanceName Specifies the name of a Report Manager
instance on a specific computer.

PathName Specifies the installation path of a Report
Manager instance.

URLToReportServer Specifies the URL for a report server
instance.

VirtualRoot Specifies the virtual root of a Report
Manager instance.

See Also

MSReportServerReportManager_ConfigurationSetting Class

Reporting Services - Reporting Services Programming

MSReportServerReportManager_ConfigurationSetting
Properties
MSReportServerReportManager_ConfigurationSetting Properties

Public Properties

InstanceName Specifies the name of a Report Manager
instance on a specific computer.

PathName Specifies the installation path of a Report
Manager instance.

VirtualRoot Specifies the virtual root of a Report
Manager instance.

URLToReportServer Specifies the URL for a report server
instance.

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

InstanceName Property (WMI)
MSReportServerReportManager_ConfigurationSetting.InstanceName Property

Specifies the name of a Report Manager instance on a specific computer. Read-only.

Visual Basic .NET

Public Dim InstanceName As String

C#

public string InstanceName;

Property Values

A String object that represents the name of the Report Manager instance.

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

PathName Property (WMI)
MSReportServerReportManager_ConfigurationSetting.PathName Property

Specifies the installation path of a Report Manager instance. Read-only.

Visual Basic .NET

Public Dim PathName As String

C#

public string PathName;

Property Values

A String object that represents the installation path.

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

URLToReportServer Property (WMI)
MSReportServerReportManager_ConfigurationSetting.URLToReportServer Property

Specifies the URL of a report server instance. Read/write.

Visual Basic .NET

Public Dim URLToReportServer As String

C#

public string URLToReportServer;

Property Values

A String object that represents the URL.

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Reporting Services Programming

VirtualRoot Property (WMI)
MSReportServerReportManager_ConfigurationSetting.VirtualRoot Property

Specifies the virtual root of a Report Manager instance. Read only.

Visual Basic .NET

Public Dim VirtualRoot As String

C#

public string VirtualRoot;

Property Values

A String object whose value represents the virtual root to a Report Manager instance.

Requirements

Namespace: root\Microsoft\SqlServer\ReportingServices\v8

Platform: Microsoft Windows® 2000 (all versions); Windows XP Professional with Service Pack 1 (SP1) or later; Windows Server
2003, Standard Edition; Windows Server 2003, Enterprise Edition; or Windows Server 2003, Datacenter Edition

See Also

MSReportServerReportManager_ConfigurationSetting Members

Reporting Services - Report Definition Language

Report Definition Language
A report definition contains data retrieval and layout information for a report. Report Definition Language (RDL) is an XML
representation of this report definition. RDL is an open schema; developers can extend RDL with additional attributes and
elements.

The standard file extension for report definition files is .rdl. Its MIME type is text/xml.

The following table describes the topics in this section.

Topic Description
Report Definition XML Diagram Includes an entity relationship diagram for

RDL.
Report Definition XML Elements Discusses each RDL element.
Report Definition Language XML Schema Includes the XML schema for RDL.

See Also

Reporting Services Programming

Generating Report Definition Language Programatically

Using Custom Assemblies with Reports

Reporting Services - Report Definition Language

Report Definition XML Diagram
The following diagrams describe some of the elements in Report Definition Language.

Report XML Diagram

Report Items XML Diagram

Data Regions XML Diagram

Table XML Diagram

Matrix XML Diagram

Chart XML Diagram

See Also

Report Definition Language

Reporting Services - Report Definition Language

Report Definition XML Elements
The report definition for a report contains elements that define the data and appearance of a report.

A report definition file can contain additional elements that are not used by the report server. For example, Report Designer places
an element in the RDL that is only used by Report Designer.

This section describes each element that can you can use in a report definition file.

Element Parent Description
AccentSensitivity DataSet Indicates whether the data is

accent sensitive
Action DataPoint, Image,

Textbox
Defines a hyperlink,
bookmark link, or
drillthrough action

AllowBlank ReportParameter Indicates whether the value
for the parameter can be an
empty string

Author Report Specifies the name of the
person who created the
report

AutoRefresh Report Specifies the rate, in
seconds, at which a report
rendered in HTML refreshes

Axis CategoryAxis,
ValueAxis

Defines properties for labels,
titles, and gridlines on an
axis

BackgroundColor Style Describes the background
color of the item

BackgroundGradientEndColor Style Specifies the end color of
the background gradient

BackgroundGradientType Style Specifies the type of
background gradient

BackgroundImage Style Provides information about
the background image

BackgroundRepeat BackgroundImage Indicates how the
background image fills the
available space

Body Report Contains the visual elements
of the report

Bookmark Chart, Image, Line,
List, Matrix, Rectangle,
Subreport, Table,
Textbox

Provides a bookmark that
users can jump to using a
link defined as a bookmark
action

BookmarkLink Action Contains the ID of a
bookmark within the report

BorderColor Style Indicates the border color of
the item

BorderStyle Style Indicates the style of the
border of the item

BorderWidth Style Indicates the width of the
border of the item

Bottom BorderColor Describes the color of the
bottom border of the item

Bottom BorderStyle Describes the style of the
bottom border of the item

Bottom BorderWidth Describes the width of the
bottom border of the item

BottomMargin Report Describes the width of the
bottom margin of the report

Calendar Style Specifies the calendar to use
to format dates

CanGrow Textbox Indicates whether the size of
the text box can increase
according to its content

CanShrink Textbox Indicates whether the size of
the text box can decrease
according to its content

Caption Title Contains the text of the title
CaseSensitivity DataSet Indicates whether the data is

case-sensitive
CategoryAxis Chart Defines the category axis of

the chart
CategoryGrouping CategoryGroupings Defines a category level for a

category grouping in a chart
CategoryGroupings Chart Defines a set of category

groupings for the chart
CellDataElementName Matrix Contains the name of the

data element for a matrix cell
in a report rendered using a
data rendering extension like
the XML rendering extension

CellDataElementOutput Matrix Indicates whether the matrix
cell appears in output
rendered by the XML
rendering extension

Chart ReportItems Defines a chart region to be
included in the report

ChartData Chart Defines the data values for
the chart

ChartElementOutput Chart Indicates whether the
element containing the chart
data points appears in output
rendered by the XML
rendering extension

ChartSeries Chart Defines a set of data points
for a series

Class Classes Contains information about a
class to instantiate

Classes Report Contains classes to
instantiate during report
initialization

ClassName Class Contains the name of the
class to instantiate

Clustered ThreeDProperties Indicates whether the data
series are displayed along
distinct rows in a three-
dimensional chart

Code Report Contains definitions for
custom functions to be used
in the report

CodeModule CodeModules Contains the name of the
code module to load

CodeModules Report Contains the names of code
modules to load for use in
expressions

Collation DataSet Describes the locale that the
report server uses to sort
data

Color Style Describes the foreground
color of the item

ColSpan TableCell Indicates the number of
columns that the table cell
spans

ColumnGrouping ColumnGroupings Defines a column header
region in a matrix

ColumnGroupings Matrix Contains the set of column
groupings for a matrix

Columns Body Defines the default number
of columns in the report

ColumnSpacing Body Defines the spacing between
each column

CommandText Query Specifies the query that the
report server executes to
retrieve data for the report

CommandType Query Indicates the type of query
that is contained in the
CommandText element

ConnectionProperties DataSource Provides information about
the data source

ConnectString ConnectionProperties Contains the connection
string for the data source

Corner Matrix Contains the items in the
corner region of a matrix

CrossAt Axis Indicates the value at which
to cross the other axis

Custom Chart, Grouping,
Image, Line, List,
Matrix, Rectangle,
Report, Subreport,
Table, Textbox

Contains custom information
to be passed to the rendering
extension

CustomReportItem ReportItems Defines a custom report item
to be drawn in the report

DataCollectionName Grouping Contains the name of the
data element of the
collection containing all
instances of the group in a
report rendered using a data
rendering extension like the
XML rendering extension

DataElementName Chart,
CustomReportItem,
DataPoint, Grouping,
Image, Line, List,
Matrix, Rectangle,
Report, Subreport,
Subtotal,
Table,Textbox

Contains the name of the
data element or attribute for
a report item or the name of
the top-level element for a
report rendered using a data
rendering extension like the
XML rendering extension

DataElementOutput Chart,
CustomReportItem,
DataPoint, Grouping,
Image, Line, List,
Matrix, Rectangle,
Subreport, Subtotal,
Table,Textbox

Indicates whether the item
appears in output rendered
by the XML rendering
extension

DataElementStyle Report,Textbox Indicates whether a text box
within the report should be
rendered as an element or as
an attribute when the report
rendered using a data
rendering extension like the
XML rendering extension

DataInstanceElementOutput List Indicates whether the list
appears in output rendered
by the XML rendering
extension

DataInstanceName List Contains the name of the
data element for a list in a
report rendered using a data
rendering extension like the
XML rendering extension

DataField Field Name of a field in a query
DataLabel DataPoint Defines the data labels to

display for data values
DataPoint DataPoints Defines a single data point

for a chart
DataPoints ChartSeries Defines the data points for a

chart series
DataProvider ConnectionProperties Specifies the data processing

extension to use for the data
source

DataSchema Report Contains the namespace to
use in a report rendered
using a data rendering
extension like the XML
rendering extension

DataSet DataSets Contains information about a
set of data in the report

DataSetName DataSetReference Indicates which dataset to use
for the dataset reference

DataSetName List, Matrix, Chart,
Table

Indicates which dataset to use
for the data region

DataSetReference DefaultValue,
ValidValues

Defines a dataset that
contains a list of valid
parameter values and for a
default parameter

DataSets Report Describes the data in the
report

DataSource DataSources Describes a source of data for
the report

DataSourceName Query Contains the name of the data
source for the query

DataSourceReference DataSource Contains the path to a shared
data source

DataSources Report Describes the data sources for
the report

DataTransform Report Contains the location and file
name of a transformation to
apply to a report rendered
using a data rendering
extension like the XML
rendering extension

DataType ReportParameter Specifies the data type of a
parameter

DataValue DataValues Defines a single value for a
data point

DataValues DataPoint Contains a set of data values
for the y-axis

Default BorderColor Describes the default color of
the border of the item

Default BorderStyle Describes the default style of
the border of the item

Default BorderWidth Describes the default width of
the border of the item

DefaultValue ReportParameter Specifies the default value to
use for the parameter

DepthRatio ThreeDProperties Indicates the ratio of height to
width

Description Report Provides a long description of
the report

DetailDataCollectionName Table Contains the name of the data
element of the collection
containing all instances of the
group in a report rendered
using a data rendering
extension like the XML
rendering extension

DetailDataElementName Table Contains the name of the data
element for instances of the
group in a report rendered
using a data rendering
extension like the XML
rendering extension

DetailDataElementOutput Table Indicates whether the details
appear in output rendered by
the XML rendering extension

Details Table Defines the details rows for a
table

Direction SortBy Indicates whether the items
are sorted in ascending or
descending order

Direction Style Specifies the direction of text
and matrices

DrawingStyle ThreeDProperties Specifies shape of the
columns or bars in a three-
dimensional chart

Drillthrough Action Contains a reference to a
report to be opened through
a drillthrough action

DynamicCategories CategoryGrouping Defines the a category level
that repeats with each
category group in a chart

DynamicColumns ColumnGrouping Defines dynamic column
headings for a grouping

DynamicRows RowGrouping Defines dynamic row
headings for a grouping

DynamicSeries SeriesGrouping Defines the a series level that
repeats with each series
group in a chart

EmbeddedImage EmbeddedImages Contains an image that is
embedded within a report

EmbeddedImages Report Contains the images that are
embedded within a report

Enabled ThreeDProperties Indicates whether the chart is
three-dimensional

Field Fields Describes each field in the
dataset

Fields DataSet Contains the fields in the
dataset

Filter Filters Contains a list of filters that
restrict rows of data in a
dataset or data region, or
restrict group instances in a
grouping

FilterExpression Filter Contains an expression that is
evaluated for each row of
data or group

Filters Chart, DataSet,
Grouping, List, Matrix,
Table

Contains a collection of filter
lists to apply to a dataset, data
region, or grouping

FilterValue FilterValues Contains a value to compare
against a filter expression

FilterValues Filter Contains a collection of
values to compare against a
filter expression

FontFamily Style Contains the name of the font
for the item

FontSize Style Indicates the point size of the
font for the item

FontStyle Style Indicates the style of the font
for the item

FontWeight Style Indicates the weight of the
font for the item

Footer Table, TableGroup Defines the footer rows for a
table or group

Format Style Contains the Microsoft .NET
Framework formatting string
for the item

GapDepth ThreeDProperties Indicates the percent depth
gap between three-
dimensional bars and
columns

GroupExpression GroupExpressions Defines an individual
expression by which to group
the data

GroupExpressions Grouping Contains an ordered list of
expressions by which to
group the data

Grouping Details,
DynamicCategories,
DynamicColumns,
DynamicRows,
DynamicSeries, List,
TableGroup

Defines how the data is
grouped

GroupsBeforeRowHeaders Matrix Indicates the number of
instances of the outermost
column group to appear
outside the row headers

Header Table, TableGroup Defines the header rows for a
table or group

Height Body, Chart,
ColumnGrouping,
CustomReportItem,
Details, Footer,
Header, Image, Line,
List, Matrix,
MatrixRow,
PageFooter,
PageHeader,
Rectangle, Subreport,
Table, Textbox

Indicates the height of the
item

HeightRatio ThreeDProperties Indicates the ratio of height to
width

Hidden Visibility Indicates whether the item
should initially be shown on
the report

HideDuplicates Textbox Indicates whether an item is
displayed when its current
value is the same as its value
in the previous row

Hyperlink Action Contains the URL of the
target object

Image ReportItems Contains an image to be
displayed in the report

ImageData EmbeddedImage Contains encoded image data
Inclination ThreeDProperties Indicates the angle of

inclination
InitialState ToggleImage Determines the initial state of

the toggle image
InsidePlotArea Legend Indicates whether the legend

is drawn inside the plot area
of a chart

InstanceName Class Contains the name of the
variable to which the class is
assigned

IntegratedSecurity ConnectionProperties Indicates whether the data
source uses integrated
security to connect

Interlaced Axis Indicates whether alternating
dark stripes are drawn
between grid lines

KanatypeSensitivity DataSet Indicates whether the data is
kanatype sensitive

KeepTogether Chart, List, Matrix,
Table

Indicates whether all sections
of the data region are kept
together on one page

Label DynamicCategories,
DynamicSeries,
StaticMember

Provides a label for items in a
chart

Label ParameterValue Contains the label to display
to the user for the parameter

Label Chart, Grouping,
Image, Line, List,
Matrix, Rectangle,
Subreport, Table,
Textbox

Provides a user-friendly label
for an instance of an item
within a report

LabelField DataSetReference Contains the name of the field
that displays a parameter
value to the user

Language Report Indicates the primary
language of the text in the
report

Language Style Indicates the primary
language of the text

Layout Legend Determines the arrangement
of labels within the legend

LayoutDirection Matrix Indicates whether matrix
columns read left-to-right or
right-to-left

Left BorderColor Describes the color of the left
border of the item

Left BorderStyle Describes the style of the
bottom border of the item

Left BorderWidth Describes the width of the left
border of the item

Left Chart,
CustomReportItem,
Image, Line, List,
Matrix, Rectangle,
Subreport, Table,
Textbox

Indicates the distance of the
item from the left of the
containing item

LeftMargin Report Specifies the width of the left
margin of the report

Legend Chart Defines the chart legend
Line ReportItems Defines a line to be drawn in

the report
LineHeight Style Describes the height of a line

of text
LinkToChild Rectangle Contains the name of a child

report item that is the target
location for the document
map label

List ReportItems Defines a list region to be
included in the report

LogScale Axis Indicates whether the axis is
logarithmic

MajorGridLines Axis Defines the major grid lines in
the chart

MajorInterval Axis Indicates the interval between
major gridlines on an axis

MajorTickMarks Axis Indicates the position of the
major tick marks on the axis

Margin Axis Indicates whether the chart
contains an axis margin

Marker DataPoint Defines a marker for
displayed chart data values

Matrix ReportItems Defines a grid of regions that
repeats with each column
group and row group

MatrixCell MatrixCells Defines the contents of each
detail cell in a matrix

MatrixCells MatrixRow Defines the set of cells in a
row of the detail section of a
matrix

MatrixColumn MatrixColumns Defines a column in the detail
section of a matrix

MatrixColumns Matrix Defines a set of columns in
the detail section of a matrix

MatrixRow MatrixRows Defines a row in the detail
section of a matrix

MatrixRows Matrix Defines the set of rows in the
detail section of a matrix

Max Axis Indicates the maximum value
of the axis

MergeTransactions Subreport Indicates whether
transactions in the subreport
are merged with transactions
in the parent report if both
reports use the same data
sources

MIMEType BackgroundImage,
EmbeddedImage,
Image

Identifies the Multipurpose
Internet Mail Extensions
(MIME) type of the image

Min Axis Indicates the minimum value
of the axis

MinorGridLines Axis Defines the minor grid lines
in the chart

MinorInterval Axis Indicates the interval between
minor gridlines on an axis

MinorTickMarks Axis Indicates the position of the
minor tick marks on the axis

NoRows Chart, List, Matrix,
Subreport, Table

Specifies the text to display
when no rows are returned
by the datasets in a subreport
or data region

Nullable ReportParameter Indicates whether the value
for the parameter can be null

NumeralLanguage Style Specifies the language to use
to format numbers

NumeralVariant Style Specifies the language variant
to use to format numbers

Omit Parameter Indicates that the parameter
is ignored when a user opens
a report using a drillthrough
link on another report

Operator Filter Specifies an operator by
which to compare the values
in the FilterExpression and
FilterValues elements

PaddingBottom Style Designates the amount of
padding below the item

PaddingLeft Style Designates the amount of
padding to the left of the item

PaddingRight Style Designates the amount of
padding to the right of the
item

PaddingTop Style Designates the amount of
padding above the item

PageBreakAtEnd Chart, Grouping, List,
Matrix, Rectangle,
Table

Indicates that the rendering
extension should insert a
page break at the end of the
item

PageBreakAtStart Chart, Grouping, List,
Matrix, Rectangle,
Table

Indicates that the rendering
extension should insert a
page break at the beginning
of the item

PageFooter Report Contains a footer that is
rendered at the bottom of
each page of the report

PageHeader Report Contains a header that is
rendered at the top of each
page of the report

PageHeight Report Specifies the default height of
the report

PageWidth Report Specifies the default width of
the report

Palette Chart Specifies the color palette for
chart items

Parameter Parameters Contains a parameter to pass
to a report or control

Parameters Drillthrough,
Subreport

Contains a list of parameters
to pass to the report or
control

ParameterValue ParameterValues Provides an individual hard-
coded value for a parameter

ParameterValues ValidValues Provides a list of hard-coded
values for a parameter

Parent Grouping Identifies the parent group in
a recursive hierarchy

Perspective ThreeDProperties Indicates the percent of
perspective

PlotArea Chart Defines properties for the plot
area of chart types with x-
and y-axes

PlotType ChartSeries Indicates whether the series is
plotted as a line on a column
chart

PointWidth Chart Specifies the width of
columns and bars in a chart

Position DataLabel Indicates the position of the
data label

Position Legend Indicates the position of the
legend

Position Subtotal Indicates whether the subtotal
rows or columns appear
before or after the details
rows or columns

Position Title Indicates the position of the
title

PrintOnFirstPage PageFooter,
PageHeader

Indicates whether the page
header is rendered on the
first page of the report

PrintOnLastPage PageFooter,
PageHeader

Indicates whether the page
header is rendered on the last
page of the report

ProjectionMode ThreeDProperties Specifies the projection mode
for the three-dimensional
chart

Prompt ConnectionProperties Contains the text that the user
interface displays when
prompting the user for
database credentials

Prompt ReportParameter Designates the text to display
when the user interface
prompts the user for
parameter values

Query DataSet Contains query information
for the dataset

QueryParameter QueryParameters Contains information about
an individual parameter that
is passed to the data source
as part of a query

QueryParameters Query Contains a list of parameters
to pass to the data source

Rectangle ReportItems Defines a rectangle to be
drawn in the report

RepeatOnNewPage Footer, Header Indicates whether the header
or footer should be displayed
with the table on each page

RepeatWith Image, Line,
Rectangle, Textbox

Provides the name of the data
region with which to repeat
the report item if the data
region spans multiple pages

Report (none) Top-level element of the
report

ReportItems Body, Corner,
DynamicColumns,
DynamicRows, List,
MatrixCell,
PageFooter,
PageHeader,
Rectangle,
StaticColumn,
StaticRow, Subtotal,
TableCell

Contains the report items that
define the contents of a
report region

ReportName Drillthrough,
Subreport

Contains the path and name
of the target report

ReportParameter ReportParameters Describes an individual
parameter in the report

ReportParameters Report Contains an ordered list of
parameters in the report

Reverse Axis Indicates whether the axis
direction is reversed

Right BorderColor Describes the color of the
right border of the item

Right BorderStyle Describes the style of the
right border of the item

Right BorderWidth Describes the width of the
right border of the item

RightMargin Report Specifies the width of the
right margin of the report

Rotation DataLabel,
ThreeDProperties

Indicates the angle of rotation

RowGrouping RowGroupings Defines a row header region
in a matrix

RowGroupings Matrix Contains the set of row
groupings for a matrix

Scalar Axis Indicates whether the values
on the axis are scalar

SeriesGrouping SeriesGroupings Defines a series level for a
series grouping in a chart

SeriesGroupings Chart Defines a set of series
groupings for the chart

Shading ThreeDProperties Defines the shading of the
three-dimensional chart

ShowGridLines MajorGridLines,
MinorGridLines

Indicates whether gridlines
are displayed in the chart

Size Marker Indicates the size of the
marker

Sizing Image Determines the appearance of
the image if it does not fit
within the height and width of
the Image element

SortBy Sorting Defines an individual
expression by which to sort
the data

SortExpression SortBy Contains the expression by
which to sort the data

Sorting Details,
DynamicColumns,
DynamicRows, List,
TableGroup

Defines how to sort the data

Source BackgroundImage,
Image

Indicates the source of the
image

StaticCategories CategoryGrouping Defines a category level with
a fixed set of members

StaticColumn StaticColumns Defines a fixed column
header region in a matrix

StaticColumns ColumnGrouping Defines static column
headings for the grouping

StaticMember StaticCategories,
StaticSeries

Defines a label to display for a
static series or category
member

StaticRow StaticRows Defines a fixed row header
region in a matrix

StaticRows RowGrouping Defines static headings for
the grouping

StaticSeries SeriesGrouping Defines a series level with a
fixed set of members

Style Axis, Body, Chart,
DataLabel, DataPoint,
Image, Legend, Line,
List, MajorGridLines,
Marker, Matrix,
MinorGridLines,
PageFooter,
PageHeader,
PlotArea, Rectangle,
Subreport, Subtotal,
Table, Textbox

Contains information about
the style of an item

Subreport ReportItems Contains information about a
report to be included within
the report

Subtotal DynamicColumns,
DynamicRows

Defines a subtotal column or
row to be included in the
matrix

Subtype Chart Indicates the subtype of the
chart

Table ReportItems Defines a table to be included
in the report

TableCell TableCells Defines the contents of each
cell in a table

TableCells TableRow Defines a set of cells in a table
TableColumn TableColumns Defines a column in a table
TableColumns Table Contains a set of columns in a

table
TableGroup TableGroups Defines a group in a table
TableGroups Table Contains a set of groups in a

table
TableRow TableRows Defines a row in a table
TableRows Header, Footer,

Details
Contains an ordered list of
table rows

TextAlign Style Describes the horizontal
alignment of the text of the
item

Textbox ReportItems Defines a text box to be
drawn in the report

TextDecoration Style Describes special text
formatting for the item

ThreeDProperties Chart Defines a the three-
dimensional properties of a
chart

Timeout Query Specifies the number of
seconds the query runs
before timing out

Title Axis, Chart Contains the title of the item
ToggleImage Textbox Indicates that a toggle image

is displayed as a part of the
text box

ToggleItem Visibility Specifies the text box that
users click to show or hide
the current item

ToolTip Chart, Image, List,
Matrix, Rectangle,
Subreport, Table,
Textbox

Contains a text label for the
item

Top BorderColor Describes the color of the top
border of the item

Top BorderStyle Describes the style of the top
border of the item

Top BorderWidth Describes the width of the top
border of the item

Top Chart,
CustomReportItem,
Image, Line, List,
Matrix, Rectangle,
Subreport, Table,
Textbox

Indicates the distance of the
item from the top of the
containing item

TopMargin Report Specifies the top margin of
the report

Transaction DataSource Indicates that the datasets
using the data source should
be executed in a single
transaction

Type Chart Indicates the type of the chart
Type Marker Indicates the type of the

marker
UnicodeBiDi Style Indicates the level of bi-

directional embedding
UsedInQuery ReportParameter Indicates whether a report

parameter is used in queries
within the report

ValidValues ReportParameter Provides a list of possible
values for a parameter

Value DataLabel Contains the expression for
the value labels

Value DataValue Contains the value of the data
point

Value Field Contains an expression that
evaluates to the value of the
field

Value Image,
BackgroundImage

Identifies the source of the
image

Value Parameter Contains the value for an
individual parameter that is
passed to a report or control

Value ParameterValue Contains a possible value for
the parameter

Value QueryParameter Contains the value to pass to
the data source

Value Textbox Contains the value of the text
box

Value Values Contains an individual value
to be used as a default for the
parameter

ValueAxis Chart Defines the value axis of the
chart

ValueField DataSetReference Contains the name of the field
that provides the valid values
or the default value of the
parameter

Values DefaultValue Contains the hard-coded
default values for the
parameter

VerticalAlign Style Describes the vertical
alignment of the text of the
item

Visibility Chart,
CustomReportItem,
Details,
DynamicColumns,
DynamicRows, Image,
Line, List, Matrix,
Rectangle, Subreport,
Table, TableColumn,
TableGroup,
TableRow, Textbox

Indicates whether the item is
displayed in the rendered
report

Visible Axis, DataLabel,
Legend

Indicates whether the item is
displayed in the chart

WallThickness ThreeDProperties Indicates the percent
thickness of the outer walls of
the three-dimensional chart

Width Chart,
CustomReportItem,
Image, Line, List,
Matrix,
MatrixColumn,
Rectangle, Report,
RowGrouping,
Subreport, Table,
TableColumn,
Textbox

Indicates the width of the
item

WidthSensitivity DataSet Indicates whether the data is
width sensitive

WritingMode Style Indicates whether the text is
written horizontally or
vertically

ZIndex Chart,
CustomReportItem,
Image, Line, List,
Matrix, Rectangle,
Subreport, Table,
Textbox

Indicates the drawing order of
the item within the containing
item

See Also

Report Definition Language

Reporting Services - Report Definition Language

AccentSensitivity Element
AccentSensitivity Element

Indicates whether the data is accent sensitive.

XML

<DataSet Name="...">
 ...
 <AccentSensitivity>...</AccentSensitivity>
 ...
</DataSet>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element None

Remarks

The value for this element is restricted to one of the following strings.

Value Description
True Data is accent sensitive.
False Data is not accent sensitive.
Auto The report server attempts to get accent sensitivity from

the data processing extension. If the extension cannot
provide this information, the value of the
AccentSensitivity element is set to False.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Action Element
Action Element

Defines a hyperlink, a bookmark link, or a drillthrough action.

XML

<Textbox> <!-- or Image, DataPoint -->
 <Action>
 <Hyperlink> <!-- or Drillthrough, BookmarkLink -->
 ...
 </Hyperlink> <!-- or /Drillthrough, /BookmarkLink -->
 </Action>
 ...
</Textbox> <!--or /Image, /DataPoint -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements DataPoint, Image, Textbox
Child elements BookmarkLink, Drillthrough, Hyperlink

Remarks

The Action element must contain one and only one child element: either Hyperlink, Drillthrough, or BookmarkLink.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

AllowBlank Element
AllowBlank Element

Indicates whether the value for the parameter can be an empty string.

XML

<ReportParameter Name="...">
 ...
 <AllowBlank>...</AllowBlank>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element ReportParameter
Child element None

Remarks

The AllowBlank element is ignored if the value of the sibling DataType element is not String.

See Also

Report Definition XML Elements

DataType Element

Reporting Services - Report Definition Language

Author Element
Author Element

Specifies the name of the person who created the report.

XML

<Report>
 ...
 <Author>...</Author>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

AutoRefresh Element
AutoRefresh Element

Specifies the rate, in seconds, at which a report refreshes.

XML

<Report>
 ...
 <AutoRefresh>...</AutoRefresh>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The value for the AutoRefresh element must be between 0 and 2147483647. If the element or value is omitted, or if the value is
zero, the page will not refresh automatically. Currently, the HTML rendering extension is the only Reporting Services rendering
extension that uses AutoRefresh. However, independent software vendors (ISVs) may develop rendering extensions that support
AutoRefresh.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Axis Element
Axis Element

Defines properties for labels, titles, and gridlines on an axis in a chart.

XML

<CategoryAxis> <!-- or ValueAxis -->
 ...
 <Axis>
 <Visible>...</Visible>
 <Style>...</Style>
 <Title>...</Title>
 <Margin>...</Margin>
 <MajorTickMarks>...</MajorTickMarks>
 <MinorTickMarks>...</MinorTickMarks>
 <MajorGridLines>...</MajorGridLines>
 <MinorGridLines>...</MinorGridLines>
 <MajorInterval>...</MajorInterval>
 <MinorInterval>...</MinorInterval>
 <Reverse>...</Reverse>
 <CrossAt>...</CrossAt>
 <Interlaced>...</Interlaced>
 <Scalar>...</Scalar>
 <Min>...</Min>
 <Max>...</Max>
 <LogScale>...</LogScale>
 </Axis>
 ...
</CategoryAxis> <!-- or /ValueAxis -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element CategoryAxis, ValueAxis
Child elements CrossAt, Interlaced, LogScale, MajorGridLines,

MajorInterval, MajorTickMarks, Margin, Max, Min,
MinorGridLines, MinorInterval, MinorTickMarks, Reverse,
Scalar, Style, Title, Visible

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

BackgroundColor Element
BackgroundColor Element

Specifies the background color of the item.

XML

<Style>
 ...
 <BackgroundColor>...</BackgroundColor>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The BackgroundColor element contains an expression that evaluates to either a color name or a hex HTML color string in the
form #HHHHHH. For information about color values, see this Microsoft Web site. If this element is omitted, the background is
transparent.

BackgroundColor applies only to the items rectangle, text box, list, matrix, table, chart, body, subtotal, title, legend, and plot area.
BackgroundColor does not apply to the items line, image, and subreport.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

BackgroundGradientEndColor Element
BackgroundGradientEndColor Element

Specifies the end color of the background gradient.

XML

<Style>
 ...
 <BackgroundGradientEndColor>...</BackgroundGradientEndColor>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The BackgroundGradientEndColor element contains an expression that evaluates to either a color name or a hex HTML color
string in the form #HHHHHH. For information about color values, see this Microsoft Web site. If BackgroundGradientEndColor
is omitted, the end color of the background gradient is transparent.

BackgroundGradientEndColor applies only to chart, plot area, and legend. BackgroundGradientEndColor does not apply to
the items line, rectangle, text box, image, subreport, list, matrix, table, body, subtotal, title, and legend.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

BackgroundGradientType Element
BackgroundGradientType Element

Specifies the type of background gradient.

XML

<Style>
 ...
 <BackgroundGradientType>...</BackgroundGradientType>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The BackgroundGradientType element contains an expression that evaluates to one of the following strings:

None
LeftRight
TopBottom
Center
DiagonalLeft
DiagonalRight
HorizontalCenter
VerticalCenter

BackgroundGradientType applies only to chart, plot area, and legend. BackgroundGradientType does not apply to the items
line, rectangle, text box, image, subreport, list, matrix, table, body, subtotal, title, and legend.

If BackgroundGradientType is omitted, the item has no background gradient.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

BackgroundImage Element
BackgroundImage Element

Provides information about the background image.

XML

<Style>
 ...
 <BackgroundImage>
 <Source>...</Source>
 <Value>...</Value>
 <MIMEType>...</MIMEType>
 <BackgroundRepeat>...</BackgroundRepeat>
 </BackgroundImage>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child elements BackgroundRepeat, MIMEType, Source, Value

Remarks

If the BackgroundImage element is omitted, there is no background image.

BackgroundImage applies only to the items rectangle, text box, list, matrix, table, body, subtotal, title, and legend.
BackgroundImage does not apply to the items line, image, subreport, and chart.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

BackgroundRepeat Element
BackgroundRepeat Element

Indicates how the background image fills the available space.

XML

<BackgroundImage>
 ...
 <BackgroundRepeat>...</BackgroundRepeat>
</BackgroundImage>

Element Characteristics

Characteristic Description
Data type and length String
Default value Repeat
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BackgroundImage
Child element None

Remarks

The BackgroundRepeat element must contain an expression that evaluates to one of the following values.

Value Description
Repeat Repeats the image horizontally and

vertically in the background
NoRepeat Displays the image only once; the image

does not repeat
RepeatX Repeats the image horizontally in the

background
RepeatY Repeats the image vertically in the

background

BackgroundRepeat applies only to the items rectangle, text box, list, matrix, table, body and subtotal. BackgroundRepeat does
not apply to the items line, image, subreport, and chart.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Body Element
Body Element

Contains the visual elements of the report.

XML

<Report>
 ...
 <Body>
 <ReportItems>...</ReportItems>
 <Height>...</Height>
 <Columns>...</Columns>
 <ColumnSpacing>...</ColumnSpacing>
 <Style>...</Style>
 </Body>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Report
Child elements Columns, ColumnSpacing, Height, ReportItems, Style

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Bookmark Element
Bookmark Element

Provides a bookmark that users can jump to using a link defined as a bookmark action.

XML

<Textbox> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table, Chart -->
 ...
 <Bookmark>...</Bookmark>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart
-->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, Image, Line, List, Matrix, Rectangle, Subreport, Table,

Textbox
Child element None

Remarks

The Bookmark element is used to provide an anchor that a user can jump to using a link defined in the BookmarkLink element
for another item.

See Also

Report Definition XML Elements

BookmarkLink Element

Reporting Services - Report Definition Language

BookmarkLink Element
BookmarkLink Element

Contains the ID of a bookmark to jump to within the report.

XML

<Action>
 <BookmarkLink>...</BookmarkLink>
</Action>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

additional information, see "Remarks."

Element Relationships

Relationship Element
Parent element Action
Child element None

Remarks

The BookmarkLink element is used to provide a link to a report item that contains a matching value in the Bookmark element
belonging to that report item. The value for the BookmarkLink element must evaluate to the ID of a bookmark within the report.
If no bookmark with the ID is found, the link is not included in the rendered report. If the bookmark is hidden, the report server
displays the beginning of the page that contains the bookmark. If multiple bookmarks with the ID are found, the report server
displays the first bookmark found with that ID.

The Action element, which is the parent of BookmarkLink, must contain one and only one child element: Hyperlink,
Drillthrough, or BookmarkLink. If you use either Hyperlink or Drillthrough as a child of Action, you cannot use
BookmarkLink.

See Also

Report Definition XML Elements

Hyperlink Element

Drillthrough Element

Reporting Services - Report Definition Language

BorderColor Element
BorderColor Element

Specifies the color of the border of the item.

XML

<Style>
 <BorderColor>
 <Default>...</Default>
 <Left>...</Left>
 <Right>..</Right>
 <Top>...</Top>
 <Bottom>..</Bottom>
 </BorderColor>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child elements Bottom, Default, Left, Right, Top

Remarks

The BorderColor element applies to the items line, rectangle, text box, image, subreport, list, matrix, table, chart, body, subtotal,
title, and legend. The items line, chart, title, and legend do not support the child Left, Right, Top and Bottom elements; these
items can have only the child Default element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

BorderStyle Element
BorderStyle Element

Specifies the style of the border of the item.

XML

<Style>
 ...
 <BorderStyle>
 <Default>...</Default>
 <Left>...</Left>
 <Right>..</Right>
 <Top>...</Top>
 <Bottom>..</Bottom>
 </BorderStyle>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child elements Bottom, Default, Left, Right, Top

Remarks

The BorderStyle element applies to the items line, rectangle, text box, image, subreport, list, matrix, table, chart, body, subtotal,
title, and legend. The items line, chart, title, and legend do not support the child Left, Right, Top and Bottom elements; these
items can have only the child Default element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

BorderWidth Element
BorderWidth Element

Specifies the width of the border of the item.

XML

<Style>
 ...
 <BorderWidth>
 <Default>...</Default>
 <Left>...</Left>
 <Right>..</Right>
 <Top>...</Top>
 <Bottom>..</Bottom>
 </BorderWidth>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child elements Bottom, Default, Left, Right, Top

Remarks

The BorderWidth element applies to the items line, rectangle, text box, image, subreport, list, matrix, table, chart, body, subtotal,
title, and legend. The items line, chart, title, and legend do not support the child Left, Right, Top and Bottom elements; these
items can have only the child Default element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Bottom Element (BorderColor)
Bottom Element (BorderColor)

Specifies the color of the bottom border of the item.

XML

<BorderColor>
 ...
 <Bottom>...</Bottom>
 ...
</BorderColor>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderColor
Child element None

Remarks

The Bottom element contains an expression that evaluates to either a color name or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

Bottom Element (BorderStyle)
Bottom Element (BorderStyle)

Specifies the style of the bottom border of the item.

XML

<BorderStyle>
 ...
 <Bottom>...</Bottom>
</BorderStyle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderStyle
Child element None

Remarks

The Bottom element must contain an expression that evaluates to one of the following string values:

None
Dotted
Dashed
Solid
Double
Groove
Ridge
Inset
WindowInset
Outset

When used in a chart, the Bottom element can only contain None, Dotted, Dashed, or Solid. Any other style is ignored.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Bottom Element (BorderWidth)
Bottom Element (BorderWidth)

Specifies the width of the bottom border of the item.

XML

<BorderWidth>
 ...
 <Bottom>...</Bottom>
 ...
</BorderWidth>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderWidth
Child element None

Remarks

Bottom contains an expression that evaluates to a string that contains a number (with a period character used as an optional
decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space
between the number and the designator is optional. For more information about size designators, see this Microsoft Web site. The
value for the Bottom element must be between .25pt and 20pt.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

BottomMargin Element
BottomMargin Element

Specifies the width of the bottom margin of the report.

XML

<Report>
 ...
 <BottomMargin>...</BottomMargin>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0 in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for the BottomMargin element must contain a number (with a period character used as an optional decimal
separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the
number and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for BottomMargin is 160 in. The minimum value is 0 in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Calendar Element
Calendar Element

Specifies the calendar to use to format dates.

XML

<Style>
 ...
 <Calendar>...</Calendar>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Gregorian
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Calendar element contains an expression that evaluates to one of the following values:

Gregorian
Gregorian Arabic
Gregorian Middle East French
Gregorian Transliterated English
Gregorian Transliterated French
Gregorian US English
Hebrew
Hijiri
Japanese
Korea
Taiwan
Thai
Buddhist

The Calendar element applies only to the items chart, text box and subtotal. Calendar does not apply to the items line, rectangle,
image, subreport, list, matrix, table, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CanGrow Element
CanGrow Element

Indicates whether the size of the text box can increase vertically according to its content.

XML

<Textbox>
 ...
 <CanGrow>...</CanGrow>
 ...
</Textbox>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Textbox
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CanShrink Element
CanShrink Element

Indicates whether the size of the text box can decrease according to its content.

XML

<Textbox>
 ...
 <CanShrink>...</CanShrink>
 ...
</Textbox>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Textbox
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Caption Element
Caption Element

Contains the text of the chart or axis title.

XML

<Title>
 <Caption>...</Caption>
 ...
</Title>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Title
Child elements None

Remarks

The Caption element contains an expression that evaluates to a string.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CaseSensitivity Element
CaseSensitivity Element

Indicates whether the data is case sensitive.

XML

<DataSet Name="...">
 ...
 <CaseSensitivity>...</CaseSensitivity>
 ...
</DataSet>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element None

Remarks

The value for the CaseSensitivity element is restricted to one of the following strings.

Value Description
True Data is case sensitive.
False Data is not case sensitive.
Auto The report server attempts to get case sensitivity from the

data processing extension. If the extension cannot provide
this information, the value of CaseSensitivity is set to
False.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CategoryAxis Element
CategoryAxis Element

Defines the category axis of the chart.

XML

<Chart>
 ...
 <CategoryAxis>
 <Axis>...</Axis>
 </CategoryAxis>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element Axis

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CategoryGrouping Element
CategoryGrouping Element

Defines a category level for a category grouping in a chart.

XML

<CategoryGroupings>
 ...
 <CategoryGrouping>
 <DynamicCategories> <!-- or StaticCategories -->
 ...
 </DynamicCategories> <!-- or /StaticCategories -->
 </CategoryGrouping>
 ...
</CategoryGroupings>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once

Element Relationships

Relationship Element
Parent element CategoryGroupings
Child element DynamicCategories, StaticCategories

Remarks

The CategoriesGrouping element must have one and only one child element: either DynamicCategories or StaticCategories.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CategoryGroupings Element
CategoryGroupings Element

Defines a set of category groupings for the chart.

XML

<Chart>
 ...
 <CategoryGroupings>
 <CategoryGrouping>...</CategoryGrouping>
 </CategoryGroupings>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element CategoryGrouping

Remarks

Only one category grouping within the CategoryGroupings element can contain static categories.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CellDataElementName Element
CellDataElementName Element

Contains the name of the data element to use for a matrix cell in a report rendered using a data rendering extension like the XML
rendering extension.

XML

<Matrix>
 ...
 <CellDataElementName>...</CellDataElementName>
 ...
</Matrix>

Element Characteristics

Characteristic Description
Data type and length String
Default value Cell
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Matrix
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CellDataElementOutput Element
CellDataElementOutput Element

Indicates whether the matrix cell appears in output rendered by the XML rendering extension.

XML

<Matrix>
 ...
 <CellDataElementOutput>...</CellDataElementOutput>
</Matrix>

Element Characteristics

Characteristic Description
Data type and length String
Default value Output
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Matrix
Child element None

Remarks

The CellDataElementOutput element contains one of the values listed in the following table.

Value Description
Output Indicates the item appears in the XML output.
NoOutput Indicates the item should not appear in the XML output.
ContentsOnly Indicates the item does not appear in the XML, but the contents of

the item are rendered as part of the containing cell.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Chart Element
Chart Element

Defines a chart region to be included in the report.

XML

<ReportItems>
 ...
 <Chart Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <Custom>...</Custom>
 <KeepTogether>...</KeepTogether>
 <NoRows>...<NoRows>
 <DataSetName>...</DataSetName>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 <Filters>...</Filters>
 <Type>...</Type>
 <Subtype>...</Subtype>
 <SeriesGroupings>...</SeriesGroupings>
 <CategoryGroupings>...</CategoryGroupings>
 <ChartData>...</ChartData>
 <Legend>...</Legend>
 <CategoryAxis>...</categoryaxis>
 <ValueAxis>...</ValueAxis>
 <Title>...</Title>
 <PointWidth>...</PointWidth>
 <Palette>...</Palette>
 <ThreeDProperties>...</ThreeDProperties>
 <PlotArea>...</PlotArea>
 <ChartElementOutput>...</ChartElementOutput>
 </Chart>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the chart

Element Relationships

Relationship Element
Parent element ReportItems

Child elements Bookmark, CategoryAxis, CategoryGroupings, ChartData,
ChartElementOutput, Custom, DataSetName, Filters, Height,
KeepTogether, Label, Left, Legend, NoRows,
PageBreakAtEnd, PageBreakAtStart, Palette, PlotArea,
PointWidth, SeriesGroupings, Style, Subtype,
ThreeDProperties, Title, ToolTip, Top, Type, ValueAxis,
Visibility, Width, ZIndex

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ChartData Element
ChartData Element

Defines the data values for the chart.

XML

<Chart>
 ...
 <ChartData>
 <ChartSeries>...</ChartSeries>
 </ChartData>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element ChartSeries

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ChartElementOutput Element
ChartElementOutput Element

Indicates whether the an element containing the chart data points appears in output rendered by the XML rendering extension.

XML

<Chart>
 ...
 <ChartElementOutput>...</ChartElementOutput>
</Chart>

Element Characteristics

Characteristic Description
Data type and length String
Default value Output
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element None

Remarks

The ChartElementOutput element contains one of the values listed in the following table.

Value Description
Output Indicates the data points appears in the XML output
NoOutput Indicates the data points should not appear in the XML output

The data points within the chart appear in the XML output under the DataPoints element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ChartSeries Element
ChartSeries Element

Defines a set of data points for a series.

XML

<ChartData>
 ...
 <ChartSeries>
 <DataPoints>...</DataPoints>
 <PlotType>...</PlotType>
 </ChartSeries>
 ...
</ChartData>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once

Element Relationships

Relationship Element
Parent element ChartData
Child elements DataPoints, PlotType

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Class Element
Class Element

Contains information about a class to instantiate during report initialization. The class instance can be used in expressions in the
report.

XML

<Classes>
 <Class>
 <ClassName>...</ClassName>
 <InstanceName>...</InstanceName>
...</Class>
</Class>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element Classes
Child element ClassName, InstanceName

Remarks

A code module must be loaded before you can use a class from that module. For more information, see Using Custom Assemblies
with Reports.

See Also

Report Definition XML Elements

CodeModules

Using Custom Assemblies with Reports

Writing Custom Code

Reporting Services - Report Definition Language

Classes Element
Classes Element

Contains classes to instantiate during report initialization.

XML

<Report>
 ...
 <Classes>
 <Class>...</Class>
 </Classes>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element Class

See Also

Report Definition XML Elements

Using Custom Assemblies with Reports

Reporting Services - Report Definition Language

ClassName Element
ClassName Element

Contains the name of the class to instantiate.

XML

<Class>
 <ClassName>...</ClassName>
 ...
</Class>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Class
Child element None

Remarks

The value for ClassName must be a case-insensitive identifier that is compliant with the Common Language Specification (CLS).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Clustered Element
Clustered Element

Indicates whether the value series are displayed along distinct rows in a three-dimensional chart.

XML

<ThreeDProperties>
 ...
 <Clustered>...</Clustered>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

Clustered applies only to bar and column charts.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Code Element
Code Element

Contains definitions for custom functions to be used in the report.

XML

<Report>
 ...
 <Code>...</Code>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

Functions contained within the code element must be written in Visual Basic .NET and must be instance methods. For information
about writing custom code and using the functions contained within the Code element in a report, see Writing Custom Code.

The code from the Code element of a report and from your custom assemblies are instantiated into a Code object when the
report is run. In some cases, you may need to override the default OnInit method for this object to initialize the your custom
classes with values from the global collections in the report. For information about initializing the Code object using OnInit, see
Initializing Custom Assembly Objects.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CodeModule Element
CodeModule Element

Contains the name of the assembly to load.

XML

<CodeModules>
 <CodeModule>...</CodeModule>
</CodeModules>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element CodeModules
Child element None

See Also

Report Definition XML Elements

Using Custom Assemblies with Reports

Reporting Services - Report Definition Language

CodeModules Element
CodeModules Element

Contains the names of code modules to load for use in expressions.

XML

<Report>
 ...
 <CodeModules>
 <CodeModule>...</CodeModule>
 </CodeModules>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element CodeModule

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Collation Element
Collation Element

Describes the locale that the report server uses to sort data.

XML

<DataSet Name="...">
 ...
 <Collation>...</Collation>
</DataSet>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element None

Remarks

The Collation element uses the standard Microsoft SQL Server collation codes. For information about these codes, see "Windows
Collation Name" in Microsoft SQL Server 2000 Books Online.

If no collation is specified within the DataSet element, the report server attempts to derive the collation code from the data
processing extension. If the server cannot get this information from the extension, the collation is set to the Language property of
the report.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Color Element
Color Element

Describes the foreground color of the item.

XML

<Style>
 ...
 <Color>...</Color>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Black
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Color element contains an expression that evaluates to either a color name or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

Color applies only to the items text box, subtotal, title, and legend. Color does not apply to the items line, rectangle, image,
subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

ColSpan Element
ColSpan Element

Specifies the number of columns that the table cell spans.

XML

<TableCell>
 ...
 <ColSpan>...</ColSpan>
</TableCell>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element TableCell
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ColumnGrouping Element
ColumnGrouping Element

Defines a column header region in a matrix.

XML

<ColumnGroupings>
 <ColumnGrouping>
 <Height>...</Height>
 <DynamicColumns> <!-- or StaticColumns -->.
 ...
 </DynamicColumns>..<!-- or /StaticColumns -->
 </ColumnGrouping>
</ColumnGroupings>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element ColumnGroupings
Child elements DynamicColumns, Height, StaticColumns

Remarks

Each column grouping defines a row of column headings. The first column grouping is positioned as the outermost row of
column headings.

The ColumnGrouping must contain either a DynamicColumns element or a StaticColumns element, but it cannot contain
both.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ColumnGroupings Element
ColumnGroupings Element

Contains a set of column groupings for the matrix.

XML

<Matrix Name="...">
 ...
 <ColumnGroupings>
 <ColumnGrouping>...</ColumnGrouping>
 </ColumnGroupings>
 ...
</Matrix>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Matrix
Child element ColumnGrouping

Remarks

Only one column grouping within the ColumnGroupings element can contain static columns.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Columns Element
Columns Element

Defines the number of columns in the body the report.

XML

<Body>
 ...
 <Columns>...</Columns>
 ...
</Body>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value 1
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Body
Child element None

Remarks

A value of 2 or more in the Columns element divides the report body into multiple columns. The Columns element must contain
a value between 1 and 1000.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ColumnSpacing Element
ColumnSpacing Element

Defines the spacing between columns.

XML

<Body>
 ...
 <ColumnSpacing>...</ColumnSpacing>
 ...
</Body>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0.5in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Body
Child element None

Remarks

The string for the ColumnSpacing element must contain a number (with a period character used as an optional decimal
separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the
number and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for ColumnSpacing is 160in. The minimum value is 0in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

CommandText Element
CommandText Element

Specifies the query that the report server executes to retrieve data for the report.

XML

<Query>
 ...
 <CommandText>...</CommandText>
 ...
</Query>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Query
Child element None

Remarks

The CommandText element contains an expression that evaluates to a statement that the data source can use to retrieve data
(for example, a Transact-SQL query). The type of query contained in the CommandText element is specified in the
CommandType element.

See Also

Report Definition XML Elements

CommandType Element

Reporting Services - Report Definition Language

CommandType Element
CommandType Element

Indicates the type of query that is contained in the CommandText element.

XML

<Query>
 ...
 <CommandType>...</CommandType>
 ...
</Query>

Element Characteristics

Characteristic Description
Data type and length String
Default value Text
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Query
Child element None

Remarks

The value for the CommandType element is restricted to one of the following strings.

Value Description
Text Indicates that the value of the CommandText element is a

text string to pass to the data source, for example, a
Transact-SQL query.

StoredProcedure Indicates that the value of the CommandText element is
the name of a stored procedure to execute. The stored
procedure must return a single result set.

TableDirect Indicates that the value of the CommandText element is
the name of a table from which to retrieve data. All data
from the table is returned.

See Also

Report Definition XML Elements

CommandText Element

Reporting Services - Report Definition Language

ConnectionProperties Element
ConnectionProperties Element

Provides information about the data source.

XML

<DataSource Name="...">
 ...
 <ConnectionProperties>
 <DataProvider>...</DataProvider>
 <ConnectString>...</ConnectString>
 <IntegratedSecurity>...</IntegratedSecurity>
 <Prompt>...</Prompt>
 </ConnectionProperties>
</DataSource>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

additional information, see "Remarks."

Element Relationships

Relationship Element
Parent element DataSource
Child elements ConnectString, DataProvider, IntegratedSecurity, Prompt

Remarks

The DataSource element, which is the parent of ConnectionProperties, must contain either a ConnectionProperties element
or a DataSourceReference element, but it cannot contain both.

Credential information is not stored within a report definition. Credentials are stored and managed separately on the report
server.

See Also

Report Definition XML Elements

DataSourceReference Element

Specifying Credential and Connection Information

Reporting Services - Report Definition Language

ConnectString Element
ConnectString Element

Contains the connection string for the data source.

XML

<ConnectionProperties>
 ...
 <ConnectString>...</ConnectString>
 ...
</ConnectionProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that can occur once and only once

Element Relationships

Relationship Element
Parent element ConnectionProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Corner Element
Corner Element

Contains the items in the corner region of the matrix.

XML

<Matrix Name="...">
 <Corner>
 <ReportItems>...</ReportItems>
 </Corner>
 ...
</Matrix>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Matrix
Child element ReportItems

Remarks

If the Corner element is omitted, no items are rendered in the corner.

The height of the corner item is the sum of the heights of the column headers. The width of the corner item is the sum of the
widths of the row headers.

The ReportItems element within the Corner element can contain one and only one child item. Values for the Top, Left, Height
and Width elements for this child item are ignored: Top and Left values are set to 0, and Height and Width values are set to
100 percent of the containing corner item.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CrossAt Element
CrossAt Element

Indicates the value at which to cross the other axis.

XML

<Axis>
 ...
 <CrossAt>...</CrossAt>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The CrossAt element contains a string that evaluates to a variant. If CrossAt is omitted, the value is determined by the chart
control.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Custom Element
Custom Element

Contains custom information to be passed to the rendering extension.

XML

<Report> <!-- or Line, Rectangle, Textbox, Image, Subreport, List, Matrix, Table, Chart,
Grouping -->
 ...
 <Custom>...</Custom>
 ...
</Report> <!-- or /Line, /Rectangle, /Textbox, /Image, /Subreport, /List, /Matrix,
/Table, /Chart, /Grouping -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, Grouping, Image, Line, List, Matrix, Rectangle, Report,

Subreport, Table, Textbox
Child element None

Remarks

The Custom element has no predefined child elements. However, you can insert any XML structure into this element. The
rendering extensions included with Reporting Services do not use the Custom element, though a custom rendering extension can
use it. For information about developing custom rendering extensions, see Extending Reporting Services Capabilities.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

CustomReportItem Element
CustomReportItem Element

Defines a custom report item to be drawn in the report.

XML

<ReportItems>
 ...
 <CustomReportItem Name="..." Type="...">
 ...
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <RepeatWith>...</RepeatWith>
 <ReportItems>...</ReportItems>
 </CustomReportItem>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the custom report item
Type String Type of the custom report item

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Height, Left, RepeatWith, ReportItems, Top, Visibility, Width,

ZIndex

Remarks

A custom report item is a report item that is not defined by standard RDL. You can insert any XML structure into the
CustomReportItems element. The Type attribute and this XML structure can be processed by a custom application or server.

Use the ReportItems element to define a collection of report items to display when the application or server does not support the
custom report item.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataCollectionName Element
DataCollectionName Element

Contains the name of the data element of the collection containing all instances of the group in a report rendered using a data
rendering extension like the XML rendering extension.

XML

<Grouping>
 ...
 <DataCollectionName>...</DataCollectionName>
 ...
</Grouping>

Element Characteristics

Characteristic Description
Data type and length String
Default value See "Remarks"
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Grouping
Child element None

Remarks

The default value for the DataCollectionName element is the value of the DataElementName element plus the string
_Collection. For example, if the value of DataElementName is Category, the default value of DataCollectionName is
Category_Collection.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataElementName Element
DataElementName Element

Contains the name of the data element or attribute for a report item or the name of the top-level element for a report rendered
using a data rendering extension like the XML rendering extension.

XML

<Report> <!-- or Line, Rectangle, Textbox, Image, Subreport, List, Matrix, Table, Chart,
CustomReportItem, Grouping, Subtotal, DataPoint -->
 ...
 <DataElementName>...</DataElementName>
 ...
</Report> <!-- or /Line, /Rectangle, /Textbox, /Image, /Subreport, /List, /Matrix,
/Table, /Chart, /CustomReportItem, /Grouping, /Subtotal, /DataPoint -->

Element Characteristics

Characteristic Description
Data type and length String
Default value (when used
as a child of DataPoint)

See "Remarks"

Default value (when used
as a child of Report)

Report

Default value (when used
as a child of Subtotal)

Total

Default value (when used
as a child of a report item
or grouping)

Name of the report item or grouping

Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart, CustomReportItem , DataPoint, Grouping, Image,

Line, List, Matrix, Rectangle, Report, Subreport, Subtotal,
Table, Textbox

Child element None

Remarks

When the DataElementName element is used as a child of DataPoint, the default value for this element is the name of the
corresponding static series or category. If there are no static series or categories, the default value of DataElementName is
Value.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataElementOutput Element
DataElementOutput Element

Indicates whether the item appears in output rendered by the XML rendering extension.

XML

<Textbox> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table, Chart,
CustomReportItem, Grouping, Subtotal, DataPoint -->
 ...
 <DataElementOutput>...</DataElementOutput>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
/CustomReportItem, /Grouping, /Subtotal, /DataPoint -->

Element Characteristics

Characteristic Description
Data type and length String
Default value (when used
as a child of Grouping
or DataPoint)

Output

Default value (when used
as a child of Subtotal)

NoOutput

Default value (when used
as a child of a report
item)

Auto

Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart, CustomReportItem , DataPoint, Grouping, Image,

Line, List, Matrix, Rectangle, Subreport, Subtotal, Table,
Textbox

Child element None

Remarks

The DataElementOutput element contains one of the values listed in the following table.

Value Description
Output Indicates the item appears in the XML output.
NoOutput Indicates the item should not appear in the XML output.
ContentsOnly Indicates the item does not appear in the XML, but the contents of

the item are rendered as part of the containing report item.
ContentsOnly can only be used with lists.

Auto If the item is a text box with a constant value, such as a label, the
item does not appear (NoOutput). If the item is a rectangle, the
output is the same as it is for ContentsOnly. For all other report
items, the item appears in the XML output (Output).

When used as a child of Grouping or DataPoint, the DataElementOutput element can only contain Output or NoOutput.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataElementStyle Element
DataElementStyle Element

Indicates whether a text box within the report should be rendered as an element or as an attribute when the report is rendered
using the XML rendering extension.

XML

<Report> <!-- or Textbox -->
 ...
 <DataElementStyle>...</DataElementStyle>
</Report> <!-- or /Textbox -->

Element Characteristics

Characteristic Description
Data type and length String
Default value (when used
as a child of Report)

AttributeNormal

Default value (when used
as a child of Textbox)

Auto

Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Report, Textbox
Child element None

Remarks

The DataElementStyle element within the Report element must contain one of the following string values:

AttributeNormal
ElementNormal

The DataElementStyle element within the Textbox element must contain one of the following string values:

AttributeNormal
ElementNormal
Auto

A value of Auto indicates that the text box uses the same data element style as the report.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataInstanceElementOutput Element
DataInstanceElementOutput Element

Indicates whether the list appears in output rendered by the XML rendering extension.

XML

<List>
 ...
 <DataInstanceElementOutput>...</DataInstanceElementOutput>
</List>

Element Characteristics

Characteristic Description
Data type and length String
Default value Output
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element List
Child element None

Remarks

The DataInstanceElementOutput element contains one of the values listed in the following table.

Value Description
Output Indicates the item appears in the XML output
NoOutput Indicates the item should not appear in the XML output

The DataInstanceElementOutput element is ignored if there is a grouping in the list.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataInstanceName Element
DataInstanceName Element

Contains the name of the data element for a list in a report rendered using a data rendering extension like the XML rendering
extension.

XML

<List>
 ...
 <DataInstanceName>...</DataInstanceName>
 ...
</List>

Element Characteristics

Characteristic Description
Data type and length String
Default value Item
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element List
Child element None

Remarks

The DataInstanceName element is ignored if there is a grouping in the list.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataField Element
DataField Element

Provides the name of the field in the query.

XML

<Field Name="...">
 <DataField>...</DataField>
 ...
</Field>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element Field
Child element None

Remarks

The Field element must have one and only one child element: either DataField or Value.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataLabel Element
DataLabel Element

Defines the data labels to display for data values.

XML

<DataPoint>
 ...
 <DataLabel>
 <Style>...</Style>
 <Value>...</Value>
 <Visible>...</Visible>
 <Position>...</Position>
 <Rotation>...</Rotation>
 </DataLabel>
 ...
</DataPoint>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataPoint
Child elements Position, Rotation, Style, Value, Visible

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataPoint Element
DataPoint Element

Defines a single data point for a chart.

XML

<DataPoints>
 <DataPoint>
 <DataValues>...</DataValues>
 <DataLabel>...</Datalabel>
 <Action>...</Action>
 <Style>...</Style>
 <Marker>...</Marker>
 <DataElementName>...</DataElementName>
 <DataElementOutput>...</DataElementOutput>
 </DataPoint>
 ...
</DataPoints>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once

Element Relationships

Relationship Element
Parent element DataPoints
Child elements Action, DataElementName, DataElementOutput, DataLabel,

DataValues, Marker, Style

Remarks

There must be one DataPoint element for each static category in a chart series. If the chart series does not contain static
categories, the DataPoints element must contain one and only one DataPoint element. The data values within the child
DataValues element can be a single value expression (in the case of bar or line charts) or multiple value expressions (in the case
of stock and bubble charts).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataPoints Element
DataPoints Element

Defines the data points for a chart series.

XML

<ChartSeries>
 <DataPoints>
 <DataPoint>...</DataPoint>
 </DataPoints>
 ...
</ChartSeries>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Chart
Child element DataPoint

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataProvider Element
DataProvider Element

Specifies the data processing extension to be used for the data source.

XML

<ConnectionProperties>
 <DataProvider>...</DataProvider>
 ...
</ConnectionProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element ConnectionProperties
Child element None

Remarks

The value for the DataProvider element must be the name of a registered data extension; for example, SQL, OLEDB, or ODBC.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSchema Element
DataSchema Element

Contains the namespace to use in a report rendered using a data rendering extension like the XML rendering extension.

XML

<Report>
 ...
 <DataSchema>...</DataSchema>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSet Element
DataSet Element

Contains information about a dataset in the report.

XML

<DataSets>
 <DataSet Name="...">
 <Fields>...</Fields>
 <Query>...</Query>
 <CaseSensitivity>...</CaseSensitivity>
 <Collation>...</Collation>
 <AccentSensitivity>...</AccentSensitivity>
 <KanatypeSensitivity>...</KanatypeSensitivity>
 <WidthSensitivity>...</WidthSensitivity>
 <Filters>...</Filters>
 </DataSet>
</DataSets>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once.

Element Attributes

Attribute Type Description
Name String Name of the dataset. Required.

Element Relationships

Relationship Element
Parent element DataSets
Child elements AccentSensitivity, CaseSensitivity, Collation, Fields, Filters,

KanatypeSensitivity, Query, WidthSensitivity

Remarks

The value of the Name attribute for the DataSet element cannot be the set to name of any existing data region or grouping in
the report.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSetName Element (DataSetReference)
DataSetName Element (DataSetReference)

Indicates which dataset to use for the dataset reference.

XML

<DataSetReference>
 ...
 <DataSetName>...</DataSetName>
 ...
<DataSetReference>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataSetReference
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSetName Element (Data Regions)
DataSetName Element (Data Regions)

Indicates which dataset to use for the dataset reference or data region.

XML

<List> <!-- or Matrix, Table, Chart -->
 ...
 <DataSetName>...</DataSetName>
 ...
</List> <!-- or /Matrix, /Table, /Chart -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, List, Matrix, Table
Child element None

Remarks

If the report contains more than one dataset, the DataSetName element is required for top-level data regions. If the report
contains only one dataset, the data region uses that dataset. If the report does not contain any datasets, you cannot use data
regions. DataSetName is ignored for data regions that are not at the top level.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSetReference Element
DataSetReference Element

Defines a dataset that contains a list of valid parameter values or a default parameter.

XML

<ValidValues> <!-- or DefaultValue -->
 <DataSetReference>
 <DataSetName>...</DataSetName>
 <ValueField>...</ValueField>
 <LabelField>...</LabelField>
 </DataSetReference>
</ValidValues> <!-- or /DefaultValue>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. See

"Remarks" for additional information.

Element Relationships

Relationship Element
Parent elements DefaultValue, ValidValues
Child elements DataSetName, LabelField, ValueField

Remarks

The ValidValues element, which is a parent of the DataSetReference element, can have one and only one child element:
DataSetReference or ParameterValues. When you use DataSetReference as a child element of ValidValues, the query within
the dataset referenced by the child DataSetName element is used to get a list of possible values for the parent report parameter.

The DefaultValue element, which is also a parent of the DataSetReference element, can have one and only one child element:
DataSetReference or Values. When you use DataSetReference as a child element of DefaultValue, the query for the dataset
referenced by the child DataSetName element is used to get the default value for the parent report parameter. The default is the
first value in the field specified by the ValueField element.

See Also

Report Definition XML Elements

ParameterValues Element

Values Element

Reporting Services - Report Definition Language

DataSets Element
DataSets Element

Describes the data in the report.

XML

<Report>
 ...
 <DataSets>
 <DataSet Name="...">...</DataSet>
 </DataSets>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element DataSet

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSource Element
DataSource Element

Describes a data source in the report.

XML

<DataSources>
 <DataSource Name="...">
 <Transaction>...</Transaction>
 <ConnectionProperties> <!-- or DataSourceReference -->
 ...
 </ConnectionProperties> <!-- or /DataSourceReference -->

 </DataSource>
</DataSources>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once

Element Attributes

Attribute Type Description
Name String Name of the data source. Required.

Element Relationships

Relationship Element
Parent element DataSources
Child elements ConnectionProperties, DataSourceReference, Transaction

Remarks

The DataSource element must contain either a ConnectionProperties element or a DataSourceReference element, but it
cannot contain both.

The name of the data source must be unique within the report.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSourceName Element
DataSourceName Element

Contains the name of the data source for the query.

XML

<Query>
 <DataSourceName>...</DataSourceName>
 ...
</Query>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Query
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataSourceReference Element
DataSourceReference Element

Contains the path to a shared data source.

XML

<DataSource Name="...">
 ...
 <DataSourceReference>...</DataSourceReference>
</DataSource>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

additional information, see "Remarks."

Element Relationships

Relationship Element
Parent element DataSource
Child element None

Remarks

The DataSourceReference element can contain a full folder path (for example, /SampleReports/AdventureWorks) or a relative
path (for example, AdventureWorks). Relative paths start in the same folder as the report. The shared data source must be on the
same server as the report.

The DataSource element, which is the parent of DataSourceReference, must contain either a ConnectionProperties element
or a DataSourceReference element, but it cannot contain both.

See Also

Report Definition XML Elements

ConnectionProperties Element

Reporting Services - Report Definition Language

DataSources Element
DataSources Element

Specifies the data sources for the report.

XML

<Report>
 ...
 <DataSources>
 <DataSource Name="...">...</DataSource>
 </DataSources>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element DataSource

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataTransform Element
DataTransform Element

Contains the location and file name of a transformation to apply to a report rendered using a data rendering extension like the
XML rendering extension.

XML

<Report>
 ...
 <DataTransform>...</DataTransform>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The transformation location can be a full folder path (for example, /xsl/xfrm.xsl) or a relative path (for example, xfrm.xsl).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataType Element
DataType Element

Indicates the data type of the parameter.

XML

<ReportParameter Name="...">
 <DataType>...</DataType>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element ReportParameter
Child element None

Remarks

The DataType element must contain one of the following string values:

Boolean
DateTime
Integer
Float
String

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataValue Element
DataValue Element

Defines a single value for a data point.

XML

<DataValues>
 <DataValue>
 <Value>...</Value>
 </DataValue>
 ...
</DataValues>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once

Element Relationships

Relationship Element
Parent element DataValues
Child elements Value

Remarks

The number and order of data values within each data point depends on the chart type. The DataValues element must contain
the following number of DataValue elements in the following order:

Scatter charts require two data values: X and Y.
Bubble charts require three data values: X, Y, and Size.
High-Low-Close (Stock) charts require three data values: High, Low, and Close.
Open-High-Low-Close and Candlestick (Stock) charts require four data values: High, Low, Open, and Close.
All other charts require a single data value for each data point.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DataValues Element
DataValues Element

Contains a set of data values for the y-axis.

XML

<DataPoint>
 <DataValues>
 <DataValue>...</DataValue>
 </DataValues>
 ...
</DataPoint>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataPoint
Child element DataValue

Remarks

The number and order of data values within each data point depends on the chart type. The DataValues element must contain
the following number of DataValue elements in the following order:

Scatter charts require two data values: X and Y.
Bubble charts require three data values: X, Y, and Size.
High-Low-Close (Stock) charts require three data values: High, Low, and Close.
Open-High-Low-Close and Candlestick (Stock) charts require four data values: High, Low, Open, and Close.
All other charts require a single data value for each data point.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Default Element (BorderColor)
Default Element (BorderColor)

Specifies the default color of the border of the item.

XML

<BorderColor>
 <Default>...</Default>
 ...
</BorderColor>

Element Characteristics

Characteristic Description
Data type and length String
Default value Black
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderColor
Child element None

Remarks

The Default element contains either an expression that evaluates to a color name or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

The Default element can be overridden for a specific side through the Left, Right, Top, or Bottom elements. If borders overlap,
the color of the border is determined by the rendering extension.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

Default Element (BorderStyle)
Default Element (BorderStyle)

Specifies the default style of the border of the item.

XML

<BorderStyle>
 <Default>...</Default>
 ...
</BorderStyle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderStyle
Child element None

Remarks

The Default element must contain an expression that evaluates to one of the following values.

None
Dotted
Dashed
Solid
Double
Groove
Ridge
Inset
WindowInset
Outset

When used in a chart, plot area, or legend, the Default element can only contain None, Dotted, Dashed, or Solid. Any other style is
ignored.

The Default element can be overridden for a specific side through the Left, Right, Top, or Bottom elements. If borders overlap,
the style of the border is determined by the rendering extension.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Default Element (BorderWidth)
Default Element (BorderWidth)

Specifies the default width of the border of the item.

XML

<BorderWidth>
 <Default>...</Default>
 ...
</BorderWidth>

Element Characteristics

Characteristic Description
Data type and length String
Default value 1pt
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderWidth
Child element None

Remarks

Default contains an expression that evaluates to a string that contains a number (with a period character used as an optional
decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space
between the number and the designator is optional. For more information about size designators, see this Microsoft Web site. The
value for the Default element must be between .25pt and 20pt.

The Default element can be overridden for a specific side through the Left, Right, Top, or Bottom elements. If borders overlap,
the width of the border is determined by the rendering extension.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

DefaultValue Element
DefaultValue Element

Specifies the default value to use for the parameter.

XML

<ReportParameter Name="...">
 ...
 <DefaultValue>
 <DataSetReference Name="..."> <!-- or Values -->
 ...
 </DataSetReference> <!-- or /Values -->
 </DefaultValue>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element ReportParameter
Child elements DataSetReference, Values

Remarks

The DefaultValue element must have one and only one child element: DataSetReference or Values.

The value of the child of DefaultValue is used for the parameter if the user does not provide a parameter value. If no value is
provided by the user or through DefaultValue, the value for the parameter is Null.

When using the DataSetReference element, the default is the first value in the field specified by the ValueField element.

One and only one default value is allowed for Boolean parameters.

If the sibling Prompt element is omitted, DefaultValue is required if the value for the sibling Nullable element is False or the
values within the sibling ValidValues element do not contain Null.

See Also

Report Definition XML Elements

Nullable Element

Reporting Services - Report Definition Language

DepthRatio Element
DepthRatio Element

Indicates the ratio of depth to width.

XML

<ThreeDProperties>
 ...
 <DepthRatio>...</DepthRatio>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Description Element
Description Element

Contains a description for the report.

XML

<Report>
 <Description>...</Description>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

When the report is published, the text contained within the Description element is uploaded as a part of the metadata of the
report. The description is then visible in Report Manager next to the name of the report.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DetailDataCollectionName Element
DetailDataCollectionName Element

Contains the name of the data element of the collection containing all instances of the group in a report rendered using a data
rendering extension like the XML rendering extension.

XML

<Table>
 ...
 <DetailDataCollectionName>...</DetailDataCollectionName>
 ...
</Table>

Element Characteristics

Characteristic Description
Data type and length String
Default value Details_Collection
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Table
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DetailDataElementName Element
DetailDataElementName Element

Contains the name of the data element for instances of the group in a report rendered using a data rendering extension like the
XML rendering extension.

XML

<Table>
 ...
 <DetailDataElementName>...</DetailDataElementName>
 ...
</Table>

Element Characteristics

Characteristic Description
Data type and length String
Default value Details
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Table
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DetailDataElementOutput Element
DetailDataElementOutput Element

Indicates whether the details appear in output rendered by the XML rendering extension.

XML

<Table>
 ...
 <DetailDataElementOutput>...</DetailDataElementOutput>
</Table>

Element Characteristics

Characteristic Description
Data type and length String
Default value Output
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Table
Child element None

Remarks

The DetailDataElementOutput element contains one of the values listed in the following table.

Value Description
Output Indicates the item appears in the XML output
NoOutput Indicates the item should not appear in the XML output

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Details Element
Details Element

Defines the details rows for a table.

XML

<Table Name="...">
 ...
 <Details>
 <TableRows>...</TableRows>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Visibility>...</Visibility>
 </Details>
 ...
</Table>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element Table
Child elements Grouping, Sorting, TableRows, Visibility

Remarks

A table must have at least one Details, Header, or Footer element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Direction Element (SortBy)
Direction Element (SortBy)

Indicates whether the items are sorted in ascending or descending order.

XML

<SortBy>
 ...
 <Direction>...</Direction>
</SortBy>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element SortBy
Child element None

Remarks

The Direction element must contain one of the following values:

Ascending
Descending

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Direction Element (Style)
Direction Element (Style)

Specifies the direction of text and matrices.

XML

<Style>
 ...
 <Direction>...</Direction>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value LTR
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Direction element must contain an expression that evaluates to one of the following values.

Value Description
LTR Text is written left-to-right.
RTL Text is written right-to-left.

The Direction element applies only to the items text box, matrix, body, and subtotal report items. Direction does not apply to the
items line, rectangle, image, subreport, list, table, and chart.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DrawingStyle Element
DrawingStyle Element

Specifies shape of the columns or bars in a three-dimensional chart.

XML

<ThreeDProperties>
 ...
 <DrawingStyle>...</DrawingStyle>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value Cube
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

The DrawingStyle element must contain one of the following strings:

Cylinder
Cube

DrawingStyle applies only to bar and column charts.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Drillthrough Element
Drillthrough Element

Contains a reference to a report to be opened through a drillthrough action.

XML

<Action>
 <Drillthrough>
 <ReportName>...</ReportName>
 <Parameters>...</Parameters>
 </Drillthrough>
</Action>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

additional information, see "Remarks."

Element Relationships

Relationship Element
Parent element Action
Child elements Parameters, ReportName

Remarks

The Action element, which is the parent of the Drillthrough element, must contain one and only one child element: Hyperlink,
Drillthrough, or BookmarkLink. If you use either Hyperlink or BookmarkLink as a child of Action, you cannot use
Drillthrough.

See Also

Report Definition XML Elements

Hyperlink Element

BookmarkLink Element

Reporting Services - Report Definition Language

DynamicCategories Element
DynamicCategories Element

Defines the category level that repeats with each category group in a chart.

XML

<CategoryGrouping>
 <DynamicCategories>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Label>...</Label>
 </DynamicCategories>
</CategoryGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. See

"Remarks" for additional information.

Element Relationships

Relationship Element
Parent element CategoryGrouping
Child elements Grouping, Label, Sorting

Remarks

The CategoryGrouping element must have one and only one child element: either DynamicCategories or StaticCategories.

The group labels that are displayed on the axis are defined by the Label element contained within the Grouping element. The
Label element that is a child of the DynamicCategories element contains a separate label to display on the axis.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DynamicColumns Element
DynamicColumns Element

Defines dynamic column headings for the matrix column grouping.

XML

<ColumnGrouping>
 ...
 <DynamicColumns>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Subtotal>...</Subtotal>
 <ReportItems>...</ReportItems>
 <Visibility>...</Visibility>
 </DynamicColumns>
</ColumnGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element ColumnGrouping
Child elements Grouping, ReportItems, Sorting, Subtotal, Visibility

Remarks

The ColumnGrouping element, which is the parent of DynamicColumns, must contain either a DynamicColumns element or
StaticColumns element, but it cannot contain both.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DynamicRows Element
DynamicRows Element

Defines dynamic row headings for the matrix row grouping.

XML

<RowGrouping>
 ...
 <DynamicRows>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Subtotal>...</Subtotal>
 <ReportItems>...</ReportItems>
 <Visibility>...</Visibility>
 </DynamicRows>
</RowGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element RowGrouping
Child elements Grouping, ReportItems, Sorting, Subtotal, Visibility

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

DynamicSeries Element
DynamicSeries Element

Defines the a series level that repeats with each series group in a chart.

XML

<SeriesGrouping>
 <DynamicSeries>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Label>...</Label>
 </DynamicSeries>
</SeriesGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. See

"Remarks" for additional information.

Element Relationships

Relationship Element
Parent element SeriesGrouping
Child elements Grouping, Label, Sorting

Remarks

The SeriesGrouping element must have one and only one child element: either DynamicSeries or StaticSeries.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

EmbeddedImage Element
EmbeddedImage Element

Contains an image that is embedded within the report.

XML

<EmbeddedImages>
 <EmbeddedImage Name="...">
 <MIMEType>...</MIMEType>
 <ImageData>...</ImageData>
 </EmbeddedImage>
</EmbeddedImages>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Attributes

Attribute Type Description
Name String Name of the image

Element Relationships

Relationship Element
Parent element EmbeddedImages
Child elements ImageData, MIMEType

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

EmbeddedImages Element
EmbeddedImages Element

Contains the images embedded within the report.

XML

<Report>
 ...
 <EmbeddedImages>
 <EmbeddedImage Name="...">...</EmbeddedImage>
 </EmbeddedImages>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element EmbeddedImage

Remarks

The total size of a report definition file, including all embedded images, must not exceed 4 megabytes (MB).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Enabled Element
Enabled Element

Indicates whether the chart is three-dimensional.

XML

<ThreeDProperties>
 <Enabled>...</Enabled>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Field Element
Field Element

Describes each field in the dataset.

XML

<Fields>
 <Field Name="...">
 <DataField> <!-- or Value -->...</DataField <!--or /Value -->
 </Field>
<Fields>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Attributes

Attribute Type Description
Name String Name of the field within the report.

Required.

Element Relationships

Relationship Element
Parent element Fields
Child elements DataField, Value

Remarks

The field name is the name of the field as it is referred to within the report. The data field is the name of the field that is returned
from the query. Field names have to be unique within the containing Fields collection. Data fields do not have to be unique, and
multiple fields can use the same data field name.

The Field element must have one and only one child element: either DataField or Value.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Fields Element
Fields Element

Contains the fields in the data model.

XML

<DataSet Name="...">
 <Fields>
 <Field Name"...">...</Field>
 </Fields>
 ...
</DataSet>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element Field

Remarks

For an OLTP dataset, the data model defined by the Fields element contains fields that map to columns in the dataset.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Filter Element
Filter Element

Contains a list of filters that restrict rows of data in a dataset or data region, or restrict group instances in a grouping.

XML

<Filters>
 <Filter>
 <FilterExpression Name"...">...</FilterExpression>
 <Operator Name"...">...</Operator>
 <FilterValues Name"...">...</FilterValues>
 </Filter>
</Filters>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element Filters
Child elements FilterExpression, FilterValues, Operator

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

FilterExpression Element
FilterExpression Element

Contains an expression that is evaluated for each row of data or group and compared to a filter value.

XML

<Filter>
 <FilterExpression>...</FilterExpression>
 ...
</Filter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Filter
Child element None

Remarks

The FilterExpression element contains an expression that evaluates to a variant. The expression is evaluated for each instance
within a group or for each row in a dataset or data region. It is compared to the values in the sibling FilterValues element using
the operator from the sibling Operator element. Failed comparisons result in the instance or row being filtered out of the
grouping, dataset, or data region.

The FilterExpression element cannot contain references to report items. When used in a dataset or data region,
FilterExpression cannot contain aggregate functions, and when used in a grouping, it cannot contain the RunningValue or
RowNumber functions.

See Also

Report Definition XML Elements

Operator

FilterValues

Reporting Services - Report Definition Language

Filters Element
Filters Element

Contains a collection of filter lists to apply to a dataset, data region, or grouping.

XML

<DataSet Name="..."> <!-- or List, Matrix, Table, Chart, Grouping -->
 ...
 <Filters>
 <Filter Name"...">...</Filter>
 </Filters>
</DataSet> <!-- or /List, /Matrix, /Table, /Chart, /Grouping-->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent elements Chart, DataSet, Grouping, List, Matrix, Table
Child element Filter

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

FilterValue Element
FilterValue Element

Contains a value to compare to a filter expression.

XML

<FilterValues>
 <FilterValue>...</FilterValue>
</FilterValues>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-n: Required element that occurs once or more than once.

For more information, see "Remarks."

Element Relationships

Relationship Element
Parent element FilterValues
Child element None

Remarks

The FilterValue element contains an expression that evaluates to a variant or to a variant array. It is compared to the value in the
FilterExpression element using the value from the Operator element. (Both FilterExpression and Operator are siblings of the
FilterValues element.)

The cardinality and value for the FilterValue element varies depending on the value of the Operator element.

Operator contains Rule
Equal, Like, NotEqual,
GreaterThan,
GreaterThanOrEqual,
LessThan, LessThanOrEqual

FilterValues must contain one and only one
FilterValue element.

TopN, BottomN FilterValues must contain one and only one
FilterValue element.

The value for FilterValue must evaluate to an integer.

TopPercent, BottomPercent FilterValues must contain one and only one
FilterValue element.

The value for FilterValue must evaluate to an integer
or float.

Between FilterValues must contain exactly two FilterValue
elements.

In FilterValues can contain multiple FilterValue
elements.

The FilterValue element cannot contain references to report items. When used in a dataset or data region, FilterValue cannot
contain aggregate functions. When used in a grouping, FilterValue cannot contain the RunningValue or RowNumber function.

See Also

Report Definition XML Elements

FilterExpression

Operator

Reporting Services - Report Definition Language

FilterValues Element
FilterValues Element

Contains a collection of values to compare to the filter expression.

XML

<Filter>
 ...
 <FilterValues>
 <FilterValue>...</FilterValue>
 </FilterValues>
</Filter>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Filter
Child element FilterValue

See Also

Report Definition XML Elements

FilterExpression

Operator

Reporting Services - Report Definition Language

FontFamily Element
FontFamily Element

Contains the name of the font for the item.

XML

<Style>
 ...
 <FontFamily>...</FontFamily>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Arial
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

FontFamily contains an expression that evaluates to a font name, for example, Arial. The FontFamily element applies only to the
items text box, subtotal, title, and legend. FontFamily does not apply to the items line, rectangle, image, subreport, list, matrix,
table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

FontSize Element
FontSize Element

Indicates the point size of the font for the item.

XML

<Style>
 ...
 <FontSize>...</FontSize>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value 10pt
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

FontSize contains an expression that evaluates to the point size of the font. The minimum value for the FontSize element is 1pt.
The maximum value is 200pt.

FontSize applies only to the items text box, subtotal, title, and legend. FontSize does not apply to the items line, rectangle, image,
subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

FontStyle Element
FontStyle Element

Indicates the style of the font for the item.

XML

<Style>
 ...
 <FontStyle>...</FontStyle>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Normal
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The FontStyle element must contain an expression that evaluates to one of two values: Normal or Italic.

FontStyle applies only to the items text box, subtotal, title, and legend. FontStyle does not apply to the items line, rectangle,
image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

FontWeight Element
FontWeight Element

Indicates the thickness of the font for the item.

XML

<Style>
 ...
 <FontWeight>...</FontWeight>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Normal
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The FontWeight element must contain an expression that evaluates to one of the following values:

Lighter
Normal
Bold
Bolder
100
200
300
400
500
600
700
800
900

FontWeight applies only to the items text box, subtotal, title, and legend. FontWeight does not apply to the items line, rectangle,
image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Footer Element
Footer Element

Defines the footer rows for a table or group.

XML

<Table Name="..."> <!-- or TableGroup-->
 ...
 <Footer>
 <TableRows>...</FooterRows>
 <RepeatOnNewPage>...</RepeatOnNewPage>
 </Footer>
 ...
</Table> <!-- or /TableGroup -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent elements Table, TableGroup
Child elements TableRows, RepeatOnNewPage

Remarks

A table must have at least one Footer, Header, or Details element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Format Element
Format Element

Contains the Microsoft .NET Framework formatting string for the item.

XML

<Style>
 ...
 <Format>...</Format>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value No formatting
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Format element must contain an expression that evaluates to a .NET formatting string. For information about .NET formatting
strings, see this Microsoft Web site.

Locale-dependent currency formatting (format code C) and locale-dependent date formatting is based on the language setting for
the report item.

Format applies only to the items text box, subtotal, title, data label, and legend. Format does not apply to the items line, rectangle,
image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9256

Reporting Services - Report Definition Language

GapDepth Element
GapDepth Element

Indicates the percent depth gap between three-dimensional bars and columns.

XML

<ThreeDProperties>
 ...
 <GapDepth>...</GapDepth>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

GroupExpression Element
GroupExpression Element

Defines an individual expression by which to group the data.

XML

<GroupExpressions>
 <GroupExpression>...</GroupExpression>
</GroupExpressions>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element GroupExpressions
Child element None

Remarks

References to report items are not allowed in a group expression.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

GroupExpressions Element
GroupExpressions Element

Contains an ordered list of expressions by which to group the data.

XML

<Grouping Name="...">
 ...
 <GroupExpressions>
 <GroupExpression>...</GroupExpression>
 </GroupExpressions>
 ...
</Grouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Grouping
Child element GroupExpression

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Grouping Element
Grouping Element

Defines how the data is grouped.

XML

<List Name="..."> <!-- or DynamicColumns, DynamicRows, TableGroup, Details,
DynamicSeries, DynamicCategories -->
 <Grouping Name="...">
 <Label>...</Label>
 <GroupExpressions>...</GroupExpressions>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 <Custom>...</Custom>
 <Filters>...</Filters>
 <Parent>...</Parent>
 <DataElementName>...</DataElementName>
 <DataCollectionName>...</DataCollectionName>
 <DataElementOutput>...</DataElementOutput>
 </Grouping>
 ...
</List> <!-- or /DynamicColumns, /DynamicRows, /TableGroup, /Details, /DynamicSeries,
/DynamicCategories -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality (when used
as a child of List or
Details)

0-1: Optional element that occurs once or not at all

Cardinality (when used
as a child of
DynamicColumns,
DynamicRows,
DynamicCategories,
DynamicSeries, or
TableGroup)

1-1: Required element that occurs once and only once

Element Attributes

Attribute Type Description
Name String Name of the grouping

Element Relationships

Relationship Element
Parent elements Details, DynamicCategories, DynamicColumns,

DynamicRows, DynamicSeries, List, TableGroup
Child elements Custom, DataCollectionName, DataElementName,

DataElementOutput, Filters, GroupExpressions, Label,
PageBreakAtEnd, PageBreakAtStart, Parent

Remarks

The value of the Name attribute of the Grouping element must not be set to the name of a dataset, data region, or other
grouping in the report.

Page breaks in dynamic series, dynamic categories, and dynamic columns are not allowed.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

GroupsBeforeRowHeaders Element
GroupsBeforeRowHeaders Element

Indicates the number of instances of the outermost column group that appear outside the row headers.

XML

<Matrix Name="...">
 ...
 <GroupsBeforeRowHeaders>...</GroupsBeforeRowHeaders>
</Matrix>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value 0
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Matrix
Child element None

Remarks

The minimum value for the GroupsBeforeRowHeaders element is 0. The maximum value is 2147573647.

A subtotal column in a matrix is considered a part of the last detail column; that is, the rightmost detail column in a matrix that
reads left-to-right, and the leftmost detail column in a matrix that reads right-to-left. The subtotal column moves with that
column.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Header Element
Header Element

Defines the header rows for a table or group.

XML

<Table Name="..."> <!-- or TableGroup-->
 ...
 <Header>
 <TableRows>...</TableRows>
 <RepeatOnNewPage>...</RepeatOnNewPage>
 </Header>
 ...
</Table> <!-- or /TableGroup -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent elements Table, TableGroup
Child elements TableRows, RepeatOnNewPage

Remarks

A table must have at least one Header, Footer, or Details element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Height Element
Height Element

Indicates the height of the item.

XML

<Body> <!-- or PageHeader, PageFooter, Line, Rectangle, Textbox, Image, Subreport, List,
Matrix, Table, Chart, CustomReportItem, ColumnGrouping, MatrixRow, Header, Footer,
Details -->
 ...
 <Height>...</Height>
 ...
</Body> <!-- or /PageHeader, /PageFooter, /Line, /Rectangle, /Textbox, /Image,
/Subreport, /List, /Matrix, /Table, /Chart, /CustomReportItem, /ColumnGrouping,
/MatrixRow, /HeaderRow, /FooterRow, /DetailsRow -->

Element Characteristics

Characteristic Description
Data type and length String
Default value See "Remarks."
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Body, Chart, ColumnGrouping, CustomReportItem, Details,

Footer, Header, Image, Line, List, Matrix, MatrixRow,
PageFooter, PageHeader, Rectangle, Subreport, Table,
Textbox

Child element None

Remarks

The string for the Height element must contain a number (with a period character used as an optional decimal separator). The
number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and
the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum size for Height is 160 inches. The minimum size is 0 inches.

Only lines can have a negative size. Height combined with width determines the endpoint of the line.

If the Height element is omitted, the default for Height is the value of Height for the containing item minus the value of the
sibling Top element, except for table or matrix. For a table or matrix, the default is derived from the sizes of the columns, rows,
and cells.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

HeightRatio Element
HeightRatio Element

Indicates the ratio of height to width.

XML

<ThreeDProperties>
 ...
 <HeightRatio>...</HeightRatio>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Hidden Element
Hidden Element

Indicates whether the item should initially be visible on the report.

XML

<Visibility>
 <Hidden>...</Hidden>
 ...
</Visibility>

Element Characteristics

Characteristic Description
Data type and length String
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Visibility
Child element None

Remarks

The value for the Hidden element is an expression that evaluates to a Boolean value.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

HideDuplicates Element
HideDuplicates Element

Indicates whether an item is displayed when its current value is the same as its value in the previous row.

XML

<Textbox Name="...">
 ...
 <HideDuplicates>...</HideDuplicates>
 ...
</Textbox>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Textbox
Child element None

Remarks

The value for the HideDuplicates element is the name of a dataset or grouping. When the value of HideDuplicates is the name
of a dataset, all duplicates of a text box value are hidden. When the value of HideDuplicates is the name of a grouping, each time
there is a new instance of the group, the first instance of the text box is displayed, even if the value is the same as the value from
the last instance of the text box from the previous group instance. Duplicates are not hidden in the first row of a group or page. If
the text box is in a table or matrix cell, the text box in the cell is displayed, but the text is hidden.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Hyperlink Element
Hyperlink Element

Contains the URL of the target object.

XML

<Action>
 <Hyperlink>...</Hyperlink>
</Action>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occurs once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element Action
Child element None

Remarks

The value for the Hyperlink element must evaluate to a URL.

The Action element, which is the parent of Hyperlink, contains one and only one child element: Hyperlink, Drillthrough, or
BookmarkLink.

See Also

Report Definition XML Elements

Drillthrough Element

BookmarkLink Element

Reporting Services - Report Definition Language

Image Element
Image Element

Contains an image to be displayed in the report.

XML

<ReportItems>
 ...
 <Image Name="...">
 <Style>...</Style>
 <Action>...</Action>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <RepeatWith>...</RepeatWith>
 <Custom>...</Custom>
 <Source>...</Source>
 <Value>...</Value>
 <MIMEType>...</MIMEType>
 <Sizing>...</Sizing>
 </Image>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the image

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Action, Bookmark, Custom, Height, Label, Left, MIMEType,

RepeatWith, Sizing, Source, Style, ToolTip, Top, Value,
Visibility, Width, ZIndex

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ImageData Element
ImageData Element

Contains encoded image data.

XML

<EmbeddedImage>
 ...
 <ImageData>...</ImageData>
</EmbeddedImage>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element EmbeddedImage
Child element None

Remarks

The image data within this element must be Base-64 encoded.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Inclination Element
Inclination Element

Indicates the angle of inclination.

XML

<ThreeDProperties>
 ...
 <Inclination>...</Inclination>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

The Inclination element applies only when the value of the sibling ProjectionMode element is Perspective.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

InitialState Element
InitialState Element

Determines the initial state of the toggle image.

XML

<ToggleImage>
 <InitialState>...</InitialState>
</ToggleImage>

Element Characteristics

Characteristic Description
Data type and length None
Default value False
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element ToggleImage
Child element None

Remarks

The InitialState element must contain a Boolean expression. If IntitalState is True, the toggle image is a minus sign (-), for
expanded. If InitialState is False, the toggle image is a plus sign (+), for collapsed. The ToggleImage element is used in
conjunction with the Visibility element on any report items to be hidden using the text box that is the parent of the parent
ToggleImage element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

InsidePlotArea Element
InsidePlotArea Element

Indicates whether the legend is drawn inside the plot area of a chart.

XML

<Legend>
 ...
 <InsidePlotArea>...</InsidePlotArea>
</Legend>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Legend
Child element None

Remarks

If InsidePlotArea is True, the legend is drawn inside the chart plot area. If it is False, it is drawn outside the chart plot area.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

InstanceName Element
InstanceName Element

Contains the name of the variable to which the class is assigned. This name is used in expressions within the report.

XML

<Class>
 ...
 <InstanceName>...</InstanceName>
</Class>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Class
Child element None

Remarks

The value for InstanceName must be a case-insensitive identifier that is compliant with the Common Language Specification
(CLS).

See Also

Report Definition XML Elements

Using Custom Assemblies with Reports

Reporting Services - Report Definition Language

IntegratedSecurity Element
IntegratedSecurity Element

Indicates whether the data source uses integrated security to connect.

XML

<ConnectionProperties>
 ...
 <IntegratedSecurity>...</IntegratedSecurity>
 ...
</ConnectionProperties>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ConnectionProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Interlaced Element
Interlaced Element

Indicates whether alternating dark stripes are drawn between grid lines.

XML

<Axis>
 ...
 <Interlaced>...</Interlaced>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

If Interlaced is False, no stripes are drawn. If it is True, a dark stripe is drawn every other interval.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

KanatypeSensitivity Element
KanatypeSensitivity Element

Indicates whether the data is kanatype sensitive.

XML

<DataSet Name="...">
 ...
 <KanatypeSensitivity>...</KanatypeSensitivity>
 ...
</DataSet>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element None

Remarks

The value for this element must be one of the strings listed in the following table.

Value Description
True Data is kanatype sensitive.
False Data is not kanatype sensitive.
Auto The report server attempts to get information about

kanatype sensitivity from the data processing extension. If
the extension cannot provide this information, the default
value of the KanatypeSensitivity element is False.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

KeepTogether Element
KeepTogether Element

Indicates whether all sections of the data region are kept together on one page, if possible.

XML

<List Name="..."> <!-- or Matrix, Table, Chart -->
 <KeepTogether>...</KeepTogether>
 ...
</List> <!-- or /Matrix, Table, Chart -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, List, Matrix, Table
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Label Element (Chart Elements)
Label Element (Chart Elements)

Provides a label for items in a chart.

XML

<DynamicSeries Name="..."> <!-- or StaticMember, DynamicCategories, -->
 ...
 <Label>...</Label>
</DynamicSeries> <!-- or /StaticMember, /DynamicCategories, -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality (when used
as a child of
DynamicCategories)

0-1: Optional element that can occur once or not at all

Cardinality (when used
as a child of
DynamicSeries or
StaticMember)

1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent elements DynamicCategories, DynamicSeries, StaticMember,
Child element None

Remarks

For dynamic series, the value of Label is an expression that evaluates to a string. For a static member or dynamic categories, the
value of Label is an expression that evaluates to a variant.

For dynamic and static series, the label is displayed on the chart legend. For dynamic and static categories, the label is displayed
on an axis.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Label Element (ParameterValue)
Label Element (ParameterValue)

Contains the label to display to the user for the parameter.

XML

<ParameterValue>
 ...
 <Label>...</Label>
</ParameterValue>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element ParameterValue
Child element None

Remarks

The value that is passed as the actual parameter is stored in the sibling Value element. The Label element displays a friendly
string to the user.

The Label element contains an expression that evaluates to a string.

See Also

Report Definition XML Elements

Value Element (ParameterValue)

Reporting Services - Report Definition Language

Label Element (Report Items)
Label Element (Report Items)

Provides a user-friendly label for an instance of an item within a report.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table,
Chart, Grouping -->
 ...
 <Label>...</Label>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
/Grouping -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, Grouping, Image, Line, List, Matrix, Rectangle,

Subreport, Table, Textbox
Child element None

Remarks

The expression within the Label element evaluates to a variant. You can use an expression within the Label element to identify
individual instances of a report item with a user-friendly name. Label is used in searches and displayed within the document map.
Report item labels appear in the document map as a hierarchy that reflects the hierarchy of items within the report definition.

The label for the item does not appear in the document map if the expression contained in the Label element returns a null value,
or Label is not defined. Label is not used for report items within a page header or page footer.

To cause the link in the document map to jump to a child item in the report, use the sibling LinkToChild element. LinkToChild is
available only with rectangle items.

See Also

Report Definition XML Elements

LinkToChild Element

Reporting Services - Report Definition Language

LabelField Element
LabelField Element

Contains the name of the field that displays a parameter value to the user.

XML

<DataSetReference>
 ...
 <LabelField>...</LabelField>
 ...
<DataSetReference>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataSetReference
Child element None

Remarks

If no value is specified for the LabelField element, the value for the sibling ValueField element is used.

When the DataSetReference element is a child of the DefaultValue element, LabelField is not used.

See Also

Report Definition XML Elements

ValueField Element

ValidValues

Reporting Services - Report Definition Language

Language Element (Report)
Language Element (Report)

Indicates the primary language of the text in the report.

XML

<Report>
 ...
 <Language>...</Language>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The Language element must contain an expression that evaluates to a language code as defined in the Internet Engineering Task
Force (IETF) RFC1766 specification. The language code is a string composed of one or more parts. The first part is a two-character
designation of the basic language. For example, "en" is for English; "no", Norwegian; "fr", French; "de", German. The second part is
separated by a hyphen and designates the variation or dialect of the language. For example, "en-us" represents United States
English.

The default report language is the language of the report server.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Language Element (Style)
Language Element (Style)

Indicates the primary language of the text.

XML

<Style>
 ...
 <Language>...</Language>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Defaults to the language of the server
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Language element must contain an expression that evaluates to a language code as defined in the Internet Engineering Task
Force (IETF) RFC1766 specification. The language code is a string composed of one or more parts. The first part is a two-character
designation of the basic language. For example, "en" is for English; "no", Norwegian; "fr", French; "de", German. The second part is
separated by a hyphen and designates the variation or dialect of the language. For example, "en-us" represents United States
English.

Language applies only to the items chart, textbox and subtotal. Language does not apply to the items line, rectangle, image,
subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Deploying Reporting Services in a Global Environment

Reporting Services - Report Definition Language

Layout Element (Legend)
Layout Element (Legend)

Determines the arrangement of labels within the legend.

XML

<Legend>
 ...
 <Layout>...</Layout>
 ...
</Legend>

Element Characteristics

Characteristic Description
Data type and length String
Default value Column
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Legend
Child element None

Remarks

The Layout element must contain one of the following strings:

Column
Row
Table

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

LayoutDirection Element
LayoutDirection Element

Indicates whether matrix columns read left-to-right or right-to-left.

XML

<Matrix Name="...">
 ...
 <LayoutDirection>...</LayoutDirection>
 ...
</Matrix>

Element Characteristics

Characteristic Description
Data type and length String
Default value LTR
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Matrix
Child element None

Remarks

The LayoutDirection element contains one of the values shown in the following table.

Value Description
LTR Matrix reads left-to-right, has headers on the left, and grows to

the right
RTL Matrix reads right-to-left, has headers on the right, and grows

to the left

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Left Element (BorderColor)
Left Element (BorderColor)

Describes the color of the left border of the item.

XML

<BorderColor>
 ...
 <Left>...</Left>
 ...
</BorderColor>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderColor
Child element None

Remarks

The Left element contains an expression that evaluates to either the name of a color or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

Left Element (BorderStyle)
Left Element (BorderStyle)

Describes the style of the left border of the item.

XML

<BorderStyle>
 ...
 <Left>...</Left>
 ...
</BorderStyle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderStyle
Child element None

Remarks

The Left element must contain an expression that evaluates to one of the following string values:

None
Dotted
Dashed
Solid
Double
Groove
Ridge
Inset
WindowInset
Outset

When used in a chart, the Bottom element can only contain None, Dotted, Dashed, or Solid. Any other style is ignored.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Left Element (BorderWidth)
Left Element (BorderWidth)

Describes the width of the left border of the item.

XML

<BorderWidth>
 ...
 <Left>...</Left>
 ...
</BorderWidth>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderWidth
Child element None

Remarks

Left contains an expression that evaluates to a string that contains a number (with a period character used as an optional decimal
separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the
number and the designator is optional. For more information about size designators, see this Microsoft Web site. The value for
the Left element must be between .25pt and 20pt.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Left Element (Report Items)
Left Element (Report Items)

Indicates the distance of the item from the left edge of the containing item.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table,
Chart, CustomReportItem -->
 ...
 <Left>...</Left>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
/CustomReportItem -->

Element Characteristics

Characteristic Description
Data type and length String
Default value 0
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, CustomReportItem , Image, Line, List, Matrix,

Rectangle, Subreport, Table, Textbox
Child element None

Remarks

The string for the Left element must contain a number (with a period character used as an optional decimal separator). The
number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and
the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum size for Left is 160 inches. The minimum size is 0 inches.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

LeftMargin Element
LeftMargin Element

Specifies the width of the left margin of the report.

XML

<Report>
 ...
 <LeftMargin>...</LeftMargin>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0 in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for the LeftMargin element must contain a number (with a period character used as an optional decimal separator).
The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number
and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum size for LeftMargin is 160 inches. The minimum size is 0 inches.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Legend Element
Legend Element

Defines the chart legend.

XML

<Chart>
 ...
 <Legend>
 <Visible>...</visible>
 <Style>...</Style>
 <Position>...</Position>
 <Layout>...</Layout>
 <InsidePlotArea>...</InsidePlotArea>
 </Legend>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child elements InsidePlotArea, Layout, Position, Style, Visible

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Line Element
Line Element

Defines a line to be drawn in the report.

XML

<ReportItems>
 ...
 <Line Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <RepeatWith>...</RepeatWith>
 <Custom>...</Custom>
 </Line>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the line

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, Custom, Height, Label, Left, RepeatWith, Style,

Top, Width, Visibility, ZIndex

Remarks

To draw lines with endpoints above or to the left of the origin, use negative values in both or either of the Width and Height
elements. When you use negative values, the sum of Top and Height and the sum of Left and Width cannot be less than zero.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

LineHeight Element
LineHeight Element

Describes the height of a line of text.

XML

<Style>
 ...
 <LineHeight>...</LineHeight>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Determined by the rendering extension
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

LineHeight contains an expression that evaluates to a point size. The minimum value for the LineHeight element is 1pt. The
maximum value is 1000pt.

LineHeight applies only to the items text box, subtotal, title, and legend. LineHeight does not apply to the items line, rectangle,
image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

LinkToChild Element
LinkToChild Element

Contains the name of a child report item that is the target location for the document map label.

XML

<Rectangle Name="...">
 ...
 <LinkToChild>...</LinkToChild>
 ...
</Rectangle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Rectangle
Child element None

Remarks

You can use the LinkToChild element to cause the document map to point to a child of the report item. When a user clicks on the
string defined by the sibling Label element, the report jumps to the child item defined by LinkToChild. If LinkToChild is not
present, clicking on Label causes the report to jump to the parent report item.

LinkToChild is ignored if Label is not present.

See Also

Report Definition XML Elements

Label Element

Reporting Services - Report Definition Language

List Element
List Element

Defines a list region to be included in the report.

XML

<ReportItems>
 ...
 <List Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <Custom>...</Custom>
 <KeepTogether>...</KeepTogether>
 <NoRows>...<NoRows>
 <DataSetName>...</DataSetName>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 <Filters>...</Filters>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <ReportItems>...</ReportItems>
 <DataInstanceName>...</DataInstanceName>
 <DataInstanceElementOutput>...</DataInstanceElementOutput>
 </List>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the list

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, Custom, DataInstanceElementOutput,

DataInstanceName, DataSetName, Filters, Grouping, Height,
KeepTogether, Label, Left, NoRows, PageBreakAtEnd,
PageBreakAtStart, ReportItems, Sorting, Style, ToolTip, Top,
Visibility, Width, ZIndex

Remarks

Page breaks in lists are ignored if the list contains no child report items.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

LogScale Element
LogScale Element

Indicates whether the axis is logarithmic.

XML

<Axis>
 ...
 <LogScale>...</LogScale>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The LogScale element is ignored for x-axes in which the value for the child Scalar element is False.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MajorGridLines Element
MajorGridLines Element

Defines the major grid lines in the chart.

XML

<Axis>
 ...
 <MajorGridLines>
 <ShowGridLines>...</ShowGridLines>
 <Style>...</Style>
 </MajorGridLines>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child elements ShowGridLines, Style

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MajorInterval Element
MajorInterval Element

Indicates the interval between major gridlines on an axis.

XML

<Axis>
 ...
 <MajorInterval>...</MajorInterval>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The MajorInterval element contains a string that evaluates to a variant. If MajorInterval is omitted, the axis is divided
automatically.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MajorTickMarks Element
MajorTickMarks Element

Indicates the position of the major tick marks on the axis.

XML

<Axis>
 ...
 <MajorTickMarks>...</MajorTickMarks>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The MajorTickMarks element must contain one of the following strings:

None
Inside
Outside
Cross

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Margin Element
Margin Element

Indicates whether the chart contains an axis margin.

XML

<Axis>
 ...
 <Margin>...</Margin>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The size of the margin is determined by the scale and number of data points in the chart. Margin is ignored for column charts.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Marker Element
Marker Element

Defines a marker for displayed chart data values.

XML

<DataPoint>
 ...
 <Marker>
 <Type>...</Type>
 <Size>...</Size>
 <Style>...</Style>
 </Marker>
 ...
</DataPoint>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataPoint
Child elements Size, Style, Type

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Matrix Element
Matrix Element

Defines a grid of regions that repeats with each column group and row group.

XML

<ReportItems>
 ...
 <Matrix Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <Custom>...</Custom>
 <KeepTogether>...</KeepTogether>
 <NoRows>...</NoRows>
 <DataSetName>...</DataSetName>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 <Filters>...</Filters>
 <Corner>...</Corner>
 <ColumnGroupings>...</ColumnGroupings>
 <RowGroupings>...</RowGroupings>
 <MatrixRows>...</MatrixRows>
 <MatrixColumns>...</MatrixColumns>
 <LayoutDirection>...</LayoutDirection>
 <GroupsBeforeRowHeaders>...</GroupsBeforeRowHeaders>
 <CellDataElementName>...</CellDataElementName>
 <CellDataElementOutput>...</CellDataElementOutput>
 </Matrix>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the matrix

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, CellDataElementName, CellDataElementOutput,

ColumnGroupings, Corner, Custom, DataSetName, Filters,
GroupsBeforeRowHeaders, KeepTogether, Label, Left,
LayoutDirection, MatrixColumns, MatrixRows, NoRows,
PageBreakAtEnd, PageBreakAtStart, RowGroupings, Style,
ToolTip, Top, Visibility, ZIndex

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MatrixCell Element
MatrixCell Element

Defines the contents of each detail cell in a matrix.

XML

<MatrixCells>
 <MatrixCell>
 <ReportItems>...</ReportItems>
 </MatrixCell>
</MatrixCell>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element MatrixCells
Child element ReportItems

Remarks

There must be one MatrixCell element for each static column in a matrix. If the matrix does not contain static columns, the
MatrixCells element must contain one and only one MatrixCell element.

Page breaks in report items contained within a matrix cell are ignored.

The visibility of report items contained within matrix cells cannot be toggled by report items in a matrix row or column header.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MatrixCells Element
MatrixCells Element

Defines a set of cells in a row of the detail section of a matrix.

XML

<MatrixRow>
 ...
 <MatrixCells>
 <MatrixCell>...</MatrixCell>
 </MatrixCells>
</MatrixRow>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element MatrixRow
Child element MatrixCell

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MatrixColumn Element
MatrixColumn Element

Defines a column in the detail section of a matrix.

XML

<MatrixColumns>
 <MatrixColumn>
 <Width>...</Width>
 </MatrixColumn>
</MatrixColumns>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element MatrixColumns
Child element Width

Remarks

There must be one MatrixColumn element for each static column in a matrix. If the matrix does not contain static columns, the
MatrixColumns element must contain one and only one MatrixColumn element.

See Also

Report Definition XML Elements

StaticColumns Element

Reporting Services - Report Definition Language

MatrixColumns Element
MatrixColumns Element

Defines a set of columns in the detail section of a matrix.

XML

<Matrix Name="...">
 <MatrixColumns>
 <MatrixColumn>...</MatrixColumn>
 </MatrixColumns>
</Matrix>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Matrix
Child element MatrixColumn

Remarks

There must be one MatrixColumn element for each static column in a matrix. If the matrix does not contain static columns, the
MatrixColumns element must contain one and only one MatrixColumn element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MatrixRow Element
MatrixRow Element

Defines a row in the detail section of a matrix.

XML

<MatrixRows>
 <MatrixRow>
 <Height>...</Height>
 <MatrixCells>...</MatrixCells>
 </MatrixRow>
</MatrixRows>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element MatrixRows
Child elements Height, MatrixCells

Remarks

There must be one MatrixRow element for each static row in a matrix. If the matrix does not contain static rows, the MatrixRows
element must contain one and only one MatrixRow element.

See Also

Report Definition XML Elements

StaticRows Element

Reporting Services - Report Definition Language

MatrixRows Element
MatrixRows Element

Defines the set of rows in the detail section of a matrix.

XML

<Matrix Name="...">
 <MatrixRows>
 <MatrixRow>...</MatrixRow>
 </MatrixRows>
</Matrix>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Matrix
Child element MatrixRow

Remarks

There must be one MatrixRow element for each static row in a matrix. If the matrix does not contain static rows, the MatrixRows
element must contain one and only one MatrixRow element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Max Element
Max Element

Indicates the maximum value of the axis.

XML

<Axis>
 ...
 <Max>...</Max>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The Max element contains a string that evaluates to a variant. If Max is omitted, the axis is scaled automatically.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MergeTransactions Element
MergeTransactions Element

Indicates whether transactions in the subreport are merged with transactions in the parent report if both reports use the same
data sources.

XML

<Subreport Name="...">
 ...
 <MergeTransactions>...</MergeTransactions>
</Subreport>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Subreport
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MIMEType Element
MIMEType Element

Contains an expression that identifies the Multipurpose Internet Mail Extensions (MIME) type of the image.

XML

<EmbeddedImage> <!-- or Image, BackgroundImage -->
 ...
 <MIMEType>...</MIMEType>
 ...
<EmbeddedImage> <!-- or /Image, /BackgroundImage>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality (when used
as a child of
EmbeddedImage)

1-1: Required element that occurs once and only once

Cardinality (when used
as a child of Image or
BackgroundImage)

0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements BackgroundImage, EmbeddedImage, Image
Child element None

Remarks

The following values are valid for the MIMEType element:

image/bmp
image/jpeg
image/gif
image/png
image/x-png

When used within the Image element, MIMEType is required if the value of the Source element is Database. If the value of
Source is not Database, MIMEType is ignored.

See Also

Report Definition XML Elements

Source Element

Reporting Services - Report Definition Language

Min Element
Min Element

Indicates the minimum value of the axis.

XML

<Axis>
 ...
 <Min>...</Min>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

The Min element contains a string that evaluates to a variant. If Min is omitted, the axis is scaled automatically.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MinorGridLines Element
MinorGridLines Element

Defines the minor grid lines in the chart.

XML

<Axis>
 ...
 <MinorGridLines>
 <ShowGridLines>...</ShowGridLines>
 <Style>...</Style>
 </MinorGridLines>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child elements ShowGridLines, Style

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MinorInterval Element
MinorInterval Element

Indicates the interval between minor gridlines on an axis.

XML

<Axis>
 ...
 <MinorInterval>...</MinorInterval>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child elements None

Remarks

The MinorInterval element contains a string that evaluates to a variant. If MinorInterval is omitted, the axis is divided
automatically.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

MinorTickMarks Element
MinorTickMarks Element

Indicates the position of the minor tick marks on the axis.

XML

<Axis>
 ...
 <MinorTickMarks>...</MinorTickMarks>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child elements None

Remarks

The MinorTickMarks element must contain one of the following strings:

None
Inside
Outside
Cross

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

NoRows Element
NoRows Element

Specifies the text to display when no rows are returned by the datasets in the subreport or data region.

XML

<Subreport Name="..."> <!-- or List, Matrix, Table, Chart -->
 ...
 <NoRows>...</NoRows>
 ...
</Subreport> <!-- or /List, /Matrix, /Table, /Chart -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, List, Matrix, Subreport, Table
Child element None

Remarks

The NoRows element contains an expression that evaluates to a string that specifies the message to display. Style information for
the subreport or data region applies to text within the NoRows element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Nullable Element
Nullable Element

Indicates whether the value for the parameter can be null.

XML

<ReportParameter Name="...">
 ...
 <Nullable>...</Nullable>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ReportParameter
Child element None

Remarks

If the value of the Nullable element is False, and the sibling Prompt element is omitted, the sibling DefaultValue element is
required.

See Also

Report Definition XML Elements

DefaultValue Element

Reporting Services - Report Definition Language

NumeralLanguage Element
NumeralLanguage Element

Specifies the language to use to format numbers.

XML

<Style>
 ...
 <NumeralLanguage>...</NumeralLanguage>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Defaults to the value of the Language element, a sibling of

NumeralLanguage
Cardinality 0-1: Optional element that can occurs once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The Language element must contain an expression that evaluates to a language code as defined in the Internet Engineering Task
Force (IETF) RFC1766 specification. The language code is a string composed of one or more parts. The first part is a two-character
designation of the basic language. For example, "en" is for English; "no", Norwegian; "fr", French; "de", German. The second part is
separated by a hyphen and designates the variation or dialect of the language. For example, "en-us" represents United States
English.

NumeralLanguage applies only to the items textbox and subtotal. NumeralLanguage does not apply to the items line,
rectangle, image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

NumeralVariant Element
NumeralVariant Element

Specifies the language variant to use to format numbers.

XML

<Style>
 ...
 <NumeralVariant>...</NumeralVariant>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value 1
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The NumeralVariant element contains one of the values listed in the following table.

Value Description
1 Follow Unicode context rules
2 0123456789
3 Traditional digits. Currently supported for ar, bn, bo, fa, gu, hi, kn, kok, lo,

mr, ms, or, pa, sa, ta, te, th, ur, and variants.
4 ko, ja, zh-CHS, zh-CHT only
5 ko, ja, zh-CHS, zh-CHT only
6 ko, ja, zh-CHS-zh-CHT only (wide versions of regular digits)
7 ko only

NumeralVariant applies only to the items textbox and subtotal. NumeralVariant does not apply to the items line, rectangle,
image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Omit Element
Omit Element

Indicates that the parameter is ignored when a user opens a report using a drillthrough link on another report.

XML

<Parameter Name="...">
 ...
 <Omit>...</Omit>
</Parameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Parameter
Child element None

Remarks

The Omit element contains an expression that evaluates to a Boolean value.

When a user opens a report using a drillthrough action, and the Drillthrough element of the originating report contains
parameters that contain an Omit element value of True, those parameters are skipped when the target report is run.

If the target report name (contained in the ReportName element within the Drillthrough element) is not an expression, Omit is
not used.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Operator Element
Operator Element

Specifies the operator to use to compare the values in the FilterExpression and FilterValues elements.

XML

<Filter>
 ...
 <Operator>...</Operator>
 ...
</Filter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Filter
Child element None

Remarks

The Operator element must contain one of the following string values:

Equal
Like
NotEqual
GreaterThan
GreaterThanOrEqual
LessThan
LessThanOrEqual
TopN
BottomN
TopPercent
BottomPercent
In
Between

Like uses the same special characters as the Like operator in Visual Basic .NET. For more information, see the Visual Basic .NET
documentation.

See Also

Report Definition XML Elements

FilterExpression

FilterValues

Reporting Services - Report Definition Language

PaddingBottom Element
PaddingBottom Element

Designates the amount of padding below the item.

XML

<Style>
 ...
 <PaddingBottom>...</PaddingBottom>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0pt
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The PaddingBottom element contains an expression that evaluates to a string that contains a number (with a period character
used as an optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in,
pt, or pc. A space between the number and the designator is optional. For more information about size designators, see this
Microsoft Web site. The value of the PaddingBottom element must be between 0pt and 1000pt.

PaddingBottom applies only to the items text box, image, subtotal, title, and legend. PaddingBottom does not apply to the
items line, rectangle, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

PaddingLeft Element
PaddingLeft Element

Designates the amount of padding to the left of the item.

XML

<Style>
 ...
 <PaddingLeft>...</PaddingLeft>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0pt
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The PaddingLeft element contains an expression that evaluates to a string that contains a number (with a period character used
as an optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or
pc. A space between the number and the designator is optional. For more information about size designators, see this Microsoft
Web site. The value of the PaddingLeft element must be between 0pt and 1000pt.

PaddingLeft applies only to the items text box, image, subtotal, title, and legend. PaddingLeft does not apply to the items line,
rectangle, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

PaddingRight Element
PaddingRight Element

Designates the amount of padding to the right of the item.

XML

<Style>
 ...
 <PaddingRight>...</PaddingRight>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0pt
Cardinality 0-1: Optional element that occurs once or not at all.

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The PaddingRight element contains an expression that evaluates to a string that contains a number (with a period character
used as an optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in,
pt, or pc. A space between the number and the designator is optional. For more information about size designators, see this
Microsoft Web site. The value of the PaddingRight element must be between 0pt and 1000pt.

PaddingRight applies only to the items text box, image, subtotal, title, and legend. PaddingRight does not apply to the items
line, rectangle, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

PaddingTop Element
PaddingTop Element

Designates the amount of padding above the item.

XML

<Style>
 ...
 <PaddingTop>...</PaddingTop>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0pt
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The PaddingTop element contains an expression that evaluates to a a string that contains a number (with a period character
used as an optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in,
pt, or pc. A space between the number and the designator is optional. For more information about size designators, see this
Microsoft Web site. The value of the PaddingTop element must be between 0pt and 1000pt.

PaddingTop applies only to the items text box, image, subtotal, title, and legend. PaddingTop does not apply to the items line,
rectangle, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

PageBreakAtEnd Element
PageBreakAtEnd Element

Indicates that the rendering extension should insert a page break at the end of the item.

XML

<Rectangle Name="..."> <!-- or List, Matrix, Table, Chart, Grouping -->
 ...
 <PageBreakAtEnd>...</PageBreakAtEnd>
 ...
</Rectangle> <!-- or /List, /Matrix, /Table, /Chart, /Grouping -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occurs once or not at all

Element Relationships

Relationship Element
Parent elements Chart, Grouping, List, Matrix, Rectangle, Table
Child element None

Remarks

Page breaks in lists are ignored if the list contains no report items. Page breaks in table groups are ignored if the group or
subgroups contain no header or footer, or if the table contains no details rows.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PageBreakAtStart Element
PageBreakAtStart Element

Indicates that the rendering extension should insert a page break at the beginning of the item.

XML

<Rectangle Name="..."> <!-- or List, Matrix, Table, Chart, Grouping -->
 ...
 <PageBreakAtStart>...</PageBreakAtStart>
 ...
</Rectangle> <!-- or /List, /Matrix, /Table, /Chart, /Grouping -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Grouping, List, Matrix, Chart, Rectangle, Table
Child element None

Remarks

Page breaks in lists are ignored if the list contains no report items. Page breaks in table groups are ignored if the group or
subgroups contain no header or footer, or if the table contains no details rows.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PageFooter Element
PageFooter Element

Contains a footer that is rendered at the bottom of each page of the report.

XML

<Report>
 ...
 <PageFooter>
 <Height>...</Height>
 <PrintOnFirstPage>...</PrintOnFirstPage>
 <PrintOnLastPage>..</PrintOnLastPage>
 <ReportItems>...</ReportItems>
 <Style>...</Style>
 </PageFooter>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child elements Height, PrintOnFirstPage, PrintOnLastPage, ReportItems,

Style

Remarks

Expressions within the PageFooter element are subject to special rules. For more information, see Adding a Header and Footer.

PageFooter uses the same style properties as a rectangle.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PageHeader Element
PageHeader Element

Contains a header that is rendered at the top of each page of the report.

XML

<Report>
 ...
 <PageHeader>
 <Height>...</Height>
 <PrintOnFirstPage>...</PrintOnFirstPage>
 <PrintOnLastPage>..</PrintOnLastPage>
 <ReportItems>...</ReportItems>
 <Style>...</Style>
 </PageHeader>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child elements Height, PrintOnFirstPage, PrintOnLastPage, ReportItems,

Style

Remarks

Expressions within the PageHeader element are subject to special rules. For more information, see Adding a Header and Footer.

PageHeader uses the same style properties as a rectangle.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PageHeight Element
PageHeight Element

Specifies the default height of the report.

XML

<Report>
 ...
 <PageHeight>...</PageHeight>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 11 in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for the PageHeight element must contain a number (with a period character used as an optional decimal separator).
The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number
and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum size for PageHeight is 160 inches. The minimum size is 0 inches.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

PageWidth Element
PageWidth Element

Specifies the default width of the report.

XML

<Report>
 ...
 <PageWidth>...</PageWidth>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 8.5 in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for PageWidth must contain a number (with a period character used as an optional decimal separator). The number
must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and the
designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum size for PageWidth is 160 inches. The minimum size is 0 inches.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Palette Element
Palette Element

Specifies the color palette for chart items.

XML

<Chart>
 ...
 <Palette>...</Palette>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length String
Default value Default
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element None

Remarks

The Palette element must contain one of the following strings:

Default
EarthTones
Excel
GrayScale
Light
Pastel
SemiTransparent

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Parameter Element
Parameter Element

Contains the parameter to pass to a subreport or drillthrough report.

XML

<Parameters>
 <Parameter Name="...">
 <Value>...</Value>
 <Omit>...</Value>
 </Parameter>
</Parameters>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Attributes

Attribute Type Description
Name String Name of the parameter

Element Relationships

Relationship Element
Parent element Parameters
Child elements Omit, Value

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Parameters Element
Parameters Element

Contains a list of parameters to pass to a subreport or drillthrough report.

XML

<Subreport Name="..."> <!-- or Drillthrough -->
 ...
 <Parameters>
 <Parameter Name="...">...</Parameter>
 </Parameters>
 ...
</Subreport> <!-- or /Drillthrough -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Drillthrough, Subreport
Child element Parameter

Remarks

Parameter directives (rc: and rs: parameters) are not supported under the Drillthrough element. Parameters under the
Drillthrough element must contain report parameters only.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ParameterValue Element
ParameterValue Element

Provides an individual hard-coded parameter for the list contained within the ParameterValues element.

XML

<ParameterValues>
 <ParameterValue>
 <Value>...</Value>
 <Label>...</Label>
 </ParameterValue>
</ParameterValues>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element ParameterValues
Child elements Label, Value

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ParameterValues Element
ParameterValues Element

Provides a list of hard-coded values for the parameter.

XML

<ValidValues>
 <ParameterValues>
 <ParameterValue>...</ParameterValue>
 </ParameterValues>
</ValidValues>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element ValidValues
Child element ParameterValue

Remarks

The ValidValues element can have one and only one child element: either DataSetReference or ParameterValues.

See Also

Report Definition XML Elements

DataSetReference Element

Reporting Services - Report Definition Language

Parent Element
Parent Element

Identifies the parent group in a recursive hierarchy.

XML

<Grouping>
 ...
 <Parent>...</Parent>
</Grouping>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Grouping
Child element None

Remarks

The Parent element is used to create a recursive hierarchy. A recursive hierarchy can be created from a set of data that contains
fields that refer to other fields in the same set of data. For example, a table containing a list of employees may contain both an
employee ID and a manager ID. By grouping the data by employee ID and identifying the manager ID as the parent, you can
create a hierarchy of employees.

The expression within the Parent element evaluates to a variant. Parent can only be used in groups with a single group
expression.

Example

The following example illustrates the use of the Parent element to produce a recursive hierarchy of employees. The table details
are set to group on the EmployeeID field, and the parent is set to the ManagerID field.

<Grouping Name="Table1_DetailsGroup">
 <GroupExpressions>
 <GroupExpression>=Fields!EmployeeID.Value</GroupExpression>
 </GroupExpressions>
 <Parent>=Fields!ManagerID.Value</Parent>
<Grouping>

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Perspective Element
Perspective Element

Indicates the percent of perspective.

XML

<ThreeDProperties>
 ...
 <Perspective>...</Perspective>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

The Perspective element applies only when the value of the sibling ProjectionMode element is Perspective.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PlotArea Element
PlotArea Element

Defines properties for the plot area of chart types with x- and y-axes.

XML

<Chart>
 ...
 <PlotArea>
 <Style>...</Style>
 </PlotArea>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element Style

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PlotType Element
PlotType Element

Indicates whether the series is plotted as a line on a column chart.

XML

<ChartSeries>
 ...
 <PlotType>...</PlotType>
</ChartSeries>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ChartSeries
Child element None

Remarks

The PlotType element must contain one of the following strings:

Auto
Line

If the value of PlotType is Auto, the series is plotted based on the primary chart type, for example, the plot type for a column
chart is columns.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PointWidth Element
PointWidth Element

Specifies the width of columns and bars in a chart.

XML

<Chart>
 ...
 <PointWidth>...</PointWidth>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element None

Remarks

The PointWidth element contains a percentage width for bars and columns. A value of 100 indicates a width that is 100 percent
of the distance between points. A value below 100 creates a space between columns; a value above 100 causes columns to
overlap.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Position Element (DataLabel)
Position Element (DataLabel)

Indicates the position of the data label.

XML

<DataLabel>
 ...
 <Position>...</Position>
 ...
</DataLabel>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataLabel
Child element None

Remarks

The Position element must contain one of the following strings:

Auto
Top
TopLeft
TopRight
Left
Center
Right
BottomRight
Bottom
BottomLeft

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Position Element (Legend)
Position Element (Legend)

Indicates the position of the legend.

XML

<Legend>
 ...
 <Position>...</Position>
 ...
</Legend>

Element Characteristics

Characteristic Description
Data type and length String
Default value RightTop
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Legend
Child element None

Remarks

The Position element must contain one of the following strings:

TopLeft
TopCenter
TopRight
LeftTop
LeftCenter
LeftBottom
RightTop
RightCenter
RightBottom
BottomRight
BottomCenter
BottomLeft

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Position Element (Subtotal)
Position Element (Subtotal)

Indicates whether the subtotal rows or columns appear before or after the details rows or columns.

XML

<Subtotal>
 ...
 <Position>...</Position>
</Subtotal>

Element Characteristics

Characteristic Description
Data type and length String
Default value After
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Subtotal
Child element None

Remarks

The Position element must contain one of the values listed in the following table.

Value Description
Before Subtotal column or row appears before the detail columns or rows
After Subtotal column or row appears after the detail columns or rows

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Position Element (Title)
Position Element (Title)

Indicates the position of the title.

XML

<Title>
 ...
 <Position>...</Position>
</Title>

Element Characteristics

Characteristic Description
Data type and length String
Default value Center
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Title
Child element None

Remarks

The Position element must contain one of the following strings:

Center
Near
Far

Position is not used for the chart title.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

PrintOnFirstPage Element
PrintOnFirstPage Element

Indicates whether the page header is rendered on the first page on the report.

XML

<PageHeader> <!-- or PageFooter -->
 ...
 <PrintOnFirstPage>...</PrintOnFirstPage>
 ...
</PageHeader> <!-- or /PageFooter -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements PageFooter, PageHeader
Child element None

Remarks

The PrintOnFirstPage element is ignored when used in the page footer of a single-page report.

See Also

Report Definition XML Elements

PrintOnLastPage

Reporting Services - Report Definition Language

PrintOnLastPage Element
PrintOnLastPage Element

Indicates whether the page header is rendered on the last page on the report.

XML

<PageHeader> <!-- or PageFooter -->
 ...
 <PrintOnLastPage>...</PrintOnLastPage>
 ...
</PageHeader> <!-- or /PageFooter -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occurs once or not at all

Element Relationships

Relationship Element
Parent elements PageFooter, PageHeader
Child element None

Remarks

The PrintOnLastPage element is ignored when used in the page header of a single-page report.

See Also

Report Definition XML Elements

PrintOnFirstPage

Reporting Services - Report Definition Language

ProjectionMode Element
ProjectionMode Element

Specifies the projection mode for the three-dimensional chart.

XML

<ThreeDProperties>
 ...
 <ProjectionMode>...</ProjectionMode>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value Perspective
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

The ProjectionMode element must contain one of the following strings:

Perspective
Orthographic

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Prompt Element (ConnectionProperties)
Prompt Element (ConnectionProperties)

Contains the text the user interface displays when prompting the user for database credentials.

XML

<ConnectionProperties>
 ...
 <Prompt>...</Prompt>
</ConnectionProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ConnectionProperties
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Prompt Element (ReportParameter)
Prompt Element (ReportParameter)

Designates the text that the user interface displays when prompting the user for parameter values.

XML

<ReportParameter Name="...">
 ...
 <Prompt>...</Prompt>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ReportParameter
Child element None

Remarks

If the Prompt element is omitted, the user is not prompted for a value for this parameter, nor can the parameter be accessed any
other way (for example, through URL access or in a subreport or drillthrough report).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Query Element
Query Element

Contains information about the query contained within the dataset.

XML

<DataSet Name="...">
 ...
 <Query>
 <DataSourceName>...</DataSourceName>
 <CommandType>...</CommandType>
 <CommandText>...</CommandText>
 <QueryParameters>...</QueryParameters>
 <Timeout>...</Timeout>
 </Query>
 ...
</DataSet>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataSet
Child elements CommandText, CommandType, DataSourceName,

QueryParameters, Timeout

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

QueryParameter Element
QueryParameter Element

Contains information about an individual parameter that is passed to the data source as part of a query.

XML

<QueryParameters Name="...">
 <QueryParameter Name="...">
 <Value>...</Value>
 </QueryParameter>
</QueryParameters>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Attributes

Attribute Type Description
Name String Name of the parameter. Required.

Element Relationships

Relationship Element
Parent element QueryParameters
Child element Value

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

QueryParameters Element
QueryParameters Element

Lists the parameters to pass to the data source as part of the query.

XML

<Query>
 ...
 <QueryParameters>
 <QueryParameter Name="...">...</QueryParameter>
 </QueryParameters>
 ...
</Query>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Query
Child element QueryParameter

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Rectangle Element
Rectangle Element

Defines a rectangle to be drawn in the report.

XML

<ReportItems>
 ...
 <Rectangle Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <LinkToChild>...</LinkToChild>
 <Bookmark>...</Bookmark>
 <RepeatWith>...</RepeatWith>
 <Custom>...</Custom>
 <ReportItems>...</ReportItems>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 </Rectangle>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the rectangle

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, Custom, Height, Label, LinkToChild, Left,

PageBreakAtEnd, PageBreakAtStart, RepeatWith,
ReportItems, Style, ToolTip, Top, Visibility, Width, ZIndex

Remarks

Page breaks on rectangles are ignored if the rectangle contains no child report items.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

RepeatOnNewPage Element
RepeatOnNewPage Element

Indicates whether the header or footer should be displayed with the table on each page if the table spans multiple pages.

XML

<Header> <!-- or Footer -->
 ...
 <RepeatOnNewPage>...</RepeatOnNewPage>
</Header> <!-- or /Footer -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Footer, Header
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

RepeatWith Element
RepeatWith Element

Provides the name of the data region with which to repeat the report item if the data region spans multiple pages.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, CustomReportItem -->
 ...
 <RepeatWith>...</RepeatWith>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /CustomReportItem -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element CustomReportItem, Image, Line, Rectangle, Textbox
Child element None

Remarks

The data region (list, matrix, table, or chart) named in this element must be in the same ReportItems collection as the parent item
of this element.

RepeatWith cannot be used within a data region, subreport, or rectangle that contains a data region or subreport.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Report Element
Report Element

Contains properties, data, and layout information for the report. The Report element is the top-level element of Report Definition
Language (RDL).

XML

<Report>
 <Description>...</Description>
 <Author>...</Author>
 <AutoRefresh>...</AutoRefresh>
 <DataSources>...</DataSources>
 <DataSets>...</DataSets>
 <Body>...</Body>
 <ReportParameters>...</ReportParameters>
 <Custom>...</Custom>
 <Code>...</Code>
 <Width>...</Width>
 <PageHeader>...</PageHeader>
 <PageFooter>...</PageFooter>
 <PageHeight>...</PageHeight>
 <PageWidth>...</PageWidth>
 <LeftMargin>...</LeftMargin>
 <RightMargin>...</RightMargin>
 <TopMargin>...</TopMargin>
 <BottomMargin>...</BottomMargin>
 <EmbeddedImages>...</EmbeddedImages>
 <Language>...</Language>
 <CodeModules>...</CodeModules>
 <Classes>...</Classes>
 <DataTransform>...</DataTransform>
 <DataSchema>...</DataSchema>
 <DataElementName>...</DataElementName>
 <DataElementStyle>...</DataElementStyle>

</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element None
Child elements Author, AutoRefresh, Body, BottomMargin, Classes, Code,

CodeModules, Custom, DataElementName,
DataElementStyle, DataSchema, DataTransform, DataSets,
DataSources, Description, EmbeddedImages, Language,
LeftMargin, PageFooter, PageHeader, PageHeight,
PageWidth, ReportParameters, RightMargin, TopMargin,
Width

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ReportItems Element
ReportItems Element

Contains the report items that define the contents of a report region.

XML

<Body> <!-- or PageHeader, PageFooter, Rectangle, List, Corner, DynamicColumns,
StaticColumn, DynamicRows, StaticRow, Subtotal, MatrixCell, TableCell -->
 ...
 <ReportItems>
 <Line>...</Line>
 <Rectangle>...</Rectangle>
 <Textbox>...</Textbox>
 <Image>...</Image>
 <Subreport>...</Subreport>
 <List>...</List>
 <Matrix>...</Matrix>
 <Table>...</Table>
 <Chart>...</Chart>
 <CustomReportItem>...</CustomReportItem>
 </ReportItems>
 ...
</Body> <!-- or /PageHeader, /PageFooter, /Rectangle, /List, /Corner, /DynamicColumns,
/StaticColumn, /DynamicRows, /StaticRow, /Subtotal, /MatrixCell, /TableCell -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality (when used
as a child of Body,
PageFooter,
PageHeader,
Rectangle, List, or
Corner)

0-1: Optional element that can occur once or not at all

Cardinality (when used
as a child of all other
elements)

1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent elements Body, Corner, DynamicColumns, DynamicRows, List,

MatrixCell, PageFooter, PageHeader, Rectangle,
StaticColumn, StaticRow, Subtotal, TableCell

Child elements Chart, CustomReportItem, Image, Line, List, Matrix,
Rectangle, Subreport, Table, Textbox

Remarks

ReportItems must contain at least one child element such as Line, Rectangle, Textbox, Image, Subreport, List, Matrix, Table,
or Chart.

When ReportItems is used within a PageHeader or PageFooter element, ReportItems cannot contain Subreport, List, Matrix,
Table, or Chart as child elements.

When ReportItems is used within a Corner, DynamicColumns, DynamicRows, StaticColumn, StaticRow, Subtotal, or
MatrixCell element, ReportItems can contain one and only one child item. Values for the Top, Left, Height, and Width
elements for this child item are ignored: Top and Left are set to 0, and Height and Width are set to 100 percent of the
containing item.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ReportName Element
ReportName Element

Contains the path and name of the target report.

XML

<Subreport Name="..."> <!-- or Drillthrough -->
 <ReportName>...</ReportName>
 ...
</Subreport> <!-- or /Drillthrough -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent elements Drillthrough, Subreport
Child element None

Remarks

The ReportName element can contain a relative path to the report. A relative path starts in the same folder as the current report.

ReportName cannot contain an empty string.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ReportParameter Element
ReportParameter Element

Describes an individual parameter in the report.

XML

<ReportParameters>
 <ReportParameter Name="...">
 <DataType>...</DataType>
 <Nullable>...</Nullable>
 <DefaultValue>...</DefaultValue>
 <AllowBlank>...</AllowBlank>
 <Prompt>...</Prompt>
 <ValidValues>...</ValidValues>
 <UsedInQuery>...</UsedInQuery>
 </ReportParameter>
</ReportParameters>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Attributes

Attribute Type Description
Name String Name of the parameter. Required.

Element Relationships

Relationship Element
Parent element ReportParameters
Child elements AllowBlank, DataType, DefaultValue, Nullable, Prompt,

ValidValues, UsedInQuery

Remarks

The Name attribute for the ReportParameter element must be unique within the ReportParameters parent element. The value
for Name must be a case-insensitive identifier that is compliant with the Common Language Specification (CLS).

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ReportParameters Element
ReportParameters Element

Contains an ordered list of parameters in the report.

XML

<Report>
 ...
 <ReportParameters>
 <ReportParameter Name="...">...</ReportParameter>
 </ReportParameters>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that occurs once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element ReportParameter

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Reverse Element
Reverse Element

Indicates whether the axis direction is reversed.

XML

<Axis>
 ...
 <Reverse>...</Reverse>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child element None

Remarks

If Reverse is False, the axis is plotted normally. If it is True, the direction of the axis is reversed.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Right Element (BorderColor)
Right Element (BorderColor)

Describes the color of the right border of the item.

XML

<BorderColor>
 ...
 <Right>...</Right>
 ...
</BorderColor>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderColor
Child element None

Remarks

The Right element contains an expression that evaluates to either the name of a color or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

Right Element (BorderStyle)
Right Element (BorderStyle)

Describes the style of the bottom border of the item.

XML

<BorderStyle>
 ...
 <Right>...</Right>
 ...
</BorderStyle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderStyle
Child element None

Remarks

The Right element must contain an expression that evaluates to one of the following string values:

None
Dotted
Dashed
Solid
Double
Groove
Ridge
Inset
WindowInset
Outset

When used in a chart, the Bottom element can only contain None, Dotted, Dashed, or Solid. Any other style is ignored.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Right Element (BorderWidth)
Right Element (BorderWidth)

Describes the width of the right border of the report.

XML

<BorderWidth>
 ...
 <Right>...</Right>
 ...
</BorderWidth>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderWidth
Child element None

Remarks

The Right element contains an expression that evaluates to a string that contains a number (with a period character used as an
optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A
space between the number and the designator is optional. For more information about size designators, see this Microsoft Web
site. The value for the Right element must be between .25pt and 20pt.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

RightMargin Element
RightMargin Element

Specifies the width of the right margin of the report.

XML

<Report>
 ...
 <RightMargin>...</RightMargin>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for the RightMargin element must contain a number (with a period character used as an optional decimal separator).
The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number
and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for RightMargin is 160in. The minimum size is 0in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Rotation Element
Rotation Element

Indicates the angle of rotation.

XML

<DataLabel> <!-- or ThreeDProperties -->
 ...
 <Rotation>...</Rotation>
 ...
</DataLabel> <!-- or /ThreeDProperties -->

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataLabel, ThreeDProperties
Child element None

Remarks

When used as a child of ThreeDProperties, the Rotation element applies only when the value of the sibling ProjectionMode
element is Perspective.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

RowGrouping Element
RowGrouping Element

Defines a row header region in a matrix.

XML

<RowGroupings>
 <RowGrouping>
 <Width>...</Width>
 <DynamicRows> <!-- or StaticRows -->
 ...
 </DynamicRows> <!-- or /StaticRows -->
 </RowGrouping>
</RowGroupings>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element RowGroupings
Child elements DynamicRows, Width, StaticRows

Remarks

Each row grouping defines a column of row headings. The first row grouping is positioned as the outermost row of row headings.

The RowGrouping element must contain either a DynamicRows element or a StaticRows element, but it cannot contain both.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

RowGroupings Element
RowGroupings Element

Contains the set of row groupings for the matrix.

XML

<Matrix Name="...">
 ...
 <RowGroupings>
 <RowGrouping>...</RowGrouping>
 </RowGrouping>
 ...
</Matrix>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Matrix
Child element RowGrouping

Remarks

Only one row grouping within the RowGroupings element can contain static rows.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Scalar Element
Scalar Element

Indicates whether the values on the axis are scalar.

XML

<Axis>
 ...
 <Scalar>...</Scalar>
 ...
</Axis>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis
Child elements None

Remarks

If Scalar is False, the values on the axis are not scalar, that is, the axis displays values exactly as they exist in the data. If it is True,
the values are placed along a continuous scale. For example, if the dataset contains data for January, March, July, November, and
December, a non-scalar axis displays only those months, while a scalar axis displays all of the months in the year.

Scalar cannot be True if the axis has more than one grouping, has a static grouping, or has a grouping with more than one group
expression. Scalar only affects axes in which the data contains numeric or date values.

The Scalar element is ignored for the y-axis (value axis). Scalar is always True for this axis.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

SeriesGrouping Element
SeriesGrouping Element

Defines a series level for a series grouping in a chart.

XML

<SeriesGroupings>
 ...
 <SeriesGrouping>
 <DynamicSeries> <!-- or StaticSeries -->
 ...
 </DynamicSeries> <!-- or /StaticSeries -->
 </SeriesGrouping>
 ...
</SeriesGroupings>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that can occur once or more than

once.

Element Relationships

Relationship Element
Parent element SeriesGroupings
Child elements DynamicSeries, StaticSeries

Remarks

The SeriesGrouping element must have one and only one child element: either DynamicSeries or StaticSeries.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

SeriesGroupings Element
SeriesGroupings Element

Defines a set of series groupings for the chart.

XML

<Chart>
 ...
 <SeriesGroupings>
 <SeriesGrouping>...</SeriesGrouping>
 </SeriesGroupings>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element SeriesGrouping

Remarks

Only one series grouping within the SeriesGroupings element can contain static series.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Shading Element
Shading Element

Defines the shading of the three-dimensional chart.

XML

<ThreeDProperties>
 ...
 <Shading>...</Shading>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child element None

Remarks

The Shading element must contain one of the following strings:

None
Simple
Real

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ShowGridLines Element
ShowGridLines Element

Indicates whether gridlines are displayed in the chart.

XML

<MajorGridLines> <!-- or MinorGridLines -->
 ...
 <ShowGridLines>...</ShowGridLines>
 ...
</MajorGridLines> <!-- or /MinorGridLines -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements MajorGridLines, MinorGridLines
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Size Element
Size Element

Indicates the size of the marker.

XML

<Marker>
 ...
 <Size>...</Size>
 ...
</Marker>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Marker
Child element None

Remarks

The string for the Size element must contain a number (with a period character used as an optional decimal separator). The
number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and
the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for Height is 160in. The minimum value is 0in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Sizing Element
Sizing Element

Determines the appearance of the image if the image does not fit the height and width of the Image element.

XML

<Image>
 ...
 <Sizing>...</Sizing>
</Image>

Element Characteristics

Characteristic Description
Data type and length String
Default value AutoSize
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Image
Child element None

Remarks

The Sizing element must contain one of the values listed in the following table.

Value Description
AutoSize Grows or shrinks borders of the image

item to fit the image
Fit Resizes the image to match the height and

width of the Image element
FitProportional Resizes the image to match the height and

width of the Image element, preserving
the aspect ratio

Clip Clips the image to fit the height and width
of the Image element

Rendering extensions that do not support the values FitProportional or Clip should render as Fit instead.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

SortBy Element
SortBy Element

Defines an individual expression by which to sort the data.

XML

<Sorting>
 <SortBy>
 <SortExpression>...</SortExpression>
 <Direction>..</Direction>
 </SortBy>
</Sorting>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element Sorting
Child elements Direction, SortExpression

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

SortExpression Element
SortExpression Element

Contains the expression by which to sort the data.

XML

<SortBy>
 <SortExpression>...</SortExpression>
 ...
</SortBy>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element SortBy
Child element None

Remarks

Only standard aggregate functions, like Sum, can be used in a sort expression.

References to report items cannot be used in a sort expression.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Sorting Element
Sorting Element

Defines how to sort the data.

XML

<List Name="..."> <!-- or Details, DynamicColumns, DynamicRows, TableGroup,
DynamicSeries, DynamicCategories -->
 ...
 <Sorting>
 <SortBy>...</SortBy>
 </Sorting>
 ...
</List> <!-- or /Details, /DynamicColumns, /DynamicRows, /TableGroup, /DynamicSeries,
/DynamicCategories -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Details, DynamicCategories, DynamicColumns,

DynamicRows, DynamicSeries, List, TableGroup
Child element SortBy

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Source Element
Source Element

Indicates the source of the image specified in the Value element.

XML

<Image> <!-- or BackgroundImage -->
 <Source>...</Source>
 ...
</Image> <!-- or /BackgroundImage -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent elements BackgroundImage, Image
Child element None

Remarks

The Value element is a sibling of the Source element. The value of Source indicates the value of the Value element. The Source
element must contain one of the values listed in the following table.

Value of Source
element

Description

External Value contains a constant or an expression that evaluates
to a relative path to the image on the report server.

Embedded Value contains a constant or an expression that evaluates
to the name of an embedded image within the report.

Database Value contains an expression for a field in the database
that evaluates to the binary data for an image.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticCategories Element
StaticCategories Element

Defines a category level with a fixed set of members.

XML

<CategoryGrouping>
 <StaticCategories>
 <StaticMember>...</StaticMember>
 </StaticCategories>
</CategoryGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. See

"Remarks" for additional information.

Element Relationships

Relationship Element
Parent element CategoryGrouping
Child element StaticMember

Remarks

The CategoryGrouping element must have one and only one child element: either DynamicCategories or StaticCategories.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticColumn Element
StaticColumn Element

Defines a fixed column header region in a matrix.

XML

<StaticColumns>
 <StaticColumn>
 <ReportItems>...</ReportItems>
 </StaticColumn>
</StaticColumns>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element StaticColumns
Child element ReportItems

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticColumns Element
StaticColumns Element

Defines static column headings for the grouping.

XML

<ColumnGrouping>
 ...
 <StaticColumns>
 <StaticColumn>...</StaticColumn>
 </StaticColumns>
</ColumnGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element ColumnGrouping
Child element StaticColumn

Remarks

ColumnGrouping, which is the parent element for the StaticColumns element, must contain either a DynamicColumns
element or a StaticColumns element, but it cannot contain both.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticMember Element
StaticMember Element

Defines a label to display for a static series or category member.

XML

<StaticSeries> <!-- or StaticCategories -->
 <StaticMember>
 <Label>...</Label>
 </StaticMember>
</StaticSeries> <!-- or /StaticCategories -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element StaticCategories, StaticSeries
Child element Label

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticRow Element
StaticRow Element

Defines a fixed row header region in a matrix.

XML

<StaticRows>
 <StaticRow>
 <ReportItems>...</ReportItems>
 </StaticRow>
</StaticRows>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element StaticRows
Child element ReportItems

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticRows Element
StaticRows Element

Defines static row headings for the grouping.

XML

<RowGrouping>
 ...
 <StaticRows>
 <StaticRow>...</StaticRow>
 </StaticRows>
</RowGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element RowGrouping
Child element StaticRow

Remarks

RowGrouping, which is the parent element for the StaticRows element, must contain either a DynamicRows element or a
StaticRows element, but it cannot contain both.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

StaticSeries Element
StaticSeries Element

Defines a series level with a fixed set of members.

XML

<SeriesGrouping>
 <StaticSeries>
 <StaticMember>...</StaticMember>
 </StaticSeries>
</SeriesGrouping>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. See

"Remarks" for additional information.

Element Relationships

Relationship Element
Parent element SeriesGrouping
Child element StaticMember

Remarks

The SeriesGrouping element must have one and only one child element: either DynamicSeries or StaticSeries.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Style Element
Style Element

Contains information about the style of an item.

XML

<Body> <!-- or PageHeader, PageFooter, Line, Rectangle, Textbox, Image, Subreport, List,
Matrix, Table, Chart, Subtotal, Title, Legend, Axis, DataPoint, DataLabel, Marker,
PlotArea, MajorGridLines, MinorGridLines -->
 ...
 <Style>
 <BorderColor>...</BorderColor>
 <BorderStyle>...</BorderStyle>
 <BorderWidth>...</BorderWidth>
 <BackgroundColor>...</BackgroundColor>
 <BackgroundGradientEndColor>...</BackgroundGradientEndColor>
 <BackgroundGradientType>...</BackgroundGradientType>
 <BackgroundImage>...</BackgroundImage>
 <FontStyle>...</FontStyle>
 <FontFamily>...</FontFamily>
 <FontSize>...</FontSize>
 <FontWeight>...</FontWeight>
 <Format>...</Format>
 <TextDecoration>...</TextDecoration>
 <TextAlign>...</TextAlign>
 <VerticalAlign>...</VerticalAlign>
 <Color>...</Color>
 <PaddingLeft>...</PaddingLeft>
 <PaddingRight>...</PaddingRight>
 <PaddingTop>...</PaddingTop>
 <PaddingBottom>...</PaddingBottom>
 <LineHeight>...</LineHeight>
 <Direction>...</Direction>
 <WritingMode>...</WritingMode>
 <Language>...</Language>
 <UnicodeBiDi>...</UnicodeBiDi>
 <Calendar>...</Calendar>
 <NumeralLanguage>...</NumeralLanguage>
 <NumeralVariant>...</NumeralVariant>
 </Style>
 ...
<Body> <!-- or /PageHeader, /PageFooter, /Line, /Rectangle, /Textbox, /Image, /Subreport,
/List, /Matrix, /Table, /Chart, /Subtotal, /Title, /Legend, /Axis, /DataPoint,
/DataLabel, /Marker, /PlotArea, /MajorGridLines, /MinorGridLines -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Axis, Body, Chart, DataLabel, DataPoint, Image, Legend,

Line, List, MajorGridLines, Marker, Matrix, MinorGridLines,
PageFooter, PageHeader, PlotArea, Rectangle, Subreport,
Subtotal, Table, Textbox, Title

Child elements BackgroundColor, BackgroundGradientEndColor,
BackgroundGradientType, BackgroundImage, BorderColor,
BorderStyle, BorderWidth, Calendar, Color, Direction,
FontFamily, FontSize, FontStyle, FontWeight, Format,
Language, LineHeight, NumeralLanguage, NumeralVariant,
PaddingBottom, PaddingLeft, PaddingRight, PaddingTop,
TextAlign, TextDecoration, UnicodeBiDi, VerticalAlign,
WritingMode

Remarks

In a data region, such as table, matrix, list, or chart, text style properties apply only to the text box that appears when the data
region contains no rows. If the data region contains data, text style properties are ignored. In this case, text style is determined by
the style properties for the text boxes contained within the data region.

When Style is used within the Subtotal element, Style overrides the style of any top-level items in the subtotal column or row.
At the intersection of a row and a column, the style of the row overrides the style of the column.

When Style is used within the Axis element, text style properties apply to the axis labels, and line properties apply to axis lines.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Subreport Element
Subreport Element

Contains information about a report to be included within the report.

XML

<ReportItems>
 ...
 <Subreport Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <Custom>...</Custom>
 <ReportName>...</ReportName>
 <Parameters>...</Parameters>
 <NoRows>...</NoRows>
 <MergeTransactions>...</MergeTransactions>
 </Subreport>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the subreport. Required.

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, Custom, Height, Label, Left, MergeTransactions,

NoRows, Parameters, ReportName, Style, ToolTip, Top,
Visibility, Width, ZIndex

Remarks

If no parameters are specified and the report contains no toggle elements, the subreport runs only once, even if the subreport is
contained within a repeating item such as list, table, or matrix.

Subreports can be nested. The maximum number of nested subreports is defined in a server setting.

If a subreport fails to execute, the subreport is replaced with a text box that contains an error message. Style information for the
subreport is applied to the text box.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Subtotal Element
Subtotal Element

Defines a subtotal column or row to be included in the matrix.

XML

<DynamicColumns> <!-- or DynamicRows-->
 ...
 <Subtotal>
 <ReportItems>...</ReportItems>
 <Style>...</Style>
 <Position>...</Position>
 <DataElementName>...</DataElementName>
 <DataElementOutput>...</DataElementOutput>
 </Subtotal>
 ...
</DynamicColumns> <!-- or /DynamicRows -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements DynamicColumns, DynamicRows
Child elements DataElementName, DataElementOutput, Position,

ReportItems, Style

Remarks

If a matrix cell contains an aggregate that specifies a scope that is inside the current scope, the scope will default to the current
scope instead. For example, if a matrix cell that is placed in the Category grouping contains the expression
=Sum(Fields!Sales.Value, "SubCategory"), the expression will evaluate as =Sum(Fields!Sales.Value, "Category"), because the
SubCategory grouping scope is contained within the Category grouping scope.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Subtype Element
Subtype Element

Indicates the subtype of the chart.

XML

<Chart>
 ...
 <Subtype>...</Subtype>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length String
Default value See "Remarks"
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element None

Remarks

The Subtype element must contain a string appropriate to the chart type. Valid subtypes and the default subtype for each type
are as follows.

Value of Type
element

Valid value

Column Plain (Default), Stacked, PercentStacked
Bar Plain (Default), Stacked, PercentStacked
Line Plain (Default), Smooth
Pie Plain (Default), Exploded
Scatter Plain (Default), Line, SmoothLine
Bubble Plain (Default)
Area Plain (Default), Stacked, PercentStacked
Doughnut Plain (Default), Exploded
Stock HighLowClose (Default), OpenHighLowClose, Candlestick

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Table Element
Table Element

Defines a table to be included in the report.

XML

<ReportItems>
 ...
 <Table Name="...">
 <Style>...</Style>
 <Top>...</Top>
 <Left>...</Left>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <Custom>...</Custom>
 <KeepTogether>...</KeepTogether>
 <NoRows>...</NoRows>
 <DataSetName>...</DataSetName>
 <PageBreakAtStart>...</PageBreakAtStart>
 <PageBreakAtEnd>...</PageBreakAtEnd>
 <Filters>...</Filters>
 <TableColumns>...</TableColumns>
 <Header>...</Header>
 <TableGroups>...</TableGroups>
 <Details>...</DetailsRows>
 <Footer>...</Footer>
 <DetailDataElementName>...</DetailDataElementName>
 <DetailDataCollectionName>...</DetailDataCollectionName>
 <DetailDataElementOutput>...</DetailDataElementOutput>
 </Table>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur more than once or not

at all.

Element Attributes

Attribute Type Description
Name String Name of the Table

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Bookmark, Custom, DataSetName,

DetailDataCollectionName, DetailDataElementName,
DetailDataElementOutput, Details, Filters, Footer, Header,
KeepTogether, Label, Left, NoRows, PageBreakAtEnd,
PageBreakAtStart, Style, TableColumns, TableGroups,
ToolTip, Top, Visibility, ZIndex

Remarks

The Table element must contain at least one Details, Header, or Footer element.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableCell Element
TableCell Element

Defines the contents of each cell in a table.

XML

<TableCells>
 <TableCell>
 <ReportItems>...</ReportItems>
 <ColSpan>...</ColSpan>
 </TableCell>
</TableCells>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element TableCells
Child elements ColSpan, ReportItems

Remarks

Page breaks on report items that are contained within a table cell are ignored.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableCells Element
TableCells Element

Defines a set of cells in a table.

XML

<TableRow -->
 <TableCells>
 <TableCell>...</TableCell>
 </TableCells>
 ...
</TableRow>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element TableRow
Child element TableCell

Remarks

The number of TableCell elements within the TableCell element must be the same as the number of columns of in the table,
adjusting for column spans.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableColumn Element
TableColumn Element

Defines a column in a table.

XML

<TableColumns>
 <TableColumn>
 <Width>...</Width>
 <Visibility>...</Visibility>
 </TableColumn>
</TableColumns>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element TableColumns
Child elements Visibility, Width

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableColumns Element
TableColumns Element

Defines a set of columns in a table.

XML

<Table Name="...">
 <TableColumns>
 <TableColumn>...</TableColumn>
 </TableColumns>
 ...
</Table>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Table
Child element TableColumn

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableGroup Element
TableGroup Element

Defines a group in a table.

XML

<TableGroups>
 <TableGroup>
 <Grouping>...</Grouping>
 <Sorting>...</Sorting>
 <Header>...</Header>
 <Footer>...</Footer>
 <Visibility>...</Visibility>
 </TableGroup>
</TableGroups>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element TableGroups
Child elements Footer, Grouping, Header, Visibility, Sorting

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableGroups Element
TableGroups Element

Defines the groups in a table.

XML

<Table Name="...">
 ...
 <TableGroups>
 <TableGroup>...</TableGroup>
 </TableGroups>
 ...
</Table>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Table
Child element TableGroup

Remarks

The order in which the TableGroup elements are listed in the TableGroups element determines the nesting of the table groups.
The first TableGroup element is the outermost table group in the table. The last TableGroup element is the innermost table group
in the table.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableRow Element
TableRow Element

Defines a row in a table.

XML

<TableRows>
 <TableRow>
 <TableCells>...</TableCells>
 <Height>...</Height>
 <Visibility>...</Visibility>
 </TableRow>
</TableRows>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-n: Required element that occurs once or more than once

Element Relationships

Relationship Element
Parent element TableRows
Child elements Height, TableCells, Visibility

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TableRows Element
TableRows Element

Contains an ordered list of table rows.

XML

<Header> ="..."> <!-- or Footer, Details -->
 <TableRows>
 <TableRow>...</TableRow>
 </TableRows>
 ...
</Header> <!-- or /Footer, /Details -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Details, Footer, Header
Child element TableRow

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TextAlign Element
TextAlign Element

Describes the horizontal alignment of the text of the item.

XML

<Style>
 ...
 <TextAlign>...</TextAlign>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value General
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The TextAlign element must contain an expression that evaluates to one of the following strings:

Left
Center
Right
General

TextAlign applies only to the items text box and subtotal. TextAlign does not apply to the items line, rectangle, image, subreport,
list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Textbox Element
Textbox Element

Defines a text box to be drawn in the report.

XML

<ReportItems>
 ...
 <Textbox Name="...">
 <Style>...</Style>
 <Action>...</Action>
 <Top>...</Top>
 <Left>...</Left>
 <Height>...</Height>
 <Width>...</Width>
 <ZIndex>...</ZIndex>
 <Visibility>...</Visibility>
 <ToolTip>...</ToolTip>
 <Label>...</Label>
 <Bookmark>...</Bookmark>
 <RepeatWith>...</RepeatWith>
 <Custom>...</Custom>
 <Value>...</Value>
 <CanGrow>...</CanGrow>
 <CanShrink>...</CanShrink>
 <HideDuplicates>...</HideDuplicates>
 <ToggleImage>...</ToggleImage>
 <DataElementStyle>...</DataElementStyle> </Textbox>
 ...
</ReportItems>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-n: Optional element that can occur once or more

Element Attributes

Attribute Type Description
Name String Name of the text box

Element Relationships

Relationship Element
Parent element ReportItems
Child elements Action, Bookmark, CanGrow, CanShrink, Custom, DataType,

Height, HideDuplicates, Label, Left, RepeatWith, Style,
ToolTip, ToggleImage, Top, Value, Visibility, Width, ZIndex

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

TextDecoration Element
TextDecoration Element

Describes special text formatting for the item.

XML

<Style>
 ...
 <TextDecoration>...</TextDecoration>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The TextDecoration element must contain an expression that evaluates to one of the following strings:

Underline
Overline
LineThrough
None

TextDecoration applies only to the items text box, subtotal, title, and legend. TextDecoration does not apply to the items line,
rectangle, image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ThreeDProperties Element
ThreeDProperties Element

Defines the three-dimensional properties of a chart.

XML

<Chart>
 ...
 <ThreeDProperties>
 <Enabled>...</Enabled>
 <ProjectionMode>...</ProjectionMode>
 <Rotation>...</Rotation>
 <Inclination>...</Inclination>
 <Perspective>...</Perspective>
 <HeightRatio>...</HeightRatio>
 <DepthRatio>...</DepthRatio>
 <Shading>...</Shading>
 <GapDepth>...</GapDepth>
 <WallThickness>...</WallThickness>
 <DrawingStyle>...</DrawingStyle>
 <Clustered>...</Clustered>
 </ThreeDProperties>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child elements Clustered, DepthRatio, DrawingStyle, Enabled, GapDepth,

HeightRatio, Inclination, Perspective, ProjectionMode,
Rotation, Shading, WallThickness

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Timeout Element
Timeout Element

Specifies the number of seconds the query runs on the database before timing out.

XML

<Query>
 ...
 <Timeout>...</Timeout>
</Query>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Query
Child element None

Remarks

The value for the Timeout element must be between 0 and 2147483647. If the value is omitted or is 0, the query does not time
out.

See Also

Report Definition XML Elements

Setting Time-out Values

Reporting Services - Report Definition Language

Title Element
Title Element

Contains the title of the item.

XML

<Chart> <!-- or Axis -->
 ...
 <Title>
 <Caption>...</Caption>
 <Style>...</Style>
 <Position>...</Position>
 </Title>
 ...
</Chart> <!-- or /Axis -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis, Chart
Child elements Caption, Position, Style

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ToggleImage Element
ToggleImage Element

Indicates that a toggle image is displayed as a part of the text box.

XML

<Textbox Name="...">
 ...
 <ToggleImage>
 <InitialState>...</InitialState>
 </ToggleImage>
</Textbox>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Textbox
Child element InitialState

Remarks

The toggle image displays a minus sign (-) for expanded and a plus sign (+) for collapsed. The ToggleImage element is used in
conjunction with the Visibility element on any report items to be hidden using the text box.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ToggleItem Element
ToggleItem Element

Specifies the text box that users click to show or hide the current item.

XML

<Visibility>
 ...
 <ToggleItem>...</ToggleItem>
</Visibility>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Visibility
Child element None

Remarks

When a user clicks the text box specified in the ToggleItem element, the parent of the Visibility element ("current item") is
alternately shown or hidden. If ToggleItem is not specified, the current item does not toggle.

The value of ToggleItem must be a text box in the same grouping scope as the current item, or in any containing grouping scope.
It can be a text box within the current item only if the current grouping scope contains a value for the Parent element.

ToggleItem cannot be used in a page header or footer nor can it refer to items within them.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ToolTip Element
ToolTip Element

Contains a textual label for the item.

XML

<Textbox Name="..."> <!-- or Rectangle, Image, Subreport, List, Matrix, Table, Chart -->
 ...
 <ToolTip>...</ToolTip>
 ...
</Textbox> <!-- or /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart, -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, Image, List, Matrix, Rectangle, Subreport, Table,

Textbox
Child element None

Remarks

The ToolTip element contains an expression that evaluates to a string. The HTML rendering extension provided with Reporting
Services uses the ToolTip element to provide TITLE and ALT attributes. Other rendering extensions can use this element in other
ways.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Top Element (BorderColor)
Top Element (BorderColor)

Describes the color of the top border of the item.

XML

<BorderColor>
 ...
 <Top>...</Top>
 ...
</BorderColor>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderColor
Child element None

Remarks

The Top element contains an expression that evaluates to either the name of a color or a hex HTML color string in the form
#HHHHHH. For information about color values, see this Microsoft Web site.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9258

Reporting Services - Report Definition Language

Top Element (BorderStyle)
Top Element (BorderStyle)

Describes the style of the top border of the item.

XML

<BorderStyle>
 ...
 <Top>...</Top>
 ...
</BorderStyle>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderStyle
Child element None

Remarks

The Top element must contain an expression that evaluates to one of the following string values:

None
Dotted
Dashed
Solid
Double
Groove
Ridge
Inset
WindowInset
Outset

When used in a chart, the Bottom element can only contain None, Dotted, Dashed, or Solid. Any other style is ignored.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Top Element (BorderWidth)
Top Element (BorderWidth)

Describes the width of the top border of the item.

XML

<BorderWidth>
 ...
 <Top>...</Top>
 ...
</BorderWidth>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element BorderWidth
Child element None

Remarks

The Top element contains an expression that evaluates to a string that contains a number (with a period character used as an
optional decimal separator). The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A
space between the number and the designator is optional. For more information about size designators, see this Microsoft Web
site. The value for the Top element must be between .25pt and 20pt.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Top Element (Report Items)
Top Element (Report Items)

Indicates the distance of the item from the top of the containing item.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table,
Chart, CustomReportItem -->
 ...
 <Top>...</Top>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
/CustomReportItem -->

Element Characteristics

Characteristic Description
Data type and length String
Default value 0in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, CustomReportItem, Image, Line, List, Matrix,

Rectangle, Subreport, Table, Textbox
Child element None

Remarks

The string for the Top element must contain a number (with a period character used as an optional decimal separator). The
number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and
the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for Top is 160in. The minimum value is 0in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

TopMargin Element
TopMargin Element

Specifies the width of the top margin of the report.

XML

<Report>
 ...
 <TopMargin>...</TopMargin>
 ...
</Report>

Element Characteristics

Characteristic Description
Data type and length String
Default value 0 in
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Report
Child element None

Remarks

The string for the TopMargin element must contain a number (with a period character used as an optional decimal separator).
The number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number
and the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for TopMargin is 160in. The minimum value is 0in.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

Transaction Element
Transaction Element

Indicates whether the datasets that use this data source run in a single transaction.

XML

<DataSource Name="...">
 <Transaction>...</Transaction>
 ...
</DataSource>

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSource
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Type Element (Chart)
Type Element (Chart)

Indicates the type of the chart.

XML

<Chart>
 <Type>...</Type>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length String
Default value Column
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child element None

Remarks

The Type element must contain one of the following strings:

Column
Bar
Line
Pie
Scatter
Bubble
Area
Doughnut
Stock

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Type Element (Marker)
Type Element (Marker)

Indicates the type of the marker.

XML

<Marker>
 <Type>...</Type>
 ...
</Marker>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Marker
Child element None

Remarks

The Type element must contain one of the following strings:

None
Square
Circle
Diamond
Triangle
Cross
Auto

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

UnicodeBiDi Element
UnicodeBiDi Element

Indicates the level of bi-directional embedding.

XML

<Style>
 ...
 <UnicodeBiDi>...</UnicodeBiDi>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Normal
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The UnicodeBiDi element contains an expression that evaluates to one of the values listed in the following table.

Value Description
Normal Does not open an additional level of embedding.
Embed Opens an additional level of embedding.
BiDi-Override Same as the Embed value, except that reordering is strictly

in sequence according to the direction. This value overrides
the implicit bidirectional algorithm.

UnicodeBiDi applies only to the items textbox and subtotal. UnicodeBiDi does not apply to the items line, rectangle, image,
subreport, list, matrix, table, chart, and body.

For more information about UnicodeBiDi, see this Microsoft Web site.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=20752

Reporting Services - Report Definition Language

UsedInQuery Element
UsedInQuery Element

Indicates whether a report parameter is used in queries within the report.

XML

<ReportParameter Name="...">
 ...
 <UsedInQuery>...</UsedInQuery>
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ReportParameter
Child element None

Remarks

The UsedInQuery element must contain one of the following string values:

True
False
Auto

You use the UsedInQuery to determine whether queries containing parameters that are associated with the report parameter are
executed if the report parameter changes. This impacts whether the parameter can be changed in snapshot reports. Setting the
value to Auto indicates that the report server attempts to detect whether the parameter is used in a query.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ValidValues Element
ValidValues Element

Provides a list of possible values with which to populate a parameter list that is displayed to users.

XML

<ReportParameter Name="...">
 ...
 <ValidValues>
 <DataSetReference> <!-- or ParameterValues-->
 ...
 </DataSetReference> <!-- or /ParameterValues -->

 </ValidValues>
 ...
</ReportParameter>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element ReportParameter
Child elements DataSetReference, ParameterValues

Remarks

The ValidValues element must have one and only one child element: either DataSetReference or ParameterValues.

ValidValues is ignored for Boolean parameters.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (DataLabel)
Value Element (DataLabel)

Contains the expression for the value labels.

XML

<DataLabel>
 ...
 <Value>...</Value>
 ...
</DataLabel>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataLabel
Child element None

Remarks

The Value element contains an expression that evaluates to a variant. If Value is omitted, data values are used for labels.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (DataValue)
Value Element (DataValue)

Contains the value of the data point.

XML

<DataValue>
 <Value>...</Value>
</DataValue>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataValue
Child element None

Remarks

The Value element contains an expression that evaluates to a variant.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (Field)
Value Element (Field)

Contains an expression that evaluates to the value of the field.

XML

<Field Name="...">
 ...
 <Value>...</Value>
</Field>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element Field
Child element None

Remarks

The expression within the Value element evaluates to a variant and cannot contain aggregates or references to report items.

The Field element must have one and only one child element: either DataField or Value.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (Image, BackgroundImage)
Value Element (Image, BackgroundImage)

Identifies the source of the image.

XML

<Image Name="..."> <!-- or BackgroundImage -->
 ...
 <Value>...</Value>
 ...
</Image> <!-- or /BackgroundImage -->

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent elements BackgroundImage, Image
Child element None

Remarks

The contents of the Value element and the data type it returns depends on the value of the Source element, which is a sibling to
Value.

Value of
Source

element

Description Data type
returned

External Value contains a constant or an expression that
evaluates to a path to the image

String

Embedded Value contains A constant or an expression that
evaluates to the name of an embedded image within
the report

String

Database Value contains an expression for a field in the database
that evaluates to the binary data for an image

Binary

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (Parameter)
Value Element (Parameter)

Contains the value for an individual parameter that is passed to a subreport or drillthrough report.

XML

<Parameter Name="...">
 <Value>...</Value>
 ...
</Parameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Parameter
Child element None

Remarks

The Value element contains an expression that evaluates to a variant.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (ParameterValue)
Value Element (ParameterValue)

Contains a possible value for the parameter.

XML

<ParameterValue>
 <Value>...</Value>
 ...
</ParameterValue>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 0-1: Optional element that occurs once or not at all.

Element Relationships

Relationship Element
Parent element ParameterValue
Child element None

Remarks

The value that is passed as the actual parameter is stored in the Value element. The sibling element Label provides a more
friendly string to the user.

The Value element contains an expression that evaluates to a variant. The following rules apply for non-string parameters:

For Boolean parameters, use true and false.
For DateTime parameters, use the International Organization for Standardization (ISO) 8601 standard.
For Float parameters, use a period character as the optional decimal separator.

See Also

Report Definition XML Elements

Label Element (ParameterValue)

Reporting Services - Report Definition Language

Value Element (QueryParameter)
Value Element (QueryParameter)

Contains the value to pass to the data source.

XML

<QueryParameter Name="...">
 <Value>...</Value>
</QueryParameter>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element QueryParameter
Child element None

Remarks

The Value element contains an expression that evaluates to a variant or to pass to the data source. The expression can include
report parameters but it cannot contain references to report elements, fields in the data model, or aggregate functions.

If you use a query with a query parameter to supply a list of valid values or a default value in a report parameter, any report
parameters used by this query must be listed before the report parameter that uses this query. For example, if a report parameter
named City uses a query that maps a query parameter to a report parameter named Region, the Region report parameter must
be higher in the list of report parameters than the City report parameter. This allows the list of values for City to vary depending
on the value chosen for Region.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Value Element (Textbox)
Value Element (Textbox)

Contains the value of the text box. This value can be a field name, a constant, or another expression.

XML

<Textbox Name="...">
 <Value>...</Value>
 ...
</Textbox>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Textbox
Child element None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Values Element (Values)
Value Element (Values)

Contains an individual value or expression to be used as a default for the parameter.

XML

<Values>
 <Value>...</Value>
</Values>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element Values
Child element None

Remarks

The expression for the Value element evaluates to a variant. It cannot refer to fields, items in the report, or any parameters that
occur after the current parameter.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ValueAxis Element
ValueAxis Element

Defines the value axis of the chart.

XML

<Chart>
 ...
 <ValueAxis>
 <Axis>...</Axis>
 </ValueAxis>
 ...
</Chart>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Chart
Child elements Axis

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ValueField Element
ValueField Element

Contains the name of the field that contains the valid values or the default value of the parameter.

XML

<DataSetReference>
 ...
 <ValueField>...</ValueField>
 ...
<DataSetReference>

Element Characteristics

Characteristic Description
Data type and length String
Default value None
Cardinality 1-1: Required element that occurs once and only once

Element Relationships

Relationship Element
Parent element DataSetReference
Child element None

See Also

Report Definition XML Elements

LabelField

ValidValues

DefaultValue

Reporting Services - Report Definition Language

Values Element
Values Element

Contains the hard-coded default values for the parameter.

XML

<DefaultValue>
 <Values>
 <Value>...</Value>
 </Values>
</DefaultValue>

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all. For

more information, see "Remarks."

Element Relationships

Relationship Element
Parent element DefaultValue
Child element Value

Remarks

DefaultValue, which is the parent element of the Value element, can have one and only one child element: DataSetReference
or Values.

One and only one default value is allowed for Boolean parameters.

See Also

Report Definition XML Elements

DataSetReference Element

Reporting Services - Report Definition Language

VerticalAlign Element
VerticalAlign Element

Describes the vertical alignment of the text of the item.

XML

<Style>
 ...
 <VerticalAlign>...</VerticalAlign>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value Top
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The VerticalAlign element must contain an expression that evaluates to one of the following strings:

Top
Middle
Bottom

VerticalAlign applies only to the items text box, subtotal, title, and legend. VerticalAlign does not apply to the items line,
rectangle, image, subreport, list, matrix, table, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Visibility Element
Visibility Element

Indicates whether the item is displayed in the rendered report.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table,
Chart, CustomReportItem, DynamicColumns, DynamicRows, TableColumn, TableRow, TableGroup,
Details -->
 ...
 <Visibility>
 <Hidden>...</Hidden>
 <ToggleItem>...</ToggleItem>
 </Visibility>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
CustomReportItem, /DynamicColumns, /DynamicRows, /TableColumn, /TableRow, /TableGroup,
/Details -->

Element Characteristics

Characteristic Description
Data type and length None
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, CustomReportItem, Details, DynamicColumns,

DynamicRows, Image, Line, List, Matrix, Rectangle,
Subreport, Table, TableColumn, TableGroup, TableRow,
Textbox

Child elements Hidden, ToggleItem

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Visible Element
Visible Element

Indicates whether the item is displayed in the chart.

XML

<Legend> <!-- or Axis, DataLabel -->
 <Visible>...</Visible>
 ...
</Legend> <!-- or /Axis, /DataLabel -->

Element Characteristics

Characteristic Description
Data type and length Boolean
Default value False
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Axis, DataLabel, Legend
Child elements None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

WallThickness Element
WallThickness Element

Indicates the percent thickness of the outer walls of the three-dimensional chart.

XML

<ThreeDProperties>
 ...
 <WallThickness>...</WallThickness>
 ...
</ThreeDProperties>

Element Characteristics

Characteristic Description
Data type and length Integer
Default value None
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element ThreeDProperties
Child elements None

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Width Element
Width Element

Indicates the width of the item.

XML

<Report> <!-- or Line, Rectangle, Textbox, Image, Subreport, List, Matrix, Table, Chart,
CustomReportItem, RowGrouping, MatrixColumn, TableColumn -->
 ...
 <Width>...</Width>
 ...
</Report> <!-- or /Line, /Rectangle, /Textbox, /Image, /Subreport, /List, /Matrix,
/Table, /Chart, /CustomReportItem /RowGrouping, /MatrixColumn, /TableColumn -->

Element Characteristics

Characteristic Description
Data type and length String
Default value See "Remarks."
Cardinality (when used
as a child of Report)

1-1: Required element that occurs once and only once

Cardinality (all other
cases)

0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, CustomReportItem, Image, Line, List, Matrix,

MatrixColumn, Rectangle, Report, RowGrouping, Subreport,
Table, TableColumn, Textbox

Child element None

Remarks

The string for the Width element must contain a number (with the period character used as an optional decimal separator). The
number must be followed by a designator for a CSS length unit such as cm, mm, in, pt, or pc. A space between the number and
the designator is optional. For more information about size designators, see this Microsoft Web site.

The maximum value for Width is 160in. The minimum value is 0in.

Only lines can have a negative size. Height combined with width determines the endpoint of the line.

If the Width element is omitted, the default for Width is the value of Width for the containing item minus the value of the sibling
Left element, except for a table or matrix. For a table or matrix, the default is derived from the sizes of the columns, rows, and
cells.

See Also

Report Definition XML Elements

http://go.microsoft.com/fwlink/?linkid=9257

Reporting Services - Report Definition Language

WidthSensitivity Element
WidthSensitivity Element

Indicates whether the data is width sensitive.

XML

<DataSet Name="...">
 ...
 <WidthSensitivity>...</WidthSensitivity>
</DataSet>

Element Characteristics

Characteristic Description
Data type and length String
Default value Auto
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element DataSet
Child element None

Remarks

The value for the WidthSensitivity element is restricted to one of the strings listed in the following table.

Value Description
True Data is width sensitive.
False Data is not width sensitive.
Auto The report server attempts to get information about width

sensitivity from the data processing extension. If the
extension cannot provide this information, the default value
of WidthSensitivity is False.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

WritingMode Element
WritingMode Element

Indicates whether the text is written horizontally or vertically.

XML

<Style>
 ...
 <WritingMode>...</WritingMode>
 ...
</Style>

Element Characteristics

Characteristic Description
Data type and length String
Default value lr-tb
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent element Style
Child element None

Remarks

The WritingMode element must contain an expression that evaluates to one of the values listed in the following table.

Value Description
lr-tb Text is written horizontally.
tb-rl Text is written vertically.

WritingMode applies only to the items text box, subtotal, title, and legend. WritingMode does not apply to the items line,
rectangle, image, subreport, list, table, matrix, chart, and body.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

ZIndex Element
ZIndex Element

Indicates the drawing order of the item within the containing item.

XML

<Textbox Name="..."> <!-- or Line, Rectangle, Image, Subreport, List, Matrix, Table,
Chart, CustomReportItem -->
 ...
 <ZIndex>...</ZIndex>
 ...
</Textbox> <!-- or /Line, /Rectangle, /Image, /Subreport, /List, /Matrix, /Table, /Chart,
/CustomReportItem -->

Element Characteristics

Characteristic Description
Data type and length Integer
Default value 0
Cardinality 0-1: Optional element that can occur once or not at all

Element Relationships

Relationship Element
Parent elements Chart, CustomReportItem, Image, Line, List, Matrix,

Rectangle, Subreport, Table, Textbox
Child element None

Remarks

The minimum value for the ZIndex element is 0. The maximum value is 2147483647.

Items are drawn in order according to the ZIndex element for the item. Items with lower indices are drawn first, appearing
behind items with higher indices.

See Also

Report Definition XML Elements

Reporting Services - Report Definition Language

Report Definition Language XML Schema
A Reporting Services Report Definition Language (RDL) file is validated using an XML Schema Definition (XSD) file. This topic
shows the XML schema for RDL.

Note The RDL XSD is also available in the ReportDefinition.xsd file, located in the Extras folder on the product CD-
ROM. It is also available on the report server through the following URL:
http://servername/reportserver/reportdefinition.xsd.

<?xml version="1.0" encoding="utf-8" ?>
<xsd:schema
targetNamespace="http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinitio
n"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition"
 elementFormDefault="qualified">
 <xsd:element name="Report">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Description" type="xsd:string" minOccurs="0" />
 <xsd:element name="Author" type="xsd:string" minOccurs="0" />
 <xsd:element name="AutoRefresh" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="DataSources" type="DataSourcesType" minOccurs="0" />
 <xsd:element name="DataSets" type="DataSetsType" minOccurs="0" />
 <xsd:element name="Body" type="BodyType" />
 <xsd:element name="ReportParameters" type="ReportParametersType" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="Code" type="xsd:string" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" />
 <xsd:element name="PageHeader" type="PageHeaderFooterType" minOccurs="0" />
 <xsd:element name="PageFooter" type="PageHeaderFooterType" minOccurs="0" />
 <xsd:element name="PageHeight" type="SizeType" minOccurs="0" />
 <xsd:element name="PageWidth" type="SizeType" minOccurs="0" />
 <xsd:element name="LeftMargin" type="SizeType" minOccurs="0" />
 <xsd:element name="RightMargin" type="SizeType" minOccurs="0" />
 <xsd:element name="TopMargin" type="SizeType" minOccurs="0" />
 <xsd:element name="BottomMargin" type="SizeType" minOccurs="0" />
 <xsd:element name="EmbeddedImages" type="EmbeddedImagesType" minOccurs="0" />
 <xsd:element name="Language" type="xsd:string" minOccurs="0" />
 <xsd:element name="CodeModules" type="CodeModulesType" minOccurs="0" />
 <xsd:element name="Classes" type="ClassesType" minOccurs="0" />
 <xsd:element name="DataTransform" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataSchema" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementStyle" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AttributeNormal" />
 <xsd:enumeration value="ElementNormal" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="ReportParametersType">
 <xsd:sequence>
 <xsd:element name="ReportParameter" type="ReportParameterType"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ReportParameterType">
 <xsd:all>
 <xsd:element name="DataType">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Boolean" />
 <xsd:enumeration value="DateTime" />
 <xsd:enumeration value="Integer" />
 <xsd:enumeration value="Float" />

 <xsd:enumeration value="String" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Nullable" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="DefaultValue" type="DefaultValueType" minOccurs="0" />
 <xsd:element name="AllowBlank" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Prompt" type="xsd:string" minOccurs="0" />
 <xsd:element name="ValidValues" type="ValidValuesType" minOccurs="0" />
 <xsd:element name="MultiValue" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="UsedInQuery" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="False" />
 <xsd:enumeration value="True" />
 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="ValidValuesType">
 <xsd:all>
 <xsd:element name="DataSetReference" type="DataSetReferenceType" minOccurs="0" />
 <xsd:element name="ParameterValues" type="ParameterValuesType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DataSetReferenceType">
 <xsd:all>
 <xsd:element name="DataSetName" type="xsd:string" />
 <xsd:element name="ValueField" type="xsd:string" />
 <xsd:element name="LabelField" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ParameterValuesType">
 <xsd:sequence>
 <xsd:element name="ParameterValue" type="ParameterValueType" maxOccurs="unbounded"
/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ParameterValueType">
 <xsd:all>
 <xsd:element name="Value" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DefaultValueType">
 <xsd:all>
 <xsd:element name="DataSetReference" type="DataSetReferenceType" minOccurs="0" />
 <xsd:element name="Values" type="ValuesType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ValuesType">
 <xsd:sequence>
 <xsd:element name="Value" type="xsd:string" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DataSetsType">
 <xsd:sequence>
 <xsd:element name="DataSet" type="DataSetType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DataSetType">
 <xsd:all>
 <xsd:element name="Fields" type="FieldsType" minOccurs="0" />
 <xsd:element name="Query" type="QueryType" />
 <xsd:element name="CaseSensitivity" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="True" />
 <xsd:enumeration value="False" />

 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Collation" type="xsd:string" minOccurs="0" />
 <xsd:element name="AccentSensitivity" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="True" />
 <xsd:enumeration value="False" />
 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="KanatypeSensitivity" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="True" />
 <xsd:enumeration value="False" />
 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="WidthSensitivity" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="True" />
 <xsd:enumeration value="False" />
 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="FieldsType">
 <xsd:sequence>
 <xsd:element name="Field" type="FieldType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FieldType">
 <xsd:all>
 <xsd:element name="DataField" type="xsd:string" minOccurs="0" />
 <xsd:element name="Value" type="xsd:string" minOccurs="0" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="QueryType">
 <xsd:all>
 <xsd:element name="DataSourceName" type="xsd:string" />
 <xsd:element name="CommandType" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Text" />
 <xsd:enumeration value="StoredProcedure" />
 <xsd:enumeration value="TableDirect" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CommandText" type="xsd:string" />
 <xsd:element name="QueryParameters" type="QueryParametersType" minOccurs="0" />
 <xsd:element name="Timeout" type="xsd:unsignedInt" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DataSourcesType">
 <xsd:sequence>
 <xsd:element name="DataSource" type="DataSourceType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DataSourceType">
 <xsd:all>

 <xsd:element name="Transaction" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="ConnectionProperties" type="ConnectionPropertiesType"
minOccurs="0" />
 <xsd:element name="DataSourceReference" type="xsd:string" minOccurs="0" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:string" use="required" />
 </xsd:complexType>
 <xsd:complexType name="ConnectionPropertiesType">
 <xsd:all>
 <xsd:element name="DataProvider" type="xsd:string" />
 <xsd:element name="ConnectString" type="xsd:string" />
 <xsd:element name="IntegratedSecurity" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Prompt" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="QueryParametersType">
 <xsd:sequence>
 <xsd:element name="QueryParameter" type="QueryParameterType" maxOccurs="unbounded"
/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="QueryParameterType">
 <xsd:all>
 <xsd:element name="Value" type="xsd:string" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:string" use="required" />
 </xsd:complexType>
 <xsd:complexType name="CodeModulesType">
 <xsd:sequence>
 <xsd:element name="CodeModule" type="xsd:string" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ClassesType">
 <xsd:sequence>
 <xsd:element name="Class" type="ClassType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ClassType">
 <xsd:all>
 <xsd:element name="ClassName" type="xsd:string" />
 <xsd:element name="InstanceName" type="xsd:normalizedString" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="BodyType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" />
 <xsd:element name="Columns" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="ColumnSpacing" type="SizeType" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PageHeaderFooterType">
 <xsd:all>
 <xsd:element name="Height" type="SizeType" />
 <xsd:element name="PrintOnFirstPage" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PrintOnLastPage" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="ReportItems" type="ReportItemsType" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="EmbeddedImagesType">
 <xsd:sequence>
 <xsd:element name="EmbeddedImage" type="EmbeddedImageType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="EmbeddedImageType">
 <xsd:all>
 <xsd:element name="MIMEType" type="xsd:string" />
 <xsd:element name="ImageData" type="xsd:string" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />

 </xsd:complexType>
 <xsd:complexType name="ReportItemsType">
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Line" type="LineType" />
 <xsd:element name="Rectangle" type="RectangleType" />
 <xsd:element name="Textbox" type="TextboxType" />
 <xsd:element name="Image" type="ImageType" />
 <xsd:element name="Subreport" type="SubreportType" />
 <xsd:element name="List" type="ListType" />
 <xsd:element name="Matrix" type="MatrixType" />
 <xsd:element name="Table" type="TableType" />
 <xsd:element name="Chart" type="ChartType" />
 <xsd:element name="CustomReportItem" type="CustomReportItemType" />
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="ActionType">
 <xsd:all>
 <xsd:element name="Hyperlink" type="xsd:string" minOccurs="0" />
 <xsd:element name="Drillthrough" type="DrillthroughType" minOccurs="0" />
 <xsd:element name="BookmarkLink" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DrillthroughType">
 <xsd:all>
 <xsd:element name="ReportName" type="xsd:string" />
 <xsd:element name="Parameters" type="ParametersType" minOccurs="0" />
 <xsd:element name="BookmarkLink" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="VisibilityType">
 <xsd:all>
 <xsd:element name="Hidden" type="xsd:string" minOccurs="0" />
 <xsd:element name="ToggleItem" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="LineType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="RectangleType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />

 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0" />
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="ReportItems" type="ReportItemsType" minOccurs="0" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="TextboxType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0" />
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="Value" type="xsd:string" />
 <xsd:element name="CanGrow" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="CanShrink" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="HideDuplicates" type="xsd:string" minOccurs="0" />
 <xsd:element name="ToggleImage" type="ToggleImageType" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="DataElementStyle" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Auto" />
 <xsd:enumeration value="AttributeNormal" />
 <xsd:enumeration value="ElementNormal" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="ToggleImageType">
 <xsd:all>

 <xsd:element name="InitialState" type="xsd:string" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ImageType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0" />
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="Source">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="External" />
 <xsd:enumeration value="Embedded" />
 <xsd:enumeration value="Database" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Value" type="xsd:string" />
 <xsd:element name="MIMEType" type="xsd:string" minOccurs="0" />
 <xsd:element name="Sizing" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AutoSize" />
 <xsd:enumeration value="Fit" />
 <xsd:enumeration value="FitProportional" />
 <xsd:enumeration value="Clip" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="SubreportType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="ReportName" type="xsd:string" />
 <xsd:element name="Parameters" type="ParametersType" minOccurs="0" />

 <xsd:element name="NoRows" type="xsd:string" minOccurs="0" />
 <xsd:element name="MergeTransactions" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="CustomReportItemType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0" />
 <xsd:element name="ReportItems" type="ReportItemsType" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 <xsd:attribute name="Type" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="ParametersType">
 <xsd:sequence>
 <xsd:element name="Parameter" type="ParameterType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ParameterType">
 <xsd:all>
 <xsd:element name="Value" type="xsd:string" />
 <xsd:element name="Omit" type="xsd:string" minOccurs="0" />
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:string" use="required" />
 </xsd:complexType>
 <xsd:complexType name="ListType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="KeepTogether" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="NoRows" type="xsd:string" minOccurs="0" />

 <xsd:element name="DataSetName" type="xsd:string" minOccurs="0" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 <xsd:element name="Grouping" type="GroupingType" minOccurs="0" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="ReportItems" type="ReportItemsType" minOccurs="0" />
 <xsd:element name="FillPage" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="DataInstanceName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataInstanceElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="GroupingType">
 <xsd:all>
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="GroupExpressions" type="GroupExpressionsType" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 <xsd:element name="Parent" type="xsd:string" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataCollectionName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="GroupExpressionsType">
 <xsd:sequence>
 <xsd:element name="GroupExpression" type="xsd:string" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SortingType">
 <xsd:sequence>
 <xsd:element name="SortBy" type="SortByType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SortByType">
 <xsd:all>
 <xsd:element name="SortExpression" type="xsd:string" />
 <xsd:element name="Direction" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Ascending" />

 <xsd:enumeration value="Descending" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MatrixType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="KeepTogether" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="NoRows" type="xsd:string" minOccurs="0" />
 <xsd:element name="DataSetName" type="xsd:string" minOccurs="0" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 <xsd:element name="Corner" type="CornerType" minOccurs="0" />
 <xsd:element name="ColumnGroupings" type="ColumnGroupingsType" />
 <xsd:element name="RowGroupings" type="RowGroupingsType" />
 <xsd:element name="MatrixRows" type="MatrixRowsType" />
 <xsd:element name="MatrixColumns" type="MatrixColumnsType" />
 <xsd:element name="LayoutDirection" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LTR" />
 <xsd:enumeration value="RTL" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="GroupsBeforeRowHeaders" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CellDataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="CellDataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="CornerType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ColumnGroupingsType">

 <xsd:sequence>
 <xsd:element name="ColumnGrouping" type="ColumnGroupingType" maxOccurs="unbounded"
/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ColumnGroupingType">
 <xsd:all>
 <xsd:element name="Height" type="SizeType" />
 <xsd:element name="DynamicColumns" type="DynamicColumnsRowsType" minOccurs="0" />
 <xsd:element name="StaticColumns" type="StaticColumnsType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DynamicColumnsRowsType">
 <xsd:all>
 <xsd:element name="Grouping" type="GroupingType" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="Subtotal" type="SubtotalType" minOccurs="0" />
 <xsd:element name="ReportItems" type="ReportItemsType" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="StaticColumnsType">
 <xsd:sequence>
 <xsd:element name="StaticColumn" type="StaticColumnType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="StaticColumnType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="RowGroupingsType">
 <xsd:sequence>
 <xsd:element name="RowGrouping" type="RowGroupingType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="RowGroupingType">
 <xsd:all>
 <xsd:element name="Width" type="SizeType" />
 <xsd:element name="DynamicRows" type="DynamicColumnsRowsType" minOccurs="0" />
 <xsd:element name="StaticRows" type="StaticRowsType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="StaticRowsType">
 <xsd:sequence>
 <xsd:element name="StaticRow" type="StaticRowType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="StaticRowType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="SubtotalType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Position" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Before" />
 <xsd:enumeration value="After" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MatrixColumnsType">
 <xsd:sequence>
 <xsd:element name="MatrixColumn" type="MatrixColumnType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="MatrixColumnType">
 <xsd:all>
 <xsd:element name="Width" type="SizeType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MatrixRowsType">
 <xsd:sequence>
 <xsd:element name="MatrixRow" type="MatrixRowType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="MatrixRowType">
 <xsd:all>
 <xsd:element name="Height" type="SizeType" />
 <xsd:element name="MatrixCells" type="MatrixCellsType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MatrixCellsType">
 <xsd:sequence>
 <xsd:element name="MatrixCell" type="MatrixCellType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="MatrixCellType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="TableType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="RepeatWith" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="KeepTogether" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="NoRows" type="xsd:string" minOccurs="0" />
 <xsd:element name="DataSetName" type="xsd:string" minOccurs="0" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 <xsd:element name="TableColumns" type="TableColumnsType" />
 <xsd:element name="Header" type="HeaderType" minOccurs="0" />
 <xsd:element name="TableGroups" type="TableGroupsType" minOccurs="0" />
 <xsd:element name="Details" type="DetailsType" minOccurs="0" />
 <xsd:element name="Footer" type="FooterType" minOccurs="0" />
 <xsd:element name="FillPage" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="DetailDataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DetailDataCollectionName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DetailDataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="TableColumnsType">
 <xsd:sequence>
 <xsd:element name="TableColumn" type="TableColumnType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TableColumnType">
 <xsd:all>
 <xsd:element name="Width" type="SizeType" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="HeaderType">
 <xsd:all>
 <xsd:element name="TableRows" type="TableRowsType" />
 <xsd:element name="RepeatOnNewPage" type="xsd:boolean" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="TableRowsType">
 <xsd:sequence>
 <xsd:element name="TableRow" type="TableRowType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TableRowType">
 <xsd:all>
 <xsd:element name="TableCells" type="TableCellsType" />
 <xsd:element name="Height" type="SizeType" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="FooterType">
 <xsd:all>
 <xsd:element name="TableRows" type="TableRowsType" />
 <xsd:element name="RepeatOnNewPage" type="xsd:boolean" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="TableGroupsType">
 <xsd:sequence>
 <xsd:element name="TableGroup" type="TableGroupType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TableGroupType">
 <xsd:all>
 <xsd:element name="Grouping" type="GroupingType" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="Header" type="HeaderType" minOccurs="0" />
 <xsd:element name="Footer" type="FooterType" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DetailsType">
 <xsd:all>
 <xsd:element name="TableRows" type="TableRowsType" />
 <xsd:element name="Grouping" type="GroupingType" minOccurs="0" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />

 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="TableCellsType">
 <xsd:sequence>
 <xsd:element name="TableCell" type="TableCellType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TableCellType">
 <xsd:all>
 <xsd:element name="ReportItems" type="ReportItemsType" />
 <xsd:element name="ColSpan" type="xsd:unsignedInt" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ChartType">
 <xsd:all>
 <xsd:element name="Type" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Column" />
 <xsd:enumeration value="Bar" />
 <xsd:enumeration value="Line" />
 <xsd:enumeration value="Pie" />
 <xsd:enumeration value="Scatter" />
 <xsd:enumeration value="Bubble" />
 <xsd:enumeration value="Area" />
 <xsd:enumeration value="Doughnut" />
 <xsd:enumeration value="Stock" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Subtype" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Stacked" />
 <xsd:enumeration value="PercentStacked" />
 <xsd:enumeration value="Plain" />
 <xsd:enumeration value="Smooth" />
 <xsd:enumeration value="Exploded" />
 <xsd:enumeration value="Line" />
 <xsd:enumeration value="SmoothLine" />
 <xsd:enumeration value="HighLowClose" />
 <xsd:enumeration value="OpenHighLowClose" />
 <xsd:enumeration value="Candlestick" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Action" type="ActionType" minOccurs="0"/>
 <xsd:element name="Top" type="SizeType" minOccurs="0" />
 <xsd:element name="Left" type="SizeType" minOccurs="0" />
 <xsd:element name="Height" type="SizeType" minOccurs="0" />
 <xsd:element name="Width" type="SizeType" minOccurs="0" />
 <xsd:element name="ZIndex" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Visibility" type="VisibilityType" minOccurs="0" />
 <xsd:element name="ToolTip" type="xsd:string" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 <xsd:element name="LinkToChild" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Bookmark" type="xsd:string" minOccurs="0" />
 <xsd:element name="Custom" type="CustomType" minOccurs="0" />
 <xsd:element name="KeepTogether" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="NoRows" type="xsd:string" minOccurs="0" />
 <xsd:element name="DataSetName" type="xsd:string" minOccurs="0" />
 <xsd:element name="PageBreakAtStart" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="PageBreakAtEnd" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Filters" type="FiltersType" minOccurs="0" />
 <xsd:element name="SeriesGroupings" type="SeriesGroupingsType" minOccurs="0" />
 <xsd:element name="CategoryGroupings" type="CategoryGroupingsType" minOccurs="0" />
 <xsd:element name="ChartData" type="ChartDataType" minOccurs="0" />
 <xsd:element name="Legend" type="LegendType" minOccurs="0" />
 <xsd:element name="CategoryAxis" type="CategoryAxisType" minOccurs="0" />
 <xsd:element name="ValueAxis" type="ValueAxisType" minOccurs="0" />
 <xsd:element name="Title" type="TitleType" minOccurs="0" />

 <xsd:element name="PointWidth" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Palette" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Default"/>
 <xsd:enumeration value="EarthTones"/>
 <xsd:enumeration value="Excel"/>
 <xsd:enumeration value="GrayScale"/>
 <xsd:enumeration value="Light"/>
 <xsd:enumeration value="Pastel"/>
 <xsd:enumeration value="SemiTransparent"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="ThreeDProperties" type="ThreeDPropertiesType" minOccurs="0" />
 <xsd:element name="PlotArea" type="PlotAreaType" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 <xsd:enumeration value="ContentsOnly"/>
 <xsd:enumeration value="Auto"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="ChartElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="Name" type="xsd:normalizedString" use="required" />
 </xsd:complexType>
 <xsd:complexType name="SeriesGroupingsType">
 <xsd:sequence>
 <xsd:element name="SeriesGrouping" type="SeriesGroupingType" maxOccurs="unbounded"
/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SeriesGroupingType">
 <xsd:all>
 <xsd:element name="DynamicSeries" type="DynamicSeriesType" minOccurs="0" />
 <xsd:element name="StaticSeries" type="StaticSeriesType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DynamicSeriesType">
 <xsd:all>
 <xsd:element name="Grouping" type="GroupingType" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="StaticSeriesType">
 <xsd:sequence>
 <xsd:element name="StaticMember" type="StaticMemberType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="StaticMemberType">
 <xsd:all>
 <xsd:element name="Label" type="xsd:string" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="CategoryGroupingsType">
 <xsd:sequence>
 <xsd:element name="CategoryGrouping" type="CategoryGroupingType"
maxOccurs="unbounded" />
 </xsd:sequence>

 </xsd:complexType>
 <xsd:complexType name="CategoryGroupingType">
 <xsd:all>
 <xsd:element name="DynamicCategories" type="DynamicCategoriesType" minOccurs="0" />
 <xsd:element name="StaticCategories" type="StaticCategoriesType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DynamicCategoriesType">
 <xsd:all>
 <xsd:element name="Grouping" type="GroupingType" />
 <xsd:element name="Sorting" type="SortingType" minOccurs="0" />
 <xsd:element name="Label" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="StaticCategoriesType">
 <xsd:sequence>
 <xsd:element name="StaticMember" type="StaticMemberType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TitleType">
 <xsd:all>
 <xsd:element name="Caption" type="xsd:string" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Position" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Center" />
 <xsd:enumeration value="Near" />
 <xsd:enumeration value="Far" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="LegendType">
 <xsd:all>
 <xsd:element name="Visible" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Position" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="TopLeft" />
 <xsd:enumeration value="TopCenter" />
 <xsd:enumeration value="TopRight" />
 <xsd:enumeration value="LeftTop" />
 <xsd:enumeration value="LeftCenter" />
 <xsd:enumeration value="LeftBottom" />
 <xsd:enumeration value="RightTop" />
 <xsd:enumeration value="RightCenter" />
 <xsd:enumeration value="RightBottom" />
 <xsd:enumeration value="BottomLeft" />
 <xsd:enumeration value="BottomCenter" />
 <xsd:enumeration value="BottomRight" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Layout" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Column" />
 <xsd:enumeration value="Row" />
 <xsd:enumeration value="Table" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="InsidePlotArea" type="xsd:boolean" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="CategoryAxisType">
 <xsd:all>
 <xsd:element name="Axis" type="AxisType" minOccurs="0" />
 </xsd:all>

 </xsd:complexType>
 <xsd:complexType name="ValueAxisType">
 <xsd:all>
 <xsd:element name="Axis" type="AxisType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="AxisType">
 <xsd:all>
 <xsd:element name="Visible" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Title" type="TitleType" minOccurs="0" />
 <xsd:element name="Margin" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="MajorTickMarks" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None" />
 <xsd:enumeration value="Inside" />
 <xsd:enumeration value="Outside" />
 <xsd:enumeration value="Cross" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="MinorTickMarks" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None" />
 <xsd:enumeration value="Inside" />
 <xsd:enumeration value="Outside" />
 <xsd:enumeration value="Cross" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="MajorGridLines" type="MajorGridLinesType" minOccurs="0" />
 <xsd:element name="MinorGridLines" type="MinorGridLinesType" minOccurs="0" />
 <xsd:element name="MajorInterval" type="xsd:string" minOccurs="0" />
 <xsd:element name="MinorInterval" type="xsd:string" minOccurs="0" />
 <xsd:element name="Reverse" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="CrossAt" type="xsd:string" minOccurs="0" />
 <xsd:element name="Interlaced" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Scalar" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Min" type="xsd:string" minOccurs="0" />
 <xsd:element name="Max" type="xsd:string" minOccurs="0" />
 <xsd:element name="LogScale" type="xsd:boolean" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ChartDataType">
 <xsd:sequence>
 <xsd:element name="ChartSeries" type="ChartSeriesType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ChartSeriesType">
 <xsd:all>
 <xsd:element name="DataPoints" type="DataPointsType" />
 <xsd:element name="PlotType" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Auto" />
 <xsd:enumeration value="Line" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DataPointsType">
 <xsd:sequence>
 <xsd:element name="DataPoint" type="DataPointType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DataPointType">
 <xsd:all>
 <xsd:element name="DataValues" type="DataValuesType" />
 <xsd:element name="DataLabel" type="DataLabelType" minOccurs="0" />

 <xsd:element name="Action" type="ActionType" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Marker" type="MarkerType" minOccurs="0" />
 <xsd:element name="DataElementName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DataElementOutput" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Output"/>
 <xsd:enumeration value="NoOutput"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DataValuesType">
 <xsd:sequence>
 <xsd:element name="DataValue" type="DataValueType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="DataValueType">
 <xsd:all>
 <xsd:element name="Value" type="xsd:string" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="DataLabelType">
 <xsd:all>
 <xsd:element name="Visible" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 <xsd:element name="Value" type="xsd:string" minOccurs="0" />
 <xsd:element name="Position" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Auto" />
 <xsd:enumeration value="Top" />
 <xsd:enumeration value="TopLeft" />
 <xsd:enumeration value="TopRight" />
 <xsd:enumeration value="Left" />
 <xsd:enumeration value="Center" />
 <xsd:enumeration value="Right" />
 <xsd:enumeration value="BottomLeft" />
 <xsd:enumeration value="Bottom" />
 <xsd:enumeration value="BottomRight" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Rotation" type="xsd:integer" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MarkerType">
 <xsd:all>
 <xsd:element name="Type" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None" />
 <xsd:enumeration value="Square" />
 <xsd:enumeration value="Circle" />
 <xsd:enumeration value="Diamond" />
 <xsd:enumeration value="Triangle" />
 <xsd:enumeration value="Cross" />
 <xsd:enumeration value="Auto" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Size" type="SizeType" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="ThreeDPropertiesType">
 <xsd:all>
 <xsd:element name="Enabled" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="ProjectionMode" minOccurs="0">
 <xsd:simpleType>

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Perspective" />
 <xsd:enumeration value="Orthographic" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Rotation" type="xsd:integer" minOccurs="0" />
 <xsd:element name="Inclination" type="xsd:integer" minOccurs="0" />
 <xsd:element name="Perspective" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="HeightRatio" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="DepthRatio" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="Shading" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None" />
 <xsd:enumeration value="Simple" />
 <xsd:enumeration value="Real" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="GapDepth" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="WallThickness" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="DrawingStyle" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Cube" />
 <xsd:enumeration value="Cylinder" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Clustered" type="xsd:boolean" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PlotAreaType">
 <xsd:all>
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MajorGridLinesType">
 <xsd:all>
 <xsd:element name="ShowGridLines" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="MinorGridLinesType">
 <xsd:all>
 <xsd:element name="ShowGridLines" type="xsd:boolean" minOccurs="0" />
 <xsd:element name="Style" type="StyleType" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="StyleType">
 <xsd:all>
 <xsd:element name="BorderColor" type="BorderColorStyleWidthType" minOccurs="0" />
 <xsd:element name="BorderStyle" type="BorderColorStyleWidthType" minOccurs="0" />
 <xsd:element name="BorderWidth" type="BorderColorStyleWidthType" minOccurs="0" />
 <xsd:element name="BackgroundColor" type="xsd:string" minOccurs="0" />
 <xsd:element name="BackgroundGradientType" type="xsd:string" minOccurs="0" />
 <xsd:element name="BackgroundGradientEndColor" type="xsd:string" minOccurs="0" />
 <xsd:element name="BackgroundImage" type="BackgroundImageType" minOccurs="0" />
 <xsd:element name="FontStyle" type="xsd:string" minOccurs="0" />
 <xsd:element name="FontFamily" type="xsd:string" minOccurs="0" />
 <xsd:element name="FontSize" type="xsd:string" minOccurs="0" />
 <xsd:element name="FontWeight" type="xsd:string" minOccurs="0" />
 <xsd:element name="Format" type="xsd:string" minOccurs="0" />
 <xsd:element name="TextDecoration" type="xsd:string" minOccurs="0" />
 <xsd:element name="TextAlign" type="xsd:string" minOccurs="0" />
 <xsd:element name="VerticalAlign" type="xsd:string" minOccurs="0" />
 <xsd:element name="Color" type="xsd:string" minOccurs="0" />
 <xsd:element name="PaddingLeft" type="xsd:string" minOccurs="0" />
 <xsd:element name="PaddingRight" type="xsd:string" minOccurs="0" />
 <xsd:element name="PaddingTop" type="xsd:string" minOccurs="0" />
 <xsd:element name="PaddingBottom" type="xsd:string" minOccurs="0" />

 <xsd:element name="LineHeight" type="xsd:string" minOccurs="0" />
 <xsd:element name="Direction" type="xsd:string" minOccurs="0" />
 <xsd:element name="WritingMode" type="xsd:string" minOccurs="0" />
 <xsd:element name="Language" type="xsd:string" minOccurs="0" />
 <xsd:element name="UnicodeBiDi" type="xsd:string" minOccurs="0" />
 <xsd:element name="Calendar" type="xsd:string" minOccurs="0" />
 <xsd:element name="NumeralLanguage" type="xsd:string" minOccurs="0" />
 <xsd:element name="NumeralVariant" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="BorderColorStyleWidthType">
 <xsd:all>
 <xsd:element name="Default" type="xsd:string" minOccurs="0" />
 <xsd:element name="Left" type="xsd:string" minOccurs="0" />
 <xsd:element name="Right" type="xsd:string" minOccurs="0" />
 <xsd:element name="Top" type="xsd:string" minOccurs="0" />
 <xsd:element name="Bottom" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="BackgroundImageType">
 <xsd:all>
 <xsd:element name="Source">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="External" />
 <xsd:enumeration value="Embedded" />
 <xsd:enumeration value="Database" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Value" type="xsd:string" />
 <xsd:element name="MIMEType" type="xsd:string" minOccurs="0" />
 <xsd:element name="BackgroundRepeat" type="xsd:string" minOccurs="0" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="FiltersType">
 <xsd:sequence>
 <xsd:element name="Filter" type="FilterType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FilterType">
 <xsd:all>
 <xsd:element name="FilterExpression" type="xsd:string" />
 <xsd:element name="Operator">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Equal" />
 <xsd:enumeration value="Like" />
 <xsd:enumeration value="NotEqual" />
 <xsd:enumeration value="GreaterThan" />
 <xsd:enumeration value="GreaterThanOrEqual" />
 <xsd:enumeration value="LessThan" />
 <xsd:enumeration value="LessThanOrEqual" />
 <xsd:enumeration value="TopN" />
 <xsd:enumeration value="BottomN" />
 <xsd:enumeration value="TopPercent" />
 <xsd:enumeration value="BottomPercent" />
 <xsd:enumeration value="In" />
 <xsd:enumeration value="Between" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="FilterValues" type="FilterValuesType" />
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="FilterValuesType">
 <xsd:sequence>
 <xsd:element name="FilterValue" type="xsd:string" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="SizeType">
 <xsd:restriction base="xsd:normalizedString">

 <xsd:minLength value="1" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="CustomType">
 <xsd:sequence>
 <xsd:any processContents="skip" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

See Also

Report Definition Language

Reporting Services - Tools and Utilities Reference

Tools and Utilities Reference
Microsoft® SQL Server™ Reporting Services includes several tools and applications that you can use to create, manage, and view
reports. This section provides specific topics about the dialog boxes, Web pages, and Wizards of these tools and applications.

To access a user interface topic while the tool or application is running, press F1 or click Help while the dialog box, Web page, or
Wizard is open.

Topic Description
Report Designer Help Provides topics for Wizards, dialog boxes

and icons.
HTML Viewer Provides help for the report toolbar and

icons that you use to work with a report.
Report Manager Help Provides help for each Web page.
Setup User Interface Reference Provides help for each dialog box in Setup.
Command Line Utilities Reference Provides information about the command

line utilities used for report server
administration.

See Also

Report Designer

Report Manager

Reporting Services - Tools and Utilities Reference

Report Designer Help
This section provides F1 Help for all Report Designer wizards and dialog boxes.

The following table describes the topics in this section.

Topic Description
Action Describes the Action dialog box.

Advanced Textbox Properties (Data Output
Tab)

Describes the Data Output tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Font Tab) Describes the Font tab of the Advanced
Textbox Properties dialog box.

Advanced Textbox Properties (Format Tab) Describes the Format tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (General
Tab)

Describes the General tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Navigation
Tab)

Describes the Navigation tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Visibility
Tab)

Describes the Visibility tab of the
Advanced Textbox Properties dialog
box.

Chart Properties (3D Effect Tab) Describes the 3D Effect tab of the Chart
Properties dialog box.

Chart Properties (Data Tab) Describes the Data tab of the Chart
Properties dialog box.

Chart Properties (Filters Tab) Describes the Filters tab of the Chart
Properties dialog box.

Chart Properties (General Tab) Describes the General tab of the Chart
Properties dialog box.

Chart Properties (Legend Tab) Describes the Legend tab of the Chart
Properties dialog box.

Chart Properties (X Axis Tab) Describes the X Axis tab of the Chart
Properties dialog box.

Chart Properties (Y Axis Tab) Describes the Y Axis tab of the Chart
Properties dialog box.

Data Source (Credentials Tab) Describes the Credentials tab of the Data
Source dialog box.

Data Source (General Tab) Describes the General tab of the Data
Source dialog box.

Data Source Credentials Describes the Data Source Credentials
dialog box.

Data View Describes the Data view of Report
Designer.

Dataset (Data Options Tab) Describes the Data Options tab of the
Dataset dialog box.

Dataset (Fields Tab) Describes the Fields tab of the Dataset
dialog box.

Dataset (Filters Tab) Describes the Filters tab of the Dataset
dialog box.

Dataset (Parameters Tab) Describes the Parameters tab of the
Dataset dialog box.

Dataset (Query Tab) Describes the Query tab of the Dataset
dialog box.

Define Query Parameters Describes the Define Query Parameters
dialog box.

Edit Chart Value (Appearance Tab) Describes the Appearance tab of the Edit
Chart Value dialog box.

Edit Chart Value (Data Output Tab) Describes the Data Output tab of the
Edit Chart Value dialog box.

Edit Chart Value (Point Labels Tab) Describes the Point Labels tab of the Edit
Chart Value dialog box.

Edit Chart Value (Values Tab) Describes the Values tab of the Edit
Chart Value dialog box.

Edit Classes Describes the Edit Classes dialog box.
Edit Expression Describes the Edit Expression dialog box.
Edit Field/Add New Field Describes the Edit Field and Add New

Field dialog boxes.
Edit References Describes the Edit References dialog box.
Embedded Images Describes the Embedded Images dialog

box.
Enter Data Source Credentials Describes the Enter Data Source

Credentials dialog box.
Fields Describes the Fields window.
Filters Describes the Filters dialog box.
Grouping and Sorting Properties (Data
Output Tab)

Describes the Data Output tab of the
Grouping and Sorting Properties dialog
box.

Grouping and Sorting Properties (Filters
Tab)

Describes the Filters tab of the Grouping
and Sorting Properties dialog box.

Grouping and Sorting Properties (General
Tab)

Describes the General tab of the
Grouping and Sorting Properties dialog
box.

Grouping and Sorting Properties (Sorting
Tab)

Describes the Sorting tab of the
Grouping and Sorting Properties dialog
box.

Grouping and Sorting Properties (Visibility
Tab)

Describes the Visibility tab of the
Grouping and Sorting Properties dialog
box.

Image Properties (General Tab) Describes the General tab of the Image
Properties dialog box.

Image Properties (Navigation Tab) Describes the Filters tab of the Image
Properties dialog box.

Image Properties (Visibility Tab) Describes the Visibility tab of the Image
Properties dialog box.

Layout View Describes the Layout view of Report
Designer.

Line Properties (General Tab) Describes the General tab of the Line
Properties dialog box.

Line Properties (Navigation Tab) Describes the Filters tab of the Line
Properties dialog box.

Line Properties (Visibility Tab) Describes the Visibility tab of the Line
Properties dialog box.

List Properties (Filters Tab) Describes the Filters tab of the List
Properties dialog box.

List Properties (General Tab) Describes the General tab of the List
Properties dialog box.

List Properties (Navigation Tab) Describes the Filters tab of the List
Properties dialog box.

List Properties (Sorting Tab) Describes the Sorting tab of the List
Properties dialog box.

List Properties (Visibility Tab) Describes the Visibility tab of the List
Properties dialog box.

Matrix Properties (Data Output Tab) Describes the Data Output tab of the
Matrix Properties dialog box.

Matrix Properties (Filters Tab) Describes the Filters tab of the Matrix
Properties dialog box.

Matrix Properties (General Tab) Describes the General tab of the Matrix
Properties dialog box.

Matrix Properties (Groups Tab) Describes the Groups tab of the Matrix
Properties dialog box.

Matrix Properties (Navigation Tab) Describes the Filters tab of the Matrix
Properties dialog box.

Matrix Properties (Visibility Tab) Describes the Visibility tab of the Matrix
Properties dialog box.

Parameters Describes the Parameters dialog box.
Preview View Describes the Preview view of Report

Designer.
Project Property Pages (General Tab) Describes the General tab of the project

property pages.
Query Builder Describes the Query Builder dialog box.
Rectangle Properties (Data Output Tab) Describes the Data Output tab of the

Rectangle Properties dialog box.
Rectangle Properties (General Tab) Describes the General tab of the

Rectangle Properties dialog box.
Rectangle Properties (Navigation Tab) Describes the Filters tab of the Rectangle

Properties dialog box.
Rectangle Properties (Visibility Tab) Describes the Visibility tab of the

Rectangle Properties dialog box.
Report Parameters Describes the Report Parameters dialog

box.
Report Properties (Code Tab) Describes the Code tab of the Report

Properties dialog box.
Report Properties (General Tab) Describes the General tab of the Report

Properties dialog box.
Report Properties (Layout Tab) Describes the Layout tab of the Report

Properties dialog box.
Report Properties (References Tab) Describes the References tab of the

Report Properties dialog box.
Reporting Services Login Describes the Reporting Services Login

dialog box.
Shared Data Source (Credentials Tab) Describes the Credentials tab of the

Shared Data Source dialog box.
Shared Data Source (General Tab) Describes the General tab of the Shared

Data Source dialog box.
Style Properties (Border and Line Tab) Describes the Border and Line tab of the

Style Properties dialog box.
Style Properties (Fill Tab) Describes the Fill tab of the Style

Properties dialog box.
Style Properties (Font Tab) Describes the Font tab of the Style

Properties dialog box.
Subreport Properties (Data Output Tab) Describes the Data Output tab of the

Subreport Properties dialog box.
Subreport Properties (General Tab) Describes the General tab of the

Subreport Properties dialog box.
Subreport Properties (Navigation Tab) Describes the Filters tab of the Subreport

Properties dialog box.
Subreport Properties (Parameters Tab) Describes the Parameters tab of the

Subreport Properties dialog box.

Subreport Properties (Visibility Tab) Describes the Visibility tab of the
Subreport Properties dialog box.

Table Properties (Data Output Tab) Describes the Data Output tab of the
Table Properties dialog box.

Table Properties (Filters Tab) Describes the Filters tab of the Table
Properties dialog box.

Table Properties (General Tab) Describes the General tab of the Table
Properties dialog box.

Table Properties (Groups Tab) Describes the Groups tab of the Table
Properties dialog box.

Table Properties (Navigation Tab) Describes the Filters tab of the Table
Properties dialog box.

Table Properties (Sorting Tab) Describes the Sorting tab of the Table
Properties dialog box.

Table Properties (Visibility Tab) Describes the Visibility tab of the Table
Properties dialog box.

Textbox Properties Describes the Textbox Properties dialog
box.

Image Wizard Help Discusses the help topics that are available
for the Image Wizard.

Report Wizard Help Discusses the help topics that are available
for the Report Wizard.

General User Interface Elements Discusses the help topics that are available
for the Visual Studio environment.

See Also

Designing and Creating Reports

Reporting Services - Tools and Utilities Reference

Action
Use the Action dialog box to define the action that is performed when a user clicks the item in the report.

Options

None

Choose this option to indicate that the item has no action.

Jump to report

Choose this option to define a link to a drillthrough report that is located on a report server. Type or select the name of the report.
If the report is in the same folder as the current report, use the name of the report only. If the report is in a different folder on the
same report server, use a relative path to the report (for example, ../Folder2/Report1). If the report is on a different report server,
use the full path to the report server and report (for example, http://server1/Folder3/Report2).

Parameters

Choose this option to add a list of parameters to pass to the drillthrough report. The parameter names must match the
parameters defined for the target report.

Jump to bookmark

Choose this option to define a link to a bookmark within the current report. Type or select the bookmark ID for the report to jump
to when the user clicks the link. Click the expression (fx) button to edit the expression. The bookmark ID can be either a static ID or
an expression that evaluates to a bookmark ID. The expression can include a field that contains a bookmark ID.

Jump to URL

Choose this option to define a link to a Web page. Type or select the URL of a Web page or an expression that evaluates to the
URL of a Web page. Click the expression (fx) button to edit the expression. This expression can include a field that contains a URL.

See Also

Working with Links

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (Data Output Tab)
Use the Data Output tab of the Advanced Textbox Properties dialog box to define XML data output options for the text box.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents of the text box only for values that are not constants.

Yes

Choose this option to export the contents of the text box.

No

Choose this option to not export the contents of the text box.

Render as

Indicates whether the value of the text box is exported as an element or an attribute.

Auto

Choose this option to use the setting on the report.

Element

Choose this option to export the value of the text box as an element.

Attribute

Choose this option to export the value of the text box as an attribute.

See Also

Adding a Text Box

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (Font Tab)
Use the Font tab of the Advanced Textbox Properties dialog box to define font options for the text box.

Options

Family

Type or select a font family or an expression that evaluates to a font family. Click the expression (fx) button to edit the expression.

Size

Type or select a font size or an expression that evaluates to a font size. Click the expression (fx) button to edit the expression.

Style

Type or select a font style or an expression that evaluates to a font style. Click the expression (fx) button to edit the expression.
Valid styles are Normal and Italic.

Weight

Type or select a font weight or an expression that evaluates to a font weight. Click the expression (fx) button to edit the expression.
The names of the weights displayed in Report Designer differ from the names for the same weights in the Report Definition
Language (RDL). If you are using an expression, the expression must evaluate to a valid RDL weight. The following table describes
these weights.

Display name Value
Lighter Lighter
Thin 100
Extra Light 200
Light 300
Normal Normal or 400
Medium 500
Semi-bold 600
Bold Bold or 700
Extra Bold 800
Heavy 900
Bolder Bolder

Decoration

Type or select a font decoration or an expression that evaluates to a font decoration. Click the expression (fx) button to edit the
expression. Valid decorations are None, Underline, Overline, and LineThrough.

See Also

Adding a Text Box

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (Format Tab)
Use the Format tab of the Advanced Textbox Properties dialog box to define format options for the text box.

Options

Format code

Type a .NET formatting code or an expression that evaluates to a .NET formatting code. Click the expression (fx) button to edit the
expression. For more information about .NET formatting codes, see this Microsoft Web site.

Line height

Type or select a line height or an expression that evaluates to a line height. Click the expression (fx) button to edit the expression.

Textbox height

Select an option to indicate whether the text box can grow or shrink to accommodate the contents of the text box.

Can increase to accommodate contents

Choose this option to increase the size of the text box as contents grow.

Can decrease to accommodate contents

Choose this option to decrease the size of the text box as contents shrink.

Amount of space to leave on each side of report item

Provides information about the padding to use between the edge of the text box and the text in the text box.

Left

Type or select the size of the left padding or an expression that evaluates to the size of the left padding. Click the expression (fx)
button to edit the expression.

Right

Type or select the size of the right padding or an expression that evaluates to the size of the right padding. Click the expression
(fx) button to edit the expression.

Top

Type or select the size of the top padding or an expression that evaluates to the size of the top padding. Click the expression (fx)
button to edit the expression.

Bottom

Type or select the size of the bottom padding or an expression that evaluates to the size of the bottom padding. Click the
expression (fx) button to edit the expression.

Text direction and writing mode

Provides information about the direction and writing mode for the text box.

Direction

Type or select a direction or an expression that evaluates to a direction. Valid values are LTR and RTL. Click the expression (fx)
button to edit the expression.

Mode

Type or select a writing mode or an expression that evaluates to a writing mode. Valid values are lr-tb and tb-rl. Click the
expression (fx) button to edit the expression.

See Also

Adding a Text Box

http://go.microsoft.com/fwlink/?linkid=9256

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (General Tab)
Use the General tab of the Advanced Textbox Properties dialog box to define general options for the text box.

The following table describes the other tabs in the Advanced Textbox Properties dialog box.

Topic Description
Advanced Textbox Properties (Data Output
Tab)

Describes the Data Output tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Font Tab) Describes the Font tab of the Advanced
Textbox Properties dialog box.

Advanced Textbox Properties (Format Tab) Describes the Format tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Navigation
Tab)

Describes the Navigation tab of the
Advanced Textbox Properties dialog
box.

Advanced Textbox Properties (Visibility
Tab)

Describes the Visibility tab of the
Advanced Textbox Properties dialog
box.

Options

Name

Type a name for the text box. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip . Click the expression (fx) button to edit the expression. The value of
ToolTip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Repeat report item with data region on every page

Choose this option to show the text box with a data region each time the data region appears on a page. This is useful for
headings or descriptive text that should appear with the data region on each page of the report.

Data region

Type or select the data region with which to repeat the text box on every page that the data region appears.

Value

Type the value of the text box. This can be a field expression, other expression, or label. Click the expression (fx) button to edit the
expression.

Hide duplicates

Choose this option to display only the first instance of a value when the text box repeats in a data region. For example, if a dataset
returns the same product name for several rows, only the first instance of the product name appears.

Containing group or dataset

Type a group or dataset, or an expression that evaluates to a group or dataset, in which to hide duplicate names. Click the
expression (fx) button to edit the expression.

See Also

Adding a Text Box

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (Navigation Tab)
Use the Navigation tab of the Advanced Textbox Properties dialog box to define navigation options for the text box.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

Hyperlink action

Select an option to indicate the action to perform when the user clicks on the text box.

None

Choose this option to indicate that the item has no action.

Jump to report

Choose this option to define a link to a drillthrough report that is located on a report server. Type or select the name of the report.
If the report is in the same folder as the current report, use the name of the report only. If the report is in a different folder on the
same report server, use a relative path to the report (for example, ../Folder2/Report1). If the report is on a different report server,
use the full path to the report server and report (for example, http://server1/Folder3/Report2).

Parameters

Choose this option to add a list of parameters to pass to the drillthrough report. The parameter names must match the
parameters defined for the target report.

Jump to bookmark

Choose this option to define a link to a bookmark within the current report. Type or select the bookmark ID for the report to jump
to when the user clicks the link. Click the expression (fx) button to edit the expression. The bookmark ID can be either a static ID or
an expression that evaluates to a bookmark ID. The expression can include a field that contains a bookmark ID.

Jump to URL

Choose this option to define a link to a Web page. Type or select the URL of a Web page or an expression that evaluates to the
URL of a Web page. Click the expression (fx) button to edit the expression. This expression can include a field that contains a URL.

See Also

Adding a Text Box

Reporting Services - Tools and Utilities Reference

Advanced Textbox Properties (Visibility Tab)
Use the Visibility tab of the Advanced Textbox Properties dialog box to define visibility options for the text box.

Options

Initial visibility

Select an option to indicate how the text box is initially displayed on the report.

Visible

Choose this option to show the text box.

Hidden

Choose this option to hide the text box.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the text box.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current text box. The report item
must be a text box in the same grouping or containing grouping as the current text box.

Initial appearance of the toggle image for this report

Select an option to indicate the initial state of the toggle image (+/-) for the report item.

Expanded (-)

Choose this option to display a toggle image of expanded (-).

Collapsed (+)

Choose this option to display a toggle image of collapsed (+).

Expression

Choose this option to vary the toggle image using an expression.

Type an expression that evaluates to a Boolean: True for expanded (-), and False for collapsed (+). Click the expression (fx)
button to edit the expression.

See Also

Adding a Text Box

Reporting Services - Tools and Utilities Reference

Chart Properties (3D Effect Tab)
Use the 3D Effect tab of the Chart Properties dialog box to define the three-dimensional effects for the chart.

Options

Display chart with 3-D visual effect
Choose this option to display the chart with a three-dimensional effect.

Horizontal rotation
Use this slider to rotate the chart horizontally.

Perspective
Use this slider to change the perspective of the chart view. Ignored if Orthographic is selected.

Wall thickness
Use this slider to change the thickness of the edge of the chart.

Vertical rotation
Use this slider to rotate the chart vertically.

Shading
Select an option to indicate the shading to apply to the chart.

None
Choose this option to apply no shading to the chart.

Simple
Choose this option to apply simple shading to the chart.

Realistic
Choose this option to apply realistic shading to the chart.

Orthographic
Choose this option to apply orthographic projection to the chart.

Clustered
Choose this option to cluster series groups. Applies only to bar and column charts.

Cylinder
Choose this option to display bars as cylinders. Applies only to bar and column charts.

Defaults
Choose this option to restore the chart to default 3D settings.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (Data Tab)
Use the Data tab of the Chart Properties dialog box to define the data to use in the chart.

Options

Dataset name

Type or select the name of the dataset to use for the chart.

Values

Lists the value series in the chart.

Up

Choose this option to move the selected value up in the list.

Down

Choose this option to move the selected value down in the list.

Add

Choose this option to add a new value to the list.

Remove

Choose this option to delete the selected value from the list.

Edit

Choose this option to edit the selected value in the list.

Category groups

Lists the category groups in the chart.

Up

Choose this option to move the selected category group up in the list.

Down

Choose this option to move the selected category group down in the list.

Add

Choose this option to add a new category group to the list.

Remove

Choose this option to delete the selected category group from the list.

Edit

Choose this option to edit the selected category group in the list.

Series groups

Lists the series groups in the chart.

Up

Choose this option to move the selected series group up in the list.

Down

Choose this option to move the selected series group down in the list.

Add

Choose this option to add a new series group to the list.

Remove

Choose this option to delete the selected series group from the list.

Edit

Choose this option to edit the selected series group in the list.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (Filters Tab)
Use the Filters tab of the Chart Properties dialog box to define the filter options for the chart.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (General Tab)
Use the General tab of the Chart Properties dialog box to define general options for the chart.

The following table describes the other tabs in the Chart Properties dialog box.

Topic Description
Chart Properties (3D Effect Tab) Describes the 3D Effect tab of the Chart

Properties dialog box.

Chart Properties (Data Tab) Describes the Data tab of the Chart
Properties dialog box.

Chart Properties (Filters Tab) Describes the Filters tab of the Chart
Properties dialog box.

Chart Properties (Legend Tab) Describes the Legend tab of the Chart
Properties dialog box.

Chart Properties (X Axis Tab) Describes the X Axis tab of the Chart
Properties dialog box.

Chart Properties (Y Axis Tab) Describes the Y Axis tab of the Chart
Properties dialog box.

Options

Name

Type a name for the chart. The name must be unique within the report.

Title

Type a title to appear within the chart area. Click the style button to edit the style of the text.

Palette

Select a palette to use for the chart.

Chart type

Select a chart type to use for the chart.

Chart sub-type

Select a chart subtype to use for the chart. Subtypes vary depending on the chart type.

Chart Area Style

Choose this option to edit the style properties for the chart area.

Plot Area Style

Choose this option to edit the style properties for the plot area of the chart.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (Legend Tab)
Use the Legend tab of the Chart Properties dialog box to define the appearance of the legend in the chart.

Options

Show legend

Choose this option to display the legend in the chart.

Layout

Select an option to indicate the layout of the legend.

Column

Choose this option to display the contents of the legend in a single column.

Row

Choose this option to display the contents of the legend in a single row.

Table

Choose this option to display the contents of the legend in multiple columns and rows.

Display legend inside plot area

Choose this option to display the legend inside the chart plot area.

Legend Style

Choose this option to edit the style properties of the legend.

Position

Click a position to place the legend in that position relative to the chart.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (X Axis Tab)
Use the X Axis tab of the Chart Properties dialog box to define the appearance of the x-axis of the chart.

Options

Title

Type a title to appear near the x-axis. Click the style button to edit the style of the text.

Align

Select an option to indicate the position of the title.

Left

Choose this option to align the title with the left side of the x-axis.

Center

Choose this option to align the title with the center of the x-axis.

Right

Choose this option to align the title with the right side of the x-axis.

Scale

Provides information about the scale to use in the chart.

Minimum

Type the minimum value for the x-axis. If omitted, the minimum value is determined by the data returned by the dataset.

Maximum

Type the maximum value for the x-axis. If omitted, the maximum value is determined by the data returned by the dataset.

Cross at

Type the value at which to cross the y-axis. If omitted, the value is determined by the chart type.

Show labels

Choose this option to display labels on the axis. Click the style button to edit the style of the text.

Format code

Type a .NET formatting code or an expression that evaluates to a .NET formatting code. For information about .NET formatting
codes, see this Microsoft Web site.

Numeric or time-scale values

Choose this option to indicate that the values on the x-axis are scalar values. If selected, the chart displays the values on the axis
on a scale, that is, the chart fills in the numbers or dates that are "missing" from the dataset.

Gridlines

Provides information about the gridlines to use in the chart.

Show major

Choose this option to display major gridlines in the chart. Click the style button to edit the style of the lines.

Interval

Type an interval at which the major gridlines appear. If omitted, the gridlines are divided evenly on the chart.

Tick mark

Select the position of the major tick marks on the x-axis.

Show minor

Choose this option to display minor gridlines in the chart. Click the style button to edit the style of the lines.

http://go.microsoft.com/fwlink/?linkid=9256

Interval

Type an interval at which the minor gridlines appear. If omitted, the gridlines are divided evenly on the chart.

Tick mark

Select the position of the minor tick marks on the x-axis.

Side margins

Choose this option to use padding between the chart elements and the sides of the chart.

Interlaced strips

Choose this option to display alternating light and dark areas between gridlines.

Reversed

Choose this option to reverse the direction of the chart. For example, by default, a column chart displays the y-axis on the left side
of the chart and categories fromleft to right. When this option is selected, the chart displays y-axis on the right side of the chart
and categories from right to left.

Logarithmic scale

Choose this option to indicate that the x-axis scale is logarithmic.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Chart Properties (Y Axis Tab)
Use the Y Axis tab of the Chart Properties dialog box to define the appearance of the y-axis of the chart.

Options

Title

Type a title to appear near the y-axis. Click the style button to edit the style of the text.

Align

Select an option to indicate the position of the title.

Top

Choose this option to align the title with the top of the y-axis.

Center

Choose this option to align the title with the center of the y-axis.

Bottom

Choose this option to align the title with the bottom of the y-axis.

Scale

Provides information about the scale to use in the chart.

Minimum

Type the minimum value for the y-axis. If omitted, the minimum value is determined by the data returned by the dataset.

Maximum

Type the maximum value for the y-axis. If omitted, the maximum value is determined by the data returned by the dataset.

Cross at

Type the value at which to cross the x-axis. If omitted, the value is determined by the chart type.

Show labels

Choose this option to display labels on the y-axis. Click the style button to edit the style of the text.

Format code

Type a .NET formatting code or an expression that evaluates to a .NET formatting code. For information about .NET formatting
codes, see this Microsoft Web site.

Gridlines

Provides information about the gridlines to use in the chart.

Show major

Choose this option to display major gridlines in the chart. Click the style button to edit the style of the lines.

Interval

Type an interval at which the major gridlines appear. If omitted, the gridlines are divided evenly on the chart.

Tick mark

Select the position of the major tick marks on the axis.

Show minor

Choose this option to display minor gridlines in the chart. Click the style button to edit the style of the lines.

Interval

Type an interval at which the minor gridlines appear. If omitted, the gridlines are divided evenly on the chart.

http://go.microsoft.com/fwlink/?linkid=9256

Tick mark

Select the position of the minor tick marks on the axis.

Side margins

Choose this option to use padding between the chart elements and the sides of the chart.

Interlaced strips

Choose this option to display alternating light and dark areas between gridlines.

Reversed

Choose this option to reverse the direction of the chart. For example, a column chart that normally displays labels at the bottom
and columns reaching upward displays labels at the top and columns reaching downward when this option is selected.

Logarithmic scale

Choose this option to indicate that the y-axis scale is logarithmic.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Data Source (Credentials Tab)
Use the Credentials tab of the Data Source dialog box to display and modify credentials for a data source in the report.

Options

Use Windows Authentication (Integrated Security)

Choose this option to use Windows Authentication.

Use a specific user name and password

Choose this option to provide a specific user name and password.

User name

Type a user name to log in to the data source.

Password

Type a password to log in to the data source

Prompt for credentials

Choose this option to prompt for credentials when the report is run.

Prompt string

Type a prompt to indicate to the user to provide login credentials for the data source.

No credentials

Choose this option provide no credentials for the data source.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Data Source (General Tab)
Use the General tab of the Data Source dialog box to display and modify connection information for a data source in the report.

The following table describes the other tab in the Data Source dialog box.

Topic Description
Data Source (Credentials Tab) Describes the Credentials tab of the Data

Source dialog box.

Options

Name

Type the name of the data source. The data source name must be unique within the report.

Type

Select a data processing extension. The list displays all registered extensions.

Connection string

Type a connection string for the data source. Click Edit to build the connection string using the Data Link dialog box.

Use shared data source reference

Select Use shared data source reference to link to a shared data source. If Use shared data source reference is selected,
Type and Connection string are disabled.

Reference

Select a shared data source. To edit the selected data source, click Edit.

Use single transaction

Select Use single transaction to indicate that datasets that use this data source are executed in a single transaction.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Data Source Credentials
Use the Data Source Credentials dialog box to display and modify credentials for a data source in the report.

Options

Use Windows Authentication (Integrated Security)

Choose this option to use Windows Authentication.

Use a specific user name and password

Choose this option to provide a specific user name and password.

User name

Type a user name to log in to the data source.

Password

Type a password to log in to the data source

Prompt for credentials

Choose this option to prompt for credentials when the report is run.

Prompt string

Type a prompt to indicate to the user to provide login credentials for the data source.

No credentials

Choose this option provide no credentials for the data source.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Data View
Use the Data view to define query information for the report. The Data view can display one of two query designers: graphical
query designer and generic query designer. The graphical query designer consists of a toolbar and four panes: the diagram pane,
the grid pane, the SQL pane, and the result pane. You can use the graphical query designer to build queries visually.

The generic query designer consists of a toolbar and two panes: the query pane and the result pane. Use the generic query
designer for data sources not supported by the graphical query designer, for queries that you do not want autocorrected by the
graphical query designer, and for expressions.

Graphical Query Designer

Toolbar

Use the toolbar to manage datasets, select panes to display, and control various query functions.

Options

Dataset

Select a dataset to display in the Data view. To create a new dataset, select <New Dataset>.

Edit Selected Dataset

Choose this option to change the options for the currently selected dataset, such as the data source, parameters, and collation
settings.

Delete Selected Dataset

Choose this option to delete the currently selected dataset.

Note Deleting a dataset does not delete fields in the report that use the dataset.

Refresh Fields

Choose this option to refresh the fields list from the dataset.

Generic Query Designer

Choose this option to switch to the generic query designer.

Show/Hide Diagram Pane

Choose this option to show or hide the diagram pane, which is the top pane in the Data view. For more information, see "Diagram
Pane" later in this topic.

Show/Hide Grid Pane

Choose this option to show or hide the grid pane, which is the second pane in the Data view. For more information, see "Grid
Pane" later in this topic.

Show/Hide SQL Pane

Choose this option to show or hide the SQL pane, which is the third pane in the Data view. For more information, see "SQL Pane"
later in this topic.

Show/Hide Result Pane

Choose this option to show or hide the result pane, which is the bottom pane in the Data view. For more information, see "Result
Pane" later in this topic.

Run

Choose this option to run the query. Results are displayed in the result pane.

Verify SQL

Choose this option to verify the syntax of the SQL query.

Sort Ascending

Select a column in the diagram pane, and then choose this option to sort query results.

Sort Descending

Select a column in the diagram pane, and then choose this option to sort query results.

Remove Filter

Select a filtered column in the diagram pane, and then choose this option to remove sort criteria for the column.

Group By

Choose this option to add a GROUP BY clause to the query.

Add Table

Choose this option to add a new table to the query.

Diagram Pane

Use the diagram pane to view the tables that are used by the query, manage joins between tables, and select fields. When you add
tables to the query, Query Designer creates joins between tables based on the keys in the table. To add a join, drag a field from
one table onto a field in another table. To manage a join, right-click the join. To add fields to the query, select the check box next to
the field you want to add.

Grid Pane

Use the grid pane to manage individual fields within the query. The options available in the grid pane are Alias, Table, Output, Sort
Type, Sort Order, Criteria, and Group By.

SQL Pane

Use the SQL pane to view and modify the SQL syntax directly. Editing SQL code in the SQL pane affects both the diagram and grid
panes.

Result Pane

Use the result pane to view the results of the query. To run a query, either right-click anywhere in the designer and then click Run,
or click Run in the toolbar.

Generic Query Designer

Toolbar

Use the toolbar to manage datasets and control various query functions.

Options

Dataset

Select a dataset to display in the Data view. To create a new dataset, select <New Dataset>.

Edit Selected Dataset

Choose this option to change the options for the currently selected dataset, such as the data source, parameters, and collation
settings.

Delete Selected Dataset

Choose this option to delete the currently selected dataset.

Note Deleting a dataset does not delete fields in the report that use the dataset.

Refresh Fields

Choose this option to refresh the fields list from the dataset.

Generic Query Designer

Choose this option to switch to the graphical query designer.

Run

Choose this option to run the query and display the results in the results pane.

Command type

Select a command type for the query: Text, StoredProcedure, or TableDirect. Most queries use the Text command type.

Query Pane

Use the query pane to view and modify the query syntax.

Result Pane

Use the result pane to view the results of the query. To run a query, click Run in the toolbar.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Dataset (Data Options Tab)
Use the Data Options tab of the Dataset dialog box to define data options for the query.

Options

Case sensitivity

Select a value that determines case sensitivity. This option indicates whether the data is case sensitive. You can set Case
Sensitivity to True, False, or Auto. The default value, Auto, indicates that the report server should attempt to derive the value
from the data provider when the report runs. If the value cannot be derived, the report runs as though the value were False.

Collation

Select a locale that determines the collation sequence to be used for sorting data. Default indicates that the report server should
attempt to derive the value from the data provider when the report runs. If the value cannot be derived, the default value is
derived from the locale setting of the server.

Kanatype sensitivity

Select a value that determines kanatype sensitivity. This option indicates whether the data is kanatype sensitive; it can be set to
True, False, or Auto. The default value, Auto, indicates that the report server should attempt to derive the value from the data
provider when the report runs. If the value cannot be derived, the report runs as though the value were False.

Width sensitivity

Select a value that determines width sensitivity. This option indicates whether the data is width sensitive and can be set to True,
False, or Auto. The default value, Auto, indicates that the report server should attempt to derive the value from the data provider
when the report runs. If the value cannot be derived, the report runs as though the value were False.

Accent sensitivity

Select a value that determines accent sensitivity. Accent Sensitivity indicates whether the data is accent sensitive and can be set
to True, False, or Auto. The default value, Auto, indicates that the report server should attempt to derive the value from the data
provider when the report is run. If the value cannot be derived, the report runs as though the value were False.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Dataset (Fields Tab)
Use the Fields tab of the Dataset dialog box to display and modify the fields for the dataset. The fields list is automatically
populated, but you use this tab to add, edit, and delete fields.

Options

Field Name

Type a name for the field. The field must be unique within the dataset.

Type

Select the field type: Database Field or Calculated Field.

Value
Type a value for the field. If Type is Database Field, Value must be the name of a field that is returned by the query. If Type is
Calculated Field, Value can be an expression to return calculated data.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Dataset (Filters Tab)
Use the Filters tab of the Dataset dialog box to define filters for the dataset.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Dataset (Parameters Tab)
Use the Parameters tab of the Dataset dialog box to define values for query parameters. The parameters list is automatically
populated, but you use this tab to add, edit, and delete query parameters.

Options

Name

Type a parameter from the query.

Value

Type a value to be passed to the query parameter. This can be a static value or an expression that refers to an object within the
report, but it cannot refer to any report items or fields. By default, Value contains an expression that points to a report parameter
created automatically by Report Designer when the query is updated.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Dataset (Query Tab)
Use the Query tab of the Dataset dialog box to display and modify the query within the dataset.

The following table describes the other tabs in the Dataset dialog box.

Topic Description
Dataset (Data Options Tab) Describes the Data Options tab of the

Dataset dialog box.

Dataset (Fields Tab) Describes the Fields tab of the Dataset
dialog box.

Dataset (Filters Tab) Describes the Filters tab of the Dataset
dialog box.

Dataset (Parameters Tab) Describes the Parameters tab of the
Dataset dialog box.

Options

Name

Type a name for the dataset. The name cannot be the same as a name for any data region or group in the report.

Data source

Select the data source on which to base the dataset. To create a new data source, select <New Data Source>. To edit the selected
data source, click the data source builder (...) button.

Command type

Select the type of command or query to use for the dataset. Select Text to run a query to retrieve data from the database, select
StoredProcedure to execute a stored procedure by name, or select TableDirect to query a table by name. Text is selected by
default and is used for most queries.

Query string

Type a query if Command type is set to Text. If Command type is set to StoredProcedure or TableDirect, type the name of a
stored procedure or table. A stored procedure must return a single result set.

Note If you used a query designer to build a query, the text of the query appears under Query string.

Timeout

Type the number of seconds until the query times out. The default is 30 seconds. The value for Timeout must be empty or
greater than zero. If it is empty, the query does not time out.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Define Query Parameters
Use the Define Query Parameters dialog box to provide parameter values when running a query in a dataset. The values
entered in this dialog box are used only to run the query in a query designer; they are not saved in the report.

Options

Parameter Name

Displays the name of the query parameter.

Parameter Value

Type a value to use for the query parameter.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Edit Chart Value (Action Tab)
Use the Action tab of the Edit Chart Value dialog box to define an action to perform with the user clicks on a chart value.

Options

None

Choose this option to indicate that the item has no action.

Jump to report

Choose this option to define a link to a drillthrough report that is located on a report server. Type or select the name of the report.
If the report is in the same folder as the current report, use the name of the report only. If the report is in a different folder on the
same report server, use a relative path to the report (for example, ../Folder2/Report1). If the report is on a different report server,
use the full path to the report server and report (for example, http://server1/Folder3/Report2).

Parameters

Choose this option to add a list of parameters to pass to the drillthrough report. The parameter names must match the
parameters defined for the target report.

Jump to bookmark

Choose this option to define a link to a bookmark within the current report. Type or select the bookmark ID for the report to jump
to when the user clicks the link. Click the expression (fx) button to edit the expression. The bookmark ID can be either a static ID or
an expression that evaluates to a bookmark ID. The expression can include a field that contains a bookmark ID.

Jump to URL

Choose this option to define a link to a Web page. Type or select the URL of a Web page or an expression that evaluates to the
URL of a Web page. Click the expression (fx) button to edit the expression. This expression can include a field that contains a URL.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Edit Chart Value (Appearance Tab)
Use the Appearance tab of the Edit Chart Value dialog box to define the appearance of the values in the chart.

Options

Show markers

Choose this option to display markers for the values in the chart.

Marker type

Select an option to indicate the marker to display for the value.

Auto

Choose this option to indicate that the marker is automatically selected.

Square

Choose this option to use a square as a marker for the value.

Diamond

Choose this option to use a diamond as a marker for the value.

Circle

Choose this option to use a circle as a marker for the value.

Triangle

Choose this option to use a triangle as a marker for the value.

Cross

Choose this option to use a cross as a marker for the value.

Marker size

Type or select a size for the marker.

Plot data as line

Choose this option to plot the data as a line. Applies only to values in a column chart.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Edit Chart Value (Data Output Tab)
Use the Data Output tab of the Edit Chart Value dialog box to define XML data output options for the values in the chart.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Yes

Choose this option to export the values.

No

Choose this option to not export the values.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Edit Chart Value (Point Labels Tab)
Use the Point Labels tab of the Edit Chart Value dialog box to define the labels for the values in the chart.

Options

Show point labels

Choose this option to display point labels for the values in the chart.

Data label

Type or select a value to use for the point label. Click the expression (fx) button to edit the expression.

Format code

Type a .NET formatting code or an expression that evaluates to a .NET formatting code. For more information about .NET
formatting codes, see this Microsoft Web site.

Angle

Use the slider to change the angle of the text in the point label.

Position

Click a position to place the point label in that position relative to the chart element.

Auto

Choose this value to place the point label in the default position for the chart type.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://go.microsoft.com/fwlink/?linkid=9256
http://www.dundas.com/

Reporting Services - Tools and Utilities Reference

Edit Chart Value (Values Tab)
Use the Values tab of the Edit Chart Value dialog box to define the values for the chart. The options on this tab vary depending
on the type of chart.

The following table describes the other tabs in the Edit Chart Value dialog box.

Topic Description
Edit Chart Value (Action Tab) Describes the Action tab of the Edit

Chart Value dialog box.

Edit Chart Value (Appearance Tab) Describes the Appearance tab of the Edit
Chart Value dialog box.

Edit Chart Value (Data Output Tab) Describes the Data Output tab of the
Edit Chart Value dialog box.

Edit Chart Value (Point Labels Tab) Describes the Point Labels tab of the Edit
Chart Value dialog box.

Options

Series label

Type a series label or an expression that evaluates to a series label. Click the expression (fx) button to edit the expression.

Value

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to column, bar, line, pie, area, and doughnut charts.

X

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to XY scatter and bubble charts.

Y

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to XY scatter and bubble charts.

Size

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to bubble charts.

High

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to stock charts.

Low

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to stock charts.

Open

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to stock charts.

Close

Type or select a value or an expression that evaluates to a value. Click the expression (fx) button to edit the expression. Applies
only to stock charts.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information about
charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

http://www.dundas.com/

Adding a Chart

Reporting Services - Tools and Utilities Reference

Edit Classes
Use the Edit Classes dialog box to add classes from a custom assembly to a report. Add classes only for instance-based
members. Do not specify static members in the Classes list.

Options

Class name

Type the name of the class.

Instance name

Type a name for the instance of the class.

See Also

Writing Custom Code

Reporting Services - Tools and Utilities Reference

Edit Expression
Use the Edit Expression dialog box to write an expression.

Options

Fields

Displays a list of fields that can be used in the expression. The list varies depending on the property. Double-click a field to copy
the field to the Expression box. Alternatively, you can drag a field to the Expression box place the field there.

Expression

Type an expression. An expression can include a field from the Fields box.

See Also

Using Expressions

Reporting Services - Tools and Utilities Reference

Edit Field/Add New Field
Use the Edit Field dialog box to define a field within a dataset.

Options

Name

Type the name of the field. Field names must be unique within a dataset.

Database field

Select to indicate that the field is linked to a field returned by the query in the dataset. In the text box below Database field, type
the name of the field that is returned by the query.

Calculated field

Select to indicate that the field is calculated based on an expression. In the text box below Calculated field, type an expression
that returns data for the field. Click the expression (fx) button to edit the expression.

See Also

Working with the Fields List

Reporting Services - Tools and Utilities Reference

Edit References
Use the Edit References dialog box to add references to a custom assembly.

Options

Assembly name

Click the add reference (...) button to retrieve the assembly name from an assembly. Click the delete (X) button to remove the
assembly reference.

See Also

Writing Custom Code

Reporting Services - Tools and Utilities Reference

Embedded Images
Use the Embedded Images dialog box to embed images in a report. These images can then be used in an image report item or
as a background image.

Options

Image

Displays a graphical representation of the image. To add a new image, click the cell in the Image column at the end of the list, and
then click the image builder (...) button.

Name

Displays the name that is used to reference the image in the report. This name is derived from the file name when the image is
imported. To change the name, click the name, and then type a new name.

MIME Type

Displays the Multipurpose Internet Mail Extensions (MIME) type of the image. This is detected when the image is imported. To
change the MIME type, click the MIME type, and then select a new MIME type.

New Image

Choose this option to add a new image to the report.

Delete

Choose this option to remove the selected image from the report.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Enter Data Source Credentials
Use the Enter Data Source Credentials dialog box to provide credentials to retrieve data from the data source.

Options

User name

Type the user name to log in to the data source.

Password

Type the password to log in to the data source.

See Also

Connecting to a Data Source

Reporting Services - Tools and Utilities Reference

Fields
Use the Fields window to view a list of fields that are available to the report for each dataset .

Options

Dataset

Select a dataset for which to display a list of fields.

Field list

Displays a list of fields available to the report for the selected dataset. Right-click inside the list to add, edit, or delete a field.

See Also

Working with the Fields List

Reporting Services - Tools and Utilities Reference

Filters
Use the Filters dialog box to define filters for the data region.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Adding Filters to a Report

Reporting Services - Tools and Utilities Reference

Grouping and Sorting Properties (Data Output Tab)
Use the Data Output tab of the Grouping and Sorting Properties dialog box to define XML data output options for the group.

Options

Element name

Type the name to use for the data element for instances of the group when they are exported to XML.

Collection

Type the name to use for the data element for the collection of all instances of the group.

Output

Indicates whether the item is included in the XML output.

Yes

Choose this option to export the values.

No

Choose this option to not export the values.

See Also

Grouping Data in a Report

Sorting Data in a Report

Reporting Services - Tools and Utilities Reference

Grouping and Sorting Properties (Filters Tab)
Use the Filters tab of the Grouping and Sorting Properties dialog box to define filter options for the group.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Grouping Data in a Report

Sorting Data in a Report

Reporting Services - Tools and Utilities Reference

Grouping and Sorting Properties (General Tab)
Use the General tab of the Grouping and Sorting Properties dialog box to define general options for the group. The options
displayed on this dialog box vary depending by type of data region and group.

The following table describes the other tabs in the Grouping and Sorting Properties dialog box.

Topic Description
Grouping and Sorting Properties (Data
Output Tab)

Describes the Data Output tab of the
Grouping and Sorting Properties
dialog box.

Grouping and Sorting Properties (Filters
Tab)

Describes the Filters tab of the Grouping
and Sorting Properties dialog box.

Grouping and Sorting Properties (Sorting
Tab)

Describes the Sorting tab of the
Grouping and Sorting Properties dialog
box.

Grouping and Sorting Properties (Visibility
Tab)

Describes the Visibility tab of the
Grouping and Sorting Properties dialog
box.

Options

Name

Type a name for the group. The name must be unique within the report.

Group on

Type the expressions on which to group the data.

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map. Applies only to table, matrix, and list.

Label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears as a label on the chart. Applies only to chart.

Parent group

Type or select a parent group or an expression that evaluates to a parent group. Click the expression (fx) button to edit the
expression. Parent groups are used for recursive hierarchies. For more information, see Grouping Data in a Report.

Page break at start

Choose this option to place a page break at the beginning of each instance of this group.

Page break at end

Choose this option to place a page break at the end of each instance of this group.

Include group header

Choose this option to include a group header with the group. Applies only to tables.

Repeat group header

Choose this option to repeat the group header on each page on which the table appears. Applies only to tables.

Include group footer

Choose this option to include a group footer with the group. Applies only to tables.

Repeat group footer

Choose this option to repeat the group footer on each page on which the table appears. Applies only to tables.

See Also

Grouping Data in a Report

Sorting Data in a Report

Reporting Services - Tools and Utilities Reference

Grouping and Sorting Properties (Sorting Tab)
Use the Sorting tab of the Grouping and Sorting Properties dialog box to define sorting options for the group.

Options

Expression

Type or select the expression to sort on.

Direction

Select the direction in which to sort.

Up

Choose this option to move the selected sort expression up in the list.

Down

Choose this option to move the selected sort expression down in the list.

Delete

Choose this option to delete the selected sort expression.

See Also

Grouping Data in a Report

Sorting Data in a Report

Reporting Services - Tools and Utilities Reference

Grouping and Sorting Properties (Visibility Tab)
Use the Visibility tab of the Grouping and Sorting Properties dialog box to define visibility options for the group.

Options

Initial visibility

Select an option to indicate how the group is initially displayed on the report.

Visible

Choose this option to show the group.

Hidden

Choose this option to hide the group.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item, and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the group.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current group. The report item
must be a text box in the same grouping or containing grouping as the group.

See Also

Grouping Data in a Report

Sorting Data in a Report

Reporting Services - Tools and Utilities Reference

Image Properties (General Tab)
Use the General tab of the Image Properties dialog box to define general options for the image.

The following table describes the other tabs in the Image Properties dialog box.

Topic Description
Image Properties (Navigation Tab) Describes the Navigation tab of the

Image Properties dialog box.

Image Properties (Visibility Tab) Describes the Visibility tab of the Image
Properties dialog box.

Options

Name

Type a name for the image. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip. Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Repeat report item with data region on every page

Choose this option to show the image with a data region each time the data region appears on a page. This is useful for headings
that should appear with the data region on each page of the report.

Data region

Type or select the data region with which to repeat the image on every page that the data region appears.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Image Properties (Navigation Tab)
Use the Navigation tab of the Image Properties dialog box to define navigation options for the image.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

Hyperlink action

Select an option to indicate the action to perform when the user clicks the image.

None

Choose this option to indicate that the item has no action.

Jump to report

Choose this option to define a link to a drillthrough report that is located on a report server. Type or select the name of the report.
If the report is in the same folder as the current report, use the name of the report only. If the report is in a different folder on the
same report server, use a relative path to the report (for example, ../Folder2/Report1). If the report is on a different report server,
use the full path to the report server and report (for example, http://server1/Folder3/Report2).

Parameters

Choose this option to add a list of parameters to pass to the drillthrough report. The parameter names must match the
parameters defined for the target report.

Jump to bookmark

Choose this option to define a link to a bookmark within the current report. Type or select the bookmark ID for the report to jump
to when the user clicks the link. Click the expression (fx) button to edit the expression. The bookmark ID can be either a static ID or
an expression that evaluates to a bookmark ID. The expression can include a field that contains a bookmark ID.

Jump to URL

Choose this option to define a link to a Web page. Type or select the URL of a Web page or an expression that evaluates to the
URL of a Web page. Click the expression (fx) button to edit the expression. This expression can include a field that contains a URL.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Image Properties (Visibility Tab)
Use the Visibility tab of the Image Properties dialog box to define visibility options for the image.

Options

Initial visibility

Select an option to indicate how the image is initially displayed on the report.

Visible

Choose this option to show the image.

Hidden

Choose this option to hide the image.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the image.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current image. The report item
must be a text box in the same grouping or containing grouping as the current image.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Layout View
Use Layout view to arrange report items in the report. Layout view is sometimes called the design grid or design surface.

Report Design Grid

The design grid consists of three sections: body, page header, and page footer. Use the Toolbox to select items to place in any of
these three sections. The Fields list can also be used to drag fields into data regions such as table, matrix, or list. Each item on the
report design surface contains properties that can be managed using a properties dialog box or the Properties window.

Page Header and Page Footer

To view the page header and page footer, on the Report menu, click Page Header or Page Footer. Data regions cannot be used
in the page header or footer.

Note If the Report menu is not available, click within the report design area.

Toolbox, Fields List, and Properties Window

The Toolbox, Fields list, and Properties window provide a means for adding and manipulating items in the report. To view these, in
the View menu, click Toolbox, Fields, or Properties Window. To use the properties dialog boxes, right-click the report item, and
then click Properties.

See Also

Working with Data Regions

Adding Fields to a Report

Defining Report Appearance

Reporting Services - Tools and Utilities Reference

Line Properties (General Tab)
Use the General tab of the Line Properties dialog box to define general options for the line.

The following table describes the other tabs in the Line Properties dialog box.

Topic Description
Line Properties (Navigation) Describes the Navigation tab of the Line

Properties dialog box.

Line Properties (Visibility Tab) Describes the Visibility tab of the Line
Properties dialog box.

Options

Name

Type a name for the line. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip. Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Repeat report item with data region on every page

Choose this option to show the line with a data region each time the data region appears on a page. This is useful for headings
that should appear with the data region on each page of the report.

Data region

Type or select the data region with which to repeat the line on every page that the data region appears.

See Also

Adding an Line

Reporting Services - Tools and Utilities Reference

Line Properties (Navigation Tab)
Use the Navigation tab of the Line Properties dialog box to define navigation options for the line.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a Line

Reporting Services - Tools and Utilities Reference

Line Properties (Visibility Tab)
Use the Visibility tab of the Line Properties dialog box to define visibility options for the line.

Options

Initial visibility

Select an option to indicate how the line is initially displayed on the report.

Visible

Choose this option to show the line.

Hidden

Choose this option to hide the line.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the line.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current line. The report item must
be a text box in the same grouping or containing grouping as the current line.

See Also

Adding a Line

Reporting Services - Tools and Utilities Reference

List Properties (Data Output Tab)
Use the Data Output tab of the List Properties dialog box to define XML data output options for the list.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents of the list.

Yes

Choose this option to export the contents of the list.

No

Choose this option to not export the contents of the list.

Instance element name

Type the name to use for the data element for each instance of the list. Ignored if there is a grouping for the list.

Instance element output

Indicates whether instances of the list are included in XML output. Ignored if there is a grouping for the list.

Yes

Choose this option to export instances of the list.

No

Choose this option to not export instances of the list.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

List Properties (Filters Tab)
Use the Filters tab of the List Properties dialog box to define filter options for the list.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

List Properties (General Tab)
Use the General tab of the List Properties dialog box to define general options for the list.

The following table describes the other tabs in the List Properties dialog box.

Topic Description
List Properties (Data Output Tab) Describes the Data Output tab of the List

Properties dialog box.

List Properties (Filters Tab) Describes the Filters tab of the List
Properties dialog box.

List Properties (Navigation Tab) Describes the Navigation tab of the List
Properties dialog box.

List Properties (Sorting Tab) Describes the Sorting tab of the List
Properties dialog box.

List Properties (Visibility Tab) Describes the Visibility tab of the List
Properties dialog box.

Options

Name

Type a name for the list. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip . Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Dataset name

Type or select the dataset to use for the list.

Page breaks

Select options to indicate how page breaks are applied.

Insert a page break before this list

Choose this option to place a page break at the beginning of each instance of the list.

Insert a page break after this list

Choose this option to place a page break at the end of each instance of the list.

Fit this list on one page if possible

Choose this option to indicate that the entire list is to be kept together on one page, if possible.

Edit details group

Choose this option to edit the grouping information for the list details.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

List Properties (Navigation Tab)
Use the Navigation tab of the List Properties dialog box to define navigation options for the list.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

List Properties (Sorting Tab)
Use the Sorting tab of the List Properties dialog box to define sorting options for the list.

Options

Expression

Type or select the expression to sort on.

Direction

Select the direction in which to sort.

Up

Choose this option to move the selected sort expression up in the list.

Down

Choose this option to move the selected sort expression down in the list.

Delete

Choose this option to delete the selected sort expression.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

List Properties (Visibility Tab)
Use the Visibility tab of the List Properties dialog box to define visibility options for the list.

Options

Initial visibility

Select an option to indicate how the list is initially displayed on the report.

Visible

Choose this option to show the list.

Hidden

Choose this option to hide the list.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the list.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current list. The report item must
be a text box in the same grouping or containing grouping as the current list.

See Also

Adding a List

Reporting Services - Tools and Utilities Reference

Matrix Properties (Data Output Tab)
Use the Data Output tab of the Matrix Properties dialog box to define XML data output options for the matrix.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents of the matrix.

Yes

Choose this option to export the contents of the matrix.

No

Choose this option to not export the contents of the matrix.

Cell element name

Type the name to use for the data element for the cell.

Cell element output

Indicates whether contents of the cell are included in XML output.

Yes

Choose this option to export the contents of the cell.

No

Choose this option to not export the contents of the cell.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Matrix Properties (Filters Tab)
Use the Filters tab of the Matrix Properties dialog box to define filter options for the matrix.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Matrix Properties (General Tab)
Use the General tab of the Matrix Properties dialog box to define general options for the list.

The following table describes the other tabs in the Matrix Properties dialog box.

Topic Description
Matrix Properties (Data Output Tab) Describes the Data Output tab of the

Matrix Properties dialog box.

Matrix Properties (Filters Tab) Describes the Filters tab of the Matrix
Properties dialog box.

Matrix Properties (Navigation Tab) Describes the Navigation tab of the
Matrix Properties dialog box.

Matrix Properties (Groups Tab) Describes the Groups tab of the Matrix
Properties dialog box.

Matrix Properties (Visibility Tab) Describes the Visibility tab of the Matrix
Properties dialog box.

Options

Name

Type a name for the matrix. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip . Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Dataset name

Type or select the dataset to use for the matrix.

Page breaks

Select options to indicate how page breaks are applied.

Insert a page break before the matrix

Choose this option to place a page break at the beginning of each instance of the matrix.

Insert a page break after the matrix

Choose this option to place a page break at the end of each instance of the matrix.

Fit this matrix on one page if possible

Choose this option to indicate that the entire matrix is to be kept together on one page, if possible.

Matrix columns expand

Select an option to indicate the direction in which the matrix expands.

Left to right

Choose this option to expand the matrix from left to right.

Right to left

Choose this option to expand the matrix from right to left.

Groups before row headers

Select the number of groups (sets of columns) to display before displaying the row header columns.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Matrix Properties (Groups Tab)
Use the Groups tab of the Matrix Properties dialog box to define groups in the matrix.

Options

Rows

Displays the row groups in the matrix.

Up

Choose this option to move the selected group up in the list.

Down

Choose this option to move the selected group down in the list.

Add

Choose this option to add a new row group.

Delete

Choose this option to delete the selected group from the list.

Edit

Choose this option to edit the selected group.

Columns

Displays the column groups in the matrix.

Up

Choose this option to move the selected group up in the list.

Down

Choose this option to move the selected group down in the list.

Add

Choose this option to add a new column group.

Delete

Choose this option to delete the selected group from the list.

Edit

Choose this option to edit the selected group.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Matrix Properties (Navigation Tab)
Use the Navigation tab of the Matrix Properties dialog box to define navigation options for the matrix.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Matrix Properties (Visibility Tab)
Use the Visibility tab of the Matrix Properties dialog box to define visibility options for the matrix.

Options

Initial visibility

Select an option to indicate how the matrix is initially displayed on the report.

Visible

Choose this option to show the matrix.

Hidden

Choose this option to hide the matrix.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item, and False to show the item. Click the expression (fx)
button to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the matrix.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current matrix. The report item
must be a text box in the same grouping or containing grouping as the current matrix.

See Also

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Parameters
Use the Parameters dialog box to define parameters to pass to the subreport or drillthrough link.

Options

Parameter Name

Type the name of the parameter in the target report.

Parameter Value

Type or select the value for the parameter, or type an expression that evaluates to a value.

See Also

Using Parameters in a Report

Reporting Services - Tools and Utilities Reference

Query Builder
Use the Query Builder dialog box to define query information for the report.

Diagram Pane

Use the diagram pane to view the tables that are used by the query, manage joins between tables, and select fields. When you add
tables to the query, Query Designer creates joins between tables based on the keys in the table. To add a join, drag a field from
one table onto a field in another table. To manage a join, right-click the join. To add fields to the query, select the check box next to
the field you want to add.

Grid Pane

Use the grid pane to manage individual fields within the query. The options available in the grid pane are Alias, Table, Output, Sort
Type, Sort Order, Criteria, and Group By.

SQL Pane

Use the SQL pane to view and modify the SQL syntax directly. Editing SQL code in the SQL pane affects both the diagram and grid
panes.

Result Pane

Use the result pane to view the results of the query. To run a query, either right-click anywhere in the designer and then click Run,
or click Run in the toolbar.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Preview View
Use Preview view to display the final report. When a report is previewed, Report Designer runs the report locally and displays it in
the Preview view.

Toolbar

Use the toolbar to manage preview functions.

Options

Document Map

Choose this option to show or hide the document map. Valid only for reports with document maps.

Show/Hide Parameters

Choose this option to show or hide the parameters boxes. Valid only for reports with parameters.

First Page

Choose this option to go to the first page of the report.

Previous Page

Choose this option to go to the previous page of the report.

Current Page

Displays the current page of the report.

Total number of pages

Displays the total number of pages in the report.

Next Page

Choose this option to go to the next page of the report.

Last Page

Choose this option to go to the last page of the report.

Back

Choose this option to go to the page that was viewed previously.

Stop rendering the report

Choose this option to stop the rendering process.

Refresh the Report

Choose this option to render the report again.

Print

Choose this option to print the report.

Print Preview

Choose this option to view the report as it will appear on the printed page.

Export the report to other formats

Choose this option to render the report to a different format.

Zoom Factor

Select a zoom factor to zoom in or out of the report.

See Also

Testing Reports

Viewing and Running Reports

Reporting Services - Tools and Utilities Reference

Project Property Pages (General Tab)
Use the property pages on the General tab to configure deployment properties for a report project.

Options

Configuration

Select the configuration to edit. Initially, two configurations are available: Debug, DebugLocal, and Production. To create
additional configurations, click Configuration Manager.

Configuration Manager

Choose this option to manage configurations for the entire solution or to add additional configurations. For more information,
see the Visual Studio documentation.

StartItem

Select the report that is displayed in the Web browser after the project is published to the report server or in the preview window
when the project is run locally. A start item is required for configurations that build but do not deploy the project. It is optional for
configurations that deploy the project.

OverwriteDataSources

Select True to overwrite the data source on the server with the data source in the project when the reports are published. Select
False to leave the existing data source on the server.

TargetFolder

Type the name of the destination folder for publishing the reports that are contained within the report project. The default value
for the folder is the name of the project. If the folder does not exist on the report server, Report Designer creates the folder when
the reports are published. If a folder is located within another folder, include the path to the folder, starting at the root, for
example, Folder1/Folder2/Folder3. A target folder is required for configurations that deploy the project.

TargetServerURL

Type the URL of the virtual directory of the report server, for example, http://server/reportserver. This is the virtual directory of the
report server, not Report Manager. By default, the report server is installed with a virtual directory named reportserver. A target
server URL is required for configurations that deploy the project.

See Also

Debugging and Publishing Reports

Reporting Services - Tools and Utilities Reference

Rectangle Properties (Data Output Tab)
Use the Data Output tab of the Rectangle Properties dialog box to define XML data output options for the rectangle.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents only of the rectangle.

Yes

Choose this option to export the contents of the rectangle.

No

Choose this option to not export the contents of the rectangle.

Contents only

Choose this option to export the contents only of the rectangle.

See Also

Adding a Rectangle

Reporting Services - Tools and Utilities Reference

Rectangle Properties (General Tab)
Use the General tab of the Rectangle Properties dialog box to define general options for the rectangle.

The following table describes the other tabs in the Rectangle Properties dialog box.

Topic Description
Rectangle Properties (Data Output Tab) Describes the Data Output tab of the

Rectangle Properties dialog box.

Rectangle Properties (Navigation Tab) Describes the Navigation tab of the
Rectangle Properties dialog box.

Rectangle Properties (Visibility Tab) Describes the Visibility tab of the
Rectangle Properties dialog box.

Options

Name

Type a name for the rectangle. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip. Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Repeat report item with data region on every page

Choose this option to show the rectangle with a data region each time the data region appears on a page. This is useful for
headings or descriptive text that should appear with the data region on each page of the report.

Data region

Type or select the data region with which to repeat the rectangle on every page that the data region appears.

Page breaks

Select options to indicate how page breaks are applied.

Insert before rectangle

Choose this option to place a page break at the beginning of the rectangle.

Insert after rectangle

Choose this option to place a page break at the end of the rectangle.

See Also

Adding a Rectangle

Reporting Services - Tools and Utilities Reference

Rectangle Properties (Navigation Tab)
Use the Navigation tab of the Rectangle Properties dialog box to define navigation options for the rectangle.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a Rectangle

Reporting Services - Tools and Utilities Reference

Rectangle Properties (Visibility Tab)
Use the Visibility tab of the Rectangle Properties dialog box to define visibility options for the rectangle.

Options

Initial visibility

Select an option to indicate how the rectangle is initially displayed on the report.

Visible

Choose this option to show the rectangle.

Hidden

Choose this option to hide the rectangle.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the rectangle.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current rectangle. The report item
must be a text box in the same grouping or containing grouping as the current rectangle.

See Also

Adding a Rectangle

Reporting Services - Tools and Utilities Reference

Report Parameters
Use the Report Parameters dialog box to define parameters for a report.

Options

Parameters

Use this list to view and manage report parameters. To move a parameter within the list, click the parameter, and then click the up
or down arrow.

Add

Choose this option to create a new report parameter.

Remove

Click a parameter, and then Choose this option to delete the parameter.

Name

Type a name for the parameter. The name must be an identifier that is compliant with the Common Language Specification (CLS).

Prompt

Type the text that is to be displayed next to the parameter text box when the report runs.

Data type

Select the data type of the parameter.

Allow null value

Select this option if the value for the parameter can be null.

Allow blank value

Select this option if the value of the parameter can be an empty string.

Available values

Select an option to display available values from a query or from a static list.

Non-queried

Select this option to enter a static list of parameter values from which the user can choose. If you select this option, a list in which
you can type values and labels appears.

From query

Select From query to provide a dynamic list of parameter values from which the user can choose. This list is obtained from a data
source. If you select From query, three fields appear in which you can define query information.

Label

Appears only when Non-queried is selected. Type a label that is displayed to the user. When the user clicks the label in the list,
the value specified in Value is retained for the parameter.

Value

Appears only when Non-queried is selected. Type a value that will be retained for the parameter.

Dataset

Appears only when From query is selected. Select a dataset from which to retrieve the list of parameters. You define datasets
using the Data view. For more information, see Querying a Data Source.

Value field

Appears only when From query is selected. Select a field from which to obtain a list of available values, for example, EmployeeID.
The available fields are retrieved from a list of column or field names in the dataset.

Label field

Appears only when From query is selected. Select a field from which to obtain a list of labels to display to the user for the values;
for example, EmployeeName. The available fields are retrieved from a list of column or field names in the dataset.

Default values

Select an option to display default values from a query or from a static value.

Non-queried

Select Non-queried to enter a static default value or a set of default values for the parameter. If you select Non-queried, a text
box appears in which you type a value or set of values. Click the expression (fx) button to edit the expression

From query

Select From query to retrieve the default value or set of default values from a data source. If you select From query, two fields
appear in which you define query information.

Dataset

Appears only when From query is selected. Select a dataset from which to retrieve a default value or a set of default values for
the parameter. You define datasets using the Data view. For more information, see Querying a Data Source.

Value Field

Appears only when From query is selected. Select a field from which to obtain the default value or set of default values. The
available fields are retrieved from a list of column or field names in the dataset. The value from the first row in the dataset is used
for the default value.

None

Select None if you do not want to provide a default value for the parameter.

See Also

Filtering Data Using Parameters

Reporting Services - Tools and Utilities Reference

Report Properties (Code Tab)
Use the Code tab of the Report Properties dialog box to define custom code to be used by expressions within the report.

Options

Custom code

Type the methods to be used within the report. Code must be written in Visual Basic .NET.

See Also

Building Reports

Writing Custom Code

Reporting Services - Tools and Utilities Reference

Report Properties (Data Output Tab)
Use the Data Output tab of the Report Properties dialog box to define XML data output options for the report.

Options

Element name

Type the name to use for the top-level data element when it is exported to XML.

Data transform

Type the location of a transformation file (.xsl) to apply to the rendered XML.

Data schema

Type the schema or namespace to use for the rendered XML.

Render textboxes as

Select an option to indicate whether text boxes are rendered as elements or attributes.

Attributes

Choose this option to render text boxes as attributes.

Elements

Choose this option to render text boxes as elements.

See Also

Building Reports

Reporting Services - Tools and Utilities Reference

Report Properties (General Tab)
Use the General tab of the Report Properties dialog box to define general options for the report.

The following table describes the other tabs in the Report Properties dialog box.

Topic Description
Report Properties (Code Tab) Describes the Code tab of the Report

Properties dialog box.

Report Properties (Data Output Tab) Describes the Data Output tab of the
Report Properties dialog box.

Report Properties (Layout Tab) Describes the Layout tab of the Report
Properties dialog box.

Report Properties (References Tab) Describes the References tab of the
Report Properties dialog box.

Options

Author

Type the name of the author of the report.

Description

Type a description for the report.

Grid spacing

Type the grid spacing for the design surface.

Draw grid

Choose this option to show the grid on the design surface,

Snap to grid

Choose this option to snap report items to the grid on the design surface.

Page headers

Select options to indicate how page headers display in the report.

Print on first page

Choose this option to show the page header on the first page of the report.

Print on last page

Choose this option to show the page header on the last page of the report.

Page footers

Select options to indicate how page footers display on the report.

Print on first page

Choose this option to show the page footer on the first page.

Print on last page

Choose this option to show the page footer on the last page.

Autorefresh

Choose this option to refresh the page at a regular interval when run. Type or select the interval, in seconds.

See Also

Building Reports

Reporting Services - Tools and Utilities Reference

Report Properties (Layout Tab)
Use the Layout tab of the Report Properties dialog box to define layout options for the report.

Options

Columns

Type or select the number of columns in the report. Use for multicolumn reports.

Spacing

Type the spacing between the columns on the report.

Page width

Type the width of the report page.

Page height

Type the height of the report page.

Left margin

Type the left margin of the report page.

Right margin

Type the right margin of the report page.

Top margin

Type the top margin of the report page.

Bottom margin

Type the bottom margin of the report page.

See Also

Building Reports

Reporting Services - Tools and Utilities Reference

Report Properties (References Tab)
Use the References tab of the Report Properties dialog box to reference custom assemblies to be used by expressions within
the report.

Options

References

Lists the assemblies that the report references. The assembly must be available on the computer on which Report Designer is
installed and on the report server.

Assembly name

Click the add reference (...) button to retrieve the assembly name from an assembly. Click the delete button to remove the
assembly reference.

Classes

Lists the instance classes that are used by the report. The class list is used only by instance-based members, not static members.

Class name

Type the name of the class.

Instance name

Type a name for the instance of the class.

See Also

Building Reports

Writing Custom Code

Reporting Services - Tools and Utilities Reference

Reporting Services Login
Use the Reporting Services Login dialog box to provide credentials to publish reports to the report server.

Options

Server

Displays the name of the report server.

User name

Type the user name to log in to the Web service.

Password

Type the password to log in to the Web service.

See Also

Debugging and Publishing Reports

Reporting Services - Tools and Utilities Reference

Shared Data Source (Credentials Tab)
Use the Credentials tab of the Shared Data Source dialog box to display and modify credentials for a shared data source in the
project.

Options

Use Windows Authentication (Integrated Security)

Choose this option to use Windows Authentication.

Use a specific user name and password

Choose this option to provide a specific user name and password.

User name

Type a user name to log in to the data source.

Password

Type a password to log in to the data source.

Prompt for credentials

Choose this option to prompt for credentials when there report is run.

Prompt string

Type a prompt to indicate to the user to provide login credentials for the data source.

No credentials

Choose this option provide no credentials for the data source.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Shared Data Source (General Tab)
Use the General tab of the Shared Data Source dialog box to display and modify connection information for a shared data
source in the project.

The following table describes the other tab in the Shared Data Source dialog box.

Topic Description
Shared Data Source (Credentials Tab) Describes the Credentials tab of the

Shared Data Source dialog box.

Options

Name

Type the name of the data source.

Type

Select a data processing extension. The list displays all registered extensions.

Connection string

Type a connection string for the data source. Click Edit to build the connection string using a the Data Link dialog box.

See Also

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Style Properties (Border and Line Tab)
Use the Border and Line tab of the Style Properties dialog box to edit border and line properties.

Options

Style

Type or select a line style or an expression that evaluates to a line style. Click the expression (fx) button to edit the expression.

Width

Type or select a line width or an expression that evaluates to a line width. Click the expression (fx) button to edit the expression.

Color

Type a color or an expression that evaluates to a color. Click the color button to choose a color. Click the expression (fx) button to
edit the expression.

See Also

Adding a Chart

Reporting Services - Tools and Utilities Reference

Style Properties (Fill Tab)
Use the Fill tab of the Style Properties dialog box to edit fill properties.

Options

Color

Type a color or an expression that evaluates to a color. Click the color button to choose a color. Click the expression (fx) button to
edit the expression.

Gradient

Type or select a gradient or an expression that evaluates to a gradient. Click the expression (fx) button to edit the expression.

End Color

Type a color or an expression that evaluates to a color. Click the color button to choose a color. Click the expression (fx) button to
edit the expression.

See Also

Adding a Chart

Reporting Services - Tools and Utilities Reference

Style Properties (Font Tab)
Use the Font tab of the Style Properties dialog box to edit font properties.

Options

Family

Type or select a font family or an expression that evaluates to a font family. Click the expression (fx) button to edit the expression.

Size

Type or select a font size or an expression that evaluates to a font size. Click the expression (fx) button to edit the expression.

Style

Type or select a font style or an expression that evaluates to a font style. Click the expression (fx) button to edit the expression.
Valid styles are Normal and Italic.

Weight

Type or select a font weight or an expression that evaluates to a font weight. Click the expression (fx) button to edit the expression.

Color

Type a color or an expression that evaluates to a color. Click the color button to choose a color. Click the expression (fx) button to
edit the expression.

Decoration

Type or select a font decoration or an expression that evaluates to a font decoration. Click the expression (fx) button to edit the
expression. Valid decorations are None, Underline, Overline, and LineThrough.

See Also

Adding a Chart

Reporting Services - Tools and Utilities Reference

Subreport Properties (Data Output Tab)
Use the Data Output tab of the Subreport Properties dialog box to define XML data output options for the subreport.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents of the subreport.

Yes

Choose this option to export the contents of the subreport.

No

Choose this option to not export the contents of the subreport.

See Also

Adding a Subreport

Reporting Services - Tools and Utilities Reference

Subreport Properties (General Tab)
Use the General tab of the Subreport Properties dialog box to define general options for the subreport.

The following table describes the other tabs in the Subreport Properties dialog box.

Topic Description
Subreport Properties (Data Output Tab) Describes the Data Output tab of the

Subreport Properties dialog box.

Subreport Properties (Navigation Tab) Describes the Navigation tab of the
Subreport Properties dialog box.

Subreport Properties (Parameters Tab) Describes the Parameters tab of the
Subreport Properties dialog box.

Subreport Properties (Visibility Tab) Describes the Visibility tab of the
Subreport Properties dialog box.

Options

Name

Type a name for the subreport. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip. Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Subreport

Type or select the name of the subreport to include in the report. Click the expression (fx) button to edit the expression.

See Also

Adding a Subreport

Reporting Services - Tools and Utilities Reference

Subreport Properties (Navigation Tab)
Use the Navigation tab of the Subreport Properties dialog box to define navigation options for the subreport.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a Subreport

Reporting Services - Tools and Utilities Reference

Subreport Properties (Parameters Tab)
Use the Parameters tab of the Subreport Properties dialog box to define parameters to pass to the subreport.

Options

Parameter Name

Type the name of the parameter in the target report.

Parameter Value

Type or select the value for the parameter or an expression that evaluates to a value.

See Also

Adding a Subreport

Reporting Services - Tools and Utilities Reference

Subreport Properties (Visibility Tab)
Use the Visibility tab of the Subreport Properties dialog box to define visibility options for the subreport.

Options

Initial visibility

Select an option to indicate how the subreport is initially displayed on the report.

Visible

Choose this option to show the subreport.

Hidden

Choose this option to hide the subreport.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the subreport.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current subreport. The report item
must be a text box in the same grouping or containing grouping as the current subreport.

See Also

Adding a Subreport

Reporting Services - Tools and Utilities Reference

Table Properties (Data Output Tab)
Use the Data Output tab of the Table Properties dialog box to define XML data output options for the table.

Options

Element name

Type the name to use for the data element or attribute when it is exported to XML.

Output

Indicates whether the item is included in the XML output.

Auto

Choose this option to export the contents of the table.

Yes

Choose this option to export the contents of the table.

No

Choose this option to not export the contents of the table.

Detail element name

Type the name to use for the data element for the instances of the group. Ignored if there is a grouping defined for details.

Detail collection name

Type the name to use for the data element for the collection of all instances of the group.

Detail element output

Indicates whether details are included in XML output.

Yes

Choose this option to export the details.

No

Choose this option to not export the details.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (Filters Tab)
Use the Filters tab of the Table Properties dialog box to define filter options for the table.

Options

Expression

Type or select the expression to evaluate.

Operator

Select the operator to use to compare the expression and the value.

Value

Type the expression or value against which to evaluate the expression in Expression.

And/Or

Displays the relationship with the filter on the next row.

Up

Choose this option to move the selected filter up in the list.

Down

Choose this option to move the selected filter down in the list.

Delete

Choose this option to delete the selected filter.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (General Tab)
Use the General tab of the Table Properties dialog box to define general options for the table.

The following table describes the other tabs in the Table Properties dialog box.

Topic Description
Table Properties (Data Output Tab) Describes the Data Output tab of the

Table Properties dialog box.

Table Properties (Filters Tab) Describes the Filters tab of the Table
Properties dialog box.

Table Properties (Groups Tab) Describes the Groups tab of the Table
Properties dialog box.

Table Properties (Navigation Tab) Describes the Navigation tab of the
Table Properties dialog box.

Table Properties (Sorting Tab) Describes the Sorting tab of the Table
Properties dialog box.

Table Properties (Visibility Tab) Describes the Visibility tab of the Table
Properties dialog box.

Options

Name

Type a name for the table. The name must be unique within the report.

Tooltip

Type a ToolTip or an expression that evaluates to a ToolTip. Click the expression (fx) button to edit the expression. The value of
Tooltip will appear when the user pauses the pointer over the text box in an HTML report. Other renders can use this value in
different ways.

Dataset name

Type or select the dataset to use for the table.

Page breaks

Select options to indicate how page breaks are applied.

Insert a page break before this table

Choose this option to place a page break at the beginning of each instance of the table.

Insert a page break after this table

Choose this option to place a page break at the end of each instance of the table.

Fit table on one page if possible

Choose this option to indicate that the entire table is to be kept together on one page, if possible.

Header/footer

Select options to show table header and footer rows on each page.

Repeat header rows on each page

Choose this option to display table header rows on each page on which the table appears.

Repeat footer rows on each page

Choose this option to display table footer rows on each page on which the table appears.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (Groups Tab)
Use the Groups tab of the Table Properties dialog box to define groups in the table.

Options

Rows

Displays the row groups in the table.

Up

Moves the selected group up in the list.

Down

Moves the selected group down in the list.

Add

Choose this option to add a new group.

Delete

Choose this option to delete the selected group from the list.

Edit

Choose this option to edit the selected group.

Details Grouping

Choose this option to edit grouping on the detail rows of the table.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (Navigation Tab)
Use the Navigation tab of the Table Properties dialog box to define navigation options for the table.

Options

Document map label

Type or select a label or an expression that evaluates to a label. Click the expression (fx) button to edit the expression. The value of
the label appears on the document map.

Bookmark ID

Type or select a bookmark ID or an expression that evaluates to a bookmark ID. Click the expression (fx) button to edit the
expression. The bookmark ID is the target of a bookmark action.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (Sorting Tab)
Use the Sorting tab of the Table Properties dialog box to define sorting options for the table.

Options

Expression

Type or select the expression to sort on.

Direction

Select the direction in which to sort.

Up

Choose this option to move the selected sort expression up in the list.

Down

Choose this option to move the selected sort expression down in the list.

Delete

Choose this option to delete the selected sort expression.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Table Properties (Visibility Tab)
Use the Visibility tab of the Table Properties dialog box to define visibility options for the table.

Options

Initial visibility

Select an option to indicate how the table is initially displayed on the report.

Visible

Choose this option to show the table.

Hidden

Choose this option to hide the table.

Expression

Choose this option to vary the initial visibility using an expression.

Type an expression that evaluates to a Boolean: True to hide the item and False to show the item. Click the expression (fx) button
to edit the expression.

Visibility can be toggled by another report item

Choose this option to indicate that another report item can change the visibility of the table.

Report item

Type or select the name of the report item that the user can click to change the visibility of the current table. The report item must
be a text box in the same grouping or containing grouping as the current table.

See Also

Adding a Table

Reporting Services - Tools and Utilities Reference

Textbox Properties
Use Textbox Properties dialog box to define basic options for the text box.

Options

Name

Type a name for the text box. The name must be unique within the report.

Value

Type the value of the text box. This can be a field expression, other expression, or label. Click the expression (fx) button to edit the
expression.

Hide duplicates

Choose this option to display only the first instance of a value when the text box repeats in a data region. For example, if a dataset
returns the same product name for several rows, only the first instance of the product name appears.

Containing group or dataset

Type a group or dataset, or an expression that evaluates to a group or dataset, in which to hide duplicate names. Click the
expression (fx) button to edit the expression.

Textbox height

Select an option to indicate whether the text box can grow or shrink to accommodate the contents of the text box.

Can increase to accommodate contents

Choose this option to increase the size of the text box as contents grow.

Can decrease to accommodate contents

Choose this option to decrease the size of the text box as contents shrink.

Format

Select an option to apply formatting to the text box.

Standard

Choose this option, select a format (for example, Number), and then select a secondary format (for example, 1,234.00).

Custom

Choose this option, and then type a .NET formatting code or an expression that evaluates to a .NET formatting code. Click the
expression (fx) button to edit the expression. For more information about .NET formatting codes, see this Microsoft Web site.

See Also

Adding a Text Box

http://go.microsoft.com/fwlink/?linkid=9256

Reporting Services - Tools and Utilities Reference

Image Wizard Help
This section provides F1 Help for the Image Wizard. The following table describes the topics in this section.

Topic Description
Welcome to the Image Wizard Describes the Welcome to the Image

Wizard page of the Image Wizard.
Select the Image Source Describes the Select the Image Source

page of the Image Wizard.
Choose the Embedded Image Describes the Choose the Embedded

Image page of the Image Wizard.
Choose the Image from the Project Describes the Choose the Image from the

Project page of the Image Wizard.
Specify the Image Field Describes the Specify the Image Field

page of the Image Wizard.
Completing the Image Creation Describes the Completing the Image

Creation page of the Image Wizard.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Welcome to the Image Wizard (Image Wizard)
Welcome to the Image Wizard (Image Wizard)

Use the Welcome to the Image Wizard page of the Image Wizard to see a summary of tasks to perform with the Image Wizard.

Options

Don't show this page again

Select this option to skip this page the next time the wizard is launched.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Select the Image Source (Image Wizard)
Select the Image Source (Image Wizard)

Use the Select the Source Type page of the Image Wizard to specify the type of image to use in the report.

Options

Embedded

Select Embedded to use an image that is embedded within the report.

Web

Select Web to link to an image on a Web server.

Project

Select Project to use an image that is stored within the report project.

Database

Select Database to use an image that is stored in a database.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Choose the Embedded Image (Image Wizard)
Choose the Embedded Image (Image Wizard)

Use the Choose the Embedded Image page of the Image Wizard to insert an embedded image into the report.

Options

Image

Displays the images that are embedded within the report. Image displays a picture of the image, Name displays the name of the
embedded image, and MIME Type displays the MIME type of the embedded image.

New Image

Choose this option to add an embedded image to the list of images.

Delete

Select an image, and choose this option to remove the embedded image from the report.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Choose the Image from the Project (Image Wizard)
Choose the Image from the Project (Image Wizard)

Use the Choose the Image from the Project page of the Image Wizard to use an image that is stored within the report project.

Options

URL

Type the URL of the image. This can be a relative path or a fully qualified URL.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Specify the Image Field (Image Wizard)
Specify the Image Field (Image Wizard)

Use the Specify the Image Field page of the Image Wizard to define a field in a database from which to obtain the image.

Options

Dataset

Select a dataset that contains the image field.

Image field

Select the field that contains the images.

MIME Type

Select a MIME type for the images that are stored in the image field.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Completing the Image Wizard (Image Wizard)
Completing the Image Wizard (Image Wizard)

Use the Completing the Image Creation page of the Image Wizard to review the options to be applied to the image.

Options

Image details

View the options that you selected in previous steps of the Image Wizard. To change an option, click Back until you find the page
that contains the option that you want to change.

See Also

Adding an Image

Reporting Services - Tools and Utilities Reference

Report Wizard Help
This section provides F1 Help for the Report Wizard. The following table describes the topics in this section.

Topic Description
Welcome to the Report Wizard Describes the Welcome to the Report

Wizard page of the Report Wizard.
Select the Data Source Describes the Select the Data Source page

of the Report Wizard.
Design the Query Describes the Design the Query page of

the Report Wizard.
Select the Report Type Describes the Select the Report Type page

of the Report Wizard.
Design the Table Describes the Group the Data page of the

Report Wizard.
Choose the Table Layout Describes the Choose the Table Layout

page of the Report Wizard.
Choose the Table Style/Choose the Matrix
Style

Describes the Choose the Table Style and
Choose the Matrix Style pages of the
Report Wizard.

Design the Matrix Describes the Design the Matrix page of
the Report Wizard.

Choose the Deployment Location Describes the Choose the Deployment
Location page of the Report Wizard.

Completing the Report Creation Describes the Completing the Report
Creation page of the Report Wizard.

See Also

Creating a Report Using Report Wizard

Reporting Services - Tools and Utilities Reference

Welcome to the Report Wizard (Report Wizard)
Welcome to the Report Wizard (Report Wizard)

Use the Welcome to the Report Wizard page of the Report Wizard to see a summary of tasks to perform with the Report Wizard.

Options

Don't show this page again

Select this option to skip this page the next time the wizard is launched.

See Also

Creating a Report Using Report Wizard

Reporting Services - Tools and Utilities Reference

Select the Data Source (Report Wizard)
Select the Data Source (Report Wizard)

Use the Select the Data Source page of the Report Wizard to define a data source for the report.

Options

Shared data source

Select Shared Data Source to use a shared data source. Select a shared data source from the list. The list contains all data
sources in the project.

New data source

Select New Data Source to define a new data source.

Name

Type the name of the data source. The data source name must be unique within the report.

Type

Select a data processing extension. The list displays all registered extensions.

Connection string

Type a connection string for the data source. Click Edit to build the connection string using a the Data Link dialog box. Click
Credentials to supply database credentials.

Make this a shared data source

Select this option to store the data source in the project, instead of in the report.

See Also

Creating a Report Using Report Wizard

Connecting to a Data Source

Reporting Services - Tools and Utilities Reference

Design the Query (Report Wizard)
Design the Query (Report Wizard)

Use the Design the Query page of the Report Wizard to create a query by either typing the query manually or by using Query
Builder.

Options

Query string

Type a query or click the query string builder (...) to build a query using Query Builder.

Note If you used Query Builder to build a query, the text of the query appears in Query string.

See Also

Creating a Report Using Report Wizard

Querying a Data Source

Reporting Services - Tools and Utilities Reference

Select the Report Type (Report Wizard)
Select the Report Type (Report Wizard)

Use the Select the Report Type page of the Report Wizard to select either a tabular report or a matrix report.

Options

Tabular

Create a report that contains a table. A table is a data region in which data is arranged into columns and rows. Tables have a static
set of columns, and the number of rows in the table depends on the data in the dataset.

Subsequent pages in the wizard provide options for defining the table.

Matrix

Create a report containing a matrix. A matrix is a data region in which data is arranged into columns and rows. Matrices provide
functionality similar to crosstabs and pivot tables. Unlike a table, which has a static set of columns, matrix columns can be
dynamic.

Subsequent pages in the wizard provide options for defining the matrix.

See Also

Creating a Report Using Report Wizard

Adding a Table

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Design the Table (Report Wizard)
Design the Table (Report Wizard)

Use the Design the Table page of the Report Wizard to select fields to place on the report.

Options

Available fields

Choose fields to appear on the page above the table, in a table grouping, or in table details. To move a field from Fields to Page,
Group, or Details, select the field and then click Page, Group, or Details. Alternatively, you can drag the field to the appropriate
box.

Displayed fields

Displays the fields that have been assigned to the page, group, or details. Click Remove to delete the field from the list.

Page

View the list of fields that appear at the page level. To change the order of the fields, select a field, and then click the up button or
the down button.

Group

View the list of fields by which to group the data in the table. To change the order of the fields, select a field, and then click the up
button or the down button.

Details

View the list of fields that appear in the detail section of the table. To change the order of the fields, select a field, and then click
the up button or the down button.

See Also

Creating a Report Using Report Wizard

Adding a Table

Reporting Services - Tools and Utilities Reference

Choose the Table Layout (Report Wizard)
Choose the Table Layout (Report Wizard)

Use the Choose the Table Layout page of the Report Wizard to select the layout of the table in the report.

Options

Stepped

Create a report that contains one column for each field, with group fields appearing in group headers to the left of the detail field
columns. This type of table does not have group footers.

Block

Create a report that contains one column for each field, with group fields appearing in the first detail row for each group. This
type of table has group footers only if Include Subtotals is also selected.

Include subtotals

Choose this option to include a subtotal for the numeric fields in the report. If Stepped is selected, the subtotal is placed in the
group header rows. If Block is selected, the subtotal appears in group footer rows.

Enable drilldown

Choose this option to hide the inner groups of the report, and enable a visibility toggle, resulting in a drilldown report.

See Also

Creating a Report Using Report Wizard

Adding a Table

Reporting Services - Tools and Utilities Reference

Choose the Table Style/Choose the Matrix Style (Report
Wizard)
Choose the Table Style/Choose the Matrix Style (Report Wizard)

Use the Choose the Table Style and Choose the Matrix Style pages of the Report Wizard to select text and line styles for the report.
The list of styles is based on a configurable template. Report Designer provides five initial templates: Bold, Casual, Corporate,
Compact, and Plain. For more information, see Creating a Report Using Report Wizard.

See Also

Creating a Report Using Report Wizard

Adding a Table

Reporting Services - Tools and Utilities Reference

Design the Matrix (Report Wizard)
Design the Matrix (Report Wizard)

Use the Design the Matrix page of the Report Wizard to select fields for the report.

Options

Available fields

Choose fields that appear on the page above the matrix, as a row group, column group, or detail. To move a field from Fields to
Page, Columns, Rows, or Details, select the field, and then click the Page, Columns, Rows, or Details buttons. Alternatively,
you can drag the field to the appropriate box.

Displayed fields

Displays the fields that have been assigned to the page, group, or details. Click Remove to delete the field from the list.

Page

View the list of fields that appear at the page level. To change the order of the fields, select a field, and then click the up button or
the down button.

Columns

View the list of fields that appear as matrix columns. To change the order of the fields, select a field, and then click the up button
or the down button.

Rows

View the list of fields that appear as matrix rows. To change the order of the fields, select a field, and then click the up button or
the down button.

Details

View the list of fields that appear in the detail section of the matrix. To change the order of the fields, select a field, and then click
the up button or the down button.

See Also

Creating a Report Using Report Wizard

Adding a Matrix

Reporting Services - Tools and Utilities Reference

Choose the Deployment Location (Report Wizard)
Choose the Deployment Location (Report Wizard)

Use the Choose the Deployment Location page of the Report Wizard to set the deployment server and folder for the report
project.

Options

Report server

Type the URL of the virtual directory of the report server, for example, http://server/reportserver. This is the virtual directory of the
report server, not Report Manager. By default, the report server is installed with a virtual directory named reportserver.

Deployment folder

Type the name of the destination folder for publishing the reports that are contained within the report project. The default value
for the folder is the name of the project. If the folder does not exist on the report server, Report Designer creates the folder when
the reports are published.

See Also

Creating a Report Using Report Wizard

Debugging and Publishing Reports

Reporting Services - Tools and Utilities Reference

Completing the Report Wizard (Report Wizard)
Completing the Report Wizard (Report Wizard)

Use this page to name the report and review the options to be applied to the report.

Options

Report name

Type a name for the report.

Report summary

View the options that you selected in previous steps of the Report Wizard. To change an option, click Back until you find the page
that contains the option you want change.

Preview report

Choose this option to view the report after it is created.

See Also

Creating a Report Using Report Wizard

Reporting Services - Tools and Utilities Reference

General User Interface Elements
The Editor, the Properties window, the Toolbox, and the Task List are some of the basic user interface elements of Visual Studio.

The following table describes the topics in this section.

Topic Description
About Dialog Box Describes the dialog box that provides information about

Visual Studio and about the computer that it is running
on.

Code and Text Editor Describes the tool that you can use to edit code or text,
and its numerous features such as line numbering,
IntelliSense, code outlining, word wrap, and a clipboard
ring for storing fragments of code.

Properties Window Discusses the Properties window, which you can use to
view and change the design-time properties and events
of selected objects that are located in editors and
designers, and to edit and view the properties of files,
projects, and solutions.

Start Page Describes the Start Page for Visual Studio.
Task List Window Describes the Task List window, which you can use to

keep a record of tasks that need to be completed.
Toolbox Describes the Toolbox, which displays a variety of items

for use in Visual Studio.

See Also

The Visual Studio Environment

Window Management

Editing Code Within Visual Studio

Using the Toolbox

Reporting Services - Tools and Utilities Reference

About Dialog Box
About Dialog Box

The About dialog box provides product information and allows you to access information about the machine the product is
running on. This dialog box is available on the Help menu.

This product is licensed to

Displays the name of the user and company specified during setup.

Installed Products

Lists the name and product identification number for each product item installed.

Copy Info

Copies the selected product name and identification number from the Installed Products box to the system clipboard.

Product Details

Provides the selected product's icon and a brief description of the product, if a description exists.

System Info

Displays the Windows System Information dialog box, which contains information about the current machine, such as
operating system, processor, and memory.

See Also

General User Interface Elements

Window Management

Reporting Services - Tools and Utilities Reference

Code and Text Editor
Code and Text Editor

The Code and Text Editor is a word processing utility for entering, displaying, and editing code or text. It is called the Query Editor,
the Text Editor, or the Editor, depending on its content. If it contains only text without an associated language, it is referred to as
the Text Editor. If it contains source code associated with a language, it is referred to as the Editor. Because it is most often used
for editing code, it is referred to in Books Online as the Editor.

Code Pane

The area where you enter your code text. It contains the statement builder features available for your language product.

You can set options that affect the behavior of text in the code pane as it relates to indenting, tabbing, dragging and dropping of
text, and so forth.

Margin Indicator Bar

A gray area on the left side of the Editor where margin indicators such as bookmarks and shortcuts are displayed.

You can hide or display the margin indicator bar on the General page of the Text Editor folder in the Options dialog box.

Selection Margin

A column of white space between the margin indicator bar and the code text where you can click to select lines of text.

You can hide or display the selection margin on the General page of the Text Editor folder in the Options dialog box.

Horizontal and Vertical Scroll Bars

Allows you to scroll the code pane horizontally and vertically so that you can view the code that extends beyond the viewable
edges of the code pane.

You can hide or display the horizontal and vertical scroll bars on the General page of the Text Editor folder in the Options
dialog box.

See Also

General User Interface Elements

Editing Code Within Visual Studio

Reporting Services - Tools and Utilities Reference

Properties Window
Properties Window

Use the Properties window to view and change the design-time properties and events of selected objects that are located in
editors and designers. You can also use the Properties window to edit and view file, project, and solution properties. The
Properties window is available by clicking Properties Window on the View menu.

The Properties window displays different types of editing fields, depending on the needs of a particular property. These edit fields
include edit boxes, drop-down lists, and links to custom editor dialog boxes. Properties shown in gray are read-only.

Element Description
Object name Lists the currently selected object or objects. Only objects

from the active editor or designer are visible. When you
select multiple objects, only properties common to all
selected objects appear.

Categorized Lists all properties and property values for the selected
object, by category. You can collapse a category to reduce
the number of visible properties. When you collapse or
expand a category, you see a plus (+) or minus (-),
respectively, to the left of the category name. Categories
are listed alphabetically.

Alphabetic Alphabetically sorts all design-time properties and events
for selected objects. To edit an undimmed property, click in
the cell to its right and enter changes.

Properties Displays the properties for an object. Many objects also
have events that can be viewed using the Properties
window.

Property Pages Displays the Property Pages dialog box for the selected
item. Property Pages displays a subset, the same set, or a
superset of the properties available in the Properties
window. Use this button to view and edit properties
related to your project's active configuration.

Description pane Shows the property type and a short description of the
property. You can turn the description of the property off
and on using the Description command on the shortcut
menu.

See Also

General User Interface Elements

Reporting Services - Tools and Utilities Reference

Start Page
Start Page

Visual Studio includes a Start Page that provides a central location for setting preferences, reading product news, contacting
fellow developers, and accessing other information to make you more productive with Visual Studio. You can view the Start Page
by selecting Show Start Page on the Help menu.

Certain panes, such as those within the Online Resources tab, periodically receive updates from the Internet. Visual Studio
automatically downloads these updates every time you select one of these panes while you are connected to the Internet. If you
are not connected, the pane displays the last information received. In addition, online content is filtered by the current Help filter;
you see only information that is relevant to you.

Note Changing a Help filter on the Start Page also changes the filter applied to the MSDN documentation.

See Also

General User Interface Elements

Reporting Services - Tools and Utilities Reference

Task List Window
Task List Window

The Task List window helps you to organize and manage the work of building your application.

To display the Task List window

Point to Show Tasks on the View menu, and choose a category of messages to display

- or -

Point to Other Windows on the View menu, and click Task List.

In the Task List window, you can:

Identify and locate problems detected automatically as you edit or run code.
Double-click any IntelliSense message or shortcut to open the appropriate editor, and move the insertion point to the
specified location.
Identify and locate problems detected while applying Enterprise Template policies.
Enter user notes related to the solution in the Click here to add a new task field.
Filter the Task List entries displayed using any of several predefined views.
Sort the Task List entries by the column heads Priority, Category, Checked, Description, File, or Line.

See Also

General User Interface Elements

Task List Views

Reporting Services - Tools and Utilities Reference

Task List Views
Task List Views

On the View menu, point to Show Tasks to display the available categories of Task List entries. Select a view, and then click any
column heading to sort the Task List entries displayed in that view by the value in that column. Selecting and sorting task views
allows you to arrange your development tasks in the order you prefer to work on them.

You can double-click most entries in the Task List to open the appropriate Visual Studio editor with the insertion point positioned
at a specific location in your code.

Note The Task List categories available can change, depending upon which type of project you are currently using.
For example, Report Designer does not use all views and categories.

Task Views and Message Categories

Pointing to Show Tasks displays the following categories of messages:

Previous View

Restores the last Task List view chosen before the current view.

All

Displays all Task List categories for every file you are currently editing.

Comment

Displays links to comments in your code.

Build Errors

Links to problems noted as you build or deploy projects.

Click these tasks to jump to code that triggered build problems. Errors are automatically assigned a high priority, and warnings
are given a normal priority.

User

Reminders hand-entered in the Task List window.

These reminders can be checked off as you complete them. Separate sets of User notes are stored for each user within each
solution. You can edit or delete your own User notes.

Shortcut

Links to bookmarks in your code.

To set a shortcut, place the insertion point in the desired line of code, then point to Bookmarks on the Edit menu and click Add
Task List Shortcut. You can edit shortcut names and change their priorities, and check these tasks off as you complete them. To
remove a shortcut from the Task List, click the shortcut to position the insertion point in the line of code, point to Bookmarks on
the Edit menu, and click Remove Task List Shortcut.

Policy

Links to problems noted by the Template Description Language (TDL) compiler as Enterprise Template policies are applied.

To remove a Policy message from the Task List, fix the problem described. If there is a problem in a code file, you will need to save
or rebuild the edited file as well.

Current File

Displays those Task List entries associated with the open Visual Studio file that is currently active.

Checked

Displays those Task List entries with check boxes that are selected.

Unchecked

Displays those Task List entries with check boxes that are cleared, and all entries that do not have check boxes.

IntelliSense

Links to problem code that triggers IntelliSense validation warnings.

Problem code is marked in the editor with a squiggle. Warnings that result in errors when the code is executed are displayed as
build errors in the Task List window as you move from item to item within your code. To remove an IntelliSense code validation
warning, click the link to jump to the problem in your code, and fix the problem indicated.

Note Selecting the User, Shortcut, Policy, or Checked task views will conceal any IntelliSense messages from view.

See Also

General User Interface Elements

Task List Window

Reporting Services - Tools and Utilities Reference

Toolbox
Toolbox

The Toolbox displays a variety of items for use in Visual Studio projects. The tabs and items available from the Toolbox change,
depending upon the designer or editor currently in use. You can access the Toolbox by clicking Toolbox on the View menu.

The Toolbox always displays two tabs: a General tab and a Clipboard Ring tab. As you open an editor or designer, other tabs
and tools are displayed. You also can add your own custom tabs and tools to the Toolbox.

See Also

General User Interface Elements

Using the Toolbox

Reporting Services - Tools and Utilities Reference

HTML Viewer
Reports that are hosted by Microsoft® SQL Server™ Reporting Services can be viewed over a Web connection or in a Web-
oriented format through HTML Viewer. HTML Viewer provides a framework for viewing reports in HTML. It includes a report
toolbar, a parameter section, and a document map.

The report toolbar in HTML Viewer includes features you can use to work with your report, including export options so that you
can view your report in formats other than HTML. The parameter section and document map appear only when you open reports
that are configured to use parameters and a document map control.

The report toolbar is similar to the one shown in the following illustration. The report toolbar that you see may differ from the
illustration based on report features or the rendering options that are available.

The following table describes commonly used features of the report toolbar. Each feature is identified by the control that you use
to access it. Advanced features are discussed later in this topic.

Use this icon or control To
Open the first or last page of a report, scroll through
a report page by page, and open a specific page in a
report. To view a specific page, type the page number
and press ENTER.
Enlarge or reduce the size of the report page. In
addition to percentage-based changes, you can
choose Page Width to fit the horizontal length of a
report page in the browser window, or Whole Page
to fit the vertical length of a report in the browser
window. A Zoom option is supported by Microsoft®
Internet Explorer 5.5 and later.
Search for content in the report by typing a word or
phrase that you want to find (the maximum value
length is 256 characters). The search is case-
insensitive and begins at the page or section that is
currently selected. Only visible content is included in
a search operation. To search for subsequent
occurrences of the same value, click Next.
Open a new browser window and render the report
in the selected format. The formats that are available
are determined by the rendering extensions that are
installed on the report server. TIFF is recommended
for printing.
Click Export to view the report in the selected format.
Show or hide the document map pane in a report that
includes a document map. A document map is a
report navigation control similar to the navigation
pane on a Web site. You can click on items in the
document map to navigate directly to a specific
group, page, or subreport.
Show or hide parameter value fields and the View
Report button in a report that includes parameters.
Refresh the report. Data for live reports will be
refreshed. Cached reports will be reloaded from
where they are stored.
Open Help.

About Export Formats

From the report toolbar, you can choose to view your report in a variety of formats. The formats that are available are determined
by the rendering extensions that are installed on the report server. When you choose another format, a second browser window is
used to display the report, using a viewer associated with the export format you selected. If a viewer is not available for the format

you select, you can choose a different format.

The following export formats are included in a default report server installation. The list of export formats available to you may
vary from those listed here.

Export format Description
Acrobat (PDF) file View a report using a client-side PDF viewer.

You must have Adobe Acrobat Reader to use
this format.

HTML with Office Web Components View the report using client-side Office Web
Components to support charts or controls
embedded in the report. You must have Office
Web Components to use this format.

Excel View the report in Microsoft Excel.
Web archive View the report in an MIME-encoded HTML

format that keeps images and linked content
together with a report.

TIFF file View the report in the default TIFF viewer. For
some Microsoft Windows clients, this is the
Windows Picture and Fax Viewer.
Choose this format to a view a report in a
page-oriented layout. The TIFF format is the
recommended format for printing reports.

Advanced Report Features

Depending on how your report is designed, it may include input fields that you can use to choose parameter values, log on to a
data source, or filter report content.

Parameter Fields

Parameters are values that are used to select specific data (specifically, they are used to complete a query that selects the data for
your report, or to filter the result set). Parameters that are commonly used in reports include dates, names, and IDs. When you
specify a value for a parameter, the report contains only the data that matches the value; for example, employee data based on an
Employee ID parameter. Parameters correspond to fields on the report. After you specify a parameter, click View Report to get
the data.

The report author defines the parameter values that are valid for each report. A report administrator can also set parameter
values. To find out which parameter values are valid for your report, ask your report designer or administrator.

Credential Fields

Credentials are user name and password values that grant access to a data source. After you specify your credentials, click View
Report to get the data. If a report requires you to log on, the data that you are authorized to see might differ from the data that
another user sees. Consequently, two users can run the same report and get different results. In addition, some reports contain
hidden areas that are revealed based on user logon credentials or selections made in the report itself. Hidden areas in the report
are excluded from search operations, producing different search results than when all parts of the report are visible.

See Also

Running Reports

Viewing Reports With Report Manager

Viewing Reports With a Browser

Reporting Services - Tools and Utilities Reference

Report Manager Help
The following topics provide page-level help for Report Manager. There is one topic for each page in the application. Not all pages
may be available. Security settings determine the pages that you can access. To access these topics from within Report Manager,
click Help on the main toolbar.

The following table lists the Report Manager pages that you use for particular tasks.

Use this page To
Choose Link Page Attach a linked report to a different report definition.
Choose Linked Report Location
Page

Save a linked report to a folder in the report server
folder hierarchy.

Contents Page View the contents of a folder, navigate to folders
within the current folder, and select the reports you
want to run. You can also use this page to delete,
move, or view details about items that are contained
in a folder.

Create Data-driven Subscription
Page

Follow a step-by-step approach to define a
subscription that gets a subscriber list and values for
delivery options at run time.

Data Source Selection Page Select a shared data source to use with a report.
Data Sources Properties Page View or modify properties of data sources that

provide content for the current report.
Error Page Show information about an error condition.
Execution Properties Page View or modify run-time execution properties of the

current report.
General Properties Page
(Folders)

View and modify properties of folders that you
create.

General Properties Page
(Reports)

View or modify general properties of the current
report, edit or replace the underlying report
definition, create a linked report, and delete or move
the report.

General Properties Page
(Resources)

View or modify properties of resources that you
upload or that are associated with a report.

General Properties Page
(Shared Data Sources)

View and modify properties of a shared data source
item.

History Properties Page View or modify property settings that automate the
generation of report history and set maximum limits
for report history storage.

Item-Level Roles Page View item-level roles that are defined for the report
server. You can use item-level roles to create role
assignments for items that the report server
manages.

Manage Jobs Page View in-progress reports and data-driven
subscriptions.

Move Items Page Move folders and reports to a different location.
My Subscriptions Page View and modify subscriptions that you own.
New Data Source Page Create or modify a shared data source that can be

used to provide content to reports.
New Folder Page Create a new folder at the current location.
New Linked Report Page Create a new linked report from a report that is

already published.
New Role / Edit Role Page Create or modify a role definition by selecting the

tasks it supports.
New Role Assignment / Edit
Role Assignment Page

Create or modify the security for an item. Security is
defined through role assignments.

New Schedule / Edit Schedule
Page

Create or modify a schedule by specifying frequency
settings.

New Subscription / Edit
Subscription Page

Create or modify delivery and notification settings of
a report subscription.

New System Role / Edit System
Role Page

Create or modify roles that control user actions on a
server-wide basis.

New System Role Assignments
/ Edit System Role Assignments
Page

Create or modify role assignments that apply to the
report server.

Parameters Properties Page View or modify values of parameterized reports.
Report History Page View snapshots of a report that were taken at

specific points in time.
Reports Page View a list of reports that use a shared data source.
Search Page View the results of a search for a report name or

description.
Security Properties Page (Items) View or modify security settings for a report, folder,

resource, or shared data source.
Shared Schedules Page Create and manage shared schedules that can be

defined independently of a report and referenced by
many reports that require the same schedule
information.

Site Settings Page View or modify the application name and other
settings that have a site-wide effect.

Subscriptions Page View or modify all user subscriptions of the current
report.

System Role Assignment Page View or modify server-level security policies that
enable the generation of application events and
define the operations that report server
administrators can perform.

System Roles Page View system-level roles that can be used to create
security policies for the report server.

Upload File Page Copy a file from a file system to a report folder.
View Page (Reports) View a rendered report.
View Page (Resources) View a resource.

See Also

Managing Report Content and Processing

Report Manager

Working With Published Reports

Reporting Services Component Overview

Reporting Services - Tools and Utilities Reference

Choose Link Page
Use the Choose Link page to choose a different report upon which to base the currently selected linked report. Linked reports are
based on other reports already published to a report server. This page provides a way to update a connection to the base report.
Other settings of the linked report (such as security and parameter settings) are unaffected by changes to the link information.

To open this page, select a linked report, click the Properties tab at the top of the page, and then click Change Link. Or, if the
Contents page is in details view, click the property page icon:

Options

Location

Specify the full name of the report, including the folder path and report name. You can type the full name of the report or use the
tree view to navigate to the report you want to use.

Tree view

Shows all of the folders in the report server folder hierarchy. To use the tree view to fill in the Location field, click the name of the
report.

See Also

Creating, Modifying, and Deleting Linked Reports

Report Server Folder Namespace

General Properties Page (Reports)

New Linked Report Page

Report Manager Help

Reporting Services - Tools and Utilities Reference

Choose Linked Report Location Page
Use the Choose Linked Report Location page to select a folder for a new linked report. For example, if you are a creating linked
report for a specific group of users, you may want to place the linked report in a folder that contains other reports they use. You
must choose a folder that already exists and for which you have permission to add contents.

To open this page, open the New Linked Report page, and then click Change Location.

Options

Location

Specify the name of the folder to contain the linked report you are creating. You can type the full name or use the tree view to
navigate to the folder you want to use.

Tree view

Shows the folder structure of report server namespace. Click a folder name to add the full path to the Location field.

Clicking the expand and collapse icons in the tree view opens and closes folders without adding the folder names to the Location
field. To add a folder name to the Location field, click the name of the folder.

See Also

Creating, Modifying, and Deleting Linked Reports

Report Server Folder Namespace

New Linked Report Page

Report Manager Help

Reporting Services - Tools and Utilities Reference

Contents Page
Use the Contents page to view the contents of the current folder, select items to view, or navigate to other folders. This page
opens when you select a folder. It is also the home page for Report Manager.

The Contents page shows the items that you have permission to view. Depending on the permissions you have, you may also be
able to move, delete, and add items. You must click Show Details to access the Delete and Move buttons. If you cannot see any
items at all, check with your report server administrator. It may be that the report server requires additional role assignments that
provide access to users. For more information, see step 7 "Use Report Manager to enable features and server access" Server
Deployment Checklist.

Options

New Folder

Click New Folder to open the New Folder page, which is used to create a folder under the current folder.

New Data Source

Click New Data Source to open the New Data Source page, which is used to create a shared data source item.

Upload File

Click Upload File to open the Upload File page, which is used to copy a file from the file system to a report server. You can
upload files to add reports and resources (such as charts, documents, or any other collateral content that you want to keep with a
report). Uploaded files are stored in and managed from a report server database. To upload a report, select a file that has an .rdl
extension.

Show Details

Click Show Details to display additional informational information about items. In details view, you can use Delete and Move
buttons to remove and relocate items in the folder. Click the property icon to access the tabbed pages that allow you to secure an
item, set properties, or work with report history and subscriptions of a specific report:

Delete

Click Delete to remove a folder or other item. Before clicking Delete, select the check box next to each item that you want to
delete.

Move

Click Move to relocate an item within the folder hierarchy. Before clicking Move, select the check box next to each item that you
want to move. Clicking this button opens the Move Items page, on which you can browse through folders to select a new location.

See Also

Navigating Folders in Report Manager

Working With Published Reports

Report Server Folder Namespace

Icons in Report Manager

Viewing Reports With Report Manager

Adding, Modifying, and Deleting Reports

Reporting Services - Tools and Utilities Reference

Create Data-Driven Subscription Page
Use the Create Data-driven Subscription pages to build or modify a subscription that uses dynamic data to determine the
recipients of the subscription, delivery settings, and report parameter values. At run time, the report server runs a query to get
values used for subscription settings. You can use these pages to assign query values to subscription settings. The values and
options that you specify for a data-driven subscription are divided among several pages, similar to a wizard. There are seven
pages in all.

To create a data-driven subscription, you must know how to write a query or command that gets the data for the subscription.
You must also have a data store that contains the source data (that is, the names of subscribers and the delivery settings
associated with each one) to use for the subscription.

This page is available to users with advanced permissions. If you are using default security, data-driven subscriptions cannot be
used for reports located in a My Reports folder.

To open this page, select a report, click the Subscriptions tab at the top of the page, and then click New Data-driven
Subscription. The report must use stored credentials in order for this button to be enabled.

Start a Subscription (Step 1)

Description

Provide a description for the subscription. The description appears in subscription lists in My Subscriptions and in the
Subscriptions tab of the report.

Specify how recipients are notified

Select the delivery extension to use to distribute the report. Only one delivery extension can be used for each subscription. The
following options are available:

Use Report Server File Share Delivery to deliver reports to a file share. The report will be saved as a static file. For more
information, see File Share Delivery in Reporting Services.
Use Report Server E-Mail to deliver reports to an e-mail inbox. For more information, see E-Mail Delivery in Reporting
Services.
Use Null Delivery Provider to deliver reports to the report server database. This option creates report snapshots. Choose
this option when you want to preload the report server with user-specific or parameterized report snapshots on a specific
schedule. For more information, see Report Caching in Reporting Services.

Specify a data source that contains recipient information

Specify how the data source connection is defined. You can choose a shared data source if you have one that contains the
connection information you need. You can also specify connection information directly in this subscription.

The data source connection is used to retrieve subscriber data. This data may consist of employee names, employee IDs, e-mail
addresses, and preferences for export formats (such as HTML or PDF). If you are using the report server e-mail delivery extension,
the data source should contain e-mail addresses.

Specify a Connection (Step 2)

If you specified a shared data source, use this page to select the shared data source item. You can use the tree control to navigate
to and select the item. If you are defining a connection for this subscription, use this page to specify the following options:

Connection Type

Select which data processing extension to use with the data source.

Connection String

Type a connection string to use to connect to the data source.

Connection Using

Type the credentials to use when connecting to the data source. The credentials are stored as encrypted values in the report server
database.

If the data source uses Windows Authentication, select Use as Windows credentials when connecting to the database.

Note You can also use no credentials. Microsoft does not recommend this option.

Specify a Query (Step 3)

Command or query box

Specify a SQL query or a command that retrieves a result set that contains one row for each recipient of the subscription. On
subsequent pages, the result set is used to populate data-driven extension settings (specifically, columns in the result set that
contain values of interest, such as e-mail addresses, can be used to provide values for the subscription).

Timeout

Specify a query-time-out value. This value must be large enough to complete query validation.

Validate

Click Validate to verify the query. The query must produce valid results before you can continue. If you do not click Validate, the
query is validated when you click Next.

Set Delivery Options (Step 4)

On the fourth page, you specify delivery extension options. The options that appear on the page are derived from the delivery
extension. How you specify those options can vary considerably based on how the delivery extension presents them. If the
extension has no settings, no options appear on this page.

Select this To do this
Specify a static value Use a constant value for the delivery setting.

Some delivery extensions provide static values that you can
choose from. For example, report server e-mail delivery
provides values for IncludeReport, RenderFormat,
Priority, and Include Link.

Use caution when specifying a static value for a recipient
field.

Get the value from the
database

Use a value from the result set. The columns of the result set
can be selected as a source of a data value to use with each
subscription instance.

No value Omit the setting from the subscription.

Important For e-mail delivery, assigning static values for the To field, the Cc field, the Bcc field, and the Reply-To
fields for e-mail delivery can produce unintended results. The recipients specified in these fields will receive one
delivery for each row in the result set. If the result set is extensive, you run the risk of overwhelming the capacity of the
recipient's mailbox. For example, if the result set contains 20 rows, each recipient receives 20 messages in his or her
in-box.

Set Parameters (Step 5)

If a report includes parameters, you must specify which parameter values to use with the report. Parameter values can be
obtained from the subscriber data source (for example, if you have a regional sales report that is parameterized based on a
regional code, you can obtain region information for each employee if that information is stored in the employee database).

Select this To do this
Specify a static value Use a constant value for the parameter if you want to use

the same parameter for all subscribers. Some parameters
provide a list of values that you can choose from. For
example, a list of months, years, or product categories.

Get the value from the
database

Use a value from the result set. The columns of the result set
can be selected as a source of a data value to use with each
subscription instance.

Specify a Trigger (Step 6)

Select a trigger that initiates the subscription.

Select this To do this
When the report data is updated
on the report server

If the report is configured to run as a report
execution snapshot, you can process the
subscription when the snapshot is refreshed.

On a schedule created for this
subscription

Run the subscription at a specific date and time.

On a shared schedule Run the subscription using schedule information
provided through a shared schedule.

Schedule a Subscription (Step 7)

If you schedule the subscription, you must specify the frequency with which the report is delivered. The first set of options
specifies a category of frequency (hourly, daily, weekly, and so on). The second set of option that appears is based on your initial
selection.

Hourly

Define a schedule that runs at hourly intervals.

Daily

Define a schedule that runs on the days you select at a specific hour and minute. You can specify days in the following ways: Every
<day>, Every weekday, and Every <number> day. Choosing one approach voids the others, even if the other days appear to be
selected.

Weekly

Define a schedule that runs at weekly intervals at a specific hour and minute. The interval can be in complete weeks (for example,
every two weeks) or days within a week.

Monthly

Define a schedule that runs on a monthly basis. Within a month, you can choose a day based on a pattern (for example, the last
Sunday of every month) or specific calendar dates (such as 1 and 15 to indicate the first and fifteenth day of every month). Using
commas and hyphens, you can specify multiple days and ranges; for example, 1, 5, 7-12, 21.

Once

Define a schedule that runs only once. Use the Start and end dates section to specify the day on which to run the schedule. This
schedule expires as soon as it is processed.

Start and end dates

Specify a start date that determines when the schedule takes effect and an end date that determines when the schedule expires.
Schedules expire without notification. After the end date, a schedule no longer runs.

Saving the Subscription

The Finish button is enabled when there is enough information for the subscription. Click Finish to complete the subscription.

See Also

Data-Driven Subscriptions

Walkthrough - Creating a Data-Driven Subscription

Specifying Credential and Connection Information

Distributing Reports Through Subscriptions

Report Manager Help

Reporting Services - Tools and Utilities Reference

Data Source Selection Page
Use the Data Source Selection page to select an existing shared data source item to use with a report. Shared data source items
are located in folders. The following icon indicates a shared data source item:

To open this page, select a report, click the Properties tab at the top of the page, and then click the Data Sources tab at the side
of the page. On the Data Sources properties page, click Browse.

Options

Location

Specify the full path to the shared data source item, beginning with the root folder name. You can type the path name or use the
tree view to navigate to the shared data source you want.

Tree view

Shows the folder structure of the report server namespace. Click a shared data source item to add the full path to the Location
field.

OK

Click OK to copy the data source selection to the Data Sources properties page.

See Also

Managing Data Source Connections

Specifying Credential and Connection Information

Data Sources Properties Page

New Data Source Page

Reporting Services - Tools and Utilities Reference

Data Sources Properties Page
Use the Data Sources properties page to define how the current report connects to an external data source. You can override the
data source connection information that was originally published with the report.

If multiple data sources are used with a report, each data source has its own section in the properties page. Data sources are listed
in the order in which they are defined in the report.

When specifying a data source to use with the report, you can use a shared data source that is created and managed separately
from the reports that use it. If you do not want to use a shared data source item, you can define a data source connection to use
with the report manually.

To open this page, select a report, click the Properties tab at the top of the page, and then click the Data Sources tab at the side
of the page.

Options

A shared data source

Specify a shared data source to use with the report. For more information about creating a new data source, see New Data Source
Page.

Browse

Click Browse to open the Data Source Selection page, which is used to select a shared data source. For more information, see
Data Source Selection Page.

A custom data source

Specify how the report connects to the data source.

The following options are used to specify a custom data source connection:

Connection Type

Specify the data processing extension that is used to process data from the data source. Report server includes data processing
extensions for SQL Server, SQL Server Analysis Services, Oracle, OLE DB, and ODBC. Additional data processing extensions may
be available from third-party vendors.

Connection String

Specify the connection string that the report server uses to connect to the data source. The following example illustrates a
connection string used to connect to the SQL Server AdventureWorks database:

data source=<a SQL Server instance>;initial catalog=AdventureWorks2000

Connect Using

Specifies options that determine how credentials are obtained.

Important If credentials are provided in the connection string, the options and values provided in this section are
ignored. Note that if you specify credentials on the connection string, the values are displayed in clear text to all users
who view this page.

The credentials supplied by the user running the report

Each user must type in a user name and password to access the data source.

You can define the prompt text that requests user credentials. The default text string is "Enter a user name and password to access
the data source."

Select Use as Windows credentials when connecting to the data source if the credentials that the user provides are
Windows Authentication credentials. Do not select this check box if you are using database authentication (for example, SQL
Server Authentication).

Credentials stored securely in the report server

Store an encrypted user name and password in the report server database. Choose this option to run a report unattended (for
example, reports that are initiated by schedules or events instead of user action).

Choose Use as Windows credentials when connecting to the data source if the credentials are Windows Authentication
credentials. Do not select this check box if you are using database authentication (for example, SQL Server Authentication).

Choose Impersonate the authenticated user after a connection has been made to the data source to allow delegation of
credentials, but only if a data source supports impersonation. For SQL Server databases, this option sets the SETUSER function.

Windows NT Integrated Security

Use the Windows credentials of the current user to access the data source. Choose this option when the credentials that are used
to access a data source are the same as those used to logon to the network domain.

This option works best when Kerberos is enabled for your domain, or when the data source is on the same computer as the report
server. If Kerberos is not enabled, Windows credentials can be passed to one other computer. If additional computer connections
are required, you will get an error instead of the data you expect.

Do not use this option to run unattended reports or reports that are available for subscription. The report server initiates the
running of unattended reports. The credentials of the report server that are used to access the report server database cannot be
used to access external data sources.

Credentials are not required

Specify that credentials are not required to access the data source. Note that if a data source requires a user login, choosing this
option will have no affect. You should only choose this option if the data source connection does not require user credentials.

When you configure a data source to use no credentials, you must perform additional steps if the report that uses the data source
is to support subscriptions, scheduled report history, or scheduled report execution. Specifically, you must create a low privileged
account that the report server uses when running the report. This account is used in place of the service account that the report
server normally runs under. For more information about this account, see Configuring an Account for Unattended Report
Processing.

Apply

Click Apply to save your changes.

See Also

Managing Data Source Connections

Specifying Credential and Connection Information

Report Manager Help

Reporting Services - Tools and Utilities Reference

Error Page
Use the Error page to view details about an error condition. Server- or session-based errors appear on this page. Validation errors
that relate to specific page controls display inline, next to the control.

See Also

Reporting Services Error Messages

Troubleshooting Reporting Services

https://msdn.microsoft.com/en-us/library/aa255861(v=sql.80).aspx

Reporting Services - Tools and Utilities Reference

Execution Properties Page
Use the Execution properties page to set report execution properties for the currently selected report. These options determine
when report processing occurs. You can set these options to time a report run during off-peak hours. Or if you have a report that
is accessed frequently, you can temporarily cache copies of it to eliminate wait time if multiple users are accessing the same
report within minutes of each other.

To open this page, select a report, click the Properties tab at the top of the page, and then click the Execution tab at the side of
the page.

Options

Render this report with the most recent data

Use this option when you want the report to run on-demand, or when the user selects the report. If a cached copy is not available,
data retrieval and rendering occurs when a user opens the report.

Choose Do not cache temporary copies of this report to always run the report with the most recent data. Each user who
opens the report triggers a query against the data source that contains data used in the report.

Choose Cache a temporary copy of the report to place a temporary copy of the report in a cache when the first user opens the
report. Performance is faster for subsequent users who open the report because the report is returned from cache instead of
being processing again.

Cached reports must expire after some length of time. You can type the number of minutes after which the temporary copy of the
report is no longer valid. Once a temporary copy is invalidated, it is no longer returned from cache. The next time a user opens the
report, the report server processes the report again, and places a copy of the refreshed report back in the cache.

You can also use a schedule to expire a cached report using a frequency other than minutes. For example, to expire a cached
report at the end of the day, you can pick a specific hour at night after which the copy expires.

Render this report from a report execution snapshot

Use this option to process this report as a snapshot, at a time that you schedule. Choose this option when you want a report to
run during off-peak hours. Unlike cached copies that are created when a user opens the report, a snapshot is created and
subsequent refreshed on a schedule. Snapshots do not expire; they remain in service until they are replaced by newer versions.

Snapshots that are generated as a result of report execution settings have the same characteristics as report history snapshots.
The difference is that there is only one report execution snapshot and potentially many report history snapshots. Report history
snapshots are accessed from the History page of the report, which stores many instances of a report, as it existed at different
points in time. In contrast, users access report execution snapshots from folders the same way that they access live reports. In the
case of report execution snapshots, no visual cue exists to indicate to users that the report is a snapshot.

Create a snapshot of the report when the apply button is selected.

Use to create a report snapshot when you click Apply. When you process a report as a snapshot, you can generate it right away
to make it available before the scheduled start time.

Select a time-out value for report execution

Specify whether report processing times out after a certain number of seconds. If you choose the default setting, the time-out
setting that is specified in the Site Settings page is used for this report.

This value applies to report processing on a report server. It does not affect data processing on the database server that provides
the data for your report. The count for report processing begins when the report is selected and ends when the report opens.
When you set this value, specify enough time to complete both data processing and report processing.

See Also

Managing Report Processing

Setting Report Execution Properties

Report Caching in Reporting Services

Configuring Report Access

Creating, Modifying, and Deleting Schedules

Report Manager Help

Reporting Services - Tools and Utilities Reference

General Properties Page (Folders)
Use the General properties page for folders to view and set properties for the folders that you create. Information about who
created or modified the folder and when the folder was modified appear at the top of the page.

Folder properties include general properties and security settings for the currently selected folder. These properties and settings
appear in bold text at the top of the page. For more information about folder security, see Security Properties Page (Items).

Special-purpose folders such as Home, My Reports, and Users folders cannot be renamed or moved within the report server
namespace. The General properties page is not available for these folders.

To open this page, select a folder and then click the Properties tab at the top of the page.

Options

Name

Specify a name for the folder. A name must contain at least one alphanumeric character. It can also include spaces and some
symbols. Do not use the characters ; ? : @ & = + , $ / * < > | " / when specifying a name.

Description

Type a description of the folder contents. This description appears on the Contents page to users who have permission to access
the folder.

Apply

Click Apply to save your changes.

Delete

Click Delete to remove the folder and its contents.

Move

Click Move to relocate a report or folder within the report server namespace. Clicking this button opens the Move Items page that
allows you to browse folders for a new folder location.

See Also

Managing Folders

Moving Items

Report Manager Help

Report Server Folder Namespace

Reporting Services - Tools and Utilities Reference

General Properties Page (Reports)
Use the General properties page for reports to rename, delete, move, or replace the report definition. You can also use this page
to create a linked report. Details about who created or modified the report, and when the changes took place, are indicated at the
top of the page.

To open this page, select a report and then click the Properties tab at the top of the page. Or, if the Contents page is in details
view, click the property page icon:

Options

Name

Specify a name for the report. A name must contain at least one alphanumeric character. It can also include spaces and certain
symbols. Do not use the characters ; ? : @ & = + , $ / * < > | " / when specifying a name.

Description

Type a description of the report. This description appears in the Contents page to users who have permission to access the report.

Report Definition

Click Edit to extract a read-only copy of the report definition, or click Update to replace the report definition with a different one
from an .rdl file located in a shared directory. If you update a report definition, you must reset the data source settings after the
update is complete.

The copy that you open is identical to the original report definition that was initially published to the report server. Any properties
that were set on the report after it was published (such as parameters, security settings, and data source properties) are not
reflected in the file that you open.

Modifications that you make locally to the report definition are not saved to the report server. However, you can use the viewing
tool to save the report definition as a new file in a shared directory, and then upload the report definition to the report server as a
new item.

If the report is a linked report, the full name and path of the report definition of the linked report is specified. You can click
Change Link to select a different report definition for the linked report.

Apply

Click Apply to save your changes.

Create Linked Report

Click Create Linked Report to open the New Linked Report page. For more information about this page and linked reports, see
New Linked Report Page.

Delete

Click Delete to remove the report from the report server database. Deleting a report deletes all associated report history and
report-specific schedules and subscriptions. If the report is associated with linked reports, the linked reports are invalidated.

Move

Click Move to relocate a report within the report server folder hierarchy. Clicking this button opens the Move Items page, on
which you can browse through folders for a new folder location. For more information, see Move Items Page.

See Also

Setting Report Properties

Moving Items

Adding, Modifying, and Deleting Reports

Creating, Modifying, and Deleting Linked Reports

Report Manager Help

Reporting Services - Tools and Utilities Reference

General Properties Page (Resources)
Use the General properties page for resources to rename, delete, move, or replace a resource. Information about who added the
resource or modified the properties appears at the top of the page.

To open this page, select a resource and then click the Properties tab at the top of the page.

Options

Name

Specify a name for the resource. A name must contain at least one alphanumeric character. It can also include spaces and some
symbols. Do not use the characters ; ? : @ & = + , $ / * < > | " / when specifying a name.

Description

Type a description of the resource. This description appears in the Contents page to users who have permission to access the
resource.

Type

Specifies the MIME type of the resource. This property is read-only.

Apply

Click Apply to save your changes.

Replace

Click Replace to open the Import Resource page, which is used to select a resource file from a file share.

Delete

Click Delete to remove the resource from the report server database.

Move

Click Move to relocate a resource within the report server folder hierarchy. Clicking this button opens the Move Items page, on
which you can browse through folders for a new folder location.

See Also

View Page (Resources)

Report Manager Help

Security Properties Page (Items)

Managing Resources

Reporting Services - Tools and Utilities Reference

General Properties Page (Shared Data Sources)
Use the General properties page to view or modify properties of a shared data source item. Any changes that you make to the
properties take effect for all reports that reference the item when you click Apply.

To open this page, select a shared data source item and then click the Properties tab at the top of the page. The following icon
indicates a shared data source item:

Options

Name

Specifies a name for the shared data source, which is used to identify the item within the report server namespace.

Description

Provide information about the shared data source. This description appears on the Contents page.

Enable this data source

Select to enable or disable the shared data source. You can disable the shared data source to prevent report processing for all
reports that reference the item.

Connection Type

Specifies the data processing extension that is used to process data from the data source. Report server includes data processing
extensions for SQL Server, SQL Server Analysis Services, Oracle, ODBC, and OLE DB. Additional data processing extensions may
be available from third-party vendors.

Connection String

Specifies the connection string that the report server uses to connect to the data source. The following example illustrates a
connection string used to connect to the SQL Server AdventureWorks database:

data source=<a SQL Server instance>;initial catalog=AdventureWorks2000

Connect Using

Specifies options that determine how credentials are obtained.

Important If credentials are provided in the connection string, the options and values provided in this section are
ignored. Note that if you specify credentials on the connection string, the values are displayed in clear text to all users
who view this page.

The credentials supplied by the user running the report

Each user must type in a user name and password to access the data source.

You can define the prompt text that requests user credentials. The default text string is "Enter a user name and password to access
the data source."

Select Use as Windows credentials when connecting to the data source if the credentials that the user provides are
Windows Authentication credentials. Do not select this check box if you are using database authentication (for example, SQL
Server Authentication).

Credentials stored securely in the report server

Store an encrypted user name and password in the report server database. Choose this option to run a report unattended (for
example, reports that are initiated by schedules or events instead of user action).

Choose Use as Windows credentials when connecting to the data source if the credentials are Windows Authentication
credentials. Do not select this check box if you are using database authentication (for example, SQL Server Authentication).

Choose Impersonate the authenticated user after a connection has been made to the data source to allow delegation of
credentials, but only if a data source supports impersonation. For SQL Server databases, this option sets the SETUSER function.

Windows NT Integrated Security

Use the Windows credentials of the current user to access the data source. Choose this option when the credentials that are used

to access a data source are the same as those used to logon to the network domain.

This option works best when Kerberos is enabled for your domain, or when the data source is on the same computer as the report
server. If Kerberos is not enabled, Windows credentials can be passed to one other computer. If additional computer connections
are required, you will get an error instead of the data you expect.

Do not use this option to run unattended reports or reports that are available for subscription. The report server initiates the
running of unattended reports. The credentials of the report server that are used to access the report server database cannot be
used to access external data sources.

Credentials are not required

Specify that credentials are not required to access the data source. Note that if a data source requires a user login, choosing this
option will have no affect. You should only choose this option if the data source connection does not require user credentials.

When you configure a data source to use no credentials, you must perform additional steps if the report that uses the data source
is to support subscriptions, scheduled report history, or scheduled report execution. Specifically, you must create a low privileged
account that the report server uses when running the report. This account is used in place of the service account that the report
server normally runs under. For more information about this account, see Configuring an Account for Unattended Report
Processing.

Apply

Click Apply to save your changes.

See Also

New Data Source Page

Report Manager Help

Specifying Credential and Connection Information

Reporting Services - Tools and Utilities Reference

History Properties Page
Use the History properties page to schedule report snapshots to be added to report history, and to set limits on the number of
report snapshots that are stored in report history.

To open this page, select a report, click the Properties tab at the top of the page, and then click the History tab at the side of the
page. Or, if the Contents page is in details view, click the property page icon:

Options

Allow history to be created manually

Select this check box to add snapshots to report history on an ad hoc basis. Selecting this check box causes the New Snapshot
button to appear on the History page.

Store all report execution snapshots in report history

Select this check box to copy a report snapshot that you generate based on report execution properties to report history. You can
set report execution properties to run a report from a generated snapshot. By setting this report history property, you can keep a
record of all reports snapshots that are generated over time by placing copies of them in report history.

Use the following schedule to add snapshots to report history

Select this checkbox to add snapshots to report history on a scheduled basis. You can create a schedule that is used exclusively for
this purpose, or you can select a predefined shared schedule if one contains the schedule information you want.

Select the number of snapshots to keep

Select from the following options to control the number of reports that are kept in report history. Report history settings can vary
for each report.

Choose Use default setting to retain the default setting. The report server administrator controls a master setting for report
history storage. If you choose this option, the number of snapshots that are retained is obtained from this master setting.

Choose Keep an unlimited number of snapshots in report history to retain all report history snapshots. You must manually
delete snapshots to reduce the size of report history.

Choose Limit the copies of report history to retain a set number of snapshots. When the limit is reached, older copies are
removed from report history to make room for newer copies.

Apply

Click Apply to save your changes.

See Also

Creating, Modifying, and Deleting Snapshots in Report History

Report Manager Help

Managing Report History

Reporting Services - Tools and Utilities Reference

Item-Level Roles Page
Use the Item-Level Roles page to view the item-level role definitions that are currently defined for the report server. An item-level
role definition is a named collection of tasks that users perform relative to a specific item (that is, a folder, report, resource, or
shared data source). Role definitions are assigned to a user or group to create a role assignment. The tasks in the role definition
describe what the user or group can do.

Reporting Services includes a number of predefined item-level role definitions that you can work with. You can modify the role
definitions by changing the task list of each one, or you can create a new role definition that supports a different combination of
tasks.

To open this page, click Site Settings on the global toolbar, and then click Configure item-level role definitions.

Options

New Role

Click New Role to open the New Role page.

Role

Lists the role definitions that apply to items in the report server namespace. You can click a role definition to view the task list it
supports.

Description

Displays information about the role definition. For predefined role definitions such as Browser or Content Manager, the
description is a summary of the tasks that are included with each definition.

See Also

Configuring Security Through Role Assignments

Using Default Security

Role Definitions

Role Assignments

Report Manager Help

Reporting Services - Tools and Utilities Reference

Manage Jobs Page
Use the Manage Jobs page to view or cancel in-progress reports and subscriptions. A process must be running at least 60
seconds before it appears on this page.

Important After you open the page, you must click the Refresh button on the browser to see whether any new
processes are underway. You must also click Refresh to view updated information about Status, Processed, and
Action.

You can manage both user jobs and system jobs. A user job is any job that is initiated by an individual user. This includes
accessing a report on-demand, generating a report history snapshot, or creating a non-scheduled report execution snapshot. An
in-progress standard subscription is also a user job. A system job is a job that is initiated by the report server. System jobs include
scheduled report history execution snapshots or report history snapshots, and data-driven subscriptions.

To open this page, on the Site Settings page, click Manage Jobs.

Options

Cancel

Click Cancel to stop a report or subscription process. Before clicking Cancel, select the check box next to the item you want to
cancel.

Show System Jobs

Includes both system jobs and user jobs in the list.

Hide System Jobs

Includes only user jobs in the list.

Type

Indicates whether the process is a report or a subscription.

Name

Shows the name of the report. Subscriptions are identified by their descriptions.

Computer Name

Shows the name of the computer that is running the process.

User Name

For processes initiated by a user, this column shows the name of the user.

Action

For reports, this column shows which report execution processes are underway. Values include Render which indicates an on-
demand report, Snapshot Creation which indicates a system or user-initiated report execution snapshot process, and Report
History Creation which indicates scheduled or user-initiated report history generation.

Start Time

Shows when the process started.

Processed

For data-driven subscription, this column shows the number of reports processed and delivered.

Status

Shows the status of the job.

See Also

Job Management in Reporting Services

Report Manager Help

Reporting Services - Tools and Utilities Reference

Move Items Page
Use the Move Items page to move a report, folder, or other item to a new location. You can type the path of the new location or
use a tree view to browse to a new location in the report server namespace. You can only move items that you have permission to
move and that are stored on the current report server. You can only move the items to a folder for which you have write access.

You can open this page in two ways:

From the Contents page, select the check box next to the folders and reports you want to move, and then click Move. For
more information, see Contents Page.
Open the properties page of any item, and then click Move.

When the Move Items page opens, the name of the item you are moving appears in the page title (for example, Move Regional
Sales Report). If you are moving multiple items, the page title is Move Multiple Items.

Not all items can be moved. You cannot move reserved folders such as Home, My Reports, or Users Folders. You cannot move
report history or snapshots to different locations. History and snapshots are always located with and accessed through the report
on which they are based.

Options

Location

Specify the full path to folder, beginning with the root folder name. You can type the path name or use the tree view to navigate
to the folder you want.

Tree view

Shows the folder structure of report server namespace. Click a folder name to add the full path to the Location field.

See Also

Moving Items

General Properties Page (Folders)

General Properties Page (Reports)

General Properties Page (Resources)

General Properties Page (Shared Data Sources)

Report Manager Help

Reporting Services - Tools and Utilities Reference

My Subscriptions Page
Use the My Subscriptions page to view all of your subscriptions in one place. From this page, you can access and modify or delete
any subscription that you have defined. You cannot access those of other users, nor can you access subscriptions that you use but
do not own (for example, if your name has been added to an existing subscription defined by another user). You cannot create
subscriptions from this page. For more information about creating subscriptions, see the New Subscription / Edit Subscription
Page.

To open this page, on the global toolbar, click My Subscriptions. This page is always available, even if you lack permission to
create subscriptions. If no subscriptions exist or if permission to create or manage subscriptions is disabled, no subscriptions
appear on the page.

By default, subscriptions are sorted in alphabetical order by report name. Click a different column heading to change how
subscriptions are sorted.

Options

Delete

Click Delete to delete a subscription. Before clicking Delete, select the check box next to each subscription that you want to
delete.

Icon

Shows the type of subscription. For more information about icons, see Icons in Report Manager. Click Edit to view or edit the
description.

Report

Shows the report to which you subscribe. Click the report name to view the report.

Description

Shows a description of the subscription. Click the description to view or edit the subscription information for the report.

Folder

Shows the folder that contains the report to which you subscribe. Click the folder name to view the contents of the folder.

Trigger

Identifies criteria that cause the subscription to run. A TimedSubscription trigger is based on a schedule that defines when the
subscription runs. A SnapshotUpdated trigger is based on an update to a report snapshot. You can choose SnapshotUpdated
if the report runs as a report execution snapshot, and you want the subscription to deliver a copy of the report whenever the
snapshot is updated.

Last Run

Shows the last time that the subscription was processed.

Status

Shows the status of the subscription. It indicates whether a subscription is new, or the last time the scheduled report ran. A status
value of "Bad Data" occurs when encrypted subscription data requires updating. To update the subscription, open and then save
the subscription. Saving the subscription updates the encrtypted values.

See Also

Report Manager Help

Reporting Services - Tools and Utilities Reference

New Data Source Page
Use the New Data Source page to create a shared data source item. A shared data source defines a connection to an external data
source. With a shared data source, you can create and maintain the settings for the data source connection separately from the
reports that use the data source.

To open this page, click New Data Source from a Contents page.

Options

Name

Type a name for the shared data source, which is used to identify the item within the report server namespace.

Description

Provide information about the shared data source. This description appears on the Contents page.

Enable this data source

Select to enable or disable the shared data source. You can disable the shared data source to prevent report processing for all
reports that reference the item.

Connection Type

Specify the data processing extension that is used to process data from the data source. Report server includes data processing
extensions for SQL Server, SQL Server Analysis Services, Oracle, ODBC, and OLE DB. Additional data processing extensions may
be available from third-party vendors.

Connection String

Specify the connection string that the report server uses to connect to the data source. The following example illustrates a
connection string used to connect to the SQL Server AdventureWorks database:

data source=<a SQL Server instance>;initial catalog=AdventureWorks2000

Connect Using

Specify options that determine how credentials are obtained.

Important If credentials are provided in the connection string, the options and values provided in this section are
ignored. Note that if you specify credentials on the connection string, the values are displayed in clear text to all users
who view this page.

The credentials supplied by the user running the report

Each user must type in a user name and password to access the data source.

You can define the prompt text that requests user credentials. The default text string is "Enter a user name and password to access
the data source."

Select Use as Windows credentials when connecting to the data source if the credentials that the user provides are
Windows Authentication credentials. Do not select this check box if you are using database authentication (for example, SQL
Server Authentication).

Credentials stored securely in the report server

Store an encrypted user name and password in the report server database. Choose this option to run a report unattended (for
example, reports that are initiated by schedules or events instead of user action).

Choose Use as Windows credentials when connecting to the data source if the credentials are Windows Authentication
credentials. Do not select this check box if you are using database authentication (for example, SQL Server Authentication).

Choose Impersonate the authenticated user after a connection has been made to the data source to allow delegation of
credentials, but only if a data source supports impersonation. For SQL Server databases, this option sets the SETUSER function.

Windows NT Integrated Security

Use the Windows credentials of the current user to access the data source. Choose this option when the credentials that are used
to access a data source are the same as those used to logon to the network domain.

This option works best when Kerberos is enabled for your domain, or when the data source is on the same computer as the report
server. If Kerberos is not enabled, Windows credentials can be passed to one other computer. If additional computer connections
are required, you will get an error instead of the data you expect.

Do not use this option to run unattended reports or reports that are available for subscription. The report server initiates the
running of unattended reports. The credentials of the report server that are used to access the report server database cannot be
used to access external data sources.

Credentials are not required

Specify that credentials are not required to access the data source. Note that if a data source requires a user login, choosing this
option will have no affect. You should only choose this option if the data source connection does not require user credentials.

When you configure a data source to use no credentials, you must perform additional steps if the report that uses the data source
is to support subscriptions, scheduled report history, or scheduled report execution. Specifically, you must create a low privileged
account that the report server uses when running the report. This account is used in place of the service account that the report
server normally runs under. For more information about this account, see Configuring an Account for Unattended Report
Processing.

Apply

Click Apply to save your changes.

See Also

Contents Page

Creating, Modifying, and Deleting Shared Data Sources

Report Manager Help

Specifying Credential and Connection Information

Reporting Services - Tools and Utilities Reference

New Role / Edit Role Page
Use the New Role or Edit Role page to create or modify an item-level role definition. An item-level role definition is a named
collection of tasks that enumerate the tasks a user can perform in relation to folders, reports, or any other item managed by a
report server. An example of an item-level role definition is the predefined Browser role that identifies the kinds of actions a
report end user might require for navigating folders and viewing reports.

Role definitions are intended to be few in number. Most organizations only require a few role definitions. However, if the
predefined role definitions are insufficient, you can vary them or create new ones.

You can open the New Role or Edit Role page from any page on which you define or assign roles:

Open the Site Settings page, click Configure item-level role definitions, and then click New Role.
Open the properties page of a folder or report, click Security, click Edit Item Security, click New Role Assignment, and
then click New Role.
Open the properties page of a folder or report, click Security, click Edit Item Security, click a role assignment (for example,
Everyone or Built-in\Administrators), and then click New Role.

Options

Name

Specify the name of the role definition. A role definition name must be unique within the report server namespace.

Description

Provide a description that explains how to use the role and enumerates what the role supports.

Task

Choose predefined tasks. The set of tasks that you select defines the role.

Task Description

Shows a description of the task that enumerates the operations or permissions that the task supports

Delete

Click to delete an existing role definition from the report server. Deleting a role has a cascade effect; the role is removed from all
role assignments used by the report server.

Copy Role

Click to open another instance of the New Role page. Use this option when you are editing a role definition and you want to use
the definition as a template for a new role. The new instance contains a pre-selected list of tasks that is identical to the task list of
the original role definition.

See Also

Role Definitions

Report Manager Help

Item-Level Roles Page

Site Settings Page

Role Assignments

Reporting Services - Tools and Utilities Reference

New Role Assignment / Edit Role Assignment Page
Use the New Role Assignment or Edit Role Assignment page to define security for a specific report, folder, resource, or shared
data source. Reporting Services security is enforced through role assignments that you apply to reports or folders. A role
assignment matches a group or user to a role definition, where each role definition identifies the tasks that groups or users can
perform with regards to a specific item.

To open this page, select any item, click the Properties tab at the top of the page, and then click the Security tab at the side of the
page. You must have permission to set security at the item level. If an item currently inherits security from a parent item, click Edit
Item Security to change the security settings.

Item-level role assignments can have a broad impact. Although they can be associated with a single report or folder, they can also
be defined at a high level in the folder hierarchy and be inherited by folders and items that are lower in the tree.

Options

Group or User Name

Type the name of a group or user account for which the role assignment is being created. The group or user name must be a valid
system account. If the report server is running under a local account, you must specify local groups or users. If the report server is
running under a domain account, you must specify domain groups or users. Later, if you want to view or edit the role assignment,
click the group or user name to open the Edit Role Assignment page.

Role

Shows all roles defined on the report server that can be used to define security for items. When you create or edit a role
assignment for a report or folder, select one or more roles until the combined set of tasks describe the actions that the user
should be allowed to perform. To view the set of tasks that each role supports, click the role name.

Description

Shows additional information about the role. For predefined roles such as Browser or Content Manager, the description
summarizes the tasks that each role supports.

New Role

Click New Role to create a custom role that contains the set of tasks that you want a user or group to be able to perform. For
more information, see New Role / Edit Role Page.

Delete

Click Delete to delete an existing role assignment. Before clicking Delete, select the check box next to the group or user name,
and then click Delete. You cannot delete a role assignment if it is the only one left (each item must have a minimum of one role
assignment).

See Also

Report Manager Help

Role Assignments

Reporting Services - Tools and Utilities Reference

New Schedule / Edit Schedule Page
Use the New Schedule or Edit Schedule page to create a schedule for a report. Schedules are used with subscriptions, to refresh
cached reports, and to create snapshots as standalone items or in report history.

You can create schedules only for reports that can run unattended. Running a report unattended requires that you store
credentials in the report server database. For more information, see Data Sources Properties Page.

Not all frequency combinations can be supported in a single schedule. For example, if you want to run a report at 12:00 P.M. and
4:00 P.M. every Friday, you must create two daily schedules that specify a Friday run date, one with a start time of 12:00 P.M. and
another with a start time of 4:00 P.M.

Schedule processing is based on the local time of the report server that hosts and processes the schedule.

You can open this page from any page on which you use or define schedules:

Select a report, click New Subscription, and then click Select Schedule.
Select a report, click the Properties tab, click History, and then click Configure.
Select a report, click the Subscriptions tab, and then click Select Schedule.
Select a report, click the Properties tab, click Execution, and then click Configure.

Options

Schedule details

Choose options that determine when and how often a report runs. Frequency options are layered. The first set of options specifies
a category of frequency (hourly, daily, weekly, and so on). The second set of options that appears is based on your initial selection.

Choose Hourly to define a schedule that runs at hourly intervals. Use the Start and end dates section to specify the day on
which to run the schedule.

Choose Daily to define a schedule that runs on the days you select at a specific hour and minute. You can specify days in the
following ways: Every <day>, Every weekday, and Every <number> day. Choosing one approach voids the others, even if the
other days appear to be selected.

Choose Weekly to define a schedule that runs at weekly intervals at a specific hour and minute. The interval can be a complete
week (for example, every two weeks), or days within a week.

Choose Monthly to define a schedule that runs on a monthly basis. Within a month, you can choose a day based on a pattern (for
example, the last Sunday of every month) or specific calendar dates (such as 1 and 15 to indicate the first and fifteenth day of
every month). Using commas and hyphens, you can specify multiple days and ranges; for example, 1, 5, 7-12, 21.

Choose Once to define a schedule that runs only once. Use the Start and end dates section to specify the day on which to run
the schedule. This schedule expires as soon as it is processed.

Start and end dates

Specify a start date that determines when the schedule takes effect and an end date that determines when the schedule expires.

Schedules expire without notification. After the end date, they no longer run. Expired schedules are not deleted. Schedules can
only be deleted manually. That way, if you choose to continue the schedule, you can extend the end date.

See Also

Creating, Modifying, and Deleting Schedules

Report Manager Help

Reporting Services - Tools and Utilities Reference

New Subscription / Edit Subscription Page
Use the New Subscription or Edit Subscription page to create a new subscription or modify an existing subscription to a report.
The options on this page vary depending on your role assignment. Users with advanced permissions can work with additional
options.

You can open this page in the following ways:

To open the New Subscription page, open report property pages, click the Subscriptions tab, and then click New
Subscription. You can also click New Subscription from the View page.
To open the Edit Subscription page, open report property pages, click the Subscriptions tab, find the subscription you want
to modify, and then click Edit. You can also edit subscriptions from My Subscriptions, which is available on the global
toolbar.

Subscriptions are supported for reports that can run unattended. At a minimum, the report must use stored or no credentials. If
the report uses parameters, a default value must be specified. Subscriptions may become inactive if you change report execution
settings or remove the default values used by parameter properties. For more information, see Managing Subscriptions.

Options

Notify by

Select the delivery extension to use to distribute the report. Selecting a delivery extension causes other settings to appear. The
settings vary depending on the delivery extension you choose.

Choosing Report Server E-mail, for example, shows delivery options for To, Subject, Render Format, and Priority. For more
information about how to specify these options, see How to create an e-mail subscription in Books Online.

Notify me when the report content is refreshed

Select this option to subscribe to a report snapshot that is refreshed on a scheduled basis. In this case, the notification occurs
when the snapshot is refreshed.

Notify me when the scheduled report run is complete

Select this option to schedule when the subscription is processed. You can create a schedule that is specific to this subscription, or
you can choose a predefined shared schedule if one is available that meets your criteria.

This option is selected by default if you are subscribing to a report that is not associated with a schedule associated.

Enter parameter values

Use when you are subscribing to a report that has parameters. (This option is available only for parameterized reports.) When
subscribing to a parameterized report, you can specify the parameter values that are used to create the version of the report that
is delivered through the subscription. For example, you can specify a region code to select sales data for a particular region. If you
do not specify a value, the default value is used.

Report Delivery Options

Delivered by

Select the delivery extension to use to distribute the report. Selecting a delivery extension causes other settings to appear. The
settings vary depending on the delivery extension you choose. Reporting Services provide Report Server File Share and Report
Server E-mail delivery.

Report Server E-Mail Settings

Choosing Report Server E-mail shows delivery options that specify how to deliver a report to a mailbox. To e-mail a report, your
report server must be configured for e-mail delivery. E-mail subscriptions provide fields that are familiar to e-mail users (for
example, To, Subject, and Priority fields). Specify Include Report to embed or attach the report, and Include Link to include a
URL to the report. Render Format to choose a presentation format for the attached or embedded report. For more information
about how to specify these options, see How to create an e-mail subscription in Books Online.

Report Server File Share

Choosing Report Server File Share shows delivery options that specify how to deliver a report to a location on the file system. You
can deliver any report to a file share. However, reports that support interactive features (including matrix reports that support

drill-down to supporting rows and columns) are rendered as static files. You cannot view drill-down rows and columns in a file
that is based on a matrix report. Avoid the format HTML with Office Web Components.

The file share must be specified in Uniform Naming Convention (UNC) format (for example, \\myserver\c$\myreportfiles). Do not
include a trailing backslash in the path name. The file name is based on the report name, which you can override by setting the
File Name option. The report file will be delivered in a file format that is based on the render format (for example, if you choose
Excel, the report is delivered as an .xls file). For more information about how to specify these options, see How to create a file
share subscription.

Subscription Processing Options

Use these settings to define the conditions that cause a subscription to process. Some of the options are only available for reports
that use parameters or that run as report execution snapshots.

When the report content is refreshed

Select this option to subscribe to a report snapshot that is refreshed on a scheduled basis. This option is visible only when you are
subscribing to a report that runs as a report execution snapshot. The content for a report execution snapshot is typically refreshed
on a schedule. For reports that run in this mode, you can define a subscription to occur when the snapshot is refreshed.

When the scheduled report run is complete

Select this option to create a schedule that determines when the subscription is processed.

On a shared schedule

Select a predefined schedule to process the subscription.

Enter parameter values

Use when you are subscribing to a report that has parameters. This option is available only for parameterized reports. When
subscribing to a parameterized report, you can specify the parameter values that are used to create the version of the report that
is delivered through the subscription. If you do not specify a value, the default value is used.

See Also

Creating, Modifying, and Deleting Schedules

Report Manager Help

Reporting Services - Tools and Utilities Reference

New System Role / Edit System Role Page
Use the New System Role or Edit System Role page to create a new system role definition or to edit an existing one. A system role
definition specifies a set of system-level tasks that apply to a report server as whole. Editing a role definition affects all role
assignments that include the role definition.

To open this page, on the Site Settings page, click Configure system role definitions. You can then click New Role to open
New System Role, or click an existing role definition to open Edit System Role page.

Options

Name

Specify the name of the role definition. A role definition name must be unique within the report server namespace.

Description

Type information about the role to indicate the tasks it supports. Other users must decide whether to use this role based on the
description you provide.

Task

Displays a predefined list of system-level tasks to be supported by the role you are creating or modifying. You cannot add, delete,
or modify system-level tasks.

Task Description

Displays information about what the task supports. Each task is a container for multiple permissions. The task description conveys
the underlying permissions that are associated with the task.

Delete

Delete the current role definition. Deleting a role definition also deletes all role assignments that include the definition.

Copy Role

Open a New System Role page, initialized with the task selections for the current report definition.

See Also

Report Manager Help

Role Assignments

Role Definitions

Reporting Services - Tools and Utilities Reference

New System Role Assignments / Edit System Role Assignments
Page
Use the New System Role Assignments or Edit System Role Assignments page to define security for the report server. All security
is defined through role assignments that map specific users or groups to the tasks that they can perform. The task list is
represented as a role definition that you select when making the role assignment.

At the system level, the role assignments that you create or modify apply to the report server as a whole. For example, the ability
to create shared schedules is specified at the system level because shared schedules are used throughout the system.

To open this page, on the Site Settings page, click Configure site-wide security. You must be a report server administrator to
access this page.

Options

Delete

Click Delete to delete a role assignment. Before clicking Delete, select the check box next to the role assignment for the group or
user name that you want to delete. You cannot delete built-in role assignments (for example, Built-in\Administrators), which
define the security infrastructure for the report server.

New Role Assignment

Click New Role Assignment to define a custom site-wide role assignment that applies globally to the report server. A custom
role assignment specifies a set of one or more role definitions (either custom or predefined) for groups or users that you select.
Typically, site-wide role assignments are reserved for administrators and applications.

Group or User

Type the name of a group or user account in your domain. If the report server is running under a local account, you must specify
local groups or users. If the report server is running under a domain account, you must specify domain groups or users.

Roles

Click Role to view or edit the tasks that are associated with each role definition. A role definition can be included in multiple role
assignments. Changes that you make to a role definition affect all role assignments that include the role definition. Consider
creating custom role definitions to avoid broad changes that affect multiple role assignments in ways you cannot foresee.

See Also

Report Manager Help

Role Assignments

Role Definitions

Reporting Services - Tools and Utilities Reference

New Folder Page
Use the New Folder page to create a new folder in the report server folder hierarchy. A folder is created in-place, as a subfolder of
the folder that is currently selected. Before creating a folder, you should navigate to the location where you want to create the
folder.

After you create a folder, you can modify its name and description through the General properties page of the folder.

To open this page, on the Contents page, click New Folder.

Options

Name

Specify the name of the folder. A name must contain at least one alphanumeric character. It can also include spaces and certain
symbols. Do not use the characters ; ? : @ & = + , $ / * < > | " / when specifying a name.

Description

Type a description of folder contents. This description appears in the Contents page to users who have permission to access the
folder.

See Also

Creating, Modifying, and Deleting Folders

Contents Page

Report Manager Help

General Properties Page (Folders)

Reporting Services - Tools and Utilities Reference

New Linked Report Page
Use the New Linked Report page to create a linked report. A linked report is a report with settings and properties of its own, but
links to the report definition of another report. Linked reports are useful when you have a base report that you want to vary for
specific groups or users; for example, a regional report that returns different data based on a regional code. A linked report is
typically created from a parameterized report when you want to vary and then save different parameter values with each report
instance. However, you can create a linked report from any report to which you have access.

In contrast to the base report to which it is related, a linked report can have separate general properties, parameters, report
execution options, report history properties, security, and subscriptions. However, linked reports must use the data source
properties of the base report.

To open this page, open the General properties page for the report upon which you want to base the linked report, click the
Properties tab at the top of the page, and then click Create Linked Report.

Options

Name

Specify the name of the linked report. A name must contain at least one alphanumeric character. It can also include spaces and
certain symbols. However, you must not use the characters ; ? : @ & = + , $ / * < > | " / when specifying a name.

Description

Type a description of the report contents. This description appears in the Contents page to users who have permission to access
the report.

Location

Specify the folder path that contains the report. By default, linked reports are created as siblings to the base report. Click Change
Location to put the linked report in a different folder.

OK

Click OK to save your changes and return to the General properties page of the base report.

See Also

Creating, Modifying, and Deleting Linked Reports

Linked Reports

General Properties Page (Reports)

Report Manager Help

Reporting Services - Tools and Utilities Reference

Parameters Properties Page
Use the Parameters properties page to view or modify parameter settings for a parameterized report.

Parameters are specified in the report definition before the report is published. After the report is published, you can modify some
parameter property values. The values that you can modify will vary based on how the parameters are defined in the report. For
example, if a list of static values is defined for a parameter, you can choose a different static value to use as a default, but you
cannot add or remove values from the list. Similarly, if the parameter is based on a query, all aspects of that query (including the
data set that is used, whether null or blank values are allowed, and whether a default value is provided) are defined in the report
prior to publication.

To open this page, select a report, click the Properties tab at the top of the page, and then click the Parameters tab at the side of
the page. If the Parameters tab is not visible, the report does not contain parameters.

Options

Parameter Name

Specifies the name of the parameter.

Data Type

Specifies the data type of the parameter.

Has Default

Select this check box to specify whether the parameter has a default value. If Has Default is not selected, users must specify a
parameter value to use with the report. Selecting this check box enables Default Value and Null.

Default Value

Specify a value for the parameter. To specify a default value, Has Default must be select, and Null must not be selected. A default
value may be provided through the report definition. If Default Value is populated with one or more static values, those values
originate with the report. If Default value is Query Based, the parameter value is determined by a query that is defined in the
report.

If Default Value accepts a value, you can type a constant or syntax that is valid for the data processing extension used with the
report. For example, if the query language of the data processing extension supports wildcards, you can specify a wildcard
character as a default value.

If you subsequently specify that a prompt be displayed to the user, the default value becomes an initial value that users can either
use or modify. If you do not prompt for a parameter value, this value is used for all users who run the report.

Null

Select this check box to specify null as the default value. A null value means that the report runs even if the user does not provide
a parameter value. If there is no check box in this column, the parameter does not accept null values.

Prompt

Select this check box to display a text box used that prompts users for a parameter value.

Clear this check box if you want to run the report in unattended mode (for example, to generate report history or report execution
snapshots), if you want to use the same parameter value for all users, or if you do not require user input for the value.

Prompt String

Provide a text string that appears next to the parameter text box. This string provides a label or descriptive text. There is no limit
on string length. Longer text strings wrap within the space provided.

See Also

General Properties Page (Reports)

Report Manager Help

Running a Parameterized Report

Setting Parameter Properties for a Published Report

Reporting Services - Tools and Utilities Reference

Report History Page
Use the Report History page to view report snapshots that are generated and stored over time. Depending on options that are set
on the report server, report history may contain only the more recent snapshots.

To open this page, select a report and then click the History tab at the top of the page. Report history is always viewed within the
context of the report from which it originates. You cannot view the history of all reports in one place.

To generate report history, the report must be able to run unattended (that is, it must use stored credentials; parameterized
reports must contain default parameter values for all parameters). Report history can be generated manually or as a scheduled
operation. History properties on the report determine the ways in which report history can be created.

You can click a report history snapshot to view it. Snapshots that appear in report history are distinguished only by the date and
time at which they were created. There is no visual indication to distinguish whether a snapshot was generated in response to a
schedule or a manual operation.

Options

Delete

Click Delete to delete one or more snapshots. Before clicking Delete, select the check box next to the snapshot that you want to
delete.

New Snapshot

Click New Snapshot to add a snapshot to report history. This button is available when you choose the option Allow history to
be created manually on the History properties page of the report.

When Run

Displays the date and time at which the snapshot was created. Click a description to view a particular snapshot.

Size

Displays the size of the report definition plus the data in the report. This value indicates how much space in the report server
database is used by the report definition and data. The size of the rendered report, which includes formatting, is actually larger.
The total size, indicated in parentheses, sums the sizes of all snapshots in the report history for the current report.

See Also

Managing Report History

General Properties Page (Reports)

Report Manager Help

History Properties Page

Reporting Services - Tools and Utilities Reference

Reports Page
Use the Reports page to view a list of reports that reference a shared data source.

To open this page, select a shared data source from the Contents page, and then click the Reports tab. The following icon
indicates a shared data source:

Options

Delete

Click Delete to delete the report from the report server database. Before clicking Delete, select the check box next to each report
that you want to delete

Move

Click Move to relocate a report or folder within the folder hierarchy. Before clicking Move, select the check box next to each item
that you want to move. Clicking this button opens the Move Items page, on which you can browse through folders to select a new
location.

Edit

Click the Property icon to access the property pages of a report, subscription lists, and report history.

Type

Shows the icon of the report item type.

Name

Shows the name of the report. Click the name of the report to open it.

Description

Shows the description of the report.

Modified Date

Shows the date and time when the report was last modified.

Modified By

Shows the name of the user who last modified the report.

When Run

For reports that run as report execution snapshots, displays the date and time at which the report was last refreshed.

See Also

Viewing Reports With Report Manager

Contents Page

Report Manager Help

Reporting Services - Tools and Utilities Reference

Search Page
Use the Search page to view the results of a search operation specified for a report, linked report, shared data source, folder, or
resource. Search results are listed alphabetically. You can sort by type, name, or description.

The following items are excluded from a search operation: report snapshots contained in report history, subscriptions, and shared
schedules. Similarly, insufficient permission to view a folder or report excludes that item from a search.

To open this page, type a search string in the Search for field below the global toolbar, and then click Go.

Options

Search for

Type all or part of the name of an item that you want to locate, and then click Go to start the search. The longest string you can
search for is 128 characters.

Item names or descriptions that contain the entire search string anywhere in the text value are included in the search results.

Boolean operators such as the plus character (+) are not supported.

Delete

Click Delete to remove an item from a report server database.

Move

Click Move to relocate an item. Clicking this button opens the Move Items page, on which you can select a different folder
location.

See Also

Report Manager Help

Searching for Reports and Other Items

Reporting Services - Tools and Utilities Reference

Security Properties Page (Items)
Use the Security properties page for items to view or modify the security settings that determine access to folders, reports,
resources, and shared data sources. This page is available for items that you create or have permission to modify.

Access to items is defined through role assignments that specify the tasks that a group or user can perform. A role assignment
consists of one user or group name and one or more role definitions that specify a collection of tasks. The current item is always
included in the role assignment.

Security settings are inherited from the root folder down to subfolders and items within those folders. Unless you specifically
break inherited security, subfolders and items inherit the security context of a parent item. If you redefine a security policy for a
folder in the middle of the hierarchy, all items below it in the hierarchy assume the new security settings.

To open this page, select a folder, report, resource, or data source item, click the Properties tab at the top of the page, and then
click the Security tab at the side of the page.

Options

Edit Item Security

Click Edit Item Security to change how security is defined for the current item. If you are editing security for a report, your
changes apply to the report and any resources it contains. If you are editing security for a folder, your changes apply to the
contents of the current folder and any subfolders.

This button is not available for the Home folder.

The following buttons become available when you edit item security.

Delete

Click Delete to delete an existing role assignment. Before clicking Delete, select the check box next to the group or user name
that you want to delete. You cannot delete a role assignment if it is the only one remaining, or if it is a built-in role assignment (for
example, "Built-in\Administrators") that defines the security baseline for the report server. Deleting a role assignment does not
delete a group or user account or role definitions.

New Role Assignment

Click New Role Assignment to open the New Role Assignment page, which is used to create additional role assignments for the
current item. For more information, see New Role Assignment / Edit Role Assignment Page.

Revert to Parent Security

Click Revert to Parent Security to reset the security settings to that of the immediate parent folder. If inheritance is unbroken
throughout the report server folder hierarchy, the security settings of the top-level folder, Home, are used.

Group or User

Lists the groups and users that are part of an existing role assignment. Existing role assignments for the current folder are defined
for the groups and users that appear in this column. You can click a group or user name to view or edit role assignment details.

Roles

Lists one or more role definitions that are part of an existing role assignment. If multiple roles are assigned to a group or user
account, that group or user can perform all tasks that belong to the roles. To view the tasks that are associated with a role, click
the group or user name to view the role assignment, and then click the role.

See Also

Report Manager Help

Using Default Security

Configuring Security Through Role Assignments

Role Assignments

Role Definitions

Reporting Services - Tools and Utilities Reference

Shared Schedules Page
Use the Shared Schedules page to create, modify, delete, pause, or resume shared schedules. A shared schedule is a named
schedule that you can create and manage separately from reports, subscriptions, and other processes that consume schedule
information. Users can select shared schedules that you provide.

To delete, pause, or resume a shared schedule, select the check box next to the shared schedule that you want to modify.

To open this page, click Site Settings on the global toolbar, and then click Manage shared schedules.

Options

New Schedule

Click New Schedule to open the Scheduling page, which is used to specify frequency information.

Delete

Click Delete to remove a shared schedule.

Pause

Click Pause to stop a shared schedule from running temporarily. Pausing a schedule prevents subscriptions and other scheduled
processes from running.

Resume

Click Resume to reinstate a shared schedule. Lapsed processes that were scheduled to run while the schedule was paused are not
made up.

Schedule

Shows the shared schedules that are currently defined. Click a shared schedule to view or edit frequency information.

Creator

Shows the name of the user who created the shared schedule.

Last Run, Next Run

Shows when the shared schedule was last run and when it will run next.

Status

Shows whether a shared schedule is paused or active.

See Also

Creating, Modifying, and Deleting Schedules

Shared Schedules and Report-Specific Schedules

Report Manager Help

Reporting Services - Tools and Utilities Reference

Site Settings Page
Use the Site Settings page to set default values and enable features for a report server Web site. You must be a report server
administrator to view this page.

To open this page, click Site Settings on the global toolbar.

Options

Name

Specify the title to use for Report Manager. This text appears in the top-left corner of each application page. By default, the title is
SQL Server Reporting Services.

Enable each user to have a My Reports folder

Select this option to have the report server automatically create a My Reports folder for each user who logs on to the report
server.

Choose the role to apply to user's My Reports folder

Select the role that includes the set of tasks that a user can perform in a My Reports folder. The default value is My Reports Role.
This role allows each user to manage his or her My Reports folder by having the equivalent of administration privileges for this
folder, including the ability to schedule reports and add, delete, rename, and move folders and reports. Click Configure item-
level role definitions to view the tasks that belong to this role.

Select the default settings for report history

Choose a default value for the number of copies of report history to retain. The default value provides an initial setting that
establishes report history limits. You can vary these settings at the report level. For more information, see History Properties Page.

If you limit report history later, when the existing report history exceeds the limit you specify, the report server reduces the
existing report history to the new limit. The oldest report snapshots are deleted first. If report history is empty or below the limit,
new report snapshots are added. When the limit is reached, the oldest snapshot is deleted when a new report snapshot is added.

Select a time-out value for report execution

Specify whether report processing times out after a certain number of seconds. If you choose the default setting, the time-out
setting that is specified in the Site Settings page is used for this report. This value applies to report processing on a report server.
It does not affect data processing on the database server that provides the data for your report. The count for report processing
begins when the report is selected and ends when the report opens. When you set this value, specify enough time to complete
both data processing and report processing.

Enable report execution logging

Select this option to generate execution logs.

Remove log entries older than <number> days

Select this option to remove execution logs after a specified number of days.

Apply

Click Apply to save your changes to the report server.

Configure site-wide security

Click this link to open the System Role Assignments page, on which you can modify the tasks that are associated with predefined
roles or create custom roles and policies.

Configure item-level role definitions

Click this link to open the Item-Level Roles page, on which you can view the role definitions that are used to secure individual
items.

Configure system-level role definitions

Click this link to open the System Roles page, on which you can view the role definitions that specify which tasks can be used in
system role assignments.

Manage shared schedules

Click this link to open the Shared Schedules page, on which you can predefine schedules that users can select for their reports.

See Also

Configuring Security Through Role Assignments

Setting System-Level Security

Shared Schedules and Report-Specific Schedules

Using Default Security

Report Manager Help

Managing My Reports

Reporting Services - Tools and Utilities Reference

Subscriptions Page
Use the Subscriptions page to list all of the subscriptions for the current report or shared data source. If you have sufficient
permission (as conveyed by the Manage all subscriptions task), you can view the subscriptions of all users. Otherwise, this page
shows only the subscriptions that you own. To open this page, select a report, and then click the Subscriptions tab at the top of
the page.

Note Other pages also contain subscription information. For more information, see My Subscriptions Page to access
all your subscriptions in one place or the New Subscription / Edit Subscription Page to create or edit a subscription.

Some options are visible only if there are existing subscriptions to work with. If no subscriptions are defined, and you are
accessing this page from a report, the New Subscription and New Data-Driven Subscription are the only options on the page.

Before you can create a new subscription, you must verify that the report uses stored credentials. Use the Data Source properties
page to store credentials. For more information, see Data Sources Properties Page.

Options

Delete

Click Delete to delete a subscription. Before you can delete a subscription, select the check box next to each subscription that you
want to delete.

New Subscription

Click New Subscription to create a new subscription to the current report. This button is enabled when the report uses stored
credentials or no credentials. This button is not available when you access subscriptions through a shared data source.

New Data-Driven Subscription

Click New Data-Driven Subscription to generate a subscriber list and delivery options from a command or query against a data
store containing that information. This button is enabled when the report uses stored credentials or no credentials. This button is
not available when you access subscriptions through a shared data source.

Icon

Shows the type of subscription. For more information about icons, see Icons in Report Manager. Click Edit to view or edit the
description.

Report

When you open a subscriptions list from a shared data source, this column identifies the report for which the subscription is
defined. The Folder column identifies the location of the report.

Description

Shows a description of the subscription.

Trigger

Identifies criteria that cause the subscription to run. A TimedSubscription trigger is based on a schedule that defines when the
subscription runs. A SnapshotUpdated trigger is based on an update to a report snapshot. You can choose SnapshotUpdated
if the report runs as a report execution snapshot, and you want the subscription to deliver a copy of the report whenever the
snapshot is updated.

Owner

Shows the name of the user who created the subscription.

Last Run

Shows the last time that the subscription was processed.

Status

Shows the status of the subscription. It indicates whether a subscription is new, or the last time the scheduled report ran. A status
value of "Bad Data" occurs when encrypted subscription data requires updating. To update the subscription, open and then save
the subscription. Saving the subscription updates the encrtypted values.

See Also

Creating, Modifying, and Deleting Standard Subscriptions

Creating, Modifying, and Deleting Schedules

Report Manager Help

Reporting Services - Tools and Utilities Reference

System Role Assignments Page
Use the System Role Assignments page to view the system role assignments that control access to the report server site. System
role assignments exist outside of the scope of the report server namespace or folder hierarchy. System role assignments are
global and cannot vary for specific items.

A default system role assignment is created when the report server is installed. This system role assignment grants to local
system administrators permissions to manage the report server environment. A local system administrator can always set
security for a local report server, even if system role assignments are deleted.

If a report contains confidential data that local system administrators must not see, you can prevent unauthorized viewing of the
report by prompting users to provide credentials when accessing the report.

To open this page, click Site Settings on the global toolbar, and then click Configure site-wide security.

Options

Delete

Click Delete to delete an existing role assignment. Before clicking Delete, select the check box next to the group or user name
that you want to remove. You cannot delete a role assignment if it is the only one remaining, or if it is a built-in role assignment
that defines the security baseline for the report server (for example, Built-in\Administrators). Deleting a role assignment does not
delete a group or user account or role definitions.

New Role Assignment

Click New Role Assignment to open the New Role Assignment page, which is used to create additional system role assignments
for the report server site. For more information, see New Role Assignment / Edit Role Assignment Page.

Group or User

Lists the groups and users that are part of an existing role assignment. Existing role assignments for the current folder are defined
for the groups and users that appear in this column. Click a group or user name to view or edit role assignment details.

Roles

Lists one or more role definitions that are part of an existing role assignment. If multiple roles are assigned to a group or user
account, that group or user can perform all tasks that belong to all roles. To view the tasks that are associated with a role, click the
group or user name to view the role assignment, and then click the role.

See Also

Report Manager Help

Configuring Security Through Role Assignments

Reporting Services - Tools and Utilities Reference

System Roles Page
Use the System Roles page to view the system role definitions that are currently defined for the report server. A system role
definition contains a named collection of tasks that are performed relative to the entire site (that is, the virtual root that hosts the
report server environment), instead of an individual item. Role definitions are assigned to a user or groups to create a resulting
role assignment. The tasks in the role definition specify what the user or group can do.

Reporting Services has two predefined system role definitions: System Administrator and System User. You can modify the role
definitions by changing the task list of each one, or you can create a new system role that supports a different combination of
tasks.

To open this page, click Site Settings on the global toolbar, and then click Configure system-level role definitions.

Options

New Role

Click New Role to open the New System Role page.

Role

Lists the role definitions that apply to the system as a whole. Click a role definition to view the tasks it supports.

Description

Contains information about the role definition.

See Also

Report Manager Help

Using Default Security

Configuring Security Through Role Assignments

Role Definitions

Reporting Services - Tools and Utilities Reference

Upload File Page
Use the Upload File page to copy a file from the file system into the report server database. Uploaded files are represented as
items in the report server folder hierarchy. Uploaded .rdl files are published to a report server as reports. All other file types are
stored as resources. The folder from which you initiate the upload operation is the folder that will contain the uploaded file. After
the upload is complete, you can move the item to a different location.

To open this page, click Upload File on the Contents page. You can only add files to a folder for which you have permission to
add content.

Options

File to Upload

Displays the fully qualified path to the file you are copying from the file system.

Browse

Click Browse to choose a file from the file system.

Name

Type the name of the file, as it will appear in the report server namespace. A name must contain at least one alphanumeric
character. It can also include spaces and certain symbols. Do not use the characters ; ? : @ & = + , $ / * < > | " / when specifying
an item name.

Overwrite item if it exists

Select this check box if you want to replace an existing item with a newer version. To overwrite an existing version, the name of
the new item and the existing item must be an exact match.

See Also

Contents Page

Report Manager Help

Uploading Files to a Folder

Reporting Services - Tools and Utilities Reference

View Page (Reports)
Use the View page for reports to view a report. This page opens when you select a report. If the report is formatted in HTML, you
can use the report toolbar to navigate through report pages, search within a report, or render the report in a different format. The
following diagram shows the report toolbar.

For more information about the report toolbar and report operations, click this icon:

Running Parameterized Reports

A report that contains input fields and a View Report button is a parameterized report. To view a parameterized report, you may
need to provide values that are used to run the report.

For example, when Null is selected and you want to specify a value to use with the report, you must first clear the Null check box.
If you want to run the report without specifying a value, select Null and then click View Report.

See Also

Report Manager Help

Running Reports

Running a Parameterized Report

Viewing Reports With Report Manager

Reporting Services - Tools and Utilities Reference

View Page (Resources)
Use the View page for resources to view a resource. This page opens when you select a resource. Most image files (such as JPG,
GIF, and PNG files) can be viewed within the View page of Report Manager. Other resources open in a separate application
window.

In addition to viewing resources on the View page, you can set properties and security. For more information, see General
Properties Page (Resources) and Security Properties Page (Items).

See Also

Managing Resources

Report Manager Help

Reporting Services - Tools and Utilities Reference

Setup User Interface Reference
This section describes the installation options presented in Microsoft® SQL Server™ Reporting Services Setup. Use Setup to
install the report server, Report Manager, and Report Designer, and to change or remove a current installation.

Not all pages appear every time you run Setup. Depending on the components you select, some pages may be omitted. For
example, if you only select Report Designer in the Feature Selection page, several of these pages will not appear.

The following table describes Setup pages.

Page Description
Feature Selection Choose Reporting Services features to

install.
Disk Cost Shows the disk space requirements for the

Reporting Services components you've
chosen to install.

Installation Folder Specify the folders in which to install
program files and data files.

Service Account Specify the account under which the
ReportServer service runs.

Reporting Services Virtual Directories Specify the location of the virtual
directories through which users access the
report server and Report Manager.

Report Server Database Specify whether to create a new report
server database or use an existing
database, the name of the report server
database, and the type of authentication
the report server uses to connect to the
database.

Report Server Web Farm Setup Add the current Reporting Services
instance to a Web farm.

Report Server Delivery Settings Specify information regarding e-mail
delivery of reports.

Report Server Samples Setup Installs the AdventureWorks samples
database in an existing SQL Server
instance.

Licensing Mode Specify the type and quantity of licenses
that were purchased with the SQL Server
2000 product.

Change or Remove Instance Modify the features installed with
Reporting Services or remove all
Reporting Services components from the
local computer.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Feature Selection
Use this page to choose individual Reporting Services features to install.

The Feature Selection page consists of two panes. The left pane displays a tree view of the features that you can install. Expand a
feature to view its subfeatures by clicking the plus (+) symbol. When you click a feature or subfeature, the Feature Description
pane on the right side displays a description of the selection and its disk space requirements. For more information about
individual features, see Selecting Components of Reporting Services to Install.

Options

To add or remove a feature, click the icon for the feature, and then choose one of the following options from the drop-down list:

Will be installed on local hard drive

Install the selected feature in the location shown under Installation path.

Entire feature will be installed on local hard drive

Install the selected feature and all subfeatures. Expand the parent feature to view subfeatures.

Entire feature will be unavailable

Skip installation of the selected feature for a new installation of Reporting Services, or remove the feature from an existing
installation. After you select this option, a red "X" appears next to the feature, and the icon for any parent features in the tree view
appears dimmed.

The Feature Selection page also offers the following options:

Installation path

Shows the installation directory for features with a user-configurable installation path. Not all features allow a user-configurable
installation location; the Browse button is unavailable if a location cannot be changed. To change the installation directory for
user-configurable features, click Browse.

Browse

Change the location where the selected features will be installed. This button is available only for features with a user-
configurable destination folder. The Browse button is not available if you are changing installed components.

Disk Cost

Shows the disk space that is available on system drives for installing the selected Reporting Services feature. After examining the
disk space on your computer, click Close to return to the Feature Selection dialog and continue installing Reporting Services.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Disk Cost
Use this page to view the disk space available on your computer for the Reporting Services components you have chosen to
install.

After examining the disk space available on your computer, click OK to continue installing Reporting Services. If the selected drive
does not have enough space available to install the components, click Browse on the Feature Selection page to select a different
installation path.

Close

Close the Disk Cost dialog and return to the Feature Selection page.

The following buttons appear when there is not enough disk space to install the selected components, or when there is not
enough space available during installation for the remaining components.

Resume

Close the Disk Cost dialog and return to the Feature Selection page if you have selected components with a combined size that
exceeds the capacity of the disk. If this dialog appears while you are currently installing, you can delete items from your hard drive
to provide space for the installation of the selected components, and click Resume to continue the installation.

Exit

Close the Disk Cost dialog and return to the Feature Selection page.

See Also

Installing Reporting Services

Hardware Requirements for Reporting Services

Reporting Services - Tools and Utilities Reference

Installation Folder
Use this page to specify the destination folders in which to install the Reporting Services components you've selected. The
installation path must be on the local computer. This page is displayed when you click Browse on the Feature Selection page.

Options

Install in

Shows the current folder name where the selected component files will install.

Navigate up

Navigate upwards in the directory structure. When Navigate Up is clicked, the parent of the current installation folder, shown in
Install in textbox, is displayed. The subfolder list is updated to list the contents of the new parent folder.

New folder

Create a new folder. The folder is created as a child of the folder that is listed in Install in text box.

Subfolder list

Shows the subfolders that belong to the folder displayed in Install in. When you select a subfolder, that folder is displayed in
Install in and is appended to the path shown in Installation path.

Installation path

Shows the system drive and full path for the installation of the selected component.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Service Account
Use this page to specify the account under which the ReportServer Windows service runs. You can also specify whether the
ReportServer service starts automatically. To change options that you set on the ReportServer service at a later time, run
Services under Administrative Tools in Control Panel.

This page also shows account information for the Report Server Web service. The Report Server Web service always runs under
the ASP.NET account. You cannot specify a different account when you use the Setup Wizard to install Reporting Services.

Choosing a Credential Type

Microsoft recommends different credential types depending on the operating system the service runs on and your domain
configuration. Credentials that work well on one operating system may be ineffective on another. Furthermore, the type of
credentials that you choose affects the connection between the report server and the report server database, and between the
server and the external data sources used by reports.

If the computer is running Windows Server 2003 or Windows XP, there are no restrictions to consider. You can choose any built-
in or domain user account.

If you are running Windows 2000, you must take domain configuration into account. If your domain includes domain controllers
that run a variety of operating systems (and the domain functional level supports Windows 2000 servers), you can choose the
built-in Local System account (NT AUTHORITY/SYSTEM). This is the recommended credential type for Windows 2000.

If your domain includes only Windows Server 2003 domain controllers (and the domain functional level is raised to Windows
Server 2003), consider running the ReportServer Windows service as a domain account. In some cases, Windows Server 2003
domains restrict the Local System account of Windows 2000 computers. If this is true for your domain, you will get the following
error when the report server tries to deliver a report subscription: "Failure sending mail: The Report Server has encountered a
configuration error." This is because the report server (running as Local Sytem on Windows 2000) does not have permission to
access domain account information on a Windows Server 2003 domain, and therefore cannot complete a report delivery.

Note that if you do specify a domain account for the ReportServer Windows service, it will affect how you configure data source
connections for a report. It also introduces configuration steps that are not otherwise required. When you specify a domain
account be sure to do the following:

When configuring the connection between a report server and the report server database, if the SQL Server is a remote
instance, you must use SQL Server Authentication as the Credentials Type. If the SQL Server is local, you can use either
SQL Server Authentication or the same domain account that you specified for the ReportServer Windows service. For more
information about specifying a connection to the report server database, see Report Server Database.
When configuring a data source connection for reports, you must avoid using prompted or stored Windows credentials to
connect to external data sources. If you want to use prompted or stored credentials, use data source credentials (for
example, specify a SQL Server login if the data source type is SQL Server).
If the report is configured to run without credentials and you want to support unattended processing (specifically, a report
that is executed on a schedule rather than on-demand), you must create a special user account. For more information, see
Configuring an Account for Unattended Report Processing.

For more information about data source configuration and running a report unattended, see Specifying Credential and
Connection Information.

Options

Use a built-in account

Select one of the following options from the drop-down list.

Option Description
NT AUTHORITY/SYSTEM Run the ReportServer service as Local

System.
Network Service Run the ReportServer service with

network service account credentials. This
option is displayed only if you are
running Windows Server 2003.

Use a domain user account

Run the ReportServer Windows service with domain account user credentials. The following characters are not allowed in either
a user or domain name:

" / \ [] : ; = , + * ? < > |

When selected, the following fields are required.

Field Description
User name Enter the user name for the domain

account. The name may not exceed 20
characters.

Password Enter the password to use with the
domain account. The password may not
exceed 255 characters.

Domain Enter the domain name assigned to the
account. The name may not exceed 254
characters.

Auto-start the service

Start the ReportServer Windows service automatically when your operating system is started. If the Auto-start the service
check box is cleared, you must start the service manually every time the server is restarted.

See Also

Installing Reporting Services

System and User Accounts Used in Reporting Services Installation

Reporting Services - Tools and Utilities Reference

Reporting Services Virtual Directories
Use this page to specify the virtual directory names for the report server and Report Manager. Both the report server and Report
Manager require virtual directories, which are used to access a report server or run the Report Manager application. The virtual
directories are created on the default Web site in Internet Information Services (IIS). If the default Web site is stopped during
installation, a message is displayed indicating that the installation will continue, but the virtual directories are unavailable until the
default Web site is started.

Virtual directory names must comply with IIS conventions. Virtual directory names may not exceed 50 characters.

The default Web site IP address must be mapped to (All Unassigned). To verify this setting, open Internet Information
Services, expand the tree in the left pane, right-click Default Web Site, and select Properties. The IP address is specified on the
Web Site tab of the Default Web Site Properties dialog.

Options

Report Server Virtual Directory

Enter the name of the virtual directory for the report server. The default value is ReportServer. You do not need to specify the
http://<servername> portion of the URL. If the ReportServer virtual directory is already in use, Setup requires you to specify a
different name. If the default name is used, the URL to access the report server would be http://<servername>/ReportServer.

Report Manager Virtual Directory

Type the name of the virtual directory for Report Manager. The default value is Reports. You do not need to specify the
http://<servername> portion of the URL. If the default name is used, the URL used to access Report Manager would be
http://<servername>/Reports.

Redirect the default Web site home page on this computer to the local Report Manager virtual directory

Make the Report Manager virtual directory the default web site on the local computer. When this option is selected, entering
http://localhost redirects the browser to the Report Manager virtual directory. This option does not direct the default homepage of
the browser to Report Manager.

Use SSL (Secure Sockets Layer) connections when retrieving data on these virtual directories

Secure data that is transmitted between a browser or client application, and Report Manager and report server. Both the client
and the server computers must have the proper certificates installed for SSL encryption to function, in addition to having SSL
configured on the Web server. If you want to change this setting after installation, you can configure Reporting Services to use the
certificate at a later time. For more information, see RSReportServer Configuration File.

Selecting this option sets the configuration file SecureConnectionLevel element to level 2. SecureConnectionLevel controls
SSL security; setting it to level 2 requires most APIs to use SSL. For more information about the APIs that require SSL, see Using
Secure Web Service Methods.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Report Server Database
Use this page to specify whether to create a new report server database or use an existing one, and to specify the type of
credentials used by the ReportServer service to connect to the SQL Server instance that hosts the report server database.

The report server database is created in the security context of the user running Setup. If you specify a remote SQL Server
instance, be sure that you have permission to create a database on that instance. When you install Reporting Services using the
Setup Wizard, you cannot specify a different account to create the database. However, you can specify credentials when you use
command-line parameters to perform an installation. For more information about remote databases and account requirements,
see Preparing to Install.

Note The scheduling engine used with Reporting Services requires SQL Server QFE 859 in order to run on a
Windows Server 2003 computer using the Network Service account. Until the SQL Server QFE is installed, you will not
be able to choose the Network Service built-in account during setup. To download the QFE, go to Microsoft Support.
Note that after you install the hotfix, you cannot rename columns in Enterprise Manager. Consider using a different
account if you do not want to apply the hotfix.

Options

SQL Server instance

Specify the SQL Server instance to host the report server database. A list of all locally installed SQL Server 2000 instances is
provided. You can type the name of another SQL Server instance, including a remote instance, or select an instance from the
drop-down list. If you type the name of a SQL Server instance, specify the network path of the SQL Server service that you want
the report server to connect to. If a report server database with the same name is found, that database is used. The SQL Server
instance is specified by <servername>, or by <servername>\<instancename> if multiple instances of SQL Server are installed.

Name

Enter the name of the report server database. The database name may not exceed 117 characters. The default name is
ReportServer. If you have an existing report server database that you want to attach, enter the name of the server in SQL Server
instance, and type the name of the existing report server database. Using an existing database joins the report server to a Web
farm if certain criteria is met. Note that Web farms are not supported with the Standard Edition of Reporting Services. For more
information about installing a web farm, see Installing a Report Server Web Farm.

Credentials Type

Specify the type of credentials that the ReportServer service uses to connect to the SQL Server instance. You can choose a service
account, a domain user account, or a SQL Server account. For all operating systems except Microsoft Windows® 2000, the default
value is the account that you specify on the Service Account page. For Windows 2000, the default is a domain user account.

Username

Enter the user name the report server uses to connect to the SQL Server instance. A user name is not required if a service account
is used. The user name may not exceed 20 characters.

Password

Specify the password to use with the user name. The password may not exceed 255 characters.

Domain

Specify the domain of the user specified in Username. A domain is required only if a domain user account is used. The domain
name may not exceed 254 characters.

See Also

Installing Reporting Services

http://go.microsoft.com/fwlink/?linkid=20411

Reporting Services - Tools and Utilities Reference

Report Server Web Farm Setup
Use this page to add the current Reporting Services instance to a Web farm. All of the computers that are part of the Web farm
must be in the same domain or in a trusted domain.

This page appears when the report server database chosen to host the report server is an existing report server database, and the
Reporting Services edition supports deploying over a Web farm.

Report Server

Enter the name of a computer that is hosting an existing report server instance. If you are combining multiple report servers into a
single Web farm, you should specify the same value for this field each time you run Setup (that is, you should specify the same
report server host computer name for each report server node you install). Do not prefix the name with backward slashes (\\).
Do not include the virtual directory name of the report server when you specify the computer name. The name may not exceed
255 characters.

Use the credentials of the user running setup

Use the credentials of the user running setup to connect to the report server that was specified in Report Server.

User Name

Enter the name of the user to connect to the report server. The account must have permission to administer the report server in
the Web farm.

Password

Enter the password for the user given in User Name.

Domain

Enter the domain that corresponds to the user given in User Name.

See Also

Installing Reporting Services

Installing a Report Server Web Farm

Reporting Services - Tools and Utilities Reference

Report Server Delivery Settings
Use this page to specify information regarding e-mail delivery of reports. You can embed a report in an e-mail message or send a
simple e-mail notification to a pager or other device.

The information on this page is optional; however, it is suggested that you supply this information during installation so that
reports can be delivered through e-mail delivery immediately. If you want to provide the information after installation, modify the
elements in the configuration file controlling the e-mail properties. For more information, see Configuring a Report Server for E-
Mail Delivery.

SMTP server address

Type the name of the Simple Mail Transfer Protocol (SMTP) server that will be used to send the reports. If you are using a
Microsoft Exchange server, you must specify the name of the SMTP gateway for that server.

From address

Enter an e-mail account name. This address is inserted into the From: field of e-mail messages sent from the report server. The
name does not have to be a valid account.

For more information about e-mail delivery of reports, see E-Mail Delivery in Reporting Services.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Report Server Samples Setup
Use this page to install the AdventureWorks sample database and attach it to an existing SQL Server instance. The SQL Server
instance must be local, and the database must not already exist.

If you cannot install the sample database in a local SQL Server instance, you must page back through the Setup Wizard and
remove the AdventureWorks database selection from the Feature Selection tree. After Setup completes, you can run it on a
different computer to install just the AdventureWorks sample database. The computer must satisfy Setup prerequisites (see
Software Requirements for Reporting Services), and it must have a local SQL Server instance. The database is created using the
credentials of the user running Setup. To install just the sample database, select AdventureWorks sample database in the
Feature Selection tree.

Options

SQL Server instance

Specify the name of a local SQL Server 2000 instance where the sample database is to be installed.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Licensing Mode
Use this page to specify the type of license purchased for Reporting Services. You can choose either a per-seat license or a per-
processor license. Reporting Services is included in your SQL Server 2000 license. You must have a valid SQL Server license for
each computer on which the server components are installed. Report Designer requires a valid license for a Microsoft Visual
Studio .NET 2003 product. You do not need a license to install other client components (specifically, the administrative tools,
samples, and product documentation). For more information about licensing, go to the Reporting Services web site.

Options

Per seat license

Specify the number of seats purchased.

Per processor license

Specify the number of processor licenses purchased.

See Also

Editions of Reporting Services

Installing Reporting Services

Selecting Components of Reporting Services to Install

http://go.microsoft.com/fwlink/?linkid=19951

Reporting Services - Tools and Utilities Reference

Change or Remove Instance
Use this page to change the features installed with Reporting Services or to remove all Reporting Services components from the
local computer.

Options

Change Installed Components

Change the features that are installed with Reporting Services components.

Remove Microsoft SQL Server Reporting Services

Remove all the Reporting Services components from the local computer. Uninstalling Reporting Services does not remove the
following items:

ReportServer. ReportServertempDB, and AdventureWorks databases.
SQL Server Agent jobs used to schedule the processing of reports.
Setup log files, trace log files, and error log files.

To remove the databases, you must detach the databases before deleting them. SQL Server Agent jobs are removed using
Enterprise Manager, Transact-SQL, or SQL-DMO. The log files must be deleted manually.

For more information about how to delete a database, see "Deleting a Database" in SQL Server Books Online. For information
about removing SQL Server Agent jobs, see "Modifying and Viewing Jobs" in SQL Server Books Online. For more information
about the location of the log files to delete, see "How to View Setup Log Files" in SQL Server Books Online.

See Also

Installing Reporting Services

Reporting Services - Tools and Utilities Reference

Command Line Utilities Reference
Reporting Services includes several command line utilities that you can use to administer a report server. The utilities are installed
when you select Administrator Tools during setup. Setup adds path information for each executable to the Path system variable
so that you can run each executable from any directory on your computer.

You can specify arguments on the command line in any order, and you can preface them with either a minus sign (-) or a
backslash (/). Generally, arguments are not case-sensitive. However, a common exception is the password argument, which is
usually case-sensitive. You can include spaces between an argument and its value.

The following table describes these console applications:

Topic Description
rs Utility Provides information about the command

prompt script utility used to administer a
report server.

rsactivate Utility Provides information about the command
prompt utility used to activate a report
server instance.

rsconfig Utility Provides information about the command
prompt utility used to configure report
server connections.

rskeymgmt Utility Provides information about the command
prompt utility used to back up and restore
encryption keys used by the report server.

See Also

Report Server Command Line Utilities

Tools and Utilities Reference

Reporting Services - Tools and Utilities Reference

rs Utility
The rs utility is a script host that processes script you provide in an input file. You can define scripts to administer a report server,
copy report server database content to another database, publish reports, and so forth. The script must be written in Microsoft
Visual Basic® .NET code, and stored in a Unicode or UTF-8 text file with a .rss file extension. You cannot debug scripts with the rs
utility. To debug a script, run the code from within Visual Studio.

You can run scripts to make changes to the local computer or a remote computer. To make changes to a remote computer,
specify the remote computer in the serverURL argument.

To run the tool, you must be a local administrator on the computer that has the report server instance you are running the script
against. To learn more about the rs utility, run or view a sample scripts that publish sample reports to a report server and cancel a
running process. For more information, see Sample Scripts.

File Location

The command line utilities are installed when you choose Administration Tools during Setup. You can run them from any
directory on your file system. Rs.exe is located at <drive>:\Program Files\Microsoft SQL Server\80\Tools\Binn.

Syntax

rs {-?}
[-i input_file]
[-s serverURL]
{-u username}
{-p password}
{-l time_out}
{-b }
{-v globalvars}
{-t }

Arguments

-?

Displays the syntax of rs arguments.

-i input_file

(Required.) Specifies the .rss file to execute. This value must be a fully-qualified path to the .rss file. The following example
illustrates the syntax for this argument:

rs –i c:\scriptfiles\script_copycontent.rss -s http://localhost/reportserver

-s serverURL

(Required.) Specifies the server and virtual directory to execute the file against. The prefix http:// or https:// at the beginning of the
server name is optional. If you omit the prefix, Reporting Services attempts to use https first, and then uses http if https does not
work.

-u username

(Optional if you are logged on as a local administrator.) Specifies the user name that is used to log on to the server. The value
must include the domain and user account. If username and password are omitted, the current Windows user account is used.

-p password

(Optional if you are logged on as a local administrator.) Specifies the password that is used to log on to the server.

-l time_out

(Optional.) Specifies the number of seconds that elapse before the connection to the server times out. The default is 8 seconds. If
you do not specify a time-out value, the default is used. A value of 0 specifies that the connection never times out.

-b

(Optional.) Specifies that the commands in the script file run in a batch. If any commands fail, the batch is rolled back. Some
commands cannot be batched, and those succeed as usual. Only exceptions that are thrown and are not handled within the script
result in a rollback. If the script handles an exception and returns normally from Main, the batch is committed.

If you omit this parameter, the commands run without creating a batch.

-v globalvars

(Optional.) Specifies that global variables are created with the names given and set to the values supplied. For example, -v a="b"
c="d" results in a variable named a with a value of "b" and a variable c with a value of "d". These variables are global and are
available to any function in the script. A backslash and quotation mark (\") is interpreted as a double quotation mark. The
quotation marks are required only if the string contains a space. Variable names must be valid for Visual Basic .NET: they must
start with alphabetic character or underscore and contain alphabetic characters, digits, or underscores. Reserved words cannot be
used as variable names.

-t

(Optional.) Adds trace information to any error messages that may occur. This argument does not take a value.

See Also

Error Reporting for rs Utility

Running a Reporting Services Script File

Report Server Command Line Utilities

Scripting Deployment and Administrative Tasks

Scripting with RS.exe and the Web Service

Reporting Services - Tools and Utilities Reference

rsactivate Utility
The rsactivate utility activates the Report Server Windows service and Report Server Web service on a report server instance.
You activate service when you add a new report server instance to a Web farm or replace a report server that has failed due to
hardware problems. The process of activating a service creates a symmetric key that the report server uses to encrypt and decrypt
data in a report server database.

Some of the Rsactivate arguments cannot be used together. The following table describes the arguments that must be specified
separately:

Argument Description
-m computername Use this argument to active a remote report server instance.

When specifying this argument, you must also specify the -u
username and -p password arguments to log on to the remote
computer as a local administrator.

-c configurationfile Use this argument to activate a local report server instance
-r reactivate Use this argument to reactivate a local report server instance

To run the tool, you must be a local administrator on the computer that has the report server instance you are activating. For
more information about the tool, see Activating a Report Server Instance.

File Location

The command line utilities are installed when you choose Administration Tools during Setup. You can run them from any
directory on your file system. Rsactivate.exe is located at <drive>:\Program Files\Microsoft SQL Server\80\Tools\Binn.

Syntax

rsactivate {-?}
[–m computername]
[-c configurationfile]
{-r reactivate}
{-u username}
{-p password}
{-t trace}

Arguments

-?

Displays the syntax of rsactivate arguments.

-m computername

Used to activate a remote report server instance. This argument specifies the name of the remote computer on which the report
server is to be activated. The following example illustrates the syntax for this argument:

rsconfig -m \\<remoteservername> -u<admin user account> -p<admin user password>

-c configurationfile

Used to activate a local report server instance. This argument is used in place of computername. The value must be a fully
qualified path to the RSReportServer configuration file. The following example illustrates the syntax for this argument:

rsconfig -c"C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\RSReportServer.config"

Important Note that the path must be enclosed in double-quotation marks.

-r

Reactivates the Report Server Web service on the local computer. This argument does not take a value. The following example
illustrates the syntax for this argument:

rsconfig -r

-u [domain\]username

Specifies the user name of the local administrator. Specify this value when you use the -m argument.

-p password

(Required if username is specified.). Specifies the password to use with the username argument. This value is case-sensitive.

-t

(Optional.) Adds trace information to any error messages that may occur. This argument does not take a value.

See Also

Deploying and Administering Reporting Services

Error Reporting for rsactivate Utility

Reporting Services Configuration Files

RSReportServer Configuration File

Report Server Command Line Utilities

Reporting Services - Tools and Utilities Reference

rsconfig Utility
The rsconfig utility is used to specify configuration file settings in RSReportServer.config that use encrypted values.
Configuration settings that use encrypted values include connection values used to connect to the report server database, and
account values used for unattended report processing.

Rsconfig is used for two purposes: to modify the connection information that a report server uses to connect to a report server
database, and to configure a special account that the report server uses to log on to a remote database server when other
credentials are not available. For more information about either scenario, see Configuring a Report Server Connection or
Configuring an Account for Unattended Report Processing.

The following table describes the combination of arguments to use, depending on the configuration settings you want to specify:

Argument Description
-c Use this argument to specify connection information used by the

report server to connect to the report server database. Additional
arguments provide values for settings you are configuring:

-m is used to specify a remote computer (optional)
-s is used to specify the Web server hosting the report server
-a is used to specify the authentication mode
-u and -p are used to specify an account
-d is used to specify the report server database name

-e Use this argument to configure an account used to support unattended
report execution. The unattended account settings must include:

-u and -p are used to specify a domain user account. When used with
the -e argument, the -u argument must include a domain name.

You can run Rsconfig on a local or remote instance of Reporting Services. You must be a local administrator on the computer
that hosts the report server you are configuring. Windows Management Instrumentation (WMI) must be installed on the
computer that you are configuring.

Important If you run Rsconfig on a computer that is already running the Report Services Web service, you must
reset Internet Information Services (IIS) to restart the Web service. You can reset IIS by typing iisreset at the command
line.

File Location

The command line utilities are installed when you choose Administration Tools during Setup. You can run them from any
directory on your file system. Rsconfig.exe is located at <drive>:\Program Files\Microsoft SQL Server\80\Tools\Binn.

Syntax

rsconfig {-?}
{–c }
{–e }
[–m computername]
[–s servername]
{–d databasename}
{–a authmethod}
[-u username]
[-p password]
[-t]

Arguments

-?

Displays the syntax of rsconfig arguments.

-c

Used to set encrypted connection values in the rsreportserver.config file that connect a report server to the SQL Server instance
hosting the report server database. This argument does not take a value. However, you must include additional arguments on the

command line to specify that values that are encrypted in the configuration file. The arguments that you can specify include -m
computername, -s servername, -d databasename, -a authmethod, -u username, -p password, and -t tracing. The following
example illustrates the syntax for this argument:

rsconfig -c -s<yourservername> -dreportserver -aSQL -u<username> -p<password>

-e

Used to set encrypted credentials in the rsreportserver.config file for the unattended report execution account. This argument
does not take a value. However, you must include additional arguments on the command line to specify that values that are
encrypted in the configuration file. The arguments that you must specify include -u username and -p password. You can also set -
t tracing. The remaining arguments (for example, -s or -a) have no effect when -e is specified on the command line. The following
example illustrates the syntax for this argument:

rsconfig -e --u<domain>\<username> -p<password>

-m computername

(Required if you are configuring a remote computer.) Specifies the name of the computer on which the report server is installed. If
this argument is omitted, the default is the computer on which Rsconfig.exe is running.

-s servername

(Optional if the SQL Server instance is local.) Specifies the default SQL Server instance that hosts the report server database. You
cannot specify a named instance.

-d databasename

(Required if -c is specified.) Specifies the name of the report server database.

-a authmethod

(Required if -c is specified.) Specifies the authentication method that the report server uses to connect to the report server
database. Allowable values are windows or sql. A value of windows specifies that the report server use Windows credentials
when connecting to the report server database. A value of sql specifies that the report server use SQL Server credentials when
connecting to the report server database.

-u [domain\]username

(Required when authmethod is set to sql or when -e is specified.) Specifies a user name. If you are setting credentials for the
report server database and authmethod is set to windows, the report server impersonates a Windows user. In this case, you must
provide a value for both domain and username in the format domain\username. This value is case-sensitive if you are using
Windows Authentication.

-p password

(Required if -u is specified.) Specifies the password to use with the username argument. You can set this argument to a blank
value if the account does not require a password.

-t

(Optional.) Adds trace information to any error messages that may occur. This argument does not take a value.

See Also

Configuring a Report Server Connection

Error Reporting for rsconfig Utility

Deploying and Administering Reporting Services

Reporting Services Configuration Files

Report Server Command Line Utilities

RSReportServer Configuration File

Reporting Services - Tools and Utilities Reference

rskeymgmt Utility
A report server encrypts stored credentials and connection information. A public key and a symmetric key are used to encrypt
data. A report server database must have valid keys in order for the report server to run.

The rskeymgmt utility is used to manage the symmetric keys used by a report server. This tool captures the complete key set that
is defined during Setup, and stores it as a file that you can store externally. You can use this tool to back up, remove, or apply the
keys. If the keys cannot be recovered or applied, this tool provides a way to delete encrypted content that can no longer be used.

Some of the Rskeymgmt arguments cannot be used together. The following table describes the arguments that must be
specified separately:

Argument Description
-e extract Use this argument to back up the keys from the Keys table.
-a apply Use this argument to apply the back up copy to the Keys table.
-r remove Use this argument to remove the existing keys from the Keys

table.
-d delete Use this argument to delete all encrypted values from the

report server database.

You must be a local administrator to run the tool, and you must run it on the local computer. You cannot use this tool to manage
the encryption keys of a remote report server instance. For more information about the tool, see Managing Encryption Keys.

File Location

The command line utilities are installed when you choose Administration Tools during Setup. You can run them from any
directory on your file system. Rskeymgmt.exe is located at <drive>:\Program Files\Microsoft SQL Server\80\Tools\Binn.

Syntax

rskeymgmt {-?}
{–e}
{–a}
{–r}
{-d}
{-f file}
{-p password}
{-t}

Arguments

-?

Displays the syntax of rskeymgmt arguments.

-e

Extracts the symmetric key from the report server instance. This argument does not take a value. However, you must include
additional arguments on the command line to complete the extraction. The arguments that you can specify include -f filename, -p
password, and -t tracing. The following example illustrates the syntax for this argument:

rskeymgmt -e -fa:\backupkey\keys.txt -p<password>

-a

Applies the symmetric key to the report server instance. This argument does not take a value. However, you must include
additional arguments on the command line to select the file that contains the keys to be applied. The arguments that you can
specify include -f filename, -p password, and -t tracing. The following example illustrates the syntax for this argument:

rskeymgmt -a -fa:\backupkey\keys.txt -p<password>

-r

Removes all report server instance identifiers from the public key table. All rows in the Keys table will be deleted. This argument
does not take a value. The following example illustrates the syntax for this argument:

rskeymgmt -r

-d

Deletes all encrypted content from a report server database. This argument does not take a value. The following example
illustrates the syntax for this argument:

rskeymgmt -d

-f file

Specifies a fully-qualified path to the file that stores a backup copy of the symmetric keys. When used with -e, the symmetric key
is written to the file you specify. When used with -a, the symmetric key value stored in the file is applied to the report server
instance.

-p password

Specifies the password used to encrypt or decrypt the key. This value cannot be empty.

-t trace

(Optional.) Adds trace information to any error messages that may occur. This argument does not take a value.

See Also

Deploying and Administering Reporting Services

Error Reporting for rskeymgmt Utility

Report Server Command Line Utilities

Managing Encryption Keys

Reporting Services - Reporting Services How-To

Reporting Services How-To
This section contains step-by-step instructions for creating, managing, and accessing reports. The way in which you perform a
specific task varies depending on which Microsoft® SQL Server™ Reporting Services tool you use. The following table describes
the topics in this section.

Topic Description
Report Designer How-To Provides instruction for creating, designing,

modifying, and publishing report definitions.
Report Manager How-To Provides instruction for managing and working

with published reports.

See Also

Designing and Creating Reports

Managing Report Server Content and Processing

Reporting Services Component Overview

Working With Published Reports

Reporting Services - Reporting Services How-To

Report Designer How-To
This section contains step-by-step instructions for performing tasks using Report Designer. To view the complete list of step-by-
step instructions that are available for this application, see the table of contents for this section.

See Also

Building Reports

Reporting Services - Reporting Services How-To

How to create a new solution (Visual Studio)
When you create a project, the Visual Studio environment creates a solution to contain it. If you plan to create a multi-project
solution, see Multi-Project Solutions.

To access Solution Explorer, click Solution Explorer on the View menu.

To create a new solution

1. On the File menu, point to New, and then click Blank Solution.
2. In the New Project dialog box, click Visual Studio Solutions.
3. Optionally modify the solution name in the Name text box.
4. Optionally modify the path for the solution in the Location text box.
5. Click OK.

To add an item to a solution

1. In Solution Explorer, select the solution.
2. On the File menu, click Add New item.

The Add New Item – Solution Items dialog box appears.

3. In the left pane, select a category, and in the right pane, select a template.

Solution Explorer displays the item in a Solution Items folder.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to open an existing solution (Visual Studio)
You can have only one solution open in Solution Explorer.

To open an existing solution

1. On the File menu, click Open Solution.

The Open Solution dialog box opens.

2. Navigate to the solution you want.
3. Click the solution folder, which displays and selects the solution file within the folder. If no solution file is visible, verify that

the value in the Files of type list box is Solution Files.
4. Click Open.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to create a project (Visual Studio)
You can create one or more projects within an existing solution.

To access Solution Explorer, click Solution Explorer on the View menu.

To add a new project to a solution

1. In Solution Explorer, select the solution.
2. On the File menu, point to Add Project, and click New Project.

The Add New Project dialog box is displayed.

3. In the Project Types pane, select a project type.
4. In the Templates pane, select a project template.
5. Optionally, modify the item name in the Name text box.
6. Optionally, modify the location of the item in the Location text box.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to add an existing project to a solution (Visual Studio)
You can add one or more projects to an existing solution.

To access Solution Explorer, click Solution Explorer on the View menu.

To add an existing project to a solution

1. In Solution Explorer, select the solution.
2. On the File menu, point to Add Project, and click Existing Project.

The Add Existing Project dialog box is displayed.

3. Locate the project you want to add, and select the project file.
4. Click Open.

The project is added to the selected solution.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to change the default location for projects (Visual Studio)
You can change the path where new projects and files are created by using the Options dialog box.

To access Solution Explorer, click Solution Explorer on the View menu.

To change the default save location

1. On the Tools menu, click Options.
2. Click Environment, and then click Projects and Solutions.
3. In the Visual Studio projects location text box, enter a location for files and projects.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to modify project properties and configuration settings
(Visual Studio)
You can view or modify properties associated with your projects in either the Properties window or the Project Property Pages
dialog box.

To access Solution Explorer, click Solution Explorer on the View menu.

To view project properties

1. In Solution Explorer, select a project.
2. If the Properties window is not open, on the View menu, click Properties Window.
3. In the Properties window, view and modify the properties you want to change.

To view configuration settings

In Visual Studio, you can modify properties that are specific to a configuration in the Property Pages dialog box (click Properties
on the Project menu). These pages generally contain the properties that apply to the entire project and those that are specific to a
selected configuration. Project properties that apply to the entire project, and not a specific configuration, are read-only on these
pages.

1. In Solution Explorer, select a project.
2. On the Project menu, click Properties.
3. In the Property Pages dialog box, select the configuration you want to view or modify.

When present in the Property Pages dialog box, Configuration Settings contains more specific, configuration-related property
pages, and Common Properties contains broader, configuration-independent property pages.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to add a new project item (Visual Studio)
You can add new items to a project to extend application functionality. The project type determines the items that you can add to
the project.

To access Solution Explorer, click Solution Explorer on the View menu.

To add a new project item

1. In Solution Explorer, select a target project.
2. On the Project menu, click Add New Item.
3. Select a category in the left pane.
4. Select an item template in the right pane.
5. Specify a name for the item in the Name text box.
6. Click Open.

Note You can open some files in more than one editor. For such files, a drop-down arrow appears next to the
Open button. You can click the drop-down arrow, select Open With from the menu that appears, and choose
another editor for your file.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to add an existing item to a project (Visual Studio)
You can add any type of existing file from storage to your projects.

Note When you work on the project item, you are working on a copy of the item, not the original.

To access Solution Explorer, click Solution Explorer on the View menu.

To add an existing item to a project

1. In Solution Explorer, select a target project.
2. On the Project menu, click Add Existing Item.
3. In the Add Existing dialog box, select the project item you want to add.
4. Click Open.

Note You can open some files in more than one editor. For such files, a drop-down arrow appears next to the
Open button. You can click the drop-down arrow, select Open With, and choose another editor for your file.

To add a copy of a file to a project as an item

1. In Windows Explorer, locate the file you want, and click Copy on the Edit menu.
2. Locate the directory of the project to which you are adding the file as an item, and click Paste on the Edit menu.
3. In Solution Explorer, select the project, and click Add Existing Item on the Project menu.

The Add Existing dialog box appears.

4. In the Add Existing dialog box, select the copy of the file.
5. Click Open.

The item is added.

Note You can open some files in more than one editor. For such files, a drop-down arrow appears next to the
Open button. You can click the drop-down arrow, select Open With from the menu that appears, and choose
another editor for your file.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to copy an item (Visual Studio)
You can copy items using Solution Explorer or Windows Explorer.

To access Solution Explorer, click Solution Explorer on the View menu.

To copy an item within Solution Explorer

1. In Solution Explorer, select the item you want to copy.
2. On the Edit menu, click Copy.
3. In Solution Explorer, select the destination folder (solution or project).
4. On the Edit menu, click Paste.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to delete or remove a project or an item (Visual Studio)
You can delete projects and items permanently, or remove them from a solution but keep the project or item.

To Use Example
Disassociate a project or an
item from a solution, but not
remove its physical file

Remove A project or an item that you might
want to include in another solution,
but isn't useful in the current solution

Permanently erase files from
physical storage as well as the
project in the solution

Delete A project or item you no longer need

As with other commands, the actual outcome depends on the project template you used to create the project.

To access Solution Explorer, click Solution Explorer on the View menu.

Removing

You can remove projects or items from your solution without erasing the project files from storage.

To remove a project or an item

1. In Solution Explorer, select the project or item you want to remove.
2. On the Edit menu, click Remove.

A removed project or item still exists in storage. Therefore, you can add a removed project or item to its original solution or to
another solution.

Deleting

You can delete a project permanently, but you first need to remove any references to the project from Visual Studio solutions, and
then use Windows Explorer to delete permanently the associated files from storage.

To permanently delete a project or an item

1. In Solution Explorer, remove the project you want to delete from the solution.
2. In Windows Explorer, locate and select the files associated with the project or item you want to delete.
3. On the Edit menu, click Delete.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to move an item (Visual Studio)
You can move items using Solution Explorer.

To access Solution Explorer, click Solution Explorer on the View menu.

To move an item in Solution Explorer

1. In Solution Explorer, select the item you want to move.
2. On the Edit menu, click Cut.
3. In Solution Explorer, select the destination.
4. On the Edit menu, click Paste.

You can also drag items to move them. Dragging allows you to see the possible differences between the various projects as the
mouse pointer indicates the outcome of the drag operation. You can drag most files within Solution Explorer, create links to files
by dragging them onto documents open in a default editor, or you can drag files from Windows Explorer into Solution Explorer.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to rename solutions, projects, and items (Visual Studio)
You can rename solutions, most projects, and most items that are displayed in Solution Explorer.

To access Solution Explorer, click Solution Explorer on the View menu.

To rename a solution, project, or item

1. In Solution Explorer, select the solution, project, or item that you want to rename.
2. On the View menu, click Properties Window.
3. In the Properties window, edit the (Name) property.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to delete a solution (Visual Studio)
Deleting a solution permanently erases files from physical storage as well as the file items in the solution.

Note In contrast to projects and items, a solution can only be deleted permanently, not removed temporarily.

To access Solution Explorer, click Solution Explorer on the View menu.

To delete a solution

1. In Solution Explorer, select the solution.
2. On the Edit menu, click Delete.

See Also

Working with Solution Explorer

Reporting Services - Reporting Services How-To

How to work with windows (Visual Studio)
To dock tool windows

Select Dockable from the Window menu and then drag the window toward an edge of a window until you see a
superimposed outline in the location you want.

Note The position of the pointer, not the edges of the window, determines where the window will be placed.

To move a dockable window without docking it, press CTRL while dragging it to the location you desire.

To set Auto Hide for a window

Select the window and choose Auto Hide from the Window menu, or click the pushpin icon on the title bar of the window.

To turn off Auto Hide for a window

Click the pushpin icon on the title bar of the window, or uncheck Auto Hide on the Window menu.

To hide a tool window

Right-click the window and choose Auto Hide. The window will reappear when your pointer is near the edge of the Visual
Studio environment window.

Note To close or hide individual windows instead of the docked group, set the Docked Tool Window
Behavior options found on the General tab for the Environment folder in the Options dialog box.

To place tool windows on different monitors

1. Click Display in Control Panel to set up your multiple monitor configurations. See Windows Help for more information.
2. Drag the tool window to the other monitor.

To tile document windows

In Tabbed Documents mode, select a tab and drag it below or above the current document tile. A rectangular outline
appears in the location that the new document tile will be placed, based on the position of the cursor.
In MDI mode, choose Tile Horizontally or Tile Vertically from the Window menu.

See Also

Arranging Windows

Reporting Services - Reporting Services How-To

How to navigate within Visual Studio (Visual Studio)
To move among documents

Use CTRL+SHIFT+TAB to toggle through open documents in an editor.

-or-

Click the tab of the document you want to view.

To bookmark HTML documents and Help topics

1. Right-click within the document or Help topic and click Add to Favorites.
2. In the Add Favorite dialog box, enter a title for the page; this title will appear in the Favorites window.
3. Click OK.

After you have added the page to your Favorites list, open the Favorites window to see it; there is no need to type the URL in the
Address field. The Favorites window is available on the View menu under Other Windows.

See Also

Navigating within Visual Studio

Reporting Services - Reporting Services How-To

How to navigate code and text (Visual Studio)
To add a temporary bookmark

1. Click the line you want to return to at later time.
2. Click the Toggle Bookmark button on the Text Editor toolbar. You should see the temporary (or "unnamed") bookmark

symbol appear next to the line.
3. Alternatively, you can press CTRL+K twice to toggle the bookmark.

Note Some project types do not support keystroke commands for setting and navigating to bookmarks.

To return to a temporary bookmark

1. Click the Next Bookmark or Previous Bookmark button on the Text Editor toolbar.
2. Alternatively, you can press CTRL+K and then CTRL+N for the next bookmark, or CTRL+K and then CTRL+P for the previous

bookmark within a document.

Another way to return to a location is by clicking the Navigate Backward and Navigate Forward buttons on the Standard
toolbar.

Note Some project types do not support keystroke commands for setting and navigating to bookmarks.

To remove one or more temporary bookmarks in a document

Click the Clear Bookmarks button on the Text Editor toolbar.

-or-

Press CTRL+K and then CTRL+L to erase all bookmarks in the current document.

Note To delete a single bookmark, right-click the bookmark and click Toggle Bookmark on the Text Editor
toolbar, or press CTRL+K twice. Some project types do not support keystroke commands for setting and
navigating to bookmarks.</

To navigate using incremental search

1. Press CTRL+I or choose Incremental Search from the Advanced submenu on the Edit menu.
2. Begin typing the characters of the word you wish to find. As you type the characters, you are taken to matching text in the

current document, beginning at the top.

To go to a specific line number

1. Click Go To on the Edit menu.
2. Enter the line number you want to view.

See Also

Navigating Code and Text

Reporting Services - Reporting Services How-To

How to edit text (Visual Studio)
To add or insert text

1. Move the cursor to the desired location.
2. Enter the text.

To overwrite characters in an existing line, press the INSERT key. The cursor turns from a flashing line to a flashing block, and OVR
is displayed in the bottom-right corner of the Visual Studio environment. Press the INSERT key again to return to Insertion (INS)
mode.

To delete characters or a word in a line

Place the cursor immediately before the word or letter you want to delete, and press the DELETE key as many times as
needed.

Note CTRL+DELETE and CTRL+BACKSPACE delete whole words forward and backward, respectively.

-or-

Place your cursor after the letter or word, and press the BACKSPACE key.

Note You can double-click a word and then press DELETE or BACKSPACE to delete it.

To delete lines, paragraphs, and pages

1. Highlight the text you want to delete by holding down the left mouse button and dragging over the text, or by using the
SHIFT key with the either the arrow or the HOME/END/PAGEUP/PAGEDOWN keys.

2. Press DELETE or BACKSPACE.

To select text horizontally

Click and drag the mouse over the text.

–or–

Use the SHIFT+Arrow keys.

To select text vertically

Hold down the ALT key, and then click the mouse and drag it over the text.

-or-

Use the SHIFT+ALT+Arrow keys.

To drag and drop text

1. Select the text you want to move, either with the mouse or with the keyboard.
2. Left-click the highlighted text and continue holding down the mouse button.
3. Move the mouse cursor to the destination where you want to place the text.
4. Release the mouse button to drop the text.

Dragging text moves it; that is, the text is erased from the old location and moved to the new location. Pressing the CTRL key
while dragging text copies it to the new location.

See Also

Navigating Code and Text

Reporting Services - Reporting Services How-To

How to manage the code editor and view (Visual Studio)
To switch between view modes

1. Click Options on the Tools menu.
2. Click Environment. Click General.
3. Click Tabbed documents or MDI environment.

To create a new window

On the Window menu, click New Window.

When you create a new window in Tabbed Documents mode, a new tab is added to the Editor. In MDI mode, a new window is
displayed.

To split a window

1. Click the splitter bar (located above the scroll bar).
2. Drag the splitter bar downward.
3. To go back to a single pane, double-click the splitter bar dividing the two panes.

The new pane contains the same document, and any changes made to one pane are reflected in the other pane as long as that
pane displays the same place in the document.

To activate word wrap

1. Click Options on the Tools menu.
2. Click Text Editor.
3. Open the appropriate language folder (or All Languages to affect all languages).
4. Select Word wrap.

To enable Virtual Space mode

1. Click Options on the Tools menu.
2. Click Text Editor.
3. Open the appropriate language folder (or All Languages to affect all languages).
4. Select Enable virtual space.

When Virtual Space mode is not enabled, the cursor wraps from the end of one line to the first character of the next line and vice
versa.

Note Virtual Space mode is active whenever you are in Column Selection mode.

To display line numbers in code

1. Click Options on the Tools menu.
2. Click Text Editor
3. Click All Languages.
4. Click General.
5. Select Line numbers.

To specify line numbering for only some programming languages, select Line Numbers in the appropriate folder.

To enable Full Screen mode

Press ALT+SHIFT+ENTER to toggle Full Screen mode. Alternatively, you can issue the command >View.Fullscreen in the
Find/Command box.

See Also

Managing the Editor and View

Reporting Services - Reporting Services How-To

How to set properties (Visual Studio)
To set or view properties using the Properties window

1. If the Properties window is not visible, click Properties Window on the View menu, or press F4.
2. If the item that you want to modify is not selected, click on the object or use the Object drop-down list to select it.
3. In the Properties window, select the property that you want to modify.
4. Specify a value for the property.

Depending on the property, you might be required to type a text or numerical value, select a value from a list of property values.
For information on the proper value type for the property, see the documentation for the property you are modifying.

To set the value of a property for multiple objects

1. Select the first object in the group of objects that you want to modify.
2. Hold down the CTRL key while selecting the other objects that you want to modify.
3. In the Properties window, set the value for the property.

The value is then set for the property for each object that you selected.

See Also

Setting Properties

Reporting Services - Reporting Services How-To

How to use the toolbox (Visual Studio)
Here is a reference list of common Toolbox tasks and how to do them:

To Do this
Open the Toolbox On the View menu, click Toolbox.
Make the Toolbox close automatically Open the Toolbox. On the Window menu,

select Auto Hide.
Make the Toolbox stay open Open the Toolbox. On the Window menu,

clear Auto Hide.
Move the Toolbox to a different location Open the Toolbox. On the Window menu,

clear Auto Hide, and then select Floating.
Drag the Toolbox to the desired location.

Conceal the Toolbox In the Window menu, select Hide. (To
reopen the Toolbox, click Toolbox on the
View menu.)

Expand a Toolbox tab Click the desired tab in the Toolbox.
Expand Toolbox tabs one after another Press CTRL+DOWN ARROW to expand the

next Toolbox tab, or CTRL+UP ARROW to
expand the previous tab.

Scroll through an expanded list of items
on a Toolbox tab

Click the UP triangle at the top of the
expanded list, or the DOWN triangle at the
bottom of the list.

Insert a Toolbox item at the selected
location on the active designer

Double-click the desired item on the
expanded Toolbox tab.

Cycle through items that have been
copied or pasted to the Clipboard Ring
tab using the keyboard

In the active editor or designer, press
CTRL+SHIFT+V repeatedly until the desired
item from the Clipboard Ring tab appears.

Add a component to those displayed in
the Toolbox

Click Add/Remove Toolbox Items on the
Tools menu.

Store a text or markup fragment in the
Toolbox

Select the desired scrap of text or code in the
editor and drag it onto the desired tab of the
Toolbox.

Move an item from one Toolbox tab to
another

Drag the item from the expanded Toolbox
tab onto another tab, or use cut and paste.
Items that cannot be moved are copied
instead.

Copy an item from one Toolbox tab to
another

Press CTRL and drag the item from the
expanded Toolbox tab onto the name of
another tab, or use copy and paste.

Display all available Toolbox tabs,
regardless of context

Right-click any Toolbox tab and choose
Show All Tabs from its shortcut menu.

Remove an item from the Toolbox Select the Toolbox item, and click Delete on
the Edit menu. Certain items, such as the
Pointer, cannot be removed.

Change the position of a tab in the
Toolbox

Drag the Toolbox tab to the new location
preferred, and release the mouse.

Change the position of an item on an
expanded Toolbox tab

Drag the item to the new location, and
release the mouse.

Rename a Toolbox item Right-click the Toolbox item, and click
Rename Item on the shortcut menu.

To cycle through expanded Toolbox tabs

In the active editor or designer, press CTRL+DOWN ARROW to expand the next Toolbox tab, or CTRL+UP ARROW to
expand the previous tab.

To show all tabs in the Toolbox, or conceal all those not in use

In the Toolbox window, right-click any tab, and then select or clear Show All Tabs.

To display items on a Toolbox tab as compact icons or in labeled lists

In the Toolbox window, right-click the desired tab, and then select or clear List View.

To sort the items on a Toolbox tab alphabetically

In the Toolbox window, right-click the desired tab, and then choose Sort Items Alphabetically.

To use the Clipboard Ring tab

To store an item on this tab, select the item and press SHIFT+CTRL+C, or drag the item to the Clipboard Ring tab.
To paste in the most recent item on the Clipboard Ring, press SHIFT+CTRL+V. Keep pressing SHIFT+CTRL+V to cycle
through Clipboard Ring items until the desired entry appears.

To add a custom tab to the Toolbox

1. Right-click any existing tab, and click Add Tab on the shortcut menu.
2. In the text box at the bottom of the Toolbox, type a name for the new tab, and press ENTER.

You can then select the tab and add other items. Use custom tabs to store favorite controls, text scraps, and other frequently used
items.

Note The new tab appears at the bottom of the Toolbox window, with the Pointer tool automatically added.

To remove a custom tab from the Toolbox

1. Right-click the Toolbox tab you no longer need, and click Remove Tab.

A message box informs you that any items on the tab will be deleted.

2. If you still need any item on this tab, click No, and then drag the items you need to other Toolbox tabs.
3. When you have removed all the items you need, click Remove Tab again, and click Yes to delete the selected tab from the

Toolbox.

To add or remove items on a Toolbox tab

1. On the Tools menu, choose Add/Remove Toolbox Items.

The Customize Toolbox dialog box opens.

2. In the Customize Toolbox dialog box, click from tab to tab to browse through available categories of Toolbox items.
3. In each category, either:

Select the items you want to add, and clear those you want to remove.

- or -

Click Browse to add items not available on the current list.

4. Click OK to close the Customize Toolbox dialog box. New tools are added to the tab currently selected in the Toolbox.
From there, you can drag them to other tabs. Items deselected in Customize Toolbox no longer appear on their former
tabs.

Note Some controls added to the Toolbox must be registered on your computer to be used in Visual Studio.

To rename Toolbox tabs

1. In the Toolbox, right-click the desired tab, and then click Rename Tab.
2. In the text box, type a new name for the tab and press ENTER.

To rename items on Toolbox tabs

1. In the Toolbox, right-click the desired tab item, and click Rename Item.
2. In the text box, type a new name for the item, and then press ENTER.

To reposition items on a tab

In the Toolbox, right-click the item you wish to reposition, and then click Move Up or Move Down.

Note When you deselect List View to display Toolbox items as compact icons, Move Up shifts the selected
icon to the left, and Move Down shifts it to the right.

See Also

Using the Toolbox

Reporting Services - Reporting Services How-To

How to create a report project (Report Designer)
To create a report project using Report Designer

1. On the File menu, point to New, and then click Project.
2. In the Project Types list, click Business Intelligence Projects.
3. In the Templates list, click Report Project.
4. Type a name and location for the project, or click the Browse button and select a location.
5. If a solution is currently open, select Add to Solution or Close Solution. Add to Solution adds the report project to the

current solution. Close Solution closes the current solution and creates a new one with the same name as the project.
6. Click OK to create the report project.

See Also

Creating a Report Project

Reporting Services - Reporting Services How-To

How to create a report project (Report Project Wizard)
To create a report project using Report Project Wizard

1. On the File menu, point to New, and then click Project.
2. In the Project Types list, click Business Intelligence Projects.
3. In the Templates list, click Report Project Wizard.
4. Type a name for the project, and then click OK.
5. On the Welcome to the Report Wizard page, click Next.
6. On the Select the Data Source page, click New Data Source, type a name for the data source, select a data type, and then

type the connection string for the data source. To build the connection string, click Edit. To supply credentials, click
Credentials. When the string is complete, click Next.

Note When you click Edit, the Data Link Properties box appears. In Data Link Properties, follow the
instructions on the Connection tab. The contents of the Connection, Advanced, and All tabs vary depending
on the type of data source. To change the data source type, click the Provider tab and select a data provider.

7. In the Design the Query page, type the query string to use for the report. To build a query string, click the build (...) button.
Once the string is built, click Next.

Note When you click the build (...) button, the Query Builder box appears. Query Builder contains
functionality similar to the graphical query designer in Data View. For more information, see Data View.

8. On the Select the Report Type page, select Tabular or Matrix, and then click Next. Selecting Tabular produces a report
with data arranged in a table. Selecting Matrix produces a report with data arranged in a matrix, or crosstab.

9. The next page depends on the choice made in the Select the Report Type page.

On the Design the Table page, click a field in the Fields list, and then click the Page, Group, or Details button.
Alternatively, click and drag the field into the appropriate box. When all fields are chosen, click Next. On the Choose
the Table Layout page, select a layout for the table, and then click next.
On the Design the Matrix page, click a field in the Fields list, and then click the Page, Columns, Rows, or Details
button. Alternatively, click and drag the field into the appropriate box. When all fields are chosen, click Next.

10. On the Choose the Table Style or Choose the Matrix Style page, select a style to apply to the report, and then click
Next.

11. On the Choose the Deployment Location page, type the report server and folder to which you want to publish the report.

Note This step does not publish the report. It sets the properties so that you can publish the report from Report
Designer.

12. On the Completing the Report Wizard page, type a name for the report, verify the information, and then click Finish.

See Also

Creating a Report Project

Reporting Services - Reporting Services How-To

How to create a report (Report Designer)
To create a blank report

1. On the Project menu, click Add New Item. Alternatively, right-click the Reports folder in the project in Solution Explorer,
point to Add, and then click Add New Item.

2. In the Categories list, click Report Project.
3. In the Templates list, click Report.
4. Type a name for the report, and then click Open.

Note The name of the report must have an .rdl extension. Otherwise, Report Designer cannot edit the file
correctly.

See Also

Creating a Blank Report

Reporting Services - Reporting Services How-To

How to create a report (Report Wizard)
To create a report using Report Wizard

1. On the Project menu, click Add New Item. Alternatively, right-click the Reports folder in the project in Solution Explorer,
point to Add, and then click Add New Item.

Note You can also open the Report Wizard by right-clicking the Reports folder and then click Add New
Report. If you use this method, skip to step 5.

2. In the Categories list, click Report Project.
3. In the Templates list, click Report Wizard.
4. Type a name for the report, and then click Open.

Note The name of the report must have an .rdl extension. Otherwise, Report Designer cannot edit the file
correctly.

5. On the Welcome to the Report Wizard page, click Next.
6. On the Select the Data Source page, click New Data Source, type a name for the data source, select a data type, and then

type the connection string for the data source. To build the connection string, click Edit. To supply credentials, click
Credentials. When the string is complete, click Next.

Note When you click Edit, the Data Link Properties box appears. In Data Link Properties, follow the
instructions on the Connection tab. The contents of the Connection, Advanced, and All tabs vary depending
on the type of data source. To change the data source type, click the Provider tab and select a data provider.

7. In the Design the Query page, type the query string to use for the report. To build a query string, click the build (...) button.
Once the string is built, click Next.

Note When you click the build (...) button, the Query Builder box appears. Query Builder contains
functionality similar to the graphical query designer in Data View. For more information, see Data View.

8. On the Select the Report Type page, select Tabular or Matrix, and then click Next. Selecting Tabular produces a report
with data arranged in a table. Selecting Matrix produces a report with data arranged in a matrix, or crosstab.

9. The next page depends on the choice made in the Select the Report Type page.

On the Design the Table page, click a field in the Fields list, and then click the Page, Group, or Details button.
Alternatively, click and drag the field into the appropriate box. When all fields are chosen, click Next. On the Choose
the Table Layout page, select a layout for the table, and then click next.
On the Design the Matrix page, click a field in the Fields list and then click the Page, Columns, Rows, or Details
button. Alternatively, click and drag the field into the appropriate box. When all fields are chosen, click Next.

10. On the Choose the Table Style or Choose the Matrix Style page, select a style to apply to the report, and then click
Next.

11. On the Choose the Deployment Location page, type the report server and folder to which you want to publish the report.

Note This step does not publish the report. It sets the properties so that you can publish the report from Report
Designer.

12. On the Completing the Report Wizard page, type a name for the report, verify the information, and then click Finish.

See Also

Creating a Report Using Report Wizard

Reporting Services - Reporting Services How-To

How to import reports from Microsoft Access (Report
Designer)
To import reports from Microsoft Access

1. Open or create a project into which to import the reports.
2. On the Project menu, point to Import Reports, and then click Microsoft Access. Alternatively, right-click the project in

Solution Explorer, point to Import Reports, and then click Microsoft Access.

Note If Import Reports does not appear, ensure that Microsoft Access 2002 or later is installed on the same
computer on which Report Designer is installed.

3. In the Open dialog box, select the Microsoft Access database (.mdb) or project (.adp) that contains the reports, and then click
Open.

4. Check the Task List window for build errors. To view the Task List window, open the View menu, point to Other
Windows, and then click Task List.

Note Reporting Services does not support all Access report objects. Items that are not converted are displayed
in the Task List window.

See Also

Importing Reports from Access

Reporting Services - Reporting Services How-To

How to access Report Definition Language (Report Designer)
To access Report Definition Language (RDL)

1. In Solution Explorer, click the report whose RDL you want to view.
2. On the View menu, click Code. Alternatively, right-click the report, and then click View Code.

See Also

Working Directly with Report Definition Language

Report Definition Language

Reporting Services - Reporting Services How-To

How to set the locale for a report or text box (Report Designer)
To set the locale for a report

1. In Layout view, click outside the report design surface to select the report.
2. In the Properties window, for the Language property, type or select the language that you want to use for the report.

To set the locale for a text box

1. In Layout view, select the text box to which you want to apply the locale settings.
2. In the Properties window, do the following:

For the Calendar property, type or select the calendar that you want to use for dates
For the Direction property, type or select the horizontal direction in which the text is written.
For the Language property, type or select the language that you want to use for the text box.
For the NumeralLanguage property, type or select the format to use for numbers in the text box.
For NumeralVariant, type or select the variant of the format to use for numbers in the text box.
For UnicodeBiDi, select the level of bi-directional embedding to use in the text box.

See Also

Localizing Reports

Reporting Services - Reporting Services How-To

How to create or edit a report-specific data source (Report
Designer)
To create a report-specific data source

1. In Data view, from Dataset, select <New Dataset...>. The Dataset dialog box opens.
2. From Data Source, select New Data Source.
3. In Data Link Properties, follow the instructions on the Connection tab. The contents of the Connection, Advanced, and

All tabs vary depending on the type of data source. To change the data source type, click the Provider tab and select a data
provider.

To edit a report-specific data source

1. In Data view, in Dataset, select the dataset that contains the data source to edit, and then click the build (...) button. The
Dataset dialog box opens.

2. From Data source, select the data source, and then click the build (...) button.
3. In Name, type a name for the data source.

Note The data source name is used internally within the report. For clarity, it is recommended that the name of
the data source contain the name of the database that is specified in the connection string.

4. From Type, select a type of data source; for example, SQL Server or OLE DB.
5. Click Edit to build the connection string. Alternatively, type the connection string in Connection string and skip the

following step.

Note To use a shared data source instead of a report data source, click Use Shared data source reference,
and then select the shared data source. You cannot edit the type or connection string if Shared data source
reference is selected, because those properties are obtained from the shared data source.

6. In Data Link Properties, follow the instructions on the Connection tab. The contents of the Connection, Advanced, and
All tabs vary depending on the type of data source. To change the data source type, click the Provider tab and select a data
provider.

See Also

Connecting to a Data Source

Reporting Services - Reporting Services How-To

How to create or edit a shared data source (Report Designer)
To create a shared data source

1. In Solution Explorer, right-click the Shared Data Sources folder in the report project, and then click Add New Data
Source.

2. In Data Link Properties, follow the instructions on the Connection tab. The contents of the Connection, Advanced, and
All tabs vary depending on the type of data source. To change the data source type, click the Provider tab and select a data
provider.

To edit a shared data source

1. In Solution Explorer, right-click the data source in the Shared Data Sources folder, and then click Open. Alternatively, you
can double-click the data source.

2. In Name, type a name for the data source.

Note The data source name is used as the name of the shared data source stored on the report server. For
clarity, it is recommended that the name of the data source contain the name of the database that is specified in
the connection string.

3. From Type, select a type of data source; for example, SQL Server or OLE DB.
4. Click the build (...) button to build the connection string. Alternatively, type the connection string in Connection string and

skip the following step.
5. In Data Link Properties, follow the instructions on the Connection tab. The contents of the Connection, Advanced, and

All tabs vary depending on the type of data source. To change the data source type, click the Provider tab, and then select a
data provider.

See Also

Connecting to a Data Source

Reporting Services - Reporting Services How-To

How to create a dataset (Report Designer)
To create a dataset

1. In Data view, from Dataset, select <New Dataset...>. The Dataset dialog box opens.
2. On the Query tab, in Name, type a name for the dataset.

Note The dataset name is used internally within the report. For clarity, it is recommended that the name of the
dataset describe the data that the query returns.

3. From Data Source, select a data source. For information about data sources, see Connecting to a Data Source.
4. From Command Type, select the form that the query will take:

Select Text to use a query using the query language of the data source.
Select StoredProcedure to execute a stored procedure by name.
Select TableDirect to retrieve data from a table by name.

The most common command type is Text.

5. In Query String, type the query, stored procedure, or table name. (You can leave Query String blank and build the query in
Data view.)

6. In Timeout, type the number of seconds that the report server waits for a response from the database. The default value is
30 seconds. Timeout must contain a value greater than zero or be left empty. If it is empty, the query does not time out.

Note The Data Options tab contains case sensitivity, collation, kanatype sensitivity, width sensitivity, and
accent sensitivity options. By default, the data options indicate that the report server retrieves these settings
from the data provider when the report runs. The Fields tab contains a list of fields in the dataset. It is
automatically populated with fields from the query, but you can add additional database or calculated fields The
Parameters tab is automatically populated with parameters from the query, and you can use this tab to add
additional parameters. The Filters tab lists the filters that you can apply to the dataset.

See Also

Retrieving Relational Data from a SQL Server Database

Retrieving Multidimensional Data from Analysis Services

Retrieving Data from Other Data Sources

Reporting Services - Reporting Services How-To

How to associate a data region with a dataset (Report
Designer)
To associate a data region with a dataset by using properties

1. In Layout view, right-click the data region and then click Properties.
2. On the General tab, for Dataset name, select a dataset.

To associate a data region with a dataset by using fields

1. In Layout view, click the data region to select it.
2. In the Fields window, select a dataset from the list at the top of the window, and then drag a field to the data region.

Note When you use fields to set the dataset, the dataset for the data region is set based on the first field that
you drag onto the data region. If a field that has been dragged to the data region is removed, the DataSetName
property remains set to the dataset that the field belonged to. To change it, follow the steps for associating a
data region with a dataset.

See Also

Working with Multiple Datasets

Adding a Table

Adding a Matrix

Adding a List

Reporting Services - Reporting Services How-To

How to associate a query parameter with a report parameter
(Report Designer)
To associate a query parameter with a report parameter

1. In Data view, from Dataset, select the dataset for which to edit the parameter and click the edit (...) button.
2. On the Parameters tab, do the following:

In Name, type the query parameter as it exists in the query.

Note Parameter names are automatically populated based on the parameters in the query.

In Value, type or select an expression that evaluates to the value to pass to the query parameter.

3. Repeat step 2 for additional query parameters.

Note You are not limited to report parameters as values for a query parameter. You can use any expression
that evaluates to a value for the parameter value.

See Also

Working with Multiple Datasets

Adding a Table

Adding a Matrix

Adding a List

Reporting Services - Reporting Services How-To

How to add, move, or delete a table (Report Designer)
To add a table

1. In Layout view, in the Toolbox, click Table.
2. On the design surface, drag a box to the size you want the table to be. Alternatively, click the design surface to create a table

that spans the containing object or page.

To move a table

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Click the corner handle of the table to select the table.
3. Point to the shaded border of the table and drag the table to a new location.

To delete a table

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click the corner handle, and then click Delete. Alternatively, click the corner handle of the table, and then press

DELETE.

See Also

Adding a Table

Reporting Services - Reporting Services How-To

How to change an item within a cell (Report Designer)
To change an item within a cell

In Layout view, drag a control from the Toolbox into the cell.

Note Only a non-container item such as a text box or image can be replaced by a new item. If the cell contains a
container item such as a rectangle, list, table, or matrix, the new item is added to the containing item instead of
replacing it. To replace a container item, delete it. This causes the container item to be replaced with a text box,
which you can then replace with another item.

See Also

Adding a Table

Reporting Services - Reporting Services How-To

How to insert or delete a column (Report Designer)
To insert a column

1. In Layout view, click the table so that column and row handles appear above and next to table.
2. Right-click a column handle, and then click Insert Column to the Right or Insert Column to the Left.

To delete a column

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Select the column or columns that you want to delete, right-click a selected column handle, and then click Delete Columns.

See Also

Adding a Table

Reporting Services - Reporting Services How-To

How to insert or delete a row (Report Designer)
To insert a row

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click a row handle where you want to insert a row, and then click Insert Row Above or Insert Row Below.

Note The type of row selected determines the type of row inserted. Selecting a group header or footer row
results in another group header or footer row being inserted, and so on.

To delete a row

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Select the row or rows that you want to delete, right-click the handle for one of the rows you selected, and then click Delete

Rows.

See Also

Adding a Table

Reporting Services - Reporting Services How-To

How to add a group to a table (Report Designer)
To add a group to a table

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click the row handle where you want to insert the group and then click Insert Group.

Note The location of the new group row is determined by the row that is selected. Selecting a detail row places
the new group just outside the detail row. Selecting an existing group row places the new group inside the
selected group row.

3. On the General tab, do the following:

In Name, type the name of the group.
In Group on, type or select the expressions by which to group the data.
(Optional) In Document map label, type or select an expression to use as a document map label.
(Optional) If this group is a recursive hierarchy, for Parent group, type or select an expression to use as the recursive
group parent.
(Optional) Click Page break at start or Page break at end to place a page break at the beginning or end of each
group instance.
(Optional) Click Include group header or Include group footer to place a header or footer for the group in the
table.
(Optional) Click Repeat group header or Repeat group footer to repeat the group header or footer on each page in
which the table appears.

4. (Optional) On the Sorting tab, select or type expressions on which to sort the data within the group.
5. (Optional) On the Filters tab, select or type expressions by which to filter the data within the group.
6. (Optional) On the Visibility tab, select the visibility options for the item. For more information about visibility, see

Drilldown Reports and Hiding Items.
7. (Optional) On the Data Output tab, select the data output options for the item.

See Also

Adding a Table

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add sorting to a table (Report Designer)
To add sorting to a group in a table

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click the corner handle of the table, and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the Sorting tab, type or select the expressions by which to sort the data and the sort direction for each expression.

To add sorting to table details

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click the corner handle, and then click Properties.
3. On the Sorting tab, type or select the expressions by which to sort the data and the sort direction for each expression.

See Also

Adding a Table

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add, move, or delete a matrix (Report Designer)
To add a matrix

1. In Layout view, in the Toolbox, click Matrix.
2. On the design surface, drag a box to the size you want the matrix to be. Alternatively, click the design surface to create a

matrix of fixed size.

To move a matrix

1. In Layout view, click the matrix so that column and row handles appear above and next to the matrix.
2. Click the corner handle of the matrix to select the matrix.
3. Point to the shaded border of the matrix and drag the matrix to a new location.

To delete a matrix

1. In Layout view, click the matrix so that column and row handles appear above and next to the matrix.
2. Right-click the corner handle, and then click Delete. Alternatively, click the corner handle of the matrix, and then press

DELETE.

See Also

Adding a Matrix

Reporting Services - Reporting Services How-To

How to add a dynamic column or row to a matrix (Report
Designer)
To add a dynamic column or row to a matrix

In Layout view, drag the field from the Fields window onto a column or row header in the matrix.

Note If the Fields window does not appear, in the View menu, click Fields.

Note To add multiple dynamic columns or rows to a matrix, repeat this step. The column or row splits to create
another dynamic column or row. The position of the new column or row depends on which side the field was
dropped: for a column, a bar appears above or below the existing cell; for a row, a bar appears to the left or right
of the existing cell.

See Also

Adding a Matrix

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add a static column or row to a matrix (Report
Designer)
To add a static column or row to a matrix

In Layout view, right-click the data, or detail, cell of the matrix, and then click Add Column or Add Row. Alternatively, drag
a field from the Fields window onto a populated data cell.

Note If the Fields window does not appear, in the View menu, click Fields.

Note To add multiple static columns or rows to a matrix, repeat this step. The cell splits to create another static
column or row. If you add a column or row by dragging a field, Report Designer displays a dark line on one side
of the cell, indicating where the field will be positioned when it is dropped onto the matrix.

Note When a matrix contains a single static column or row, the cell has no column or row header. When
multiple static columns or rows are added to a matrix, a static header is created for each static column or row.

See Also

Adding a Matrix

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add sorting to a matrix (Report Designer)
To add sorting to a matrix

1. In Layout view, click the matrix so that the column and row handles appear above and to the side of the matrix.
2. Right-click the corner handle of the table and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the Sorting tab, type or select the expressions by which to sort the data and the sort direction for each expression.

See Also

Adding a Matrix

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add, move, or delete a list (Report Designer)
To add a list

1. In Layout view, in the Toolbox, click List.
2. On the design surface, drag a box to the size you want the list to be. Alternatively, click the design surface to create a list of

fixed size.

To move a list

1. In Layout view, click any empty space within the list to select the list.
2. Point to the shaded border of the list, and then drag the list to a new location.

To delete a list

In Layout view, right-click any empty space within the list, and then click Delete. Alternatively, click any empty space within
the list, and then press DELETE.

Note Deleting a list deletes all objects contained within the list.

See Also

Adding a List

Reporting Services - Reporting Services How-To

How to add a group to a list (Report Designer)
To add a group to a list

1. In Layout view, right-click the list, and then click Properties.
2. On the General tab, click Edit details group.
3. On the General tab, do the following:

In Name, type the name of the group.
In Group on, type or select the expressions by which to group the data.
(Optional) In Document map label, type or select an expression to use as a document map label.
(Optional) If this group is a recursive hierarchy, for Parent group, type or select an expression to use as the recursive
group parent.
(Optional) Click Page break at start or Page break at end to place a page break at the beginning or end of each
group instance.

4. (Optional) On the Filters tab, select or type expressions by which to filter the data within the group.
5. (Optional) On the Visibility tab, select the visibility options for the item. For more information about visibility, see

Drilldown Reports and Hiding Items.
6. (Optional) On the Data Output tab, select the data output options for the item.

See Also

Adding a List

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add sorting to a list (Report Designer)
To add sorting to a list

1. In Layout view, right-click the list, and then click Properties.
2. On the Sorting tab, type or select the expressions by which to sort the data and the sort direction for each expression.

See Also

Adding a List

Grouping Data in a Report

Reporting Services - Reporting Services How-To

How to add, move, or delete a chart (Report Designer)
To add a chart

1. In Layout view, in the Toolbox, click Chart.
2. On the design surface, drag a box to the size you want the chart to be. Alternatively, click the design surface to create a chart

of fixed size.

Note For information about adding data to a chart, see How to add data to a chart

To move a chart

1. In Layout view, click inside the chart to select it.
2. Point to the shaded border of the chart and drag the chart to a new location.

To delete a chart

1. In Layout view, click inside the chart to select it.
2. Right-click the shaded border of the chart, and then click Delete. Alternatively, press DELETE.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information
about charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Reporting Services How-To

How to add data to a chart (Report Designer)
To add data to a chart

1. In Layout view, right-click the chart and then click Properties.
2. On the General tab, do the following:

a. In Name, type a name for the chart.
b. In Chart type, select the chart type.
c. In Chart sub-type, select a chart subtype.

3. On the Data tab, for Dataset name, select a dataset to use for the chart.
4. In Values, click Add.

Note The values list is used to provide data for the chart. For example, in a column chart, data from the values
list determines the height of the columns and the labels on the y-axis of the chart.

5. On the Values tab of the Edit Chart Value dialog, do the following:
a. In Series label, type a name for the value series.
b. In Value, type or select a field expression to use for the value.

Note Depending on the type of chart, the Values tab may contain more than one value box, with different
names. For example, an XY scatter chart uses two value boxes, labeled X and Y.

Note If you are grouping data, use an aggregate function with the field expression. For example, for a
chart that summarizes sales by product category, use the Sum function with the sales field.

c. Click OK.
6. Repeat steps 4 and 5 to add additional value series.
7. In Category groups, click Add.

Note The category group list is used to provide groups of data in the chart. For example, in a column chart, data
from the categories list is used to determine the number of columns and the labels on the x axis of the chart.

8. In the Grouping and Sorting Properties dialog, do the following:
a. In Name, type a name for the category group.
b. In Group on, type or select a field expression to group by.
c. In Label, type or select an expression to use as the category label.

Note Use Label to place a label on the chart for the category. For example, in a column chart, the value of
Label is placed on the X axis to describe each column.

d. Click OK.
9. Repeat steps 7 and 8 to add additional category groups.

10. (Optional) In Series groups, click Add.

Note Series groups are optional. The series group list is used to provide dynamic groups of data in the chart.
For example, in a column chart, data from the categories list will result in a column for each series group, in each
category.

11. (Optional) In the Grouping and Sorting Properties dialog, do the following:
a. In Name, type a name for the series group.
b. In Group on, type or select a field expression to group by.
c. In Label, type or select an expression to use as the category label.

Note Use Label to place a label on the chart for the series. For example, in a column chart, the value of
Label is placed in the legend to describe each column.

d. Click OK.
12. (Optional) Repeat steps 10 and 11 to add additional category groups.

Note The chart control used in Reporting Services is licensed from Dundas Software. For more information
about charting functionality available from Dundas Software, visit the company web site at www.dundas.com.

See Also

Adding a Chart

http://www.dundas.com/

Reporting Services - Reporting Services How-To

How to add, edit, or delete a field in the field list (Report
Designer)
To add or edit a field in the fields list

1. In Layout view, select a dataset from the box at the top of the Fields window.
2. To add a field, right-click anywhere in the list of fields, and then click Add. To edit a field, right-click an existing field, and

then click Edit.
3. Type an name to use for the field.

Note Names must be unique within the dataset.

4. Click Database field or Calculated field, and then type a value. For a database field, this must be the name of a field
returned by the query in the dataset. For a calculated field, this must be an expression. Click Expression to build an
expression.

Note The expression for a calculated field cannot contain aggregates or references to report items.

To delete a field from the field list

1. In Layout view, select a dataset from the box at the top of the Fields window.
2. Right-click the field you want to remove, and then click Delete.

See Also

Adding a Text Box

Reporting Services - Reporting Services How-To

How to add, move, or delete a text box (Report Designer)
To add a text box

1. In Layout view, in the Toolbox, click Textbox.
2. On the design surface, drag a box to the size you want the text box to be. Alternatively, click the design surface to create a

text box of fixed size.

To move a text box

1. In Layout view, click any empty space within the text box to select the text box.
2. Point to the shaded border of the text box and drag the text box to a new location.

To delete a text box

In the Layout view, right-click any empty space within the text box, and then click Delete. Alternatively, click any empty
space within the text box, and then press DELETE.

See Also

Adding a Text Box

Reporting Services - Reporting Services How-To

How to add a field to report layout (Report Designer)
To add a field to report layout

In Layout view, drag a field from the Fields window onto a table cell, matrix cell, or containing object or page.

Note If the Fields window does not appear, in the View menu, click Fields.

If you drag the field into a cell in a table column that does not have a header, the name of the field automatically appears in
the column header.

See Also

Adding a Table

Adding a Matrix

Adding a List

Adding a Text Box

Reporting Services - Reporting Services How-To

How to add an expression (Report Designer)
To add an expression

1. In Layout view, click the text box to which you want to add an expression.
2. Click the text box again, and then type the expression in the text box. Alternatively, in the Properties window or properties

dialog box for the item, you can type the expression in the Value property.

Note You can edit expressions using the expression editor. Using the expression editor, you can insert items
into an expression from a list of available collections. You can access the expression editor by right-clicking on
the text box and then choosing Expression, choosing Expression for the Value property in the Properties
window, or by clicking the expression button for the Value property in the Textbox Properties dialog box.

See Also

Adding a Table

Adding a Text Box

Reporting Services - Reporting Services How-To

How to add a data-bound image (Image Wizard)
To add a data-bound image

1. In Layout view, in the Toolbox, click Image.
2. On the design surface, drag a box to the size you want the image to be. Alternatively, click the design surface to create an

image item of fixed size.
3. On the Welcome to the Image Wizard page, click Next.
4. On the Select the Image Source page, click Database, and then click Next.
5. On the Specify the Image Field page, do the following, and then click Next:

In Dataset, select the dataset in which the image field exists.
In Image field, select the field that contains the image.
In MIME type, select the Multipurpose Internet Mail Extensions (MIME) type of the image.

6. On the Completing the Image Creation page, verify the information, and then click Finish.

See Also

Working with Data-bound Images

Adding an Image

Reporting Services - Reporting Services How-To

How to add or remove a page header or footer (Report
Designer)
To add or remove a page header or footer

On the Report menu, click Page Header or Page Footer. Alternatively, in Layout view, right-click outside the design
surface, and then click Page Header or Page Footer.

Note If the Report menu is not available, click within the report design area.

Note When you remove a page header or footer, you delete it from the report. The contents of the page header
or footer will not reappear if you add them again.

See Also

Adding a Header and Footer

Reporting Services - Reporting Services How-To

How to hide a page header or footer on the first or last page
(Report Designer)
To hide a page header or footer on the first or last page

1. In Layout view, click the page header or page footer.
2. In the Properties window, for the PrintonFirstPage or PrintonLastPage property, select False.

See Also

Adding a Header and Footer

Reporting Services - Reporting Services How-To

How to add a page break (Report Designer)
To add a page break to a report item

1. In Layout view, right-click the report item and then click Properties.

Note Item page breaks apply only to the report items rectangle, table, matrix, list, and chart.

2. On the General tab, for Page breaks, select Insert a page break before this list (rectangle, table, or matrix) or Insert a
page break after this list (rectangle, table, or matrix).

To add a page break to a grouping in a table

1. In Layout view, click the table so that column and row handles appear above and next to the table.
2. Right-click a header or footer that represents a group row, and then click Edit Group.
3. On the General tab, click Page break at start or Page break at end.

To add a page break to a grouping in a matrix

1. In Layout view, right-click the cell in the matrix that represents the group to which you want to add a page break and then
click Edit Group.

2. On the General tab, click Page break at start or Page break at end.

Note Page breaks can only be applied to row groups. You cannot apply them to column groups.

To add a page break to a grouping in a list

1. In Layout view, right-click the list and then click Properties.
2. On the General tab, click Edit details group.
3. On the General tab, click Page break at start or Page break at end.

See Also

Working with Multiple Pages

Reporting Services - Reporting Services How-To

How to change page size (Report Designer)
To change page size

1. On the Report menu, click Report Properties.

Note If the Report menu is not available, click within the report design area.

2. On the Layout tab, do the following:

In Page width, type width of the page.
In Page height, type the height of the page.

Note Size values have a default unit based on the user's locale settings. To designate a different unit, type
a physical unit designator such as cm, mm, pt, or pc after the numeric value.

See Also

Working with Multiple Pages

Reporting Services - Reporting Services How-To

How to add columns to a report (Report Designer)
To add columns to a report

1. On the Report menu, click Report Properties.

Note If the Report menu is not available, click within the report design area.

2. On the Layout tab, do the following:

In Columns, type or select the number of columns in the report.
In Spacing, type the width of the space between columns.

Note Size values have a default unit based on the user's locale settings. To designate a different unit, type
a physical unit designator such as cm, mm, pt, or pc after the numeric value.

See Also

Writing Multi-column Reports

Reporting Services - Reporting Services How-To

How to add a rectangle (Report Designer)
To add a rectangle

1. In Layout view, in the Toolbox, click Rectangle.
2. On the design surface, drag a box to the size you want the rectangle to be. Alternatively, click the design surface to create a

rectangle of fixed size.

Note Dragging a rectangle around existing items does not automatically place the items within the rectangle.
To place existing items in a rectangle, create the rectangle, and then drag the items to the rectangle.

See Also

Adding a Rectangle

Reporting Services - Reporting Services How-To

How to add a line (Report Designer)
To add a line

1. In Layout view, in the Toolbox, click Line.
2. On the design surface, drag a box to create a line that runs from the point where you pressed the mouse button to the point

where you released the mouse button.

See Also

Adding a Line

Reporting Services - Reporting Services How-To

How to add an image (Image Wizard)
To add an image

1. In Layout view, in the Toolbox, click Image.
2. On the design surface, drag a box to the size you want the image to be. Alternatively, click the design surface to create an

image item of fixed size.
3. On the Welcome to the Image Wizard page, click Next.
4. On the Select the Image Source page, click Embedded, Project, or Database, and then click Next.
5. The next page varies depending on the type of image selected in step 4.

For Embedded, in the Choose the Embedded Image page, select an embedded image from the list. To add a new
embedded image to the report, click the New Image button and then browse to the image.
For Project, in the Choose the Image from the Project page, select an image. To add a new image to the project,
click the New Image button and then browse to the image.
For Database, in the Specify the Image Field page, select values for Data set, Image field, and MIME Type. For
more information about database images, see Working with Data-bound Images.

Click Next.

6. In the Completing the Image Creation page, verify the information and then click Finish.

See Also

Adding an Image

Reporting Services - Reporting Services How-To

How to embed an image in a report (Report Designer)
To embed an image in a report

1. On the Report menu, click Embedded Images.

Note If the Report menu is not available, click within the report design area.

2. Click New Image.
3. Type the path to the image file or click Browse to navigate to the file, and then click Open.

Note A thumbnail image of the imported file is displayed in the Image column. The name of the image is
derived from the name of the image file but you can rename it by typing a new name in the Name field of the
image. The MIME type is also derived when the image is imported. You can change it by selecting a new MIME
type in the MIME Type field of the image.

4. To embed additional images, repeat steps 2 and 3.

See Also

Adding an Image

Reporting Services - Reporting Services How-To

How to add an image to a project (Report Designer)
To create an image to a project

1. On the Project menu, click Add Existing Item. Alternatively, right-click the Reports folder in the project in Solution
Explorer, point to Add, and then click Add Existing Item.

2. Browse to the location of the picture file, select the file, and then click Open.

Note If pictures do not appear in the Add Existing Item dialog box, select All Files (*.*) from Files of type.

Note You can also add images to a project through Image Wizard. For information about using Image Wizard,
see How to add an image (Image Wizard).

See Also

Adding an Image

Reporting Services - Reporting Services How-To

How to add a background image (Report Designer)
To add a background image

1. In Layout view, select the report item to which you want to add a background image.

Note Background images apply only to rectangle, text box, table, matrix, list, or report body items.

2. In the Properties window, expand BackgroundImage, and then do the following:

For Source, select External, Embedded, or Database.

Note To use an image from the project, select External.

For Value, type or select an expression that evaluates to the source of the image.

If the Source property is set to External, the expression must evaluate to a valid path to an image. This can be a static
path to an image hosted on a report server, or it can be a path based on a field. If the image is stored in the project,
type the name of the image as it appears in the project.

If the Source property is set to Embedded, the expression must evaluate to the name of an image that is embedded
in the report. For more information, see Adding an Image.

If the Source property is set to Database, the expression must evaluate to a field that contains binary image data. For
more information, see Working with Data-bound Images.

For MIMEType, select the appropriate MIME type for the image.

Note MIMEType applies only if the Source property is set to Database. If the Source property is set to
External or Embedded, the value of MIMEType is ignored.

For BackgroundRepeat, select Repeat, NoRepeat, RepeatX, or RepeatY.

See Also

Adding an Image

Reporting Services - Reporting Services How-To

How to add a subreport and parameters (Report Designer)
To add a subreport

1. In Layout view, in the Toolbox, click Subreport.
2. On the design surface, drag a box to the size you want the subreport to be. Alternatively, click the design surface to create a

subreport of fixed size.

Note If the subreport exists in the project, you can drag the report from Solution Explorer onto the design
surface to create a subreport that uses the report.

To pass parameters to a subreport

1. In Layout view, right-click the subreport and then click Properties.
2. On the Parameters tab, do the following:

In Parameter Name, type the name of a parameter in the subreport. This name must match a report parameter in the
report named in the ReportName property.

Note The parameter name must match the name of a report parameter, not a query parameter.

In Value, type a value to pass to the subreport. This value can be static text or an expression pointing to a field or
other object in the parent report.

3. Repeat step 2 to add additional parameters to pass to the subreport.

Note All parameters that are required by the subreport must be included in the Parameters list. If a required
parameter is missing, the subreport is not displayed correctly within the parent report.

See Also

Adding a Subreport

Reporting Services - Reporting Services How-To

How to add, edit, or delete a report parameter (Report
Designer)
To add or edit a report parameter

1. On the Report menu, click Report Parameters.

Note If the Report menu is not available, click within the report design area.

2. Select the report parameter, or click Add to add a new parameter.
3. In Name, type the name of the parameter.
4. In Prompt, type the text that appears next to the parameter text box when the user runs the report.
5. In Data type, select the data type for the parameter value
6. If the parameter can contain a null value, select Allow null value. If it can contain a blank value, select Allow blank value.
7. For Available values, select Non-queried to provide a static list of values from which the user can choose a value, or

select From query to provide a dynamic list from a query.

If Non-queried is selected, type a list of labels and values. The Label property contains the text that is displayed to
the user; Value is the value that is passed to the report server for the parameter.
If From query is selected, select a dataset, a value field to map to the parameter value, and a label field to display to
the user.

Note The dataset used for this option is usually created specifically for the report parameter. For
information about datasets, see Querying a Data Source.

8. For Default values, select Non-queried to provide a static default value, or select From query to provide a dynamic
default value from a query. To provide no default value, select None.

Note If None is selected, the value used for the default value is null.

If Non-queried is selected, type a value or expression to use for the default value.
If From query is selected, select a dataset and a value field to map to the default parameter value.

Note The dataset used for this option is usually created specifically for the report parameter. For
information about datasets, see Querying a Data Source.

To delete a report parameter

1. On the Report menu, click Report Parameters.

Note If the Report menu is not available, click within the report design area.

2. Select the report parameter, that you want to delete, and then click Remove.

See Also

Using Parameters in a Report

Reporting Services - Reporting Services How-To

How to add a filter (Report Designer)
To add a filter to a dataset

1. In Data view, from Dataset, select the dataset to which to apply the filter and click the edit (...) button.
2. On the Filters tab, for Filter, do the following:

In Expression, type or select the expression that you want the filter to evaluate.
In Operator, select the operator that you want the filter to use to compare the evaluated field and the value.
In Value, type the expression or value against which you want the filter to evaluate the value in Expression.

To add a filter to a data region

1. In Layout view, if the data region is a table or matrix, click the table or matrix so that column and row handles appear above
and next to the table or matrix.

2. Right-click the corner handle of the table or matrix, or anywhere within the list or chart, and then click Properties.
3. On the Filters tab, for Filter, do the following:

In Expression, type or select the expression that you want the filter to evaluate.
In Operator, select the operator that you want the filter to use to compare the evaluated field and the value.
In Value, type the expression or value against which you want the filter to evaluate the value in Expression.

To add a filter to a table group or matrix group

1. In Layout view, click the table or matrix so that column and row handles appear above and next to the table or matrix.
2. Right-click the corner handle of the table or matrix and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the Filters tab, for Filter, do the following:

In Expression, type or select the expression for the field that you want the filter to evaluate.
In Operator, select the operator that you want the filter to use to compare the evaluated field and the value.
In Value, type the expression or value against which you want the filter to evaluate the value in Expression.

To add a filter to a list group

1. In Layout view, right-click the list and then click Properties.
2. On the General tab, click Edit details group.
3. On the Filters tab, for Filter, do the following:

In Expression, type or select the expression for the field that you want the filter to evaluate.
In Operator, select the operator that you want the filter to use to compare the evaluated field and the value.
In Value, type the expression or value against which you want the filter to evaluate the value in Expression.

To add a filter to chart groups

1. In Layout view, right-click the list and then click Properties.
2. On the Data tab, select a category group or a series group and then click Edit.
3. On the Filters tab, for Filter, do the following:

In Expression, type or select the expression for the field that you want the filter to evaluate.
In Operator, select the operator that you want the filter to use to compare the evaluated field and the value.
In Value, type the expression or value against which you want the filter to evaluate the value in Expression.

See Also

Adding Filters to a Report

Reporting Services - Reporting Services How-To

How to hide an item (Report Designer)
To hide a report item

1. In Layout view, right-click the report item and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Visibility tab, for Initial visibility, select Hidden.

To hide a table group or matrix group

1. In Layout view, click the table or matrix so that column and row handles appear above and next to the table or matrix.
2. Right-click the corner handle of the table or matrix, and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the Visibility tab, for Initial visibility, select Hidden.

See Also

Drilldown Reports and Hiding Items

Reporting Services - Reporting Services How-To

How to add a visibility toggle to an item (Report Designer)
To toggle the visibility of a report item

1. In Layout view, right-click the report item and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Visibility tab, do the following:

For Initial visibility, select Hidden.
Select Visibility can be toggled by another report item.
In Report item, type or select the name of the text box that users click to show the selected item.

Note The value for Report item must be the name of a text box that is either in the same group as the
item that is being hidden or in another group or item in the same grouping hierarchy.

To toggle the visibility of a table group or matrix group

1. In Layout view, click the table or matrix so that column and row handles appear above and next to the table or matrix.
2. Right-click the corner handle of the table or matrix, and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the Visibility tab, do the following:

For Initial visibility, select Hidden.
Select Visibility can be toggled by another report item.
In Report item, type or select the name of the text box that users click to show the selected item.

Note The value for Report item must be the name of a text box that is either in the same group as the
item that is being hidden or in another group or item in the same container hierarchy (up to and including
the report body).

See Also

Drilldown Reports and Hiding Items

Reporting Services - Reporting Services How-To

How to add a hyperlink (Report Designer)
To add a hyperlink

1. In Layout view, right-click the text box or image to which you want to add a link and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Navigation tab, select Jump to URL.
4. Type or select a URL or an expression that evaluates to a URL.

See Also

Adding a Hyperlink

Reporting Services - Reporting Services How-To

How to add a drillthrough report link (Report Designer)
To add a drillthrough report link

1. In Layout view, right-click the text box or image to which you want to add a link and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Navigation tab, select Jump to Report.
4. Type or select a report name.

Note The list of report names includes all reports in the current report project. If the drillthrough report is on
the report server but is not in the report project, type the name of the report. Report name can contain a relative
or absolute path to the report.

5. To set parameters to pass to the drillthrough report, click Parameters, and then do the following:

In Parameter Name, type the names of the report parameters in the drillthrough report.

Note The names in the parameter list must match the expected parameters in the target report exactly. If
the names do not match, or if an expected parameter is not listed, the drillthrough report fails.

In Parameter Value, type or select the values to pass to the parameters in the drillthrough report.

Note Values can contain an expression that evaluates to a value to pass to the report parameter. The
expressions in the value list include the field list for the current report.

See Also

Adding_a_Drillthrough_Report_Link

Reporting Services - Reporting Services How-To

How to set a bookmark (Report Designer)
To set a bookmark

1. In Layout view, right-click the report item for which you want to set the bookmark and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Navigation tab, for Bookmark ID, type or select a bookmark ID or an expression that evaluates to a bookmark ID.

Note The bookmark ID can be any string, but it must be unique in the report. If the bookmark ID is not unique,
a link to the bookmark ID will find the first matching bookmark.

See Also

Adding_a_Bookmark_Link

Reporting Services - Reporting Services How-To

How to add a bookmark link (Report Designer)
To add a bookmark link

1. In Layout view, right-click the text box or image to which you want to add a link and then click Properties.
2. If the report item is a text box, click Advanced.
3. On the Navigation tab, select Jump to Bookmark.
4. Type or select a bookmark ID or an expression that evaluates to a bookmark ID.

Note Bookmark IDs are set separately on report items. For more information, see Adding_a_Bookmark_Link.

See Also

Adding_a_Bookmark_Link

Reporting Services - Reporting Services How-To

How to add items to a document map (Report Designer)
To add a text box to a document map

1. In Layout view, right-click the text box that you want to add to the document map and then click Properties.
2. In Document map label, type or select a label or an expression that evaluates to a label. The label or the value of the

expression appears in the document map.

To add other report items to a document map

1. In Layout view, right-click the report item that you want to add to the document map and then click Properties.
2. On the Navigation tab, for Document map label, type or select a label or an expression that evaluates to a label. The label

or the value of the expression appears in the document map.

To add a table or matrix group to a document map

1. In Layout view, click the table of matrix so that column and row handles appear above and next to the table or matrix.
2. Right-click the corner handle of the table or matrix, and then click Properties.
3. On the Groups tab, select the group to edit, and then click Edit.
4. On the General tab, for Document map label, type or select a label or an expression that evaluates to a label. The label or

the value of the expression appears in the document map.

Note Matrix column groups cannot have document map labels. Only row groups can have a label.

To add a list group to a document map

1. In Layout view, right-click the list and then click Properties.
2. On the General tab, click Edit details group.
3. On the General tab, for Document map label, type or select a label or an expression that evaluates to a label. The label or

the value of the expression appears in the document map.

See Also

Adding_a_Bookmark_Link

Reporting Services - Reporting Services How-To

How to add code to a report (Report Designer)
To add code to a report

1. On the Report menu, click Report Properties.

Note If the Report menu is not available, click within the report design area.

2. On the Code tab, in Custom Code, type the code.

See Also

Writing Custom Code

Reporting Services - Reporting Services How-To

How to add an assembly reference to a report (Report
Designer)
To add an assembly reference to a report

1. On the Report menu, click Report Properties.

Note If the Report menu is not available, click within the report design area.

2. On the References tab, do the following:

In References, click the add (...) button and then select or browse to the assembly from the Add References dialog
box.
In Classes, type name of the class and provide an instance name to use within the report.

Note Specify a class and instance name only for instance-based members. Do not specify static members
in the Classes list.

See Also

Writing Custom Code

Reporting Services - Reporting Services How-To

How to preview a report (Report Designer)
To preview a report

With a report open in Report Designer, click the Preview tab.

See Also

Testing Reports

Reporting Services - Reporting Services How-To

How to set deployment properties (Report Designer)
To set deployment properties

1. Right-click the report project, and then click Properties.
2. In the Property Pages dialog box for the project, from Configuration, select a configuration to edit. Common

configurations are DebugLocal, Debug, and Production.

Note You can use multiple configurations to switch quickly between different report servers, or between deploy
and preview.

Note By default, the DebugLocal configuration displays a report in the local preview window, and the Debug
and Production configurations publish the report to a report server.

3. In StartItem, select a report to display in the preview window or in a browser window when the report project is run.

Note StartItem is required in configurations in which the Deploy configuration manager property is not
selected.

4. In OverwriteDataSources, select True to overwrite the data source on the server each time reports are published, or select
False to keep the data source on the server.

5. In TargetFolder, type the folder on the report server in which to place the published reports. The default value for
TargetFolder is the name of the report project.

Note You must have publish permissions on the target folder to publish reports to that folder.

6. In TargetServerURL, type the report server virtual directory; for example, http://servername/reportserver. (This is the
virtual directory of the report server, not Report Manager.)

To set Configuration Manager properties

1. Right-click the report project, and then click Properties.
2. In the Property Pages dialog box for the project, click Configuration Manager.
3. In Active Solution Configuration, select the configuration to edit.
4. In Project Contexts, for each project in the solution, select or clear Build or Deploy.

Note If Build is selected, Report Designer builds the report project and checks for errors before previewing or
publishing to a report server. If Deploy is selected, Report Designer publishes the reports to the report server as
defined in deployment properties. If Deploy is not selected, Report Designer displays the report specified in the
StartItem property in a local preview window.

See Also

Testing Reports

Deploying Reports to a Production Environment

Reporting Services - Reporting Services How-To

How to publish reports (Report Designer)
To publish all reports in a project

On the standard toolbar, from the Solution Configurations drop-down list, select a configuration, and then click Start.
Alternatively, on the Debug menu, click Start.

To publish a single report

1. On the standard toolbar, from the Solution Configurations drop-down list, select a configuration.
2. In Solution Explorer, right-click the report and then click Run.

Note Before publishing reports, the selected configuration must be set to use a specific report server. For more
information about setting a target report server, see How to set deployment properties (Report Designer).

Note By default, the DebugLocal configuration displays a report in the local preview window, and the Debug
and Production configurations publish the report to a report server.

You can view the status of the publishing process in the Output window. When Report Designer is finished publishing
reports, it opens the report or report folder in a browser window. Any errors from publishing appear in the Task List
window in Report Designer.

Note If the reports do not publish to the report server, and a preview window displays instead of the browser
window, make sure that both Build and Deploy are selected for the configuration in the configuration manager.
You can access the configuration manager on the same dialog box that you use to change the target report
server. For more information about setting configuration manager properties, see How to set deployment
properties (Report Designer).

Note Errors appear in the Task List window only if the Build property for the configuration is selected.

See Also

Testing Reports

Deploying Reports to a Production Environment

Reporting Services - Reporting Services How-To

Report Manager How-To
This section contains step-by-step instructions for performing tasks using Report Manager. There are instructions for both
administrators and users.

To view the complete list of step-by-step instructions that are available for this application, see the table of contents for this
section.

See Also

Report Manager

Working With Published Reports

Managing Report Content and Processing

Reporting Services - Reporting Services How-To

How to open and close a report
To open and close a report

1. Start Report Manager. For more information, see Report Manager.
2. Find a report by browsing folders or searching for one by name. Search for a report by typing all or part of the report name

in the Search for text box at the top of the page. Or, browse folder contents by clicking a folder name or an icon. You
browser folder contents using the Contents page. The following icon indicates a folder:

3. To open a report, click a report name or an icon. The following icon indicates a report:

Some reports require that you provide either a user name and password or a parameter value. For more information, see
Running a Parameterized.

4. To get more information about working with a report, click the help icon:

5. To close a report, navigate to another Web application page or folder.

Closing a report does not remove it from the browser cache. You must close the browser to disconnect the report.

See Also

Contents Page

Navigating Folders in Report Manager

Running Reports

Session Management in Reporting Services

Managing and Working With Published Reports

Viewing Reports in Report Manager

Reporting Services - Reporting Services How-To

How to create a folder
To create a folder

1. In Report Manager, open the folder that will contain the new folder you want to create. You can also create a folder in Home.
2. Click New Folder. The New Folder page opens.
3. Type a folder name. A folder name can include spaces, but not reserved characters that are used for URL encoding (for

example, ; ? : @ & = + , $ / * < > |). You cannot type a series of folder names to create several folders at once.
4. (Optional).) Type a description.
5. Select Hide in list view if you want to hide the folder in the default view of the Contents page. The folder will be visible to

users who click Show Details in the Contents page.
6. Click OK.

See Also

Creating, Modifying, and Deleting Folders

New Folder Page

Contents Page

Navigating Folders in Report Manager

Report Server Folder Namespace

Reporting Services - Reporting Services How-To

How to delete a folder
To delete a folder

1. In Report Manager, navigate to the folder that contains the folder you want to delete. You open a folder in the Contents
page.

2. Click Show Details on the Contents page.
3. Scroll to the folder that you want to delete, select the check box next to the folder name, and then click Delete at the top of

the page.

Alternately, you can open the properties page of the folder, and click Delete.

See Also

Contents Page

Creating, Modifying, and Deleting Folders

Navigating Folders in Report Manager

Report Server Folder Namespace

Reporting Services - Reporting Services How-To

How to modify folder properties
To modify a folder

1. In Report Manager, open the folder. Use the Contents page to open folders.
2. Click the Properties tab at the top of the page. The General properties page for the folder opens.
3. Modify folder properties in the following ways:

Type a name or description to modify display text about the folder.
Select or clear the Hide in list view check box to determine whether the folder displays in the default view.
Click Move to change folder location.
Click Delete to remove the folder and its contents.

4. Click Apply to save your changes.

See Also

Contents Page

General Properties Page (Folders)

Creating, Modifying, and Deleting Folders

Navigating Folders in Report Manager

Report Server Folder Namespace

Reporting Services - Reporting Services How-To

How to open property, subscription, and report history pages
In Report Manager, tabbed pages are used to set properties and security, work with subscriptions and report history. Tabbed
pages open when you select an item. Tabbed pages appear horizontally at the top of the page, and vertically down the side of a
page when you click the Properties tab. There are two ways to open tabbed pages.

To open tabbed pages

In Report Manager, click an item in the Contents page.
Click Show Details on the Contents page. Click the Property icon next to the item whose tabbed pages you want to open:

For reports, tabbed pages are used to set general properties, data source properties, report execution properties, parameter
properties, history properties, and security. It also opens pages used to access and define subscriptions and report history.

For folders and resources, tabbed pages are used to set general properties and security.

For shared data source items, tabbed pages are used to set general properties and security, and view information about which
reports and subscriptions reference the data source.

See Also

Running Reports

Navigating Folders in Report Manager

Report Server Folder Namespace

Reporting Services - Reporting Services How-To

How to delete a report or item
To delete a report or item

1. In Report Manager, open the folder that contains the item you want to delete.
2. Click Show Details on the Contents page.
3. Select the check box next to the item you want to delete, and then click Delete.

See Also

Contents Page

Report Manager

Navigating Folders in Report Manager

Adding, Modifying, and Deleting Reports

Reporting Services - Reporting Services How-To

How to create a linked report
To create a linked report

1. In Report Manager, open the report on which you want to base the linked report, and then click the Properties tab at the
top of the page.

2. In the General properties page, click Create Linked Report. The New Linked Report page opens.
3. Type a name for linked report you are creating. You can also type a description for the report.
4. To select a different folder for the report, click Change Location. Otherwise, the linked report is created in the current

folder, residing alongside the report on which it is based.

If you change the location, you must retype the name and description you specified in the previous step. Opening the
Choose Linked Report Location page resets New Linked Report page.

5. Click OK.

When you click OK, the linked report opens from the folder that you selected for it.

6. To edit parameter values and other properties, click the Properties tab.

You can distinguish a linked report from other items managed by a report server by its icon. The following icon indicates a linked
report:

See Also

New Linked Report Page

Choose Linked Report Location Page

General Properties Page (Reports)

Creating, Modifying, and Deleting Linked Reports

Linked Reports

Report Manager

Reporting Services - Reporting Services How-To

How to create an e-mail subscription
The report you select must use stored credentials or no credentials. If the report gets credentials another way, the New
Subscription button is not available.

To create an e-mail subscription

1. In Report Manager, open the report to which you want to subscribe.
2. Click New Subscription. The New Subscription page opens.
3. Select Report Server Email for the method of delivery.
4. Type the e-mail address to which you want the report delivered in the To field. If you have permission to manage all

subscriptions, you can type additional e-mail addresses in Cc, Bcc, and Reply-To fields.
5. Choose report delivery options. If you clear these options, only the text in the Subject line is sent.

Select Include Report to embed or attach a copy of the report. The rendering format you select in the next step
determines how the report is included. Do not choose this option if you think the report size will exceed the maximum
limit defined for your e-mail system. If the report is too large, it will be sent as an attachment.
Select Include Link to include a URL to the report in the body of the e-mail message.

6. Choose a rendering format, which determines report presentation. This option is available if you include the report with the
e-mail.

To embed the report in the body of the e-mail, select Web archive.

All other rendering formats send the report as an attachment.

7. Specify conditions that cause the subscription to process and delivery to occur.

When the report content is refreshed activates the subscription and delivers the report when a report snapshot is
updated with a newer version. The schedule used to update a report snapshot determines when your subscription is
processed. This option is available only for snapshots that are already associated with an update schedule.

When the scheduled report run is complete opens a schedule page so that you can specify a delivery schedule.

8. For parameterized reports, specify parameters to use for the report that is generated in response to this subscription. The
parameters that you specify can be different from those used to run the report on demand or in other scheduled operations.

See Also

Creating, Modifying, and Deleting Standard Subscriptions

Distributing Reports Through Subscriptions

E-Mail Delivery in Reporting Services

Managing Subscriptions

New Subscription / Edit Subscription Page

Report Manager

Using Schedules

Reporting Services - Reporting Services How-To

How to create a file share subscription
The report you select must use stored credentials or no credentials. If parameters are used, every parameter must have a default
value specified. If the report gets credentials another way, the New Subscription button is not available.

To create a file share subscription

1. In Report Manager, open the report to which you want to subscribe.
2. Click New Subscription. The New Subscription page opens.
3. Select Report Server File Share for the method of delivery.
4. Type a name for the file or use the name of the report as the basis of the file name.
5. Select Add a file extension when the report is created to save the report with a three-character file extension. The file

extension is determined by the rendering format you select.
6. Type a UNC path for the file location (for example, \\mylocalcomputer\c$\myreport files). Include double backslash

characters at the start of the path. Do not specify a trailing backslash.
7. Select a render format to deliver the file in an application format. Choose a format that corresponds to the desktop

application that you want to use with the report. Avoid formats that do not render a report in a single stream or that
introduce interactivity that cannot be supported in a static file (that is, HTML 3.2, HTML 4.0, or HTML with Office Web
Components).

8. Specify credentials used to access the file share.
9. Specify overwrite options. If you choose the Do not overwrite the file if a previous version exists option, the delivery

will not be made if an existing file is detected. If you choose AutoIncrement, the report server appends a timestamp or
number to the file name to distinguish it from existing files of the same name.

10. Specify conditions that cause the subscription to process and delivery to occur.

When the report content is refreshed activates the subscription and delivers the report when a report snapshot is
updated with a newer version. The schedule used to update a report snapshot determines when your subscription is
processed. This option is available only for snapshots that are already associated with an update schedule.

When the scheduled report run is complete opens a schedule page so that you can specify a delivery schedule.

11. For parameterized reports, specify parameters to use for the report that is generated in response to this subscription. The
parameters that you specify can be different from those used to run the report on demand or in other scheduled operations.

The report is delivered as a static file. If the report includes interactive features (for example, links to additional rows and
columns), those features are not available.

See Also

Creating, Modifying, and Deleting Standard Subscriptions

Distributing Reports Through Subscriptions

File Share Delivery in Reporting Services

Managing Subscriptions

New Subscription / Edit Subscription Page

Report Manager

Using Schedules

Reporting Services - Reporting Services How-To

How to modify or delete a subscription
To modify or delete a subscription

1. In Report Manager, in My Subscriptions on the global toolbar, or on the Subscription tab of an open report, find the
subscription you want to modify or delete.

2. Click Edit to open the Edit Subscription page.
3. To delete a subscription, select the check box next to the subscription, and then click Delete.

See Also

How to open and close a report

Creating, Modifying, and Deleting Standard Subscriptions

Using My Subscriptions

Report Manager

New Subscription / Edit Subscription Page

My Subscriptions Page

Reporting Services - Reporting Services How-To

How to create a shared data source
To create a shared data source

1. In Report Manager, navigate to the folder that will contain the item, and then click New Data Source. The New Data Source
page opens.

2. Type a name for the item. You can also type a description to provide users with information about the connection.
3. Select Hide in list view if you want to hide the item in the default view of the Contents page. The data source will be visible

to users who click Show Details in the Contents page.
4. Select Enable this data source to make the data source connection information available to a report or data-driven

subscription.
5. For Connection Type, select a data processing extension to use.
6. Type a connection string. Do not include credentials (connection strings are transmitted in clear text). The following example

illustrates a connection string used to connect to the SQL Server Adventure Works database:

data source="server01";initial catalog=AdventureWorks2000

7. Specify how to get credentials used to connect to the data source:

To prompt users to type credentials each time they run the report, select The credentials supplied by the user
running the report.
To store credentials (required for reports that are available through subscription or that run on a schedule), select
Credentials stored securely in the report server.
To run in the security context of the user running the report, select Windows NT Integrated Security.
To use no credentials (not recommended), select Credentials are not required.

For more information about specifying credentials, see Specifying Credential and Connection Information.

See Also

Creating, Modifying, and Deleting Shared Data Sources

New Data Source Page

Contents Page

Data Processing Extensions

Report Manager

Shared Data Sources and Report-Specific Data Sources

Reporting Services - Reporting Services How-To

How to create a role definition
To create a role definition

1. In Report Manager, on the global toolbar, click Site Settings.
2. To create an item-level role definition, click Configure item-level role definitions. To create a system-level role definition,

click Configure system-level role definitions.
3. Click New Role. Depending on the option you clicked in the previous step, the New Role page or New System Role page

opens.
4. Type a name for the role definition. The name can be a maximum of 256 characters. It can include spaces and special

characters.
5. Type a description for the role definition. The information you provide should enable users who choose this role definition

to understand what the role is for. Include enough information so that the user does not have to open the role definition to
view the task list.

6. Select one or more tasks for the role definition, and then click OK.

The role definition is saved to the report server database. After it is saved, it becomes available to all users who have permission
to create role assignments.

See Also

Creating, Modifying, and Deleting Role Definitions

Report Manager

Role Definitions

Tasks and Permissions

New Role / Edit Role Page

New System Role / Edit System Role Page

Reporting Services - Reporting Services How-To

How to modify a role definition
To modify a role definition

1. In Report Manager, on the global toolbar, click Site Settings.
2. To modify an item-level role definition, click Configure item-level role definitions. To modify a system-level role

definition, click Configure system-level role definitions.
3. Click the role definition that you want to modify. Role definitions are listed by name. The Edit Role page opens.
4. Modify the task list or the description. You cannot modify the name.
5. Click OK to save your changes.

The modified role definition is saved to the report server database. After it is saved, the changes immediately affect all role
assignments that include the role definition.

See Also

Creating, Modifying, and Deleting Role Definitions

Report Manager

Role Definitions

Tasks and Permissions

New Role / Edit Role Page

New System Role / Edit System Role Page

Reporting Services - Reporting Services How-To

How to delete a role definition
To delete a role definition

1. In Report Manager, on the global toolbar, click Site Settings.
2. To delete an item-level role definition, click Configure item-level role definitions. To delete a system-level role definition,

click Configure system-level role definitions.
3. Click the role definition that you want to delete. Role definitions are listed by name. The Edit Role page opens.
4. Click Delete, and then click OK.

See Also

Creating, Modifying, and Deleting Role Definitions

Report Manager

Role Definitions

New Role / Edit Role Page

New System Role / Edit System Role Page

Reporting Services - Reporting Services How-To

How to create a role assignment
To create a role assignment

1. In Report Manager, navigate to and open the property pages of the item to which you want to apply the role assignment.
2. Click the Properties tab, and then click Security.
3. If the item already has item-specific security defined for it, click New Role Assignment.

If the item uses the security settings of a parent item, click Edit Item Security, and then click New Role Assignment.

4. Type the name of a group or user account. You can specify only one account name for each role assignment.
5. Select one or more role definitions that describe how the user or group should access the item and its descendants, and

then click OK.

To determine which tasks a role definition supports, click the name of the role definition. If existing role definitions are
insufficient, click New Role to create a new one.

See Also

Creating, Modifying, and Deleting Role Assignments

New Role Assignment / Edit Role Assignment Page

Security Properties Page (Items)

Navigating Folders in Report Manager

Report Manager

Role Assignments

Role Definitions

Reporting Services - Reporting Services How-To

How to modify or delete a role assignment
To modify or delete a role assignment

1. In Report Manager, navigate to and open the property page of the item that uses the role assignment you want to view or
modify.

2. Click the Properties tab, and then click Security. The Security Properties page opens. Role assignments for the current item
are listed in this page.

3. To edit a role assignment, click Edit next to the role assignment you want to modify. To delete a role assignment, select the
check box next to the role assignment and then click Delete.

Each role assignment is identified by the account name and the role definitions specified in it.

4. To edit a role assignment, select role definitions to add to the role assignment, or clear existing selections. You cannot
modify the account name.

5. Click Apply.

You can click the role definition name to view the task list it supports. If existing role definitions are insufficient, click New Role to
create a new one.

See Also

Creating, Modifying, and Deleting Role Assignments

New Role Assignment / Edit Role Assignment Page

Report Manager

Role Assignments

Role Definitions

Security Properties Page (Items)

Reporting Services - Reporting Services How-To

How to move an item
To move an item

1. In Report Manager, open the folder that contains the item you want to move. Use the Contents page to navigate to an item.
2. Click Show Details.
3. Select the check box next to the name of the item you want to move, and then click Move. The Move Items page opens.
4. Specify the folder to contain the item, and then click OK. You can type the fully qualified folder name in Location or use the

tree control to navigate to the folder you want.

See Also

Moving Items

Contents Page

Move Items Page

Report Manager

Reporting Services - Reporting Services How-To

How to upload a file
To upload a file

1. In Report Manager, navigate to the folder that will contain the item that you want to add. Use the Contents page to navigate
to a folder.

2. Click Upload File. The Upload File page opens.
3. Click Browse to select a file to upload. You can upload a report definition file, an image, a document, or any file that you

want to make a available on a report server.
4. Type a name for the item. Avoid reserved characterizes that are used in URL encoding (for example, the characters / & @ %).
5. Select Overwrite item if the file exists if you want to replace an existing item with an updated copy.
6. Click OK.

See Also

Contents Page

Upload File Page

Uploading Files to a Folder

Report Manager

Reporting Services - Reporting Services How-To

How to export a report
To export a report

1. In Report Manager, open the report that you want to export.
2. On the report toolbar, click the drop-down list to select an export format, and then click Export.

The report toolbar is part of the HTML Viewer. The following diagram shows the list of formats available by default from the
report toolbar.

When you click Export, the report opens in a new browser window, in a viewer that is associated with the export format. If in Step
2 you clicked TIFF, the report is displayed in a viewer that supports TIFF file types.

See Also

Exporting Reports

HTML Viewer

Archiving and Versioning Reports

Report Manager

Reporting Services - Reporting Services How-To

How to create a system role assignment
To create a system role assignment

1. In Report Manager, on the global toolbar, click Site Settings.
2. Click Configure site-wide security.
3. To enable access for a new user or group, click New Role Assignment.
4. Type the name of the user or group account.
5. Select a system role definition to use with this assignment. You can only choose role definitions that include system tasks.

For more information, see System Tasks.
6. Click Apply.

See Also

Setting System-Level Security

Creating, Modifying, and Deleting Role Assignments

Role Assignments

Site Settings Page

New System Role Assignments / Edit System Role Assignments Page

Reporting Services - Reporting Services How-To

How to modify or delete a system role assignment
To modify a system role assignment

1. In Report Manager, on the global toolbar, click Site Settings.
2. Click Configure site-wide security.
3. To edit the system role assignment, click Edit next to the system role assignment that you want to modify. A system role

assignment is named after the group or user account to which it applies.
4. To delete the system role assignment, select the check box next to the system role assignment that you want to delete, and

then click Delete.

See Also

Setting System-Level Security

Creating, Modifying, and Deleting Role Assignments

Role Assignments

Site Settings Page

New System Role Assignments / Edit System Role Assignments Page

Reporting Services - Reporting Services How-To

How to create, modify, or delete a shared schedule
To create or modify a shared schedule

1. In Report Manager, on the global toolbar, click Site Settings.
2. Click Manage shared schedules to open the Shared Schedules page.
3. To create a new schedule, click New Schedule. To edit a schedule, click the name of the schedule.
4. Type a descriptive name for the schedule (optional).
5. Click Hour, Day, Week, or Month to specify an hourly, daily, weekly, or monthly schedule. Click Once to create a schedule

that runs one-time only. Additional options appear when you specify the basis of your schedule.
6. Select a date to start the schedule (optional). The default is the current day. You can postpone the schedule start time by

choosing a later date.
7. Select a date to stop the schedule (optional). The schedule stops running on this date, but it will not be deleted.
8. Click OK.

To delete a shared schedule

1. Click Manage shared schedules to open the Shared Schedules page.
2. Select the check box next to the schedule you want to delete, and then click Delete.

See Also

Creating, Modifying, and Deleting Schedules

Shared Schedules and Report-Specific Schedules

Site Settings Page

Shared Schedules Page

New Schedule / Edit Schedule Page

Reporting Services - Reporting Services How-To

How to create, modify, or delete a report-specific schedule
Creating and modifying report-specific schedules are an extension of creating and modifying subscriptions, setting report
execution properties, and setting report history properties. The following steps assume that a schedule definition page is open.

To create or modify a custom schedule

1. Select an option that allows you to specify a schedule:

In a New Subscription or Edit Subscription page, click Select Schedule.

In the Execution properties and History properties pages, select Report-specific schedule, and then click Configure.

2. Click Hour, Day, Week, or Month to specify an hourly, daily, weekly, or monthly schedule. Additional options appear when
you specify the basis of your schedule.

Or, click Once to create a schedule that runs one-time only.

3. Select a date to start the schedule (optional). The default is the current day. You can postpone the schedule start time by
choosing a later date.

4. Select a date to stop the schedule (optional). The schedule stops running on this date, but it will not be deleted.
5. Click OK.

To delete a custom schedule

Open the item that uses schedule information, and then select a non-scheduled option that overrides the schedule.

To unschedule snapshot generation, choose an option that runs the report on-demand (for example, Do not cache
temporary copies of this report).

To unschedule report history, clear the Use the following schedule to add snapshots to report history check box.

To unschedule a subscription, open the subscription and choose When the scheduled report run is complete.

See Also

Creating, Modifying, and Deleting Schedules

Shared Schedules and Report-Specific Schedules

New Schedule / Edit Schedule Page

Reporting Services - Reporting Services Samples

Reporting Services Samples and Walkthroughs
Microsoft® SQL Server™ 2000 Reporting Services includes walkthroughs, sample reports, a sample application, and a sample
script that you can use to learn about report authoring and publication, report server management, programming, and scripting
using Reporting Services.

Sample reports and application code are installed separately from other Reporting Services components. To install samples, run
Reporting Services Setup. For more information, see Installing Reporting Services.

Sample reports use a sample SQL Server 2000 database, AdventureWorks, that contains fictitious data. The AdventureWorks
sample database is installed through Reporting Services Setup. Setup attaches the database to the SQL Server instance you
selected to host the report server database. The database login is based on Windows Authentication.

The following table describes the topics in this section.

Topic Description
Walkthroughs Describes how to use various Reporting

Services features.
Reporting Services Sample Reports Describes how to use Reporting Services

features in reports.
AdventureWorks Sample Database Describes the AdventureWorks sample

database, which contains the data that is
used by the sample reports.

Developer Samples Describes programming using the
Reporting Services Web service.

Important These samples are provided for educational purposes only. They are not intended to be used in a
production environment and have not been tested in one. Microsoft does not provide technical support for these
samples.

See Also

Installing Reporting Services

Introducing Reporting Services

Reporting Services - Reporting Services Samples

Walkthroughs
Microsoft® SQL Server™ Reporting Services includes several walkthroughs. You can use these walkthroughs to learn specific
skills step-by-step.

The following table describes the topics in this section.

Topic Description
Walkthrough - Creating a Basic Report Provides a step-by-step tutorial for

creating a report.
Walkthrough - Adding Grouping, Sorting,
and Formatting to a Basic Report

Provides a step-by-step tutorial for
expanding the report created in the first
tutorial.

Walkthrough - Using a Dynamic Query in
a Report

Provides a step-by-step tutorial for using
dynamic queries in a report.

Walkthrough - Creating a Data-Driven
Subscription

Provides step-by-step instruction for
defining a subscription that builds a
subscriber list from a data store.

Walkthrough – Accessing the Reporting
Services Web Service Using Visual Basic
or Visual C#

Provides step-by-step instructions for
accessing the Reporting Services Web
Service to retrieve item properties.

Walkthrough – Generating RDL Using the
.NET Framework

Provides step-by-step instructions for
generating Report Definition Language
(RDL) programmatically using the .NET
Framework.

See Also

Reporting Services Samples and Walkthroughs

Designing and Creating Reports

AdventureWorks Sample Database

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Walkthrough - Creating a Basic Report
This tutorial is designed to help you create a basic table report based on the AdventureWorks2000 database. In this tutorial, you
will create a report project, set up connection information, define a query, add a table, and preview the report.

Requirements

Your system must have the following installed to use this tutorial:

Microsoft SQL Server 2000 Reporting Services.
SQL Server 2000 with the AdventureWorks2000 OLTP database.
Microsoft Internet Explorer 6.0 or later.
Microsoft Visual Studio® .NET 2003 with Report Designer.

You must also have permissions to retrieve data from the AdventureWorks2000 database and to publish reports to the report
server.

Create a Report Project

Reports are contained within a report project in Microsoft Visual Studio .NET 2003.

1. Click Start, point to Programs, point to Microsoft Visual Studio .NET 2003, and then click Microsoft Visual Studio .NET
2003.

2. On the File menu, point to New, and then click Project.
3. In the Project Types list, click Business Intelligence Projects.
4. In the Templates list, click Report Project.
5. In Name, type Tutorial.
6. Click OK to create the report project.

Create a Report

Follow these steps to create a report file.

1. In Solution Explorer, right-click Reports, point to Add, and click Add New Item.

Note If the Solution Explorer window is not visible, in the View menu, click Solution Explorer.

2. In Add New Item, click Report.
3. In Name, type Sales Orders.rdl and then click Open. A view opens that contains Data, Layout, and Preview tabs. The

report opens in Data view.

Set Up Connection Information

Follow these steps to create a dataset.

1. In Dataset at the top of the view, select New Dataset. The Data Link Properties dialog box appears.
2. In Select or enter a server name, type the name of the computer on which the AdventureWorks2000 database resides.

Note If Report Designer, the report server, and the AdventureWorks2000 database are all installed on the local
computer, type (local).

3. For Enter information to log on to the server, select Use Windows NT Integrated security.
4. For Select the database on the server, select AdventureWorks2000.
5. To verify the connection information, click Test Connection.
6. Click OK.

Define a Query

After the data source is defined, Report Designer creates a dataset and displays a query designer that you can use to design the
query. For this tutorial, you will create a query that retrieves sales order information from the database.

1. Switch to the visual design tool by clicking the Generic Query Designer button on the query designer toolbar.

Note The Generic Query Designer button is a toggle button. When the button is selected, the generic query
designer is displayed. Otherwise, the visual design tool is displayed. You may use either designer for this tutorial;
however, these instructions assume the visual design tool.

2. Type, or copy and paste, the following query into the SQL pane of the visual design tool. The SQL pane is the third of four
panes in the visual design tool.

SELECT OrderDate, SalesOrderNumber, TotalDue, FirstName, LastName
FROM SalesOrderHeader
INNER JOIN Employee ON SalesOrderHeader.SalesPersonID = Employee.EmployeeID

3. To view the results of the query, right-click in any pane and then click Run. Alternatively, click the Run (!) button on the
query designer toolbar.

Add a Table

After the query is defined, you can start defining the report layout.

1. Click the Layout tab.
2. In the Toolbox, click Table, and then click on the design surface. Report Designer draws a table, with three columns,

spanning the width of the design surface.

Note If the Toolbox is not visible, in the View menu, click Toolbox.

3. Drag the OrderDate field from the Fields window to the first cell of the middle (detail) row in the table.

Note If the Fields window is not visible, in the View menu, click Fields.

4. Drag the SalesOrderNumber field from the Fields window to the second cell of the middle (detail) row in the table.
5. Drag the TotalDue field from the Fields window to the last cell of the middle (detail) row in the table.

Note You will not use all of the fields in the query in this tutorial. The additional fields are used in a later
tutorial.

Preview the Report

At this point in the tutorial, you can preview the contents of the table.

Click the Preview tab.

You can also debug the report and view it in a separate window.

1. In the Solution Explorer window, right-click the Tutorial project, and then click Properties.
2. Click Configuration Manager.
3. In the Configuration Manager dialog, in Active Solution Configuration, select DebugLocal.
4. Click Close.
5. In the Tutorial Property Pages dialog, in StartItem, select Sales Orders.rdl.
6. Click OK.
7. Save the report project. On the File menu, click Save All.
8. Preview the report. On the Debug menu, click Start. The report is displayed in a separate preview window.

See Also

Reporting Services Samples and Walkthroughs

Walkthrough - Adding Grouping, Sorting, and Formatting to a Basic Report

Reporting Services - Reporting Services Samples

Walkthrough - Adding Grouping, Sorting, and Formatting to a
Basic Report
This tutorial is designed to help you explore additional features in report design by building upon the basic table report created in
the previous tutorial. In this tutorial, you will open the report project; add grouping and sorting to the table, add a new column to
the table, add a subtotal, provide some formatting, preview the report, and publish the report to a report server.

Requirements

Your system must have the following installed to use this tutorial:

Microsoft SQL Server 2000 Reporting Services.
SQL Server 2000 with the AdventureWorks2000 OLTP database.
Microsoft Internet Explorer 6.0 or later.
Microsoft Visual Studio® .NET 2003 with Report Designer.

You must also have permissions to retrieve data from the AdventureWorks2000 database and to publish reports to the report
server.

This tutorial requires that you have completed the previous tutorial, "Walkthrough - Creating a Basic Report."

Open the Tutorial Project

This tutorial builds on the Sales Order report that was created in the previous tutorial. If you already have this report open, skip
these steps.

1. Click Start, point to Programs, point to Microsoft Visual Studio .NET 2003, and then click Microsoft Visual Studio .NET
2003.

2. On the File menu, point to Open, and then click Project.
3. Navigate to the location of the project file that was created in the previous tutorial. The file should be located in the Tutorial

folder.
4. Click Tutorial.rptproj and then click Open.
5. In the Solution Explorer window, double-click on Sales Orders.rdl to open the report. If necessary, click the Layout tab to

open the report in Layout view.

Add a Group

You can add a group to the table that groups and sorts data by sales person.

1. Click the table so that column and row handles appear above and next to the table.

Note Handles are gray boxes that appear above and next to the table when it is selected. You use handles to
perform various actions on columns, rows, and the table itself. The handles that run across the top of the table
are column handles. The handles that run down the side of the table are row handles. The handle where the
column and row handles meet is the corner handle.

2. Right-click on the handle of any row and then click Insert Group.
3. On the General tab, for Group on, select =Fields!LastName.Value in the first row and =Fields!FirstName.Value in the

second row. This will group the data by sales person name.
4. On the Sorting tab, for Sort on, select =Fields!LastName.Value in the first row and =Fields!FirstName.Value in the

second row, each with a direction of Ascending. This will sort the data by sales person name.
5. Click OK. Two new rows, a group header and a group footer, are added to the table.

Add a New Column

You can add a column to the table to display the name of the sales person.

1. Click the table so that column and row handles appear above and next to the table.
2. Right-click on the handle of the first column (Order Date) and then click Insert Column to the Left.

3. Click on the second cell in the new column and type the following expression. The second cell should be in the new group
row that was added in previous steps.

=Fields!FirstName.Value & " " & Fields!LastName.Value

4. Click on the first cell in the first column and type Sales Person. This is the label for the column in the table header.

Sort the Detail Data

Add sorting to the detail data in the table to sort by order date.

1. Click the table so that column and row handles appear above and next to the table.
2. Right-click the corner handle and then click Properties.

Note The corner handle is the handle where the column and row handles meet.

3. On the Sorting tab, for Sort on, select =Fields!OrderDate.Value.
4. Click OK.

Add a Subtotal

You can add aggregate functions to the report. These steps add a subtotal by sales person.

Drag the OrderDate field from the Fields window to the fourth cell in the last (Total Due) column.

Note If the Fields window is not visible, in the View menu, click Fields.

Note Because this is a group row, the Sum function is automatically added to the expression to create a
subtotal.

Apply Formatting and Style

There are additional tasks that you can perform to clean up the report and make it easier to read.

Date Format

The OrderDate field displays date and time information by default. You can add formatting to display only the date.

1. Right-click the cell with the OrderDate field expression and then click Properties.
2. For Format, select Standard, select Date, and then select the third example on the list (short date).
3. Click OK.

Currency Format

The TotalDue field displays a general number. Add formatting to display the number in currency format.

1. Right-click the cell with the TotalDue field expression and then click Properties.
2. For Format, select Standard, and then select Currency.
3. Click OK.
4. Right-click the cell with the subtotal for total due and then click Properties.
5. For Format, select Standard, and then select Currency.
6. Click OK.

Text Style and Column Widths

You can also add style to the table headers to differentiate them from the rows of data in the report, and adjust the widths of the
columns.

1. Click the table so that column and row handles appear above and next to the table.
2. Select the row handles of the first, second, and fourth rows (the row containing column header labels, the group header

row, and the group footer row) and then click the Bold (B) button on the formatting toolbar.

Note To select multiple items, hold down the CTRL key and click on each item.

3. Point to the line between column handles so that the cursor changes into a double arrow. Drag the columns to size.

Preview the Report

Use Preview to examine the report before publishing it to the report server.

Click the Preview tab.

Publish the Report

When the report is complete, you can publish it to a report server. Before you publish the report, you must switch to the
Production configuration and set the location of the report server.

1. In the Solution Explorer window, right-click the Tutorial project, and then click Properties.
2. Click Configuration Manager.
3. In the Configuration Manager dialog, in Active Solution Configuration, select Production.
4. Click Close.
5. In the Tutorial Property Pages dialog, in TargetServerURL, type the report server virtual directory; for example,

http://servername/reportserver. (This is the virtual directory of the report server, not Report Manager.)

Note If the report server is on the same computer as Report Designer, you can use localhost as the server
name, for example, http://localhost/reportserver.

6. Click OK.
7. Save the report project. On the File menu, click Save All.
8. Publish the report. On the Debug menu, click Start.
9. When publishing is complete, Report Designer opens Internet Explorer. Click Sales Orders to view the report.

See Also

Reporting Services Samples and Walkthroughs

Walkthrough - Creating a Basic Report

Reporting Services - Reporting Services Samples

Walkthrough - Using a Dynamic Query in a Report
This advanced tutorial is designed to help you understand how you can use dynamic queries in report design. In this walkthrough,
you will create a project, create two datasets, add a table and parameters, and alter one of the queries to use a dynamic query.

Requirements

Your system must have the following installed to use this tutorial:

Microsoft SQL Server 2000 Reporting Services.
SQL Server 2000 with the AdventureWorks2000 OLTP database.
Microsoft Internet Explorer 6.0 or later.
Microsoft Visual Studio® .NET 2003 with Report Designer.

You must also have permissions to retrieve data from the AdventureWorks2000 database. This walkthrough assumes that you
know how to create reports, datasets, tables, and parameters, and how to use the generic query designer. For information about
these features, see the documentation about these features.

Walkthrough

Using a dynamic query, you can create a tabular report that lists all employees for a particular department, or all employees in the
company, depending on a parameter value. Although a static query can filter employees through a query parameter, it cannot
alter the structure of the query (in this case, remove the WHERE clause in order to display all employees). A dynamic query can.

The following walkthrough is based on the AdventureWorks database. To create a report that uses a dynamic query, do the
following:

1. Create a blank report.
2. In Data view, create a dataset named Employees that uses an AdventureWorks data source. This dataset is used by the main

table in the report. In this dataset, type the following query:

SELECT FirstName, LastName, Title
FROM Employee WHERE (DepartmentID = 1)
ORDER BY LastName

This query will be changed later to an expression; creating a basic query first will allow Report Designer to automatically
create a fields list. If you begin by writing an expression, you have to manually update the fields list.

Note If there are no other data sources in the report or the project, the first data source you create is named
after the database you selected. To change the name of the dataset, click the Edit Selected Dataset (...) button
on the toolbar and then, in Name, type Employees.

3. Create a dataset named Departments that uses an AdventureWorks data source. This dataset is used by the parameter list.
In this dataset, type the following query:

SELECT 0 AS DepartmentID, 'All' AS Name
UNION
SELECT DepartmentID, Name
FROM Department
ORDER BY Name

This UNION query creates a list of departments that includes the word 'All' at the top of the list.

Note The graphical query designer does not support UNION queries. You must use the generic query designer
to edit UNION queries.

4. In Layout view, add a table, and then place the fields from the Employees dataset (FirstName, LastName, and Title) into
the detail cells of the table.

5. Create a report parameter and then do the following:

For Name and Prompt, type Department.
For Data type, select String.

Clear Allow null value and Allow blank value.
For Available values, select From query.
For Dataset, select Departments. For Value field, select DepartmentID. For Label field, select Name.

6. Preview the report. The table should display a limited list of employees based on the static query. The parameter does not
filter data at this point.

7. In Data view, select the Employees dataset, and then use the generic query designer to replace the original query with the
following expression:

="SELECT FirstName, LastName, Title FROM Employee" & IIf(Parameters!Department.Value
= 0,""," WHERE (DepartmentID = " & Parameters!Department.Value & ")") & " ORDER BY
LastName"

This expression results in a query that includes a WHERE clause only if All is not selected. The WHERE clause includes the
value from the Department parameter. You must use the generic query designer to create an expression.

Note The expression must be a single line. If the query was formatted by the graphical query designer, remove
the carriage returns and extra spaces.

8. Preview the report. When you select All, all employees are displayed. When you select a specific department, employees
from that department are displayed.

See Also

Reporting Services Samples and Walkthroughs

Using Dynamic Queries

Creating a Blank Report

Connecting to a Data Source

Querying a Data Source

Adding a Table

Using Parameters in a Report

Testing Reports

Reporting Services - Reporting Services Samples

Walkthrough - Creating a Data-Driven Subscription
This tutorial shows you how to use data-driven subscriptions step by step. In this walkthrough, you create a small subscriber
database and populate it with values you will reference later in the subscription.

Requirements

A report that includes parameters. This walkthrough assumes the sample report, Employee Sales Summary. For more
information, see Reporting Services Sample Reports.
A report server that is configured to use the e-mail delivery extension. For more information, see Configuring Report Server
E-Mail Delivery Extension.
SQL Agent service must be running.
A local SQL Server database that contains subscriber information. If you already know how to create a database in SQL
Server, this step takes just a few minutes. You will need a minimum of three rows of subscriber data to complete this
walkthrough. Step 1 describes the data you need.

To make this tutorial meaningful, use a valid e-mail alias. This tutorial asks you to repeat the value of a single valid alias (your
own). In this walkthrough all subscriber data is fictional except for that value.

Create a Sample Subscriber Database

This step creates the subscriber data values that the report server retrieves when the subscription is processed. Do not omit this
step even if you have a data source that contains names, e-mail aliases, and department data. Use Enterprise Manager to create
the database, table, and columns.

1. Create a SQL Server database named Subscribers.
2. Create a table.
3. Add five columns: Name, Alias, EmployeeID, Format, Linked. For all columns, set the data type to Varchar and the length to

50.
4. Name the table UserInfo.
5. Insert three rows of data. You can use SQL Query Analyzer to add the data. The following example shows how to insert a

single row of data using the INSERT statement.

INSERT INTO UserInfo (Name, Alias, EmployeeID, Format, Linked)

VALUES ('Fernando Caro', '<your e-mail alias>', '24', 'IMAGE', 'True')

6. Repeat the INSERT INTO statement from the previous step two more times to insert the following data:

VALUES ('Rachel Valdez', '<your e-mail alias>', '35', 'MHTML', 'True')

VALUES ('Michael Blythe', '<your e-mail alias>', '38', 'PDF', 'False')

7. Use a SELECT statement to verify that you have three or more rows of data. For example: SELECT * FROM UserInfo

Specify Stored Credentials

1. Click Start, click Programs, click Microsoft SQL Server, click Reporting Services, and then click Report Manager.
2. In Report Manager, select the Employee Sales Summary sample report.
3. Click the Properties tab at the top of the page, and then click Data Sources.
4. Click A custom data source.
5. For Connection Type, select Microsoft SQL Server.
6. Type the following connection string:

data source=<the name of your SQL Server>; initial catalog=AdventureWorks2000

7. Click Credentials stored securely in the report server.
8. Type your user name and password, click Use as windows credentials when connecting to the data source, and then

click Apply. If you do not have permission to access the AdventureWorks2000 database, specify a login that does.
9. Click the View tab to verify that the report runs with the credentials you specified. Note that you must select an Employee

name and then click View Report to view the report.

Start the Wizard and Choose a Delivery Method

1. To define a data-driven subscription, click the Subscriptions tab, and then click New Data-Driven Subscription.
2. (Optional.) Type a description for the subscription.
3. Select Report Server E-mail as the delivery method, and then click Next.

Connect to the Subscriber Data Source

1. Select Microsoft SQL Server as the connection type.
2. Type the following connection string:

data source=<the name of your SQL Server>; initial catalog=Subscribers

3. Type your user name (including the domain) and password, click Use as windows credentials when connecting to the
data source, and then click Next.

Define a Query That Retrieves Subscriber Data

Type the following query, click Validate, and then click Next.

Select * from UserInfo

Set Delivery Options

1. For the To option, click Get the value from the database, and then select Alias.
2. For CC, BCC, and ReplyTo options, click No value.
3. For the IncludeReport option, click Specify a static value, and then select True.
4. For the RenderFormat option, click Get the value from the database, and then select Format.
5. For the Priority option, click Specify a static value, and then select Normal.
6. For the Subject option, click Specify a static value, and then type @ReportName was run at @ExecutionTime.
7. For the Comment option, click No Value.
8. For the IncludeLink option, click Get the value from the database, and then select Linked.
9. Click Next.

Specify a Parameter Value

1. Use the default parameter values for Month and Year. These are December and 2003, respectively.
2. For Employee, click Get the value from the database, and then select EmployeeID.
3. Click Next.

Choose a Subscription Trigger

Click On a schedule created for this subscription, and then click Next.

Schedule the Subscription

1. Click Once to run the subscription exactly one time. Specify a start time that is 10 minutes from the current time.
2. Click Finish.

Evaluating the Subscription Results

When the subscription runs, three e-mail messages will be delivered to your e-mail inbox, one for each subscriber in the
Subscribers data source. Each delivery should be unique in terms of data (the data should be employee-specific), rendering
format, and whether it includes a link.

See Also

Data-Driven Subscriptions

Creating, Modifying, and Deleting a Data-Driven Subscription

Distributing Reports Through Subscriptions

Subscription and Delivery Scenarios

Using an External Data Source for Subscriber Data

Walkthroughs

Reporting Services - Reporting Services Samples

Walkthrough – Accessing the Reporting Services Web Service
Using Visual Basic or Visual C#
The following walkthrough describes the process for accessing the Reporting Services Web service from an application created
with Visual Basic or Visual C#.

During the course of this walkthrough, you will accomplish the following activities:

Create a client application using the Visual Studio .NET Console Application project template.
Add a Web reference for the Reporting Services Web service.
Write code to access the Web service.
Run the console application in debug mode.

Requirements

To complete the walkthrough, you must have the following:

Microsoft® SQL Server™ 2000 Reporting Services
Microsoft Visual Studio® .NET 2003 or a similar .NET Framework compatible development tool.
Sufficient permissions to be able to access the Reporting Services Web service on the computer where your report server is.
A report installed on your report server. This walkthrough assumes the sample report, Company Sales. For more
information, see Reporting Services Sample Reports.

Creating the Web Service Client Project

For this walkthrough, you will create a simple console application that accesses the Reporting Services Web service. This
walkthrough assumes you are developing in Microsoft Visual Studio .NET.

To create a console application

1. On the File menu, point to New, and then click Project to open the New Project dialog box.
2. Expand either the Visual Basic Projects or the Visual C# Projects folder.
3. Click the Console Application icon.
4. In the Name box, enter a name for your project. Enter the name, GetPropertiesSample.
5. In the Location box, enter the path where you want to save your project, or click Browse to navigate to the folder.
6. Click Open. A collapsed view of your project appears in Project Explorer.

In Project Explorer, expand the project node. A file with the default name of Class1.cs (Module1.vb for Visual Basic) has
been added to your project.

Adding a Web Reference

Web service discovery is the process by which a client locates a Web service and obtains its service description. The process of
Web service discovery in Visual Studio involves interrogating a Web site following a predetermined algorithm. The goal of the
process is to locate the service description, which is an XML document that uses the Web Services Description Language (WSDL).

The service description describes what services are available and how to interact with those services. Without a service
description, it is impossible to programmatically interact with a Web service.

Your application must have a means to communicate with the Web service and to locate it at run time. Adding a Web reference to
your project for the Web service does this by generating a proxy class that interfaces with the Web service and provides a local
representation of the Web service. For more information, see "Web References and Generating an XML Web Service Proxy" in
your Visual Studio .NET documentation.

To add a Web reference

1. On the Project menu, click Add Web Reference.
2. In the URL box of the Add Web Reference dialog box, type the URL to obtain the service description of the Reporting

Services Web service, such as http://localhost/reportserver/reportservice.asmx?wsdl. Then click the Go button to retrieve
information about the Web service.

- or -

If the Reporting Services Web service exists on the local machine, click the Web services on the local machine link in the
browser pane. Then click the link for the ReportService Web service from the list provided.

3. In the Web reference name box, rename the Web reference to ReportingServices, which is the namespace you will use for
this Web reference.

4. Click Add Reference to add a Web reference for the target Web service.

Visual Studio downloads the service description and generates a proxy class to interface between your application and the
Reporting Services Web service.

For more information, see Accessing the SOAP API.

Accessing the Web Service

Once you add a reference for the Web service to your project, the next step is to create an instance of the Web service's proxy
class. You can then access the methods of the Web service in the same manner that you access any object's methods by calling
methods in the proxy class. When your application calls these methods, the proxy class code generated by Visual Studio handles
the communications between your application and the Web service.

First, you will create an instance of the Web service's proxy class, ReportingService. Next, you will make a call to the Web
service's GetProperties method using the proxy class. You will use the call to retrieve the name and description of one of the
sample reports, Company Sales.

To access the Web service

1. You must first add the namespace to the Class1.cs file (Module1.vb in Visual Basic). You accomplish this by adding a using
(Import in Visual Basic) directive to the code file. If you use this directive, you do not need to fully qualify the types in the
namespace. To do this, add the following code to the beginning of your code file:

Visual Basic

Imports System
Imports GetPropertiesSample.ReportingServices

C#

using System;
using GetPropertiesSample.ReportingServices;

1. Once you have entered the namespace directive to your code file, enter the following code in the Main method of your
console application:

Visual Basic

Sub Main()
 Dim rs As New ReportingService
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Dim name As New [Property]
 name.Name = "Name"

 Dim description As New [Property]
 description.Name = "Description"

 Dim properties(1) As [Property]
 properties(0) = name
 properties(1) = description

 Try
 Dim returnProperties As [Property]() = rs.GetProperties("/SampleReports/Company
Sales", properties)

 Dim p As [Property]
 For Each p In returnProperties
 Console.WriteLine((p.Name + ": " + p.Value))
 Next p

 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try
End Sub

C#

static void Main(string[] args)
{
 ReportingService rs = new ReportingService();
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 Property name = new Property();
 name.Name = "Name";

 Property description = new Property();
 description.Name = "Description";

 Property[] properties = new Property[2];
 properties[0] = name;
 properties[1] = description;

 try
 {
 Property[] returnProperties = rs.GetProperties("/SampleReports/Company Sales",
properties);

 foreach (Property p in returnProperties)
 {
 Console.WriteLine(p.Name + ": " + p.Value);
 }
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

1. Save the solution.

The walkthrough sample code uses the GetProperties method of the Web service to retrieve properties of the sample report,
Company Sales. The GetProperties method takes two arguments: the name of the report for which you want to retrieve property
information and an array of Property[] objects that contains the names of properties whose values you want to retrieve. The
method also returns an array of Property[] objects that contains the names and values of the properties specified in the
properties argument.

Note If you supply an empty Property[] array for the properties argument, all available properties are returned.

In the previous sample, the code uses the GetProperties method to return the name and description of the sample report,
Company Sales. The code then uses a foreach loop to write the properties and values to the console.

For more information about creating and using a proxy class for the Reporting Services Web service, see Creating the Web
Service Proxy.

Running the Application

Visual Studio offers several methods to build and run a console application from the IDE, such as:

Start (with Debugging)
Start without Debugging

To build and run the GetPropertiesSample

1. From the Debug menu, click Start Without Debugging. This ensures that the console window remains open after the
program has finished executing.

The application prints the following output to the console:

Name: Company Sales

Description: Adventure Works sales by quarter and product category. This report
illustrates the use of a matrix data region that provides drilldown from summary
data into detail data by showing and hiding rows. This report also illustrates
the use of background images.
Press any key to continue

2. Press any key to close GetPropertiesSample.

See Also

ReportingService.GetProperties Method

Property Class

Reporting Services Samples and Walkthoughs

Walkthroughs

Reporting Services - Reporting Services Samples

Walkthrough – Generating RDL Using the .NET Framework
This walkthrough illustrates how to write Report Definition Language (RDL) to a report definition file using the XmlTextWriter
class. The writer provides a fast, forward-only way of generating XML, thus RDL, and helps you to build report definition
documents that conform to the RDL specification. The XmlTextWriter writes to a stream rather than using an object model such
as the XML DOM, and so gives better performance.

Typically, you use an XmlTextWriter if you need to write XML as raw data without the overhead of a DOM. The XmlTextWriter
is an implementation of the XmlWriter class that provides the API which writes XML to a file stream. The XmlTextWriter class
provides several methods that are useful for creating a report definition file. In particular, the following walkthrough shows you
how to construct a report definition file using the WriteStartElement, WriteAttributeString, WriteElementString, and
WriteEndElement methods.

During the course of this walkthrough, you will accomplish the following activities:

Create an application using the Visual Studio .NET Console Application project template.
Add a connection to the AdventureWorks2000 sample database.
Write code to retrieve a list of fields for the data source.
Write code to generate a simple report definition file that can be used to build a report.

Requirements

To complete the walkthrough, you must have the following:

Microsoft® SQL Server™ 2000 Reporting Services
Microsoft Visual Studio® .NET 2003 or a similar .NET Framework compatible development tool.
The AdventureWorks2000 sample database installed to an instance of SQL Server 2000.

Creating the RDL Generator Visual Studio Project

For this walkthrough, you will create a simple console application. This walkthrough assumes you are developing in Microsoft
Visual Studio .NET.

To create a console application

1. On the File menu, point to New, and then click Project to open the New Project dialog box.
2. Expand either the Visual Basic Projects or the Visual C# Projects folder.
3. Click the Console Application icon.
4. In the Name box, enter a name for your project. Enter the name, SampleRDLGenerator.
5. In the Location box, enter the path where you want to save your project, or click Browse to navigate to the folder.
6. Click Open. A collapsed view of your project appears in Project Explorer.

In Project Explorer, expand the project node. A code file with the default name of Class1.cs (Module1.vb for Visual Basic)
has been added to your project.

When you have finished creating the application template, replace the contents of the code file with the following:

Visual Basic

Imports System
Imports System.Collections
Imports System.Data
Imports System.Data.SqlClient
Imports System.IO
Imports System.Text
Imports System.Xml

Namespace SampleRDLGenerator
 Class RdlGenerator
 Private m_connection As SqlConnection
 Private m_connectString As String
 Private m_commandText As String
 Private m_fields As ArrayList

 Public Shared Sub Main()
 Dim myRdlGenerator As New RdlGenerator()
 myRdlGenerator.Run()
 End Sub 'Main

 Public Sub Run()
 Try
 ' Call methods to create the RDL
 Me.OpenConnection()
 Me.GenerateFieldsList()
 Me.GenerateRdl()

 Console.WriteLine("RDL file generated successfully.")

 Catch exception As Exception
 Console.WriteLine(("An error occurred: " + exception.Message))

 Finally
 ' Close the connection string
 m_connection.Close()
 End Try
 End Sub 'Run

 Public Sub OpenConnection()
 End Sub 'OpenConnection

 ' TODO: Open a connection to the sample database

 Public Sub GenerateFieldsList()
 End Sub 'GenerateFieldsList

 ' TODO: Generate a list of fields for a report query

 Public Sub GenerateRdl()
 End Sub 'GenerateRdl
 End Class 'RdlGenerator ' TODO: Generate RDL using XmlTextWriter
End Namespace 'SampleRDLGenerator

C#

using System;
using System.Collections;
using System.Data;
using System.Data.SqlClient;
using System.IO;
using System.Text;
using System.Xml;

namespace SampleRDLGenerator
{
 class RdlGenerator
 {
 SqlConnection m_connection;
 string m_connectString;
 string m_commandText;
 ArrayList m_fields;

 public static void Main()
 {
 RdlGenerator myRdlGenerator = new RdlGenerator();
 myRdlGenerator.Run();
 }

 public void Run()
 {
 try
 {
 // Call methods to create the RDL
 this.OpenConnection();

 this.GenerateFieldsList();
 this.GenerateRdl();

 Console.WriteLine("RDL file generated successfully.");
 }

 catch (Exception exception)
 {
 Console.WriteLine("An error occurred: " + exception.Message);
 }

 finally
 {
 // Close the connection string
 m_connection.Close();
 }
 }

 public void OpenConnection()
 {
 // TODO: Open a connection to the sample database
 }

 public void GenerateFieldsList()
 {
 // TODO: Generate a list of fields for a report query
 }

 public void GenerateRdl()
 {
 // TODO: Generate RDL using XmlTextWriter
 }
 }
}

Creating a Connection to the Sample Database

The first step is to create a connection to the AdventureWorks2000 sample database in order to generate a list of fields for the
report definition.

To create a connection to AdventureWorks2000

Replace the code for the OpenConnection() method in your project with the following code:

Visual Basic

Public Sub OpenConnection()
 ' Create a connection object
 m_connection = New SqlConnection()

 ' Create the connection string
 m_connectString = "data source=localhost;initial catalog=AdventureWorks2000;integrated
security=SSPI"
 m_connection.ConnectionString = m_connectString

 ' Open the connection
 m_connection.Open()
End Sub 'OpenConnection

C#

public void OpenConnection()
{
 // Create a connection object
 m_connection = new SqlConnection();

 // Create the connection string
 m_connectString = "data source=localhost;initial catalog=AdventureWorks2000;integrated
security=SSPI";
 m_connection.ConnectionString = m_connectString;

 // Open the connection

 m_connection.Open();
}

Note You should replace the connection string used here with a connection string that is valid for your particular
configuration. The previous connection string assumes that you have installed the AdventureWorks2000 database to a
local instance of SQL Server.

Retrieving a List of Fields for the Report Definition

Since every report definition should have a list of fields that represent the data in the report, you must generate a fields list from
your query.

To generate a fields list

Replace the code for the GenerateFieldsList() method in your project with the following code:

Visual Basic

Public Sub GenerateFieldsList()
 Dim command As SqlCommand
 Dim reader As SqlDataReader

 ' Executing a query to retrieve a fields list for the report
 command = m_connection.CreateCommand()
 m_commandText = "SELECT CountryRegion.Name AS CountryName, StateProvince.Name AS
StateProvince " & _
 "FROM StateProvince " & _
 "INNER JOIN CountryRegion ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode " & _
 "ORDER BY CountryRegion.Name"
 command.CommandText = m_commandText

 ' Execute and create a reader for the current command
 reader = command.ExecuteReader(CommandBehavior.SchemaOnly)

 ' For each field in the resultset, add the name to an array list
 m_fields = New ArrayList()
 Dim i As Integer
 For i = 0 To reader.FieldCount - 1
 m_fields.Add(reader.GetName(i))
 Next i
End Sub 'GenerateFieldsList

C#

public void GenerateFieldsList()
{
 SqlCommand command;
 SqlDataReader reader;

 // Executing a query to retrieve a fields list for the report
 command = m_connection.CreateCommand();
 m_commandText =
 "SELECT CountryRegion.Name AS CountryName, StateProvince.Name AS StateProvince " +
 "FROM StateProvince " +
 "INNER JOIN CountryRegion ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode " +
 "ORDER BY CountryRegion.Name";
 command.CommandText = m_commandText;

 // Execute and create a reader for the current command
 reader = command.ExecuteReader(CommandBehavior.SchemaOnly);

 // For each field in the resultset, add the name to an array list
 m_fields = new ArrayList();
 for (int i = 0; i <= reader.FieldCount - 1; i++)
 {
 m_fields.Add(reader.GetName(i));
 }
}

Creating Code to Generate the Report Definition File

Now that you have created your connection and retrieved a list of fields for the query, you can generate RDL programmatically
using XmlTextWriter.

To generate RDL programmatically

Replace the code for the GenerateRdl() method in your project with the following code:

Visual Basic

Public Sub GenerateRdl()
 ' Open a new RDL file stream for writing
 Dim stream As FileStream
 stream = File.OpenWrite("Report1.rdl")
 Dim writer As New XmlTextWriter(stream, Encoding.UTF8)

 ' Causes child elements to be indented
 writer.Formatting = Formatting.Indented

 ' Report element
 writer.WriteProcessingInstruction("xml", "version=""1.0"" encoding=""utf-8""")
 writer.WriteStartElement("Report")
 writer.WriteAttributeString("xmlns", Nothing,
"http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition")
 writer.WriteElementString("Width", "6in")

 ' DataSource element
 writer.WriteStartElement("DataSources")
 writer.WriteStartElement("DataSource")
 writer.WriteAttributeString("Name", Nothing, "DataSource1")
 writer.WriteStartElement("ConnectionProperties")
 writer.WriteElementString("DataProvider", "SQL")
 writer.WriteElementString("ConnectString", m_connectString)
 writer.WriteElementString("IntegratedSecurity", "true")
 writer.WriteEndElement() ' ConnectionProperties
 writer.WriteEndElement() ' DataSource
 writer.WriteEndElement() ' DataSources
 ' DataSet element
 writer.WriteStartElement("DataSets")
 writer.WriteStartElement("DataSet")
 writer.WriteAttributeString("Name", Nothing, "DataSet1")

 ' Query element
 writer.WriteStartElement("Query")
 writer.WriteElementString("DataSourceName", "DataSource1")
 writer.WriteElementString("CommandType", "Text")
 writer.WriteElementString("CommandText", m_commandText)
 writer.WriteElementString("Timeout", "30")
 writer.WriteEndElement() ' Query
 ' Fields elements
 writer.WriteStartElement("Fields")
 Dim fieldName As String
 For Each fieldName In m_fields
 writer.WriteStartElement("Field")
 writer.WriteAttributeString("Name", Nothing, fieldName)
 writer.WriteElementString("DataField", Nothing, fieldName)
 writer.WriteEndElement() ' Field
 Next fieldName

 ' End previous elements
 writer.WriteEndElement() ' Fields
 writer.WriteEndElement() ' DataSet
 writer.WriteEndElement() ' DataSets
 ' Body element
 writer.WriteStartElement("Body")
 writer.WriteElementString("Height", "5in")

 ' ReportItems element
 writer.WriteStartElement("ReportItems")

 ' Table element

 writer.WriteStartElement("Table")
 writer.WriteAttributeString("Name", Nothing, "Table1")
 writer.WriteElementString("DataSetName", "DataSet1")
 writer.WriteElementString("Top", ".5in")
 writer.WriteElementString("Left", ".5in")
 writer.WriteElementString("Height", ".5in")
 writer.WriteElementString("Width", (m_fields.Count * 1.5).ToString() + "in")

 ' Table Columns
 writer.WriteStartElement("TableColumns")
 For Each fieldName In m_fields
 writer.WriteStartElement("TableColumn")
 writer.WriteElementString("Width", "1.5in")
 writer.WriteEndElement() ' TableColumn
 Next fieldName
 writer.WriteEndElement() ' TableColumns
 ' Header Row
 writer.WriteStartElement("Header")
 writer.WriteStartElement("TableRows")
 writer.WriteStartElement("TableRow")
 writer.WriteElementString("Height", ".25in")
 writer.WriteStartElement("TableCells")

 For Each fieldName In m_fields
 writer.WriteStartElement("TableCell")
 writer.WriteStartElement("ReportItems")

 ' Textbox
 writer.WriteStartElement("Textbox")
 writer.WriteAttributeString("Name", Nothing, "Header" + fieldName)

 writer.WriteStartElement("Style")
 writer.WriteElementString("TextDecoration", "Underline")
 writer.WriteEndElement() ' Style
 writer.WriteElementString("Top", "0in")
 writer.WriteElementString("Left", "0in")
 writer.WriteElementString("Height", ".5in")
 writer.WriteElementString("Width", "1.5in")
 writer.WriteElementString("Value", fieldName)
 writer.WriteEndElement() ' Textbox
 writer.WriteEndElement() ' ReportItems
 writer.WriteEndElement() ' TableCell
 Next fieldName

 writer.WriteEndElement() ' TableCells
 writer.WriteEndElement() ' TableRow
 writer.WriteEndElement() ' TableRows
 writer.WriteEndElement() ' Header
 ' Details Row
 writer.WriteStartElement("Details")
 writer.WriteStartElement("TableRows")
 writer.WriteStartElement("TableRow")
 writer.WriteElementString("Height", ".25in")
 writer.WriteStartElement("TableCells")

 For Each fieldName In m_fields
 writer.WriteStartElement("TableCell")
 writer.WriteStartElement("ReportItems")

 ' Textbox
 writer.WriteStartElement("Textbox")
 writer.WriteAttributeString("Name", Nothing, fieldName)

 writer.WriteStartElement("Style")
 writer.WriteEndElement() ' Style
 writer.WriteElementString("Top", "0in")
 writer.WriteElementString("Left", "0in")
 writer.WriteElementString("Height", ".5in")
 writer.WriteElementString("Width", "1.5in")
 writer.WriteElementString("Value", "=Fields!" + fieldName + ".Value")
 writer.WriteElementString("HideDuplicates", "DataSet1")
 writer.WriteEndElement() ' Textbox

 writer.WriteEndElement() ' ReportItems
 writer.WriteEndElement() ' TableCell
 Next fieldName

 ' End Details element and children
 writer.WriteEndElement() ' TableCells
 writer.WriteEndElement() ' TableRow
 writer.WriteEndElement() ' TableRows
 writer.WriteEndElement() ' Details
 ' End table element and end report definition file
 writer.WriteEndElement() ' Table
 writer.WriteEndElement() ' ReportItems
 writer.WriteEndElement() ' Body
 writer.WriteEndElement() ' Report
 ' Flush the writer and close the stream
 writer.Flush()
 stream.Close()
End Sub 'GenerateRdl

C#

public void GenerateRdl()
{
 // Open a new RDL file stream for writing
 FileStream stream;
 stream = File.OpenWrite("Report1.rdl");
 XmlTextWriter writer = new XmlTextWriter(stream, Encoding.UTF8);

 // Causes child elements to be indented
 writer.Formatting = Formatting.Indented;

 // Report element
 writer.WriteProcessingInstruction("xml", "version=\"1.0\" encoding=\"utf-8\"");
 writer.WriteStartElement("Report");
 writer.WriteAttributeString("xmlns", null,
"http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition");
 writer.WriteElementString("Width", "6in");

 // DataSource element
 writer.WriteStartElement("DataSources");
 writer.WriteStartElement("DataSource");
 writer.WriteAttributeString("Name", null, "DataSource1");
 writer.WriteStartElement("ConnectionProperties");
 writer.WriteElementString("DataProvider", "SQL");
 writer.WriteElementString("ConnectString", m_connectString);
 writer.WriteElementString("IntegratedSecurity", "true");
 writer.WriteEndElement(); // ConnectionProperties
 writer.WriteEndElement(); // DataSource
 writer.WriteEndElement(); // DataSources

 // DataSet element
 writer.WriteStartElement("DataSets");
 writer.WriteStartElement("DataSet");
 writer.WriteAttributeString("Name", null, "DataSet1");

 // Query element
 writer.WriteStartElement("Query");
 writer.WriteElementString("DataSourceName", "DataSource1");
 writer.WriteElementString("CommandType", "Text");
 writer.WriteElementString("CommandText", m_commandText);
 writer.WriteElementString("Timeout", "30");
 writer.WriteEndElement(); // Query

 // Fields elements
 writer.WriteStartElement("Fields");
 foreach (string fieldName in m_fields)
 {
 writer.WriteStartElement("Field");
 writer.WriteAttributeString("Name", null, fieldName);
 writer.WriteElementString("DataField", null, fieldName);
 writer.WriteEndElement(); // Field

 }

 // End previous elements
 writer.WriteEndElement(); // Fields
 writer.WriteEndElement(); // DataSet
 writer.WriteEndElement(); // DataSets

 // Body element
 writer.WriteStartElement("Body");
 writer.WriteElementString("Height", "5in");

 // ReportItems element
 writer.WriteStartElement("ReportItems");

 // Table element
 writer.WriteStartElement("Table");
 writer.WriteAttributeString("Name", null, "Table1");
 writer.WriteElementString("DataSetName", "DataSet1");
 writer.WriteElementString("Top", ".5in");
 writer.WriteElementString("Left", ".5in");
 writer.WriteElementString("Height", ".5in");
 writer.WriteElementString("Width", (m_fields.Count * 1.5) + "in");

 // Table Columns
 writer.WriteStartElement("TableColumns");
 for (int i = 0; i < m_fields.Count; i++)
 {
 writer.WriteStartElement("TableColumn");
 writer.WriteElementString("Width", "1.5in");
 writer.WriteEndElement(); // TableColumn
 }
 writer.WriteEndElement(); // TableColumns

 // Header Row
 writer.WriteStartElement("Header");
 writer.WriteStartElement("TableRows");
 writer.WriteStartElement("TableRow");
 writer.WriteElementString("Height", ".25in");
 writer.WriteStartElement("TableCells");

 foreach (string fieldName in m_fields)
 {
 writer.WriteStartElement("TableCell");
 writer.WriteStartElement("ReportItems");

 // Textbox
 writer.WriteStartElement("Textbox");
 writer.WriteAttributeString("Name", null, "Header" + fieldName);

 writer.WriteStartElement("Style");
 writer.WriteElementString("TextDecoration", "Underline");
 writer.WriteEndElement(); // Style

 writer.WriteElementString("Top", "0in");
 writer.WriteElementString("Left", "0in");
 writer.WriteElementString("Height", ".5in");
 writer.WriteElementString("Width", "1.5in");
 writer.WriteElementString("Value", fieldName);
 writer.WriteEndElement(); // Textbox

 writer.WriteEndElement(); // ReportItems
 writer.WriteEndElement(); // TableCell
 }

 writer.WriteEndElement(); // TableCells
 writer.WriteEndElement(); // TableRow
 writer.WriteEndElement(); // TableRows
 writer.WriteEndElement(); // Header

 // Details Row
 writer.WriteStartElement("Details");
 writer.WriteStartElement("TableRows");

 writer.WriteStartElement("TableRow");
 writer.WriteElementString("Height", ".25in");
 writer.WriteStartElement("TableCells");

 foreach (string fieldName in m_fields)
 {
 writer.WriteStartElement("TableCell");
 writer.WriteStartElement("ReportItems");

 // Textbox
 writer.WriteStartElement("Textbox");
 writer.WriteAttributeString("Name", null, fieldName);

 writer.WriteStartElement("Style");
 writer.WriteEndElement(); // Style

 writer.WriteElementString("Top", "0in");
 writer.WriteElementString("Left", "0in");
 writer.WriteElementString("Height", ".5in");
 writer.WriteElementString("Width", "1.5in");
 writer.WriteElementString("Value", "=Fields!" + fieldName + ".Value");
 writer.WriteElementString("HideDuplicates", "DataSet1");
 writer.WriteEndElement(); // Textbox

 writer.WriteEndElement(); // ReportItems
 writer.WriteEndElement(); // TableCell
 }

 // End Details element and children
 writer.WriteEndElement(); // TableCells
 writer.WriteEndElement(); // TableRow
 writer.WriteEndElement(); // TableRows
 writer.WriteEndElement(); // Details

 // End table element and end report definition file
 writer.WriteEndElement(); // Table
 writer.WriteEndElement(); // ReportItems
 writer.WriteEndElement(); // Body
 writer.WriteEndElement(); // Report

 // Flush the writer and close the stream
 writer.Flush();
 stream.Close();
}

Running the Application

Visual Studio offers several methods to build and run a console application from the IDE, such as:

Start (with Debugging)
Start without Debugging

To build and run SampleRdlGenerator

1. From the Debug menu, click Start Without Debugging. This ensures that the console window remains open after the
program has finished executing.

The application prints the following output to the console:

RDL file generated successfully.

Note In Visual Basic, you may receive a compiler error that states that 'Sub Main' was not found in
SampleRDLGenerator.SampleRDLGenerator.Module1. If you receive this error, double-click the error message in
the Task list. The Startup Object dialog appears. Select
SampleRDLGenerator.SampleRDLGenerator.RdlGenerator and click the OK button. Rebuild the project.

2. Press any key to close SampleRdlGenerator.

Note Any errors that occur are written to the console.

A file named Report1.rdl is written to the directory from which the console application is run.

Learning More

For more information about RDL and to view the RDL schema, see Report Definition Language. For more information about
generating RDL, see Generating Report Definition Language Programmatically.

Reporting Services - Reporting Services Samples

Reporting Services Sample Reports
The Reporting Services sample reports are a set of predefined report definition files that use the AdventureWorks2000 OLTP
database or the Foodmart Analysis Services database as data source. You can upload and view each report separately; however,
some reports are designed to work together through the use of links. You can use the sample reports in two ways: to familiarize
yourself with the capabilities of Reporting Services, or as templates for designing new reports.

System Requirements

Your system must meet the following requirements to use the sample reports.

Server

Microsoft® SQL Server™ 2000 Reporting Services
SQL Server 2000 with the AdventureWorks2000 OLTP database installed (for AdventureWorks reports)
Analysis Services 2000 with Foodmart database installed (for Foodmart report)

Client

Microsoft Internet Explorer 5.0 or later
Microsoft Visual Studio® .NET with Report Designer installed (optional)

Installing the Sample Reports

To upload the sample reports, you must first install them on your hard drive by using Reporting Services Setup. When installed
using the default location, Reporting Services sample reports are installed in the Samples\Reports folder within the Reporting
Services program folder (for example, C:\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Reports). The reports are not
automatically deployed to the report server. You do this manually by uploading reports using Report Manager, running a script,
or publishing the reports using Report Designer.

Note Samples are not installed by default. You must choose to install the samples during setup.

The following table describes the sample reports that are provided with Reporting Services.

Report Description
Company Sales Adventure Works Cycles sales by quarter and product category.

This report illustrates the use of a matrix data region that
provides drilldown from summary data into detail data by
showing and hiding rows. This report also illustrates the use of
background images.

Employee Sales
Summary

Adventure Works Cycles sales for an individual employee. This
report includes Sales Comparison and Current Month Sales
Comparison charts in addition to a Current Month Order
Summary table with drillthrough to individual orders. This
report illustrates the use of multiple datasets, charts, tables,
drillthrough, and dynamic parameters.

Product Catalog The Adventure Works Cycles full product catalog with pictures.
This report illustrates the use of embedded images, database
images, page breaks, page footers, tables, conditional
formatting, and a document map.

Sales Order Detail Detail of an individual Adventure Works Cycles order. This
report can be accessed as a drillthrough report from the
Employee Sales Summary and Territory Sales drilldown report.
This report illustrates the use of lists, tables, parameters, and
expressions.

Territory Sales Adventure Works Cycles sales by territory. This report drills
down through salesperson and order number with drillthrough
to individual orders. This report illustrates the use of a table
data region that provides drilldown from summary data into
detail data by showing and hiding rows. This report also
illustrates the use of drillthrough links and conditional
formatting.

Foodmart Sales Foodmart sales by quarter and product department. This report
illustrates the use of an Analysis Services data source. It also
illustrates matrix, parameters, filters, calculated fields, and
drilldown from summary data into detail data by showing and
hiding rows.

Uploading Sample Reports Using Report Manager

To make the sample reports available for viewing in a Web browser, you must upload the reports to the report server. You can
use Report Manager to upload the report definition files. Before uploading reports, you must first create a shared data source for
the reports.

Note To create a data source and upload files to a folder on the report server, you must have permissions to manage
reports for the folder. If My Reports is enabled, you automatically have these permissions for your My Reports folder.
For more information, see Managing My Reports.

To upload sample reports using Report Manager

1. To run the application, type its URL in the address bar of a Web browser. By default, the URL is
http://<webservername>/reports.

2. Navigate to the destination folder for uploaded reports. For more information, see Navigating Folders in Report Manager.
3. Click New Data Source, and then do the following:

a. In Name, type AdventureWorks. The sample reports reference the data source by this name.
b. In Description, type a description or leave the field blank.
c. Select Enable this data source.
d. From Connection Type, select Microsoft SQL Server.
e. In Connection String, provide the connection string to the database that contains the AdventureWorks2000

database. An example of the connection string for a local AdventureWorks2000 database is as follows.

data source="(local)";persist security info=False;initial
catalog=AdventureWorks2000

f. From Connect Using, select Windows NT Integrated Security.
4. Click OK to save the data source and return to the folder view.
5. Click Upload File, and then click Browse to navigate to the folder that contains the sample reports.
6. Click the file to upload, and then click Open.
7. Click OK to open the file.
8. Repeat steps 5 through 7 for the remaining sample reports.

Uploading Sample Reports Using Report Designer

You can use Report Designer to upload report definition files to the report server. The sample reports and the AdventureWorks
shared data source are included in the report project file. When you publish the reports, the shared data source and the reports
are published to the report server.

To upload sample reports using Report Designer

1. To run the application, click Start, point to Programs, point to Microsoft Visual Studio .NET 2003, and then click
Microsoft Visual Studio .NET 2003.

2. On the File menu, point to Open, and then click Project.
3. Navigate to the folder to which the sample reports were installed. For information about this location, see "Installing the

Sample Reports" earlier in this topic.
4. Click SampleReports.rptproj, and then click Open.

5. 2.On the Visual Studio standard toolbar, select the Production solution configuration. (The default configuration is Debug.)
6. Publish the reports. On the Debug menu, click Start.

Note The sample report project is set to publish reports to the report server on the local computer. For
information about changing the target server, see Debugging and Publishing Reports.

7. When publishing is complete, Report Designer opens Internet Explorer. Click a report name to view the report.

Uploading Sample Reports Using a Script

You can also upload reports using a the rs script utility and a sample script. The script creates a folder, adds a data source, and
uploads each sample report. For information about using a script to upload reports, see Script for Publishing Sample Reports.

Using the Sample Reports

You can view the sample reports in a Web browser or edit them in Report Designer.

Note Before you run the reports, ensure that the AdventureWorks2000 OLTP database and Foodmart Analysis
Services database are available to the reports. For information about the AdventureWorks2000 database, see
AdventureWorks Sample Database. For information about Analysis Services, see SQL Server 2000 Books Online.

To view sample reports using Report Manager

1. To run the application, type its URL in the address bar of a Web browser. By default, the URL is
http://<webservername>/reports.

2. Navigate to the folder that contains the reports. For more information, see Navigating Folders and Reports.
3. Click the name of the report that you want to view to open it.

To edit sample reports using Report Designer

Open Report Designer, and then open the SampleReports.sln file from the folder containing the sample reports. For more
information about working with reports and report projects, see Building Reports.

Note The SampleReports.sln solution file contains two solution configurations: Debug and Production. This
differs slightly from configurations in newly created report projects. In the sample reports solution, you can use
the Debug configuration to preview reports locally, and the Production configuration to publish reports to the
report server. For information about the default configurations for new report projects, see Debugging and
Publishing Reports.

See Also

Walkthroughs

Installing Reporting Services

Reporting Services - Reporting Services Samples

Sample Report - Company Sales
The Company Sales report displays Adventure Works Cycles sales by quarter and product category. This report illustrates the use
of a matrix data region that provides drilldown from summary data into detail data by showing and hiding rows. This report also
illustrates the use of background images.

Data

This report uses a single dataset named Sales, which uses the AdventureWorks shared data source. The query for this dataset is
based on several tables from the AdventureWorks2000 database and contains a query that retrieves sales data by product and
date. The dataset returns the following fields.

Field Description
ProdCat Name of product category
SubCat Name of product subcategory
OrderYear Order year, calculated in query based on order date
OrderQtr Order quarter, calculated in query based on order date
Sales Product sales

For information about using datasets, see Querying a Data Source.

The AdventureWorks shared data source contains connection information for the AdventureWorks database. By default, this
data source uses the AdventureWorks2000 database on the local computer, but you can change it to use a database on a
different computer. Because the data source is shared, the same connection information can be used by all reports that use the
data source. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a single text box containing the report title, and a matrix with multiple groups. The
cells within the matrix contain visibility options that provide drilldown to the report user. The report also uses a background
image behind the matrix.

M atrix

The data for this report is displayed using a matrix data region named SalesMatrix which uses the Sales dataset. This matrix
displays the ProdCat and SubCat fields on rows, OrderYear and OrderQtr fields on columns, and the Sales field in data. All rows
and columns are dynamic; that is, the rows and columns depend on the contents of the database. For information about matrices,
see Adding a Matrix.

Drilldown

The matrix also contains drilldown capability. This is accomplished by applying visibility options to the inner groups in the matrix.
The groups are initially hidden, and toggles are placed on groups that point to text boxes belonging to the outer groups. For
example, in this report, the ProductSubcategory group is initially hidden, and its visibility is toggled by the Category text box.
When the user clicks on the toggle image (+ / - sign) for the category, subcategory rows appear. For information about drilldown
and item visibility, see Hiding Items on a Report.

Note The visibility information is set on the matrix group, not the text box that contains the field. Setting visibility
options on a group will show and hide entire groups of rows. Setting visibility options on text boxes will show and
hide only the text within the text boxes.

Background Image

The Company Sales report contains an embedded background image named logoback. The image is embedded, or stored, as
encoded data within the report definition. A property is set on the report body to repeat that image across the background of the
report. For information about embedded and background images, see Adding an Image.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Sample Report - Employee Sales Summary
The Company Sales report displays Adventure Works Cycles sales for an individual employee. This report includes Sales
Comparison and Current Month Sales Comparison charts in addition to a Current Month Order Summary table with drillthrough
to individual orders. This report illustrates the use of multiple datasets, charts, tables, drillthrough, and dynamic parameters.

Data

This report uses a several datasets to provide data to the various charts and tables within the report. Each dataset uses on the
AdventureWorks shared data source, and the queries in each dataset are based on tables from the AdventureWorks2000
database.

The EmpSalesYearOverYear dataset contains a query that retrieves summary sales data by employee and date, with a query
parameter that filter data by employee. It is used by the Sales Comparison chart. The dataset returns the following fields.

Field Description
Employee Name of employee
OrderYear Order year, calculated in query based on order date
OrderMonthNum Number of order month, calculated in query based on order

date
OrderMonth Name of order month, calculated in query based on order date
Sales Product sales

The EmpSalesMonth dataset contains a query that retrieves summary sales data by employee, product category, and date, with
query parameters that filter data by date and employee. It is used by the Current Month Sales Comparison chart. The dataset
returns the following fields.

Field Description
Employee Name of employee
OrderYear Order year, calculated in query based on order date
OrderMonthNum Number of order month, calculated in query based on order

date
OrderMonth Name of order month, calculated in query based on order date
ProdCat Name of product category
Sales Product sales

The EmpSalesDetail dataset contains a query that retrieves detail sales data by employee, product subcategory, and date, with
query parameters that filter data by date and employee. It is used by the Current Month Order Summary table. The dataset
returns the following fields.

Field Description
Employee Name of employee
OrderMonthNum Number of order month, calculated in query based on order

date
SubCat Name of product subcategory
Sales Product sales
SalesOrderNumber Sales order number
Product Name of product
OrderQty Quantity of product ordered
UnitPrice Single unit price for product
ProdCat Name of product category

The SalesEmps dataset contains a query that retrieves a list of employees. It is used to populate the list of employees for the
Employee parameter. The dataset returns the following fields.

Field Description
EmployeeID ID number of employee
Employee Name of employee

For information about using datasets, see Querying a Data Source.

The AdventureWorks shared data source contains connection information for the AdventureWorks database. By default, this
data source uses the AdventureWorks2000 database on the local computer, but you can change it to use a database on a
different computer. Because the data source is shared, the same connection information can be used by all reports that use the
data source. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a set of text boxes for the report title, two charts, and a table. Some cells in the table
provide drillthrough functionality to open the Sales Order Detail report when the user clicks on a sales order. The report uses
parameters to filter data by date and employee.

Charts

The first chart is the Sales Comparison line chart. This chart uses the EmpSalesYearOverYear dataset. The category (x) axis of the
chart displays months, the value (y) axis displays sales, and the data series is based on data from each year.

The second chart is the Current Month Sales Comparison bar chart. This chart uses the EmpSalesMonth dataset. The category (x)
axis of the chart displays product category, the value (y) axis displays sales, and the data series is based on the current year.

For information about charts, see Adding a Chart.

Tables

The final data region in the report is Current Month Order Summary table. This table uses the EmpSalesDetail dataset. The table
lists the products that the employee sold by individual sales order. For information about tables, see Adding a Table.

Drillthrough

The OrderNumber text box in the table includes a drillthrough action that enables a link from this report to the Sales Order Detail
report. The drillthrough action contains the name of the target report and the name of the parameter on the target report. When
the user clicks on the sales order, another report is opened which uses the selected sales number as a parameter value. For
information about drillthrough links, see Adding a Drillthrough Report Link.

Parameters

The Employee Sales Summary report uses three parameters to filter the data within the report: ReportYear, ReportMonth, and
EmpID. When values are supplied for these report parameters, the values are passed to the query parameters behind each of the
data regions and the data retrieved by the report is filtered by these parameters. The parameters contain the following:

Available values. The user can select from a static list of values for ReportYear and ReportMonth. These values are defined
within each of these parameters. For the EmpID parameter, the available values are from a dynamic list based on the query
in the SalesEmps dataset.
Labels. Each of the three parameters use a value/label pair; for example, the EmpID parameter takes the employee ID as a
value but displays the employee name as a label to the user.
Default values. The ReportYear and ReportMonth parameters also have a default value; those values are automatically
populated when the user runs the report, but can also be changed by the user. The EmpID parameter does not have a
default value. When the report is run, users must select an employee before viewing the report.

The parameters are also used in the title of the report. For example, the month and year of the report are included on the page
through the following text box expression:

=MonthName(Parameters!ReportMonth.Value) & " " & Parameters!ReportYear.Value & " Sales
Report"

The selected employee name is included through the following text box expression:

=Parameters!EmpID.Label

For information about parameters, see Using Parameters in a Report.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Sample Report - Product Catalog
The Product Catalog report displays the Adventure Works Cycles full product catalog with pictures. This report illustrates the use
of embedded images, database images, page breaks, page footers, tables, conditional formatting, and a document map.

Data

This report uses a single dataset named ProductCatalog, which uses the AdventureWorks shared data source. The query for this
dataset is based on several tables from the AdventureWorks2000 database and contains a query that retrieves a list of products
with price, photo, and description. The dataset returns the following fields.

Field Description
ProdSubCat Name of product subcategory
ProdModel Name of product model
ProdCat Name of product category
Description Description of product
LargePhoto Binary image of product
ProdName Name of product
ProductNumber Product number
Color Color of product
Size Size of product
Weight Weight of product
DealerPrice Dealer price of product
Style Style of product
Class Class of product
ListPrice List price of product

For information about using datasets, see Querying a Data Source.

The query makes use of locale settings to retrieve a description in the language of the user viewing the report. For example, if the
language settings of Internet Explorer are set to French, the report displays the description of the product model in French.

The AdventureWorks shared data source contains connection information for the AdventureWorks database. By default, this
data source uses the AdventureWorks2000 database on the local computer, but you can change it to use a database on a
different computer. Because the data source is shared, the same connection information can be used by all reports that use the
data source. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a cover page with title and static photos and a table that lists each of the products in
the catalog, grouped by category, subcategory, and model. Also featured in this report are page breaks, a page footer, a document
map, and expressions that provide conditional formatting.

Tables

All data in the product catalog is contained within a single table, named ProductTable. The table has multiple columns, but many
of the cells span several columns. The first four rows are group header rows for three groups. The first row is the group header
row for the grouping ProductTable_Group1, which groups data by the ProdCat field. All columns in the row are spanned by a
single text box, which displays data from the ProdCat field. This row is repeated on each page, and serves as a page header. The
second row is the group header row for the grouping ProductTable_Group2, which groups data by the ProdSubCat field. All
columns in the row are spanned by a single text box, which displays data from the ProdSubCat field. The third, fourth, and fifth
rows are group header rows for the grouping ProductTable_Group3, which groups data by the ProdModel field. All columns in
the first of the three rows are spanned by a single text box, which displays data from the ProdModel field. The second of the three
rows contain two cells, each of which span half of the row. The first of the the cells contain a text box that displays data from the
Description field, and the second contains an image that displays data from the LargePhoto field. The third row contains static
labels for detail data. There is a single group footer for the ProductTable_Group3 grouping, which provides space between each
model in the catalog.

The detail row of the table contains the following fields: ProductNumber, ProdName, Color, Size, Weight, DealerPrice, and
ListPrice. The values returned by these fields are fairly straightforward, except for the Color column. This column actually consists
of two columns. The first cell uses an expression for BackgroundColor; the color of the text box is based on the value returned by

the Color field, resulting in a color swatch. The second cell returns the name of the color.

For information about tables, see Adding a Table.

Images

The Product Catalog report uses embedded and database images. The embedded images are featured on the cover page of the
report and are named cover1, cover2, cover3, cover4, and logofull. These images are embedded, or stored, as encoded data within
the report definition. For information about embedded images, see Adding an Image.

The report also displays images from the AdventureWorks database. These images are stored as binary data in the database and
are displayed in the ProdPhoto image in the ProductTable table. For information about database images, see Working with Data-
Bound Images.

Page Breaks

The PageBreakAtStart property for the ProductTable_Group1 grouping is set to True. This provides a logical page break before
each instance of the category.

Page breaks may also occur when the report is rendered to formats that have a set page size. The size of the page is determined
by the PageSize property of the report. For more information about page breaks, see Working with Multiple Pages.

Page Header and Footer

The Product Catalog report includes a page footer. The footer contains a rectangle with two text boxes. The first text box provides
an ordering location. The last text box contains an expression that provides a page number on each page. Because the first page of
the report is a title page, the page footer is set to not display on the first page.

For more information about page headers and footers, see Adding a Header and Footer.

Document M ap

The Product Category report features a document map for navigating the report. This map displays product models grouped by
category and subcategory. The document map is formed by setting document map labels on the groupings ProductTable_Group1
, ProductTable_Group2 , and ProductTable_Group3 to the fields ProdCat, ProdSubCat, and ProdModel, respectively. For more
information about the document map, see Adding a Document Map.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Sample Report - Sales Order Detail
The Sales Order Detail report displays the detail of an individual Adventure Works Cycles order. This report can be accessed as a
drillthrough report from the Employee Sales Summary and Territory Sales drilldown report. This report illustrates the use of lists,
tables, parameters, and expressions.

Data

This report uses two datasets, SalesOrder and SalesOrderDetail, both of which use the AdventureWorks shared data source. The
queries for these datasets are based on several tables from the AdventureWorks2000 database.

The SalesOrder dataset contains a query that retrieves invoice header information, with query parameters that filter data to the
individual sales order. It is used by the OrderHeader list data region. The dataset returns the following fields.

Field Description
SalesOrderNumber Sales order number
Store Name of store
OrderDate Date of order
SalesFirstName First name of sales person
SalesLastName Last name of sales person
SalesTitle Title of sales person
PurchaseOrderNumber Purchase order number
ShipMethod Method of shipment
BillAddress1 "Bill To" address line 1
BillAddress2 "Bill To" address line 2
BillCity "Bill To" city
BillPostalCode "Bill To" postal code
BillStateProvince "Bill To" state or province
BillCountryRegion "Bill To" country or region
BillPhone "Bill To" phone number
ShipAddress1 "Bill To" address line 1
ShipAddress2 "Ship To" address line 2
ShipCity "Ship To" city
ShipPostalCode "Ship To" postal code
ShipStateProvince "Ship To" state or province
ShipCountryRegion "Ship To" country or region
ShipPhone "Ship To" phone number

The SalesOrderDetail dataset contains a query that retrieves invoice detail information, with query parameters that filter data to
the individual sales order. It is used by the OrderDetail table. The dataset returns the following fields.

Field Description
OrderQty Quantity of product
UnitPrice Price of one unit of product
UnitPriceDiscount Discount for one unit of product
LineTotal Total for line
CarrierTrackingNumber Tracking number for shipment
SalesOrderID Sales order ID
Name Name of product
ProductNumber Product number

For information about using datasets, see Querying a Data Source.

The AdventureWorks shared data source contains connection information for the AdventureWorks database. By default, this
data source uses the AdventureWorks2000 database on the local computer, but you can change it to use a database on a
different computer. Because the data source is shared, the same connection information can be used by all reports that use the
data source. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a header section that contains buyer and seller information, and a detail section that
lists the line items of the order. This report uses parameters, which can be used to provide a target for drillthrough reports.

Lists

The header section of the report uses a list data region named OrderHeader, which uses the SalesOrder dataset. The list contains
information about the sales order, such as order number, shipping and billing address, order date, and sales person. For
information about list data regions, see Adding a List.

Tables

The detail section of the report uses a table data region named OrderDetail, which uses the SalesOrderDetail dataset. The table is
simple, with a single header, detail, and footer rows. This table returns the individual items on the order, and includes columns
such as product, description, quantity, discount, and price. For information about tables, see Adding a Table.

Parameters

The Sales Order Detail report uses a single parameter, SalesOrderNumber, to filter the data within the report. When values are
supplied for the report parameter, the value is passed to the query parameter behind each of the data regions, and the data
retrieved by the report is filtered by the parameter. The parameter contains a default value that is automatically populated when
the user runs the report, but it can also be changed. This report is used primarily as a drillthrough report from other reports; the
value for SalesOrderNumber is supplied when the user jumps to this report from the other report.

For information about parameters, see Using Parameters in a Report.

Expressions

Sales Order Detail uses expressions throughout the report. For example, the header portion contains a simple expression to
display the sales person's name and title in a single text box:

=Fields!SalesFirstName.Value + " " + Fields!SalesLastName.Value + ", " +
Fields!SalesTitle.Value

The table detail row also contains an expression that numbers each line in the OrderDetail table:

=RowNumber("OrderDetail")

The table footer row contains several expressions, one of which provides a total for the order:

=Sum(Fields!LineTotal.Value)

For information about expressions, see Using Expressions.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Sample Report - Territory Sales
The Territory Sales report displays Adventure Works Cycles sales by territory. This report drills down through salesperson and
order number with drillthrough to individual orders. This report illustrates the use of a table data region that provides drilldown
from summary data into detail data by showing and hiding detail rows. This report also illustrates the use of drillthrough links
and conditional formatting.

Data

This report uses a single dataset named TerritorySales, which uses the AdventureWorks shared data source. The query for this
dataset is based on several tables from the AdventureWorks2000 database and contains a query that retrieves sales data by
sales territory and salesperson. The dataset returns the following fields.

Field Description
Name Name of the territory
SalesPersonID Employee ID of salesperson
FirstName First name of salesperson
LastName Last name of salesperson
SalesOrderNumber Sales order number
TotalDue Total price of sales order

For information about using datasets, see Querying a Data Source.

The AdventureWorks shared data source contains connection information for the AdventureWorks database. By default, this
data source uses the AdventureWorks2000 database on the local computer, but you can change it to use a database on a
different computer. Because the data source is shared, the same connection information can be used by all reports that use the
data source. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a single table, with an image and title above it. Some cells within the table contain
visibility options that provide drilldown to the report user. Some also provide drillthrough functionality to open the Sales Order
Detail report when the user clicks on a sales order.

Tables

The Territory Sales report contains a single table, named SalesTable, which returns a list of order numbers with totals by territory
and sales person. The header row for the table contains column labels. There are two group header rows, one that groups by
territory and another that groups by sales person. The detail row contains the detail sales order numbers and order totals. There is
no table footer.

For information about tables, see Adding a Table.

Drilldown

The table also contains drilldown capability. This is accomplished by applying visibility options to the rows in the table. The rows
are initially hidden, and toggles are placed on those groups that point to text boxes within the rows above them. For example, in
this report, the detail row is initially hidden, and its visibility is toggled by the SalesPerson text box. When the user clicks on the
toggle image (+ / - sign) for the sales person, detail rows appear. For information about drilldown and item visibility, see Hiding
Items on a Report.

Note The visibility information is set on the table group, not the text box that contains the field. Setting visibility
options on a group will show and hide entire groups of rows. Setting visibility options on text boxes will show and
hide only the text within the text boxes.

Drillthrough

The OrderNumber text box in the table includes a drillthrough action that enables a link from this report to the Sales Order Detail
report. The drillthrough action contains the name of the target report and the name of the parameter on the target report. When
the user clicks on the sales order, another report is opened that uses the selected sales number as a parameter value. For
information about drillthrough links, see Adding a Drillthrough Report Link.

Images

The Territory Sales report contains an embedded image named logofull. The image is embedded, or stored, as encoded data
within the report definition. An image is included in the body of the report that displays the image. For information about
embedded and background images, see Adding an Image.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

Sample Report - Foodmart Sales
The Foodmart Sales report displays Foodmart sales by quarter and product department. This report illustrates the use of an
Analysis Services data source. It also illustrates matrix, parameters, filters, calculated fields, expressions, and drilldown from
summary data into detail data by showing and hiding rows.

Data

This report uses a two datasets: ProductData and ProductList, both of which use the Foodmart 2000 report data source. The
queries for these datasets are based on several tables from the Foodmart database.

Note You must have Analysis Services and the Foodmart database installed to use this report. For information about
Analysis Services, see SQL Server 2000 Books Online.

The ProductData dataset contains an MDX query that retrieves the store cost and store sales measures on rows, the product
dimension on columns, and the time dimension on pages. The resulting rowset is flattened and used by the BrandSales matrix.
The dataset returns the following fields (these fields were renamed manually in the field list for brevity).

Field Description
Year Time.[1997]
Quarter Time.[1997].[Q1], Time.[1997].[Q2], Time.[1997].[Q3], Time.

[1997].[Q4]
Product_Family [Product].[Product Family]
Product_Department [Product].[Product Department]
Product_Category [Product].[Product Category]
Product_Subcategory [Product].[Product Subcategory]
Brand_Name [Product].[Brand Name]
Store_Sales [Measures].[Store Sales]
Store_Cost [Measures].[Store Cost]
Store_Profit Calculated field: [Measures].[Store Sales] - [Measures].[Store

Cost]

The ProductList dataset contains an MDX query that retrieves simple list of product families to use for a list of parameter values.
The dataset returns the following fields (because Analysis Services can return long field names, these fields were renamed
manually in the field list for brevity).

Field Description
Product_Family [Product].[Product Family]
NullColumn Column returning a measure with null values

For information about using datasets, see Querying a Data Source.

The Foodmart 2000 data source contains connection information for the Foodmart Analysis Services database. By default, this
data source uses the Foodmart database on the local computer, but you can change it to use a database on a different computer.
The data source is stored internally within the report. For information about data sources, see Connecting to a Data Source.

Layout and Report Features

The general layout of this report consists of a single matrix with multiple groups. The cells within the matrix contain visibility
options that provide drilldown to the report user.

M atrix

The data for this report is displayed using a matrix data region named BrandSales, which uses the ProductData dataset. This
matrix displays the members of the Product dimension (Product Family, Product Department, Product Category, Product
Subcategory, and Brand Name) on rows, year and quarters on columns, and data for store sales, store cost, and store profit in
data. All rows and columns are dynamic; that is, the rows and columns vary depending on the contents of the database and the
filter that is applied to the report. For information about matrices, see Adding a Matrix.

Drilldown

The matrix also contains drilldown capability. This is accomplished by applying visibility options to the inner groups in the matrix.
The groups are initially hidden, and toggles are placed on those groups that point to text boxes belonging to the outer groups. For
example, in this report, the BrandSales_Product_Category group is initially hidden, and its visibility is toggled by the
Product_Department text box. When the user clicks on the toggle image (+ / - sign) for the product department, category rows
appear. For information about drilldown and item visibility, see Hiding Items on a Report.

Note The visibility information is set on the matrix group, not the text box that contains the field. Setting visibility
options on a group will show and hide entire groups of rows. Setting visibility options on text boxes will show and
hide only the text within the text boxes.

Parameters

The Foodmart Sales report uses a single parameter, ProductFamily, to filter the data within the report. When values are supplied
for the report parameter, the value is passed to the filter behind the BrandSales matrix. The parameter contains the following:

Available values. The user can select the value for the ProductFamily parameter from a dynamic list based on the query in
the ProductList dataset.
Default values. The ProductFamily parameter has a default value; the value is automatically populated when the user runs
the report, but can also be changed. For this parameter, the default value is the first value returned by the query in the
ProductList dataset.

For information about parameters, see Using Parameters in a Report.

Filters

Filters can be used as an alternative to query parameters; the report retrieves all of the data from the dataset, and then applies
filters to the data after it is retrieved. In this report, the BrandSales matrix uses a filter based on the ProductFamily report
parameter. When the user selects a parameter from the parameter list and runs the report, the matrix filters the data to the
parameter. For information about filters, see Adding Filters to a Report.

Calculated Fields and the Field List

The field list for the Foodmart Sales report contains alternate names for the long field names returned by the MDX query. Also
contained within the field list is a calculated field named Store_Profit. This field contains the following expression:

=Fields!Store_Sales.Value - Fields!Store_Cost.Value

For information about fields, see Working with the Fields List.

See Also

Reporting Services Sample Reports

Reporting Services - Reporting Services Samples

AdventureWorks Sample Database
Reporting Services includes a new OLTP database for a fictional company named Adventure Works Cycles. The database contains
tables with company data pertaining to sales, human resources, manufacturing and production, and purchasing. The data is
stored in a SQL Server 2000 database named AdventureWorks2000.

The AdventureWorks2000 database is installed by Reporting Services setup. For information about installing Reporting
Services, see Installing Reporting Services.

See Also

Walkthroughs

Installing Reporting Services

Reporting Services - Reporting Services Samples

Developer Samples
Microsoft® SQL Server™ 2000 Reporting Services includes sample applications, scripting samples, and numerous code examples
that you can use to learn about programming with the Reporting Services Web service.

The following table describes the topics in this section.

Topic Description
Sample Applications Describes the sample applications written

for Reporting Services using the .NET
Framework.

Sample Extensions Describes the sample extensions written
for Reporting Services using the .NET
Framework.

Sample Scripts Describes scripts written for Reporting
Services using Visual Basic .NET.

Important These samples are provided for educational purposes only. They are not intended to be used in a
production environment and have not been tested in a production environment. Microsoft does not provide technical
support for these samples.

See Also

Installing Reporting Services

Introducing Reporting Services

Reporting Services - Reporting Services Samples

Compiling and Running Code Examples
The code examples in the Reporting Services Web Service Library documentation are simple applications that perform Reporting
Services Web service operations using many of the Web service methods that are available to you. These applications write the
output to the console or command prompt. Much of the sample code provided in the Web service documentation can be placed
into a code file and executed so that you can see working examples of particular Web service methods.

The following text explains how to compile and run a Reporting Services code example.

Using the Microsoft .NET Framework SDK

You can use several tools in the .NET Framework SDK to compile and run Reporting Services code examples.

To compile and run a code example

1. Create a Reporting Services proxy class in either Visual Basic .NET or C# using the WSDL tool. For more information about
using this tool, see Creating a Web Service Proxy.

2. Compile the RSWebService file into a .NET assembly using the following commands:

For Visual Basic, use Vbc.exe to compile ReportingService.vb and produce ReportingService.dll.

vbc /target:library ReportingService.vb /r:System.dll /r:System.Xml.dll
/r:System.Web.Services.dll

For C#, use csc.exe to compile ReportingService.cs and produce ReportingService.dll.

csc /target:library ReportingService.cs /r:System.dll /r:System.Xml.dll
/r:System.Web.Services.dll

3. Using a text editor, create a blank text file named sample with either a .vb extension (for Visual Basic .NET sample code) or a
.cs extension (for C# sample code).

4. Copy and paste the code example you want to run into the blank file. Save the file.
5. Open a command prompt: From the Start menu, click Run, type cmd in the text box, and then click OK.
6. At the command prompt, type one of the following commands to compile the sample. The paths to your sample file and to

the RSWebService.dll might differ from those provided in the following samples.

For Visual Basic, use Vbc.exe and use the following command to reference the proxy class and the system libraries
needed to run the application:

vbc sample.vb /r:ReportingService.dll /r:System.dll /r:System.Web.Services.dll
/r:System.Xml.dll

For C#, use csc.exe and use the following command to reference the proxy class and system libraries needed to run
the application:

csc sample.cs /r:ReportingService.dll /r:System.dll /r:System.Web.Services.dll
/r:System.Xml.dll

7. The compiler creates an executable called Sample.exe. To run the compile sample, type sample.exe at the command
prompt.

Using Visual Studio .NET

You can use the Visual Studio .NET development environment to build and run Reporting Services code examples.

To compile and run a code example

1. On the File menu, click New Project.
2. In the New Project dialog box, in Project Types, click Visual Basic Projects or Visual C# Projects.
3. In the right pane, click Console Application.
4. In the Name box, type a name for the new project.
5. In the Location box, select the location you want to save the file to.

6. Add a Web reference to your application. For more information about adding a Web reference to the Reporting Services
Web Service in Visual Studio .NET, see Creating a Web Service Proxy.

7. Rename the Class1.cs project file to Sample.cs. For Visual Basic, rename Module1.vb to Sample.vb.
8. Copy and paste the code example you want to use into the space provided in the sample code file. Save the file.
9. Start the application: Press F5, or click Start on the Debug menu.

Using the rs Utility

Reporting Services provides a scripting utility, the rs utility, which is shipped as a file named rs.exe. You can run any Visual Basic
code example that is provided in the Reporting Services Web Service Library documentation using the rs utility that is included
with Reporting Services.

To run a code example

1. Using a text editor, create a blank text file named sample with an .rss extension.
2. Copy and paste the following code into the blank file:

Public Sub Main()
 ' Your code goes here.
End Sub

3. Copy and paste the code example you want to use into the space provided in the previous code sample. Save the file. If you
are copying directly from a code example provided in a reference topic, remove any import statements, module declarations
and the following line of code:

Dim rs As New ReportingService()

The ReportingService object is already declared and instantiated within the script environment. Redeclaring the object in
your code will cause your script to fail. For more information about properly formed scripts, see Formatting the Reporting
Services Script File.

4. Open a command prompt: On the Start menu, click Run, type cmd in the text box, and then click OK.
5. Navigate to the directory that contains your Sample.rss file. At the command prompt, type the following command to run

the sample script file. Be sure to replace the given server URL with that of the report server you are accessing:

rs –i sample.rss –s http://myserver/reportserver

Note If you receive a message that rs is not recognized, you may need to add the location of rs.exe to your
Windows environment variable PATH.

See Also

Creating a Web Service Proxy

ReportingService Class

Reporting Services Web Service Library

Web Service Authentication

Reporting Services - Reporting Services Samples

Sample Applications
The following samples represent complete applications written for Reporting Services using the .NET Framework. As such, these
samples exhibit more complete error handling and object-oriented development than simple code examples. Application samples
typically address a variety of features or technologies in a single sample.

Application samples are located in the following directory in your Reporting Services installation:

<Reporting Services>\Samples\Applications

The following table describes the topics in this section.

Topic Description
FindRenderSave Sample Windows
Application

Uses Microsoft Visual C#® .NET or
Microsoft Visual Basic® .NET to show how
you can use the Reporting Services Web
service to build a custom Windows
application that uses the Simple Object
Access Protocol (SOAP) API to search for
reports in the report server database,
review the report properties, and render
the reports to various on-disk formats.

RSExplorer Sample Windows Application Uses Microsoft Visual C# .NET to show
how you can use the Reporting Services
Web service to build custom Windows
applications around the SOAP API.

ReportViewer Sample ASP.NET Server
Control

Uses Microsoft Visual C# .NET to show
how to develop a custom control that you
can use to integrate Reporting Services
reports in a Web application.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

FindRenderSave Sample Windows Application
FindRenderSave is a sample windows application developed using Visual Studio .NET. The application is based on a real-world
scenario, and it demonstrates how to develop a Windows application that uses the Reporting Services Web service. The sample
uses the Simple Object Access Protocol (SOAP) API to enable you to search for reports in the report server database, to review the
report properties and to render the reports to various on-disk formats.

The following topic describes the setup procedure for the FindRenderSave sample application.

Topic Description
Setup Instructions for FindRenderSave Describes the components and tools that

you must install before you can run and
examine the code for the FindRenderSave
sample application.

Using FindRenderSave Explains how to use the sample
application to your development
environment and incorporate the control
into a custom ASP.NET Web application.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

Setup Instructions for FindRenderSave
Setup Instructions for FindRenderSave

Before you can run and examine the code for the FindRenderSave sample application, several components and tools must be
installed.

After you follow the instructions for installation and configuration of the items listed in the prerequisites section, you can view the
application by using Visual Studio .NET.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

Prerequisites

In addition to being familiar with Visual Studio .NET and either C# or Visual Basic, to use FindRenderSave you must install or
verify the installation of the following items on your development system:

Microsoft Visual Studio .NET 2003.
Microsoft .NET Framework version v1.1.4322.
The Reporting Services samples. You can choose to install the samples during Reporting Services setup. To install the
samples, select Documentation and Samples on the component feature tree during setup. For more information, see
Selecting Components of Reporting Services to Install.
A report server that you have permission to access on your network, if you plan to use the sample client application to view
the contents of a report server and run reports.

Build Location

After the prerequisite components and tools are installed, you can begin the installation process for FindRenderSave. After the
installation is complete, you can begin using FindRenderSave. By default, the sample application is installed to C:\Program
Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Applications\FindRenderSave. To begin using the sample, open
the FindRenderSave sample application solution file, FindRenderSave.sln, using Visual Studio .NET. For more information, see
Using FindRenderSave.

See Also

Developer Samples

FindRenderSave Sample Windows Application

Reporting Services - Reporting Services Samples

Using FindRenderSave
Using FindRenderSave

After installing the FindRenderSave sample application, you can use the sample to search for reports, view report properties, and
render reports to various on-disk formats. By default, the application attempts to connect to an instance of the Reporting Services
Web Service located on the same computer running FindRenderSave.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

To use the FindRenderSave sample application

1. Open FindRenderSave.sln in Visual Studio .NET.
2. On the Debug menu, click Start to run the sample application.
3. Use the Search by list to search for reports by name, by description, or by both name and description.
4. Enter the text that you want to use in your search in the Search string box. When you have finished entering your search

string, click Search.

A list of reports that match the search criteria appears in the Items found list.

5. Click on any report in the Items found list to view the description and path properties.
6. When a report is selected, you can render the report to one of four render formats: Excel, Image, Web archive (MHTML), or

PDF. To select a render format, use the Render as list.
7. To save the report, click Save Report.

The Save As dialog box opens.

Note FindRenderSave will not render or save parameterized reports that do not have default values specified
for all parametes.

8. Choose a location and type a name for the report, and then click Save.
9. To exit the application, click Close.

See Also

Developer Samples

FindRenderSave Sample Windows Application

Reporting Services - Reporting Services Samples

RSExplorer Sample Windows Application
RSExplorer is a sample windows application developed in Microsoft Visual C# .NET using Visual Studio .NET. The application is
based on a real-world scenario, and it demonstrates how to develop a Windows application that uses the Reporting Services Web
service. RSExplorer uses a .NET Framework proxy class to call Web service methods exposed by the Reporting Services SOAP API.
It also highlights new features in the area of enterprise reporting.

The following topic describes the setup procedure, design, and sample code for the RSExplorer sample application.

Topic Description
Setup Intructions for RSExplorer Describes the components and tools that

you must install before you can run and
examine the code for the RSExplorer
sample application.

Using RSExplorer Explains how to use the RSExplorer
application to perform report server
database management asks.

RSExplorer Design Explains the architectural design of
RSExplorer by dissecting its multilayered
.NET implementation and the interaction
between classes and methods.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

Setup Instructions for RSExplorer
Setup Instructions for RSExplorer

Before you can run and examine the code for the RSExplorer sample application, several components and tools must be installed.

After you follow the instructions for installation and configuration of the items listed in the prerequisites section, you can view the
application by using Visual Studio .NET.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

Prerequisites

In addition to being familiar with Visual Studio .NET and C#, to use RSExplorer you must install or verify the installation of the
following items on your development system:

Microsoft Visual Studio .NET 2003.
Microsoft .NET Framework version v1.1.4322.
The Reporting Services samples. You can choose to install the samples during Reporting Services setup. To install the
samples, select Documentation and Samples on the component feature tree during setup. For more information, see
Selecting Components of Reporting Services to Install.
A report server that you have permission to access on your network, if you plan to use the sample client application to view
the contents of a report server and run reports.

Note RSExplorer may be converted to compile and run in previous versions of Visual Studio .NET. However, it is
designed specifically to be compatible with the version mentioned in this section.

Build Location

After the prerequisite components and tools are installed, you can begin the installation process for RSExplorer. After the
installation is complete, you can begin using RSExplorer. By default, RSExplorer is installed to C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\Samples\Applications\RSExplorer. To begin using the sample, open the RSExplorer sample
application solution file, RSExplorer.sln, using Visual Studio .NET. For more information, see Using RSExplorer.

See Also

Installing Reporting Services

RSExplorer Sample Windows Application

Reporting Services - Reporting Services Samples

Using RSExplorer
Using RSExplorer

After installing the RSExplorer sample application, you can use the sample to view the contents of a report server, add new
folders, import reports, edit item properties, and view reports.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

To start the RSExplorer sample application

1. Open RSExplorer.sln in Visual Studio .NET.
2. On the Debug menu, click Start to run the sample application.
3. In the Server Address box, enter the virtual root of the report server you want to access, for example,

http://localhost/reportserver, and then click Go.

A detailed list of report server items should appear in the Catalog Explorer list view.

4. Navigate the report server database tree by clicking on folders. You can navigate back by clicking the Up arrow on the
toolbar.

5. Click on any report in the list and click the Show Properties link to view the description and path properties.

To add a folder to the report server database

1. Navigate to a location in the tree to which you want to add a new folder.
2. On the File menu, click New, and then click Folder.

The Add Folder dialog box opens.

3. Choose a name and description for the folder, and then click Add.

To import a report

1. On the File menu, click Import Report.

The Import Report File dialog box opens.

2. Use the dialog box to browse for a Report Definition Language (RDL) file that you want to upload to your report server, and
then click Open.

To delete an item from the report server database

1. Browse to and select an item that you want to delete in the Catalog Explorer list.
2. On the Edit menu, click Delete. Click Yes to confirm the action.

To copy items in the report server database

1. Select the item that you want to copy.

RSExplorer is limited to copying reports, resources, and data sources.

2. On the Edit menu, click Copy.
3. Browse to a folder into which you want to copy the selected item or items, and then, on the Edit menu, click Paste.

To view the properties of a selected item

1. Select an item in the Catalog Explorer list.
2. Click the Show Properties link above the right window pane.

The properties are displayed.

See Also

Developer Samples

RSExplorer Sample Windows Application

Reporting Services - Reporting Services Samples

RSExplorer Sample Application Design
RSExplorer Design

RSExplorer is a stand-alone, multitier application built specifically for Reporting Services. Its development provides insight into
how developers can leverage various features of the Reporting Services Web service to build applications for catalog
management, report viewing, and integration in a Win32 environment. In addition, the sample application highlights URL-based
commands for quick access to viewing and navigating reports. RSExplorer is available as part of the Reporting Services
installation.

Architecture

RSExplorer architecture is divided into two logical layers:

User interface (UI) layer

The UI layer provides users access to the report server through the use of Windows Forms. This layer is implemented as the
RSCatalogExplorer and RSUrlAccessBuilder projects in the RSExplorer.sln solution file. The RSCatalogExplorer project is
used to access the Web service through the Web service proxy layer and provides catalog management and navigation
functions. The RSUrlAccessBuilder project is used to view reports and access the report server through a URL.

Web service proxy layer

The Web service proxy layer handles the marshalling of requests to and from the Reporting Services Web service. This layer
is implemented as the RSManagement project in the RSExplorer.sln solution file. The layer serves as an isolation layer,
segregating the user interface from the implementation of the various Web service methods. Apart from URL-based
requests, all calls to Web service are made through this assembly.

Architectural Diagram

See Also

RSExplorer Sample Windows Application

Reporting Services - Reporting Services Samples

ReportViewer Sample ASP.NET Server Control
ReportViewer is an ASP.NET server control developed using Visual Studio .NET. The server control is based on a real-world
scenario, and it demonstrates how to develop a custom control that you can use to integrate Reporting Services reports in a Web
application. ReportViewer server control uses Reporting Services URL access functionality to render and navigate reports in a
Web browser.

The following topic describes the setup procedure and usage scenarios for the ReportViewer sample ASP.NET server control.

Topic Description
Setup Instructions for ReportViewer Describes the components and tools that

you must install before you can run and
examine the code for the ReportViewer
sample server control.

Using the ReportViewer Server Control Explains how to add the control to your
development environment and
incorporate the control into a custom
ASP.NET Web application.

ReportViewer Design Explains the architectural design of
ReportViewer.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

Setup Instructions for ReportViewer
Setup Instructions for ReportViewer

Before you can run and examine the code for the ReportViewer sample ASP.NET server control, several components and tools
must be installed.

After you follow the instructions for installation and configuration of the items listed in the prerequisites section, you can view the
sample by using Visual Studio .NET.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

Prerequisites

In addition to being familiar with Visual Studio .NET and either C# or Visual Basic, to use ReportViewer you must install or verify
the installation of the following items on your development system:

Microsoft Visual Studio .NET 2003.
Microsoft .NET Framework version v1.1.4322.
The Reporting Services samples. You can choose to install the samples during Reporting Services setup. To install the
samples, select Documentation and Samples on the component feature tree during setup. For more information, see
Selecting Components of Reporting Services to Install.
A report server that you have permission to access on your network, if you plan to use the sample server control to view
reports on a Web Forms page.

Note ReportViewer may be converted to compile and run in previous versions of Visual Studio .NET. However,
it is designed specifically to be compatible with the version mentioned in this section.

Install Location

After the prerequisite components and tools are installed, you can begin using ReportViewer. By default, the ReportViewer server
control is installed to C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Applications\ReportViewer. To
begin using the sample, open the ReportViewer sample application solution file, ReportViewer.sln, using Visual Studio .NET. For
more information, see Using the ReportViewer Server Control.

See Also

Installing Reporting Services

ReportViewer Sample ASP.NET Server Control

Reporting Services - Reporting Services Samples

Using the ReportViewer Server Control
Using the ReportViewer Server Control

After installing the ReportViewer sample server control, you can create a Web page containing the control.

Important Sample applications should not be connected to or used with your production SQL Server database or
your report server without the permission of the system administrator.

To create a Web page that contains the ReportViewer server control

1. Open and build ReportViewer.sln in Visual Studio .NET.
2. Create a new ASP.NET Web application in Microsoft Visual Studio .NET 2003.
3. Add a reference to ReportViewer.dll from the ReportViewer solution \bin folder. To do this, click Add/Remove Toolbox

Items on the Tools menu.

The Customize Toolbar dialog box opens.

4. In the Customize Toolbar dialog box, click the .NET Framework Components tab, and then click Browse.
5. Locate ReportViewer.dll in the bin directory of the ReportViewer project folder. Select ReportViewer.dll and click Open.

The ReportViewer server control is now added to your Toolbox.

6. From the Toolbox, drag the ReportViewer server control onto the Microsoft Visual Studio .NET 2003 WebForm design
surface. This creates a new ReportViewer object on your ASP.NET Web Forms page.

7. Set the ReportPath property of the control in the property window. For example, you can set the property to
"/SampleReports/Company Sales".

8. Set the ServerUrl property in the property window. For example, you can set the property to http://localhost/reportserver.
9. In addition you can set the Parameters, Toolbar, and Zoom properties of the ReportViewer control. These correspond to

the HTML Viewer commands of Reporting Services URL Access. For more information about these commands, see Using
URL Access Parameters.

10. Size the control to render an appropriate report size.
11. If you set the Toolbar property of the control to false, the report is rendered on the WebForm design surface; otherwise start

the ASP.NET Web application to render the report in your Web browser. Click Start on the Debug menu.

Note See Microsoft Visual Studio .NET 2003 online help for more details about building a solution or creating a
new ASP.NET Web application.

See Also

ReportViewer Sample ASP.NET Server Control

Setup Instructions for ReportViewer Server Control Sample

Reporting Services - Reporting Services Samples

ReportViewer Design
ReportViewer Design

ReportViewer demonstrates how to develop a custom control that you can use to integrate Reporting Services reports in a Web
application. ReportViewer server control uses Reporting Services URL access functionality to render and navigate reports in a
Web browser.

The control features several properties that you can use to set the URL to the server, the path to the report, and some additional
viewer commands, such as Toolbar and Zoom.

The code in this example uses the available properties to build a URL access string to a report and then uses that string to host the
report in a Web page.

The rendered report is basically a document inside a document, with all of the available navigation features of the rendered HTML
report available to the user. The report becomes the source of an IFRAME element within the Web page.

See Also

ReportViewer Sample ASP.NET Server Control

Reporting Services - Reporting Services Samples

Sample Extensions
The following samples represent complete extensions written for Reporting Services using the .NET Framework.

Extension samples are located in the following directory in your Reporting Services installation:

<Reporting Services>\Samples\Extensions

The following table describes the topics in this section.

Topic Description
Sample File Share Data Processing
Extension

Uses Microsoft Visual C# .NET to show
how to create a simple data processing
extension for the Windows file system.
The sample uses the .NET Framework
library classes DirectoryInfo and
FileSystemInfo to query the contents of
any valid network file share. The sample
uses the data processing extension
interfaces as well as other .NET
Framework classes.

Sample Printer Delivery Extension Uses Microsoft Visual C# .NET to show
how to create a sample delivery extension
for a printer. The sample uses the IMAGE
rendering extension along with the
System.Drawing.Printing namespace in
the .NET Framework to delivery a report to
a printer.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

Sample File Share Data Processing Extension
FsiDataExtension is a simple data processing extension for the Windows file system. It uses the .NET Framework library classes
DirectoryInfo and FileSystemInfo to query the contents of any valid network file share. The sample uses the data processing
extension interfaces as well as other .NET Framework classes. The naming convention used for the sample is the prefix Fsi, for File
Share Information.

Important Samples are provided for educational purposes only. They are not intended to be used in a production
environment and have not been tested in a production environment. Microsoft does not provide technical support for
these samples. Sample applications and assemblies should not be connected to or used with your production SQL
Server database or your report server without the permission of the system administrator.

The following table describes the topics in this section.

Topic Description
Deploying FsiDataExtension Describes how to build the sample data

processing extension into an assembly file.
Using FsiDataExtension Describes how to use the sample data

processing extension in your development
projects.

Creating a Report that Uses
FsiDataExtension

Provides information about creating a
sample report that works with the
FsiDataExtension sample data processing
extension.

See Also

Implementing a Data Processing Extension

Reporting Services - Reporting Services Samples

Deploying FsiDataExtension
Deploying FsiDataExtension

Before you can run and examine the code for the FsiDataExtension sample, several components and tools must be installed.

After you follow the instructions for installation and configuration of the items listed in the prerequisites section, you can view the
sample code by using Visual Studio .NET.

Prerequisites

In addition to being familiar with Microsoft Visual Studio .NET and Visual C#, to use FsiDataExtension you must install or verify
the installation of the following items on your development system:

Microsoft Visual Studio .NET 2003.
Microsoft .NET Framework version v1.1.4322.
The Reporting Services samples. You can choose to install the samples during Reporting Services setup. To install the
samples, select Documentation and Samples on the component feature tree during setup. For more information, see
Selecting Components of Reporting Services to Install.
A report server that you have permission to access on your network, if you plan to use the sample extension to add
additional data processing functionality to your server.

Build Location

You can use the sample code files located in the Application\FsiDataExtension directory of the samples folder to learn about data
processing extensions.

To compile the sample using the .NET Framework SDK

1. Copy Microsoft.ReportingServices.Interfaces.dll from the report server \bin directory into your samples folder. By default,
Microsoft.ReportingServices.Interfaces.dll is located in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin of the computer running report server.

2. Issue the following commands to create the sample data processing extension
Microsoft.Samples.ReportingServices.FsiDataExtension.dll.

csc /t:library /out:Microsoft.Samples.ReportingServices.FsiDataExtension.dll *.cs
/r:Microsoft.ReportingServices.Interfaces.dll

To compile the sample using Visual Studio .NET

1. Open FsiDataExtension.sln in Microsoft Visual Studio .NET 2003.
2. In Solution Explorer, select the FsiDataExtension project.
3. On the Project menu, click Add Reference.

The Add References dialog box opens.

4. Click the .NET tab.
5. Click Browse, and navigate to find Microsoft.ReportingServices.Interfaces on your local drive. By default, the assembly is

located in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin. Click OK.

The selected reference is added to your project.

6. On the Build menu, click Build Solution.

Deployment

After you have completed the previous steps, Microsoft.Samples.ReportingServices.FsiDataExtension.dll can be deployed to a
report server or to Report Designer for use in running reports against a custom data source.

To deploy the sample

1. Copy Microsoft.Samples.ReportingServices.FsiDataExtension.dll to the report server. The default location for report server
extensions is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin.

2. Copy the assembly to Report Designer. The default location for extensions for Report Designer is C:\Program
Files\Microsoft SQL Server\80\Tools\ReportDesigner.

3. Add the following entry to both the RSReportServer.config and RSReportDesigner.config files under the Data element.

<Extension Name="FSI"
Type="Microsoft.Samples.ReportingServices.FsiDataExtension.FsiConnection,Microsoft.Sa
mples.ReportingServices.FsiDataExtension"/>

4. To enable the generic query designer for the sample data processing extension, add the following entry to the
RSReportDesigner.config file under the Designer element.

<Extension Name="FSI"
Type="Microsoft.ReportDesigner.Design.GenericQueryDesigner,Microsoft.ReportingService
s.Designer"/>

For more information about deploying data processing extensions, see Deploying a Data Processing Extension.

To configure code access security for the sample

1. Open the report server policy configuration file (rssrvpolicy.config). The default location for this file is C:\Program
Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer.

2. Data processing extensions must be granted full trust, therefore, add the following code group information to the
configuration file:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="FSICodeGroup"
 Description="Code group for my FSI data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll"
 />
</CodeGroup>

3. If you are using the sample data processing extension in Report Designer, repeat steps 1 and 2 using the Report Designer
preview policy configuration file (rspreviewpolicy.config) and the following code group:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="FSICodeGroup"
 Description="Code group for my FSI data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL
Server\80\Tools\ReportDesigner\bin\Microsoft.Samples.ReportingServices.FsiDataExtensi
on.dll"
 />
</CodeGroup>

The default location for the rspreviewpolicy.config file is C:\Program Files\Microsoft SQL Server\80\Tools\ReportDesigner.

For more information regarding .NET security and Reporting Services, see Understanding Code Access Security in Reporting
Services.

See Also

Implementing a Data Processing Extension

Sample File Share Data Processing Extension

Reporting Services - Reporting Services Samples

Using FsiDataExtension
Using FsiDataExtension

After you have compiled the sample data processing extension into Microsoft.Samples.ReportingServices.FsiDataExtension.dll and
deployed it to a report server and to your Report Designer, you can author a report that uses the sample. For more information
on authoring a sample report that uses the file share data processing extension, see Creating a Report for the Sample Data
Processing Extension. You can also use a console application to test the data processing extension.

The following code sample contains a program that creates an instance of the sample FsiDataReader class.

Visual Basic .NET

Imports System
Imports Microsoft.Samples.ReportingServices.FsiDataExtension
Imports Microsoft.ReportingServices.DataProcessing

'/ <summary>
'/ A class that contains code for testing a data processing extension.
'/ </summary>

Class Sample

 'Entry point which delegates to C-style main Private Function
 Public Overloads Shared Sub Main()
 Main(System.Environment.GetCommandLineArgs())
 End Sub

 '/ <summary>
 '/ The main entry point for the application.
 '/ </summary>
 <STAThread()> _
 Overloads Public Shared Sub Main(args() As String)
 Dim rowNumber As Integer = 0
 Try
 Dim conn As New FsiConnection()
 conn.Open()

 Dim cmd As New FsiCommand("\\MyFileShare\Public", conn)
 Dim reader As IDataReader = cmd.ExecuteReader()

 While reader.Read()
 Console.WriteLine("--- row {0} ---", rowNumber)
 Dim i As Integer
 For i = 0 To reader.FieldCount - 1
 Console.WriteLine("{0}: {1}", reader.GetName(i), reader.GetValue(i))
 Next i
 Console.WriteLine("--- end row ---" + ControlChars.Lf)
 rowNumber += 1
 End While

 Catch e As Exception
 Console.WriteLine(("Exception: " + e.Message))
 End Try
 End Sub 'Main
End Class 'Sample

C#

using System;
using Microsoft.Samples.ReportingServices.FsiDataExtension;
using Microsoft.ReportingServices.DataProcessing;

namespace FsiDataExtensionTest
{
 /// <summary>
 /// A class that contains code for testing the sample data processing extension.
 /// </summary>
 class Sample
 {

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 public static void Main(string[] args)
 {
 int rowNumber = 0;
 try
 {
 FsiConnection conn = new FsiConnection();
 conn.Open();

 FsiCommand cmd = new FsiCommand(@"\\MyFileShare\Public", conn);
 IDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 Console.WriteLine("--- row {0} ---", rowNumber);
 for (int i=0 ; i < reader.FieldCount; i++)
 {
 Console.WriteLine("{0}: {1}", reader.GetName(i), reader.GetValue(i));
 }
 Console.WriteLine("--- end row ---\n");
 rowNumber++;
 }
 }

 catch(Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 }
 }
}

See Also

Implementing a Data Processing Extension

Sample File Share Data Processing Extension

Reporting Services - Reporting Services Samples

Creating a Report That Uses FsiDataExtension
Creating a Report That Uses FsiDataExtension

This section contains a quick walkthrough showing how to create a sample report that uses the sample data extension.

Note You must deploy the sample file share data extension to Report Designer and to the report server before
creating a report. You must also enable the generic query designer for the extension. For more information, see
Deploying FsiDataExtension.

To create the report project

1. Click Start, point to Programs, point to Microsoft Visual Studio .NET 2003, and then click Microsoft Visual Studio .NET
2003.

2. On the File menu, point to New, and then click Project.
3. In the Project Types list, click Business Intelligence Projects.
4. In the Templates list, click Report Project.
5. In Name, type FsiReportProject.
6. Click OK to create the report project.

To create the report

1. On the Project menu, click Add New Item.
2. In the Categories list, click Report Project.
3. In the Templates list, click Report.
4. In the Name box, type FsiReport, and then click Open.

To add a data source that uses the sample data extension

1. In Data view, from Dataset, select <New Dataset...>.

The Data Source dialog box opens.

2. On the General tab, in the Name text box, type FsiDataSource.
3. In the Type list, select File Share Information.
4. Leave ConnectionString empty. The sample data extension does not use a connection string.
5. On the Credentials tab, click one of the server logon types. You may enter the user name and password for the file share

that your sample data extension will be accessing. Click Use Windows Authentication (Integrated Security), click use a
specific username and password and enter credentials, or click prompt for credentials and enter a prompt string.

Security Note Whenever possible, use Windows Authentication. You will most likely be prompted for network
credentials any time you attempt to access a network file share.

6. Click OK to save the data source.

To view the dataset

1. In Data view, the generic query designer is displayed. From Command Type, select Text.
2. In the query pane directly below the toolbar of the generic query designer, type the path to a network file share available on

your network. For example, type \\Computer1\Public.
3. On the toolbar of the generic query designer, click the Run button (!).

The file share data should appear in the results pane below.

To design the report layout

1. In Layout view, in the Toolbox, click Table.
2. On the design surface, drag and drop the Table control.
3. From the Fields window, drag and drop the Name box to the first cell in the Detail row. Add additional fields to the table

as desired.

To preview the report

Click the Preview tab to preview the report. Depending on your credential settings for your FsiDataSource, you may be
required to enter a user name and password.

See Also

Implementing a Data Processing Extension

Sample File Share Data Processing Extension

Reporting Services - Reporting Services Samples

Sample Printer Delivery Extension
PrinterDeliverySample is a sample delivery extension that offers an introduction to Reporting Services delivery. The sample is a
simple delivery extension for a printer. It uses the IMAGE rendering extension, along with the System.Drawing.Printing
namespace in the .NET Framework, to delivery a report to a printer.

Important Samples are provided for educational purposes only. They are not intended to be used in a production
environment and have not been tested in a production environment. Microsoft does not provide technical support for
these samples. Sample applications and assemblies should not be connected to or used with your production SQL
Server database or your report server without the permission of the system administrator.

The following table describes the topics in this section.

Topic Description
Deploying the Printer Delivery Sample Describes how to build the sample

delivery extension into an assembly file.

See Also

Implementing a Delivery Extension

Reporting Services - Reporting Services Samples

Deploying the Printer Delivery Sample
Deploying the Printer Delivery Sample

Before you can run and examine the code for the printer delivery sample, several components and tools must be installed.

After you follow the instructions for installation and configuration of the items listed in the prerequisites section, you can view the
sample code by using Visual Studio .NET.

Prerequisites

In addition to being familiar with Microsoft Visual Studio .NET and Visual C#, to use PrinterDeliverySample you must install or
verify the installation of the following items on your development system:

Microsoft Visual Studio .NET 2003.
Microsoft .NET Framework version v1.1.4322.
The Reporting Services samples. You can choose to install the samples during Reporting Services setup. To install the
samples, select Documentation and Samples on the component feature tree during setup. For more information, see
Selecting Components of Reporting Services to Install.
A report server that you have permission to access on your network, if you plan to use the sample extension to add
additional data processing functionality to your server.

Build Location

You can use the sample code files located in the Application\PrinterDeliverySample directory of the samples folder to learn about
data processing extensions. By default, these files are located at C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\Samples\Extensions\PrinterDeliverySample.

To compile the sample using the .NET Framework SDK

Copy Microsoft.ReportingServices.Interfaces.dll from the report server \bin directory into your sample folder. By default,
Microsoft.ReportingServices.Interfaces.dll is located in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin of the computer running report server.

Issue the following commands to create the sample delivery extension
Microsoft.Samples.ReportingServices.PrinterDeliverySample.dll.

csc /t:library /out:Microsoft.Samples.ReportingServices.PrinterDeliverySample.dll
*.cs /r:Microsoft.ReportingServices.Interfaces.dll

To compile the sample using Visual Studio .NET

1. If you installed the Reporting Services samples during setup, you can use the sample code files that install with the samples.
Open PrinterDeliverySample.sln in Microsoft Visual Studio .NET 2003.

2. In Solution Explorer, select the PrinterDeliverySample project.
3. On the Project menu, click Add Reference.

The Add References dialog box opens.

4. Click the .NET tab.
5. Click Browse, and find the Microsoft.ReportingServices.Interfaces on your local drive. By default, the assembly is located in

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin, then click OK.

The selected reference is added to your project.

6. On the Build menu, click Build Solution.

Deployment

After you have completed the previous steps, Microsoft.Samples.ReportingServices.PrinterDeliverySample.dll can then be
deployed to a report server and to Report Manager for use in delivering reports.

To deploy the sample

1. Copy Microsoft.Samples.ReportingServices.PrinterDeliverySample.dll to the report server. The default location for report
server extensions is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin.

2. In the RSReportServer.config file, make the following entry under the Delivery element.

<Extension Name="Printer Delivery Sample"
Type="Microsoft.Samples.ReportingServices.PrinterDeliverySample.PrinterDeliveryProvid
er,Microsoft.Samples.ReportingServices.PrinterDeliverySample">
 <Configuration>
 <Printers>
 <Printer>\\Server\MyNetworkPrinter1</Printer>
 <Printer>\\Server\MyNetworkPrinter2</Printer>
 <Printer>MyLocalPrinter</Printer>
 </Printers>
 </Configuration>
</Extension>

Note The Printers element is designed to enable a fixed set of printer names to be available for the delivery
extension Printer setting. This list is ultimately checked against the known list of available printers on the report
server to which the delivery extension is installed. If a selected printer does not match the known list of installed
printers on the report server, the delivery fails with status, "The printer {0} is not currently installed on the
server."

3. Copy the assembly to Report Manager. The default location for extensions for Report Manager is C:\Program
Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager\bin.

4. In the RSWebApplication.config file, make the following entry under the DeliveryUI element:

<Extension Name="Printer Delivery Sample"
Type="Microsoft.Samples.ReportingServices.PrinterDeliverySample.PrinterDeliveryUIProv
ider,Microsoft.Samples.ReportingServices.PrinterDeliverySample"/>

For more information about deploying delivery extensions, see Deploying a Delivery Extension.

To configure code access security for the sample

1. Open the report server policy configuration file (rssrvpolicy.config). The default location for this file is C:\Program
Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer.

2. Delivery extensions must be granted full trust, therefore, add the following code group information to the configuration file:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="PrinterDeliveryCodeGroup"
 Description="Code group for my delivery extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.PrinterDeliverySample.d
ll"
 />
</CodeGroup>

3. If you are using the sample printer delivery extension in Report Manager, repeat steps 1 and 2 using the Report Manager
policy configuration file (rsmgrpolicy.config) and the following code group:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="PrinterDeliveryCodeGroup"
 Description="Code group for my delivery extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting

Services\ReportManager\bin\Microsoft.Samples.ReportingServices.PrinterDeliverySample.
dll"
 />
</CodeGroup>

The default location for the rsmgrpolicy.config file is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportManager.

For more information regarding .NET security and Reporting Services, see Understanding Code Access Security in Reporting
Services.

See Also

Implementing a Delivery Extension

Sample Printer Delivery Extension

Reporting Services - Reporting Services Samples

Sample Scripts
The following samples represent scripts written for Reporting Services using Visual Basic .NET. Script samples typically address a
single feature or technology and are task based. For more information about scripting in Reporting Services, see Scripting with
the RS Utility and the Web Service.

Script samples are located in the following directory in your Reporting Services installation:

<Reporting Services>\Samples\Scripts

The following table describes the topics in this section.

Topic Description
Script for Publishing Sample Reports Contains a sample administration script

that publishes the sample reports to a
report server.

Script for Canceling Running Jobs Contains a sample administration script
that cancels jobs that are running on a
report server.

See Also

Developer Samples

Reporting Services - Reporting Services Samples

Script for Publishing Sample Reports
This sample script uses a script file (.rss) and the script environment to run Web service operations on a specified report server.
The script creates a folder that you specify as a command-prompt variable using the –v switch, and then publishes the sample
reports that ship with Reporting Services to a report server.

You can use script files with the Reporting Services Simple Object Access Protocol (SOAP) API to access most of the management
and administration operations available on your report server.

Requirements

Before you run this sample, the following conditions must be met:

The sample reports and the script file must first be installed to your hard drive using Reporting Services Setup or the
separate sample installer.
You must have permission to run the rs utility from the computer on which a report server instance is installed.
You must have access to the report server that you are accessing with your script.
You must have Create Folder and Create Report permissions on the root folder of the report server you are accessing. For
more information about permissions and user roles, see Reporting Services Security Model.

Location of the Script File

Reporting Services samples are installed during setup. When you install the samples to the default installation directory, scripting
samples are located in <Reporting Services application path>\Samples\Scripts.

The following script file is required for this sample.

File Description
PublishSampleReports.rss A file that contains sample code

Running the Sample

You can run the PublishSampleReports.rss sample script in the Reporting Services script environment.

To run this sample

1. Open a command prompt: On the Start menu, click Run, type cmd in the text box, and then click OK.
2. Navigate to the directory that contains your sample script. For example, if your sample script is installed in the default

directory, type the following at the command prompt:

cd C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Scripts

3. At the command prompt, enter the following to see a list of command prompt options available for use with the rs utility:

rs -?

Note If you receive a message that rs is not a recognized command or batch file, you may need to add the
location of rs.exe to your Windows environment variable PATH.

4. At the command prompt, type the following command to run the sample script file, which replaces the given server URL
with the report server you are accessing:

rs -i PublishSampleReports.rss -s http://myserver/reportserver -v
parentFolder="Sample Reports"

Notice the use of a global variable. The script contains a variable that is not explicitly declared in the script file. Instead, the sample
relies on the use of the –v switch to declare the parentFolder variable and assign it a value. The value that you supply to the
variable corresponds to the folder that the script creates and uses to contain your published reports.

Sample Output

The following example output is displayed when the script file is run successfully:

Parent folder created: Sample Reports
Report: Company Sales published successfully with no warnings
Report: Employee Sales Summary published successfully with no warnings
Report: Product Catalog published successfully with no warnings
Report: Sales Order Detail published successfully with no warnings
Report: Territory Sales Drilldown published successfully with no warnings

Any errors that occur are also displayed.

Modifying the Script File

You can open the .rss file using any text editor. Depending on the location of your sample reports, you may need to modify the
value of the filePath variable, which references the path to your sample reports:

Dim filePath As String = "C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\Samples\Reports"

See Also

Reporting Services Sample Reports

ReportingService Class

Reporting Services Web Service Library

Reporting Services - Reporting Services Samples

Script for Canceling Running Jobs
This sample script uses a script file (.rss) and the script environment to run Web service operations on a specified report server.
The script lists all jobs that are currently running on the report server and then enables the user to cancel those jobs. In this
scenario, an administrator may wish to bring down the server for maintenance and need to cancel all job requests that are
currently in the queue.

You can use script files with the Reporting Services SOAP API to access most of the management and administration operations
available on your report server.

Requirements

Before you run this sample, ensure that the following conditions are met:

The sample script file must first be installed to your hard drive using Reporting Services Setup or the separate samples
installer. The Setup program does not install them automatically.
You must have permission to run the rs utility from the computer on which a report server instance is installed.
You must have access to the report server that you are accessing with your script.
You must have Read System Properties and Update System Properties permissions on the report server you are accessing.
The system task that includes these permissions is the Manage Jobs task. For more information about permissions and user
roles, see Reporting Services Security Model.

Location of the Script File

Reporting Services samples are installed during setup. When you install the samples to the default installation directory, scripting
samples are located in <Reporting Services application path>\Samples\Scripts.

The following script file is required for this sample.

File Description
CancelRunningJobs.rss A file that contains sample code

Running the Sample

You can run the CancelRunningJobs.rss sample script in the Reporting Services script environment.

To run this sample

1. Open a command prompt: On the Start menu, click Run, type cmd in the text box, and then click OK.
2. Navigate to the directory that contains your sample script. For example, if your sample script is installed in the default

directory, type the following at the command prompt:

cd C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\Scripts

3. At the command prompt, enter the following to see a list of command prompt options available for use with the rs utility:

rs -?

Note If you receive a message that the rs argument is not recognized, you may need to add the location of
Rs.exe to your Windows environment variable PATH.

4. At the command prompt, type the following command to run the sample script file, which replaces the given server URL
with the report server you are accessing:

rs -i CancelRunningJobs.rss -s http://myserver/reportserver

Sample Output

Job details are written to the console if the report server is currently processing any jobs. The output might look like the following:

JobID: sojqxy45xw4bfh55lxg2na45

Action: Render
Description: Sales by quarter and product category. Illustrates the use of
a matrix data region that provides drilldown capability through item
visibility (show/hide). Also illustrates background images.
Machine: MYSERVER2
Name: Company Sales
Path: /SampleReports/Company Sales
StartDateTime: 10/1/2003 10:19:39 AM
Status: Running
Type: User
User: DOMAIN\Username

Any errors are also displayed. You also receive the following message:

There are 2 running jobs. Do you want to cancel these jobs (Y/N)?

Type y and then press ENTER to cancel any current jobs, or type n and then press ENTER to quit the application.

See Also

Reporting Services Sample Reports

ReportingService Class

Reporting Services Web Service Library

 SQL Server 2000 Windows CE Edition

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) version 2.0 is the compact database for rapidly
developing applications that extend enterprise data management capabilities to mobile devices.

In This Library Section Essentials
Download SQL Server CE 2.0
Technical Articles
SQL Server CE Books Online

SQL Server 2000 Windows CE on Microsoft.com

http://www.microsoft.com/sql/ce/downloads/ce20.asp
https://msdn.microsoft.com/en-us/library/aa224561(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa275652(v=msdn.10).aspx
http://www.microsoft.com/sql/CE/default.asp

SQL Server CE Books Online

Microsoft SQL Server 2000 Windows CE Edition 2.0

Technical Support

Microsoft Product Support Services (PSS)
Microsoft SQL Server Support
Knowledge Base (KB) Search
Microsoft Windows Hardware Compatibility List
Troubleshooting

Microsoft Accessibility Web Site

MSDN Online

Microsoft TechNet

Microsoft SQL Server CE Product Web Site

Microsoft SQL Server Product Web Site

Samples

http://go.microsoft.com/fwlink/?LinkId=8149
http://go.microsoft.com/fwlink/?LinkId=8717
http://go.microsoft.com/fwlink/?LinkId=8718
http://go.microsoft.com/fwlink/?LinkId=8719
http://go.microsoft.com/fwlink/?LinkId=8490
http://go.microsoft.com/fwlink/?LinkId=8720
http://go.microsoft.com/fwlink/?LinkId=8722
http://go.microsoft.com/fwlink/?LinkId=8634
http://go.microsoft.com/fwlink/?LinkId=8724

SQL Server CE Books Online

Getting Started with SQL Server CE Books Online
The following topics in this section provide information about using SQL Server CE Books Online, how to obtain additional
resources about Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE), and using the accessibility features:

Documentation Conventions
Using SQL Server CE Books Online
Additional Resources
Accessibility for People with Disabilities

SQL Server CE Books Online

Documentation Conventions
The following table shows the conventions that are used in SQL Server CE Books Online to distinguish elements of text.

Convention Used for
UPPERCASE Transact-SQL keywords and SQL elements.
Initial Capitals Paths and file names.
Bold Database names, table names, column names, stored procedures,

command-prompt utilities, menus, commands, dialog box options,
programming elements, and text that must be typed exactly as
shown.

Italic User-supplied variables, relationships, and phrasing.
Monospace Code samples, examples, display text, and error messages.

SQL Server CE Books Online

Using SQL Server CE Books Online
SQL Server CE Books Online is the online documentation provided with Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0
(SQL Server CE). The Contents tab contains the topics in SQL Server CE Books Online. The topics are organized in a hierarchical
structure by subject or task.

Information in SQL Server CE Books Online appears in a window that contains three panes:

The Navigation pane is located on the left side of the window. This pane contains the Contents tab, the Index tab, Search
tab, and the Favorites tab.
The Topic pane is located on the right side of the window. This pane displays the selected topic or the default topic.
The Toolbar pane is located below the SQL Server Books Online title bar.

You can find information in SQL Server CE Books Online by:

Navigating through the contents.
Typing a keyword in the index (a word or phrase) and performing a search.

Here are some tips on navigating through SQL Server CE Books Online:

To return to the SQL Server CE Home page, click Home on the toolbar.
Colored, underlined text indicates links to other topics. To link to another topic, including Web pages, click the colored,
underlined text.
If you use a particular topic often, you can add it to your favorites list.
For shortcut menu commands, right-click the Contents tab or Topic pane. For more information, see Using the Shortcut
Menu Commands.

SQL Server CE Books Online

Changing the Way Books Online Topics Are Displayed
There are several ways to easily change the size and position of the SQL Server CE Books Online window and the Navigation and
Topic panes:

To resize the Navigation or Topic pane, point to the divider between the two panes. When the pointer changes to a double-
headed arrow, drag the divider right or left.
To proportionately shrink or enlarge SQL Server CE Books Online, point to any corner of the window. When the pointer
changes to a double-headed arrow, drag the corner.
To change the height or width of SQL Server CE Books Online, point to the top, bottom, left, or right edge of the window.
When the pointer changes to a double-headed arrow, drag the edge.
To reposition SQL Server CE Books Online on your screen, click the title bar and drag the window to a new position.

When you open SQL Server CE Books Online, it appears with the size and position settings that were last specified.

To change formatting or styles for accessibility

1. On the Options menu, click Internet Options, and then click Accessibility.
2. In the Accessibility dialog box, select the options you want, and then click OK.

These changes do not apply to the Navigation pane or toolbar of SQL Server CE Books Online. This procedure also changes your
accessibility settings for Microsoft® Internet Explorer.

To change the font size of a topic

On the Options menu, click Internet Options, and then click Fonts.

These changes do not apply to the Navigation pane or toolbar of SQL Server CE Books Online. This procedure also changes your
font settings for Internet Explorer.

To change colors in the Topic pane of SQL Server CE Books Online

1. In Microsoft Internet Explorer 4.0, on the View menu, click Internet Options. In Microsoft Internet Explorer 5.0 or later, on
the Tools menu, click Internet Options.

2. On the General tab, click Colors.
3. In the Colors dialog box, select the options you want, and then click OK.
4. To apply the new color settings, in the Internet Options dialog box, click OK.

These changes do not apply to the Navigation pane or toolbar of SQL Server CE Books Online. This procedure also changes your
color settings for Internet Explorer.

SQL Server CE Books Online

Using Accessibility Shortcut Keys in SQL Server CE Books Online
The following table shows the keyboard shortcuts that can be used for navigation in SQL Server CE Books Online.

For more information about accessibility features and services, see this Microsoft Web site.

For SQL Server CE Books Online

To Press
Close SQL Server CE Books Online. ALT+F4
Switch between SQL Server CE Books Online and
other open windows.

ALT+TAB

Display the Options menu. ALT+O
Change Internet Explorer settings. The Internet
Options dialog box contains accessibility
settings. To change these settings, click the
General tab, and then click Accessibility.

ALT+O, and then press I

Hide or show the Navigation pane. ALT+O, and then press T
Print a topic. ALT+O, and then press P
Move back to the previous topic. ALT+LEFT ARROW, or ALT+O, and

then press B
Move forward to the next topic (provided you
have just previously viewed it).

ALT+RIGHT ARROW, or ALT+O,
and then press F

Turn on or off search highlighting. ALT+O, and then press O
Switch between the Navigation pane and the
Topic pane.

F6

Scroll through the table of contents, displaying
each topic as you scroll.

ALT+UP ARROW, or ALT+DOWN
ARROW

Scroll through a topic. UP ARROW and DOWN ARROW,
or PAGE UP and PAGE DOWN

Scroll through all the links in a topic or through
all the options on a Navigation pane tab.

TAB

For the Contents Tab

To Press
Display the Contents tab. ALT+C
Open and close a book or folder. PLUS SIGN and MINUS SIGN, or

LEFT ARROW and RIGHT ARROW
Select a topic. DOWN ARROW and UP ARROW
Display the selected topic. ENTER

For the Index Tab

To Press
Display the Index tab. ALT+N
Type a keyword to search for. ALT+W, and then type the word
Select a keyword in the list. UP ARROW and DOWN ARROW
Display the associated topic. ALT+D

For the Search Tab

To Press
Display the Search tab. ALT+S
Type a keyword to search for. ALT+W, and then type the word
Start a search. ALT+L

http://go.microsoft.com/fwlink/?LinkId=8490

Select a topic in the results list. ALT+T, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D
Search for a word or phrase in a topic. CTRL+F
Search for a keyword in the result list of a prior
search.

ALT+U

Search for words similar to the keyword. For
example, to find words such as "running" and
"runs" for the keyword "run".

ALT+M

Search only through topic titles. ALT+R

For the Favorites Tab

To Press
Display the Favorites tab. ALT+I
Add the currently displayed topic to the Favorites
list.

ALT+A

Select a topic in the Favorites list. ALT+P, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D
Remove the selected topic from the list. ALT+R

SQL Server CE Books Online

Using the Shortcut Menu Commands
The following table shows the commands on the shortcut menu that you can use to display and customize information.

Command Description
Right-click in the Contents tab, and
then click Open All.

Opens all books or folders. This command
only works if the Contents tab is displayed.

Right-click in the Contents tab, and
then click Close All.

Closes all books or folders. This command
only works if the Contents tab is displayed.

Right-click, and then click Print. Prints the topic.
Right-click in the Contents tab, and
then click Jump to URL.

Displays a window in which you can enter a
URL to jump to.

These commands can be accessed through the keyboard. You can press SHIFT+F10 to display the shortcut menu, and then click
the appropriate shortcut keys. Or, you can enable mousekeys. Use a mousekey combination to display the shortcut menu, and
then click the appropriate shortcut keys.

SQL Server CE Books Online

Additional Resources
The following table lists additional resources you can access on the Internet for information about Microsoft® SQL Server™ and
related products and technologies.

Resource Address
Microsoft Technical Support Web site http://support.microsoft.com
MSDN® http://msdn.microsoft.com
Professional Association for SQL
Server

http://www.sqlpass.org/

SQL Server Magazine http://www.sqlmag.com
Microsoft SQL Server Support http://support.microsoft.com/support/sql
SQL Server TechNet Site http://www.microsoft.com/technet/sql/
Microsoft SQL Server CE Web site http://www.microsoft.com/sql/ce
Microsoft SQL Server Web site http://www.microsoft.com/sql
Microsoft Accessibility Web site http://www.microsoft.com/enable

http://go.microsoft.com/fwlink/?LinkId=8149
http://go.microsoft.com/fwlink/?LinkId=8720
http://go.microsoft.com/fwlink/?LinkId=9135
http://go.microsoft.com/fwlink/?LinkId=9136
http://go.microsoft.com/fwlink/?LinkId=8717
http://go.microsoft.com/fwlink/?LinkId=8722
http://go.microsoft.com/fwlink/?LinkId=8634
http://go.microsoft.com/fwlink/?LinkId=8724
http://go.microsoft.com/fwlink/?LinkId=8490

SQL Server CE Books Online

Accessibility for People with Disabilities
Microsoft is committed to making its products and services easier for everyone to use. This topic provides information about the
following features, products, and services that make Microsoft® Windows®, Microsoft Windows NT®, and Microsoft SQL
Server™ 2000 Windows CE Edition 2.0 (SQL Server CE) more accessible for people with disabilities:

SQL Server CE Accessibility Features
Accessibility in Microsoft Windows
Adjusting Microsoft Products for People with Accessibility Needs
Assistive Technology Products for Windows
Microsoft Documentation in Alternative Formats
Customer Services for People Who Are Deaf or Hard-of-Hearing
Getting More Accessibility Information

Note The information in this section applies only to users who license Microsoft products in the United States.
If you obtained this product outside the United States, your package contains a subsidiary information card
listing Microsoft support services telephone numbers and addresses. You can contact your subsidiary to find out
whether the type of products and services described in this section are available in your area. For more
information available in the following eight languages: English, French, Portuguese, Spanish, Chinese, Japanese,
Swedish, and Italian, see http://www.microsoft.com/enable/.

SQL Server CE Accessibility Features

In addition to the Windows accessibility features and utilities described in the next section, the Help Viewer makes SQL Server CE
more accessible for people with disabilities.

The Help Viewer

The Help Viewer for Microsoft HTML Help is the tool through which you read the product documentation. The tool is equipped
with accessibility features, including shortcut keys for navigation and commands. The Help Viewer also uses some of the
accessibility features of Microsoft Internet Explorer. For example, it allows you to change the colors of the display on your
computer screen. For more information, see Using SQL Server CE Books Online.

Accessibility in Microsoft Windows

Many accessibility features have been built into the Microsoft Windows operating system, starting with the introduction of
Windows 95. These features are useful for individuals who have difficulty typing or using a mouse, are blind or have low vision, or
who are deaf or hard-of-hearing. The features can be installed during setup. The following sections provide more information
about the various accessibility features of Windows XP Professional and Home, Windows 2000, Windows Millennium, Windows
98, and Windows 95.

Windows XP Professional and Home

Accessibility enhancements and improvements in Microsoft Windows XP Professional and Home Editions provide better
integration with assistive technology products and richer communications. Accessibility improvements and other Windows XP
Professional features make it easier for people with accessibility needs to work more efficiently. For more information about
accessibility enhancements and features in Windows XP, visit http://www.microsoft.com/windowsxp/accessibility/.

Windows 2000

Microsoft Windows 2000 includes several accessibility tools to help people with disabilities configure and use business
computers quickly, without additional software and hardware. Accessibility features from earlier versions of the Windows
operating system are still included, and with the increased integration of Microsoft Active Accessibility®, many assistive
technology products simply work better. For more information about accessibility in Microsoft Windows 2000, visit
http://www.microsoft.com/enable/products/.

Windows M e

Accessibility tools and features in Microsoft Windows Me offer people with disabilities greater immediate access and ease-of-use
than ever before. Accessibility highlights include an expanded Accessibility menu and an enhanced Accessibility Wizard. For more

http://www.microsoft.com/enable/
http://www.microsoft.com/windowsxp/accessibility
http://www.microsoft.com/enable/products/

information about accessibility in Windows Me, visit http://www.microsoft.com/enable/products/.

Windows 98

Microsoft Windows 98 offers enhanced hardware support, home networking capabilities, improved online experience, and new
accessibility features. For more information about accessibility Microsoft Windows 98, visit
http://www.microsoft.com/enable/products/.

Windows 95 and Windows N T Workstation 4.0

Microsoft Windows 95 and Windows NT Workstation 4.0 have several built-in accessibility features to help people with
disabilities use computers more easily and effectively. For more information about accessibility in these operating systems, visit
http://www.microsoft.com/enable/products/.

Adjusting Microsoft Products for People with Accessibility Needs

Accessibility options and features are built into many Microsoft products, including the Windows operating system. Accessibility
options and features are useful for individuals who have difficulty typing or using a mouse, are blind or have low vision, or who
are deaf or hard-of-hearing.

Free Step-by-Step Tutorials

Microsoft offers a series of step-by-step tutorials to help you learn how to adjust the accessibility options and settings on your
computer. The tutorials provide detailed procedures on how to adjust options, features, and settings to meet the needs of people
with disabilities and accessibility needs. This information is presented in a side-by-side format so that you can see at a glance how
to use the mouse, the keyboard, or a combination of both. Step-by-Step Tutorials for the following products are available at
http://www.microsoft.com/enable/training/.

Microsoft Windows XP Professional and Home
Microsoft Windows 2000
Microsoft Windows Me
Microsoft Windows 98
Microsoft Internet Explorer 6
Microsoft Internet Explorer 5
Microsoft Outlook 2002 (part of the Office XP suite)
Microsoft Outlook 2000
Microsoft Word 2002 (part of the Office XP suite)
Microsoft Word 2000

Assistive Technology Products for Windows

A wide variety of assistive technology products are available to make computers easier to use for people with disabilities.

Microsoft provides a searchable catalog of assistive technology products that run on Microsoft Windows operating systems at
http://www.microsoft.com/enable/at/.

Products available for the MS-DOS®, Windows, and Windows NT operating systems are:

Programs that enlarge or alter the color of information on the screen for people with visual impairments.
Programs that describe information on the screen in Braille or that provide synthesized speech for people who are blind or
have difficulty reading.
Hardware and software utilities that modify the behavior of the mouse and keyboard.
Programs that enable people to type by using a mouse or their voice.
Word or phrase prediction software that allow people to type more quickly and with fewer keystrokes.
Alternative input devices, such as single switch or puff-and-sip devices, for people who cannot use a mouse or a keyboard.

Upgrading

If you use an assistive technology product, be sure to contact your assistive technology vendor to check compatibility with
products on your computer before upgrading. Your assistive technology vendor can also help you learn how to adjust your
settings to optimize compatibility with your version of Windows or other Microsoft products.

http://www.microsoft.com/enable/products/
http://www.microsoft.com/enable/products/
http://www.microsoft.com/enable/products/
http://www.microsoft.com/enable/training/
http://www.microsoft.com/enable/at/

Microsoft Documentation in Alternative Formats

Microsoft product documentation is available in alternative formats to help our customers with accessibility needs.

Obtaining Documentation for SQL Server CE

The documentation for SQL Server CE is available in an online format. For more information, see Using SQL Server CE Books
Online.

Obtaining Documentation for Additional Microsoft Products

You can obtain accessible documentation for Microsoft products from the Microsoft Accessibility Web site at
http://www.microsoft.com/enable/products/docs/.

Recording for the Blind & Dyslexic, Inc.

In addition, you can obtain additional Microsoft publications from Recording for the Blind & Dyslexic, Inc. These documents are
distributed to registered, eligible members of the distribution service on audiocassettes or floppy disks. The collection contains
more than 80,000 titles, including Microsoft product documentation and books from Microsoft Press®. For information about
eligibility and availability of Microsoft product documentation and books from Microsoft Press, contact:

Recording for the Blind & Dyslexic, Inc.
20 Roszel Road
Princeton, NJ 08540
Phone from within the United States: (800) 221-4792
Phone from outside the United States and Canada: (609) 452-0606
Fax: (609) 987-8116
Web: http://www.rfbd.org/

Customer Service for People Who Are Deaf or Hard-of-Hearing

If you are deaf or hard-of-hearing, complete access to Microsoft product and customer services is available through a text
telephone (TTY/TDD) service.

Customer Service

You can contact the Microsoft Sales Information Center on a text telephone by dialing (800) 892-5234 between 6:30 A.M. and
5:30 P.M. Pacific time, Monday through Friday, excluding holidays.

Technical Assistance

For technical assistance in the United States, you can contact Microsoft Product Support Services on a text telephone at (800) 892-
5234 between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday, excluding holidays. In Canada, dial (905) 568-9641
between 8:00 A.M. and 8:00 P.M. eastern time, Monday through Friday, excluding holidays. Microsoft support services are subject
to the prices, terms, and conditions in place at the time the service is used.

Getting More Accessibility Information

Information about assistive technology for improving the lives of people with disabilities is provided at the Microsoft Accessibility
Web site at www.microsoft.com/enable/. The information on this site benefits people with disabilities and their friends and family
members, people in outreach organizations, educators, and advocates.

A free monthly electronic newsletter is available to help you keep up to date with accessibility topics about Microsoft products. To
subscribe, visit http://www.microsoft.com/enable/news/subscribe/default.asp.

http://www.microsoft.com/enable/products/docs/
http://www.rfbd.org/
http://www.microsoft.com/enable/
http://www.microsoft.com/enable/news/subscribe/default.asp

SQL Server CE Books Online

Microsoft SQL Server 2000 Windows CE Edition 2.0 Copyright
and Disclaimer
This document, including sample applications herein, is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including samples, URL and other Internet
Web site references, is subject to change without notice. The entire risk of the use or the results of the use of this document
remains with the user.

The primary purpose of a sample is to illustrate a concept, or a reasonable use of a particular statement or clause. Most samples
do not include all of the code that would normally be found in a full production system, as a lot of the usual data validation and
error handling is removed to focus the sample on a particular concept or statement. Technical support is not available for these
samples or for the provided source code.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein are fictitious and no
association with any real company, organization, product, person, or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document
may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©1988-2002 Microsoft Corporation. All rights reserved.

Active Directory, ActiveSync, ActiveX, Microsoft, Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual C#, Win32,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

SQL Server CE Books Online

What's New
Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE) extends the functionality of Microsoft SQL Server 2000
to the small footprint of Windows CE-based devices. This release of SQL Server CE provides enhanced database engine and query
capabilities, improved connectivity solutions, and integration with the Microsoft Visual Studio® .NET development environment
and the .NET Compact Framework.

SQL Server CE Books Online describes these enhancements in new sections and a redesigned content structure. In addition, the
documentation has expanded to include more information and examples in the topics that cover connectivity, OLE DB, error
handling, and SQL Server CE error messages.

SQL Server CE Database Engine

SQL Server CE Query Analyzer

SQL Server CE Query Analyzer now includes an easy-to-use interface that allows you to manage database objects in a graphical
Objects tab. SQL Server CE Query Analyzer also provides 10 preset buttons in which you can save frequently used SQL
statements for future querying.

For more information, see Using SQL Server CE Query Analyzer.

Query Processing

Additional intrinsic functions and support for the UNION operator allow you to create richer queries for accessing mobile data.
For more information, see SQL Reference for SQL Server CE.

In conjunction with Microsoft ADO.NET, you also can use parameterized queries, which will result in faster querying and cleaner
code. For more information, see Using Parameters in Queries.

Storage Engine

SQL Server CE now supports 249 indexes per table, the same number of indexes per table as Microsoft SQL Server 2000. For
more information, see Understanding SQL Server CE Database Objects.

Database M anagement

A new error messages file (Ssceerror20en.dll) is available for application developers. For more information, see Installing SQL
Server CE on a Windows CE-based Device.

SQL Server CE Connectivity

Connectivity M anagement

Two new connectivity tools allow you to configure the appropriate security and connectivity options:

Use the SQL Server CE Connectivity Management utility to launch the SQL Server CE Virtual Directory Creation Wizard,
manage existing Microsoft Internet Information Services (IIS) virtual directories, and set up additional NTFS permissions.
Use the SQL Server CE Virtual Directory Creation Wizard to create new virtual directories and set up appropriate NTFS
permissions.

For more information, see Using Connectivity Tools.

Replication and Remote Data Access (RDA)

The new UPLOAD replication option can significantly improve synchronization time when no changes need to be sent to the
device. For more information, see ExchangeType Property (Replication).

To improve query performance, RDA now offers the ability to pull additional indexes from SQL Server. For more information, see
Pull Method.

Development in Visual Studio .NET

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any

updates.

.N ET Compact Framework Data Providers

The System.Data.SqlServerCe namespace provides programmatic access to databases in SQL Server CE from a Visual Studio
.NET application running on Windows CE .NET-based devices. For more information, see Data Provider for SQL Server CE
(SqlServerCe).

The System.Data.SqlClient namespace provides the classes for developing Windows CE .NET-based applications that access
databases in Microsoft SQL Server 7.0 or later. For more information, see Data Provider for SQL Server (SqlClient).

Sample Applications

The IBuySpy Delivery sample application is a robust application based upon real-world scenarios. Use this application to learn
how to write replication and RDA in the .NET Framework development environment. For more information, see IBuySpy Delivery
.NET Framework Application.

Performance

Query Processor

An improved query optimizer uses all available indexes in processing DML statements, complex joins, outer joins, and predicates
with ORDER BY clauses.

Connectivity

SQL Server CE server-side components provide better processing of large synchronizations and reduce overall CPU utilization on
the computer running Microsoft Internet Information Services (IIS).

The SQL Server CE Client Agent supports a useful connectivity retry time-out default while still maintaining recoverability from
lost connections in the field. For more information, see "Supported Connectivity Solutions," in Client and Server Environments.

SQL Server CE Books Online

SQL Server CE Overview
Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE) extends Microsoft SQL Server to Microsoft Windows
CE-based mobile devices, while providing developers with a consistent programming model for rapid application development.
SQL Server CE delivers essential relational database functionality in a small footprint: a robust data store; an optimizing query
processor; and reliable, scalable connectivity capabilities.

This section provides an overview of the SQL Server CE environment, including information about components, architecture,
database engine, connectivity, and security. For complete information, see the relevant sections in this documentation.

The following table lists the main sections of SQL Server CE Books Online.

Section Description
Installing SQL Server CE Describes the hardware and software

requirements for SQL Server CE and how to install
the SQL Server CE platform.

Configuring Security for
Connectivity

Describes how to configure a connection between
SQL Server and Windows CE-based applications.

Managing Connectivity Provides information about specific connectivity
solutions, including remote data access (RDA) and
replication.

Working with SQL Server CE
Databases

Provides information about how to create and
work with SQL Server CE databases, and how to
access data in these databases.

Using SQL Server CE Query
Analyzer

Describes the user interface of SQL Server CE
Query Analyzer and how you can use these
features to perform database tasks.

SQL Reference for SQL Server CE Provides reference for the SQL grammar used to
query or change data in SQL Server CE databases.

Building Applications Provides programming reference for Microsoft
.NET Compact Framework Data Providers,
Microsoft ActiveX® Data Objects for Windows CE
(ADOCE), replication, RDA, and error handling.

Deploying Applications Describes how to package and distribute SQL
Server CE-based applications.

Sample Applications Provides sample applications that demonstrate the
use of replication and RDA connectivity in the
Microsoft Visual Studio® .NET and the Microsoft
eMbedded Visual Tools development
environments.

Troubleshooting Provides troubleshooting information and error
message descriptions for connectivity, Windows
security, and Microsoft Internet Information
Services (IIS) security.

SQL Server CE Books Online

SQL Server CE Environment
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides a compact database solution for mobile and
embedded devices. By using Microsoft Visual Studio® .NET or Microsoft eMbedded Visual Tools, you can extend the enterprise
data management capabilities of SQL Server to Windows CE-based devices. The following illustration shows the relationship of
three typical environments in which SQL Server CE can be used.

Development Environment

This is the computer on which Windows CE-based applications are developed. This computer must have one of the following
development environments:

Microsoft Visual Studio .NET
Microsoft eMbedded Visual Tools version 3.0 installed with at least one of the following software development kits (SDKs):
Handheld PC 2000 SDK, Pocket PC SDK, or the Windows Powered Pocket PC 2002 SDK.

Client Environment

This is the device on which the Windows CE-based application is deployed. When the Windows CE-based device does not contain
network connectivity, Microsoft ActiveSync® can be used to connect to the server environment.

Server Environment

This is the computer(s) that runs Microsoft Internet Information Services (IIS) and an instance of Microsoft SQL Server. You can
run IIS and SQL Server on the same computer or configure them over several computers. Remote data access (RDA) and merge
replication communicate with SQL Server through IIS.

SQL Server CE Books Online

Client and Server Environments
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) relies on several components to exchange data from a
Microsoft Windows CE-based device to an instance of SQL Server. The following illustration shows the relationship between the
different components.

SQL Server CE Database Engine

The SQL Server CE database engine manages the SQL Server data store on the Windows CE-based device. The SQL Server CE
database engine can track all database records that are inserted, updated, or deleted by maintaining a small amount of change
tracking information with each record. The tracking functionality is enabled when you use one of the two connectivity solutions.

SQL Server CE Client Agent

The SQL Server CE Client Agent is the primary component for connectivity on the Windows CE-based device. It implements these
custom SQL Server CE objects: the Replication object, Remote Data Access (RDA) object, and Engine object. By using these objects,
applications can programmatically control connections to SQL Server.

SQL Server CE Server Agent

The SQL Server CE Server Agent handles the HTTP requests made by the SQL Server CE Client Agent. When an application makes
a request, the SQL Server CE Client Agent sends the request to the SQL Server CE Server Agent through HTTP. The SQL Server CE
Server Agent connects to SQL Server and returns the resulting recordset to the SQL Server CE Client Agent through HTTP.
Additional SQL Server connectivity components are involved in this process and are also located on the computer running
Microsoft Internet Information Services (IIS), although they are not shown in the preceding illustration.

Replication and RDA handle HTTP requests differently and use different SQL Server connectivity components on the computer
running IIS. For more information, see Managing Connectivity.

Supported Connectivity Solutions

SQL Server CE connectivity solutions communicate using Web protocols, HTTP or HTTPS. The SQL Server CE Client Agent, which
resides on the Windows CE-based device, uses HTTP(S) to communicate with the SQL Server CE Server Agent on the Web server.
The SQL Server CE Server Agent, which resides on the computer running IIS, communicates with SQL Server using either
replication or remote data access.

Note SQL Server CE connectivity solutions are primarily intended for Windows CE-based devices that are
occasionally connected to the network.

SQL Server CE works with the following network connectivity as long as they are configured to support HTTP(S):

Ethernet
Wireless LANs
Wireless WANs

By using Microsoft ActiveSync® 3.5 and a Pocket PC 2002 device connected using serial, infrared, or USB, you can directly access
SQL Server through the network connection of the desktop computer. Other device and ActiveSync combinations require SQL
Server CE Relay to be configured on the desktop computer.

SQL Server CE can use the Secure Sockets Layer (SSL) feature of IIS to encrypt data propagated between the device running SQL
Server CE and the computer running SQL Server.

In addition, SQL Server CE connectivity solutions optimize wireless communication by compressing data to minimize the amount
of data sent over the network. Data is propagated between the Windows CE-based device and the server by using a simple
protocol patterned after file transfer protocols. SQL Server CE connectivity solutions recover from communication failures by
restarting from the last successfully transmitted block of data, as long as the connection recovers within a time-out period of
approximately two minutes. This makes synchronization possible even if the underlying transport is not reliable.

SQL Server CE Books Online

Development Environment
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports two development environments: Microsoft Visual
Studio® .NET and Microsoft eMbedded Visual Tools. Both environments provide a set of data access application programming
interfaces (APIs) and a subset of SQL syntax that work specifically with SQL Server CE.

Microsoft Visual Studio .NET

Microsoft Visual Studio .NET provides an application development platform for Microsoft Windows CE-based devices. Using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET, you can develop Windows CE-based applications that communicate
with databases in SQL Server and SQL Server CE.

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

The following illustration shows the relationship of the different components.

For more information, see Development Tools.

Microsoft eMbedded Visual Tools

By using Microsoft eMbedded Visual Basic 3.0 or Microsoft eMbedded Visual C++® version 3.0 and version 4.0, you can apply
your knowledge of Visual Basic or Visual C++ to develop Windows CE-based applications. You can create application code using
a code editor, form editor, and property pane, which are similar to those used in Visual Basic or Visual C++. Like Visual Basic and
Visual C++, eMbedded Visual Tools also provides an integrated development environment (IDE).

The following illustration shows the relationship of the different components.

To develop applications with the eMbedded Visual Tools, the software development kit (SDK) for Handheld PC 2000, Pocket PC, or
Pocket PC 2002 must be installed on the device. These SDKs include Windows CE-based device emulators, which provide the look
of a physical device on the desktop computer. SQL Server CE-based applications can be created on a desktop computer and then
tested on the emulator; so, no device is required.

For more information, see Development Tools.

Familiar Data Access Technologies

SQL Server CE is implemented as a set of dynamic-link libraries (DLLs) that support the following data access technologies:

Microsoft ActiveX® Data Objects for Windows CE 3.1 (ADOCE) and Microsoft ActiveX Data Objects Extensions for Data
Definition Language (DDL) and Security (ADOXCE)
ADO.NET
OLE DB Provider for SQL Server CE

ADOCE, ADOXCE, and ADO.NET are based on ADO, which is a high-level interface to all types of data. ADOCE provides consistent,
high-performance access to data for developers using eMbedded Visual Basic to program applications for Windows CE. ADOCE is
the most widely used interface for creating, accessing, and modifying SQL Server CE databases. ADOXCE extends ADOCE to
expose additional objects for creating, modifying, and deleting schema objects. Schema objects are the attributes of the database,
such as columns, indexes, tables, and properties. A subset of ADO.NET, which provides the same high-performance access to data
for developers who are using Visual Basic .NET and C# as ADOCE, is available for Windows CE-based devices.

OLE DB is a low-level data interface technology. OLE DB for SQL Server CE can be used from eMbedded Visual C++, and it
provides more granular capabilities than ADOCE or ADOXCE when used with SQL Server CE. Of all the data access APIs, OLE DB
for SQL Server CE provides the fastest data manipulation and access.

For more information about programming with these objects, see Building Applications.

Familiar SQL Grammar

SQL Server CE includes SQL grammar that allows applications to query a database and insert, update, and delete data in the
database. This grammar is compatible with the SQL grammar of other versions of Microsoft SQL Server. Most statements that run
on SQL Server CE also run on SQL Server databases.

SQL Server CE also supports intrinsic functions that are consistent with functions provided in SQL Server.

For more information, see SQL Reference for SQL Server CE.

SQL Server CE Books Online

SQL Server CE Database Engine
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides:

SQL grammar compatible with SQL Server 2000.

Using data definition language (DDL), you can create databases, alter tables, enforce and check referential integrity, and set
default values. Using data manipulation language (DML), you can insert, update, and delete data. You can also use the
SELECT statement, UNION, intrinsic functions, and parameterized queries.

Multiple-column indexes and matching index limits.
Transaction support.
Referential integrity.
128-bit file-level encryption and password protection.

Compact Footprint

The SQL Server CE database engine occupies approximately 1.2 to 1.6 megabytes (MB) of disk space, depending on the processor
of the target device. SQL Server CE supports databases up to 2 gigabytes (GB), with support for BLOBs of up to 1 GB.

For more information about the SQL Server CE database engine, see Working with SQL Server CE Databases.

SQL Server CE Books Online

Connectivity Solutions
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports two methods of connecting to and exchanging
data with a data source:

Remote data access (RDA)
Merge replication

These connectivity solutions use the authentication, authorization, and encryption services of Microsoft Internet Information
Services (IIS). The connectivity can be performed over wired and wireless LANs and WANs. You can configure Microsoft
ActiveSync® 3.5 or ActiveSync 3.1 with SQL Server CE Relay, to use the network connection on a desktop computer to
communicate with SQL Server. This eliminates the requirement for the Windows CE-based device to have a network card or
modem.

RDA

RDA provides a simple way for a Windows CE-based application to access data located in a remote SQL Server 7.0 or SQL Server
2000 database. You can use RDA when you do not need the full functionality of merge replication. You can use RDA without
configuring SQL Server replication or creating publications.

Applications can use RDA in two ways: The application can submit a data manipulation language (DML) statement that is
forwarded to the SQL Server system for execution, or the application can supply an SQL query that returns a rowset. The resulting
rowset is transmitted to the Windows CE-based device where it is stored in a table. All changes made by the application are
optionally tracked, and at the request of the application, the updated rows are sent back to the server, where they are applied to
the SQL Server database.

For more information, see Using Remote Data Access (RDA).

Merge Replication

Merge replication in SQL Server CE is based on the merge replication implemented in Microsoft SQL Server 2000. Merge
replication is suited to portable devices because it enables data to be updated independently on the portable device and the
server. The data on the device and the server can later be synchronized when the device is connected to the server.

Common scenarios for merge replication include: read-only replication; data capture and upload; and replication, updating and
synchronization. Most applications use a combination of these scenarios. For example, a sales support application might use read-
only replication to download a price list to a device while relying on data capture and upload to capture new orders on the device
and then upload them to a server.

You can use both horizontal and vertical filters to define and maintain unique subsets of data for different clients or groups of
clients. Horizontal filters can be used to replicate a subset of the rows in a published table. Vertical filters can be used to replicate a
subset of the columns in a published table.

For more information, see Using Replication.

SQL Server CE Books Online

SQL Server CE Security
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) connectivity security relies on the security models of
Microsoft Internet Information Services (IIS) and SQL Server 2000.

IIS authentication and authorization are configured to control which users can invoke the SQL Server CE Server Agent, thereby,
controlling the users that can perform database synchronization using merge replication or remote data access. IIS can be
configured to use Secure Sockets Layer (SSL) encryption. This safeguards the data sent between the Windows CE-based device
and IIS when database synchronization or remote database access is performed.

For more information, see Configuring Security for Connectivity.

In addition, a SQL Server CE database relies on a password and 128-bit encryption for security. For more information, see Using
SQL Server CE Database Security Features.

SQL Server CE Books Online

Installing SQL Server CE
The following topics in this section describe installing Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE).

Topic Description
Before you begin
SQL Server CE Installation
Overview

Describes the various systems and configuration
options that can be used in a SQL Server CE
environment.

Hardware and Software
Requirements

Lists hardware and software requirements for each
system.

Upgrading from Earlier Versions
of SQL Server CE

Provides information on upgrading from SQL
Server CE 1.0 and SQL Server CE 1.1.

Desktop installations
Installing SQL Server CE with
Visual Studio .NET

Describes installing SQL Server CE on a computer
running the Microsoft Visual Studio® .NET
development environment.

Installing SQL Server CE with
eMbedded Visual Tools

Describes installing SQL Server CE on a computer
running the Microsoft eMbedded Visual Tools
development environment.

Installing SQL Server CE with
Platform Builder

Describes creating a custom Windows CE
operating system that includes SQL Server CE
using Platform Builder.

Device installations
Installing SQL Server CE on a
Windows CE-based Device

Describes installing SQL Server CE on a Windows
CE-based device.

Server installations
Installing SQL Server CE on an IIS
System

Describes installing SQL Server CE on a computer
running Microsoft Internet Information Services
(IIS).

Installing SQL Server CE on a SQL
Server System

Describes installing SQL Server CE on a computer
running an instance of Microsoft SQL Server.

Other installations
Using SQL Server CE Relay with
an ActiveSync System

Describes installing SQL Server CE Relay on a
computer running Microsoft ActiveSync®.

Installing SQL Server CE Query
Analyzer

Describes installing SQL Server CE Query Analyzer
on a Windows CE-based device.

SQL Server CE Books Online

SQL Server CE Installation Overview
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) is typically installed in an enterprise environment, which
requires installing and configuring up to five systems:

Development environment (Microsoft Visual Studio® .NET or Microsoft eMbedded Visual Tools)
Microsoft SQL Server system
Microsoft Internet Information Services (IIS) system
Microsoft Windows CE-based device
Microsoft ActiveSync® system (optional)

After choosing a server configuration, reviewing the hardware and software requirements for each system, and then installing the
appropriate software, you are ready to install SQL Server CE.

Single- and Multiple-Server Environments

The servers in the SQL Server CE environment can be configured as either a single- or multiple-server environment. In a single-
server environment, all systems are on one computer. In a multiple-server environment, the IIS and SQL Server systems are on
different computers. As shown in the preceding illustration, a Windows CE-based device can connect directly to a single-server
running IIS and SQL Server, multiple-servers (one running IIS and the other running SQL Server), or a workstation running a
development environment. Application development environments for Windows CE-based mobile devices include Microsoft
Visual Studio .NET and Microsoft eMbedded Visual Tools. Depending on your server configuration, you may have to install SQL
Server CE Server Tools on more than one computer. For example, if you have multiple computers running IIS, each computer
running IIS must have SQL Server CE Server Tools installed.

Multiple servers are typically used in production, especially in a corporate enterprise, because they provide more flexibility and
can better meet complex security needs. If you are setting up SQL Server CE for the first time, consider setting up a single-server
environment. This allows you to install all the necessary server software on one computer. You can further simplify setup by
combining a single-server and development environment on one computer to create a complete development and test
environment. After you have successfully set up a single-server environment, you can easily migrate to a multiple-server
environment.

ActiveSync

ActiveSync is required in the development environment to deploy and debug applications. Microsoft Windows Powered Pocket
PC 2002 can use ActiveSync 3.5 or later to synchronize SQL Server CE over a serial, infrared (IR), or USB connection. When using
Pocket PC 2000 or Handheld PC 2000 mobile devices, you must use SQL Server CE Relay in conjunction with IIS to synchronize
over these connections. For more information, see Using SQL Server CE Relay with an ActiveSync System.

See Also

Installing SQL Server CE

Hardware and Software Requirements

Installing SQL Server CE on a Windows CE-based Device

SQL Server CE Books Online

Hardware and Software Requirements
The tables in this topic describe the hardware and software requirements for each system that Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) interacts with. For more information, see SQL Server CE Environment.

Hardware Requirements

Platform Requirements
Development environment 45 MB of available disk space. The computer

must have an additional 45 MB of temporary
storage space for the setup files.

Microsoft Windows CE-based device
(client environment)

Between 1 and 3 MB of available storage space,
depending on processor type and components
installed.
The file sizes for the SQL Server CE components
vary by processor type and version of the
Windows CE operating system. Space
requirements also depend on the development
environment and which SQL Server CE
components you install.

Microsoft SQL Server system
(server environment)

For more information, see "Installing SQL
Server" in SQL Server Books Online.

Microsoft Internet Information
Services (IIS) system
(server environment)

120 MB of available disk space.

Operating System Requirements

Platform Supported operating systems
Development environment Microsoft Windows 2000 and Windows XP.

Microsoft ActiveSync® 3.1 or later is required.
SQL Server system
(server environment)

For information, see "Installing SQL Server" in
SQL Server Books Online.

IIS system (server environment) Microsoft Windows 2000 and Windows XP.
Windows NT 4.0 is supported only for manual
configurations of the SQL Server CE Server
Agent.

Windows CE-based device: Microsoft Windows Powered Pocket PC 2002,
Pocket PC 2000, and Handheld PC 2000.
Microsoft Windows CE .NET version 4.1
(Platform Builder) is supported for embedded
devices.

SQL Server Requirements

SQL Server Supported SQL Server CE features
SQL Server 2000 with Service Pack
1 or higher

Merge replication and remote data access (RDA)
are supported.

SQL Server version 7.0 with Service
Pack 3 or higher

RDA is supported; replication is not supported.

RDA and replication require that Microsoft Data Access Components (MDAC) 2.6 or later be present on the Microsoft Internet
Information Services (IIS) system. If MDAC 2.6 or later is not present on the IIS system, SQL Server CE Setup installs it when you
specify the Server Tools installation option or launch the self-extracting SQL Server CE Server Tools installation file
(Sqlce20sql2ksp1.exe or Sqlce20sql2ksp2.exe).

SQL Server CE RDA and replication are supported with computers running any edition of Microsoft SQL Server 2000 with Service
Pack 1 or higher. SQL Server CE replication is not supported with earlier versions of SQL Server. RDA is supported on SQL Server
7.0, but only in a multiple-server environment; if IIS and SQL Server are installed on the same computer (a single-server
environment) SQL Server 2000 with Service Pack 1 or higher is required.

IIS and Internet Explorer Requirements

Component Requirements
Microsoft Internet Explorer 5.0 Internet Explorer 5.0 or later is required on the

development system to access SQL Server CE
Books Online.
Internet Explorer 5.0 or later is required on the
IIS system.

Microsoft Internet Information
Services (IIS)

IIS versions supported on Microsoft Windows
NT 4.0 with SP5 or higher, Microsoft Windows
2000 and Microsoft Windows XP.

ActiveSync Requirements

Component Requirements
ActiveSync 3.1 Microsoft Windows 98 Second Edition,

Windows Millennium Edition, Windows NT® 4.0
with Service Pack 5 or later, or Windows 2000.

ActiveSync 3.5 (Recommended) Microsoft Windows 98 Second Edition,
Windows Millennium Edition, Windows NT 4.0
with Service Pack 6 or later, Windows 2000, or
Windows XP.

SQL Server CE Books Online

Upgrading from Earlier Versions of SQL Server CE
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports side-by-side installation. Versions of SQL Server
CE can coexist on the same computer, enabling a simple and gradual upgrade process. SQL Server CE connectivity requires that
the client components on the Windows CE-based device and the server components installed on the computer running Microsoft
Internet Information Services (IIS) be the same major-release version.

Upgrading Deployed Applications

When you upgrade, install SQL Server CE Server Tools first and then client components. Do not deploy newer client applications if
you still have an earlier version of SQL Server CE Server Tools on the computer running IIS. After all components are in place,
redeploy the application to the devices. It is important to ensure the upgraded application is available and functioning properly
before removing the previous release of your application and the SQL Server CE client components.

During the process of upgrading your application, you must change any references of SQL Server CE version 1.0 or 1.1 to SQL
Server CE version 2.0. When you upgrade the computer running IIS, you must install Server Tools for SQL Server CE 2.0. You can
then configure a new virtual directory for SQL Server CE 2.0 clients on this computer. As you deploy SQL Server CE 2.0 client
components to your devices, you must update your application to use this new virtual directory for SQL Server CE 2.0 by
updating the InternetURL property of your Replication or Remote Data Access (RDA) objects. The new InternetURL property
ends with Sscesa20.dll instead of Sscesa10.dll. Updating the InternetURL property is critical because the SQL Server CE Client
Agent for SQL Server CE 2.0 can communicate only with the SQL Server CE Server Agent for SQL Server CE 2.0.

Note When you update your applications, it is not necessary to re-create the database files (.sdf files). SQL Server CE
versions 2.0, 1.1, and 1.0 share the same file format.

See Also

Deploying Applications

SQL Server CE Books Online

Installing SQL Server CE with Visual Studio .NET
Installing Microsoft® Visual Studio® .NET automatically configures the development environment for use with Microsoft SQL
Server™ 2000 Windows® CE Edition (SQL Server CE). After installing Visual Studio .NET, you must still configure the computer
running Microsoft Internet Information Services (IIS) and the Windows CE-based device.

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

File Locations and Descriptions

The following table lists the files, by location, that are installed on the development computer. By default, these files and folders
are created in \Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000.

Location Contents
\Windows CE A folder that contains SQL Server CE Assemblies,

System.Data.SqlServerCe.dll and System.Data.Common.
\Windows
CE\platform

A series of subfolders. Each folder contains dynamic-link libraries
(DLLs), Ssce20.dll, Ssceca20.dll, and Sscemw20.dll for use with
each of the processors supported by SQL Server CE. These folders
also contain Isqlw20.exe, a program that implements the SQL
Server CE Query Analyzer, and Ssceerror20en.dll, a DLL that
provides error descriptions for use during development. All of
these components are included in the cab files
Sqlce.platform.processor.cab and Sqlce.dev.platform.processor.cab,
which are also located in the subfolder for each processor.

\ A folder that contains the SQL Server CE Books Online
(Sqlce.chm), SQL Server CE Server Tools self-extracting
executables (Sqlcesql2ksp1.exe and Sqlcesql2ksp2.exe), and SQL
Server CE Relay extension to Microsoft ActiveSync®
(SSCERelay.exe).

\Samples A series of folders containing sample applications.

SQL Server CE Books Online

Installing SQL Server CE with eMbedded Visual Tools
This topic describes the prerequisites and steps for installing Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE) on a computer running the Microsoft eMbedded Visual Tools development environment.

Note Set up the server configuration and the appropriate system software before you install SQL Server CE. For
more information, see SQL Server CE Installation Overview and Hardware and Software Requirements.

Before you install SQL Server CE on the eMbedded Visual Tools development system, you must install:

Microsoft ActiveSync® 3.1 or later
Microsoft eMbedded Visual Tools 3.0
One of the following Windows CE Software Development Kits (SDKs): Pocket PC SDK, Handheld PC 2000 SDK, or the
Microsoft Windows Powered Pocket PC 2002 SDK.

The Pocket PC SDK is included with eMbedded Visual Tools, and the other SDKs are available at this Microsoft Web site.

To install SQL Server CE on an eMbedded Visual Tools development system

1. From Windows Explorer, navigate to the location of the source files for SQL Server CE, and then double-click setup.exe.
2. When prompted, click Development Tools.

If Microsoft Internet Information Services (IIS) is running on the same computer as the development environment, select the
Server Tools check box if you want to install Server Tools at this time. For more information, see Installing SQL Server CE
on an IIS System.

After Setup completes, the development environment is configured to use SQL Server CE. SQL Server CE is not downloaded to
the device until you begin your development project. For more information, see Installing SQL Server CE on a Windows CE-based
Device.

Note If you encounter any problems during the installation of Microsoft ActiveX® Data Objects for Windows CE 3.1
(ADOCE), you must remove and reinstall SQL Server CE. The ADOCE components do not include a repair option under
Add/Remove components in Control Panel.

File Locations and Descriptions

The following table lists the files, by location, that are installed on the development computer. By default, these files and folders
are created in \Program Files\Microsoft SQL Server CE 2.0.

Location Contents
\Device A series of subfolders. Each folder contains dynamic-link libraries

(DLLs), Ssce20.dll and Ssceca20.dll, for use with each of the processors
supported by SQL Server CE.
These folders also contain DllRegister.exe, a tool that registers the
DLLs, Isqlw20.exe, a program that implements SQL Server CE Query
Analyzer, and Ssceerror20en.dll, a DLL that provides error descriptions
for use during development.

\Inc Include files for use with Microsoft eMbedded Visual Basic® and
Microsoft eMbedded Visual C++®.
Ca_mergex20.h is the header for the SQL Server CE Microsoft ActiveX
objects.
Ssceoledb.h is the SQL SERVER CE header for OLE DB.

\Lib A series of folders. Each folder contains the library Ca_mergex20.lib for
the SQL Server CE ActiveX objects. There is a separate folder for each
processor supported by SQL Server CE.
A single type library (Ca_mergex20.tlb) is located in the root of this
directory. It describes the SQL Server CE RDA, replication, and Engine
objects.

\Relay A folder that contains the SQL Server CE Relay extension to ActiveSync
(SSCERelay.exe).

http://go.microsoft.com/fwlink/?LinkId=8495

\Redist A series of folders containing the components that you might have to
include together when you deploy an application, including SQL Server
CE Server Tools self-extracting executables (Sqlce20sql2ksp1.exe and
Sqlce20sql2ksp2.exe) and SQL Server CE Relay.

\Samples A series of folders containing sample applications.

SQL Server CE Books Online

Installing SQL Server CE with Platform Builder
Microsoft® Platform Builder is used to create a custom Microsoft Windows® CE operating system for use in a custom Windows
CE-based device, such as an embedded controller for a piece of equipment. Microsoft SQL Server™ 2000 Windows CE Edition
(SQL Server CE) supports Microsoft Platform Builder for Microsoft Windows CE .NET version 4.1.

Before you install SQL Server CE, you must install Microsoft ActiveSync® 3.1 or later and Microsoft Platform Builder for Microsoft
Windows CE .NET version 4.1.

To install SQL Server CE on a computer with Platform Builder

1. From Windows Explorer, navigate to the location of the source files for Microsoft SQL Server CE, and then double-click
setup.exe.

2. When prompted, click Development Tools.

After Setup completes, the platform builder environment is configured to use SQL Server CE.

File Locations and Descriptions

The following folder and files are installed on the computer running Platform Builder. By default, this folder and these files are
created in \WinCE410\Others\SqlServerCE2. These files are installed in addition to the files specified in Installing SQL Server CE
with eMbedded Visual Tools.

Location Contents
\Device A series of subfolders. Each folder contains dynamic-link libraries

(DLLs), Ssce20.dll and Ssceca20.dll, for use with each of the processors
supported by SQL Server CE.
These folders also contain DllRegister.exe, a tool that registers the
DLLs, Isqlw20.exe, a program that implements SQL Server CE Query
Analyzer, and Ssceerror20en.dll, a DLL that provides error descriptions
for use during development.

Important If you install eMbedded Visual Tools and one of the supported SDKs on the same computer with Platform
Builder after SQL Server CE is installed, you must reinstall SQL Server CE to properly register SQL Server CE with the
SDKs.

SQL Server CE Books Online

Installing SQL Server CE on a Windows CE-based Device
After you install Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) on a development system, you must
install SQL Server CE on a Windows CE-based device. The process for installing SQL Server CE on the device depends upon
whether you are using the Microsoft Visual Studio® .NET or the Microsoft eMbedded Visual Tools development environment. The
following topics describe the installation process for each environment:

Installing SQL Server CE on a Device Using Visual Studio .NET
Installing SQL Server CE on a Device Using eMbedded Visual Tools

SQL Server CE Books Online

Installing SQL Server CE on a Device Using Visual Studio .NET
In the Microsoft® Visual Studio® .NET development system, you can use one of the following procedures to install the Microsoft
SQL Server™ 2000 Windows® CE Edition (SQL Server CE) system files to a Windows CE-based device:

Include SQL Server CE in your project.

This is the most common method for installing SQL Server CE on a Windows CE device. To include SQL Server CE in your
project, on the Project menu, click Add Reference, and select System.Data.SqlServerCe.

Manually copy and extract the .cab files.

The Netcf.core.platform.processor.cab and Sqlce.platform.processor.cab files are installed by default in \Program
Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000\Windows CE\platform\processor.

The Sqlce.dev.platform.processor.cab file includes SQL Server CE Query Analyzer and the DLLs that provide error
descriptions for use during development (Ssceerror20en.dll and Msdaeren.dll).

SQL Server CE Books Online

Installing SQL Server CE on a Device Using eMbedded Visual
Tools
In the Microsoft® eMbedded Visual Tools development system, you can use either an automated process with Microsoft
eMbedded Visual Basic® or a manual process to download Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE)
to the Windows CE-based device.

eMbedded Visual Basic Automated Process

Using eMbedded Visual Basic to include SQL Server CE in your project is the most common method for installing SQL Server CE
on a Windows CE-based device. To include SQL Server CE in your project, on the Project menu, select References, Microsoft CE
SQL Server Control 2.0, and then Microsoft CE ADO Control 3.1.

Note In the event of installation problems, you can force eMbedded Visual Basic to download components again: On
the Project menu, click Properties. On the General tab, set the Update Components Frequency to Always, and
select the Project Components check box.

If you are using Microsoft ActiveX® Data Objects Extensions for Data Definition Language (DDL) and Security (ADOXCE), you
must also include Microsoft CE ADO Ext. 3.1 for DDL. For more information, see Deploying Applications from eMbedded Visual
Tools.

Manual Installation Process

You can manually install SQL Server CE and your eMbedded Visual Tools application on a Windows CE-based device by copying
and registering all the required files. Use the following information to determine which files the application requires. Select the
files appropriate for the processor type of the Windows CE-based device. To determine the processor type of the device, see the
device documentation.

Application Files

On Pocket PCs, you can copy the application executable to the \Windows\Start Menu folder, and then run it from the Start menu
on the device. The application executable file is located in the project tree that you create:

Microsoft eMbedded Visual Basic creates the executable file directly in the project subdirectory.
Microsoft eMbedded Visual C++® creates a separate subdirectory for each platform processor type that you want it to
build. For example, MIPS processor application executables are created in \projectname\MIPSRel for the release version and
\projectname\MIPSDbg for the debug version.

SQL Server CE Files

Copy the SQL Server CE files to the \Windows directory of the Windows CE-based device. These files are located in \Program
Files\Microsoft SQL Server CE 2.0\Device\processor family\processor type by default. For more information about file locations
and descriptions, see Installing SQL Server CE with eMbedded Visual Tools.

File Requirement
Ssce20.dll Required. Must be registered.
Ssceca20.dll Required for replication and remote data access (RDA).

Must be registered.
Ssceerror20en.dll Optional for error messages used during development.
Isqlw20.exe Optional for SQL Server CE Query Analyzer.

ADOCE and OLE DB Files

Copy the SQL Server CE files to the \Windows directory on the Windows CE-based device. These files are located by default in
\Windows CE Tools\dataaccess31\Windows CE OS version\processor type.

File Requirement

Msdaeren.dll Optional for error messages. Msdaeren.dll is the English
version of the Microsoft ActiveX Data Objects for
Windows CE (ADOCE) error DLL and works on devices of
all languages. For localized ADOCE error messages,
substitute the Msdaerxx.dll that corresponds to the
language setting of the device.

Adoce31.dll Required. Must be registered.
Adoceoledb31.dll Required.
Adoxce31.dll Required for ADOXCE. Must be registered.

Registering the SQL Server CE Application on the Device

Use DllRegister.exe to register the DLLs that require registration. DllRegister.exe registers all the SQL Server CE, ADOCE, and OLE
DB CE components on the device and warns if optional components are missing from the device. DllRegister.exe is located by
default in \Program Files\Microsoft SQL Server CE 2.0\Device\processor family\processor type.

To register the SQL Server CE application

1. Select the appropriate version of DllRegister.exe based on the processor type of the device.
2. Copy DllRegister.exe from the development system to the Windows CE-based device, and then run the executable. On

Pocket PCs, you can copy DllRegister.exe to the \Windows\Start menu folder, and then run it from the Start menu on the
device.

Alternately, you can register the DLLs individually by using Regsvrce.exe from the Windows CE SDK or by calling the
DllRegisterServer function in each DLL.

SQL Server CE Books Online

Installing SQL Server CE on an IIS System
Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE) Server Tools are required for applications that use SQL
Server CE connectivity. If you use replication or remote data access (RDA), you must install SQL Server CE Server Tools on the
computer running Microsoft Internet Information Services (IIS). Replication requires the SQL Server CE Server Tools installer
appropriate for the service pack that SQL Server is running. SQL Server CE ships with two installers: Sqlce20sql2ksp1.exe (SQL
Server Service Pack 1) and Sqlce20sql2ksp2.exe (SQL Server Service Pack 2). If the instance of SQL Server is running a service
pack later than Service Pack 2, download an updated SQL Server CE Server Tools installer from this Microsoft Web site.

SQL Server CE Server Tools Setup installs the SQL Server CE Server Agent (Sscesa20.dll) and the SQL Server CE Replication
Provider (Sscerp20.dll) in \Program Files\Microsoft SQL Server CE 2.0\Server and additional SQL Server replication components
in \Program Files\Microsoft SQL Server\80\Com.

To set up SQL Server CE on the computer running IIS if you are using Microsoft Visual Studio® .NET

From Windows Explorer on the computer running IIS, navigate to the source files for SQL Server CE, and then double-click
sqlce20sql2ksp1.exe or sqlce20sql2ksp2.exe. These files are installed in \Program Files\Microsoft Visual Studio .NET
2003\CompactFrameworkSDK\v1.0.5000.

To set up SQL Server CE on the computer running IIS if you are using Microsoft eMbedded Visual Tools

1. From Windows Explorer, navigate to the source files for SQL Server CE, and then double-click setup.exe.
2. When prompted, click Server Tools. If the computer running IIS also has SQL Server Service Pack 1 or Service Pack 2

installed, the appropriate Server Tools installation file is installed. If the computer running IIS does not have SQL Server
installed, the installation file that corresponds to SQL Server Service Pack 1 (Sqlce20sql2ksp1.exe) is installed.

Note You can also obtain the Server Tools installer (Sqlce20sql2ksp1.exe and Sqlce20sql2ksp2.exe) from an
existing development system. SQL Server CE Setup installs the files in \Program Files\Microsoft SQL Server CE
2.0\Redist\Server.

SQL Server CE Connectivity Management Utility

At the end of the setup process, the SQL Server CE Server Tools installer optionally launches the SQL Server CE Virtual Directory
Creation Wizard, a component of the SQL Server CE Connectivity Management utility. For more information about the SQL Server
CE Connectivity Management utility, see Configuring Security for Connectivity.

Support for Multilingual Environments

SQL Server CE Server Tools includes localized Microsoft Data Access Components (MDAC) files that affect how setup screens and
error messages are displayed. The language of SQL Server CE Setup determines the language of the MDAC software in SQL
Server CE Server Tools. For other language-related issues, see Ensuring Proper ANSI to Unicode Conversions.

http://go.microsoft.com/fwlink/?LinkId=8634

SQL Server CE Books Online

Installing SQL Server CE on a SQL Server System
Using Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) in a Microsoft SQL Server environment does not
require the installation of any components on the SQL Server system. However, if you are using remote data access (RDA) or
replication, it is important to install (on the computer running IIS) the version of the SQL Server CE Server Tools appropriate for
the version of SQL Server you are using. For more information about SQL Server CE Server Tools, see Installing SQL Server CE on
an IIS System.

See Also

Hardware and Software Requirements

SQL Server CE Books Online

Using SQL Server CE Relay with an ActiveSync System
If you use Microsoft® ActiveSync® 3.1 with a serial, infrared (IR), or USB connection to communicate between a Microsoft
Windows® CE-based device and an instance of Microsoft SQL Server™ using Microsoft Internet Information Services (IIS)
through the network connection of a desktop computer, you must install SQL Server CE Relay on the computer running
ActiveSync. This is required both during application development and during application deployment after development has been
completed if the Windows CE-based devices do not have integrated network connectivity.

SQL Server CE Relay is installed automatically on the development computer when you install the development tools.

Important Microsoft Windows Powered Pocket PC 2002-based devices using ActiveSync 3.5 do not require SQL
Server CE Relay, because this configuration supports Ethernet connectivity to and from the device through the
desktop computer.

To set up SQL Server CE Relay on the computer running ActiveSync

1. On the existing development computer, if you are using Microsoft eMbedded Visual Tools, navigate to the \Program
Files\Microsoft SQL Server CE 2.0\Redist\Relay folder. If you are using Microsoft Visual Studio® .NET, navigate to the
\Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000 folder.

2. Copy Sscerelay.exe to any directory on the computer running ActiveSync.
3. Configure SQL Server CE Relay. For more information, see Using SQL Server CE Relay.

To remove SQL Server CE Relay from the computer running ActiveSync

SQL Server CE Relay is not installed using the setup process; therefore, you cannot use Control Panel to add or remove it. You
must remove Relay using a command prompt.

1. At the MS-DOS® command prompt, use the CD command to navigate to the location where you previously copied and
configured SQL Server CE Relay on the computer running ActiveSync. For example, type:

cd c:\Program Files\Microsoft SQL Server CE 2.0\Relay

2. To unregister SQL Server CE Relay, type:

Sscerelay /unregister

3. To delete Sscerelay.exe, type:

del sscerelay.exe

SQL Server CE Books Online

Installing SQL Server CE Query Analyzer
SQL Server CE Query Analyzer is installed automatically if you are using Microsoft® Visual Studio® .NET, but requires manual
installation if you are using Microsoft eMbedded Visual Tools.

Visual Studio .NET

If you install Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) with Visual Studio .NET, SQL Server CE Query
Analyzer (Isqlw20.exe) is placed on the development computer in C:\Program Files\Microsoft Visual Studio .NET
2003\CompactFrameworkSDK\v1.0.5000\Windows CE\platform\processor.

SQL Server CE Query Analyzer is automatically installed on the device the first time you deploy an application (by selecting Start
from the Debug menu in Visual Studio .NET) that references the System.Data.SqlServerCe namespace. The default installation
location is \Program Files\SQLCE2.0. A shortcut to SQL Server CE Query Analyzer also appears on the Start menu of the device.

You can manually copy SQL Server CE Query Analyzer to the device by copying and extracting the following cab files from
C:\Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000\Windows CE to the root directory of the
device: Netcf.cjk.platform.processor.cab, Sqlce.platform.processor.cab, and Sqlce.dev.platform.processor.cab. A shortcut to SQL
Server CE Query Analyzer appears in the Start menu of the device.

eMbedded Visual Tools

If you install SQL Server CE with eMbedded Visual Tools, SQL Server CE Query Analyzer (Isqlw20.exe) is placed on the
development computer in C:\Program Files\Microsoft SQL Server CE 2.0\Device\processor family\processor type.

If SQL Server CE is not installed on the device:

1. Create a blank eMbedded Visual Basic project and include SQL Server CE in the project. On the Project menu, click
References, Microsoft CE SQL Server Control 2.0, and then Microsoft CE ADO Control 3.1.

2. Copy Ssce20.dll, Ssceca20.dll, Ssceerror20en.dll, Msdaeren.dll, Adoce31.dll, and Adoceoledb31.dll to the \Windows
directory. For more information, see "Manual Installation Process" in Installing SQL Server CE on a Device Using eMbedded
Visual Tools.

3. After you have deployed an application referencing SQL Server CE or have manually installed the SQL Server CE files listed
above, copy Isqlw20.exe to \Windows\Start Menu for Pocket PC devices or \Windows\Desktop for Handheld PC 2000
devices.

To start SQL Server CE Query Analyzer, either select the application from the Start menu or tap the icon on the desktop.

See Also

Using SQL Server CE Query Analyzer

SQL Server CE Books Online

Configuring Security for Connectivity
After you install the necessary systems for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), you must
configure the appropriate security and connectivity options before any data can be exchanged by using replication or remote data
access (RDA). The topics in this section describe the security and connectivity requirements for SQL Server CE.

Topic Description
Planning for Security Provides general information about security.
Configuring Connectivity Support in IIS Provides information about configuring

connectivity support for replication and
remote data access, including NTFS
permissions requirements and advanced
security configurations.

Using SQL Server CE Relay Provides information about installing and
configuring SQL Server CE Relay when you
are using Microsoft ActiveSync® 3.1.

After connectivity support for replication and remote data access are properly configured, you are ready to use these connectivity
solutions by enabling the functionality in a Windows CE-based application. For more information, see Managing Connectivity and
Building Applications.

SQL Server CE Books Online

Planning for Security
Connectivity between Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) and an instance of Microsoft SQL
Server relies entirely upon properly configuring the security models for both Microsoft Internet Information Services (IIS) and
SQL Server.

In the SQL Server CE connectivity scenario, a Windows CE-based application initiates synchronization by invoking the appropriate
SQL Server CE connectivity solution: either replication or remote data access (RDA). Before accessing a SQL Server database using
replication or RDA through HTTP, you must set up an IIS virtual directory that contains the SQL Server CE Server Agent and
configure the appropriate NTFS permissions. Configuring IIS authentication and authorization specifies the clients that can invoke
the SQL Server CE Server Agent. Implementing this layer of security controls the clients that can perform database
synchronization or remote database access.

Note IIS can be configured to use Secure Sockets Layer (SSL) encryption. This safeguards the data sent between the
Windows CE-based device and IIS when database synchronization or remote database access is performed. For more
information, see Configuring SSL Encryption.

After the SQL Server CE Server Agent is invoked, it connects to an instance of SQL Server. SQL Server authentication and
authorization can be configured to control access to SQL Server or SQL Server publications.

The following topics describe how IIS and SQL Server are configured to support security for the SQL Server CE connectivity
solutions (replication and RDA):

IIS Security
SQL Server Security

For more information about SQL Server CE database security, see Using the SQL Server CE Database Security Features.

SQL Server CE Books Online

IIS Security
This topic describes how Microsoft® SQL Server® 2000 Windows® CE Edition (SQL Server CE) relies on:

IIS Authentication
IIS Authorization
IIS Encryption

IIS Authentication

When you configure the SQL Server CE Server Agent, you specify whether clients must perform Microsoft Internet Information
Services (IIS) authentication when they connect to the SQL Server CE Server Agent. There are three forms of IIS authentication:

Anonymous Access
Basic Authentication
Integrated Windows Authentication

It is expected that most Internet applications will use Basic authentication and Secure Sockets Layer (SSL) encryption.

Anonymous Access

With Anonymous access, IIS does not perform client authentication. All work that the SQL Server CE Server Agent performs on
behalf of the client is performed under the identity of the Internet Guest Account. By default, the Internet Guest Account is
IUSR_computername, but you can designate some other Windows user account as the Internet Guest Account.

Basic Authentication

With Basic authentication, the SQL Server CE client must supply a valid Windows account user name and password. IIS attempts
to log in by using the client-supplied user name and password. If the login attempt succeeds, all work that the SQL Server CE
Server Agent performs is performed under the identity of the specified Windows user account. If the login attempt fails, the
request from the client is rejected. Basic authentication can be used for both Internet and intranet applications. Basic
authentication requires that each client have a valid Windows account with a corresponding user name and password.

Important By default, Basic authentication passes the user name and password across the network in base64
encoding. This can pose a security risk if anyone eavesdrops on the password exchange because the base64 encoding
can easily be decoded. To safeguard the user password, Secure Sockets Layer (SSL) encryption should always be used
whenever Basic authentication is used. For more information, see Configuring SSL Encryption.

Integrated Windows Authentication

Integrated Windows authentication works much like Basic authentication. The SQL Server CE client must supply a valid Windows
account user name and password. IIS attempts to log in using the user name and password. If the login attempt succeeds, all work
that the SQL Server CE Server Agent performs is performed under the identity of the Windows user account. If the login attempt
fails, the client synchronization request is rejected. Integrated Windows authentication has one primary advantage over Basic
authentication: Unlike Basic authentication, Integrated Windows authentication does not transmit the client's user name and
password over the network in unencrypted form. This avoids the risk of someone intercepting the password. Integrated Windows
authentication is best suited to intranet applications. Integrated Windows authentication is seldom used for Internet applications
because it cannot operate over a proxy server or firewall.

Note Because Microsoft Windows CE 3.0 does not support Digest Authentication, Kerberos Authentication, and Client
Certificate Authentication, SQL Server CE connectivity solutions do not support these forms of authentication.

IIS Authorization

After the IIS client is authenticated, IIS authorization determines whether the client can invoke the SQL Server CE Server Agent.
You control who can perform SQL Server CE connectivity by controlling the clients that can access the SQL Server CE Server
Agent.

IIS provides the following mechanisms for controlling access:

IIS first checks the address of the client against any IP address restrictions that are configured. You can configure the Web
server to prevent specific computers, groups of computers, or entire networks from accessing the SQL Server CE Server

Agent. When a client initially tries to access the SQL Server CE Server Agent, IIS checks the IP address of the client computer
against the IP address restriction settings on the server. If the IP address is denied access, the synchronization request from
the client is rejected with the message: "403 Access Forbidden".
If IIS is configured to require authentication, IIS checks whether the client has a valid Windows user account as described in
IIS Authentication. If the user account is not valid, the client's synchronization request is rejected with the message: "403
Access Forbidden".
IIS next checks the Web permissions. This IIS security check is not relevant for SQL Server CE connectivity solutions.
IIS then checks NTFS permissions for the SQL Server CE Server Agent to ensure the connecting user has appropriate
permissions. For information about configuring the NTFS permissions required for SQL Server CE applications using
replication or RDA, see Configuring Connectivity Support in IIS and Configuring IIS and NTFS Permissions Manually.

Note Although IIS can also be used with a File Allocation Table (FAT) file system, it is strongly recommended
that you use NTFS. NTFS allows use of access control lists (ACLs) for granting or denying access to the SQL
Server CE Server Agent and the input and output message files on the IIS system.

IIS Encryption

When you configure the SQL Server CE Server Agent, you can specify SSL encryption. When you specify SSL encryption, all
communication between the SQL Server CE Client Agent and SQL Server CE Server Agent is encrypted. For more information, see
Configuring SSL Encryption.

You should use SSL encryption in the following situations:

If you configure IIS to use Basic authentication.

This is essential to safeguard the Internet password of the user. By default, Basic authentication transmits the user name and
password across the network in base64 encoding. This can pose a security risk if anyone eavesdrops on the password
exchange because the base64 encoding can easily be decoded. SSL encryption should always be used whenever Basic
authentication is used to safeguard the user's Internet password.

For RDA only: If the application specifies an OLEDBConnectionString parameter that contains a password.

The RDA Pull, Push, and SubmitSQL methods require an OLEDBConnectionString parameter. This connection string is
passed across the network in clear text form. This can pose a security risk if anyone eavesdrops on the password exchange.

For replication only: If either the SQL Server Publisher or Distributor relies on SQL Server authentication.

The Distributor is using SQL Server authentication if the DistributorSecurityMode property specifies
DB_AUTHENTICATION. The Publisher is using SQL Server authentication if the PublisherSecurityMode property specifies
DB_AUTHENTICATION. When SQL Server authentication is used, the DistributorPassword and PublisherPassword are
passed across the network in clear text form. This can pose a security risk if anyone eavesdrops on the password exchange.
SSL encryption should always be used whenever SQL Server Authentication is used to safeguard DistributorPassword and
PublisherPassword.

See Also

Configuring IP Address and Domain Name Restrictions

SQL Server CE Books Online

SQL Server Security
This topic describes how Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) works with:

SQL Server Authentication
SQL Server Authorization

SQL Server Authentication

SQL Server supports two forms of authentication:

Windows Authentication
SQL Server Authentication

Windows Authentication

When Windows authentication is used to connect to SQL Server, Microsoft Windows is entirely responsible for authenticating the
client. In this case, the client is identified by its Windows user account. In the case of SQL Server CE replication or remote data
access (RDA), the SQL Server CE Server Agent acts as the database client, running under the identity of a Windows user account:

When IIS is configured to use Anonymous access, the SQL Server CE Server Agent runs under the identity of the Internet
Guest Account, by default IUSR_computername. If you configure another Windows user account as the IIS anonymous user
account, the SQL Server CE Server Agent runs under the identity of that account.
When IIS is configured to use Basic authentication, the SQL Server CE Server Agent runs under the identity of the Windows
user account for which the client supplied the Internet user name and password.
When IIS is configured to use Integrated Windows authentication, the SQL Server CE Server Agent runs under the identity of
the client.

SQL Server Authentication

When SQL Server authentication is used, SQL Server authenticates the client by comparing the client-supplied user name and
password to the list of valid user names and passwords maintained within SQL Server. In this case, the Windows CE-based
application must supply the appropriate SQL Server login and password when connecting to SQL Server using replication or
remote data access. The SQL Server CE Client Agent conveys the login and password to the SQL Server CE Server Agent. The SQL
Server CE Server Agent invokes SQL Server using the login and password specified by the client.

SQL Server Authorization

When a client is successfully authenticated, the user or group name of the client is mapped to a SQL Server user account.

The client must have a user account in each database that it wants to access. The user account is used to control access to the
tables, views, stored procedures, and so on, in that database. The activities that a client can perform are controlled by the
permissions applied to the user account through which the client gained access to the database.

For RDA only: You can precisely control the database operations that RDA clients can perform by the permissions you grant
them.

For replication only: When you create a publication, SQL Server creates a publication access list (PAL) for the publication. You
must update the PAL to grant access to the publication. For more information, see Configuring the Publication Access List.

When you create a publication, the location of the snapshot folder is specified. The snapshot folder is used when a subscription is
initially created or reinitialized. If the computer running SQL Server is located on a NTFS system, the appropriate NTFS
permissions must be specified. For more information, see Configuring the Snapshot Folder.

When you create a publication, you can use the Check Permissions option to provide an enhanced level of security to the
publication. The Check Permissions option ensures that the Merge Agent has the authority to upload data changes to a
Publisher. When you specify this option, SQL Server verifies that the Merge Agent login has the permissions to perform INSERT,
UPDATE, and DELETE statements on the publication database. For more information, see Configuring the Check Permissions
Option.

SQL Server CE Books Online

Configuring Connectivity Support in IIS
Before you can access a database in Microsoft® SQL Server™ by using replication or remote data access (RDA) through HTTP,
you must set up a virtual directory and configure the appropriate NTFS permissions. Microsoft SQL Server 2000 Windows® CE
Edition (SQL Server CE) provides the SQL Server CE Connectivity Management utility to create and manage virtual directories and
NTFS permissions.

The following topics in this section describe using the SQL Server CE Connectivity Management utility for connectivity support
and setting advanced configuration options:

Using Connectivity Tools
Advanced Security Configurations

SQL Server CE Books Online

Using Connectivity Tools
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides the SQL Server CE Connectivity Management
utility to configure Microsoft Internet Information Services (IIS) and setup appropriate NTFS permissions. The SQL Server CE
Connectivity Management utility contains the SQL Server CE Virtual Directory Creation Wizard for creating new virtual directories
and a management console for managing existing virtual directories. The SQL Server CE Connectivity Management utility is a
standard Microsoft Management Console (MMC) snap-in.

The SQL Server CE Connectivity Management utility and the SQL Server CE Virtual Directory Creation Wizard are installed
automatically either by selecting the Server Tools option during SQL Server CE setup or by running the Server Tools self-
extracting executable on the computer running IIS. For more information about installing Server Tools, see Installing SQL Server
CE on an IIS System.

Note At the end of the SQL Server CE setup process, you can choose to launch the SQL Server CE Virtual Directory
Creation Wizard immediately.

To start the SQL Server CE Connectivity Management utility on the computer running IIS

On the Start menu, point to Programs, Microsoft SQL Server CE, and then click Configure Connectivity Support in IIS.

Or

Right-click the My Computer icon, and then click Manage. In the Computer Management window, expand Services and
Applications, and then click Microsoft SQL Server CE.

To start the SQL Server CE Virtual Directory Creation Wizard

If you are configuring connectivity for the first time and did not run the SQL Server CE Virtual Directory Creation Wizard at the
end of setup, you can start the wizard from the SQL Server CE Connectivity Management utility.

In the right pane of the utility, double-click Create a Virtual Directory. For more information, see Creating a New Virtual
Directory.

Important IIS must be installed and running to start the SQL Server CE Connectivity Management utility or the SQL
Server CE Virtual Directory Creation Wizard.

For information about using the SQL Server CE Connectivity Management utility to manage existing virtual directories, see
Modifying an Existing Virtual Directory.

See Also

Planning for Security

Managing Connectivity

SQL Server CE Books Online

Creating a New Virtual Directory
Creating a New Virtual Directory

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) relies on Microsoft Internet Information Services (IIS)
virtual directories to access data from a database in Microsoft SQL Server. To create a virtual directory, SQL Server CE provides
the SQL Server CE Virtual Directory Creation Wizard, which contains the following pages to guide you through the process:

Virtual Directory Alias and Content Folder
Virtual Directory Authentication
NTFS Permissions: User
NTFS Permissions: Computer Running SQL Server
NTFS Permissions: Snapshot Folder

See Also

Planning for Security

Managing Connectivity

SQL Server CE Books Online

Virtual Directory Alias and Content Folder
Virtual Directory Alias and Content Folder

This page of the SQL Server CE Virtual Directory Creation Wizard allows you to create an alias and content folder for the virtual
directory.

Virtual Directory Alias

For quick reference, you can create an alias for the virtual directory. It is recommended that you use the same naming
conventions that you use for a folder.

The name of the server running Microsoft® Internet Information Services (IIS), the virtual directory, and the SQL Server CE Server
Agent (Sscesa20.dll) must be specified as part of the InternetURL property for connectivity. For example, the following URL
accesses a SQL Server CE Server Agent for replication or remote data access (RDA):
http://www.northwindtraders.com/sqlce/sscesa20.dll.

Virtual Directory Content Folder

A content folder is required for a virtual directory. By default, the wizard points to the location in which the SQL Server CE Server
Agent is installed. You can specify an alternate location on disk for better disk space management, although a copy of the SQL
Server CE Server Agent must be located in that location. If you do specify an alternate location, the wizard can copy and register
the SQL Server CE Server Agent to the new location. All temporary files for data transfer to and from the instance of Microsoft
SQL Server™ will reside in this location.

After the wizard successfully completes, HTTP Execute permissions on the content folder will be added.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

Virtual Directory Authentication
Virtual Directory Authentication

After you specify the virtual directory alias, create the virtual directory content folder and set the appropriate HTTP permissions.
You must set access rights (authentication) to that folder. The SQL Server CE Virtual Directory Creation Wizard provides three
authentication options:

Anonymous access
Basic authentication
Integrated Windows authentication

For more information about these options, see IIS Security.

Additional Authentication Guidelines

If you specify Anonymous access and the instances of Microsoft® Internet Information Services (IIS) and Microsoft SQL
Server™ are located on different computers, you must configure the IIS anonymous user account as a domain user account.
The default anonymous user computername\IUSR_computername cannot be used because it is a local account for a
computer.

Note When Anonymous access is selected, the anonymous user (by default
computername\IUSR_computername) is automatically provided the appropriate NTFS permission rights to the
computer running IIS. Read and Write access permissions are set on the content folder and Read & Execute
access permission is set on the SQL Server CE Server Agent (Sscesa20.dll).

If you specify Basic authentication, you should also use IIS to specify Secure Sockets Layer (SSL) encryption to avoid
transmitting the password of the user across the network in unencrypted form.

Important To safeguard the user password, SSL encryption should always be used whenever Basic
authentication is used. For more information, see Configuring SSL Encryption.

If you specify Integrated Windows authentication, you cannot operate over a proxy server or firewall. As a result, Integrated
Windows authentication can be used for intranet applications but is seldom, if ever, used for Internet applications.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions: User
NTFS Permissions: User

After Microsoft® Internet Information Services (IIS) authenticates the client, IIS checks whether the client is authorized to begin
replication or remote data access (RDA). You control which clients can invoke replication or RDA by setting NTFS permissions on
the SQL Server CE Server Agent and content folder. Proper configuration of permissions is crucial to prevent unauthorized access
to Microsoft SQL Server™ by using replication or RDA.

You must add NTFS permissions if either or both of the following states exist:

The computer running IIS uses NTFS.
The SQL Server CE-based application uses replication; and the snapshot folder, usually located on the computer running
SQL Server, exists on an NTFS drive partition.

When you create a new virtual directory, the SQL Server CE Virtual Directory Creation Wizard helps you configure NTFS
permissions. In addition, to edit an existing directory, you can use the NTFS Permissions tab of the SQL Server CE Connectivity
Management utility to add or modify NTFS permissions.

Note When using the SQL Server CE Virtual Directory Creation Wizard, after you specify the user, the appropriate
NTFS permissions are set automatically for the computer running IIS.

Additional Permissions Guidelines

When Basic or Integrated Windows authentication is selected, you must specify the name of the user that requires NTFS
permissions.
When Anonymous access is selected, the Internet Guest Account (by default computername\IUSR_computername) is used
automatically.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions: Computer Running SQL Server
NTFS Permissions: Computer Running SQL Server

If your application uses replication, you must set NTFS Read permission on the actual snapshot folder and the share. Most
commonly, the snapshot folder is located on the computer running Microsoft® SQL Server™.

Select the check box on this screen of the SQL Server CE Virtual Directory Creation Wizard or the NTFS Permissions Wizard, if
either of these states exists:

A snapshot share has already been created and specified during the configuration of the SQL Server Distributor.
The snapshot share has been created and will be specified when the SQL Server Distributor is configured.

Note A folder or share cannot be created using the SQL Server CE Connectivity Management utility or the SQL
Server CE Virtual Directory Creation Wizard.

The configuration step to give the appropriate user Read permission to the snapshot folder and share can be completed at a later
time by using the NTFS Permissions Wizard. To start the NTFS Permissions Wizard, on the NTFS Permissions tab of the SQL
Server CE Connectivity Management utility, click Add/Modify NTFS Permissions for User, or use Microsoft Windows®
Explorer.

For more information about snapshot folders, see Configuring the Snapshot Folder.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions: Snapshot Folder
NTFS Permissions: Snapshot Folder

The snapshot share must be specified as a Universal Naming Convention (UNC) path. Depending on the Virtual Directory
Authentication that has been selected, the appropriate Microsoft® Windows® user account requires Read permission on the
snapshot share and underlined folder. For more information, see NTFS Permissions: User. The SQL Server CE Virtual Directory
Creation Wizard and the SQL Server CE Connectivity Management utility can configure only one user at a time. If you want to
configure multiple users at the same time, use Windows Explorer.

Note When using the SQL Server CE Virtual Directory Creation Wizard, after you specify the snapshot folder share
and click Finish, the appropriate NTFS permission are automatically set for the snapshot folder.

For more information about snapshot folders, see Configuring the Snapshot Folder.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

Modifying an Existing Virtual Directory
Modifying an Existing Virtual Directory

You can use the SQL Server CE Connectivity Management utility to modify an existing virtual directory. To modify an existing
configuration, select the appropriate virtual directory from the list in the left pane of the SQL Server CE Connectivity Management
utility, and then modify the settings shown in the right pane by using the following tabs:

Virtual Directory Content Folder (HTTP Content Folder Tab)
Virtual Directory Authentication (HTTP Authentication Tab)
NTFS Permissions (NTFS Permissions Tab)

See Also

Virtual Directory Recommendations and Default Settings

Advanced Security Configurations

SQL Server CE Books Online

Virtual Directory Content Folder (HTTP Content Folder Tab)
Virtual Directory Content Folder (HTTP Content Folder Tab)

Use this tab of the SQL Server CE Connectivity Management utility to modify the content folder associated with an existing virtual
directory and/or to alter the HTTP permissions to the folder. Enter the full path to the content folder associated with the virtual
directory (for example, C:\Program Files\Microsoft SQL Server CE 2.0\Server) or click Browse to find the folder on the local
computer. Specify the HTTP permissions to the folder. Execute permission is required by SQL Server CE. It is not advised to add
Write permission to this location.

If the content folder is changed, you must run the NTFS Permissions Wizard to set NTFS permissions on the new location. To start
the NTFS Permission Wizard, on the NTFS Permissions tab of the SQL Server CE Connectivity Management utility, click
Add/Modify NTFS Permissions for User.

For more information, see Virtual Directory Alias and Content Folder.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

Virtual Directory Authentication (HTTP Authentication Tab)
Virtual Directory Authentication (HTTP Authentication Tab)

Use this tab of the SQL Server CE Connectivity Management utility to modify HTTP authentication of an existing virtual directory.
If the HTTP authentication is changed, you must run the NTFS Permissions Wizard to set NTFS permissions for the new user. To
start the NTFS Permissions Wizard, on the NTFS Permissions tab of the SQL Server CE Connectivity Management utility, click
Add/Modify NTFS Permissions for User.

The SQL Server CE Connectivity Management utility provides three authentication options:

Anonymous access
Basic authentication
Integrated Windows authentication

Important By default, Basic authentication passes the user name and password across the network. To safeguard the
user password, Secure Sockets Layer (SSL) encryption should always be used whenever Basic authentication is used.
For more information, see Configuring SSL Encryption.

For more information about these options, see Virtual Directory Authentication and IIS Security.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions (NTFS Permissions Tab)
NTFS Permissions (NTFS Permissions Tab)

Use this tab of the SQL Server CE Connectivity Management utility to start the NTFS Permissions Wizard. Use the NTFS
Permissions Wizard to modify NTFS Permissions on the computer running Microsoft® Internet Information Services (IIS) or the
computer running Microsoft SQL Server™. The NTFS Permissions Wizards contains the following pages:

NTFS Permissions: User

This page in the NTFS Permissions Wizard is functionally identical to the NTFS Permissions: User page in the SQL Server CE
Virtual Directory Creation Wizard.

NTFS Permissions: Computer Running IIS
NTFS Permissions: Computer Running SQL Server

This page in the NTFS Permissions Wizard is functionally identical to the NTFS Permissions: Computer Running SQL Server
page in the SQL Server CE Virtual Directory Creation Wizard.

NTFS Permissions: Snapshot Folder

This page in the NTFS Permissions Wizard is functionally identical to the NTFS Permissions: Snapshot Folder page SQL
Server CE Virtual Directory Creation Wizard.

NTFS Permissions: Snapshot Folder Access

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions: Computer Running IIS
NTFS Permissions: Computer Running IIS

After SQL Server CE Server Agent (Sscesa20.dll) is invoked, it attempts to create, read, write, and delete input and output
replication or remote data access (RDA) message files. These message files are placed on the computer running Microsoft Internet
Information Services (IIS) in the content folder that you specified when you configured the IIS virtual directory. This is the same
folder that contains SQL Server CE Server Agent (Sscesa20.dll). You control access to the folder and the SQL Server CE Server
Agent by assigning NTFS permissions to that directory and file.

Read and Write access permissions are required on the content folder (also known as the temporary file location for the input and
output message files), and Read & Execute access permission is required on the SQL Server CE Server Agent (Sscesa20.dll).

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

NTFS Permissions: Snapshot Folder Access
NTFS Permissions: Snapshot Folder Access

Depending on the Virtual Directory Authentication that is selected, the appropriate Microsoft® Windows® user account requires
Read permission on the snapshot share specified and the underlying snapshot folder. For more information, see NTFS
Permissions: User

For more information about snapshot folders, see Configuring the Snapshot Folder.

See Also

Virtual Directory Recommendations and Default Settings

SQL Server CE Books Online

Virtual Directory Recommendations and Default Settings
Virtual Directory Recommendations and Default Settings

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) relies on Microsoft Internet Information Services (IIS)
virtual directories to access data from a database in Microsoft SQL Server.

Virtual Directory Recommendations

It is recommended that you create a virtual directory for each application that requires data access, whether you are
implementing replication or remote data access (RDA). Using the SQL Server CE Virtual Directory Creation Wizard, you can create
individual virtual directories for each Windows CE-based application.

IIS authentication and authorization is controlled at the virtual directory level. By creating a virtual directory for each SQL
Server CE publication or for different groups of RDA clients, you can establish the exact authentication and authorization
policy you require for each publication or each set of clients.
The SQL Server CE Server Agent allocates a separate worker-thread pool for each IIS virtual directory. These worker threads
are used when database synchronization or RDA operations are performed. By configuring an IIS virtual directory for each
publication or different groups of RDA clients, you increase the number of worker threads and, therefore, the number of
replication operations or clients that can be active concurrently.

It is also recommended that you create one NTFS or FAT content folder for each IIS virtual directory. This content folder contains
the SQL Server CE Server Agent (Sscesa20.dll) and the temporary input and output message files that SQL Server CE creates
during synchronization and RDA operations.

Important It is strongly recommended that you use NTFS, rather than FAT, because NTFS provides much stronger
security. When you use NTFS, you can use NTFS file permissions to control precisely the clients that can access SQL
Server CE replication or RDA.

Virtual Directory Default Settings Using Connectivity Tools

The SQL Server CE Virtual Directory Creation Wizard configures a number of default settings to ensure minimum SQL Server CE
requirements. In addition, to the default settings described in the configuration topics, the following are also set on the virtual
directory:

The application protection mode is set to Medium (Pooled).
Script Source Access option is not supported and, therefore, is not enabled.

If you want to change any of the default settings set by the wizard, see Modifying an Existing Virtual Directory. If you require more
advanced configuration options, see Advanced Security Configurations and the IIS documentation.

SQL Server CE Books Online

Advanced Security Configurations
The following topics provide information about manually configuring connectivity support and additional security configuration
options that are not configured using the SQL Server CE Connectivity Management utility or the SQL Server CE Virtual Directory
Creation Wizard. These options are not required by Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) but
may be required for your specific work environment.

Configuring IIS and NTFS Permissions Manually
Configuring SSL Encryption
Configuring IP Address and Domain Name Restrictions
Configuring IIS Security Auditing

SQL Server CE Books Online

Configuring IIS and NTFS Permissions Manually
Configuring IIS and NTFS Permissions Manually

The connectivity support and security options for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) that are
set by using the SQL Server CE Virtual Directory Creation Wizard can be configured manually. The following is a brief summary of
the minimum configuration sets that are required to use replication or remote data access (RDA).

Configuring Microsoft® Internet Information Services (IIS) for either replication or RDA involves the following steps:

1. Create a virtual directory using IIS:
a. Specify an alias name for the virtual directory.
b. Specify the location for the content folder for the virtual directory. A copy of the SQL Server CE Server Agent

(Sscesa20.dll) must reside in this directory. By default, the SQL Server CE Server Agent is installed in C:\Program
Files\Microsoft SQL Server CE 2.0\Server.

Note The name of the computer running IIS, the virtual directory, and the SQL Server CE Server Agent
(Sscesa20.dll) must be specified as part of the InternetURL property for connectivity. For example, the
following URL accesses SQL Server CE Server Agent for replication or RDA:
http://www.northwindtraders.com/sqlce/sscesa20.dll.

c. Specify the Execute access permission for the virtual directory.

For more information, see Virtual Directory Alias and Content Folder.

2. Configure IIS authentication using IIS. Edit the properties of the virtual directory created in Step 1. SQL Server CE supports
provides three authentication options:

Anonymous access
Basic authentication
Integrated Windows authentication

For more information, see Virtual Directory Authentication.

3. Configure IIS authorization using Windows Explorer.

Note If the computer running IIS has a FAT file system, you can skip this step. SQL Server CE replication or RDA
works with a FAT file system, but it is not secure. It is recommended that you use NTFS.

a. Configure directory authorization by navigating to the content folder you specified when you configured the IIS virtual
directory, and then add the following NTFS permission on the folder.

User Required permissions
For Anonymous access, grant rights to the
computername\IUSR_computername or the configured
IIS anonymous user account.

Read and Write

For Basic or Integrated Windows authentication, grant
rights to the user or group of the client.

Read and Write

b. Configure SQL Server CE Server Agent authorization by navigating to the content folder you specified when you
configured the IIS virtual directory, and then add the following NTFS permission on Sscesa20.dll.

User Required permissions
For Anonymous access, grant rights to the
computername\IUSR_computername or the configured
IIS anonymous user account

Read & Execute

For Basic or Integrated Windows authentication, grant
rights to the user or group of the client

Read & Execute

c. Configure the SQL Server snapshot folder if you are using replication. For more information, see Configuring the
Snapshot Folder.

See Also

Planning for Security

Using Connectivity Tools

Configuring the Snapshot Folder

SQL Server CE Books Online

Configuring SSL Encryption
Configuring SSL Encryption

Secure Sockets Layer (SSL) is the most widely used method for transmitting encrypted data over the Internet. SSL uses public key
cryptography to securely generate and exchange a secret key called the session key. The Microsoft® Windows® CE-based client
and Microsoft Internet Information Services (IIS) use the session key to encrypt and decrypt the data they send to one another.

Replication and remote data access (RDA) do not require encryption; however, there are circumstances when you should use it.
For more information, see Planning for Security.

Windows CE maintains a database of trusted Certificate Authorities (CA). When a secure connection is attempted, Windows CE
extracts the root certificate from the certification chain and checks it against the Certificate Authority database. If you issue an IIS
server certificate using your own stand-alone CA, this root certificate is not present in the Windows CE Certificate Authority
database. As a result, Windows CE does not trust this IIS server certificate. If you want to use server certificates that you issue
yourself, you must either certify your stand-alone CA through one of the trusted certificate authorities or add your stand-alone CA
root certificate to the Windows CE Certificate Authority database.

The SSL features in IIS cannot be used until you obtain and assign a server certificate to the computer running IIS.

SSL Configuration Process

Configuring SSL encryption is a multistep process that involves:

1. Requesting a server certificate for the computer running IIS. If the IIS server already has a server certificate, you can skip to
Step 4.

2. Obtaining a server certificate from a certificate authority. For more information about obtaining server certificates, see
Windows online Help.

3. Installing the newly issued server certificate into IIS.
4. Enabling SSL encryption.
5. Updating the database of trusted Certificate Authority on each of the Windows CE-based devices so they recognize the

server certificate as authentic.

For more information about the trusted Certificate Authorities maintained by Windows CE, see the Microsoft Knowledge Base
article "List and Add Schannel Root Certificates (Q290288)" at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=9133

SQL Server CE Books Online

Updating the Database of Trusted Certificate Authorities on a
Windows CE-based Device
Updating the Database of Trusted Certificate Authorities on a Windows CE-based Device

After saving the root certificate of the stand-alone certificate authority to the *.cer file, you must install the root certificate in the
Windows CE Certificate Authority database on the Microsoft® Windows® CE-based device.

To install the root certificate on the Windows CE-based device

1. From the SQL Server CE installation directory (by default: Program Files\Microsoft SQL Server CE 2.0\Device\processor
family\processor type), copy the root certificate utility program (Rootcert.exe) that matches the processor type of the
Window CE-based device to the \Windows directory on the device.

2. Copy your root certificate to the root directory of the Windows CE-based device.
3. From File Explorer, run Rootcert.exe.

Rootcert.exe does the following:

1. Opens and reads the root certificate file contained in the root directory of the Windows CE-based device.
2. Creates the registry key HKLM\Comm\SecurityProviders\SCHANNEL\CAs if this key does not already exist in the

registry on the Windows CE-based device.
3. Creates the registry key HKLM\Comm\SecurityProviders\SCHANNEL\CAs\filename, where filename is the name of the

root certificate file.
4. Creates the following registry values under the HKLM\Comm\SecurityProviders\SCHANNEL\CAs\filename key:

DWORD:Enabled = 1
DWORD:Type = 1
BINARY:CACert = X509 certificate bytes obtained from the .CER file.

5. Displays the message: "Root certificate installed successfully."

After you update the Windows CE registry, start the application that is using SQL Server CE replication or remote data access
(RDA). Windows CE uses the root certificate the next time Secure Sockets Layer (SSL) is invoked.

If you want to use server certificates that you issue yourself, the following limitations apply when requesting a server certificate:

Naming limitations

This limitation exists because Windows CE 3.0 cannot accept server certificates containing Unicode character strings. For
more information, see the Microsoft Knowledge Base article "How Special Characters in the Name Field Effect Certificates
(Q216947)" at this Microsoft Web site.

Windows CE-based devices running Windows CE 3.0 do not recognize IIS server certificates signed by using either the MD4
or RSA/SHA1 signature algorithms.

Windows CE-based devices reject such certificates with the error: "ERROR_INTERNET_SECURITY_CHANNEL_ERROR". To be
acceptable to a Windows CE-based device, an IIS server certificate must be signed using either the MD2 or MD5 signature
algorithm.

http://go.microsoft.com/fwlink/?LinkId=8601

SQL Server CE Books Online

Configuring IP Address and Domain Name Restrictions
Configuring IP Address and Domain Name Restrictions

You can use Microsoft® Internet Information Services (IIS) IP address and domain name restrictions to grant or deny specific
computers, groups of computers, or domains access to the IIS Web site. For example, if your intranet server is connected to the
Internet, you can prevent Internet users from accessing your IIS Web server by granting access only to members of your intranet
and explicitly denying access to outside users. For more information, see the IIS documentation.

SQL Server CE Books Online

Configuring IIS Security Auditing
Configuring IIS Security Auditing

You can monitor the security of replication and remote data access (RDA) in Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) by using the security auditing mechanisms built into Microsoft Windows and Microsoft Internet
Information Services (IIS). Auditing consists of creating auditing polices regarding access to your IIS Web server and NTFS
directories and files, and monitoring the security logs to detect any access attempts by unauthorized persons. For more
information, see the IIS documentation.

SQL Server CE Books Online

Using SQL Server CE Relay
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) extends enterprise data to the Windows CE-based mobile
device. By using merge replication or remote data access (RDA), you can share data with users in the field even when there is no
integrated network capability or when a network card cannot be used. SQL Server CE Relay allows communication to operate
bidirectionally between a mobile device and the server by using the network connection on a desktop computer.

Important SQL Server CE Relay is not required for Microsoft Windows Powered Pocket PC 2002-based devices that
are connected to desktop computers running Microsoft ActiveSync® 3.5. The ActiveSync 3.5 connection setting Allow
network (Ethernet) and Remote Access Service (RAS) server connections with this desktop computer is set
by default and supports Secure Sockets Layer (SSL) encryption and Integrated Windows authentication connections.

The benefits of using SQL Server CE Relay include:

Lower computing costs.

If the Windows CE-based devices contain modem cards, you might have to pay for their dial-in connections to their servers.
Being able to synchronize data in SQL Server CE while the Windows CE-based device is cradled and connected to the server
can save on overall computing costs.

Connection capability in unfavorable wireless situations.

If wireless coverage in an office is limited because of concrete walls in the building or some other interference, you can use
any configured desktop to synchronize database data with SQL Server.

Connection capability when wireless network cards are not permitted because of radio transmission restrictions.

SQL Server CE Books Online

How SQL Server CE Relay Works
SQL Server CE Relay allows the USB, serial, or infrared (IR) connections through desktop computers to serve as a conduit for
synchronization to an instance of Microsoft® SQL Server™ by using Microsoft Internet Information Services (IIS). The following
illustration shows how a Pocket PC 2000-based device connects to a server computer through a Microsoft ActiveSync® desktop
connection.

When the client code on the Microsoft Windows® CE-based device sets the InternetProxyServer property of the SQL Server CE
ActiveX® control to ppp_peer:nn (where nn is a specified listening client port number on a desktop computer), ActiveSync
recognizes the ppp_peer command, and the requests sent to the desktop computer appear on this designated client port. Relay is
listening on the same client port; it accepts the request from the mobile device and sends the request to a port on a preconfigured
server (either an IIS server or a proxy server). This process works identically but in reverse when the responding synchronization
data comes back from the computer that is running SQL Server.

SQL Server CE Books Online

Planning for SQL Server CE Relay
When you are planning to implement SQL Server CE Relay, consider the following background information:

Relay works on desktop computers that are running Microsoft® Windows® 98 SE, Microsoft Windows ME, Microsoft
Windows NT® 4.0 with Service Pack 6 or later, Microsoft Windows 2000, and Microsoft Windows XP.
Relay uses the peer point-to-point protocol (ppp_peer), a tunneling protocol that encapsulates Point-to-Point Protocol
frames into IP datagrams for transmission over an IP-based network, in Microsoft operating systems. This means that the
desktop computer functions as a proxy that can connect the mobile device to any server to which the desktop computer is
connected. SQL Server CE Relay is not a true proxy server because it cannot encrypt data, but you still have firewall support
if firewall support exists at the desktop computer.
SQL Server CE Relay requires Microsoft ActiveSync® 3.1 or later installed on the desktop computer. ActiveSync enables the
ability to use the serial, infrared (IR), or USB connection (that is, the ppp_peer command can be interpreted as part of the
serial, IR, or USB connection) between the mobile device that is running Microsoft SQL Server™ 2000 Windows CE Edition
(SQL Server CE) and the desktop computer. The partnership can be a guest connection.
Relay does not support Secure Sockets Layer (SSL) encryption or Integrated Windows authentication. If you require SSL
encryption, you must upgrade to Pocket PC 2002 and ActiveSync 3.5.

Before you install SQL Server CE Relay on the desktop computer, be sure that the following are installed or configured on this
computer:

SQL Server CE Server Tools is installed.
The SQL Server CE Server Agent is configured correctly on the computer running IIS.
SQL Server is configured correctly for either remote data access (RDA) or merge replication connectivity.

Note It is assumed that you are familiar with at least one of the two types of connectivity that is supported by
SQL Server CE (merge replication or remote data access).

Security is set up correctly for connectivity to SQL Server.

Note For more information about configuring IIS and SQL Server for connectivity, see Planning for Security.

SQL Server CE Books Online

Installing and Configuring SQL Server CE Relay
For information about installing SQL Server CE Relay, see Using SQL Server CE Relay with an ActiveSync System. The following
topics in this section describe the configuration options and requirements:

Configuring the Desktop Computer to Use SQL Server CE Relay
Configuring the Mobile Device to Use SQL Server CE Relay
SQL Server CE Relay Configuration Options

SQL Server CE Books Online

Configuring the Desktop Computer to Use SQL Server CE Relay
Configuring the Desktop Computer to Use SQL Server CE Relay

To configure the desktop computer to use SQL Server CE Relay, you must specify the following:

Client port number
Name of the destination server
Server port number

The client port and server port configurations are very important for Relay to function correctly.

Client Port Number

The client port number is the port on which the desktop computer listens for requests from the Microsoft® Windows® CE-based
device. Specify this port number as the value for the /clientport option.

Name of Destination Server

The server name is the key to identifying where you want information from the desktop to be relayed. If you are using a proxy
server, the value of /servername is the name of the proxy server computer. If you are not using a proxy server, the value of
/servername is the name of the computer running Microsoft Internet Information Services (IIS) that you are using to synchronize
with Microsoft SQL Server™ 2000 Windows CE Edition (SQL Server CE). The name of the computer running IIS must be the same
as the name that is specified in the InternetURL property on the mobile device.

It is possible to specify one server name in SQL Server CE Relay and a different server name through the SQL Server CE ActiveX®
control, although this is not a recommended procedure. For the synchronization to succeed, the virtual directory names and
security access must be the same on both servers. If both servers are valid IIS servers, Relay sends the data to the server that is
specified in its parameters. Synchronization can fail if the virtual directory or a server agent does not exist, or if either is not
correctly configured. The synchronization succeeds if both servers are set up identically and each has access to the computer
running SQL Server.

Server Port Number

Specify the port number for the server that is identified by the /servername option. This is the port number for the computer on
which the Internet application is configured. For example, if a virtual directory for SQL Server CE Server Agent has been created in
the Default Web Site in IIS, the default server port is 80. Specify the server port number as the value for the /serverport option.

The following list shows services and their associated ports:

HTTP over TCP/IP

Web servers, such as IIS: port 80

HTTPS over TCP/IP

HTTP over SSL for encrypting Web traffic: port 443

FTP over TCP/IP: FTP

Port 21, port 20, and ports 1024-65535

SMTP over TCP/IP

Simple Mail Transfer Protocol (SMTP), which is used by applications such as Microsoft Exchange Server: port 25.

Most other ports are available; check the services running on your system before you assign port numbers.

See Also

SQL Server CE Relay Configuration Options

SQL Server CE Books Online

Configuring the Mobile Device to Use SQL Server CE Relay
Configuring the Mobile Device to Use SQL Server CE Relay

To start the process of relaying the information from the Microsoft® Windows® CE-based device through the desktop to
Microsoft Internet Information Services (IIS) on the Internet or an intranet, you must set the InternetProxyServer property in the
Microsoft ActiveX® control in the Microsoft SQL Server™ 2000 Windows CE-based application. Set this property to ppp_peer:nn,
where nn is the client port number on the desktop computer. This number must be the same as the client port number that has
been specified by /clientport on the desktop computer.

See Also

SQL Server CE Relay Configuration Options

SQL Server CE Books Online

SQL Server CE Relay Configuration Options
SQL Server CE Relay Configuration Options

The following table lists and describes the options that determine how SQL Server CE Relay functions. These options and their
associated values must be space delimited; however, the options can be specified in any order.

Option Description
/clientport* The port on the desktop computer to and from which the client (the

Microsoft® Windows® CE-based device) reads and writes.
/servername* The name of either the computer that is running Microsoft Internet

Information Services (IIS) or the proxy server to which Relay
connects through the desktop computer. Using a proxy server
allows the client more flexibility because the client can go to any
server that the proxy server can reach.

If an IIS server is used, this value must be the same as the value that
is specified in the InternetURL property in the Windows CE-based
application.

The IP address of the respective server computer can also be used
for specifying the server name. UNC paths are not accepted for
specifying the server name, however.

For example, the following fails during synchronization:
/servername "\\myIISserver"

The following succeeds during synchronization:
/servername myIISserver

/serverport* The port to and from which the server reads and writes. This is
usually port 80.

/register Registers Relay with Microsoft ActiveSync® connect and disconnect
features.

/unregister Unregisters Relay with ActiveSync connect and disconnect features.
/noui Runs Relay without the icons appearing in the Windows taskbar.
/? Calls Help at the command prompt, which lists SQL Server CE Relay

parameters.
/stop Halts all instances of Relay that are running, whether they were

started manually or automatically.

*This option must be specified with a value to run Relay.

SQL Server CE Books Online

Running SQL Server CE Relay
SQL Server CE Relay appears as an icon on the Microsoft® Windows® status bar whenever Relay is running. One icon appears
for each instance of Relay. Different icons appear according to the function Relay is performing.

Icon Description
Information is traveling from the device that is running Microsoft SQL
Server™ 2000 Windows CE Edition (SQL Server CE) to the desktop
computer.
Information is traveling from the desktop computer to the device that is
running SQL Server CE.
Information is traveling both ways between the desktop computer and
the device that is running SQL Server CE.
Although SQL Server CE Relay is running, no information is traveling
between the desktop computer and the device that is running SQL Server
CE.

SQL Server CE Relay can be run in either of the following configurations:

Automatic
Manual

In manual configuration, you can elect to run a single instance or multiple instances of Relay.

If SQL Server CE Relay is not configured correctly, an error is written to the errors text file (Sscerelay.log) on the desktop
computer. This file is in the same folder from which Sscerelay.exe is run.

SQL Server CE Books Online

Registering SQL Server CE Relay with ActiveSync to Run
Automatically
Registering SQL Server CE Relay with ActiveSync to Run Automatically

The preferred configuration for running SQL Server CE Relay is to register Relay with Microsoft® ActiveSync®. By registering
Relay with ActiveSync, Relay automatically starts and stops whenever the connection between the device running Microsoft SQL
Server™ 2000 Windows® CE Edition (SQL Server CE) and ActiveSync is active. The client application can then synchronize data as
necessary.

To register Relay with ActiveSync, configure Relay with the /register option. You only have to do this once, as long as the
configuration parameters for the options /clientport, /servername, and /serverport do not change.

When you specify the /register option, two registry keys are created automatically within Windows CE Services:

One registry key is created under HKEY_LOCALMACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnConnect, with the string value name MicrosoftSSCERELAYAutoConnect. This key is set with
string value data that is based on the parameters you specified when you configured Relay.
A second registry key is created under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnDisconnect, with the string value name MicrosoftSSCERELAYAutoDisconnect. This key is set
when you specify the /Stop option.

Important Only one instance of SQL Server CE Relay can be registered with ActiveSync. When a second
instance is registered, it replaces the first instance in the registry.

When an ActiveSync connection is made, it starts Relay with the parameters that were specified when Relay was configured.

Important When the ActiveSync connection is broken, all instances of Relay stop.

For example, if the name of the computer running Microsoft Internet Information Services (IIS) or the name of the proxy server is
CorpServer, the options to run Relay are entered at the command prompt as:

sscerelay /clientport 81 /servername CorpServer /serverport 80 /register

In the preceding example:

The mobile device posts requests to and listens for responses on port 81 of the desktop computer.
The desktop computer listens for requests from the client on port 81 and forwards them to port 80 of the server that is
specified by the /servername option. The desktop computer then listens for responses from the server on port 81 and
posts them to the client on port 81.
If the computer that is specified in the /servername option is an IIS server, its name must match the server name that is
supplied in the InternetURL property of the Microsoft ActiveX® control on the mobile device. SQL Server CE Server Tools
must be installed on the computer and the SQL Server CE Server Agent configured on it. If the computer that is specified in
the /servername option is a proxy server, it does not require SQL Server CE Server Tools or the SQL Server CE Server
Agent because it forwards requests to an appropriately configured computer running IIS (the one that is specified in the
InternetURL property on the mobile device).
The /register option registers Relay to run every time an ActiveSync connection is made.

Note The InternetProxyServer property must be set to ppp_peer:81 in the SQL Server CE ActiveX control on
the Microsoft Windows CE-based device.

Use the /unregister option at the command prompt to unregister Relay from ActiveSync, as shown here:

sscerelay /unregister

This removes the registry keys from Windows CE Services.

SQL Server CE Books Online

Running a Single Instance of SQL Server CE Relay Manually
Running a Single Instance of SQL Server CE Relay Manually

If SQL Server CE Relay is to be used infrequently, you can run the program from the command prompt each time it is needed, as
long as the mobile device is connected to the desktop computer using Microsoft® ActiveSync®. When Relay is run from the
command prompt without specifying the /register option, it starts immediately. For example, if the name of the computer
running Microsoft Internet Information Services (IIS) or the name of the proxy server is CorpServer, the options to run Relay
manually are entered at the command prompt as:

sscerelay /clientport 81 /servername CorpServer /serverport 80

When Relay is run manually, it also must be stopped manually. Use the /stop option at the command prompt to halt Relay, as
shown here:

sscerelay /stop

SQL Server CE Books Online

Running Multiple Instances of SQL Server CE Relay Manually
Running Multiple Instances of SQL Server CE Relay Manually

When you run multiple instances of SQL Server CE Relay simultaneously, different client ports must be used. Because only one
instance of Relay can be registered with Microsoft® ActiveSync®, you must configure Relay manually to run multiple instances.
For example, you might have to run multiple instances of Relay if multiple server destinations are required. When two groups of
applications are connecting to the same desktop computer for synchronization, one application might need to connect to
ServerA, which is a computer running Microsoft Internet Information Services (IIS) on the intranet and, therefore, does not
require a proxy server. The other application, on the other hand, might need to connect to ServerB, which is a computer running
IIS on the Internet and, therefore, does require a proxy server. In this scenario, one client port number maps to ServerA and the
other client port number maps to ServerB, which requires configuring two instances of Relay.

Note For computers running Microsoft Windows® 98 SE, the number of instances of Relay is limited to 20.

Using the /stop option at the command prompt halts all instances of Relay that are running.

Note Although you can configure multiple instances of SQL Server Relay on one computer, you can synchronize only
one Microsoft Windows CE-based device at a time.

SQL Server CE Books Online

Managing Connectivity
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports two methods of connecting to and exchanging
data with a Microsoft SQL Server database: remote data access (RDA) and merge replication.

Topic Description
Using Remote Data Access Provides background information about RDA.
Using Replication Provides background information about

replication.

SQL Server CE Books Online

Using Remote Data Access (RDA)
The following topics in this section provide information about using remote data access (RDA) in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE).

Topic Description
Introducing RDA Provides an overview of RDA, explains how RDA is

used, and describes components of RDA.
Planning for RDA Provides background information about RDA,

including data access, limitations, and conflict
resolution.

Implementing RDA Describes how to configure Microsoft Internet
Information Services (IIS) and SQL Server to
support RDA.

For information about writing programs that use RDA, see Remote Data Access (RDA). For troubleshooting information, see
Troubleshooting.

SQL Server CE Books Online

Introducing RDA
Remote data access (RDA) in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides a simple way for a
Microsoft Windows CE-based application to access (pull) data from a remote SQL Server database table and store that data in a
local SQL Server CE database table. The application can then read and update the local SQL Server CE database table. SQL Server
CE can optionally track all changes that are made to the local table. The application can later update (push) the changed records
from the local table back to the SQL Server table.

Windows CE-based applications can also use RDA to submit SQL statements to be executed on a remote SQL Server database.
For example, an application could submit SQL statements that insert, update, or delete records to a remote SQL Server table.
Applications can invoke any SQL statement that does not return a recordset, including a stored procedure on the remote system.
RDA is appropriate when the full functionality of SQL Server CE merge replication, such as conflict resolution, is not required.

SQL Server CE communicates with SQL Server through Microsoft Internet Information Services (IIS). By connecting through IIS,
RDA takes advantage of IIS authentication and authorization services. SQL Server can be located behind a firewall or be accessed
with Microsoft Proxy Server. RDA can be performed over both local area networks (LANs) and wide area networks (WANs).

RDA is well suited to wireless transports. Compression is used to reduce the amount of transmitted data. Encryption can be used
to safeguard sensitive user data during transmission.

See Also

Planning for RDA

Implementing RDA

Remote Data Access (RDA)

SQL Server CE Books Online

Typical Uses of RDA
Typical Uses of RDA

An application running on a Microsoft® Windows® CE-based device can use remote data access (RDA) for:

Downloading data.

An application can pull data from a database in Microsoft SQL Server™ to a database in Microsoft SQL Server 2000
Windows CE Edition (SQL Server CE). For example, an application might download a company employee directory, product
price list, or product catalog to the Windows CE-based device.

Capturing and uploading data.

An application can capture data that originates from user-entered forms, a GPS system, a bar code reader, or something
similar. The application can store the captured data in a SQL Server CE database on the device. Periodically, the application
can push the captured data from the SQL Server CE database to a SQL Server database.

Downloading, updating, and uploading data.

An application can pull data from a SQL Server database to a SQL Server CE database. The application can then update the
SQL Server CE database. Periodically the application can push the changed data from the SQL Server CE database to a SQL
Server database.

Submitting SQL statements.

An application can submit SQL statements to be executed on a remote SQL Server database. This is especially useful when
the Windows CE-based device is always connected to the network.

An application can use these techniques in combination. For example, a sales support application might download a price list to a
Windows CE-based device as well as capture and upload new orders on the device. The application could also submit SQL
statements directly to the SQL Server database.

See Also

Sample Applications

SQL Server CE Books Online

RDA Architecture
RDA Architecture

Remote data access (RDA) uses the Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) Database Engine, SQL
Server CE Client Agent, and SQL Server CE Server Agent.

The following illustration shows how these components work together.

SQL Server CE Database Engine

The SQL Server CE Database Engine manages the SQL Server data store on the Windows CE-based device. For pull operations
that are tracked, the Database Engine tracks all database records that are inserted, updated, or deleted by maintaining a small
amount of change tracking information with each record. If indexes exist on the SQL Server data, RDA also supports creating
indexes on the local data.

SQL Server CE Client Agent

SQL Server CE Client Agent is the primary RDA component on the Windows CE-based device. It implements the RDA object
interface. Applications call this interface to programmatically control RDA. The following table describes the action the SQL Server
CE Client takes in response to a call to an RDA object method.

Method Action
Pull Forwards the request to SQL Server CE Server Agent through

HTTP. When SQL Server CE Client Agent receives the recordset
back from SQL Server, it stores the recordset in the SQL Server
CE database.

Push Extracts all inserted, updated, and deleted records from the SQL
Server CE database and sends them to SQL Server CE Server
Agent through HTTP.

SubmitSQL Forwards the specified SQL request to SQL Server CE Server
Agent through HTTP.

SQL Server CE Server Agent

SQL Server CE Server Agent is a component responsible for handling the HTTP requests made by SQL Server CE Client Agent.

Method Action
Pull Receives the request from SQL Server CE Client Agent, connects

to SQL Server through the OLE DB Provider for SQL Server and
invokes the client's SQL statement. SQL Server CE Server Agent
returns the resulting recordset to SQL Server CE Client Agent
through HTTP. For more information, see Using the Pull Method.

Push Receives all the inserted, updated, and deleted records from SQL
Server CE Client Agent, connects to SQL Server through OLE DB,
and inserts, updates, or deletes the records in the SQL Server
database. If errors occur, SQL Server CE Server Agent reports the
errors to the SQL Server CE Client Agent through HTTP. For more
information, see Using the Push Method.

SubmitSQL Receives the specified SQL request from SQL Server CE Client
Agent through HTTP, connects to SQL Server through OLE DB
and invokes the client's SQL statement. If errors occur, SQL
Server CE Server Agent reports the errors to SQL Server CE Client
Agent through HTTP. For more information, see Using the
SubmitSQL Method.

SQL Server CE Server Agent uses an internal .in and .out file to manage the exchange of data between SQL Server and SQL Server
CE.

See Also

Client and Server Environments

Connectivity Solutions

RDA Programmer's Reference for eMbedded Visual Tools

.NET Compact Framework Data Providers

SQL Server CE Books Online

Planning for RDA
The following topics in this section provide background information to consider before implementing remote data access (RDA)
in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Information is provided about what data can be
accessed through RDA, as well as information regarding general limitations with RDA.

Supported Data Types and Data Type Mappings
RDA Limitations
RDA Conflict Detection and Resolution

SQL Server CE Books Online

Supported Data Types and Data Type Mappings
Supported Data Types and Data Type Mappings

The following tables show the data type mappings that are performed when remote data access (RDA) is used to access data in a
Microsoft® SQL Server™ database.

SQL Server data type SQL Server CE data type
bigint (int 8) bigint (int 8)
binary (n) binary (n) or image

If the length of the data is 510 bytes or less, RDA maps the
SQL Server binary data to the Microsoft SQL Server 2000
Windows® CE Edition (SQL Server CE) binary. If the data
is more than 510 bytes, RDA maps it to SQL Server CE
image.
If the length of the image data exceeds the length of the
binary column, pushing tracked data back to SQL Server
fails.

bit bit
character
(synonym:
char)

national character or ntext
If the length of the data is 255 characters or less, RDA
maps the SQL Server character data to SQL Server CE
national character. If the data is more than 255
characters, RDA maps it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
character column, pushing tracked data back to SQL
Server fails.

character varying
(synonyms:
char varying
varchar)

national character varying or ntext
If the length of the data is 255 characters or less, RDA
maps the SQL Server character varying data to SQL
Server CE national character varying. If the data is more
than 255 characters, RDA maps it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
character varying column, pushing tracked data back to
SQL Server fails.

datetime datetime
decimal See numeric.
double precision double precision
float float
image image
integer (int 4)
(synonym:
int)

integer (int 4)

money money
national character
(synonyms:
national character,
nchar)

national character
If the length of the data is 255 characters or less, RDA
maps the SQL Server national character data to SQL
Server CE national character. If the data is more than
255 characters, RDA maps it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
national character column, pushing tracked data back to
SQL Server fails.

ntext ntext
numeric
(synonyms:
decimal, dec)

numeric

national character
varying
(synonyms:
national char varying,
nvarchar)

national character varying
If the data length is 255 characters or less, RDA maps the
SQL Server national character varying data to SQL
Server CE national character varying. If the data is more
than 255 characters, RDA maps it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
national character varying column, pushing tracked
data back to SQL Server fails.

real real
smalldatetime datetime

If the precision of the datetime data exceeds the precision
of the smalldatetime column, pushing tracked data back
to SQL Server fails.

smallint (int 2) smallint (int 2)
smallmoney money

If the precision of the money data exceeds the precision of
the smallmoney column, pushing tracked data back to
SQL Server fails.

sql_variant Not supported
The Pull method fails if the recordset contains a column
with the data type sql_variant.

text ntext
If the length of the text data exceeds 1,073,741,823
characters, pulling data from SQL Server fails.

timestamp Not supported
The Pull method fails if the recordset contains a
timestamp column.

tinyint (int 1) tinyint (int 1)
uniqueidentifier uniqueidentifier
varbinary (n) varbinary (n) or image

If the length of the data is 510 bytes or less, RDA maps the
SQL Server varbinary data to SQL Server CE varbinary. If
the data is more than 510 bytes, RDA maps it to SQL
Server CE image.
If the length of the image data exceeds the length of the
varbinary column, pushing tracked data back to SQL
Server fails.

Using Data Types

When possible, choose data types that are supported by both SQL Server and SQL Server CE. As a result, RDA does not have to
perform data mapping. When this is not possible, your application should validate the values stored in SQL Server CE to ensure
that RDA can map these values between SQL Server and SQL Server CE.

You cannot pull data from a table having a primary key of type char, nchar, varchar, or nvarchar with length greater than 255
characters. These column types are mapped to ntext, and a primary key cannot be created on an ntext column.

SQL Server CE Books Online

RDA Limitations
RDA Limitations

Remote data access (RDA) in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) has the following limitations:

Case sensitivity

SQL Server CE databases are not case-sensitive.

ROWGUID

When using RDA to pull data from a table in SQL Server that also participates in replication on the server, you must exclude
the system column with the ROWGUIDCOL attribute. By default, the name of this column is RowGuid.

For example, for the SQLSelectString parameter in the Pull method, use SELECT CompanyName, ContactName FROM
Customers instead of SELECT * FROM Customers.

Triggers

SQL Server CE does not support triggers; however, triggers can reside on the SQL Server table from which RDA pulled data.
For tracked tables, the SQL Server triggers can be executed when changes are pushed back to SQL Server. It might be
necessary to specify SET NOCOUNT ON in the trigger logic. This indicates not to return the number of rows affected,
because a response of no rows affected results in an error for the RDA push method.

Tables and columns

For tracked tables, the number of columns available = 253 (255 - 2 system columns). SQL Server CE allocates two system
columns: S_BinaryKey and S_Operation. These columns are protected and used for tracked RDA tables.

Computed columns

Not supported. The Pull method fails if the recordset contains computed columns.

Schema Limitations

SQL Server CE is capable of tracking changes to the resulting SQL Server CE table. By specifying the appropriate tracking option,
SQL Server CE tracks all inserts, updates, and deletes made to the local SQL Server CE table. The application can then call the
Push method to propagate these changes back to the original SQL Server table.

RDA tracked Pull and Push methods use optimistic concurrency control. SQL Server does not keep pulled records locked. When
the application calls Push, the changes made to the local SQL Server CE database are unconditionally applied to the SQL Server
database. This may cause changes made by other users of the SQL Server database to be lost.

You should use tracked Pull and Push methods when the records you are updating are logically partitioned and conflicts are
unlikely. For example, tracked Pull and Push methods might be used in a field service application which tracks each technician
who has a unique list of service calls.

You can make the following schema changes to a SQL Server CE table created with a tracked Pull:

Change the seed or increment of the identity column
Add or drop DEFAULT constraints
Add or drop foreign keys
Add or drop indexes
Drop the table

You cannot make any of the following schema changes to a SQL Server table while a tracked Pull is still processing. To make
these SQL Server table schema changes, you must drop the SQL Server CE table and repull the changed SQL Server table:

Add, drop, or rename columns
Rename the table
Drop a primary key
Alter a data type definition

SQL Server CE Books Online

RDA Conflict Detection and Resolution
RDA Conflict Detection and Resolution

Remote data access (RDA) in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides a limited conflict
mechanism to resolve conflicts during a push operation.

Important Conflicting rows in RDA are strictly defined as insert, update, or delete operations, which fail due to an
error when pushed to the SQL Server table. Changes to data by different users are not considered a conflict if they do
not result in error.

Although RDA does not provide a specific resolver as replication does, SQL Server CE provides an error table that captures all
conflicting rows. You can specify the error table as part of the Pull method. Using the error table, you can develop Microsoft
Windows CE-based applications to manage conflict detection and resolution.

In SQL Server CE RDA, a conflict exists when a row cannot be pushed up to SQL Server. SQL Server CE supports only row-level
tracking; therefore, some rows succeed and others fail depending on what options are selected in a Push method.

Nonbatch Transactions

During nonbatch transactions (BATCHINGOFF option), conflicts are detected at the row level. The conflicting row is returned to the
application and stored in a specified error table. For example, if the application attempts to push a row to SQL Server that is not
valid, that row is returned to the application and stored in the error table along with an error message indicating the conflict.

When a conflicting row is returned to the error table, that row is removed from the original Windows CE-based database. You
must design the application to allow the user to correct the conflicting data and merge the conflicting data back into the original
Windows CE-based database.

Batch Transactions

RDA also supports a batch push (BATCHINGON option) that requires all rows to succeed for the entire push to process. If one row
fails, the entire push transaction fails and no data is updated. The conflicting row(s) is copied to the error table. Unlike the
nonbatched push, the original Windows CE-based database is kept intact. You must design the application to allow the user to
correct the conflicting data and merge it back into the original Windows CE-based database. The error table is automatically
cleaned before a conflicting row is copied so only the conflicts from the last push operation exist in the table.

SQL Server CE Books Online

Implementing RDA
To implement remote data access in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), in addition to
following the general installation and connectivity requirements, you must configure SQL Server with the appropriate access
rights.

Configuring RDA Database Access

You must grant database access based on how Microsoft Internet Information Services (IIS) and SQL Server authentication are
configured.

To configure the database access option

1. Start SQL Server Enterprise Manager. In the left pane, expand Microsoft SQL Servers, SQL Server Group, the computer
containing the publication, Security, and then click Logins.

2. In the right pane, right-click the user ID that is requiring access to the database and click Properties. The user ID depends
on how IIS and SQL Server Authentication are configured.

IIS
authentication

mode

SQL Server
authentication mode

Must grant database access to

Anonymous access Integrated Windows
authentication

computername\IUSR_computername
or the configured IIS anonymous user
account.

Basic
authentication

Integrated Windows
authentication

The IIS client's user or group.

Integrated
Windows
authentication

Integrated Windows
authentication

The IIS client's user or group. (This
configuration is supported only if SQL
Server and IIS are running on the
same computer.)

Anonymous
access, Basic
authentication, or
Integrated
Windows
authentication

SQL Server
authentication

The user specified in the SQL Server
OLEDBConnectionString parameter of
the Pull, Push, or SubmitSQL
method in the RDA object.

3. Click the Database Access tab.
4. Select the Permit check box for the database.
5. To close SQL Server Login Properties, click OK, and then close SQL Server Enterprise Manager.

See Also

Installing SQL Server CE

Configuring Security for Connectivity

SQL Server CE Books Online

Using Replication
The following topics in this section provide information about using replication in Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE).

Topic Description
Introducing Replication Provides an overview of SQL Server CE replication.

This topic explains how replication is used and
describes the components of SQL Server CE
replication.

Planning for Replication Provides background information about SQL
Server CE replication including data access,
limitations, and conflict resolution.

Implementing Replication Describes how you can configure SQL Server to
support SQL Server CE replication.

For information about writing programs that use replication, see Replication. For information about problems you may encounter
and ways to resolve them, see Troubleshooting.

SQL Server CE Books Online

Introducing Replication
Replication in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) is based on Microsoft SQL Server 2000
merge replication. Merge replication is ideally suited to portable devices because it allows data to be updated autonomously on
the portable device and the server. The data can later be merged when the device is connected to an instance of SQL Server.

In SQL Server CE, replication is message-based. SQL Server CE synchronizes with SQL Server by establishing an HTTP connection
to the SQL Server Publisher through Microsoft Internet Information Services (IIS). By connecting through IIS, replication takes
advantage of IIS authentication and authorization services. You can locate the Publisher behind a firewall or provide access to it
using Microsoft Internet Security and Acceleration Server 2000. Replication can be performed over local area networks (LANs)
and wide area networks (WANs). Using Microsoft ActiveSync®, you can communicate with SQL Server through the desktop
computer's network connection, eliminating the requirement for the Windows CE-based device to have a network card or
modem. For more information, see Using SQL Server CE Relay with an ActiveSync System.

The replication communication protocol is designed for wireless transports. The protocol uses compression to reduce the amount
of transmitted data, and supports the use of encryption to safeguard sensitive user data during transmission. Following a
communication failure, transmission resumes from the last successfully transmitted message buffer.

SQL Server CE replication offers row and column filtering, which enable you to define and maintain subsets of data that can be
published to different sites. Row filtering can be used to publish a subset of rows in a published table. For example, in a service
organization, each service representative may only need to receive the customer records for the accounts they service. Column
filtering can be used to publish a subset of columns in a published table. For example, a column filter can be used to eliminate
large text or image columns that you may not want to publish to a Windows CE-based device.

Row and column filtering can be used on the same article within a publication. You can use filtering to specify the data that is
published to each Windows CE-based device. For more information, see "Filtering Published Data" in SQL Server Books Online.

See Also

Planning for Replication

Implementing Replication

Replication

Troubleshooting

SQL Server CE Books Online

Typical Uses of Replication
Typical Uses of Replication

An application based on Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) can use replication for:

Downloading data.

An application running on the Microsoft Windows CE-based device can subscribe to a SQL Server publication. This causes
the subscription to be downloaded to a SQL Server CE database on the device. For example, an application might subscribe
to a company employee directory, a product price list, or a product catalog.

Capturing and uploading data.

An application running on the Windows CE-based device can subscribe to a SQL Server publication and download only
schema files for the articles in the publication, rather than downloading the schema and the data. The application can
capture data that originates from user-entered forms, a GPS system, a bar code reader, or something similar and store the
captured data in a SQL Server CE database on the device. Periodically the application can initiate replication synchronization
to transfer the captured data from the SQL Server CE database to the Publisher. From the Publisher, the data can be
propagated to other Subscribers.

Downloading, updating, and uploading data.

An application running on the Windows CE-based device can subscribe to a SQL Server publication. This causes the
subscription to be downloaded to a SQL Server CE database on the device. The application can then update the SQL Server
CE database. Periodically the application can initiate replication synchronization. During synchronization, the updates made
to the subscription are sent to the Publisher, where they are merged into the publication database. Similarly, changes made
at the Publisher since the initial download or most recent merge are sent to the Windows CE-based device, where they are
merged into the subscription database. These periodic merge operations keep the data on the server and the Windows CE-
based device synchronized.

Applications can use these techniques in combination. For example, a sales support application downloads data to publish a price
list to a Windows CE-based device. The application captures new orders on the device. These orders are then sent to the Publisher
on the computer running SQL Server. The application also downloads customer information to the Windows CE-based device.
The customer information is updated on the device, and the resulting changes are uploaded back to the Publisher.

See Also

Sample Applications

SQL Server CE Books Online

Replication Architecture
Replication Architecture

Replication uses the following components in Microsoft® SQL Server™ 2000 Windows CE Edition (SQL Server CE):

SQL Server CE Database Engine
SQL Server CE Client Agent
SQL Server CE Server Agent
SQL Server CE Replication Provider

SQL Server CE Database Engine

The SQL Server CE Database Engine manages the local database on the Windows CE-based device. For subscription databases,
the SQL Server CE Database Engine tracks all database records that are inserted, updated, or deleted by maintaining a small
amount of change tracking information with each record.

SQL Server CE Client Agent

The SQL Server CE Client Agent is the primary SQL Server CE replication component on the Windows CE-based device. The SQL
Server CE Client Agent implements the SQL Server CE Replication object interface. Applications call this interface to
programmatically control replication.

SQL Server CE Server Agent

The SQL Server CE Server Agent is the component responsible for managing the communication between an instance of SQL
Server and SQL Server CE. The SQL Server CE Server Agent handles the HTTP requests made by SQL Server CE Client Agent.

SQL Server Reconciler and SQL Server CE Replication Provider

The SQL Server Reconciler invokes the SQL Server CE Replication Provider when synchronization is performed. Both the SQL
Server Reconciler and SQL Server CE Replication Provider reside on the computer running IIS (on which SQL Server CE Server

Tools is installed). When the SQL Server CE Server Agent starts the SQL Server Reconciler, a Merge Agent at the Publisher is
associated with each subscription.

SQL Server CE Books Online

How Replication Works
How Replication Works

This topic provides a general description about how merge replication in Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE) works. For detailed information about merge replication, see SQL Server Books Online.

SQL Server CE merge replication uses this process:

1. Data is published.

You create a publication containing SQL Server data that will be published to other sites, including Microsoft Windows CE-
based devices running SQL Server CE. (A publication is a collection of articles. An article is a table that is enabled for
replication.)

2. Subscriptions to the publications are created.

A Windows CE-based application subscribes to the publication by using the SQL Server CE Replication object with Microsoft
eMbedded Visual Tools or the SqlCeReplication class with the .NET Compact Framework Data Provider for SQL Server CE.
When the subscription is created, the initial snapshot is downloaded from the Distributor to create the subscription
database on the Windows CE-based device.

3. Data at the Subscriber is updated.

The subscription database on the Windows CE-based device is updated by applications running on that device.

4. Data is synchronized.

Periodically, updates made at the Subscriber are sent to the Publisher and merged with updates made at the Publisher and
updates propagated to the Publisher from other Subscribers. Similarly, changes made at the Publisher and other
Subscribers since the initial download or the most recent merge are sent to the Windows CE-based device, where they are
merged into the subscription database.

Publishing Data

Publications specify the data that is published. Publications are tailored to different users or groups of users. In some cases, all
users need exactly the same data. For example, every employee might need a copy of the company employee directory. In other
cases, different groups of users need different partitions of data. For example, sales representatives might need one set of data,
and customer support technicians need a different set of data. Individuals might also need data specifically filtered for them. For
example, a sales representative might need the data for his or her own customer accounts.

You can create a publication and specify which articles it contains. Although SQL Server publications may contain other database
objects, such as stored procedures, views, and user-defined functions, SQL Server CE replication ignores these objects and only
includes tables in the SQL Server CE subscription. You specify which of the table rows and columns are included in the article. For
more information, see "Replication" in SQL Server Books Online.

Subscribing to Publications

After you define the publication, a Windows CE-based application can subscribe to it by calling the methods exposed by the SQL
Server CE Replication object or the SqlCeReplication class on the Windows CE-based device. When the subscription is created,
the initial snapshot from the Distributor is applied at the subscription database on the Subscriber.

Updating Data at the Subscriber

Windows CE-based applications can update the subscription database. Merge replication allows each subscription database to be
updated autonomously. Updates can occur whether or not the Windows CE-based device is connected to the network and to the
Publisher. Each SQL Server CE database uses change tracking to keep track of INSERT, UPDATE, and DELETE statements made at
the SQL Server CE Subscriber.

Synchronizing Data

Typically, users periodically connect the Windows CE-based device to the network. This allows the Windows CE-based application
to synchronize changes made at the Subscriber with changes made at the Publisher. The Windows CE-based application initiates
synchronization by calling the synchronization methods exposed by the Replication object or the SqlCeReplication class.

Synchronization is a four-step process:

1. Extract changes and create the input message file.

The SQL Server CE Client Agent extracts all inserted, updated, and deleted records from the subscription database at the
SQL Server CE Subscriber and propagates them to the SQL Server CE Server Agent through HTTP. The SQL Server CE
Server Agent creates a new input message file on the computer running Microsoft Internet Information Services (IIS) and
writes into that file the insert, update, and delete changes sent by the SQL Server CE Client Agent.

2. Run the SQL Server Reconciler process and apply changes to the publication database.

When all requests have been written to the input message file, the SQL Server CE Server Agent initiates the SQL Server
Reconciler. The SQL Server Reconciler loads the SQL Server CE Replication Provider, which reads the input message file and
informs the SQL Server Reconciler of changes made to the SQL Server CE subscription database that must be applied to the
publication database at the Publisher. During processing, the SQL Server Reconciler detects and resolves conflicts; a conflict
occurs when more than one Subscriber or Publisher updates the same record.

Note The SQL Server Reconciler resolves conflicts with conflict resolvers. Use the conflict resolvers provided
with SQL Server to implement simple forms of conflict resolution for your SQL Server CE replication
applications or write conflict resolvers to implement more sophisticated solutions. For more information, see
"Merge Replication Conflict Detection and Resolution" in SQL Server Books Online.

3. Create the output message file.

The SQL Server Reconciler informs the SQL Server CE Replication Provider of changes made at the Publisher that must be
applied to the subscription database on the Windows CE-based device. The SQL Server CE Replication Provider writes these
changes to an output message file it creates on the computer running IIS.

Note The SQL Server CE Client Agent processes both the input and output message files in logical blocks as it
reads from or applies changes to the subscription database on the Windows CE-based device. By processing
each message file in this way, the SQL Server CE Client Agent avoids writing the entire message file on the
Windows CE-based device, conserving storage space.

4. Read the output message file and apply changes to the SQL Server CE subscription database.

When the SQL Server Reconciler process is complete, the SQL Server CE Server Agent locates the output message file
created by the SQL Server CE Replication Provider. This file contains the changes that have occurred at the Publisher and
that must be applied to the subscription database on the Windows CE-based device. The SQL Server CE Server Agent reads
the output message file and transmits it to the SQL Server CE Client Agent on the Windows CE-based device. The SQL
Server CE Client Agent applies the changes from the output message file to the SQL Server CE subscription database.

After the SQL Server CE Client Agent has incorporated all changes into the subscription database on the Windows CE-based
device and conflicts (if any) have been resolved, the publication and subscription databases are synchronized and data is
converged. However, before data values would be identical at the Publisher and at the Subscribers (because updates can occur
continuously), you would need to stop all updates and then run several merges

SQL Server CE Books Online

Planning for Replication
The following topics in this section provide information to consider before implementing replication in Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE). Typical SQL Server CE replication topologies are described. Information regarding
what data can be replicated and limitations on published data is also provided.

Replication Topologies
Supported Data Types and Data Type Mappings
Replication Limitations
Schema Changes on Publication Databases
Replication Conflict Detection and Resolution

SQL Server CE Books Online

Replication Topologies
Replication Topologies

You can configure replication in Microsoft® SQL Server™ 2000 Windows CE Edition (SQL Server CE) in a variety of ways. You
should choose a configuration based on the following factors:

Performance

The performance of a system depends on the number of Microsoft Windows CE-based devices that must be supported, the
frequency with which the devices must synchronize with the server, the connection bandwidth, the timeframe during which
synchronization must occur, and the load that each device imposes on the server while synchronizing.

Security

The configuration you choose is influenced by the security requirements of the application you develop.

Basic Configuration Rules

The following basic configuration rules govern SQL Server CE replication configuration:

The Subscriber is always an anonymous Subscriber.

Individual Subscribers cannot be assigned a merge replication conflict resolution priority; the priority for Subscribers is
always 0.

SQL Server CE cannot be a Publisher or Distributor.

Two or more Windows CE-based devices can share a publication only by subscribing to the same SQL Server 2000
publication.

A Subscriber must always synchronize with the same Publisher.

Synchronizing with alternate synchronization partners is not supported.

Topologies

You can choose from a variety of SQL Server CE replication topologies. The more common ways to configure SQL Server CE
replication are:

Single server
Two servers
Multiple Microsoft Internet Information Services (IIS) systems and SQL Server republishing

Single Server

In the simplest SQL Server CE replication topology, IIS, the SQL Server Publisher, and the SQL Server Distributor all reside on a
single server. SQL Server CE Subscribers, running on Windows CE-based devices, synchronize by connecting to IIS on the
Publisher. The Publisher can be located behind a firewall.

Two Servers

You can place IIS on one server and configure the SQL Server Publisher and Distributor on another server. The server running IIS
can be isolated from the Internet by a firewall. SQL Server CE clients, running on Windows CE-based devices, synchronize by
connecting to IIS. Another firewall can isolate the SQL Server Publisher and Distributor from the IIS system.

M ultiple IIS Systems and SQL Server Republish ing

If you must support very large numbers of SQL Server CE Subscribers that synchronize at the same time, you can partition the
work across multiple computers running IIS.

If further load balancing is required on the computer running SQL Server, you can create a republishing hierarchy on multiple
computers. The top-level Publisher publishes data to Subscribers, which in turn republish the data, load balancing requests from
the SQL Server CE clients. Load balancing is static in the sense that each SQL Server CE Subscriber is assigned to one of the
republishers and always synchronizes with that republisher (SQL Server CE does not support alternate synchronization partners).

By using Microsoft ActiveSync®, a desktop system may be used to synchronize SQL Server CE to an instance of SQL Server. By
using Microsoft Windows Powered Pocket PC 2002 and Microsoft ActiveSync 3.5, you can use the Pass Through functionality. If
you are using ActiveSync 3.1, you must install SQL Server CE Relay. For more information, see Using SQL Server CE Relay.

Using Windows Clustering

SQL Server CE replication can be used on a Microsoft Windows 2000 cluster containing a farm of Web servers running IIS.
However, the SQL Server CE Server Agent must maintain session state across client calls; therefore, you must use load-balancing
hardware or software that is capable of maintaining a session state between the SQL Server CE Client Agent and the SQL Server
CE Server Agent.

Load-balancing systems typically work as follows: Clients access the cluster using a common domain name with a single virtual IP
address; the load-balancing hardware or software intercepts the incoming HTTP traffic and directs it to one of the servers in the
cluster.

SQL Server CE can be used with a variety of load-balancing systems for example Windows 2000 Network Load Balancing (NLB).

Windows 2000 NLB is included as part of Microsoft Windows 2000 Advanced Server and Windows 2000 Datacenter Server. NLB
can be used with SQL Server CE because NLB supports client affinity, which is an option that ensures that the client is always
directed to the same server running IIS within the cluster. Note, however, that if a server or network failure occurs during a client
session, a new logon is required to reauthenticate the client and reestablish session state. Also, adding a new server running IIS to
the cluster redirects some client traffic to the new server, which can affect existing sessions.

For more information, see "Windows Clustering Technologies" in the technical resources for Microsoft Windows 2000 at this
Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=9103

SQL Server CE Books Online

Supported Data Types and Data Type Mappings
Supported Data Types and Data Type Mappings

The following table shows the data type mappings that are performed when replicating between Microsoft® SQL Server™ and
Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE). The table lists mappings for each SQL Server data type and
describes restrictions or special behaviors.

SQL Server data type SQL Server CE data type
bigint (int 8) bigint (int 8)
binary (n) binary (n) or image

If the length of the data is 510 bytes or less, SQL Server CE
replication maps the SQL Server binary data to SQL
Server CE binary; otherwise, it maps it to SQL Server CE
image.
If the length of the image data exceeds the length of the
binary column, synchronization fails when the data is sent
from the SQL Server CE Subscriber to the SQL Server
Publisher.

bit bit
character
(synonym:
char)

national character or ntext
If the length of the data is 255 characters or less, SQL
Server CE replication maps the SQL Server character data
to SQL Server CE national character ; otherwise, it maps
it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
character column, synchronization fails when the data is
sent from the SQL Server CE subscription to the SQL
Server publication.

character varying
(synonyms:
char varying,
varchar)

national character varying or ntext
If the length of the data is 255 characters or less, SQL
Server CE replication maps the SQL Server character
varying data to SQL Server CE national character
varying; otherwise, it maps it to SQL Server CE ntext .
If the length of the ntext data exceeds the length of the
character varying column, synchronization fails when the
data is sent from the SQL Server CE subscription to the
SQL Server publication.

datetime datetime
decimal See numeric.
double precision double precision
float float
image image
integer (int 4)
(synonym:
int)

integer (int 4)

money money
national character
(synonyms:
national char,
nchar)

national character
If the length of the data is 255 characters or less, SQL
Server CE replication maps the SQL Server national
character data to SQL Server CE national character;
otherwise, it maps it to SQL Server CE ntext.
If the length of the ntext data exceeds the length of the
national character column, synchronization fails when
the data is sent from the SQL Server CE subscription to the
SQL Server publication.

national character
varying
(synonyms:
national char varying,
nvarchar)

national character varying
If the length of the data is 255 characters or less; SQL
Server CE replication maps the SQL Server national
character varying data to SQL Server CE national
character varying; otherwise, it maps it to SQL Server CE
ntext.
If the length of the ntext data exceeds the length of the
national character varying column, synchronization fails
when the data is sent from the SQL Server CE subscription
to the SQL Server publication.

ntext ntext
numeric
(synonyms:
decimal, dec)

numeric

real real
smalldatetime datetime

If the precision of the datetime data exceeds the precision
of the smalldatetime column, synchronization fails when
the data is sent from the SQL Server CE subscription to the
SQL Server publication.

smallint (int 2) smallint (int 2)
smallmoney money

If the precision of the money data exceeds the precision of
the smallmoney column, synchronization fails when the
data is sent from the SQL Server CE subscription to the
SQL Server publication.

sql_variant sql_variant is mapped to ntext.
If binary data exists in the sql_variant column, the binary
data must be an even number of bytes or a conversion
error occurs.

text ntext
If the length of the text data exceeds 1,073,741,823
characters, synchronization fails when the data is sent
from the SQL Server publication to the SQL Server CE
subscription.

timestamp Not supported
Data stored as timestamp data is vertically partitioned
out of all SQL Server CE Subscriptions.

tinyint (int 1) tinyint (int 1)
uniqueidentifier uniqueidentifier
varbinary (n) varbinary (n) or image

If the length of the data is 510 bytes or less, SQL Server CE
replication maps the SQL Server varbinary data to SQL
Server CE varbinary ; otherwise, it maps it to SQL Server
CE image.
If the length of the image data exceeds the length of the
varbinary column, synchronization fails when the data is
sent from the SQL Server CE subscription to the SQL
Server publication.

varchar See character varying

Choose data types that are supported by both SQL Server and SQL Server CE, so it is not necessary for replication to perform data
mapping. When this is not possible, the application should validate the values stored in SQL Server CE to ensure that replication
can map these values between SQL Server and SQL Server CE.

You cannot publish a table having an index on char, nchar, varchar, or nvarchar columns with lengths greater than 255.
Creation of the SQL Server CE subscription fails because these column types are mapped to ntext, and a primary key cannot be
created on an ntext column.

For more information about SQL Server data types, see "Data Types" in SQL Server Books Online.

See Also

Replication Limitations

SQL Server CE Books Online

Replication Limitations
Replication Limitations

Replication in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) has the following limitations:

Dynamic filters

When you use dynamic filters, SQL Server CE requires that you use the optimize synchronization option. You can set this
option by using either the Create Publication wizard or stored procedure scripts:

Using the Create Publication wizard

Select Yes, minimize the amount of data to minimize the amount of data sent over the network when dynamic
horizontal filters are defined. You cannot change this option for an existing publication.

Using the sp_addmergepublication script

Set the @keep_partition_changes option to TRUE. The @keep_partition_changes option specifies whether
synchronization optimization occurs.

For more information, see the topics "Optimizing Synchronization" and "sp_addmergepublication" in SQL Server Books
Online.

Additionally, SQL Server CE cannot validate Subscriber information. When configuring a Publication with dynamic filters,
you can request that the Subscriber information be validated; however, SQL Server CE ignores this request.

Note The HostName property specifies the dynamic filter value for the subscription. If you want to change the
dynamic filter value for the Subscriber by specifying a new HostName property, you must call the Reinitialize
method before you synchronize.

Display of Subscriber names in SQL Server Enterprise Manager

For SQL Server CE Subscribers listed in the SQL Server Enterprise Manager Replication Monitor, the Merge Agent
subscription column is formatted as subscribername:-agentid. This guarantees uniqueness for each row in the Merge Agent
if the Subscriber name supplied by the SQL Server CE application is not unique across all SQL Server CE subscriptions. The
Subscriber name and the agent ID can be used to find the Subscriber ID (GUID) in the msmerge_agents system table in the
distribution database.

Connection timeout

SQL Server CE connectivity solutions recover from communication failures by restarting from the last successfully
transmitted block of data, as long as the connection recovers within a time-out period of approximately two minutes. This
makes synchronization possible even if the underlying transport is not reliable.

Snapshots

SQL Server CE only supports the alternate snapshot location option, if the usual (default) snapshot location is not available.

To specify an alternate snapshot location, you can set this option by using either the create publication stored procedure
script or by using SQL Server Enterprise Manager to edit the properties of an existing publication:

Using the sp_addmergepublication script

Set the @snapshot_in_defaultfolder option to FALSE and @alt_snapshot_folder= location of the alternate folder for
the snapshot.

Editing Publication Properties of an existing publication

On the Snapshot Location tab of the publications Properties dialog box, clear the Generate snapshots in the normal
snapshot folder check box, select Generate snapshots in the following location check box, and specify the new
location in Folder. You cannot change this option for an existing publication.

Note SQL Server CE does not support FTP or compressed snapshot options for either the default or alternate
locations.

Ranged identity columns

SQL Server CE identity columns must have a data type of integer (int 4). SQL Server CE identity columns cannot have a
data type of bigint, smallint, tinyint, decimal, or numeric. If you subscribe to a publication having an identity column
other than integer (int 4), the creation of that subscription fails on SQL Server CE.

SQL Server CE allows you to modify the seed and increment values at the Subscriber by using the ALTER TABLE table_name
ALTER COLUMN column_name IDENTITY (seed,increment) statement. This allows you to manage identity ranges manually,
if you want. However, if your publication includes an identity column and the AutoIdentityRange property at the Publisher
is TRUE, you should not modify the seed or increment values at the Subscriber. If you specify a seed that is above your
allocated range identity, SQL Server CE returns an error when you attempt to insert a new record in the table. When you
next synchronize, the Publisher corrects the problem by assigning your Subscriber a new identity range.

Computed columns

Not supported. Data stored as computed columns is vertically partitioned out of all SQL Server CE subscriptions.

Information that is not propagated to the SQL Server CE Subscriber

You can include the following items in a SQL Server publication, but they are not propagated to the SQL Server CE
Subscriber:

CHECK constraints
DEFAULT definitions for columns
Extended properties
Stored procedures
Views
User-defined functions
Triggers

Because SQL Server CE replication cannot propagate these items, you should implement equivalent logic in a SQL Server
CE-based application. Doing so ensures that the SQL Server CE database remains consistent with the SQL Server database.
For example, if the SQL Server database includes a CHECK constraint, the SQL Server CE-based application should
implement the corresponding check in application code.

Case sensitivity

SQL Server CE databases are not case-sensitive; therefore objects and data are treated differently in a SQL Server CE
database from the way in which they are treated in a SQL Server database. For example, two tables, MYTABLE and
mytable, are treated as different objects in a case-sensitive SQL Server database. The same table names cause a naming
conflict in a SQL Server CE database. Similarly, two values, MYVALUE and myvalue, cause a primary key violation in SQL
Server CE, because they are treated as the same value, whereas they do not cause a violation in a case-sensitive SQL Server
database.

UNIQUE constraints

SQL Server and SQL Server CE differ slightly in the way they implement UNIQUE constraints. SQL Server allows a single
NULL value in a column with a UNIQUE constraint; SQL Server CE does not allow a NULL value in this case. If you subscribe
to a publication that contains a NULL value in a column with a UNIQUE constraint, the creation of that subscription fails on
SQL Server CE.

Tables and columns

For all replication tables, the number of available columns is 252 (255 – 3 system columns). SQL Server CE allocates three
system columns for tracking.

NOT FOR REPLICATION constraints

SQL Server CE does not support the NOT FOR REPLICATION option. Do not create constraints using this option. If
constraints in a database have the NOT FOR REPLICATION option, remove the constraint and then re-create it. If the NOT
FOR REPLICATION option is specified, the constraint is still created on the SQL Server CE Subscriber, but it does not include
the NOT FOR REPLICATION syntax.

See Also

IDENTITY (Property)

Supported Data Types and Data Type Mappings

ReinitializeSubscription Method

SQL Server CE Books Online

Schema Changes on Publication Databases
Schema Changes on Publication Databases

You can add and drop columns in a table published in a Microsoft® SQL Server™ publication without dropping and re-creating
the publication. If you add or drop a column in a published SQL Server table, that schema change is published to the subscription
database in Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) when the publication is next synchronized. You
must make schema changes to a published table through the replication publication properties dialog box in SQL Server
Enterprise Manager or through replication stored procedures. You cannot make schema changes to published tables in any other
way. For more information, see "Schema Changes on Publication Databases" in SQL Server Books Online.

If a column is dropped from the SQL Server publication database, any changes made to data in that corresponding column in the
SQL Server CE subscription database (that have not already been propagated to the Publisher) are discarded during
synchronization.

You can add articles to an existing publication. When an article is added, the SQL Server CE Subscriber must be reinitialized.

Important The SQL Server CE Subscriber must also be reinitialized if the column that is added to an existing
published SQL Server table is an identity column.

SQL Server CE Books Online

Replication Conflict Detection and Resolution
Replication Conflict Detection and Resolution

When Publishers and Subscribers are reconnected and synchronization occurs, the Merge Agent running on the Publisher detects
conflicts and then determines which data is accepted and propagated to other sites based on a resolver specified when the
publication was created. Each Subscriber merges with the Publisher, but conflicts typically occur between updates made at
different Subscribers.

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports row-level tracking only. The SQL Server CE
Database Engine invokes tracking when a row is inserted, updated, or deleted. When conflicts are detected at the row level,
changes made to corresponding rows are considered a conflict, regardless of whether the changes are made to the same column.
For example, a change is made to the address column of a row at the Publisher, and another change is made to the phone
number column of the corresponding row in the same table at the Subscriber. With row-level tracking, a conflict is detected
because changes were made to both rows.

Note Even if the Publisher is configured with column-level tracking, SQL Server CE masks the row as if every column
has changed. Row-level tracking involves less tracking overhead, preserving valuable storage space on the device.

Because SQL Server CE implements row-level tracking only, column-level tracking is ignored, even if it is configured on the
Publisher. Therefore, a conflict occurs even if the columns affected in the corresponding rows are not the same.

After a conflict is detected, the Merge Agent launches the conflict resolver selected for the article. In addition to the default
resolver, merge replication allows you to use a variety of custom resolvers to deal with conflict situations. The accepted changes
are chosen according to the rules of the conflict resolver. SQL Server CE Subscriber conflicts are always detected, resolved, and
logged at the Publisher. For more information about conflict detection and resolution, see "Merge Replication Conflict Detection
and Resolution" in SQL Server Books Online.

SQL Server CE Books Online

Implementing Replication
The topics in this section describe the configuration requirements for using replication in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE). The topics contain procedures for performing configuration tasks; some procedures are
optional, depending on your requirements.

To implement SQL Server CE replication, you must configure SQL Server. Configuring SQL Server involves the following steps:

1. Creating the Publication
2. Securing the Publication
3. Configuring the Snapshot Folder
4. Checking the Status of the Snapshot Agent

SQL Server CE Books Online

Creating the Publication
Creating the Publication

You create publications for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) by using standard SQL Server
replication tools and techniques. The easiest way to create a publication is by using the Create Publication Wizard. For more
information, see "Replication Wizards" in SQL Server Books Online.

When you create a publication for SQL Server CE Subscribers by using the Create Publication Wizard, it is important to select the
following options:

On the Select Publication Type page, select Merge publication.
On the Specify Subscriber Types page, select the Devices running SQL Server CE check box.

By selecting Devices running Windows CE, the following options are automatically configured for the publication:

Support for anonymous subscriptions
Character mode snapshot

If you use dynamic filters, SQL Server CE requires that you use the optimize synchronization option. Set this option by using
either the Create Publication Wizard or the stored procedure sp_addmergepublication. For more information about this and
other SQL Server CE replication limitations, see Replication Limitations.

If this is the first publication created for this server, the Create Publication Wizard prompts you to configure the snapshot folder
location. The snapshot folder holds the snapshot files that contain the schema and data for published tables. The SQL Server CE
Replication Provider must be able to read these snapshot files so it can download the files to the Windows CE-based device.

Note The snapshot folder location defaults to an administrative share (for example, C$); you should use an explicit
share instead of the default because the administrative share can be accessed only by an administrator account. For
more information, see Configuring an Explicit Snapshot Folder.

See Also

Securing the Publication

Configuring the Snapshot Folder

Checking the Status of the Snapshot Agent

SQL Server CE Books Online

Securing the Publication
Securing the Publication

Securing the Microsoft® SQL Server™ publication involves the following steps:

1. Configuring Database Access
2. Configuring the Publication Access List
3. Configuring the Check Permissions Option

See Also

Configuring Security for Connectivity

SQL Server CE Books Online

Configuring Database Access
Configuring Database Access

When you create a publication, Microsoft® SQL Server™ creates a publication access list (PAL) for the publication. The PAL is
similar to an access control list (ACL). To add a user to the publication access list, you must first grant database access based on
how you configured Microsoft Internet Information Services (IIS) and SQL Server authentication.

To configure the Database Access option

1. On the computer running SQL Server, start SQL Server Enterprise Manager: On the Start menu, point to Programs,
Microsoft SQL Server, and then click Enterprise Manager.

2. In the console tree, expand Microsoft SQL Servers, SQL Server Group, the computer containing the publication, and
Security; and then click Logins.

3. In the details pane, right-click the user ID under which the Merge Agent executes, and then click Properties. The user ID of
the Merge Agent depends on how you configured IIS and SQL Server authentication.
IIS authentication

mode
SQL Server

authentication
mode

Must grant database access to

Anonymous access Windows
authentication

computername\IUSR_computername
or the configured IIS anonymous user
account.

Basic authentication Windows
authentication

The IIS client's user or group.

Integrated Windows
authentication

Windows
authentication

The IIS client's user or group. (This
configuration is supported only if SQL
Server and IIS are running on the same
computer.)

Anonymous, Basic,
or Integrated
Windows
authentication

SQL Server
authentication

The user specified in the
DistributorLogin or PublisherLogin
property of the Replication object.

4. Click the Database Access tab, and then select the Permit check box for the database.

See Also

Configuring the Publication Access List

Configuring the Check Permissions Option

Configuring Security for Connectivity

SQL Server CE Books Online

Configuring the Publication Access List
Configuring the Publication Access List

When you create a publication, Microsoft® SQL Server™ creates a publication access list (PAL) for the publication. The PAL is
similar to an access control list (ACL). It contains the list of logins that have been granted access to the publication. During
synchronization, SQL Server checks the PAL for the Microsoft Internet Information Services (IIS) user, in the case of Windows
authentication, or the SQL Server login, in the case of SQL Server authentication.

By default, the PAL contains the members of the sysadmin fixed server role and the login of the user who created the publication.
Expand or restrict access to a publication by adding or deleting logins from the PAL. You must grant access to the publication
based on how you configured IIS and SQL Server authentication.

To grant or revoke access to a publication

1. On the computer running SQL Server, start SQL Server Enterprise Manager: On the Start menu, point to Programs,
Microsoft SQL Server, and then click Enterprise Manager.

2. In the console tree, expand Microsoft SQL Servers, SQL Server Group, the computer containing your publication,
Databases, and the database you are publishing, and then click Publications.

3. Right-click the publication name, click Properties, and then click the Publication Access List tab.
4. Use the Add or Remove buttons to add or delete logins from the PAL. You must add the user to SQL Server before you can

add the user to the PAL. For more information, see "Adding a Windows NT User or Group" in SQL Server Books Online.
IIS authentication

mode
SQL Server

authentication
mode

The PAL must grant access to

Anonymous access Windows
authentication

computername\IUSR_computername
or the configured IIS anonymous user
account.

Basic authentication Windows
authentication

The IIS client's user or group.

Integrated Windows
authentication

Windows
authentication

The IIS client's user or group. (This
configuration is only supported if SQL
Server and IIS are running on the same
computer.)

Anonymous, Basic, or
Integrated Windows
authentication

SQL Server
authentication

The users specified in the
DistributorLogin and PublisherLogin
properties of the Replication object.

Note If the Publisher and Distributor are on different computers, the new logins must exist in the PALs for both
the Publisher and the Distributor. If the IIS user, in the case of Windows authentication, or the SQL Server login,
in the case of SQL Server authentication, is not contained in the PAL, an Access Denied message is displayed at
the Subscriber.

See Also

Configuring the Check Permissions Option

Configuring Database Access

Configuring Security for Connectivity

SQL Server CE Books Online

Configuring the Check Permissions Option
Configuring the Check Permissions Option

Use the Check Permissions option to provide an enhanced level of security to your publication. The Check Permissions option
ensures that the Merge Agent has the authority to upload data changes to a Publisher. When you specify this option, Microsoft®
SQL Server™ verifies that the Merge Agent login has the permissions to perform INSERT, UPDATE, and DELETE statements on the
publication database.

Using Check Permissions is optional. When you specify Check Permissions, both Check Permissions validation and PAL
verification are performed.

If you set the Check Permissions option after the initial snapshot has been generated, a new snapshot must be generated and
reapplied at the Subscriber for permissions to be validated when data changes are merged.

To configure the Check Permissions option

1. On the computer running SQL Server, start SQL Server Enterprise Manager: On the Start menu, point to Programs,
Microsoft SQL Server, and then click Enterprise Manager.

2. In the console tree, expand Microsoft SQL Servers, SQL Server Group, the computer containing your publication,
Databases, and the database you are publishing; and then click Publications.

3. Right-click your publication name, click Properties, and then click the Articles tab.
4. Click the properties button (...) for the published article you want to configure. This displays the Table Article Properties

dialog box.
5. Click the Merging Changes tab.
6. Under Check permissions, you can select the INSERT, UPDATE, and DELETE check boxes. When these boxes are selected,

SQL Server verifies that the Merge Agent is running under a user identity that has permission to insert, update, or delete
data on the Publisher.

If you specify Check permissions, you must grant database access based on how you configured Microsoft Internet Information
Services (IIS) and SQL Server authentication. For more information, see Configuring Security for Connectivity.

See Also

Configuring Database Access

SQL Server CE Books Online

Configuring the Snapshot Folder
Configuring the Snapshot Folder

The snapshot folder holds the snapshot files containing the schema and data for published tables. The SQL Server CE Replication
Provider must be able to read these snapshot files to create the subscription on the Microsoft® Windows® CE-based device. You
control access to the snapshot folder by assigning file system access permissions to it.

When you assign Read permissions to the snapshot folder and share, remember that the identity under which the SQL Server CE
Replication Provider runs depends upon how Microsoft Internet Information Services (IIS) authentication is configured:

When IIS is configured to use Anonymous access, the SQL Server CE Replication Provider runs under the identity of the
default IIS anonymous user account (the Internet Guest Account: IUSR_computername). If you configure another Windows
user account as the IIS anonymous user account, the SQL Server CE Replication Provider runs under the identity of that
account.
When IIS is configured to use Basic authentication, the SQL Server CE Replication Provider runs under the identity of the
Windows user account corresponding to the login and password supplied by the Subscriber for the InternetLogin and
InternetPassword properties of the Replication object.
When IIS is configured to use Integrated Windows authentication, the SQL Server CE Replication Provider runs under the
identity of the Windows user account corresponding to the login and password supplied by the Subscriber for the
InternetLogin and InternetPassword properties of the Replication object. Unlike Basic authentication, the login and
password are never transmitted over the network with Integrated Windows authentication.

Whether IIS and the SQL Server Distributor are located on the same computer or different computers, it is strongly recommended
that you configure the snapshot folder as described in Configuring an Explicit Snapshot Folder.

See Also

Configuring Security for Connectivity

InternetLogin Property (Replication)

InternetPassword Property (Replication)

SQL Server CE Books Online

Configuring the Default Snapshot Folder
Configuring the Default Snapshot Folder

If the snapshot folder is located on a FAT file system, configuring the folder is not necessary; proceed directly to Checking the
Status of the Snapshot Agent.

Note It is recommended that you use an NTFS file system because it is more secure.

The default snapshot folder, also called the normal snapshot folder, resides on an administrative share (drive$) by default. It is
recommended that you do not use the default administrative share setting but instead create an explicit share for the default
(normal) snapshot folder. For more information, see Configuring an Explicit Snapshot Folder.

To secure the snapshot folder

1. On the computer running Microsoft® SQL Server™, start Windows® Explorer by double-clicking My Computer.
2. Locate the snapshot folder, right-click it, and then click Properties. The default location of the snapshot folder is

C$\Program Files\Microsoft SQL Server\Mssql\Repldata\Unc.
3. Click the Security tab. (If the Security tab is not displayed, you are using a FAT file system and can skip this step.) Set the

NTFS file system directory permissions as follows.
User Required

permissions
Always grant the SQL Server Service account and SQL Server
Agent Service account Full Control.

Full Control

For IIS Anonymous access, grant
computername\IUSR_computername or the configured
Microsoft Internet Information Services (IIS) anonymous user
account read permission. If IIS and the SQL Server Distributor
are located on different computers, you must configure the IIS
anonymous user account as a domain user account and grant
that user read access. The default anonymous user
computername\IUSR_computername cannot be used because it
is a local account.

Read

For IIS Basic or Integrated Windows authentication, grant the
client's user or group read permission.

Read

See Also

Checking the Status of the Snapshot Agent

SQL Server CE Books Online

Configuring an Explicit Snapshot Folder
Configuring an Explicit Snapshot Folder

Explicitly configuring the snapshot folder and share is recommended. This is necessary because Microsoft® SQL Server™ places
the snapshot folder in the C$ share by default. The C$ share is a special administrative-only share. You cannot grant rights to the
C$ share, and only administrators on the computer can access it. You must create and secure a nonadministrative network share
for the snapshot folder so the Server SQL Server CE Replication Provider can read it remotely.

If you have already configured the Distributor using the administrative share, you must also change the location of the default
snapshot folder after the new explicit share is created.

To create and secure a nonadministrative network share

1. On the computer running SQL Server, start Microsoft Windows® Explorer by double-clicking My Computer. Create a new
NTFS file system folder to contain the snapshot files. Place the folder on any drive you want and give it any name you want.

2. Right-click the new folder, click Properties, and then click the Sharing tab.
3. Click Share this folder. In Share name, type any name you want. Optionally enter a comment describing the share.
4. To display the Share Permissions tab, click Permissions. Click the Add button to grant the following permissions to the

share.
User Required

permissions
Always grant the SQL Server Service account and SQL Server
Agent Service account Full Control.

Full Control

For IIS Anonymous access, you must configure the IIS
anonymous user account as a domain user account and grant
that user read permission. The default anonymous user
computername\IUSR_computername cannot be used because it
is a local account.

Read

For IIS Basic or Integrated Windows authentication, grant the
client's user or group read permission.

Read

5. To close the Share Permissions tab, click OK.
6. Click the Security tab. (If the Security tab is not displayed, you are using a FAT file system and can skip this step.) Set the

same NTFS permissions as the permissions specified on the actual folder in Step 4, and then click OK to close.

To change the location of the default snapshot folder

1. On the computer running SQL Server, start SQL Server Enterprise Manager: On the Start menu, point to Programs,
Microsoft SQL Server, and then click Enterprise Manager.

2. In the console tree, expand Microsoft SQL Servers, SQL Server Group, and select the instance of SQL Server containing
the publication.

3. With the appropriate instance of SQL Server selected, on the Tools menu, point to Replication, and then click Configuring
Publishing, Subscribers, and Distribution.

4. Select the Publisher tab, and then click the properties (...) button.
5. Enter the new folder location where the snapshot files will be stored. This location is the new nonadministrative network

share you just created.

SQL Server CE Books Online

Checking the Status of the Snapshot Agent
Checking the Status of the Snapshot Agent

You can use the Replication Monitor in SQL Server Enterprise Manager to check the status of the Snapshot Agent and ensure that
the snapshot has been created.

To check the status of the Snapshot Agent

1. On the computer running Microsoft® SQL Server™, start SQL Server Enterprise Manager: On the Start menu, point to
Programs, Microsoft SQL Server, and then click Enterprise Manager.

2. In the console tree, expand Microsoft SQL Servers, SQL Server Group, the computer containing the Distributor for the
publication, and Replication Monitor; and then click Agents.

3. In the left pane, click Snapshot Agents. The status of the Snapshot Agent is displayed in the right pane.
4. To display more information about an entry listed in the right pane, double-click the entry.

If the Snapshot Agent for the publication has not started, in the right pane, right-click the agent entry and select Start Agent.

SQL Server CE Books Online

Working with SQL Server CE Databases
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) extends a subset of the database programming
functionality of Microsoft SQL Server to Microsoft Windows CE-based devices. You can create, access, and modify SQL Server
databases programmatically in these devices using the SQL Server CE database engine.

The following topics in this section describe the administrative and programmatic tasks involved when you work with SQL Server
CE databases.

Title Description
Understanding SQL Server CE
Database Objects

Describes the size limitations of SQL Server CE
database objects.

Designing and Maintaining SQL
Server CE Databases

Describes the ways to create, secure, and maintain
databases in SQL Server CE.

Accessing SQL Server CE
Databases

Describes how to query and modify databases in
SQL Server CE.

Using SQL Server CE Query
Analyzer

Describes the user interface of SQL Server CE
Query Analyzer and how you can use the interface
to perform database tasks.

SQL Server CE Books Online

Understanding SQL Server CE Database Objects
The following table specifies the maximum sizes and numbers for several database objects defined in Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE) databases. Use these specifications, while applying the same concepts about
database design and programming that you use in SQL Server, when you work with SQL Server CE databases.

Category Object Maximum size limitations
Storage Column name 128 characters
 Columns in a table 255
 Database password 40 characters
 Database size 2.14 gigabytes (GB)
 Database size increase 1-page to 16-page

increments, depending on
table size

 Identifier length 128
 Page size 4 kilobytes (KB)
 Sessions 1
 Size of BLOB (ntext and

image) column
1.07 GB

 Table name 128 characters
 Table size 2.14 GB
Queries Characters in an SQL

statement
Unlimited

 Columns in a cursor 255
 Columns in a query Unlimited
 Columns in an ORDER BY

clause
255

 Levels of nested subqueries Unlimited
 Named parameters Not supported
 Operands in a query Unlimited
 Tables in a join Unlimited
Indexes

Note For every
PRIMARY KEY,
FOREIGN KEY,
and UNIQUE
constraint
defined on a
table, an index is
created on
those columns.
Additionally, for
every FOREIGN
KEY constraint,
the engine
creates
internally an
index on the
referenced
table. These
indexes all
count against
the total
number of
indexes allowed
for a table.

BLOB columns Cannot be indexed

 Bytes in an index key 510
 Columns in an index 10
 Indexes per table 249
Constraints PRIMARY KEY, UNIQUE,

and FOREIGN KEY
Supported

SQL Server CE Books Online

Designing and Maintaining SQL Server CE Databases
The following topics in this section describe the administrative-related tasks relating to databases in Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE):

Creating a Database
Using SQL Server CE Temporary Databases
Using the SQL Server CE Database Security Features
Maintaining SQL Server CE Databases

SQL Server CE Books Online

Creating a Database
With Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), you must be connected to an existing database
before you can create a new database using the SQL CREATE DATABASE syntax. For more information, see CREATE DATABASE.

You can create a new SQL Server CE database by using one of the following methods:

Using SQL Server CE Query Analyzer
Creating a Database Through ADOXCE
Creating a Database Through OLE DB
Creating a Database Through the AddSubscription Method in Replication

SQL Server CE Books Online

Creating a Database Through ADOXCE
Creating a Database Through ADOXCE

To create a database through Microsoft® ActiveX® Data Objects Extensions for Data Definition Language (DDL) and Security
(ADOXCE), use the Catalog object. The Catalog object exposes the Create method, which takes an OLE DB connection string. For
more information about ADOXCE, see the Microsoft ActiveX Data Objects Extensions for Windows® CE 3.1 documentation at this
Microsoft Web site.

Dim cat As ADOXCE.Catalog
Set cat = CreateObject("ADOXCE.Catalog.3.1")
cat.Create "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data source=\NorthWind.sdf"

All databases created without specifying a locale identifier (LCID) are assigned the default locale identifier, 1033 (0x00000409) for
U.S. English. To create a database with a locale identifier different from the default, specify the locale identifier. For example:

cat.Create "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data source=\test2.sdf;Locale
Identifier=1041"

http://go.microsoft.com/fwlink/?LinkId=8359

SQL Server CE Books Online

Creating a Database Through OLE DB
Creating a Database Through OLE DB

The OLE DB Provider for SQL Server CE supports programmatically creating databases in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE). For more information and an OLE DB programming example, see Creating Databases.

See Also

Programming OLE DB Applications for SQL Server CE

SQL Server CE Books Online

Creating a Database Through the AddSubscription Method in
Replication
Creating a Database Through the AddSubscription Method in Replication

The AddSubscription method of the Replication object creates a new anonymous subscription to an existing publication. The
CREATE_DATABASE option using Microsoft® eMbedded Visual Tools, or the CreateDatabase option using Microsoft Visual
Studio® .NET, creates a new (empty) Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) database on a
Windows CE-based device. This method can be used to create SQL Server CE databases whether or not you are using merge
replication to synchronize data.

For more information, see AddSubscription Method.

SQL Server CE Books Online

Using SQL Server CE Temporary Databases
During execution, Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) creates a temporary database that it
uses for storing temporary data such as:

Pages that are part of an open transaction that no longer fits in the SQL Server CE cache buffer.
Interim result sets that are created during a query.
Interim sort tables that are created when executing an ORDER BY clause.

The temporary database is created when the SQL Server CE database engine starts, and it is removed when the database engine is
shut down in a predictable manner. Abnormal termination of a SQL Server CE application leaves temporary database files that
must be manually removed. Unless a new location for the temporary database has been assigned, these files can be found in the
\TEMP directory and have file names that begin with SQLCE, for example, SQLCE334241234.tmp.

Growth of the Temporary Database

During execution, once its buffer cache is full, the SQL Server CE database engine dynamically allocates resources to the
temporary database. Large databases can generate large amounts of temporary data during normal execution. When the
temporary database grows to the point that there is insufficient storage space on the default storage device, the application fails.

The following operations cause growth in the temporary database, particularly when they are wrapped in a single transaction:

UPDATE and DELETE statements.
Explicit transactions.
Sort operations: Sorting is required when indexes are created and also when statements that include the ORDER BY or
GROUP BY clause are executed.

Location of the Temporary Database

To prevent large database files from growing beyond the storage limits of the device, it is possible to store databases on a storage
card rather than in internal RAM. Even when user databases are moved to a storage card, the temporary database is always
created by default in the \TEMP directory of the device, which uses internal RAM.

For operations requiring a large temporary database, you can specify a location different from the default \TEMP directory for the
temporary database. The new location for the temporary database is usually on a storage card.

Because the temporary database is created when the database engine starts, the location of the temporary database must be
specified prior to the engine being started and cannot be changed when the engine is running. The location of the temporary
database can be changed when the database is compacted.

You can specify the location of the temporary database in the following ways:

Specifying the Location of the Temporary Database in a Smart Device Application
Specifying the Location of the Temporary Database Using ADOCE
Specifying the Location of the Temporary Database Using the Replication and RDA Controls
Specifying the Location of the Temporary Database Using OLE DB

SQL Server CE Books Online

Specifying the Location of the Temporary Database in a Smart
Device Application
Specifying the Location of the Temporary Database in a Smart Device Application

Using Microsoft® .NET Compact Framework Data Provider for SQL Server CE, you can explicitly specify the location of the
temporary database by adding the temp file directory property to the SqlCeConnection.ConnectionString object that is
passed to SqlCeConnection as follows:

"temp file directory = temp_database_location;"

Note Property values in the connection string can be specified in any order and must be separated by semicolons.

You can also specify the temporary database location in the destConnect connection string when calling the
SqlCeEngine.Compact method.

Examples

The following Microsoft C# example shows how to pass the temporary database location in the connection string of the
SqlCeConnection object.

SqlCeConnection conn = new SqlCeConnection();
conn.ConnectionString = "Persist Security Info=False; Data Source =
 Northwind.sdf; temp file directory = temp_database_location;"

conn.Open();

The following Microsoft Visual Basic® example shows how to pass the temporary database location in the connection string of
the SqlCeConnection object.

Dim conn As New SqlCeConnection()
conn.ConnectionString = "Persist Security Info=False; Data Source = " + _
 "Northwind.sdf; temp file directory = temp_database_location;"

conn.Open()

For more information, see the System.Data.SqlServerCe.SqlCeConnection class in the .NET Compact Framework SDK in
Microsoft Visual Studio® .NET.

See Also

Using SQL Server CE Temporary Databases

SQL Server CE Books Online

Specifying the Location of the Temporary Database Using
ADOCE
Specifying the Location of the Temporary Database Using ADOCE

Using Microsoft® ActiveX® Data Objects for Windows® CE (ADOCE), you can explicitly specify the location of the temporary
database by adding the following value to the connection string that is passed by the Connection.Open method:

"SSCE:Temp File Directory = temp_database_location"

Note Property values in ADOCE connection strings must be separated by semicolons, and the location of the
temporary database path inside the connection string is not important.

You can also specify the temporary database location in the connection string when calling the Engine.CompactDatabase
method.

Examples

The following Microsoft Visual Basic® example shows how to pass the temporary database location in the connection string
using ADOCE.

Dim cn As ADOCE.Connection
Set cn = CreateObject("ADOCE.Connection.3.1")
cn.ConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data "
 + " source=\Northwind.sdf; SSCE:Temp File Directory = temp_database_location"
cn.Open

See Also

CompactDatabase Method

Using SQL Server CE Temporary Databases

SQL Server CE Books Online

Specifying the Location of the Temporary Database Using the
Replication and RDA Controls
Specifying the Location of the Temporary Database Using Replication and RDA Controls

You can explicitly specify the location of the temporary database by using both the Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) Replication and Remote Data Access (RDA) ActiveX® control objects by adding the following value at the
end of the connection string:

"SSCE:Temp File Directory = temp_database_location"

Note Property values in the connection string must be separated by semicolons, and the location of the temporary
database path inside the connection string is not important.

For the Replication object, you must include the temporary database location for all methods that use a
SubscriberConnectionString property. These methods are:

REPL_Object.Initialize
REPL_Object.AddSubscription
REPL_Object.Run
REPL_Object.ReinitializeSubscription
REPL_Object.DropSubscription

For the RDA object, you must include the temporary database location for all methods that use a LocalConnectionString property.
These methods are:

RDA_Object.Pull
RDA_Object.Push

Examples

A. Using the SubscriberConnectionString property in the Replication object

The following Microsoft Visual Basic® example shows how to use the SubscriberConnectionString property in the SQL Server CE
ActiveX Control Replication object.

' Declare the Replication object.
Dim ceRepl As SSCE.Replication

' Create the Replication object.
Set ceRepl = CreateObject("SSCE.Replication.2.0")

' Set Internet properties.
ceRepl.InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
ceRepl.InternetLogin = "MyInternetLogin"
ceRepl.InternetPassword = "<MyInternetPassword>"

' Set Publisher properties.
ceRepl.Publisher = "SamplePublisher"
ceRepl.PublisherDatabase = "Nwind_SQLCEReplDemo"
ceRepl.Publication = "SQLCEReplDemo"
ceRepl.PublisherSecurityMode = DB_AUTHENTICATION
ceRepl.PublisherLogin = "MySqlPublisherLogin"
ceRepl.PublisherPassword = "<MySqlPublisherPassword>"

' Set Subscriber properties.
ceRepl.SubscriberConnectionString = "data source=\NorthwindRepl.sdf;SSCE:Temp File
Directory =temp_database_location"
ceRepl.Subscriber = "SQLCE Sub #1"

 ' Create the new anonymous subscription.
 ceRepl.AddSubscription CREATE_DATABASE

B. Using the LocalConnectionString property in the RDA object

The following Visual Basic example shows how to use the LocalConnectionString property in the SQL Server CE RDA ActiveX
control object.

' Declare the SQL Server CE RDA ActiveX control object.
Dim ceRDA As SSCE.RemoteDataAccess

' Create the RDA object.
Set ceRDA = CreateObject("SSCE.RemoteDataAccess.2.0")

' Set RDA properties.
ceRDA .InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
ceRDA .InternetLogin = "MyInternetLogin"
ceRDA .InternetPassword = "<MyInternetPassword>"
ceRDA .LocalConnectionString = "Data Source=\NorthwindRDA.sdf;SSCE:Temp File Directory
=temp_database_location"

' Push the tracked SQL Server CE table changes back to the SQL Server table.
ceRDA .Push "Customers", "Provider=sqloledb;Data Source=SampleServer;Initial
Catalog=Northwind;user id=SampleUser;password=<SamplePassword>"

See Also

CompactDatabase Method

Using SQL Server CE Temporary Databases

SQL Server CE Books Online

Using the SQL Server CE Database Security Features
The primary security systems for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) are provided by the
connectivity features of the product. For more information about secure connectivity, see Planning for Security.

In addition to the connectivity security options, the SQL Server CE database engine provides two additional features for securing
local databases on a Windows CE-based device. These features are the ability to password protect databases and encrypt
databases. For more information, see Password Protecting SQL Server CE Databases and Encrypting SQL Server CE Databases.

SQL Server CE Books Online

Password Protecting SQL Server CE Databases
Password Protecting SQL Server CE Databases

The Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) database engine allows you to require that a password
be supplied when accessing a local database. In SQL Server CE, one password is created for the database that is being secured. A
password is not created for each user of a database. Passwords for SQL Server CE databases:

Can be up to 40 characters long.
Can contain letters, symbols, digits, or a combination.
Cannot be recovered.

Note The password does not prevent the reading of any data in the database file as clear text. By using both
encryption and a password, you can store the data in an encrypted format and restrict programmatic access to
the database.

Creating Password-protected Databases

Password-protected databases are created by supplying a password property when the database is created. Password-protected
databases can be created by the following methods:

Using SQL Syntax

To create a password-protected database through SQL syntax, specify database_password in the CREATE DATABASE
statement. The password must follow the DATABASEPASSWORD keyword and be enclosed in single quotation marks as in
the following example:

Create Database "secure.sdf" databasepassword '<myPassword>'

Using the .NET Compact Framework Data Provider for SQL Server CE

To create a password-protected database using the SqlCeEngine.CreateDatabase method, you must specify the password
property in the connection string as in the following example:

"data source=\NorthWind.sdf; password=<myPassword>"

For more information, see the System.Data.SqlServerCe.SqlCeEngine class in the .NET Compact Framework SDK in
Microsoft Visual Studio® .NET.

Using Microsoft ActiveX® Data Objects for Windows CE (ADOCE), Microsoft ActiveX Data Objects Extensions for Data
Definition Language (DDL) and Security (ADOXCE), or the Replication object

To create a password-protected database using the either the ADOCE or ADOXCE Catalog object, or the AddSubscription
method of the SQL Server CE Replication ActiveX object, you must specify the provider-specific SSCE:Database Password
connection property in the connection string. For example:

"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data source=\NorthWind.sdf; SSCE:Database
Password=<myPassword>"

Using OLE DB

For more information, see Creating Databases.

Accessing Password-protected Databases

A password must be supplied to open a password-protected database. Password-protected databases can be accessed by the
following methods:

Using the data provider for SQL Server CE

To access a password-protected database using the SqlCeConnection.Open method, you must specify the password

property in the connection string. For example:

"data source=\NorthWind.sdf; password=<myPassword>"

For more information, see the System.Data.SqlServerCe.SqlCeConnection class in the .NET Compact Framework SDK in
Microsoft Visual Studio .NET.

Using ADOCE, ADOXCE, or the Replication object

To access a password-protected database using either the ADOCE or ADOXCE Catalog object, or the SQL Server CE
Replication ActiveX object, you must specify the provider-specific SSCE:Database Password connection property. For
example:

"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data source=\NorthWind.sdf; SSCE:Database
Password=<myPassword>"

Using OLE DB

For more information, see Accessing Password-protected Databases.

Changing the Database Password

After a password has been assigned to a database, it cannot be changed until the database is compacted. For more information,
see Changing Passwords and Encryption Settings for a Database.

See Also

Connecting to a SQL Server CE Database

SubscriberConnectionString Property

SQL Server CE Books Online

Encrypting SQL Server CE Databases
Encrypting SQL Server CE Databases

The Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) database engine allows you to encrypt databases.
Databases that are encrypted must also be protected with a database password.

Important Because encrypted databases can only be accessed with a password, if the password for an encrypted
database is lost, the data is essentially gone.

This encryption support is provided by Windows CE and is supported on all Pocket PC devices. To enable encryption on a
Windows CE-based device, you must install Rsaenh.dll (a dynamic-link library that implements the security features of SQL Server
CE) on the Pocket PC device. This encryption component is shipped with Handheld PC 2000 Service Pack 1 devices and is also
available for download in the Microsoft High Encryption Pack, which can be found at this Microsoft Web site.

Note Database encryption is not supported in Handheld PC 2000 or in the Windows CE emulation.

Creating Encrypted Databases

Encrypted databases are created by supplying both encryption and password properties when the database is created. Encrypted
databases can be created by the following methods:

Using SQL Syntax

To create an encrypted database through SQL syntax, specify both database_password and the ENCRYPTION ON option.
For example:

Create Database "secure.sdf" databasepassword '<password>' encryption on

Using the .NET Compact Framework Data Provider for SQL Server CE

To create a password-protected database using the SqlCeEngine.CreateDatabase method, you must specify the password
property in the connection string. For example:

"data source=\secure.sdf;password=<myPassword>;encrypt database=TRUE"

For more information, see the System.Data.SqlServerCe.SqlCeEngine class in the .NET Compact Framework SDK in
Microsoft Visual Studio® .NET.

Using Microsoft ActiveX® Data Objects for Windows CE (ADOCE), Microsoft ActiveX Data Objects Extensions for Data
Definition Language (DDL) and Security (ADOXCE), or the Replication object

To create an encrypted database using either the ADOCE or ADOXCE Catalog object, or the AddSubscription method of
the SQL Server CE Replication ActiveX object, you must specify both the provider-specific SSCE:Database Password
connection property and the provider-specific SSCE:Encrypt Database connection property. SSCE:Encrypt Database is a
Boolean value that must be set to TRUE for an encrypted database. For example:

"provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;data source=\secure.sdf;SSCE:Database
Password=<myPassword>;SSCE:Encrypt Database=TRUE"

Using OLE DB

For more information, see Creating Databases.

Accessing Encrypted Databases

A password must be supplied to open an encrypted database. Encrypted databases can be accessed by the following methods:

Using the data provider for SQL Server CE

To access a password-protected database using the SqlCeConnection.Open method, you must specify the password
property in the connection string. For example:

http://go.microsoft.com/fwlink/?LinkId=8347

"data source=\NorthWind.sdf; password=<myPassword>"

For more information, see the System.Data.SqlServerCe.SqlCeConnection class in the .NET Compact Framework SDK in
Microsoft Visual Studio® .NET.

Using ADOCE, ADOXCE, or the Replication object

To access a password-protected database using either the ADOCE or ADOXCE Catalog object, or the SQL Server CE
Replication ActiveX object, you must specify the provider-specific SSCE:Database Password connection property in the
connection string. For example:

"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data source=\NorthWind.sdf; SSCE:Database
Password=<myPassword>"

Using OLE DB

For more information, see Accessing Password-protected Databases.

Changing the Encryption Settings and Database Password

After an encryption setting and password have been assigned to a database, they cannot be changed until the database is
compacted. For more information, see Changing Passwords and Encryption Settings for a Database.

See Also

Connecting to a SQL Server CE Database

SubscriberConnectionString Property

SQL Server CE Books Online

Changing Passwords and Encryption Settings for a Database
Changing Passwords and Encryption Settings for a Database

Once the encryption or password properties on a database have been set, these properties can only be modified when the
database is compacted. In addition to setting these security properties on the database, compaction is primarily used to compress
unused space in a database and to search for database consistency errors. For more information, see Maintaining SQL Server CE
Databases.

Compaction is exposed through the following mechanisms in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE):

The Compact method of the SQL Server CE Database Engine ActiveX® control.

For more information, see CompactDatabase Method.

The Compact method of the System.Data.Sqlserverce.SqlCeEngine class of the .NET Compact Framework Data Provider
for SQL Server CE.

For more information, see .NET Compact Framework Data Providers.

Directly through the OLE DB for SQL Server CE by using the ISSCECompact interface.

For more information, see ISSCECompact.

Note When compacting a password protected or encrypted database, you will need to specify the password for
the original database.

SQL Server CE Books Online

Maintaining SQL Server CE Databases
The internal structure of a database can become fragmented over time and, after much use, result in wasted disk space. If the
fragmentation is excessive, performance can deteriorate. To avoid fragmentation and get better performance, use the compaction
process to maintain the database.

Compacting a database performs the following tasks:

Reorganizes a table's pages so they reside in adjacent database pages. This improves performance by reducing table
fragmentation across the database.
Reorders table rows when there is a UNIQUE or PRIMARY KEY constraint present on the table.
Reclaims unused space created by object and record deletions by rewriting all database data into new data pages with no
gaps in the page. When objects or records are deleted from the database, the space they occupied is marked as available for
new additions to the database. However, unless an entire page of data has been deleted, the page remains in a partially
filled state and the size of the database does not shrink until either the final data is deleted from the page or the database is
compacted. For databases in which objects and records are frequently added, deleted, and updated, you should compact
frequently.
Resets incrementing identity columns so the next value allocated will be one more than the highest value in the remaining
records. For example, if all records in the database have been deleted, compacting the database sets the value of the identity
column of the next record to 1. If the highest remaining identity value in the database is 50, compacting the database sets
the value of the next record to 51. Note that this is true even if records containing values greater than 50 were added
previously but were deleted prior to compacting.
Regenerates the table statistics used in the query optimization process. These statistics can become out-of-date when much
time has elapsed, when transactions are rolled back, and when the database was not properly closed due to power loss or
failure to completely exit the program before turning the computer off.
Repairs a suspect database.
Modifies database properties.

Before compacting a database, ensure that the following conditions are met:

The database must not be open.
The source and destination database path must be different.

The destination database must not exist when CompactDatabase is called. An error occurs if the database specified by
DestConnection already exists or another file with that name already exists.

Sufficient storage space must exist for both the original and compacted versions of the database, as well as any cached data
and data stored in the temporary database.

When a database is compacted, the following database properties can be modified:

Password
Whether or not the database is encrypted
Locale identifier

See Also

CompactDatabase Method

ISSCECompact

Using SQL Server CE Query Analyzer

SQL Server CE Books Online

Accessing SQL Server CE Databases
The Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) database engine provides the following features for
accessing SQL Server CE databases:

Parameterized queries

Create queries with parameters and use these queries many times. The parameters are placeholders for values supplied at
run time. For more information, see Using Parameters in Queries.

Intrinsic functions

Use mathematical, string, and system functions in your queries to perform operations and return scalar values. For more
information, see Functions.

UNION operator

Obtain a single result set from a combination of two or more SELECT statements. For more information, see UNION.

SQL Server CE Query Analyzer

Use the SQL syntax in the SQL Server CE Query Analyzer to access and modify databases. For more information, see Using
SQL Server CE Query Analyzer.

For information about the SQL grammar, see SQL Reference for SQL Server CE. For more information about Transact-SQL, see
SQL Server Books Online in the MSDN® Library at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=8191

SQL Server CE Books Online

Using Parameters in Queries
Parameters are often used when querying relational databases. Using parameters in queries allows the database client to run an
SQL statement multiple times with potentially different sets of values. This allows queries with the same structure and with only
differing variables to be run without having to recompile the query multiple times. This improved efficiency can be used to
minimize query execution time, especially for large queries or queries that are run many times.

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), input parameters in a query are specified with
parameter markers. A parameter marker is a question mark (?) placed in the location of an input expression in an SQL statement.
Values for the parameters are passed programmatically when the command is executed.

Named parameters are not supported in SQL Server CE. Parameters can be used to replace only column values. They cannot be
used in queries to replace other objects, such as table or column names. The number and order in which you programmatically
specify parameters must correspond to the parameter markers in the query.

The .NET Compact Framework Data Provider for SQL Server CE supports use of parameters in queries. For more information
about the System.Data.SqlServerCe.SqlCeParameter and System.Data.SqlServerCe.SqlCeParameterCollection classes, see
the .NET Compact Framework SDK in Microsoft Visual Studio® .NET.

The OLE DB Provider for SQL Server CE also supports using parameters in queries. For more information, see Parameters.

Examples

A. Using parameters in an SQL query

In the following simple statement using the Northwind sample database, the requested value for CustomerID is passed
programmatically when the SELECT statement is executed.

SELECT * FROM Orders WHERE CustomerID =?

B. Using parameters to an insert a new row

In the following example, an SQL INSERT statement uses parameters to insert a new row into the Employees table of the
Northwind sample database.

INSERT INTO Employees(LastName, FirstName, Title, TitleOfCourtesy,
BirthDate, HireDate, Address, City, Region, PostalCode, Country,
HomePhone, Extension, Photo, Notes, ReportsTo, PhotoPath, rowguid)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

SQL Server CE Books Online

Working with Cursors
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports three types of cursors: base table, scrollable
query, and forward-only. Each cursor type is different. Carefully choose your cursor in order for your application to work most
effectively.

Base Table Cursors

Base table cursors are the lowest-level cursor available and are the only updatable cursors. These cursors work directly against
the storage engine and are the fastest of all supported cursor types. These cursors support the ability to use bookmarks to
position on rows. Indexes are supported to order the rows in a table, to enable seeking on particular values, and to restrict the
rows based on a range of values within an index. Base table cursors can scroll forward or backward with minimal cost.

Base table cursors have dynamic membership, which means two cursors opened over the same table will immediately see
insertions, deletions, and changes to the data (assuming both are in the same transaction scope). Because base table cursors are
updatable, a client can use this cursor type to make changes to the underlying data.

Base table cursors cannot represent the results of a query. Instead, they reflect all the functionality available to a single table in the
database engine. Results of queries, such as SELECT * FROM tablename, are returned through one of the supported query result
cursors.

To open a base table cursor in Microsoft ActiveX® Data Objects for Windows CE 3.1 (ADOCE), pass the adCmdTableDirect flag
when the Recordset object is opened. If this flag is not passed, the cursor cannot be a base table cursor because ADOCE implicitly
prepends SELECT * FROM to the table name. Base table cursors used in ADOCE and SQL Server CE should use adOpenDynamic
and adLockOptimistic, for example:

rs.Open "tablename", cn, adOpenDynamic, adLockOptimistic, adCmdTableDirect

Scrollable Query Cursors

Scrollable query cursors are the most functional query-result cursors. These cursors support scrolling backward and forward and
using bookmarks to position on rows. They do not support updates or indexes. Scrollable cursors do not see external changes to
the data; the results of the query are cached for the lifetime of the cursor. Although scrollable cursors are more functional than
forward-only cursors, scrollable cursors are slower and use more memory. Clients should use scrollable cursors only if scrolling
or bookmarking is necessary. SQL Server CE does not support updatable cursors from the query processor.

Scrollable cursors can use either adOpenStatic or adOpenKeyset. These cursors should use adLockReadOnly and not specify
the adCmdTableDirect flag, for example:

rs.Open "SELECT * FROM tablename WHERE col1 > 2;", cn, adOpenStatic, adLockReadOnly

Forward-only Cursors

Forward-only cursors are only returned by the query processor and are the fastest query-based cursor. These cursors do not
support bookmarks, scrolling backward, indexes, or updating. These cursors should be used in scenarios in which speed and
memory footprint are most important and query results are required. Restarting these cursors is relatively expensive because the
query must be run again.

Forward-only cursors should use adOpenForwardOnly and adLockOptimistic, and the adCmdTableDirect flag should not be
used, for example:

rs.Open "SELECT * FROM tablename WHERE col1 > 2;", cn, adOpenForwardOnly,
adLockOptimistic

See Also

Cursors

SQL Server CE Books Online

Using Transactions
Transactions provide a mechanism to group a series of changes to a database in one atomic operation. After changes have been
made to the database, these changes can be committed or canceled. Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL
Server CE) supports transactions and exposes the ability to use them directly through both Microsoft ActiveX® Data Objects for
Windows CE 3.1 (ADOCE) and the OLE DB layer. Transactions can also be nested. Within a larger transaction, it is possible to have
atomic units of work that are individually committed or canceled.

The SQL Server CE transaction model differs from that of Microsoft SQL Server. When you develop applications to run on both, it
is important to keep the following information in mind:

SQL Server CE supports only single-phase commit transactions.
In SQL Server CE, transactions can be nested up to five levels deep.
The transaction isolation model exposed in SQL Server CE is "Read Committed," which means SQL Server CE can isolate
users from uncommitted changes in a database.
SQL Server CE holds an exclusive lock on a table that has been altered in a transaction until that transaction completes.
Additional attempts to open the table or perform modifications on it will fail until the lock in the transaction is released.
Consequently, it is not generally recommended that DDL operations be performed inside transactions because of the
potential for locking conflicts to occur.
Transactions also influence the way cursors function. In SQL Server CE, if a cursor is opened within a transaction, the cursor
exists within the scope of that transaction. If the transaction is canceled, the cursor ceases to exist. To continue using a cursor
after a canceled transaction, the cursor should be created outside the scope of the transaction. Within the context of ADOCE
and OLE DB for SQL Server CE, this means that the recordset would become a zombie and must be closed. If the transaction
commits, the cursor still exists and is fully functional.

For more information about using transactions with the OLE DB Provider for SQL Server CE, see Transactions.

Examples

The following Microsoft Visual Basic® example shows the use of transactions using ADOCE.

Sub TransactionExample()
 Dim cn As ADOCE.Connection
 Dim rs As ADOCE.Recordset
 Set cn = CreateObject("ADOCE.Connection.3.1")
 Set rs = CreateObject("ADOCE.Recordset.3.1")

 'Open a connection to a SQL Server CE database.
 cn.Open "provider=Microsoft.SQLServer.OLEDB.CE.2.0;data source=\ssce.sdf;"

 ' Begin a transaction.
 cn.BeginTrans
 ' Commit that transaction.
 cn.CommitTrans

 ' Demonstrate that opening a table outside of the transaction
 ' avoids potential problems with DBPROP_ABORTPRESERVE.
 rs.Open "helloworld", cn, adOpenDynamic, adLockOptimistic
 cn.BeginTrans
 cn.RollbackTrans
 rs.MoveFirst ' recordset is still functional
 rs.Close

 ' Opening a rowset within a transaction that is canceled
 ' will zombie the rowset. This can be accessed in ADOCE
 ' through the "Preserve on Abort" property.
 cn.BeginTrans
 rs.Open "helloworld", cn, adOpenDynamic, adLockOptimistic
 Debug.Print rs.Properties("Preserve on Abort")
 Debug.Print rs.State
 cn.RollbackTrans
 rs.MoveFirst
End Sub

SQL Server CE Books Online

Using SQL Server CE Query Analyzer
SQL Server CE Query Analyzer is a graphical tool included in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE) that you can use to:

Create databases.
Manage and connect to other databases on a device.
Verify remote data access (RDA) and replication applications.
Create and modify tables and indexes in a database.
Query objects by using the SELECT statement.
Insert and delete rows in a table.
Modify existing data in a table.
Compact and repair a database.

Note To navigate the graphical interface and execute commands in SQL Server CE Query Analyzer on a device,
you must use a stylus. However, when the device is connected to a desktop computer, the desktop keyboard and
mouse can be used in conjunction with Microsoft Remote Display Control for Windows CE.

Queries that are executed through SQL Server CE Query Analyzer run with the following default behavior, which cannot be
changed:

QUOTED_IDENTIFIER_ON
ANSI_NULLS_ON
ANSI_PADDING_ON
ANSI_NULL_DFLT_ON_ON
CONCAT_NULL_YIELDS_NULL_ON

Installing and Starting SQL Server CE Query Analyzer

The installation of SQL Server CE Query Analyzer depends on the development environment onto which SQL Server CE is
installed. When you install SQL Server CE, SQL Server CE Query Analyzer is not installed by default on a device. For more
information, see Installing SQL Server CE Query Analyzer.

To start SQL Server CE Query Analyzer

Run the SQL Server CE Query Analyzer executable file, Isqlw20.exe, directly from the Start menu or from the directory in
which it is installed.

After SQL Server CE Query Analyzer is installed, you can refer to the following topics that describe how to use it:

Navigating the Query Window
Managing Databases and Database Connections in the Objects Tab
Managing Database Objects in the Objects Tab
Executing SQL Statements in the SQL Tab

SQL Server CE Books Online

Navigating the Query Window
When you start SQL Server CE Query Analyzer, the query window contains the following tabs: Objects, SQL, Grid, and Notes.

Objects tab
Use the Objects tab to manage databases and database connections, and explore, add, and drop database objects. When you
connect to a database, you can view, add, and drop:

Tables
Table columns
Indexes
System tables (view only)

To perform these functions, use the buttons located either at the bottom of the screen on a Pocket PC device, or the top of the
screen on a Handheld PC device. The availability of the buttons depends on the node that is selected in the database tree. For
example, when you select a table, buttons are available for executing a SELECT * FROM table_name statement, adding a column
to the table, creating an index on the table, and dropping the table. The following illustration shows SQL Server CE Query
Analyzer as it appears on a Pocket PC device.

A. Tap to execute a SELECT * FROM Employees statement.
B. Tap to add a column to the Employees table.
C. Tap to create an index on the Employees table.
D. Tap to drop the Employees table.

SQL tab
Is a command-line editor, which you can use to:

Type and execute SQL statements.
Manage SQL Server CE script files.
Save SQL statements directly in SQL Server CE Query Analyzer for editing and reuse.

Grid tab
Shows the results set of a query.

Notes tab
Displays messages after a command has been executed from either the Objects tab or the SQL tab. If a query executes
successfully, a message provides information about the elapsed time and rows affected, if any. If a command results in an error
or a query itself contains an error or unsupported SQL elements, a message provides error information, which includes the
failed query and a short description.

The Notes tab contains a Copy button for selecting text and pasting to the SQL tab or a text editor. For information about
errors, see SQL Server CE Errors.

The Tools Menu

The Tools menu is available in all four panes and contains the following items:

Refresh
Refreshes the view of the database tree in the Objects tab after any changes are made to the database.

Logging
When selected, logs corresponding SQL statements in the SQL tab when commands are executed in the Objects tab. Logged
statements are not saved automatically. To save logged statements, see "Managing SQL Scripts" in Executing SQL Statements in
the SQL Tab.

Fonts...
Changes the font settings of text in all four tabs.

About...
Provides version information about SQL Server CE and SQL Server CE Query Analyzer.

Exit
Exits SQL Server CE Query Analyzer.

Note If you exit SQL Server CE Query Analyzer without closing a database connection, when you restart SQL Server CE Query
Analyzer, the Objects tab shows the last database connection and the last view.

The SQL Menu

The SQL menu is available only in the SQL tab. For more information about the SQL menu, see Executing SQL Statements in the
SQL Tab.

SQL Server CE Books Online

Managing Databases and Database Connections in the Objects
Tab
You must connect to a database before you can view, add, or drop database objects in the Objects tab; or before you can execute
queries against a database in the SQL tab. Use the Objects tab to manage database connections. If you are connecting to a
database for the first time, it is added to the list of managed databases in the Databases folder. If you are connecting to a database
that was connected to previously, the database is listed under the Databases folder.

To connect to a database for the first time

1. In the Objects tab, select the Databases folder.
2. Tap the database connection button. The button must show a green arrow. If the button shows a red square, you are already

connected to a database. Tap the button to disconnect. Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE) allows only one database connection at a time.

Indicates no current connection to the database. Tap to connect.
Indicates an established connection to the database. Tap to
disconnect.

3. In the Connect to SQL Server CE dialog box, enter the path for the database or tab the browse (...) button to select a
database.

Note On a Handheld PC device, you can browse to the root directory to locate a database. On a Pocket PC
device, you can browse to the My Documents folder. To locate databases at the root directory, which includes
any sample databases, type a backslash (\) in front of the database name. For example, to connect to
Northwind.sdf, type \Northwind.sdf.

4. If the database is password protected, enter a password.
5. Tap Connect.

To connect to a database that was connected to previously

In the Objects tab, expand the Databases folder, select the database, and then tap the database connection button.

Note If a database connection is underway when you try to connect to another database, SQL Server CE drops
the current connection and starts a new connection as part of the same operation.

If you exit SQL Server CE Query Analyzer without closing a database connection, when you restart SQL Server CE Query
Analyzer, the Objects tab shows the last database connection and the last view.

To disconnect from the current database

In the Objects tab, select either the Databases folder or the database you want to disconnect from, and then tap the
database connection button. Before you tap, the button displays a red square. If the button displays a green arrow, you are
already disconnected.

To remove a single database from the list of managed databases in the Databases folder

1. Select the database you want to remove. If you are connected to the database, you must disconnect.
2. Tap the database management button. In the message window that appears, tap OK.

Tap to stop managing the database.

To remove all databases from the list of managed databases in the Databases folder

1. Disconnect from the current database, if necessary.
2. Select the Databases folder, and then tap the database management button.

To compact and repair a database

1. Disconnect from the current database, if necessary.
2. Select the database you want to compact and repair, and then tap the compact and repair button.

Tap to compact and repair the database.

For information about compacting and repairing a database, see Maintaining SQL Server CE Databases.

SQL Server CE Books Online

Managing Database Objects in the Objects Tab
In the Objects tab, you can add and drop databases, tables, and indexes; and define many of the most common properties of
tables and indexes when you create them. For more specific table and index definition requirements, however, you must execute
an SQL statement in the SQL tab.

To create a database

1. In the Objects tab, select the Databases folder, and then tap the database connection button. The button must show a green
arrow. If the button shows a red square, you are already connected to a database. Tap the button to disconnect. Microsoft®
SQL Server™ 2000 Windows® CE Edition (SQL Server CE) allows only one database connection at a time.

2. In the Connect to SQL Server CE dialog box, enter the path and name of the database, and then tap New Database.
3. In the Password box, enter a password if you want the database to be password-protected. In the Sort box, select a

database collation. The default collation, General, corresponds to Latin1_general. To encrypt the database, select Encrypt.

Note Encryption must be used in conjunction with a password. Other conditions apply to implement
encryption. For more information about passwords and encryption in SQL Server CE, see Using the SQL Server
CE Database Security Features.

4. Tap Create.

To create a table

1. In the Objects tab, select either the database to which you are connected or the Tables folder of the database connection,
and then tap the create table button.

Tap to create a table.
2. In the Table Definition dialog box, enter a name for the table, and then tap Insert Column.
3. In the Column Definition dialog box, specify the properties of a column. The properties include: column name, data type,

length (if applicable), nullability, precision, scale, and identity. You can also define a UNIQUE or PRIMARY KEY constraint and
a default value for the column.

Note When you create a table with a UNIQUE or PRIMARY KEY constraint, SQL Server CE automatically creates
a unique index on that table. For more information, see Viewing and Modifying Index Properties.

For information about the data types that SQL Server CE supports, see Data Types.

4. To return to the Table Definition dialog box, tap OK. Either repeat the process for additional columns, or tap OK to finish.

To add a column to a table

1. In the Objects tab, connect to a database, and expand the Tables folder.
2. Expand the table you want to add a column to, select the Columns folder, and then tap the add column definition button.

Tap to add a column to a table.
3. In the Column Definition dialog box, specify the properties of a column. The properties include: column name, data type,

length (if applicable), nullability, precision, scale, and identity. You can also define a UNIQUE or PRIMARY KEY constraint and
a default value for the column. To create the column, tap OK.

Note When you create a table with a UNIQUE or PRIMARY KEY constraint, SQL Server CE automatically creates
a unique index on that table. For more information, see Viewing and Modifying Index Properties.

For information about the data types that SQL Server CE supports, see Data Types.

To execute a SELECT * FROM table_name statement

1. In the Objects tab, connect to a database, expand the Table folder, and then select a table.
2. Tap the execute button. The results of the SELECT * FROM table_name statement appear in the Grid tab, and the messages

appear in the Notes tab.
Tab to execute a SELECT * FROM table_name statement.

To show/hide system tables

In the Objects tab, connect to a database, select the Tables folder, and then tap the system table button.

Tap to view system tables.
Tap to hide system tables.

To create an index

1. In the Objects tab, connect to a database, and then expand the Tables folder.
2. In the Tables folder, select the table you want to index (or expand that table and select the Indexes folder), and then tap the

create index button.
Tab to create an index.

3. In the Index Definition dialog box, enter a name for the index. If the index is unique, select Unique.
4. In the Columns list box, select the column(s) you want to base the index on. If you want the index sorted on that column in

ascending order, tap A->. If you want the index sorted on that column in descending order, tap D->. To remove a column
from the list of index keys, select the column and tap <-.

5. Tap OK.

Note When you create a table with a UNIQUE or PRIMARY KEY constraint, SQL Server CE automatically creates
a unique index on that table. For more information, see Viewing and Modifying Index Properties.

For information about how to view and modify index properties, see Viewing and Modifying Index Properties.

To delete databases and database objects

To delete databases and database objects in the Objects tab, select the object you want to delete, and then tap the delete
button. For example, if you want to drop the Territories table from the Northwind sample database, select Territories and
tap the delete button. If you only want to drop the TerritoryDescription column of the Territories table, select
TerritoryDescription and tap the delete button. In both cases, a warning message appears asking whether you are sure
you want to drop the object.

Tap to delete a database object.

SQL Server CE Books Online

Viewing and Modifying Index Properties
Viewing and Modifying Index Properties

By expanding the Indexes folder of a table, you can view all the indexes of a table, including any unique indexes, as shown in the
following illustration. (The illustrations in this topic show SQL Server CE Query Analyzer as it appears on a Pocket PC device.)

A. Indexes on the Order Details table.
B. Tap to create a new index on the Order Details table.
C. Unique index.

By expanding an individual index, you can view the columns on which the index is built. The columns are listed in sort order (if the
index is sorted on more than one column). To change the order in which a column appears, select the column and tap either the
MOVE DOWN or MOVE UP arrow (see the following illustration).

You can also view whether a particular index column is sorted in ascending or descending order. The index column icon shows a
downward pointing arrow if it is sorted in descending order, and an upward pointing arrow if it is sorted in ascending order. To
change whether a particular column is sorted in ascending or descending order, select the column and tap the sort button (see the
following illustration).

To remove a column from an index entirely, select the column and tap the delete icon (see the following illustration).

A. Columns on which the PK_Order_Details index is built.
B. Tap to change the sort order of the OrderID column to ascending.
C. Tap to move the OrderID column down in the sort order of the PK_Order_Details index.

D. Tap to move the ProductID column up in the sort order of the PK_Order_Details index. (ProductID must be selected first.)
E. Tap to drop the OrderID column from the PK_Order_Details index.

SQL Server CE Books Online

Executing SQL Statements in the SQL Tab
When you use SQL Server CE Query Analyzer to execute SQL statements, the following conditions apply:

You can execute queries comprised of one SQL statement, or multiple statements separated by a semicolon (;).
If no text is selected when executing, Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) attempts to
execute all text in the SQL tab as a single batch.
You can perform text-editing tasks using the cut, copy, and paste buttons.
On the SQL menu, when Word Wrap is selected, SQL statements wrap to fit on the screen of the SQL tab. When Word
Wrap is not selected, SQL statements flow beyond the screen.

Tap to execute an SQL statement or batch.
Tap to cut text.
Tap to copy text.
Tap to paste text.

Managing SQL Scripts

In the SQL tab, you can create new script files for SQL Server CE, open existing ones, and save the files to a directory. You can also
save frequently used SQL statements directly in SQL Server CE Query Analyzer for editing and reuse. The following tasks are
performed primarily by using the New, Open, and Save commands on the SQL menu.

To start a new SQL Server CE script file

On the SQL menu, tap New. This clears all text from the SQL tab to start a new script file.

To open a SQL Server CE script file

To open the most recent SQL Server CE script files that were previously accessed, tap the Tools menu, and then tap the file
you want to open.

Or

On the SQL menu, tap Open, and in the Name list box, tap the script file you want to open. If the file you want to open does
not appear in the Name list box, in the Folder box, select the directory of the file; and in the Type box, specify the file type.

To save a SQL Server CE script file

To save the current script file, on the SQL menu, tap Save. If the file already exists, the most recent version that appears in
the SQL tab is saved in its current directory.

Or

If the script file is new, in the Save As dialog box, enter the appropriate information in the Name, Folder, Type, and
Location boxes.

Saving Frequently Used SQL Statements for Editing and Reuse

You can save up to 10 frequently used SQL statements directly in SQL Server CE Query Analyzer, and browse the text of each
statement simultaneously to determine which one you want to open for editing and reuse.

To save SQL statements

1. In the SQL tab, select the text you want to save, and then tap the preset button.
Tap to save an SQL statement.

2. In the Button Presets dialog box, tap the preset button number (1 through 10) you want the statement to correspond to.
The first line of the statement appears next to the button number. If any SQL statements have been added previously, the
first line of their contents appears next to their assigned button numbers. If the button number corresponds to a previously
added statement, the new statement overwrites it.

3. To save, tap OK.

To open a saved statement

In the SQL tab, tap the preset button number corresponding to the saved statement. If you are not sure which button

number to choose, tap the preset button to view the list of saved statements, and then tap Cancel to return to the SQL tab.
The following illustration shows SQL Server CE Query Analyzer as it appears on a Pocket PC device.

A. Tap to open a saved SQL statement. (Tap the number corresponding to the preset button number the statement was
saved under.)
B. Tap to view a list of saved SQL statements and their corresponding preset button numbers, or to save an SQL statement.
(Text must be entered and selected to save an SQL statement.)

If you edit the SQL statement after opening it, the changes will not be reflected in the Button Presets dialog box. To save
the changes, repeat the save process for saving a statement described previously.

SQL Server CE Books Online

SQL Reference for SQL Server CE
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) includes SQL grammar that you can use to query a
database and to insert, update, and delete data in tables in a database. The topics in this section describe the SQL grammar, as
well as the items listed in the following table.

For information about See
SQL syntax conventions and query
elements

SQL Overview

Data types Data Types
Functions Functions
Information schema views Information Schema
Operators Operators
Reserved words Reserved Words

SQL Server CE also includes SQL Server CE Query Analyzer, a tool you can use to query tables in a database. For more
information, see Using SQL Server CE Query Analyzer.

The examples in the reference topics were tested using isqlw_wce and are not case sensitive. For more information about SQL
grammar and Transact-SQL usage and examples, see SQL Server Books Online.

SQL Server CE Books Online

SQL Overview
You can use SQL grammar to query a database and to insert, update, and delete rows in tables in a database in Microsoft® SQL
Server™ 2000 Windows® CE Edition (SQL Server CE).

Syntax Conventions

The syntax diagrams in this reference use the following conventions.

Convention Used for
UPPERCASE SQL Server CE keywords.
Italic User-supplied parameters of SQL Server CE syntax.
| (vertical bar) Separating syntax items within brackets or braces. You can choose

only one of the items.
[] (brackets) Optional syntax items. Do not type the brackets.
{} (braces) Required syntax items. Do not type the braces.
[,...n] Indicating that the preceding item can be repeated n number of

times. The occurrences are separated by commas.
[...n] Indicating that the preceding item can be repeated n number of

times. The occurrences are separated by blanks.
bold Database names, table names, column names, index names, stored

procedures, utilities, data type names, and text that must be typed
exactly as shown.

<label> ::= The name for a block of syntax. This convention is used to group
and label portions of lengthy syntax or a unit of syntax that can be
used in more than one place within a statement. Each location in
which the block of syntax can be used is indicated with the label
enclosed in chevrons: <label>.

Query Elements

You can use identifiers, delimiters, and comments when you query a database in SQL Server CE.

Identifiers

The name of a database object is known as an identifier. The object name is created when the object is defined; the identifier is
used to reference the object.

With SQL Server CE, because you must connect to a database that already exists in the device before you can execute queries, you
do not need to qualify object identifiers with owner, database, or server names. You can reference objects in one of these ways:

object_name
table_name.object_name

Delimiters

You must delimit identifiers when they do not comply with the rules for the format of regular identifiers or when reserved
keywords are used as identifiers. The following table summarizes the use of delimiters in SQL Server CE.

Delimiter Use in SQL Server CE
Brackets [] Not supported
Double quotation marks " " Noncompliant identifiers:

Multiple-word identifiers
Reserved words used as identifiers

Single quotation marks ' ' String data values

Comments

You can include text strings that should not be executed in the code as comments. Comments can be used to document code or to

temporarily disable certain parts of a SQL statement.

You can delineate text as comments using either of the following styles:

/* text_of_comment */
---- text_of_comment

Default Behavior

Queries executed through SQL Server CE Query Analyzer run with the following default behavior, which cannot be changed:

QUOTED_IDENTIFIER_ON
ANSI_NULLS_ON
ANSI_PADDING_ON
ANSI_NULL_DFLT_ON_ON
CONCAT_NULL_YIELDS_NULL_ON

For more information, see Using SQL Server CE Query Analyzer.

SQL Server CE Books Online

+ (Add)
Adds two numbers. This addition arithmetic operator also can add a number, in days, to a date.

Syntax

expression + expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types in the
numeric category, except the bit data type.

Result Types

Returns the data type of the argument with the higher precedence.

Examples

The following example computes the total number of customers when the goal of adding 50 new customers is achieved. This
query assumes that there are 90 customers listed in the Customers table in the Northwind database.

SELECT COUNT(CustomerID) + 50 AS "Target Total" FROM Customers

This is the result set:

Target Total

140

SQL Server CE Books Online

+ (Positive)
Is a unary operator that returns the positive value of a numeric expression.

Syntax

+ numeric_expression

Arguments

numeric_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types in the
numeric data type category, except the datetime data type.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint expression is promoted to a smallint result.

Examples

The following examples use the Orders table in the Northwind database to show how the positive and negative unary operators
function. When a positive unary operator is set against a negative value, the returned value is negative (positive_value *
negative_value = negative_value). When a negative unary operator is set against a negative value, the returned value is positive
(negative_value * negative_value = positive_value).

SELECT (DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--Without a unary operator, the value returned is '-12'.

SELECT +(DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--With the positive unary operator, the value returned is '-12'.

SELECT -(DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--With the negative unary operator, the value returned is '12'.

SQL Server CE Books Online

+ (String Concatenation)
Is an operator in a string expression that concatenates two or more character or binary strings, columns, or a combination of
strings and column names into one expression.

Syntax

expression + expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types in the
character and binary data type categories, except the image and ntext data types. Both expressions must be of the same data
type, or one expression must be able to be implicitly converted to the data type of the other expression.

Result Types

Returns the data type of the argument with the highest precedence.

Examples

The following example uses the + operator to get an alphabetical listing of all employees in the Northwind database.

SELECT FirstName + ' ' + LastName AS "Employee Listing" FROM Employees ORDER BY FirstName

SQL Server CE Books Online

- (Subtract)
Subtracts two numbers. This subtraction arithmetic operator can also subtract a number, in days, from a date.

Syntax

expression - expression

Arguments

expression
Is any valid expression Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
numeric data type category, except the bit data type.

Result Types

Returns the data type of the argument with the higher precedence.

Examples

The following example uses the subtraction arithmetic operator to get the number of days between the time a Northwind
customer placed an order and when the order was shipped.

SELECT (DATEPART(day, ShippedDate) - DATEPART(day, OrderDate)) FROM Orders WHERE OrderID
= '10248'
--The value returned is '12'.

SQL Server CE Books Online

- (Negative)
Is a unary operator that returns the negative value of a numeric expression.

Syntax

- numeric_expression

Arguments

numeric_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
numeric data type category, except the datetime data type.

Result Types

Returns the data type of numeric_expression, except that an unsigned tinyint expression is promoted to a signed smallint result.

Examples

The following examples use the Northwind database to show how the positive and negative unary operators function. When a
positive unary operator is set against a negative value, the returned value is negative (positive_value * negative_value =
negative_value). When a negative unary operator is set against a negative value, the returned value is positive (negative_value *
negative_value = positive_value).

SELECT -(DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--With the negative unary operator, the value returned is '12'.

SELECT (DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--Without a unary operator, the value returned is '-12'.

SELECT +(DATEPART(day, OrderDate) - DATEPART(day, ShippedDate)) FROM Orders WHERE OrderID
= '10248'
--With the positive unary operator, the value returned is '-12'.

SQL Server CE Books Online

* (Multiply)
Multiplies two expressions (an arithmetic multiplication operator).

Syntax

expression * expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
numeric data type category, except the datetime data type.

Result Types

Returns the data type of the argument with the higher precedence.

Examples

The following example determines the cost of a customer order by multiplying the quantity ordered by the unit price from the
Order Details table in the Northwind database.

SELECT UnitPrice * Quantity AS "Total Cost" FROM "Order Details" WHERE ProductID = '11'
AND OrderID = '10248'

This is the result set:

Total Cost

168

SQL Server CE Books Online

/ (Divide)
Divides one number by another (an arithmetic division operator).

Syntax

dividend / divisor

Arguments

dividend
Is the numeric expression to divide. dividend can be any valid expression in Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) of any of the data types of the numeric data type category, except the datetime data type.

divisor
Is the numeric expression to divide the dividend by. divisor can be any valid SQL Server expression of any of the data types of
the numeric data type category, except the datetime data type.

Result Types

Returns the data type of the argument with the higher precedence.

Examples

The following example uses the divide arithmetic operator to determine the average total cost for each order of product 51 in the
Northwind database. Product 51 has 39 orders.

SELECT (SUM(UnitPrice * Quantity))/39 AS "Avg. Cost per Order" FROM "Order Details" WHERE
ProductID = '51'

This is the result set:

Avg. Cost per Order

1147.2461

SQL Server CE Books Online

% (Modulo)
Provides the remainder of one number divided by another.

Syntax

dividend % divisor

Arguments

dividend
Is the numeric expression to divide. dividend must be any valid expression in Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) of the integer data type category.

divisor
Is the numeric expression to divide the dividend by. divisor must be any valid SQL Server expression of any of the data types of
the integer data type category.

Result Types

int

Examples

The following example uses modulo to identify employees in the Northwind database with even-numbered EmployeeID values.

SELECT EmployeeID, LastName, EmployeeID % 2 FROM Employees WHERE EmployeeID % 2 = '0'

This is the result set:

EmployeeID LastName #2
---------- -------- ---
2 Fuller 0
4 Peacock 0
6 Suyama 0
8 Callahan 0

SQL Server CE Books Online

& (Bitwise AND)
Performs a bitwise logical AND operation between two integer values.

Syntax

expression & expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
integer data type category. expression is an integer parameter that is treated and transformed into a binary number for the
bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Examples

The following example performs the bitwise AND operation between two integer columns.

CREATE TABLE bitwise (a_int_value int NOT NULL, b_int_value int NOT NULL)
INSERT bitwise VALUES (170, 75)
SELECT a_int_value & b_int_value FROM bitwise
--Returns 10.

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise AND operation on these two values produces the
binary result 0000 0000 0000 1010, which is decimal 10.

(A & B)
 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 0000 1010

SQL Server CE Books Online

| (Bitwise OR)
Performs a bitwise logical OR operation between two given integer values as translated to binary expressions within SQL
statements.

Syntax

expression | expression

Arguments

expression

Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data
types of the integer data type category. expression is an integer that is treated and transformed into a binary number
for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Examples

The following example performs the bitwise OR operation between two integer columns.

CREATE TABLE bitwise (a_int_value int NOT NULL, b_int_value int NOT NULL)
INSERT bitwise VALUES (170, 75)
SELECT a_int_value | b_int_value FROM bitwise
--Returns 235

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise OR operation on these two values produces the
binary result 0000 0000 1110 1011, which is decimal 235.

(A | B)
 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 1110 1011

SQL Server CE Books Online

^ (Bitwise Exclusive OR)
Performs a bitwise exclusive OR operation between two given integer values as translated to binary expressions within SQL
statements.

Syntax

expression ^ expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
integer data type category, or of the binary or varbinary data type. expression is an integer that is treated and transformed into
a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, or a tinyint if the input values are tinyint.

Examples

The following example performs the bitwise exclusive OR operation between two integer columns.

CREATE TABLE bitwise (a_int_value int NOT NULL, b_int_value int NOT NULL)
INSERT bitwise VALUES (170, 75)
SELECT a_int_value ^ b_int_value FROM bitwise
--Returns 225

The binary representation of 170 (a_int_value or A, below) is 0000 0000 1010 1010. The binary representation of 75
(b_int_value or B, below) is 0000 0000 0100 1011. Performing the bitwise exclusive OR operation on these two values produces
the binary result 0000 0000 1110 0001, which is decimal 225.

(A ^ B)
 0000 0000 1010 1010
 0000 0000 0100 1011

 0000 0000 1110 0001

SQL Server CE Books Online

~ (Bitwise NOT)
Performs a bitwise logical NOT operation for one given integer value as translated to binary expressions within SQL statements.

Syntax

~ expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) of any of the data types of the
integer data type category, or of the binary or varbinary data type. expression is an integer that is treated and transformed into
a binary number for the bitwise operation.

Result Types

Returns an int if the input values are int, a smallint if the input values are smallint, a tinyint if the input values are tinyint, or a
bit if the input values are bit.

Examples

The following example performs the bitwise NOT operation between two integer columns.

CREATE TABLE bitwise (a_int_value int NOT NULL, b_int_value int NOT NULL)
INSERT bitwise VALUES (170, 75)
SELECT ~ a_int_value, ~ b_int_value FROM bitwise
--Returns -171 and -76

SQL Server CE Books Online

= (Equals)
Compares two expressions (a comparison operator). When you compare nonnull expressions, the result is TRUE when both
operands are equal; otherwise, the result is FALSE.

Syntax

expression = expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the equals comparison operator to focus a search to a specific customer in the Orders table in the
Northwind database.

SELECT * FROM Orders WHERE CustomerID = 'VINET'

SQL Server CE Books Online

> (Greater Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand has a value higher than the right operand; otherwise, the result is FALSE.

Syntax

expression > expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the greater than comparison operator to find all orders in the Order Details table of the Northwind
database with quantities of more than 100 units.

SELECT * FROM "Order Details" WHERE Quantity > '100'

SQL Server CE Books Online

< (Less Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand has a value lower than the right operand; otherwise, the result is FALSE.

Syntax

expression < expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the less than comparison operator to find all orders in the Order Details table of the Northwind
database with quantities fewer than 10 units.

SELECT * FROM "Order Details" WHERE Quantity < '10'

SQL Server CE Books Online

>= (Greater Than or Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand has a value higher than or equal to the right operand; otherwise, the result is FALSE.

Syntax

expression > = expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the greater than or equal to comparison operator to find all orders in the Order Details table of the
Northwind database with quantities equal to or more than 100 units.

SELECT * FROM "Order Details" WHERE Quantity >= '100'

SQL Server CE Books Online

<= (Less Than or Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand has a value lower than or equal to the right operand; otherwise, the result is FALSE.

Syntax

expression < = expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the less than or equal to comparison operator to find all orders in the Order Details table of the
Northwind database with quantities equal to or less than 10 units.

SELECT * FROM "Order Details" WHERE Quantity <= '10'

SQL Server CE Books Online

<> (Not Equal To)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand is not equal to the right operand; otherwise, the result is FALSE.

Syntax

expression < > expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the not equal to comparison operator to find all orders in the Order Details table of the Northwind
database with quantities not equal to 100 units.

SELECT * FROM "Order Details" WHERE Quantity <> '100'

SQL Server CE Books Online

!= (Not Equal To)
Tests whether one expression is not equal to another expression (a comparison operator). Functions the same as Not Equal To
(<>).

SQL Server CE Books Online

!< (Not Less Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand does not have a value lower than the right operand; otherwise, the result is FALSE.

Syntax

expression ! < expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the not less than comparison operator to find all orders in the Order Details table of the Northwind
database with quantities that are equal to or more than 100 units.

SELECT * FROM "Order Details" WHERE Quantity !< '100'

SQL Server CE Books Online

!> (Not Greater Than)
Compares two expressions (a comparison operator). When you compare nonnull expressions using this operator, the result is
TRUE when the left operand does not have a value higher than the right operand; otherwise, the result is FALSE.

Syntax

expression ! > expression

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Both expressions must have
implicitly convertible data types. The conversion depends on the rules of data type precedence.

Result Types

bit

Examples

The following example uses the not greater than comparison operator to find all orders in the Order Details table of the
Northwind database with quantities equal to or less than 10 units.

SELECT * FROM "Order Details" WHERE Quantity !> '10'

SQL Server CE Books Online

@@IDENTITY
Returns the last-inserted identity value.

Syntax

@@IDENTITY

Return Types

numeric

SQL Server CE Books Online

ABS
Returns the absolute, positive value of the given numeric expression.

Syntax

ABS (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that are implicitly convertible to
float.

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example returns the absolute value of the difference between the units of products in stock and units of products
that have been ordered in the Products table of the Northwind database.

SELECT (UnitsInStock - UnitsOnOrder), ABS(UnitsInStock - UnitsOnOrder)
FROM Products

SQL Server CE Books Online

ACOS
Returns the angle, in radians, whose cosine is the given float expression; also called arccosine.

Syntax

ACOS (float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float, with a value from -1 through 1. Values
outside this range return NULL and report a domain error.

Return Types

float

Examples

The following example returns the arccosine of the cosine of various angles.

CREATE TABLE Acosine ("COS(0)" float, "COS(PI()/6)" float, "COS(PI()/4)" float,
"COS(PI()/3)" float, "COS(PI()/2)" float)
INSERT INTO Acosine VALUES (COS(0), COS(PI()/6), COS(PI()/4), COS(PI()/3), COS(PI()/2))
SELECT ACOS ("COS(0)"), ACOS ("COS(PI()/6)"), ACOS ("COS(PI()/4)"), ACOS ("COS(PI()/3)"),
ACOS ("COS(PI()/2)")
FROM Acosine

SQL Server CE Books Online

ALL
Compares a scalar value with a single-column set of values.

Syntax

scalar_expression { = | <> | != | > | >= | !> | < | <= | !< } ALL (subquery)

Arguments

scalar_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

{ = | <> | != | > | >= | !> | < | <= | !< }
Is a comparison operator.

subquery
Is a subquery that returns a result set of one column. The data type of the returned column must be the same data type as the
data type of scalar_expression.

subquery is a restricted SELECT statement (the ORDER BY clause, the COMPUTE clause, and the INTO keyword are not allowed).

Return Types

bit

Result Value

Returns TRUE when the comparison specified is TRUE for all pairs (scalar_expression, x) where x is a value in the single-column
set; otherwise, returns FALSE.

SQL Server CE Books Online

ALTER TABLE
Modifies a table definition by altering, adding, or dropping columns and constraints.

Syntax

ALTER TABLE table_name
{ [ALTER COLUMN column_name
 {DROP DEFAULT
 | SET DEFAULT constant_expression
 | IDENTITY [(seed , increment)]
 }
| ADD
 { < column_definition > | < table_constraint > } [,...n]
| DROP
 { [CONSTRAINT] constraint_name
 | COLUMN column }
] }
< column_definition > ::=
 { column_name data_type }
 [[DEFAULT constant_expression]
 | IDENTITY [(seed , increment)]
]
 [ROWGUIDCOL]
 [< column_constraint >] [...n]]
< column_constraint > ::=
 [NULL | NOT NULL]
 [CONSTRAINT constraint_name]
 {
 | { PRIMARY KEY | UNIQUE }
 | REFERENCES ref_table [(ref_column)]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 }
< table_constraint > ::=
 [CONSTRAINT constraint_name]
 { [{ PRIMARY KEY | UNIQUE }
 { (column [,...n]) }
 | FOREIGN KEY
 [(column [,...n])]
 REFERENCES ref_table [(ref_column [,...n])]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 }

Arguments

table_name
Is the name of the new table. Table names must conform to the rules for identifiers. table_name must be unique within the
database. table_name can contain a maximum of 128 characters.

ALTER COLUMN
Specifies that the given column is to be changed or altered.

column_name
Is the name of a column in the table. Column names must conform to the rules for identifiers and must be unique in the table.

data_type
Specifies the column data type. For information about data types, see Data Types.

DEFAULT
Specifies the value provided for the column when a value is not explicitly supplied during an insert action. DEFAULT definitions
can be applied to any column except those defined by the IDENTITY property. DEFAULT definitions are removed when the table
is dropped. Only a constant value, such as a character string or a date function, can be used as a default.

IDENTITY
Indicates that the new column is an identity column. When a new row is added to the table, Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) provides a unique, incremental value for the column. Identity columns are commonly
used in conjunction with PRIMARY KEY constraints to serve as the unique row identifier for the table. The IDENTITY property can
be assigned only to int columns. Only one identity column can be created per table. Bound defaults and DEFAULT constraints
cannot be used with an identity column. You must specify both the seed and increment, or neither. If neither is specified, the

default is (1,1).
seed

Is the value used for the first row that is loaded into the table.
increment

Is the incremental value added to the identity value of the previous row that is loaded.
ADD

Specifies that one or more column definitions, computed column definitions, or table constraints are added.
DROP { [CONSTRAINT] constraint_name | COLUMN column}

Specifies that constraint_name or column_name is to be removed from the table.
ROWGUIDCOL

Indicates that the new column is a row global unique identifier column. Only one uniqueidentifier column per table can be
designated as the ROWGUIDCOL column. The ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

ROWGUIDCOL automatically generates values for new rows inserted into the table.

NULL | NOT NULL
Are keywords that specify whether null values are allowed in the column. NULL is not strictly a constraint but can be specified in
the same manner as NOT NULL.

CONSTRAINT
Is an optional keyword indicating the beginning of a definition for a PRIMARY KEY, UNIQUE, or FOREIGN KEY constraint.
Constraints are special properties that enforce data integrity and create special types of indexes for the table and its columns.

constraint_name
Is the name of a constraint. constraint_name is optional and must be unique within a database. If constraint_name is not
specified, SQL Server CE generates a constraint name.

PRIMARY KEY
Is a constraint that enforces entity integrity for a given column or columns using a unique index. Only one PRIMARY KEY
constraint can be created per table.

UNIQUE
Is a constraint that provides entity integrity for a given column or columns using a unique index. Columns in a UNIQUE
constraint must also be NOT NULL. A table can have multiple UNIQUE constraints.

Note SQL Server CE can use indexes to enforce PRIMARY KEY and UNIQUE constraints. You should not rely on this
behavior nor try to manipulate any indexes that are created as part of a constraint.

FOREIGN KEY...REFERENCES
Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY constraints require that each value in
the column exists in the specified column in the referenced table.

ref_table
Is the name of the table referenced by the FOREIGN KEY constraint.

(ref_column [,...n])
Is a column or list of columns from the table referenced by the FOREIGN KEY constraint.

ON DELETE {CASCADE | NO ACTION}
Specifies what action takes place to a row in the table that is created when that row has a referential relationship and the
referenced row is deleted from the parent table. The default is NO ACTION.

If CASCADE is specified, a row is deleted from the referencing table when the corresponding referenced row is deleted
from the parent table. If NO ACTION is specified, SQL Server CE raises an error, and the delete action on the
referenced row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table:
the Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If a DELETE statement is executed on a row in the Customers table and an ON DELETE CASCADE action is specified for
Orders.CustomerID, SQL Server CE checks for one or more dependent rows in the Orders table. If any exist, the
dependent rows in the Orders table are deleted, as well as the row referenced in the Customers table.

Alternately, if NO ACTION is specified, SQL Server CE raises an error and rolls back the delete action on the row in the
Customers table when there is at least one row in the Orders table that references it.

ON UPDATE {CASCADE | NO ACTION}
Specifies what action takes place to a row in the table created, when that row has a referential relationship and the referenced
row is updated in the parent table. The default is NO ACTION.

If CASCADE is specified, the row is updated in the referencing table if the corresponding referenced row is updated in
the parent table. If NO ACTION is specified, SQL Server CE raises an error, and the update action on the referenced

row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table:
the Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on a row in the Customers table and an ON UPDATE CASCADE action is specified
for Orders.CustomerID, SQL Server CE checks for one or more dependent rows in the Orders table. If any exist, the
dependent rows in the Orders table are updated, as well as the row referenced in the Customers table.

Alternately, if NO ACTION is specified, SQL Server CE raises an error and rolls back the update action on the
referenced row in the Customers table when there is at least one row in the Orders table that references it.

column
Is a column or list of columns, in parentheses, used in table constraints to indicate the columns used in the definition of the
constraint.

n
Is a placeholder indicating that the preceding item can be repeated n number of times.

Examples

A. Changing the seed and increment values on the identity column

The following example changes the seed and increment values on the identity column.

CREATE TABLE MyCustomers (CustID INTEGER IDENTITY (100,1) PRIMARY KEY, CompanyName
NvarChar (50))
INSERT INTO MyCustomers (CompanyName) VALUES ('A. Datum Corporation')
ALTER TABLE MyCustomers ALTER COLUMN CustId IDENTITY (200, 2)

B. Adding a default value to the identity column

The following example modifies the CompanyName column so that it has a default value.

ALTER TABLE MyCustomers ALTER COLUMN CompanyName SET DEFAULT 'A. Datum Corporation'

C. Dropping a default value from the identity column

The following example modifies the CompanyName column so that it does not have a default value.

ALTER TABLE MyCustomers ALTER COLUMN CompanyName DROP DEFAULT

SQL Server CE Books Online

AND
Combines two Boolean expressions and returns TRUE when both expressions are TRUE. When more than one logical operator is
used in a statement, AND operators are evaluated first. You can change the order of evaluation by using parentheses.

Syntax

Boolean_expression AND boolean_expression

Arguments

Boolean_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) that returns a Boolean value:
TRUE, FALSE, or UNKNOWN.

Result Types

bit

Result Value

Returns TRUE when both expressions are TRUE.

Examples

The following example uses AND to get the total cost of a specific order for a particular product in the Northwind database.

SELECT UnitPrice * Quantity AS "Total Cost" FROM "Order Details" WHERE ProductID = '11'
AND OrderID = '10248'

SQL Server CE Books Online

ASIN
Returns the angle, in radians, whose sine is the given float expression (also called arcsine).

Syntax

ASIN (float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float, with a value from -1 through 1. Values
outside this range report a domain error.

Return Types

float

Examples

The following example returns the arcsine of the sine of various angles.

CREATE TABLE Asine ("SIN(0)" float, "SIN(PI()/6)" float, "SIN(PI()/4)" float,
"SIN(PI()/3)" float, "SIN(PI()/2)" float)
INSERT INTO Asine VALUES (SIN(0), SIN(PI()/6), SIN(PI()/4), SIN(PI()/3), SIN(PI()/2))
SELECT ASIN("SIN(0)"), ASIN("SIN(PI()/6)"), ASIN("SIN(PI()/4)"), ASIN("SIN(PI()/3)"),
ASIN("SIN(PI()/2)")
FROM Asine

SQL Server CE Books Online

ATAN
Returns the angle in radians whose tangent is the given float expression (also called arctangent).

Syntax

ATAN (float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the arctangent of the tangent of various angles.

CREATE TABLE Atangent ("TAN(0)" float, "TAN(PI()/6)" float, "TAN(PI()/4)" float,
"TAN(PI()/3)" float, "TAN(PI()/2)" float)
INSERT INTO Atangent VALUES (TAN(0), TAN(PI()/6), TAN(PI()/4), TAN(PI()/3), TAN(PI()/2))
SELECT ATAN("TAN(0)"), ATAN("TAN(PI()/6)"), ATAN("TAN(PI()/4)"), ATAN("TAN(PI()/3)"),
ATAN("TAN(PI()/2)")
FROM Atangent

SQL Server CE Books Online

ATN2
Returns the angle, in radians, whose tangent is the quotient of two given float expressions (also called arctangent).

Syntax

ATN2 (float_expression, float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float.

Return Types

float

SQL Server CE Books Online

AVG
Returns the average of the values in a group. Null values are ignored.

Syntax

AVG ([ALL] expression)

Arguments

ALL
Applies the aggregate function to all values. ALL is the default.

expression
Is an expression of the exact numeric or approximate numeric data type categories, except for the bit data type. Aggregate
functions and subqueries are not permitted.

Return Types

The return type is determined by the type of the evaluated result of expression.

Expression result Return type
integer category int
numeric category (p, s) numeric(28, s) divided by numeric(10, 0)
money category money
float and real category float

Examples

The following example uses the Orders table in the Northwind database. The example determines the average freight shipped to
a company that has a CustomerID of VINET in 1996.

--Get all OrderIDs for the VINET CustomerID.
SELECT OrderID, ShippedDate FROM Orders WHERE CustomerID = 'VINET'

This is the result set:

OrderID ShippedDate

10248 1996-07-16 00:00:00.000
10274 1996-08-16 00:00:00.000
10295 1996-09-10 00:00:00.000
10737 1997-11-18 00:00:00.000
10739 1997-11-17 00:00:00.000

--Get the average freight for all orders shipped in 1996.
SELECT AVG(Freight) AS "Average 1996 Freight" FROM Orders WHERE CustomerID = 'VINET' AND
OrderID IN (10248, 10274, 10295)

This is the result set:

Average 1996 Freight

13.18

SQL Server CE Books Online

BETWEEN
Specifies a range to test.

Syntax

test_expression [NOT] BETWEEN begin_expression AND end_expression

Arguments

test_expression
Is the expression to test for in the range defined by begin_expression and end_expression. test_expression must be the same data
type as both begin_expression and end_expression.

NOT
Specifies that the result of the predicate be negated.

begin_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). begin_expression must be the
same data type as both test_expression and end_expression.

end_expression
Is any valid expression in SQL Server CE. end_expression must be the same data type as both test_expression and
begin_expression.

AND
Acts as a placeholder indicating that test_expression should be within the range indicated by begin_expression and
end_expression.

Result Types

bit

Result Value

BETWEEN returns TRUE if the value of test_expression is greater than or equal to the value of begin_expression and less than or
equal to the value of end_expression.

NOT BETWEEN returns TRUE if the value of test_expression is less than the value of begin_expression or greater than the value of
end_expression.

Remarks

To specify an exclusive range, use the greater than (>) and less than (<) operators. If any input to the BETWEEN or NOT BETWEEN
predicate is NULL, the result is UNKNOWN.

Examples

The following example identifies the products in the Northwind database with 35 or fewer units in stock.

SELECT ProductID, ProductName FROM Products WHERE UnitsInStock BETWEEN '0' AND '35'

SQL Server CE Books Online

CASE
Evaluates a list of conditions and returns one of multiple possible result expressions.

CASE has two formats:

The simple CASE function compares an expression to a set of simple expressions to determine the result.
The searched CASE function evaluates a set of Boolean expressions to determine the result.

Both formats support an optional ELSE argument.

Syntax

Simple CASE function:

CASE input_expression
 WHEN when_expression THEN result_expression
 [...n]
 [
 ELSE else_result_expression
]
END

Searched CASE function:

CASE
 WHEN Boolean_expression THEN result_expression
 [...n]
 [
 ELSE else_result_expression
]
END

Arguments

input_expression
Is the expression evaluated when using the simple CASE format. input_expression is any valid expression in Microsoft® SQL
Server™ 2000 Windows® CE Edition (SQL Server CE).

WHEN when_expression
Is a simple expression to which input_expression is compared when using the simple CASE format. when_expression is any valid
SQL Server expression. The data types of input_expression and each when_expression must be the same or must be implicitly
converted.

n
Is a placeholder indicating that multiple WHEN when_expression THEN result_expression clauses, or multiple WHEN
Boolean_expression THEN result_expression clauses can be used.

THEN result_expression
Is the expression returned when input_expression equals when_expression evaluates to TRUE, or Boolean_expression evaluates
to TRUE. result expression is any valid SQL Server expression.

ELSE else_result_expression
Is the expression returned if no comparison operation evaluates to TRUE. If this argument is omitted and no comparison
operation evaluates to TRUE, CASE returns NULL. else_result_expression is any valid SQL Server expression. The data types of
else_result_expression and any result_expression must be the same or must be an implicit conversion.

WHEN Boolean_expression
Is the Boolean expression evaluated when using the searched CASE format. Boolean_expression is any valid Boolean expression.

Result Types

Returns the highest precedence type from the set of types in result_expressions and the optional else_result_expression.

Result Values

Simple CASE function:

Evaluates input_expression, and then, in the order specified, evaluates input_expression = when_expression for each WHEN
clause.

Returns the result_expression of the first (input_expression = when_expression) that evaluates to TRUE.
If no input_expression = when_expression evaluates to TRUE, else_result_expression is returned if an ELSE clause is specified,
or NULL if no ELSE clause is specified.

Searched CASE function:

Evaluates, in the order specified, Boolean_expression for each WHEN clause.
Returns result_expression of the first Boolean_expression that evaluates to TRUE.
If no Boolean_expression evaluates to TRUE, else_result_expression is returned if an ELSE clause is specified, or NULL if no
ELSE clause is specified.

Examples

The following example returns the mode of shipping used for orders placed in the Northwind database.

SELECT ShipVia, CASE ShipVia
 WHEN 1 THEN 'Speedy Express'
 WHEN 2 THEN 'United Package'
 WHEN 3 THEN 'Federal Shipping'
 ELSE 'Unknown'
 END
FROM Orders

SQL Server CE Books Online

CEILING
Returns the smallest integer that is greater than, or equal to, the given numeric expression.

Syntax

CEILING (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that is implicitly convertible to
float (except for the bit data type).

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

This example uses the CEILING function to round off the unit price for products in the Northwind database that are priced more
than 100 dollars.

SELECT OrderID, UnitPrice, CEILING (UnitPrice) AS "CEILING"
FROM "Order Details"
WHERE UnitPrice > 100
ORDER BY UnitPrice

SQL Server CE Books Online

CHARINDEX
Returns the starting position of the specified expression in a character string.

Syntax

CHARINDEX (expression1 , expression2 [, start_location])

Arguments

expression1
Is an expression containing the sequence of characters to be found. expression1 is an expression of the ntext type or a data type
that can be implicitly converted to nvarchar.

expression2
Is an expression, usually a column searched for the specified sequence. expression2 is an expression of the ntext type or a data
type that can be implicitly converted to nvarchar.

start_location
Is the character position to start searching for expression1 in expression2. If start_location is not given, is a negative number, or
is 0, the search starts at the beginning of expression2. start_location can be tinyint, smallint, int, or bigint.

Return Types

int

Examples

The following example searches for the expression 'an' from the last names of the employees in the Northwind database.

SELECT LastName, CHARINDEX('an', LastName) AS Position
FROM Employees

This is the result set:

LastName..............Position

Fuller................0
Peacock...............0
Callahan..............7
Davolio...............0
Leverling.............0
Buchanan..............5
Suyama................0
King..................0
Dodsworth.............0

SQL Server CE Books Online

COALESCE
Returns the first nonnull expression among its arguments.

Syntax

COALESCE (expression [,...n])

Arguments

expression
Is an expression of any data type.

n
Is a placeholder indicating that multiple expressions can be specified. All expressions must be of the same type or must be
implicitly convertible to the same type.

Return Types

Returns the highest precedence type from the set of types in expression.

Examples

In this example, the wages table is shown to include three columns with information about an employee's yearly wage:
hourly_wage, salary, and commission. However, an employee receives only one type of pay. To determine the total amount
paid to all employees, use the COALESCE function to receive only the nonnull value found in hourly_wage, salary, and
commission.

CREATE TABLE wages
(
emp_id int identity,
hourly_wage numeric NULL,
salary numeric NULL,
commission numeric NULL,
num_sales int NULL
)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(10.00, NULL, NULL, NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(20.00, NULL, NULL, NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(30.00, NULL, NULL, NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(40.00, NULL, NULL, NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, 10000.00, NULL,
NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, 20000.00, NULL,
NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, 30000.00, NULL,
NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, 40000.00, NULL,
NULL)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, NULL, 15000, 3)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, NULL, 25000, 2)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, NULL, 20000, 6)
INSERT wages (hourly_wage, salary, commission, num_sales) VALUES(NULL, NULL, 14000, 4)
SELECT CONVERT(money, COALESCE(hourly_wage * 40 * 52,
salary,commission * num_sales)) AS "Total Salary"
FROM wages

SQL Server CE Books Online

COLLATE
A clause that can be applied to a database definition to define the collation.

Syntax

COLLATE < collation_name >
< collation_name > :: =
 < Windows_collation_name >
< Windows_collation_name >:: =
 CollationDesignator_< ComparisonStyle >
< ComparisonStyle > :: =
 CaseSensitivity_AccentSensitivity

Arguments

<collation_name>
Is the name of the collation to be applied to the database definition. <collation_name> can be only a specified
<Windows_collation_name>.

<Windows_collation_name>
Is the collation name for Windows collation. For a list of Windows collation names supported in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE), see the Remarks section.

CollationDesignator
Specifies the base collation rules used by the Windows collation. The base collation rules cover the following:

An alphabet or language whose sorting rules are applied when dictionary sorting is specified.
A code page used to store non-Unicode character data.

For example, Latin1_General and French are collation designators that use code page 1252; Turkish is a collation designator that
uses code page 1254.

CaseSensitivity
Specifies case-insensitive (CI). SQL Server CE supports this option only.

AccentSensitivity
Specifies accent-sensitive (AS). SQL Server CE supports this option only.

Remarks

All databases created without specifying the Windows collation name are assigned Latin1_General, the default collation. This is an
example of a Windows collation name: Latin1_General_CI_AS. This collation uses the Latin1 General dictionary sorting rules, code
page 1252. It is case-insensitive and accent-sensitive.

Use the optional COLLATE clause to specify a collation different from the default. For example, to specify a Spanish collation, use a
query such as:

CREATE DATABASE "SpanishDB.sdf" DATABASEPASSWORD '<MyPwd>' COLLATE
Traditional_Spanish_CI_AS

The following table lists the supported Windows collation names. Ensure that the locale is supported on the device on which the
database is created.

Note Some collation values might not be supported on some devices.

Cp/Collation Unique
LCID

Windows collation name Identical
LCID group

Supported
Windows

locales
1250 0x0000041C Albanian Albanian
1250 0x0000041a Croatian Croatian
1250 0x00000405 Czech Czech
1250 0x0000040e Hungarian Hungarian
1250 0x0001040e Hungarian_Technical
1250 0x00000415 Polish Polish

1250 0x00000418 Romanian Romanian
1250 0x0000041b Slovak Slovak
1250 0x00000424 Slovenian Slovenian
1251 0x00000419 Cyrillic_General 0x00000402,

0x00000423,
0x00000C1A,
0x0000081A

Bulgarian,
Byelorussian,
Russian,
Serbian

1251 0x00000422 Ukrainian Ukrainian
1251 0x0000042f FYRO Macedonian FYRO

Macedonian
1252 0x00010407 German_PhoneBook PhoneBook

Sort with
German

1252 0x0000040f Icelandic Icelandic
1252 0x00000406 Danish_Norwegian 0x00000414,

0x00000814
Danish,
Norwegian
(Bokmål),
Norwegian
(Nyorsk)

1252 0x0000040b Finnish_Swedish 0x0000041d,
0x0000081d

Finnish,
Swedish

1252 0x0000040c French 0x0000080c,
0x00000c0c,
0x0000140c,
0x0000180c,
0x0000100c

French
(Belgium),
French
(Canada),
French
(Luxemburg),
French
(Standard),
French
(Switzerland)

1252 0x00000409 Latin1_General 0x00000436,
0x0000042D,
0x00000813,
0x00000C09,
0x00002809,
0x00001009,
0x00002409,
0x00001809,
0x00002009,
0x00001409,
0x00003409,
0x00001C09,
0x00002C09,
0x00000438,
0x00000437,
0x00000421,
0x00000416,
0x0000083e,
0x0000043e,
0x00000441,
0x00003009,
0x00000809.
0x00000403,
0x00000413,
0x00000407,
0x00000410,
0x00000816,
0x00000C07,
0x00001407,
0x00001007,
0x00000807,
0x00000810

Afrikaans,
Basque,
Catalan, Dutch
(Belgium),
Dutch
(Standard),
English
(Australia),
English (United
Kingdom),
English
(Canada),
English
(Caribbean),
English
(Ireland),
English
(Jamaican),
English (New
Zealand),
English (South
Africa), English
(United States),
Faeroese,
German
(Austria),
German
(Liechtenstein),
German
(Luxemburg),
German
(Standard),
German
(Switzerland),
Indonesian,
Italian, Italian
(Switzerland),
Portuguese
(Brazil),
Portuguese
(Portugal)

1252 0x00000c0a Modern_Spanish 0x00002C0A,
0x0000400A,
0x0000340A,
0x0000240A,
0x0000140A,
0x00001C0A,
0x0000300A,
0x0000440A,
0x0000100A,
0x0000480A,
0x00004C0A,
0x0000180A,
0x00003C0A,
0x0000280A,
0x0000500A,
0x0000380A,
0x0000200A

Spanish
(Argentina),
Spanish
(Bolivia),
Spanish (Chile),
Spanish
(Colombia),
Spanish (Costa
Rica), Spanish
(Dominican
Republic),
Spanish
(Ecuador),
Spanish
(Guatemala),
Spanish
(Modern Sort),
Spanish
(Panama),
Spanish
(Paraguay),
Spanish (Peru),
Spanish
(Uruguay),
Spanish
(Venezuela)

1252 0x0000040a Traditional_Spanish 0x0000080a
1253 0x00000408 Greek Greek
1254 0x0000041f Turkish Turkish
1255 0x0000040d Hebrew Hebrew
1256 0x00000401 Arabic 0x00001401,

0x00003C01,
0x00000C01,
0x00000801,
0x00002C01,
0x00003401,
0x00003001,
0x00001001,
0x00001801,
0x00002001,
0x00004001,
0x00002801,
0x00001C01,
0x00003801,
0x00002401,
0x00000429,
0x00000420

Arabic
(Algeria),
Arabic
(Bahrain),
Arabic (Egypt),
Arabic (Iraq),
Arabic (Jordan),
Arabic (Kuwait),
Arabic
(Lebanon),
Arabic (Libya),
Arabic
(Morocco),
Arabic (Oman),
Arabic (Qatar),
Arabic (Saudi
Arabia), Arabic
(Syria), Arabic
(Tunisia),
Arabic (United
Arab Emirates),
Arabic
(Yemen), Farsi,
Urdu

1257 0x00000425 Estonian Estonian
1257 0x00000426 Latvian Latvian
1257 0x00000427 Lithuanian Lithuanian
1258 0x0000042a Vietnamese Vietnamese
874 0x0000041e Thai Thai
932 0x00000411 Japanese Japanese

932 0x00010411 Japanese_Unicode
936 0x00000804 Chinese_PRC 0x00000c04,

0x00001404,
0x00001004

Chinese (Hong
Kong S.A.R.),
Chinese
(China),
Chinese
(Singapore)

936 0x00020804 Chinese_PRC_Stroke 0x00020c04,
0x00021404,
0x00021004

Stroke Sort
with Chinese
(China)

949 0x00000412 Korean_Wansung Korean
949 0x00010412 Korean_Wansung_Unicode
950 0x00030404 Chinese_Taiwan_Bopomofo Bopomofo with

Chinese
(Taiwan)

950 0x00000404 Chinese_Taiwan_Stroke Chinese
(Taiwan)

SQL Server CE Books Online

CONVERT
Explicitly converts an expression of one data type to another.

Syntax

CONVERT (data_type [(length)] , expression [, style])

Arguments

data_type
Is the target system-supplied data type, including bigint.

length
Is an optional parameter of nchar, nvarchar, binary, or varbinary data types.

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

style
Is the style of date format used to convert datetime data to character data (nchar, nvarchar, nchar, or nvarchar data types),
or the string format when converting float, real, or money data to character data (nchar, nvarchar, nchar, or nvarchar data
types).

SQL Server CE supports the date format in Arabic style, using the Kuwaiti algorithm.

In the table, the two columns on the left represent the style values for datetime conversion to character data. Add 100 to a style
value to get a four-place year that includes the century (yyyy).

Without century
(yy)

With century
(yyyy) Standard Input/Output2

- 0 or 100 1 Default mon dd yyyy hh:miAM
(or PM)

1 101 USA mm/dd/yy
2 102 ANSI yy.mm.dd
3 103 British/French dd/mm/yy
4 104 German dd.mm.yy
5 105 Italian dd-mm-yy
6 106 - dd mon yy
7 107 - Mon dd, yy
8 108 - hh:mm:ss
- 9 or 109 1 Default +

milliseconds
mon dd yyyy
hh:mi:ss:mmmAM (or
PM)

10 110 USA mm-dd-yy
11 111 JAPAN yy/mm/dd
12 112 ISO yymmdd
- 13 or 113 1 Europe default +

milliseconds
dd mon yyyy
hh:mm:ss:mmm(24h)

14 114 - hh:mi:ss:mmm(24h)
- 20 or 120 1 ODBC canonical yyyy-mm-dd

hh:mi:ss(24h)
- 21 or 121 1 ODBC canonical (with

milliseconds)
yyyy-mm-dd
hh:mi:ss.mmm(24h)

- 1263 ISO8601 yyyy-mm-dd
Thh:mm:ss.mmm(no
spaces)

- 1301 Hijri4 dd mon yyyy
hh:mi:ss:mmmAM

- 1311 Hijri4 dd/mm/yy
hh:mi:ss:mmmAM

1 The default values (style 0 or 100, 9 or 109, 13 or 113, 20 or 120, and 21 or 121) always return the century (yyyy).

2 Input when converting to datetime; output when converting to character data.
3 Designed for XML use. For conversion from datetime or smalldatetime to character data, the output format is as described
in the table. For conversion from float, money, or smallmoney to character data, the output is equivalent to style 2. For
conversion from real to character data, the output is equivalent to style 1.
4 Hijri is a calendar system with several variations, of which Microsoft SQL Server 2000 uses the Kuwaiti algorithm.

The following table shows the style values for float or real conversion to character data.

Value Output
0 (default) Maximum of 6 digits. Use in scientific notation, when appropriate.
1 Always 8 digits. Always use in scientific notation.
2 Always 16 digits. Always use in scientific notation.

In the following table, the column on the left represents the style value for money conversion to character data.

Value Output
0 (default) No commas every 3 digits to the left of the decimal point, and 2

digits to the right of the decimal point (for example, 4235.98).
1 Commas every 3 digits to the left of the decimal point, and 2 digits

to the right of the decimal point (for example, 3,510.92).
2 No commas every 3 digits to the left of the decimal point, and 4

digits to the right of the decimal point (for example, 4235.9819).

Return Types

Returns the same value as the data_type argument.

Remarks

Examples

The following example converts a datetime value in the Northwind database to an nvarchar value.

SELECT OrderDate, CONVERT(nvarchar(10), OrderDate, 101)
FROM Orders

SQL Server CE Books Online

COS
A mathematic function that returns the trigonometric cosine of the given angle (in radians) in the given expression.

Syntax

COS (float_expression)

Arguments

float_expression
Is an expression of data types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the cosine of various angles.

CREATE TABLE Cosine ("COS(0)" float, "COS(PI()/6)" float, "COS(PI()/4)" float,
"COS(PI()/3)" float, "COS(PI()/2)" float)
INSERT INTO Cosine VALUES (COS(0), COS(PI()/6), COS(PI()/4), COS(PI()/3), COS(PI()/2))
SELECT * FROM Cosine

SQL Server CE Books Online

COT
A mathematic function that returns the trigonometric cotangent of the specified angle (in radians) in the given float expression.

Syntax

COT (float_expression)

Arguments

float_expression
Is an expression of data types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the cotangent of various angles.

CREATE TABLE Cotangent ("COT(1)" float, "COT(PI()/6)" float, "COT(PI()/4)" float,
"COT(PI()/3)" float, "COT(PI()/2)" float)
INSERT INTO Cotangent VALUES (COT(1), COT(PI()/6), COT(PI()/4), COT(PI()/3), COT(PI()/2))
SELECT * FROM Cotangent

SQL Server CE Books Online

COUNT
Returns the number of items in a group.

Syntax

COUNT ({ [ALL] expression | * })

Arguments

ALL
Applies the aggregate function to all values. ALL is the default.

expression
Is an expression of any type except uniqueidentifier, image, or ntext. Aggregate functions and subqueries are not permitted.

*
Specifies that all rows should be counted to return the total number of rows in a table. COUNT(*) takes no parameters.
COUNT(*) does not require an expression parameter because, by definition, it does not use information about any particular
column. COUNT(*) returns the number of rows in a specified table without eliminating duplicates. It counts each row separately,
including rows that contain null values.

Return Types

int

Examples

The following example counts the discontinued items in the Products table in the Northwind database.

SELECT COUNT(ProductID) AS "Total Discontinued" FROM Products WHERE Discontinued = 1

This is the result set:

Total Discontinued

8

SQL Server CE Books Online

CREATE DATABASE
Creates a new database and the file used to store the database.

Note To execute the CREATE DATABASE statement, you must be connected to a database. For information about
connecting to a database, see Using SQL Server CE Query Analyzer.

Syntax

CREATE DATABASE database_name
 [DATABASEPASSWORD 'database_password'
 [ENCRYPTION {ON|OFF}]
]
 [COLLATE collation_name comparison_style]
database password ::= identifier

Arguments

database_name
Is the name of the new database. database_name is a file name and is restricted by the naming and size limitations of the
operating system. Any valid character that can be used in a file name can be used for the database name. If a path name is not
specified, the database is created in the current directory. The file extension for a database name in Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE) is .sdf.

'database_password'
Is the name of the password that allows for the database to be opened. SQL Server CE returns an error if a user connects to a
password-protected database without a password. database_password must be enclosed in single quotation marks.

If the optional ENCRYPTION ON keyword is passed, the database is encrypted with 128-bit encryption.

collation_name
Specifies the default collation for the database. collation_name can only be a Windows collation. If collation_name is not
specified, the database is assigned the default collation of the device. For a list of collation names, see COLLATE.

comparison_style
Specifies the comparison style of characters. SQL Server CE supports only CI_AS (case insensitive and accent sensitive).

collation_name and comparison_style must not be enclosed in single or double quotation marks.

Examples

A. Creating a password-protected database

The following example creates a database with a password.

CREATE DATABASE "\test1.SDF" DATABASEPASSWORD '<tst1_pwd>'

When a user tries to connect to a password-protected database without supplying the correct password, SQL Server CE returns
this error:

Error: 0x80040e4d DB_SEC_E_AUTH_FAILED
Minor Error: (25028)
Description: Authentication failed.
Interface defining error: IID_IDBInitialize
Param. 0:0
Param. 1:0
Param. 2:0
Param. 3:
Param. 4:
Param. 5:

For information about errors, see SQL Server CE Errors.

B. Creating a database with a collation specified

The following example specifies a specific collation for the database being created.

CREATE DATABASE "SpanishDB.sdf" DATABASEPASSWORD '<MyPwd>' COLLATE
Traditional_Spanish_CI_AS

SQL Server CE Books Online

CREATE INDEX
Creates an index on a given table.

Syntax

CREATE [UNIQUE] INDEX index_name
 ON table (column [ASC | DESC] [,...n])

Arguments

UNIQUE
Creates a unique index (one in which no two rows are permitted to have the same index value) on a table.

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) checks for duplicate values when the index is
created (if data already exists) and checks each time data is added with an INSERT or UPDATE statement. Duplicates
must be eliminated before a unique index can be created on the column(s). If duplicate key values exist, the CREATE
INDEX statement is canceled and an error is returned. A unique index can be created only on columns that are defined
as NOT NULL.

When a unique index exists, UPDATE or INSERT statements that would generate duplicate key values are rolled back,
and SQL Server CE returns an error. This is true even if the UPDATE or INSERT statement changes many rows but
causes only one duplicate.

index_name
Is the name of the index. Index names must be unique within a table but do not need to be unique within a database. Index
names must follow the rules of identifiers.

table
Is the table that contains the column or columns to be indexed.

column
Is the column or columns to which the index applies. Specify two or more column names to create a composite index on the
combined values in the specified columns. List the columns to be included in the composite index (in sort-priority order) inside
the parentheses after table.

Note Columns consisting of the ntext or image data types cannot be specified as columns for an index.

Important All columns in a UNIQUE INDEX must have NOT NULL specified.

[ASC | DESC]
Determines the sort direction for the particular index column: ASC, the default, is ascending; and DESC is descending.

n
Is a placeholder indicating that multiple columns can be specified for any particular index. The maximum number of columns
that can participate in an index is 10.

Examples

The following example creates a unique index on the MyCustomers table.

CREATE TABLE MyCustomers (CustID int, CompanyName nvarchar(50))
CREATE UNIQUE INDEX idxCustId ON MyCustomers (CustId)

SQL Server CE Books Online

CREATE TABLE
Creates a new table.

Syntax

CREATE TABLE table_name
 ({ < column_definition > | < table_constraint > } [,...n]
)
< column_definition > ::=
 { column_name data_type }
 [{ DEFAULT constant_expression
 | [IDENTITY [(seed , increment)]
]
 }]
 [ROWGUIDCOL]
 [< column_constraint > [...n]]
< column_constraint > ::=
 [CONSTRAINT constraint_name]
 { [NULL | NOT NULL]
 | [PRIMARY KEY | UNIQUE]
 | REFERENCES ref_table [(ref_column)]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 }
< table_constraint > ::=
 [CONSTRAINT constraint_name]
 { [{ PRIMARY KEY | UNIQUE }
 { (column [,...n]) }
]
 | FOREIGN KEY
 [(column [,...n])]
 REFERENCES ref_table (ref_column [,...n])
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 }

Arguments

table_name
Is the name of the new table. Table names must conform to the rules for identifiers. table_name must be unique within the
database. table_name can contain a maximum of 128 characters.

column_name
Is the name of a column in the table. Column names must conform to the rules for identifiers and must be unique in the table.

data_type
Specifies the column data type. For information about data types, see Data Types.

DEFAULT
Specifies the value provided for the column when a value is not explicitly supplied during an insert action. DEFAULT definitions
can be applied to any column, except those defined by the IDENTITY property. DEFAULT definitions are removed when the table
is dropped. A constant value, such as a character string, or a date function can be used as a default.

IDENTITY
Indicates that the new column is an identity column. When a new row is added to the table, Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) provides a unique, incremental value for the column. Identity columns are commonly
used in conjunction with PRIMARY KEY constraints to serve as the unique row identifier for the table. The IDENTITY property can
be assigned only to int columns. Only one identity column can be created per table. Bound defaults and DEFAULT constraints
cannot be used with an identity column. You must specify both the seed and increment or neither. If neither is specified, the
default is (1,1).

seed
Is the value used for the first row that is loaded into the table.

increment
Is the incremental value added to the identity value of the previous row that is loaded.

ROWGUIDCOL
Indicates that the new column is a row global unique identifier column. Only one uniqueidentifier column per table can be
designated as the ROWGUIDCOL column. The ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

ROWGUIDCOL automatically generates values for new rows inserted into the table.

CONSTRAINT
Is an optional keyword indicating the beginning of a PRIMARY KEY, UNIQUE, or FOREIGN KEY constraint definition. Constraints
are special properties that enforce data integrity and create special types of indexes for the table and its columns.

constraint_name
Is the name of a constraint. constraint_name is optional and must be unique within a database. If constraint_name is not
specified, SQL Server CE generates a constraint name.

NULL | NOT NULL
Are keywords that specify whether null values are allowed in the column. NULL is not strictly a constraint but can be specified in
the same manner as NOT NULL.

PRIMARY KEY
Is a constraint that enforces entity integrity for a given column or columns using a unique index. Only one PRIMARY KEY
constraint can be created per table.

UNIQUE
Is a constraint that provides entity integrity for a given column or columns using a unique index. Columns in a UNIQUE
constraint must also be NOT NULL. A table can have multiple UNIQUE constraints.

Note SQL Server CE can use indexes to enforce PRIMARY KEY and UNIQUE constraints. You should not rely on this
behavior nor try to manipulate any indexes that are created as part of a constraint.

FOREIGN KEY...REFERENCES
Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY constraints require that each value in
the column exists in the specified column in the referenced table.

ref_table
Is the name of the table referenced by the FOREIGN KEY constraint.

(ref_column [,...n])
Is a column, or list of columns, from the table referenced by the FOREIGN KEY constraint.

ON DELETE {CASCADE | NO ACTION}
Specifies what action takes place to a row in the table that is created when that row has a referential relationship and the
referenced row is deleted from the parent table. The default is NO ACTION.

If CASCADE is specified, a row is deleted from the referencing table when the corresponding referenced row is deleted
from the parent table. If NO ACTION is specified, SQL Server CE raises an error and the delete action on the referenced
row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table:
the Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If a DELETE statement is executed on a row in the Customers table and an ON DELETE CASCADE action is specified for
Orders.CustomerID, SQL Server CE checks for one or more dependent rows in the Orders table. If any exists, the
dependent rows in the Orders table are deleted, as well as the row referenced in the Customers table.

Alternately, if NO ACTION is specified, SQL Server CE raises an error and rolls back the delete action on the row in the
Customers table when there is at least one row in the Orders table that references it.

ON UPDATE {CASCADE | NO ACTION}
Specifies what action takes place to a row in the table that is created when that row has a referential relationship and the
referenced row is updated in the parent table. The default is NO ACTION.

If CASCADE is specified, the row is updated in the referencing table when the corresponding referenced row is
updated in the parent table. If NO ACTION is specified, SQL Server CE raises an error and the update action on the
referenced row in the parent table is rolled back.

For example, in the Northwind database, the Orders table has a referential relationship with the Customers table:
the Orders.CustomerID foreign key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on a row in the Customers table and an ON UPDATE CASCADE action is specified
for Orders.CustomerID, SQL Server CE checks for one or more dependent rows in the Orders table. If any exists, the
dependent rows in the Orders table are updated, as well as the row referenced in the Customers table.

Alternately, if NO ACTION is specified, SQL Server CE raises an error and rolls back the update action on the
referenced row in the Customers table when there is at least one row in the Orders table that references it.

column
Is a column or list of columns, in parentheses, used in table constraints to indicate the columns used in the constraint definition.

Remarks

Constraints

PRIMARY KEY Constraints
A table can contain only one PRIMARY KEY constraint.
Each PRIMARY KEY generates an index.
All columns defined within a PRIMARY KEY constraint must be defined as NOT NULL. If nullability is not specified, all
columns participating in a PRIMARY KEY constraint have their nullability set to NOT NULL.

UNIQUE Constraints
Each UNIQUE constraint generates an index.
All columns defined as a UNIQUE constraint must be defined as NOT NULL. If nullability is not specified, all columns
defined as UNIQUE constraints have their nullability set to NOT NULL.

FOREIGN KEY Constraints
When a value other than NULL is entered into the column of a FOREIGN KEY constraint, the value must exist in the
referenced column; otherwise, a foreign key violation error message is returned.
FOREIGN KEY constraints can reference another column in the same table (a self-reference). However, FOREIGN KEY
constraints cannot be used to create a self-referencing or circular FOREIGN KEY constraint.
The REFERENCES clause of a column-level FOREIGN KEY constraint can list only one reference column, which must
have the same data type as the column on which the constraint is defined.
The REFERENCES clause of a table-level FOREIGN KEY constraint must have the same number of reference columns
as the number of columns in the constraint column list. The data type of each reference column also must be the
same as the corresponding column in the column list.
FOREIGN KEY constraints can reference only columns in PRIMARY KEY or UNIQUE constraints in the referenced
table. FOREIGN KEY constraints cannot reference unique indexes.

Additional Constraint Information
An index created for a constraint cannot be dropped with the DROP INDEX statement; the constraint must be
dropped with the ALTER TABLE DROP CONSTRAINT statement.
Constraint names must follow the rules for identifiers, except that the name cannot begin with a number sign (#). If
the CONSTRAINT keyword and constraint_name is not supplied, a system-generated name is assigned to the
constraint.
When a constraint is violated in an INSERT, UPDATE, or DELETE statement, the statement is terminated.

DEFAULT Defin itions

A column can have only one DEFAULT definition, which can contain constant values or constant functions.

N ullability Rules Within a Table Defin ition

The nullability of a column determines whether or not that column can allow a null value (NULL) as the data in that column. NULL
is not zero or blank: it means no entry was made or an explicit NULL was supplied, and it usually implies that the value is either
unknown or not applicable.

Examples

The following example creates a two-column table with an identity column as the PRIMARY KEY.

CREATE TABLE MyCustomers (CustID int IDENTITY (100,1) PRIMARY KEY, CompanyName nvarchar
(50))

The following example creates a one-column table with a PRIMARY KEY constraint.

CREATE TABLE MyCustomers2 (CustID int CONSTRAINT pkCustId PRIMARY KEY)

The following example creates a table with one of its columns referencing a column in another table.

CREATE TABLE MyOrders (OrderID int, CustID int REFERENCES MyCustomers(CustID))

SQL Server CE Books Online

DATALENGTH
Returns the number of bytes used to represent any expression.

Syntax

DATALENGTH (expression)

Arguments

expression
Is an expression of any data type.

Return Types

int

Examples

The following example returns the DATALENGTH of each company name listed in the Customers table in the Northwind
database.

SELECT DATALENGTH(CompanyName), CompanyName
FROM Customers

SQL Server CE Books Online

Data Types
Each column in a table in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) has a data type that specifies the
type of data (such as integer, character, or money) that the column can hold.

Note There may be minor differences between Microsoft SQL Server 2000 and SQL Server CE in the way data types
are promoted when the execution of a function results in an overflow or underflow. You might have to perform
explicit CAST in SQL Server 2000 to get the same behavior in SQL Server CE.

SQL Server CE supports the following data types.

Data type Description
bigint Integer (whole number) data from -2^63 (-

9,223,372,036,854,775,808) through 2^63-1
(9,223,372,036,854,775,807). Storage size is 8 bytes.

integer Integer (whole number) data from -2^31 (-2,147,483,648)
through 2^31 - 1 (2,147,483,647).

smallint Integer data from –32,768 to 32,767. Storage size is 2 bytes.
tinyint Integer data from 0 to 255. Storage size is 1 byte.
bit Integer data with either a 1 or 0 value.
numeric (p, s) Fixed-precision and scale-numeric data from -10^38 +1

through 10^38 –1. p specifies precision and can vary between
1 and 38. s specifies scale and can vary between 0 and p.

money Monetary data values from -2^63 (-
922,337,203,685,477.5808) through 2^63 - 1
(922,337,203,685,477.5807), with accuracy to a ten-
thousandth of a monetary unit. Storage size is 8 bytes.

float Floating point number data from -1.79E + 308 through 1.79E
+ 308

Storage size is 8 bytes.

real Floating precision number data from -3.40E + 38 through
3.40E + 38.

datetime Date and time data from January 1, 1753, to December 31,
9999, with an accuracy of one three-hundredth second, or
3.33 milliseconds. Values are rounded to increments of .000,
.003, or .007 milliseconds.

Stored as two 4-byte integers. The first 4 bytes store the
number of days before or after the base date, January 1, 1900.
The base date is the system's reference date. Values for
datetime earlier than January 1, 1753, are not permitted. The
other 4 bytes store the time of day represented as the number
of milliseconds after midnight. Seconds have a valid range of
0 - 59.

national
character(n)

Synonym:
nchar(n)

Fixed-length Unicode data with a maximum length of 255
characters.
Default length = 1
Storage size, in bytes, is two times the number of characters
entered.

national character
varying(n)

Synonym:
nvarchar(n)

Variable-length Unicode data with a length of 1 to 255
characters.
Default length = 1
Storage size, in bytes, is two times the number of characters
entered.

ntext Variable-length Unicode data with a maximum length of
(2^30 - 2) / 2 (536,870,911) characters. Storage size, in bytes,
is two times the number of characters entered.

binary(n) Fixed-length binary data with a maximum length of 510 bytes.
Default length = 1

varbinary(n) Variable-length binary data with a maximum length of 510
bytes. Default length = 1

image Variable-length binary data with a maximum length of 2^30 –
1 (1,073,741,823) bytes.

uniqueidentifier A globally unique identifier (GUID). Storage size is 16 bytes.
IDENTITY [(s, i)] This is a property of a data column, not a distinct data type.

Only data columns of the integer data types can be used for
identity columns. A table can have only one identity column. A
seed and increment can be specified and the column cannot
be updated.

s (seed) = starting value

i (increment) = increment value

ROWGUIDCOL This is a property of a data column, not a distinct data type. It
is a column in a table that is defined using the
uniqueidentifier data type. A table can only have one
ROWGUIDCOL column.

SQL Server CE Books Online

DATEADD
Returns a new datetime value based on adding an interval to the specified date.

Syntax

DATEADD (datepart , number, date)

Arguments

datepart
Is the parameter that specifies on which part of the date to return a new value. The following table lists the dateparts and
abbreviations recognized by Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
hour hh
minute mi, n
second ss, s
millisecond ms

number
Is the value used to increment datepart. Is an expression of the exact numeric or approximate numeric data type categories, or
types that can be implicitly converted to float. If you specify a value that is not an integer, the fractional part of the value is
discarded. For example, if you specify day for datepart and 1.75 for number, date is incremented by 1.

date
Is an expression that returns a value that can be implicitly converted to datetime, or is a Unicode character string in a date
format. For more information about specifying dates, see datetime in Data Types.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit
year cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value
of this option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is
interpreted as 2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

Return Types

datetime

Examples

The following example adds two months to the order date for A. Datum Corporation.

CREATE TABLE MyOrders (OrderID int IDENTITY(100, 1) PRIMARY KEY, CompanyName
nvarchar(50), OrderDate datetime)
INSERT INTO MyOrders (CompanyName, OrderDate) VALUES ('A. Datum Corporation', GETDATE())
SELECT DATEADD(month, 2, OrderDate) FROM MyOrders

SQL Server CE Books Online

DATEDIFF
Returns the number of date and time boundaries crossed between two specified dates.

Syntax

DATEDIFF (datepart , startdate , enddate)

Arguments

datepart
Is the parameter that specifies on which part of the date to calculate the difference. The following table lists dateparts and
abbreviations recognized by Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
hour hh
minute mi, n
second ss, s
millisecond ms

startdate
Is the beginning date for the calculation. startdate is an expression that returns a datetime value or a Unicode character string
in a date format.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit
year cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value
of this option are in the century that precedes the cutoff year. For example, if the two digit year cutoff is 2049 (default), 49 is
interpreted as 2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

For more information about specifying dates, see datetime in Data Types.

enddate
Is the ending date for the calculation. enddate is an expression that returns a datetime value or a Unicode character string in a
date format.

Return Types

int

Examples

The following example uses the Northwind database. The example determines the number of days it took to ship the orders
made by the company Vins et alcohols Chevalier, which has a CustomerID of VINET.

SELECT OrderID, DATEDIFF (d, OrderDate, ShippedDate) AS "Shipping Time in Days" FROM
Orders WHERE CustomerID = 'VINET'

This is the result set:

OrderID Shipping Time in Days

10295 8
10737 7
10274 10
10248 12
10739 5

SQL Server CE Books Online

DATENAME
Returns a character string representing the specified datepart of the specified date.

Syntax

DATENAME (datepart , date)

Arguments

datepart
Is the parameter that specifies the part of the date to return. The following table lists dateparts and abbreviations recognized by
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
weekday1 dw
hour hh
minute mi, n
second ss, s
millisecond ms

1 The weekday (dw) datepart returns the day of the week (such as Sunday or Monday).

date
Is an expression that returns a datetime value, or a value that can be implicitly converted to a datetime value. date can also be
a Unicode character string in a date format. Use the datetime data type for dates after January 1, 1753. Store them as character
data for earlier dates. When entering datetime values, always enclose them in single quotation marks. For more information
about specifying dates, see datetime in Data Types.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit
year cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value
of this option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is
interpreted as 2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

Return Types

nvarchar

Remarks

SQL Server CE automatically converts between character and datetime values as necessary, for example, when you compare a
character value with a datetime value.

Examples

The following example extracts the month name from the date returned by GETDATE.

CREATE TABLE MyOrders (OrderID int IDENTITY(100, 1) PRIMARY KEY, CompanyName
nvarchar(50), OrderDate datetime)
INSERT INTO MyOrders (CompanyName, OrderDate) VALUES ('A. Datum Corporation', GETDATE())
SELECT DATENAME(month, OrderDate) AS "Month Name" FROM MyOrders

This is the result set:

Month Name

August

SQL Server CE Books Online

DATEPART
Returns an integer representing the specified datepart of the specified date.

Syntax

DATEPART (datepart , date)

Arguments

datepart
Is the parameter that specifies the part of the date to return. The following table lists dateparts and abbreviations recognized by
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Datepart Abbreviations
year yy, yyyy
quarter qq, q
month mm, m
dayofyear dy, y
day dd, d
week wk, ww
weekday dw
hour hh
minute mi, n
second ss, s
millisecond ms

date
Is an expression that returns a datetime value, or a value that can be implicitly converted to a datetime value. date can also be
a character string in a date format. Use the datetime data type only for dates after January 1, 1753. Store dates as character
data for earlier dates. When entering datetime values, always enclose them in single quotation marks.

If you specify only the last two digits of the year, values less than or equal to the last two digits of the value of the two digit
year cutoff configuration option are in the same century as the cutoff year. Values greater than the last two digits of the value
of this option are in the century that precedes the cutoff year. For example, if two digit year cutoff is 2049 (default), 49 is
interpreted as 2049 and 2050 is interpreted as 1950. To avoid ambiguity, use four-digit years.

For more information about specifying dates, see datetime in Data Types.

Return Types

int

Examples

The following example assumes the current month is August.

CREATE TABLE MyOrders (OrderID int IDENTITY(100, 1) PRIMARY KEY, CompanyName
nvarchar(50), OrderDate datetime)
INSERT INTO MyOrders (CompanyName, OrderDate) VALUES ('A. Datum Corporation', GETDATE())
SELECT DATEPART(month, OrderDate) FROM MyOrders

This is the result set:

8

SQL Server CE Books Online

DDL Statements
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the following Data Definition Language (DDL)
statements.

Statement Function
CREATE DATABASE Creates a new database and the file used to store the database.
CREATE TABLE Creates a new table.
ALTER TABLE Modifies a table definition by altering, adding, or dropping

columns and constraints.
CREATE INDEX Creates an index on a given table.
DROP INDEX Removes one or more indexes from the current database.
DROP TABLE Removes a table definition and all data, indexes, and

constraints for that table.

In SQL Server CE, to delimit identifiers that are keywords or do not conform to the rules for identifiers, you must use double
quotation marks. Brackets are not supported. For more information, see SQL Overview.

SQL Server CE Books Online

DEGREES
Given an angle in radians, returns the corresponding angle in degrees.

Syntax

DEGREES (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or of types that are implicitly convertible to
float.

Return Code Values

Returns the same type as numeric_expression, except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example returns the degree value of various angles expressed in radians.

CREATE TABLE "Degrees" ("PI()/2" float, "PI()/3" float, "PI()/4" float)
INSERT INTO "Degrees" VALUES (DEGREES(PI()/2), DEGREES(PI()/3), DEGREES(PI()/4))
SELECT * FROM "Degrees"

SQL Server CE Books Online

DELETE
Removes rows from a table.

Syntax

DELETE
 [FROM] table_name
 [WHERE < search_condition >]

Arguments

FROM
Is an optional keyword that can be used between the DELETE keyword and the target table_name.

table_name
Is the name of the table from which the rows are to be removed.

WHERE
Specifies the conditions used to limit the number of rows that are deleted.

<search_condition>
Specifies the restricting conditions for the rows to be deleted. There is no limit to the number of predicates that can be included
in a search condition.

Remarks

If a WHERE clause is not supplied, DELETE removes all the rows from the table.

If a search condition is specified, it is applied to each row of the table; and all rows for which the result of the search condition is
TRUE are marked for deletion.

The search condition is evaluated for each row of the table before any deletions occur.

All rows that are marked for deletion are deleted at the end of the DELETE statement prior to the checking of any integrity
constraint.

The DELETE statement might fail if it violates a FOREIGN KEY constraint. If the DELETE removes multiple rows and any one of the
removed rows violates a constraint, the statement is canceled, an error is returned, and no rows are removed.

Examples

A. Using DELETE with no parameters

The following example deletes all rows from the Customers table in the Northwind database.

DELETE Customers

B. Using DELETE on a set of rows

The following example uses the Customers table in the Northwind database. Because CompanyName may not be unique, the
following example deletes all rows in which CompanyName is Eastern Connection.

DELETE FROM Customers WHERE CompanyName = 'Eastern Connection'

SQL Server CE Books Online

DML Statements
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the following Data Manipulation Language (DML)
statements.

Statement Function
INSERT Adds a new row to a table.
UPDATE Changes existing data in a table.
DELETE Removes rows from a table.

In SQL Server CE, to delimit identifiers that are keywords or do not conform to the rules for identifiers, you must use double
quotation marks. Brackets are not supported. For more information, see SQL Overview.

SQL Server CE Books Online

DROP INDEX
Removes an index from the current database.

The DROP INDEX statement does not apply to indexes created by defining PRIMARY KEY or UNIQUE constraints (created by using
the PRIMARY KEY or UNIQUE options of either the CREATE TABLE or ALTER TABLE statements). For more information about
PRIMARY KEY or UNIQUE constraints, see CREATE TABLE.

Syntax

DROP INDEX 'table_name.index_name'

Arguments

table_name
Is the name of the table in which the indexed column is located. Table names must conform to the rules for identifiers.

index_name
Is the name of the index to be dropped. Index names must conform to the rules for identifiers.

Remarks

After DROP INDEX is executed, all the space previously occupied by the index is regained. This space then can be used for any
database object.

DROP INDEX cannot be specified on an index on a system table.

SQL Server CE Books Online

DROP TABLE
Removes a table definition and all data, indexes, constraints, and permission specifications for that table.

Syntax

DROP TABLE table_name

Arguments

table_name
Is the name of the table to be removed.

Remarks

DROP TABLE cannot be used to drop a table referenced by a FOREIGN KEY constraint. The referencing FOREIGN KEY constraint or
the referencing table must be dropped first.

When a table is dropped, rules or defaults on it lose their binding, and any constraints associated with it are automatically
dropped. If you re-create a table, you must rebind the appropriate rules and defaults, and add all necessary constraints.

You cannot use the DROP TABLE statement on system tables.

SQL Server CE Books Online

EXISTS
Specifies a subquery to test for the existence of rows.

Syntax

EXISTS subquery

Arguments

subquery
Is a restricted SELECT statement.

Result Types

bit

Result Values

Returns TRUE if a subquery contains any rows.

Examples

The following example finds, from the Orders table, all the orders with Washington as the Shipping Region for Employees who
are listed in the Employees table in the Northwind database.

SELECT * FROM Orders WHERE ShipRegion = 'WA' AND EXISTS (SELECT EmployeeID FROM Employees
AS Emp WHERE Emp.EmployeeID = Orders.EmployeeID)

SQL Server CE Books Online

EXP
Returns the exponential value of the given float expression.

Syntax

EXP (float_expression)

Arguments

float_expression
Is an expression of data types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the exponential value of various float expressions.

CREATE TABLE Exponent ("EXP 5.5" float, "EXP 33.2" float)
INSERT INTO Exponent VALUES(EXP(5.5), EXP(33.2))
SELECT * FROM Exponent

SQL Server CE Books Online

Expressions
An expression is a combination of symbols and operators that the database system evaluates to obtain a single data value. Simple
expressions can be a single constant, variable, column, or scalar function. Operators can be used to join two or more simple
expressions into a complex expression.

Syntax

{ constant
 | scalar_function
 | [alias.] column
 | (expression)
 | { unary_operator } expression
 | expression { binary_operator } expression
}

Arguments

constant
Is a symbol that represents a single, specific data value. constant is one or more alphanumeric characters (letters a-z and A-Z) or
symbols (such as !, @, #). Unicode character and datetime values are enclosed in quotation marks; binary strings and numeric
constants are not.

scalar_function
Is a unit of SQL syntax that provides a specific service and returns a single value.

[alias.]
Is the alias, or correlation name, assigned to a table by the AS keyword in the FROM clause.

column
Is the name of a column.

(expression)
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) as defined in this topic. The
parentheses are grouping operators that ensure that all the operators in the expression within the parentheses are evaluated
before the resulting expression is combined with another.

{ unary_operator }
Is an operator that has only one numeric operand:

+ indicates a positive number.
- indicates a negative number.
~ indicates the complement operator.

Unary operators can be applied only to expressions that evaluate to any of the data types of the numeric data type category.

{ binary_operator }
Is an operator that defines the way two expressions are combined to yield a single result. binary_operator can be an arithmetic
operator, the assignment operator (=), a bitwise operator, a comparison operator, a logical operator, the string concatenation
operator (+), or a unary operator. For more information, see Operators.

Expression Results

For a simple expression built of a single constant, variable, scalar function, or column name, the data type, precision, scale, and
value of the expression is the data type, precision, scale, and value of the referenced element.

When two expressions are combined using comparison or logical operators, the resulting data type is Boolean and the value is
one of three values: TRUE, FALSE, or UNKNOWN.

When two expressions are combined using arithmetic, bitwise, or string operators, the resulting data type is determined by the
operator.

Complex expressions made up of many symbols and operators evaluate to a single-valued result. The data type, precision, and
value of the resulting expression are determined by combining the component expressions two at a time until a final result is
reached. The sequence in which the expressions are combined is defined by the precedence of the operators in the expression.

Remarks

An operator can combine two expressions if they both have data types supported by the operator and at least one of the

following conditions is TRUE:

The expressions have the same data type.
The data type with the lower precedence can be implicitly converted to the data type with the higher data type precedence.

If there is no supported implicit conversion, the two expressions cannot be combined.

In a programming language such as Microsoft Visual Basic®, an expression always evaluates to a single result. Expressions in an
SQL select list have a variation on this rule: The expression is evaluated individually for each row in the result set. A single
expression may have a different value in each row of the result set, but each row has only one value for the expression. For
example, in this SELECT statement, both the reference to ProductID and the term 1+2 in the select list are expressions:

SELECT ProductID, 1+2
FROM Products

The expression 1+2 evaluates to 3 in each row in the result set. Although the expression ProductID generates a unique value in
each result set row, each row only has one value for ProductID.

SQL Server CE Books Online

FLOOR
Returns the largest integer less than or equal to the given numeric expression.

Syntax

FLOOR (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or of data types that are implicitly
convertible to float.

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example applies the FLOOR function to the UnitPrice column of the Order Details table of the Northwind
database.

SELECT OrderID, UnitPrice, FLOOR(UnitPrice) AS "Floor Value"
FROM "Order Details"
WHERE UnitPrice > 100
ORDER BY UnitPrice

SQL Server CE Books Online

FROM Clause
Specifies the table(s) from which to retrieve rows. In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), the
FROM clause is always required; otherwise, an error is returned.

Syntax

FROM { < table_source > } [,...n]
< table_source > ::=
 table_name [[AS] table_alias]
 | < joined_table >
< joined_table > ::=
 < table_source > < join_type > < table_source > ON < search_condition >
 | (< joined_table >)
< join_type > ::=
 [INNER | { { LEFT | RIGHT } [OUTER] }] JOIN

Arguments

< table_source >
Specifies the tables and joined tables for the SELECT statement.

table_name [[AS] table_alias]
Specifies the name of a table and an optional alias.

< joined_table >
Is a result set that is the join of two or more tables.

For multiple joins, you can use parentheses to specify the order of the joins.

< join_type >
Specifies the type of join operation.

INNER
Specifies that all matching pairs of rows are returned. Discards unmatched rows from both tables. This is the default if no join
type is specified.

LEFT [OUTER]
Specifies that all rows from the left table that are not meeting the specified condition are included in the result set in addition to
all rows returned by the inner join. Output columns from the left table are set to NULL.

RIGHT [OUTER]
Specifies that all rows from the right table that are not meeting the specified condition are included in the result set in addition
to all rows returned by the inner join. Output columns from the right table are set to NULL.

JOIN
Indicates that the specified tables should be joined.

ON < search_condition >
Specifies the condition on which the join is based. The condition can specify any valid predicate, although columns and
comparison operators are often used.

SQL Server CE Books Online

Functions
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the following functions.

Function Description
Aggregate Functions Perform calculations on a set of values and return a

single value. Except for the COUNT function, aggregate
functions ignore null values.

AVG

COUNT

MAX

MIN

SUM

Date and Time Functions Perform an operation on a date and time input value and
return a string, numeric, or date and time value.

DATEADD

DATEDIFF

DATENAME

DATEPART

GETDATE

Mathematical Functions Perform calculations based on input values provided as
parameters to the function, and return a numeric value.

ABS

ACOS

ASIN

ATAN

ATN2

CEILING

COS

COT

DEGREES

EXP

FLOOR

LOG

LOG10

PI

POWER

RADIANS

RAND

ROUND

SIGN

SIN

SQRT

TAN

String Functions Perform an operation on a string input value and return
a string or numeric value.

NCHAR

CHARINDEX

LEN

LOWER

LTRIM

PATINDEX

REPLACE

REPLICATE

RTRIM

SPACE

STR

STUFF

SUBSTRING

UNICODE

UPPER

System Functions Perform operations on, and return information about
values, objects, and settings in SQL Server CE.

@@IDENTITY

CASE

COALESCE

CONVERT

DATALENGTH

NEWID

SQL Server CE Books Online

GETDATE
Returns the current system date and time in the standard internal format for datetime values that are supported by Microsoft®
SQL Server™ 2000 Windows CE Edition (SQL Server CE).

Syntax

GETDATE ()

Return Types

datetime

Examples

The following example uses GETDATE to supply information for a date column.

CREATE TABLE MyOrders (OrderID int IDENTITY(100, 1) PRIMARY KEY, CompanyName
nvarchar(50), OrderDate datetime)
INSERT INTO MyOrders (CompanyName, OrderDate) VALUES ('A. Datum Corporation', GETDATE())

SQL Server CE Books Online

GROUP BY Clause
Specifies the groups (equivalence classes) into which output rows are to be placed and, if aggregate functions are included in the
SELECT clause <select list>, calculates a summary value for each group. When GROUP BY is specified, either each column in any
nonaggregate expression in the select list should be included in the GROUP BY list or the GROUP BY expression must match
exactly the select list expression.

Note If the ORDER BY clause is not specified, groups returned using the GROUP BY clause are not in any particular
order. It is recommended that you always use the ORDER BY clause to specify a particular ordering of the data.

Syntax

[GROUP BY group_by_expression [,...n]]

Arguments

group_by_expression
Is an expression on which grouping is performed. group_by_expression is also known as a grouping column.
group_by_expression can be a column or a nonaggregate expression that references a column. A column alias that is defined in
the select list cannot be used to specify a grouping column. Aggregate expressions cannot be specified in a
group_by_expression.

Note Columns of type ntext and image cannot be used in group_by_expression.

Note GROUP BY ALL is not supported in SQL Server CE.

SQL Server CE Books Online

HAVING Clause
Specifies a search condition for a group or an aggregate. HAVING is usually used with the GROUP BY clause.

Syntax

[HAVING < search_condition >]

Arguments

< search_condition >
Specifies the search condition for the group to meet. The search condition can use aggregate expressions and nonaggregate
expressions. The only columns that can be used in the nonaggregate expressions are those specified as grouping columns in the
GROUP BY clause. This is because the group-by columns represent common properties for the entire group. Likewise, the
aggregate expressions represent a common property for the entire group. The HAVING clause search condition is expressing a
predicate over the properties of the group.

The image and ntext data types cannot be used in a HAVING clause.

SQL Server CE Books Online

IDENTITY (Property)
Creates an identity column in a table. This property is used with the CREATE TABLE and ALTER TABLE statements.

Syntax

IDENTITY [(seed , increment)]

Arguments

seed
Is the value that is used for the first row loaded into the table.

increment
Is the incremental value that is added to the identity value of the previous row that was loaded.

Note You must specify both the seed and increment, or neither. If neither is specified, the default is (1,1).

Remarks

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), the IDENTITY property can be created only on a column
of an integer data type. A table can have only one IDENTITY column.

Examples

This example creates a two-column table in which the first column is an IDENTITY column.

CREATE TABLE MyCustomers (CustID int IDENTITY (100,1) PRIMARY KEY, CompanyName nvarchar
(50))

See Also

ALTER TABLE

CREATE TABLE

SQL Server CE Books Online

IN
Determines whether a given value matches any value in a subquery or a list.

Syntax

test_expression [NOT] IN
 (
 subquery
 | expression [,...n]
)

Arguments

test_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

subquery
Is a subquery that has a result set of one column. This column must have the same data type as test_expression.

expression [,...n]
Is a list of expressions to test for a match. All expressions must be of the same type as test_expression.

Result Types

bit

Result Value

If the value of test_expression is equal to any value returned by subquery or is equal to any expression from the comma-separated
list, the result value is TRUE. Otherwise, the result value is FALSE.

Using NOT IN negates the returned value.

Examples

The following example selects all customers in the Northwind database who are from Brazil, Argentina, and Venezuela.

SELECT * FROM Customers WHERE Country IN ('Brazil', 'Argentina', 'Venezuela')

SQL Server CE Books Online

Information Schema
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) exposes meta data about the current database through the
following INFORMATION_SCHEMA views.

View Contains information about
COLUMNS Columns accessible to the current user in the current

database.
INDEXES Indexes in the current database.
KEY_COLUMN_USAGE Keys in the current database.
PROVIDER_TYPES Data types supported in SQL Server CE.
TABLES Tables accessible to the current user in the current

database.
TABLE_CONSTRAINTS Table constraints in the current database.

To retrieve data from these views, use the fully qualified name INFORMATION_SCHEMA:

SELECT * FROM INFORMATION_SCHEMA.TABLES

SQL Server CE Books Online

INSERT
Adds new rows to a table.

Syntax

INSERT [INTO]
 table_name [(column_list)]
 { VALUES
 ({ DEFAULT | NULL | expression } [,...n])
 }

Arguments

[INTO]
Is an optional keyword that can be used between INSERT and the target table.

table_name
Is the name of a table that is to receive the data.

(column_list)
Is a list of one or more columns in which to insert data. column_list must be enclosed in parentheses and delimited by commas.

VALUES
Introduces the list of data values to be inserted. There must be one data value for each column in column_list (if specified) or in
the table. The values list must be enclosed in parentheses.

DEFAULT
Requires that the default value defined for a column is to be used by Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE).

NULL
Indicates that the value is unknown. A value of NULL is different from an empty or zero value.

expression
Is a constant, a variable, or an expression.

Remarks

To replace data in a table, the DELETE statement must be used to clear existing data before loading new data with INSERT. To
modify column values in existing rows, use UPDATE.

If the insert column_list is omitted, then an insert column list that identifies all columns of the table in the ascending sequence of
their ordinal positions is implicit.

A column in the table can be identified only once in column_list.

If a column is not in column_list, SQL Server CE must be able to provide a value based on the definition of the column; otherwise,
the row cannot be loaded. SQL Server CE automatically provides a value for the column if the column:

Has an IDENTITY property. The next incremental identity value is used.
Has a default. The default value for the column is used.
Is nullable. A null value is used.

The column list and VALUES list must be used when inserting explicit values into an identity column. If the values in the VALUES
list are not in the same order as the columns in the table or do not have a value for each column in the table, column_list must be
used to explicitly specify the column that stores each incoming value.

When DEFAULT is used to specify a column value, the default value for that column is inserted. If a default does not exist for the
column and the column allows null values, NULL is inserted. DEFAULT is not valid for an identity column.

Columns created with the uniqueidentifier data type store specially formatted 16-byte binary values. Unlike with identity
columns, SQL Server CE automatically generates values for ROWGUID columns with the uniqueidentifier data type. During an
insert operation, variables with a data type of uniqueidentifier and string constants in the form xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx (36 characters including hyphens, where x is a hexadecimal digit in the range 0-9 or a-f) can be used for
uniqueidentifier columns. For example, 6F9619FF-8B86-D011-B42D-00C04FC964FF is a valid value for a uniqueidentifier
variable or column.

When you insert rows, the following rules apply:

If a value is being loaded into columns with an nchar, nvarchar, or varbinary data type, the padding or truncation of

trailing blanks (spaces for nchar and nvarchar, zeros for varbinary) is determined as defined in the following table.
Data type Default operation
nchar/binary Pad original value (with trailing blanks for the nchar columns

and with trailing zeros for the binary columns) to the length of
the column.

nvarchar Trailing blanks in character values inserted into nvarchar
columns are not trimmed. Values are not padded to the length
of the column.

varbinary Trailing zeros in binary values inserted into varbinary columns
are not trimmed. Values are not padded to the length of the
column.

If an INSERT statement violates a constraint or rule or if it has a value incompatible with the data type of the column, the
statement fails and SQL Server CE displays an error message.
If INSERT is loading multiple rows with SELECT, any violation of a rule or constraint that occurs from the values being
loaded causes the entire statement to be terminated, and no rows are loaded.

Examples

A. Using a simple INSERT statement

The following example adds a new company to the Customers table in the Northwind database. Where certain information is
unavailable, a null value is inserted.

INSERT INTO Customers VALUES ('TSTCU', 'Testing Site Telephony Co.', 'John Kay', 'Owner',
NULL, 'Forks', NULL, NULL, 'USA', NULL, DEFAULT)

B. Inserting data that is not in the same order as the columns

The following example uses column_list and the VALUES list to specify explicitly the values that are inserted into each column in
the Customers table in the Northwind database.

INSERT INTO Customers (CustomerID, CompanyName, Country, Phone) VALUES ('XYZAB',
'Xylophone Alphabet Co.', 'USA', '206-321-8765')

C. Inserting data with fewer values than columns

The following example adds Liz Smith to the Employees table in the Northwind database without supplying a value for
EmployeeID.

INSERT Employees (LastName, FirstName) VALUES ('Smith', 'Liz')

SQL Server CE Books Online

IS [NOT] NULL
Determines whether or not a given expression is NULL.

Syntax

expression IS [NOT] NULL

Arguments

expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

NOT
Specifies that the Boolean result be negated. The predicate reverses its return values, returning TRUE if the value is NOT NULL,
and FALSE if the value is NULL.

Result Types

bit

Return Code Values

If the value of expression is NULL, IS NULL returns TRUE; otherwise, it returns FALSE.

If the value of expression is NULL, IS NOT NULL returns FALSE; otherwise, it returns TRUE.

Remarks

To determine whether an expression is NULL, use IS NULL or IS NOT NULL rather than comparison operators (such as = or !=).
Comparison operators return UNKNOWN if either or both arguments are NULL.

SQL Server CE Books Online

LEN
Returns the number of characters, rather than the number of bytes, of the given string expression, excluding trailing blanks.

Syntax

LEN (string_expression)

Arguments

string_expression
Is the string expression to be evaluated. string_expression can be any data type that can be implicitly converted to nvarchar.
Binary expressions can also be supplied as arguments, in which case, the number of bytes is returned.

Return Types

int

Example

The following example returns the company names listed in the Customers table in the Northwind database along with the
number of characters in the company name.

SELECT CompanyName, LEN(CompanyName)
FROM Customers

SQL Server CE Books Online

LIKE
Determines whether a given character string matches a specified pattern. A pattern can include regular characters and wildcard
characters. During pattern matching, regular characters must match exactly the characters specified in the character string.
Wildcard characters, however, can be matched with arbitrary fragments of the character string. Using wildcard characters makes
the LIKE operator more flexible than using the = and != string comparison operators. If any of the arguments are not of a
character string data type, Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) converts them to a character
string data type, if possible.

Syntax

match_expression [NOT] LIKE pattern [ESCAPE escape_character]

Arguments

match_expression
Is any valid expression in SQL Server CE of nchar, nvarchar, or ntext data type.

pattern
Is the pattern to search for in match_expression and can include the following valid SQL Server CE wildcard characters.

Wildcard
character

Description Example

% Any string of zero or more
characters.

WHERE title LIKE '%computer%'
finds all book titles with the word
'computer' anywhere in the book
title.

_ (underscore) Any single character. WHERE au_fname LIKE '_ean' finds
all four-letter first names that end
with ean (Dean, Sean, and so on).

escape_character
Is any valid expression in SQL Server CE of any of the data types of the character string data type category. escape_character
has no default and must consist of only one character.

Result Types

bit

Result Value

LIKE returns TRUE if the match_expression matches the specified pattern.

SQL Server CE Books Online

LOG
Returns the natural logarithm of the given float expression.

Syntax

LOG (float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the logarithm of various float values.

CREATE TABLE Logarithms ("LOG 2" float, "LOG 20" float, "LOG 200" float)
INSERT INTO Logarithms VALUES (LOG(2), LOG(20), LOG(200))
SELECT * FROM Logarithms

SQL Server CE Books Online

LOG10
Returns the base-10 logarithm of the given float expression.

Syntax

LOG10 (float_expression)

Arguments

float_expression
Is an expression of the type float, or of types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the base-10 logarithm of various float values.

CREATE TABLE "Base-10 Logarithms" ("LOG10 2" float, "LOG10 20" float, "LOG10 200" float)
INSERT INTO Logarithm VALUES (LOG10(2), LOG10(20), LOG10(200))
SELECT * FROM "Base-10 Logarithms"

SQL Server CE Books Online

LOWER
Returns a character expression after converting uppercase character data to lowercase.

Syntax

LOWER (character_expression)

Arguments

character_expression
Is an expression of character or binary data type, or a data type that is implicitly convertible to nvarchar or ntext. Otherwise,
use CAST to explicitly convert character_expression.

Return Types

nvarchar or ntext

Examples

The following example returns, in lower case, the list of company names in the Customers table in the Northwind database.

SELECT CustomerID, LOWER(CompanyName), City
FROM Customers

SQL Server CE Books Online

LTRIM
Returns a character expression after removing leading blanks.

Syntax

LTRIM (character_expression)

Arguments

character_expression
Is an expression of character or binary data. character_expression must be of a data type that is implicitly convertible to
nvarchar or ntext. Otherwise, use CAST to explicitly convert character_expression.

Return Types

nvarchar or ntext

Examples

The following example removes leading blanks from the names of customers listed in the MyCustomers table.

CREATE TABLE MyCustomers (CustID INTEGER IDENTITY (100,1) PRIMARY KEY, CompanyName
nvarchar (50))
INSERT INTO MyCustomers (CompanyName) VALUES (' A. Datum Corporation')
SELECT CustID, LTRIM(CompanyName)
FROM MyCustomers

SQL Server CE Books Online

MAX
Returns the maximum value in the expression.

Syntax

MAX ([ALL] expression)

Arguments

ALL
Applies the aggregate function to all values. ALL is the default.

expression
Is a constant, column name, or function, and any combination of arithmetic, bitwise, and string operators. MAX can be used with
numeric, character, and datetime columns but not with bit columns. Aggregate functions and subqueries are not permitted.

Return Types

Returns a value of the same type as expression.

Remarks

MAX ignores any null values.

For character columns, MAX finds the highest value in the collating sequence.

Examples

The following example uses MAX to determine the highest priced item in the Products table in the Northwind database.

SELECT MAX(UnitPrice)AS "Most Expensive" FROM Products

This is the result set:

Most Expensive

263.5

SQL Server CE Books Online

MIN
Returns the minimum value in the expression.

Syntax

MIN ([ALL] expression)

Arguments

ALL
Applies the aggregate function to all values. ALL is the default.

expression
Is a constant, column name, or function, and any combination of arithmetic, bitwise, and string operators. MIN can be used with
numeric, nchar, nvarchar, or datetime columns but not with bit columns. Aggregate functions and subqueries are not
permitted.

Return Types

Returns a value of the same type as expression.

Remarks

MIN ignores any null values.

With character data columns, MIN finds the value that is lowest in the sort sequence.

Examples

The following example uses MIN to determine the lowest priced item in the Products table in the Northwind database.

SELECT MIN(UnitPrice) AS "Least Expensive" FROM Products

This is the result set:

Least Expensive

2.5

SQL Server CE Books Online

NCHAR
Returns the Unicode character with the given integer code, as defined by the Unicode standard.

Syntax

NCHAR (integer_expression)

Arguments

integer_expression

Is a positive integer from 0 through 65535. integer_expression can also be of a data type that can be implicitly converted to int
within the specified range. If a value outside this range is specified, NULL is returned.

Return Types

nchar(1)

Examples

The following example returns the first letter of each company name listed in the Customers table of the Northwind database.

SELECT CompanyName, NCHAR(UNICODE(CompanyName))
FROM Customers

SQL Server CE Books Online

NEWID
Creates a unique value of type uniqueidentifier.

Syntax

NEWID ()

Return Types

uniqueidentifier

Examples

The following example returns a uniqueidentifier value that is inserted into a table using the NEWID function.

CREATE TABLE myTable(GuidCol uniqueidentifier, NumCol int)
INSERT INTO myTable Values(NEWID(), 4)
SELECT * FROM myTable

SQL Server CE Books Online

NOT
Negates a Boolean input.

Syntax

[NOT] boolean_expression

Arguments

boolean_expression
Is any valid Boolean expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Result Types

bit

Result Value

NOT reverses the value of any Boolean expression.

Examples

The following example returns a list of all products that have a unit price less than 10 dollars and greater than 100 dollars.

SELECT ProductID, ProductName, UnitPrice
FROM Products
WHERE UnitPrice NOT BETWEEN 10 AND 100

SQL Server CE Books Online

Operators
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the following operators.

Arithmetic Operators

+ (Add) / (Divide)
- (Subtract) % (Modulo)
* (Multiply)

Bitwise Operators

Note Only one expression can be of either binary or varbinary data type in a bitwise operation.

& (AND) ^ (Exclusive OR)
| (OR) ~ (NOT)

Comparison Operators

= (Equals) <> (Not Equal To)
> (Greater Than) != (Not Equal To)
< (Less Than) !< (Not Less Than)
>= (Greater Than or Equal To) !> (Not Greater Than)
<= (Less Than or Equal To)

Logical Operators

ALL IN
AND LIKE
ANY NOT
BETWEEN OR
EXISTS SOME

Unary Operators

+ (Positive) - (Negative)

SQL Server CE Books Online

OR
Combines two conditions. When more than one logical operator is used in a statement, OR operators are evaluated after AND
operators; however, you can change the order of evaluation by using parentheses.

Syntax

Boolean_expression OR Boolean_expression

Arguments

Boolean_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) that returns TRUE, FALSE, or
UNKNOWN.

Result Types

bit

Result Value

OR returns TRUE when either of the conditions is TRUE.

SQL Server CE Books Online

ORDER BY Clause
Specifies the sort order for the result set. The ORDER BY clause is not valid in subqueries.

Syntax

[ORDER BY { order_by_expression [ASC | DESC] } [,...n]]

Arguments

order_by_expression
Specifies a column on which to sort. A sort column can be specified as a name or column alias (which can be qualified by the
table name) or an expression. Multiple sort columns can be specified. The sequence of the sort columns in the ORDER BY clause
defines the organization of the sorted result set.

The ORDER BY clause can include items not appearing in the select list.

Note ntext and image columns cannot be used in an ORDER BY clause.

ASC
Specifies that the values in the specified column should be sorted in ascending order, from lowest value to highest value.

DESC
Specifies that the values in the specified column should be sorted in descending order, from highest value to lowest value. Null
values are treated as the lowest possible values.

There is no limit to the number of items in the ORDER BY clause.

Examples

The following example lists employees by their first names.

SELECT FirstName + ' ' + LastName FROM Employees ORDER BY FirstName

SQL Server CE Books Online

PATINDEX
Returns the starting position of the first occurrence of a pattern in a specified expression, or zeros if the pattern is not found, on all
valid text and character data types.

Syntax

PATINDEX ('%pattern%' , expression)

Arguments

pattern
Is a literal string. Wildcard characters can be used; however, the % character must precede and follow pattern (except when
searching for first or last characters). pattern is an expression of types that can be implicitly converted to nchar, nvarchar, or
ntext.

expression
Is an expression, usually a column that is searched to find the specified pattern. expression can be nchar, nvarchar, or ntext.

Return Types

int

Examples

The following example searches the list of products that have the word Anton in their name.

SELECT ProductName, PATINDEX('%Anton%', ProductName)
FROM Products

SQL Server CE Books Online

PI
Returns the constant value of PI.

Syntax

PI ()

Return Types

float

SQL Server CE Books Online

POWER
Returns the value of the given expression to the specified power.

Syntax

POWER (numeric_expression , y)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that are implicitly convertible to
float.

y
Is the power to which to raise numeric_expression. y can be an expression of types that are implicitly convertible to float.

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example raises the employee IDs in the Employees table in the Northwind database to the power of 3.

SELECT EmployeeID, POWER(EmployeeID, 3) AS Cube
FROM Employees
ORDER BY EmployeeID

This is the result set:

EmployeeID................Cube

1................................1

2................................4

3................................9

4................................16

5................................25

6................................36

7................................49

8................................64

9................................81

SQL Server CE Books Online

RADIANS
Returns radians when a numeric expression, in degrees, is entered.

Syntax

RADIANS (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that are implicitly convertible to
float.

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example returns the radian value of various angles.

CREATE TABLE Radians ("30 Degree", "60 Degrees", "90 Degrees")
INSERT INTO Radians VALUES(RADIANS(30.000000), RADIANS(60.000000), RADIANS(90.000000))
SELECT * FROM RADIANS

SQL Server CE Books Online

RAND
Returns a random float value from 0 through 1.

Syntax

RAND ([seed])

Arguments

seed
Is an integer expression that can be implicitly converted to int, which gives the seed or start value.

Return Types

float

Examples

The following example returns random float numbers based on three different seed values.

CREATE TABLE Random (Seed1 float, Seed5 float, Seed10 float)
INSERT INTO Random Values (RAND(1), RAND(5), RAND(10))
SELECT * FROM Random

SQL Server CE Books Online

REPLACE
Replaces all occurrences of the second given string expression in the first string expression with a third expression.

Syntax

REPLACE ('string_expression1' , 'string_expression2' , 'string_expression3')

Arguments

'string_expression1'
Is the string expression to be searched. string_expression1 can be of data types that are implicitly convertible to nvarchar or
ntext.

'string_expression2'
Is the string expression to try to find. string_expression2 can be of data types that are implicitly convertible to nvarchar or
ntext.

'string_expression3'
Is the replacement string expression. string_expression3 can be of data types that are implicitly convertible to nvarchar or
ntext.

Return Types

nvarchar or ntext

Examples

The following example searches for the name Anton in the list of product names and replaces it with Anthony.

SELECT REPLACE(ProductName, 'Anton', 'Anthony')
FROM Products

SQL Server CE Books Online

REPLICATE
Repeats a character expression for a specified number of times.

Syntax

REPLICATE (character_expression , integer_expression)

Arguments

character_expression
Is an alphanumeric expression of character data, or other data types that are implicitly convertible to nvarchar or ntext.

integer_expression
Is an expression that can be implicitly converted to int. If integer_expression is negative, a null string is returned.

Return Types

nvarchar or ntext

Examples

The following example replicates (twice) the last name of each employee in the Employee table in the Northwind database.

SELECT REPLICATE (LastName, 2) AS "LastName Twice"
FROM Employees

This is the result set:

LastName Twice

FullerFuller
PeacockPeacock
CallahanCallahan
DavolioDavolio
LeverlingLeverling
BuchananBuchanan
SuyamaSuyama
KingKing
DodsworthDodsworth

SQL Server CE Books Online

Reserved Words
A reserved word in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) does not necessarily function the same
way as the corresponding word in SQL Server 2000. The following table lists the reserved words used in SQL Server CE.

Important Avoid using reserved words as identifiers. If reserved words must be used as identifiers, they must be
delimited with double quotation marks.

@@IDENTITY ENCRYPTION ORDER
ADD END OUTER
ALL ERRLVL OVER
ALTER ESCAPE PERCENT
AND EXCEPT PLAN
ANY EXEC PRECISION
AS EXECUTE PRIMARY
ASC EXISTS PRINT
AUTHORIZATION EXIT PROC
AVG EXPRESSION PROCEDURE
BACKUP FETCH PUBLIC
BEGIN FILE RAISERROR
BETWEEN FILLFACTOR READ
BREAK FOR READTEXT
BROWSE FOREIGN RECONFIGURE
BULK FREETEXT REFERENCES
BY FREETEXTTABLE REPLICATION
CASCADE FROM RESTORE
CASE FULL RESTRICT
CHECK FUNCTION RETURN
CHECKPOINT GOTO REVOKE
CLOSE GRANT RIGHT
CLUSTERED GROUP ROLLBACK
COALESCE HAVING ROWCOUNT
COLLATE HOLDLOCK ROWGUIDCOL
COLUMN IDENTITY RULE
COMMIT IDENTITY_INSERT SAVE
COMPUTE IDENTITYCOL SCHEMA
CONSTRAINT IF SELECT
CONTAINS IN SESSION_USER
CONTAINSTABLE INDEX SET
CONTINUE INNER SETUSER
CONVERT INSERT SHUTDOWN
COUNT INTERSECT SOME
CREATE INTO STATISTICS
CROSS IS SUM
CURRENT JOIN SYSTEM_USER
CURRENT_DATE KEY TABLE
CURRENT_TIME KILL TEXTSIZE
CURRENT_TIMESTAMP LEFT THEN
CURRENT_USER LIKE TO
CURSOR LINENO TOP
DATABASE LOAD TRAN
DATABASEPASSWORD MAX TRANSACTION
DATEADD MIN TRIGGER
DATEDIFF NATIONAL TRUNCATE

DATENAME NOCHECK TSEQUAL
DATEPART NONCLUSTERED UNION
DBCC NOT UNIQUE
DEALLOCATE NULL UPDATE
DECLARE NULLIF UPDATETEXT
DEFAULT OF USE
DELETE OFF USER
DENY OFFSETS VALUES
DESC ON VARYING
DISK OPEN VIEW
DISTINCT OPENDATASOURCE WAITFOR
DISTRIBUTED OPENQUERY WHEN
DOUBLE OPENROWSET WHERE
DROP OPENXML WHILE
DUMP OPTION WITH
ELSE OR WRITETEXT

SQL Server CE Books Online

ROUND
Returns a numeric expression, rounded to the specified length or precision.

Syntax

ROUND (numeric_expression , length [, function])

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that are implicitly convertible to
float.

length
Is the precision to which numeric_expression is to be rounded. When length is a positive number, numeric_expression is
rounded to the number of decimal places specified by length. When length is a negative number, numeric_expression is
rounded on the left side of the decimal point, as specified by length.

function
Is the type of operation to perform. When function is omitted or has a value of 0 (default), numeric_expression is rounded.
When a value other than 0 is specified, numeric_expression is truncated.

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example returns the unit price, rounded to the nearest dollar, of products listed in the Products table of the
Northwind database.

SELECT UnitPrice, ROUND(UnitPrice, 0)
FROM Products

SQL Server CE Books Online

RTRIM
Returns a character string after truncating all trailing blanks.

Syntax

RTRIM (character_expression)

Arguments

character_expression
Is an expression of character or binary data, or other data types that are implicitly convertible to nvarchar or ntext. Otherwise,
use CAST to explicitly convert character_expression.

Return Types

nvarchar or ntext

Examples

The following example removes trailing blanks from the names of customers listed in the MyCustomers table.

CREATE TABLE MyCustomers (CustID INTEGER IDENTITY (100,1) PRIMARY KEY, CompanyName
nvarchar (50))
INSERT INTO MyCustomers (CompanyName) VALUES ('A. Datum Corporation ')
SELECT CustID, RTRIM(CompanyName)
FROM MyCustomers

SQL Server CE Books Online

SELECT Statement
Retrieves rows from the database and allows the selection of one or many rows or columns from one or many tables. This is the
primary SQL construct used to express queries. SELECT does not modify, insert, or delete any data.

Syntax

The main clauses of a SELECT statement are:

SELECT select_list
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

Remarks

A SELECT statement describes a query to the system. The execution of the query does not update any data. The query result is a
table with identically structured rows, each of which has the same set of columns. The SELECT statement defines exactly which
columns will exist in this result table, and the rows that will populate the table. The SELECT statement does not tell the system how
to execute the query; instead, the system executes the query in whatever manner is deemed optimal (using an internal cost-based
optimization module). The result is guaranteed to be equivalent to the following canonical execution strategy. The only differences
may be in the order of rows in the table, although this will be consistent with any ordering specified by an ORDER BY clause.

Execution Strategy

1. Generate the join of tables in the FROM clause. If the explicit JOIN syntax is used, the JOIN result is obvious. If the FROM
clause has a list of table names separated by commas, this is implicitly a cross-product join of the tables.

2. If a WHERE clause exists, apply the search condition to the rows resulting from Step 1, and retain only those rows that
satisfy the condition.

3. If there are no aggregates in the SELECT clause, and if there is no GROUP BY clause, go to Step 7.
4. If there is a GROUP BY clause, divide the rows resulting from Step 2 into several groups, such that all the rows in each group

have the same value on all the grouping columns. If there is no GROUP BY clause, put all the rows into a single group.
5. For each group arising from Step 4, apply the HAVING clause, if it is specified. Only those groups that satisfy the HAVING

clause will be retained.
6. For each group arising from Step 5, generate exactly one result row by evaluating the select list from the SELECT clause

against that group.
7. If the SELECT clause has the DISTINCT keyword, eliminate any duplicate rows in the result of Step 6.
8. If there is an ORDER BY clause, sort the result of Step 7 as specified by the order expression.

SQL Server CE Books Online

SELECT Clause
Specifies the columns to be returned by the query.

Syntax

SELECT [ALL | DISTINCT] < select_list >
< select_list > ::=
 { *
 | { table_name | table_alias }.*
 | { column_name | expression } [[AS] column_alias]
 } [,...n]

Arguments

ALL
Specifies that duplicate rows can appear in the result set. ALL is the default.

DISTINCT
Specifies that only unique rows can appear in the result set. Null values are considered equal for the purposes of the DISTINCT
keyword.

< select_list >
The columns to be selected for the result set. The select list is a series of expressions separated by commas.

*
Specifies that all columns from all tables in the FROM clause should be returned. The columns are returned by table, as
specified in the FROM clause, and in the order in which they exist in the table.

table_name | table_alias.*
Limits the scope of the * to the specified table. Requires that all columns from the specified table in the FROM clause should be
returned. The columns are returned in the order in which they exist in the table. If a table has an alias specified in the FROM
clause, the alias must be used, and the use of the table name is not valid.

column_name
Is the name of a column to return. Qualify column_name to prevent an ambiguous reference, such as occurs when two tables in
the FROM clause have columns with duplicate names. For example, both the Customers and Orders tables in the Northwind
database have a column named ColumnID. If the two tables are joined in a query, the customer ID can be specified in the select
list as Customers.CustomerID. If a table alias is provided, the table alias must be used to qualify the column name. Otherwise,
the table name should be used.

expression
Is a column name, constant, function, or any valid combination of column names, constants, and functions connected by one or
more operators.

column_alias
Is an alternative name to replace the column name in the query results set. For example, an alias such as "Quantity", or
"Quantity to Date", or "Qty" can be specified for a column named quantity. Aliases are used also to specify names for the
results of expressions, for example:

SELECT AVG(UnitPrice) AS "Average Price" FROM "Order Details"

column_alias can be used in an ORDER BY clause, but it cannot be used in a WHERE, GROUP BY, or HAVING clause.

Remarks

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), the SELECT statement must include a FROM clause to
execute successfully; otherwise, SQL Server CE returns an error.

SQL Server CE Books Online

SIGN
Returns the positive (+1), zero (0), or negative (-1) sign of the given expression.

Syntax

SIGN (numeric_expression)

Arguments

numeric_expression
Is an expression of the exact numeric or approximate numeric data type categories, or types that are implicitly convertible to
float (except for the bit data type).

Return Types

Returns the same type as numeric_expression except for the following expressions.

Specified expression Return type
tinyint, smallint int
real/float float
Nonnumeric types that can be implicitly
converted to float

float

Examples

The following example returns the SIGN of the difference between the units of products in stock and units of products that have
been ordered in the Products table of the Northwind database.

SELECT (UnitsInStock - UnitsOnOrder), SIGN(UnitsInStock - UnitsOnOrder)
FROM Products

SQL Server CE Books Online

SIN
Returns the trigonometric sine of the given angle (in radians) in an approximate numeric (float) expression.

Syntax

SIN (float_expression)

Arguments

float_expression
Is an expression of data types that can be implicitly converted to float.

Return Types

float

Examples

The following example returns the sine of various angles.

CREATE TABLE Sine ("SIN(0)" float, "SIN(PI()/6)" float, "SIN(PI()/4)" float,
"SIN(PI()/3)" float, "SIN(PI()/2)" float)
INSERT INTO Sine VALUES (SIN(0), SIN(PI()/6), SIN(PI()/4), SIN(PI()/3), SIN(PI()/2))
SELECT * FROM Sine

SQL Server CE Books Online

SOME | ANY
Compares a scalar value with a single-column set of values.

Syntax

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < }
 { SOME | ANY } (subquery)

Arguments

scalar_expression
Is any valid expression in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

{ = | <> | != | > | >= | !> | < | <= | !< }
Is any valid comparison operator.

SOME | ANY
Specifies that a comparison should be made.

subquery
Is a subquery that has a result set of one column. The data type of the column returned must be the same data type as
scalar_expression.

Result Types

bit

Result Value

SOME or ANY returns TRUE when the comparison specified is TRUE for ANY pair (scalar_expression, x) where x is a value in the
single-column set; otherwise, returns FALSE.

SQL Server CE Books Online

SPACE
Returns a string of repeated spaces.

Syntax

SPACE (integer_expression)

Arguments

integer_expression
Is a positive integer, or an expression that can be implicitly converted to int, that indicates the number of spaces. If
integer_expression is negative or greater than 255, a null string is returned.

Return Types

nvarchar

Examples

The following example uses the Employees table in the Northwind database. The example concatenates the last names of the
employees, a comma, two spaces and the first names of the employees.

SELECT LastName + ',' + SPACE(2) + FirstName
FROM Employees

SQL Server CE Books Online

SQRT
Returns the square root of the given expression.

Syntax

SQRT (float_expression)

Arguments

float_expression
Is an expression whose type can be implicitly converted to float.

Return Types

float

Examples

The following example returns the square root of the freight charges from the Orders table in the Northwind database.

SELECT Freight, SQRT(Freight) AS "Square root of Freight"
FROM Orders

SQL Server CE Books Online

STR
Returns character data converted from numeric data.

Syntax

STR (float_expression [, length [, decimal]])

Arguments

float_expression
Is an expression of that can be implicitly converted to float.

Note Do not use a function or subquery as the float_expression.

length
Is the total length, including decimal point, sign, digits, and spaces. The default is 10. length must be of a data type that can be
implicitly converted to int.

decimal
Is the number of places to the right of the decimal point. decimal must be of a data type that can be implicitly converted to int.
The default is 0.

Return Types

nvarchar

Examples

The following example converts expressions consisting of five digits and a decimal point to six-position character strings. The
fractional part of the first number is rounded to one decimal place. The fractional part of the second number is rounded to two
decimal places. The third number is returned without a decimal place.

CREATE TABLE t1 (Col1 float, Col2 float, Col3 float)
INSERT INTO t1 Values(123.45, 123.45, 123.45)
SELECT STR(Col1, 6,1), STR(Col2, 6,2), STR(Col3)
FROM t1

SQL Server CE Books Online

STUFF
Deletes a specified length of characters and inserts another set of characters at a specified starting point.

Syntax

STUFF (character_expression , start , length , character_expression)

Arguments

character_expression
Is an expression that can be implicitly converted to nvarchar or ntext.

start
Is an integer value, or an expression that can be implicitly converted to int, that specifies the location to begin deletion and
insertion. If start is negative, a null string is returned. If start is longer than the first character_expression, a null string is
returned.

length
Is an integer, or an expression that can be implicitly converted to int, that specifies the number of characters to delete. If length
is longer than the first character_expression, deletion occurs up to the last character in the last character_expression. If length is
negative, a null string is returned.

Return Types

nvarchar or ntext

Examples

The following example deletes the second digit of the ProductID in the Products table in the Northwind database and replaces
it with 000.

SELECT STUFF(ProductID, 2,1, '000')
FROM Products

SQL Server CE Books Online

SUBSTRING
Returns part of a character, binary, text, or image expression.

Syntax

SUBSTRING (expression , start , length)

Arguments

expression
Is a character string, binary string, text, image, a column, or an expression that includes a column. Do not use expressions that
include aggregate functions.

start
Is an integer, or an expression that can be implicitly converted to int, that specifies where the substring begins.

length
Is an integer, or an expression that can be implicitly converted to int, that specifies the length of the substring (the number of
characters or bytes to return).

Return Types

Returns character data if expression is one of the supported character data types. Returns binary data if expression is one of the
supported binary data types.

The returned string is the same type as the given expression with the exceptions shown in the following table.

Given expression Return type
image varbinary
ntext nvarchar

Examples

The following example uses the Employees table in the Northwind database. The example returns the initial of the employees'
first names and the employees' last names.

SELECT SUBTRING(FirstName,1,1) AS Initial, LastName
FROM Employees

This is the result set:

Initial..........LastName

A................Fuller
M................Peacock
L................Callahan
N................Davolio
J................LeverLing
S................Buchanan
M................Suyama
R................King
A................Dodsworth

SQL Server CE Books Online

SUM
Returns the sum of all the values, or only the DISTINCT values, in the expression. SUM can be used with numeric columns only.
Null values are ignored.

Syntax

SUM ([ALL] expression)

Arguments

ALL
Applies the aggregate function to all values. ALL is the default.

expression
Is a constant, column, or function and any combination of arithmetic, bitwise, and string operators. expression is an expression
of the exact numeric or approximate numeric data type categories, except for the bit data type. Aggregate functions and
subqueries are not permitted.

Return Types

Returns the summation of all expression values in the most precise expression data type.

Expression result Return type
integer category int
decimal category (p, s) decimal(38, s)
money and smallmoney category money
float and real category float

Examples

The following example queries for the total number of units in stock for all discontinued products in the Northwind database.

SELECT SUM(UnitsInStock)AS "Units Remaining" FROM Products WHERE Discontinued = 'True'

This is the result set:

Units Remaining

101

SQL Server CE Books Online

TAN
Returns the tangent of the input expression.

Syntax

TAN (float_expression)

Arguments

float_expression
Is an expression of data types that can be implicitly converted to float, interpreted as number of radians.

Return Types

float

Examples

The following example returns the tangent of various angles.

CREATE TABLE Tangent ("TAN(0)" float, "TAN(PI()/6)" float, "TAN(PI()/4)" float,
"TAN(PI()/3)" float, "TAN(PI()/2)" float)
INSERT INTO Tangent VALUES (TAN(0), TAN(PI()/6), TAN(PI()/4), TAN(PI()/3), TAN(PI()/2))
SELECT * FROM Tangent

SQL Server CE Books Online

UNICODE
Returns the integer value, as defined by the Unicode standard, for the first character of the input expression.

Syntax

UNICODE ('ncharacter_expression')

Arguments

'ncharacter_expression'
Is an expression whose type can be implicitly converted to nvarchar or ntext.

Return Types

int

Examples

The following example returns the names of the companies in the Northwind database along with the integer value, as defined
by the Unicode standard, for the first character of each company name.

SELECT CompanyName, UNICODE(CompanyName)
FROM Customers
ORDER BY CompanyName

SQL Server CE Books Online

UNION
Combines the results of two or more queries into a single result set consisting of all the rows belonging to all queries in the
union.

Syntax

 { < query specification > | (< query expression >) }
 UNION [ALL]
 < query specification | (< query expression >)
 [UNION [ALL] < query specification | (< query expression >)
 [...n]]

Arguments

< query_specification > | (< query_expression >)
Is a query specification or query expression that returns data to be combined with the data from another query specification or
query expression. The definitions of the columns that are part of a UNION operation do not have to be identical, but they must
be compatible through implicit conversion.

UNION
Specifies that multiple result sets are combined and returned as a single result set.

ALL
Incorporates all rows into the results, including duplicates. If not specified, duplicate rows are removed.

Examples

The following example returns the union of two SELECT statements.

CREATE TABLE t1 (a int, b nchar(4), c nchar(4))
INSERT INTO t1 VALUES (1, 'abc', 'jkl')
INSERT INTO t1 VALUES (2, 'def', 'mno')
INSERT INTO t1 VALUES (3, 'ghi', 'pqr')

CREATE TABLE t2 (a nchar(4), b float)
INSERT INTO t2 VALUES('jkl', 1.000)
INSERT INTO t2 VALUES('mno', 3.000)

SELECT a, b FROM t1
UNION
SELECT b,a FROM t2

This is the result set:

ab

1...........abc
1...........jkl
2...........def
3...........ghi
3...........mno

SQL Server CE Books Online

UPDATE
Modifies existing data in a table in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Syntax

UPDATE table_name
 SET
 { column_name = { expression | DEFAULT | NULL } } [,...n]
 [WHERE < search_condition >]

Arguments

table_name
Is the name of the table to update.

SET
Specifies the list of column or variable names to be updated.

column_name
Is a column that contains the data to be changed. column_name must reside in the specified table and should be specified only
once in the SET clause.

expression
Is a variable, literal value, or expression that returns a single value. The value returned by expression replaces the existing value
in column_name.

DEFAULT
Specifies that the default value defined for the column is to replace the existing value in the column. This can also be used to
change the column to NULL if the column has no default and is defined to allow null values.

WHERE
Specifies the conditions that limit the rows that are updated.

< search_condition >
Specifies the condition to be met for the rows to be updated. There is no limit to the number of predicates that can be included
in a search condition.

Remarks

Identity columns cannot be updated.

If a WHERE clause is not specified, all rows of the table are updated.

The search condition in the WHERE clause is evaluated for each row of the table before updating any row of the table.

If an update to a row violates a constraint or rule, if it violates the NULL setting for the column, or if the new value is an
incompatible data type, the statement is canceled, an error is returned, and no records are updated.

All nchar columns are right-padded to the defined length.

All trailing spaces are removed from data inserted into nvarchar columns, except in strings containing only spaces. These strings
are truncated to an empty string.

Examples

The following example changes the shipping address in the Orders table of the Northwind database for all orders made by the
company with the customer ID of VINET.

UPDATE Orders SET ShipAddress = '21 rue de l''xylophie' WHERE CustomerID = 'VINET'

SQL Server CE Books Online

UPPER
Returns a character expression with lowercase character data converted to uppercase.

Syntax

UPPER (character_expression)

Arguments

character_expression
Is an expression of character or binary data that can be implicitly converted to nvarchar or ntext; otherwise, use CAST to
explicitly convert character_expression.

Return Types

nvarchar or ntext

Examples

The following example queries the Customers table of the Northwind database and returns the names of the companies in
uppercase.

SELECT CustomerID, UPPER(CompanyName)
FROM Customers
ORDER BY CompanyName

SQL Server CE Books Online

WHERE Clause
Specifies a search condition to restrict the rows returned.

Syntax

[WHERE < search_condition >]

Arguments

< search_condition >
Restricts the rows returned in the result set through the use of predicates. There is no limit to the number of predicates,
separated by an AND clause, that can be included in a search condition.

Examples

The following example uses the WHERE clause to get the total number of units in stock for all discontinued products in the
Northwind database.

SELECT SUM(UnitsInStock)AS "Units Remaining" FROM Products WHERE Discontinued = 'True'

This is the result set:

Units Remaining

101

SQL Server CE Books Online

Building Applications
This section provides the reference information to programmatically access Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE).

Topic Description
Development Tools Provides background information for setting up

Microsoft Visual Studio® .NET and Microsoft
eMbedded Visual Tools.

ADOCE Provides programming references for Microsoft
ActiveX® Data Objects for Windows CE (ADOCE).

OLE DB and SQL Server CE Provides programming references for OLE DB for
SQL Server CE.

SQL Server CE Engine Object
Programmer's Reference for
eMbedded Visual Tools

Provides programming references for the SQL
Server CE Engine object.

Remote Data Access Provides programming references for the Remote
Data Access (RDA) object.

Replication Provides programming references for the
Replication object.

.NET Compact Framework Data
Providers

Provides programming information about the .NET
Compact Framework data providers:
System.Data.SqlServerCe and
System.Data.SqlClient.

Error Handling Provides programming references for error
handling in SQL Server CE.

SQL Server CE Books Online

Development Tools
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports two development environments: Microsoft Visual
Studio® .NET and Microsoft eMbedded Visual Tools. This topic provides general information about the setup requirements for
these environments. Each environment requires additional configurations to develop applications for SQL Server CE.

Developing a Visual Studio .NET Application

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

To build a SQL Server CE application using Visual Studio .NET, you must install .NET Compact Framework and Microsoft® Visual
Studio® .NET. This product provides all the necessary tools for developing Windows CE-based and Pocket PC-based applications
for use with SQL Server CE. For more information, see Installing SQL Server CE with Visual Studio .NET.

To access SQL Server CE-specific objects, you must add a reference to the following Microsoft .NET Compact Framework data
providers:

System.Data.SqlServerCe (for SQL Server CE)
System.Data.SqlClient (for SQL Server version 7.0 or later)

In addition, when you use either of these data providers, you must also add a reference to System.Data.Common. For more
information, see .NET Compact Framework Data Providers and the .NET Compact Framework SDK.

You can test your application using the emulator; however, you cannot use Secure Sockets Layer (SSL) encryption when running
your applications through the emulator.

Developing an eMbedded Visual Basic Application

To build a SQL Server CE application using eMbedded Visual Basic®, you must install SQL Server CE on a computer running the
eMbedded Visual Tools environment. For more information, see Installing SQL Server CE with eMbedded Visual Tools

To build a SQL Server CE application by using Microsoft eMbedded Visual Basic, you must add the reference to Microsoft CE SQL
Server Control 2.0. For more information, see Installing SQL Server CE on a Device Using eMbedded Visual Tools.

Debugging an eM bedded Visual Basic Application

When you run or debug your application, eMbedded Visual Basic automatically downloads and registers Ssce20.dll and
Ssceca20.dll to the Windows CE-based device. Ssce20.dll implements the SQL Server CE database. SQL Server CE Client Agent
(Ssceca20.dll) implements the Replication, RDA, and Engine objects.

Developing an eMbedded Visual C++ Application

For applications that call the Replication and RDA objects, you must include the following files in the eMbedded Visual C++®
project:

Ca_mergex20.h
Ca_mergex20.lib
Ole32.lib
Oleaut32.lib

You must supply all required parameters for the eMbedded Visual C++ application. If all required parameters are not supplied
with a method call, a compilation error occurs because default parameter values for method calls are not supported.

Debugging an eM bedded Visual C++ Application

Before you run or debug the application, you must manually download and register Ssce20.dll and Ssceca20.dll on the Windows
CE-based device. Ssce20.dll implements the SQL Server CE database. SQL Server CE Client Agent (Ssceca20.dll) implements the
Replication, RDA, and Engine objects.

See Also

Deploying Applications

SQL Server CE Books Online

ADOCE
The following topics in this section describe how you can use Microsoft® ActiveX® Data Objects for Windows® CE 3.1 (ADOCE)
to create, access, and modify databases in Microsoft SQL Server™ 2000 Windows CE Edition (SQL Server CE):

Setting Up a Project
Connecting to a SQL Server CE Database
Using ADOCE Batch Update

Microsoft ActiveX Data Objects (ADO) is a strategic, high-level interface to all types of data. ADO provides consistent, high-
performance access to data, whether you are creating a front-end database client or a middle-tier business object by using an
application, tool, language, or Internet browser. ADO, along with OLE DB, is part of the Microsoft Universal Data Access model.

ADOCE provides a subset of the desktop ADO specifically engineered to work with Microsoft Windows CE. ADOCE includes its
own internal database provider and enables you to have access to databases stored locally on a Windows CE-based device,
instead of working with databases stored remotely on desktop computers. The ADOCE 3.1 control can also work with data
sources that use an OLE DB provider.

For more information about ADOCE, see the ADOCE documentation in the MSDN® Library at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=8152

SQL Server CE Books Online

Setting Up a Project
Before your applications can work with Microsoft® ActiveX® Data Objects for Windows CE 3.1 (ADOCE) and Microsoft SQL
Server™ 2000 Windows CE Edition (SQL Server CE), you must configure your projects so they have references to these objects.

Adding the ADOCE Control to an Application

Before you can use the ADOCE control in Microsoft eMbedded Visual Basic®, you must create a reference to the control in the
integrated development environment (IDE).

To create a reference to the ADOCE control in the IDE

1. On the Project menu, click References.
2. Select the Microsoft CE ADO Control 3.1 check box, and then click OK.

Note Previous versions of the ADOCE control do not have a version number in the programmatic identifiers
(ProgIDs). If you do not specifically update your previous code to refer to version 3.1 of the control, an earlier
version of the control might be instantiated if it exists in the ROM of a device. If the device's ROM does not
contain an earlier version, when you execute your application, the following error message appears:

Invalid procedure call or argument: 'CreateObject'.

The following table shows the ProgIDs that are used with the ADOCE 3.1 control.

ADOCE object ProgID
Connection ADOCE.Connection.3.1
Recordset ADOCE.Recordset.3.1

Adding a Reference to SQL Server CE to an Application

After you install SQL Server CE on a Windows CE-based device, you can reference SQL Server CE from a program. However, by
defining a reference in your project, you force the SQL Server CE files to be copied to a device on which they do not already exist.

To create a reference to the SQL Server CE control in the eMbedded Visual Basic 3.0 IDE

1. On the Project menu, click References.
2. Select the Microsoft CE SQL Server Control 2.0 check box, and then click OK.

SQL Server CE Books Online

Connecting to a SQL Server CE Database
Before you can manipulate information in a database, you must open a connection to a valid data source. The Connection object
is used to represent a connection to a data source. To open a connection to a data source, create a variable that represents the
connection, and then create a Microsoft® ActiveX® Data Object for Windows® CE (ADOCE) Connection object by using the Set
statement and CreateObject function. The following example shows how to do this:

Dim cn As ADOCE.Connection
Set cn = CreateObject("ADOCE.Connection.3.1")

Note When you use the CreateObject function to create a reference to the ADOCE 3.1 control, you must include the
version number. If the version number is omitted from the string, an earlier version of the control is used. If no earlier
version of the control exists on the device, an error is returned. Microsoft SQL Server™ 2000 Windows CE Edition (SQL
Server CE) can be accessed only through ADOCE 3.1 or later.

After a Connection object is created, you can use the properties and methods of the Connection object to open, close, and
manipulate a connection. The following example shows how to open a connection to a database on the device by using the Open
method:

cn.ConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0; data
source=\Northwind.sdf"
cn.Open

Caution You must specify the SQL Server CE provider string when you open a SQL Server CE database. If you do not
specify a provider string in the Open method, Open defaults to using the proprietary Windows CE data source and
creates a new Windows CE data source file named Test.sdf. This is the equivalent of specifying CEDB for the Provider
property in the connection string.

In the previous sample, the connection string property is set before the Open method is executed. The Open method is used
without any parameters. A connection string can also be used as a parameter of the Open method. When connecting to a SQL
Server CE database, you must specify both the provider and data source properties in the connection string. The data source
property must be set with the full path and database name.

Disconnecting from a Database

After you make modifications and save them to the database, close the connection to the data source. The following example
shows how to use the Close method to close a connection:

cn.Close
Set cn = Nothing

Note You can have only one open connection to a SQL Server CE database at a time, and this connection must be
closed before starting replication or remote data access (RDA).

SQL Server CE Books Online

Using ADOCE Batch Update
Microsoft® ActiveX® Data Objects for Windows® CE 3.1 (ADOCE) allows you to batch a series of changes to be sent to a
provider at once. This is useful in client/server database engines because sending individual changes over the network can result
in poor performance. Because Microsoft SQL Server™ 2000 Windows CE Edition (SQL Server CE) is running locally, all changes
are done within the scope of the current computer. SQL Server CE implements updatable cursors in a very fast, efficient
mechanism directly against the local storage engine. This mechanism provides good performance, but only a single row can be
updated in a batch. If updating more than one record is required, transactions can be used to logically batch a series of changes
inside the engine.

SQL Server CE Books Online

OLE DB and SQL Server CE
The OLE DB Provider for SQL Server CE is a set of COM-based interfaces that exposes data stored in a Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE) database as well as SQL Server CE Database Engine functionalities. The OLE DB
Provider is the lowest level interface for accessing data in SQL Server CE, and all other data access mechanisms call through this
interface. The OLE DB Provider for SQL Server CE is an OLE DB version 2.5-compliant provider. For more information about
programming OLE DB, see the Microsoft OLE DB section of the Microsoft Data Access Components (MDAC) SDK documentation
in the MSDN® Library at this Microsoft Web site.

This section contains two parts:

Programming OLE DB Applications for SQL Server CE

Provides an overview about developing applications using the OLE DB Provider for SQL Server CE and information specific
to programming against the OLE DB Provider for SQL Server CE.

OLE DB for SQL Server CE Programmer's Reference

Provides reference material for the OLE DB Provider for SQL Server CE, including provider-specific interfaces, data types,
and properties.

Code Examples

The following topics contain code examples that demonstrate using the OLE DB Provider for SQL Server CE.

Creating Databases Constraints
Accessing Password-protected
Databases

Transactions

Session Objects Working with Large Data Types
Creating Indexes Using ISSCECompact
Using the Seek Method Using IRowsetPosition
Parameters

http://go.microsoft.com/fwlink/?LinkId=8018

SQL Server CE Books Online

Programming OLE DB Applications for SQL Server CE
The topics in this section provide a general overview of accessing and changing data in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) using the OLE DB Provider for SQL Server CE. The information is targeted towards direct
clients of the OLE DB Provider but is not meant to be a complete resource for information about OLE DB and OLE DB
programming. Differences between the OLE DB Provider for SQL Server CE and the core OLE DB interfaces are summarized in
Differences in SQL Server CE-supported OLE DB Provider Interfaces. For more information about programming against OLE DB
providers, see the Microsoft OLE DB section of the Microsoft Data Access Components (MDAC) SDK in the MSDN® Library at this
Microsoft Web site.

This section contains the followings topics:

Data Source Objects Parameters
Session Objects Constraints
Commands Transactions
Rowsets Managing Database Objects
Cursors Using SQL Server CE-specific Interfaces
Indexes

For more information about supported properties, data types, schema rowsets, and provider-specific interfaces, see the OLE DB
for SQL Server CE Programmer's Reference.

http://go.microsoft.com/fwlink/?LinkId=8018

SQL Server CE Books Online

Data Source Objects
Data Source Objects

In OLE DB programming, the data source object represents a provider's underlying data store. To connect to an OLE DB provider,
a consumer must first create and initialize an instance of the data source object. In Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE), the data source object is created by calling the OLE CoCreateInstance function and then passing the
CLSID (class identifier) for the OLE DB Provider for SQL Server CE (CLSID_SQLSERVERCE_2_0). Because SQL Server CE is an in-
process server, instances of SQL Server CE OLE DB objects are created using the CLSCTX_INPROC_SERVER macro to indicate the
executable context.

SQL Server CE uses only the DBPROP_INIT_DATASOURCE property to specify the desired data source. This property is passed the
full path to the database file to be opened. After setting this property, the consumer initializes the data source object, which
establishes the environment necessary to exchange data between the consumer and SQL Server CE. After the data source object is
initialized, the consumer can get self-descriptive information about the data store but cannot yet access data. This data source
object can then be used to create one or more session objects, which in turn are used to create the necessary transactions,
commands, and rowsets.

The OLE DB Provider for SQL Server CE also provides the ability to create a new database. For more information, see Creating
Databases.

Password-protected databases are also supported. With this security feature, a password must be passed when the data source
object is initialized. For more information, see Accessing Password-protected Databases.

Limitations of the Data Source Object

Some limitations of the data source object in the OLE DB Provider for SQL Server CE include:

The concept of a catalog as defined in OLE DB is not used in SQL Server CE. The DBPROP_INIT_DATASOURCE property
defines the database to use, and the OLE DB Provider for SQL Server CE treats this database as the current catalog.
The ability to change the current data store is not supported. Clients that want to change the data store must uninitialize the
data source object, set the new data store name, and then reinitialize the data source object.
SQL Server CE is single user, and only supports one initialized Data Source Object per database.

Provider-specific Data Source Properties

SQL Server CE supports the following provider-specific properties in the provider-specific property set DBPROPSET_SSCE_DBINIT:

DBPROP_SSCE_DBPASSWORD

Used to specify the password for a password protected or encrypted database. For more information, see Accessing
Password-protected Databases.

DBPROP_SSCE_ENCRYPTDATABASE

Used to create an encrypted database. Encrypted databases are always password protected, so the
DBPROP_SSCE_DBPASSWORD property will also be required. For more information, see Creating Databases.

DBPROP_SSCE_TEMPFILE_DIRECTORY

Used to specify the location of the temporary database. For more information, see Specifying the Location of the Temporary
Database Using OLE DB and Using SQL Server CE Temporary Databases.

See Also

Provider-specific Properties

Data Source Information Properties

Initialization Properties

Session Objects

SQL Server CE Books Online

Creating Databases
Creating Databases

The OLE DB Provider for SQL Server CE exposes the IDBDataSourceAdmin interface through which you can create and manage
databases in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). To create a new database, you must specify
the DBPROP_INIT_DATASOURCE property to specify a name for the database. For security reasons, the OLE DB Provider for SQL
Server CE does not support the ability to delete databases using IDBDataSourceAdmin::DestroyDataSource. If you want to
delete a database and you have access to the file system on the computer, you can simply delete the database files that are no
longer needed.

Creating Secure Databases

For improved security, SQL Server CE supports the ability to create both password protected and encrypted databases. Encrypted
databases must also be password-protected. Data in a password-protected or encrypted database can be accessed by SQL Server
CE only after the correct password has been provided.

Note If you forget the password for an encrypted database, the data is essentially lost.

For more information see, Using the SQL Server CE Database Security Features.

To create an encrypted database using the OLE DB Provider for SQL Server CE, you must pass the provider-specific property
DBPROP_SSCE_ENCRYPTDATABASE as VARIANT_TRUE and specify a password by using the provider-specific property
DBPROP_SSCE_DBPASSWORD. The following table summarizes the properties that must be specified to create each type of
database.

Type of database to create Required properties
Standard database DBPROP_INIT_DATASOURCE
Password-protected database DBPROP_INIT_DATASOURCE

DBPROP_SSCE_DBPASSWORD

Encrypted database DBPROP_INIT_DATASOURCE

DBPROP_SSCE_DBPASSWORD

DBPROP_SSCE_ENCRYPTDATABASE

For an existing database, these properties can be changed when the database is compacted. For more information, see Using
ISSCECompact.

Examples

The following example shows how to create an encrypted database by using the OLE DB Provider for SQL Server CE. To create a
password-protected only database or a standard database, remove the unnecessary DBPROP structures.

// Object declarations
HRESULT hr = NOERROR;
DBPROPSET dbpropset[2];
DBPROP dbprop[1]; // Property array to initialize the provider.
DBPROP sscedbprop[2]; // Property array for SSCE security properties
INT i = 0;
IDBDataSourceAdmin *pIDBDataSourceAdmin = NULL;
IUnknown *pIUnknownSession = NULL;

// Create an instance of the OLE DB provider.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBDataSourceAdmin, (void**)& pIDBDataSourceAdmin);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize property structures.
VariantInit(&dbprop[0].vValue);
for (int i = 0; i < sizeof(sscedbprop) / sizeof(sscedbprop[0]); i++)

{
 VariantInit(&sscedbprop[i].vValue);
}

// Specify the property with name of the database.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"NewDatabase.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Specify the property for encryption.
sscedbprop[0].dwPropertyID = DBPROP_SSCE_ENCRYPTDATABASE;
sscedbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
sscedbprop[0].vValue.vt = VT_BOOL;
sscedbprop[0].vValue.boolVal = VARIANT_TRUE;

// Specify the password.
sscedbprop[1].dwPropertyID = DBPROP_SSCE_DBPASSWORD;
sscedbprop[1].dwOptions = DBPROPOPTIONS_REQUIRED;
sscedbprop[1].vValue.vt = VT_BSTR;
sscedbprop[1].vValue.bstrVal = SysAllocString(L"mypassword");
if(NULL == sscedbprop[1].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize the property sets.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

dbpropset[1].guidPropertySet = DBPROPSET_SSCE_DBINIT ;
dbpropset[1].rgProperties = sscedbprop;
dbpropset[1].cProperties = sizeof(sscedbprop)/sizeof(sscedbprop[0]);

// Create and initialize the database.
hr = pIDBDataSourceAdmin->CreateDataSource(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset, NULL, IID_IUnknown, &pIUnknownSession);
if(FAILED(hr))
{
 goto Exit;
}
// At this point, the new encrypted database is created.

Exit:
// Do cleanup tasks here.

return;

See Also

Data Source Objects

Accessing Password-protected Databases

Using the SQL Server CE Database Security Features

SQL Server CE Books Online

Specifying the Location of the Temporary Database Using OLE
DB
Specifying the Location of the Temporary Database Using OLE DB

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the ability to specify an alternate location for the
temporary database. This location can be set programmatically by specifying the DBPROP_SSCE_TEMPFILE_DIRECTORY property
when a data source is initialized or when the ISSCECompact::Compact method is run. For more information, see Using SQL
Server CE Temporary Database.

Examples

The following example shows how to specify the temporary database directory by specifying the
DBPROP_SSCE_TEMPFILE_DIRECTORY property when calling IDBProperties::SetProperties.

// Object declarations
HRESULT hr = NOERROR;
DBPROPSET dbpropset[2];
DBPROP dbprop[1];
DBPROP sscedbprop[1];

// Declare the provider interfaces.
IDBInitialize * pIDBInitialize = NULL;
IDBProperties * pIDBProperties = NULL;

// Initialize the data source.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**) &pIDBInitialize);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Initialize property structures
VariantInit(&dbprop[0].vValue);
VariantInit(&sscedbprop[0].vValue);

// Initialize Property with name of database.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"Northwind.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Second property set has one property containing the provider-specific
// property to specify an alternate temp file directory.
sscedbprop[0].dwPropertyID = DBPROP_SSCE_TEMPFILE_DIRECTORY;
sscedbprop[0].vValue.vt = VT_BSTR;
sscedbprop[0].vValue.bstrVal = SysAllocString(L"\\NewTempDir");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize property set.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

// Initialize the provider-specific property set.
dbpropset[1].guidPropertySet = DBPROPSET_SSCE_DBINIT;

dbpropset[1].rgProperties = sscedbprop;
dbpropset[1].cProperties = sizeof(sscedbprop)/sizeof(sscedbprop[0]);

// Set the properties into the provider's data source object.
pIDBInitialize->QueryInterface(IID_IDBProperties,(void**)&pIDBProperties);

hr = pIDBProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize the data source.
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

Exit:
//Clean up resources here

return;

See Also

ISSCECompact

Provider-specific Properties

Using SQL Server CE-specific Interfaces

SQL Server CE Books Online

Accessing Password-protected Databases
Accessing Password-protected Databases

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports a file-level access-control mechanism that
requires that a password be presented to access a password-protected SQL Server CE database. This password must be passed
each time the database is opened. Use the DBPROP_SSCE_DBPASSWORD property in the DBPROPSET_SSCE_DBINIT provider-
specific property set to specify this property. When you create a database, this property can be used to specify a database
password on the database. Encrypted databases are always password protected.

When you compact a database, this property can be used to change the database password to a new value. For more information
about compacting a database, see Maintaining SQL Server CE Databases and Using SQL Server CE-specific Interfaces.

Examples

The following code example shows how to open a password-protected SQL Server CE database: (The password is requested from
the user at runtime in a dialog box, the code for which is not included in this sample.)

// Object declarations
HRESULT hr = NOERROR;
DBPROPSET dbpropset[2];
DBPROP dbprop[1];
DBPROP sscedbprop[1];
BSTR pwdPassword; // user input password

// Declare the provider interfaces.
IDBInitialize * pIDBInitialize = NULL;
IDBProperties * pIDBProperties = NULL;

// Initialize the data source.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**) &pIDBInitialize);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Initialize property structures
VariantInit(&dbprop[0].vValue);
VariantInit(&sscedbprop[0].vValue);

// Initialize Property with name of database.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"ProtectedData.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Second property set has one property containing the provider-specific
// database password in the pwdPassword variable that was obtained from a
// dialog box (not shown).
sscedbprop[0].dwPropertyID = DBPROP_SSCE_DBPASSWORD;
sscedbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
sscedbprop[0].vValue.vt = VT_BSTR;
sscedbprop[0].vValue.bstrVal = SysAllocString(<pwdPassword>);
if(NULL == sscedbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize property set.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;

dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

// Initialize the provider-specific property set.
dbpropset[1].guidPropertySet = DBPROPSET_SSCE_DBINIT;
dbpropset[1].rgProperties = sscedbprop;
dbpropset[1].cProperties = sizeof(sscedbprop)/sizeof(sscedbprop[0]);

// Set the properties into the provider's data source object.
pIDBInitialize->QueryInterface(IID_IDBProperties,(void**)&pIDBProperties);

hr = pIDBProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize the data source.
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

Exit:
//Clean up resources here

return;

See Also

Data Source Objects

Provider-specific Properties

Using the SQL Server CE Database Security Features

SQL Server CE Books Online

Session Objects
Session Objects

The primary function of the session object is to define transactions, commands, and rowsets and for creating and modifying
tables and indexes.

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), session properties can be set using the
ISessionProperties interface.

From a session, you can:

Create a command object by calling IDBCreateCommand::CreateCommand. A single session can support multiple
commands. For more information, see Commands.
Create a rowset by calling IOpenRowset::OpenRowset. For more information, see Rowsets.
Create a schema rowset by calling IDBSchemaRowset::GetRowset. For more information about the schema rowsets
supported by SQL Server CE, see SQL Server CE Schema Rowsets.
Create or modify tables and indexes by using ITableDefinition and IIndexDefinition.
Begin and end transactions. For more information, see Transactions.

Provider-specific Session Properties

SQL Server CE supports the provider specific property DBPROP_SSCE_MAXBUFFERSIZE. This property is used to modify the
amount of memory that the engine uses for caching. To change this value, pass DBPROP_SSCE_MAXBUFFERSIZE in the
DBPROPSET_SSCE_SESSION property set to the ISessionProperties interface. For more information, see Provider-specific
Properties.

Examples

The following example shows how to create a session object and modify the session properties to restrict the amount of cache
that the database engine uses to 128 KB.

// Object declarations
HRESULT hr;
ULONG i = 0;
DBPROPSET dbpropset[1];
DBPROP dbprop[1];
DBPROP sessionProps[1];

// Declare the provider interfaces.
IDBInitialize * pIDBInitialize = NULL;
IDBProperties * pIDBProperties = NULL;
IDBCreateSession * pIDBCreateSession = NULL;
ISessionProperties * pISessionProperties = NULL;

// Initialize the the data source object.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, NULL, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (LPVOID *) &pIDBInitialize);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Initialize the the property set variants.
for (i = 0; i < sizeof(dbprop)/sizeof(dbprop[0]); i++)
{
 VariantInit(&dbprop[i].vValue);
}
for (i = 0; i < sizeof(sessionProps)/sizeof(sessionProps[0]); i++)
{
 VariantInit(&sessionProps[i].vValue);
}

dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;

dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"\\windows\\Northwind.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;

// Set the properties into the provider's data source object.
hr = pIDBInitialize->QueryInterface(IID_IDBProperties,(void**)&pIDBProperties);
if(FAILED(hr))
{
 goto Exit;
}

hr = pIDBProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize the data source.
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

// Initialize a session object.
hr = pIDBProperties->QueryInterface(IID_IDBCreateSession, (void **) &pIDBCreateSession);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pIDBCreateSession->CreateSession(NULL, IID_ISessionProperties,
 (IUnknown**) &pISessionProperties);

// Initialize the property to change the maximum buffer pool size.
sessionProps[0].dwPropertyID = DBPROP_SSCE_MAXBUFFERSIZE;
sessionProps[0].dwOptions = DBPROPOPTIONS_REQUIRED;
sessionProps[0].vValue.vt = VT_I4;
sessionProps[0].vValue.lVal = 128; // limit cache usage to 128K

// Initialize the session property set.
dbpropset[0].guidPropertySet = DBPROPSET_SSCE_SESSION;
dbpropset[0].rgProperties = sessionProps;
dbpropset[0].cProperties = sizeof(sessionProps)/sizeof(sessionProps[0]);

// Set the session property.
hr = pISessionProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);

Exit:

 // Clean up resources

 return;

SQL Server CE Books Online

Commands
Commands

In OLE DB, a command object is used to execute provider-specific text commands, similar to SQL statements. The basic steps for
using commands in OLE DB are:

1. A command object is created from an existing session object using IDBCreateCommand::CreateCommand.
2. The command text for the query is specified using ICommandText.

The command syntax supported by the OLE DB Provider for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL
Server CE) is specified as DBGUID_SQL. DBGUID_SQL syntax is primarily SQL-92 syntax with ODBC escape sequences.

3. The command is executed using ICommand::Execute.

SQL Server CE supports a subset of the SQL Server Transact-SQL query grammar. Queries that can usually be run on SQL Server
CE can also run on SQL Server 2000; however, many of the features of Transact-SQL are absent from SQL Server CE and only a
single SQL statement can be executed in a command.

SQL Server CE supports parameterized queries in which parameters are delimited with the question mark (?) character; however,
named parameterized queries and output parameters for queries are not supported. For more information about the query
grammar supported by SQL Server CE, see SQL Reference for SQL Server CE.

Preparing Commands

To be able to execute a query, the database engine must first parse, compile, and optimize the SQL statement. Often, this work can
be done once if the command is to be executed multiple times, potentially saving time. If clients expect to run a query more than
once, it is recommended that the command be prepared once, then call Execute multiple times. This should maximize
performance by avoiding query recompilation. Commands can be prepared prior to execution by calling
ICommandPrepare::Prepare. This is equivalent to compiling the command.

Examples

For examples of creating and executing commands using the OLE DB Provider for SQL Server CE, see the example in Parameters
or the Employees.cpp file in the NorthwindOLEDB sample that ships with SQL Server CE.

SQL Server CE Books Online

Rowsets
Rowsets

Rowsets are the central objects that enable OLE DB components to expose and manipulate data in tabular form. A rowset object is
a set of rows in which each row has columns of data. Using the OLE DB Provider for SQL Server CE, a rowset object is created
either when ICommand::Execute returns data or by directly calling IOpenRowset::OpenRowset.

The following issues affect the handling of rowsets in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE):

SQL Server CE only supports the ability to retrieve one row at a time.
Rows should be retrieved sequentially by calling IRowset::GetNextRows(NULL, 0, 1...).
Rowsets can become zombies if the internal resource on which they depend goes away because a transaction aborts.
The OLE DB Provider for SQL Server CE supports data binding "by value" but not "by reference."
SQL Server CE always returns computed column values when inserting new rows, allowing clients to immediately retrieve
this information. This allows the client to view any identity column value for the new row even before the row has been
committed to the data store. Because of this, the value for DBPROP_SERVERDATAONINSERT must always be
VARIANT_TRUE.
There are other properties that correspond to various interfaces that can be supported on a rowset. Clients that do not
request the interfaces that they want to use on the resulting interface through the property mechanism cannot necessarily
access those interfaces, even if the cursor type selected can actually support that functionality. For more information, see
Rowset Properties.

When you use rowsets, a number of factors can affect the efficiency of the operation. For more information, see Using Rowsets
Efficiently.

See Also

SQL Server CE Schema Rowsets

SQL Server CE Books Online

Using Rowsets Efficiently
Using Rowsets Efficiently

When you plan an efficient data access strategy for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), keep
the following issues in mind:

When you use deferred update mode in OLE DB, specified by DBPROP_IRowsetUpdate being set to VARIANT_TRUE, SQL Server
CE can only have one pending change at a time. This uses a fast mechanism to update internally.

IRowset::RestartPosition is efficient when used with scrollable cursors, but it can cause query reexecution when it is used
with nonscrollable cursors. For more information, see Working with Cursors and Cursors.
Although SQL Server CE supports OLE DB data type coercions to and from DBTYPE_WSTR, it is best to use native data type
bindings where possible to maximize performance against this engine.
SQL Server CE supports reading and writing to large image and ntext data types through the ISequentialStream and
ILockBytes interfaces. For more information, see Working with Large Data Types.

See Also

Rowsets

SQL Server CE Books Online

Cursors
Cursors

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports the base table, forward-only, and scrollable
cursor types. When any of these supported cursors are used, the client can have only one open row. For more information about
cursors, see Working with Cursors and "Cursors" in SQL Server Books Online.

The following table lists the rowset properties values that must be specified for SQL Server CE.

Rowset properties Value
DBPROP_CANHOLDROWS VARIANT_FALSE
DBPROP_MAXOPENROWS 1
DBPROP_CANSCROLLBACKWARDS VARIANT_FALSE

The following table shows the required property settings for each cursor type.

Property setting Base table Forward-only Scrollable
DBPROP_BOOKMARKS VARIANT_TRUE VARIANT_FALSE VARIANT_TRUE
DBPROP_OWNUPDATEDDELETE VARIANT_TRUE VARIANT_FALSE VARIANT_FALSE
DBPROP_OWNINSERT VARIANT_TRUE VARIANT_FALSE VARIANT_FALSE
DBPROP_OTHERUPDATEDELETE VARIANT_TRUE VARIANT_FALSE VARIANT_FALSE
DBPROP_OTHERINSERT VARIANT_TRUE VARIANT_FALSE VARIANT_FALSE
DBPROP_CANFETCHBACKWARDS VARIANT_TRUE VARIANT_FALSE VARIANT_TRUE
DBPROP_QUICKRESTART VARIANT_TRUE VARIANT_FALSE VARIANT_TRUE

Base Table Cursor

The base table cursor is the fastest of the supported cursors and the only cursor that interacts directly with the storage engine.
This cursor supports updates, bookmarks, and indexes, as well as the Seek and SetRange methods of IRowsetIndex. The base
table cursor optionally supports delayed update mode by exposing the IRowsetUpdate interface when the client passes
DBPROP_IRowsetUpdate as TRUE. This cursor has dynamic membership; both DBPROP_OTHERINSERT and
DBPROP_OTHERUPDATEDELETE properties are TRUE.

Base table cursors can be opened only by using IOpenRowset::OpenRowset. Using a "SELECT * FROM table" yields a query
processor cursor (forward-only or scrollable) and not a base table cursor. Only base table cursors support updates.

Forward-only Cursor

Although the forward-only read-only cursor is the fastest query processor cursor and the second fastest cursor overall, this cursor
provides the least amount of functionality. It does not support bookmarks or updates.

Scrollable Cursor

The scrollable read-only cursor is the most functional query processor cursor. The result set of this cursor is cached. This provides
fast cursor restarts but makes it more resource intensive, especially for queries with large result sets. Because the results are
cached, changes to the underlying base tables for a query are not reflected in the query results unless the query is reexecuted.

SQL Server CE Books Online

Indexes
Indexes

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports indexes and several index-based operations to
improve application performance.

When you work with indexes in SQL Server CE, it is important to keep the following issues in mind:

SQL Server CE supports only "integrated indexes" as defined in the Microsoft OLE DB documentation. This means that the
index is logically part of the Rowset object and is used to order the rowset. (No separate index rowset is used to provide
ordering.)
Indexes are only exposed on base tables. This means that IOpenRowset::OpenRowset must be used to open the table to
use an index for ordering, seeking, or using index ranges. Query result sets do not expose base table indexes.
Indexes in SQL Server CE have slightly different creation properties from Microsoft SQL Server. For more information, see
CREATE INDEX.
The name of the index is the only characteristic of an index that can be modified using IAlterIndex::AlterIndex against the
OLE DB Provider for SQL Server CE.
To dynamically change the index while the rowset is open, you must request DBPROP_IRowsetCurrentIndex with a value of
VARIANT_TRUE when opening the base table rowset. For more information, see Changing Indexes.
To be able to use the Seek and SetRange methods of the IRowsetIndex interface, you must request the property
DBPROP_IRowsetIndex with a value of VARIANT_TRUE when opening the base table rowset.

For more information about index limitations, see Understanding SQL Server CE Database Objects.

See Also

Creating Indexes

Index Properties

Using the Seek Method

SQL Server CE Books Online

Creating Indexes
Creating Indexes

The OLE DB Provider for SQL Server CE exposes the ability to create indexes through IIndexDefinition::CreateIndex.

There are limitations on the use of indexes in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE). For more
information, see Indexes and Changing Indexes.

Examples

The following example shows how to use the OLE DB Provider for SQL Server CE to create a composite index over the LastName
and FirstName columns in the Employees table of the Northwind database.

//Create an index on two columns.
HRESULT hr;
DBID TableName;
DBID IndexName;
DBPROP dbprop[1];
DBPROPSET dbpropset[1];
DBPROP indexdbprop[2];
DBPROPSET indexdbpropset[1];
DBINDEXCOLUMNDESC rgIndexColumnDescs[2];
DBID dbidColumn1;
DBID dbidColumn2;
IDBInitialize *pIDBInitialize = NULL;
IDBProperties *pIDBProperties = NULL;
IDBCreateSession *pIDBCreateSession = NULL;
IIndexDefinition *pIIndexDefinition = NULL;

VariantInit(&dbprop[0].vValue);
VariantInit(&indexdbprop[0].vValue);

// Create an instance of the OLE DB provider.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**)&pIDBInitialize);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize a property with name of database.
// Open an exsiting database myDatabase.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = L"\\windows\\Northwind.sdf";
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize the property set.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

//Set initialization properties.
hr = pIDBInitialize->QueryInterface(IID_IDBProperties,

(void **)&pIDBProperties);
if(FAILED(hr))
{
 goto Exit;
}

// Sets properties in the Data Source and initialization property groups

hr = pIDBProperties->SetProperties(1, dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initializes a data source object
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

// Get the IDBCreateSession interface.
hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void**)&pIDBCreateSession);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create a session object.
hr = pIDBCreateSession->CreateSession(NULL, IID_IIndexDefinition,
 (IUnknown**) &pIIndexDefinition);

// (This sample assumes that we have information about the Employees table.
// database schema.)
// Prepare the table name DBID as Employees.
TableName.eKind = DBKIND_NAME;
TableName.uName.pwszName = L"Employees";

// Prepare index name DBID as full_name_index.
IndexName.eKind = DBKIND_NAME;
IndexName.uName.pwszName = L"full_name_index";

// Set up properties for IIndexDefinition::CreateIndex call. For this
// index,we enforce uniqueness through the DBPROP_INDEX_NULLS property.
// Index properties must have colid set to DB_NULLID.
indexdbprop[0].dwPropertyID = DBPROP_INDEX_NULLS;
indexdbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
indexdbprop[0].vValue.vt = VT_I4;
indexdbprop[0].vValue.lVal = DBPROPVAL_IN_DISALLOWNULL;
indexdbprop[0].colid = DB_NULLID;

// Initialize the property set.
indexdbpropset[0].guidPropertySet = DBPROPSET_INDEX;
indexdbpropset[0].rgProperties = indexdbprop;
indexdbpropset[0].cProperties = sizeof(indexdbprop)/sizeof(indexdbprop[0]);

// Set up DBINDEXCOLUMNDESC structures to define the columns in the
// index and the ordering for each column within that index.
rgIndexColumnDescs[0].eIndexColOrder = DBINDEX_COL_ORDER_ASC;
rgIndexColumnDescs[0].pColumnID = &dbidColumn1;
rgIndexColumnDescs[1].eIndexColOrder = DBINDEX_COL_ORDER_ASC;
rgIndexColumnDescs[1].pColumnID = &dbidColumn2;

// Specify the column names for the composite index on
// LastName and FirstName.
dbidColumn1.eKind = DBKIND_NAME;
dbidColumn1.uName.pwszName = L"LastName";
dbidColumn2.eKind = DBKIND_NAME;
dbidColumn2.uName.pwszName = L"FirstName";

// Create a two-column composite index named full_name_index over the
// LastName and FirstName columns in the Employees table.
hr = pIIndexDefinition->CreateIndex(&TableName, &IndexName,
 sizeof(rgIndexColumnDescs)/sizeof(rgIndexColumnDescs[0]),
 rgIndexColumnDescs, sizeof(indexdbpropset)/sizeof(indexdbpropset[0]),
 indexdbpropset, NULL);

Exit:

// When finished, clear the properties arrays and release interfaces.
// Uninitialize the environment.

return;

See Also

Index Properties

SQL Server CE Books Online

Changing Indexes
Changing Indexes

The following restrictions are imposed on clients when they attempt to change the current index through IRowsetCurrentIndex:

All accessor handles must be released.
All row handles must be released.
No pending changes should be outstanding.

For more information, see Indexes.

See Also

Creating Indexes

Index Properties

SQL Server CE Books Online

Using the Seek Method
Using the Seek Method

The Seek method is the most widely used method by clients on indexes in Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE). Seek provides the ability to find rows on a cursor very quickly. Seek requires that an index be defined on the
column(s) in the search key to work properly. Most seek operations are for a particular value, but it is also possible to seek using
other comparison operators, such as "greater than" or "less than".

IRowsetIndex::Seek passes values to the provider by using the accessor mechanism in OLE DB that is used to get and set data.
Accessors used against the Seek method have additional restrictions over accessors for IRowset::GetData and
IRowset::SetData. The accessor must bind columns in the order they appear in the index key.

The IRowsetPosition interface is only supported on scrollable cursors. For more information, see Using IRowsetPosition or
Cursors.

Examples

The following example shows how to use IRowsetIndex::Seek on an index using the OLE DB Provider for SQL Server CE. The
sample is taken from the Employees.cpp file in the NorthwindOLEDB sample that ships with SQL Server CE. The example contains
only the portions of the LoadEmployeeInfo function that relate to the Seek method.

///
// The following steps have been removed from this sample. For the
// complete code, see the Employee.cpp file.
// 1) Verify that IDBCreateSession exists on the datasource.
// 2) Create a session object.
// 3) Set up information necessary to open a table
// using an index and that has the ability to seek.
// The index or interest is PK_Employees on the EmployeeID column
// of the Employees table in Northwind.
///

TableID.eKind = DBKIND_NAME;
TableID.uName.pwszName = (WCHAR*)TABLE_EMPLOYEE; //Northwind Employees

IndexID.eKind = DBKIND_NAME;
IndexID.uName.pwszName = L"PK_Employees";

// Request ability to use IRowsetChange interface.
rowsetpropset[0].cProperties = 1;
rowsetpropset[0].guidPropertySet = DBPROPSET_ROWSET;
rowsetpropset[0].rgProperties = rowsetprop;

rowsetprop[0].dwPropertyID = DBPROP_IRowsetIndex;
rowsetprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
rowsetprop[0].colid = DB_NULLID;
rowsetprop[0].vValue.vt = VT_BOOL;
rowsetprop[0].vValue.boolVal = VARIANT_TRUE;

// Open the table using the index.
hr = pIOpenRowset->OpenRowset(NULL, &TableID, &IndexID,
 IID_IRowsetIndex, sizeof(rowsetpropset)/sizeof(rowsetpropset[0]),
 rowsetpropset, (IUnknown**) &pIRowsetIndex);
if(FAILED(hr))
{
 goto Exit;
}

// Get the IRowset interface.
hr = pIRowsetIndex->QueryInterface(IID_IRowset, (void**) &pIRowset);
if(FAILED(hr))
{
 goto Exit;
}

///
// Steps to get column data using IcolumnsInfo have been removed

///

// Create a DBBINDING array.
dwBindingSize = sizeof(pwszEmployees)/sizeof(pwszEmployees[0]);
prgBinding = (DBBINDING*)CoTaskMemAlloc(sizeof(DBBINDING)*dwBindingSize);
if (NULL == prgBinding)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Set initial offset for binding position.
dwOffset = 0;

// Prepare structures to create an accessor for each index.
for (dwIndex = 0; dwIndex < dwBindingSize; ++dwIndex)
{
 if (!GetColumnOrdinal(pDBColumnInfo, ulNumCols, pwszEmployees[dwIndex], &dwOrdinal))
 {
 hr = E_FAIL;
 goto Exit;
 }

 prgBinding[dwIndex].iOrdinal = dwOrdinal;
 prgBinding[dwIndex].dwPart = DBPART_VALUE | DBPART_STATUS | DBPART_LENGTH;
 prgBinding[dwIndex].obLength = dwOffset;
 prgBinding[dwIndex].obStatus = prgBinding[dwIndex].obLength + sizeof(ULONG);
 prgBinding[dwIndex].obValue = prgBinding[dwIndex].obStatus + sizeof(DBSTATUS);
 prgBinding[dwIndex].pTypeInfo = NULL;
 prgBinding[dwIndex].pBindExt = NULL;
 prgBinding[dwIndex].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
 prgBinding[dwIndex].dwFlags = 0;
 prgBinding[dwIndex].bPrecision = pDBColumnInfo[dwOrdinal].bPrecision;
 prgBinding[dwIndex].bScale = pDBColumnInfo[dwOrdinal].bScale;

///
// Case-specific binding information has been removed.
///

 prgBinding[dwIndex].pObject NULL;
 prgBinding[dwIndex].wType = pDBColumnInfo[dwOrdinal].wType;
 if(DBTYPE_WSTR == pDBColumnInfo[dwOrdinal].wType)
 {
 prgBinding[dwIndex].cbMaxLen = pDBColumnInfo[dwOrdinal].ulColumnSize
 * sizeof(WCHAR);
 }
 else
 {
 prgBinding[dwIndex].cbMaxLen = pDBColumnInfo[dwOrdinal].ulColumnSize;
 }

 // Calculate and align the offset.
}

// Get IAccessor interface.
hr = pIRowset->QueryInterface(IID_IAccessor, (void**)&pIAccessor);
if(FAILED(hr))
{
 goto Exit;
}

// Create the accessor.
hr = pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA, dwBindingSize,
 prgBinding, 0, &hAccessor, NULL);
if(FAILED(hr))
{
 goto Exit;
}

// Allocate data buffer for seek and retrieve operation.
pData = (BYTE*)CoTaskMemAlloc(dwOffset);
if (NULL == pData)

{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Set data buffer to zero.
//
memset(pData, 0, dwOffset);

// Set data buffer for seek operation by specifying the
// dwEmployeeID variable that is passed to the function.
(ULONG)(pData+prgBinding[0].obLength) = 4;
(DBSTATUS)(pData+prgBinding[0].obStatus) = DBSTATUS_S_OK;
(int)(pData+prgBinding[0].obValue) = dwEmployeeID;

// Seek for the first row where the value of the selected column
// is dwEmployeeID.
hr = pIRowsetIndex->Seek(hAccessor, 1, pData, DBSEEK_FIRSTEQ);
if(FAILED(hr))
{
 goto Exit;
}

// Retrieve a row handle for the row resulting from the seek.
hr = pIRowset->GetNextRows(DB_NULL_HCHAPTER, 0, 1, &cRowsObtained,
 &prghRows);
if(FAILED(hr))
{
 goto Exit;
}

///
// The Employee.cpp code performs programming logic here on the
// returned rowset, and then releases the rowset.
///

Exit:

///
// This is where the resources are released in Employee.cpp.
///

return hr;

See Also

Indexes

SQL Server CE Books Online

Parameters
Parameters

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports queries that contain parameters. Parameters can
be used to replace column values in a query. You can get information about the parameters of a command, such as their data
types, by using the ICommandWithParameters::GetParameterInfo. Parameters are then passed when ICommand::Execute is
called.

Note The ICommandWithParameters::SetParameterInfo method should not be used to change the data types of
parameters. Even when the type for a parameter is set using SetParameterInfo, the query processor in SQL Server
CE makes the final decision as to the correct type, potentially overriding any changes.

For more information, see Using Parameters in Queries.

Examples

The following example method uses OLE DB to insert a new row into the Northwind Shippers table:

// Begin the method to insert data using parameters.
// Declarations
HRESULT hr;
IDBInitialize * pIDBInitialize = NULL;
IDBProperties * pIDBProperties = NULL;
IDBCreateSession * pIDBCrtSession = NULL;
DBPROPSET rgPropSets[1];
DBPROP rgProps[1];
ULONG iPropSet = 0;
ULONG iProp = 0;
ICommandText * pICmdText = NULL;
IDBCreateCommand * pIDBCrtCmd = NULL;
ICommandPrepare * pICmdPrepare = NULL;
ICommandWithParameters * pICmdWParams = NULL;
IAccessor * pIAcc = NULL;
ULONG cParams;
DBPARAMINFO * rgParamInfo = NULL;
OLECHAR * pNamesBuffer = NULL;
ULONG cBindings;
DBBINDING rgBindings[3];
ULONG cbRowSize;
HACCESSOR hAcc;
BYTE * pData = NULL;
DBPARAMS params;
LONG cRowsAffected;

// Specify the Northwind database as wzDbName.
WCHAR wzDbName[] = L"\\windows\\Northwind.sdf";

// Initialize the property set values.and create the data source object.
for (ULONG i = 0; i < sizeof(rgProps)/sizeof(rgProps[0]); i++)
{
 VariantInit(&rgProps[i].vValue);
}

hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, NULL, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (LPVOID *) &pIDBInitialize);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

iProp = 0;
rgProps[iProp].dwPropertyID = DBPROP_INIT_DATASOURCE;
rgProps[iProp].dwOptions = DBPROPOPTIONS_REQUIRED;
rgProps[iProp].vValue.vt = VT_BSTR;
rgProps[iProp].vValue.bstrVal = SysAllocString(wzDbName);

if(!(rgProps[iProp].vValue.bstrVal))
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}
iProp++;

iPropSet = 0;
rgPropSets[iPropSet].rgProperties = rgProps;
rgPropSets[iPropSet].cProperties = iProp;
rgPropSets[iPropSet].guidPropertySet = DBPROPSET_DBINIT;
iPropSet++;

// Set the properties into the provider's data source object.
pIDBInitialize->QueryInterface(IID_IDBProperties,(void**)&pIDBProperties);

hr = pIDBProperties->SetProperties(sizeof(rgPropSets)/sizeof(rgPropSets[iPropSet]),
 rgPropSets);
if(FAILED(hr))
{
 goto Exit;
}

// Create a session that supports commands.
hr = pIDBProperties->QueryInterface(IID_IDBCreateSession, (void **)
 &pIDBCrtSession);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pIDBCrtSession->CreateSession(NULL, IID_IDBCreateCommand,
 (IUnknown**) &pIDBCrtCmd);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the new command that uses parameters.
hr = pIDBCrtCmd->CreateCommand(NULL, IID_ICommandWithParameters,
 (IUnknown**) &pICmdWParams);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pICmdWParams->QueryInterface(IID_ICommandText, (void**) &pICmdText);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pICmdWParams->QueryInterface(IID_ICommandPrepare, (void**) &pICmdPrepare);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Specify the command text using parameter markers in the query syntax.
hr = pICmdText->SetCommandText(DBGUID_DBSQL, L"INSERT INTO Shippers \
(ShipperID, CompanyName, Phone) VALUES (?, ?, ?)");
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Prepare the current command.
hr = pICmdPrepare->Prepare(1);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Retrieving parameter information
hr = pICmdWParams->GetParameterInfo(&cParams, &rgParamInfo, &pNamesBuffer);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the acessor object and column specific bindings.

hr = pICmdText->QueryInterface(IID_IAccessor, (void**) &pIAcc);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the bindings for the three columns.
cBindings = 3;

rgBindings[0].iOrdinal = 1;
rgBindings[0].obStatus = 0;
rgBindings[0].obLength = rgBindings[0].obStatus + sizeof(DBSTATUS);
rgBindings[0].obValue = rgBindings[0].obLength + sizeof(ULONG);
rgBindings[0].pTypeInfo = NULL;
rgBindings[0].pObject = NULL;
rgBindings[0].pBindExt = NULL;
rgBindings[0].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;
rgBindings[0].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[0].eParamIO = DBPARAMIO_INPUT;
rgBindings[0].cbMaxLen = sizeof(int); //ShipperID is integer
rgBindings[0].dwFlags = 0;
rgBindings[0].wType = DBTYPE_I4;
rgBindings[0].bPrecision = 0;
rgBindings[0].bScale = 0;

rgBindings[1].iOrdinal = 2;
rgBindings[1].obStatus = rgBindings[0].obValue + rgBindings[0].cbMaxLen;
rgBindings[1].obLength = rgBindings[1].obStatus + sizeof(DBSTATUS);
rgBindings[1].obValue = rgBindings[1].obLength + sizeof(ULONG);
rgBindings[1].pTypeInfo = NULL;
rgBindings[1].pObject = NULL;
rgBindings[1].pBindExt = NULL;
rgBindings[1].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;
rgBindings[1].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[1].eParamIO = DBPARAMIO_INPUT;
rgBindings[1].cbMaxLen = 40 * sizeof(WCHAR); //CompanyName is nvarchar(40)
rgBindings[1].dwFlags = 0;
rgBindings[1].wType = DBTYPE_WSTR;
rgBindings[1].bPrecision = 0;
rgBindings[1].bScale = 0;

rgBindings[2].iOrdinal = 3;
rgBindings[2].obStatus = rgBindings[1].obValue + rgBindings[1].cbMaxLen;
rgBindings[2].obLength = rgBindings[2].obStatus + sizeof(DBSTATUS);
rgBindings[2].obValue = rgBindings[2].obLength + sizeof(ULONG);
rgBindings[2].pTypeInfo = NULL;
rgBindings[2].pObject = NULL;
rgBindings[2].pBindExt = NULL;
rgBindings[2].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;
rgBindings[2].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[2].eParamIO = DBPARAMIO_INPUT;
rgBindings[2].cbMaxLen = 24 * sizeof(WCHAR); //Phone is nvarchar(24)

rgBindings[2].dwFlags = 0;
rgBindings[2].wType = DBTYPE_WSTR;
rgBindings[2].bPrecision = 0;
rgBindings[2].bScale = 0;

// Calculate the total memory needed for the input buffer.
cbRowSize = rgBindings[2].obValue + rgBindings[2].cbMaxLen;

// Create the accessor for the parameter data.
hr = pIAcc->CreateAccessor(DBACCESSOR_PARAMETERDATA, cBindings,
 rgBindings, cbRowSize, &hAcc, NULL);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Allocate memory for the parameter data.
pData = (BYTE*) malloc(cbRowSize);
if(!(pData))
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

//Clear out the buffer.
memset(pData, 0, cbRowSize);

// Define the insert data for the parameters.
// Shipper ID
* (DBSTATUS*) (pData + rgBindings[0].obStatus) = DBSTATUS_S_OK;
* (int*) (pData + rgBindings[0].obValue) = 1;
* (ULONG*) (pData + rgBindings[0].obLength) = sizeof(int);

// CompanyName
* (DBSTATUS*) (pData + rgBindings[1].obStatus) = DBSTATUS_S_OK;
wcscpy((WCHAR*) (pData + rgBindings[1].obValue), L"Federal Express");
* (int*) (pData + rgBindings[1].obLength) = wcslen(L"Federal Express") *
sizeof(WCHAR);

// Phone
* (DBSTATUS*) (pData + rgBindings[2].obStatus) = DBSTATUS_S_OK;
wcscpy((WCHAR*) (pData + rgBindings[2].obValue), L"1-800-555-1212");
* (int*) (pData + rgBindings[2].obLength) = wcslen(L"1-800-555-1212") * sizeof(WCHAR);

// Define the DBPARAMS structure.
params.pData = pData;
params.cParamSets = 1;
params.hAccessor = hAcc;

// Execute the command with paramters.
hr = pICmdText->Execute(NULL, IID_NULL, ¶ms, &cRowsAffected, NULL);

// Error handling for the command
if (FAILED(hr) || (1 != cRowsAffected))
{
 MessageBox(NULL,"An error occured","error",MB_OK);
}

Exit:

// Clean up resources.

free(pData);
CoTaskMemFree(rgParamInfo);
CoTaskMemFree(pNamesBuffer);

if(pIAcc) pIAcc->Release();
if(pIDBProperties) pIDBProperties->Release();
if(pIDBCrtSession) pIDBCrtSession->Release();
if(pICmdPrepare) pICmdPrepare->Release();

if(pICmdWParams) pICmdWParams->Release();
if(pICmdText) pICmdText->Release();
if(pIDBCrtCmd) pIDBCrtCmd->Release();

for(i = 0; i < sizeof(rgProps)/sizeof(rgProps[0]); i++)
{
VariantClear(&rgProps[i].vValue);
}

return;

SQL Server CE Books Online

Constraints
Constraints

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) supports constraints to enforce the data integrity rules in a
database.

Note SQL Server CE database engine does place some limitations on constraint types and how they function. For
more information, see Understanding SQL Server CE Database Objects.

Constraints are added to columns using the ITableDefinitionWithConstraints interface. For foreign key constraints, the
matchType element of the DBCONSTRAINTDESC structure should always be set to DBMATCHTYPE_FULL.

Examples

The following example shows how to use OLE DB to add a new UNIQUE constraint to the Extension column in the Employees
table of the Northwind database using the ITableDefinitionWithConstraints::AddConstraint method.

// Declarations
HRESULT hr;
DBID TableName; // name of table for new constraint
DBID ColumnList[1]; // name of column for new constraint
DBID ConstraintName; // name of new constraint
DBPROP dbprop[1];
DBPROPSET dbpropset[1];
DBCONSTRAINTDESC rgConstraintDescs[1]; // Structure for constraint
properties
IDBInitialize *pIDBInitialize = NULL;
IDBProperties *pIDBProperties = NULL;
IDBCreateSession *pIDBCreateSession = NULL;
ITableDefinitionWithConstraints *pITbleDefWithConstrt = NULL; // supports adding
constraints

if (FAILED(hr = CoInitialize(NULL)))
{
 return;
}

VariantInit(&dbprop[0].vValue);

// Create an instance of the OLE DB Provider
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**)&pIDBInitialize);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize a property with name of database
// Open an exsiting database myDatabase
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = L"\\windows\\Northwind.sdf";

// Initialize the property set
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

//Set initialization properties.
hr = pIDBInitialize->QueryInterface(IID_IDBProperties,

(void **)&pIDBProperties);
if(FAILED(hr))
{
 goto Exit;
}

// Sets properties in the Data Source and initialization property groups
hr = pIDBProperties->SetProperties(1, dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initializes a data source object
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

// Get IDBCreateSession interface
hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void**)&pIDBCreateSession);
if (FAILED(hr))
{
 //Send error-specific message and do error handling
 goto Exit;
}

// Create a session object.
hr = pIDBCreateSession->CreateSession(NULL, IID_ITableDefinitionWithConstraints,
 (IUnknown**) &pITbleDefWithConstrt);

// (This sample assumes that we have information about the Employees table
// database schema.)
// Prepare the table name DBID as Employees.
TableName.eKind = DBKIND_NAME;
TableName.uName.pwszName = L"Employees";

// Prepare the list of columns that will get the UNIQUE constraint.
// In this case, just the Extension column.
ColumnList[0].eKind = DBKIND_NAME;
ColumnList[0].uName.pwszName = L"Extension";

// Build the DBCONSTRAINTDESC structure needed to make the
// ITableDefinitionWithConstraints::AddConstraint
// call to add the constraint.
rgConstraintDescs[0].pConstraintID = &ConstraintName;
rgConstraintDescs[0].ConstraintType = DBCONSTRAINTTYPE_UNIQUE;
rgConstraintDescs[0].cColumns = 1;
rgConstraintDescs[0].rgColumnList = ColumnList;
rgConstraintDescs[0].Deferrability = 0; // SQL Server CE constraints are not deferrable.
// The following properties are not used in UNIQUE constraints
rgConstraintDescs[0].pReferencedTableID = NULL;
rgConstraintDescs[0].cForeignKeyColumns = 0;
rgConstraintDescs[0].rgForeignKeyColumnList = NULL;
rgConstraintDescs[0].pwszConstraintText = NULL;
rgConstraintDescs[0].UpdateRule = DBUPDELRULE_NOACTION;
rgConstraintDescs[0].DeleteRule = DBUPDELRULE_NOACTION;
rgConstraintDescs[0].MatchType = DBMATCHTYPE_NONE;

// Add the new constraint
hr = pITbleDefWithConstrt->AddConstraint(&TableName, rgConstraintDescs);

Exit:

// When finished, clear the properties arrays and release interfaces.
// Uninitialize the environment.

Return;

See Also

Understanding SQL Server CE Database Objects

SQL Server CE Books Online

Transactions
Transactions

Transactions provide a mechanism to group a series of changes to a database in one atomic operation. A transaction is started
through ITransactionLocal::StartTransaction. After changes have been made to the database, these changes can be committed
(using ITransactionLocal::Commit) or aborted (using ITransactionLocal::Abort).

Because the use of transactions in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) differs somewhat from
that of Microsoft SQL Server, it is important to keep in mind the following provider-specific issues:

The ITransactionJoin interface is not supported because this interface requires that a provider be able to support two-
phased commit transactions.
When a maximum of five levels of transaction nesting have been reached, StartTransaction returns an error indicating that
no further transactions can be started.
The transaction isolation level, set by the DBPROP_SUPPORTEDTXNISOLEVELS property is always
DBPROPVAL_TI_READCOMMITTED because SQL Server CE supports only the "Read Committed" isolation level. Attempting
to specify a higher transaction isolation level causes StartTransaction to fail.

SQL Server CE holds an exclusive lock on a table that has been altered in a transaction
until that transaction completes, which means that the value of DBPROP_SUPPORTEDTXNDDL
property is always DBPROPVAL_TC_ALL.

For more information, see Using Transactions.

Examples

The following example that shows how to create and execute a transaction using the OLE DB Provider for SQL Server CE is taken
from the Employees.cpp file in the NorthwindOLEDB sample that ships with SQL Server CE. The example contains only the
transaction related portions of the InsertEmployeeInfo function.

///
// The following steps have been removed from this sample. For the
// complete code, see the Employee.cpp file.
// 1) Verify that IDBCreateSession exists on the datasource.
// 2) Create a session object.
// 3) Set up information necessary to open a table using an index.
// 4) Set the binding properties and create the accessor.
///

// Begins a new local transaction to insert employee data
hr = pITxnLocal->StartTransaction(ISOLATIONLEVEL_READCOMMITTED |
ISOLATIONLEVEL_CURSORSTABILITY, 0, NULL, NULL);
// Error handling for failed creation of the transaction
if(FAILED(hr))
{
 goto Exit;
}
///
// The code to prepare the sample data to insert has been removed.
// See the original source file Employee.cpp for the complete method.
///

hr = pIRowsetChange->InsertRow(DB_NULL_HCHAPTER, hAccessor, pData, prghRows);
// Error handling that aborts the transaction on failure
if (FAILED(hr))
{
 goto Abort;
}

// Get the row data.
hr = pIRowset->GetData(rghRows[0], hAccessor, pData);
if(FAILED(hr))
{
 goto Abort;
}

// Check the status.
if (DBSTATUS_S_OK != *(DBSTATUS*)(pData+prgBinding[dwPhotoCol].obStatus))
{
 hr = E_FAIL;
 pIRowset->ReleaseRows(1, prghRows, NULL, NULL, NULL);
 goto Abort;
}

///
// The complete sample performs a transactional task here.
///

// Commit the transaction using ITransactionLocal::Commit
// to insert the data.
if (pITxnLocal)
{
 pITxnLocal->Commit(FALSE, XACTTC_SYNC, 0);
}

goto Exit;

 // Calling goto Abort uses the ITransactionLocal::Abort
 // to cancel the transaction.

Abort:
// Cancel the transaction.
if (pITxnLocal)
{
 pITxnLocal->Abort(NULL, FALSE, FALSE);
}

Exit:
// Release the resources.

SQL Server CE Books Online

Data Types Supported in SQL Server CE
Data Types Supported in SQL Server CE

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) contains a subset of data types that are upwardly
compatible with SQL Server; however, there are some differences:

Not all data types in SQL Server are supported in SQL Server CE. For example, non-Unicode text columns (varchar, char,
text) and smallmoney are not supported; although nvarchar, nchar, ntext, and money are supported.
The maximum sizes of variable-length columns differ between SQL Server and SQL Server CE. SQL Server supports
variable-length nvarchar and varbinary types up to 8,000 bytes long, and SQL Server CE supports a maximum size of 510
bytes. If necessary, the appropriate larger types (ntext and image) can be used to store more data in a column. For more
information, see Working with Large Data Types.

For generically exposed type information about the OLE DB Provider for SQL Server CE, see the PROVIDER_TYPES schema rowset
in SQL Server CE Schema Rowsets.

The following table shows the mapping of native data types in SQL Server CE to the standard OLE DB data types, including any
related properties and limitations. For a table showing the data type mapping between SQL Server CE and Microsoft ActiveX®
Data Objects Extensions (ADOX), see SQL Server CE Data Type Mapping from ADOX.

SQL Server CE
data type

OLE DB data type OLE DB properties SQL Server
CE

specifics
bigint DBTYPE_I8
binary DBTYPE_BYTES DBPROP_COL_FIXEDLENGTH

= VARIANT_TRUE

bit DBTYPE_BOOL
datetime DBTYPE_DBTIMESTAMP Valid year

range
1753-9999;
valid
second
range 0-59

float DBTYPE_R8
image DBTYPE_BYTES
integer DBTYPE_I4
money DBTYPE_CY
national
character

DBTYPE_WSTR DBPROP_COL_FIXEDLENGTH
= VARIANT_TRUE

national
character
varying

DBTYPE_WSTR DBPROP_COL_FIXEDLENGTH
= VARIANT_FALSE

ntext DBTYPE_WSTR
numeric DBTYPE_NUMERIC
real DBTYPE_R4
smallint DBTYPE_I2
uniqueidentifier DBTYPE_GUID
tinyint DBTYPE_UI1
varbinary DBTYPE_BYTES DBPROP_COL_FIXEDLENGTH

= VARIANT_FALSE

SQL Server CE Books Online

SQL Server CE Data Type Mapping from ADOX
SQL Server CE Data Type Mapping from ADOX

The following table shows the data type mapping between Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE)
and Microsoft ActiveX® Data Objects Extensions (ADOX).

ADOX data type SQL Server CE data type Notes
adSmallInt smallint
adInteger integer
adSingle real
adDouble float
adCurrency money
adBoolean bit
adUnsignedTinyInt tinyint
adBigInt bigint
adGUID uniqueidentifier
adVarBinary varbinary
adBinary binary
adVarWChar nvarchar The size of this column must

be specified.
adWChar nchar The size of this column must

be specified.
adNumeric numeric The precision must be

specified.
adDBTimestamp datetime
adLongVarBinary image
adLongVarWChar ntext

SQL Server CE Books Online

Working with Large Data Types
Working with Large Data Types

The OLE DB Provider for SQL Server CE supports the ISequentialStream and ILockBytes interfaces for accessing large data
values in the provider in pieces. ISequentialStream allows clients to read parts of a long-value column in a sequential, forward-
only manner, and ILockBytes can access data in a random fashion. By using these structured storage interfaces to access
arbitrarily large data values (image and ntext data types), you can avoid potential errors caused by the system trying to read the
value into memory in one complete piece.

Examples

The following example shows how to use the ILockBytes::ReadAt method to retrieve binary large object (BLOB) data. This
example reads image data from the Photo column of the Employees table in the Northwind sample database.

// Declarations
HRESULT hr;
DBBINDING rgBindings[1];
DBPROP dbprop[1];
DBPROPSET dbpropset[1];
DBOBJECT dbObject;
BYTE pData[100]; //buffer for holding the ILockBytes pointer
HROW rghRows[1]; // Array of row handles obtained from the rowset object
HROW *prghRows = rghRows;
BYTE pBuffer[1000]; //Buffer for holding a chunck of BLOB data
ULARGE_INTEGER ulOffset;
ULONG cRows = 0;
IDBInitialize *pIDBInitialize = NULL;
IDBProperties *pIDBProperties = NULL;
IDBCreateSession *pIDBCreateSession = NULL;
IDBCreateCommand *pIDBCreateCommand = NULL;
ICommandText *pICommandText = NULL;
IAccessor *pIAccessor = NULL;
IRowset *pIRowset = NULL;
ILockBytes *pILockBytes = NULL;
HACCESSOR hAccessor = DB_NULL_HACCESSOR;

if (FAILED(hr = CoInitialize(NULL)))
{
 return;
}

VariantInit(&dbprop[0].vValue);

// Create an instance of the OLE DB Provider
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**)&pIDBInitialize);
if(FAILED(hr))
{
 //Send error-specific message and do error handling
 goto Exit;
}

// Initialize a property with name of the database
// Open an exsiting database myDatabase
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"\\windows\\Northwind.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize the property set
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;

dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

//Set initialization properties.
hr = pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void **)&pIDBProperties);
if(FAILED(hr))
{
 goto Exit;
}

// Sets properties in the data source and initialization property groups
hr = pIDBProperties->SetProperties(1, dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initializes a data source object
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

// Get the IDBCreateSession interface
hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 (void**)&pIDBCreateSession);
if (FAILED(hr))
{
 //Send error-specific message and do error handling
 goto Exit;
}
// Get the interface to create a command
hr = pIDBCreateSession->CreateSession(NULL, IID_IDBCreateCommand,
 (IUnknown**) &pIDBCreateCommand);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the new command that uses parameters.
hr = pIDBCreateCommand->CreateCommand(NULL, IID_ICommandText, (IUnknown**)
&pICommandText);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Specify the command text using parameter markers in the query syntax.
// We know that this command will return 1 row and one image column (Photo).
hr = pICommandText->SetCommandText(DBGUID_DBSQL, L"SELECT Photo FROM Employees WHERE
\"Employee ID\" = 2");
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pICommandText->Execute(NULL, IID_IRowset, NULL, NULL, (IUnknown**) &pIRowset);
if(FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the acessor object and column specific bindings.

hr = pIRowset->QueryInterface(IID_IAccessor, (void**) &pIAccessor);
if (FAILED(hr))

{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Create the bindings for the photo (BLOB) column
dbObject.dwFlags = STGM_READ;
dbObject.iid = IID_ILockBytes;
rgBindings[0].iOrdinal = 1;
rgBindings[0].obStatus = 0;
rgBindings[0].obLength = rgBindings[0].obStatus + sizeof(DBSTATUS);
rgBindings[0].obValue = rgBindings[0].obLength + sizeof(ULONG);
rgBindings[0].pTypeInfo = NULL;
rgBindings[0].pObject = &dbObject;
rgBindings[0].pBindExt = NULL;
rgBindings[0].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;
rgBindings[0].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
rgBindings[0].eParamIO = DBPARAMIO_NOTPARAM;
rgBindings[0].cbMaxLen = sizeof(IUnknown*);
rgBindings[0].dwFlags = 0;
rgBindings[0].wType = DBTYPE_IUNKNOWN;
rgBindings[0].bPrecision = 0;
rgBindings[0].bScale = 0;

// Create accessor.
hr = pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA, 1, rgBindings,
 0, &hAccessor, NULL);
if(FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

//Get the first row
hr = pIRowset->GetNextRows(NULL, 0, 1, &cRows, &prghRows);
if(FAILED(hr) || (0 == cRows))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

//Get the ILockBytes pointer
hr = pIRowset->GetData(rghRows[0], hAccessor, pData);
if(FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

if(DBSTATUS_S_OK != *(DBSTATUS*)(pData + rgBindings[0].obStatus))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Get the ILockBytes pointer from the buffer.
pILockBytes = *(ILockBytes**)(pData + rgBindings[0].obValue);

// Initialize Offset.
ulOffset.QuadPart = 0;

// Retrieve data from the interface in chunks.
// The infinite loop, for(;;), will terminate when the ReadAt call fails
// or if less bytes are returned than were requested.
for(;;)

{

 ULONG cbRead;

 // Read data at the specified offset
 hr = pILockBytes->ReadAt(ulOffset, pBuffer, sizeof(pBuffer)-sizeof(WCHAR),

 &cbRead);

///
// Do some useful things here with the chunks of data
///

 if(cbRead < sizeof(pBuffer)-sizeof(WCHAR) || FAILED(hr)) break;

 ulOffset.QuadPart += cbRead;
}

//If more rows need to be read, then release the ILockBytes pointer and
// row handle here

Exit:

// When finished, clear the properties arrays and release interfaces.
// Uninitialize the environment.

return;

See Also

Data Types

ILockBytes

Data Types Supported in SQL Server CE

SQL Server CE Books Online

Managing Database Objects
Managing Database Objects

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) requires that objects be opened exclusively to modify
those objects. All ITableDefinition methods open tables for exclusive access. If another method already has the table open, the
ITableDefinition method call fails. For example, if a user attempted to add a column to a table by using
ITableDefinition::AddColumn while a cursor was open on that table, the attempt to modify the definition of the column would
fail with a locking error. It is recommended that you be aware of locking issues when designing your application, particularly
when using transactions. For more information, see Using Transactions.

Some information about columns can also be modified using IAlterTable::AlterColumn. Because columns have more items that
could potentially be modified, the DBPROP_ALTERCOLUMN property describes the portions of the DBCOLUMNDESC structure
defining the column that can be modified. However, even if the provider supports modifying properties, this does not imply that
all properties can be modified. The following properties can be modified through the OLE DB Provider for SQL Server CE:

DBPROP_COL_DEFAULT
DBPROP_COL_SEED (only on identity columns)
DBPROP_COL_INCREMENT (only on identity columns)

See Also

SQL Server CE-specific OLE DB Properties

SQL Server CE Books Online

Using SQL Server CE-specific Interfaces
Using SQL Server CE-specific Interfaces

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) exposes two provider-specific interfaces: ISSCECompact
and IRowsetPosition. The following topics describe how to use these interfaces:

Using ISSCECompact
Using IRowsetPosition

For a complete programming reference for these interfaces, see ISSCECompact and IRowsetPosition.

SQL Server CE Books Online

Using ISSCECompact
Using ISSCECompact

The ISSCECompact interface is used to compact databases. Compaction of SQL Server CE databases is essential to maintain
good performance, and users should compact SQL Server CE databases regularly.

Note Although a data source can be initialized prior to compacting, initialization is not a requirement, because the
initialization of corrupt databases is likely to fail. Also, compacting requires that no sessions exist against the database.
For more information, see Maintaining SQL Server CE Databases.

Compacting the database also provides an opportunity to manage global database settings, such as sort orders, the database
password, or the use of encryption. You can change the password and encryption properties by specifying the necessary
provider-specific properties: DBPROP_SSCE_DBPASSWORD and DBPROP_SSCE_ENCRYPTDATABASE. For more information
about using these properties, see Creating Databases.

When the DBPROP_INIT_LCID property is used to change the LCID value and define a new collation at Data Source object
initialization, the new sort order is applied when the Compact method is executed. For more information, see ISSCECompact and
Initialization Properties.

Examples

The following example shows how to use ISSCECompact::Compact to compact the Northwind database:

// Object declarations
HRESULT hr = NOERROR;
DBPROPSET dbpropset[1];
DBPROP dbprop[1];

// Declare the provider interfaces.
IDBProperties * pIDBProperties = NULL;
ISSCECompact * pISSCECompact = NULL;

// Create an instance of the OLE DB Provider.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBProperties, (void**) &pIDBProperties);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Initialize property structures
VariantInit(&dbprop[0].vValue);

// Initialize Property with name of database.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"Northwind.sdf");
if(NULL == dbprop[0].vValue.bstrVal)
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize the property set.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

// Set the database properties.
hr = pIDBProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Get the ISSCECompact interface.
hr = pIDBProperties->QueryInterface(IID_ISSCECompact, (void **)
 &pISSCECompact);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
 }
// Compact the database using the provider-specific interface.
// The data source does not need to be initialized before compacting.
hr = pISSCECompact->Compact(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}
Exit:

// When finished, clear the properties arrays and release interfaces.
// Uninitialize the environment.

return;

SQL Server CE Books Online

Using IRowsetPosition
Using IRowsetPosition

The IRowsetPosition interface is an interface that is specific to the OLE DB Provider for SQL Server CE. The GetRecordCount
and GetCurrentPosition methods on this interface are used to obtain information about the current position of the cursor in the
recordset. For more information, see IRowsetPosition.

Examples

The following example shows using IRowsetPosition::GetRecordCount to count the number of rows in the rowset that is
returned when "SELECT * FROM Employees" is executed against the Northwind database:

//Declarations
HRESULT hr = NOERROR;
DBPROPSET dbpropset[1];
DBPROP dbprop[1];
DBPROPSET rowsetpropset[1];
DBPROP rowsetprop[2];
ULONG cbRecordCount;

// Provider interfaces
IDBProperties * pIDBProperties = NULL;
IDBInitialize * pIDBInitialize = NULL;
IDBCreateSession * pIDBCreateSession = NULL;
IRowsetPosition * pIRowsetPos = NULL;
ICommandProperties * pICmdProps = NULL;
IDBCreateCommand * pIDBCrtCmd = NULL;
ICommandText * pICmdText = NULL;
IRowset * pIRowset = NULL;

// Initialize the environment.
hr = CoCreateInstance(CLSID_SQLSERVERCE_2_0, 0, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize, (void**) &pIDBInitialize);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Initialize property structures
VariantInit(&dbprop[0].vValue);

// Initialize the property with the name of database.
dbprop[0].dwPropertyID = DBPROP_INIT_DATASOURCE;
dbprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
dbprop[0].vValue.vt = VT_BSTR;
dbprop[0].vValue.bstrVal = SysAllocString(L"\\Windows\\Northwind.sdf");
if(!(dbprop[0].vValue.bstrVal))
{
 hr = E_OUTOFMEMORY;
 goto Exit;
}

// Initialize the property set.
dbpropset[0].guidPropertySet = DBPROPSET_DBINIT;
dbpropset[0].rgProperties = dbprop;
dbpropset[0].cProperties = sizeof(dbprop)/sizeof(dbprop[0]);

// Set the properties into the provider's data source object.
pIDBInitialize->QueryInterface(IID_IDBProperties,(void**)&pIDBProperties);

hr = pIDBProperties->SetProperties(sizeof(dbpropset)/sizeof(dbpropset[0]),
 dbpropset);
if(FAILED(hr))
{
 goto Exit;
}

// Initialize the data source.
hr = pIDBInitialize->Initialize();
if(FAILED(hr))
{
 goto Exit;
}

// Create the Session and Command objects.
hr = pIDBProperties->QueryInterface(IID_IDBCreateSession, (void **)
 &pIDBCreateSession);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pIDBCreateSession->CreateSession(NULL, IID_IDBCreateCommand,
 (IUnknown**) &pIDBCrtCmd);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}
hr = pIDBCrtCmd->CreateCommand(NULL, IID_ICommandText, (IUnknown**)
 &pICmdText);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Request the ability to use the IRowsetPosition interface.
rowsetpropset[0].cProperties = 1;
rowsetpropset[0].guidPropertySet = DBPROPSET_ROWSET;
rowsetpropset[0].rgProperties = rowsetprop;

rowsetprop[0].dwPropertyID = DBPROP_CANFETCHBACKWARDS;
rowsetprop[0].dwOptions = DBPROPOPTIONS_REQUIRED;
rowsetprop[0].vValue.vt = VT_BOOL;
rowsetprop[0].vValue.boolVal = VARIANT_TRUE;

// Set the query text for the command.
hr = pICmdText->SetCommandText(DBGUID_SQL, L"Select * from Employees");
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

hr = pICmdText->QueryInterface(IID_ICommandProperties, (void**) &pICmdProps);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}
hr = pICmdProps->SetProperties(1, rowsetpropset);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Creates an IRowsetPosition object for the returned rowset.
hr = pICmdText->Execute(NULL, IID_IRowsetPosition, NULL, NULL,
 (IUnknown**)&pIRowsetPos);
if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
} // Get a count of the number or rows returned in the rowset.

hr = pIRowsetPos->GetRecordCount(DB_NULL_HCHAPTER, &cbRecordCount);

if (FAILED(hr))
{
 //Send an error-specific message and do error handling.
 goto Exit;
}

// Do something here with the aquired row count information.

Exit:

// When finished, clear the properties arrays, release
// the interfaces and uninitialize the environment.

return;

See Also

Provider-specific Properties

SQL Server CE Books Online

OLE DB for SQL Server CE Programmer's Reference
This reference supplements the Microsoft® OLE DB documentation that ships with the Microsoft Data Access Components
(MDAC) SDK and is available in the MSDN® Library at this Microsoft Web site. The purpose of this reference is to fully document
any provider-specific interfaces, properties, and data types; as well as highlight any differences between the OLE DB Provider for
Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) and the core OLE DB specifications.

The OLE DB Provider for SQL Server CE is an OLE DB version 2.5-compliant provider.

This section includes the following main reference topics:

Implemented OLE DB Interfaces
SQL Server CE Schema Rowsets
SQL Server CE-specific OLE DB Properties

For more information about programming against the OLE DB Provider for SQL Server CE, see Programming OLE DB
Applications for SQL Server CE.

http://go.microsoft.com/fwlink/?LinkId=8018

SQL Server CE Books Online

Implemented OLE DB Interfaces
Implemented OLE DB Interfaces

The OLE DB Provider for SQL Server CE implements the following OLE DB interfaces that are specific to Microsoft® SQL Server™
2000 Windows® CE Edition 2.0 (SQL Server CE):

ISSCECompact
IRowsetPosition
ILockBytes

In addition, the OLE DB Provider for SQL Server CE supports the core OLE DB interfaces shown in the following table. For more
information about the differences between the OLE DB Provider for SQL Server CE and the generic OLE DB interfaces, see
Differences in SQL Server CE-supported OLE DB Interfaces.

Fully implemented Implemented with differences
IColumnsInfo IAccessor
ICommand IAlterIndex
ICommandPrepare IAlterTable
ICommandProperties IDBDataSourceAdmin
ICommandText IOpenRowset
ICommandWithParameters IRowsetCurrentIndex
IConvertType ITransactionLocal
IDBCreateCommand
IDBCreateSession
IDBInfo
IDBInitialize
IDBProperties
IDBSchemaRowset
IGetDataSource
IIndexDefinition
IRowset
IRowsetBookmark
IRowsetChange
IRowsetIndex
IRowsetInfo
IRowsetUpdate
ISequentialStream
ISessionProperties
ISupportErrorInfo
ITableCreation
ITableDefinition
ITableDefinitionWithConstraints

SQL Server CE Books Online

Differences in SQL Server CE-supported OLE DB Interfaces
Differences in SQL Server CE-supported OLE DB Interfaces

Some OLE DB interfaces used with Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) differ from the generic
interfaces described in the OLE DB specification. These differences are described in the following table.

Implemented interface Description of differences
IAccessor The SQL Server CE

IAccessor::CreateAccessor method
ignores the DBACCESSOR_OPTIMIZED
flag. The DBACCESSOR_OPTIMIZED flag
has no effect on the performance of either
row or parameter accessors because SQL
Server CE does not use an internal row
cache. All accessors provide equally good
performance; thus, there is no need to
optimize accessors performance.

IAlterIndex Only the name of an index that can be
modified using IAlterIndex::AlterIndex.

IAlterTable SQL Server CE supports changing the
seed of and incrementing an
autoincrement column, but not changing a
column to or from autoincrement.

IAlterTable does not guarantee that you
can modify every detail about a table. It
provides the mechanism for a provider to
expose any table altering functionality that
exists in a provider. As such, not every
provider can modify the same things
about tables in their data stores. SQL
Server CE supports changing the name of
an existing table or column as well as the
DBPROP_COL_DEFAULT,
DBPROP_COL_SEED, and
DBPROP_COL_INCREMENT properties.

IDBDataSourceAdmin This interfaces is used to create a new
database. The CreateDataSource and
GetCreationProperties methods on this
interface are supported. Methods for
modifying or deleting databases are not
supported.

IOpenRowset This interface is used to open base tables
and integrated indexes. This interface
cannot be used to open views.

IRowsetCurrentIndex When attempting to change the current
index through IRowsetCurrentIndex:

All accessor handles must be released.

All row handles must be released.

No pending changes should be
outstanding

ITransactionLocal SQL Server CE only supports the
Transaction Isolation Level "Read
Committed". Attempting to specify a lower
Transaction Isolation Level is ignored and
results in a Transaction Isolation Level of
"Read Committed". Attempting to specify
a higher Transaction Isolation Level will
cause StartTransaction to fail.

SQL Server CE supports only single-phase
commit.

See Also

Implemented OLE DB Interfaces

SQL Server CE Books Online

ISSCECompact
ISSCECompact

ISSCECompact is used to compact databases in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), perform
database repair, and manage compaction-related properties, such as database encryption.

This interface is defined under the DataSource cotype in "Cotypes, Structures, and Enumerated Types" in the Microsoft OLE DB
Programmer's Reference.

When to Implement

The OLE DB Provider for SQL Server CE implements ISSCECompact.

Method Description
Compact Compacts or repairs a database, creating a new copy.

See Also

ISSCECompact::Compact

Using ISSCECompact

SQL Server CE Books Online

ISSCECompact::Compact
ISSCECompact::Compact

Compact compacts or repairs a database by creating a new database. The old database is retained and is unchanged.

Syntax

HRESULT ISSCECompact::Compact(
 ULONG cPropertySets,
 DBPROPSET rgPropertySets[]);

Parameters

cPropertySets
[in]
The number of DBPROPSET structures in rgPropertySets. If this is 0, the provider ignores rgPropertySets, and the method does
nothing.

rgPropertySets
[in/out]
An array of DBPROPSET structures containing properties and values to be set. If the data source object or enumerator is
uninitialized, the properties specified in these structures must belong to the Initialization property group. If the data source
object is initialized, the properties must belong to the Data Source property group. If the enumerator is initialized, it is an error
to call this method. If the same property is specified more than once in rgPropertySets, the value used is provider-specific. If
cPropertySets is 0, this parameter is ignored.

Return Codes

S_OK
The method succeeded.

E_INVALIDARG
cPropertySets was not equal to 0, and rgPropertySets was a null pointer. In an element of rgPropertySets, cProperties was not 0,
and rgProperties was a null pointer.

DB_E_OBJECTOPEN
The database cannot be opened exclusively.

DB_SEC_E_PERMISSIONDENIED
The user does not have sufficient rights to compact the database.

DB_E_DUPLICATEDATASOURCE
A destination database with the same name already exists.

DB_S_ERRORSOCCURRED
One or more properties were not set. Properties not in error remain set. The consumer checks dwStatus in the DBPROP
structures to determine which properties were not set. For the complete description of this return code, see
"IDBProperties::SetProperties" in the Microsoft OLE DB Programmer's Reference in the MSDN® Library at this Microsoft Web
site.

E_FAIL
An error occurred during compaction.

Remarks

Compact removes extraneous space from a database by making a new copy of the database. Compact attempts to eliminate any
corruption it finds while creating the new database. The original database is left unchanged.

Before calling Compact, ensure that adequate space exists for the newly created database. Ensure that the database is not already
open in write mode; Compact fails if the database is already open in write mode. Although a data source can be initialized prior
to compacting, initialization is not a requirement as the initialization of a corrupt database is likely to fail. Also, compacting
requires that no sessions exist against the database. For more information, see Maintaining SQL Server CE Databases.

Compact determines the properties of the new database based on the properties of the existing database and the initialization
properties passed to Compact in the data source object. The caller need only set properties that are unique for the new database.
Typically, only DBPROP_INIT_DATASOURCE must be passed to Compact to specify the new name for the compacted database.
Compact ignores any unneeded properties.

A database can be compacted in either encrypted or unencrypted form. This is controlled using the

http://go.microsoft.com/fwlink/?LinkId=8018

DBPROP_SSCE_ENCRYPTDATABASE (Boolean) property. Note that encrypted databases must have a database password. The
database password is specified by DBPROP_SSCE_DBPASSWORD.

See Also

ISSCECompact

Using ISSCECompact

SQL Server CE Books Online

IRowsetPosition
IRowsetPosition

IRowsetPosition is used to return exact row count and position information for the rowset. Because the OLE DB Provider for SQL
Server CE does not support IRowsetLocate or IRowsetScroll, this interface is used to expose row count and position
information.

Note This interface is supported only on scrollable cursors.

When to Implement

The OLE DB Provider for SQL Server CE implements IRowsetPosition.

Method Description
GetRecordCount Used to retrieve the number of rows in the current rowset.
GetCurrentPosition Gets the number of the current row.

See Also

IRowsetPosition::GetCurrentPosition

IRowsetPosition::GetRecordCount

Using IRowsetPosition

SQL Server CE Books Online

IRowsetPosition::GetRecordCount
IRowsetPosition::GetRecordCount

GetRecordCount retrieves the number of rows in the current rowset.

Syntax

HRESULT IRowsetPosition::GetRecordCount(
 ULONG * pcRows,
);

Parameters

pcRows
[in/out]
A pointer to an unsigned long value. This long value must be allocated by the client.

Return Codes

S_OK
The method succeeded.

E_INVALIDARG
pcRows was NULL.

E_UNEXPECTED
The rowset is in a zombied state.

Remarks

This is an exact count of the number of records in the rowset.

See Also

IRowsetPosition

IRowsetPosition::GetCurrentPosition

Using IRowsetPosition

SQL Server CE Books Online

IRowsetPosition::GetCurrentPosition
IRowsetPosition::GetCurrentPosition

GetCurrentPosition retrieves the number of the current row in the rowset.

Syntax

HRESULT IRowsetPosition::GetCurrentPosition (
 ULONG * pulPosition,
);

Parameters

pulPosition
[in/out]
A pointer to an unsigned long value. This long must be allocated by the client.

Return Codes

S_OK
The method succeeded.

E_INVALIDARG
pulPosition was NULL.

E_UNEXPECTED
The rowset is in a zombied state.

Remarks

This returns the current location of the "next fetch position" in the rowset. The valid range is 1 to GetCurrentPosition. If there is
no current row, pulPosition is 0.

See Also

IRowsetPosition

IRowsetPosition::GetRecordCount

Using IRowsetPosition

SQL Server CE Books Online

ILockBytes
ILockBytes

ILockBytes is a structured storage interface used for accessing long text and long binary data.

Method Description
ReadAt Reads a specified number of bytes starting at a specified

offset from the beginning of the byte array.
WriteAt Writes a specified number of bytes to a specified location in

the byte array.
Flush Ensures that any internal buffers maintained by the byte

array object are written out to the backing storage. Not
supported in SQL Server CE.

SetSize Changes the size of the byte array.
LockRegion Restricts access to a specified range of bytes in the byte

array. Not supported in SQL Server CE.
UnlockRegion Removes the access restriction on a range of bytes

previously restricted with ILockBytes::LockRegion. Not
supported in SQL Server CE.

Stat Retrieves a STATSTG structure for this byte array object.

See Also

ILockBytes::ReadAt

ILockBytes::SetSize

ILockBytes::Stat

ILockBytes::WriteAt

SQL Server CE Books Online

ILockBytes::ReadAt
ILockBytes::ReadAt

ReadAt reads a specified number of bytes starting at a specified offset from the beginning of the byte array.

Syntax

HRESULT ReadAt(
 ULARGE_INTEGER ulOffset,
 void *pv,
 ULONG cb,
 ULONG *pcbRead);

Parameters

ulOffset

[in]
Specifies the starting point from the beginning of the byte array for reading data.

pv

[in]
Pointer to the buffer into which the byte array is read.

cb

[in]
Specifies the number of bytes of data to attempt to read from the byte array.

pcbRead

[out]
Pointer to a location where this method writes the actual number of bytes read from the byte array. You can set this pointer to
NULL to indicate that you are not interested in this value. In this case, this method does not provide the actual number of bytes
that were read.

Return Codes

NOERROR

The method succeeded.

E_UNEXPECTED

Rowset is in a "zombied" state.

STG_E_INVALIDPOINTER

A pointer that was passed was not valid.

Remarks

TBD

See Also

ILockBytes

ILockBytes::SetSize

ILockBytes::Stat

ILockBytes::WriteAt

SQL Server CE Books Online

ILockBytes::WriteAt
ILockBytes::WriteAt

WriteAt writes the specified number of bytes starting at a specified offset from the beginning of the byte array.

Syntax

HRESULT WriteAt(
 ULARGE_INTEGER uliOffset,
 Void const *pData,
 ULONG cbWrite,
 ULONG *pcbWrote);

Parameters

uliOffset

[in]
Specifies the starting point from the beginning of the byte array for the data to be written.

pData

[in]
Pointer to the buffer containing the data to be written.

cbWrite

[in]
Specifies the number of bytes of data to attempt to write into the byte array.

pcbWrote

[out]
Pointer to a location where this method specifies the actual number of bytes written to the byte array. You can set this pointer to
NULL to indicate that you are not interested in this value. In this case, this method does not provide the actual number of bytes
written.

Return Codes

NOERROR

The method succeeded.

E_UNEXPECTED

Rowset is in a "zombied" state.

Remarks

TBD

See Also

ILockBytes

ILockBytes::ReadAt

ILockBytes::SetSize

ILockBytes::Stat

SQL Server CE Books Online

ILockBytes::SetSize
ILockBytes::SetSize

SetSize changes the size of the byte array.

Syntax

HRESULT SetSize(
 ULARGE_INTEGER uliSize);

Parameters

uliSize

[in]
Specifies the new size of the byte array as a number of bytes.

Return Codes

NOERROR

The method succeeded.

E_UNEXPECTED

Rowset is in a "zombied" state.

Remarks

TBD

See Also

ILockBytes

ILockBytes::ReadAt

ILockBytes::Stat

ILockBytes::WriteAt

SQL Server CE Books Online

ILockBytes::Stat
ILockBytes::Stat

Retrieves a STATSTG type structure containing information about this byte array object.

Syntax

HRESULT Stat(
 STATSTG *pStat,
 DWORD grfStatFlag);

Parameters

pStat

[out]
Pointer to a STATSTG type structure that contains information about this byte array object.

grfStatFlag

[in]
Specifies whether this method should supply the pwcsName member of the STATSTG structure through values taken from the
STATFLAG enumeration. If STATFLAG_NONAME is specified, the pwcsName member of STATSTG is not supplied, thus saving a
memory-allocation operation. The other possible value, STATFLAG_DEFAULT, indicates that all members of the STATSTG
structure be supplied.

Return Codes

NOERROR

The method succeeded.

E_UNEXPECTED

Rowset is in a "zombied" state.

STG_E_INVALIDFLAG

A flag value that was set for grfStatFlag was not valid.

STG_E_INVALIDPOINTER

A pointer that was passed was not valid.

Remarks

TBD

See Also

ILockBytes

ILockBytes::ReadAt

ILockBytes::SetSize

ILockBytes::WriteAt

SQL Server CE Books Online

SQL Server CE Schema Rowsets
SQL Server CE Schema Rowsets

The following schema rowsets are used by the OLE DB Provider for SQL Server CE to expose functionality specific to Microsoft®
SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

OLE DB schema name ADO schema name Description and GUID
(if needed)

DBSCHEMA_COLUMNS adSchemaColumns The COLUMNS rowset
identifies the columns of
tables defined in the
catalog that are accessible
to a given user.

DBSCHEMA_INDEXES adSchemaIndexes The INDEXES rowset
identifies the indexes
defined in the catalog that
are owned by a given user.

DBSCHEMA_KEY_COLUMN_USAGE adSchemaKeyColumnUsage The KEY_COLUMN_USAGE
rowset identifies the
columns defined in the
catalog that are constrained
as keys by a given user.

DBSCHEMA_PROVIDER_TYPES adSchemaProviderTypes The PROVIDER_TYPES
rowset identifies the (base)
data types supported by the
data provider.

DBSCHEMA_TABLE_CONSTRAINTS adSchemaTableConstraints The TABLE_CONSTRAINTS
rowset identifies the table
constraints defined in the
catalog that are owned by a
given user.

DBSCHEMA_TABLES adSchemaTables The TABLES rowset
identifies the tables defined
in the catalog that are
accessible to a given user.

DBSCHEMA_TABLES_INFO adSchemaTablesInfo The TABLES_INFO rowset
identifies the tables defined
in the catalog that are
accessible to a given user.

Provider-specific Schema Rowset Values

The DBSCHEMA_COLUMNS rowset returns the following columns that are specific to SQL Server CE:

AUTOINC_MIN
AUTOINC_MAX
AUTOINC_STEP

SQL Server CE Books Online

SQL Server CE-specific OLE DB Properties
SQL Server CE-specific OLE DB Properties

The OLE DB specification allows data providers to implement provider-specific properties. These properties allow the
programmer to have access to functionality that is outside the boundaries of the OLE DB specification. The OLE DB Provider for
SQL Server CE exposes the following properties:

Provider-specific Properties
Column Properties
Data Source Information Properties
Index Properties
Initialization Properties
Rowset Properties
Table Properties

SQL Server CE Books Online

Provider-specific Properties
Provider-specific Properties

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) defines a several provider-specific properties in the
DBPROPSET_SSCE_DBINIT and DBPROPSET_SSCE_SESSION property sets.

DBPROPSET_SSCE_DBINIT Property Set

The DBPROPSET_SSCE_DBINIT property set contains the following properties that are specific to the OLE DB Provider for SQL
Server CE.

Property ID Description
DBPROP_SSCE_DBPASSWORD Type: VT_BSTR

Typical R/W: R/W

Description: SQL Server CE OLEDB:Database
Password
Password used to open the database. This
differs from the user password in that the
database password is per file, and a user
password is per user.

DBPROP_SSCE_ENCRYPTDATABASE Type: VT_BOOL
Typical R/W: R/W
Description: SQL Server CE OLEDB:Encrypt
Database
Determines whether a compacted or a newly
created database should be encrypted.

DBPROP_SSCE_TEMPFILE_DIRECTORY Type: VT_BSTR
Typical R/W: R/W
Description: SQL Server CE OLEDB: Temp File
Directory
Used to specify the temp file directory.

DBPROPSET_SSCE_SESSION Property Set

The DBPROPSET_SSCE_SESSION property set contains the following property that is specific to the OLE DB Provider for SQL
Server CE.

Property ID Description
DBPROP_SSCE_MAXBUFFERSIZE Type: VT_I4

Typical R/W: R/W
Description: SQL Server CE OLE DB:Max
Buffer Size
The largest amount of memory, in kilobytes,
that SQL Server CE can use before it starts
flushing changes to disk.

DBPROPSET_SSCE_COLUMN

The DBPROPSET_SSCE_COLUMN property set contains the following properties that are specific to the OLE DB Provider for SQL
Server CE.

Property ID Description
DBPROP_SSCE_COL_ROWGUID Type: VT_BOOL

Typical R/W: R/W
Description: SQL Server CE OLE DB: Row GUID
Column.
Specifies a column as a row GUID column. For
this provider, the default value is
VARIANT_FALSE.

SQL Server CE Books Online

Column Properties
Column Properties

The DBPROPSET_COLUMN property set contains the following properties. All of these properties are in the Column property
group.

Property ID Description
DBPROP_COL_AUTOINCREMENT Type: VT_BOOL

Typical R/W: R/W
Description: Autoincrement
Specifies whether the values of the identity
column are autoincrementing. There can be
only one autoincrementing column per table.

DBPROP_COL_DEFAULT Type: Any
Typical R/W: R/W
Description: Default
Specifies the default value for this column.
This may be a constant, an expression, or the
getdate() function. Queries are not supported
as default values. String literals must be
enclosed with single quotation marks, for
example: 'default'.

DBPROP_COL_FIXEDLENGTH Type: VT_BOOL
Typical R/W: R/W
Description: Fixed Length

DBPROP_COL_INCREMENT Type: VT_I4
Typical R/W: R/W
Only used if autoincrement is VARIANT_TRUE.
Can only be used on identity columns.

DBPROP_COL_ISLONG Type: VT_BOOL
Typical R/W: R/W
Description: Is Long

DBPROP_COL_NULLABLE Type: VT_BOOL
Typical R/W: R/W
Description: Nullable
Microsoft® SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) supports all types as
nullable.

DBPROP_COL_SEED Type: VT_I4
Typical R/W: R/W
Only used if autoincrement is VARIANT_TRUE.
Can only be used on identity columns.

SQL Server CE Books Online

Data Source Information Properties
Data Source Information Properties

The DBPROPSET_DATASOURCEINFO property set contains the following properties. All of these properties are in the Data Source
Information property group. These properties are read-only in the OLE DB Provider for SQL Server CE and constitute a set of
static information about the provider and data store.

Property ID Description
DBPROP_ALTERCOLUMN Type: VT_I4

R/W: R
Description: Alter Column Support
This provider returns
DBCOLUMNDESCFLAGS_DBCID and
DBCOLUMNDESCFLAGS_PROPERTIES. The only
properties that can be altered are
DBPROP_COL_SEED,
DBPROP_COL_INCREMENT, and
DBPROP_COL_DEFAULT. DBPROP_COL_SEED
and DBPROP_COL_INCREMENT can be set only
on an identity column.

DBPROP_COLUMNDEFINITION Type: VT_I4
R/W: R
Description: Column Definition
For this provider, the value is always
DBPROPVAL_CD_NOTNULL.

DBPROP_DBMSNAME Type: VT_BSTR
Typical R/W: R only
Description: DBMS Name
Specifies the name of the product accessed by
the provider. For this provider, the string is "SQL
Server for Windows CE".

DBPROP_DBMSVER Type: VT_BSTR
Typical R/W: R only
Description: DBMS Version
Specifies the version of the product accessed by
the provider. For this provider, the string is
"2.00.0000".

DBPROP_DSOTHREADMODEL Type: VT_I4
Typical R/W: R only
Description: Data Source Object Threading
Model
Specifies the threading model of the data source
object. For this provider, the value is
DBPROPVAL_RT_FREETHREAD.

DBPROP_IDENTIFIERCASE Type: VT_I4
Typical R/W: R only
Description: Identifier Case Sensitivity
Specifies how identifiers respond to case.
Because identifiers in SQL Server CE are case-
insensitive and are stored in mixed case in the
system catalog, the value for this provider must
be DBPROPVAL_IC_MIXED.

DBPROP_MULTIPLESTORAGEOBJECTS Type: VT_BOOL
Typical R/W: R only
Description: Multiple Storage Objects
For this provider, the value is always
VARIANT_FALSE, which indicates that the
provider supports only one open storage object
at a time.

DBPROP_NULLCOLLATION Type: VT_I4
Typical R/W: R only
Description: NULL Collation Order
For this provider, the value is always
DBPROPVAL_NC_LOW, which indicates that null
values are sorted at the low end of the list.

DBPROP_OLEOBJECTS Type: VT_I4
Typical R/W: R only
Description: OLE Object Support
Specifies a bitmask that indicates the ways in
which the provider supports access to BLOBs
and COM objects stored in columns.
For this provider, the value is always
DBPROPVAL_OO_BLOB, which indicates that the
provider supports access to BLOBs as structured
objects. The consumer determines what
interfaces are supported through
DBPROP_STRUCTUREDSTORAGE.

DBPROP_OPENROWSETSUPPORT Type: VT_I4
R/W: R
Description: Open Rowset Support
This provider supports the values
DBPROPVAL_ORS_TABLE and
DBPROPVAL_ORS_INTEGRATEDINDEX.

DBPROP_PERSISTENTIDTYPE Type: VT_I4
R/W: R
Description: Persistent ID Type
For this provider, the value is
DBPROPVAL_PT_NAME.

DBPROP_PROVIDERFILENAME Type: VT_BSTR
Typical R/W: R only
Description: Provider Name
Specifies the file name of the provider. (Prior to
Microsoft Data Access Components (MDAC) 2.5,
this property is named
DBPROP_PROVIDERNAME.)

DBPROP_PROVIDEROLEDBVER Type: VT_BSTR
Typical R/W: R only
Description: OLE DB Version
This provider returns 02.50.00.

DBPROP_PROVIDERVER Type: VT_BSTR
R/W: R
Description: Provider Version
For this provider, the version returned is
02.00.0000.

DBPROP_STRUCTUREDSTORAGE Type: VT_I4
Typical R/W: R only
Description: Structured Storage
Specifies a bitmask that indicates which
interfaces on a storage object are supported by
the rowset; that is, a combination of zero or
more of DBPROPVAL_SS_ISEQUENTIALSTREAM
or DBPROPVAL_SS_ILOCKBYTES.

DBPROP_SUPPORTEDTXNDDL Type: VT_I4
Typical R/W: R only
Description: Transaction DDL
Specifies whether Data Definition Language
(DDL) statements are supported in transactions.
For this provider, the value is always
DBPROPVAL_TC_ALL, which indicates that
transactions can contain DDL and Data
Manipulation Language (DML) statements in
any order.

DBPROP_SUPPORTEDTXNISOLEVELS Type: VT_I4
Typical R/W: R only
Description: Isolation Levels
This provider supports only
DBPROPVAL_TI_READCOMMITTED.

DBPROP_SUPPORTEDTXNISORETAIN Type: VT_I4
Typical R/W: R only
Description: Isolation Retention
This provider supports the following values:
DBPROPVAL_TR_COMMIT_DC, which indicates
that the transaction preserves its isolation
across a retaining commit.
DBPROPVAL_TR_ABORT_DC, which indicates
that the transaction may either preserve or
dispose of its isolation across a retaining abort.

SQL Server CE Books Online

Index Properties
Index Properties

The DBPROPSET_INDEX property set contains the following properties. All of these properties are in the Index property group.

Property ID Description
DBPROP_INDEX_AUTOUPDATE Type: VT_BOOL

Typical R/W: R only
Description: Auto Update
For this provider, the value is always
VARIANT_TRUE, which indicates that the index
is automatically maintained.

DBPROP_INDEX_NULLCOLLATION Type: VT_I4
Typical R/W: R only
Description: NULL Collation
Specifies how null values are collated in the
index.
For this provider, the value is always
DBPROPVAL_NC_LOW, which indicates that
null values are collated at the low end of the
list.

DBPROP_INDEX_NULLS Type: VT_I4
Typical R/W: R/W
Description: NULL Keys
Specifies whether null keys are allowed.
For this provider, the value is always
DBPROPVAL_IN_DISALLOWNULL, which
indicates that the index does not allow entries
where the key columns are NULL. If the
consumer attempts to insert an index entry
with a null key, the provider returns an error.
This provider supports indexes that are
nullable and indexes where null values are
disallowed.

DBPROP_INDEX_TYPE Type: VT_I4
Typical R/W: R only
Description: Index Type
Specifies the type of the index.
For this provider, the value is always
DBPROPVAL_IT_BTREE.

DBPROP_INDEX_UNIQUE Type: VT_BOOL
Typical R/W: R/W
Description: Unique
Specifies whether index keys must be unique.
The provider supports the following values:
VARIANT_TRUE, which indicates that the index
keys must be unique, or
VARIANT_FALSE, which indicates that
duplicate keys are allowed.

SQL Server CE Books Online

Initialization Properties
Initialization Properties

The DBPROPSET_DBINIT property set contains the following properties. All of these properties are in the Initialization property
group.

Property ID (properties not
supported

in DBPROPSET_DBINIT) Description
DBPROP_INIT_DATASOURCE Type: VT_BSTR

Typical R/W: R/W
Description: Data Source
Specifies the name of the data store to which
to connect.

DBPROP_INIT_LCID Type: VT_I4
Typical R/W: R/W
Description: Locale Identifier
The locale ID (LCID) of preference for the
consumer. Consumers specify the LCID at
initialization. This provides a method by which
the server can determine the consumer's LCID
of choice. This property does not guarantee
that all text returned to the consumer will be
translated according to the LCID.

DBPROP_INIT_MODE Type: VT_I4
Typical R/W: R
Description: Mode
For this provider, the mode is either
DB_MODE_READWRITE or
DB_MODE_SHARE_EXCLUSIVE.

SQL Server CE Books Online

Rowset Properties
Rowset Properties

The DBPROPSET_ROWSET property set contains the following properties. All of these properties are in the Rowset property
group. Additional properties are defined in DBPROPSET_SSCE_ROWSET.

Property ID Description
DBPROP_ABORTPRESERVE Type: VT_BOOL

Typical R/W: R only
Description: Preserve on Abort
For this provider, the value is always
VARIANT_FALSE, which indicates that, after
aborting a transaction, the only operations
allowed on a rowset are to release row and
accessor handles and to release the rowset.

DBPROP_ACCESSORDER Type: VT_I4
R/W: R
Description: Access Order
For this provider, the value is always
DBPROPVAL_AO_RANDOM.

DBPROP_BLOCKINGSTORAGEOBJECTS Type: VT_BOOL
Typical R/W: R only
For this provider, the value is always
VARIANT_TRUE.

DBPROP_BOOKMARKS Type: VT_BOOL
Typical R/W: R/W
Description: Use Bookmarks
Specifies whether the rowset supports
bookmarks. The provider supports the
following values:
VARIANT_TRUE, which indicates that the
rowset supports bookmarks. Column 0 is the
bookmark for the rows. Getting this column
obtains a bookmark value, which can be
used to reposition to the row.
VARIANT_FALSE, which indicates that the
rowset does not support bookmarks. The
rowset is sequential, and the values of the
DBPROP_LITERALBOOKMARKS and
DBPROP_ORDEREDBOOKMARKS properties
are ignored.

DBPROP_BOOKMARKTYPE Type: VT_I4
Typical R/W: R only
Description: Bookmark Type
Specifies the bookmark type supported by
the rowset.
For this provider, the value is always
DBPROPVAL_BMK_NUMERIC, which
indicates that the bookmark type is numeric.
Numeric bookmarks are based on a row's
properties that are not dependent on the
values of the row's columns. For example, a
numeric bookmark can be based on the
absolute position of the row within the
rowset or on a row ID that the storage
engine assigned to a tuple when it was
created. Modifying the row's columns does
not change the validity of numeric
bookmarks.

DBPROP_CANFETCHBACKWARDS Type: VT_BOOL
Typical R/W: R/W
Description: Fetch Backward
Specifies whether the rowset can fetch
backward. The providers supports the
following values:
VARIANT_TRUE, which indicates that cRows
in IRowset::GetNextRows,
IRowsetLocate::GetRowsAt, and
IRowsetScroll::GetRowsAtRatio can be
negative. When it is negative, these methods
fetch rows backward from the specified row.
VARIANT_FALSE, which indicates that cRows
must be nonnegative.

DBPROP_CANHOLDROWS Type: VT_BOOL
Typical R/W: R
Description: Hold Rows
For this provider, this property is always
VARIANT_FALSE.

DBPROP_CANSCROLLBACKWARDS Type: VT_BOOL
Typical R/W: R
Description: Scroll Backward
For this provider, this property is always
VARIANT_FALSE, which indicates that
IRowsOffset must be nonnegative.

DBPROP_CHANGEINSERTEDROWS Type: VT_BOOL
Typical R/W: R/W
Description: Change Inserted Rows
For this provider, the value is always
VARIANT_TRUE, which indicates that the
consumer can call
IRowsetChange::DeleteRows or
IRowsetChange::SetData for newly
inserted rows.
A newly inserted row is defined as a row for
which the insertion has been transmitted to
the data store, as opposed to a pending
insert row.

DBPROP_COMMITPRESERVE Type: VT_BOOL
Typical R/W: R only
Description: Preserve On Commit
For this provider, the value is always
VARIANT_TRUE, which indicates that after a
commit that preserves, the rowset remains
active. That is, it is possible to fetch new
rows, update, delete, and insert rows, and so
on.

DBPROP_DEFERRED Type: VT_BOOL
Typical R/W: R only
Description: Defer Column
For this provider, the value is always
VARIANT_TRUE, which indicates that the
data in the column is not fetched until an
accessor is used on the column.

DBPROP_DELAYSTORAGEOBJECTS Type: VT_BOOL
Typical R/W: R only
Description: Delay Storage Object Updates
For this provider, the value is always
VARIANT_TRUE, which indicates that storage
objects are also used in delayed update
mode.

DBPROP_IAccessor
DBPROP_IColumnsInfo
DBPROP_IConvertType
DBPROP_IRowset
DBPROP_IRowsetChange
DBPROP_IRowsetInfo
DBPROP_IRowsetUpdate
DBPROP_ISupportErrorInfo
DBPROP_IRowsetIndex
DBPROP_IRowsetCurrentIndex
DBPROP_IRowsetBookmark

Type: VT_BOOL
Typical R/W: R/W, except as noted below.
Description:
If the value of any of these properties is set
to VARIANT_TRUE, the rowset supports the
specified interface. These properties are
primarily used to request interfaces through
ICommandProperties::SetProperties.
The following properties are read-only and
are always VARIANT_TRUE:
DBPROP_IAccessor
DBPROP_IColumnsInfo
DBPROP_IConvertType
DBPROP_IRowset
DBPROP_IRowsetInfo
DBPROP_ISupportErrorInfo
Setting DBPROP_IRowsetUpdate to
VARIANT_TRUE automatically sets
DBPROP_IRowsetChange to VARIANT_TRUE.
Setting DBPROP_IRowsetCurrentIndex to
VARIANT_TRUE automatically sets
DBPROP_IRowsetIndex to VARIANT_TRUE.

DBPROP_ILockBytes
DBPROP_IsequentialStream

Type: VT_BOOL
Typical R/W: R/W
Description: ILockBytes
ISequentialStream
If the value of this property is set to
VARIANT_TRUE, the specified column is
treated as a storage object that exposes the
specified interface.

DBPROP_IMMOBILEROWS Type: VT_BOOL
Typical R/W: R only
Description: Immobile Rows
For this provider, the value is always
VARIANT_FALSE, which indicates that, if the
rowset is ordered, inserted rows and
updated rows (where one or more of the
columns in the ordering criteria are updated)
follow the ordering criteria of the rowset. If
the rowset is not ordered, inserted rows are
not guaranteed to appear in a determinate
position, and the position of updated rows is
not changed.
This property is meaningful only if
DBPROP_OWNINSERT is VARIANT_TRUE.

DBPROP_LOCKMODE TYPE: VT_I4
R/W: R
Description: Lock Mode
For this provider, the value is always
DBPROPVAL_LM_SINGLEROW.

DBPROP_MAXOPENROWS Type: VT_I4
Typical R/W: R
Description: Maximum Open Rows
This value is 1 for Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE).

DBPROP_MAXROWS Type: VT_I4
Typical R/W: R only
Description: Maximum Rows
Specifies the maximum number of rows that
can be returned in a rowset. If there is no
limit, this value is 0.
For this provider, the value is always 0.

DBPROP_OTHERINSERT Type: VT_BOOL
Typical R/W: R/W
Description: Base Tables are True; others are
False.

DBPROP_OTHERUPDATEDELETE Type: VT_BOOL
Typical R/W: R/W
Description: Others' Changes Visible
Specifies either of the following values:
VARIANT_TRUE, which indicates that the
rowset can see updates and deletes made by
a user other than a consumer of the rowset.
For example, suppose a user other than a
consumer of the rowset updates the data
underlying a row or deletes the row. If the
row is released completely, any consumer of
the rowset will see that change the next time
it fetches the row. This includes updates and
deletes made by other parties in the same
transaction as well as updates and deletes by
parties outside the transaction.
The transaction isolation level does not affect
the ability of the rowset to see updates or
deletes by other parties in the same
transaction, such as other rowsets in the
same session. However, it does restrict the
ability of the rowset to see updates or
deletes by parties outside the transaction.

VARIANT_FALSE, which indicates that the
rowset cannot see updates and deletes by
others.

DBPROP_OWNINSERT Type: VT_BOOL
Typical R/W: R/W
Description: Own Inserts Visible

DBPROP_OWNUPDATEDELETE Type: VT_BOOL
Typical R/W: R/W
Description: Own Changes Visible

DBPROP_QUICKRESTART Type: VT_BOOL
Typical R/W: R / W
Description: Quick Restart

DBPROP_REMOVEDELETED Type: VT_BOOL
Typical R/W: R
Description: Remove Deleted Rows
For this provider, the value is always
VARIANT_TRUE.

DBPROP_REPORTMULTIPLECHANGES Type: VT_BOOL
Typical R/W: R only
Description: Report Multiple Changes
For this provider, the value is always
VARIANT_TRUE.

DBPROP_ROWTHREADMODEL Type: VT_I4
Typical R/W: R only
Description: Row Threading Model
Specifies the threading model of the rowsets
generated by the command.
For this provider, the value is always
DBPROPVAL_RT_FREETHREAD.

DBPROP_SERVERDATAONINSERT TYPE: VT_BOOL
R/W: R
Description: Server Data on Insert
For this provider, the value is always
VARIANT_TRUE.

DBPROP_UPDATABILITY Type: VT_I4
Typical R/W: R/W
Description: Updatability

SQL Server CE Books Online

Table Properties
Table Properties

The DBPROPSET_TABLE property set contains the following properties. All of these properties are in the Table property group.

Property ID Description
DBPROP_TBL_TEMPTABLE Type: VT_BOOL

Typical R/W: R/W
Description: Temporary Table
Users should refrain from creating temporary
tables in Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE).

The following table lists the properties that are not supported.

Property ID Description
DBPROP_CONCATNULLBEHAVIOR
(Not supported)

Type: VT_I4
Typical R/W: R only
Description: Null Concatenation Behavior
Specifies how the data store handles
concatenation of null-valued and nonnull-
valued character data type columns. The value
is DBPROPVAL_CB_NON_NULL, which
indicates that the result is the concatenation of
the nonnull-valued column or columns.

DBPROP_AUTH_PERSIST_ENCRYPTED
(Not supported)

Type: VT_BOOL
Typical R/W: R only
Description: Persist Encrypted
For this provider, the value is always
VARIANT_FALSE, which indicates that the data
source object can persist sensitive
authentication information without encryption.

DBPROP_CACHEDEFERRED
(Not supported)

Type: VT_BOOL
Typical R/W: R only
Description: Cache Deferred Columns
For this provider, the value is always
VARIANT_FALSE, which indicates that the
provider does not cache the value of a
deferred column and multiple calls to
IRowset::GetData because the column can
return different values.

SQL Server CE Books Online

SQL Server CE Engine Object
You can program access to engine-specific features in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) in
an application running on a Windows CE-based platform by using either the Microsoft eMbedded Visual Tools or Microsoft Visual
Studio® .NET development environments.

To program SQL Server CE engine functionality in the eMbedded Visual Tools environment, use the Engine object within the SQL
Server CE ActiveX® control that exposes the CompactDatabase method and the ErrorRecords property.

To program SQL Server CE engine functionality in the Visual Studio .NET environment, use the .NET Compact Framework Data
Provider for SQL Server CE, which provides the System.Data.SqlServerCe.SqlCeEngine class. The SqlCeEngine class exposes
two methods: Compact and CreateDatabase. For information about the methods and properties of the SqlCeEngine class and
other classes in the System.Data.SqlServerCe namespace, see .NET Compact Framework Data Providers.

The following topics describe using these exposed methods:

Using the CompactDatabase and Compact Methods
Using the CreateDatabase Method

See Also

CompactDatabase Method

ErrorRecords Property

SQL Server CE Books Online

Using the CompactDatabase and Compact Methods
CompactDatabase and Compact are the same methods in Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE), but are used in different development environments. Use CompactDatabase in applications created with the Microsoft
eMbedded Visual Tools, and use Compact in applications created with Microsoft Visual Studio® .NET.

These methods are essential in maintaining and changing databases. They can be used for compacting and reclaiming wasted
space. They can also be used to change the collating order, encryption, and/or password in a SQL Server CE database.

Because a new version of the database is created when compacting, the source database path and destination database path must
be different. In addition, the source database must be closed and the destination database must not exist. An error occurs if the
destination database already exists or another file with that name already exists.

If SQL Server CE is terminated when data is being written (as a result of power failure or a full disk), the data can become
corrupted.

Examples

C#

 string src = "Northwind.sdf";
 string dest = "Northwind.sdf.tmp";
 // Initialize SqlCeEngine object.
 SqlCeEngine engine = new SqlCeEngine("Data Source = " + src);

 try {
 engine.Compact("Data Source = " + dest);
 engine.Dispose();

 File.Delete(src);
 File.Move(dest, src);
 }
 catch(SqlCeException e)
 {
 //Use your own error handling routine.
 //ShowErrors(e);
 }
 finally
 {
 //Dispose of the SqlCeEngine object.
 engine.Dispose();
 }

Visual Basic .NET

 Dim src As String = "Northwind.sdf"
 Dim dest As String = "Northwind.sdf.tmp"
 ' Initialize SqlCeEngine Object.
 Dim engine As New SqlCeEngine("Data Source = " + src)

 Try
 engine.Compact(("Data Source = " + dest))
 engine.Dispose()

 File.Delete(src)
 File.Move(dest, src)

 Catch e As SqlCeException
 'Use your own error handling routine.
 'ShowErrors(e)
 Finally
 'Dispose of the SqlCeEngine object.
 engine.Dispose()
 End Try

eMbedded Visual Tools

Dim engine As SSCE.Engine

Set engine = CreateObject("SSCE.Engine.2.0")

Dim src As String
Dim dest As String

src = "Data Source=Northwind.sdf"
dest = "Data Source=Northwind.sdf.tmp"

engine.CompactDatabase src, dest
FileSystem1.FileCopy "Northwind.sdf.tmp", "Northwind.sdf"
FileSystem1.Kill "Northwind.sdf"

See Also

Maintaining SQL Server CE Databases

CompactDatabase Method

ErrorRecords Property

SQL Server CE Books Online

Using the CreateDatabase Method
Use the CreateDatabase method to create a new database in the Microsoft® Visual Studio® .NET development environment.

Examples

C#

if (File.Exists("Test.sdf"))
File.Delete("Test.sdf");

string connStr = "Data Source = Test.sdf; Password = <password>;";

SqlCeEngine engine = new SqlCeEngine(connStr);
engine.CreateDatabase();
engine.Dispose();
SqlCeConnection conn = null;

try
{
 conn = new SqlCeConnection(connStr);
 conn.Open();

 SqlCeCommand cmd = conn.CreateCommand();
 cmd.CommandText = "CREATE TABLE myTable (col1 int, col2 ntext)";
 cmd.ExecuteNonQuery();
}

catch {}

finally
{
 conn.Close();
}

Visual Basic .NET

If File.Exists("Test.sdf") Then
 File.Delete("Test.sdf")
End If
Dim connStr As String = "Data Source = Test.sdf; Password = <password>;"

Dim engine As New SqlCeEngine(connStr)
engine.CreateDatabase()
engine.Dispose()

Dim conn As SqlCeConnection = Nothing

Try
 conn = New SqlCeConnection(connStr)
 conn.Open()

 Dim cmd As SqlCeCommand = conn.CreateCommand()

 cmd.CommandText = "CREATE TABLE myTable (col1 int, col2 ntext)"
 cmd.ExecuteNonQuery()

Catch
Finally
 conn.Close()
End Try

See Also

SSCEError Object

CompactDatabase Method

SSCEErrors Collection

SQL Server CE Books Online

SQL Server CE Engine Object Programmer's Reference for
eMbedded Visual Tools
This section provides reference information about the CompactDatabase method and ErrorRecords property of the Microsoft®
SQL Server™ 2000 Windows® Edition (SQL Server CE) Engine object for the Microsoft eMbedded Visual Tools development
environment.

CompactDatabase Method
ErrorRecords Property

SQL Server CE Books Online

CompactDatabase Method
CompactDatabase Method

The CompactDatabase method compacts and reclaims wasted space. This method can also be used to change the collating
order, encryption, and/or password of a database in Microsoft® SQL Server™ 2000 Windows® Edition (SQL Server CE).

Syntax

object.CompactDatabase(SourceConnection, DestConnection)

Part Description
object Expression that evaluates to a SQL Server CE Engine object.
SourceConnection A string value specifying a connection to the source

database to be compacted. An error occurs if the database
specified by SourceConnection is already open.

DestConnection A string value specifying a connection to the destination
database to be created by the compaction. An error occurs
if the database specified by DestConnection already exists
or another file with that name already exists.

Remarks

The SourceConnection and DestConnection parameters specify the properties of the source and destination databases. The
following table lists the connection properties that you can specify for each parameter. All other connection properties are
ignored.

Property Description
Provider Indicates the name of the provider to use to connect to the

data source. If this property is not specified, the OLE DB
Provider for SQL Server CE is assumed. An error occurs if
the name of the provider in the source string is different
from the name of the provider in the destination string.

Data Source Indicates the name of the database. This property is
required for both the source and destination connection
information.

Locale Identifier Indicates the locale ID (LCID) for the new database. If this is
omitted, the destination database will have the same locale
ID as the source database.

Locale specifies the collating order for string comparisons
in the database.

SSCE:Database
Password

Indicates the password if the database is secured by a
password. The source database password must be supplied
if the source database contains a password. If this
parameter is omitted, the new database will have the same
database password as the source database. If you want to
remove the password from the destination database, the
database password must be set to an empty string. The
database password can be up to 40 characters.

SSCE:Encrypt Database Indicates whether to encrypt the new database. If this
parameter is omitted, the new database will have the same
encryption as the source database. This is a Boolean value
and should be set to TRUE for encryption and FALSE if
encryption is not wanted.

SSCE:Temp File
Directory

Specifies the location of the temporary database. If this
parameter is omitted, the temporary database is stored in
the temp directory of the device.

Locale identifier values are supported. Use the unique LCID for the value of Locale Identifier. To find a list of unique LCID values,

see Collate. You must ensure that the locale is supported on the device on which the database is being created.

See Also

ErrorRecords Property

SQL Server CE Books Online

ErrorRecords Property
ErrorRecords Property

The ErrorRecords property contains the SSCEErrors collection for the Microsoft® SQL Server™ 2000 Windows® Edition (SQL
Server CE) Engine object.

Syntax

object.ErrorRecords

Part Description
object SQL Server CE Engine object

Remarks

The SSCEErrors collection is loaded when a SQL Server CE Engine object method call fails. The error records in the collection
remain available until the next SQL Server CE Engine object method is called.

Data Type

SSCEErrors

Modifiable

Read-only

See Also

SSCEError Object

CompactDatabase Method

SSCEErrors Collection

SQL Server CE Books Online

Remote Data Access (RDA)
The Remote Data Access (RDA) object is a Microsoft® SQL Server™ 2000 Windows® CE (SQL Server CE) ActiveX® control that
enables programmatic access to a Microsoft SQL Server 2000 or Microsoft SQL Server version 7.0 database. This access is
provided by a Microsoft Visual Studio® .NET or Microsoft eMbedded Visual Tools application running on a Windows CE-based
device.

To program RDA in the Visual Studio .NET development environment, use the .NET Compact Framework Data Provider for SQL
Server CE, which provides the System.Data.SqlServerCe.SqlCeRemoteDataAccess class. For more information about the
methods and properties of the SqlCeRemoteDataAccess class and the other classes in the System.Data.SqlServerCe
namespace, see .NET Compact Framework Data Provider for SQL Server CE.

To program RDA in the eMbedded Visual Tools development environment, use the RDA object. The following topics describe the
concepts for building Windows CE-based applications using the SQL Server CE RDA object with the .NET Compact Framework
data provider and eMbedded Visual Tools.

Using the Pull Method
Using the Push Method
Using the SubmitSQL Method
Handling RDA Errors

This section also contains a programmer's reference that describes the methods and properties of the RDA object for the
Microsoft eMbedded Visual Tools environment. For more information, see RDA Programmer's Reference for eMbedded Visual
Tools.

Guidelines for Developing RDA Applications

When designing Windows CE-based applications that use RDA to access SQL Server databases, use the following guidelines:

The application always initiates and controls RDA. The application is responsible for pulling a table from a SQL Server table:
If the table is tracked, the application is responsible for periodically pushing the changed data back to the SQL
Server table.
A table must be deleted and repulled to refresh the local table data with data from the SQL Server table.
The application also is responsible for deleting the table from the SQL Server CE database when it is no longer
needed.

Users should be shielded from the details of RDA.

If the table pulled from SQL Server was marked as tracked, the application should use the RDA object to initiate table-level
synchronization whenever synchronization is required. For example, the application might trigger synchronization when it
detects that the Windows CE-based device is reconnected to the network, when the application has updated critical table
information, when the user requests synchronization, or when a certain time period has elapsed.

SQL Server CE Books Online

Using the Pull Method
An application calls the Pull method to extract data from a Microsoft® SQL Server™ database and store the data in a table in a
Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) database. For more information, see Pull Method.

An application can track the changes made on a SQL Server CE table by setting the appropriate tracking options. SQL Server CE
tracks all inserts, updates, and deletes. Applications can then call the Push method to propagate the changes back to the original
SQL Server table.

Remote data access (RDA) tracked Pull and Push methods use optimistic concurrency control. SQL Server does not keep pulled
records locked. When the application calls Push, the changes made to the local SQL Server CE database are unconditionally
applied to the SQL Server database. This might cause changes made by other users of the SQL Server database to be lost.

You should use tracked Pull and Push methods when the records you are updating are logically partitioned and conflicts are
unlikely. For example, tracked Pull and Push methods might be used in a field service application which tracks each technician
who has a unique list of service calls.

The following examples show how an application calls the Pull method. These examples assume that the SQL Server CE Server
Agent is configured with the Microsoft Internet Information Services (IIS) virtual directory name sqlce, and that it is configured to
require HTTP Basic authentication. The examples also assume that the SQL Server database is located on the SampleServer
server. The LocalConnectionString property specifies the name of the SQL Server CE database that receives the pulled table. By
convention, SQL Server CE databases are assigned the file extension .sdf.

Examples

C#

 // Connection string to the instance of SQL Server
 string rdaOleDbConnectString = "Provider=sqloledb; Data
Source=MySqlServer;Initial Catalog=Northwind; " +
 "User Id=username;Password=<password>";

 // Initialize the RDA object.
 SqlCeRemoteDataAccess rda = null;

 try {
 //Try the Pull operation.
 rda = new SqlCeRemoteDataAccess();

 rda.InternetLogin = "MyLogin";
 rda.InternetPassword = "<password>";
 rda.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 rda.LocalConnectionString = @"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf";

 rda.Pull(
 "Employees",
 "Select * from Employees",
 rdaOleDbConnectString,
 RdaTrackOption.TrackingOnWithIndexes,
 "ErrorTable");
 }
 catch(SqlCeException e) {
 //Use your own error handling routine.
 //ShowErrors(e)
 }
 finally {
 //Dispose of the RDA object.
 rda.Dispose();
 }

Visual Basic .NET

 ' Connection string to the instance of SQL Server
 Dim rdaOleDbConnectString As String = _
 "Provider=sqloledb; Data Source=MySqlServer;Initial Catalog=Northwind; " + _

 "User Id=username;Password=<password>"

 ' Initialize the RDA object.
 Dim rda As SqlCeRemoteDataAccess = Nothing

 Try
 'Try the Pull operation.
 rda = New SqlCeRemoteDataAccess()

 rda.InternetLogin = "MyLogin"
 rda.InternetPassword = "<password>"
 rda.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll"
 rda.LocalConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf"

 rda.Pull("Employees", "Select * from Employees", _
 rdaOleDbConnectString, _
 RdaTrackOption.TrackingOnWithIndexes, _
 "ErrorTable")

 Catch e As SqlCeException
 'Use your own error handling routine.
 'ShowErrors(e)
 Finally
 'Dispose of the RDA object.
 rda.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the SQL Server CE ActiveX control RDA object control.
 Dim ceRDA As SSCE.RemoteDataAccess

 ' Create the RDA object.
 Set ceRDA = CreateObject("SSCE.RemoteDataAccess.2.0")

 ' Set RDA properties.
 ceRDA .InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ceRDA .InternetLogin = "MyInternetLogin"
 ceRDA .InternetPassword = "<password>"
 ceRDA .LocalConnectionString = "Data Source=\NorthwindRDA.sdf"

 ' Pull the database.
 ceRDA .Pull "Customers", "SELECT * FROM Customers", "Provider=sqloledb;Data
Source=SampleServer;Initial Catalog=Northwind;user id=SampleUser;password=<password>",
TRACKINGON_INDEXES, "tblErrCustomers"

 Set ceRDA = Nothing

See Also

Using the Push Method

Using the SubmitSQL Method

SQL Server CE Books Online

Using the Push Method
An application calls the Push method to transmit changes from a pulled tracked table in Microsoft® SQL Server™ 2000 Window
CE Edition (SQL Server CE) back to a SQL Server table. For more information, see Push Method.

The application must have created the local SQL Server CE table by calling the Pull method with the tracking option set on.

Remote data access (RDA) tracked Pull and Push methods use optimistic concurrency control. SQL Server does not keep pulled
records locked. When the application calls Push, the changes made to the local SQL Server CE database are unconditionally
applied to the SQL Server database. This might cause changes made by other users of the SQL Server database to be lost.

The following examples show how an application calls the Push method. These examples assume that the SQL Server CE Server
Agent is configured with the Microsoft Internet Information Services (IIS) virtual directory name sqlce, and that it is configured to
require HTTP Basic authentication.

Examples

C#

 // Connection string to the instance of SQL Server
 string rdaOleDbConnectString = "Provider=sqloledb; Data
Source=MySqlServer;Initial Catalog=Northwind; " +
 "User Id=username;Password=<password>";

 // Initialize the RDA object.
 SqlCeRemoteDataAccess rda = null;

 try {
 //Try the Pull operation.
 rda = new SqlCeRemoteDataAccess();

 rda.InternetLogin = "MyLogin";
 rda.InternetPassword = "<password>";
 rda.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 rda.LocalConnectionString = @"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf";

 rda.Push("MyLocalTable",
 rdaOleDbConnectString,
 RdaBatchOption.BatchingOn);
 }
 catch(SqlCeException e) {
 //Use you own Error Handling Routine.
 //ShowErrors(e)
 }
 finally {
 //Dispose of the RDA object.
 rda.Dispose();
 }

Visual Basic .NET

 ' Connection string to the instance of SQL Server
 Dim rdaOleDbConnectString As String = _
 "Provider=sqloledb; Data Source=MySqlServer;Initial Catalog=Northwind; " +
"User Id=username;Password=<password>"

 ' Initialize the RDA object.
 Dim rda As SqlCeRemoteDataAccess = Nothing

 Try
 'Try the Pull operation.
 rda = New SqlCeRemoteDataAccess()

 rda.InternetLogin = "MyLogin"
 rda.InternetPassword = "<password>"
 rda.InternetUrl = "http://www.northwindtraders.com/sqlce/sscesa20.dll"

 rda.LocalConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf"

 rda.Push("MyLocalTable", rdaOleDbConnectString, RdaBatchOption.BatchingOn)

 Catch e As SqlCeException
 'Use you own Error Handling Routine.
 'ShowErrors(e)
 Finally
 'Dispose of the RDA object.
 rda.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the SQL Server CE ActiveX control RDA object control.
 Dim ceRDA As SSCE.RemoteDataAccess

 ' Create the RDA object.
 Set ceRDA = CreateObject("SSCE.RemoteDataAccess.2.0")

 ' Set the RDA properties.
 ceRDA .InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ceRDA .InternetLogin = "MyInternetLogin"
 ceRDA .InternetPassword = "<password>"
 ceRDA .LocalConnectionString = "Data Source=\NorthwindRDA.sdf"

 ' Push the tracked SQL Server CE table changes back to the SQL Server table.
 ceRDA .Push "Customers", "Provider=sqloledb;Data Source=SampleServer;Initial
Catalog=Northwind;user id=SampleUser;password=<password>; BATCHINGON"

 Set ceRDA = Nothing

See Also

RDA Conflict Detection and Resolution

Using the Pull Method

Using the SubmitSQL Method

SQL Server CE Books Online

Using the SubmitSQL Method
An application calls the SubmitSQL method to submit SQL statements for execution on a database on a remote instance of
Microsoft® SQL Server™. For more information, see SubmitSQL Method.

The following examples show how an application calls the SubmitSQL. These examples assume that the SQL Server CE Server
Agent is configured with the Microsoft Internet Information Services (IIS) virtual directory name sqlce, and that it is configured to
require HTTP Basic authentication.

Examples

C#

 // Connection string to the instance of SQL Server
 string rdaOleDbConnectString = "Provider=sqloledb; Data
Source=MySqlServer;Initial Catalog=Northwind; " +
 "User Id=username;Password=<password>";

 // Initialize the RDA object.
 SqlCeRemoteDataAccess rda = null;

 try {
 //Try the Pull operation.
 rda = new SqlCeRemoteDataAccess();

 rda.InternetLogin = "MyLogin";
 rda.InternetPassword = "<password>";
 rda.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 rda.LocalConnectionString = @"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf";

 rda.SubmitSql("MyLocalTable", rdaOleDbConnectString);
 }
 catch(SqlCeException e) {
 //Use your own error handling routine.
 //ShowErrors(e)
 }
 finally {
 //Dispose of the RDA object.
 rda.Dispose();
 }

Visual Basic .NET

 ' Connection string to the instance of SQL Server
 Dim rdaOleDbConnectString As String = _
 "Provider=sqloledb; Data Source=MySqlServer;Initial Catalog=Northwind; " +
"User Id=username;Password=<password>"

 ' Initialize the RDA object.
 Dim rda As SqlCeRemoteDataAccess = Nothing

 Try
 'Try the Pull operation.
 rda = New SqlCeRemoteDataAccess()

 rda.InternetLogin = "MyLogin"
 rda.InternetPassword = "<password>"
 rda.InternetUrl = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 rda.LocalConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data
Source=\ssce.sdf"

 rda.SubmitSql("MyLocalTable", rdaOleDbConnectString)

 Catch e As SqlCeException
 'Use you own Error Handling Routine.
 'ShowErrors(e)

 Finally
 'Dispose of the RDA object.
 rda.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the SQL Server CE ActiveX control RDA object control.
 Dim ceRDA As SSCE.RemoteDataAccess

 ' Create the RDA object.
 Set ceRDA = CreateObject("SSCE.RemoteDataAccess.2.0")

 ' Set the RDA properties.
 ceRDA .InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ceRDA .InternetLogin = "MyInternetLogin"
 ceRDA .InternetPassword = "<password>"

 ' Update the Employees table in the Northwind database on the instance of SQL Server.
 ceRDA .SubmitSQL "UPDATE Employees SET City='Redmond' WHERE LastName='Davolio'",
"Provider=sqloledb;Data Source=SampleServer;Initial Catalog=Northwind;user
id=SampleUser;password=<password>"

 Set ceRDA = Nothing

See Also

Using the Pull Method

Using the Push Method

SQL Server CE Books Online

Handling RDA Errors
The type of Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) application that you develop determines the
way in which remote data access (RDA) errors are handled:

Handling Errors in eMbedded Visual Tools Applications

In Microsoft eMbedded Visual Basic® and eMbedded Visual C++® applications, RDA errors are handled by using the SQL
Server CE error control objects and collections.

Handling Errors in Smart Device Applications

In C# and Visual Basic .NET, RDA errors are handled by using the Microsoft .NET Framework data providers error control
objects and collections.

See Also

SQL Server CE Error Control Objects and Collections

Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections

SQL Server CE Books Online

RDA Programmer's Reference for eMbedded Visual Tools
The topics in this section describe the methods and properties of the Remote Data Access (RDA) object for the Microsoft®
eMbedded Visual Tools environment. Applications use the RDA object to access a database on a remote instance of Microsoft SQL
Server™. For more information about eMbedded Visual Tools, see Development Tools.

RDA Object Methods
RDA Object Properties

SQL Server CE Books Online

RDA Object Methods
RDA Object Methods

The following table lists and describes the methods that the RDA object supports for the Microsoft® eMbedded Visual Tools
environment. For more information about eMbedded Visual Tools, see Development Tools.

Method Description
Pull Method Extracts data from a Microsoft SQL Server™ database

and stores that data in a table in a Microsoft SQL Server
2000 Windows CE Edition (SQL Server CE) database.

Push Method Sends changes from a locally tracked SQL Server CE
table back to an existing SQL Server table.

SubmitSQL Method Submits SQL statements for execution on a remote SQL
Server database.

SQL Server CE Books Online

Pull Method
Pull Method

Applications call the Pull method to extract data from a Microsoft® SQL Server™ database and stores that data in a table in a
Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) database.

Applies To

SQL Server CE RDA object

Syntax

object.Pull (LocalTableName, SQLSelectString, OLEDBConnectionString, RDA_TRACKOPTION,
ErrorTableName)

Part Description
object SQL Server CE RDA object
LocalTableName Name of the SQL Server CE table that receives the extracted

SQL Server records. An error occurs if the table already
exists.

SQLSelectString Specifies which table, columns, and records to extract from
the SQL Server database and store in the SQL Server CE
database. This string can be any valid SQL statement that
returns rows, including SELECT statements or stored
procedures.

OLEDBConnectionString OLE DB connection string used when connecting to the SQL
Server database.

RDA_TRACKOPTION Indicates whether SQL Server CE should track changes
made to the pulled table. When indexes are requested,
indexes that exist on the table being pulled are brought
down to the device with the PRIMARY KEY constraints.

ErrorTableName Name of the local error table that is created if an error
occurs when the Push method is later called to send
changes back to SQL Server. This option can be specified
only when RDA_TRACKOPTION is TRACKINGON.

The RDA_TRACKOPTION enum specifies whether the table being pulled to the device is tracked or not tracked.

Constant Value Description
TRACKINGON 1 SQL Server CE tracks all changes to the pulled

table. PRIMARY KEY constraints related to the
specified SQLSelectString are created on the local
table. (Default)

TRACKINGOFF 0 SQL Server CE does not track changes to the pulled
table. No PPRIMARY KEY constraints are created
locally.

TRACKINGON_INDEXES 2 SQL Server CE tracks all changes to the pulled
table. Indexes and PRIMARY KEY constraints that
existed on the SQL Server table specified in
SQLSelectString are created on the local table.

TRACKINGOFF_INDEXES 3 SQL Server does not track changes to the pulled
table. Indexes and PRIMARY KEY constraints that
existed on the SQL Server table specified in
SQLSelectString are created on the local table.

Remarks

The InternetURL property must contain the URL of the SQL Server CE Server Agent.

The LocalConnectionString property must contain the OLE DB connection string for the SQL Server CE database on the

Windows CE-based device.

The InternetLogin and InternetPassword properties must be specified if the SQL Server CE Server Agent is configured to use
Basic authentication.

SQLSelectString controls which data is pulled from the SQL Server table. An error occurs if the resulting recordset contains an
unsupported data type, such as timestamp. The SQLSelectString can specify a WHERE clause to control which records are
returned. For example, SELECT * FROM Customers WHERE State='CA' retrieves customers who live in California only.
SQLSelectString also supports stored procedures and views that return rows. SQLSelectString can also pull selected columns from
multiple tables into a single table using TRACKINGOFF. For more information about data access and limitation, see Supported
Data Types and Data Type Mappings and RDA Limitations.

RDA_TRACKOPTION specifies whether SQL Server CE should track changes to the pulled table. Specify TRACKINGON or
TRACKINGON_INDEXES if you want to update the pulled table on the Windows CE-based device and then push changed records
back to the original SQL Server table. When TRACKINGON is specified, PRIMARY KEY constraints are created on the pulled table.
When TRACKINGON_INDEXES is specified, PRIMARY KEY constraints and related indexes are created on the pulled table. In both
cases, SQL Server CE keeps track of every record that is inserted, updated, or deleted in the local table.

Note An index is created only if the column(s) that makes up the index is pulled.

When the application calls the Push method, SQL Server CE uses the change tracking information to locate the inserted, updated,
and deleted records in the local SQL Server CE table and propagate these changes back to SQL Server.

The following restrictions apply when RDA_TRACKOPTION is set to TRACKINGON or TRACKINGON_INDEXES:

An error occurs if the SELECT statement returns a nonupdatable recordset.
A primary key must be defined on the updatable recordset returned by the SELECT statement.
The SELECT statement can reference a view or stored procedure, but the view or stored procedure must reference only one
table and must be updatable.
When TRACKINGON_INDEXES is specified, indexes that exist on the SQL Server table and are relevant to the columns
specified in SQLSelectString are created against the SQL Server CE local table specified in LocalTableName.

ErrorTableName specifies the name of the table in which Push errors should be stored. If an error arises when the application
calls the Push method, SQL Server CE creates the error table and inserts a record in the table for each error that occurs. When the
Push method completes, the application can examine the error table to determine whether errors have occurred.
ErrorTableName can be specified only when TRACKINGON or TRACKINGON_INDEXES is specified. For more information about
how the error table works, see RDA Conflict Detection and Resolution.

The client must have the appropriate security privileges to read the SQL Server table.

If SQL Server authentication is used, the user ID specified in OLEDBConnectionString must have the authority to read the SQL
Server table.

If Windows authentication is used by setting INTEGRATED SECURITY="SSPI" in OLEDBConnectionString, the Internet user must
have the authority to read the SQL Server table.

When Microsoft Internet Information Services (IIS) is configured to use Anonymous access, the Internet user runs under the
identity of the Internet Guest Account (IUSR_computername). If you configure another Windows user account as the IIS
anonymous user account, the Internet user runs under the identity of that account.
When IIS is configured to use Basic authentication, the Internet user runs under the identity of the Windows user account for
which the client supplied the Internet user name and password.
When IIS is configured to use Integrated Windows authentication, the Internet user runs under the client's identity.

See Also

Configuring Security for Connectivity

OLE DB and SQL Server CE

RDA Object Methods

SQL Server CE Books Online

Push Method
Push Method

Applications call the Push method to transmit changes from a pulled tracked table in Microsoft® SQL Server™ 2000 Windows®
CE Edition (SQL Server CE) back to the originating table in Microsoft SQL Server. These changes can either be individually applied
to the server or batched together in a single transaction.

Applies To

SQL Server CE RDA object

Syntax

object.Push (LocalTableName, OLEDBConnectionString, RDA_BATCHOPTION)

Part Description
object SQL Server CE RDA object
LocalTableName Name of the pulled tracked SQL Server CE table containing

updated records to be sent back to the SQL Server table.
OLEDBConnectionString OLE DB connection string for the SQL Server database.
RDA_BATCHOPTION Specifies whether the rows being sent back to the SQL

Server table should be batched together in a single
transaction or individually applied.

The RDA_BATCHOPTION enum specifies whether the rows associated with the Push should be batched together in a single
transaction.

Constant Value Description
BATCHINGOFF 0 SQL Server CE does not batch rows pushed to SQL

Server. The server processes each row. (Default)
BATCHINGON 1 SQL Server CE batches the rows pushed to SQL

Server into a single transaction.

Remarks

The InternetURL property must contain the URL of the SQL Server CE Server Agent.

The LocalConnectionString property must contain the OLE DB connection string for the SQL Server CE database on the
Windows CE-based device.

The InternetLogin and InternetPassword properties must be specified if the SQL Server CE Server Agent is configured to use
Basic authentication.

Applications call the Push method to transmit changes from a pulled tracked SQL Server CE table back to a SQL Server table. The
application must have created the local SQL Server CE table by calling the Pull method with RDA_TRACKOPTION set to
TRACKINGON.

OLEDBConnectionString specifies all the connect information used while connecting to SQL Server. The connection string passed
must allow for appropriate security privileges on the table referenced in the SQL statement.

If ErrorTableName was specified when the Pull method was called, any errors that are detected during the Push are logged in the
error table. For more information about how the error table works, see RDA Conflict Detection and Resolution.

RDA_BATCHOPTION specifies whether SQL Server CE should batch the changes being sent to the SQL Server table. The default
setting is BATCHINGOFF, where changes (insert, update, and delete) are applied to the SQL Server table as individual
transactions. Each transaction is not dependent on the other to succeed. BATCHINGON specifies that all changes be sent as a
single transaction. In this case, all changes must succeed ifor the transaction to be successful. If one change fails, the entire
transaction fails, and no changes are applied to the SQL Server table.

Both BATCHINGON and BATCHINGOFF return all errors to the error table, not just the first error that occurs. For example, if
BATCHINGON is specified and three out of five changes fail, no changes are applied and all three failures are stored in the error
table. If BATCHINGOFF is specified, the same three failures are stored in the error table and the other two changes are applied to
the SQL Server table. For more information about handling batch errors, see RDA Conflict Detection and Resolution.

The client must have the appropriate security privileges to read and update the SQL Server table.

If SQL Server authentication is used, the user ID specified in OLEDBConnectionString must have the authority to read and update
the SQL Server table.

If Windows authentication is used by setting INTEGRATED SECURITY="SSPI" in OLEDBConnectionString, the Internet user must
have the authority to read and update the SQL Server table.

When Microsoft Internet Information Services (IIS) is configured to use Anonymous access, the Internet user runs under the
identity of the Internet Guest Account (IUSR_computername). If you configure another Windows user account as the IIS
anonymous user account, the Internet user runs under the identity of that account.
When IIS is configured to use Basic authentication, the Internet user runs under the identity of the Windows user account for
which the client supplied the Internet user name and password.
When IIS is configured to use Integrated Windows authentication, the Internet user runs under the client's identity.

See Also

Configuring Security for Connectivity

OLE DB and SQL Server CE

RDA Object Methods

SQL Server CE Books Online

SubmitSQL Method
SubmitSQL Method

Applications call the SubmitSQL method to submit SQL statements for execution on a database on a remote instance of
Microsoft® SQL Server™.

Applies To

SQL Server CE RDA object

Syntax

object.SubmitSQL (SQLString, OLEDBConnectionString)

Part Description
object SQL Server CE RDA object
SQLString Any SQL statement that does not return rows
OLEDBConnectionString OLE DB connection string for the remote SQL Server

database

Remarks

The InternetURL property must contain the URL of the SQL Server CE Server Agent.

The LocalConnectionString property must contain the OLE DB connection string for the SQL Server CE database on the
Windows CE-based device.

The InternetLogin and InternetPassword properties must be specified if the SQL Server CE Server Agent is configured to use
HTTP Basic authentication.

The client must have the appropriate security privileges to execute the statement specified in the SubmitSQL method.

If SQL Server authentication is used, the user ID specified in OLEDBConnectionString must have the authority to execute the SQL
statement.

If Windows authentication is used by setting INTEGRATED SECURITY="SSPI" in OLEDBConnectionString, the Internet user must
have the authority to execute the SQL statement.

When Microsoft Internet Information Services (IIS) is configured to use Anonymous access, the Internet user runs under the
identity of the Internet Guest Account (IUSR_computername). If you configure another Windows user account as the IIS
anonymous user account, the Internet user runs under the identity of that account.
When IIS is configured to use Basic authentication, the Internet user runs under the identity of the Windows user account for
which the client supplied the Internet user name and password.
When IIS is configured to use Integrated Windows authentication, the Internet user runs under the client's identity.

See Also

Configuring Security for Connectivity

OLE DB and SQL Server CE

RDA Object Methods

SQL Server CE Books Online

RDA Object Properties
RDA Object Properties

The following table lists the properties that the Remote Data Access (RDA) object supports, and the methods to which they apply,
for the Microsoft® eMbedded Visual Tools development environment.

Property Pull Push SubmitSQL
ErrorRecords Property Read-only Read-only Read-only
InternetURL Property Required Required Required
InternetLogin Property Optional Optional Optional
InternetPassword Property Optional Optional Optional
InternetProxyServer Property Optional Optional Optional
InternetProxyLogin Property Optional Optional Optional
InternetProxyPassword Property Optional Optional Optional
LocalConnectionString Property Required Required N/A

SQL Server CE Books Online

ErrorRecords Property (RDA)
ErrorRecords Property (RDA)

The ErrorRecords property contains the SSCEErrors collection for the Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL
Server CE) RDA object.

Applies To

SQL Server CE RDA object

Syntax

object.ErrorRecords [= value]

Part Description
object SQL Server CE RDA object
value Error records string

Remarks

The SSCEErrors collection is loaded when a SQL Server CE RDA object method call fails. The error records in the collection remain
available until the next SQL Server CE RDA object method is called.

Data Type

SSCEErrors

Modifiable

Read-only

Prototype eVC++

HRESULT get_ErrorRecords(SSCEErrors *pVal);

See Also

RDA Object Properties

SSCEError Object

SQL Server CE Books Online

InternetURL Property (RDA)
InternetURL Property (RDA)

The InternetURL property specifies the URL used to connect to the SQL Server CE Server Agent. The SQL Server CE Server Agent
connects the Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) client to the Microsoft SQL Server database.
This property must be specified.

Applies To

SQL Server CE RDA object

Syntax

object.InternetURL [= value]

Part Description
object SQL Server CE RDA object
value URL string, including the location of the SQL Server CE

Server Agent (Sscesa20.dll), for example:
http://www.northwindtraders.com/sqlce/sscesa20.dll.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetURL(BSTR *pVal);
HRESULT put_ InternetURL (BSTR newVal);

See Also

Configuring Security for Connectivity

RDA Object Properties

SQL Server CE Books Online

InternetLogin Property (RDA)
InternetLogin Property (RDA)

The InternetLogin property specifies the Microsoft® Internet Information Services (IIS) login name that is used when connecting
to the SQL Server CE Server Agent.

Applies To

SQL Server CE RDA object

Syntax

object.InternetLogin [= value]

Part Description
object SQL Server CE RDA object
value IIS login name. The default is no login.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetLogin(BSTR *pVal);
HRESULT put_ InternetLogin (BSTR newVal);

Remarks

InternetLogin is required if the SQL Server CE Server Agent is configured to use Basic authentication or Integrated Windows
authentication. When Integrated Windows authentication is used, InternetLogin is not passed across the network.

See Also

Configuring Security for Connectivity

RDA Object Properties

SQL Server CE Books Online

InternetPassword Property (RDA)
InternetPassword Property (RDA)

The InternetPassword property specifies the Microsoft® Internet Information Services (IIS) password that is used when
connecting to the SQL Server CE Server Agent.

Applies To

SQL Server CE RDA object

Syntax

object.InternetPassword [= value]

Part Description
object SQL Server CE RDA object
value IIS password string. The default is no password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetPassword(BSTR *pVal);
HRESULT put_InternetPassword(BSTR newVal);

Remarks

InternetPassword is required if the SQL Server CE Server Agent is configured to use Basic authentication or Integrated Windows
authentication. When Integrated Windows authentication is used, InternetPassword is not passed across the network.

When using Basic authentication, you should configure IIS to use Secure Sockets Layer (SSL) or Private Communication
Technology (PCT) encryption to safeguard user passwords. In the absence of SSL or PCT encryption, Basic authentication
transmits passwords across the network in clear text form. This is unsafe; therefore, it is strongly recommend that you always use
SSL or PCT encryption to safeguard passwords when you use Basic authentication.

See Also

Configuring Security for Connectivity

RDA Object Properties

SQL Server CE Books Online

InternetProxyServer Property (RDA)
InternetProxyServer Property (RDA)

The InternetProxyServer property specifies the proxy server to use when you access the HTTP resource specified in the
InternetURL property.

Applies To

SQL Server CE RDA object

Syntax

object.InternetProxyServer [= value]

Part Description
object SQL Server CE RDA object
value Proxy name (or IP address) and port number

(ProxyServerName:Port)

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyServer(BSTR *pVal);
HRESULT put_ InternetProxyServer (BSTR newVal);

Remarks

If SQL Server CE Relay is properly configured on a desktop computer for serial, USB, or IR synchronization, InternetProxyServer
must be set to ppp_peer:nn where nn is a specified client port number, for example: exampleproxy:80.

If InternetProxyServer is not set or is empty, no proxy server is used.

See Also

Using SQL Server CE Relay

RDA Object Properties

SQL Server CE Books Online

InternetProxyLogin Property (RDA)
InternetProxyLogin Property (RDA)

The InternetProxyLogin property specifies the login name used when you connect to a proxy server (defined in the
InternetProxyServer property) that requires authentication.

Applies To

SQL Server CE RDA object

Syntax

object.InternetProxyLogin [= value]

Part Description
object SQL Server CE RDA object
value Proxy server login name. The default is no login.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyLogin(BSTR *pVal);
HRESULT put_ InternetProxyLogin (BSTR newVal);

Remarks

InternetProxyLogin is required if the proxy server is configured to use Basic authentication or Integrated Windows
authentication, even if SQL Server CE Relay has been configured.

See Also

InternetProxyServer Property (RDA)

Configuring Security for Connectivity

RDA Object Properties

SQL Server CE Books Online

InternetProxyPassword Property (RDA)
InternetProxyPassword Property (RDA)

The InternetProxyPassword property specifies the password used when you connect to a proxy server (defined in the
InternetProxyServer property) that requires authentication.

Applies To

SQL Server CE RDA object

Syntax

object.InternetProxyPassword [= value]

Part Description
object SQL Server CE RDA object
value Proxy server password string. The default is no password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyPassword(BSTR *pVal);
HRESULT put_InternetProxyPassword(BSTR newVal);

Remarks

This property is required if the proxy server is configured to use Basic authentication or Integrated Windows authentication, even
if SQL Server CE Relay has been configured.

See Also

InternetProxyServer Property (RDA)

Configuring Security for Connectivity

Using SQL Server CE Relay

RDA Object Properties

SQL Server CE Books Online

LocalConnectionString Property (RDA)
LocalConnectionString Property (RDA)

The LocalConnectionString property specifies the OLE DB connection string for the Microsoft® SQL Server™ 2000 Windows®
CE Edition (SQL Server CE) database on the Microsoft Windows CE-based device.

Applies To

SQL Server CE RDA object

Syntax

object.LocalConnectionString [= value]

Part Description
object SQL Server CE RDA object
value OLE DB connection string for the SQL Server CE database

The following connection properties are supported. All other connection properties are ignored.

Property Required/
optional

Description

Provider Optional Indicates the name of the data source provider. If the
provider is not specified,
Microsoft.sqlserver.oledb.ce.2.0 is assumed.

Data source Required Indicates the name of the database. By convention,
specify the .sdf file extension for the SQL Server CE
databases.

SSCE:Database
Password

Optional Indicates the database password.
This property must be specified if the database was
created with a password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_LocalConnectionString(BSTR *pVal);
HRESULT put_LocalConnectionString(BSTR newVal);

Examples

object.LocalConnectionString = "Data Source=\NorthwindRDA.sdf; SSCE:Database Password=mypassword"

See Also

OLE DB and SQL Server CE

RDA Object Properties

SQL Server CE Books Online

Replication
You can programmatically access the replication features of Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server
CE) through a Microsoft Visual Studio® .NET or Microsoft eMbedded Visual Tools application running on a Microsoft Windows
CE-based device. Replication features that allow you to create, synchronize and manage replicated SQL Server data are supported
between SQL Server CE and SQL Server 2000 Service Pack 1 or higher.

To program SQL Server CE replication functionality in a Visual Studio .NET development environment, use the .NET Compact
Framework Data Provider for SQL Server CE, which provides the System.Data.SqlServerCe.SqlCeReplication class. For
information about the methods and properties of the SqlCeReplication class and other classes in the
System.Data.SqlServerCe namespace, see .NET Compact Framework Data Providers.

To program replication in the eMbedded Visual Tools development environment, use the SQL Server CE ActiveX® Control
Replication object. The following topics in this section describe the concepts for building Windows CE-based applications by using
the SQL Server CE Replication object with eMbedded Visual Tools and the SqlCeReplication class with the .NET Compact
Framework Data Provider for SQL Server CE:

Creating a Subscription.
Synchronizing a Subscription
Reinitializing a Subscription
Dropping a Subscription

This section also contains a programmer's reference that describes the methods and properties of the Replication object for the
Microsoft eMbedded Visual Tools environment. For more information, see Replication Programmer's Reference for eMbedded
Visual Tools.

Automating Management of Replication Processes

Users should be shielded from the details of replication by automatically subscribing to and downloading any publications the
application needs. An application should use the Replication object to initiate database synchronization whenever synchronization
is required. For example, an application might trigger synchronization when it detects that the Windows CE-based device is
reconnected to the network, when the application has updated critical database information, when the user requests
synchronization, or when a certain time period has elapsed. If an application is deleted from the Windows CE-based device, it
should delete any Subscriber databases that it no longer needs from the device.

For more information, see "Programming the SQL Merge ActiveX Control" and "Replication ActiveX Control Interface Reference"
in SQL Server Books Online.

SQL Server CE Books Online

Creating a Subscription
Before you can create a subscription, you must configure Microsoft® SQL Server™ replication, create the SQL Server publication,
and enable the publication for anonymous subscriptions. For information about this process, see Implementing Replication.

After the publication is enabled for anonymous subscriptions and Microsoft Internet Information Services (IIS) is properly
configured, you can create a Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) subscription by using either of
these ways:

Calling the AddSubscription method
Copying an existing subscription

Calling the AddSubscription Method

SQL Server CE applications use the Replication object to programmatically create an anonymous subscription and download that
subscription to a SQL Server CE database on a Microsoft Windows CE-based device. The application does this by creating the
Replication object, setting the appropriate Replication object properties, and calling the appropriate methods. The following
examples show how this is done.

Copying an Existing Subscription

You can create a new subscription by copying an existing subscription from one Windows CE-based device to another. This makes
it easy to deploy a Windows CE-based application on many devices when all of the Subscribers are using the same publication.
You can create the initial subscription on one Windows CE-based device and then deploy the application by copying the
application and the initial subscription to as many devices as you want. When the application first synchronizes, SQL Server CE
automatically recognizes it as a new Subscriber and creates a new subscription. By copying the initial subscription to a device, you
avoid downloading the initial subscription to the device over the network.

SQL Server CE supports both CompactFlash memory and CompactFlash disk drives. An efficient way to deploy large SQL Server
CE databases is to distribute them on these storage devices.

Note These storage devices have relatively long access times when compared to RAM. Using these devices may
affect the performance of your application.

The following examples show how an application subscribes to an existing SQL Server publication that has been enabled for
anonymous subscriptions. The examples assume that the SQL Server CE Server Agent is configured with the IIS Web virtual
directory name of sqlce and that it is configured to require HTTP Basic authentication. The examples also assume that the SQL
Server Publisher uses SQL Server authentication and the SQL Server Distributor is located on the same server as the Publisher.
The SubscriberConnectionString property specifies the name of the new SQL Server CE database. By convention, SQL Server
CE databases are assigned the file extension .sdf.

Examples

C#

 SqlCeReplication repl = null;

 try {
 // Set the Replication object.
 repl = new SqlCeReplication();
 repl.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 repl.InternetLogin = "MyLogin";
 repl.InternetPassword = "<MyPassword>";
 repl.Publisher = "MyPublisher";
 repl.PublisherDatabase = "MyPublisher Database";
 repl.PublisherLogin = "MyPublisher Login";
 repl.PublisherPassword = "<MyPublisher Password>";
 repl.Publication = "MyPublication";
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\\ssce.sdf";
 repl.Subscriber = "MySubscriber";

 // Create the Local SSCE Database subscription.
 repl.AddSubscription(AddOption.CreateDatabase);

 // Synchronize to the instance of SQL Server 2000 to populate the
Subscription.
 repl.Synchronize();
 }

 catch(SqlCeException e) {
 // Use your own error handling routine to show error information.
 // ShowError.ShowErrors(e);
 }

 finally {
 // Dispose of the Replication object.
 repl.Dispose();
 }

Visual Basic .NET

 Dim repl As SqlCeReplication = Nothing

 Try
 ' Set the Replication object.
 repl = New SqlCeReplication()
 repl.InternetUrl = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 repl.InternetLogin = "MyLogin"
 repl.InternetPassword = "<MyPassword>"
 repl.Publisher = "MyPublisher"
 repl.PublisherDatabase = "MyPublisher Database"
 repl.PublisherLogin = "MyPublisher Login"
 repl.PublisherPassword = "<MyPublisher Password>"
 repl.Publication = "MyPublication"
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\ssce.sdf"
 repl.Subscriber = "MySubscriber"

 ' Create the Local SSCE Database subscription.
 repl.AddSubscription(AddOption.CreateDatabase)

 ' Synchronize to the instance of SQL Server 2000 to populate the Subscription.
 repl.Synchronize()

 Catch e As SqlCeException
 ' Use your own error handling routine to show error information.
 ' ShowErrors(e)

 Finally
 ' Dispose of the Replication object.
 repl.Dispose()
 End Try

eMbedded Visual Basic

' Declare the Replication object.
 Dim ce As SSCE.Replication

' Create the Replication object.
 Set ce = CreateObject("SSCE.Replication.2.0")

' Set Internet properties.
 ce.InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ce.InternetLogin = "MyInternetLogin"
 ce.InternetPassword = "<MyInternetPassword>"

 ' Set Publisher properties.
 ce.Publisher = "SamplePublisher"
 ce.PublisherDatabase = "Nwind_SQLCEReplDemo"
 ce.Publication = "SQLCEReplDemo"
 ce.PublisherSecurityMode = DB_AUTHENTICATION
 ce.PublisherLogin = "MySqlPublisherLogin"

 ce.PublisherPassword = "<MySqlPublisherPassword>"

 ' Set Subscriber properties.
 ce.SubscriberConnectionString = "data source=\ssce.sdf"
 ce.Subscriber = "SQLCE Sub #1"

 ' Create the new anonymous subscription.
 ce.AddSubscription CREATE_DATABASE

 ' Perform the first synchronization to download the initial snapshot by
 ' calling the Initialize, Run, and Terminate methods.
 On Error Resume Next
 ce.Initialize
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 Else
 On Error Resume Next
 ce.Run
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 End If
 ce.Terminate

 End If

 Set ce = Nothing

eMbedded Visual C++

 ISSCEMerge *pISSCEMerge = NULL;
 ISSCEErrors *pISSCEErrors = NULL;
 HRESULT hr;
 BSTR bstr = NULL;
 BOOL fInitialized = FALSE;
 LONG lPubChanges;
 LONG lPubConflicts;
 LONG lSubChanges;

 /* Create the Replication object. */
 CoCreateInstance(CLSID_Replication, NULL, CLSCTX_INPROC_SERVER,
 IID_ISSCEMerge, (LPVOID *) &pISSCEMerge);

 /* Set Internet properties. */
 bstr = SysAllocString
 (L"http://www.northwindtraders.com/sqlce/sscesa20.dll");
 pISSCEMerge->put_InternetURL(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"MyInternetLogin");
 pISSCEMerge->put_InternetLogin(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"<MyInternetPassword>");
 pISSCEMerge->put_InternetPassword(bstr);
 SysFreeString(bstr);

 /* Set Publisher properties */
 bstr = SysAllocString(L"SamplePublisher");
 pISSCEMerge->put_Publisher(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"Nwind_SQLCEReplDemo");
 pISSCEMerge->put_PublisherDatabase(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"SQLCEReplDemo");
 pISSCEMerge->put_Publication(bstr);
 SysFreeString(bstr);

 pISSCEMerge->put_PublisherSecurityMode(NT_AUTHENTICATION);

 /* Set Subscriber properties. */
 bstr = SysAllocString(L"Data Source=\\ssce.sdf");
 pISSCEMerge->put_SubscriberConnectionString(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"SQLCE Sub #1");
 pISSCEMerge->put_Subscriber(bstr);
 SysFreeString(bstr);

 /* Create the new anonymous subscription. */
 pISSCEMerge->AddSubscription(CREATE_DATABASE);

 /* Perform the first synchronization to download the initial replica. */
 hr = pISSCEMerge->Initialize();
 if (SUCCEEDED(hr))
 {
 fInitialized = TRUE;
 hr = pISSCEMerge->Run();
 }

 if (SUCCEEDED(hr))
 {
 pISSCEMerge->get_PublisherChanges(&lPubChanges);
 pISSCEMerge->get_PublisherConflicts(&lPubConflicts);
 pISSCEMerge->get_SubscriberChanges(&lSubChanges);
 }
 else
 {
 if(SUCCEEDED(hr = pISSCEMerge->get_ErrorRecords(&pISSCEErrors)))
 {
 ShowErrors(pISSCEErrors);
 pISSCEErrors->Release();
 };
 }

 if (fInitialized)
 {
 (void)pISSCEMerge->Terminate();
 }

See Also

Replication Object Methods

SubscriberConnectionString Property

SQL Server CE Books Online

Synchronizing a Subscription
An application uses the Replication object to synchronize an existing Microsoft® SQL Server™ subscription. In Microsoft Visual
Studio® .NET, the application must call the Synchronize and Dispose methods on a single instance of the Replication object. In
Microsoft eMbedded Visual Tools, the application must call the Initialize, Run, and Terminate methods in succession on a single
instance of the Replication object.

Note SQL Server CE subscriptions must always be synchronized with the original Publisher; two SQL Server CE
subscriptions cannot be directly synchronized with one another.

The following examples show how an application initiates synchronization. The examples assume that the SQL Server CE Server
Agent is configured with the Microsoft Internet Information Services (IIS) Web virtual directory name of sqlce and that it is
configured to require HTTP Basic authentication. The examples also assume that the SQL Server Publisher uses SQL Server
authentication and the SQL Server Distributor is located on the same server as the Publisher.

Examples

C#

 SqlCeReplication repl = null;

 try {
 // Set the Replication object.
 repl = new SqlCeReplication();
 repl.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 repl.InternetLogin = "MyLogin";
 repl.InternetPassword = "<MyPassword>";
 repl.Publisher = "MyPublisher";
 repl.PublisherDatabase = "MyPublisher Database";
 repl.PublisherLogin = "MyPublisher Login";
 repl.PublisherPassword = "<MyPublisher Pwd>";
 repl.Publication = "MyPublication";
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\\ssce.sdf";
 repl.Subscriber = "MySubscriber";

 // Synchronize to the instance of SQL Server 2000 to populate the
Subscription.
 repl.Synchronize();
 }
 catch(SqlCeException e) {
 // Use your own error handling routine to show error information.
 // ShowError.ShowErrors(e);
 }

 finally {
 // Dispose of the Replication object.
 repl.Dispose();
 }

Visual Basic .NET

 Dim repl As SqlCeReplication = Nothing

 Try
 ' Set the Replication object.
 repl = New SqlCeReplication()
 repl.InternetUrl = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 repl.InternetLogin = "MyLogin"
 repl.InternetPassword = "<MyPassword>"
 repl.Publisher = "MyPublisher"
 repl.PublisherDatabase = "MyPublisher Database"
 repl.PublisherLogin = "MyPublisher Login"
 repl.PublisherPassword = "<MyPublisher Pwd>"
 repl.Publication = "MyPublication"
 repl.SubscriberConnectionString =

"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\ssce.sdf"
 repl.Subscriber = "MySubscriber"

 ' Synchronize to the instance of SQL Server 2000 to populate the Subscription.
 repl.Synchronize()

 Catch e As SqlCeException
 ' Use your own error handling routine to show error information.
 ' ShowErrors(e)

 Finally
 ' Dispose of the Replication object.
 repl.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the Replication object.
 Dim ce As SSCE.Replication

 ' Create the Replication object.
 Set ce = CreateObject("SSCE.Replication.2.0")

 ' Set Internet properties.
 ce.InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ce.InternetLogin = "MyInternetLogin"
 ce.InternetPassword = "<MyInternetPassword>"

 ' Set Publisher properties.
 ce.Publisher = "SamplePublisher"
 ce.PublisherDatabase = "Nwind_SQLCEReplDemo"
 ce.Publication = "SQLCEReplDemo"
 ce.PublisherSecurityMode = DB_AUTHENTICATION
 ce.PublisherLogin = "MySqlPublisherLogin"
 ce.PublisherPassword = "<MySqlPublisherPassword>"

 ' Set Subscriber properties.
 ce.SubscriberConnectionString = "data source=\Ssce.sdf"
 ce.Subscriber = "SQLCE Sub #1"

 ' Call the Initialize, Run, and Terminate methods to synchronize the subscription.
 On Error Resume Next
 ce.Initialize
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 Else
 On Error Resume Next
 ce.Run
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 End If
 ce.Terminate

 End If

 Set ce = Nothing

eMbedded Visual C++

 ISSCEMerge *pISSCEMerge = NULL;
 ISSCEErrors *pISSCEErrors = NULL;
 HRESULT hr;
 BSTR bstr = NULL;
 BOOL fInitialized = FALSE;
 LONG lPubChanges;
 LONG lPubConflicts;
 LONG lSubChanges;

 /* Create the Replication object. */
 CoCreateInstance(CLSID_Replication, NULL, CLSCTX_INPROC_SERVER,
 IID_ISSCEMerge, (LPVOID *) &pISSCEMerge);

 /* Set Internet properties */
 bstr = SysAllocString
 (L"http://www.northwindtraders.com/sqlce/sscesa20.dll");
 pISSCEMerge->put_InternetURL(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"MyInternetLogin");
 pISSCEMerge->put_InternetLogin(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"<MyInternetPassword>");
 pISSCEMerge->put_InternetPassword(bstr);
 SysFreeString(bstr);

 /* Set Publisher properties. */
 bstr = SysAllocString(L"SamplePublisher");
 pISSCEMerge->put_Publisher(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"Nwind_SQLCEReplDemo");
 pISSCEMerge->put_PublisherDatabase(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"SQLCEReplDemo");
 pISSCEMerge->put_Publication(bstr);
 SysFreeString(bstr);

 pISSCEMerge->put_PublisherSecurityMode(NT_AUTHENTICATION);

 /* Set Subscriber properties. */
 bstr = SysAllocString(L"Data Source=\\Ssce.sdf");
 pISSCEMerge->put_SubscriberConnectionString(bstr);
 SysFreeString(bstr);

 bstr = SysAllocString(L"SQLCE Sub #1");
 pISSCEMerge->put_Subscriber(bstr);
 SysFreeString(bstr);

 /* Perform the synchronization. */
 hr = pISSCEMerge->Initialize();
 if (SUCCEEDED(hr))
 {
 fInitialized = TRUE;
 hr = pISSCEMerge->Run();
 }

 if (SUCCEEDED(hr))
 {
 pISSCEMerge->get_PublisherChanges(&lPubChanges);
 pISSCEMerge->get_PublisherConflicts(&lPubConflicts);
 pISSCEMerge->get_SubscriberChanges(&lSubChanges);
 }
 else
 {
 if(SUCCEEDED(hr = pISSCEMerge->get_ErrorRecords(&pISSCEErrors)))
 {
 ShowErrors(pISSCEErrors);
 pISSCEErrors->Release();
 };
 }

 if (fInitialized)
 {
 (void)pISSCEMerge->Terminate();
 }

See Also

Initialize Method

Run Method

Terminate Method

SQL Server CE Books Online

Reinitializing a Subscription
An application uses the Replication object to reinitialize an existing Microsoft® SQL Server™ subscription so that a new snapshot
is downloaded from the Publisher. This is especially useful when the SQL Server CE subscription contains read-only data that is
periodically updated at the Publisher.

In Microsoft eMbedded Visual Tools, the application must call the ReinitializeSubscription, Initialize, Run, and Terminate
methods in succession on a single instance of the Replication object. This is essential because when the application calls
ReinitializeSubscription, the existing replica is simply marked for reinitialization. Only after the application calls Initialize, Run,
and Terminate is the existing replica deleted and a new replica of the publication downloaded from the Publisher to the
Microsoft Windows® CE-based device. In Microsoft Visual Studio® .NET the process is the same, except the Synchronize and
Dispose methods are used in place of Initialize, Run and Terminate.

The following examples show how an application reinitializes a subscription. The examples assume that the SQL Server CE Server
Agent is configured with the IIS Web virtual directory name of sqlce and that it was configured to require HTTP Basic
authentication. The example also assumes that the SQL Server Publisher uses SQL Server authentication and the SQL Server
Distributor is located on the same server as the Publisher.

Examples

C#

 SqlCeReplication repl = null;

 try {
 // Set the Replication object.
 repl = new SqlCeReplication();
 repl.InternetUrl =
"http://www.northwindtraders.com/sqlce/sscesa20.dll";
 repl.InternetLogin = "MyLogin";
 repl.InternetPassword = "<MyPassword>";
 repl.Publisher = "MyPublisher";
 repl.PublisherDatabase = "MyPublisher Database";
 repl.PublisherLogin = "MyPublisher Login";
 repl.PublisherPassword = "<MyPublisher Password>";
 repl.Publication = "MyPublication";
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\\ssce.sdf";
 repl.Subscriber = "MySubscriber";

 // Mark the subscription for reinitialization with Upload first.
 repl.ReinitializeSubscription(true);

 // Synchronize to the instance of SQL Server 2000 to populate the
Subscription.
 repl.Synchronize();
 }

 catch(SqlCeException e) {
 // Use your own error handling routine to show error information.
 // ShowError.ShowErrors(e);
 }

 finally {
 // Dispose of the Replication object.
 repl.Dispose();
 }

Visual Basic .NET

 Dim repl As SqlCeReplication = Nothing

 Try
 ' Set the Replication object.
 repl = New SqlCeReplication()
 repl.InternetUrl = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 repl.InternetLogin = "MyLogin"

 repl.InternetPassword = "<MyPassword>"
 repl.Publisher = "MyPublisher"
 repl.PublisherDatabase = "MyPublisher Database"
 repl.PublisherLogin = "MyPublisher Login"
 repl.PublisherPassword = "<MyPublisher Password>"
 repl.Publication = "MyPublication"
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\ssce.sdf"
 repl.Subscriber = "MySubscriber"

 ' Mark the subscription for reinitialization with Upload first.
 repl.ReinitializeSubscription(true)

 ' Synchronize to the instance of SQL Server 2000 to populate the Subscription.
 repl.Synchronize()

 Catch e As SqlCeException
 ' Use your own error handling routine to show error information.
 ' ShowErrors(e)

 Finally
 ' Dispose of the Replication object.
 repl.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the Replication object.
 Dim ce As SSCE.Replication

 ' Create the Replication object.
 Set ce = CreateObject("SSCE.Replication.2.0")

 ' Set Internet properties.
 ce.InternetURL = "http://www.northwindtraders.com/sqlce/sscesa20.dll"
 ce.InternetLogin = "sample_internetlogin"
 ce.InternetPassword = "<sample_internetpassword>"

 ' Set Publisher properties.
 ce.Publisher = "SamplePublisher"
 ce.PublisherDatabase = "Nwind_SQLCEReplDemo"
 ce.Publication = "SQLCEReplDemo"
 ce.PublisherSecurityMode = DB_AUTHENTICATION
 ce.PublisherLogin = "MySqlPublisherLogin"
 ce.PublisherPassword = "<MySqlPublisherPassword>"

 ' Set Subscriber properties.
 ce.SubscriberConnectionString = "data source=\Ssce.sdf"
 ce.Subscriber = "SQLCE Sub #1"

 ' Mark the anonymous subscription for reinitialization.
 ' The bUploadBeforeReinit parameter is TRUE; therefore the changed data is uploaded.
 ce.ReinitializeSubscription TRUE

 ' Download the most current snapshot for the subscription.
 ' Call the Initialize, Run, and Terminate methods to synchronize the subscription.
 On Error Resume Next
 ce.Initialize
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 Else
 On Error Resume Next
 ce.Run
 If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
 End If
 ce.Terminate

 End If

 Set ce = Nothing

See Also

ReinitializeSubscription Method

Initialize Method

Run Method

Terminate Method

SQL Server CE Books Online

Dropping a Subscription
A Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) application can use the Replication object to drop an
anonymous subscription and optionally delete the SQL Server CE database from the Microsoft Windows CE-based device.

In the following examples, an application drops an existing subscription and deletes the SQL Server CE database from the
Windows CE-based device.

Examples

C#
SqlCeReplication repl = null;
try {
// Set the Replication object.
repl = new SqlCeReplication();
repl.SubscriberConnectionString = "Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\\ssce.sdf";
// Drop the subscription and delete the database.
repl.DropSubscription(DropOption.DropDatabase);
}
catch(SqlCeException e) {
// Use your own error handling routine to show error information.
// ShowError.ShowErrors(e);
}
finally {
// Dispose of the Replication object.
repl.Dispose();
}

Visual Basic .NET

 Dim repl As SqlCeReplication = Nothing

 Try
 ' Set the Replication object.
 repl = New SqlCeReplication()
 repl.SubscriberConnectionString =
"Provider=Microsoft.SQLSERVER.OLEDB.CE.2.0;Data Source=\ssce.sdf"

 ' Drop the subscription and delete the database.
 repl.DropSubscription(DropOption.DropDatabase)

 Catch e As SqlCeException
 ' Use your own error handling routine to show error information.
 ' ShowErrors(e)

 Finally
 ' Dispose of the Replication object.
 repl.Dispose()
 End Try

eMbedded Visual Basic

 ' Declare the Replication object.
 Dim ce As SSCE.Replication

 ' Create the Replication object.
 Set ce = CreateObject("SSCE.Replication.2.0")

 ' Set Subscriber properties.

 ce.SubscriberConnectionString = "data source=\Ssce.sdf"

 ' Drop the anonymous subscription and delete the SQL Server CE database.
 ce.DropSubscription DROP_DATABASE

 Set ce = Nothing

eMbedded C++

 ISSCEMerge *pISSCEMerge = NULL;
 BSTR bstr = NULL;

 /* Create the Replication object. */
 CoCreateInstance(CLSID_Replication, NULL, CLSCTX_INPROC_SERVER,
 IID_ISSCEMerge, (LPVOID *) &pISSCEMerge);

 /* Set Subscriber properties. */
 bstr = SysAllocString(L"data source=\\Ssce.sdf");
 pISSCEMerge->put_SubscriberConnectionString(bstr);
 SysFreeString(bstr);

 /* Drop the subscription and delete the database. */
 pISSCEMerge->DropSubscription(DROP_DATABASE));

SQL Server CE Books Online

Handling Replication Errors
The type of Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) application that you develop determines the
way in which replication errors are handled:

Handling Errors in eMbedded Visual Tools Applications

In the Microsoft® eMbedded Visual Basic® and Microsoft eMbedded Visual C++®, replication errors are handled by using
SQL Server CE error control objects and collections.

Handling Errors in Smart Device Applications

In C# and Visual Basic .NET, replication errors are handled by using the Microsoft .NET Framework data providers error
control objects and collections.

See Also

SQL Server CE Error Control Objects and Collections

Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections

SQL Server CE Books Online

Replication Programmer's Reference for eMbedded Visual
Tools
The topics in this section describe the methods and properties of the Replication object used in the Microsoft® eMbedded Visual
Tools development environment. For more information about eMbedded Visual Tools, see Development Tools.

Replication Object Methods
Replication Object Properties

SQL Server CE Books Online

Replication Object Methods
Replication Object Methods

The following table lists and describes the methods that the Replication object supports for the Microsoft® eMbedded Visual
Tools development environment. For more information about eMbedded Visual Tools, see Development Tools.

Method Description
AddSubscription Method Creates a new anonymous subscription to an existing

Microsoft SQL Server™ publication.
DropSubscription Method Drops the subscription to a SQL Server publication and

optionally deletes the Microsoft SQL Server 2000
Windows CE Edition (SQL Server CE) database from the
Microsoft Windows CE-based device.

ReinitializeSubscription
Method

Marks a subscription for reinitialization.

Initialize Method Initializes merge replication.
Run Method Invokes merge replication.
Terminate Method Completes merge replication.

SQL Server CE Books Online

AddSubscription Method
AddSubscription Method

Applications call the AddSubscription method to create a new anonymous subscription to an existing Microsoft® SQL Server™
publication. After calling the AddSubscription method, the application must call the Initialize, Run, and Terminate methods to
synchronize the new subscription to the publication based on the latest snapshot.

Applies To

SQL Server CE Replication object

Syntax

object.AddSubscription(DBADDOPTION)

Part Description
object SQL Server CE Replication object
DBADDOPTION Add subscription option.

The DBADDOPTION specifies the source of the newly created database in Microsoft SQL Server 2000 Windows® CE Edition
(SQL Server CE).

Constant Value Description
EXISTING_DATABASE 0 Assumes the SQL Server CE database is already

created.
CREATE_DATABASE 1 Causes the SQL Server CE database to be created

on the Microsoft Windows CE-based device
(Default).

Prototype eVC++

HRESULT AddSubscription(DBADDOPTION DBAddOption);

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Remarks

SQL Server CE replication only supports anonymous subscriptions.

The database administrator must configure SQL Server to support replication, create the SQL Server publication, and enable the
publication for anonymous subscriptions before any SQL Server CE application can subscribe to the publication. The
administrator does this on the SQL Server system using either the administrative or programmatic interfaces of SQL Server
replication

The DBADDOPTION value EXISTING_DATABASE specifies that the database already exists, but contents are obtained from the
Publisher over the network. In this case, the AddSubscription, Initialize, Run, and Terminate method calls create the SQL
Server CE subscription and download the database contents from the SQL Server Publisher.

The DBADDOPTION value CREATE_DATABASE specifies that the SQL Server CE database must first be created then the
subscription contents are obtained from the Publisher over the network. In this case, the AddSubscription, Initialize, Run, and
Terminate method calls create the SQL Server CE database and download the database contents from the SQL Server Publisher.

The DBADDOPTION parameter only affects how the SQL Server CE database is initially created and treated by the SQL Server CE
Client Agent; therefore, determining what data is downloaded to the Windows CE-based device from the server.

See Also

Replication Object Methods

SQL Server CE Books Online

DropSubscription Method
DropSubscription Method

Applications call the DropSubscription method to drop the subscription to a Microsoft® SQL Server™ publication and optionally
delete the Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) database from the Microsoft Windows CE-based
device.

Applies To

SQL Server CE Replication object

Syntax

object.DropSubscription(DBDROPOPTION)

Part Description
object SQL Server CE Replication object.
DBDROPOPTION Indicates whether the SQL Server CE database should be

deleted. (Optional)

DBDROPOPTION specifies whether to delete or leave the SQL Server CE database.

Constant Value Description
DROP_DATABASE 1 Deletes the SQL Server CE database (Default).
LEAVE_DATABASE 0 Deletes the replication system tables and three

replication system columns in the user tables but
does not delete the database.

Prototype eVC++

HRESULT DropSubscription(DBDROPOPTION DBDropOption);

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Replication Object Methods

SSCEErrors Collection

SQL Server CE Books Online

ReinitializeSubscription Method
ReinitializeSubscription Method

Applications call the ReinitializeSubscription method to mark a subscription for reinitialization. After calling the
ReinitializeSubscription method, the application must call the Initialize, Run, and Terminate methods to download the latest
snapshot of the publication to the Microsoft® Windows® CE-based device.

Applies To

SQL Server CE Replication object

Syntax

object.ReinitializeSubscription(bUploadBeforeReInit)

Part Description
object SQL Server CE Replication object
bUploadBeforeReInit If True, the changes in the subscription database are

uploaded to the Publisher before the snapshot is applied at
the Subscriber. The default is False.

Prototype eVC++

HRESULT ReinitializeSubscription(VARIANT_BOOL bUploadBeforeReInit);

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Remarks

A flag is marked in the subscription system table in Microsoft SQL Server™ 2000 Windows CE Edition (SQL Server CE) to signify
that during the next synchronization, the subscription should be reinitialized. After calling the ReinitializeSubscription method,
the application must call the Initialize, Run, and Terminate methods to delete the existing replica and download a new replica of
the publication to the Windows CE-based device.

See Also

Replication Object Methods

SQL Server CE Books Online

Initialize Method
Initialize Method

Applications call the Initialize method to prepare for synchronization.

Applies To

SQL Server CE Replication object

Syntax

object.Initialize()

Part Description
object SQL Server CE Replication object

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Prototype eVC++

HRESULT Initialize();

Remarks

The application must call the Initialize method before calling the Run method. Specifically, the application must call the
Initialize, Run, and Terminate methods in succession.

See Also

Replication Object Methods

SQL Server CE Books Online

Run Method
Run Method

Applications call the Run method to invoke merge replication.

Applies To

SQL Server CE Replication object

Syntax

object.Run()

Part Description
object SQL Server CE Replication object

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Prototype eVC++

HRESULT Run();

Remarks

The application must call the Initialize method before calling the Run method and the Terminate method after calling the Run
method. Specifically, the application must call the Initialize, Run, and Terminate methods in succession.

See Also

Replication Object Methods

SQL Server CE Books Online

Terminate Method
Terminate Method

Applications call the Terminate method to complete the merge replication process.

Applies To

SQL Server CE Replication object

Syntax

object.Terminate()

Part Description
object SQL Server CE Replication object

Returns

Return code Description
S_OK Method succeeded.
Any FAILED(HRESULT) Check the SSCEErrors collection for detailed error

information.

Prototype eVC++

HRESULT Terminate();

Remarks

The application must call the Terminate method after calling the Run method. Specifically, the application must call the
Initialize, Run, and Terminate methods in succession.

See Also

Replication Object Methods

SQL Server CE Books Online

Replication Object Properties
Replication Object Properties

The following table lists the properties that the Replication object supports, and the methods to which they apply, for the
Microsoft® eMbedded Visual Tools development environment.

Property Add
Subscription

Initialize,
Run,

Terminate

Reinitialize
Subscription

Drop
Subscription

Distributor Property N/A Optional N/A N/A
DistributorNetwork
Property

N/A Optional N/A N/A

DistributorAddress Property N/A Optional N/A N/A
DistributorSecurityMode
Property

N/A Optional N/A N/A

DistributorLogin Property N/A Optional N/A N/A
DistributorPassword
Property

N/A Optional N/A N/A

ErrorRecords Property Read-only Read-only Read-only Read-only
ExchangeType Property N/A Optional N/A N/A
HostName Property N/A Optional N/A N/A
InternetURL Property N/A Required N/A N/A
InternetLogin Property N/A Optional N/A N/A
InternetPassword Property N/A Optional N/A N/A
InternetProxyServer
Property

N/A Optional N/A N/A

InternetProxyLogin
Property

N/A Optional N/A N/A

InternetProxyPassword
Property

N/A Optional N/A N/A

LoginTimeout Property N/A Optional N/A N/A
ProfileName Property N/A Optional N/A N/A
Publisher Property N/A Required N/A N/A
PublisherNetwork Property N/A Optional N/A N/A
PublisherAddress Property N/A Optional N/A N/A
PublisherSecurityMode
Property

N/A Optional N/A N/A

PublisherLogin Property N/A Optional N/A N/A
PublisherPassword
Property

N/A Optional N/A N/A

PublisherDatabase Property N/A Required N/A N/A
Publication Property N/A Required N/A N/A
PublisherChanges Property N/A Read-only N/A N/A
PublisherConflicts Property N/A Read-only N/A N/A
QueryTimeout Property N/A Optional N/A N/A
Subscriber Property N/A Required N/A N/A
SubscriberConnectionString
Property

Required Required Required Required

SubscriberChanges
Property

N/A Read-only N/A N/A

SubscriberConflicts
Property

N/A Read-only N/A N/A

Validate Property N/A Optional N/A N/A

SQL Server CE Books Online

Distributor Property (Replication)
Distributor Property (Replication)

The Distributor property specifies the Microsoft® SQL Server™ replication Distributor.

Applies To

SQL Server CE Replication object

Syntax

object.Distributor [= value]

Part Description
object SQL Server CE Replication object
value Name of the Distributor used by the Publisher

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_Distributor(BSTR *pVal);
HRESULT put_Distributor(BSTR newVal);

Remarks

The Distributor is the computer running the instance of SQL Server on which the snapshots are stored and on which replication
history and statistics are logged.

If the DistributorNetwork and DistributorAddress properties are specified, they are used instead of Distributor when
connecting to the Distributor.

Distributor is optional. If none of the Distributor connection properties are specified, it is assumed the Publisher and Distributor
are on the same instance of SQL Server, and Publisher connection properties are used when connecting to the Distributor.
However, if you set any of the Distributor properties, you must set all of the required Distributor properties.

See Also

DistributorNetwork Property (Replication)

DistributorAddress Property (Replication)

Replication Object Properties

SQL Server CE Books Online

DistributorNetwork Property (Replication)
DistributorNetwork Property (Replication)

The DistributorNetwork property specifies the network protocol used when the SQL Server Reconciler communicates with the
Distributor.

Applies To

SQL Server CE Replication object

Syntax

object.DistributorNetwork [= value]

Part Description
object SQL Server CE Replication object
value NETWORK_TYPE specifies the network protocol used

when the SQL Server Reconciler communicates with the
Distributor

Data Type

NETWORK_TYPE

Constant Value Description
DEFAULT_NETWORK 0 Use the current configured client Net-Library

(default).
MULTI_PROTOCOL 2 Multiprotocol Net-Library.
TCPIP_SOCKETS 1 TCP/IP Sockets Net-Library.

Modifiable

Read/write

Prototype eVC++

HRESULT get_DistributorNetwork(NETWORK_TYPE *pVal);
HRESULT put_DistributorNetwork(NETWORK_TYPE newVal);

Remarks

DistributorNetwork must be specified when the SQL Server Reconciler connects to the Distributor using a network protocol
other than the default protocol specified in Client Network Utility.

DistributorNetwork is optional. If none of the Distributor connection properties are specified, it is assumed the Publisher and
Distributor are on the same instance of Microsoft® SQL Server™, and the Publisher connection properties are used when
connecting to the Distributor. However, if you set any of the Distributor connection properties, you must set all of the required
properties.

The DistributorAddress property must be specified if the value of DistributorNetwork is not DEFAULT_NETWORK (default).

See Also

DistributorAddress Property (Replication)

Distributor Property (Replication)

Replication Object Properties

SQL Server CE Books Online

DistributorAddress Property (Replication)
DistributorAddress Property (Replication)

The DistributorAddress property specifies the network address used when connecting to the Distributor. DistributorAddress is
specified when the DistributorNetwork property is specified.

Applies To

SQL Server CE Replication object

Syntax

object.DistributorAddress [= value]

Part Description
object SQL Server CE Replication object
value Network address used when connecting to the Distributor

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_DistributorAddress(BSTR *pVal);
HRESULT put_DistributorAddress(BSTR newVal);

Remarks

This is a required property only when DistributorNetwork is set to a value other than DEFAULT_NETWORK.

Specify this property to indicate how the SQL Server Reconciler communicates with the Distributor. For example, if the SQL
Server CE Server Agent and the Distributor are located on two different systems and these systems communicate over the
Internet, DistributorNetwork could be set to TCP/IP_SOCKETS, and DistributorAddress could be set to a specific IP address. If
the DistributorNetwork is TCP/IP_SOCKETS or MULTI_PROTOCOL using TCP/IP, the DistributorNetwork value is in the form:
'IP address,socket' (for example, '111.11.11.11,1433')

If none of the Distributor connection properties are specified, it is assumed the Publisher and Distributor are on the same instance
of SQL Server, and the Publisher connection properties are used when connecting to the Distributor. However, if you set any of
the Distributor connection properties, you must set all of the required Distributor properties.

See Also

DistributorNetwork Property (Replication)

Distributor Property (Replication)

Replication Object Properties

SQL Server CE Books Online

DistributorSecurityMode Property (Replication)
DistributorSecurityMode Property (Replication)

The DistributorSecurityMode property specifies the security mode used when connecting to the Distributor.

Applies To

SQL Server CE Replication object

Syntax

object.DistributorSecurityMode [= value]

Part Description
object SQL Server CE Replication object
value SECURITY_TYPE constant that specifies the mode of

security enforced at the Distributor

Data Type

SECURITY_TYPE

Constant Value Description
DB_AUTHENTICATION 0 Standard security (Default)
NT_AUTHENTICATION 1 Integrated security

Modifiable

Read/write

Prototype eVC++

HRESULT get_DistributorSecurityMode(SECURITY_TYPE *pVal);
HRESULT put_DistributorSecurityMode(SECURITY_TYPE newVal);

Remarks

If the value is DB_AUTHENTICATION (default), DistributorLogin and DistributorPassword are used when connecting to the
Distributor. If the value is NT_AUTHENTICATION, the Microsoft Internet Information Services (IIS) Windows user account is used
when connecting to the Distributor.

If none of the Distributor connection properties are not specified, it is assumed the Publisher and Distributor are on the same
instance of Microsoft SQL Server™, and the Publisher connection properties are used when connecting to the Distributor.
However, if you set any of the Distributor connection properties, you must set all of the required Distributor properties.

See Also

DistributorLogin Property (Replication)

DistributorPassword Property (Replication)

Replication Object Properties

SQL Server CE Books Online

DistributorLogin Property (Replication)
DistributorLogin Property (Replication)

The DistributorLogin property specifies the login name used when connecting to the Distributor.

Applies To

SQL Server CE Replication object

Syntax

object.DistributorLogin [= value]

Part Description
object SQL Server CE Replication object
value Distributor login name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_DistributorLogin(BSTR *pVal);
HRESULT put_DistributorLogin(BSTR newVal);

Remarks

DistributorLogin is required if DistributorSecurityMode is set to DB_AUTHENTICATION.

If none of the Distributor connection properties are specified, it is assumed that the Publisher and Distributor are the same
instance of Microsoft® SQL Server™ and that the Publisher connection properties are used when connecting to the Distributor.
However, if you set any of the Distributor connection properties, you must set all of the required Distributor properties.

See Also

DistributorSecurityMode Property (Replication)

Replication Object Properties

SQL Server CE Books Online

DistributorPassword Property (Replication)
DistributorPassword Property (Replication)

The DistributorPassword property specifies the login password used when connecting to the Distributor.

Applies To

SQL Server CE Replication object

Syntax

object.DistributorPassword [= value]

Part Description
object SQL Server CE Replication object
value Distributor password string. The default is no password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_DistributorPassword(BSTR *pVal);
HRESULT put_DistributorPassword(BSTR newVal);

Remarks

DistributorPassword is used only when DistributorSecurityMode is set to DB_AUTHENTICATION.

If none of the Distributor connection properties are specified, it is assumed that the Publisher and Distributor are the same
instance of Microsoft® SQL Server™ and that Publisher connection properties are used when connecting to the Distributor.
However, if you set any of the Distributor connection properties, you must set all of the required Distributor properties.

See Also

DistributorSecurityMode Property (Replication)

Replication Object Properties

SQL Server CE Books Online

ErrorRecords Property (Replication)
ErrorRecords Property (Replication)

The ErrorRecords property contains the SSCEErrors collection for the Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL
Server CE) Replication object.

Applies To

SQL Server CE Replication object

Syntax

object.ErrorRecords [= value]

Part Description
object SQL Server CE Replication object
value SSCEErrors collection containing the SSCEError objects

Data Type

SSCEErrors

Modifiable

Read-only

Prototype eVC++

HRESULT get_ErrorRecords(SSCEErrors *pVal);

Remarks

The SSCEErrors collection is loaded when a SQL Server CE Replication object method call fails. The error records in the collection
remain available until the next SQL Server CE Replication object method is called.

See Also

Replication Object Properties

SSCEError Object

SQL Server CE Books Online

ExchangeType Property (Replication)
ExchangeType Property (Replication)

The ExchangeType property specifies whether the synchronization between the Publisher and the Subscriber is bidirectional or
upload-only.

Applies To

SQL Server CE Replication object

Syntax

object.ExchangeType [= value]

Part Description
object SQL Server CE Replication object
value EXCHANGE_TYPE constant that specifies the direction in

which data can be merged

Data Type

EXCHANGE_TYPE

Constant Value Description
BIDIRECTIONAL 3 Merge all changes between the Publisher and

Subscriber (Default).
UPLOAD 1 Only merge Subscriber changes with the Publisher.

Modifiable

Read/write

Prototype eVC++

HRESULT get_ExchangeType(EXCHANGE_TYPE *pVal);
HRESULT put_ExchangeType(EXCHANGE_TYPE newVal);

Remarks

BIDIRECTIONAL is used to first upload data to the Publisher. After the upload is complete, data is then downloaded to the
Subscriber. Exchange_Type is forced to BIDIRECTIONAL during initial synchronization or when a ReinitializeSubscription is
requested. Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) does not support the Exchange_Type value
DOWNLOAD.

See Also

ReinitializeSubscription Method

Replication Object Properties

SQL Server CE Books Online

HostName Property (Replication)
HostName Property (Replication)

The HostName property sets the host name used for the device when connecting to the Publisher. HostName is used when the
publication is dynamically filtered based on the Microsoft® SQL Server™ HOST_NAME() function. HostName is optional.

Applies To

SQL Server CE Replication object

Syntax

object.HostName [= value]

Part Description
object SQL Server CE Replication object
value Host name. The default is no host name.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_HostName(BSTR *pVal);
HRESULT put_ HostName (BSTR newVal);

Remarks

Use HostName to set a value for HOST_NAME() in a dynamic filter. For example, if the subset filter clause is specified for an
article as "LName = HOST_NAME()", and you set HostName to "Jones" before calling the Run method, only rows having "Jones"
in the LName column are present in the subscription. For more information, see "Dynamic Filters" in SQL Server Books Online.

An application must call the ReinitializeSubscription method if it changes the value of HostName after the subscription is
created.

See Also

ReinitializeSubscription Method

Replication Object Properties

SQL Server CE Books Online

InternetURL Property (Replication)
InternetURL Property (Replication)

The InternetURL property specifies the URL used to connect to the SQL Server CE Server Agent. SQL The SQL Server CE Server
Agent connects the Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) client to the Microsoft SQL Server
database. This property must be specified.

Applies To

SQL Server CE Replication object

Syntax

object.InternetURL [= value]

Part Description
object SQL Server CE Replication object
value URL string, including the location of the SQL Server CE

Server Agent (Sscesa20.dll)

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetURL(BSTR *pVal);
HRESULT put_ InternetURL (BSTR newVal);

Remarks

InternetURL can include a port number if you want to override the default port, for example:
http://yourserver:81/ssce/sscesa20.dll, where port 81 is used on the IIS server. The default port for HTTP is 80, and the default port
for HTTPS is 443.

See Also

Configuring Security for Connectivity

Replication Object Properties

SQL Server CE Books Online

InternetLogin Property (Replication)
InternetLogin Property (Replication)

The InternetLogin property specifies the Microsoft® Internet Information Services (IIS) login name used when connecting to the
SQL Server CE Server Agent.

Applies To

SQL Server CE Replication object

Syntax

object.InternetLogin [= value]

Part Description
object SQL Server CE Replication object
value IIS login name. The default is no login.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetLogin(BSTR *pVal);
HRESULT put_ InternetLogin (BSTR newVal);

Remarks

InternetLogin is required if the SQL Server CE Server Agent is configured to use Basic authentication or Integrated Windows
authentication. When Integrated Windows authentication is used, InternetLogin is not passed across the network.

See Also

Configuring Security for Connectivity

Replication Object Properties

SQL Server CE Books Online

InternetPassword Property (Replication)
InternetPassword Property (Replication)

The InternetPassword property specifies the Microsoft® Internet Information Services (IIS) password used when connecting to
the SQL Server CE Server Agent.

Applies To

SQL Server CE Replication object

Syntax

object.InternetPassword [= value]

Part Description
object SQL Server CE Replication object
value IIS password string. The default is no password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetPassword(BSTR *pVal);
HRESULT put_InternetPassword(BSTR newVal);

Remarks

InternetPassword is required if the SQL Server CE Server Agent is configured to use Basic authentication or Integrated Windows
authentication. When Integrated Windows authentication is used, InternetPassword is not passed across the network.

When using Basic authentication, you should configure IIS to use Secure Sockets Layer (SSL) or Private Communication
Technology (PCT) encryption to safeguard the user's password. In the absence of SSL or PCT encryption, Basic authentication
transmits passwords across the network in clear text form. This is unsafe; therefore, we strongly recommend that you always use
SSL or PCT encryption to safeguard passwords when using Basic authentication.

See Also

Configuring Security for Connectivity

Replication Object Properties

SQL Server CE Books Online

InternetProxyServer Property (Replication)
InternetProxyServer Property (Replication)

The InternetProxyServer property specifies the proxy server to use when you access the HTTP resource specified in the
InternetURL property.

Applies To

SQL Server CE Replication object

Syntax

object.InternetProxyServer [= value]

Part Description
object SQL Server CE Replication object
value Proxy name (or IP address) and port number

(ProxyServerName:Port)

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyServer(BSTR *pVal);
HRESULT put_ InternetProxyServer (BSTR newVal);

Remarks

If SQL Server CE Relay is properly configured on a desktop computer for serial, USB, or infrared (IR) synchronization,
InternetProxyServer must be set to ppp_peer:nn where nn is a specified client port number, for example: exampleproxy:80.

If InternetProxyServer is not set or is empty, no proxy server is used.

See Also

InternetURL Property (Replication)

Using SQL Server CE Relay

Replication Object Properties

SQL Server CE Books Online

InternetProxyLogin Property (Replication)
InternetProxyLogin Property (Replication)

The InternetProxyLogin property specifies the login name used when connecting to a proxy server (defined in the
InternetProxyServer property) that requires authentication.

Applies To

SQL Server CE Replication object

Syntax

object.InternetProxyLogin [= value]

Part Description
object SQL Server CE Replication object
value Proxy server login name. The default is no login.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyLogin(BSTR *pVal);
HRESULT put_ InternetProxyLogin (BSTR newVal);

Remarks

InternetProxyLogin is required if the proxy server is configured to use Basic authentication or Integrated Windows
authentication, even if SQL Server CE Relay has been configured.

See Also

InternetProxyServer Property (Replication)

Configuring Security for Connectivity

Using SQL Server CE Relay

Replication Object Properties

SQL Server CE Books Online

InternetProxyPassword Property (Replication)
InternetProxyPassword Property (Replication)

The InternetProxyPassword property specifies the password used when you connect to a proxy server (defined in the
InternetProxyServer property) that requires authentication.

Applies To

SQL Server CE Replication object

Syntax

object.InternetProxyPassword [= value]

Part Description
object SQL Server CE Replication object
value Proxy server password string. The default is no password.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_InternetProxyPassword(BSTR *pVal);
HRESULT put_InternetProxyPassword(BSTR newVal);

Remarks

InternetProxyPassword is required if the proxy server is configured to use Basic authentication or Integrated Windows
authentication, even if SQL Server CE Relay has been configured.

See Also

InternetProxyServer Property (Replication)

Configuring Security for Connectivity

Using SQL Server CE Relay

Replication Object Properties

SQL Server CE Books Online

LoginTimeout Property (Replication)
LoginTimeout Property (Replication)

The LoginTimeout property specifies the maximum number of seconds to wait for connections to be established.

Applies To

SQL Server CE Replication object

Syntax

object.LoginTimeout [= value]

Part Description
object SQL Server CE Replication object
value Number of seconds for connections to be established. The

default is 15 seconds.

Data Type

integer

Modifiable

Read/write

Prototype eVC++

HRESULT get_LoginTimeout(short *pVal);
HRESULT put_LoginTimeout(short newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

ProfileName Property (Replication)
ProfileName Property (Replication)

The ProfileName property specifies the name of the agent profile at the Distributor to be used by the Replication object. A profile
defines behavior such as time-out values. You can override the default values by creating a profile on the Distributor and
specifying its name through ProfileName.

Applies To

SQL Server CE Replication object

Syntax

object.ProfileName [= value]

Part Description
object SQL Server CE Replication object
value Agent profile name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_ProfileName(BSTR *pVal);
HRESULT put_ProfileName(BSTR newVal);

Remarks

A profile contains a set of parameters that control the behavior of the SQL Server Reconciler. For example, the profile specifies the
LoginTimeOut and QueryTimeOut values used by the SQL Server Reconciler. The profile is stored on the Distributor. The
profile is read each time a subscription is synchronized. For more information, see "Agent Profiles" in SQL Server Books Online.

The profile allows you to easily change key parameters for synchronization. For example, if you have five Microsoft® SQL
Server™ 2000 Windows® CE Edition (SQL Server CE) clients that share a profile and you want to change the query time-out
value, you simply change the QueryTimeOut value in the profile, and then all SQL Server CE clients will use the new
QueryTimeOut value.

You can also create different profiles for different SQL Server CE clients. For example, a SQL Server CE client that uses a dial-up
Internet connection might use one time-out value, and a client that uses a high-speed intranet connection might use a different
time-out value. ProfileName is used to specify the name of the profile.

If ProfileName is not specified, the default profile values are used.

If ProfileName is specified, the LoginTimeOut and QueryTimeOut parameters specified in the profile will override the
LoginTimeOut and QueryTimeOut property values specified through the Replication object.

See Also

LoginTimeout Property (Replication)

QueryTimeout Property (Replication)

Replication Object Properties

SQL Server CE Books Online

Publisher Property (Replication)
Publisher Property (Replication)

The Publisher property specifies the name of the Publisher. The Publisher is the computer that is running Microsoft® SQL
Server™ and contains the publication. The Publisher property is required.

Applies To

SQL Server CE Replication object

Syntax

object.Publisher [= value]

Part Description
object SQL Server CE Replication object
value Publisher name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_Publisher(BSTR *pVal);
HRESULT put_Publisher(BSTR newVal);

Remarks

If the PublisherNetwork and PublisherAddress properties are specified, they are used instead of Publisher when connecting
to the Publisher.

See Also

PublisherNetwork Property (Replication)

PublisherAddress Property (Replication)

Replication Object Properties

SQL Server CE Books Online

PublisherNetwork Property (Replication)
PublisherNetwork Property (Replication)

The PublisherNetwork property specifies the network protocol used when the SQL Server Replication Provider communicates
with the Publisher.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherNetwork [= value]

Part Description
object SQL Server CE Replication object
value NETWORK_TYPE constant specifies the network protocol

used when the SQL Server Replication Provider
communicates with the Publisher.

Data Type

NETWORK_TYPE

Constant Value Description
DEFAULT_NETWORK 0 Use the current configured client Net Library

(default).
MULTI_PROTOCOL 2 Multiprotocol Net Library.
TCPIP_SOCKETS 1 TCP/IP Sockets Net Library.

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherNetwork(NETWORK_TYPE *pVal);
HRESULT put_PublisherNetwork(NETWORK_TYPE newVal);

Remarks

PublisherNetwork must be specified when the SQL Server Replication Provider connects to the Publisher using a network
protocol other than the default protocol specified in Client Network Utility.

The PublisherAddress property must be specified if the value of PublisherNetwork is not DEFAULT_NETWORK (default).

See Also

PublisherAddress Property (Replication)

Replication Object Properties

SQL Server CE Books Online

PublisherAddress Property (Replication)
PublisherAddress Property (Replication)

The PublisherAddress property specifies the network address used when connecting to the Publisher. PublisherAddress is
specified when the PublisherNetwork property is specified.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherAddress [= value]

Part Description
object SQL Server CE Replication object
value Network connection string

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherAddress(BSTR *pVal);
HRESULT put_PublisherAddress(BSTR newVal);

Remarks

PublisherAddress is required when PublisherNetwork is set to a value other than DEFAULT_NETWORK.

Specify this property to indicate how the SQL Server Replication Provider communicates with the Publisher. For example, if the
SQL Server CE Replication Agent and the Publisher are located on two different systems and these two systems communicate
over the Internet, PublisherNetwork could be set to TCP/IP_SOCKETS, and PublisherAddress could be set to a specific IP
address.

If PublisherNetwork is TCP/IP_SOCKETS or MULTI_PROTOCOL using TCP/IP, the PublisherAddress value is in the form of 'IP
address,socket' (for example, '111.11.11.11,1433').

See Also

PublisherNetwork Property (Replication)

Replication Object Properties

SQL Server CE Books Online

PublisherSecurityMode Property (Replication)
PublisherSecurityMode Property (Replication)

The PublisherSecurityMode property specifies the security mode used when connecting to the Publisher.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherSecurityMode [= value]

Part Description
object SQL Server CE Replication object
value SECURITY_TYPE constant that specifies the security type.

Data Type

SECURITY_TYPE

Constant Value Description
DB_AUTHENTICATION 0 SQL Server authentication (Default)
NT_AUTHENTICATION 1 Windows authentication

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherSecurityMode(SECURITY_TYPE *pVal);
HRESULT put_PublisherSecurityMode(SECURITY_TYPE newVal);

Remarks

If PublisherSecurityMode is DB_AUTHENTICATION (default), PublisherLogin must be specified. The default for
PublisherPassword is an empty string.

See Also

PublisherLogin Property (Replication)

PublisherPassword Property (Replication)

Replication Object Properties

SQL Server CE Books Online

PublisherLogin Property (Replication)
PublisherLogin Property (Replication)

The PublisherLogin property specifies the login name used when connecting to the Publisher.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherLogin [= value]

Part Description
object SQL Server CE Replication object
value Publisher login name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherLogin(BSTR *pVal);
HRESULT put_PublisherLogin(BSTR newVal);

Remarks

PublisherLogin is a required property if PublisherSecurityMode is set to DB_AUTHENTICATION.

See Also

PublisherSecurityMode Property (Replication)

Replication Object Properties

SQL Server CE Books Online

PublisherPassword Property (Replication)
PublisherPassword Property (Replication)

The PublisherPassword property specifies the login password used when connecting to the Publisher.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherPassword [= value]

Part Description
object SQL Server CE Replication object
value Publisher login password. The default is no password

(empty string).

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherPassword(BSTR *pVal);
HRESULT put_PublisherPassword (BSTR newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

PublisherDatabase Property (Replication)
PublisherDatabase Property (Replication)

The PublisherDatabase property specifies the name of the publication database. PublisherDatabase is a required property.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherDatabase [= value]

Part Description
object SQL Server CE Replication object
value Publication database name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_PublisherDatabase(BSTR *pVal);
HRESULT put_PublisherDatabase(BSTR newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

Publication Property (Replication)
Publication Property (Replication)

The Publication property specifies the publication name that has been enabled for anonymous merge subscriptions.
Publication is a required property.

Applies To

SQL Server CE Replication object

Syntax

object.Publication [= value]

Part Description
object SQL Server CE Replication object
value Publication name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_Publication(BSTR *pVal);
HRESULT put_Publication(BSTR newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

PublisherChanges Property (Replication)
PublisherChanges Property (Replication)

The PublisherChanges property specifies the total number of Publisher changes applied at the Subscriber when the Run
method was last called.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherChanges [= value]

Part Description
object SQL Server CE Replication object
value Total number of Publisher rows inserted, deleted, and

updated

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_PublisherChanges(long *pVal);

See Also

Replication Object Properties

SQL Server CE Books Online

PublisherConflicts Property (Replication)
PublisherConflicts Property (Replication)

The PublisherConflicts property specifies the total number of conflicts that occurred at the Publisher when the Run method was
last called.

Applies To

SQL Server CE Replication object

Syntax

object.PublisherConflicts [= value]

Part Description
object SQL Server CE Replication object
value Number of conflicts that occurred

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_PublisherConflicts(long *pVal);

See Also

Replication Object Properties

SQL Server CE Books Online

QueryTimeout Property (Replication)
QueryTimeout Property (Replication)

The QueryTimeout property specifies the number of seconds allowed for internal queries to complete.

Applies To

SQL Server CE Replication object

Syntax

object.QueryTimeout [= value]

Part Description
object SQL Server CE Replication object
value Number of seconds allowed for internal queries to be

returned. The default is 300 seconds.

Data Type

integer

Modifiable

Read/write

Prototype eVC++

HRESULT get_QueryTimeout(short *pVal);
HRESULT put_QueryTimeout(short newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

Subscriber Property (Replication)
Subscriber Property (Replication)

The Subscriber property specifies the name of the Subscriber. This is a required property.

Applies To

SQL Server CE Replication object

Syntax

object.Subscriber [= value]

Part Description
object SQL Server CE Replication object
value Subscriber name

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_Subscriber(BSTR *pVal);
HRESULT put_Subscriber(BSTR newVal);

See Also

Replication Object Properties

SQL Server CE Books Online

SubscriberConnectionString Property (Replication)
SubscriberConnectionString Property (Replication)

The SubscriberConnectionString property specifies the OLE DB connection string for the Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) database on the Microsoft Windows CE-based device.

Applies To

SQL Server CE Replication object

Syntax

object.SubscriberConnectionString [= value]

Part Description
object SQL Server CE Replication object
value OLE DB connection string for the SQL Server CE database

The connection properties listed in the following table are supported. All other connection properties are ignored.

Property Required or
optional

Description

Provider Optional Specifies the name of the data source provider. If the
provider is not specified,
Microsoft.sqlserver.oledb.ce.2.0 is assumed.

Data Source Required Specifies the name of the database. By convention,
you should name the SQL Server CE databases with
the file extension .sdf.

Locale
Identifier

Optional Specifies the database locale, which specifies the
collation order for string comparisons in the
database.
This property is meaningful only when calling
AddSubscription(CREATE_DATABASE). The default
database locale is Latin1_General (0x00000409). For
other supported values, see Collate.

SSCE:Database
Password

Optional Specifies the database password.
This property must be specified if the database was
created with a password.
To create a database with a password, set this
property and call
AddSubscription(CREATE_DATABASE).

SSCE:Encrypt
Database

Optional Specifies whether a newly created database should
be encrypted.
This property is only meaningful when calling
AddSubscription(CREATE_DATABASE). The
created database is encrypted when this Boolean
property is TRUE and a database password is
specified.

Locale Identifier values are supported when creating a new database using the AddSubscription method. Use the Unique LCID
for the value of Locale Identifier. To find a list of Unique LCID values, see Collate. You must ensure that the locale is supported
on the device on which the database is being created.

Data Type

string

Modifiable

Read/write

Prototype eVC++

HRESULT get_SubscriberConnectionString(BSTR *pVal);
HRESULT put_SubscriberConnectionString(BSTR newVal);

Examples

object.SubscriberConnectionString = "Data Source=\ssce.sdf; Locale Identifier=0x00000409; SSCE:Database
Password=mypassword; SSCE:Encrypt Database=TRUE"

See Also

AddSubscription Method

Replication Object Properties

SQL Server CE Books Online

SubscriberChanges Property (Replication)
SubscriberChanges Property (Replication)

The SubscriberChanges property specifies the total number of Subscriber changes applied at the Publisher when the Run
method was last called.

Applies To

SQL Server CE Replication object

Syntax

object.SubscriberChanges [= value]

Part Description
object SQL Server CE Replication object
value Total number of rows inserted, deleted, and updated

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_SubscriberChanges(long *pVal);

See Also

Replication Object Properties

SQL Server CE Books Online

SubscriberConflicts Property (Replication)
SubscriberConflicts Property (Replication)

The SubscriberConflicts property is not used by Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE).

Applies To

SQL Server CE Replication object

Syntax

object.SubscriberConflicts [= value]

Part Description
object SQL Server CE Replication object
value Always 0 because all conflicts are detected and logged on

the SQL Server Publisher

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_SubscriberConflicts(long *pVal);

See Also

Replication Object Properties

SQL Server CE Books Online

Validate Property (Replication)
Validate Property (Replication)

The Validate property controls whether Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) replication
performs data validation during synchronization.

Applies To

SQL Server CE Replication object

Syntax

object.Validate [= value]

Part Description
object SQL Server CE Replication object
value VALIDATE_TYPE constant that specifies the type of data

validation to perform

Data Type

VALIDATE_TYPE

Constant Value Description
NO_VALIDATION 0 Do not validate (Default).
ROWCOUNT_ONLY 1 Do a row count comparison on the published data.

Modifiable

Read/write

Prototype eVC++

HRESULT get_Validate(VALIDATE_TYPE *pVal);
HRESULT put_Validate(VALIDATE_TYPE newVal);

Remarks

SQL Server CE does not support ROWCOUNT_AND_CHECKSUM, FAST_ROWCOUNT_ONLY, or
FAST_ROWCOUNT_AND_CHECKSUM validation. For more information, see "Validating Replicated Data" in SQL Server Books
Online.

See Also

Replication Object Properties

SQL Server CE Books Online

.NET Compact Framework Data Providers
Microsoft® ADO.NET is a set of classes that expose data access services. ADO.NET is an evolutionary improvement to Microsoft
ActiveX® Data Objects (ADO). ADO.NET is an integral part of the .NET Compact Framework, providing access to relational data,
XML documents, and application data. ADO.NET supports a variety of development needs, including the creation of database-
client applications and middle-tier business objects used by applications, tools, languages, or Internet browsers.

Core elements in the ADO.NET architecture are the .NET Compact Framework Data Provider for SQL Server CE
(System.Data.SqlServerCe) and the .NET Compact Framework Data Provider for SQL Server (System.Data.SqlClient). These
data providers are used to connect to, execute commands in, and retrieve results from databases in Microsoft SQL Server 2000
Windows® CE Edition (SQL Server CE) and Microsoft SQL Server™, respectively.

System.Data.SqlServerCe is used for programming Windows CE .NET-based applications that are semiconnected to or
disconnected from SQL Server databases. System.Data.SqlClient is used for programming Windows CE .NET-based applications
that have direct connections to SQL Server databases (however, these applications must have network access).

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

The following topics in this section provide general programming information about the System.Data.SqlServerCe and
System.Data.SqlClient namespaces. This section also contains walkthrough information about how to programmatically
perform basic tasks using System.Data.SqlServerCe objects.

Data Provider for SQL Server CE (SqlServerCe)
System.Data.SqlServerCe Objects
Getting Started with System.Data.SqlServerCe
Advanced Programming Using System.Data.SqlServerCe
Data Provider for SQL Server (SqlClient)

Setting Up a Project

Before an application can work with ADO.NET, you must configure your projects to reference the .NET Compact Framework data
providers that you plan to use.

To create a reference to the .NET Compact Framework data provider

1. In an open Microsoft Visual Studio® .NET project, on the Project menu, click Add References.
2. On the .NET tab, select either System.Data.SqlServerCe for SQL Server CE or System.Data.SqlClient for SQL Server

version 7.0 or later.

Note In some cases, you may need to reference System.Data.Common if your application uses DataAdapter
or CommandBuilder classes.

3. Click Select, and then click OK.

SQL Server CE Books Online

Data Provider for SQL Server CE (SqlServerCe)
System.Data.SqlServerCe provides programmatic access to databases in Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE) from a Microsoft Visual Studio® .NET application running on a Windows CE-based platform.
System.Data.SqlServerCe provides a set of classes designed to expose the functionality of SQL Server CE. For a list of classes in
this namespace, see System.Data.SqlServerCe Objects. For more information about the classes in this namespace, see the .NET
Compact Framework SDK in Microsoft Visual Studio .NET.

Supported Functionality

System.Data.SqlServerCe provides the following functionality:

Consistent access to SQL Server CE data sources.

Consumer applications that share data can use the SQL Server CE data provider to connect to SQL Server CE data sources,
and retrieve, manipulate, and update data.

Components for connecting to a database, executing commands, and retrieving results.

The retrieved results can be processed directly or placed in an ADO.NET DataSet object to be exposed to the user in an ad
hoc manner, combined with data from multiple sources, or propagated remotely between tiers.

Functionality to developers writing managed code.

This functionality is similar to that provided by ADO to native COM developers.

Index functionality for optimal performance.

SqlCeCommand.SetRange restricts the set of row entries visible through calls to SqlCeDataReader.Read and
SqlCeDataReader.Seek. SqlCeDataReader.Seek allows direct positioning at a key value within the current range.

Interfaces needed to interact with the SQL Server CE Replication and Remote Data Access (RDA) objects through the
SqlCeReplication and SqlCeRemoteDataAccess classes.
SqlCeEngine class methods that enable database creation and compaction.
Parameterized query functionality.

All parameter placeholders must be substituted with question marks (?) in the SqlCeCommand.CommandText property.
Named parameters are not supported.

Database encryption and password protection.

Provider Limitations

The data provider for SQL Server CE has the following limitations:

Support for only one concurrent connection to SQL Server CE data source. Unlike the data provider for SQL Server,
however, System.Data.SqlServerCe supports multiple data readers created on the same connection.
No support for batch queries. Queries must be a single SQL statement. For example, the following statement is valid:

SELECT * FROM Customers

This statement is not valid:

SELECT * FROM Customers; SELECT * FROM Customers2

Datasets must be refreshed from a SqlCeDataAdapter. If you are using code from a Visual Studio .NET project, you must
modify your SQL statement to conform to this restriction.

No support for nested or parallel transactions.
No support for named parameters.

SQL Server CE Books Online

System.Data.SqlServerCe Objects
System.Data.SqlServerCe Objects

System.Data.SqlServerCe is the .NET Compact Framework Data Provider for SQL Server CE. The following tables list the
collection of classes, delegates, and enumerations that comprise the System.Data.SqlServerCe namespace. For more
information about these objects, see the .NET Compact Framework SDK in Microsoft® Visual Studio® .NET.

Classes

Class Description
SqlCeCommand Represents an SQL statement to execute against a

data source.
SqlCeCommandBuilder Provides a means of automatically generating

single-table commands used to reconcile changes
made to a DataSet with the associated Microsoft
SQL Server™ 2000 Windows® CE Edition (SQL
Server CE) database. This class cannot be inherited.

SqlCeConnection Represents an open connection to a data source.
SqlCeDataAdapter Represents a set of data commands and a database

connection that are used to fill the DataSet and
update the data source.

SqlCeDataReader Provides a way of reading a forward-only stream of
data rows from a data source. This class cannot be
inherited.

SqlCeEngine Represents the properties, methods, and other
objects of the SQL Server CE Engine object. This
class cannot be inherited.

SqlCeError Collects information relevant to a warning or error
returned by the data source. This class cannot be
inherited.

SqlCeErrorCollection Collects all errors generated by the .NET Compact
Framework Data Provider for SQL Server CE. This
class cannot be inherited.

SqlCeException The exception that is thrown when the underlying
provider returns a warning or error from a SQL
Server CE data source. This class cannot be
inherited.

SqlCeInfoMessageArgs Provides data for the InfoMessage event. This class
cannot be inherited.

SqlCeParameter Represents a parameter to a SqlCeCommand and
optionally its mapping to a DataSet column. This
class cannot be inherited.

SqlCeParameterCollection Collects all parameters relevant to a
SqlCeCommand as well as their respective
mappings to DataSet columns.

SqlCeRemoteDataAccess Initializes a new instance of the
SqlCeRemoteDataAccess object.

SqlCeReplication Initializes a new instance of the SqlCeReplication
object.

SqlCeRowUpdatedEventArgs Provides data for the RowUpdated event.
SqlCeRowUpdatingEventArgs Provides data for the RowUpdating event.
SqlCeTransaction Represents an SQL transaction to be made at a data

source. This class cannot be inherited.

Delegates

Delegate Description

SqlCeInfoMessageEventHandler Represents the method that will handle the
InfoMessage event of a SqlCeConnection.

SqlCeRowUpdatedEventHandler Represents the method that will handle the
RowUpdated event of a SqlCeDataAdapter.

SqlCeRowUpdatingEventHandler Represents the method that will handle the
RowUpdating event of a SqlCeDataAdapter.

Enumerations

Enumeration Description
AddOption Specifies the source of the newly created SQL Server CE

database.
DbRangeOptions Options used by SetRange when specifying the index

range over which to Seek.
DbSeekOptions Options that specify how to Seek on an index.
DropOption Specifies whether to leave or delete the SQL Server CE

database during a drop subscription.
ExchangeType Specifies whether data merges up to the Publisher or in

both directions between the Publisher and the
Subscriber.

NetworkType Specifies the network protocol used.
RdaBatchOption Specifies whether or not the rows associated with the

Push should be batched together in a single transaction.
RdaTrackOption Specifies whether or not the table being pulled to the

device is tracked.
SecurityType Specifies the mode of security enforced.
ValidateType Specifies the type of data validation to perform.

SQL Server CE Books Online

Getting Started with System.Data.SqlServerCe
Getting Started with System.Data.SqlServerCe

This topic provides a walkthrough that shows how to use the System.Data.SqlServerCe namespace to perform the following
basic tasks programmatically:

Creating a SQL Server CE Database
Reading SQL Server CE Database Data
Updating Data in a SQL Server CE Database

Ensure that you have installed the Microsoft® .NET Compact Framework and Microsoft Visual Studio® .NET. For more
information, see Installing SQL Server CE with Visual Studio .NET.

The following code is the complete C# code that performs all the tasks contained in the walkthrough. You can copy, paste, and run
this code in a Visual Studio .NET project.

Walkthrough Sample

using System;
using System.IO;
using System.Text;
using System.Data;
using System.Data.SqlServerCe;
using System.Collections;
using System.Windows.Forms;
using System.Data.Common;

public class WalkThrough
{
 static void Main()
 {
 SqlCeConnection conn = null;

 try
 {
 if (File.Exists ("Test.sdf"))
 File.Delete ("Test.sdf");

 SqlCeEngine engine = new SqlCeEngine ("Data Source = Test.sdf");
 engine.CreateDatabase ();

 conn = new SqlCeConnection ("Data Source = Test.sdf");
 conn.Open();

 SqlCeCommand cmd = conn.CreateCommand ();

 cmd.CommandText =
 "CREATE TABLE TestTbl (col1 INT PRIMARY KEY, col2 NTEXT, col3 MONEY)";

 cmd.ExecuteNonQuery();

 cmd.CommandText =
 "INSERT INTO TestTbl (col1, col2, col3) VALUES (0, 'abc', 15.66)";

 cmd.ExecuteNonQuery();

 cmd.CommandText = "INSERT INTO TestTbl (col1, col2, col3) VALUES (?, ?, ?)";

 cmd.Parameters.Add(new SqlCeParameter("p1", SqlDbType.Int));
 cmd.Parameters.Add(new SqlCeParameter("p2", SqlDbType.NText));
 cmd.Parameters.Add(new SqlCeParameter("p3", SqlDbType.Money));

 cmd.Parameters["p2"].Size = 50;

 cmd.Prepare();

 cmd.Parameters["p1"].Value = 1;
 cmd.Parameters["p2"].Value = "abc";

 cmd.Parameters["p3"].Value = 15.66;
 cmd.ExecuteNonQuery();

 cmd.Parameters.Clear();

 cmd.CommandText = "SELECT * FROM TestTbl";

 SqlCeDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 MessageBox.Show(" col1 = " + rdr.GetInt32(0) +
 " col2 = " + rdr.GetString(1) +
 " col3 = " + rdr.GetSqlMoney(2));
 }

 cmd.CommandText = "UPDATE TestTbl set col2='some new value' WHERE col1=0";
 cmd.ExecuteNonQuery();

 cmd.CommandText = "SELECT * FROM TestTbl";

 rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 MessageBox.Show(" col1 = " + rdr.GetInt32(0) +
 " col2 = " + rdr.GetString(1) +
 " col3 = " + rdr.GetSqlMoney(2));
 }

 }
 catch (SqlCeException e)
 {
 ShowErrors(e);
 }
 finally
 {
 if(conn.State == ConnectionState.Open)
 conn.Close();
 }
 }

 public static void ShowErrors(SqlCeException e)
 {
 SqlCeErrorCollection errorCollection = e.Errors;

 StringBuilder bld = new StringBuilder();
 Exception inner = e.InnerException;

 foreach (SqlCeError err in errorCollection)
 {
 bld.Append("\n Error Code: " + err.HResult.ToString("X"));
 bld.Append("\n Message : " + err.Message);
 bld.Append("\n Minor Err.: " + err.NativeError);
 bld.Append("\n Source : " + err.Source);

 foreach (int numPar in err.NumericErrorParameters)
 {
 if (0 != numPar) bld.Append("\n Num. Par. : " + numPar);
 }

 foreach (string errPar in err.ErrorParameters)
 {
 if (String.Empty != errPar) bld.Append("\n Err. Par. : " + errPar);
 }

 MessageBox.Show(bld.ToString());
 bld.Remove(0, bld.Length);
 }
 }
}

Creating a SQL Server CE Database

The following procedures show how to create a new Microsoft® SQL Server™ Windows® CE Edition (SQL Server CE) database in
a new Microsoft Visual Studio® .NET project.

By performing the steps in these procedures, you can:

Create a new SQL Server CE database.
Create a table in the database.
Populate the table with data.

For the complete code that you can copy, paste, and run in a Visual Studio .NET project, see "Walkthrough Sample" earlier in this
topic.

To create a new SQL Server CE database

1. Start Visual Studio .NET and open a new project.
2. Create references to the namespaces you are using:

using System;
using System.IO;
using System.Text;
using System.Data;
using System.Data.SqlServerCe;
using System.Collections;
using System.Windows.Forms;
using System.Data.Common;

3. Create the WalkThrough class:

public class WalkThrough
{
 static void Main()
 {
 SqlCeConnection conn = null;

 try
 {

4. Verify that a database with the name you plan to use does not already exist:

 if (File.Exists ("Test.sdf"))
 File.Delete ("Test.sdf");

5. Create an empty database, by using the SqlCeEngine object:

 SqlCeEngine engine = new SqlCeEngine ("Data Source = Test.sdf");
 engine.CreateDatabase ();

6. Connect to the new database, by using the SqlCeConnection object:

conn = new SqlCeConnection ("Data Source = Test.sdf");
conn.Open();

To create a new table

1. Create an instance of the command class, by using the SqlCeCommand object:

SqlCeCommand cmd = conn.CreateCommand();

2. Run a command to create the table:

cmd.CommandText = "CREATE TABLE TestTbl(col1 int PRIMARY KEY, col2 ntext, col3
money)";
cmd.ExecuteNonQuery();

To populate a new table with data

1. Run a command to insert a row of data:

cmd.CommandText = "INSERT INTO TestTbl(col1, col2, col3) VALUES (0, 'abc', 15.66)";
cmd.ExecuteNonQuery();

2. Using SqlCeParameter, create a command using parameters to insert data to the table multiple times:

cmd.CommandText = "INSERT INTO TestTbl(col1, col2, col3) VALUES (?, ?, ?)";

cmd.Parameters.Add(new SqlCeParameter("p1", SqlDbType.Int));
cmd.Parameters.Add(new SqlCeParameter("p2", SqlDbType.NText));
cmd.Parameters.Add(new SqlCeParameter("p3", SqlDbType.Money));

cmd.Parameters["p2"].Size = 50;

cmd.Prepare();

3. Execute the parameterized command to insert data to the table:

cmd.Parameters["p1"].value = 1;
cmd.Parameters["p2"].value = "abc";
cmd.Parameters["p3"].value = 15.66;
cmd.ExecuteNonQuery();

4. Clear the parameter, and check the data you inserted into the table:

cmd.Parameters.Clear();
//Set the command text to a SELECT query.
//
cmd.CommandText = "SELECT * FROM TestTbl";

Reading SQL Server CE Database Data

The following example shows how to read data in an existing SQL Server CE database by using the SqlCeDataReader class:

SqlCeDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
 MessageBox.Show("col1 = " + rdr.GetInt32(0) +
 "col2 = " + rdr.GetString(1) +
 "col3 = " + rdr.GetSqlMoney(2));

For the complete code that you can copy, paste, and run in a Visual Studio .NET project, see "Walkthrough Sample" earlier in this
topic.

Updating Data in a SQL Server CE Database

The following procedures show how to update a SQL Server CE table by using the objects and classes that are used earlier in
Creating a SQL Server CE Database and Reading SQL Server CE Data.

By performing the steps in these procedures, you can:

Change existing data in a SQL Server CE table.
Read data in a SQL Server CE table.
Handle errors.

For the complete code that you can copy, paste, and run in a Visual Studio .NET project, see the "Walkthrough Sample" earlier in
this topic.

To update data in a SQL Server CE table

Set the command object to use the UPDATE statement:

cmd.CommandText = "UPDATE TestTbl SET col2 = 'some new value' WHERE col1 = 0";
cmd.ExecuteNonQuery();

To read data in a SQL Server CE table

1. Set the command object to use the SELECT statement:

cmd.CommandText = "SELECT * FROM TestTbl";

2. Create an instance of SqlCeDataReader to read the data:

rdr = cmd.ExecuteReader();
while (rdr.Read())
{
MessageBox.Show("col1 = " + rdr.GetInt32(0) +
 "col2 = " + rdr.GetString(1) +
 "col3 = " + rdr.GetSqlMoney(2));
}
}

3. Catch any errors by using SqlCeException, and close the connection to the database:

catch (SqlCeException e)
{
 ShowErrors(e);
}
finally
{
 if(conn.State == ConnectionState.Open)
 conn.Close();
}
}

 public static void ShowErrors(SqlCeException e)
 {
 SqlCeErrorCollection errorCollection = e.Errors;

 StringBuilder bld = new StringBuilder();
 Exception inner = e.InnerException;

 foreach (SqlCeError err in errorCollection)
 {
 bld.Append("\n Error Code: " + err.HResult.ToString("X"));
 bld.Append("\n Message : " + err.Message);
 bld.Append("\n Minor Err.: " + err.NativeError);
 bld.Append("\n Source : " + err.Source);

 foreach (int numPar in err.NumericErrorParameters)
 {
 if (0 != numPar) bld.Append("\n Num. Par. : " + numPar);
 }

 foreach (string errPar in err.ErrorParameters)
 {
 if (String.Empty != errPar) bld.Append("\n Err. Par. : " + errPar);
 }

 MessageBox.Show(bld.ToString());
 bld.Remove(0, bld.Length);
 }
 }
}

For more information about handling errors in SQL Server CE, see Handling Errors in Smart Device Applications.

SQL Server CE Books Online

Advanced Programming Using System.Data.SqlServerCe
Advanced Programming Using System.Data.SqlServerCe

This topic describes advanced programming issues relating to the Microsoft® .NET Compact Framework Data Provider for SQL
Server CE.

Seeking on an Index

By using the Seek method of the SqlCeDataReader object, you can quickly find rows in a result set (or cursor). When seeking,
you can specify both the range of the index over which to seek and the way in which rows are selected. To seek, the IndexName
property must be specified on the SqlCeCommand object.

Setting the Index Range

The SetRange method of the SqlCeCommand object specifies the range of the index on which to seek. Ranges are typically
specified with index start and end values and range options, which are defined by the DbRangeOptions enumeration. If no range
options are specified, by default the range includes both the start and end values. If a range option of DbRangeOptions.Match is
set, the range include only rows in which index values match the startData value. If a range option of DbRangeOptions.Prefix is
set, the range includes all rows in which the index values begin with the startData value. When you use Match or Prefix, the end
value must be set to NULL. For more information, see the "DbRangeOptions Enumeration" topic in the .NET Framework Class
Library reference.

Seek Options

Seek options specify how to select rows on an index. Options, such as FirstEqual, LastEqual, BeforeEqual, and AfterEqual (that
have Equal in their names) select rows that match the seek value. If no rows of the index match the seek value, a row either
before (in the case of FirstEqual and BeforeEqual) or after (in the case of AfterEqual and LastEqual) is selected. For more
information, see the "DbSeekOptions Enumeration" topic in the .NET Framework Class Library reference.

Examples

The following C# example shows the Seek method being executed on a three-column index in which the data types on the
columns are integer, datetime, and money. The index range for the integer index is from 1 to 5, inclusive. The index ranges for
the datetime and money columns start at 1/1/1996 and $10.00, respectively. This sample selects a row in which the integer
column is 1, the datetime column is 1/1/1997, and the money column is $10.50. If an index that matches this criteria does not
exist, the AfterEqual property causes the next row on the index to be selected.

// Example that seeks on a three-column index
public void CreateMySqlCeCommand(SqlCeConnection conn)
{
 SqlCeCommand cmd = conn.CreateCommand();
 cmd.CommandType = CommandType.TableDirect;

 // This is the name of the base table.
 cmd.CommandText = "Orders";

 //Assume: Index contains three columns [int, datetime, money]
 cmd.IndexName = "SomeIndex";

 object[] start = new object[3];
 object[] end = new object[1];

 start[0] = 1;
 start[1] = new SqlDateTime(1996, 1, 1);
 start[2] = new SqlMoney(10.00);

 end[0] = 5;

 cmd.SetRange(DbRangeOptions.InclusiveStart |
 DbRangeOptions.InclusiveEnd, start, end);

 SqlCeDataReader rdr = cmd.ExecuteReader();
 rdr.Seek(DbSeekOptions.AfterEqual, 1, new SqlDateTime(1997, 1,1),
 new SqlMoney(10.50));

 while(rdr.Read())
 {
 // Read data in the usual way.
 }
 rdr.Close();
}

SQL Server CE Books Online

Data Provider for SQL Server (SqlClient)
You can develop Microsoft® Windows® CE-based applications that access databases in Microsoft SQL Server™ version 7.0 or
later by using the System.Data.SqlClient namespace. System.Data.SqlClient is the .NET Compact Framework Data Provider
for SQL Server. This data provider corresponds to the System.Data.SqlClient namespace of the Microsoft .NET Framework.

Like its counterpart, System.Data.SqlClient in the .NET Compact Framework is a collection of classes that can be used to access
SQL Server databases with managed code from Windows CE .NET-based devices.

Unless otherwise noted, all objects in the System.Data.SqlClient namespace match the corresponding objects in the
System.Data.SqlClient namespace in the .NET Framework. For more information about the classes in this namespace, see the
.NET Compact Framework SDK in Microsoft Visual Studio .NET.

Provider Limitations

The following lists limitations and exceptions that apply to Windows CE .NET-based devices and the .NET Compact Framework:

Unsupported classes

SqlClientPermission and SqlClientPermissionAttribute classes are not supported.

ConnectionString property

Applications using System.Data.SqlClient on Windows CE-based devices may leverage the Windows authentication
protocol, instead of using SQL Server authentication. To do this, the connection string must include the following properties:

Property Value
Integrated Security SSPI
User ID Domain\username
Password <password>

In addition, the following ConnectionString properties are not supported: AttachDBFilename, Max Pool Size, Min Pool Size,
Connection Lifetime, Connection Reset, Enlist, Pooling, Network Library, and Encrypt.

ANSI data

ANSI data is supported only for SQL_Latin1_General_CP1_CI_AS collations from an English-based device. All strings in the
.NET Framework are Unicode. System.Data.SqlClient converts ANSI data in SQL Server to Unicode using the .NET
Framework Encoding classes. Although the Encoding classes are supported in the .NET Compact Framework, not all code
pages are.

Also, System.Data.SqlClient cannot read from or write to an ANSI column if the code page for the column is not available
on the Windows CE-based device. System.Data.SqlClient generates an error when the code page for an ANSI-to-Unicode
conversion is not available.

For information about code pages that are available to a specific Windows CE-based device, contact the device
manufacturer.

Connection pooling

Connection pooling is not supported. A device can only have a small number of connections to an instance of SQL Server at
any time.

Distributed transactions

Distributed transactions are not supported. Transactions cannot span databases or servers. System.Data.SqlClient
generates an InvalidOperationException exception during a distributed transaction.

Net-Library selection

Only TCP/IP connections to an instance of SQL Server are supported. System.Data.SqlClient cannot connect to SQL Server
through a device cradle.

Net-Library encryptions

Encrypted connections to an instance of SQL Server are not supported. If the computer running SQL Server has a Secure
Sockets Layer (SSL) certificate installed, the connection will fail.

Windows authentication

Windows authentication is supported; however, the User ID and Password used for authentication within the Domain
Controller must always be specified in the connection string.

For more information, see the System.Data.SqlClient namespace reference in the .NET Compact Framework SDK in Microsoft
Visual Studio .NET.

SQL Server CE Books Online

Error Handling
An application you develop should explicitly trap and handle errors. By trapping and handling errors as they occur in the
application, you can perform sophisticated error recovery and display meaningful error messages. Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) provides rich support for run-time errors generated by the SQL Server CE database
engine.

In SQL Server CE-based applications, how errors are handled depends on whether the application is a Microsoft eMbedded Visual
Tools application or a smart device application in Microsoft Visual Studio® .NET. The topics in the following sections describe
error handling in these development environments:

Handling Errors in eMbedded Visual Tools Applications
Handling Errors in Smart Device Applications

SQL Server CE Books Online

Handling Errors in eMbedded Visual Tools Applications
For applications you develop using Microsoft® eMbedded Visual Tools, error information can be obtained from the application
runtime, the data provider, or by using the Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) ActiveX® error
control objects and collections. For eMbedded Visual Tools-based applications, using the SQL Server CE error control objects and
collections is the method for handling Replication, RDA, and Engine object errors.

The following topics provide information about error handling in eMbedded Visual Tools-based applications:

Error Handling in eMbedded Visual Basic
Error Handling in eMbedded Visual C++
Programmer's Reference for SQL Server CE Error Control Objects and Collections

See Also

Handling Errors in Smart Device Applications

SQL Server CE Books Online

Error Handling in eMbedded Visual Basic
Error Handling in eMbedded Visual Basic

The application you develop should explicitly trap and handle errors. If the application does not trap errors, the Microsoft®
eMbedded Visual Basic® runtime captures the highest-level error and displays a generic message describing the error. By
trapping and handling errors in an application, you can perform more sophisticated error recovery and display more meaningful
error messages.

The application can retrieve errors by using the following error objects:

eMbedded Visual Basic Err object

The eMbedded Visual Basic Err object captures the application's most recent error; however, the most recent error is not
always the most informative error. It is recommended that you use the Microsoft ActiveX® Data Objects for Windows® CE
(ADOCE) Error object or the SSCEError object instead. The Visual Basic Err object does not return extended information
(such as the native error number or error parameters) from Microsoft SQL Server™ 2000 Windows CE Edition (SQL Server
CE). For more information, see Using the eMbedded Visual Basic Err Object.

ADOCE Error object

When accessing a SQL Server CE database through ADOCE, use the ADOCE Error object to retrieve the extensive list of
errors. For more information, see Using the ADOCE Error Object.

SQL Server CE error control objects and collections

When accessing a SQL Server CE database through the Replication, RDA, or Engine objects, use the SQL Server CE error
objects and collections to retrieve the extensive list of errors. Microsoft eMbedded Visual Basic programs reference the SQL
Server error objects and collections by adding the SQL Server CE Client Agent (Ssceca20.dll) to the project references. For
more information, see Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual Basic.

SQL Server CE Books Online

Using the eMbedded Visual Basic Err Object
Using the eMbedded Visual Basic Err Object

The Microsoft® eMbedded Visual Basic® Err object contains information about the most recent run-time error. The application
must specify On Error Resume Next to indicate that it explicitly handles errors; and then, each time it performs an operation that
might generate an error, the application must examine the Err object to determine whether any error has occurred.

For more information about the Err object, see the Visual Basic 6.0 documentation in the MSDN® Library at this Microsoft Web
site.

http://go.microsoft.com/fwlink/?LinkId=8160

SQL Server CE Books Online

Using the ADOCE Error Object
Using the ADOCE Error Object

When a data-related error occurs, the data source provider captures information about the error and stores it in the Microsoft®
ActiveX® Data Objects for Windows® CE (ADOCE) Error collection. The application must specify On Error Resume Next to
indicate that it explicitly handles errors; and then, each time it performs an ADOCE operation that might generate an error, the
application must examine the Error collection.

For more information about the objects, methods, and properties that are supported by the ADOCE control, see the ADOCE
documentation in the MSDN® Library at this Microsoft Web site.

Examples

The following example shows using the ADOCE Error object to display ADOCE errors.

Dim ceErr As Object
Dim strErr As String
Dim k

strErr = ""

' Connection Error handling routine
Sub ConnErrRoutine(ConnectionType As Object)
 For Each ceErr In ConnectionType.Errors
 strErr = strErr & "Source: " & ceErr.Source & vbCrLf
 strErr = strErr & "Number: " & Hex(ceErr.Number) & vbCrLf
 strErr = strErr & "NativeError: " & ceErr.NativeError & vbCrLf
 strErr = strErr & "Description: " & ceErr.Description & vbCrLf
 for k = 0 to ceErr.ErrorParameters.Count
 strErr = strErr & "Error Param " & k & ":" & ceErr.ErrorParameters(k)& vbCrLf
 next k
 strErr = strErr & vbCrLf
 Next ceErr
 MsgBox strErr, vbCritical
 strErr = ""
 Err.Number = 0 ' This resets the VB error
End Sub

http://go.microsoft.com/fwlink/?LinkId=8152

SQL Server CE Books Online

Using the SQL Server CE Error Control Objects and Collections
with eMbedded Visual Basic
Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual Basic

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), the Replication, RDA, and Engine object errors can be
accessed directly in Microsoft eMbedded Visual Basic® by using SQL Server CE error control objects and collections.

The SSCEErrors collection contains an SSCEError object for each error that is generated. Each SSCEError object contains an
SSCEParams collection. Descriptions of errors can be retrieved from SSCEParam objects in the SSCEParams collection. Unlike
SQL Server, SQL Server CE returns detailed information about an error as a collection of six parameters. When building error
messages, use a series of nested FOR loops to retrieve each SSCEParam object in the SSCEParams collection for each SSCEError
object.

For eMbedded Visual Basic programs to use the SQL Server error objects and collections, the SQL Server CE Client Agent
(Ssceca20.dll) must be added to the project references. For more information, see Programmer's Reference for SQL Server CE
Error Control Objects and Collections.

Examples

A. Displaying Replication, RDA, and Engine object errors

The following Microsoft eMbedded Visual Basic example displays Replication, RDA, and Engine object errors.

' Sub routine used to display errors in a message box
Sub ShowErrors(ErrColl As SSCEErrors)

'Initialize error variables to view error collection.
Dim ErrRec As Object 'SSCE.ErrorRecords
Dim param As Object
Dim strErr As String

For Each ErrRec In ErrColl
 strErr = ""
 strErr = strErr & "Source: " & ErrRec.Source & vbCrLf
 strErr = strErr & "Number: " & Hex(ErrRec.Number) & vbCrLf
 strErr = strErr & "NativeError: " & ErrRec.NativeError & vbCrLf
 strErr = strErr & "Description: " & ErrRec.Description & vbCrLf
 For Each param In ErrRec.Params
 strErr = strErr & "Param" & " = " & param.Param & vbCrLf
 Next param
 strErr = strErr & vbCrLf
 MsgBox strErr, vbOKOnly

Next ErrRec

Set ErrRec = Nothing
Set param = Nothing
End Sub

B. Handling errors in an RDA application

The following example demonstrates how to employ error handling in a remote data access (RDA) application. The example
assumes that the InternetURL property has not been set; therefore, the Pull method fails and generates an RDA object error.

Dim ceRDA As SSCE.RemoteDataAccess
Set ceRDA = CreateObject("SSCE.RemoteDataAccess.2.0")
ceRDA.LocalConnectionString = "data source=\NorthwindRDA.sdf"

On Error Resume Next
ceRDA .Pull "Customers", "SELECT * FROM Customers", "Provider=sqloledb;Data
Source=SampleServer;Initial Catalog=Northwind;user
id=SampleUser;password=SamplePassword", TRACKINGOFF

If ceRDA.ErrorRecords.Count > 0 Then
 ShowErrors ceRDA.ErrorRecords
End If

Set ceRDA = Nothing

C. Handling errors in a replication application

The following example demonstrates how to employ error handling in a replication application. The example assumes that the
AddSubscription method call fails because a database with the same name already exists.

Dim ce As SSCE.Replication
Set ce = CreateObject("SSCE.Replication.2.0")
ce.SubscriberConnectionString = "data source=\NorthwindRepl.sdf"

On Error Resume Next
ce.AddSubscription CREATE_DATABASE

If ce.ErrorRecords.Count > 0 Then
 ShowErrors ce.ErrorRecords
End If

Set ce = Nothing

SQL Server CE Books Online

Error Handling in eMbedded Visual C++
Error Handling in eMbedded Visual C++

Microsoft® eMbedded Visual C++® applications can receive much more detailed information from Microsoft SQL Server™ 2000
Windows® CE Edition (SQL Server CE) than HRESULTs. How you retrieve this extended error information depends on which of
the following methods the application uses to interact with SQL Server CE:

OLE DB error objects

The OLE DB Provider for SQL Server CE returns a rich set of error objects that can be accessed using OLE DB error objects.
The OLE DB error objects store multiple layers of errors and provide additional information beyond standard errors. For
more information, see Using OLE DB Error Objects.

SQL Server CE error control objects and collections

The Replication, RDA, and Engine objects expose error collections and parameters that can be accessed through eMbedded
Visual C++. Microsoft eMbedded Visual C++ programs reference the SQL Server error objects and collections by adding
Ca_mergex20.h and Ca_mergex20.lib to the project references and by referencing these files using the include directive.
For more information, see Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual C++.

SQL Server CE Books Online

Using OLE DB Error Objects
Using OLE DB Error Objects

When errors occur during the execution of a Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE)-based
application, the OLE DB Provider for SQL Server CE returns and stores an array of error objects. These objects can then be
accessed using OLE DB in the customary manner. The OLE DB Provider for SQL Server CE returns errors for each interface
supported by the provider. For more information, see Implemented OLE DB Interfaces. For information about the general
mechanism for an OLE DB client to retrieve error information, see the Microsoft OLE DB section of the Microsoft Data Access
Components (MDAC) SDK documentation in the MSDN® Library at this Microsoft Web site.

Examples

The following example shows how to retrieve the provider-specific error numbers when you use the OLE DB Provider for SQL
Server CE.

/* This code sample demonstrates a routine that can handle and display errors from the
OLE DB Provider for SQL Server CE. pIUnknown is the interface returning the error, and
riid is the REFIID of that interface.*/

// QueryInterface for the ISupportErrorInfo interface
hr = pIUnknown->QueryInterface(IID_ISupportErrorInfo,
 (void**)&pISupportErrorInfo);
if(FAILED(hr) || NULL == pISupportErrorInfo)
 return;

// Determine whether the interface even supports errors. If it does,
// ISupportErrorInfo will return S_OK for that interface.
hr = pISupportErrorInfo->InterfaceSupportsErrorInfo(riid);
pISupportErrorInfo->Release(); // release unneeded interface

if(S_OK == hr)
{
 // This interface supports returning error information.
 // Get the error object from the system for this thread.
 hr = GetErrorInfo(0, &pIErrorInfo);
 if(FAILED(hr) || NULL == pIErrorInfo)
 {
 return;
 }

 hr = pIErrorInfo->QueryInterface(IID_IErrorRecords,
 (void **) &pIErrorRecords);

 pIErrorInfo->Release(); // Release unneeded interface

 // Determine the number of records in this error object
 hr = pIErrorRecords->GetRecordCount(&ulNumErrorRecs);

 // Loop over each error record in the error object to display
 // information about each error. Errors are returned.
 for (dwErrorIndex = 0; dwErrorIndex < ulNumErrorRecs; dwErrorIndex++)
 {
 // Attempt to retrieve basic error information for this error.
 hr = pIErrorRecords->GetBasicErrorInfo(dwErrorIndex, &ErrorInfo);

 // Retrieve standard error information for this error.
 hr = pIErrorRecords->GetErrorInfo(dwErrorIndex, NULL,
 &pIErrorInfoRecord);

 // Get the description of the error.
 hr = pIErrorInfoRecord->GetDescription(&bstrDescriptionOfError);

 // Get the source of the error.
 hr = pIErrorInfoRecord->GetSource(&bstrSourceOfError);

 if(NULL != pIErrorInfoRecord)
 {

http://go.microsoft.com/fwlink/?LinkId=8018

 pIErrorInfoRecord->Release(); // Release unneeded interface
 }

 // Print the native error number for this error. Error numbers are
 // are documented in the Troubleshooting section.
 wprintf(L"Native Error Code: %l\n", ErrorInfo.dwMinor);
 }

 pIErrorRecords->Release(); // Release unneeded interface.
 }
}

SQL Server CE Books Online

Using the SQL Server CE Error Control Objects and Collections
with eMbedded Visual C++
Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual C++

In Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), Replication, RDA, and Engine object errors can be
accessed directly in Microsoft eMbedded Visual C++® by using the SQL Server CE error control objects and collections.

The SSCEErrors collection contains an SSCEError object for each error generated. Each SSCEError object contains an
SSCEParams collection. The descriptions of errors can be retrieved from SSCEParam objects in the SSCEParams collection.
Unlike SQL Server, SQL Server CE returns detailed information about an error as a collection of six parameters. When building
error messages, use a series of nested FOR loops to retrieve each SSCEParam object in the SSCEParams collection for each
SSCEError object.

Microsoft eMbedded Visual C++ programs reference the SQL Server error objects and collections by adding Ca_mergex20.h and
Ca_mergex20.lib to the project references and by referencing these files using the include directive. For more information, see
Programmer's Reference for SQL Server CE Error Control Objects and Collections.

Examples

The following example shows how to display Replication, RDA, and Engine object errors using eMbedded VC++.

// Error handling example in eMbedded VC++
#include "ca_mergex20.h"

void ShowErrors(ISSCEErrors* pISSCEErrors)
{
HRESULT hr;
LONG cbBuf;
LONG i;
LONG lErrorCount;
LONG lErrorIndex;
LONG lParamCount;
LONG lParamIndex;
VARIANT var;
VARIANT varParam;
WCHAR wszBuff[4096];
WCHAR* pwszBuffPos = &wszBuff[0];
BSTR bstr;
ISSCEError* pISSCEError = NULL;
ISSCEParams* pISSCEParams = NULL;
ISSCEParam* pISSCEParam = NULL;
BOOL fSuccess = FALSE;

// Initialize the variants.
VariantInit(&var);
VariantInit(&varParam);

// Get the count of errors.
if(FAILED(hr = pISSCEErrors->get_Count(&lErrorCount))) goto Exit;
if (lErrorCount <= 0)
 {
 MessageBox(NULL, L"No extended error information.",L"ShowErrors", MB_OK);
 fSuccess = TRUE;
 goto Exit;
 }

// Display errors, one at a time in a single message box.
// If there are too many errors, they may not all display properly.
// If so, you should perform logic based on the number of errors.
for (lErrorIndex = 0; lErrorIndex < lErrorCount; lErrorIndex++)
 {
 cbBuf = swprintf(pwszBuffPos, L"E R R O R %d of %d\r\n",
 lErrorIndex+1, lErrorCount);
 pwszBuffPos += cbBuf;

 // Get the next error record.

 var.vt = VT_I4;
 var.lVal = lErrorIndex;
 if(FAILED(hr = pISSCEErrors->get_Item(var, &pISSCEError))) goto Exit;

 // Error description
 if (FAILED(hr = pISSCEError->get_Description(&bstr))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"DESCRIPTION: '%s'\r\n", bstr);
 pwszBuffPos += cbBuf;
 SysFreeString(bstr);

 // Error number
 if (FAILED(hr = pISSCEError->get_Number(&i))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"NUMBER: %8.8X\r\n", i);
 pwszBuffPos += cbBuf;

 // Native error
 if (FAILED(hr = pISSCEError->get_NativeError(&i))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"NATIVE_ERROR: %d\r\n", i);
 pwszBuffPos += cbBuf;

 // Error source
 if (FAILED(hr = pISSCEError->get_Source(&bstr))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"SOURCE: '%s'\r\n", bstr);
 pwszBuffPos += cbBuf;
 SysFreeString(bstr);

 // Retrieve the error parameters.
 if (FAILED(hr = pISSCEError->get_Params(&pISSCEParams))) goto Exit;

 // Get the number of error parameters.
 if (FAILED(hr = pISSCEParams->get_Count(&lParamCount))) goto Exit;

 // Display the value of each parameter.
 for (lParamIndex = 0; lParamIndex < lParamCount; lParamIndex++)
 {

 // Get the parameter object.
 var.vt = VT_I4;
 var.lVal = lParamIndex;
 if (FAILED(hr = pISSCEParams->get_Item(var, &pISSCEParam))) goto Exit;

 // Get and display the parameter value.
 if (FAILED(hr = pISSCEParam->get_Param(&varParam))) goto Exit;
 if (VT_I4 == varParam.vt || VT_UI4 == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: %d\r\n", lParamIndex,
 (LONG) varParam.lVal);
 }
 else if (VT_I2 == varParam.vt || VT_UI2 == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: %d\r\n", lParamIndex,
 (LONG) varParam.iVal);
 }
 else if (VT_BSTR == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: '%s'\r\n", lParamIndex,
 varParam.bstrVal);
 }
 pwszBuffPos += cbBuf;

 // Clear the variant.
 VariantClear(&varParam);

 // Release the parameter object.
 pISSCEParam->Release();
 pISSCEParam = NULL;
 }
 cbBuf = swprintf(pwszBuffPos, L"\r\n");
 pwszBuffPos += cbBuf;

 }

// Display the error information.

MessageBox(NULL, wszBuff,L"Error", MB_OK);
fSuccess = TRUE;

Exit:
// Release the parameter object.
if (pISSCEParam)
 {
 pISSCEParam->Release();
 pISSCEParam = NULL;
 }

// Release the parameters object.
if (pISSCEParams)
 {
 pISSCEParams->Release();
 pISSCEParams = NULL;
 }

// Release the error object.
if (pISSCEError)
 {
 pISSCEError->Release();
 pISSCEError = NULL;
 }

// The Errors object is released in calling routine.
if (!fSuccess)
 {
 MessageBox(NULL, L"Error while processing errors!",L"ShowErrors", MB_OK);
 }
return;
}

SQL Server CE Books Online

Programmer's Reference for SQL Server CE Error Control
Objects and Collections
Programmer's Reference for SQL Server CE Error Control Objects and Collections

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) provides error control objects and collections for handling
Replication, RDA, and Engine object errors in Microsoft eMbedded Visual Tools-based applications. The topics in this section
describe the error objects and collections and their properties.

This section is divided into two parts:

SQL Server CE Error Control Objects and Collections

Describes the SQL Server CE error objects and collections.

SQL Server CE Error Control Objects and Collections Properties

Describes the properties of the SQL Server CE error objects and collections that are used to retrieve error codes and error
message information.

See Also

Error Handling in eMbedded Visual Basic

Error Handling in eMbedded Visual C++

SQL Server CE Books Online

SQL Server CE Error Control Objects and Collections
SQL Server CE Error Control Objects and Collections

In the Microsoft® eMbedded Visual Tools development environment, applications use the following Microsoft ActiveX® error
control objects and collections in Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) to retrieve error
information about Replication, RDA, and Engine object errors.

Object/Collection Description
SSCEError Object Defines a Replication, RDA or Engine object error.
SSCEErrors Collection Contains the error objects for Replication, RDA, and

Engine object errors.
SSCEParam Object Provides the descriptive element of an error.
SSCEParams Collection Contains the descriptive elements for errors.

SQL Server CE Books Online

SSCEError Object
SSCEError Object

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) uses SSCEError objects to report Replication, RDA, or
Engine object errors. SQL Server CE creates an SSCEErrors collection containing one or more SSCEError objects whenever a
Replication, RDA, or Engine object method call fails.

Properties

Description Property

ErrorNumber Property

NativeError Property

Source Property

Remarks

The application can enumerate through the collection and examine each SSCEError object to identify the error.

Error objects and collections are retained until the next Replication, RDA, or Engine object method is called.

See Also

SSCEErrors Collection

Using Remote Data Access (RDA)

Using Replication

SQL Server CE Books Online

SSCEErrors Collection
SSCEErrors Collection

The SSCEErrors collection is created when a Replication, RDA, or Engine object method call fails. The SSCEErrors collection
contains a set of SSCEError objects that can be used to retrieve error information.

Properties

Count Property

Remarks

Error objects and collections are retained until the next Replication, RDA, or Engine object method is called.

See Also

SSCEError Object

Using Remote Data Access (RDA)

Using Replication

SQL Server CE Books Online

SSCEParam Object
SSCEParam Object

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) uses SSCEParam objects to report detailed error
parameters. SSCEParam objects are members of the SSCEParams collection.

Properties

Param Property

Remarks

SQL Server CE creates an SSCEParams collection containing six SSCEParam objects whenever a Replication, RDA, or Engine
object method call fails.

Error objects and collections are retained until the next Replication, RDA, or Engine object method is called.

See Also

SSCEParams Collection

Using Remote Data Access (RDA)

Using Replication

SQL Server CE Books Online

SSCEParams Collection
SSCEParams Collection

Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) uses the SSCEParams collection to report detailed
information regarding a specific error.

Properties

Count Property

Remarks

Each SSCEError object contains the SSCEParams collection that in turn contains a set of six SSCEParam objects.

Error objects and collections are retained until the next Replication, RDA, or Engine object method is called.

See Also

SSCEError Object

Using Remote Data Access (RDA)

Using Replication

SQL Server CE Books Online

SQL Server CE Error Control Objects and Collections Properties
SQL Server CE Error Control Objects and Collections Properties

The following topics describe the properties for the error control objects and collections provided by Microsoft® SQL Server™
2000 Windows® CE Edition (SQL Server CE):

Count Property
Description Property
ErrorNumber Property
NativeError Property
Param Property
Source Property

SQL Server CE Books Online

Count Property
Count Property

The Count property specifies the number of objects in the collection.

Applies To

SSCEErrors Collection

SSCEParams Collection

Syntax

object.Count [=value]

Part Description
object SSCEErrors collection
value Number of SSCEError objects in the collection

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_Count(long *plCount);

See Also

SQL Server CE Error Control Objects and Collections Properties

SQL Server CE Books Online

Description Property
Description Property

The Description property provides a descriptive error message.

Applies To

SSCEError Object

Syntax

object.Description [=value]

Part Description
object SSCEError object
value Description of the error

Data Type

string

Modifiable

Read-only

Prototype eVC++

HRESULT get_Description(BSTR *pVal);

Remarks

The Description property provides a descriptive error message that is suitable for displaying to the user. Error messages can
originate from Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) from replication, remote data access (RDA),
OLE DB, or the query processor; and from Microsoft SQL Server. Only errors originating from SQL Server 2000 currently generate
error strings.

See Also

SQL Server CE Error Control Objects and Collections Properties

SQL Server CE Books Online

ErrorNumber Property
ErrorNumber Property

The ErrorNumber property provides the OLE HRESULT error number reported by the error source.

Applies To

SSCEError Object

Syntax

object.ErrorNumber [=value]

Part Description
object SSCEError object
value OLE HRESULT error number

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_ErrorNumber(long *pVal);

Remarks

SQL Server CE Books Online does not document specific HRESULTS returned by the ErrorNumber property because these are
nonnative errors.

To find information about HRESULT values, see Oledberr.h in Microsoft® ActiveX® Data Objects for Windows® CE 3.1 (ADOCE),
and Winerror.h and Wininet.h that are included in Microsoft eMbedded Visual Tools. For more information about HRESULT
values, search the MSDN® Library at this Microsoft Web site or the Microsoft Knowledge Base at this Microsoft Web site.

See Also

SQL Server CE Error Control Objects and Collections Properties

http://go.microsoft.com/fwlink/?LinkId=8145
http://go.microsoft.com/fwlink/?LinkId=8149

SQL Server CE Books Online

NativeError Property
NativeError Property

The NativeError property reports native error numbers reported by the error source.

Applies To

SSCEError Object

Syntax

object.NativeError [=value]

Part Description
object SSCEError object
value Native error number

Data Type

long

Modifiable

Read-only

Prototype eVC++

HRESULT get_NativeError(long *pVal);

Remarks

When the NativeError property of the SSCEError object returns a value of 0, it means that a nonnative SQL Server CE Engine
error has occurred. The OLE HRESULT code for this nonnative error can be obtained from the ErrorNumber property. For more
information, see SQL Server CE Errors.

See Also

ErrorNumber Property

SQL Server CE Error Control Objects and Collections Properties

SQL Server CE Books Online

Param Property
Param Property

The Param property provides a descriptive element of an error.

Applies To

SSCEParam Object

Syntax

object.Param [=value]

Part Description
object SSCEParam object
value Descriptive element of the error

Data Type

Variant

Modifiable

Read-only

Prototype eVC++

HRESULT get_Param(BSTR *pVal);

Remarks

There are always six SSCEParam objects in an SSCEParams collection. The first three are integers and the last three are strings.
Some properties of SSCEParam object may not be used. Unused integer SSCEParam objects contain the value 0, and unused
string SSCEParam objects contain an empty string. Error messages can originate from Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE) from replication, remote data access (RDA), OLE DB, or the query processor; and from
Microsoft SQL Server. Only errors originating from SQL Server 2000 currently generate error strings.

Note Although parameters might exist for an error, not all occurrences of the error will return parameters.

See Also

SQL Server CE Error Control Objects and Collections Properties

SQL Server CE Books Online

Source Property
Source Property

The Source property names the source of the native error.

Applies To

SSCEError Object

Syntax

object.Source [=value]

Part Description
object SSCEError object
value Name of the source where the error occurred

Data Type

string

Modifiable

Read-only

Prototype eVC++

HRESULT get_Source(BSTR *pVal);

Remarks

The Source property is a string expression providing the name of the object or application that originally generated the native
error. The value of this property is provider defined.

See Also

SQL Server CE Error Control Objects and Collections Properties

SSCEError Object

SQL Server CE Books Online

Handling Errors in Smart Device Applications
For smart device projects in the Microsoft® Visual Studio® .NET development environment, the .NET Compact Framework Data
Provider for SQL Server CE supports rich error handling for errors generated by the Microsoft SQL Server™ 2000 Windows® CE
Edition (SQL Server CE) database engine, and the Microsoft ActiveX® controls for the SQL Server CE Replication object and the
SQL Server CE Remote Data Access object (RDA). When an engine error occurs, an exception object is created that contains one or
more error objects. When you use the .NET Compact Framework Data Provider, the exception object also contains an error
collection object, which in turn contains one or more error objects.

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

For smart device projects that access Microsoft SQL Server 2000 using the .NET Framework Data Provider for SQL Server, rich
error handling is provided by the SqlException object.

Properties of these error objects and collections can be accessed to obtain error code and error message text information.

Note Depending on the severity of the error, the connection to the database might be closed. In this case, recovering
from such an error requires reopening the connection to the database.

The following topics provide information about handling errors in smart device applications by using the .NET Compact
Framework Data Provider for SQL Server CE:

Error Handling in C#
Error Handling in Visual Basic .NET

For more information about the error objects supported by the .NET Framework data providers, see Programmer's Reference for
the .NET Framework Data Providers Error Control Objects and Collections

See Also

Handling Errors in eMbedded Visual Tools Applications

SQL Server CE Books Online

Error Handling in C#
Error Handling in C#

This topic provides a C# example that shows how to use the error objects provided by the Microsoft® .NET Compact Framework
Data Provider for SQL Server CE. These objects can be used to capture and display engine errors that occur in Microsoft SQL
Server™ 2000 Windows® CE Edition (SQL Server CE) when executing Replication, RDA, or Engine object methods.

When an engine error occurs, a SqlCeException object is created. This exception object contains the SqlCeErrorCollection
object, which in turn contains a collection of SqlCeError objects, one for each error in the exception. The SqlCeErrorCollection
object can be accessed directly using the SqlCeException.Errors property. Each SqlCeError object contains an array of error
parameters that provide detailed information about the error. Unlike SQL Server, SQL Server CE returns detailed information
about an error as a collection of parameters. When building error messages, you should use a series of nested FOR loops to
retrieve each parameter in each SqlCeError object in the collection.

For more information, see Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections.

Examples

In the following example, the ShowSqlException method catches a SQL Server CE engine exception error. This SqlCeException
object is passed to the ShowErrors method, which displays each of the SSCEError objects in the SqlCeErrorCollection object.
This method loops through all of the error parameters for each error.

// Reference the .NET Compact Framework Data Provider for SQL Server CE.
using System.Data.SqlServerCe;

// Begin the method to generate a SQL Server CE engine exception.
public void ShowSqlCeException()
{
 string mySelectQuery = "SELECT column1 FROM table1";
 SqlCeConnection myConnection = new SqlCeConnection("Data
Source=nonExistSource.sdf;");
 SqlCeCommand myCommand = new SqlCeCommand(mySelectQuery,myConnection);

 try
 {
 myCommand.Connection.Open();
 }

 // Catch the exception as e and pass it to the ShowErrors routine.
 catch (SqlCeException e)
 {
 ShowErrors(e);
 }

}

// Error handling routine that generates an error message
public static void ShowErrors(SqlCeException e)
{
 SqlCeErrorCollection errorCollection = e.Errors;

 StringBuilder bld = new StringBuilder();
 Exception inner = e.InnerException;

 if (null != inner)
 {
 MessageBox.Show("Inner Exception: " + inner.ToString());
 }
 // Enumerate the errors to a message box.
 foreach (SqlCeError err in errorCollection)
 {
 bld.Append("\n Error Code: " + err.HResult.ToString("X"));
 bld.Append("\n Message : " + err.Message);
 bld.Append("\n Minor Err.: " + err.NativeError);
 bld.Append("\n Source : " + err.Source);

 // Enumerate each numeric parameter for the error.

 foreach (int numPar in err.NumericErrorParameters)
 {
 if (0 != numPar) bld.Append("\n Num. Par. : " + numPar);
 }

 // Enumerate each string parameter for the error.
 foreach (string errPar in err.ErrorParameters)
 {
 if (String.Empty != errPar) bld.Append("\n Err. Par. : " + errPar);
 }

 MessageBox.Show(bld.ToString());
 bld.Remove(0, bld.Length);
 }
}

SQL Server CE Books Online

Error Handling in Visual Basic .NET
Error Handling in Visual Basic .NET

This topic provides a Microsoft® Visual Basic® example that shows how to use the error objects provided by the Microsoft .NET
Compact Framework Data Provider for SQL Server CE. These objects can be used to capture and display engine errors that occur
in Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) executing Replication, RDA or Engine object methods.

When an engine error occurs, a SqlCeException object is created. This exception object contains the SqlCeErrorCollection
object, which in turn contains a collection of SqlCeError objects, one for each error in the exception. The SqlCeErrorCollection
object can be accessed directly using the SqlCeException.Errors property. Each SqlCeError object contains an array of error
parameters that provide detailed information about the error. Unlike SQL Server, SQL Server CE returns detailed information
about an error as a collection of parameters. When building error messages, you should use a series of nested FOR loops to
retrieve each parameter in each SqlCeError object in the collection.

For more information, see Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections.

Examples

In the following example, the ShowSqlException method catches a SQL Server CE engine exception error. This SqlCeException
object is passed to the ShowErrors method, which displays each of the SSCEError objects in the SqlCeErrorCollection object.
This method loops through all of the error parameters for each error.

' Reference the .NET Compact Framework Data Provider for SQL Server CE by using the
Imports directive.
Imports System.Data.SqlServerCe

' Begin the method to generate a SQL Server CE engine exception.
Public Sub ShowSqlCeException()
 Dim mySelectQuery As String = "SELECT column1 FROM table1"
 Dim myConnection As New SqlCeConnection("Data Source=nonExistSource.sdf;")
 Dim myCommand As New SqlCeCommand(mySelectQuery, myConnection)

 Try
 myCommand.Connection.Open()

 ' Catch the exception as e and pass it to the ShowErrors routine.
 Catch e As SqlCeException

 ShowErrors(e)

 End Try
End Sub

' Error handling routine that generates an error message
Public Shared Sub ShowErrors(ByVal e As SqlCeException)
 Dim errorCollection As SqlCeErrorCollection = e.Errors

 Dim bld As New StringBuilder()
 Dim inner As Exception = e.InnerException

 If Not inner Is Nothing Then
 MessageBox.Show(("Inner Exception: " & inner.ToString()))
 End If

 Dim err As SqlCeError

 ' Enumerate each error to a message box.
 For Each err In errorCollection
 bld.Append((ControlChars.Cr & " Error Code: " & err.HResult.ToString("X")))
 bld.Append((ControlChars.Cr & " Message : " & err.Message))
 bld.Append((ControlChars.Cr & " Minor Err.: " & err.NativeError))
 bld.Append((ControlChars.Cr & " Source : " & err.Source))

 ' Retrieve the error parameter numbers for each error.
 Dim numPar As Integer
 For Each numPar In err.NumericErrorParameters
 If 0 <> numPar Then

 bld.Append((ControlChars.Cr & " Num. Par. : " & numPar))
 End If
 Next numPar

 ' Retrieve the error parameters for each error.
 Dim errPar As String
 For Each errPar In err.ErrorParameters
 If [String].Empty <> errPar Then
 bld.Append((ControlChars.Cr & " Err. Par. : " & errPar))
 End If
 Next errPar

 MessageBox.Show(bld.ToString())
 bld.Remove(0, bld.Length)
 Next err
End Sub

SQL Server CE Books Online

Programmer's Reference for the .NET Framework Data
Providers Error Control Objects and Collections
Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections

Microsoft® Visual Studio® .NET supports the following data providers, each of which has its own set of objects and collections
that are used when handling errors in a smart device applications:

.NET Compact Framework Data Provider for SQL Server CE

This data provider belongs to the System.Data.SqlServerCe namespace, and stores Microsoft SQL Server™ 2000
Windows® CE (SQL Server CE) Replication, RDA, and Engine object error information in the following error objects and
collections.

Object/Collection Description
SqlCeException class When an error occurs, an instance of the

SqlCeException class is created that contains the
collection of SqlCeError objects.

SqlCeErrorCollection
class

The SqlCeErrorCollection object contains one or
more SqlCeError objects for a SqlCeException
object. The collection can be accessed using the
SqlCeException.Errors property.

SqlCeError class Each SqlCeError object contains an array of error
parameters that provide detailed information about
the error.

The .NET Compact Framework Data Provider for SQL Server CE is included in the Microsoft .NET Compact Framework that
ships with Visual Studio .NET. For more information, see .NET Compact Framework Data Providers.

.NET Framework Data Provider for SQL Server

This data provider belongs to the System.Data.SqlClient namespace and stores exception errors in an instance of the
SqlException class. This data provider can be used only when you remotely access a database in SQL Server using a
tabular data stream (TDS) connection. When you use this provider, errors can be accessed as with any other SQL Server
managed client application. For more information, see .NET Framework Data Provider for SQL Server in the Visual Studio
.NET documentation.

SQL Server CE Books Online

Deploying Applications
Deploying a Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) application can require installing parts of the
application on one or more of the following systems:

Microsoft Internet Information Services (IIS) systems
Microsoft ActiveSync® systems
Microsoft Windows CE-based devices

IIS Deployment

To use SQL Server CE replication or remote data access (RDA), each computer running IIS must be configured by installing the
version of the SQL Server CE Server Tools appropriate to the version of Microsoft SQL Server you are running. For more
information, see Installing SQL Server CE on an IIS System and Configuring Connectivity Support in IIS.

Note The SQL Server CE Server Tools installer that ships with SQL Server CE contains components compatible with
Microsoft SQL Server 2000 Service Pack 1 and Service Pack 2. SQL Server CE Server Tools that are compatible with
later SQL Server service packs are available at this Microsoft Web site.

ActiveSync Deployment

Microsoft Windows Powered Pocket PC 2002 can use ActiveSync 3.5 or later to synchronize SQL Server CE over a serial, infrared
(IR), or USB connection. When you use Pocket PC 2000 or Handheld PC 2000 devices, you must use SQL Server CE Relay in
conjunction with IIS to synchronize over these connections. If you require SQL Server CE Relay for SQL Server CE connectivity,
SQL Server CE Relay must be deployed to each desktop system through which you intend to synchronize. For more information,
see Using SQL Server CE Relay.

Windows CE Deployment

The two aspects to Windows CE deployment are:

Application deployment during development
Final application deployment

The following topics address these aspects of deployment and describe the processes for deploying a Windows CE-based
application.

Topic Description
Deployment Considerations Provides information about deploying

Windows CE-based applications.
Deploying Applications from Visual Studio
.NET

Describes the process for deploying a
Microsoft Visual Studio® .NET application.

Deploying Applications from eMbedded
Visual Tools

Describes the process for deploying a
Microsoft eMbedded Visual Tools
application.

Deploying Applications Manually Describes how to manually deploy SQL
Server CE on a Windows CE-based device.

Deploying Applications with Platform
Builder

Describes the process for deploying an
application using Microsoft Platform
Builder.

http://go.microsoft.com/fwlink/?LinkId=8634

SQL Server CE Books Online

Deployment Considerations
The following topics describe the primary considerations for deploying Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE) applications:

Upgrading from Earlier Versions of SQL Server CE
Prebuilding a SQL Server CE Database
Creating Secure Connections from Windows CE-based Devices
Ensuring Proper ANSI to Unicode Conversions

SQL Server CE Books Online

Prebuilding a SQL Server CE Database
If you have a large quantity of data in a Microsoft® SQL Server™ database that provides data for a Microsoft SQL Server 2000
Windows® CE Edition (SQL Server CE) database, it can be expensive for every Windows CE-based device to download all of the
data using a remote data access (RDA) or replication synchronization process. You can prebuild a copy of the SQL Server CE
database and download it to each device together with the application.

To prebuild and download a copy of a SQL Server CE database

1. Set up one Windows CE-based device with the application.
2. Connect the application to the SQL Server database using RDA or replication. Create the SQL Server CE .sdf file on the

device and synchronize the SQL Server CE database with the SQL Server database.
3. Stop the application and use Microsoft ActiveSync® to connect to the device. Use the ActiveSync Explorer function to copy

the .sdf file from the Windows CE-based device to the development environment, and then store the file with the rest of the
application.

The .sdf file can now be copied to other devices using ActiveSync Explorer or installed from the application .cab file.

Note Because SQL Server CE databases that are involved in replication are uniquely identified by a Subscriber ID,
SQL Server CE assigns a new Subscriber ID upon the next synchronization if the databases is moved or copied to a
new location.

SQL Server CE Books Online

Creating Secure Connections from Windows CE-based Devices
To create a secure connection from a Microsoft® Windows® CE-based device to a computer running Microsoft Internet
Information Services (IIS), ensure that:

The appropriate certificate is installed on the computer running IIS.
The Certificate Authority that issued the certificate is included in the Windows CE Certificate Authority database.

If you issued an IIS server certificate using your own stand-alone Certificate Authority, your root certificate is not present in the
Windows CE Certificate Authority database. As a result, Windows CE does not trust your IIS server certificate. If you install such a
server certificate in IIS and attempt to use Secure Sockets Layer (SSL) encryption, Microsoft SQL Server 2000 Windows CE Edition
(SQL Server CE) replication or remote data access (RDA) fails with the error: "ERROR_INTERNET_INVALID_CA (12045)".

To use server certificates that you issue yourself, you must either certify your stand-alone Certificate Authority through one of the
trusted certificate authorities or add the root certificate of your stand-alone certificate authority to the Windows CE Certificate
Authority database.

For more information about encryption and certificates, see Configuring SSL Encryption.

SQL Server CE Books Online

Ensuring Proper ANSI to Unicode Conversions
If the instance of Microsoft® SQL Server™ you are connecting to contains ANSI data, the data is converted to Unicode before
being stored in the database in Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE). Depending on the code page
of the computer running SQL Server and the computer running IIS, conversion errors may occur. The following information helps
to ensure that the data is converted correctly.

ANSI to Unicode Conversions in the SQL Server CE Server Agent

The SQL Server CE Server Agent running on the computer running IIS converts ANSI data in SQL Server to or from Unicode for
SQL Server CE. To ensure that it uses the correct translation, the SQL Server CE Server Agent determines which code page the
ANSI data is stored in before performing ANSI to Unicode conversions. The following information is taken into consideration:

If no other settings are available, the ANSI code page of the computer running IIS and the SQL Server CE Server Agent is
used.
If you are using an instance of SQL Server 2000, the SQL Server CE Server Agent uses the code page of the computer on
which SQL Server is running. When each instance of SQL Server is set up to correctly identify the ANSI data that is being
stored, the correct translation is selected automatically for each connection.

If the translation does not give the correct value for the data that is being stored, you can override the code page by setting the
following registry key to a specific code page.

To create the registry key to override the code page

1. If it does not already exist, create the following registry key:

HKLM\Software\Microsoft\MSSQLSERVERCE\Transport

2. Under the HKLM\Software\Microsoft\MSSQLSERVERCE\Transport key, create a DWORD key value. The name of the
key value must begin with the local path associated with the IIS virtual directory for SQL Server CE. For example, if the
Sscesa20.dll is located in the folder C:\Inetpub\Sqlce\NorthWind, you must name the registry value
C:\Inetpub\Sqlce\NorthWind\OVERRIDE_SERVER_CP. The data value of the DWORD key must be a value of the code
page. For example, the following registry key value is for the English code page:

HKLM\Software\Microsoft\MSSQLSERVERCE\Transport
C:\Inetpub\Sqlce\NorthWind\OVERRIDE_SERVER_CP 1252

3. After creating the registry entry, you must restart IIS. This is essential because the SQL Server CE Server Agent only reads
the registry key when the SQL Server CE Server Agent (Sscesa20.dll) is first loaded by IIS. To restart IIS, in Internet Service
Manager, right-click the server name and select Restart IIS.

This registry setting affects all of the ANSI to Unicode and Unicode to ANSI translations that the SQL Server CE Server Agent
makes for any SQL Server connection; therefore, do not use this registry key unless you know that all of your instances of SQL
Server are storing ANSI data with the same code page.

In all cases, after the correct code page translation is selected, the SQL Server CE Server Agent requires that the computer running
IIS include the Microsoft Windows language support for that code page.

ANSI to Unicode Conversions Outside the SQL Server CE Server Agent

If the SQL Server CE Server Agent has been correctly configured but the ANSI data is still not being handled properly, you may
need to make additional adjustments. To ensure that the correct settings have been made to allow the ANSI data to reach the SQL
Server CE Server Agent, see the documentation for the provider.

For example, SQL Server defines the following property for configuring OEM/ANSI character translation in the OLE DB Provider
for SQL Server as SSPROP_INIT_AUTOTRANSLATE.

When this property is VARIANT_TRUE, SQL Server data that is stored as a char, varchar, or text data type and sent to a client
DBTYPE_STR variable is converted from character to Unicode by using the ANSI code page (ACP) on the computer running SQL
Server, and then converted from Unicode to character by using the ACP on the client.

If the data is known to be of a different code page than that of either the computer running SQL Server or the computer running
IIS, this property should be set to VARIANT_FALSE to force no translation to be performed on the data before reaching the SQL
Server CE Server Agent.

A remote data access (RDA) client would pass "Auto Translate = FALSE" in the OLE DB connection string to avoid ANSI to Unicode
conversions prior to the data reaching the SQL Server CE Server Agent.

SQL Server CE Books Online

Deploying Applications from Visual Studio .NET
This topic describes deployment during development and final application deployment in the Microsoft® Visual Studio® .NET
development environment.

Note This feature has been designed to be used in conjunction with a prerelease version of an anticipated successor
to Microsoft Visual Studio .NET. Check the documentation accompanying the commercially released version for any
updates.

Deployment During Development

To include Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) in a project, add a reference to the
System.Data.SqlServerCE assembly. For more information, see Installing SQL Server CE with Visual Studio .NET .

When this reference is added, two .cab files are deployed to the Windows CE-based device each time the application is compiled:

Sqlce.dev.platform.processor.cab

This .cab file should be deployed only during application development. This .cab file contains Isqlw20.exe (SQL Server CE
Query Analyzer), which installs in \Program Files\SQLCE 2.0; and two error string files: Ssceerror20en.dll and Msdaeren.dll,
both of which install in \Program Files\SQLCE 2.0.

Sqlce.platform.processor.cab

This .cab file includes all files needed for SQL Server CE: Ssce20.dll, Ssceca20.dll install in \Program Files\SQLCE 2.0, and
Sscemw20.dll installs in \Windows.

Final Application Deployment

After you complete the application, create a .cab file for the application: On the Build menu, select Build CAB File. This .cab file
does not include SQL Server CE or the .NET Compact Framework. To fully deploy the application, you must copy and extract the
application .cab file as well as the SQL Server CE and .NET Compact Framework .cab files, which are included by default in
\Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000\Windows CE\platform\processor folders.

SQL Server CE Books Online

Deploying Applications from eMbedded Visual Tools
This topic describes deployment during development and final application deployment for applications developed using
Microsoft® eMbedded Visual Basic® and Microsoft eMbedded Visual C++®.

Deployment During Development

During development, different deployment options are available depending upon the programming language you are using.

Using eM bedded Visual Basic

The Microsoft eMbedded Visual Basic development environment automates many of the debugging processes that you must use
to develop a new application. Part of this process includes downloading the application to a Microsoft Windows® CE-based
device on which the application can be run and debugged. The development environment uses Microsoft ActiveSync® on the
development computer to download the files to the Windows CE-based device.

Microsoft eMbedded Visual Basic automatically monitors the executable files that are included in the application and the DLLs the
application uses. During the download process, eMbedded Visual Basic downloads the latest version of these components:
Ssce20.dll and Ssceca20.dll.

Note SQL Server CE Query Analyzer (Isqlw20.exe) and a DLL that provides error descriptions for use during
development (Ssceerror20en.dll) must be manually copied to the Windows CE-based device.

To include SQL Server CE in your project, on the Project menu, click References, Microsoft CE SQL Server Control 2.0, and
then Microsoft CE ADO Control 3.1. If you are using Microsoft ActiveX® Data Objects Extensions for Data Definition Language
(DDL) and Security (ADOXCE), you must also include Microsoft CE ADO Ext. 3.1 for DDL.

Using eM bedded Visual C++

Although eMbedded Visual C++ can deploy the application to the device, it cannot download SQL Server CE components. To
install SQL Server CE components, there are two options:

Create an eMbedded Visual Basic application, as described previously, that references SQL Server CE. (Create a blank
application because it is used only to install SQL Server CE.)
Manually install SQL Server CE components. For more information, see "Manual Installation Process" in Installing SQL
Server CE on a Device Using eMbedded Visual Tools.

Final Application Deployment

Windows CE-based applications are typically distributed as .cab files. There are two ways to create .cab files for the eMbedded
Visual Tools application:

If you have an eMbedded Visual Basic project, use the eMbedded Visual Basic Application Install Wizard. This tool creates an
installation package for the application that includes Windows CE .cab files. It also leaves the .inf file that is used to create
the .cab files in the directory to which the application is deployed. You can modify this .inf file if additional customization is
needed. For more information, see "Using the Application Install Wizard" in the eMbedded Visual Basic documentation.
Create custom cab files using the CAB Wizard (Cabwiz.exe). For information about using the CAB Wizard, see "Installing
Applications" in the Windows CE documentation in the MSDN® Library at this Microsoft Web site. For information about
the files required to create a SQL Server CE .cab file see "Manual Installation Process" in Installing SQL Server CE on a
Device Using eMbedded Visual Tools.

http://go.microsoft.com/fwlink/?LinkId=8673

SQL Server CE Books Online

Deploying Applications Manually
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) and applications developed in the Microsoft eMbedded
Visual Tools or Microsoft Visual Studio® .NET development environments can also be installed on a Windows CE-based device by
manually copying and registering all the required files. For more information, see "Manual Installation Process" in Installing SQL
Server CE on a Device Using eMbedded Visual Tools and Installing SQL Server CE with Visual Studio .NET.

SQL Server CE Books Online

Deploying Applications with Platform Builder
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server SE) supports Microsoft Platform Builder for Microsoft
Windows CE .NET version 4.1. Platform Builder is used to create a custom Windows CE operating system for use in a custom
Windows CE-based device, such as an embedded controller for a piece of equipment.

You can incorporate SQL Server CE components in the new operating system by instructing Platform Builder to include SQL
Server CE when it builds an operating system. If you included SQL Server CE in the new operating system, Platform Builder
automatically configures the device for SQL Server CE, after which you can start building SQL Server CE applications for the
device. For more information about deploying an application, see Deploying Applications from eMbedded Visual Tools or
Deploying Applications from Visual Studio .NET.

See Also

Installing SQL Server CE with Platform Builder

SQL Server CE Books Online

Sample Applications
This section describes the sample applications that are included with Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL
Server CE).

Sample application Description
IBuySpy Delivery .NET Framework
Application

Uses Microsoft® Visual C#™ .NET and Microsoft
Visual Basic® .NET to show best practices for
writing replication and remote data access (RDA)
applications in the .NET Framework.

Northwind Remote Salesforce
Replication Sample Application

Uses Microsoft eMbedded Visual Tools to
demonstrate how SQL Server CE can be combined
with SQL Server 2000 merge replication to form a
mobile sales route application.

Northwind Remote Salesforce
RDA Sample Application

Uses Microsoft eMbedded Visual Tools to
demonstrate how SQL Server CE and RDA can be
combined with SQL Server 2000 or SQL Server
version 7.0 to form a mobile sales route
application.

Additional eMbedded Visual
Tools Sample Applications

Uses Microsoft eMbedded Visual Tools to show
additional uses of replication, RDA, and OLE DB.

SQL Server CE Books Online

IBuySpy Delivery .NET Framework Application
IBuySpy Delivery is a sample application developed in both Microsoft® Visual C#™ .NET and Microsoft Visual Basic® .NET using
Microsoft Visual Studio® .NET. The application is robust, based on real-world scenarios, and demonstrates best practices for
developing applications for Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) in the Microsoft .NET Framework
and .NET Compact Framework. IBuySpy Delivery uses merge replication and remote data access (RDA) of SQL Server 2000, and
highlights the new data access features of SQL Server CE: upload only and index pull capabilities, parameterized queries, and the
ADO.NET framework for compact devices.

IBuySpy Delivery builds on the foundation provided by IBuySpy. IBuySpy, a fictitious producer of consumer espionage products, is
showcased in the IBuySpy ASP.NET-based application at this Microsoft Web site. IBuySpy Delivery extends the IBuySpy business
model of selling products over the Internet to delivering these products. The IBuySpy Delivery application assists delivery drivers
in fulfilling their orders at remote sites. When you install IBuySpy Delivery, you install modified versions of the IBuySpy database
and Web application, and the code specific to the IBuySpy Delivery application.

The following topics describe the setup procedure, design, and sample code for the IBuySpy Delivery sample application:

Setup Instructions for the IBuySpy Delivery Application
IBuySpy Delivery Application Design
IBuySpy Delivery Sample Code

http://go.microsoft.com/fwlink/?LinkId=8501

SQL Server CE Books Online

Setup Instructions for the IBuySpy Delivery Application
Before you can run and examine the code for the IBuySpy Delivery sample application, several components and tools must be
installed.

Important Existing installations of IBuySpy will be overwritten. IBuySpy Delivery only supports a single-server
configuration; therefore, all components and tools must be installed on a single computer.

Following the installation and configuration of the items listed in the following prerequisites section, you can view the application
on any device running Microsoft® Windows® Powered Pocket PC 2002 or by using a software emulator. The Pocket PC 2002
emulator comes with the installation of Microsoft Visual Studio® .NET. The emulator simulates the screens and behavior of a
Pocket PC 2002-based device.

Important Sample applications should not be connected to or used with your production Microsoft SQL Server™
database without the permission of the system administrator. In fact, system administrator privileges are required for
parts of this application installation.

Prerequisites for Viewing the IBuySpy Delivery Application

In addition to being familiar with Microsoft Visual Basic® .NET and Visual C#™, to use IBuySpy Delivery you must install or verify
the installation of the following items on the development system:

Microsoft Visual Studio .NET
Microsoft Visual Studio .NET Compact Framework
Microsoft .NET Framework version v1.0.3705
Microsoft SQL Server 2000 with Service Pack 1 or higher
Microsoft SQL Server 2000 Windows CE Edition (SQL Server CE). SQL Server CE is included with the .NET Compact
Framework
Microsoft Internet Information Services (IIS) 4.0 or later
SQL Server CE Server Tools

For more information on installation, see Installing SQL Server CE.

Installing the IBuySpy Delivery Application

After the prerequisite components and tools are installed, you can begin the installation process for IBuySpy Delivery. After the
installation is complete, you can begin using the IBuySpyDelivery application on the Windows CE-based device and browsing the
IBuySpy Web site. The IBuySpy application is located on the device in \Program Files\IBuySpyDelivery\Client. The IBuySpy Web
site is located on the computer running IIS at http://localhost/StoreCSVS/Default.aspx. (You can also use the computer name or IP
address instead of localhost.)

There are two versions of the IBuySpy application: a Visual C# version and a Visual Basic .NET version. The Visual C# version of
the Visual Studio .NET project for the device application is located in \Program Files\IBuySpyDelivery\Client\Cs; the Visual Basic
.NET version is located in \Program Files\IBuySpyDelivery\Client\VB.

To install the IBuySpy Delivery sample application

1. Run IBuySpyDelivery.exe. The default location of the file is \Program Files\Microsoft Visual Studio .NET
2003\CompactFrameworkSDK\v1.0.5000\Samples\PocketPC\VB\IBuySpyDelivery. IBuySpyDelivery.exe is a self-extracting
executable that creates a directory tree at the default location of \Program Files\IBuySpyDelivery and copies into this tree
the modified IBuySpy Store Web site source code and Visual Studio .NET project, and the IBuySpy Delivery source code and
Visual Studio .NET project.

2. After copying the files, IBuySpyDelivery.exe launches a configuration file (Install.hta) that starts Internet Explorer. Internet
Explorer displays Web pages that configure the computer running IBuySpy Delivery. To manually start Install.hta (to
reconfigure the system after installation, for example), navigate to the directory in which IBuySpyDelivery is installed and
then double-click Install.bat.

Note If the configuration file fails to open Internet Explorer, you might need to restart the computer.

3. Follow the series of Web pages to complete the installation.

To manually configure the system, on the configuration screen, select Skip (Configure Manually).

Configuring M anually

When you configure manually, you perform the following tasks that the installer carries out:

Add a virtual directory (StoreCSVS) in IIS for the Web site address.
Use a Transact-SQL script (StoreDB.sql) to install a new database in SQL Server with the updated IBuySpy Delivery schema.
The Transact-SQL script also populates the database with sample data and adds settings necessary for replication to run.

Note To install and configure the database, the installer (Install.hta) assumes the user has administrator access
to the database server.

Set the ASP.NET user (created during the .NET Framework install) as an owner of the Store database.
Configure and start the SQL Server CE Server Agent (Sscesa20.dll) and the Replication Provider (Sscerp20.dll).
Configure the Distributor and the Publisher, and create a snapshot folder share and a merge replication publication
(StoreSample).

Uninstalling

1. Drop the StoreSample merge replication publication.
2. Drop the Store database from SQL Server.
3. Delete the StoreCSVS virtual directory from IIS.
4. Delete the directory in which the IBuySpy Delivery Web site and Visual Studio .NET project are installed. The default

installation path is \Program Files\IBuySpyDelivery. You might need to unregister the SQL Server CE Server Agent
(Sscesa20.dll) and the Replication Provider (Sscerp20.dll).

SQL Server CE Books Online

IBuySpy Delivery Application Design
The IBuySpy Delivery application uses Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), Microsoft SQL
Server, Microsoft Internet Information Services (IIS), and the Microsoft Visual Studio® .NET Compact Framework. The application
on the Windows CE-based device provides a user interface for a delivery driver to enter and edit information; the application
stores and retrieves this information from a local SQL Server CE database. The device communicates with SQL Server through IIS,
allowing data from the local database to be synchronized with the server database through replication and remote data access
(RDA). The IBuySpy Store Web site stores and retrieves information from the SQL Server database and allows a user to enter and
view information that is synchronized with the device.

IBuySpy Delivery Scenario

IBuySpy distributes its wide variety of products directly to consumers with a company-owned fleet of delivery trucks. Handheld
devices are used in the delivery process to tabulate delivery quantities and are a key component of the IBuySpy supply-chain
process. The handheld systems run Microsoft Powered Windows Pocket PC 2002 and SQL Server CE. When delivering an order to
a customer, an IBuySpy delivery driver unloads the merchandise and then records the customer's signature in the handheld
device.

The IBuySpy Delivery application can download delivery data from a server onto a device, manipulate the data while disconnected
from the server, and then synchronize the changes back up to the server when a connection is restored: all common real-world
scenarios. Excess inventory in the delivery truck (due to an earlier missed delivery) can also be sold during the course of a
delivery. Therefore, order-processing functionality is required on the handheld application in addition to inventory tracking and
customer listings. At the distribution branch or wherever else a connection is available, the driver's device communicates with the
computer running SQL Server, sending completed orders, and receiving updates.

IBuySpy Delivery Web Site

The IBuySpy Store Web site is included with the IBuySpy Delivery application. This Web site is almost identical to the ASP.NET-
based IBuySpy Store shopping site. The main differences are in the database schema.

You can create orders at the Web site and these orders are then transferred onto the device in keeping with the delivery driver
scenario. On the Web site you can also see the results of work performed on the device, such as viewing a signature submitted for
an order or products added to an order.

IBuySpy Delivery Database Schema

The IBuySpy Delivery application uses a modified version of the IBuySpy database schema to support additional features of the
application. In addition to the seven tables in the IBuySpy schema: Orders, OrderDetails, Customers, Products, Categories,
ShoppingCart, and Reviews; the IBuySpy Delivery schema includes the Settings table.

The IBuySpy Delivery application also modifies two tables and adds a foreign key relationship:

The Signature column is added to the Orders table to store bitmap images of customer signatures recorded by delivery
drivers through their handheld devices. The Status column is added for tracking the delivery status of orders. This status
value is used to determine whether there is excess inventory for additional point of delivery sales. For more information, see
Inventory Control.
Six columns are added to the Customers table: Address, City, State, Zip, Phone, and DriverID (which is used to determine
which customer's orders a specific driver delivers).
A foreign key relationship is added between the OrderDetails table and the Products table to ensure that orders are not
created for products that do not exist.

The Settings table is not synchronized with the SQL Server data store. This table exists only on the handheld device and contains
information necessary for the device to connect to the server.

The Reviews table is not downloaded to the device to minimize the database size on the device (also, reading and entering
reviews on products is of minimal relevance at the point of delivery). The ShoppingCart table is also excluded from the device
because drivers cannot create new orders on the handheld application; they can only add items to existing orders.

The remaining five tables (Customers, Order, OrderDetails, Products, and Categories) are downloaded to the device. To keep
database size on the device to a minimum and to ensure that drivers see only relevant data, each delivery driver receives
information specific only to his or her customers. During synchronization between the device and the server database, the
information is filtered by the DriverID column in the Customers table; therefore, the records in each of the tables on the local
database contain a targeted subset of the records in the entire database.

See Also

IBuySpy Delivery Sample Code

SQL Server CE Books Online

IBuySpy Delivery Application Controls
IBuySpy Delivery Application Controls

The IBuySpy Delivery application consists of five custom controls embedded into a single Windows form for a smart device
application. The single Windows form and multiple control architecture are used to modularize code. All controls use the new
index pull capability when synchronizing with the Microsoft® SQL Server™ data store and take advantage of parameterized
queries.

The controls are:

Configuration Control
Customers Control
Orders Control
Inventory Control
Signature Control

The form displays the following elements on all controls:

DriverID field

This field indicates which delivery driver's data partition is currently loaded on the device.

A standard navigation menu

This menu allows changing between the Customer, Inventory, and Configuration controls as well as exiting the
application.

A set of buttons specific to each control

These buttons dictate a preferred flow within the application. The navigation menu enables navigating freely among the
controls, but the preferred flow must be followed to commit changes to an order.

A Microsoft .NET logo

See Also

IBuySpy Delivery Sample Code

SQL Server CE Books Online

Configuration Control
Configuration Control

The Configuration control is used to initialize the device and is always loaded first; the standard navigation bar is unavailable
until the steps on the configuration control are completed. To begin (as shown in the following illustration), in the Server Name
field, enter the path to an instance of Microsoft® SQL Server™ 2000.

Tap Next to direct the application to connect to the specified data store. The application retrieves all the unique driver ID records
from the Customers table using remote data access (RDA). The data is stored in the temporary local database DriverIDs. This
database contains only driver ID records and is not used to store any other data. As shown in the following illustration, the Server
Name field is unavailable. To enable the Server Name field, tap Back. This allows you to specify another instance of SQL Server
to connect to if, for example, the correct driver ID is not found.

As shown in the following illustration, after an instance of SQL Server and a driver ID are selected, the Sync Method combo box
displays the two available synchronization methods: Replication and RDA. The Driver ID field is unavailable. To select a different
driver ID, tap Back to enable the Driver ID field. Tap Finish to select one of the synchronization methods and to begin a
communication session with the computer running SQL Server.

All data access code is contained in the class IBuySpyData, including the methods that perform replication and RDA
synchronization with the SQL Server database: ReplSync() and RDASync(). The RDASync() and ReplySync() methods both
perform bidirectional and upload-only data synchronization. The RDASync() method also downloads indexes along with data
during bidirectional synchronization, demonstrating the new index pull capabilities. For more information about the
IBuySpyData class and its methods, see IBuySpy Delivery Sample Code.

After synchronization occurs through replication or RDA, the database running on the handheld device (IBuySpyStore.sdf)
contains a subset of the records in the SQL Server database. The SQL Server database is filtered on the DriverID column in the
Customers table, and the device receives only those records that correspond to the driver ID specified during configuration.

The values specified during the configuration process (Server Name, Driver ID, and Sync Method) are stored in the local
Settings table. When IBuySpy Delivery is first started, the application checks whether the local database exists and, if so, uses the
values stored in the Settings table to provide default values for the configuration control.

After synchronization is complete, as shown in the following illustration, four buttons are available: Reset, Change Driver, Quick
Sync, and Full Sync. The Sync Method field is unavailable. The standard navigation buttons are active (except for
Configuration because this control is currently loaded) and the value for the driver ID is displayed., Tapping Full Sync and
Quick Sync result in different actions, depending on whether replication or RDA is being used. Before quick synchronization can
be used for the first time, you must first perform a full synchronization.

Synchronization method Quick synchronization
action

Full synchronization
action

RDA Push Push, drop, pull
Replication Upload-only Bidirectional sync

To change the value for the driver ID, tap Change Driver. This results in the download of a new subset of data from the SQL
Server database. Tapping Change Driver opens a message box with the warning: "You are about to change the Driver ID.
Selecting a new Driver ID will cause a synchronization to occur." The Driver ID combo box is enabled and any change causes the
subscription at the SQL Server CE database to be reinitialized after first conducting an upload-only transfer to SQL Server.

Tapping Reset also first opens a message box with the warning: "You are about to reset all configuration settings. Continuing will
discard all changes." The local database in Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) is then deleted,
returning the device to an uninitialized state in which Server Name, Driver ID, and Sync Method are no longer set.

A sample copy of the IBuySpyStore.sdf SQL Server CE database is included with the IBuySpy Delivery Visual Studio® .NET project.
When IBuySpyStore.sdf is copied onto the device, the configuration steps listed above do not have to be completed before you
can begin using the IBuySpy Delivery application. All features of the IBuySpy Delivery application will be available except for
synchronization using replication. To use replication, you must complete all configuration steps listed above.

The default location of the Visual Studio .NET project is \Program Files\IBuySpyDelivery\Client (and then \VB or \Cs, depending on
which version is installed). IBuySpyStore.sdf can be copied onto the device by editing the properties of this file in Visual Studio
.NET and changing the Build Action from None to Content. To change the Build Action, right click on the IBuySpyStore.sdf file in
the Solutions Explorer and select Properties. In the Properties window, click on Build Action and select Content from the drop-
down box.

SQL Server CE Books Online

Customers Control
Customers Control

The Customers control accesses the Customers database table. When the Customers control is first created, the
LoadCustomer() method is executed to load the Customers database table into memory as a data set object. A similar method,
LoadOrders(), is also called; it loads each customer's order information from the Orders table into a data table object. Use the
Company drop-down box to navigate between customers assigned to delivery routes. Changing a company name triggers the
cboCustomers_SelectedIndexChanged() method, which refreshes the screen with the appropriate address, orders, and status
information for that company. The Address field is not editable. The application is designed so that a customer's address cannot
be changed from the device. The Orders list box displays all records in the Orders table for the current customer. Selecting a
specific order number updates the Status list box with the current status value: Pending, Delivered, or Failed. Marking an order
Failed makes the products in that order available for point of delivery purchases (whereas other products are reserved for their
designated customers). In the database, the Status value is stored as a small integer with 0 representing failed, 1 for delivered, and
2 for pending. Users can toggle the value of the Status field from Failed to Pending by tapping the Set Failed or Set Pending
button, respectively. Orders are automatically set to a status of Delivered after a signature has been captured and saved for an
order. Delivered orders cannot be modified in any way.

The names in the Company field are ordered by the value in the Status list box. Customers with orders pending are listed first,
followed by delivered orders, and then customers with failed deliveries. Selecting an order in the Orders list box and tapping
View Orders loads the Orders control and displays information for the selected order.

See Also

IBuySpy Delivery Sample Code

SQL Server CE Books Online

Orders Control
Orders Control

The Orders control accesses the Orders and Order Details database tables and displays order information for the customer.
When the Orders control is first loaded, the LoadOrderDetails() method is executed to load the details for a selected order into
memory as a data set object. For more information on LoadOrderDetails() and other methods, see IBuySpy Delivery Sample
Code. The price displayed in Total does not change unless the customer purchases additional items at the point of delivery. The
Quantity, Price, and Subtotal fields change based on which product is currently highlighted in the Products list box, which
contains all the products in the current order. To navigate between different orders, select from the Order ID drop-down box. The
name in the Customer field, which is dependent on the current order ID, and the date are displayed. Whereas all other fields
(except for the date) are stored in the database, the values for Subtotal and Total are calculated based on quantities and prices of
products.

Tapping Add More loads the Inventory control to enable additional point-of-delivery purchases. Selecting Signature loads the
Signature control so the customer can sign for the order, thus completing the delivery.

SQL Server CE Books Online

Inventory Control
Inventory Control

The Inventory control accesses the Products and Categories database tables. By using this control, additional products can be
purchased at the point of delivery. As shown in the following illustration, the Category, Product, and Quantity drop-down list
boxes are populated based on available inventory. Products are considered available for purchase if they are referenced in an
order record for which the Status list box is set to Failed.

The Quantity drop-down box displays the available amount of a given product. Quantity includes the total amount of a product
across all the orders that have failed. The Product drop-down box shows the existing products in a given category that can be
purchased; therefore, only products with quantities greater than 1 are shown. The Category drop-down box includes all
categories that contain at least one product available for purchase.

The Price field is stored in the database, but the value of Total is calculated based on the quantity and price of the selected
product. In addition to the application's image-branding logo on every control, a different image, whose name is stored in the
Products table, is displayed for each product. The actual product image is downloaded onto the device along with the smart
device application.

Tapping Add Product adds the selected product to the order: The item is appended to the original order as a new record in the
Order Details table, and then the Orders control is loaded. Tapping Cancel also loads the Orders control, but if no item is
purchased, the original order record is unchanged.

If you arrive at the Inventory control by using the navigation buttons instead of first selecting a customer and an order, Add
Product and Cancel are unavailable.

See Also

IBuySpy Delivery Sample Code

SQL Server CE Books Online

Signature Control
Signature Control

The Signature control accesses the Orders database table. After finalizing an order (verifying products and quantities are correct
and making any point of delivery purchases), a customer can sign for the order using this control. The Signature field is the only
input field on the control, and it operates by tracking stylus movements and then converting the recorded strokes into an integer
array, which is stored in the database. This integer array is later converted into a bitmap and saved in a Web-safe image format
for display on the IBuySpy Store Web site.

Because the signature cannot be changed, the integer array is converted to a bitmap file only once. The signature images are
stored in a common directory (the default is \Program Files\IBuySpyDelivery\Server\StoreCSVS\StoreCSVS\images) and named
using the OrderID value.

When you view the signature on the Web site (at the Orders Details page), the server first checks whether the bitmap file exists. If
the file is not found, the server saves the array as a bitmap in the images\signatures directory, using the Order ID naming
convention. The Order Details page dynamically creates a link to the image using the OrderID value.

Tapping Accept saves the customer's signature and then loads the Customers control. At this point, the delivery process for the
customer is complete and the Status field for this order is set to Delivered. If the Status field is already marked Delivered, the
existing signature is displayed, and the Accept box is unavailable. Tapping Clear erases all markings from the Signature field.
Tapping Cancel loads the Orders control without saving the contents of the Signature field. An order cannot be completed
without committing a signature.

See Also

IBuySpy Delivery Sample Code

SQL Server CE Books Online

IBuySpy Delivery Sample Code
The code for the IBuySpy Delivery application is available in both Microsoft® Visual C#™ and Microsoft Visual Basic® .NET at
\Program Files\IBuySpyDelivery\Client\Cs and \Program Files\IBuySpyDelivery\Client\VB respectively. The samples in this topic
show Visual C# code, but the Visual Basic .NET code is very similar.

The sample code focuses on two classes:

IBuySpyData

This class handles all of the data access for the application, including synchronization through replication and remote data
access (RDA); and includes the following methods: ReplSync(), RdaSync(), LoadCustomers(), LoadOrders(), and
LoadOrderDetails().

Customers

This class provides the user interface and databinding code for the Customers control, and includes the method
cboCustomers_SelectedIndexChanged().

ReplSync() Method

The ReplSync() method creates a new Replication object, sets its properties, and synchronizes with the server database. Both
upload-only and bidirectional replication are supported; the value of the exchangeType parameter determines which is used.
With upload-only replication, changes made to the mobile database are sent to the server database without downloading any
new data from the server.

Sample Code for the ReplSync() Method

private void ReplSync(SyncStatus syncStatus, ExchangeType exchangeType)
{
 SqlCeReplication repl = new SqlCeReplication();

 // Set Internet properties.
 //
 repl.InternetUrl = this.internetUrl;
 repl.InternetLogin = this.internetLogin;
 repl.InternetPassword = this.internetPassword;

 // Set Publisher properties.
 //
 repl.Publisher = this.serverName;
 repl.PublisherDatabase = this.publisherDatabase;
 repl.Publication = this.publication;

 // Set Publisher security properties.
 //
 repl.PublisherSecurityMode = this.publisherSecurityMode;
 repl.PublisherLogin = this.publisherLogin;
 repl.PublisherPassword = this.publisherPassword;

 // Set Subscriber properties.
 //
 repl.SubscriberConnectionString = this.localConnString;
 repl.Subscriber = this.subscriber;

 // Add dynamic filter (filter by driver IDs).
 //
 repl.HostName = this.driverID.ToString();

 // Bidirectional or upload-only?
 //
 repl.ExchangeType = exchangeType;

 try
 {
 if (SyncStatus.InitSync == syncStatus)
 {
 // Create the local database subscription.
 //

 repl.AddSubscription(AddOption.CreateDatabase);
 }

 if (SyncStatus.ReinitSync == syncStatus)
 {
 // If the driver ID has been changed, reinitialize the subscription.
 // Set the uploadBeforeReInit to true so that changes in the subscription
database
 // are uploaded to the Publisher before the snapshot is applied to the
subscription database.
 //
 repl.ReinitializeSubscription(true);
 }

 // Synchronize to the SQL Server 2000 database to populate the local subscription
database.
 //
 repl.Synchronize();
 }
 finally
 {
 // Dispose of the Replication object.
 //
 repl.Dispose();
 }
}

RDASync() Method

Similar to replication, the RDASync() method creates a new RDA object, sets its properties, and synchronizes with the server
database. Both upload-only and bidirectional RDA are supported; the value of the exchangeType parameter determines which is
used. With upload-only RDA synchronization, changes made to the mobile database are sent to the server database without
downloading any new information from the server. During bidirectional RDA synchronization, indexes are also downloaded along
with data onto the device database demonstrating the new index pull functionality.

Sample Code for the RDASync() Method

private void RdaSync(SyncStatus syncStatus, ExchangeType exchangeType)
{
 string sqlCmd;

 SqlCeRemoteDataAccess rda = new SqlCeRemoteDataAccess();

 // Set RDA properties.
 //
 rda.LocalConnectionString = this.localConnString;
 rda.InternetUrl = this.internetUrl;
 rda.InternetLogin = this.internetLogin;
 rda.InternetPassword = this.internetPassword;

 try
 {
 if (SyncStatus.InitSync == syncStatus)
 {
 // Create the local database.
 //
 SqlCeEngine en = new SqlCeEngine(this.localConnString);
 en.CreateDatabase();
 }
 else
 {
 // Push (upload) the Orders table.
 // Columns: All.
 //
 rda.Push("Orders", this.remoteConnString);

 // Push (upload) the OrderDetails table.
 // Columns: All.
 //
 rda.Push("OrderDetails", this.remoteConnString);

 // If this is upload-only (Quick Sync), then return.
 //
 if (ExchangeType.Upload == exchangeType)
 {
 return;
 }

 // Open the connection to the local database to drop the table.
 // To perform a pull (download), first drop the local database tables.
 //
 if (ConnectionState.Closed == cnIBuySpy.State)
 {
 cnIBuySpy.Open();
 }

 // Drop the Customers table if it exists.
 //
 if (DoesTableExist("Customers"))
 {
 DropTable("Customers");
 }

 // Drop the Orders table if it exists.
 //
 if (DoesTableExist("Orders"))
 {
 DropTable("Orders");
 }

 // Drop the OrderDetails table if it exists.
 //
 if (DoesTableExist("OrderDetails"))
 {
 DropTable("OrderDetails");
 }

 // Drop the Products table if it exists.
 //
 if (DoesTableExist("Products"))
 {
 DropTable("Products");
 }

 // Drop the Categories table if it exists.
 //
 if (DoesTableExist("Categories"))
 {
 DropTable("Categories");
 }

 // Close the database connection.
 //
 if (ConnectionState.Open == cnIBuySpy.State)
 {
 cnIBuySpy.Close();
 }
 }

 // Pull (download) the Customers table.
 // Columns: All.
 // Index: All. The RdaTrackOption.TrackingOffWIthIndexes parameter specifies that
indexes are downloaded from the server to the device (index pull).
 // Tracking: off.
 //
 sqlCmd = String.Format(@"SELECT CustomerID, FullName, EmailAddress, Password,
Address, City, Region, Zip, Phone, DriverID FROM Customers WHERE DriverID = {0}",
this.driverID);
 rda.Pull("Customers", sqlCmd, this.remoteConnString,
RdaTrackOption.TrackingOffWithIndexes);

 // Pull (download) the Orders table.
 // Columns: All.

 // Index: All.
 // Tracking: on.
 //
 sqlCmd = String.Format(@"SELECT OrderID, CustomerID, OrderDate, ShipDate, Status,
Signature FROM Orders WHERE CustomerID IN (SELECT CustomerID FROM Customers WHERE
DriverID = {0})", this.driverID);
 rda.Pull("Orders", sqlCmd, this.remoteConnString,
RdaTrackOption.TrackingOnWithIndexes);

 // Pull (download) the OrderDetails table.
 // Columns: All.
 // Index: All.
 // Tracking: on.
 //
 sqlCmd = String.Format(@"SELECT OrderID, ProductID, Quantity, UnitCost FROM
OrderDetails WHERE OrderID IN (SELECT OrderID FROM Orders AS O JOIN Customers AS C ON
O.CustomerID = C.CustomerID WHERE C.DriverID = {0})", this.driverID);
 rda.Pull("OrderDetails", sqlCmd, this.remoteConnString,
RdaTrackOption.TrackingOnWithIndexes);

 // Pull (download) the Products table.
 // Columns: All.
 // Index: All.
 // Tracking: off.
 //
 sqlCmd = @"SELECT ProductID, CategoryID, ModelNumber, ModelName, ProductImage,
UnitCost, Description FROM Products";
 rda.Pull("Products", sqlCmd, this.remoteConnString,
RdaTrackOption.TrackingOffWithIndexes);

 // Pull (download) the Categories table.
 // Columns: All.
 // Index: All.
 // Tracking: off.
 //
 sqlCmd = @"SELECT CategoryID, CategoryName FROM Categories";
 rda.Pull("Categories", sqlCmd, this.remoteConnString,
RdaTrackOption.TrackingOffWithIndexes);
 }
 finally
 {
 // Dispose of the RemoteDataAccess object.
 //
 rda.Dispose();
 }
}

LoadCustomers(), LoadOrders(), and LoadOrderDetails() Methods

These methods load data tables with data from tables in the local database. The data table name matches the table name in the
local database, for example, Customers. In addition to data sets and data tables, these methods demonstrate the use of data
adapters in Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE). Parameterized queries are used in the
LoadOrders() method.

Sample Code for the LoadCustomers() Method

internal DataTable LoadCustomers()
{
 if (null == this.dsCustomerOrders)
 {
 // Creates a new dataset if needed. The same dataset is also used to hold data
from the Orders table.
 //
 this.dsCustomerOrders = new DataSet("CustomerOrders");
 }
 else
 {
 DataTable dtCustomers = dsCustomerOrders.Tables["Customers"];
 if (null != dtCustomers)
 {
 // Clear the Customers datatable if it already exists.

 //
 dtCustomers.Clear();
 }
 }

 if (null == this.daCustomers)
 {
 // Create a SqlCeDataAdapter to populate the Customers dataset.
 //
 this.daCustomers = new SqlCeDataAdapter(@"SELECT CustomerID, FullName, Address,
City, Region, Zip, Phone " +
 @"FROM Customers " +
 @"ORDER BY FullName",
 cnIBuySpy);
 }

 // Populate the Customers dataset with data from the Customers table in the local
database.
 //
 daCustomers.Fill(dsCustomerOrders, "Customers");

 return dsCustomerOrders.Tables["Customers"];
}

Sample Code for the LoadOrders() Method

internal DataTable LoadOrders()
{
 if (null == dsCustomerOrders)
 {
 // Creates a new dataset if needed. The same dataset is also used to hold data
from the Customers table.
 //
 dsCustomerOrders = new DataSet("CustomerOrders");
 }
 else
 {
 DataTable dtOrders = dsCustomerOrders.Tables["Orders"];
 if (null != dtOrders)
 {
 // Clear the Orders datatable if it already exists.
 //
 dtOrders.Clear();
 }
 }

 if (null == daOrders)
 {
 // Create a SqlCeDataAdapter to populate the Orders dataset.
 //
 daOrders = new SqlCeDataAdapter(@"SELECT OrderID, CustomerID, Status, OrderDate,
ShipDate " +
 @"FROM Orders " +
 @"ORDER BY OrderID",
 cnIBuySpy);

 daOrders.UpdateCommand = new SqlCeCommand();
 daOrders.UpdateCommand.Connection = cnIBuySpy;

 // Change the Status field.
 //
 daOrders.UpdateCommand.CommandText = @"UPDATE Orders SET Status = ?, ShipDate = ?
WHERE (OrderID = ?)";

 // Set the UpdateCommand parameters for the Status field.
 //
 System.Data.SqlServerCe.SqlCeParameter paramStatus = new
System.Data.SqlServerCe.SqlCeParameter();
 paramStatus.ParameterName = "@Status";
 paramStatus.SqlDbType = System.Data.SqlDbType.TinyInt;
 paramStatus.Size = 1;
 paramStatus.SourceColumn = "Status";

 daOrders.UpdateCommand.Parameters.Add(paramStatus);

 // Set the UpdateCommand parameters for the ShipDate field.
 //
 System.Data.SqlServerCe.SqlCeParameter paramShipDate = new
System.Data.SqlServerCe.SqlCeParameter();
 paramShipDate.ParameterName = "@ShipDate";
 paramShipDate.SqlDbType = System.Data.SqlDbType.DateTime;
 paramShipDate.Size = 8;
 paramShipDate.SourceColumn = "ShipDate";
 daOrders.UpdateCommand.Parameters.Add(paramShipDate);

 // Set the UpdateCommand parameters for the OrderID field. To ensure that the
search finds
 // the original record in the database, the Original data row version should be
used
 // within the WHERE clause when performing a search.
 //
 System.Data.SqlServerCe.SqlCeParameter paramOrderID = new
System.Data.SqlServerCe.SqlCeParameter();
 paramOrderID.ParameterName = "@Original_OrderID";
 paramOrderID.SqlDbType = System.Data.SqlDbType.Int;
 paramOrderID.Size = 4;
 paramOrderID.IsNullable = false;
 paramOrderID.Precision = 0;
 paramOrderID.Scale = 0;
 paramOrderID.SourceColumn = "OrderID";
 paramOrderID.SourceVersion = System.Data.DataRowVersion.Original;
 daOrders.UpdateCommand.Parameters.Add(paramOrderID);
 }

 // Populate the Orders dataset with data from the Orders table in the local database.
 //
 daOrders.Fill(dsCustomerOrders, "Orders");

 return dsCustomerOrders.Tables["Orders"];
}

Sample Code for the LoadOrderDetails() Method

internal DataTable LoadOrderDetails(int orderID)
{
 if (null == dsCustomerOrders)
 {
 // Create a new dataset if needed.
 //
 dsCustomerOrders = new DataSet("CustomerOrders");
 }
 else
 {
 DataTable dtOrderDetails = dsCustomerOrders.Tables["OrderDetails"];
 if (null != dtOrderDetails)
 {
 // Clear the OrderDetails datatable if it already exists.
 //
 dtOrderDetails.Clear();
 }
 }

 if (null == daOrderDetails)
 {
 // Create a SqlCeDataAdapter to populate the OrderDetails dataset.
 //
 daOrderDetails = new SqlCeDataAdapter();

 // Create a select command to select order details information from the
OrderDetails and
 // Products tables in the local database.
 //
 daOrderDetails.SelectCommand = this.cnIBuySpy.CreateCommand();
 daOrderDetails.SelectCommand.CommandText = @"SELECT O.OrderID, O.ProductID,
P.ModelName, O.Quantity, O.UnitCost, O.Quantity*O.UnitCost AS Total " +

 @"FROM OrderDetails AS O JOIN
Products AS P " +
 @"ON O.ProductID = P.ProductID " +
 @"WHERE O.OrderID = ?";

 // Set the SelectCommand parameters for the OrderID field.
 //
 SqlCeParameter paramOrderID1 = new SqlCeParameter();
 paramOrderID1.ParameterName = "@Original_OrderID";
 paramOrderID1.SqlDbType = System.Data.SqlDbType.Int;
 paramOrderID1.Size = 4;
 paramOrderID1.SourceColumn = "OrderID";
 paramOrderID1.Value = -1;
 paramOrderID1.SourceVersion = System.Data.DataRowVersion.Original;
 daOrderDetails.SelectCommand.Parameters.Add(paramOrderID1);

 // Create an UpdateCommand to update the OrderDetails table in the local
database.
 //
 daOrderDetails.UpdateCommand = this.cnIBuySpy.CreateCommand();
 daOrderDetails.UpdateCommand.CommandText = @"UPDATE OrderDetails " +
 @"SET Quantity = ?, UnitCost = ? " +
 @"WHERE (OrderID = ? AND ProductID =
?)";

 // Set the UpdateCommand parameters for the Quantity field.
 //
 SqlCeParameter paramQuantity2 = new SqlCeParameter();
 paramQuantity2.ParameterName = "@Quantity";
 paramQuantity2.SqlDbType = System.Data.SqlDbType.Int;
 paramQuantity2.Size = 4;
 paramQuantity2.SourceColumn = "Quantity";

 // Set the UpdateCommand parameters for the UnitCost field.
 //
 SqlCeParameter paramUnitCost2 = new SqlCeParameter();
 paramUnitCost2.ParameterName = "@UnitCost";
 paramUnitCost2.SqlDbType = System.Data.SqlDbType.Money;
 paramUnitCost2.SourceColumn = "UnitCost";

 // Set the UpdateCommand parameters for the OrderID field.
 //
 SqlCeParameter paramOrderID2 = new SqlCeParameter();
 paramOrderID2.ParameterName = "@Original_OrderID";
 paramOrderID2.SqlDbType = System.Data.SqlDbType.Int;
 paramOrderID2.Size = 4;
 paramOrderID2.SourceColumn = "OrderID";
 paramOrderID2.SourceVersion = System.Data.DataRowVersion.Original;

 // Set the UpdateCommand parameters for the ProductID field.
 //
 SqlCeParameter paramProductID2 = new SqlCeParameter();
 paramProductID2.ParameterName = "@Original_ProductID";
 paramProductID2.SqlDbType = System.Data.SqlDbType.Int;
 paramProductID2.Size = 4;
 paramProductID2.SourceColumn = "ProductID";
 paramProductID2.SourceVersion = System.Data.DataRowVersion.Original;

 daOrderDetails.UpdateCommand.Parameters.Add(paramQuantity2);
 daOrderDetails.UpdateCommand.Parameters.Add(paramUnitCost2);
 daOrderDetails.UpdateCommand.Parameters.Add(paramOrderID2);
 daOrderDetails.UpdateCommand.Parameters.Add(paramProductID2);

 // Create an InsertCommand to insert data into the OrderDetails table in the
local database.
 //
 daOrderDetails.InsertCommand = this.cnIBuySpy.CreateCommand();
 daOrderDetails.InsertCommand.CommandText = @"INSERT INTO OrderDetails (OrderID,
ProductID, Quantity, UnitCost) " +
 @"VALUES (?, ?, ?, ?)";

 // Set the InsertCommand parameters for the OrderID field.

 //
 SqlCeParameter paramOrderID3 = new SqlCeParameter();
 paramOrderID3.ParameterName = "@OrderID";
 paramOrderID3.SqlDbType = System.Data.SqlDbType.Int;
 paramOrderID3.Size = 4;
 paramOrderID3.SourceColumn = "OrderID";

 // Set the InsertCommand parameters for the ProductID field.
 //
 SqlCeParameter paramProductID3 = new SqlCeParameter();
 paramProductID3.ParameterName = "@ProductID";
 paramProductID3.SqlDbType = System.Data.SqlDbType.Int;
 paramProductID3.Size = 4;
 paramProductID3.SourceColumn = "ProductID";

 // Set the InsertCommand parameters for the Quantity field.
 //
 SqlCeParameter paramQuantity3 = new SqlCeParameter();
 paramQuantity3.ParameterName = "@Quantity";
 paramQuantity3.SqlDbType = System.Data.SqlDbType.Int;
 paramQuantity3.Size = 4;
 paramQuantity3.SourceColumn = "Quantity";

 // Set the InsertCommand parameters for the UnitCost field.
 //
 SqlCeParameter paramUnitCost3 = new SqlCeParameter();
 paramUnitCost3.ParameterName = "@UnitCost";
 paramUnitCost3.SqlDbType = System.Data.SqlDbType.Money;
 paramUnitCost3.SourceColumn = "UnitCost";

 daOrderDetails.InsertCommand.Parameters.Add(paramOrderID3);
 daOrderDetails.InsertCommand.Parameters.Add(paramProductID3);
 daOrderDetails.InsertCommand.Parameters.Add(paramQuantity3);
 daOrderDetails.InsertCommand.Parameters.Add(paramUnitCost3);
 }

 this.daOrderDetails.SelectCommand.Parameters["@Original_OrderID"].Value = orderID;

 // Populate the OrderDetails dataset with data from the OrderDetails table in the
local database.
 //
 this.daOrderDetails.Fill(this.dsCustomerOrders, "OrderDetails");

 return this.dsCustomerOrders.Tables["OrderDetails"];
}

cboCustomers_SelectedIndexChanged() Method

The cboCustomers_SelectedIndexChanged() method populates a combo box that allows a driver to select different customers.
If the driver changes customers, new customer data is displayed. This method demonstrates how to bind user controls (combo
boxes, labels, and so on) to data objects (data tables and data views).

Sample Code for the cboCustomers_SelectedIndexChanged() Method

private void cboCustomers_SelectedIndexChanged(object sender, System.EventArgs e)
{
 if (0 <= this.cboCustomers.SelectedIndex &&
 this.customerID != Convert.ToInt32(this.cboCustomers.SelectedValue))
 {
 DataRowView row = null;

 // If the current order has been modified in any way and the user selects a
different customer,
 // the user's changes are discarded: The CustomerOrders and Inventory datasets are
reset.
 //
 if (this.dataIBuySpy.HasChanges())
 {
 if (DialogResult.OK == MessageBox.Show(String.Format("You have modified order
{0}. Switching customers will discard all changes.", this.orderID),
 "IBuySpy Delivery",
 MessageBoxButtons.OKCancel,

 MessageBoxIcon.Asterisk,
 MessageBoxDefaultButton.Button1))
 {
 this.dataIBuySpy.ResetOrderDetails();
 }
 else
 {
 this.cboCustomers.SelectedValue = this.customerID;

 return;
 }
 }

 // Set the current binding position.
 //
 BindingContext[dtCustomers].Position = this.cboCustomers.SelectedIndex;

 // Load the selected customer information from the Customer datatable.
 //
 row = (DataRowView)BindingContext[dtCustomers].Current;

 this.customerID = Convert.ToInt32(row["CustomerID"]);

 // Displays the customer's address information.
 //
 this.lblAddressValue1.Text = row["Address"].ToString();
 this.lblAddressValue2.Text = String.Format(@"{0}, {1} {2}", row["City"],
row["Region"], row["Zip"]);
 this.lblAddressValue3.Text = row["Phone"].ToString();

 // Set the data viewer to filter by the selected customer.
 //
 this.dvOrders.RowFilter = String.Format("CustomerID = '{0}'", this.customerID);

 UpdateOrderStatus();
 }
}

SQL Server CE Books Online

eMbedded Visual Tools Applications
The Microsoft® eMbedded Visual Tools-based samples consist of two primary applications and four smaller applications for use
with Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE). The sample applications are installed by selecting
Development Tools during setup.

The primary applications are the Northwind Remote Salesforce applications. These larger applications are based on the
Northwind sample database in SQL Server and demonstrate a range of development tasks in eMbedded Visual Tools, including
the use of replication and remote data access (RDA), and interface development. The examples demonstrate differences in
administration, coding, and functionality between RDA and replication. Replication tends to be server-code focused and includes
automatic conflict handling and identity range management. RDA tends to be client-code focused, does not include conflict
resolution, and requires manual identity range management.

The smaller applications focus on more specific areas of functionality, such as how to start replication and RDA or how to use OLE
DB to create and interact with a SQL Server CE database. Before you use the sample applications, see Setup Instructions for
eMbedded Visual Tools Applications.

The following table shows the sample applications and their locations.

Sample application Location
Northwind Remote Salesforce Replication
Sample Application

C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\Northwind_Repl

Northwind Remote Salesforce RDA
Sample Application

C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\Northwind_Rda

Replication and Remote Data Access
eMbedded Visual Basic Sample
Application

C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\eVBReplRdaPPC

Replication and Remote Data Access
eMbedded Visual C++ Sample Application

C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVC\eVCReplRdaHPC

Client Store and Remote Data Access
Simple Sample Application

C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\SimpleRDA

OLE DB Sample Application C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVC\NorthwindOleDb

SQL Server CE Books Online

Setup Instructions for eMbedded Visual Tools Applications
Before you can run and examine the code for any of the Microsoft® eMbedded Visual Tools sample applications for Microsoft
SQL Server™ 2000 Windows® CE Edition (SQL Server CE), you must have several components and tools installed. All of the
samples require Microsoft Internet Information Services (IIS) and Microsoft SQL Server with the exception of the OLE DB sample
application (OLEDBSeek). For the samples that require IIS and SQL Server, the simplest configuration is to run instances of SQL
Server and IIS on the same computer.

Important Sample applications should not be connected to or used with your production SQL Server database
without the permission of the system administrator. In fact, system administrator privileges are required for parts of
this application installation.

Following the installation and configuration of the items listed below, you can view the sample applications on any Microsoft
Windows Powered Pocket PC 2002-based device or by using an emulator with Microsoft eMbedded Visual Basic®. The Pocket PC
2002 emulator comes with the installation of the Microsoft Windows Powered Pocket PC 2002 SDK. The emulator simulates
screens and behavior of a Pocket PC 2002-based device.

Prerequisites for Using the Sample Applications

Install or verify the installation of the following items on the development system:

Microsoft eMbedded Visual Basic 3.0, included with Microsoft eMbedded Visual Tools 3.0. For more information, see Setup
Tips for eMbedded Visual Tools.
Microsoft Windows Powered Pocket PC 2002 SDK (Pocket PC 2002 SDK), available at this Microsoft Web site.
Microsoft SQL Server 2000 Service Pack 1 or higher.
Microsoft SQL Server 2000 Windows CE Edition (SQL Server CE). For more information, see Setup Tips for SQL Server CE.
Microsoft Internet Information Services (IIS) 4.0 or later. Configuration of the SQL Server CE Server Agent (Sscesa20.dll) is
required after IIS is installed. For more information, see Setup Tips for IIS and the SQL Server CE Server Agent (Sscesa20.dll).
The Northwind Remote Salesforce replication sample application requires that you configure the instance of Microsoft SQL
Server 2000 by running the SetupRepl.bat file included with the sample application. For more information, see Setup Tips
for Replication: SQL Server 2000 Configuration.

Setup Tips for eMbedded Visual Tools

To install Microsoft eMbedded Visual Tools 3.0, the Pocket PC 2002 SDK, and then Microsoft SQL Server 2000 Windows CE
Edition (SQL Server CE), follow the directions in Installing SQL Server CE. The Pocket PC 2002 emulator for Microsoft eMbedded
Visual Basic is included with the Pocket PC 2002 SDK, available at this Microsoft Web site.

Setup Tips for SQL Server CE

During the setup of Microsoft SQL Server™ 2000 Windows CE (SQL Server CE), select Development Tools and Server Tools.
Microsoft ActiveX® Data Objects for Windows CE 3.1 (ADOCE) is installed with Development Tools. Installing Server Tools
makes the SQL Server CE Server Agent (Sscesa20.dll), Sscerp20.dll, and MDAC 2.6 available for connectivity.

Setup Tips for IIS and the SQL Server CE Server Agent (Sscesa20.dll)

Pulling data from a Microsoft SQL Server database to a SQL Server CE database with replication or remote data access (RDA)
requires:

Configuration of Microsoft Internet Information Services (IIS).
Creation of a virtual directory.
Configuration of NTFS access permissions for the SQL Server CE Server Agent (Sscesa20.dll) and IIS content folder.

You can perform these steps manually; however, it is strongly recommended that you use the SQL Server CE Connectivity
Management utility to configure the computer running IIS, including NTFS access permissions.

You must install SQL Server CE Server Tools on the computer running IIS. After SQL Server CE Server Tools is installed, you are
prompted to start the SQL Server CE Virtual Directory Creation Wizard. After you have successfully completed the wizard, the
system is properly configured.

If you have installed SQL Server CE Server Tools but chose not to start the wizard, you can start the wizard manually.

http://go.microsoft.com/fwlink/?LinkId=8495
http://go.microsoft.com/fwlink/?LinkId=8495

To start the SQL Server CE Virtual Directory Creation Wizard

1. On the Start menu, point to Programs/Microsoft SQL Server CE 2.0, and then click Configure Connectivity Support in
IIS.

2. In the right pane, double-click Create a Virtual Directory.

For more information about the SQL Server CE Virtual Directory Creation Wizard and the SQL Server CE Connectivity
Management utility, see Using Connectivity Tools.

Note For applications using replication or RDA, the name of the server running IIS, the virtual directory, and the SQL
Server CE Server Agent (Sscesa20.dll) must be specified as part of the InternetURL property for connectivity (for
example, http://www.northwindtraders.com/sqlce20/sscesa20.dll). The Northwind Remote Salesforce sample
applications include a text box on the first screen of each application in which to enter this information.

Setup Tips for Replication: SQL Server 2000 Configuration

After Microsoft® Internet Information Services (IIS) is properly configured, you can enable Microsoft SQL Server™ 2000 for
replication. The replication sample application uses a duplicated Northwind database called Nwind_SQLCE. Running the setup
script SetupRepl.bat on the computer running SQL Server 2000 creates the Nwind_SQLCE database, enables SQL Server for
replication, and creates a publication named SQLCEReplDemo.

To configure the computer running SQL Server 2000

Note If the computer running SQL Server is already configured as a Publisher/Distributor for replication and has a
snapshot folder defined with the appropriate permissions, skip Step 1 and Step 2.

1. Create a shared directory on the computer running SQL Server 2000 that will become the Publisher/Distributor. Replication
snapshot files are created in this directory by the replication process and are read by the SQL Server CE Subscriber.

2. Ensure that the IIS user specified during synchronization has read access to the shared directory. By default, the virtual
directory is configured with anonymous access; therefore, grant computername\IUSR_computername read access to the
shared directory created in Step 1.

3. Run SetupRepl.bat, located with the SQL Server CE files (C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\Northwind_REPL), according to the following usage specifications:

Usage: SetupRepl {required parms} {optional parms}

Required Arguments:
{snapshot share} - a share available for the storage of snapshot files. All
subscribers (IIS user) must be able to read from this share.
{publisher login} - Publisher user ID.
{publisher password} - Publisher password.

Optional Arguments:
{publisher} - Publisher name. Defaults to local computer.
{snapshot server name} - Defaults to Publisher name (Must be set to support named
instances).

Examples:
SetupRepl ReplSnapshot sa <password>
SetupRepl ReplSnapshot sa <password> Publisher
SetupRepl ReplSnapshot sa <password> Publisher\instance ServerName

This step installs a Publisher with a local Distributor, creates a database named Nwind_SQLCE, and populates it with initial
data that matches data in the Northwind database that ships with SQL Server. It also creates a merge publication named
SQLCEReplDemo from the Nwind_SQLCE database.

The Distributor is installed using the shared directory specified when the Setuprepl.bat file is run. This shared directory is
used as the replication snapshot folder. For example, if you call Setuprepl.bat and specify ReplSnapshot as the snapshot
shared directory, the directory for all snapshot files is \\computername\ReplSnapshot.

4. Grant the IIS user (NT_Authentication) or the SQL Server user (DB_Authentication) access to the publication access list. For
more information, see Securing the Publication.

SQL Server CE Books Online

Northwind Remote Salesforce Replication Sample Application
This sample Microsoft® eMbedded Visual Basic® application helps you understand how Microsoft SQL Server™ 2000
Windows® CE Edition (SQL Server CE) can be combined with Microsoft SQL Server 2000 and replication to form a useful mobile
sales route application. The code for the application is commented, so you can easily and freely extrapolate it for your own use.
When you select Development Tools during setup, the sample application is installed in C:\Program Files\Microsoft SQL Server
CE 2.0\Samples\eVB\Northwind_Repl. Before you use the sample application, see Setup Instructions for eMbedded Visual Tools
Applications.

The Northwind Remote Salesforce replication sample application simulates a sales representative of the Northwind Trading
Company using a Pocket PC to take orders from customers and synchronizing the new orders back to the SQL Server database.
The application demonstrates a limited set of features and functionality because the objective is to highlight the replication
connectivity model and show some of the advanced storage engine features, such as referential integrity with cascading deletes,
robust SQL DML support, and cursors.

Note To fully support both the replication and remote data access (RDA) sample applications coexisting on the server
while using ranged identity management for all identity columns, the replication sample application uses a duplicated
Northwind database called Nwind_SQLCE. This database is created when the Setuprepl.bat file is run on the server.
Although both applications use separate server databases, the application data is identical.

In a typical scenario, a sales representative uses replication to synchronize customer and order information from the SQL Server
2000 Nwind_SQLCE database to the Pocket PC. Customer and order data is stored on the Pocket PC in a SQL Server CE database.
New order information can be entered, and order history reviewed on the copy of the Nwind_SQLCE database on the Pocket PC
(called the subscription database). When connectivity becomes available, data in the SQL Server CE database can be synchronized
with the SQL Server database by using the Replication object. Because replication uses HTTP as the transport protocol,
connectivity can take the form of a network connection between the Pocket PC and SQL Server through Microsoft Internet
Information Services (IIS).

SQL Server CE Books Online

Using the Northwind Remote Salesforce Replication Sample
Application
Using the Northwind Remote Salesforce Replication Sample Application

You can run the Northwind Remote Salesforce replication sample application by using the emulator or directly on a Pocket PC if it
is connected to the development system. The following subtopics describe using the sample application:

Using the Emulator
Using the Pocket PC
Initializing the Application
Adding a New Order
Pushing Data Back to SQL Server
Resetting the Application

Using the Emulator

The Northwind Remote Salesforce replication sample application is installed by default in C:\Program Files\Microsoft SQL Server
CE 2.0\Samples\eVB\Northwind_Repl. To run the sample application, in Microsoft® eMbedded Visual Basic®, double-click the
NWindRepl.ebp project file.

By default, Pocket PC 2002 Emulation has been chosen as the run mode for this sample. To begin the sample application, on the
Run menu, click Start Debug. A Pocket PC 2002 emulator screen appears.

Using the Pocket PC

To specify a device instead of emulation for deployment, simply use the drop-down list in the toolbar in eMbedded Visual Basic,
select Pocket PC 2002 (Default Device) rather than Pocket PC 2002 Emulation, and then run the project file.

Initializing the Application

To initialize the application

1. In the SQLServer box, enter the name of the computer running Microsoft SQL Server™.
2. Enter the sa password for the instance of SQL Server, or change the User ID and supply the appropriate password.

Note The sample application defaults to SQL Server authentication. It is recommended that you first get this
configuration working and then use Integrated Windows authentication. For information about alternate
security mode, see Implementing Replication. To change the login information, you must first delete the
NorthwindRepl.sdf database file that was created.

3. In the Internet URL box, enter the path to the virtual directory you created in the SQL Server CE Virtual Directory Creation
Wizard. Use the following syntax:

http://yourserver/yourvirtualalias/sscesa20.dll

yourserver is the name of the IIS server on which you created a virtual directory. This should be the same name as the
computer running SQL Server if you are following the recommendations for using the sample applications. yourvirtualalias
is the alias of the virtual directory you created.

4. Click Initialize. A screen appears similar to the one shown in the following illustration. If you receive an error or the
processing continues for more than about a minute, reset the application. For more information, see Resetting the
Application.

The Initialize button now reads Synchronize, and the Employee Info list now contains names from the Nwind_SQLCE sample
database.

By successfully initializing the application, you created a SQL Server CE database named NorthwindRepl.sdf.

The SQLCEReplDemo publication is configured to automatically manage all identity ranges; therefore, the identity ranges for the
OrderID column in the Order table are tracked and managed for each Pocket PC. While the Nwind_SQLCE database is open,
make a note of the last OrderID number in the Orders table. You can enter new order information in Pocket PC 2002 emulation
and synchronize this new order data back to SQL Server.

Adding a New Order

To add a new order into the application, identify which employee of the Northwind Trading Company you want to impersonate. In
the Employee Info list, select a name, and then click OK. As shown in the preceding illustration, Steven Buchanan is selected. A
screen similar to the one shown in the following illustration appears. By default, the first customer in the list is displayed in the
Bill To box.

You now have access to all customers in the Northwind sample database. The tables created in the NorthwindRepl.sdf database
include:

Employees
Orders

OrderDetails
Customers
Shippers
Products

To begin an order, select the customer you want to work with from the Bill To list, and then click the Order tab. A new order
page, similar to the one shown in the following illustration, appears. In this example, the customer Around the Horn is selected.

To add items to the order, select product names from the Product list. Enter a quantity for each item by using the keypad
provided. Scroll to the right to see the extended price. To add an item in the row below the last current row displayed, click New
Item. When you have built a satisfactory order, take note of the number in the Order ID box. This is the order number that is
pushed back to SQL Server when you have a connection available. Because you are using emulation, as long as your developer
computer has a network connection to the computer running IIS and SQL Server, you always have a connection. To store the
order in the local SQL Server CE database (NorthwindRepl.sdf), click Enter Order.

To see the order history for this customer, click the Review tab.

To view order detail information, click Refresh. Scroll to the bottom of the Select Order for Detail section, and click the order
number for which you want to see details.

Pushing Data Back to SQL Server

Because SQL Server CE uses HTTP as the transport protocol, you can push data back to SQL Server through a modem, a wireless
LAN, or the local area network. To push the changed data from a SQL Server CE database back to SQL Server, on the Sync menu
at the bottom of the emulator screen, select Sync with Host. You can verify that data was transferred to SQL Server by opening
the Orders table in the Nwind_SQLCE sample database in SQL Server Enterprise Manager.

Resetting the Application

There are a number of reasons why you might want to reset the application. One, for example, is to configure alternative security
schemes. To reset the application, use Windows CE File Explorer and delete the database file NorthwindRepl.sdf in the root
directory of the device.

SQL Server CE Books Online

Northwind Remote Salesforce RDA Sample Application
This sample Microsoft® eMbedded Visual Basic® application helps you understand how Microsoft SQL Server™ 2000
Windows® CE Edition (SQL Server CE) can be combined with Microsoft SQL Server 7.0 or SQL Server 2000 and remote data
access (RDA) to form a useful mobile sales route application. The code for the application is commented so you can easily and
freely extrapolate it. When you select Development Tools during setup, the sample application is installed in C:\Program
Files\Microsoft SQL Server CE 2.0\Samples\eVB\Northwind_RDA. Before you use the sample application, see Setup Instructions
for eMbedded Visual Tools Applications.

The Northwind Remote Salesforce RDA sample application simulates a sales representative of the Northwind Trading Company
using a Pocket PC to take orders from customers and push the new orders back to the SQL Server database. The application
demonstrates a limited set of features and functionality because the objective is to highlight the replication connectivity model
and show some of the advanced storage engine features, such as: referential integrity with cascading deletes, robust SQL DML
support, and cursors.

In a typical scenario, the sales representative uses RDA to pull customer and order information from the Northwind sample
database in either SQL Server 7.0 or SQL Server 2000 to the Pocket PC. Customer and order data is stored on the Pocket PC in a
SQL Server CE database. New order information can be entered, and order history reviewed on the copy of the Northwind
database on the Pocket PC. When connectivity becomes available, data on the SQL Server CE database can be pushed to the SQL
Server database by using the RDA Object. Because RDA uses HTTP as the transport protocol, connectivity can take the form of a
network connection between the Pocket PC and SQL Server through Microsoft Internet Information Services (IIS).

SQL Server CE Books Online

Using the Northwind Remote Salesforce RDA Sample
Application
Using the Northwind Remote Salesforce RDA Sample Application

You can run the Northwind Remote Salesforce remote data access (RDA) sample application by using the emulator or directly on
a Pocket PC if it is connected to the development system. The following subtopics describe using the sample application:

Using the Emulator
Using the Pocket PC
Initializing the Application
Adding a New Order
Pushing Data Back to SQL Server
Resetting the Application

Using the Emulator

The Northwind Remote Salesforce RDA sample application is installed by default in C:\Program Files\Microsoft SQL Server CE
2.0\Samples\eVB\Northwind_RDA. To run the sample application, in Microsoft® eMbedded Visual Basic®, double-click the
NWindRDA.ebp project file.

By default, Pocket PC 2002 Emulation has been chosen as the run mode for this sample. To begin the sample application, on the
Run menu, click Start Debug. A Pocket PC 2002 emulator screen appears.

Using the Pocket PC

To specify a device instead of emulation for deployment, use the drop-down list in the toolbar in eMbedded Visual Basic, select
Pocket PC 2002 (Default Device) rather than Pocket PC 2002 Emulation, and then run the project file.

Initializing the Application

To initialize the application for your system

1. In the SQLServer text box, enter the name of the computer running Microsoft SQL Server™.
2. Enter the sa password for the instance of SQL Server, or change the User ID and supply the appropriate password.

Note The sample application defaults to SQL Server authentication. It is recommended that you first get this
configuration working and then try Integrated Windows authentication. For information about alternative
security modes, see Implementing RDA. To change the login information, you must first delete the
NorthwindRDA.sdf database file that was created.

3. In the Internet URL text box, enter the path to the virtual directory you created with the SQL Server CE Virtual Directory
Creation Wizard. Use the following syntax:

http://yourserver/yourvirtualalias/sscesa20.dll

yourserver is the name of the IIS server on which you created a virtual directory. This should be the same name as the
computer running SQL Server if you are following the recommendations for using the sample applications. yourvirtualalias
is the alias of the virtual directory you created.

4. Click the Initialize button. A screen appears similar to the one shown in the following illustration. If you receive an error or
the processing continues for more than about a minute, reset the application. For more information, see Resetting the
Application.

The Initialize button reads Synchronize, and the Employee Info list contains names from the Northwind sample database.

By successfully initializing the application, you created a SQL Server CE database named NorthwindRDA.sdf.

If you open the Northwind sample database in SQL Server Enterprise Manager on the computer running SQL Server, you see
that the SQLCERangedIdentity table has been created. SQLCERangedIdentity is used to track individual identity ranges for the
OrderID column in the Order table for each Pocket PC 2002. While you have Northwind open, make a note of the last OrderID
number in the Orders table. You can enter new order information in the Pocket PC 2002 emulation and synchronize this new
order data with SQL Server.

Adding a New Order

To add a new order into the application, identify which employee of the Northwind Trading Company you want to impersonate. In
the Employee Info list, select a name, and then click OK. As shown in the preceding illustration, Steven Buchanan is selected. A
screen similar to the one shown in the following illustration appears. By default, the first customer in the list is displayed in the
Bill To box.

You now have access to all customers in the Northwind sample database. The tables created in the NorthwindRDA.sdf database
include:

Employees
Orders

OrderDetails
Customers
Shippers
Products

To begin an order, select the customer you want to work with from the Bill To list, and then click the Order tab. A new order
page, similar to the one shown in the following illustration, appears. In this example, the customer Around the Horn is selected.

To add items to the order, select product names from the Product list. Enter a quantity for each item by using the keypad
provided. Scroll to the right to see the extended price. To add an item in the row below the last current row displayed, click New
Item. After you have built a satisfactory order, take note of the number in the Order ID box. This is the order number pushed
back to SQL Server when you have a connection available. Because you are using emulation, as long as the development system
has a network connection to the computer running IIS and SQL Server, you always have a connection. To store the order in the
local SQL Server CE database (NorthwindRDA.sdf), click Enter Order.

To see the order history for this customer, click the Review tab.

To view order detail information, click Refresh. Scroll to the bottom of the Select Order for Detail section, and click the order
number for which you want to see details.

Pushing Data Back to SQL Server

Because SQL Server CE uses HTTP as the transport protocol, you can push data back to SQL Server through a modem, a wireless
LAN, or the local area network. To push the changed data from a SQL Server CE database back to SQL Server, on the Sync menu
at the bottom of the emulator screen, select Sync with Host. You can verify that data was transferred to SQL Server by opening
the Orders table in the Northwind sample database in SQL Server Enterprise Manager.

Resetting the Application

There are a number of reasons why you might want to reset the application, for example, to configure alternative security
schemes. To reset the application, use Windows CE File Explorer and delete the database file NorthwindRDA.sdf in the root
directory of the device.

SQL Server CE Books Online

Additional eMbedded Visual Tools Sample Applications
The four smaller sample applications described in this topic were developed by using Microsoft® eMbedded Visual Tools. The
applications are designed to demonstrate particular areas of functionality rather than representing a complete application such as
the Northwind Remote Salesforce applications. Before you use these sample applications, see Setup Instructions for eMbedded
Visual Tools Applications.

Replication and Remote Data Access Sample Applications

The Microsoft eMbedded Visual Basic® (evbReplRdaPPC) and Microsoft eMbedded Visual C++® (evcReplRdaHPC) sample
applications show how to invoke Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE) replication and remote data
access (RDA). These sample applications work essentially the same way. They display a menu that lists each of the replication and
RDA method calls. When you select one of the method calls, the application displays a form containing the properties and
parameters for that method. After you enter the values for the properties and parameters and click OK, the sample application
calls the replication or RDA method with the values you specify. This provides a simple way for you to experiment with replication
and RDA method calls.

The evbReplRdaPPC application is designed for Microsoft Windows Powered Pocket PC 2002-based devices and the Pocket PC
2002 emulator. The evcReplRdaHPC application is designed for Pocket PC 2000 and Handheld PC 2000 devices. For other
devices, you can modify the user interface of the sample application.

For more information, see the Readme files in C:\Program Files\Microsoft SQL Server CE 2.0\Samples\eVB\eVBReplRdaPPC and
C:\Program Files\Microsoft SQL Server CE 2.0\Samples\eVC\ReplRdaHPC.

Client Store and Remote Data Access Simple Sample Application

The eMbedded Visual Basic sample application (evbSimpleRDA) shows how to use SQL Server CE as a local store and connect to
SQL Server through the SQL Server CE remote data access (RDA) object model. This sample application also illustrates some basic
features of creating databases by using Microsoft ActiveX® Data Objects Extensions for Data Definition Language (DDL) and
Security (ADOXCE) and working with Microsoft ActiveX Data Objects for Windows CE 3.1 (ADOCE) recordset objects.

The sample focuses on property initialization, data synchronization, and local store querying with each activity on a separate tab
in the application window. Using this application, you can create and populate local tables based on synchronization commands
involving server objects. The newly created tables can then be inspected using local query processing and data navigation. In
addition, the application can work in a completely local mode and allows native SQL Server CE DDL and DML commands. By
using both the local and RDA synchronization functionality, you can explore the capabilities of the SQL Server CE local client
engine and RDA connectivity object.

For more information, see the Readme file in C:\Program Files\Microsoft SQL Server CE 2.0\Samples\eVB\SimpleRDA.

OLE DB Sample Application

The eMbedded Visual C++ sample application (NorthwindOleDb) shows the use of OLE DB to create and interact with a SQL
Server CE database. The application creates a database through OLE DB, creates a table, inserts data using SQL statements, and
retrieves data from the database by using IRowsetSeek.

For more information, see the Readme file in C:\Program Files\Microsoft SQL Server CE 2.0\Samples\eVC\NorthwindOleDb.

SQL Server CE Books Online

Troubleshooting
The following topics in this section provide troubleshooting information for Microsoft® SQL Server™ 2000 Windows® CE Edition
(SQL Server CE).

Topic Description
Connectivity Troubleshooting Identifies the steps to take when you encounter

connectivity issues.
SQL Server CE Errors Lists the descriptions of all SQL Server CE errors.
Finding Answers by Using Web-
based Resources

Identifies Web-based resources you can refer to
find additional troubleshooting information.

SQL Server CE Books Online

Connectivity Troubleshooting
The following table lists the tools and techniques you can use for troubleshooting connectivity issues with Microsoft® SQL
Server™ 2000 Windows® CE Edition (SQL Server CE).

Topic Description
SQL Server Security Flowchart Presents a decision-tree flowchart to help resolve

problems in SQL Server.
Windows Security Flowchart Presents a decision-tree flowchart to help resolve

problems in Windows.
Internet Information Services
Security Flowchart

Presents a decision-tree flowchart to help resolve
problems in Microsoft Internet Information
Services (IIS).

Enabling Logging by the SQL
Server CE Server Agent

Describes how to enable logging by the SQL
Server CE Server Agent for use in diagnosing
remote data access (RDA) and replication
problems.

Using Internet Explorer to Check
the IIS Configuration

Describes how to use Microsoft Internet Explorer
to verify the configuration of IIS security or the
SQL Server CE Server Agent.

Understanding Common Errors Lists common errors and their probable causes.

SQL Server CE Books Online

SQL Server Security Flowchart
Assumption:

You have verified that you entered the correct password.

See Also

Internet Information Services Security Flowchart

Windows Security Flowchart

Configuring Database Access

Configuring the Publication Access List

SQL Server CE Books Online

Windows Security Flowchart

See Also

Internet Information Services Security Flowchart

SQL Server Security Flowchart

Modifying an Existing Virtual Directory

Configuring IIS and NTFS Permissions Manually

Configuring the Snapshot Folder

SQL Server CE Books Online

Internet Information Services Security Flowchart
Assumptions:

You have verified that you entered the correct password.
You are not using a proxy server. If you are using a proxy server, see the Remote Data Access (RDA) or Replication object
properties.
If you are using Anonymous access, Microsoft® SQL Server™ and Microsoft Internet Information Services (IIS) are on the same
computer. If not, see Anonymous access on Microsoft Windows® 2000 or Anonymous access on Microsoft Windows NT® 4.0.

See Also

Windows Security Flowchart

Updating the Database of Trusted Certificate Authorities on a Windows CE-based Device

Configuring Security for Connectivity

SQL Server CE Books Online

Enabling Logging by the SQL Server CE Server Agent
The SQL Server CE Server Agent is capable of logging errors, warnings, and informational messages to a log file on the computer
running Microsoft® Internet Information Services (IIS) server. By default, logging is not available. When logging is enabled, the
Sscerepl.log file is written to the IIS virtual directory for Microsoft SQL Server™ 2000 Windows® CE Edition (SQL Server CE). The
information recorded in the log can be useful for diagnosing remote data access (RDA) or replication problems.

To enable logging by the SQL Server CE Server Agent

1. If it does not already exist, create the following registry key:

HKLM\Software\Microsoft\MSSQLSERVERCE\Transport

2. Under the HKLM\Software\Microsoft\MSSQLSERVERCE\Transport key, create a DWORD key value. The name of the
key value must begin with the local path associated with the IIS virtual directory for SQL Server CE. For example, if
Sscesa20.dll is located in the NTFS file directory C:\Inetpub\Sqlce\NorthWind, you must name the registry value
C:\Inetpub\Sqlce\NorthWind\LOGGING_LEVEL. The data value of the DWORD key must be a value between 0 and 3.
The following table describes the data values that may be assigned to the registry key value.

3. After creating the registry entry, you must restart IIS. This is essential because the SQL Server CE Server Agent reads only
the registry key when the SQL Server CE Server Agent (Sscesa20.dll) is first loaded by IIS. To restart IIS, in Internet Service
Manager, right-click the server name and select Restart IIS. If you are using IIS 4.0 on Microsoft Windows NT® 4.0, you
must restart the computer.

4. Ensure that IIS is active and that your Web site is started.

The data value contained in the registry entry controls the level of logging that the SQL Server CE Server Agent performs.

LOGGING_LEVEL value Meaning
0 Logging is not available.
1 Log errors.
2 Log errors and warnings.
3 Log errors, warnings, and informational messages.

SQL Server CE Server Agent generates very large log
files when you specify LOGGING_LEVEL 3. You should
not use this logging level under usual circumstances;
however, it is useful when you are attempting to
diagnose a problem.

For example, if the Sscesa20.dll is located in the NTFS file directory C:\Inetpub\SSCE\NorthWind, create the following registry key
value:

HKLM\Software\Microsoft\MSSQLSERVERCE\Transport
C:\Inetpub\sqlce\NorthWind\LOGGING_LEVEL 3

The key value 3 causes errors, warnings, and informational messages to be logged.

SQL Server CE Books Online

Understanding the SQL Server CE Server Agent Log
Understanding the SQL Server CE Server Agent Log

The SQL Server CE Server Agent log file contains information about each replication synchronization, and remote data access
(RDA) Push, Pull, or SubmitSQL operation. The log file, always called Sscerepl.log, uses the following abbreviations to represent
actions in replication and RDA operations:

Replication Session Control Block (RSCB)
An automatically incremented structure that uniquely identifies each client's operation.

When Sscesa20.dll is loaded, the RSCB begins at 1. Sscesa20.dll is unloaded only when Microsoft® Internet Information
Services (IIS) restarts or the computer running IIS is restarted.

Command
The following table describes the commands executed in the operation.

Command Description
OPNW Open and write to the .in/.out file (without close)
OPWC Open, write, and close the .in/.out file
OPNR Open and read the .in/.out file
PUT Write to the .in/.out file
FTCH Read data from the .in/.out file
CLOS Close the .in/.out file
SYNC Reconcile the data between the Subscriber and the Publisher
SCHK Check for the completion of the SYNC command
PULL RDA Pull operation
PUSH RDA Push operation
SQL RDA SubmitSQL operation

Thread
Is the ordinal of the active thread.

HRESULT (HR)
Is the error for the particular command.

SQL Server CE Books Online

Reading the SQL Server CE Server Agent Log Statistics
Reading the SQL Server CE Server Agent Log Statistics

The SQL Server CE Server Agent log contains statistics when LOGGING_LEVEL 3 is specified. The statistics portion of the log is
located between the opening tag (<STATS) and the closing tag (/>) of the log. Each block of statistic data reports the Microsoft®
SQL Server™ 2000 Windows® CE Edition (SQL Server CE) connectivity operations that occurred during the last 15 minutes.

Statistics is generated whenever an active request (RSCB) recognizes that 15 minutes have passed since the last report. At times
of low volume, this report may be generated less often. Statistics is generated only when an active request occurs. The statistics
report is useful in monitoring performance.

The following statistical report shows a single synchronization (merge replication):

<STATS Period_Start="2002/07/13 15:27:32" Period_Duration="954" Syncs="1" SubmitSQLs="0"
RDAPushes="0" RDAPulls="0" AVG_IN_File_Size="332" AVG_OUT_File_Size="90203"
Completed_Operations="1" Incomplete_Operations="0" Total_Sync_Thread_Time="3"
Total_Pool_Thread_Time_IN="0" Total_Pool_Thread_Time_OUT="0" Total_Sync_Queue_Time="0"
Total_Pool_Queue_Time_IN="0" Total_Pool_Queue_Time_OUT="0" />

The following table lists and describes the statistics log attributes.

Attribute Description
Period_Start Start of the STATS period (in datetime format).
Period_Duration Time that this report covers (in seconds).
Syncs Number of bidirectional replication merges

performed during this report period.
SubmitSQLs Number of remote data access (RDA)

SubmitSQL() calls during this report period.
RDAPushes Number of RDA Push() calls during this report

period.
RDAPulls Number of RDA Pull() calls during this report

period.
AVG_IN_File_Size Average size of the .in files (in bytes). Files with

an .in extension are physical files created from
the message data sent by the client.

AVG_OUT_File_Size Average size of the .out files (in bytes). Files with
an .out extension are physical files created from
the message data sent from the server.

Completed_Operations Number of Sync, SubmitSQL, RDA Push, and
RDA Pull calls that were completed during this
time period.

Incomplete_Operations Number of Sync, SubmitSQL, RDA Push, and
RDA Pull calls that started but were not
completed during this time period.

Total_Sync_Thread_Time Time that all synchronization threads (sync) took
to complete synchronization operations (in
seconds). Sync threads are members of a pool of
threads that process messages from SQL Server
CE. This statistic does not include the time it took
to transfer the messages to and from the SQL
Server CE clients.

Total_Pool_Thread_Time_IN Time required to send all data to the server (in
seconds). Comparing this attribute to
Total_Pool_Thread_Time_OUT reveals where
the greatest amount of time is spent, either
sending data to the server or sending data to the
device.

Total_Sync_Queue_Time Time that sync requests wait in the sync queue
before being processed by the server (in
seconds).

Total_Pool_Queue_Time_IN Time that messages from clients wait in the
queue before being processed by the SQL Server
CE Server Agent (in seconds).

Total_Pool_Queue_Time_OUT Time that messages from SQL Server wait before
being processed by the SQL Server CE Server
Agent (in seconds).

SQL Server CE Books Online

Using Internet Explorer to Check the IIS Configuration
You can use Microsoft® Internet Explorer to verify that you have configured the SQL Server CE Server Agent (Sscesa20.dll)
correctly. In Internet Explorer, enter the URL for the SQL Server CE Agent (for example, http://myserver/sqlce/sscesa20.dll). If the
SQL Server CE Server Agent is configured correctly, Internet Explorer displays the string: "SQL Server CE Server Agent".

You can also use Internet Explorer to verify that Microsoft Internet Information Services (IIS) security is working as you intended. If
you configured IIS to require Basic authentication, Internet Explorer should prompt you for your user name and password before
displaying a response. If you configured IIS to use Secure Sockets Layer (SSL) encryption, the URL must specify HTTPS rather than
HTTP (for example, https://myserver/sqlce/sscesa20.dll).

When you use Internet Explorer to verify IIS security, you must close and reopen Internet Explorer each time you change any IIS
security setting. Opening a new instance of Internet Explorer ensures that a new connection to IIS is established, rather than
reusing an existing connection.

SQL Server CE Books Online

Understanding Common Errors
This table lists common errors (and suggested solutions) that you might encounter when you use Microsoft® SQL Server™ 2000
Windows® CE Edition (SQL Server CE).

Native error Error numbers Solution
28037 80072EFD The user's device must have network

connectivity. For example, the device might not
have a working modem, network card, or
universal serial bus (USB) connection.

Or

Ensure that the computer running Microsoft
Internet Information Services (IIS) is available,
and that the ISP or network is functioning
properly.

28017 80004005 Ensure that the virtual directory is specified
correctly.
For example, the URL might be incorrectly
listed as http://server/ssqlce/sscesa20.dll
instead of http://server/sqlce/sscesa20.dll.

Or

The string "sscesa20.dll" must be included in
the URL.
For example, the URL might be incorrectly
listed as http://server/sqlce instead of
http://server/sqlce/sscesa20.dll.

0 80045017 The SQL Server CE Replication Provider must
have read permissions to the snapshot folder.
Read permission is needed so the SQL Server
CE Replication Provider can download the
initial subscription to the Windows CE-based
device.

The identity under which the SQL Server CE
Replication Provider runs depends upon how
IIS authentication is configured.

0 80045020 Ensure that the data type length of the column
supplied by the client is supported.

SQL Server CE supports only Unicode data
types. It converts all ANSI character data types
to their Unicode equivalent.

For example, if you subscribe to a table with a
char column of 256 characters, SQL Server CE
maps that table to a SQL Server CE ntext
column. Then, if a user inserts into the ntext
column a record that has a value larger than
256 characters, the user gets an error because
the data cannot fit into the char column at the
Publisher.

To correct this error, if you cannot change the
schema of the Publisher to avoid this type of
data type mapping, add application-level logic
to limit the number of characters that users can
enter on their devices.

28560 80040E14 The snapshot format must be set to character
mode for the publication.

25016 Ensure that no duplicate key violations have
occurred.

Such violations may occur when users insert
records into a table with an identity column.
SQL Server CE remote data access (RDA) does
not manage identity columns when a table is
pulled.

Or

Ensure that a replication publication is
configured to manage identity columns for a
table(s) in the publication.

4060 80004005 Ensure that the user ID, password, and Initial
Catalog to the OLEDBConnectionString
parameter of your RDA Pull method are
correct.

SQL Server CE Books Online

SQL Server CE Errors
The following categories of errors can be generated from Microsoft® SQL Server™ for Microsoft SQL Server 2000 Windows® CE
Edition (SQL Server CE). When SQL Server CE returns an error, use the native number of the error to look up an error description
in the following tables. Parameters are also listed in these tables. The first three parameters of an error (P0,P1,P2) are integers,
and the last three parameters (P3,P4,P5) are strings.

Note Although parameters might exist for an error, not all occurrences of the error will return parameters.

Category Range
Engine Errors 25000-27999
Replication Transport Errors 28000-28499
Client Agent Errors 28500-28799
Client Agent Warnings 28800-28999
Server Agent Errors 29000-29499
Message Protocol Errors 29500-29999
SQL Server CE Relay Errors 30000-30499
Miscellaneous Errors 39500-39999

Note If you are looking for other HRESULTs, see Oledberr.h in Microsoft ActiveX® Data Objects for Windows CE 3.1
(ADOCE), or Winerror.h and Wininet.h that are included with Microsoft Visual Studio .NET and in Microsoft eMbedded
Visual Tools. For more information about HRESULT values, search the MSDN® Library at this Microsoft Web site or
the Microsoft Knowledge Base at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=8145
http://go.microsoft.com/fwlink/?LinkId=8149

SQL Server CE Books Online

Engine Errors
Value Description Parameters Error
25001 Either the

cursor is not
on a row or
there are no
rows left.

Not applicable SSCE_M_NOCURRENTRECORD

25002 The specified
buffer size is
not valid.

P0: Buffer size
specified

SSCE_M_INVALIDBUFFERSIZE

25003 The specified
length is too
long for the
column type.

P0: Specified
length

P1: Column data
type

SSCE_M_COLUMNLENGTHTOOBIG

25004 The column
cannot be
modified.

P3: Column name SSCE_M_COLUMNNOTUPDATEABLE

25005 The column
cannot contain
null values.

Not applicable SSCE_M_NULLINVALID

25006 The operation
cannot be
performed on
the object.

Not applicable SSCE_M_INVALIDOPERATION

25007 The operation
cannot be
performed in a
transaction.

Not applicable SSCE_M_INTRANSACTION

25008 The parameter
is not valid.

P0: Numeric
parameter

P3: String
parameter

SSCE_M_INVALIDPARAMETER

25009 The path is not
valid. Check
the directory
for the
database.

P3: Path SSCE_M_INVALIDPATH

25010 The file name
is not valid.
Check the file
name for the
database.

P3: File name SSCE_M_INVALIDFILENAME

25011 The file is not a
valid database
file. An internal
error has
occurred.

P3:Databasename SSCE_M_INVALIDDATABASE

25012 An internal
error has
occurred.

Not applicable SSCE_M_UPDATENOTPREPARED

25013 The operation
is supported
only on tables
with exclusive
locks.

P3: Table name SSCE_M_TABLENOTLOCKED

25014 Access to the
system column
is denied.

Not applicable SSCE_M_SYSCOLACCESSDENIED

25015 A page cannot
be allocated.
There might
not be enough
memory on
the device.

Not applicable SSCE_M_CANTALLOCATEPAGE

25016 A duplicate
value cannot
be inserted
into a unique
index.

Not applicable SSCE_M_KEYDUPLICATE

25017 The database
file is
corrupted.

P3: Database
name

SSCE_M_DATABASECORRUPTED

25018 Failed to
obtain a lock
for a write
operation.

Not applicable SSCE_M_WRITECONFLICT

25019 Failed to
obtain a lock
for a read
operation.

Not applicable SSCE_M_READCONFLICT

25020 Failed to
obtain a lock
for a commit.

Not applicable SSCE_M_COMMITCONFLICT

25021 Failed to
obtain lock for
a read or write
operation.

Not applicable SSCE_M_SESSIONWRITECONFLICT

25022 Null keys are
not allowed on
indexes.

Not applicable SSCE_M_NULLKEYDISALLOWED

25025 The primary
key value
cannot be
deleted
because
references to
this key still
exist.

P3: Foreign key
constraint name

SSCE_M_INTEGRITYVIOLATION_MSTR

25026 A foreign key
value cannot
be inserted
because a
corresponding
primary key
value does not
exist.

P3: Primary key
constraint name

SSCE_M_INTEGRITYVIOLATION_SLV

25027 The row being
created
exceeds the
maximum size
allowed.

Not applicable SSCE_M_RECORDTOOBIG

25028 The specified
password does
not match the
database
password.

Not applicable SSCE_M_INVALIDPASSWORD

25029 An attempt
was made to
update a field
in a record
twice.

Not applicable SSCE_M_RI_UPDATETWICE

25030 A duplicate key
value was
found as a
result of
referential
integrity
action.

P3: Foreign table
name

SSCE_M_RI_DUPLICATEKEY

25031 A referential
cascade action
is setting a
nonnull
column to
NULL.

P3: Foreign table
name

SSCE_M_RI_KEYNULLDISALLOWED

25032 A write conflict
occurred
because a
referential
integrity action
is not allowed.

P3: Foreign table
name

SSCE_M_RI_SESSIONWRITECONFLICT

25033 The sort
sequence is
not valid.

Not applicable SSCE_M_ILLEGALCOLLATINGSEQ

25034 There is a file
locking
violation.

Not applicable SSCE_M_FILELOCKVIOLATION

25035 There is a file
sharing
violation. A
different
process might
be using the
file.

Not applicable SSCE_M_FILESHAREVIOLATION

25036 File locking is
not available.

Not applicable SSCE_M_FILELOCKINGUNAVAILABLE

25037 There is not
enough disk
space left for
the database.

Not applicable SSCE_M_DISKFULL

25038 There is not
enough disk
space left for
the temp
database.

Not applicable SSCE_M_TEMPDISKFULL

25039 Access to the
database file is
not allowed.

P3: File name SSCE_M_FILEACCESSDENIED

25042 The language
required for
this database
file is not fully
installed on
this operating
system.

Not applicable SSCE_M_INVALIDSORTDLL

25044 Too many files
are open.

Not applicable SSCE_M_TOOMANYOPENFILES

25045 The database
file format is
obsolete.

Not applicable SSCE_M_OBSOLETEDATABASEFORMAT

25046 The database
file cannot be
found. Check
the path to the
database.

P3: File name SSCE_M_FILENOTFOUND

25047 Error occurred
when reading
from the
database file.

Not applicable SSCE_M_READVERIFYERROR

25048 No more file
handles can be
created.

Not applicable SSCE_M_NOMOREFILEHANDLES

25049 The disk is not
ready.

Not applicable SSCE_M_DISKNOTREADY

25050 Too many files
are open for
sharing.

Not applicable SSCE_M_SHARINGBUFFEREXCEEDED

25051 An internal
error occurred.
Unable to
successfully
execute disk IO
on the file
system.

Not applicable SSCE_M_DISKIO

25052 The operating
system does
not support
threads.

Not applicable SSCE_M_THREADSNOTSUPPORTED

25054 Too many
columns were
specified for
the index.

Not applicable SSCE_M_TOOMANYKEYS

25056 The size of the
Unicode text
column is not
even.

P0: Column size

P3: Column name

SSCE_M_COLUMNWIDTHNOTEVEN

25059 The column
data type
cannot be
indexed.

Not applicable SSCE_M_ILLEGALINDEXCOLUMN

25060 The reference
does not exist.

Not applicable SSCE_M_REFERENCENOTFOUND

25062 The object is
not replicable.

P3: Object name SSCE_M_OBJECTNOTREPLICABLE

25064 Only one
ROWGUID,
autoincrement
and version
are allowed for
each column in
a table.

P3: Object name SSCE_M_ONLYONESPECIALCOLUMN

25065 Too many
indexes were
created for the
table.

P3: Table name SSCE_M_TOOMANYINDEXES

25066 Too many
columns were
specified for
the table.

P0: Column count

P3: Column name

SSCE_M_TOOMANYCOLUMNS

25067 The
transactions
are nested too
deeply.

Not applicable SSCE_M_TRANSTOODEEP

25068 A column in an
index cannot
reference itself.

Not applicable SSCE_M_SELFREFERENCE

25069 The referenced
table must
have a primary
index.

Not applicable SSCE_M_NOPRIMARYINDEX

25070 The definition
of referring
columns (such
as number of
columns or
data types) in
referential
relationships
must match
the referred
columns.

Not applicable SSCE_M_DIFFNUMRELCOLUMNS

25071 A reference to
this column
already exists.

P3: Index name SSCE_M_CONFLICTINGREFERENCE

25072 Primary keys
cannot be
created on
columns that
support null
values.

Not applicable SSCE_M_PRIMARYKEYNULLCONFLICT

25073 Tables must
contain at least
one column.

Not applicable SSCE_M_TABLEMUSTHAVECOLUMNS

25074 The expression
string for the
default value
cannot be
longer than
255 characters.

P0: Length of
expression string

SSCE_M_DEFAULTEXPRTOOLONG

25075 Nullable
columns
cannot be
identity
columns.

Not applicable SSCE_M_DISALLOWIDENTITYNULL

25077 The constraint
cannot be
removed
because it is
referenced by
another
constraint.

P3: Constraint
name

SSCE_M_CONSTRAINTINUSE

25078 The index
cannot be
removed
because it is
being used to
enforce a
constraint.

P3: Index name SSCE_M_INDEXINUSE

25079 A password
must be
specified when
a database is
created using
encryption.

Not applicable SSCE_M_ENCRYPTEDDBMUSTHAVEPWD

25080 The operating
system does
not support
encryption.

Not applicable SSCE_M_NOOSENCRYPTIONSUPPORT

25081 The new value
generated for
the inserted
row does not
fall within the
allowable
range.

P0: Generated
value

SSCE_M_VIOLATEDAUTOINCRANGE

25082 Unique
indexes and
constraints
cannot be
created on
columns that
allow null
values.

Not applicable SSCE_M_UNIQUENULLCONFLICT

25083 The referential
relationship
will result in a
cyclical
reference that
is not allowed.

Not applicable SSCE_M_CYCLEDETECTED

25084 The data types
of the columns
in the
relationship do
not match.

Not applicable SSCE_M_RELCOLUMNSTYPEMISMATCH

25085 The table
already has a
primary key.

Not applicable SSCE_M_PKDUPLICATE

25086 The identity
column
contains an
increment
value that is
not valid.

P3: Column name SSCE_M_INVALIDINCREMENT

25087 A new GUID
cannot be
generated for
the new row.

Not applicable SSCE_M_GENERATEGUIDFAILED

25088 The key size
exceeded the
maximum
allowed.

Not applicable SSCE_M_KEYTOOLARGE

25089 The lock failed
due to conflict.

Not applicable SSCE_M_LOCKCONFLICT

25090 The system
timed out
waiting for a
lock.

Not applicable SSCE_M_LOCKTIMEOUT

25091 The lock
manager has
no more space
for locks.

Not applicable SSCE_M_OUTOFLOCKS

25092 The path
specified for
the temp
database is not
valid.

Not applicable SSCE_M_INVALIDTEMPPATH

25200 The column
cannot be
NULL.

Not applicable SSCE_WRN_COLUMNNULL

25201 The data was
truncated.

Not applicable SSCE_WRN_BUFFERTRUNCATED

25202 Seek was not
able to find an
exact match.

Not applicable SSCE_WRN_SEEKNOTEQUAL

25203 Some specified
options were
ignored for
this operation.

Not applicable SSCE_WRN_OPTIONSIGNORED

25204 The data was
truncated.

Not applicable SSCE_WRN_COLUMNDATATRUNCATED

25205 The database
is encrypted. A
password is
necessary to
access the
database.

Not applicable SSCE_WRN_DATABASEENCRYPTED

25206 Additional
records were
updated as a
result of
referential
integrity
actions.

Not applicable SSCE_WRN_RI_RECORDSUPDATED

25207 Additional
records were
deleted as a
result of
referential
integrity
actions.

Not applicable SSCE_WRN_RI_RECORDSDELETED

25208 The request for
a row-level
lock was
denied.

Not applicable SSCE_WRN_ROWLOCKCONNECTFAILED

25209 The request for
a page-level
lock was
denied.

Not applicable SSCE_WRN_PAGELOCKCONNECTFAILED

25500 The execution
plan cannot be
generated.

Not applicable SSCE_M_QP_BADOPT

25501 There was an
error parsing
the query.

P0: Token line
number
P1: Token line
offset
P3: Token in error

SSCE_M_QP_BADPARSE

25502 The count of
column names
and source
expressions do
not match.

P0: Column name
count

P1: Source
expression count

SSCE_M_QP_SETLISTCOUNT

25503 The column
name is not
valid.

P3: Node name (if
any)
P4: Column name

SSCE_M_QP_BAD_COLNAME

25505 The constraint
specified is not
valid.

Not applicable SSCE_M_QP_BADCNSTS

25506 There is not
enough
memory to
complete the
operation.

Not applicable SSCE_M_QP_NOMEMORY

25507 The comment
block is not
complete.

Not applicable SSCE_M_QP_UNCLOSEDCOMMENT

25508 The token
specified is too
long. The
maximum
length is 128
characters

P0: Maximum
size of token (if
known)
P3: Token (if
known)

SSCE_M_QP_TOKTOOLONG

25509 A conversion
from string to
float data
failed.

P3: String SSCE_M_QP_ATOF_OVERFLOW

25510 A conversion
from string to
numeric data
failed.

P3: String value SSCE_M_QP_NUME_OUTOFRANGE

25511 A quotation
mark delimiter
is missing
from the end
of the query.

P3: Query string SSCE_M_QP_UNCLOSEDQUOTE

25512 Conversion
from string to
money data
failed.

P3: Bad value SSCE_M_QP_BADMONEY

25513 Null values are
not valid
identifiers.

P3: Identifier SSCE_M_QP_IDENTWITHNULL

25514 The identifier
cannot be an
empty string.

Not applicable SSCE_M_QP_NAME_EMPTY

25515 In aggregate
and grouping
expressions,
the SELECT
clause can
contain only
aggregates
and grouping
expressions.

P3: Select clause SSCE_M_QP_NO_SCALAR_IN_SELECT

25516 Nested
aggregate
expressions
are not
allowed.

P3: Query string SSCE_M_QP_NO_AGG_IN_AGG

25517 In aggregate
and grouping
expressions,
the HAVING
clause can
contain only
aggregate
functions and
grouping
expressions.

P3: Having clause SSCE_M_QP_NO_SCALAR_IN_HAVING

25518 In aggregate
and grouping
expressions,
the ORDER BY
clause can
contain only
aggregate
functions and
grouping
expressions.

P3: Order by
clause

SSCE_M_QP_NO_SCALAR_IN_AGGRORDERBY

25519 Expressions in
the GROUP BY
list cannot
contain
aggregate
functions.

P3: Group by list SSCE_M_QP_NO_AGG_IN_GROUPBY

25520 Expressions in
the ORDER BY
list cannot
contain
aggregate
functions.

P3: Order by list SSCE_M_QP_NO_AGG_IN_ORDERBY

25521 The ORDER BY
list cannot
have duplicate
expressions.

P3: Order by list

P4: Duplicate
expression

SSCE_M_QP_NO_DUPEXPR_IN_ORDERBY

25522 The table
aliases must
be unique.

P3: Name of
duplicate alias

SSCE_M_QP_DUP_TABLE_ALIAS

25523 The column
aliases must
be unique.

P3: Name of
duplicate alias

SSCE_M_QP_DUP_COLUMN_ALIAS

25524 A HAVING
clause must
have a GROUP
BY clause
(implicit or
explicit).

P3: Having clause SSCE_M_QP_HAVING_WITHOUT_GROUPBY

25525 The WHERE
clause cannot
refer to
aggregate
expressions .

P3: Where clause SSCE_M_QP_NO_AGG_IN_WHERE

25526 Duplicate
constraints
cannot be
specified.

P3: Constraint SSCE_M_QP_DUP_CNST

25527 A function with
the same
signature
already exists.

P3: Name of
function

SSCE_M_QP_AMBIGUOUS_FUNC

25529 The OLE DB
provider
cannot be
instantiated.

Not applicable SSCE_M_QP_CANT_COCREATE

25530 A column with
the same
name has
already been
specified.

P3: Name of
duplicate column

SSCE_M_QP_SETLIST_DUPCOLNAME

25531 The column
name cannot
be resolved to
a table. Specify
the table to
which the
column
belongs.

P3: Name of
ambiguous
column

SSCE_M_QP_AMBIGUOUS_COLNAME

25532 The float
precision is not
valid.

Not applicable SSCE_M_QP_BAD_FLOAT_PRECISION

25533 The identifier
name is too
long.

P3: Name of
column (if
known)

SSCE_M_QP_LONGIDNAME

25534 Large objects
(ntext and
image) cannot
be used in
ORDER BY
clauses.

P3: Order by
clause

SSCE_M_QP_LOB_IN_ORDERBY

25536 The meta data
for the large
object is not
valid.

Not applicable SSCE_M_QP_INVALIDMETA_FOR_LOB

25537 The columns in
the subquery
do not match.

P3: Column name SSCE_M_QP_SUBQUERY_COLUMN_MISMATCH

25538 The database
is encrypted. A
password
must be
specified.

Not applicable SSCE_M_QP_ENCRYPTION_NO_DBPASSWORD

25539 The escape
character for
the LIKE
predicate is
not valid.

P3: Escape
character

SSCE_M_QP_BADLIKEESCCHAR

25540 The datepart is
not valid.

P3: Portion of
data in error

SSCE_M_QP_BADDATEOPTION

25541 The identifier
is not valid.

P3: Identifier SSCE_M_QP_INVALID_IDENTIFIER

25542 Data cannot be
inserted into a
read-only
table.

P3: Name of
read-only table

SSCE_M_QP_READONLYINSERT

25543 Data cannot be
updated in a
read-only
table.

P3: Name of
read-only table

SSCE_M_QP_READONLYUPDATE

25544 Data cannot be
deleted from a
read-only
table.

P3: Name of
read-only table

SSCE_M_QP_READONLYDELETE

25545 A value must
be provided
for the INSERT
statement into
<table_name>.

P3: Table name SSCE_M_QP_NOINSERTCOLUMNS

25546 The column is
read-only and
cannot be
modified.

P3: Column name SSCE_M_QP_MODIFYPROTECTEDCOL

25547 ORDER BY
<column
number> is
not supported.

Not applicable SSCE_M_QP_SCALARORDERBYNOTSUPPORTED

25548 DISTINCT
cannot be used
with ntext and
image data.

Not applicable SSCE_M_QP_LOB_IN_DISTINCT

25549 GROUP BY
cannot be used
with ntext and
image data.

Not applicable SSCE_M_QP_LOB_IN_GROUPBY

25550 Too many
identity
columns are
specified for
the table. Only
one identity
column for
each table is
allowed.

P3: SQL
statement

SSCE_M_QP_MULTI_IDENTITY_COLUMNS

25551 The identity
column must
be an integer
data type and
cannot be
NULL.

Not applicable SSCE_M_QP_BAD_IDENTITY_TYPE

25552 Elements in
the GROUP BY
clause must
reference
columns in the
select list.

P3: SQL
statement

SSCE_M_QP_GROUPBY_MUST_REFERENCE_COLS

25553 A foreign key
constraint that
has an
UPDATE or a
DELETE
CASCADE rule
and self-
references a
column in the
same table, is
not allowed.

Not applicable SSCE_M_QP_CASCADEONSELFREFFK

25554 Defaults
cannot be
created on
identity
columns.

P3: Name of table
P5: Name of
column

SSCE_M_QP_NODEFAULTONIDENTITYCOL

25555 Subquery
columns
cannot be
ntext or image
data types.

Not applicable SSCE_M_QP_SUBQUERY_NOLOBCOLUMNS

25556 The number
sign (#) is
reserved and
cannot be used
as the first
character of an
identifier.

P3: Invalid name SSCE_M_QP_INVALID_CHARACTER_IN_IDENTIFIER

25557 Expressions
combined by a
UNION
operator must
have the same
number of
columns.

Not applicable SSCE_M_UNIONCOLUMNCOUNT

25558 The number of
columns in the
query and the
table must
match.

Not applicable SSCE_M_DIFFERENTCOLUMNCOUNT

25900 The query
processor
encountered
an error
evaluating the
expression.

Not applicable SSCE_M_QP_BADEXPR

25901 Expression
evaluation
caused an
overflow.

P3: Expression SSCE_M_QP_OVFLO

25902 The data types
in the IN
expression do
not match.

P3: Expression SSCE_M_QP_EXPRTYPECHECK

25903 There is an
error in the
datepart
format.

P3: Expression SSCE_M_QP_DATEPART

25904 There is an
error in the
date format.

P3: Expression SSCE_M_QP_DATEABORT

25905 A syntax error
occurred.

P3: Expression SSCE_M_QP_SYNTAX

25906 Conversion
failed due to a
syntax error

P3: Expression SSCE_M_QP_CONVSYNTAX

25907 An overflow
occurred while
converting the
string data
type to money.

P3: String SSCE_M_QP_MONEYOVERFLOW

25909 Default values
cannot have
column
references.

P3: Expression SSCE_M_QP_NOCOLUMNREFINDEFAULT

25910 Default values
cannot have
aggregate
functions.

P3: Expression SSCE_M_QP_NOAGGRINDEFAULT

25911 Aggregate
value
expressions
cannot have
ntext or image
data.

P3: Expression SSCE_M_QP_NOAGGRONLOB

25912 The original
data is
truncated and
cannot be
converted.

P3: Expression SSCE_M_QP_NOCONVDUETOTRUNC

25913 The arithmetic
operator is not
supported for
the data type.

P3: Expression SSCE_M_QP_ARITHOPNOTSUPPORTED

25914 Modulo is not
supported on
real, float,
money, and
numeric data
types.

P3: Data type SSCE_M_QP_NOMODULOSUPPORT

25916 An operator on
the result data
type from a
subquery is
not valid.

P3: Operator

P4: Subquery
expression

SSCE_M_QP_SUBQUERYINVALIDOP

25917 Bit operators
(&,|,^,~) are
not supported
on real, float,
money, and
numeric data
types.

P3: Data type SSCE_M_QP_NOBITOPSUPPORT

25918 The data type
is not valid for
the arithmetic
operation.

P0: Data type

P3: Expression

SSCE_M_QP_BADARITHTYPE

25919 The arithmetic
operator is not
recognized by
SQL Server CE.

P3: Operator SSCE_M_QP_BADARITHOP

25920 The data is
truncated.

Not applicable SSCE_M_QP_TRUNCATION

25921 The function is
not recognized
by SQL Server
CE.

P3: Name of
function
P5: Data type

SSCE_M_QP_INVALIDFUNCTIONNAME

25922 The arguments
for
<func_name>
function are
not valid.

P3: Name of
function (if
known)

SSCE_M_QP_INVALIDFUNCTIONARGS

25923 The ntext and
image data
types cannot
be used in
WHERE,
HAVING,
GROUP BY,
ON, or IN
clauses, except
when these
data types are
used with the
LIKE or IS
NULL
predicates.

P3: Expression SSCE_M_QP_NOSUPPORTFORLOB

25924 An overflow
might have
occurred while
converting
binary to
datetime.

P0: Binary value SSCE_M_QP_BINDTSYNTAX

25925 An overflow
might have
occurred while
converting
numeric to
datetime.

P0: Numeric
value

SSCE_M_QP_NUMDTSYNTAX

25926 An overflow
might have
occurred while
converting
money to
datetime.

P0: Money value SSCE_M_QP_MONDTSYNTAX

25927 An overflow
might have
occurred while
converting
bigint to
datetime.

P0: bigint value SSCE_M_QP_BIGINTDTSYNTAX

25928 There are too
many
arguments
specified for
the function.

P0: Count of
arguments

SSCE_M_QP_TOOMANYARGS

25929 A unary minus
can be
performed
only on
tinyint,
smallint, int,
bigint,
money, and
numeric data
types.

P3: Expression SSCE_M_QP_UMINUSNUMONLY

25930 The operation
cannot be
performed
because the
precision of
the numeric
data types do
not match.

P3: Expression SSCE_M_QP_PRECISIONMISMATCH

25931 The operation
cannot be
performed
because the
scale of the
numeric data
types do not
match.

P3: Expression SSCE_M_QP_SCALEMISMATCH

25932 The data types
cannot be
converted
implicitly.

P0: Source data
type

P1: Destination
data type

SSCE_M_QP_NOIMPLICITCONVALLOWED

25933 An overflow
occurred while
converting to
datetime.

P3: Expression SSCE_M_QP_DATETIMEOVFLO

25935 Dividing by
zero is not
allowed.

P3: Expression SSCE_M_QP_DIVBYZERO

25937 A time
datepart must
be specified to
convert a
string to
datetime.

P3: String SSCE_M_QP_NOTIMEPARTSPECIFIED

25938 The specified
hour in the
time datepart
is not valid.

P3: String SSCE_M_QP_INVALIDHOURTIMEPARTSPECIFIED

25939 The specified
minute in the
time datepart
is not valid.

P3: String SSCE_M_QP_INVALIDMINUTETIMEPARTSPECIFIED

25940 The specified
second in the
time datepart
is not valid.

P3: String SSCE_M_QP_INVALIDSECONDIMEPARTSPECIFIED

25941 The specified
millisecond in
the time
datepart is not
valid.

P3: String SSCE_M_QP_INVALIDMSEDCONDIMEPARTSPECIFIED

25942 The specified
date or time
datepart is not
valid.

P3: String SSCE_M_QP_SYNTAXERRORINDATETIMESTRING

25943 The format of
the specified
date or time
datepart is not
valid.

P3: String SSCE_M_QP_FORMATERRORINDATETIMESTRING

25944 The order of
the specified
date or time
datepart is not
valid.

P3: String SSCE_M_QP_INVALIDORDERINDATETIMESTRING

25945 The escape
sequence used
in the LIKE
predicate is
not valid.

P3: Escape
sequence

P4: Like predicate

SSCE_M_QP_INVALID_ESCAPE_SEQUENCE

25946 The number of
arguments
specified for
function
<func_name>
is not correct.

Not applicable SSCE_M_QP_INVALIDFUNCTIONARGNUM

25947 The conversion
is not
supported.

Not applicable SSCE_M_QP_INVALIDCONVERSION

25948 The specified
argument
value for the
function is not
valid.

Not applicable SSCE_M_QP_INVALIDFUNCTIONARGVALUE

25949 The
expressions in
UNION are not
compatible.

Not applicable SSCE_M_QP_INCOMPATIBLE_TYPES

25950 A parameter is
missing.

Not applicable SSCE_M_QP_MISSINGPARAMETER

25951 A parameter is
not allowed in
this location.

Not applicable SSCE_M_QP_PARAMETERNOTALLOWED

25952 At least one
input table is
required.

Not applicable SSCE_M_QP_EMPTYFROMLIST

26100 The table
name is not
valid.

P3: Table name SSCE_M_QP_BADTABLE

26101 An error
occurred while
accessing the
schema
rowset.

Not applicable SSCE_M_QP_BADSCHEMAROWSET

26102 An error
occurred while
accessing the
table schema
rowset.

P3: Table name SSCE_M_QP_TBLSCHEMAROWSET

26300 OLE DB
returned an
error.

Not applicable SSCE_M_QP_OLEDBERR

26302 The specified
data type is
not valid.

P0: Data type SSCE_M_QP_BADTYPE

26303 An internal
query
processor
error occurred.

Not applicable SSCE_M_QP_INTERNAL

26305 The meta data
is not valid.

Not applicable SSCE_M_QP_BADADTMETAINFO

26306 Data
conversion
failed.

P0: OLE DB status
value

SSCE_M_QP_COERSIONERROR

26307 Syntax error in
query.

Not applicable SSCE_M_QP_BADQUERY

26308 Zero-length
binary
constants are
not supported
in SQL Server
CE.

Not applicable SSCE_M_QP_ZEROLENGTHBINARYCONST

27000 Too many
sessions are
open.

Not applicable SSCE_M_TOOMANYSESSIONSOUTSTANDING

27001 The new
column cannot
be set as the
PRIMARY KEY
constraint.
Create a table-
level constraint
instead.

P3: Table name

P4: Column name

SSCE_M_PRIMARYKEYPROPERTYNOTSETTABLE

27002 The new
column cannot
be set as a
UNIQUE
constraint.
Create a table-
level constraint
instead.

P3: Table name

P4: Column name

SSCE_M_UNIQUEKEYPROPERTYNOTSETTABLE

27003 Column
nullability
cannot be
changed after
the column is
created.

P3: Table name

P4: Column name

SSCE_M_COLUMNNULLABILITYNOTALTERABLE

27004 The column
cannot
become an
identity
column after it
is created.

P3: Table name

P4: Column name

SSCE_M_CANTMODIFYIDENTITYATTRIBUTE

27005 The column
property is not
valid.

P3: Table name

P4: Column name

P5: Property

SSCE_M_INVALIDCOLUMNPROPERTY

27006 An attempt to
set the
SQLServer CE
DBINIT
property is not
valid.

Not applicable SSCE_M_INVALIDSSCEDBINITPROPERTY

27500 An overflow
occurred while
setting decimal
data.

Not applicable SSCE_M_DECIMALOVERFLOW

27501 Decimal data
was truncated.

Not applicable SSCE_M_DECIMALTRUNCATED

27502 The parameter
is not valid.

Not applicable SSCE_M_CMN_INVALIDPARAMETER

27700 Decimal data
was truncated.

Not applicable SSC_WRN_DECIMALTRUNCATED

27750 Cannot load
sscemw20.dll
or ssceca20.dll
is missing or
not registered.

Not applicable SSCE_M_SSCEMWFAILURE

SQL Server CE Books Online

Replication Transport Errors
Value Description Parameters Error

28000 An internal error has
occurred.

Not
applicable

SSCE_M_OPENTWICE

28001 A read operation
from the Internet
returned an
incorrect number of
bytes.

Not
applicable

SSCE_M_INTERNETREADERROR

28002 A write operation to
the Internet wrote an
incorrect number of
bytes.

Not
applicable

SSCE_M_INTERNETWRITEERROR

28003 Either the computer
running IIS is out of
memory or an
incorrect RSCBID
was sent in a
request.

P0: RSCBID SSCE_M_INVALIDRSCBID

28004 A SQL Server CE
Server Agent queue
is full and can take
no further requests.
Try again later.

Not
applicable

SSCE_M_TOOMANYPENDINGREQUESTS

28005 A thread to host the
SQL Server
Reconciler cannot be
started. Check
system resources.

Not
applicable

SSCE_M_COULDNTSTARTRECTHREAD

28006 The SQL Server
Reconciler resource
DLL cannot be
loaded.

Not
applicable

SSCE_M_CANTLOADRECRESOURCEDLL

28007 An internal error has
occurred.

Not
applicable

SSCE_M_INVALIDRECONCILERPARAM

28008 The transport failed
due to incorrect
message format or
content.

P0:
Command
number

SSCE_M_INVALIDTRNSPTCOMMAND

28009 An instance of the
SQL Server
Reconciler cannot be
created.

Not
applicable

SSCE_M_CANTCOCREATERECONCILER

28010 An instance of the
SQL Server
Reconciler error
object cannot be
created.

Not
applicable

SSCE_M_CANTCOCREATERECONERROR

28011 Authentication failed
on the computer
running IIS.

Not
applicable

SSCE_M_HTTPSTATUSDENIED

28012 Authentication failed
on the proxy server.

Not
applicable

SSCE_M_HTTPSTATUSPROXYAUTHREQ

28013 The HTTP request
failed due to
incorrect format or
content.

Not
applicable

SSCE_M_HTTPSTATUSBADREQUEST

28014 This site requires
payment before it
can be accessed.

Not
applicable

SSCE_M_HTTPSTATUSPAYMENTREQ

28015 A Secure Sockets
Layer (SSL)
connection is
required to access
this site.

Not
applicable

SSCE_M_HTTPSTATUSFORBIDDEN

28016 The URL cannot be
found.

Not
applicable

SSCE_M_HTTPSTATUSNOTFOUND

28017 An incorrect or
unsupported HTTP
function call was
made.

Not
applicable

SSCE_M_HTTPSTATUSBADMETHOD

28018 An HTTP function
failed to establish a
connection to the
computer running
IIS.

Not
applicable

SSCE_M_HTTPSTATUSNONEACCEPT

28019 The request timed
out on the computer
running IIS.

Not
applicable

SSCE_M_HTTPSTATUSREQTIMEOUT

28020 The computer
running IIS returned
a Conflict status.

Not
applicable

SSCE_M_HTTPSTATUSCONFLICT

28021 The computer
running IIS returned
a Gone status.

Not
applicable

SSCE_M_HTTPSTATUSGONE

28022 An error has
occurred on the
computer running
IIS.

Not
applicable

SSCE_M_HTTPSTATUSSERVERERROR

28023 The computer
running IIS returned
a Not Supported
status.

Not
applicable

SSCE_M_HTTPSTATUSNOTSUPPORTED

28024 A gateway error has
occurred.

Not
applicable

SSCE_M_HTTPSTATUSBADGATEWAY

28025 The IIS service is not
available.

Not
applicable

SSCE_M_HTTPSTATUSSVCUNAVAIL

28026 The gateway has
timed out.

Not
applicable

SSCE_M_HTTPSTATUSGATTIMEOUT

28027 HTTPS is not
supported on
Windows CE 1.1-
based devices.

Not
applicable

SSCE_M_HTTPSNOTSUPPORTED

28028 Replication is
prohibited for this
SQL Server CE
Server Agent on the
computer running
IIS.

Not
applicable

SSCE_M_REPLPROHIBITED

28029 RDA is prohibited
for this SQL Server
CE Server Agent on
the computer
running IIS.

Not
applicable

SSCE_M_RDAPROHIBITED

28030 Internal error:
Compression failed.

Not
applicable

SSCE_M_COMPRESSIONFAILED

28031 Internal error:
Decompression
failed.

Not
applicable

SSCE_M_DECOMPRESSIONFAILED

28032 Internet Open failed
at the client.

Not
applicable

SSCE_M_FAILUREINITIALIZINGINTERNET

28033 The URL syntax is
not valid.

P3: URL SSCE_M_INVALIDURLSYNTAX

28034 An Internet
connection cannot
be established.

Not
applicable

SSCE_M_INTERNETCONNECTFAILURE

28035 Header information
is either corrupted
or missing.

P3: Header
name

SSCE_M_FAILUREQUERYINGHEADER

28036 An internal or
network problem
was encountered
while trying to close
an Internet handle.

Not
applicable

SSCE_M_CLOSEINTERNETHANDLEFAILED

28037 A request to send
data to the computer
running IIS has
failed. For more
information, see
HRESULT.

Not
applicable

SSCE_M_HTTPSENDREQUESTFAILED

28038 The connection was
refused by the
computer running
IIS because the
maximum number
of RSCBs has been
exceeded. Try
connecting later.

Not
applicable

SSCE_M_MAXIMUMRSCBSEXCEEDED

28039 The request was
superseded by a
subsequent request.

Not
applicable

SSCE_M_REQUESTSUPERSEDED

28040 The command has
been completed. The
resent command
was ignored.

Not
applicable

M_RESENTCOMMANDIGNORED

28041 An internal error
occurred.

Not
applicable

M_RESENDREQUEST

SQL Server CE Books Online

Client Agent Errors
Value Description Parameters Error
28500 An instance of the

SSCEErrors collection object
cannot be created.

Not
applicable

SSCE_M_CANTCOCREATESSCEERRORS

28501 The
SubscriberConnectionString
property is not specified.

Not
applicable

SSCE_M_SUBSCRIBERDATABASEPATHMISSING

28502 The InternetURL property is
not specified.

Not
applicable

SSCE_M_INTERNETURLPROPERTYMISSING

28503 The Publisher property is
not specified.

Not
applicable

SSCE_M_PUBLISHERPROPERTYMISSING

28504 The PublisherDatabase
property is not specified.

Not
applicable

SSCE_M_PUBLISHERDATABASEPROPERTYMISSING

28505 The Publication property is
not specified.

Not
applicable

SSCE_M_PUBLICATIONPROPERTYMISSING

28506 The Subscriber property is
not specified.

Not
applicable

SSCE_M_SUBSCRIBERPROPERTYMISSING

28507 Some Distributor properties
are not specified.

Not
applicable

SSCE_M_MISSINGDISTRIBUTORPROPERTIES

28508 The DistributorAddress
property is not specified.

Not
applicable

SSCE_M_MISSINGDISTRIBUTORADDRESS

28509 The PublisherAddress
property is not specified.

Not
applicable

SSCE_M_MISSINGPUBLISHERADDRESS

28510 The value specified for the
PublisherSecurityMode
property is not valid.

P0:
Publisher
security
mode

SSCE_M_INVALIDPUBLISHERSECURITYMODE

28511 The value specified for the
DistributorSecurityMode
property is not valid.

P0:
Distributor
security
mode

SSCE_M_INVALIDDISTRIBUTORSECURITYMODE

28512 The value specified for the
QueryTimeout property is
not valid.

P0: Query
timeout
value

SSCE_M_INVALIDQUERYTIMEOUTVALUE

28513 The value specified for the
LoginTimeout property is
not valid.

P0: Login
timeout
value

SSCE_M_INVALIDLOGINTIMEOUTVALUE

28514 The value specified for the
DistributorNetwork
property is not valid.

P0:
Distributor
network

SSCE_M_INVALIDDISTRIBUTORNETWORK

28515 The value specified for the
ExchangeType property is
not valid.

P0:
Exchange
type

SSCE_M_INVALIDEXCHANGETYPE

28516 The value specified for the
ValidateType property is not
valid.

P0:
Validation
type

SSCE_M_INVALIDVALIDATIONTYPE

28517 The Initialize method failed. Not
applicable

SSCE_M_INITIALIZEFAILED

28518 The AddSubscription
method failed.

Not
applicable

SSCE_M_ADDSUBSCRIPTIONFAILED

28519 The value specified for
DBDROPOPTION is not
valid.

Not
applicable

SSCE_M_UNSUPPORTEDDBDROPOPTION

28520 The DropSubscription
method failed.

Not
applicable

SSCE_M_DROPSUBSCRIPTIONFAILED

28521 The SQL Server CE database
is already enabled for
replication.

Not
applicable

SSCE_M_DBALREADYREPLICABLE

28522 The Run method failed. Not
applicable

SSCE_M_RUNFAILED

28523 Internal error: Initializing an
internal object failed.

Not
applicable

SSCE_M_INITIALIZATIONFAILED

28524 The Terminate method
failed.

Not
applicable

SSCE_M_TERMINATEFAILED

28525 The ReinitializeSubscription
method failed.

Not
applicable

SSCE_M_REINITIALIZESUBSCRIPTIONFAILED

28526 The message contains an
unexpected replication
operation code.

P0: ROC SSCE_M_UNEXPECTEDROCENCOUNTERED

28527 Internal error: The column
ordinal cannot be found.

P0: Column
ordinal

P3: Table
name

SSCE_M_COLUMNORDINALNOTFOUND

28528 A nickname was not
generated.

Not
applicable

SSCE_M_NICKNAMEGENERATIONFAILED

28529 The SQL Server CE database
is not enabled for
replication.

Not
applicable

SSCE_M_DBNOTREPLICABLE

28530 Reading the registry failed. Not
applicable

SSCE_M_FAILUREREADINGREGISTRY

28531 Writing to the registry
failed.

Not
applicable

SSCE_M_FAILUREWRITINGREGISTRY

28532 A read operation from the
transport returned no data.

Not
applicable

SSCE_M_TRANSPORTREADRETURNEDNODATA

28533 Another instance of SQL
Server CE cannot be
created.

Not
applicable

SSCE_M_CANTCOCREATESQLSERVERCE

28534 The Pull method failed. Not
applicable

SSCE_M_RDAPULLFAILED

28535 The Push method failed. Not
applicable

SSCE_M_RDAPUSHFAILED

28536 The SubmitSQL method
failed.

Not
applicable

SSCE_M_RDASUBMITSQLFAILED

28537 The identity range was not
established.

Not
applicable

SSCE_M_IDENTITYRANGE

28538 An article in the message is
not valid.

P0: Article
nickname

SSCE_M_INVALIDARTICLE

28539 The object is already
initialized.

P3:
Connection
string

SSCE_M_OBJECTALREADYINITIALIZED

28540 The object is not initialized. P3:
Connection
string

SSCE_M_OBJECTNOTINITIALIZED

28541 The value for the
LocalTableName parameter
is not specified for the Push
call.

Not
applicable

SSCE_M_LOCALTABLENAMEMISSING

28542 Some parameters were not
specified for the Pull
method.

Not
applicable

SSCE_M_NOTALLPARAMSSETFORPULL

28543 The table is not a tracked
table.

P3: Table
name

SSCE_M_TABLENOTTRACKED

28544 The Push method returned
one or more error rows. See
the specified error table.

P3: Error
table name

SSCE_M_RDAERRORROWSRETURNED

28545 The OLE DB connection
string is not valid.

Not
applicable

SSCE_M_SUBSCRIBERCONNECTIONSTRINGMISSING

28546 The specified OLE DB for
SQL Server CE connection
string is not valid.

P3:
Connection
string

SSCE_M_INVALIDCONNECTIONSTRING

28547 The SQL Server CE database
cannot be compacted
because it is open.

Not
applicable

SSCE_M_DATABASEALREADYOPEN

28548 A specified parameter is too
large.

P0: Size of
parameter

P1: Max size

P3:
Parameter
value

SSCE_M_PARAMETERTOOLARGE

28549 The row update or insert
cannot be reapplied due to
an integrity violation.

Not
applicable

SSCE_M_FAILEDRETRIES

28550 The SQL Server CE database
cannot be compacted.

Not
applicable

SSCE_M_COMPACTFAILED

28551 The LocalConnectionString
parameter is not specified
for either a Push or Pull
method.

Not
applicable

SSCE_M_MISSINGCONNECTSTRING

28552 This table does not have a
ROWGUID column.

Not
applicable

SSCE_M_ROW_RUID

28553 This table does not have a
ROWGUID column nor an
Identity range.

Not
applicable

SSCE_M_SPECIAL_COLUMN

28554 The number of rows at the
client does not match the
number of rows at the
server.

P0: SQL
Server
Count
P1: SQL
Server CE
Count

SSCE_M_VALIDATEFAILED

28555 The SQL Server CE database
cannot be replicated. The
subscription must be
reinitialized.

Not
applicable

SSCE_M_FAILEDMAKEDBREP

28556 The LocalTableName
parameter is not specified.

Not
applicable

SSCE_M_TABLENAMEMISSING

28557 The SQL Server CE database
cannot be used for
replication. Delete and then
re-create the database.

P3:
Connection
string

SSCE_M_UNUSABLEDATABASE

28558 SQL Server CE encountered
problems in creating the
SQL Server CE database.

P3:
Connection
string

SSCE_M_CREATEDATABASE

28559 SQL Server CE encountered
problems in opening the
SQL Server CE database.

P3:
Database
name

SSCE_M_OPENDATABASE

28560 The OLE DB Execute method
failed. The SQL statement is
not valid.

P3: SQL
statement

SSCE_M_EXECUTEFAILED

28561 Internal error: Failed to roll
back changes.

Not
applicable

SSCE_M_ROLLBACKFAILED

28562 The delete message for the
server was not created.

Not
applicable

SSCE_M_PROCESSDELETEFAILED

28563 The device does not have
sufficient memory.

Not
applicable

SSCE_M_CLIENTAGENT_NOMEMORY

28564 The delete action failed. P3: Table
name

SSCE_M_DELETEFAILED

28565 The insert action failed. P3: Table
name

SSCE_M_INSERTFAILED

28566 The update action failed. P3: Table
name

SSCE_M_UPDATEFAILED

28567 The table cannot be opened. P3: Table
name

SSCE_M_OPENTABLEFAILED

28568 The table cannot be closed. P3: Table
name

SSCE_M_CLOSETABLEFAILED

28569 The index cannot be set on
the ROWGUID column.

Not
applicable

SSCE_M_INVALIDINDEX

28570 The data row cannot be
accessed.

Not
applicable

SSCE_M_ERRORFETCHINGDATA

28571 The column data for a row
cannot be accessed.

Not
applicable

SSCE_M_ERRORFETCHINGCOLUMNDATA

28572 Row data cannot be set. Not
applicable

SSCE_M_ERRORSETTINGDATA

28573 The LocalTableName
parameter is already
specified.

P3: Table
name

SSCE_M_TABLEALREADYEXISTS

28574 An internal error occurred. P0:ID SSCE_M_INTERNALERROR
28575 There is not enough space

for lineage in a row.
Not
applicable

SSCE_M_INSUFFICIENTLINEAGESPACE

28577 The schema has changed
since the table was pulled.

Not
applicable

SSCE_M_SCHEMAHASCHANGED

28578 The data type is not valid. Not
applicable

SSCE_M_UNSUPPORTEDDATATYPE

28579 The move to the next row
failed.

Not
applicable

SSCE_M_MOVENEXTFAILED

28580 The specified parameter is
not valid.

Not
applicable

SSCE_M_INVALIDCOMPACTPARAMETER

28581 The message cannot be
built. The Make Message
failed.

Not
applicable

SSCE_M_FAILUREMAKINGMESSAGE

28582 The parameter is either not
specified or not valid.

Not
applicable

SSCE_M_INVALIDRDAPARAMETER

28583 The Publisher login
property is not specified.

Not
applicable

SSCE_M_PUBLISHERLOGINMISSING

SQL Server CE Books Online

Client Agent Warnings
Value Description Parameters Error

28800 The Push returned
one or more error
rows. See the
specified error table.

Not
applicable

SSCE_WRN_RDAERRORROWSRETURNED

28801 A data error
occurred and was
fixed. Call the Run
method again to
merge data.

Not
applicable

SSCE_WRN_SUBWINSERRORSFIXED

SQL Server CE Books Online

Server Agent Errors
Value Description Parameters Error
29000 An unexpected

state was
found when
reading
generation
information.

Not
applicable

SSCE_M_UNEXPECTEDSTATEREADINGGENINFO

29001 An unexpected
state was
encountered
when
processing
inserts.

Not
applicable

SSCE_M_EXPECTEDINSERTSONLY

29002 The identity
seed or range
is too large.

P0: Seed or
low range

P1: High
range

SSCE_M_IDENTITYSEEDORRANGETOOLARGE

29003 An unexpected
state was
encountered
when
processing
deletes.

Not
applicable

SSCE_M_UNEXPECTEDSTATEPROCESSINGTOMBSTONES

29004 The OLE DB
provider for
SQL Server CE
cannot be
initialized.

Not
applicable

SSCE_M_CANTCOCREATEMSDAINITIALIZE

29005 A replication
session control
block already
exists.

Not
applicable

SSCE_M_RSCBWITHSAMEEXCHANGEID

29006 A call to SQL
Server
Reconciler
failed.

Not
applicable

SSCE_M_SQLRECONCILERFAILED

29007 The query
cannot be
tracked. There
might not be a
primary key, or
the query may
involve
multiple tables.

P3: Query
string

SSCE_M_QUERYCANNOTBETRACKED

29008 The
prepare/update
command
process failed.

Not
applicable

SSCE_M_PREPAREUPDATECMDFAILED

29009 The expression
or literal
cannot be
processed
without an
alias.

Not
applicable

SSCE_M_EXPRESSIONWITHOUTALIAS

29010 The table does
not have a
primary key.

P3: Table
name

SSCE_M_NOPRIMARYKEY

29011 The table
contains a
timestamp or
another row
versioning
column.

P3: Table
name

SSCE_M_ROWVERCOLUMN

29012 An internal
error occurred
during the
push operation
in the SQL
Server CE
Server Agent.

Not
applicable

SSCE_M_INVALIDPUSHSEQUENCE

29013 The attempt to
replace an
existing
parameter
value in the
push operation
failed.

Not
applicable

SSCE_M_PUSHPARAMSETONVALUE

29014 Incomplete
parameters
were set for the
push operation.

Not
applicable

SSCE_M_NOTALLPARAMSETFORPUSH

29015 The expected
column count
does not match
the data
column
specified.

P0: Supplied
count

P1: Expected
count

SSCE_M_PUSHPKCOLCOUNTMISMATCH

29016 Client-side and
server-side
columns for
the RDA table
do not match.

P3: Table
name

SSCE_M_VF_MISSINGSERVERCOLUMN

29017 The OLE DB
data type
information in
the SQL Server
CE columns
does not match
the information
in the SQL
Server columns
for the RDA
table.

P0: SQL
Server CE
data type

P1: SQL
Server data
type

P3: Table
name

SSCE_M_VF_MISMATCHEDTYPES

29018 No columns
were found.
Either the table
name is
missing or the
permissions
are not valid.

Not
applicable

SSCE_M_VF_MISSINGTABLE

29020 A row cannot
be updated or
deleted in the
SQL Server
using RDA.

Not
applicable

SSCE_M_NOROWSAFFECTED

29021 More than one
row was
affected by an
update or
delete
operation in
the SQL Server
using RDA.

Not
applicable

SSCE_M_TOOMANYROWSAFFECTED

29022 The version of
the Microsoft
OLE DB
Provider for
SQL Server is
not correct.

P3: Version SSCE_M_INCORRECTPROVIDERVERSION

29023 The OLE DB
Provider for
SQL Server on
the computer
running IIS is
not compatible
with SQL
Server CE.

P3: Provider SSCE_M_INCORRECTPROVIDER

29024 The push
operation
cannot match
the orders of
the client-side
and server-side
primary key
columns.

Not
applicable

SSCE_M_VF_PRIMARYKEYCHANGE

29025 The push
operation
cannot find a
primary key
column on the
SQL Server
table.

Not
applicable

SSCE_M_VF_MISSINGSERVERPKCOLUMN

29026 The push
operation has
found an extra
primary key
column on the
SQL Server
table.

Not
applicable

SSCE_M_VF_EXTRASERVERPKCOLUMN

29027 The current
OLE DB
provider is not
supported.

Not
applicable

SSCE_M_MISSINGCOLUMNSCHEMACOLS

29028 The OLE DB
data type is not
supported by
the Microsoft
OLE DB
Provider for
SQL Server.

P0: Data
type

SSCE_M_UNSUPPORTEDOLEDBTYPE

29029 The SQL Server
CE and SQL
Server column
meta data
information
does not
match.

Not
applicable

SSCE_M_VF_NONLOBIUNKNOWN

29030 The query
cannot be
tracked
because one or
more columns
of the primary
key are
missing.

Not
applicable

SSCE_M_NOTRACKPKCOLMISSING

29031 The query
cannot be
tracked
because the
table includes a
computed
column that
cannot be
pulled.

Not
applicable

SSCE_M_NOTRACKCOMPUTEDCOLUMN

29032 The query
cannot be
tracked
because it is a
multi-table
query.

Not
applicable

SSCE_M_NOTRACKMULTITABLE

29033 The server
code page, or
the override
code page, is
either not valid
or not installed
on the
computer
running IIS.

P0: Code
page

SSCE_M_INVALIDCODEPAGE

29034 The SQL Server
CE Client Agent
and SQL Server
CE Server
Agent
component
versions do not
match.

P0: Client
version

P1: Server
version

P3: SQL
Server CE
Client Agent
version

P4: SQL
Server CE
Server
Agent
version

SSCE_M_MISMATCHEDCOMPONENTS

29042 The replication
session control
block was
inactive for
longer than the
cleanup
interval.

Not
applicable

SSCE_M_RSCBTIMEDOUT

29043 The operating
system on the
Windows CE-
based device
does not
support
authenticated
proxy servers.

Not
applicable

SSCE_M_NOPROXYSERVERSUPPORT

29044 SQL Server CE
failed in
renaming an
.IN file to .OUT.

Not
applicable

SSCE_M_FILERENAMEFAILED

29045 Initializing SQL
Server
Reconciler has
failed.

Not
applicable

SSCE_M_INITIALIZERECONCILERFAILED

29046 This cursor is
read-only.

Not
applicable

SSCE_M_READONLY

29047 Row
processing
resulted in an
error.

Not
applicable

SSCE_M_PROCESSINGROWS

29048 The Windows
user account
could not be
impersonated
at the
computer
running IIS.

Not
applicable

SSCE_M_IMPERSONATIONFAILED

SQL Server CE Books Online

Message Protocol Errors
Value Description Parameters Error
29500 The transport

read operation
returned an
incorrect data
length.

P0:
Returned
length

P1: Expected
length

SSCE_M_TRANSPORTREADWRONGSIZE

29501 Internal error: The
write message
failed.

Not
applicable

SSCE_M_UNEXPECTEDSTATEWRITINGMESSAGE

29502 The column
number is not
valid.

P0: Column
number

P3: Table
name

SSCE_M_INVALIDCOLUMNNUMBER

29503 The column
cannot be found.

P3: Column
name

P4: Table
name

SSCE_M_CANTFINDCOLUMNBYNAME

29504 Internal error: The
names buffer is
too small.

Not
applicable

SSCE_M_NAMESBUFFERTOOSMALL

29506 Internal error: The
get column failed.

Not
applicable

SSCE_M_UNEXPECTEDSTATEGETTINGCOLUMNS

29507 Internal error: The
get column length
failed.

Not
applicable

SSCE_M_UNEXPECTEDSTATEGETCOLLENGTH

29508 Internal error: The
get column data
failed.

Not
applicable

SSCE_M_UNEXPECTEDSTATEGETCOLDATA

29509 Internal error: The
set column failed.

Not
applicable

SSCE_M_UNEXPECTEDSTATESETCOLUMN

29510 The
ISequentialStream
interface detects
that the BLOB
data stream is not
empty.

Not
applicable

SSCE_M_STREAMNOTEXHAUSTED

29511 The message
received from the
server cannot be
decoded.

Not
applicable

SSCE_M_GARBLEDMESSAGEFROMSERVER

29512 The message
received from the
client cannot be
decoded.

Not
applicable

SSCE_M_GARBLEDMESSAGEFROMCLIENT

SQL Server CE Books Online

SQL Server CE Relay Errors
Value Description Parameters Error
30000 The socket cannot be

initialized/uninitialized.
Not
applicable

SSCE_M_WSANOTINITIALISED

30001 The network was
unavailable, and the
initialization/uninitialization
of the socket failed.

Not
applicable

SSCE_M_WSAENETDOWN

30002 The socket cannot be
initialized/uninitialized. A
blocking operation is
currently executing.

Not
applicable

SSCE_M_WSAEINPROGRESS

30003 The socket
caninitialized/uninitialized.
Either a driver is missing or
multiple implementations
are being used.

Not
applicable

SSCE_M_WSASYSNOTREADY

30004 The socket cannot be
initialized/uninitialized. The
current version is not
supported.

Not
applicable

SSCE_M_WSAVERNOTSUPPORTED

30005 The socket cannot be
initialized/uninitialized. The
limit on the number of
processes using Windows
Sockets has been reached.

Not
applicable

SSCE_M_WSAEPROCLIM

30006 An address passed to the
function is not valid.

Not
applicable

SSCE_M_WSAEFAULT

30007 A create event failed. For
more information, see
HRESULT.

Not
applicable

SSCE_M_CREATEEVENTFAILED

30008 A set event failed. For more
information, see HRESULT.

Not
applicable

SSCE_M_SETEVENTFAILED

30009 A WAITFOR event failed.
For more information, see
HRESULT.

Not
applicable

SSCE_M_WAITFAILED

30010 The specified desktop
computer port is not valid.

Not
applicable

SSCE_M_INVALIDCLIENTPORT

30011 The conversion of the
server name to Unicode
failed.

Not
applicable

SSCE_M_CONVERSIONTOUNICODEFAILED

30012 The server port specified is
not valid.

Not
applicable

SSCE_M_INVALIDSERVERPORT

30013 The system menu cannot
be accessed.

Not
applicable

SSCE_M_FAILUREACCESSINGSYSTEMMENU

30014 The registry keys cannot be
set or created.

Not
applicable

SSCE_M_FAILURESETTINGREGISTRY

30015 A parameter passed to SQL
Server CE Relay is not valid.

Not
applicable

SSCE_M_INVALIDARGUMENT

30016 The combination of
arguments is not valid.

Not
applicable

SSCE_M_INVALIDARGUMENTS

30017 Either a port number is not
valid or the server name is
missing.

Not
applicable

SSCE_M_MISSINGPORTORSERVER

30018 The socket call failed. Not
applicable

SSCE_M_SOCKETCALLFAILED

30019 The socket port is already
in use on this device.

Not
applicable

SSCE_M_PORTALREADYINUSE

30020 The bind failed. Not
applicable

SSCE_M_BINDFAILED

30021 The server address cannot
be resolved.

Not
applicable

SSCE_M_CANTRESOLVESERVERADDRESS

30022 The Listen function failed
on a socket.

Not
applicable

SSCE_M_LISTENFAILED

30023 An accept from the server
failed.

Not
applicable

SSCE_M_ACCEPTFAILED

30024 A connection request to the
server has failed.

Not
applicable

SSCE_M_CONNECTFAILED

30025 A thread cannot be created
due to system problems or
lack of resources.

Not
applicable

SSCE_M_CANTCREATETHREAD

30026 Internal error: Setting a
socket option for keep alive
failed.

Not
applicable

SSCE_M_SETKEEPALIVEFAILED

30027 Internal error: Setting a
socket option for the Nagle
algorithm failed.

Not
applicable

SSCE_M_SETNAGLEFAILED

30028 The receive operation from
the socket failed.

Not
applicable

SSCE_M_RECEIVEFAILED

30029 The send operation to the
socket failed.

Not
applicable

SSCE_M_SENDFAILED

30030 The initialization of
arguments failed.

Not
applicable

SSCE_M_INITARGSFAILED

30031 The WSAStartup function
failed during socket
initialization.

Not
applicable

SSCE_M_WSASTARTUPFAILED

30032 The WSACleanup function
failed during a cleanup
operation.

Not
applicable

SSCE_M_WSACLEANUPFAILED

30033 The server name is either
not valid or not specified.

Not
applicable

SSCE_M_INVALIDSERVERNAME

30034 The socket connection was
reset.

Not
applicable

SSCE_M_CONNECTIONRESET

SQL Server CE Books Online

Miscellaneous Errors
Value Description Parameters Error

39999 The evaluation copy has
expired.

Not
applicable

SSCE_M_EVALUATIONCOPYEXPIRED

SQL Server CE Books Online

Finding Answers by Using Web-based Resources
To find additional troubleshooting assistance for Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE), you can
refer to the following Web-based resources:

SQL Server Support Center

Microsoft Product Support Services (PSS) support for SQL Server CE and SQL Server is available at this Microsoft Web site.

SQL Server CE FAQs

PSS maintains an up-to-date list of frequently asked questions about SQL Server CE at this Microsoft Web site.

Knowledge Base Articles

A database of SQL Server CE-specific articles written by support professionals is maintained by PSS at this Microsoft Web
site. To find SQL Server CE-specific articles, in Search the Knowledge Base, select SQL Server CE.

MSDN Online

For developers who are using Microsoft products, the Microsoft Developer Network (MSDN®) provides online resources at
this Microsoft Web site.

White Papers

White papers about SQL Server CE-related issues are available from PSS at this Microsoft Web site.

http://go.microsoft.com/fwlink/?LinkId=8717
http://go.microsoft.com/fwlink/?LinkId=9065
http://go.microsoft.com/fwlink/?LinkId=8718
http://go.microsoft.com/fwlink/?LinkId=8720
http://go.microsoft.com/fwlink/?LinkId=9271

 SQLXML

SQLXML enables XML support for SQL Server 2000, bridging the gap between XML and relational data. You
can create an XML view of your existing relational data and work with it as if it were an XML file. SQLXML is
your solution if you need to:

Query a relational database with XPath
Query a relational database with Transact-SQL and return XML results
Update relational data as if it was XML
Convert XML data into relational data and load it into an existing SQL Server 2000 database
Query SQL Server via URLs from your Web browser or Web application
Access SQL Server XML functionality via OLEDB/ADO
Access SQL Server XML functionality via .NET Framework classes

Check out SQLXML information on the Data Access and Storage Developer Center

SQLXML and other programmability features of SQL Server are highlighted in the Data Access and Storage Developer Center. The
XML Developer Center also features information on XML and the Database.

In This Library Section Essentials
IIS Virtual Directory Management for SQL Server
Retrieving XML Documents by Using FOR XML on the
Client Side
Creating XML Views by Using Annotated XSD Schemas
Using Updategrams to Modify Data
SQLXML 3.0 Data Access Components
SQLXML .NET Support
Web Services (SOAP) Support in SQLXML

SQLXML 3.0 SP2
SQLXML Downloads
XML and Internet Support Overview (SQL Books
Online)
SQLXML Support Resources
Newsgroup

http://msdn.microsoft.com/data/technologyinfo/sqlserver/SQLProgrammability/default.aspx
http://msdn.microsoft.com/data/
http://msdn.microsoft.com/XML/BuildingXML/XMLandDatabase/default.aspx
https://msdn.microsoft.com/en-us/library/aa275456(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa225774(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa258637(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa258671(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa258682(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa225796(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa226038(v=msdn.10).aspx
http://www.microsoft.com/downloads/details.aspx?familyid=4c8033a9-cf10-4e22-8004-477098a407ac&displaylang=en
http://www.microsoft.com/downloads/results.aspx?productID=&freetext=SQLXML&DisplayLang=en
https://msdn.microsoft.com/en-us/library/aa226537(v=msdn.10).aspx
http://support.microsoft.com/search/default.aspx?InCC_hdn=true&Catalog=LCID=1033&CDID=EN-US-KB&PRODLISTSRC=ON&withinResults=&QuerySource=gASr_Query&Product=sql&Queryc=SQLXML&Query=SQLXML&KeywordType=ANY&maxResults=150&Titles=false&numDays=&InCC=on
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.sqlserver.xml&lang=en&cr=US

SQLXML 3.0 Service Pack 3

About This Release
Microsoft® SQLXML 3.0 Service Pack 3 includes bug fixes and the following enhancements:

XML bulk load ID propagation

When bulk loading XML in tables related by primary key/ foreign key relationships, and the primary key column is an
identity type column for which SQL Server generates the values, these values are appropriately propagated in the foreign
key columns. For a working sample see, Examples of Bulk Loading XML Documents.

NULL handling in SOAP messages

In sending a SOAP request from Visual Studio .NET 2003, you can pass a NULL for value-typed parameters (integers,
booleans, ...). For more information see, Guidelines and Limitations of SOAP Support in SQLXML.

The documentation for this service pack includes information about the following:

IIS Virtual Directory Management for SQL Server

This utility was introduced in SQL Server 2000 and further enhanced in SQLXML. This documentation contains the complete
and updated version of the "IIS Virtual Directory Management for SQL Server" section in SQL Server Books Online for SQL
Server 2000. For more information, see IIS Virtual Directory Management for SQL Server.

Client-side FOR XML

The FOR XML clause, first introduced in SQL Server 2000, allows you to request query results to be returned as XML. The
formatting is done on the server. SQLXML 3.0 enhanced this functionality by introducing client-side XML formatting. For
more information see, Retrieving XML Documents by Using FOR XML on the Client Side

Web services (SOAP) support

Web services support in Microsoft SQLXML exposes Microsoft SQL Server™ 2000 as a Web service that offers SQL Server
functionality to the client. You can send SOAP HTTP requests to the server that is running SQLXML to execute stored
procedures, user-defined functions (UDFs), and templates. For more information, see Web Services (SOAP) Support in
SQLXML.

XML views using annotated XSD schemas

You can create XML views of relational data by using annotated XML Schema Definition language (XSD) schemas. The
annotated XML-Data Reduced language (XDR) schemas (introduced in Microsoft SQL Server 2000) are also supported. For
more information, see Creating XML Views by Using Annotated XSD Schemas.

Updategram

You can modify (insert, update, or delete) rows in a database in Microsoft® SQL Server™ 2000 from an existing XML
document by using an updategram. Updategrams work with XML views. For more information, see Using Updategrams to
Modify Data.

XML Bulk Load

XML Bulk Load is a stand-alone COM object that allows you to load XML data into Microsoft® SQL Server® tables. For
more information, see Performing Bulk Load of XML Data.

Data access components

The following data access components are supported:

SQLXMLOLEDB Provider

The SQLXMLOLEDB Provider exposes Microsoft® SQLXML functionality through ADO. For more information, see
SQLXMLOLEDB Provider.

SQLXML Managed Classes

This object model exposes the functionality of SQLXML within the Microsoft .NET Framework. With this provider,
you can write a C# application to access XML data from an instance of SQL Server, bring the data into the .NET
environment, process the data, and then send the data back in a XML document (the DiffGram) to apply the updates
to SQL Server. For more information, see SQLXML Managed Classes.

DiffGrams

The DiffGram format is introduced in the DataSet component of the Microsoft .NET Framework. Within the .NET
Framework, you can create DiffGrams and then use them to modify data in tables in a SQL Server 2000 database. This
release introduces the parentId annotation. This annotation establishes parent-child relationships among elements in the
DiffGram. SQLXML uses this information when it applies updates. For more information, see Using DiffGrams to Modify
Data.

Other enhancements
Since the release of SQL Server 2000, enhancements have been made to the syntax for accessing database objects
by using HTTP, XML templates, annotated XDR schemas, and XPath queries. For more information about these
enhancements, see Other Feature Enhancements.

The XML Bulk Load samples are updated to use XSD schemas. The samples continue to show equivalent XDR
schemas.

The updategram samples are updated to use XSD schemas. The samples continue to show equivalent XDR schemas.

The XSL namespace "http://www.w3.org/TR/WD-xsl" is no longer supported. The XSLT namespace
"http://www.w3.org/1999/XSL/Transform" version 1.0 continues to be supported.

SQLXML 3.0 is not completely backward compatible with SQLXML 2.0 and SQLXML Web Release 1 because of some bug
fixes and minor functional changes. Although most applications will run without modification, you must test them before
putting them into production with SQLXML 3.0.

Understanding the Side-by-Side Installation Issues

The installation process for SQLXML 3.0 does not remove the files that were installed by Web Release 1 or SQLXML 2.0.
Therefore, you can have the DLLs for all three installations on your computer. You can run the installations side-by-side.
SQLXML 3.0 includes version-independent and version-dependent PROGIDs. All production applications should use version-
dependent PROGIDs.

SQL Server Virtual Directory M anagement Issues

Configure IIS Support is added to the SQLXML 3.0 program group. Use this shortcut to create virtual directories to use
SQLXML 3.0 functionality.

If you have previously created Microsoft Visual Basic® applications and you want to use SQLXML 3.0, you must recompile
the application with reference to Sqlvdr3.dll.

For Microsoft Visual Basic Scripting Edition (VBScript) applications, you must register the DLL that you want to use. In the
following example, if you specify version-independent PROGIDs, the application depends on the last registered DLL:

set objControl = CreateObject("SQLVDir.SQLVDirControl")

The version-dependent PROGID is SQLVDir.SQLVDirControl.3.0.

In the Microsoft Management Console (MMC) snap-in for the SQL Server Virtual Directory Management utility, in the
Properties dialog box of the previously created virtual directories, there is an additional tab called Version 3. This tab
allows you to upgrade those virtual directories to SQLXML 3.0. After you upgrade the virtual directories, this tab disappears
from the dialog box. The upgraded virtual directories can be used for SQLXML SOAP functionality.

When you create a virtual directory by using SQLXML 3.0, the ISAPI location (Advanced tab on the Properties dialog box)
points by default to Sqlis3.dll.

Bulk Load Issues

If you have previously created Visual Basic applications and you want to use SQLXML 3.0, you must recompile the
application with reference to Xblkld3.dll.

For Visual Basic Scripting Edition applications, you must register the DLL you want to use. In the following example, if you

specify version-independent PROGIDs, the application depends on the last registered DLL:

set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")

The version-dependent PROGID is SQLXMLBulkLoad.SQLXMLBulkLoad.3.0.

Registry Key Changes

In SQLXML 3.0, the registry keys have changed from the earlier releases to:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\TemplateCacheSize
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\SchemaCacheSize
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLIS3\NumThreads
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLIS3\MaxRequestQueueSize

You must change the settings if you want these keys to be in effect for SQLXML 3.0.

SQLXML 3.0 Service Pack 3

Upgrading Previously Created Virtual Directories
If you have virtual directories that were created using Web Release 1 or Microsoft® SQLXML 2.0, you can upgrade the virtual
directories.

This upgrade process is irreversible.

To upgrade a virtual directory

1. Double-click the virtual root that you want to upgrade.

2. On the Version 3 tab, click Upgrade to version 3.

3. Click Yes, and then click OK.

The virtual directory is upgraded, and all options that have been introduced since Web Release 1 are available.

IIS Virtual Directory Management for SQL Server

SQLXML 3.0 Service Pack 3

Accessing SQL Server Books Online
The FOR XML clause and other XML functionality were introduced in Microsoft® SQL Server™ 2000. To view the information
about XML and Internet support that is included in SQL Server Books Online, go to the MSDN® Library at this Microsoft Web site.
Click SQL Server Books Online, and then in the Contents pane, click XML and Internet Support.

http://msdn.microsoft.com/library/?url=/library/en-us/startsql/portal_7ap1.asp?frame=true

SQLXML 3.0 Service Pack 3

IIS Virtual Directory Management for SQL Server
The IIS Virtual Directory Management for SQL Server application is provided to create a virtual root that is specific to Microsoft®
SQL Server™. You can create an IIS virtual directory for SQL Server in two ways:

Graphically, by using the IIS Virtual Directory Management for SQLXML 3.0 utility (known as the IIS Virtual Directory
Management for SQL Server utility in earlier releases of Microsoft SQLXML).

Programmatically, by using the IIS Virtual Directory Management for SQL Server object model.

Note that:

For convenience, the complete documentation for IIS Virtual Directory Management for SQL Server that is included in SQL
Server 2000 Books Online is provided here, along with the enhancements that have been introduced since the release of
Microsoft SQL Server 2000.

If you created a virtual directory by using a previous SQLXML release, you can upgrade that directory. Upgrading allows you
to use the new features, such as the ability to send SOAP requests, and so on. For more information, see Upgrading
Previously Created Virtual Directories.

If you do not upgrade a virtual directory that you created by using a previous SQLXML release, the directory will still
function, but without the added functionality that is available in SQLXML 3.0. For information about side-by-side installation
issues, see "Understanding the Side-By-Side Installation Issues" in About This Release.

Virtual Directory for SQL Server

Before you can access a database in SQL Server by using HTTP, you must set up an appropriate virtual directory. Use the IIS
Virtual Directory Management for SQLXML 3.0 utility to define and register a new virtual directory, also known as the virtual root,
on the computer that is running Microsoft Internet Information Services (IIS). (Click Configure IIS Support in the SQLXML 3.0
program group.) This utility instructs IIS to create an association between the new virtual directory and an instance of Microsoft
SQL Server. For information about the user interface for this utility, see Using the IIS Virtual Directory Management for SQLXML
3.0 Utility.

The name of the IIS server and the virtual directory must be specified as part of the URL. The information in the virtual directory
(including login, password, and access permissions) is used to establish a connection to a specific database and execute the query.

The URL can be specified to:

Execute template files.

A template is a valid XML document that consists of one or more SQL statements. When a template file is specified at the
URL, the SQL commands that are stored in the template file are executed. SQL queries can be directly specified at the URL,
but this is not recommended for security reasons.

Execute XPath queries.

The XPath queries are executed against an annotated mapping schema file that is specified as part of the URL.

Access database objects (such as tables) directly.

In this case, the URL includes a virtual name of dbobject type.

Access a Web Services Description Language (WSDL) file.

In this case, the URL includes a virtual name of soap type. A client application can access the WSDL file and then send SOAP
requests to Microsoft SQLXML 3.0.

Virtual N ames

To allow a template file, mapping schema file, or a database object (such as a table or view) as part of the URL, virtual names of
type template, schema, or dbobject must be created. The virtual name is specified as part of the URL to execute a template file,
execute an XPath query against a mapping schema file, or to access a database object directly.

The type (template, schema, dbobject) of the virtual name that is specified in the URL is also used to determine the file type

that is specified in the URL (template file or mapping schema file). For example, the following URL specifies a virtual name of
template type, which identifies the MyTemplate.xml file in the URL as a template and processes it accordingly.

http://IISServer/nwind/TemplateVirtualName/MyTemplate.xml

The following URL specifies a virtual name of schema type, which identifies the MySchema.xml file in the URL as a schema and
processes it accordingly. (The XPath expression in the URL is executed against the mapping schema.)

http://IISServer/nwind/SchemaVirtualName/MySchema.xml/AnXPathExpression

To support SOAP requests, a virtual name of soap type must be created in the URL. A configuration file and a WSDL file are
always associated with a virtual name of soap type. You can edit the configuration file to add or update methods (stored
procedures and templates). The WSDL file is automatically generated from the configuration file. To send SOAP requests, a client
application first uses the virtual name of soap type to access the WSDL. For example, the following URL specifies a virtual name
of soap type, which retrieves the associated WSDL file:

http://IISServer/nwind/SoapVirtualName?wsdl

After the client application retrieves the WSDL file, you post an HTTP SOAP request to the virtual name. The SQLXML server
processes the request, calls the appropriate stored procedure or template, and returns the results as a SOAP response.

For more information about executing queries by using a URL, see "Accessing SQL Server Using HTTP" in SQL Server Books
Online.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

System Requirements for IIS Virtual Directory Management
The IIS Virtual Directory Management for SQLXML 3.0 utility can run on a computer that is running any edition of Microsoft®
Windows NT® 4.0, Microsoft Windows® 2000, or Microsoft Windows XP. Computers that are running Windows NT 4.0 require:

Microsoft Internet Information Server 4.0 or Microsoft Internet Information Services or higher (or Peer Web Services 4.0 or
higher on Windows NT Workstation 4.0).

Microsoft Management Console 1.2 (installed by the Windows NT Option Pack and by Microsoft SQL Server™ 2000 Setup).

For computers that are running Microsoft Windows 2000 Professional, the Administrative Tools pack (Adminpak.msi) must be
installed. This file is located in the %windir%\System32 folder of the Microsoft Windows 2000 Server editions.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Using the IIS Virtual Directory Management for SQLXML 3.0
Utility
Use the following tabs on the Virtual Directory Properties dialog box to specify a virtual root, its associated physical directory,
the database, login information, and other permissions:

Virtual Directory Properties Dialog Box (General Tab)

Virtual Directory Properties Dialog Box (Security Tab)

Virtual Directory Properties Dialog Box (Data Source Tab)

Virtual Directory Properties Dialog Box (Settings Tab)

Virtual Directory Properties Dialog Box (Virtual Names Tab)

Virtual Directory Properties Dialog Box (Advanced Tab)

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (General Tab)
Use the General tab to specify the name of the virtual directory through which the database is accessed, and the physical
directory path that is associated with the virtual directory.

The physical directory stores files that are accessed through the virtual directory. Template files or annotated mapping schema
files are usually stored in this directory.

Options

Virtual Directory Name

Enter the name of the virtual directory (for example, VirtualRoot).

Local Path

Enter the full path to the physical directory that is associated with the virtual directory (for example,
C:\Inetpub\Wwwroot\VirtualRoot). Click the browse (...) button to find the directory on the local computer. The browse (...) button
is unavailable when you are connected to a remote computer.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (Security Tab)
Use the Security tab to specify a login authentication method. The options on this tab map to the three authentication schemes
provided by Microsoft® Internet Information Services (IIS).

Options

Always log on as

The Windows and SQL Server account types map to the anonymous access scheme of IIS authentication security. When you
select SQL Server or Windows Account Type, every user logs in to IIS using the anonymous login. From IIS, to connect to SQL
Server, the login that is used depends on whether you select SQL Server or Windows Account Type. If you select SQL Server
Account Type, you must provide the User Name and Password. All the users that use this virtual directory use this login to
connect to SQL Server. If you select Windows Account Type, the IUSR_Machinename and password are used to connect to
SQL Server. In this case you must have IUSER_Machinename account on SQL Server. In this case, all users that use this virtual
directory use IUSER_Machinename account to connect to SQL Server.

With anonymous access, any user can access the virtual directory.

User Name

Specify a user name for the SQL Server login. If the SQL Server account type is selected, you must provide user name, and the
account name that is specified must be a valid Microsoft SQL Server™ 2000 login. If the Windows account type is selected, the
supplied Microsoft Windows® logon is used for all users.

Password

Specify the password if SQL Server Account Type is selected.

SQL Server

Select to specify that a SQL Server login name and password is to be used to access SQL Server. When a SQL Server login is
specified, all users of this virtual directory use that account to connect to SQL Server.

Windows

Select to specify a Windows account for all users of the virtual directory. By default, IUSR_ServerName (the Internet Guest
Account) is used to access the server. IUSR_ServerName is the user that is created when IIS is installed. By default, Enable
Windows account synchronization is selected.

Use Windows Integrated Authentication

Select to authenticate by using Windows logons.

This option maps to the Microsoft Windows NT® challenge/response (Windows NT 4.0) or the Windows Integrated
Authentication (Microsoft Windows 2000) IIS authentication method. Users with a valid Windows NT 4.0 or Windows 2000 user
account are authenticated and allowed access to the virtual directory, and the same login is also used to connect to the SQL
Server. Therefore, Microsoft Windows user accounts must be granted access to SQL Server.

Use Basic Authentication (Clear Text) to SQL Server account

Select to authenticate by prompting for a SQL Server login and password.

This option differs from the Basic authentication method of IIS authentication security. By selecting this option, a user is prompted
for a SQL Server login and password. In this authentication option, anonymous authentication is enabled in IIS. Every user logs in
to IIS using an anonymous login, and then is connected to SQL Server using the login information the user provides. This login
must be a valid SQL Server login. When a user attempts to access the database, the ISAPI first tries the anonymous access; if this
fails, an error message is sent to the browser. The browser then shows a dialog box that requests a user name and password for
SQL Server.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (Data Source Tab)
Use the Data Source tab to specify the instance of Microsoft® SQL Server™ 2000 that contains the database to which you want
to connect and the database name.

Options

SQL Server

Enter the name of the server (and, optionally, the instance of SQL Server) that you want. Click the browse (...) button to view the
servers that are running SQL Server on the network. If multiple instances of SQL Server are installed, you can specify the server
name and the instance name. If no instance name is specified, the default instance is assumed.

Database

Enter the name of the default database on the server (for example, Northwind). The virtual directory maps to this database.
Depending on the access permissions, queries can be executed against other databases on the instance of SQL Server to which
the virtual directory maps; however, the database specified here is the default.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (Settings Tab)
Use the Settings tab to specify the type of Microsoft® SQL Server™ 2000 access you want to provide through the virtual
directory.

Template and schema files can be stored in the directory (or one of its subdirectories, in which case the relative path must be
specified in the URL) that is specified when a virtual name of template type or schema type is created.

By default, only template file queries are allowed. Optionally, the URL can also execute posted SQL/template queries, XPath
queries, or POST queries.

Options

Allow sql=... or template=... URL queries

Allows you to execute SQL/template queries that are posted to a URL (as sql= or template= parameters by using either the get
or the post HTTP method). An XML template can include SQL queries, XPath queries, or XML updategrams. For security reasons,
this option is recommended during development only and not for use in a production environment because it allows users to
execute any queries against the virtual root and the database. Selecting this option makes the Allow posted updategrams
option unavailable because you can always post XML templates with updategrams by using this option. The length of the URL
queries (the text that appears after the question mark ? in the URL) is limited to 1 kilobyte.

Allow posted updategrams

Allows XML templates (with only XML updategrams) to be posted to a URL. This option restricts the XML templates that are
posted to a URL to those that include only XML updategrams. Because the template cannot contain SQL/XPath queries, this option
provides a certain level of security.

Allow template queries

Allows the execution of template files in the URL. A template is a valid XML document that consists of one or more SQL/XPath
queries and updategrams. This option is enabled by default.

The Allow template queries option is useful if you have previously created virtual name(s) of the template type, but you want
to temporarily disable permission to execute template files in the URL (and keep the previously created virtual name(s) of
template type). By disabling this option, you can temporarily disable the execution of template files in the URL. Another way to
avoid execution of templates in the URL is to not create a virtual name of template type. This prevents you from specifying a
template file in the URL.

Allow XPath

Allows the execution of XPath queries against XML schema files in the URL. Creating virtual name(s) of schema type can also
control XPath/Schema queries.

The Allow XPath option is useful if you have previously created virtual name(s) of the schema type but want to temporarily
disable permission to execute XPath queries in the URL (and keep the previously created virtual name(s) of schema type). By
disabling this option, you can temporarily disable the execution of XPath queries in the URL. Another way to avoid execution of
XPath queries in the URL is to not create a virtual name of schema type. This prevents you from specifying XPath queries in the
URL.

Allow POST

Allows the post HTTP method. By default, the HTTP methods get and head are allowed and you are limited by the maximum size
of the URL. To allow large queries (such as template=Specify XML Template) and parameters, use post. The Allow POST option
must be selected if you create virtual names of soap type. Note that enabling this option allows POST requests to be sent to any
virtual name that is defined in this virtual directory. Therefore, it is recommended that you create a separate virtual root
specifically for SOAP and then enable this option.

Maximum size of POST queries (in kilobytes)

Specifies the maximum amount of data (in kilobytes) that can be posted to the server per HTTP request.

Run on the client

Specifies that the XML formatting is to be done on the client.

Expose runtime errors as HTTP error

Specifies that errors be returned as part of the HTTP header. If this option is selected, an HTTP error code (512 Runtime Error) is

returned if any of the queries in the template fail. In this case, the error descriptions are included in the HTTP header.

If this option is not set (which is the default), the HTTP success code (200) is returned and the errors are returned as processing
instructions inside the XML document.

Suppress error reporting

Specifies that SQLXML should not return detailed error messages, but instead return the generic error: "Errors encountered.
Execution failed." In a production environment, this provides added security by hiding internal details.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (Virtual Names Tab)
Use the Virtual Names tab to create a virtual name that is specified directly as part of the URL to:

Execute a template file.

Execute an XPath query against a mapping schema file.

Access a database object.

POST SOAP requests to execute stored procedures and templates.

Because only virtual names are included in the URL, the information about what is executed and where files are stored is not
exposed. This provides additional security.

Options

Defined virtual names

Specify the virtual name. This virtual name is then used in the URL. For example, the virtual name template in the VirtualRoot
virtual directory can be accessed at http://IISServer/VirtualRoot/template/. Depending on the type of the virtual name, additional
information is specified in the URL.

To create a new virtual name, select <New virtual name>. In the Name text box, enter the virtual name. In the Type text box,
enter virtual name type (template, schema, dbobject, or soap).

Type

Specify the type of the virtual name from the following:

dbobject

Allows you to access database objects (tables) directly in the URL.

schema

Allows you to specify an XML schema file in the URL, and allows an XPath query to execute against this schema.

soap

Allows you to access the associated Web Services Description Language (WSDL) file and send SOAP requests.

template

Allows you to specify XML template files in the URL. An XML template can include SQL queries, XPath queries, or updategrams or
diffgrams.

Path

Specify the directory path where the templates, mapping schemas, or the Web Services Description Language (WSDL) file (in case
of virtual name of soap type) are located. The path can be absolute, or it can be relative (relative to the physical directory that is
associated with the virtual directory). If a virtual name is created for dbobject type, no path is necessary. Click the browse (...)
button to search the directory path. (The browse button is unavailable when you are managing remote computers.)

When you create a template or schema mapping, the path can be a path to a folder or a path to a file. When the path is to a folder,
the file name must be included in the URL (for example, http://IISServer/VirtualRoot/as/schema.xml). When the path is to a file,
the mapping goes directly to that file, so only that file can be used.

URL paths are not allowed. (The IIS Virtual Directory Management for SQLXML 3.0 utility does not validate path entries.)

Webservice name

Specify the service name of the SOAP service. This name appears in the WSDL file that is associated with the virtual name (of
soap type). By default, the Webservice name is the same as the virtual name.

Domain name

Specify the domain name. It is the domain name through which the virtual name (and, thus, the WSDL) is accessed using a URL. If
no domain name is specified, it defaults to the name of the Microsoft® Internet Information Services (IIS) server computer (for

example, http://mycomputer/Vdir/SoapVname, which is a common intranet scenario). When you are going to expose your server
on the Internet, you can set the domain name to the public domain name of the server, in which case the virtual name is, for
example, accessed as http://www.mycomputer.com/Vdir/SoapVname.

Save

Click to create the virtual name. If this is a virtual name of soap type, you can configure the virtual name by using the Configure
button. For a virtual name of soap type, the changes are persisted immediately, independent of clicking OK, Apply, or Cancel in
the dialog box afterwards.

Edit

Click to edit one of the existing virtual names.

Delete

Click to delete the specified virtual name. For a virtual name of soap type, the virtual name is deleted immediately, independent of
clicking OK, Apply, or Cancel in the dialog box afterwards.

Configure

Click to configure the existing virtual name of type soap. A virtual name of soap type has a configuration file and an associated
WSDL file. This configuration process allows you to create or edit the configuration (.ssc) file, and then it generates the
corresponding WSDL file. The client uses this WSDL file to generate SOAP requests. For more information, see Soap Virtual Name
Configuration Dialog Box.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Soap Virtual Name Configuration Dialog Box
Soap Virtual Name Configuration Dialog Box

Use this dialog box to configure a virtual name of soap type. A newly created virtual name of soap type has a default
configuration file that is associated with it. You must edit this configuration file by adding the stored procedures or templates that
you want to make available as SOAP operations.

The dialog box allows you to edit the configuration (.ssc) file that is associated with the virtual name and add (or modify)
mappings to stored procedures and templates in this configuration file. When you update a configuration file, the corresponding
Web Services Description Language (WSDL) file is generated automatically. The client applications use this WSDL file to generate
SOAP requests that are processed by Microsoft® SQLXML 3.0.

The configuration file is updated on the basis of the information that you provide in the Soap Virtual Name Configuration
dialog box. In this dialog box, you can specify the name of a stored procedure, user-defined function, or a template. You can also
use the browse (...) button to view a list of the accessible stored procedures or the user-defined functions from the database that
is associated with the current virtual root or to view a list of templates that are stored in the physical directory that is associated
with the virtual name. From the list in the box, select the stored procedures (or templates) that you want to have available in the
SOAP service as operations that a client can request. Select one stored procedure (or template) at a time; specify a name by which
it gets referred in the WSDL file; specify the formatting (Raw or Nested) and output options (XML objects in the object array,
Dataset objects in the object array, or a Dataset) as appropriate; and then click Save to include it in the service. After you have
created the desired mappings, click OK to update the configuration file.

A new WSDL file is automatically generated on the basis of the updated information in the configuration file, which exposes the
stored procedures and templates as WSDL operations.

Options

Methods

This text box provides a list of the stored procedures and templates that currently have mappings associated with them. You can
select any of these operations and edit or delete them. A corresponding WSDL file is generated automatically. Initially, this box is
empty.

Save

Click to save a newly created mapping or to save an edited mapping.

Delete

Click to delete an existing method mapping.

Edit

Click to edit an existing method mapping.

Edit/New mapping

This set of options allows you to select a stored procedure or a template. Click one of the options (SP or Template), and then click
the browse (...) button to view a list of the available stored procedures (or templates). From the list in the box, select a stored
procedure (or template). Specify the necessary mapping information, and then click Save.

Type

Click one of the options to specify whether you want a template or a stored procedure added to the WSDL file, and then click the
browse (...) button to view a list of the stored procedures (or templates). Stored procedures and templates are the only types of
operations that can be added to a SOAP service. Type indicates whether the current item is a stored procedure or a template. This
information is useful when there is a template and a stored procedure with the same name in the service.

Method name

Enter the method (operation) name by which the stored procedure (or user-defined function or template) is referred in the WSDL
file. This is the name by which a client can request to execute the stored procedure or template. By default, the method name is
same as the stored procedure (or template) name.

SP/Template

This is a field that shows the name of the stored procedure (or template) for which you are defining mappings. It cannot be edited.

You use the browse button to find a list of stored procedures (and optionally the system stored procedures and built-in functions)
or templates.

Row format

Specify the XML format for the result set that is returned by execution of the stored procedure. This value is used to generate the
XML format on the middle tier if the stored procedure does not specify the FOR XML option (and thus returns a rowset). These
options are not available for templates.

Output as

Specify how you want the results returned. The result of executing a stored procedure (or user-defined function) can be returned
in an object array or as a DataSet. (But the result can be returned as a single DataSet only when the stored procedure or user-
defined function returns a rowset that translates to a single DataSet.)

When you return results in an object array, you can specify whether you want the results returned as XMLElement objects
(System.Xml.XmlElement) or DataSet objects (System.Data.DataSet) in the object array.

These options are not available for templates. In case of templates, the results are always returned as XMLElement objects in the
object array.

Return errors as SOAP faults

Clear this option if you want errors to be returned as processing instructions within the XML result set. If you select this option
(the default), errors are returned as SOAP <fault> elements in the SOAP response.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Virtual Directory Properties Dialog Box (Advanced Tab)
Use the Advanced tab to specify the location of the ISAPI extension dynamic-link library (DLL) (Sqlis3.dll for Microsoft® SQLXML
3.0). This file is required to access an instance of Microsoft SQL Server™ 2000 through the virtual directory.

Options

ISAPI Location

Specify the location of the ISAPI DLL (Sqlis3.dll). If the virtual directory is created on a remote server, you must provide the
location of the DLL. By default, the ISAPI DLL (Sqlis3.dll) is installed in the Program Files\Common Files\System\Ole DB directory.

If the virtual directory is created on a remote computer, the default value for the ISAPI location is not provided. You must enter a
value for this ISAPI location.

Additional user settings

Specify additional optional settings. These settings are appended unparsed to the connection string that is passed into OLE DB.

Caching options

The ISAPI DLL (Sqlis3.dll) has a caching option that stores the template or the mapping schema in a cache so that it can be reused
in subsequent queries.

Disable caching of mapping schemas

Select to prevent caching of the mapping schemas. If this option is selected, the mapping schemas are reloaded each time a query
is executed against the schema. By default, schema caching is set to ON.

Disable caching of templates

Select to prevent caching of the templates. If this option is selected, a template is reloaded and reparsed each time a query is
executed against the template. By default, template caching is ON.

Disable caching of XSL

Select to prevent caching the XSL. If this option is selected, the XSL is reloaded each time and reparsed each time it is executed. By
default, XSL caching is ON.

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

Creating the nwind Virtual Directory
The nwind virtual directory is used in most of the examples that illustrate URL access to Microsoft® SQL Server™ 2000.

Before you create the nwind virtual directory, you must have a physical directory that will be associated with the virtual directory
(for example, C:\Inetpub\Wwwroot\nwind, where nwind is the physical directory that is associated with the nwind virtual
directory). You must also create two subdirectories in this physical directory that will be associated with the virtual names of
template type and schema type (for example, C:\Inetpub\Wwwroot\nwind\template and C:\Inetpub\Wwwroot\nwind\schema).
These virtual names of template type and schema type are created when you create the nwind virtual directory.

To create the nwind virtual directory

1. In the SQLXML 3.0 program group, click Configure IIS Support.

2. Expand a server, and then click the Web site you want (for example, Default Web Site).

3. On the Action menu, point to New, and then click Virtual Directory. The property page for the new virtual directory is
displayed on the screen.

4. On the General tab of the New Virtual Directory Properties dialog box, enter the name of the virtual directory (nwind)
and the physical directory path (C:\Inetpub\Wwwroot\nwind). You can optionally use the browse (...) button to select the
directory.

5. On the Security tab, select Use Windows Integrated Authentication.

6. On the Data Source tab, in the SQL Server box, enter the name of a server (for example, (local)) and, optionally, the name
of an instance of SQL Server 2000 (if more than one instance is installed on the specified computer). In the Database box,
enter Northwind as the name of the default database.

7. On the Settings tab, select the Allow URL queries, Allow template queries, Allow XPath, and Allow POST options.

8. On the Virtual Names tab, click <New virtual name> to create the virtual name of Template type.

9. Enter template as the virtual name in the Name text.

10. Select template as the Type (virtual name type) from the drop-down list.

11. Specify the physical directory path that is associated with the virtual name (for example,
C:\Inetpub\Wwwroot\nwind\template).

12. Click Save to save the virtual name of template type.

13. On the Virtual Names tab, click <New virtual name> to create the virtual name of Schema type.

14. Enter schema as the virtual name in the Name text box.

15. Select schema as the Type (virtual name type) from the drop-down list.

16. Specify the physical directory path that is associated with the virtual name (for example,
C:\Inetpub\Wwwroot\nwind\schema).

17. Click Save to save the virtual name of schema type.

18. On the Virtual Names tab, click <New virtual name> to create the virtual name of dbobject type.

19. Enter dbobject as the virtual name in the Name text box.

20. Select dbobject as the Type (virtual name type) from the drop-down list.

21. Click Save to save the virtual name of dbobject type.

22. Click OK to save the settings.

This creates the virtual directory nwind. The queries that are specified by using this virtual directory are, by default, executed
against the Northwind database.

To test the virtual directory, type the following in the browser and then press Enter:

http://<IISServer>/nwind?sql=SELECT FirstName, LastName FROM Employees FOR XML AUTO&root=root

Using the IIS Virtual Directory Management for SQL Server Utility

Virtual Directory Security Issues

SQLXML 3.0 Service Pack 3

IIS Virtual Directory Management for SQL Server Object Model
The IIS Virtual Directory Management for SQL Server object model consists of these objects:

SQLVDirControl Object

SQLVDirs Collection Object

SQLVDir Object

VirtualNames Collection Object

VirtualName Object

SoapMethods Collection Object

SoapMethod Object

In an object model, objects provide the content and functionality of an application. The objects are units of related content and
functionality. A collection object, on the other hand, is an object that contains a set of related objects. You can use a collection
object to get to an individual object, usually with an Item method. For example, you can use the Item method of the SQLVDirs
collection object to access one of the virtual directories.

In this object model, SQLVDirControl is the top-level object and is the only object that can be created directly. All other objects
must be obtained from the SQLVDirControl object or its derivatives.

The object hierarchy (object model) is the way the objects in the application are arranged relative to each other. The following
shows the object hierarchy in the object model for creating a virtual root:

SQLXML 3.0 Service Pack 3

SQLVDirControl Object
SQLVDirControl is the only object in the object hierarchy that can be accessed directly by using Automation. All other objects are
accessed through this object or its derivatives.

SQLVDirControl supports the following methods:

Connect

Connects to a specific Microsoft® Internet Information Services (IIS) server computer. The two parameters to this method are: IIS
Server name and Web Site number (the number of the Web site in the metabase tree). If none of the parameters is supplied, the
local server is the default value for the IIS server, and the first Web site (default Web site) on that IIS server is selected as the
default.

Disconnect

Disconnects from the last connected IIS server and the Web site. There are no parameters to this method. You must call
Disconnect to close the connection when you are finished or before you connect to another server or Web site.

You cannot issue multiple Connect calls to establish connections to many IIS servers. However, if you are trying to connect to the
same IIS server but possibly different Web sites, you can call Connect multiple times without calling Disconnect.

SQLVDirs

Retrieves the virtual directory collection of the Web site to which you are connected. After you are connected to a specific IIS
server computer and to a Web site, call the SQLVDirs method to obtain the SQLVDirs collection object, which provides access to
the virtual directory objects.

IISServerName

Returns the name of the IIS server computer to which the SQLVDirControl object is connected.

Examples

The following example shows how to connect to a specific IIS server computer and a specific Web site on that computer. The first
Web site is the one that is being selected on the computer.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjDirs = ObjXML.SQLVDirs
...

ObjXML.Disconnect

To check whether the SQLVDirControl object is connected to a server computer, you can use the IISServerName property. If this
property is an empty string, the object is not connected.

SQLXML 3.0 Service Pack 3

SQLVDirs Collection Object
The SQLVDirs collection object is returned by the SQLVDirControl.SQLVDirs method. With the SQLVDirs collection object, you
can access a specific virtual directory (by using the Item method), create a new virtual directory (by using the
AddVirtualDirectory method), or remove an existing virtual directory (by using the RemoveVirtualDirectory method).

The SQLVDirs collection object supports these standard methods:

Count

Returns the number of virtual directories.

Item

Retrieves one virtual directory. You can specify either an integer (starting with 0 for the first virtual directory) or the name of the
virtual directory.

The SQLVDirs collection object also supports these methods:

AddVirtualDirectory

Takes the name of the virtual directory that is to be created. This method creates a new virtual directory in the metabase with all
the defaults. However, some properties, such as the default database, are not set.

The AddVirtualDirectory method or Item method returns a SQLVDir object that represents the virtual directory.

RemoveVirtualDirectory

Removes the virtual directory from the Microsoft® Internet Information Services (IIS) metabase. The optional ForceDelete
parameter allows you to force the deletion of the virtual directory, even when the virtual directory is not recognized by
Microsoft® SQLXML. This parameter is False by default.

Exists

Checks whether the virtual directory with the given name is already present.

UpgradeAll

Upgrades all previously created virtual directories. This allows you to create soap type virtual names.

Examples

The following example establishes a connection to the first Web site on an IIS server computer. The first virtual directory object
(index value 0) on the connected Web site is accessed.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
' or ObjVDirs(0) since Item() is the default
...
ObjXML.Disconnect

SQLXML 3.0 Service Pack 3

SQLVDir Object
The SQLVDir object is a virtual directory object that is obtained by calling the Item method (or by calling the
AddVirtualDirectory method, if you are creating a new virtual directory).

The SQLVDir object supports the following properties. You can get and set values for all of these properties except the Password
property (for which you can set, but cannot get the value).

Name

Is the name of the virtual directory.

PhysicalPath

Is the full physical path to the directory that is associated with the virtual directory.

ServerName

Is the name of the server that is running Microsoft® SQL Server™ 2000, which is the data source for the virtual directory.

DatabaseName

Is the default database that is used in queries against this virtual directory.

UserName

Is the user login that is used to connect to the data source.

Password

Is the user password that is used to connect to the data source.

SecurityMode

Is the login authentication method that is used with the virtual directory, such as SQL Authentication or Microsoft Windows®
Integrated Authentication. You can specify one of the following values.

Value Description
1 SQL Server login (default)
2 Microsoft Windows anonymous logon
4 Basic authentication
8 Windows Integrated authentication

If you are changing the connection settings (changing the server name, database name, user name, password, or the security
mode), it is recommended that virtual directory access be disallowed. The virtual directory can be disabled by setting the
AllowFlags property to 0.

AllowFlags

Specifies the type of access that is allowed through this virtual directory. You can specify one (or a combination) of the following
values.

Value Description
1 URL queries
2 Don't return detailed error information. Instead, return

a generic error message.
8 Template (default)
64 XPath queries
128 POST queries
256 Disable mapping schema caching
512 Updategrams
1024 Disable template caching
8192 Run on the client
16387 Expose run-time errors
32768 Disable XSL caching

EnablePasswordSync

Specifies whether Microsoft Internet Information Services (IIS) is allowed to handle the anonymous password synchronization.

DLLPath

Provides the full path to Sqlisapi.dll.

AdditionalSettings

Are user-defined settings that are appended to the OLE DB connection string.

PostSize

Is the maximum size (in kilobytes) of POST queries that is allowed when you select Allow POST queries (128) in the AllowFlags
setting. The default is 100.

Version

Provides the version of the virtual directory. This can be 1 (SQL Server 2000 and Web Release 1), 2 (SQLXML 2.0), or 3 (SQLXML
3.0).

VirtualNames

Is the collection of virtual name mappings for the virtual directory.

Upgrade

Upgrades the previously created virtual directory to an SQLXML 3.0 directory. This allows you to create soap type virtual names.

Examples

The following example establishes a connection to the first Web site on an IIS server computer. The first virtual directory object
(index 0) on the connected Web site is accessed. The PhysicalPath property of the object is set to C:\inetpub.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
If (ObjVDirs.Exists("MyVDir") = False) Then
 Set ObjVDir = ObjVDirs.AddVirtualDirectory("MyVDir")
Else
 Set ObjVDir = ObjVDirs.Item("MyVDir")
End If
ObjVDir.PhysicalPath = "C:\"
ObjVDir.PhysicalPath = ObjVDir.PhysicalPath & "inetpub"
...
ObjXML.Disconnect

SQLXML 3.0 Service Pack 3

VirtualNames Collection Object
The VirtualNames collection object is a collection of virtual names in the virtual directory object (SQLVDir object). The
VirtualNames collection object is similar to the SQLVDirs object (which is a collection of virtual root objects). The VirtualNames
collection object supports these standard methods:

Count

Returns the number of virtual names.

Item

Retrieves one virtual name. You can specify either an integer (starting with 0 for the first virtual directory) or the name of the
virtual name.

The VirtualNames collection object also supports the following methods:

AddVirtualName

Passes the name of the virtual name, the type of the virtual name (see VirtualName Object), and the directory path that is
associated with the virtual name that is to be created. For a soap type virtual name, there are two additional optional parameters:
the Web service name (which if not specified, defaults to the name of the virtual name), and the domain name (which if not
specified, defaults to the name of the Microsoft® Internet Information Services (IIS) server copmputer). In Visual Basic 6.0, these
optional parameters can be skipped when you create virtual names of non-SOAP type (for example, schema, template, or
dbobject type virtual names). But in the case of C#, you must specify a value (System.Type.Missing) for these parameters.

The AddVirtualName method or Item method returns an interface to a VirtualName object that represents the virtual name.

RemoveVirtualName

Removes the virtual name that is specified.

Exists

Checks whether the virtual name with the given name is already present on the virtual directory.

Examples

The following example shows the steps for accessing a VirtualNames collection object:

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
Set ObjVNames = ObjVdir.VirtualNames
...
ObjXML.Disconnect

SQLXML 3.0 Service Pack 3

VirtualName Object
The VirtualName object is obtained by calling the Item method (or by calling the AddVirtualName method, if you are creating
a new virtual name).

The VirtualName object supports these properties:

Name

Is the name of the virtual name that is being created. If the virtual name is of soap type, changing the name re-creates the soap
configuration and Web Services Description Language (WSDL) files.

Type

Is the virtual name type. You can specify one of these values.

Value Description
1 Virtual name of type dbobject
2 Virtual name of type schema
4 Virtual name of type template
8 Virtual name of type soap

Path

Is the directory path (absolute or relative) that is associated with the virtual name. If the virtual name is of soap type, changing the
path moves the SOAP configuration files to the new location that is defined by the new path.

WebService

Applies to virtual names of soap type only. It is the name of the Web service that is exposed through this SOAP virtual name.
Changing the Web service re-creates a new default configuration and WSDL files.

Domain

Applies to virtual names of soap type only. It is the name of the domain that exposes the SOAP Web service. Changing the
domain name updates the configuration and WSDL files with the new domain.

The VirtualName object also supports the following method:

SoapMethods

Retrieves a collection object that includes methods (operations) that are specified in the configuration file associated with the
virtual name (of soap type).

Examples

The following example shows the steps for accessing an existing VirtualName object and for setting some of its attributes:

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.Item(0)
Set ObjVNames = ObjVdir.VirtualNames
Set ObjVName1 = ObjVNames.Item(0)
ObjVName1.Type = 2
ObjVName1.Name = "MySchema"
ObjVName1.Path = "C:\inetpub\schema"
...
ObjXML.Disconnect

This statement creates a new virtual name:

Set NewVName = ObjVNames.AddVirtualName "MyNewSchema", 2, "C:\inetpub\schema"

SQLXML 3.0 Service Pack 3

SoapMethods Collection Object
The SoapMethods collection object is returned by the VirtualName.SoapMethods method.

With the SoapMethods collection object, you can:

Access a specific method in the configuration file that is associated with the virtual name of soap type by using the Item
method.

Add a new method (that is, a stored procedure or template) by using the methods AddStoredProcMethod or
AddTemplateMethod.

Remove an existing method from the configuration file by using the RemoveMethod method.

Generate new configuration file by using the GenerateConfig method.

Generate a new Web Services Description Language (WSDL) file by using the GenerateWSDL method.

The SoapMethods collection object supports these standard methods:

Count

Returns the number of operations.

Item

Retrieves one operation. You can specify either an integer (starting with 0 for the first operation) or the name of the operation.

The SoapMethods collection object also supports these methods:

AddStoredProcMethod

Takes the method name (also referred to as "operation" in WSDL), a stored procedure name (the one you want executed when the
corresponding WSDL operation is called), a Boolean variable that specifies the FOR XML mode (NESTED, RAW), a Boolean variable
that you can use to specify whether you want errors returned as a SOAP fault in the response, and an enumeration type that
specifies how the output is to be returned (as an XMLElement object array, DataSet object array, or single DataSet object).

If the stored procedure name (or the UDF name) includes special characters such as white space characters (for example, sp_Get
Customers), you must specify the name by using brackets around the stored procedure name (for example, [sp_Get
Customers]).

AddTemplateMethod

Takes the method name (also referred to as "operation" in WSDL), a template name (the one you want executed when the
corresponding WSDL operation is called), and a Boolean variable that indicates whether you want errors returned as a SOAP fault
in the response.

RemoveMethod

Removes the specified method (template or stored procedure mapping) from the configuration file.

GenerateConfig

Generates the configuration file. This method takes two Boolean parameters. If the first parameter is set to TRUE, it overwrites the
configuration file. If the second parameter is set to TRUE, it also generates the corresponding WSDL file.

GenerateWSDL

Generates a WSDL file on the basis of the information in the configuration file.

Examples

The following example establishes a connection to the first Web site on a server running Microsoft® Internet Information Services
(IIS). The example creates a virtual directory (soapvdir) and virtual name of soap type. In the virtual name of soap type, a template
is added in the configuration file.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"

Set ObjVDirs = ObjXML.SQLVDirs
Set objVDir = objVDirs.AddVirtualDirectory("soapvdir")
objVDir.PhysicalPath = "C:\Inetpub\wwwroot\soap"
objVDir.UserName = "username"
objVDir.Password = "SomePassword"
objVDir.ServerName = "MySQLServer"
objVDir.DatabaseName = "Northwind"
objVDir.AllowFlags = objVDir.AllowFlags & 128
set objVNames = objVDir.virtualNames
set objVName = objVNames.AddVirtualName("soap", 8, "c:\inetpub\wwwroot\soap", "sqlxmlsoap", "www.domain.com")

set objMethods = objVName.SoapMethods
objMethods.AddStoredProcMethod "CustOrderHistory", "CustOrderHist", "True", "True", 1
set objMethod = objMethods.AddTemplateMethod("GetCustomerByName", "c:\inetpub\wwwroot\soap\MyTemplate.xml",
true)

' Generate config and WSDL
objMethods.GenerateConfig false, false
objMethods.GenerateWSDL
...
ObjXML.Disconnect

SQLXML 3.0 Service Pack 3

SoapMethod Object
The SoapMethod object is obtained by calling the Item method (or, if you are creating a new method mapping, by calling the
AddStoredProcMethod method or AddTemplateMethod method) on the SoapMethods collection object.

The SoapMethod object supports the following properties:

Name

Is the name of the method mapping.

Type

Is the method mapping type. You can specify one of the following values.

Value Description
1 Stored procedure (or user-defined function) mapping
2 Template mapping

SPName

Is the name of the stored procedure or user-defined function (UDF) that is mapped to the WSDL operation in this mapping. This
property is only valid for stored procedure (or for UDF) mappings.

TemplateLocation

Is the template name with the full path to the template location that is mapped to the WSDL operation in this mapping. This
property is only valid for template mappings.

ReturnFaults

Specifies whether runtime errors should be returned as SOAP faults.

NestedMode

Is a Boolean property that specifies whether the results are to be formatted by using NESTED mode. This property is valid only for
stored procedure (or for UDF) mappings.

Output

Specifies how the output is to be returned. This property is valid only for stored procedure (or for UDF) mappings. You can specify
one of the following values.

Value Description
1 Return results as an array of XMLElement objects.
2 Return results as an array of DataSet objects.
3 Return results as a single DataSet object.

Examples

The following example establishes a connection to the first Web site on a server that is running Microsoft® Internet Information
Services (IIS). The example creates a virtual directory (soapvdir) and virtual name of soap type. In the virtual name of soap type, a
template is added in the configuration file and then the template location is changed.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect "IISServer", "1"
Set ObjVDirs = ObjXML.SQLVDirs
Set objVDir = objVDirs.AddVirtualDirectory("soapvdir")
objVDir.PhysicalPath = "C:\Inetpub\wwwroot\soap"
objVDir.UserName = "username"
objVDir.Password = "SomePassword"
objVDir.ServerName = "MySQLServer"
objVDir.DatabaseName = "Northwind"
objVDir.AllowFlags = objVDir.AllowFlags & 128
set objVNames = objVDir.virtualNames
set objVName = objVNames.AddVirtualName("soap", 8, "c:\inetpub\wwwroot\soap", "sqlxmlsoap", "www.domain.com")

set objMethods = objVName.SoapMethods
set objMethod = objMethods.AddTemplateMethod("GetCustomerByName", "c:\inetpub\wwwroot\soap\MyTemplate.xml",

true)
' Change the template location (for illustration purposes)
objMethod.TemplateLocation = "MyTemplate.xml"
' Generate config and WSDL
objMethods.GenerateConfig false, false
objMethods.GenerateWSDL
...
ObjXML.Disconnect

SQLXML 3.0 Service Pack 3

Creating the nwind Virtual Directory by Using the Object
Model
This Microsoft® Visual Basic® Scripting Edition (VBScript) sample creates the same nwind virtual directory that is described in
Creating the nwind Virtual Directory.

Set ObjXML = CreateObject("SQLVDir.SQLVDirControl.3.0")
ObjXML.Connect 'Connect to the local computer and Web site "1"

Set ObjVDirs = ObjXML.SQLVDirs
Set ObjVDir = ObjVDirs.AddVirtualDirectory("nwind")

'General tab in UI
ObjVDir.PhysicalPath = "C:\Inetpub\wwwroot\nwind"

'Security tab in UI
ObjVDir.UserName = "UserName" 'SQL Server login
ObjVDir.Password = "UserPassword" 'SQL Server Password
'Data source tab in UI
'(local) is default for the SQL Server
ObjVDir.DatabaseName = "Northwind"

'Settings tab in UI
objVDir.AllowFlags = 8 ' only template execution is allowed

'Virtual Name Configuration tab in the UI
Set objVNames = objVDir.VirtualNames
objVNames.AddVirtualName "dbobject", 1, ""
'The path specified for the AddVirtualName below must be a valid path.
objVNames.AddVirtualName "schema", 2, "C:\Inetpub\wwwroot\nwind\schema"
objVNames.AddVirtualName "template", 4 , "C:\Inetpub\wwwroot\nwind\template"

'Disconnect from the server.
objXML.Disconnect

msgbox "Done."

SQLXML 3.0 Service Pack 3

Retrieving XML Documents by Using FOR XML on the Client
Side
Microsoft® SQLXML provides two ways to format an XML document:

Server-side formatting

Client-side formatting

This topic includes information about formatting XML documents on either the client side or the server side from the rowsets that
are generated by queries executed against a database in Microsoft SQL Server™ 2000.

It is assumed that you are familiar with the FOR XML clause that was introduced in SQL Server 2000. This topic provides
information about using FOR XML on the client side. For complete information about FOR XML, see SQL Server Books Online.

Formatting XML Documents on the Server Side

In SQL Server 2000, you can store and retrieve XML documents to and from database tables. To retrieve an XML document, use
the FOR XML query extension in a SELECT query.

For example, assume a client application executes a command against SQL Server 2000 that consists of the following Transact-
SQL query:

SELECT FirstName, LastName
FROM Employees
FOR XML AUTO

The server executes the query in two steps. First, the server executes this SELECT statement:

SELECT FirstName, LastName
FROM Employees

Then the server applies the FOR XML transformation to the generated rowset. The resulting XML is then sent to the client as a
one-column rowset. In this documentation, this process is referred to as server-side XML formatting.

On the server side, you can specify the following modes with a FOR XML clause:

RAW

AUTO

EXPLICIT

For information about the architecture of client-side and server-side formatting, see Architecture of Client-Side and Server-Side
XML Formatting.

Formatting XML Documents on the Client Side

In addition to server-side XML formatting, SQLXML supports client-side XML formatting. (Client-side formatting refers to the
formatting of XML on the middle tier.) When a client application executes the following query:

SELECT FirstName, LastName
FROM Employees
FOR XML RAW

Only this part of the query is sent to the server:

SELECT FirstName, LastName
FROM Employees

The server executes the query and returns a rowset (which contains FirstName and LastName columns) to the client. The middle
tier then applies the FOR XML transformation to the rowset and returns XML formatting to the client.

Similarly, when you execute an XPath query, the server returns the rowset to the client and the FOR XML EXPLICIT transformation
is applied to the rowset on the client, generating the desired XML formatting.

The following table shows the modes you can specify with client-side FOR XML.

Client-side FOR XML mode Comment
RAW Produces identical results when specified in

client-side or server-side FOR XML.
NESTED Is similar to FOR XML AUTO mode on the

server-side. For more information, see
Comparing Client-Side XML Formatting to
Server-Side XML Formatting.

EXPLICIT Is similar to server-side FOR XML EXPLICIT
mode. For more information, see Comparing
Client-Side XML Formatting to Server-Side XML
Formatting.

If you specify AUTO mode and request client-side XML formatting, the entire query is sent to the server; that is, XML formatting
occurs on the server. This is done for convenience, but note that the NESTED mode returns base table names as element names in
the XML document that is generated. Some of the applications you write might require base table names. For example, you might
execute a stored procedure and load the resulting data in a Dataset (in the Microsoft .NET Framework), and then later generate a
DiffGram to update data in the tables. In such a case, you will need the base table information and you must use the NESTED
mode.

These are benefits of client-side XML formatting:

If you have stored procedures on the server that return a single rowset, you can request client-side FOR XML transformation
to generate an XML. For example, consider the following stored procedure that returns the first and last names of
employees from the Employees table in the Northwind database:

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'GetEmployees' AND type = 'P')
 DROP PROCEDURE GetEmployees
GO
CREATE PROCEDURE GetEmployees
AS
 SELECT FirstName, LastName
 FROM Employees

The following sample XML template executes the stored procedure. The FOR XML clause is specified after the stored
procedure name.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="1">
 exec GetEmployees FOR XML NESTED
 </sql:query>
</ROOT>

Because the client-side-xml attribute is set to 1 (true) in the template, the stored procedure is executed on the server and
the two-column rowset that is returned by the server is transformed into XML on the middle tier and returned to the client.
(Only a partial result is shown here.)

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees FirstName="Nancy" LastName="Devolio" />
 <Employees FirstName="Andrew" LastName="Fuller" />
</ROOT>

When you are using the SQLXMLOLEDB Provider or SQLXML Managed Classes, you can use the ClientSideXml property to
request client-side XML formatting.

Because the client does the XML formatting, the workload is balanced between the server and client, freeing the server to do
other things.

Supporting Client-Side XML Formatting

To support the client-side XML formatting functionality, SQLXML provides:

SQLXMLOLEDB Provider

SQLXML Managed Classes

Enhanced XML template support

Enhanced Virtual Directory Management for the SQLXML 3.0 utility

SQLXM L M anaged Classes

Using the SQLXML Managed Classes, you can request client-side or server-side XML formatting by setting the provider-specific
property ClientSideXml to true. For more information, see SQLXML Managed Classes.

Enhanced XM L Template Support

The XML template in SQL Server 2000 has been enhanced with the addition of the client-side-xml attribute. If this attribute is set
to TRUE, XML is formatted on the client. Note that this template attribute is identical in functionality to the SQLXMLOLEDB
Provider-specific ClientSideXML property.

If you execute an XML template in an ADO application that is using the SQLXMLOLEDB Provider and you specify the client-side-
xml attribute in the template and the provider ClientSideXML property, the value that is specified in the template takes
precedence. For more information, see Enhancements to XML Templates.

Enhanced Virtual Directory M anagement for the SQLXM L 3.0 utility

Options have been added to the IIS Virtual Directory Management for SQL Server utility that shipped with SQL Server 2000. The
Run on the Client check box was added to the Settings tab. You can select this option set to indicate client-side processing. For
more information, see IIS Virtual Directory Management for SQL Server.

For information about the architecture of client-side and server-side formatting, see Architecture of Client-Side and Server-Side
XML Formatting.

If you specify the client-side-xml attribute in the template and also set the Run on the Client option on the virtual directory in
the Settings tab, the value that is specified in the template takes precedence.

FOR XML Security Issues

SQLXML 3.0 Service Pack 3

Architecture of Client-Side and Server-Side XML Formatting
The following illustration shows the architecture of XML formatting on the server side.

In this example, the command that is specified on the client is sent to the server. The server produces an XML document and
returns it to the client. In this case, the server must be an instance of Microsoft® SQL Server™ 2000; earlier versions of SQL
Server do not have the FOR XML functionality. With server-side XML formatting, you can use either the SQLXMLOLEDB Provider
(which uses Sqlxml3.dll that is included in Microsoft SQLXML 3.0) or the SQLOLEDB Provider. When you use the SQLOLEDB
Provider, by default you get the SQLXML functionality that is provided by Sqlxmlx.dll, which was released with SQL Server 2000.
To use Sqlxml3.dll with SQLOLEDB, you must set the SQLXML Version property to "SQLXML.3.0" on the SQLOLEDB Connection
object. In either case, the server produces the XML document and sends it to client.

Parsing of XPath queries, and updategrams, occurs on the client. To get the XPath template or updategram functionality in
SQLXML 3.0, use Sqlxml3.dll.

The following illustration shows the architecture of XML formatting on the client side.

In this example, the client uses the SQLXMLOLEDB Provider. In the connection string, the Data Provider property must be set to
SQLOLEDB. (This is the only value accepted in SQLXML 3.0.) The command that is executed on the client is sent to the server (SQL
Server 2000). The rowset that is generated on the server is sent to the client. The formatting of the XML document from the
rowset is performed on the client.

The dotted lines in the illustration show the future possibilities. In SQLXML 3.0, the SQLOLEDB Provider is the only data provider.
You can potentially access any data source. As long as the query returns a single rowset, the XML transformation can be applied
on the client.

SQLXML 3.0 Service Pack 3

Comparing Client-Side XML Formatting to Server-Side XML
Formatting
The general differences between client-side and server-side XML formatting are:

Queries that generate multiple rowsets are not supported when you are using client-side XML formatting. For example,
assume you have a virtual directory in which you have client-side formatting specified. Consider this sample template which
has two SELECT statements in a <sql:query> block:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT FirstName FROM Employees FOR XML Nested;
 SELECT LastName FROM Employees FOR XML Nested
 </sql:query>
</ROOT>

You can execute this template (http://server/VirtualRoot/TemplateVirtualName/MyTemplate.xml) and an error is returned
because client-side XML formatting does not support formatting of multiple rowsets. If you specify the queries in two
separate <sql:query> blocks, then you will get the desired results.

GROUP BY and aggregate functions are supported when the XML is formatted on the client side. For example, the following
query specifies aggregate functions. This query succeeds when client-side XML processing is used.

SELECT max(price) as MaxPrice,
 avg(price) as AvgPrice
FROM Table1
FOR XML NESTED

This query generates an error if server-side XML processing is used because SQL Server 2000 does not support GROUP BY
and aggregates in a FOR XML query.

When server-side XML formatting (in SQL Server 2000) is used, the database column of timestamp type maps to i8 XDR
type (when the XMLDATA option is specified in the query).

If you select client-side XML formatting, the database column of timestamp type maps to either uri or bin.base64 XDR
type (depending on whether the binary base64 option is specified in the query). The bin.base64 XDR type is useful if you
use updategram and bulkload features because this type is converted to the SQL Server timestamp type. This way, the
insert, update, or delete operation will be successful.

In server-side XML formatting (in SQL Server 2000), the deep types of a VARIANT type are used. If you use client-side XML
formatting, the variants are converted to Unicode string, and the subtypes of VARIANT type are not used.

The NESTED mode of the client-side FOR XML is similar to the AUTO mode of the server-side FOR XML with the following
exceptions:

When you query views by using AUTO mode on the server-side, the view name is returned as the element name in the
resulting XML. For example, assume that the following view is created on the Employees table in the Northwind database:

CREATE VIEW EmpView AS (SELECT EmployeeID as EID,
 FirstName as FName,
 LastName as LName
 FROM Employees)

The following template specifies a query against the EmpView view and also specifies server-side XML formatting:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="0">
 SELECT *
 FROM EmpView
 FOR XML AUTO
 </sql:query>
</ROOT>

When you execute the template, the following XML is returned. (Only partial results are shown.) Note that the element
names are the names of the views against which the query is executed.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <EmpView EID="1" FName="Nancy" LName="Smith" />
 <EmpView EID="2" FName="Andrew" LName="Fuller" />
...
</ROOT>

When you specify client-side XML formatting by using the corresponding NESTED mode, the base table name(s) are
returned as the element name(s) in the resulting XML. For example, the following revised template executes the same
SELECT statement, but the XML formatting is performed on the client-side (that is, client-side-xml is set to True in the
template):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="1">
 SELECT *
 FROM EmpView
 FOR XML NESTED
 </sql:query>
</ROOT>

Executing this template produces the following XML. Note that the element name is the base table name in this case.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EID="1" FName="Nancy" LName="Smith" />
 <Employees EID="2" FName="Andrew" LName="Fuller" />
...
</ROOT>

When you use AUTO mode of the server-side FOR XML, the table aliases that are specified in the query are returned as
element names in the resulting XML. For example, consider this template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="0">
 SELECT FirstName as fname,
 LastName as lname
 FROM Employees E
 FOR XML AUTO
 </sql:query>
</ROOT>

Executing the template produces the following XML:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <E fname="Nancy" lname="Smith" />
 <E fname="Andrew" lname="Fuller" />
...
</ROOT>

When you use the NESTED mode of the client-side FOR XML, the table names are returned as element names in the
resulting XML. (Table aliases that are specified in the query are not used.) For example, consider this template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="1">
 SELECT FirstName as fname,
 LastName as lname
 FROM Employees E
 FOR XML NESTED
 </sql:query>
</ROOT>

Executing the template produces the following XML:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees fname="Nancy" lname="Smith" />
 <Employees fname="Andrew" lname="Fuller" />
...
</ROOT>

If you have query that returns columns as dbobject queries, you cannot use aliases for these columns. For example,
consider the following template that executes a query that returns an employee ID and a photo. The photo column is
returned as a dbobject query.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query client-side-xml="1">
 SELECT EmployeeID, Photo as P
 FROM Employees
 WHERE EmployeeID=1
 FOR XML NESTED, elements
</sql:query>
</ROOT>

Executing this template returns the Photo column as a dbobject query. In the dbobject query, @P refers to a column
name that does not exist.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees>
 <EmployeeID>1</EmployeeID>
 <Photo>dbobject/Employees[@EmployeeID='1']/@P</Photo>
 </Employees>
</ROOT>

If the XML formatting is done on the server (client-side-xml="0"), you can use the alias for the columns that return
dbobject queries in which actual table and column names are returned (even if you have aliases specified). For example,
the following template executes a query and the XML formatting is done on the server (the client-side-xml option is not
specified and the Run On Client option is not selected for the virtual root). The query also specifies AUTO mode (not the
client-side NESTED mode).

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query
 SELECT EmployeeID, Photo as P
 FROM Employees
 WHERE EmployeeID=1
 FOR XML AUTO, elements
</sql:query>
</ROOT>

When this template is executed, the following XML document is returned (note that aliases are not used in the dbobject
query for the Photo column):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees>
 <EmployeeID>1</EmployeeID>
 <Photo>dbobject/Employees[@EmployeeID='1']/@Photo</Photo>
 </Employees>
</ROOT>

The client-side XML formatting can be done for SQL and XML Path language (XPath) queries. Client-side XPath and server-
side XPath work the same except for these differences:

The data conversions that are applied when you use client-side XPath queries are different from those that are
applied when you use server-side XPath queries. Client-side XPath uses CAST instead of CONVERT mode 126.

When you specify client-side-xml="0" (false) in a template, you are requesting server-side XML formatting. Therefore, you

cannot specify FOR XML NESTED because the server does not recognize the NESTED option. This generates an error. You
must use the AUTO, RAW, or EXPLICIT modes, which the server does recognize.

When you specify client-side-xml="1" (true) in a template, you are requesting client-side XML formatting. In this case, you
can specify FOR XML NESTED. If you specify FOR XML AUTO, the XML formatting occurs on the server side although client-
side-xml="1" is specified in the template.

FOR XML Security Issues

SQLXML 3.0 Service Pack 3

Creating XML Views by Using Annotated XSD Schemas
You can create XML views of relational data by using the XML Schema Definition (XSD) language. These views can then be
queried by using XML Path language (XPath) queries. (This is similar to creating views by using CREATE VIEW statements and
then specifying SQL queries against the view.)

An XML schema describes the structure of an XML document and also describes the various constraints on the data in the
document. When you specify XPath queries against the schema, the structure of the XML document returned is determined by the
schema against which the XPath query is executed.

In an XSD schema, the <xsd:schema> element encloses the entire schema; all element declarations must be contained within the
<xsd:schema> element. You can describe attributes that define the namespace in which the schema resides and the namespaces
that are used in the schema as properties of the <xsd:schema> element.

The minimum XSD schema is:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
...
</xsd:schema>

The <xsd:schema> element is derived from the XMLSchema namespace specification at http://www.w3.org/2001/XMLSchema.

Annotations to the XSD Schema

You can use an XSD schema with annotations that describe the mapping to a database, query the database, and return the results
in the form of an XML document. Anotations are provided to map an XSD schema to database tables and columns. XPath queries
can be specified against the XML view created by the XSD schema to query the database and obtain results as an XML.

In Microsoft® SQLXML 3.0, the XSD schema language supports the annotations introduced with annotated XML-Data Reduced
(XDR) schema language introduced in SQL Server 2000. For more information, see Using Annotations in XSD Schemas.

In the context of the relational database, it is useful to map the arbitrary XSD schema to a relational store. One way to achieve this
is to annotate the XSD schema. An XSD schema with the annotations is referred to as a mapping schema, which provides
information pertaining to how XML data is to be mapped to the relational store. A mapping schema is, in effect, an XML view of
the relational data. These mappings can be used to retrieve relational data as an XML document.

Namespace for Annotations

In an XSD schema, annotations are specified by using the namespace urn:schemas-microsoft-com:mapping-schema. As
shown in the following example, the easiest way to specify the namespace is to specify it in the <xsd:schema> tag.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
...
</xsd:schema>

The namespace prefix that is used is arbitrary. In this documentation, the sql prefix is used to denote the annotation namespace
and to distinguish annotations in this namespace from those in other namespaces.

Example of an Annotated XSD Schema

In the following example, the XSD schema consists of an <Employee> element. The <Employee> element has an EmpID attribute
and FName and LName child elements:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Employee" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 type="xsd:string" />
 <xsd:element name="LName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmpID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Annotations are added to this XSD schema to map its elements and attributes to the database tables and columns:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employee" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 sql:field="FirstName"
 type="xsd:string" />
 <xsd:element name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmpID"
 sql:field="EmployeeID"
 type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

In the mapping schema, the <Employee> element is mapped to the Employees table by using the sql:relation annotation. The
attributes EmpID, FName, and LName are mapped to the EmployeeID, FirstName, and LastName columns in the Employees
table by using the sql:field annotations.

This annotated XSD schema provides the XML view of the relational data. This XML view can be queried using the XPath language.
An XPath query returns an XML document as a result, instead of the rowset that is returned by SQL queries.

In the mapping schema, the specified relational values (such as table name and column name) are case-sensitive.

Annotated Schema Security Issues

SQLXML 3.0 Service Pack 3

Useful Web Sites
You can find more information about XML Schema Definition language (XSD), XML Path language (XPath), and Extensible
Stylesheet Language Transformations (XSLT) at the following Web sites:

XML Schema Part 0: Primer, W3C Recommendation

XML Schema Part 1: Structures, W3C Recommendation

XML Schema Part 2: Datatypes, W3C Recommendation

XML Path Language (XPath)

XSL Transformations (XSLT)

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

SQLXML 3.0 Service Pack 3

Using Annotations in XSD Schemas
In Microsoft® SQLXML 3.0, the XSD schema language supports annotations (with minor differences) in a manner similar to the
annotations introduced in the XML-Data Reduced (XDR) schema language. There are additional annotations introduced in XSD
that are not supported in XDR.

These annotations can be used within the XSD schema to specify XML to relational mapping. This includes mapping between
elements and attributes in the XSD schema to tables (views) and columns in the databases.

If you do not specify the annotations, default mapping takes place. By default, an XSD element with complex type maps to a table
(view) name in the specified database and an element or attribute with a simple type maps to the column with the same name as
the element/attribute.

These annotations can also be used to specify the hierarchical relationships in XML (thus, representing the relationships in the
database because XSD schemas are simply an XML view of relational data).

The following table is a comparison of the XSD annotations that are available in SQLXML with the XDR annotations that were
introduced in Microsoft SQL Server™ 2000.

SQLXML XSD
annotation Description Topic link

SQL Server 2000
XDR annotation

sql:relation Maps an XML item to a
database table.

Using sql:relation
and sql:field

Same

sql:field Maps an XML item to a
database column.

Using sql:relation
and sql:field

Same

sql:is-constant Creates an XML element
that does not map to any
table. The element appears
in the query output.

Creating Constant
Elements by Using
sql:is-constant

Same

sql:mapped Allows schema items to be
excluded from the result.

Excluding Schema
Elements from the
Resulting XML
Document by
Using sql:mapped

map-field

sql:relationship Specifies relationships
between XML elements.
The parent, child, parent-
key, and child-key
attributes are used to
establish the relationship.

Specifying
Relationships by
Using
sql:relationship

The attribute names
are different:

key-relation
foreign-relation
key
foreign-key

sql:limit-field
sql:limit-value

Allows limiting the values
that are returned on the
basis of a limiting value.

Filtering Values by
Using sql:limit-
field and sql:limit-
value

Same

sql:key-fields Allows specification of
column(s) that uniquely
identify the rows in a table.

Identifying Key
Columns by Using
sql:key-fields

Same

sql:prefix Creates valid XML ID,
IDREF, and IDREFS.
Prepends the values of ID,
IDREF, and IDREFS with a
string.

Creating Valid ID,
IDREF, and IDREFS
Type Attributes by
Using sql:prefix

Same

sql:use-cdata Allows specifying CDATA
sections to be used for
certain elements in the
XML document.

Creating CDATA
Sections by Using
sql:use-cdata

Same

sql:encode When an XML element or
attribute is mapped to a
SQL Server BLOB column,
allows requesting a
reference (Uniform
Resource Identifier (URI))
to be returned that can be
used later to return BLOB
data.

Requesting URL
References to
BLOB Data by
Using sql:encode

url-encode

sql:overflow-
field

Identifies the database
column that contains the
overflow data.

Retrieving
Unconsumed Data
by Using
sql:overflow-field

Same

sql:inverse Instructs the updategram
logic to inverse its
interpretation of the
parent-child relationship
that has been specified
using <sql:relationship>.

Specifying the
sql:inverse
Attribute on
sql:relationship

Not supported

sql:hide Hides the element or
attribute that is specified in
the schema in the resulting
XML document.

Hiding Elements
and Attributes by
Using sql:hide

Not supported

sql:identity Can be specified on any
node that maps to an
IDENTITY-type database
column. The value
specified for this
annotation defines how the
corresponding IDENTITY-
type column in the
database is updated.

Using the
sql:identity and
sql:guid
Annotations

Not supported

sql:guid Allows you to specify
whether to use a GUID
value generated by SQL
Server or use the value
provided in the
updategram for that
column.

Using the
sql:identity and
sql:guid
Annotations

Not supported

sql:max-depth Allows you to specify
depth in recursive
relationships that are
specified in the schema.

Specifying Depth
in Recursive
Relationships by
Using sql:max-
depth

Not supported

The XSD native targetNamespace attribute replaces the target-namespace annotation that was introduced in the SQL Server
2000 XDR mapping schema. For more information, see Specifying a Target Namespace by Using the targetNamespace Attribute.

All of the examples presented in the topics in this section specify simple XPath queries against the annotated XSD schema
described in each example. Familiarity with the XPath language is assumed.

Annotated Schema Security Issues

SQLXML 3.0 Service Pack 3

Default Mapping of XSD Elements and Attributes to Tables and
Columns
By default, an element of complex type in an XSD annotated schema maps to the table (view) with the same name in the specified
database, and an element or attribute of simple type maps to the column with the same name in the table.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying default mapping

In this example, no annotations are specified in the XSD schema. The <Employees> element is of complex type and, therefore,
maps by default to the Employees table in the Northwind database. All the attributes of the <Employees> element are of simple
type and map by default to columns with the same names in the Employees table.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employees" >
 <xsd:complexType>
 <xsd:attribute name="EmployeeID" type="xsd:string" />
 <xsd:attribute name="FirstName" type="xsd:string" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema (MySchema.xml) is relative to the directory that is associated with the
template virtual name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<?xml version="1.0" encoding="UTF-8" ?>
<ROOT>
 <Employees EID="1" FirstName="Nancy" LastName="Davolio"></Employee>
 <Employees EID="2" FirstName="Andrew" LastName="Fuller"></Employee>
 ...
</ROOT>

You can specify the XPath query against the mapping schema directly in the URL to produce the same result:

http://localhost/nwind/schema/MySchema.xml/Employees?root=ROOT

B. M apping an XM L element to a database column

In this example, default mapping takes place because no annotations are used. The <Employees> element is of complex type and
maps to the table with the same name in the database. The elements <FirstName> and <LastName> and the EmployeeID
attribute are of simple type and, therefore, map to the columns with the same names.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employees">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string" />
 <xsd:element name="LastName" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EmployeeID="1">
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 ...
</ROOT>

Annotated Schema Security Issues

SQLXML 3.0 Service Pack 3

Explicit Mapping of XSD Elements and Attributes to Tables and
Columns
In providing an XML view of the relational database, using an XSD schema, the elements and attributes in the schema that relate
to the relational data must be mapped to database tables and columns. The rows in the database table/view will map to elements
in the XML document. The column values in the database map to attributes or elements. To obtain a single value from the
database, the mapping specified in the mapping XSD schema must have both relation and field specification. If the name of an
element/attribute is not the same name as the table/view or column name to which it maps, The following annotations are used
to specify the mapping between an element or attribute in an XML document and the table (view) or column in a database:

sql:relation

Maps an XML element to a database table.

sql:field

Maps an element or attribute to a database column.

When XPath queries are specified against the annotated XSD schema, the data for the elements and attributes in the schema is
retrieved from the tables and columns to which they map. For more information, see Using sql:relation and sql:field.

SQLXML 3.0 Service Pack 3

Using sql:relation and sql:field
Using sql:relation and sql:field

The sql:relation annotation is added to map an XML node in the XSD schema to a database table. The name of a table (view) is
specified as the value of the sql:relation annotation.

When sql:relation is specified on an element, the scope of this annotation applies to all attributes and subelements that are
described in the complex type definition of that element, therefore, providing a shortcut in writing annotations.

The sql:relation annotation is also useful in cases in which identifiers that are valid in Microsoft® SQL Server™ are not valid in
XML. For example, Order Details is a valid table name in SQL Server but not in XML. In such cases, the sql:relation annotation
can be used to specify the mapping, for example:

<xsd:element name="OD" sql:relation="[Order Details]">
...

The sql:field annotation is added to map an XML node in the schema to a database column. You cannot specify sql:field on an
empty content element.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying the sql:relation and sql:field annotations

In this example, the XSD schema consists of an <Emp> element of complex type with <FName> and <LName> child elements
and the EmployeeID attribute.

The sql:relation annotation maps the <Emp> element to the Employees table. The sql:field annotation maps the <FName>
element to the FirstName column and the <LName> element to the LastName column.

No annotation is specified for the EmployeeID attribute. This results in a default mapping of the attribute to the column with the
same name.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 sql:field="FirstName"
 type="xsd:string" />
 <xsd:element name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template returns all the employees in the Employees table.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Emp

 </sql:xpath-query>
</ROOT>

The directory path that is specified for the mapping schema is relative to the directory that is associated with the template
virtual name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Emp EmployeeID="1">
 <FName>Nancy</FName>
 <LName>Devolio</LName>
 </Emp>

</ROOT>

SQLXML 3.0 Service Pack 3

Specifying Relationships by Using sql:relationship
The elements in an XML document can be related. The elements can be nested hierarchically, and ID, IDREF, or IDREFS
relationships can be specified between the elements.

For example, in an XSD schema, a <Customer> element contains <Order> subelements. The <Customer> element maps to the
Customers table and the <order> element maps to the Orders table in the database. These underlying tables, Customers and
Orders, are related because customers place orders. The CustomerID in the Orders table is a foreign key referring to the
CustomerID primary key in the Customers table. You can establish these relationships among mapping schema elements by
using the sql:relationship annotation.

In the annotated XSD schema, the sql:relationship annotation is used to nest the schema elements hierarchically, on the basis of
primary key and foreign key relationships among the underlying tables to which the elements map. In specifying the
sql:relationship annotation, you must identify:

The parent table (Customers) and the child table (Orders).

The necessary join condition. (CustomerID in Orders is a child key that refers to the CustomerID parent key in the
Customers table.)

This information is used in generating the proper hierarchy. (For each <Customer> element, the related <Order> elements
appear as subelements.)

To provide the table names and the necessary join information, the following attributes are specified on the sql:relationship
annotation. These attributes are valid only with the <sql:relationship> element:

name

Specifies the unique name of the relationship.

parent

Specifies the parent relation (table). This is an optional attribute; if the attribute is not specified, the parent table name is obtained
from information in the child hierarchy in the document. If the schema specifies two parent-child hierarchies that use the same
<sql:relationship> but different parent elements, you do not specify the parent attribute in <sql:relationship>. This information is
obtained from the hierarchy in the schema.

parent-key

Specifies the parent key of the parent. If the parent key is composed of multiple columns, values are specified with a space
between them. There is a positional mapping between the values that are specified for the multicolumn key and for the
corresponding child key.

child

Specifies the child relation (table).

child-key

Specifies the child key in the child referring to parent-key in parent. If the child key is composed of multiple attributes
(columns), the child-key values are specified with a space between them. There is a positional mapping between the values that
are specified for the multicolumn key and for the corresponding parent key.

inverse

This attribute specified on <sql:relationship> is used by updategrams. For more information, see Specifying the sql:inverse
Attribute on sql:relationship.

sql:key-fields must be specified in an element that contains a child element and a <sql:relationship> (defined between the
element and the child) and that does not provide the primary key of the table specified in the parent element. Even if the schema
does not specify <sql:relationship>, you must specify sql:key-fields to produce the proper hierarchy. For more information, see
Identifying Key Columns by Using sql:key-fields.

To produce proper nesting in the result, it is recommended that sql:key-fields be specified in all schemas.

Examples

To use these examples, you must create the nwind virtual directory (so that you can access the Northwind database) and a

virtual name of template type. For more information about creating the nwind virtual directory, see Creating the nwind Virtual
Directory.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information about these other
methods, see Using Annotated XSD Schemas in Queries.

A. Specifying the sql:relationship annotation on an element

The following annotated XSD schema includes <Customer> and <Order> elements. The <Order> element is a subelement of the
<Customer> element.

In the schema, the sql:relationship annotation is specified on the <Order> subelement. The relationship itself is defined in the
<appinfo> element.

The <relationship> element identifies CustomerID in the Orders table as a foreign key that refers to the CustomerID primary
key in the Customers table. Therefore, orders that belong to a customer appear as a subelement of that <Customer> element.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" type="CustomerType" />
 <xsd:complexType name="CustomerType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders"
 sql:relationship="CustOrders" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="ContactName" type="xsd:string" />
 </xsd:complexType>

</xsd:schema>

The previous schema uses a named relationship. You can also specify an unnamed relationship. The results are same.

This is the revised schema in which an unnamed relationship is specified:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Customer" sql:relation="Customers" type="CustomerType" />
 <xsd:complexType name="CustomerType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="ContactName" type="xsd:string" />

 </xsd:complexType>

</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template selects a customer with the CustomerID of ANATR.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ANATR"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="ANATR" ContactName="Ana Trujillo">
 <Order OrderID="10308" CustomerID="ANATR" />
 <Order OrderID="10625" CustomerID="ANATR" />
 <Order OrderID="10759" CustomerID="ANATR" />
 <Order OrderID="10926" CustomerID="ANATR" />
 </Customer>
</ROOT>

B. Specifying a relationship chain

For this example, assume that you want the following XML document:

<Order OrderID="1">
 <Product ProductName="Tofu" />
 <Product ProductName="Jack's New England Clam Chowder" />
 ...
</Order>
...

For each order in the Orders table, the XML document has one <Order> element. And each <Order> element has a list of
<Product> child elements, one for each product requested in the order.

To specify an XSD schema that will produce this hierarchy, you must specify two relationships: OrderOD and ODProduct. The
OrderOD relationship specifies the parent-child relationship between the Orders and Order Details tables. The ODProduct
relationship specifies the relationship between the Order Details and Product tables.

In the following schema, the msdata:relationship annotation on the <Product> element specifies two values: (OrderOD and
ODProduct). The order in which these values are specified is important.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <msdata:relationship name="OrderOD"
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />

 <msdata:relationship name="ODProduct"
 parent="[Order Details]"
 parent-key="ProductID"

 child="Products"
 child-key="ProductID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" msdata:relation="Orders"
 msdata:key-fields="OrderID" type="OrderType" />
 <xsd:complexType name="OrderType" >
 <xsd:sequence>
 <xsd:element name="Product" msdata:relation="Products"
 msdata:key-fields="ProductID"
 msdata:relationship="OrderOD ODProduct">
 <xsd:complexType>
 <xsd:attribute name="ProductName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 </xsd:complexType>

</xsd:schema>

Instead of specifying a named relationship, you can specify an anonymous relationship. In this case, the entire contents of
<annotation>...</annotation>, which describes the two relationships, appear as a child element of <Product>.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Order" msdata:relation="Orders"
 msdata:key-fields="OrderID" type="OrderType" />

 <xsd:complexType name="OrderType" >
 <xsd:sequence>
 <xsd:element name="Product" msdata:relation="Products"
 msdata:key-fields="ProductID" >
 <xsd:annotation>
 <xsd:appinfo>
 <msdata:relationship
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />

 <msdata:relationship
 parent="[Order Details]"
 parent-key="ProductID"
 child="Products"
 child-key="ProductID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="ProductName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template selects all the orders.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Order
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="10248">
 <Product ProductName="Queso Cabrales" />
 <Product ProductName="Singaporean Hokkien Fried Mee" />
 <Product ProductName="Mozzarella di Giovanni" />
 </Order>
</ROOT>

C. Specifying the relationship annotation on an attribute

The schema in this example includes a <Customer> element with <CustomerID> and <ContactName> child elements and an
OrderIDList attribute of IDREFS type. The <Customer> element maps to the Customers table. By default, the scope of this
mapping applies to all the child elements or attributes unless sql:relation is specified on the child element or attribute, in which
case, the appropriate primary-key/foreign-key relationship must be defined using the <relationship> element. And the child
element or attribute, which specifies the different table using the relation annotation, must also specify the relationship
annotation.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" type="CustomerType" />
 <xsd:complexType name="CustomerType" >
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:string" />
 <xsd:element name="ContactName" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="OrderIDList"
 type="xsd:IDREFS"
 sql:relation="Orders"
 sql:field="OrderID"
 sql:relationship="CustOrders" >
 </xsd:attribute>
 </xsd:complexType>

</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template selects a customer with the CustomerID of ANATR.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer OrderIDList="10643 10692 10702 10835 10952 11011
 11079 11083 11084 11090 11091 11092
 11093 11094 11095 11096 11097 11098">
 <CustomerID>ALFKI</CustomerID>
 <ContactName>Maria Anders</ContactName>
 </Customer>

</ROOT>

D. Specifying sql:relationship on multiple elements

In this example, the annotated XSD schema contains the <Customer>, <Order>, and <OD> elements.

The <Order> element is a subelement of the <Customer> element. <sql:relationship> is specified on the <Order> subelement;
therefore, orders that belong to a customer appear as subelements of <Customer>.

The <Order> element includes the <OD> subelement. <sql:relationship> is specified on <OD> subelement, so the order details
that pertain to an order appear as subelements of that <Order> element.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />

 <sql:relationship name="OrderOrderDetail"
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order" sql:relation="Orders"
 sql:relationship="CustOrders" maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OrderDetail"
 sql:relation="[Order Details]"
 sql:relationship="OrderOrderDetail"
 maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="ProductID" type="xsd:string" />
 <xsd:attribute name="Quantity" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template returns order information for a customer with the CustomerID of ALFKI and OrderID of
10643.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ALFKI"]/Order[@OrderID=10643]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Order CustomerID="ALFKI" OrderID="10643"
 OrderDate="1997-08-25T00:00:00">
 <OD OrderID="10643" ProductID="28" />
 <OD OrderID="10643" ProductID="39" />
 <OD OrderID="10643" ProductID="46" />
</Order>
</ROOT>

E. Specifying the <sql:relationship> without the parent attribute

This example illustrates specifying the <sql_relationship> without the parent attribute. For example, assume you have the
following employee tables:

Emp1(EmployeeID, FirstName, LastName, ReportsTo)
Emp2(EmployeeID, FirstName, LastName, ReportsTo)

The following XML view has the <Emp1> and <Emp2> elements mapping to the Emp1 and Emp2 tables:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="EmpOrders"
 parent-key="EmployeeID"
 child="Orders"
 child-key="EmployeeID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Emp1" sql:relation="Emp1" type="EmpType" />
 <xsd:element name="Emp2" sql:relation="Emp2" type="EmpType" />
 <xsd:complexType name="EmpType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders"
 sql:relationship="EmpOrders" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>

</xsd:schema>

In the schema, both the <Emp1> element and <Emp2> element are of type EmpType. The type EmpType describes an <Order>
child element and the corresponding <sql:relationship>. In this case, there is no single parent that can be identified in

<sql:relationship> by using the parent attribute. In this situation, you don't specify the parent attribute in <sql:relationship>; the
parent attribute information is obtained from the hierarchy in the schema.

To test a sample XPath query against the schema

1. Create these tables in the Northwind database:

CREATE TABLE Emp1 (
 EmployeeID int primary key,
 FirstName varchar(20),
 LastName varchar(20),
 ReportsTo int)
Go
CREATE TABLE Emp2 (
 EmployeeID int primary key,
 FirstName varchar(20),
 LastName varchar(20),
 ReportsTo int)
Go

2. Add this sample data in the tables:

INSERT INTO Emp1 values (1, 'Nancy', 'Devolio',NULL)
INSERT INTO Emp1 values (2, 'Andrew', 'Fuller',1)
INSERT INTO Emp1 values (3, 'Janet', 'Leverling',1)
INSERT INTO Emp2 values (4, 'Margaret', 'Peacock',3)
INSERT INTO Emp2 values (5, 'Steven', 'Devolio',4)
INSERT INTO Emp2 values (6, 'Nancy', 'Buchanan',5)
INSERT INTO Emp2 values (7, 'Michael', 'Suyama',6)

3. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

4. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template selects all the <Emp1> elements (therefore, the parent is Emp1).

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Emp1
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

5. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

SQLXML 3.0 Service Pack 3

Specifying the sql:inverse Attribute on sql:relationship
Specifying the sql:inverse Attribute on sql:relationship

The sql:inverse attribute is useful only when the XSD schema is used by an updategram. The sql:inverse attribute can be
specified on the <relationship> element. The updategram logic interprets the schema in determining the tables and columns that
are updated by the updategram operation. The parent-child relationships that are specified in the schema determine the order in
which the records are modified (inserted or deleted).

If you have an XSD schema in which the parent-child relationship is specified in the inverse order of the primary-key/foreign-key
relationship between the corresponding database columns, the insert or delete updategram operation will fail because of the
primary-key/foreign-key violation. In such cases, the sql:inverse attribute is specified (sql:inverse="true") in the <relationship>
element, and the updategram logic inverses its interpretation of the parent-child relationship specified in the schema.

The sql:inverse attribute takes a Boolean value (0=false, 1=true). The acceptable values are 0, 1, true, and false.

For a working sample using the sql:inverse annotation, see Specifying an Annotated Mapping Schema in an Updategram.

SQLXML 3.0 Service Pack 3

Creating Constant Elements by Using sql:is-constant
To specify a constant element, an element in the XSD schema that does not map to any database table or column, you can use the
sql:is-constant annotation. sql:is-constant takes a Boolean value (0 = false, 1 = true). The acceptable values are 0, 1, true, and
false. The is-constant annotation can be specified on an element that does not have any attributes. If this annotation is specified
on an element with the value true (or 1), that element is not mapped to the database but still appears in the XML document.

The sql:is-constant annotation can be used for:

Adding a top-level element to the XML document. XML requires a single top-level element (<root> element) for the
document.

Creating container elements, for example, an <Orders> element that wraps all orders.

The sql:is-constant annotation can be added to a <complexType> element.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying sql:is-constant to add a container element

In this annotated XSD schema, <CustomerOrders> is defined as a constant element by specifying the sql:is-constant attribute
with the value of 1. Therefore, <CustomerOrders> is not mapped to any database table or column. This constant element consists
of the <Order> subelements.

Although <CustomerOrders> element does not map to any database table or column, it still appears in the resulting XML as a
container element containing the <Order> subelements.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerOrders" sql:is-constant="1" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order" sql:relation="Orders"
 sql:relationship="CustOrders"
 maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 Customer[@CustomerID="ANATR"]
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Customer CustomerID="ANATR">
 <CustomerOrders>
 <Order OrderID="10308" OrderDate="1996-09-18T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="10625" OrderDate="1997-08-08T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="10759" OrderDate="1997-11-28T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="10926" OrderDate="1998-03-04T00:00:00"
 CustomerID="ANATR" />
 ...
 </CustomerOrders>
</Customer>
</ROOT>

SQLXML 3.0 Service Pack 3

Excluding Schema Elements from the Resulting XML Document
by Using sql:mapped
Every element and attribute in the XSD schema maps to a database table/view and column because of the default mapping. If you
want to create an element in the XSD schema that does not map to any database table (view) or column and that does not appear
in the XML, you can specify the sql:mapped annotation.

The sql:mapped annotation is especially useful if the schema cannot be modified or if the schema is used to validate XML from
other sources and yet contains data that is not stored in your database. The sql:mapped annotation differs from sql:is-constant
in that the unmapped elements and attributes do not appear in the XML document.

sql:mapped takes a Boolean value (0 = false, 1 = true). The acceptable values are 0, 1, true, and false.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying the sql:mapped annotation

Assume you have an XSD schema from some other source. This XSD schema consists of an <Employees> element with
EmployeeID, FirstName, LastName, and HomeAddress attributes.

In mapping this XSD schema to the Employees table in the Northwind database, sql:mapped is specified on the
HomeAddress attribute because the Employees table does not store home addresses of employees. As a result, this attribute is
not mapped to the database and is not returned in the resulting XML document when an XPath query is specified against the
mapping schema.

Default mapping takes place for the rest of the schema. The <Employees> element maps to the Employees table, and all the
attributes map to the columns with the same name in the Employees table.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employees" >
 <xsd:complexType>
 <xsd:attribute name="EmployeeID" type="xsd:string"/>
 <xsd:attribute name="FirstName" type="xsd:string" />
 <xsd:attribute name="LastName" type="xsd:string" />
 <xsd:attribute name="HomeAddr" type="xsd:string"
 sql:mapped="false" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchema.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees EmployeeID="1" FirstName="Nancy" LastName="Devolio" />
 <Employees EmployeeID="2" FirstName="Andrew" LastName="Fuller" />
 ...
</ROOT>

Note that the EmployeeID, FirstName, and LastName are present, but HomeAddress is not because the mapping schema
specified 0 for the sql:mapped attribute.

SQLXML 3.0 Service Pack 3

Filtering Values by Using sql:limit-field and sql:limit-value
You can limit rows that are returned from a database query on the basis of some limiting value. The sql:limit-field and sql:limit-
value annotations are used to identify the database column that contains limiting values and to specify a specific limiting value to
be used to filter the data returned.

The sql:limit-field annotation is used to identify a column that contains a limiting value; it is allowed on each mapped element or
attribute.

The sql:limit-value annotation is used to specify the limited value in the column that is specified in the sql:limit-field
annotation. The sql:limit-value annotation is optional. If sql:limit-value is not specified, a NULL value is assumed.

Examples

To create working samples using these examples, you must create the nwind virtual directory (to access the Northwind
database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Limiting the customer addresses returned to a specific address type

In this example, a database contains two tables:

Customer (CustomerID, CompanyName)

Addresses (CustomerID, AddressType, StreetAddress)

A customer can have a shipping and/or a billing address. (The AddressType column values are Shipping and Billing.)

This is the mapping schema in which the ShipTo schema attribute maps to the StreetAddress column in the Addresses relation.
The values that are returned for this attribute are limited to only Shipping addresses by specifying the sql:limit-field and
sql:limit-value annotations. Similarly, the BillTo schema attribute returns only the Billing address of a customer.

This is the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustAddr"
 parent="Customer"
 parent-key="CustomerID"
 child="Addresses"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customer" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BillTo"
 type="xsd:string"
 sql:relation="Addresses"
 sql:field="StreetAddress"
 sql:limit-field="AddressType"
 sql:limit-value="billing"
 sql:relationship="CustAddr" >
 </xsd:element>
 <xsd:element name="ShipTo"
 type="xsd:string"
 sql:relation="Addresses"
 sql:field="StreetAddress"
 sql:limit-field="AddressType"
 sql:limit-value="shipping"
 sql:relationship="CustAddr" >
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:int" />
 <xsd:attribute name="CompanyName" type="xsd:string" />
 </xsd:complexType>

 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Create two tables:

CREATE TABLE Customer (CustomerID int primary key,
 CompanyName varchar(30))
CREATE TABLE Addresses(CustomerID int,
 StreetAddress varchar(50),
 AddressType varchar(10))

2. Add the sample data:

INSERT INTO Customer values (1, 'Company A')
INSERT INTO Customer values (2, 'Company B')

INSERT INTO Addresses values
 (1, 'Obere Str. 57 Berlin', 'billing')
INSERT INTO Addresses values
 (1, 'Avda. de la Constitución 2222 México D.F.', 'shipping')
INSERT INTO Addresses values
 (2, '120 Hanover Sq., London', 'billing')
INSERT INTO Addresses values
 (2, 'Forsterstr. 57, Mannheim', 'shipping')

3. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

4. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

5. Execute the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MySchemaT.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer CustomerID="1" CompanyName="Company A">
 <BillTo>Obere Str. 57 Berlin</BillTo>
 <ShipTo>Avda. de la Constitución 2222 México D.F.</ShipTo>
 </Customer>
 <Customer CustomerID="2" CompanyName="Company B">
 <BillTo>120 Hanover Sq., London</BillTo>
 <ShipTo>Forsterstr. 57, Mannheim</ShipTo>
 </Customer>
</ROOT>

SQLXML 3.0 Service Pack 3

Identifying Key Columns by Using sql:key-fields
When an XPath query is specified against an XSD schema, key information is required in most cases to obtain proper nesting in
the result. Specifying the sql:key-fields annotation is a way to ensure that the appropriate hierarchy is generated.

To ensure proper nesting, it is recommended that you specify sql:key-fields for elements that map to tables. The XML produced
is sensitive to the ordering of the underlying result set. If sql:key-fields is not specified, the XML generated might not be formed
properly.

The value of sql:key-fields identifies the column(s) that uniquely identify the rows in the relation. If more than one column is
required to uniquely identify a row, the column values are delimited by spaces.

You must use the sql:key-fields annotation when an element contains a <sql:relationship> that is defined between the element
and a child element but does not provide the primary key of the table that is specified in the parent element.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Producing the appropriate nesting when <sql:relationship> does not provide sufficient information

This example shows where sql:key-fields must be specified.

Consider the following schema. The schema specifies a hierarchy between the <Order> and <Customer> elements in which the
<Order> element is the parent and the <Customer> element is a child.

The <sql:relationship> tag is used to specify the parent-child relationship. It identifies CustomerID in the Orders table as the
parent key that refers to the CustomerID child key in the Customers table. The information that is provided in <sql:relationship>
is not sufficient to uniquely identify rows in the parent table (Orders). Therefore, without the sql:key-fields annotation, the
hierarchy that is generated is inaccurate.

With sql:key-fields specified on <Order>, the annotation uniquely identifies the rows in the parent (Orders table), and its child
elements appear below its parent.

This is the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrdCust"
 parent="Orders"
 parent-key="CustomerID"
 child="Customers"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" sql:relation="Orders"
 sql:key-fields="OrderID">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Customer" sql:relation="Customers"
 sql:relationship="OrdCust" >
 <xsd:complexType>
 <xsd:attribute name="CustID" sql:field="CustomerID" />
 <xsd:attribute name="ContactName" sql:field="ContactName" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name= "CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To create a working sample of this schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The XPath query in the template returns all the <Order> elements.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Order
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="10248" CustomerID="VINET">
 <Customer CustID="VINET" ContactName="Paul Henriot" />
 </Order>
 <Order OrderID="10249" CustomerID="TOMSP">
 <Customer CustID="TOMSP" ContactName="Karin Josephs" />
 </Order>

</ROOT>

B. Specifying sql:key-fields to produce proper nesting in the result

In the following schema, there is no hierarchy specified using <sql:relationship>. The schema still requires specifying the sql:key-
fields annotation to uniquely identify employees in the Employees table.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employees" sql:key-fields="EmployeeID" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Region">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To create a working sample of this schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The XPath query in the template returns all the <Order> elements:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the result:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees>
 <Region EmployeeID="1">WA</Region>
 </Employees>
 <Employees>
 <Region EmployeeID="2">WA</Region>
 </Employees>
 ...
 <Employees>
 <Region EmployeeID="5"/>
 </Employees>
 ...
</ROOT>

SQLXML 3.0 Service Pack 3

Specifying a Target Namespace by Using the targetNamespace
Attribute
In writing XSD schemas, you can use the XSD targetNamespace attribute (and in XDR schemas, the sql:target-namespace
annotation) to specify a target namespace. This discussion includes information about how the XSD targetNamespace,
elementFormDefault, and attributeFormDefault attributes construct work, how they affect the XML instance that is generated,
and how XPath queries are specified with namespaces.

You can use the xsd:targetNamespace attribute to place elements and attributes from the default namespace into a different
namespace. You can also specify whether the locally declared elements and attributes of the schema should appear qualified by a
namespace, either explicitly by using a prefix or implicitly by default. You can use the elementFormDefault and
attributeFormDefault attributes on the <xsd:schema> element to globally specify the qualification of local elements and
attributes, or you can use the form attribute to specify individual elements and attributes separately.

For example, the following XSD schema specifies a target namespace by using the xsd:targetNamespace attribute. The schema
also sets the elementFormDefault and attributeFormDefault attribute values to "unqualified" (the default value for these
attributes). This is a global declaration and affects all the local elements (<Order> in the schema) and attributes (CustomerID,
ContactName, OrderID in the schema).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
 xmlns:CO="urn:MyNamespace"
 targetNamespace="urn:MyNamespace" >
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer"
 sql:relation="Customers"
 type="CO:CustomerType" />

 <xsd:complexType name="CustomerType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders"
 sql:relationship="CustOrders"
 type="CO:OrderType" />
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="ContactName" type="xsd:string" />
 </xsd:complexType>

 <xsd:complexType name="OrderType" >
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

In the schema:

The CustomerType and OrderType type declarations are global and, therefore, are included in the schema's target
namespace. As a result, when these types are referenced in the declaration of <Customer> element and its <Order> child
element, a prefix is specified that is associated with the target namespace.

The <Customer> element is also included in the target namespace of the schema because it is a global element in the
schema.

Execute the following XPath query against the schema:

(/CO:Customer[@CustomerID='ALFKI')

The XPath query generates this instance document (only a few of the orders are shown):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <y0:Customer xmlns:y0="urn:MyNamespace"

 CustomerID="ALFKI" ContactName="Maria Anders">
 <Order CustomerID="ALFKI" OrderID="10643" />
 <Order CustomerID="ALFKI" OrderID="10692" />
 ...
 </y0:Customer>
 </ROOT>

This instance document defines the "urn:MyNamespace" namespace and associates a prefix y0 (generated arbitrarily) to it. The
prefix is applied only to the <Customer> global element. (The element is global because it is declared as a child of <xsd:schema>
element in the schema.)

The prefix is not applied to the local elements and attributes because the value of elementFormDefault and
attributeFormDefault attributes is set to "unqualified" in the schema. Note that the <Order> element is local because its
declaration appears as a child of the <complexType> element that defines the <CustomerType> element. Similarly, the attributes
(CustomerID, OrderID and ContactName) are local, not global.

To create a working sample of this schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The XPath query in the template returns the <Customer> element for customer ALFKI. Note that the XPath query
specifies the namespace prefix for the element in the query and not for the attribute. (Local attributes are not qualified, as
specified in the schema.)

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml"
 xmlns:CO="urn:MyNamespace" >
 /CO:Customer[@CustomerID='ALFKI']
 </sql:xpath-query>
</ROOT>

The directory path specified for the mapping schema is relative to the directory that is associated with the template virtual
name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Alternatively, you can specify query directly in the URL and specify the target namespace as shown in this URL.

http://IISServer/VirtualRoot/schema/MySchema.xml/CO:Customer[@CustomerID='ALFKI']?
namespaces=xmlns:CO='urn:MyNamespace'&root=root

If the schema specifies elementFormDefault and attributeFormDefault attributes with value "qualified", the instance
document will have all of the local elements and attributes qualified. You can change the previous schema to include these
attributes in the <xsd:schema> element and execute the template again. Because the attributes are now also qualified in the
instance, the XPath query will change to include the namespace prefix.

This is the revised XPath query:

/CO:Customer[@CO:CustomerID='ALFKI']

This is the XML document that is returned:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <y0:Customer xmlns:y0="urn:MyNamespace"
 y0:CustomerID="ALFKI"
 y0:ContactName="Maria Anders">
 <y0:Order y0:OrderID="10643" y0:CustomerID="ALFKI" />
 <y0:Order y0:OrderID="10692" y0:CustomerID="ALFKI" />
 ...
 </y0:Customer>
</ROOT>

SQLXML 3.0 Service Pack 3

Creating Valid ID, IDREF, and IDREFS Type Attributes by Using
sql:prefix
An attribute can be specified to be an ID type attribute. Attributes specified as IDREF or IDREFS can then be used to refer to the
ID type attributes, enabling links between documents.

ID, IDREF, and IDREFS correspond to PK/FK (primary key/foreign key) relationships in the database, with few differences. In an
XML document, the values of ID type attributes must be distinct. If CustomerID and OrderID attributes are specified as ID type in
an XML document, these values must be distinct. However, in a database, CustomerID and OrderID columns can have the same
values. (For example, CustomerID = 1 and OrderID = 1 are valid in the database).

For the ID, IDREF, and IDREFS attributes to be valid:

The value of ID must be unique within the XML document.

For every IDREF and IDREFS, the referenced ID values must be in the XML document.

The value of an ID, IDREF, and IDREFS must be a named token. (For example, the integer value 101 cannot be an ID value.)

The attributes of ID, IDREF, and IDREFS type cannot be mapped to columns of the type text, ntext, or image or any other
binary data type (for example, timestamp).

If an XML document contains multiple IDs, use the sql:prefix annotation to ensure that the values are unique.

Note that sql:prefix annotation cannot be used with XSD fixed attribute.

Examples

To use these examples, you must create the nwind virtual directory (so that you can access the Northwind database) and a
virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information about these
methods, see Using Annotated XSD Schemas in Queries.

A. Specifying ID and IDREFS types

In the following schema, the <Customer> element consists of the <Order> child element. The <Order> element also has an child
element, the <OrderDetail> element.

The OrderIDList attribute of <Customer> is an IDREFS type attribute that refers to the OrderID attribute of the <Order>
element.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />

 <sql:relationship name="OrderOrderDetail"
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order" sql:relation="Orders"
 sql:relationship="CustOrders" maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="OrderDetail"
 sql:relation="[Order Details]"
 sql:relationship="OrderOrderDetail"
 maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="ProductID" type="xsd:string" />
 <xsd:attribute name="Quantity" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID"
 type="xsd:ID" sql:prefix="ord-" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="OrderIDList" type="xsd:IDREFS"
 sql:relation="Orders" sql:field="OrderID"
 sql:relationship="CustOrders" sql:prefix="ord-">
 </xsd:attribute>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer[@CustomerID="ANATR"]
 </sql:xpath-query>
</ROOT>

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the result:

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
<Customer CustomerID="ANATR"
 OrderIDList="ord-10308 ord-10625 ord-10759 ord-10926">
 <Order OrderID="ord-10308" OrderDate="1996-09-18T00:00:00"
 CustomerID="ANATR">
 <OrderDetail OrderID="10308" ProductID="69" Quantity="1" />
 <OrderDetail OrderID="10308" ProductID="70" Quantity="5" />
 </Order>
 <Order OrderID="ord-10625" OrderDate="1997-08-08T00:00:00"
 CustomerID="ANATR">
 <OrderDetail OrderID="10625" ProductID="14" Quantity="3" />
 <OrderDetail OrderID="10625" ProductID="42" Quantity="5" />
 <OrderDetail OrderID="10625" ProductID="60" Quantity="10" />
 </Order>
 <Order OrderID="ord-10759" OrderDate="1997-11-28T00:00:00"
 CustomerID="ANATR">
 <OrderDetail OrderID="10759" ProductID="32" Quantity="10" />
 </Order>
 <Order OrderID="ord-10926" OrderDate="1998-03-04T00:00:00"
 CustomerID="ANATR">
 <OrderDetail OrderID="10926" ProductID="11" Quantity="2" />
 <OrderDetail OrderID="10926" ProductID="13" Quantity="10" />
 <OrderDetail OrderID="10926" ProductID="19" Quantity="7" />
 <OrderDetail OrderID="10926" ProductID="72" Quantity="10" />
 </Order>
</Customer>
</ROOT>

SQLXML 3.0 Service Pack 3

Using sql:prefix
Using sql:prefix

The sql:prefix annotation is used to create a valid XML ID, IDREF, or IDREFS attribute. The values of ID type attributes must be
distinct in an XML document. If there are multiple ID type attributes in an XML document, ensure that the values of these
attributes are distinct by specifying the sql:prefix annotation for the ID type attributes. The sql:prefix annotation is also used to
create named tokens from numbers. The value specified for sql:prefix must be a valid name.

The sql:prefix annotation is used to prepend the values of ID, IDREF, and IDREFS with a string and, thereby, make them unique.
You must ensure that the appropriate prefixes are specified because there are no checks made to ensure the validity of the
prefixes and the uniqueness of the values of ID, IDREF, or IDREFS.

Specifying sql:prefix on attributes that are not of type ID, IDREF, IDREFS, NMTOKEN, or NMTOKENS returns an error.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying sql:prefix for ID and IDREFS type attributes

In the following XSD schema, the OrderID attribute of <Order> is declared as ID type. To ensure that the IDs are valid, the
sql:prefix annotation is specified. The OrderIDList attribute of <Customer> is declared as an IDREFS type, thus establishing a
primary-key/foreign-key relationship.

This is the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustOrders"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>
 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders"
 sql:relationship="CustOrders"
 maxOccurs="unbounded" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:ID"
 sql:prefix="ord-" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="OrderIDList" type="xsd:IDREFS"
 sql:relation="Orders"
 sql:field="OrderID"
 sql:relationship="CustOrders"
 sql:prefix="ord-">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already

created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The XPath query returns all of the <Customer> elements.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer
 </sql:xpath-query>
</ROOT>

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the partial result:

<Customer CustomerID="ANATR"
 OrderIDList="ord-10308 ord-10625 ord-10759 ord-10926">
 <Order OrderID="ord-10308" OrderDate="1996-09-18T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="ord-10625" OrderDate="1997-08-08T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="ord-10759" OrderDate="1997-11-28T00:00:00"
 CustomerID="ANATR" />
 <Order OrderID="ord-10926" OrderDate="1998-03-04T00:00:00"
 CustomerID="ANATR" />
</Customer>
 ...

SQLXML 3.0 Service Pack 3

Data Type Coercions and the sql:datatype Annotation
In an XSD schema, the xsd:type attribute specifies the XSD data type of an element or attribute. When an XSD schema is used to
extract data from the database, the data type that is specified is used to format the data.

In addition to specifying an XSD type in a schema, you can also specify a Microsoft® SQL Server™ data type by using the
sql:datatype annotation. The xsd:type and sql:datatype attributes control the mapping between XSD data types and SQL
Server data types.

xsd:type Attribute

You can use the xsd:type attribute to specify the XML data type of an attribute or element that maps to a column. The xsd:type
affects the document that is returned from the server and also the XPath query that is executed. When an XPath query is executed
against a mapping schema that contains xsd:type, XPath uses the specified data type when it processes the query. For more
information about how XPath uses xsd:type, see Mapping XSD Data Types to XPath Data Types.

In a returned document, all SQL Server data types are converted into string representations. Some data types require additional
conversions. The following table lists the conversions that are used for various xsd:type values.

XSD data type SQL Server conversion
Boolean CONVERT(bit, COLUMN)
Date LEFT(CONVERT(nvarchar(4000), COLUMN, 126), 10)
decimal CONVERT(money, COLUMN)
id/idref/idrefs id-prefix + CONVERT(nvarchar(4000), COLUMN, 126)
nmtoken/nmtokens id-prefix + CONVERT(nvarchar(4000), COLUMN, 126)
Time SUBSTRING(CONVERT(nvarchar(4000), COLUMN,

126), 1+CHARINDEX(N'T', CONVERT(nvarchar(4000),
COLUMN, 126)), 24)

All others No additional conversion

Some of the values that are returned by SQL Server might not be compatible with the XML data types that are specified by using
xsd:type, either because the conversion is not possible (for example, converting "XYZ" to a decimal data type) or because the
value exceeds the range of that data type (for example, -100000 converted to UnsignedShort XSD type). Incompatible type
conversions might result in XML documents that are not valid or in SQL Server errors.

Mapping from SQL Server Data Types to XSD Data Types

The following table shows an obvious mapping from SQL Server data types to XSD data types. If you know the SQL Server type,
this table provides the corresponding XSD type that you can specify in the XSD schema.

SQL Server data type XSD data type
bigint long
binary base64Binary
bit boolean
char string
datetime dateTime
decimal decimal
float double
image base64Binary
int int
money decimal
nchar string
ntext string
nvarchar string
numeric decimal
real float
smalldatetime dateTime
smallint short

smallmoney decimal
sql_variant string
sysname string
text string
timestamp dateTime
tinyint unsignedByte
varbinary base64Binary
varchar string
uniqueidentifier string

sql:datatype Annotation

The sql:datatype annotation is used to specify the SQL Server data type; this annotation must be specified when:

You are bulk loading into a dateTime SQL Server column from an XSD dateTime, date, or time type. In this case, you
must identify the SQL Server column data type by using sql:datatype="dateTime". This rule also applies to updategrams.

You are bulk loading into a column of SQL Server uniqueidentifier type and the XSD value is a GUID that includes braces
({ and }). When you specify the sql:datatype="uniqueidentifier", the braces are removed from the value before it is
inserted in the column. If sql:datatype is not specified, the value is sent with the braces, and the insert or update fails.

The XML data type base64Binary maps to various SQL Server data types (binary, image, or varbinary). To map the XML
data type base64Binary to a specific SQL Server data type, use the sql:datatype annotation. The annotation specifies the
explicit SQL Server data type of the column to which the attribute maps. This is useful when data is being stored in the
databases. By specifying the sql:datatype annotation, you can identify the explicit SQL Server data type.

It is generally recommended that you specify sql:datatype in the schema.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying xsd:type

This example shows how an XSD date type that is specified by using the xsd:type attribute in the schema affects the resulting
XML document. The schema provides an XML view of the Orders table in the Northwind database.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Order" sql:relation="Orders">
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:string" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 <xsd:attribute name="RequiredDate" />
 <xsd:attribute name="ShippedDate" type="xsd:time" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

In this XSD schema, there are three attributes that return a date value from SQL Server. When the schema:

Specifies xsd:type=date on the OrderDate attribute, the date part of the value that is returned by SQL Server for the
OrderDate attribute is displayed.

Specifies xsd:type=time on the ShippedDate attribute, the time part of the value that is returned by SQL Server for the
ShippedDate attribute is displayed.

Does not specify xsd:type on the RequiredDate attribute, the same value that is returned by SQL Server is displayed.

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Order
 </sql:xpath-query>
</ROOT>

3. This URL executes the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Order OrderID="10248" CustomerID="VINET"
 OrderDate="1996-07-04"
 RequiredDate="1996-08-01T00:00:00"
 ShippedDate="00:00:00"
 />
 <Order OrderID="10249" CustomerID="TOMSP"
 OrderDate="1996-07-05"
 RequiredDate="1996-08-16T00:00:00"
 ShippedDate="00:00:00"
 />
 ...
</ROOT>

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Order" sql:relation="Orders">
 <AttributeType name="OID" />
 <AttributeType name="CustID" />
 <AttributeType name="OrdDate" dt:type="date" />
 <AttributeType name="ReqDate" />
 <AttributeType name="ShipDate" dt:type="time" />

 <attribute type="OID" sql:field="OrderID" />
 <attribute type="CustID" sql:field="CustomerID" />
 <attribute type="OrdDate" sql:field="OrderDate" />
 <attribute type="ReqDate" sql:field="RequiredDate" />
 <attribute type="ShipDate" sql:field="ShippedDate" />
</ElementType>
</Schema>

B. Specifying SQL data type using sql:datatype

For a working sample, see Example G in Examples of Bulk Loading XML Documents topic. In this example a GUID value including
'{' and '}' is bulk loaded. The schema in this example specifies sql:datatype to identify the SQL Server data type as uniqueidentifier.
This example illustrate when sql:datatype must be specified in the schema.

SQLXML 3.0 Service Pack 3

Mapping XSD Data Types to XPath Data Types
Mapping XSD Data Types to XPath Data Types

When an XPath query is executed against an XSD schema and the XSD type is specified by using the xsd:type attribute, XPath
uses the data type that is specified when it processes the query.

The XPath data type of a node is derived from the XSD data type in the schema, as shown in the following table. (The node
EmployeeID is used for the purpose of illustration.)

XSD data type XDR data type

Equivalent
XPath data

type

SQL Server
conversion that is used

Base64Binary
HexBinary

None
bin.base64
bin.hex

Not
applicable

None
EmployeeID

Boolean boolean boolean CONVERT(bit, EmployeeID)
Decimal,
integer, float,
byte, short, int,
long, float,
double,
unsignedByte,
unsignedShort,
unsignedInt,
unsignedLong

number, int,
float,
i1, i2, i4, i8,
r4, r8
ui1, ui2, ui4,
ui8

number CONVERT(float(53), EmployeeID)

id, idref, idrefs
entity, entities,
notation,
nmtoken,
nmtokens,
DateTime,
string,
AnyURI

id, idref, idrefs
entity,
entities
enumeration
notation
nmtoken,
nmtokens
char
dateTime
dateTime.tz
string
uri
uuid

string CONVERT(nvarchar(4000),
EmployeeID, 126)

decimal fixed14.4 Not
applicable
(There is no
data type in
XPath that is
equivalent to
the
fixed14.4
XDR data
type.)

CONVERT(money, EmployeeID)

date date string LEFT(CONVERT(nvarchar(4000),
EmployeeID, 126), 10)

time time

time.tz

string SUBSTRING(CONVERT(nvarchar(4000),
EmployeeID, 126), 1 +
CHARINDEX(N'T',
CONVERT(nvarchar(4000),
EmployeeID, 126)), 24)

SQLXML 3.0 Service Pack 3

Creating CDATA Sections by Using sql:use-cdata
In XML, CDATA sections are used to escape blocks of text that contain characters that would otherwise be recognized as markup
characters.

A database in Microsoft® SQL Server™ can sometimes contain characters that are treated as markup characters by the XML
parser; for example, angle brackets (< and >), the less-than-or-equal-to symbol (<=), and the ampersand (&) are treated as
markup characters. Wrap this type of special characters in a CDATA section to prevent them from being treated as markup
characters. The text within the CDATA section is treated by the XML parser as plain text.

The sql:use-cdata annotation is used to specify that the data returned by SQL Server should be wrapped in a CDATA section (that
is, it indicates whether the value from a column that is specified by sql:field should be enclosed in a CDATA section). The sql:use-
cdata annotation can be specified only on elements that map to a database column.

The sql:use-cdata annotation takes a Boolean value (0 = false, 1 = true). The acceptable values are 0, 1, true, and false.

This annotation cannot be used with sql:url-encode or on the ID, IDREF, IDREFS, NMTOKEN, and NMTOKENS attribute types.

Examples

To use these examples, you must create the nwind virtual directory (so that you can access the Northwind database) and a
virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information about these other
methods, see Using Annotated XSD Schemas in Queries.

A. Specifying sql:use-cdata on an element

In the following schema, sql:use-cdata is set to 1 (True) for the <CompanyName> and <Address> element. As a result, the data
is returned in a CDATA section.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customer"
 sql:relation="Customers"
 sql:key-fields="CustomerID" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:string" />
 <xsd:element name="CompanyName" type="xsd:string"
 sql:use-cdata="1" />
 <xsd:element name="Address" type="xsd:string"
 sql:use-cdata="1" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customer
 </sql:xpath-query>
</ROOT>

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the partial result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customer>
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>
 <![CDATA[
 Alfreds Futterkiste
]]>
 </CompanyName>
 <Address>
 <![CDATA[
 Obere Str. 57
]]>
 </Address>
 </Customer>
 ...
</ROOT>

SQLXML 3.0 Service Pack 3

Requesting URL References to BLOB Data by Using sql:encode
In an annotated XSD schema, when an attribute (or element) is mapped to a BLOB column in Microsoft® SQL Server™, the data is
returned in Base 64-encoded format within XML.

If you want a reference to the data (Uniform Resource Identifier (URI)) to be returned that can be used later to retrieve the BLOB
data in a binary format, specify the sql:encode annotation. You can specify sql:encode on an attribute or element of simple type.

Specify the sql:encode annotation to indicate that a URL to the field should be returned instead of the value of the field.
sql:encode depends on the primary key to generate a singleton select in the URL. The primary key can be specified using the
sql:key-fields annotation.

The sql:encode annotation can be assigned the "url" or the "default" value. A value of "default" returns data in Base 64-encoded
format.

The sql:encode annotation cannot be used with sql:use-cdata or on the ID, IDREF, IDREFS, NMTOKEN, or NMTOKENS
attribute types. It can also not be used with XSD fixed attribute.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying sql:encode to obtain a URL reference to BLOB data

In this example, the mapping schema specifies sql:encode on the Photo attribute to retrieve the URI reference to the employee
photo (instead of retrieving the binary data in Base 64-encoded format).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee" sql:relation="Employees"
 sql:key-fields="EmployeeID" >
 <xsd:complexType>
 <xsd:attribute name="EmployeeID" type="xsd:int" />
 <xsd:attribute name="Photo" type="xsd:string" sql:encode="url" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employee[@EmployeeID=1]
 </sql:xpath-query>
</ROOT>

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

This is the result:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EmployeeID="1"
 Photo="dbobject/Employees[@EmployeeID="1"]/@Photo" />
</ROOT>

SQLXML 3.0 Service Pack 3

Retrieving Unconsumed Data by Using the sql:overflow-field
When records are inserted in a database from an XML document by using the Transact-SQL OPENXML function, all the
unconsumed data from the source XML document can be stored in a column. When you retrieve data from a database by using
annotated schemas, you can specify the sql:overflow-field attribute to identify the column in the table in which the overflow
data is stored. The sql:overflow-field attribute can be specified on <element>.

This data is then retrieved in these ways:

Attributes stored in the overflow column are added to the element that contains the sql:overflow-field annotation.

The subelements, and their descendents, stored in the overflow column in the database, are added as subelements,
following the content that is explicitly specified in the schema. (No order is preserved.)

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying sql:overflow-field for an element

This example assumes that the following table exists:

CREATE TABLE Customers2 (
CustomerID VARCHAR(10),
ContactName VARCHAR(30),
OverflowData NVARCHAR(200))
GO
INSERT INTO Customers2 VALUES (
'ALFKI',
'Joe',
N'<xyz><address>111 Maple, Seattle</address></xyz>')
GO

In the following example, the mapping schema retrieves the unconsumed data that is stored in the OverflowData column of the
Customers2 table:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Customers2" sql:overflow-field="OverflowData" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:integer"/>
 <xsd:attribute name="ContactName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template selects a customer with the CustomerID of ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Customers2
 </sql:xpath-query>
</ROOT>

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result set:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers2 CustomerID="ALFKI" ContactName="Joe">
 <address>111 Maple, Seattle</address>
 </Customers2>
</ROOT>

SQLXML 3.0 Service Pack 3

Hiding Elements and Attributes by Using sql:hide
When an XPath query is executed against an XSD schema, the resulting XML document has elements and attributes that are
specified in the schema. You can specify some elements and attributes be hidden in the schema by using the sql:hide annotation.
This is useful when the selection criteria of the query require particular elements or attributes in the schema, but you do not want
them returned in the XML document that is generated.

The sql:hide takes a Boolean value (0=false, 1=true). The acceptable values are 0, 1, true, and false.

Examples

To create working samples using these examples, you must create the nwind virtual directory (so that you can access the
Northwind database) and a virtual name of template type.

In these examples, templates are used to specify XPath queries against the mapping XSD schema. There are also other ways of
using annotated XSD schemas in queries, for example, by specifying schemas in the URL. For more information, see Using
Annotated XSD Schemas in Queries.

A. Specifying sql:h ide on an attribute

The XSD schema in this example consists of an <Employees> element with EmployeeID, FirstName, and LastName attributes.

The <Employees> element is of complex type and, therefore, maps to the table of the same name (default mapping). All the
attributes of <Employees> element are of simple type and map to columns with the same names in the Employees table. In the
schema, the sql:hide annotation is specified on the EmployeeID attribute. When an XPath query is specified against this schema,
the EmployeeID is not returned in the XML document.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Employees" >
 <xsd:complexType>
 <xsd:attribute name="EmployeeID" type="xsd:string"
 sql:hide="true"/>
 <xsd:attribute name="FirstName" type="xsd:string" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

To test a sample XPath query against the schema

1. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

2. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Employees[@EmployeeID="1"]
 </sql:xpath-query>
</ROOT>

The directory path that is specified for the mapping schema (MySchema.xml) is relative to the directory that is associated
with the template virtual name. An absolute path also can be specified, for example:

mapping-schema="C:\MyDir\MySchema.xml"

3. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

Here is the result set:

 <ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employees FirstName="Nancy" LastName="Devolio" />
 </ROOT>

You can specify the XPath query against the mapping schema directly in the URL to produce the same results:

http://localhost/nwind/schema/MySchema.xml/Employees[@EmployeeID=1]?root=ROOT

When sql:hide is specified on an element, the element and its attributes or subelements do not appear in the XML document that
is generated. Here is another XSD schema in which sql:hide is specified on the <OD> element:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:annotation>
 <xsd:documentation>
 Customer-Order-Order Details Schema
 Copyright 2000 Microsoft. All rights reserved.
 </xsd:documentation>
 <xsd:appinfo>
 <sql:relationship name="CustomerOrder"
 parent="Customers"
 parent-key="CustomerID"
 child-key="CustomerID"
 child="Orders" />
 <sql:relationship name="OrderOrderDetails"
 parent="Orders"
 parent-key="OrderID"
 child-key="OrderID"
 child="[Order Details]"/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:element name="Customers" sql:relation = "Customers">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order" sql:relation = "Orders"
 maxOccurs="unbounded"
 sql:relationship="CustomerOrder">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OD" sql:relation="[Order Details]"
 maxOccurs="unbounded"
 sql:relationship="OrderOrderDetails"
 sql:hide="1">
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:string"/>
 <xsd:attribute name="ProductID" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string"/>
 <xsd:attribute name="OID" sql:field="OrderID"
 type="xsd:string"/>
 <xsd:attribute name="OrderDate" type="xsd:date"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CID" sql:field="CustomerID"
 type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

When an XPath query (for example Customer[@CID="ALFKI"]) is specified against this schema, the XML document that is
generated does not include the <OD> element and its children, as shown in this partial result:

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
 <Customers CID="ALFKI">
 <Order CustomerID="ALFKI" OID="10643" OrderDate="1997-08-25" />
 <Order CustomerID="ALFKI" OID="10692" OrderDate="1997-10-03" />
 ...
 </Customers>
</ROOT>

SQLXML 3.0 Service Pack 3

Using the sql:identity and sql:guid Annotations
You can specify the sql:identity and sql:guid annotations in an XSD schema on any node that maps to a database column in
Microsoft® SQL Server™ 2000. Whereas the updategram format supports the updg:at-identity and updg:guid attributes, the
DiffGram format does not. The updg:at-identity attribute defines the behavior in updating an IDENTITY-type column. The
updg:guid attribute allows you to obtain a globally unique identifier (GUID) value from SQL Server and use it in the updategram.
For more information and working samples, see Inserting Data by Using XML Updategrams

The sql:identity and sql:guid annotations extend this functionality to DiffGrams.

When you execute a DiffGram, it is first converted to an updategram, and then the updategram is executed. By specifying the
sql:identity and sql:guid annotations in the XSD schema, you are in fact defining the behavior of an updategram. Therefore, all
the annotations are described in the context of an updategram. The annotations can be used both for DiffGrams and
updategrams; however, updategrams already provide a more powerful way of handling identity and GUID values.

sql:guid and sql:identity can be defined on a complex content element.

sql:identity Annotation

You can specify the sql:identity annotation in the XSD schema on any node that maps to an IDENTITY-type database column. The
value that is specified for this annotation defines how the IDENTITY-type column is updated (either by using the value provided in
the updategram to modify the column or by ignoring the value, in which case a SQL Server–generated value is used for this
column).

The sql:identity annotation can be assigned two values:

ignore

Directs the updategram to ignore any value that is provided in the updategram for that column and to rely on SQL Server to
generate the identity value.

useValue

Directs the updategram to use the value that is provided in the updategram to update the IDENTITY-type column. An updategram
does not check whether the column is an identity value or not.

If the updategram specifies a value for the IDENTITY-type column, the sql:identity="useValue" must be specified in the schema.

sql:guid Annotation

An updategram can have SQL Server generate a GUID value and then use this value in the updategram. In the context of
DiffGrams, you can use the sql:guid annotation to specify whether to use a GUID value that is generated by SQL Server or use
the value that is provided in the updategram for that column.

The sql:guid annotation can be assigned two values:

generate

Specifies that the GUID that is generated by SQL Server be used for that column in the update operation.

useValue

Specifies that the value that is specified in the updategram be used for the column. This is the default value.

SQLXML 3.0 Service Pack 3

Specifying Depth in Recursive Relationships by Using sql:max-
depth
In relational databases, when a table is involved in a relationship with itself, it is called recursive relationship, for example, in a
supervisor-supervisee type of relationship, the Employees table is involved in a relationship with itself. In this case, on one side,
the Employees table plays a role of supervisor and on the other side of the relationship the same table is playing a role of
supervisee.

Mapping schemas can include recursive relationships where an element and its ancestor are of the same type. Consider the
following table:

Emp (EmployeeID, FirstName, LastName, ReportsTo)

In this table, the ReportsTo column stores the employee ID of the manager.

Assume that you want to generate an XML hierarchy of employees with the manager employee at the top of the hierarchy and the
employees that report to the manager appear in the corresponding hierarchy as shown in the following sample XML fragment.
What this fragment shows is the "recursive tree" for employee 1.

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <Emp FirstName="Nancy" EmployeeID="1" LastName="Devolio">
 <Emp FirstName="Andrew" EmployeeID="2" LastName="Fuller" />
 <Emp FirstName="Janet" EmployeeID="3" LastName="Leverling">
 <Emp FirstName="Margaret" EmployeeID="4" LastName="Peacock">
 <Emp FirstName="Steven" EmployeeID="5" LastName="Devolio">
...
...
</root>

In this fragment, employee 5 reports to employee 4, employee 4 reports to employee 3, employees 3 and 2 report to employee 1.

To produce this result, you can use the following XSD schema and specify an XPath query against it. The schema describes an
<Emp> element of type EmployeeType, consisting of an <Emp> child element of the same type, EmployeeType. This is a
recursive relationship (element and its ancestor are of same type). In addition, the schema uses <sql:relationship> to describe the
parent-child relationship between the supervisor and supervisee. Note that in <relationship>, Emp is both the parent and the
child table.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="SupervisorSupervisee"
 parent="Emp"
 parent-key="EmployeeID"
 child="Emp"
 child-key="ReportsTo" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:element name="Emp" type="EmployeeType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:limit-field="ReportsTo" />
 <xsd:complexType name="EmployeeType">
 <xsd:sequence>
 <xsd:element name="Emp" type="EmployeeType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:relationship="SupervisorSupervisee"
 sql:max-depth="6" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:ID" />
 <xsd:attribute name="FirstName" type="xsd:string"/>
 <xsd:attribute name="LastName" type="xsd:string"/>
 </xsd:complexType>

</xsd:schema>

Because the relationship is recursive, you need some way to specify the depth of recursion in the schema. Otherwise, the result
will be an endless recursion (employee reporting to employee reporting to employee and so on). The sql:max-depth annotation

allows you to specify how deep in the recursion to go. In this particular example, to specify a value for sql:max-depth, you must
know how deep the management hierarchy goes in the company.

The schema specifies the sql:limit-field annotation but does not specify the sql:limit-value annotation. This limits the top node
in the resulting hierarchy to only those employees who do not report to anyone. (ReportsTo is NULL.) Specifying sql:limit-field
and not specifying sql:limit-value (which defaults to NULL) annotation accomplishes this. If you want the resulting XML to
include every possible reporting tree (the reporting tree for every employee in the table), remove the sql:limit-field annotation
from the schema.

To test a sample XPath query against the schema

1. Create a sample Emp table in the database to which the virtual root points. If you are using the nwind virtual root, create
this table in the Northwind database.

CREATE TABLE Emp (
 EmployeeID int primary key,
 FirstName varchar(20),
 LastName varchar(20),
 ReportsTo int)

2. Add this sample data:

INSERT INTO Emp values (1, 'Nancy', 'Devolio',NULL)
INSERT INTO Emp values (2, 'Andrew', 'Fuller',1)
INSERT INTO Emp values (3, 'Janet', 'Leverling',1)
INSERT INTO Emp values (4, 'Margaret', 'Peacock',3)
INSERT INTO Emp values (5, 'Steven', 'Devolio',4)
INSERT INTO Emp values (6, 'Nancy', 'Buchanan',5)
INSERT INTO Emp values (7, 'Michael', 'Suyama',6)

3. Save the schema (MySchema.xml) in the directory that is associated with the template virtual name you have already
created (or one of its subdirectories, in which case you must specify the relative path in the mapping-schema attribute).

4. Create the following template (MySchemaT.xml), and save it in the directory that is associated with the template virtual
name. The query in the template returns all the employees in the Employees table.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="MySchema.xml">
 /Emp
 </sql:xpath-query>
</ROOT>

The directory path that is specified for the mapping schema is relative to the directory that is associated with the template
virtual name. An absolute path also can be specified; for example:

mapping-schema="C:\MyDir\MySchema.xml"

5. Use this URL to execute the template:

http://IISServer/VirtualRoot/template/MySchemaT.xml

You can specify an XPath query against this schema directly in the URL. This requires a virtual name of schema type; save
the schema in the directory associated with the virtual name of schema type. You can then specify the XPath query (Emp) as
follows:

http://localhost/VirtualRoot/SchemaVirtualName/MySchema.xml/Emp

This is the result:

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <Emp FirstName="Nancy" EmployeeID="1" LastName="Devolio">
 <Emp FirstName="Andrew" EmployeeID="2" LastName="Fuller" />
 <Emp FirstName="Janet" EmployeeID="3" LastName="Leverling">
 <Emp FirstName="Margaret" EmployeeID="4" LastName="Peacock">
 <Emp FirstName="Steven" EmployeeID="5" LastName="Devolio">

 <Emp FirstName="Nancy" EmployeeID="6" LastName="Buchanan">
 <Emp FirstName="Michael" EmployeeID="7" LastName="Suyama" />
 </Emp>
 </Emp>
 </Emp>
 </Emp>
 </Emp>
</root>

To produce different depths of hierarchies in the result, change the value of the sql:max-depth annotation in the schema and
execute the template again after each change.

In the previous schema, all the <Emp> elements had exactly the same set of attributes (EmployeeID, FirstName, and
LastName). The following schema has been slightly modified to return an additional ReportsTo attribute for all the <Emp>
elements that report to a manager.

For example, this XML fragment shows the subordinates of employee 1:

<?xml version="1.0" encoding="utf-8" ?>
<root>
<Emp FirstName="Nancy" EmployeeID="1" LastName="Devolio">
 <Emp FirstName="Andrew" EmployeeID="2"
 ReportsTo="1" LastName="Fuller" />
 <Emp FirstName="Janet" EmployeeID="3"
 ReportsTo="1" LastName="Leverling">
...
...

This is the revised schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:annotation>
 <xsd:documentation>
 Customer-Order-Order Details Schema
 Copyright 2000 Microsoft. All rights reserved.
 </xsd:documentation>
 <xsd:appinfo>
 <sql:relationship name="SupervisorSupervisee"
 parent="Emp"
 parent-key="EmployeeID"
 child="Emp"
 child-key="ReportsTo" />
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:element name="Emp"
 type="EmpType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:limit-field="ReportsTo" />
 <xsd:complexType name="EmpType">
 <xsd:sequence>
 <xsd:element name="Emp"
 type="EmpType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:relationship="SupervisorSupervisee"
 sql:max-depth="6"/>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:int" />
 <xsd:attribute name="FirstName" type="xsd:string"/>
 <xsd:attribute name="LastName" type="xsd:string"/>
 <xsd:attribute name="ReportsTo" type="xsd:int" />
 </xsd:complexType>

</xsd:schema>

sql:max-depth Annotation

In a schema consisting of recursive relationships, the depth of recursion must be explicitly specified in the schema. This is required
to successfully produce the corresponding FOR XML EXPLICIT query that returns the requested results.

Use the sql:max-depth annotation in the schema to specify the depth of recursion in a recursive relationship that is described in
the schema. The value of the sql:max-depth annotation is a positive integer (1 to 50) that indicates the number of recursions:

A value of 1 stops the recursion at the element for which the sql:max-depth annotation is specified.

A value of 2 stops the recursion at the next level from the element at which sql:max-depth is specified, and so on.

In the underlying implementation, an XPath query that is specified against a mapping schema is converted to a SELECT ...
FOR XML EXPLICIT query. This query requires you to specify a finite depth of recursion. The higher the value that you specify
for sql:max-depth, the larger the FOR XML EXPLICIT query that is generated. This might slow the retrieval time.

For additional guidelines about how to use the sql:max-depth annotation, see Guidelines for Using the max-depth Annotation.

Updategrams and XML Bulk Load ignore the max-depth annotation. This means, recursive updates or insertions will happen
regardless of what value you specify for max-depth.

SQLXML 3.0 Service Pack 3

Guidelines for Using the sql:max-depth Annotation
Guidelines for Using the sql:max-depth Annotation

This topic provides several guidelines for using the sql:max-depth annotation.

Specifying sql:max-depth on Complex Elements

The sql:max-depth annotation can be specified on any complex content element.

Recursive Elements

If sql:max-depth is specified on both the parent element and the child element in a recursive relationship, the sql:max-depth
annotation that is specified on the parent takes precedence. For example, in the following schema, the sql:max-depth annotation
is specified on both the parent and the child employee elements. In this case, sql:max-depth=4 specified on the <Emp> parent
element (playing a role of supervisor) takes precedence. The sql:max-depth specified on the <Emp> child element (playing a
role of supervisee) is ignored.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="SupervisorSupervisee"
 parent="Emp"
 parent-key="EmployeeID"
 child="Emp"
 child-key="ReportsTo" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:element name="Emp" type="EmployeeType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:limit-field="ReportsTo"
 sql:max-depth="3" />
 <xsd:complexType name="EmployeeType">
 <xsd:sequence>
 <xsd:element name="Emp" type="EmployeeType"
 sql:relation="Emp"
 sql:key-fields="EmployeeID"
 sql:relationship="SupervisorSupervisee"
 sql:max-depth="2" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:ID" />
 <xsd:attribute name="FirstName" type="xsd:string"/>
 <xsd:attribute name="LastName" type="xsd:string"/>
 </xsd:complexType>

</xsd:schema>

To test this schema, follow the steps that are described for the sample in Specifying Depth in Recursive Relationships by Using
sql:max-depth.

N onrecursive Elements

If the sql:max-depth annotation is specified on an element in the schema that does not cause any recursion, it is gnored. In the
following schema, an <Emp> element consists of a <Constant> child element, which, in turn, has an <Emp> child element.

In this schema, the sql:max-depth annotation that is specified on the <Constant> element is ignored because there is no
recursion between the <Emp> parent and the <Constant> child element. But there is recursion between the <Emp> ancestor and
the <Emp> child. The schema specifies the sql:max-depth annotation on both. Therefore, the sql:max-depth annotation that is
specified on the ancestor (<Emp> in the supervisor role) takes precedence.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="SupervisorSupervisee"
 parent="Emp"
 child="Emp"

 parent-key="EmployeeID"
 child-key="ReportsTo"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:element name="Emp"
 sql:relation="Emp"
 type="EmpType"
 sql:limit-field="ReportsTo"
 sql:max-depth="1" />
 <xsd:complexType name="EmpType" >
 <xsd:sequence>
 <xsd:element name="Constant"
 sql:is-constant="1"
 sql:max-depth="20" >
 <xsd:complexType >
 <xsd:sequence>
 <xsd:element name="Emp"
 sql:relation="Emp" type="EmpType"
 sql:relationship="SupervisorSupervisee"
 sql:max-depth="3" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:int" />
 </xsd:complexType>
</xsd:schema>

To test this schema, follow the steps that are described for the sample in Specifying Depth in Recursive Relationships by Using
sql:max-depth.

Complex Types Derived by Restriction

If you have a complex type derivation by <restriction>, elements of the corresponding base complex type cannot specify the
sql:max-depth annotation. In these cases, the sql:max-depth annotation can be added to the element of the derived type.

On the other hand, if you have a complex type derivation by <extension>, the elements of the corresponding base complex type
can specify the sql:max-depth annotation.

For example, the following XSD schema generates an error because the sql:max-depth annotation is specified on the base type.
This annotation is not supported on a type that is derived by <restriction> from another type. To fix this problem, you must
change the schema and specify the sql:max-depth annotation on element in the derived type:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:msdata="urn:schemas-microsoft-com:mapping-schema">

 <xsd:complexType name="CustomerBaseType">
 <xsd:sequence>
 <xsd:element name="CID" msdata:field="CustomerID" />
 <xsd:element name="CompanyName"/>
 <xsd:element name="Customers" msdata:max-depth="3">
 <xsd:annotation>
 <xsd:appinfo>
 <msdata:relationship
 parent="Customers"
 parent-key="CustomerID"
 child-key="CustomerID"
 child="Customers" />
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="Customers" type="CustomerType"/>
 <xsd:complexType name="CustomerType">
 <xsd:complexContent>
 <xsd:restriction base="CustomerBaseType">
 <xsd:sequence>
 <xsd:element name="CID"
 type="xsd:string"/>
 <xsd:element name="CompanyName"
 type="xsd:string"
 msdata:field="CName" />
 <xsd:element name="Customers"
 type="CustomerType" />
 </xsd:sequence>
 </xsd:restriction>

 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

In the schema, sql:max-depth is specified on CustomerBaseType complex type. The schema also specifies a <Customer>
element of type CustomerType that is derived from CustomerBaseType. An XPath query that is specified on such schema will
generate an error because sql:max-depth is not supported on an element that is defined in a restriction base type.

Schemas with a Deep Hierarchy

You might have a schema that includes a deep hierarchy in which an element contains a child element, which in turn contains
another child element, and so on. If the sql:max-depth annotation that is specified in such a schema generates an XML document
that includes a hierarchy of more than 500 levels (top-level element at level 1, its child at level 2, and so on), an error is returned.

SQLXML 3.0 Service Pack 3

Using Annotated XSD Schemas in Queries
You can specify queries against an annotated schema to retrieve data from the database by:

Specifying XPath queries in a template against the XSD schema.

The <sql:xpath-query> element allows you to specify an XPath query against the XML view that is defined by the annotated
schema. The annotated schema against which the XPath query is to be executed is identified by using the mapping-
schema attribute of the <sql:xpath-query> element.

Templates are valid XML documents that contain one or more queries. The FOR XML and XPath queries return a document
fragment. Templates act as containers for the document fragments; templates thus provide a way to specify a single, top-
level element.

The examples in this topic use templates to specify an XPath query against an annotated schema to retrieve data from the
database.

For more information about templates, see "Executing Template Files Using a URL" in SQL Server Books Online.

Mapping the schema in the URL.

An XPath query can be specified against the annotated schema directly in a URL. This is performed by creating a virtual
name of schema type and by specifying the annotated schema and the XPath query at the URL.

For example, consider this annotated schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customers" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="ContactName" type="xsd:string" />
 <xsd:attribute name="Phone" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

For the purpose of illustration, this XSD schema is stored in the schema subdirectory of the virtual root directory, and the
file name is Schema2.xml.

An XPath query against the annotated schema can be specified directly in the URL:

http://IISServer/VirtualRoot/schema/Schema2.xml/Customers[@CustomerID="ALFKI"]

In the URL, schema is the virtual name of schema type (which is created by using the IIS Virtual Directory Management for
SQLXML 3.0 utility). Schema2.xml is the annotated schema file followed by an XPath query that requests all customers with
a CustomerID of ALFKI.

Using Inline Mapping Schemas.

An annotated schema can be included directly in a template, and then an XPath query can be specified in the template
against the inline schema. The template can also be an updategram.

A template can include multiple inline schemas. To use an inline schema that is included in a template, specify the id
attribute with a unique value on the <xsd:schema> element, and then use "#idvalue" to reference the inline schema. The id
attribute is identical in behavior to the sql:id ({urn:schemas-microsoft-com:xml-sql}id) that are used in XDR schemas.
For more information, see "Using Annotated XDR Schemas in Queries" in SQL Server Books Online.

For example, the following template specifies two inline-annotated schemas:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:ms='urn:schemas-microsoft-com:mapping-schema'
 id='InLineSchema1' sql:is-mapping-schema='1'>
 <xsd:element name='Employees' ms:relation='Employees'>

 <xsd:complexType>
 <xsd:attribute name='FirstName'
 type='xsd:string'/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:ms='urn:schemas-microsoft-com:mapping-schema'
 id='InLineSchema2' sql:is-mapping-schema='1'>
 <xsd:element name='Customers' ms:relation='Customers'>
 <xsd:complexType>

 <xsd:attribute name='CustomerID'
 type='xsd:string' />
 <xsd:attribute name='ContactName'
 type='xsd:string' />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<sql:xpath-query xmlns:sql='urn:schemas-microsoft-com:xml-sql'
 mapping-schema='#InLineSchema1'>
 /Employees[@FirstName='Nancy']
</sql:xpath-query>

<sql:xpath-query xmlns:sql='urn:schemas-microsoft-com:xml-sql'
 mapping-schema='#InLineSchema2'>
 /Customers[@CustomerID='ALFKI']
</sql:xpath-query>
</ROOT>

The template also specifies two XPath queries. Each of the <xpath-query> elements uniquely identifies the mapping schema
by specifying the mapping-schema attribute.

When you specify an inline schema in the template, the sql:is-mapping-schema annotation must also be specified on the
<xsd:schema> element. The sql:is-mapping-schema takes a Boolean value (0=false, 1=true). An inline schema with sql:is-
mapping-schema="1" is treated as inline annotated schema and is not returned in the XML document.

The sql:is-mapping-schema annotation belongs to the template namespace urn:schemas-microsoft-com:xml-sql.

To test this example, save the template (InlineSchemaTemplate.xml) in the directory that is associated with the virtual name
of template type.

This URL executes the template:

http://IISServer/VirtualRoot/template/InlineSchemaTemplate.xml

In the URL, template is a virtual name (which is created by using the IIS Virtual Directory Management for SQLXML 3.0
utility) of the template type, followed by the template file name.

SQLXML 3.0 Service Pack 3

Converting Annotated XDR Schemas to Equivalent XSD
Schemas
The XML Schema Definition (XSD) language is the successor to the XML-Data Reduced (XDR) schema definition language. With
the introduction of XSD support in Microsoft® SQLXML, it is assumed that new annotated schemas are created using XSD.
SQLXML 3.0 includes an XDR to XSD converter tool that is designed to help you convert your existing annotated XDR schemas to
equivalent XSD schemas.

Use this tool only when you want to convert annotated XDR schemas to XSD for use with SQLXML 3.0. This is not a general
purpose XDR to XSD converter tool. The converted XSD schemas may not behave the same as the original XDR schemas when
used in other environments.

If the input XDR file specifies the encoding within the XML declaration, this becomes the encoding of the XSD output file that is
generated.

The converter tool (Cvtschema.exe) is installed in the Program Files\SQLXML 3.0\bin folder and is executed at the command
prompt.

This is the general syntax:

cvtschema XDRFileName, [-y], [-w] [-?]

where

XDRFileName

Is the name of the XDR file that is to be converted to XSD. The tool reads the input XDR file and creates an XSD output file in the
current working directory. If the input file has an .xdr or .xml extension, the output XSD file is created with the same name but with
an .xsd extension. If the input file extension is other than .xml or .xdr (or if the extension is missing), the output file is created with
the same name and the .xsd extension is appended to the input file name. (For example, if the input XDR file name is
SampleFile.abc, the resulting XSD is saved as SampleFile.abc.xsd.)

-y

(Optional) Overwrites the existing XSD file with the XSD file that is generated by the converter tool. If the flag is not specified, the
tool prompts you to specify whether you want to overwrite the existing XSD file and gives you the option to change the output file
name.

-w

(Optional) Returns nonfatal warnings that are generated in the conversion process by the tool. By default, the tool displays
messages only for fatal errors.

-?

Returns a list of options that you can specify with cvtschema along with an explanation.

SQLXML 3.0 Service Pack 3

Using Updategrams to Modify Data
You can modify (insert, update, or delete) a database in Microsoft® SQL Server™ 2000 from an existing XML document by using
an updategram or the OPENXML Transact-SQL function.

The OPENXML function modifies a database by shredding the existing XML document and providing a rowset that can be passed
to an INSERT, UPDATE, or DELETE statement to perform the necessary operation directly against the database tables. Therefore,
using OPENXML is most appropriate wherever rowset providers, such as a table, can appear as a source.

Like OPENXML, an updategram allows you to insert, update, or delete data in the database; however, an updategram works
against the XML views that are provided by the annotated XSD (or an XDR) schema (for example, the updates are applied to the
XML view provided by the mapping schema). The mapping schema, in turn, has the necessary information to map XML elements
and attributes to the corresponding database tables and columns. The updategram uses this mapping information to update the
database tables and columns.

This documentation assumes that you are familiar with templates and mapping schema support in SQL Server 2000. For more
information about templates, see "Executing Template Files Using HTTP" in SQL Server Books Online. For more information about
mapping schemas, see "Creating XML Views Using Annotated XDR Schemas" in SQL Server Books Online.

Required Namespaces in the Updategram

The keywords in an updategram, such as <sync>, <before>, and <after>, exist in the urn:schemas-microsoft-com:xml-
updategram namespace. The namespace prefix that you use is arbitrary. In this documentation, the updg prefix denotes the
updategram namespace.

Reviewing Syntax

An updategram is a template with <sync>, <before>, and <after> blocks that form the syntax of the updategram. The following
code shows this syntax in its simplest form:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync [mapping-schema= "AnnotatedSchemaFile.xml"] >
 <updg:before>
 ...
 </updg:before>
 <updg:after>
 ...
 </updg:after>
 </updg:sync>
</ROOT>

The following definitions describe the role of each of these blocks:

<before>

Identifies the existing state (also referred to as "the before state") of the record instance.

<after>

Identifies the new state to which data is to be changed.

<sync>

Contains the <before> and <after> blocks. A <sync> block can contain more than one set of <before> and <after> blocks. If
there is more than one set of <before> and <after> blocks, these blocks (even if they are empty) must be specified as pairs.
Furthermore, an updategram can have more than one <sync> block. Each <sync> block is one unit of transaction (which means
that either everything in the <sync> block is done or nothing is done). If you specify multiple <sync> blocks in an updategram,
the failure of one <sync> block does not affect the other <sync> blocks.

Whether an updategram deletes, inserts, or updates a record instance depends on the contents of the <before> and <after>
blocks:

If a record instance appears only in the <before> block with no corresponding instance in the <after> block, the
updategram performs a delete operation.

If a record instance appears only in the <after> block with no corresponding instance in the <before> block, it is an insert
operation.

If a record instance appears in the <before> block and has a corresponding instance in the <after> block, it is an update
operation. In this case, the updategram updates the record instance to the values that are specified in the <after> block.

Specifying a Mapping Schema in the Updategram

In an updategram, the XML abstraction that is provided by a mapping schema (both XSD and XDR schemas are supported) can be
implicit or explicit (that is, an updategram can work with or without a specified mapping schema). If you do not specify a mapping
schema, the updategram assumes an implicit mapping (the default mapping), where each element in the <before> block or
<after> block maps to a table and each element's subelement or attribute maps to a column in the database. If you explicitly
specify a mapping schema, the elements and attributes in the updategram must match the elements and attributes in the
mapping schema.

Implicit (default) M apping

In most cases, an updategram that performs simple updates might not require a mapping schema. In this case, the updategram
relies on the default mapping schema.

The following updategram demonstrates implicit mapping. In this example, the updategram inserts a new customer in the
Customers table. Because this updategram uses implicit mapping, the <Customers> element maps to the Customers table, and
the CustomerID and CompanyName attributes map to the corresponding columns in the Customers table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
</updg:before>
<updg:after>
 <Customers CustomerID="AAAAA" CompanyName="Bottom-Dollar Markets" />
 </updg:after>
</updg:sync>
</ROOT>

Explicit M apping

If you specify a mapping schema (either XSD or XDR), the updategram uses the schema to determine the database tables and
columns that are to be updated.

If the updategram performs a complex update (for example, inserting records in multiple tables on the basis of the parent-child
relationship that is specified in the mapping schema), you must explicitly provide the mapping schema by using the mapping-
schema attribute against which the updategram executes.

Because an updategram is a template, the path that is specified for the mapping schema in the updategram is relative to the
location of the template file (relative to where the updategram is stored). For more information, see Specifying an Annotated
Schema in an Updategram.

Element-centric and Attribute-centric Mapping in Updategrams

With default mapping (when the mapping schema is not specified in the updategram), the updategram elements map to tables
and the subelements (in case of element-centric mapping) and the attributes (in case of attribute-centric mapping) map to
columns.

Element-centric M apping

In an element-centric updategram, an element contains subelements that denote the properties of the element. As an example,
refer to the following updategram. The <Employees> element contains the <FirstName>and <LastName> subelements. These
subelements are properties of the <Employees> element.

Because this updategram does not specify a mapping schema, the updategram uses implicit mapping, where the <Employees>
element maps to the Employees table and its subelements map to the FirstName and LastName columns.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:after>
 <Employees>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 </updg:after>
</updg:sync>
</ROOT>

Attribute-centric M apping

In an attribute-centric mapping, the elements have attributes. The following updategram uses attribute-centric mapping. In this
example, the <Employees> element consists of the FirstName and LastName attributes. These attributes are the properties of
the <Employees> element. Once again, this updategram specifies no mapping schema, so it relies on implicit mapping to map the
<Employees> element to the Employees table and the element's attributes to the respective columns in the table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees FirstName="Nancy" LastName="Davolio" />
 </updg:after>
</updg:sync>
</ROOT>

Using Both Element-centric and Attribute-centric M apping

You can specify a mix of element-centric and attribute-centric mapping, as shown in the following updategram. Notice that the
<Employees> element contains both an attribute and a subelement. Also, this updategram relies on implicit mapping. Thus, the
FirstName attribute and the LastName subelement map to corresponding columns in the Employees table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees FirstName="Nancy" >
 <LastName>Davolio</LastName>
 </Employees>
 </updg:after>
</updg:sync>
</ROOT>

Dealing with Characters That Are Valid in SQL Server but Not Valid in XML

In SQL Server, table names can include a space, such as the Order Details table in the Northwind database. However, this type
of table name is not valid in XML.

To encode characters that are valid SQL Server identifiers but that are not valid XML identifiers, use '__xHHHH__' as the encoding
value, where HHHH stands for the four-digit hexadecimal UCS-2 code for the character in the most significant bit-first order.
Using this encoding scheme, a space character gets replaced with x0020 (the four-digit hexadecimal code for a space character);
thus, the table name [Order Details] in SQL Server becomes _x005B_Order_x0020_Details_x005D_ in XML.

Another example of this is specifying three-part element names, such as <[database].[owner].[table]>. Because the bracket
characters ([and]) are not valid in XML, you must specify this as
<_x005B_database_x005D_._x005B_owner_x005D_._x005B_table_x005D_>, where _x005B_ is the encoding for the left bracket ([)
and _x005D_ is the encoding for the right bracket (]).

Executing Updategrams

Because an updategram is a template, all the processing mechanisms of a template apply to the updategram. You can:

Post an updategram by using HTTP.

Save it in a file and execute in the URL as a template file.

Submit it with an ADO or OLE DB command.

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Specifying an Annotated Mapping Schema in an Updategram
This topic explains how the mapping schema (XSD or XDR) that is specified in an updategram is used to process the updates. In an
updategram, you can provide the name of an annotated mapping schema to use in mapping the elements and attributes in the
updategram to tables and columns in Microsoft® SQL Server™. When a mapping schema is specified in an updategram, the
element and attribute names that are specified in the updategram must map to the elements and attributes in the mapping
schema.

To specify a mapping schema, you use the mapping-schema attribute of the <sync> element. The following examples show two
updategrams: one that uses a simple mapping schema, and one that uses a more complex schema.

For more information about annotated XSD schemas, see Creating XML Views by Using Annotated XSD Schemas; and for
information about annotated XDR schemas, see "Creating XML Views Using Annotated XDR Schema" in SQL Server Books Online.

Dealing with Data Types

If the schema specifies the image, binary, or varbinary SQL Server data type (by using sql:datatype) and does not specify an
XML data type, the updategram assumes that the XML data type is binary base 64. If your data is bin.base type, you must
explicitly specify the type (dt:type=bin.base or type="xsd:hexBinary").

If the schema specifies the dateTime, date, or time XSD data type, you must also specify the corresponding SQL Server data
type by using sql:datatype="dateTime".

When handling parameters of SQL Server money type, you must explicitly specify sql:datatype="money" on the appropriate
node in the mapping schema.

Examples

The following examples use the tables in the Northwind sample database. All the updates are applied to the tables in this
database. You can restore the Northwind database. For information about restoring the Northwind database, see "Northwind
Sample Database" in SQL Server Books Online.

A. Creating an updategram with a simple mapping schema

The following XSD schema (SampleSchema.xml) is a mapping schema that maps the <Customer> element to the Customers
table:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:attribute name="CustID"
 sql:field="CustomerID"
 type="xsd:string" />
 <xsd:attribute name="Company"
 sql:field="CompanyName"
 type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The following updategram inserts a record into the Customers table and relies on the previous mapping schema to properly map
this data to the table. Notice that the updategram uses the same element name, <Customer>, as defined in the schema. This is
mandatory because the updategram specifies a particular schema.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync mapping-schema="SampleSchema.xml">
<updg:before>
</updg:before>
<updg:after>
 <Customer CustID="AAAAA" Company="Bottom-Dollar Markets" />
 </updg:after>
</updg:sync>
</ROOT>

To test the updategram

Save the updategram (SampleUpdategram.xml) and the XSD schema (SampleSchema.xml) in the folder that is associated with the
virtual name of the template type, and then execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

This is the equivalent XDR schema:

<?xml version="1.0" ?>
 <Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustID" />
 <AttributeType name="Company" />

 <attribute type="CustID" sql:field="CustomerID" />
 <attribute type="Company" sql:field="CompanyName" />
 </ElementType>
 </Schema>

B. Inserting a record by using the parent-child relationship that is specified in the mapping schema

The schema elements can be related. The <sql:relationship> specifies the parent-child relationship between the schema elements.
This information is used to update corresponding tables that have primary-key/foreign-key relationship.

The following mapping schema (SampleSchema.xml) consists of two elements, <Order> and <OD>:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrderOD"
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" sql:relation="Orders" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OD"
 sql:relation="[Order Details]"
 sql:relationship="OrderOD" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="ProductID" type="xsd:integer" />
 <xsd:attribute name="UnitPrice" type="xsd:decimal" />
 <xsd:attribute name="Quantity" type="xsd:integer" />
 <xsd:attribute name="Discount" type="xsd:decimal" />

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The following updategram uses this XSD schema to add a new order detail record (<OD> element in the <after> block) for order
10248. The mapping-schema attribute is used to specify the mapping schema in the updategram.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Order OrderID="10248" />
 </updg:before>
 <updg:after>
 <Order OrderID="10248" >
 <OD ProductID="77" UnitPrice="$10.00"
 Quantity="1000" Discount="0.0" />
 </Order>
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (SampleUpdategram.xml) and the XSD schema (SampleSchema.xml) in the folder that is associated with the
virtual name of template type, and then execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="OD" sql:relation="[Order Details]" >
 <AttributeType name="OrderID" />
 <AttributeType name="ProductID" />
 <AttributeType name="UnitPrice" dt:type="fixed.14.4" />
 <AttributeType name="Quantity" />
 <AttributeType name="Discount" />

 <attribute type="OrderID" />
 <attribute type="ProductID" />
 <attribute type="UnitPrice" />
 <attribute type="Quantity" />
 <attribute type="Discount" />
</ElementType>

<ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="CustomerID" />
 <AttributeType name="OrderID" />
 <AttributeType name="OrderDate" />

 <attribute type="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="OrderDate" />
 <element type="OD" >
 <sql:relationship
 key-relation="Orders"
 key="OrderID"
 foreign-key="OrderID"
 foreign-relation="[Order Details]" />
 </element>
</ElementType>
</Schema>

C. Inserting a record by using the parent-child relationship and the inverse annotation that are specified in the XSD schema

This example illustrates how the updategram logic uses the parent-child relationship that is specified in the XSD schema in the
processing of updates and how the inverse annotation is used. For more information about the inverse annotation, see
Specifying the sql:inverse Attribute on sql:relationship.

This example assumes that the following tables are in the database:

Cust (CustomerID, CompanyName), where CustomerID is the primary key

Ord (OrderID, CustomerID), where CustomerID is a foreign key that refers to the CustomerID primary key in the Cust
table.

The updategram inserts records into these tables by using this XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrdCust" inverse="true"
 parent="Ord"
 parent-key="CustomerID"
 child-key="CustomerID"
 child="Cust"/>
 </xsd:appinfo>
</xsd:annotation>

<xsd:element name="Order" sql:relation="Ord">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Customer" sql:relationship="OrdCust"/>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:int"/>

 <xsd:attribute name="CustomerID" type="xsd:string"/>
 </xsd:complexType>
</xsd:element>

<xsd:element name="Customer" sql:relation="Cust">
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string"/>
 <xsd:attribute name="CompanyName" type="xsd:string"/>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

The sample XSD schema in this example has <Customer> and <Order> elements, and it specifies a parent-child relationship
between the two elements. It identifies <Order> as the parent element and <Customer> as the child element.

The updategram processing logic uses the information about the parent-child relationship to determine the order in which
records are inserted in tables. In this example, the updategram logic first attempts to insert a record into the Ord table (because
<Order> is the parent) and then attempts to insert a record into the Cust table (because <Customer> is the child). However,
because of the primary key/foreign key information that is contained in the database table schema, this insert operation causes a
foreign key violation in the database and the insert fails.

To instruct the updategram logic to reverse the parent-child relationship during the update operation, the inverse annotation is
specified on the <relationship> element. As a result, records are added first in the Cust table and then in the Ord table, and the
operation succeeds.

The following updategram inserts an order (OrderID=2) in the Ord table and a customer (CustomerID='AAAAA') in the Cust
table by using the specified XSD schema:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before/>
 <updg:after>
 <Order OrderID="2" CustomerID="AAAAA" >
 <Customer CustomerID="AAAAA" CompanyName="AAAAA Company" />
 </Order>
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

1. Create these tables:

CREATE TABLE Cust(CustomerID varchar(5) primary key,
 CompanyName varchar(20))
GO
CREATE TABLE Ord (OrderID int primary key,
 CustomerID varchar(5) references Cust(CustomerID))
GO

2. Save the schema (SampleSchema.xml) and the updategram (MyUpdategram.xml) in the folder that is associated with virtual
name of template type, and then execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

NULL Handling
XML syntax denotes NULL as an absence. (For example, if an attribute or element value is NULL, that attribute or element is
absent from the XML document.) In Microsoft® SQLXML, the updg:nullvalue attribute enables specifying NULL for an
<element> or attribute value.

For example, the following updategram checks to ensure that the Title value for employee 1 is NULL and sets the Title to "Senior
Sales Representative".

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync updg:nullvalue="IsNULL" >
 <updg:before>
 <Employees EmployeeID="1" Title="IsNULL" />
 </updg:before>
 <updg:after>
 <Employees EmployeeID="1" Title="Senior Sales Representative" />
 </updg:after>
 </updg:sync>
</ROOT>

When parameters are passed to an updategram, NULL can be passed as the parameter value. This is done by specifying the
nullvalue attribute in the <updg:header> block. For an example, see Passing Parameters.

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Inserting Data by Using XML Updategrams
An updategram indicates an insert operation when a record instance appears in the <after> block but not in the corresponding
<before> block. In this case, the updategram inserts the record in the <after> block into the database.

This is the updategram format for an insert operation:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync [mapping-schema="SampleSchema.xml"] >
 [<updg:before>
 </updg:before>]
 <updg:after [updg:returnid="x y ...] >
 <ElementName [updg:id="value"]
 [updg:at-identity="x"]
 [updg:guid="y"]
 attribute="value"
 attribute="value"
 ...
 />
 [<ElementName .../>...]
 </updg:after>
 </updg:sync>
</ROOT>

<before> Block

The <before> block can be omitted for an insert operation. If the optional mapping-schema attribute is not specified, the
<ElementName> that is specified in the updategram maps to a database table and the subelements or attributes map to columns
in the table.

<after> Block

You can specify one or more records in the <after> block.

If the <after> block does not supply a value for a particular column, the updategram uses the default value that is specified in the
annotated schema (if a schema has been specified). If the schema does not specify a default value for the column, the updategram
does not specify any explicit value to this column and, instead, assigns the Microsoft® SQL Server™ default value (if specified) to
this column. If there is no SQL Server default value and the column accepts a NULL value, the updategram sets the column value
to NULL. If the column neither has a default value nor accepts a null value, the command fails and the updategram returns an
error. The optional updg:returnid attribute is used to return the identity value that is generated by the system when a record is
added in a table with an IDENTITY-type column.

updg:id Attribute

If the updategram is inserting only records, the updategram does not require the updg:id attribute. For more information about
updg:id, see Updating Data by Using XML Updategrams.

updg:at-identity Attribute

When updategram inserts a record in a table that has an IDENTITY-type column, the updategram can capture the system assigned
value by using the optional updg:at-identity attribute. The updategram can then use this value in subsequent operations. Upon
execution of the updategram, you can return the identity value that is generated by specifying the updg:returnid attribute.

updg:guid Attribute

The updg:guid attribute is an optional attribute that generates a globally unique identifier. This value remains in scope for the
entire <sync> block in which it is specified. You can use this value anywhere in the <sync> block. The attribute calls the
NEWGUID() SQL Server function to generate the unique identifier.

Examples

Before using the updategram examples, note the following:

Most of the examples use default mapping (that is, no mapping schema is specified in the updategram). For more examples
of updategrams that use mapping schemas, see Specifying an Annotated Mapping Schema in an Updategram.

Most of the examples use the Northwind sample database. All the updates are applied to the tables in this database. You
can restore the Northwind database. For information about restoring the Northwind database, see "Northwind Sample
Database" in SQL Server Books Online.

To test these examples of updategrams, you must create a virtual directory. For more information about creating the nwind
virtual directory, see Creating the nwind Virtual Directory.

Because an updategram is a template, you must store these updategram examples in the folder that is associated with the
virtual name of template type.

A. Inserting a record by using an updategram

This attribute-centric updategram inserts a record in the Employees table in the Northwind database.

In this example, the updategram does not specify a mapping schema. Therefore, the updategram uses default mapping, in which
the element name maps to a table name and the attributes or subelements map to columns in that table.

For the sake of simplicity, the updategram specifies only the column values that are required (FirstName and LastName). The
EmployeeID is an IDENTITY-type column in the Employees table. Therefore, no values are specified for the EmployeeID
column.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees FirstName="Nancy" LastName="Davolio" />
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with the virtual name of template type, and then
execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

In an element-centric mapping, the updategram looks like this:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 </updg:after>
</updg:sync>
</ROOT>

In a mixed-mode (element-centric and attribute-centric) updategram, an element can have both attributes and subelements, as
shown in this updategram:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees FirstName="Nancy" >
 <LastName>Davoliio</LastName>
 </Employees>
 </updg:after>
</updg:sync>
</ROOT>

B. Inserting multiple records by using an updategram

This updategram adds two employee records to the Employees table. The updategram does not specify the optional <before>
block.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:after >
 <Employees FirstName="Laura" LastName="Fuller" />
 <Employees FirstName="Janet" LastName="Pecock" />
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with the virtual name of template type, and then
execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

This revised updategram uses two separate <after> blocks instead of one block to insert the two employees:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:after >
 <Employees FirstName="Laura" LastName="Fuller" />
 </updg:after>
 <updg:before>
 </updg:before>
 <updg:after >
 <Employees FirstName="Janet" LastName="Pecock" />
 </updg:after>
 </updg:sync>
</ROOT>

C. Dealing with valid SQL Server characters that are not valid in XM L

In SQL Server, table names can include a space, such as the Order Details table in the Northwind database. However, this is not
valid in XML haracters that are valid SQL Server identifiers but not valid XML identifiers can be encoded using '__xHHHH__' as the
encoding value, where HHHH stands for the four-digit hexadecimal UCS-2 code for the character in the most significant bit-first
order.

Also, the element name must be enclosed within brackets ([]). Because the characters [and] are not valid in XML, you must
encode them as _x005B_ and _x005D_, respectively. (If you use a mapping schema, you can provide element names that do not
contain characters that are not valid, such as white spaces. The mapping schema does the necessary mapping; therefore, you do
not need to encode for these characters).

This updategram adds a record to the Order Details table in the Northwind database:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <_x005B_Order_x0020_Details_x005D_ OrderID="1"
 ProductID="11"
 UnitPrice="$1.0"
 Quantity="1"
 Discount="0.0" />
 </updg:after>
 </updg:sync>
</ROOT>

The UnitPrice column in the Order Details table is of the money type. To apply the appropriate type conversion (from a string
type to a money type), the dollar sign character ($) must be added as part of the value. If the updategram does not specify a
mapping schema, the first character of the string value is evaluated. If the first character is a dollar sign ($), the appropriate
conversion is applied. If a mapping schema is provided and the column is appropriately marked as dt:type=fixed.14.4, the dollar
sign ($) is not required. If the updategram is specified against a mapping schema, the conversion is handled by the mapping.

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with the virtual name of template type, and then
execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

D. Using the at-identity attribute to retrieve the value that has been inserted in the IDEN TITY-type column

This updategram inserts two records: one in the Orders table and another in the Order Details table.

First, the updategram adds a record to the Orders table. In this table, the OrderID column is an IDENTITY-type column. Therefore,
when you add this record to the table, the updategram uses the at-identity attribute to capture the assigned OrderID value as
"x" (a place holder value). The updategam then specifies this at-identity variable as the value of OrderID attribute in the
<_x005B_Order_x0020_Details_x005D_> element.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Orders updg:at-identity="x" CustomerID="ALFKI" OrderDate="07/18/00" />
 <_x005B_Order_x0020_Details_x005D_ OrderID="x"
 ProductID="11"
 UnitPrice="$1.0"
 Quantity="1"
 Discount="0.0" />
 </updg:after>
 </updg:sync>
</ROOT>

If you want to return the identity value that is generated by the updg:at-identity attribute, you can use the updg:returnid
attribute. The following is a revised updategram that returns this identity value. (This updategram adds two order records and two
order detail records, just to make the example a little more complex.)

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 </updg:before>
 <updg:after updg:returnid="x y" >
 <Orders updg:at-identity="x" CustomerID="ALFKI"
 OrderDate="11/3/2000" />
 <_x005B_Order_x0020_Details_x005D_ OrderID="x"
 ProductID="9"
 UnitPrice="$9.0"
 Quantity="1"
 Discount="0.0" />
 <Orders updg:at-identity="y" CustomerID="ALFKI"
 OrderDate="11/3/2000" />
 <_x005B_Order_x0020_Details_x005D_ OrderID="y"
 ProductID="10"
 UnitPrice="$10.0"
 Quantity="1"
 Discount="0.0" />
 </updg:after>
 </updg:sync>
</ROOT>

When the updategram is executed, it returns the following result, which includes the identity value that was generated:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <returnid>
 <x>11091</x>
 <y>11092</y>
 </returnid>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with the virtual name of template type, and then
execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

E. Using the updg:guid attribute to generate a unique value

In this example, the updategram inserts a record in the Cust and CustOrder tables. Also, the updategram generates a unique
value for the CustomerID attribute by using the updg:guid attribute.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after updg:returnid="x" >
 <Cust updg:guid="x" >
 <CustID>x</CustID>

 <LastName>Fuller</LastName>
 </Cust>
 <CustOrder>
 <CustID>x</CustID>
 <OrderID>1</OrderID>
 </CustOrder>
 </updg:after>
 </updg:sync>
</ROOT>

The updategram specifies the returnid attribute. As a result, the GUID that is generated is returned:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <returnid>
 <x>7111BD1A-7F0B-4CEE-B411-260DADFEFA2A</x>
 </returnid>
</ROOT>

To test the updategram

1. Save the updategram (MyUpdategram.xml) in the folder that is associated with the virtual name of template type.

2. Create these tables:

CREATE TABLE Cust (CustID uniqueidentifier, LastName varchar(20))
CREATE TABLE CustOrder (CustID uniqueidentifier, OrderID int)

3. Execute the updategram by using this URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

F. Specifying a schema in an updategram

The updategram in this example inserts a record into the table CustOrder(OrderID, EmployeeID, OrderType).

An XSD schema is specified in this updategram (that is, there is no default mapping of updategram elements and attributes). The
schema provides the necessary mapping of the elements and attributes to the database tables and columns.

The schema describes a <CustOrder> element that consists of the OrderID and EmployeeID attributes. To make the schema
more interesting, a default value is assigned to the EmployeeID attribute. An updategram uses an attribute's default value only
for insert operations, and then only if the updategram does not specify that attribute.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="CustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 <xsd:attribute name="OrderType " type="xsd:integer" default="1"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This updategram inserts a record into the CustOrder table. The updategram specifies only the OrderID and EmployeeID
attribute values. It does not specify the OrderType attribute value. Therefore, the updategram uses the default value of the
EmployeeID attribute that is specified in the preceding schema.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync mapping-schema='SampleSchema.xml'>
<updg:after>
 <CustOrder OrderID="98000" EmployeeID="1" />
</updg:after>
</updg:sync>
</ROOT>

For more examples of updategrams that specify a mapping schema, see Specifying an Annotated Mapping Schema in an
Updategram.

To test the updategram

1. Create this table in the database that is associated with the virtual root:

CREATE TABLE CustOrder(
 OrderID int,
 EmployeeID int,
 OrderType int)

2. Save the schema (SampleSchema.xml) in the folder that is associated with the virtual root of template type.

3. Save the updategram (SampleUpdategram.xml) in the folder that is associated with the virtual name of template type.

4. Execute the updategram by using this URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

This is the equivalent XDR schema:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="EmployeeID" />
 <AttributeType name="OrderType" default="1" />
 <attribute type="OrderID" />
 <attribute type="EmployeeID" />
 <attribute type="OrderType" />
 </ElementType>
</Schema>

G. Using the xsi:n il attribute to insert null values in a column

If you want to insert a null value in the corresponding column in the table, you can specify the xsi:nil attribute on an element in
an updategram. In the corresponding XSD schema, the nullable XSD attribute also must be specified.

For example, consider this XSD schema:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:element name="Student" sql:relation="Students">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="fname" sql:field="first_name"
 type="xsd:string"
 nillable="true"/>
 </xsd:all>
 <xsd:attribute name="SID"
 sql:field="StudentID"
 type="xsd:ID"/>
 <xsd:attribute name="lname"
 sql:field="last_name"
 type="xsd:string"/>
 <xsd:attribute name="minitial"
 sql:field="middle_initial"
 type="xsd:string"/>
 <xsd:attribute name="years"
 sql:field="no_of_years"
 type="xsd:integer"/>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

The XSD schema specifies nillable="true" for the <fname> element. The following updategram uses this schema:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 xmlns:updg="urn:schemas-microsoft-com:xml-updategram"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<updg:sync mapping-schema='SampleSchema.xml'>
 <updg:before/>
 <updg:after>
 <Student SID="S00004" lname="Elmaci" minitial="" years="2">
 <fname xsi:nil="true">
 </fname>
 </Student>
 </updg:after>

</updg:sync>

</ROOT>

The updategram specifies xsi:nil for the <fname> element in the <after> block. Therefore, when this updategram is executed, a
value of NULL is inserted for the first_name column in the table.

To test the updategram

1. Create the following table in the database that is associated with the virtual root:

CREATE TABLE Students (
 StudentID char(6)NOT NULL ,
 first_name varchar(50),
 last_name varchar(50),
 middle_initial char(1),
 no_of_years int NULL)
GO

2. Save the schema (SampleSchema.xml) in the folder that is associated with the virtual root of template type.

3. Save the updategram (SampleUpdategram.xml) in the folder that is associated with the virtual name of template type.

4. Execute the updategram by using this URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

H. Specifying namespaces in an updategram

In an updategram you can have elements that belong to a namespace declared in the same element in the updategram. In this
case, the corresponding schema must also declare the same namespace and the element must belong to that target namespace.

For example, in the following updategram, the <Order> element belongs to a namespace declared in the element.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema='XSD_ElementHavingNameSpace.xml'>
 <updg:after>
 <x:Order OrderID="10250" EmployeeID="7"
 OrderDate="2000-12-31"
 xmlns:x="http://server/xyz/schemas/"/>
 </updg:after>
 </updg:sync>
</ROOT>

In this case, the schema must also declare the namespace as shown in this schema:

This is the schema which illustrate how the corresponding element must declared.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
 xmlns:x="http://server/xyz/schemas/"
 targetNamespace="http://server/xyz/schemas/" >

 <xsd:element name="Order" sql:relation="Orders" type="x:Order_type"/>
 <xsd:complexType name="Order_type">
 <xsd:attribute name="OrderID" type="xsd:ID"/>
 <xsd:attribute name="EmployeeID" type="xsd:string"/>
 <xsd:attribute name="OrderDate" type="xsd:dateTime"/>
 </xsd:complexType>
</xsd:schema>

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Deleting Data by Using XML Updategrams
An updategram indicates a delete operation when a record instance appears in the <before> block with no corresponding
records in the<after> block. In this case, the updategram deletes the record in the <before> block from the database.

This is the updategram format for a delete operation:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync [mapping-schema="SampleSchema.xml"] >
 <updg:before>
 <ElementName />
 [<ElementName .../>...]
 </updg:before>
 [<updg:after>
 </updg:after>]
 </updg:sync>
</ROOT>

You can omit the <after> tag if the updategram is performing only a delete operation. If you do not specify the optional
mapping-schema attribute, the <ElementName> that is specified in the updategram maps to a database table and the
subelements or attributes map to columns in the table.

If an element that is specified in the updategram either matches more than one row in the table or does not match any table row,
the updategram returns an error and cancels the entire <sync> block. Only one record at a time can be deleted by an element in
the updategram.

Examples

Before using the updategram examples, note the following:

The examples use default mapping (that is, no mapping schema is specified in the updategram). For more examples of
updategrams that use mapping schemas, see Specifying an Annotated Mapping Schema in an Updategram.

The examples use the Northwind sample database. All the updates are applied to the tables in the Northwind database.
You can restore the Northwind database. For information about restoring the Northwind database, see "Northwind
Sample Database" in SQL Server Books Online.

To test the sample updategrams, you must create a virtual directory. For more information about creating the nwind virtual
directory, see Creating the nwind Virtual Directory.

Because an updategram is a template, you must store these updategram examples in the folder that is associated with the
virtual name of template type. If the updategram specifies a mapping schema, you must also store the mapping schema in
the same folder.

A. Deleting a record by using an updategram

The following updategrams delete a record from the Employees table.

In these examples, the updategram does not specify a mapping schema. Therefore, the updategram uses default mapping, in
which the element name maps to table name and the attributes or subelements map to columns.

This first updategram is attribute-centric and identifies an employee (Nancy Fuller) in the <before> block. Because there is no
corresponding record in the <after> block, this is a delete operation.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
 <updg:before>
 <Employees FirstName="Nancy" LastName="Fuller" />
 </updg:before>
 <updg:after>
 </updg:after>
</updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

The next updategram shows how to delete the same record by using an element-centric model:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync>
 <updg:before>
 <Employees>
 <FirstName>Nancy</FirstName>
 <LastName>Fuller</LastName>
 </Employees>
 </updg:before>
 <updg:after>
 </updg:after>
</updg:sync>
</ROOT>

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Updating Data by Using XML Updategrams
When you are updating existing data, you must specify both the <before> and <after> blocks. The elements specified in the
<before> and <after> blocks describe the desired change. The updategram uses the element(s) that are specified in the <before>
block to identify the existing record(s) in the database. The corresponding element(s) in the <after> block indicate how the
records should look after executing the update operation. From this information, the updategram creates an SQL statement that
matches the <after> block. The updategram then uses this statement to update the database.

This is the updategram format for an update operation:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync [mapping-schema="SampleSchema.xml"] >
 <updg:before>
 <ElementName [updg:id="value"] .../>
 [<ElementName [updg:id="value"] .../> ...]
 </updg:before>
 <updg:after>
 <ElementName [updg:id="value"] ... />
 [<ElementName [updg:id="value"] .../> ...]
 </updg:after>
</updg:sync>
</ROOT>

<updg:before>

The elements that are specified in the <before> block identify existing records in the database tables.

<updg:after>

The elements in the <after> block describe how the records that are specified in the <before> block should look after the updates
are applied.

The mapping-schema attribute identifies the mapping schema to be used by the updategram. If the updategram specifies a
mapping schema, the element and attribute names specified in the <before> and <after> blocks must match the names in the
schema. The mapping schema does the mapping of these element or attribute names to the database table and column names.

If an updategram does not specify a schema, the updategam uses default mapping. In default mapping, the <ElementName>
specified in the updategram maps to the database table and the subelements or attributes map to the database columns.

An element in the <before> block must match with only one table row in the database. If the element either matches multiple
table rows or does not match any table row, the updategram returns an error and cancels the entire <sync> block.

An updategram can include multiple <sync> blocks. Each <sync> block is treated as a transaction. Each <sync> block can have
multiple <before> and <after> blocks. For example, if you are updating two of the existing records, you could specify two
<before> and <after> pairs, one for each record being updated.

Using the updg:id Attribute

When multiple elements are specified in the <before> and <after> blocks, use the updg:id attribute to mark rows in the
<before> and <after> blocks. The processing logic uses this information to determine what record in the <before> block pairs
with what record in the <after> block.

The updg:id attribute is not necessary (although recommended) if either of the following exists:

The elements in the specified mapping schema have the sql:key-fields attribute defined on them.

There is a specific value(s) supplied for the key field(s) in the updategram.

If this is the case, the updategram uses the key columns that are specified in the sql:key-fields to pair the elements in the
<before> and <after> blocks.

If the mapping schema does not identify key columns (by using sql:key-fields) or the updategram is updating a key column
value, you must specify updg:id.

The records that are identified in the <before> and <after> blocks do not have to be in the same order. The updg:id attribute
forces the association between the elements that are specified in the <before> and <after> blocks.

If you specify one element in the <before> block and only one corresponding element in the <after> block, using updg:id is not
necessary. However, it is recommended that you specify updg:id anyway to avoid ambiguity.

Examples

Before you use the updategram examples, note the following:

Most of the examples use default mapping (that is, no mapping schema is specified in the updategram). For more examples
of updategrams that use mapping schemas, see Specifying an Annotated Mapping Schema in an Updategram.

Most of the examples use the Northwind sample database. All the updates are applied to the tables in the Northwind
database. You can restore the Northwind database. For information about restoring the Northwind database, see
"Northwind Sample Database" in SQL Server Books Online.

To test the sample updategrams, you must create a virtual directory. For more information about creating the nwind virtual
directory, see Creating the nwind Virtual Directory.

Because an updategram is a template, you must store these updategram examples in the folder that is associated with the
virtual name of template type. If the updategram specifies a mapping schema, you also must store the mapping schema in
the same folder.

A. Updating a record

This updategram updates the employee last name to Fuller in the Employees table in the Northwind database. The updategram
does not specify any mapping schema; therefore, the updategram uses default mapping.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
 <Employees EmployeeID="1" />
</updg:before>
<updg:after>
 <Employees LastName="Fuller" />
</updg:after>
</updg:sync>
</ROOT>

The record that is described in the <before> block represents the current record in the database. The updategram uses all of the
column values that are specified in the <before> block to search for the record. In this updategram, the <before> block provides
only the EmployeeID column; therefore, the updategram uses only the EmployeeID value to search for the record. If you were
to add the LastName value to this block, the updategram would use both the EmployeeID and LastName values to search.

In this updategram, the <after> block provides only the LastName column value because this is the only value that is being
changed.

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

B. Updating multiple records by using the updg:id attribute

In this example, the updategram performs two updates on the Employees table:

It changes the employee's last name from Davolio to Fuller.

It inserts a new employee, Andrew Buchanan.

In the updategram, the updg:id attribute creates associations between elements in the <before> and <after> blocks.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 <Employees updg:id="x" EmployeeID="1" LastName="Davolio" />
 </updg:before>
 <updg:after>
 <Employees updg:id="y" FirstName="Andrew" LastName="Buchanan" />
 <Employees updg:id="x" LastName="Fuller" />
 </updg:after>
 </updg:sync>

</ROOT>

Notice how the updg:id attribute pairs the first instance of the <Employees> element in the <before> block with the second
instance of the <Employees> element in the <after> block.

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

C. Specifying multiple <before> and <after> blocks

To avoid ambiguity, you can write the updategram in Example B by using multiple <before> and <after> block pairs. Specifying
<before> and <after> pairs is one way of specifying multiple updates with a minimum of confusion. Also, if each of the <before>
and <after> blocks specify at most one <element>, you do not have to use the updg:id attribute.

To form a pair, the <after> tag must immediately follow its corresponding <before> tag.

In the following updategram, the first <before> and <after> pair updates the last name. The second pair inserts a new employee
record.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 <Employees EmployeeID="1" LastName="Davolio" />
 </updg:before>
 <updg:after>
 <Employees LastName="Fuller" />
 </updg:after>
 <updg:before>
 </updg:before>
 <updg:after>
 <Employees FirstName="Andrew" LastName="Buchanan" />
 </updg:after>
 </updg:sync>
</ROOT>

D. Specifying multiple <sync> blocks

You can specify multiple <sync> blocks in an updategram. Each <sync> block that is specified is an independent transaction.

In the following updategram, the first <sync> block adds a record to the Customers table. For the sake of simplicity, the
updategram specifies only the required column values (CustomerID and CompanyName).

The second <sync> block adds two records to the Orders table. OrderID is an IDENTITY-type column. Therefore, the updategram
does not specify the value of OrderID in each <Orders> element.

Specifying multiple <sync> blocks is useful because if the second <sync> block (a transaction) fails to add records to Orders
table, the first <sync> block can still add a customer record to the Customers table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Customers CustomerID="xxxxx" CompanyName="B's Beverages" />
 </updg:after>
 </updg:sync>
 <updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Orders CustomerID="xxxxx" />
 <Orders CustomerID="xxxxx" />
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml

E. Using a mapping schema

In this example, the updategram specifies a mapping schema by using the mapping-schema attribute. (There is no default
mapping; that is, the mapping schema provides the necessary mapping of elements and attributes in the updategram to the
database tables and columns.)

The elements and attributes specified in the updategram refer to the elements and attributes in the mapping schema.

The following XSD mapping schema has <Customer>, <Order>, and <OD> elements that map to the Customers, Orders, and
Order Details tables in the database.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustomerOrder"
 parent="Customers"
 parent-key="CustomerID"
 child="Orders"
 child-key="CustomerID" />

 <sql:relationship name="OrderOD"
 parent="Orders"
 parent-key="OrderID"
 child="[Order Details]"
 child-key="OrderID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders"
 sql:relationship="CustomerOrder" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OD"
 sql:relation="[Order Details]"
 sql:relationship="OrderOD" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="ProductID" type="xsd:integer" />
 <xsd:attribute name="UnitPrice" type="xsd:decimal" />
 <xsd:attribute name="Quantity" type="xsd:integer" />
 <xsd:attribute name="Discount" type="xsd:decimal" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This mapping schema (SampleSchema.xml) is specified in the following updategram. The updategram adds an order detail item in
the Order Details table for a specific order. The updategram includes nested elements: an <OD> element nested inside an
<Order> element. The primary key/foreign key relationship between these two elements is specified in the mapping schema.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Order OrderID="10248" />
 </updg:before>
 <updg:after>
 <Order OrderID="10248" >
 <OD ProductID="77" UnitPrice="$10.00"
 Quantity="1000" Discount="1.0" />
 </Order>
 </updg:after>
 </updg:sync>

</ROOT>

To test the updategram

Save the mapping schema (SampleSchema.xml) and the updategram (SampleUpdategram.xml) in the directory that is associated
with virtual name of template type, and then execute the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

The following updategram:

Deletes a specific order-details record (OrderID="10248").

Updates the UnitPrice value for a specific product (OrderID="10249").

In doing this, the updategram specifies more than one <Order> element in the <before> and <after> blocks. Therefore, the
updategram specifies the updg:id attribute to associate an <Order> instance in the <before> block with its corresponding
<Order> instance in the <after> block.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Order updg:id="x" OrderID="10248" >
 <OD ProductID="10" UnitPrice="$8.00"
 Quantity="88" Discount="0.0" />
 </Order>
 <Order updg:id="y" OrderID="10249" >
 <OD ProductID="14" UnitPrice="28.6000"
 Quantity="9" Discount="0.0" />
 </Order>
 </updg:before>
 <updg:after>
 <Order updg:id="x" OrderID="10248" />
 <Order updg:id="y" OrderID="10249" >
 <OD ProductID="14" UnitPrice="18.6000"
 Quantity="9" Discount="0.0" />
 </Order>
 </updg:after>
 </updg:sync>
</ROOT>

This is the equivalent XDR Schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="OD" sql:relation="[Order Details]" >
 <AttributeType name="OrderID" />
 <AttributeType name="ProductID" />
 <AttributeType name="UnitPrice" dt:type="fixed.14.4" />
 <AttributeType name="Quantity" />
 <AttributeType name="Discount" />

 <attribute type="OrderID" />
 <attribute type="ProductID" />
 <attribute type="UnitPrice" />
 <attribute type="Quantity" />
 <attribute type="Discount" />
</ElementType>

<ElementType name="Order" sql:relation="Orders" >
 <AttributeType name="CustomerID" />
 <AttributeType name="OrderID" />
 <AttributeType name="OrderDate" />

 <attribute type="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="OrderDate" />
 <element type="OD" >
 <sql:relationship
 key-relation="Orders"
 key="OrderID"
 foreign-key="OrderID"
 foreign-relation="[Order Details]" />
 </element>
</ElementType>

<ElementType name="Customer" sql:relation="Customers" >
 <AttributeType name="CustomerID" />

 <attribute type="CustomerID" />
 <element type="Order" >
 <sql:relationship
 key-relation="Customers"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="Orders" />
 </element>
</ElementType>
</Schema>

For more examples of updategrams that use mapping schemas, see Specifying an Annotated Mapping Schema in an Updategram.

F. Using a mapping schema with IDREFS attributes

This example illustrates how updategrams use the IDREFS attributes in the mapping schema to update records in multiple tables.
For this example, assume that the database consists of the following tables:

Student(StudentID, LastName)

Course(CourseID, CourseName)

Enrollment(StudentID, CourseID)

Because a student can enroll in many courses and a course can have many students, the third table, the Enrollment table, is
required to represent this M:N relationship.

The following XSD mapping schema provides an XML view of the tables by using the <Student>, <Course>, and <Enrollment>
elements. The IDREFS attributes in the mapping schema specify the relationship between these elements. The StudentIDList
attribute on the <Course> element is an IDREFS type attribute that refers to the StudentID column in the Enrollment table.
Likewise, the EnrolledIn attribute on the <Student> element is an IDREFS type attribute that refers to the CourseID column in
the Enrollment table.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="StudentEnrollment"
 parent="Student"
 parent-key="StudentID"
 child="Enrollment"
 child-key="StudentID" />

 <sql:relationship name="CourseEnrollment"
 parent="Course"
 parent-key="CourseID"
 child="Enrollment"
 child-key="CourseID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Course" sql:relation="Course"
 sql:key-fields="CourseID" >
 <xsd:complexType>
 <xsd:attribute name="CourseID" type="xsd:string" />
 <xsd:attribute name="CourseName" type="xsd:string" />
 <xsd:attribute name="StudentIDList" sql:relation="Enrollment"
 sql:field="StudentID"
 sql:relationship="CourseEnrollment"
 type="xsd:IDREFS" />

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Student" sql:relation="Student" >
 <xsd:complexType>
 <xsd:attribute name="StudentID" type="xsd:string" />
 <xsd:attribute name="LastName" type="xsd:string" />
 <xsd:attribute name="EnrolledIn" sql:relation="Enrollment"
 sql:field="CourseID"
 sql:relationship="StudentEnrollment"
 type="xsd:IDREFS" />

 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Whenever you specify this schema in an updategram and insert a record in the Course table, the updategram inserts a new
course record in the Course table. If you specify one or more new student IDs for the StudentIDList attribute, the updategram
also inserts a record in the Enrollment table for the each new student. The updategram ensures that no duplicates are added to
the Enrollment table.

To test the updategram

1. Create these tables in the database that is specified in the virtual root:

CREATE TABLE Student(StudentID varchar(10) primary key,
 LastName varchar(25))
CREATE TABLE Course(CourseID varchar(10) primary key,
 CourseName varchar(25))
CREATE TABLE Enrollment(StudentID varchar(10)
 references Student(StudentID),
 CourseID varchar(10)
 references Course(CourseID))

2. Add this sample data:

INSERT INTO Student VALUES ('S1','Davoli')
INSERT INTO Student VALUES ('S2','Fuller')

INSERT INTO Course VALUES ('CS101', 'C Programming')
INSERT INTO Course VALUES ('CS102', 'Understanding XML')

INSERT INTO Enrollment VALUES ('S1', 'CS101')
INSERT INTO Enrollment VALUES ('S1', 'CS102')

3. Save the XSD schema (SampleSchema.xml) in the folder that is associated with the virtual name of template type.

4. Save the updategram (SampleUpdategram) in the folder that is associated with the virtual name of template type. (This
updategram drops a student with StudentID="1" from the CS102 course.)

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Student updg:id="x" StudentID="S1" LastName="Davolio"
 EnrolledIn="CS101 CS102" />
 </updg:before>
 <updg:after >
 <Student updg:id="x" StudentID="S1" LastName="Davolio"
 EnrolledIn="CS101" />
 </updg:after>
 </updg:sync>
</ROOT>

5. Execute the updategram by using this URL:

http://IISServer/VirtualRoot/TemplateVirtualName/SampleUpdategram.xml

6. Save and execute the following updategram as described in the previous steps. The updategram adds the student with
StudentID="1" back into the CS102 course by adding a record in the Enrollment table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Student updg:id="x" StudentID="S1" LastName="Davolio"
 EnrolledIn="CS101" />

 </updg:before>
 <updg:after >
 <Student updg:id="x" StudentID="S1" LastName="Davolio"
 EnrolledIn="CS101 CS102" />
 </updg:after>
 </updg:sync>
</ROOT>

7. Save and execute this next updategram as described in steps 3 and 4. This updategram inserts three new students and
enrolls them in the CS101 course. Again, the IDREFS relationship inserts records in the Enrollment table.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync mapping-schema="SampleSchema.xml" >
 <updg:before>
 <Course updg:id="y" CourseID="CS101"
 CourseName="C Programming" />
 </updg:before>
 <updg:after >
 <Student updg:id="x1" StudentID="S3" LastName="Leverling" />
 <Student updg:id="x2" StudentID="S4" LastName="Pecock" />
 <Student updg:id="x3" StudentID="S5" LastName="Buchanan" />
 <Course updg:id="y" CourseID="CS101"
 CourseName="C Programming"
 StudentIDList="S3 S4 S5" />
 </updg:after>
 </updg:sync>
</ROOT>

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Enrollment" sql:relation="Enrollment" sql:key-fields="StudentID CourseID">
 <AttributeType name="StudentID" dt:type="id" />
 <AttributeType name="CourseID" dt:type="id" />

 <attribute type="StudentID" />
 <attribute type="CourseID" />
 </ElementType>
 <ElementType name="Course" sql:relation="Course" sql:key-fields="CourseID">
 <AttributeType name="CourseID" dt:type="id" />
 <AttributeType name="CourseName" />

 <attribute type="CourseID" />
 <attribute type="CourseName" />

 <AttributeType name="StudentIDList" dt:type="idrefs" />
 <attribute type="StudentIDList" sql:relation="Enrollment" sql:field="StudentID" >
 <sql:relationship
 key-relation="Course"
 key="CourseID"
 foreign-relation="Enrollment"
 foreign-key="CourseID" />
 </attribute>

 </ElementType>
 <ElementType name="Student" sql:relation="Student">
 <AttributeType name="StudentID" dt:type="id" />
 <AttributeType name="LastName" />

 <attribute type="StudentID" />
 <attribute type="LastName" />

 <AttributeType name="EnrolledIn" dt:type="idrefs" />
 <attribute type="EnrolledIn" sql:relation="Enrollment" sql:field="CourseID" >
 <sql:relationship
 key-relation="Student"
 key="StudentID"
 foreign-relation="Enrollment"
 foreign-key="StudentID" />

 </attribute>

 <element type="Enrollment" sql:relation="Enrollment" >
 <sql:relationship key-relation="Student"
 key="StudentID"
 foreign-relation="Enrollment"
 foreign-key="StudentID" />
 </element>
 </ElementType>

</Schema>

For more examples of updategrams that use mapping schemas, see Specifying an Annotated Mapping Schema in an Updategram.

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Passing Parameters
Updategrams are templates; therefore, you can pass them parameters. For more information about passing parameters to
templates, see "Passing Parameters to Templates" in SQL Server Books Online.

Updategrams allow you to pass NULL as a parameter value. To pass the NULL parameter value, you specify the nullvalue
attribute. The value that is assigned to the nullvalue attribute is then provided as the parameter value. Updategrams treat this
value as NULL.

In <sql:header> and <updg:header>, you should specify the nullvalue as unqualified; whereas, in <updg:sync>, you specify the
nullvalue as qualified (for example, updg:nullvalue).

Examples

These examples use the Northwind sample database. All the updates are applied to the tables in the Northwind database. You
can restore the Northwind database. For information about restoring the Northwind database, see "Northwind Sample
Database" in SQL Server Books Online.

A. Passing parameters to an updategram

In this example, the updategram changes the last name of an employee in the Employees table. The updategram is passed two
parameters: EmployeeID, which is used to uniquely identify an employee, and LastName.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>
 <updg:param name="EmployeeID"/>
 <updg:param name="LastName" />
</updg:header>
 <updg:sync >
 <updg:before>
 <Employees EmployeeID="$EmployeeID" />
 </updg:before>
 <updg:after>
 <Employees LastName="$LastName" />
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyTemplate.xml?EmployeeID=1&LastName=Davolio

In the URL, values are passed for the EmployeeID and LastName parameters.

B. Passing N ULL as a parameter value to an updategram

In executing an updategram, the "isnull" value is assigned to the parameter that you want to set to NULL. Updategram converts
the "isnulll" parameter value to NULL and processes it accordingly.

The following updategram sets an employee title to NULL:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header nullvalue="isnull" >
 <updg:param name="EmployeeID"/>
 <updg:param name="Title" />
</updg:header>
 <updg:sync >
 <updg:before>
 <Employees EmployeeID="$EmployeeID" />
 </updg:before>
 <updg:after>
 <Employees Title="$Title" />
 </updg:after>
 </updg:sync>
</ROOT>

To test the updategram

Save the updategram (MyUpdategram.xml) in the folder that is associated with virtual name of template type, and then execute
the updategram by using the following URL:

http://IISServer/VirtualRoot/TemplateVirtualName/MyUpdategram.xml?EmployeeID=1&Title=isnull

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Handling Database Concurrency Issues in Updategrams
Any database update mechanism, such as updategrams, must deal with concurrent updates to data in a multiuser environment.
Updategrams use the Optimistic Concurrency Control, which ensures that the data to be updated has not been altered by another
user application since it was read from the database. This is performed in updategrams by including these values in the <before>
block of the updategrams. Before updating the database, the updategram checks the values that are specified in the <before>
block against the values currently in the database to ensure that the update is valid.

The Optimistic Concurrency Control offers three levels of protection in an updategram: low (none), intermediate, and high. You
can decide what level of protection you need by specifying the updategram accordingly.

Lowest Level of Protection

This level is a blind update, in which the update is processed without reference to other updates that have been made since the
database was last read. In such a case, you specify only the primary key column(s) in the <before> block to identify the record,
and you specify the updated information in the <after> block.

For example, the new customer phone number in the following updategram is correct, regardless of what the phone number was
previously. Notice how the <before> block specifies only the primary key column (CustomerID).

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
 <Customer CustomerID="1" />
</updg:before>
<updg:after>
 <Customer CustomerID="1" Phone="111-111-1111" />
</updg:after>
</updg:sync>
</ROOT>

Intermediate Level of Protection

In this level of protection, the updategram compares the current value(s) of the data being updated with the value(s) in the
database column(s) to ensure that the values have not been changed by some other transaction since the record was read by your
transaction.

You can get this level of protection by specifying the primary key column(s) and the column(s) that you are updating in the
<before> block.

For example, this updategram changes the value in the QuantityOnHand column of the Part table. The <before> block specifies
the QuantityOnHand attribute to ensure that this attribute value matches the value in the corresponding column in the database
before applying the updated value.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
 <Part PartNumber="1" QuantityOnHand="5000" />
</updg:before>
<updg:after>
 <Part PartNumber="1" QuantityOnHand="5555" />
</updg:after>
</updg:sync>
</ROOT>

High Level of Protection

A high level of protection ensures that the record remains the same since your application read that record (that is, since your
application has read the record, it has not been changed by any other transaction).

There are two ways you can get this high level of protection against concurrent updates:

Specify all of the columns in the table in the <before> block.

If you specify all columns in the <before> block, the updategram compares the values that are specified for these columns
with the values that were in the database before applying the update. If any of the record columns has changed since your
transaction read the record, the updategram does not perform the update.

For example, this updategram updates the customer phone number; but it specifies all the record columns in the <before>

block, thereby requesting the highest level of protection against concurrent updates.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
 <Customer CustomerID="1"
 Phone="111-111-1111",
 City="NY"
 ContactName="Thomas Hardy" />
</updg:before>
<updg:after>
 <Customer Phone="111-111-1111" />
</updg:after>
</updg:sync>
</ROOT>

Specify the timestamp column (if available) in the <before> block.

Instead of specifying all the record columns in the <before> block, you can just specify the timestamp column (if the table
has one) along with the primary key column(s) in the <before> block. The database updates the timestamp column to a
unique value after each update of the record. In this case, the updategram compares the value of the timestamp with the
corresponding value in the database. The timestamp value that is stored in the database is a binary value. Therefore, the
timestamp column must be specified in the schema as dt:type="bin.hex", dt:type="bin.base64", or
sql:datatype="timestamp". (You can specify either the XML data type or the Microsoft® SQL Server™ data type.)

To test the updategram

1. Create this table in the database to which the virtual root is pointing:

CREATE TABLE Customer (
 CustomerID varchar(5),
 ContactName varchar(20),
 LastUpdated timestamp)

2. Add this sample record:

INSERT INTO Customer (CustomerID, ContactName) VALUES
 ('C1', 'Andrew Fuller')

3. Save this XSD schema (SampleSchema.xml) in the directory that is associated with the virtual name of template type:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customer" sql:relation="Customer" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID"
 sql:field="CustomerID"
 type="xsd:string" />

 <xsd:attribute name="ContactName"
 sql:field="ContactName"
 type="xsd:string" />

 <xsd:attribute name="LastUpdated"
 sql:field="LastUpdated"
 type="xsd:hexBinary"
 sql:datatype="timestamp" />

 </xsd:complexType>
 </xsd:element>
</xsd:schema>

4. Save this updategram (SampleTemplate.xml) in the directory that is associated with the virtual name of template type.
(Note the timestamp value from the Customer table, and copy it in the updategram.)

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync mapping-schema="SampleSchema.xml" >
<updg:before>
 <Customer CustomerID="C1"
 LastUpdated = "copy the time stamp value from the table" />
</updg:before>
<updg:after>
 <Customer ContactName="Robert King" />
</updg:after>
</updg:sync>
</ROOT>

5. The following URL executes the updategram:

http://IISServer/VirtualDirectory/TemplateVirtualName/SampleTemplate.xml

If the customer record was updated earlier by some other transaction, this update operation fails because of the difference
in the timestamp values.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="Customer" sql:relation="Customer" >
 <AttributeType name="CustomerID" />
 <AttributeType name="ContactName" />
 <AttributeType name="LastUpdated" dt:type="bin.hex"
 sql:datatype="timestamp" />
 <attribute type="CustomerID" />
 <attribute type="ContactName" />
 <attribute type="LastUpdated" />
</ElementType>

</Schema>

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Sample Applications That Use Updategrams
The topics in this section are examples of using updategrams:

Using an HTML Form to Post an Updategram

Posting an Updategram Directly to the Virtual Root

Executing an Updategram by Using ADO

Executing an Updategram by Using OLE DB

All the examples use the Northwind sample database in Microsoft® SQL Server™ 2000. All the updates are applied to the tables
in the Northwind database. You can restore the Northwind database. For information about restoring the Northwind database,
see "Northwind Sample Database" in SQL Server Books Online.

SQLXML 3.0 Service Pack 3

Using an HTML Form to Post an Updategram
In this example, an updategram updates the last name of an employee in the Employees table in the Northwind sample
database in Microsoft® SQL Server™ 2000.

An HTML form accepts EmployeeID and LastName values. These two data items are passed as parameters to an updategram,
which updates the last name of a specific employee.

All the form data is sent to nwind virtual root (which is created by using the IIS Virtual Directory Management for SQL Server
utility) on the indicated HTTP server (which is localhost in this application).

Sqlisapi.dll is the handler of the nwind virtual root. Therefore, the updategram and the parameter data that are collected in the
form are passed to the ISAPI. The HTTP POST method is used for sending data from the client to the server.

The sample code follows. To execute the code, you must create a virtual root (nwind). For more information about creating the
virtual root, see Creating the nwind Virtual Directory. You also must update the code to specify the name of the server running IIS
in the form action.

<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=utf-8">
<TITLE>Sample Form </TITLE>
</head>
<body>
For a given employee ID, the last name is updated.
<form action="http://ServerName/nwind" method="POST">
Employee ID Number
<input type=text name=EmployeeID >

Last Name
<input type=text name=LastName >
<input type=hidden name=contenttype value=text/xml>
<input type=hidden name=template value='
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>
 <updg:param name="EmployeeID"/>
 <updg:param name="LastName" />
</updg:header>
 <updg:sync >
 <updg:before>
 <Employees EmployeeID="$EmployeeID" />
 </updg:before>
 <updg:after>
 <Employees LastName="$LastName" />
 </updg:after>
 </updg:sync>
</ROOT>
'>
<p><input type="submit">
</form>
</body>

Generally, using the HTTP POST method for queries is not secure. For more information, see Template Security Issues.

SQLXML 3.0 Service Pack 3

Posting an Updategram Directly to the Virtual Root
This application shows how to use the HTTP POST method to send data from a client to the server without using the browser. This
example uses the Northwind sample database in Microsoft® SQL Server™ 2000.

This sample Microsoft Visual Basic® application sends an updategram directly to the nwind virtual directory, without using any
HTML forms. The updategram updates the last name of a specific employee.

First, the sample application initializes an xmlHttp object (Microsoft.xmlHttp). The xmlHttp object is a feature of MSXML
(Microsoft XML parser) and enables direct communication with an HTTP server. Upon initializing the connection, the method is set
to POST and the URL is initialized to http://localhost/nwind.

The setRequestHeader method specifies the name of the HTTP header (Content-type) and its value (application/xml). This data
becomes part of the POST content. And finally, the send method sends the HTTP request to the server. The server recognizes that
the data is being posted to the nwind virtual directory. Because the Sqlisapi.dll is the handler for this virtual root, all the data and
parameters are given to the ISAPI, which executes the updategram.

This is the sample code:

Private Sub Form_Load()
 Dim xmlHttp As New MSXML2.xmlHttp
 Dim doc As New MSXML2.DOMDocument
 Dim strQuery As String
 Dim strURL As String
 Dim strPostBody As String

 ' Set the post body - this is the query/request.
 strPostBody = "<ROOT xmlns:updg='urn:schemas-microsoft-com:xml-updategram'> " & _
 "<updg:sync >" & _
 "<updg:before>" & _
 "<Employees EmployeeID='1' />" & _
 "</updg:before>" & _
 "<updg:after>" & _
 "<Employees LastName='Davolioo' />" & _
 "</updg:after>" & _
 "</updg:sync>" & _
 "</ROOT>"
 ' Validate the document using the MSXML parser.
 doc.loadXML strPostBody

 If doc.parseError.errorCode Then
' Do something with the error.
 End If

 ' Post the template.
 xmlHttp.Open "POST", "http://localhost/nwind", False
 xmlHttp.setRequestHeader "Content-type", "application/xml"
 xmlHttp.send doc

 ' Retrieve the results.
 Debug.Print xmlHttp.responseText
End Sub

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Executing an Updategram by Using ADO
This Microsoft® Visual Basic® application uses ADO to establish a connection to an instance of Microsoft SQL Server™ and
execute an updategram. The updategram updates the last name of a specific employee. This example uses the Northwind sample
database in Microsoft® SQL Server™ 2000.

In this sample application:

The conn object (ADODB.Connection) establishes a connection to a running instance of SQL Server on a specific server
computer.

The cmd object (ADODB.Command) executes on the established connection.

The command dialect is set to DBGUID_MSSQLXML.

The updategram is copied to the command stream (strmIn).

The command's output stream is set to the StrmOut object (ADODB.Stream) to receive any returned data.

Finally the command (updategram) is executed.

Here is the sample code:

Private Sub Form_Load()
Dim cmd As New ADODB.Command
Dim conn As New ADODB.Connection
Dim strmIn As New ADODB.Stream
Dim strmOut As New ADODB.Stream
Dim SQLxml As String

' Open a connection to the instance of SQL Server.
conn.Provider = "SQLOLEDB"
conn.Open "server=(local); database=Northwind; Integrated Security=SSPI; "
conn.Properties("SQLXML Version") = "SQLXML.3.0"
Set cmd.ActiveConnection = conn

' Build the command string in the form of an XML template.
 SQLxml = "<ROOT xmlns:updg='urn:schemas-microsoft-com:xml-updategram' >"
 SQLxml = SQLxml & "<updg:sync >"
 SQLxml = SQLxml & " <updg:before>"
 SQLxml = SQLxml & " <Employees EmployeeID='1' />"
 SQLxml = SQLxml & "</updg:before>"
 SQLxml = SQLxml & "<updg:after>"
 SQLxml = SQLxml & "<Employees LastName='Fuller' />"
 SQLxml = SQLxml & "</updg:after>"
 SQLxml = SQLxml & "</updg:sync>"
 SQLxml = SQLxml & "</ROOT>"

' Set the command dialect to DBGUID_MSSQLXML.
cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

' Open the command stream and write our template to it.
strmIn.Open
strmIn.WriteText SQLxml
strmIn.Position = 0

Set cmd.CommandStream = strmIn

' Execute the command, open the return stream, and read the result.
strmOut.Open
strmOut.LineSeparator = adCRLF
cmd.Properties("Output Stream").Value = strmOut
cmd.Properties("Output Encoding").Value="UTF-8"
cmd.Execute , , adExecuteStream
strmOut.Position = 0
Debug.Print strmOut.ReadText
 End Sub

Note: If you’re using SQLXML from ADO to execute Updategrams that specify an XSD schema, you must set the “SQLXML
Version” property to "SQLXML.3.0" on the connection object. For example,

conn.Properties("SQLXML Version") = "SQLXML.3.0"

Specifying a Mapping Schema for the Updategram

This example illustrates how to specify and use a mapping schema in an updategram.

Save the following XSD schema (EmpSchema.xml) to your disk, and be sure to update the path that is specified in the code to the
location of the mapping schema on your disk. The code assumes that the schema is saved on the C: drive in the Sschemas folder.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:attribute name="EmpID"
 sql:field="EmployeeID"
 type="xsd:string" />
 <xsd:attribute name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Because both XSD and XDR schemas can be specified, this is the equivalent XDR schema:

<?xml version="1.0" ?>
 <Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Emp" sql:relation="Employees" >
 <AttributeType name="EmpID" />
 <AttributeType name="LName" />

 <attribute type="EmpID" sql:field="EmployeeID" />
 <attribute type="LName" sql:field="LastName" />
 </ElementType>
 </Schema>

This is the Visual Basic code to execute an updategram that has an associated mapping schema. The updategram updates the
employee last name for employee 1 in the Employees table.

Private Sub Form_Load()
 Dim cmd As New ADODB.Command
 Dim conn As New ADODB.Connection
 Dim strmIn As New ADODB.Stream
 Dim strmOut As New ADODB.Stream

 ' Open a connection to the SQL Server.
 conn.Provider = "SQLOLEDB"
 conn.Open "server=(local); database=Northwind; Integrated Security='SSPI' ;"
 conn.Properties("SQLXML Version") = "SQLXML.3.0"
 Set cmd.ActiveConnection = conn

 ' Open the command stream and write the template to it.
 strmIn.Open
 strmIn.WriteText "<ROOT xmlns:updg='urn:schemas-microsoft-com:xml-updategram' >"
 strmIn.WriteText " <updg:header>"
 strmIn.WriteText " <updg:param name='EmployeeID'/>"
 strmIn.WriteText " <updg:param name='LastName' />"
 strmIn.WriteText " </updg:header>"
 strmIn.WriteText " <updg:sync mapping-schema='C:/Schemas/EmpSchema.xml' >"
 strmIn.WriteText " <updg:before>"
 strmIn.WriteText " <Emp EmpID='1' />"
 strmIn.WriteText " </updg:before>"
 strmIn.WriteText " <updg:after>"
 strmIn.WriteText " <Emp LName='zzf'/>"
 strmIn.WriteText " </updg:after>"
 strmIn.WriteText " </updg:sync>"
 strmIn.WriteText "</ROOT>"

 ' Set the command dialect to XML.
 cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
 strmIn.Position = 0
 Set cmd.CommandStream = strmIn

 ' Execute the command, open the return stream, and read the result.
 strmOut.Open
 strmOut.LineSeparator = adCRLF
 cmd.Properties("Output Stream").Value = strmOut
 cmd.Execute , , adExecuteStream
 strmOut.Position = 0

 Debug.Print strmOut.ReadText
 strmOut.Close
 strmIn.Close
 conn.Close
End Sub

Passing Parameters

In the Visual Basic application give earlier, parameters are not passed. This is the revised application in which parameters are
passed to the updategram. The EmployeeID and LastName values are passed as input.

Private Sub Form_Load()
Dim cmd As New ADODB.Command
Dim conn As New ADODB.Connection
Dim strmIn As New ADODB.Stream
Dim strmOut As New ADODB.Stream
Dim InputEmpID As String
Dim InputLastName As String

InputEmpID = "1"
InputLastName = "Fuller"
' Open a connection to the instance of SQL Server.
conn.Provider = "SQLOLEDB"
conn.Open "server=(local); database=Northwind; Integrated Security=SSPI; "
conn.Properties("SQLXML Version") = "SQLXML.3.0"
Set cmd.ActiveConnection = conn

' Build the command string in the form of an XML template.
 SQLxml = "<ROOT xmlns:updg='urn:schemas-microsoft-com:xml-updategram' >"
 SQLxml = SQLxml & "<updg:header>"
 SQLxml = SQLxml & "<updg:param name='EmployeeID'/>"
 SQLxml = SQLxml & "<updg:param name='LastName' />"
 SQLxml = SQLxml & "</updg:header>"
 SQLxml = SQLxml & "<updg:sync >"
 SQLxml = SQLxml & " <updg:before>"
 SQLxml = SQLxml & " <Employees EmployeeID='$EmployeeID' />"
 SQLxml = SQLxml & "</updg:before>"
 SQLxml = SQLxml & "<updg:after>"
 SQLxml = SQLxml & "<Employees LastName='$LastName' />"
 SQLxml = SQLxml & "</updg:after>"
 SQLxml = SQLxml & "</updg:sync>"
 SQLxml = SQLxml & "</ROOT>"

' Set the command dialect to XML.
cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

' Open the command stream and write the template to it.
strmIn.Open
strmIn.WriteText SQLxml
strmIn.Position = 0

Set cmd.CommandStream = strmIn

' Execute the command, open the return stream, and read the result.
strmOut.Open
strmOut.LineSeparator = adCRLF
cmd.NamedParameters = True
cmd.Parameters.Append cmd.CreateParameter("@EmployeeID", adBSTR, adParamInput, 1, InputEmpID)
cmd.Parameters.Append cmd.CreateParameter("@LastName", adBSTR, adParamInput, 7, InputLastName)
cmd.Properties("Output Stream").Value = strmOut
cmd.Execute , , adExecuteStream
strmOut.Position = 0
Debug.Print strmOut.ReadText
 End Sub

SQLXML 3.0 Service Pack 3

Executing an Updategram by Using OLE DB
For a working sample of using OLE DB to execute an updategram, see "Using ICommandStream to Set an XML Command" in SQL
Server Books Online.

SQLXML 3.0 Service Pack 3

Using an Updategram in a Sample ASP Application
This Active Server Pages (ASP) application allows you to update customer information in the Customers table in the Northwind
sample database in Microsoft® SQL Server™ 2000. The application does the following:

Asks the user to enter a customer ID.

Uses this customer ID value to execute a template to retrieve customer information from the Customers table.

Displays this information by using an HTML form.

The user can then update customer information but not the Customer ID (because the Customer ID is the primary key). After the
user submits the information, an updategram is executed and all the form parameters are passed to the updategram.

The following template is the first template (GetCustomer.xml). Save this template in the directory that is associated with the
virtual name of template type.

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name="cid"></sql:param>
 </sql:header>
 <sql:query>
 SELECT *
 FROM Customers
 WHERE CustomerID=@cid
 FOR XML AUTO
 </sql:query>
</root>

The following template is the second template (UpdateCustomer.xml). Save this template in the directory that is associated with
the virtual name of template type.

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>
 <updg:param name="cid"/>
 <updg:param name="companyname" />
 <updg:param name="contactname" />
 <updg:param name="contacttitle" />
 <updg:param name="address" />
 <updg:param name="city" />
 <updg:param name="region" />
 <updg:param name="postalcode" />
 <updg:param name="country" />
 <updg:param name="phone" />
 <updg:param name="fax" />

</updg:header>
<updg:sync >
 <updg:before>
 <Customers CustomerID="$cid" />
 </updg:before>
 <updg:after>
 <Customers CustomerID="$cid"
 CompanyName="$companyname"
 ContactName="$contactname"
 ContactTitle="$contacttitle"
 Address="$address"
 City="$city"
 Region="$region"
 PostalCode="$postalcode"
 Country="$country"
 Phone="$phone"
 Fax="$fax" />
 </updg:after>
</updg:sync>
</ROOT>

The following code is the ASP application (SampleASP.asp). Save it in the directory that is associated with a virtual root that you
create by using the Internet Services Manager utility. (This virtual root is not created by using the IIS Virtual Directory
Management for SQL Server utility because IIS Virtual Directory Management for SQL Server cannot access or identify ASP
applications.).

In the code, you must replace "ServerName" with the name of the server running Microsoft Internet Information Services (IIS).

<% LANGUAGE=VBSCRIPT %>
<%
 Dim CustID
 CustID=Request.Form("cid")
%>
<html>
<body>
<%
 'If a CustID value is not yet provided, display this form.
 if CustID="" then
%>
<!-- If the CustID has not been specified, display the form that allows users to enter an ID. -->
<form action="SampleASP.asp" method="POST">

Enter CustID: <input type=text name="cid">

<input type=submit value="Submit this ID" >

<-- Otherwise, if a CustID is entered, display the second part of the form where the user can change customer
information. -->
<%
 else
%>
<form name="Customer" action="http://ServerName/nwind/Template/UpdateCustomer.xml" method="POST">
You may update customer information below.

<!-- A comment goes here to separate the parts of the application or page. -->

<%
 ' Load the document in the parser and extract the values to populate the form.
 Set objXML=Server.CreateObject("MSXML2.DomDocument")
 ObjXML.setProperty "ServerHTTPRequest", TRUE

 objXML.async=False
 objXML.Load("http://ServerName/nwind/Template/GetCustomer.xml?cid=" & CustID)
 set objCustomer=objXML.documentElement.childNodes.Item(0)
 ' In retrieving data from the database, if a value in the column is NULL,
 ' there is no attribute for the corresponding element. In this
 ' case, skip the error generation and go to the next attribute.
 On Error Resume Next

 ' Get the cid attribute value.
 Response.Write "Cust ID: <input type=text readonly=true style='background-color:silver' name=cid value="""
 Response.Write objCustomer.attributes(0).value
 Response.Write """>

"

 ' Get the companyname attribute value.
 Response.Write "Company Name: <input type=text name=companyname value="""
 Response.Write objCustomer.attributes(1).value
 Response.Write """>

"

 ' Get the contactname attribute value.
 Response.Write "Contact Name: <input type=text name=contactname value="""
 Response.Write objCustomer.attributes(2).value
 Response.Write """>
"

 ' Get the contacttitle attribute value.
 Response.Write "Contact Title: <input type=text name=contacttitle value="""
 Response.Write objCustomer.attributes(3).value
 Response.Write """>

"

 ' Get the address attribute value.
 Response.Write "Address: <input type=text name=address value="""
 Response.Write objCustomer.attributes(4).value
 Response.Write """>

"

 ' Get the city attribute value.
 Response.Write "City: <input type=text name=city value="""
 Response.Write objCustomer.attributes(5).value
 Response.Write """>
"

 ' Get the region attribute value.
 Response.Write "Region: <input type=text name=region value="""
 Response.Write objCustomer.attributes(6).value
 Response.Write """>

"

 ' Get the postalcode attribute value.
 Response.Write "PostalCode: <input type=text name=postalcode value="""
 Response.Write objCustomer.attributes(7).value
 Response.Write """>

"

 ' Get the country attribute value.
 Response.Write "Country: <input type=text name=country value="""
 Response.Write objCustomer.attributes(8).value

 Response.Write """>
"

 ' Get the phone attribute value.
 Response.Write "Phone: <input type=text name=phone value="""
 Response.Write objCustomer.attributes(9).value
 Response.Write """>

"

 ' Get the fax attribute value.
 Response.Write "Fax: <input type=text name=fax value="""
 Response.Write objCustomer.attributes(10).value
 Response.Write """>
"

 set objCustomer=Nothing
 Set objXML=Nothing
%>
<input type="submit" value="Submit this change" >

<input type=hidden name="contenttype" value="text/xml">
<input type=hidden name="eeid" value="<%=CustID%>">

<% end if %>
</form>
</body>
</html>

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Guidelines and Limitations of XML Updategrams
If you are using an updategram for an insert operation with only a single pair of <before> and <after> blocks, the
<before> block can be omitted. Conversely, in case of a delete operation, the <after> block is not required.

If you are using an updategram with multiple <before> and <after> blocks in the <sync> tag, both <before> blocks and
<after> blocks must be specified to form <before> and <after> pairs.

The updates in an updategram are applied to the XML view that is provided by the XDR schema. Therefore, for the default
mapping to succeed, either you must specify the schema file name in the updategram or, if the file name is not provided, the
element and attribute names must match the table and column names in the database.

If you are using an updategram to modify data in a binary column (such as the Microsoft® SQL Server™ image data type),
you must provide a mapping schema in which the SQL Server data type (for example, sql:datatype="image") and the
XML data type (for example, dt:type="binhex" or dt:type="binbase64) must be specified. The data for the binary column
must be specified in the updategram; the sql:url-encode annotation that is specified in the mapping schema is ignored by
the updategram.

When you are writing an XSD schema, if the value you specify for the sql:relation or sql:field annotation includes a special
character, such as a space character (for example, in the "Order Details" table name), this value must be enclosed in
brackets (for example, "[Order Details]").

Updategram and DiffGram Security Issues

SQLXML 3.0 Service Pack 3

Performing Bulk Load of XML Data
XML Bulk Load is a stand-alone COM object that allows you to load semistructured XML data into Microsoft® SQL Server®
tables. You can insert XML data into a SQL Server database by using an INSERT statement and the OPENXML function; however,
the bulk load utility provides higher performance when you need to insert large amounts of XML data.

The Execute method of the XML Bulk Load object model takes two parameters:

An annotated XML Schema Definition (XSD) or XML-Data Reduced (XDR) schema. The XML Bulk Load utility interprets this
mapping schema and the annotations that are specified in the schema in identifying the SQL Server tables into which the
XML data is to be inserted.

An XML document or document fragment (a document without a single top-level element). A file name or a stream from
which XML Bulk Load can read can be specified.

XML Bulk Load interprets the mapping schema and identifies the table(s) into which the XML data is to be inserted.

It is assumed that you are familiar with the following SQL Server 2000 features:

Annotated XSD and XDR schemas. For more information about annotated XSD schemas, see Creating XML Views by Using
Annotated XSD Schemas. For information about annotated XDR schemas, see "Creating XML Views Using Annotated XDR
Schemas" in SQL Server Books Online.

SQL Server bulk insert mechanisms, such as the Transact-SQL BULK INSERT statement and the bcp utility. For more
information, see the "BULK INSERT" and "bcp Utility" topics in SQL Server Books Online.

Streaming of XML Data

Because the source XML document can be large, the entire document is not read into memory for bulk load processing. Instead,
XML Bulk Load interprets the XML data as a stream and interprets it reads it. As the utility reads the data, it identifies the database
table(s), generates the appropriate record(s) from the XML data source, and then sends the record(s) to SQL Server for insertion.

For example, the following source XML document consists of <Customer> elements and <Order> child elements:

<Customer ...>
 <Order.../>
 <Order .../>
 ...
</Customer>
...

As XML Bulk Load reads the <Customer> element, it generates a record for the Customer table. When it reads the </Customer>
end tag, XML Bulk Load inserts that record into the table in SQL Server. In the same manner, when it reads the <Order> element,
XML Bulk Load generates a record for the Order table, and then inserts that record into the SQL Server table upon reading the
</Order> end tag.

Transacted and Nontransacted XML Bulk-Load Operations

XML Bulk Load can operate in either a transacted or a nontransacted mode. Performance is usually optimal if you are bulk loading
in a nontransacted mode: that is, the Transaction property is set to FALSE) and either of the following conditions exists:

The tables into which the data is bulk loaded are empty with no indexes.

The tables have data and unique indexes.

The nontransacted approach does not guarantee a rollback if something goes wrong in the bulk load process (although partial
rollbacks can happen). The nontransacted bulk load is appropriate when the database is empty. Therefore, if something does go
wrong, you can clean the database and start XML Bulk Load again.

If the Transaction property is set to TRUE, XML Bulk Load creates temporary files, one for each table that is identified in the
mapping schema. XML Bulk Load first stores the records from the source XML document in these temporary files. Then, a
Transact-SQL BULK INSERT statement retrieves these records from the files and stores them in the corresponding tables. You can
specify the location for these temporary files by using the TempFilePath property. You must ensure that the SQL Server account
used with XML Bulk Load has access to this path. If the TempFilePath property is not specified, the default file path that is
specified in the TEMP environment variable is used to create the temporary files.

If the Transaction property is set to FALSE (the default setting), XML Bulk Load uses the OLE DB interface IRowsetFastLoad to
bulk load the data.

If the ConnectionString property sets the connection string, and the Transaction property is set to TRUE, XML Bulk Load
operates in its own transaction context. (For example, XML Bulk Load starts its own transaction, and commits or rolls back as
appropriate.)

If the ConnectionCommand property sets the connection with an existing connection object and the TRANSACTION property is
set to TRUE, XML Bulk Load does not issue a COMMIT or ROLLBACK statement in the case of a success or a failure, respectively. If
there is an error, XML Bulk Load returns the appropriate error message. The decision to issue a COMMIT or ROLLBACK statement
is left to the client that initiated the bulk load. The connection object that is used for XML Bulk Load should be of type ICommand
or be an ADO command object.

In Microsoft SQLXML 3.0, a ConnectionObject cannot be used with the Transaction property set to FALSE. The nontransacted
mode is not supported with a ConnectionObject because it is impossible to open more than one IRowsetFastLoad interface on
a passed-in session.

SQLXML 3.0 Service Pack 3

Record Generation Process and the Interpretation of Mapping
Schema
XML Bulk Load processes the XML input data and prepares records for the appropriate tables in Microsoft® SQL Server™. The
logic in XML Bulk Load determines when to generate a new record, what subelement or attribute values to copy into the fields of
the record, and when the record is complete and ready to be sent to SQL Server for insertion.

XML Bulk Load does not load the entire XML input data in the memory and does not produce complete record sets before
sending data to SQL Server. This is because XML input data can be a large document and loading the entire document in memory
can be expensive. Instead, XML Bulk Load:

1. Analyzes the mapping schema and prepares the necessary execution plan.

2. Applies the execution plan to the XML input data in the input stream.

This sequential processing makes it important to provide the XML input data in a specific way. You must understand how XML
Bulk Load analyzes the mapping schema and how the record generation process occurs. With this understanding, you can provide
a mapping schema to XML Bulk Load that produces the results you want.

XML Bulk Load handles common mapping schema annotations, including column and table mappings (specified explicitly by
using annotations or implicitly through the default mapping), and join relationships.

It is assumed that you are familiar with annotated XSD or XDR mapping schemas. For more information about schemas, see
Creating XML Views by Using Annotated XSD Schemas or "Creating XML Views Using Annotated XDR Schemas" in SQL Server
Books Online.

Generating Records

Understanding record generation requires understanding the following concepts:

Scope of a node

Pertains to defining what a node is in the XML document and specifying when nodes come in and out of scope.

Record generation process

Pertains to knowing how records are generated as the nodes are processed (the "Record Generation Rule") and the life span
of the record.

Record and its subset

Pertains to defining a record subset, specifying how subsets are generated, and describing how the location of key attributes
or subelements within the schema is important.

Exceptions to the Record Generation Rule

Pertains to defining what are noncontainment issues with schemas and what are possible solutions.

Scope of a N ode

A node (an element or an attribute) enters "into scope" when XML Bulk Load encounters it in the XML input data stream. For an
element node, the start tag of the element brings the element in scope. For an attribute node, the attribute name brings the
attribute in scope.

A node leaves scope when there is no more data for it: either at the end tag (in the case of an element node) or at the end of an
attribute value (in the case of an attribute node).

Record Generation Process

When a node (element or attribute) enters into scope, there is a potential for generating a record from that node. The record lives
as long as the associated node is in scope. When the node goes out of scope, XML Bulk Load considers the generated record
complete (with data) and sends it to SQL Server for insertion.

For example, consider this XSD schema fragment:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customer" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="CompanyName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The schema specifies a <Customer> element with CustomerID and CompanyName attributes. The sql:relation annotation
maps the <Customer> element to the Customers table.

Consider this fragment of an XML document:

<Customer CustomerID="1" CompanyName="xyz" />
<Customer CustomerID="2" CompanyName="abc" />
...

When XML Bulk Load is provided with the schema that is described in the preceding paragraphs and XML data as input, it
processes the nodes (elements and attributes) in the source data as follows:

The start tag of the first <Customer> element brings that element in scope. This node maps to the Customers table.
Therefore, XML Bulk Load generates a record for the Customers table.

In the schema, all attributes of the <Customer> element map to columns of the Customers table. As these attributes enter
into scope, XML Bulk Load copies their values to the customer record that is already generated by the parent scope.

When XML Bulk Load reaches the end tag for the <Customer> element, the element goes out of scope. This causes XML
Bulk Load to consider the record complete and send it to SQL Server.

XML Bulk Load follows this process for each subsequent <Customer> element.

In this model, because a record is inserted when the end tag is reached (or the node is out of scope), you must define all of the
data that is associated with the record within the scope of the node.

Record Subset and the Key Ordering Rule

When you specify a mapping schema that uses <sql:relationship>, the subset term refers to the set of records that is generated
on the "foreign" side of the relationship. In the following example, the CustOrder records are on the foreign side,
<sql:relationship>.

For example, a database contains these two tables:

Cust (CustomerID, CompanyName, City)

CustOrder (CustomerID, OrderID)

The CustomerID in the CustOrder table is a foreign key that refers to the CustomerID primary key in the Cust table.

Now, consider the XML view as specified in the following annotated XSD schema. This schema uses <sql:relationship> to specify
the relationship between the Cust and CustOrder tables.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 <xsd:element name="Order"
 sql:relation="CustOrder"

 sql:relationship="CustCustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The sample XML data and the steps to create a working sample are given below.

When a <Customer> element node in the XML data file enters into scope, XML Bulk Load generates a record for the Cust
table. XML Bulk Load then copies the necessary column values (CustomerID, CompanyName, and City) from the
<CustomerID>, <CompanyName>, and the <City> child elements as these elements enter into scope.

When an <Order> element node enters into scope, XML Bulk Load generates a record for the CustOrder table. XML Bulk
Load copies the value of the OrderID attribute to this record. The value required for the CustomerID column is obtained
from the <CustomerID> subelement of the <Customer> element. XML Bulk Load uses the information that is specified in
<sql:relationship> to obtain the CustomerID foreign key value for this record, unless the CustomerID attribute was
specified in the <Order> element. (The general rule is that if the child element explicitly specifies a value for the foreign key
attribute, XML Bulk Load uses that value and does not obtain the value from the parent element by using the specified
<sql:relationship>.) As this <Order> element node goes out of scope, XML Bulk Load sends the record to SQL Server and
then processes all the subsequent <Order> element nodes in the same manner.

Finally, the <Customer> element node goes out of scope. At that time, XML Bulk Load sends the customer record to SQL
Server. XML Bulk Load follows this process for all the subsequent customers in the XML data stream.

Here are two observations about the mapping schema:

When the schema satisfies the "containment" rule (for example, all data that is associated with the customer and the order is
defined within the scope of the associated <Customer> and <Order> element nodes), the bulk load succeeds.

In describing the <Customer> element, its subelements are specified in the appropriate order. In this case, the
<CustomerID> child element is specified before the <Order> child element. This means that in the input XML data file, the
<CustomerID> element value is available as the foreign key value when the <Order> element enters into scope. The idea of
specifying the key attributes first is also referred to as the "Key Ordering Rule."

If you specify the <CustomerID> child element after the <Order> child element, the value is not available when the
<Order> element enters into scope. When the </Order> end tag is then read, the record for CustOrder table is considered
complete and is inserted in the CustOrder table with a NULL value for the CustomerID column, which is not the desired
result.

To create a working sample

1. Save the schema that is provided in this example as SampleSchema.xml.

2. Create these tables:

CREATE TABLE Cust (
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle')
GO
CREATE TABLE CustOrder (
 OrderID int PRIMARY KEY,
 CustomerID int FOREIGN KEY REFERENCES
 Cust(CustomerID))
GO

3. Save the following sample XML input data as SampleXMLData.xml:

<ROOT>
 <Customers>

 <CustomerID>1111</CustomerID>
 <CompanyName>Hanari Carnes</CompanyName>
 <City>NY</City>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>

 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Toms Spezialitten</CompanyName>
 <City>LA</City>
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order OrderID="4" />
</Customers>
</ROOT>

4. To execute XML Bulk Load, save and execute the following Microsoft Visual Basic® Scripting Edition (VBScript) example
(BLoad.vbs):

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

Exceptions to the Record Generation Rule

XML Bulk Load does not generate a record for a node when it enters into scope if that node is either an IDREF or IDREFS type.
You must make sure that a complete description of the record occurs at some place in the schema. The dt:type="nmtokens"
annotations are ignored just as the IDREFS type is ignored.

For example, consider the following XSD schema that describes <Customer> and <Order> elements. The <Customer> element
includes an OrderList attribute of the IDREFS type. The <sql:relationship> tag specifies the one-to-many relationship between
the customer and list of orders.

This is the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:integer" />
 <xsd:attribute name="CompanyName" type="xsd:string" />
 <xsd:attribute name="City" type="xsd:string" />
 <xsd:attribute name="OrderList"
 type="xsd:IDREFS"
 sql:relation="CustOrder"
 sql:field="OrderID"
 sql:relationship="CustCustOrder" >
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Order" sql:relation="CustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:string" />
 <xsd:attribute name="CustomerID" type="xsd:integer" />
 <xsd:attribute name="OrderDate" type="xsd:date" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Because Bulk Load ignores the nodes of IDREFS type, there is no record generation when the OrderList attribute node enters into
scope. Therefore, if you want the order records added to the Orders table, you must describe those orders somewhere in the
schema. In this schema, specifying the <Order> element ensures that XML Bulk Load adds the order records to the Orders table.
The <Order> element describes all the attributes that are required to fill the record for the CustOrder table.

You must ensure that the CustomerID and OrderID values in the <Customer> element match the values in the <Order>
element. You are responsible for maintaining referential integrity.

To test a working sample

1. Create these tables:

CREATE TABLE Cust (
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle')
GO
CREATE TABLE CustOrder (
 OrderID varchar(10) PRIMARY KEY,
 CustomerID int FOREIGN KEY REFERENCES
 Cust(CustomerID),
 OrderDate datetime DEFAULT '2000-01-01')
GO

2. Save the mapping schema provided in this example as SampleSchema.xml.

3. Save the following sample XML data as SampleXMLData.xml:

<ROOT>
 <Customers CustomerID="1111" CompanyName="Sean Chai" City="NY"
 OrderList="Ord1 Ord2" />
 <Customers CustomerID="1112" CompanyName="Dont Know" City="LA"
 OrderList="Ord3 Ord4" />
 <Order OrderID="Ord1" CustomerID="1111" OrderDate="1999-01-01" />
 <Order OrderID="Ord2" CustomerID="1111" OrderDate="1999-02-01" />
 <Order OrderID="Ord3" CustomerID="1112" OrderDate="1999-03-01" />
 <Order OrderID="Ord4" CustomerID="1112" OrderDate="1999-04-01" />
</ROOT>

4. To execute XML Bulk Load, save and execute this VBScript example (SampleVB.vbs):

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints=True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

SQLXML 3.0 Service Pack 3

Interpreting the Annotations
The topics in this section describe how XML Bulk Load interprets annotations in the XSD schema; the behavior described here also
applies to the annotations in the XDR schema:

sql:relationship and the Key Ordering Rule

sql:mapped

sql:limit-field and sql:limit-value

sql:overflow-field

Other Annotations

The information in these topics describes only the annotations used by XML Bulk Load in its processing. For a complete list
of annotations for the XSD schema that are supported by Microsoft® SQL Server™ 2000, see Using Annotations in XSD
Schemas. For a list of supported annotations for XDR schemas, see "Creating XML Views Using Annotated XDR Schemas" in
SQL Server Books Online.

SQLXML 3.0 Service Pack 3

sql:relationship and the Key Ordering Rule
sql:relationship and the Key Ordering Rule

Because XML Bulk Load generates records as their nodes enter into scope and sends those records to Microsoft® SQL Server™ as
their nodes exit scope, the data for the record must be present within the scope of the node.

Consider the following XSD schema, in which the one-to-many relationship between <Customer> and <Order> elements (one
customer can place many orders) is specified by using the <sql:relationship> element:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"<>
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 <xsd:element name="Order"
 sql:relation="CustOrder"
 sql:relationship="CustCustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

As the <Customer> element node enters into scope, XML Bulk Load generates a customer record. This record stays until XML
Bulk Load reads </Customer>. In processing the <Order> element node, XML Bulk Load uses the <sql:relationship> to obtain the
value of the CustomerID foreign key column of the CustOrder table from the <Customer> parent element because the <Order>
element does not specify the CustomerID attribute. This means that in defining the <Customer> element, you must specify the
CustomerID attribute in the schema before you specify <sql:relationship>. Otherwise, when an <Order> element enters into
scope, XML Bulk Load generates a record for the CustOrder table; and when the XML Bulk Load reaches the </Order> end tag, it
sends the record to SQL Server without the CustomerID foreign key column value.

To test a working sample

Save the schema that is provided in this example as SampleSchema.xml.

1. Create these tables:

CREATE TABLE Cust (
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle')
GO
CREATE TABLE CustOrder (
 OrderID varchar(10) PRIMARY KEY,
 CustomerID int FOREIGN KEY REFERENCES
 Cust(CustomerID))
GO

2. Save the following sample data as SampleXMLData.xml:

<ROOT>
 <Customers>
 <CompanyName>Hanari Carnes</CompanyName>
 <City>NY</City>
 <Order OrderID="1" />
 <Order OrderID="2" />
 <CustomerID>1111</CustomerID>
 </Customers>
 <Customers>
 <CompanyName>Toms Spezialitten</CompanyName>
 <City>LA</City>
 <Order OrderID="3" />
 <CustomerID>1112</CustomerID>
 </Customers>
 <Customers>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order OrderID="4" />
 <CustomerID>1113</CustomerID>
 </Customers>
</ROOT>

3. To execute XML Bulk Load, save and execute the following Microsoft Visual Basic® Scripting Edition (VBScript) example as
MySample.vbs:

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Transaction=True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

The result is that XML Bulk Load inserts a NULL value in the CustomerID foreign key column of the CustOrder table. If you
revise the XML sample data so that the <CustomerID> subelement appears before the <Order> subelement, you get the
expected result: XML Bulk Load inserts the specified foreign key value into the column.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="CustomerID" />
 <ElementType name="CompanyName" />
 <ElementType name="City" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation ="Cust"
 key ="CustomerID"
 foreign-key ="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>

</Schema>

SQLXML 3.0 Service Pack 3

sql:mapped
sql:mapped

XML Bulk Load processes the sql:mapped annotation in the XSD schema as expected, that is, if the mapping schema specifies
sql:mapped="false" for any element or attribute, XML Bulk Load does not attempt to store the associated data in the
corresponding column.

XML Bulk Load ignores elements and attributes that are not mapped (either because they are not described in the schema, or
because they are annotated in the XSD schema with sql:mapped="false"). All unmapped data goes into the overflow column, if
such a column is specified by using sql:overflow-field.

For example, consider this XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:element name="ROOT" sql:is-constant="1">
<xsd:complexType>
<xsd:sequence>
 <xsd:element name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:integer" />
 <xsd:attribute name="CompanyName" type="xsd:string" />
 <xsd:attribute name="City" type="xsd:string" />
 <xsd:attribute name="HomePhone" type="xsd:string"
 sql:mapped="false" />
 </xsd:complexType>
 </xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Because the HomePhone attribute specifies sql:mapped="false", XML Bulk Load does not map this attribute to the
corresponding column. The XSD schema identifies an overflow column (OverflowColumn) in which XML Bulk Load stores this
unconsumed data.

To test a working sample

1. Create the following table:

CREATE TABLE Cust
 (CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle',
 OverflowColumn nvarchar(200))
GO

2. Save the schema that is provided in this example as SampleSchema.xml.

3. Save the following sample XML data as SampleXMLData.xml:

<ROOT>
 <Customers CustomerID="1111" CompanyName="Sean Chai"
 City="NY" HomePhone="111-1111" />
 <Customers CustomerID="1112" CompanyName="Dont Know"
 City="LA" HomePhone="222-2222" />
</ROOT>

4. To execute XML Bulk Load, save and execute this Microsoft® Visual Basic® Scripting Edition (VBScript) example as
Sample.vbs:

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"

objBL.CheckConstraints=True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="ROOT" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>
 <ElementType name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <AttributeType name="CustomerID" />
 <AttributeType name="CompanyName" />
 <AttributeType name="City" />
 <AttributeType name="HomePhone" />
 <attribute type="CustomerID" />
 <attribute type="CompanyName" />
 <attribute type="City" />
 <attribute type="HomePhone" sql:map-field="0" />
 </ElementType>
</Schema>

SQLXML 3.0 Service Pack 3

sql:limit-field and sql:limit-value
sql:limit-field and sql:limit-value

XML Bulk Load processes the sql:limit-field and sql:limit-value annotations per their definition (see Filtering Values by Using
sql:limit-field and sql:limit-value).

For example, a database contains these tables:

Customer (CustomerID, CompanyName)

Addresses (CustomerID, StreetAddress, AddressType)

A customer can have many addresses, and each address has an address type associated with it (for example, a shipping address
or a billing address).

Now consider this XML view of these tables as specified in the following annotated XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustAddr"
 parent="Customer"
 parent-key="CustomerID"
 child="Address"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customer" sql:relation="Customer" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:int" />
 <xsd:attribute name="CompanyName" type="xsd:string" />
 <xsd:attribute name="BillTo"
 type="xsd:string"
 sql:relation="Address"
 sql:field="StreetAddress"
 sql:limit-field="AddressType"
 sql:limit-value="billing"
 sql:relationship="CustAddr" >
 </xsd:attribute>
 <xsd:attribute name="ShipTo"
 type="xsd:string"
 sql:relation="Address"
 sql:field="StreetAddress"
 sql:limit-field="AddressType"
 sql:limit-value="shipping"
 sql:relationship="CustAddr" >
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Upon receiving this schema and XML data, XML Bulk Load inserts the value that is specified for the BillTo attribute into the
StreetAddress column of the CustAddress table along with the "billing" value for the AddressType column.

Similarly, XML Bulk Load inserts the value that is specified for the ShipTo attribute into the StreetAddress column along with the
"shipping" value in the AddressType column.

To test a working sample

1. Save the schema that is provided in this example as SampleSchema.xml.

2. Create these tables:

CREATE TABLE Customer(
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL)
GO
CREATE TABLE Address(

 CustomerID int FOREIGN KEY REFERENCES
 Customer(CustomerID),
 StreetAddress varchar(50),
 AddressType varchar(10))
GO

3. Save the following sample data as SampleXMLData.xml:

<Customer CustomerID="1111" CompanyName="Sean Chai" City="NY"
 BillTo="111 Maple (Billing) "
 ShipTo="111 Maple (Shipping)" />
<Customer CustomerID="1112" CompanyName="Dont Know" City="LA"
 BillTo="222 Spruce (Billing)"
 ShipTo="222 Spruce (Shipping)" />

4. To execute XML Bulk Load, save and execute this Microsoft® Visual Basic® Scripting Edition (VBScript) example as
Sample.vbs:

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.XMLFragment = True
objBL.CheckConstraints=True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Customer" sql:relation="Customer" >
 <AttributeType name="CustomerID" />
 <AttributeType name="CompanyName" />
 <AttributeType name="BillTo" />
 <AttributeType name="ShipTo" />

 <attribute type="CustomerID" />
 <attribute type="CompanyName" />
 <attribute type="BillTo"
 sql:limit-field="AddressType"
 sql:limit-value="billing"
 sql:field="StreetAddress"
 sql:relation="Address" >
 <sql:relationship
 key="CustomerID"
 key-relation="Customer"
 foreign-relation="Address"
 foreign-key="CustomerID" />
 </attribute>
 <attribute type="ShipTo"
 sql:limit-field="AddressType"
 sql:limit-value="shipping"
 sql:field="StreetAddress"
 sql:relation="Address" >
 <sql:relationship
 key="CustomerID"
 key-relation="Customer"
 foreign-relation="Address"
 foreign-key="CustomerID" />
 </attribute>
</ElementType>
</Schema>

SQLXML 3.0 Service Pack 3

sql:overflow-field
sql:overflow-field

In a schema, you can identify a column as an overflow column to receive all unconsumed data from the XML document. This
column is specified in the schema by using the sql:overflow-field annotation. It is possible to have multiple overflow columns.

Whenever an XML node (element or attribute) for which there is an sql:overflow-field annotation defined enters into scope, the
overflow column is activated and receives unconsumed data. When the node goes out of scope, the overflow column is no longer
active and XML Bulk Load makes the previous overflow field (if any) active.

As it stores data in the overflow column, XML Bulk Load also stores the opening and closing tags of the parent element for which
sql:overflow-field is defined.

For example, the following schema describes the <Customers> and<CustOrder> elements. Each of these elements identifies an
overflow column:

<?xml version="1.0" ?>
 <Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>
 <ElementType name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation="Cust"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
 <ElementType name="Order" sql:relation="CustOrder"
 sql:overflow-field="OverflowColumn" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>
 </Schema>

In the schema, the <Customer> element maps to the Cust table, and the <Order> element maps to the CustOrder table.

Both the <Customer> and <Order> elements identify an overflow column. Thus, XML Bulk Load saves all the unconsumed
subelements and attributes of the <Customer> element in the overflow column of the Cust table and all the unconsumed
subelements and attributes of the <Order> element in the overflow column of the CustOrder table.

To test a working sample

1. Save the schema that is provided in this example as SampleSchema.xml.

2. Create these tables:

CREATE TABLE Cust (
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle',
 OverflowColumn nvarchar(200))
GO
CREATE TABLE CustOrder (
 OrderID int PRIMARY KEY,
 CustomerID int FOREIGN KEY REFERENCES

 Cust(CustomerID),
 OverflowColumn nvarchar(200))
GO

3. Save the following sample XML data as SampleXMLData.xml:

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Hanari Carnes</CompanyName>
 <City><![CDATA[NY]]> </City>
 <Junk>garbage in overflow</Junk>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>
 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Toms Spezialitten</CompanyName>
 <City><![CDATA[LA]]> </City>
 <xyz><address>111 Maple, Seattle</address></xyz>
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order OrderID="4" />
 </Customers>
</ROOT>

4. To execute XML Bulk Load, save and execute this Microsoft® Visual Basic® Scripting Edition (VBScript) example as
Sample.vbs:

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

SQLXML 3.0 Service Pack 3

Other Annotations
Other Annotations

XML Bulk Load interprets the following additional annotations:

sql:id-prefix

If the schema specifies prefixes to the XML data, XML Bulk Load removes the prefixes before sending the data to Microsoft® SQL
Server™.

sql:use-cdata

XML Bulk Load reads the text that is stored in the CDATA sections and sends it to SQL Server.

sql:url-encode

XML Bulk Load does not support this annotation. (For example, you cannot specify a URL in the XML data input and expect Bulk
Load to read data from that location to store it in the database.)

sql:is-mapping-schema

XML Bulk Load does not support this annotation, nor does it support sql:id. (For example, bulk load does not support inline
mapping schemas.)

sql:key-fields

XML Bulk Load always ignores this annotation.

SQLXML 3.0 Service Pack 3

SQL Server XML Bulk Load Object Model
The Microsoft® SQL Server™ XML Bulk Load object model consists of the SQLXMLBulkLoad object. This object supports the
following methods and properties.

Methods

Execute

Bulk loads the data by using the schema file and data file (or stream) that are provided as parameters.

Properties

BulkLoad

Specifies whether a bulk load should be performed. This property is useful if you want to generate only the schemas (see the
SchemaGen, SGDropTables, and SGUseID properties that follow) and not perform a bulk load. This is a Boolean property. When
the property is set to TRUE, XML Bulk Load executes. When it is set to FALSE, XML Bulk Load does not execute.

The default value is TRUE.

CheckConstraints

Specifies whether the constraints (such as constraints due to the primary key/foreign key relationship among columns) that are
specified on the column should be checked when XML Bulk Load inserts data into the columns. This is a Boolean property. When
the property is set to TRUE, XML Bulk Load checks the constraints for each value inserted (which means that a constraint violation
results in an error). When it is set to FALSE, XML Bulk Load ignores the constraints during an insert operation. In the current
implementation, you must define the tables in the order of primary key and foreign key relationships in the mapping schema.
That is, a table with a primary key must be defined before the corresponding table with the foreign key; otherwise, XML Bulk Load
fails.

The default value is FALSE.

ConnectionCommand

Identifies an existing connection object (for example, the ADO or ICommand command object) that XML Bulk Load should use.
You can use the Connection Command property instead of specifying a connection string with the ConnectionString property.
The Transaction property must be set to TRUE if you use ConnectionCommand.

If you use both the ConnectionString and ConnectionCommand properties, XML Bulk Load uses the last specified property.

The default value is NULL.

ConnectionString

Identifies the OLEDB connection string that provides the necessary information to establish a connection to an instance of the
database. If you use both the ConnectionString and ConnectionCommand properties, XML Bulk Load uses the last specified
property.

The default value is NULL.

ErrorLogFile

Specifies the file name into which the XML Bulk Load logs errors and messages. The default is an empty string, in which case no
logging takes place.

ForceTableLock

Specifies whether the tables into which XML Bulk Load copies data should be locked for the duration of the bulk load. This is a
Boolean property. When the property is set to TRUE, XML Bulk Load acquires table locks for the duration of the bulk load. When it
is set to FALSE, XML Bulk Load acquires a table lock each time it inserts a record into a table.

The default value is FALSE.

IgnoreDuplicateKeys

Specifies what to do if an attempt is made to insert duplicate values in a key column. If this property is set to TRUE and an attempt
is made to insert a record with a duplicate value in a key column, SQL Server does not insert that record. But it does insert the
subsequent record; thus, the bulk load operation does not fail. If this property is set to FALSE, Bulk Load fails when an attempt is

made to insert a duplicate value in a key column.

When the IgnoreDuplicateKeys property is set to TRUE, a COMMIT statement is issued for every record inserted in the table.
This slows down the performance. The property can be set to TRUE only when the Transaction property is set to FALSE, because
the transactional behavior is implemented using files.

The default value is FALSE.

KeepIdentity

Specifies how to deal with the values for an Identity type column in the source file. This is a Boolean property. When the property
is set to TRUE, XML Bulk Load assigns the values that are specified in the source file to the identity column. When the property is
set to FALSE, the bulk-load operation ignores the identity-column values that are specified in the source. In this case, SQL Server
assigns a value to the identity column.

If the bulk load involves a column that is a foreign key referring to an identity column in which SQL-Server-generated values are
stored, bulk load appropriately propagates these identity values to the foreign key column.

The value of this property applies to all columns involved in the bulk load. The default value is TRUE.

KeepNulls

Specifies what value to use for a column that is missing a corresponding attribute or subelement in the XML document. This is a
Boolean property. When the property is set to TRUE, XML Bulk Load assigns a null value to the column. It does not assign the
column's default value, if any, as set on the server. The value of this property applies to all columns involved in the bulk load.

The default value is FALSE.

SchemaGen

Specifies whether to create the required tables before performing a bulk load operation. This is a Boolean property. If this
property is set to TRUE, the tables identified in the mapping schema are created (the database must exist). If one or more of the
tables already exist in the database, the SGDropTables property determines whether these preexisting tables are to be dropped
and re-created.

The default value for the SchemaGen property is FALSE. SchemaGen does not create any constraints (such as PRIMARY
KEY/FOREIGN KEY constraint) on the newly created tables.

If you set the SchemaGen property to TRUE, XML Bulk Load creates the necessary tables from the element and attribute names.
Therefore, it is important that you do not use SQL Server reserved words for element and attribute names in the schema.

SGDropTables

Specifies whether existing tables should be dropped and re-created. You use this property when the SchemaGen property is set
to TRUE. If SGDropTables is FALSE, the existing tables are retained. When this property is TRUE, the existing tables are deleted
and re-created.

The default value is FALSE.

SGUseID

Specifies whether the attribute in the mapping schema that is identified as id type can be used in creating a PRIMARY KEY
constraint when the table is created. Use this property when the SchemaGen property is set to TRUE. If SGUseID is TRUE, the
SchemaGen utility uses an attribute for which dt:type="id" is specified as the primary key column and adds the appropriate
PRIMARY KEY constraint when creating the table.

The default value is FALSE.

TempFilePath

Specifies the file path where XML Bulk Load creates the temporary files for a transacted bulk load. (This property is useful only
when the Transaction property is set to TRUE.) You must ensure that the SQL Server account that is used for XML Bulk Load has
access to this path. If this property is not set, XML Bulk Load stores the temporary files in the location that is specified in the TEMP
environment variable.

Transaction

Specifies whether the bulk load should be done as a transaction, in which case the rollback is guaranteed if the bulk load fails. This
is a Boolean property. If the property is set to TRUE, the bulk load occurs in a transactional context. The TempFilePath property is
useful only when Transaction is set to TRUE.

If you are loading binary data (such as the bin.hex, bin.base64 XML data types to the binary, image SQL Server data types), the

Transaction property must be set to FALSE.

The default value is FALSE.

XMLFragment

Specifies whether the source data is an XML fragment. An XML fragment refers to an XML document with no single, top-level
(root) element. This is a Boolean property. This property must be set to TRUE if the source file consists of an XML fragment.

The default value is FALSE.

SQLXML 3.0 Service Pack 3

Examples of Bulk Loading XML Documents
The following examples illustrate the XML Bulk Load functionality in Microsoft® SQL Server™ 2000. Each example provides an
XSD schema and its equivalent XDR schema.

A. Bulk loading XML in a table

The following script, written in the Microsoft Visual Basic® Scripting Edition (VBScript), loads an XML document into a table.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.Execute "SampleSchema.xml", "SampleXMLData.xml"
set objBL=Nothing

This example establishes a connection to the instance of SQL Server that is specified in the ConnectionString property. The
example also specifies the ErrorLogFile property. Therefore, the error output is saved in the specified file. Notice also that the
Execute method has as its parameters both the mapping schema file and the XML data file.

To test a sample bulk load

1. Create this table:

CREATE TABLE Cust(CustomerID int PRIMARY KEY,
 CompanyName varchar(20),
 City varchar(20))
GO

2. Create a file in Notepad, and save it as SampleSchema.xml. To this file, add the following XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3. Create a file in Notepad, and save it as SampleXMLData.xml. To this file, add the following XML document:

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Sean Chai</CompanyName>
 <City>NY</City>
 </Customers>
 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Tom Johnston</CompanyName>
 <City>LA</City>
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Institute of Art</CompanyName>
 </Customers>
</ROOT>

4. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the VBScript code that is provided in this example. Modify
the connection string to provide the appropriate server and database name. Specify the appropriate path for the files that
are specified as parameters to the Execute method.

5. Execute the VBScript code. XML Bulk Load loads the XML into the Cust table.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />

 </ElementType>
</Schema>

B. Bulk loading XML data in multiple tables

In this example, the XML document consists of the <Customer> and <Order> elements.

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Sean Chai</CompanyName>
 <City>NY</City>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>
 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Tom Johnston</CompanyName>
 <City>LA</City>
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Institute of Art</CompanyName>
 <Order OrderID="4" />
 </Customers>
</ROOT>

This following Microsoft Visual Basic Scripting Edition (VBScript) script bulk loads the XML data into two tables, Cust and
CustOrder:

Cust(CustomerID, CompanyName, City)
CustOrder(OrderID, CustomerID)

The following XSD schema defines the XML view of these tables. The schema specifies the parent-child relationship between the
<Customer> and <Order> elements.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 <xsd:element name="Order"
 sql:relation="CustOrder"
 sql:relationship="CustCustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

The XML bulk load in the following VBScript uses the primary key/foreign key relationship that is specified between the <Cust>
and <CustOrder> elements to bulk load the data into the tables.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.Execute "SampleSchema.xml", "SampleData.xml"
set objBL=Nothing

To test a sample bulk load

1. Create two tables:

CREATE TABLE Cust(
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20),
 City varchar(20))

CREATE TABLE CustOrder(OrderID int PRIMARY KEY,
 CustomerID int FOREIGN KEY REFERENCES Cust(CustomerID))

2. Create a file in Notepad, and save it as SampleSchema.xml. Add the XSD schema that is provided in this example to the file.

3. Create a file in Notepad, and save it as SampleXMLData.xml. Add the XML document that was provided in the earlier
example, "Bulk loading XML in a table," to the file.

4. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the VBScript code provided in this example. Modify the
connection string to provide the appropriate server and database name. Specify the appropriate path for the files that are
specified as parameters to the Execute method.

5. Execute the VBScript code. XML Bulk Load loads the XML document into the Cust table.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
<sql:relationship
 key-relation="Cust"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="CustOrder" />

 </element>
 </ElementType>
 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>
</Schema>

C. Using chain relationships in the schema to bulk load XML

This example illustrates how the M:N relationship that is specified in the mapping schema is used by XML Bulk Load to load data
in a table that represents an M:N relationship.

For example, consider this XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrderOD"
 parent="Ord"
 parent-key="OrderID"
 child="OrderDetail"
 child-key="OrderID" />

 <sql:relationship name="ODProduct"
 parent="OrderDetail"
 parent-key="ProductID"
 child="Product"
 child-key="ProductID"
 inverse="true"/>
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" sql:relation="Ord"
 sql:key-fields="OrderID" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Product" sql:relation="Product"
 sql:key-fields="ProductID"
 sql:relationship="OrderOD ODProduct">
 <xsd:complexType>
 <xsd:attribute name="ProductID" type="xsd:int" />
 <xsd:attribute name="ProductName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The schema specifies <Order> element with <Product> child element. The <Order> element maps to Ord table and the
<Product> element maps to the Product table in the database. The chain-relationship specified on the <Product> element
identifies a M:N relationship represented by the OrderDetail table. (An order may include many products, and a product may be
included in many orders.)

When you are bulk loading an XML document with this schema, records are added to the Ord, Product, and OrderDetail tables.

To test a working sample

1. Create three tables:

CREATE TABLE Ord (
 OrderID int PRIMARY KEY,
 CustomerID varchar(5))
GO
CREATE TABLE Product (
 ProductID int PRIMARY KEY,
 ProductName varchar(20))
GO
CREATE TABLE OrderDetail (

 OrderID int FOREIGN KEY REFERENCES Ord(OrderID),
 ProductID int FOREIGN KEY REFERENCES Product(ProductID),
 CONSTRAINT OD_key PRIMARY KEY (OrderID, ProductID))
GO

2. Save the schema that is provided in this example (SampleSchema.xml).

3. Save the sample XML data (SampleXMLData.xml) that is provided in the earlier example, "Bulk loading XML in a table":

<ROOT>
 <Order OrderID="1" CustomerID="ALFKI">
 <Product ProductID="1" ProductName="Chai" />
 <Product ProductID="2" ProductName="Chang" />
 </Order>
 <Order OrderID="2" CustomerID="ANATR">
 <Product ProductID="3" ProductName="Aniseed Syrup" />
 <Product ProductID="4" ProductName="Gumbo Mix" />
 </Order>
</ROOT>

4. To execute XML Bulk Load, save and execute the following Microsoft Visual Basic Scripting Edition (VBScript) example as
Sample.vbs. You must edit the code and specify the appropriate directory path for the schema file and sample data file.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Transaction=True
objBL.Execute "c:\...\SampleSchema.xml", "c:\...\SampleXMLData.xml"
set objBL=Nothing

D. Bulk loading in identity type columns

This example illustrates how bulk load handles identity type columns. In the example, data is bulk loaded into three tables (Ord,
Product, and OrderDetail).

In these tables,

OrderID in the Ord table is an identity type column

ProductID in the Product table is an identity type column.

OrderID and ProductID columns in the OrderDetail are foreign key columns referring to corresponding primary key
columns in the Ord and Product tables.

The following are the table schemas for this example:
Ord (OrderID, CustomerID)
Product (ProductID, ProductName)
OrderDetail (OrderID, ProductID)

In this example of XML bulk load, the KeepIdentity property of the BulkLoad object model is set to false. Therefore, SQL Server
generates identity values for the ProductID and OrderID columns in the Product and Ord tables respectively (any values
provided in the documents to be bulk loaded are ignored).

In this case, bulk load identifies the primary key/foreign key relationship among tables and first inserts records in the tables with
the primary key, and then propagates the identity value generated by SQL Server to the tables with foreign key columns. In the
following example, bulk load inserts data in tables in this order:

1. Product

2. Ord

3. OrderDetail

Note: In order to propagate identity values generated in the Products and Orders tables, the processing logic requires Bulkload to
keep track of these values for later insertion into the OrderDetails table. In order to do that, XML BulkLoad creates intermediate
tables, populates the data in these tables, and later removes them.

To test a working sample

1. Create these tables:

CREATE TABLE Ord (
 OrderID int identity(1,1) PRIMARY KEY,
 CustomerID varchar(5))
GO
CREATE TABLE Product (
 ProductID int identity(1,1) PRIMARY KEY,
 ProductName varchar(20))
GO
CREATE TABLE OrderDetail (
 OrderID int FOREIGN KEY REFERENCES Ord(OrderID),
 ProductID int FOREIGN KEY REFERENCES Product(ProductID),
 CONSTRAINT OD_key PRIMARY KEY (OrderID, ProductID))
GO

2. Create a file in Notepad, and save it as SampleSchema.xml. Add this XSD schema to this file.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrderOD"
 parent="Ord"
 parent-key="OrderID"
 child="OrderDetail"
 child-key="OrderID" />

 <sql:relationship name="ODProduct"
 parent="OrderDetail"
 parent-key="ProductID"
 child="Product"
 child-key="ProductID"
 inverse="true"/>
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" sql:relation="Ord"
 sql:key-fields="OrderID" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Product" sql:relation="Product"
 sql:key-fields="ProductID"
 sql:relationship="OrderOD ODProduct">
 <xsd:complexType>
 <xsd:attribute name="ProductID" type="xsd:int" />
 <xsd:attribute name="ProductName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />

 </xsd:complexType>
 </xsd:element>
</xsd:schema>

4. Create a file in Notepad, and save it as SampleXMLData.xml. Add the following XML document.

<ROOT>
 <Order OrderID="11" CustomerID="ALFKI">
 <Product ProductID="11" ProductName="Chai" />
 <Product ProductID="22" ProductName="Chang" />
 </Order>
 <Order OrderID="22" CustomerID="ANATR">
 <Product ProductID="33" ProductName="Aniseed Syrup" />
 <Product ProductID="44" ProductName="Gumbo Mix" />
 </Order>
</ROOT>

5. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the following VBScript code. Modify the connection string
to provide the appropriate server and database name. Specify the appropriate path for the files that serve as parameters to
the Execute method.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=server;database=Database;integrated security=SSPI"
objBL.ErrorLogFile = "C:\dlls\blkld30sp2\error.xml"
objBL.CheckConstraints = True
objBL.Transaction=False
objBL.KeepIdentity=False
objBL.Execute "c:\...\SampleSchema.xml", "c:\...SampleXMLData.xml"
set objBL=Nothing

msgbox "Done."

6. Execute the VBScript code. The XML Bulk Load will load the data into the appropriate tables.

E. Generating table schemas before bulk loading

XML Bulk Load can optionally generate the tables if they do not exist before bulk loading. Setting the SchemaGen property of the
SQLXMLBulkLoad object to TRUE does this. You can also optionally request XML Bulk Load to drop any existing tables and re-
create them by setting the SGDropTables property to TRUE. The following Microsoft Visual Basic Scripting Edition (VBScript)
example illustrates the use of these properties.

Also, this example sets two additional properties to TRUE:

CheckConstraints. Setting this property to TRUE ensures that the data being inserted into the tables does not violate any
constraints that have been specified on the tables (in this case the PRIMARY KEY/FOREIGN KEY constraints specified
between the Cust and CustOrder tables). If there is a constraint violation, the bulk load fails.

XMLFragment. This property must be set to TRUE because the sample XML document (data source) contains no single, top-
level element (and thus, is a fragment).

This is the VBScript code:

Dim objBL
Set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"

objBL.CheckConstraints=true
objBL.XMLFragment = True
objBL.SchemaGen = True
objBL.SGDropTables = True

objBL.Execute "SampleSchema.xml", "SampleXMLData.xml"
Set objBL = Nothing

To test a working sample

1. Create a file in Notepad, and save it as SampleSchema.xml. Add the XSD schema that is provided in the earlier example,
"Using chain relationships in the schema to bulk load XML," to the file.

2. Create a file in Notepad, and save it as SampleXMLData.xml. Add the XML document that is provided in the earlier example,
"Using chain relationships in the schema to bulk load XML," to the file. Remove the <ROOT> element from the document
(to make it a fragment).

3. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the VBScript code in this example. Modify the connection
string to provide the appropriate server and database name. Specify the appropriate path for the files that are specified as
parameters to the Execute method.

4. Execute the VBScript code. The XML Bulk Load creates the necessary tables on the basis of the mapping schema that is
provided and bulk loads the data in it.

F. Bulk loading from a stream

The Execute method of the XML Bulk Load object model takes two parameters. The first parameter is the mapping schema file.
The second parameter provides the XML data that is to be loaded in the database. There are two ways to pass the XML data to the
Execute method of XML Bulk Load:

Specify the file name as the parameter.

Pass a stream that contains the XML data.

This example illustrates how to bulk load from a stream.

Microsoft Visual Basic Scripting Edition (VBScript) first executes a SELECT statement to retrieve customer information from the
Customers table in the Northwind database. Because the FOR XML clause is specified (with the ELEMENTS option) in the SELECT
statement, the query returns an element-centric XML document of this form:

<Customer>
 <CustomerID>..</CustomerID>
 <CompanyName>..</CompanyName>
 <City>..</City>
</Customer>
...

The script then passes the XML as a stream to the Execute method as its second parameter. The Execute method bulk loads the
data into the Cust table.

Because this script sets the SchemaGen property to TRUE and SGDropTables property to TRUE, XML Bulk Load creates the Cust
table (and if the table already exists, it first drops the table and then re-creates it) in the specified database.

This is the VBScript example:

Set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
Set objCmd = CreateObject("ADODB.Command")
Set objConn = CreateObject("ADODB.Connection")
Set objStrmOut = CreateObject ("ADODB.Stream")

objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.SchemaGen = True
objBL.SGDropTables = True
objBL.XMLFragment = True
' Open a connection to the instance of SQL Server to get the source data.

objConn.Open "provider=SQLOLEDB;server=(local); database=Northwind; uid=UserName;pwd=Password"
Set objCmd.ActiveConnection = objConn
objCmd.CommandText = "SELECT CustomerID, CompanyName, City FROM Customers FOR XML AUTO, ELEMENTS"

' Open the return stream and execute the command.
Const adCRLF = -1
Const adExecuteStream = 1024
objStrmOut.Open
objStrmOut.LineSeparator = adCRLF
objCmd.Properties("Output Stream").Value = objStrmOut
objCmd.Execute , , adExecuteStream
objStrmOut.Position = 0

' Execute bulk load. Read source XML data from the stream.
objBL.Execute "SampleSchema.xml", objStrmOut

Set objBL = Nothing

The following XSD mapping schema provides the necessary information to create the table:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:element name="ROOT" sql:is-constant="true" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Customers"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID"
 type="xsd:string"
 sql:datatype="nvarchar(5)"/>
 <xsd:element name="CompanyName"
 type="xsd:string"
 sql:datatype="nvarchar(40)"/>
 <xsd:element name="City"
 type="xsd:string"
 sql:datatype="nvarchar(40)"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

This is equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 </ElementType>
</Schema>

Opening a Stream on an Existing File

You can also open a stream on an existing XML data file and pass the stream as a parameter to the Execute method (instead of
passing the file name as the parameter).

This is a Visual Basic example of passing a stream as the parameter:

Private Sub Form_Load()
Dim objBL As New SQLXMLBulkLoad
Dim objStrm As New ADODB.Stream
Dim objFileSystem As New Scripting.FileSystemObject
Dim objFile As Scripting.TextStream

MsgBox "Begin BulkLoad..."
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.SchemaGen = True
objBL.SGDropTables = True
' Here again a stream is specified that contains the source data
' (instead of the file name). But this is just an illustration.
' Usually this is useful if you have an XML data
' stream that is created by some other means that you want to bulk
' load. This example starts with an XML text file, so it may not be the
' best to use a stream (you can specify the file name directly).

' Here you could have specified the file name itself.
Set objFile = objFileSystem.OpenTextFile("c:\SampleData.xml")
objStrm.Open
objStrm.WriteText objFile.ReadAll
objStrm.Position = 0
objBL.Execute "c:\SampleSchema.xml", objStrm

Set objBL = Nothing
MsgBox "Done."
End Sub

To test the application, use the following XML document in a file (SampleData.xml) and the XSD schema that is provided in this
example:

This is the XML source data (SampleData.xml):

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Hanari Carnes</CompanyName>
 <City>NY</City>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>

 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Toms Spezialitten</CompanyName>
 <City>LA</City>
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order CustomerID= "4444" OrderID="4" />
</Customers>
</ROOT>

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>

 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation="Cust"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
</Schema>

G. Bulk loading in overflow columns

If the mapping schema specifies an overflow column by using the sql:overflow-field annotation, XML Bulk Load copies all
unconsumed data from the source document into this column.

Consider this XSD schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>
 <xsd:element name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 <xsd:element name="Order"
 sql:relation="CustOrder"
 sql:relationship="CustCustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The schema identifies an overflow column (OverflowColumn) for the Cust table. As a result, all unconsumed XML data for each
<Customer> element is added to this column.

All abstract elements (elements for which abstract="true" is specified) and all prohibited attributes (attributes for which
prohibited="true" is specified) are considered overflow by XML Bulk Load and are added to the overflow column, if specified.
(Otherwise, they are ignored.)

To test a working sample

1. Create two tables:

CREATE TABLE Cust (
 CustomerID int PRIMARY KEY,
 CompanyName varchar(20) NOT NULL,
 City varchar(20) DEFAULT 'Seattle',
 OverflowColumn nvarchar(200))
GO
CREATE TABLE CustOrder (
 OrderID int PRIMARY KEY,
 CustomerID int FOREIGN KEY
 REFERENCES Cust(CustomerID))
GO

2. Create a file in Notepad, and save it as SampleSchema.xml. Add the XSD schema that is provided in this example to the file.

3. Create a file in Notepad, and save it as SampleXMLData.xml. Add the following XML document to the file:

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Hanari Carnes</CompanyName>
 <City><![CDATA[NY]]> </City>
 <Junk>garbage in overflow</Junk>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>

 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Toms Spezialitten</CompanyName>
 <![CDATA[LA]]>
 <!-- <xyz><address>111 Maple, Seattle</address></xyz> -->
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order OrderID="4" />
</Customers>
</ROOT>

4. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the following Microsoft Visual Basic Scripting Edition
(VBScript) code. Modify the connection string to provide the appropriate server and database name. Specify the appropriate
path for the files that are specified as parameters to the Execute method.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Execute "SampleSchema.xml", "SampleXMLData.xml"
set objBL=Nothing

5. Execute the VBScript code.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>

 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation="Cust"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
</Schema>

H. Specifying the file path for temp files in transaction mode

When you are bulk loading in transaction mode (that is, when the Transaction property is set to TRUE), you also must set the
TempFilePath property when either of these conditions exist:

You are bulk loading to a remote server.

You want to use an alternate local drive or folder (one other than the path that is specified by the TEMP environment
variable) to store the temporary files that are created in the transaction mode.

For example, the following Microsoft Visual Basic Scripting Edition (VBScript) code bulk loads data from the SampleXMLData.xml
file into the database tables in transaction mode. The TempFilePath property is specified to set the path for the temporary files
that are generated in transaction mode.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated security=SSPI"
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Transaction=True
objBL.TempFilePath="\\Server\MyDir"
objBL.Execute "c:\SampleSchema.xml", "c:\SampleXMLData.xml"
set objBL=Nothing

The temporary file path must be a shared location that is accessible to the service account of the target instance of Microsoft SQL
Server™ and to the account that is running the bulk load application. Unless you are bulk loading on a local server, the temporary
file path must be a UNC path (such as \\servername\sharename).

To test a working sample

1. Create this table:

CREATE TABLE Cust (
 CustomerID uniqueidentifier,
 LastName varchar(20))
GO

2. Create a file in Notepad, and save it as SampleSchema.xml. Add the following XSD schema to the file:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="ROOT" sql:is-constant="true" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Customers" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3. Create a file in Notepad, and save it as SampleXMLData.xml. Add the following XML document to the file:

<ROOT>
<Customers CustomerID="6F9619FF-8B86-D011-B42D-00C04FC964FF"
 LastName="Smith" />
</ROOT>

4. Create a file in Notepad, and save it as BLoad.vbs. To this file, add the following VBScript code. Modify the connection string
to provide the appropriate server and database name. Specify the appropriate path for the files that are specified as
parameters to the Execute method. Also specify the appropriate path for the TempFilePath property.

set objBL = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
objBL.ConnectionString = "provider=SQLOLEDB;data source=localhost;database=Northwind;integrated
security=SSPI"

objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
objBL.Transaction=True
objBL.TempFilePath="\\server\folder"
objBL.Execute "SampleSchema.xml", "SampleXMLData.xml"
set objBL=Nothing

5. Execute the VBScript code.

The schema must specify the corresponding sql:datatype for the CustomerID attribute when the value for CustomerID is
specified as a GUID that includes braces ({ and }), such as:

<ROOT>
<Customers CustomerID="{6F9619FF-8B86-D011-B42D-00C04FC964FF}"
 LastName="Smith" />
</ROOT>

 This is the updated schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="ROOT" sql:is-constant="true" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Customers" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string"
 sql:datatype="uniqueidentifier" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

When sql:datatype is specified identifying the column type as uniqueidentifier, the bulk load operation removes the
braces ({ and }) from the CustomerID value before inserting it in the column.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<ElementType name="ROOT" sql:is-constant="1">
 <element type="Customers" />
</ElementType>
<ElementType name="Customers" sql:relation="Cust" >
 <AttributeType name="CustomerID" sql:datatype="uniqueidentifier" />
 <AttributeType name="LastName" />

 <attribute type="CustomerID" />
 <attribute type="LastName" />
</ElementType>
</Schema>

I. Using an existing database connection with the ConnectionCommand property

You can use an existing ADO connection to bulk load XML. This is useful if XML Bulk Load is just one of many operations that will
be performed on a data source.

The ConnectionCommand property enables you to use an existing ADO connection by using an ADO command object. This is
illustrated in the following Visual Basic example:

Private Sub Form_Load()
Dim objBL As New SQLXMLBulkLoad3
Dim objCmd As New ADODB.Command
Dim objConn As New ADODB.Connection

'Open a connection to an instance of SQL Server.
objConn.Open "provider=SQLOLEDB;data source=(local);database=Database;uid=UserName;pwd=UserPassword"
'Ask the Command object to use the connection just established.
Set objCmd.ActiveConnection = objConn

'Tell Bulk Load to use the active command object that is using the Connection obj.
objBL.ConnectionCommand = objCmd
objBL.ErrorLogFile = "c:\error.log"
objBL.CheckConstraints = True
'The Transaction property must be set to True if you use ConnectionCommand.
objBL.Transaction = True
objBL.Execute "c:\SampleSchema.xml", "c:\SampleData.xml"
Set objBL = Nothing
End Sub

To test a working sample

1. Create two tables:

CREATE TABLE Cust(
 CustomerID varchar(5) PRIMARY KEY,
 CompanyName varchar(30),
 City varchar(20))
GO
CREATE TABLE CustOrder(
 CustomerID varchar(5) references Cust (CustomerID),
 OrderID varchar(5) PRIMARY KEY)
GO

2. Create a file in Notepad, and save it as SampleSchema.xml. Add the following XSD schema to the file:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="CustCustOrder"
 parent="Cust"
 parent-key="CustomerID"
 child="CustOrder"
 child-key="CustomerID" />
 </xsd:appinfo>
</xsd:annotation>
 <xsd:element name="ROOT" sql:is-constant="true" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Customers" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Customers" sql:relation="Cust" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerID" type="xsd:integer" />
 <xsd:element name="CompanyName" type="xsd:string" />
 <xsd:element name="City" type="xsd:string" />
 <xsd:element name="Order"
 sql:relation="CustOrder"
 sql:relationship="CustCustOrder" >
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:integer" />

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3. Create a file in Notepad, and save it as SampleXMLData.xml. Add the following XML document to the file:

<ROOT>
 <Customers>
 <CustomerID>1111</CustomerID>
 <CompanyName>Hanari Carnes</CompanyName>
 <City>NY</City>
 <Order OrderID="1" />
 <Order OrderID="2" />
 </Customers>

 <Customers>
 <CustomerID>1112</CustomerID>
 <CompanyName>Toms Spezialitten</CompanyName>
 <City>LA</City>
 <Order OrderID="3" />
 </Customers>
 <Customers>
 <CustomerID>1113</CustomerID>
 <CompanyName>Victuailles en stock</CompanyName>
 <Order OrderID="4" />
</Customers>
</ROOT>

4. Create a Visual Basic (Standard EXE) application and the preceding code. Add these references to the project:

Microsoft XML BulkLoad for SQL Server 3.0 Type Library
Microsoft ActiveX Data objects 2.6 Library

5. Execute the application.

This is the equivalent XDR schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation="Cust"
 key="CustomerID"
 foreign-key="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />

 <attribute type="CustomerID" />
 </ElementType>
</Schema>

SQLXML 3.0 Service Pack 3

Data Types and XML Bulk Load Behavior
The data types that are specified in the mapping schema (XSD or XDR type and sql:datatype) are generally ignored, except in the
following cases:

In XSD:

If the type is dateTime or time, you must specify the sql:datatype because XML Bulk Load performs data conversion
before sending the data to Microsoft® SQL Server™.

When you are bulk loading into a column of uniqueidentifier type in SQL Server and the XSD value is a GUID that includes
braces ({ and }), you must specify sql:datatype="uniqueidentifier" to remove the braces before the value is inserted into
the column. If sql:datatype is not specified, the value is sent with the braces and the insert fails.

For more information about sql:datatype, see Data Type Coercions and the sql:datatype Annotation.

In XDR:

If the dt:type is datetime, time, dateTime.tz, or time.tz, you must specify both the dt:type and sql:datatype data types
because XML Bulk Load performs data conversion before it sends the data to SQL Server.

If your XML data is of type uuid, sql:datatype must be specified, and dt:type="uuid" is also required, unless the data is
string data. If you do not specify dt:uuid, XML Bulk Load accepts strings with braces (and removes them if needed).

If the XML data is bin.base64 or bin.hex, you must specify the XML data type with dt:type. XML Bulk Load then loads the
data into SQL Server as a hexadecimal representation of the data.

SQLXML 3.0 Service Pack 3

Guidelines and Limitations of XML Bulk Load
When you use XML Bulk Load, you should be familiar with the following guidelines and limitations:

Inline schemas are not supported.

If you have an inline schema in the source XML document, XML Bulk Load ignores that schema. You specify the mapping
schema for XML Bulk Load external to the XML data. You cannot specify the mapping schema at a node by using the
xmlns="x:schema" attribute.

An XML document is checked for being well-formed, but it is not validated.

XML Bulk Load checks the XML document to determine whether it is well-formed to ensure that the XML conforms to the
syntax requirements of the Worldwide Consortium's XML 1.0 recommendation. If the document is not well-formed, XML
Bulk Load cancels processing and returns an error. The only exception to this is when the document is a fragment (for
example, the document has no single root element), in which case XML Bulk Load will load the document.

XML Bulk Load does not validate the document with respect to any XML-Data or DTD schema that is defined/referenced
within the XML data file. In addition, XML Bulk Load does not validate the XML data file against the mapping schema
supplied.

Any XML prolog information is ignored.

XML Bulk Load ignores all the information before and after the <root> element in the XML document. For example, XML
Bulk Load ignores any XML declarations, internal DTD definitions, external DTD references, comments, and so on.

If you have a mapping schema that defines a primary key/foreign key relationship between two tables (such as between
Customer and CustOrder), the table with the primary key must be described first in the schema. The table with the foreign
key column must appear later in the schema. The reason for this is that the order in which the tables are identified in the
schema is the order that is used to load them into the database. For example, the following XDR schema will produce an
error when it is used in XML Bulk Load because the <Order> element is described before the <Customer> element. The
CustomerID column in CustOrder is a foreign key column that refers to the CustomerID primary key column in the Cust
table.

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >

 <ElementType name="Order" sql:relation="CustOrder" >
 <AttributeType name="OrderID" />
 <AttributeType name="CustomerID" />
 <attribute type="OrderID" />
 <attribute type="CustomerID" />
 </ElementType>

 <ElementType name="CustomerID" dt:type="int" />
 <ElementType name="CompanyName" dt:type="string" />
 <ElementType name="City" dt:type="string" />

 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>
 <ElementType name="Customers" sql:relation="Cust"
 sql:overflow-field="OverflowColumn" >
 <element type="CustomerID" sql:field="CustomerID" />
 <element type="CompanyName" sql:field="CompanyName" />
 <element type="City" sql:field="City" />
 <element type="Order" >
 <sql:relationship
 key-relation="Cust"
 key="CustomerID"

 foreign-key="CustomerID"
 foreign-relation="CustOrder" />
 </element>
 </ElementType>
</Schema>

If the schema does not specify overflow columns by using the sql:overflow-field annotation, XML Bulk Load ignores any
data that is present in the XML document but is not described in the mapping schema.

XML Bulk Load applies the mapping schema that you have specified whenever it encounters known tags in the XML data
stream. It ignores data that is present in the XML document but is not described in the schema. For example, assume you
have a mapping schema that describes a <Customer> element. The XML data file has an <AllCustomers> root tag (which is
not described in the schema) that encloses all the <Customer> elements:

<AllCustomers>
 <Customer>...</Customer>
 <Customer>...</Customer>
 ...
</AllCustomers>

In this case, XML Bulk Load ignores the <AllCustomers> element and begins mapping at the <Customer> element. XML
Bulk Load ignores the elements that are not described in the schema but are present in the XML document.

Consider another XML source data file that contains <Order> elements. These elements are not described in the mapping
schema:

<AllCustomers>
 <Customer>...</Customer>
 <Order> ... </Order>
 <Order> ... </Order>
 ...
 <Customer>...</Customer>
 <Order> ... </Order>
 <Order> ... </Order>
 ...
 ...
</AllCustomers>

XML Bulk Load ignores these <Order> elements. But if you use the sql:overflow-field annotation in the schema to identify
a column as an overflow column, XML Bulk Load stores all unconsumed data in this column.

CDATA sections and entity references are translated to their string equivalents before storing them in the database.

In this example, a CDATA section wraps the value for the <City> element. XML Bulk Load extracts the string value ("NY")
before it inserts the <City> element into the database.

 <City><![CDATA[NY]]> </City>

XML Bulk Load does not preserve entity references.

If the mapping schema specifies the default value for an attribute and the XML source data does not contain that attribute,
XML Bulk Load uses the default value.

The following sample XDR schema assigns a default value to the HireDate attribute:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:xml:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
 <ElementType name="root" sql:is-constant="1">
 <element type="Customers" />
 </ElementType>

 <ElementType name="Customers" sql:relation="Cust3" >

 <AttributeType name="CustomerID" dt:type="int" />
 <AttributeType name="HireDate" default="2000-01-01" />
 <AttributeType name="Salary" />

 <attribute type="CustomerID" sql:field="CustomerID" />
 <attribute type="HireDate" sql:field="HireDate" />
 <attribute type="Salary" sql:field="Salary" />
 </ElementType>
</Schema>

In this XML data, the HireDate attribute is missing from the second <Customers> element. When XML Bulk Load inserts
the second <Customers> element into the database, it uses the default value that is specified in the schema.

<ROOT>
 <Customers CustomerID="1" HireDate="1999-01-01" Salary="10000" />
 <Customers CustomerID="2" Salary="10000" />
</ROOT>

The sql:url-encode annotation is not supported:

You cannot specify a URL in the XML data input and expect Bulk Load to read data from that location.

The tables that are identified in the mapping schema are created (the database must exist). If one or more of the tables
already exists in the database, the SGDropTables property determines whether these preexisting tables are to be dropped
and re-created.

If you specify the SchemaGen property (for example, SchemaGen = true), the tables that are identified in the mapping
schema are created. But SchemaGen does not create any constraints (such as the PRIMARY KEY/FOREIGN KEY constraints)
on these tables with one exception:

If the XML nodes that constitute the primary key in a relationship is defined as having an XML type of ID (i.e. type="xsd:ID"
for XSD) AND the SGUseID property is set to True for SchemaGen, then not only are primary keys created from the ID
typed nodes, but primary key/foreign key relationships are created from mapping schema relationships.

SchemaGen does not use XSD schema facets and extensions to generate the relational SQL Server schema.

SchemaGen only provides basic functionality for generating the relational schema from annotated XSD. The user should
modify the generated tables manually, if needed.

When you are bulk loading XML data into a database, there must be at least one attribute or subelement in the mapping
schema that is mapped to a database column.

If you are inserting date values by using XML Bulk Load, the values must be specified in the (-)CCYY-MM-DD((+-)TZ) format.
This is the standard XSD format for the date.

SQLXML 3.0 Service Pack 3

SQLXML 3.0 Data Access Components
Microsoft® SQLXML 3.0 includes two data providers that can insert XML data into or use XML data from a database in Microsoft
SQL Server™ 2000:

SQLXMLOLEDB Provider

SQLXML Managed Classes

The SQLXMLOLEDB Provider exposes SQLXML 3.0 functionality through ADO. The SQLXML Managed Classes expose SQLXML
functionality inside the Microsoft .NET Framework.

SQLXML 3.0 Service Pack 3

SQLXMLOLEDB Provider
The SQLXMLOLEDB Provider is an OLE DB provider that exposes Microsoft® SQLXML functionality through ADO; however, the
provider can execute commands only in the "write to an output stream" mode of ADO. The SQLXMLOLEDB Provider is not a
rowset provider. When you execute a command, you must specify the adExecuteStream flag, which directs ADO to use the
output stream that you have specified.

The following example shows the syntax for the Execute command in which the adExecuteStream flag is specified:

Dim oTestCommand As New ADODB.Command
...
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Execute , , adExecuteStream
...

SQLXMLOLEDB Provider-specific Properties

The SQLXMLOLEDB Provider exposes the following provider-specific connection property.

Connection
property

Default
(if any) Description

Data Provider Provides the PROGID of the OLE DB provider through
which SQLXMLOLEDB executes the commands. In
SQLXML version 2.0 and version 3.0, this property
value is restricted to "SQLOLEDB".

The SQLXMLOLEDB Provider exposes the provider-specific command properties shown in the following table.

Command
property

Default
(if any) Description

Base Path "" This property is used to specify the base file path. The
base file path is used to specify the location of the XML
Stylesheet Language (XSL) or the mapping schema
files. The base file path is also used for resolving
relative paths of XSL or mapping schema files that
have been specified in the XSL or Mapping Schema
properties.

For an example in which this property is used, see
Executing XPath Queries (SQLXMLOLEDB Provider).

ClientSideXML False Set this property to True if you want the process of
converting the rowset to XML to occur on the client
instead of on the server. This is useful when you want
to move the performance load to the middle tier.

For an example in which this property is used, see
Executing SQL Queries (SQLXMLOLEDB Provider) or
Executing Templates That Contain SQL Queries.

Content Type This is a READ ONLY property, and it returns the
output content type.

This property provides information to the browser
about the content type (such as TEXT/XML,
TEXT/HTML, image/jpeg, and so on). The value of this
property becomes the content-type field that is sent
to the browser as part of the HTTP header, which
contains the MIME-type (Multipurpose Internet Mail
Extensions) of the document being sent as the body.
For more information, see "Content Type Property" in
SQL Server Books Online.

Mapping Schema NULL If a client application executes an XPath query against
a mapping schema (XDR or XSD), this property is used
to specify the name of the mapping schema.

The path that is specified can be relative
(xyz/abc/MySchema.xml) or absolute
(C:\MyFolder\abc\MySchema.xml).

If a relative path is specified, the base path that is
specified by the Base Path property is used to resolve
the relative path. If no path has been specified in the
Base Path property, the relative path is relative to the
current directory.

In specifying a value for the Mapping Schema
property, you can specify a local directory path or a
URL (http://...). If you specify a URL, you must
configure WinHTTP to access HTTP and HTTPS servers
through a proxy server. You can do this by executing
the Proxycfg.exe utility. For more information, see
"Using the WinHTTP Proxy Configuration Utility" in the
MSDN® Library.

For an example in which this property is used, see
Executing XPath Queries (SQLXMLOLEDB Provider).

namespaces This property enables the execution of XPath queries
that use namespaces. For an example in which this
property is used, see Executing XPath Queries with
Namespaces (SQLXMLOLEDB Provider).

ss Stream Flags This property is used to specify particular types of
security restrictions. For example, you might not want
to allow URL references to files or absolute paths to
files (such as external sites). Or you might not want to
allow queries in the templates.

The property can be assigned these values:

1 = STREAM_FLAGS_DISALLOW_URL
2 = STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH
4 = STREAM_FLAGS_DISALLOW_QUERY
8 = STREAM_FLAGS_
 DONTCACHEMAPPINGSCHEMA
16 = STREAM_FLAGS_DONTCACHETEMPLATE
32 = STREAM_FLAGS_DONTCACHEXSL

Additional information about these values is provided
in the next table.

xml root This property is used to define a root tag for the
resulting XML. For example, if you execute SQL queries
against the database and the resulting XML document
has no single root element, the value of the property is
used to add a single root element to the document.

For an example in which this property is used, see
Executing SQL Queries (SQLXMLOLEDB Provider).

xsl This property is used to specify the XSL file name
when you want to apply XSL transformation to the
XML document that is returned by the query.

The path that is specified can be relative
(xyz/abc/MyXSL.xsl) or absolute
(C:\MyFolder\abc\MyXSL.xsl).

If a relative path is specified, the base path that is
specified by the Base Path property is used to resolve
the relative path. If no path has been specified in the
Base Path property, the relative path is relative to the
current directory.

For an example in which this property is used, see
Applying an XSL Transformation (SQLXMLOLEDB
Provider).

The following table contains descriptions of the ss Stream Flags property values.

Property value Description
STREAM_FLAGS_DISALLOW_
URL

URLs are not accepted for mapping schemas or
XSL.

STREAM_FLAGS_DISALLOW_
ABSOLTE_PATH

A path that is specified for a mapping schema or
for XSL must be relative to the base path of the
template itself.

STREAM_FLAGS_DISALLOW_
QUERY

Queries are not allowed in a template.

STREAM_FLAGS_
DONTCACHEMAPPINGSCHEMA

The mapping schema is not cached. This property
value is useful during the database development
phase, when database schemas are subject to
alteration.

STREAM_FLAGS_
DONTCACHETEMPLATE

Templates are not cached.

STREAM_FLAGS_
DONTCACHEXSL

XSL is not cached.

SQLXML 3.0 Service Pack 3

Using the SQLXMLOLEDB Provider
The topics in this section provide ADO sample applications that illustrate the use of provider-specific properties. To create
working samples, you must create a Microsoft® Visual Basic® .exe application and add this reference:

Microsoft ActiveX® Data Objects 2.6 Library

The sample applications in this section illustrate:

Executing SQL Queries (SQLXMLOLEDB Provider)

Executing Templates That Contain SQL Queries

Executing XPath Queries (SQLXMLOLEDB Provider)

Executing XPath Queries with Namespaces (SQLXMLOLEDB Provider)

Executing Templates That Contain XPath Queries

Applying an XSL Transformation (SQLXMLOLEDB Provider)

SQLXML 3.0 Service Pack 3

Executing SQL Queries (SQLXMLOLEDB Provider)
Executing SQL Queries (SQLXMLOLEDB Provider)

This example illustrates the use of the following SQLXMLOLEDB Provider-specific properties:

ClientSideXML

xml root

In this client-side ADO sample application, a simple SQL query is executed on the client. Because the ClientSideXML property is
set to True, the SELECT statement without the FOR XML clause is sent to the server. The server executes the query and returns a
rowset to the client. The client then applies the FOR XML transformation to the rowset and produces an XML document.

The xml root property provides the single top-level root element for the XML document that is generated.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

Option Explicit
Sub main()
Dim oTestStream As New ADODB.Stream
Dim oTestConnection As New ADODB.Connection
Dim oTestCommand As New ADODB.Command

oTestConnection.Open "provider=SQLXMLOLEDB.3.0;data provider=SQLOLEDB;data source=SqlServerName;initial
catalog=Northwind;Integrated Security=SSPI ;"
oTestCommand.ActiveConnection = oTestConnection
oTestCommand.Properties("ClientSideXML") = "True"
oTestCommand.CommandText = "SELECT FirstName, LastName FROM Employees FOR XML AUTO"
oTestStream.Open
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Properties("xml root") = "root"
oTestCommand.Execute , , adExecuteStream

oTestStream.Position = 0
oTestStream.Charset = "utf-8"
Debug.Print oTestStream.ReadText(adReadAll)
End Sub
Sub Form_Load()
 main
End Sub

SQLXML 3.0 Service Pack 3

Executing Templates That Contain SQL Queries
Executing Templates That Contain SQL Queries

This example illustrates the use of the SQLXMLOLEDB Provider-specific property ClientSideXML. In this client-side ADO sample
application, an XML template that consists of an SQL query is executed on the server.

Because the ClientSideXML property is set to True, the SELECT statement without the FOR XML clause is sent to the server. The
server executes the query and returns a rowset to the client. The client then applies the FOR XML transformation to the rowset
and produces an XML document.

The XML template provides a single top-level root element (<ROOT>) for the XML document that is generated; therefore, the xml
root property is not provided.

To execute XML templates, the dialect {5d531cb2-e6ed-11d2-b252-00c04f681b71} must be specified.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

Option Explicit
Sub main()

Dim oTestStream As New ADODB.Stream
Dim oTestConnection As New ADODB.Connection
Dim oTestCommand As New ADODB.Command
oTestConnection.Open "provider=SQLXMLOLEDB.3.0;data provider=SQLOLEDB;data source=SqlServerName;initial
catalog=Northwind;Integrated Security=SSPI;"

oTestCommand.ActiveConnection = oTestConnection
oTestCommand.Properties("ClientSideXML") = True
oTestCommand.CommandText = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'> " & _
 " <sql:query> " & _
 " SELECT FirstName, LastName FROM Employees FOR XML AUTO " & _
 " </sql:query> " & _
 " </ROOT> "
oTestStream.Open
' You need the dialect if you are executing
' XML templates (not for SQL queries).
oTestCommand.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Execute , , adExecuteStream

oTestStream.Position = 0
oTestStream.Charset = "utf-8"
Debug.Print oTestStream.ReadText(adReadAll)
End Sub
 Sub Form_Load()
 main
End Sub

SQLXML 3.0 Service Pack 3

Executing XPath Queries (SQLXMLOLEDB Provider)
Executing XPath Queries (SQLXMLOLEDB Provider)

This example illustrates the use of the following SQLXMLOLEDB Provider-specific properties:

ClientSideXML

Base Path

Mapping Schema

In this sample ADO application, an XPath query (root) is specified against an XSD mapping schema (MySchema.xml). The schema
has an <Employee> element with EmployeeID, FirstName, and LastName attributes. In the schema, default mapping takes
place: an element name maps to the table with the same name, and attributes of simple type map to the columns with the same
names.

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:sql='urn:schemas-microsoft-com:mapping-schema'>
 <xsd:element name= 'root' sql:is-constant='1'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = 'Employee'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name='Employee' sql:relation='Employees'>
 <xsd:complexType>
 <xsd:attribute name='EmployeeID' type='xsd:integer' />
 <xsd:attribute name='FirstName' type='xsd:string'/>
 <xsd:attribute name='LastName' type='xsd:string' />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The Mapping Schema property provides the mapping schema against which the XPath query is executed. The mapping schema
can be an XSD or XDR schema. The Base Path property provides the file path to the mapping schema.

The ClientSideXML property is set to True. Therefore, the XML document is generated on the client.

In the application, an XPath query is specified directly. Therefore, the XPath dialect {ec2a4293-e898-11d2-b1b7-00c04f680c56}
must be included.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

Option Explicit
Sub main()
Dim oTestStream As New ADODB.Stream
Dim oTestConnection As New ADODB.Connection
Dim oTestCommand As New ADODB.Command

oTestConnection.Open "provider=SQLXMLOLEDB.3.0;data provider=SQLOLEDB;data source=SqlServerName;initial
catalog=Northwind;Integrated Security= SSPI;"

oTestCommand.ActiveConnection = oTestConnection
oTestCommand.Properties("ClientSideXML") = True

oTestCommand.CommandText = "root"
oTestStream.Open
oTestCommand.Dialect = "{ec2a4293-e898-11d2-b1b7-00c04f680c56}"
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Properties("Base Path").Value = "c:\Schemas\SQLXMLWR2\New Folder\XPathDirect\"
oTestCommand.Properties("Mapping Schema").Value = "mySchema.xml"
oTestCommand.Properties("Output Encoding") = "utf-8"
oTestCommand.Execute , , adExecuteStream
oTestStream.Position = 0
oTestStream.Charset = "utf-8"
Debug.Print oTestStream.ReadText(adReadAll)

End Sub
Sub Form_Load()
 main
End Sub

SQLXML 3.0 Service Pack 3

Executing XPath Queries with Namespaces (SQLXMLOLEDB
Provider)
Executing XPath Queries with Namespaces (SQLXMLOLEDB Provider)

XPath queries can include namespaces. If the schema elements are namespace qualified (use a target namespace), the XPath
queries against the schema must specify the namespace.

Because using the wildcard character (*) is not supported in Microsoft® SQLXML 3.0, you must specify the XPath query by using a
namespace prefix. To resolve this prefix, use the namespaces property to specify the namespace binding.

In the following example, the XPath query specifies namespaces by using the wildcard character (*) and the local-name() and
namespace-uri() XPath functions. This XPath query returns all the elements where the local name is Employee and the
namespace URI is urn:myschema:Employees.

/*[local-name() = 'Employee' and namespace-uri() = 'urn:myschema:Employees']

In SQLXML 3.0, this XPath query must be specified with a namespace prefix. An example is x:Employee, where x is the
namespace prefix. Consider the following XSD schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
 xmlns:emp="urn:myschema:Employees"
 targetNamespace="urn:myschema:Employees">
<complexType name="EmployeeType">
 <attribute name="EID" sql:field="EmployeeID" type="ID"/>
 <attribute name="FName" sql:field="FirstName" type="string"/>
 <attribute name="LName" sql:field="LastName"/>
</complexType>
<element name="Employee" type="emp:EmployeeType" sql:relation="Employees"/>
</schema>

Because this schema defines the target namespace, an XPath query (such as "Employee") against the schema must include the
namespace.

This is a sample Microsoft Visual Basic® application that executes an XPath query (x:Employee) against the preceding XSD
schema. To resolve the prefix, the namespace binding is specified by using the namespaces property.

In the code, you must provide the name of the instance of Microsoft SQL Server™ in the connection string.

Option Explicit
Private Sub Form_Load()
 Dim con As New ADODB.Connection
 Dim cmd As New ADODB.Command
 Dim stm As New ADODB.Stream
 con.Open "provider=sqlxmloledb.3.0;data provider=sqloledb;data source=SqlServerName;initial
catalog=Northwind;Integrated Security=SSPI;"
 Set cmd.ActiveConnection = con
 stm.Open
 cmd.Properties("Output Stream").Value = stm
 cmd.Properties("Output Encoding") = "utf-8"
 cmd.Properties("Mapping schema") = "C:\DirectoryPath\emp-ex.xml"
 cmd.Properties("namespaces") = "xmlns:x='urn:myschema:Employees'"
 ' Debug.Print "Set Command Dialect to DBGUID_XPATH"
 cmd.Dialect = "{ec2a4293-e898-11d2-b1b7-00c04f680c56}"
 cmd.CommandText = "x:Employee"
 cmd.Execute , , adExecuteStream
 stm.Position = 0
 Debug.Print stm.ReadText(adReadAll)
End Sub

To test this application

1. Save the sample XSD schema in a folder.

2. Create a Visual Basic executable project, and copy the code in it. Change the specified directory path as appropriate.

3. Add the following project reference:

"Microsoft ActiveX Data Objects 2.6 Library"

4. Execute the application.

This is the partial result:

<y0:Employee xmlns:y0="urn:myschema:Employees"
 LName="Davolio" EID="1" FName="Nancy"/>
<y0:Employee xmlns:y0="urn:myschema:Employees"
 LName="Fuller" EID="2" FName="Andrew"/>

...

The prefixes that are generated in the XML document are arbitrary, but they map to the same namespace.

For information about specifying a target namespace in XDR schemas, see "Specifying a Target namespace Using sql:target-
namespace" in SQL Server Books Online.

SQLXML 3.0 Service Pack 3

Executing Templates That Contain XPath Queries
Executing Templates That Contain XPath Queries

This example shows how to use the following SQLXMLOLEDB Provider-specific properties:

ClientSideXML

Base Path

Mapping Schema

In this sample ADO application, an XML template that consists of an XPath query (root) is specified against the XSD mapping
schema (MySchema.xml) that is described in Executing XPath Queries (SQLXMLOLEDB Provider).

The Mapping Schema property provides the XSD mapping schema against which the XPath query is executed. The Base Path
property provides the file path to the mapping schema.

The ClientSideXML property is set to True. Therefore, the XML document is generated on the client.

In the application, an XPath query is specified directly. Therefore, the dialect 5d531cb2-e6ed-11d2-b252-00c04f681b71 must be
included.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

Option Explicit
Sub main()

Dim oTestStream As New ADODB.Stream
Dim oTestConnection As New ADODB.Connection
Dim oTestCommand As New ADODB.Command

oTestConnection.Open "provider=SQLXMLOLEDB.3.0;data provider=SQLOLEDB;data source=SqlServerName;initial
catalog=Northwind;Integrated Security=SSPI;"

oTestCommand.ActiveConnection = oTestConnection
oTestCommand.Properties("ClientSideXML") = "False"

oTestCommand.CommandText = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'> " & _
 " <sql:xpath-query mapping-schema='mySchema.xml' > " & _
 " root " & _
 " </sql:xpath-query> " & _
 " </ROOT> "
oTestStream.Open
' You need the dialect if you are executing a template.
oTestCommand.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Properties("Base Path").Value = "c:\Schemas\SQLXMLWR2\New Folder\TemplateWithXPath\"
oTestCommand.Properties("Mapping Schema").Value = "mySchema.xml"
oTestCommand.Properties("Output Encoding") = "utf-8"

oTestCommand.Execute , , adExecuteStream

oTestStream.Position = 0
oTestStream.Charset = "utf-8"
Debug.Print oTestStream.ReadText(adReadAll)

End Sub
 Sub Form_Load()
 main
End Sub

This is the schema:

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:sql='urn:schemas-microsoft-com:mapping-schema'>
 <xsd:element name= 'root' sql:is-constant='1'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = 'Employee'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='Employee' sql:relation='Employees'>
 <xsd:complexType>
 <xsd:attribute name='EmployeeID' type='xsd:integer' />
 <xsd:attribute name='FirstName' type='xsd:string'/>
 <xsd:attribute name='LastName' type='xsd:string' />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

SQLXML 3.0 Service Pack 3

Applying an XSL Transformation (SQLXMLOLEDB Provider)
Applying an XSL Transformation (SQLXMLOLEDB Provider)

In this sample ADO application, an SQL query is executed, and an XSL transformation is applied to the result. Setting the
ClientSideXML property to True enforces the processing of the rowset on the client side. The command dialect is set to
5d531cb2-e6ed-11d2-b252-00c04f681b71, because the SQL query is specified in a template and this dialect must be specified
when executing a template. The xsl property specifies the XSL file to use to apply the transformation. The value of Base Path
property is used to search for the XSL file. If you specify a path in the value of the xsl property, the path is relative to the path that
is specified in the Base Path property.

This example shows how to use the following SQLXMLOLEDB Provider-specific properties:

ClientSideXML

xsl

In this client-side ADO sample application, an XML template that consists of an SQL query is executed on the server.

Because the ClientSideXML property is set to True, the SELECT statement without the FOR XML clause is sent to the server. The
server executes the query and returns a rowset to the client. The client then applies the FOR XML transformation to the rowset
and produces the XML document.

The xsl property is specified in the application; therefore, the XSL transformation is applied to the XML document that is
generated on the client, and the result is a two-column table.

To execute the template command, the XML template dialect {5d531cb2-e6ed-11d2-b252-00c04f681b71} must be specified.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

Option Explicit
Sub main()
Dim oTestStream As New ADODB.Stream
Dim oTestConnection As New ADODB.Connection
Dim oTestCommand As New ADODB.Command
oTestConnection.Open "provider=SQLXMLOLEDB.3.0;data provider=SQLOLEDB;data source=SqlServerName;initial
catalog=Northwind;Integrated Security=SSPI;"
oTestCommand.ActiveConnection = oTestConnection
oTestCommand.Properties("ClientSideXML") = "True"
oTestCommand.CommandText = _
 "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' >" & _
 " <sql:query> " & _
 " SELECT FirstName, LastName FROM Employees FOR XML AUTO " & _
 " </sql:query> " & _
 " </ROOT> "
oTestStream.Open
' You need the dialect if you are executing a template.
oTestCommand.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
oTestCommand.Properties("Output Stream").Value = oTestStream
oTestCommand.Properties("Base Path").Value = "c:\Schemas\SQLXMLWR2\New Folder\ExecuteTemplateWithXSL\"
oTestCommand.Properties("xsl").Value = "myxsl.xsl"
oTestCommand.Execute , , adExecuteStream

oTestStream.Position = 0
oTestStream.Charset = "utf-8"
Debug.Print oTestStream.ReadText(adReadAll)
End Sub
Sub Form_Load()
 main
End Sub

The XSL template follows. The result of applying this XSL template is a two-column table.

<?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match = 'Employees'>
 <TR>
 <TD><xsl:value-of select = '@FirstName' /></TD>
 <TD><xsl:value-of select = '@LastName' /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>

 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:300;'>
 <TR><TH colspan='2'>Employees</TH></TR>
 <TR><TH >First name</TH><TH>Last name</TH></TR>
 <xsl:apply-templates select = 'ROOT' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

SQLXML 3.0 Service Pack 3

SQLXML .NET Support
Microsoft® SQLXML 3.0 supports features that allow you to write applications to access XML data from an instance of Microsoft
SQL Server™, bring the data into the Microsoft .NET Framework environment, process the data, and send the updates back to SQL
Server. These features are:

SQLXML Managed Classes. (For more information, see SQLXML Managed Classes.)

DiffGrams. (For more information, see Using DiffGrams to Modify Data.)

SQLXML 3.0 Service Pack 3

SQLXML Managed Classes
Microsoft® SQLXML Managed Classes exposes the functionality of SQLXML 3.0 inside the Microsoft .NET Framework. With
SQLXML Managed Classes, you can write a C# application to access XML data from an instance of Microsoft SQL Server™, bring
the data into the .NET Framework environment, process the data, and send the updates back to SQL Server (as a DiffGram) to
apply the updates. You must use a mapping schema when applying updates to SQL Server database using the SQLXML managed
classes. For a working sample, see An Application to Access SQLXML Functionality in the .NET Environment.

To use the SQLXML Managed Classes with SQLXML 3.0, you must install Microsoft Visual Studio® .NET.

The .NET Framework includes the SQL Server .NET Data Provider. This provider can be used to access SQL Server from the .NET
environment; however, it can handle only traditional SQL queries (relational database queries with the exception of FOR XML
queries). You cannot execute XML templates or the server-side XPath queries in Microsoft SQL Server 2000.

For more information about the SQLXML Managed Classes object model, see SQLXML Managed Classes Object Model.

SQLXML 3.0 Service Pack 3

SQLXML Managed Classes Object Model
The Microsoft® SQLXML Managed Classes object model consists of these objects:

SqlXmlCommand Object

SqlXmlParameter Object

SqlXmlAdapter Object

SQLXML 3.0 Service Pack 3

SqlXmlCommand Object
SqlXmlCommand Object

This is the constructor for the SqlXmlCommand object:

public SqlXmlCommand(string cnString)

cnString is the ADO or OLEDB connection string that identifies the server, database, and the login information (for example,
Provider=SQLOLEDB; Server=(local); database=Northwind; user id=UserLogin; password=UserPassword).

In the connection string, the Provider must be SQLOLEDB and the Data Provider should not be included in the provider string).
For a working sample, see Executing SQL Queries (SQLXML Managed Classes).

Methods

The SqlXmlCommand object supports several methods, including the following methods for executing a command:

void ExecuteNonQuery()

Executes the command, but does not return anything. This method is useful if you want to execute a nonquery command (which,
as the name suggests, is a command that does not return anything). An example is executing an updategram or a DiffGram that
updates records but returns nothing.

Stream ExecuteStream()

Returns a new Stream object. This method is useful when you want the query results returned to you in a new stream. For a
working sample, see Executing SQL Queries (SQLXML Managed Classes).

public void ExecuteToStream(Stream outputStream)

Writes the query results to an existing stream. This method is useful when you have a stream to which you need the results
appended (for example, to have the query results written to the System.Web.HttpResponse.OutputStream). For a working
sample, see Executing SQL Queries (SQLXML Managed Classes).

XmlReader ExecuteXmlReader()

Returns an XmlReader object. You can use this method to either manipulate data in the XmlReader object directly or plug in the
chainable architecture of System.Xml. For more information, see the Microsoft® .NET Framework documentation. For a working
sample, see Executing SQL Queries by Using the ExecuteXMLReader Method.

The SqlXmlCommand object also supports these additional methods:

SqlXmlParameter CreateParameter()

Creates an SqlXmlParameter object. You can set values for the Name and Value parameters of this object. This method is
useful if you want to pass parameters to a command. For a working sample, see Executing SQL Queries (SQLXML Managed
Classes).

void ClearParameters()

Clears parameter(s) that were created for a given command object. This method is useful if you want to execute multiple queries
on the same command object.

Properties

The SqlXmlCommand object also supports these properties:

ClientSideXml

When set to True, specifies that conversion of the rowset to XML is to occur on the client instead of on the server. This property is
useful when you want to move the performance load to the middle tier. The property also allows you to wrap the existing stored
procedures with FOR XML to get XML output.

SchemaPath

Is the name of the mapping schema along with the directory path (for example, C:\x\y\MySchema.xml). This property is useful for
specifying a mapping schema for XPath queries. The path that is specified can be absolute or relative. If the path is relative, the
base path that is specified in Base Path is used to resolve the relative path. If no base path is specified, the relative path is relative

to the current directory. For a working sample, see An Application to Access SQLXML Functionality in the .NET Environment.

XslPath

Is the name of the XSL file along with the directory path. The path that is specified can be absolute or relative. If the path is
relative, the base path that is specified in Base Path is used to resolve the relative path. If no base path is specified, the relative
path is relative to the current directory. For a working sample, see Applying an XSL Transformation (SQLXML Managed Classes).

Base Path

Is the base path (a directory path). This property is useful for resolving a relative path that is specified for an XSL file (by using the
XslPath property), a mapping schema file (by using the SchemaPath property), or an external schema reference in an XML
template (specified by using the mapping-schema attribute).

OutputEncoding

Specifies the encoding for the stream that is returned when the command executes. This property is useful for requesting a
specific encoding for the stream that is returned. Some commonly used encodings are UTF-8, ANSI, and Unicode. UTF-8 is the
default encoding.

Namespaces

Enables the execution of XPath queries that use namespaces. For more information about XPath queries with namespaces, see
Executing XPath Queries with Namespaces (SQLXML Managed Classes). For a working sample, see Executing XPath Queries
(SQLXML Managed Classes).

RootTag

Provides the single root element for XML generated by command execution. A valid XML document requires a single root-level
tag. If the command executed generates an XML fragment (without a single top-level element) you can specify a root element for
the returning XML. For a working sample, see Applying an XSL Transformation (SQLXML Managed Classes).

CommandText

Is the text of the command. This property is used for specifying the text of the command you want to execute. For a working
sample, see Executing SQL Queries (SQLXML Managed Classes).

CommandStream

Is the command stream. This property is useful if you want to execute a command from a file (for example, an XML template).
When you are using CommandStream, only "Template", "UpdateGram" and "DiffGram" CommandType values are
supported. For a working sample, see Executing XML Template Files by Using the CommandStream Property.

CommandType

Identifies the type of command. This property is used for specifying the type of command you want to execute. The values in the
following table determine the type of the command. For a working sample, see An Application to Access SQLXML Functionality in
the .NET Environment.

Value Description
SqlXmlCommandType.Sql Executes an SQL command (for example,

SELECT * FROM Employees FOR XML
AUTO).

SqlXmlCommandType.XPath Executes an XPath command (for example,
Employees[@EmployeeID=1]).

SqlXmlCommandType.Template Executes an XML template.
SqlXmlCommandType.TemplateFile Executes a template file at the specified

path.
SqlXmlCommandType.UpdateGram Executes an updategram.
SqlXmlCommandType.Diffgram Executes a DiffGram.

SqlXmlParameter Object

SqlXmlAdapter Object

SQLXML 3.0 Service Pack 3

SqlXmlParameter Object
SqlXmlParameter Object

The SqlXmlParameter object supports these properties:

Name

Is the name of the parameter. Commands can be passed parameters. Calling the CreateParameter method of the
SqlXmlCommand object creates the parameter object.

Value

Is the value of the parameter. For a working sample, see Executing SQL Queries (SQLXML Managed Classes).

SqlXmlCommand Object

SqlXmlAdapter Object

An Application to Access SQLXML Functionality in the .NET Environment

SQLXML 3.0 Service Pack 3

SqlXmlAdapter Object
SqlXmlAdapter Object

This object provides methods that make it easy to interact with the dataset in the Microsoft® .NET Framework. For a working
sample, see An Application to Access SQLXML Functionality in the .NET Environment.

The SqlXmlAdapter object supports these methods:

void Fill(DataSet ds)

Fills the dataset in the .NET Framework with the XML data retrieved from Microsoft SQL Server™ 2000.

void Update(DataSet ds)

Applies updates to records in SQL Server 2000 from the data in the dataset.

The SqlXmlAdapter object supports these constructors:

public SqlXmlAdapter(SqlXmlCommand cmd)

public SqlXmlAdapter(
 string commandText,
 SqlXmlCommandType cmdType,
 string connectionString
)

public SqlXmlAdapter(
 Stream commandStream,
 SqlXmlCommandType cmdType,
 string connectionString
)

SqlXmlCommand Object

SqlXmlParameter Object

SQLXML 3.0 Service Pack 3

Using the SQLXML Managed Classes
This topic consists of sample applications that demonstrate how to use the Microsoft® SQLXML Managed Classes.

How to use the object methods and properties is illustrated in the following examples:

Executing SQL Queries (SQLXML Managed Classes)

Executing SQL Queries by Using the ExecuteXMLReader Method

Processing XML on the Client Side (SQLXML Managed Classes)

Executing XPath Queries (SQLXML Managed Classes)

Executing XPath Queries with Namespaces (SQLXML Managed Classes

Executing Template Files by Using the CommandText Property

Executing Template Files by Using the CommandStream Property

Applying an XSL Transformation (SQLXML Managed Classes)

For information about accessing and modifying data in Microsoft SQL Server™ 2000 within the Microsoft .NET Framework and
about using DiffGrams to update data in SQL Server tables, see An Application to Access SQLXML Functionality in the .NET
Environment.

You can also write Microsoft Visual Studio® .NET applications to bulk load XML documents by using XML Bulk Load. (See
Performing Bulk Load of XML Data.) You must add a reference to the XML Bulk Load DLL (Xblkld3.dll) in your application. This is a
COM DLL for which Visual Studio .NET automatically creates the wrapper library.

SQLXML 3.0 Service Pack 3

Executing SQL Queries (SQLXML Managed Classes)
Executing SQL Queries (SQLXML Managed Classes)

This example demonstrates:

Creating parameters (SqlXmlParameter objects).

Assigning values to the properties (Name and Value) of SqlXmlParameter objects.

In this example, a simple SQL query is executed to retrieve the first name, last name, and birth date of the employee whose last
name value is passed as a parameter. In specifying the parameter (LastName), only the Value property is set. The Name
property is not set, because in this query the parameter are positional and no name is required.

The CommandType property of the SqlXmlCommand object by default is Sql. Therefore, the property is not explicitly set.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

This is the C# code:

using System;

using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testParams()
 {
 Stream strm;
 SqlXmlParameter p;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "SELECT FirstName, LastName, BirthDate FROM Employees WHERE LastName=? For XML Auto";
 p = cmd.CreateParameter();
 p.Value = "Fuller";
 string strResult;
 try
 {
 strm = cmd.ExecuteStream();
 strm.Position = 0;
 using(StreamReader sr = new StreamReader(strm))
 {
 Console.WriteLine(sr.ReadToEnd());
 }
 }
 catch (SqlXmlException e)
 {
 //in case of an error, this prints error returned.
 e.ErrorStream.Position=0;
 strResult=new StreamReader(e.ErrorStream).ReadToEnd();
 System.Console.WriteLine(strResult);
 }

 return 0;
 }
public static int Main(String[] args)
{
 testParams();
 return 0;
}
}

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the C# code (DocSample.cs) provided in this topic in a folder.

2. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

3. At the command prompt, execute DocSample.exe.

Instead of specifying SQL queries as the command text, you can specify a template (as shown in the following code fragment) that
executes an updategram (which is also a template) to insert a customer record. You can specify templates and updategrams in
files and execute files. For more information, see Executing Template Files by Using the CommandText Property.

 SqlXmlCommand cmd = new SqlXmlCommand("Provider=SQLOLEDB;Data Source=SqlServerName;Initial Catalog=Database;
Integrated Security=SSPI;");
 Stream stm;
 cmd.CommandType = SqlXmlCommandType.UpdateGram;
 cmd.CommandText = "<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql' xmlns:updg='urn:schemas-microsoft-
com:xml-updategram'>" +
 "<updg:sync>" +
 "<updg:before/>" +
 "<updg:after>" +
 "<Customer CustomerID='aaaaa' CustomerName='Some Name' CustomerTitle='SomeTitle' />" +
 "</updg:after>" +
 "</updg:sync>" +
 "</ROOT>";

 stm = cmd.ExecuteStream();
 stm = null;
 cmd = null;

Using ExecuteToStream

If you have an existing stream, you can use the ExecuteToStream method instead of creating a Stream object and using the
Execute method. The code from the preceding example is revised here to use the ExecuteToStream method:

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=SqlServerName;database=Northwind;Integrated
Security=SSPI;";
 public static int testParams()
 {
 SqlXmlParameter p;
 MemoryStream ms = new MemoryStream();
 StreamReader sr = new StreamReader(ms);
 ms.Position = 0;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "select FirstName, LastName, BirthDate from Employees where LastName = ? For XML Auto";
 p = cmd.CreateParameter();
 p.Value = "Fuller";
 cmd.ExecuteToStream(ms);
 ms.Position = 0;
 Console.WriteLine(sr.ReadToEnd());
 return 0;
 }
 public static int Main(String[] args)
 {
 testParams();
 return 0;
 }
}

You can also use the ExecuteXMLReader method that returns an XmlReader object. For more information, see Executing SQL
Queries by Using the ExecuteXMLReader Method.

SQLXML 3.0 Service Pack 3

Executing SQL Queries by Using the ExecuteXMLReader
Method
Executing SQL Queries by Using the ExecuteXMLReader Method

Instead of using the ExecuteToStream method, you can use the ExecuteXmlReader method of the SqlXmlCommand object to
execute commands. This method returns an XmlReader object that can be used for further processing of the result (which in this
example, is printing the element or attribute names and the values).

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
using System.Xml;
 class Test
 {
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testParams()
 {
 SqlXmlParameter p;
 XmlReader Reader;
 XmlTextWriter tw;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "select FirstName, LastName, BirthDate from Employees where LastName = ? For XML
Auto";
 p = cmd.CreateParameter();
 p.Value = "Fuller";
 Reader = cmd.ExecuteXmlReader();
 tw = new XmlTextWriter(Console.Out);
 Reader.MoveToContent();
 tw.WriteNode(Reader, false);
 tw.Flush();
 tw.Close();
 Reader.Close();

 return 0;
 }

 static int Main(string[] args)
 {
 testParams();
 return 0;
 }
 }

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the C# code (DocSample.cs) that is provided in this topic in a folder.

2. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

3. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Processing XML on the Client Side (SQLXML Managed Classes)
Processing XML on the Client Side (SQLXML Managed Classes)

This example illustrates the use of the ClientSideXml property. The application executes a stored procedure on the server. The
result of the stored procedure (a two-column rowset) is processed on the client side to produce an XML document.

The following GetEmployees stored procedure returns FirstName and LastName of employees in the Employees table in the
Northwind database.

CREATE PROCEDURE GetEmployees @LastName varchar(20)
AS
SELECT FirstName, LastName
FROM Employees
WHERE LastName = @LastName
Go

This C# application executes the stored procedure and specifies the FOR XML AUTO option in specifying the CommandText
value. In the application, the ClientSideXml property of the SqlXmlCommand object is set to true. This allows you to execute
preexisting stored procedures that return a rowset and apply an XML transformation to it on the client.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testParams()
 {
 //Stream strm;
 SqlXmlParameter p;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.ClientSideXml = true;
 cmd.CommandText = "exec GetEmployees ? For XML Nested";
 p = cmd.CreateParameter();
 p.Value = "Fuller";
 using (Stream strm = cmd.ExecuteStream())
 {
 using (StreamReader sr = new StreamReader(strm))
 {
 Console.WriteLine(sr.ReadToEnd());
 }
 }
 return 0;
 }

public static int Main(String[] args)
{
 testParams();
 return 0;
}
}

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Create the stored procedure.

2. Save the C# code (DocSample.cs) that is provided in this example in a folder. Edit the code to specify appropriate login and
password information.

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Executing XPath Queries (SQLXML Managed Classes)
Executing XPath Queries (SQLXML Managed Classes)

This example illustrates how XPath queries are executed against a mapping schema.

Consider this schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 sql:field="FirstName"
 type="xsd:string" />
 <xsd:element name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This C# application executes an XPath query against this schema (MySchema.xml).

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";

 public static int testXPath()
 {
 Stream strm;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "Emp";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.RootTag = "ROOT";
 cmd.SchemaPath = "MySchema.xml";
 strm = cmd.ExecuteStream();
 using (StreamReader sr = new StreamReader(strm)){
 Console.WriteLine(sr.ReadToEnd());
 }
 return 0;
 }
 public static int Main(String[] args)
 {
 testXPath();
 return 0;
 }
 }

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the XSD schema (MySchema.xml) that is provided in this example in a folder.

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the schema is stored. (If you
store the files in a different folder, you will have to edit the code and specify the appropriate directory path for the mapping
schema.)

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Executing XPath Queries with Namespaces (SQLXML Managed
Classes)
Executing XPath Queries with Namespaces (SQLXML Managed Classes)

XPath queries can include namespaces. If the schema elements are namespace-qualified (use a target namespace), the XPath
queries against the schema must specify the namespace.

Because using the wildcard character (*) is not supported in Microsoft® SQLXML 3.0, you must specify the XPath query by using a
namespace prefix. To resolve the prefix, use the namespaces property to specify the namespace binding.

In the following example, the XPath query specifies namespaces by using the wildcard character (*) and the local-name() and
namespace-uri() XPath functions. This XPath query returns all the elements where the local name is Employee and the
namespace URI is urn:myschema:Employees:

/*[local-name() = 'Employee' and namespace-uri() = 'urn:myschema:Employees']

In SQLXML 3.0, specify this XPath query with a namespace prefix. An example is x:Employee, where x is the namespace prefix.
Consider the following XSD schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
 xmlns:emp="urn:myschema:Employees"
 targetNamespace="urn:myschema:Employees">
<complexType name="EmployeeType">
 <attribute name="EID" sql:field="EmployeeID" type="ID"/>
 <attribute name="FName" sql:field="FirstName" type="string"/>
 <attribute name="LName" sql:field="LastName"/>
</complexType>
<element name="Employee" type="emp:EmployeeType" sql:relation="Employees"/>
</schema>

Because this schema defines the target namespace, an XPath query (such as "Employee") against this schema must include the
namespace.

The following C# sample application executes an XPath query against the preceding XSD schema (MySchema.xml). To resolve the
prefix, specify the namespace binding by using the Namespaces property of the SqlXmlCommand object.

In the code, you must provide the name of the instance of Microsoft SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testXPath()
 {
 //Stream strm;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "x:Employee[@EID='1']";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.RootTag = "ROOT";
 cmd.Namespaces = "xmlns:x='urn:myschema:Employees'";
 cmd.SchemaPath = "MySchema.xml";
 using (Stream strm = cmd.ExecuteStream()){
 using (StreamReader sr = new StreamReader(strm)){
 Console.WriteLine(sr.ReadToEnd());
 }
 }
 return 0;
 }
 public static int Main(String[] args)
 {
 testXPath();
 return 0;
 }
 }

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the XSD schema (MySchema.xml) that is provided in this example in a folder.

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the schema is stored. (If you
store the files in a different folder, you will have to edit the code and specify the appropriate directory path for the mapping
schema.)

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Executing Template Files by Using the CommandText Property
Executing Template Files by Using the CommandText Property

This example illustrates how template files that consist of SQL or XPath queries can be specified by using the CommandText
property. Instead of specifying the SQL or XPath query as the value of CommandText, you can specify a file name as the value. In
the following example, the CommandType property is specified as SqlXmlCommandType.TemplateFile.

The sample application executes this template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT top 2 CustomerID, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</ROOT>

This is the C# sample application. To test the application, save the template (TemplateFile.xml) and then execute the application.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";

 public static int testParams()
 {
 //Stream strm;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandType = SqlXmlCommandType.TemplateFile;
 cmd.CommandText = "TemplateFile.xml";
 using (Stream strm = cmd.ExecuteStream()){
 using (StreamReader sr = new StreamReader(strm)){
 Console.WriteLine(sr.ReadToEnd());
 }
 }

 return 0;
 }
 public static int Main(String[] args)
 {
 testParams();
 return 0;
 }
 }

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the XML template (TemplateFile.xml) that is provided in this example in a folder.

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the schema is stored. (If you
store the files in a different folder, you will have to edit the code and specify the appropriate directory path for the mapping
schema.)

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

If you pass a parameter to a template, the parameter name must begin with at sign (@); for example, p.Name="@EmployeeID",
where p is a SqlXmlParameter object.

This is the updated template which takes one parameter.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name='CustomerID'>ALFKI</sql:param>
 </sql:header>
 <sql:query>
 SELECT CustomerID, CompanyName
 FROM Customers
 WHERE CustomerID=@CustomerID
 FOR XML AUTO
 </sql:query>
</ROOT>

This is the updated code in which a parameter is passed in to execute the template.

 public static int testParams()
 {

 Stream strm;
 SqlXmlParameter p;

 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandType = SqlXmlCommandType.TemplateFile;
 cmd.CommandText = "TemplateFile.xml";
 p = cmd.CreateParameter();
 p.Name="@CustomerID";
 p.Value = "ANATR";
 strm = cmd.ExecuteStream();
 StreamReader sw = new StreamReader(strm);
 Console.WriteLine(sw.ReadToEnd());
 return 0;
 }

SQLXML 3.0 Service Pack 3

Executing Template Files by Using the CommandStream
Property
Executing Template Files by Using the CommandStream Property

This example illustrates how template files that consist of SQL or XPath queries can be specified by using the CommandStream
property of the SqlXmlCommand object. In this application, a FileStream object is opened for a command file, and the file
stream is assigned as the CommandStream that is executed.

In the following example, the CommandType property is specified as SqlXmlCommandType.Template (not as TemplateFile).

This is the sample XML template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT top 2 CustomerID, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</ROOT>

This is the sample C# application. To test the application, save the template (TemplateFile.xml) and then execute the application.
The application executes the query that is specified in the XML template and displays the XML document that is generated on the
screen.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;

class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testParams()
 {
 //Stream strm;
 MemoryStream ms = new MemoryStream();
 StreamWriter sw = new StreamWriter(ms);
 ms.Position = 0;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandStream = new FileStream("TemplateFile.xml", FileMode.Open, FileAccess.Read);
 cmd.CommandType = SqlXmlCommandType.Template;
 using (Stream strm = cmd.ExecuteStream())
 {
 using (StreamReader sr = new StreamReader(strm)){
 Console.WriteLine(sr.ReadToEnd());
 }
 }
 return 0;
 }

 public static int Main(String[] args)
 {
 testParams();
 return 0;
 }
 }

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the XML template (TemplateFile.xml) that is provided in this example in a folder.

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the schema is stored. (If you
store the files in a different folder, you will have to edit the code and specify the appropriate directory path for the mapping
schema.)

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Applying an XSL Transformation (SQLXML Managed Classes)
Applying an XSL Transformation (SQLXML Managed Classes)

In this example, an SQL query is executed against the Northwind database. The XSL transformation is applied to the query result
to generate a two-column table of the employees' first and last names.

The XslPath property of the SqlXmlCommand object is used to specify the XSL file and its directory path.

In the code, you must provide the name of the instance of Microsoft® SQL Server™ in the connection string.

using System;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testXSL()
 {
 //Stream strm;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "select FirstName, LastName from Employees For XML Auto";
 cmd.XslPath = "MyXSL.xsl";
 cmd.RootTag = "root";
 using (Stream strm = cmd.ExecuteStream()){
 using (StreamReader sr = new StreamReader(strm)){
 Console.WriteLine(sr.ReadToEnd());
 }
 }
 return 0;
 }
 public static int Main(String[] args)
 {
 testXSL();
 return 0;
 }
 }

This is the XSL style sheet you can use to test the application:

<?xml version='1.0' encoding='UTF-8'?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="html"/>
 <xsl:template match = '*'>
 <xsl:apply-templates />
 </xsl:template>
 <xsl:template match = 'Employees'>
 <TR>
 <TD><xsl:value-of select = '@FirstName' /></TD>
 <TD><xsl:value-of select = '@LastName' /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = '/'>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border='1' style='width:300;'>
 <TR><TH colspan='2'>Employees</TH></TR>
 <TR><TH >First name</TH><TH>Last name</TH></TR>
 <xsl:apply-templates select = 'root' />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save the XSL style sheet in a file (MyXSL.xsl).

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the style sheet is stored.

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

Applying an XSL Transformation in the .NET Framework

Instead of applying an XSL transformation in the middle tier, as described previously, you can apply an XSL transformation on the
client side (in the .NET Framework). The following revised C# code shows how the XSL transformation is applied in the .NET
Framework.

In the code, you must provide the name of the instance of SQL Server in the connection string.

using System;
using System.Xml;
using Microsoft.Data.SqlXml;
using System.IO;
using System.Xml.XPath;
using System.Xml.Xsl;

class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=(local);database=Northwind;Integrated
Security=SSPI";
 public static int testXSL()
 {
 //Stream strm;
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.CommandText = "select FirstName, LastName from Employees For XML Auto";
 cmd.RootTag = "root";
 using (Stream strm = cmd.ExecuteStream()){
 XmlTextReader reader = new XmlTextReader(strm);
 XPathDocument xd = new XPathDocument(reader, XmlSpace.Preserve);
 XslTransform xslt = new XslTransform();
 xslt.Load("MyXSL.xsl", null);
 XmlTextWriter writer = new XmlTextWriter("xslt_output.html", System.Text.Encoding.UTF8);
 xslt.Transform(xd, null, writer);
 }
 return 0;
 }
 public static int Main(String[] args)
 {
 testXSL();
 return 0;
 }
 }

SQLXML 3.0 Service Pack 3

An Application to Access SQLXML Functionality in the .NET
Environment
An Application to Access SQLXML Functionality in the .NET Environment

This example shows:

How to use Microsoft® SQLXML Managed Classes (Microsoft.Data.SqlXml) to access Microsoft SQL Server™ 2000 in the
Microsoft NET Framework environment.

How DiffGrams that are generated in the .NET Framework environment can apply data updates to SQL Server tables.

In this application, an XPath query is executed against an XSD schema. The execution of the XPath query returns an XML
document that consists of employee data (FirstName, LastName). The application loads the XML document in the dataset in the
.NET Framework environment. The data in the dataset is modified: the employee's first name is changed to "Susan" for the first
employee in the dataset. The DiffGram is generated from the dataset, and the update that is specified in the DiffGram (the change
in the employee's first name) is then applied to the Employees table.

In the code, you must provide the name of the instance of SQL Server in the connection string.

using System;
using System.Data;
using Microsoft.Data.SqlXml;
using System.IO;
class Test
{
 static string NorthwindConnString = "Provider=SQLOLEDB;Server=SqlServerName;database=Northwind;Integrated
Security=SSPI;";
 public static int testParams()
 {
 DataRow row;
 SqlXmlAdapter ad;
 //need a memory stream to hold diff gram temporarily
 MemoryStream ms = new MemoryStream();
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.RootTag = "ROOT";
 cmd.CommandText = "Emp";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.SchemaPath = "MySchema.xml";
 //load data set
 DataSet ds = new DataSet();
 ad = new SqlXmlAdapter(cmd);
 ad.Fill(ds);
 row = ds.Tables["Emp"].Rows[0];
 row["FName"] = "Susan";
 ad.Update(ds);
 return 0;
 }
 public static int Main(String[] args)
 {
 testParams();
 return 0;
 }
}

To test the application

To test this example, you must have the Microsoft .NET Framework installed on your computer.

1. Save this XSD schema (MySchema.xml) in a folder:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 sql:field="FirstName"
 type="xsd:string" />

 <xsd:element name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. Save the C# code (DocSample.cs) that is provided in this example in the same folder in which the schema is stored. (If you
store the files in a different folder, you will have to edit the code and specify the appropriate directory path for the mapping
schema.)

3. Compile the code. To compile the code at the command prompt, use:

csc /reference:Microsoft.Data.SqlXML.dll DocSample.cs

This creates an executable (DocSample.exe).

4. At the command prompt, execute DocSample.exe.

SQLXML 3.0 Service Pack 3

Using DiffGrams to Modify Data
The DiffGram format is introduced in the DataSet component of the Microsoft® .NET Framework. Within the .NET Framework,
you can create DiffGrams and use them to modify data in tables in a Microsoft SQL Server™ 2000 database. For more information
about the .NET Framework, go to http://msdn.microsoft.com/net.

This topic includes a brief introduction to DiffGrams and examples of how to use them. It is assumed that you are familiar with
DiffGrams in the .NET Framework. In this documentation, the primary focus is on DiffGram issues that are specific to Microsoft
SQLXML.

DiffGram Format

This is the general DiffGram format:

<?xml version="1.0"?>
<diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <DataInstance>
 ...
 </DataInstance>
 [<diffgr:before>
 ...
 </diffgr:before>]

 [<diffgr:errors>
 ...
 </diffgr:errors>]
</diffgr:diffgram>

The DiffGram format consists of these blocks:

<DataInstance>

The name of this element, DataInstance, is used for explanation purposes in this documentation. For example, if the DiffGram
were generated from a dataset in the .NET Framework, the value of the Name property of the dataset would be used as the name
of this element. This block contains all relevant data after the change, possibly including data that has not been modified. The
DiffGram processing logic ignores the elements in this block for which the diffgr:hasChanges attribute is not specified.

<diffgr:before>

This optional block contains the original record instances (elements) that must be updated or deleted. All the database tables
being modified (updated or deleted) by the DiffGram must appear as top-level elements in the <before> block.

<diffgr:errors>

This optional block is ignored by the DiffGram processing logic.

DiffGram Annotations

These annotations are defined in the DiffGram namespace "urn:schemas-microsoft-com:xml-diffgram-01":

id

This attribute is used to pair the elements in the <before> and the <DataInstance> blocks.

hasChanges

For an insert or an update operation, the DiffGram must specify this attribute with the value inserted or modified. If this
attribute is not present, the corresponding element in the <DataInstance> is ignored by the processing logic and no updates are
performed. For working samples, see DiffGram Examples.

parentID

This attribute is used to specify parent-child relationships among the elements in the DiffGram. This attribute appears only in the
<before> block. It is used by SQLXML when applying updates. The parent-child relationship is used in determining the order in
which the elements in the DiffGram are processed.

Understanding the DiffGram Processing Logic

http://msdn.microsoft.com/net

The DiffGram processing logic uses certain rules to determine whether an operation is an insert, update, or delete operation.
These rules are described in the following table.

Operation Description
Insert A DiffGram indicates an insert operation when an element

appears in the <DataInstance> block but not in the
corresponding <before> block, and the diffgr:hasChanges
attribute is specified (diffgr:hasChanges=inserted) on the
element. In this case, the DiffGram inserts the record instance that
is specified in the <DataInstance> block into the database.

If the diffgr:hasChanges attribute is not specified, the element is
ignored by the processing logic and no insert is performed. For
working samples, see DiffGram Examples.

Update The DiffGram indicates an update operation when there is an
element in the <before> block for which there is a corresponding
element in the <DataInstance> block (that is, both elements have
a diffgr:id attribute with same value) and the
diffgr:hasChanges attribute is specified with the value
modified on the element in the <DataInstance> block.

If the diffgr:hasChanges attribute is not specified on the element
in the <DataInstance> block, an error is returned by the
processing logic. For working samples, see DiffGram Examples.

If diffgr:parentID is specified in the <before> block, the parent-
child relationship of elements that are specified by parentID are
used in determining the order in which records are updated.

Delete A DiffGram indicates a delete operation when an element appears
in the <before> block but not in the corresponding
<DataInstance> block. In this case, the DiffGram deletes the
record instance that is specified in the <before> block from the
database. For working samples, see DiffGram Examples.

If diffgr:parentID is specified in the <before> block, the parent-
child relationship of elements that are specified by parentID are
used in determining the order in which records are deleted.

Parameters cannot be passed to DiffGrams.

SQLXML 3.0 Service Pack 3

DiffGram Examples
The examples in this discussion consist of DiffGrams that perform insert, update, and delete operations to the database. Before
using the examples, note the following:

The examples in this topic use the nwind virtual root (which points to the Northwind database). To test the DiffGram
examples, you must create the nwind virtual directory. For more information about creating the nwind virtual directory,
see Creating the nwind Virtual Directory.

The examples use two tables (Cust and Ord) that must be created if you want to test the DiffGram examples:

Cust(CustomerID, CompanyName, ContactName)
Ord(OrderID, CustomerID)

Because a DiffGram is a template, you must store the DiffGram examples in the folder that is associated with the virtual
name of template type. This folder is created when you create the nwind virtual directory.

The examples use the following XSD Schema. For the sake of simplicity, save this schema as DiffGramSchema.xml also in
the folder that is associated with the virtual name of template type.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:annotation>
 <xsd:documentation>
 Diffgram Customers/Orders Schema.
 </xsd:documentation>
 <xsd:appinfo>
 <sql:relationship name="CustomersOrders"
 parent="Cust"
 parent-key="CustomerID"
 child-key="CustomerID"
 child="Ord"/>
 </xsd:appinfo>
</xsd:annotation>

<xsd:element name="Customer" sql:relation="Cust">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CompanyName" type="xsd:string"/>
 <xsd:element name="ContactName" type="xsd:string"/>
 <xsd:element name="Order" sql:relation="Ord" sql:relationship="CustomersOrders">
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:int" sql:field="OrderID"/>
 <xsd:attribute name="CustomerID" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="xsd:string" sql:field="CustomerID"/>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

A. Deleting a record by using a DiffGram

The DiffGram in this example deletes a customer (whose CustomerID is ALFKI) record from the Cust table and deletes the
corresponding order record (whose OrderID is 1) from the Ord table.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:mapping-schema="DiffGramSchema.xml">

 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DataInstance/>

 <diffgr:before>
 <Order diffgr:id="Order1"
 msdata:rowOrder="0"
 CustomerID="ALFKI"
 OrderID="1"/>
 <Customer diffgr:id="Customer1"
 msdata:rowOrder="0"
 CustomerID="ALFKI">
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>
 </Customer>
 </diffgr:before>
 <msdata:errors/>
 </diffgr:diffgram>
</ROOT>

In the <before> block, there is an <Order> element (diffgr:id="Order1") and a <Customer> element (diffgr:id="Customer1").
These elements represent existing records in the database. The <DataInstance> element does not have the corresponding records
(with the same diffgr:id). This indicates a delete operation.

To test the DiffGram

1. Create these tables in the Northwind database (or in the database to which the virtual root you are using points).

CREATE TABLE Cust(
 CustomerID nchar(5) Primary Key,
 CompanyName nvarchar(40) NOT NULL ,
 ContactName nvarchar(60) NULL)
GO

CREATE TABLE Ord(
 OrderID int Primary Key,
 CustomerID nchar(5) Foreign Key REFERENCES Cust(CustomerID))
GO

2. Add this sample data:

INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ALFKI', N'Alfreds Futterkiste', N'Maria Anders')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANATR', N'Ana Trujillo Emparedados y helados', N'Ana Trujillo')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANTON', N'Antonio Moreno Taquería', N'Antonio Moreno')

INSERT INTO Ord(OrderID, CustomerID) VALUES(1, N'ALFKI')
INSERT INTO Ord(OrderID, CustomerID) VALUES(2, N'ANATR')
INSERT INTO Ord(OrderID, CustomerID) VALUES(3, N'ANTON')

3. Save this DiffGram (MyDiffGram.xml) and the XSD schema (DiffGramSchema.xml) that was provided earlier in the folder
that is associated with the virtual name of template type.

4. Execute the DiffGram by using the following URL:

http://IISServer/nwind/TemplateVirtualName/MyDiffGram.xml

B. Inserting a record by using a DiffGram

In this example, the DiffGram inserts a record in the Cust table and a record in the Ord table.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"
 sql:mapping-schema="DiffGramSchema.xml">
 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <DataInstance>
 <Customer diffgr:id="Customer1" msdata:rowOrder="0"
 diffgr:hasChanges="inserted" CustomerID="ALFKI">
 <CompanyName>C3Company</CompanyName>
 <ContactName>C3Contact</ContactName>
 <Order diffgr:id="Order1"
 msdata:rowOrder="0"
 diffgr:hasChanges="inserted"
 CustomerID="ALFKI" OrderID="1"/>
 </Customer>
 </DataInstance>

 </diffgr:diffgram>
</ROOT>

In this DiffGram the <before> block is not specified (no existing database records identified). There are two record instances
(identified by the <Customer> and <Order> elements in the <DataInstance> block) that map to Cust and Ord tables,
respectively. Both of these elements specify the diffgr:hasChanges attribute (hasChanges="inserted"). This indicates an insert
operation. In this DiffGram, if you specify hasChanges="modified", you are indicating that you want to modify a record that
does not exist, which results in an error.

To test the DiffGram

1. Create these tables in the Northwind database (or in the database to which the virtual root you are using points).

CREATE TABLE Cust(
 CustomerID nchar(5) Primary Key,
 CompanyName nvarchar(40) NOT NULL ,
 ContactName nvarchar(60) NULL)
GO

CREATE TABLE Ord(
 OrderID int Primary Key,
 CustomerID nchar(5) Foreign Key REFERENCES Cust(CustomerID))
GO

2. Add this sample data:

INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ALFKI', N'Alfreds Futterkiste', N'Maria Anders')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANATR', N'Ana Trujillo Emparedados y helados', N'Ana Trujillo')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANTON', N'Antonio Moreno Taquería', N'Antonio Moreno')

INSERT INTO Ord(OrderID, CustomerID) VALUES(1, N'ALFKI')
INSERT INTO Ord(OrderID, CustomerID) VALUES(2, N'ANATR')
INSERT INTO Ord(OrderID, CustomerID) VALUES(3, N'ANTON')

3. Save this DiffGram (MyDiffGram.xml) and the XSD schema (DiffGramSchema.xml) that was provided at the beginning of
this topic in the folder that is associated with the virtual name of template type.

4. Execute the DiffGram by using the following URL:

http://IISServer/nwind/TemplateVirtualName/MyDiffGram.xml

C. Updating an existing record by using a DiffGram

In this example, the DiffGram updates customer information (CompanyName and ContactName) for customer ALFKI.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:mapping-schema="DiffGramSchema.xml">
 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DataInstance>
 <Customer diffgr:id="Customer1"
 msdata:rowOrder="0" diffgr:hasChanges="modified"
 CustomerID="ALFKI">

 <CompanyName>Bottom Dollar Markets</CompanyName>
 <ContactName>Antonio Moreno</ContactName>
 </Customer>
 </DataInstance>

 <diffgr:before>
 <Customer diffgr:id="Customer1"
 msdata:rowOrder="0"
 CustomerID="ALFKI">
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>
 </Customer>
 </diffgr:before>

 </diffgr:diffgram>
</ROOT>

The <before> block includes a <Customer> element (diffgr:id="Customer1"). The <DataInstance> block includes the
corresponding <Customer> element with same id. The <customer> element in the <NewDataSet> also specifies
diffgr:hasChanges="modified". This indicates an update operation, and the customer record in the Cust table is updated
accordingly. Note that if the diffgr:hasChanges attribute is not specified, the DiffGram processing logic ignores this element and
no updates are performed.

To test the DiffGram

1. Create these tables in the Northwind database (or in the database to which the virtual root you are using points).

CREATE TABLE Cust(
 CustomerID nchar(5) Primary Key,
 CompanyName nvarchar(40) NOT NULL ,
 ContactName nvarchar(60) NULL)
GO

CREATE TABLE Ord(
 OrderID int Primary Key,
 CustomerID nchar(5) Foreign Key REFERENCES Cust(CustomerID))
GO

2. Add this sample data:

INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ALFKI', N'Alfreds Futterkiste', N'Maria Anders')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANATR', N'Ana Trujillo Emparedados y helados', N'Ana Trujillo')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANTON', N'Antonio Moreno Taquería', N'Antonio Moreno')

INSERT INTO Ord(OrderID, CustomerID) VALUES(1, N'ALFKI')
INSERT INTO Ord(OrderID, CustomerID) VALUES(2, N'ANATR')
INSERT INTO Ord(OrderID, CustomerID) VALUES(3, N'ANTON')

3. Save this DiffGram (MyDiffGram.xml) and the XSD schema (DiffGramSchema.xml) that was provided at the beginning of
this topic in the folder that is associated with the virtual name of template type.

4. Execute the DiffGram by using the following URL:

http://IISServer/nwind/TemplateVirtualName/MyDiffGram.xml

D. Inserting, updating, and deleting records by using a DiffGram

In this example, a relatively complex DiffGram is used to perform insert, update, and delete operations.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" sql:mapping-schema="DiffGramSchema.xml">
 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DataInstance>
 <Customer diffgr:id="Customer2" msdata:rowOrder="1"

 diffgr:hasChanges="modified"
 CustomerID="ANATR">
 <CompanyName>Bottom Dollar Markets</CompanyName>
 <ContactName>Elizabeth Lincoln</ContactName>
 <Order diffgr:id="Order2" msdata:rowOrder="1"
 msdata:hiddenCustomerID="ANATR"
 CustomerID="ANATR" OrderID="2"/>
 </Customer>

 <Customer diffgr:id="Customer3" msdata:rowOrder="2"
 CustomerID="ANTON">
 <CompanyName>Chop-suey Chinese</CompanyName>
 <ContactName>Yang Wang</ContactName>
 <Order diffgr:id="Order3" msdata:rowOrder="2"
 msdata:hiddenCustomerID="ANTON"
 CustomerID="ANTON" OrderID="3"/>
 </Customer>
 <Customer diffgr:id="Customer4" msdata:rowOrder="3"
 diffgr:hasChanges="inserted"
 CustomerID="AROUT">
 <CompanyName>Around the Horn</CompanyName>
 <ContactName>Thomas Hardy</ContactName>
 <Order diffgr:id="Order4" msdata:rowOrder="3"
 diffgr:hasChanges="inserted"
 msdata:hiddenCustomerID="AROUT"
 CustomerID="AROUT" OrderID="4"/>
 </Customer>
 </DataInstance>
 <diffgr:before>
 <Order diffgr:id="Order1" msdata:rowOrder="0"
 msdata:hiddenCustomerID="ALFKI"
 CustomerID="ALFKI" OrderID="1"/>
 <Customer diffgr:id="Customer1" msdata:rowOrder="0"
 CustomerID="ALFKI">
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>
 </Customer>
 <Customer diffgr:id="Customer2" msdata:rowOrder="1"
 CustomerID="ANATR">
 <CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
 <ContactName>Ana Trujillo</ContactName>
 </Customer>
 </diffgr:before>
 </diffgr:diffgram>
</ROOT>

The DiffGram logic processes this DiffGram as follows:

In accordance with DiffGram processing logic, all the top-level elements in the <before> block map to corresponding tables,
as described in the mapping schema.

The <before> block has an <Order> element (dffgr:id="Order1") and a <Customer> element (diffgr:id="Customer1")
for which there is no corresponding element in the <DataInstance> block (with the same ID). This indicates a delete
operation, and the records are deleted from the Cust and Ord tables.

The <before> block has a <Customer> element (diffgr:id="Customer2") for which there is a corresponding <Customer>
element in the <DataInstance> block (with same ID). The element in the <DataInstance> block specifies
diffgr:hasChanges="modified". This is an update operation in which for customer ANATR, the CompanyName and
ContactName information is updated in the Cust table using values that are specified in the <DataInstance> block.

The <DataInstance> block has a <Customer> element (diffgr:id="Customer3") and an <Order> element
(diffgr:id="Order3"). Neither of these elements specify the diffgr:hasChanges attribute. Therefore, the DiffGram
processing logic ignores these elements.

The <DataInstance> block has a <Customer> element (diffgr:id="Customer4") and an <Order> element
(diffgr:id="Order4") for which there are no corresponding elements in the <before> block. These elements in the
<DataInstance> block specify diffgr:hasChanges="inserted". Therefore, a new record is added in the Cust table and in
the Ord table.

To test the DiffGram

1. Create the following tables in the Northwind database (or in the database to which the virtual root you are using points).

CREATE TABLE Cust(
 CustomerID nchar(5) Primary Key,
 CompanyName nvarchar(40) NOT NULL ,
 ContactName nvarchar(60) NULL)
GO

CREATE TABLE Ord(
 OrderID int Primary Key,
 CustomerID nchar(5) Foreign Key REFERENCES Cust(CustomerID))
GO

2. Add this sample data:

INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ALFKI', N'Alfreds Futterkiste', N'Maria Anders')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANATR', N'Ana Trujillo Emparedados y helados', N'Ana Trujillo')
INSERT INTO Cust(CustomerID, CompanyName, ContactName) VALUES
 (N'ANTON', N'Antonio Moreno Taquería', N'Antonio Moreno')

INSERT INTO Ord(OrderID, CustomerID) VALUES(1, N'ALFKI')
INSERT INTO Ord(OrderID, CustomerID) VALUES(2, N'ANATR')
INSERT INTO Ord(OrderID, CustomerID) VALUES(3, N'ANTON')

3. Save this DiffGram (MyDiffGram.xml) and the XSD schema (DiffGramSchema.xml) that was provided at the beginning of the
topic in the folder that is associated with the virtual name of template type.

4. Execute the DiffGram by using the following URL:

http://IISServer/nwind/TemplateVirtualName/MyDiffGram.xml

E. Applying updates by using a DiffGram with the diffgr:parentID annotation

This example illustrates how the parentID annotation that is specified in the <before> block of the DiffGram is used in applying
the updates.

<NewDataSet />
<diffgr:before>
 <Order diffgr:id="Order1" msdata:rowOrder="0" OrderID="2" />
 <Order diffgr:id="Order3" msdata:rowOrder="2" OrderID="4" />

 <OrderDetail diffgr:id="OrderDetail1"
 diffgr:parentId="Order1"
 msdata:rowOrder="0"
 ProductID="13"
 OrderID="2" />
 <OrderDetail diffgr:id="OrderDetail3"
 diffgr:parentId="Order3"
 ProductID="77"
 OrderID="4"/>
</diffgr:before>
</diffgr:diffgram>

This DiffGram specifies a delete operation because there is only a <before> block. In the DiffGram, the parentID annotation is
used to specify a parent-child relationship between the orders and order details. When SQLXML deletes the records, it deletes
records from the child table that is identified by this relationship and then deletes the records from the corresponding parent
table.

SQLXML 3.0 Service Pack 3

Executing a DiffGram by Using ADO
This Microsoft® Visual Basic® application uses ADO to establish a connection to an instance of Microsoft SQL Server™ and then
executes a DiffGram. In this application, the DiffGram and the XSD schema are stored in a file. The application loads the DiffGram
from the specified file. You can use any of the DiffGrams (and the associated XSD schema) described in DiffGram Examples.

This is the process for the sample application:

The conn object (ADODB.Connection) establishes a connection to a running instance of SQL Server on a specific server.

The cmd object (ADODB.Command) executes on the established connection.

The command dialect is set to DBGUID_MSSQLXML.

The DiffGram is copied to the command stream (strmIn) from a file.

The command's output stream is set to the StrmOut object (ADODB.Stream) to receive any returned data.

When you are using the SQLOLEDB Provider, by default you will get the Microsoft SQLXML functionality provided by
Sqlxmlx.dll. To use Sqlxml3.dll (the newer version), with the SQLOLEDB Provider, the SQLXML Version property must be set
to SQLXML.3.0 on the SQLOLEDB Provider Connection object.

The command (DiffGram) is executed.

The following code is the sample application.

In the code, you must provide the name of the instance of SQL Server in the connection string.

Private Sub Command1_Click()
 Dim cmd As New ADODB.Command
 Dim conn As New ADODB.Connection
 Dim strmOut As New ADODB.Stream
 Dim strmIn As New ADODB.Stream

 'Open a connection to SQL Server.
 conn.Provider = "SQLOLEDB"
 conn.Open "server=SqlServerName; database=Northwind; Integrated Security=SSPI; "
 conn.Properties("SQLXML Version") = "SQLXML.3.0"
 Set cmd.ActiveConnection = conn
 strmIn.Open
 strmIn.Charset = "UTF-8"
 strmIn.LoadFromFile "C:\SomeFilePath\SampleDiffGram.xml"
 strmIn.Position = 0
 Set cmd.CommandStream = strmIn

 strmOut.Open
 cmd.Properties("Output Stream").Value = strmOut
 cmd.Properties("Output Encoding").Value = "UTF-8"

 cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
 cmd.Properties("Mapping Schema") = "C:\SomeFilePath\SampleDiffGram.xml"
 cmd.Execute , , adExecuteStream
 strmOut.Position = 0
 Set cmd = Nothing
 strmOut.Charset = "UTF-8"
 strmOut.SaveToFile "C:\DropIt.txt", adSaveCreateOverWrite
 strmOut.Close
 Set strmOut = Nothing

End Sub

To test the DiffGram

1. To a folder on your computer, copy any one of the DiffGrams and the corresponding XSD schema from one of the examples
in DiffGram Examples.

2. Open Microsoft Visual Basic and create a Standard EXE project.

3. Add these references to the project:

Microsoft ActiveX Data Objects 2.6 Library

4. In the Toolbox, click CommandButton, and then draw a button on the form.

5. Double-click the button to edit the code, and add the application code that is provided in the topic.

6. Edit the code to specify the DiffGram and XSD file names. Also edit the connection string as appropriate.

7. Execute the application. The result of the execution depends on what DiffGram you are executing.

SQLXML 3.0 Service Pack 3

Executing a DiffGram by Using SQLXML Managed Classes
For a working sample, see An Application to Access SQLXML Functionality in the .NET Environment.

SQLXML 3.0 Service Pack 3

Using SQLXML Bulk Load in .NET Environment
Performing Bulk Load of XML Data topic introduces you to the XML bulk load functionality in SQLXML. This topic explains how
this functionality can be used in the .NET environment.

In order to use the SQLXML Bulk Load COM object from a managed environment, you need to add a project reference to this
object. This generates a managed wrapper interface around the Bulk Load COM object.

Note The SQLXML Bulkload component will not run in a multi-threaded environment ('[MTAThread]' attribute). If you get an
InvalidCastException exception with the additional information: “QueryInterface for interface
SQLXMLBULKLOADLib.ISQLXMLBulkLoad failed.", then you are running into this issue. The workaround is to make the object that
contains the bulkload object be single-thread accessible (for example using the [STAThread] attribute as shown in the sample).

This topic provides a working C# sample application to bulk load XML data in the database. To create a working sample, follow
these steps:

1. Create the following tables:

CREATE TABLE Ord (
 OrderID int identity(1,1) PRIMARY KEY,
 CustomerID varchar(5))
GO
CREATE TABLE Product (
 ProductID int identity(1,1) PRIMARY KEY,
 ProductName varchar(20))
GO
CREATE TABLE OrderDetail (
 OrderID int FOREIGN KEY REFERENCES Ord(OrderID),
 ProductID int FOREIGN KEY REFERENCES Product(ProductID),
 CONSTRAINT OD_key PRIMARY KEY (OrderID, ProductID))
GO

2. Save the following schema in a file (schema.xml):

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="OrderOD"
 parent="Ord"
 parent-key="OrderID"
 child="OrderDetail"
 child-key="OrderID" />

 <sql:relationship name="ODProduct"
 parent="OrderDetail"
 parent-key="ProductID"
 child="Product"
 child-key="ProductID"
 inverse="true"/>
 </xsd:appinfo>
</xsd:annotation>

 <xsd:element name="Order" sql:relation="Ord"
 sql:key-fields="OrderID" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Product" sql:relation="Product"
 sql:key-fields="ProductID"
 sql:relationship="OrderOD ODProduct">
 <xsd:complexType>

 <xsd:attribute name="ProductID" type="xsd:int" />
 <xsd:attribute name="ProductName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="CustomerID" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3. Save the following sample XML document in a file (data.xml):

<ROOT>
 <Order OrderID="11" CustomerID="ALFKI">
 <Product ProductID="11" ProductName="Chai" />
 <Product ProductID="22" ProductName="Chang" />
 </Order>
 <Order OrderID="22" CustomerID="ANATR">
 <Product ProductID="33" ProductName="Aniseed Syrup" />
 <Product ProductID="44" ProductName="Gumbo Mix" />
 </Order>
</ROOT>

4. Start Visual Studio .NET.

5. Create a C# console application.

6. From Project menu, select Add Reference.

7. In the COM tab, select Microsoft SQLXML Bulkload 3.0 Type Library (xblkld3.dll) and click OK. You will see the
Interop.SQLXMLBULKLOADLib assembly created in the project.

8. Replace the Main() method with the following code. Update the ConnectionString property and the file path to the schema
and data files.

[STAThread]
 static void Main(string[] args)
 {
 try
 {
 SQLXMLBULKLOADLib.SQLXMLBulkLoad3Class objBL = new
SQLXMLBULKLOADLib.SQLXMLBulkLoad3Class();
 objBL.ConnectionString = "Provider=sqloledb;server=server;database=databaseName;integrated
security=SSPI";
 objBL.ErrorLogFile = "error.xml";
 objBL.KeepIdentity = false;
 objBL.Execute ("schema.xml","data.xml");
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }

9. To load the XML in the table you created, build and run the project.

Note The reference to bulkload component (xblkld3.dll) can also be added using the tlbimp.exe tool (available as part of
.NET framework). This tool creates a managed wrapper for the native dll (xblkld3.dll) which can then be used in any .NET
project. For example:

 c:\>tlbimp xblkld3.dll

This creates the managed wrapper dll (SQLXMLBULKLOADLib.dll) that you can use in the .NET Framework project. In .NET
Framework, you add project reference to the newly created dll.

SQLXML 3.0 Service Pack 3

Web Services (SOAP) Support in SQLXML
Web services support in Microsoft® SQLXML 3.0 exposes Microsoft SQL Server™ 2000 as a Web service that offers SQL Server
functionality to the clients. You can send SOAP HTTP requests to a server that is running SQLXML 3.0 to execute stored
procedures, user-defined functions (UDFs), and templates.

For example, you can use Microsoft Visual Studio® .NET to access a Web Services Description Language (WSDL) service
definition that is provided by SQLXML to automatically generate all of the classes that are necessary to access SQL Server as a
Web service, thus making it easy to call stored procedures and templates. In general, a client can be any client that can send and
process SOAP messages (for example, it could also be a SOAP Toolkit 2.0 client).

It is assumed that you are familiar with SOAP and related technologies. To learn more about these technologies, see the following
specifications at:

Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001

Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000

The following topics provide the necessary information for sending SOAP requests to a server computer that is running SQLXML:

Initial Setup for Sending SOAP Requests

Writing Client Applications

Contents of the WSDL File

Sample Applications for Sending SOAP Requests

Guidelines and Limitations of SOAP Support in SQLXML

Web Services (SOAP Support) Security Issues

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap

SQLXML 3.0 Service Pack 3

Initial Setup for Sending SOAP Requests
You can send SOAP HTTP requests to the server computer that is running Microsoft® SQLXML to execute a stored procedure or
an XML template. The server running SQLXML executes the requested and returns the corresponding SOAP response to the client.

The following initial setup is necessary before you can send SOAP HTTP requests to the server running SQLXML:

1. Create a virtual directory. In this virtual directory, you must define a virtual name of soap type. For more information about
creating a virtual directory, see IIS Virtual Directory Management for SQL Server.

2. Configure the virtual name of the soap type that was created in the previous step. This configuration process generates the
Web Services Description Language (WSDL) file that describes the service, along with the operations (stored procedures,
user-defined functions, and templates) in the service that a client can request.

After you have created the WSDL file, write your client application to send SOAP requests for specific operations (as defined in the
WSDL) to the server running SQLXML.

Step 1: Creating the Virtual Directory and Virtual Name

The virtual directory and a virtual name of soap type can be created either by using the IIS Virtual Directory Management for
SQLXML 3.0 utility (see Using the IIS Virtual Directory Management for SQLXML 3.0 Utility) or programmatically by using the IIS
Virtual Directory Management for SQL Server object model (see IIS Virtual Directory Management for SQL Server Object Model).

Each virtual name of soap type has a WSDL file associated with it. The WSDL file defines a service that consists of a set of
operations (methods) (the stored procedures, user-defined functions, and templates) that a client can request (call).

The sample applications that are provided in Sample Applications for Sending SOAP Requests provide you with step-by-step
instructions for creating a virtual directory with a virtual name of soap type. This virtual directory is then used in the sample
applications.

Step 2: Configuring the Virtual Name

A virtual name of soap type must be configured. In this process, you identify a list of stored procedures, user-defined functions
(UDFs), and templates that you want to make available for the client to call. The configuration process establishes the necessary
mapping between these stored procedures, UDFs, templates and the SOAP operations by creating the corresponding WSDL file.
This mapping is then used to execute the requested operation.

The stored procedures that you add during the configuration process must not return XML (that is, the FOR XML clause must not
be specified for the queries in the stored procedures) because the XML formatting (RAW or Nested) is applied on the client-side,
as specified in the configuration process.

The configuration process also creates a configuration file (with an .ssc file extension) in the folder that is associated with the
virtual name of soap type. The WSDL file is then automatically generated from the configuration file and stored in the same
folder. The Web service name that you specify when you create the virtual name of soap type is used as the file name for the
configuration and WSDL files. Each time you modify the configuration, the configuration file is updated and the corresponding
WSDL file automatically regenerated.

In a virtual directory, you can create several virtual names of soap type. Each of these virtual names has its own configuration file
and WSDL file.

Now you can write your client application to send SOAP requests to the server running SQLXML. For more information, see
Writing Client Applications.

Writing Client Applications

IIS Virtual Directory Management for SQL Server

Sample Applications for Sending SOAP Requests

Guidelines and Limitations of SOAP Support in SQLXML

SOAP Request and Response Message Structures

Web Services (SOAP Support) Security Issues

SQLXML 3.0 Service Pack 3

Writing Client Applications
You can write client applications that send SOAP requests to the server computer that is running Microsoft® SQLXML after you
have completed the initial setup process that is described in Initial Setup for Sending SOAP Requests.

The Web Services Description Language (WSDL) file defines the Web service exposed by Microsoft SQL Server™ 2000. This
functionality allows a client to send SOAP requests to a server running SQLXML to execute stored procedures, user-defined
functions (UDFs), and templates. The client can be any client that can send and process SOAP messages. This documentation
includes information about the Microsoft Visual Studio® .NET client and the SOAP Toolkit 2.0 client.

For more information, see:

Writing a Visual Studio .NET Client Application

Writing a SOAP Toolkit 2.0 Client Application

SQLXML 3.0 Service Pack 3

Writing a Visual Studio .NET Client Application
With the Web reference mechanism in Microsoft® Visual Studio®, you can call stored procedures, user-defined functions
(UDFs), and templates just as you would call any other method on an object in your application. The results for stored procedures
or UDFs can be returned as one of the following:

XMLElement (System.Xml.XmlElement) object array

DataSet (System.Data.DataSet) object array

A single DataSet (System.Data.DataSet) object

For UDFs returning a simple-type value, only the value

In the case of templates, results are always returned as an object array of a single element of XMLElement type.

How results are returned to the client depends on how you have configured the method mapping during configuration of the
virtual name of soap type. The configuration process allows you to specify how you want the results returned.

If Microsoft SQL Server™ returns errors, these errors are also handled according to how you have configured the method during
configuration of the virtual name of soap type. For more information, see Returning SOAP Faults.

For UDFs returning values however, the output is always the return value and errors are always returned as SOAP faults.

Note that you can write client applications that send SOAP requests to the server computer that is running SQLXML only after you
have completed the initial setup process that is described in Initial Setup for Sending SOAP Requests.

Sending SOAP Requests (Visual Studio .NET Client)

When you use a Visual Studio .NET client to send SOAP requests to the server running SQLXML, you must first add a Web
reference to the project and specify the URL to the virtual name of soap type, followed by "?wsdl". Visual Studio then creates a
Web service proxy class and adds it to your project. This proxy class exposes the methods of the Web service (which is defined by
the WSDL file). By using this proxy class, you can invoke any of the methods exposed by your virtual name. Internally, a SOAP
request is sent to the server running SQLXML. SQLXML executes the operation and returns the result (the SOAP response) to the
client in the format that was specified for that method during configuration of the virtual name of soap type.

Processing Response (Visual Studio .NET Client)

The result of an operation can be returned either as a single DataSet (System.Data.DataSet) object or as an object array. If the
result is returned as an object array, the object array elements can be of the following types:

XMLElement (System.Xml.XmlElement) or DataSet (System.Data.DataSet) type array elements, which hold the result
that is returned by the server running SQLXML

SqlMessage type array elements, which hold error messages that are returned

SqlResultCode type array elements, which hold the return value when a UDF that returns a table or a stored procedure is
executed

When a stored procedure that returns a result as a single DataSet object is executed or a UDF that returns a single value
(and not a table) is executed, the return value is returned separately (and is, thus, not available in the object array).

Because object array elements can be of any one of these types, you must first determine the type of the object and then process
the individual object accordingly. These topics provide working samples:

Sending SOAP Requests by Using Visual Studio .NET Client (C#)

Sending SOAP Requests by Using Visual Studio .NET Client (Visual Basic)

SQLXML 3.0 Service Pack 3

Writing a SOAP Toolkit 2.0 Client Application
You can write a client application by using SOAP Toolkit 2.0 and then send SOAP requests to the server computer that is running
Microsoft® SQLXML. SQLXML executes the requested stored procedure or template and returns a SOAP response to the SOAP
Toolkit client as an IXMLDOMNodeList object.

Note that you can write client applications that send SOAP requests to the server computer that is running SQLXML only after you
have completed the initial setup process that is described in Initial Setup for Sending SOAP Requests.

For a working sample, see Sending SOAP Requests by Using the SOAP Toolkit 2.0 Client.

IIS Virtual Directory Management for SQL Server

Sample Applications for Sending SOAP Requests

Guidelines and Limitations of SOAP Support in SQLXML

SOAP Request and Response Message Structures

SQLXML 3.0 Service Pack 3

Contents of the WSDL File
When you create a virtual name of soap type, you must also configure it. (For more information, see Initial Setup for Sending
SOAP Requests.) The configuration process creates a Web Services Description Language (WSDL) file that identifies a list of
stored procedures and templates that are available as part of the Microsoft® SQL Server™ XML Web service. A client can send
SOAP requests for these operations to Microsoft SQLXML, which in turn, communicates with SQL Server, executes the operation,
and returns the result of the operation as a SOAP response.

Web Services Description Language File

The Web Services Description Language (WSDL) file describes the service and the operations (stored procedures and templates)
that are available in the service. The configuration process creates specific complex types to describe the data format in the SOAP
input and output.

For example, the following WSDL fragment is common to all WSDL files that are created by the configuration process and defines
the complex types. As you add stored procedures and templates to the configuration, these types are used to define the input and
output parameters.

<?xml version="1.0"?>
<wsdl:definitions
 name="soap"
 targetNamespace="http://server/virtualroot/virtualname"
 xmlns:tns="http://server/virtualroot/virtualname"
 ...
 xmlns:sql="http://schemas.microsoft.com/SQLServer/2001/12/SOAP"
 xmlns:sqltypes=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types"
 xmlns:sqlmessage=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlMessage"
 xmlns:sqlresultstream=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/
 types/SqlResultStream">

<wsdl:types>
 <xsd:schema ...
 <xsd:complexType name='SqlRowSet'>
 <xsd:attribute ref='sqltypes:IsNested'/>
 <xsd:sequence>
 <xsd:element ref='xsd:schema'/>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name='SqlXml' mixed='true'>
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name='SqlResultCode'>
 <xsd:restriction base='xsd:int'>
 <xsd:minInclusive value='0'/>
 </xsd:restriction>
 </xsd:simpleType>

 </xsd:schema>

 <xsd:schema ...
 <xsd:complexType name='SqlMessage'>
 <xsd:attribute ref='sqltypes:IsNested'/>
 <xsd:sequence minOccurs='1' maxOccurs='1'>
 <xsd:element name='Class'
 type='sqltypes:nonNegativeInteger'/>
 <xsd:element name='LineNumber'
 type='sqltypes:nonNegativeInteger'/>
 <xsd:element name='Message' type='xsd:string'/>
 <xsd:element name='Number' type='sqltypes:nonNegativeInteger'/>
 <xsd:element name='Procedure' type='xsd:string'/>
 <xsd:element name='Server' type='xsd:string'/>
 <xsd:element name='Source' type='xsd:string'/>
 <xsd:element name='State' type='sqltypes:nonNegativeInteger'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>

The <types> element

All WSDL files created by the configuration process have a <types> element that defines these complex types:

SqlRowSet

During configuration of the virtual name of soap type, if you specify that the method result be returned as a single DataSet
object, the XML result is returned as an SqlRowSet type in the SOAP response. In Microsoft Visual Studio® .NET, this XML
result is returned as a DataSet (System.Data.DataSet) object.

SqlXml

During configuration of the virtual name of soap type, if you specify that the method result be returned as XML objects,
the XML result is returned as an SqlXml type in the SOAP response for each SQL statement that is executed successfully. In
Visual Studio .NET, this XML result is returned as an XmlElement (System.Xml.XmlElement) object in the object array.

SqlMessage

If a stored procedure fails, SQL Server returns an error message(s). The error message is returned in the SOAP response as
an SqlMessage type. In Visual Studio .NET, the error message in the SOAP response is returned as an SqlMessage type
object in the object array.

SqlResultCode

The return code for a stored procedure is returned as an SqlResultCode type in the SOAP response. In Visual Studio .NET,
this XML result is returned as an SqlResultCode object in the object array with one exception. If you specify that the result
is to be returned as a single DataSet object (not an object array) or if you are executing a UDF that is returning a simple-
type value, the return code is returned as a separate <returnValue> element in the SOAP response. (In this case, in Visual
Studio .NET, the return code is not returned in the object array but as a parameter of the method call.)

SqlResultStream

When you add a stored procedure or a template to the configuration with its output set to XML objects or Dataset objects,
the WSDL file defines an <OperationNameResult> element of SqlResultStream type for that operation.

This element includes the result of the operation. In the WSDL file, this type is defined to include zero or more elements of
SqlXml, SqlMessage, SqlResultCode, or SqlRowset complex type.

For example, if you execute a stored procedure that has three SQL statements, you could get zero or more SqlXml (or
SqlRowSet) type elements that provide the XML results, and zero or more SqlMessage type elements that provide SQL
Server error messages in the case of failure.

As you configure the virtual name and add stored procedures and templates to the configuration, the WSDL file is automatically
updated to include these operations. See Sample Applications for Sending SOAP Requests for working samples and review the
WSDL files that are generated for the samples.

Web Services (SOAP Support) Security Issues

SQLXML 3.0 Service Pack 3

SOAP Request and Response Message Structures
When you write a Microsoft® Visual Studio® .NET client application and send SOAP requests to a server computer that is
running Microsoft SQLXML, you do not have to know the contents of the SOAP request and response messages that are
exchanged. A method call in Visual Studio .NET client automatically generates the SOAP request, and the SOAP response that is
returned by the server running SQLXML is processed internally and the appropriate results (for example, an object array or a
DataSet object) returned to the client.

However, the information about the SOAP request and response structures that is provided in the following subtopics is useful if
you write a client applications in which you build the SOAP request and process the response in your application. The subtopics
provide an overview of the SOAP request and response messages that are exchanged between a client and a server that is
running Microsoft SQLXML 3.0:

SOAP Request Message Structure

SOAP Response Message Structure

SQLXML 3.0 Service Pack 3

SOAP Request Message Structure
The following sample shows a typical SOAP request that is sent to a server that is running Microsoft® SQLXML.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetCustomerInfo xmlns="http://SERVER/VDir/VName">
 <CustomerID>ALFKI</CustomerID>
 <OutputParam />
 </GetCustomerInfo>
 </soap:Body>
</soap:Envelope>

The SOAP request is included in the <Body> element. In this request, the client requests a GetCustomerInfo operation, which is
a stored procedure that is described in Initial Setup for the SOAP Sample Applications. The operation parameter <CustomerID>
(with value "ALFKI") and the operation parameter <OutputParam> are included as child elements of the <GetCustomerInfo>
element.

The input parameters are handled as follows:

If a SOAP operation requires an input parameter and this parameter is not included in the SOAP request, no value is passed
to the called stored procedure (or template). The default action that is defined in the stored procedure (or template) takes
place.

If a SOAP operation requires an input parameter and this parameter is included in the request but no value is assigned to it,
the parameter is passed to the stored procedure (or template) with an empty string as its value (not a NULL value).

A operation parameter can be set to NULL by providing an xsi:null attribute in the SOAP request. For example:

<methodName>
 <Param xsi:nil="true" />
</methodName>

In Microsoft® Visual Studio® .NET, when you pass null values to string variables, this generates the xsi:nil="true" attribute in the
SOAP request. But when you pass null values for parameters of types such as integer and float (value types), Visual Studio .NET
does not generate the xsi:nil="true" attribute; instead, it provides default values for these parameters (for example, 0 for integer
types, 0.0 for float types, an so on). Thus, if you want to pass null values to these types of parameters, you must build the SOAP
message in your application using the xsi:nil="true" attribute. For more information, see Guidelines and Limitations of SOAP
Support in SQLXML

SQLXML 3.0 Service Pack 3

SOAP Response Message Structure
The following is the skeleton SOAP response structure that is returned by the server computer that is running Microsoft®
SQLXML:

<?xml version="1.0" encoding="utf-8" ?>
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:sqltypes=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types"
 xmlns:sqlmessage=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/
 types/SqlMessage"
 xmlns:sqlresultstream=
 "http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types
 /SqlResultStream"
 xmlns:tns="http://server/nwind2/soap"
 <!-- additional namespace declarations --> >
 <SOAP-ENV:Body>
 <tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlResultStream">
 <!--
 the results here depend on how the method
 is configured to return the results (for example,
 XML objects, DataSet objects or a single DataSet)
 -->
 </tns:MethodNameResult>
 <tns:OutputParam>Value</tns:OutputParam>
 </tns:MethodNameResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

<MethodNameResult> element

The method results are returned as the child elements of the <MethodNameResult> element. The serialization format depends on
how you have configured the method during configuration of the virtual name of soap type.

If the method is configured to return results as DataSet objects (or a single DataSet object) in Microsoft Visual Studio®,
the results are serialized in the DiffGram format. The DiffGram format is introduced in the DataSet component of the
Microsoft .NET Framework. In this case, the response also includes an XSD schema before the data. For more information,
see Serializing DataSet Objects in a SOAP Response.

If the method is configured to return results as XML objects, the results are serialized as valid XML documents (no DiffGram
format). Each XML document is wrapped in a <SqlXml> child element. For more information, see Serializing XML Objects in
a SOAP Response.

<OutputParam> element

A stored procedure can have output parameters. Each of the output parameter values is serialized in the SOAP response as an
element. The element name is the name of the output parameter. This element appears after the <MethodNameResult> element.

<returnValue> element

This element is not included in the basic SOAP response structure shown at the beginning of this topic. Stored procedures and
user-defined functions (UDFs) have a return value. The return value is returned in the <MethodNameResult> element as an
<SqlResultCode> child element (appearing as an SqlResultCode type object in the object array) with this exception:

If the method is a stored procedure that is configured to return a single DataSet object or it is a UDF that is returning a simple-
type value, the return value is serialized in the SOAP response as a <returnValue> element that appears after the
<MethodNameResult> element. The return value is not available in the object array. In this case, the value is returned as a
parameter when the method is called.

The sample application in Sample Applications for Sending SOAP Requests illustrates how return values are handled.

SQLXML 3.0 Service Pack 3

Serializing XML Objects in a SOAP Response
Serializing XML Objects in a SOAP Response

This topic describes the serialization format of the data in a SOAP response that is returned to the Microsoft® Visual Studio®
.NET client as XML objects in an object array (or as an IXMLDOMNodeList parameter to SOAP Toolkit 2.0 client). It also describes
how error data is serialized.

Method results are serialized in the <MethodNameResult> element (as described in SOAP Response Message Structure). How
the results are serialized depends on how you have configured the method during configuration of the virtual name of soap type.
If the method is configured to return XML objects in the object array in the Visual Studio .NET client, the following child elements
(of <MethodNameResult>) appear in the SOAP response:

<SqlXml> element

<SqlResultCode> element

<SqlMessage> element

<SqlXml> element

Each XML document that is returned by the method (stored procedure, user-defined function, or template) execution is wrapped
in the <SqlXml> element in the response. The <SqlXml> element appears as a child element of the <MethodNameResult>
element. If multiple result sets are returned, each one is wrapped in its own <SqlXml> element, as shown in the following
response fragment:

<tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlResultStream">
 <sqlresultstream:SqlXml>
 <!-- XML Document that maps to XMLElement object in the client-->
 </sqlresultstream:SqlXml>
 <sqlresultstream:SqlXml>
 <!-- XML Document that maps to XMLElement object in the client-->
 </sqlresultstream:SqlXml>
 ...
 ...
 </tns:MethodNameResult>
 <tns:OutputParam>Value</tns:OutputParam>
</tns:MethodNameResponse>

<SqlResultCode> element

A return value from a stored procedure or user-defined function (UDF) is returned as a <SqlResultCode> element. In the Visual
Studio .NET client, this value is returned as an SqlResultCode type object in the object array. The exception to this is when return
values are not returned as objects in the object array. (See description in SOAP Response Message Structure.)

The following response fragment shows one result set and one return code value returned from a stored procedure (or from a
UDF):

<tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlResultStream">
 <sqlresultstream:SqlXml>
 <!-- XML Document that maps to XMLElement object in the client-->
 </sqlresultstream:SqlXml>
 <sqlresultstream:SqlResultCode>
 <!-- return value returned as an object in the client -->
 </sqlresultstream:SqlResultCode>
 ...
 ...
 </tns:MethodNameResult>
 <tns:OutputParam>Value</tns:OutputParam>
</tns:MethodNameResponse>

<SqlMessage> element

Microsoft SQL Server™ returns errors if it fails to execute a query. The errors are serialized as <SqlMessage> elements in the
SOAP response. Each of these error messages is then returned as an SqlMessage type object in the object array. For example, if

you execute a stored procedure that contains three queries where the first two queries succeed and the third query fails, the
results of the two successful queries are serialized as two <SqlXml> elements and the error is serialized as an <SqlMessage>
element as shown in the following response fragment:

<tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlResultStream">
 <sqlresultstream:SqlXml>
 <!-- XML Document returned as XMLElement object in the client-->
 </sqlresultstream:SqlXml>
 <sqlresultstream:SqlXml>
 <!-- XML Document returned as XMLElement object in the client-->
 </sqlresultstream:SqlXml>
 <sqlresultstream:SqlMessage>
 <!-- Error message returned as SqlMessage object in the client-->
 </sqlresultstream:SqlMessage>
 <sqlresultstream:SqlResultCode>
 <!-- return value returned as an object in the client -->
 </sqlresultstream:SqlResultCode>
 </tns:MethodNameResult>
 <!-- followed by one or more return parameters ->
 <tns:OutputParam1>Value</tns:OutputParam1>
 <tns:OutputParam2>Value</tns:OutputParam2>

 ...

</tns:MethodNameResponse>

SQLXML 3.0 Service Pack 3

Serializing DataSet Objects in a SOAP Response
Serializing DataSet Objects in a SOAP Response

This topic describes the serialization format of the data in a SOAP response that is returned to Microsoft® Visual Studio® .NET
client as DataSet objects in the object array. It also describes how error data is serialized.

SOAP method results are serialized in the <MethodNameResult> element (as described in SOAP Response Message Structure).
How the results are serialized depends on how you have configured the method during configuration of the virtual name of soap
type. If the SOAP method is configured to return DataSet objects in the object array, the results are wrapped in a <SqlRowSet>
child element (of <MethodNameResult>) in the SOAP response. In this case <MethodNameResult> element is of type
SqlResultStream. The results that are serialized in the <SqlRowSet> element use the DiffGram serialization format.

The DiffGram serialization format is introduced in the DataSet component of the Microsoft .NET Framework. For more
information, go to http://msdn.microsoft.com/net. Note that the response also includes an XSD schema before the data.

If there is an error during execution of the method, the error message is returned in an <SqlMessage> element. For example, if a
stored procedure executes three queries in which the first two queries succeed and the third fails, two execution <SqlRowSet>
elements (one for each DataSet object) and one <SqlMessage> element are returned in the SOAP response, as shown in the
following response fragment:

 <tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlResultStream">
 <sqlresultstream:SqlRowSet>
 <xsd:schema>
 <!-- XSD schema ->
 </xsd:schema>
 <diffgr:diffgram>
 <!-- result serialized with DiffGram format -->
 </diffgr:diffgram>
 </sqlresultstream:SqlRowSet>
 <sqlresultstream:SqlRowSet>
 <xsd:schema>
 <!-- XSD schema ->
 </xsd:schema>
 <diffgr:diffgram>
 <!-- result serialized with DiffGram format -->
 </diffgr:diffgram>
 </sqlresultstream:SqlRowSet>
 <sqlresultstream:SqlMessage>
 <!-- Error message returned as SqlMessage object in the client-->
 </sqlresultstream:SqlMessage>
 <sqlresultstream:SqlResultCode>
 <!-- return value returned as an object in the client -->
 </sqlresultstream:SqlResultCode>
 </tns:MethodNameResult>
 <!-- followed by one or more return parameters ->
 <tns:OutputParam1>Value</tns:OutputParam1>
 <tns:OutputParam2>Value</tns:OutputParam2>

 ...

</tns:MethodNameResponse>

In the Visual Studio .NET client, this response produces an object array of three elements (two of DataSet type and one of
SqlMessage type).

Serializing a Single DataSet Object in a SOAP Response

http://msdn.microsoft.com/net

SQLXML 3.0 Service Pack 3

Serializing a Single DataSet Object in a SOAP Response
Serializing a Single DataSet Object in a SOAP Response

If the SOAP method is configured to return a single DataSet object (instead of DataSet objects in an object array), the results
appear directly under the <MethodNameResult> elements in the SOAP response. In this case, the <MethodNameResult> is of
type SqlRowSet, and a Microsoft® Visual Studio® .NET client reads a single DataSet object instead of an object array.

For example, the following is a SOAP response fragment that is returned by executing a SOAP method configured to return a
single DataSet:

 <tns:MethodNameResponse>
 <tns:MethodNameResult xsi:type="sqlresultstream:SqlRowSet">
 <xsd:schema>
 <!-- XSD schema ->
 </xsd:schema>
 <diffgr:diffgram>
 <!-- result serialized with DiffGram format -->
 </diffgr:diffgram>
 <sqlresultstream:SqlResultCode>
 <!-- return value returned as an object in the client -->
 </sqlresultstream:SqlResultCode>
 </tns:MethodNameResult>
 <!-- followed by one or more return parameters ->
 <tns:OutputParam1>Value</tns:OutputParam1>
 <tns:OutputParam2>Value</tns:OutputParam2>
 ...

</tns:MethodNameResponse>

Serializing DataSet Objects in a SOAP Response

SQLXML 3.0 Service Pack 3

Returning SOAP Faults
Returning SOAP Faults

If you want Microsoft® SQL Server™ errors to be returned as a SOAP faults, select Return errors as SOAP faults when you are
configuring the soap method in the Soap Virtual Name Configuration dialog box. A Microsoft Visual Studio® .NET client
treats a SOAP fault as an exception; you must handle it accordingly. In the case of a SOAP Toolkit 2.0 client, a SOAP fault causes a
run-time error.

If you do not select the Return errors as SOAP faults option when you configure the virtual name, SQL Server errors will be
handled differently by stored procedures and templates.

For stored procedures, one SqlMessage object is returned for each error.

For templates, an <MSSQLError> element is generated in the XML result for each error. Then exactly one object
(<sqlresultstream:SqlXml>) is returned, which contains the returned result sets and the error elements in the order in which
they were generated.

User-defined functions (UDFs) returning simple-type values always return errors as SOAP faults.

A SOAP method configured to return a single DataSet always returns errors as SOAP faults.

Web Services (SOAP Support) Security Issues

SQLXML 3.0 Service Pack 3

Sample Applications for Sending SOAP Requests
This topic includes the following sample applications that illustrate how SOAP requests are sent to Microsoft® SQLXML by using
various clients:

Sending SOAP Requests by Using Visual Studio .NET Client (C#)

Sending SOAP Requests by Using Visual Studio .NET Client (Visual Basic)

Sending SOAP Requests by Using the SOAP Toolkit 2.0 Client

To create working samples, you must first follow the procedure that is described in Initial Setup for the SOAP Sample
Applications.

IIS Virtual Directory Management for SQL Server

SOAP Request and Response Message Structures

Guidelines and Limitations of SOAP Support in SQLXML

SQLXML 3.0 Service Pack 3

Initial Setup for the SOAP Sample Applications
The initial setup process that is described in this section is common to all SOAP sample applications in the Microsoft® SQLXML
3.0 documentation. In this initial setup, you create a virtual directory and a virtual name of soap type. Then you configure the
virtual name and add the sample stored procedures and template that are provided in the following discussion.

The configuration process creates the Web Services Description Language (WSDL) file. The clients in the sample applications that
are provided in Sample Applications for Sending SOAP Requests use this WSDL file to send SOAP requests.

As part of the initial set up, you create the following:

GetCustomerInfo and GetCustAndOrderInfo stored procedures

UDFReturningATable user-defined function (UDF)

SampleTemplate.xml template file

About the GetCustomerInfo Stored Procedure

The GetCustomerInfo stored procedure executes three statements. The second statement (an INSERT statement) will fail in order
to illustrate how errors are returned as SqlMessage type objects and how you process error messages on the client. During
configuration of the virtual name of soap type, two WSDL operations (methods) are added that map to this stored procedure. The
only difference between these WSDL operations is in how they are configured to return the output:

The WSDL operation GetCustInfoAsXMLElementObjects returns output as XML objects in the object array.

The WSDL operation GetCustInfoAsDataSetObjects returns the output as DataSet objects in the object array.

This Microsoft Visual Studio® .NET client application illustrates how to determine the object types that are returned in the array
and process them accordingly. To simplify the application, the client application displays the object content.

About the GetCustAndOrderInfo Stored Procedure

The GetCustAndOrderInfo stored procedure executes only one statement, and it maps to a WSDL operation that returns a single
DataSet object. This Visual Studio .NET client application illustrates how to process the DataSet object that is returned. Again, to
simplify the application, the client application displays the object content.

About the UDFReturningATable User-defined Function

The UDFReturningATable user-defined function (UDF) returns a table. The WSDL operation that corresponds to this function is
configured to return a single DataSet object, which the Visual Studio .NET client application processes accordingly.

About the SampleTemplate.xml Template

The Template.xml sample template executes two statements. The first statement will fail in order to illustrate how the errors are
returned and processed on the client. The WSDL operation that corresponds this template is configured to return output as XML
objects, which the Visual Studio .NET client application then processes accordingly.

Step1: Creating a sample stored procedure and an XML template

1. In the Northwind database, create the following stored procedures (GetCustomerInfo and GetCustAndOrderInfo) and
user-defined function (UDFReturningATable):

CREATE PROCEDURE GetCustomerInfo
 @CustomerID nchar(5),
 @OutputParam nchar(5) OUTPUT
AS
SELECT @OutputParam = '99999'
SELECT CustomerID, ContactName
FROM Customers
WHERE CustomerID = @CustomerID

INSERT Customers (CustomerID) VALUES ('zzzzz')

SELECT OrderID, OrderDate FROM Orders
WHERE CustomerID = @CustomerID

CREATE PROCEDURE GetCustAndOrderInfo
 @CustomerID nchar(5),
 @OutputParam nchar(5) OUTPUT
AS
SELECT @OutputParam = '99999'
SELECT C.CustomerID, ContactName, OrderID, OrderDate
FROM Customers C, Orders O
WHERE C.CustomerID = O.CustomerID
AND C.CustomerID = @CustomerID

CREATE FUNCTION UDFReturningATable (@CustomerID nchar(5))
RETURNS @OrderTable TABLE
 (
 CustomerID nchar(5),
 OrderID integer
)
AS
BEGIN
 INSERT @OrderTable
 SELECT CustomerID, OrderID
 FROM Orders
 WHERE CustomerID = @CustomerID
 RETURN
END

2. Create the nwind2 subfolder (for example, C:\Inetpub\wwwroot\nwind2). This is the subfolder to which the nwind2 virtual
directory (which you will create later) points.

3. Open Notepad and add the following XML template to it. Note that the first SELECT statement fails. This is intentional to
illustrate how errors are returned to the client.

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name='CustomerID'>ALFKI</sql:param>
 </sql:header>
<sql:query>
 SELECT CustomerID,CompanyName
 FROM Customer
 WHERE CustomerID=@CustomerID
 FOR XML AUTO
 </sql:query>
 <sql:query>
 SELECT top 5 [Order Details].OrderID, ProductID, UnitPrice, Quantity
 FROM [Order Details], Orders
 WHERE Orders.OrderID = [Order Details].OrderID
 AND Orders.CustomerID = @CustomerID
 FOR XML AUTO
 </sql:query>

</ROOT>

4. Save the file as SampleTemplate.xml in the nwind2 folder.

Step2: Creating the nwind2 virtual directory and soap virtual name

1. In the SQLXML 3.0 program group, click Configure IIS Support.

2. Expand a server, and then click the Web site you want (for example, Default Web Site).

3. On the Action menu, point to New; and then click Virtual Directory. The property page for the new virtual directory is
displayed on the screen.

4. In the New Virtual Directory Properties dialog box, on the General tab, enter the name of the virtual directory (nwind2)
and the physical directory path (C:\Inetpub\Wwwroot\nwind2). You also have the option of using the browse (...) button
to select the directory.

5. On the Security tab, select SQL Server and enter the valid Microsoft® SQL Server™ login.

6. On the Data Source tab, in the SQL Server box, enter the name of a server computer (for example, (local)). And if more
than one instance of SQL Server 2000 is installed on the specified computer, also enter the name of an instance of SQL
Server 2000. In the Database box, enter Northwind as the name of the default database.

7. On the Settings tab, select the Allow POST option.

8. On the Virtual Names tab, click <New virtual name> to create the virtual name of type soap.

9. Enter soap as the virtual name in the Name text box. (Notice that this same name also appears in the Webservice text box.)

10. Select soap as the Type (virtual name type) from the drop-down list.

11. Specify the physical directory path that is associated with the virtual name (for example, C:\Inetpub\Wwwroot\nwind2).
(This can be any folder on your computer.)

12. Enter soap as the Web Service Name.

13. Enter the domain name. If you do not specify the domain name, the name defaults to the name of the Microsoft Internet
Information Services (IIS) server computer.

14. Click Save to save the virtual name.

15. Now you can configure the virtual name. In this process, you add five WSDL operations that map to the two stored
procedures, to a user-defined function, and to the template that you previously created. Select the soap virtual name, and
then click Configure.

16. In the Virtual Name Configuration dialog box:
a. Select SP to add the first stored procedure to the configuration, and then click the browse (...) button.

b. Select the GetCustomerInfo stored procedure from the list, and then click OK.

c. Specify GetCustInfoAsXMLElementObjects in the method name text box. This will be the method name that
appears in the WSDL file for the GetCustomerInfo stored procedure.

d. Under Row Formatting, select Raw; and then under Output, select XML objects.

e. Clear the Return errors as soap faults check box, and then click Save. This saves the change to the configuration,
adding the first stored procedure to the configuration file.

f. Select SP again to add the second stored procedure to the configuration, and then click the browse (...) button.

g. Select the GetCustomerInfo stored procedure from the list, and then click OK.

h. Specify GetCustInfoAsDataSetObjects in the method name text box. This will be the method name that appears in
the WSDL file.

i. Under Row Formatting, select Raw; and then under Output, select Dataset objects.

j. Clear the Return errors as soap faults check box, and then click Save. This saves the change to the configuration,
adding the second stored procedure to the configuration file.

k. Select SP again to add the third stored procedure to the configuration, and then click the browse (...) button.

l. Select the GetCustAndOrderInfo stored procedure from the list, and then click OK.

m. Specify GetCustAndOrderInfoAsADataSet in the method name text box. This will be the method name that
appears in the WSDL file.

n. Under Row Formatting, select Nested; and then under Output, select Single Dataset.

o. Click Save. This saves the change to the configuration, adding the third stored procedure to the configuration file.

p. Select SP again to add the user-defined function (UDF) to the configuration, and then click the browse (...) button.

q. Select the UDFReturningTable stored procedure from the list, and then click OK.

r. Note that the name in the method name box is the same as the UDF name. Keep that name. This will be the method
name that appears in the WSDL file.

s. Under Row Formatting, select Raw; and then under Output, select Single Dataset.

t. Clear the Return errors as soap faults check box, and then click Save. This saves the change to the configuration,
adding the UDF to the configuration file.

u. Select Template to add a template to the configuration, and then click the browse (...) button.

v. Select SampleTemplate, and click OK. Note that the name in the method name text box is the same as the template
name. Keep that name. This will be the method name that appears in the WSDL file for the SampleTemplate
template.

w. Clear the Return errors as soap faults check box, and then click Save. This saves the change to the configuration,
adding the template to the configuration file.

x. Click OK. This updates the configuration file with the stored procedures and a template. Corresponding Web Services
Description (WSDL) files are created automatically.

17. During the development of the application, you might want to disable caching of mapping schemas, templates, and XSL
style sheets. On the Advanced tab, select all of the check boxes under Caching options.

18. Click OK to save the virtual name (nwind2).

This creates a virtual directory nwind2 with a virtual name soap of soap type.

SQLXML 3.0 Service Pack 3

Sending SOAP Requests by Using Visual Studio .NET Client (C#)
This topic provides a sample application in which a Microsoft® Visual Studio® .NET client sends SOAP requests to a server
computer that is running Microsoft SQLXML and processes the SOAP response accordingly. It is assumed that you have reviewed
the following topics, which provide the relevant conceptual information:

Initial Setup for Sending SOAP Requests

Writing Client Applications

This sample application requires some initial setup. Before you proceed with the sample application, follow the steps
described in Initial Setup for the SOAP Sample Applications.

The client application provides a dialog box in which you enter a CustomerID value. The client uses this value to send SOAP
requests to execute the WSDL operations (methods). The results of these operations are returned as specified in the configuration
of the operation:

The WSDL operation GetCustInfoAsXMLElementObjects returns output as XMLElement type objects and the errors as
SQLMessage type objects in the object array.

The WSDL operation GetCustInfoAsDataSetObjects returns output as DataSet type objects and the error as an
SQLMessage type object in the object array.

The WSDL operation GetCustAndOrderInfoAsADataSet returns output as a single DataSet object.

The WSDL operation UDFReturningATable operation returns output as a single DataSet object.

The WSDL operation SampleTemplate operation returns output as an XMLElement object and errors as SQLMessage
objects in the object array.

When the results are returned as an object array, the application identifies the type of each object in the object array and then
processes the object accordingly (assigns the object to a variable of the type identified and then displays it the list box).

To simplify the applications, the returned results are displayed on screen.

To create a working sample

1. On the client computer, from the Microsoft Visual Studio .NET program group, start Microsoft Visual Studio .NET.

2. Click New Project.

3. Select Visual C# Projects as the Project Type.

4. Specify the project name and the location where you want to save the project.

5. Select Windows Application as the template, and then click OK.

6. Right-click References, and then select Add Web Reference.

7. In the Address box, type http://Server/nwind2/soap?wsdl, and then press Enter. (This brings the WSDL file to the screen.)
Note that you must enter your server name in the URL.

8. Click Add Reference.

9. In the Form1, add a text box (textBox1), a button (button1), and a list box (listBox1).

10. Right-click text box, and then select Properties. Change the Text value from textBox1 to ALFKI. This is the default
Customer ID value.

11. Right-click button1, and then select Properties. Change the Text property value from button1 to Execute SP and
Template, and change the (name) property to ExecSPandTemplate.

12. Right-click on the list box (listBox1), and then select Properties. Change the HorizontalScrollbar property to True.

13. Double-click Execute SP and Template.

14. Add the following code to the function. Upon completion of this task, the event appears as follows:

In the code, WebReference.soap refers to the Web Reference and to the service that you add. You will need to change this
in the code to the names that you specify when you add the Web reference.

 private void ExecSPandTemplate_Click(object sender, System.EventArgs e)
 {
 string outParam = "";
 int returnValue = 0;
 WebReference.soap proxy = new WebReference.soap();
 //proxy.Credentials=System.Net.CredentialCache.DefaultCredentials;
 listBox1.Items.Add("1) Executing SP. Result returned as XMLElement objects...this is the
result");
 listBox1.Items.Add("");

 // call sp GetCustomerInfo
 object[] results;
 results = proxy.GetCustInfoAsXMLElementObjects(
 textBox1.Text, ref outParam);

 for (int j=0; j<results.Length; j++)
 {
 object e1;
 localhost1.SqlMessage errorMessage;
 System.Xml.XmlElement result;
 e1= results[j];
 // return value from the SP is an int
 if (e1.GetType().IsPrimitive)
 {
 listBox1.Items.Add("Return code = ");
 listBox1.Items.Add(e1);
 }
 switch (e1.ToString())
 {
 case "System.Xml.XmlElement":
 result = (System.Xml.XmlElement) results[j];
 listBox1.Items.Add(result.OuterXml);
 break;

 case "CSharpSQLXML.localhost1.SqlMessage":
 errorMessage = (localhost1.SqlMessage) results[j];
 listBox1.Items.Add(errorMessage.Message);
 listBox1.Items.Add(errorMessage.Source);
 break;
 }
 }
 // call sp GetCustomerInfo again
 listBox1.Items.Add("");
 listBox1.Items.Add("2) Executing SP. Result returned as DataSet objects...this is the result");
 listBox1.Items.Add("");
 object[] results3;
 results3 = proxy.GetCustInfoAsDataSetObjects(textBox1.Text, ref outParam);

 for (int j=0; j<results3.Length; j++)
 {
 object e1;
 localhost1.SqlMessage errorMessage;
 System.Data.DataSet resultDS;
 e1= results3[j];
 // return value from the SP is an int
 if (e1.GetType().IsPrimitive)
 {
 listBox1.Items.Add("Return code = ");
 listBox1.Items.Add(e1);
 }
 switch (e1.ToString())
 {
 case "System.Data.DataSet":
 resultDS = (System.Data.DataSet) results3[j];
 listBox1.Items.Add(resultDS.GetXml());
 break;
 case "CSharpSQLXML.localhost1.SqlMessage":
 errorMessage = (localhost1.SqlMessage) results3[j];
 listBox1.Items.Add(errorMessage.Message);
 listBox1.Items.Add(errorMessage.Source);
 break;
 }
 }
 // calling sp to return a dataset
 listBox1.Items.Add("");
 listBox1.Items.Add("3) Executing SP. Result returned as a single DataSet ...this is the
result");
 listBox1.Items.Add("");
 System.Data.DataSet results4 =
 proxy.GetCustAndOrderInfoAsADataSet(
 textBox1.Text, ref outParam, out returnValue);
 listBox1.Items.Add(results4.GetXml());
 listBox1.Items.Add("Return value: ");
 listBox1.Items.Add(returnValue);

 // executing a UDF
 listBox1.Items.Add("");
 listBox1.Items.Add("4) Executing UDF. Resulting table returned as a single DataSet ...this is
the result");
 listBox1.Items.Add("");
 System.Data.DataSet results5 =
 proxy.UDFReturningATable(textBox1.Text);
 listBox1.Items.Add(results5.GetXml());

 // end of UDF
 listBox1.Items.Add("");
 listBox1.Items.Add("5) Executing template. Result returned as XMLElement objects ...this is the
result");
 listBox1.Items.Add("");
 // call template
 object[] results2;

 results2 = proxy.SampleTemplate(textBox1.Text);
 for (int j=0; j<results2.Length; j++)
 {

 object e1;
 localhost1.SqlMessage errorMessage;
 System.Xml.XmlElement result;
 System.Xml.XmlElement el = (System.Xml.XmlElement) results2[j];
 e1= results2[j];
 switch (e1.ToString())
 {
 case "System.Xml.XmlElement":
 result = (System.Xml.XmlElement) results2[j];
 listBox1.Items.Add(el.OuterXml);
 break;
 case "SqlMessage":
 errorMessage = (localhost1.SqlMessage)results2[j];
 listBox1.Items.Add(el.OuterXml);
 break;
 }
 }
 }

Note that this sample assumes that you specified SQL Server login information when you created the nwind2 virtual
directory. If you specified Windows Integrated Security or Basic Authentication instead, you will need to add code, as
follows:

In the case of Windows Integrated Authentication, add:

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

In the case of Basic Authentication, add:

proxy.Credentials = new System.Net.NetworkCredential(UserID, UserPassword);

15. Save the form, and execute it. Enter the CustomerID value in the text box (for example, "ALFKI"), and then click
ExecSPandTemplate. After you click Execute SP and Template, a SOAP request is sent to execute the sample stored
procedures, the user-defined function, and the sample template. The results are displayed in the list box.

To return a SOAP fault in case of an error, modify the configuration of the soap virtual name and select the Return errors as
soap fault option for the stored procedure and template. This process re-creates the WSDL file. Therefore, you must update the
Web reference in your application to use the new WSDL file and then execute the application again.

SQLXML 3.0 Service Pack 3

Sending SOAP Requests by Using Visual Studio .NET Client
(Visual Basic)
This topic provides the Microsoft® Visual Basic® code for the Microsoft Visual Studio® .NET client example that is described in
Sending SOAP Requests by Using Visual Studio .NET Client (C#).

This is the code:

 Private Sub ExecSPandTemplate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim proxy As New WebReference.service()
 Dim returnValue As Integer
 Dim outputParam As String
 Dim response As New Object()
 Dim i As Integer
 Dim result As System.Xml.XmlElement
 Dim resultDS As System.Data.DataSet
 Dim errorMessage As localhost.SqlMessage

 ListBox1.Items.Add("1) Execute SP ...returning XML objects array")
 ListBox1.Items.Add("")
 response = proxy.GetCustInfoAsXMLElementObjects(TextBox1.Text, outputParam)
 For i = 0 To UBound(response)
 If (response(i).GetType.IsPrimitive) Then
 ListBox1.Items.Add("Return Code = ")
 ListBox1.Items.Add(response(i))
 End If
 Select Case response(i).GetType().ToString()
 Case "System.Xml.XmlElement"
 result = response(i)
 ListBox1.Items.Add(result.OuterXml)
 Case "VBDotNetSQLXMLFinal.localhost.SqlMessage"
 errorMessage = response(i)
 ListBox1.Items.Add(errorMessage.Message)
 ListBox1.Items.Add(errorMessage.Source)
 End Select
 Next
 ' ------------------------------
 ListBox1.Items.Add("")
 ListBox1.Items.Add("2) Execute SP ...returning DataSet objects in the array")
 ListBox1.Items.Add("")
 proxy.GetCustInfoAsDataSetObjects(TextBox1.Text, outputParam)
 For i = 0 To UBound(response)
 If (response(i).GetType.IsPrimitive) Then
 ListBox1.Items.Add("Return Code = ")
 ListBox1.Items.Add(response(i))
 End If
 Select Case response(i).GetType().ToString()
 Case "System.Data.DataSet"
 resultDS = response(i)
 ListBox1.Items.Add(resultDS.GetXml())
 Case "VBDotNetSQLXMLFinal.localhost.SqlMessage"
 errorMessage = response(i)
 ListBox1.Items.Add(errorMessage.Message)
 ListBox1.Items.Add(errorMessage.Source)
 End Select
 Next
 ' ------------------------------
 ListBox1.Items.Add("")
 ListBox1.Items.Add("3) Execute SP ...returning a single DataSet")
 ListBox1.Items.Add("")
 resultDS = proxy.GetCustAndOrderInfoAsADataSet(TextBox1.Text, outputParam, returnValue)
 ListBox1.Items.Add(resultDS.GetXml())
 ' ------------------------------
 ListBox1.Items.Add("")
 ListBox1.Items.Add("4) Execute UDF ...returning a table as a single DataSet")
 ListBox1.Items.Add("")
 resultDS = proxy.UDFReturningATable(TextBox1.Text)
 ListBox1.Items.Add(resultDS.GetXml())
 ' ------------------------------
 ListBox1.Items.Add("")
 ListBox1.Items.Add("5) Executing template ...this is the result")
 ListBox1.Items.Add("")
 response = proxy.SampleTemplate(TextBox1.Text)
 For i = 0 To UBound(response)
 Select Case response(i).GetType().ToString()
 Case "System.Xml.XmlElement"

 result = response(i)
 ListBox1.Items.Add(result.OuterXml)
 Case "VBDotNetSQLXMLFinal.localhost.SqlMessage"
 errorMessage = response(i)
 ListBox1.Items.Add(errorMessage.Message)
 ListBox1.Items.Add(errorMessage.Source)
 End Select
 Next
 End Sub

The first line in the code (Dim proxy As New WebReference.soap()) declares a proxy object, where WebReference refers to
the name of the Web reference that you add to the project and service refers to the name of the service that is defined in the
WSDL file (the service element <service name="ServiceName"> in the WSDL file).

Note that this sample assumes that you specified SQL Server login information when you created the nwind2 virtual directory.
If you specified Windows Integrated Security or Basic Authentication instead, you will need to add code, as follows:

In the case of Windows Integrated Authentication, add:

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials

In the case of Basic Authentication, add:

proxy.Credentials = new System.Net.NetworkCredential(UserID, UserPassword)

To create a working sample

1. On the client computer, from the Microsoft Visual Studio .NET program group, start Microsoft Visual Studio .NET.

2. Click New Project.

3. Select Visual Basic Projects as the Project Type.

4. Select the Windows Application template.

5. Specify the project name and the location where you want to save the project, and then click OK.

6. Right-click References, and then select Add Web Reference.

7. In the Address box, type http://Server/nwind2/soap?wsdl, and then press Enter. (This will bring the Web service
definition as described by the WSDL file to the screen.) Note that you must specify the appropriate server name in the URL.

8. Click Add Reference.

9. In Form1, add a text box (textBox1), a button (button1), and a list box (listBox1).

10. Right-click textBox1, and then select Properties. Change the Text value from textBox1 to ALFKI (the default value for the
customer ID).

11. Right-click button1, and then select Properties. Change the Text value from button1 to ExecSPandTemplate.

12. Right-click the list box (listBox1), and then select Properties. Change the HorizontalScrollbar property to True.

13. Double-click ExecSPandTemplate. Change the sub name from Button1_Click to ExecSPandTemplate_Click. Add the
code given earlier in this topic. Note that you must replace "WebReference" in the code with the name of the Web reference
that you added and replace "ServiceName" with the service name in your WSDL file.

14. Save the form, and execute it. Provide the customer ID value (the default is "ALFKI"). The application first executes the
GetCustomerInfo stored procedure and then executes SampleTemplate. The stored procedure returns the customer and
order information for the specified customer. The template returns the customer information and the order detail
information.

IIS Virtual Directory Management for SQL Server

Sending SOAP Requests by Using the SOAP Toolkit 2.0 Client

SQLXML 3.0 Service Pack 3

Sending SOAP Requests by Using the SOAP Toolkit 2.0 Client
In this Microsoft® Visual Basic® example, the SOAP Toolkit 2.0 client sends HTTP SOAP requests to the server that is running
Microsoft SQLXML. These SOAP requests include requests to execute the stored procedures, the user-defined function (UDF), and
the template that you added during configuration of the virtual name of soap type as described in Initial Setup for the SOAP
Sample Applications. SQLXML processes each request and returns the XML result as the IXMLDOMNodeList parameter to the
SOAP Toolkit 2.0 client.

In this example, each node in IXMLDOMNodeList is displayed on the screen.

For this example, it is assumed that you are familiar with SOAP Toolkit 2.0. To test the application, you must have SOAP
Toolkit 2.0 installed on your computer.

This is the code. (Note that you must update the WSDL path that is specified for mssoapinit to your server name and the server
name when you set the ConnectorProperty.)

Option Explicit
Private soapclient As soapclient
Private Sub Form_Load()
'On Error GoTo fail
Set soapclient = New soapclient
soapclient.mssoapinit "http://server/nwind2/soap?wsdl"
soapclient.ConnectorProperty("EndPointURL") = "http://server/nwind2/soap"
Dim retList As IXMLDOMNodeList
Dim node As IXMLDOMNode
Dim retValue
Dim outputParam

'-------------------
MsgBox "1) Calling SP - GetCustInfoAsXMLElementObjects"
'call SP - returning results as XML Element objects in the array
Set retList = soapclient.GetCustInfoAsXMLElementObjects(_
 "ALFKI", outputParam)
For Each node In retList
 MsgBox node.xml
Next
'----------------------
'call SP - returning results as DataSet objects in the array
MsgBox "2) Calling SP - GetCustInfoAsDataSetObjects"
Set retList = soapclient.GetCustInfoAsDataSetObjects(_
 "ALFKI", outputParam)
For Each node In retList
 MsgBox node.xml
Next
' ----------------------
'call SP - returning results as a DataSet object
MsgBox "3) Calling SP - GetCustInfoAsADataSetObject"
Set retList = soapclient.GetCustAndOrderInfoAsADataSet(_
 "ALFKI", outputParam, retValue)
For Each node In retList
 MsgBox node.xml
Next
' ----------------------
'call UDF - returning a table as a DataSet object
MsgBox "4) Calling UDF - UDFReturningTable"
Set retList = soapclient.UDFReturningATable(_
 "ALFKI")
For Each node In retList
 MsgBox node.xml
Next
' -------------------
'call Template - returning result as XML objects in the array
MsgBox "5) Calling Template - returning results as XML objects"

Set retList = soapclient.SampleTemplate("ALFKI")
For Each node In retList
 MsgBox node.xml
Next

'Exit Sub
'fail:
'Debug.Print soapclient.Detail
'Debug.Print Err.Description

End Sub

Before you proceed further, read Initial Setup for the SOAP Sample Applications.

To create a working sample

1. On the client computer, open Microsoft Visual Basic and create a Standard EXE project.

2. Change the Project Name to SoapToolkitClient and the Form Name to SOAPTookitClientForm.

3. On the Project menu, click References, and then select the Microsoft Soap Type Library check box and the Microsoft
XML, v4.0 check box.

4. To the DocSample4ClientForm form, add the code from the code given earlier in this topic. Note that in the sample, the
URL specifies localhost, which you might have to change to the appropriate server name.

5. On the File menu, click Save Project, and then save the project in some folder.

6. On the File menu, click Make SoapToolkitClient.exe, and then save the executable.

7. To execute the application, double-click SoapToolkitClient.exe.

After the application begins running, it displays the XML result in a sequence of message boxes.

IIS Virtual Directory Management for SQL Server

Initial Setup for Sending SOAP Requests

Writing Client Applications

Sending SOAP Requests by Using Visual Studio .NET Client (C#)

Sending SOAP Requests by Using Visual Studio .NET Client (Visual Basic)

SQLXML 3.0 Service Pack 3

Guidelines and Limitations of SOAP Support in SQLXML
The following is a list of guidelines and limitations of SOAP support in Microsoft® SQLXML 3.0:

In sending a SOAP request from Visual Studio .NET 2003, you can pass a NULL for value-typed parameters (integers,
booleans, ...) by setting the ParameterNameSpecified parameter to false, in which case the corresponding parameter is not
included in the SOAP request. For this missing parameter, SQLXML assumes a NULL value and processes the request
accordingly. The side effect is that SP default values for the input parameters cannot be used.

In returning a SOAP response, if the value of the output parameter(s) or a return value is NULL, SQLXML does not include
the parameter in the SOAP response. In Visual Studio, a corresponding ParameterNameSpecified parameter is set to false
(indicating a NULL parameter value).

In sending custom SOAP messages, you can either not include the parameter, or set the xsi:nil attribute to true for the
element corresponding to the parameter.

When returning the results of a stored procedure containing multiple queries as a single dataset, Visual Studio.Net
automatically attempts to merge the multiple result sets into one. Elements with the same name, although they are in
different result sets, may be merged into one. It is highly recommended that stored procedures returning multiple result
sets be returned with the DataSet object array. By specifying this enumeration, each result set is returned as a separate
dataset, ensuring the data is correct.

Stored procedures in which a join occurs and for which the parent table has one or more characters in its name that require
escaping for XML (for example, "Order Details" becomes "Order_x0020_Details") should not be exposed as a Web method
with NESTED formatting that returns the single DataSet object or a DataSet object array. Visual Studio .Net cannot
consume the dataset(s) returned by such a stored procedure with those options. To expose the stored procedure, it is
recommended that you do either of the following:

Alias the table name(s) with the characters that must be escaped to a name that does not contain such a character.

Choose a mode that does not involve datasets and the NESTED mode. In this case, you could return data as
XMLElement objects, DataSet objects in RAW format, or single DataSet object with RAW mode.

The stored procedures you add in the configuration of the virtual name of soap type cannot have:
Output parameters of BLOB type (text, ntext, or image).

Input parameters of image type.

IIS Virtual Directory Management for SQL Server

Initial Setup for Sending SOAP Requests

Writing Client Applications

SOAP Request and Response Message Structures

Sample Applications for Sending SOAP Requests

SQLXML 3.0 Service Pack 3

Other Feature Enhancements
The topics in this section include information about enhancements to XML features that were shipped with Microsoft® SQL
Server™ 2000:

Specifying the _charset_ Keyword

Syntax for Accessing Database Objects by Using HTTP

Executing XPath Queries with Namespaces

Executing XPath Queries with Namespaces in the URL

Enhancements to XML Templates

Enhancement to Annotated XDR Schemas

Enhancement to XPath Queries

Template Caching

XSL Caching

Schema Caching

SQLXML 3.0 Service Pack 3

Syntax for URL Access
In the syntax for a URL query, you do not have use quotation marks to specify parameter values, as shown in the following
examples:

In this query, the sql parameter has a value that is the SELECT statement (and there are no quotation marks around the
SELECT statement):

http://server/virtualroot?sql=SELECT * FROM Customers WHERE CustomerID='ALFKI'

In this query, CustomerID is a parameter and there are no quotation marks around its value (ALFKI). In this query the
parameter is passed to the template specified in the URL:

http://server/virtualroot/template/MyTemplate.xml?CustomerID=ALFKI

The following topics provide additional information about the syntax for URL access that the SQL ISAPI extension supports:

Specifying the _charset_ Keyword

Syntax for Accessing Database Objects by Using HTTP

SQLXML 3.0 Service Pack 3

Specifying the _charset_ Keyword
The _charset_ keyword specifies the character set of the data that is sent to the server. The default is CP-UTF8. You can enter
charset as a parameter in a URL, as shown in the following example:

http://IISServer/VirtualRoot?sql=SELECT FirstName, LastName FROM Employees&root=root&_charset_=UTF-16

For more information about URL syntax, see "URL Access" in SQL Server Books Online.

SQLXML 3.0 Service Pack 3

Returning Unicode Data
Results of URL queries, by default, are returned as UTF-8. By specifying encoding=unicode in the URL, you can return query
results as Unicode. Note that, in this case, the XML returned must have a single top-level element. If an XML fragment is returned,
then the Unicode byte order mark is not returned. If the query returns a fragment, you can add a single top-level element by using
the root keyword in the URL.

For example, the following query returns a fragment. But the root=MyRoot in the URL, adds a single top-level element
(<MyRoot>) to the document. Because encoding=unicode is specified in the URL, the query result is returned as unicode.

http://IISServer/VirtualRoot?sql=SELECT FirstName, LastName FROM Employees&root=MyRoot&encoding=unicode

For more information about URL syntax, see "URL Access" in SQL Server Books Online.

SQLXML 3.0 Service Pack 3

Syntax for Accessing Database Objects by Using HTTP
The syntax that follows is used for specifying queries to access database objects by using HTTP. (For more information, see
"Accessing Database Objects Using HTTP" in SQL Server Books Online.)

TableName '[' Predicate ']/@' Column

where

TableName

Specifies the table name.

Predicate

(Optional) Specifies the Column = Value pairs separated by AND (if there is more than one Column = Value pair). What is
identified by the predicate must be a single row. (If you specify a predicate value for which the result is more than one row, only
the first row is returned.) Value may be a number, string, or variable; variables are expressed by using the syntax
'$'VariableName (for example, $x).

Column

Specifies the column from which to retrieve the value.

For example, the following query retrieves the Photo column from the Employees table with EmployeeID equal to 1:

http://IISServer/nwind/dbobject/Employees[@EmployeeID='1']/@Photo

In this query, dbobject is the virtual name of dbobject type, and nwind is the virtual directory that is associated with the
Northwind database.

This query is equivalent to the Transact-SQL query:

SELECT Photo
FROM Employees
WHERE EmployeeID='1'

The following dbobject query demonstrates the use of a variable (eid):

http://IISServer/nwind/dbobject/Employees[@EmployeeID=$eid]/@Photo?eid=1

This query is equivalent to the queries in the preceding examples.

SQLXML 3.0 Service Pack 3

Executing XPath Queries with Namespaces
Previously, in Microsoft® SQL Server™ 2000, you could execute XPath queries with namespaces only by specifying the XPath
query in a template. In Microsoft SQLXML 3.0:

You can specify XPath queries with namespaces against mapping schemas in the URL. In this case, the namespaces
parameter must be specified in the URL in order to specify the namespace binding that will resolve the prefix. For example:

http://localhost/nwind/schema/SampleSchema.xml/x:Employee?
namespaces=xmlns:x='urn:myschema:Employees'&root=root

In this URL, x:Employee is the XPath query that is executed against the mapping schema (SampleSchema.xml). The
namespaces parameter provides the binding to resolve the prefix.

For more information, see Executing XPath Queries with Namespaces in the URL.

Note that you can specify multiple values separated by spaces for namespaces in the URL.

You can execute XPath queries with namespaces by using the SQLXMLOLEDB Provider. A provider-specific property,
namespaces, allows you to provide binding to resolve the prefix.

For more information, see Executing XPath Queries with Namespaces (SQLXMLOLEDB Provider).

SQLXML 3.0 Service Pack 3

Executing XPath Queries with Namespaces in the URL
XPath queries can include namespaces. (If the schema elements are namespace qualified, using a target namespace, XPath queries
against the schema must specify the namespace.)

One way to specify namespaces in XPath query is to write a query that uses the wildcard character ('*') and the local-name() and
namespace-uri() XPath functions. For example, the following XPath query returns all elements where the local name is
Employee and the namespace URI is urn:myschema:Employees:

/*[local-name() = 'Employee' and namespace-uri() = 'urn:myschema:Employees']

But because the SQL Server 2000 XPath implementation does not support XPath queries that contain the wildcard character ('*'),
you must specify the XPath query by using a namespace prefix, such as:

x:Employee

The namespace prefix is x. In this case, you must specify the namespace binding to resolve the prefix. The namespaces property
enables you to specify the binding.

Consider this XSD schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
 xmlns:emp="urn:myschema:Employees"
 targetNamespace="urn:myschema:Employees">
<complexType name="EmployeeType">
 <attribute name="EID" sql:field="EmployeeID" type="ID"/>
 <attribute name="FName" sql:field="FirstName" type="string"/>
 <attribute name="LName" sql:field="LastName"/>
</complexType>
<element name="Employee" type="emp:EmployeeType" sql:relation="Employees"/>
</schema>

Because the schema defines the target namespace, an XPath query (such as "Employee") must include that namespace. The
following is an example of a URL query against this schema:

http://localhost/nwind/schema/emp-ex.xml/x:Employee?namespaces=xmlns:x='urn:myschema:Employees'&root=root

In the URL, x:Employee is the XPath query, schema is the virtual name of type schema that you create when the virtual root
(nwind) is created, and nwind is a virtual root that points to the Northwind database. The namespaces parameter specified in
the URL provides the binding to resolve the prefix specified in the XPath query. The root parameter defines a single top-level root
element for the resulting XML.

This is the partial result:

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <y0:Employee xmlns:y0="urn:myschema:Employees"
 LName="Devolio" EID="1" FName="Nancy" />
 <y0:Employee xmlns:y0="urn:myschema:Employees"
 LName="Fuller" EID="2" FName="Andrew" />
 ...
 </root>

The prefixes that are generated in the XML document are arbitrary, but they map to the same namespace.

SQLXML 3.0 Service Pack 3

Enhancements to XML Templates
The following enhancements to XML templates have been introduced since the release of Microsoft® SQL Server™ 2000:

client-side-xml attribute

Use this Boolean attribute to specify client-side XML formatting. If the attribute is set to 1 (TRUE), the SELECT query (without
the FOR XML) is executed on the server and the FOR XML transformation is applied to the rowset on the client. If the
attribute is not specified in the template, server-side XML is assumed (unless you have selected Run on the client for the
virtual directory). This template attribute is functionally similar to the ClientSideXML property of the SQLXMLOLEDB
Provider.

For example, the following template (MyTemplate.xml) executes a SELECT query:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query client-side-xml="1">
 SELECT top 2 FirstName, LastName
 FROM Employees
 FOR XML AUTO
 </sql:query>
</ROOT>

This template also can be executed in the URL as follows:

http://localhost/virtualroot/templatevirtualname/MyTemplate.xml

Because the client-side-xml attribute is set to 1 (true), the XML formatting of the rowset (generated by the query
execution) is performed on the client. If client-side-xml is specified in the template and also Run on client is selected in
the virtual directory (on the Settings tab), the setting in the template takes the precedence. For more about virtual directory
settings, see IIS Virtual Directory Management for SQL Server.

You can execute stored procedures in a template and generate an XML document. For more information, see Retrieving
XML Documents by Using FOR XML on the Client Side.

The client-side-xml attribute must appear unqualified in the template; otherwise, an error is returned.

nullvalue attribute

When parameters are passed to a template, a NULL value can be passed as the parameter value. This is accomplished by
specifying the sql:nullvalue (or nullvalue) attribute in the <sql:header> block.

For example, consider this stored procedure:

IF EXISTS (SELECT name FROM sysobjects
 WHERE name = 'FindEmployeeNames' AND type = 'P')
 DROP PROCEDURE FindEmployeeNames
GO
CREATE PROCEDURE FindEmployeeNames
 @Title varchar(35)
AS
 IF (@Title IS NULL)
 SELECT FirstName, LastName
 FROM Employees
 WHERE Title IS NULL
 FOR XML AUTO
 ELSE
 SELECT FirstName, LastName
 FROM Employees
 WHERE Title = @Title
 FOR XML AUTO

If the value of the @Title parameter is NULL, the first SELECT block is executed; otherwise, the second SELECT block is
executed.

The following template executes the FindEmployeeNames stored procedure. The template takes one parameter (Title). If
the parameter value is not passed when this template is executed, the default value (Sales Representative) is used:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header sql:nullvalue="IsNULL" >
 <sql:param name='Title'>Sales Representative</sql:param>
 </sql:header>
 <sql:query >
 exec FindEmployeeNames @Title
 </sql:query>
</ROOT>

The sql:nullvalue attribute is assigned an IsNULL value. Therefore, when you execute this template in the URL, you can
pass a NULL value to the Title parameter by specifying IsNULL as the parameter value, as shown in the following URL:

http://IISServer/nwind/TemplateVirtualName/MyTemplate.xml?Title=IsNULL

The IsNULL value is converted to NULL and passed to the stored procedure.

is-xml attribute

When a parameter value is passed to a template, the value can be a string or an XML fragment. The is-xml attribute is used
to identify whether the parameter value is an XML.

When is-xml=1 (the default), the parameter value is treated as an XML fragment, in which case the value is passed
as is (that is, the contents are not interpreted in any way).

When is-xml=0, the parameter value is treated as a string; the entities in the parameter value are interpreted
appropriately.

For example, assume you have this table:

t1(stockticker varchar(20))

The following template inserts a stock ticker symbol into the table:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header >
 <sql:param name='p1' is-xml='1'>AT&T</sql:param>
 </sql:header>
 <sql:query >
 INSERT INTO t1 VALUES (@p1)
 </sql:query>
</ROOT>

In the template, p1 is the parameter with a default value of AT&T. If no value is specified for the parameter when this
template is executed, the default value is used.

In the template, the is-xml attribute is 1. Therefore, the value AT&T is inserted in the table t1. If you set is-xml to 0,
& is interpreted as &, and the value AT&T is inserted in the table.

To test this template, save it in a directory that is associated with virtual name of type template. The following URL executes
the template:

http://IISServer/VirtualRoot/TempateVirtualRoot/SampleTemplate.xml

Template caching

For more information, see Template Caching.

Template parameter limitation

When parameters are passed to XML templates, the incoming parameters are strings. This creates a limitation as shown by
the following template example:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>

 <sql:header>
 <sql:param name='EmpID'>1</sql:param>
 </sql:header>
 <sql:query >
 SELECT EmployeeID, FirstName, LastName
 FROM Employees
 WHERE EmployeeID > @EmpID
 FOR XML AUTO
 </sql:query >
</ROOT>

In this template, the incoming parameter is EmpID. When this parameter is passed to the SQL query, SQL Server converts it
to an integer before it compares the value with the EmployeeID values in the Employees table.

The following URL executes the template:

http://IISServer/nwind/Template/SampleTemplate.xml?EmpID=8

The result is that all employees with an ID greater than 8 are returned. If no parameter is passed, the default EmpID value of
1 is used.

Instead of an SQL query, if you specify an XPath query against an annotated XDR schema, you get different results. Consider
this annotated schema:

<?xml version="1.0" ?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="Employee" sql:relation="Employees" >
 <AttributeType name="EmpID" />
 <AttributeType name="FName" />
 <AttributeType name="LName" />

 <attribute type="EmpID" sql:field="EmployeeID" />
 <attribute type="FName" sql:field="FirstName" />
 <attribute type="LName" sql:field="LastName" />
</ElementType>
</Schema>

This is the template that executes an XPath query:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header>
 <sql:param name='EmpID'>1</sql:param>
 </sql:header>
 <sql:xpath-query mapping-schema="ParamsAreStringsSchema.xml">
 /Employee[@EmpID > $EmpID]
 </sql:xpath-query>
</ROOT>

The following URL executes the template:

http://IISServer/nwind/Template/SampleTemplate.xml?EmpID=8

The result of this query returns only the employee with an EmID of 9. This is because the incoming template parameter
EmpID is a string. In the mapping schema, the EmpID field is also of string type. Therefore, in this case, a string
comparison takes place. In a string comparison, the employee ID of 10 is less than 8; therefore, only the employee ID of 9 is
returned in the result.

To get the desired results (employees 9 and 10), you must employ a number conversion in the XPath:

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>

 <sql:header>
 <sql:param name='EmpID'>1</sql:param>
 </sql:header>
 <sql:xpath-query mapping-schema="ParamsAreStringsSchema.xml">
 /Employee[@EmpID > number($EmpID)]
 </sql:xpath-query>
</ROOT>

In this XPath query, the EmpID parameter is still a string; however, it is converted to a number in the XPath, and then a
number comparison is performed. As a result, both employees 9 and 10 are returned.

There are security-related limitations when you post a template using HTTP POST. For more information, see Template Security
Issues.

SQLXML 3.0 Service Pack 3

Enhancement to Annotated XDR Schemas
The following enhancement has been made to the annotated XDR schema support that was introduced in Microsoft® SQL
Server™ 2000:

sql:datatype annotation

The sql:datatype annotation initially supported only four data types (text, ntext, image and binary). The sql:datatype
annotation now supports all SQL Server built-in data types. (User-defined data types or synonyms are not supported.)
Precision and scale are also supported, for example, sql:datatype="nvarchar" and sql:datatype="nchar(10)".

Specifying XDR and SQL Server data types in the mapping schema can help eliminate unnecessary data conversions in SQL
queries. For example, XPath must convert from the SQL Server data type to the XDR data type, and then from the XDR type
to the XPath type. When the sql:datatype or XDR type are specified and XPath determines that the conversion is
unnecessary, XPath does not do it.

In the case of primary key columns, the elimination of these conversions can result in a significant performance
improvement. For example, the following query usually requires a conversion of CustomerID to string (nvarchar) to
guarantee correct results:

Customer[@CustomerID='ALFKI']

If CustomerID is annotated in the schema with sql:datatype="nvarchar", XPath can avoid the unnecessary data
conversion.

SQLXML 3.0 Service Pack 3

Enhancement to XPath Queries
Microsoft® SQLXML 3.0 includes support for XPath queries that contain a cross-product in the predicate, as shown in the
following example:

Customer[Order/@OrderDate=Order/@ShippedDate]

This query selects all customers with any Order for which the OrderDate equals the ShippedDate of any Order.

SQLXML 3.0 Service Pack 3

Caching Templates, XSL, and Schemas
To improve performance, Microsoft® SQLXML 3.0 supports caching templates, XSL, and schemas. For more information, see the
following topics:

Template Caching

XSL Caching

Schema Caching

Note that if you change any of the cache size, you must restart Microsoft Internet Information Services (IIS) for the change to be in
effect.

All schemas, templates, and XSL files (except the files from an http:// or ftp:// location) are cached. The cached files remain in
memory while the process is running. As the process exits all the cache is lost. Therefore, if you run one process per query, the
caching benefit may not be noticeable.

SQLXML 3.0 Service Pack 3

Template Caching
Template caching significantly improves performance. If template caching is set, the template remains in memory upon its first
execution. This improves the performance for the subsequent execution of the template.

You can set the template cache size by adding the following key in the registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\TemplateCacheSize

The template size should be set on the basis of the available memory and the number of templates you are using. The default of
TemplateCacheSize size is 31. You can increase the cache size if template access seems slow, or decrease the cache size if
memory is low.

For better performance, it is recommended that you set TemplateCacheSize higher than the number of templates you usually
use. If TemlateCacheSize is less than the number of templates you have, performance degrades as the number of templates
increase. The TemplateCacheSize can be set to a maximum of 128.

Every time a cached template is used, the modification time of the template file is checked to see whether it needs to be refreshed.
This is because the disk copy is newer than the cache copy.

To prevent template caching, in the Virtual Directory Properties dialog box on the Advanced tab, select the Disable Caching
of template check box.

XSD and XDR schemas and XSL style sheets also can be cached. For more information, see Schema Caching and XSL Caching.

Template parameters and command properties are not cached.

SQLXML 3.0 Service Pack 3

XSL Caching
Caching XSL style sheets improves performance. Upon its first execution, an XSL style sheet remains in memory if XSL caching is
set to ON; this improves performance for subsequent processing. The default setting is ON.

You can set the XSL cache size by adding the following key in the registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\XSLCacheSize

The XSL cache size should be set on the basis of the available memory and the number of XSL style sheets you are using. The
default of XSLCacheSize size is 31. You can increase the cache size if XSL access seems slow, or decrease the cache size if
memory is low.

For better performance, it is recommended that you set XSLCacheSize higher than the number of XSL style sheets you usually
use. If XSLCacheSize is less than the number of XSL style sheets you have, the performance degrades as the number of XSL style
sheets increases. The XSLCacheSize can be set to a maximum of 128.

Every time the cached XSL style sheet is used, the modification time of the XSL file is checked to determine whether it needs to be
refreshed. This is because the disk copy is newer than the cache copy.

To prevent XSL caching, in the Virtual Directory Properties dialog box on the Advanced tab, select the Disable Caching of
XSL check box.

Template Caching

Schema Caching

SQLXML 3.0 Service Pack 3

Schema Caching
With a side-by-side installation of XML for Microsoft® SQL Server™ 2000 Web Release 1, Microsoft SQLXML 2.0, and Microsoft
SQLXML 3.0, you can explicitly control the schema caching in all versions by using the following registry keys:

Web Release 1:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXMLX\SchemaCacheSize
SQLXML 2.0:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML2\SchemaCacheSize
SQLXML 3.0:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\SchemaCacheSize
For more information about side-by-side installation, see About This Release.

Template Caching

XSL Caching

SQLXML 3.0 Service Pack 3

Specifying a Mapping Schema for XPath Queries and
Updategrams
There are three options for specifying mapping schema when you execute an XPath query or an updategram. You can:

Specify the mapping-schema attribute on the <sql:xpath-query> element when there is an XPath query or on
<updg:sync> element in an updategram.

Specify the mapping-schema attribute on the <ROOT> element (global declaration) in the template. This mapping schema
then becomes the default schema that will be used by all XPath and updategram nodes that have no explicit mapping-
schema annotation.

Specify the mapping schema attribute by using the ADO Command object.

The mapping schema attribute that is specified on the <xpath-query> or <updg:sync> element has the highest precedence; the
ADO Command object has the lowest precedence.

Note that if you specify an XPath query in a template and do not specify a mapping schema against which the XPath query is
executed, the XPath query is treated as a dbobject type query. For example, consider this template:

<sql:xpath-query
 xmlns:sql="urn:schemas-microsoft-com:xmlsql">
 Employees[@EmployeeID='1']/@Photo
</sql:xpath-query>

The template specifies an XPath query but it does not specify a mapping schema. Therefore, this query is treated as a dbobject
type query in which Employees is the table name and @EmployeeID='1' is a predicate that finds an employee with the ID value
of 1. @Photo is the column from which to retrieve the value. For more information about dbobject queries, see Virtual Directory
Properties Dialog Box (Virtual Names Tab) or the "Accessing Database Objects Using HTTP" topic in SQL Server Books Online.

SQLXML 3.0 Service Pack 3

Understanding Security Issues
The following topics provide information about the security-related issues for Microsoft® SQLXML:

URL Queries Security Issues

Virtual Directory Security Issues

Updategram Security Issues

Annotated Schema Security Issues

Web Services (SOAP Support) Security Issues

Template Security Issues

FOR XML Security Issues

Bulk Load Security Issues

SQLXML 3.0 Service Pack 3

URL Queries Security Issues
The length of a query in a URL (the text that appears after the question mark ?) is limited to 1 kilobyte. If you want to send more
information, you should use HTTP POST and send the name/value pairs inside the body of the message. The Microsoft® Internet
Information Services (IIS) administrator can restrict the size of POST messages by setting the maximum POST size by using the IIS
Virtual Directory Management for SQLXML 3.0 utility.

SQLXML 3.0 Service Pack 3

Virtual Directory Security Issues
The following security issues relate to creating virtual directories using the IIS Virtual Directory Management for SQLXML 3.0
utility. The issues relate to the following tabs on the Virtual Directory Properties dialog box:

Security tab

For added security, select the Use Windows Integrated Authentication option. Windows Integrated authentication
requires valid Windows login credentials. The other authentication methods use the anonymous access method (no user
name and password are required), which allows any user to access the virtual root.

Note:When creating a virtual directory, if you specify integrated authentication, then integrated authentication is used
from end to end. That is, from client to IIS, and from IIS to SQL Server. But this security setting won’t work if the domain has
the credential delegation turned off. The login credential from client to IIS will work, but since the credential delegation is
turned off, IIS cannot delegate these credentials to SQL Server. Thus, the integrated security won't work. In this case, you
must specify either Windows or SQL Server authentication when creating a virtual directory.

If you select the Use Basic Authentication (Clear Text) to SQL Server account option, the user name and
password are sent with base64 encoding, which is easy to decrypt. It is recommended that, if you use this option,
you use it with Secured Sockets Layer (SSL) security, which encrypts all the data going over the connection.

Settings tab
In a production environment, do not select the Allow sql=..., and Allow XPath options. By enabling these options,
you expose your database to malicious random queries. To prevent random queries in the URL, specify your queries
in XML templates and select the Allow template queries option. This limits the users to what queries they can
execute against Microsoft® SQL Server™ using the virtual directory.

Do not select Allow POST. POST allows a user to send large amounts of data that could potentially cause your
service to fail, such as a typical denial of service problem in Web services.

Select the Allow POST option only when you have created a virtual directory to handle SOAP requests; for example,
a virtual name of soap type is defined for the virtual directory. When Allow POST is enabled for SOAP services,
you must set the Maximum size of POST queries appropriately. The requirements of the SOAP methods must be
considered in setting this value (maximize the POST size to the extent that all acceptable SOAP requests are within
the POST size range).

By checking Suppress error reporting you can avoid detailed errors from being returned in the production
environment, thus providing added security by hiding internal details.

Virtual Names tab
A physical directory associated with a virtual name of template type should contain only templates. Because all the
files stored in this folder are treated as templates, if you store other files such as schemas, users can view them. For
example, in the following URL, the contents of MySchema.xml will appear in the browser:

http://Server/Vname/Template/MySchema.xml

If the schema in this file is a mapping schema, it contains database information that you may not want to expose to
the end user.

In a production environment, do not create a virtual name of dbobject type for the virtual directory. The virtual
name of dbobject type allows XPath queries specified directly against a table. Random queries put the data in
database at risk. dbobject queries can be safely used, however, if you select the Windows Integrated
Authentication option (in the Security tab) and set the appropriate permissions in SQL Server for each of the
logins. A dbobject virtual name can be safely used in development environment.

For a virtual name of soap type, create a physical directory specific to the soap virtual name. Virtual names of other
types, such as template and schema, should not map to this directory. For example, if you have two virtual names,
such as template and soap type, that point to the same physical directory, a user can specify either of the following
URLs to see the contents of the .wsdl or .ssc files:

http://Server/Vname/Template/MyWSDL.WSDL

Or

http://Server/Vname/Template/MyConfig.ssc

The configuration file has the mapping information (which WSDL operation maps to which stored procedure, user-
defined function, or template) that users do need not to see.

Using the IIS Virtual Directory Management for SQLXML 3.0 Utility

SQLXML 3.0 Service Pack 3

Updategram Security Issues
The following are security guidelines for using updategrams:

Avoid using default mapping when you use updategrams to update data. When you use default mapping, an element name
in an updategram maps to a table name, and an attribute name maps to a column. This exposes the database table and
column information in the database, which can be a potential security risk. Instead, if you specify a separate mapping
schema that maps the elements and attributes in an updategram to the database tables and columns, your updategram
element and attribute names can be arbitrary, and the schema does necessary mapping of these names to the database
tables and columns. Thus, the database information is not exposed in an updategram. For more information about using
default mapping, see Using Updategrams to Modify Data.

Do not allow users to create and execute their updategrams. It is recommended having updategrams reside as templates on
a server rather than creating them dynamically in ASP-type applications, which could put the data in the database at risk.
Allowing users to access the data only through the updategrams provided as templates, can eliminate this risk.

SQLXML 3.0 Service Pack 3

Annotated Schema Security Issues
The following are security guidelines for using annotated schemas:

Avoid using default mapping in the mapping schemas. The default mapping exposes the database information (table and
column names) in the resulting XML document because, by default, the element names map to table names and attribute
names map to column names. Therefore, any user who sees the XML document has access to the table and column
information in the database, presenting a potential security risk. To avoid this risk, specify arbitrary element and attribute
names in the schema and use annotations to explicitly map them to the tables and columns. For more information about
using default mapping when you create XSD schemas, see Default Mapping of XSD Elements and Attributes to Tables and
Columns.

The explicit mapping specified using the annotations exposes the database information (such as table names and column
names). Therefore, you may not want to make these schemas available publicly.

Certain queries such as those specified against mapping schema with recursion (specified using max-depth annotation set
to a higher value) may take longer to execute. You can optionally specify a time-out limit by setting the Command Time
Out property (in seconds). For example:
cn.Open "Provider=sqloledb;Server=server;Database=db;UID=UserID;PWD=UserPassword;Command
Properties='Command Time Out=50';"

SQLXML 3.0 Service Pack 3

Web Services (SOAP Support) Security Issues
The following are security guidelines for using Web services (SOAP support):

When you add stored procedures, user-defined functions (UDFs), and templates to the configuration of the soap virtual
name, it is recommended that you provide SOAP method names different from their corresponding stored procedure, UDF,
or template names. This prevents users from knowing the actual stored procedure, UDF, or template names.

When you configure a SOAP method in the Soap Virtual Name Configuration dialog box, select the Return Errors as
SOAP Fault option. When this option is selected, if an SQL error occurs it is returned as a single SOAP fault. If this option is
not selected, SQL errors are returned, exposing Microsoft® SQL Server™-specific information to the end user.

SQLXML 3.0 Service Pack 3

Template Security Issues
Using the HTTP POST method is insecure. POST is intended for use during the development phase and/or in completely trusted
intranets. If using POST is a requirement for the application architecture, note the following limitations:

Except for predefined entities (such as >, &, and '), no other entity references are allowed in a posted
template. For example, the following template fragment shows the use of a disallowed internal entity reference:

<!DOCTYPE doc [<!ENTITY x "some text">]><template>&x;</template>

<SCRIPT> tags and inline mapping schemas are not allowed in a posted template.

Note that all the above is permitted in a template as long as the template is not posted; however, the external entity references are
not allowed in templates regardless of whether you post the template or not.

SQLXML 3.0 Service Pack 3

FOR XML Security Issues
The FOR XML AUTO mode generates an XML hierarchy in which element names map to table names and attribute names map to
column names. This exposes the database table and column information. You can hide the database information when you use
AUTO mode (server-side formatting) by specifying table and column aliases in the query. These aliases are returned in the
resulting XML document as element and attribute names.

For example, the following query specifies AUTO mode; therefore, the XML formatting is done on the server:

http://Server/VirtualRoot?
sql=SELECT E.FirstName as F,E.LastName as L FROM Employees E FOR XML AUTO&root=root

In the resulting XML document, the aliases are used for element and attribute names:

 <?xml version="1.0" encoding="utf-8" ?>
 <root>
 <E F="Nancy" L="Fuller" />
 <E F="Andrew" L="Peacock" />
 <E F="Janet" L="Leverling" />
 ...
 </root>

When you use NESTED mode (client-side formatting), aliases are returned only for attributes in the resulting XML document and
the names of the base tables are always returned as element names. For example, the following query specifies NESTED mode
(assuming you have the virtual directory set up to format XML on the client).

http://Server/VirtualRoot?
sql=SELECT E.FirstName as F,E.LastName as L FROM Employees E FOR XML AUTO&root=root

In the resulting XML document, the names of the base tables are returned as element names and table aliases are not used:

 <?xml version="1.0" encoding="utf-8" ?>
 <root>
 <Employees F="Nancy" L="Fuller" />
 <Employees F="Andrew" L="Peacock" />
 <Employees F="Janet" L="Leverling" />
 ...
 </root>

SQLXML 3.0 Service Pack 3

Bulk Load Security Issues
When you specify that a bulk load operation is to be performed as a transaction, you use the TempFilePath property to specify a
folder in which to create the temporary files.

The bulk load process creates these temporary files with the following permissions:

Read/Write/Delete access is granted to the bulk load process.

Read permission is granted to all users, because the account under which Microsoft® SQL Server™ is going to access these
files is unknown. You can restrict the access to these temporary files by setting the appropriate permissions on the folder
that contains them.

SQLXML 3.0 Service Pack 3

Guidelines and Limitations
To display the Microsoft® SQLXML 3.0 error messages in Microsoft Internet Explorer, on the Tools menu, click Internet
Options; and then on the Advanced tab, clear Show friendly HTTP error messages.

The registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLIS3\NumThreads, if present,
defines the number of threads that are spawned by the ISAPI to handle HTTP requests. If this registry key is not present in
the registry, the default value is (2 * the number of processors) + 1. The minimum value is 1, and the maximum value is 256.

The registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLIS3\MaxRequestQueueSize, if
present, defines the queue size for storing HTTP requests waiting to be scheduled. If this registry key is not present in the
registry, the default value is 3000 bytes. The minimum value is 1 byte, and the maximum value is 10000 bytes.

XML returned as a query result is not validated against the mapping schema that generated the XML.

SQLXML 3.0 includes version-independent and version-dependent PROGIDs. It is recommended that all production
applications use version-dependent PROGIDs. This is especially important because SQLXML 3.0 is not fully backward
compatible. Using version dependent PROGIDs protects from possible production failures when you install newer releases.
From release to release, program behavior may change due to several reasons, such as bug fixes, possible design changes,
and so on. Using version-dependent PROGIDs protects from unexpected failure when you install newer releases. With
version-dependent PROGIDs, when you install a newer release, your application will continue to work without failure. If you
decide to change the previous version-dependent PROGIDs and use the recent version-dependent PROGIDs in a newer
release, you must test your application before putting it into production. For example, the following scenario shows when
applications using version-independent PROGIDs may fail:
You are running an application that uses SQLXML 3.0 and version-independent PROGIDs, and you decide to install some
other software program. This program might install an earlier version of SQLXML. Your application may fail because the
version-independent PROGIDS in your application now point to the earlier version of SQLXML, which may or may not have
the SQLXML feature that your application is using.

On Windows .Net Server 2003 when you create a new virtual directory using the IIS Virtual Directory Management for SQL
Server tool, the tool will try to enable the SQLXML isapi (sqlis3.dll) extension in the web service extensions in IIS (if it is not
already done). If this process fails, an error message is returnedm and you must do it manually. These are the steps:

1. Start Internet Information Services (IIS) Manager.

2. In the Web Service Extensions, click on Add a new Web service extension.

3. Enter the extension name (any text) in the Extension Name text box.

4. Click on the Add button and browse for the sqlis3.dll (by default in ...\Program Files\Common Files\System\Ole DB
folder).

5. Check the Set extension status to Allowed check box.

This will add the ISAP extension and set the its status to Allowed.

If for reason you don't want to use SQLXMLOLEDB provider and instead want to use SQLOLEDB provider for SQLXML
features, set the SQLXML Version property to "SQLXML.3.0"

Microsoft SQL 2000 Technical Articles

ADO.NET Primer

Eric Schmidt
Microsoft Corporation

March 2002

Applies to:
 Microsoft® ADO.NET
 Microsoft SQL Server™ 2000

Summary: Explains the benefits of using ADO.NET with SQL Server 2000. (20 printed pages)

Contents

Introduction
Brief Background
Architecture
Namespace Review
Resources

Introduction
The purpose of this paper is to provide a concentrated, yet pragmatic, overview of ADO.NET by highlighting the performance and
usability benefits of using ADO.NET with Microsoft® SQL Server™ 2000. The intended audience is architects and developers who
are familiar with ADO and are interested in learning about data access in the Microsoft .NET Framework.

Brief Background
Almost every software application is driven by data access and data management-based code. This is most prevalent in business
process-focused applications in which data-rich objects are the core of applications. An integral part of these data driven
applications are the APIs used for data access and data manipulation. These APIs are what ultimately drive the features produced
by the developer, the maintainability of the application, and the extensibility of the application.

The evolution of data access API has been a painfully iterative process focusing predominantly on how to deal with relational data
in a more flexible manner. We have seen the rise and fall of ODBC, Microsoft® Jet, Data Access Objects (DAO) and Remote Data
Objects (RDO), in addition to many non-Microsoft-based APIs. These APIs did not bridge the gap between object-based and semi-
structured (XML) data programming needs, on the one hand, and the rigid world of normalized relational data, on the other.
Combine this problem with the task of dealing with heterogeneous data stores, non-relational data like XML and applications
operating across multiple languages and you have a tremendous opportunity for complete re-architecture.

Embracing similar challenges in the data access space, Microsoft has spent a great deal of time and effort redesigning the basic
APIs that are used to build applications. The main deliverable from this process is the Microsoft .NET Framework. One of the
primary design goals for the .NET Framework was to provide developers a more simplified and extensible development platform
for distributed application development. In addition, the .NET Framework should be able to be used to build any type of
application from the simplest console application to a completely distributed XML Web service driven application.

What is ADO.NET? From an architect's perspective ADO.NET represents the abstract design concepts used to build the data access
classes within the .NET Framework. These classes will be reviewed later, but it is first important to understand why these classes
were created and how they evolved from current data access APIs. There were several main design goals driving ADO.NET:

Explicit and factored object model. ADO.NET is designed to be a simple to use object model in which the developer has
complete control over how to control data source connectivity, command execution, and data manipulation.
Disconnected data cache model. N-tier programming and XML Web service architecture require that applications can
participate in a disconnected, loosely coupled manner. ADO.NET provides a comprehensive caching data model for
marshalling data between applications or services and then to optimistically update the original data sources or source.
XML support. XML is the key to building interoperable applications and more robust data processing models. XML support
has been built directly into the .NET Framework. ADO.NET leverages this implementation by providing a seamless
interaction with XML in a relational manner or in a native XML manner.
Leverage existing ADO knowledge. Although the ADO.NET object model is different from the existing ADO model, the basic
constructs are the same. The ADO.NET object model consists of a provider, connection, and command objects. Thus current
ADO developers should be able to efficiently migrate to ADO.NET.

From a developer's perspective ADO.NET represents the concrete implementation of classes inside the .NET Framework used for
data access. The following section reviews the overall physical architecture and hierarchy of the classes.

Architecture
The ADO.NET architecture can be divided into two logical pieces: command execution and caching. Command execution requires
features like connectivity, execution, and reading of results. These features are enabled with .NET data providers. Caching of
results is handled by the DataSet.

The provider enables connectivity and command execution to underlying data sources. Note that these data sources do not have
to be relational databases. Once a command has been executed the results can be read using a DataReader. A DataReader
provides efficient forward-only stream level access to the results. In addition, results can be used to render a DataSet a
DataAdapter. This is typically called "filling the DataSet."

The DataSet object represents a disconnected cache of data. This cache is made up of DataTables and DataRelations that represent
the results of the command. The DataSet tracks changes to the underlying data in the cache. Changes can be submitted back to
the original data source by using the DataAdapter and applicable Insert, Update, or Delete commands. The DataSet also provides a
direct XML view of the underlying data in the cache. This XML can be manipulated with XML standards like XPath and XSLT.

Figure 1

In addition to being filled through a .NET data provider, the DataSet can also be filled with raw XML data simply by loading it from
a file or XML Document. Further details about the XML integration within ADO.NET appear later in this document.

The .NET provider objects are provider-specific. The above objects (Connection, Command, DataAdapter, DataReader) are abstract
representations that each provider developer could implement. Thus there will be separate Connection, Command, DataReader,
and DataAdapter implementations for each data source. This is much different from the existing ADO model in which OLE DB
providers integrate into the common ADO connection, Command, and Recordset objects. This approach was taken in order to let
the .NET data provider implementer take full advantage of the underlying features of the data source. This removes several layers
of abstraction inherent in the OLE DB provider model, and so improves performance and simplifies the object model.

Namespace Review
This section reviews the primary namespaces in the .NET Framework that are associated with data access and data manipulation.
These namespaces contain both abstract and concrete classes. The majority of ADO.NET is physically housed within the
"System.Data" assembly. Keep in mind that a namespace can be partitioned across assemblies; however, they are normally
contained within one assembly.

System.Data

The "System.Data" namespace contains the basic classes and interfaces that make up ADO.NET. The primary class within
"System.Data" is the DataSet. The DataSet represents an in-memory cache of data. Note, this data can come from various sources,
including relational data stores and XML files.

Note Current ADO users sometimes initially view the DataSet as the ADO Recordset object. As you will see, the
DataSet is much more powerful and flexible than the ADO Recordset.

The DataSet contains DataTables or a DataTable. A DataTable contains DataRows and DataColumns.

Example 1

The following example shows how to load XML into the DataSet. This example lets the DataSet infer the structure of the XML.

Examples in the following sections show how to use XML schema to predefine the DataTable and DataRelation structure using
schema before loading the XML.

private static void LoadDataSetWithXML()
{
try
 {
string xml="<customername='BillGates'>
<order><ItemProductId='100'/></order></customer>";
 StringReader reader = new StringReader(xml);

 DataSet ds = new DataSet("XMLData");
 ds.ReadXml(reader);

 StringWriter writer = new StringWriter();
 ds.WriteXml(writer);

 Console.WriteLine(writer.ToString());
 }
 …
}

Example 2

The following example demonstrates how to enumerate over all of table contained within the DataTables collection of the
DataSet. The sample prints out the inferred table names from the XML loaded in Example 1.

private void PrintTablesRowsColumns(DataSet myDataSet)
{
 // For each table in the DataSet, print the name of the table
 foreach(DataTable thisTable in myDataSet.Tables)
 {
 Console.WriteLine("Table: " + thisTable.TableName);
 }
}

"System.Data" also contains additional classes for defining relationships and constraints. These topics are beyond the scope of this
document; for more information see the .NET Framework SDK class library reference section.

Finally, "System.Data" contains a series of interfaces that builders of .NET data providers would use to implement their own
provider. The primary interfaces for implementing a provider are IDbConnection, IDbCommand, IDataReader, and
IDbDataAdapter. Building custom .NET data providers is beyond the scope of this paper; the .NET Framework SDK includes a
complete section on building custom providers. However, the IDataReader interface requires a bit more focus because it
provides functionality not previously offered by ADO.

The IDataReader interface is implemented by .NET data providers to provide forward-only stream access to results returned
from commands executed on a relational data source. Unlike the DataSet (which is an in-memory cache), implementations of
IDataReader do not cache data, thus providing a more efficient environment for scanning and reading results. Correctly built
IDataReader implementations, like the SqlDataReader, will provide you with the most efficient access to command results. This is
a tremendous performance enhancement for developers needing fast firehouse access to their data. See the Performance section
for more details.

Example 3

This sample shows how to use the SqlDataReader built for SQL Server, which implements IDataReader. The SqlDataReader is a
class within the "System.Data.SqlClient" namespace (this is covered later in this document). Remember that each .NET data
provider will have its own IDataReader implementation; therefore the SQL Server-specific classes are housed within the
"System.Data.SqlClient" namespace.

This code is simple, but it is important to note that you should be explicit with your implementation. Make sure you specify the
CommandType. In addition, you will need to understand the types of data that you will be pulling from the reader. For example,
when calling the Read method the reader advances to the next logical row in the result. This logical row is physically accessed
with Get methods on ordinal positions (or by column name) within the current row buffer. The developer is responsible for
understanding the types and positioning of the results. The sample below requires a connection to SQL Server which will be
described later in the document.

private static void UseSqlDataReader(SqlConnection con)
{
try
 {

https://msdn.microsoft.com/en-us/library/d11h6832(v=sql.80).aspx

 SqlCommand command = new SqlCommand();
 command.CommandType = System.Data.CommandType.Text;
 command.CommandText = "SELECT EmployeeID, LastName, FirstName,
 BirthDate FROM Employees";
 command.Connection = con;
 SqlDataReader reader = command.ExecuteReader();

 while(reader.Read())
 {
 Console.WriteLine("Record:");
 Console.WriteLine(reader.GetSqlInt32(0));
 Console.WriteLine(reader.GetSqlString(1));
 Console.WriteLine(reader.GetSqlString(2));
 Console.WriteLine(reader.GetSqlDateTime(3));
 Console.WriteLine();
 }
 }
}

System.Data.Common

The "System.Data.Common" namespace contains a set of abstract classes that are commonly used to build .NET data providers.
Since these are classes, abstract users cannot directly consume them. You must either inherit from these classes, in the case of
building your own .NET data provider, or use classes that aggregate them like the SQL Server .NET Data Provider or the OLE DB
.NET Data Provider.

For more information on building .NET data providers, see Implementing a .NET Data Provider.

System.Data.OleDb (.NET OLEDB Data Provider)

The "System.Data.OleDb" namespace contains all of the classes associated with the OLE DB .NET Data Provider. These classes are
used to connect and interact with existing OLE DB provider-enabled sources. These underlying OLE DB providers must be OLE DB
2.0 compliant or greater; however, none of the OLE DB 2.5 interfaces for Web publishing or OLAP interfaces are supported by the
OLE DB .NET Data Provider.

"System.Data.OleDb" was built and tested against the following Microsoft OLE DB providers:

SQLOLEDB—OLE DB Provider for SQL Server
MSDAORA—OLE DB Provider for Oracle
Microsoft.Jet.OLEDB.4.0—OLE DB Provider for Jet

The OLE DB .NET Data Provider does not provide access to ODBC sources with the MSDASQL OLE DB Provider for ODBC. If you
are using ODBC as your means of connectivity, you will need to use the ODBC .NET Data Provider. It is highly recommended that
you use a native .NET data provider or compliant OLE DB provider when possible.

The commonly-used classes in "System.Data.OleDb" are as follows:

OleDbConnection—used for connecting to OLEDB enables data stores
OleDbCommand—used for executing commands against data sources
OleDbDataAdapter—used for filling a dataset with the results of an executed command and updating the data source
OleDbDataReader—provides forward-only record level access

Example 4

The following example shows how to connect to SQL Server using the OLE DB Provider for SQL Server (SQLOLEDB):

private static OleDbConnection BuildOleDbConnection()
{
OleDbConnection connection = new OleDbConnection();
// Connecting to SQL Server via OLEDB
 connection.ConnectionString = "Integrated Security = SSPI;
 Provider=SQLOLEDB;
Data Source = localhost; Database = Northwind";
 connection.Open();
 return (connection);
}

Note You should use a native .NET data provider when possible to interact with your data source. Using the OLEDB

https://msdn.microsoft.com/en-us/library/aa720164(v=sql.80).aspx

.NET Data Provider will incur a performance penalty due to the usage of the underlying OLE DB service layer. If you
are connecting to an instance of SQL Server, use "System.Data.SqlClient" classes instead.

System.Data.SqlClient (.NET SQL Server Data Provider)

The "System.Data.SqlClient" namespace contains all of the classes for the SQL Server .NET Data Provider. This provider should be
used to access SQL Server 2000 and SQL Server 7.0 databases from the .NET Framework. This provider was specifically designed
to work in an optimized and efficient manner with SQL Server.

The commonly used classes in "System.Data.SqlClient" are as follows:

SqlConnection—used for connecting to data sources
SqlCommand—used for executing commands against data sources
SqlDataAdapter—used for filling a dataset with the results of an executed command and updating the data source
SqlDataReader—provides forward-only record level access

Example 5

The following demonstrates how to connect to SQL Server with the SqlConnection class.

private static SqlConnection BuildConnection()
{
SqlConnection connection = new SqlConnection();
 connection.ConnectionString = "Integrated Security = true;
Data Source = localhost; Initial Catalog = Northwind;";
connection.Open();
 return (connection);
}

This connection can then be used to by a SqlCommand to execute commands. You cannot execute commands or queries directly
from a SqlConnection, unlike ADO. You will find that the entire ADO.NET class model is entirely factored; this means that each
class performs an atomic function. Another example of this is how transactions are managed. The connection class provides a
BeginTransaction method. This method returns a SqlTransaction object. Further transaction management is done with the
SqlTransaction class.

Example 6

The following example shows how to create a SqlCommand instance to execute a stored procedure. This example requires the
connection from Example 5.

private static SqlCommand BuildSqlCommand(SqlConnection connection)
{
SqlCommand command = new SqlCommand();
 command.CommandType = System.Data.CommandType.StoredProcedure;
 command.CommandText = "CustOrdersDetail";
 command.Connection = connection;
 command.Parameters.Add("@OrderID", SqlDbType.Int);
 command.Parameters[0].Value = 10248;

 return (command);
}

Example 6 builds a SqlCommand for the CustOrdersDetail stored procedure in the SQL Server 2000 Northwind database. The
SqlCommand class is very simple to use. Again, you must be explicit in how you build your command. Typically you will need to
set the CommandType and CommandText properties. Next, by using the command's parameters collection, you can create the
necessary input or output parameters. For performance purposes it is best to be as explicit as possible and use the SqlDbType
enumerators to specify the data type of the parameter.

Example 7

The following example demonstrates using SqlDataReader to read the results of an executed SqlCommand. This example
requires the command from Example 6.

private static void ExecuteReaderSqlCommand(SqlCommand command)
{
SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);

 int recordCount = 0;

 while(reader.Read())
 {
Console.WriteLine("Record#: " + ++recordCount);
 Console.WriteLine(reader.GetSqlString(0));
 Console.WriteLine(reader.GetSqlMoney(4));
 }
 reader.Close();
}

Executing SqlCommand couldn't be easier. The reader will automatically close the underlying connection when the reader is
closed. This is a nice shortcut so you don't forget to explicitly close connections. Using the Read() method to navigate through the
results in a row-by-row manner, you can access the column data by order or by column name. Once you know the column that
you want to read you can use the SQL Server-specific typed getters or the .NET Framework-typed getters. For performance
reasons, it is best to use the SQL Server getters when possible. Finally, SqlDataReader does not have the concept of record count
thus you can implement this feature where you see applicable.

Example 8

The following example demonstrates building a DataSet from a SqlDataReader. This sample requires the command created in
Example 6.

public static DataSet BuildDataSetFromSqlCommand(SqlCommand command)
{
 DataSet dsOrders = new DataSet();

 SqlDataAdapter adapter = new SqlDataAdapter();
 adapter.SelectCommand = command;
 adapter.Fill(dsOrders,"OrderDetails");

 return (dsOrders);
}

In Example 8 the underlying results of the SqlCommand are read into the DataSet. The SqlDataAdapter acts a bridge between
the SqlCommand and the DataSet. The SqlDataAdapter can also be used to execute insert, update and delete commands on
changes made to the DataSet data cache. Here the SelectCommand property is set to the stored procedure command of the
previous example that selects order details. Calling the adapters Fill() method, executes the underlying command and reads the
results into the DataSet. The DataSet contents are then read with the previous DataTable enumerator example.

System.Data.SqlTypes

SQL Server and the .NET Framework are based on different typing systems. For example, the decimal type (System.Decimal) in the
.NET Framework has a maximum scale of 28, whereas SQL Server supports a decimal with a maximum scale of 38. If you are
dealing with very precise financial or scientific data, data might be lost. Given these type differences, the "System.Data.SqlTypes"
namespaces contain structures and classes for native SQL Server type usage in order to maintain data fidelity during read and
write operations. In addition, these SqlTypes can be used to increase performance by avoiding conversion of types between the
.NET Common Type System. Finally, all SqlTypes are implemented from the INullable interface. This provides the ability to have
the SqlType contain a null value representing the absence of data rather than a null object reference.

In order to benefit from using the SqlTypes all possible members or fields that map to return data need to be of a SqlType.
Example 9 provides an illustration.

Example 9

The following sample shows how to use the SqlDataReader's "SqlDataType" enabled getters. The sample is based on a test table
called tblSqlTypeDemo that has three columns.

CREATE TABLE [dbo].[tblSqlTypeDemo]
(
 [Id] [int] NOT NULL ,
 [Price] [money] NULL ,
 [CostRatio] [decimal](29, 29) NOT NULL
) ON [PRIMARY]

The reader maps the underlying data to local variables based on SqlTypes. Additional comments have been added to show some
different behavior when .NET common types are used.

private static void UseSqlTypes(SqlConnection connection)
{
SqlCommand command = new SqlCommand();

 command.CommandText = "Select Id, Price, CostRatio From
 tblSqlTypeDemo";
 command.Connection = connection;
 command.CommandType = System.Data.CommandType.Text;

 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);

 while(reader.Read())
 {
 // This won't compile if id is declared as type int
 // Int32 id = reader.GetInt32(0) would require type conversion
 SqlInt32 id = reader.GetSqlInt32(0);

 SqlMoney price = reader.GetSqlMoney(1);
 // Although legal, this will throw a runtime error
 // because price as type decimal does not support
 // nullablity. However, the underlying database
 // type does allow and contains null values.
 /*
 decimal price = reader.GetDecimal(1);
 */

 // This would fail if costRatio was typed as
 // decimal because GetSqlDecimal returns a decimal
 // of scale 29
 SqlDecimal costRatio = reader.GetSqlDecimal(2);

 // Although legal, this will throw a runtime error
 // because the underlying value has a scale greater
 // than 28 and is using the .NET CTS-based getter.
 /*
 SqlDecimal costRatio = reader.GetDecimal(2);
 */

 Console.WriteLine("Successfully read with SqlTypes...");
 }
 reader.Close();
}

For most scenarios SqlDataReader will perform implicit conversions for you if you provide the appropriate cast. For example, the
following code is valid, but you would have null checking and possible type conversion exception handling. In addition, this is less
efficient because the buffer has to be read and then copied to a variable of the type integer.

int id = (int)reader.GetSqlInt32(0);

System.Xml.XmlDataDocument

XML support is built into ADO.NET at a fundamental level. More important, the XML classes in the .NET Framework and ADO.NET
are part of the same architecture. This provides developers with a unified programming environment for XML and traditional data
access programming.

The System.Xml.XmlDataDocument class is the bridge between structured XML data and relational data stored in the DataSet.
The XmlDataDocument inherits from the XmlDocument; therefore it implements all of the standard based navigation and editing
capabilities of the XML Document Object Model (DOM). For more information, see Document Object Model (DOM) at the W3C
Architecture domain (http://www.w3.org/DOM/). Also, the XmlDataDocument can be queried with XPath and transformed with
XSLT. Finally, the XmlDataDocument provides real-time synchronization of changes made to data in the source DataSet and visa
versa. This includes keeping track of before and after state during edits.

Before looking at how the XmlDataDocument works, it is prudent to review XML Schema (XSD) technology. For more information,
see XML Schema at the W3C Architecture domain (http://www.w3.org/XML/Schema). XSD provides facilities for describing the
structure and constraining the contents (including data-typing) of XML documents. XSD is one of the most important XML
technologies because without it XML documents would be meaningless and ambiguous. XSD technology is used throughout the
.NET Framework for validation and various mapping services. There will be more discussion about XML schema later in this paper.

As stated previously, XmlDataDocument is based on the DOM, which is an in-memory tree structure representation of XML data.
The XML in the XmlDataDocument is actually contained within the DataSet it is associated with. This connection enables real-time
editing of data between the DataSet or the XmlDataDocument. Changes are simultaneously updated in both views.

Figure 2 (click picture to see larger image)

To effectively navigate and query the XmlDataDocument or DataSet it is important to use XML Schema to define the structure and
hierarchy of the XML data. The DataSet has a ReadXMLSchema method that will read an XML schema or XDR-based schema into
the DataSet. The DataSet uses schema information to build the appropriate DataTable and relationship mapping to cache future
incoming data. It's important to note that the data can be XML or relational.

Consider the following XSD-based schema. The complexType bookType is hierarchical in nature: the element contains
attributes and child elements. Typically in a relational environment this would be flattened into one table or row. The DataSet has
a built-in set of rules that determine how to appropriately map common hierarchies found in schema and XML document
instances.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="bookstore" type="bookstoreType" />
 <xsd:complexType name="bookstoreType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="book" type="bookType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="bookType">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string" />
 <xsd:element name="author" type="authorName" />
 <xsd:element name="price" type="xsd:decimal" />
 </xsd:sequence>
 <xsd:attribute name="genre" type="xsd:string" />
 </xsd:complexType>
 <xsd:complexType name="authorName">
 <xsd:sequence>
 <xsd:element name="first-name" type="xsd:string" />
 <xsd:element name="last-name" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10

The following example demonstrates using the DataSet to read schema. Using the ReadXmlSchema() method you can load
either XSD or XDR based schema. ReadXmlSchema is overloaded to enable reading from a file, stream, or XmlDocument.

private static DataSet ReadXMLSchema()
{
string path = System.AppDomain.CurrentDomain.BaseDirectory;

 DataSet ds = new DataSet();

 ds.ReadXmlSchema(path + @"..\..\BookStore.xsd");

 return (ds);
}

Figure 3

Now that the DataSet has a defined table and relation structure, hierarchical XML data can be loaded into the DataSet. The data
will be mapped to the appropriate tables.

Example 11

The following example demonstrates loading XML into the DataSet based on a defined schema. This sample uses the previously
schema loaded DataSet and reads some hierarchical XML data into the existing DataTables.

private static DataSet LoadXmlWithSchema(DataSet ds)
{
string path = System.AppDomain.CurrentDomain.BaseDirectory;

 ds.ReadXml(path + @"..\..\BookStore.xml");

 return (ds);
}

When this code is executed you will see that the data is now appropriately mapped to the underlying tables. Notice that the
author table has no rows; however, the table does exist because it was part of the original schema.

Figure 4

As you can see, reading and writing XML data is easy with the DataSet. The XML in these scenarios was pre-shaped: the XML data
was already in the correct schema format. However, there are times when you need to query a database and render the results in
a predefined XML format, such as an XML-based purchase order. In this case you need the database to be able to natively render
and map relational results into XML before the data is consumed, say, by the DataSet or XmlReader. This type of XML shaping
work can be done by an additional set of classes called SqlXml. These classes are part of the "Microsoft.Data.SqlXml" namespace
and ship with SQLXML 3.0. The features, previously available in ADO, can now be used within a managed ADO.NET environment.
The core-mapping feature of SqlXml relies on annotated XML schemas. For example, the schema below is annotated with several
attributes that provide SQL Server with relational mapping information about the structure of the XML. The element Emp comes
from the Employees table and will contain two elements FName and LName. Emp also contains an attribute EmployeeId.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName"
 sql:field="FirstName"

 type="xsd:string" />
 <xsd:element name="LName"
 sql:field="LastName"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Given this annotated schema, you can use the SqlXml managed classes to generate hierarchical XML based on the mappings
above.

Example 12

{
 ...
 DataRow row;
 SqlXmlAdapter ad;
 //need a memory stream to hold diff gram temporarily
 MemoryStream ms = new MemoryStream();
 SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
 cmd.RootTag = "ROOT";
 cmd.CommandText = "Emp";
 cmd.CommandType = SqlXmlCommandType.XPath;
 cmd.SchemaPath = "MySchema.xml";
 //load data set
 DataSet ds = new DataSet();
 ad = new SqlXmlAdapter(cmd);
 ad.Fill(ds);
 row = ds.Tables["Emp"].Rows[0];
 row["FName"] = "Susan";
 ad.Update(ds);
 return 0;
 }

Example 12 executes an XPath query of Emp against the annotated schema and then loads the XML results into the DataSet using
the SqlXmlAdapter. This is just a simple preview of the true power behind SqlXml mapping features. For a comprehensive review
of SQLXML, see the paper SQLXML Managed Classes.

Performance

For the majority of data access operations, ADO.NET performance is significantly improved over ADO and OLE DB. These
performance improvements can be attributed to the following factors:

ADO.NET and its classes are built upon and managed by the Common Language Runtime (CLR). Therefore, ADO.NET
indirectly benefits from improvements in memory management, type conversion, object pooling, and various other low
level performance enhancements.
A new provider model enables explicit, stream-based access to data sources. For example, the SQL Server .NET Data
Provider was built to deal with SQL Server data types in a native manner.
A simplified and disconnected object model. By removing cursor support and minimizing the object model result sets can
be processed in a more efficient manner with fewer resources.

Even with these statements, measuring performance can be complicated due to a number of extenuating factors. For the release
of ADO.NET several common benchmarks were measured. The following performance benchmarks are provided as a frame of
reference (measuring Request Per Second (RPS) on Dell PII Xeon 450 4 Proc with 1 GB RAM on an isolated network). Higher RPS
is better.

Scenario 1: Comparing the SqlDataReader and the OLE DB Rowset. This reads a 4 column by 23 row resultset and walks
each row. This is an improvement because there is no rowset construction and SqlTypes are used for reading.
Scenario 2: Comparing the SqlDataReader and the OLE DB Rowset. Reads an out parameter from the command. Similar to
Scenario 1, except that less data is being materialized.
Scenario 3: Filling the ADO.NET DataSet with the SqlDataReader compared to filling ADO Recordset with the SQL Server
OLE DB Provider. This is a very common scenario. The main improvement here is that the DataSet is a much more efficient
structure than the ADO disconnected recordset.
Scenario ADO.NET ADO/OLE DB Improvement

1 4544 2892 57%
2 7937 4149 91%
3 2434 790 308%

Again, these are simple scenarios. The point here is that the new object model and typing system in ADO.NET and the CLR provide
a more efficient environment for stream management and data caching. For best performance use a native .NET data provider
(SQL Server or applicable data source), and avoid using the .NET Framework OLE DB Data Provider or .NET Framework ODBC
Data Provider unless you need specific functionality. ADO.NET simplifies the areas that could cause performance problems. Above
all, you need to focus on what type of data is in a result set, how to read the data in its native form, and deciding whether to cache
the data in the dataset. Finally, make sure you have a good performance specification before you start writing your application:
outline your performance requirements based on your needs.

Best Practices and FAQ

1. Does ADO.NET provide connection pooling?

Yes, in fact connection pooling is turned on by default. The time to acquire a connection from the pool has been greatly
improved compared to existing connection pooling in ADO. Connections are identified by a hash of the connection string.
Therefore, the connection string must match exactly, including case sensitivity. Pooling is controlled though the connection
string, not the registry. For example, the SQL Server .NET Data Provider allows you to control min and max pool size and
connection lifetime with the connection string. For more information, see the .NET Framework SDK.

2. What happened to cursors?

In ADO it is possible, within a common recordset object, to request multiple and differing cursor types (dynamic, keyset,
static, and forward-only) with different properties that define how the cursor behaves, for example whether the cursor is
updateable or is read-only, or whether it is implemented on the client or on the server. In ADO.NET, however, different
classes are exposed that give you greater control over each type of interaction. The DataReader provides an extremely fast,
forward-only, read-only cursor on the server side that enables you to retrieve a stream of results from a database. The
DataSet provides a completely disconnected "client" cursor, through which you can scroll and update, that is equivalent to
the static cursor in ADO. These objects, along with the DataAdapter that enables you to move data between the DataSet
and a database, provide you with optimal access methods for the most common types of data interactions. If you need to
implement server-side cursors, use stored procedures to declare and open cursors and then interact with the cursor using
the DataReader. As a last resort you could use ADO through .NET COM interoperability. This is not a recommended
practice. As with all COM interoperable implementations you will experience a performance penalty. What databases are
supported by ADO.NET?

ADO.NET supports native connectivity to SQL Server with the "SqlClient" namespace. In addition ADO.NET supports
connectivity to OLE DB sources with classes in the "OleDb" namespace. For example you could use the SQL Server OLE DB
Provider in the OleDbConnection class, but it is recommended to use the SqlConnection class instead for better
performance. ADO.NET also supports ODBC sources and natively supports Oracle.

3. How can I convert an ADO recordset to an ADO.NET DataSet?

COM components that return or consume ADO objects are available in the .NET Framework using COM interop services.
Additionally, the .OLE DB .NET Data Provider includes overloads to the OleDbDataAdapter.Fill method which take as input
an ADO Recordset or Record object returned by existing COM components, and populate a DataSet with the data
contained in the ADO object. Updates to the data in the DataSet can be propagated back to the data source using a
DataAdapter. You can also use an Extensible Stylesheet Language Transformation (XSLT transformation) to transform
between the XML format of the ADO Recordset and the XML format of the ADO.NET DataSet.

4. How do I build my own .NET data provider?

ADO.NET also provides you with a minimal set of interfaces to enable you to implement your own .NET data provider. The
simple form of a .NET data provider will only support the DataSet, through the IDataAdapter interface, and possibly will
provide additional support for parameterized queries by implementing a version of the IDataParameter interface. Using
this kind of .NET data provider, you will be able to load a DataSet with data, modify the contents of the DataSet, and save
the changes back to the original data source. For more information, see the .NET Framework home page.

5. Tip: Always close implementations of IDataReader when you are finished reading. This will help release the underlying
connection back to the connection pool. Most IDataReader.ExecuteReader() implementations have loaded over
constructors with a CommandBehavior parameter. Use the CommandBehavior.CloseConnection enum to close the
connection implicitly when the reader is closed. This is convenient when the reader is being marshaled to other consumers
that may not close the connection explicitly.

http://msdn.microsoft.com//netframework/

6. Tip: Always close implementations of IDbReader when you are finished with an operation. This will explicitly release the
connection back to the connection pool. Otherwise the connection will be returned to the pool when it is garbage collected
by the Common Language Runtime.

7. Tip: Use SqlTypes when interacting with SQL Server data to ensure data fidelity, nullability and to minimize type conversion.
8. Tip: The SqlCommand.ExecuteScalar() method does not improve performance over ExecuteReader. It is simply a

programming shortcut when you only want the first row from a resultset.
9. Tip: Use the SqlCommand.Cancel() method to cancel long running or rogue queries. Create another thread and call the

Cancel method on the running command. This will cancel the locally running command and notify the server to kill the
command process, thus freeing up resources.

Resources

.NET Framework SDK

System.Data
Accessing Data with ADO.NET

Microsoft Knowledge Base Articles

HOW TO: Read and Write BLOB Data by Using ADO.NET with Visual C# .NET (Q309158)
HOW TO: Create a SQL Server Database Programmatically by Using ADO.NET and Visual C# .NET (Q307283)
HOW TO: Use Base Classes to Reduce Code Forking with Managed Providers in Visual Basic .NET (Q308046)
PRB: XML Data Is Truncated When You Use SqlDataReader (Q310378)
INFO: Roadmap for XML Integration with ADO.NET (Q313649)

White Papers & Articles

ADO.NET for the ADO Programmer
.NET Data Access Architecture Guide

Recommended Reading

Microsoft ADO.NET by David Sceppa (Microsoft Press)

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ax3wd0k9(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/e80y5yhx(v=sql.80).aspx
http://support.microsoft.com/directory/article.asp?ID=kb;en-us;Q309158
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q307283&LN=EN-US&rnk=1&SD=msdn&FR=0&qry=Q307283&src=DHCS_MSPSS_msdn_SRCH&SPR=MSALL&
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q308046&LN=EN-US&rnk=1&SD=msdn&FR=0&qry=Q308046&src=DHCS_MSPSS_msdn_SRCH&SPR=MSALL&
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q310378&LN=EN-US&rnk=1&SD=msdn&FR=0&qry=Q310378&src=DHCS_MSPSS_msdn_SRCH&SPR=MSALL&
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q313649&LN=EN-US&rnk=1&SD=msdn&FR=0&qry=Q313649&src=DHCS_MSPSS_msdn_SRCH&SPR=MSALL&
https://msdn.microsoft.com/en-us/library/ms973217(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/cc446443(v=sql.80).aspx
http://www.microsoft.com/mspress/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Analysis Services: Choosing Dimension Types in SQL Server
2000 Analysis Services

Adam Shapiro
Program Manager
Microsoft SQL Server Analysis Services

July 2000

Summary: This paper describes how and when to use the variety of dimension types available in Microsoft SQL Server 2000
Analysis Services. (24 printed pages)

Contents

Introduction
Characteristics of the Source Data
Design Considerations for All Dimension Types
Creating Regular Dimensions
Parent–Child Dimensions
Using Virtual Dimensions
Conclusion

Introduction
Using Microsoft® SQL Server™ 2000 Analysis Services, you can easily create OLAP cubes and dimensions from a variety of data
sources. In SQL Server 7.0 OLAP Services, you only need to make a few choices to build a dimension, but there are some
limitations to the types of dimension characteristics that you can easily model. In contrast, SQL Server 2000 Analysis Services
allows you to model a much richer set of dimension types. This paper describes how and when to use the variety of dimension
types available in SQL Server 2000 Analysis Services.

The choice of dimension type that you use when creating a cube is based on several factors. These factors include the type of
business problem that you want to model, the perspectives from which you want to view data, the information you want to
expose, and the characteristics of the existing data set (size, structure, and member relationships). This paper will help you choose
the most appropriate dimension type to model a dimension based on these criteria. It will explain why to implement each type of
dimension, provide business examples, discuss implementation details and describe how dimension choice will affect processing,
query performance, and cube maintenance.

This paper assumes that you have a basic knowledge of data warehousing concepts, and an understanding of multidimensional
terms including cube, dimension, measure, and aggregation. Some experience building simple cubes with SQL Server 7.0 OLAP
Services is also helpful.

After studying this paper, you will be able to:

Choose an appropriate dimension type based on the type of business problem, the perspectives to view data, and the
characteristics of the data.
Create shared or private dimensions.
Create regular dimensions from a star or snowflake schema.
Represent ragged hierarchies.
Define multiple hierarchies within a dimension.
Use parent-child dimensions to represent unbalanced hierarchies.
Specify custom rollup in a dimension.
Create member properties.
Use a virtual dimension to analyze data based on dimension attributes.

This paper begins by discussing the impact of the structure of source data on building dimensions and cubes. It presents some
design choices that apply to all dimension types, such as sharing dimensions across cubes and using multiple hierarchies.
Examples of regular dimensions with balanced or ragged hierarchies, virtual dimensions, and parent-child dimensions with
unbalanced hierarchies are discussed. For each case, the paper describes the choices you need to make when modeling these
dimension types using Analysis Services.

Characteristics of the Source Data
The choice of dimension type depends in part on how the data is stored and organized in the underlying relational database.
When you use a star or snowflake schema to contain the data, the relational schema also reflects elements of the
multidimensional design.

Dimension Tables Contain Cube Dimension Characteristics

The perspectives from which you can analyze data are usually contained in dimension tables in the relational database. Dimension
tables contain the characteristics of a dimension. These tables have columns that describe how to aggregate or roll up the data as
well as columns that provide additional information about members of a dimension. For example, a Customer dimension table
contains the following columns:

Figure 1. Customer dimension table

In the customer table, country, state_province, city, and name define a hierarchy by which we want to view and calculate
summary information in the cube. The hierarchy has the following structure:

Country
 State_province
 City
 Name

The remaining columns provide information about the members at the lowest level of the hierarchy, in this case, the individual
customer. To enable you to analyze data or filter the view of data in the cube by using these characteristics, you can create
member properties in Analysis Services dimensions from these columns. Additionally, one column joins the dimension to the
central fact table using a surrogate key.

In a star schema, a single table in the relational database stores all the information for a particular dimension. Although a star
schema typically contains only a few dimension tables (three to eight), it can have as many dimension tables as is needed to
describe a business process. You will most often create Analysis Services dimensions from a single dimension table in the
relational database.

Dimension Information from Multiple Tables

You can use multiple tables and data sources to create an Analysis Services dimension. Many data warehouses use this type of
multidimensional schema. In a snowflake schema, the information for a dimension is spread among multiple tables. For example,
a snowflake schema might contain product information in the product and product class tables. The product_class_id column
joins these two tables. The product table is also joined to a central fact table using the product_id column.

Figure 2. Product table

A well-planned relational data warehouse schema should be established before you start building cubes. If the underlying schema
uses a snowflake design, and you want to mirror the dimensional design in the Analysis Services dimension, then you should
choose a snowflake schema when creating the Analysis Services dimension.

Choosing a Star or Snowflake Schema

When you design the relational schema for a data warehouse, you generally use a star or snowflake schema. The choice should be
based on the requirements of how the relational data is used, if other applications will access the tables, and by maintenance
requirements. After dimension data is loaded into Analysis Services, it is treated the same way regardless of the underlying
relational schema.

Loading dimension information requires Analysis Services to issue an SQL query to the relational source. A snowflake schema
uses one or more inner joins to the primary dimension table in order to load the dimension information. Using a snowflake
schema will be slightly more expensive in terms of performance compared to using a star schema because of the additional joins.
Even though a snowflake schema can save some space in the relational database, keep in mind that dimension tables are typically
small compared to the size of the fact table. The dimension rows are likely to comprise less than 10% of the total size of the data
warehouse, with the other 90% being fact table rows.

Additionally, most RDBMS systems do a good job of optimizing join performance for a small number of tables. The relational DBA
can also help optimize performance by creating appropriate indexes on the join columns in the schema. The additional overhead
of processing an additional join when loading a dimension will probably be small. Analysis Services handles using either type of
schema equally well.

Dimension Information from Views on Relational Data

In most data warehouse projects, the star or snowflake schema design represents the end result of extensive analysis of a
business processes. The data in a data warehouse system is generally not production data. The data may need to be gathered
from many sources and cleansed to make it consistent. For all of these reasons, you will probably want to separate your data
warehouse from your production database.

In some situations, you might need to build a dimension from tables that are not in your source database. While it is certainly
possible to build dimensions and cubes based on an entity-relationship data model, it is recommended that you either create or
simulate a star or snowflake schema.

If you don't have a star or snowflake schema in place, you can use views to provide a base for building dimensions and cubes.
Creating these views helps to clarify your multidimensional design and makes it easier to build dimensions and cubes. For
example, the Human Resources department maintains a master file of employee information in a fully normalized relational
database. The data requires some scrubbing to make it consistent. You implement a view to filter the information, change the
representation of some of the columns, and clarify the design of the dimension.

If you are using Microsoft SQL Server 2000 to manage the relational database, you can use indexed views to implement the
star/snowflake schema. Using indexed views allows any changes in the source table to be reflected automatically in the view.
Since SQL Server indexed views use a clustered index, query performance is similar to using a table.

You can also use a view to help you logically partition a dimension and a fact table. For example, one master Customer dimension
table with a related fact table contains sales to all customers. A subset of customer sales represents sales to businesses rather
than individuals. Suppose that you want to analyze the business-to-business sales separately from all the individual customer
sales. You can create a view of the dimension table to filter customers and a view of the fact table to show only sales to those
customers. Then, build a dimension and cube based on these views.

Using Dimension Filters

In addition to using views, you can logically partition a dimension table or fact table by filtering the rows used to build the
dimension or cube. The Source Table Filter property applies to both dimension and cubes. It defines the subset of rows to read
from the dimension or fact table when building a dimension or cube.

Use a dimension filter to specify which members of the source table are used to build a dimension. You must use the Dimension
Editor to set the filter; you cannot use the Dimension Wizard. For example, you want to create a dimension containing customers
in the Netherlands. Set the Source Table Filter property for the dimension in Dimension Editor to:

Example 1
"Customer.Country" = 'Netherlands'

In addition, you can define multiple criteria to filter rows when creating a dimension. For example:

Example 2
"Customer.Country" = 'Netherlands' or "Customer.Country" = 'Belgium

Example 3
"Product.ProductFamily" = 'Drink' and "Store Type.Store Type"
 = 'Supermarket'

Dimension filters can be defined in all dimension types except virtual dimensions.

Design Considerations for All Dimension Types
Part of designing an Analysis Services dimension is determining how it will be used to build cubes and perform analysis. Your
design will influence the choice of making a dimension shared or private, as well as representing multiple hierarchies in a single
dimension or in multiple dimensions.

Sharing Dimensions Across Cubes

You commonly build different cubes to represent different aspects of your business. These cubes can be based on different fact
tables. When you create a new dimension in Analysis Services, you must define it as private or shared. Choosing to make a
dimension private or shared depends on the structure of the fact tables in the warehouse and the business process you are trying
to model.

Using Private Dimensions

Private dimensions can be used in only one cube. Use a private dimension when the characteristics by which you want to view
and aggregate data exist in only one cube and relate only to a particular fact table.

You can also use private dimensions to simplify cube maintenance. Private dimensions are always processed along with the cube
on which they are defined. They do not have to be processed separately. If there are changes in a shared dimension, all the cubes
that use that shared dimension must be reprocessed. Creating private dimensions allows you to minimize the processing of
multiple cubes. If the cubes are very large, this strategy can help reduce the overall processing time by processing only one cube
rather than several. For example, a master customer dimension contains information about general customers of a business. You
create a private customer dimension that contains only certain customers. You create a separate cube to analyze the sales to these
customers only. This strategy allows you to process the cube containing the sales to special customers without having to process
all the cubes that share the master customer dimension.

Sometimes, you want several cubes to use the same dimension structure but with some different dimension characteristics. You
might define a dimension that contains custom member formulas. These formulas may only be valid for one cube. For example, a
Budgets cube uses an accounts dimension that contains a custom member formula. This formula looks up information from the
Sales cube. Even though you want to analyze the information in the Sales cube by members of the accounts dimension hierarchy,
you cannot include the accounts dimension in the Sales cube because it results in a circular reference. In this case, you must build
two separate dimensions that have the same hierarchical structure but different custom member formulas.

After a dimension is defined as private, it cannot be converted to being shared. Because of this, consider defining a dimension as
shared if there is any possibility that it may be used in more than one cube.

Using Shared Dimensions

You can use shared dimensions when defining multiple cubes. Create shared dimensions when you want to ensure that
dimension characteristics mean the same thing in each cube where the dimension is used. For example, you create a Product
dimension that contains all of the products manufactured by a company. It represents the master list of products and defines a
rollup hierarchy as well as many descriptive product properties. The information could be gathered from several sources and
scrubbed to eliminate duplicates and inconsistencies. By using this dimension in different cubes that model related business

processes (manufacturing, inventory, or sales), you enable several cubes to provide a consistent picture of your business across
multiple processes. If you used a different product dimension for each cube, there could be inconsistencies in the interpretation of
product descriptions and properties. In addition, shared dimensions make it possible to combine information from two related
cubes in a virtual cube. In this case, the shared dimension acts similar to the join column when combining tables in a relational
view.

Time dimensions are almost always shared dimensions. We frequently want to analyze a set of business processes by time. A time
dimension usually contains a listing of dates for a given time period. Each date can have several attributes, such as day_of_week,
day_of_month, is_holiday, or other attributes that relate to legal periods or marketing seasons. In addition to ensuring
consistency, a shared time dimension saves you time because you do not have to re-create the dimension for each cube.

You can create a shared dimension from a single dimension table, multiple dimension tables, an OLAP data-mining model, or
from the member properties of another dimension. The dimension table or the mining model you select should contain the
column or columns you want to include in the shared dimension.

You should make a dimension shared unless there is some explicit reason to make it private. Using shared dimensions can also
result in more efficient use of server memory. This is because the members are loaded only once and are not duplicated by those
in private dimensions.

Representing Multiple Hierarchies in a Dimension

You can create multiple hierarchies for a dimension to provide alternative views of dimension members. For example, a time
dimension may have a calendar year view and a fiscal year view. These dimensions can have different level structures.

A retail calendar may divide the year into thirteen "months" of four weeks each. This hierarchy rolls up into retail seasons that do
not map the standard calendar quarters. Provided that the dimension tables contain data that fully describes how the hierarchy is
organized, you can create an additional hierarchy to model the retail calendar.

Another example is a customer dimension that contains two hierarchies, one based on states, the other based on sales regions. In
this example, the states do not roll up into sales regions.

In Analysis Services, a dimension with multiple hierarchies is implemented as a collection of dimensions that share the same
relational source data. If you define a dimension with multiple hierarchies rather than build separate dimensions, Analysis
Services can choose a set of aggregations to build so that they are useful to both hierarchies.

Even though you could model an alternate hierarchy by creating a new dimension or a virtual dimension based on the original
data columns, you should build multiple hierarchies of a dimension rather than use separate dimensions. The most important
reason for this is the savings in determining a set of useful aggregations. In addition, many client tools understand the concept of
multiple hierarchies and can expose this to users to enhance analysis.

To inform Analysis Services that a dimension is an alternate hierarchy for another dimension, you name the new dimension using
the following format:

Dimension_name.Hierarchy_name

You can use the Dimension Wizard or the Dimension Editor to build multiple hierarchies of a dimension. For each hierarchy, the
process is similar to creating a new dimension. You can also use an existing dimension as a template for a new dimension
hierarchy. Edit the dimension and then save it with a new name in the form Dimension.Hierarchy.

Managing Changing Dimensions

When you create a new dimension, you can specify it as a changing dimension. Changing dimensions are optimized for frequent
changes to the source data and the dimension structure. Changing dimensions do not need to be fully processed when certain
types of changes are made. As a result, the cubes based on these dimensions may not need reprocessing when the underlying
dimensions are modified. Since full dimension processing will interrupt users access to a cube, changing dimensions increase
cube availability by reducing the frequency of processing the cube.

You should make a dimension a changing dimension when:

Users need to see dimension updates very soon after they are made.
The time window for updating the cube is limited.
Dimension data changes frequently and unpredictably.

Although changing dimensions improve cube accessibility, queries that use changing dimensions tend to take longer to process.
You must take this trade-off into account when deciding to make a dimension a changing dimension.

In a changing dimension, you can add, move, rename, or delete members that are below the top level and above the bottom level

in the hierarchy. If the dimension has an (All) level, this is considered the top level. If the dimension is a parent-child dimension,
all leaf members are considered to be at the bottom level in the hierarchy. Any cubes that use the dimension will be updated
when you save the dimension.

In non-changing dimensions, the full dimension path of each member is stored in the cube. For example, a cube that uses a
Customer dimension might store the member as [Customers].[USA].[New York].[Mike Nash]. If this member is moved,
renamed or deleted, the cube must be reprocessed because the reference to the member in the dimension is lost. Changing
dimensions overcome this problem by storing a key rather than a full member path. When a member is retrieved, the member
key is mapped to a name in a mapping table.

Certain types of dimensions are automatically built as changing dimensions. These include, virtual, parent-child, and ROLAP
dimensions. To specify other dimension types as changing, you can use Dimension Editor to set the following properties:

Set the Changing property to TRUE.
Set the Member Keys Unique property of the lowest level of the hierarchy to TRUE.
For private dimensions, set the Aggregation Usage property to STANDARD.
For shared dimensions, set the Aggregation Usage property to a value other than CUSTOM. Custom aggregation is not
valid for parent-child dimensions and changing dimensions.

Creating Regular Dimensions
Regular dimensions can be based on information in a star or snowflake schema and can be shared or private. Use Dimension
Editor to create shared regular dimensions or Cube Editor to create private regular dimensions.

The characteristics of the hierarchies in the dimension determine if you should create a regular dimension. A regular dimension
contains the same number of levels as the number of columns selected during its definition. These levels are usually organized
from most general to least general. For example, if a Customer dimension is based on the City, State, and Customer Name
columns from a table, the hierarchy will have three levels plus an optional (All) level.

By default, the dimension contains an (All) level used for the top-level aggregate. When you build a dimension in Dimension
Editor, you can choose to include or exclude the (All) level by clicking the Advanced tab, and then clicking All Level.

In addition to these characteristics, the members in each level of the hierarchy are distinct entities and could not be moved in the
hierarchy. For example, the members that make up the Customer Name level are fundamentally different from those on the
State level. It would not make any sense for members of the Customer Names level to appear as members in any other level in
the hierarchy.

You can use a regular dimension to model either a balanced or ragged hierarchy.

Modeling Balanced Hierarchies

In a balanced hierarchy, all branches of the hierarchy descend to the same level, and each member's logical parent is the level
immediately above the member. Balanced hierarchies have a symmetrical number of levels for each of its branches. Many
common dimensions exhibit balanced hierarchies.

A time dimension usually has a balanced hierarchy. For example, a time dimension has the following hierarchy:

Year
 Quarter
 Month

In this time dimension tree, all branches have common levels. In addition, each level has at least one member. All branches of the
tree descend through all the existing levels. There are no empty positions in the hierarchy.

Figure 3. Time dimension tree

Other examples of balanced hierarchies may include a product or merchandise dimension. In this dimension, all product SKUs can
be characterized by package size, brand, category, and department. For example:

Department
 Category

 Brand
 Packagae Size
 SKU

Common to both examples is the idea that there are no skipped or empty levels in the hierarchy. All the lowest level members roll
up through all the levels in the hierarchy. All the branches of the hierarchy terminate at the leaf level and the lowest level
members are the same distance away from the top level.

Modeling Ragged Hierarchies

You can use a regular dimension to represent a ragged hierarchy. In a ragged hierarchy, branches of the hierarchy can descend to
different depths, and each member's logical parent can be located more than one level above the member. Another way to think
about it is to say that a ragged hierarchy has empty positions in the member hierarchy.

A geography-based dimension may contain ragged hierarchies. For example, a Customer dimension has the following hierarchy:

Country
 State
 City
 Customer Name

This dimension models our customers in several countries. Some countries have no states. In this example, Israel has no states.
The parent of the Tel Aviv and Haifa members is not located immediately above them in the hierarchy. In this branch, the distance
between the leaf members and their logical parent is two levels rather than one.

Figure 4. Ragged hierarchy tree

Other examples of ragged hierarchies are product dimensions for a store that has diverse product lines. For example, a large
home store sells both groceries and hardware, as shown in Figure 5.

Figure 5. Example of a ragged hierarchy

Given this hierarchy, a product SKU may not have an associated sub-brand or a promotional packaging, shown as follows:

Department
 Category
 Subcategory
 Brand
 Sub-brand
 Promotional Package
 Package Size
 SKU

Creating Ragged Hierarchies in Regular Dimensions

You can use Dimension Editor or Cube Editor to create a ragged hierarchy and hide members from end users while they browse a
regular dimension. When you create a dimension, set the Hide Member If property for a level to tell Analysis Services how to
create a ragged hierarchy. Set this property in Dimension Editor if the dimension is shared or in Cube Editor if the dimension is
private. To find this property in Dimension Editor, in the Properties pane, click the Advanced tab.

The Hide Member If property has five possible values.

Value Description
Never hidden Default, no members are hidden.
No name Every member whose name is null or an empty string is hidden.
Parent's name Every member with the same name as its parent is hidden.
Only child with no name Every member that is an only child and whose name is null or an empty string is hidden.
Only child with parent's name Every member that is an only child and has the same name as its parent is hidden.

How you implement a ragged hierarchy in a dimension depends on how the information was represented in the relational source
and whether the missing members are leaf members in the tree. In regular dimensions, each level of a hierarchy maps to a
column in the relational source. You can choose to represent a missing member in the hierarchy several ways:

You can use a NULL or an empty string in the source table. For example, the following table is used to create a geography
dimension with some missing members.

Country State City
USA CA San Francisco
USA CA Los Angeles
USA WA Redmond
Israel (null) Tel Aviv
Israel (null) Haifa

In this case, set the Hide Member If property to No name. This tells Analysis Services to build the dimension and to hide any
member that has a NULL or empty string value.

Alternatively, you can use the same name as the parent member to represent a hidden member in the source table. For example,
you could represent a ragged hierarchy in the relational source by using the same name as the parent for countries that do not
have states.

Country State City
USA CA San Francisco
USA CA Los Angeles
USA WA Redmond
Israel Israel Tel Aviv
Israel Israel Haifa

In this case, set the Hide Member If property to Parent's name. This tells Analysis Services to build the dimension and to hide
any member that has the same name as its parent.

The missing members can also be on the leaf level of the tree. For example, a geography hierarchy may record neighborhood
districts for some cities but not for others.

State City District
CA San Francisco Market
CA Los Angeles (null)
WA Seattle Wallingford
WA Seattle Queen Anne
WA Redmond (null)

In this case, set the Hide Member If property to Only child with no name or Only child with parent's name, depending on
the use of NULL values or the parent's name in the relational source.

Parent–Child Dimensions

In Analysis Services, you use a parent-child dimension to model an unbalanced hierarchy.

Modeling Unbalanced Hierarchies

In an unbalanced hierarchy, branches of the hierarchy descend to different levels. Organization charts are a classic example of an
unbalanced hierarchy. The CEO is the top member in the hierarchy, and the division managers and executive assistant are
immediately beneath the CEO. The division managers have subordinate members but the executive assistant does not. There is
only one node on the tree for each employee.

Figure 6. Unbalanced hierarchy tree

Using Parent-Child Dimensions

The characteristics of the data in the relational source also indicate when you want to use a parent-child dimension. In a regular
dimension, the number of levels in a hierarchy depended on the number of columns chosen from the relational source and the
number of columns that each column mapped to a level in the dimension. Also, each column used for a regular dimension
represented a single entity type of members. For example, all members at the City level represented city names. These
characteristics are not true of parent-child dimensions.

In a parent-child dimension, two columns from the relational source together define the lineage relationships among the
members of the dimension. One column identifies each member. In Analysis Services, this is the Member Key Column. The
other column identifies the parent of each member. These columns are used to build an unbalanced hierarchy. In Analysis
Services, this is the Parent Key Column. The resulting dimension can have many levels but each member is the same type of
logical entity. You can also select a third column to provide member names to display when browsing cubes. This is called the
Member Name Column and defaults to the column containing the member identifiers. If you do not want to display these
identifiers, select an alternative column if one is available.

For example, you define a parent-child dimension by using the Employee ID columns to identify each member, the Manager ID
column to identify the parent of each member, and the Name column to provide member names. Each member in the hierarchy
is the same kind of logical entity, in this case, employees of a company.

Employee ID Name Manager ID
1 Andrew Fuller (NULL)
2 Janet Leverling 1
3 Stephen Buchanan 1
4 Margaret Peacock 1
5 Laura Calahan 2
6 Michael Suyama 3
7 Robert King 3
8 Anne Dodsworth 3
9 Nancy Davolio 6

Notice that the top-level member, Andrew Fuller, has a NULL value for Manager ID. You can choose to represent the top-level
member of a parent-child dimension by using a NULL or by using the members' own identifier in the relational source.

By default, a top-level member in a parent-child dimension has a parent identifier that equals its own identifier, null, 0 (zero), or a
value not contained in the column for member identifiers. Using Dimension Editor, you can set the Root Member If property for
a parent-child dimension to control how the top-level member is identified. This property can have four possible values:

Value Description
Parent is blank, self, or
missing A member is in the highest level if any one of the following three criteria is met. (The default value.)

Parent is blank A member is in the highest level if its value in the Parent Key Column is null or 0 (zero).

Parent is self A member is in the highest level if its value in the Parent Key Column is equal to its value in the
Member Key Column.

Parent is missing A member is in the highest level if its value in the Parent Key Column does not exist in the Member
Key Column.

Data for Nonleaf Members

With regular dimensions, there is a direct relationship between rows in the fact table and individual dimension members. All the
fields in a dimension table row logically describe one dimension member at the lowest level of the hierarchy. For regular
dimensions, there is no data in the fact table that relates to members at any other than the lowest level. For parent-child
dimensions, there can be data for members at any location in the hierarchy.

Data for Members of a Parent-Child Dimension

In a parent-child dimension, all the members are of the same entity type and can exist at any level in the hierarchy. There can be
fact table rows associated with members at any level. For example, you build a cube that analyzes sick days and vacation days for
employees. The employee dimension is modeled using a parent-child dimension. Each fact table row records a day taken off by an
employee.

Many parent-child dimensions will have data for nonleaf members in the fact table. If this case, you must set the Members With
Data property for the dimension when building a cube. Otherwise, cube processing fails. By default, nonleaf members are not
allowed to have associated fact table data.

The Members With Data property has the following values:

Value Description
Leaf
members
only

The default, leaf members only, can have associated fact table rows.

Nonleaf
data
hidden

Nonleaf members can have associated fact table data. This data is not represented among the descendents of the
nonleaf members. Consequently, it might appear to end users that values aggregate incorrectly.

Nonleaf
data
visible

Nonleaf members can have associated fact table data. This data is represented among the descendents of the
nonleaf members by the creation of a child for each nonleaf member.

Creating Parent-Child Dimensions

These two common scenarios may help you understand when to use each option.

Example of Handling Nonleaf Data

The business scenario you want to model and the characteristics of the underlying fact table data influence how you implement a
parent-child dimension.

Suppose you have an Employee dimension that has the following members:

Figure 7. Example of an employee tree branch

The fact table contains employee salary information. For example:

Employee ID Salary
1 100,000
3 100,000
6 30,000

7 50,000
8 75,000

You want the end user to be able to see the data so that the individual amount for the manager salary is also shown on the report,
in addition to the aggregation for all of their employees. For example, a client application displays the following report:

 Salary
Employee Name
Anne Dodsworth 75000
Robert King 50000
Michael Suyama 30000
Stephen Buchanan.Individual 100000
Stephen Buchanan 255000
Andrew Fuller.Individual 100000
Andrew Fuller 355000

In this view of the data, manager's individual salaries are visible along with the aggregate data for their employees. The aggregate
includes the manager's salary. To facilitate this view, you would set the Members With Data property to Nonleaf data visible.

When you set the Members With Data property to Nonleaf data visible, you need to specify how to display the name of the
data members. The Data Member Caption Template property controls the names of data members. If you type a value that
includes an asterisk (*), the name of each data member is the value with the asterisk replaced by the parent member's name. You
set this property for each level in the dimension. In this example, this property was set to *.Individual.

If you set the Members With Data property to Nonleaf data hidden, the report would not display the individual salaries for
Andrew Fuller or Stephen Buchanan. However, the aggregates would still include the data for the nonleaf members. This could be
confusing to end users who may not understand how these salaries are being aggregated. For example, the client application
displays the following report:

 Salary
Employee Name
Anne Dodsworth 75000
Robert King 50000
Michael Suyama 30000
Stephen Buchanan 255000
Andrew Fuller 355000

Example of Using Leaf Members Only Data in a Parent-Child Dimension

You can use a parent-child dimension in financial applications to present a summary of accounts. For example, your business
tracks several categories of expenses and sales. These categories are arranged into a hierarchy that describes how to roll up the
aggregates of each category. The totals from each category are added to, subtracted from, or ignored by its parent in the
hierarchy.

Figure 8. Parent-child dimension

As with any parent-child dimension, the number of levels in the hierarchy depends on the characteristics of the data in the
relational source. The following table represents the dimension table used to build the Account dimension hierarchy. The
account_id column is the member key column and the account_parent column is the parent key column. The
account_description column is used for the member name column. Set the Root Member If property to Parent is blank to
handle the blank values in the account_parent column for the members of Assets and Liabilities.

account_id account_parent account_description account_type account_rollup
1000 (null) Assets Asset ~
2000 (null) Liabilities Liability ~
3000 5000 Net Sales Income +
3100 3000 Gross Sales Income +
3200 3000 Cost of Goods Sold Income -
4000 5000 Total Expense Expense -
4100 4000 General & Administration Expense +
4200 4000 Information Systems Expense +
4300 4000 Marketing Expense +
4400 4000 Lease Expense +
5000 Net Income Income +

In this type of dimension, the intermediate level members represent the aggregates of their children and do not have any
associated fact table data. In this example, only leaf members will have fact table rows. To model this situation, leave the
Members With Data property set to the default of Leaf members only. The following table contains some sample fact table
data. Notice that there are entries for the lowest level expenses only.

store_id account_id exp_date time_id category_id currency_id amount
0 4100 1/1/1997 0:00 367 ACTUAL 1 942
1 4100 1/1/1998 0:00 732 ACTUAL 1 1798
3 4200 1/1/1997 0:00 367 ACTUAL 1 1413
2 4300 1/1/1997 0:00 367 ACTUAL 1 1881
0 4300 2/1/1997 0:00 398 ACTUAL 1 1984
0 4400 1/1/1997 0:00 367 ACTUAL 1 471
0 4400 2/1/1997 0:00 398 ACTUAL 1 671
… … … … … … …

Using Custom Rollups

You can specify how to roll up members in a hierarchy when building a parent-child dimension. In the summary of accounts
hierarchy, the data for each member is aggregated according to a value in a column of the relational source.

Using Unary Operators

Custom rollup operators provide a simple way to control how member values are rolled up to their parent's values. In the
previous example, the account_rollup column in the accounts dimension table contains an operator that specifies how to
aggregate data. This column contains a plus sign (+) to specify adding the data to the aggregate of members at the same level, a
minus sign (-) to subtract the data, or a tilde (~) to exclude the data from the aggregate. You can also use the other unary
operators (/ or *) to specify a custom rollup. The value of the custom rollup operator is unique for each level member.

Using Custom Rollup Formulas

In addition, you can use a custom rollup formula to specify how to aggregate the members of a hierarchy. Custom rollup
formulas use Multidimensional Expressions (MDX) to determine how the members are rolled up. Unlike using the unary
operators to specify rollup, a custom rollup formula applies to all members (except calculated members) in a level.

For example, you have a time dimension used to analyze sales by quarter and year. You define the dimension using the standard
Sum function to aggregate the data.

Units Sold Year Aggregate
1997 2100
 Quarter 1 700
 Quarter 2 500
 Quarter 3 100
 Quarter 4 800
1998 1500
 Quarter 1 600

 Quarter 2 200
 Quarter 3 300
 Quarter 4 400

You decide that the most important figure for your business is the amount sold in the last quarter of each year. You want the
aggregate at the year level to reflect only last quarter of the year. You create the following custom rollup formula at the Year
level:

Time.CurrentMember.LastChild

This custom rollup formula overrides the Sum aggregate function and produces values for the all years to reflect the sales during
Quarter 4. Note that the values for the Quarter members are unchanged.

Units Sold Year Aggregate
1997 800
 Quarter 1 700
 Quarter 2 500
 Quarter 3 100
 Quarter 4 800
1998 400
 Quarter 1 600
 Quarter 2 200
 Quarter 3 300
 Quarter 4 400

Using Virtual Dimensions
Virtual dimensions enhance the analysis and presentation of cube data. A virtual dimension is a logical dimension based on the
contents of an existing physical dimension.

You build a virtual dimension when the criteria by which you want to view cube data is already contained in another dimension,
and you do not want to build a new dimension hierarchy. You always have the option to build a new dimension.

The main advantages of virtual dimensions are storage savings and reduced cube processing time. The dimension members and
structure are held in memory and stored on disk like a physical dimension. However, aggregation data for virtual dimensions is
not stored, but is calculated in memory. When you add a virtual dimension to a cube, processing time and storage for
aggregations do not increase as when you add a regular or parent-child dimension.

A virtual dimension can be based on either of the following:

Member properties in the physical dimension
Columns that represent the hierarchy of a physical dimension
Other columns in the tables on which another physical dimension is based

Identifying Member Properties

You can use a virtual dimension to analyze data in a cube by the member properties in a dimension. A member property is an
attribute associated with all the members in a level. For example, a Customer dimension has Country, State_Province, City, and
Name levels. A level can have several member properties associated with it. For the Name level, you want to record information
about the gender, marital status, and education of each customer. You can create member properties at other levels in the
hierarchy. For example, you want to track the population range of cities in addition to individual customer information. You create
a member property at the city level that contains a value for the following population ranges:

Up to 10,000

10,001 – 20,000

20,001 – 30,000 and so on…

This member property applies only to members at the city level.

When choosing member properties, keep in mind that there is an implicit one-to-one relationship between a member and a
member property value. In the previous example, each city has only one value of the Population Range property associated with
it.

Creating Member Properties

You create member properties in dimensions to:

Contain information that an end user may want to browse. Member properties can be exposed to end users by a client
application. The method of displaying member properties varies from application to application. For example, an end user
can right-click a member to view its member properties. If you don't want to expose the properties, you can set the
member's Visible property to FALSE. This will hide the member in cubes where it appears but you can still reference it by
using an MDX statement.
Enable calculations. For example, you can create the Store Size in SQFT as a member property of the Stores dimension. You
then create a virtual dimension based on this member property. You can use the members of the Store Size in SQFT
dimension to create a calculated member (measure) for a cube that displays the sales per SQFT for each store.
You can also use a member property to enable comparison of members at the same level. For example, your company
manufactures several different kinds of laundry detergent. Some is in powder form, some are liquid, and some are solid
tablets. The hierarchy records the package size in grams. However, you want to compare the price of the detergent based on
the number of loads of laundry it can clean. You create a member property, Uses_per_Package, which records this
information. You can then use the member property to build a virtual dimension. In the cube, you build a calculated
member to show the price per use by dividing the package price by the number of uses.
Enhance analysis and presentation of data by building virtual dimensions.

Enhancing Analysis with Virtual Dimensions

Virtual dimensions also allow you to display member names from a single dimension table on multiple axes in a client application
without increasing cube size. Without virtual dimensions, you would need to use multiple regular or parent-child dimensions to
present the information to the end user. Specifically, you can display the members of a dimension level on one axis and an
associated member property on the other axis. This presentation is useful when end users want to explore the trends of measures
depending on the relationship between members and member properties.

For example, a user wants to explore the relationship between Store Location and Store Type with respect to Unit Sales. The Store
dimension already contains Store Country as a member of the hierarchy. You add Store type as a member property and create a
virtual dimension from it. By adding the virtual dimension to the cube, the user can cross-reference Store locations and Store
Types and compare the Sales at the intersections. The following report was created using this new virtual dimension.

Unit Sales Store Type
Store
Country

Store
State

Deluxe
Supermarket

Gourmet
Supermarket Mid-Size Grocery Small Grocery Supermarket Grand Total*

USA CA 21333 2117 51298 74748
 OR 41580 26079 67659
 WA 35257 11491 4440 73178 124366
USA Total * 76837 21333 11491 6557 150555 266773
Grand Total * 76837 21333 11491 6557 150555 266773

Creating Virtual Dimensions

You can create new virtual dimensions by using the Dimension Wizard or Dimension Editor.

Using the Dimension Wizard

Use the Dimension Wizard to create a virtual dimension based on member properties or the columns that represent the hierarchy
of a physical dimension. The member properties of the source dimension are shown by default. If you want to base the virtual
dimension on the source hierarchy, select the Display Member Keys and Names check box to list the physical dimensions keys
and names for each level in the hierarchy.

Using Dimension Editor

Use Dimension Editor to create a virtual dimension based on the columns in one of the source dimension's tables. These columns
do not have to be part of the physical dimension's definition (for example, the source of a level). Creating a virtual dimension is
similar to creating a regular dimension. However, you must set the IsVirtual property to TRUE and set the
DependsOnDimension property to the name of the source dimension.

Since virtual dimensions are based on existing dimensions, you do not need to set many of the properties for the virtual

dimension and dimension levels. By definition, the following properties cannot be changed.

Property Value/Description

Storage Mode

StoreasMOLAP

Analysis Services virtual dimension members are stored in multidimensional OLAP (MOLAP), just like physical
dimensions.

HideMemberIf
hideNever

You cannot model a ragged hierarchy by using a virtual dimension.

Grouping groupingNone

IsChanging
True

Analysis Services virtual dimensions are changing dimensions.

Keep in mind that all virtual dimensions have an (All) level. This is created automatically when you create a virtual dimension.

If you don't want to expose member properties to the client application, but still want to analyze data based on these attributes,
create a virtual dimension based on columns in the source table rather than on member properties.

You can add a virtual dimension to a cube only if the physical dimension that supplies the member properties or columns is also
included in the cube.

Conclusion
Creating dimensions in SQL Server 2000 Analysis Services is a slightly more complex task than creating dimensions in SQL
Server 7.0 OLAP Services. However, Analysis Services provides a rich set of tools for modeling many types of dimensions and
enables comprehensive analysis of your data. You should observe the following guidelines when designing dimensions:

The choice of dimension model and the structure of data in the relational database are highly related. While you can use
Analysis Services to build dimensions and cubes from many data sources, it is recommended that you perform a thorough
analysis of your business requirements and build or simulate a star or snowflake schema in the relational database. Having
a clear idea of your analysis goals and a relational design that reflects your multidimensional design will make it easier to
recognize the types of dimensions you need to build.
Create shared dimensions unless you have a strong business reason to use a private dimension.
Create multiple hierarchies of a dimension rather than several independent dimensions from the same source data.
Choose the dimension type based on the business problem you want to model, the structure of data in the tables, the
existence of other dimensions, the type of hierarchy to model, the relationship of members in the hierarchy (single or
multiple entity types), characteristics of members (data and member properties), rollup characteristics, and analysis
requirements (presentation on multiple axes).

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Analysis Services: DISTINCT COUNT, Basket Analysis, and
Solving the Multiple Selection of Members Problem

Amir Netz
Microsoft Corporation

Updated May 18, 2004

Applies to:
 Microsoft SQL Server 2000
 Microsoft SQL Server 2000 Analysis Services

Summary: This article discusses ways to meet information demands and take full advantage of Analysis Services 2000 by
illustrating the use of calculated members and multidimensional expressions (MDX). (10 printed pages)

Contents

Introduction
DISTINCT COUNT Analysis
Basket Analysis
Performance Considerations
Conclusion
For More Information

Microsoft knows that many organizations do not use SQL Server to answer the following business intelligence question, "How
many customers are buying each of my products?" Simple analysis, such as aggregating or sorting data into dimensions and
levels using a regular COUNT measurement, does not work for this query because it may lead to double counts when a single
customer buys a product more than once. A solution, the DISTINCT COUNT measure, requires advanced knowledge of SQL
Server's online analytical processing (Analysis) services. Another question, "How many customers bought both cereal and
oranges?" is also easy to answer by tapping into the SQL Server Basket Analysis capabilities. This article discusses ways to meet
these classic information demands and take full advantage of Analysis Services by illustrating the use of calculated members and
multidimensional expressions (MDX).

Introduction
Microsoft SQL Server 2000 Analysis Services provides powerful tools for data analysis. Some of the capabilities are apparent
from the user interface, including the ability to aggregate data and categorize data into dimensions and levels. Other analysis
capabilities, usually the more advanced, are not obvious from the user interface and may require more expertise if the user wants
take full advantage of the online analytical processing (Analysis) Services. These advanced capabilities involve the use of
calculated members and multidimensional expressions (MDX) to achieve the desired analysis.

For example, suppose you have a cube that analyzes sales transactions. It has dimensions that describe customers (geography,
education, income level, and gender), products (classification, color, and size), time, and the sales rep through the organizational
structure. The measures include information about revenue, quantity, and discounts.

One of the most common questions would be, "How many customers bought a specific product?" An even better and more
general question might be, "How many customers are buying each product?"

Although this last question seems simple, it is not. A regular COUNT measure will not provide correct results because double
counts may occur. If a single customer buys a product more than once, a regular COUNT with the measure will count the product
sale by customer twice. In order to get the correct results, each customer needs to be counted only once. This is the classic
DISTINCT COUNT problem, and it requires a fairly complex resolution in the OLAP environment.

The problem may become even more interesting if the question becomes, "How many customers bought a specific basket of
products?" Take the "Diapers and Beer" example, "How many customers bought both diapers and beer?" This type of question
falls under the Basket Analysis problem category.

This article discusses the techniques to solve these two classic problems, DISTINCT COUNT and Basket Analysis. It assumes that
the reader has a basic understanding of the concepts of OLAP in general, Analysis Services in particular, and MDX.

DISTINCT COUNT Analysis
DISTINCT COUNT analysis is one of the most popular types of analyses by users and one of the toughest problems for an OLAP

system. Some users refer to the problem as the many-to-many problem because it involves analysis of the relationship between
entities that have many-to-many relationships.

A few of the more typical applications for DISTINCT COUNT analysis are:

Sales and marketing, especially counting distinct number of customers.
Insurance claims relating policies to damages. One claim may have many damages.
Quality control data relating causes to defects. A defect can be caused by multiple factors.

Consider the following query:

SELECT
{ [Sales], [Distinct Customers Count] } On Columns,
Products.Members On Rows
From Sales

A typical query result may look like this:

 Sales Distinct Customers Count
All products 8000 200
Hardware 3300 80
Computers 2000 70
Monitors 800 60
Printers 500 30
Software 4700 150
Home 1500 100
Business 2500 100
Games 700 80

Understanding the Problem

In the Sales column, the numbers add up to subtotals and their totals. This is the expected behavior of a SUM measure. However,
in the Distinct Customers Count column, the numbers do not add up.

In this example, 70 customers bought computers, 30 customers bought printers, and 60 customers bought monitors. However,
the total number of customers who bought hardware, according to the result set, is not 160, or 70+60+30, as shown in the table.
The query results display an actual count of 80 total hardware customers. The reason for this irregularity is simple: many
customers bought more than one product. Some customers bought both computers and monitors, others bought the whole
three-piece package, some replaced just the monitor, and so on. The end result is that there is no way to infer directly from the
lower level results what the customer subtotal really is. This discrepancy continues through the upper levels as well: 80 customers
bought hardware, 150 bought software, and all together, All Products totals only 200 customers.

These types of irregularities pose challenges for OLAP systems. Nonadditive measures pose the following problems on a typical
OLAP system:

Roll-ups are not possible. When precalculating results during cube processing, the system cannot deduce summaries from
other summaries. All results must be calculated from the detail data. This situation places a heavy burden in processing
time.
All results must be precalculated. With nonadditive measures, there is no way to deduce the result for a higher-level
summary query from one precalculated aggregation. Failure to precalculate the results in advance means that the results
are not available.
It is next to impossible to perform and maintain incremental updates to the system. A single transaction added to the cube
usually invalidates huge portions of previously precalculated results. In order to recover from this, a nearly complete
recalculation is needed.

Analysis Services takes a very different approach to the solution to these kinds of problems. Analysis Services 2000 contains a
distinct count aggregate type that enables basic forms of basket analysis. If you need to know how many distinct customers
purchased a single product, the distinct count aggregate type in Analysis Services will work for your needs. However, as discussed
in the examples below, if your business requirement for basket analysis also includes determining how many customers bought a
particular in conjunction with another product, then the distinct count aggregate type cannot be used. Instead, the techniques
described below should be used. The same is also true if you need to perform multiple selections of other dimensions in cases
where the distinct count aggregate type is used. For example, if your cube contains a Month level and the user attempts to
aggregate January and February to a single value, the measure based on the distinct count aggregate type will return an error

condition in the cell.

The Solution

You can define the calculated member [Distinct Customers Count] using an MDX expression. Use the following expression to
deduce the number of customers who bought a product by counting the customers where non-NULL sales exist:

Count(CrossJoin({[Sales]}, [Customer Names].Members), ExcludeEmpty)

This expression evaluates each Sales-Customer Name tuple and counts the number of tuples that are not NULL. The number of
tuples being evaluated will always equal the number of customers.

This expression works with any set of coordinates in any dimension (except Customers). If the current member in the products
dimension is [Hardware], the NULL evaluation will be for the [Sales] of [Hardware] for each [Customer Name]. If you slice by a
specific month, January for example, the count will be for all non-NULL values for the [Sales] of [Hardware] in [January] for each
[Customer Name].

However, this expression does not work well with the Customers dimension itself. The calculated member defined here counts for
all of the Customer Names, no matter what the current member on the customer dimension is. For example, to perform a distinct
count on the customers in California, you might expect that if you slice by [California] in the [Customers] dimension, only the
customers in this state would be counted. However, the calculated member created here has no such limitation. It counts all of the
customers in all of the countries/states/cities without limitation.

To fix this problem, change the expression to the following:

Count(CrossJoin({[Sales]},
Descendants([Customers].CurrentMember, [Customer Names])),
 ExcludeEmpty)

The modified expression helps ensure that only the customers under the current member in the [Customers] dimensions are
counted.

This generic expression solves the DISTINCT COUNT problem and provides the correct answers. The only problem with this
method lies in performance. In many businesses, the number of customers may be very large. The need to evaluate each
customer individually at run time places a significant calculation burden on the system. A later section of this article discusses
techniques to optimize these calculations and ease some of the load on performance. It is important to remember that even with
these optimizations, DISTINCT COUNTs are much slower than other additive measures.

Basket Analysis
Basket Analysis goes one step further than DISTINCT COUNT. With Basket Analysis, the idea is to count the number of intersected
occurrences. For example, how many customers bought a computer and a printer together? A more generic query result is shown
here.

 Sales Distinct Customers Count Customers Who Bought Printers
All Products 8000 200 30
Hardware 3300 80 30
Computers 2000 70 20
Monitors 800 60 25
Printers 500 30 30
Software 4700 150 15
Home 1500 100 7
Business 2500 100 10
Games 700 80 5

The last column in the table shows how many customers bought both the corresponding product and a printer for each
product/category.

This query investigates the relationships between members of the same dimension. The combination of each product and a
printer creates a basket of products. Understanding the occurrences of these baskets is one of the most important insights into
the purchasing habits of customers. It is usually a good basis for cross-promotions, direct mail, and other focused marketing
activities.

This kind of analysis has wide applicability in other areas beyond marketing. For example, in quality control it is important to learn
about the relationships between failed components or causes of failure.

The definition of [Customers Who Bought Printers] is:

Sum(Descendants([Customers].CurrentMember, [Customer Names]),
Iif(IsEmpty(Sales, Printers) Or IsEmpty(Sales), 0, 1))

This expression sums one (1) for each customer who bought the current product in addition to purchasing a printer.

Suppose you want to analyze baskets that contain more than two products (current and printer in out example.) You can extend
the basket to {current, Printer, Computer} using the following expression:

[Customers Who Bought Printers & Computers]:
Sum(Descendants([Customers].CurrentMember, [Customer Names]),
Iif(IsEmpty(Sales, Printers) or IsEmpty(Sales, Computers) Or IsEmpty(Sales), 0, 1))

Yes... But Were They Bought Together?

The expression in the previous section will count the number of customers that bought a set of products (Computer, Printer, and
another product).

However, there is no indication in the expression as to whether the products were bought together. In some cases, it is important
to know not only when a customer bought several products, but also whether the customer bought them together at the same
time or at different times.

"Together" deserves a definition. At first reaction, you may think that the products were ordered or delivered together on the
same invoice. However, in business intelligence, "together" usually has a definition that spans time rather than invoice numbers.

There are two reasons for this definition:

In OLAP cubes, maintaining information about specific invoices is difficult and inefficient compared to managing a time
dimension. The number of invoices may be several orders of magnitude larger than the number of time periods the system
is tracking.
There is usually a time span during which multiple transactions by the same customer are considered to be related. The
separation between transactions may be due to supplementary purchases, merchandise returns or replacements, clerical
error, payment methods, or other reasons. For many businesses, multiple transactions made on the same day by a single
customer are deemed to be related and so are considered as a single transaction. In other businesses, multiple transactions
made by a customer in the same week or even the same month are considered as one transaction.

When working with Analysis Services, it is strongly recommended that you work with time periods instead of invoices when
analyzing concurrent purchases.

The following expression counts the number of customers who bought the current product and a printer in the same week:

 [Customers Who Bought Printers] =
Sum(Descendants([Customers].CurrentMember, [Customer Names]),
Iif(0=Sum(
Filter(Descendants([Time].CurrentMember, [Week]), Not IsEmpty(Sales)),
(Sales, Printers)) ,1, 0))

This complex expression sums one (1) for each customer who bought the current product and a printer in the same week. To
make certain that the printer was bought in the same week as the current product, filter out all of the weeks to find only the weeks
where the current customer bought the current product. You can use the following clause:

Filter(Descendants([Time].CurrentMember, [Week]), Not IsEmpty(Sales))

The Descendants function limits the scan of the weeks according to the slicing member of the time dimension. This returns the
set of weeks. The expression then sums all sales of printers for the current customer during these weeks. If the sum returns NULL,
this customer did not buy the product together with a printer. If the sum is not NULL, the expression adds one (1) to the count of
customers.

Performance Considerations
For both DISTINCT COUNT and Basket Analysis, calculating results poses demanding computation loads. These computations
must scan vast quantities of data in order to calculate a single number. For example, in the query illustrated in the table of the
DISTINCT COUNT example, the system must query the results of the sales for each customer per product. With even medium-
sized databases, both dimensions may have tens of thousands of members. The combination of these dimensions generates a
huge result set that needs to be analyzed.

There is no one solution to solve the performance problem. However, using several techniques, the scale of the problem can be

managed. The following sections discuss three approaches to working with performance issues. Throughout, a reference to
DISTINCT COUNT measures applies also to Basket Analysis.

The DISTINCT Cube

One of the most efficient ways to optimize the performance of these two analysis techniques is to isolate the DISTINCT
functionality into a separate cube.

This cube should have a single COUNT measure (a long integer). The rest of the measures will reside in a separate cube that
contains the exact dimensions found in the DISTINCT cube.

The two cubes will be joined together to form a virtual cube with which the user will work. The user will not experience any
difference between the functionality of the virtual cube and the functionality of a unified physical cube. However, performance
and memory consumption can improve dramatically.

The reason for the improvement is simple. When a user asks for the DISTINCT COUNT measure, the virtual cube helps ensure that
that only the DISTINCT cube will be queried for the detailed result set that is needed for the calculation. Because the distinct cube
has only a single long measure, it is usually much smaller than the cube that contains the rest of the measures. Therefore,
querying that cube involves less I/O. In addition, the cache size needed for the result set is much smaller than a cache containing
all of the measures would be, and the net transport is also much smaller.

Separating the DISTINCT COUNT into another cube also enables fine-grained control of the aggregations.

Aggregations

As mentioned before, DISTINCT COUNTs are not additive (and this is the main reason why these measures are so problematic).
Therefore, the aggregations, which are all derived from additive operators, are completely useless; however, there is one
exception: the property dimensions of the counted dimension. If the entity you want to count is "customers," there may be several
other dimensions that describe properties of the customers. For example, gender, education level, and income level are all
dimensions that are actually describing the customers.

When a query involves only those dimensions (the rest of the dimensions are on ALL), the DISTINCT COUNT measure behaves
like a regular SUM measure. For example, if you know that you have 100 distinct male customers and 120 distinct female
customers, you can say for sure that you have 220 customers all together.

Therefore, when working with an isolated DISTINCT cube, it is worthwhile to create aggregations that are limited only to the
customer dimensions and its property dimensions. To do that, use the Cube editor in the Analysis Manager to limit aggregations.
In the Property pane, set the Aggregation Mode property of the rest of the dimensions to Top Level Only. This helps ensure that
all of the aggregations designed for the distinct cube are additive and useful. An opposite approach is to set the Aggregation
Mode property of the counted dimension and its property dimensions to Bottom Level Only. This helps ensure that all of the
aggregations created are detailed enough to be useful in the DISTINCT calculations.

When using this approach, you need to work around a limitation of the size estimation algorithm of Decision Support Objects
(DSO). When DSO calculates an estimated size for an aggregation, it assumes that all of the dimensions are independent;
therefore, in DSO, the maximum theoretical size of the aggregation is the product of the cardinality of each dimension. For
example, 1,000 customers and 2,000 products have a maximum theoretical size of 2,000,000 cells.

However, the property dimensions are not independent from the customer dimension. Two genders, six education levels, eight
income levels, and 1,000 customers will be calculated to 96,000 possible cells. However, because the dimensions are dependent,
the actual maximum number of cells is only 1,000. This miscalculation is important if all of the customer dimensions are set to
Bottom Level Only. All calculations of the possible aggregations will be inflated 96 fold. The system will decide that most of these
are not useful because the aggregations are too large. To put the system back on the right path, you need to tell DSO that the fact
table contains far more records than it actually contains. In this example, if the fact table has 1,000,000 rows, set the (estimated)
Fact Table Size property to 96,000,000. This will compensate for the miscalculation.

Execution Location

The execution location may be the most significant factor in the performance of the DISTINCT COUNT queries. Analysis Services
supports both client-side and server-side query execution. Executing queries on the client allows the server to scale up to support
many more users and queries. However, for some queries, it is more appropriate to do the calculation on the server. Those
queries may work with very large dimensions (such as "top 10 customers out of 1,000,000"). They may also aggregate vast
volumes of data to return a small answer table. DISTINCT COUNT analysis usually falls into both of these categories.

Server-side execution takes two forms:

Axes resolution: The axes of a dataset may be relayed to the server for resolution if the axes involve large dimension levels

(usually 1,000 or more). Microsoft PivotTable Service automatically detects whether relaying to the server is needed and
performs it without client application intervention.
Dataset resolution: The cells of the dataset may also be calculated on the server side. However, this applies only to snapshot
queries. With a snapshot query, PivotTable Service decides automatically whether the query needs to be resolved on the
server side.

It is strongly recommended that all queries involving DISTINCT COUNT measures be snapshot queries so they can be relayed to
the server. Failure to create snapshot queries may result in huge memory consumption on the client computer, vast quantities of
data transported over the network, and very slow response times.

Sampling

In cases where the data volumes are very large, and the main interest is in relationships, proportions, and ratios rather than
absolute numbers, sampling can reduce the magnitude of the problem. However, this article will not deal with sampling
techniques for Analysis Services.

Rendering

The last technique pertains to the behavior of the user interface on the client application side.

The client application should recognize that some queries might be very slow when this technique is used. Most OLAP browsing
tools assume very fast response time and therefore work in "auto recalc" mode. This means that a query is generated for every
action on the user's part. Users do not have to initiate "Execute" operations to populate the views with which they are working.

However, this mode is not appropriate for DISTINCT COUNT measures. A query for each user operation will cause the user
interface to work very slowly and will try the user's patience considerably. The best way to avoid this situation is to allow the user
to move into "manual recalc" mode. In this mode, the user first positions the dimensions on the axes and performs all of the drill-
downs and slice-and-dice operations to set the view. After the view is set, the user explicitly asks for the population of the view
with numbers.

Conclusion
The questions posed by DISTINCT COUNT and Basket Analysis are important ones in business intelligence. Although the OLAP
environment does not provide simple ways to answer these questions, the methods outlined in this article offer viable ways to
work around the limitations of OLAP. By using features provided by Analysis Services and following a few simple guidelines, you
can leverage the power of OLAP to address these and other business analysis scenarios.

For More Information
For more information about DISTINCT COUNT, see your structured query language (SQL) documentation. For more information
about MDX, calculated members, virtual cubes, DSO, and member properties, see Microsoft SQL Server Analysis Services online
documentation.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Analysis Services: Optimizing Cube Performance Using
Microsoft SQL Server 2000 Analysis Services

Sanjay Soni, Senior IS Consultant
Wayne Kurtz, Practice Director
Worldwide Enterprise NT Services
Unisys Corporation

March 2001

Summary: This paper discusses the design and implementation of a series of test scenarios that include building and querying
cubes using Microsoft SQL Server 2000 and Analysis Services. (21 pages)

Contents

Introduction
Test System Configuration
Designing the Test Environment
Processing Results for Each Storage Type
Developing MDX Queries
Measuring MDX Query Execution Times for Each Storage Type
Performance Optimization Tips
Conclusion
Acknowledgements

Introduction
In a large-scale data warehouse, it is critical to design online analytical processing (OLAP) cubes to provide maximum
performance. This paper discusses the design and implementation of a series of test scenarios that include building and querying
cubes using Microsoft® SQL Server™ 2000 and Analysis Services. You will see the tests and their results, along with analyses of
what the results show about optimization and performance in this environment.

When designing SQL Server Analysis Services cubes, you must make important decisions about the storage mode and the level of
aggregation. Storage modes in Analysis Services are listed in the following table.

Storage mode Description
Relational OLAP
(ROLAP) Fact data and aggregations are stored in the relational database server.

Multidimensional OLAP
(MOLAP) Fact data and aggregations are stored on the OLAP server in an optimized multidimensional format.

Hybrid OLAP (HOLAP) Fact data is stored in the relational database server, and aggregations are stored on the OLAP server in
an optimized multidimensional format.

In Analysis Services, aggregations are precalculated sums of fact table data at some combination of levels from each dimension.
These aggregations are used to answer queries and create additional aggregates. When choosing the amount (by percentage) of
aggregation to include in a cube, consider the issues of storage space and query response time. Precalculating all possible
aggregates would greatly increase the storage requirements for a database. On the other hand, calculating all the aggregates at
query time would result in slow query response time. This paper provides empirical observations comparing the different storage
modes and various levels of aggregation for a large data set. For additional information about storage and aggregation, consult
SQL Server Books Online.

To help you evaluate the different storage modes and aggregation levels, this paper includes:

Cube processing times
A comparison of disk space requirements
A comparison of Multidimensional Expressions (MDX) query execution times
A comparison of query execution times with warm and cold caches
A comparison of the average CPU usage on the relational database server and the analysis server

This paper also includes figures comparing disk space requirements for building OLAP cubes and star schema data marts.

Benefits of building and querying OLAP cubes using Analysis Services over traditional querying using SQL are also included.

The tests and results that inform this paper come from a set of business questions for a bank profitability application. We
compared execution times of MDX queries (against the OLAP server) with SQL queries (against SQL Server) for the same business
question. Some optimization tips that we used in the process of making OLAP cubes have also been included. Further, for some of
the tests, you will see performance differences between the previous version of the SQL Server analysis tool (OLAP Services) and
the new version (Analysis Services).

This paper explains the design of OLAP cubes used in modeling our bank profitability scenario. For the source data, we used
Unisys Corporation’s Banking Profitability 2 Terabyte (TB) SQL Server version 7.0 VLDB. This VLDB is the largest commercial
database deployed with SQL Server 7.0 in an enterprise-class environment using Microsoft Windows NT®. The 2+ TB database
contains data representing two years worth of transactions conducted by 4 million banking customers with 10 million accounts.

We started with the development version of the Banking Profitability database (approximately 130 gigabytes [GB]), and designed
star schema for the business processes that we wanted to represent in the OLAP cubes. This scenario allowed users to query a
cube based on a Bank Account Profitability fact table containing approximately 13 million records. The fact table contained
information about economic income earned in a two-year period (24 monthly periods from January 1996 through December
1997) from various products and customer segments.

Test System Configuration
The hardware used for this set of experiments is as follows:

Two servers with similar configurations (Unisys e-@ction Aquanta ES5045R servers):
4 Intel Xeon 550-megahertz (MHz) CPUs
512 megabyte (MB) cache
4 GB RAM

Unisys OSM7700 Fiber channel data storage:
RAID 5 disk arrays using five 9 GB disks

Network: 100 MB Ethernet

We used the following servers for testing:

bbnt13 is the name of the RDBMS server running SQL Server 2000 that houses the relational star schema for the VLDBMart
database.
bbnt16 is the name of the analysis server running Analysis Services that stores the OLAP cubes and multidimensional data.

Figure 1. System Configuration

Designing the Test Environment
This section describes how we built our test configuration, including identifying common business questions, identifying existing
information, creating a star schema, populating the data mart, and building OLAP dimensions and cubes.

Defining Questions That Need to Be Answered

The following questions are representative of the types of questions that a customer profitability system can answer.

Query
number Question

1 What is the average economic income per household for last two years (1996 and 1997) from each of the products?
2 What is the income earned from customers in the high balance category for each year and for various products?
3 What is the moving average of economic income between various months?

4 What is the economic income of various customers as a percentage of total economic income of the ZIP code in
which those customers live?

5 What is the average economic income per household for January 1996 from each of the products?

6 What is the economic income for 1996 and 1997, and what is the comparison of income for these years by each
customer segment?

7 What is the economic income for first quarter of 1996 and 1997, and what is the comparison of income for these
quarters broken out by customer segment?

Creating Bank Data Descriptions

Based on these questions, we identified appropriate source information in the existing VLDB ER diagram. Tables identified are as
follows:

The Product table contains information about the type of accounts a bank has, such as checking account or savings
account.
The Customer Segment table provides a way to categorize bank customers, such as customers who carry a high balance
or customers who are borrowers.
The Period table contains the time period for the profitability information. This database has data for 2 years (1996 and
1997), or 24 one-month periods.
The Region table contains the geographic area in which each bank is located.
The Household table contains customer units that may consist of multiple accounts.

Creating a Star Schema (Dimensional Model) for the Cube to Be Generated

We designed and built a star schema (for the OLAP cube) to answer the identified set of questions about account profitability. The
Account_Prof_Fact fact table was constructed from account profitability tables for all periods (January 1996 through December
1997). This fact table records account profitability information, such as economic income and expenses for various products at a
monthly snapshot level. This snapshot contains totals for all measures for each month. Five dimensions were identified: Product,
Time, Region, Household, and Customer Segment. The following illustration shows the star schema.

Figure 2. Star Schema with Facts and Dimensions

Creating and Populating the SQL Server Data Mart

We used SQL Server 2000 Data Transformation Services (DTS) to populate the fact and dimension tables in the data mart. We
combined all the period tables into one fact table, called Account_prof_fact, that has data for all 24 periods for both years. The fact
table has approximately 13 million records in it.

Data mart table Rows Size
Account_Prof_Fact 13,036,152 5188.00 MB
CustSegmentDim 7 0.03 MB
HouseholdDim 200,001 38.56 MB
ProductDim 14 0.03 MB
RegionDim 51 0.04 MB
TimeDim 24 0.03 MB

Building OLAP Cubes

Next, we created a multidimensional OLAP database called AccountProfitabilityOLAPDatabase. In this database, we created 12
cubes with identical structure but different storage types and aggregation levels. The following illustration shows the cube
structure for one of the cubes.

Figure 3. Cube Design

Here is a summary of the 12 cubes built. Although the cubes have identical structure, their storage types and aggregation levels
are different.

Cube name Storage type Aggregation percentage
AccountProfitabilityCubeM0 MOLAP 0
AccountProfitabilityCubeM30 MOLAP 30
AccountProfitabilityCubeM60 MOLAP 60
AccountProfitabilityCubeM90 MOLAP 90
AccountProfitabilityCubeH0 HOLAP 0
AccountProfitabilityCubeH30 HOLAP 30
AccountProfitabilityCubeH60 HOLAP 60
AccountProfitabilityCubeH90 HOLAP 90
AccountProfitabilityCubeR0 ROLAP 0
AccountProfitabilityCubeR30 ROLAP 30
AccountProfitabilityCubeR60 ROLAP 60
AccountProfitabilityCubeR90 ROLAP 90

We chose eight measures from those shown in Figure 3. The underlying fact table contains 13 million rows. The following table
describes the measures included in the cubes.

Fact
measure Simple description

Economic
Income

Income that the bank receives from households over a period of time. Economic income signifies net operating profit
or loss adjusted from taxes after subtracting return to capital for a particular period of time.

Spread Spread income that the bank receives from households over a period of time. Spread is the difference in lending and
deposit interest rates for a particular period of time.

Fee
Revenue Revenue that the bank receives in terms of fees from households over a period of time.

Loan Loss
Provision Loan loss provision that the bank incurs from households.

Product
Cost Cost associated with a particular product for a period of time.

Expenses Expenses that the bank incurs from households over a period of time.

Net Income Net income signifies net operating profit / loss adjusted from taxes after subtracting interest expenses and dividends
for a particular period of time.

Transaction
Cost Transaction cost that the bank incurs from households over a period of time.

Based on the dimension tables in the star schema data mart, we included five dimensions in the cubes. Details are shown in the
following table.

Dimension in the
cube

Number of rows in star
schema table

Number of levels in the cube
dimension

Size of the dimension in Analysis
Services

HouseholdDim 200001 2 19128 KB
ProductDim 14 1 3 KB
RegionDim 51 2 8 KB
TimeDim 24 3 5 KB
CustSegmentDim 7 1 2 KB

The following illustration shows sample data for this cube after it was processed.

Figure 4. Processed Cube Structure

Processing Results for Each Storage Type
In all the graphs that follow, we chose aggregation level percentages of 0, 30, 60 and 90. While most applications use an
aggregation level percentage between 30-60, values for 0 and 90 were included to provide data for comparison. Keep in mind
that the aggregation percentage number represents the expected improvement in query performance compared to having no
precalculated aggregations.

Processing Times for Each Storage Type

The following results were obtained when identically structured cubes using different data storage modes and aggregation levels
were processed. (The table and graph show the same results in different formats.)

Processing Times for Each Storage Type:

Figure 5. Processing Times for Cubes

This data shows that:

At 0 percent aggregation, ROLAP took minimal time to process the cube. Fact and dimension table data is not included in
the cube, and no aggregations are calculated.
As the aggregation level increases, ROLAP takes longer than MOLAP or HOLAP to process the cube.

The difference in processing times for MOLAP and HOLAP cubes between 30-60 percent aggregation was not substantial.
Processing time increases between 60-90 percent aggregation for MOLAP and HOLAP, but does not increase substantially.
Processing time increases exponentially between 60-90 percent aggregation for ROLAP.

Disk Space Requirements for Each Storage Type

The following illustration shows the space requirements (in MB) for each storage type.

Figure 6. Disk Space Required for Cubes

This data shows that:

MOLAP storage takes more space than HOLAP and ROLAP. (MOLAP cubes contain a copy of original facts and dimensions.)
The difference between disk space used between 0-60 percent is not substantial for MOLAP and HOLAP. It increases as the
aggregation level approaches 90 percent.
HOLAP storage uses minimal space. This is because a copy of original facts and dimensions is not made in the OLAP
database, and aggregations are stored in the OLAP database in an efficient multidimensional format.
ROLAP storage requires additional space as the aggregation level exceeds 30 percent and as it approaches 90 percent. (The
ROLAP space shown here includes the space required by aggregations in the relational database.)

Disk Requirements for MOLAP Cubes Compared to Star Schema

This table compares the amount of space required by the MOLAP cubes to the size of the original star schema (fact table and the
dimension tables) in the RDBMS.

Aggregation level
(as percentage)

Disk space used by
MOLAP cube

Size of the star schema (fact and
dimension tables with indexes)

Percentage of data compression done
in building MOLAP cubes

60 335.75 5188 93.53
90 353.11 5188 93.19

The space taken by MOLAP cubes as compared to the size of original star schema tables was approximately 7 percent. Even at the
90 percent aggregation level, we achieved approximately the same amount of data compression. Analysis Services compresses
rather than explodes data. The additional space required to build MOLAP cubes varies with the number of levels in the dimension,
the number of measures, and the type of data.

Developing MDX Queries
In this step we developed MDX queries for our set of business questions (listed previously). An example is shown here:

"What is the economic income for the first quarters of 1996 and 1997 and comparison of income for these quarters/years by
each customer segment/product?"

MDX Query

WITH
// These clauses define calculations that are done on-the-fly in answering the query
 MEMBER [Measures].[Economic Income for 1997]
 AS ' ([Measures].[Economic Income], [TimeDim].[All TimeDim].[1997])'
 MEMBER [Measures].[Economic Income for 1996]
 AS ' ([Measures].[Economic Income], [TimeDim].[All TimeDim].[1996])'
 MEMBER [Measures].[Economic Income change between 1996 & 1997]
 AS ' ([Measures].[Economic Income], [TimeDim].[All TimeDim].[1997]) –
 ([Measures].[Economic Income], [TimeDim].[All TimeDim].[1996]) '

SELECT
// This part defines the report, defining what goes on rows and columns

{
 [Measures].[Economic Income for 1997] ,
 [Measures].[Economic Income for 1996] ,
 [Measures].[Economic Income change between 1996 & 1997]
} ON columns, {
 [CustomerSegmentDim].[Cust Seg Id].members } ON rows
FROM AllAccountProfitCube

Results:

Customer segment Income for Q1 1996 Income for Q1 1997 Change
High Balance $4,770,072.07 $4,754,855.55 ($15,216.52)
Traditional $1,010,574.24 $1,023,682.89 $13,108.65
Borrowers $653,171.90 $673,249.77 $20,077.87
Self Reliant ($9,266.94) ($10,743.89) ($1,476.94)
Heavy Transactors ($818,666.25) ($827,246.87) ($8,580.63)
Credit Challenged ($945,083.51) ($932,928.64) $12,154.87
Dormant ($795,301.05) ($793,679.22) $1,621.83

MDX Queries for the remaining business questions are as follows:

MDX query and business question number MDX Query

1

WITH member [Measures].[Distinct Household Count] as
'Count(
Crossjoin

({[Measures].[Economic Income]},
[HouseholdDim].[Household Id].members)
, EXCLUDEEMPTY)'
member [Measures].[Average Economic Income] as '
Sum({ [Measures].[Economic Income]})/ (
[Measures].[Distinct Household Count])'

SELECT
{ [Measures].[Average Economic Income] } ON columns,
{ [ProductDim].[Product Id].members} ON rows
FROM AllAccountProfitCube

2

SELECT non empty crossjoin (
{[TimeDim].[Year].members} ,
{[CustomerSegmentDim].[All CustomerSegmentDim].[High
Balance], [CustomerSegmentDim].[All
CustomerSegmentDim].[Traditional]}) ON columns,

crossjoin ({ [RegionDim].[State].members },
{ [ProductDim].[All ProductDim].[Regular Checking],
[ProductDim].[All ProductDim].[Savings]
}) ON rows
FROM AllAccountProfitCube
where ([Measures].[MeasuresLevel].[Economic Income])

3

WITH
member
[Measures].[Moving Average of Economic Income] as
' Avg ({ [TimeDim].currentmember,
[TimeDim].currentmember.lag(1),
[TimeDim].currentmember.lag(2) },
[Measures].[Economic Income])'

select
{[Measures].[Economic Income],
[Measures].[Moving Average of Economic Income]} on columns,
{[TimeDim].[Month].members} on rows
from AllAccountProfitCube

4

WITH MEMBER
HouseholdDim.[%IncomeOfCustomerasComparedtoZipcode] AS
' sum(
{ [HouseholdDim].[All
HouseholdDim].[07401].[100476] },
[Measures].[Economic Income]) /
sum({[HouseholdDim].[All HouseholdDim].[07401] },
[Measures].[Economic Income]) ',
format_string='#.00%'
SELECT {
HouseholdDim.[%IncomeOfCustomerasComparedtoZipcode]}
ON columns,
{ Descendants ([TimeDim].[All TimeDim].[1996]
, [TimeDim].month) } ON rows
FROM AllAccountProfitCube

5

WITH member [Measures].[Distinct Household Count] as
'Count(
Crossjoin

({[Measures].[Economic Income]},
[HouseholdDim].[Household Id].members)

, EXCLUDEEMPTY)'

member [Measures].[Average Economic Income] as '
Sum({ [Measures].[Economic Income]})/
([Measures].[Distinct Household Count])'

SELECT
{ [Measures].[Average Economic Income] } ON columns,
{ [ProductDim].[Product Id].members} ON rows
FROM AllAccountProfitCube
where ([TimeDim].[All TimeDim].[1996].[Quarter
1].[January])

6

WITH MEMBER [Measures].[Economic Income for 1997] AS
' ([Measures].[Economic Income], [TimeDim].[All
TimeDim].[1997])'
MEMBER [Measures].[Economic Income for 1996] AS
' ([Measures].[Economic Income], [TimeDim].[All
TimeDim].[1996])'
MEMBER [Measures].[Economic Income change between
1996 & 1997] AS
' ([Measures].[Economic Income], [TimeDim].[All
TimeDim].[1997]) - ([Measures].[Economic Income],
[TimeDim].[All TimeDim].[1996]) '

SELECT { [Measures].[Economic Income for 1997] ,
[Measures].[Economic Income for 1996] ,
[Measures].[Economic Income change between 1996 &
1997] } ON columns,
{[CustomerSegmentDim].[Cust Seg Id].members } ON
rows
FROM AllAccountProfitCube

7

WITH MEMBER
CustomerSegmentDim.[%IncomeOfHighBalanceSegment] AS
' sum(
{[CustomerSegmentDim].[All CustomerSegmentDim].[High
Balance] }, [Measures].[Economic Income]) /
sum({[CustomerSegmentDim].[Cust Seg Id].members},
[Measures].[Economic Income]) ',
format_string='#.00%'
MEMBER CustomerSegmentDim.[%IncomeOfTraditionalSegment] AS
' sum(
{[CustomerSegmentDim].[All
CustomerSegmentDim].[Traditional] },
[Measures].[Economic Income]) /
sum({[CustomerSegmentDim].[Cust Seg Id].members},
[Measures].[Economic Income]) ',
format_string='#.00%'
MEMBER
CustomerSegmentDim.[%IncomeOfCreditChallangedSegment] AS
' sum(
{[CustomerSegmentDim].[All
CustomerSegmentDim].[Credit Challanged] },
[Measures].[Economic Income]) /
sum({[CustomerSegmentDim].[Cust Seg Id].members},
[Measures].[Economic Income]) ',
format_string='#.00%'

SELECT { CustomerSegmentDim.[%IncomeOfHighBalanceSegment],
CustomerSegmentDim.[%IncomeOfTraditionalSegment],
CustomerSegmentDim.[%IncomeOfCreditChallangedSegment]
} ON columns,
{ [TimeDim].[Year].members} ON rows
FROM AllAccountProfitCube

Comparison of MDX with SQL Queries

The following table shows the MDX and SQL queries and execution times for the question, "What is the economic income for
1996 and 1997, and what is the comparison of income for these years by each customer segment?"

Query type Query Execution time

MDX

with member [Measures].[Average Economic
Income] as ' Sum({ [Measures].[Economic
Income]})/ ([Measures].[Distinct Household
Count])' SELECT{ [Measures].[Average
Economic Income] } ON columns, {
[ProductDim].[Product Id].members}
ON rows FROM AccountProfitabilityH0

4 seconds

SQL

CREATE TABLE #qry1_temp1 (product_id
INT,households int, totalei money)
insert into #qry1_temp1 (product_id,households,
totalei)
select product_id, count(distinct
household_id), sum(economic_income)
from VLDBMart.dbo.Account_prof_fact
group by product_id
select a.prod_name, b.totalei/b.households from
VLDBMart.dbo.ProductDim a, #qry1_temp1 b
where a.product_id=b.product_id

88 seconds

The MDX query is simpler and executes much faster.

We also ran additional sets of like queries in different environments: SQL queries were run against SQL Server, and MDX queries
were run against a MOLAP cube stored on the OLAP server. Each query was executed after restarting the server, ensuring that no
query results were in cache.

Query
number

Time taken by MDX query on OLAP server (using
MOLAP with 60 percent aggregation)

Time taken by SQL query
on SQL Server

Approximate number of
records accessed

1 4 seconds 88 seconds 13 million
6 10 seconds 36 seconds 13 million
7 4 seconds 89 seconds 13 million

Although comparing SQL query execution time with MDX query execution time could be considered as comparing apples and
oranges, the results clearly show that querying using MDX and Analysis Services can significantly improve query performance.
Because OLAP cubes store precalculated aggregates, query performance in the OLAP environment is generally better than in the
relational environment.

Learning to write MDX queries takes some effort; however, considering the performance gains achieved, the effort is worth it. The
time difference between SQL queries and MDX queries increases significantly as the number of records in the fact table increases.

Measuring MDX Query Execution Times for Each Storage Type
We wrote MDX queries for all seven of our business questions. Execution times for four of those queries are listed here for
various levels of aggregation using MOLAP, ROLAP, or HOLAP, and for cold and warm cache. For the cold cache measurement, no
query results were in cache; we restarted the server prior to executing the query. For the warm cache measurement, query results
were held in cache. Executing the query and then immediately executing it again resulted in a warm cache. Times were recorded in
seconds (not milliseconds). Warm caches yield significantly faster average query processing times than cold caches.

Average Query Times (Cold Cache)

The following graph shows the average query times derived from the previous table for MOLAP, HOLAP, and ROLAP for various
levels of aggregations, and using a cold cache.

Figure 7. Comparison of Query Times

The following is a zoomed version of the same graph, showing a more detailed view of the aggregation level from 30-90 percent.

Figure 8. Comparison of Query Times For Most Often Used Queries

This data shows that:

MOLAP is fastest in terms of query performance. There are performance gains associated with an increase in aggregation
level.
There are substantial gains in terms of query performance for ROLAP and HOLAP as the aggregation level increases from 0
to 60 percent.
There are no substantial gains in query performance as the aggregation level increases from 60 to 90 percent for these
storage types.

The following graph shows behavior of individual sets of seven queries for a MOLAP cube as aggregation levels increase:

Figure 9. Comparison of Query Times For Individual Queries

This graph shows the following results:

On average, query time decreases as aggregation levels increase.
This inverse relationship does not always hold true. The Storage Design wizard tries to design optimal aggregations for a
general mix of queries, since it has no information about the specific queries that will be submitted. As the aggregation level
increases, different combinations of levels will be used. There is no guarantee that a specific aggregation will remain in the
set as the aggregation level increases. This is seen in query 5 in the above data: At one point an aggregation that helped
query 5 was removed in favor of other aggregations that helped more overall. This is an argument in favor of using the
Usage Based Optimization tool in Analysis Services. It will design aggregations specifically for the queries that real users
have been submitting.

Average Query Times (Warm Cache)

The following graph shows the average query times derived from the previous table for MOLAP, HOLAP, and ROLAP for various
levels of aggregation, and using a warm cache.

Figure 10. Query Processing Times

This data shows that:

When a query result is available in the server cache, query times are almost instantaneous (less than one second) for all
queries regardless of storage modes or aggregation levels. We have shown it taking one second because we have chosen to
use seconds as the constant unit of time for all the graphs.

Average Query Times for Cold Cache vs. Warm Cache:

Figure 11. Comparison of Query Times For Cold vs. Warm Cache

The preceding graph shows that once the cache was warm, we received results in less than a second. You can execute your most
often used queries as a batch job immediately after finishing the cube processing. That way, it will take less time for business
users to get results.

Average CPU Usage While Querying the Cube

The following chart shows the average processor (CPU) time while querying MOLAP, ROLAP, and HOLAP cubes. The red bar
shows the average processor time for the computer named bbnt13, which has the SQL Server RDBMS data mart on it. The blue
bar shows the average processor time for computer named bbnt16, which is running Analysis Services.

Graphical Representation of Average CPU Usage while querying the MOLAP,

Figure 12. CPU Times for Different Storage Types

Observations on Average CPU Processor Time Taken

MOLAP uses CPU processor time only on the Analysis Services computer. It does not use any processor time from the
computer that hosts the SQL Server RDBMS data mart.
ROLAP and HOLAP require more processor usage from the RDBMS server computer than from the OLAP server computer.
Even in case of HOLAP, the RDBMS server is used extensively. This may be because the queries chosen for this test scenario
did not have many aggregations already designed in Analysis Services. Aggregations had to be calculated at run time from
the RDBMS. Also, there could have been additional system activity on the RDBMS at the time of the test.

Performance Optimization Tips
The best ways to optimize your OLAP cubes fall into two categories: reducing the processing time for the OLAP cubes, and
reducing the query time.

Tips for Reducing Processing Time

We reduced processing times from several hours to a couple of minutes by using these techniques:

Use a dimensional schema for your data mart. Star schemas fit in well with the OLAP cubes design and performance.
Besides having a primary key associated with each of the dimensions and fact tables, we declared foreign key relationships

between the facts and the dimension tables. We created a composite index on all foreign keys in the fact table. In addition,
we created indexes on individual foreign keys to help speed up the processing operations.
Use the Cube Editor to optimize the schema design and minimize the number of joins needed during cube processing. We
increased the process buffer size (available through the Properties dialog box for the OLAP server) to 1 GB on a computer
with 4 GB of available memory. We also learned a valuable lesson about aggregation levels. We started with aggregation
level of 90 percent, and it took eight or nine hours to finish processing cubes. Better is to employ an aggregation level of 25
percent or so, and then use some performance optimization tips to reduce the processing time if it is high. Then test
execution times for some of the most often used queries and slowly increase aggregation levels while monitoring the gains
in query times.

Tips for Reducing Query Time

We were able to optimize the execution times of the MDX queries by:

Planning adequate memory for Analysis Services usage
Putting Analysis Services (OLAP cubes) and SQL Server (data mart) on different computers
Using MOLAP storage

Also recommended is to use the Usage-Based Optimization Wizard to build additional aggregations needed to speed up the
queries.

Conclusion
In this paper, we investigated the performance characteristics of SQL Server 2000 Analysis Services, and provided empirical
observations comparing the different storage modes (ROLAP, MOLAP, and HOLAP), and various levels of aggregation for a large
data set in the banking domain. We then provided guidelines and performance and optimization tips for designing OLAP cubes,
and for implementing queries against the cubes using MDX.

Most importantly:

As aggregation level increases, more time is taken to process ROLAP cubes as compared to the time taken to process
MOLAP and HOLAP cubes.
MOLAP takes more space than HOLAP and ROLAP. HOLAP uses minimum space. The difference between disk space used
between 0-60 percent aggregation levels is not substantial for MOLAP, HOLAP, or ROLAP. It increases substantially as the
aggregation level approaches 90 percent.
When OLAP cubes use MOLAP storage type, the space taken by MOLAP cubes as compared to the size of original star
schema (fact table and the dimension tables) in the RBDMS was typically only 7 percent. This means instead of creating a
data explosion, Analysis Services actually compresses data while building OLAP cubes. (Space required to build MOLAP
cubes varies with the number of levels in the dimension, the number of measures and type of data.)
Queries using MDX and Analysis Services can significantly boost performance because OLAP cubes contain precalculated
aggregates.
MOLAP provides the fastest query performance. We find substantial improvements in terms of query time for ROLAP and
HOLAP as the aggregation level increases from 0 to 60 percent. It takes significantly less time to run a query that is already
in cache (warm) than it does to run a query for the first time (cold).
MOLAP uses CPU processor time only on the OLAP server computer. MOLAP does not use any processor time from the
computer that houses the SQL Server data mart. ROLAP and HOLAP use the CPU on both the RDBMS server computer and
the OLAP server computer.

One of the primary design goals of a data warehouse is to provide analysis. And one of the primary goals of interactive analysis,
called FASMI (Fast Analysis of Shared Multidimensional Information) is attainable using Analysis Services. This paper brings
empirical evidence to bear demonstrating the high performance of cubes built with Analysis Services.

Acknowledgements
We would like to acknowledge the efforts and talents of a few individuals who were instrumental in helping develop and enhance
the content for this white paper.

We are thankful to Len Wyatt, Program Manager for Data Warehouse and Analysis Practices at Microsoft for his continued
support and review of this paper. One of Len’s presentations was our inspiration for the performance tests conducted for this
paper.

We are also thankful to Dr. Raj Tewari, former Database Solutions Practice director at Unisys. Dr. Tewari is also the coauthor of

previous paper based on OLAP Services 7.0. We are also grateful to him for his continued inspiration for this paper.

We are especially grateful to Diane Anderson, Manager for Marketing Communications (Global Industries) at Unisys. Without
Diane’s help and positive support, this paper and other Analysis Services papers from us would not have become a reality.

Finally, we would like to thank Analysis Services product team at Microsoft for their excellent feedback and reviews of this paper.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Analysis Services: Performance Implications of the Architecture

Alexander Berger and Ashvini Sharma
Microsoft Corporation

Updated May 18, 2004

Applies to:
 Microsoft SQL Server 2000
 Microsoft SQL Server 2000 Analysis Services

Summary: Targeted for advanced users, this paper outlines the internal implementation of the Analysis Services 2000
component and relates this implementation to the performance experienced by users. (18 printed pages)

Contents

Introduction
Processing
Query
Agent
Write-back
Conclusion
For More Information

Introduction
Microsoft SQL Server 2000 Analysis Services is a high-performance tool for performing data analysis. Targeted for advanced
users, this paper outlines the internal implementation of the Analysis Services component and relates this implementation to the
performance experienced by users.

Although we will touch on DSO- and MDX-specific optimizations, discussing them in detail is not an objective of this paper. Please
refer to other sources for more information on these types of optimizations.

For easier absorption, this paper is divided into three functional stages: Processing, Querying and Write-back.

Processing
Processing is the term used to describe the population of Analysis Services with metadata about your data warehouse, structural
information like members, and optionally, population of Analysis Services with some or all of the warehouse data.

This section on processing performance is separated into three parts: Dimensions, Cubes and Partitions.

Dimensions

Dimensions are a very important structure for a cube. The way a dimension is designed has a significant impact on all parts of
cube usage: processing performance, querying performance, and cube size.

The most important characteristic of a dimension is the number of levels and members contained within. The time it takes for
processing a dimension or a cube with one or more dimensions may grow considerably with the number of members per
dimension level. In addition to the memory and disk space utilized by the dimension on the server, member information is also
stored in the index files of every partition. Depending on the dimension, this member information can account for significant
memory usage on the clients as well. When you design a dimension, you can decrease processing time and memory usage by
excluding members from the dimension that are not really needed. For example, include the year 2010 only when the data for it is
available.

MemberKey

MemberKey is the most important property of a member. This value is used for identification of members during processing.
When the server processes a dimension, it checks to see if every new member already exists in its tree. If the member does not
exist, the server puts it into the tree by the order of MemberKey.

During cube processing, the server refers to the member using the Member Key name. Depending on the cardinality of a
dimension, processing the dimension with a large number of members under the same parent might be slower than processing
dimensions with a smaller number of members under a parent. This holds for processing cubes as well. Inefficiency in the balance

of members forces additional resource allocation in the index file of partitions and in the memory of server and client. For large
levels, member information is sent to the client only in groups, like children of a parent. If a lot of these members must be sent to
the client, query performance degrades.

To minimize processing time, keep the MemberKey value small. A 32-bit integer is a good choice, whereas keeping it as a string is
not efficient—especially if the MemberKey is different from the MemberName. To avoid data transformations between the
source and the server, it is better to keep the data type of the member key the same as the data type in the source table. If you
must use a string as the MemberKey, keep it as short as you can. Since the server needs to perform comparison operations on
these strings during processing of the dimension, using strings near the maximum length of a string for the Member Key and
Member Name columns (which is 255 characters) can reduce processing performance. Also, these strings are also used when
sending member information to a client and to identify members in the formula engine. For string Member keys, changing the
compare modes of the server, which is case sensitive, case insensitive, or binary (best), can hamper processing performance. Since
this mode applies to all string comparisons in the server, changing the compare mode should be considered very carefully.

Unique Members

The Unique Members property of a dimension has a minimal impact during the processing of dimensions, but has an important
impact on the processing time of MOLAP and HOLAP partitions and also on the querying time for ROLAP and HOLAP partitions.
There are two ways that this property impacts processing. First, the SQL query sent to the relational database will by much
simpler (less columns, less joins). Second, the analysis and loading of data for a dimension is much faster when the Unique
Members value is set properly. With a MOLAP partition, member uniqueness is important only on the last level of a dimension,
but for ROLAP cubes this property is important for all levels of the dimension. This optimization is discussed further in the
Performance section of this paper.

Member properties

Member properties also impact the performance of dimension processing. They are loaded on the client on demand, but consume
memory on the server when the dimension is initially used. A good strategy to enhance performance is to store minimum
properties for the dimension at the highest level possible and thereby decrease the instances where member properties are used
during processing or querying. For example, in a Geography dimension made of Country, State and City, a Member Property
"Region" (which might be NE, SW, and so on) can be set on either State or City. Setting this Member Property on State will
conserve disk space and increase performance.

Cubes

Efficient cube design also dramatically affects processing performance and cube size. When you design your cube, make certain
you are clear about which dimensions you need to include in your cube. Performance decreases and the potential increase in the
size of the cube and the space needed for processing the cube and the dimensions is significant given a large number of
dimensions.

Measure types

Information about the measures makes up the major part of a cube file. Keep this information as small as possible to generate a
positive impact on file sizes and performance. The server has two groups of measures: 4 bytes, which include Integer and Single,
and 8 bytes, which are Big Integer, Double, Currency and Date. Use the smallest data type if you can—but keep in mind the server
will not recognize overflow in your data aggregation.

Record size

The size of a record affects performance at all stages of cube usage. Record size impacts file sizes, the time of loading data on the
server, the memory allocated in server caches, the time to send the data to the client, and finally, the memory allocation for the
data on the client.

You can estimate the size of a record by using the following calculation:

 Size = (2*levels*Cpath)+(4*measures4*Cdata4)+(8*measures8*Cdata8)

Where

Levels = for fact data, this is total number of levels in your cube (without the All level). For an aggregation, it is the number
of levels used in the aggregation, excluding the All level.
Cpath = coefficient of path compression for the cube. It can range from 0.11 – 1, but is usually close to 0.25.
Measures4 = number of 4 byte measures in the cube.

Cdata4 = coefficient of compression for 4 byte data. Usually 0.6– 0.8.
Measures8 = number of 8 bytes measures in the cube.
Cdata8 = coefficient of compression for 8 byte data. Usually 0.4 – 0.5.

As seen above, the size of a record is affected by the compression achieved on our path (internal representation of a member) and
the measures. Path compression is better when the dimension is small and well balanced. Data compression is better for data
with natural ranges and stable precision.

Partitions

Partitioning is a very powerful and flexible mechanism that provides a wide range of methods for performance control.
Partitioning allows the division of the data into logical parts. This allows you to place your data on different locations and to use
different storage modes for each partition.

Data slices

When designing partitions, you need to determine how many partitions your cube should have and how to divide the data
between the partitions. The most important criterion in this decision comes from the logic of your data model. The best way to
create efficient partitions is to separate data that will not be queried as a whole or combined to answer a query. For example, if
you rarely analyze the data across years, you can create a partition for each separate year. It is very important to define the right
data slice for a partition—this allows the server to avoid querying those partitions that contain irrelevant data. The server also
uses slice information during processing and excludes level information for this dimension on the map of segments, thereby
creating smaller and faster map files. Also, since the number of active levels (see the formula above) is less if you select the right
data slice, the size of the data file is smaller as well.

Storage modes

The next important decision you need to make is the storage mode to use for this partition: MOLAP, ROLAP, or HOLAP. ROLAP is
usually recommended when either the resources are not available for MOLAP or the users depend on some functionality of the
underlying relational system, which also helps them manage their OLAP implementation. Consider how frequently your users
require access to the fact table data and balance this against how much time they are willing to wait for a query at this level. If
query time is a deciding factor, use MOLAP. If not, use HOLAP, which can affect both processing times and decrease the disk space
needed for your partition.

Aggregations

Now we come to the interesting issue of creating aggregations. Aggregation design is perhaps the single most important factor
that impacts the times required for processing and querying your cube. Creating the right set of aggregations is a very complex
problem and Analysis Services estimates usage statistically. We suggest creating a small number of aggregations when initially
designing your cube. For example, design aggregations that answer 30% of the queries, with the assumption that the remaining
70% of queries must be answered from the fact table. This translates to a 30% optimization benefit in the Aggregation Design
wizard. Then, log the queries sent to the server during its operation in this initial usage phase. Once you have a measurable
quantity of average queries, use the Usage-Based Optimization wizard to design the optimal set of aggregations derived from the
logged usage pattern of your users.

Additional performance suggestions are presented in the Performance section later in this paper.

Internal Implementation

Processing members and facts is a double-buffered scheme and is implemented using the following threads:

1. The Reader thread populates the Read Ahead buffer with records read from the data source.
2. The Processing/Aggregation thread processes this data, saves the data in a segment, and optionally creates any

requested aggregations.
3. These two threads work in parallel and therefore a maximum of two processors can be utilized while processing a partition.

The server's ability to process multiple cubes in parallel provides a big boost to processing performance. Currently, the
Analysis Manager does not offer this implementation through the user interface. However, DSO does provide a means of
implementation.

4. To reduce the working set needed during processing, the fact table is divided into a group of 64K (or multiples of 64K)
records. These groups are called segments and one segment at a time is processed.

Reader

Data is read using OLEDB. OLEDB performs all data type conversions. After reading a set of records (usually 1000), this thread
asks the Processor/Aggregator thread to wake up and process the records read in so far. It then continues on to read the next set,
if there is enough space left in the Read Ahead buffer.

An important optimization parameter here is the ReadAheadBufferSize registry setting which, as the name implies, is the size of
the buffer used for storing the source data. Increasing this buffer allows more data to be read. However, since the Reader thread is
usually not the bottleneck (empirically, calculating aggregations is the slowest part of processing), the optimization benefit is
limited if your partition has a lot of aggregations.

The ReadAheadBufferSize can also be changed on the Properties dialog box for an OLAP server in the Analysis Manager.

Processor/Aggregator

This thread wakes up every time the Reader thread reads in a chunk of records from the source. As soon as enough records for a
segment have been read (and processed in memory), the records are saved to disk, in the ".data" file.

During saving, the data is compressed on a segment-by-segment basis, if beneficial.

Note Currently, there is no way to turn off compression.

After reading in a segment's worth of records, and writing this segment to the disk, we move on to processing the aggregations.
Due to the potentially large amount of data generated during this stage, aggregations can consume all virtual memory available
in our process. To avoid this, temporary aggregations are written, on a segment-by-segment basis, to a couple of temporary files.

The location of these files is specified in the Temporary Directory property on the Properties dialog box for an Analysis server in
the Analysis Manager. If there is more than one segment's worth of data to process, aggregations for the first segment are written
to the first temporary file. For the next segment, the temporary aggregations are merged with the aggregations calculated for this
segment, and are stored in the second temporary file. Each segment goes through this procedure and is toggled between these
two temporary files until aggregation of the last segment is finished. At this point all aggregations are compressed and stored at
the end of the data file.

An important optimization property is the Process Buffer Size, also found on the Properties dialog box for an Analysis server in
the Analysis Manager. This registry setting directly affects the number of records in a segment, which must be multiples of 64K.
Increasing this limit means more memory is consumed on a segment-by-segment basis. If your fact table has lot of duplicate
records, more available memory can mean collapsing more records in memory instead of on disk. This implies the files written to
disk might be substantially smaller. Therefore it might not be necessary to write to the temporary files as often. Since the latter is
fairly disk bound and therefore a very slow process, increasing this parameter means you'll probably trade memory for more
processing throughput. If this setting is larger than the physical memory available, however, memory will page to disk and
thrashing will occur.

While creating aggregations, the server uses as much memory as available on the server machine, starting with a minimum of
memory required for a segment. Aggregations can be derived from each other if more memory is available—this is a more
efficient alternative to creating straightforward aggregations from the fact table. When creating the aggregations, we recommend
having available memory that is 2–4 times the memory required for a segment. Both the Temporary Directory and Process
Buffer Size setting can be modified on the Properties dialog box for an Analysis server in the Analysis Manager.

Resources Utilized

CPU

As mentioned above, Analysis Services theoretically does not use more than two processors while processing a partition.
Empirically, one of the threads usually does more work than the other. Depending on the environment and the design of a
partition, only one processor might be used completely. If your source database server is on the same machine, or if you are
processing in parallel, CPU utilization might increase.

Disk

To enable querying during processing, and to ensure atomicity of the processing operation, a shadow directory (or file if
processing a shared dimension) is created. This means the disk space utilization during processing can be double the disk space
needed during a non-processing stage.

The following formula (an approximation to the one discussed above) can be used to estimate the raw data storage for MOLAP (in
bytes) needed to store data on disk, when we finally write in our files (assuming 0 aggregations):

(((2 * total number of levels) + (4 * number of measures)) * number of records) / 3

In addition to this space for raw data, we also use temporary files for calculating aggregations. A very rough estimate of the
temporary file size amount can be obtained if you examine the file size that the Design Storage wizard in the OLAP Manager
reports. However, note that these estimates are based on compressed data, while temporary aggregation files are not
compressed.

Memory

Memory consumed during processing includes both the memory used for processing dimensions, and memory used for
processing the facts on a segment-by-segment basis.

Memory for processing dimensions + Memory for processing facts

When dimensions are processed, the intermediate structures are also kept in memory. This means the memory requirement is
potentially doubled. This can make a difference when processing large dimensions. Currently, we estimate taking about 100 bytes
per member. This memory requirement can increase tremendously depending on whether member properties are used and what
their sizes are.

When the fact table is processed, memory is consumed on a segment-by-segment basis—therefore the maximum memory used
would be for storing a segment's worth of data in memory. As discussed above, changing the ReadAheadBufferSize and
ProcessReadSegmentSize will affect the memory requirements.

Files created

The following files are created while processing (depending on the storage mode for the partition, some files might not be
created):

PRT: minimal information about a partition
MAP: map for our data. Internal indexing structures.
INDEX: index for our data. Internal indexing structures.
DATA: the actual data, including any aggregations.

Performance

Optimize the feed into Analysis Services

Normally, the relational database is laid out in a star or snowflake schema. Extracting data from this structure involves performing
joins on these tables.

Joins are complicated for relational databases, which have traditionally been optimized for a high volume of insertions and
updates involving small numbers of records. Performance degrades appreciably as the number of joins increase. OLAP, however,
has traditionally been optimized for querying through a large number of records and can handle "joins" very well.

Given this background, the following performance hints might make a big difference in processing performance.

1. Omit needless joins

Internally, members are stored according to their member keys, while users always see the corresponding member name.
This isolation gives you the ability to optimize the internal representation while keeping the external view meaningful to
your users.

2. If your data exhibits the following characteristics, a join is not needed while processing the partition:

The member key column of the lowest level member of a dimension is unique.
There is a one-to one- relationship between the member key column and the member name column for the lowest
level of the dimension.
There is only 1 join between the fact table and the dimension table, which is the member key column of the lowest
level.
The dimension is shared.

If these conditions hold, nothing new is established by performing the join and thus, the join is not needed for this particular
dimension. You can use this optimization in the Cube editor of the Analysis Manager. Choose Optimize Schema on the
Tools menu.

For example, in the sample FoodMart database, consider the Warehouse cube. The dimensions Store, Product and Customer
each exhibit the 3 conditions above. Start the Analysis Manager, edit this cube, and then select Optimize Schema. The
following message appears:

The following MemberKeyColumn properties have been updated:
Level: Store Name: "store"."store_id" -> "inventory_fact_1997"."store_id"
Level: Product Name: "product"."product_id"->"inventory_fact_1997"."product_id"
Level: Warehouse Name: "warehouse"."warehouse_id"->
"inventory_fact_1997"."customer_id"

As you can see above, the original member key column is replaced with the corresponding join column in the fact table. The
initial SQL Statement to process the first partition in this cube would have been:

SELECT […] WHERE
("inventory_fact_1997"."store_id"="store"."store_id") AND
("inventory_fact_1997"."time_id"="time_by_day"."time_id") AND
("inventory_fact_1997"."product_id"="product"."product_id") AND
("inventory_fact_1997"."warehouse_id"="warehouse"."warehouse_id")

Using the optimization outlined above, the statement now becomes:

SELECT […] WHERE
 ("inventory_fact_1997"."time_id"="time_by_day"."time_id")

This statement contains three fewer join clauses. This optimization is especially useful if you're running into a limitation in
the inability of the underlying relational database to support more than n joins clauses in a SQL statement.

In one of our tests, before performing this optimization, our underlying database was still evaluating a complex join after
about three hours. After this optimization, we got the first record back in less than 30 seconds!

3. Use indices:

Make sure you have indices on the columns that will participate in a join. Microsoft SQL Server, for instance, provides the
Index Tuning Wizard that can be very useful in indexing your data. Also make sure the statistics about Tables and indices in
your relational database are up to date.

4. Relational server on the same machine.

There are times when having the relational database server on the same machine as the Analysis Services server can help
the throughput of the processing stage as well. One of the common reasons is a slow network connection. There is an
obvious tradeoff with other resources here.

5. Use native OLE DB drivers:

Since your goal is to obtain the fastest interface to your data, use a native OLE DB driver to access your data source, if one is
available. This avoids the cost of data transformation between layers (from the ODBC driver, for example).

6. Configure OLE DB driver:

If you do not plan to write to your data source, set it as read-only. Also, since the Analysis server performs its own internal
buffering of source data, another buffering scheme inside your driver might be counterproductive.

Help Analysis Services process faster

1. Aggregation design.

Computation of aggregations is usually one of the slowest parts of processing, so design them judiciously. Disable the levels
that you know should never participate in this design, use Usage Based Optimizations, and/or start out with small benefit
(~30%) to see the performance (query vs. processing) tradeoffs. If performing ROLAP aggregations, pre-sizing the ROLAP
database can lead to better throughput. Microsoft SQL Server™, for instance, allows a user to set the growth rate to be used
when the database gets full. It can waste a lot of time reallocating the new space and initializing it. Avoid this if possible.

If possible, avoid ROLAP aggregations. Empirically, we've seen relational servers grind to a halt while creating records for
some of our aggregation tables.

2. Partitions.

Use partitions to intelligently organize your data. Not only does this give you the advantage of optimally choosing the
storage strategy for each partition, it can also result in very good performance during querying, and the option to process
the data in parallel.

3. Unique members.

Use unique members if possible. On the server side, we do a lot of work to make sure a member is uniquely identified. One
of the ways to do this is for each member to find and remember the fully qualified name. This adds processing which might
be unnecessary if members are unique (like SKUs). If the member is unique, set the Unique Members flag to "Yes." If
repetitive data is noticed, the processing of this dimension will fail with an error.

This flag is important for the last dimension levels for MOLAP partition and is important for every level in a ROLAP partition.

4. Virtual dimensions.

You can potentially save processing time by using the virtual dimensions, since these dimensions do not store data in a
partition (besides the member names). However, there is an explicit tradeoff in using virtual dimensions, as queries to these
will now probably take longer. Understand this tradeoff and intelligently design dimensions (virtual or normal) after you
develop a feel for how users are using them. (This is a great tool for those "just in case I need them" dimensions.)

5. Hardware setup.

Use the appropriate RAID configuration (or software stripe set) especially on the device that stores the temporary directory
used for processing the aggregations.

As discussed above, multiple processors can also be used during the processing stage.

Similar to any other database product, make sure you have enough memory on the server to avoid thrashing.

Due to the potentially large amount of data moved between the Analysis Services server and the relational database server,
use a fast network (100Mbps Ethernet or others) and make sure your network is reliable.

6. Parallel processing.

Process cubes (of the same database) in parallel, using your own DSO-based program.

One disadvantage of this approach is that currently DSO does not enable sharing the same transaction between different
server objects. This means you might not have atomicity during processing of multiple partitions in parallel.

Also be aware of that there may be performance implications for the underlying source database when returning large
recordsets due to multiple, potentially complex requests.

7. Server settings.

If you have enough memory, increase the Process Buffer Size and Read Ahead Buffer Size settings. You'll find an easy
way to change these on the Properties dialog box for an Analysis server in the Analysis Manager. As discussed above, the
server can cut back on the number of disk I/Os if more records are in memory.

Also note from the discussion above that in this version, creating aggregations is a single-threaded process. On a
multiprocessor system, if you notice 100% CPU utilization for one processor while computing aggregations, there's nothing
much more to tune, except selecting fewer aggregations, getting a faster processor, and/or processing partitions in parallel.

8. Data type choice

If possible, use LONG as the data type of choice for keys and integers for measures. These are very good for compression
and for mathematical operations in general.

9. Processing options

Use the option that causes the least work. Incremental updates, for example, are very useful while refreshing your OLAP
store.

Query
Analysis Services was designed to be a highly responsive query engine. Query processing occurs both on the client and the
server. The following section discusses the likely breakout between what gets done and where it is performed, followed by a
discussion on how to suggest where axis resolution occurs.

Client

Analysis Services' client code is responsible for exposing an OLE DB for OLAP interface to the consumers. This includes all
interfaces and properties (both mandatory and provider-specific). This layer translates the OLE DB for OLAP calls into what we
understand internally.

The client component consists of two threads:

1. Ping thread
2. Query thread

Ping

This background thread is responsible for synchronizing both the data and metadata between the client and the server. This
thread wakes up every 10 seconds by default, or as specified in the Auto Synch Period connection string property. If the server
reports that data has changed, the client flushes its cache, thereby causing future queries to obtain fresh data.

Query

Most queries in Analysis Services are specified in the form of MDX statements. This language specifies very rich, OLAP-oriented
keywords that allow the succinct description of a multidimensional query. The client code is usually responsible for parsing this
MDX statement, and translating it into requests for data cells from the server.

OLAP users usually exhibit a pattern of activity when performing analysis, much like "hovering." Starting from their top view,
users usually hover around a subspace of the cube, drilling down, coming back up, and moving to adjacent cells in a search for
answers to their queries. The client-caching mechanism is tuned to this kind of activity.

Code-named "Sonar" (due to the effect it simulates), when asked for a specific cell value, if the server is asked for more data on
subsequent queries, Analysis Services doesn't have to return to the server as often. The algorithm that determines what cells are
cached is proprietary to Microsoft Corporation.

The cache size to be used on the client can also be specified with the Client Cache Size connection string property on the
Properties dialog box for an Analysis server in the Analysis Manager. Client Cache Size settings can be described in the
following manner:

0: no limit on the cache memory used on the client.
1-99: percentile of physical memory to be used for caching.
>=100: cached memory, in kilobytes.

The current default is 25% of the total physical memory available on the client machine.

Cache cleaning occurs only when new memory is needed and not enough memory is available. Cleaning includes deleting
everything in the cache for a cube, starting with the cubes not currently in use.

Note The cache cleaning process is different from the cleaning process that occurs on the server, as described in the
following Server section of this paper.

Server

The server is a multi-threaded query engine. To answer a request for data, the server utilizes the following threads:

1. Listener thread
2. Pool of worker threads
3. Pool of processing threads
4. Logger thread
5. Cleaner thread

Listener

The listener thread waits for requests for new connections and is responsible for creating connections as needed. Currently, we
ask TCP to limit the number of simultaneous requests for connections to the server to five (5). If the connection request times out,
the client keeps trying until it either gets a valid error or the Connect Timeout connection string parameter expires.

Worker and processor

The listener thread dispatches the worker threads using I/O completion ports. If the server cache can answer the request, the

worker thread returns this data to the client. If not, it instructs several multiple processing threads to query files using
asynchronous lookups in parallel. Specifying a data slice on a partition is very beneficial here. Since we query partitions in parallel,
we can skip over those partitions that do not contain the data we're interested in—based on the data slice.

The server defaults to four (4) worker threads per processor, up to a maximum of 30 per processor. The listener thread wakes up
every so often (configured by the BackgroundInterval registry setting) and checks to see how many threads are idle. If only one
thread is idle, more threads are created. If too many threads are idle, idle threads are killed every 30 minutes.

Logger

The Logger thread logs query requests to a database. This query log can be used at a later stage to find patterns in user behavior.
You can also use this log and the Usage Based Aggregations Wizard in the Analysis Manager to design better aggregations. Every
tenth query is logged by default. You can reset this query log rate by changing the Sample Frequency property. This property can
be changed on the Properties dialog box for an Analysis server in the Analysis Manager.

Cleaner

Query results are kept in the cache. Cache cleaning happens on a background thread (which usually has a below-normal priority)
and wakes up based on the BackgroundInterval setting (the default is 30 seconds). Cache cleaning occurs if the server's cache is
more than half way between the Minimum allocated memory and Memory conservation threshold parameters. While the
cache utilization is between these limits and if cleaning is required, we clean iteratively using a scheme similar to LRU—least
recently used. This iterative cleaning continues until the memory utilized is once again established halfway between the
Minimum allocated memory and Memory conservation threshold. Cleaning occurs for all cubes in all databases.

The server places a read-lock on the database while cleaning all of its cubes. This may affect concurrency. If the cache utilization is
too high, everything is cleaned and no partial cleaning occurs. Most of this happens on a below-normal thread priority. Under
high stress conditions, the cleaner thread can get starved and the priority is bumped to Normal when the Memory conservation
threshold is crossed.

If this process still does not free enough memory, cache cleaning gets really aggressive. If the difference between the system's
commit limit and the system's current commit bytes level is less than a threshold (currently set at 4MB), the priority of the cleaner
thread is boosted to above normal and cache cleaning starts again.

Note The Minimum allocated memory and Memory conservation threshold settings include memory consumed
by the dimension trees, internal control structures, and records cached.

Resources Utilized

CPU

All available processors used.

Disk

Besides the virtual memory, which might be paged to disk by NT, Analysis Services does not need any additional disk space
during the query phase.

Memory

Memory for Metadata + Memory for Dimensions + Memory for Cache

The server loads up metadata for all databases as soon as the server is started. Both time and memory for this operation is usually
negligible.

The first connection to a cube will trigger the server to load dimensions relevant to this cube and keep them in memory for the
lifetime of the server.

The total memory consumed by the server is controlled by the Minimum allocated memory and Memory conservation
threshold settings.

Performance

1. Aggregations.

Materializing aggregations usually leads to a faster query response since we probably need to do less work to answer a

request for cell values. The amount of work done depends on which aggregations are actually calculated and stored during
the processing stage. Too many aggregations lead to data explosion and, therefore, bad processing performance. As with
processing, it is recommended that you start with a low number of aggregations and understand the tradeoffs as you
increase aggregations.

2. Partitions.

Partitions give you the ability to choose different storage strategies to optimize the tradeoff between processing and
querying performance. For example, a partition based on less queried data might have fewer aggregations than the one
used more often.

3. Data slices on partitions.

Setting a data slice is an efficient way to avoid querying irrelevant partitions.

If you know one of your partitions stores data about a particular member, this information can be used during querying. For
example, one of your partitions might only store information for the "Budget" scenario. This information is used when the
query is answered and the "Budget" partition won't be examined if the query refers to "Actual" data instead.

Another handy trick is to create a dummy dimension. For example, if you have Historical and Budget data, create a
"Scenario" dimension, and two cubes (one for each scenario). Set the member key column for the cubes to "Historical" and
"Budget," respectively. And then set the data slice to these as well. Queries to a virtual cube based on these two cubes, will
automatically be routed to the appropriate underlying cube.

4. Use SMP machines.

Due to the large degree of parallelism during querying, all CPUs can be used. Consider upgrading the number of processors
if CPU utilization is a bottleneck.

5. Usage-Based Optimization.

When asked to initially design aggregations, Analysis Services assumes any query on the database will have the same
probability of occurring as any other query. Usage-Based Analysis logs what portion of your database was actually touched
—by whom, how often and for how long.

Given this feedback, Analysis Services can do a much better job at choosing what to aggregate and what not to aggregate.
This may be the best way to design aggregations for a "complex" database. Analysis Services will usually select the
aggregation that is smaller if there is a choice between two aggregations to store, no query optimization has been used (no
query usage is logged), and all other things are equal. But if user queries can really be answered efficiently by sending
queries to the larger aggregation, Analysis Services can detect this optimization by examining usage patterns in the query
log. Analysis Services may decide to create a larger aggregation due to specific frequent query usage.

6. Client/MDX optimizations.

Use fully qualified member names.

When using user-defined functions (UDFs), use fully qualified function names, especially if you have many DLLs or
DLLs that contain many functions in the libraries.

Use the Large Level Threshold connection property to limit the amount of metadata brought down to the client.

Setting the Auto Synch Period property to a very low value can negatively affect performance. A lot of time may be
spent querying the server to find out if cell values have changed—setting Auto Synch Period to a very high number
might not synchronize the data frequently enough. Understand the user behavior and adjust this parameter as
appropriate.

Note No updates are performed if you set Auto Synch Period to a value of 0.

7. Virtual dimensions.

Using virtual dimensions can degrade query performance. Refer to the discussion under Performance in the Processing
section at the beginning of this article for more information.

8. Use a "cluster" of servers.

Since an Analysis Services cube can itself be a source to another Analysis Services partition, you can create a cluster of
servers to distribute query resolution.

9. Enhanced security in NT.

During initial connections and queries, the Analysis Services server uses security functions in NT to restrict access. Make
sure the both the users who have access to this cube and the server itself are in a domain suitable for fast response for
information about user credentials.

With the security enhancements put into NT4 Service pack 4, this is a crucially important performance tip.

10. Server Settings.

Increase the Memory conservation threshold and the Minimum allocated memory properties on the Properties
dialog box for an Analysis server in the Analysis Manager to allow caching more information on the server.

11. Hardware.

Use the appropriate RAID level or software stripe sets.
Use a fast network (100 Mbps Ethernet or others) and make sure your network is properly configured.
Use plenty of memory to allow increased caching.

Agent
Analysis Services supports the ability to move axis resolution in queries to the server. This results in huge benefits by preventing
unnecessary data movement across the network when you're working with functions such as FILTER, which may operate on a
large level. An "agent" is the client component inside the same process as the server and connects and disconnects on the fly as
needed.

The default cache size of the agent is 10% of the physical memory available on the server.

Agents are stateless and are created and destroyed as needed. Agents open and close connection to the server every time they're
used. Since connecting is a fairly expensive operation, the benefit of using agents should be justifiable.

To indicate whether the query resolution occurs on the client or on the server, the following Execution Location connection
property should be used. Currently, the values of this property are:

Default (see Smart).
Smart (this is internally analogous to the default (Execution Location = 1) option.)
Client
Server
Some functions are not safe to be remoted. If the query contains such functions, it will not be remoted—even if the user
explicitly requests remoting.

Another connection property, Default Isolation Mode, helps decide whether the Agent should answer queries in addition to
resolving the axes. This property might be important for clients working over slow network connections.

Local Cube Files

Local cube files can be created on the client machine through the PivotTable Service. Currently, PivotTable Service is supported on
Windows 95, Windows 98, Windows ME, Windows NT, Windows 2000, Windows XP, and Windows 2003 Server. Compared with
the server, local cube files have the following restrictions:

1. No aggregations can be created.
2. PivotTable Services has its own syntax for creating and updating cube files.
3. A file created with PivotTable Services can contain multiple databases, each of which can only contain one cube and one

partition.
4. Write-back is not supported.
5. HOLAP is not supported.
6. Virtual cubes are not supported.
7. Dimension and cube names must be less than 24 characters.

Performance

1. Reuse the cached rowset by using the DIRECTLYFROMCACHEDROWSET keyword if retrieving a rowset to populate the local
cube is an expensive operation.

2. Use the PASSTHROUGH keyword for complex queries or when using optimizations or keywords specific to your relational
database.

3. Keep the size of local cube files as small as possible, since these files do not support partitions or aggregations.
4. Omit joins when populating the local cube.

Note There is no user interface to optimize the schema using PivotTable Service, as there is when working with
the Analysis Services server.

Write-back
To allow write-back to cell values, a new relational table is created (one for each write-enabled cube) in the underlying relational
engine. To enable user-defined policies of allocating data from consolidated levels down to the lowest level, only the lowest level
data is stored in this table.

Using the transaction support provided in OLE DB, all updates are cached on the client until the transaction is committed. Flushing
the cache is transparent to the client applications and no special behavior is required.

At a later time, this table can be converted into a partition with the appropriate storage strategy.

Performance

1. Aggregations.

The write-back tables do not have any aggregations until they have been converted into a partition and therefore might
adversely affect query performance. Frequent conversion is recommended if faster query response is desired.

2. Client synchronization.

Updating the cell values flushes the cache system on both the server and other client sessions. Therefore, we strongly
recommend that you accumulate multiple changes in a single transaction rather than commit each cell change separately.

3. Concurrent updates.

Updates to a database are effectively serialized since each write must be transacted.

4. Relational database performance.

Obviously an important aspect of performance is the speed with which the underlying database supports record insertion.

Conclusion
Microsoft SQL Server 2000 Analysis Services is a high performance tool for performing analytical queries on multidimensional
data. For most users, the information presented in this article will not be necessary. For other users, information about the
internals of this tool will help utilize their hardware to its full potential.

For More Information
See the Microsoft SQL Server Analysis Services online documentation for more information.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Analysis Services: Semiadditive Measures and Inventory
Snapshots

Amir Netz
Microsoft Corporation

Updated May 18, 2004

Applies to:
 Microsoft SQL Server 2000
 Microsoft SQL Server 2000 Analysis Services

Summary: Focusing on a classic inventory problem, this article describes the implementation techniques of semiadditive
measures in online analytical processing. (10 printed pages)

Contents

Introduction
The Inventory Problem
Average Over Time
Opening and Closing Balances
Period Comparisons: Consecutive and Parallel
Minimum and Maximum Values in a Time Span
Relative Contribution to Total Value
Avoiding the Display of Incorrect Data
Conclusion
For More Information
Related Books

Today's organizations rely on highly sophisticated and complex analysis of the information stored in their databases. In the past, a
uniform and easy calculation was common—for example, one that tracks the movement of products to and from a single
warehouse. Now, database analysis in business domains, such as securities, account balances, budgets, and insurance policies and
claims, is semiadditive—straightforward with some factors and variable with others, notably when tracking data over time. For
instance, an organization might first request monthly quantities for specific products, and then demand quarterly totals
consolidated across warehouses and subsidiaries. The calculated members in Microsoft SQL Server 2000 Analysis Services
provide the capabilities to implement the most demanding semiadditive measures. Focusing on a classic inventory problem, this
article describes the implementation techniques of semiadditive measures in online analytical processing (OLAP).

Introduction
Most of the base measures in Microsoft SQL Server 2000 Analysis Services are fully additive and include aggregation types of
SUM, MIN, MAX, and COUNT. These base measures are:

Fully additive: The use of these four aggregation types allows for the calculation of aggregate results from other previously
aggregated results. The ability to derive aggregates from other aggregates is an important capability that stands at the core
of Analysis Services architecture.
Uniform: Aggregations uniformly apply to all dimensions. The measure will be rolled up across all dimensions with the
same aggregation type.

Uniformity

In the classic case of Fact tables that contain transactions, such as sales, uniform aggregation is not problematic. The sum of the
amounts and quantities will sum across all of the dimensions.

However, for other applications, uniform aggregation across all dimensions is not desirable. For example, in an inventory
application, instead of storing the inventory transactions (such as arrival and departure of products from and to the warehouse), a
snapshot of the inventory is taken each month. The following illustration shows a simplified, typical record.

Product
Warehouse
Time

Quantity
Stock Value

A three-dimensional (Product, Warehouse, and Time) cube can be created with two measures (Quantity and Stock Value.) The
measures can be summed up across products (for example, the stock value of Product A and Product B is the sum of the stock
value of Product A with the stock value of Product B) and across warehouses (for example, the total quantity of Product A is the
sum of its quantities in each warehouse). However, the measures cannot be summed across a time period.

Summing the quantities across a time period will yield incorrect results. If, in January, the quantity in stock for Product A was 10,
in February, the quantity was 20, and in March, the quantity was 15, the overall quantity in stock for the first quarter is not 45. The
quantity for that quarter may be the average of the monthly quantities, the closing balance (the quantity of March), or the opening
balance (the quantity of January), but certainly not the sum of all months.

These kinds of measures, which are additive on some of the dimensions and not on other dimensions, are called semiadditive
measures. Semiadditive measures are very common in many business scenarios beyond simple inventory maintenance. Every
cube based on snapshots of balances over time shares this problem. You will find these snapshots in applications dealing with
securities, account balances, budgeting, human resources, insurance policies and claims, and many other business domains.

Financial applications can have even more demanding semiadditive measures. Consolidation of accounts balances and other
financial results may sometimes involve more complex expressions over the Accounts dimension. For example, consolidating the
financial results of an enterprise that has several subsidiaries (each with a different percentage holding position) is a complex
matter that requires some advanced techniques.

Although the basic measures in Analysis Services do not provide direct support for semiadditive measures, calculated members
provide the capabilities to implement even the most sophisticated and complex semiadditive measures.

This article provides information about the implementation techniques of semiadditive measures in the Analysis Services,
focusing on the classic inventory class problem. It is assumed that the reader has good understanding of online analytical
processing (OLAP) in general, Analysis Services in particular, and the multidimensional expressions (MDX) language.

The Inventory Problem
The inventory problem is one of the most typical semiadditive measure problems. The inventory represents a whole class of
semiadditive measure problems that share a common attribute: keeping track of data snapshots. Snapshots are typical in
applications in which balances are involved, such as account balances, stock tickers, head count tracking, contact management,
and active insurance policies management. Data snapshots (as opposed to pure transactions) disable the ability to aggregate data
over time correctly. Although this article refers to the inventory problem, remember that the applicability of the proposed
techniques is broad and can be adapted without change to a wide variety of business problems.

Inventory Example

The inventory cube has this structure:

Dimensions:
Products: All Products, Family, Category, Name
Warehouses: All, Warehouse
Time: Year, Quarter, Month

Measures:
Quantity (SUM)
Value (SUM)

As explained earlier, summing the quantities and values over the time dimension yields incorrect results. These are the items that
must be analyzed:

The average quantities and stock values in each time period
The opening and closing balances for each time period
The change in inventory levels between consecutive periods and parallel periods
The minimum and maximum inventory levels in a time period
The relative contribution of the stocked item to the overall stock value

End users should not see any data generated by summing over the time dimension.

Average Over Time

To calculate the average of the quantities and values for a given period, you must divide the total monthly quantities and values
by the number of months contained in the given period of time.

The calculated member [Measures].[Average Monthly Quantity] is defined as:

([Time].CurrentMember, [Measures].[Quantity]) /
 Count(Descendants([Time].CurrentMember, [Months]))

The expression indicates that the total quantity in the current time period will be divided by the number of months that are
descendants of (that is, contained in) this time period. Because the current member in a dimension is the default member, the
expression can be simplified to:

[Measures].[Quantity] /
 Count(Descendants([Time].CurrentMember, [Months]))

Based on the same principle, [Measures].[Average Monthly Stock Value] is defined as:

[Measures].[Value] /
 Count(Descendants([Time].CurrentMember, [Months]))

In some cases, the preceding expressions may be simplistic. For example, if a new item is introduced to the system in February,
the expression calculates the average monthly stock value of the new item by summing the quantities in the months January
through March and then divides the sum by three. The results may be misleading. Included in the calculation is the month of
January, in which the item did not exist at all. Therefore, the average appears lower than it actually was.

To calculate the average only for the months in which the product actually existed in the system, the counting clause in the
expression should be modified, for example:

Count(CrossJoin({[Measures].[Quantity]},
 Descendants([Time].CurrentMember, [Months]), ExcludeEmpty)

This expression will help ensure that only months that are not empty (Quantity<>NULL) are counted.

The performance of the preceding expression will be much poorer than the simple count described in the previous section. In this
expression, the ExcludeEmpty() function is used, and the cell values of the quantities per month have to be evaluated. When the
simpler Count(Descendants(... function is used, the metadata of the dimension structure is enough to evaluate the denominator.

Opening and Closing Balances
In many cases, getting the opening balance and especially the closing balance is the most basic piece of information the cube
must provide. For example, the closing balance of a customer account shows the current state of the account, and the closing
balance of the inventory quantity shows the quantity presently in the warehouse.

To get the opening balance of period, you must get the value of the first month contained in the given time period. For example,
the opening quantity balance for 1997 is the opening quantity balance for January 1997. The opening quantity balance for 1997,
Quarter 2, is the opening quantity balance for April 1997.

Similarly, to get the closing balance for a given period, you must get the value of the last leaf member (that is, a member of the
last level in the hierarchy) contained in the given time period. For example, the closing balance for 1997 is December 1997 and
for 1997, Quarter 3, it is September 1997.

To get the first month contained in the current time period, you can use:

Head(Descendants([Time].CurrentMember, [Month]),1)

For the last month contained in the current time period, use:

Tail(Descendants([Time].CurrentMember, [Month]),1)

MDX provides a more intuitive and effective shorthand syntax for these two expressions:

OpeningPeriod([Month], [Time].CurrentMember)

and

ClosingPeriod([Month], [Time].CurrentMember)

The syntax for OpeningPeriod() and ClosingPeriod() allows for an even shorter syntax form. The second parameter can be
omitted if you are seeking the opening or closing period of the current member of the time dimension.

Thus, the following four calculated members should be declared to obtain the opening and closing balances:

Measures. [Opening Quantity]:
 (Measures.[Quantity], OpeningPeriod([Month]))
Measures. [Closing Quantity]:
 (Measures.[Quantity], ClosingPeriod([Month]))
Measures.[Opening Value]:
 (Measures.[Value], OpeningPeriod([Month]))
Measures.[Closing Value]:
 (Measures.[Value], ClosingPeriod([Month]))

A common real-world problem can arise during implementation of the closing balance expressions. In many implementations, the
Time dimension is defined with future time period members already contained in the dimension. The ClosingPeriod([Month])
function does not analyze future and past time periods. It only traverses the members' hierarchy tree to find the last leaf
descendant under the given member.

For example, take the example of implementing a closing balance expression with a current date of mid-October 1998. Asking for
the closing balance for 1998 arguably should provide the data from the last snapshot of the year, or the October snapshot.
However, the ClosingPeriod([Month]) function returns December 1998 as the closing period of 1998. Because no snapshot
exists for December 1998, the closing balances return NULL.

This more sophisticated expression solves the problem:

Measures.[Last Non Empty Value]:
 IIf(IsEmpty((Measures.[Value], Time.CurrentMember) ,
 (Measures.[Last Non Empty Value],Time.CurrentMember.PrevMember),Measures.[Value])
Measures.[Closing Value]: (Measures.[Last Non Empty Value], ClosingPeriod([Month]))

In this example, the [Last Non Empty Value] measure has a recursive expression that checks to see whether the value of the
current cell is empty. If it is empty, the expression moves back to the previous period on the time dimension and checks the [Last
Non Empty Value] of the previous period. The function continues to go back in time until a nonempty value is found. The
[Closing Value] measure can then use the [Last Non Empty Value]. This recursive behavior helps ensure that, for the last year,
the values of the last snapshot are returned. The less common CoalesceEmpty() function performs this exercise more efficiently.
This function is equivalent to the expression demonstrated earlier:

Measures.[Last Non Empty Value]:
 CoalesceEmpty((Measures.[Value], Time.CurrentMember) ,
 (Measures.[Last Non Empty Value],Time.CurrentMember.PrevMember))

Another useful way to get the right closing period is to provide the relevant dates as properties of the leaf node of the time
dimension properties and deal with the future periods by using date comparison functions and string functions, for example:

Measures.[Closing Value]:
 IIf(CDate(ClosingPeriod().Properties("Closing Date"))>Now()),
 (Measures.[Value],StrToTuple(Format(Now(),"\[yyyy\]\.\[\Qq\]\.\[mmmm\]"))),
 (Measures.[Value], ClosingPeriod([Month])))

This expression extensively uses Microsoft Visual Basic® for Applications functions to manage dates and strings. (Remember that
the Visual Basic for Applications function library is registered automatically for use in MDX expressions.) The function checks to
see if the value of the user-defined property "Closing Date" shows a time period in the future (greater than Now()). If so, the
function constructs the member name of the last snapshot time period by using the Visual Basic for Applications Format()
function with the Visual Basic for Applications Now() function. Then, the string is converted to a tuple to return the [Closing
Value].

Period Comparisons: Consecutive and Parallel
The comparison of inventory levels between time periods provides additional useful information. Periods that are usually
compared are consecutive periods (for example, 1998, Q3 versus 1998, Q2) and parallel periods (for example, 1998, Q3 versus
1997, Q3). To calculate the change in the inventory levels between the periods is one of the most useful ways to compare periods.

To calculate the change between consecutive periods, you can use the PreviousMember property, for example:

Measures.[Quantity Change from Previous Period]:
 (Measures.[Quantity], Time.CurrentMember) –
 (Measures.[Quantity], Time.CurrentMember.PreviousMember)

The expression subtracts the quantity of the previous time period from the quantity of the current time period.

To calculate the change between parallel periods, MDX provides the ParallelPeriod() function. The definition of a "parallel
period" may vary depending on the business problem. For example, a parallel period may be the same day in the previous month,
or it may be the same day in the previous year. Using the ParallelPeriod() function, you can specify the time span of the parallel

period, for example:

Measures.[Quantity Change from Last Year]:
 (Measures.[Quantity], Time.CurrentMember) –
 (Measures.[Quantity], ParallelPeriod(Time.Year))

Minimum and Maximum Values in a Time Span
Knowing the highest and lowest inventory values within a time period is often useful.

The MIN and MAX aggregate functions do not provide the desired results because they are applied at the transaction level. A MAX
measure applied to the Stock Value column of the Inventory table will return the maximum value of the column in the Fact table
(for the given time period). This means that it will provide the stock value from a single row in the Inventory Snapshot table, and it
will be the stock value of a single item in a single warehouse in a single month.

However, this information may not be as useful as the maximum total inventory value of a day within a year. For example, the
question "What was the maximum value of the inventory held on a single day in the last year?" cannot be answered correctly
using a measure aggregated with the MAX function.

To apply MIN and MAX calculations on aggregated values, use the MDX functions of MIN and MAX (the same principle applies to
AVG, STD, VAR, and the other aggregate functions.)

This expression provides the maximum aggregated inventory value within the current period:

Measures.[Maximum Inventory Value]:
 Max(Descendants(Time.CurrentMember, Time.Month), Measures.[Value])

The MAX function scans all months under the current time period (for example, all of the months in 1998) and returns the value
of the month that contains the greatest inventory value. A similar expression can be constructed using a MIN function.

Relative Contribution to Total Value
Seeing the relative contribution of an item or a warehouse as a percentage to total inventory value is another common
requirement. In general, to measure the contribution of a cell to the grand total, divide the current cell value by the cell that
represents the grand total of the cube, for example:

Measures.[Value Contribution to Total]:
 Measures.[Value] /
 (Measures.[Value], Time.[All Time], Products.[All Products],…)

This expression divides the current value with the value of the cell that contains the grand total.

In cases in which there are semiadditive measures, care must be taken not to divide by the absolute grand total, because the
grand total contains results of summing across the time dimension. In the inventory sample, the grand total cell contains the
aggregate, over time, of inventory snapshot values. As shown in the "Introduction" of this article, this value is incorrect.

The solution is simple: Avoid asking for the total over the time dimension. For example, in the inventory cube, the expression
should look like the following:

Measures.[Value Contribution to Total]:
 Measures.[Value] /
 (Measures.[Value], Products.[All Products],Warehouses.[All Warehouses])

Note When the current time period is not a leaf member (a month in the example), the contribution calculated is the
average contribution during the time period. For example, over a year, the expression divides the 12-month sum of
the stock value of the current product in the current warehouse by the 12-month sum of the overall stock value of all
products in all of the warehouses. The expression is exactly the average contribution during that 12-month period.

In many cases, the most interesting analysis on relative contribution occurs when a cell value is compared to the total only on a
single dimension. For example: What percentage was product A of the stock value of all products in warehouse X during
December 1998? This expression calculates the relative contribution only on the product's dimension:

Measures.[Product Contribution to Total Products]:
 (Measures.[Value] , Products.CurrentMember) /
 (Measures.[Value], Products.[All Products])

Avoiding the Display of Incorrect Data
The basic measures that calculate the sum of the stock value and quantity contain incorrect data because these measures sum the
values over the time dimension. Although by themselves these measures contain incorrect data, they are useful. This article

demonstrates how to create calculated members using MDX expressions to derive the correct data from the base measures.

These basic measures should be considered as interim results, as they are a calculation step on the way to the final answer.
However, by themselves, they are meaningless to the end user. Because these are only interim results, these measures should not
be exposed to end-users. Analysis Services provides a dedicated property for basic measures, IsInternal, to hide the measures
from the client application.

An internal measure can be used inside an expression of a calculated member, but will act as a hidden member as far as the client
application is concerned. End users cannot select these hidden measures for display.

To hide a measure, use the Advanced tab of the Property pane in the Cube editor of the Analysis Manager.

Conclusion
In Analysis Services, calculated members can be used to work effectively with semiadditive measures. This article explored
different scenarios in which you may be working with semiadditive measures. This article also provided examples of ways to use
calculated members to address the problems that can arise in these scenarios.

For More Information
For more information about MDX, see the MDX online documentation.

Related Books
The Data Warehouse Toolkit by Ralph Kimball

© Microsoft Corporation. All rights reserved.

http://shopping.msn.com/search/detail.aspx?pcId=4644&prodId=318049&ptnrid=141&ptnrdata=0
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Arabic Language Support in Microsoft SQL Server 2000

Microsoft Corporation

April 2002

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Microsoft SQL Server 2000 supports Arabic data in Unicode and non-Unicode formats. Get information about the
Arabic language code page, collations, components, and functions, as well as feature-specific information concerning setup,
administration, replication, data transformation, and more. (39 printed pages)

Contents

Introduction
Important Concepts for Understanding Arabic Language Support
 Unicode
 Reading Order
 Arabic Code Page 1256
 Domain Name System
 Collations
 Character Data Types
 Hijri Date
Installing SQL Server 2000 with Arabic Language Support
 Creating a New Installation of SQL Server
 Upgrading to SQL Server 2000
Creating and Maintaining Databases
 Tables
 Stored Procedures
 Views
SQL Server Enterprise Manager
SQL Query Analyzer
SQL Server Administration
 Authentication Modes and User Names
 Web Assistant Wizard
 Server Messages
 Automating Administrative Tasks
 SQL Mail
 Backing Up and Restoring
Full-Text Search
 Creating Full-Text Index
 Using Transact-SQL to Set the Default Full-Text Language
 Querying Full-Text Indexes with Arabic Characters
XML and Internet Support
 Creating IIS Virtual Directories
 Using URL Queries
 Templates
 Using URL Queries with Mapping Schemas
 Using the OpenXML Function
Replication
Data Transformation Services
 DTS Connections
 Code Page, Collation, and Non-Unicode Data Issues
Conclusion

Introduction
Microsoft® SQL Server™ 2000 was designed to support all the languages supported by the Microsoft Windows® 2000 operating
system, including the Arabic language. In this article you will learn more details about this Arabic language support, including
information about components, functions, and how the server supports Arabic data in Unicode and non-Unicode formats.

Important Concepts for Understanding Arabic Language Support
To make best use of the Arabic language support in SQL Server 2000, the following concepts should be clear:

Unicode
Reading order
Arabic code page 1256
Domain Name System
Collations
Data types
Hijri dates

Unicode

Unicode represents the characters of a language with two bytes rather than one. Non-Unicode, 8-bit ASCII is not capable of
representing all of the combinations of letters and diacritical marks that are used just with the Roman alphabet. Unicode, by
contrast, enables a single character set to represent almost all of the written languages of the world, including Arabic.

For more information about Unicode, see the Unicode Web site at http://www.unicode.org/, the Microsoft Global Software
Development Web site, and the International Features of SQL Server 2000 white paper.

Reading Order

Reading order describes the order in which words are displayed in mixed text. Reading order pertains to the word order, not to
the order of the entered characters. When Arabic is the keyboard language, new characters will always flow right to left (RTL).
Conversely, when Latin is the keyboard language, characters flow left to right (LTR).

Reading order becomes important for mixed text situations where text strings contain words in both Middle Eastern and Latin
languages. This concept is illustrated in the following examples using Arabic and English text:

Figure 1. Reading order

The first two lines demonstrate that no matter which reading order is chosen, text in pure Arabic or Latin appears according
to the expected behavior of each language.
The third line shows that in an LTR reading order, Arabic text added to existing Latin flows toward the right of the Latin. An
RTL reading order displays the added Arabic text to the left of the Latin.
The fourth line shows that in an LTR reading order, Latin text added to existing Arabic flows toward the right of the Arabic.
An RTL reading order arranges the added Latin text to the left of the Arabic.

Arabic Code Page 1256

Microsoft Windows 2000 uses code page 1256 for the Arabic language. Figure 2 shows the code page.

http://www.microsoft.com/globaldev/

Figure 2. Code page 1256

Arabic code page 1256 is used by earlier versions of SQL Server; however, for SQL Server 2000 and later versions, Unicode is
recommended.

Domain Name System

Currently there is no Internet standard for non-ASCII domain names (Arabic, Chinese, Japanese, and so on); however, the Internet
Engineering Task Force (IETF) group is expected to introduce a standard soon.

Microsoft supports the IETF effort to define the standard and will implement it as soon as it has passed. Until the standard is
defined, new software developed at Microsoft will put raw Universal Transformation Format 8 (UTF-8) encoded characters online.
UTF-8 encoding allows Unicode to be used in a convenient and backward compatible way in ASCII environments. This will allow
customers to use non-ASCII characters in their intranet domains.

Because it uses UTF-8, Windows 2000 supports the use of Arabic characters in the Domain Name System (DNS). Users may
therefore use Arabic domain names.

Users specify the domain name when installing Microsoft Active Directory® in Windows 2000 Server. A warning message
informs the user the Arabic letters do not conform to Internet DNS standard specifications. They do, however, conform to
Microsoft specifications.

Collations

The physical storage of character strings in SQL Server 2000 is controlled by collations. The term collation refers to a set of rules
that determine how character data is sorted.

Each SQL Server collation specifies three properties:

The sort order to use for Unicode data types (nchar, nvarchar, and ntext).
The sort order to use for non-Unicode character data types (char, varchar, and text).
The code page used to store non-Unicode character data.

Sort order

A sort order specifies the rules used by SQL Server to interpret, collate, compare, and present character data. For example, a sort
order defines whether the Arabic character ' ' is less than, equal to, or greater than ' '. It also defines whether the collation is
accent-sensitive (for example, whether ' ' is equal or is not equal to ' ').

Many SQL Server collations use the same code page but have a different sort order for the code page, allowing sites to specify the
following options:

Whether characters will be sorted based on the numeric value represented by their bit patterns. This is known as binary
sorting. Binary sorting is the fastest sorting method, and is always case sensitive. However, because the characters in a code
page may not be arranged in alphabetical order for a given language, binary sorting does not always sort characters

alphabetically.
Between case-sensitive and case-insensitive behavior. (This setting does not affect Arabic characters.)
Between accent-sensitive or accent-insensitive behavior.

In SQL Server 2000, you do not need to separately specify code page and sort order for character (ASCII) data, and the collation
for Unicode data. Instead, you specify the collation name and sorting rules to use, as discussed below.

Collation levels

Unlike earlier versions of SQL Server, which supported only one level of code page for the server selected within the installation,
SQL Server 2000 can specify a collation for character data types at server, database, and column levels. This feature gives the user
the ability to handle multinational applications easily; for example, you can define one database with French collation and another
database with Arabic collation, both in an instance of SQL Server with English collation. Even within the same table, you can have
different columns with different collations.

You can define the server collation during installation, the database collation when creating a new database (if you do not specify
a collation, the database takes the server collation by default), and the column collation when creating a table (if you do not
specify a collation, the column takes the database collation by default).

Note the following Arabic-specific information about collations:

For insert and update operations in applications, the effective collation level is database collation. Therefore, to insert or
update Arabic data with non-Unicode data types, you must set the database collation to Arabic. It is important to set
database collation level to Arabic even if your column collation level is set to Arabic, because data may be corrupted when
inserting or updating data. Use the "N" prefix to ignore database collation level.
Selecting accent sensitive with Arabic collations affects the sort order when using the following:

Diacritics
()
()

There are two groups of SQL Server 2000 collations: Windows collations and SQL collations. Each group is discussed immediately
below.

To set collations for a table column, right-click the table and click Design Table. In the Design Table window, click a column
name, and under the Columns tab, select the Collation cell and click the adjacent ellipsis button to display and set the collation
settings for that column name.

Note Database-wide collation settings can only be specified at the time a database is created.

Windows collations

Windows collations define rules for storing character data based on the rules defined for an associated Windows locale. The base
Windows collation rules specify which alphabet or language is used when dictionary sorting is applied, as well as the code page
used to map non-Unicode character data.

For the Arabic language, select Arabic for all variations of Arabic that use the Arabic character set (code page 1256). For sort
order, click either dictionary sort or binary sort. Dictionary sort order offers four additional options; however, only accent
sensitivity affects sort order in Arabic. Binary sort is always case sensitive and accent sensitive. Figure 3 shows how to specify an
Arabic Windows collation for a table column.

Figure 3. Specifying an Arabic Windows collation for a table column

SQL collations

SQL collations are provided for compatibility with sort orders in earlier versions of SQL Server. If you are not working with an
earlier version of SQL Server, use Windows collations instead.

For the Arabic language, there are three choices:

Arabic_BIN (binary order)
SQL_Latin1_General_Cp1256_CS_AS (case sensitive, accent sensitive)
SQL_Latin1_General_Cp1256_CI_AS (case insensitive, accent insensitive)

Character Data Types

SQL Server 2000 supports both non-Unicode character data types and Unicode character data types.

Non-Unicode data types

The non-Unicode character data types are char, varchar, and text. These data types use the character representation schema in
single- or double-byte code pages. (Arabic code page 1256 uses single-byte representation.) To use non-Unicode data types, the
system collation has to be Arabic, or the data will be corrupted.

Unicode data types

The Unicode data types are nchar, nvarchar, and ntext. These data types use Unicode character representation. Code pages do
not apply to these data types. Using Unicode data types gives you the ability to use Arabic data even if the system collation is not
Arabic. Using Unicode data types in your applications is therefore recommended.

Using the "N" prefix with Unicode data types

When using Unicode data types, you can prevent corruption of your Arabic data in English collations by prefixing your Arabic
string with "N". Adding the "N" prefix aids Unicode data types in applications that use Microsoft® Visual Basic® or Active Server
Pages (ASP), as well as inside stored procedures. If the default database collation is not Arabic, your data will be corrupted if "N" is
omitted. The following code illustrates use of the "N" prefix:

- UPDATE TableName SET ColumnName = N'Arabic Text' WHERE id = 1000
INSERT INTO TableName (ColumnName) values(N'Arabic Text')

For an illustration of the relationship between collations and data types, see Code Page, Collation, and Non-Unicode Data Issues.

Hijri Date

The SQL Server datetime data type supports only Gregorian dates, but you can use a conversion function to convert the
Gregorian date to the Hijri date based on the Kuwaiti algorithm.

Conversion to and from the Hijri calendar is possible through the CONVERT intrinsic. There are two CONVERT styles that are
available in SQL Server 2000 to support Hijri dates:

130—Returns the date using the Hijri calendar, in dd mon yyyy hh:mi:ss:mmmAM format.
131—Returns the date using the Hijri calendar, in dd/mm/yy hh:mi:ss:mmmAM format.

For example, to convert a Gregorian date to Hijri format with Transact-SQL, you would use syntax such as the following:

SELECT CONVERT(nchar, GETDATE(), 131)

This query will return a string such as the following in its result set:

7/05/1421 12:14:35:727PM

The reverse operation is also possible. The following syntax would be used to convert a Hijri date to Gregorian format:

SELECT CONVERT(datetime, ' 7/05/1421 12:14:35:727PM', 131)

This query would convert the date to SQL Server datetime type, which in SQL Query Analyzer would appear as follows:

2000-08-07 12:14:35.727

Note that SQL Server does not use the regional calendar settings included with Windows 2000, and any adjustment made in that
regional setting for the Hijri date does not affect the conversion method of SQL Server.

Also, SQL Server date functions such as DateName, DatePart, and DateAdd work with the Gregorian calendar, so you must
make your conversions programmatically during development.

Installing SQL Server 2000 with Arabic Language Support
To support a full Arabic environment when creating a new installation of SQL Server 2000 or upgrading from an earlier version,
set the default locale to Arabic. In Control Panel, double-click Regional Options, click the General tab, and select Arabic in
Language settings for the system. Click OK.

Setup provides three options for running the installation program:

Create a new instance of SQL Server or install the client tools.
Upgrade, remove, or add components to an existing instance of SQL Server.
Set advanced options.

The first two options are discussed below.

Creating a New Installation of SQL Server

This section describes basic options for a new installation of SQL Server 2000. It notes the available Arabic support for each step
of the installation.

Computer Name page

The Computer Name window offers the choice of installing SQL Server 2000 on your local computer, on a remote computer, or
on a virtual server. All options for installing and upgrading are available on the local computer.

Installation Selection page

For new installations, on the Installation Selection window, click Create a new instance of SQL Server, or install Client Tools.

User Information page

The User Information window prompts you to supply your name and company name. These fields support Arabic characters.

Installation Definition page

Use the Installation Definition page to select the components to include in this installation of SQL Server 2000. If you select Client
Tools Only or Connectivity Only, Setup proceeds and no additional choices are required, unless you select components when
installing client tools. If you select Server and Client Tools, additional setup screens appear.

Instance Name page

Use the Instance Name page to add and maintain instances of SQL Server 2000.

When Default is selected, a default instance of SQL Server 2000 is installed. The name of the default instance is the same as the
name of the computer.

Note Only one installation of any version of SQL Server can be the default instance at any one time.

If Default is cleared, you can enter a name for the instance; however, do not set the name in Arabic. Using Arabic characters
causes an error when the properties of SQL Server and SQL Server Agent services are accessed.

Setup Type page

When you install from any version of SQL Server other than Developer Edition, Setup offers three installation types in the Setup
Type page: Typical, Minimum, and Custom. In addition, you can modify the installation location for both program and data files in
this dialog box.

When choosing an installation location, you can select Arabic directory names.

Select Components page

If you choose a Custom option setup type, Setup next displays the Select Components page, where you can choose components
and subcomponents to install. You can also choose to reinstall them if you did not set them up initially.

Collation Settings page in Custom Setup

Use the Collation Settings page to modify default collation settings. Select Windows Locale to match collation settings in
instances of SQL Server 2000. Select SQL Collations to match settings that are compatible with the sort orders in earlier versions
of SQL Server. The Windows and SQL Server 2000 collations include the Arabic collations. For more information, see Collations
earlier in this article.

Note The Collation Settings page is only available if you select Custom on the Setup Type page.

Services Accounts page

Use the Services Accounts page to assign an account to the SQL Server service (MSSQLServer) and the SQL Server Agent service
(SQLServerAgent). Either the local system or a domain user account may be used; you can use the same account for each service.
The default is to use the same account for each service.

Domain user accounts support Arabic characters for both username and password.

Note If logon fails with this password, run Services in Windows and retype the password in the Log On tab of the
Properties dialog box.

Authentication Mode page

Use the Authentication Mode page to choose Windows Authentication Mode or Mixed Mode (Windows Authentication and SQL
Server Authentication) for logging on. If you choose Mixed Mode, you must choose a password for the system administrator (sa).

SQL Server 2000 supports Arabic usernames and passwords.

Upgrading to SQL Server 2000

If Setup detects an existing installation of SQL Server 7.0, it offers you the option to upgrade. If you choose to upgrade, all SQL
Server 7.0 program files are upgraded, and all data stored in SQL Server 7.0 databases is preserved. In addition, SQL Server Books
Online for SQL Server 7.0 remains on your computer.

The upgrade is straightforward; the SQL Server 7.0 instance automatically becomes the default instance of SQL Server 2000.

Note When upgrading, collation selection is not available because the upgrade adopts the previous SQL Server 7.0
collation. The new default instance takes the previous collation with the same sort order.

Upgrading databases using Copy Database Wizard

You can also perform an online upgrade of databases and associated metadata. Using Copy Database Wizard, you can move or
copy a database from SQL Server 7.0 to an instance of SQL Server 2000 without having to shut down any servers in the process.

Note With SQL Server 2000, the sort order and code page of the database being copied is no longer a concern. SQL

Server now handles multiple collations, so a database with Arabic collation will be copied even to an instance of SQL
Server 2000 with English collation.

Upgrading databases using SQL Server Upgrade Wizard

You can use SQL Server Upgrade Wizard to convert data from SQL Server version 6.5 to the formats for SQL Server 2000. The
wizard upgrades all of your databases, preserving all catalog data, objects, and user data. It also transfers replication settings, SQL
Executive settings, and most of the SQL Server 6.5 configuration options. The sort order and Arabic code page of the SQL Server
6.5 databases are copied to the SQL Server 2000 databases.

Note To run the SQL Server Upgrade Wizard, you must have a default instance of SQL Server 2000 already installed
on your computer.

Creating and Maintaining Databases
All SQL Server objects support Arabic characters in the object name. You can manipulate the objects and administer SQL Server
using SQL Server Enterprise Manager.

Arabic characters are supported in the names of all of the following: server groups, database names, physical data and log files
names, file groups, diagrams, tables (columns, check constraints, relations, indexes, and so on), stored procedures, views, user-
defined functions, rules, and defaults.

Because of this comprehensive support, a user with Windows 2000 and SQL Server 2000 can create a full Arabic environment in
the database and its components.

Tables

The user can create tables with Arabic names, columns, relations, indexes, and check constraints. Also, the user can use Arabic
names inside queries using SQL Query Analyzer, write stored procedures and user-defined functions in Arabic, and use Arabic in
applications such as ASP pages. Figure 4 shows the properties for a table with an Arabic name as displayed in SQL Server
Enterprise Manager.

Figure 4. Properties of a sample table with an Arabic name

Stored Procedures

Users can create stored procedures with Arabic names. These stored procedures can connect to tables with Arabic names and
retrieve Arabic data from them, as shown in figures 5 and 6.

Figure 5. Stored procedure with Arabic name

Figure 6. Stored procedure with Arabic name (click picture to see larger image)

Views

Users can create a view with an Arabic name. The view can connect to tables with Arabic names and retrieve the data.

Figure 7. Sample query that creates a view (click picture to see larger image)

If the visual tools in design mode are not enough for your business query and you want to write the query yourself, you can view
the query that creates the view from SQL Server Enterprise Manager.

To view the text of the query that creates the view

1. In SQL Server Enterprise Manager, navigate to the view for which you want to see the Transact-SQL query.
2. Right-click the view and then click Properties.

Note With both tables and views, the user can use Arabic for diagrams, user-defined functions, rules, user-defined
data types, and defaults.

SQL Server Enterprise Manager
SQL Server Enterprise Manager is the primary administrative tool for SQL Server. SQL Server Enterprise Manager provides a
Microsoft Management Console (MMC) compliant user interface that allows users to:

Define groups of instances of SQL Server.
Register individual servers in a group.
Configure all SQL Server options for each registered server.
Create and administer all SQL Server databases, objects, logins, users, and permissions in each registered server.
Define and execute all SQL Server administrative tasks on each registered server.
Design and test SQL statements, batches, and scripts interactively by invoking SQL Query Analyzer.
Invoke the various wizards defined for SQL Server.

SQL Server Enterprise Manager supports Arabic characters, but it does not support RTL reading order. When set to Arabic, SQL
Server Enterprise Manager displays the Hijri date provided by the regional setting in Windows 2000.

Figure 8. Hijri date display in SQL Server Enterprise Manager (click picture to see larger image)

SQL Query Analyzer
SQL Query Analyzer is used for interactively designing and testing Transact-SQL statements, batches, and scripts. SQL Query
Analyzer can be called from SQL Server Enterprise Manager.

Like SQL Server Enterprise Manager, SQL Query Analyzer supports Arabic characters but does not support RTL reading order.

Figure 9. SQL Query Analyzer (click picture to see larger image)

SQL Server Administration
Arabic support is included for various administrative tasks in SQL Server 2000. This section provides information about using

Arabic in administrative scenarios such as configuring security and SQL Mail, publishing to the Web, managing server messages,
automating administrative tasks, and backing up and restoring.

Authentication Modes and User Names

SQL Server can operate in one of two authentication modes: Windows Authentication or Mixed Mode Authentication.

Windows Authentication mode allows a user to connect through a Windows 2000 user account. Mixed Mode Authentication
allows users to connect to an instance of SQL Server using either Windows Authentication or SQL Server Authentication. Users
who connect through a Windows 2000 user account can make use of trusted connections in either Windows Authentication Mode
or Mixed Mode.

Both modes support Arabic characters in user names and passwords. For SQL Server Authentication, the user can create Arabic
user names and passwords, and for Windows Authentication, the user can select from Windows Arabic accounts that are already
supported within Windows 2000.

Web Assistant Wizard

You can use the Web Assistant Wizard to generate standard HTML files from SQL Server data. The Web Assistant Wizard
generates HTML files by using Transact-SQL queries, stored procedures, and extended stored procedures. You can use the wizard
to generate an HTML file on a one-time basis or as a regularly scheduled SQL Server task. You can also update an HTML file using
a trigger.

The Web Assistant Wizard enables you to connect to a full Arabic database with Arabic object names and retrieve Arabic data.

For Arabic language support, there are two relevant choices in the Format the Web Page window of the wizard. For data that is
entirely in Arabic, select Arabic (Windows) from the Use Character Set list to:

Save the HTML file using ANSI encoding with Arabic Windows code page 1256.
Add the following tag to the HTML: <META content="text/html; charset="windows-1256" http-equiv=Content-Type>.
This tag instructs the browser to use the Arabic code page.

Figure 10. Using the Web Assistant Wizard to generate Arabic Web pages

On the other hand, when dealing with multilingual data through the Internet, UTF-8 encoding is recommended. If you use
multilingual data, select UTF-8 from the Use Character Set list to:

Save the HTML file using UTF-8 encoding.
Add the following tag to the HTML file: <META content="text/html; charset="UTF-8" http-equiv=Content-Type>. This
tag instructs the browser to use UTF-8 encoding.

If you need to use RTL reading order in your HTML file, edit the HTML file to add the following to the body tag: <Body Dir="RTL">.
You can also use templates to accomplish this. For more information, see the following section.

Templates

A template file is any HTML file with the marker <%insert_data_here%>, which indicates where the query results should be

inserted.

In the template, you can insert your title and header and add the RTL direction and encoding tags. Figure 11 shows how to specify
a hypothetical template to use in the Web Assistant Wizard.

Figure 11. Specifying a Web page template in the Web Assistant Wizard

The webtemp.htm template file contains the following HTML:

<html>
<HEAD>
<META CONTENT=TEXT/HTML; CHARSET=WINDOWS-1256_ HTTP-EQUIV=CONTENT-TYPE>
</HEAD>
<BODY DIR=RTL>
<%insert_data_here%>
</body>
</html>

The actual data in the resulting HTML file will replace the placeholder in the template (<%insert_data_here%>). You can add
whatever you want in the template and use it for multiple files created by Web Assistant Wizard.

When using a template with the wizard, select the option in the Use Character Set list that matches the encoding specified in your
template.

Server Messages

SQL Server 2000 provides tools for managing server messages within SQL Server Enterprise Manager. To create and send server
messages in Arabic requires an understanding of the following concepts:

The SQL Server message language property
Error message language constraints
The message language default setting
The user language

These concepts are discussed in the subsections that follow.

Message options

SQL Server messages have the following properties:

Error number. This property specifies the user-defined error message number. User-defined error message numbers must
be greater than 50,000.
Severity. This property specifies the SQL Server severity level of the message. Severity levels are between 1 and 25.
Message text. This property specifies the text of the message. The maximum number of characters is 255.
Language. This property specifies the language of the message. To create an Arabic language message, set the Language
property to Arabic.

Note You must create an English version of the message before you can create the message in Arabic or any

other language. See the following section for more information.

Always write to Windows eventlog. This property specifies that the message should be written to the Windows
application log. Select this option if you want your user-defined message to be monitored for alert purposes by SQL Server
Agent.

User-defined Arabic messages

Users can add new messages in Arabic as long as there is another, English version of the message with the same error number.
See Figure 12.

Figure 12. Arabic SQL Server message (click picture to see larger image)

Sending messages using RAISERROR

You can send SQL Server messages, including Arabic messages, in one of two ways:

By using the RAISERROR statement
By using alerts

Using the RAISERROR statement, you can raise your Arabic messages when needed, or when you have specific alerts. For the
following example, we will use the Arabic message created before with the number 50002, and with a severity of 10. To localize
the session to Arabic, use the SET LANGUAGE command to send the Arabic version of the message. Otherwise the default
English version is sent.

SET LANGUAGE Arabic
RAISERROR (50002,10,1)

To learn about using alerts to send Arabic messages, see Alerts later in this article.

Message language

This section explains how to set the server default message language and the user language using SQL Server Enterprise
Manager. Setting the default to Arabic allows you to send Arabic versions of messages you create as user-defined messages.

To specify Arabic as the server default language using SQL Server Enterprise Manager

To set the Arabic language to be the default for server messages, follow these steps:

1. In SQL Server Enterprise Manager, right-click the server you are working with, and then click Properties.
2. On the Server Settings tab, select Arabic from the Default Language for User list.

With SQL Server 2000, you can define the user language for system messages. For example, you can use Arabic for Arabic users,
English for English users, and so on.

To specify Arabic as the language for a given login

To specify Arabic as the language for a given login, do this:

In the SQL Server Login Properties dialog box, click on the General tab, and select Arabic from the Language list.

Automating Administrative Tasks

Automated administration is the programmed response to a predictable administrative responsibility or server event. By
automating administration, you can free time to perform more complex administrative tasks. Automated administration is
configured using SQL Server Agent.

For example, if you want to back up all the company servers every weekday after hours, you can create a job to perform this task
and schedule the job to run at the required time. If the job encounters a problem, SQL Server Agent can record the event and
page you.

Automatic administration components

The three main components of automatic administration are operators, jobs, and alerts.

Operators

An operator is an individual responsible for the maintenance of one or more instances of SQL Server. Operators are notified of
alerts in one or more of the following ways:

E-mail
Pager (through e-mail)
Network terminal messages

You can create an Arabic operator name and integrate your automation of jobs and alerts (as shown below) with support of
Arabic messages and component names.

Jobs

A job is a specific series of operations performed sequentially by SQL Server Agent. Use jobs to define an administrative task that
can be executed one or more times and monitored for success or failure each time it executes. Jobs can be executed in different
ways:

They can run on one local server or on multiple remote servers.
They can run according to one or more schedules.
They can be triggered by one or more alerts.

Whichever way a job is run, SQL Server Agent can notify you when the job executes. You cannot change the job notification
language from English to Arabic, but you can create Arabic job names and Arabic schedule names. These Arabic names will
display correctly within the job notification, as illustrated in Figure 13.

Figure 13. Job notification with Arabic characters (click picture to see larger image)

Alerts

An alert signals a designated operator that an event has occurred. For example, an event can be a job starting or system resources
reaching a threshold. You define the conditions under which an alert is generated. You also define which of the following actions
the alert can take:

Notify one or more operators.
Forward the event to another server.
Execute a job.

Also, you can trigger an alert through a user-defined Arabic message. For example, you can create an alert based on user-defined
message number 50002, Arabic version, as shown in Figure 14.

Figure 14. Creating an alert based on a user-defined message

Assign the alert to an operator, and specify the way to alert the operator. In Figure 15 below, the second operator will be notified
by e-mail and by a network message when the alert is triggered.

Figure 15. Specifying the recipient of a user-defined alert

Run the following command from SQL Query Analyzer, and the operator specified will receive the notification.

RAISERROR (50002,10,1)

The following network message will appear on the operator's computer screen.

Figure 16. Network notification containing Arabic characters

As configured in Figure 15, the same message will also appear in the operator's Inbox.

SQL Mail

SQL Mail provides a way to receive e-mail messages generated by SQL Server. SQL Mail can connect with Microsoft Exchange
Server, Microsoft Windows NT® Mail, or a Post Office Protocol 3 (POP3) server.

To reach an operator, SQL Mail requires a post office connection, a mail store (mailbox), a mail profile, and a Windows NT 4.0 or
Windows 2000 domain user account used to log in to an instance of SQL Server. SQL Mail consists of a number of stored
procedures, which are used by SQL Server to process e-mail messages that are received in the designated SQL Mail account
mailbox or to reply to e-mail messages generated by the stored procedure xp_sendmail.

You can use the extended stored procedure xp_sendmail to send an e-mail message in Arabic, as shown in the following
example:

Note SQL Server also uses the SQLServerAgent service to send e-mail. SQLServerAgent does not use SQL Mail to
send e-mail.

For more information, see "SQL Mail" in SQL Server Books Online.

Backing Up and Restoring

The backup and restore architecture of SQL Server 2000 provides an important safeguard for protecting critical data stored in
SQL Server databases. With proper planning, you can recover from many failures, including:

Media failure
User errors
Permanent loss of a server

Additionally, backing up and restoring databases is useful for other purposes, such as copying a database from one server to
another.

Using the Arabic collation with the BACKUP and RESTORE commands

With earlier versions of SQL Server, the sort order and code page of the database being copied were important. Because SQL
Server 2000 supports multiple collations, however, the sort order and code page of the database no longer relevant.

When you restore a database with SQL Server 2000, the RESTORE command uses the collation of the source database that was
recorded in the backup file. The restored database therefore has the same collation as the original database that was backed up.
Database objects with different collations also retain their original collations. The database can therefore be restored even if the
instance on which you run the RESTORE command has a different default collation from the instance on which the BACKUP
command was run. This means that databases with Arabic collation back up and restore transparently under SQL Server 2000.

Nonetheless, when backing up or restoring a database using the Arabic collation, note that:

You must verify that the Arabic collation of the database is supported by the instance of SQL Server.
You can restore a SQL Server version 7.0 database backup to a SQL Server 2000 database.

You cannot restore a SQL Server version 6.5 database backup to a SQL Server 2000 database.
You cannot restore a SQL Server 2000 database backup to a SQL Server 7.0 or SQL Server 6.5 database.

Full-Text Search
SQL Server 2000 provides a rich text-data retrieval system and an enhanced full-text search service that enables you to perform a
linguistic search of character data in tables enabled for full-text search. A linguistic search operates on words and phrases. The
linguistic search is not supported for Arabic, but other parts of full-text search are.

Creating Full-Text Index

To accomplish a full-text search, you must create a full-text index on the specific column you wish to search. To index a column in
a table you are viewing, use the Full-Text Indexing Wizard. In the Select Table Columns page, find the column you wish to index
and, in the Language for Word Breaker list, select Neutral. See Figure 17. Choosing this option enables your index to work with
Arabic even though that language is not included in the list of supported languages. In general, use this option when a column
contains data in multiple languages or in an unsupported language.

Figure 17. Indexing Arabic databases using the Full-Text Indexing Wizard

Using Transact-SQL to Set the Default Full-Text Language

To set the default language for a full-text index to neutral, use the sp_configure stored procedure and set the default full-text
language option to 0, using the code sample below:

USE master
EXEC sp_configure 'default full-text language', '0'
RECONFIGURE
EXEC sp_configure

Querying Full-Text Indexes with Arabic Characters

There are four predicates that you can use to search data that has been full-text indexed. The following examples show how to use
the most common predicate, CONTAINS, with Arabic characters.

Using CONTAINS with a single word

This example finds all names that contain the word " ":

Using CONTAINS with a phrase

This example finds all names that contain the word " " or " ":

Using CONTAINS with a prefixed wildcard string

This example returns all names with at least one word starting with the " " character:

Using CONTAINS with a proximity operator

This example returns all names that have the word " " near the word " ":

Using CONTAINS with a variable

This example uses a variable instead of a specific search term:

XML and Internet Support
SQL Server 2000 introduces new features that support XML functionality. The combination of these features makes SQL Server
2000 an XML-enabled database server. These new features include:

The ability to access SQL Server using HTTP.
Support for XML-Data Reduced Language (XDR) schemas and the ability to specify XPath queries against these schemas.
The ability to retrieve and write XML data.
Enhancements to the SQL Server 2000 OLE DB Provider (SQLOLEDB) that allow XML documents to be set as command text
and to return result sets as a stream.

Creating IIS Virtual Directories

Before you can access SQL Server using a URL, a virtual directory must be set up on the machine running Microsoft Internet
Information Services (IIS). The IIS Virtual Directory Management utility instructs IIS to create an association between the new
virtual directory and a specific installation of SQL Server, including a database, along with the necessary connection information
(user name, password) and access information.

The virtual directory name and virtual names including template, schema, and dbobject names, all support Arabic characters.
However, the IIS Virtual Directory Management utility does not support RTL reading order.

Figure 18. IIS virtual directory (click picture to see larger image)

Using URL Queries

After configuring the virtual directory, you can use URL queries with Arabic characters to connect to Arabic database objects and
retrieve Arabic data; you can also use an Arabic root tag name. You can pass Arabic characters as parameters. In Microsoft

Internet Explorer, use the RTL option to display the data correctly. The following figure illustrates Arabic parameter passing and
RTL data display.

Figure 19. URL queries with Arabic parameters

Templates

To support Arabic characters within the XML template, you must specify Arabic or Unicode encoding as follows:

<?XML version = "1.0" encoding="windows-1256" ?>
<?XML version = "1.0" encoding="UTF-8" ?>

If you use the second tag, you must save the XML file with UTF-8 encoding.

Example

The example shows an XML template with a simple SELECT query.

Figure 20 shows the result when accessing the template from the URL.

Figure 20. Template example result

Using URL Queries with Mapping Schemas

You can use XDR files containing a mapping schema with annotated Arabic names. Doing so enables you to connect to Arabic
database objects and retrieve Arabic data. The following example retrieves a single row using XPath through a URL:

Figure 21 shows the result.

Figure 21. Result of URL query with mapping schema

Using the OpenXML Function

The OpenXML function in SQL Server 2000 is an extension to Transact-SQL that allows stored procedures to process XML and
generate rowsets from the data for use by Transact-SQL statements.

To use stored procedures to process XML

1. Execute the sp_xml_preparedocument stored procedure to prepare the XML document for use by Transact-SQL
statements.

2. Use the OPENXML-generated rowset in one or more queries.
3. Execute sp_xml_removedocument to remove the prepared XML document from memory.

To add Arabic characters within XML, you must add Arabic encoding or use the "N" prefix for Unicode support:

- exec sp_xml_preparedocument @h OUTPUT,
'<?xml version="1.0" encoding="windows-1256"?>< [XMLARABIC] /> '
- exec sp_xml_preparedocument @h OUTPUT,
N'<root>< [XMLARABIC] /> </root>'

This example shows rowset retrieval using OpenXML:

Figure 22. Query using the OpenXML function

Replication

SQL Server 2000 replication allows you to copy, distribute, and modify data across your enterprise. SQL Server 2000 includes
several methods and options for replication design, implementation, monitoring, and administration to give you the functionality
and flexibility needed for distributing data and maintaining data consistency.

Replication offers various benefits depending on the type of replication and the options you choose, but the common benefit of
SQL Server 2000 replication is the availability of data when and where it is needed.

When you have Arabic data, consider the following:

If replication is implemented between servers using different character sets, SQL Server 2000 does not convert any of the
replicated data and may mistranslate the data as it is replicated, because it is impossible to map all characters between
character sets.

To guarantee successful data replication, therefore, servers are best configured using the same Arabic code pages and
comparison styles.

Generally, if you have an environment where you have different character sets including the Arabic character set, you
should consider using Unicode data types, which do not require conversion. Even in this case, however, varying behavior
may result if different sort orders are used.

Data Transformation Services
SQL Server 2000 Data Transformation Services (DTS) provide a set of graphical tools and programmable objects that let you
extract, transform, and consolidate data from disparate sources into one or more destinations.

DTS Connections

DTS offers the following connections:

A data source connection. These are connections to standard databases such as Microsoft SQL Server 2000, Microsoft
Access 2000, Oracle, dBase, or Paradox; ODBC data sources; Microsoft Excel 2000 spreadsheet data; HTML sources; and
other OLE DB providers.
A text file connection. DTS provides additional support for text files. When specifying a text file connection, you also
specify the format of the file. For example, you should specify:

Whether a text file is in delimited or fixed field format.
Whether the text file is in Unicode or ANSI format.
The row delimiter and column delimiter if the text file is in fixed-field format.
The text qualifier.
Whether the first row contains column names.

A data link connection. These are connections in which an intermediate file outside of SQL Server stores the connection
string.

Code Page, Collation, and Non-Unicode Data Issues

When DTS is used to copy data between SQL Server databases with different code pages and collations, data may be lost or
incorrectly translated. If the code pages used for a source and destination column match, no data loss occurs in non-Unicode
columns. When data is copied between non-Unicode columns, and the source and destination code pages do not match, loss of
data can result.

To avoid translation issues, store international data in Unicode. After it is converted to Unicode, the data can be easily transferred
in any code page or collation, including Arabic. There is no data loss or incorrect translation to any SQL Server 2000 or SQL
Server 7.0 database.

Import text file example

This example illustrates the behavior of DTS with different collations. The example imports a text file using the DTS Import/Export
Wizard. The text file is imported into SQL Server 2000 using different collations with both Unicode and non-Unicode data types.

1. Start with the following semicolon-delimited text containing four fields with the same Arabic data, ' ', as shown in Figure
23.

Figure 23. Arabic text used in example

2. Create the CollTst table with the settings listed below:
Column Data type Collation
coll1 nvarchar (Unicode) Arabic
coll2 nvarchar(Unicode) French
coll3 varchar (non-Unicode) Arabic
coll4 varchar (non-Unicode) French

3. Use the DTS Import/Export Wizard to import the text file into the CollTst table.
4. Select Semicolon on the Specify Column Delimiter page.
5. Select Append Rows to Destination Table in the Column Mappings and Transformations page.
6. Use SQL Query Analyzer to retrieve the data that was imported from the text file into SQL Server 2000, as shown in Figure

24 below:

Figure 24. Results of importing data with various data types and collations

As can be seen from the example, when importing data Unicode and non-Unicode data types, DTS works as follows:

With Unicode data types (coll1, coll2), there is no conversion between different code pages, and the column collation is not
considered through transformation. Notice that in coll2, with French collation, the data copied successfully.
With non-Unicode data types, consider using columns with Arabic collation or your Arabic data will be corrupted, as
happened to the data in coll4.

Conclusion
Microsoft SQL Server™ 2000 was designed to support all the languages supported by the Microsoft Windows® 2000 operating
system, including the Arabic language. In this article you learned about Arabic language support for SQL Server 2000, including
information about Arabic language code page, collations, and server support for Arabic data in Unicode and non-Unicode
formats, as well as feature-specific information concerning setup, administration, replication, data transformation, and more. If
you need more information on any of the subjects, see the relevant topics in SQL Server Books Online.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places
and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail
address, logo, person, place or event is intended or should be inferred.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Best Practices for Business Intelligence Using the Microsoft
Data Warehousing Framework
Microsoft Corporation

July 2002

Summary: Discover best practices and suggestions for working with Microsoft SQL Server and Microsoft Analysis Services for
analytic applications. These practices and suggestions have been compiled from answers to questions submitted by developers
and customers, and cover topics ranging from dimensional modeling to designing OLAP cubes and writing MDX expressions. This
is not an introductory paper. (25 pages)

Contents

Introduction
Relational Data Warehouse Design and Management
DTS and ETL Processes
Cube Design and Dimensional Modeling with Analysis Services
Analysis Services Deployment and Maintenance
MDX Expressions

Introduction
This paper compiles a number of best practices and suggestions for using Microsoft® SQL Server™ and Analysis Services in data
warehousing and analysis. This information has been compiled over time in response to interactions with developers, DBAs,
analysts, customers, and others working with SQL Server and Analysis Services to gain insight into business information.

The information contained in this paper ranges from general best practices to very precise suggestions or tips, such as how to
make the current month the default time dimension member. Some of these topics are discussed in other Microsoft white papers,
while others existed primarily in the database of responses. They are assembled here in the hope that putting them together in
one place is useful to the developer or designer working with the Microsoft Data Warehouse Framework.

This paper assumes you are a developer familiar with Microsoft SQL Server and Analysis Services. This is not an introductory
paper. The SQL Server web site is a good first source of information. A number of helpful papers are available.

For the source of this information, we thank the many Microsoft employees, consultants, and partners who have contributed their
time and expertise to answering questions and tracking their answers in a database.

The general topic areas discussed in this paper are:

Relational Data Warehouse Design and Management
Data Transformation Services and Extract, Transform, Load (ETL) Processes
Cube Design and Dimensional Modeling with Analysis Services
Analysis Services Deployment and Maintenance
MDX Expressions

Relational Data Warehouse Design and Management
This topic area addresses the relational data warehouse that supports the Analysis Services cubes; the design approach is
intended for SQL Server 2000 implementations.

Choosing Star or Snowflake Schemas

When creating the relational data store for your analysis application, you can select either a star or snowflake logical schema for
the data store. A star schema has a central fact table surrounded by dimension tables. A snowflake schema uses a similar
structure, except that a dimension table may reference another, subordinate dimension table.

Analysis Services works well with both logical schema layouts. In general, the snowflake schema is the most efficient way to
populate an Analysis Services cube. Only consider a star schema if end users will be accessing the relational data store directly.

A snowflake schema helps you maintain standard dimensions and clean hierarchies. The snowflake schema is fully

http://www.microsoft.com/sql/techinfo/BI

normalized. Using this schema, it's easier to be sure that each child has one and only one parent and that no two members
have the same name. Of course, you need to define Primary Key/Foreign Key relationships and the appropriate indexes to
ensure hierarchical integrity, but this is much easier to do in the normalized form of the dimension. If using the snowflake
schema, create a surrogate key at each level of the dimension.
A snowflake schema is the most efficient schema for populating an Analysis Services cube. If the only role of the
dimensional relational schema is populating cubes, then there is no reason to create a star schema.
Create de-normalized star dimensions if there is any direct end user access to the relational database. (We recommend that
all user access be through cubes rather than the relational data store.) A star dimension is generally easier for users to
navigate, and queries against a star schema are often more efficient than queries against the equivalent snowflake schema.
One simple approach is to define the star schema as a view of the snowflake tables. Taking this approach solves the
navigation problem. You will need to verify that performance does not suffer. For large, deep dimensions it is usually better
to physically instantiate the dimension a second time as a star.

Directing User Access Through Views

If you must give users direct access to the relational data store (instead of access only through cubes), do not grant direct access
to any of the tables in your relational data store. Instead, create views on each base table and grant SELECT privileges on the
views, directing all user access through those views. Make sure the object names (views and columns) make sense to the business
users; these can be the same names you will use in the Analysis Services cubes.

Using views is good system design for a number of reasons:

Using views improves flexibility by providing a buffer between the physical database and downstream systems, like user
access and cube population.
It increases the likelihood that you can make significant physical changes to the system while minimizing disruption to other
applications.

For similar reasons, we recommend that all user access into Analysis Services should be to virtual cubes instead of physical cubes
(described later in this paper). Using Surrogate Keys

Use surrogate keys to ensure that your data warehouse can grow or expand over time. This practice is critical for large scale
implementations.

The primary key for dimension tables should be a numeric surrogate key (typically integer) maintained by the data warehouse
staging process. The business key (customer account number, vendor number, promotion code) should be an attribute of the
dimension member.

Using the business key instead of a surrogate key as the primary key in the dimension table introduces a number of risks:

The source system may re-use a business key.
You may want to combine information from several sources in the future. Managing keys in the data warehouse enables
you to resolve namespace collisions.
The source system may substantively change the attributes of a dimension member, such as a customer, in a way that you
want to track in the data warehouse.

Using surrogate keys avoids these potential problems. But there is a cost associated with managing surrogate keys. There is a
minor cost with managing the dimension itself, although the IDENTITY column property makes it pretty easy. The most difficult
or expensive part of using surrogate keys is performing the key lookup during fact table loads. However, experienced
practitioners make the up-front investment in surrogate keys, knowing they (or their customers) will reap the benefits down the
road.

Using Partitions in the Data Warehouse

Partitioning is an important strategy for improving cube performance, and is critical for large scale implementations. Relational
databases support a similar kind of partitioning, which is very useful in the relational data store.

The concept behind partitioning is to horizontally partition data by a key, such as date. In a relational database, you do this by
creating separate physical tables for each partition and defining a union view over the member tables. The complexity of the
physical storage is hidden from the analytical user.

Partitioning the data warehouse has several compelling benefits:

It reduces query time
It improves load time and maintainability of the database

Partitioning can solve the problem of pruning old data from the active database.

Selecting a Recovery Mode for the Data Warehouse

The processes for recovering or protecting a data warehouse from standard disasters are the same as with most other database
systems. The DW DBA must be familiar with techniques for backing up and restoring very large databases. In data warehouses,
most of the data is usually static, loaded in the distant past. You can use this information to your advantage when designing
backup and recovery strategies.

The recovery model you choose for the SQL Server 2000 relational data store has a significant effect on your data load
performance and storage requirements. SQL Server 2000 supports the following recovery modes:

Full Recovery: Full transaction logging offers point-in-time recovery – essential for critical transaction databases.
Bulk-logged Recovery: This mode reduces log space consumption and improves performance for large-scale operations,
such as create index and bulk copy.
Simple: Transactions are truncated from the log on checkpoint. This approach offers the highest performance and lowest log
space requirements. However, you can only recover to the last full backup; any changes since that point must be redone.

Point-in-time recovery is critical for many transactional systems. For relational data stores that do not manage user transactions,
however, you can probably sacrifice point in time recovery to minimize the performance impact of logging. If you use either bulk-
logged or simple recovery modes, compensate by performing backups after data loads, or ensuring that your ETL system can
recreate data loads. Recovery modes are discussed in more detail in SQL Server Books Online.

DTS and ETL Processes
The following topics cover using SQL Server Data Transformation Services (DTS) for Extract, Transform, and Load (ETL) processes.

Designing and Maintaining Resilient ETL Processes

A data warehouse is part of a system of information. A relational data store is populated by an ETL system such as Data
Transformation Services (DTS), which also processes the OLAP cubes in Analysis Services. There are several things you can do in
the design and maintenance of the data warehouse to make this system more resistant to problems and failures.

ETL Design

Poor communication between source system DBAs and data warehouse DBAs is a common source of problems. A "minor"
change in a source system may cause a load failure in the warehouse, or result in an incorrect data load.

Exception Processing

In designing the ETL system, make it resilient to the potential problems of load failures, incomplete data loads, and incorrect data
loads.

Design for load failures: All ETL toolsets should be able to set an alarm if a step fails. Recovering from a complete load failure
requires troubleshooting the error and restarting data processing from that point. Modularize the ETL application and design for
restartability at any checkpoint.

Design for incomplete data loads: The ETL system should check data completeness at each process step by comparing rowcounts,
checksums, or hash values at the source and target. This process does not catch problems in the source data itself. If data volumes
are relatively predictable, check rowcounts and aggregate fact amounts against recent loads to ensure each day's data set is in an
expected range. To design for these problems, tag all data rows in the data warehouse with an audit key to simplify the
identification of rows loaded during any specific process. To recover from an incomplete load, you can either back out the partial
load and reload full, or load the incremental data only.

Design for incorrect data problems: If incorrect data stems from an error in the ETL logic, it is best to restore the DW tables to the
point before the error and reapply loads with the corrected system. If load volumes are high relative to the load window, you may
choose to develop a TRANSACT-SQL script to correct the erroneous data (after first testing the script with a copy of the data, of
course). Remember that incorrect data may not be discovered for days or weeks. If confronted with a serious error, most data
warehouses will have to plan carefully how to recover while delivering acceptable service to end users. To that end, improve the
ETL efficiency beyond that required for the load window – it gives you extra room when abnormal situations arise.

Problems In Cubes

Using Analysis Services MOLAP cubes offers a layer of protection from ETL problems, because users access cubes while

processing occurs on the relational data warehouse in the background. Analysis Services offers incremental cube processing with
no downtime for users.

If a past data load is skipped or incomplete, you can process it incrementally using the same process as a normal, daily cube
processing. Be sure the query against the source data picks up only the missing data. Making an audit key part of the DW schema
helps in this.

Analysis Services has no notion of "delete" or "update" for fact tables. There are two ways to "fix" data in a MOLAP partition and
its downstream aggregates:

Back out bad data by inserting offsetting transactions so the totals work out. This can have undesirable side effects, such as
throwing off transaction counts and other computed measures.
Fully refresh the data in the partition. This is the most common approach and works well if you have designed the cube to
be partitioned by time.

The cube can remain available for queries during reprocessing.

Loading Data from a Text File into a Table

There are several methods for loading data from a text file into a table. These are listed below, from fastest to slowest:

1. Bulk Insert via Transact-SQL.
2. Bulk Insert via the DTS ExecSQL task (very close in performance to #1).
3. Bulk Insert DTS task.
4. BCP (although the transform data task is faster in some scenarios).
5. Transform Data DTS task using only the Copy transform, with correct minimal logging options.
6. Transform Data DTS task using one or more predefined transforms other than copy, but no ActiveX® scripts.
7. Transform Data DTS task using one or more ActiveX scripts – VBScript is faster than Microsoft Jscript®.

Other considerations may affect which method you choose. For example, when dealing with very large data sets (100 million
rows or larger), it is advisable to use BCP to import the raw data, then transform the raw data using Join operations in SQL
statements in SQL Server.

Read the SQL Server Books Online topic "Bulk Copy Performance Considerations" for details and tips.

Loading Data from a Relational Source into a Table

There are several techniques for loading data from a relational source into a target table. Again, the performance varies. Here are
our choices for the fastest to slowest methods:

1. Transact-SQL SELECT INTO statement, using local or linked servers. The Transact-SQL statement could be executed in any
environment, but the ExecuteSQL DTS task is generally preferred. The SELECT INTO statement creates the target table and
populates it with the data set resulting from the query. This is the only way to perform a non-logged load directly from a
relational source.

2. Transform Data DTS task, using only the Copy transform, with correct minimal logging options.
3. Transform Data DTS task using one or more predefined transforms other than copy, but no ActiveX scripts.
4. Transform Data DTS task using one or more ActiveX scripts. VB Script is faster than Jscript.

Updating a Table During ETL Processing

Because update statements are logged, updating a table is generally slower than inserting data during ETL processes.

There are several techniques for updating table data based on one or more source relational tables. The fastest technique is to
perform all of the updates in one transaction, using a Transact-SQL UPDATE statement across local or linked servers. This is
usually executed from the ExecuteSQL DTS task. The efficiency comes from performing the update on a set of rows, instead of
generating row-by-row updates.

Two problems lessen the usefulness of this technique:

1. The UPDATE transaction is logged as a single entity. If the update affects many rows, the log can grow significantly. There is
no inherent notion of batch size in the UPDATE statement, although such logic could be written into the Transact-SQL
statement.

2. The logic and syntax of a single UPDATE statement may not support extremely complex business requirements. A stored

procedure can often be written to execute complex logic, but some ETL system developers prefer to avoid stored
procedures.

The Data Driven Query (DDQ) DTS task is a safe and effective alternative. The DDQ task includes batching logic, and ActiveX
scripts can handle complex logic and transformations. Performance for the DDQ task is roughly comparable to executing the
UPDATE on a row-by-row basis using a cursor.

The DDQ DTS task is the only way to perform an update operation directly from information in a file. It is generally more efficient
to load the "update" file into a staging area, then execute a SQL UPDATE statement.

Getting a List of DTS Packages

To get a list of DTS packages (for example, to populate a list box), query the system tables for the msdb database:

/* ListServer Packages */ SELECT DISTINCT name FROM sysdtspackages

Skipping the First Row in a Transform Data Task

If you need to skip the first row of a source file in a transform data task, modify the DTS "Text file (source)" connection definition
to the flat file. Click the "Properties" button, and specify how many rows you want to skip.

Changing the "First row" and "Last row" settings in the options tab of the Transform Data task does not work for skipping the first
row.

Executing DTS Packages: Which Machine?

Understanding where DTS packages execute can be a problem. For example, if you're moving data from serverA to serverB, using
a DTS package stored on serverB, you might assume that the package would execute on serverB. This is not necessarily the case.

DTS packages execute on the computer that launched the execution – regardless of where the package is stored and where the
data resides. Data makes a round trip to the package machine, and any package steps such as ActiveX scripts also execute on that
machine.

In many cases, particularly early in the development cycle, the machine that launches the DTS package is a desktop machine. This
can lead to suboptimal performance for the DTS package.

One way to avoid this is to use Terminal Server during the development cycle, to run the package from an appropriate machine.
During production, schedule jobs using SQLAgent.

Implementing a Wait in a VB ActiveX Script Task

When programming a loop in a DTS ActiveX Script task, it is common to want to "wait" for a time before retrying an operation.
This can be problematic, because VBScript does not have a "wait" function, nor can you use the Timer control as you would do for
a normal VB program. There are Win32 APIs that support waiting for a period of time, but these cannot be used from VBScript.

One technique is to create a stored procedure spDelay with a single SQL statement in it:

CREATE PROCEDURE spDelay (@interval CHAR(9))
AS
WAITFOR DELAY @interval
GO

Then in your code, place the amount of time you want to wait in a global variable (for example, "000:00:13" for 13 seconds) and
use an Execute SQL task with "EXECUTE spDelay ?" passing the global variable as an input parameter.

An astute programmer might want to use an Execute SQL task with the WAITFOR TSQL command directly as the text.
Unfortunately, the DTS Designer does not recognize WAITFOR as a valid TSQL command. In reality, using a stored procedure is
actually a good idea in this case since it would allow you to easily insert TSQL code in the future immediately before or after the
wait – and since you are already in TSQL at the time you can just add it to the stored procedure without changing any DTS code.

Cube Design and Dimensional Modeling with Analysis Services
The following topics describe designing and working with cubes in Analysis Services.

Using Multiple Hierarchies in Analysis Services

Analysis Services lets you create multiple hierarchies for a single dimension to offer alternate views of dimension members. The
Time dimension is a good example; Accounting might want to look at data by fiscal year, while Marketing is interested in the

calendar year.

Using multiple hierarchies has several advantages over creating separate dimensions.

Better usability: Users see the hierarchies (such as time hierarchies) grouped in a logical way.
Shared aggregates: If you define a dimension with multiple hierarchies rather than building separate dimensions, Analysis
Services builds a set of aggregations that are useful to both hierarchies. For example, if the time dimension has both YMD
and YQD hierarchies, the two hierarchies can share aggregates built at the year level.
Shared key: Sharing a single key in the fact table reduces the size and complexity of the fact table.

Using Partitioning to Improve OLAP performance

Using partitioning improves query performance because there is less data for the server to scan on a query. For example, if a year
of data were partitioned by months, then a query for data in July would have 1/12th of the data to consider. Even with Analysis
Service's effective indexing scheme, it's better to have less data to scan per query.

Partitions improve query performance with increased selectivity for querying. You get this increased selectivity by setting the slice
information for the partition. It's easy to forget to set the slices – and lose the performance benefits of partitions. Setting the slice
effectively tells the query engine what data resides in each partition.

However, partitioning raises the concern that queries requiring data from multiple partitions will be slower.

We tested the effects of extensive partitioning on a very large data warehouse project, which had 5 years of data partitioned into
13 4-week months (on a retail calendar) per year, for a total of 65 monthly partitions per cube. We wanted to discover if there
would be benefit in partitioning the data more, or if the extra overhead of hundreds of partitions would be a problem.

As an experiment, we changed from the 65 monthly partitions in the Week-Item cube (the largest of the cubes) to 585 partitions
by Month and Department. So the data is sliced along the two most important dimensions in this cube.

We loaded 50 users running queries representing a complex set of business questions. Many of these queries spanned multiple
months of data, operating either on a year's worth of data or on a rolling 13-week quarter.

The results were interesting:

Under this load, the average query ran 3.2 times faster.
The longest running queries benefited the most, while the quickest queries got a little slower.
Administrative operations got slower. With over 1000 partitions, Analysis Manager takes some time to open the metadata,
and saving cubes is slower. Since routine administrative tasks should be automated, this should not offset the benefits of
the query performance gains.

For more information on partitions, see the paper Using Partitions in a SQL Server 2000 Data Warehouse.

Creating an Empty Partition

When developing very large BI systems, waiting for processing cycles to complete can be a problem. To avoid the needless
waiting, a good practice is to create an empty partition in each cube. This allows the developer or administrator to process that
one partition during a testing cycle and eliminate the wasted time.

For example, this approach was valuable for a customer with a cube with 450 partitions, each with about 100 million rows of data.
By creating a single partition with no data, we could perform programmatic testing without waiting for a partition with data to
process.

To create an empty partition, create either an empty table or view that returns no data.

Cloning Partitions and Aggregations

One of the best features of Analysis Services is the ability to clone objects. The Clone method of the MDStore interface copies the
property values and optionally the collections of major and minor objects of an existing object to a target object of the same class
type. This applies to the following classes:

Databases
Cubes
Partitions
Aggregations

When developing very large cubes with many partitions, it is very efficient to perform the following optimization:

http://www.microsoft.com/sql/techinfo/BI

1. Create a single partition.
2. Use the usage based optimizer with standard types of queries running against that single partition
3. Tune the aggregations
4. Clone this partition to into all the other partitions.

Note This can be done either programmatically or using the Analysis Services partitioning wizard and selecting
the "Copy the aggregation design from an existing partition" option in the last screen of the Partition Wizard.
Creating a custom tool to programmatically manipulate large numbers of partitions is good idea and such a tool
should contain this feature.

Using Numeric Keys for Dimensions

If you are using CHAR member keys, you can dramatically improve dimension processing performance by changing to NUMERIC
member keys. There are several reasons for this:

A simple number comparison is much faster than CHAR comparison.
Storage of the numeric values is much easier and symmetric, since all members have the same length. String values, in
contrast, are stored differently, with an additional level of indirection.
Memory requirements for strings are higher than those for numeric values. A string requires a four-byte pointer, plus the
string length times two (the size of the Unicode characters), plus two bytes for the special end of string character. An integer,
in contrast, is stored on four bytes only.

Using Changing Dimensions

Changing dimensions are a wonderful feature of Analysis Services, but this functionality doesn't come without a cost. This topic
summarizes some of the benefits and effects of using changing dimensions.

Before using changing dimensions in your cube, remember that you can add new members (time periods, products, customers,
and so on) without using changing dimensions. The Changing Dimension feature allows a member to be moved to a different
parent, such as moving a sales person from one territory to another. Check Books Online for more information

Using Changing Dimensions has administrative, processing, and query performance impacts.

Administrative impact

A changing dimension cannot be used to set slices on partitions. A partition has data for a certain collection of members,
determined by the slice. If some of the members were then re-organized in the hierarchy such that they would be in a different
partition, the cube is invalidated.

Processing benefits & impact

The huge benefit of changing dimensions is that you don't have to re-process a cube when a member is moved. However,
aggregations on the cube can be invalidated by such a change. The system deals with this by marking aggregations between the
All level and the lowest level as soft aggregations, meaning that they can be dropped and re-computed when the dimension
changes.

When the system detects a hierarchy change in a changing dimension, the soft aggregations on all cubes using that dimension
are dropped and recomputed as a background activity. This begins after the dimension is incrementally processed, and continues
in the background until all the cubes involved have been re-aggregated. The system does not lock the cubes during this time –
users can still query the cubes.

The net effect is that cubes stay available for querying, and the cube data is not invalidated, so Analysis Services does not have to
re-process all the data from the relational database.

Query benefits & impact

Although cubes remain available during these types of changes, this introduces a query performance issue. Once the soft
aggregations are dropped, and until they have been recomputed, queries cannot benefit from pre-computed aggregates.
Aggregates are key to making OLAP queries fast. In this situation, a query requesting some aggregation that might normally have
been directly available or easily computable from another aggregation must instead compute the aggregation from the fact level
data. The effect is a substantial query performance penalty during the re-aggregation process.

This suggests that even though cubes are fully available following a dimension change, it is still better to make such a change

during the lightest use periods for the Analysis system.

Testing for Large Numbers (>64K) of Children

No member in an Analysis Services database can have more than 64,000 children. If a member in a cube will have more than
64,000 children, you need to create a "dummy" level, either by hand in the relational database or using Analysis Server 2000's
Automatic Member Grouping feature. (See the next topic, Handling Dimensions with Many Children.)

It is important to identify any cubes that exceed this 64K limit before dimension processing. There are multiple ways to check if
you have hit the 64K limit.

The simplest solution to the problem is to issue a query in the database. You can do this by hand during design time, and
programmatically before updating dimensions, during your periodic DW processing. Suppose we have dimension table A that
snowflakes out to table B:

Table A
dim_key
parent_key (fk to B.parent_key)
[other attributes]

Table B
parent_key
[other attributes]

Query to count children

SELECT B.parent_key, count(A.dim_key) as child_cnt
FROM B inner join A ON (A.parent_key = B.parent_key)
GROUP BY B.parent_key
HAVING count(A.dim_key) > 64000

Handling Dimensions with Many Children

The maximum number of children for any parent member is 64,000. If you think of the poor user browsing through a dimension
hierarchy, it's clear that 64,000 is an upper limit anyway. Most Analysis Services practitioners agree that you do not want more
than 1000-3000 members per parent, just for usability. Some client tools handle this scenario more gracefully than others.

Your objective, then, is to reduce the number of children for any dimension member.

The first solution is to manage the data on the relational design side – don't build a dimension with too many members per
parent (perhaps > 1000 members). Figure out some way to group members between the parent and child in the original design.
For example, you could group businesses belonging to each state by City, or City and Zip code. For a parent-child dimension, this
approach is the only way to solve the problem.

For standard (non parent-child) dimensions, you can use the "Member Groups" feature in Analysis Services 2000. Analysis
Services automatically inserts a "directory" level with this feature. To create automatic grouping:

1. Identify the level that has too many members per parent.
2. Introduce an additional level right above it and change the type of that level to have automatic grouping.

You can even hide the automatic grouping level, although doing so is not recommended for browsing usability reasons.

One drawback of the automatic group is that it applies throughout the level of that dimension. If your hierarchy is unbalanced and
only one parent (perhaps "All Other") has a lot of children, the automatic grouping is added even for other, reasonably-sized parts
of the hierarchy.

The best practice is to resolve the problem in the design phase by inserting a meaningful level to support graceful drilldown. The
automatic Member Groups help you if you can't change the dimensional design, or if the dimension grows beyond the cardinality
expected during the design phase.

Understanding Member Unique Names

A member's unique name can be generated in different ways, according to the MDX Unique Name Style property of the
connection string.

Initially, OLAP 7.0 generated unique names using a traditional "Name path" algorithm. For example, [Time].[1997].[Q1].[1].

Another alternative is a key path algorithm, where the path is defined by the keys rather than the member names. In the
FoodMart Time dimension, the keys are the same as the names, so the unique name would be: [Time].&[1997].&[Q1].&[1].

However, keys are often meaningless surrogate integers, and are usually shorter than names, so the key path is a good
alternative.

Analysis Services 2000 can intelligently create a member's unique name using the information in the member properties. Not
only are these names the same length or shorter than the key path or name path algorithm names, they are guaranteed to be
stable and unique over time.

Although the unique name algorithm should be transparent to the DBA, it's not. Some client tools specifically parse the unique
name, and so older algorithms must be maintained. The MDX Unique Name Style property of the connection string sets the
possible name algorithms:

Style Property Description
0 Default (maps to 2
1 Key path
2 Name path
3 AS2K algorithm

There is one other complication. If the dimension advanced property Allow Duplicate Names is FALSE (as it usually is), and if
the MDX Compatibility property of the connection is 1 (the default), then the "MDX Unique Name Style" is set to 2 (key path) for
that dimension, regardless of how you have set the property in the connection here. This is because if MDX Compatibility is set to
1, you may be using an older or less functional client, so should use the older unique name algorithm. Otherwise, the default is
the new, AS2K style (3).

Using Virtual Dimensions vs. Physical Dimensions for Member Properties

If you have a property in your dimension table, 98% of the time you want to make this attribute a member property and then
create a virtual dimension from it. In SQL Server 2000/Analysis Services 2000, virtual dimensions have aggregates and multiple
levels. You can map attributes as member properties and create virtual dimensions from there.

One exception is the case in which the member property takes on many values – perhaps hundreds of thousands of values. In this
case, you should take one of the following approaches:

Create a member property that groups the attribute in more manageable buckets, such as age ranges, and build the virtual
dimension from the smaller domains.
Alternatively, build a regular (physical) dimension from the attribute. You may find it more effective to propagate the
attribute's key into the fact table in the relational database.

Building the Dates Dimension from a Separate Table

Although you can build a Dates dimension directly from a datetime column in the fact table, it's usually not a good idea to do so.
If you build the Dates dimension from the fact table, you get a dimension member only for those dates that appear in the fact
table. Users generally expect to see a full calendar in the dimension.

Instead, create a physical Dates dimension table.

At its simplest, the Dates dimension table could contain one datetime column and a row for each day. Frequently you will need to
add attributes to indicate holidays, peak periods, and so on.

Of course, it would be better to design the fact table with an integer surrogate key to the Dates dimension.

Speeding Computations Using the NON EMPTY Keyword

Computations that include the NON EMPTY key word can be slow and consume a lot of client resources. You can improve
performance of these calculations by editing the definition of the calculate member to set the Non Empty Behavior property to
point to one of the base measures. This triggers an optimized code path that typically cuts the computation time dramatically.

Using One Distinct Count Measure per Cube

Analysis Services cubes are limited to one distinct count measure per cube.

Although this is one more than competitive products, you still may find yourself wanting more than one in some cases. If this is
so, the solution is simple. Build separate physical cubes for each distinct count measure, and combined them with a virtual cube.

It's good practice to always separate out the distinct count measure in its own cube to protect the performance of queries that do
not use the distinct count measure.

Directing User Access through Virtual Cubes

Do not grant any end users access to physical cubes in your Analysis Services database. Instead, create a virtual cube on each
physical cube, and grant privileges on the virtual cubes.

Using virtual cubes is good system design. It improves the flexibility of the system, providing a buffer between the physical cubes,
which cannot easily be renamed, and the user access applications. Using virtual cubes greatly increases the likelihood that you can
make significant physical changes to the system with minimum disruption to the business users.

For the same reasons, all user access into relational databases should be through views rather than physical tables.

Analysis Services Deployment and Maintenance
These topics cover the operational issues of deploying and maintaining Analysis Services cubes.

Using Views for Cube Building Queries

When building cubes, particularly when doing so programmatically, it is a good practice to create a view on the dimension table
in the relational database and build the cube dimension from that view, instead of from the table.

This practice has the following advantages:

It provides a layer of insulation between the relational database and the cubes, making it easier to change one without
rebuilding the other.
It pushes the definition of the cube-building query into the relational database, where it is visible to the DBAs who can then
understand and optimize it.
If the column names in the cube are different from the relational column names, then using this approach you only change
column names once (in the view definition) instead of every time you rebuild the cube in Analysis Manager.

Creating Local Cubes Programmatically

Local cubes let you access cube data while you are disconnected from the Analysis Server. If you are making extensive use of local
cubes, you may want to create them programmatically and push them, via the web, to remote computers.

There are several ways to do this. The SQL Server 2000 Resource Kit includes code for building custom cubes. SDG Consulting
has developed an external tool, which you can purchase or download for trial at http://localcubetask.com, for programmatically
creating the cubes.

To distribute the cubes, you could either email the results or develop a web application to provide the most recent cubes on
demand. Here are a few options:

A simple server-side Active Server Page could use the FileSystemObject to find out what local cubes were created by the
DTS task. (Use a folder structure to add the semantics.) The ASP file generates a hyperlink to each cube, or walks down the
folder structure to the local cube.
Use the approach above but link to an HTML file that the DTS package creates with the .cub file. The HTML file includes
detailed information, such as what is in the file, when it was created, and what the trigger was. It also includes a hyperlink to
the file itself. To complete the loop you could create an ASP page that generates the required DTS task to create the .htm
and .cub files, so the users could request daily, weekly and monthly cubes themselves.

Both of these approaches require some development work, but are quite manageable.

Changing the Data Source for a Dimension

Analysis Manager does not let you change the data source for a dimension. In most cases, this is good, as changing the data
source can make problems with cubes.

However, you might want to change data sources during the development processes. For example, you might legitimately want to
rename the data source if you didn't give thought to the name when first creating the data source and need to change it to
something more descriptive before production.

If you are careful, you can use DSO to change the data source name:

1. Create a new data source
2. Point all objects to the new data source
3. Drop the old data source.

http://localcubetask.com/

A better option might be to simply recreate the cube.

You can also script out the metadata and recreate the cube with the new data source names.

Configuring Pagefiles on a Large Analysis Server

Loading large dimensions can overload the default virtual memory pagefile on Analysis Server. When this happens the system
reports the following error: "Memory error [Failed to reallocate space]", and the application log shows the error "The
server is out of memory."

Use the following guidelines when configuring pagefiles for large servers:

1. Add a pagefile on a second disk as big as the physical memory on the system.
2. Expand the default pagefile to its maximum on the system disk (typically C:).

Using Archive/Restore with Large Databases

The Archive/Restore add-in for Analysis Services 2000 (and earlier versions) does not work with any file over 2GB in size. This
restriction applies to any databases with cubes of 2GB if you are using a single partition, or any cube with a partition larger than
2GB.

To determine if you are affected by this restriction, go to the Analysis Services data folder to see the subfolders for each database.
Using Windows Explorer, do an advanced search for any files in the database folder and its subfolders that are over 2GB. If a
database has a file larger than 2GB, you cannot use Archive/Restore for that database, and should use a file system
backup/restore utility instead, such as the Windows 2000 utility or a third-party backup program.

When using an alternate, file system-based backup for an Analysis Services, observe the following practices:

Pause or stop the MSSQLServerOLAPService while performing the backup, to ensure the integrity of the repository and
data folder structure.
Back up the entire data folder and the Analysis Services repository together as one backup operation. This ensures that the
repository matches the data folder metadata.
If you have migrated the repository to SQL Server, then you need to back up that data from SQL Server.

Restoring an Analysis Server Database Programmatically

In general, the best way to restore an Analysis Server is to use the Analysis Manager Restore database action. But if you want to
restore your database programmatically, perhaps as part of the deployment process, you can use the MSMDARCH command.

If you're using DTS, use the DTS Execute Process task to execute the command; this is thoroughly documented in the SQL Server
Books Online topic "Msmdarch command."

The following VB code snippet shells out to execute the MSMDARCH command. There is no return code; check the error log file to
track success or error.

Dim Servername As String
Dim DataPath As String
Dim ExePath As String
Dim CabFileName As String
Dim LogFileName As String
Dim Execstr As String
Servername = "Servername"
' Olap Data
DataPath = """C:\Program Files\Microsoft Analysis Services\Data\"""
' Olap Binaries
ExePath = """C:\Program Files\Microsoft Analysis Services\Bin\"""
' Backup File
CabFileName = """C:\temp\tutorial.cab"""
' Log File
LogFileName = """C:\temp\tutorial.log"""
Execstr = ExePath & "MSMDARCH.EXE"" /R " & Servername & " " & DataPath_
 & " " & CabFileName & " " & CabFileName
Shell Execstr, vbHide

Improving Processing Performance by Increasing the Processing Buffer Size

You can improve processing performance significantly by increasing the Process Buffer Size until all cube calculations will fit
inside the Process Buffer without paging to disk.

There is no easy formula to determine the optimum setting for the Process Buffer Size. You can monitor the Analysis Server:Proc
Aggs Performance counter Temp file bytes written/sec to determine whether Analysis Services is paging to disk during cube
processing. A non-zero value indicates Analysis Services is paging aggregations to disk: the Process Buffer Size is too small.

Depending on the size of incremental data loads, dimension sizes, and other server demands on memory, you may not be able to
fit all aggregations into the Process Buffer during processing. Nonetheless, it is generally helpful to increase the Process Buffer
Size substantially, to 50 MB or even 1 GB for a large system with substantial installed memory.

Minimizing Memory Usage for Dimensions

Analysis Services loads all dimensions for all databases into volatile memory on startup. During processing, the server consumes
additional memory to process updates to dimensions and cubes.

The executable behind Analysis Services service is called msmdsrv. With Windows NT 4.0 and Windows 2000 Server, the
msmdsrv process is limited to 2GB of RAM. With Enterprise Edition, you can enable Application Memory tuning and configure
Analysis Services to use up to 3GB of RAM.

You can estimate the amount of memory that will be used for dimensions by opening a command prompt and navigating the
Microsoft Analysis Services\Data directory. Once there, issue the following command:

dir .dim /s

This works for a single database, and does not include private dimensions.

Memory requirements can increase substantially when processing dimensions. You should be able to work around an out-of-
memory condition in the following ways:

After processing dimensions (especially very large dimensions), you may want to stop and restart Analysis Services. This
eliminates any memory fragmentation that may have occurred during processing.
As we discuss elsewhere in this paper, increasing the Process Buffer Size setting on Analysis Services will greatly improve
processing performance. However, memory assigned to the Process Buffer is not available to hold dimension data during
processing. Ideally, the Process Buffer will be large enough to hold all aggregation calculations during cube processing, and
still leave enough memory to hold all the dimension data. If the Processing Buffer Size has been set too large, leaving
insufficient memory to hold the dimensions, you should decrease the Processing Buffer Size.
Increase the paging file size or create a second page file.
Create remote partitions, which will distribute memory and CPU utilization.
If the dimensions are very large, you may want to reduce the size of the dimension as follows:

Convert dimension keys to integers.
Eliminate any unnecessary, redundant data elements.
Delete or reduce the number of member properties used in dimension.

Alternatively, you can convert to ROLAP storage.

Process large dimensions in a separate transaction. If you process all dimensions in a single transaction, all dimensions and their
shadow copies must be in memory at the same time. If you process the large dimensions in separate transactions, memory
requirements are reduced. The tradeoff to this approach is that you lose the ability to roll back changes to one dimension, based
on a processing error in a 2nd dimension. This functionality is available only if the two dimensions are processed within a single
transaction.

Using Analysis Services Timeouts

There are several kinds of timeouts in the SQL Server 2000 DSO object model.

DSO Server.ConnectTimeout is the timeout for DSO to connect to the server.
DSO Server.Timeout is the timeout for DSO to communicate with the server once the connection is made.
There is no configurable timeout for the server and DSO to connect to the data source (such as SQL Server or Oracle). DSO
always uses 15 seconds for this timeout, and the server uses the default.
The registry entry CurrentVersion\MaxOLEDBTimeout is the timeout for the server and DSO to communicate with the data
source (executing SQL statements).
The DSO LockTimeout property is not used at this time.

Using the Server Properties dialog in Analysis Manager, you can set a Server Timeout property. This sets both DSO
Server.Timeout and CurrentVersion\MaxOLEDBTimeout to the same value. It does not make sense for the two timeouts to be

different, as the smaller timeout will fail the operation.

OLAP Services 7.0 has different timeout settings:

The Server Connection Info\ServerConnectTimeout registry entry, if specified, is the timeout for DSO to connect to the
server.
DSO Server.Timeout is the timeout for DSO to communicate with the server once connected.
There is no configurable timeout for the server and DSO to connect to the data source (such as SQL Server or Oracle). DSO
always uses 15 seconds for this timeout, and the server uses the default.
The registry entry CurrentVersion\MaxOLEDBTimeout is the timeout for the server to communicate with the data source,
executing SQL statements.
There is no LockTimeout property.

In the Server Properties dialog in OLAP Manager, you can set an OLE DB Timeout property, which in turn sets the
CurrentVersion\MaxOLEDBTimeout to this value. The only way to set the DSO Server.Timeout property is to edit the repository
in Access or write the following DSO code:

Svr.Timeout = 10 svr.Update

Using the MDX Compatibility Property, or Hiding Hidden Members

If you have a ragged and/or unbalanced hierarchy in your database, the MDX Compatibility property manages the way that the
"holes" that make your hierarchy ragged are displayed in the client tool.

As an example, consider a Geography dimension that has levels for Country, State or Province, and City. The USA has all of these
levels, but a smaller country (such as Israel) may skip the State or Province level, while a truly small country may not have State or
City.

The Hide Member If property can be used on the dimension level to hide the member if it's missing or the same as the parent.
But what happens on the client side when a user drills down to a "hidden" member?

Some user interfaces, such as Excel, are very tightly bound to the rows-and-columns paradigm. These client applications may not
want to hide the "hidden" member because they want the columns to line up. Also, client applications written for SQL Server 7
may not handle hidden members gracefully because that feature is new in SQL Server 2000.

If the hidden member is at the bottom of the tree (such as the country of Andorra, which has no City or State), Analysis
Services assumes any client tool can deal with this case.
If the hierarchy is missing a member somewhere else in the hierarchy, such as Israel, which has Cities and Country but no
province or state, the MDX Compatibility property in the connection string controls how this is displayed on the client
side. If it is missing, set to the default value (zero), or set to 1, then Analysis Services behaves in the most conservative way
and does not hide the hidden member. In this case, you would see "Israel..Israel..Haifa". If the connection string sets the
MDX Compatibility Property to 2, the hidden member is truly hidden. This is the behavior displayed by the Analysis
Manager's browser tool on a dimension level with a ragged/unbalanced hierarchy.

Setting the Default Time Period to the Current Month

The default member for each dimension is usually set to the first member in the dimension. In the Time/Period dimension, this
would be either "All" or the first year of the time period if there is no "All."

To change a dimension's default member to another specific member, change the Default Member property in the dimension
editor. This would work if you want to set the default to a specific month or year.

To change the default member to the current month, you'll need to create an MDX expression that returns a member, such as:

Time.[ThisYear].[ThisQtr].&[ThisMonthNumber]

To do this, you need to construct a string and convert that string to a member. We'll use the FoodMart database as an example.
Using the philosophy that complex MDX statements are best constructed a piece at a time, we'll first get the month right, and
leave in basic values for the other parts:

StrToMember("Time.[1998].[Q1].&["Str(Month(Now()))+"]")

Now() is a VBA function that returns the current date/time. Month() is a VBA function that returns the month number (1-12)
of a date.
Str() is a VBA function that casts the month number to a string.

The "&" lets me refer to the month by number [1..12] rather than by name.

If I write this in January, everything inside the StrToMember function resolves to the string "Time.[1998].[Q1].&[1]". The
StrToMember function casts that string to a member.

The next step is to fix the quarter. Adding the quarter logic makes the MDX expression longer, but not very complicated. We're
nesting three iif statements that assign the quarter based on the month:

StrToMember("Time.[1998].Q"+iif(Month(Now())<=3,"1",iif(Month(Now())
<=6,"2",iif(Month(Now())<=9,"3","4")))+"].&["+Str(Month(Now()))+"]")

Finally, we'll add the logic for the current year. In theory, this should be as simple as the month. The FoodMart database only has
two years, 1997 and 1998 – none of which are the current year. So, for this to work in FoodMart, we'll set the date to the current
year if it's 1998 or earlier (highly unlikely), and otherwise set it to 1998. In practice, it will always use 1998, but this code shows
the logic for setting current year:

StrToMember("Time.["+iif(Year(Now())>=1998,"1998",Str(Year(Now())))+"].
[Q"+iif(Month(Now())<=3,"1",iif(Month(Now())<=6,"2",iif(Month(Now())<=9,"3","4")))+"].&
["+Str(Month(Now()))+"]")

Enforcing Cube Security: Client or Server

Using Analysis Services, roles can be enforced on the client or the server. There are several factors to consider when
implementing security:

Cell level security is available only when security is enforced on the client.
When security is enforced on the client, the full results of a query may exist in the pivot table services cache on the client.
Any query returns only those cells available to the user, but because the restricted data exists temporarily in the client cache,
client-enforce security is less secure than server-enforced security.

There is no simple rule of thumb for determining which security model delivers the best performance. Factors affecting
performance include the following:

If the security scenario aligns with the dimension's hierarchies, server enforcement is faster, all else being equal. If the
restricted members are split across the hierarchy, the cube should perform better with security enforced on the client.
If "Show visual totals" is defined, client-side security should perform better. The extra computation to display visual totals
can be performed from the client cache.

MDX Expressions
The following topics offer suggestions for using Multidimensional Expressions (MDX) with Analysis Services.

Finding the First Period with Data in the Cube

Finding the first member in a dimension is simple with the FirstChild function. But finding the first member that has data
associated with it is a little different.

We'll use the FoodMart.Sales cube as an example. To find the first year that has data, use the Filter function on columns from
Sales. Execute the following query on the FoodMart database in the MDX Sample Application:

SELECT
 HEAD(NonEmptyCrossJoin([Time].Members,1),1) ON COLUMNS
FROM SALES

The Filter function above filters out all of the members in the time dimension that don't have data associated with them. The
head function returns the first member in the list. You can change this to a tail function to see the last member with data.
Remember that the head and tail functions return a set. Please see the Microsoft Knowledge Base article Q301934 for more
information.

Testing for the Highest Level

Using nested iifs (Immediate Ifs) in MDX is useful for creating expressions that compute differently for different levels. How do
you test to see if you're at the top of the hierarchy?

As usual, there are several ways to do this with MDX. The following two methods work whether or not there is an (All) level:

iif ([Organization].CurrentMember.Parent is null, …, …)

iif ([Organization].CurrentMember.Level.Ordinal = 0, …,…)

If your dimension has an (All) level, you can test explicitly. For example:

iif([Store].CurrentMember.Levell.Name = "(All)", …, …)

It would be better to compare the objects using the IS comparison operator:

iif([Store].CurrentMember.Level is [Store].[(All)], …, …)

It is always better to compare objects than strings. Comparing objects is faster. The equal (=) operator for string comparison is
case sensitive, so less stable.

Listing Member Properties

When populating a list, you might want a distinct list of the values a member property may take.

Here is a sample MDX expression for getting a list of unique values, based on the FoodMart example:

WITH SET PropSet AS "CreatePropertySet([Product].[All Products], [Customers].[Name],
[Customers].CurrentMemberProperties("Education"))' MEMBER measures.ProdName AS
'Product.CurrentmMember.Name'
SELECT {PropSet} ON COLUMNS FROM Sales WHERE Prodname

This solution has the following drawbacks:

It works with at most 759 distinct property values, and fails with more.
The property values are exposed as strings, even if they are numbers. You can convert them using the StrToValue function.
We need an additional "parent member" (like the All Products in the example above), because we're adding a calculated
member to the "All" level for every distinct member property value.

However, it does the job and executes quickly.

Computing a "Since Time Began" Total

You may want to cumulate a measure since "the beginning of time" in a cube. Create a new calculated measure CumulativeSales
in the FoodMart Sales cube, as:

Sum(Time.CurrentMember.Level.Members.item(0):Time.CurrentMember, [Measures].[Unit Sales])

Browse the Sales cube, and put Time on Rows. Compare [CumulativeSales] to [Unit Sales] to highlight the effects of the new
calculated measure. Alternatively, execute the following query on the FoodMart database in the MDX Sample Application:

WITH MEMBER [Measures].[CumulativeSales] as
'Sum(Time.CurrentMember.Level.Members.item(0):Time.CurrentMember, [Measures].[Unit
Sales])'
SELECT {[CumulativeSales], [Unit Sales]} ON Columns, [Time].[Month].Members ON Rows
FROM Sales

Determining Your Best Customers' Favorite Products

It's often useful to identify your best customers' favorite products. If you are dealing with very large dimensions, you should
approach the problem thoughtfully.

For example, assume you want to construct an MDX query to get the 10 best customers, and the 5 best products for each.

First, define the top 10 customers in a named set:

WITH SET Top10Cust AS 'TopCount(Customers.[Name].Members, 10, ([Time].[1997], [Unit
Sales]))'

Then use the Generate and CrossJoin functions in the body of the query:

SELECT { [Time].[1997] } ON COLUMNS , Generate(Top10Cust, CrossJoin(
{Customers.CurrentMember}, TopCount([Product].[Product Name].Members, 5, ([Time].[1997],
[Unit Sales])))) ON ROWS FROM [Sales]

Creating an MDX Expression Using the Current Day

It's quite easy to create an MDX function that has knowledge of the current day, because MDX can use VBA functions
transparently.

Try creating the following computed measures to see what they return. (You should probably put Measures on columns on Time
on rows in your cube's display grid.)

Now()
Month(Now())
Year(Now())
Year(Now())
StrToValue(Ancestor(Time.CurrentMember, Year).Name)

Creating a Calculated Measure that Sums a Product

For some calculated measures, you want to control exactly when and how Analysis Services aggregates. For example, if you are
trying to create a calculated measure, Extended Price, that multiplies quantity by price and aggregates the results, you might try:

Extended Price = [Measures].[Quantity] * [Measures].[Price].

But Analysis Services would first aggregate the quantity, then aggregate prices, then multiply the aggregates – coming up with a
completely different measure than what you had intended.

The best solution to this problem is to create the calculation (Q*P) in the source database and aggregate the result. You can do
this in a view definition, without physically instantiating the calculation. This approach is preferable because it offers the best
query performance.

Alternatively, you could create a calculated member that sums the extended price over the members at the correct level, like the
following:

WITH MEMBER measures.demoSum AS 'sum(Descendants([Product].CurrentMember, [Product].
[Product Name]), [Measures].[Unit Sales]*[Measures].[Store Cost])' SELECT {[Measures].
[Unit Sales], [Measures].[Sales Count], [Measures].[demoSum], [Measures].[Store Sales
Net]} ON COLUMNS, [Product].[Product Department].Members ON ROWS FROM Sales

This computation may take a while if your cube is large and the calculation is made at a high level.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Best Practices for Using DTS for Business Intelligence Solutions

Trey Johnson and Mark Chaffin
Encore Development

Updated June 2004

Applies to:
 Microsoft SQL Server 2000
 Microsoft SQL Server 2000 Analysis Services
 Microsoft SQL Server 2000 Data Transformation Services (DTS)

Summary: Discover the best practices for using DTS within the Data Warehousing Framework to capture and present data as
Business Intelligence solutions. (108 pages)

Contents

Introduction
DTS and the Data Warehousing Framework
Package Design Practices
Guidelines for Inclusion of Metadata in Package Designs
Analysis Services Management Practices
Decision Support Objects within DTS
Creating Partitions
Cloning Partitions
Merging Partitions
Dropping Partitions
Guidelines for Managing OLAP Partitions
Analysis Services Processing Task
Execute on Main Thread
Using DTSRUN to Perform Analysis Services Processing
Programming the Analysis Services Processing Task
Guidelines for Performing Analysis Services Processing with DTS
Practice Summary
Auditing and Error Handling Practices
Fail Package on First Error
Practice Summary
Enhancing DTS Functionality Practices
Conclusion
Appendix A – About the Authors
Appendix B – Code Listing for .NET Custom Task

Introduction
Business Intelligence (BI) solutions such as Data Marts and Data Warehouses rely heavily on tools to migrate data between
heterogeneous data sources and support consolidated analytical decision-making. Microsoft SQL Server 2000 Data
Transformation Services (DTS) provides the flexibility and advanced functionality to automate the architecture by which
operational data is captured and delivered to the end-users of BI applications. The flexibility found within the DTS platform
provides for a multitude of approaches to solving the data warehousing requirements of a solution leveraging the Microsoft Data
Warehousing Framework.

This white paper explores the best practices that can be leveraged in delivering comprehensive BI solutions via the Microsoft Data
Warehousing Framework. The white paper is comprised of six sections: Overview of the Data Warehousing Framework; Package
Design Practices; Extract, Transformation, and Loading (ETL) Practices; Analysis Services Management Practices; and Enhancing
DTS Functionality Practices. Each best practice section defines the preferred approaches, the guidelines, and the benefits of the use
of this practice.

This white paper begins with insight into the Data Warehousing Framework and DTS role within the Data Warehousing
Framework. The next section details the best practices for approaching DTS package design, exploring concepts like metadata-
driven configuration and modular package development. The white paper details the best practices of extracting and staging
source data, transforming and cleansing data in readiness for the production data warehouse, and managing the loading of
slowly changing dimensions and fact areas. The practices for performing integrated management of the SQL Server 2000

Analysis Services are then covered with approaches for managing the creation of and processing of OLAP partitions, along with
other OLAP Cubes and Dimensions. In the remaining sections, the best practices for monitoring the overall execution, through
error handling and auditing, of the DTS package solution architecture and enhancing this architecture through custom
programming are explored.

Technologists, familiar with the Data Transformation Services platform within SQL Server 2000, are the primary audience for this
white paper. For an overview of the features found within Data Transformation Services, read the Data Transformation Services
(DTS) in SQL Server 2000 white paper or consult the Microsoft SQL Server Books Online.

DTS and the Data Warehousing Framework

Overview of the Data Warehousing Framework

Microsoft developed the Data Warehousing Framework as an open, scalable architecture that speeds, simplifies, and reduces the
cost of building, managing, and using today's business intelligence applications. The Microsoft Data Warehousing Framework
provides all of the benefits of a full-featured, high-performance, integrated data warehousing platform—SQL Server and
Microsoft Office—while offering the broadest choice and flexibility to information technology (IT) professionals seeking scalability
and specialized applications.

Figure 1. Microsoft Data Warehouse Framework

The illustration above shows the core characteristics of the Data Warehousing Framework.

DTS Role in the Data Warehousing Framework

For its part, Data Transformation Services interacts with all elements of the Data Warehousing Framework. As a provider of
services for extracting heterogeneous data from OLEDB and ODBC compliant data sources completely through the
transformation and loading of operational data into analytical, multi-dimensional data stores; DTS owns a significant role in the
success of these solutions. A core element of making DTS successful within the framework is taking a sound approach to building
the architecture of DTS packages for maximum flexibility, the first of our best practices explored in this white paper.

Figure 2. DTS role in framework

Package Design Practices
Delivering a valuable, sustainable, and most importantly, flexible DTS technical architecture for an SQL Server 2000 Business
Intelligence solution requires investment in the design considerations for achieving these goals. The concepts of the core best

practices for designing DTS packages within BI solutions are explored in this section.

Metadata-Driven Approach

Driving Packages with the Dynamic Properties Task

The Dynamic Properties task, added in SQL Server 2000, is one of the most efficient ways to utilize package configuration
information (or metadata) stored outside of the DTS package. This information is read at runtime and the execution is dynamically
customized by this task. The task allows property information to be obtained from sources such as INI files, relational DBMS
queries and textual data files. Storing the package, or more appropriately, the task, information within an external information
source allows for packages to migrate nicely between development and production environments and isolates the changes to the
package configuration to text files or DBMS tables. This also paves the way for modular package designs leveraging metadata.

Populating Global Variables via Execute SQL Task

Another method for sourcing package metadata information is to use the Execute SQL task and the output rowset parameter to
capture all of the settings for the global variables in a single query in lieu of multiple queries with the Dynamic Properties task.

Use of the Execute SQL task requires that a minimal amount of ActiveX scripting be done to turn the multiple rows of global
variable records returned as a rowset into actual global variables. The example below shows the necessary script to turn a three-
column rowset (GlobalName, GlobalValue, and GlobalConversion), stored in the global variable GlobalVariablesRowset,
into a collection of global variables for the package.

 Dim GlobalRowset, GlobalName, GlobalConversion

 Set GlobalRowset = DTSGlobalVariables("GlobalVariablesRowset").Value

 'Check for GlobalVariable Records within the GlobalRowset
 If GlobalRowset.RecordCount <= 0 Then
 'Exit the function and report failure
 Main = DTSTaskExecResult_Failure
 Exit Function
 Else
 GlobalRowset.MoveFirst()

 Do While Not GlobalRowset.EOF
 GloballName = GlobalRowset("GlobalName").value
 GlobalConversion = GlobalRowset("GlobalConversion").value

 'Dynamically build the VBScript for
 'assigning a value to the global variable
 'Note the use of the Conversion column
 'which holds "CStr", "CBool", "CInt"
 EXECUTE("DTSGlobalVariables(cstr(GlobalName)).Value =" & _
 GlobalConversion & "(GlobalRowset(""GlobalValue"").value)")
 GlobalRowset.MoveNext()
 Loop
 End If

 Set GlobalRowset = Nothing
 Main = DTSTaskExecResult_Success

As this script executes, global variables are either created or updated with the appropriate value and datatype.

Designing the Metadata-Driven Package

The toolset provided by DTS to readily build metadata driven packages makes the rationale for doing so very compelling. As the
design process is begun, a logical approach is to look at the categories of packages that are to be developed. Within these
categories, the variable parameters apt to change, once the package is in a production environment, should be explored.
Developers with a background in object-oriented development might draw a parallel between designing packages driven from
metadata and the design of objects (i.e., Packages) that expose properties (i.e., Global Variables) that are used by methods (i.e.,
Tasks) of the object.

Below is a simplified portion of the package design illustrating the use of the Execute SQL task to retrieve a global variable
rowset, the ActiveX Script task to convert the rowset into global variables and the Dynamic Properties task to assign global
variables values to other task properties (not depicted) within the package.

Figure 3. Simplified package design

Guidelines for Inclusion of Metadata in Package Designs
The flexibility provided by DTS offers the opportunity to utilize differing but comparable approaches to creating metadata-
oriented package designs. Regardless of the approach, there are a few key elements to consider when designing for the use of
metadata. These considerations are:

As with other architectural design in BI solutions, develop a strategy for using metadata and map this strategy to benefits
for doing so. The benefits can address the ease of maintenance, the support for remote configuration of the package, or
countless others.
For text file based metadata (i.e., INI files or XML files), be certain to reference these files by fully qualified UNCs (i.e.,
\\MyServer\MyShare\MyINIFile.INI) to make certain of the greatest portability within the network environment.
Consider using SQL Server relational tables for global variable information as this approach ensures the overall connectivity
to the source or target database and protects against issues like resource locking that can be experienced with file-based
resources.
Drive settings that are apt to change such as server names, OLAP cubes and source file load paths from metadata.
Do not attempt to drive everything from metadata. By overusing metadata, not only will the metadata be unmanageable,
often the packages themselves are too.

Employing sound judgment, leveraging the approach discussed and considering these guidelines will build value in the design
and construction of practical, flexible metadata driven packages.

Parent/Child Package Approach

Global Variables

Global variables are often an essential element of all package architectures. Global variables provide the means for
communication between tasks and act more as parameters to task execution; the more complex an overall package design
becomes. However, global variables are not solely intended for communication among tasks within a single package. In fact, the
global variables are essential for enabling a design approach referred to as parent/child package (or hierarchical packages)
design.

Within the parent/child package approach, the workflow from a package continues through the workflow of a child or
subordinate package's execution. A common example would be a parent ETL loading package executing a child OLAP processing
package. This example will be explored further in a later portion of the white paper.

Execute Package Task

The Execute Package task provides off-the-shelf functionality for implementing parent/child package designs. A parent package
can include an Execute Package task and then identify the storage location and global variables to pass to the child package. At
the point when the task executes, subsequently executing the child package, the task can have the descendant package(s) join its
transaction.

This task provides for the rapid inclusion of child packages as functionality "building blocks" within the overall design.

Execute Package via Object Model

Developers have leveraged the parent/child package design since the first introduction of DTS in SQL Server 7.0. The means for
delivering this functionality came in the form of using COM automation and ActiveX Scripting to pass global variables to and
invoke a child package. There are both negatives and positives to this approach. Using COM automation, a package cannot join
the parent package's transaction. However, the benefit to using COM automation is there is no requirement to identify the version
GUID of the package being executed, as is the case with the Execute Package task.

Designing the Parent/Child Package Hierarchy

To add clarity to the two design approaches for implementing the parent/child package hierarchy, a visual comparison of the two
techniques is shown below.

Figure 4. Execute Package Task Properties window

Figure 5. ActiveX Script Task Properties window

Fortunately, with exception of the noted differences, using the approach of executing a package from the Execute Package task
or from the ActiveX Scripting yields the same results – one package being executed by another. The goals for designing and
developing to a parent/child package hierarchy are often one or more of the following:

Reduce workflow complexity within a single package (i.e. make packages easy to read in the design environment)
Modularize the design of packages (i.e. ETL packages for Dimension Extract, Dimension Load, Fact Extract, Fact Load, OLAP
processing and others) for maintenance efficiencies
Manage the execution of multiple packages with dependencies upon each other
Desire to share variables between packages
Encapsulate specific functionality, driven by metadata, which makes the child package re-usable.

Pursuing more than one of the above design goals is very common for moderate to complex ETL designs within BI solutions.

Guidelines for Parent/Child Packages

While the tools to create parent/child package architectures offer a simple implementation, there are additional guidelines to be
considered when exploiting this practice. The most notable guidelines are:

Manage the level of nesting among packages and try not to go more than two children deep.
Understand the role of the two Failure properties of packages and tasks, respectively "Fail Package on First Error" and "Fail
Package on Step Failure".
Establish a concurrent usage estimate for re-usable packages; if it is high, store the child package within SQL Server. Doing
so eliminates the risk of exclusive file locks (when the package is stored as a structured storage file) being placed upon the
child package, thus destroying concurrency.
Employ a naming convention that indicates the core function of the package (that is, dimension loading packages begin with
"DIM"; fact loading packages begin with "FACT", and so forth).

Practice Summary

Benefits

Incorporating metadata into the DTS architecture and relying upon multiple parent/child packages provides a strong foundation
for the BI solution. The most noteworthy of these are:

Repeatable deployment

Using metadata to configure a package means that deployment is as easy as updating the metadata. This is a sound
approach when combined with the need to preserve the version (or GUID) of a child package called from an Execute
Package task.

Parallelism made easy

Adopting a hierarchical mindset early in the overall design unveils the option of significant degrees of parallelism through
multiple threads calling the same package.

Maintainability supporting rapid change

Designing one child package for a particular purpose provides the ability to "upgrade" an element of the enterprise DTS
architecture without touching several packages. The net result is a more rapid approach to maintaining packages.

Precautions

The precaution areas for this practice and the subordinate approaches are limited but do exist. The key precaution area is:

Longer initial design

The result of following the prescribed approaches is a longer period to design a package initially because of the dependence on
metadata and determining how metadata should be used. However, this doesn't mean that a minor delay does not have its
benefits. For the quick prototyping or one-off loading of data, the use of parent/child packages or metadata might be more
significant than the process DTS is being used to solve.

The means in which child packages are developed will create either a very manageable or barely manageable architecture
depending upon the thought put into the design and the desire to achieve the previously mentioned goals. Following the
guidelines and techniques provided, should help achieve a successful implementation of Parent Child packages, building on the
metadata driven design. Ultimately, beyond these design "best practice" activities, the solution set to achieving the overall BI
solution architecture with DTS is found in the next sections.

Extract, Transformation, and Loading (ETL) Practices

By definition most BI solutions are only as good as the approaches taken to extract, transform and load data into relational data
stores. These ETL processes are the pivotal point for success or failure in most BI solutions. DTS as a tool provides the facilities for
extracting heterogeneous data, automating the transformation of data, and supporting the end-to-end process of loading data
from an OLTP schema to a dimensionally modeled data store. For these reasons, this section covers the best practices for ETL.

Source Extraction and Stage Loading Approach

Universal Data Link (UDL) Connection files

A UDL file is an object outside of DTS. As its name implies the file (*.UDL) provides access to data on any of the system
installed OLEDB providers. The UDL file maintains all of the connection information within the file. DTS readily supports the
UDL file as a data source for a package connection.

Text file destination

DTS' support for text file destinations provides a convenient standard format for data from source systems to be extracted
into a file. Exporting to a file from a source system extract makes the remaining portions of the ETL process easier to
manage.

Bulk Insert task

The Bulk Insert task is a functional means of loading data from a text file directly into the associated SQL Server staging
table. The benefits of bulk insertion include speed of loading as one of the overriding factors for its use.

Managing Portability through UDLs

As was briefly discussed, configuration metadata provides many key benefits including platform portability. Many organizations
engaged in BI solution development provide a development/testing platform and a production platform for use during the
project. As is sometimes the case, there may be even more physical servers supporting the solution's development. In addition to
server-based machines, developers will often use their own desktop machine as well for development. The end result is a myriad
of machines on which the same version of the DTS package needs to run and have its connection information point to
appropriately.

Figure 6. Connection and Datalink properties windows (click image to see larger version)

UDL files solve the portability of connection information among a solution's server resources. The graphic below shows both a
UDL file being configured and referenced from within DTS.

Selecting the Always read properties from UDL file option will ensure a connection based upon a UDL will reference the
connection information found within the UDL file at every execution. This functionality makes the UDL file the "missing link" for
metadata based connection information.

Achieving Autonomy through the Text File Export

The approach considered the best practice for performing a source extract is to extract from heterogeneous data sources into a
common text file format. Using the combination of an OLEDB or ODBC compliant data source and a delimited destination file, the
extraction portion of an ETL process can be executed without mandating the immediate execution of successor transformation
and loading processes. Some common design drivers for using this technique are:

Source systems generally not hosted on the same server as the BI solution
Production schedules between source systems and the data mart have differing windows of availability
Multiple geographically dispersed source systems

Benefits to using text files include:

Ability to rapidly export data from a source system
Immediate determination of data issues when bulk inserting into the staging tables
Availability of an offline copy of the data for the purpose of troubleshooting, data analysis and other functions of the BI

developer
Source system independence = true autonomy

By taking data in the form of a text file, source systems can migrate between relational database platforms or even more
realistically just change schemas altogether and the BI solution will be blissfully unaware of any such event. By insuring continued
conformance to a text file layout, the burden resides with the updated source system and the extraction package to pull the data
into this format. The remainder of the ETL architecture remains unchanged. Using mocked up copies of the text files, allows for the
prototyping of data sources before their extraction is complete making possible a more productive development lifecycle.

Staging in the DTS ETL Process

The process of loading data captured in the extract process to relational tables provides a single environment, the stage
environment, where data is made ready for the production data mart/data warehouse BI solution. Within the staging environment
should reside non-indexed, relational tables that are structurally similar to the text files extracted from the source systems. This
similarity should include data types that are the expected data type of columns extracted from the source systems.

Loading text file data into stage tables should be performed with the Bulk Insert task within DTS. Using the Bulk Insert task
provides for efficient loading of the tables and also raises the red flag on data that is not conformant to the columns in the staging
environment. By raising exceptions during the loading of the staging environment, troubleshooting can begin with the source and
not be obscured by an otherwise partially successful load of the production setting.

Guidelines for Extracting and Stage Loading

While the techniques of the approach for extracting data and performing stage loading are not entirely complex. There are some
guidelines to ease the overall development of this portion of the solution. These are:

Explore the portability of data sources through UDL files. Start with a desktop database like Microsoft Access or use an
instance of SQL Server and then move to another SQL Server. If the extracts still work by only changing the UDL files, then
the design is a success.
Avoid trying to transform data when extracting or loading the staging environment. This puts an unnecessary burden on the
source system, extends the duration of the extract, and jeopardizes the validity of the logic if the source system changes.
Use the stage as the BI sandbox. Anything goes in this environment especially non-log intensive operations like TRUNCATE
TABLE before loading.

Managing the overall design to the concepts presented here will provide a flexible approach to extracting and staging data for the
BI solution. Once the data is in the staging environment, data transformation and cleansing can be performed.

Data Transformation and Cleansing Approach

Computed Columns and Checksum Functions

A valuable feature introduced in SQL Server 2000 is the support for computed columns. Computed columns provide the ability to
create a column defined by a computation that updates as the other elements of the computation change. Of particular interest in
SQL Server BI solutions is the combination of the CHECKSUM() or BINARY_CHECKSUM() functions with the computed column
feature.

The CHECKSUM() and BINARY_CHECKSUM() functions provide the ability to pass multiple variables, table columns or an entire
row of a table as parameters. The result of the functions will be a checksum for the entire set of passed parameters. The
BINARY_CHECKSUM() function differs only slightly in the fact that the values are converted to their binary representation. The
binary representation essentially makes the result case sensitive with differing checksums being produced for two occurrences of
the same string with a differing case. To best understand the effect of the checksum functions, an example is provided below:

CREATE TABLE [Person]
(
 [PersonID] [varchar](20) NOT NULL ,
 [LastName] [varchar] (30) NOT NULL ,
 [FirstName] [varchar] (30) NOT NULL ,
 [MiddleName] [varchar] (30) NULL ,
 [PersonChecksum] AS
 (checksum([PersonID],[LastName],[FirstName],[MiddleName])) ,
 [PersonBinaryChecksum] AS
 (binary_checksum([PersonID],[LastName],[FirstName],[MiddleName]))
)

The above DDL creates a Person dimension staging table using both checksum functions as computed columns. Querying a row

from the table yields:

Table 1. Query Results

PersonID LastName FirstName MiddleName PersonChecksum PersonBinaryChecksum
1234-0001 Smith John Edward -52588501 -1292791390

An index can be placed on either or both the PersonChecksum and PersonBinaryChecksum columns to create a Hash Index. Doing
so would thus make the data results for the computed columns physical (or materialized) within the table. Once the index is in
place there is no need to reference the textual information about the Person when performing a dimensional update, discussed a
little later in this Best Practice section.

Computed columns can also support come of the common transformation types which typically occur in the preparation of data
for the final BI relational data store.

Types of Transformation

There are a limitless number of transformation types that can exist for data taken from source systems which provide dimension
and fact records. Some of the more common transformation types include:

String parsing – taking a subset of the string information found within a char or varchar datatype
Type conversion – taking the value found within a source column and representing it as a differing data type in the final BI
solution (i.e., tinyint value of 1 or 0 converted to a char(1) value of Y or N)
Domain lookup – transformation where the value from the source system is used to lookup an alternate value from a data
store (i.e., using the natural key for a dimension to lookup the surrogate key for the dimension in the data mart)
Numeric conversion – conversion of a number to meet a standardized value across the entire data mart (i.e., multi-
national monetary sales are converted into US dollars for analysis)
Domain data validation (bounds checking) – transformation where values are checked to see if they are within an
acceptable bounds (i.e., sales dollars should be between $20,000 and -$20,000)

An equal number of limitless places exist within the ETL for transforming data. The general categories for these transformation
locations are:

Outbound transformation – transformation of data as it is extracted from the source system
Inbound transformation – transformation of data as it is loaded into the staging area
Staging transformation – transformation which occurs in the staging area after the data has been loaded and before it is
pushed to production
Production load transformation – transformation built into the loading process when data is taken from the staging area
and inserted into the Dimension and Fact tables in the production data store

Technologies for Performing Transformations

There are three likely technical approaches to implementing logic for transformation of data within a DTS architecture. The three
approaches, in preferred order with benefits of each, are:

Transformation using Transact SQL

Transact SQL can be utilized to apply the various categories of transformation to data stored within Relational staging tables.
Typically consisting of UPDATE and DELETE statements, Transact SQL provides many benefits to the transformation process.
Some of these are:

1. High performance manipulation of data within the staging area
2. Support for complex transformation implementations by making multiple passes through the data
3. Generally easier for database development staff to implement transformation logic
4. Closely affiliated with preferred logic for production loading

Transformation using DTS Stock Transformations

DTS provides a number of stock transformations to accomplish many of the tasks for manipulating the data in a BI staging
environment. The techniques for using these transformations in conjunction with the staging environment often require multiple
stage tables for transforming data in various ways. The key strengths of using DTS transforms are:

1. High performance manipulation during Outbound/Inbound transformations

2. Extensible through development of custom transformations in Visual C++
3. Richly supported within the Package design environment

Transformation using DTS ActiveX Script Transformations

One of the stock transformations offered by DTS is the ActiveX Script transformation. The variety with which this transformation
can be used has benefits to the transformation process. The opportunity for using this transformation approach incorrectly also
exists. Below is a listing of some of the benefits of using this technical approach.

1. Support for compound custom logic during the Outbound/Inbound transformations
2. Support for the inclusion of COM objects during the transformation
3. Integrates the Multiphase Data Pump feature within DTS

The biggest cautions about this final approach are to not expect the same degree of performance as is offered by Transact SQL
and Stock DTS transformations. The overhead of using ActiveX Scripting logic typically produces results that are remarkably
slower than performing transformations using the other technical approaches.

Multiple Passes to Transformation

During data transformation, it is typically a good idea to employ transformation by making multiple passes through the original
data. SQL Server, and Transact SQL, generally best implements compound transform logic in multiple passes using set based
operations. Set based operations provide the facility for manipulating larger data sets more efficiently than a singleton approach,
typically based upon cursor logic of processing a row at a time.

Chunking T-SQL Logic for Log Performance

While SQL Server best supports set based operations, the warehousing and transformation of large quantities of data can affect
the overall size requirements of the transaction log. A common approach, to lessen the impact on the transaction log when
performing logged data manipulations, is to "chunk" the data into smaller subsets. These smaller subsets of data can readily be
manipulated with a lesser number of transactions to log and thus a smaller overall transaction log requirement.

Chunking can be performed in a number of different ways within Transact SQL. Generally, a WHILE loop is required and within
the loop the subsets are updated using techniques that rely on ROWCOUNTs or WHERE clauses to affect only a subset of the data.
Following each iteration of the chunked logic, the transactions associated with this logic are committed allowing SQL Server to
free the associated transaction log space. Because the intent is to isolate transactions to each chunk of data being processed, it is
not advised that a transaction is begun or committed outside of the WHILE loop.

Consolidation of Transformations

With all of the options for transformation logic, the opportunity to create transforms in multiple portions of the ETL processes
exists. While the opportunity does exist, doing so is not considered an element of this best practice. Consolidating transformation
logic to Transact SQL operations within the staging area provides the following benefits:

Eases maintenance of transformation logic
Lessens susceptibility to source system platform changes
Minimizes the impact on source systems if the logic is done in the staging area
Provides opportunity for creating a repository of transformation functions for use in other BI initiatives

Guidelines for Transformation and Cleansing of Data

The combination of techniques discussed for transforming and cleansing data is likely the means for providing the right BI
solution. As these combinations are being considered, there are some guidelines that should provide for the optimal approach.
These guidelines are:

When using checksum and binary_checksum functions, be sure to perform the checksum comparisons in the same order.
A different checksum value will result if column order or parameter order is changed.
If using ActiveX Scripting transformations, use the ordinal number of the column in lieu of its name for better performance.
Consider chunking as an option even if initial data sizes are small. Chunking provides the easiest means for assuring
scalability within the Transact SQL processing during transformation.
If possible, be sure to add indexes only after data has been loaded to the staging area to achieve the most optimum
performance.

Achieving efficient and effective results transforming the data within the Staging Area provides an eased transition into the
loading phase of the ETL process.

Managing Slowly Changing Dimension Loading Approach

Slowly Changing Dimension Types

Within the Business Intelligence industry, there are three types of slowly changing dimensions. These three slowly changing
dimension types are:

Type I – as data for a dimension member changes, the latest column values overwrite the previous dimension record thus
eliminating the history of the dimension member.
Type II – as data for a dimension member changes, the latest column values are stored as a new record within the
dimension providing multiple occurrences of a dimension member allowing for the history to be preserved.
Type III – as data for columns of a dimension member change and if the data mart desires to preserve the last version of
that changed column, the original data is moved to a last version column on the dimension record and all new dimension
information overwrites the existing columns.

Note In general terms and specifically for this white paper, the Type III slowly changing dimension is not being
considered.

Multiphase Data Pump

The multiphase data pump is a feature introduced with SQL Server 2000 that provides even greater flexibility to using the DTS
data pump to move data between data sources. The Data Pump now supports phases that occur prior to the sourcing of data,
during the transformation of a row, after the transformation of a row, at the completion of a batch of rows, after the last data has
been read from the data source and at the completion of the data pump operation. These phases are exposed and are capable of
having script associated within them through use of the ActiveX Script Transformation.

While the processing of data using ActiveX Script transformations was remarked as the least favorable in transforming large
quantities of data, the specific process of loading dimension records is generally less data intensive. Given this, the techniques
presented in this section offer a preferred approach to managing dimension change and leveraging the intrinsic features of DTS
in doing so.

Global ADO Disconnected Recordsets

While touched upon earlier in the section, Populating Global Variables via Execute SQL Task, a crucial element of this approach is
being able to cache the dimension members found within the production data mart. The cache for this data is a client-side
disconnected recordset stored within the global variable by the Execute SQL task.

Indexing Disconnected Recordsets

Regardless of the location, indexes provided faster search operations on data. This fact is especially true of the disconnected
recordset. In order to place an index on a disconnected recordset, the Optimize property of a field within the fields collection of
the recordset object is set to True. The below code snippet shows the exact process of indexing the recordset.

Rs.Fields(<Field Name or Ordinal Here>).Properties("Optimize") = True

BatchUpdate() Disconnected Recordsets

A recordset that has been disconnected supports the updating of its values. An example of doing just this is a part of the Type II
dimension change management discussed later in this section. Updating the disconnected recordset would have no value if these
updates could not be written back to the connection that originated the recordset. Fortunately, ADO supports the reconnection of
the recordset and the recordset object provides a BatchUpdate() method. The BatchUpdate method provides the facility for
populating the recordset's source with updates, in a complete fashion, that were done while disconnected.

Managing Change with DTS on Type I Slowly Changing Dimensions

The management of dimension change on Type I slowly changing dimension requires that:

1. New dimension members are inserted into the production dimension table
2. Existing dimension members that have one or more changed columns are updated
3. Existing dimension members that have not changed do not need any modification but can be overwritten to simplify the

logic.

These three steps in the loading of the dimension are readily supported by the functions of DTS. DTS provides the Data Driven
Query task and Lookups to allow for the conditional inserting, updating or skipping of rows. The illustration below depicts the
DTS package workflow for performing the dimensional load.

Figure 7. Connection task

The Configure Connection task is required to change the ARITHABORT option due to the destination dimension table
containing a checksum computed column. Specifically, this Execute SQL task executes the statement:

SET ARITHABORT ON

The remainder of the load logic is accomplished in the "Load Dimension" Data Driven Query task. Below is a listing of the
transformation logic used to load a Type I slowly changing dimension.

'Declare constants for each column to make
'the resolution of the column more efficient at run-time
Const ACCOUNT_NUM = 0
...
Const COUNTRY = 9

Function Main()
Dim AccountWK

'Perform Lookup to see if an account exists
AccountWK = _
 DTSLookups("LookupAccountKey").Execute(DTSSource(ACCOUNT_NUM))

DTSDestination(ACCOUNT_NUM) = DTSSource(ACCOUNT_NUM)
... The same mapping is performed for 10 columns
DTSDestination(COUNTRY) = DTSSource(COUNTRY)

if IsEmpty(AccountWK) then
 Main = DTSTransformstat_InsertQuery
else
 Main = DTSTransformstat_UpdateQuery
End if
End Function

Managing Change with DTS on Type II Slowly Changing Dimensions

The management of dimension change on Type II slowly changing dimension requires:

1. New dimension members are inserted into the production dimension table
2. Existing dimension members that have one or more changed columns are flagged as no longer being the current version

and are given an expiration date.
3. For the changed dimension member, a new record is created to preserve history and it is identified as the current record.

The achievement of these steps is done using a combined technique of comparing the checksum information from the staging
and production tables, assessing change and using the Transform Data task to insert new records into the dimension table. One
element that is not a feature of the Transform Data task is support for updates. Use of a client-side, disconnected recordset will
support the updates necessary in managing the dimension change.

To begin, a package is created with a Transform Data task between two connections. The transformation for the task is then

modified to be an ActiveX Script transformation and the transformation code is as follows:

'constants for the COLUMNS
Const PRODUCTID_WK = 0
...
Const CURRENT_RECORD_IND = 20
Const EFFECTIVE_BEGIN_DATE = 21
Const EFFECTIVE_END_DATE = 22
Const CHECKSUM = 23

Dim Conn
Dim Rs
Dim nRowsInserted
Dim nRowsSkipped
Dim nRowsUpdated

Function PreSourceMain()
'Runs at the beginning of the transform task
nRowsInserted = 0
nRowsUpdated = 0
nRowsSkipped = 0

'We want to establish
'an ADO Disconnected Recordset

' Create instance of connection object and then open the
' connection.
Set Conn = CreateObject("ADODB.Connection")
Conn.Open "file name=" & DTSGlobalVariables("gsUDLFile").Value

' Create instance of recordset object and open the
' recordset object against a table.
Set Rs = CreateObject("ADODB.Recordset")

' Setting the cursor location to client side is important
' to get a disconnected recordset.
Rs.CursorLocation = adUseClient

'Load all of the current dimension records
Rs.Open "Select * from <production data mart dimension> " + _
 " where Current_Record_Ind = 'Y' order by productid_nk ASC ", _
 Conn, _
 3, _
 adLockBatchOptimistic

' Disconnect the recordset.
Set Rs.ActiveConnection = Nothing

Conn.Close

If Rs.EOF And Rs.BOF Then
 Rs.Close
 Set Rs = Nothing
Else
 Rs.MoveFirst
 'Put an index on the Disconnected Recordset
 Rs.Fields(PRODUCTID_NK).Properties("Optimize") = True
End If
PreSourceMain = DTSTransformstat_OK
End Function

At the completion of the PreSource phase of the data pump, an indexed, disconnected recordset is created for the purpose of
performing updates and leaving the data pump task only to perform INSERT operations. Using the transform data task allows for
the use of the fast load option. In most Type II dimensions, the majority of the writing of data is inserting new records and not
typically performing large quantities of updates.

The next phase to be examined is the row transform phase, which uses the Main() function for its logic. Within this phase, the
index is searched by natural key, the production record's checksum is compared to the staging record's checksum and the
maintenance logic described earlier is performed. The code illustrating this process is:

Function Main()
'Runs for each ROW Based Transformation

If Not (Rs Is Nothing) Then
 If Not Rs.BOF And Not Rs.EOF Then
 Rs.MoveFirst
 'Search for the record in the disconnected recordset
 Rs.Find "productid_nk = " & DTSSource("ProductID_NK")
 End If

 If Not Rs.EOF Then
 If (Rs.Fields(CHECKSUM).Value) = _
 (DTSSource(CHECKSUM).Value) Then
 'Skip the row because it is entirely the same
 'Exit the function because there is no column
 'mapping required
 Main = DTSTransformStat_SkipRow
 Exit Function
 Else
 'Mark the row as not current in the disconnected
 'recordset as the new record has changed
 'and the old record must be expired
 Rs.Fields(EFFECTIVE_END_DATE).Value = Now
 Rs.Fields(CURRENT_RECORD_IND).Value = "N"

 End If

 End If
End If

'Map the column values as all rows at this point are inserted
...
DTSDestination(PRODUCTID_NK) = DTSSource(PRODUCTID_NK)

'Set the effective start date for this dimension member
'and the effective end date to a VERY future date
'Make this record the CURRENT version
DTSDestination(EFFECTIVE_BEGIN_DATE) = Now
DTSDestination(EFFECTIVE_END_DATE) = "01/01/2075"
DTSDestination(CURRENT_RECORD_IND) = "Y"

Main = DTSTransformStat_InsertQuery

End Function

Through the course of the row transform phase, the Type II changes are maintained. The last essential step is to make sure the
updates performed against the client-side recordsets are written to the database. This will happen in the Post Source phase of the
data pump. The logic to reconnect the recordset and synchronize the updated records is shown in the following code, the
PostSourceMain() function.

Function PostSourceMain()
' Create instance of connection object and then open the
' connection.
Set Conn = CreateObject("ADODB.Connection")
Conn.Open "file name=" & DTSGlobalVariables("gsUDLFile").Value

If Not (Rs Is Nothing) Then
 ' Connect the recordset.
 Set Rs.ActiveConnection = Conn

 'Push all of the updates back to the server
 Rs.UpdateBatch

 Rs.Close
 Conn.Close

 'Cleanup
 Set Rs = Nothing
 Set Conn = Nothing
End If

PostSourceMain = DTSTransformstat_OK
End Function

As the Post Source phase of the data pump completes, all data is successfully updated within the dimension.

The use of the disconnected recordset offers an increase in the performance over the Data Driven Query approach. While the
latter approach was used to show Type II dimension change management, a Type I dimension could use this approach as well.

Managing Dimension Change and Loading with Transact SQL

A suitable alternate approach to using the data pump features of DTS would be to use Transact SQL statement to load a
dimension from the staging table. For each dimension to be loaded, the execution of two Transact SQL statements should
typically provide for the same results as the earlier DTS-centric approaches.

Type I Dimension Logic

To manage the change of a Type I dimension, the first statement would be an UPDATE statement performing an inner join
between the staging table and the production table on the natural key column (provided by the source system). The second
statement would be an INSERT statement with a NOT EXISTS clause at the end to be certain that only non-existent dimension
member records were being inserted.

Type II Dimension Logic

To manage the change of a Type II dimension, the first statement would be an UPDATE statement performing an inner join
between the staging table and the production table on the natural key column (provided by the source system). This update
statement would set the effective end date and mark the record as no longer the current version where the checksums did not
match. The second statement would be an INSERT statement with a NOT EXISTS clause at the end to be certain that only
dimension members with no existing "current" records were appended.

Employing this logic within DTS would require the use of an Execute SQL task.

Guidelines for Managing Slowly Changing Dimensions

Outside of transformation logic, the management of dimension change is one of the more logically intense operations of the ETL
processing. Considering the approaches presented will provide the essential foundation for loading of dimensions. In conjunction
with the approaches provided, here are practical guidelines to assist in implementing the approaches.

When using the Data Driven query, be sure to use a separate database connection for the lookup to insure the read and
write operations of the data pump are not serialized from using the same connection for performing lookups.
Use the checksum or binary checksum functions to dramatically simplify the comparison logic for Type II updates.
Store connection information within UDL files so that the reconnection of a recordset can be achieved by using a connection
opened on the UDL file. Doing so will limit the potential of hardcoding the connection information within the DTS package
and requires that only the path to the UDL file's location is stored as metadata in a global variable.
Perform all other data transformations to dimension members prior to attempting the loading to simplify the loading
process.
Look at SQL Server Books Online documentation regarding the multiphase data pump.

Following the load of all dimensions, the process of loading the fact data for the BI solution is the final step for completing the
loading of the relational data store.

Managing Fact Loading Approach

Using Transact SQL Joins to Assign Keys

The most essential part of loading fact data, the additive data elements which exist at the intersection of dimensions, is
establishing the relationship of the data as it came from the source system(s) to the already loaded dimension members.
Establishing this relationship is as straight forward as performing a join to the production dimension table from the staging fact
table on the natural key column(s).

Data Pump Options – Insert Batch Size

One of the primary drivers for using the data pump task is the ability to batch transactions. Modifying the Insert Batch Size
option of the data pump enables the batching of transactions. Provided with a value greater than zero, the data pump will
perform that specified quantity of inserts in a transactional batch. The batching of transactions is an important element of
scalability. This is especially true when loading large quantities of facts and attempting to keep the overall transaction log size
requirements small.

Breaking the overall inserts into batches has the same benefits as the approach to "chunking" described in the transformation and

cleansing approaches.

Limiting Indexes to Increase Speed

Loading fact data is one of the larger consumers of time in the BI solutions load window. A factor to consider, in the earliest stages
of designing the solution, is whether or not the relational data will be queried or if this data is only meant to be a source to
Analysis Services OLAP Cube architecture? If the latter is true, the opportunity to eliminate all indexing on fact data exists. Within
Analysis Services, a cube can have an optimized schema that allows the cube to process ONLY the fact table's data and does not
require joins to dimension tables as well.

The benefit of not having any indexes in place is a substantially two-fold (or more) increase in the loading of data into the fact
table. While auditing is discussed later in the white paper, there exists a requirement to index an audit column on the fact table.
Doing so allows for the backing out of one or more incremental loads of fact data should anything go awry in the load process.

Process for Loading Fact Records

By performing a LEFT OUTER JOIN between the fact table and the dimension tables, this allows for the accurate representation of
missing dimension member keys. Missing dimension member keys can be checked for in the SELECT clause using a CASE
statement and the IS NULL evaluation. This check is performed in order to assign a null key value for fact records with missing
dimension keys to two special dimension records. These dimension records are the "Invalid" and the "Unknown" dimension
members. A sample Transact SQL statement is provided below showing the join between a dimension table in production and a
fact table in the staging area.

SELECT DimensionKey = CASE
 WHEN Dim.Key is null AND Fact.NaturalKey is null
 THEN 0 /*Unknown Dimension Record Key*/
 WHEN Dim.Key is null AND Fact.NaturalKey is not null
 THEN -1 /*Invalid Dimension Record Key*/
 ELSE Dim.Key END,
 Fact.Measure1, Fact.Measure2
FROM StagingDB..Fact LEFT OUTER JOIN
 ProductionDB..Dimension ON (Fact.NaturalKey = Dim.NaturalKey)

The result of mapping the keys for existing and null values is completely accurate data, reflecting the overall state of data quality,
being inserted into the fact table.

The records returned from this join operation can then be loaded into the target fact table using the DTS Data Pump. While it
would be possible to use just Transact SQL and an INSERT statement, the ETL would then loose control over how it handled single
erroneous records or small batches with erroneous records. With the batch loading facilities of the data pump operations,
erroneous data can be isolated to a batch and the remainder of the fact records can be loaded.

Guidelines for Fact Loading

In most ETL designs, the process for loading fact records is less complex than any other aspect of the ETL. The approach presented
here offers a solution for loading fact data fully or incrementally and readily supports the loading of multiple fact table partitions
for maximum scalability. Considering the elements presented in this approach, here are some guidelines to contemplate when
developing production fact loading ETL:

If the relational data store includes multiple fact table partitions, each load thread should address a single partition at a time.
Try to avoid using conditional partition logic or fragmented fact data insertion to a view.
Be sure to have up-to-date statistics on the dimension table indexes either by running the UPDATE STATISTICS statement
following the data load or using the "Auto Update Statistics" database option.
Because the batch commit size is being used to manage both the size of the batch inserted to the fact table and the grain
with which errors are captured, a reasonable balance between these two factors should be established. Using a setting of 0
or 1, causing either a single batch or a batch per row should typically be avoided.
Consider loading of data to multiple fact partition tables to support the future pruning of the BI solution. If an operational
requirement is to keep 36 monthly partitions available then removing the 37th partition each month is as easy as dropping
that table and recreating the partitioning view.

Practice Summary

Benefits

Leveraging the approaches presented for the Extract, Transformation and Loading best practice will result in many benefits for
making operational data available through the SQL Server BI platform. The chief benefits of this best practice are:

Restartability

Extracting data to text files, transforming data within the staging area and loading data using the DTS Data Pump provides
for the ability to select a portion of this process as the "restart" point should problems exist. By having data in text files, there
is no need to diagnose data quality issues within the production source system and more importantly there is no need to re-
run the extracting from this source system if the process needs to be restarted.

Manageability

Defining transformations within the staging area and performing key lookups when loading insures that these pivotal tasks
of the ETL process are capable of being maintained.

Comprehensive load functionality

Through blending of Transact SQL and the DTS Data Pump features, a loading solution ties together the distinct features of
these platforms and allows for a comprehensive approach, leveraging the right technical characteristics of each.

Control over reporting data quality

By indicating the most common data quality issues, like the "Invalid" and "Unknown" dimension members, the DTS ETL
solution plays a significant role in making the organization aware of common data quality issues while not jeopardizing the
availability of analytical data.

Precautions

The precaution areas for this practice and the approaches are limited but do exist. The key precaution area is:

Reporting of Data Quality

While the reporting of data quality was mentioned as a benefit, organizations with significant dimension or fact data quality
issues may perceive the reporting of data in this way as a shortcoming of the BI solution. Managing expectations around the
data quality and establishing the perception of the correctness of this approach makes certain that the organization sees the
value in recognizing the existence of both quality and inferior data.

Historically, the ETL processes were only concerned with making data available through the relational data mart or data
warehouse. Today, with the Data Warehousing Framework, the final destination for data in many BI solutions is the Analysis
Services platform. The next section discusses the role of managing Analysis Services partitions as part of the DTS BI solution
infrastructure.

Analysis Services Management Practices
The focus of this section is on the management and processing of Analysis Services dimensions, cubes, and partitions. The
techniques portrayed here are a subset of the many approaches for managing Analysis Services from both DTS and other custom
applications. Analysis Services provides multiple interfaces for programmatically managing the structure of the OLAP database
schema and the functions of the analysis server. Elements, such as managing aggregations on partitions (including usage-based
optimizations), dynamically controlling access to OLAP objects through security roles, performing an archival of an OLAP
database, and managing the lifecycle of other OLAP objects such as linked cubes, are all accessible through these interfaces and
worthy of automation within the Data Warehousing Framework (not to mention their own white paper). This section focuses on
the role of Decision Support Objects, one Analysis Services interface, and the DTS Analysis Services' Processing task (built on top
of Decision Support Objects) as two technologies to begin automating the management of Analysis Services.

Decision Support Objects Within DTS
To achieve even greater performance and scalability in mid-range to large-scale business intelligence solutions leveraging the
Analysis Services platform, one should consider the management of multiple OLAP partitions within individual OLAP cubes.
Further, if the decision has been made to partition relational data, the choice of creating and subsequently managing OLAP
partitions is really a foregone conclusion. As with all of the other techniques and practices described, DTS can play a significant
part in correlating relational and multi-dimensional data stores and managing the OLAP availability of this data through the
Analysis Services management processes of creation of, cloning, merging, and dropping OLAP partitions, as part of an overall BI
architecture. Along with DTS, a main contributor to this functionality is a collection of COM libraries of SQL Server 2000. These
libraries, the Decision Support Objects or DSO, are installable individually as an option of the Analysis Services installation or by
default as part of the full installation of the Analysis Services component of SQL Server 2000.

DSO is the COM interface to the Analysis Services Management functions. By using DSO and DTS, many of the functions from the
Analysis Manager user-interface are available programmatically within ActiveX Script and other programming languages
supporting COM automation. To provide a foundation for managing partitions with the Decision Support Objects and DTS, the
portions of the DSO object model hierarchy necessary to achieve this approach are presented below.

Figure 8. DSO with DTS

Creating Partitions
The process of creating partitions is one of the more common scenarios for using DSO within DTS. Automating the OLAP
partition creation process can allow the Analysis Services cube and multi-dimensional data store to evolve with the relational data
in the BI solution. The driver for using DTS to create a new OLAP partition is often the need to support managing the OLAP
schema dynamically in response to the changes in the relational data store.

The below script can be placed within any ActiveX Script object (typically used in an ActiveX Script task) and can be used to
create an OLAP Partition.

Function CreatePartition (strServer, strDabase, strCubeName, strPartition)
Dim objServer
Dim objDB 'A DSO.MDStore Object
Dim oCube 'A DSO.MDStore Object
Dim oPart 'A DSO.MDStore Object

Set objServer = CreateObject("DSO.Server")
objServer.Connect(strServer)

The first step, above, was to instantiate a local server object variables from the DSO object model. This object will be used to check
for the existence of the OLAP database, cube and partition and create the OLAP partition if necessary.

If objCube.MDStores.Find(strPartition) Then
 Set objPart = objCube.MDStores(strPartition)
End If

If objPart Is Nothing Then
 'Add new partition
 Set objPart = objCube.MDStores.AddNew(strPartition)
End If
Set oPart = Nothing
Set oCube = Nothing
Set oDB = Nothing
Set oServer = Nothing
CreatePartition = True

End Function

By supporting the creating of partitions dynamically, the OLAP cube grows to accommodate new data as needed, rather than the

alternative of pre-allocating unnecessary partitions that could impede or cloud the user's interaction with the management
functions of Analysis Services.

Cloning Partitions
A cloned partition, as the name implies, is a partition that is a copy of a pre-existing OLAP partition. Cloning partitions is
important when programmatically managing partitions that have underlying aggregations. As the overall partition management
approach is explored more, the relevance of partition cloning will become all the more clear. The first step, however, to explaining
the benefits of cloning partitions, with DSO and DTS, is to explore an example of how to clone an existing partition within ActiveX
Script in DTS.

Function ClonePartition(strServer, strDabase, strCubeName, _
 strPartition, strBasedOnPartition, strSliceValue)

Dim objServer
Dim objDB 'A DSO.MDStore Object
Dim oCube 'A DSO.MDStore Object
Dim oPart 'A DSO.MDStore Object
Dim objClonePart 'A DSO.MDStore Object
Dim objSourcePartDimension 'A DSO.Dimension Object
Dim objSourcePartLevel 'A DSO.Level object
Dim lngDim
Dim lngLev

Set objServer = CreateObject("DSO.Server")
objServer.Connect(strServer)

'Add the partition and then clone it
Set objPart = oCube.MDStores.AddNew(strPartition)

'Copy the Partition to get its basic structure
objClonePart.Clone objPart

If oCube.MDStores.Find(sBasedUponPartitionName) Then
 Set oClonePart = oCube.MDStores(strBasedOnPartition)
Else
 Exit Function
End If

'Loop through the levels purging each slice value from the newly
 cloned partition
'As the slice value will need to be rebuilt
For lngDim = 1 To objSourcePart.Dimensions.Count
 Set objSourcePartDimension = objSourcePart.Dimensions(lngDim)

 For lngLev = 1 To objSourcePartDimension.Levels.Count
 Set objSourcePartLevel = objSourcePartDimension.Levels(lngLev)
 objSourcePartLevel.SliceValue = ""
 Next
Next

set objSourcePartDimension = nothing
set objSourcePartLevel = nothing

At this point the cloned partition has been created and its slice information (the filtering information) has been purged. Without
any slice information, the partition will load all of the data from the fact table, which is not what is desired. A new slice value needs
to be applied to the cloned partition and the code listing below does just that.

'Apply the new slice value
'Assumes Slice Value is fully qualified (i.e. "Calendar=All
 Years.1997.1.January.3" for January 3rd, 1997)
call ApplySliceValue(objPart, CStr(strSliceValue))

set objClonePart = nothing
set objPart = nothing
set objCube = nothing
set objDB = nothing
set objServer = nothing
End Function

Function ApplySliceValue(pobjPart, pstrSliceValue)
Dim strSliceValue
Dim strDimensionName
Dim lngStringPosition
Dim objDimension
Dim objLevel
Dim astrLevelSlices()
Dim lngLevel

ApplySliceValue = False

 If pstrSliceValue = "" Then
 Exit Function
 End If

'Assumes Slice Value is fully qualified
'(i.e. "Calendar=All Years.1997.1.January.3" for January 3rd, 1997)
 lngStringPosition = InStr(1, pstrSliceValue, "=")

 If lngStringPosition > 1 Then
 strDimensionName = Trim(Mid(pstrSliceValue, 1, lngStringPosition - 1))
 End If

 If strDimensionName = "" Then
 Exit Function
 End If

 If Not pobjPart.Dimensions.Find(strDimensionName) Then
 Exit Function
 End If

Set objDimension = pobjPart.Dimensions(strDimensionName)
strSliceValue = _
Trim(Mid(pstrSliceValue, lngStringPosition + 1, _
 Len(pstrSliceValue) - (lngStringPosition)))

astrLevelSlices = Split(strSliceValue, ".")

For lngLevel = LBound(astrLevelSlices) To UBound(astrLevelSlices)
 If objDimension.Levels.Count - 1 < lngLevel Then
 Exit Function
 Else
 Set objLevel = oDimension.Levels(lngLevel + 1)
 objLevel.SliceValue = astrLevelSlices(lngLevel)
 End If
Next
ApplySliceValue = True
End Function

The approach to cloning partitions is somewhat similar to the approach for creating partitions with a few exceptions. In creating a
partition, a check is performed to see that no other partition of the same name exists. In cloning a partition, a check is performed
to make sure that the other partition does exist. Additionally, the slice information is generally updated for the cloned partition to
avoid duplication of data within the OLAP cube.

The result of cloning a partition is two partitions are of the same structure, with differing slice values, allowing for their
assimilation, or Merging, in the future.

Merging Partitions
While the partition management approach has focused on creating and cloning partitions to dynamically grow alongside of the
relational data store, there is an equally compelling reason to Merge partitions once they are no longer the analytical "hot spots"
within the cube. DSO provides the capability to merge two partitions of the same structure with the same or no aggregations. DTS
makes the process of achieving this within BI solution architectures relatively easy, programmatically.

The example script below merges two partitions, a source and a target partition into each other.

Function MergePartitionsbyName(strDatabase, _
 strCubeName, _
 strSourcePartition, _
 strTargetPartition, _
 objServer)

Dim objDB 'A DSO.MDStore
Dim objCube 'A DSO.MDStore
Dim objSourcePart 'A DSO.MDStore
Dim objTargetPart 'A DSO.MDStore
Dim objSourcePartDimension 'A DSO.Dimension Object
Dim objSourcePartLevel 'A DSO.Level object
Dim objTargetPartDimension 'A DSO.Dimension Object
Dim objTargetPartLevel 'A DSO.Level object
Dim lngDim
Dim lngLev

MergePartitionsByName = False

'Checking if the database is valid
If objServer.MDStores.Find(strDatabase) Then
 Set objDB = objServer.MDStores(strDatabase)
Else
 MergePartitionsByName = False
 Set objServer = Nothing
 Exit Function
End If

'Checking if the cubename is valid
If objDB.MDStores.Find(strCubeName) Then
 Set objCube = objDB.MDStores(strCubeName)
Else
 Set objDB = Nothing
 Set objServer = Nothing
 MergePartitionsByName = False
 Exit Function
End If

'Checking if the partitions exist
If objCube.MDStores.Find(strSourcePartition) Then
 Set objSourcePart = objCube.MDStores(strSourcePartition)
Else
 Set objCube = Nothing
 Set objDB = Nothing
 Set objServer = Nothing
 Exit Function
End If

If objCube.MDStores.Find(strTargetPartition) Then
 Set objTargetPart = objCube.MDStores(strTargetPartition)
Else
 Set objCube = Nothing
 Set objDB = Nothing
 Set objServer = Nothing
 Exit Function
End If

Under DSO, partitions with differing slices cannot be merged together. This is overcome programmatically by first removing the
slices from each partition, merging them, and then reapplying an applicable slice value.

'Loop through the levels purging each slice value from the source
'As the slice value will need to be rebuilt
For lngDim = 1 To objSourcePart.Dimensions.Count
 Set objSourcePartDimension = objSourcePart.Dimensions(lngDim)

 For lngLev = 1 To objSourcePartDimension.Levels.Count
 Set objSourcePartLevel = objSourcePartDimension.Levels(lngLev)
 objSourcePartLevel.SliceValue = ""
 Next
Next

'Loop through the levels purging each slice value from the target
'As the slice value will need to be rebuilt
For lngDim = 1 To objTargetPart.Dimensions.Count

 Set objTargetPartDimension = objTargetPart.Dimensions(lngDim)

 For lngLev = 1 To objTargetPartDimension.Levels.Count
 Set objTargetPartLevel = objTargetPartDimension.Levels(lngLev)
 objTargetPartLevel.SliceValue = ""
 Next
Next
set objSourcePartDimension = nothing
set objSourcePartLevel = nothing
set objTargetPartDimension = nothing
set objTargetPartLevel = nothing

objTargetPart.Merge strSourcePartition

'Apply the new slice value
'Assumes Slice Value is fully qualified (i.e. "Calendar=All
 Years.1997.1.January.3" for January 3rd, 1997)
call ApplySliceValue(objTargetPart, CStr(strSliceValue))

objCube.Update
objServer.Refresh

MergePartitionsByName = True

'Perform Cleanup
Set oSourcePart = Nothing
Set oCube = Nothing
Set oDB = Nothing
Set oServer = Nothing
Exit Function

Merging partitions through DTS and DSO solves the architectural dilemma of managing partition explosion, the increase in
numbers of partitions over time, and establishes a clear path for pruning your OLAP data through the dropping of partitions.

Dropping Partitions
While the approach reported here is about dropping OLAP partitions using DSO and DTS, the approach's mantra is solving the
challenge of sustaining the availability of data, which is meaningful to the users of the BI solution, and eliminating the data,
which is no longer analytically viable. As a result, the task of dropping partitions often coincides with the removal or pruning of
old, meaningless fact data from the relational data store, which hopefully the DTS architecture controlled, as well.

Dropping a partition is actually one of the easier programmatic operations with DSO. The actual code to drop a partition is:

Function DeletePartition(strDatabase, _
 strCubeName, _
 strPartition, _
 objServer)

Dim objDB 'A DSO.MDStore
Dim objCube 'A DSO.MDStore
Dim objPart 'A DSO.MDStore

DeletePartition= False

'Checking if the database is valid
If objServer.MDStores.Find(strDatabase) Then
 Set objDB = objServer.MDStores(strDatabase)
Else
 DeletePartition= False
 Set objServer = Nothing
 Exit Function
End If

'Checking if the cubename is valid
If objDB.MDStores.Find(strCubeName) Then
 Set objCube = objDB.MDStores(strCubeName)
Else

 Set objDB = Nothing
 Set objServer = Nothing
 DeletePartition= False
 Exit Function

End If

'Checking if the partitions exist
If objCube.MDStores.Find(strPartition) Then
 Set objPart = objCube.MDStores(strPartition)
Else

 Set objCube = Nothing
 Set objDB = Nothing
 Set objServer = Nothing
 DeletePartition = False
 Exit Function
End If

'Checking if the partition exists
If objCube.MDStores.Find(strPartition) Then
 If objCube.MDStores.Count = 1 Then
 'Cannot delete the last partition of a cube
 Set objCube = Nothing
 Set objDB = Nothing
 Set objServer = Nothing
 DeletePartition = False
 Exit Function
 End If
 End If
 objCube.MDStores.Remove (strPartition)
End If

objCube.Update

DeletePartitionbyName = True

'Perform Cleanup
Set objPart = Nothing
Set objCube = Nothing
Set objDB = Nothing
Set objServer = Nothing
Exit Function

Automating the dropping of partitions with DSO and DTS is the last element in establishing absolute control of the programmatic
management of the overall architecture, providing for a sophisticated, hands-free infrastructure for delivering the SQL Server BI
Solution.

Guidelines for Managing OLAP Partitions
There are a few core requirements of utilizing DSO with DTS to manage OLAP partitions within Analysis Services. Here are some
guidelines for satisfying these requirements:

The SQL Server Agent service account should be a domain account. Particularly, if the DTS packages intend to manage
Analysis Services installed on a machine outside of the context of the local machine where the SQL Server Agent is running.
The SQL Server Agent service account whether found on the local machine or on the domain, must be a member of the
Analysis Server's local "OLAP Administrators" group prior to executing a DTS package leveraging DSO.
During the initial phases of a BI solution, it is very likely that merging partitions will be impossible due to usage based
optimizations and other initial OLAP design strategies for increasing the performance being implemented.
Use DTS to prevent the scenario of orphaned OLAP partitions with no underlying relational data to support them. As
relational data goes away, so too, should OLAP data.

For further information on managing analysis services, see the For More Information section at the end of the white paper.

Analysis Services Processing Task
A key element in integrating DTS with Analysis Services is the processing of OLAP objects, namely dimensions, cubes and
partitions, from a DTS package. Fortunately, a stock task exists within DTS for just this purpose. The Analysis Services
Processing task provides the ability to process OLAP objects on any accessible Analysis Server.

The existence of this task provides DTS the ability to not only perform traditional ETL but also extend the loading from the
relational data store to the OLAP multi-dimensional data store. Lesser known about the Analysis Services Processing task is the
fact that it was written using Visual Basic 6.0 and the custom task interfaces which DTS provides via its own component object

model.

Execute on Main Thread
The DTS developer familiar with the Analysis Services Processing task has probably discovered that the Workflow Properties
for this task differ from most other "stock" DTS tasks, when the task is added to a package. Most notably, the fact that the "Execute
on main package thread" property is set to true, as is shown below, is an indicator that the task was developed using a language
not supporting the Free Threaded threading model (or an Apartment Threading model), in this case Visual Basic 6.0.

Figure 9. Workflow Properties window

Because DTS utilizes free threading in marshalling resources, tasks that do not support this model must run on the main thread of
execution to work properly. "Working properly" means integrating within the free threading found in, as well as not introducing
instability into, the DTS environment. This is also true of any child package, which contains and executes the Analysis Services
Processing task. In the Parent/Child package scenario, the workflow properties for the Execute Package task in the parent
package would need to be set, manually, to execute the child package on the main thread of execution. Doing so would thus
require that all concurrent workflows in the child package become serialized on a single thread.

Using DTSRUN to Perform Analysis Services Processing
DTSRun, a command prompt utility provided with SQL Server 2000, provides the ability to execute a DTS package from the
command line. Further, command line arguments allow for the package to be passed global variables at the start of execution. The
dtsrun.exe is the most common means of scheduling the execution of a DTS package. An alternate utility, DTSRunUI or
dtsrunui.exe, provides a graphical environment from which the dtsrun command line with arguments can be built.

While DTSRun is typically used to execute packages as job steps in the SQL Server Agent, its functionality can also be combined
with the Execute Process task in DTS to provide an entirely new Win32 Process within which a new thread of execution can be
established. The image below illustrates combining the generic Win32 process execution capabilities with the dtsrun utility to
launch and OLAP processing child package.

Figure 10. Execute Process Task Properties window

In this case the actual command line for the dtsrun utility was:

DTSRUN /F "C:\olapprocess.dts" /L "c:\olapprocess.log"
 /A "OLAPDBName":"8"="FoodMart 2000"
 /A "CubeName":"8"="Sales" /A "PartitionName":"8"="Sales 1997"
 /A "ServerName":"8"="Localhost"
 /A "FactTable":"8"="sales_fact_1997"
 /A "ProcessOption":"8"="0"

It is important to note that this command line includes global variables which designate the Analysis Server where the processing
will occur, the OLAP Database on the OLAP Server, the OLAP cube within the OLAP Database, the cube's partition, the fact table
for the partition and the processing option. The /A command line arguments provide the global variable name-type-value
pairings necessary to execute an encapsulated OLAP processing package. The correlation between these command-line elements,
the package, and the underlying tasks is depicted below.

Figure 11. Executing encapsulated OLAP processing package

By executing the depicted package using DTSRUN, the single threading requirements for the Analysis Services processing task
and the Execute Package task are overcome. This is due to the main DTS package executing the Execute Process task creating
an independent Win32 process space with its own threading. Within the independent Win32 process space the entire OLAP
processing package executes. This approach allows for the processing of multiple OLAP partitions or objects from the same root
DTS package, through new DTS Package process spaces instantiated by multiple concurrent Execute Process tasks.

Programming the Analysis Services Processing Task
The Analysis Services Processing Task exposes properties that allow for the dynamic configuration of this task during the
package's execution. The following properties are capable of being modified:

DataSource

The relational datasource, defined in the OLAP Database, for the object being processed.

FactTable

The relational fact table, which is the source for the cube or partition

Filter

The filter to apply when processing the OLAP object

IncrementallyUpdateDimensions

Whether or not to process dimensions incrementally when processing the OLAP cube or partition object. The acceptable values
are 1=Yes or 0=No.

ItemType

Type of OLAP object being processed. The acceptable values are 1=OLAP Database, 4=Cube, 7=Partition and 9=Dimension.

ProcessingOption

The manner in which the designated OLAP object should be processed. The acceptable values are 0=Full Process, 1=Refresh Data
and 2=Incremental Update.

TreeKey

The hierarchy for the OLAP server, database, and object being processed.

With a general definition of the various properties, ActiveX Script can be used to set global variables. These global variables will in
turn be referenced by the Dynamic Properties task to configure the Analysis Services Processing task. Below is an example of an
ActiveX Script for establishing the accepted TreeKey formats for processing a partition.

Dim strTreeKey 'The hierarchy of the OLAP Object to Process
Dim strServerName 'The OLAP Server from the Global Variable
Dim strOLAPDBName 'The OLAP Database from the Global Variable
Dim strCubeName 'The OLAP Cube name from the Global Variable
Dim strPartition 'The OLAP Partition name from the Global Variable

strServerName = DTSGlobalVariables("ServerName").Value
strOLAPDBName = DTSGlobalVariables("OLAPDBName").Value
strCubeName = DTSGlobalVariables("CubeName").Value
strPartitionName = DTSGlobalVariables("PartitionName").Value

'Build the hierarchical treekey for a partition
'ServerName\DBName
strTreeKey = strServerName & "\" & strOLAPDBName & _
 "\CubeFolder\" & strCubeName & "\" & strPartitionName

'Place the TreeKey in the Global Variable
DTSGlobalVariables("TreeKey").Value = strTreeKey

The above script, executed within an ActiveX Script task, would be followed by a Dynamic Properties task to assign the global
variable, TreeKey, to the Analysis Services Processing task's TreeKey property. The Analysis Services Processing task would
then use this property to process the object as part of the encapsulated OLAPProcess package mentioned earlier.

Guidelines for Performing Analysis Services Processing with DTS
While there are several ways to integrate Analysis Services and DTS, there are some very specific guidelines that should be
followed to make the most of the processing approach presented.

DSO should be used when processing is not the primary objective. Beyond partition management, several other non-
processing functions can be undertaken, including creating local cubes, establishing security roles, changing data sources
for connections, and table sources for dimensions and partitions.
Invest in using the stock Analysis Services Processing task whenever you can. Re-inventing the wheel for Analysis
Services processing with other approaches like DSO is not the ideal approach.
Do not overlook the power of manipulating the properties for the Analysis Services Processing task.
Use the Dynamic Properties task and global variables to manipulate the Analysis Services Processing task. Otherwise,
programmatically manipulating the task through the DTSPackage object model will require the task's properties()
collection be referenced by ordinal value.
Change the Dynamic Properties task's workflow properties to execute on the main thread otherwise EXCEPTION
messages will result.
When in doubt on how to program the Analysis Services Processing task, look to the Disconnected Edit feature of DTS
to help learn the task's object model.
To achieve parallelism in partition processing, an optimized cube design should be in place so as to not put a load on the
relational data store when extracting data.

Following these guidelines will make certain that the approach to performing Analysis Services Processing is successful.

Practice Summary

Benefits

Managing the Analysis Services platform from within DTS as a best practice has many benefits. The most noteworthy of these are:

Repeatable extensibility

The practice extends the ETL processing to the presentation tier of the BI architecture, providing a repeatable approach for
achieving the goal of making meaningful, timely business analytics available for consumption directly following the load of the
relational data store.

Success through autonomy

Processing cubes, partitions and dimensions in a programmatic fashion establishes the foundation for an independent approach
to loading the data mart with no cross data mart or BI solution dependencies.

Automation without error

The approaches explored in this practice showcased the potential of automating less than simple processes. Relying on the only
other approach for managing Analysis Services, the administrative user, invites more risk to the process than most people are
comfortable with taking in a production system.

Precautions

The precaution areas for this practice and the approaches are limited but do exist. The key precaution area is:

Increased Availability

The speed with which analytical data in the BI solution can be delivered through automated Analysis Services processes puts a
strong requirement on creating the right procedures in the relational data store's loading to make certain less than desirable data
does not get to the OLAP presentation elements of the solution.

Auditing and Error Handling Practices

Intrinsic Auditing Approach

Within DTS, there exist many ways to audit the package and to handle errors that may arise. The first way discussed is using the
native or intrinsic auditing and error handling capabilities built in to DTS. These are the easiest and quickest methods to
implement, and they provide adequate auditing functionality for most projects.

Logging Options within the Package

DTS has the ability to automatically log package-level events to a SQL Server database without having to save the package to the
repository (in previous versions, this was a requirement). The BI developer can use DTS package auditing to check the success or
failure of any package. They can also check which tasks within these packages executed successfully, failed or did not execute by
checking log information stored in the MSDB database in the sysdtspackagelog and sysdtssteplog tables. Each time the package is
executed, a new series of records are added to the log tables so that the entire history of the package can be recorded. In addition,
each version of the package's execution history is maintained in these tables, as long as logging is enabled.

To enable logging, the package's Package Properties dialog should be opened and the Logging tab chosen.

Figure 12. Logging tab of the DTS Package Properties window

One key is to make sure that that authentication is set correctly with respect to the planned execution of the package. If the plan is
to execute the package using SQLAgent, the SQLAgent authentication must have sufficient read/write rights in the msdb
database. Otherwise, SQL Server authentication can be used to log the errors.

Using Data Lineage for Logging

Lineage information provides the means for determining the source of data, be it a table and column in a relational schema, or
the package that caused the data to be recorded. Through data lineage, we have unique insight into the definition of data
elements within schemas, also known as metadata, and their utilization in packages. Through the recording of this lineage
information, provided as variables, we can accurately track how the schema elements are delivered to targets through DTS
packages, the workhorses of data extraction, transformation and loading. This type of information provides insight into data
issues resulting from changes in our package architectures.

Lineage in Two Forms

Lineage takes on two distinctly different forms in DTS. DTS implements column level lineage (also referred to as Catalog
metadata) through the scanning of schema information from OLE DB compliant data sources at the time of transformation. The
Catalog information is persisted for later reference within SQL Server and Meta Data Services.

The second form of lineage in DTS is that of a package execution, each time a package executes, and if the feature options are
chose, DTS makes lineage identifiers for the particular package available to tasks.

Global Lineage Variables

Lineage variables, which relate to a package's execution, are available within the global variables of the DTS package. These global
variables are made available by selecting the Advanced tab of the Package Properties dialog, and then choosing the Show
lineage variables as source columns option. The global variables are named DTSLineage_Short, an integer representation of
the package lineage and DTSLineage_Full, a GUID (globally unique identifier) representation of the package lineage, or the
current execution.

Note A DTS Package doesn't need to be stored within Metadata services to leverage these global variables.

Lineage and Auditing

Lineage information is captured at the time a package execution is logged, as well as when steps execute. This information is
persisted in the system tables of the MSDB database. The audit tables, where this information is found as both a GUID and integer,
are sysdtspackagelog and sysdtssteplog.

Including Logging Information in your Transforms

If Show Lineage variables as source columns is enabled, when the data transformation task is created, both DTSLineage_Full
and DTSLineage_Short will appear as source columns. These variables can be assigned as columns of data to be inserted or
updated along with the other columns in order to track each row's data lineage. The illustration below depicts using the logging
global variables in this way.

Figure 13. Transform Data Task Properties window

Intrinsic Error Handling Approach

DTS has the built-in ability to perform handling and logging of errors within the package. Any errors that occur during the
package's execution can be passed to the Event Log or to an external text file for logging. In the Event Log, any failure is logged
with a source of 'DataTransformationServices' and a type of 'Error'. A sample error event is shown below.

Figure 14. Event Properties window

In the Description text box, a great deal of information can be gleaned about when, where, and why the error occurred. It is
important to note that DTS uses the internal name (for example, DTSStep_DTSActiveScriptTask_1) of the step during which the
error occurred, and not the English description the developer may have given the task.

By using the Event Log for error logging, an external application can monitor the log for these types of errors and alert the correct
support personnel. The log entries could also be used to take corrective action if the error is resolvable programmatically.

Fail Package on First Error
By default, DTS packages will always complete with a successful status, regardless of any error encountered. However, DTS does
have the ability to halt execution of any package if an error is encountered and not explicitly handled during any step. This
behavior can be manipulated with the Fail Package on First Error setting.

To enable package-level error handling, the package that is to be audited should be opened, the package properties dialog
viewed, and on the logging tab the "Fail package on first error" checkbox enabled. At that point, when an error occurs, DTS will
return a failure return code. Doing so enables external calling applications like SQLAgent or even an MS DOS batch file, to register
when a package fails and take some other action. It also allows the Execute Package task to handle failures of child packages
during their execution.

Fail Package on Step Failure

In some cases, the developer may want the entire package to fail if one or only a select few steps fail, but to continue if any others
fail. For example, if a step is expected to delete a source extract file, but the file doesn't exist, the step will fail, but the developer
may want the package to continue. In this case, the developer can explicitly set only the steps' failures that would trigger an entire
package failure.

To enable step-based error handling, right-click the task. On the shortcut menu, click Workflow, and then click Workflow
Properties. On the Options tab, select the Fail package on step failure checkbox as shown in Figure 15.

Figure 15. Workflow Properties window

Both of these methods for handling errors are included in DTS and both handle exiting the package when a step fails, but many
times, the BI solution may want to fix the situation and continue processing. This is where handling errors with workflow
management comes in.

Workflow Error Handling

DTS comes with three types of built-in workflows: On Completion, On Success, and On Failure.

On Completion

The On Completion workflow ensures that subsequent tasks will be executed regardless of the preceding task(s) outcome.
This really means that the error is really being ignored and not really handled. This may be the appropriate workflow in
some cases, but in most cases, the BI solution may want to handle the error more explicitly.

On Failure

The On Failure workflow is followed whenever a task fails for any reason and neither Fail package on first error nor Fail
package on step failure is set. If either is set, they both take precedence over any further activity in the package, and thus,
the On Failure task is never executed.

Choosing the Right Combination

One of the powerful elements of DTS is the capability to manipulate its object model using an ActiveX Script task. Since many of
the DTS packages in the BI solution are originally invoked from external applications, each package should return the correct
return code. The only way to manage this, but still have some control over logging and handling is to take advantage of the object
model.

If the solution design uses an error-handling task to manage errors from another task, but the desire is to force the DTS package
to return an error code, the following code can be added to the error handling ActiveX Script task to do just that.

 Set oPackage = DTSGlobalVariables.Parent
 oPackage.FailOnError = True
 ...
 Main = DTSTaskExecResult_Failure

Note that the result of the ActiveX Script's Main entry function is set to return failure. If the package's FailOnError property is set
to True, the package will end at the completion of this task and will properly return status to its calling program. The
disadvantage of using this method is that any logging will reflect that there are two errors that caused the package to fail: the
error handling function and its precedent task.

Incorporating this code logic lets the overall solution combine the two most useful methods for handling errors.

Guidelines for Intrinsic Error Handling

While there are several ways to manage errors that occur during a package's execution, there are some very specific guidelines
that should be followed to make the most of the processing approach presented.

Use external error handler task or stored procedure to minimize changes to existing packages and to modularize code and
tasks.
Use separate workflows to manage On Failure workflows by designing a separate error-handling task for each of the
primary work tasks.
Ensure that the error-handling task returns DTSTaskExecResult_Failure and that the Package is set to fail on the first error
if the package is being called from SQLAgent, DOS batch files, or any other application that expects a return code.

Following these guidelines will make certain that the approach to managing error handling is successful.

Taking the Custom Approach

Custom Auditing Approach

If the package architecture requires a more complex series of tasks to occur for either auditing or error handling, the flexibility of
DTS allows for the replacement of its intrinsic functionality with custom capabilities. This portion of the best practice, will discuss
how to customize DTS packages to take advantage of DTS' logging extensibility.

Audit the Package as Part of a Job

DTS Intrinsic Script Object – DTSPackageLog

If the intrinsic auditing is not adequate, DTS exposes an intrinsic scripting object for logging, the DTSPackageLog. This object can
be used in the same context as the DTSGlobalVariables scripting object. There are two methods exposed for writing information
to the logging destination: WriteStringToLog and WriteTaskRecord. Both can be used to add additional information to the log,
with WriteTaskRecord allowing for the adding of an error code to the log. An example of how to use this scripting object and
these methods is found below.

Function Main()

 ...
 Set oFS = CreateObject("Scripting.FileSystemObject")
 DTSPackageLog.WriteStringToLog "Opening File"
 Set oTS = oFS.OpenTextFile("C:\FileNotFound.TXT", 1)
 If (Err.Number <> 0) OR (oTS Is Nothing) Then
 DTSPackageLog.WriteTaskRecord Err.Number, Err.Description
 Main = DTSTaskExecResult_Failure
 End If

End Function

This example illustrates how the developer of the BI solution is allowed to implement a rich environment for logging information
and errors to the DTS logging destinations.

Practice Summary

Benefits

Managing Auditing and Error Handling from within DTS offers many options for implementation depending on the level of
functionality and coverage desired.

Among some of the main benefits of implementing auditing and error handling include:

Data validation capabilities using auditing checks and balances
More precise control over error handling and how DTS responds to errors
Rich information captured during logging to make error resolution easier
Using and capturing data lineage information to each piece of data can be tracked back to the source
DTS can log events and errors to locations that make error management possible by external applications (SQLAgent, Event
Log, and so forth)

Precautions

The main precaution area to remember is that while using external components to handle auditing and logging, a level of
complexity is added to the overall solution. Remember to document thoroughly any components and code so that other
developers can follow and resolve issues.

Enhancing DTS Functionality Practices

Developing Custom Tasks with Visual Basic .NET Approach

Extensibility with Custom Task Support

While many would argue that DTS, as a product, provides for a great deal of flexible, off-the-shelf functionality, in the
development of BI solutions with DTS, there are occurrences when this functionality needs to be extended. One method for
extending DTS is through the development of Custom Tasks. Custom Tasks provide the ability to encapsulate core logic into a
single DLL consisting of properties and execution methods. This logic can then be registered and used within the DTS package
environment, similar to any other task. In fact, the Analysis Services Processing Task described earlier, is a good example of a
custom task added to the DTS design environment for an extended function.

Required DTS COM Interfaces

CustomTask Interface

The manner in which DTS supports this type of extensibility is by requiring the custom task developer to implement the
DTS.CustomTask COM interface, found within the Data Transformation Services Package Object model. This interface provides
the principal Execute() method that the Package environment can invoke at runtime, to include the task within the workflow of
the package's execution. A graphical representation of this interface is shown below.

Figure 16. CustomTask COM interface

The primary modifications made within the implementation of the CustomTask interface are placing most core logic within the
Execute() method and adding extended, developer defined properties to the task. The properties are often needed to achieve the
additional logic.

CustomTaskUI Interface

To deliver a customized user interface for the task's property pages requires an implementation of the DTS.CustomTaskUI COM
interface. Doing so, allows the developer to create rich user interfaces to support the definition of properties for the custom task.

PersistPropertyBag Interface

The final interface to be discussed in delivering the Visual Basic .NET custom task is the DTS.PersistPropertyBag COM interface.
The PersistPropertyBag interface provides an interface that DTS will use to load the task's properties from and save the task's
properties within the underlying package structure, as appropriate.

Note At the time of this writing, for the Visual Basic .NET implementation of a custom task, all three of these
interfaces are required to deliver a comprehensive custom task to integrate within the DTS portion of the BI Solution.

Visual Basic .NET and Component Object Mode (COM) Interoperability

A key element to understanding the nuances of developing the Visual Basic .NET custom task is the interoperability layer between
COM and the Common Language Runtime of the .NET Framework. In order for the Visual Basic .NET class to implement the
prescribed DTS COM interface, this interoperability (or interop) layer must be defined through the creation of a Runtime Callable
Wrapper (or RCW) for Visual Basic .NET to utilize the COM interface as a .NET assembly. The opposite is true for DTS, a collection
of COM servers, to use the Custom Task's Visual Basic .NET assembly. A COM Callable Wrapper (or CCW) must be established for
DTS to interact with the Visual Basic .NET assembly. The graphic below provides an illustration of the interoperability between the
two platforms.

Figure 17. COM and Runtime Callable Wrappers

Essential .NET Utilities

The following Visual Studio .NET utilities will be used to create the aforementioned wrappers and register the resulting DLL, in
.NET referred to as the Assembly, within the .NET Global Assembly Cache.

Type Library importer (TLBIMP.exe) – provides the ability to import type libraries (descriptors of COM Interfaces) and create a
runtime callable wrapper (RCW). The runtime callable wrapper is output as a DLL that can be registered within the Visual Basic
.NET project.

Strong name tool (SN.exe) – provides a strong name key (.SNK) file to be used within the project's assembly

Assembly registration tool (REGASM.exe) – provides the ability to register the .NET assembly within the registry so that a COM
component could utilize the interfaces provided by the assembly.

Global Assembly Cache tool (GACUTIL.exe) – provides a registration of the wrappers into the Global Assembly Cache for the
final step in interoperability between DTS and the Visual Basic .NET custom task.

Each of these tools has its place in the process of coding the Visual Basic .NET custom task.

Coding the Visual Basic .NET Custom Task

The custom task example being developed for this best practice is an Error Handler custom task. The behavior of this task, shown
in the package illustration below, is to retrieve the error information from the preceding step, defined by an OnFailure workflow
constraint, and log it to a textual log file, the Windows event log, or both.

Figure 18. Error Handler custom task package

In order to best explain the approach of building the Visual Basic .NET custom task, all the relevant concepts and a portion of
supporting code samples for developing the custom task code will be covered in this section. A full listing of the entire .NET error
handler custom task code can be found in Appendix B.

Getting Started

Following the initial creation of the Visual Basic .NET class project, one of the first tasks is setting up the interoperability with the
.NET managed code and the COM objects used for the custom task. The first step is to create the Strong Name key file (.SNK) to
be included within the assembly. Assuming the custom task code was in a directory, C:\dotNetErrorHandler\, the following
command line should be run:

 "<your VS.NET Folder>\FrameworkSDK\Bin\sn.exe" -k
 "C:\dotNetErrorHandler\dotNetErrorHandler.snk"

Following the creation of the strong name key file, a key file attribute should be added within the assembly's code itself, found in
AssemblyInfo.vb. The one line of code to add looks like the following:

'Note for the CustomTask to work you must generate and reference a KeyFile
<Assembly: AssemblyKeyFile(".\dotNetErrorHandler.snk")>

The next step is to create the Runtime Callable Wrapper (RCW) and include a reference to it within the project. The command to
create the RCW with the type library importer is as follows:

"<VS .NET Folder>\FrameworkSDK\Bin\tlbimp.exe" "C:\Program Files\Microsoft
 SQL Server\80\Tools\Binn\dtspkg.dll"
 /keyfile:"C:\dotNetErrorHandler\dotNetErrorHandler.snk" /out:
 "C:\dotNetErrorHandler\Interop.DTS.dll"

This command constructs the RCW, specifically Interop.DTS.dll, for the DTS Package Object COM Library to be used in this project.

Once these preliminary steps have been accomplished, the reference to the RCW can be established, as shown below:

Figure 19. Establishing the reference to the RCW (click image to see larger picture)

Implementing the Right Interfaces

Earlier in this best practices section, it was noted that the custom task class must implement three interfaces. This class, named
EHTask, begins with the implements declaration.

Public Class EHTask
 'You must implement the CustomTask,
 'CustomTaskUI and PersistPropertyBag interfaces
 Implements Interop.DTS.CustomTask
 Implements Interop.DTS.CustomTaskUI
 Implements Interop.DTS.PersistPropertyBag

These three implements statements set the basis for the task development, including the implementation of all required
properties and methods of each interface. Before continuing with that step, it is a good idea to create private variables to hold the
values of the public properties of the task. Here is the variable declaration section for the EHTask class.

 'Create private variables to hold the standard properties
 Private _Name As String
 Private _Description As String

 'Create a private reference to the task object
 Private _TaskObject As Interop.DTS.Task

 'Create other private variables to store the extended properties
 Private _LogFileName As String
 Private _LogToEventLog As Boolean
 Private _LogToFile As Boolean
 Private _HandledStepName As String
 Private _UseGlobals As Boolean

 'Friend variable for the UI to report whether or not it was cancelled
 Friend bolUICancelled As Boolean

Now the task of implementing interfaces is at hand. The first interface to evaluate is the DTS.CustomTask interface.

DTS.CustomTask Interface

The DTS.CustomTask Interface is an implementation of standard properties (Name and Description), execution method and a
properties provider for serving requests for the properties collection of the custom task object. The first area of focus is the code
to support the standard properties.

Public Property Description() As String _
 Implements Interop.DTS.CustomTask.Description
 Get
 Return _Description

 End Get
 Set(ByVal Value As String)
 _Description = Value
 End Set
End Property

Public Property Name() As String Implements Interop.DTS.CustomTask.Name
 Get
 Return _Name
 End Get
 Set(ByVal Value As String)
 _Name = Value
 End Set
End Property

Additional properties required for the .NET Error Handler custom task are:

HandledStepName – the internal name for the step, which the custom task will interrogate through the
GetExecutionErrorInfo() method to determine error information.
LogToFile - a Boolean indicating whether or not to log the captured error information to a file
LogFileName – the name and full path to the log file where the information should be stored
LogToEventLog – a Boolean indicating whether or not to log the captured error information to the Windows Application
event log.
UseGlobals – a Boolean indicating whether or not the values for the LogToFile, LogFileName, and LogToEventLog
properties should be pulled from global variables within the package. Given that there will likely be more than one error

handler in the DTS package, this property makes certain that all .NET Error Handler tasks use the same settings.

Following the standard properties, Description and Name—and the properties domain to the individual custom task—is the
standard Execute() method. Below is the entire code listing for the method, followed by explanations of the flow and subroutines
called within it.

Public Sub Execute(ByVal pPackage As Object, _
 ByVal pPackageEvents As Object, _
 ByVal pPackageLog As Object, _
 ByRef pTaskResult As Interop.DTS.DTSTaskExecResult) _
 Implements Interop.DTS.CustomTask.Execute

 Dim objPackage As Interop.DTS.Package
 Dim objTasks As Interop.DTS.Tasks
 Dim objStep As Interop.DTS.Step
 Dim objPackageLog As Interop.DTS.PackageLog

 Dim strSource As String
 Dim lngNumber As Long
 Dim strDescription As String
 Dim strErrorString As String

 Try
 'Cast the passed params into the
 'local stronger typed variables
 objPackage = pPackage
 objPackageLog = pPackageLog

 'Make sure we have a precedence step
 Call EstablishPrecedence(objPackage)

 'Check the HandledStepName and Throw an Exception
 If Me.HandledStepName = "" Then
 Throw New System.Exception("Task cannot execute due to
 no Precedence Constraint being defined.")
 End If

 'If the Task is defined to drive from
 'the global variables we need to check
 Call ReadFromGlobalVariables(objPackage)

 'Get a Step Object Reference
 objStep = objPackage.Steps.Item(Me.HandledStepName)

 'Retrieve the Error Information
 Call objStep.GetExecutionErrorInfo(lngNumber, strSource, _
 strDescription)

 'Build the Pipe delimited Error String
 strErrorString = Format(Now, "MM/dd/yyyy hh:mm:ss tt") & "|" & _
 objPackage.Name & "|" & objStep.Name & "|" & _
 " The Step, " & objStep.Description & _
 " failed with the following error: " & _
 lngNumber.ToString() & " - " & strSource & " - " &
 strDescription

 'Determine if you should write the error to a log file
 If Me.LogToFile And Trim(Me.LogFileName) = "" Then
 'Throw an exception due to the lack of a filename
 Throw New System.Exception("Task cannot log to file due to
 no log file being defined.")
 ElseIf Me.LogToFile And Trim(Me.LogFileName) <> "" Then
 'Write to the log file
 Dim objFile As System.IO.File
 Dim objStreamWriter As System.IO.StreamWriter
 objStreamWriter = objFile.AppendText(Me.LogFileName)

 'Close the StreamWriter and Clean up the fileobject
 objStreamWriter.WriteLine(strErrorString)
 objStreamWriter.Close()
 objStreamWriter = Nothing
 objFile = Nothing

 End If

 'Determine if you should write to the eventlog
 If Me.LogToEventLog Then
 Dim objEventLog As New EventLog()
 objEventLog.WriteEntry(".Net DTS Error Handler", _
 strErrorString)
 objEventLog = Nothing
 End If

 'Return Success as this Execution was successful
 pTaskResult = Interop.DTS.DTSTaskExecResult.DTSTaskExecResult_Success

 Catch ex As Exception
 Throw New System.Exception("An Error occured during the tasks
 execution.", ex)

 'Return Failure as this Execution was a failure
 pTaskResult = Interop.DTS.DTSTaskExecResult.DTSTaskExecResult_Failure

 End Try

 End Sub

The Execute method handled the processing in the following order:

Determining if a preceding step existed through the EstablishPrecedence method
Evaluating and populating the rest of the task's properties from global variables based upon the UseGlobals setting within
the subroutine, ReadFromGlobalVariables()
Capturing the error information for the Step object, defined by name in the HandledStepName property
Writing the information to either or both the LogFile destination or the Event Log destination

The only other method to be implemented is the Properties property method for accessing the properties collection of the
custom task.

In the .NET Error Handler example, the properties collection is populated via the implementation of a PropertiesProvider. This
provider fills a properties collection through the GetPropertiesForObject method call.

Public ReadOnly Property Properties() As Interop.DTS.Properties _
 Implements Interop.DTS.CustomTask.Properties
 Get
 'Declare variables for Properties collection
 'and ProviderClass to retrieve property info
 Dim objProperties As Interop.DTS.Properties
 Dim objPropProvider As _
 Interop.DTS.PropertiesProviderClass = _
 New Interop.DTS.PropertiesProviderClass()

 'Using the reference to the existing
 'task object, get a reference to the task object
 'to pass to the Properties Provider
 objProperties = objPropProvider.GetPropertiesForObject(_TaskObject)

 'Perform some cleanup on the properties provider
 objPropProvider = Nothing

 'Return the value of the properties collection
 Return objProperties

 End Get
End Property
The next interface, required for a custom task written with VB .NET
 is the CustomTaskUI interface.

DTS.CustomTaskUI Interface

The DTS.CustomTaskUI Interface is an implementation of the standard methods for serving requests made specifically by the DTS
Designer. In order to successfully implement this interface for the .NET Error Handler example, all methods must be stubbed in

but only the Initialize, Edit, New (as an aliased method) and Delete contain actual logic. These populated methods are listed
below and supporting commentary is offered as needed.

Public Sub Initialize(ByVal pTask As Interop.DTS.Task) _
 Implements Interop.DTS.CustomTaskUI.Initialize
 _TaskObject = pTask
End Sub

The Initialize method provides very important information to the custom task in the form of the pTask parameter variable
shown above. The pTask parameter provides the custom task with the identity of itself as an object for future references within
the DTS package object hierarchy. The next method is the Edit method, which is called by the DTS designer whenever the
developer takes an action to launch the task's Properties dialog.

Public Sub Edit(ByVal hwndParent As Integer) _
 Implements Interop.DTS.CustomTaskUI.Edit
 'Should Show a UI Here
 ShowPropertyUI()
End Sub

Public Sub Delete(ByVal hwndParent As Integer) _
 Implements Interop.DTS.CustomTaskUI.Delete

 _TaskObject = Nothing
End Sub

The Delete method provides the task with the opportunity to clean up any internal references, such as the _TaskObject reference
captured originally in the Initialize method. In the example above, the _TaskObject reference is cleared and the discarded object
is relegated to the Common Language Runtime Garbage Collector.

Due to language restrictions, the implementation of the New method must be aliased. In the case of the example shown below,
New2 was used as the alias for the New method.

 Public Sub New2(ByVal hwndParent As Integer) _
 Implements Interop.DTS.CustomTaskUI.New

 'Preset the Settings for the task
 Me.LogToEventLog = True
 Me.LogToFile = True
 Me.LogFileName = ""
 Me.UseGlobals = True

 'Should Show a UI Here
 ShowPropertyUI()

 End Sub

Within the New method, properties of the task are preset and the user interface is presented to the user for the first time. Below
are the UI elements of the custom task.

Figure 20. .NET Error Handler

The user is presented with the above dialog every time the property page for the task is evoked and no preceding step is found.

Figure 21. NET Error Handler Task Properties

Here the properties being stored are presented in the illustration above. As a precedent step is included, the description for the
task will change. It is also true that if the global variables, which are created by the first instance of this task, are modified and the
Use Global Variable option is checked, other properties may change.

Figure 22. Notification of updated global variables

The dialog above notifies the user anytime that the global variables are updated upon closing the Properties dialog for the custom
task.

DTS.PersistPropertyBag Interface

The DTS.PersistPropertyBag interface is an essential interface to the properties stored with the package. This is solely the case
when dealing with properties that are not being exposed by the DTS.CustomTask properties collection. This is true with the .NET
Error Handler custom task. Through the implementation of the PersistPropertyBag interface, however, all properties that are
defined for the custom task are capable of being saved and loaded. The two methods required for the PersistPropertyBag
interfaces implementation are listed below.

 Public Sub Load(ByVal PropertyBag As Interop.DTS.PropertyBag) _
 Implements Interop.DTS.PersistPropertyBag.Load
 'Create all of the PropertyBag readers to read information
 'from the PropertyBag into the class level variables

 _Name = PropertyBag.Read("Name")
 _Description = PropertyBag.Read("Description")
 _LogFileName = PropertyBag.Read("LogFileName")
 _LogToEventLog = PropertyBag.Read("LogToEventLog")
 _LogToFile = PropertyBag.Read("LogToFile")
 _HandledStepName = PropertyBag.Read("HandledStepName")
 _UseGlobals = PropertyBag.Read("UseGlobals")

 End Sub

 Public Sub Save(ByVal PropertyBag As Interop.DTS.PropertyBag) _
 Implements Interop.DTS.PersistPropertyBag.Save
 'Create all of the PropertyBag writers to persist information
 'from the class level variables into the property bag

 PropertyBag.Write("Name", _Name)
 PropertyBag.Write("Description", _Description)
 PropertyBag.Write("LogFileName", _LogFileName)
 PropertyBag.Write("LogToEventLog", _LogToEventLog)
 PropertyBag.Write("LogToFile", _LogToFile)
 PropertyBag.Write("HandledStepName", _HandledStepName)
 PropertyBag.Write("UseGlobals", _UseGlobals)

 End Sub

Registering the Visual Basic .NET Custom Task

Unfortunately as of this writing, there is no way using the DTS design environment user interface to register a Visual Basic .NET
custom task. The following approach includes editing the registry, which is a dramatic but necessary step to making a Visual Basic
.NET custom task available in DTS.

1. Develop the custom task using Visual Basic .NET as prescribed in the prior section and Appendix B.
2. Build the assembly for the .NET custom task solution.
3. Register the Assembly, using the Assembly Registration Tool, for the resulting .NET DLL (somewhat similar to Regsvr32.exe).

For example:

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\RegAsm.exe
 "C:\dotNetErrorHandler\bin\dotNetErrorHandler.dll"

4. Register the assembly using the Assembly Registration Tool, for the Runtime Callable Wrapper, which provides the .NET and
COM interoperability, for the DTS Package Object library.

For example:

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\RegAsm.exe
 "C:\dotNetErrorHandler\Interop.DTS.dll"

5. Add the registered assemblies from Steps 3 and 4 to the .NET Global Assembly Cache (GAC), using the Global Assembly
Cache tool.

For example:

"C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin\gacutil.exe"
 /i "C:\ dotNetErrorHandler \bin\ dotNetErrorHandler.dll"
and then
"C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin\gacutil.exe"
 /i "C:\ dotNetErrorHandler \Interop.DTS.dll"

Note Each time the solution is re-built; the first command placing the .NET assembly into the GAC will have to
be run.

6. Now the registry will have to be edited, as there is no present way to register a .NET custom task via the DTS user interface.
It is worth noting that users who are not familiar with editing the registry should not attempt this as it can have less than
desirable results.

The following items will need to be known before editing the registry:

Full Path to the DLL (i.e., C:\dotNetErrorHandler\bin\dotNetErrorHandler.dll)
Full Path to a DLL or .ICO file with an icon as the resource (optional)
Description of the task (kept short – i.e., .NET Error Handler)
The GUID for the DLL – The GUID can be found for the assembly in the AssemblyInfo.vb file under the entry:

<Assembly: Guid("GUID DEFINED HERE")>

ProgID for the task – (i.e., the way this object would be called from CreateObject under COM, for example,
"dotNetErrorHandler.EHTask")

Once all of the above items have been established, a registry entries file is ready to be created to update the registry. The
template registry entries file for this approach is:

Windows Registry Editor Version 5.00
HKEY_CLASSES_ROOT\CLSID\{<The GUID>}]
@="<The Prog ID>"
"AppID"="{<The GUID>}"
"DTSIconFile"="<Path to the DLL>"
"DTSIconIndex"=dword:00000000
"DTSTaskDescription"="<The Task Description>"

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\Implemented Categories]

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\Implemented Categories\
 {10020200-EB1C-11CF-AE6E-00AA004A34D5}]

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\Implemented Categories\
 {40FC6ED5-2438-11CF-A3DB-080036F12502}]

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\InprocServer32]
@="<Path to the DLL>"
"ThreadingModel"="Both"

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\ProgID]
@="<The PROGID>"

[HKEY_CLASSES_ROOT\CLSID\{<The GUID>}\Programmable]

[HKEY_CURRENT_USER\Software\Microsoft\Microsoft SQL Server
 \80\DTS\Enumeration\Tasks\<The GUID>]
@="<The PROGID>"

Below are the contents of the actual registry entries file for the example custom task. These contents can be copied to text
editor and saved to TaskReg.reg or another suitable .reg filename.

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}]
@="dotNetErrorHandler.EHTask"
"AppID"="{EF4AC3E4-3D72-4117-AB91-8B417826792F}"
"DTSIconFile"="C:\\dotNetErrorHandler\\ErrorHandler.ICO"
"DTSIconIndex"=dword:00000000
"DTSTaskDescription"=".NET Error Handler"

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}
 \Implemented Categories]

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}
 \Implemented Categories\{10020200-EB1C-11CF-AE6E-00AA004A34D5}]

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}
 \Implemented Categories\{40FC6ED5-2438-11CF-A3DB-080036F12502}]

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}
 \InprocServer32]
@="C:\dotNetErrorHandler\bin\dotNetErrorHandler.dll"
"ThreadingModel"="Both"

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}\ProgID]
@="dotNetErrorHandler.EHTask"

[HKEY_CLASSES_ROOT\CLSID\{EF4AC3E4-3D72-4117-AB91-8B417826792F}
 \Programmable]

[HKEY_CURRENT_USER\Software\Microsoft\Microsoft SQL Server
 \80\DTS\Enumeration\Tasks\EF4AC3E4-3D72-4117-AB91-8B417826792F]
@="dotNetErrorHandler.EHTask"

7. Open the DTS Designer. The custom task should now be visible as a registered entry in the Task Toolbar.

Guidelines for Developing and Deploying the Custom Task

The approach to developing a custom task in Visual Basic .NET is not altogether different than the approach within Visual Basic

6.0. Regardless of the experience level with custom tasks and prior languages, here is a collection of guidelines to successfully
achieve the Visual Basic .NET Error Handler custom task.

Take time to understand the benefits of going down the Visual Basic .NET path. In terms of best practice, using Visual Basic
.NET gives the developer the ability to create custom tasks that do not need to execute on the main thread as the Visual
Basic .NET solution is free threaded and does not suffer from thread affinity.
In terms of developing the custom task, start slow. Create a base shell for the custom task, compile and register it with DTS
using the approaches described here. Once the foundation is in place, developing and deploying updated features is the
next incremental step.
Consider building the task using Visual Basic 6.0. Why? One, it is a good language that allows for the eased development of
a custom task. Two, it provides a starting point for learning the differences between COM and .NET. Finally, doing so
determines whether or not .NET needs to be used due to threading implications. If the task can be run on the main thread
with no issues, there will be less of a need to make migrating, to a .NET custom task, a priority.
As with new languages and frameworks, there can sometimes be elements that need work. In the .NET Error Handler
example, the task implemented the properties provider within the DTS.CustomTaskUI.Properties() method. The main
reason for this was a quirk with the example not correctly allowing the DTS Design Environment to manage the properties.
As of this writing, there is no known way to resolve this dilemma.
By all means, expect and look for ways to achieve the same functionality with less code. The .NET Framework base classes
are exceptionally rich and provide for a superior way of achieving Win32 functionality than solely using COM and the
Win32 API (notice it took only three lines of .NET code to add Windows event logging to the custom task!).
Learn more about deploying a .NET custom task by exploring and saving a copy of the registry nodes that may be affected
by the deployment. The existing tasks within the registry can certainly portray the necessary elements for being successful
in registering a .NET custom task for use in DTS.

Following these guidelines will build a better foundation for developing a Visual Basic .NET custom task and making the task a
successful element of the overall BI Solution.

Making ActiveX Script Reusable

Local Context of Script

There are many places within DTS where ActiveX Script can be used to augment the existing tasks, and even custom tasks within
the package. Whether it is an ActiveX Script workflow, an ActiveX Script task, or an ActiveX Script transform, each of these
unique elements has one apparently limiting characteristic in common. The script within each of these environments cannot be
used from another task and the only way ActiveX scripts have of communicating between tasks is through global variables. The
execution of script within a local context to each task, workflow, or transform creates a costly method for maintaining common
scripting functions that are repeated throughout a DTS package infrastructure or a BI solution.

Entry Functions and Parsed Script Executions

While the Entry Function property for ActiveX Scripting is indeed the function the ActiveX task, workflow or transformation
called when one of these components is executed, this function is not necessarily the first ActiveX Script to be executed. Any script
defined in the "global" area of the script will be executed prior to the entry function call. Below is an example of a simple ActiveX
Script illustrating this execution order.

Figure 23. ActiveX Script illustrating this execution order

The above script consists of two msgbox method calls: one prior to the Main() entry function and one within the function. The
results are two message box dialogs in order.

Figure 24. Message box dialogs from the script execution

It is also important to note that the entry function does not have to be Main and as the approach to building re-usable ActiveX
Script is explored, a strong case will be made for using alternate entry function names, too.

ActiveXScript Property

One of the first steps to making ActiveX Script available is to understand that each task, Workflow or Transform has an
ActiveXScript property, which is accessible throughout the package object hierarchy. This property provides a string populated
with all of the accessed object's ActiveX script.

Having the script of another task in a string is the beginning phase of reusing ActiveXScript.

Execute() and eval()

The VBScript and JScript ActiveX scripting languages are used most commonly within DTS scripting. Each of these languages
provides for a runtime means of including script defined within a string.

In VBScript, this support is provided by the Execute() function. The Execute() function takes a string consisting of VBScript
commands as a single parameter. The commands and functions defined within the string are included in the runtime
environment and can be called like any other command. Below is an example of this concept.

Figure 25. Runtime that includes script defined within a string

This example builds on the previous example and three message box dialogs are displayed. One is the result of the first msgbox
statement within the script, the second is the result of the msgbox() call within the Main() function and the third is the result of a
call to the dynamically added NewMessage() function, included through use of the Execute() function within VBScript.

JScript allows for an entirely similar approach using the eval() function. All of the behavior is the same and the only differences
are in the language semantics. The same functionality can be achieved.

Developing a Single Scripting Code Base

For the developer using scripting, and common script functions, on a regular basis, the best re-use probably achieved has been
through copy and paste between DTS tasks or between DTS tasks and packages. Once this initial copy and paste is performed, the
code has been shared between packages and potentially will branch, that is, allow for changes which are not propagated
throughout every occurrence of the function in all packages and tasks.

These methods can be overcome partially through the modular development of Parent/Child packages and further eliminated
through the development of custom tasks. However, neither of these approaches can eliminate this situation entirely. The real
solution is to develop a single code base that can be included in packages at runtime and referenced by the package's ActiveX
Script components.

The Single Code Base Package

Below is an illustration of the example package for developing a single scripting code base.

Figure 26. Single Code Base Package example

Each element will be described in further detail starting with the "Load Script File" ActiveX Script task.

Load Script File – leveraging the File System Object

The FileSystemObject is one of the most flexible elements of the scripting runtime as it provides necessary access to the file
system from within ActiveX script. Our approach and example will start with code that uses the FileSystemObject to load a
common Visual Basic script for OLAP Partition management from an ASCII text file, store it within an ActiveX Script task called the
"Code Library" and allow for the continued execution of the package.

Here is the ActiveX Script for the task:

Function Main()
'This function is responsible for loading
'the script file defined in the global variable - gstrScriptFile

Dim objFSO
Dim objFile
Dim objPackage
Dim objTask
Dim strScript

'Read the common olap partition processing script
set objFSO = CreateObject("Scripting.FileSystemObject")
set objFile = objFSO..OpenTextFile
 (DTSGlobalVariables("gstrScriptFile").Value, forReading)
strScript = objFile.ReadAll
objFile.Close

'Place the common script into the task, "Code library"
set objPackage = DTSGlobalVariables.Parent
set objTask = objPackage.Tasks(cstr("DTSTask_DTSActiveScriptTask_3"))

objTask.CustomTask.ActiveXScript.Value = strScript

set objTask = nothing
set objPackage = nothing
set objFile = nothing
set objFSO = nothing

Main = DTSTaskExecResult_Success
End Function

Following the execution of the above script, the Code Library task should contain a copy of the data within the text file. Before
continuing on the workflow to the Create Partition task, it is important to understand the choice for and configuration of the
Code Library task.

Code Library Task

The Code Library ActiveX Script task acts as the runtime repository for the script loaded from the text file. The reason for
choosing the Code Library task approach is simply:

The ActiveX Script task can hold a great deal of scripting text supporting the approach of loading large common scripting
files.
The ActiveX Script task supports viewing of the script that has been loaded.
The ActiveX Script task supports parsing the script file(s), which has been loaded, allowing for easier debugging.

In order to use the ActiveX Script task for this purpose, it is advisable to change the entry function to something other than
Main(). This point will be clearer in the next task. Secondly, the step's workflow property for Disable this Step should be set to
true as is shown below.

Figure 27. Setting the "Disable this Step" property to true

This latter step makes certain that the task will not be executed as it lives outside of the workflow of the other tasks.

Create Partition – Reusing Standardized Scripting

The Create Partition ActiveX Script task really begins to illustrate the power of re-usable code by showing a dramatic reduction
in overall code within the task for a less than simple function. Through reference of the Code Library task and use of the
Execute() function within VBScript, the contents of the Code Library tasks are loaded dynamically into the runtime environment
of the Create Partition task. Thus, allowing the task to reference functions that are defined in the text file loaded previously.

Here is the code listing for the task:

Dim strCommonScript
Dim objPackage
Dim objTask
Set objPackage = DTSGlobalVariables.Parent
Set objTask = objPackage.Tasks("DTSStep_DTSActiveScriptTask_3")

strCommonScript = objTask.CustomTask.ActiveXScript.Value
Execute(strCommonScript)

Function Main()
Dim strTreeKey 'The hierarchy of the OLAP Object to Process

'Run the Dynamically added function which gathers the parameters for
'global variables and builds a TreeKey for use in
'the Analysis Services Processing Task!
call CreatePartition(strTreeKey)

'Place the TreeKey in the Global Variable
DTSGlobalVariables("TreeKey").Value = strTreeKey

Main = DTSTaskExecResult_Success
End Function

The CreatePartition() logic is similar to the logic shown earlier in the white paper. This logic consists of a great deal more code
than the three lines of code it took here, within the Main function, to perform the partition creation. By naming the entry function
in the Code Library task by a name other than Main(), there were no conflicts. However, had we tried to use the same entry
function name after reading the ActiveX Script from the Code Library task, conflicts would have existed prohibiting this reuse
approach.

Guidelines

Delivering a reusable standardized scripting code base is actually a much easier task than some of the other approaches a person
might take, to leverage the intellectual property built up over time for doing scripting within DTS. In order to gain value from the
investments already made within the DTS architecture, there are a few guidelines to keep in mind.

Consider storing the ActiveX script in a text file or in multiple files. This promotes the control of the scripting outside of the
DTS environment and allows for the use of products like Visual Source Safe to manage the versioning of the common script.
Load the text file using the File System Object in lieu of other methods to avoid issues like contention and File Locking.
Strive for the utmost modularity. A reusable scripting function should pass parameters, definitely, or rely upon settings
within global variables, if absolutely necessary. It is important to not build dependencies between a variable within the task
and use of that variable within the dynamic script.
Sometimes modularity can be better achieved in multiple DTS packages. Keep in mind that SQL Server 2000 provides even
greater support for the nested child packages and the use of child packages may be a more prudent solution for achieving
reusability.

Practice Summary

Benefits

Enhancing the functionality of DTS results in an even more robust component of the SQL Server BI platform. Some of the core
benefits realized by these enhancement practices are:

Modularity

Through implementation of the approaches shown, a more modular approach will be enforced in the development of DTS
packages resulting in other intrinsic benefits.

Standardization

Employing these approaches will result in greater overall standardization of the DTS package architecture. Through
standardization greater efficiencies can and will be achieved in the overall development, maintenance and execution of the
DTS packages within BI solutions.

Limitless Functionality

Through incorporation of the technical approaches discussed, many areas of other functionality can be introduced through
additional COM or .NET components. Integrating these components can and often will far exceed the standard capabilities
of traditional BI ETL platforms.

Precautions

A limited number of precautionary areas do exist for this practice. The main precaution to keep in mind is complexity.

Complexity

Complexity chiefly results from mismanaged implementations of logic and taking a more reactive approach to development than
a proactive one. Using these techniques require the core investment of time in the design of the solution, to establish the
foundation for common logic built into reusable script and custom tasks.

Conclusion
DTS is a flexible architecture providing the opportunity to build comprehensive solutions within the Microsoft Data Warehousing
Framework. This white paper has highlighted the prominent best practices for using DTS within BI solutions. Practical exploration
of the best practices and approaches discussed will offer an opportunity to enhance and tailor these techniques for the individual
solution architecture.

For More Information

SQL Server 2000 Books Online contains more information about the Microsoft Data Warehousing Framework, the SQL Server
relational database, Data Transformation Services, and Analysis Services. For additional information, see the following resources:

The Microsoft SQL Server Web site at http://www.microsoft.com/sql
The Microsoft SQL Server Developer Center at http://msdn.microsoft.com/sqlserver
SQL Server Magazine at http://www.sqlmag.com

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/

The Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see
http://www.microsoft.com/traincert.

Appendix A – About the Authors
Trey Johnson, member of the Board of Directors for the Professional Association for SQL Server (PASS), is a Business Intelligence
Architect with Encore Development, an innovative software consulting firm specializing in Web-powered business solutions.
Johnson's responsibilities include supporting Encore's delivery of complete Business Intelligence solutions to mid-market and
Fortune 1000 organizations. Johnson has been involved with Decision Support, Data Warehousing, and Data Mining on SQL
Server since 1994. Johnson's industry experiences include speaking at SQL Server industry conferences, including multiple PASS
Conferences, multiple VSLive! SQL2TheMAX conferences and EDevCon 2000, application of Artificial Intelligence Data
Cleansing/Mining, Relational Decision Support and Data Warehousing/OLAP to health care, financial, retail, industrial
warehousing and law enforcement organizations.

Mark Chaffin is the Practice Director for Business Intelligence with Encore Development, an innovative software consulting firm
specializing in Web-powered business solutions. He has been the primary architect of many business intelligence solutions for
clients in many vertical markets including retail, consumer packaged goods, healthcare, finance, marketing, banking, technology,
and sports and entertainment. He has experience in click-stream analytics, data mining, transactional application architecture,
Internet application architecture, database administration, and database design. He is also the co-author of SQL Server 2000 Data
Transformation Services from Wrox Press, and has authored many articles on business intelligence, SQL Server, DTS and Analysis
Services.

Appendix B – Code Listing for .NET Custom Task
Below is all of the code for the Visual Basic .NET error handler task by individual file name.

AssemblyInfo.VB File Contents

Imports System.Reflection
Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle(".NET Error Handler")>
<Assembly: AssemblyDescription("DTS Custom Task handling errors originating
 in other Steps")>
<Assembly: AssemblyCompany("Encore Development")>
<Assembly: AssemblyProduct(".NET Error Handler")>
<Assembly: AssemblyCopyright("")>
<Assembly: AssemblyTrademark("")>
<Assembly: CLSCompliant(True)>

'The following GUID is for the ID of the typelib if this
 project is exposed to COM
<Assembly: Guid("EF4AC3E4-3D72-4117-AB91-8B417826792F")>

' Version information for an assembly consists of the following four values:
'
' Major Version
' Minor Version
' Build Number
' Revision
'
' You can specify all the values or you can default the Build and
 Revision Numbers
' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.*")>

'Note for the CustomTask to work you must generate and reference a KeyFile
<Assembly: AssemblyKeyFile(".\dotNetErrorHandler.snk")>

EHTask.VB File Contents
Public Class EHTask

http://www.microsoft.com/traincert

 'You must implement the CustomTask,
 'CustomTaskUI and PersistPropertyBag interfaces
 Implements Interop.DTS.CustomTask
 Implements Interop.DTS.CustomTaskUI
 Implements Interop.DTS.PersistPropertyBag

 'Create private variables to hold the standard properties
 Private _Name As String
 Private _Description As String

 'Create a private reference to the task object
 Private _TaskObject As Interop.DTS.Task

 'Create other private variables to store the extended properties
 Private _LogFileName As String
 Private _LogToEventLog As Boolean
 Private _LogToFile As Boolean
 Private _HandledStepName As String
 Private _UseGlobals As Boolean

 'Friend variable for the UI to report whether or not it was cancelled
 Friend bolUICancelled As Boolean

 Public Property Description() As String Implements
 Interop.DTS.CustomTask.Description
 Get
 Return _Description

 End Get
 Set(ByVal Value As String)
 _Description = Value
 End Set
 End Property
 Public Property Name() As String Implements Interop.DTS.CustomTask.Name
 Get
 Return _Name
 End Get
 Set(ByVal Value As String)
 _Name = Value
 End Set
 End Property

 Public Sub Execute(ByVal pPackage As Object, ByVal pPackageEvents
 As Object, ByVal pPackageLog As Object, ByRef pTaskResult
 As Interop.DTS.DTSTaskExecResult) Implements
 Interop.DTS.CustomTask.Execute

 Dim objPackage As Interop.DTS.Package
 Dim objTasks As Interop.DTS.Tasks
 Dim objStep As Interop.DTS.Step
 Dim objPackageLog As Interop.DTS.PackageLog

 Dim strSource As String
 Dim lngNumber As Long
 Dim strDescription As String
 Dim strErrorString As String

 Try
 'Cast the passed params into the local stronger typed variables
 objPackage = pPackage
 objPackageLog = pPackageLog

 'Make sure we have a precedence step
 Call EstablishPrecedence(objPackage)

 'Check the HandledStepName and Throw an Exception
 If Me.HandledStepName = "" Then
 Throw New System.Exception("Task cannot execute due to no
 Precedence Constraint being defined.")
 End If

 'If the Task is defined to drive from the global variables

 we need to check
 Call ReadFromGlobalVariables(objPackage)

 'Get a Step Object Reference
 objStep = objPackage.Steps.Item(Me.HandledStepName)

 'Retrieve the Error Information
 Call objStep.GetExecutionErrorInfo(lngNumber, strSource,
 strDescription)

 'Build the Error String
 strErrorString = Format(Now, "MM/dd/yyyy hh:mm:ss tt") & "|" & _
 objPackage.Name & "|" & objStep.Name & "|" & _
 " The Step, " & objStep.Description & _
 " failed with the following error: " & _
 lngNumber.ToString() & " - " & strSource & " - " &
strDescription

 'Determine if you should write to a log file
 If Me.LogToFile And Trim(Me.LogFileName) = "" Then
 'Throw an exception due to the lack of a filename
 Throw New System.Exception("Task cannot log to file due to
 no log file being defined.")
 ElseIf Me.LogToFile And Trim(Me.LogFileName) <> "" Then
 'Write to the log file
 Dim objFile As System.IO.File
 Dim objStreamWriter As System.IO.StreamWriter
 objStreamWriter = objFile.AppendText(Me.LogFileName)

 'Close the StreamWriter and Clean up the fileobject
 objStreamWriter.WriteLine(strErrorString)
 objStreamWriter.Close()
 objStreamWriter = Nothing
 objFile = Nothing

 End If

 'Determine if you should write to the eventlog
 If Me.LogToEventLog Then
 Dim objEventLog As New EventLog()
 objEventLog.WriteEntry(".Net DTS Error Handler", strErrorString)
 objEventLog = Nothing
 End If

 'Return Success as this Execution was successful
 pTaskResult = Interop.DTS.DTSTaskExecResult.DTSTaskExecResult_Success

 Catch ex As Exception
 Throw New System.Exception("An Error occured during the
 tasks execution.", ex)

 'Return Failure as this Execution was a failure
 pTaskResult = Interop.DTS.DTSTaskExecResult.DTSTaskExecResult_Failure

 End Try

 End Sub

 Public Property LogFileName() As String

 Get
 Return _LogFileName

 End Get
 Set(ByVal Value As String)
 _LogFileName = Value
 End Set
 End Property

 Public Property LogToFile() As Boolean
 Get

 Return _LogToFile

 End Get
 Set(ByVal Value As Boolean)
 _LogToFile = Value
 End Set
 End Property

 Public Property LogToEventLog() As Boolean
 Get
 Return _LogToEventLog

 End Get
 Set(ByVal Value As Boolean)
 _LogToEventLog = Value
 End Set
 End Property

 Public Property HandledStepName() As String
 Get
 Return _HandledStepName

 End Get
 Set(ByVal Value As String)
 _HandledStepName = Value
 End Set
 End Property

 Public Property UseGlobals() As Boolean
 Get
 Return _UseGlobals

 End Get
 Set(ByVal Value As Boolean)
 _UseGlobals = Value
 End Set
 End Property

 Public ReadOnly Property Properties() As Interop.DTS.Properties
 Implements Interop.DTS.CustomTask.Properties
 Get
 'Declare variables for Properties collection and
 ProviderClass to retrieve property info
 Dim objProperties As Interop.DTS.Properties
 Dim objPropProvider As Interop.DTS.PropertiesProviderClass =
 New Interop.DTS.PropertiesProviderClass()

 'Using the reference to the existing task object,
 get a reference to the task object
 'to pass to the Properties Provider
 objProperties = objPropProvider.GetPropertiesForObject(_TaskObject)

 'Perform some cleanup on the properties provider
 objPropProvider = Nothing

 'Return the value of the properties collection
 Return objProperties

 End Get
 End Property

 Public Sub Load(ByVal PropertyBag As Interop.DTS.PropertyBag)
 Implements Interop.DTS.PersistPropertyBag.Load
 'Create all of the PropertyBag readers to read information from the
 'PropertyBag into the module level variables

 _Name = PropertyBag.Read("Name")
 _Description = PropertyBag.Read("Description")
 _LogFileName = PropertyBag.Read("LogFileName")
 _LogToEventLog = PropertyBag.Read("LogToEventLog")
 _LogToFile = PropertyBag.Read("LogToFile")
 _HandledStepName = PropertyBag.Read("HandledStepName")

 _UseGlobals = PropertyBag.Read("UseGlobals")

 End Sub

 Public Sub Save(ByVal PropertyBag As Interop.DTS.PropertyBag)
 Implements Interop.DTS.PersistPropertyBag.Save
 'Create all of the PropertyBag writers to persist information from the
 'the module level variables into the property bag

 PropertyBag.Write("Name", _Name)
 PropertyBag.Write("Description", _Description)
 PropertyBag.Write("LogFileName", _LogFileName)
 PropertyBag.Write("LogToEventLog", _LogToEventLog)
 PropertyBag.Write("LogToFile", _LogToFile)
 PropertyBag.Write("HandledStepName", _HandledStepName)
 PropertyBag.Write("UseGlobals", _UseGlobals)

 End Sub

 Public Sub New()

 End Sub

 Public Sub Initialize(ByVal pTask As Interop.DTS.Task) Implements
 Interop.DTS.CustomTaskUI.Initialize
 _TaskObject = pTask
 End Sub

 Protected Overrides Sub Finalize()
 MyBase.Finalize()
 End Sub

 Public Sub Edit(ByVal hwndParent As Integer) Implements
 Interop.DTS.CustomTaskUI.Edit
 'Should Show a UI Here
 ShowPropertyUI()
 End Sub

 Public Sub GetUIInfo(ByRef pbstrToolTip As String, ByRef
 pbstrDescription As String, ByRef plVersion As Integer, ByRef pFlags
 As Interop.DTS.DTSCustomTaskUIFlags) Implements
 Interop.DTS.CustomTaskUI.GetUIInfo
 'Not Implemented
 End Sub

 Public Sub Delete(ByVal hwndParent As Integer) Implements
 Interop.DTS.CustomTaskUI.Delete
 _TaskObject = Nothing

 End Sub

 Public Sub Help(ByVal hwndParent As Integer) Implements
 Interop.DTS.CustomTaskUI.Help
 'Not Implemented
 End Sub

 Public Sub CreateCustomToolTip(ByVal hwndParent As Integer,
 ByVal x As Integer, ByVal y As Integer, ByRef plTipWindow
 As Integer) Implements Interop.DTS.CustomTaskUI.CreateCustomToolTip
 'Not Implemented
 End Sub

 Public Sub New2(ByVal hwndParent As Integer) Implements
 Interop.DTS.CustomTaskUI.New
 'In order to implement the New Method we needed to declare this way

 'Preset the Settings for the task
 Me.LogToEventLog = True
 Me.LogToFile = True
 Me.LogFileName = ""
 Me.UseGlobals = True

 'Should Show a UI Here
 ShowPropertyUI()

 End Sub

 Private Sub ShowPropertyUI()
 'Handles the UI Property Page Display

 Dim objForm As New frmProperty()
 Dim objPackage As Object
 Dim objTasks As Object

 objForm.objCustomTask = Me
 objForm.objMyTask = _TaskObject

 Try

 'Construct references to the Tasks Collection and the Package Object
 objTasks = _TaskObject.Parent
 objPackage = objTasks.Parent

 'Determine if the global variables exist for the Error Handler
 Call CheckGlobalVariables(objPackage)

 'Read data from the global variables and assign to properties
 Call ReadFromGlobalVariables(objPackage)

 'Check for a precedenceconstraint
 Call EstablishPrecedence(objPackage)

 'Set a Friend declared boolean so we will know how the user
 left the UI
 bolUICancelled = True

 'Tell the Form to load the properties before you show it
 objForm.GetProperties()

 'Show the Form
 objForm.ShowDialog()

 'Check to see how the user cancelled
 'Save the Properties to Global Variables if appropriate
 If Not bolUICancelled Then
 Call SaveToGlobalVariables(objPackage)
 End If

 Catch ex As Exception
 MsgBox(ex.Source & " - " & ex.Message, MsgBoxStyle.Critical,
 ".NET Error Handler")
 End Try

 End Sub

 Private Sub EstablishPrecedence(ByVal pobjPackage As
 Interop.DTS.Package)

 Dim objStep As Interop.DTS.Step
 Dim objPC As Interop.DTS.PrecedenceConstraint

 'Examine the steps for matching TaskNames
 'Evaluated the number of precedence constraints
 For Each objStep In pobjPackage.Steps
 If objStep.TaskName = _Name Then
 If objStep.PrecedenceConstraints.Count >= 1 Then
 'Establish the Precedence Ref

 'Get a reference to the precedence constraint and
 determine
 'the step info for the handler
 objPC = objStep.PrecedenceConstraints.Item(1)
 Me.HandledStepName = objPC.StepName

 'Dynamically Build a Task Description
 Me.Description() = "Handler for " &
 pobjPackage.Steps.Item(objPC.StepName).Description

 ElseIf objStep.PrecedenceConstraints.Count < 1 Then
 Me.HandledStepName = ""

 Exit For
 End If

 Exit For

 End If

 Next

 objStep = Nothing
 objPC = Nothing

 End Sub

 Private Sub CheckGlobalVariables(ByVal pobjPackage As Interop.DTS.Package)
 Dim objGlobalVariables As Interop.DTS.GlobalVariables =
pobjPackage.GlobalVariables
 Dim objGV As Interop.DTS.GlobalVariable2
 Dim bolErrorLogFileFound As Boolean
 Dim bolErrorLogToEventLogFound As Boolean
 Dim bolErrorLogToFileFound As Boolean
 Dim bolShowMessage As Boolean

 'Check for the Existence of the Global Variables

 For Each objGV In objGlobalVariables
 Select Case UCase(objGV.Name)
 Case "GSTRERRORLOGFILE"
 bolErrorLogFileFound = True
 Case "GBOLERRORLOGTOEVENTLOG"
 bolErrorLogToEventLogFound = True
 Case "GBOLERRORLOGTOFILE"
 bolErrorLogToFileFound = True
 Case Else
 'Not important

 End Select

 Next

 'If the variable wasn't found then ADD it to the package
 globalvariables collection
 If bolErrorLogFileFound = False Then
 objGlobalVariables.AddGlobalVariable("gstrErrorLogFile",
 CStr("c:\errorhandlerlog.log"))
 bolShowMessage = True
 End If

 'If the variable wasn't found then ADD it to the package
 globalvariables collection
 If bolErrorLogToEventLogFound = False Then
 objGlobalVariables.AddGlobalVariable("gbolErrorLogToEventLog",
 CBool(True))
 bolShowMessage = True
 End If

 'If the variable wasn't found then ADD it to the package
 globalvariables collection
 If bolErrorLogToFileFound = False Then
 objGlobalVariables.AddGlobalVariable("gbolErrorLogToFile",
 CBool(True))
 bolShowMessage = True
 End If

 'If a global variable was added, let the user know

 If bolShowMessage Then
 MsgBox("Global Variables have been added to this package to
 allow all Error Handlers to reference one setting." & vbCrLf
 & "Please indicate in individual Error Handler tasks
 whether or not the global variables are to be used.",
 MsgBoxStyle.Information, ".NET Error Handler: Global
 Variables Added")
 End If

 End Sub

 Private Sub SaveToGlobalVariables(ByVal pobjPackage As Interop.DTS.Package)
 Dim objGlobalVariables As Interop.DTS.GlobalVariables =
pobjPackage.GlobalVariables
 Dim objGlobalVariable As Interop.DTS.GlobalVariable2

 'If the task uses the values in the global variables then the
 'values entered in
 'the UI should be persisted to the GlobalVariables Collection
 If Me.UseGlobals Then
 'Oddity: The only way to get the globals to be
 'accessible as their correct types (i.e. String and Booleand)
 'is to remove and re-add them
 objGlobalVariables.Remove("gstrErrorLogFile")
 objGlobalVariables.AddGlobalVariable("gstrErrorLogFile",
 CStr(Me.LogFileName.ToString))

 objGlobalVariables.Remove("gbolErrorLogToEventLog")
 objGlobalVariables.AddGlobalVariable("gbolErrorLogToEventLog",
 CBool(Me.LogToEventLog))

 objGlobalVariables.Remove("gbolErrorLogToFile")
 objGlobalVariables.AddGlobalVariable("gbolErrorLogToFile",
 CBool(Me.LogToFile))

 'Let the user know that this action was performed
 MsgBox("The .NET Error Handler global variables were updated",
 MsgBoxStyle.Information, ".NET Error Handler")

 End If

 'Clean up and relegate to the GC
 objGlobalVariable = Nothing
 objGlobalVariables = Nothing

 End Sub

 Private Sub ReadFromGlobalVariables(ByVal pobjPackage As Interop.DTS.Package)
 Dim objGlobalVariables As Interop.DTS.GlobalVariables =
 pobjPackage.GlobalVariables

 'If the task uses the values in the global variables then the values entered in
 'the GlobalVariables should be assigned to the Task's properties
 If Me.UseGlobals Then
 Me.LogFileName = objGlobalVariables.Item("gstrErrorLogFile").Value
 Me.LogToEventLog = objGlobalVariables.Item("gbolErrorLogToEventLog").Value
 Me.LogToFile = objGlobalVariables.Item("gbolErrorLogToFile").Value
 End If

 End Sub

End Class

FrmProperty.VB File Contents
Public Class frmProperty
 Inherits System.Windows.Forms.Form

 'Public Variable Declarations so the Task can hand off
 'references to itself (as a Task object and as a CustomTask object)

 Public objMyTask As Interop.DTS.Task
 Public objCustomTask As dotNetErrorHandler.EHTask

 'Private Globals for references to the
 'Tasks Collection and the Package Object
 Private objTasks As Interop.DTS.Tasks
 Private objPackage As Interop.DTS.Package

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then

 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents txtName As System.Windows.Forms.TextBox
 Friend WithEvents txtDescription As System.Windows.Forms.TextBox
 Friend WithEvents Label2 As System.Windows.Forms.Label
 Friend WithEvents Label3 As System.Windows.Forms.Label
 Friend WithEvents chkLogToEvent As System.Windows.Forms.CheckBox
 Friend WithEvents chkLogToFile As System.Windows.Forms.CheckBox
 Friend WithEvents txtFileName As System.Windows.Forms.TextBox
 Friend WithEvents btnFileDialog As System.Windows.Forms.Button
 Friend WithEvents btnOkay As System.Windows.Forms.Button
 Friend WithEvents btnCancel As System.Windows.Forms.Button
 Friend WithEvents txtStepName As System.Windows.Forms.TextBox
 Friend WithEvents ckhUseGlobals As System.Windows.Forms.CheckBox
 Friend WithEvents lblVersion As System.Windows.Forms.Label
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 Me.lblVersion = New System.Windows.Forms.Label()
 Me.txtName = New System.Windows.Forms.TextBox()
 Me.txtDescription = New System.Windows.Forms.TextBox()
 Me.Label2 = New System.Windows.Forms.Label()
 Me.Label3 = New System.Windows.Forms.Label()
 Me.chkLogToEvent = New System.Windows.Forms.CheckBox()
 Me.chkLogToFile = New System.Windows.Forms.CheckBox()
 Me.txtFileName = New System.Windows.Forms.TextBox()
 Me.btnFileDialog = New System.Windows.Forms.Button()
 Me.btnOkay = New System.Windows.Forms.Button()
 Me.btnCancel = New System.Windows.Forms.Button()
 Me.txtStepName = New System.Windows.Forms.TextBox()
 Me.ckhUseGlobals = New System.Windows.Forms.CheckBox()
 Me.SuspendLayout()
 '
 'lblVersion
 '
 Me.lblVersion.Location = New System.Drawing.Point(24, 200)
 Me.lblVersion.Name = "lblVersion"
 Me.lblVersion.Size = New System.Drawing.Size(240, 24)
 Me.lblVersion.TabIndex = 0

 '
 'txtName
 '
 Me.txtName.Location = New System.Drawing.Point(304, 208)
 Me.txtName.Name = "txtName"
 Me.txtName.Size = New System.Drawing.Size(72, 20)
 Me.txtName.TabIndex = 1
 Me.txtName.Text = "<Task Name>"
 Me.txtName.Visible = False
 '
 'txtDescription
 '
 Me.txtDescription.Location = New System.Drawing.Point(96, 16)
 Me.txtDescription.Name = "txtDescription"
 Me.txtDescription.Size = New System.Drawing.Size(408, 20)
 Me.txtDescription.TabIndex = 3
 Me.txtDescription.Text = "<Task Desc>"
 '
 'Label2
 '
 Me.Label2.Location = New System.Drawing.Point(16, 16)
 Me.Label2.Name = "Label2"
 Me.Label2.Size = New System.Drawing.Size(104, 24)
 Me.Label2.TabIndex = 2
 Me.Label2.Text = "Description :"
 '
 'Label3
 '
 Me.Label3.Location = New System.Drawing.Point(16, 56)
 Me.Label3.Name = "Label3"
 Me.Label3.Size = New System.Drawing.Size(256, 16)
 Me.Label3.TabIndex = 5
 Me.Label3.Text = "Handled Step :"
 '
 'chkLogToEvent
 '
 Me.chkLogToEvent.Location = New System.Drawing.Point(96, 88)
 Me.chkLogToEvent.Name = "chkLogToEvent"
 Me.chkLogToEvent.Size = New System.Drawing.Size(256, 24)
 Me.chkLogToEvent.TabIndex = 6
 Me.chkLogToEvent.Text = "Log Error to the Windows Event Log"
 '
 'chkLogToFile
 '
 Me.chkLogToFile.Location = New System.Drawing.Point(96, 120)
 Me.chkLogToFile.Name = "chkLogToFile"
 Me.chkLogToFile.Size = New System.Drawing.Size(256, 24)
 Me.chkLogToFile.TabIndex = 7
 Me.chkLogToFile.Text = "Log Error to the Following File "
 '
 'txtFileName
 '
 Me.txtFileName.Location = New System.Drawing.Point(272, 120)
 Me.txtFileName.Name = "txtFileName"
 Me.txtFileName.Size = New System.Drawing.Size(208, 20)
 Me.txtFileName.TabIndex = 8
 Me.txtFileName.Text = "c:\dts.log"
 '
 'btnFileDialog
 '
 Me.btnFileDialog.Location = New System.Drawing.Point(480, 120)
 Me.btnFileDialog.Name = "btnFileDialog"
 Me.btnFileDialog.Size = New System.Drawing.Size(24, 24)
 Me.btnFileDialog.TabIndex = 9
 Me.btnFileDialog.Text = "..."
 '
 'btnOkay
 '
 Me.btnOkay.Location = New System.Drawing.Point(352, 200)
 Me.btnOkay.Name = "btnOkay"
 Me.btnOkay.TabIndex = 10
 Me.btnOkay.Text = "OK"

 '
 'btnCancel
 '
 Me.btnCancel.DialogResult = System.Windows.Forms.DialogResult.Cancel
 Me.btnCancel.Location = New System.Drawing.Point(432, 200)
 Me.btnCancel.Name = "btnCancel"
 Me.btnCancel.TabIndex = 11
 Me.btnCancel.Text = "Cancel"
 '
 'txtStepName
 '
 Me.txtStepName.Location = New System.Drawing.Point(96, 56)
 Me.txtStepName.Name = "txtStepName"
 Me.txtStepName.ReadOnly = True
 Me.txtStepName.Size = New System.Drawing.Size(408, 20)
 Me.txtStepName.TabIndex = 12
 Me.txtStepName.Text = "<Handled Step Description (Name)>"
 '
 'ckhUseGlobals
 '
 Me.ckhUseGlobals.Location = New System.Drawing.Point(96, 152)
 Me.ckhUseGlobals.Name = "ckhUseGlobals"
 Me.ckhUseGlobals.Size = New System.Drawing.Size(408, 40)
 Me.ckhUseGlobals.TabIndex = 13
 Me.ckhUseGlobals.Text = "Use Global Variables
 (Properties will be read from the Globals at run-time)"
 '
 'frmProperty
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.CancelButton = Me.btnCancel
 Me.ClientSize = New System.Drawing.Size(512, 247)
 Me.Controls.AddRange(New System.Windows.Forms.Control()
 {Me.ckhUseGlobals, Me.txtStepName, Me.btnCancel, Me.btnOkay,
 Me.btnFileDialog, Me.txtFileName, Me.chkLogToFile,
 Me.chkLogToEvent, Me.Label3, Me.txtDescription, Me.Label2,
 Me.txtName, Me.lblVersion})
 Me.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog
 Me.MaximizeBox = False
 Me.MinimizeBox = False
 Me.Name = "frmProperty"
 Me.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide
 Me.Text = ".NET Error Handler Task Properties"
 Me.ResumeLayout(False)

 End Sub

#End Region

 Private Sub frmProperty_Load(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 'There is nothing to do here because we invoke our own custom methods
 Me.CenterToParent()

 End Sub

#Region " Our Own Custom Methods "

 Public Sub GetProperties()
 'Establish the Package and Task Reference first
 Dim objStep As Interop.DTS.Step
 Dim objPC As Interop.DTS.PrecedenceConstraint
 Dim objTask As Object

 Dim strHandledStepInfo As String
 Dim strDescription As String
 Dim strFilename As String
 Dim strVersion As String

 'Construct references to the Tasks Collection and the Package Object
 objTasks = objMyTask.Parent
 objPackage = objTasks.Parent

 'Get the CustomTasks Description
 strDescription = objCustomTask.Description

 'Examine the steps for matching TaskNames
 'Evaluated the number of precedence constraints
 For Each objStep In objPackage.Steps
 If objStep.TaskName = objMyTask.Name Then
 If objStep.PrecedenceConstraints.Count > 1 Then
 MsgBox("This task can only use 1 precedence
 constraint." & vbCrLf & _
 "The first will be the one handled by the task.",
 MsgBoxStyle.Critical, ".NET Error Handler")

 ElseIf objStep.PrecedenceConstraints.Count < 1 Then
 MsgBox("This task requires that a precedence " & _
 "constraint be defined.", MsgBoxStyle.Critical,
 ".NET Error Handler")
 objCustomTask.HandledStepName = ""
 strHandledStepInfo = "<No Preceding Step Defined>"
 Exit For
 End If

 'Get a reference to the precedence constraint and determine
 'the step info for the handler
 objPC = objStep.PrecedenceConstraints.Item(1)
 objCustomTask.HandledStepName = objPC.StepName

 strHandledStepInfo =
 objPackage.Steps.Item(objPC.StepName).Description & _
 " (" & objPC.StepName & ")"

 'Establish a New Description if the predecessor step exists
 strDescription = "Handler for " &
 objPackage.Steps.Item(objPC.StepName).Description

 Exit For

 End If

 Next

 'Map properties to UI elements
 Me.txtDescription.Text = strDescription
 Me.txtName.Text = objCustomTask.Name

 If objCustomTask.LogFileName = "" Then
 Me.txtFileName.Text = strFilename
 ElseIf strFilename = "" Then
 Me.txtFileName.Text = objCustomTask.LogFileName
 Else
 Me.txtFileName.Text = strFilename
 End If

 Me.chkLogToEvent.Checked = objCustomTask.LogToEventLog
 Me.chkLogToFile.Checked = objCustomTask.LogToFile
 Me.txtStepName.Text = strHandledStepInfo
 Me.ckhUseGlobals.Checked = objCustomTask.UseGlobals

 'Establish the Version information - helpful for knowing
 what version is deployed
 strVersion = "Version " &
 System.Reflection.Assembly.GetExecutingAssembly.GetName().Version.Major.To
 String()
 strVersion = strVersion & "." &
 System.Reflection.Assembly.GetExecutingAssembly.GetName().Version.Minor.To
 String
 strVersion = strVersion & "." &
 System.Reflection.Assembly.GetExecutingAssembly.GetName().Version.Build.To
 String

 Me.lblVersion.Text = strVersion

 End Sub
 Public Sub SaveProperties()

 'Map Form Elements to Task Properties
 objCustomTask.Description = Me.txtDescription.Text
 objCustomTask.Name = Me.txtName.Text
 objCustomTask.LogFileName = Me.txtFileName.Text
 objCustomTask.LogToEventLog = Me.chkLogToEvent.Checked
 objCustomTask.LogToFile = Me.chkLogToFile.Checked
 objCustomTask.UseGlobals = Me.ckhUseGlobals.Checked

 End Sub

#End Region

 Private Sub frmProperty_Closing(ByVal sender As Object, ByVal e As
 System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 objMyTask = Nothing
 objCustomTask = Nothing

 'Clean up the global private references
 objTasks = Nothing
 objPackage = Nothing
 End Sub

 Private Sub btnOkay_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnOkay.Click
 objCustomTask.bolUICancelled = False
 Me.SaveProperties()
 Me.Close()
 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles btnCancel.Click
 Me.Close()
 End Sub

 Private Sub btnFileDialog_Click(ByVal sender As System.Object, ByVal e
 As System.EventArgs) Handles btnFileDialog.Click

 Dim objFileDialog As New Windows.Forms.SaveFileDialog()
 'Configure the FileDialog
 objFileDialog.DefaultExt = ".log"
 objFileDialog.Filter = "Log Files (*.log)|*.log"

 objFileDialog.FileName = Me.txtFileName.Text
 objFileDialog.Title = ".NET Error Handler : Select Log File"

 objFileDialog.ShowDialog()

 If objFileDialog.FileName() <> "" Then
 Me.txtFileName.Text = objFileDialog.FileName()

 End If

 objFileDialog = Nothing

 End Sub

End Class

FrmProperty.Resx File Contents
<?xml version="1.0" encoding="utf-8"?>
<root>
 <xsd:schema id="root" xmlns=""
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="root" msdata:IsDataSet="true">

 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string"
 minOccurs="0" msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" msdata:Ordinal="1" />
 <xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
 <xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>1.3</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
 Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
 Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <data name="lblVersion.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="txtName.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="txtDescription.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="Label2.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="Label3.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="chkLogToEvent.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">

 <value>Assembly</value>
 </data>
 <data name="chkLogToFile.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="txtFileName.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="btnFileDialog.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="btnOkay.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="btnCancel.Modifiers" type="System.CodeDom.MemberAttributes,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="txtStepName.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="ckhUseGlobals.Modifiers"
 type="System.CodeDom.MemberAttributes, System, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <value>Assembly</value>
 </data>
 <data name="$this.Name">
 <value>frmProperty</value>
 </data>
</root>

dotNetErrorHandler.VBPROJ File Contents
<VisualStudioProject>
 <VisualBasic
 ProjectType = "Local"
 ProductVersion = "7.0.9466"
 SchemaVersion = "1.0"
 ProjectGuid = "{C136AEE2-5D34-4B77-8F71-7DACB8EF1F28}"
 >
 <Build>
 <Settings
 ApplicationIcon = ""
 AssemblyKeyContainerName = ""
 AssemblyName = "dotNetErrorHandler"
 AssemblyOriginatorKeyFile = ""
 AssemblyOriginatorKeyMode = "None"
 DefaultClientScript = "JScript"
 DefaultHTMLPageLayout = "Grid"
 DefaultTargetSchema = "IE50"
 DelaySign = "false"
 OutputType = "Library"
 OptionCompare = "Binary"
 OptionExplicit = "On"
 OptionStrict = "Off"
 RootNamespace = "dotNetErrorHandler"
 StartupObject = ""
 >
 <Config
 Name = "Debug"
 BaseAddress = "285212672"

 ConfigurationOverrideFile = ""
 DefineConstants = ""
 DefineDebug = "true"
 Def race = "true"
 DebugSymbols = "true"
 IncrementalBuild = "true"
 Optimize = "false"
 OutputPath = "bin\"
 RegisterForComInterop = "false"
 RemoveIntegerChecks = "false"
 TreatWarningsAsErrors = "false"
 WarningLevel = "1"
 />
 <Config
 Name = "Release"
 BaseAddress = "285212672"
 ConfigurationOverrideFile = ""
 DefineConstants = ""
 DefineDebug = "false"
 Def race = "true"
 DebugSymbols = "false"
 IncrementalBuild = "false"
 Optimize = "true"
 OutputPath = "bin\"
 RegisterForComInterop = "false"
 RemoveIntegerChecks = "false"
 TreatWarningsAsErrors = "false"
 WarningLevel = "1"
 />
 </Settings>
 <References>
 <Reference
 Name = "System"
 AssemblyName = "System"
 />
 <Reference
 Name = "System.Data"
 AssemblyName = "System.Data"
 />
 <Reference
 Name = "System.XML"
 AssemblyName = "System.Xml"
 />
 <Reference
 Name = "Interop.DTS"
 AssemblyName = "Interop.DTS"
 HintPath = "Interop.DTS.dll"
 />
 <Reference
 Name = "System.Drawing"
 AssemblyName = "System.Drawing"
 HintPath = "..\..\..\..\WINDOWS\Microsoft.NET\Framework
 \v1.0.3705\System.Drawing.dll"
 />
 <Reference
 Name = "System.Windows.Forms"
 AssemblyName = "System.Windows.Forms"
 HintPath = "..\..\..\..\WINDOWS\Microsoft.NET\Framework
 \v1.0.3705\System.Windows.Forms.dll"
 />
 </References>
 <Imports>
 <Import Namespace = "Microsoft.VisualBasic" />
 <Import Namespace = "System" />
 <Import Namespace = "System.Collections" />
 <Import Namespace = "System.Data" />
 <Import Namespace = "System.Diagnostics" />
 </Imports>
 </Build>
 <Files>
 <Include>
 <File

 RelPath = "AssemblyInfo.vb"
 SubType = "Code"
 BuildAction = "Compile"
 />
 <File
 RelPath = "EHTask.vb"
 SubType = "Code"
 BuildAction = "Compile"
 />
 <File
 RelPath = "frmProperty.vb"
 SubType = "Form"
 BuildAction = "Compile"
 />
 <File
 RelPath = "frmProperty.resx"
 DependentUpon = "frmProperty.vb"
 BuildAction = "EmbeddedResource"
 />
 </Include>
 </Files>
 </VisualBasic>
</VisualStudioProject>

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Bitmaps in Microsoft SQL Server 2000

Microsoft Corporation

March 2001

Summary: Microsoft SQL Server has been using bitmaps internally to speed up query execution since version 7.0. With the
introduction of new operators in SQL Server 2000, further bitmap filtering techniques can now be applied for even faster query
results from large data sets. (4 printed pages)

Introduction
This article first explains the use of bitmaps in query optimization in Microsoft® SQL Server 7.0, then their enhanced application
in SQL Server 2000™.

SQL Server 7.0

Microsoft SQL Server 7.0 uses bitmaps silently in all hash joins. A hash join has build and probe phases. In the build phase, all join
keys of one of the joined tables (also called the outer table) are hashed into a hash table. As a byproduct of this hashing, SQL
Server produces a separate bitmap where "0" represents "no key value in the outer table is hashed to this bit", and "1" means
"one or more key values in the outer table hashes into this bit".

The size of the bitmap is determined during the query optimization based on the number of unique values expected in the outer
table. Once all rows of the outer table are hashed, the bitmap has 0s and 1s in it. Then each key of the probe table (also called
inner table) is hashed using the same hash algorithm as that used for the outer keys.

Prior to examining and searching the hash table from the build phase we examine the bitmap. If there is "0" in the corresponding
entry, the row cannot have a match in the outer table and is, therefore, discarded.

Since probing the bitmap is substantially cheaper than searching the hash table, rows from the inner table that do not produce a
join record may be processed substantially faster than without the bitmap. The bitmaps are created automatically and are not
visible in the showplan output since they are an integral part of hash joins.

SQL Server 2000

Microsoft SQL Server 2000 employs similar bitmaps very efficiently — not only inside hash joins, but also outside join operators
to eliminate rows with key values that cannot produce any join records. There is a "Bitmap Create" operator in the showplan
output where the bitmaps are built. These bitmaps are introduced automatically in the query plans during query optimization. The
following is an example of a query that uses a plan with such bitmaps:

SELECT S_NAME, S_ADDRESS ,S_PHONE ,S_COMMENT ,PS_PARTKEY
 FROM SUPPLIER ,PARTSUPP
 WHERE S_SUPPKEY = PS_SUPPKEY AND
PS_PARTKEY between 5000 AND 5999

This query selects all suppliers from the SUPPLIER table that produce any parts in the 5000 series (partkeys between 5000 and
5999). Besides the SUPPLIER table, we are also using the PARTSUPP (parts supplier) table that contains, for each part, as many
records as there are different suppliers producing the same part. Figure 1 below shows the graphical showplan generated by the
SQL Server 2000.

Figure 1. Illustration of execution plan for example query (click to enlarge)

The bitmap is created prior to the hash join on the outer input side of the join for each stream of data. Reading the above
graphical showplan from right to left and from top to bottom, the scan of the PARTSUPP table is parallel. The following exchange
operator (Parallelism/Repartition Streams) then distributes the rows using the key values so that they will be in corresponding
streams with the redistributed rows of the SUPPLIER table prior to the parallel Hash Match (Join). The top branch is executed first,
and until the hash table of the hash join is populated there is no activity on the bottom branch.

At the time the SUPPLIER table is scanned we already have the bitmaps built on the top branch using the PARTSUPP keys
(PS_SUPPKEY column in this query). There is one bitmap for each stream entering the hash join. When the SUPPLIER rows enter

the exchange operator right after the scan, we first decide which stream they should enter. We then discard the row if the bitmap
on this stream has "0" in the entry that corresponds to the key value (S_SUPPKEY column). Therefore, the non-qualifying rows are
eliminated even before they are placed in the proper output stream of the exchange.

SQL Server 2000 uses these bitmaps only in parallel query plans. This is because without the exchange operator there is no
additional saving on top of the bitmaps inside the hash joins. In addition to the above scenario with hash joins, SQL Server 2000
will also use such bitmaps for merge joins, but again only in parallel plans, and where a SORT operator exists on the outer branch.
The SORT operator causes SQL Server to process all outer rows prior to processing rows from the inner table and thereby allows
us to build the bitmap. Without a SORT operator on the outer branch, the rows of both the outer and inner tables of the merge
join are processed simultaneously, thereby making bitmap use unfeasible.

Test results show speed improvements

In general, the performance improvement caused by the bitmap deployment depends on the number of rows that are filtered out.
This number may vary; therefore the speed increase may range from immeasurable to very significant, depending on the cost of
other operators employed in the query execution.

Figure 2 below illustrates the speed improvements we observed testing three complex queries against large database (134 GB
tables, 45 GB indexes). The tests were conducted in our lab using an 8-way, 550 MHz machine with 4 GB of RAM.

Query A is a join of three tables (the largest one has about 100 GB of data) with an aggregation and ordering of the result.
Query B is a query with a correlated subquery.
Query C is a join of six tables with an aggregation on top of the join.

Figure 2. Bitmap filtering optimizes complex queries on three large databases (click to enlarge)

Conclusion
The use of bitmaps in query optimization is one of many techniques employed by SQL Server 2000 to provide the fastest results
from large data sets, like those found in enterprise databases. By reducing the number of rows that need to be processed, inner
and outer join queries are more efficient, data is returned rapidly and server processing is minimized.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Building Search Applications for the Web Using Microsoft SQL
Server 2000 Full-Text Search

Andrew B. Cencini
Microsoft Corporation

December 2002

Applies to:
 Microsoft® SQL™ Server 2000

Summary: Learn how to best utilize SQL Server 2000's Full-Text Search. This article includes several tips and tricks for maximum
throughput and performance. (17 printed pages)

Contents

Introduction
A Little About Full-Text Search
Configuring Full-Text Search
Full-Text Queries
Ranking and Optimizations
Additional Performance Tricks
Conclusion
Appendix A: Implementing Best Bets for Full-Text Searches
Appendix B: A Sample Application Using Best Bets, Results Paging, and Efficient Full-Text Query Logic
Appendix C: Resources

Introduction
The Full-Text Search feature of Microsoft® SQL™ Server 2000 allows you to perform fast and flexible queries against indexes
built on unstructured text data. A common use of Full-Text Search is that of the search engine for web sites. There are a number of
concepts and abstractions that are useful in understanding the best way to utilize Full-Text Search, as well as several tips and
tricks for optimizing your Full-Text indexes and queries for maximum throughput and performance.

A Little About Full-Text Search
Full-Text Search, as a feature, was introduced in SQL Server 7.0. The core engine of Full-Text Search is provided by means of
Microsoft Search (MSSearch) technology, which is also used in products such as Microsoft Exchange, and Microsoft SharePoint™
Portal Server.

The functionality exposed in SQL Server 7.0 Full-Text Search provides basic text search abilities, and uses an earlier version of
MSSearch. SQL Server 2000's Full-Text Search implementation delivers a robust set of index and query features, and several
enhancements in addition to those included with SQL Server 7.0. Among those enhancements are: full support for clustering via
Microsoft Clustering Service, the ability to filter and index documents stored in IMAGE columns, improved language support, and
performance, scalability and reliability improvements.

MSSearch builds, maintains and queries Full-Text indexes stored in the file system (as opposed to inside of SQL Server). The
logical and physical storage unit used for Full-Text indexes by MSSearch is a catalog. A Full-Text catalog contains one or more
Full-Text indexes per database—one Full-Text index may be created per table in SQL Server, and you may include one or more
columns from that table in the index. Each table may belong to only one catalog, and only one index may be created on each table.
We'll get into best practices in terms of organizing your Full-Text catalogs and indexes in a little bit—but first, a little more on how
Full-Text Search works.

Configuring Full-Text Search
To create a Full-Text index on your text data stored in SQL Server, there are a few steps you should take to get ready. The first step
is to Full-Text enable the database that contains textual data you wish to index (if you have not done so already).

Caution Executing the following statement will drop and re-create all Full-Text catalogs belonging to the database
on which you wish to enable Full-Text Search. Be sure you haven't already created any Full-Text catalogs in the
particular database you are enabling unless you want them rebuilt.

Provided you are a member of the sysadmin role or db_owner for that particular database, you can go ahead and issue the
following statement:

use Northwind
exec sp_fulltext_database 'enable'

Next, you will want to create a Full-Text catalog to store your Full-Text indexes. As I said before, the data in this catalog lives in
your file system as opposed to within SQL Server, and therefore you should choose carefully when you consider where your Full-
Text catalog will be stored. Unless you specify otherwise, your Full-Text catalog will be stored in a subdirectory of the FTDATA
directory that resides in your Microsoft SQL Server\MSSQL storage location. Here is how you may go about creating a Full-Text
Catalog in a non-default location:

exec sp_fulltext_catalog 'Cat_Desc', 'create', 'f:\ft'

In this case, your Full-Text catalog will be created as a subdirectory of 'f:\ft', and if you take a look at that part of your file system,
you will see it there as its own directory. The naming convention used for Full-Text catalogs by MSSearch is:

SQL+dbid+catalogID

Catalog IDs start at 00005 and are incremented by one for each new catalog created.

As a best practice, if possible, Full-Text catalogs should be created on their own physical drive (or drives). Given the process of
building a Full-Text index is fairly I/O intensive (on a high level, it consists of reading data from SQL Server, and then writing the
index to the file system), you probably want to avoid letting your I/O subsystem become a bottleneck.

So, how big are your Full-Text catalogs? Generally, Full-Text catalogs add about 30% overhead for the amount of data stored in
SQL Server that you are Full-Text indexing. This rule of thumb, however, is dependent on the distribution of unique words (or
keys) in your data, as well as which words you consider noise words Noise words, or stop words, are terms that are excluded from
Full-Text indexes and queries because they are not 'interesting' search terms that have a high rate of occurrence, and only bloat
your indexes. Later, we will get into some considerations in terms of noise word selection, and how you can possibly tune your
noise words to improve your query performance.

If you have not done so already, create a unique, single-column, non-nullable index on each table upon which you plan to build a
Full-Text index. This unique index is used to map each row in your table to a unique, compressible key used internally by
MSSearch. Next, you want to let MSSearch know that you wish to create a Full-Text index on your tables. Issuing the following
statement for your table will add it to a Full-Text catalog of your choice (in this case, 'Cat_Desc', which we created above):

exec sp_fulltext_table 'Categories', 'create', 'Cat_Desc',
 'PK_Categories'

Adding columns to this Full-Text index is the next step. For each column, you may optionally choose a language, and if the column
is of type IMAGE, you must specify another column that will be used to indicate what type of document is stored in each row of
your IMAGE column.

There are some important—and not well-documented—considerations for choosing the column language. These considerations
relate to how your text is tokenized and then indexed by MSSearch. Text being indexed is fed through a component called a
wordbreaker that tokenizes on word boundaries. These word boundaries, in the English language, are typically whitespace or
some form of punctuation. In other languages, such as German, words or characters may be combined together; therefore, your
choice of a column-level language should represent the language you expect will be stored in rows of that column. If you are
unsure, a general best bet is to use the neutral wordbreaker, which performs its tokenization purely on whitespace and
punctuation. An additional benefit of your column-level language choice is "stemming". Stemming in Full-Text queries is defined
as the process of searching for all stemmed (inflectional) forms of a word in a particular language.

Another consideration in language choice is related to the way in which your data is represented. For non-IMAGE column data, no
special filtering is performed. Rather, the text is generally passed through the wordbreaking component as-is. Wordbreakers are
designed mainly to process written text. So, if you have any type of markup (such as HTML) on your text, you may not get great
linguistic accuracy during indexing and search. In that case, you have two choices—the preferred method is simply to store the
text data in an IMAGE column, and to indicate its document type so it may be filtered. If this is not an option, you may consider
using the neutral wordbreaker and, if possible, adding markup data (such as 'br' in HTML) to your noise word lists. You will not
receive the benefit of any language-based stemming on a column with the neutral language specified, but certain circumstances
may dictate this choice.

Now that you know what your column-level options are, try adding a column or two to your Full-Text index, by issuing the
following:

exec sp_fulltext_column 'Categories', 'Description', 'add'

You may notice I did not specify any language here—in this case, the default Full-Text language will be used. You may set the

default Full-Text language for your server via the system stored procedure "sp_configure".

With all of your columns added to your Full-Text index, you're now ready to start a population. There is much that can be said
about the various options you have when it comes to population methods, and I'll avoid going into too much detail—but for this
example, you should simply start a full population on your table, and wait for it to complete:

exec sp_fulltext_table 'Categories', 'start_full'

You may wish to monitor your population status using either the FULLTEXTCATALOGPROPERTY or OBJECTPROPERTY functions.
To get your catalog population status, you can execute:

select FULLTEXTCATALOGPROPERTY('Cat_Desc', 'Populatestatus')

Typically, if a full population is in progress, the result returned is '1'. For more details on how to use
FULLTEXTCATALOGPROPERTY and OBJECTPROPERTY, see SQL Server Books Online.

Full-Text Queries
Querying Full-Text indexes is slightly different than executing standard relational queries in SQL Server. Since your indexes are
stored and managed external to SQL Server, Full-Text query processing is in large part handled by MSSearch—therefore, queries
that are partially relational in nature, and partially Full-Text based will be processed separately—which can sometimes hurt
performance.

Essentially, when you execute a Full-Text query, the query terms are passed to MSSearch, which traverses its internal data
structures (the indexes), and it returns a key and rank value to SQL Server. You generally do not see the key or rank values when
you execute a CONTAINS or FREETEXT query; however, if you execute a CONTAINSTABLE or FREETEXTTABLE query, you are
provided with these values—which are typically then joined against the base table. The process of joining keys against the base
table can be quite expensive—shortly, we'll present some clever ways to minimize or completely avoid this join.

If you've been thinking ahead, and know a little bit about how Full-Text queries return data, you may surmise that
CONTAINS/FREETEXT queries are simply performing a CONTAINSTABLE/FREETEXTTABLE query and joining against the base
table. Your understanding should lead you to avoid using those types of queries unless the cost of not doing so would be greater.
In the case of web search applications, using CONTAINSTABLE and FREETEXTTABLE is much better than using the TABLE-less
cousins.

So far, you know that Full-Text queries are special ways of accessing data from MSSearch indexes stored outside of SQL Server,
and that you can get in a bit of trouble by blindly joining against your base table. Another key thing to know is the actual
difference between CONTAINS-style queries and FREETEXT-style queries.

CONTAINS queries perform an exact match for all terms you are searching for. Whether you are simply looking for a single word,
or all words beginning with 'orange', you will only be returned results that contain all of your search terms. Along these lines,
CONTAINS queries are quite fast, as they typically return fewer results, and generally don't need to perform too much additional
processing. Some downsides of CONTAINS queries include the pesky problem of noise word filtering. Experienced developers
and DBAs who have worked with Full-Text Search in the past have encountered the dreaded "Your query contains only noise
words" error when trying to match words or phrases that include even a single noise word. One way to avoid receiving this error
is to filter out noise words prior to executing Full-Text queries. It is not possible to return results to a CONTAINS query containing
noise words, as queries of this type are to return exact matches to your entire query string. Since noise words are not Full-Text
indexed, no rows may be returned on a CONTAINS query that includes noise words.

FREETEXT queries overcome all of the caveats that occasionally occur in CONTAINS queries. When you issue a FREETEXT query,
you are essentially issuing a stemmed any-words query. Therefore, when you search for "root beer", both 'root' and 'beer' are
stemmed out to all of their forms (stemming is language specific; the language used is determined by the Full-Text column
language specified at indexing time, and must be the same across all the queried columns), and any row that matches at least one
of those terms will be returned.

The side effect of FREETEXT queries is that they have a tendency to use more CPU than CONTAINS queries—the stemming and
larger possible set of returned results, combined with a more complicated calculation of rank are the culprits. Nevertheless,
FREETEXT-based queries are amazingly flexible, still extremely fast, and quite often the best way to go for web-based search
applications.

Ranking and Optimizations
I often meet with users of Full-Text Search, and they ask me what the ranking numbers mean, and how they can translate them to
some sort of human-understandable value. There is a short answer and a long answer that can be given to this question, but I'll
stick to the short one to be brief. Basically, those ranking numbers are not as significant as the order in which the results are
returned. What this means is that when you order your results by rank, you are always returning the most relevant results first.
The rank values themselves are prone to change—Full-Text Search uses a probabilistic ranking algorithm, which means the

relevance of each document you are returning is directly effected by any and all other documents in your Full-Text index.

One trick some people think helps increase the rank of certain rows is to repeat commonly used search keywords in the Full-Text
indexed columns of those rows. While this may, to a certain degree, help improve the chances of those rows being returned first
for certain keywords, it may backfire in other cases—and also puts you at a moderate risk of hurting query performance for those
terms. A better solution would be to implement a "Best Bets" system for your search application (see example below) so you may
be guaranteed that certain documents are returned first. The problem with extensive duplication of keywords is that it can bloat
your Full-Text indexes for those specific keywords, and cause MSSearch to spend more time than necessary in finding the right
rows and calculating rank. If you have a huge amount of Full-Text indexed data, and have tried this tactic, you probably will find
that some Full-Text queries take quite a while. If you are able to implement a more lean (and probably more accurate) "Best Bets"
system, you are likely to find it will make a world of difference in your query performance.

Another problem related to extensive duplication of data is related to a commonly used trick to combine relational and Full-Text
queries. This problem plagues many people using Full-Text Search and is encountered when one attempts to apply some sort of a
filter to results returned from a Full-Text query. As I said, Full-Text queries return a key and a rank for each matching row—to
garner any more information about those rows, one must perform a join against its base table. Since any number of results may
possibly be returned from an unrestricted Full-Text query, that join may become quite costly. One clever way people have found
to avoid that join is to simply add the data to be filtered (if possible) to their Full-Text index. In other words, if someone wants to
search on the keyword of "Ichiro" from the body text of all articles in a newspaper, but only return articles that were in the sports
section of the newspaper, queries are typically expressed similar to:

-- [APPROACH 1:]
-- most expensive: select all, then join and filter
SELECT ARTICLES_TBL.Author, ARTICLES_TBL.Body, ARTICLES_TBL.Dateline,
 FT_TBL.[rank]
FROM FREETEXTTABLE(Articles, Body, 'Ichiro') AS FT_TBL
INNER JOIN Articles AS ARTICLES_TBL
ON FT_TBL.[key] = ARTICLES_TBL.ArticleID
WHERE ARTICLES_TBL.Category = 'Sports'

-- [APPROACH 2:]
-- works, but can backfire and become slow or return inaccurate results:
-- perform filtering via Full-Text and only extract key and rank
-- (processing done at web server level)
SELECT [key], [rank]
FROM CONTAINSTABLE(Articles, *, 'FORMSOF(INFLECTIONAL('Ichiro')
 AND "sports"')

The problem with these queries is that they are either unnecessarily expensive, or run the risk of returning wrong results (in the
second query, 'sports' is quite likely to occur in articles of all categories). There are other permutations of these techniques, but
these are two very simple mockups. A suggestion I typically give, if it can be afforded, is that of some form of horizontal
partitioning of data. In other words, each possible value for your 'categories' column could simply become its own column (or
table), and searchable keywords relating to that article would be stored in only that column. Taking this approach, rather than
having one single 'Body' column and a 'Category' column, you could get rid of the 'Category' column, and have a
'Body_<category>' column that would store the searchable keywords. An example below:

-- If you can adjust your schema this works great – each category
-- becomes its own column (or table), and you only hit that
-- smaller Full-Text index. There are obviously some caveats…
SELECT [key], [rank]
FROM FREETEXTTABLE(Articles, Body_Sports, 'Ichiro')

For those systems with a large amount of data that can accommodate this (perhaps major) schema change, a significant and
appreciable performance improvement should become immediately apparent. There are obvious limitations when it comes to
applying multiple or no filters; there are certainly other ways to work around those problems. From the example above, you can
get a picture of one way to abstract some of your search conditions into your schema—in essence 'cheating' the optimizer (more
appropriately, 'becoming' the optimizer) as there is little to no native optimization currently possible for Full-Text queries within
SQL Server itself.

Additional Performance Tricks
Another request I commonly get from people I speak with is that of the ability to page through Full-Text query results. In other
words, if I were to issue a query for "root beer", with the results to be displayed on a web page 40 at a time, I'd want to only return
the 40 results for that particular page (if I were on page three, for example, I'd want to return only results 81-120).

There are several approaches I have seen when it comes to paging through results, but none of them have been 100% effective in
terms of being very efficient. The approach I suggest lets you minimize the number of Full-Text queries you execute (in effect, only

one per set of results to be paged through), and use your web server as a simple cache. On a high-level, what you should do is
retrieve one complete rowset of keys and rank values for your Full-Text query (you can fold in Best Bets and abstract common
filters to your schema if you desire), and store them in memory on your web server (depending on your application and load,
imagine a typical key size of <32 bytes plus a rank size of <4 bytes = <36 bytes multiplied by a typical returned result set <1000
rows is <35K. Assume an actively cached set of <1000 active query result sets at any given time, and you will find that it occupies
less than 35MB of RAM on the web server—not too shabby).

In order to page through the results, the process simply becomes traversing an array stored in memory on your web server and
issuing a SELECT against your SQL Server for only the rows and columns you wish to display. This also gets back to the concept of
only returning keys and ranks for Full-Text queries—a SELECT (even many of them) is many times faster than a Full-Text query. By
using SELECT as opposed to joining many rows against the base table, combined with several other tactics, you will be able to
reserve more CPU cycles on your SQL Server machines, and get more use of your (less expensive) web farm.

An alternate approach to web server-side caching is to cache result sets in SQL Server itself, and to define various methods for
navigating through those results. Though this article focuses primarily on application design at the web server (ASP) level, the
programmability features of SQL Server also provide a rich framework for building high-performance search applications for the
web.

Conclusion
Microsoft SQL Server 2000's Full-Text Search capabilities present a robust, fast and flexible way to index and query unstructured
text data stored in a database. Given the increasing popularity and importance of fast, accurate search capabilities in a variety of
applications, it is important to implement your Full-Text Search solution in a way that takes advantage of its speed and precision.
By distributing your computational load, and by organizing your data in some clever ways, you will save money on additional
hardware and software, and prevent frustration caused by unnecessarily slow queries. While there are always many factors and
considerations that play into developing great search applications, I hope that the information and examples I have provided will
help you get started in building the best search application for the web using SQL Server 2000.

Appendix A: Implementing Best Bets for Full-Text Searches
One possible way to improve your Full-Text query performance and effectiveness is to implement a "Best Bets" system. This
system is a very simple way to ensure that certain rows that match a particular query expression are returned before others. Best
Bets, in the absence of some sophisticated preprogrammed logic (as is found in SharePoint Portal Server, for example), are
typically handpicked.

For the purposes of this example, Best Bets are handpicked, and the unique key, and a number of keywords are stored in a
separate table. A FREETEXTTABLE query is executed against the (vastly smaller) Best Bets table, and any results returned from that
query are returned with the results of the FREETEXTTABLE query against the base table. Given these heuristics, all rows that are
"Best Bets" will be returned first, followed by rows that are deemed most relevant by MSSearch, in decreasing order.

Below is a very simple sample script that creates a Best Bets system.

use myDb

create table documentTable(ftkey int not null, document ntext)
create unique index DTftkey_idx on documentTable(ftKey)

/*
 Insert documents here
 (all documents to be Full-Text indexed)
*/

-- Build Full-Text Catalog & Indexes for All Documents table
exec sp_fulltext_catalog 'documents_cat', 'create', 'f:\ftCats'
exec sp_fulltext_table 'documentTable', 'create', 'documents_cat',
 'DTftkey_idx'
exec sp_fulltext_column 'documentTable', 'document', 'add'
exec sp_fulltext_table 'documentTable', 'start_change_tracking'
exec sp_fulltext_table 'documentTable', 'start_background_updateindex'

/*
 Now create best bets table and indexes
 (add documents that should always be returned first)
*/
create table bestBets(ftKey int not null, keywords ntext)
create unique index BBftkey_idx on bestBets(ftKey)

/*

 Insert best bets here
*/

-- Build Full-Text Catalog & Indexes for Best Bets table
exec sp_fulltext_catalog 'bestBets_cat', 'create', 'f:\ftCats'
exec sp_fulltext_table 'bestBets', 'create', 'bestBets_cat', 'BBftkey_idx'
exec sp_fulltext_column 'bestBets', 'keywords', 'add'
exec sp_fulltext_table 'bestBets', 'start_change_tracking'
exec sp_fulltext_table 'bestBets', 'start_background_updateindex'

First, a generic 'All Documents' table is created to store all documents to be Full-Text indexed. Typically, there will be other
columns in the documents table, but for the purpose of this article, there are only two columns—the key index, and the document
itself. A Full-Text catalog and index are created for the documents table.

Next, a 'Best Bets' table is created to store special documents that are to be returned first for all Full-Text queries. This table simply
needs to have a Full-Text key column, and the document itself (a refinement on this strategy to help target certain documents for
certain queries, could include adding additional keywords to the document that are not contained in the document itself). A Full-
Text catalog and index are created for the best bets table.

The best bets table and documents table can either share documents (a document that is a best bet is also stored in the regular
documents table, and they share the same key value), or the two can be mutually exclusive (best bets documents are stored only
in the best bets table). For ease of retrieval, it may be easier to keep the best bets table exclusive from the documents table—
doing so will eliminate the need to remove shared hits from the best bets and regular search results rowsets that are returned. On
the other hand, it may not be practical to maintain documents in this way, in which case logic would need to be added to queries
to remove shared documents between the returned rowsets.

Given the above tables, two stored procedures may be created to search against the best bets and documents tables. Logic at the
web server level, or an additional stored procedure can be used to cache and present the desired results (see the next section for a
complete efficient example of caching, presentation and paging when used with best bets).

First, a stored procedure to retrieve best bets rows, if any:

create procedure BBSearch @searchTerm varchar(1024) as

select [key], [rank] from freetexttable(bestBets, keywords, @searchTerm) order by [rank]
desc

Ensure that the incoming search string has been cleaned to prevent arbitrary execution of T-SQL on the server, and ensure the
string is enclosed in single quotes. Using FREETEXTTABLE is preferable over using CONTAINSTABLE in this case, as
FREETEXTTABLE will utilize stemming and find best bets that match any of the search terms.

Next, a second stored procedure retrieves documents that match regular search criteria, if any:

create procedure FTSearch @searchTerm varchar(1024) as

select [key], [rank] from freetexttable(documentTable, keywords, @searchTerm) order by
[rank] desc

Again, ensure the incoming search string has been cleaned, and that it is surrounded by single quotes.

When executing these stored procedures, the same search term should be passed into both, with the best bets search being
executed first, followed by the regular Full-Text search. The next section provides a broader overview of how best bets may be
used alongside other Full-Text Search techniques in building web search applications.

Appendix B: A Sample Application Using Best Bets, Results Paging, and Efficient Full-Text Query Logic
In this example, we implement a web search application that takes advantage of almost all of the optimizations I have discussed in
this article. We use the simple scenario of a search engine for an online retailer's catalog, and assume a high volume of traffic
where customers are all expecting their results in a very short response time. The best bets tables and stored procedures from the
previous section are used in this example.

This application is just a simple example of some higher-level tactics that may be used to achieve the best possible Full-Text
Search performance. This example uses ASP, but ISAPI, ASP.NET, or other platforms may also be used to implement similar
solutions with their own set of strengths and weaknesses. Use of the session object is not always recommended for all
applications, and if used improperly, can be somewhat dangerous. In this case, we use the session object to implement a quick-
and-dirty caching mechanism—there are many other ways to implement that functionality at various levels.

Below is the generic code for the ASP page:

<% @Language = "VBScript" %>

<% Response.buffer = true %>
<html>
 <head>
 <title>FT Test</title></head>
 <body>
<pre>
----------------- Begin Test ------------------

<%

Dim firstRow ' if paging thru rows, the element to start with
Dim lastRow ' last row when paging
Dim pageSize ' size of page (how many rows at a time)
Dim cn ' connection object
Dim rs ' resultset for FT key/rank (reused)
Dim useCache ' use cache or hit FT (0, don't use; 1, use)
Dim alldata ' results rowset to be cached
Dim bbdata ' best bets rowset to be cached
Dim connectionString ' sql connection string

' determine whether or not to pull from cache
' default to false, otherwise take what's coming in
if (request.Form("useCache") <> "") then
 useCache = request.Form("useCache")
elseif (request.QueryString("useCache") <> "") then
 useCache = request.QueryString("useCache")
else
 useCache = 0
end if

' set constants
pageSize = 24
firstRow = 0
lastRow = 23
connectionString = <your connection string here>

'--'
' displays a simple key/rank pair matching best bets/search term '
'--'
Private Sub SearchNPage()

 Dim p ' counter for looping thru rows
 Dim numRows ' number of rows, total, in cache/resultset

 if (useCache <> "1") then ' pull bestbets/results and cache them

 Dim queryArg ' incoming query term
 if (request.Form("searchTerm") <> "") then
 queryArg = request.Form("searchTerm")
 elseif (request.QueryString("searchTerm") <> "") then
 queryArg = request.QueryString("searchTerm")
 else
 response.Write("No search term provided" & VbCrLF)
 exit sub
 end if

 ' ideally we should clean our query term here...
 ' add your custom cleaning logic to prevent arbitrary
 ' sql execution

 ' call CleanString(queryArg)

 ' establish connection to SQL
 Set cn = Server.CreateObject("ADODB.Connection")
 cn.Open connectionString

 ' get best bets matches passing in clean string
 set rs = cn.Execute("exec BBSearch '" & queryArg & "'")

 ' get best bets, if any
 if not(rs.EOF) then
 bbData = rs.GetRows

 end if

 ' now get regular matches passing in clean string
 set rs = cn.Execute("exec FTSearch '" & queryArg & "'")

 ' if we return nothing from anything, bail out
 if (rs.EOF and IsEmpty(bbdata)) then
 response.Write("No rows matched" & VbCrLF)
 call ConnClose
 exit sub
 end if

 ' otherwise, grab rows, if any
 if not(rs.EOF) then
 alldata = rs.GetRows
 Session("results") = alldata
 end if

 call ConnClose

 else ' load up from cache (usecache=1)

 alldata = Session("results")

 ' also get a row range to use here
 if (request.Form("firstRow") <> "") then
 firstRow = request.Form("firstRow")
 lastRow = firstRow+pageSize
 elseif (request.QueryString("firstRow") <> "") then
 firstRow = request.QueryString("firstRow")
 lastRow = firstRow+pageSize
 end if

 end if ' useCache<>TRUE

 ' for this app, we'll just print out all best bets
 ' (may be larger than pagesize), then page thru regular results
 ' we make the assumption that if we're using the cache we've
' previously shown best bets-if there are no best bets move on
 if not(IsEmpty(bbdata)) then
 response.Write("BEST BETS:" & VbCrLf)
 for p = 0 to ubound(bbdata, 2)
response.Write(bbData(0,p) & " " & bbData(1,p) & VbCrLf)
 next
 response.Write(VbCrLf)
 end if

 ' return search results if any (there may only be best bets)
 if not(IsEmpty(alldata)) then
 if uBound(alldata, 2) < lastRow then
 lastRow = uBound(allData, 2)
 end if

 response.Write("SEARCH RESULTS:" & VbCrLf)

 for p = firstRow to lastRow
response.Write(allData(0,p) & " " & allData(1,p) & VbCrLf)
 next
 end if ' not(IsEmpty(alldata))

End Sub

'--'
' close and clean connection objects '
'--'
Private Sub ConnClose
 rs.Close
 Set rs = Nothing
 cn.Close
 Set cn = Nothing
End Sub

call SearchNPage

%>

---------------- Test Complete ----------------

<form action="<this page>" method="post">
<input type=submit value="next <%=pageSize%> rows" NAME="Submit1">
<input type=hidden name="useCache" value="1">
<input type=hidden name="firstRow" value=<%=lastrow+1%>>
</form>

</pre>
 </body>
</html>

A simple HTML form page can drive the above script as such:

<html>
<head><title>Enter search terms</title>
</head>

<body>

<form action="<search asp page>" method="post">
Search Term: <input name="searchTerm">
<p>
<input type="submit" value="Search">
</form>

</body>
</html>

As can be seen by the above two code samples, it doesn't take much effort to create a web application that can execute an efficient
Full-Text query (complete with best bets), and cache and page through results. Logic can be added with minimal overhead to
provide additional data, enhance the appearance of best bets, and to navigate through search results (It is also highly
recommended to implement additional well-thought-out logic for error handling, security and scrubbing incoming data).

Provided the above high-level recommendations and examples, the design and implementation of a fast and scalable web search
application using SQL Server 2000 Full-Text Search should be well within reach.

Appendix C: Resources
Full-Text Search Deployment

A good reference for those just getting started with Full-Text Search. Covers population methods, hardware and software
requirements, and provides tips, tricks, and additional documentation for working with SQL Server 2000 Full-Text Search.

Full-Text Search Public Newsgroup (microsoft.public.sqlserver.fulltext)

An excellent place to find answers to questions about Full-Text Search, as well as helpful hints and tricks. The Full-Text Search
newsgroup is frequented by members of the SQL Server development team and very knowledgeable Microsoft MVPs.

© Microsoft Corporation. All rights reserved.

http://support.microsoft.com/default.aspx?scid=kb;en-us;323739
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Code Access Security in SQL Server 2000 Reporting Services

Bryan Keller
Microsoft Corporation

January 2004

Applies to:
 SQL Server 2000

Summary: This document outlines the new code access security policies of Microsoft® SQL Server™ 2000 Reporting Services.
(15 printed pages)

Introducing Code Access Security in Reporting Services
Why Reporting Services Needs Code Access Security
Understanding Security Policies
Using Reporting Services Security Policy Files
Using Custom Assemblies with Reports
Conclusion

The Microsoft® .NET Framework provides a rich security system that can run code in tightly constrained, administrator-defined
security contexts. The .NET Framework system that secures code is referred to as code access security (or evidence-based
security). Under code access security, a user may be trusted to access a resource, but if the code the user executes is not trusted,
access to the resource will be denied.

Security based on code, as opposed to specific users, permits security to be expressed for custom assemblies or data, delivery,
rendering, and security extensions that you develop for Reporting Services. Your extension code may be executed by any number
of users of Reporting Services, all of which are unknown at development time. The custom assemblies or extensions that you
develop require specific security policies in Reporting Services. These security policies are represented as types in the .NET
Framework. For a more complete understanding of code access security in the .NET Framework, see "Code Access Security" in the
.NET Framework Software Development Kit (SDK), available in the MSDN Library.

Introducing Code Access Security in Reporting Services
Code access security centers on these core concepts: evidence, code groups, and named permission sets. In Reporting Services,
the Report Manager, Report Designer, and Report Server components each have a policy file that configures code access security
for custom assemblies as well as data, delivery, rendering, and security extensions. The following sections provide an overview of
code access security in Reporting Services. For more detailed information about the topics covered in this section, see "Security
Policy Model" in the .NET Framework SDK.

Evidence

Evidence is the information that the common language runtime (CLR) uses to determine a security policy for code assemblies.
Evidence indicates to the runtime that code has a particular characteristic. Common forms of evidence include digital signatures
and the location of an assembly. Evidence can also be custom designed to represent other information that is meaningful to the
application.

Both assemblies and application domains receive permissions based on evidence. For example, the location of an assembly that
Reporting Services is attempting to access is one common form of evidence for weak-named assemblies. This is known as URL
evidence. URL evidence for a custom data processing extension deployed to a report server might be "C:\Program Files\Microsoft
SQL Server\MSSQL\Reporting Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll". The strong
name or digital signature of an assembly is another common form of evidence. In this case, the evidence is the public key
information for an assembly.

Code Groups

A code group is a logical grouping of code that has a specified condition for membership. Any code that meets the membership
condition is included in the group. Administrators configure a security policy by managing code groups and their associated
permission sets.

A membership condition for a code group is based on evidence. For example, a URL membership for a code group is based on
URL evidence. The common language runtime (CLR) uses identifying characteristics such as URL evidence to describe the code
and to determine whether a group's membership condition has been met. For example, if the membership condition of a code

https://msdn.microsoft.com/en-us/library/aa719704(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ck90k585(v=sql.80).aspx

group is "code in the assembly C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.FsiDataExtension.dll", the runtime examines the evidence to
determine whether the code originates from that location. An example of a configuration entry for this type of code group might
look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="MyCodeGroup"
 Description="Code group for my data processing extension">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
 Services\ReportServer\bin\Microsoft.Samples.
 ReportingServices.FsiDataExtension.dll"
 />
</CodeGroup>

You should work with your system administrator or application deployment expert to determine the type of code access security
and code groups that your custom assemblies or Reporting Services extensions require.

Named Permission Sets

A named permission set is a set of permissions that administrators can associate with a code group. Most named permission sets
consist of at least one permission, a name, and a description for the permission set. Administrators can use named permission
sets to establish or modify the security policy for code groups. More than one code group can be associated with the same named
permission set. The CLR provides built-in named permission sets; among these are Nothing, Execution, Internet,
LocalIntranet, Everything, and FullTrust.

NOTE Custom data, delivery, rendering, and security extensions in Reporting Services must run under the FullTrust
permission set. Work with your system administrator to add the appropriate code group and membership conditions
for your Reporting Services extensions.

You can associate your own custom levels of permissions for custom assemblies that you use with reports. For example, if you
want to allow an assembly to access a specific file, you can create a new named permission set with specific file I/O access and
then assign the permission set to your code group. The following permission set grants read-only access to the file MyFile.xml:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="MyNewFilePermissionSet"
 Description="A special permission set that grants read access to my file.">
 <IPermission class="FileIOPermission"
 version="1"
 Read="C:\MyFile.xml"/>
 <IPermission class="SecurityPermission"
 version="1"
 Flags="Assertion, Execution"/>
</PermissionSet>

A code group that you grant this permission set might look like the following:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="MyNewFilePermissionSet"
 Name="MyNewCodeGroup"
 Description="A special code group for my custom assembly.">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
 Services\ReportServer\bin\MyCustomAssembly.dll"/>
</CodeGroup>

Why Reporting Services Needs Code Access Security
Why does Reporting Services use code access security, when doing so makes developing and deploying custom assemblies and
extensions more laborious? Although the report server is built on ASP.NET technology, there is a substantial difference between a
typical ASP.NET application and the report server. A typical ASP.NET application does not execute user code. In contrast, Reporting
Services' open and extensible architecture allows users to be able to develop using the Code element of the report definition or to
define specialized functionality into a custom assembly for use in reports. Furthermore, developers can design and deploy

powerful extensions that enhance the capabilities of the server. With this power and flexibility comes the need to provide as much
protection and security as possible.

Users of Reporting Services can use any .NET assembly in their reports and natively call upon all of the functionality of assemblies
deployed to the Global Assembly Cache. The only thing that the report server can control is what permissions are given for report
expressions and loaded custom assemblies. In Reporting Services, custom assemblies receive Execute only permissions by
default.

Understanding Security Policies
Any code that is executed by a report server must be part of a specific code access security policy. These security policies consist
of code groups that map evidence to a set of named permission sets. Often, code groups are associated with a named permission
set that specifies the allowable permissions for code in that group. The runtime uses evidence provided by a trusted host or by the
loader to determine which code groups the code belongs to and, therefore, which permissions to grant the code. Reporting
Services adheres to this security policy architecture as defined by the .NET Framework common language runtime (CLR). The
following sections describe the various types of code in Reporting Services and the policy rules associated with them.

Report Server Assemblies

Report server assemblies are those that contain code that is part of the Reporting Services product. Reporting Services is written
using managed code assemblies; all of these assemblies are strongly named (that is, digitally signed). The code groups for these
assemblies are defined using the StrongNameMembershipCondition, which provides evidence based on public key
information for the assembly's strong name. The code group is granted the FullTrust permission set.

Report Server Extensions (Rendering, Data, Delivery, and Security)

Report server extensions are custom data, delivery, rendering, and security extensions that you or other third-parties create in
order to extend the functionality of Reporting Services. You must grant FullTrust to these extensions or assembly code in the
policy configuration files associated with the Reporting Services component you are extending. Extensions shipped as a part of
Reporting Services are signed with the report server public key and receive the FullTrust permission set.

IMPORTANT You must modify the Reporting Services policy configuration files to allow FullTrust for any third-
party extensions. If you do not add a code group with FullTrust for your custom extensions, they cannot be used by
the report server.

For more information about the policy configuration files in Reporting Services, see "Using Reporting Services Security Policy
Files" later in this document.

Expressions Used in Reports

Report expressions are inline code expressions or user-defined methods contained within the Code element of a report definition
language file There is a code group that is already configured in the policy files that grants these expressions the Execution
permission set by default. The code group looks like the following:

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="Execution"
 Name="Report_Expressions_Default_Permissions"
 Description="This code group grants default permissions for code in
 report expressions and Code element. ">
 <IMembershipCondition
 class="StrongNameMembershipCondition"
 version="1"
 PublicKeyBlob="002400..."
 />
</CodeGroup>

Execution permission allows code to run (execute), but not to use protected resources. All expressions found within a report are
compiled into an assembly (called an "expression host" assembly) that is stored as a part of the compiled report. When the report
is executed, the report server loads the expression host assembly and makes calls into that assembly to execute expressions.
Expression host assemblies are signed with a specific key that is used to define the code group for all expression hosts.

Report expressions reference report object model collections (fields, parameters, etc.) and perform simple tasks like arithmetic
and string operations. Code that performs these simple operations only requires Execution permission. By default, report user-
defined methods in the Code element and any custom assemblies are granted Execution permission in Reporting Services. Thus,

for most expressions, the current configuration does not require that you modify any security policy files. To grant additional
permissions to expression host assemblies, an administrator needs to modify the policy configuration files of the report server
and Report Designer, and change the report expressions code group. Because it is a global setting, changing default permissions
for the expression hosts affects all reports. For this reason, it is highly recommended that you place all code that requires
additional security into a custom assembly. Only this assembly will be granted the permissions you need.

SECURITY: Code that makes calls to external assemblies or protected resources should be incorporated into a custom
assembly for use in reports. Doing so gives you more control over the permissions requested and asserted by your
code. You should not make calls to secure methods within the Code element. Doing so requires you to grant
FullTrust to the report expression host and grants all custom code full access to the CLR.

CAUTION Do not grant FullTrust to the code group for a report expression host. If you do, you enable all report
expressions to make protected system calls.

Custom Assemblies Referenced in Reports

Some report expressions can call third-party code assemblies, also known in Reporting Services as custom assemblies. The report
server expects these assemblies to have at least Execution permission in the policy configuration files. By default, policy files that
ship with Reporting Services grant Execution permission to all assemblies starting from the 'My Computer' zone. You can grant
additional permissions to custom assemblies as needed.

In some cases, you may need to perform an operation that requires specific code permissions in a report expression. Typically,
this means that a report expression needs to make a call to a secured CLR library method (such as one that accesses files or the
system registry). The .NET Framework documentation describes the code permissions that are required to make this secure call; to
execute the call, the calling code must be granted these specific, secure permissions. If you make the call from a report expression
or the Code element, the expression host assembly must be granted the appropriate permissions. However, once you grant the
expression host the permissions, all code that runs in any expression in any report is now granted that specific permission. It is
much more secure to make the call from a custom assembly and grant that custom assembly the specific permissions.

Using Reporting Services Security Policy Files
Reporting Services stores security policy information in three configuration files that are copied to the file system during setup.
These configuration files can contain a combination of internal-use and user-defined security policies for code assemblies in
Reporting Services. The three configuration files correspond to three securable components in Reporting Services: The report
server and Windows service, the Report Manager Web application, and the Report Designer preview window.

NOTE There are two preview modes for Report Designer: the preview tab and the pop-up preview window that is
launched when your report project is started in DebugLocal mode. The Preview tab is not a securable component
and does not apply security policy settings. The preview window is meant to simulate the report server functionality
and therefore has a policy configuration file that you or an administrator must modify to use custom assemblies and
custom extensions in Report Designer.

The security policy configuration files contain security class information, some default named permission sets, and the code
groups for assemblies in Reporting Services. The policy configuration files of Reporting Services are similar to the security.config
file that determines the code group hierarchy and permission sets associated with machine and enterprise level policies in the
.NET Framework. The location of this file is C:\WINDOWS\Microsoft.NET\Framework\v1.2.21213\CONFIG\security.config.

Policy Files in Reporting Services

The following table lists the policy configuration files in Reporting Services, their locations (assuming a default installation), and
their respective functions.

File name Location (default
installation) Description

rssrvpolicy.config
C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportServer

The report server policy configuration file. These security policies
primarily affect report expressions and custom assemblies once a report
is deployed to a report server. This policy file also affects custom data,
delivery, rendering and security extensions deployed to the report
server.

rsmgrpolicy.config
C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportManager

Report Manager policy configuration file. These security policies affect
all assemblies that extend Report Manager; for example, subscription
user-interface extensions for custom delivery.

rspreviewpolicy.config C:\Program Files\Microsoft SQL
Server\80\Tools\ReportDesigner

The Report Designer stand-alone preview policy configuration file.
These security policies affect custom assemblies and report expressions
that are used in reports during preview and development. These policies
also affect custom extensions, such as data processing extensions, that
are deployed to Report Designer.

Modifying Configuration Files

Configuration settings are specified as either XML elements or attributes. If you understand XML and configuration files, you can
use a text or code editor to modify user-definable settings. Security configuration files contain information about the code group
hierarchy and permission sets associated with a policy level in Reporting Services. It is recommended that you use the .NET
Framework Configuration tool (Mscorcfg.msc) or Code Access Security Policy tool (Caspol.exe) to modify security policies in the
security.config file first, so that policy changes correspond to valid XML configuration elements for policy files. Once you have
done that, you can cut and paste the new code groups and permission sets from security.config to the policy file for the
component to which you are adding code permissions.

IMPORTANT You should backup your policy configuration files prior to making any changes.

Using this approach accomplishes two things. First, it enables you to use a visual tool to build your code groups and permission
sets for Reporting Services. This is much easier than writing XML configuration elements from scratch. Secondly, it ensures that
you do not corrupt the security policy configuration files with malformed XML elements and attributes. For more information
about the Code Access Security Policy Utility, see "Code Access Security Policy Tool (Caspol.exe)" in the .NET Framework SDK.

Before modifying policy configuration files, you should read all the information available in this section and related topics.
Modifying the policy configuration of Reporting Services can have a significant security impact on how Reporting Services
components execute external code modules.

Using Custom Assemblies with Reports
In Reporting Services, you can write custom code for report item values, styles, and formatting. For example, you can use custom
code to format currencies based on locale, flag certain values with special formatting, or apply other business rules that are in
practice for your company. One way to include this code in your reports is to create a custom code assembly using the .NET
Framework that you can reference from within your report definition files. The server calls the functions in your custom
assemblies when a report is run. Custom assemblies can be used to retrieve specialized functions that you plan to use in your
reports.

Referencing Assemblies in an RDL File

To support the use of custom code assemblies in report definition files, two Report Definition Language (RDL) elements are
included in the RDL specification: the CodeModules element and the Classes element.

The CodeModules element enables you to refer to managed code assemblies in report expressions. CodeModules is a top-level
element that contains the reference to the assembly that you use in your report definition files to call specialized functions. An
entry in a report definition that supports the use of a custom assembly might look like the following:

<CodeModules>
 <CodeModule>CurrencyConversion, Version=1.0.1363.31103, Culture=neutral,
PublicKeyToken=null</CodeModule>
</CodeModules>

You can manually add CodeModule elements to your RDL file or you can use the Code tab of the Report Properties dialog to
add references to assemblies in your report. For more information, see the Writing Custom Code topic in Reporting Services
Books Online.

The Classes element supports the use of instance members in a report definition. Classes is a top-level element that contains a
reference to the class name and an instance name. An entry in a report definition that supports the use of instance members
might look like the following:

<Classes>
 <Class>
 <ClassName>CurrencyConversion.DollarCurrencyConversion</ClassName>
 <InstanceName>m_myDollarConversion</InstanceName>
 </Class>
</Classes>

Deploying a Custom Assembly

https://msdn.microsoft.com/en-us/library/cb6t8dtz(v=sql.80).aspx

You need to place custom assemblies in the application folders of Report Designer and the report server. Additionally, to use
custom assemblies you need to edit the configuration file rssrvpolicy.config for the report server and the configuration file
rspreviewpolicy.config for the Report Designer preview window. By default, custom assemblies are granted Execution
permission in Reporting Services.

NOTE There are two preview modes for Report Designer: the preview tab and the pop-up preview window that is
launched when your report project is started in DebugLocal mode. The preview tab executes all report expressions
using the FullTrust permission set and does not apply security policy settings. The pop-up preview window is meant
to simulate the report server functionality and therefore has a policy configuration file that you or an administrator
must modify to use custom assemblies in Report Designer. This pop-up preview also locks the custom assembly.
Therefore, you need to close the preview window in order to modify or update your custom assembly code.

To deploy a custom assembly

1. Copy your custom assembly from your build location to the report server bin folder or the Report Designer folder. The
default location of the bin folder for the report server is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin. The default location of the Report Designer is C:\Program Files\Microsoft SQL
Server\80\Tools\Report Designer.

2. Open the appropriate configuration file. The default location of rssrvpolicy.config is C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer. The default location of rspreviewpolicy.config is C:\Program
Files\Microsoft SQL Server\80\Tools\Report Designer.

3. Add a code group for your custom assembly if you need to increase code permissions beyond the default execution
permissions. For more information, see "Code Access Security in Reporting Services" earlier in this document.

Updating Custom Assemblies

At some point, you may need to update a version of a custom assembly that is currently being referenced by several published
reports. If that assembly already exists in the bin directory of the report server or Report Designer and the version number of the
assembly is incremented or changed in some way, the currently published reports will no longer work properly. You will need to
update the version of the assembly that is referenced in the CodeModules element of the report definition and republish the
reports.

If you know that you will frequently update a custom assembly and your currently published reports need to reference the new
assembly, you may want to consider using the same version number across all updates of a particular assembly. If you do not
need your currently published reports to reference the new version of the assembly, you can deploy your custom assembly to the
Global Assembly Cache. The Global Assembly Cache can maintain multiple versions of the same assembly, so that your current
reports can reference the previous version of your assembly and your newly published reports can reference the updated
assembly. Yet another approach would be to set the binding redirect of the report server to force a redirect of all requests for the
old assembly to the new assembly. You would need to modify the report server Web.config file and the report server
ReportService.exe.config file. The entry might look like the following:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="neutral" />
 <bindingRedirect oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Using Strong-Named Custom Assemblies

A strong name identifies an assembly and includes the assembly's text name, four-part version number, culture information (if
provided), a public key, and a digital signature stored in the assembly's manifest.

A strong name uniquely identifies an assembly to the common language runtime (CLR) and ensures binary integrity. To use
strong-named assemblies with reports, you must allow your strong-named assembly to be called by partially trusted code using
the assembly attribute AllowPartiallyTrustedCallersAttribute.

Using the AllowPartiallyTrustedCallersAttribute

You can use the AllowPartiallyTrustedCallersAttribute to allow strong-named assemblies to be called by Report Designer or
the report server in report expressions. Using the AllowPartiallyTrustedCallersAttribute is the recommended way in which
strong-named assemblies can be incorporated into your reports.

SECURITY Before deploying an assembly that contains the AllowPartiallyTrustedCallersAttribute to your report
server, you should review what operations and resources its public members can access. Always perform a security
review before deploying custom assemblies to your report server.

To allow partially trusted code to call strong-named assemblies

In your assembly attribute file, add the following assembly-level attribute:

[Visual Basic]
<assembly:AllowPartiallyTrustedCallers>

[C#]
[assembly:AllowPartiallyTrustedCallers]

AllowPartiallyTrustedCallersAttribute is only effective when applied by a strong-named assembly at the assembly level. For
more information about applying attributes at the assembly level, see "Applying Attributes" in the Microsoft .NET Framework SDK
documentation.

CAUTION The presence of this assembly-level attribute prevents the default behavior of placing FullTrust
LinkDemand security checks, making the assembly callable from any other partially trusted assembly.

When the AllowPartiallyTrustedCallersAttribute is present, all other security checks function as intended, including any class-
level or method-level declarative security attributes that are present. This attribute blocks only the implicit fully trusted caller
demand.

Asserting Permissions in Custom Assemblies

By default, custom assembly code runs with the limited Execution permission set. In some cases, you may wish to implement a
custom assembly that makes secured calls to protected resources within your security system (like a file or the registry). In order
to accomplish this, you must do the following:

1. Identify the exact permissions that your code needs in order to make the secured call. If this is a method that is part of a
.NET Framework library, this information should be included in the method documentation.

2. Modify the report server policy configuration files in order to grant the custom assembly the required permissions. For
more information about the security policy configuration files, see "Using Reporting Services Security Policy Files," earlier in
this document.

3. Assert the required permissions as part of the method in which the secure call is made. This is required because the custom
assembly code that is called by the report server is part of the report expression host assembly which runs with Execution
by default. The Execution permission set enables code to run (execute), but not to use protected resources.

4. Mark the custom assembly with the AllowPartiallyTrustedCallersAttribute. This is required because custom assemblies
are called from a report expression that is a part of the report expression host assembly, which by default is not granted
FullTrust, thus is a 'partially trusted' caller. For more information, see "Using Strong Named Custom Assemblies," earlier in
this document.

SECURITY Whenever you implement custom assemblies for use in your report expressions, you should only grant
narrowly targeted permissions to these assemblies to mitigate the risk of the assembly code being misused. Granting
FullTrust or other broad-reaching permission sets is not recommended.

Implementing a Secure Call

You can modify the policy configuration files to grant your assembly specific permissions. For example, if you were writing a
custom assembly to handle currency conversion, you might need to read the current currency exchange rates from a file. To
retrieve the rate information, you would need to add an additional security permission, FileIOPermission, to your permission set
for the assembly. You can make the following additional entry in the policy configuration file:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="CurrencyRatesFilePermissionSet"
 Description="A special permission set that grants read access to my currency rates
file.">
 <IPermission class="FileIOPermission"

 version="1"
 Read="C:\CurrencyRates.xml"/>
 <IPermission class="SecurityPermission"
 version="1"
 Flags="Execution, Assertion"/>
</PermissionSet>

You then add a code group that references that permission set:

<CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="CurrencyRatesFilePermissionSet"
 Name="MyNewCodeGroup"
 Description="A special code group for my custom assembly.">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\CurrencyConversion.dll"/>
</CodeGroup>

The previous entry represents a permission set and a code group for your assembly.

In order for your code to acquire the appropriate permission, you must assert the permission within your custom assembly code.
For example, if you want to add read-only access to an XML file C:\CurrencyRates.xml, you must add the following code to your
method:

// C#
FileIOPermission permission = new FileIOPermission(FileIOPermissionAccess.Read,
@"C:\CurrencyRates.xml");
try
{
 permission.Assert();
 // Load the XML currency rates file
 XmlDocument doc = new XmlDocument();
 doc.Load(@"C:\CurrencyRates.xml");

You can also add assertions as a method attribute:

[FileIOPermissionAttribute(SecurityAction.Assert, Read=@"C:\CurrencyRates.xml")]

For more information, see ".NET Framework Security" in the .NET Framework Developer's Guide.

Accessing Custom Assemblies Through Expressions

Once you have created a custom assembly, made it available to Report Designer or the report server, added the appropriate
security policy, and added a reference to your custom assembly in your report definition, you can access the members of the
classes in your assembly using report expressions. To refer to custom code in an expression, you must call the member of a class
within the assembly. How you do this depends on whether the method is static or instance based.

Calling Static Members from a Report Definition File

Static members belong to the class or type itself and not to an instantiated object. These members can be accessed by directly
calling them from the class. You should use static members to call custom functions in a report whenever possible, because static
members perform best. To call a static member, you need to reference it as an expression that takes the form
=Namespace.Class.Method.

To call static members

To call a static member, set your expression equal to the fully qualified name of the member, which includes the namespace, class
name, and member name. The following example calls a method ToGBP which converts the StandardCost field value from
dollars to pounds sterling and displays it in a report:

=CurrencyConversion.DollarCurrencyConversion.ToGBP(Fields!StandardCost.Value)

Important Information Regarding Static Fields and Properties

Currently, all reports are executed in the same application domain. This means that reports with user-specific, static data expose
this data to other instances of the same report. This condition might make it possible for the static data of one user to be available
to all users currently running a particular report. For this reason, it is highly recommended that you not use static fields or
properties in custom assemblies or in the Code element; instead, use instance fields or properties in your reports. Static methods

can still be used, because they do not store state or data.

SECURITY Do not use static fields or properties in a custom assembly or Code element used by a report. Doing so
may expose data for one user of the report to all users currently running instances of that report.

Calling Instance Members from a Report Definition File

If your custom assembly contains instance members that you need to access in a report definition, you must add an instance
name for your class to the report. You can add an instance name for a class using the Code tab of the Report Properties dialog.
For more information about adding instances of classes to a report, see "Writing Custom Code," in Reporting Services Books
Online.

To call a static member, you need to reference it as an expression that takes the form =Code.IntanceName.Method.

To call instance members

To call an instance member of a custom assembly, you must reference the Code keyword followed by the instance name and the
method. The following example calls an instance method ToEUR which converts the StandardCost field value from dollars to
euros and displays it in a report:

=Code.m_myDollarCoversion.ToEUR(Fields!StandardCost.Value)

Conclusion
Reporting Services follows the .NET security model of code access security for securing custom assemblies and extensions.
Because your extension code may be executed by any number of users of Reporting Services, all of which are unknown at
development time, code access security needs to be configured for the report server, Report Designer, and Report Manager
components that use extensions. The custom assemblies that you develop also require specific security policies in Reporting
Services. You have learned in the previous discussion how to obtain code permissions for your custom assemblies and how to
design, deploy, and run reports that use expressions based on custom code. Be sure to consider the security policies that your
custom code requires in order to access the necessary resources. At the same time, apply the principle of least privilege to custom
code that is integrated into your reporting solution.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Connection Pooling with SQL Server 2000 Analysis Services

Dennis Kennedy
Microsoft Corporation

Originally published May 2001, updated November 2002

Applies to:
 Microsoft® SQL Server™ 2000 Analysis Services

Summary: Learn how to use the connection pooling objects included with the Microsoft XML for Analysis Provider to develop
scalable client and Web applications for Microsoft SQL Server 2000 Analysis Services. (11 printed pages)

Contents

Introduction
Audience
Connection Pooling Objects
Using the Connection Pooling Objects
Requesting and Returning Connections
Balancing and Shrinking the Connection Pool
ADOConPool Object
OLEDBConPool Object
Conclusion
Additional Information

Introduction
Resource management is an important consideration in the development of scalable client and Web-based applications. In the
construction of a client application that might serve many concurrent users, the guideline for resource management is to allocate
resources as late as possible and de-allocate resources as early as possible. The availability of resources, such as memory, process
threads, and network or database connections, relates directly to the performance and user satisfaction of a client application.
Therefore, resource management becomes more and more important as the client application is scaled up and out.

By providing more control over resource management, connection pooling can reduce the impact of scalability. Connection
pooling enables a client application to use a connection to a given resource from a pool of connections that do not need to be re-
established for every use. After a connection has been created and placed in a connection pool, a client application can reuse that
connection without performing the complete connection process.

Using a pooled connection can result in significant performance gains because client applications do not need to repeatedly
establish and close a connection. The time required by this process can be particularly significant for client applications that use
high latency resources, such as Internet or network connections. After the client application no longer needs a connection, the
connection is simply returned to the connection pool.

In addition to performance gains, connection pooling enables a resource to be managed more effectively, without forcing the
overhead of resource management to the client application. The manager of the connection pool can allocate and de-allocate
connections as needed to maintain the pool, and connections in a connection pool can be used repeatedly by multiple
applications.

To support the scalability needs of Web-based client applications that use Microsoft SQL Server 2000 Analysis Services,
connection pooling has been implemented through the Microsoft XML for Analysis Provider. Although the XML for Analysis
Provider uses connection pooling automatically, you can also use this feature for other client applications that may not need the
XML connectivity offered by the provider itself. The purpose of this paper is to describe the objects that you can use to take
advantage of connection pooling in Analysis Services client applications.

Audience
This paper assumes the reader has a basic knowledge of SQL Server 2000 Analysis Services and either Microsoft ActiveX® Data
Objects (ADO) or OLE DB data access technologies. Examples are presented in Microsoft Visual Basic® and Microsoft Visual
C++®.

Connection Pooling Objects

Two objects, ADOConPool and OLEDBConPool, are available through the XML for Analysis Provider. The ADOConPool object
manages ADO connection objects. The OLEDBConPool object manages OLE DB session objects. Although each object supplies a
different type of connection pool, they both use the same underlying mechanisms to manage the connection pool. For the
purposes of this white paper, the term "connection" is used to describe both ADO connection objects and OLE DB session objects
when discussing such shared mechanisms.

The connection pooling mechanism is intended for use only with the updated Microsoft OLE DB Provider for OLAP Services 8.0
(MSOLAP.2) OLE DB provider included with the Microsoft SQL Server 2000 Service Pack 1 (SP1).

Using the Connection Pooling Objects
You can use the ADOConPool and OLEDBConPool objects with any programming language that supports ADO or OLE DB data
access technologies. However, to use these objects in a Visual C++ program, you must add the following compiler directives to
your program to include the correct headers and attributes:

#include <windows.h>
#include <atlbase.h>
#import "<filepath>\\msxaserv.dll" rename("tag_inner_PROPVARIANT",
 "tagPROPVARIANT") rename("_LARGE_INTEGER","")
rename("_ULARGE_INTEGER","")
using namespace MSXmlAnalysisSCLib;

Requesting and Returning Connections
The mechanism used to request connections from the connection pool is different from the mechanism typically employed by
OLE DB resource pooling to facilitate fast access for Web-based applications. The connection pool object breaks the pool of active
connections into two groups: free connections and used connections. Free connections consist of connections that are not
currently allocated to a client application. Used connections are currently allocated to and in use by client applications.

A special authentication and impersonation mechanism is employed for connection requests. When a connection is requested by
an application (using either the GetConnection method for the ADOConPool object or the GetSession method for the
OLEDBConPool object), the connection pool attempts to retrieve a free connection that uses the same domain and user name as
the security identifier (SID) used by the client application. If a match is found, the free connection is returned to the client
application.

If a match based on the client SID information is not found, the connection pool object parses the connection information that was
passed in the client request to determine whether a free connection for the same requested database already exists in the
connection pool. If a database match is found, the connection pool object attempts to match the role security of the client request
to the role security of the existing free connection. If a role security match is found, the connection pool object compares the user
name on the free connection to the user name of the client request. If the user names match, the free connection is returned to the
client application. If the user names do not match, the free connection is re-authenticated against role security on the Analysis
server, using the domain and user name of the client request, and then returned to the requesting client application.

If a role security or database match is not found, a new connection is created in the connection pool and allocated to the
requesting client application.

Unlike typical approaches to resource sharing, this approach has the benefit that a requesting client application can reuse an
existing active connection that has identical role security privileges, even if a different user originally requested that connection.
The new user name associated with the free connection is still authenticated, and therefore maintains security, but the connection
can be provided to the client. This reduces connection time and overhead for a client application servicing a large number of
concurrent users.

For client applications that perform many operations and repeatedly request and return connections, the mechanism is even
more efficient. The same active and authenticated connection can be returned to the requesting client application.

Returning connections to the connection pool is a simple process for the client application. The client application passes the
connection reference back to the connection pool object (using either the ReturnConnection method for the ADOConPool
object or the ReturnSession method for the OLEDBConPool object). The connection pool object verifies that the connection
object that was passed back actually belongs to the connection pool, and then places it back in the available pool of free
connections.

Usage Considerations

If the user has requested a connection, released it, and then requested another connection from the connection pool object, the
impersonation mechanism used to re-authenticate users against active connections in the connection pool returns the same
connection, without requiring a round trip to the Analysis server. If the role permissions of the user were changed after the first
connection request was released, the second request returns the same connection with the original role permissions.

For example, a user is assigned to a role, named Role A, on an Analysis server. Role A gives its users permission to run queries
against two cubes, Cube A and Cube B. When the client application on which this user is working requests a connection for the
first time, the returned connection has access to Cube A and Cube B. The client application runs the query and then releases the
connection. The administrator of the Analysis server now changes Role A so that it has access only to Cube A. If the client
application for this user requests another connection, the connection created on the first request is again returned to the client
application, but it still has access to Cube A and Cube B. Even though the user, through Role A, now has access only to Cube A, a
query executed against Cube B will still execute as though the user still has access to the cube.

This issue occurs only if an active connection is reallocated; newly created connections are always validated against the Analysis
server. If the active connection first requested by the client application in the previous example had timed out, the client
application would have been allocated a newly created connection with the correct role permissions.

For Web applications, the easiest way to resolve this issue is to restart Microsoft Internet Information Services (IIS) whenever a
role is changed on the Analysis server, forcing applications to reload and use the new role permissions when requesting
connections.

Because of the nature of IIS thread management, when you create Web-based applications, you should use the ADOConPool and
OLEDBConPool connection pool objects in Active Server Pages (ASP) Web applications with special consideration. IIS checks
each COM component to determine its agility (the threading and marshalling abilities of a COM component). The XML for
Analysis Provider supports the free-threading model, but does not aggregate the free-threaded marshaler (FTM). Because of this,
the XML for Analysis Provider is considered non-agile by IIS 5.0 or later.

This means that if the default settings for IIS 5.0 or later are used, the ADOConPool and OLEDBConPool objects will use the
system security context when cached at application or session scope in ASP applications (in other words, cached in ASP
Application or Session object variables). The impersonation mechanism, described in Requesting and Returning Connections,
will no longer function correctly. The connection pool object will use the default IIS user instead of the currently connected user
when attempting authentication for all active connections.

To correct this, change the ASPTrackThreadingModel setting in the metabase for IIS 5.0 or later to True. Changing this setting
prevents IIS from checking COM components for agility and incurs a minor performance hit due to marshaling and serialization,
so you should change this setting only in the virtual directory or Web directory that contains the Web application.

Balancing and Shrinking the Connection Pool
The number of connections allowed in the connection pool is not rigidly enforced, because the underlying management
mechanism was designed to be non-blocking — a client application should be able to get a connection when requested. Because
of this non-blocking behavior, both objects use the same passive techniques for managing connections.

Two different techniques are used to manage the connection pool: balancing and shrinking.

Balancing the Connection Pool

Balancing is employed whenever a connection is returned to the connection pool (using either the ReturnConnection method
for the ADOConPool object or the ReturnSession method for the OLEDBConPool object). The connection pool object
compares the total number of active connections, used and free, to the MaxSessions property value to determine whether
balancing the connection pool is necessary. If the total number of active connections is greater than the MaxSessions property
value, balancing is necessary.

To balance the connection pool, the connection pool object sorts the group of free connections on the number of elapsed seconds
since the last access time for each free connection. The object then removes the free connections with the oldest elapsed times,
one by one, until either the total number of used and free connections is under the MaxSessions property value or no active free
connections remain.

Note When balancing, the Timeout property is not used.

Shrinking the Connection Pool

Shrinking is employed whenever the client application calls the Shrink method of either the ADOConPool or OLEDBConPool
object. In this technique, the free connections are expired; the connection pool object compares the last access time for each free
connection against the current system time and removes the free connection if the difference in seconds is greater than the
Timeout property value.

Neither technique manages used connections. It is the responsibility of the client application to return a connection to the
connection pool after an operation is completed, so the used connection can be reassigned as a free connection. The connection
pool object does not attempt to manage used connections, but performs both balancing and shrinking only on free connections.
This approach allows for a flexible balance between performance and resource management.

ADOConPool Object
The ADOConPool object supplies connection pooling for client applications that use ADO data access technology, maintaining a
collection of ADO connection objects.

The ADOConPool object has the following properties and methods:

MaxSessions Property

The MaxSessions property is used to limit the number of ADO connection objects, both free and used, in the connection pool.

Data type

Long integer

Access

Read/write

Remarks

Because the connection pooling mechanism is designed to be nonblocking, the MaxSessions property is not used to directly limit
the growth of the connection pool. Instead, this value is used by the ReturnConnection and Shrink methods to balance and
shrink the connection pool. For more information about balancing and shrinking, see Balancing and Shrinking the Connection
Pool earlier in this paper.

Sessions Property

The Sessions property returns the number of active ADO connection objects in the connection pool.

Data type

Long integer

Access

Read-only

Remarks

The Sessions property reports the total number of connections, both used and free, managed by the ADOConPool object.

Timeout Property

The Timeout property sets or returns the number of seconds a free ADO Connection object should remain active.

Data type

Long integer

Access

Read/write

Remarks

As with the MaxSessions property, the Timeout property is used by the Shrink method to identify active free connections to be
removed from the connection pool. For more information about shrinking, see Balancing and Shrinking the Connection Pool.

GetConnection Method

The GetConnection method, given a connection string, returns an ADO Connection object.

Syntax

C++

HRESULT GetConnection([in] BSTR in_bstrCn, [out,retval] IDispatch** io_ppADOConnection)

Visual Basic

Set io_ppADOConnection = object.GetConnection(in_bstrCn As String)

object

A valid reference to an ADOConPool object.

in_bstrCn

The connection string for the ADO Connection object.

io_ppADOConnection

The returned ADO Connection object reference.

Remarks

This method attempts to request an existing free connection from the connection pool, by matching connection and security
information, before creating a new connection. For more information on requesting connections, see Requesting and Returning
Connections.

ReturnConnection Method

The ReturnConnection method returns an ADO Connection object to the connection pool.

Syntax

C++

HRESULT ReturnConnection([in,out] IDispatch** io_ppADOConnection)

Visual Basic

object.ReturnConnection io_ppADOConnection
object

A valid reference to an ADOConPool object.

io_ppADOConnection

The ADO Connection object to be returned to the connection pool.

Remarks

The connection pool object automatically balances free connections after a connection is returned using this method. For more
information about balancing connections, see Balancing and Shrinking the Connection Pool.

Shrink Method

The Shrink method, when called, expires and removes free ADO connection objects from the connection pool.

Syntax

C++

HRESULT Shrink()

Visual Basic

object.Shrink
object

A valid reference to an ADOConPool object.

Remarks

Client applications should regularly call this method to expire and remove free connections that have timed out. For more
information about shrinking the connection pool, see Balancing and Shrinking the Connection Pool.

OLEDBConPool Object
The OLEDBConPool object supplies connection pooling for client applications that use OLE DB data access technology,
maintaining a collection of OLE DB session objects. The OLEDBConPool object is intended for use by applications that directly
employ OLE DB to provide client data access; most Web-enabled applications should instead use the ADOConPool connection
pool object.

MaxSessions Property

The MaxSessions property is used to limit the number of OLE DB session objects, both free and used, in the connection pool.

Data type

Long integer

Access

Read/write

Remarks

Because the connection pooling mechanism is designed to be nonblocking, the MaxSessions property is not used to directly limit
the growth of the connection pool. Instead, this value is used by the ReturnSession and Shrink methods to balance and shrink
the connection pool. For more information about balancing and shrinking, see Balancing and Shrinking the Connection Pool.

Sessions Property

The Sessions property returns the number of active OLE DB session objects in the connection pool.

Data type

Long integer

Access

Read-only

Remarks

The Sessions property reports the total number of connections, both used and free, managed by the OLEDBConPool object.

Timeout Property

The Timeout property sets or returns the number of seconds a free OLE DB session object should remain active.

Data type

Long integer

Access

Read/write

Remarks

As with the MaxSessions property, the Timeout property is used by the Shrink method to identify active free connections to be
removed from the connection pool. For more information about shrinking, see Balancing and Shrinking the Connection Pool.

GetSession Method

The GetSession method, given an array of OLE DB properties, returns an OLE DB session object.

Syntax

C++

HRESULT GetSession([in] int in_cPropSets, [in] DBPROPSET* in_pPropSets,
 [out,retval] IDBCreateCommand** io_ppSession)

in_cPropSets

The length, in bytes, of the tagDBPROPSET type structure referenced in the in_pPropSets parameter.

in_pPropSets

A pointer to the tagDBPROPSET type structure used to identify and, if needed, create the OLE DB session object. For
more information about the tagDBPROPSET type structure, see DBPROPSET Structure in the OLE DB documentation.

io_ppSession

The returned OLE DB session object reference. The object reference is cast to the IDBCreateCommand OLE DB
interface. For more information about the IDBCreateCommand interface, see IDBCreateCommand in OLE DB
documentation.

Remarks

This method attempts to request an existing free connection from the connection pool, by matching connection and security
information, before creating a new connection. For more information about requesting connections, see Requesting and
Returning Connections.

ReturnSession Method

The ReturnSession method returns an OLE DB session object to the connection pool.

Syntax

C++

HRESULT ReturnSession([in,out] IDBCreateCommand** io_ppSession);

io_ppSession

The OLE DB session object to be returned to the connection pool.

Remarks

The connection pool object automatically balances free connections after a connection is returned using this method. For more
information about balancing connections, see Balancing and Shrinking the Connection Pool.

Shrink Method

The Shrink method, when called, expires and removes free OLE DB session objects from the connection pool.

Syntax

C++

HRESULT Shrink()

https://msdn.microsoft.com/en-us/library/ms714367(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms722784(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms711625(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/ms722784(v=sql.80).aspx

Remarks

Client applications should regularly call this method to expire and remove free connections that have timed out. For more
information about shrinking the connection pool, see Balancing and Shrinking the Connection Pool.

Conclusion
Connection pooling is an effective method of resource management. The use of connection pooling objects that are provided as
part of the Microsoft XML for Analysis Provider can extend this resource management method to client applications that use
Microsoft SQL Server 2000 Analysis Services, reducing overhead and increasing performance at little cost in terms of
development and implementation time.

Additional Information
SQL Server Books Online contains more information about Analysis Services. For additional information, see these resources:

Microsoft SQL Server
Microsoft SQL Server Developer Center
SQL Server Magazine
Microsoft.public.sqlserver.programming and microsoft.public.sqlserver.datawarehouse newsgroups
Microsoft Official Curriculum courses on SQL Server

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com
http://www.microsoft.com/trainingandservices
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Creating Merge Replication Custom Conflict Resolvers Using
Visual Basic

Andrea Fox
Microsoft Corporation

April 2001

Summary: This article describes how to create a Visual Basic application for merge replication that will handle both conflict and
non-conflict changes between the affected tables. The article documents a .DLL that, when referenced from the Visual Basic
project, contains many methods that enable the developer to gather information from the Publisher and Subscriber sites to
successfully resolve conflicting data and place the correct data at both locations. (39 printed pages)

Note This article contains information from the SQL Server 2000 Resource Kit. You can purchase the kit at the
Microsoft Press Web site.

Contents

Introduction
Using the Microsoft SQL Replication Conflict Resolver Library
Registering a Custom Conflict Resolver
Conclusion
Appendix: How to Run the Samples

Introduction
Microsoft® SQL Server™ 2000 includes several merge replication conflict resolution options, such as a merge text conflict
resolver, an averaging conflict resolver, several DATETIME conflict resolvers, and other commonly used conflict resolvers. In most
merge replication conflicts, one of these built-in solutions will resolve the conflicts that may occur as part of merge replication.
However, when a unique business need requires customized logic to determine the final merged data at Publisher and Subscriber
sites, you can write an application that resolves the conflict according to specified business rules.

When writing custom conflict resolver applications, you will need to:

Define the conditions you want to handle with the application logic.
Determine the type of change condition that is currently being handled.
Initialize the source and destination information.
Gather column information as to which column has changed if any special resolver tracker has been implemented, such as
column tracking.
Determine what phase the merge process is in: upload or download.
Determine what data should be the winning data in a change.
Propagate the data to the matching table on the other server and overwrite the losing data.

To help you accomplish these steps, this article includes sections on using the Microsoft SQL Replication Conflict Resolver Library,
learning to register a custom conflict resolver, and examining some merge replication custom conflict resolver samples.

The merge replication conflict resolvers discussed in this article are written in Microsoft Visual Basic®. An intermediate-level
understanding of Visual Basic, as well as a beginning understanding of Component Object Model (COM) and Interface Definition
Language (IDL), is assumed.

Using the Microsoft SQL Replication Conflict Resolver Library
To write a merge replication custom conflict resolver, use the Microsoft SQL Replication Conflict Resolver Library. It is a DLL file
that is installed as part of SQL Server 2000. This library of methods enables your application to respond as changes are applied
during synchronization.

The Microsoft SQL Replication Conflict Resolver Library contains methods available to retrieve data and commit data between
servers. To use the library in your merge replication custom conflict resolver applications, you need to:

Include the Microsoft SQL Replication Conflict Resolver Library in a Visual Basic application.
Implement the IVBCustomResolver interface.

http://mspress.microsoft.com/books/4939.htm

Understand the methods in the IReplRowChange interface.
Understand the methods in the IConnectionInfo interface.
Understand the enumerated constants in the library.

The Microsoft SQL Replication Conflict Resolver Library file is replrec.dll. It provides methods to return information from SQL
Server to the application, including information about changes, details on how the rows are affected and which columns differ,
plus Publisher and Subscriber connection information.

The replrec.dll file also contains methods that perform actions, such as evaluating a change to a table, determining winning data
and placing it into a table, or removing data from a table.

The following diagram shows a COM representation of the Microsoft SQL Replication Conflict Resolver Library object and its
three interfaces: IVBCustomResolver, IReplRowChange, and IConnectionInfo.

Figure 1. A COM representation of the Microsoft SQL Replication Conflict Resolver Library object and its three
interfaces

Adding the Microsoft SQL Replication Conflict Resolver Library to Visual Basic

To include the Microsoft SQL Replication Conflict Resolver Library in a Visual Basic application, your application must be an
ActiveX® DLL project type, and you must add the SQL Merge Conflict Resolver component to the project.

If you install SQL Server 2000 to the default location, the SQL Merge Conflict Resolver component will be in C:\Program
Files\Microsoft SQL Server\80\COM\. To add the component to your project, click the Project | References menu. In the
References dialog box, click Microsoft SQL Replication Conflict Resolver Library.

Component Reference Library
SQL Merge Conflict Resolver Microsoft SQL Replication Conflict Resolver Library Replrec.dll

To get detailed information about the component after it has been added to the project in Visual Basic, inspect its type library in
the Object Browser. In the Library menu, select the SQLResolver library. In the Classes pane, the SQL Resolver shows the three
interfaces, IVBCustomResolver, IConnectionInfo, and IReplRowChange, as well as several predefined constants.

IVBCustomResolver Interface

The IVBCustomResolver interface, used in a new class module by using the Implements keyword, contains two methods that
must be coded by the developer in the application: the GetHandledStates method and the Reconcile method.

GetHandledStates Method

Method Syntax

GetHandledStates(ResolverBm As Long)

This method enables you to list the conditions that the resolver will handle. The REPOLE_CHANGE_TYPE enumerations listed
become a logical OR of the change types the resolver supports. The GetHandledStates method is invoked once when the table is
loaded during the merge process. Then, for every change that needs to be propagated, the custom resolver is invoked if the
change is a state that is handled by the resolver.

Although this process is commonly referred to as a conflict resolver, the changes that can be handled include non-conflict
changes, such as new rows inserted at the Subscriber. All the available conflict and non-conflict changes that can be handled are
listed in the REPOLE_CHANGE_TYPE enumeration. For a complete list of change types available, see the Constants topic later in
this article.

Reconcile Method

Method Syntax

Sub Reconcile(pRowChange As IReplRowChange, dwFlags As Long, pvReserved As
IReplRowChange)

Use the Reconcile method to define the business logic that determines what data is applied to the losing table.

The important parameter for the Reconcile method is a referenc e to an IReplRowChange object, shown as the variable
pRowChange in the method syntax. IReplRowChange is defined in an include file, sqlres.h. Through the supporting methods
available in IReplRowChange, you can determine the columns in conflict, examine the conflicting data, and update the
appropriate table with the winning data based on the criteria established in your Reconcile method code.

For best results when using the Reconcile method, it is important to understand the different stages of the merge process. The
first stage that occurs is the upload of changes from the Subscriber to the Publisher. The second stage is a download of changes
from the Publisher to the Subscriber. During the upload, the Subscriber is considered as the source of the change, and the
Publisher is the destination. During the download, the Publisher is considered the source and the Subscriber is the destination.
This means the variables that designate source and destination change depending on the stage of the merge process.

When a custom resolver is a Visual Basic application, conflicts are resolved immediately after the application executes the
appropriate resolution action. If the user wants to review the changes before implementation, and then either accept the
resolution or resubmit the changes, he or she can do so. The option is available to write the losing row to a conflict table named
conflict_<PublicationName>_<ArticleName>_usertablename, and to apply the winning row to the appropriate table. The
custom resolver logs a special message to the conflict table that provides context information, which the user can evaluate before
making a final decision about accepting the changes.

During coding in the Reconcile method, you will usually use some of the enumerations that are available as constants defined in
the SQL Merge Conflict Resolver library component. It is recommended you use symbols for these enumerations whenever
possible, instead of using hard-coded constants.

IReplRowChange and IConnectionInfo Interfaces

The IReplRowChange and IConnectionInfo interfaces provide methods that can be called during use of your merge replication
custom conflict resolver application. The methods provide three functions:

Getting table, column, and connection information for the Publisher and Subscriber
Getting conflict information
Performing resolution actions

Here you will find a description of what each method does, as well as the Visual Basic signature and the IDL semantics for each
method. The IDL semantics are provided as a quick reference for parameter direction.

IReplRowChange Interface and Methods

The IReplRowChange interface contains methods that deliver core replication functionality, such as the ability to query column
values and to copy rows from source database to destination database. The methods available in this interface are called from the
custom resolver application to return data used in decision-making logic, or to gather information about the database and tables
and about the column in conflict.

Many of the methods use a ColumnID parameter. The ColumnID contains a number that represents the position of the column
in the table, ranging from 1 to <number of columns>. This number is used as a parameter to methods instead of the column
name.

If the table is vertically partitioned, a column position in the table at the Subscriber does not necessarily match what the column
position value would be in the publishing table at the Publisher. For example, if a table contains five columns, but column 3 is not
published, ColumnID=4 corresponds to the last column of the table. The following sections give the Visual Basic and IDL
signatures of the methods.

Summary of Methods in IReplRowChange

Method Description
CopyColumnFromSource Sets the destination column to contain the same value as the respective source column.
CopyRowFromSource Sets the destination row to contain the same data as is contained in the source row.
DeleteRow Deletes the destination row.

DoDummyUpdate Updates source or destination row meta data. This allows a subsequent merge process to pick
up a change as a new change.

ForceRememberChange Called before invoking IReplRowChange operations that alter the destination row.
GetChangeType Returns information regarding the type of change that occurred.
GetColumnAttributes Returns a bitmap indicating if column is an identity column and/or updatable.
GetColumnDatatype Returns the column type.
GetColumnName Returns the column name.
GetColumnStatus Returns the column status.
GetDestinationColumnValue Returns the value of the column from the destination table.
GetDestinationConnectionInfo Returns connection information about the destination.
GetDestinationOwnerName Returns the owner name of the destination table.

GetErrorInfo Returns a detailed error code and description if the resolver has been invoked to handle an
error situation.

GetExtendedError Returns additional information about the error, such as whether the error was a duplicate key
or a unique index violation.

GetNumColumns Returns the number of columns in the base table.
GetPriorityWinner Returns a value indicating which one has the higher priority, the source or the destination.
GetResolverProcedureName Returns the resolver-specific information (for example, a column name).

GetRowGuidColName Returns the name of the column in the base table that is the uniqueidentifier column used in
merge replication.

GetRowIdentifier Returns the uniqueidentifier for the row in conflict.
GetSourceColumnValue Returns the value of the column from the source table.
GetSourceConnectionInfo Returns connection information about the source.
GetTableName Returns the name of the table in conflict.
GetTableOwnerName Returns the owner name of the table.
InsertRow Inserts the row at the destination.
LogConflict Indicates whether the conflict should be logged, where, and what message to include.
LogError Logs the error and an optional description.
UpdateRow Updates the destination row.

Methods in the IReplRowChange Interface

CopyColumnFromSource(
 ColumnId As Long)

Invoke this method if the corresponding destination column should be set to the same value contained in the source column
referenced by the input parameter ColumnID.

IDL Semantics

 HRESULT CopyColumnFromSource (INTEGERTYPE ColumnId)

CopyRowFromSource()
Invoke this method if the source is the conflict winner. The row at the destination will then be set to the same values as the source
row.

IDL Semantics

 HRESULT CopyRowFromSource ()

DeleteRow()
Invoke this method to delete the row at the destination. This method does not automatically delete the row at the source. It is used
if a delete at the source conflicts with an update at the destination, and the delete is the winner.

IDL Semantics

 HRESULT DeleteRow ()

DoDummyUpdate(
 fUpLineage As REPOLE_BOOL,

 fAtPublisher As REPOLE_BOOL)

Updates the row meta data at either the source or the destination. Invoke this method at one of the two nodes to make sure the
resulting row is propagated back to the originating node. The parameter fAtPublisher is used to determine whether the meta
data to be updated is at the Publisher or the Subscriber. Set to TRUE to update at the Publisher. Set to FALSE to update at the
Subscriber.

Consider, for example, the scenario of a merge replication conflict in which the destination is the conflict winner. Calling
DoDummyUpdate on the destination (having fAtPublisher=TRUE in the upload phase, FALSE otherwise) ensures the losing
source row gets the values of the winning destination row as soon as it becomes the destination itself. Thus, if the Subscriber
loses during upload, the DoDummyUpdate method guarantees the Publisher's row will be downloaded to the Subscriber during
the next phase.

Calling the method on the source can be used in error situations, when a resend should be forced. You might need to resend, for
example, when you are using a Subscriber-always-wins resolver, but the upload of the Subscriber change has failed because the
Publisher inserted a row with the same primary key. The download of the inserted row from the Publisher will fail due to the
same reason, leading to the deletion of the inserted row at the Publisher. Therefore, the subsequent upload of the row that
originated at the Subscriber will succeed when resending is forced.

Set fUpLineage to TRUE to keep version information about the changed row. If you are unsure what value to use for the
parameter, use TRUE.

IDL Semantics

 HRESULT DoDummyUpdate (
 [in] BOOLTYPE fUpLineage,
 [in] BOOLTYPE fAtPublisher)

ForceRememberChange()
Call this method before invoking IReplRowChange operations that alter the destination row, such as CopyRowFromSource(),
CopyColumnFromSource(), or DeleteRow(), if the conflict resolver allows an update/insert/delete at a Subscriber to win over an
update/insert/delete at either the Publisher or another Subscriber that has newly merged with the Publisher.

IDL Semantics

 HRESULT ForceRememberChange()

GetChangeType(
 pChangeType As REPOLE_CHANGE_TYPE)

GetChangeType(returns what type of change occurred. The value returned is one of the enumerated constants from
REPOLE_CHANGE_TYPE.

IDL Semantics

 HRESULT _stdcall GetChangeType([out] REPOLE_CHANGE_TYPE* pChangeType)

GetColumnAttributes(
 ColumnId As Long,
 PlColumnAttributes As REPOLE_COLUMN_ATTRIBUTES)

GetColumnAttributes(Returns a bitmap of the enumerated constants from REPOLE_COLUMN_ATTRIBUTES into
plColumnAttributes, for the column being referenced by the input parameter ColumnID. The bitmap indicates whether the
referenced column is an identity column and/or an updatable column. It can be both. Check the results with *plColumnAttributes
& REPOLEColumnAttribute_Updatable, or *plColumnAttributes & REPOLEColumnAttribute_Identity, respectively.

IDL Semantics

 HRESULT _stdcall GetColumnAttributes(
 long ColumnId,
 [out] REPOLE_COLUMN_ATTRIBUTES* plColumnAttributes)

GetColumnDatatype(
 ColumnId As Long,
 plDataType As REPOLE_SQL_DATATYPE)

GetColumnDatatype(returns a value in plDataType that indicates what type of column is being referenced by the input
ColumnID parameter. The type of column returned is one of the enumerated constants from REPOLE_SQL_DATATYPE.

IDL Semantics

 HRESULT _stdcall GetColumnDatatype(
 long ColumnId,
 [out] REPOLE_SQL_DATATYPE* plDataType)

GetColumnName(
 ColumnId As Long,
 pColumnName As String,
 cbColumnName As Long)

Returns the name of the column being referenced by the input parameter ColumnID, into pColumnName. The input parameter
cbColumnName gives a buffer size for pColumnName. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetColumnName(
 long ColumnId,
 [out] LPWSTR pColumnName,
 long cbColumnName)

GetColumnStatus(
 ColumnId As Long,
 pColStatus As REPOLE_COLSTATUS_TYPE)

Returns a value into pColStatus that indicates the status of the column being referenced by the input ColumnID parameter. The
status of the column returned is one of the enumerated constants from REPOLE_COLSTATUS_TYPE.

IDL Semantics

 HRESULT _stdcall GetColumnStatus(
 long ColumnId,
 [out] REPOLE_COLSTATUS_TYPE* pColStatus)

GetDestinationColumnValue(
 ColumnId As Long,
 pvBuffer,
 cbBufferMax As Long,
 pcbBufferActual As Long)

GetDestinationColumnValue(returns the value of the column, referenced by the ColumnID parameter, into pvBuffer. The
column value returned is the value of the column at the destination table. The output parameter pcbBufferActual returns the
number of bytes that the column value uses. The input parameter cbBufferMax indicates the size of pvBuffer. HRESULT returns
an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetDestinationColumnValue(
 long ColumnId,
 [out] VARIANT* pvBuffer,
 [in] long cbBufferMax,
 [out] long* pcbBufferActual)

GetDestinationConnectionInfo(
 ppDestinationConnectionInfo As IConnectionInfo,
 pfIsPublisher As REPOLE_BOOL)

GetDestinationConnectionInfo(returns a pointer to the object that contains all the connection information about the
destination in the ppDestinationConnectionInfo parameter. This variable can then be used to make all the calls in the
IConnectionInfo object. For example, this is the line of code that initializes the IConnectionInfo variable from the
AdditiveResolver sample:

Call rrc.GetDestinationConnectionInfo(DestConnectionInfo, DestIsPublisher)

Once initialized, the DestConnectionInfo variable can be used as the qualifier to all the methods available in the
IConnectionInfo object by using:

Call DestConnectionInfo.GetServerName(stSubscriber, Len(stSubscriber))

The GetDestinationConnectionInfo method also returns a Boolean into pfIsPublisher that indicates whether or not the
Publisher is the destination. TRUE indicates that the system is in the upload phase and the Publisher is the destination, not the
source. FALSE indicates that the system is in the download phase and the Publisher is the source, not the destination.

IDL Semantics

 HRESULT _stdcall GetDestinationConnectionInfo(
 [out] IConnectionInfo** ppDestinationConnectionInfo,
 [out] REPOLE_BOOL* pfIsPublisher)

GetDestinationOwnerName(
 pDestOwnerName As String,
 cbDestName As Long)

GetDestinationOwnerName(returns the name of the owner of the destination table into pDestOwnerName. The input
parameter cbDestName indicates the size of pDestOwnerName. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetDestinationOwnerName(
 [out] LPWSTR pDestOwnerName,
 long cbDestName)

GetErrorInfo(
 pErrCode As Long,
 pErrText As String)

GetErrorInfo(returns the error code into pErrCode and the string description of the error into pErrText.

IDL Semantics

 HRESULT _stdcall GetErrorInfo(
 [out] long* pErrCode,
 LPWSTR pErrText)

GetExtendedError(
 pExtError As REPOLE_EXTENDEDERROR_TYPE)

GetExtendedError(returns additional information about the error, such as whether the error was a duplicate key or a unique
index violation. The value returned is one of the enumerated constants from REPOLE_EXTENDEDERROR_TYPE.

IDL Semantics

 HRESULT GetExtendedError ([out] REPOLE_EXTENDEDERROR_TYPE* pExtError)

GetNumColumns(
 pdwColumnCount As Long)

GetNumColumns(finds the number of columns in the base table. If there is a vertical partition, the number of columns in the
table may not match the number of columns in the underlying table. For example, if a table contains five columns, but column 3 is
not published, ColumnID=4 corresponds to the last column of the table.

IDL Semantics

 HRESULT _stdcall GetNumColumns([out] long* pdwColumnCount)

GetPriorityWinner(
 pPriorityWinner As REPOLE_PRIORITY_TYPE)

GetPriorityWinner(returns a value indicating if the source or destination has the higher priority, using one of the enumerated
constants from REPOLE_PRIORITY_TYPE. This method always returns the source or the destination as the winner. With equal
priorities, the default winner is the Publisher. The value REPOLE_Priority_Equal is not used.

IDL Semantics

 HRESULT _stdcall GetPriorityWinner(
 [out] REPOLE_PRIORITY_TYPE*
 pPriorityWinner)

GetResolverProcedureName(
 pResolverProcedureName As String,
 cbResolverProcedureName As Long)

GetResolverProcedureName(retrieves resolver-specific information into pResolverProcedureName. For example, if the
merge conflict process is focused on a particular column that has been specified in the Resolver tab of the table properties, this
method returns that column name. cbResolverProcedureName indicates the size of the buffer. HRESULT returns an error if the

buffer is too small.

IDL Semantics

 HRESULT _stdcall GetResolverProcedureName(
 [out] LPWSTR pResolverProcedureName,
 long cbResolverProcedureName)

GetRowGuidColName(
 pRowGuidColName As String,
 cbRowGuidColName As Long)

GetRowGuidColName(retrieves the name of the column in the base table, which is the uniqueidentifier column used in
merge replication. The input parameter cbRowGuidColName indicates the size of the buffer. HRESULT returns an error if the
buffer is too small.

IDL Semantics

 HRESULT _stdcall GetRowGuidColName(
 [out] LPWSTR pRowGuidColName,
 long cbRowGuidColName)

GetRowIdentifier(
 pRowGuid As REPLGUID)

GetRowIdentifier(returns the row uniqueidentifier, which is used to uniquely identify the row.

IDL Semantics

 HRESULT _stdcall GetRowIdentifier([out] REPLGUID* pRowGuid)

GetSourceColumnValue(
 ColumnId As Long,
 pvBuffer,
 cbBufferMax As Long,
 pcbBufferActual As Long)

GetSourceColumnValue(returns the value of the column, referenced by the ColumnID parameter, into pvBuffer. The column
value returned is the value of the column at the source table. The parameter pcbBufferActual returns the number of bytes the
column value uses. The input parameter cbBufferMax indicates the size of pvBuffer. HRESULT returns an error if the buffer is too
small.

IDL Semantics

 HRESULT _stdcall GetSourceColumnValue(
 long ColumnId,
 [out] VARIANT* pvBuffer,
 [in] long cbBufferMax,
 [out] long* pcbBufferActual)

GetSourceConnectionInfo(
 ppSourceConnectionInfo As IConnectionInfo,
 pfIsPublisher As REPOLE_BOOL)

GetSourceConnectionInfo(returns a pointer to the object that contains all the connection information about the source in the
ppSourceConnectionInfo parameter. This variable can then be used to make all the calls in the IConnectionInfo object. For
example, this is the line of code that initializes the IConnectionInfo variable from the AdditiveResolver sample:

Call rrc.GetSourceConnectionInfo(SrcConnectionInfo, SrcIsPublisher)

After it has been initialized, the SrcConnectionInfo can be used as the class identifier to call all the methods available in the
IConnectionInfo object by using:

Call SrcConnectionInfo.GetServerName(stPublisher, en(stPublisher))

The GetSourceConnectionInfo method also returns a Boolean that indicates whether or not the Publisher is the source. TRUE
indicates that the system is in the download phase and the Publisher is the source, not the destination. FALSE indicates that the
system is in the upload phase and the Publisher is the destination, not the source.

IDL Semantics

 HRESULT _stdcall GetSourceConnectionInfo(

 [out] IConnectionInfo** ppSourceConnectionInfo,
 [out] REPOLE_BOOL* pfIsPublisher)

GetTableName(
 pTableName As String,
 cbTableName As Long)

GetTableName(returns the name of the table, against which the conflict is occurring, into pTableName. The parameter
cbTableName is an input parameter that gives a buffer size for pTableName. HRESULT returns an error if the buffer is too
small.

IDL Semantics

 HRESULT _stdcall GetTableName(
 [out] LPWSTR pTableName,
 long cbTableName)

GetTableOwnerName(
 pOwnerName As String,
 cbOwnerName As Long)

GetTableOwnerName(returns the name of the table owner into pOwnerName. The input parameter cbOwnerName gives a
buffer size for pOwnerName. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetTableOwnerName(
 [out] LPWSTR pOwnerName,
 long cbOwnerName)

InsertRow()
InsertRow() inserts the row at the destination.

IDL Semantics

 HRESULT InsertRow ()

LogConflict(
 bLogSourceConflict As REPOLE_BOOL,
 ConflictType As REPOLE_CONFLICT_TYPE,
 bOnlyLogIfUpdater As REPOLE_BOOL,
 [pszConflictMessage As String],
 [bLogConflictOnUpload As REPOLE_BOOL])

LogConflict(takes input parameters that indicate whether the conflict should be logged, specifications on what message to log,
and where the log is kept.

The first parameter, bLogSourceConflict, is a Boolean indicating whether or not to log the conflict at the source.

If bOnlyLogIfUpdater is set to TRUE, a conflict is logged only if the database that has the losing version actually created that
version. Thus, if a Publisher propagates a change to multiple Subscribers and then receives a change that causes a conflict and
makes the version at all of those Subscribers lose, a conflict will not be logged for each of those Subscribers, because they would
not have made the losing change. They merely would have received it from the Publisher, due to a change from some other
Subscriber.

If bOnlyLogIfUpdater is FALSE, the losing version is logged regardless of whether the replica made the losing update.

The input parameter ConflictType is the message to log. The optional input parameter pszConflictMessage can be used as
additional text to the conflict message being logged. This allows the conflict message to be customized with additional
information.

The optional input parameter bLogConflictOnUpload does not need to be used. It is a default parameter that is not used by a
custom resolver.

IDL Semantics

 HRESULT _stdcall LogConflict(
 [in] REPOLE_BOOL bLogSourceConflict,
 [in] REPOLE_CONFLICT_TYPE ConflictType,
 [in] REPOLE_BOOL bOnlyLogIfUpdater,
 [in, optional, defaultvalue("")] BSTR pszConflictMessage,

 [in, optional, defaultvalue(0)] REPOLE_BOOL bLogConflictOnUpload)

LogError(
 ChangeType As REPOLE_CHANGE_TYPE,
 [pszErrorMessage As String])

LogError(logs an error, such as a duplicate primary key error. It logs the input parameter ChangeType and the text in the
optional input parameter pszErrorMessage string as the description.

IDL Semantics

 HRESULT LogError ([in] REPOLE_CHANGE_TYPE ChangeType,
 [in, optional, defaultvalue("")] BSTR pszErrorMessage)

UpdateRow()
UpdateRow() updates the row at the destination.

IDL Semantics

 HRESULT UpdateRow ()

IConnectionInfo Interface and Methods

The methods available in IConnectionInfo are called from the merge replication custom conflict resolver application to return
information about the database and tables. The IConnectionInfo interface is also used when a resolver needs to access a stored
procedure. A limitation of the IConnectionInfo interface is that only the GET methods are accessible to user-implemented
resolvers. Although the Object Browser shows many SET methods, only the GET methods are documented.

Many of the methods use a ColumnID parameter. The ColumnID contains a number that represents the position of the column in
the table, ranging from 1 to <number of columns>. This number is used as a parameter to methods instead of the column name.

If the table is vertically partitioned, a column position in the table at the Subscriber does not necessarily match what the column
position value would be in the underlying table at the Publisher. For example, if a table contains five columns, but column 3 is not
published, ColumnID=4 corresponds to the last column of the table.

Qualification of Method Calls

The methods in IConnectionInfo return information about the databases and tables involved in the merge process. The methods
can return information about the source or the destination. To specify which one you want information about, qualify the
procedure call with a variable. For example, this code returns information about the destination:

Call DestConnectionInfo.GetServerName(stPublisher, Len(stPublisher))

This code returns information about the source:

Call SrcConnectionInfo.GetServerName(stPublisher, Len(stPublisher))

Although the same method is called (GetServerName), the distinction regarding what it returns is specified in the qualifier.

To initialize the qualifiers, use the GetDestinationConnectionInfo in the IReplRowChange interface to initialize the
DestConnectionInfo variable. Use the GetSourceConnectionInfo method in the IReplRowChange interface to initialize the
SrcConnectionInfo variable.

Summary of Methods in IConnectionInfo

Method Description
GetApplicationName Returns the name of the application using the connection.
GetBcpBatchSize Returns a value that indicates the setting of the batch size of commit.
GetCatalog Returns the name of the catalog.
GetCodePage Returns the current CodePage setting for the server.
GetComparisonStyle Returns a value that indicates the SQL collation.
GetConnectName Returns the connection name.
GetDatabase Returns the database name.
GetDatabaseStatus Returns the database status.
GetDatasource Returns the data source name.
GetDatasourcePath Returns the path to the .mdb file.

GetDataSourceType Returns the type of data source.
GetDBCreatedThisSession Returns a value that indicates whether or not the database has been created in this session.
GetHostName Returns the host name being used in the IConnectionInfo object.
GetInternetAddress Returns the Internet address.
GetInternetNetwork Returns the NetLibrary to use when connecting.
GetLCID Returns the preferred locale ID value.

GetLogin Returns into Login the login currently in use if using SQL Server Authentication. If using Windows
Authentication, the value returned to the Login parameter is an empty string.

GetLoginTimeout Returns the number of seconds the system will wait before returning from a failed login attempt.
GetMajorVersion Returns the product major version number.
GetMinorVersion Returns the product minor version number.
GetPacketSize Returns the packet size, in bytes.
GetPassword Returns the current IConnectionInfo object password.
GetProviderName Returns the OLE DB provider name.
GetProviderString Returns the OLE DB property provider string.
GetQueryTimeout Returns the number of seconds of the time-out value for queries against a server.

GetSecurityMode Returns the security mode being employed to connect to SQL Server by the Windows user or group
of users.

GetServerName Returns the server name.
GetServerRole Returns a string that indicates whether the server role is as a Subscriber, Distributor, or Publisher.

GetUseInprocLoader Returns a value indicating whether or not the agent is using inproc loader (BULK INSERT statement)
to load the data from bcp files into tables.

Methods in the IConnectionInfo Interface

GetApplicationName(
 ApplicationName As String,
 cbApplicationName As Long)

GetApplicationName(returns the name of the application that uses this connection into ApplicationName (for example,
"Merge Agent"). The input parameter cbApplicationName indicates the buffer size. HRESULT returns an error if the buffer is too
small.

IDL Semantics

 HRESULT _stdcall GetApplicationName(
 [out] LPWSTR ApplicationName,
 long cbApplicationName)

GetBcpBatchSize(
 plBcpBatchSize As Long)

GetApplicationName(returns into plBcpBatchSize a long data type that indicates the setting of the batch size of commit.

IDL Semantics

 HRESULT _stdcall GetBcpBatchSize(
 [out] long* plBcpBatchSize)

GetCatalog(
 Catalog As String,
 cbCatalog As Long)

GetCatalog(returns into Catalog the name of the catalog. The input parameter cbCatalog indicates the buffer size. HRESULT
returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetCatalog(
 [out] LPWSTR Catalog,
 long cbCatalog)

GetCodePage(
 plCodePage As Long)

GetCodePage(returns into plCodePage the current CodePage setting for the server. For more information on CodePage, see
"Collations" in SQL Server Books Online (included with the SQL Server 2000 software package).

IDL Semantics

 HRESULT _stdcall GetCodePage(
 [out] long* plCodePage)

GetComparisonStyle(
 plComparisonStyle As Long)

GetComparisonStyle(returns into plComparisonStyle an integer that indicates the SQL collation. For more information on
collation, see "SQL Server Collation Fundamentals" in SQL Server Books Online (included with the SQL Server 2000 software
package).

IDL Semantics

 HRESULT _stdcall GetComparisonStyle(
 [out] long* plComparisonStyle)

GetConnectName(
 ConnectName As String,
 cbConnectName As Long)

GetConnectName(returns the connection name into ConnectName. The input parameter cbConnectName indicates the
buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetConnectName(
 [out] LPWSTR ConnectName,
 long cbConnectName)

GetDatabase(
 Database As String,
 cbDatabase As Long)

GetDatabase(returns into Database the name of the database. The input parameter cbDatabase indicates the buffer size.
HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetDatabase(
 [out] LPWSTR Database,
 long cbDatabase)

GetDatabaseStatus(
 plDatabaseStatus As Long)

GetDatabaseStatus(returns a value into plDatabaseStatus that is one of the enumerated constants from
REPOLE_DBAddoption.

IDL Semantics

 HRESULT _stdcall GetDatabaseStatus(
 [out] long* plDatabaseStatus)

GetDatasource(
 Datasource As String,
 cbDatasource As Long)

GetDatasource(returns into Datasource the name of the data source. The input parameter, cbDatasource, indicates the buffer
size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetDatasource(
 [out] LPWSTR Datasource,
 long cbDatasource)

GetDatasourcePath(
 DatasourcePath As String,

 cbDatasourcePath As Long)

If the data source is a Jet database, this method returns the path to the .mdb file into DatasourcePath. This is the same data
stored in the Datasource_path column, which you can see by running the stored procedure sysmergesubscriptions. The input
parameter, cbDatasourcePath, indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetDatasourcePath(
 [out] LPWSTR DatasourcePath,
 long cbDatasourcePath)

GetDataSourceType(
 pRetValue As REPOLE_DATASOURCE_TYPE)

GetDataSourceType(returns the type of data source into pRetValue. The value returned is one of the enumerated constants
from REPOLE_DATASOURCE_TYPE.

IDL Semantics

 HRESULT _stdcall GetDataSourceType(
 [out] REPOLE_DATASOURCE_TYPE* pRetValue)

GetDBCreatedThisSession(
 pbDBCreatedThisSession As Long)

GetDBCreatedThisSession(returns into pbDBCreatedThisSession a value that indicates whether the database has been
created in this session. A value of 0 indicates FALSE, or not created this session, while a value of 1 indicates TRUE, the database
was created this session.

IDL Semantics

 HRESULT _stdcall GetDBCreatedThisSession(
 [out] long* pbDBCreatedThisSession)

GetHostName(
 HostName As String,
 cbHostName As Long)

GetHostName(returns the host name being used in the IConnectionInfo object into HostName. The input parameter
cbHostName indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetHostName(
 [out] LPWSTR HostName,
 long cbHostName)

GetInternetAddress(
 InternetAddress As String,
 cbInternetAddress As Long)

GetInternetAddress(returns the Internet address as a string into InternetAddress. The input parameter cbInternetAddress
indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetInternetAddress(
 [out] LPWSTR InternetAddress,
 long cbInternetAddress)

GetInternetNetwork(
 InternetNetwork As String,
 cbInternetNetwork As Long)

GetInternetNetwork(returns into InternetNetwork the NetLibrary to use when connecting. The NetLibrary string does not
contain the .dll extension. This option is useful when configuring the Merge Agent to connect over the Internet. The input
parameter cbInternetNetwork indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetInternetNetwork(

 [out] LPWSTR InternetNetwork,
 long cbInternetNetwork)

GetLCID(
 plLCID As Long)

GetLCID(returns a value into plLCID that indicates the preferred locale ID.

IDL Semantics

 HRESULT _stdcall GetLCID(
 [out] long* plLCID)

GetLogin(
 Login As String,
 cbLogin As Long)

GetLogin(returns into Login the login currently in use if you are using SQL Server Authentication. If you are using Windows
Authentication, the value returned to the Login parameter is an empty string. The input parameter cbLogin indicates the buffer
size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetLogin(
 [out] LPWSTR Login,
 long cbLogin)

GetLoginTimeout(
 plLoginTimeout As Long)

GetLoginTimeout(returns the number of seconds the system will wait before returning from a failed login attempt.

IDL Semantics

 HRESULT _stdcall GetLoginTimeout(
 [out] long* plLoginTimeout)

GetMajorVersion(
 plMajorVersion As Long)

GetMajorVersion(returns the major version number of the product into plMajorVersion. The value returned is one of the
enumerated constants from REPOLE_SERVER_VERSION.

IDL Semantics

 HRESULT _stdcall GetMajorVersion(
 long* plMajorVersion)

GetMinorVersion(
 plMinorVersion As Long)

GetMinorVersion(returns the minor version number of the product into plMinorVersion. The value returned is one of the
enumerated constants from REPOLE_SERVER_MINOR_VERSION.

IDL Semantics

 HRESULT _stdcall GetMinorVersion(
 long* plMinorVersion)

GetPacketSize(
 pusPacketSize As Long)

GetPacketSize(returns the packet size, in bytes, into pusPacketSize. The default is 4096 bytes. For more information, see
"network packet size Option" in SQL Server Books Online (included with the SQL Server 2000 software package).

IDL Semantics

 HRESULT _stdcall GetPacketSize(
 [out] unsigned long* pusPacketSize)

GetPassword(
 Password As String,
 cbPassword As Long)

GetPassword(returns the password currently being used in the IConnectionInfo object into Password. The input parameter
cbPassword indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetPassword(
 [out] LPWSTR Password,
 long cbPassword)

GetProviderName(
 ProviderName As String,
 cbProviderName As Long)

GetProviderName(returns the OLE DB provider name into ProviderName. The input parameter cbProviderName indicates
the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetProviderName(
 [out] LPWSTR ProviderName,
 long cbProviderName)

GetProviderString(
 ProviderString As String,
 cbProviderString As Long)

GetProviderString(returns the OLE DB provider string into ProviderString. The ProviderString property specifies the OLE DB
provider-specific connection data required to implement a connection to the referenced OLE DB data source. The input parameter
cbProviderString indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetProviderString(
 [out] LPWSTR ProviderString,
 long cbProviderString)

GetQueryTimeout(
 plQueryTimeout As Long)

GetQueryTimeout(returns the number of seconds of the time-out value for queries against a server into plQUeryTimeout.

IDL Semantics

 HRESULT _stdcall GetQueryTimeout(
 [out] long* plQueryTimeout)

GetSecurityMode(
 pRetValue As REPOLE_SECURITY_TYPE)

GetSecurityMode(returns into pRetValue the security mode being employed to connect to SQL Server by the Windows user or
group of users. The value returned is one of the enumerated constants from REPOLE_SECURITY_TYPE.

IDL Semantics

 HRESULT _stdcall GetSecurityMode(
 [out] REPOLE_SECURITY_TYPE* pRetValue)

GetServerName(
 ServerName As String,
 cbServerName As Long)

GetServerName(returns into ServerName the name of the server. The input parameter, cbServerName, indicates the buffer
size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetServerName(
 [out] LPWSTR ServerName,
 long cbServerName)

GetServerRole(
 ServerRole As String,

 cbServerRole As Long)

GetServerRole(returns a string into ServerRole that indicates which server role is being used, Subscriber, Distributor, or
Publisher. The input parameter cbServerRole indicates the buffer size. HRESULT returns an error if the buffer is too small.

IDL Semantics

 HRESULT _stdcall GetServerRole(
 [out] LPWSTR ServerRole,
 long cbServerRole)

GetUseInprocLoader(
 pbUseInprocLoader As Long)

GetUseInprocLoader(returns a value into pbUseInprocLoader indicating whether or not the agent is using inproc loader
(BULK INSERT statement) to load the data from bcp files into tables. It returns FALSE if the agent is using ODBC BCP to load data
from bcp files into the tables.

IDL Semantics

 HRESULT _stdcall GetUseInprocLoader(
 [out] long* pbUseInprocLoader)

Constants

This section provides details on the enumerated data types that are defined in the SQL Replication Conflict Resolver Library. These
data types are also used as parameters and return values to the methods in the SQL Merge Conflict Resolver component.

REPLGUID

The REPLGUID constants provide a class identifier that is a properly formatted GUID.

Constant Description
Data1 Long
Data2 Short
Data3 Short
Data4 Unsigned char(8)

REPOLE_BOOL

The REPOLE_BOOL constants specify values that indicate true or false.

Constant Value Description
REPOLEBool_FALSE 0 Value is false.
REPOLEBool_TRUE 1 Value is true.

REPOLE_CHANGE_TYPE

The REPOLE_CHANGE_TYPE constants specify the type of database operation (update, insert, delete), whether or not there is a
conflict, and whether or not column tracking is active.

Constant Value Description
REPOLEChange_SubscriberInsert 0x00000001 Subscriber is inserting new row in upload phase.
REPOLEChange_PublisherInsert 0x00010000 Publisher is inserting new row in download phase.
REPOLEChange_SubscriberDelete
_NoConflict 0x00000002 Subscriber is deleting a row. No conflict detected.

REPOLEChange_PublisherDelete_
NoConflict 0x00020000 Publisher is deleting a row. No conflict detected.

REPOLEChange_SubscriberSyste
mDelete 0x00000004 Subscriber is deleting the row due to reasons like primary key violations.

REPOLEChange_PublisherSystem
Delete 0x00040000 Publisher is deleting the row due to reasons like primary key violations.

REPOLEChange_SubscriberDelete
_Conflict 0x00000008 Subscriber is deleting a row. Conflict detected.

REPOLEChange_PublisherDelete_
Conflict 0x00080000 Publisher is deleting a row. Conflict detected.

REPOLEChange_SubscriberRemov
eFromPartial 0x00000010 Not used.

REPOLEChange_PublisherRemove
FromPartial 0x00100000 The publisher tells the subscriber to delete the row, because it is no longer in the

partition.
REPOLEChange_SubscriberUpdate
_NoConflict 0x00000020 Subscriber is updating a row. No conflict detected.

REPOLEChange_PublisherUpdate_
NoConflict 0x00200000 Publisher is updating a row. No conflict detected.

REPOLEChange_SubscriberUpdate
_ConflictWithDelete 0x00000040 Subscriber is updating a row and has a conflict with a delete coming from the

Publisher.
REPOLEChange_PublisherUpdate_
ConflictWithDelete 0x00400000 Publisher is updating a row and has a conflict with a delete coming from the

Subscriber.
REPOLEChange_SubscriberUpdate
_ConflictColTrack 0x00000080 Subscriber is updating a specific column, column tracking is in effect, and the

update has a conflict with a change coming from the Publisher.
REPOLEChange_PublisherUpdate_
ConflictColTrack 0x00800000 Publisher is updating a specific column, column tracking is in effect, and the

update has a conflict with a change coming from the Subscriber.
REPOLEChange_SubscriberUpdate
_ConflictNoColTrack 0x00000100 Subscriber is updating a specific column, column tracking is not in effect, and

the update has a conflict with a change coming from the Publisher.
REPOLEChange_PublisherUpdate_
ConflictNoColTrack 0x01000000 Publisher is updating a specific column, column tracking is not in effect, and the

update has a conflict with a change coming from the Subscriber.
REPOLEChange_UploadInsertFaile
d 0x00000200 A row was inserted at the Subscriber, but the subsequent insertion at the

Publisher failed.
REPOLEChange_DownloadInsertF
ailed 0x02000000 A row was inserted at the Publisher, but the subsequent insertion at the

Subscriber failed.
REPOLEChange_UploadDeleteFail
ed 0x00000400 A row was deleted at the Subscriber, but the subsequent deletion at the

Publisher failed.
REPOLEChange_DownloadDelete
Failed 0x04000000 A row was deleted at the Publisher, but the subsequent deletion at the

Subscriber failed.
REPOLEChange_UploadUpdate
Failed 0x00000800 A row was updated at the Subscriber, but the subsequent update at the

Publisher failed.
REPOLEChange_DownloadUpdate
Failed 0x08000000 A row was updated at the Publisher, but the subsequent update at the

Subscriber failed.

REPOLEUpdateConflicts

The combination of:
(REPOLEChange_SubscriberUpdate_
ConflictColTrack |
REPOLEChange_PublisherUpdate_
ConflictColTrack |
REPOLEChange_SubscriberUpdate_
ConflictNoColTrack |
REPOLEChange_PublisherUpdate_
ConflictNoColTrack)

REPOLEAllConflicts

The combination of:
(REPOLEChange_SubscriberDelete_Conflict |
REPOLEChange_PublisherDelete_Conflict |
REPOLEChange_SubscriberUpdate_
ConflictWithDelete |
REPOLEChange_PublisherUpdate_
ConflictWithDelete |
REPOLEUpdateConflicts)

REPOLEAllErrors

The combination of:
(REPOLEChange_UploadInsertFailed |
REPOLEChange_DownloadInsertFailed |
REPOLEChange_UploadDeleteFailed |
REPOLEChange_DownloadDeleteFailed |
REPOLEChange_UploadUpdateFailed |
REPOLEChange_DownloadUpdateFailed)

REPOLEAllNonConflicts

The combination of:
(REPOLEChange_SubscriberInsert |
REPOLEChange_PublisherInsert |
REPOLEChange_SubscriberDelete_
NoConflict |
REPOLEChange_PublisherDelete_
NoConflict|
REPOLEChange_SubscriberSystemDelete |
REPOLEChange_PublisherSystemDelete |
REPOLEChange_SubscriberRemoveFrom
Partial |
REPOLEChange_SubscriberUpdate_
NoConflict |
REPOLEChange_PublisherUpdate_
NoConflict)

REPOLEAllChanges
The combination of:
(REPOLEAllConflicts | REPOLEAllErrors |
REPOLEAllNonConflicts)

REPOLE_COLSTATUS_TYPE

The REPOLE_COLSTATUS_TYPE constants specify the status of an individual column.

Constant Value Description
REPOLEColumn_NotUpdated 0x0001 No updates to column, or data values match.
REPOLEColumn_UpdatedNoConflict 0x0002 Column updated at source, no column-level conflict.
REPOLEColumn_UpdatedWithConflict 0x0003 Column updated at source, conflicts with change at destination.
REPOLEColumn_DifferNoTrack 0x0004 No column tracking information; data values are different.

REPOLE_COLUMN_ATTRIBUTES

The REPOLE_COLUMN_ATTRIBUTES constants specify whether the column is updatable, an identity column, or both.

Constant Value Description
REPOLEColumnAttribute_Updatable 0x0001 This column is updatable.
REPOLEColumnAttribute_Identity 0x0002 This column is an identity column.

Remarks

The values returned from methods that use this constant return a bitmap of the values, and because a column can be both
updatable and an identity column, check the results with *plColumnAttributes & REPOLEColumnAttribute_Updatable, or
*plColumnAttributes & REPOLEColumnAttribute_Identity, respectively.

REPOLE_CONFLICT_TYPE

The REPOLE_CONFLICT_TYPE constants specify a value that describes the type of conflict that occurred and if the failure
occurred during the upload or download phase.

Constant Value Description
REPOLEConflict_Min 1 For internal use only.
REPOLEConflict_UpdateConflict 1 The two replicas made conflicting updates to the same row.

REPOLEConflict_ColumnUpdateConflict 2 The two replicas made conflicting updates to the same column of the same
row.

REPOLEConflict_UpdateDeleteWinsConflict 3 An update conflicted with a delete, and the delete won.
REPOLEConflict_UpdateWinsDelete
Conflict 4 An update conflicted with a delete, and the update won.

REPOLEConflict_UploadInsertFailed 5 Corresponds to the respective REPOLE_CHANGE_TYPE.
REPOLEConflict_DownloadInsertFailed 6 Corresponds to the respective REPOLE_CHANGE_TYPE.
REPOLEConflict_UploadDeleteFailed 7 Corresponds to the respective REPOLE_CHANGE_TYPE.
REPOLEConflict_DownloadDeleteFailed 8 Corresponds to the respective REPOLE_CHANGE_TYPE.
REPOLEConflict_UploadUpdateFailed 9 Corresponds to the respective REPOLE_CHANGE_TYPE.
REPOLEConflict_DownloadUpdateFailed 10 Corresponds to the respective REPOLE_CHANGE_TYPE.

REPOLEConflict_ResolutionDone 11 For internal use only.
REPOLEConflict_Max 11 For internal use only.

REPOLE_DATASOURCE_TYPE

Because SQL Server 2000 offers the ability to replicate data to any heterogeneous data source that provides a 32-bit ODBC or
OLE DB driver on either Microsoft Windows® 2000, Microsoft Windows NT® Server 4.0, or Windows 98 operating systems, the
REPOLE_DATASOURCE_TYPE constants provide data source type values for the application. For more information, see
"DATASOURCE_TYPE" in SQL Server Books Online (included with the SQL Server 2000 software package).

Constant Value Description
REPOLEDataSource_Native 0x0000 Microsoft SQL Server Subscriber data source.
REPOLEDataSource_Jet 0x0002 Microsoft Jet 4.0 database.

The object browser shows more constants for this enumeration. They are not valid, however, in a Visual Basic merge replication
conflict resolver application, and, therefore, are not listed here.

REPOLE_DBADDOPTION

The REPOLE_DBADDOPTION constants specify if the Subscriber database exists, if it must be created or attached, or if the
subscription must be attached.

Constant Value Description
REPOLEExisting_Database 0x0000 Uses an existing Subscriber database.
REPOLECreate_Database 0x0001 Creates the Subscriber database (SQL Server Subscribers only).
REPOLEAttach_Database 0x0002 Attaches a Subscriber database file, typically an .mdf (SQL Server Subscribers only).
REPOLEAttach_Subscription 0x0003 Attaches a subscription file, typically an .msf (Microsoft Subscription File).

REPOLE_EXTENDEDERROR_TYPE

The REPOLE_EXTENDEDERROR_TYPE constants return additional error information.

Constant Value Description
REPOLEExtErrorNoneOrNotSpecified 0x00000000 All errors not specifically addressed.

REPOLEExtErrorDupKey 0x00000001 SQL Server error 2627: Violation of %ls constraint '%.*ls'. Cannot insert
duplicate key in object '%.*ls'.

REPOLEExtErrorDupUniqueIndex 0x00000002 SQL Server error 2601: Cannot insert duplicate key row in object '%.*ls' with
unique index '%.*ls'.

REPOLE_PRIORITY_TYPE

The REPOLE_PRIORITY_TYPE constants return the assigned priority. For more information, see "Subscriber Types and Conflicts" in
SQL Server Books Online (included with the SQL Server 2000 software package).

Constant Value Description
REPOLEPriority_Source 0x0001 The source has the higher priority.
REPOLEPriority_Destination 0x0002 The destination has the higher priority.
REPOLEPriority_Equal 0x0003 The source and destination have equal priority.

Note If priorities are equal, you will receive REPOLEPriority_Source during download or
REPOLEPriority_Destination during upload, instead of REPOLEPriority_Equal.

REPOLE_SECURITY_TYPE

These constants specify what kind of security is used when connecting to SQL Server.

Constant Value Description
REPOLESecurity_Min 0 For internal use only.
REPOLESecurity_Normal 0 Specifies SQL Server Authentication mode.
REPOLESecurity_Integrated 1 Specifies Windows Authentication mode.

REPOLESecurity_Mixed 2 Specifies Windows Authentication or SQL Server Authentication. SQL Server Authentication is
provided for backward compatibility.

REPOLESecurity_Max 2 For internal use only.

REPOLESecurity_Invalid -1 Indicates that the security mode is not specified. Security mode is retrieved from the
Publisher.

Remarks

The terminology used in several of these constants contains some references for backward compatibility to SQL Server version
6.5. The terms, Windows Authentication and Mixed Mode, replace integrated security and mixed security, respectively. Standard
security has no equivalent. For more information, see "Authentication Modes" in SQL Server Books Online (included with the SQL
Server 2000 software package).

REPOLE_SERVER_VERSION

This is an enumeration that describes which version of SQL Server is running.

Constant Value Description
REPOLEVersion_Invalid -1 Unknown or not set.
REPOLEVersion_70RTM 10 SQL Server 7.0.
REPOLEVersion_70SP1 20 SQL Server 7.0 with Service Pack 1.
REPOLEVersion_70SP2 30 SQL Server 7.0 with Service Pack 2.
REPOLEVersion_70SP3 35 SQL Server 7.0 with Service Pack 3.
REPOLEVersion_80 40 SQL Server 2000.

REPOLE_SERVER_MINOR_VERSION

This is an enumeration that indicates the minor version number that is running.

Constant Value Description
REPOLEMinorVersion_Invalid -1 Unknown or not set.
REPOLEMinorVersion_80Beta2 10 SQL Server 2000, Beta 2.
REPOLEMinorVersion_80EAP6 20 SQL Server 2000, Early Adopter Program 6.
REPOLEMinorVersion_80RTM 30 SQL Server 2000 Retail.

REPOLE_SQL_DATATYPE

This is an enumeration of the ODBC data types. For more information on the default ODBC data types and their descriptions, see
the topic, SQL Data Types, in the Microsoft Open Database Connectivity (ODBC) section of the Microsoft Data Access Components
(MDAC) SDK (available on the MSDN® Library CD). Additionally, the ODBC SDK can also be downloaded from the Universal Data
Access Web site, and is available in the Microsoft ODBC 3.0 Software Development Kit and Programmer's Reference from
Microsoft Press®.

Constant Value
REPOLEType_SQL_UNKNOWN_TYPE 0
REPOLEType_SQL_CHAR 1
REPOLEType_SQL_NUMERIC 2
REPOLEType_SQL_DECIMAL 3
REPOLEType_SQL_INTEGER 4
REPOLEType_SQL_SMALLINT 5
REPOLEType_SQL_FLOAT 6
REPOLEType_SQL_REAL 7
REPOLEType_SQL_DOUBLE 8
REPOLEType_SQL_DATETIME 9
REPOLEType_SQL_DATE 9
REPOLEType_SQL_INTERVAL 10
REPOLEType_SQL_TIME 10
REPOLEType_SQL_TIMESTAMP 11
REPOLEType_SQL_VARCHAR 12
REPOLEType_SQL_LONGVARCHAR -1
REPOLEType_SQL_BINARY -2
REPOLEType_SQL_VARBINARY -3
REPOLEType_SQL_LONGVARBINARY -4

http://www.microsoft.com/data

REPOLEType_SQL_BIGINT -5
REPOLEType_SQL_TINYINT -6
REPOLEType_SQL_BIT -7
REPOLEType_SQL_GUID -11

Remarks

For any of the datetime and interval data types, this field returns the verbose data type: SQL_DATETIME or SQL_INTERVAL. The
developer is responsible for knowing the concise data type, as there is no REPOLE_SQL_DATATYPE enumeration that maps
directly to the individual ODBC data types.

Registering a Custom Conflict Resolver
To be recognized by SQL Server, the merge replication custom conflict resolver must be registered.

How to Register a Merge Replication Custom Conflict Resolver

In Visual Basic, go to the File menu and click Make <yourproject>.DLL. This will compile and register the application on the
current computer. If the .DLL needs to be registered on a different computer, run REGSVR32 <yourproject>.DLL from the
command prompt. The .DLL must be registered on the computer that is invoking the merge agent. If you are using this application
with a push subscription, the resolver must be registered at the Distributor that is invoking the merge agent. Similarly, for pull
subscriptions, the resolver must be registered at the Subscriber that is invoking the merge agent. To ensure the resolver is
registered properly, run sp_enumcustomresolvers on the computer on which it is registered. If the application name is returned
in the result set, it is registered properly.

Registering Custom Resolvers on a Cluster

When using custom conflict resolvers with merge replication on a failover cluster, register the custom resolver on all nodes of the
failover cluster. This ensures the custom resolver will be able to load the resolver properly after a failover. Merge replication
conflict resolvers that come with SQL Server are automatically registered.

Merge Replication Custom Conflict Resolver Samples
The Merge Replication Custom Conflict Resolver (SampleResolver) sample is available on the SQL Server 2000 Resource Kit CD-
ROM in the folder, \ToolsAndSamples\SampleResolver. The samples demonstrate the implementation of the SQL Replication
Conflict Resolver Library in merge replication custom conflict resolver applications. The included samples are:

Additive Resolver
Minimum Resolver

The samples contain an SQL Script that will register the custom conflict resolvers.

Additive Resolver

The Additive Resolver is designed to handle several types of UPDATE conflicts. The Additive Resolver chooses the sum of the
column values from the Publisher and Subscriber as the winning column value in an UPDATE conflict.

When a custom application is used to resolve conflicts on a particular column, the user is required to enter the name of the
column when creating the publication using the Create Publication Wizard, or using the @resolver_info parameter of the
sp_addmergearticle system stored procedure. For more information, see "Specifying a Custom Resolver" in SQL Server Books
Online (included with the SQL Server 2000 software package).

The IVBCustomResolver_Reconcile Method

The IVBCustomResolver_Reconcile method is where the conflict logic is coded. It is necessary to gather all the data needed (the
order in which the data is gathered is not critical) before invoking the resolve code. The resolve code is in the
IVBCustomResolver_ComputeAdditiveValues method in the AdditiveResolver sample.

To gather the necessary data, the first task in the Reconcile method is to determine what kind of change occurred. This can be
found by calling the method GetChangeType and passing to it a variable of type SQLResolver.REPOLE_CHANGE_TYPE. The value
returned will be one of the REPOLE_CHANGE_TYPE variables.

The next task, which you will see in the sample, is to retrieve the data connection information by calling the
GetSourceConnectionInfo and GetDestinationConnectionInfo methods. These two methods take, as their parameters, a

variable declared as IConnectionInfo, as well as a variable defined as a Boolean (REPOLE_BOOL). The application then uses the
GetRowIdentifier method to get the GUID of the row in the table. It then determines whether the merge process is being done in
the upload phase or the download phase.

When a custom application is used to resolve conflicts on a particular column, the code retrieves the column name the user has
entered by calling the GetResolverProcedureName method of IReplRowChange. This function gets a column name (not a
procedure name). When that application has the column name, it needs to convert the name to a value that indicates the position
of the column in the table. The application loops through all the columns in the table, comparing the retrieved column name to
each column name in the table. When it finds a match, the application calls the IVBCustomResolver_ComputeAdditiveValues
method, which determines the new column value.

The IVBCustomResolver_ComputeAdditiveValues Method

The application first determines the status of the column in question by calling GetColumnStatus. This gives the following status
options:

REPOLEColumn_DifferNoTrack

REPOLEColumn_NotUpdated

REPOLEColumn_UpdatedNoConflict

REPOLEColumn_UpdatedWithConflict

The application can then decide how to proceed based on the state of the column. In the sample, if the column has been updated
at both source and destination, the value is retrieved from both computers using calls to GetSourceColumnValue and
GetDestinationColumnValue. The application then adds them together.

To put the new value back into the table column, the application uses the SetColumn function. The SetColumn function does not
commit the value. To commit the value to the table, the UpdateRow function must be called and changes to the entire row are
committed.

For columns that have been updated without changes, the application copies the column data by using
CopyColumnFromSource. Again, to commit the value to the table, call the UpdateRow function.

MinimumResolver

The MiminumResolver handles several types of conflicts. When an UPDATE conflict occurs, it determines the minimum value
between the source and destination column values, and sets the minimum value as the winning value. If the column values match,
then the winning data is based on priorities. For more information on assigning priorities in conflicts, see "Subscriber Types and
Conflicts" in SQL Server Books Online (included with the SQL Server 2000 software package).

The IVBCustomResolver_Reconcile Method

The IVBCustomResolver_Reconcile method is where the conflict logic is coded. It is necessary to gather all the data needed (the
order in which the data is gathered is not critical) before invoking the resolve code. The resolve code in this sample is in the
IVBCustomResolver_ComputeMinimumValue method.

To gather the necessary data, the first task in the Reconcile method is to determine what kind of change occurred. The type of
change can be found by calling the method GetChangeType and passing to it a variable of type
SQLResolver.REPOLE_CHANGE_TYPE. The value returned will be one of the REPOLE_CHANGE_TYPE variables.

The next task, which you will see in the sample, is to retrieve the data connection information. This is done by calling the
GetSourceConnectionInfo and GetDestinationConnectionInfo methods. These two methods take as their parameters a
variable declared as IconnectionInfo and a variable defined as a Boolean (REPOLE_BOOL). The application then uses the
GetRowIdentifier method to get the GUID of the row in the table. It then determines whether the merge process is being done in
the upload phase or the download phase.

Because this application is designed to resolve conflicts in a particular column, the code retrieves the column name the user has
entered by calling the GetResolverProcedureName method of IReplRowChange. This function gets a procedure name (not a
column name). Now that the application has the column name, it must convert the name to a value that indicates the position of
the column in the table. The application loops through all the columns in the table, comparing the retrieved column name to each
column name in the table. When it finds a match, the application calls the IVBCustomResolver_ComputeMinimumValue
method, which determines the new column value.

The IVBCustomResolver_ComputeMinimumValue Method

The application first retrieves the values of the column from the source and the destination. Then IF/ELSE logic is used to
determine which value is less than the other, or if they are equal. If they are equal, the application calls GetPriorityWinner to
determine the winner.

To put the new value back into the table column, the application uses the SetColumn function. The SetColumn function does not
commit the value. To commit the value to the table, the UpdateRow function must be called and changes to the entire row are
committed.

The application copies the column data by using CopyColumnFromSource, and uses the UpdateRow method to commit the
value to the table.

Conclusion
This article covered creating a VB application that uses the Microsoft SQL Replication Conflict Resolver Library. It documented the
methods in the replrec.dll, described which events are called, when the events are called, and how to code the events to cause
the correct resolution of data to occur in the affected tables.

Appendix: How to Run the Samples

1. In SQL Query Analyzer, open \ToolsAndSamples\SampleResolver\vbresolver_1.sql. This script registers both sample
resolvers, and creates a publication and subscription. The script:

Registers the Sample Additive Resolver using the CLSID of SampleCustomResolver.AdditiveResolver component.
Registers the Sample Minimum Values Resolver using the CLSID of SampleCustomResolver.MinumumResolver
component.
Creates the SampleNorthwind publication.
Creates the Orders article and sets the Sample Minimum Values Resolver as the resolver, with the resolver column
OrderDate as the resolver_info property.
Creates the Products article and sets the Sample Additive Resolver as the resolver, with the resolver column
UnitsOnOrder as the resolver_info property.
Creates subscription database SampleNorthwindSubscription, and sets up an anonymous subscription to
SampleNorthwind that can be synchronized using the Windows Synchronization Manager.
Runs the snapshot agent for the publication.

2. When the script in vbresolver_1.sql is finished, merge the data using Windows Synchronization Manager. From the
Windows Start menu, click Start, select Programs, select Accessories, and then click Synchronize.

3. After the Subscription has been synchronized using the Merge Agent, use SQL Query Analyzer to open the file
\ToolsAndSamples\SampleResolver\vbresolver_2.sql. When the script in vbresolver_2.sql is run, it will create an update
conflict, which will then demonstrate the custom resolvers.

The information contained in this article represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS ARTICLE.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this article may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this article. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this article
does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real
company, organization, product, person or event is intended or should be inferred.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, Microsoft Press, MSDN, Visual Basic, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Data Transformation Services (DTS) in Microsoft SQL Server
2000

Diane Larsen, author
Euan Garden, contributor
Microsoft Corporation

September 2000

Note: DTS has been replaced by SQL Server Integration Services (SSIS) in SQL Server 2005. To learn about SSIS, read An
Introduction to SQL Server 2005 Integration Services on Microsoft TechNet.

Summary: Database administrators often import, export, and transform data in support of tasks such as data consolidation,
archiving, and analysis; for application development purposes; and for database or server upgrades. Data Transformation Services
(DTS) in SQL Server 2000 provides a set of graphical tools and programmable objects to help administrators and developers
solve data movement problems, including the extraction, transformation, and consolidation of data from disparate sources to
single or multiple destinations. Sets of tasks, workflow operations, and constraints can be collected as DTS packages that can be
scheduled to run periodically or when certain events occur. This white paper introduces DTS, shows some of the components and
services that can be used to create DTS solutions, illustrates the use of DTS Designer to implement DTS solutions, and introduces
DTS application development.

Contents

Introduction to DTS
 What Is DTS?
 What's New in DTS?
Using DTS Designer
 Tasks: Defining Steps in a Package
 Workflows: Setting Task Precedence
 Connections: Accessing and Moving Data
 The Data Pump: Transforming Data
Options for Saving DTS Packages
DTS as an Application Development Platform
For More Information

Introduction to DTS
Most organizations have multiple formats and locations in which data is stored. To support decision-making, improve system
performance, or upgrade existing systems, data often must be moved from one data storage location to another.

Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) provides a set of tools that lets you extract, transform, and
consolidate data from disparate sources into single or multiple destinations. By using DTS tools, you can create custom data
movement solutions tailored to the specialized needs of your organization, as shown in the following scenarios:

You have deployed a database application on an older version of SQL Server or another platform, such as Microsoft Access.
A new version of your application requires SQL Server 2000, and requires you to change your database schema and convert
some data types.

To copy and transform your data, you can build a DTS solution that copies database objects from the original data source
into a SQL Server 2000 database, while at the same time remapping columns and changing data types. You can run this
solution using DTS tools, or you can embed the solution within your application.

You must consolidate several key Microsoft Excel spreadsheets into a SQL Server database. Several departments create the
spreadsheets at the end of the month, but there is no set schedule for completion of all the spreadsheets.

To consolidate the spreadsheet data, you can build a DTS solution that runs when a message is sent to a message queue.
The message triggers DTS to extract data from the spreadsheet, perform any defined transformations, and load the data into
a SQL Server database.

Your data warehouse contains historical data about your business operations, and you use Microsoft SQL Server 2000
Analysis Services to summarize the data. Your data warehouse needs to be updated nightly from your Online Transaction
Processing (OLTP) database. Your OLTP system is in-use 24-hours a day, and performance is critical.

http://www.microsoft.com/technet/prodtechnol/sql/2005/intro2is.mspx

You can build a DTS solution that uses the file transfer protocol (FTP) to move data files onto a local drive, loads the data
into a fact table, and aggregates the data using Analysis Services. You can schedule the DTS solution to run every night, and
you can use the new DTS logging options to track how long this process takes, allowing you to analyze performance over
time.

What Is DTS?

DTS is a set of tools you can use to import, export, and transform heterogeneous data between one or more data sources, such as
Microsoft SQL Server, Microsoft Excel, or Microsoft Access. Connectivity is provided through OLE DB, an open-standard for data
access. ODBC (Open Database Connectivity) data sources are supported through the OLE DB Provider for ODBC.

You create a DTS solution as one or more packages. Each package may contain an organized set of tasks that define work to be
performed, transformations on data and objects, workflow constraints that define task execution, and connections to data sources
and destinations. DTS packages also provide services, such as logging package execution details, controlling transactions, and
handling global variables.

These tools are available for creating and executing DTS packages:

The Import/Export Wizard is for building relatively simple DTS packages, and supports data migration and simple
transformations.
The DTS Designer graphically implements the DTS object model, allowing you to create DTS packages with a wide range of
functionality.
DTSRun is a command-prompt utility used to execute existing DTS packages.
DTSRunUI is a graphical interface to DTSRun, which also allows the passing of global variables and the generation of
command lines.
SQLAgent is not a DTS application; however, it is used by DTS to schedule package execution.

Using the DTS object model, you also can create and run packages programmatically, build custom tasks, and build custom
transformations.

What's New in DTS?

Microsoft SQL Server 2000 introduces several DTS enhancements and new features:

New DTS tasks include the FTP task, the Execute Package task, the Dynamic Properties task, and the Message Queue task.
Enhanced logging saves information for each package execution, allowing you to maintain a complete execution history and
view information for each process within a task. You can generate exception files, which contain rows of data that could not
be processed due to errors.
You can save DTS packages as Microsoft Visual Basic® files.
A new multiphase data pump allows advanced users to customize the operation of data transformations at various stages.
Also, you can use global variables as input parameters for queries.
You can use parameterized source queries in DTS transformation tasks and the Execute SQL task.
You can use the Execute Package task to dynamically assign the values of global variables from a parent package to a child
package.

Using DTS Designer
DTS Designer graphically implements the DTS object model, allowing you to graphically create DTS packages. You can use DTS
Designer to:

Create a simple package containing one or more steps.
Create a package that includes complex workflows that include multiple steps using conditional logic, event-driven code, or
multiple connections to data sources.
Edit an existing package.

The DTS Designer interface consists of a work area for building packages, toolbars containing package elements that you can drag
onto the design sheet, and menus containing workflows and package management commands.

Figure 1. DTS Designer interface

By dragging connections and tasks onto the design sheet, and specifying the order of execution with workflows, you can easily
build powerful DTS packages using DTS Designer. The following sections define tasks, workflows, connections, and
transformations, and illustrate the ease of using DTS Designer to implement a DTS solution.

Tasks: Defining Steps in a Package

A DTS package usually includes one or more tasks. Each task defines a work item that may be performed during package
execution. You can use tasks to:

Transform data
Transform
Data task

Use to move data between a source and destination and to optionally apply column-level transformations
to the data.

Data Driven
Query task

Use to perform flexible, Transact-SQL–based operations on data, including stored procedures and INSERT,
UPDATE, or DELETE statements.

Parallel
Data Pump
task1

Available programmatically only, the Parallel Data Pump task performs the same functions as the
Transform Data and Data Driven Query tasks, but supports chaptered rowsets as defined by OLE DB 2.5
and later.

Copy and manage data
Bulk Insert task Use to quickly load large amounts of data into a SQL Server table or view.

Execute SQL task Use to run SQL statements during package execution. The Execute SQL task also can save data that
is the result of a query.

Copy SQL Server
Objects task

Use to copy SQL Server objects from one installation or instance of SQL Server to another. You can
copy objects such as data and tables, as well as the definitions of objects such as views and stored
procedures.

Transfer Database
task1

Use to move or copy a SQL Server database from an instance of SQL Server version 7.0 or SQL
Server 2000 to an instance of SQL Server 2000.

Transfer Error
Messages task1

Use to copy user-specified error messages, created by the sp_addmessage system stored
procedure, from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL Server
2000.

Transfer Logins
task1

Use to copy logins from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL
Server 2000.

Transfer Jobs
task1

Use to copy jobs from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL
Server 2000.

Transfer Master
Stored Procedures
task1

Use to copy stored procedures from a master database on an instance of SQL Server 7.0 or SQL
Server 2000 to the master database on an instance of SQL Server 2000.

Run tasks as jobs from within a package
ActiveX Script task Use to write code to perform functions that are not available in the other DTS tasks.
Dynamic Properties
task1

Use to retrieve values from sources outside a DTS package at package run time and assign
those values to selected package properties.

Execute Package task1 Use to run other DTS packages from within a package.
Execute Process task Use to run an executable program or batch file.
File Transfer Protocol
(FTP) task1 Use to download data files from a remote server or an Internet location.

Message Queue task1 Use to send and receive messages from Microsoft Message Queues.
Send Mail task Use to send an e-mail message.
Analysis Services
Processing task2

Use to perform processing of one or more objects defined in SQL Server 2000 Analysis
Services.

Data Mining task1,2 Use to create a prediction query and an output table from a data mining model object defined
in SQL Server 2000 Analysis Services.

1 New in SQL Server 2000.

2 Available only when SQL Server 2000 Analysis Services is installed.

You also can create custom tasks programmatically, and then integrate them into DTS Designer using the Register Custom Task
command.

To illustrate the use of tasks, here is a simple DTS Package with two tasks: a Microsoft ActiveX® Script task and a Send Mail task:

Figure 2. DTS Package with two tasks

The ActiveX Script task can host any ActiveX Scripting engine including Microsoft Visual Basic Scripting Edition (VBScript),
Microsoft JScript®, or ActiveState ActivePerl, which you can download from http://www.activestate.com. The Send Mail task may
send a message indicating that the package has run. Note that there is no order to these tasks yet. When the package executes,
the ActiveX Script task and the Send Mail task run concurrently.

Workflows: Setting Task Precedence

When you define a group of tasks, there is usually an order in which the tasks should be performed. When tasks have an order,
each task becomes a step of a process. In DTS Designer, you manipulate tasks on the DTS Designer design sheet and use
precedence constraints to control the sequence in which the tasks execute.

Precedence constraints sequentially link tasks in a package. The following table shows the types of precedence constraints you
can use in DTS.

Precedence
constraint Description

On Completion
(blue arrow)

If you want Task 2 to wait until Task 1 completes, regardless of the outcome, link Task 1 to Task 2 with an On
Completion precedence constraint.

On Success
(green arrow)

If you want Task 2 to wait until Task 1 has successfully completed, link Task 1 to Task 2 with an On Success
precedence constraint.

On Failure
(red arrow)

If you want Task 2 to begin execution only if Task 1 fails to execute successfully, link Task 1 to Task 2 with an
On Failure precedence constraint.

The following illustration shows the ActiveX Script task and the Send Mail task with an On Completion precedence constraint.
When the Active X Script task completes, with either success or failure, the Send Mail task runs.

Figure 3. ActiveX Script task and the Send Mail task with an On Completion precedence constraint

You can configure separate Send Mail tasks, one for an On Success constraint and one for an On Failure constraint. The two Send
Mail tasks can send different messages based on the success or failure of the ActiveX script.

Figure 4. Mail tasks

You also can issue multiple precedence constraints on a task. For example, the Send Mail task "Admin Notification" could have
both an On Success constraint from Script #1 and an On Failure constraint from Script #2. In these situations, DTS assumes a
logical "AND" relationship. Therefore, Script #1 must successfully execute and Script #2 must fail for the Admin Notification
message to be sent.

Figure 5. Example of multiple precedence constraints on a task

Connections: Accessing and Moving Data

To successfully execute DTS tasks that copy and transform data, a DTS package must establish valid connections to its source and
destination data and to any additional data sources, such as lookup tables.

When creating a package, you configure connections by selecting a connection type from a list of available OLE DB providers and
ODBC drivers. The types of connections that are available are:

Microsoft Data Access Components (MDAC) drivers
Microsoft OLE DB Provider for SQL Server
Microsoft Data Link
Microsoft ODBC Driver for Oracle

Microsoft Jet drivers
dBase 5
Microsoft Access
HTML File (Source)
Microsoft Excel 97-2000
Paradox 5.X

Other drivers
Text File (Source)
Text File (Destination)
Other Connection

DTS allows you to use any OLE DB connection. The icons on the Connections toolbar provide easy access to common connections.

The following illustration shows a package with two connections. Data is being copied from an Access database (the source

connection) into a SQL Server production database (the destination connection).

Figure 6. Example of a package with two connections

The first step in this package is an Execute SQL task, which checks to see if the destination table already exists. If so, the table is
dropped and re-created. On the success of the Execute SQL task, data is copied to the SQL Server database in Step 2. If the copy
operation fails, an e-mail is sent in Step 3.

The Data Pump: Transforming Data

The DTS data pump is a DTS object that drives the import, export, and transformation of data. The data pump is used during the
execution of the Transform Data, Data Driven Query, and Parallel Data Pump tasks. These tasks work by creating rowsets on the
source and destination connections, then creating an instance of the data pump to move rows between the source and
destination. Transformations occur on each row as the row is copied.

In the following illustration, a Transform Data task is used between the Access DB task and the SQL Production DB task in Step 2.
The Transform Data task is the gray arrow between the connections.

Figure 7. Example of a Transform Data task

To define the data gathered from the source connection, you can build a query for the transformation tasks. DTS supports
parameterized queries, which allow you to define query values when the query is executed.

You can type a query into the task's Properties dialog box, or use the Data Transformation Services Query Designer, a tool for
graphically building queries for DTS tasks. In the following illustration, the Query Designer is used to build a query that joins three
tables in the pubs database.

Figure 8. Data Transformation Services Query Designer interface (click to enlarge)

In the transformation tasks, you also define any changes to be made to data. The following table describes the built-in
transformations that DTS provides.

Transformation Description
Copy Column Use to copy data directly from source to destination columns, without any transformations applied to the data.

ActiveX Script Use to build custom transformations. Note that since the transformation occurs on a row-by-row basis, an
ActiveX script can affect the execution speed of a DTS package.

DateTime String Use to convert a date or time in a source column to a different format in the destination column.
Lowercase
String Use to convert a source column to lowercase characters and, if necessary, to the destination data type.

Uppercase
String Use to convert a source column to all uppercase characters and, if necessary, to the destination data type.

Middle of String Use to extract a substring from the source column, transform it, and copy the result to the destination column.

Trim String Use to remove leading, trailing, and embedded white space from a string in the source column and copy the
result to the destination column.

Read File Use to open the contents of a file, whose name is specified in a source column, and copy the contents into a
destination column.

Write File Use to copy the contents of a source column (data column) to a file whose path is specified by a second source
column (file name column).

You can also create your own custom transformations programmatically. The quickest way to build custom transformations is to
use the Active Template Library (ATL) custom transformation template, which is included in the SQL Server 2000 DTS sample
programs.

Data pump error logging

A new method of logging transformation errors is available in SQL Server 2000. You can define three exception log files for use
during package execution: an error text file, a source error rows file, and a destination error rows file.

General error information is written to the error text file.
If a transformation fails, then the source row is in error, and that row is written to the source error rows file.
If an insert fails, then the destination row is in error, and that row is written to the destination error rows file.

The exception log files are defined in the tasks that transform data. Each transformation task has its own log files.

Data pump phases

By default, the data pump has one phase: row transformation. That phase is what you configure when mapping column-level
transformations in the Transform Data task, Data Driven Query task, and Parallel Data Pump task, without selecting a phase.

Multiple data pump phases are new in SQL Server 2000. By selecting the multiphase data pump option in SQL Server Enterprise
Manager, you can access the data pump at several points during its operation and add functionality.

When copying a row of data from source to a destination, the data pump follows the basic process shown in the following
illustration.

Figure 9. Data pump process (click to enlarge)

After the data pump processes the last row of data, the task is finished and the data pump operation terminates.

Advanced users who want to add functionality to a package so that it supports any data pump phase can do so by:

Writing an ActiveX script phase function for each data pump phase to be customized. If you use ActiveX script functions to
customize data pump phases, no additional code outside of the package is required.
Creating a COM object in Microsoft Visual C++® to customize selected data pump phases. You develop this program
external to the package, and the program is called for each selected phase of the transformation. Unlike the ActiveX script
method of accessing data pump phases, which uses a different function and entry point for each selected phase, this
method provides a single entry point that is called by multiple data pump phases, while the data pump task executes.

Options for Saving DTS Packages
These options are available for saving DTS packages:

Microsoft SQL Server

Save your DTS package to Microsoft SQL Server if you want to store packages on any instance of SQL Server on your
network, keep a convenient inventory of those packages, and add and delete package versions during the package
development process.

SQL Server 2000 Meta Data Services

Save your DTS package to Meta Data Services if you plan to track package version, meta data, and data lineage information.

Structured storage file

Save your DTS package to a structured storage file if you want to copy, move, and send a package across the network
without having to store the package in a Microsoft SQL Server database.

Microsoft Visual Basic

Save your DTS package that has been created by DTS Designer or the DTS Import/Export Wizard to a Microsoft Visual Basic
file if you want to incorporated it into Visual Basic programs or use it as a prototype for DTS application development.

DTS as an Application Development Platform
The DTS Designer provides a wide variety of solutions to data movement tasks. DTS extends the number of solutions available by
providing programmatic access to the DTS object model. Using Microsoft Visual Basic, Microsoft Visual C++, or any other
application development system that supports COM, you can develop a custom DTS solution for your environment using
functionality unsupported in the graphical tools.

DTS offers support for the developer in several different ways:

Building packages

You can develop extremely complex packages and access the full range of functionality in the object model, without the
using the DTS Designer or DTS Import/Export Wizard.

Extending packages

You can add new functionality through the construction of custom tasks and transforms, customized for your business and
reusable within DTS.

Executing packages

Execution of DTS packages does not have to be from any of the tools provided, it is possible to execute DTS packages
programmatically and display progress through COM events, allowing the construction of embedded or custom DTS
execution environments.

Sample DTS programs are available to help you get started with DTS programming. The samples can be installed with SQL Server
2000.

If you develop a DTS application, you can redistribute the DTS files. For more information, see Redist.txt on the SQL Server 2000
compact disc.

For More Information
Microsoft SQL Server 2000 Books Online contains more information about DTS, using the DTS applications, and building custom
solutions. For additional information, see these resources:

Microsoft SQL Server Web site.
Microsoft SQL Server Developer Center.
SQL Server Magazine.
Microsoft.public.sqlserver.server and microsoft.public.sqlserver.datawarehouse newsgroups at news://news.microsoft.com.
Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see the Microsoft Training and
Services Web site.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com/
http://www.microsoft.com/trainingandservices

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, JScript, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Data Warehouse Design Considerations

Dave Browning and Joy Mundy
Microsoft Corporation

December 2001

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Data warehousing is one of the more powerful tools available to support a business enterprise. Learn how to design
and implement a data warehouse database with Microsoft SQL Server 2000. (25 printed pages)

Contents

Introduction
Data Warehouses, OLTP, OLAP, and Data Mining
 A Data Warehouse Supports OLTP
 OLAP is a Data Warehouse Tool
 Data Mining is a Data Warehouse Tool
Designing a Data Warehouse: Prerequisites
 Data Warehouse Architecture Goals
 Data Warehouse Users
 How Users Query the Data Warehouse
Developing a Data Warehouse: Details
 Identify and Gather Requirements
 Design the Dimensional Model
 Develop the Architecture
 Design the Relational Database and OLAP Cubes
 Develop the Operational Data Store
 Develop the Data Maintenance Applications
 Develop Analysis Applications
 Test and Deploy the System
Conclusion

Introduction
Data warehouses support business decisions by collecting, consolidating, and organizing data for reporting and analysis with
tools such as online analytical processing (OLAP) and data mining. Although data warehouses are built on relational database
technology, the design of a data warehouse database differs substantially from the design of an online transaction processing
system (OLTP) database.

The topics in this paper address approaches and choices to be considered when designing and implementing a data warehouse.
The paper begins by contrasting data warehouse databases with OLTP databases and introducing OLAP and data mining, and
then adds information about design issues to be considered when developing a data warehouse with Microsoft® SQL Server™
2000. This paper was first published as Chapter 17 of the SQL Server 2000 Resource Kit, which also includes further information
about data warehousing with SQL Server 2000. Chapters that are pertinent to this paper are indicated in the text.

Data Warehouses, OLTP, OLAP, and Data Mining
A relational database is designed for a specific purpose. Because the purpose of a data warehouse differs from that of an OLTP,
the design characteristics of a relational database that supports a data warehouse differ from the design characteristics of an
OLTP database.

Data warehouse database OLTP database
Designed for analysis of business measures by categories and
attributes Designed for real-time business operations

Optimized for bulk loads and large, complex, unpredictable
queries that access many rows per table

Optimized for a common set of transactions, usually adding or
retrieving a single row at a time per table

Loaded with consistent, valid data; requires no real time
validation

Optimized for validation of incoming data during transactions;
uses validation data tables

Supports few concurrent users relative to OLTP Supports thousands of concurrent users

Back to top

A Data Warehouse Supports OLTP

A data warehouse supports an OLTP system by providing a place for the OLTP database to offload data as it accumulates, and by
providing services that would complicate and degrade OLTP operations if they were performed in the OLTP database.

Without a data warehouse to hold historical information, data is archived to static media such as magnetic tape, or allowed to
accumulate in the OLTP database.

If data is simply archived for preservation, it is not available or organized for use by analysts and decision makers. If data is
allowed to accumulate in the OLTP so it can be used for analysis, the OLTP database continues to grow in size and requires more
indexes to service analytical and report queries. These queries access and process large portions of the continually growing
historical data and add a substantial load to the database. The large indexes needed to support these queries also tax the OLTP
transactions with additional index maintenance. These queries can also be complicated to develop due to the typically complex
OLTP database schema.

A data warehouse offloads the historical data from the OLTP, allowing the OLTP to operate at peak transaction efficiency. High
volume analytical and reporting queries are handled by the data warehouse and do not load the OLTP, which does not need
additional indexes for their support. As data is moved to the data warehouse, it is also reorganized and consolidated so that
analytical queries are simpler and more efficient.

OLAP is a Data Warehouse Tool

Online analytical processing (OLAP) is a technology designed to provide superior performance for ad hoc business intelligence
queries. OLAP is designed to operate efficiently with data organized in accordance with the common dimensional model used in
data warehouses.

A data warehouse provides a multidimensional view of data in an intuitive model designed to match the types of queries posed
by analysts and decision makers. OLAP organizes data warehouse data into multidimensional cubes based on this dimensional
model, and then preprocesses these cubes to provide maximum performance for queries that summarize data in various ways.
For example, a query that requests the total sales income and quantity sold for a range of products in a specific geographical
region for a specific time period can typically be answered in a few seconds or less regardless of how many hundreds of millions
of rows of data are stored in the data warehouse database.

OLAP is not designed to store large volumes of text or binary data, nor is it designed to support high volume update transactions.
The inherent stability and consistency of historical data in a data warehouse enables OLAP to provide its remarkable performance
in rapidly summarizing information for analytical queries.

In SQL Server 2000, Analysis Services provides tools for developing OLAP applications and a server specifically designed to
service OLAP queries.

Data Mining is a Data Warehouse Tool

Data mining is a technology that applies sophisticated and complex algorithms to analyze data and expose interesting
information for analysis by decision makers. Whereas OLAP organizes data in a model suited for exploration by analysts, data
mining performs analysis on data and provides the results to decision makers. Thus, OLAP supports model-driven analysis and
data mining supports data-driven analysis.

Data mining has traditionally operated only on raw data in the data warehouse database or, more commonly, text files of data
extracted from the data warehouse database. In SQL Server 2000, Analysis Services provides data mining technology that can
analyze data in OLAP cubes, as well as data in the relational data warehouse database. In addition, data mining results can be
incorporated into OLAP cubes to further enhance model-driven analysis by providing an additional dimensional viewpoint into
the OLAP model. For example, data mining can be used to analyze sales data against customer attributes and create a new cube
dimension to assist the analyst in the discovery of the information embedded in the cube data.

For more information and details about data mining in SQL Server 2000, see Chapter 24, "Effective Strategies for Data Mining," in
the SQL Server 2000 Resource Kit.

Back to top

Designing a Data Warehouse: Prerequisites
Before embarking on the design of a data warehouse, it is imperative that the architectural goals of the data warehouse be clear
and well understood. Because the purpose of a data warehouse is to serve users, it is also critical to understand the various types

of users, their needs, and the characteristics of their interactions with the data warehouse.

Data Warehouse Architecture Goals

A data warehouse exists to serve its users—analysts and decision makers. A data warehouse must be designed to satisfy the
following requirements:

Deliver a great user experience—user acceptance is the measure of success
Function without interfering with OLTP systems
Provide a central repository of consistent data
Answer complex queries quickly
Provide a variety of powerful analytical tools, such as OLAP and data mining

Most successful data warehouses that meet these requirements have these common characteristics:

Are based on a dimensional model
Contain historical data
Include both detailed and summarized data
Consolidate disparate data from multiple sources while retaining consistency
Focus on a single subject, such as sales, inventory, or finance

Data warehouses are often quite large. However, size is not an architectural goal—it is a characteristic driven by the amount of
data needed to serve the users.

Data Warehouse Users

The success of a data warehouse is measured solely by its acceptance by users. Without users, historical data might as well be
archived to magnetic tape and stored in the basement. Successful data warehouse design starts with understanding the users and
their needs.

Data warehouse users can be divided into four categories: Statisticians, Knowledge Workers, Information Consumers, and
Executives. Each type makes up a portion of the user population as illustrated in this diagram.

Figure 1. The User Pyramid

Statisticians: There are typically only a handful of sophisticated analysts—Statisticians and operations research types—in any
organization. Though few in number, they are some of the best users of the data warehouse; those whose work can contribute to
closed loop systems that deeply influence the operations and profitability of the company. It is vital that these users come to love
the data warehouse. Usually that is not difficult; these people are often very self-sufficient and need only to be pointed to the
database and given some simple instructions about how to get to the data and what times of the day are best for performing
large queries to retrieve data to analyze using their own sophisticated tools. They can take it from there.

Knowledge Workers: A relatively small number of analysts perform the bulk of new queries and analyses against the data
warehouse. These are the users who get the "Designer" or "Analyst" versions of user access tools. They will figure out how to
quantify a subject area. After a few iterations, their queries and reports typically get published for the benefit of the Information
Consumers. Knowledge Workers are often deeply engaged with the data warehouse design and place the greatest demands on
the ongoing data warehouse operations team for training and support.

Information Consumers: Most users of the data warehouse are Information Consumers; they will probably never compose a
true ad hoc query. They use static or simple interactive reports that others have developed. It is easy to forget about these users,
because they usually interact with the data warehouse only through the work product of others. Do not neglect these users! This
group includes a large number of people, and published reports are highly visible. Set up a great communication infrastructure

for distributing information widely, and gather feedback from these users to improve the information sites over time.

Executives: Executives are a special case of the Information Consumers group. Few executives actually issue their own queries,
but an executive's slightest musing can generate a flurry of activity among the other types of users. A wise data warehouse
designer/implementer/owner will develop a very cool digital dashboard for executives, assuming it is easy and economical to do
so. Usually this should follow other data warehouse work, but it never hurts to impress the bosses.

Back to top

How Users Query the Data Warehouse

Information for users can be extracted from the data warehouse relational database or from the output of analytical services such
as OLAP or data mining. Direct queries to the data warehouse relational database should be limited to those that cannot be
accomplished through existing tools, which are often more efficient than direct queries and impose less load on the relational
database.

Reporting tools and custom applications often access the database directly. Statisticians frequently extract data for use by special
analytical tools. Analysts may write complex queries to extract and compile specific information not readily accessible through
existing tools. Information consumers do not interact directly with the relational database but may receive e-mail reports or
access web pages that expose data from the relational database. Executives use standard reports or ask others to create
specialized reports for them.

When using the Analysis Services tools in SQL Server 2000, Statisticians will often perform data mining, Analysts will write MDX
queries against OLAP cubes and use data mining, and Information Consumers will use interactive reports designed by others.

Back to top

Developing a Data Warehouse: Details
The phases of a data warehouse project listed below are similar to those of most database projects, starting with identifying
requirements and ending with deploying the system:

Identify and gather requirements
Design the dimensional model
Develop the architecture, including the Operational Data Store (ODS)
Design the relational database and OLAP cubes
Develop the data maintenance applications
Develop analysis applications
Test and deploy the system

Back to top

Identify and Gather Requirements

Identify sponsors. A successful data warehouse project needs a sponsor in the business organization and usually a second
sponsor in the Information Technology group. Sponsors must understand and support the business value of the project.

Understand the business before entering into discussions with users. Then interview and work with the users, not the data—learn
the needs of the users and turn these needs into project requirements. Find out what information they need to be more successful
at their jobs, not what data they think should be in the data warehouse; it is the data warehouse designer's job to determine what
data is necessary to provide the information. Topics for discussion are the users' objectives and challenges and how they go about
making business decisions. Business users should be closely tied to the design team during the logical design process; they are
the people who understand the meaning of existing data. Many successful projects include several business users on the design
team to act as data experts and "sounding boards" for design concepts. Whatever the structure of the team, it is important that
business users feel ownership for the resulting system.

Interview data experts after interviewing several users. Find out from the experts what data exists and where it resides, but only
after you understand the basic business needs of the end users. Information about available data is needed early in the process,
before you complete the analysis of the business needs, but the physical design of existing data should not be allowed to have
much influence on discussions about business needs.

Communicate with users often and thoroughly—continue discussions as requirements continue to solidify so that everyone
participates in the progress of the requirements definition.

Back to top

Design the Dimensional Model

User requirements and data realities drive the design of the dimensional model, which must address business needs, grain of
detail, and what dimensions and facts to include.

The dimensional model must suit the requirements of the users and support ease of use for direct access. The model must also be
designed so that it is easy to maintain and can adapt to future changes. The model design must result in a relational database that
supports OLAP cubes to provide "instantaneous" query results for analysts.

An OLTP system requires a normalized structure to minimize redundancy, provide validation of input data, and support a high
volume of fast transactions. A transaction usually involves a single business event, such as placing an order or posting an invoice
payment. An OLTP model often looks like a spider web of hundreds or even thousands of related tables.

In contrast, a typical dimensional model uses a star or snowflake design that is easy to understand and relate to business needs,
supports simplified business queries, and provides superior query performance by minimizing table joins.

For example, contrast the very simplified OLTP data model in the first diagram below with the data warehouse dimensional model
in the second diagram. Which one better supports the ease of developing reports and simple, efficient summarization queries?

Figure 2. Flow Chart (click for larger image)

Figure 3. Star Diagram

Back to top

Dimensional Model Schemas

The principal characteristic of a dimensional model is a set of detailed business facts surrounded by multiple dimensions that
describe those facts. When realized in a database, the schema for a dimensional model contains a central fact table and multiple
dimension tables. A dimensional model may produce a star schema or a snowflake schema.

Star Schemas

A schema is called a star schema if all dimension tables can be joined directly to the fact table. The following diagram shows a
classic star schema.

Figure 4. Classic star schema, sales (click for larger image)

The following diagram shows a clickstream star schema.

Figure 5. Clickstream star schema (click for larger image)

Snowflake Schemas

A schema is called a snowflake schema if one or more dimension tables do not join directly to the fact table but must join through
other dimension tables. For example, a dimension that describes products may be separated into three tables (snowflaked) as
illustrated in the following diagram.

Figure 6. Snowflake, three tables (click for larger image)

A snowflake schema with multiple heavily snowflaked dimensions is illustrated in the following diagram.

Figure 7. Many dimension snowflake (click for larger image)

Star or Snowflake

Both star and snowflake schemas are dimensional models; the difference is in their physical implementations. Snowflake schemas
support ease of dimension maintenance because they are more normalized. Star schemas are easier for direct user access and
often support simpler and more efficient queries. The decision to model a dimension as a star or snowflake depends on the
nature of the dimension itself, such as how frequently it changes and which of its elements change, and often involves evaluating
tradeoffs between ease of use and ease of maintenance. It is often easiest to maintain a complex dimension by snow flaking the
dimension. By pulling hierarchical levels into separate tables, referential integrity between the levels of the hierarchy is
guaranteed. Analysis Services reads from a snowflaked dimension as well as, or better than, from a star dimension. However, it is
important to present a simple and appealing user interface to business users who are developing ad hoc queries on the
dimensional database. It may be better to create a star version of the snowflaked dimension for presentation to the users. Often,
this is best accomplished by creating an indexed view across the snowflaked dimension, collapsing it to a virtual star.

Back to top

Dimension Tables

Dimension tables encapsulate the attributes associated with facts and separate these attributes into logically distinct groupings,
such as time, geography, products, customers, and so forth.

A dimension table may be used in multiple places if the data warehouse contains multiple fact tables or contributes data to data
marts. For example, a product dimension may be used with a sales fact table and an inventory fact table in the data warehouse,
and also in one or more departmental data marts. A dimension such as customer, time, or product that is used in multiple
schemas is called a conforming dimension if all copies of the dimension are the same. Summarization data and reports will not
correspond if different schemas use different versions of a dimension table. Using conforming dimensions is critical to successful
data warehouse design.

User input and evaluation of existing business reports help define the dimensions to include in the data warehouse. A user who
wants to see data "by sales region" and "by product" has just identified two dimensions (geography and product). Business
reports that group sales by salesperson or sales by customer identify two more dimensions (salesforce and customer). Almost
every data warehouse includes a time dimension.

In contrast to a fact table, dimension tables are usually small and change relatively slowly. Dimension tables are seldom keyed to
date.

The records in a dimension table establish one-to-many relationships with the fact table. For example, there may be a number of
sales to a single customer, or a number of sales of a single product. The dimension table contains attributes associated with the
dimension entry; these attributes are rich and user-oriented textual details, such as product name or customer name and address.
Attributes serve as report labels and query constraints. Attributes that are coded in an OLTP database should be decoded into
descriptions. For example, product category may exist as a simple integer in the OLTP database, but the dimension table should
contain the actual text for the category. The code may also be carried in the dimension table if needed for maintenance. This
denormalization simplifies and improves the efficiency of queries and simplifies user query tools. However, if a dimension
attribute changes frequently, maintenance may be easier if the attribute is assigned to its own table to create a snowflake
dimension.

It is often useful to have a pre-established "no such member" or "unknown member" record in each dimension to which orphan
fact records can be tied during the update process. Business needs and the reliability of consistent source data will drive the
decision as to whether such placeholder dimension records are required.

Hierarchies

The data in a dimension is usually hierarchical in nature. Hierarchies are determined by the business need to group and

summarize data into usable information. For example, a time dimension often contains the hierarchy elements: (all time), Year,
Quarter, Month, Day, or (all time), Year Quarter, Week, Day. A dimension may contain multiple hierarchies—a time dimension
often contains both calendar and fiscal year hierarchies. Geography is seldom a dimension of its own; it is usually a hierarchy that
imposes a structure on sales points, customers, or other geographically distributed dimensions. An example geography hierarchy
for sales points is: (all), Country or Region, Sales-region, State or Province, City, Store.

Note that each hierarchy example has an "(all)" entry such as (all time), (all stores), (all customers), and so forth. This top-level
entry is an artificial category used for grouping the first-level categories of a dimension and permits summarization of fact data to
a single number for a dimension. For example, if the first level of a product hierarchy includes product line categories for
hardware, software, peripherals, and services, the question "What was the total amount for sales of all products last year?" is
equivalent to "What was the total amount for the combined sales of hardware, software, peripherals, and services last year?" The
concept of an "(all)" node at the top of each hierarchy helps reflect the way users want to phrase their questions. OLAP tools
depend on hierarchies to categorize data—Analysis Services will create by default an "(all)" entry for a hierarchy used in a cube if
none is specified.

A hierarchy may be balanced, unbalanced, ragged, or composed of parent-child relationships such as an organizational structure.
For more information about hierarchies in OLAP cubes, see SQL Server Books Online.

Surrogate Keys

A critical part of data warehouse design is the creation and use of surrogate keys in dimension tables. A surrogate key is the
primary key for a dimension table and is independent of any keys provided by source data systems. Surrogate keys are created
and maintained in the data warehouse and should not encode any information about the contents of records; automatically
increasing integers make good surrogate keys. The original key for each record is carried in the dimension table but is not used as
the primary key. Surrogate keys provide the means to maintain data warehouse information when dimensions change. Special
keys are used for date and time dimensions, but these keys differ from surrogate keys used for other dimension tables.

GUID and IDENTITY Keys

Avoid using GUIDs (globally unique identifiers) as keys in the data warehouse database. GUIDs may be used in data from
distributed source systems, but they are difficult to use as table keys. GUIDs use a significant amount of storage (16 bytes each),
cannot be efficiently sorted, and are difficult for humans to read. Indexes on GUID columns may be relatively slower than indexes
on integer keys because GUIDs are four times larger. The Transact-SQL NEWID function can be used to create GUIDs for a column
of uniqueidentifier data type, and the ROWGUIDCOL property can be set for such a column to indicate that the GUID values in
the column uniquely identify rows in the table, but uniqueness is not enforced.

Because a uniqueidentifier data type cannot be sorted, the GUID cannot be used in a GROUP BY statement, nor can the
occurrences of the uniqueidentifier GUID be distinctly counted—both GROUP BY and COUNT DISTINCT operations are very
common in data warehouses. The uniqueidentifier GUID cannot be used as a measure in an Analysis Services cube.

The IDENTITY property and IDENTITY function can be used to create identity columns in tables and to manage series of generated
numeric keys. IDENTITY functionality is more useful in surrogate key management than uniqueidentifier GUIDs.

Back to top

Date and Time Dimensions

Each event in a data warehouse occurs at a specific date and time; and data is often summarized by a specified time period for
analysis. Although the date and time of a business fact is usually recorded in the source data, special date and time dimensions
provide more effective and efficient mechanisms for time-oriented analysis than the raw event time stamp. Date and time
dimensions are designed to meet the needs of the data warehouse users and are created within the data warehouse.

A date dimension often contains two hierarchies: one for calendar year and another for fiscal year.

Time Granularity

A date dimension with one record per day will suffice if users do not need time granularity finer than a single day. A date by day
dimension table will contain 365 records per year (366 in leap years).

A separate time dimension table should be constructed if a fine time granularity, such as minute or second, is needed. A time
dimension table of one-minute granularity will contain 1,440 rows for a day, and a table of seconds will contain 86,400 rows for a
day. If exact event time is needed, it should be stored in the fact table.

When a separate time dimension is used, the fact table contains one foreign key for the date dimension and another for the time
dimension. Separate date and time dimensions simplify many filtering operations. For example, summarizing data for a range of
days requires joining only the date dimension table to the fact table. Analyzing cyclical data by time period within a day requires
joining just the time dimension table. The date and time dimension tables can both be joined to the fact table when a specific time

range is needed.

For hourly time granularity, the hour breakdown can be incorporated into the date dimension or placed in a separate dimension.
Business needs influence this design decision. If the main use is to extract contiguous chunks of time that cross day boundaries
(for example 11/24/2000 10 p.m. to 11/25/2000 6 a.m.), then it is easier if the hour and day are in the same dimension. However,
it is easier to analyze cyclical and recurring daily events if they are in separate dimensions. Unless there is a clear reason to
combine date and hour in a single dimension, it is generally better to keep them in separate dimensions.

Back to top

Date and Time Dimension Attributes

It is often useful to maintain attribute columns in a date dimension to provide additional convenience or business information
that supports analysis. For example, one or more columns in the time-by-hour dimension table can indicate peak periods in a
daily cycle, such as meal times for a restaurant chain or heavy usage hours for an Internet service provider. Peak period columns
may be Boolean, but it is better to "decode" the Boolean yes/no into a brief description, such as "peak"/"offpeak". In a report, the
decoded values will be easier for business users to read than multiple columns of "yes" and "no".

These are some possible attribute columns that may be used in a date table. Fiscal year versions are the same, although values
such as quarter numbers may differ.

Column name Data type Format/Example Comment
date_key int yyyymmdd
day_date smalldatetime
day_of_week char Monday
week_begin_date smalldatetime
week_num tinyint 1 to 52 or 53 Week 1 defined by business rules
month_num tinyint 1 to 12
month_name char January
month_short_name char Jan
month_end_date smalldatetime Useful for days in the month
days_in_month tinyint Alternative for, or in addition to month_end_date
yearmo int yyyymm
quarter_num tinyint 1 to 4
quarter_name char 1Q2000
year smallint
weekend_ind bit Indicates weekend
workday_ind bit Indicates work day

weekend_weekday char weekend Alternative for weekend_ind and weekday_ind. Can be used to make
reports more readable.

holiday_ind bit Indicates holiday
holiday_name char Thanksgiving
peak_period_ind bit Meaning defined by business rules

Date and Time Dimension Keys

In contrast to surrogate keys used in other dimension tables, date and time dimension keys should be "smart." A suggested key
for a date dimension is of the form "yyyymmdd". This format is easy for users to remember and incorporate into queries. It is also
a recommended surrogate key format for fact tables that are partitioned into multiple tables by date.

Back to top

Slowly Changing Dimensions

A characteristic of dimensions is that dimension data is relatively stable—data may be added as new products are released or
customers are acquired, but data, such as the names of existing products and customers, changes infrequently. However, business
events do occur that cause dimension attributes to change, and the effects of these changes on the data warehouse must be
managed. Of particular concern is the potential effect of a change to a dimension attribute on how historical data is tracked and
summarized. "Slowly changing dimensions" is the customary term used for discussions of issues associated with the impact of
changes to dimension attributes. Design approaches to dealing with the issues of slowly changing dimensions are commonly
categorized into the following three change types:

Type 1: Overwrite the dimension record.
Type 2: Add a new dimension record.
Type 3: Create new fields in the dimension record.

Type 1

Type 1 changes cause history to be rewritten, which may affect analysis results if an attribute is changed that is used to group
data for summarization. Changes to a dimension attribute that is never used for analysis can be managed by simply changing the
data to the new value. For example, if customer addresses are stored in the customer dimension table, a change to a customer's
apartment number is unlikely to affect any summarized information, but a customer's move to a new city or state would affect
summarization of data by customer location.

A Type 1 change is the easiest kind of slowly changing dimension to manage in the relational data warehouse. The maintenance
procedure is simply to update an attribute column in the dimension table. However, the Type 1 slowly changing dimension
presents complex management problems for aggregate tables and OLAP cubes. This is especially true if the updated attribute is a
member of a hierarchy on which aggregates are precomputed, either in the relational database or the OLAP store.

For business users, a Type 1 change can hide valuable information. By updating the attribute in the dimension table, the prior
value history of the attribute's value is lost. Consider the example where a customer has upgraded from the "Silver" to the "Gold"
level of service. If the dimension table simply updates the attribute value, business users will not easily be able to explore
differences of behavior before, during, and after the change of service level. In many cases, these questions are of tremendous
importance to the business.

Type 2

Type 2 changes cause history to be partitioned at the event that triggered the change. Data prior to the event continues to be
summarized and analyzed as before; new data is summarized and analyzed in accordance with the new value of the data.

Consider this example: In a sales organization, salespeople receive commissions on their sales. These commissions influence the
commissions of sales managers and executives, and are summarized by sales group in standard reports. When a salesperson
transfers from one group in the organization to another group, the historical information about commission amounts must
remain applicable to the original group and new commissions must apply to the salesperson's new group. In addition, the total
lifetime commission history for the employee must remain available regardless of the number of groups in which the person
worked. A Type 1 change is not appropriate because it would move all of the salesperson's commission history to the new group.

The Type 2 solution is to retain the existing salesperson's dimension record and add a new record for the salesperson that
contains the new reporting information. The original record still associates historical commission data with the previous sales
group and the new record associates new commission data with the new group. It is customary to include fields in the dimension
table to document the change. The following are examples of some common fields that can be used to document the change
event:

"Row Current", a Boolean field that identifies which record represents the current status
"Row Start", a date field that identifies the date the record was added
"Row Stop", a date field that identifies the date the record ceased to be current

Surrogate keys on the dimension table are required for Type 2 solutions. The salesperson's employee number is most likely used
as the record key in OLTP systems. Even if some other key is used, it is unlikely that OLTP systems will need to create a new
record for this individual. A second record for this individual cannot be created in the dimension table unless a different value is
used for its primary key—surrogate keys avoid this restriction. In addition, because the salesperson's employee number is carried
in the dimension table as an attribute, a summarization of the entire employee's commission history is possible, regardless of the
number of sales groups to which the person has belonged.

Some queries or reports may be affected by Type 2 changes. In the salesperson example, existing reports that summarize by
dimension records will now show two entries for the same salesperson. This may not be what is desired, and the report query will
have to be modified to summarize by employee number instead of by the surrogate key.

Type 3

Type 3 solutions attempt to track changes horizontally in the dimension table by adding fields to contain the old data. Often only
the original and current values are retained and intermediate values are discarded. The advantage of Type 3 solutions is the
avoidance of multiple dimension records for a single entity. However, the disadvantages are history perturbation and complexity
of queries that need to access the additional fields. Type 2 solutions can address all situations where Type 3 solutions can be used,
and many more as well. If the data warehouse is designed to manage slowly changing dimensions using Type 1 and 2 solutions,
there is no need to add the maintenance and user complexity inherent in Type 3 solutions.

Back to top

Rapidly Changing Dimensions, or Large Slowly Changing Dimensions

A dimension is considered to be a rapidly changing dimension if one or more of its attributes changes frequently in many rows.
For a rapidly changing dimension, the dimension table can grow very large from the application of numerous Type 2 changes.
The terms "rapid" and "large" are relative, of course. For example, a customer table with 50,000 rows and an average of 10
changes per customer per year will grow to about five million rows in 10 years, assuming the number of customers does not
grow. This may be an acceptable growth rate. On the other hand, only one or two changes per customer per year for a ten million
row customer table will cause it to grow to hundreds of millions of rows in ten years.

Tracking bands can be used to reduce the rate of change of many attributes that have continuously variable values such as age,
size, weight, or income. For example, income can be categorized into ranges such as [0-14,999], [15,000-24,999], [25,000-39,999],
and so on, which reduce the frequency of change to the attribute. Although Type 2 change records should not be needed to track
age, age bands are often used for other purposes, such as analytical grouping. Birth date can be used to calculate exact age when
needed. Business needs will determine which continuously variable attributes are suitable for converting to bands.

Often, the correct solution for a dimension with rapidly changing attributes is to break the offending attributes out of the
dimension and create one or more new dimensions. Consider the following example.

An important attribute for customers might be their account status (good, late, very late, in arrears, suspended), and the history of
their account status. Over time many customers will move from one of these states to another. If this attribute is kept in the
customer dimension table and a Type 2 change is made each time a customer's status changes, an entire row is added only to
track this one attribute. The solution is to create a separate account_status dimension with five members to represent the account
states.

A foreign key in the customer table points to the record in the account_status dimension table that represents the current account
status of that customer. A Type 1 change is made to the customer record when the customer's account status changes. The fact
table also contains a foreign key for the account_status dimension. When a new fact record is loaded into the fact table, the
customer id in the incoming fact record is used to look up the current account_table key in the customer record and populate it
into the fact record. This captures a customer's account history in the fact table. In addition to the benefit of removing the rapidly
changing item from the customer dimension, the separate account status dimension enables easy pivot analysis of customers by
current account status in OLAP cubes. However, to see the entire account history for a customer, the fact table must be joined to
the customer table and the account_status table and then filtered on customer id, which is not very efficient for frequent queries
for a customer's account history.

This scenario works reasonably well for a single rapidly changing attribute. What if there are ten or more rapidly changing
attributes? Should there be a separate dimension for each attribute? Maybe, but the number of dimensions can rapidly get out of
hand and the fact table can end up with a large number of foreign keys. One approach is to combine several of these mini-
dimensions into a single physical dimension. This is the same technique used to create what is often called a "junk" dimension
that contains unrelated attributes and flags to get them out of the fact table. However, it is still difficult to query these customer
attributes well because the fact table must be involved to relate customers to their attributes. Unfortunately, business users are
often very interested in this kind of historical information, such as the movement of a customer through the various account
status values.

If business users frequently need to query a dimension that has been broken apart like this, the best solution is to create a
"factless" schema that focuses on attribute changes. For example, consider a primary data warehouse schema that keeps track of
customers' purchases. The Customer dimension has been developed as a Type 2 slowly changing dimension, and account status
has been pulled out into a separate dimension. Create a new fact table, CustomerChanges, that tracks only the changes to the
customer and account status. A sample schema is illustrated in the following figure.

Figure 8. Customer changes schema (click for larger image)

The fact table, CustomerChanges, receives a new row only when a change is made to the Customer table that includes

information about the customer's current account status. The fact table has no numeric measure or fact; an entry in the table
signifies that an interesting change has occurred to the customer. Optionally, the CustomerChanges schema can track the reason
for the change in the CustomerChangeReason and AccountChangeReason dimension tables. Sample values for the
account_change_reason might include "Customer terminated account", "Account closed for non-payment", and "Outstanding
balance paid in full".

Attribute history tables like this are neither dimension tables nor fact tables in the usual sense. The information in this kind of
table is something like Quantity on Hand in an inventory fact table, which cannot be summarized by adding. However, unlike
Quantity on Hand in an inventory table, these attributes do not change on a fixed periodic basis, so they cannot be numerically
quantified and meaningfully averaged unless the average is weighted by the time between events.

Back to top

Multi-Use Dimensions

Sometimes data warehouse design can be simplified by combining a number of small, unrelated dimensions into a single
physical dimension, often called a "junk" dimension. This can greatly reduce the size of the fact table by reducing the number of
foreign keys in fact table records. Often the combined dimension will be pre-populated with the Cartesian product of all
dimension values. If the number of discrete values creates a very large table of all possible value combinations, the table can be
populated with value combinations as they are encountered during the load or update process.

A common example of a multi-use dimension is a dimension that contains customer demographics selected for reporting
standardization. Another multiuse dimension might contain useful textual comments that occur infrequently in the source data
records; collecting these comments in a single dimension removes a sparse text field from the fact table and replaces it with a
compact foreign key.

Back to top

Fact Tables

A fact table must address the business problem, business process, and needs of the users. Without this information, a fact table
design may overlook a critical piece of data or incorporate unused data that unnecessarily adds to complexity, storage space, and
processing requirements.

Fact tables contain business event details for summarization. Fact tables are often very large, containing hundreds of millions of
rows and consuming hundreds of gigabytes or multiple terabytes of storage. Because dimension tables contain records that
describe facts, the fact table can be reduced to columns for dimension foreign keys and numeric fact values. Text, blobs, and de-
normalized data are typically not stored in the fact table.

Multiple Fact Tables

Multiple fact tables are used in data warehouses that address multiple business functions, such as sales, inventory, and finance.
Each business function should have its own fact table and will probably have some unique dimension tables. Any dimensions that
are common across the business functions must represent the dimension information in the same way, as discussed earlier in
"Dimension Tables." Each business function will typically have its own schema that contains a fact table, several conforming
dimension tables, and some dimension tables unique to the specific business function. Such business-specific schemas may be
part of the central data warehouse or implemented as data marts.

Very large fact tables may be physically partitioned for implementation and maintenance design considerations. The partition
divisions are almost always along a single dimension, and the time dimension is the most common one to use because of the
historical nature of most data warehouse data. If fact tables are partitioned, OLAP cubes are usually partitioned to match the
partitioned fact table segments for ease of maintenance. Partitioned fact tables can be viewed as one table with an SQL UNION
query as long as the number of tables involved does not exceed the limit for a single query. For more information about
partitioning fact tables and OLAP cubes, see Chapter 18, "Using Partitions in a SQL Server 2000 Data Warehouse," in the SQL
Server 2000 Resource Kit.

Back to top

Additive and Non-additive Measures

The values that quantify facts are usually numeric, and are often referred to as measures. Measures are typically additive along all
dimensions, such as Quantity in a sales fact table. A sum of Quantity by customer, product, time, or any combination of these
dimensions results in a meaningful value.

Some measures are not additive along one or more dimensions, such as Quantity-on-Hand in an inventory system or Price in a
sales system. Some measures can be added along dimensions other than the time dimension; such measures are sometimes
referred to as semiadditive. For example, Quantity-on-Hand can be added along the Warehouse dimension to achieve a

meaningful total of the quantity of items on hand in all warehouses at a specific point in time. Along the time dimension, however,
an aggregate function, such as Average, must be applied to provide meaningful information about the quantity of items on hand.
Measures that cannot be added along any dimension are truly nonadditive. Queries, reports, and applications must evaluate
measures properly according to their summarization constraints.

Nonadditive measures can often be combined with additive measures to create new additive measures. For example, Quantity
times Price produces Extended Price or Sale Amount, an additive value.

Back to top

Calculated Measures

A calculated measure is a measure that results from applying a function to one or more measures, for example, the computed
Extended Price value resulting from multiplying Quantity times Price. Other calculated measures may be more complex, such as
profit, contribution to margin, allocation of sales tax, and so forth.

Calculated measures may be precomputed during the load process and stored in the fact table, or they may be computed on the
fly as they are used. Determination of which measures should be precomputed is a design consideration. There are other
considerations in addition to the usual tradeoff between storage space and computational time. The ability of SQL to state
complex relationships and expressions is not as powerful as that of MDX, so complex calculated measures are more likely to be
candidates for pre-computing if they are accessed using SQL than if they are accessed through Analysis Services using MDX.

Fact Table Keys

The logical model for a fact table contains a foreign key column for the primary keys of each dimension. The combination of these
foreign keys defines the primary key for the fact table. Physical design considerations, such as fact table partitioning, load
performance, and query performance, may indicate a different structure for the fact table primary key than the composite key that
is in the logical model. These considerations are discussed in the section "Design the Relational Database and OLAP Cubes." For
more information about partitioning fact tables, see Chapter 18, "Using Partitions in a SQL Server 2000 Data Warehouse," in the
SQL Server 2000 Resource Kit.

A fact table resolves many-to-many relationships between dimensions because dimension tables join through the fact table. For
examples of fact tables, see the illustrations in "Dimensional Model Schemas" earlier in this paper.

Back to top

Granularity

The grain of the fact table is determined after the fact content columns have been identified. Granularity is a measure of the level
of detail addressed by an individual entry in the fact table. Examples of grain include "at the Transaction level", "at the Line Item
level", "Sales to each customer, by product, by month." As you can see, the grain for a fact table is closely related to the
dimensions to which it links. Including only summarized records of individual facts will reduce the grain and size of a fact table,
but the resulting level of detail must remain sufficient for the business needs.

Business needs, rather than physical implementation considerations, must determine the minimum granularity of the fact table.
However, it is better to keep the data as granular as possible, even if current business needs do not require it—the additional
detail might be critical for tomorrow's business analysis. Analysis Services is designed to rapidly and efficiently summarize
detailed facts into OLAP cubes so highly granular fact tables impose no performance burden on user response time. Alternatively,
the OLAP cubes can be designed to include a higher level of aggregation than the relational database. Fine-grained data allows
the data mining functionality of Analysis Services to discover more interesting nuggets of information.

Do not mix granularities in the fact table. Do not add summary records to the fact table that include detail facts already in the fact
table. Aggregation summary records, if used, must be stored in separate tables, one table for each level of granularity.
Aggregation tables are automatically created by Analysis Services for OLAP cubes so there is no need to design, create, and
manage them manually.

Care must also be taken to properly handle records from source systems that may contain summarized data, such as records for
product orders, bills of lading, or invoices. An order typically contains totals of line items for products, shipping charges, taxes, and
discounts. Line items are facts. Order totals are summarized facts—do not include both in the fact table. The order number should
be carried as a field in the line item fact records to allow summarization by order, but a separate record for the order totals is not
only unnecessary, including it will make the fact table almost unusable.

The most successful way to handle summary data like taxes and shipping charges is to get business users to define rules for
allocating those amounts down to the detailed level. For taxes, the rule already exists and is easy to implement. By contrast,
shipping charges may be allocated by weight, product value, or some more arcane formula. It is common for business users to
resist providing an allocation scheme that they may view as arbitrary. It is important for the data warehouse designers to push on
this point, as the resulting schema is generally much more useful and usable.

Business needs, rather than physical implementation considerations, must determine the minimum granularity of the fact table.

However, it is better to keep the data as granular as possible, even if current business needs do not require it—the additional
detail might be critical for tomorrow's business analysis. Analysis Services is designed to rapidly and efficiently summarize
detailed facts into OLAP cubes so highly granular fact tables impose no performance burden on user response time. More detail
also allows the data mining functionality of Analysis Services to discover more interesting nuggets of information.

Back to top

Develop the Architecture
The data warehouse architecture reflects the dimensional model developed to meet the business requirements. Dimension design
largely determines dimension table design, and fact definitions determine fact table design.

Whether to create a star or snowflake schema depends more on implementation and maintenance considerations than on
business needs. Information can be presented to the user in the same way regardless of whether a dimension is snowflaked. Data
warehouse schemas are quite simple and straightforward, in contrast to OLTP database schemas with their hundreds or
thousands of tables and relationships. However, the quantity of data in data warehouses requires attention to performance and
efficiency in their design.

Design for Update and Expansion

Data warehouse architectures must be designed to accommodate ongoing data updates, and to allow for future expansion with
minimum impact on existing design. Fortunately, the dimensional model and its straightforward schemas simplify these activities.
Records are added to the fact table in periodic batches, often with little effect on most dimensions. For example, a sale of an
existing product to an existing customer at an existing store will not affect the product, customer, or store dimensions at all. If the
customer is new, a new record is added to the customer dimension table when the fact record is added to the fact table. The
historical nature of data warehouses means that records almost never have to be deleted from tables except to correct errors.
Errors in source data are often detected in the extraction and transformation processes in the staging area and are corrected
before the data is loaded into the data warehouse database.

The date and time dimensions are created and maintained in the data warehouse independent of the other dimension tables or
fact tables—updating date and time dimensions may involve only a simple annual task to mechanically add the records for the
next year.

The dimensional model also lends itself to easy expansion. New dimension attributes and new dimensions can be added, usually
without affecting existing schemas other than by extension. Existing historical data should remain unchanged. Data warehouse
maintenance applications will need to be extended, but well-designed user applications should still function although some may
need to be updated to make use of the new information.

An entirely new schema can be added to a data warehouse without affecting existing functionality. A new business subject area
can be added by designing and creating a fact table and any dimensions specific to the subject area. Existing dimensions can be
reused without modification to maintain conformity throughout the entire warehouse. If a different, more aggregated, grain is
used in a new subject area, dimensions may be reduced in size by eliminating fine-grained members, but the resulting dimension
must still conform to the master dimension and must be maintained in conformance with it.

Analysis Services OLAP cubes can be extended to accommodate new dimensions by extending their schemas and reprocessing, or
by creating new virtual cubes that contain the new dimensions and incorporate existing cubes without modification to them.

Back to top

Design the Relational Database and OLAP Cubes
In this phase, the star or snowflake schema is created in the relational database, surrogate keys are defined and primary and
foreign key relationships are established. Views, indexes, and fact table partitions are also defined. OLAP cubes are designed that
support the needs of the users.

Keys and Relationships

Tables are implemented in the relational database after surrogate keys for dimension tables have been defined and primary and
foreign keys and their relationships have been identified. Primary/foreign key relationships should be established in the database
schema. For an illustration of these relationships, see the sample star schema, Classic Sales, in "Dimension Model Schema," earlier
in this paper.

The composite primary key in the fact table is an expensive key to maintain:

The index alone is almost as large as the fact table.
The index on the primary key is often created as a clustered index. In many scenarios a clustered primary key provides
excellent query performance. However, all other indexes on the fact table use the large clustered index key. All indexes on
the fact table will be large, the system will require significant additional storage space, and query performance may degrade.

As a result, many star schemas are defined with an integer surrogate primary key, or no primary key at all. We recommend that
the fact table be defined using the composite primary key. Also create an IDENTITY column in the fact table that could be used as
a unique clustered index, should the database administrator determine this structure would provide better performance.

Back to top

Indexes

Dimension tables must be indexed on their primary keys, which are the surrogate keys created for the data warehouse tables. The
fact table must have a unique index on the primary key. There are scenarios where the primary key index should be clustered, and
other scenarios where it should not. The larger the number of dimensions in the schema, the less beneficial it is to cluster the
primary key index. With a large number of dimensions, it is usually more effective to create a unique clustered index on a
meaningless IDENTITY column.

Elaborate initial design and development of index plans for end-user queries is not necessary with SQL Server 2000, which has
sophisticated index techniques and an easy to use Index Tuning Wizard tool to tune indexes to the query workload. The SQL
Server 2000 Index Tuning Wizard allows you to select and create an optimal set of indexes and statistics for a database without
requiring an expert understanding of the structure of the database, the workload, or the internals of SQL Server. The wizard
analyzes a query workload captured in a SQL Profiler trace or provided by an SQL script, and recommends an index configuration
to improve the performance of the database.

The Index Tuning Wizard provides the following features and functionality:

It can use the query optimizer to analyze the queries in the provided workload and recommend the best combination of
indexes to support the query mix in the workload.
It analyzes the effects of the proposed changes, including index usage, distribution of queries among tables, and
performance of queries in the workload.
It can recommend ways to tune the database for a small set of problem queries.
It allows you to customize its recommendations by specifying advanced options, such as disk space constraints.

A recommendation from the wizard consists of SQL statements that can be executed to create new, more effective indexes and, if
wanted, drop existing indexes that are ineffective. Indexed views are recommended on platforms that support their use. After the
Index Tuning Wizard has suggested a recommendation, it can then be implemented immediately, scheduled as a SQL Server job,
or executed manually at a later time.

The empirical tuning approach provided by the Index Tuning Wizard can be used frequently when the data warehouse is first
implemented to develop the initial index set, and then employed periodically during ongoing operation to maintain indexes in
tune with the user query workload.

SQL Server Books Online provides detailed discussions of indexes and the Index Tuning Wizard, and procedures for using the
wizard to tune database indexes.

Back to top

Views

Views should be created for users who need direct access to data in the data warehouse relational database. Users can be granted
access to views without having access to the underlying data. Indexed views can be used to improve performance of user queries
that access data through views. Indexed views are discussed in depth in SQL Server Books Online.

View definitions should create column and table names that will make sense to business users. If Analysis Services will be the
primary query engine to the data warehouse, it will be easier to create clear and consistent cubes from views with readable
column names.

Design OLAP Cubes

OLAP cube design requirements will be a natural outcome of the dimensional model if the data warehouse is designed to support
the way users want to query data. Effective cube design is addressed in depth in "Getting the Most Out of Analysis Services" in
Chapter 22, "Cubes in the Real World," of the SQL Server 2000 Resource Kit.

Back to top

Develop the Operational Data Store
Some business problems are best addressed by creating a database designed to support tactical decision-making. The
Operational Data Store (ODS) is an operational construct that has elements of both data warehouse and a transaction system.
Like a data warehouse, the ODS typically contains data consolidated from multiple systems and grouped by subject area. Like a
transaction system, the ODS may be updated by business users, and contains relatively little historical data.

A classic business case for an operational data store is to support the Customer Call Center. Call center operators have little need
for broad analytical queries that reveal trends in customer behavior. Rather, their needs are more immediate: the operator should
have up-to-date information about all transactions involving the complaining customer. This data may come from multiple source
systems, but should be presented to the call center operator in a simplified and consolidated way.

Implementations of the ODS vary widely depending on business requirements. There are no strict rules for how the ODS must be
implemented. A successful ODS for one business problem may be a replicated mirror of the transaction system; for another
business problem a star schema will be most effective. Most effective operational data stores fall between those two extremes,
and include some level of transformation and integration of data. It is possible to architect the ODS so that it serves its primary
operational need, and also functions as the proximate source for the data warehouse staging process.

A detailed discussion of operational data store design and its implications for data warehouse staging, is beyond the scope of this
paper.

Back to top

Develop the Data Maintenance Applications
The data maintenance applications, including extraction, transformation, and loading processes, must be automated, often by
specialized custom applications. Data Transformation Services (DTS) in SQL Server 2000 is a powerful tool for defining many
transformations. Other tools are Transact-SQL and applications developed using scripting such as Microsoft Visual Basic®
Scripting Edition (VBScript) or Microsoft JScript®, or languages such as Visual Basic.

An extensive discussion of the extraction, transformation, and loading processes is provided in Chapter 19, "Data Extraction,
Transformation, and Loading Techniques," in the SQL Server 2000 Resource Kit.

Develop Analysis Applications
The applications that support data analysis by the data warehouse users are constructed in this phase of data warehouse
development.

OLAP cubes and data mining models are constructed using Analysis Services tools, and client access to analysis data is supported
by the Analysis Server. Techniques for cube design, MDX, data mining, and client data access to Analysis Services data are covered
in depth in the section "Getting the Most Out of Analysis Services" in Chapter 22 of the SQL Server 2000 Resource Kit.

Other analysis applications, such as Microsoft PivotTables®, predefined reports, Web sites, and digital dashboards, are also
developed in this phase, as are natural language applications using English Query. Specialized third-party analysis tools are also
acquired and implemented or installed. Details of these specialized applications are determined directly by user needs. Digital
dashboards are discussed in Chapter 27, "Creating an Interactive Digital Dashboard" and Chapter 28, "A Digital Dashboard
Browser for Analysis Services Meta Data," in the SQL Server 2000 Resource Kit.

Back to top

Test and Deploy the System
It is important to involve users in the testing phase. After initial testing by development and test groups, users should load the
system with queries and use it the way they intend to after the system is brought on line. Substantial user involvement in testing
will provide a significant number of benefits. Among the benefits are:

Discrepancies can be found and corrected.
Users become familiar with the system.
Index tuning can be performed.

It is important that users exercise the system during the test phase with the kinds of queries they will be using in production. This
can enable a considerable amount of empirical index tuning to take place before the system comes online. Additional tuning
needs to take place after deployment, but starting with satisfactory performance is a key to success. Users who have participated
in the testing and have seen performance continually improve as the system is exercised will be inclined to be supportive during
the initial deployment phase as early issues are discovered and addressed.

Back to top

Conclusion
Businesses have collected operational data for years, and continue to accumulate ever-larger amounts of data at ever-increasing
rates as transaction databases become more powerful, communication networks grow, and the flow of commerce expands. Data
warehouses collect, consolidate, organize, and summarize this data so it can be used for business decisions.

Data warehouses have been used for years to support business decision makers. Data warehousing approaches and techniques
are well established, widely adopted, successful, and not controversial. Dimensional modeling, the foundation of data warehouse
design, is not an arcane art or science; it is a mature methodology that organizes data in a straightforward, simple, and intuitive
representation of the way business decision makers want to view and analyze their data.

The key to data warehousing is data design. The business users know what data they need and how they want to use it. Focus on
the users, determine what data is needed, locate sources for the data, and organize the data in a dimensional model that
represents the business needs. The remaining tasks flow naturally from a well-designed model—extracting, transforming, and
loading the data into the data warehouse, creating the OLAP and data mining analytical applications, developing or acquiring end-
user tools, deploying the system, and tuning the system design as users gain experience.

Microsoft SQL Server 2000 provides a wide range of powerful and easy to use tools you can use to create a data warehouse and
analyze the data it contains. The ability to design and create data warehouses is no longer isolated to experts working with
primitive implements.

Back to top

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Database Architecture: The Storage Engine

Cathan Cook
Microsoft Consulting Services

July 2001

Summary: This article provides insight into the inner workings of SQL Server architecture. It covers database engine
enhancements, providing usage tips and pointers to more information. Understanding depth information about the SQL Server
engines can help a Database Administrator (Database System Engineer) take greater advantage of SQL Server when designing,
building or enhancing database systems. Although targeted at database professionals, this material may also be useful from an
educational or marketing perspective. (21 printed pages)

Contents

Introduction
Storage Engine Enhancements
Interacting with Data
Tables and Indexes
Logging and Recovery
Administrative Improvements
Data Storage Components
Conclusion

Introduction
This article describes the new storage engine features in Microsoft® SQL Server™ 2000 and offers tips for using them, along with
some insight into how the storage engine works. Developing a basic understanding of the inner workings of the storage engine
can help you get the most out of SQL Server.

In a world that is focused on highly scalable applications, databases are now designed and implemented on short schedules, and
remain in a constant state of evolution as development requirements change and production usage grows. Scalability, availability,
and ease-of-use requirements demand a responsive and flexible data storage engine.

Different editions of SQL Server 2000 support a wide variety of systems, ranging in size from a tiny mobile system for a Pocket
PC all the way up to a high availability multiple-terabyte transaction processing or decision support system running on clustered
Windows® 2000 Datacenter Servers. All of these systems maintain the flexibility, security, and reliability mission-critical business
systems demand.

You can deploy SQL Server 2000 applications for projects of varying purposes and sizes, as a result of intelligent, automated
storage engine operations. A highly sophisticated architecture improves performance, availability, and scalability.

Availability

Reliability and concurrency are enhanced with new algorithms for physical file interaction. These algorithms eliminate the need to
run database console commands (DBCCs) as part of regular maintenance. However, DBCC is still available, and the new DBCC
CHECK commands can be run without inhibiting online processing.

Scalability

The storage subsystem, which consists of the physical database files and their layout on disk, supports scaling from very small to
very large databases. SQL Server can now support up to 64 GB of physical memory (RAM) and up to 32 processors.

Ease of use

Enhanced administration capabilities help the Database Administrator (DBA) to automate and centralize server management. This
also allows easy maintenance of remote servers and applications without the necessity of having a DBA visit every site. Server
configuration, managed by a sophisticated algorithm, is dynamically responsive to server usage patterns, freeing the DBA to
concentrate on database management and optimization tasks.

Storage Engine Enhancements

The relational database server of SQL Server 2000 has two main parts: the relational engine and the storage engine. The two
engines work independently, interacting with each other through native data access components such as OLE DB. The relational
engine provides an interface into the storage engine, which is composed of services to interact with the underlying database
storage components and features.

The primary responsibilities of the storage engine include:

Providing features to improve ease of use for managing storage components
Managing the data buffers and all I/O to the physical files
Controlling concurrency, managing transactions, locking, and logging
Managing the files and physical pages used to store data
Recovering from system faults

The SQL Server 2000 storage engine offers new features that add conceptual simplicity and physical flexibility, while reducing the
need for meticulous capacity planning and performance tuning. SQL Server 2000 reacts to its own environment and dynamically
adapts to changes in database usage accurately and quickly. This breakthrough in technology has elevated the focus of database
administration to the facilitation of data as a service. SQL Server 2000 DBAs can focus on designing a system that is responsive to
data flow and usage, rather than spending time tuning individual parameters.

The changes in SQL Server 2000 are built on architectural enhancements introduced in SQL Server 7.0 to provide a foundation
for ongoing improvement and innovation. A key goal for the storage engine team was to reduce the amount of time and effort
spent tuning the server on a regular basis. Because most tuning parameter settings can be based on database usage, the engine
now dynamically adjusts to situations in the database environment according to an adaptive algorithm. This automated flexibility
has been implemented for tuning parameters that required constant adjustment and experimentation in earlier versions. You can
still manually adjust tuning features, but SQL Server 2000 does more of the work for you. Only a small percentage of SQL Server
customers should require any adjustment to the tuning parameters; this type of adjustment should only be performed with
careful testing and under the supervision of fully qualified Database Administrators.

The following table summarizes the key enhancements made to the SQL Server 2000 storage engine. They are described in
greater detail later in this article.

Feature Description and benefits
Application
lock manager

If you need to control concurrent access to application-defined resources, such as forms, new stored procedures
now allow you to lock these resources using the SQL Server application lock manager.

Database
console
commands
(DBCCs)

The DBCC CHECK commands can now run during online processing, without blocking updates. New
enhancements allow verifying consistency of physical pages to detect hardware-induced errors. In SQL Server
2000 Enterprise Edition, DBCC now runs in parallel across multiple processors.

Database
options All database options can now be modified using ALTER DATABASE. This ability simplifies administration.

Differential
backups

Differential backups are quicker in SQL Server 2000, due to an enhancement that tracks database changes at the
extent level.

Dynamic
tuning

Using dynamic adaptive algorithms, the server automatically adjusts previously static configuration settings.
Administrative control is still available to manage system-wide resources, but you will not usually need to use it.
Manually set parameters adapt dynamically within their constrained boundaries.

In-row text
In tables that include a small, frequently used text column, smaller text values can be stored in the same page with
the standard data row, rather than on a page of text values. In tables where this text data is accessed frequently,
this feature can eliminate a large amount of disk I/O.

Index builds in
parallel

In Enterprise Edition, index builds automatically make use of all processors configured for parallel processing,
reducing the time it takes to build an index by as much as a factor of six on an eight-processor server. Index builds
also take advantage of available resources in memory and tempdb.

Index read
ahead Index reads have been enhanced to increase performance on index scans.

Index
reorganization

Improvements made to DBCC SHOWCONTIG provide more detailed information regarding index fragmentation.
A new DBCC command, INDEXDEFRAG, reorganizes index pages online without disrupting database service or
incurring any risk to database consistency or recovery.

Descending
order key
columns on
indexes

Individual keys columns in an index can be specified as ascending or descending order.

KILL
command

This command now reports completion progress. If this command is waiting on another process, such as a
rollback, you can view how much of the command has been executed. This command has been enhanced to allow
you to stop Microsoft Distributed Transaction Coordinator (MS DTC) transactions, which are not associated with a
specific session.

Large
memory
support

Windows 2000 technology improves the performance of Enterprise Edition systems that use a large amount of
memory. Using the AWE extensions of Windows 2000, SQL Server 2000 can support up to 64 GB of physical
memory (RAM).

Locking The lock manager has been enhanced to detect deadlocks across additional resources such as threads and
memory. Concurrency improvements reduce deadlocks. This further enhances scalability in SQL Server 2000.

Logical log
marks

Transact-SQL commands can create a bookmark in the log to permit restoration of the database to the point in
time indicated by the bookmark. This feature also synchronizes restoration of multiple databases used for the
same application.

Online index
reorganization

Improvements made to DBCC SHOWCONTIG provide more detailed information regarding index fragmentation.
A new DBCC command, INDEXDEFRAG, reorganizes index pages online without disrupting database service or
incurring any risk to database consistency or recovery.

Optimized I/O
read-ahead

SQL Server 2000 issues multiple serial read-ahead reads at once for each file involved in the scan. The query
optimizer uses serial, read-ahead I/O when scanning tables and indexes for improved performance.

Passwords on
backups

Backup media and individual backup can be password-protected. This prevents an unauthorized user restoring a
backup and gaining access to a database.

Recovery
models

Using recovery models, you can select the level of logging in the database. This allows greater flexibility of
transaction log management. The recovery model can be altered online to complement varying database use
throughout the day.

Shared table
scans

In Enterprise Edition, multiple scans of a table can now take advantage of other ongoing scans of that table,
reducing physical I/O to the disk.

Shrinking the
log

The command to shrink the log runs immediately in more situations. When the log cannot be shrunk
immediately, SQL Server will provide constructive feedback on what must be done before continuing with or
completing the shrink operation.

Snapshot
backups

Support for snapshot backups by third-party vendors has been enhanced. Snapshot backups take advantage of
storage technologies to backup or restore an entire database in seconds. These backups can now be combined
with a conventional transaction log and differential backups to provide complete protection for OLTP databases.
This is especially beneficial for moderate to very large databases in which availability is extremely important.

Space-
efficient
empty tables
and indexes

No disk pages are allocated for empty tables and indexes in SQL Server 2000. SQL Server 7.0 allocated as many
as three pages for empty tables and indexes.

Top n sort This new feature optimizes retrieval of top n values (for example, SELECT TOP 5 * FROM tablename).

Xlock SQL Server 2000 provides this new Transact-SQL locking hint. It can be used to explicitly invoke an exclusive
transaction-level page or table lock.

SQL Server 2000 has been enriched with features that allow more efficient data interaction and more administrative flexibility.
The following sections give more details on these enhancements plus some tips on how to use them.

Interacting with Data
In SQL Server 2000, the storage engine has been enhanced to provide even more scalability and performance when interacting
with the data. Understanding these enhancements can help you use SQL Server more effectively.

The exchange of data begins with a query, whether it originates from a user interface or from an automated task. The data request
is passed into the relational engine, which interacts with the storage engine to get the data and pass it back to the user. From the
perspective of the user, and even the DBA, the functioning of the storage and relational engines are indistinguishable.

Reading Data More Effectively

Data flows between the server and the user through a series of transactions. The application or user initiates the work, and the
database passes it to the query processor for completion and then returns the end results. The query processor does the work by
accepting, interpreting, and executing SQL statements.

For example, when a user session issues a SELECT statement, the following steps occur:

1. The relational engine compiles and optimizes the statement into an execution plan (which is a series of steps required to get
the data). The relational engine then runs the execution plan. The execution steps involve accessing tables and indexes

through the storage engine.
2. The relational engine interprets the execution plan, making calls into the storage engine to gather the necessary data.
3. The relational engine combines all the data returned by the storage engine into the final result set and then sends it back to

the user.

A couple of improvements have been made to boost performance in this process. In SQL Server 2000, the relational engine relays
qualifying query predicates to the storage engine so they can be applied earlier in the process, resulting in more efficient
exchange between the storage and relational engine. This can provide a significant performance gain for qualifying queries.

Top n enhanced

Another improvement is in the way the storage engine handles selection of the top n records from a result set. In SQL Server
2000, a new top n engine analyzes the best path of operation for statements like this one:

SELECT top 5 * from orders order by date_ordered desc

For this example, if the whole table must be searched, the engine analyzes the data and tracks only the top n values in the cache.
This is a tremendous performance boost for this type of SELECT statement, because only the values in the top n will be sorted,
rather than the whole table.

Shared scans

In SQL Server 2000 Enterprise Edition, two or more queries can share ongoing table scans, which can improve performance in
very large SQL Server 2000 databases. For example, when a query searches a very large table using an unordered scan, the pages
flow through the cache to make room for the data flowing in. If another query were started, a second scan of the same table
would incur disk I/O to retrieve those pages again. In an environment where there are frequent table scans, this can cause disk
thrashing as both queries search the same data pages.

Figure 1. Shared scans efficiencies

An optimizing process reduces the amount of disk I/O produced by this type of data access pattern. The first unordered scan of a
table will read the data from the disk; instead of having to read the disk again, subsequent unordered scans of the same table can
build on the information already in memory. See Figure 1. During multiple simultaneous scans of the same table, this
synchronization process may boost performance as much as eightfold. This improvement is even more noticeable in large
decision support queries, where the total table size is much larger than the size of the cache.

Shared scans are a feature invoked by the storage engine to assist with queries that have no better available execution plan. The
intent of this feature is to assist in frequent reads of very large tables. When the query processor determines that the best
execution plan includes a table scan, this feature is invoked. However, while it is possible to use query or index tuning to force

shared scans, no performance gain is achieved by forcing a table scan where a well-maintained index would do the job as well or
better.

Concurrency

In order to maintain transactional consistency while many users are interacting with the data, the storage engine locks resources
to manage dependencies on rows, pages, keys, key ranges, indexes, tables, and databases. By locking resources while they are
being altered, the engine prevents more than one user from altering the same data at the same time. SQL Server locks are
dynamically applied at various levels of granularity, in order to select the least restrictive lock required for the transaction.

In SQL Server 2000, concurrency improvements further reduce deadlocks and avoidable locking of resources. For example, the
lock manager has been enhanced to be aware of other resources that might be in contention, such as threads and memory. This
new ability can help a Database Administrator identify a wider variety of design or hardware limitations.

A new Transact-SQL interface into the lock manager has been introduced to support customized locking logic within
programming code. Locks necessary for business logic can be initiated by invoking sp_getapplock within your Transact-SQL
batch, which allows you to specify an application-defined resource to be locked (for example, a lock on an application resource
like a form, instead of a lock on a data row), the mode of locking to use, the timeout value, and whether the scope of the lock
should be the transaction or the session. After locks have been initiated with the new application lock manager, they participate in
the normal lock management of SQL Server, just as if the storage engine had initiated them, so you do not have to worry that
your application-initiated lock will remain open if the calling transaction is terminated.

The process by which locks are acquired in SQL Server 2000 takes into account whether or not all the data on the page is
committed. For example, if you run a SELECT statement against a table whose data has not changed recently, such as a table in the
pubs database, the process does not produce any locks because no active transactions have recently updated the table. The
storage engine accomplishes this by comparing the log sequence number on the data page to the current active transactions. In
databases where most of the data is older than the oldest active transaction, this can reduce locking significantly, enhancing
performance.

While locks protect data during transactions, another process, latching, controls access to physical pages. Latches are very
lightweight, short-term synchronization objects protecting actions that do not need to be locked for the life of a transaction. When
the engine scans a page, it latches the page, reads the row, gives it back to the relational engine, and then unlatches the page
again so another process can reach the same data. Through a process called lazy latching, the storage engine optimizes access to
the data pages by releasing latches only when a page is also requested by another ongoing process. If no ongoing process
requests the same data page, a single latch remains valid for the entire operation on that page.

For improving concurrency in your system, you should focus on the design of the database system and the code objects that
touch it. SQL Server 2000 is designed to support multiple terabytes of data and virtually unlimited linear scalability. The role of
the DBA is to manage the database life cycle, a cycle of design and optimization of all database components from code to data
storage on disk, to ensure that the design continues to meet the service level agreement.

Tables and Indexes
Enhancements have also been made to the physical data structures, to allow more flexibility of design and maintenance.

As a table or index grows, SQL Server allocates new data pages in sets of eight; these are called extents. A row of data cannot
cross pages, so it can hold only 8 KB of data, although associated text, ntext, or image columns can be stored on different pages.
Tables that have clustered indexes are physically stored in key order on disk. Heaps are tables that do not have clustered indexes
and are not sorted. The records are stored in the order in which they were inserted.

SQL Server 2000 supports indexed views, often called materialized views in other database products. When a clustered index is
created on a view, the view ceases to be a derived object and becomes a base object stored in the database with the same
structure as a table with a clustered index. An indexed view is useful for storing precalculated values, or the result of a complex
join, in cases where the maintenance cost does not outweigh the performance gain. In SQL Server 2000 Enterprise Edition, the
query processor automatically uses an indexed view whenever this would optimize a query plan. Indexed views can improve
query speed on data that is rarely changed but is frequently part of a complex join or calculation query.

In-Row Text

In-row text allows you to store small text data in the primary page. For example, if you have a table that has a text column, but the
text values are frequently small enough to fit on a normal page with the rest of the row, you can set a threshold on the text
column. The threshold determines the size below which data is stored on the primary page rather than a separate text page. This
results in much faster performance if the majority of the data will fit on the page, and only a small percentage of the data is
actually large enough to justify the creation of a text page.

To determine when to use this new feature, balance the storage density or how many rows are stored on each data page versus

the I/O improvement. For example, you have a text column for comments. In the table, you observe that 20 percent of the text
values are large, but the other 80 percent are less than 100 bytes. This may seem like a logical candidate for the in-row text
solution; however, you should only use in-row text if the data in that column is accessed frequently. If your users access this table
frequently, but they do not look at the comments column unless they are doing special research, using in-row text might not be
the best answer. The storage density is reduced because fewer rows per page are stored; and because the table contains more
pages, table scan response times would be increased. Therefore, the best case for implementing in-row text is when you have a
frequently accessed text column that also happens to have many values smaller than 8 K that could be stored in the row.

New Data Types

SQL Server 2000 introduces three new data types. bigint is an 8-byte integer type. sql_variant allows the storage of data values of
different data types. The third data type, table, is useful for optimizing performance. Table variables make more efficient use of
tempdb, and are faster than temporary tables. Like other variables, they are scoped to the batch in which they are declared. With
functionality nearly identical to temporary tables, table variables perform faster than temporary tables or cursors and make better
use of server resources. As a rule, always consider the best way to utilize the resources available on your servers when you create
code to interact with a database.

Indexes

Access to data is optimized through the use of indexes. Because indexing requirements are based on usage, incorrect indexing is
one of the most common causes of slowness in a database. Standard index maintenance should include periodically verifying the
current indexing schema and adjusting it to current system usage by dropping or adding indexes as appropriate.

Several new features in SQL Server 2000 make index maintenance more efficient and easier for administration. These
enhancements decrease disk I/O, increasing the performance of index scans. This is especially useful where there is a secondary
index available for a range scan.

Building indexes

When you build an index, the storage engine samples the rows and calculates the most efficient way to utilize server resources to
build the index. Options allow you to control how indexes are built, so you can choose to control how system resources are
allocated. You can use these options to balance resources in a process that is important to performance of the system as a whole,
in accordance with your knowledge of the particular database system, so the index build will have the lowest possible impact on
transaction processing.

Resource Command Option Description
Memory sp_configure

(advanced)
index create
memory Specifies the amount of memory used by any index build.

TempDB create index sort_in_tempdb
Causes disk space used for sorting during the index build to be allocated from
tempdb. This can result in more I/O bandwidth if tempdb is on separate disks and
can result in a more physically contiguous layout of index pages if the database is low
on contiguous space.

CPU sp_configure
(advanced)

max degree of
parallelism Limits number of processors (CPU) used in parallel operations (server-wide).

For more information about these options, see SQL Server 2000 Books Online.

Another scalability feature for large systems is the parallel index build, which is available in SQL Server 2000 Enterprise Edition.
This process is invoked automatically when you issue a single CREATE INDEX statement. The storage engine calculates the
requirements for the data and then creates separate threads, each of which builds a section of the index.

Figure 2. Parallel index optimization

An index build can also make use of a shared table scan, further optimizing the process.

http://www.microsoft.com/sql/techinfo/productdoc/2000/

Defragmenting indexes

SQL Server 2000 supports online reorganization of indexes, a tremendous advancement from earlier versions. Online index
reorganization has minimal impact on transaction throughput and can be stopped and restarted at any time without loss of work.
The reorganization is accomplished in small increments and is fully recoverable.

As information is inserted, deleted, and updated in a table, the clustered and nonclustered index pages can eventually become
fragmented, decreasing the efficiency of range queries against that data. Therefore, it can be beneficial to defragment your
indexes periodically. You can use DBCC SHOWCONTIG, which has been improved in SQL Server 2000, to analyze and report
fragmentation. For more information, see SQL Server 2000 Books Online.

If you determine that an index is fragmented, use DBCC INDEXDEFRAG to reorganize it. It reorders the pages in logical key order,
compacting free space and moving rows within the established extents to conform to the fill factor setting. This enhances read
performance by densely populating the pages so less of them must be read during a scan of the data. Running DBCC
INDEXDEFRAG has far less impact on online performance than rebuilding the index does, provided the index has been regularly
maintained and is not completely fragmented.

DBCC INDEXDEFRAG is one of a number of long-running online administrative operations that use small transactions internally.
These small transactions maximize concurrency within the server, allow the operation to be stopped without loss of work, and are
fully logged to prevent having to redo them in case of a failure.

Logging and Recovery
The transaction log is a stream of records that records changes to the database from the point the database was created until the
current point in time. Every logged operation creates a log record. The log records generated by a transaction are written to disk
when the transaction commits. In contrast, the data pages modified by the transaction are not immediately written to disk, but are
retained in the SQL Server buffer cache and written to disk some time later. Delaying writes of the data to disk maximizes the
efficiency of multiple accesses to the data pages and avoids disrupting scans. Forcing the log to disk on commit guarantees that
no committed work is lost if the server goes down.

Recovery ensures that a database is transactionally consistent prior to bringing it online. If a database is transactionally consistent,
all committed work is present and any uncommitted work has been undone. The log always defines the correct view of the
database. Simply put, recovery is the process of making the data consistent with the transaction log at a given point in time.

Recovery is performed automatically when SQL Server starts, when a database is attached, or as the final step in restoring a
database from backups. Recovery performed by SQL Server when it starts is called restartstartup recovery. Recovery from
backups is normally due to disk failure. This type of recovery is called media recovery.

Restart recovery is automatic and always recovers to the most recent point in time. In the case of recovery from backups, the DBA
may choose to recover to an earlier point in time. This is subject to restrictions. For more information, see SQL Server 2000 Books
Online.

Startup recovery occurs automatically each time an instance of SQL Server is started and consists of rolling back any transactions
that were incomplete when the instance was last shut down. In the case of recovery from backups, the DBA may choose to recover
to an earlier point in time. This is subject to restrictions. For more information, see SQL Server 2000 Books Online. In both cases,
recovery operates based on this target point in time.

Recovery consists of two phases:

1. Redo all changes until the target point in time is encountered in the transaction log.
2. Undo all work performed by transactions that were active at the point where redo stopped.

SQL Server uses checkpoints to speed restart recovery. A checkpoint forces all modified data pages currently in the buffer cache
to disk. This creates a starting point for redo portion of recovery. Because checkpoints can be expensive, SQL Server automatically
manages checkpoints to maximize performance while minimizing the time it takes to restart.

In SQL Server 2000, writes that complete successfully must be stored durably on disk. If you use write-caching disk storage, work
with your storage vendor to ensure that the cache is fault-tolerant. Fault tolerance means that the cache is immune to power
failures or operator actions. If your cache is not fault-tolerant, it should be disabled.

Logical Log Marks

In SQL Server 7.0, it was possible to recover to any specified point in time. In the case of hardware failure, the restore process was
fairly straightforward. However, another threat to a database is the possibility that invalid data may be entered or that valid data
may be destroyed by a user's action. In this case, you need to determine when the problem transaction began. In SQL Server 7.0,
the only way to do this was to restore logs to a copy of the database until the problem recurred; then you could run your restore
to the production image up to a point in time just prior to the discovered time of error.

http://www.microsoft.com/sql/techinfo/productdoc/2000/
http://www.microsoft.com/sql/techinfo/productdoc/2000/
http://www.microsoft.com/sql/techinfo/productdoc/2000/

In SQL Server 2000, you can mark transactions in the log. Later, if you need to restore, you can reference the mark that was used
at the time of execution, rather than using wall-clock time. To do this, use a named BEGIN TRANSACTION statement and the WITH
MARK [description] clause. The marks are stored in msdb. Recovery can include or stop right before a transaction that contains
the mark. For example, if you have a process that runs in batch and changes many records, you can use this feature to ensure that
if the process is run under the wrong circumstances, you can roll the data back to the point in time that the command was
executed.

Mark names do not need to be unique. To indicate which transaction you need, specify a datetime value. The syntax for this is:

RESTORE LOG WITH [STOPBEFOREMARK|STOPAFTERMARK] = @TaggedTransaction AFTER @datetime

You can also use marks in a distributed transaction, known as distributed marks, to support recovery of multiple related
databases to a transactionally consistent state. These related databases might reside on the same or different instances of SQL
Server. You can set distributed marks across a set of databases periodically (for example, once every five minutes). If the
transaction log of one of the databases is damaged, you must recover the set of databases to an earlier point in time. The
distributed mark provides this point. Using distributed marks negates the worry of coordinating precise timing of backups for
multiple related databases. For more information, see "Recovering to a Named Transaction" in SQL Server 2000 Books Online.

Shrinking the Transaction Log

Log shrink operations were not executed immediately in SQL Server 7.0. They were deferred until the transaction log was next
backed up or truncated. This confused many SQL Server 7.0 customers. SQL Server 2000 shrinks the log as much as possible and
then indicates if further shrinking will be possible after a log backup. In this case, run the shrink command again after the log
backup has completed. For more information, see "Shrinking the Transaction Log" in SQL Server 2000 Books Online.

The size of the log will be based on your current recovery model and your application design. If you find that you need to shrink
to log periodically, look beyond the symptom to the cause. You should further investigate what is causing the log to fill up, rather
than focus on constant maintenance with the shrink command.

Recovery Models

Recovery models were added to SQL Server 2000 to facilitate data protection planning. They clarify tradeoffs between
performance, log space requirements, and protection from media (disk) failure. There are three models: Simple Recovery, Full
Recovery, and Bulk-Logged.

The choice of recovery model is based on database usage and availability requirements and helps determine appropriate backup
and restore procedures. Recovery models only apply to media recovery, that is, recovery from backups. Restart recovery recovers
all committed work. For more information, see "Selecting a Recovery Model" in SQL Server 2000 Books Online.

You can easily transition between recovery models. For example, on a very large database, you can use full or bulk logged, or
both. You can use full during the day and bulk_logged at night, during a data load process that consists of bulk insert and
rebuilding indexes. You can also switch to bulk logging while you run a data load and switch back to full mode, run a transaction
log backup, and be able to restore to that point in time without having to run a full database backup. This feature allows you to do
the bulk processing more efficiently; all you need to do is make a transaction log backup afterwards.

To change recovery models, use the following syntax:

ALTER DATABASE SET RECOVERY RecoveryModel

For more information, see "Switching Recovery Models" in SQL Server 2000 Books Online.

Simple recovery model

The Simple Recovery model typically requires less log space, but it incurs the greatest potential work loss if data or log files are
damaged. Only events needed for basic recovery are logged. Using the Simple Recovery Model, only full database and differential
database backups are available. In the event of a failure, all committed work since the last backup must be redone. This model is
the simplest to administer, but it is not a good choice for a mission-critical application where loss of committed work cannot be
tolerated.

This model is similar to the truncate log on checkpoint option in SQL Server 7.0 and earlier versions.

Full recovery model

In the Full Recovery model, everything is logged. Full Recovery model provides complete protection against work loss from a
damaged data file. If the transaction log is damaged, work committed since the most recent log backup is lost and must be redone
manually.

http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000

Even when you use the Full Recovery model, it is important to use fault-tolerant disks for the transaction log to prevent data loss.
The Full Recovery model also allows recovery to any specific point in time.

Bulk-logged recovery model

The Bulk-Logged Recovery model provides the highest performance for bulk operations. These operations also consume less log
space than they do under the Full Recovery model. For example, the allocation of a new page is logged, but the data inserted onto
the page is not. In SQL Server 2000, bulk operations consist of bulk load (BCP and BULK INSERT, including when they run within a
DTS package), SELECT INTO, CREATE INDEX, WRITETEXT, and UPDATETEXT.

Compared with the Full Recovery model, the Bulk-Logged Recovery model minimizes logging for bulk operations. Keep in mind
that in the event that recovery becomes necessary, if the log is damaged or if bulk operations have occurred since the most recent
log backup, changes made in the database since the last log backup are lost.

This model does not support recovery to a specific point in time, but it will allow recovery to the end of a transaction log backup
containing bulk changes. Transaction log backups made using the Bulk-Logged Recovery model contain the extents modified by
bulk operations. This feature improves support for log shipping, because you no longer need to worry that a bulk operation will
invalidate your backups. SQL Server maintains a bitmap to track the data extents modified, which optimizes the process by which
SQL Server identifies changes.

Improved backup functionality

In addition to the introduction of recovery models to simplify data protection in general, SQL Server 2000 has improved
manageability: snapshot technology, differential backups, and security have been enhanced.

The transaction log backup chain is never broken. In SQL Server 7.0, certain operations, such as adding a file to a database,
broke the log chain and required a subsequent full database backup.
Backup operations do not conflict with applications or other administrative actions. For example, backups can occur
concurrently with bulk operations such as create index and bulk load.
Log and file backups can occur concurrently.

Unattended backup operations, regardless of system activity, are also well supported in SQL Server 2000.

SQL Server supports snapshot backup and restore technologies in conjunction with independent hardware and software vendors.
Snapshot backups minimize or eliminate the use of server resources to accomplish the backup. This is especially beneficial for
moderate to very large databases in which availability is extremely important. The primary benefits of this technology are:

A backup can be created in a very short time, usually measured in seconds, with little or no impact on the server.
A disk backup can be used to restore a database just as quickly.
Another host can create a backup with no impact on the production system.
A copy of a production database can be created instantly for reporting or testing.

Snapshot backups and restores are accomplished in cooperation with third-party hardware and/or software vendors who use
features of SQL Server 2000 designed for this purpose. The backup technology creates an instantaneous copy of the data being
backed up, usually by splitting a mirrored set of disks. At restore time, the original is immediately available. The underlying disks
are synchronized in the background, resulting in almost instantaneous restores.

Differential database backups can be completed in a time that is proportional to the amount of data changed since the last full
backup. The less your data has changed, the quicker the backup. SQL Server 2000 uses a bitmap to track data extents modified
since the most recent database or file backup to enable them to be located efficiently. In addition, SQL Server 2000 supports file
differential backups.

Backups still accumulate changes made to the database since the most recent full backup, functioning the same way in the event
of recovery. They are significantly faster, however, because they only record the small amount of information that has changed,
especially for very large databases that contain only a small amount of changed data.

For added security, you can implement password protection for your backup media and backup sets. This helps prevent
unauthorized users from adding to your backups or restoring to your database.

Administrative Improvements
Several administrative features of the storage engine have been enhanced in SQL Server 2000.

Database Verification

The DBCCs provide a variety of administrative capabilities, including the CHECK commands for verifying database consistency.

Experience with SQL Server 7.0 and SQL Server 2000 has shown that database inconsistency is caused by hardware problems
that may or may not be detected by the database engine or applications during normal operation. This is particularly applicable to
data that is accessed infrequently. In response to this need, SQL Server 2000 introduces a checking mode, Physical_Only, which is
designed to detect most hardware-caused problems. It is very fast, approximately disk scan speed, and is not resource intensive.

Due to fundamental architectural improvements in the SQL Server storage engine, which started with SQL Server 7.0, it is not
necessary to run database verification as part of normal maintenance. However, Microsoft remains committed to database
verification tools as an important part of managing mission critical data. Microsoft recommends that you:

Run the Physical_Only check occasionally, depending on your confidence in underlying hardware, particularly the disk
subsystems.
Run a complete database check at critical times, such as a hardware or software upgrade, or whenever a problem is
suspected regardless of cause.

Microsoft does not recommend running a complete check as part of regular maintenance.

SQL Server 2000 also includes important enhancements to database verification:

By default, checking is fully online. Online checking has low impact on the transaction workload. This impact will vary
depending on the system load, hardware configuration, and speed of tempdb. Microsoft has measured this impact at 15 to
20 percent with a medium OLTP workload (50 percent CPU). The TABLOCK option is provided to force the check to take
shared table locks, which enables it to run faster but will prevent updates.
Checking is done in parallel on symmetric multiprocessing (SMP) computers, limited by the maximum degree of parallelism
you have set for the instance of SQL Server.

SQL Server 2000 check commands continue to support the repair functionality introduced in SQL Server 7.0. Offline repair can
provide an alternative to a restore from backups in some situations.

Database State Control

SQL Server 2000 includes enhancements to the ALTER DATABASE statement that allow more control of database states through
Transact-SQL. All database options can now be modified with greater control through the ALTER DATABASE command;
sp_dboption and databaseproperty() will no longer be updated in future releases. The Transact-SQL commands sp_helpdb
and DatabasePropertyEx() provide information about the state of your database.

The following table lists database state options.

Option type Available settings

User access
SINGLE_USER
RESTRICTED_USER
MULTI_USER

Availability ONLINE
OFFLINE

Updatability READ_ONLY
READ_WRITE

SQL Server also sets the following states in reaction to conditions within the database: restoring, recovering, and suspect. The
database options can be set by using the SET clause of the ALTER DATABASE statement, the sp_dboption system stored
procedure, or, in some cases, SQL Server Enterprise Manager.

When the database state is changed, the session making changes to the database state remains connected, while sessions
inconsistent with the new state can be terminated and their transactions rolled back. Session termination options include the
following:

Terminate immediately
Terminate after a specified time
Allow the ongoing processes to complete normally
Check for activity and disregard the state change if active user sessions are found

Here are two examples of the syntax:

alter database accting set read_only with rollback immediate
alter database accting set single_user with rollback after 60 seconds

For more information, see "Setting Database Options" in SQL Server 2000 Books Online.

System Process IDs and Units of Work

One additional administrative enhancement that helps when you need to stop a process is the KILL command. The KILL command
has been enhanced with status feedback. So, if you want to learn the status of an outstanding KILL command, run the following:

KILL SPID WITH STATUSONLY

If you try to stop a system process ID (SPID) that is being stopped by another KILL command, the system returns the same status
information.

In SQL Server 2000, MS DTC transactions can exist without an associated connection or SPID. Therefore, a connection can be used
for other processes while waiting for a transaction or unit of work to complete. When the MS DTC transaction manager sends a
message that it has completed the task, you can either commit or roll back the transaction. This is referred to as a unit of work
(UOW), which is the transaction identifier used by MS DTC for the transaction. A UOW does not have a SPID.

For more information, see SQL Server 2000 Books Online.

Dynamic Tuning

In SQL Server 2000, usage-based performance tuning is managed dynamically, without required or recommended manual
adjustments. The static parameters have been eliminated, but administrative control has been retained for certain resources (for
example, setting an upper limit on the amount of memory SQL Server can use). This method is far more accurate and responsive
than a manually calculated system based on averages and estimates. This allows you to concentrate on the design aspects of
database management. Traditional database systems require a great deal of manual management and tuning. For example, to
tune the system in response to usage, the DBA would be required to monitor the system, recording a vast amount of statistics
over time, in order to select a static setting that seems to provide the optimal advantage for the system. Then the DBA would re-
evaluate the system to judge what effect the new setting has, and the tuning process would begin again.

SQL Server 2000 introduces a dynamic algorithm into the storage engine, which actively monitors usage of the server and adjusts
the settings internally. Dynamic feedback and analysis in SQL Server 2000 keeps the setting within 10 percent of the absolute
optimal value (see Figure 3), resulting in a better-tuned and highly adaptive system.

Figure 3. Adaptive algorithm tuning

Data Storage Components
SQL Server 2000 balances processing across all available CPUs in coordination with the Windows 2000 operating system. If you
are running a dedicated instance of SQL Server, and no other applications produce a load on the same resources, leave the
processor-related settings at their default to make full use of all the processors. SQL Server can take advantage of parallel
processing across multiple processors for queries, index builds, DBCCs and other operations. For more information on
parallelism, see "Degree of Parallelism" in SQL Server 2000 Books Online.

SQL Server 2000 Standard Edition can support up to four processors and 2 GB of physical memory (RAM). Enterprise Edition can
scale upwards to new levels, to support up to 32 processors and 64 GB of physical memory (RAM).

The main source of memory for an instance of SQL Server is called its memory pool. Almost all data structures that use memory
in an instance of SQL Server are allocated from the memory pool. Examples of objects allocated from the memory pool include

http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000

the buffer cache, where recently read data pages are stored, and the procedure cache, which holds recent execution plans.

The assignments within the memory pool are highly dynamic. To optimize performance, SQL Server constantly adjusts the
amounts of the memory pool assigned to the various areas. For example, when the number of stored execution plans is lower, the
memory pool is adjusted to make optimal use of the resources by making more memory available for the data cache.

SQL Server 2000 is designed to use memory to minimize disk I/O as much as possible. To accomplish this, SQL Server uses the
buffer cache to hold recently referenced data, in physical memory (RAM), where it can be reused. One potential way to reduce
disk I/O and speed up your database system would be to add to the physical memory (RAM) available to SQL Server.

Normally, memory settings do not require any adjustment. However, they can be controlled in certain situations. For example,
memory requires special attention where you are running multiple instances of SQL Server on the same server, especially if you
use failover clustering. You also need to monitor memory usage if you are running applications in addition to SQL Server on the
same server.

Figure 4: Memory usage with greater than 4GB RAM

SQL Server 2000 takes advantage of new capabilities in Windows 2000 to address physical memory (RAM) beyond 3GB. See
Figure 4. SQL Server 2000 Enterprise Edition can use as much memory as Windows 2000 Advanced Server or Windows 2000
Datacenter Server allows.

For more information on large memory support in SQL Server 2000, see "Managing AWE Memory" in SQL Server 2000 Books
Online.

Files, Filegroups, and Disks

SQL Server stores data and the log in disk files. In a basic installation, and as a default, data and log files are created in the default
location specified in the server configuration. However, to maximize performance and manageability, you can apply a few basic
principles:

Spread data over as many disks, channels, and controllers as possible.

In general, the more disks (spindles) you have (regardless of their individual size) and the faster your access to them
(controllers and channels), the faster the storage engine can read and write data. The larger your system usage
becomes, the more important it is to separate the data files from log files by storing them on different sets of physical
drives. Also, because the use of tempdb has changed, you should now store tempdb on a large set of disks, for
example, with the data files or on a set of disks.

Use filegroups to make your enterprise database more manageable.

Every database begins with one default filegroup. Because SQL Server 2000 can work effectively without additional
filegroups, many systems will not need to add user-defined filegroups. However, as a system grows, the use of
additional filegroups can provide more manageability, when implemented and maintained by a qualified DBA.

In SQL Server 2000, if you set a particular filegroup within a database to read-only, the data on that filegroup cannot
be altered, but catalog information such as permissions can still be managed.

Note In SQL Server 2000, the number of asynchronous I/Os is now managed dynamically inside the database
engine, and is not influenced by the number of files or filegroups used, as was the case in SQL Server 7.0.

When implementing or optimizing a database design, the Database Administrator (Database System Engineer) needs
to consider the configuration of the database storage components, particularly the layout of physical and logical disks
and the arrangement of the database files across disks.

Conclusion

http://www.microsoft.com/sql/techinfo/productdoc/2000

For DBAs, increased flexibility and control over performance provides the freedom to focus their database technology skills and
experience on managing the database code, design, and storage components as a unified approach to database system
management. The SQL Server 2000 database engine provides general extensibility and flexibility for a wide variety of database
implementations.

Suggested Reading

For information about operating a successful database system with professional people and processes, read about the Microsoft
Certified Database Administrator program, and Microsoft Operations Framework.

SQL Server 2000 Books Online is included with SQL Server 2000. It is also available online at
http://www.microsoft.com/sql/productdoc/

For more information about hardware and SQL Server, see SQL Server 2000 on Large Servers in SQL Server 2000 Books Online.

For more information about SQL Server architecture and the storage engine, see SQL Server 2000 Books Online, as well as Kalen
Delaney's Inside Microsoft SQL Server 2000.

For more information on capacity planning techniques, see the Microsoft SQL Server 2000 Administrator's Companion.

Technical information about SQL Server for database administrators is located on the Microsoft SQL Server Web site and in
MSDN and Microsoft TechNet.

Technical information about SQL Server for developers is located in the MSDN SQL Server home page.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/mcdba
http://www.microsoft.com/mof
http://www.microsoft.com/sql/productdoc/
http://www.microsoft.com/sql/techinfo/productdoc/2000
http://www.microsoft.com/sql/techinfo/productdoc/2000
http://mspress.microsoft.com/books/4297.htm
http://mspress.microsoft.com/books/4519.htm
http://www.microsoft.com/sql/techinfo
http://www.microsoft.com/technet/default.mspx
http://msdn.microsoft.com/sqlserver
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Deployment Considerations for the Voicemail .NET Alerts Quick
Start Kit on Notification Services

Christa Carpentiere
Microsoft Corporation

August 2003

Applies to:
 Microsoft® SQL Server™ Notification Services

Summary: This article describes three common deployment options used with the Voicemail .NET Alerts quick start kit, which is
developed using Microsoft SQL Server Notification Services. You'll learn about the configuration details associated with each
deployment option, as well as Notification Services architecture basics and security considerations. By the end of the article, you
should be able to identify the appropriate deployment option for your environment, and be familiar with the requirements for
that configuration. (23 printed pages)

Contents

Introduction
Notification Services Application Components
Voicemail .NET Alerts Quick Start Kit Components
Notification Services Scaling Models
Pilot Project Configuration
Production Configuration
High-Availability Configuration
Subscription Management Application Access
Security Considerations
Hardware Considerations
Application Setting Considerations
Appendix

Introduction
There are three common application configurations for the Voicemail .NET Alerts quick start kit developed on Microsoft® SQL
Server™ Notification Services:

Pilot project configuration
Production configuration
High-availability configuration

Each deployment configuration has particular requirements, as well as strengths and limitations. This MSDN® technical article
reviews these issues and provides approximate performance numbers for each configuration.

Notification Services is a platform for developing and deploying a class of scalable applications that can generate and deliver
personalized, timely information updates to a variety of connected and mobile devices. For more information on Notification
Services, refer to the appendix.

The Voicemail .NET Alerts quick start kit provides working source code for a production-ready application. The quick start kit
demonstrates the use of Notification Services Enterprise Edition, .NET Passport, and .NET Alerts in a real-world
telecommunications scenario. All features and functionality for this application are available as source code using C# and the
Microsoft .NET Framework. For more information on the Voicemail .NET Alerts quick start kit, refer to the appendix.

This article provides the requirements, as well as the benefits and limitations, of these three configurations to help you to plan for
a deployment of the quick start kit in your own environment, as well as providing useful information about Notification Services
deployments. There is also an article appendix that provides additional information and materials that can be helpful in planning
such a deployment.

Who Should Read This Document?

This document addresses the needs of systems architects, chief technology officers, and any others who must plan for the

implementation and deployment of information technology.

Notification Services Application Components
A Notification Services application has five primary components:

The subscription management application, which submits subscriber and subscription information to the system.
The event provider, which submits event data to the system. You can have multiple event providers for an application.
The generator, which matches event and subscription data to create notifications. You can have only one generator for an
application.
The distributor, which formats the notifications and hands them off to a delivery system. You can have multiple distributors
for an application.
The instance and application databases, which store application data.

The Notification Services engine consists of the generator, the distributor, and the provider host, which can optionally be used to
host compliant event providers. Notification Services ships with two hosted event providers that allow event submission, either by
reading XML event data files or by calling SQL Server stored procedures. The Notification Services engine runs as a Windows
service.

There are four workflow stages of a Notification Services application (see Figure 1):

Stage 1: Information about subscribers, subscriber devices, and subscriptions comes into the system through a subscription
management application, which uses the Notification Services API to submit this information.
Stage 2: Events are submitted to the system in batches by an event provider, which is optionally hosted in process by the
Notification Services provider host. Events can also be submitted using an independent (non-hosted) event provider, which
runs out of process and, therefore, is not scheduled by Notification Services.
Stage 3: The Notification Services generator uses Transact-SQL rules to match events with subscriptions. Each firing of a
rule produces a batch of notifications.
Stage 4: The Notification Services distributor passes the raw notification data to a content formatter to be formatted, and
then passes the formatted notification data to a delivery protocol to be packaged into messages. Finally the messages are
handed off to one or more external delivery systems for delivery to subscriber devices.

Figure 1. SQL Server Notification Services workflow

NSControl Commands for Deployment

NSControl is a command prompt utility for administering Notification Services. It provides commands for deploying,
configuring, monitoring, and controlling Notification Services instances and applications.

There are three NSControl commands that are most commonly used with deployment:

NSControl Create: Creates the instance and application databases.
NSControl Register: Registers a Notification Services instance. It can optionally create the Windows service that provides
the Notification Services engine as well, by using the -service argument when using this command.
NSControl Update: Updates existing instance and application databases to reflect changes to the application.

For more information, see "NSControl Commands" in SQL Server Notification Services Books Online.

Voicemail .NET Alerts Quick Start Kit Components
The Notification Services application provided by the quick start kit has the following specifications:

One Notification Services instance.
One Notification Services application, hosted by the instance.
A subscription management application with a Web user interface.
One independent event provider. Because it is an independent event provider, it requires the Notification Services API to
submit events, but it does not require the Notification Services engine to be running on the server where these API calls are
made (the Web service host). The Notification Services API uses ADO.NET to communicate with SQL Server and submit
events.

This event provider receives incoming events via a Web service. Using a Web services interface makes it easy to enable a
wide array of event sources to raise events that in turn are processed by the Notification Services application.

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144

One distributor.
Formatting using the standard XSLT content formatter.
Notification delivery via the .NET Alerts Web service. (The .NET Alerts SDK provides integration to this service.)

Notification Services Scaling Models
Notification Services supports both scale-up and scale-out scaling models.

Scale-Up

Notification Services has been architected to allow multithreading for notification generation, formatting, and distribution. You
can add processors and memory to a single server to allow for greater size or speed in a Notification Services application. You can
use application settings to determine how your application uses the multithreading capabilities of Notification Services, in order
to balance system resource consumption against application throughput in a way that is optimal for your environment. For more
information on optimizing application settings, see Application Setting Considerations in this article.

Scale-Out

The Notification Services scaling model allows for two types of scale-out. The first type of scale-out allows you to place the
Notification Services engine, databases, and subscription management application on different servers in order to distribute the
workload.

Figure 2. Scaling out the engine, databases, and subscription management application

The second type of scale-out allows you to break out the generator, the event providers, and the distributors onto separate
servers. Each server in the configuration can host one or several of these components. For example, you could have the generator
on one server, and a distributor and an event provider on another. Or you could have the generator on one server, two
distributors on two other servers, and an event provider on yet another. You can always add servers to take on additional event
providers or distributors if your application needs room to grow.

Note You do not have to specify information about the location of the Notification Services engine elements when
creating and registering an instance. This information is already available to the instance through settings in the
application definition file (ADF), a metadata file that specifies the structure and settings for the application.

The generator is lightweight; its primary function is to call stored procedures in the databases in order to trigger rule execution.
Because of this, as well as to avoid network traffic, the generator is sometimes installed on the same server as the databases. One
scale-out configuration option is to have a Web server for the subscription management application, a server with Notification
Services and SQL Server to host the databases and the generator, and one or more additional servers to host the event providers
and distributors for the application, as illustrated in Figure 3.

Figure 3. Scaling out the Notification Services engine

Note Scale-out functionality is only available in Notification Services Enterprise Edition.

Pilot Project Configuration
The pilot project configuration involves a single server, which runs all of the Notification Services application components.

The typical business scenarios for using the pilot project deployment are:

Developing the application and performing quality assurance.
Implementing a pilot project or providing a beta testing environment.
Providing a production environment for a small or limited-use notification application.

Figure 4 illustrates the pilot project configuration.

Figure 4. Pilot project configuration

Benefits

The pilot project configuration offers three significant benefits. It is easy to plan and deploy; it creates low administrative
overhead; and there are limited hardware costs associated with it.

Limitations

There are two major limitations with the pilot project configuration. It can have performance limitations depending on application
specifics: the Notification Services distributor and the SQL Server query processing can compete for resources in high-traffic,
resource-intensive situations. Also, it has no failover capability.

Hardware Requirements

One server is needed for all components: the Notification Services engine, the Notification Services databases running on SQL
Server, and the subscription management application. See Hardware Considerations later in this article for server details.

Note It is possible to use a scale-up model to maintain a single server in a production environment rather than a

pilot environment, by adding more resources to the existing server instead of adding additional servers. If you find
that a single server is giving you adequate performance, and you are prepared to accept short-term down times, you
can use a custom failover solution to provide the level of availability required in some production scenarios.

Software Requirements

To configure the pilot project server, you must follow these general steps:

1. Install SQL Server. (We recommend installing SQL Server Enterprise Edition SP3 on Windows Server 2003 Standard
Edition.)

2. Make sure Internet Information Services (IIS) is installed and running.
3. Install the engine, database, and client components of Notification Services Enterprise Edition SP1.
4. Run NSControl Register with the -service argument.
5. Run NSControl Create.

This is a very simplified overview of the installation and configuration requirements. For a full explanation, see "Installing
Notification Services" and "Deploying and Administering Notification Services" in SQL Server Notification Services Books Online.

Performance and Scaling Numbers

The average performance numbers you can expect for a typical application on the pilot project configuration are shown in the
following table:

Activity Performance
Incoming events 500 per second
New subscribers added 300 per second
New subscriptions added 200 per second
Notifications generated 600 per second
Notifications delivered via .NET Alerts 100 per second

To use .NET Alerts for delivery, you need to constrain the rate at which notifications are distributed to match the .NET Alerts
service level agreement (SLA) of 100 notifications per second. See "Using .NET Alerts with Notification Services" in the appendix
for an algorithm you can use to determine appropriate application settings. Note that this algorithm does not constrain data input
(events and subscriptions) into the application.

If you do not constrain the notification distribution, the system will back up. This may cause delivery failures. Also, if you have
time-sensitive notifications with a short expiration age, it is possible that they might expire before delivery in the case of extensive
backups.

These performance numbers are conservative estimates. Actual performance numbers will vary, subject to individual applications
and data volumes. The size of event, subscription, and notification records, as well as the complexity of application rules, will have
an impact on performance.

Security context

With the pilot project configuration, you need one account for the Notification Services instance and one account for the
subscription management application. Both of these accounts must be added as logins to SQL Server and granted access to the
Notification Services databases and the master database. For more information, see "User Accounts Required by Notification
Services" in SQL Server Notification Services Books Online.

The Notification Services instance account should be the LocalService account if you are using Windows XP or later and if you do
not use SMTP as a delivery protocol. Otherwise, you should use a local Windows account with the following permissions and
characteristics:

Read and write permissions for the Notification Services directory (InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber).
The ability to log on as a service, which is granted when you run NSControl Register.
The ability to read and write registry keys in HKEY_LOCAL_MACHINE\Software\Microsoft\NotificationServices,
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services, and their subkeys.
Appropriate permissions to any files or folders in the operating system that are used by the event provider, the content
formatter, or the delivery protocol.
Membership in the local Administrators group, if the application uses the SMTP delivery protocol.

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144

The subscription management application account should be the ASPNET account that is installed by default with the .NET
Framework, if you are using managed code for that application. Otherwise you can use the LocalService account if you are using
Windows XP or later, or a low-privilege local Windows account.

Note You will usually use Windows XP only in development and functional testing scenarios. A server operating
system should be used for performance testing and production roll-out.

Production Configuration
The production configuration involves three servers.

In this configuration, one server runs the Notification Services SQL Server databases as well as the generator. Because the
generator is lightweight, it doesn't compete with SQL Server for processing resources, and having it on the same server reduces
network traffic for the stored procedure calls that the generator makes. This server is located in a secure zone, behind an internal
firewall that separates it from the subscription management application. This helps protect the proprietary data in the database, in
case the Web server is compromised.

A second server runs the subscription management application, and a third server runs the event provider and the distributor.
These servers reside in the zone between the internal firewall and the Internet firewall, because both the subscription
management application and the distributor need access to the Internet.

The typical business scenario for using the production configuration is to deploy a small- to medium-sized notification application
where availability needs don't require automatic failover.

Figure 5 illustrates the production configuration.

Figure 5. Production configuration

Benefits

Because of its multiple servers, the production configuration provides several advantages over the pilot project configuration. It
alleviates the performance limitations that affect the pilot project configuration. With the databases on a separate server, a layer
of indirection is added between the database server and the client application, which enhances security. Application reliability is
increased by having fewer components on each server, thereby decreasing the change of software conflicts and contention for
resources.

The production configuration also provides ease of scalability through use of the Notification Services scale-out model. It also
allows you to quickly replace a downed Notification Services computer by installing and registering Notification Services on a
replacement computer.

Limitations

Like the pilot project configuration, the production configuration has no automatic failover capacity. Additionally, the production
configuration entails greater administrative overhead and higher hardware costs.

Hardware Requirements

Three servers are required for the production configuration: one for the subscription management application and the event
provider, one for the databases and the generator, and one for the distributor. For details about these servers, see Hardware
Considerations.

Software Requirements

With the production configuration, software requirements vary for each server.

Subscription management application and independent event provider server: We recommend Windows Server 2003
Standard Edition for the operating system on this server. To configure this server, you must follow these general steps:

1. Make sure IIS is installed and running.
2. Install the client components of Notification Services Enterprise Edition SP1.
3. Run NSControl Register.

Database and generator server: We recommend SQL Server Enterprise Edition SP3 on Windows Server 2003 Enterprise
Edition. To configure this server, follow these general steps:

1. Install SQL Server.
2. Install the engine, database, and client components of Notification Services Enterprise Edition SP1.
3. Run NSControl Register with the -service argument.
4. Run NSControl Create.

Distributor server: We recommend Windows Server 2003 Standard Edition for the operating system on this server. To configure
this server, follow these general steps:

1. Install the engine and client components of Notification Services Enterprise Edition SP1.
2. Run NSControl Register with the -service argument.

This is a very simplified overview of the installation and configuration requirements. For a full explanation, see "Installing
Notification Services" and "Deploying and Administering Notification Services" in SQL Server Notification Services Books Online.

Performance and scaling numbers

The average performance numbers you can expect for a typical application on the production configuration are shown in the
following table:

Activity Performance
Incoming events 1500 per second
New subscribers added 500 per second
New subscriptions added 300 per second
Notifications generated 800 per second
Notifications delivered via .NET Alerts 100 per second

To use .NET Alerts for delivery, you need to constrain the rate at which notifications are distributed to match the .NET Alerts
service level agreement (SLA) of 100 notifications per second. See "Using .NET Alerts with Notification Services" in the appendix

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144

for an algorithm you can use to determine appropriate application settings. Note that this algorithm does not constrain data input
(events and subscriptions) into the application.

If you do not constrain the notification distribution, the system will back up. This may cause delivery failures. Also, if you have
time-sensitive notifications with a short expiration age, it is possible that they might expire before delivery in the case of extensive
backups.

These performance numbers are conservative estimates. Actual performance numbers will vary, subject to individual applications
and data volumes. The size of event, subscription, and notification records, as well as the complexity of application rules, will have
an impact on performance.

Security context

With the production configuration, you need one account for the Notification Services instances, and one account for the
subscription management application. Both of these accounts must be added as logins to SQL Server and granted access to the
Notification Services databases and the master database. For more information, see "User Accounts Required by Notification
Services" in SQL Server Notification Services Books Online.

The Notification Services instance account should be a domain account with the following permissions and characteristics:

Read and write permissions for the Notification Services directory (InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber).
The ability to log on as a service, which is granted when you run NSControl Register.
The ability to read and write registry keys in HKEY_LOCAL_MACHINE\Software\Microsoft\NotificationServices,
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services, and their subkeys.
Appropriate permissions to any files or folders in the operating system that are used by the event provider, the content
formatter, or the delivery protocol.
Membership in the local Users group.

This account should be used for the Notification Services service on all servers that run the event provider host, generator, or
distributor. For an application where the SMTP delivery protocol is being used, the account should be granted membership in the
local Administrators group on any computer that is hosting a Notification Services distributor. This is necessary to meet the
privileges required for use of the local SMTP service.

The subscription management application account should be a low-privilege domain account.

High-Availability Configuration
In the high-availability configuration, a cluster of servers runs the Notification Services SQL Server databases as well as the
generator, so that these components have failover coverage. Since the generator is lightweight, it doesn't compete with SQL
Server for processing resources, and having it on the same server reduces network traffic for the stored procedure calls that the
generator makes. This server is located in a secure zone, behind an internal firewall that separates it from the subscription
management application. This helps protect the proprietary data in the database in case the Web server is compromised.

Note It is possible to run the generator on a separate cluster if it is not appropriate in your environment to install the
generator on the same server as SQL Server.

Two servers run the subscription management application and the event provider. Both of these components run on both servers
to provide load balancing. These servers reside in the zone between the internal firewall and the Internet firewall, because the
subscription management application needs to be accessed from the Internet.

Two servers run the distributors. While one distributor is the default for the Voicemail .NET Alerts quick start kit, we recommend
that in this configuration you have two servers and add at least one more distributor to the application. (For more information on
how to do this, see "Specifying Distributor Settings" in SQL Server Notification Services Books Online.) By having two or more
distributors, you add redundancy to this part of the application. If one of the distributor servers fails, the other distributors keep
running so that notifications continue to go out. These servers also reside in the zone between the internal firewall and the
Internet firewall, because the distributors need access to the Internet.

The typical business scenario for using the high-availability configuration is to deploy a medium- to large-sized notification
application with failover capabilities.

Figure 6 illustrates the high-availability configuration.

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144

Figure 6. High-availability configuration

Benefits

In addition to all the advantages of the production configuration, the high-availability configuration also provides the failover
capability that the pilot project and production configurations lack. As with the production configuration, the high-availability
configuration offers the following benefits:

Alleviates the performance limitations that affect the pilot project configuration.
Provides increased security by moving the databases to a separate server, providing a layer of indirection between the
database server and the client application.
Can increase application reliability by having fewer components on each server, thereby decreasing the change of software
conflicts and contention for resources.
Provides ease of scalability through use of the Notification Services scale-out model.
Allows you to quickly replace a downed Notification Services computer by installing and registering Notification Services on
a replacement computer.

Limitations

The high-availability configuration incurs greater administrative overhead and higher hardware costs.

Hardware Requirements

For the high-availability configuration, a minimum of six servers is required. Two servers are required for the subscription
management application and the event provider. An additional two (or more) servers are required for the cluster containing the
databases and the generator, and two more servers are needed for the distributors. For server details, see Hardware
Considerations.

Software Requirements

With the high-availability configuration, software requirements vary for each server.

Subscription management application and independent event provider servers: We recommend Windows Server
2003 Standard Edition for the operating system on this server. To configure these servers, you must follow these general
steps:

1. Make sure IIS is installed and running.
2. Install the client components of Notification Services Enterprise Edition SP1.
3. Run NSControl Register.

Database and generator servers: We recommend SQL Server Enterprise Edition SP3 on Windows Server 2003 Enterprise
Edition. To configure these servers, you must follow these general steps:

1. Install SQL Server in a clustered configuration.
2. Install the engine, database, and client components of Notification Services Enterprise Edition SP1.
3. Run NSControl Register with the -service argument.
4. Run NSControl Create.

Distributor servers: We recommend Windows Server 2003 Standard Edition for the operating system on this server. To
configure these servers, you must follow these general steps:

1. Install the engine and client components of Notification Services Enterprise Edition SP1.
2. Run NSControl Register with the -service argument.

This is a very simplified overview of the installation and configuration requirements, especially in regards to clustering. For a full
explanation, see "Installing Notification Services" and "Deploying and Administering Notification Services" in SQL Server
Notification Services Books Online.

Performance and Scaling Numbers

The average performance numbers you can expect for a typical application on the high-availability configuration are shown in the
following table:

Activity Performance
Incoming events 1500 per second
New subscribers added 700 per second
New subscriptions added 400 per second
Notifications generated 1000 per second
Notifications delivered via .NET Alerts 100 per second

To use .NET Alerts for delivery, you need to constrain the rate at which notifications are distributed to match the .NET Alerts
service level agreement (SLA) of 100 notifications per second. See "Using .NET Alerts with Notification Services" in the appendix
for an algorithm you can use to determine appropriate application settings. Note that this algorithm does not constrain data input
(events and subscriptions) into the application.

If you do not constrain the notification distribution, the system will back up. This may cause delivery failures. Also, if you have
time-sensitive notifications with a short expiration age, it is possible that they might expire before delivery in the case of extensive
backups.

Note These performance numbers are conservative estimates. Actual performance numbers will vary, subject to
individual applications and data volumes. The size of event, subscription, and notification records, as well as the
complexity of application rules, will have an impact on performance.

Security Context

With the high-availability configuration, you need one account for the Notification Services instances, and one account for the
subscription management application. Both of these accounts must be added as logins to SQL Server and granted access to the
Notification Services databases and the master database. For more information, see "User Accounts Required by Notification
Services" in SQL Server Notification Services Books Online.

The Notification Services instance account should be a domain account with the following permissions and characteristics:

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144

Read and write permissions for the Notification Services directory (InstallLocation\Microsoft SQL Server Notification
Services\VersionNumber).
The ability to log on as a service, which is granted when you run NSControl Register.
The ability to read and write registry keys in HKEY_LOCAL_MACHINE\Software\Microsoft\NotificationServices,
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services, and their subkeys.
Appropriate permissions to any files or folders in the operating system that are used by the event provider, the content
formatter, or the delivery protocol.
Membership in the local Users group.

This account should be used for the Notification Services service on all servers that run Notification Services engine components.
For an application where the SMTP delivery protocol is being used, the account should be granted membership in the local
Administrators group on any computer that is hosting a Notification Services distributor. This is necessary to meet the privileges
required for use of the local SMTP service.

The subscription management application account should be a low-privilege domain account.

Subscription Management Application Access
Web-based subscription management applications make database connection requests using the ASP.NET worker process
credentials. You can use either Windows security or SQL Server security to give this process access to the Notification Services
databases in SQL Server. Microsoft recommends the use of Windows security. The following five options identify the ways in
which the user name and password for the Windows domain account may be supplied to SQL Server:

You can store the account information in the <processModel> element of the web.config file for the application. This is the
recommended way to handle credentials for the subscription management application.

Note When ASP.NET is running under IIS version 6 in native mode, the IIS 6 process model is used and the
settings in the <processModel> section are ignored. To configure the process identity, cycling, or other process
model values, use the Internet Services Manager to configure the IIS worker process for your application.

You can also store the account information in the <processModel> element of the machine.config file for the server.
Changing the account settings in machine.config causes all ASP.NET applications running on IIS on the server to use the
configured account.

You can hard-code the user name and password in the application code. This is not recommended for production
environments because this represents a security risk.
You can store the user name and password in a protected registry key.
You can programmatically set the account information for the active application thread, using the Thread.CurrentPrincipal
method.
You can have the application impersonate the current user via Kerberos delegation.

Security Considerations
The following security recommendations should be kept in mind when designing and deploying your Notification Services
application:

Control access to your subscription management application according to the requirements of your application. If
subscriber membership is limited, provide an authentication mechanism. For public applications, ensure that a malicious
user cannot create very large numbers of subscriptions, or enter subscriptions for other users.

For example, the Voicemail .NET Alerts quick start kit requires an authenticated .NET Passport ID and a telephone number,
plus a cross-referenced ZIP code or account number, in order to create a subscription. Requiring these three pieces of data
prevents a malicious user from creating large numbers of bogus subscriptions that could ultimately create a denial-of-
service attack by overloading the distributor and the .NET Alerts delivery service.

If your event data comes from an external source, validate it before submitting it to the Notification Services system. This
ensures that no falsified information is used to generate notifications.

For example, the independent event provider in the Voicemail .NET Alerts quick start kit is enabled for access only by the
voice mail switches that sit behind an internal firewall. This keeps the event provider protected from malicious attacks.

Access to the Notification Services databases should be limited. Use the built-in roles that Notification Services provides to
tailor user privileges to accomplish specific tasks.
Notification Services generally allows the use of low-privilege accounts, and you should take advantage of this whenever

possible — with two exceptions.

The first exception is when enabling cross-database ownership chaining (usually done when running NSControl Create)
when using Notification Services without SP1 applied on SQL Server 2000 SP3. In this case, either the domain account used
to run NSControl Create must have a SQL Server login that belongs to the sysadmin role, or a system administrator must
manually enable cross-database ownership chaining after you run NSControl Create.

The second exception is when you wish to use SMTP as a delivery protocol. In this case, the account used for the Notification
Services instance that runs the distributor must be part of the local Administrators group on the SMTP server.

Use the <EncryptArguments> setting in the Notification Services configuration file to encrypt event provider and delivery
channel arguments that are stored in the SQL Server databases.
If your notifications contain sensitive information, make a reasonable attempt to authenticate that the target devices that
have been entered truly are appropriate delivery locations for valid subscribers. One good way to restrict access to sensitive
information is to provide a browse-back URL in your notification, and then authenticate the user on that Web site before
displaying any data.

We also recommend that you review Microsoft SQL Server 2000 SP3 Security Features and Best Practices for additional SQL
Server security considerations to keep in mind for your Notification Services application.

Hardware Considerations
This article has referred to servers in a generic sense throughout. The attributes of a "typical" server in this context are:

34 gigabytes (GB) of hard disk space
1 GB of RAM
Four 2.2 gigahertz processors
A mirrored SCSI drive
For the high-availability configuration, a disk subsystem adequate to support the cluster

Application Setting Considerations
There are a couple of ways in which the settings that you choose for your notification application can affect your hardware
requirements. Some settings can affect disk space requirements, while others may affect performance and influence the amount
of RAM or the number of processors you select for your system.

The settings associated with the following nodes in the ADF can influence the amount of resources that your application requires.

/ApplicationExecutionSettings/QuantumDuration

The quantum duration setting can be used to optimize generator performance by balancing latency (the time required to
generate and distribute notifications) against the load on the system. This setting determines how frequently the generator fires
to process the application rules. Smaller quantum durations cause more frequent firing of the generator, which means more
frequent Transact-SQL rule processing and greater application speed. With smaller quantum durations the generator takes up
more processor time overall, and therefore requires more resources on the server.

/ApplicationExecutionSettings/ChronicleQuantumLimit

The chronicle quantum limit setting can be used to optimize generator performance by balancing application speed against
data completeness. Smaller quantum limits permit the generator to do less work when falling behind, and therefore it can catch
up more easily. With smaller quantum limits, more event chronicle rules can go unprocessed, which will affect the event data that
goes into the system and the notification data that it generates.

/ApplicationExecutionSettings/SubscriptionQuantumLimit

The subscription quantum limit setting can be used to optimize generator performance by balancing application speed against
data completeness. Smaller quantum limits permit the generator to do less work when falling behind, and therefore it can catch
up more easily. With smaller quantum limits, more subscription scheduled rules can go unprocessed, which might cause some
notifications not to be generated that otherwise would have been.

/ApplicationExecutionSettings/ProcessEventsInOrder

The process events in order setting can be used to optimize generator performance by balancing notification timeliness against
the load on the system. Notification Services provides two options for determining how application rules are processed. You can

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx

specify whether event and subscription rules are fired for each event batch arrival time (known as sub-quantum sequencing), or
whether they are fired once per quantum period, regardless of event batch arrival time (known as quantum sequencing).

Some systems do not require the strict in-order guarantee provided by sub-quantum sequencing, and can take advantage of the
performance benefit of not having to provide such a guarantee. However, if your application does require this guarantee and you
therefore select sub-quantum sequencing, your system resources will have to be a bit more robust than otherwise.

/ApplicationExecutionSettings/DistributorLogging

The distributor logging settings can be used to optimize application performance by balancing ease of application debugging
against the load on the system. Setting the distributor logging settings to true is useful when testing your application. However,
these settings enable the logging of verbose delivery-related information into database tables, which can lead to increased
storage requirements over time. The logging operations also increase the amount of time required for distributor functioning, and
therefore will also affect system performance. If you choose to leave them enabled in a production environment, you might want
to increase system resources to handle the load.

/ApplicationExecutionSettings/Vacuum

The vacuum settings can be used to optimize application performance by balancing the size of the application database against
the load on the system. The vacuum settings determine how frequently the vacuumer function deletes obsolete event data,
notification data, and batch header data from the system.

Vacuuming is essential for maintaining application performance. Less frequent or shorter vacuuming intervals decrease the
vacuumer's use of system resources, but also lead to an increase in disk space requirements to accommodate the expired but
unremoved data. This degrades application performance. As table sizes increase, it extends the length of time needed to perform
database operations on them. We recommend that you schedule vacuuming for periods of low activity in the application.

/NotificationClasses/NotificationClass/Protocols/Protocol/ProtocolExecutionSettings/RetrySchedule

The retry schedule settings can be used to optimize application performance by balancing database size and notification
timeliness against notification delivery requirements. The retry schedule settings determine how often and at what intervals the
system will attempt to re-send notifications that failed to be delivered. The longer a period of time you select to keep these
notifications and re-attempt their sending, the greater the possibility that undelivered notifications will stack up and require more
disk space for storage.

/NotificationClasses/NotificationClass/ExpirationAge

The expiration age setting can be used to optimize application performance by balancing notification timeliness against
notification delivery requirements. The expiration allows you to specify the length of time a notification can live before it is
determined to be out of date. If Notification Services cannot successfully deliver a notification before it expires, it abandons the
notification without delivering it, whereupon the vacuuming process can remove it. If you do not specify an expiration age,
notifications never expire. You should take the expiration age into account, as the longer the expiration age period, the more live
notifications that can be maintained in the system, and the greater the disk space requirements.

Appendix

Signing up for .NET Passport

You can sign up to use .NET Passport at the Microsoft .NET Passport Web site. Find details on becoming a .NET Alerts and .NET
Passport service provider at the Microsoft .NET Services Manager site and the Microsoft .NET site.

Getting provisioned for .NET Alerts

You can sign up to receive .NET Alerts provisioning at the Microsoft .NET Passport Web site. Find details on becoming a .NET
Alerts and .NET Passport service provider at the Microsoft .NET Services Manager site and the Microsoft .NET site.

Additional information on the Voicemail .NET Alerts quick start kit

Voicemail Alerts Web site.
For more information on using .NET Passport and .NET Alerts, download the respective SDKs from the Microsoft .NET
Services Manager site. (At the Web site, select the second menu option, Service Guide Kit, and then select the .NET
Passport or .NET Alerts link for the download you want.)

http://passport.net/
http://www.netservicesmanager.com/
http://microsoft.com/net/services/
http://passport.net/
http://www.netservicesmanager.com/
http://microsoft.com/net/services/
http://alerts.telws.net/
http://www.netservicesmanager.com/

Additional information on Notification Services

Microsoft Windows Server System Web site.
SQL Server Notification Services Books Online from the Microsoft Download Center.
Additional performance and capacity planning information is available in the MSDN technical article Notification Services
Capacity Planning and Performance Tuning.

Using .NET Alerts with Notification Services

To use .NET Alerts with Notification Services, you must add information to the Notification Services metadata files to support .NET
Alerts as a delivery system. Add a delivery channel section to the configuration file, and a protocol section to one or more of the
notification class nodes in the application definition file (ADF). A standard .NET Alerts delivery protocol to use with Notification
Services system is available as part of the .NET Alerts SDK.

You also must implement .NET Alerts subscription mirroring. Subscription mirroring essentially involves redirection of the
subscription request to the .NET Alerts service. Once .NET Alerts has accepted the subscription, the result is sent back to your Web
site so you can mirror the subscription in the Notification Services database. This ensures that the user has actively requested the
notifications that they will be receiving, and alleviates user concerns related to notification spamming.

The standard service level agreement (SLA) that .NET Alerts offers is 100 notifications per second. To constrain your Notification
Services application in order to provide the optimal throughput for working with this SLA, use the following algorithm:

Alerts Submitted Per Second = Number of Distributors * Distributor Thread Pool Size * Notification Batch Size / Distributor
Quantum

For example, you could use the following application settings to constrain an application to meet the .NET Alerts SLA:

1 distributor
The distributor <ThreadPoolSize> = 4
<NotificationBatchSize> = 25
The distributor <QuantumDuration> = P0DT00H00M01S (1 second)

This algorithm assumes there is zero latency. Because there is always a certain level of latency, the actual throughput will always
be somewhat less.

Submitting more than the number of messages provided for by the SLA to .NET Alerts will result in an error message being
raised.

For additional information on using .NET Alerts with Notification Services, visit the Microsoft Windows Server System Web site.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql/ns
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7D7C7766-BB46-4DDA-824D-0D04144A8144
http://www.microsoft.com/sql/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Developing Effective Decision Support Objects (DSO) Solutions
with Microsoft SQL Server 2000 Analysis Services

Dennis Kennedy
Microsoft Corporation

August 2000

Summary: This paper describes how to effectively develop custom applications using Decision Support Objects (DSO) in
Microsoft SQL Server 2000 Analysis Services by providing practical advice in real-world situations. (9 printed pages)

Table of Contents

Introduction
Object Architecture
Interfaces
Collections
Objects
 Order of Precedence
 Major and Minor Objects
 Database Events
 CubeAnalyzer and PartitionAnalyzer
For More Information

Introduction
Microsoft® SQL Server™ 2000 Analysis Services provides a rich set of tools that simplify administering and maintaining Analysis
servers. By simplifying the execution of many complex tasks, wizards and other tools make using Analysis Services easier for
administrators. For instance, with the Storage Design Wizard, aggregation design, a potentially complex task in other OLAP
products, is as simple as a few mouse clicks.

As a tradeoff for this ease of use, however, the user is isolated from direct access to the more complex features of Analysis
Services. For example, individual aggregations cannot be directly modified using the administrative tools supplied with Analysis
Services.

The complex and powerful underlying features of Analysis Services can be accessed through the Decision Support Objects (DSO)
library, which supports a robust COM object model providing complete control of all meta data in Analysis Services. This article
provides a better understanding of the basics of using DSO within a custom application.

This article assumes the reader has a basic knowledge of SQL Server 2000 Analysis Services, an understanding of object-oriented
programming concepts, and is familiar with DSO. Examples are presented in Microsoft Visual Basic® and Visual Basic Scripting
Edition (VBScript).

Object Architecture
DSO employs a strictly enforced object hierarchy which is managed by the Server object. This enforced hierarchy is represented
by the collections used to store the various objects in the DSO object model; each collection serves as an object factory, creating
and managing only objects that are allowed in that position in the hierarchy. The following diagram shows the general hierarchy
of the DSO object model represented primarily by the collections that define the hierarchy.

Figure 1. General hierarchy of the DSO object model. (Click figure to see larger image.)

In the previous diagram, each collection is represented by the name of the collection (in bold), as well as by the class type (the
value of the ContainedClassType property of the collection) of objects contained by the collection.

The diagram also represents major and minor objects in the DSO object model. Major objects are shaded; minor objects are non-
shaded. A brief discussion of the importance of major and minor objects is provided later.

In the entire object model, only three objects are not referenced from a collection. The Server object is the topmost object in the
hierarchy and is therefore never in a collection. The CubeAnalyzer and PartitionAnalyzer objects, represented respectively by
objects with a ClassType of clsCubeAnalyzer and clsPartitionAnalyzer, have but one reference per cube or partition, and as
such, it would be inappropriate to store them in a collection.

Understanding how the collections enforce the hierarchy is important for writing efficient DSO code. All objects below the Server
object must be instantiated by or referenced from the collection that supports the object. For example, the following code cannot
be used to create a new Database object.

 Dim dsoServer As New DSO.Server
 Dim dsoDatabase As New DSO.MDStore

 dsoServer.Connect "LocalHost"

 With dsoDatabase
 .ClassType = clsDatabase
 .SubClassType = sbclsRegular
 .Name = "TestDB"
 End With

 dsoServer.MDStores.Add dsoDatabase, "Test"

To create a new Database object, the following code should be used. Note that the code instantiates a new Database object by
using the AddNew method of the MDStores collection of the Server object. The Server object is created using the New
keyword—the only object in the DSO object model that should be treated as a directly creatable object.

 Dim dsoServer As New DSO.Server
 Dim dsoDatabase As DSO.MDStore

 dsoServer.Connect "LocalHost"

 Set dsoDatabase = dsoServer.MDStores.AddNew("Test", sbclsRegular)

Interfaces
Although each object in DSO implements its own interface, many objects also implement a common interface (and some
implement more than one common interface). For example, all dimension objects, such as database dimensions and cube
dimensions, implement the Dimension interface.

The most important interface implemented in the object hierarchy is the MDStore interface; it represents the "big four" in the
object model—databases, cubes, partitions, and aggregations. Because the MDStore interface is used frequently in custom
applications, it is recommended that you be familiar with its implementation for each of these objects.

It is highly recommended that you use only the interfaces explicitly documented in the Decision Support Objects Programmer's
Reference in SQL Server Books Online. Other commonly implemented interfaces, such as ICommon, exist, but are for internal use
only and should not be employed. If an object implements one of the interfaces detailed in the Interfaces section of the Decision
Support Objects Programmer's Reference, use the implemented interface instead of the default interface of the object, with one
notable exception. The Database object is the only object in the hierarchy that raises events; as such, the Database interface
must be used if these events are to be received and handled.

Use the ClassType and SubClassType properties to become more familiar with the behavioral differences between similar
objects. Objects that use commonly implemented interfaces often do not implement every property or method, or change the
behavior of the property; using these two properties is the only way to confirm the behavior of the implemented interface for a
given DSO object. The Decision Support Objects Programmer's Reference supplies an access cross-reference table for all of the
properties of each interface, detailed in the Interfaces section. These tables should be on hand at all times during development;
they can save you considerable head-scratching when you try to determine object behavior.

Collections
The Object Factory design pattern utilized by DSO is quite beneficial when you use the DSO object model in a scripting language.
VBScript, for example, has only one data type, the Variant, and cannot directly use virtual function table (vtable) references to

provide early binding. For example, the following statement, although valid in Visual Basic, will not work in VBScript.

 Dim dsoDatabase As DSO.MDStore

When you use the collections to create the object references, the correct common interface is supplied for the object reference
without the need for early binding. A few minor variations in code between Visual Basic and VBScript are present, but the basic
coding technique remains the same when you use DSO for either language. The following example demonstrates the variations in
code required for a scripting language such as VBScript.

 Dim dsoServer
 Dim dsoDatabase

 Set dsoServer = CreateObject("DSO.Server")

 dsoServer.Connect "LocalHost"

 Set dsoDatabase = dsoServer.MDStores.AddNew("Test", sbclsRegular)

Other than the lack of variable typing and the required use of the CreateObject function, the code for creating a new Database
object in the DSO object model varies little between Visual Basic and VBScript.

Negotiating Collections

DSO supplies a very rigidly defined hierarchy, using collections to enforce the relationships in the DSO object model. The
OlapCollection object, instantiated by all collections in the DSO object model, is much more robust than the standard Visual
Basic for Applications (VBA) Collection object. To make it easier to work with such a rigidly defined hierarchy, the
OlapCollection object includes several new features. For example, the Find method is invaluable when attempting to negotiate
the DSO object model. Most collections do not allow you to determine the existence of an object within the collection before
referencing; error handling is often used to trap the resulting error if an invalid object reference is requested from a collection.
However, the OlapCollection object does not raise an error if you attempt to refer to an object not present in the collection. This
behavior is by design to assist in using DSO with languages, such as VBScript, that do not have strong error handling features. If
the object does not exist within the collection, the returned object contains Nothing and no error is raised. The Find method,
provided with the key of an item potentially in the collection, returns a Boolean result that indicates whether an item with the
specified key exists in the collection. The Find method should be used instead of the traditional error handling methods for
dealing with validation of object references in a collection.

Objects
The following information addresses the practical use of DSO objects in a custom application, including ways to speed
performance and reduce confusion when working with this complex and robust object model.

Order of Precedence

Because the behavior and capability of each DSO object can depend on other objects in the strict hierarchy of the DSO object
model, DSO objects should be created in a specific order. Knowing the creation order of DSO objects can save you trouble later
when you attempt to create a script for creating or maintaining meta data on an Analysis server. In some cases, fully creating a
DSO object will be a two-step procedure. For example, when creating a DbLevel object, the OrderingMemberProperty property
cannot be set to the name of a member property unless the corresponding MemberProperty object is created first.

The collections in DSO fall into three general categories, depending on the position of the collection within the DSO hierarchy:
open, limited, and closed.

An open collection is a collection whose membership is unrestricted; it contains DSO objects that are directly creatable and that
do not inherit subordinate objects and attributes from similar objects higher up in the DSO hierarchy. Objects can be added and
removed as needed. For example, a DbDimension object does not inherit levels and member properties from another
dimension. The Add and AddNew methods return a reference to a new DSO object, and do not depend upon the existence of
another DSO object higher up the hierarchy. The Remove method destroys the DSO object.

A limited collection is similar to an open collection, but it contains DSO objects that can be created indirectly from other, similar
DSO objects. The membership of a limited collection is based on the membership of another collection; only those objects that
exist in this collection can be added or removed from a limited collection. Objects in limited collections inherit subordinate objects
and attributes from similar objects higher up in the DSO hierarchy. The Dimensions collection of a cube, which contains
CubeDimension objects, is an example of a limited collection: it requires a one to zero-to-one relationship with the members of
the Dimensions collection of the corresponding database. Although both Add and AddNew methods work, as with an open
collection, they depend on references to existing DSO objects; you will raise an error if you attempt to use AddNew with the
Dimensions collection of a cube by supplying the name of a dimension that does not already exist in the Dimensions collection

of the corresponding database. The Remove method destroys the DSO object in this collection, but does not disturb the
corresponding DSO object higher up the hierarchy. For example, using the Remove method to remove a CubeDimension object
from the Dimensions collection of a cube does not destroy the DbDimension object upon which it is based.

A closed collection has a fixed membership; its members are based completely on the membership of another collection. The
members of a closed collection are inherited from the collection of a similar object higher up in the DSO hierarchy; no new
objects can be added to or removed from the collection. The Dimensions collection of an aggregation is an example of a closed
collection: all of its members are inherited directly from the Dimensions collection of the partition to which the aggregation
belongs. The Add and AddNew methods raise an error when used, as does the Remove method.

In all three types of collections, the individual DSO objects can be read-only or read-write, depending on the collection. For
example, although the Dimensions collection of an aggregation is a closed collection, certain properties of the individual
AggregationDimension objects can be changed.

The following diagram indicates the order of precedence for DSO objects, and displays the open, limited, and closed collections
within the DSO hierarchy.

Figure 2. The order of precedence for DSO objects. (Click figure to see larger image.)

Note that the CustomProperties collection is supported by all DSO objects, and is considered an open collection with read-write
objects even for DSO objects that are read-only.

Major and Minor Objects

In DSO, the terms "major" and "minor" identify which objects can commit changes to the Analysis server. A minor object cannot
commit its own changes; they must be saved to the Analysis server by the "owning" major object. This behavior is important to
understand; many issues involving meta data management in Analysis Services are caused by not committing changes to minor
objects through a major object. When working with the DSO hierarchy, always call the Update method of the appropriate major
object when you make changes to subordinate minor objects.

Database Events

One of the new features in DSO is the introduction of notification events in the Database object. Notification events are used to
provide information during processing. As stated in SQL Server Books Online, these events are raised not only for the Database
object itself, but also for all of its subordinate objects. Although the primary purpose of these events is to handle user interface
interaction with custom applications using DSO, the ReportError event in particular can assist greatly in centralized error
handling approaches. One precaution is recommended, however, when you use these events. For identification purposes, the obj
parameter supplied by the Database object events contains a reference to the relevant DSO object itself; it is possible to alter the
properties of this object. It is recommended that you do not change the properties of this object, because doing so may affect the
processing of the object itself. Also, the Database interface must be implemented in order to receive these events; this is the only
exception to the rule regarding the use of commonly implemented interfaces discussed earlier.

CubeAnalyzer and PartitionAnalyzer

Together, the CubeAnalyzer and PartitionAnalyzer objects in DSO supply the functionality behind three different wizards in
Analysis Services. The CubeAnalyzer is used by itself for the Usage Analysis Wizard, the PartitionAnalyzer is used by itself for

the Storage Design Wizard, and both objects are used together for the Usage-Based Optimization Wizard. To understand how to
employ these DSO objects in a custom application, a better understanding of how they are utilized in the Analysis Services user
interface is required.

The CubeAnalyzer object can retrieve queries logged against a particular cube and can restrict the retrieval by a number of
different elements, such as the start time or duration of the query, or the user who executed the query. This may sound familiar;
the object supports both the Select Filter Criteria step of the Usage Analysis Wizard and the Select Queries step of the Usage-
Based Optimization Wizard. The OpenQueryLogRecordset method, when called, returns a flat Microsoft ActiveX® Data Objects
2.6 (ADODB) Recordset object. The contents of this returned recordset are formatted and displayed in the Review Results step of
both the Usage Analysis Wizard and the Usage-Based Optimization Wizard.

One of the most useful components of the recordset returned by this method is the Dataset column, which contains a simple
representation of the levels and dimensions needed to fulfill a given query. The value in the Dataset column is concatenated from
the ordinal positions of levels, referenced by the query, from every dimension in the cube. Combined with a count of the rows
within the returned recordset that use this particular value in the Dataset column, this information can be used by the
PartitionAnalyzer object to fine-tune aggregations, as discussed later.

The PartitionAnalyzer object can create aggregations for a particular partition in two basic modes. The first mode involves the
use of goal queries: queries used by the PartitionAnalyzer to determine if designed aggregations can satisfy a specified query.
This is where the information returned by the CubeAnalyzer object becomes valuable. The AddGoalQueries method of the
PartitionAnalyzer can be fed with the value obtained from the Dataset column and the number of times that particular value
occurs within the returned recordset to create goal queries. The resulting goal queries are then evaluated by the
PartitionAnalyzer object by using the PrepareGoalQueries method. This establishes the goals against which the
PartitionAnalyzer can test its designed aggregations to determine if they match the intended usage of the partition. This process
is the basis of the Usage-Based Optimization Wizard.

The second mode does not involve goal queries; the PartitionAnalyzer object uses a mathematical simulation to create goals
against which designed aggregations can be tested.

To keep existing aggregations, you must add them to the ExistingAggregations collection maintained by the
PartitionAnalyzer object by using the AddExistingAggregations method. This method also returns the realized percentage of
performance gain and disk storage that results from adding an aggregation, as well as the total count of designed aggregations
maintained by the PartitionAnalyzer object. This method is used to support the Aggregations Already Exist step in both the
Storage Design Wizard and Usage-Based Optimization Wizard.

Additional aggregations can be designed by using the NextAnalysisStep method of the PartitionAnalyzer object, and can be
restricted either by the amount of disk storage used, the percentage of performance gain, or the total number of designed
aggregations. This method can be called repeatedly to incrementally design aggregations; indeed, this is how the Set Aggregation
Options step supports the Until I click Stop option on both the Storage Design Wizard and Usage-Based Optimization Wizard.

Aggregations can be designed individually, but using these two objects together can save considerable time and effort in fine-
tuning partitions to meet your storage and performance requirements.

Remember that after aggregations are designed, the parent partition, as a major object, must be processed in order to generate
and store the values for the designed aggregations.

For More Information
Microsoft SQL Server 2000 Books Online contains more information about DSO. For additional information, see these resources:

The Microsoft SQL Server Web site.
The Microsoft SQL Server Developer Center.
SQL Server Magazine.
The microsoft.public.sqlserver.programming and microsoft.public.sqlserver.datawarehouse newsgroups at
news://news.microsoft.com.
The Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see the Microsoft Training &
Services Web site.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This technical article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com
http://www.microsoft.com/trainingandservices

INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, and Visual Basic are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Diagnosing and Troubleshooting Slow Partitioned Merge
Processes

Dean Kalanquin, Merge Replication Test Lead
Microsoft Corporation

January 2002

Summary: Learn how to achieve scalable, high-performance merge replication applications. (29 printed pages)

Contents

Introduction
Partitioning and Merge Replication
 Filters
 Partitioning and Its Effect on Performance
 Indexes and Merge Partition Performance
 Problems Resulting from Poorly Indexed Partitions
Diagnosing Merge Partitioning Performance Problems
 Evaluating Partition Definitions
 Analyzing an Agent Time-out Failure
 Analyzing the Steps in a Slow Merge Process
Improving Performance by Improving Query Plans and Tuning Agent Properties
 Adding Indexes to Support Filtering Expressions
 Changing Filtering Expressions
 Using Query Hints
 Setting @keep_partition_changes
 Using Dynamic Snapshots
 Changing the Database and Filtering Design
Additional Issues and Considerations for Optimizing Merge Replication Performance
Conclusion

Introduction
A merge replication application must not only provide the functionality required by the business rules of the application, but also
complete its operations in a timely manner, even if the volume of data and the number of users increase over time.

Because merge replication is implemented through tables and queries in Microsoft® SQL Server™ 2000, performance depends
on how efficiently SQL Server handles the processing needs of replication, which in turn depends on how well the database is
designed and performance-tuned.

Many merge replication applications include partitioning, which allows different users of the replicated data to receive different
data sets. A common source of performance problems in merge replication lies in how partitioning is implemented and how
efficiently SQL Server evaluates and processes the expressions associated with partitioning. This article focuses primarily on
diagnosing and troubleshooting the performance of partition processing and addresses some general database design principles
that affect performance.

Partitioning and Merge Replication
Processing partition definitions in a publication can be a major source of performance problems in merge replication, but
partitioning data can also enhance application performance and flexibility and help ensure that the application's business rules
are properly implemented.

A fundamental design goal for merge replication is to partition the data in such a way that each Subscriber receives the smallest
data set possible. When you are publishing tables for replication, consider carefully whether every Subscriber needs to see all the
data, or whether you can replicate a smaller subset of the data to each Subscriber. Partitioning the data can be extremely
beneficial because it can:

Eliminate or reduce the possibility of conflicting changes to the data.

When the same data set is shared and changed at more than one database, there is always the possibility that a change
made at one database can conflict with a change made at another database. Conflicting changes to data add to the

complexity of an application and to the processing needs of replication; therefore, they should be eliminated by careful
design wherever possible.

Minimize the volume of data maintained at each Subscriber.

Larger data sets incur more processing overhead. Also, Subscriber hardware is generally less powerful than Publisher
hardware and might not be able to accommodate the processing and storage requirements associated with copies of entire
tables. In addition, initializing a Subscriber with a large data set can be a significant issue when the Subscriber does not have
a high-speed connection.

Prevent Subscribers from receiving sensitive data.

You might want to prevent Subscribers from seeing data that is inappropriate. The complete data set at the Publisher can be
restricted to a data set that is appropriate for each Subscriber.

Filters

In merge replication, partitions are implemented through two different kinds of filters: subset filter clauses and join filters (also
referred to as merge filters or cross table merge filters). The two kinds of filters are often combined in publications, with subset
filter clauses filtering individual tables, and join filters filtering according to relationships between tables.

Both kinds of filters can be used with static partitioning or dynamic partitioning. When you define a publication with static
partitioning, all Subscribers receive the same data set when the merge process runs. When you define a publication with dynamic
partitioning, Subscribers can receive different data sets on the basis of their connection properties, such as the login.

Subset filter clauses

A subset filter clause is an article property that allows you to define a logical expression. This logical expression is used in the
WHERE clause of queries that replicate the tables. For example, a CUSTOMER table at the Publisher contains customer data for
several states, but the business rules of the application require that the publication limit the published data to a single state. An
example of a subset filter clause for this table is:

State = 'WA'

Join filters

Foreign key relationships are central to most database designs. For example, in a database that tracks product orders, you often
see a CUSTOMER table with a CustID primary key and an ORDER table with a CustID foreign key that references the
CUSTOMER table.

In merge replication, if you filter the CUSTOMER table with a subset filter clause, you must also filter the ORDER table, so that
only the rows that reference the filtered subset of rows from the CUSTOMER table are replicated. Filtering requirements that are
based on a foreign key relationship must be explicitly represented in the merge replication configuration through a join filter
(which lists the two related table articles and a logical expression that identifies the relationship), as shown in the following
example:

CUSTOMER.CustID = ORDER.CustID

The effect of this join filter between the CUSTOMER table and the ORDER table, together with the subset filter clause on the
CUSTOMER table, is that Subscribers to the publication receive only those rows from the CUSTOMER table where State = 'WA'
and only those rows from the ORDER table that correspond to the CustID values in the filtered CUSTOMER table.

Filtering and partitioning that is based on foreign key relationships is the most common approach to limiting data, but sometimes
this approach is not appropriate for your situation. For example, Subscribers might need to receive all of the CUSTOMER rows,
but only the ORDER rows for the customers in their state. The CUSTOMER table is not filtered; therefore, the ORDER table cannot
be filtered with a join filter that is based on the CUSTOMER table. All filtering must be expressed through the use of a subquery in
a subset filter clause on the ORDER article, such as:

ORDER.CustID IN
(SELECT CustID FROM CUSTOMER WHERE State = 'WA')

Although some applications require the use of a subquery, this filtering technique might not be as efficient as the join filter
technique in the previous example. It is recommended that you use join filters whenever possible.

Dynamic partitioning

The filtering expressions discussed in the preceding sections are static and produce only one partitioned data set. Publishing a
partition based on a different state requires another publication, so if the application requires a partition for each state, 50
publications are required. Because the overhead for managing and maintaining this many publications would be high, merge
replication supports dynamic partitions that publish different data sets in a single publication.

If you use dynamic partitions, the subset filter clause contains a function that returns a different value for each partition. (Each
Subscriber might have a different partition, but different Subscribers can have the same partition.) For example, the CUSTOMER
table can include a SALESREP column that contains the network user account for each customer's sales representative. The
subset filter clause would be:

SALESREP = SUSER_SNAME()

SUSER_SNAME() is a Transact-SQL function that returns the login for the user who is currently connected. When a Subscriber
connects to the Publisher to run the merge process, the SUSER_SNAME() function evaluates to a value that is compared to the
column specified in the dynamic filter; rows that match the filter are replicated. For example, if the sales representative who is
running the merge process connects with the login domain\bobjones, the partition includes only those CUSTOMER rows where
SALESREP = 'domain\bobjones'.

The Transact-SQL function HOST_NAME() can also be used in dynamic filters, so that filtering is based on the identity of the
Subscriber server rather than on the Subscriber login. SUSER_SNAME() corresponds to the Merge Agent parameter –
PublisherLogin, which in turn corresponds to the SQL Profiler column name LoginName. Similarly, HOST_NAME() corresponds
to the Merge Agent parameter -Hostname and the SQL Profiler column name HostName. SQL Profiler column names are
discussed later in the section SQL Profiler data columns. For more information, see the topics "Replication Merge Agent Utility"
and "SQL Profiler Data Columns" in SQL Server Books Online.

Dynamic filtering has implications for initializing new Subscribers; see sp_Msinitdynamicsubscriber and the section Using
Dynamic Snapshots later in this article.

Internal implementation of filters

When you define partitions in a merge replication publication, merge replication creates views in the published database that are
based on your filtering expressions and then publishes the subset of data represented by these views.

For example, the view created for the CUSTOMER article with a subset filter clause of State = 'WA' would be:

CREATE VIEW [publication_CUSTOMER_VIEW] AS
SELECT * FROM [dbo].[CUSTOMER] [CUSTOMER]
WHERE (State = 'WA')

The view created for the ORDER article that has a join filter with the CUSTOMER table would be:

CREATE VIEW [publication_ORDER_VIEW] AS
SELECT [ORDER].*
FROM [dbo].[ORDER] [ORDER], [publication_CUSTOMER_VIEW] [CUSTOMER]
WHERE CUSTOMER.CustID = ORDER.CustID

These partitioning views and the filtering expressions they contain are central to the performance of replicating partitioned data.
They define the operations that must be performed by SQL Server. Indexes determine how SQL Server is to perform the
operations. If the views are overly complex or cannot make use of indexes on the base tables, performance for the entire set of
related published tables can be degraded.

Join filters and @join_unique_key

The @join_unique_key property of sp_addmergefilter (the stored procedure used to add a join filter) affects how SQL Server
builds join filter views. Set it to 1 when the join logic is based exclusively on unique logic in the filter criteria table. Otherwise, set it
to 0.

For example, the join filter described earlier in this article expresses a join between the ORDER table and the CUSTOMER table
based on the condition CUSTOMER.CustID = ORDER.CustID. If the CustID field in the CUSTOMER table (the filter criteria table)
has a unique index, the comparison is based on a unique column (or a set of columns with a unique index) and the
@join_unique_key value should be 1. The result is a partition view that performs a join between the ORDER table and the
CUSTOMER view:

CREATE VIEW [sfa_publ_ORDER_art_VIEW] AS
SELECT [ORDER].*
FROM [dbo].[ORDER] [ORDER] , [sfa_publ_CUSTOMER_art_VIEW] [CUSTOMER]
WHERE (CUSTOMER.CustID = ORDER.CustID)

However, if the CUSTOMER.CustID values in this example are not unique, this join technique is not valid for the partitioning
process. The ORDER rows would be erroneously duplicated to match the duplicated CustID values in the CUSTOMER table. In
this situation, the @join_unique_key setting for the filter should be set to 0, which results in a subselect rather than a join in the
ORDER view:

CREATE VIEW [sfa_publ_ORDER_art_VIEW] as
SELECT * FROM [dbo].[ORDER] ORDER_alias_1
WHERE rowguidcol IN
(
SELECT [ORDER].rowguidcol
FROM [dbo].[ORDER] [ORDER_alias_2] , [sfa_publ_CUSTOMER_art_VIEW] [CUSTOMER]
WHERE (CUSTOMER.CustID = ORDER_alias_2.CustID)
)

This example is relatively straightforward because it reflects the relationship of primary and foreign keys between the tables,
which requires the CustID column to be unique. In more complex scenarios, it can be difficult to determine whether the logic is
unique. If your join filter expressions contain multiple expressions combined by the OR operator or if they include wildcards or
the NOT operator, be very careful about setting @join_unique_key property to 1.

The @join_unique_key property is available because using a join in the view allows the SQL Server Query Analyzer to use a
more efficient technique to process the query and return the result set. If you have set the property to 0 and the join logic is
actually unique, you are not taking advantage of the optimal processing technique available to you. On the other hand, if you set
the property to 1 and the join logic is not unique, the join technique returns duplicated data and the result is primary key
violations when the data is applied to the Subscriber.

Partitioning and Its Effect on Performance

It is important to note that the views in the previous section are nested when they represent join filters. The ORDER view is based
on a join with the CUSTOMER view. If an ORDER_ITEM article is added to this publication and the ORDER_ITEM article is filtered
on the basis of the ORDER article, the partition view for ORDER_ITEM includes a join with the ORDER partition view:

CREATE VIEW [publication ORDER_ITEM_VIEW] AS
SELECT [ORDER_ITEM].*
FROM [dbo].[ORDER_ITEM] [ORDER_ITEM], [publication_ORDER_VIEW] [ORDER]
WHERE ORDER_ITEM.OrderID = ORDER.OrderID

View definitions become increasingly complex as they involve more levels of relationships. This can be a major source of
performance issues because problems at the higher levels (for example, in the CUSTOMER table) are magnified when the
complexity of the queries at the lower levels increases.

If partitions are defined in a publication, the merge process must ensure that each Subscriber receives the appropriate data set for
its partition. This is relatively straightforward when a new Subscriber is initialized, because the merge process selects the
appropriate data from the views at the Publisher and uses the resulting data set to populate the Subscriber. But as changes are
made to data at either the Publisher or the Subscriber and as rows are added to the partition or removed from it, the merge
process must update the data set at the Subscriber by adding or removing rows as appropriate.

For example, if the CUSTOMER article is filtered using the logic State = 'WA' and one of the customers relocates to Oregon, the
State column is updated accordingly. The row that contains this customer no longer belongs in the State = 'WA' partition, so the
merge process must remove it from all Subscribers who should have only data in which the value for the State column is WA.
The ORDER data is based on the CUSTOMER table, and the ORDER_ITEM data is based on the ORDER table. Therefore,
removing the customer from the State='WA' partition implies that the merge process must also remove the associated
Subscriber rows in the ORDER and ORDER_ITEM tables that belong to this customer. Conversely, the customer row and its
related rows in the ORDER and ORDER_ITEM tables must be added to the data sets of Subscribers that receive a State = 'OR'
partition (for Oregon).

The merge replication process can require significant SQL Server processing resources to populate and maintain the partitioned
data sets, especially when more data sets are published. The nested logic becomes more complex, and the volume of data in the
published tables increases. For this reason, problems related to partition performance are usually associated with larger tables at
lower levels in the hierarchy.

The efficiency of merge replication partition processing is determined by the ability of SQL Server to use efficient query
optimization techniques when processing partition views. The type of filtering expressions you use and the presence of indexes
that support the filtering expressions in turn determine what query optimization techniques SQL Server can use.

Indexes and Merge Partition Performance

The presence of indexes can dramatically improve the processing time and reduce the processing resource requirements

(memory, locks, and so on) of queries that allow SQL Server to take advantage of indexes for the columns in the WHERE clause.

When merge replication processes a partitioned data set, it executes queries based on the partition's views as described in the
previous section. A quick return of the partition's data set is primarily based on the ability to use indexes for the queries. If the
database is designed so that indexes cannot be used efficiently or if indexes are not even present, partition processing
performance suffers and the replication process might fail.

Define partitions by using filtering conditions that result in efficient queries, and use indexes whenever possible. For more
information about effective index design, see the topic "Indexes, Designing" in SQL Server Books Online.

Note Although the presence of indexes can significantly improve query performance, using indexes increases
overhead costs because SQL Server has to maintain the indexes. Whenever a user adds or deletes a row or updates an
indexed column, SQL Server must update the index. Only use indexes when their benefit (for the merge process and
other queries as well) outweighs their cost. Use the Index Tuning Wizard to help determine which indexes are
appropriate.

Index maintenance

Indexes can become fragmented over time as rows are inserted, updated, and deleted. It might be necessary to defragment or
rebuild them occasionally so that they are stored in an efficient and compact manner. Defragmenting or rebuilding indexes is
important for user tables and merge replication system tables. For example, the MSmerge_contents system table is changed
whenever a row is inserted, updated, or deleted in any published table. When the table receives a lot of activity, its indexes can
become fragmented; the result is slower merge replication processing.

There are a number of ways to defragment or rebuild an index. To defragment an index, use DBCC INDEXDEFRAG. To rebuild an
index, drop and then re-create the index or use DBCC DBREINDEX(). If the index is associated with a PRIMARY KEY or UNIQUE
constraint, you might not be able to drop and re-create the index. In this case, you should use DBCC DBREINDEX(). See the topics
"Indexes, Defragmenting" and "Indexes, Rebuilding" in SQL Server Books Online for more information.

Problems Resulting from Poorly Indexed Partitions

Poorly designed databases and sub-optimal partition implementation can produce several different types of problems:

Long running merge processes
Time-outs
Locking, blocking, and deadlocks

The problems might occur during the first attempt at replicating data, or they might only manifest themselves after the amount of
data and number of users grows over time.

Long running merge processes

One of the most common problems encountered with merge processes is that the process takes a long time to execute. If
partitions are present, the problem might be the result of poorly optimized partition logic.

Time-outs

The Merge Agent (Replmerg.exe or the merge ActiveX® control) allows you to specify a -QueryTimeout value for the merge
process. If a query does not complete within the number of seconds specified by the -QueryTimeout value, the process fails with
the following error message: "A timeout occurred."

This is not necessarily a problem or a bug; the query for a perfectly optimized partition in the best possible circumstances can still
require more than the specified number of seconds to complete. Increasing the -QueryTimeout value for the Merge Agent might
be the only solution. However, a time-out is an indication that you should re-evaluate the partitioning logic and optimize it if
possible.

Locking, blocking, and deadlocks

When SQL Server accesses the data in a table, it locks the data for the duration of the process to ensure the transactional
consistency of the data during the process. During that time, other processes are blocked and must wait until locks are released
before they can complete. If queries are not optimized, more data is locked and the locks are held for a longer period of time. This
means that other processes are blocked for a longer period of time.

Blocking is an issue for merge replication primarily when other processes are accessing data at the same time as the merge

process. Poorly optimized partition queries might hold locks and block other processes, or other processes might hold locks that
block the merge process. Depending on the database settings (that is, SET LOCKTIMEOUT) the blocked process might result in an
error.

Deadlocks are a slightly different manifestation of a locking problem. Essentially, one process or connection is holding one
resource (a table, index, or row) and waiting for another resource. A second process or connection is holding the second resource
and is waiting for the first one. Neither process can complete until the other completes and releases its resource. SQL Server
recognizes this situation and causes one of the processes to fail with the error message: "A deadlock occurred and this process
has been chosen as the victim."

When the merge agent fails with this error, it is usually the result of a temporary resource problem. The merge process will
probably succeed on the next execution when the other processes have completed their operations and released the resources.
For this reason, the merge process fails with a retryable error; if it is automated with a SQL Server Agent, the job automatically
starts again.

If partitions are not optimal, merge replication requires excessive locks and holds them longer and the merge replication process
is more prone to deadlock failures. Again, this may be a natural side effect of the implementation of merge replication, but using
efficient partitions reduces the potential for deadlocks.

Diagnosing Merge Partitioning Performance Problems
If you are encountering long running merge processes or if the merge processes are failing with time-outs or locking and
blocking problems, evaluate your partitioning logic to ensure that you are using efficient techniques wherever possible. To
diagnose performance problems, you can:

Evaluate partitioning definitions.
Analyze agent time-out failures.
Analyze the steps in a slow merge process to look for sub-optimal query processing.

Evaluating Partition Definitions

The easiest way to investigate performance problems is to analyze partition definitions to ensure that:

The filtering expressions in the subset filter clauses and join filters use "index friendly" expressions.
The columns used in the expressions are indexed.
The @join_unique_key setting is used correctly.

You should perform this analysis when the database and publication are originally designed and created. Follow-up reviews are
also beneficial when the application is in production because several factors (volume of data, number of users, patterns of data
changes, and so on) can change over the life of an application in ways that are not foreseen during the design and
implementation phase of a project.

The best way to evaluate a partition definition is to review the partition views created by merge replication based on the subset
filter clause and join filter expressions. The partition views are named in the form publicationname_articlename_VIEW. To review
a view definition, use one of the following methods:

In SQL Server Enterprise Manager, right-click the view name and then select Properties.
In SQL Query Analyzer, run:

EXEC sp_helptext publicationname_articlename_VIEW

Another approach is to review the definitions of the articles and filters defined in the publication. You can do this in either of the
following ways:

In SQL Server Enterprise Manager, right-click the publication name and then select Properties. Then select the Filter Rows
tab.
In SQL Server Enterprise Manager, right-click the publication name and select Generate SQL Script… The Transact-SQL
script that is generated includes the sp_addmergearticle and sp_addmergefilter calls that contain the partition
expressions.

When you are looking at partition views, be sure all WHERE clause expressions make use of indexes.

To review the index definitions, do one of the following:

Use SQL Server Enterprise Manager.

Review Transact-SQL scripts (created either manually or from the scripting feature in SQL Server Enterprise Manager).
Query the system table information in the database.

Although reviewing view definitions and indexes might not clearly identify the portions of the merge process that are causing
performance problems, it does provide a quick way to identify obvious problems, which can lead to significant performance
improvements.

Analyzing an Agent Time-out Failure

After the database and application have been in production for some time, the amount of data and number of users can grow,
which causes increasingly slower merge processing. Eventually, one of the steps in the merge process can fail with a time-out
error. If the merge process fails with an error, check the error details in SQL Server Enterprise Manager:

1. Select Replication Monitor; and then select Agents, and then Merge Agents.
2. Right-click the Merge Agent with the error, and then select Error Details….

If the time-out is related to partitioned merge performance, the command being executed is probably either
sp_MSinitdynamicsubscriber or sp_MSsetupbelongs. From this point, the diagnostic steps are the same as those outlined in
the next section.

Analyzing the Steps in a Slow Merge Process

The most thorough approach to analyzing merge performance problems is to step through the merge process itself, identify the
steps that perform slowly, and analyze the SQL Server execution plans to identify whether indexes are being used.

When a merge process starts, it opens a minimum of three connections: to the Publisher, to the Distributor, and to the Subscriber.
The merge process can open more connections if it can benefit from opening multiple threads to the Publisher or to the
Subscriber for faster parallel processing.

After the connections are opened in the initialization process, changes are uploaded from the Subscriber to the Publisher. Then
changes are downloaded from the Publisher to the Subscriber. When the merge process is run for the first time with a new
Subscriber, there are no Subscriber changes to upload. So the process consists of applying the initial data set (the snapshot) to the
Subscriber and then downloading any changes from the Publisher that have occurred since the snapshot was created.

The analysis performed in this section begins with defining a SQL Profiler trace. It involves only the connection to the Publisher in
the download step because this is where partitioning queries are executed.

Defining a SQL Profiler trace

You can use the SQL Profiler utility to display the queries being sent by clients to an instance of SQL Server and provide
information about each query that is submitted. SQL Profiler can be used to gain information on many processes, but this section
only provides information specific to diagnosing a merge process. For more information about SQL Profiler, see SQL Server
Books Online.

SQL Profiler uses a trace definition, which is a collection of settings that describe what operations are included in the profile and
what information is recorded for each operation. In addition to the connection information for the server being analyzed, a trace
definition contains three types of settings: events, data columns, and filters.

A trace can return hundreds of thousands of rows of extraneous information; therefore, you must limit the rows of information
that are returned to those generated by the merge process. Include only the columns that are useful for your analysis. It is easiest
to limit the rows returned by SQL Profiler to only those relevant for the merge process if the merge process is the only process
that is currently running on the server. This is often not possible in a production environment, so you might need to use the
settings listed in the following sections to restrict the quantity and type of information returned in a trace.

SQL Profiler events

SQL Profiler events include the activities (such as connecting or disconnecting, executing queries, and so on) that are performed
by users or by SQL Server. You must explicitly identify the events that are included in the trace. For the purposes of analyzing a
merge replication process, the most important event is Stored Procedures, RPC: Completed because this is how merge
replication submits queries and performs operations in SQL Server. All other events should be removed from the trace unless you
have a specific need to include them.

SQL Profiler data columns

Data columns define the types of information that are recorded for each event. For analyzing the merge replication process, the
most important columns to include are:

TextData, which shows the query or procedure call being executed by the step in the merge process.
Duration, which shows how long it took SQL Server to execute the step.

Other useful columns are:

DatabaseId and Spid, which allow you to distinguish Publisher connections from Distributor connections when the
Publisher and Distributor are on the same server (which is usually the case in merge replication).
LoginName and HostName, which allow you to distinguish one Subscriber's merge process from another when multiple
merges are running at the same time.

SQL Profiler filters

SQL Profiler filters allow you to explicitly exclude or include certain events with more flexibility and granularity than using a trace
definition alone. This is only necessary in high-traffic servers where many other operations are being performed. See SQL Server
Books Online for more information about using filters in SQL Profiler.

Tracing a merge process

After you have defined a SQL Profiler trace, start it and then start the merge process. You can start the merge process manually
through SQL Server Enterprise Manager by using the Start option for the merge agent job. However, SQL Profiler also includes
extraneous information in the trace from the operations of SQL Server Enterprise Manager. We recommend that you either use a
trace filter that excludes the application MS SQL EM or start the process from the command line. To start the merge process from
the command line, copy the command line parameters from the Merge Agent job in SQL Server Enterprise Manager:

1. Select Replication Monitor, and then select Merge Agents.
2. Select the merge agent you want to analyze.
3. Right-click the agent, select Agent Properties, and then select Steps.
4. Select the Run Agent step and select Edit.
5. In the Command box, copy the text that is similar to the following:

-Publisher ServerName -PublisherDB PublisherDBName -Publication PublicationName -Subscriber [SubscriberName] -
SubscriberDB [SubscriberDBName] -Distributor [DistributorName] -DistributorSecurityMode 1

After you copy the parameters, execute Replmerg.exe from the command line with the parameters from the agent job. (If the
parameters include -Continuous, exclude this parameter for the purpose of this analysis.) Use an explicit path, if you receive the
following error message:

'replmerg.exe' is not recognized as an internal or external command,
 operable program or batch file

For a default SQL Server 2000 installation, this path is %systemdrive%\Program Files\Microsoft SQL
Server\80\COM\replmerg.exe.

After you have started the merge process, you can see commands added to the trace window as they are executed. Allow the
merge process to complete, and then stop the SQL Profiler trace. At this point, the SQL Profiler screen displays a grid with rows of
information about the activities performed.

Note If you are performing this analysis using a test system, it is important to simulate a realistic merge process. The
merge process should have changes to replicate, and the changes that are replicated should be representative of the
types of changes that are encountered in a production environment.

Identifying the operations being performed in a step

After the merge process and the SQL Profiler trace are complete, identify the trace steps with the longest durations. You can work
directly with the information in the SQL Profiler screen, but it might be easier to save the trace as a table, especially if a large
number of rows are returned in the trace. To save the trace as a table, click File, point to Save As, point to Trace Table, and then
select SQL Server Table. After the information is saved, you can query the saved table to sort the data by duration and then use a
WHERE clause to eliminate extraneous rows based on DatabaseId, Spid, LoginName, HostName, and so on.

After you have located any long running steps, you can retrieve the text of the executed command from the TextData column of
the trace data.

Common steps involved with partition processing

The two replication stored procedure calls used in partitioned data processing are sp_MSsetupbelongs and
sp_MSinitdynamicsubscriber. If either of these procedure calls is included in the longest running steps, it is likely that partition
processing is the cause of your performance problems. Determine what articles are being processed by the procedure calls, and
then determine the subset filter clause or join filter that is causing the step to take a long time to complete.

sp_MSsetupbelongs

The sp_MSsetupbelongs procedure determines which set of rows in each table should be replicated to the Subscriber. It does
this by querying the partition views for each filtered table. If the partition views contain poorly optimized queries,
sp_MSsetupbelongs takes longer than necessary to execute.

sp_MSsetupbelongs steps can be difficult to associate with a specific article (and partitioning expression) because the procedure
is called with a list of generations (essentially version numbers for a batch of changes) that contain changes from several different
articles. To further complicate the matter, the sp_MSsetupbelongs procedure uses several temporary tables that are not present
after the merge process completes.

For this reason, you might need to experiment with different trace events, such as:

TSQL: Stmt Starting and TSQL: Stmt Completed
Scan:Started and Scan:Completed
Performance:ShowPlanStatistics, Performance:ShowPlanAll, and Performance:ShowPlanText

Use caution when including these events in a trace, because even a relatively simple merge process can generate millions of rows
of trace information for these events. You might be able to filter the output, but even if you are able to do so, it can still be difficult
to use these events successfully.

Modifying sp_MSsetupbelongs to record diagnostic information

Because it is difficult to determine what articles are causing performance problems during sp_Mssetupbelongs processing, it is
necessary to manually modify sp_Mssetupbelongs by adding a step that records diagnostic information about the amount of
time spent processing each article.

These suggestions are intended for diagnostic purposes and should only be used for test systems that simulate production
processing. Instructions for reversing these changes are included at the top of the next section. This code example is applicable to
SQL Server 2000, but the use of the view_sel_proc in SQL Server 7 is generally the same.

Before modifying sp_MSsetupbelongs, create a table in the publication database that will be loaded with data during the
execution of sp_Mssetupbelongs.

CREATE TABLE article_diagnostics
(
view_sel_proc sysname,
start_stamp datetime default getdate()
)

sp_MSsetupbelongs has two main stages:

1. It creates and populates temporary tables with information about the changes that need to be replicated.
2. It obtains the changes on an article-by-article basis by querying the temporary tables that are joined with the published

tables.

After sp_MSsetupbelongs is modified, it populates the article_diagnostics table that you created with the names of the articles
being processed in the second step.

To modify sp_MSsetupbelongs, you must first locate the Replmerg.sql file in the INSTALL directory of your SQL Server
installation, which is by default located at:

%systemdrive%\Program Files\Microsoft SQL Server\MSSQL\Install for a default instance, or
%systemdrive%\Program Files\Microsoft SQL Server\MSSQL$InstanceName\Install for a named instance

Copy the file with a new name, such as Newreplmerg.sql, and then open it with an editor. Find the section that loops through the
articles; this section starts:

 while (@artnick is not null)
 begin
 select @artbaseobjid = objid, @procname = view_sel_proc,
 @before_view_objid = before_view_objid,
 @before_table_objid = before_image_objid

 from sysmergearticles
 where pubid = @pubid
 and nickname = @artnick

After the SELECT statement, paste the command:

INSERT INTO article_diagnostics (view_sel_proc)
VALUES (@procname)

The view_sel_proc procedure is stored in the article_diagnostics table and can be used later to find the partition view name.
The start_stamp column is loaded with the current time when each row is added to the table, which allows you to determine the
amount of time from one view_sel_proc execution to the next.

After you have inserted this command, save the file (with its new name) and install the modified procedure by executing the script
at the command line with the osql utility:

OSQL -Usa -P -S -n -inewreplmerge.sql

(You might need to adjust this command line as appropriate for the security settings of your SQL Server installation.)

Determining the partitions

After you have created the table and modified the sp_MSsetupbelongs, re-execute the merge process as usual (it is not
necessary to run SQL Profiler), and when it is done, review the article_diagnostics table to see the view_sel_proc names and
the amount of time spent processing each partition.

When you are performing the analysis, you must simulate actual data flow by performing inserts, updates, and deletes between
each run of the Merge Agent. If there are no partition changes to process, the sp_MSsetupbelongs is still called, but it does not
step through the view select procedures for the articles that depend on the partitions.

Note After your analysis is complete, you must reinstall the original version of the procedure by reinstalling the
original Replmerg.sql file:

 OSQL -Usa -P -S -n -ireplmerg.sql

sp_MSinitdynamicsubscriber

An initial merge is performed when the merge process is run for the first time with a new Subscriber. The function of an initial
merge is to populate the Subscriber with the complete data set for that Subscriber. Subscribers to non-dynamic publications are
initialized using a bulk copy program (bcp) operation that copies in data from files created during snapshot processing. This
technique is very fast and is rarely associated with performance problems; it has few options for optimization.

On the other hand, for Subscribers subscribing to dynamically filtered publications, the snapshot process cannot determine the
appropriate set of data for a Subscriber (unless you use a dynamic snapshot). Therefore, the merge process must populate the
data set by querying the published tables using sp_MSinitdynamicsubscriber. This technique is much less efficient than
initializing a Subscriber with bcp files and is often the cause of partition performance problems.

If your trace information indicates that an sp_MSinitdynamicSubscriber call is taking a relatively long time, you can see the
article nickname as the second parameter of the executed procedure. This article nickname can be used to obtain the partition
view name associated with the long step:

SELECT view_sel_proc
FROM sysmergearticles
WHERE nickname = 123456

Obtaining the partition view definition

The view_sel_proc procedure associated with the long running query is used to query the partition view and obtain the
partitioned data set. Execute sp_helptext to see the view_sel_proc definition:

EXEC sp_helptext view_sel_proc

The view_sel_proc definition begins with several initialization steps, followed by two queries that refer to the partition view, as
demonstrated in the following example:

select @tablenick, v.[rowguid], coalesce (c.generation,1),
coalesce (c.lineage, @lin), coalesce (c.colv1, @cv), v.* from
 [dbo].[CustPub_Customer_VIEW] v left outer join
 dbo.MSmerge_contents c on v.[rowguid] = c.rowguid and

 c.tablenick = @tablenick where v.[rowguid] > @guidlast
 order by v.[rowguid]
insert into #belong (tablenick, rowguid, flag, skipexpand, partchangegen,
 joinchangegen)
select ct.tablenick, ct.rowguid, 0, 0, ct.partchangegen, ct.joinchangegen
 from #contents_subset ct, [dbo].[CustPub_Customer_VIEW] v where
 ct.tablenick = @tablenick and ct.rowguid = v.[rowguid]

The FROM clause of these two queries contains the partition view name; in this example, the view name is
CustPub_Customer_view.

Gathering partition view query plans

When you know which partition view definition is causing performance problems, your goal is twofold:

To understand the view and how it represents the internal implementation of your filtering logic.
To determine how SQL Server is processing this view and what aspects of the view are causing it to run slowly.

To extract the query from the view definition, use sp_helptext, as follows:

EXEC sp_helptext CustPub_Customer_view

After you have the text of the partition view, review the Transact-SQL definition of the view. You might be able to identify
problems with the view that require changing the filtering expressions in the publication.

To gain information about how SQL Server processes this view, you must execute the query from the view definition with a
special setting so that SQL Server shows the query plan. The query plan shows you how SQL Server breaks the query into
individual steps, the percent of time spent on each step, and what technique it uses to execute each step.

To see the query plan, copy the SELECT statement from the view and paste it into the query window of SQL Query Analyzer. In
SQL Query Analyzer, select Query, then select Show Execution Plan, and then execute the query. The query results window now
includes an Execution Plan tab that shows a graphical representation of the query plan.

Executing the view's query should give you a reasonable simulation of the queries executed during merge processing. Executing
the view's query does not, however, include the join with the MSmerge_contents or #contents tables that you can see in the
previous code sample. To see a more pure simulation of the query, you can add more diagnostics steps in the procedure to save a
copy of MSmerge_contents and #contents data to another table, which can then be used later when you derive the query plan.

If a partition contains dynamic expressions, you must ensure that the query being analyzed uses the same values for the dynamic
expressions that the merge process uses. Otherwise, the partitioned data set you are analyzing might be significantly different
from the merge process. For example, consider the following filtering expression:

SALES_REPL = SUSER_SNAME()

The merge process might run under the 'domain\bobjones' account, and you might be performing your analysis logged in as the
system administrator. When you obtain query plans, either log in with the same account that is used during the merge process or
manually extract the SELECT statement from the view and replace the SUSER_SNAME() value with the hard-coded literal value
'domain\bobjones'.

Analyzing query plans

Although SQL Server uses a number of complex techniques to process the steps of a query, it basically processes the rows in a
query in one of two ways: it performs a scan by stepping through each row in a table or clustered index, or it performs an index
seek by going to a specific location in an index. Scans require a lot more overhead and processing time than index seeks, and
cause more performance problems.

SQL Server only performs a scan when it cannot use an index for one of the following reasons: an index is not present; the WHERE
clause cannot use the indexes that are present; or the data in the indexed column is not sufficiently unique.

When the longest step of a partition view query plan shows a scan, it is not using an index. The details of the plan step usually
show the WHERE clause expression SQL Server is using when scanning the rows. This expression is a prime candidate for query
optimization.

Using the partition examples listed earlier, this expression could be:

WHERE State = 'WA'

After you have found the query and expression that are creating a sub-optimal plan, you have several options for improving the

query plan, as described in the next section.

Improving Performance by Improving Query Plans and Tuning Agent Properties
Before we address specific approaches to improving partition performance, it is worth re-iterating a point made in the
introduction to this paper: replication performance depends on SQL Server performance, which in turn depends on effective
database design.

Database design involves the table definitions and indexes present in the database, and how efficiently they support the needs of
the application's business rules and replication processing. One of the most common and serious causes of performance
problems with merge replication is poor database design: the design is either fundamentally flawed, or it does not successfully
accommodate the needs of replication processing.

Even a database that is designed and tuned well without replication being installed can encounter performance problems if you
then later install and use replication. It is possible to publish a small, simple database with little consideration of performance
issues and have it run successfully indefinitely. But when you publish a large, complex database that will grow in size and scope,
replication performance needs can often determine the success or failure of the application. Take into account replication needs in
the very early stages of designing a new application. When you are adding replication to an existing database, you might need to
change the database itself to accommodate the needs of replication.

Adding Indexes to Support Filtering Expressions

The simplest solution for improving partition performance is to add an index if one is not present. In the earlier example, the
WHERE State = 'WA' expression used a table scan. If this column has no index, consider adding one. If your partition expression
contains several conditions in the WHERE clause, you might need to add a compound index that covers the query. Consider an
example where the expression is:

WHERE State = 'WA' AND
 City = 'Redmond' AND
 Postal_Code = 98056

Adding an index on the three columns covers the query better and is a more useful index for the query. For example:

CREATE INDEX cust_loc_index ON CUSTOMER (Postal_Code, City, State)

It is usually better to have the most selective columns listed first in compound indexes. The SQL Server Index Tuning Wizard
might be able to provide specific recommendations for index changes that will improve the performance of the query.

Changing Filtering Expressions

If the filtering expression contains complex expressions with functions, multiple operators, and so on, SQL Server might not be
able to use an index efficiently for the query. You should evaluate the expression to determine whether it can be simplified or
changed to work more effectively with an index.

Using Query Hints

Most discussions of advanced query optimization include references to query hints, which can be used to override standard query
optimization and force SQL Server to use the methods you specify. SQL Server usually selects the best execution plan for a query
and can adjust the execution plan to accommodate changes in data that may affect the best plan for a query. For these reasons,
you should generally avoid using hints in an attempt to improve a query. However, if other optimization techniques do not
address your performance problems, query hints might be beneficial. But they should be used with the utmost caution and be
tested extensively.

To use a query hint to improve the partition performance, alter the partition view definition to include the hint.

Setting @keep_partition_changes

@keep_partition_changes is a true/false property associated with a publication; it can improve the efficiency of partitioned data
set performance if it is set to TRUE. When a table is published with partitioned data sets, this setting determines whether changes
to one Subscriber's data set will impose partition maintenance overhead for the other Subscribers' partitions.

For example, if there are two Subscribers, one for State = 'WA' and another for State = 'OR' and a row in the data table with State
= 'WA' is updated to State = 'CA', this row must be removed from the State = 'WA' partition.

If @keep_partition_changes is FALSE (default), the merge replication process recognizes that the partitioned data sets have
changed, but not which partition has changed. Therefore, the sp_MSsetupbelongs procedure, which populates the Subscribers'
data sets at the Publisher, must run for each Subscriber to determine whether the Subscriber has rows that must be removed,

even if the Subscriber's partition never contained the moved row in the first place.

If @keep_partition_changes is TRUE, merge replication stores extra data in its system tables to track which Subscribers will be
affected by partition changes. This means that only the State = 'WA' Subscriber will be involved in the partition cleanup operation.

The tradeoff for this option is that when it is TRUE, the Publisher must store and maintain a tracking table. If there are a large
number of Subscribers with discrete partitions and a small amount of shared data, this cost is probably justified. If there are a
smaller number of Subscribers or if the Subscribers share more partitioned data, it is more likely that the partitioned data set of
each Subscriber will need to be updated based on changes made by the other Subscribers. The cost of the extra system table data
might not be justified.

Using Dynamic Snapshots

When a publication does not use dynamic partitioning, the snapshot process creates a set of data files that the merge process can
load quickly into each Subscriber during the first merge run.

However, if dynamic partitions are used in the publication, the snapshot process cannot create a single set of data files that are
appropriate for Subscribers with different partitioned data sets. In this case, the merge process must query the Publisher database
by using the dynamic logic for each Subscriber and then load the data into the Subscriber. This process is much less efficient than
copying in data files, and it can degrade performance when you have large data sets and complex partitioning expressions.

If dynamic snapshots are used, you can use new options in SQL Server 2000 during the snapshot process to create different sets
of Subscriber-specific data files. Then the merge process can load these files quickly into the Subscriber, without having to query
the Publisher for the data. For more information, see the topic "Dynamic Snapshots" in SQL Server Books Online.

Changing the Database and Filtering Design

If the previous optimization techniques have not yielded the required performance improvement, it might be necessary to
redesign the database to better fit the partitioning needs of replication.

Redesigning the database is the most extreme solution for improving merge replication performance and is usually much easier if
done early in the project when there are fewer dependencies on the current design. If serious performance problems are
discovered only after the application is in production, there could be significant limitations with respect to how the database can
be structurally changed. Therefore, investigate design changes that have minimal impact on or are even completely transparent to
the other components of the application. Two common approaches are the use of mapping tables and the denormalization of the
database.

Mapping tables

Sometimes the structure of your base tables does not lend itself to efficient partitioning. For example, if your CUSTOMER table
needs to be partitioned for each sales representative, you might be inclined to add the SalesRep column to the table and use this
column as a dynamic filter. But you might need additional logic that cannot be implemented and indexed efficiently, such as
partitioning that requires OR operator logic, complex expressions, or complex cross-table logic. Then you might not be able to use
filtering expressions that are based on the existing tables and take advantage of indexes. However, you can add a mapping table
that associates the customers with their sales representatives. You can use the dynamic subset filter clause expression on the
mapping table and use a join filter to associate the CUSTOMER table with the mapping table, as shown below:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY.........)
CREATE TABLE CUSTOMER_REP_MAPPINGS
(MappingID PRIMARY KEY,
SalesRep VARCHAR(40),
CustID INT)

With these table definitions, the partitioning expression for the CUSTOMER_REP_MAPPINGS article is:

SalesRep= SUSER_SNAME()

A join filter is defined between the two articles by using the expression:

CUSTOMER.CustID = CUSTOMER_REP_MAPPINGS.CustID

For an example of a mapping table used in a more complex replication topology, see the section Reducing the number of merges
at a single publisher by implementing a hierarchy of publishers later in this article.

Denormalization

When you use a hierarchical partitioning technique similar to the CUSTOMER, ORDER, and ORDER_ITEM tables used as
examples earlier in this article, the table at the top of the relationship (CUSTOMER) usually has the subset filter clause. The other
tables that are related to the CUSTOMER table through constraints have join filters that identify the relationships. This approach
is known as following the references.

When this hierarchy grows larger, the subset filter clause logic grows farther from the lower level tables, and the partition views
can become more complex, as shown in this example:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY,
 SalesRep VARCHAR(40)...)
CREATE TABLE ORDER
(OrderID INT PRIMARY KEY,
 CustID INT FOREIGN KEY
 REFERENCES CUSTOMER(CustID) ...)
CREATE TABLE ORDER_ITEM
(OrderItemID INT PRIMARY KEY,
 OrderID INT FOREIGN KEY
 REFERENCES(ORDER.OrderID)....)

The CUSTOMER article usually contains this subset filter clause:

CUSTOMER.SalesRep = SUSER_SNAME()

There is also a join filter between the CUSTOMER and ORDER table and a join filter between the ORDER and ORDER_ITEM table.

It might be possible to denormalize the table design by carrying the columns used in the subset filter clause in some of the lower
level tables, as shown here:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY,
 SalesRep VARCHAR(40)...)
CREATE TABLE ORDER
(OrderID INT PRIMARY KEY,
 CustID INT,
 SalesRep VARCHAR(40),
 FOREIGN KEY (CustID, SalesRep)
 REFERENCES
 CUSTOMER(CustID, SalesRep)...)
CREATE TABLE ORDER_ITEM
(OrderItemID INT PRIMARY KEY,
 OrderID INT,
 SALES_REP VARCHAR(40),
 FOREIGN KEY (OrderID, SalesRep)
 REFERENCES
 ORDER(OrderID, SalesRep)...)

With this type of table structure, it is not necessary to use join filters between the table articles. Each article is defined with the
subset filter clause of:

SalesRep = SUSER_SNAME()

This design is not normalized, according to database design theory, because the SalesRep columns are redundant and should be
included only in the top-level table. But the costs of denormalizing the tables somewhat might be outweighed by the performance
benefits for replication partitioning.

This technique simplifies the partitioning views, but it is not always more efficient than following the references. The efficiency of
the technique depends on several application-specific and database-specific factors and, like all optimization techniques, should
be thoroughly tested.

Additional Issues and Considerations for Optimizing Merge Replication Performance
Improving the performance of any database application involves identifying processing bottlenecks. The bulk of this paper
focuses on the bottlenecks associated with partition evaluation at the Publisher. But the overall performance of merge replication
is affected by several factors, any of which can be a bottleneck. This section lists a number of these factors and provides
suggestions about how you can address them or investigate them further.

Processing resources available to the merge processes

As the processing requirements for a server increase due to more data, an increase in the number of simultaneous users, and so

on, the Publisher or Subscriber hardware might not be adequate for the job. Evaluating hardware performance usually includes
running the Microsoft® Windows® System Monitor tool, which has performance counters for processor, memory, disks, and so
on. You may be able to identify a specific component of your server hardware that can be upgraded, or you might need to
upgrade the entire server computer to a more current model or faster class of computer.

The throughput of the Publisher/Subscriber connection

Depending on the volume of data and the complexity of the database, merge processing can send a lot of data over the network.
The throughput of the connections in your merge replication topology can be a factor in the overall performance of merge
replication.

The Publisher and Subscribers should be connected through the highest speed connection possible: If you are using slow RAS
connections, consider taking advantage of DSL or other high-bandwidth technologies.

Performance problems with slow connections are usually related to the initialization of a new Subscriber, especially when a large
data set is sent to the Subscriber. If you are seeing performance problems in the initial merge, you can pursue alternative
methods for delivering the initial data set to a new Subscriber. For more information, see the topic "Applying the Initial Snapshot"
in SQL Server Books Online.

Using the @keep_partition_changes=TRUE setting for a publication can reduce unnecessary partition re-evaluation, which
significantly reduces the amount of data sent over the network during merge processing. Configuring your subscriptions as
global or anonymous instead of local can also be beneficial because less replication metadata is sent over the network.

The type of subscriptions

Merge Agents for push subscriptions are executed at the Publisher, which is appropriate for publications with a small number of
Subscribers. If you have a large number of push Subscribers running simultaneously, the processing resources (memory, CPU
cycles) for the agents are imposed on the Publisher hardware and then those resources are not available for SQL Server or other
applications. If you use pull subscriptions or anonymous subscriptions, the processing resources for the Merge Agents are
imposed on the Subscriber computers rather than on the Publisher hardware.

The number of simultaneous merge replication processes

Performance can also degrade when multiple Subscribers are merging changes simultaneously. Faster hardware and more
efficient replication configuration can address this issue to a certain degree. But even in a perfectly designed and tuned
application, every Publisher server has an upper limit with respect to the number of simultaneous Subscriber merge processes it
can handle effectively.

One solution to this problem is to coordinate the timing of the Subscribers' merge processes so that they are staggered. If all your
Subscribers currently connect at the beginning or end of their work day to merge changes, you can encourage or require some
users to perform their merge processes at off-peak times during the day.

If you have no control over when subscribers perform their merge processes, you can define an upper limit to the number of
subscribers that are allowed to merge at the same time. For more information, refer to the @max_concurrent_merge
publication property of sp_addmergepublication in SQL Server Books Online.

Reducing the number of merges at a single publisher by implementing a hierarchy of publishers

Another way to reduce the demands on a Publisher server is to spread the processing load across more servers. A common
technique is to use several servers in a republishing hierarchy. For example, if you have a single server that acts as the Publisher
for all of the sales representatives in the country, you could add two more Publisher servers:

The Central Publisher publishes data to East and West Subscribers.
The East Subscriber republishes data to the sales representatives on the East coast.
The West Subscriber republishes data to the sales representatives on the West coast.

The mapping tables technique described earlier can be used to define how data is partitioned for each Subscriber. In that example,
the mapping table created an association between customers and sales representatives. To use the same technique for
partitioning in a hierarchy, you can use a column, such as ReplHostName, that identifies the HOST_NAME() values for each
server that should have the customer in its partition, as follows:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY.........)

CREATE TABLE CUSTOMER_PARTITION_MAPPINGS
(MappingID PRIMARY KEY,

 ReplHostName VARCHAR(40),
 CustID int)

Table 1. CUSTOMER_PARTITION_MAPPINGS data

MappingID ReplHostName CustID
1 East 1
2 BobJones 1
3 East 2
4 JaneGray 2
5 West 3
6 JimBrown 3

In this example, each customer needs two rows: one row to identify the regional republisher partition and a second row to identify
the SalesRep partition. The BobJones and JaneGray Subscribers subscribe to the East republisher, and the JimBrown Subscriber
subscribes to the West republisher. The Merge Agent for each Subscriber must use the –Hostname value appropriate for their
subscriptions: East, West, BobJones, JaneGray, or JimBrown.

At first glance, one might think that the dynamic filtering expression should be in the subset filter clause for the
CUSTOMER_PARTITION_MAPPINGS article:

CUSTOMER_PARTITION_MAPPINGS.ReplHostName = HOST_NAME()

And a join filter would represent the join between the two tables:

CUSTOMER.CustId = CUSTOMER_PARTITION_MAPPINGS.CustId

However, if this logic is used, the East republisher would only get the CUSTOMER_PARTITION_MAPPINGS table rows (and the
related customers) where MappingID is 1 or 2, that is, the rows that match the ReplHostName = 'East'. The BobJones
Subscriber would not get any data because there are no CUSTOMER_PARTITION_MAPPINGS rows in the East republisher for
BobJones.

The implication for this publication is that the entire, unfiltered CUSTOMER_PARTITION_MAPPINGS table must be replicated to
all of the Subscribers. This means that the dynamic filtering logic must be in the join filter expression rather than in the subset
filter clause. The CUSTOMER_PARTITION_MAPPINGS article would not have a subset filter clause, and the subset filter clause
for the CUSTOMER article would be:

CUSTOMER.CustId = CUSTOMER_PARTITION_MAPPINGS.CustId and
CUSTOMER_PARTITION_MAPPINGS.ReplHostName = HOST_NAME()

Using this filtering technique has two benefits:

It does not require different filtering expressions for each publication; the same filtering expressions can be used for all
Publishers.
The partitions are defined by data in the mapping table, which means the approach is flexible. The republishing hierarchy
can be made either wider or deeper to accommodate future growth needs.

For example, if the number of Subscribers to the East republisher grows beyond the capacity of the East server, you can make the
hierarchy wider by adding a SouthEast republisher. This requires:

Adding a SouthEast Subscriber to the Central Publisher.
Creating a publication at SouthEast to make it a republisher.
Updating the ReplHostName to SouthEast for the southeast customers in the CUSTOMER_PARTITION_MAPPINGS table.
Removing the southeast Subscribers from the East publication and adding them to the SouthEast publication.

To make the hierarchy deeper, another city layer can be added. This requires:

Adding NewYork and Boston Subscribers to the East republisher and creating the republishing publications for New York
and Boston.
Adding rows to the CUSTOMER_PARTITION_MAPPINGS table for the NewYork and Boston customers.
Removing the BobJones and JaneGray subscribers from the East republisher.
Adding BobJones to the NewYork subscriber and adding JaneGray to the Boston republishers.

In either redesign of the merge topology, the next merge process for each Subscriber automatically updates the data sets.

The number of retries during merge processing

When the Merge Agent is processing changes and it encounters a problem, it might attempt to apply the change again at the end
of the process. The rows that are retried are processed much less efficiently than rows that are processed normally.

Problems in applying changes are most often caused when there are primary key / foreign key references defined in the tables.
These problems include the following:

The merge process tries to insert a foreign key row before the related primary key row is present.
The partitioning logic is different from the referential integrity logic. The partitioning logic might produce foreign key rows
whose primary key row is not included in the partitioned data set; foreign key insert failures are always retried again at the
end of the merge process.

To detect merge retries, define and run a SQL Profiler trace for the merge process that is filtered to include the sp_MSenumtries
and sp_MSgetonerow procedure calls.

Tables containing text or image columns

If your published table includes text or image columns, these columns can impose extra processing requirements on the merge
replication process, even if the text or image column is not changed. If the table is regularly updated, consider optimizing your
design by moving the text and image columns to another table. For example, if you have a table such as:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY,
.
.
CustComments TEXT)

Overnormalizing the table could be implemented as:

CREATE TABLE CUSTOMER
(CustID INT PRIMARY KEY,
.
.
)
CREATE TABLE CUSTCOMMENTS
(CommentID INT PRIMARY KEY,
CustID INT FOREIGN KEY
 REFERENCES CUSTOMER(CustID),
CustComment TEXT

The size of the merge replication system tables

Merge replication tracks data changes in a single system table, MSmerge_contents. Because this table contains the data changes
for all the tables in the database that are published with merge replication publications, the table can grow very large, which will
have a significant impact on the performance of merge replication.

To control the size of the system tables, regularly remove outdated or unnecessary data from the MSmerge_contents table. If
you are using SQL Server 2000 Service Pack 1 or later, the retention-based metadata cleanup process automatically removes the
metadata for changes that are so old that they are beyond the @retention property for the publication. Reducing the
@retention property to the lowest acceptable value for the needs of the application can dramatically improve the performance of
merge applications when you have many users or large volumes of changes.

In addition to controlling the size of the system tables, consider whether it is necessary to replicate all of the tables with merge
replication. For example, reference or lookup data is usually relatively static and often better suited to snapshot replication, which
does not involve the merge replication system tables. You could also use a custom technique to update the tables independently
of replication.

If the previous techniques are insufficient to control the size of the system tables, you can separate published data and put it into
publications in different databases. Putting the data into different publications in the same database does not improve
performance because one MSmerge_contents table is used for all publications within a database. This technique assumes that
the data can be logically separated. (Remember that all data related through join filters must be in the same publication.)

The overall volume of data in published tables

In general, tables with large numbers of rows require more processing resources than smaller tables. One of the goals of
partitioning, as discussed earlier in this document, is to reduce the size of the tables in the Subscriber databases. But you might

also be able to reduce the size of the published tables by moving outdated data to archive tables or databases.

The volume of changes replicated in each merge process

The volume of changes that are made in each merge process must be weighed against the frequency of merge processing. A
Subscriber that merges less often has more changes to process than a Subscriber that merges more frequently. You can control
to some degree the volume of changes replicated in each merge by having the Subscribers merge more frequently. As mentioned
earlier, you can also reduce the @retention property for the publication, which prevents Subscribers from getting too far behind.

Merge agent properties

These properties all have performance implications with respect to the merge process and can be adjusted either through the
profile for the Merge Agent or by manually changing the properties of the Merge Agent job steps in SQL Server Enterprise
Manager.

-Continuous, -PollingInterval

The -Continuous property forces the merge process to loop indefinitely through the upload and download stages of processing
without disconnecting and reconnecting with each loop. Although it does not affect partition processing itself, it does allow the
merge process to remain more up-to-date when there are ongoing changes to replicate. Remaining current can help avoid
replicating a huge number of changes in infrequent merges.

You can also adjust the frequency of merge processing by adjusting the setting for the -PollingInterval of the Merge Agent job
schedule. But when the application needs near real-time latency and the Publisher receives regular ongoing changes from a
Subscriber, using –Continuous is usually more appropriate. It avoids the connect/initialize/disconnect overhead of having the
agent job scheduled to run every few minutes.

-Validate, -ValidateInterval

The -Validate property specifies whether the data at the Publisher and the Subscriber is compared after all changes have been
merged to ensure that they are in sync. This extra process can take a long time to complete and can require significant query
processing resources. Use the -ValidateInterval property to control how often validation is performed during the merge
process.

-HistoryVerboseLevel, -OutputVerboseLevel

These properties control the amount of information that is recorded by the merge process. Reducing the values can improve
performance when a large number of Subscribers are exchanging relatively small sets of data changes.

-MaxBcpThreads

This property controls how many threads are used during bcp operations. This setting only affects the initialization of a new
Subscriber.

-SrcThreads, -DestThreads

These properties control how many threads can be used to process the articles in a publication. Increasing these values on servers
that have a large amount of memory and processing resources allows the merge process to perform more activities in parallel.

-MaxDownloadChanges, -MaxUploadChanges, and Batch-size Parameters

These settings all control how many changes the merge process handles at one time:

-MaxDownloadChanges and -MaxUploadChanges
-UploadGenerationsPerBatch and -DownloadGenerationsPerBatch
-UploadReadChangesPerBatch and -DownloadReadChangesPerBatch
-UploadWriteChangesPerBatch and -DownloadWriteChangesPerBatch

When there are a large number of changes to process and there is a high-speed connection between the Publisher and
Subscriber, increasing these values can result in higher throughput because the merge process then has less per-batch overhead.

When there is a low-speed or unreliable connection between the Publisher and Subscriber, decreasing these values can help
ensure that smaller batches are completed entirely, avoiding the costly retry operations associated with incomplete batches.

-ExchangeType

The default for this property (–ExchangeType 3) forces the merge process to upload Subscriber changes and then download
Publisher changes. You can use this property to specify upload only (–ExchangeType 1) or download only (–ExchangeType 2).

Specifying 1 or 2 might be useful when there are a large number of changes from several Subscribers and the changes from each
Subscriber affect the data sets of other Subscribers. In this situation, each Subscriber uploads its changes (using –ExchangeType
1) but does not download any changes. When all Subscribers have uploaded their changes, they all can then download the
combined set of changes using –ExchangeType 2. This approach reduces the overhead incurred when performing several
bidirectional merges to add all Subscribers changes.

Conclusion
Merge replication is an ideal solution for many distributed applications, particularly when data is updated at multiple sites and
disconnected Subscribers are used. However, for merge replication to be effective:

It must be implemented in a manner consistent with efficient partition query processing.
The database around which applications are built must be carefully designed and tuned with replication in mind.

Because merge replication uses standard SQL Server queries, procedures, tables, and views, you can observe how merge
replication processes, particularly partitioning processes, use these objects and then tune and adjust the applications accordingly.

Partitioning data is fundamental to many merge replication applications; it can be used to enforce business rules and to improve
performance. However, if it is not implemented correctly, it can also become a major source of performance problems. Following
the processes and suggestions outlined in this paper can help you achieve scalable, high-performance merge replication
applications.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

DTS Programming Techniques Used in Microsoft SQL Server
Accelerator for Business Intelligence

Carl Rabeler and Dave Wickert

February 2003

Applies to:
 Microsoft® SQL Server™ Accelerator for Business Intelligence

Summary: Learn about the Data Transformation Services (DTS) programming techniques used in SQL Server Accelerator for
Business Intelligence (BI Accelerator). Using these techniques, the Microsoft BI Practices team created an extensible data
movement system for analytical applications that developers can extend and database administrators (DBAs) can manage. (20
printed pages)

Contents

Introduction
Data Movement System Design Goals
Data Movement System Design Challenges
DTS Tips and Tricks
DTS Programming Guidelines
Conclusion
Finding More Information

Introduction
Microsoft® SQL Server™ Accelerator for Business Intelligence (BI Accelerator) is designed to help developers rapidly create
analytical application prototypes. With BI Accelerator, developers can provide schema information and then generate iterative
prototypes of an analytical application programmatically. Each prototype includes a Staging database, a Subject Matter database,
an Analysis database containing multidimensional cubes, application files and a data movement system. The data movement
system moves data from external sources into the Staging database, from the Staging database to the Subject Matter database,
and from the Subject Matter database to the Analysis database. As data is moved through these structures, Data Transformation
Services (DTS) tasks perform data transformations, data lookups, error checking and cube processing.

This paper uses the BI Accelerator data movement system to demonstrate the power and flexibility of DTS. The topics in this paper
address the design goals that dictated the use of DTS, the particular problems that had to be solved to meet the BI Accelerator
design goals, tips and tricks that the Microsoft BI Practices team used in designing the DTS packages, and the DTS programming
guidelines that the BI Practices team followed in designing the data movement system. Understanding how the BI Accelerator
data movement system was designed will improve your ability to design and build your own flexible DTS data movement system.

This paper is intended for developers who are familiar with SQL Server, DTS and SQL Server 2000 Analysis Services. An
understanding of BI Accelerator is not required to understand the DTS programming concepts presented in this paper. However,
readers who want more information about how the programming techniques discussed in this paper are implemented can
download BI Accelerator.

Data Movement System Design Goals
Three major design goals dictated the use of DTS for the BI Accelerator data movement system:

All components of the analytical application must be generated programmatically, including the data
movement system. This allows developers to quickly generate and test multiple iterations of the prototype.

The packages in the BI Accelerator data movement system can be dynamically generated from code using schema
information that developers provide.

Developers must be able to understand and extend the data movement system easily. Because each environment
in which the analytical application runs is unique, the requirements for each environment cannot be completely anticipated.
After completing the final iteration of the analytical application, developers must be able to configure, extend, and customize
the data movement system before it is deployed.

Developers can use DTS Designer to view and understand the BI Accelerator data movement system. Developers can then

http://go.microsoft.com/fwlink?LinkID=7027

extend and customize the data movement system by modifying the packages that BI Accelerator generates or by adding
new packages. Generated packages can generally be modified directly in DTS Designer. New packages can be generated
directly in DTS Designer or in Microsoft Visual Basic®.

Database administrators (DBAs) must be able to understand, configure, and manage the data movement system
easily using standard SQL Server tools. While the BI application is generated programmatically and can be extended by
developers, DBAs must be able to manage the day-to-day operations of the analytical application using tools with which
they are familiar.

DBA can also use DTS Designer to view and understand the BI Accelerator data movement system. DBAs can configure and
manage the data movement system using global variable configurations, batch files, a Config.ini file, error tables and log
files, all of which can be managed with standard tools.

Data Movement System Design Challenges
To create a data movement system that met the design goals described in the previous section, the BI Practices team had to
overcome several limitations that are inherent in DTS:

Connection information and application meta data is stored in each package. Server names and other connection
information to source and destination data stores, by default, are embedded in the connection objects in each package. This
means that each package must be edited individually each time this information changes.

The analytical application meta data used in the data movement system poses a similar problem. By default, the meta data is
either stored directly in DTS tasks or in global variables that are used by DTS tasks, which again, means that each package
must be edited individually.

Global variable values are embedded in each package. Global variable values, by default, are embedded in each
package, which generally means that each package must be edited individually.
Conditional logic is not directly supported. The DTS Data Driven Query task performs flexible Transact-SQL operations
on rows of data flowing between tables. The parser in DTS Designer, however, does not support the use of conditional logic
and parameterized, multi-table joins to generate the source rowset.
Information does not typically flow from child packages to parent packages. DTS is designed to pass information
from a parent package to one or more child packages. But DTS is not designed to pass information from a child package
back to the parent package or to another child package.
Branching is not directly supported. Branching enables a single package to include multiple paths that can be traversed
based on the value of a global variable. Without branching, a separate package is required for each branch.
Looping is not directly supported. Looping enables a package to loop through a number of package steps using
conditional logic. Without looping, a separate task is required for each step.
Task complexity. Microsoft ActiveX® tasks that contain too many properties increase the complexity of packages, making
them difficult for developers to understand and access.
Package storage. The single, flat SQL Server namespace does not permit the storage of multiple packages with the same
names inside a single instance of SQL Server. In addition, migrating packages stored in SQL Server from the development
environment to the QA or production environment is difficult.

The following sections discuss these design problems and their solutions in detail.

Connection Information and Application Meta Data

DTS packages must establish valid connections to source and destination data stores. To accomplish this, connection objects
within each package store connection information for the data stores the package uses. Tasks within the package use these
connection objects when connecting to the data stores. Because the connection information for these data stores is embedded
within connection objects, each connection object must be updated with new connection information when the data store
changes.

The use of application meta data within the data movement system poses a similar problem. When this meta data, such as the
path to the application files, changes, each task relying on the original file path must be updated.

For example, when a DTS data movement system is moved from the development environment to a QA or production
environment, the source and destination data stores for all packages in the system must be updated. Application meta data may
also require updating when the data movement system is moved. When a system has as many packages the BI Accelerator data
movement system, updating each package individually is a daunting and potentially error-prone task.

Solution

Fortunately, DTS provides several methods that enable connection information for a package to be retrieved at run time from a
source outside of the package. These methods use the Data Link connection object or the Dynamic Properties task.

By using a Data Link connection object in a package, you can configure the package to retrieve connection properties from a
Microsoft Data Link (*.udl) file at run time. If you place connection information used by multiple packages in a single file
stored in the file system, you can change the connection information for multiple packages at the same time, without editing
each package individually. The next time that a package runs that references the data link file, the package uses the updated
connection information. A data link file, however, can only store connection information for a single data store.
By using a Dynamic Properties task, you can enable one or more values to be retrieved at run time from an external data
store and then assigned to selected object properties within a package (such as connection object properties). An
initialization (*.ini) file is one of the data stores from which values can be retrieved. An *.ini file is a text file in which you can
place connection information and other information that package objects require. An *.ini file can store multiple types of
information, including connection information for multiple data stores and initialization values for multiple global variables.

While the BI Accelerator data movement system could have used either of these mechanisms to set the connection properties for
source and destination connection objects dynamically, the BI Practices team chose the Dynamic Properties task because it solves
the connection information problem and the application meta data problem simultaneously.

Implementation

The BI Accelerator data movement system retrieves connection information and application meta data from a single Config.ini file
stored in the file system. This file is created when BI Accelerate generates an iteration of the analytical application and is populated
with information that the developer provides. Each iteration uses a separate Config.ini file. The absolute file path to all BI
Accelerator-generated applications on a server is written to the registry, while the relative file path to each analytical application is
encoded in each package. Multiple versions of the analytical application can coexist on a server because all of the files that are
associated with each application, including the Config.ini file, are located in their own folder structure.

The initial task in each package reads the registry and constructs the absolute path to the Config.ini for the analytical application.
This location is then recorded in a global variable. A Dynamic Properties task then reads the connection information in the
Config.ini file and updates the appropriate global variables in the package. Application meta data is retrieved and the appropriate
global variables are set when a task requires this information.

Global Variable Values

Packages can use global variables to hold values. These values are assigned to package properties and are used in package tasks
to modify functionality. For example, global variables can be used to determine whether a given package executes; the batch size
of a data import process; the maximum number of errors that are permitted; and the algorithm that is used to determine if data
contains inserts, updates, or both. Global variables and their values can either be passed by a parent package to its child packages,
or a child package can use global variable values that are different from those of its parent package.

The default value for each global variable is embedded directly into each package at design time. However, to manage the day-to-
day operation of the data movement system, DBAs must be able to modify the values of the appropriate global variables in every
package dynamically at run time. For example, a DBA may want to use one global variable configuration to load data from HR and
another global variable configuration to load data from Sales.

Solution

The BI Accelerator data movement system uses two SQL Server tables to store non-default values for selected global variables:

A global variable configuration table stores configuration IDs, including a value for a default configuration. Values that the
DBA chooses to override can be associated with the default configuration or with a defined configuration.
A global variable override table contains a row for each override value. Each row contains the override value, the name of
the package to which the override applies, and a configuration ID for the override value. If the default configuration ID is
specified for an override value, the override value for the specified package is used each time the default configuration of
the package is executed. If a non-default configuration ID is specified, the override value for the specified package is used
whenever the package is executed with that configuration ID. This enables DBAs to create configurations for specific
purposes. For example, a DBA may want certain packages to be bypassed when HR data is loaded and other packages to be
bypassed when sales data is loaded. In addition, the DBA may want the HR data to be loaded with different execution
parameters, such as batch size or error threshold, than the sales data.

Note Because child packages in the data movement system are designed to inherit selected global variable
values from parent packages, changes to the default values in a parent package flow to its child packages.
Therefore, changes to default values need only be made in parent packages, unless a DBA wants to use different

values in a child package.

Implementation

After the BI Accelerator data movement system updates the connection information from the Config.ini file, an Execute SQL task
runs, retrieving override values for the execution of the package. The Execute SQL task performs a join between the global
variable configuration table and the global variable override table and returns a result set containing the override values for the
configuration ID associated with the execution of the package. The configuration ID is either the default configuration ID (-1) or a
configuration ID that is passed to the package at run time through the DTSRun.exe command line utility. The Execute SQL task
uses a rowset output parameter to pass the rowset to an ActiveX task. This ActiveX task loops through the override values in the
rowset and updates the appropriate global variable values in the package.

Because override values are retrieved for each package at run time, DBAs can control the operation of each package individually.
However, because the BI Accelerator data movement system passes many of the global variables from parent packages to child
packages, DBAs can also choose to override a value at the parent package level and allow the change to flow through to all of its
child packages.

Conditional Logic

The Data Driven Query task performs parameterized Transact-SQL operations on rows of data as they are imported into a SQL
Server table from a source rowset. The rows of data are held in an in-memory structure defined by a binding table, which must be
a physical table that maps to the source rowset. For each row in a source rowset, the Data Driven Query task selects, customizes,
and executes one of several Transact-SQL statements. The Transact-SQL statement that is executed on each row is based on an
evaluation of the row by an ActiveX transformation script within the Data Driven Query task. Evaluating each row in a table is
resource intensive and can seriously degrade package performance. The parser in the Data Driven Query task does not support
the use of conditional logic and parameterized, multi-table joins to generate the source rowset, which would enable SQL Server to
use set-oriented processing and improve the performance of the Data Driven Query task. Instead, the parser expects the source
rowset to be generated from an existing SQL Server table using simple logic.

Solution

The BI Accelerator data movement system solves this problem by using a stored procedure to generate the source rowset for
each Data Driven Query task. These stored procedures are parameterized, contain conditional logic, and perform surrogate key
lookups using multi-table joins. The use of stored procedures to generate the source rowset in the Data Driven Query tasks
provides a number of benefits:

The parser in DTS Designer can successfully parse the stored procedure.
Conditional logic and surrogate key lookups using multi-table joins are performed based on parameters passed to the
stored procedure from the Data Driven Query task.
Set-oriented processing enables the Data Driven Query task to be used as a fast in-memory forward cursor to step through
the generated rowset and perform selected Transact-SQL operations based on the ActiveX evaluation of each row in the
rowset.
Each stored procedure is used in multiple Data Driven Query tasks, providing a single place to modify or extend the logic
used to generate the rowset for each Data Driven Query task.

Because the rowset generated by the stored procedure does not map to an existing table, BI Accelerator generates a physical table
containing the schema for the rowset that the stored procedure generates. This physical table is defined as the binding table for
the Data Driven Query task; it does not contain data.

In the BI Accelerator Data Driven Query task, an ActiveX transformation script determines the Transact-SQL operation that is
performed on each row, such as an insert or an update. However, the actual operation is performed by an insert or update stored
procedure, using the parameterized values passed in by the in the BI Accelerator Data Driven Query task. When the Data Driven
Query task is used in this manner, it is very fast. The logic can be easily extended through the stored procedure without requiring
any package to be edited.

Implementation

The BI Accelerator data movement system uses Data Driven Query tasks in the DTS packages that update dimension level tables.
A single stored procedure is created for each dimension level table. This stored procedure generates the result set used to insert,
update, or delete members from its associated table. Conditional logic determines the portion of the stored procedure that runs
each time the stored procedure is called. Inserts and deletes do not require a Data Driven Query task. When the stored procedure
is called and the update phase of the stored procedure runs, the rowset is returned to the calling Data Driven Query task and held

in memory. The ActiveX transformation script in the Data Driven Query task evaluates each row in the result set to determine if
the dimension being updated is a Type I or Type II changing dimension. A stored procedure that updates dimensions is called for
each row and either updates the dimension member in place or creates a new dimension member and marks the old dimension
member as inactive. In either case, no transformation actually occurs in the Data Driven Query task. The transformation initially
occurs when the rowset for the Data Driven Query task is generated; the transformation associated with the update occurs
through a stored procedure after the Data Driven Query task determines the type of changing dimension that is being updated.

Information Flow Between Child Packages and Parent Packages

A parent (or master) package can call and execute a child package through the Execute Package task. This capability allows
complex package workflow to be divided into two or more child packages that are called by a parent package. Using multiple
packages increases package readability, enables discrete units of work to be encapsulated into individual packages, enables
packages to be reused, and simplifies package debugging.

The Execute Package task communicates with a child package using inner and outer package global variables:

Inner package global variables are used to set the values specified in the calling Execute Package task to global variables in
the child package. The specified values override the default values for these global variables in the child package.
Outer package global variables are used to pass the parent package global variables specified in the calling Execute Package
task to the child package being executed. If these global variables do not exist in the child package, they are created
temporarily. If these global variables exist, the parent package global variables and their values are used instead of
identically named global variables in the child package.

DTS provides no mechanism, however, that allows a child package to communicate with the parent package, or to communicate
with another child package that is also executed by the parent package.

Solution

The BI Accelerator data movement system solves this problem by configuring each package with two global variables that store
pointers: one global variable stores a pointer to the package’s own global variable collection, while the other global variable
stores a pointer to the global variable collection of its parent (or calling) package. Through these pointers, child packages can
communicate with parent packages and other child packages.

Implementation

When a child package is called by a parent package, the parent package defines the global variable holding the pointer to its own
global variable collection as an outer package global variable, and passes that global variable to the child package in an Execute
Package task. The child package uses an ActiveX task to access the global variable collection of the parent package directly, by
going through the pointer. The ActiveX task in the child package can then directly modify (in memory) any of the global variable
values in the global variable collection of the parent package, and read any global variable changes made by another child
package.

The BI Accelerator data movement system uses this solution in its dimension level update packages to signal to the parent
dimension package the type of dimension update that must be performed, based on the type of update that occurs at each
dimension level and the type of changing dimension involved.

Note This solution cannot be used with the Execute Process task because the Execute Process task spawns its own
process. A child package can update only the values in the global variable collection of the parent package if it is
running in the same process as the parent package.

Branching

DTS provides precedence constraints to control workflow between tasks in a package based on the completion, success, or failure
of a previous task. However, DTS does not provide a mechanism to control workflow within a package based on the value of a
global variable. For example, it is quite useful to be able to have your package workflow proceed down either branch A or branch
B of the package based on run-time conditions communicated to the package through a global variable value.

Solution

The BI Accelerator data movement system uses an ActiveX task to solve this problem. Based on the value of a global variable, the
ActiveX task uses conditional logic at run time to direct the workflow out of the ActiveX task to one of several branches in the
package.

Note Because the name of each task that the ActiveX task can activate is embedded in the ActiveX task itself, to

extend the package, you may have to edit the ActiveX task itself instead of inserting a new task at the appropriate
point in the package. In addition, this solution makes the workflow in the package more difficult to understand unless
you view the actual ActiveX script in the task that performs the branching, because the ActiveX task appears to have
multiple success paths when you view the package through DTS Designer.

Implementation

Within each package that requires the capability to branch, an ActiveX task is created at the branch point. The ActiveX script in the
task has multiple branches leading out of the task to different branches of the package. These branches are disabled by default.
When the ActiveX task runs, the conditional logic in the script determines the branch of the package that is executed.

The BI Accelerator data movement system uses this solution for a variety of purposes:

Each package contains an ActiveX branch task, which enables a global variable to control whether the package executes or is
bypassed.
Each dimension level package contains both an insert and update branch and a delete branch. The ActiveX branch task uses
a global variable value passed to it by the parent package to determine which branch to execute. Through the use of this
branching solution, a single package performs all dimension insert, update, and delete activity on a dimension level table.
Each dimension package contains branches for processing each hierarchy. An ActiveX branch task determines whether the
dimension hierarchy is processed or whether the processing steps are bypassed. Again, a single package performs all
processing activity on a dimension level table.

Looping

DTS does not provide a mechanism that supports looping through a number of tasks in a package. However, looping through a
sequence of package tasks is sometimes the best solution to a problem. For example, when Analysis Services processes a cube
that is partitioned by month, every partition in the cube must be processed. The number of cubes to be processed and their
names, however, is not known until run time because not all partitions contain updates and new partitions are created every
month. While a separate task can be created for each known partition, this is not an elegant solution and does not solve the
problem of partitions that are not known at design time. A better solution is to determine the number of partitions that require
processing at run time and then execute the cube processing task once for each partition requiring processing. However, this
solution requires the package to loop through several tasks until all partitions are processed.

Solution

The BI Accelerator data movement system uses an ActiveX task to solve this problem. The ActiveX task is configured with an
ActiveX workflow script that runs before the ActiveX task. This script uses conditional logic to determine whether the ActiveX task
runs or whether the workflow is directed back to an earlier task. If the workflow is directed back to an earlier task, each task to be
re-executed is reset and then re-executed. This process continues until the looping condition is satisfied.

Note Because the names of the tasks that are reset by the ActiveX task are embedded in the ActiveX task itself, to
extend the package you may have to edit the ActiveX workflow instead of inserting a new step at the appropriate
point. In addition, this solution makes it more difficult to understand the workflow in the package without viewing the
actual ActiveX workflow script in the ActiveX loop task; when you view the package through DTS Designer, you cannot
see the looping mechanism in the task.

Implementation

As mentioned earlier, the BI Accelerator data movement system uses an ActiveX workflow script and loop task to process all
partitions that require processing. The package associated with each cube includes the following tasks, which execute in a loop
until all required processing has been completed:

1. An Execute SQL task queries the appropriate fact table in the Staging database to determine the number of distinct months
and years contained in the data being added to the cube and stores the result in a rowset global variable.

2. An ActiveX task retrieves the year and month of the first record in the recordset and stores these values in two separate
global variables.

3. An Execute Package task calls the partition processing package and uses outer package global variables to pass execution
values to the package. These variables include the year and month values retrieved from the recordset in step 2, along with
a number of other global variables.

4. After the first partition is processed, an ActiveX loop task runs. The ActiveX workflow script in this task determines whether
the last record in the recordset has been processed.

If the last record has not been processed, the workflow script resets the return status of steps 2 and 3 to
DTSStepExecStat_Waiting instead of executing the current step. The status of the current step is set to
DTSStepScriptResult_DontExecuteTask. Step 2 is then re-executed; this time, the next record in the recordset is
retrieved and Step 3 causes the next partition to be processed. This continues until all partitions that require
processing have been processed.
If the workflow script determines that the last record has been processed, the workflow sets the status of the current
step to DTSStepScriptResult_ExecuteTask and the task contained in the body of the ActiveX task is executed.

Task Complexity

When you design a single ActiveX task, it is quite easy to retrieve global variable values, use those values to set task properties
directly, and then execute the task. While this may be easy from a programming perspective, using multiple steps in a single
ActiveX task makes the task more difficult for developers and DBAs to understand and extend. Complex ActiveX tasks make
packages more difficult to understand because the full scope of each ActiveX task's functionality is not visible in DTS Designer
until each task opened and the script deciphered. The only visible clue to the functionality of an ActiveX task is its name. Complex
ActiveX tasks make packages more difficult to extend if you want to add a task between two of the tasks that are contained in the
ActiveX task. This type of extension requires you to modify and extend an existing ActiveX script, making the ActiveX task even
more complex and difficult to understand. Debugging errors is also more difficult.

Solution

The BI Accelerator data movement system avoids this problem by splitting multi-step ActiveX tasks into three separate tasks. By
creating separate tasks, the BI Practices team accomplished the design goal of making the BI Accelerator tasks and packages easy
to understand and extend. However, this solution adds additional tasks to packages for the sake of flexibility, increasing package
complexity by separating code that logically belongs together.

Implementation

The BI Accelerator data movement system uses the following three tasks to gather and set the properties for processing
dimensions and partitions:

1. An ActiveX task gathers the values to be used and then records them in a set of global variables.
2. A Dynamic Properties task sets the values of the global variables into the properties of the execution task.
3. The execution step, such as an Execute SQL task, an Execute Package task, or an Execute Process step, runs.

This three-task approach is much easier to understand and extend than a single ActiveX that encapsulates these discrete steps.

Package Storage

Using SQL Server to store packages used in the data movement system has several limitations. First, the namespace used by SQL
Server for storing packages is flat and does not support the concept of a folder hierarchy. This means that each package stored
within an instance of SQL Server must have a unique name. In addition, moving packages stored in a SQL Server instance to
another SQL Server instance is cumbersome. To accomplish this, each package must be individually opened and then saved to the
new SQL Server instance. Given the number of packages in the data movement system, this is a time-consuming task.

Solution

BI Accelerator solves these problems by storing files and packages from each iteration of the analytical application in separate
folder structures in the file system. Storing packages in the file system permits identically named package from different iterations
of the analytical application to be stored on the same server and enables packages to be moved between servers simply by
copying them to the new server. In addition, storing packages in the file system makes it easy for DBAs and developers to:

Back up packages at the same time as other application files in the file system.
Execute packages using the DTSRun.exe command line utility.
Integrate packages with a standard source control system, such as Microsoft Visual SourceSafe®.

Note To edit a package stored in the file system, use SQL Server Enterprise Manager to open the package in
DTS Designer. You cannot open a package in DTS Designer directly from the file system.

Implementation

When BI Accelerator generates an iteration of the analytical application, all of the files associated with that iteration are placed in

their own folder structure. This structure stores client files, debug files, DTS packages, import files, temporary work files, and a
variety of other files used by the analytical application. Using separate folder structures allows developers to work with different
iterations of the same analytical application or iterations of different analytical applications simultaneously.

DTS Tips and Tricks
The BI Practices team used a number of DTS tips and tricks when designing the data movement system for the analytical
application. Using these tips and tricks when you design your DTS packages will help you avoid design problems, improve overall
performance, increase package usability, and make packages easier to understand and extend.

Create a Common Startup Sequence

Create a common startup sequence of tasks in every package in your data movement system. This common startup sequence
allows developers to focus on what needs to be done, and not how. While every task in the startup sequence may not be required
in every package, using the same startup sequence in every package makes each package easier to understand and work with.

Include a Bypass Step in Every Package

Include a bypass step in every package as part of the common startup sequence and define an override global variable in every
package to control this bypass step. Use a data store, such as SQL Server tables, to group the override values for specific packages
into configurations. This enables you to bypass groups of packages as appropriate. For example, you can use one set of packages
to load HR data on Wednesday and a different set of packages to load the sales data on Saturday.

Run Analysis Services Processing Tasks in Separate Processes

When DTS executes multiple Analysis Services Processing tasks in the same process (parent and child packages execute in the
same process), DTS creates only one instance of the Analysis Services processing component because DTS assumes that this
component is free-threaded. However, the Analysis Services Processing task is a Visual Basic component and is not free-threaded;
it is written using the single apartment model. This means that the thread that creates the processing component must be the
thread that actually executes the processing component. Other COM threads must marshal their execution onto the creating
thread and requests from multiple Analysis Services processing tasks queue up at the COM level.

To avoid queuing and ensure parallel processing of Analysis Services Processing tasks, run each processing task in a separate
process. To accomplish this, use an Execute Process task to call the DTSRun.exe command line utility and execute the Analysis
Services Processing task in a DTS package. The Execute Process task provides a new Microsoft Win32® process, within which the
Analysis Services Processing task executes on its own thread.

Note When running multiple Analysis Services Processing tasks in parallel, OLAP repository locking issues can be a
problem if you are accessing a single partition through separate processes. Decision Support Objects (DSO) uses
locking modules to ensure that no two processes access the same partition at the same time.

Call DSO from an ActiveX Script

Decision Support Objects (DSO) is the COM interface used to manage Analysis Services cubes and partitions. Call DSO from an
ActiveX script when DSO is needed. Using an ActiveX script is an easy and straightforward process, allowing you to use the
flexibility of ActiveX for calling DSO in a package. You do not need to create a separate Visual Basic application to execute a DSO
task. The following code shows how to use DSO in an ActiveX script to delete cube partitions:

sAnalysisServer = DTSGlobalVariables ("gsAnalysisServer_RESERVED").Value
sOlap = "SMA 01"
sCube = "Sales"
Set dsoServer = CreateObject("DSO.Server")
dsoServer.Connect sAnalysisServer
Set dsoDB = dsoServer.mdStores(sOlapDB)
SetdsoCube = dsoDB.mdStores(sCube)
'Delete all partitions with names different than the cube.
iPartCounter = dsoCube.mdStores.Count
Dim i
For i = iPartCounter To 1 Step -1
 If dsoCube.mdStores(i).Name <> sCube
 Then dsoCube.mdStores.Remove I
 End If
Next

Calling DSO from within a DTS package enables the automatic processing of partitions immediately after they are loaded with
new data. Using global variables, DBAs can control the type of automatic processing that occurs.

Check for Unexpected Deadlocks When Troubleshooting

Packages can easily become deadlocked with other packages. Because all packages have their own connection objects, packages
running in parallel use separate connections, and each connection looks like a different user to SQL Server. As a result, if multiple
packages attempt to access the same resource through different connection objects, the packages can become deadlocked.
Because the times at which these packages execute varies, deadlock errors are intermittent, and therefore, hard to track down. To
resolve deadlocks that occur, use standard deadlock resolution techniques, such as specifying a locking hint.

Note With only one connection to a database, a deadlock cannot occur; instead, a queue is created within the
connection.

Add an Additional Connection to a Package to Avoid Queuing

Within a single package, only one task can use a connection at a time. Package steps that require the same connection at the same
time serialize and create a queue, even if the package appears to be executing these tasks in parallel in DTS Designer. The use of a
single connection by multiple package tasks is not always obvious. For example, it is quite visible with some tasks, such as the
Transform Data task, but not as obvious with other tasks, such as the ActiveX task.

A task that uses the lookup query functionality encapsulated in the Transform Data and Data Driven Query tasks is required to use
a separate connection for the lookup query because only one query can be active on a connection at one time. All BI Accelerator
packages contain three connections: the source data store, the binding table data store (used for lookup queries), and the
destination data store.

Note If you need more than three connections in a single package, your data movement system is probably not
modular enough.

Use a Global Variable to Capture the Number of Records Processed in a Transform Data or Data Driven
Query Task

There is no straightforward way to determine and output the number of records that are processed by a Transform Data or Data
Driven Query task, because the information is contained within the running task itself. The following code shows you how to
capture this information in a global variable by adding an additional data pump stage to the task.

Option Explicit
Function PostSourceMain()
 DTSGlobalVariables("giInsertRows”).Value =
 CLng(DTSTransformPhaseInfo.DestinationRowsComplete)
 PostSourceMain = DTSTransformstat_OK
End Function

After you capture this information in a global variable, it is easy to print or log it.

DTS Programming Guidelines
The BI Practices team used the following guidelines when designing the BI Accelerator data movement system. Following these
guidelines when designing your DTS data movement system will improve its design, performance, and manageability.

Use Subpackages

Create a hierarchy of packages, with a master package calling child packages and the child packages calling other child packages
as appropriate. This programming practice provides the following advantages:

You can create modularized packages to reduce the workflow complexity in individual packages and make your DTS data
movement system easier to understand. For example, the BI Accelerator data movement system uses a separate child
package for each dimension, dimension level, and cube.
You can create packages that run in parallel. For example, the BI Accelerator data movement system can execute multiple
dimension level update packages simultaneously.
You can create packages that perform standardized tasks, incorporating specific functionality only once instead of
duplicating it in multiple packages. This way, you can modify or extend this functionality in a single location and easily
maintain functional consistency across multiple packages. For example, the BI Accelerator data movement system uses a
single master error package that is called by all packages when an error occurs.
You can create packages that are dynamically configured and executed based on the global variable values passed from a
parent package at run time. For example, the BI Accelerator data movement system uses a single package for processing
dimension hierarchies and a single package for processing partitions. These packages are called as needed by modularized

packages for each cube partition and dimension hierarchy. The processing performed by each of these packages is
determined by the values passed from a parent package at run time, including the name of the dimension hierarchy or cube
partition and the type of processing (full or incremental).
You can re-execute a child package more easily than you can re-execute a series of steps in a single package. This is
particularly useful for troubleshooting.
You can modify, extend, or update an individual package independent of other packages in the DTS data movement system.

Do Not Modify Concurrency Settings

Do not modify the maximum task concurrency setting in any child package. Tune the number of packages that run in parallel by
configuring the task concurrency setting in the master package. This enables you to use the task concurrency setting in the master
package to control the number of child packages that the parent package executes concurrently.

Do Not Use the Save_As_VB Option

Do not use the Save_As_VB option in DTS Designer to save packages as Visual Basic code. Create packages by hand in Microsoft
Visual Studio® and then save them as DTS packages. Use the code generated by DTS Designer as example code only. The code
that DTS Designer generates is not necessarily modular, creates too many variables, and does not necessarily initialize all of them.
In addition, the generated transformations are not particularly effective. Finally, the Visual Basic generating tool in DTS Designer
does not reverse engineer symbolic offsets; you must do this yourself to see the constant and not just the parameter.

Use Integrated Security

Use integrated security in your connection objects when connecting to a data source. This makes moving your DTS data
movement system from one server to another easy. Integrated security also makes the DTS data movement system more secure
because credentials are not saved in connection objects.

Note Saving credentials in connection objects can compromise security and should be avoided when possible.

With integrated security, the domain to which the user executing the package belongs authenticates the user's credentials at run
time, enabling passwords to be changed without requiring changes in packages. This makes it easy to keep the DTS data
movement system operating environment secure. Remember that the execution credentials come from the executor of the master
package, and not the package itself. The executor is either the interactive user or the SQL Server Agent service account.

Consider the Execution Environment

Consider the environment and the security context in which the packages will run. Developers frequently create and test DTS
packages interactively on a development computer, only to have them fail when they are used in SQL Server Agent jobs or
executed from a client workstation.

Execution location

Packages run either on a client computer or a server, based on how they are called:

Packages that are executed by a SQL Server Agent job always run on the server in the security context of the SQL Server
Agent service account. If SQL Server Agent is using the local system account, the package has no permissions outside of the
server that is running SQL Server.
Packages whose execution is initiated on a client computer run in the security context of the user account of the executor of
the packages.

The location in which a package runs affects its access to files stored in the file system. A package that attempts to access a file
stored on the C: drive of a server can fail if that package is executed from a client computer, unless the necessary file is also
located on the C: drive of the client computer.

Security context

Package security context is based on the executor of the package.

If a package is executed by a SQL Server job, the package (and each of its child packages) runs in the security context of the
owner of the job.

If the owner of a SQL Server job is not a member of the sysadmin server role in the SQL Server instance where the
job runs, the package executed by the job runs in the security context of the account that is set up as the SQL Agent
Proxy Account. By default, this account is not enabled and only members of the sysadmin server role can execute

CmdExec and ActiveScripting job steps. If the package contains these job steps and the proxy account has either not
been configured or does not have sufficient access rights, the package fails.

Note If a package runs in the security context of the SQL Agent Proxy Account, the proxy account must
have read and write permissions to the Temp directory of the SQL Server Agent service account. For
more information, see Q269074: INF: How to Run a DTS Package as a Scheduled Job.

If the owner of a SQL Server Agent job is a member of the sysadmin server role in the SQL Server instance where
the job runs, the package executed by the job runs in the security context of the SQL Server Agent service account.

If you run a package manually by using the DTSRun.exe command line utility, the package runs in the security context of the
user who is logged on to the client computer from which the package is executed.
If an Execute Process task executes a package by using the DTSRun.exe command line utility, the package runs in the
security context of the parent package that is running the Execute Process task.
If a package is executed through the xp_cmdshell extended stored procedure, the security context of the package depends
on the security context of the user who runs xp_cmdshell:

If the user is not a member of the sysadmin server role in the SQL Server instance where the job runs, the package
executed by the job runs in the security context of the account that is set up as the SQL Agent Proxy Account.
If the user is a member of the sysadmin server role in the SQL Server instance where the job runs, a package
executed by the job runs in the security context of the SQL Server service account.

Ensure that when a package attempts to access the file system, the files are available from the computer on which the package
runs and that the files are accessible based on the security context in which the package executes.

Design Packages for Data Throughput or Package Flexibility

Design packages for either data throughput or package flexibility, but not for both. For example, when designing packages to bulk
insert data into a staging database, design the packages to maximize data throughput. On the other hand, when designing
packages to transform the data moving through the packages, design the packages for flexibility, maximizing performance when
possible.

Maximizing data throughput

When trying to maximize data throughput through the packages in a DTS data movement system, follow these guidelines:

Use the Bulk Insert task, which uses the capabilities of the Transact-SQL Bulk Insert statement. This task imports data,
without transformation, faster than any other task. Using the Bulk Insert task allows you to import the data quickly from the
RDBMS system into the Staging database, minimizing the performance impact on the RDBMS and maximizing data
throughput into the Staging database. You can then use Transform Data and Data Driven Query tasks to perform any
needed transformations as you move the data into the Subject Matter database.
Minimize logging by setting the SQL Server destination database to use either the Bulk-Logged Recovery or the Simple
Recovery model. These recovery models are faster than the Full Recovery model. The Simple Recovery model yields the
fastest performance.
Perform all tasks on one server when possible to minimize delays caused by network performance issues.
Minimize the use of indexes on the destination tables because inserts, updates, and deletes to tables containing indexes
require index maintenance by SQL Server as the data changes occur. Performing index maintenance while data is being
imported slows overall throughput. The BI Accelerator data movement system uses no indexes on the fact tables in the
Staging and Subject Matter databases to maximize insert performance. If you maintain an index on a table into which you
insert data, ensure that the table has zero rows to maximize performance.
Minimize the use of ActiveX scripts, Data Driven Query tasks, and Transform Data tasks. Performing data transformations
and lookups while data is being imported takes time and slows overall throughput.
Ensure that the target table is not being replicated and does not contain triggers. Executing triggers and replicating rows as
they are imported requires server resources and slows overall SQL Server performance.
Use the TABLOCK hint to ensure that a table-level lock is taken for the duration of the bulk-copy operation.

For an example of a master package that is optimized for throughput, see the Master Import package in the BI Accelerator data
movement system.

Maximizing flexibility

When maximizing the flexibility of the packages to perform data transformations, follow these guidelines:

http://go.microsoft.com/fwlink/?LinkId=11804

Use Transform Data tasks to perform stock transformations with maximum performance.
Use ActiveX tasks for maximum flexibility when performing transformations, but at the expense of performance.
Use Data Driven Query tasks to evaluate data on a row-by-row basis and use set-processing to generate the source rowset
to increase the performance of the Data Driven Query task.

For an example of a master package that is optimized for flexibility, see the Master Update package in the BI Accelerator data
movement system.

Conclusion
You can design and create a DTS data movement system that is easy for developers to understand and extend, and that is easy for
DBAs to understand and manage. Understanding the solutions to the problems faced by the BI Practices team can help you
improve your DTS data movement system. Use the tips, tricks, and guidelines outlined in this paper to help you design your
system for usability, performance and manageability.

Finding More Information
For additional information about BI Accelerator and DTS, see the following resources:

Microsoft SQL Server Accelerator for Business Intelligence Web site
Using DTS for Business Intelligence Solutions Best Practices white paper
Microsoft SQL Server Web site
Microsoft SQL Server Developer Center
SQL Server Magazine
Microsoft official curriculum courses on SQL Server

© Microsoft Corporation. All rights reserved.

http://go.microsoft.com/fwlink?LinkID=7027
http://go.microsoft.com/fwlink/?LinkId=11799
http://go.microsoft.com/fwlink/?LinkId=6981
http://go.microsoft.com/fwlink/?LinkId=11800
http://go.microsoft.com/fwlink?LinkID=9136
http://go.microsoft.com/fwlink/?LinkId=11801
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Embedding MSDE 2000 Setup into the Setup of Custom
Applications

Arulkumar Elumalai
Microsoft Corporation

December 2001

Applies to:
 Microsoft® SQL Server™ 2000 Desktop Engine

Summary: Many software developers want to embed data storage within their custom applications. Microsoft SQL Server 2000
Desktop Engine (also known as MSDE 2000) enables developers to do this. This document describes how to distribute MSDE
2000 with a custom application by embedding MSDE 2000 Setup within the setup program of the custom application. (8 printed
pages)

Contents

Introduction
Windows Installer and Merge Modules
Creating an MSI Package
Prerequisites to a Successful Merge Operation
Merging Techniques
Running Setup
Conclusion
Appendix A: Frequently Asked Questions

Introduction
Microsoft® SQL Server™ 2000 Desktop Engine (also known as MSDE 2000) enables software developers to embed data storage
within their custom applications. This document describes how to distribute MSDE 2000 with a custom application by embedding
MSDE 2000 Setup within the setup program of the custom application.

MSDE 2000 technology provides local data storage that is compatible with SQL Server. You can think of MSDE 2000 as a
client/server alternative to the file server Microsoft Jet database engine. MSDE 2000 is designed and optimized for use on smaller
computer systems, such as a single computer or a server used for a small workgroup.

MSDE 2000 is distributed as a set of 25 merge modules. Stand-alone installation of MSDE 2000 is possible by using the MSI
supplied by SQL Server Setup. (See the next section for an explanation of MSI.) You can also embed MSDE 2000 Setup into any
custom setup by consuming these merge modules. Embedding MSDE 2000 Setup into a custom MSI setup program, in essence,
merges the merge modules into an MSI package.

Creating a custom application with MSDE 2000 embedded in the setup is a three-phase process consisting of the following tasks:

1. Creating the MSI package to install the custom application.
2. Merging MSDE 2000 merge modules into the custom application.
3. Running Setup to install the custom application and MSDE 2000.

MSDE 2000 features a Microsoft Windows® Installer-based installation. The Windows Installer and Merge Modules section of this
document provides a high-level overview of Windows Installer and MSDE 2000 merge modules. You can also skim through the
resources listed in Windows Installer and Merge Modules to learn more about MSDE 2000 features and the capabilities of
Windows Installer. Creating an MSI Package outlines the steps necessary to create an MSI package. The following sections
describe merge modules and the actual merge process—the prerequisites, core tasks, and validation. Appendix A contains
answers to frequently asked questions.

Windows Installer and Merge Modules
Windows Installer, which is included with the Microsoft Platform SDK, is a powerful tool that is used to set up software products
in Windows environments. The installer stores setup information as a set of tables and creates a bundle, which is known as an
MSI package. Executing the MSI package installs the product.

Merge modules are files with an .msm extension. A merge module cannot be installed by itself because it lacks critical database

tables that are present in the installation database of an .msi file. Merge modules also contain additional tables that are specific to
merge modules. To install the information delivered by a merge module with an application, the module must first be merged
into the application's .msi file.

Each merge module has a module signature table. This table contains a single entry that defines the signature of the module. Each
time a merge module is merged into an MSI, an entry is added to the module signature table of the MSI if the merge is successful.

The best alternatives for developers who want to use merge modules are to obtain a freely distributed merge tool, such as the
library of functions in Mergemod.dll, or to purchase one of the merge tools available from independent software vendors.
Mergemod.dll provides a COM object that implements merge operations and source image generation for merge modules. Orca,
a database editor included in the Windows Installer SDK, also uses a COM object to implement the merge operations. Orca is a
robust tool for merging MSMs.

The main advantage of merge modules is that they can be easily used with an MSI. You can embed MSDE 2000 merge modules
into a custom MSI, allowing the application and MSDE 2000 to be installed in a single process. Understanding Windows Installer
and MSDE 2000 makes this task easier.

For more information about MSDE 2000, see SQL Server 2000 Desktop Engine (MSDE 2000).

Creating an MSI Package
The basic steps to create a simple MSI package are as follows:

1. Plan the installation
List the general installation layout, namely the files to install, the source path, and the target path. In addition, list all registry-
related operations. Place the .exe file to install and all supporting files in a specific directory. You can also store supporting
files in a hierarchy of subdirectories.

2. Import a blank database
To create an MSI package you need to copy, or create with a software tool, a Windows Installer database file. A blank
installation database, Schema.msi, is provided with the Microsoft Platform SDK components for Windows Installer
developers. The SDK also provides a partially blank database, Uisample.msi, which contains the suggested sequence tables
and data required for a simple user interface. Copy Uisample.msi into the directory containing the .exe file to be installed.
The installation database file and the source files must be located at the root of the same directory (multiple files can be
arranged in a hierarchy branching from the root directory); otherwise, you will receive setup errors.

3. Specify the directory structure
The installer stores information about the installation directory structure in the Directory table. Use the database editor,
Orca, or another editor, to add information to the Directory table.

4. List the constituent components
List all components that are part of the installation. A component can be a set of files or resources that are added to the
component table of the database.

5. Specify files and file attributes
Add all relevant files to the Files table.

6. Enter source media information in the Media table
The Media table describes the set of disks that comprise the source media for the installation.

7. Define features
Add product features to the Feature table. The installer enables users to install and remove portions of an application's
functionality, which are called Windows Installer features. When merging MSDE 2000 with your application, you can define
MSDE 2000 as a separate feature or tie it to one of the other existing features. Create a dummy feature for MSDE 2000 if
you want to install MSDE 2000 as a separate feature.

8. Define feature-component relationships
Use the FeatureComponents table to define the relationships between features and components. Each Windows Installer
feature uses one or more Windows Installer components, and features can share components.

9. Add registry information and shortcut properties
The Registry table and related tables of the installation database hold the registry information that must be written in the
system registry for the application. The Shortcut table and related tables of the installation database hold information
necessary to install shortcuts.

10. Specify properties
Windows Installer properties are global variables that the installer uses during an installation. You do not have to define all
properties in every package; however, a small set of properties is required. The installer sets the values of properties in a
particular order of precedence.

11. Populate sequence tables

http://www.microsoft.com/SQL/techinfo/development/2000/MSDE2000.asp

A variety of sequence tables must be populated for the setup to run: InstallExecuteSequence, InstallUISequence,
AdminExecuteSequence, AdminUISequence, and AdvtExecuteSequence.

12. Add summary information
Summary information is not critical to run Setup, but summary information is essential for the package to pass validation.
You can use the tool MsiInfo.exe, which is provided with the Windows Installer SDK, to set these properties.

Prerequisites to a Successful Merge Operation
Before merging the MSDE 2000 merge modules into your custom application, you must run validation, make necessary
modifications to the Media table, and plan for merge conflict resolution.

Validation

Validation scans the database for errors that may cause incorrect behavior in the context of the entire database. Attempting to
install a package that fails validation can damage the user's system. Always run validation on packages before attempting to
install them, and rerun validation after making any changes to a package.

You can validate the sample package using Orca or Msival2.exe (both are provided with the Windows Installer SDK). Validate both
the merge module and the MSI before merging. The validation tables of the MSM and the MSI must be consistent for the merge
to be successful.

Media Table Change

The Media table has a column called LastSequence that contains the file sequence number of the last file in the source media.
This number must be altered (increased) to include the files from the MSMs. Type a value that is the maximum of all the file
sequence numbers of the files (included in the File table) of all the MSMs to indicate that all of them must be included.

Merge Conflict Resolution

Sometimes entries might overlap in one of the main MSI packages with that of a MSM package. In such cases the rows must be
identical. A merge conflict occurs when rows differ in value. For example, in the validation table of the MSI an entry may have
been declared as string while in the validation table of the MSM, the same entry may be declared as formatted. In such cases
merge conflicts occur, and the values in both rows must be synchronized.

Checking each row for consistency is cumbersome. The best method is to run the merge and correct inconsistencies when errors
occur.

Merging Techniques
This section describes how to use the Orca editor for merging.

UI-Based Merging

Orca 1.5 beta and later allows merging through the UI. The functionality of Mergemod.dll can be invoked from the Tools menu of
the current version of Orca. Alternatively, script-based merging can be used with earlier versions of Orca.

A merge dialog box can be invoked from the Tools menu of Orca. The dialog box is shown in the following illustration.

Figure 1. Orca Merge dialog box

Use the following steps to merge a given MSM.

1. Click the Browse button and select the MSM to be merged.
2. From the root directory, select a target directory for the installation. By default, Windows Installer uses TARGETDIR to

indicate the directory for the installation. In case of wrong selections, merge conflict errors are raised (when you click OK).
You can use this as an indicator to correct the root directory.

3. Select the feature to which the MSM is to be attached. Each MSM must be tied to a feature in the MSI. A new feature can be
created or an existing feature can be reused to attach the merge module. The merge module will be installed only if the
particular feature is installed. It is a good practice to create a single feature that is specific to MSDE 2000 and tie all MSDE
2000 MSMs to it.

4. Select the Image Source option, which creates the same source image. Point to the directory containing the custom
application and the MSI.

Note The MSI and the custom application must reside in the same location. Subdirectories are created in the
install directory of the installation media and source files of the MSMs are copied to them.

5. Click OK. If no error messages are displayed, the merge is successful.

To verify that the merge was successful, make sure that:

1. No merge conflict errors are raised.
2. The MSM signature is added to the Modulesignature table of the MSI.
3. The components of the MSM are added to the Components table of the MSI.

After all MSMs are merged, rerun validation to make sure that setup will run as expected.

Script-Based Merging

The process described in the previous section can be scripted. You can use script-based merging with earlier versions of Orca,
which has no UI.

The main command is:

c:\Progra~1\Orca\orca.exe /q /c /l %LogFile% /f %Feature% /m %MergeModule%
c:\myAppPath\myApp.msi

The switches denote the following options:

q—quit mode.

c—commit merge to database if no errors occur.
l—logging.
f—feature to which the merge module is attached.
m—merge module name.

Each module must be merged to the MSI using the command-line format shown earlier in this section. By default, this command-
line execution does not create a log or raise errors. It is important to use the /l switch and generate a log file to view errors. Merge
changes are not committed to the database if a fatal error occurs. You can also perform steps 2 and 3 of the verification process
outlined in Merging Techniques to test the results of merge.

Running Setup
Clicking the MSI package causes Setup to run. A successful installation causes the application and MSDE 2000 to be installed.

When you merge MSDE 2000 modules into the MSI of the custom application and run Setup, a shortcut to Service Manager is not
created automatically and you cannot see the Service Manager icon in the system tray. These activities are not defined in the
MSMs of MSDE 2000 and must be defined in the main MSI package. Task Manager will show that the service is running, which
means that the installation was successful and the service is started. Service Manager can be invoked by clicking Sqlmangr.exe in
the Binn directory of SQL Server tools.

Sometimes tables must be created and populated with data during setup. You can do this by invoking the MSI package through
scripting and running a series of osql commands with a trusted connection (one that uses Windows Authentication and not SQL
Server authentication) to do the database manipulations.

Conclusion
Merging MSDE 2000 into a custom application setup is a simple task, due to enhancements in Orca and refinements in MSDE
2000 setup. Using the tools described in this white paper and applying recent service packs can help you achieve this objective.

Appendix A: Frequently Asked Questions

I get an error message that says that merge conflict occurred. How do I resolve the error?

Merge conflict error messages provide the table name and row indicator that caused the conflict. Compare the table or row of the
MSI with that of the MSM and synchronize the values. Reattempt the merge and it will be successful.

Do I have to merge all the modules of MSDE 2000? I've heard that some of them are optional.

You can reduce the disk footprint of your application by customizing the SQL Server 2000 Desktop Engine Setup so that it does
not install SQL Server 2000 components that are not used by your application. You can leave out DMO*.msm, Repl*.msm, or
both. These are merge modules for SQL-DMO and replication, respectively.

I run the merge unattended by using a script, but I do not see an error log.

Use the /l switch to generate an error log. For more information, see Script-Based Merging earlier in this paper.

Setup is complete but I don't know if the service has been started.

The service is started by default. Look in Task Manager and you should see the service running. You can use any application that
connects to the service or you can issue osql commands to work with the service.

When I install MSDE 2000 from the CD-ROM I see the service icon in the system tray, but I don't see the service icon in
my system tray when MSDE 2000 is embedded with my application. Why?

Creating shortcuts is an activity of the MSI (Sqlrun01.msi) from the CD-ROM. This must be incorporated in a custom MSI. See
Creating an MSI Package for more details. The shortcut creation entries are not in any of the merge modules and hence must be
done in the main MSI package. To see the icon in the system tray, double-click Sqlmgr.exe in the Binn directory of SQL Server
Tools.

My application is unable to connect to MSDE 2000. I receive an error message that says that the connection
attempted is not a trusted connection. How can I fix that?

This occurs because MSDE 2000 uses Windows authentication by default. Windows authentication is more secure than SQL

Server authentication. You must alter code within your custom application to use the secure login to overcome this error rather
than using SQL Server authentication.

I am unable to specify an instance name or change the security mode while using the merge modules. Is there a way
to do that? If so, how can I change internal properties?

You can add an entry in the Property table for INSTANCENAME and specify a name. You can add an entry for SECURITYMODE the
same way. However, you should make these changes in the main install package and not the SQL Server 2000 MSDE merge
modules. You can map each of these properties to an internal property in the merge module by creating custom actions in the
main MSI. For more information, see PRB: Cannot Specify Instance Name Using SQL Server 2000 Merge Modules (Q281983).

Sometimes errors are displayed in the log but setup runs fine. Why?

Errors are generated in the log if identical rows are found in MSI and MSM tables while merging. While these are listed as errors
in the log, they are not fatal errors and can be allowed. As long as the changes are committed to the database, you can ignore
these errors.

I receive the following error during setup: "Cannot pick package id." Why does this happen?

This can occur with the RTM version of MSDE 2000. The error may be caused by the existence of Sqlboot.dll from the prior
version installations on the local computer. A workaround is to rename every occurrence of Sqlboot.dll, run Setup again, and
change the name of the DLL back. If this occurs during a clean install, embedding the SP1 merge modules will resolve the
problem. SQL Server 2000 SP 1 can be downloaded from http://www.microsoft.com/sql/downloads/default.asp.

Sometimes my installation rolls back at the end of the progress bar without providing an error message.

Refer to the log. This might have to do with the installation of performance monitors (Installperfmon). Embedding SP1 level
merge modules of MSDE will resolve this problem.

I have installed my application and need to upgrade it. How do I do that?

This is an activity external to merging. You can upgrade your application files only by running an upgrade .msi package. For more
information, see the Windows Installer SDK. Your MSDE installation can remain untouched.

I try to merge MSMs, but nothing happens: no errors, no messages, no reaction. Why does this occur?

Possibly Mergemod.dll registration did not occur. Register Mergemod.dll using regsrvr32 and reattempt merging. The merge
should be successful.

© Microsoft Corporation. All rights reserved.

http://support.microsoft.com/support/kb/articles/Q281/9/83.ASP
http://www.microsoft.com/sql/downloads/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Evolution of the SQL Server Data Access Model

Dino Esposito
Wintellect

April 2004

Applies to:
 Microsoft® SQL Server™
 Microsoft® ADO.NET

Summary: Get an annotated overview of the data access layers available today that work with SQL Server, including ADO, the
XML interface of SQL Server 2000 (SQLXML), ADO.NET, and the upcoming ADO.NET 2.0. (14 printed pages)

Contents

The Road to OLE DB and ADO
With Further ADO
ADO.NET
Working with SQL Server Through XML
The SQLXML Managed Library
What Will Be New (and Hot) With Visual Studio 2005
Conclusion

In the past few years, several programming models for Microsoft® SQL Server™ databases have followed one upon another
without a break. The features provided by the underlying database management system (DBMS) changed over time, catching up
with users' requirements, and the overall goal of designing a more powerful and successful product. Likewise, the associated data
access models evolved to incorporate newly released features, while still providing an easy and increasingly abstract way for
developers and architects to build an effective data access layer in end-applications.

I worked on my first Windows® project in the early 1990s. Our application needed some sort of database support. In itself, the
database wasn't a critical part of the application, and there was no reason for choosing, say, Microsoft® Access over Paradox, or
SQL Server™ instead of Oracle. We just needed a common programming interface and the ability to read, write, and filter a few
records. We ended up adopting Open Database Connectivity (ODBC) as the emerging standard for open database connectivity. It
wasn't an obvious choice, though. It was perfect for our purposes because we could afford it. The ODBC API, in fact, was designed
for C/C++ programmers. It was great for us, just not for everybody.

ODBC was the first attempt to normalize access to a variety of DBMS systems through a common API. Before that, programmers
were unfairly expected to have an intimate knowledge of the database's nuts and bolts. Programmers had to be in sync with the
specialties and idiosyncrasies of the particular SQL dialect and the underlying architecture design. Although not perfect on its
own, ODBC showed the right way to go.

In this article, I'll provide an annotated overview of the data access layers available today to work with SQL Server. I'll focus on
ActiveX Data Objects (ADO), the XML interface of SQL Server 2000, and ADO.NET, but I won't forget to add a word or two on the
future, specifically ADO.NET 2.0.

The Road to OLE DB and ADO
ODBC was designed as a C-oriented application programming interface (API), but the advent of Component Object Model (COM)
and rapid application development (RAD) tools like Microsoft® Visual Basic® urgently posed the problem of finding a COM-
oriented alternative. More or less at the same time, Access and Visual Basic developers were enjoying the Data Access Object
(DAO) object model bundled with Microsoft Access, and leveraging the Jet database engine. DAO was first enhanced to call into
DBMS systems such as SQL Server and Oracle through ODBC. Basically, DAO acted as a proxy between code and the ODBC API.
This model introduced some overhead, though, because the resultset had to be converted to the DAO object model to really
become usable. To work around the issue, Microsoft first introduced RDO and then ODBCDirect. Remote Data Objects (RDO) is a
COM object model that exposes the functionalities of the ODBC model. It is not richer or more powerful than ODBC; it is simply a
COM wrapper for ODBC designed to make ODBC accessible from within script, Web, and Visual Basic applications. ODBCDirect,
instead, was created to speed up existing DAO applications calling into SQL Server. ODBCDirect is a sort of DAO working mode;
when enabled, it uses RDO and ODBC instead of Jet to get and set data on SQL Server databases.

However, the first significant innovation in data access after ODBC is OLE DB. OLE DB was introduced in 1998 as part of the Visual
Studio® 6.0 platform. OLE DB is the programming side of what was then called the Universal Data Access (UDA) vision. The
inspiring principle of UDA was making any data storage accessible through a common set of COM interfaces. Basically, it is the

same abstract idea behind ODBC, but reworked and refined to fit into the most popular and successful programming platform of
that time, the Component Object Model.

Once again, the model came with little imperfections at first. Fully COM-based, the consumer/provider model of OLE DB was
relatively easy to implement in C++ applications, but proved impossible to follow in Visual Basic and Active Server Pages (ASP)
applications. Both Visual Basic and ASP components are unable to work with low-level COM interfaces, not to mention the overall
programming model is extremely sophisticated and requires a good deal of work even for simple operations.

ADO is the COM library created to make the OLE DB model accessible to all programming environments. Like RDO for ODBC, it
sits between the application and the low-level data access API and mediates operations, ensuring that the stream of data retrieved
from the DBMS is exposed to callers in an appropriate and convenient format.

With Further ADO
The OLE DB programming model consists of two interacting entities, the consumer and the provider. Both are implemented as
COM objects and are required to expose a fixed number of interfaces to guarantee interoperability. The provider wraps the
functionalities of a given data storage, and makes functionalities externally available through the suite of interfaces designed for
OLE DB providers. The consumer must know and be able to invoke the provider's interfaces. Next, it is responsible for managing
data in input and output.

When the client reads data out of the data source, the consumer receives a pointer to an object that implements the IRowSet
interface. The data is available as a stream of bytes, and mapping it to more manageable containers like arrays or Recordset
objects is up to the consumer.

ADO deals with the underlying OLE DB machinery for you. When used, ADO is the real OLE DB consumer, not your application. In
terms of raw performance, this inevitably adds some overhead due to both data packaging and some housekeeping code. It is
remarkable, in fact, that ADO cross-checks the value of any object properties to ensure they do not contradict one another. You
might be surprised to see that ADO is smart enough to fix some incompatible settings, such as the cursor type and location. If the
two are in direct disagreement, ADO transparently adjusts their values. Here's a quick example.

rs.CursorLocation = CursorLocationEnum.adUseClient
rs.Open(cmd, connString, CursorTypeEnum.adOpenKeyset)

First, the Recordset object is configured to use a client-side cursor location; then, when the Open method is invoked, the cursor
type parameter is set to a server-side cursor. No exception is thrown, but the cursor type parameter is silently adjusted to
adOpenStatic to reflect the client-side location.

Table 1 lists the key objects that form the ADO object model.

Table 1. Main objects in the ADO object model

Type Description
Connection Represents a connection to the specified data source
Command Represents a command to execute
Field Represents a column in a returned record
Parameter Represents a parameter to add to a command
Recordset Represents a block of records generated by a query

In order to execute a command with ADO, first create a Command object, then bind it to an active connection, and run it. If the
command is expected to return a block of records, you can opt for a Recordset object. The Open method of the Recordset object
does everything—opens the connection, executes the command, and fills the Recordset with the resultset. Here's a quick
example.

Dim rs As New Recordset
Rs.Open("SELECT * FROM employees", _
 "PROVIDER=sqloledb;DATABASE=northwind;SERVER=(local);" & _
 "Integrated Security=SSPI", _
 CursorTypeEnum.adOpenForwardOnly, _
 LockTypeEnum.adLockReadOnly)

ADO is the primary choice (often the only reasonable choice) for building a SQL Server data access layer in COM, ASP, and Visual
Basic 6.0 applications. It also has been incorporated and is easy to call from other non-Microsoft RAD tools such as Delphi and
PowerBuilder.

What if You're Building .NET Applications Instead?

ADO is a COM object, so there's no architectural or syntax counter indication in calling it from within a .NET application. This said,

using ADO in .NET is not generally a good idea.

In the .NET Framework, a large part of the ADO functionalities have been incorporated into the ADO.NET framework. The OLE DB
provider is no longer the preferred way to access data replaced by the managed data provider. In addition, in the .NET Framework
you can call a fair number of OLE DB providers directly, without the intermediation of ADO. In summary, ADO is not a good or
recommended choice for .NET applications, except in a couple of situations.

ADO.NET doesn't support server cursors and doesn't supply a rich object model for schema manipulation like ADOX. If your
application needs these features, ADO is the preferred choice, no matter if you're building a .NET-managed system.

ADO.NET
ADO.NET is a set of classes that expose data access services to .NET applications. Several syntax differences exist between the
object models of ADO and ADO.NET. In spite of this, the functionalities of ADO and ADO.NET look much the same, just because
Microsoft strove to align as many programming aspects of the ADO.NET object model with ADO as was possible. In this way, data
developers don't need to get familiar with too many new concepts in order to use ADO.NET, and can migrate on a relatively short
learning curve. With ADO.NET, you probably won't be able to reuse much of your existing code; you will certainly be able to reuse
all of your ADO skills, though.

ADO.NET consists of two high-level blocks, data containers and data providers. Data container classes form a sort of in-memory
database model. Classes like DataSet, DataTable, and DataView are array-like classes and can be filled with any data, including
data retrieved from a database. In addition, these classes provide a disconnected and memory-based database model that
supports advanced features such as tables, relations, constraints, and primary keys.

Managed providers are the second group of logical components in the ADO.NET architecture.. They are the .NET counterpart to
OLE DB providers. Managed providers wrap DBMS systems, and in general data stores, and expose their functionalities through
common programming interfaces and data containers.

Managed providers differ from OLE DB providers in at least two key areas; they're managed object (as opposed to COM objects),
and they're simpler objects (implementing a more compact suite of interfaces). Another big benefit of managed providers is that
they return data using high-level, framework-specific objects, making any conversion to manageable containers (like the
Recordset in ADO) totally unnecessary.

A .NET application that needs to work with SQL Server will use the classes of the SQL Server managed provider to open and close
a connection, prepare and run commands, and parse the results of a query. At the same time, ADO.NET container classes
(specifically, the DataSet class) will be used in all those situations in which the results of a query must be cached and used in a
disconnected manner. The DataSet is also a fundamental tool to update a database in batch mode.

The ADO.NET object model revolves around the objects listed in Table 2.

Table 2. Logical Components of a Managed Provider

Component Description

Connection Creates a connection with the specified data source, be it SQL Server, Oracle, or any data source for which you can
indicate either an OLE DB provider or an ODBC driver.

Transaction Represents a transaction in the underlying database server.
Command Represents a command that hits the underlying database server.
Parameter Represents a parameter for the command object.

DataAdapter
Represents a database command based on a disconnected set of records. The DataAdapter can be used to get a
collection of records or to batch-update the database with the values in the current collection. The collection of
record is represented with a DataSet or DataTable class.

DataReader Represents a read-only, forward-only cursor created on the underlying database server.

The .NET Framework supplies a managed provider for SQL Server 7.0 and newer versions, which is by far the most effective way
to access SQL Server from within .NET applications. In general, a .NET application can access a SQL Server database in two ways. It
can use the SQL Server managed provider (recommended), or the OLE DB managed provider. In the latter case, the OLE DB
provider passes through the COM-based OLE DB provider used by ADO. The rub is that the COM-based OLE DB provider
component (called SQLOLEDB) passes through the COM Interop layer, which seamlessly provides for data and type marshaling
with the accompanying overhead that this requires. (Using the SQLOLEDB component is necessary if, for some reason, you have
to connect to SQL Server 6.5.)

The ADO.NET programming model is based on a relatively standard sequence of steps that first create a connection, then prepare
and execute a command, and finally process the data retrieved. This simple model is broadly equivalent to the ADO's (the names
of the objects involved are also similar), and doesn't significantly change if you switch to another database.

Dim conn As New SqlConnection(connString)

Dim cmd As New SqlCommand(cmdText, conn)
cmd.Connection.Open()
Dim cursor As SqlDataReader = cmd.ExecuteReader()
' Process the data
cmd.Connection.Close()

The code above shows how to run a query. To execute a non-query statement like an UPDATE, change it as follows.

Dim conn As New SqlConnection(connString)
Dim cmd As New SqlCommand(cmdText, conn)
cmd.Connection.Open()
cmd.ExecuteNonQuery()
cmd.Connection.Close()

If you're going to execute a stored procedure, set the command text to the stored procedure's name and add the following
declaration to the command object.

cmd.CommandType = CommandType.StoredProcedure

A key difference between ADO and ADO.NET is that ADO is a general-purpose object model and a direct result of the OLE DB and
UDA vision. Simply put, it is one programming model that fits all data stores (as long as the data store stocks an OLE DB
provider). The same code works unchanged (or requires limited changes) if you switch, say, from Access to SQL Server.

All .NET managed providers are optimized for the needs and the features of a particular data source. Unlike OLE DB providers,
they have a smaller number of interfaces to implement and can offer a mechanism closer to the real working of the DBMS, with
no abstraction or unnecessary complexity. This increased speed comes at a price; writing database agnostic code is a bit harder,
although perfectly possible.

Each target database has its own working set of classes to carry out basic functions—connection, transaction, commands, and the
like. To open a connection with SQL Server, you use the SqlConnection class. To run a command, the SqlCommand class is
needed. To process a read-only cursor, the SqlDataReader object is necessary. Different classes are required to target Oracle or
Access. For example, you use OracleConnection and OracleCommand classes to work with the Oracle database. The naming
convention in use guarantees that names are similar, but the actual behavior may differ quite a bit. Differences don't show up that
much with basic operations like executing a query or inserting a new record; it is likely to happen, instead, with more specific tasks
like managing BLOB fields or server cursors.

Note Good news is expected with ADO.NET Whidbey on the point of database-independent code. The next version of
ADO.NET features a brand new factory model for .NET data providers. Stay tuned with this Developer Center to learn
more in the upcoming months.

Working with SQL Server Through XML
In the past few years, the evolution of the computer industry has raised the need for total software integration and
communication. As a result, any available data must be transformable into another model in order to be consumed as required by
the context. The capability to accept and return data through XML streams is a key factor for a modern and up-to-date database.

Microsoft SQL Server 2000 comes with an embedded engine capable of manipulating data as XML. The syntax of some T-SQL
commands has been modified to incorporate these new features, and a new set of commands has been added. All in all, a new
XML-based API exists for SQL Server 2000 which lets users send and receive XML streams. The low-level changes in the SQL
Server programming interface also have effects on the higher-level interface modules like ADO and ADO.NET. The SQLXML
managed library in particular provides many new .NET classes specifically designed to support the XML capabilities of SQL Server.
Let's review these capabilities first and the SQLXML API next.

In SQL Server 2000 there are two basic ways to retrieve XML data. You can use the XML extensions to the SELECT statement or,
alternatively, execute a query on a particular text or BLOB field that contains text formatted as XML data. SQL Server 2000 doesn't
mark those fields with a special attribute or data type to indicate they contain XML data, though. Only with SQL Server 2005 will
the XML data type allow you to create table columns made of XML data.

If the SELECT statement contains a trailing FOR XML clause, the resultset is transformed in a string of XML text. Let's consider the
following statement.

SELECT TOP 3 customerid, companyname FROM Customers FOR XML AUTO

The generated output is an XML fragment, as shown below.

<Customers customerid="ALFKI" companyname="Alfreds Futterkiste"/>
<Customers customerid="ANATR" companyname="Ana Trujillo Emp ..."/>
<Customers customerid="ANTON" companyname="Antonio Moreno Taquería"/>

Within the FOR XML clause, you can specify a working mode. Feasible values are listed in Table 3.

Table 3. Modes of the FOR XML extension

Mode Description

AUTO Returns query results as a sequence of XML nodes named after the table. Columns are rendered as attributes. If the
additional ELEMENTS clause is specified, rows are rendered as child nodes instead.

RAW Returns query results as a sequence of generic <row> nodes with as many attributes as the selected fields
EXPLICIT Defines the schema of the XML document being returned.

Note that the XML data may optionally include schema information if you append the XMLDATA attribute to the FOR XML mode
of choice, as shown below.

SELECT * FROM Employees FOR XML, XMLDATA

Schema information is incorporated in a <schema> node prepended to the rest of the XML fragment. As you may have noticed
already, what SQL Server returns is not a whole, well-formed XML document. It fulfills all syntax requirements for a well-formed
document, but lacks a unique root node. For this reason, it is called an XML fragment.

If the query joins two tables on the value of a column, then the resulting XML schema provides nested elements. For example,
consider the following query.

SELECT Customers.CustomerID, Customers.ContactName, Orders.OrderID
FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID
FOR XML AUTO

Here's the XML output. As you can see, it automatically groups child records below the parent.

<Customers CustomerID="ALFKI" ContactName="Maria Anders">
 <Orders OrderID="10643"/>
 <Orders OrderID="10692"/>
 <Orders OrderID="10783"/>
 :
</Customers>
<Customers CustomerID="ALFKI" ContactName="Ana Trujillo">
 <Orders OrderID="11459"/>
 <Orders OrderID="10987"/>
:
</Customers>

SQL Server 2000 also supports XML as an input format for write operations. In particular, it accepts XML input through the
following channels: the OPENXML statement, XML bulk loading, and updategrams.

OPENXML is a T-SQL function that takes care of inserting data represented as an XML document into a table. OPENXML parses
the contents of the XML document and exposes it as a rowset. Bear in mind that OPENXML has been designed and optimized to
handle relatively small documents up to 50 KB. For documents over that threshold, you should constantly monitor the response
time, to decide whether you should stick with OPENXML or if you need something different, like XML bulk loading.

XML bulk loading is another technique that lets you load XML data into SQL Server tables. Functionally similar to OPENXML, bulk
loading is implemented through a COM object and provides higher performance when large amounts of XML data are processed.
The bulk loader reads the XML data and tries to use the SQL Server's BULK INSERT statement, meaning it attempts to batch all the
records in a single shot. By doing this, it achieves a higher throughput. In other situations—for example, when you have an
identity column that needs to propagate an ID from a parent to a child row—the bulk loader processes records individually.It
identifies the database tables and columns involved, and then prepares and executes SQL statements. When the bulk loader
encounters an XML element, it utilizes schema information to associate it with a record on a table. The record is actually written
when the closing tag for that element is found. This algorithm ensures that, in cases of parent-child relationships, all the children
are always processed before the parent row.

As mentioned earlier, XML Bulk Loading is implemented through a COM object. The object's progID is SQLXMLBulkLoad. The
following Visual Basic 6.0 code shows how to use the object.

conn = "PROVIDER=sqloledb;SERVER=(local);DATABASE=" & _
 "northwind;Integrated Security=SSPI;"
Set bulk = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")
bulk.ConnectionString = conn
bulk.Execute "schema.xml", "data.xml"

If run within a transaction, the XML bulk loader uses a temporary file for each table involved in the operation. Each file gathers all

the changes for the specified table. When commit occurs, the contents of the various files are flushed into the corresponding SQL
Server table using the BULK INSERT statement.

Finally, updategrams are an XML description of the changes (insertions, deletions, and updates) that must be applied to the
database. Updategrams can be executed in various ways. For example, you can send the updategram text to SQL Server over
HTTP, you write the XML content out to a file and then point the browser (or any other HTTP-enabled software) to that URL so that
the content gets executed, or you can send an updategram out using an ADO command stream.

The SQLXML Managed Library
SQLXML 3.0 (Service Pack 2 now available) is an extension to SQL Server 2000 aimed to keep it current with evolving W3C
standards for XML. Available as a free download, SQLXML 3.0 also includes many managed classes in order to expose some of the
XML-based functionalities to .NET applications. SQLXML 3.0 gives SQL Server 2000 the ability to expose stored procedures as a
Web Service via SOAP and also adds support for ADO.NET diffgrams and client-side XML transformations. To learn more about
using SQLXML 3.0, check out the Data Access and Storage Developer Center's SQLXML content.

When you install SQLXML 3.0, you also get a few managed classes for .NET programming. The set of SQLXML managed classes
consists of two main classes— SqlXmlCommand and SqlXmlAdapter—plus a few ancillary classes. SqlXmlCommand is the
fundamental class used to execute an XML-driven command against SQL Server. The SqlXmlAdapter class is actually a wrapper
for the command that just exposes the results through a DataSet object. A good introduction on SQLXML managed classes can
be found here.

The key thing to note about SQLXML 3.0 is that any operations directed at SQL Server pass through the OLE DB provider for SQL
Server (SQLOLEDB). This situation will change in Visual Studio 2005, where all the XML-oriented features of SQL Server (e.g., bulk
loading, XML data readers) will be fully integrated with the .NET Framework.

What Will Be New (and Hot) With Visual Studio 2005
A lot of new features are ready for SQL Server programmers in ADO.NET 2.0. First and foremost, the excellent provider factory
model makes it possible to create a connection object in an indirect way,that is, using a factory object instead of the usual new
operator. Batch update enhancements are also available for all data providers. Specific to the SQL Server managed provider are
other features, like bulk copy and asynchronous execution of commands.

In ADO.NET 2.0, each .NET data provider defines a factory class. Among other things, this class is responsible for returning a
connection object for the provider. You pass the factory the name of the provider you want to use, and it returns a connection
object of the correct type, as shown by the following code snippet.

DbProviderFactory fact;
fact = DbProviderFactories.GetFactory("System.Data.SqlClient");
IDBConnection conn = fact.CreateConnection();

The global GetFactory method takes the name of the provider with which you want to work, and returns the corresponding
factory class. Once you've got it, you call the CreateConnection method to obtain the connection object in an indirect way. The
introduction of this model makes generic database programming much easier to code.

Batch update is a feature introduced with ADO 2.1 and significantly enhanced in ADO.NET 1.x. The biggest limitation of ADO.NET
batch update is that records are always submitted one at a time. This means that, for example, if one hundred rows have been
updated, inserted or deleted, then one hundred roundtrips to SQL Server occur to complete the operation. ADO.NET 2.0
introduces a new property on the data adapter object that lets you control the number of records grouped together and sent to
the DBMS in a single shot. The property is named BatchUpdateSize, and set to 1 by default. You can increase that number at will,
but you will notice that an overly large number may clog the network and result in a loss of performance instead.

The bulk copy functionality provides a much faster way to transfer large amounts of data into a SQL Server table. The
performance you get with a specialized operation, such as a bulk copy, is typically remarkably better than using an INSERT
statement. In SQL Server 7.0 and newer, the BULK INSERT statement is used to copy formatted data, stored in a ASCII file, into a
SQL Server table. You can use this statement from within any .NET Framework 1.1 applications that use an appropriate
SqlCommand object. In ADO.NET 2.0, a new class named SqlBulkCopyOperation provides bulk copy facilities directly at the
application level, without the need to know about SQL Server internal utilities and T-SQL commands.

A database operation is normally a synchronous operation, meaning that the caller regains the control of the application only
when the interaction with the database has completed. This way of working may pose performance and scalability issues in cases
of lengthy operations. ADO.NET 2.0 provides true asynchronous support for two specific scenarios: opening connections and
executing commands. Leveraging these features, you can open a connection and populate the command object while the
connection is physically established. This is a clear performance advantage, because it really gives you a bit of parallelism if SQL
Server lives on a remote machine.

In ADO.NET 2.0, you find an additional pair of methods to open a connection, BeginOpen and EndOpen. A connection can only

http://msdn.microsoft.com/data/sqlsolutions/sqlreldata/default.aspx#xml

be closed synchronously, though.

string connStr = "SERVER=...;DATABASE=...;... ";
SqlConnection conn = new SqlConnection(connStr);
SqlCommand cmd = new SqlCommand(query, conn);

// Begin connecting
IAsyncResult ar = conn.BeginOpen(null, null);

// Poll until connection is opened
while(!ar.IsCompleted) {
 // Do some work in the mean time
}

// End connecting
conn.EndOpen(ar);

The asynchronous pattern is even more interesting if applied to the execution of commands. The support for asynchronous
operations is built into the SqlCommand class and is limited to executing non-query commands, getting a reader, and an XML
reader. Let's briefly review the case of readers.

The first step is calling the BeginExecuteReader method, to which you pass a callback function and an object that represents the
state of the particular call. The state object is any object that contains information useful to the callback. In this case, I simply pass
a reference to the command object.

IAsyncResult ar = cmd.BeginExecuteReader(MyCallback, cmd);

After initiating the asynchronous operation, you can forget about it and do some other work. If there's a place in your code from
which you can't move away without the results of the query, you place a synchronizer so that the code will automatically be
stopped until the other thread invokes the callback.

ar.AsyncWaitHandle.WaitOne();

The callback follows the following scheme.

public void MyCallback(IAsyncResult ar)
{
 // Retrieve the context of the call (the command object)
 SqlCommand cmd = (SqlCommand) ar.AsyncState;

 // Terminate the async operation
 SqlDataReader reader = cmd.EndExecuteReader(ar);

 // Process the results
 :
}

The context of the call that you specified as the second argument to BeginExecuteReader is packed in the AsyncState property
of the IAsyncResult object. Typically, the callback will perform any user interface refresh that is needed after completing the
operation.

Note Asynchronous calls are implemented only within the Whidbey.NET data provider for SQL Server.
Asynchronous calls require a network library with true asynchronous support, which is supplied with MDAC 9.0, that
ships with SQL Server 2005 Beta 1, and the more recent Community Technology Preview of Visual Studio .NET 2005.

Conclusion
ADO (along with some made-to-measure tools like Remote Data Services) and ADO.NET are the two main data access
technologies for SQL Server. Choosing one depends chiefly on the Windows platform you're targeting, Win32® and COM, or
.NET. In addition to ADO and ADO.NET, and spanning the worlds of Win32 and the bright lights of .NET, is SQLXML, an object
model that fully exploits the XML capabilities of SQL Server 2000.

In this article, I've discussed the main data access layers available to work with SQL Server. I've tried to put each into perspective
to give the sense of the history, the current situation, and the future evolution.

In the end, ADO is the most reasonable (sometimes, unique) choice if you have to write COM, ASP, or Win32 applications. If you
are instead writing an application to be based on the .NET Framework, then ADO.NET is a no-brainer. If you need to perform
particular operations (e.g., server cursors, schema manipulation, bulk copy), ADO.NET might not offer the support you expect, but
the trend is highly encouraging. ADO.NET 2.0, slated in Beta 1 in mid-2004, promises to integrate missing functions and facilities

into the existing Framework, thus delivering a powerful, consistent, and self-sufficient data access layer.

Dino Esposito is a trainer and consultant based in Rome, Italy. A member of the Wintellect and VB2TheMax teams, Dino
specializes in ASP.NET and manages the ADO.NET and .NET Framework courseware for Wintellect. Dino spends most of his time
teaching and consulting across Europe and the United States, but this didn't prevent him from writing the Microsoft Press guide to
Programming Microsoft ASP.NET and the monthly "Cutting Edge" column for MSDN Magazine.

© Microsoft Corporation. All rights reserved.

http://www.wintellect.com/
http://www.vb2themax.com/
http://www.microsoft.com/mspress/books/6667.asp
http://msdn.microsoft.com/msdnmag
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Identifying Common Administrative Issues for Microsoft SQL
Server 2000

Microsoft Corporation

November 2001

Applies to:
 Microsoft® SQL Server™ 2000

Summary: This article describes stored procedures that can be used to identify server and database configurations outside the
recommended configuration parameters for Microsoft SQL Server 2000, as well as to troubleshoot blocking issues. (19 printed
pages)

Download Storedpro.exe.

Contents

Introduction
Installing the Stored Procedures
Check Server Configuration (sp_rk_audit_configure)
Configuration Options that Are Checked
 Running sp_rk_audit_configure
 How sp_rk_audit_configure Works
 Modifying sp_rk_audit_configure
Check Database Configuration (sp_rk_audit_dboptions)
 Running sp_rk_audit_dboptions
 How sp_rk_audit_dboptions Works
 Other Stored Procedures Called by sp_rk_audit_dboptions_check_1_db
 Modifying sp_rk_audit_dboptions_check_1_db to Look at Different Values
Application Troubleshooting
 Running sp_rk_blocker_blockee
 How sp_rk_blocker_blockee Works
 Modifying sp_rk_blocker_blockee

Introduction
This paper describes user-defined stored procedures that can be used to identify server and database configurations that are
outside the recommended configuration parameters for Microsoft® SQL Server™ 2000. The stored procedures are:

sp_rk_audit_configure
Checks server configuration for potential improvements.

sp_rk_audit_db_options
Checks the configuration of each database for potential improvements.

sp_rk_blocker_blockee
Returns information about all blocking and blocked processes.

These stored procedures can be used "as is" or modified by a database administrator to fit the specific needs of an enterprise.

Warning Do not use the stored procedures described in this paper on a production server without fully
understanding how they work and what they do. It is strongly recommended that the techniques described in this
paper be tested on a development computer.

Installing the Stored Procedures
This installation procedure assumes that the instance of SQL Server on which these stored procedures are being installed allows
trusted connections, and that the installation script is run by someone with sysadmin privileges. If you are unfamiliar with terms
used in this paper, see SQL Server Books Online.

To install the stored procedures

1. Download the storedpro.exe self-extracting executable file to your computer.

http://download.microsoft.com/download/7/6/0/760bc58b-48af-40b3-a557-998a0f9cfd32/storedpro.exe

2. To extract the SQL scripts, run the storedpro.exe file.
3. Start SQL Query Analyzer, and on the File menu, click Open.
4. Navigate to the folder in which the SQL scripts are stored, and then double-click sp_rk_create_audit_sp_in_master.sql

(Figure 1). This loads the master setup stored procedure.

Figure 1. Loading the master setup procedure (click image to see larger picture)

5. In the script, locate the comment "—Begin Customer changes here." Following this comment, there are three parameters
whose values must be changed:

@srcdir

The location of the SQL scripts that were installed on the computer.

@lisdir

The location of where the output files generated by this installation script are to be stored.

@srv

The name of the instance of SQL Server on which the stored procedures are to be installed.

6. On the Query menu, click Results in Text, and then execute the procedure. This installs the stored procedures in the
master database (Figure 2).

Figure 2. Installing the stored procedures in the master database (click image to see larger picture)

As shown in the preceding illustration, the sp_rk_create_audit_sp_in_master.sql script dynamically generates a command
prompt call to the osql utility, and then runs it in the xp_cmdshell extended stored procedure. The –E flag means that osql is
using trusted connections. If osql is not using trusted connections, each command line must be modified to use the –U username
and –P password flags.

Very little data is returned to the SQL Query Analyzer results pane because the work is shelled out to the command line; however,
the osql calls generate log files that are stored in C:\Temp by default.

In SQL Query Analyzer, in Object Browser, click master, and then click Stored Procedures. The following stored procedures
should be listed:

dbo.sp_rk_audit_clustered_wide dbo.sp_rk_check_non_dbo_owned_objects
dbo.sp_rk_audit_configure dbo.sp_rk_create_audit_sp_in_master
dbo.sp_rk_audit_dboptions dbo.sp_rk_helpfile
dbo.sp_rk_audit_dboptions_check_1_db dbo.sp_rk_indexoption
dbo.sp_rk_audit_old_outer_joins dbo.sp_rk_pk_uk_fk_index_analysis
dbo.sp_rk_audit_tlogs dbo.sp_rk_server_is_listening_on
dbo.sp_rk_blocker_blockee dbo.sp_rk_tableoption

If the stored procedures are not listed and there are no error messages in the results pane, check the log files generated by the
osql calls. You will not see any error messages if, for example, the procedures are run against a server that does not exist, or with
an account that does not have the appropriate permissions.

To view the log files in their default directory

1. On the Start menu, click Run, and then type c:\temp (or, if you changed this default, type the directory where the log files
are stored).

2. Select one of the sp_rk*.lis files.
3. On the File menu, click Open With, and then select Notepad.

After the stored procedures have been installed, they can be run immediately with their default set of checks.

SQL Server 2000 can adjust many of its configuration parameters automatically at run time. For this reason, database
administrators are advised to leave these parameters set at their default values. Some options, for example, max worker threads,
can be adjusted manually to improve performance. The max worker threads option can be used to configure the number of
worker threads available to SQL Server processes. The stored procedures described in this paper can help determine which, if any,
server configurations are outside the Microsoft recommendations for a database application.

Note Some of the sp_configure parameters apply only to SQL Server version 7.0 and have been removed in
SQL Server 2000, for example, max async IO.

Check Server Configuration (sp_rk_audit_configure)
The sp_rk_audit_configure stored procedure is a stand-alone stored procedure. sp_rk_audit_configure checks the server
configuration options. The default ranges for these server configuration options are hard-coded into the stored procedure based
on Microsoft recommendations. Changing these ranges and adding a new option to check are covered in "Modifying
sp_rk_audit_configure" in this paper. sp_rk_audit_configure has no required parameters.

Configuration Options that Are Checked
The sp_rk_audit_configure stored procedure checks whether or not TCP/IP Sockets is installed and whether the tempdb or
msdb databases have grown since the last time SQL Server was started.

The following table shows the configuration options that sp_rk_audit_configure checks and the recommended values.

Configuration option Recommended value
affinity mask = 0
allow updates = 0
fill factor (%) Not between 1 and 49
lightweight pooling = 0
locks Not between 1 and 9999
max async IO >= 32 (SQL Server 7.0 only)
max server memory (MB) > 32 or > (Total RAM – 48 megabytes (MB))
min memory per query (KB) >= 1024
network packet size (B) Between 4096 and 16384
open objects = 0
priority boost = 0
query governor cost limit = 0
query wait (s) = -1
recovery interval (min) = 0 or between 5 and 30
resource timeout (s) = 10
set working set size = 0
spin counter = 0
time slice (ms) Between 100 and 300

Running sp_rk_audit_configure
sp_rk_audit_configure gathers information about the server configuration by running stored procedures, such as sp_configure
and xp_msver, and then storing their results in temporary tables.

To run sp_rk_audit_configure

1. In SQL Query Analyzer, in the query window, type sp_rk_audit_configure.
2. On the Query menu, click Results in Text, and then execute the stored procedure.

As shown in Figure 3, the Results pane lists server configuration options that are less than optimal, as well as the number of
possible problems to investigate.

Figure 3. The results of executing the sp_rk_audit_configure stored procedure (click image to see larger picture)

How sp_rk_audit_configure Works
This section describes some of the important sections of code in the sp_rk_audit_configure stored procedure.

The #t temporary table stores results from the sp_configure system stored procedure:

create table #t (
 [name] varchar(128),
 minimum int,
 maximum int,
 config_value int,
 run_value int
)

The #t_serverinfo temporary table stores results from the xp_msver stored procedure:

create table #t_serverinfo(
 [Index] int,
 [Name] varchar(255),
 Internal_Value int,
 Character_Value varchar(255)
)

To see all possible configuration settings in sp_configure, the sp_rk_audit_configure stored procedure sets the show
advanced options parameter to 1:

 execute sp_configure 'show advanced options', 1
 reconfigure with override
 reconfigure

sp_configure and xp_msver are run and the results from these stored procedures are inserted into their respective temporary
tables:

 insert into #t ([name], minimum, maximum, config_value, run_value)
 execute sp_configure
 insert into #t_serverinfo([Index] , [Name] , Internal_Value ,
 Character_Value)
 exec master..xp_msver

Most of the remaining code in sp_rk_audit_configure compares the entries in the #t temporary table created by sp_configure
to the hard-coded values. For example, the following code checks to see whether an affinity mask is in place. For more
information about using an affinity mask in a multiprocessor environment, see SQL Server Books Online.

 if exists (select 1 from #t where [name] = 'affinity mask' and
 (config_value <> 0 or run_value <> 0))
 begin
 select 'Recommend value to be set to 0 for ', *
 from #t

 where name = 'affinity mask'
 set @nr = @nr + 1
 end

Finally, sp_rk_audit_configure checks to see whether the tempdb or msdb databases have expanded since SQL Server was
started. If these databases have expanded, the sp_rk_audit_configure stored procedure recommends that the databases be
resized. The stored procedure does this by exploiting the different times at which SQL Server updates its system tables when a
database file expands. The sysfiles system table in the local database always has current information about the size of the
database files; however, the sysaltfiles system table in the master database is updated only when the server is restarted.

 select *
 from master.dbo.sysaltfiles a
 inner join tempdb.dbo.sysfiles f
 on a.fileid = f.fileid
 where dbid = db_id('tempdb') and
 a.size <> f.size

Modifying sp_rk_audit_configure
The sp_rk_audit_configure stored procedure can be customized to:

Check for nested triggers.
Check for product version information.
Increase max async IO (SQL Server 7.0 only).

For example, if the servers are high performance servers with intelligent disk subsystems, the amount of asynchronous IO
requests can be changed from 32 to 64.

To increase the max async IO

1. In SQL Query Analyzer, in Object Browser, expand the master database.
2. In Stored Procedures, right-click sp_rk_audit_configure, and then click Edit.

This loads the stored procedure in a new query window.

Instead of being in a CREATE PROCEDURE statement, sp_rk_audit-configure is now in an ALTER PROCEDURE statement.
Thus, all existing permissions and dependencies will not be lost. For more information, see "ALTER PROCEDURE" in
SQL Server Books Online.

3. Locate the following code:

if exists (select 1 from #t where [name] = 'max async IO' and
 (config_value < 32 or run_value < 32))
begin
select 'Recommend value to be set to 32 or more for ', * from #t where
 name = 'max async IO'
 set @nr = @nr + 1
end

4. In the code in Step 3, replace the value 32 with 64:
5. Recompile the stored procedure.

To see whether nested triggers are enabled

1. In SQL Query Analyzer, in Object Browser, expand the master database.
2. In Stored Procedures, right-click sp_rk_audit_configure, and then click Edit. This loads the stored procedure in a new

query window.
3. Locate the following code:

-- conclusions
 if @nr > 0
 begin
 select 'found ', @nr, ' possible problems to investigate.
 Please also Investigate individual databases. End of
 Report.'

 end
 else
 begin
 select 'found nothing to investigate server wide.
 Please Investigate individual databases. End of Report.'
 end

 return 0

4. Paste the following code into the stored procedure just before the "—conclusions" comment shown in Step 3.

if exists (select 1 from #t where [name] = 'nested triggers' and
 (config_value = 0))
begin
select 'Nested Triggers are currently disabled!'
 set @nr = @nr + 1
end

5. Recompile the stored procedure.

To check the version of SQL Server you are running

To check whether the server is running SQL Server 2000, look at the product version information returned from xp_msver, which
is called by sp_rk_audit_dboptions_check_1_db. You can also check for any release of SQL Server, including service packs, by
adjusting the major and the minor release numbers in the character_value string.

1. In SQL Query Analyzer, in Object Browser, expand the master database.
2. In Stored Procedures, right-click sp_rk_audit_configure, and then click Edit. This loads the stored procedure in a new

query window.
3. Locate the following line of code:

from #t_serverinfo where [Name] = 'ProductVersion'

4. Paste the following code into the stored procedure immediately after the line of code in Step 3.

If Exists (select 1 from #t_serverinfo where [Name] = 'ProductVersion'
 and Character_Value = '8.00.100')
Begin
 Select 'This server is running SQL 2000 .'
End

5. Recompile the stored procedure.

Check Database Configuration (sp_rk_audit_dboptions)
The sp_rk_audit_dboptions stored procedure is the entry point to a suite of stored procedures that will check a number of
database-specific parameters for one or all of the databases on the server. This section contains a short description of each of
these stored procedures.

Important The sp_rk_audit_dboptions stored procedure must be run first because it creates all the temporary
tables that are referenced by the other stored procedures described in this section.

sp_rk_audit_dboptions_check_1_db
Checks the following database options. It also checks all databases for database and transaction log backups within the last
month and makes sure that log and database files are on separate disks.

Database option Value
auto update statistics OFF
auto create statistics OFF
autoclose ON
autoshrink ON
dbo use only ON
Offline ON

If the database is not a system database, the following options and values are also reported.

Database option Value
select into/bulkcopy ON
trunc. log on chkpt. ON

sp_rk_check_non_dbo_owned_objects
Checks the database for objects not owned by dbo.

sp_rk_indexoption
Looks for indexes with option values. For more information, see "sp_indexoption" in SQL Server Books Online.

sp_rk_tableoption
Looks for tables with option values. For more information, see "sp_tableoption" in SQL Server Books Online.

sp_rk_pk_uk_fk_index_analysis
Checks each table for at least one PRIMARY KEY, FOREIGN KEY, or UNIQUE constraint. It also lists any table without an index.

sp_rk_audit_old_outer_joins
Checks for all user-defined stored procedures in the database with old (non–SQL-92 standard) joins (*= or =*).

sp_rk_audit_clustered_wide
Looks for wide clustered keys with secondary indexes.

For more information about SQL Server performance tuning, see the topics "Optimizing Database Performance" and "Setting
Database Options" in SQL Server Books Online.

Running sp_rk_audit_dboptions
The sp_rk_audit_dboptions stored procedure creates temporary tables that will store information about the environment of
each database.

To run sp_rk_audit_dboptions

1. In SQL Query Analyzer, in the query window, type sp_rk_audit_dboptions.
2. On the Query menu, select Results in Text, and then execute the stored procedure.

Figure 4 shows a section of the results.

Figure 4. Partial results of the sp_rk_audit_dboptions stored procedure (click image to see larger picture)

sp_rk_audit_dboptions discovered the following:

A database called intranet has not been backed up in more than a week.
The transaction log for this database has never been backed up.
The log and database files share the same drive, which is not recommended.
Some tables do not have PRIMARY KEY, UNIQUE, or FOREIGN KEY constraints.

How sp_rk_audit_dboptions Works
This section describes some of the important pieces of code in the sp_rk_audit_dboptions stored procedure that has these
parameters and default values:

sp_rk_audit_dboptions(@dbname sysname = NULL, @DebugFlag int = 0)

The #t_indexes temporary table is used by the sp_rk_pk_uk_fk_index_analysis stored procedure:

 create table #t_indexes(
 tablename varchar(255),
 indexname varchar(255),
 indid int,
 indextype varchar(15),
 objectowner varchar(80)
)

The #t_dbfiles temporary table is used by the sp_rk_audit_dboptions_check_1_db and the sp_rk_helpfile stored procedures:

 create table #t_dbfiles(
 [name] varchar(256),
 fileid int,
 [filename] varchar(1024),
 [filegroup] varchar(256),
 [size] decimal(15,0),
 maxsize decimal(15,0),
 growth decimal(15,0),
 usage char(12),
 growth_type char(1) -- '%' percent, 'K' Kb
)

The #t_serverversioninfo temporary table is used by the sp_rk_audit_dboptions stored procedure:

 create table #t_ serverversioninfo (
 [Index] int,
 [Name] varchar(255),
 Internal_Value int,
 Character_Value varchar(255)
)

The #t_sp temporary table is used by the sp_rk_audit_dboptions and the sp_rk_audit_old_outer_joins stored procedures:

 create table #t_sp([text] varchar(8000))

The #t_logs80 temporary table is used by the sp_rk_audit_dboptions and the sp_rk_audit_tlogs stored procedures:

 create table #t_logs80(
 FileID int,
 FileSize int,
 StartOffset int,
 FSeqNo int,
 Status int,
 Parity int,
 CreateLSN varbinary(48)
)

The #t temporary table is used by the sp_rk_audit_dboptions and the sp_rk_audit_dboptions_check_1_db stored procedures:

 create table #t (
 [name] varchar(128),
 dbname varchar(256) default null
)

If the sp_rk_audit_dboptions stored procedure is called without any parameters, it will call
sp_rk_audit_dboptions_check_1_db for each database. Otherwise, it will call the sp_rk_audit_dboptions_check_1_db stored
procedure for the specified database only.

sp_rk_audit_dboptions_check_1_db(
@dbname sysname= NULL,
@SQLServerVersion int = 70,
@DebugFlag int = 0)

Most of the code in the sp_rk_audit_dboptions_check_1_db stored procedure examines the result set from sp_dboption,
including:

auto update statistics dbo use only
auto create statistics offline

autoclose select into/bulkcopy
autoshrink trunc. log on chkpt.

sp_dboption database name will list all of the database options that are set to ON for a database. The #t temporary table created
by sp_rk_audit_dboptions stores the list of all options that are set to ON for each database. To check whether a database has an
option set to ON, the code must check the #t temporary table. For example, the following code checks to see whether a database
has the auto update statistics option set to ON.

 if not exists (select 1 from #t where dbname = @dbname and [name] =
 'auto update statistics')
 begin
 select 'database ' + @dbname + ' disables: auto update statistics' +
 ' - not recommended'
 end

After checking for a variety of options in the #t temporary table, sp_rk_audit_dboptions_check_1_db checks the database and
log backup history stored in msdb.dbo.backupset.

sp_rk_audit_dboptions_check_1_db first checks to see whether the database has been backed up. Then, it stores the
backup_finish_date in @db_backup_finish_date. If this value is NULL, the database has never been backed up.

select top 1 @db_backup_finish_date = backup_finish_date
from msdb.dbo.backupset
where database_name = @dbname and type = 'D' -- Database
order by backup_finish_date desc

if (@db_backup_finish_date is NULL)
begin
 select 'database ' + @dbname + ' has no backup history
 (either backup not done or msdb data is lost). Ensure you
 have full db backup!'
end

If the value is not NULL, the stored procedure checks to see whether the database has been backed up in the last seven days:

else if (DATEDIFF(day, @db_backup_finish_date, getdate()) > 7) –
 recommend backup at least on weekly basis
begin
 select 'database ' + @dbname + ' has no backup since ' +
 convert(varchar(30),@db_backup_finish_date,100) + ' –
 Ensure you have full db backup.'
End

The stored procedure then checks to see whether the transaction log has been backed up:

select top 1 @tlog_backup_finish_date = backup_finish_date
from msdb.dbo.backupset
where database_name = @dbname and type = 'L' -- Log file (Transactional)
order by backup_finish_date desc
if (@tlog_backup_finish_date is NULL)
begin
 select 'database ' + @dbname + ' has no backup LOG history (either
 backup log not done or msdb data is lost). Ensure
 you have T-LOG backup!'
end
If the transaction log has been backed up, then the stored procedure
 checks to see whether it has been backed up within the last day:
else if (DATEDIFF(day, @tlog_backup_finish_date, getdate()) > 1) –
 recommend backup at least on daily basis
begin
 select 'database ' + @dbname + ' has no T-LOG backup since ' +
 convert(varchar(30),@tlog_backup_finish_date,100) + ' –
 Ensure you have periodic T-LOG backup.'
End

The stored procedure then checks the table to ensure that the database and transaction log files are stored on separate logical
drives.

Other Stored Procedures Called by sp_rk_audit_dboptions_check_1_db

sp_rk_audit_dboptions_check_1_db then calls a series of other stored procedures:

sp_rk_check_non_dbo_owned_objects
Checks the uid (user ID) column of sysobjects for objects owned by users other than dbo or INFORMATION_SCHEMA.

sp_rk_indexoption
Checks the lockflags column of sysindexes. This indicates whether locking constraints have been set on any indexes.

sp_rk_tableoption
Checks sysobjects for any table options.

sp_rk_pk_uk_fk_index_analysis
Finds tables that do not have a PRIMARY KEY, FOREIGN KEY, or UNIQUE constraint. It also looks for tables on which no indexes
are defined.

sp_rk_audit_old_outer_joins
Checks the text of all stored procedures stored in the text column of the syscomments table to find any procedures that are
using the old syntax for outer joins (*= or =*).

sp_rk_audit_clustered_wide
Finds tables that have wide clustered and other indexes present.

sp_rk_audit_tlogs
Checks the amount of virtual log files (30+) and growth factor (<10%) of transaction logs.

Modifying sp_rk_audit_dboptions_check_1_db to Look at Different Values
The sp_rk_audit_dboptions_check_1_db stored procedure checks all of the database options by looking at the result set of the
sp_dboption stored procedure, which is stored in the #t temporary table. By default, sp_rk_audit_dboptions_check_1_db does
not check all of the configurable database options that are queried by sp_dboption. One such option is recursive triggers. If
your application uses recursive triggers, which are disabled by default, you can use sp_rk_audit_dboptions_check_1_db to
check this option.

To modify sp_rk_audit_dboptions_check_1_db to look at different values

1. In SQL Query Analyzer, in Object Browser, expand the master database, and then click the Stored Procedures folder.
2. Right-click sp_rk_audit_dboptions_check_1_db, and then select Edit.

This loads the stored procedure into a new query window.

Instead of being in a CREATE PROCEDURE statement, the stored procedure is now in an ALTER PROCEDURE statement.
Thus, all existing permissions and dependencies will not be lost.

3. Find the section of the stored procedure that begins to look at the sp_dboption information (stored in #t). The first part of
the code looks like this:

if not exists (select 1 from #t where dbname = @dbname and [name] =
 'auto update statistics')
 begin
 select 'database ' + @dbname + ' disables: auto update
 statistics' + ' - not recommended'
 set @nr = @nr + 1
 end

4. Copy the preceding code and paste it directly above the first IF statement.

Note This code checks the auto update statistics option. To check the recursive triggers option, replace the
auto update statistics with recursive triggers.

if not exists (select 1 from #t where dbname = @dbname and [name] =
 'recursive triggers')
 begin
 select 'database ' + @dbname + ' disables: recursive triggers' +
 ' - not recommended'
 set @nr = @nr + 1
 end

5. On the Query menu, select Execute. The screen should look like Figure 5.

Figure 5. Results of running the code (click image to see larger picture)

Application Troubleshooting
Blocking is one of the common issues a database administrator encounters. The sp_rk_blocker_blockee stored procedure,
another stand-alone procedure, lists all of the blocking server process identifiers (SPIDs), their input buffers, the SPIDs that they
are blocking, their wait time, and input buffers. The data returned from this stored procedure makes it easy to identify the causes
of blocking.

Running sp_rk_blocker_blockee
sp_rk_blocker_blockee has no parameters.

After this stored procedure is installed, it can be run immediately.

In SQL Query Analyzer, in the query window, type sp_rk_blocker_blockee. You will not see any results unless blocking is in
progress.

To test the stored procedure with simulated blocking

1. In SQL Query Analyzer, in the database drop-down list, select pubs, and then open a new query window.
2. Paste, and then execute the following code:

Code Example 34.4

Create table a(
 Col1 int
)
GO
insert a values(1)

3. Close the query window.
4. Open a new query window for the pubs database.
5. Paste the following code into the query window:

Code Example 34.5

Begin tran
 -- Execute this first!
 Update a set Col1 = 1 where Col1 = 1
 -- this will keep this transaction opened for 1 minute
 Waitfor delay '000:01:00'
Commit tran

6. Open another new query window for the pubs database.
7. Paste the following code into the query window:

Code Example 34.6

Begin Tran
 -- Execute this second!

 Update a set Col1 = 5 - 4 where Col1 = 1
Commit tran

8. Open one more new query window.

Select any database from the database drop-down list.

9. In the query window, type sp_rk_blocker_blockee, but do not execute the stored procedure immediately.
10. In SQL Query Analyzer, click Window, and then select Tile Vertically so the three query windows are displayed.
11. Execute the code from Step 5, and then execute the code from Step 7.
12. Within one minute of executing the code from Step 5, execute the sp_rk_blocker_blockee stored procedure from Step 9.

The Results pane should look like Figure 6.

Figure 6. Results of executing the sp_rk_blocker_blockee stored procedure (click image to see larger picture)

How sp_rk_blocker_blockee Works
sp_rk_blocker_blockee queries the master.dbo.sysprocesses system table. This table is dynamically generated and holds
information about the processes that are running on SQL Server. For more information about sysprocesses and the other system
tables, see SQL Server Books Online.

Examine the following columns of the sysprocesses table:

spid

Holds the server process ID for the process.

blocked

Is either 0 or holds the SPID of a blocking process.

waittime

Indicates the amount of time that the process has been blocked.

sp_rk_blocker_blockee stores the information it retrieves from the sysprocesses table in two cursors: blocker_cursor and
blockee_cursor.

blocker_cursor holds all of the SPIDs that appear at the head of the blocking chains:

DECLARE blocker_cursor CURSOR for
 SELECT spid from master.dbo.sysprocess WHERE spid IN (SELECT blocked
FROM master.dbo.sysprocesses) AND blocked = 0

blockee_cursor holds all blocked processes:

Declare blockee_cursor CURSOR for
SELECT spid, blocked, waittime FROM master.dbo.sysprocesses WHERE
 blocked > 0

sp_rk_blocker_blockee then loops through the blocker_cursor, each time finding the SPIDs in the blockee_cursor whose
blocked columns match the blocker SPID. For each SPID it finds, sp_rk_blocker_blockee lists the wait time and input buffer. To
find the input buffer of a process, run DBCC INPUTBUFFER(spid). For more information about the DBCC commands, including
DBCC INPUTBUFFER, see SQL Server Books Online.

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

Modifying sp_rk_blocker_blockee
The code for sp_rk_blocker_blockee does not need much modification. When checking for blocking problems, you must be
careful not to add complex logic because this will only make the problem worse. However, if catching the blocking is a problem,
use the SQL Server Agent to run sp_rk_blocker_blockee at specified intervals automatically. The SQL Server Agent can be
modified to log its results to a table instead of printing them on the screen. For more information about the SQL Server Agent, see
"Automating Administrative Tasks" in SQL Server Books Online.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

©2001 Microsoft Corporation. All rights reserved.

Microsoft is a trademark of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Implementing Referential Integrity and Cascading Actions

Itzik Ben-Gan and Thomas Moreau

October 2000

Summary: This article is a chapter excerpt from the book Advanced Transact-SQL for SQL Server 2000 from APress Books. This
chapter covers the use of declarative referential integrity as well as the use of triggers to maintain data integrity. (42 printed
pages)

Contents

Introduction
The Relationship Scenario
Referential Integrity Enforcement Methods
Implementing Cascading Operations Using a FOREIGN KEY
Implementing Cascading Operations Using Stored Procedures
Implementing Cascading Operations Using Triggers
Conclusion

Introduction
Data is usually spread across several tables, which are related to each other through key columns. Database normalization is used
to avoid duplicates in a database, thus avoiding potential errors. Although it's true that database normalization minimizes the
chance for errors, it doesn't eliminate them. There is still the need for a set of data-integrity rules that will enforce the
relationships between tables and keep the database as consistent as possible. This set of rules is called referential integrity, and it
is a part of the wider set of rules that enforce data integrity in general.

This article explores the rules used to maintain referential integrity in various table relationships, with a focus on cascading
actions. Cascading actions are actions that must be performed on a secondary table to compensate when a primary table is
modified.

The Relationship Scenarios
You might face different situations, each of which requires a different approach and different rules that need to be implemented.
This article focuses on cascading modifications from one table to related tables. It discusses two relationship scenarios:

The relationship between a primary and a secondary table. An example is a one-to-many relationship between a
primary table and a secondary table, such as an Orders table and an OrderDetails table, where each order in the Orders
table has one or more order parts in the OrderDetails table. Another example is a one-to-one relationship between a
primary table and a secondary subtype table, such as a Customers table and a ForeignCustomers table, where each
customer in the Customers table can have no more than one row in the ForeignCustomers table. There is no need to
discuss other variations of these relationships because they are treated the same way in terms of cascading. Therefore, only
the Orders:OrderDetails scenario will be used in the examples in this article.
The relationships within one table. An example of such a scenario is an Employees table, where each employee reports
to a manager, who is also an employee.

The Orders and OrderDetails Tables

The following script shows how to create the Orders and OrderDetails tables. They will be used to illustrate the rules necessary
to maintain referential integrity between primary and secondary tables.

Schema creation script for the Orders and OrderDetails tables

CREATE TABLE Orders(
OrderID int NOT NULL,
CustomerID char(5) NOT NULL,
OrderDate datetime NOT NULL,
CONSTRAINT PK_Orders_OrderID PRIMARY KEY(Orderid))

CREATE TABLE OrderDetails(
OrderID int NOT NULL,
PartID int NOT NULL,

Quantity int NOT NULL,
CONSTRAINT PK_OrderDetails_OrderID_partid PRIMARY KEY(OrderID, PartID))

INSERT INTO Orders VALUES(10001, 'FRODO', '19990417')
INSERT INTO Orders VALUES(10002, 'GNDLF', '19990418')
INSERT INTO Orders VALUES(10003, 'BILBO', '19990419')

INSERT INTO OrderDetails VALUES(10001, 11, 12)
INSERT INTO OrderDetails VALUES(10001, 42, 10)
INSERT INTO OrderDetails VALUES(10001, 72, 5)
INSERT INTO OrderDetails VALUES(10002, 14, 9)
INSERT INTO OrderDetails VALUES(10002, 51, 40)
INSERT INTO OrderDetails VALUES(10003, 41, 10)
INSERT INTO OrderDetails VALUES(10003, 61, 35)
INSERT INTO OrderDetails VALUES(10003, 65, 15)

The following tables show the contents of the Orders table and the OrderDetails table.

Content of the Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10002 GNDLF 1999-04-18 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000

Content of the OrderDetails table

orderid partid quantity
10001 11 12
10001 42 10
10001 72 5
10002 14 9
10002 51 40
10003 41 10
10003 61 35
10003 65 15

Figure 1 shows the schema of the Orders and OrderDetails tables.

Figure 1. Schema of the Orders and OrderDetails tables

The Employees Table

The following script shows how to create the Employees table. It will be used to illustrate the rules necessary to maintain
referential integrity within a single table.

Schema creation script for the Employees table

CREATE TABLE Employees
(empid int NOT NULL,
 mgrid int NULL,
 empname varchar(25) NOT NULL,
 salary money NOT NULL,
 CONSTRAINT PK_Employees_empid PRIMARY KEY(empid))

INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(1, NULL, 'Nancy', $10000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(2, 1, 'Andrew', $5000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(3, 1, 'Janet', $5000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(4, 1, 'Margaret',$5000.00)

INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(5, 2, 'Steven', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(6, 2, 'Michael', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(7, 3, 'Robert', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(8, 3, 'Laura', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(9, 3, 'Ann', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(10, 4, 'Ina', $2500.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(11, 7, 'David', $2000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(12, 7, 'Ron', $2000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(13, 7, 'Dan', $2000.00)
INSERT INTO employees(empid, mgrid, empname, salary)
 VALUES(14, 11, 'James', $1500.00)

The following table shows the content of the Employees table.

Content of the Employees Table

empid mgrid empname salary
1 NULL Nancy 10000.0000
2 1 Andrew 5000.0000
3 1 Janet 5000.0000
4 1 Margaret 5000.0000
5 2 Steven 2500.0000
6 2 Michael 2500.0000
7 3 Robert 2500.0000
8 3 Laura 2500.0000
9 3 Ann 2500.0000
10 4 Ina 2500.0000
11 7 David 2000.0000
12 7 Ron 2000.0000
13 7 Dan 2000.0000
14 11 James 1500.0000

Figure 2 shows the schema of the Employees table.

Figure 2. Schema of the Employees table

Referential Integrity Enforcement Methods
There are several mechanisms for enforcing referential integrity in general and cascading operations, which is one of the
referential integrity actions, specifically. They are divided into two main groups:

Declarative Referential Integrity (DRI), where rules are declared as part of the table's schema. The main mechanism used to
enforce DRI is a FOREIGN KEY constraint.
Procedural Referential Integrity, where rules are checked in a procedural code. There are several mechanisms that
implement procedural referential integrity—code in the client application, stored procedures, and triggers.

Implementing Cascading Operations Using a FOREIGN KEY
The ANSI SQL-92 standard specifies four referential integrity actions that define the activity that should occur when the tables
involved in the relationship are modified: NO ACTION, CASCADE, SET DEFAULT, and SET NULL. In a relationship between two

tables, the table that contains the FOREIGN KEY—also known as the referencing table—is the secondary or subtype table.

In the first OrderDetails table example, the FOREIGN KEY is placed on the related column in the referencing table, and it
references the primary table's (also known as the referenced table's) related column, on which a PRIMARY KEY or UNIQUE
constraint must be defined. In this example, it is placed on the orderid column in the OrderDetails table, and it references the
orderid column in the Orders table.

In the second example—the Employees table—the FOREIGN KEY is placed on the mgrid column, and it references the empid
column.

The following sections explore the four referential integrity actions in more detail, using the sample tables to illustrate the way
they are implemented in Microsoft® SQL Server™.

NO ACTION (restrict)

This type of action was the only one supported by the FOREIGN KEY constraint up until, and including, SQL Server version 7.0. It
always enforces all of the following integrity rules:

You can't delete a row from the primary table if it has related rows in the secondary table. In the Orders and OrderDetails
scenario, you can't delete an order that has order details. In the Employees scenario, you can't delete a manager who is in
charge of employees.
You can't update the primary table's primary key if the row being modified has related rows in the secondary table. In the
Orders and OrderDetails scenario, you can't update an order ID if that order has order parts. In the Employees scenario,
you can't update a manager ID if that manager is in charge of employees.
You can't insert a row into the secondary table if there is no related row in the primary table. For example, you can't insert
an order detail for an order that doesn't exist. Also, you can't insert an employee if the entry for the employee's manager
doesn't exist.
You can't update the secondary table's FOREIGN KEY column if it doesn't have a related row in the primary table. For
example, you can't shift an order detail to an order that doesn't exist, and you can't assign an employee to a manager if an
entry for the manager doesn't exist.

You can create a FOREIGN KEY as part of the CREATE TABLE statement, or you can add it later by using the ALTER TABLE
statement. You'll use the latter method in the examples.

To add a FOREIGN KEY to OrderDetails, run the following script.

Adding a FOREIGN KEY to the OrderDetails table

ALTER TABLE OrderDetails ADD CONSTRAINT FK_OrderDetails_Orders
 FOREIGN KEY(orderid)
 REFERENCES Orders(orderid)

To add a FOREIGN KEY to the Employees table, run the following script.

Adding a FOREIGN KEY to the Employees table

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_Employees
 FOREIGN KEY(mgrid)
 REFERENCES Employees(empid)

Microsoft SQL Server 2000 enables you to specify NO ACTION explicitly with the FOREIGN KEY constraint, because it supports
other actions as well, as opposed to a FOREIGN KEY constraint in previous versions. NO ACTION is the default if you don't specify
an action. Thus, you could rewrite the previous OrderDetails code as follows.

Add a FOREIGN KEY with NO ACTION to the OrderDetails table

ALTER TABLE OrderDetails ADD CONSTRAINT FK_OrderDetails_Orders
 FOREIGN KEY(orderid)
 REFERENCES Orders(orderid)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION

Note If you are running the code samples and want to create a new FOREIGN KEY instead of an existing one, you
have to drop the existing one first by including the following code in your script:

ALTER TABLE OrderDetails DROP CONSTRAINT FK_OrderDetails_Orders

You should be aware that using a FOREIGN KEY, even to enforce NO ACTION, incurs a performance penalty. If you review the four

integrity rules a FOREIGN KEY enforces, it is clear that for each of them, when you modify one table, SQL Server has to access the
related table to see if the rule is going to be broken. On the other hand, those rules are checked before the modification occurs—
so if any of the rules are broken, nothing is written to the transaction log, and the operation is canceled. Some implementations
prefer to enforce these rules in the client application instead. Just keep in mind that one application might enforce the rules, but
another might not, compromising the integrity of your database.

CASCADE

The ANSI SQL-92 standard supports both the DELETE CASCADE and the UPDATE CASCADE actions in the REFERENCES clause of
the FOREIGN KEY constraint.

ON DELETE CASCADE means that when a row in the primary table is deleted, you want all the related rows in the secondary table,
which has a FOREIGN KEY pointing to the primary table, to be automatically deleted. In the Orders and OrderDetails example, if
you delete the order with order ID 10002 from the Orders table, the two order details in the OrderDetails table belonging to that
order will be automatically deleted.

ON UPDATE CASCADE means that if you update a column in the primary table, which is pointed at by the FOREIGN KEY in the
secondary table, the FOREIGN KEY column in all of the related rows will also be updated with the same values. In the Orders and
OrderDetails example, if you change the value of orderid from 10002 to 10004 in the Orders table, the value of the orderid
column of the two order parts belonging to that order in the OrderDetails table will automatically be updated to 10004 as well.

Note Declarative cascading actions were not supported prior to SQL Server 2000, and they have been on the wish
lists of many programmers and DBAs. At last, they are supported as of SQL Server 2000.

To try out these new concepts, you can run some tests on both examples. First, create a FOREIGN KEY that supports both cascade
actions (don't forget to drop the existing foreign key first, if you created one), as shown in the following script.

Adding a FOREIGN KEY with CASCADE to the OrderDetails table

ALTER TABLE OrderDetails ADD CONSTRAINT FK_OrderDetails_Orders
 FOREIGN KEY(orderid)
 REFERENCES Orders(orderid)
 ON DELETE CASCADE
 ON UPDATE CASCADE

Each of the following examples expects the tables to contain the same data as initially loaded. Instead of reloading the data each
time, you can encapsulate the modification in a transaction and roll it back after you check the result, so the changes will not be
committed to the database. You can use the pattern shown in the following script, and just incorporate your DELETE/UPDATE
statement instead of the one in this example.

Template for modifying data without committing the changes

BEGIN TRAN
 SELECT * FROM Orders
 SELECT * FROM OrderDetails
 DELETE... / UPDATE...
 SELECT * FROM Orders
 SELECT * FROM OrderDetails
ROLLBACK TRAN

Next, modify the Orders table and check the results. First, delete the order with the order ID 10002, as shown in the following
script.

Testing ON DELETE CASCADE

DELETE FROM Orders
WHERE orderid = 10002

The result of this DELETE statement is shown in the following tables.

Testing ON DELETE CASCADE, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000

Testing ON DELETE CASCADE, OrderDetails table

orderid partid quantity

10001 11 12
10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15

You can see that the related order parts in the OrderDetails table were automatically deleted. Examine the execution plan of this
DELETE, shown in Figure 3.

Figure 3. Execution plan for ON DELETE CASCADE (click image to see larger picture)

The steps in this execution plan are as follows:

Delete the row with order ID 10002 from the Orders table (clustered index delete).
Store the deleted order ID 10002 in a temporary table.
Read the temporary table created in Step 2.
Perform a clustered index seek in the OrderDetails table to find matching order parts.
Join the temporary table from Step 3 to the OrderDetails rows found in Step 4 to find the order details that need to be
deleted (using a nested-loops join algorithm).
Store the order details' keys in a temporary table.
DELETE order details from the OrderDetails table based on the keys stored in the temporary table from Step 5 (clustered
index delete).
Perform the modifications in sequence (top to bottom).

Now you can issue an UPDATE against the Orders table that changes order ID 10002 to 10004, as shown in the following script.

Testing ON UPDATE CASCADE

UPDATE Orders
 SET orderid = 10004
WHERE orderid = 10002

The result of this UPDATE statement is shown in the following tables.

Testing ON UPDATE CASCADE, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000
10004 GNDLF 1999-04-18 00:00:00.000

Testing ON UPDATE CASCADE, OrderDetails table

orderid partid quantity
10001 11 12
10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15

10004 14 9
10004 51 40

Notice that the orderid column of the related order details in the OrderDetails table was updated correctly. Cascade actions also
support multirow modifications. Consider the UPDATE statement shown in the following script.

Testing ON UPDATE CASCADE with a multirow update

UPDATE Orders
 SET orderid = orderid + 1

The result of this UPDATE statement is shown in the following tables.

Testing ON UPDATE CASCADE with a multirow update, Orders table

orderid customerid orderdate
10002 FRODO 1999-04-17 00:00:00.000
10003 GNDLF 1999-04-18 00:00:00.000
10004 BILBO 1999-04-19 00:00:00.000

Testing ON UPDATE CASCADE with a multirow update, OrderDetails table

orderid partid quantity
10002 11 12
10002 42 10
10002 72 5
10003 14 9
10003 51 40
10004 41 10
10004 61 35
10004 65 15

This might seem trivial at first glance, but if you look at the other alternatives to implementing cascading operations, which are
mainly stored procedures and triggers (both of which will be explained later in this article), you'll see that an UPDATE like this
cannot be cascaded with any other mechanism.

Unfortunately, you cannot implement cascading actions in the Employees table the same way. If you try to create a foreign key
on the Employees table that supports cascade actions, you will get the error shown in the following message.

Cyclic or Multiple Cascade Paths error when trying to add a foreign key

Server: Msg 1785, Level 16, State 1, Line 1
Introducing Foreign key Constraint 'FK_Employees_Employees' on table
 'Employees' may cause cycles or multiple cascade paths. Try using
 instead option 'On Delete (Update) No Action' or modifying
 other Foreign key constraints
Server: Msg 1750, Level 16, State 1, Line 1
Could not create constraint. See previous errors.

As you can see, SQL Server noticed that your cascade operation is cyclic, and it does not allow this type of cascading. This is true
not only for a self-referencing table, but also for any chain of relationships between tables in which the cascading operations have
a potential to be cyclical. In order to enforce cascading actions in relationships that are potentially cyclic, you'll need to revert to
enforcement mechanisms that are used in releases earlier than SQL Server 2000, such as triggers. Such mechanisms are covered
later in this article.

If you go over the four rules that are enforced by NO ACTION, you should keep in mind that when you use ON DELETE CASCADE,
it compensates for a DELETE in the primary table by deleting the related rows in the secondary table instead of enforcing Rule 1
(which would prevent the DELETE). Similarly, ON UPDATE CASCADE compensates for an UPDATE to the primary table by
updating the related rows in the secondary table instead of enforcing Rule 2 (which would prevent the UPDATE). If either of the
cascade actions is not used, the related rule will be enforced. Notice that cascade actions compensate only for modifications to the
primary table. Rules 3 and 4 concern illegal modifications to the secondary table that result in a row that has no related row in the
primary table. These two rules are always enforced by the constraint, even when you define both cascade actions.

When you use declarative constraints, you don't need to worry about Rules 3 and 4 because they are taken care of automatically.
However, you should keep them in mind because you will need to be aware of them when you use other mechanisms to enforce
cascade actions.

SET NULL and SET DEFAULT

The referential actions SET NULL and SET DEFAULT compensate for modifications to the primary table by setting the related
columns in the child rows in the secondary table to NULL or to their default value. These actions are not supported as declarative
referential constraints in SQL Server 2000, but you can implement them with triggers, which will be discussed later in this article,
in the Implementing Cascading Operations Using Triggers section.

Implementing Cascading Operations Using Stored Procedures
Using stored procedures to implement cascading actions does not provide a self-maintained solution. It does, however, allow you
to keep your FOREIGN KEY enabled, even in SQL Server 7.0, where this is not possible when implementing a trigger-based
solution.

To use stored procedures this way, you create a stored procedure that substitutes each type of modification for both the
referencing and referenced tables, making sure that the users will modify the data only through the stored procedures so that the
cascade actions will take place. You can accomplish this by granting the users permissions to execute the stored procedures, but
not allowing them to directly update the underlying tables. Another "gotcha" with this solution is that the stored procedures take
care of single-row modifications on the referenced table.

The following examples are run on the Orders and OrderDetails scenario. Before you continue, make sure you have a FOREIGN
KEY with no cascade actions enabled, as shown in the following script.

Re-creating the FOREIGN KEY with NO ACTION (implicitly)

ALTER TABLE Employees DROP CONSTRAINT FK_Employees_Employees
GO

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_Employees
 FOREIGN KEY(mgrid)
 REFERENCES Employees(empid)
GO

You'll implement a stored procedure for each type of modification on both the Orders and OrderDetails tables.

Deleting a Row in the Primary Table

Taking care of cascade deletes in the Orders table is quite simple. You first delete matching rows from the OrderDetails table,
and then delete the row from the Orders table. This way you don't break the FOREIGN KEY. The creation script for the
usp_OrdersDelete stored procedure is shown in the following script.

Creation Script for the usp_OrdersDelete Stored Procedure

CREATE PROC dbo.usp_OrdersDelete
 @orderid int
AS

BEGIN TRAN

-- delete matching rows from OrderDetails
DELETE FROM OrderDetails
WHERE orderid = @orderid

-- delete row from Orders
DELETE FROM Orders
WHERE orderid = @orderid

COMMIT TRAN
 GO

Updating a Row in the Primary Table

Updating a row in the Orders table is a bit more complex than deleting a row. First, you need to cascade the UPDATE only if the
orderid column is modified. You also need to check whether it is modified to a new value; otherwise, it is the same as not
modifying it.

If the orderid value doesn't change, you can perform a regular update. If it changes, the FOREIGN KEY does not allow a regular
update. To handle this situation, you can break the UPDATE up into a DELETE operation followed by an INSERT operation. After all,
you can think of an UPDATE operation as deleting the old value and inserting the new one. First you insert a row with the new
order ID and update the matching rows in the OrderDetails table. Then you can delete the row with the old order ID.

The creation script for the usp_OrdersUpdate stored procedure is shown in the following script.

Creation script for the usp_OrdersUpdate stored procedure

 CREATE PROC dbo.usp_OrdersUpdate
 @orderid int,
 @neworderid int = NULL,
 @customerid char(5) = NULL,
 @orderdate datetime = NULL
AS

-- perform cascade update only if the orderid column is modified
-- and also, it is different from the existing order id
-- split the update to insert and then delete so the foreign key
 will not be broken
IF @neworderid IS NOT NULL AND @orderid <> @neworderid
BEGIN
 BEGIN TRAN

 -- insert a row with the new order id to Orders
 INSERT INTO Orders(orderid, customerid, orderdate)
 SELECT
 @neworderid,
 ISNULL(@customerid, customerid),
 ISNULL(@orderdate, orderdate)
 FROM
 Orders
 WHERE
 orderid = @orderid

 -- update the orderid column for the matching rows in OrderDetails
 UPDATE OrderDetails
 SET orderid = @neworderid
 WHERE orderid = @orderid

 -- delete the row with the old order id from Orders
 DELETE FROM Orders
 WHERE orderid = @orderid

 COMMIT TRAN
END
-- if the orderid column was not modified, perform a regular update
ELSE
 UPDATE Orders
 SET customerid = ISNULL(@customerid, customerid),
 orderdate = ISNULL(@orderdate, orderdate)
 WHERE
 orderid = @orderid
 GO

There are a few issues that this stored procedure deals with. In order to allow the update of only some of the columns in the row,
you need to have a signal indicating that certain columns should keep their current values. Because all of the columns in the
Orders table do not allow NULLs, this is easy—you can safely use NULLs as your signal. This, however, is not so simple with
columns that allow NULLs. If you want to allow a column with a NULL value to be updated, you need another signal indicating
that the column should keep its current value. Adding a parameter for each column that allows NULLs can solve this—it can be
used as a flag that indicates whether it is a NULL that should be placed in the column, or whether the current column value should
be kept.

Also note that this solution is only possible if none of the columns other than the PRIMARY KEY is enforced with a UNIQUE
constraint or a UNIQUE index. If there is such a column, your INSERT will fail on a duplicate key. In such a case, you might decide
to drop the FOREIGN KEY and handle the UPDATE with an UPDATE statement instead of breaking it into an INSERT followed by a
DELETE. Another option that does not require you to drop the FOREIGN KEY is to move all the affected secondary table rows to a
temporary table and UPDATE them there. This way you can perform the UPDATE as a DELETE followed by an INSERT and then
copy the rows back to the OrderDetails table, and you won't violate the FOREIGN KEY.

Inserting a Row into the Primary Table

Inserting a row into the Orders table is pretty straightforward. The creation script for the usp_OrdersInsert stored procedure is
shown as follows.

Creation script for the usp_OrdersInsert stored procedure

 CREATE PROC dbo.usp_OrdersInsert
 @orderid int,
 @customerid char(5),
 @orderdate datetime
AS

INSERT INTO Orders(orderid, customerid, orderdate)
 VALUES(@orderid, @customerid, @orderdate)
 GO

Here you don't have the NULLs problem discussed earlier because NULLs are not used as a signal in this script. However, you do
have a problem if some of the columns in the table have default values and you want to allow the user to use the default for those
columns by not specifying a value. If the default values are constants, this could be solved easily by making the default values of
the columns also the default values of the parameters in the stored procedure. For example, suppose the customerid column had
the default value "ZZZZZ", you could slightly modify the stored procedure as follows.

Creation script for the usp_OrdersInsert stored procedure, with defaults included

 CREATE PROC dbo.usp_OrdersInsert
 @orderid int,
 @customerid char(5) = 'ZZZZZ',
 @orderdate datetime
AS

INSERT INTO Orders(orderid, customerid, orderdate)
 VALUES(@orderid, @customerid, @orderdate)
 GO

If the default values for the columns had been expressions, such as a system function like GETDATE(), this modification wouldn't
have been so simple, because a default value for a stored procedure's parameter can only be a constant. In such a situation, you
need to add parameters to indicate that a default value is desired for a column and then issue the INSERT using the DEFAULT
keyword instead of using a specific value for the column.

Inserting, Updating, and Deleting a Row in the Secondary Table

Inserting, updating, and deleting a row in the OrderDetails table are all straightforward operations, and they have the same
issues regarding NULLs and default values as discussed earlier. The following contains the creation script for the
usp_OrderDetailsInsert, usp_OrderDetailsUpdate, and usp_OrderDetailsDelete stored procedures.

Creation script for the usp_OrderDetailsInsert, usp_OrderDetailsUpdate, and usp_OrderDetailsDelete stored
procedures

 CREATE PROC dbo.usp_OrderDetailsInsert
 @orderid int,
 @partid int,
 @quantity int
AS

INSERT INTO OrderDetails(orderid, partid, quantity)
 VALUES(@orderid, @partid, @quantity)
GO

CREATE PROC dbo.usp_OrderDetailsUpdate
 @orderid int,
 @partid int,
 @neworderid int = NULL,
 @newpartid int = NULL,
 @quantity int = NULL
AS

UPDATE OrderDetails
 SET orderid = ISNULL(@neworderid, orderid),
 partid = ISNULL(@newpartid, partid),
 quantity = ISNULL(@quantity, quantity)
WHERE
 orderid = @orderid
 AND
 partid = @partid

GO

CREATE PROC dbo.usp_OrderDetailsDelete
 @orderid int,
 @partid int
AS

DELETE FROM OrderDetails
WHERE
 orderid = @orderid
 AND
 partid = @partid
 GO

Note that you didn't need to deal with illegal modifications that result in orphaned order details because the FOREIGN KEY takes
care of that.

Encapsulating the Logic

Instead of manually creating a set of stored procedures for each table, you can encapsulate the logic in a stored procedure that
creates the relevant CREATE PROCEDURE statements and executes them dynamically.

To get an idea of how this can be implemented, visit Dejan Sarka's SQL User's Group Web site and select English from the pull-
down menu at the bottom of the left pane, Old Presentations from the Meetings list in the middle of the left pane, and a sample
script from Procedures that create procedures in the center pane.

Implementing Cascading Operations Using Triggers
You can use triggers to enforce referential integrity and cascading actions when you need a self-maintained solution—you don't
need to modify the data through special stored procedures. You can use the same INSERT, UPDATE, and DELETE statements to
modify the base tables as you would normally use, and they will cause the triggers to fire and enforce referential integrity and
cascade your modifications.

Prior to SQL Server 2000, triggers were the only self-maintained solution you could implement to enforce referential integrity
with cascading actions. SQL Server 2000 introduced new features to Transact-SQL that enable you to approach cascading actions
in a variety of new ways, some of which were discussed earlier in this article. Others will be discussed in the following sections.
Because cascading actions are approached differently in SQL Server 2000 as compared to previous versions, this paper will
discuss the two approaches separately.

Using Triggers Prior to SQL Server 2000

The first thing that you need to keep in mind when you want to provide a solution with AFTER triggers in all versions of SQL
Server is that they fire after the modification has occurred. This means that you have to drop all existing FOREIGN KEY constraints
in order to allow the trigger's code to run after a modification takes place. Otherwise, the constraint will prevent the modification
from taking place. In other words, if you keep the constraints and modify a row in the primary table, and related rows in the
secondary table exist, the modification will be rejected by the constraint and the trigger will never fire. Furthermore, once you
drop the constraint, your trigger solution needs to take care of all referential integrity rules that might be broken, in addition to
implementing the cascading actions.

Tip Instead of dropping the foreign keys, you can just disable them using ALTER TABLE NOCHECK CONSTRAINT
<constraint_name>. This will enable visual tools such as the Enterprise Manager's database designer to recognize the
relationships and display them. Also, when you use the sp_help system stored procedure to investigate the tables'
schema, it will be easier to recognize the relationships.

Implementing ON DELETE CASCADE and ON UPDATE CASCADE with triggers

Before continuing, you need to drop the existing foreign keys, as shown in the following script.

Dropping the foreign keys

 ALTER TABLE OrderDetails DROP CONSTRAINT FK_OrderDetails_Orders
GO
ALTER TABLE Employees DROP CONSTRAINT FK_Employees_Employees
 GO

Now that you are aware of the implications of using triggers in your solution, take a look at the flow diagram shown in Figure 4,
which shows the components you should use depending on the types of cascading actions you want to support. Each component
is discussed in detail in the following sections.

http://sql.reproms.si/

Figure 4. Flow diagram of trigger solution to referential integrity enforcement (click image to see larger picture)

Cascading deletes

In the first junction shown in the preceding illustration, you check whether your solution should implement NO ACTION. If this is
the case, you simply create a FOREIGN KEY (Component 1 in the preceding illustration), as discussed earlier in the NO ACTION
(restrict) section of the article, and your flow diagram ends.

If you implement any kind of cascade action, you go to the second junction, where you check whether your solution handles the
DELETE CASCADE action. If it does, you implement a DELETE CASCADE trigger (Component 2 in the preceding illustration). You
need to implement the cascade trigger a bit differently in a relationship between two tables than in a single-table relationship. In
the Orders and OrderDetails example, you can implement the trigger as shown in the following script.

Creation script for the trg_d_orders_on_delete_cascade trigger

 CREATE TRIGGER trg_d_orders_on_delete_cascade ON Orders FOR DELETE
AS

DELETE FROM OrderDetails
FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 GO

Note In order to make the code shorter, most of the triggers displayed in this article do not include the IF
@@rowcount = 0 check. This check is important to ensure that the code in the trigger will not be invoked if the trigger
is fired as a result of a modification that did not affect any rows in the table. In a production environment, you should
add these checks.

To understand how the trigger works, delete an order from the Orders table, as shown in the following script. (Remember, you
can wrap the modification in a transaction in the examples so the changes will not commit in the database.)

Testing the trg_d_orders_on_delete_cascade trigger

DELETE FROM Orders
WHERE orderid = 10002

Take a look at Figure 5, which shows what's happening inside the trigger.

Figure 5. Inside the CASCADE DELETE trigger

The DELETE operation in the preceding script starts the following activity:

1. The DELETE operation is written to the transaction log.
2. Order 10002 is deleted from the Orders table.
3. The DELETE trigger is fired. While inside the trigger, order 10002 does not exist in the Orders table. The deleted table, which

you can think of as a view on the deleted row in the transaction log, contains the row for order 10002.
4. The DELETE trigger deletes all related rows from the OrderDetails table by performing a join between the deleted table and

the OrderDetails table. The join is used here to filter only the related rows in the OrderDetails table.

Thus you get the required result, as shown in the following tables.

Testing the trg_d_orders_on_delete_cascade trigger, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000

Testing the trg_d_orders_on_delete_cascade trigger, OrderDetails table

orderid partid quantity
10001 11 12
10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15

The trg_d_orders_on_delete_cascade trigger also handles multirow deletes.

On the face of it, it looks like you could implement the same trigger on the Employees table. After all, if you delete an employee,
you want to delete all his or her subordinates, as well. The difference here is that each of the subordinates might have subordinate
employees, so your trigger needs to handle recursion; otherwise, it will delete the subordinates of the employee you deleted, but
will leave their subordinates without a manager.

The ability of triggers to fire recursively is determined in the database level by the setting of the recursive triggers database
option, which is disabled by default. If you want to allow recursive triggers, you first need to enable this option, but then you face
another problem. Triggers fire as a result of a DELETE operation even if the DELETE operation did not affect any rows. To
understand the consequence of the fact that triggers fire even if no rows are affected, suppose you enabled recursive triggers,
implemented the DELETE cascade trigger, and deleted Robert's row from the Employees table.

Currently, the Employees table should look like the one shown in the following table.

Employees table

empid mgrid empname salary
1 NULL Nancy 10000.0000
2 1 Andrew 5000.0000
3 1 Janet 5000.0000
4 1 Margaret 5000.0000

5 2 Steven 2500.0000
6 2 Michael 2500.0000
7 3 Robert 2500.0000
8 3 Laura 2500.0000
9 3 Ann 2500.0000
10 4 Ina 2500.0000
11 7 David 2000.0000
12 7 Ron 2000.0000
13 7 Dan 2000.0000
14 11 James 1500.0000

Now try the DELETE statement shown in the following script.

Testing a DELETE CASCADE trigger on the Employees table with recursive triggers enabled

DELETE FROM Employees
WHERE empid = 7

Robert's row is removed from the table, and the trigger fires for the first time. The deleted table contains Robert's row. Then the
trigger deletes Robert's subordinates (David, Ron, and Dan) by joining the Employees table to the deleted table. The result is
shown in the following table.

Testing a DELETE CASCADE trigger on the Employees table with recursive triggers enabled the first time the trigger
fires

empid mgrid empname salary
1 NULL Nancy 10000.0000
2 1 Andrew 5000.0000
3 1 Janet 5000.0000
4 1 Margaret 5000.0000
5 2 Steven 2500.0000
6 2 Michael 2500.0000
8 3 Laura 2500.0000
9 3 Ann 2500.0000
10 4 Ina 2500.0000
14 11 James 1500.0000

The trigger is fired again for the second time recursively. The deleted table contains the rows of David, Ron, and Dan, and the
trigger deletes their subordinates (in this case, only David has a subordinate—James) by joining the Employees table to the
deleted table. The result is shown in the following table.

Testing a DELETE CASCADE trigger on the Employees table with recursive triggers enabled the second time the trigger
fires

empid mgrid empname salary
1 NULL Nancy 10000.0000
2 1 Andrew 5000.0000
3 1 Janet 5000.0000
4 1 Margaret 5000.0000
5 2 Steven 2500.0000
6 2 Michael 2500.0000
8 3 Laura 2500.0000
9 3 Ann 2500.0000
10 4 Ina 2500.0000

The trigger is fired again for the third time recursively. The deleted table contains James' row. Notice that James doesn't have
subordinates, but the trigger is unaware of that because it doesn't perform any existence checks prior to the DELETE, hence the
DELETE is issued. The DELETE operation doesn't affect any rows, but it is a DELETE just the same, so another trigger is fired with no
rows in the deleted table.

This recursive loop would continue endlessly if there were no limitation to the number of nesting levels. However, because there
is a nesting level limitation (16 in SQL Server version 6.5 and 32 in later versions), all modifications are rolled back once that
limitation is reached. To solve the problem of the trigger firing even when the modification affects no rows, you can simply add an
existence check to the trigger prior to the DELETE, as shown in the following script.

Creation script for the trg_d_employees_on_delete_cascade trigger

 CREATE TRIGGER trg_d_employees_on_delete_cascade ON Employees FOR DELETE
AS

IF EXISTS(SELECT *
 FROM
 Employees AS E
 JOIN
 deleted AS D ON E.mgrid = D.empid)
 DELETE FROM Employees
 FROM
 Employees AS E
 JOIN
 deleted AS D ON E.mgrid = D.empid
 GO

Note Be careful when you issue a DELETE to the Employees table. Think of what would happen if you were to
remove Nancy's row.

Preventing illegal deletes from the referenced table

Continuing with the flow diagram shown previously (Flow Diagram of Trigger Solution to Referential Integrity Enforcement),
suppose you don't want to support the DELETE CASCADE action. If you have come this far in the flow diagram, it means that you
support the UPDATE CASCADE action; hence, you don't have a foreign key to prevent an illegal DELETE of a row in the primary
table that has related rows in the secondary table. Therefore, you need to enforce this rule with a prevent_delete trigger
(Component 3 in the flow diagram). This trigger is implemented the same way in a relationship between two tables as in a single-
table relationship.

Using the Orders and OrderDetails relationship as an example, create the trigger shown in the following script.

Creation script for the trg_d_orders_prevent_delete trigger

 CREATE TRIGGER trg_d_orders_prevent_delete ON Orders FOR DELETE
AS

IF EXISTS(SELECT *
 FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid)
BEGIN
 RAISERROR('The Orders you are trying to delete have related rows
 in OrderDetails. TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
END
 GO

The fact that the activity inside the trigger is part of a transaction started before the modification that fires the trigger enables you
to roll back the transaction if you discover an illegal DELETE attempt.

You can use the same kind of trigger in the Employees table, as the following script shows.

Creation script for the trg_d_employees_prevent_delete trigger

 CREATE TRIGGER trg_d_employees_prevent_delete ON Employees FOR DELETE
AS

IF EXISTS(SELECT *
 FROM
 Employees AS E
 JOIN
 deleted AS D ON E.mgrid = D.empid)
BEGIN
 RAISERROR('The employees you are trying to delete have subordinates.
 TRANSACTION rolled back.', 10, 1)

 ROLLBACK TRANSACTION
END
 GO

Cascading Updates

At the next junction in the flow diagram, you check whether your solution handles the UPDATE CASCADE action. If it does, you
implement an UPDATE CASCADE trigger (Component 4 in the diagram). This trigger is more complex than a DELETE CASCADE
trigger. It's not just a matter of locating the related rows in the secondary table—joining the deleted table to the secondary table
can easily do this. You also need to update the relevant rows in the secondary table with the updated values from the primary
table.

For example, if you change the order ID of order 10002 to 10004, you need first to locate all order details belonging to order
10002, and then UPDATE their orderid column to 10004. It is not too complex to handle such an UPDATE as long as only one
order ID changes.

In this section, you'll start with single-row updates and then look at the problems (and solutions) involved with multirow updates.
Begin by writing a trigger that implements this UPDATE CASCADE operation on the Orders table, as shown in the following script.

Creation script for the trg_u_orders_on_update_cascade trigger

 CREATE TRIGGER trg_u_orders_on_update_cascade ON Orders FOR UPDATE
AS

DECLARE @numrows int
SET @numrows = @@rowcount
IF UPDATE(orderid)
 IF @numrows = 1
 UPDATE OrderDetails
 SET orderid = (SELECT orderid FROM inserted)
 FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 ELSE IF @numrows > 1
 BEGIN
 RAISERROR('Updates to more than one row in Orders are not allowed.
 TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
 END
 GO

You first save the number of affected rows in a variable so you can later check it. Next you check whether the orderid column was
updated. If it wasn't, this UPDATE doesn't involve cascading; hence, it is not your concern. If it was, you continue and check
whether more than one row was modified. If this is the case, your trigger cannot handle this situation and it rolls back the
modification. If only one row was modified, you perform the CASCADE UPDATE operation. To understand how the CASCADE
UPDATE works, UPDATE an order from the Orders table, as shown in the following script.

Testing the trg_u_orders_on_update_cascade trigger

 UPDATE Orders
 SET orderid = 10004
 WHERE orderid = 10002

Take a look at Figure 6, which shows what's happening inside the trigger. You join the deleted table with the OrderDetails table
to filter only the related order details, and then update their orderid column to the new value, which is fetched from the inserted
table by using a subquery. You can issue such a subquery because you know that there is one and only one row in the inserted
table; otherwise, the subquery would have returned more than one value and the update would have failed. Thus you get the
required result, as shown in the following tables.

Figure 6. Inside the CASCADE UPDATE trigger

Testing the trg_u_orders_on_update_cascade trigger, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000
10004 GNDLF 1999-04-18 00:00:00.000

Testing the trg_u_orders_on_update_cascade trigger, OrderDetails table

orderid partid quantity
10001 11 12
10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15
10004 14 9
10004 51 40

There are no problems with locating the related rows in the OrderDetails table—you simply join it to the deleted table because it
still holds the old order ID values. But how do you relate the rows in the inserted table to the relevant rows in the OrderDetails
table now that they have new order IDs? Your immediate reaction might be to try to access the rows in the deleted and inserted
tables by using cursors, based on the assumption that a record in one cursor is in the same position as the related record in the
other cursor. If you could guarantee that, you could loop through both cursors, one record at a time, and update the related rows
in the OrderDetails table, as both the old order ID and the new order ID would be related.

However, this cannot be guaranteed at all. There is no way you can guarantee that the order of the records in the cursor on the
deleted table will have the same order as the related records in a cursor you place on the inserted table. You're pretty much stuck,
unless you devise a way to relate the rows prior to the UPDATE to the rows after the UPDATE. One way to handle this is to add a
surrogate key to the Orders table, to which UPDATEs will not be allowed. The sole purpose of this key is to be the join column
between the deleted and the inserted tables. You can use the IDENTITY property to automatically generate its values. Also, you
will need your UPDATE trigger to make sure that UPDATEs to this column will be rejected.

First, add the surrogate_key column to your Orders table, as shown in the following script.

Adding a surrogate key to the Orders table

 ALTER TABLE Orders
 ADD surrogate_key int NOT NULL IDENTITY(1,1)
 CONSTRAINT UNQ_orders_surrogate_key UNIQUE

The result of this addition is shown in the following table.

The Orders table with the addition of the surrogate key

orderid customerid orderdate surrogate_key

10001 FRODO 1999-04-17 00:00:00.000 1
10002 GNDLF 1999-04-18 00:00:00.000 2
10003 BILBO 1999-04-19 00:00:00.000 3

Now you can modify the trigger to support multirow UPDATE statements, as shown in the following script.

Adding multirow support for the trg_u_orders_on_update_cascade trigger

 ALTER TRIGGER trg_u_orders_on_update_cascade ON Orders FOR UPDATE
AS

DECLARE @numrows int
SET @numrows = @@rowcount
IF UPDATE(surrogate_key)
BEGIN
 RAISERROR('Updates to surrogate_key are not allowed.
 TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
END
ELSE
 IF UPDATE(orderid) AND @numrows > 0
 UPDATE OrderDetails
 SET orderid = I.orderid
 FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 JOIN
 inserted AS I ON D.surrogate_key = I.surrogate_key
 GO

First, you make sure that the UPDATE doesn't affect the surrogate key. Then, you check whether the orderid column was updated
and also whether any row was affected by the UPDATE at all. If the orderid column was updated and at least one row was
affected by the UPDATE, you perform the cascade UPDATE operation. In all other cases, you don't need to take any action.

To understand how the CASCADE UPDATE works, update all of the orders, as shown in the following script.

Testing the trg_u_orders_on_update_cascade trigger with a multirow update

UPDATE Orders
 SET orderid = 20004 - orderid

Take a look at Figure 7, which shows what's happening inside the trigger.

Figure 7. Inside the multirow UPDATE CASCADE trigger (click image to see larger picture)

As you can see, you join the OrderDetails table with the deleted table to filter the relevant rows as you did before. You also join
the deleted table to the inserted table to correlate the rows before and after the UPDATE. You can do this thanks to the surrogate
key you added. Now you can use the updated value of the orderid column from the inserted table to update the orderid column
in the OrderDetails table. Take a look at the results shown in the following tables.

Testing the trg_u_orders_on_update_cascade trigger with a multirow update, Orders table

orderid customerid orderdate surrogate_key
10001 BILBO 1999-04-19 00:00:00.000 3
10002 GNDLF 1999-04-18 00:00:00.000 2
10003 FRODO 1999-04-17 00:00:00.000 1

Testing the trg_u_orders_on_update_cascade trigger with a multirow update, OrderDetails table

orderid partid quantity
10001 41 10
10001 61 35
10001 65 15
10002 14 9
10002 51 40
10003 11 12
10003 42 10
10003 72 5

You can do basically the same thing in the Employees table, except you don't need recursion because when you update the
empid of a certain employee, you only want to update the mgrid of this employee's direct subordinates. You don't need to worry
about the fact that you turned on recursion for the database because you first check whether the empid column was updated
before you perform the cascade UPDATE.

To see how this works, begin by adding a surrogate key, as shown in the following script.

Adding a surrogate key to the Employees table

 ALTER TABLE Employees
 ADD surrogate_key int NOT NULL IDENTITY(1,1)
 CONSTRAINT UNQ_employees_surrogate_key UNIQUE
 GO

The following table shows the Employees table contents with the surrogate key added. The table shows that the IDENTITY values
were generated in order of empid, because the Employees table was scanned in that order, but keep in mind that there is no
guarantee of that.

The Employees table with the addition of the surrogate key

empid mgrid empname salary surrogate_key
1 NULL Nancy 10000.0000 1
2 1 Andrew 5000.0000 2
3 1 Janet 5000.0000 3
4 1 Margaret 5000.0000 4
5 2 Steven 2500.0000 5
6 2 Michael 2500.0000 6
7 3 Robert 2500.0000 7
8 3 Laura 2500.0000 8
9 3 Ann 2500.0000 9
10 4 Ina 2500.0000 10
11 7 David 2000.0000 11
12 7 Ron 2000.0000 12
13 7 Dan 2000.0000 13
14 11 James 1500.0000 14

Now create the cascade UPDATE trigger by running the following script.

Creation script for the trg_u_employees_on_update_cascade trigger

 CREATE TRIGGER trg_u_employees_on_update_cascade ON Employees FOR UPDATE
AS

DECLARE @numrows int
SET @numrows = @@rowcount
IF UPDATE(surrogate_key)
BEGIN
 RAISERROR('Updates to surrogate_key are not allowed. TRANSACTION
 rolled back.', 10, 1)
 ROLLBACK TRANSACTION
END
ELSE
 IF UPDATE(empid) AND @numrows > 0
 UPDATE Employees
 SET mgrid = I.empid
 FROM
 Employees AS E
 JOIN
 deleted AS D ON E.mgrid = D.empid
 JOIN
 inserted AS I ON D.surrogate_key = I.surrogate_key
 GO

As you can see, the trigger looks the same as the one you used for the Orders table. To see if it works, you can issue the UPDATE
shown in the following script.

Testing the trg_u_employees_on_update_cascade trigger

UPDATE Employees
 SET empid = 15 - empid

The result in the following table shows that the trigger did its job.

Testing the trg_u_employees_on_update_cascade trigger with a multirow update, Employees table

empid mgrid empname salary surrogate_key
1 4 James 1500.0000 14
2 8 Dan 2000.0000 13
3 8 Ron 2000.0000 12
4 8 David 2000.0000 11
5 11 Ina 2500.0000 10
6 12 Ann 2500.0000 9
7 12 Laura 2500.0000 8
8 12 Robert 2500.0000 7
9 13 Michael 2500.0000 6
10 13 Steven 2500.0000 5
11 14 Margaret 5000.0000 4
12 14 Janet 5000.0000 3
13 14 Andrew 5000.0000 2
14 NULL Nancy 10000.0000 1

Preventing illegal updates to the referenced table

Continuing with the flow diagram, suppose you don't want to support the UPDATE cascade action. Instead of creating a cascade
UPDATE trigger, you could create a prevent_update trigger (Component 5 in the diagram), which looks like the prevent_delete
trigger discussed earlier. All you need to do is find out whether the rows you're trying to update in the primary table have related
rows in the secondary table.

The following script creates the trigger on the Orders table.

Creation script for the trg_u_orders_prevent_update trigger

 CREATE TRIGGER trg_u_orders_prevent_update ON Orders FOR UPDATE
AS

IF EXISTS(SELECT *
 FROM
 OrderDetails AS OD
 JOIN

 deleted AS D ON OD.orderid = D.orderid)
BEGIN
 RAISERROR('The Orders you are trying to update have related rows
 in OrderDetails. TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
END
 GO

And this script creates the trigger on the Employees table.

Creation script for the trg_u_employees_prevent_update trigger

 CREATE TRIGGER trg_u_employees_prevent_update ON Employees FOR UPDATE
AS

IF EXISTS(SELECT *
 FROM
 Employees AS E
 JOIN
 deleted AS D ON E.mgrid = D.empid)
BEGIN
 RAISERROR('The employees you are trying to update have subordinates.
 TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
END
 GO

Preventing orphaned rows in the referencing table

You have one more thing to do. If you've gotten this far in the flow diagram, it signifies that you chose to use triggers to enforce
referential integrity. This means that Rules 3 and 4 discussed in the NO ACTION (restrict) section of the article need to be enforced
with a trigger as well. These rules disallow INSERT and UPDATE operations that result in a row in the secondary table with no
related row in the primary table—in other words, operations that create an orphaned row. Because you need to ensure that the
result is legal, you can use one trigger that checks the rows in the inserted table for both INSERT and UPDATE operations. Unlike
all previous triggers, this trigger will be created on the secondary table.

Run the following script to create the trg_iu_orderdetails_prevent_insupd trigger.

Creation script for the trg_iu_orderdetails_prevent_insupd trigger

 CREATE TRIGGER trg_iu_orderdetails_prevent_insupd
 ON OrderDetails FOR INSERT, UPDATE
AS

DECLARE @numrows int
SET @numrows = @@rowcount

IF UPDATE(orderid) AND @numrows > 0
 IF @numrows <> (SELECT COUNT(*)
 FROM Orders AS O JOIN inserted AS I
 ON O.orderid = I.orderid)
 BEGIN
 RAISERROR('Result rows in OrderDetails are orphaned.
 TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
 END
 GO

Notice how the code in the trigger checks whether you have orphaned rows. If you don't have orphaned rows, an inner join
between the inserted table, which holds the new order details, and the Orders table will result in the same number of rows as in
the inserted table, because each order detail has a matching order. If at least one of the order details doesn't have a matching
order, the number of rows in the inserted table will be greater than the number of rows resulting from the inner join. This trigger
can also be implemented with an IF NOT EXISTS() to check to see if order detail rows don't have a matching row in the Orders
table. You can try to implement this trigger using the NOT EXISTS() predicate as an exercise.

For the Employees table, you need to take a slightly different approach. Keeping in mind that top-level employees have NULLs in
the mgrid column, the number of rows affected by an UPDATE to a top-level employee will be different than the number of rows
returned by a join between the affected employees and their managers, as NULLs do not match. You can tackle the problem by
removing top-level employees from the equation. You compare the number of rows in inserted, excluding NULLs, to the number
of rows in the result of the join between inserted and the primary table, which, in this case, is Employees. Run the following script

to create the trg_iu_employees_prevent_insupd trigger.

Creation script for the trg_iu_employees_prevent_insupd trigger

 CREATE TRIGGER trg_iu_employees_prevent_insupd
 ON Employees FOR INSERT, UPDATE
AS

IF @@rowcount > 0 AND UPDATE(mgrid)
BEGIN
 DECLARE @numrows int

 SELECT
 @numrows = COUNT(*)
 FROM
 inserted
 WHERE
 mgrid IS NOT NULL

 IF @numrows <> (SELECT COUNT(*)
 FROM Employees AS E JOIN inserted AS I
 ON E.empid = I.mgrid)
 BEGIN
 RAISERROR('Result rows in Employees are orphaned.
 TRANSACTION rolled back.', 10, 1)
 ROLLBACK TRANSACTION
 END
END
 GO

Notice that this time you join the Employees table to the inserted table ON E.empid = I.mgrid, as opposed to the previous
triggers, where you used the join condition ON E.mgrid = I.empid. Now you are looking for illegal inserts to the secondary table,
so you look at the Employees table from the managers' point of view and not from the employees' point of view. The inserted
table contains new employees, and you want to check whether their mgrid column represents an existing employee in the
Employees table.

Encapsulating the Logic

As you've seen in the previous section, if you want to enforce referential integrity with triggers, there's a pretty straightforward
flow diagram that shows you which triggers to create. You follow the same flow diagram for any pair of tables in a relationship.
The only difference between the triggers in each implementation is the names of the tables and the columns.

You can create a stored procedure that encapsulates the logic of the flow diagram and creates the set of triggers for you. It will
receive the table and column names as parameters. You would execute the stored procedure as follows.

Invoking the sp_CreateRelationship stored procedure

 EXEC sp_CreateRelationship
 @prmtbl = Orders,
 @sectbl = OrderDetails,
 @prmcol = orderid,
 @seccol = orderid,
 @deletecascade = 1,
 @updatecascade = 1

EXEC sp_CreateRelationship
 @prmtbl = Employees,
 @sectbl = Employees,
 @prmcol = empid,
 @seccol = mgrid,
 @deletecascade = 1,
 @updatecascade = 1

Implementing SET NULL and SET DEFAULT with Triggers

ON DELETE SET NULL and ON UPDATE SET NULL are implemented very much the same way as their respective cascade triggers.
However, there is a new issue you need to keep in mind. In both a 1:1 (one-to-one) relationship and a 1:M (one-to-many)
relationship (such as the one between the Orders table and the OrderDetails table), you cannot keep a PRIMARY KEY or UNIQUE
constraint on the secondary table that includes the referencing column as part of the key. In such a case, your cascading operation
might result in duplicate keys and would therefore be rolled back. If your primary key contains the referencing column, you can

substitute it with an existing alternate key, if one exists in the table, or create a surrogate PRIMARY KEY. Also, if you are
implementing SET NULL, the referencing column in the secondary table must allow NULLs, in order to accept them.

If you want to implement ON DELETE SET NULL in your Orders and OrderDetails example, instead of creating a trigger that
implements the DELETE cascade logic, as in the previous section, you can create the trigger shown in the following script (though
first you would need to drop the PRIMARY KEY from the OrderDetails table and alter the orderid column so that it would allow
NULLs).

Creation script for the trg_d_orders_on_delete_set_null trigger

 CREATE TRIGGER trg_d_orders_on_delete_set_null ON Orders FOR DELETE
AS

UPDATE OrderDetails
 SET orderid = NULL
FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 GO

If you want to support the SET DEFAULT action instead, assuming that there is a DEFAULT value defined for the referencing
column, you would implement a trigger that looks almost like the trigger that implements the SET NULL action. You just replace
the NULL in the SET clause with the keyword DEFAULT, as shown in the following script.

Creation script for the trg_d_orders_on_delete_set_default trigger

 CREATE TRIGGER trg_d_orders_on_delete_set_default ON Orders FOR DELETE
AS

UPDATE OrderDetails
 SET orderid = DEFAULT
FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 GO

You can implement the ON UPDATE SET NULL or ON UPDATE SET DEFAULT actions in a similar way by slightly modifying the
logic of the respective UPDATE cascade triggers, which were discussed previously in this article.

Using Triggers in SQL Server 2000

In SQL Server 2000, there is no compelling reason to use triggers to enforce cascading operations. Declarative referential
constraints can take care of this, as discussed in the Implementing Cascading Operations Using a FOREIGN KEY section. However,
in certain situations, declarative referential constraints can't be implemented. For example, you can't create a FOREIGN KEY that
points to a table in another database, but you can still enforce referential integrity with triggers the same way you would in
versions prior to SQL Server 2000. In fact, everything covered in the previous section is valid for SQL Server 2000, as well.

The only types of triggers that were supported in previous versions of SQL Server are what are now called AFTER triggers,
because SQL Server 2000 supports INSTEAD OF triggers as well. Remember that AFTER triggers fire only after constraints are
checked, so if you decide to enforce referential integrity with AFTER triggers, you have to drop or disable all existing foreign keys,
just as in previous versions; otherwise, the AFTER triggers will never fire.

With INSTEAD OF triggers, things are slightly different. Because these triggers substitute for the modification that was submitted
to the database, they fire before constraints are checked. INSTEAD OF triggers on the primary table can coexist with declarative
cascading referential constraints on the secondary table, so you don't need to implement the cascading actions in the trigger if
you need to take preliminary actions before the modification actually happens in the primary table.

Before going into details, it's important to review a few issues, as they will come into play here. Now that you have declarative
referential constraints that can take care of cascade actions, and also INSTEAD OF triggers and AFTER triggers, a modification to
the primary table will be processed in the following order:

1. Modification is issued.
2. If an INSTEAD OF trigger is defined on the relevant type of modification, it substitutes the modification. The INSTEAD OF

trigger is responsible for resubmitting the modification.
3. If an INSTEAD OF trigger was not defined, or if the modification was resubmitted by the INSTEAD OF trigger, the constraint

performs its safety checks and the cascade operation fires, if one was defined on relevant type of modification. Note that if

the INSTEAD OF trigger modifies the table on which it is placed, it will not be called recursively. However, if it performs
modifications that do not result in recursive calls to itself, those modifications will be treated just as any other modification
—in other words, they will be processed in the same order described here, starting from Step 1.

4. If the modification was not rejected by a constraint, any defined AFTER triggers fire.

However, if you need an INSTEAD OF trigger on the secondary table, it cannot coexist with a declarative cascading referential
constraint of the same type. For example, an INSTEAD OF DELETE trigger cannot coexist with a FOREIGN KEY with ON DELETE
CASCADE defined, and an INSTEAD OF INSERT or UPDATE trigger cannot coexist with a FOREIGN KEY with ON UPDATE CASCADE
defined. If you need to support both an INSTEAD OF trigger on the secondary table and also cascading actions, you have the
following options:

10.Drop or disable the FOREIGN KEY, and enforce cascade actions with AFTER triggers.
11.Keep the FOREIGN KEY with NO ACTION in the problematic operation, and implement cascade actions for that operation
with an INSTEAD OF trigger on the primary table.

You've already learned how to implement the first option. The second option might look appealing at first glance, but don't count
your chickens before they're hatched…

First, you need to try and take care of a situation where you have an INSTEAD OF DELETE trigger on the secondary table that has
nothing to do with your cascade actions. You'll use the Orders and OrderDetails scenario to run your examples.

Note Before you start to add triggers, re-create and repopulate the Orders and OrderDetails tables, and add the
surrogate key to the OrderDetails table.

Suppose there's a very important INSTEAD OF DELETE trigger on the OrderDetails table, as shown in the following script.

Creation script for the trg_d_orderdetails_on_delete_print_hello trigger

 CREATE TRIGGER trg_d_orderdetails_on_delete_print_hello
 ON OrderDetails INSTEAD OF DELETE
AS

PRINT 'Hello from instead of delete trigger on OrderDetails'

-- resubmit the delete
DELETE FROM OrderDetails
FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid
 AND OD.partid = D.partid
 GO

Now you need to add cascade actions for both DELETE and UPDATE. You cannot use the ON DELETE CASCADE option because
you have an INSTEAD OF DELETE trigger on the OrderDetails table. Instead, you add the FOREIGN KEY shown in the following
script.

Adding a foreign key to the OrderDetails table with ON DELETE NO ACTION

 ALTER TABLE OrderDetails ADD CONSTRAINT FK_OrderDetails_Orders
 FOREIGN KEY(orderid)
 REFERENCES Orders(orderid)
 ON DELETE NO ACTION
 ON UPDATE CASCADE
 GO

If you want to support a cascade DELETE action, you have to do it in an INSTEAD OF DELETE trigger on the Orders table; otherwise
the constraint will prevent it. The task doesn't look too hard, as the following script shows.

Creation script for the trg_d_orders_ON_DELETE_CASCADE trigger

 CREATE TRIGGER trg_d_orders_ON_DELETE_CASCADE ON Orders INSTEAD OF DELETE
AS

-- perform the delete cascade action
DELETE FROM OrderDetails
FROM
 OrderDetails AS OD
 JOIN
 deleted AS D ON OD.orderid = D.orderid

-- resubmit the delete
DELETE FROM Orders
FROM
 Orders AS O
 JOIN
 deleted AS D ON O.orderid = D.orderid
 GO

You first delete the rows from the OrderDetails table, and then resubmit the DELETE for the Orders table. This way, at no point
do you leave orphaned order details, so you don't break any referential integrity rules enforced by the FOREIGN KEY. The tables
should now look the same as they did in the beginning of the article (see the first two tables), with the addition of the surrogate
key to the Orders table.

You can now perform both an UPDATE and a DELETE to see that your solution works (remembering to wrap the modifications in
a transaction that you can roll back, so the changes will not persist in the database, of course). First try the update shown in the
following script.

Testing an UPDATE to see if the DRI UPDATE CASCADE works

 UPDATE Orders
 SET orderid = 10004
 WHERE orderid = 10002

The result of this UPDATE statement is shown in the following tables.

Testing an UPDATE to see if the DRI UPDATE CASCADE works, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000
10004 GNDLF 1999-04-18 00:00:00.000

Testing an UPDATE to see whether the DRI UPDATE CASCADE works, OrderDetails table

orderid partid quantity
10001 11 12
10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15
10004 14 9
10004 51 40

Next, you can try the DELETE statement shown in the following script.

Testing the trg_d_orders_ON_DELETE_CASCADE trigger

 DELETE FROM Orders
WHERE orderid = 10002

 Hello from instead of delete trigger on OrderDetails

Apart from the "Hello" message, you can see the result of this DELETE statement in the following tables.

Testing the trg_d_orders_ON_DELETE_CASCADE trigger, Orders table

orderid customerid orderdate
10001 FRODO 1999-04-17 00:00:00.000
10003 BILBO 1999-04-19 00:00:00.000

Testing the trg_d_orders_ON_DELETE_CASCADE trigger, OrderDetails table

orderid partid quantity
10001 11 12

10001 42 10
10001 72 5
10003 41 10
10003 61 35
10003 65 15

You can rub your hands with joy as you head on to the puzzle, where you'll take care of a situation where an INSTEAD OF UPDATE
trigger exists on the OrderDetails table. This time you'll need to perform some acrobatics to leave the FOREIGN KEY and the
INSTEAD OF UPDATE trigger on the OrderDetails table, and implement cascade updates as well.

Conclusion
As you have read, Microsoft SQL Server 2000 has flexible tools for maintaining data integrity. Planning for data integrity as part
of the database normalization process is vital. This article has covered the role of Declarative Referential Integrity and Triggers in
data integrity.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Implementing the XML for Analysis Provider for SQL Server
2000 Analysis Services

John Mikesell
Microsoft Corporation

January 2004

Applies to:
 Microsoft® XML for Analysis SDK 1.1
 Microsoft® SQL Server™ 2000 Analysis Services
 Microsoft® XML Core Services (MSXML)

Summary: See how to install the XML for Analysis Provider for SQL Server 2000 and implement XML for Analysis client
applications. (12 printed pages)

Contents

Introduction
Installing the XML for Analysis Provider
Creating the Virtual Directory
Enabling the XML for Analysis Web Service Extension on Windows Server 2003
Setting Up Data Sources
Configuring Security for the Provider
Testing and Debugging the Installation
Implementing XML for Analysis Client Applications
Using the XML for Analysis Web Service
Frequently Asked Questions
Troubleshooting
For More Information

Note This article is being published to the Web before the final release of the XML for Analysis SDK 1.1, so
references to version 1.1 of the XML for Analysis Provider (included in the SDK) refer to the Beta version. Instructions
that do not mention version 1.1 apply equally to version 1.0 of the provider.

Introduction
The Microsoft® XML for Analysis Provider is a Web service providing access to SQL Server 2000 Analysis Services. It implements
the industry standard XML for Analysis Specification, which defines communications between client applications and analytical
data providers (OLAP and data mining), regardless of the language used to write the application. Leveraging the benefits of XML
and SOAP, it allows client applications to access Analysis Services databases through firewalls and across the Internet, making
creation of the client applications much simpler.

The XML for Analysis Service Provider is designed for use within an n-tier application. A typical design pattern would consist of
three tiers: a client computer running an analytical application, a Web server (running Internet Information Server (IIS), the Pivot
Table Service, and XML for Analysis), and a database server running the Analysis Services server component. The client
application would use SOAP to communicate with XML for Analysis. The Web server would use TCP/IP or HTTP to communicate
with the databases server running Analysis Services.

The result is a highly scalable architecture. The client-to-Web server protocol is usually stateless, so no database connection is
required for each client. The Web server pools the database connections and reuses them for each client request. This minimizes
the number of active sessions and minimizes the overhead to handle large numbers of clients. No special software (ADO or
OLEDB database drivers) is required, just SOAP and XML. In this article, we'll dive into the details of installing the provider and
implementing a sample client application that uses it.

Installing the XML for Analysis Provider
To start working with the XML for Analysis Provider, you first need to install the XML for Analysis SDK from the Microsoft
Download Center. Unless you are working with applications that specifically require an earlier version, download the latest
version of the SDK—currently XML for Analysis Software Development Kit version 1.1. If you are an end user, request that your IT
Services group install XML for Analysis on a server.

http://go.microsoft.com/fwlink/?LinkId=17390
http://go.microsoft.com/fwlink/?LinkId=23008

Important Before you install the XML for Analysis SDK, you must first install the correct version of Microsoft XML
Core Services (MSXML). Use MSXML 4.0 for the 1.1 version of the XML for Analysis SDK or MSXML 3.0 for the 1.0
version of the SDK. For instructions to download and install MSXML, see the Knowledge Base article, 324460 HOW TO:
Upgrade the Microsoft XML Parser. For additional MSXML information and downloads, go to the MSDN XML
Developer Center. For more information about the system requirements for XML for Analysis, see the Readme file for
the XML for Analysis SDK.

Install the 1.1 version of the SDK by running the Xmlasdk.exe installation file downloaded from the Microsoft Download Center.
The default install location for the SDK is "C:\Program Files\Microsoft XML for Analysis SDK." Normally you will want to install the
SDK on the same computer that is running SQL Server 2000 Analysis Services (for remote installations, see "Can I use XML for
Analysis Services with a remote server" in the FAQ section). The installation program will replace any earlier version of the SDK, as
you cannot use two versions of the SDK on the same computer.

By default, Setup for the XML for Analysis SDK 1.1 installs with the requirement that all requests to the provider use the HTTPS
protocol—the HTTP protocol is disallowed. On the Connection Encryption Settings page of Setup, you can choose to Enable
HTTP Protocol connections. For client connections to a remote server over the Internet, we recommend that you do not enable
client connections using the HTTP protocol. If you do not enable HTTP connections and later find that you require them, see "How
do I enable HTTP connections to the XML for Analysis Provider?" in the FAQ section.

Creating the Virtual Directory
To make the provider available to Web clients, use IIS Manager on the same computer as the provider to create one or more
virtual directories. In IIS Manager, right-click the Web site you want to use, point to New, and then click Virtual Directory. This
opens the Virtual Directory Creation Wizard, which prompts you for the following information:

For the directory containing the content to publish, enter the path to the folder containing Msxisapi.dll. For simplicity, use
the path to the installation folder that contains Msxisapi.dll. The default location for Msxisapi.dll is C:\Program
Files\Microsoft XML for Analysis SDK\Isapi. If you specify a different folder for the content directory, you must then copy
Msxisapi.dll from the installation folder to the specified folder.
The access permissions for the virtual directory should be set to allow Read, Run Scripts, and Execute access.

Use IIS Manager to configure security for the XML for Analysis Provider. Right-click the virtual directory in IIS Manager, click
Properties, and then click the Directory Security tab to enable anonymous access and authentication, IP and domain name
restrictions, or secure communications.

Enabling the XML for Analysis Web Service Extension on Windows Server 2003
On Microsoft Windows® Server 2003, IIS is installed by default in a highly secure and "locked" mode. Before you can use XML for
Analysis on Windows Server 2003, you must enable XML for Analysis as a Web service extension. If you do not enable this
functionality, IIS returns a 404 (file or directory not found) error. To do this, right-click the Web Service Extensions folder for the
computer you are administering in IIS Manager, and click Add a new Web service extension. In the New Web Service
Extension dialog box, specify a friendly name for the Web service extension. For required files, add the complete path name for
the Msxisapi.dll file. Select the Set extension status to Allowed check box.

Setting Up Data Sources
To make data sources available to client applications, you need to specify data sources in the Datasources.xml file. The XML for
Analysis Provider sends this document to client applications so they can select a data source. The default location for this file is
C:\Program Files\Microsoft XML For Analysis SDK\Config. Datasources.xml initially exposes Analysis Services on the same
computer that is running the provider. You can edit this file to change the settings for the local server or to expose Analysis
Services on a remote computer.

The file is structured as an XML document with the root element <DataSources>. Each <DataSource> element within the root
element specifies a different instance of Analysis Services. To add an additional data source, merely add an additional
<DataSource> element to this file. Any data source specified in this file needs to be accessible to the provider. The syntax for the
file is detailed in "Setting Up Data Sources" in the XML for Analysis online Help.

Configuring Security for the Provider
The XML for Analysis Provider always runs with the credentials chosen by IIS based on the security you set on the virtual
directory.

Security Setting Description

http://support.microsoft.com/default.aspx?kbid=324460
http://go.microsoft.com/fwlink/?LinkId=17387

Anonymous
authentication

IIS always runs the provider as the IUSR_computername (when Application Protection is set to Low) or
IWAM_computername user (when Application Protection is set to Medium or High).

For anonymous authentication, the IUSR_computername or IWAM_computername user must be
added to a cube role for the provider to access the cube.

Integrated Windows
authentication turned on
and anonymous access
turned off

IIS attempts to impersonate the client user and runs the XML for Analysis Provider as that user. If,
however, you have multi-machine delegation in your scenario, then security will not be able to
delegate credentials and the XML for Analysis Provider may again run as the IUSR_computername or
IWAM_computername user.

Integrated Windows
authentication turned on
and anonymous access
turned on

Runs as anonymous authentication

Basic authentication
(over HTTPS highly
recommended)

IIS impersonates the client using the username and password provided by the client. The XML for
Analysis Provider runs as the client user.

Client certificates

Client certificates are electronic documents that contain information about clients. These certificates
contain encryption keys that facilitate encryption and decryption of transmitted data over an open
network. Client certificates are worth investigating for installations that require mapping from client
users to domain users.

For more information, see the "Certificates" topics in the IIS Documentation or search for "Client
Certificates" in the MSDN Library.

Testing and Debugging the Installation
You build and run any of the three Visual Basic applications—Sample, Sample.NET, or Simple—that come with the SDK to test
your installation. The Sample program is a Visual Basic® 6.0 program that issues MDX queries against the XML for Analysis Web
Service and displays the results as XML or in grid format. Sample .NET is similar to Sample, but is a managed code application
written using Visual Basic .NET. The Simple application is a Visual Basic 6.0 application that demonstrates the basic functionality of
XML for Analysis exercising the methods and capabilities in the SDK. You can use any of these programs to connect to catalogues
in the any of the data sources specified in Datasources.xml file. Instructions for installing the samples can be found in the topic,
"Samples for XML for Analysis" in the online Help for the XML for Analysis SDK.

If you have general problems connecting to the provider, check the following:

Try browsing to the URL for the ISAPI DLL (http://localhost/xmla/msxisapi.dll). This should display an XML documented
generated by the DLL indicating, "The Web Service supports only the POST operation." If this fails, perform the following
checks.

Check that IIS virtual directory has been configured correctly to point to the folder containing the Msxisapi.dll library.
If the installation is on the Windows Server 2003 server, check that the XMLA Web service extension is enabled in IIS
Manager.
Make sure that you have not disabled GET/POST commands for the virtual directory in the IIS configuration.
Make sure that execution of scripts and executables is allowed for the virtual directory in the IIS configuration.

Try executing the Simple application provided with the XML for Analysis SDK and see if it is able to discover catalogs from
the SQL Server 2000 Analysis Services server. If this fails, perform the following checks.

Check that IIS virtual directory has been configured correctly to point to the folder containing the Msxisapi.dll library.
If the installation is on the Windows Server 2003 server, check that the XMLA Web service extension is enabled in IIS
Manager.
Check that your data source description and its connection string is correctly configured in the Datasources.xml file.
Check the IIS security settings for the virtual directory and for your Analysis Services databases. For example, the IIS
virtual directory may have anonymous authentication turned on, but OLAP security is configured to not allow
anonymous access to your database.

If you have less general problems connecting, you can access the microsoft.public.data.xmlanalysis newsgroup on the
msnews.microsoft.com news server to ask questions and participate in discussions about the Microsoft XML for Analysis Provider
and to get peer-based support.

Implementing XML for Analysis Client Applications
XML for Analysis is a SOAP Web service. An application communicates with this service by sending XML-encoded messages and

http://localhost/xmla/msxisapi.dll
http://go.microsoft.com/fwlink/?LinkId=9220

getting XML-encoded information back in response. There are two SOAP methods exposed by the XML for Analysis Web service,
Discover and Execute.

The Discover method queries metadata from an Analysis Services server. The Discover method is a highly parameterized
method for OLAP metadata discovery. Access to the metadata is required to build a user interface with which the user can
construct queries without knowing MDX. You use arguments on the Discover method to find data sources (servers) available to
the provider, catalogs on a server, and information about objects in a catalog, such as cubes and dimensions in a cube.

The Discover method has three input parameters: RequestType, Restrictions, and Properties. The Discover parameters are
packaged inside XML tags. The first parameter, RequestType, identifies the type of discovery operation that you are requesting.
The Restrictions parameter uses a list of XML name and value pairs to restrict the number of the rows returned by the result set.
The Properties parameter identifies the context under which the application will make the Discover call. Because XML for Analysis
is usually stateless, this parameter passes information that the server would otherwise establish and maintain with the
connection.

To connect with a data source, first use the DISCOVER command with the DISCOVER_DATASOURCES <RequestType> to get the
information specified in the Datasources.xml file. Then, with each subsequent request, use the <DataSourceInfo> property on
DISCOVER or EXECUTE set to the exact string value that is returned in the DataSourceInfo column of the
DISCOVER_DATASOURCES rowset obtained by the first use of the DISCOVER command. This requirement is mandatory in the
1.1. version of the XML for Analysis Specification.

Security In version 1.1 of the XML for Analysis SDK, the value for DataSourceInfo returned by the
DISCOVER_DATASOURCES rowset is actually the value for <DataSourceName> element in Datasources.xml. For
security purposes, the value for the <DataSourceInfo> element should not be exposed to client applications.

The Execute method accepts an MDX command or query and returns a result set. Execute has two input parameters, Command
and Properties. The Command parameter is an MDX string, and the Properties parameter is the same information that you
passed in the Discover method. The result set is typically in a hierarchical multidimensional format, although you can also specify
tabular format or native format (for which the provider determines the appropriate format and identifies it by the namespace of
the result). Execute is used to run analyses and return the results incorporated in reports and displayed to users.

XML for Analysis does not by default maintain connection or state information between method calls. Therefore, you must
provide all the connection information with every XML for Analysis method call. Because XML for Analysis is stateless, it can share
resources among clients and scale to support many clients.

However, in some situations, maintaining a session is important—for example, when you want to create a calculated member or
set, and then use the member or set with subsequent MDX queries. XML for Analysis supports stateful operation to handle these
situations. Use the BeginSession SOAP header to begin a session and get back a session header containing a SessionID. You then
send back that session header with each subsequent request to that session. End the session with the EndSession tag.

Possibly an even more compelling scenario happens during a write-back to a cube. The default mode for UPDATE CUBE is
autocommit, so if you do not open a transaction, every UPDATE CUBE will automatically open one and (if the statement
succeeds) commit. Several write-back commands might together make one transaction, so you need to group them together with
one commit operation. If you are making multiple UPDATEs when doing write backs of cube cells, you need to do the following:

Begin the new session and obtain a session ID.
Issue the BEGIN TRANSACTION statement using the session ID obtained in step 1.
Issue one or more UPDATE CUBE statements using the session ID obtained in step 1.
Issue the COMMIT TRANSACTION (or ROLLBACK TRANSACTION) statement using session ID obtained in step 1.
End the session.

Sessions are not the same thing as transactions. A transaction is begun within a session, so you should never use transactions
without having a session. Otherwise, you may see unexpected results when multiple users are connected to an Analysis server.

For more information about sessions, see "Statefulness and Sessions Support" in the online Help for the XML for Analysis SDK.

Using the XML for Analysis Web Service
The XML for Analysis Provider exposes a Web service that can be used by client applications to query OLAP cubes. You will need a
SOAP client API and an XML parser. Microsoft encapsulates the XML for Analysis service description in a Web service Description
Language (WDSL) file that you can use to create a proxy class. The proxy class makes the process of sending and receiving SOAP
packets to and from Analysis Services transparent. In order to present XML results on the Web, you can use style sheets.

The XML for Analysis SDK 1.1 WSDL file, Vs.wsdl, is located with the Sample.Net program files in the Web Reference folder (by
default, C:\Program Files\Microsoft XML For Analysis SDK\Samples\Sample.NET\Web References\MsXmlAnalysis). If you are
using XMLA 1.0, you can download its WSDL file from the Microsoft Download Center (search for "XML for Analysis").

http://go.microsoft.com/fwlink/?LinkId=17390

The easiest way to use the WSDL file in Visual Studio is to go through the "Add Web Reference" wizard. The opening screen
allows you to enter the URL of the WSDL file and then you can add the Web reference to your project. The Web reference
generates the file "Msxmlanalysis.cs" (if you are using C#) and you can examine this file to find out how to instantiate and invoke
the generated class.

A more customizable method is to use the XML Web Services Description Language Tool (Wsdl.exe) to generate an XML for
Analysis Web service client proxy class. To generate the C# class Msxmlanalysis.cs, use the following command line (specifying a
path if necessary):

Wsdl vs.wsdl

You can use the /language:vb argument to generate the Visual Basic class, Msxmlanalysis.vb. Additional optional command-line
arguments let you specify a namespace, authentication parameters, and other information. For additional information about the
Wsdl.exe command syntax, refer the MSDN documentation or type wsdl at the command prompt, and then press Enter.

Note The Wsdl.exe utility ships with both Visual Studio and the .NET Framework SDK. The utility is typically located
in the folder /ProgramFiles/Microsoft.NET/FrameworkSDK/bin on the drive where you installed the SDK.

That command creates the class file in the same folder as the source WSDL file. After you add the Msxmlanalysis.cs class to a
Visual C# project, you will see that it provides the Discover and Execute methods.

Frequently Asked Questions
Can I use the XML for Analysis Provider with a remote server?

You can use XML for Analysis with a remote server if you are using Basic Authentication over HTTPS or you do not require a
secure connection (anonymous access over HTTP). However, it is better not to use XML for Analysis with a remote server.
Apparently it causes all requests to be serialized. This occurs due to behavior of the WinInet component used by the Pivot Table
Service (the SQL Server 2000 Analysis Services OLE DB for OLAP Provider). IIS (and Msxisapi.dll) should be running on the
same server as Analysis Services for users accessing data from a Web page.

One alternative is to use Basic authentication over HTTPS on the first domain and regular domain security to connect with
Integrated Authentication to the remote Analysis Services server. However, users of client applications will have to manually
enter their user name and password.

Another alternative is to give all your users the same roles. Delegation of their credentials is then not a problem if the Web
service is running as a user with permissions to connect to the Analysis Services server. However, this works only if you do not
need user-specific authentication.

How do I get levels in a dimension?
The Microsoft XMLA DISCOVER command supports OLE DB for OLAP schema rowsets. Use MDSCHEMA_LEVELS with the
DISCOVER method. The Microsoft XML for Analysis Provider supports MDSCHEMA_LEVELS as an extension to the XML for
Analysis Specification. You may want to discover hierarchies (with MDSCHEMA_HIERARCHIES) before you discover levels.

How do I recognize a measures dimension or level?
MDSCHEMA_DIMENSIONS contains the DIMENSION_TYPE column, which you can use to differentiate measures.

If two users are using different IDs, would the Pivot Table Services cache be kept for each one?
If sessions are used, then the cache is never reused. If sessions are not used, if the different users belong to exactly the same
roles, and there is no dynamic security (that depends on Username function), then the connection is reused.

Is there a way to control the size of the cache stored by Pivot Table Services on IIS?
Use the "Client Cache Size" property in the connection string in Datasources.xml. Refer to the OLEDB documentation for Client
Cache Size to implement this correctly.

How do I enable HTTP connections to the XML for Analysis Provider?
For secure communications with the XML for Analysis Provider on a remote server, we recommend that you do not enable
client connections using the HTTP protocol. If HTTP connections to the provider are not enabled during Setup, and you later find
that you require the HTTP protocol, you can enable it in either one of two ways:

Run the XML for Analysis SDK 1.1 Setup program first to uninstall and then to reinstall the SDK. When you reinstall the
SDK, make sure on the Connection Encryption Settings page of Setup that you select the Enable HTTP Protocol
(unencrypted communication) check box.
Edit the Datasources.xml file and set the AllowInsecureTransportFlag attribute on <DataSources> to 1. The default
location for this file is "C:\Program Files\Microsoft XML For Analysis SDK\Config\datasources.xml."

How do I delete connections from the connection pool when using stateless sessions?
If you are using stateless sessions, you can use the following steps to drop any existing connections in the pooled connection.

1. Edit Datasources.xml and change the value of UnnamedSessionsTimeout to 0.

2. Send a Discover request for DBSCHEMA_CATALOGS.
3. Edit Datasources.xml and change UnnamedSessionsTimeout back to its original value.
4. Send another Discover request for DBSCHEMA_CATALOGS.

Can I hard-code DataSourceInfo instead of using the DISCOVER_DATASOURCES to get it?
You may find that you can hard-code DataSourceInfo. However, as described in the XML for Analysis Specification 1.1, you
should never hard-code DataSourceInfo. This allows your code to work against other XML for Analysis Providers and against
different versions of the Microsoft provider.

Can I install the XML for Analysis 1.1 SDK side-by-side with the 1.0 SDK?
Only one version of the provider can be installed on a single server. The COM objects are registered the same, so only one will
work.

Are multiple hierarchies in a single dimension supported by the XML for Analysis Provider?
If you have multiple hierarchies in your dimensions, you may find that the MDSCHEMA Members rowset does not return the
hierarchy name for dimension members when the dimension contains multiple hierarchies. You are therefore unable to
distinguish between hierarchies in the dimension. A hotfix that resolves this issue is available. Knowledge Base article 819606
FIX: Hierarchy Name Is Not Returned in MDSCHEMA Rowset has information on how to install the hotfix for this issue.

Troubleshooting
404 File not found or "The page cannot be found" "The page cannot be displayed"

Make sure that you have set up your IIS Web server correctly to specify the location of Msxisapi.dll for the XMLA virtual
directory. Try browsing to the URL for the ISAPI DLL (http://localhost/xmla/msxisapi.dll) and make sure that you see a SOAP
Fault XML document generated by the DLL indicating "The Web Service supports only the POST operation". If you do not see
this document, then you need to reconfigure IIS to point to the Msxisapi.dll library, or you need to reinstall the XML for Analysis
SDK to locate Msxisapi.dll correctly. On the Windows Server 2003 server, you must enable the XML for Analysis Web Service
Extension.

404 file or directory not found for XML for Analysis installed on Microsoft Windows Server 2003
On Microsoft Windows Server 2003, IIS is installed by default in a highly secure and "locked" mode. To use XML for Analysis,
you must enable XML for Analysis as a Web service extension. If you do not enable this functionality, IIS returns a 404 (file or
directory not found) error. For more information, see Enabling the XML for Analysis Web Service Extension on Windows Server
2003 earlier in this article.

Unable to process the request, because the DataSourceInfo property was missing or not correctly specified
First make sure that the data source is correctly configured in the Datasources.xml file (see Setup Data Sources). If it is correctly
configured, you may not be using the correct string for the DataSourcesInfo property. A client should not construct the
contents of the DataSourceInfo property to send to the server. Instead use the Discover method to find the data sources
supported by the provider and send back the same value for the DataSourceInfo property as received with the
DISCOVER_DATASOURCES rowset.

I cannot view some of the databases on the Analysis Services.
In IIS Manager, check the security settings for the XML for Analysis virtual directory. If the security is set to the default security
(anonymous access), access for the IUSR_servername or IWAM_computername user must be added to cube roles. You can send
an MDX Query to return the "username" and easily check if it is the IUSR_servername or IWAM_computername user.

I get an error "Class not registered" or "Library not found" when sending my first request to the XML for Analysis
Provider.

Check if MSXML 4.0 is installed (for the XML for Analysis 1.1) or if MSXML 3.0 (for XML for Analysis 1.0). Setup for XML for
Analysis SDK does not install MSXML, so you must install it separately. For more information and downloads for MSXML, go to
the MSDN XML Developer Center.

For More Information
This article discussed installing the XML for Analysis provider and implementing XML for Analysis client applications. In addition,
here are more resources available to you:

Download ADOMD.Net—Microsoft® ActiveX® Data Objects (Multidimensional)—and use it to access the XML for Analysis
Provider 1.1. ADOMD.Net is the .NET successor to the ADO (COM) object model used to build client components. For many
applications, ADO MD provides easy access to multidimensional data from common programming languages without
accessing XML for Analysis directly. (The forthcoming SQL Server 2005 release includes the next major version of Analysis
Services. XML for Analysis is the native protocol for Analysis Services, and in SQL Server 2005, Web services are natively
supported by the server. ADOMD in the SQL Server 2005 release will provide easy access to multidimensional data from
common programming languages.)
To view the online Help for XML for Analysis, click Start, point to All Programs, point to Microsoft XML for Analysis SDK,
and then click Books Online. This online help file documents methods, properties, data types, schema rowsets, and error
handling for the XML for Analysis Provider.

http://support.microsoft.com/default.aspx?kbid=819606
http://localhost/xmla/msxisapi.dll
http://go.microsoft.com/fwlink/?LinkId=17387

Find the XML for Analysis 1.1 SDK at the Microsoft Download Center. Search for "XML for Analysis SDK." ADO MD.Net can
also be accessed with a hyperlink on the XML for Analysis SDK 1.1 download page.
You can find additional technical resources for XML for Analysis in the topic "Additional Resources" in the online Help for
the Microsoft XML for Analysis SDK.
If you have questions or support, you can access the microsoft.public.data.xmlanalysis newsgroup on the
msnews.microsoft.com news server to participate in discussions about the Microsoft XML for Analysis Provider and to get
peer-based support. You can access this news group either with a news reader or from the Google Groups page.
The XML for Analysis Specification is available for download at the XML for Analysis (XMLA) Advisory Council Web site
(XMLA.org).

© Microsoft Corporation. All rights reserved.

http://go.microsoft.com/fwlink/?LinkId=17390
http://go.microsoft.com/fwlink/?LinkId=9220
http://go.microsoft.com/fwlink/?LinkId=23014
http://go.microsoft.com/fwlink/?LinkId=17353
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Improved Web Connectivity in Microsoft SQL Server 2000
Analysis Services

Dennis Kennedy
Dave Wickert
Microsoft Corporation

May 2003

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Describes the installation, implementation, and behavior of HTTP connectivity in SQL Server 2000 Analysis Services
Service Pack 3. (21 printed pages)

Contents

Introduction
HTTP Connectivity and Analysis Services
Conclusion
For More Information

Introduction
One of the key features in Microsoft® SQL Server™ 2000 Analysis Services is the capability to access data from the Web. The
PivotTable® Service (PTS) OLE DB provider uses a special Active Server Pages (ASP) Web page to send and receive data using the
HTTP or HTTPS protocol. The ASP page uses a single COM object, called the data pump, which acts as a conduit for Analysis
Services data. The library that contains this COM object is referred to as the data pump library.

Analysis Services originally required for Internet Information Services (IIS) to be installed on the same server, because the data
pump library used shared memory to communicate directly with the Analysis server. With the release of Service Pack 3 (SP3) for
SQL Server 2000 Analysis Services, however, the data pump library can also use a named pipe to share information with the
Analysis server. The use of named pipes allows installation of the data pump library on a separate computer running IIS, thereby
increasing the security and stability of both IIS and Analysis Services.

This paper explains the data pump architecture in more detail, describes how to install it on a separate computer, and discusses
the implementation considerations of the new data pump implementation in SP3. The paper assumes the reader has a working
knowledge of SQL Server 2000 Analysis Services, the VBScript scripting language, and Internet concepts, including familiarity
with HTTP connectivity.

HTTP Connectivity and Analysis Services
To use HTTP connectivity when connecting to an Analysis server from a client application, provide a URL to PTS. PTS then
attempts to access a specific ASP page, named msolap.asp, at the Web site indicated by URL or IP address. Although you can place
the msolap.asp file in the root virtual directory, we recommend using a separate virtual directory (e.g., http://myserver/app1) for
security reasons. The system always appends the string "/msolap.asp" to whatever URL is specified. Msolap.asp provides access to
the data pump object, named PUPump, implemented in the msmdpump.dll data pump library. The PUPump object
communicates directly with the Analysis server using the msolap.asp page to pass data and meta data back to PTS.

Figure 1 describes the flow of data when using the data pump in Analysis Services.

Figure 1. Data flow using the data pump in Analysis Services

1. A client application attempts to access Analysis Services using PTS. If a URL is specified in the Data Source connection
string property of PTS, PTS appends the string "/msolap.asp" to the URL and uses HTTP to send a POST request to the
msolap.asp page, including the connection string and other data and meta data as the binary part of the POST request.

2. The IIS server receives the POST request and, if the request is successfully validated, instantiates the msolap.asp page. As
part of that validation, IIS security settings establish the security context in which the msolap.asp page is executed. If Basic
authentication is used, PTS will exchange HTTP header messages with IIS, passing the user name and password. IIS then
impersonates that account on the Web server.

3. The msolap.asp page attempts to instantiate an instance of the PUPump object from the Analysis Services data pump
library.

4. The PUPump object reads the data from the HTTP stream sent by PTS as part of the POST request into a SAFEARRAY buffer
(using the BinaryRead method of the Request ASP object) and attempts to send the buffer to the specified Analysis server.

IMPORTANT: The PUPump object does not examine the underlying data contained in the HTTP stream in any
way. The actual underlying data structures within the buffer, such as the connection string, are never examined,
nor are they available to any of the code in the data pump library itself.

5. The Analysis server processes and carries out the request made by the data pump.
6. The Analysis server returns a response containing data and meta data to the data pump library.
7. The PUPump object formats the data and meta data into a SAFEARRAY buffer.
8. The PUPump object writes the data back into the HTTP stream (using the BinaryWrite method of the Response ASP

object) as part of the POST response.
9. The HTTP stream is sent back to PTS for processing.

The data pump library can be configured to use the shared memory transport on the same computer, or the data pump library
can be moved to another computer and configured to use the named pipe transport to communicate with the Analysis server. If
you move the data pump library to another computer, you must use the named pipe transport to communicate with the Analysis
server. Although it is possible to use the named pipe transport on the same computer, it is not recommended and should only be
done for testing purposes.

Computer Configurations

Figure 1 describes the logical, but not physical architecture of HTTP connectivity with IIS and Analysis Services. The physical
architecture can be constructed in a multitude of ways, broken out into two basic configuration groups.

Single-computer configurations

A single-computer configuration consists of a single computer that hosts both IIS and Analysis Services and is used to provide
easy network and HTTP connectivity for users. When a user connects to a single-computer configuration, IIS communicates
directly with the Analysis server running on the same computer using shared memory files. Figure 2 illustrates a typical single-
computer configuration.

Figure 2. Hosting Analysis Services and IIS on the same computer

Multiple-computer configurations

A multiple-computer configuration consists of one or more computers that host IIS and one or more separate computers that
host Analysis Services. A multiple-computer configuration can also involve firewalls, additional servers, and so on. This
configuration is used to provide greater security and stability for both network and HTTP connectivity. When a user connects to a
multiple-computer configuration, IIS can communicate either directly with an Analysis server or with another IIS server,
depending on the configuration. Figure 3 illustrates three different multiple-computer configurations.

Figure 3. Hosting Analysis Services and IIS on more than one computer

For more information about managing network architectures and security involved with multiple-computer configurations, see
Network Architecture and Security later in this paper.

Transport Configurations

The transport configurations used by IIS and Analysis Services depend largely on the computer configuration employed by your
implementation.

Shared memory transport

Originally, the data pump library used a transport mechanism based on shared memory files to communicate with the Analysis
server. A shared memory file allows two or more applications to share memory by mapping a section of virtual memory to a file
using a file-mapping object, then using file views to manipulate the shared memory file. In the case of Analysis Services, the
system pagefile is used as a shared memory file to pass information between the data pump library and the Analysis server.

The shared memory transport is highly recommended for single-computer configurations for security and performance reasons.
The shared memory transport is limited, however, by the fact that both the data pump library and the MSSQLServerOLAPServices
service must be running on the same computer, so it cannot be used for multiple-computer configurations.

If you want to use the data pump library with the shared memory transport, see Configuring IIS to Use the Data Pump later in this
paper for a description of the installation and configuration steps involved with using the data pump library with a single-
computer configuration. The data pump library is already installed, and no changes to msolap.asp are required to use the shared
memory transport in a single-computer configuration. "Installing the Data Pump Library" and "Configuring the Data Pump" can
therefore be ignored.

Named pipe transport

In SP3, the data pump library can now use a transport mechanism based on named pipes to communicate with the Analysis
server. The data pump library creates and uses the named pipe \\<ServerName>\pipe\PlatoNamedPipe to communicate with the
Analysis server.

The named pipe transport is used for multiple-computer configurations. Although the named pipe transport can be used for
single-computer configurations, it is not as efficient as the shared memory transport and is not recommended for use on such
configurations. Because using this transport mechanism requires access to NetBIOS, you must also configure your network to
allow NetBIOS traffic.

If you want to use the data pump library with the named pipe transport, the following sections describe the steps involved in
moving the data pump library to another computer.

Installing the Data Pump Library

If you plan on using IIS and Analysis Services on the same computer, and you want to use shared memory to communicate
between the data pump library and the Analysis server, no additional effort is required to use the data pump other than the
construction of a Web site in IIS. The Analysis Services setup program automatically installs and registers the data pump library.
For information about constructing a Web site in IIS for Analysis Services HTTP or HTTPS connectivity, see "How to Configure
Analysis Services for the Web" in SQL Server 2000 Books Online.

If you want to use the data pump library on a separate IIS server, you must install and register the data pump library before you
construct a Web site in IIS for Analysis Services HTTP or HTTPS connectivity. The following steps describe how to install and
register the msmdpump.dll library on an IIS server:

1. Locate the msmdpump.dll file in the \Bin subdirectory of your Analysis Services installation. For most installations, the full
path to this library is C:\Program Files\Microsoft Analysis Services\Bin.

2. Copy the msmdpump.dll file to a subdirectory on the target IIS server.
3. Register the msmdpump.dll file on the target IIS server.

a. Open a command prompt window.
b. Change the current directory to the subdirectory that contains the msmdpump.dll file.
c. Execute the following statement:

regsvr32 msmdpump.dll

Configuring IIS to Use the Data Pump

To use the data pump with single-computer or multiple-computer configurations, you must first construct a Web site or virtual
directory in IIS to provide HTTP or HTTPS connectivity for Analysis Services. You must follow the instructions in this section when
using either the shared memory transport or the named pipe transport.

IMPORTANT: This section assumes that you are familiar with IIS usage and practices, and are using the Microsoft
Windows® 2000 operating system.

To prepare for IIS configuration, follow these steps:

1. Create a subdirectory in which to store the msolap.asp file. In the following steps, this directory will be referred to as the
"data pump folder."

2. Locate the msmdpump.dll file in the \Bin subdirectory of your Analysis Services installation. For most installations, the full
path to this library is C:\Program Files\Microsoft Analysis Services\Bin.

3. Copy the msmdpump.dll file to a subdirectory on the target IIS server.

To enable a new Web site to use the data pump library, follow these steps:

1. Using Internet Services Manager, create a new Web site. For more information about how to create a virtual directory, see
the Internet Information Services documentation.

2. Set the Web site home directory to the data pump folder.
3. Select the Read check box so that Web server permissions for the Web site home directory allow users to view directory

content.
4. Select Scripts only in the Execute Permissions list box so that msolap.asp can be executed from the Web site home

directory.
5. Right-click on the new virtual directory, and select Properties to make further modifications.

To enable an existing Web site to use the data pump library, follow these steps:

1. Using Internet Services Manager, create a new virtual directory for the existing Web site. For more information about how
to create a virtual directory, see the Internet Information Services documentation.

2. Set the content directory for the virtual directory to the data pump folder.
3. Select the Read check box so that Web server permissions for the virtual directory allow users to view directory content.
4. Select Scripts only in the Execute Permissions list box so that msolap.asp can be executed from the Web site home

directory.
5. Right-click the new virtual directory, and select Properties to make further modifications.

You should change the default security settings when IIS creates a new Web site or virtual directory. By default, Internet Services
Manager enables anonymous access, Digest authentication, and Integrated Windows authentication. Because this Web site or
virtual directory is not to be used for access with an interactive browser, you should not enable multiple authentication methods,
but instead configure the Web site or virtual directory to use an authentication method appropriate for your implementation.

Configuring the Data Pump

If you want to use the data pump library with a multiple-computer configuration, you must alter the msolap.asp file so that the
data pump can be redirected to the corresponding Analysis server. This process should be completed after you construct a Web
site in IIS for Analysis Services HTTP or HTTPS connectivity.

NOTE: The steps described in this section are not required for using the shared memory transport on single-
computer configurations.

To alter your msolap.asp file, follow these steps:

CAUTION: You should first back up of your msolap.asp file. Make only the changes to the msolap.asp file indicated
below.

1. Open the msolap.asp file in Notepad. The msolap.asp file is stored in the data pump folder described in Configuring IIS to
Use the Data Pump.

2. Edit your msolap.asp file so that the ServerName property of the pump object refers to the appropriate Analysis server.
The following sample displays the required change in bold:

<%@ LANGUAGE="VBSCRIPT"%>
<%' ************** Do not change this file ***************

 ' changing of this file can bring unexpected results
 ' NEVER add any HTML tags. Places that are allowed to
 ' change will be specified explicitly in the comments.
 ' **
%>
<%Response.Expires = 0%>
<%Response.Buffer=FALSE%>
<%Server.ScriptTimeout=3600%>
<HTML><%
 On Error Resume Next
 Call ReadData
 ' This is error handling code and should not be modified
 ' This code will take care of the potentional errors in
 ' this asp page.
 if (Err.Number <> 0) Then
 errstr = "<Error>" + CStr(-8) + "</Error>"
 errstr = errstr + "<SysError>" + CStr(err.Number) +
 "</SysError>"
 errstr = errstr + "<Note>" + err.Description + "</Note>"
 Response.AddHeader "Pump-Error", errstr
 Response.Flush
 Response.End
 End if

 Function ReadData
 ' ****** You can modify code of this function, but we don't
 recommend doing it. ***************
 if (isEmpty(Session("StoredPump"))) Then
 Set pump = Server.CreateObject("PUPump.PUPump.1")
 Set Session("StoredPump") = pump
 else
 Set pump = Session("StoredPump")
 End if
 ' Replace <server_name> with the name
 ' of the destination Analysis server.
 pump.ServerName = "<server_name>"
 ' This value can be changed.
 pump.Timeout=60
 pump.ReadData
 Response.Flush
 Response.End
 End Function
 %>

3. Save the file and close Notepad.

For testing purposes, you can force the use of the named pipe transport on a single-computer configuration. To do so, replace "
<server_name>" with "localhost" in the above example. To resume using the shared memory transport on a single-computer
configuration, remove the section displayed in bold from the above sample, or set the ServerName property of the pump object
to an empty string ("").

IMPORTANT: The named pipe transport should be used with single-computer configurations only for testing
purposes. You are strongly recommended to use the shared memory transport for single-computer configurations in
all other implementations.

Implementing the Data Pump

The data pump library does not require any direct interaction beyond the configuration steps described earlier in order to use it
with Analysis Services client applications. However, there are several security-related considerations that should be reviewed
before implementing the new data pump functionality in a production environment.

IIS and security

The security of your implementation largely depends on the proper configuration of IIS. IIS is key to ensuring that the appropriate
user account is being used when accessing Analysis Services. As with other applications, IIS runs the data pump library in the
security context of the user requesting access to the Analysis server. The virtual directory provides the security context for the data
pump library for the purposes of authentication.

Anonymous access

You should use anonymous access for large applications (typically coming across the Internet) that have minimal resource
overhead and have no authentication requirements. However, you must take into account these considerations when enabling
anonymous access:

If enabled, all users accessing both the IIS server and the Analysis server look like the same user (that is, the IIS anonymous
user account). There is no easy way to differentiate one user from another. Although anonymous access is very scalable
from a resource perspective, it is next to impossible to track users from a security perspective.
When separating the IIS server from the Analysis server, modify the NT account that the IIS virtual directory uses for
anonymous access. Rather than the default IUSR_computername account, use a domain account that is common to both
servers, because IUSR_computername is a local computer account that does not have network access. The Analysis server
needs a common domain account to impersonate when enforcing security (that is, when determining access to cubes,
dimensions, and cells).

If a domain account cannot be created between the two servers, you can configure matching local computer accounts with
identical user name and password combinations. Typically this workaround is only used when there is no trust relationship
between either the servers or their domains. Administrators must furthermore keep these matching local computer
accounts synchronized, either by writing scripts that use Windows Management Instrumentation to automate the process or
by manually managing the matching accounts. For example, if a password expires on one server, the password must be
changed for all other matching local computer accounts.

Because of its administrative overhead, this workaround is recommended only in those cases where none of the other
approaches will satisfy implementation requirements.

Assign the IIS virtual directory anonymous user account to an appropriate role in Analysis Services. You should not assign
the IIS virtual directory anonymous user account to the OLAP Administrators group in order to provide access to the
Analysis server.

Integrated Windows authentication

You should use Integrated Windows authentication when you have controlled intranet access or Virtual Private Network (VPN)
based Internet access. There are several issues to consider when using Integrated Windows authentication:

You should use a single sign-on (SSO) facility that is integrated with Windows. Whatever Windows user account the client is
logged into will also be used for accessing Analysis Services; there is no special processing done by IIS. Users cannot be
logged into Windows on their client computers and appear as a different user to Analysis Services. Using an SSO facility is
comparable to using trusted connections in SQL Server.
Domain accounts should be employed as user accounts between the client computer and the IIS server. If domain accounts
cannot be employed between the two systems, use the same workaround described earlier in "Anonymous Access."
However, because of the high administrative overhead involved in keeping the two local computer accounts synchronized,
this approach is impractical for more than a small number of accounts.

The underlying network architecture must support the exchange of domain account information. In an Internet
environment, this typically means either not using a firewall or opening up the firewall to more IP ports than would
normally be considered safe. If Internet access is required, configure a VPN from the client computer to the network on
which the IIS server resides.

Unfortunately, when separating IIS and Analysis Services, Integrated Windows authentication cannot be used in most
Windows domain architectures. The default NT4 security subsystem, sometimes referred to as NTLM, only allows a one-hop
transfer of credentials. The security credentials that are transferred during the "hop" between the client and the server
therefore cannot be re-used when the IIS server attempts to access Analysis Services.

This restriction is not limited to Analysis Services. SQL Server and Exchange have similar constraints. Although it is
technically possible to support multiple hops, doing so requires considerably more domain infrastructure. Multiple hops are
only supported when running Kerberos authentication. For more information about configuring Analysis Services to use
Kerberos authentication, see Knowledge Base article Q817384, "How to Use Kerberos with Analysis Services."

Basic authentication

Use Basic authentication when you have controlled Internet access (that is, individual user accounts.) Although Basic
authentication is the recommended method of implementing Web connectivity for Analysis Services, the authentication process
and its implications are more complex (in addition to more useful) than the methods discussed earlier. You must take into account
several considerations when using Basic authentication:

In IIS, the user is identified solely by the user name and password information provided in the connection string. The user
account of the client computer is not used.

To provide some additional context for this issue, let's review SQL Server connectivity. With SQL Server authentication, the
user name and password information provided in the connection string is used to authenticate the user against SQL Server
logins. The client sends this information to the server, and the authentication is performed on the server.

With Analysis Services, Basic authentication with HTTP access provides a similar (albeit more complex) facility. Analysis
Services only supports Integrated Windows authentication. When PTS receives a Basic authentication challenge sequence
from IIS (during the initial HTTP protocol exchange), PTS parses the connection string and sends the user name and
password contained in the connection string as the response. This initial exchange happens well before msolap.asp is
executed by IIS. IIS uses those credentials to log the thread into the user account for later processing (when msolap.asp is
invoked). As far as Analysis Services is concerned (whether running on a single-computer or multiple-computer
configuration), the appropriate security environment for establishing the user's rights and permissions is the IIS logon, not
the user account of the client computer. Because the IIS logon is being performed on the IIS server, it is considered a single
hop from the IIS server to the Analysis server and is therefore allowed. For more information, see Integrated Windows
Authentication.

When separating the IIS server from the Analysis server, user accounts should be domain accounts. If domain accounts
cannot be employed between the two systems, use the workaround described in Anonymous Access. As with Integrated
Windows authentication, this approach is impractical for more than a small number of accounts.
You should also use Secure Sockets Layer (SSL) to provide a secure connection when using Basic authentication. Basic
authentication transmits user names and passwords in a lightly encrypted format. For more information about how to
obtain and configure SSL, see the IIS documentation. Because the passwords are sent in an encrypted format, Digest
authentication is more secure than Basic authentication, but it requires the domain controller to keep plain-text copies of
passwords.

Analysis Services and Security

If the data pump library uses the named pipe transport, the Roles connection string property in PTS is ignored when client
applications connect to msolap.asp. Analysis Services uses the role applicable to the user account provided by IIS to determine
access to Analysis Services objects.

You can also open only one connection per process when using HTTP to connect to Analysis Services, because the data pump
library only supports one HTTP session per process. If you attempt to open a second HTTP session for the same process, the
session cookies for the first session are dropped, in effect closing the first connection to open the second connection.

Network Architecture and Security

Network architecture is also a key element to consider when implementing Web connectivity for Analysis Services. Network
architecture can range from simple to complex, depending on the security and availability requirements of your enterprise. For
example, the physical architecture diagrams provided in this paper for single-computer and multiple-computer configurations are
themselves simplified to exclude such elements as gateways, routers, and cache servers.

Configuring client and server ports

One way that firewalls, routers, and other network security and management devices prevent unauthorized access is by disabling
unused client and server ports. Depending on the protocols and authorization mechanisms used by your implementation, you
need to enable certain client and server ports to allow the data pump library to communicate with both client applications and
Analysis servers when using the named pipe transport.

The following table lists the client and server ports that must be enabled to use NetBIOS, the protocol used by the named pipe
transport. Depending on your authentication mechanism, however, you will need to enable other ports to allow the data pump
library to function correctly. For example, if you use NTLM authentication through your firewall, there are ports associated with
the transfer of security tokens used by NTLM; if you are using Kerberos authentication, there are different ports associated with
the transfer of Kerberos tickets.

Client port(s) Server port Service
1024-65535/TCP 135/TCP RPC
137/UDP 137/UDP NetBIOS Name
138/UDP 138/UDP NetBIOS Netlogon and Browsing
1024-65535/TCP 139/TCP NetBIOS Session
1024-65535/TCP 42/TCP WINS Replication

A complete analysis of all required ports depends on the types of protocols and authentication mechanisms being used through
the firewall, and is therefore beyond the scope of this paper. For more information about required ports for protocols and
authentication mechanisms, see Windows documentation and the Microsoft Knowledge Base.

Limiting access with firewalls and perimeter networks

The product of security and availability is often treated as a constant: to increase security, you must decrease availability, and vice
versa. However, this constant depends in part on network architecture. One way to increase this constant (thereby yielding greater
security and availability) is through the careful use of firewalls and perimeter networks (also known as DMZs, demilitarized zones,
and screened subnets) as part of your network architecture.

A firewall is a mechanism for controlling the flow of data between two parts of a network that are at different levels of trust.
Firewalls can range from packet filters, which only allow traffic between specific IP ports or ranges of IP addresses, to application-
level firewalls, which actually examine the content of the data and decide whether the data should flow or not. Different types of
firewalls can be combined within a given network architecture; for example, sites often implement outward-facing firewalls that
filter packets, in conjunction with inward-facing firewalls that filter at the protocol and port layers.

Firewalls address the hardware nature of successful security architecture. Microsoft recommends a multitier approach that
encompasses four elements:

1. Hardware, such as firewalls, dual NIC cards (with IP forwarding disabled), and physically separate routers and switches.
2. Software, including VPN gateways, anti-virus programs, and software firewalls such as Microsoft Internet Security and

Acceleration (ISA) Server.
3. Good security policies, such as periodic password expiration; long passwords; passwords with symbols, numerals, and

mixed-case letters; and the prohibition of easily guessed passwords, common words, and sequenced passwords.
4. Other physical components such as smart cards, and biometric products such as fingerprint readers and retina scanners.

Never rely on just one element, such as hardware firewalls, when designing your security architecture. You should have all four
elements.

However, firewalls only manage the security part of the constant. To manage the availability part, firewalls are used in conjunction
with separate computers to construct perimeter networks. A perimeter network is a single computer or small network inserted as
a buffer between the internal network of a company and the external network available to the public. The perimeter network
prevents outside users from getting direct access to a server that has company data. A perimeter network is a more secure
firewall implementation and effectively acts as a proxy server.

There are many different perimeter network configurations. Discussing all of them in detail is beyond the scope of this paper, but
we can review a few basic perimeter network configurations and show how to configure them to work with IIS and Analysis
Services.

NOTE: The following configuration diagrams represent logical architectures for the specified scenarios. A production
Web site would include additional, redundant components, such as fault-tolerant disk arrays, dual power supplies,
dual NICs, redundant network links, failover backup servers, off-facility backup tape storage, and disaster planning
(and occasional testing) to ensure that no single point of failure is part of the architecture.

Figure 4 illustrates a common perimeter network configuration for a public Internet site.

Figure 4. Perimeter network for a public Internet site

In this scenario, Analysis Services is separated from the IIS servers so that the IIS servers can access a shared database. This
configuration provides load balancing for the Internet site: the site can manage requests across multiple IIS servers. This
configuration assumes that the Analysis Services component is a small piece of the overall application and that the IIS servers are
being used for the rest of the application. There is some security for data residing on the Analysis server, since there is a separate
physical network (that is, dual NIC cards on the IIS servers).

By contrast, Figure 5 illustrates a common perimeter network configuration for a public Internet site with a private Analysis
server. In this case, we assume that the customer is selling some specific kind of analysis data across the Internet. Thus additional
security measures are needed beyond the anonymous access used above. We also assume that the customer has an existing
private network for distribution of that data to the public Internet Web site. As you would expect, this has a much more
complicated architecture.

Figure 5. Perimeter network for an Internet site with private Analysis server

In this scenario, the IIS servers are separated from the Analysis server so that the Analysis server can be secured on a private
network. To limit possible exposure, many high-risk Internet sites will use an optional private firewall. The private firewall is
configured so that only a limited number of computers using specific ports can directly move data between the Analysis server
and the private network. Security credentials and domain controller traffic should be specifically disabled through the private
firewall.

In this case, because the Web site is a syndicated data provider, we will be using Basic authentication for users to access the
analysis data. This means that a user name and password must be passed on the connection string.

For example, the user may employ the Multidimensional Connection Wizard in Microsoft Excel, as shown in Figure 6.

Figure 6. Authentication using the Multidimensional Connection Wizard

Notice that we are using the HTTPS protocol for secure SSL encrypted access. This protocol requires the customer to purchase
SSL server certificates from a trusted certificate authority, such as Verisign. Additional security measures can also be
implemented. For example, the Web servers could be configured to render only SSL data and to also ensure that the client Web
browser has a special X509 certificate installed. Both of these requirements can be verified by modifying the msolap.asp file to
verify that the transport is HTTPS and that specific client X509 certificates exist.

When users connect to the Web server, they are authenticated and logged into the Web servers. These credentials are passed to
the Analysis server through the internal firewall. The Analysis server must be a member server of the COMMERCE domain. Thus
in addition to the ports needed for access between the Web servers and the Analysis server, the internal firewall must also allow
ports and connections between the Analysis server and the COMMERCE domain controller.

To administer the COMMERCE domain, the architecture includes a workstation that is physically adjacent to the COMMERCE
domain controller. Domain administrators will use this workstation to add, remove, and change authorized users of the Web site.

The previous scenario can be implemented in a variety of ways. Figure 7 illustrates an alternative approach.

Figure 7. Alternative perimeter network configuration using dedicated VPN connection

Here, a dedicated VPN connection acts as the private network. Data still moves over the Internet, but it appears as a private
Analysis server to the public Internet site.

Some enterprise-class firewalls, such as the Cisco PIX 515E, combine firewalls with VPN gateways, so the top portion of Figure 7
does not necessarily contain two boxes and a switch. Because of the VPN, additional security measures would include the use of a
smart card for VPN authentication and the addition of Microsoft ISA Server on the Analysis server.

Notice that we changed the way in which domain authentication is performed. Rather than opening up additional ports and
computer access through the internal firewall, we have two domain controllers and a private network between them (used just for
domain account replication). There is a one-way trust relationship between the perimeter network and COMMERCE domains. The
perimeter network trusts COMMERCE. Thus, any Basic authentication login for COMMERCE\<user name> will be valid and can be
impersonated on the perimeter network Web servers. There is also a firewall between the perimeter network and COMMERCE
domain controllers limiting the ports to just those needed for domain controller replication.

Because individual computers will be using the VPN to enter the network, we removed the private firewall from the previous
architecture. The architecture has the domain controller included on the VPN side of the firewall, because remote users will
probably be maintaining the COMMERCE domain (for example, adding and removing users).

Figure 8 shows a common internal application employing Integrated Windows authentication, but also allowing public Internet
access.

Figure 8. Network configuration using Integrated Windows authentication with public access

In this scenario, since we are using Integrated Windows security, we cannot easily separate IIS from the Analysis server. They
should run on the same computer, because of the one-hop restriction of NT security tokens discussed earlier in this paper.

This scenario uses the VPN gateway to ensure that all of the required ports are accessible through the public Internet. This
technique also provides full data encryption of the underlying data stream.

Conclusion
The updates included in Service Pack 3 extend the scalability and functionality of Analysis Services, allowing for secure
multidimensional data access on the Web by physically and logically isolating the data pump from the Analysis server.

For More Information
SQL Server Books Online contains more information about Analysis Services. For additional information, see these resources:

The Microsoft SQL Server Web site.
The Microsoft SQL Server Developer Center.
SQL Server Magazine.
The microsoft.public.sqlserver.olap and microsoft.public.sqlserver.datawarehouse newsgroups at
news://news.microsoft.com.
Creating Large-Scale, Highly Available OLAP Sites: A Step-by-Step Guide
The Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see
http://www.microsoft.com/trainingandservices.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com
http://www.microsoft.com/sql/evaluation/BI/CreatingOLAPsites.asp
http://www.microsoft.com/trainingandservices
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Improving Performance with SQL Server 2000 Indexed Views

Gail Erickson, author
Lubor Kollar, contributor
Jason Ward, contributor
Microsoft Corporation

September 2000

Summary: This document describes the new indexed views capability of SQL Server 2000 Enterprise Edition. Indexed views are
explained and specific scenarios in which they may provide performance improvements are discussed. (17 printed pages)

Contents

What Is an Indexed View?
 Performance Gains from Indexed Views
Benefits of Using Indexed Views
 How the Query Optimizer Uses Indexed Views
Design Considerations
 Design Guidelines
 Using the Index Tuning Wizard
 Maintaining Indexed Views
Creating Indexed Views
 Using SET Options to Obtain Consistent Results
 Using Deterministic Functions
 Additional Requirements
Examples
For More Information

What Is an Indexed View?
For many years, Microsoft® SQL Server™ has supported the ability to create virtual tables known as views. Historically, these
views served two main purposes:

1. To provide a security mechanism that restricts users to a certain subset of data in one or more base tables.
2. To provide a mechanism that allows developers to customize how users can logically view the data stored in base tables.

With SQL Server 2000, the functionality of SQL Server views has been expanded to provide system performance benefits. It is
possible to create a unique clustered index on a view, as well as nonclustered indexes, to improve data access performance on the
most complex queries. In SQL Server 2000, a view that has a unique clustered index is referred to as an indexed view.

Note Indexed views can be created in any edition of SQL Server 2000. In SQL Server 2000 Enterprise Edition, the
indexed view will be automatically considered by the query optimizer. To use an indexed view in all other editions, the
NOEXPAND hint must be used.

From the Database Management System (DBMS) perspective, a view is a description of the data (a meta data). When a typical
view is created, the meta data is defined by encapsulating a SELECT statement that defines a result set to be represented as a
virtual table. When a view is referenced in the FROM clause of another query, this meta data is retrieved from the system catalog
and expanded in place of the view's reference. After view expansion, the query optimizer compiles a single execution plan for the
executing query.

In the case of a nonindexed view, the view is materialized at run time. Any computations, such as joins or aggregations, are done
during query execution for each query referencing the view. (The view does not always need to be fully materialized. The query
can contain additional predicates, joins, or aggregations that can be applied to the tables and views referenced in the view.) After a
unique clustered index is created on the view, the view's result set is materialized immediately and persisted in physical storage in
the database, saving the overhead of performing this costly operation at execution time.

The indexed view can be used in a query execution in two ways. The query can reference the indexed view directly, or, more
importantly, the query optimizer can select the view if it determines that the view can be substituted for some or all of the query
and it is the low-cost query plan. In the second case, the indexed view is used instead of the underlying tables and their ordinary
indexes. The view does not need to be referenced in the query for the query optimizer to use it during query execution. This allows
existing applications to benefit from the newly created indexed views without changing those applications.

Performance Gains from Indexed Views

Using indexes to improve query performance is not a new concept, however, indexed views provide additional performance
benefits that cannot be achieved using standard indexes. Indexed views can increase query performance in the following ways:

Aggregations can be precomputed and stored in the index to minimize expensive computations during query execution.
Tables can be prejoined and the resulting data set stored.
Combinations of joins or aggregations can be stored.

The graph below demonstrates the typical performance increases that can be achieved when the query optimizer uses an indexed
view. The represented queries varied in complexity (for example, the number of aggregate calculations, the number of tables used,
or the number of predicates) and included large multi-million row tables from a real production environment.

Figure 1. Typical performance increases that can be achieved when the query optimizer uses an indexed view

Using secondary indexes on views

Secondary, nonclustered indexes on views can provide additional query performance. Similar to secondary indexes on tables,
secondary indexes on views may provide more options for the query optimizer to choose from during the compilation process.
For example, if the query includes columns not covered by the clustered index, the optimizer can choose one or more secondary
indexes in the plan and avoid a time-consuming full scan of the indexed view or base tables.

Adding indexes to the schema increases the overhead on the database because the indexes will require on-going maintenance.
Careful consideration should be given to finding the right balance of indexes and maintenance overhead.

Benefits of Using Indexed Views
Analyze your database workload before implementing indexed views. Use your knowledge of the queries as well as various tools
(for example, SQL Profiler) to identify the queries that can benefit from indexed views. Frequently occurring aggregations and
joins are the best candidates for indexed views.

Not all queries will benefit from indexed views. Similar to ordinary indexes, if the indexed views are not used, there is no benefit.
In this case, not only are performance gains not realized, but the additional cost of disk space, maintenance, and optimization is
incurred. However, when indexed views are used, they can provide significant improvements (by orders of magnitude) in data
access. This is because the query optimizer uses the precomputed results stored in the indexed view, substantially reducing the
cost of the query execution.

The query optimizer considers indexed views only for queries with nontrivial cost. This avoids situations where trying to match
various indexed views during the query optimization costs more than the savings achieved by the indexed view usage. Indexed
views are rarely used in queries with a cost of less than 1.

Applications that benefit from the implementation of indexed views include:

Decision support workloads
Data marts
Online analytical processing (OLAP) stores and sources
Data mining workloads

From the query type and pattern point of view, the benefiting applications can be characterized as those containing:

Joins and aggregations of large tables

Repeated patterns of queries
Repeated aggregations on the same or overlapping sets of columns
Repeated joins of the same tables on the same keys
Combinations of the above

On the contrary, online transaction processing (OLTP) systems with many writes, or databases with frequent updates, may not be
able to take advantage of the indexed views because of the increased maintenance cost associated with updating both the view
and underlying base tables.

How the Query Optimizer Uses Indexed Views

The SQL Server query optimizer automatically determines when an indexed view can be used for a given query execution. The
view does not need to be referenced directly in the query for the optimizer to use it in the query execution plan. Therefore,
existing applications may take advantage of the indexed views without any changes to the application itself. Only the indexed
views have to be created.

Optimizer considerations

The query optimizer considers several conditions to determine if an indexed view can cover a portion or the entire query. These
conditions correspond to a single FROM clause in the query and consist of the following:

The tables in the query FROM clause must be a superset of the tables in the indexed view FROM clause.
The join conditions in the query must be a superset of the join conditions in the view.
The aggregate columns in the query must be a subset of the aggregate columns in the view.
All expressions in the query select list must be derivable from the view select list or from the tables not included in the view
definition.
The query search condition predicates must be a superset of the search condition predicates in the view definition. Each
conjunct in the view search predicate must appear in the same form as a conjunct in the query search predicate.
All columns in the query search condition predicates that belong to tables in the view definition must appear in one or more
of the following:

The same predicate in the view definition.
A GROUP BY list.
The view select list if there is no GROUP BY.

If the query contains more than one FROM clause (subqueries, derived tables, UNION), the optimizer may select several indexed
views to manage a query with multiple FROM clauses.

Note There are exceptional situations when the optimizer may collapse two FROM clauses into one (subquery to
join, or derived table to join transformation). If that happens, the indexed view substitution may cover more than one
FROM clause in the original query.

Example queries demonstrating these conditions are presented at the end of this document. Allowing the query optimizer to
determine which indexes, if any, to use in the query execution plan is the recommended best practice.

Using the NOEXPAND option

The NOEXPAND option forces the query optimizer to treat the view like an ordinary table with a clustered index. In this case, the
indexed view must be referenced directly in the FROM clause. For example:

SELECT Column1, Column2, ... FROM Table1, View1 WITH (NOEXPAND)WHERE ...

Using the EXPAND VIEWS options

Alternatively, the user can explicitly exclude indexed views from consideration by using the EXPAND VIEWS option at the end of
the query. For example:

SELECT Column1, Column2, ... FROM Table1, View1 WHERE ...OPTION (EXPAND VIEWS)

When this option is used, the query optimizer ignores all view indexes when estimating the low-cost method of covering the
columns referenced in the query.

Design Considerations

Identifying an appropriate set of indexes for a database system can be complex. While there are numerous possibilities to
consider when designing ordinary indexes, adding indexed views to the schema dramatically increases the complexity of the
design and the potential results. For example, indexed views can be used on:

Any subset of tables referenced in the query.
Any subset of the conditions in the query for that subset of tables.
Grouping columns.
Aggregate functions, such as SUM.

Indexes on tables and indexed views should be designed concurrently to obtain the best results from each construct. Because both
indexes and indexed views may be useful for a given query, designing them separately can lead to redundant recommendations
that incur high storage and maintenance overhead. While tuning the physical design of a database, trade offs must be made
between the performance requirements of a diverse set of queries and updates that the database system must support. Therefore,
identifying an appropriate physical design for indexed views is a challenging task, and the Index Tuning Wizard should be used
wherever it is possible.

Query optimization cost can increase substantially if there are many indexed views that the query optimizer may consider for a
particular query. A query optimizer may consider all indexed views that are defined on any subset of tables in the query. Each
view has to be parsed and then investigated for the potential substitution before it is rejected. This may take same time, especially
if there are hundreds of such views for a given query.

A view must meet several requirements before you can create a unique clustered index on it. During the design phase, consider
these requirements:

The view, and all tables referenced in the view, must be in the same database and have the same owner.
The indexed view does not need to contain all the tables referenced in the query to be used by the optimizer.
A unique clustered index must be created before any other indexes can be created on the view.
Certain SET options (discussed later in this document) must be set correctly when the base tables, view, and index are
created, and whenever data in the base tables and view are modified. In addition, the query optimizer will not consider the
indexed view unless these SET options are correct.
The view must be created using schema binding and any user-defined functions referenced in the view must be created
with the SCHEMABINDING option.
Additional disk space will be required to hold the data defined by the indexed view.

Design Guidelines

Consider these guidelines when designing indexed views:

Design indexed views that can be used by several queries or multiple operations.

For example, an indexed view that contains the SUM of a column and the COUNT_BIG of a column can be used by queries
that contain the functions SUM, COUNT, COUNT_BIG, or AVG. The queries will be faster because only a small number of
rows from the view need to be retrieved rather than the full number of rows from the base tables and a portion of the
computations required for performing the AVG function have already been done.

Keep the index compact.

By using the fewest number of columns and bytes as possible, the optimizer gains maximum efficiency in locating the row
data. Conversely, if a large clustered index key is defined, any secondary, nonclustered indexes defined on the view will be
significantly larger because the nonclustered index entries will contain the clustering key in addition to the columns defined
by the index.

Consider the size of the resulting indexed view.

In the case of pure aggregation, the indexed view may not provide any significant performance gains if its size is similar to
the size of the original table.

Design multiple smaller indexed views that accelerate parts of the process.

You may not be able to always design an indexed view that addresses the entire query. Should that occur, consider creating
several indexed views each performing a portion of the query.

Consider these examples:

A frequently executed query aggregates data in one database, aggregates data in another database, and then joins

the results. Because an indexed view cannot reference tables from more than one database, you cannot design a
single view to perform the entire process. However, you can create an indexed view in each database that does the
aggregation for that database. If the optimizer can match the indexed views against existing queries, at least the
aggregation processing will be faster, without the need to recode existing queries. Although the join processing is
not faster, the overall query is faster because it uses the aggregations stored in the indexed views.
A frequently executed query aggregates data from several tables, and then uses UNION to combine the results.
UNION is not allowed in an indexed view. You can design views to perform each of the individual aggregation
operations. The optimizer can then select the indexed views to speed up queries with no need to recode the queries.
While the UNION processing is not improved, the individual aggregation processes are improved.

Using the Index Tuning Wizard

The Index Tuning Wizard recommends indexed views in addition to recommending indexes on base tables. Using the wizard
enhances an administrator's ability to determine the combination of indexes and indexed views that optimize the performance of
the typical mix of queries executed against a database.

Because the Index Tuning Wizard forces all the required SET options (to ensure the result set is correct), its indexed view creation
will succeed. However, your application may not be able to take advantage of the views if its option settings are not set as
required. The inserts, updates, or deletes may fail on tables that participate in the indexed view definitions.

Maintaining Indexed Views

SQL Server automatically maintains indexed views similar to any other index. In the case of ordinary indexes, each index is tied
directly to a single table. With each INSERT, UPDATE, or DELETE operation performed on the underlying table, the index is updated
accordingly so that the values stored in the index are always consistent with the table.

Indexed views are similarly maintained. However, if the view references several tables, updating any of them may require
updating the indexed view. Unlike ordinary indexes, a single row insert into any of the participating tables may cause multiple row
inserts into the indexed view. The same is true for updates and deletes. Consequently, the maintenance of an indexed view may be
more expensive than maintaining an index on the table.

In SQL Server 2000, some views can be updated. When a view is updatable, the underlying base tables are modified directly
through the view using INSERT, UPDATE and DELETE statements. Creating an index on a view does not prevent the view from
being updatable. For more information about updatable views, see Modifying Data Through a View in SQL Server Books Online
for SQL Server 2000.

Maintenance cost considerations

The following points should be considered when designing indexed views:

Additional storage is required in the database for the indexed view. The result set of an indexed view is physically persisted
in the database in a manner similar to that of typical table storage.
SQL Server maintains views automatically. Therefore, any changes to a base table on which a view is defined may initiate
one or more changes in the view indexes. Thus, additional maintenance overhead is incurred.

The net performance improvement achieved by a view is the difference of the total query execution savings offered by the view
and the cost to store and maintain the view.

It is relatively easy to approximate the required storage the view will consume. Evaluate the SELECT statement encapsulated by
the view definition with the SQL Query Analyzer tool Display Estimated Execution Plan. This tool will yield an approximation of the
number of rows returned by the query and the size of the row. By multiplying these two values together, it is possible to
approximate the potential size of the view. However, this is only an approximation. The actual size of the index on the view can be
accurately determined only by creating the index on the view.

From the standpoint of automated maintenance considerations performed by SQL Server, the Display Estimated Execution Plan
functionality may give some insight on the impact of this overhead. If a statement that modifies the view (UPDATE on the view,
INSERT into a base table) is evaluated with SQL Query Analyzer, the SHOWPLAN will include the maintenance operation for that
statement. Taking this cost into consideration along with an idea of how many times this operation will occur in the production
environment may indicate the potential cost of view maintenance.

As a general recommendation, any modifications or updates to the view or the base tables should be performed in batches rather
than singleton operations whenever possible. This may reduce some overhead in the view maintenance.

Creating Indexed Views

The steps required to create an indexed view are critical to the successful implementation of the view.

1. Verify the SET options are correct for all existing tables that will be referenced in the view.
2. Verify your session's SET options are set correctly before creating any new tables and the view.
3. Verify the view definition is deterministic.
4. Create the view using the WITH SCHEMABINDING option.
5. Create the unique clustered index on the view.

Using SET Options to Obtain Consistent Results

Evaluating the same expression can produce different results in SQL Server if different SET options are active when the query is
executed. For example, after the SET option CONCAT_NULL_YIELDS_NULL is set to ON, the expression 'abc' + NULL returns the
value NULL. However, after CONCAT_NULL_YIEDS_NULL is set to OFF, the same expression produces 'abc'. Indexed views require
fixed values for several SET options to ensure that the views can be maintained correctly and return consistent results.

The SET options in the following table must be set to the values shown in the Required Value column whenever these conditions
occur:

The indexed view is created.
There is any INSERT, UPDATE, or DELETE operation performed on any table participating in the indexed view.
The indexed view is used by the query optimizer to produce the query plan.

SET
Options

Required
Value

Default
Server
Value

OLE DB
and

ODBC Value

DB LIB
Value

ANSI_NULLS ON OFF ON OFF
ANSI_PADDING ON ON ON OFF
ANSI_WARNING ON OFF ON OFF
ARITHABORT ON OFF OFF OFF
CONCAT_NULL_YIELDS_NULL ON OFF ON OFF
NUMERIC_ROUNDABORT OFF OFF OFF OFF
QUOTED_IDENTIFIER ON OFF ON OFF

If you are using an OLE DB or ODBC server connection, the only value that must be modified is the ARITHABORT setting. All DB
LIB values must be set correctly either at the server level using sp_configure or from the application using the SET command. For
more information about SET options, see Using Options in SQL Server in SQL Server Books Online for SQL Server 2000.

Using Deterministic Functions

The definition of an indexed view must be deterministic. A view is deterministic if all expressions in the select list, as well as the
WHERE and GROUP BY clauses, are deterministic. Deterministic expressions always return the same result any time they are
evaluated with a specific set of input values. Only deterministic functions may participate in deterministic expressions. For
example, the DATEADD function is deterministic because it always returns the same result for any given set of argument values
for its three parameters. GETDATE is not deterministic because it is always invoked with the same argument, yet the value it
returns changes each time it is executed. For more information, see Deterministic and Nondeterministic Functions in SQL Server
Books Online for SQL Server 2000.

Even if an expression is deterministic, if it contains float expressions, the exact result may depend on the processor architecture or
version of microcode. To ensure data integrity in SQL Server 2000, such expressions can participate only as non-key columns of
indexed views. Deterministic expressions that do not contain float expressions are called precise. Only precise deterministic
expressions may participate in key columns and WHERE or GROUP BY clauses of indexed views.

Use the COLUMNPROPERTY function and IsDeterministic property to determine if a view column is deterministic. Use the
COLUMNPROPERTY function and IsPrecise property to determine if a deterministic column in a view with schemabinding is
precise. COLUMNPROPERTY returns 1 if TRUE, 0 if FALSE, and NULL for invalid input (the column is not deterministic). For
example, SELECT COLUMNPROPERTY(Object_Id('Vdiscount1'),'SumDiscountPrice','IsPrecise') returns 0 because the
SumDiscountPrice column references float column Discount from the table Order Details. Alternatively, the column SumPrice
in the same view is both deterministic and precise.

Note The view that this SELECT statement is based on can be found in the example section as View 1.

Additional Requirements

In addition to the requirements listed in the design guidelines, the Using Set Options to Obtain Consistent Results and Using
Deterministic Functions sections, the following requirements must be met.

Base table requirements

Base tables must have the correct SET options set at the time the table is created or it cannot be referenced by the view with
schemabinding.
Tables must be referenced by two-part names (owner.tablename) in the view definition.

Function requirements

User-defined functions must be created using the WITH SCHEMABINDING option.
User-defined functions must be referenced by two-part names (owner.function).

View requirements

The view must be created using the WITH SCHEMABINDING option.
The view must reference only base tables in the same database, not other views.

Syntax restrictions

There are several restrictions on the syntax of the view definition. The view definition must not contain the following:

COUNT(*)
ROWSET function
Derived table
self-join
DISTINCT
STDEV, VARIANCE, AVG
Float*, text, ntext, image columns
Subquery
full-text predicates (CONTAIN, FREETEXT)
SUM on nullable expression
MIN, MAX
TOP
OUTER join
UNION

Note The indexed view may contain float columns, however, such columns cannot be included in the clustered index
key.

GROUP BY restrictions

If GROUP BY is not used, expressions cannot be used in the select list.

If GROUP BY is present, the VIEW definition:

Must contain COUNT_BIG(*).
Must not contain HAVING, CUBE, or ROLLUP.

These restrictions are applicable only to the indexed view definition. A query can use an indexed view in its execution plan even if
it does not satisfy these GROUP BY restrictions.

Index requirements

The user executing the CREATE INDEX statement must be the view owner.
If the view definition contains a GROUP BY clause, the key of the unique clustered index can reference only the columns
specified in the GROUP BY clause.

Examples

The examples in this section illustrate the use of indexed views with two major groups of queries: aggregations and joins. They
also demonstrate the conditions used by the query optimizer when determining if an indexed view is applicable. For information
about a complete list of conditions, see How the Query Optimizer Uses Indexed Views.

The queries are based on tables in Northwind, the sample database provided in SQL Server 2000, and can be executed as
written. You may want to use the Show Execution Plan tool in SQL Query Analyzer to view the plans selected by the query
optimizer before and after the views are created. Although the examples demonstrate how the optimizer chooses the low cost
execution plan, the Northwind sample database is too small to show performance gains.

The following queries show two methods to return the five products with the largest total discount from the Order Details table.

Query 1

SELECT TOP 5 ProductID, SUM(UnitPrice*Quantity) - SUM(UnitPrice*Quantity*(1.00-
Discount))AS Rebate
FROM [Order Details]
GROUP BY ProductID
ORDER BY Rebate DESC

Query 2

SELECT TOP 5 ProductID, SUM(UnitPrice*Quantity*Discount)AS Rebate
FROM [Order Details]
GROUP BY ProductID
ORDER BY Rebate DESC

The execution plan selected by the query optimizer contains:

A Clustered Index Scan on the Order Details table with a row estimate of 2,155 rows.
A Hash Match/Aggregate operator that puts the selected rows into a hash table based on the GROUP BY column and
computes the SUM aggregation for each row.
A TOP 5 sort operator based on the ORDER BY clause.

View 1

Adding an indexed view that includes the aggregations required for the Rebate column will change the query execution plan for
Query 1. On a large table (multi-million rows), the query's performance would also improve significantly.

CREATE VIEW Vdiscount1 WITH SCHEMABINDING
AS
SELECT SUM(UnitPrice*Quantity)AS SumPrice, SUM(UnitPrice*Quantity*(1.00-Discount))AS
SumDiscountPrice, COUNT_BIG(*) AS Count, ProductID
FROM dbo.[Order Details]
GROUP BY ProductID
 GO
CREATE UNIQUE CLUSTERED INDEX VDiscountInd ON Vdiscount1 (ProductID)

The execution plan for the first query shows that the Vdiscount1 view is used by the optimizer. However, the view will not be used
by the second query because it does not contain the SUM(UnitPrice*Quantity*Discount) aggregate. Another indexed view can be
created that will address both queries.

View 2

CREATE VIEW Vdiscount2 WITH SCHEMABINDING
AS
SELECT SUM(UnitPrice*Quantity)AS SumPrice, SUM(UnitPrice*Quantity*(1.00-Discount))AS
SumDiscountPrice, SUM(UnitPrice*Quantity*Discount)AS SumDiscountPrice2, COUNT_BIG(*) AS
Count, ProductID
FROM dbo.[Order Details]
GROUP BY ProductID
GO
CREATE UNIQUE CLUSTERED INDEX VDiscountInd ON Vdiscount2 (ProductID)

With this indexed view, the query execution plan for both queries now contains:

A Clustered Index Scan on the Vdiscount2 view with a row estimate of 77 rows
A TOP 5 Sort function based on the ORDER BY clause

The query optimizer selected the view because it provided the lowest execution cost even though it was not referenced in the
query.

Query 3

Query 3 is similar to the previous queries, but ProductID is replaced by the column OrderID, which is not included in the view
definition. This violates the condition that all expressions in the query select list must be derivable from the view select list from
the tables not included in the view definition.

SELECT TOP 3 OrderID, SUM(UnitPrice*Quantity*Discount) OrderRebate
FROM dbo.[Order Details]
GROUP BY OrderID
ORDER BY OrderRebate desc

A separate indexed view would be required to address this query. Vdiscount2 could be modified to include OrderID, however, the
resulting view would contain as many rows as the original table and would not provide a performance improvement over using
the base table.

Query 4

This query produces the average price for each product.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units
FROM [Order Details] od, Products p
WHERE od.ProductID=p.ProductID
GROUP BY ProductName, od.ProductID

Complex aggregates (for example, STDEV, VARIANCE, AVG) cannot be included in the definition of an index view. However,
indexed views can be used to execute a query containing an AVG by including the simple aggregate functions that, when
combined, perform the complex aggregation.

View 3

This indexed view contains the simple aggregate functions needed to perform an AVG function. When Query 4 is executed after
the creation of View 3, the execution plan shows the view being used. The optimizer can derive the AVG expression from the
view's simple aggregation columns Price and Count.

CREATE VIEW View3 WITH SCHEMABINDING
AS
SELECT ProductID, SUM(UnitPrice*(1.00-Discount))AS Price, COUNT_BIG(*)AS Count,
SUM(Quantity)AS Units
FROM dbo.[Order Details]
GROUP BY ProductID
Go
CREATE UNIQUE CLUSTERED INDEX iv3 ON View3 (ProductID)

Query 5

This query is the same as Query 4, but includes one additional search condition. View 3 will work for this query even though the
additional search condition references only columns from a table not included in the view definition.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount))AS AvgPrice,
SUM(od.Quantity)AS Units
FROM [Order Details] AS od, Products AS p
WHERE od.ProductID=p.ProductID
AND p.ProductName like '%Tofu%'
GROUP BY ProductName, od.ProductID

Query 6

The query optimizer cannot use View 3 for this query. The added search condition od.UnitPrice>10 contains a column from the
table in the view definition but the column does not appear in the GROUP BY list nor does the search predicate appear in the view
definition.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units

FROM [Order Details] od, Products p
WHERE od.ProductID = p.ProductID
AND od.UnitPrice > 10
GROUP BY ProductName, od.ProductID

Query 7

In contrast, the query optimizer can use View 3 for Query 7 because the column defined in the new search condition od.ProductID
in (1,2,13,41) is included in the GROUP BY clause in the view definition.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units
FROM [Order Details] AS od, Products AS p
WHERE od.ProductID = p.ProductID
AND od.ProductID in (1,2,13,41)
GROUP BY ProductName, od.ProductID

View 4

This view will satisfy the conditions for Query 6 by including the column od.Discount in the view definition.

CREATE VIEW View4 WITH SCHEMABINDING
AS
SELECT ProductName, od.ProductID, SUM(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units, COUNT_BIG(*) AS Count
FROM dbo.[Order Details] AS od, dbo.Products AS p
WHERE od.ProductID = p.ProductID
AND od.UnitPrice > 10
GROUP BY ProductName, od.ProductID
GO
CREATE UNIQUE CLUSTERED INDEX VdiscountInd on View4 (ProductName, ProductID)

Query 8

The same index on View 4 will also be used for a query where a join to the table Orders is added. This query meets the condition
that the tables listed in the query FROM clause are a superset of the tables in the FROM clause of the indexed view.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units
FROM dbo.[Order Details] AS od, dbo.Products AS p, dbo.Orders AS o
WHERE od.ProductID = p.ProductID and o.OrderID = od.OrderID
AND od.UnitPrice > 10
GROUP BY ProductName, od.ProductID

The final two queries are modifications of Query 8. Each modification violates one of the optimizer conditions and unlike Query 8,
cannot use View 4.

Query 8a

Q8a cannot use the indexed view because of the WHERE clause mismatch between UnitPrice > 10 in the view definition and
UnitPrice > 25 in the query. The query search condition predicate must be a superset of the search condition predicates in the
view definition.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AvgPrice,
SUM(od.Quantity) AS Units
FROM dbo.[Order Details] AS od, dbo.Products AS p, dbo.Orders AS o
WHERE od.ProductID = p.ProductID and o.OrderID = od.OrderID
AND od.UnitPrice > 25
GROUP BY ProductName, od.ProductID

Query 8b

Observe that table Orders does not participate in the indexed view V4 definition. In spite of that, adding a predicate on this table
will disallow using the indexed view because the added predicate may eliminate additional rows participating in the aggregates as
it is shown in Query 8b.

SELECT ProductName, od.ProductID, AVG(od.UnitPrice*(1.00-Discount)) AS AvgPrice,
SUM(od.Quantity) AS Units

FROM dbo.[Order Details] AS od, dbo.Products AS p, dbo.Orders AS o
WHERE od.ProductID = p.ProductID and o.OrderID = od.OrderID
AND od.UnitPrice > 10
AND o.OrderDate > '01/01/1998'
GROUP BY ProductName, od.ProductID

For More Information
Microsoft SQL Server 2000 Books Online contains more information about indexed views. For additional information, see these
resources:

Microsoft SQL Server Web site.
Microsoft SQL Server Developer Center.
SQL Server Magazine.
Microsoft.public.sqlserver.server and microsoft.public.sqlserver.datawarehouse newsgroups at news://news.microsoft.com.
Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see the Microsoft Training and
Services Web site.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, JScript, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com/
http://www.microsoft.com/trainingandservices
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Index Tuning Wizard for Microsoft SQL Server 2000

Sanjay Agrawal
Surajit Chaudhuri
Lubor Kollar
Vivek Narasayya
Microsoft Corporation

August 2000

Summary: This article describes the Index Tuning Wizard in Microsoft SQL Server 2000. The Index Tuning Wizard simplifies the
task of identifying which indexes to create in a table and also optionally generates scripts to create them by analyzing a user-
supplied workload. Various modes are offered for tuning both indexes and indexed views. (9 printed pages)

Table of Contents

Why Is Index and Indexed View Selection Difficult?
Using the Index Tuning Wizard
 Customizing the Index Tuning Wizard
 Analyzing Index Tuning Wizard Output
 Starting the Wizard
 Getting the Most from the Index Tuning Wizard
Understanding the Architecture of the Index Tuning Wizard
For More Information

Why Is Index and Indexed View Selection Difficult?
Identifying an appropriate set of indexes for a database system is a complex undertaking. For a given database, there are many
possible indexes (such as single and multi-column) and modern query processors exploit indexes in sophisticated ways. While the
number of considered indexes is very large, the number of indexed views (materialized views) that must be considered for a
database is even larger. In principle, an indexed view of any subset of the tables referenced in a query may be useful in answering
the query. Furthermore, for any given subset of tables in the query, we can define an indexed view containing any subset of the
conditions in the query on that subset of tables. The number of considered indexed views is further increased since an indexed
view may also contain grouping columns and aggregation expressions (that is, SUM). Finally, as with tables, it is possible to define
a clustered index on a view, as well as multiple non-clustered indexes on the view.

The choice of indexes and indexed views cannot be done in isolation of each other. One reason for this is that the presence of an
index can make an indexed view more attractive to the optimizer, and vice versa. Ignoring such interactions can result in poor
quality recommendations. Furthermore, since both indexes and indexed views may be useful for a given query, picking them
separately can lead to redundant recommendations that incur high storage and update overhead. Finally, while tuning the
physical design of a database, we must trade off the performance requirements of a diverse set of queries and updates that the
database system must support. Therefore, identifying an appropriate physical design is a challenging task.

The Index Tuning Wizard in Microsoft® SQL Server™ 2000 can help you avoid these problems. It recommends the right mix of
indexes and indexed views for the given workload of queries and updates. To make its decision, it employs usage statistics, it
consults the query processor in evaluating the usefulness of indexes and indexed views, and it searches the space of possible
indexes and indexed views.

Using the Index Tuning Wizard
To use the Index Tuning Wizard, the server name and the database name must be specified. In addition, the wizard requires a
workload (specified as a file or a table) as its input. The goal of the Index Tuning Wizard is to recommend a physical design that
best optimizes the aggregate performance of the queries and updates in the workload. Any SQL Profiler trace can be used as a
workload. SQL Profiler is a graphical SQL Server client tool that makes it possible to monitor and record engine events in a file or
table.

A typical entry in such a workload may consist of a variety of fields: event-class, text of the event (for example, text of the Transact-
SQL query), start-time, and duration of the event. The Index Tuning Wizard can extract engine relevant events (such as Transact-
SQL statements) and fields from a SQL Profiler trace automatically. Alternatively, any file that contains a set of Transact-SQL
statements can also be used as a workload. Such files may contain customer benchmarks for which the index selection must be
tuned. Because the Index Tuning Wizard does not execute any batch of queries in the workload during analysis, it cannot provide
recommendations for a batch that references temporary objects.

The Index Tuning Wizard produces a recommendation for physical design and optionally generates the necessary script to
implement it. It also estimates the expected improvement that may accrue from implementing the recommendation. Furthermore,
the recommendation is accompanied by a range of reports that provide further insight into the impact of the recommendations.

Customizing the Index Tuning Wizard

The Index Tuning Wizard provides the following set of options to customize index selection:

Keep all existing indexes

This option can be exercised on the Server and Database Choice dialog box. By selecting this option, the user instructs the
wizard not to drop any of the existing indexes and indexed views. This allows conservative use of the tool and incremental
changes in the design. Unless the user is experienced, it is recommended that this mode of operation be used.

Add indexed views

This option is enabled when connecting to an Enterprise or Developer Edition version of SQL Server 2000, and is checked by
default. This option determines whether or not indexed views, in addition to indexes, will be considered by the Index Tuning
Wizard.

Tuning mode

For large workload files and large databases, tuning may require a significant amount of time and resources. This option allows
the user to trade off the running time of the Index Tuning Wizard with the thoroughness of the analysis. The Fast mode consumes
the least amount of time and resources and produces a quick recommendation that is based on query analysis and limited
interaction with the query processor. (Indexed views are not proposed in the Fast mode.) The Medium mode, which is the default,
proposes indexes and indexed views and is significantly faster than the Thorough mode for large workloads. Although the
Medium mode of operation searches fewer possibilities, in many cases it is able to provide a respectable set of recommendations.
The Thorough mode consumes the maximum amount of time and resources, but it also gives the highest quality
recommendation for the workload. Below is a comparison of the running times and expected improvements of the Index Tuning
Wizard (ITW) in different tuning modes for a sample workload on a 1.2 GB database:

Server Version Features Tuned Tuning Mode ITW running time Expected Improvement

SQL Server 7.0 Indexes Only Thorough 40 min.
46 sec. 49%

SQL Server 2000 Indexes Only Fast 1 min.
10 sec. 37%

SQL Server 2000 Indexes Only Medium 3 min.
52 sec. 39%

SQL Server 2000 Indexes and Indexed Views Medium 4 min.
54 sec. 41%

SQL Server 2000 Indexes Only Thorough 16 min.
5 sec. 62%

SQL Server 2000 Indexes and Indexed Views Thorough 19 min.
21 sec. 79%

Additional customization options are presented in the Advanced Options screen:

Limit number of workload queries to sample

To improve scalability, the Index Tuning Wizard in SQL Server 2000 supports the ability to randomly sample queries from a
workload and restrict tuning to the sampled queries. If this option is checked (which is the default), then the Index Tuning Wizard
samples the specified number of queries from the workload. If the workload contains fewer than the specified number of queries,
then all queries are tuned. If this option is not checked, then all queries in the workload are tuned. It should be noted that the
Index Tuning Wizard considers the specified number of queries, not events. Specifically, events that are not considered by the
Index Tuning Wizard to be queries are not counted towards the limit.

Maximum space for the recommendation

This parameter reflects the limit on the sum total of storage for all data and indexes in the chosen database. By default, this
parameter is set to three times the size of the current data, or the available disk space on all attached drives, whichever is smaller.
The current data is defined as all heaps and clustered indexes on tables and views. Indexes are defined as all non-clustered
indexes on tables and views. In case the Keep all indexes option is selected, the specified limit also includes the storage required
for existing indexes. Because databases grow over time, the administrator should adjust the parameter so that the assigned
storage is appropriate for the current data size.

Maximum columns per index

This parameter can be tuned to influence the maximum width of indexes on tables as well as views. An index with few columns
potentially can be used in many queries in a workload. An index with many columns may enable index-only access and eliminate
data scans for some of the queries even though it requires more storage space than an index with fewer columns. Given the
complexity of the trade-off, it is recommended that only experienced administrators tune this parameter.

Selecting tables to tune

Another significant way in which the Index Tuning Wizard can be customized is by restricting index tuning to only a subset of all
tables by selecting the Select Tables to Tune option. This allows the user to focus the design on selected tables in the database
without altering the indexes and indexed views for the remaining tables.

Table scaling

A new feature available in Index Tuning Wizard for SQL Server 2000 enables you to tune the workload for a database where the
tables have different sizes than in the current database. In the Select Tables to Tune dialog box, the user can specify the
projected number of rows for a table. When performing the tuning, the Index Tuning Wizard takes the projected sizes into account
when recommending indexes and indexed views. Table scaling can be used to account for the future growth of the database as
well as to facilitate tuning on a test server by porting the recommendations to the production server where the tables may be
larger or smaller.

Analyzing Index Tuning Wizard Output

The most important output from the Index Tuning Wizard is a set of recommended indexes. The Index Recommendations
dialog box displays the list of these indexes, indicating the assigned index name, the table or view on which the index is defined,
the order and collation (ASC or DESC) of columns in the index, whether the index is clustered, and whether the index exists. The
Index Recommendations dialog box also displays which indexes, if any, were recommended to be dropped by the Index Tuning
Wizard. The wizard also produces an estimate of the expected improvement in the execution time of the workload compared to
the existing configuration. The Index Tuning Wizard uses the optimizer component of the query processor to project this estimate.
However, because the optimizer's projection is based on statistical information, the actual change in performance may be
different from the projected estimate.

The Index Tuning Wizard recommendations are augmented by a range of reports that provide further analysis of the
recommendations and their quantitative impact. These reports affect the decision about whether the recommendations should be
accepted or rejected. All the reports can be saved into files for further analysis. In the Index Recommendations dialog box, click
Analysis to view these report options:

Index Usage Report (recommended or current configuration) presents information about the expected relative usage of
the recommended or current indexes and their estimated sizes.
Query Cost Report indicates to the user the estimated reduction or increase in the cost for execution of the 100 most
expensive Transact-SQL statements in the workload file, if the recommended configuration is accepted.
Table Analysis Report provides information about the relative hits of the queries in the workload by tables in the
database.
View-Table Relations Report provides information about the tables referenced by each indexed view in the
recommendation.
Query-Index Relations Report provides information about the indexes and indexed views referenced by the 100 most
expensive statements in the workload for the recommended or current set of indexes and indexed views.
Workload Analysis Report provides information about the relative frequencies of SELECT, INSERT, UPDATE, and DELETE
queries and their relative impact on the total cost of the workload.
Tuning Summary Report provides important summary information about the execution of the Index Tuning Wizard. In
particular, this report indicates the number of tables tuned, the number of new indexes and indexed views recommended,
and the number of proposed indexes and indexed views to be dropped. The report indicates the total number of queries in
the workload that were considered as well as the time taken for analysis by the Index Tuning Wizard.

Finally, the Index Tuning Wizard enables the scheduling of a task to update the existing index configuration. The index creation
and alteration step can be initiated immediately or can be scheduled to occur at a specific date and time. In addition, a script to
perform the index update can be created. This is particularly useful because the index recommendations can be ported from the
test computer to production computers by using the script. Furthermore, the script makes it easy to identify the indexes and
indexed views that will be dropped if the recommendations of the Index Tuning Wizard are accepted. Examining the script
identifies two essential components of index tuning: a set of indexes and a set of statistics. Executing the recommendations to
create a set of statistics is vital to harnessing the full benefits of indexing. This is because the query processor exploits statistical
information during query optimization to determine whether to use an index or an indexed view.

Starting the Wizard

The Index Tuning Wizard can be started from SQL Server Enterprise Manager. On the Tools menu, select Wizards, and then
select Management. The Index Tuning Wizard is one of the wizards in the Management group. Alternatively, it can be started
from SQL Profiler on the Tools tab of the Profiler menu. After the wizard obtains the necessary user input on required
parameters, it carefully begins searching the possible configurations. If the search for the index configurations is terminated
during this time, the wizard returns the best available configuration that has been considered thus far. The SQL Server Query
Analyzer provides another mode in which the Index Tuning Wizard can be started for a workload consisting of one or more
Transact-SQL statements in a Query Analyzer buffer. This is accomplished by selecting one Transact-SQL statement in the buffer
and then selecting the Perform index analysis option on the Query tab. The ability to invoke the index tuning capability from
SQL Server Query Analyzer is useful, for example, for tuning an under-performing query in an otherwise well-tuned system.

In SQL Server 2000, index tuning can also be invoked from a command-line utility called itwiz. This utility enables scripting of the
index tuning process. Tuning using itwiz is similar to tuning via the Index Tuning Wizard interface with the following exceptions:
(a) itwiz allows a mode in which only indexed views are considered during tuning, that is, no new indexes on tables are
considered; and (b) the Analysis Reports described above are not generated by itwiz. Instead, itwiz always generates a script file as
output which contains the statements for implementing the recommendation and additional information about the tuning
process, such as the expected improvement, the storage consumed, and the time taken for analysis. This script file can be executed
to implement the recommendations.

Getting the Most from the Index Tuning Wizard

Because the recommendations of the Index Tuning Wizard are made with respect to a workload file, the single most important
step is to select a workload that is representative of the database system's usage. Although tools such as SQL Profiler can help the
user record a workload by logging activity on the server over a specified period of time, it is important to ensure that the logged
events are representative. Furthermore, the choice of the indexes and indexed views must be reevaluated periodically. In
particular, if the data volume, the data distribution, or the queries against the system change, the Index Tuning Wizard must be
executed to ensure that the choice of indexes remains sound. Another important aspect to consider is that the projected reduction
in the cost of the workload estimated by the index selection tool is based on a statistical summary of data. Therefore, the actual
decrease or increase in cost can diverge from the estimation. It is advisable to re-execute the workload with the new index
configuration to verify the projected improvement before the index configuration update is applied to production servers.

The following questions and answers provide additional tips for working with the Index Tuning Wizard:

Q: How can I determine the indexes that will be dropped if I accept the recommendations?

A: The Index Recommendations dialog box shows the indexes that will be dropped if the recommendation is accepted.
Alternatively, you can also select Save script file in the Schedule Index Update Job dialog box. By examining the script file, you
can determine the indexes that will be dropped if you decide to accept the recommendations. If running itwiz, the script file will
contain the indexes to be dropped. You can also edit the script to customize the recommendations. For example, you can change
the names of the proposed indexes and indexed views.

Q: How can I disable sampling of the workload and ensure that all queries in the workload are tuned?

A: If you are using the Index Tuning Wizard UI, then go to the Advanced Options dialog box and uncheck the Limit number of
workload queries to sample check box.

Q: Can I specify that the Index Tuning Wizard consider only indexed views?

A: Not if you use the Index Tuning Wizard UI. However, if you use itwiz you can achieve this by specifying the –f 2 option.

Q: How can I control the time taken by the tuning wizard for analysis?

A: The tuning wizard takes the least time when you set the tuning mode to Fast. It takes the longest time to analyze when the
tuning mode is set to Thorough. Generally speaking, the longer time enables the wizard to produce a better recommendation for
the physical design.

Q: For a given query, the Index Tuning Wizard suggested an index and I accepted the recommendation. However,
when investigating the query plan, the index is not used. Why?

A: When the Index Tuning Wizard makes a recommendation, it uses random sampling to estimate how useful an index will be.
However, once the index is created, more accurate statistics are generated with fullscan. The query processor may therefore find
the index less useful than originally estimated and it may not use the index in the optimal query plan.

Understanding the Architecture of the Index Tuning Wizard
The Index Tuning Wizard takes as input a workload on a specified database. The tool iterates through several alternative sets of
indexes and indexed views called configurations. It then chooses the configuration that results in the lowest cost for the given

workload. Evaluating a configuration by materializing it physically is not practical because this approach requires adding and
dropping indexes, which can be resource-intensive and affect operational queries on the system. Therefore, the Index Tuning
Wizard must simulate a configuration without materializing it. SQL Server 2000 has been extended to support the ability to
simulate a configuration and estimate the cost of evaluating a query for a simulated configuration. The illustration below (Figure
1) shows the architectural overview of the Index Tuning Wizard and its interaction with SQL Server 2000.

Figure 1. Architectural diagram of the interaction of the Index Tuning Wizard with SQL Server 2000

The Index Tuning Wizard is comprised of the following key components:

The Syntactic Structure Selection module. Proposes a set of indexes and indexed views that are potentially relevant for the
given workload.
The Candidate Index and Indexed View Selection module. Examines each query in the workload and then helps eliminate
from further consideration a large number of indexes and indexed views from the current set that provide no tangible
benefit for any query in the workload. The resulting candidate indexes and indexed views potentially provide significant
improvements to one or more queries in the workload.
The Configuration Enumeration module. Uses a search algorithm to intelligently search the space of candidate indexes and
indexed views and picks a configuration with low total cost.

In summary, the Index Tuning Wizard works with the query processor to determine the viability of a configuration. The wizard
uses workload information and is therefore able to tune the selection of indexes and indexed views to the expected usage of the
system. By considering indexes and indexed views together, the wizard is able to judiciously trade their choices. Finally, the wizard
is scalable and can handle large schema as well as large workloads by staging its execution steps appropriately, and by exposing
the tuning modes to enable the user to control the degree of analysis.

For More Information
These resources can provide more information about the Index Tuning Wizard:

Index Tuning Wizard topic in Microsoft SQL Server 2000 Books Online.

Data Management, Exploration and Mining Group, Microsoft Research.

Agrawal, S., S. Chaudhuri, and V. Narasayya. "Automated Selection of Materialized Views and Indexes for SQL Databases."
Proceedings of the Twenty-sixth International Conference on Very Large Databases. Cairo, Egypt, 2000.

Chaudhuri, S. and V. Narasayya. "An Efficient, Cost-driven Index Tuning Wizard for Microsoft SQL Server." Proceedings of the
Twenty-third International Conference on Very Large Databases. Athens, Greece, 1997.

Chaudhuri, S. and V. Narasayya. "AutoAdmin What-If Index Analysis Utility." Proceedings of ACM SIGMOD 1998. Seattle, USA.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

©2000 Microsoft Corporation. All rights reserved.

http://research.microsoft.com/dmx/AutoAdmin

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Other trademarks and tradenames mentioned herein are the property of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Inside the SQLXML Virtual Directory Structure

Drew Minkin
Microsoft Corporation

March 2002

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Introduces the SQLXML tier, a combination of XML-based communication to Microsoft SQL Server through an
Internet Information Services (IIS) virtual directory. (14 printed pages)

Contents

Introduction
Welcoming XML Documents into Your Database
Using XML Views to Create Virtual Documents
Conclusion

Introduction
This white paper is designed to introduce the database professional to the SQLXML tier, a combination of XML-based
communication to Microsoft® SQL Server™ through an Internet Information Services (IIS) virtual directory. You will learn how
SQL Server 2000 accomplishes its compatibility with XML documents by creating virtual documents, or XML that is stored
seamlessly within a database. This white paper also includes a brief introduction to the tools necessary for creating, configuring,
and executing access to a virtual document.

The software development community has seen many changes in its history, but database-programming paradigms have been
stable since the relational model. The add-ons of increased scalability, binary storage, and replication were all natural extensions
of the same design model. If you wanted a document in a database, you stored it as a BLOB, a data type image, or as text.

Even in the first and second revolutions of the Internet (TCP/IP and then HTTP), the axis mundi of an application, the database,
kept doing what it had always been doing: responding to SQL queries and generating result sets. The third revolution of XML-
based Web services brings the Internet much closer to the database and forces new thinking in terms of what a document is and
how it will exist in the next generation of applications.

This white paper provides an orientation to XML and clarifies the role of XML documents in the future of SQL Server
programmability. After a brief orientation to the context for XML integration with SQL Server, you will learn about the various
technologies required to bring XML into your data tier and ways to present your existing data as a virtual document. This white
paper is intended to be an introduction to XML for the database professional; it does not encompass all issues regarding XML
integration. After reading the entire white paper, you will have a better understanding of why XML is coming to your database
and what to do to get your virtual documents rolling.

Welcoming XML Documents into Your Database
Most database developers have specialized in performance tuning, logical entities, and a data access API or two. Neither XML nor
HTML has had a place in these worlds and the necessity for a document technology in the data tier is at first confusing. The
Microsoft Windows® DNA programming model for scalability places the onus of presentation on other layers. Some have argued
that XML allows you to do everything that you could do previously with a recordset but with more complexity and less speed.

So why change your database to accommodate XML? The answer is that you only express them in a different form. All of your
well-normalized entities, finely tuned queries and well-groomed indexes will remain intact if you plan properly for XML
integration.

The .NET framework includes two major changes: the Common Language Runtime Environment, which is beyond the scope of
this white paper, and the pervasive use of XML. Whether they build from scratch or integrate shipping technology, developers will
come to your door from all of the projects accessing the database with needs for several different types of documents.

If you are still in need of a context for where XML will help your development community, go to MSDN® XML Web services.

A Brief Introduction to XML for The DBA

If you are already familiar with the basic structures of XML documents and terminology, you can skip to the next section.

http://msdn.microsoft.com/xml/

XML has three functional components: the XML document itself, a validating schema, and any namespaces used within both.
Namespaces are a way of declaring nodes (elements or attributes) that have a specific meaning to an application that will read the
document. Most namespaces are read by the MSXML parser, but SQLXML uses its own namespaces (these are discussed in detail
later). There are many similarities between a document's schema and a table's schema: you can define a data type, what values
are required or optional, and add constraints. In order to generate a valid document, its structure must obey any rules defined in
the schema. The following is an example of an XML document in which the schema has been included in the document as an
inline schema:

 <?xml version="1.0" encoding="utf-8" ?>
- <root>
- <Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
- <ElementType name="Employees" content="empty" model="closed">
 <AttributeType name="EmployeeID" dt:type="i4" />
 <AttributeType name="FirstName" dt:type="string" />
 <AttributeType name="lastName" dt:type="string" />
 <attribute type="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="lastName" />
 </ElementType>
 </Schema>
 <Employees xmlns="x-schema:#Schema1" EmployeeID="1" FirstName="Nancy"
 lastName="Davolio" />
 <Employees xmlns="x-schema:#Schema1" EmployeeID="2"
 FirstName="Andrew" lastName="Fuller" />
 <Employees xmlns="x-schema:#Schema1" EmployeeID="3" FirstName="Janet"
 lastName="Leverling" />
 </root>

Using XML Views to Create Virtual Documents
To the applications that want to use your data in new ways, you will generate XML documents based on schemas that are
provided. What makes these documents virtual is that you do not have to use text or image columns for storage. The documents
are virtual because you are creating a view on your existing data that just happens to wrap your column headers, rows, and tables
into XML encoding, as opposed to Tabular Data Stream packet recordsets. The ability puts a thin veil over your database so that
any XML-based application will not be able to distinguish your database's translation to and from XML, or a SQLXML tier, and a
flat file XML stream.

The benefits of using virtual documents as opposed to a persisted flat file include the following:

No extra storage space is used for creating a final format.
The most recent updates are available on demand.
Security for document access maps directly to SQL models.
Schemas exist independent from the tables and can be modified without affecting the underlying database schema.

Unless you need an audit trail for a document state, the virtual document model makes a transparent addition to your database
access.

Virtual Document Requirements

There are some mandatory and optional components for managing virtual documents. With the exception of OPENXML, all XML
based programming in SQL Server uses the ICommandStream object, which was introduced into SQLOLEDB with version 2.6 of
Microsoft Data Access Components (MDAC).

Some of the technologies mentioned in this white paper shipped with and apply only to SQL Server 2000, but others (XML Bulk
Load, Updategrams, and XSD support) will require installing SQLXML 3.0, also known as SQLXML.

Matrix for Virtual Document Function Compatibility

The following table shows the compatibility levels for different functions.

Function SQL Server Tier SQLXML
SOAP 2000 IIS 3.0 or higher
XPath Queries 2000 IIS 1.0 or higher
Updategrams 2000 IIS 1.0 or higher
Template Queries 2000 IIS 1.0 or higher

XML Bulk Load 2000 Both 1.0 or higher
XSD Support 2000 IIS 2.0 or higher
OPENXML 2000 SQL N/A
FOR XML 2000 SQL N/A

Virtual Document Architectural Overview

The following diagram outlines the entire document workflow available using XML in SQL Server 2000.

Figure 1. Virtual Document Architecture (click picture to see larger image)

As you can see, the majority of the virtual document structures eliminate any references to XML before the SQL command is
forwarded to the relational engine. The only place where the Command that is forwarded to SQL Server has any indication that
the data needs to be in an XML document is in the FOR XML clause. We will now go into detail about effectively using FOR XML to
get the type of documents you want and how to leverage its power.

FOR XML Queries: The Ultimate Source of Virtual Documents

SQL Server 2000 introduced revisions to the Transact-SQL language that provide DBAs and developers an easy method to
generate XML documents without having to master XML: the FOR XML clause.

The FOR XML clause has three basic modes of tokenizing a recordset into an XML document:

FOR XML RAW
FOR XML AUTO
FOR XML EXPLICIT

The following sections indicate the type of generic documents you can generate with each mode of FOR XML.

Virtual documents from FOR XML RAW queries

SELECT '<root>';
SELECT TOP 3 EmployeeID, FirstName, LastName FROM Employees FOR XML
 RAW, XMLDATA
SELECT '</root>';

http://localhost/vdr?sql=testxml3&root=root - # <root>
http://localhost/vdr?sql=testxml3&root=root - # <Schema name=
 "Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
http://localhost/vdr?sql=testxml3&root=root - # <ElementType
 name="row" content="empty" model="closed">
 <AttributeType name="EmployeeID" dt:type="i4" />
 <AttributeType name="FirstName" dt:type="string" />
 <AttributeType name="LastName" dt:type="string" />
 <attribute type="EmployeeID" />
 <attribute type="FirstName" />
 <attribute type="LastName" />
 </ElementType>

 </Schema>
 <row xmlns="x-schema:#Schema1" EmployeeID="1" FirstName="Nancy"
 LastName="Davolio" />
 <row xmlns="x-schema:#Schema1" EmployeeID="2" FirstName="Andrew"
 LastName="Fuller" />
 <row xmlns="x-schema:#Schema1" EmployeeID="3" FirstName="Janet"
 LastName="Leverling" />
 </root>

The example above creates the fastest but most generic XML representation of a recordset using the RAW mode of a virtual
document. It does not have any business process context unless your schema uses a default row element with column attributes.
When using SQL Server-based virtual directories, your data can be communicated using HTTP to any XML-savvy application on
any platform.

Keep in mind that the XMLDATA keyword is used to generate an XDR-style schema inline in the same XML document and is not
mandatory. You can learn the relationship between schemas and document structure easier by examining the document structure
as it relates to the schema structure. When you have an understanding of a SELECT statement with a FOR XML clause, the XML
document that you need you create comes naturally.

Virtual documents from FOR XML AUTO queries

SELECT '<root>';
SELECT TOP 3 EmployeeID, FirstName, LastName FROM Employees as
 EmployeeDetail FOR XML AUTO, ELEMENTS, XMLDATA
SELECT '</root>';
http://localhost/vdr?sql=testxml3a&root=root - # <root>
http://localhost/vdr?sql=testxml3a&root=root - # <Schema
 name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
http://localhost/vdr?sql=testxml3a&root=root - # <ElementType
 name="EmployeeDetail" content="eltOnly" model="closed" order="many">
 <element type="EmployeeID" />
 <element type="FirstName" />
 <element type="LastName" />
 </ElementType>
 <ElementType name="EmployeeID" content="textOnly" model="closed"
 dt:type="i4" />
 <ElementType name="FirstName" content="textOnly" model="closed"
 dt:type="string" />
 <ElementType name="LastName" content="textOnly" model="closed"
 dt:type="string" />
 </Schema>
http://localhost/vdr?sql=testxml3a&root=root - # <EmployeeDetail
 xmlns="x-schema:#Schema1">
 <EmployeeID>1</EmployeeID>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </EmployeeDetail>
http://localhost/vdr?sql=testxml3a&root=root - # <EmployeeDetail
 xmlns="x-schema:#Schema1">
 <EmployeeID>2</EmployeeID>
 <FirstName>Andrew</FirstName>
 <LastName>Fuller</LastName>
 </EmployeeDetail>
 <EmployeeDetail xmlns="x-schema:#Schema1">
 <EmployeeID>3</EmployeeID>
 <FirstName>Janet</FirstName>
 <LastName>Leverling</LastName>
 </EmployeeDetail>
 </root>

When an XML schema for a virtual document maps directly to one table or translates to simple hierarchies, you can use FOR XML
in AUTO mode. By default, all columns show up as attributes on the table name or as a table alias as in the query above. The
ELEMENTS keyword is recognized only by FOR XML in AUTO mode and is an all-or-nothing setting for column information
displayed as subelements instead of attributes. This is the most common way to extend existing Transact-SQL-based views used
in existing reports and presentation layers into an XML document form when the XML schema is being created based on the
existing uses of the data.

Virtual documents from FOR XML EXPLICIT queries

However, XML document structure is by no means one-size-fits-all. The majority of migrations to XML-based workflows will
present database developers with an existing XML annotated schema from Microsoft BizTalk™ Server 2000, a DTD rewritten as an
XSD or XDR schema, or some other form of XML specification to which you must mold your data. Before delving into how the
EXPLICIT mode works, you must understand how SQL Server 2000 builds an arbitrary XML structure.

In a well-formed XML document, all nodes, or elements and attributes, exist in relationship to one another. The TAG and PARENT
columns are used to determine the unique node location and its parent node respectively. Specific rules govern the names of the
columns and how they will be translated into XML that are covered in the topic "Using EXPLICIT Mode," in SQL Server Books
Online.

SELECT '<root>';
SELECT
1 as Tag,
NULL as PARENT,
E.EmployeeID as [Employee!1!EmployeeID],
NULL as [EmployeeDetail!2!!element],
NULL as [Nickname!3!!element],
NULL as [Surname!4!!element]
FROM (SELECT TOP 3 EmployeeID,FirstName,LastName from Employees) E
UNION ALL
SELECT
2, 1,
E.EmployeeID as [Employee!1!EmployeeID],
NULL as [EmployeeDetail!2!!element],
NULL as [Nickname!3!!element],
NULL as [Surname!4!!element]
FROM (SELECT TOP 3 EmployeeID,FirstName,LastName from Employees) E
UNION ALL
SELECT
3, 2,
E.EmployeeID as [Employee!1!EmployeeID],
NULL as [EmployeeDetail!2!!element],
E.FirstName as [Nickname!3!!element],
NULL as [Surname!4!!element]
FROM (SELECT TOP 3 EmployeeID,FirstName,LastName from Employees) E
UNION ALL
SELECT
4, 2,
E.EmployeeID as [Employee!1!EmployeeID],
NULL as [EmployeeDetail!2!!element],
NULL as [Nickname!3!!element],
E.LastName as [Surname!4!!element]
FROM (SELECT TOP 3 EmployeeID,FirstName,LastName from Employees) E
ORDER BY [Employee!1!EmployeeID]
FOR XML EXPLICIT, XMLDATA
SELECT '</root>';

http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <root>
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <Schema
 name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <ElementType
 name="Employee" content="mixed" model="open">
 <AttributeType name="EmployeeID" dt:type="i4" />
 <attribute type="EmployeeID" />
 </ElementType>
 <ElementType name="EmployeeDetail" content="mixed" model="open" />
 <ElementType name="Nickname" content="mixed" model="open" />
 <ElementType name="Surname" content="mixed" model="open" />
 </Schema>
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <Employee
 xmlns="x-schema:#Schema1" EmployeeID="1">
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - #
 <EmployeeDetail>
 <Nickname>Nancy</Nickname>
 <Surname>Davolio</Surname>
 </EmployeeDetail>
 </Employee>
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <Employee
 xmlns="x-schema:#Schema1" EmployeeID="2">
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - #

 <EmployeeDetail>
 <Nickname>Andrew</Nickname>
 <Surname>Fuller</Surname>
 </EmployeeDetail>
 </Employee>
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - # <Employee
 xmlns="x-schema:#Schema1" EmployeeID="3">
http://cmmuniqueklchkr/vdr?sql=testxml1&root=root - #
<EmployeeDetail>
 <Nickname>Janet</Nickname>
 <Surname>Leverling</Surname>
 </EmployeeDetail>
 </Employee>
 </root>

In the example above, we have taken the same columns as rows displayed using the RAW and AUTO mode and presented the
rowsets in a form that has complexities in a mixed child node format (both elements and attributes in one document) and
additional nodes that could not be readily expressed from table entities.

Leveraging Mapping Schemas to Supercharge Your SQLXML Tier

While FOR XML queries can be written into stored procedures for the benefits of cached plans for server side execution, the bulk
of XML processing will occur off the database server on Web services. These applications already have XML schemas and will not
need a direct connection to the database for online transaction processing. User communities will make the business case for
some dynamic form of ad hoc support for the ever-changing interactions between loosely coupled systems. Virtual documents
will require a flexible architecture for XML schemas independent of the database server.

SQLXML 3.0 uses two different namespaces that can be added as annotations to an existing schema. The namespace first shipped
with SQL Server 2000, "schemas-microsoft-com:xml-sql", encompasses functionality for transforming any XDR schema into an
XML view of a SQL Server table or view. SQLXML 2.0 introduced "schemas-microsoft-com:mapping-schema", which extends the
XML view capability for XSD-based schemas. Because an XML schema view is annotated to produce a view if the mapped tables
and columns are in XML form, the terms XML View, Mapping Schema, and Annotated Schema are used interchangeably,
regardless of which style of XML schema you bring to your database.

XDR-based virtual documents using XML View Mapper

If you extract the inline references and add some data type information to the schema from the FOR XML EXPLICIT example
output above, you can create the following schema:

<?xml version="1.0" ?>
 <Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="Employee">
 <AttributeType name="EmployeeID" dt:type="i4" />
 <attribute type="EmployeeID" />
 </ElementType>
 <ElementType name="EmployeeDetail" />
 <ElementType name="Nickname" dt:type="string" />
 <ElementType name="Surname" dt:type="string" />
 </Schema>

In conjunction with the releases of SQLXML is the release of a tool called XML View Mapper, which creates a development
environment for associating elements and their child nodes with respective database tables and columns. Figure 2 shows how to
drag and drop a view or table from a particular database and link them to an existing XDR schema.

Figure 2. ViewMapper 1.0 example schema mapping (click picture to see larger image)

XML View Mapper performs implicit mapping only when the table and node names are the same; all other mapping must be
accomplished using the interface or the included XDR Editor. After the database to XML node mapping is complete, the following
annotated schema can be exported and used for creating virtual documents:

 <?xml version="1.0" ?>
 <!-- Generated by XMLMapper.exe XDR Publisher -->
 <Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="EmployeeDetail" content="mixed" order="many"
 sql:relation="Employees">
 <element type="Nickname" minOccurs="1" maxOccurs="1" />
 <element type="Surname" minOccurs="1" maxOccurs="1" />
 </ElementType>
 <ElementType name="Nickname" content="textOnly" order="many"
 dt:type="string" sql:relation="Employees" sql:field="FirstName" />
 <ElementType name="Surname" content="textOnly" order="many"
 dt:type="string" sql:relation="Employees" sql:field="LastName" />
 <ElementType name="Employee" content="mixed" order="many"
 sql:relation="Employees">
 <AttributeType name="EmployeeID" dt:type="i4" />
 <attribute type="EmployeeID" required="no" />
 <element type="EmployeeDetail" minOccurs="1" maxOccurs="1"
 sql:relation="Employees">
 <sql:relationship key-relation="Employees" key="EmployeeID" foreign-
 relation="Employees" foreign-key="EmployeeID" />
 </element>
 </ElementType>
 </Schema>

Note that in addition to automatically cleaning up our schema to include some more specifics about the nature of the XML
document, XML View Mapper has added some elements and attributes from the "schemas-microsoft-com:xml-sql" namespace.
The attributes sql:relation and sql:field correspond to the nodes containing data from the Northwind database table and
column, respectively. The sql:relationship sub element on the EmployeeDetail element is the equivalent of a JOIN statement
between two different sql:relation element instantiations in a schema. In this case, a self-join is required in order for our virtual
document output. This functionality is used in several SQLXML tier functions so that you have no code to manage on the data tier
is necessary to create virtual documents.

Virtual document queries using XPath

After you have created a mapping schema, you can treat the data exposed in this view like any XML document. In the same way
that tables are typically accessed with a SELECT statement with a WHERE clause, XML documents can also be navigated using a
node navigation convention know as XPath. SQLXML allows XPath queries to run from an HTTP post when using a virtual
directory enabled for SQLXML support.

Using the IIS Virtual Directory Management for SQL Server on your Microsoft Internet Information Services (IIS) server, you can
map a virtual directory to a SQLOLEDB connection string and physical locations for XML schemas. In Figure 3, IIS is running on
the same server as SQL Server 2000, the SQLXML tier is best scaled on its own Web server.

Figure 3. IIS Virtual Directory Manager for SQL Server (click picture to see larger image)

In Figure 3 the virtual directory has been created named vdir that contains connection information to the local SQL Server to log
in to the Northwind database as SA. This example uses virtual directories named schema and template for storing respectively
mapping schemas and template queries, but in production these folders can have any name. After you have created the mapping
schema and virtual directory configuration, from any Web browser you can run an XPath query and return a document. If we save
the annotated schema shown earlier as Virtdoc.xdr in a schema folder exposed as the virtual directory s, you can return the virtual
document from the FOR XML EXPLICIT with the following query:

http://localhost/vdir/schema/virtdoc.xdr/Employees[@EmployeeID<4]?root=root

Because you expect the document to not have a root node, SQLXML provides an external mechanism for defining a root as
needed to ensure a well-formed document. For details of the parameters available for all Internet-based queries, see Executing
SQL Statements Using HTTP.

For more information about virtual directory configuration, see the topic "Using IIS Virtual Directory Management for SQL Server
Utility" in SQL Server Books Online, and the documentation accompanying the Web releases of SQLXML. Virtual Directory
features in caching, query types, and error handling have changed in each Web release.

In order to build the most efficient mapping schemas, you need to understand how a virtual document is built from a SQL query.
In the examples above, we could write stored procedures and ad hoc queries and specify the specific order and columns fro each
SELECT that became part of the ultimate UNION and ORDER BY. You can use SQL Profiler to capture the query generated from
the simple XPath Query above, copy and paste the query into Query Analyzer and see the results of the query without the FOR
XML clause to see how SQLXML creates the virtual document, as shown in Figure 4.

Figure 4. SQL Server Query Analyzer with XPath Query example (click picture to see larger image)

Without the definition of an sql:relationship, SQLXML will create a NULL in the Employee!1!EmployeeID column and the
ORDER BY clause will not create the desired node nesting. There is a wide variety of additional namespace attributes that can give
you very granular control of joins, CDATA sections, nodes with no SQL mapping and other scenarios. For more information, see
the SQL Server Books Online topic, "Creating XML Views Using Annotated XDR Schemas." SQLXML Books Online has additional
documentation about new mappings and changes for XSD schemas.

Template queries

XPath queries are extremely powerful, but they do require knowledge of the schema in order to create the correct node
navigation pattern and may be a compromise of security. Additionally, your user community may choose to search on columns
that extend beyond the initial requests for indexes and cause performance problems associated with suboptimal index structures
such as blocking and slow execution time. Your database is now a virtual document factory and still subject to all of the rules of
good performance tuning as before it entered the brave new world of XML. In the pre-XML applications, you would use stored
procedures to limit user privileges and performance impact. SQLXML gives you this same power with template queries.

Templates are XML documents that support the "schemas-microsoft-com:xml-sql" namespace, but for mapping XML nodes to
query components instead of database structures. For example, we can create a Template.xml file that contains the following XML
to only allow access to one employee record at a time while leveraging the same mapping schema from our XPath query:

D:\Inetpub\wwwroot\template\ext.xml - # <EmployeeSet
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
D:\Inetpub\wwwroot\template\ext.xml - # <sql:header>
 <sql:param name="ID">1</sql:param>
 </sql:header>
 <sql:xpath-query mapping-
 schema="..\schema\virtdoc.xdr">/Employee[@EmployeeID=$ID]
 </sql:xpath-query>
 </EmployeeSet>

The sample above introduces the primary features of a template. Beginning with SQLXML 2.0, you can pass parameters to XPath
queries, as defined in the sql:param element, including 1 as the default value if no parameter is passed in. Templates require a
hard-coded root element, in this case EmployeeSet, because the entire template must be well formed in order to execute. The
mapping-schema attribute can use local, UNC, or URL based paths, but in this case refers to our original examples. To execute the
template query, save the above XML document in your template virtual directory as Template.xml and type this URL in your

browser:

http://localhost/vdir/template/template.xml?ID=3

Template queries map directly to any query batch sent to SQL Server. Conceivably, you could run any query (DDL, DBCC, etc) in
an sql:query element. Template queries can also include a combination of XPath and SQL-based queries.

Conclusion
This white paper has attempted to encompass the Internet-based uses of SQLXML as an introduction to SQL Server as a full "Web
citizen," capable of generating XML documents from all data to interact with other tireless applications connected in loosely
coupled systems. You will encounter many scenarios in which you will need additional tools.

The examples above use Internet integrated workflow, but you can accomplish all functionality encompassed in virtual directories
using ADO-based XML streams. Both ADO and HTTP-based XPath and template queries offer a speed as opposed to
programming flexibility tradeoff, because virtual directories interact directly with the OLE DB interface.

Virtual documents are not just for show; they can continue the isolation of data tier from a document tier and still for changes to
your databases as needed. Mapping schemas can assist in managing modification of underlying tables using either SQLXML bulk
load for a BCP-style insert and schema generation, or transactional-based modifications using updategrams and diffgrams. All
three methods present SQLXML with an XML view of the documents and their states to generate the correlated INSERT, UPDATE,
and DELETE statements. When a mapping schema is not available or when more complicated server side interactions with OLE
automation and other stored procedures are necessary, you can use OPENXML.

Whether you use mapping schemas and virtual directories or ADO-based templates against FOR XML based stored procedures is
a balancing act between performance and business goal. Regardless of the method chosen, you have taken your first step into the
SQLXML tier and are ready for the thousand-mile journey of an XML integrated world.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Integrating Analysis Services with Reporting Services

Sean Boon
Microsoft Corporation

June 2004

Applies to:
 Microsoft SQL Server 2000

Summary: Create a compelling solution for your customer that defines and manages great-looking Analysis Services reports,
and quickly answers analytical questions to improve traditional reporting scenarios. (33 printed pages)

Download the associated ASandRSSamples.exe code sample.

Download the ASandRSSamples.exe source code.

Contents

Introduction
Developing OLAP Reports Using Analysis Services 2000 and Reporting Services
Datasets and Data Regions in SQL Server 2000 Reporting Services
Defining a Data Source
Building a Static Report with Analysis Services Data
Adding Parameters to an OLAP Report
Adding Additional Interactivity to Reports
Analysis Services Actions
Conclusion

Introduction
There are many features of Reporting Services that can be beneficial to Analysis Services customers. These features include
centralized report storage and management, control over how reports are processed or administered, and the ability to quickly
change report formats (HTML, Excel, PDF, etc.). With these capabilities, Reporting Services is a valuable client application for
Analysis Services implementations.

Likewise, there are features of Analysis Services that may complement many reporting scenarios. Analysis Services users already
benefit from the ability to author complex analytical queries using MDX() and have grown accustomed to fast query response
times via MOLAP partitions.

The good news is that both of these technologies can be used together. Reporting Services 2000 can consume data from Analysis
Services databases and Analysis Services can render Reporting Services reports. The goal of this whitepaper is to demonstrate
how both of these technologies that ship with SQL Server 2000 can be used collectively to create compelling solutions for your
customers. In addition to the material presented in this whitepaper, the report files used to illustrate the concepts here are
included in the associated sample download. The sample files contain additional .rdl files not specifically referenced in this article
that demonstrate connectivity to Analysis Services, as well as a copy of the Foodmart database with changes to the cube structure
to illustrate points made in this article. Readers are encouraged to examine these files as they work through the presented
material.

Developing OLAP Reports Using Analysis Services 2000 and Reporting Services
Analysis Services is the OLAP server that is part of SQL Server 2000. Like all OLAP servers, Analysis Services provides a multi-
dimensional space for users to navigate data that is important to them and do so in a manner that facilitates analysis. For
example, in order to navigate the multi-dimensional space of an Analysis Services cube, applications take advantage of
hierarchical structures that define that space and use a query language known as MDX (Multidimensional Expressions) to return
results. This means that if we are going to author reports that include data from Analysis Services cubes, the majority of the
discussion is going to be centered on how to use the MDX query language within Reporting Services. While the MDX concepts
here are explained in detail, the author would highly recommend that the reader have a good understanding of MDX before
proceeding.

Datasets and Data Regions in SQL Server 2000 Reporting Services

http://download.microsoft.com/download/F/B/6/FB6EEA10-6C12-44C6-9BFF-CD5FCA9F3802/ASandRSSamples.EXE

When authoring reports in Reporting Services, you will inevitably become familiar with the concept of datasets and data regions.
Datasets represent the results of queries returned by data providers. They might represent a list of employees or a table of
product sales listed by month.

Data Regions consume data provided by datasets. Data Regions include report objects such as tables, matrices, lists, and charts.
Each of these data regions expects the data in datasets to be returned in a specific format. For example, if you are working with a
list data region and wanted to display a list of products, you would return at least a single field that would include the name of the
product. In its simplest form, the dataset would look like the following:

Product Name
Apples
Pears
Oranges
Bananas

As a report designer you would then drag the "Product Name" field into the list data region, and when the report is processed, the
list of products would be displayed—a row for each one. This is what the list control does. The list control loops through the
dataset and returns the field value(s) for the current row and displays the value of the field in the list. You can have multiple fields
in the list, but that doesn't change the behavior of how the list control loops through the dataset.

However, if your goal was simply to write and execute a query that returns a list of products, it is possible that the dataset
returned could look like the following.

Apples Pears Oranges Bananas

While the above dataset meets the requirement to return a set of products, it would be relatively difficult, if not impossible, to
represent a product list in the report based on such a dataset. The reason for this is that each product would have its own field,
and as new products are added and old products are removed from the company's inventory, the reports would begin to break
because some of the fields would no longer be valid.

The point of this example is to illustrate that each data region in a report expects data in a dataset to be presented in a certain
manner. In this example pertaining to the list control, the list expects the data to be returned will be listed in a single field. The list
will iterate over each record in the data set and add the value of the current record to the list. Other data regions expect their
supporting datasets to adhere to specific structures as well.

Since the structure of the dataset is important, and the structure of the dataset is defined by the query, it follows that the syntax of
queries is important when designing reports. This is the case for SQL, MDX, and any other query language. With the focus of this
whitepaper being on developing reports based on data from Analysis Services cubes, we'll examine what needs to be done in
order to author MDX statements for use in reports. For example, the two MDX queries below return the exact same information.
However, only one is ideal when used as a source for a matrix in a report.

MDX Expression

SELECT
 CROSSJOIN ({[Measures].[Unit Sales]},{[Time].[Month].members}) on columns,
 NON EMPTY ([Store].[Store City].members) on rows

FROM SALES

MDX Expression

SELECT
 CROSSJOIN ({[Measures].[Unit Sales]},{[Time].[Month].members}) on columns,
 NON EMPTY ([Store].[Store City].members) on rows

FROM SALES

By the time you've finished reading this whitepaper, you should be able to discern which of these expressions will work as the
source of a matrix, and which will not. With that as our goal, let's begin developing reports with Analysis Services cubes.

Defining a Data Source
Just as with any report defined using Reporting Services, the first step in building an OLAP-based report is to start Visual Studio,
and from the list of available project types, select "Business Intelligence Projects" and the "Report Project" project type. This
creates an empty report project in Visual Studio that will serve as the starting point for this demonstration.

The next step in the creation of the report is to define a data source for the project that either one or many reports will utilize. Data
sources represent connection information to any supported data source. To create a report that will contain data from an Analysis
Services cube, select the "Microsoft OLE DB Provider for OLAP Services" from the list of available provider types. Once the
provider is selected, select the Connection tab and enter the name of the server to connect to as the data source property.
Choose Windows NT Integrated Security as the connection method, and then a list of Analysis Services databases should be
available to choose from as the initial catalog. For the purposes of this demonstration, select the "Foodmart 2000" database as the
initial catalog. Defining a data source to an Analysis Services database is that simple.

Building a Static Report with Analysis Services Data
The simplest of reports generally consists of a static view of the data. While one of the benefits of using Analysis Services is to
enable users to "slice and dice" a multi-dimensional view of the data, it's also possible to use an OLAP cube to build a static report.
Such a report might be a monthly sales report that is distributed to all employees. In this case there is no slicing or dicing of the
report. It might be printed, e-mailed, or sent in an Excel spreadsheet, but the data contained in the report is static and is intended
to stay as such.

If you're already using Analysis Services, developing such static reports using Reporting Services is relatively straightforward.
With a little knowledge of MDX, the query language for OLAP cubes, you can create a simple report. A more in-depth discussion
of the MDX query language is not the focus of this whitepaper and there are many excellent books and resources on MDX
available.

Once a data source exists in your project, the next thing you'll likely want to do is to create a report. To do this, add a new report
item of type "report" to the Visual Studio project and give the resulting .rdl (report definition language) file a name. At this point,
create a new dataset and give it an appropriate name for the data it represents. Select the "Text" command type and then enter
the MDX expression that will provide the data for your report. For our example, you could use an MDX expression such as the one
provided below.

MDX Expression

SELECT
 {[Measures].[Unit Sales]} on columns,
 ORDER([Promotion Media].[Media Type].members,
 [Measures].[Unit Sales],DESC) on rows

FROM SALES

This example MDX query asks for a list of promotion media types and the sales associated with them. The list is ordered by using
the ORDER() MDX function that requires an argument for ordering the list and a direction to sort the data in. Running this query
in the dataset designer should provide a dataset that consists of two fields (Promotion_Media_Media_Type and Measures_Unit
Sales). These two fields are now available to the report designer.

At this point you will also notice that the query builder functionality for relational data sources is not available for Analysis
Services cubes. This functionality is scheduled to be included in the next version of Reporting Services. In the interim, the query
designer will allow you to enter MDX into the designer and will return result sets and fields that can be used in reports.

To create this report, add a table to the report in the report designer. Add the Promotion Media Type field to the table in the first
(left-most) column of the report. Fix the name of the field that appears as the column header and then drag the Unit Sales field to
the last column of the table in the details section. If you preview the report now you should see the results of the dataset.

There are probably some final touches you'll want to make to this report. For example, the unit sales should be formatted to
appear as amounts in the currency they were recorded in and you'll probably want to add a title to the report so that consumers
of the report will understand what data is represented in the report. Such cosmetic changes are fairly straightforward and we'll
leave that as an exercise for the reader.

With that, you have successfully created a report based on data from an Analysis Services OLAP cube. It's a fairly simple report
but it captures the basics of creating reports based on Analysis Services cubes.

MDX Guidelines for Defining Datasets

When building datasets based on Analysis Services cubes, there are some guidelines you'll need to follow due to the structure of
the data that is returned from Analysis Services. When querying Analysis Services cubes, the data can be returned in one of two
ways: as a cellset or as a recordset. Reporting Services uses the recordset format, and as such, the data from Analysis Services
goes through a flattening process to return the data in a two-dimensional grid. For those who are familiar with the MDX Sample
Application, which displays the cellset representation of the data, you'll find that the two representations will not necessarily be
the same. For example, if you run the following query in the MDX Sample Application and in the Report Designer for Reporting
Services, you'll find that the data is represented differently.

MDX Expression

 SELECT {[Measures].members} on columns,
{Store.members} on rows
FROM Sales

The first thing you'll notice is that the data returned in the MDX Sample application contains only one column to represent the
members of the store dimension. In the Reporting Services' query designer, the store dimension is broken into each of its levels
and a field is created for each level. This is the result of the flattening process that occurs when a cellset is converted to a
recordset.

Note When designing datasets based on MDX, each level of a dimension that participates in a query is returned as
its own field.

The next guideline to consider, and one that will become evident as you work through the examples in this whitepaper is that for
most of the things you'll want to accomplish in a report, the best way to formulate your MDX queries is to place the members of
the measures dimension on the columns axis. This means that the majority of your MDX queries will contain the following
fragment.

MDX Expression

SELECT [Measures].[MeasureName] on Columns,

Tip When designing datasets based on MDX queries for tables, matrices, and charts, use MDX queries that place
members from the Measures dimension on the "Columns Axis". Use the "Rows Axis" and "Page Axis" for returning
members from the remaining dimensions.

Another behavior of the flattening algorithm is that the "[(ALL)]" level is not included in the dataset. This has a couple of
implications. The first is that if you want to include data from the "All" member of a dimension, you'll need to create a calculated
member to represent this member. This can be accomplished in a couple of different ways. The first method would be to create a
calculated member on the Measures dimension and for the definition of the calculated member refer to the current member's
name or unique name. There are several examples of this method represented in later sections of this whitepaper.

Note The "All" level of a dimension is not included in the field set that is returned to Reporting Services.

The second implication of the "All" level not being represented in the dataset is that calculated members, usually defined without
a parent member, will need to change so that they do have a parent member. This only applies in cases where the calculated
member does not belong to the Measures dimension. In many cases, when calculated members are defined on a non-Measures
dimension, the parent member property is left blank. This can be changed in the calculated member dialog box as shown below

...or by stating it in the MDX Query used to define the dataset. An example of specifying a calculated member at a level below the
"All" level is as follows.

MDX which returns the name of the calculated member

WITH
 SET TopStores AS '{TOPCOUNT([Store].[Store Name].members, 5,
 [Measures].[Units Ordered])}'
 MEMBER [Store].[All Stores].[Top 5 Store Total] AS 'SUM(TopStores)'

The following query would not return the name of the [Top 5 Store Total] member.

MDX which does not return the name of the calculated member

WITH
 SET TopStores AS '{TOPCOUNT([Store].[Store Name].members, 5,
 [Measures].[Units Ordered])}'
 MEMBER [Store].[Top 5 Store Total] AS 'SUM(TopStores)'

Tip When referencing calculated members that are not on the Measures dimension, specify a parent for the member.

One final aspect of the flattening algorithm used to return MDX results as recordsets to Reporting Services is how member
properties are treated. When the DIMENSION PROPERTIES syntax is used in an MDX query, the flattening algorithm will discard
the default fields that are returned from the query and will instead return fields for the properties requested. For an example of
this see the MDXDataSets.rdl file included with this whitepaper.

Instead of using the DIMENSION PROPERTIES syntax, one should consider creating a calculated member along the Measures
dimension and returning the value for the member property as the value of the measure. This has the added benefit of allowing
you to test the value of the property on records where it's not specified. This could be particularly important if you attempt to
perform grouping operations on the data in the report.

MDX with DIMENSION PROPERTIES Syntax (not recommended)

SELECT {[Measures].[Unit Sales]} on Columns,
{Store.[Store Name].members} DIMENSION PROPERTIES [Store].[Store Name].[Name],
[Store].[Store Name].[Unique_Name],[Store].[Store Name].[Store Sqft]
on rows

FROM SALES

Where [Time].[1997]

MDX Query with Calculated members to return member properties

with member [Measures].[StoreName] as 'Store.currentmember.name'
member [Measures].[Store Sqft] as 'Store.currentmember.properties("Store Sqft")'
member [Measures].[Store UniqueName] as 'store.currentmember.properties("Unique_Name")'

SELECT {[Measures].[StoreName],[Measures].[Store Sqft],
[Measures].[Store UniqueName],[Measures].[Unit Sales]} on Columns,
{Store.[Store Name].members}
on rows

FROM SALES

Where [Time].[1997]

Tip Using the DIMENSION PROPERTIES Keywords in an MDX query causes only the member properties requested to
be returned as fields. The fields that are usually returned when the DIMENSION PROPERTIES keywords are not used
will not be included. Instead of using the DIMENSION PROPERTIES syntax, create calculated members on the
Measures Dimension to return the member properties. This will preserve each level being returned as a field in the
result set.

Adding Parameters to an OLAP Report
The previous report is a very basic report built with data from an Analysis Services cube. It served to illustrate how to connect to a
cube and to indicate that it's possible to write an MDX query and use those results from the query in a report. Before long though,
if you're developing reports, one of the first things you'll want to add to your reports are parameters. Returning to our previous
sales example, you might want to allow the user to change the month of the report, or to pick a quarter or year and have the
report change to reflect the user's input. For relational data sources, adding parameters to reports is fairly easy since the designer
has native support for them. For reports based on OLAP data though, this can be a bit more difficult since Analysis Services does
not have native support for parameterized queries. The next example will illustrate how to simulate parameterized reports for
Analysis Services using Reporting Services.

Use MDX Queries to Build Parameter Lists

To create a parameter for a report based on Analysis Services data create a new dataset that will be used to populate the
parameters values. While it's possible to create parameters without requiring an actual dataset (for example, you could allow
users to enter any arbitrary value for a parameter), this is generally not considered a good approach because Analysis Services
will return an error if the parameter value that is entered by the user cannot be resolved at query time. This is different from
traditional T-SQL queries where if a member is not found, no records will be returned in the dataset for that entity.

For example, suppose that a user were to enter the value of "Calif" to represent the state of California as a parameter value when
viewing the report. If there were no dimension member in the Analysis Services cube with the name of "Calif", the report would
return an error back to the user. For SQL Server, if a user entered "Calif" as the parameter value, if there were no records that
matched "Calif", the server would not issue an error and the report would run, but there would be no records in the report. Both
results could be problematic for your users since there might indeed be data for California and the user expected to see it, but the
lack of a matching record is handled differently by both systems.

There are, however, many ways to solve this potential problem. From an Analysis Services perspective, one way to solve this
problem is to ensure that the user selects an available dimension member by providing the user with a list of dimension
members that exist in the cube. To do this, you'll want to create a new dataset that will be used to populate the report parameter.
Once the dataset is created, the next thing to do is to issue an MDX query that will be used to populate the parameter values. Our
example scenario in this case is that you'd like to give the user the ability to filter the previous report on unit sales associated with
various promotion media types by any member of the time dimension.

Tip When designing reports based on MDX queries that use parameters, it's considered a good practice to limit the
parameter values to members that exist in the dimension. If an MDX query references non-existent members, Analysis
Services will return an error.

One of the great features of Analysis Services is that it allows users to view data along dimensions that can consist of one or
many levels. Most cubes contain some type of time dimension that can contain any number of levels. In the Foodmart 2000 Sales
cube, the time dimension contains the following levels: (All), Year, Quarter and Month. To populate the dataset for the parameter
you could use a query like the one provided below.

MDX Expression

with Member [Measures].[TimeMemberUniqueName] as '[Time].currentmember.UniqueName'

member [Measures].[TimeDisplayName] as
'Space([Time].Currentmember.Level.Ordinal * 4) + Time.Currentmember.Name'

SELECT
{[Measures].[TimeMemberUniqueName],[Measures].[TimeDisplayName]} on Columns,
{[Time].members} on rows
from
SALES

For those familiar with MDX, using the above query to retrieve a list of members for the time dimension might seem like overkill.
However, if you analyze each of the fragments of this query, you'll see that each part of the query serves a function.

MDX Expression to Retrieve Member's Unique Name

with Member [Measures].[TimeMemberUniqueName] as '[Time].currentmember.UniqueName'

The first part of the MDX expression serves to retrieve the unique name property of the dimension member. This is the field that
will ultimately be used as the value field when constructing the final MDX query that will return the results to be used in the
report. By having the unique name of the member available to us it makes it much easier to construct the MDX we need. For
example, suppose that the user is interested in the member "January 1997". The unique name for this member is [Time].[1997].
[Q1].[1]. If the user simply selected "1" (the value for January that will ultimately be displayed in the parameter drop-down list) it
would be impossible to figure out which "January" the user wants based solely on the member's name (which in this case
happens to be just the value "1"). By returning the fully qualified name for the dimension member, it'll make it easier to construct
the final MDX use to return the results to the user.

MDX Expression to Retrieve Member's Name

member [Measures].[TimeDisplayName] as
'Space([Time].Currentmember.Level.Ordinal * 4) + Time.Currentmember.Name'

The second part of the MDX expression retrieves the member's display name and is what we'll use to populate the values that the
user can select from in the parameter drop-down box. Notice also here that the Visual Basic for Applications (VBA) Space()
function is used in conjunction with retrieving the current member's level ordinal property and multiplying that by a value of four.
This is not necessarily a requirement, but is one way that you can make the parameter drop-down list look more like a hierarchy.
If you examine the records that are returned for this field in the dataset, you'll notice that the deeper they are in the hierarchy, the
more padding space is added at the beginning of the member's name.

Tip When designing reports based on MDX queries that use parameters, create calculated members on the Measures
dimension and use the UniqueMemberName and Name functions to return these values to use as the parameter's
value and label properties respectively. This also has the added benefit of producing a single field for which the
parameter can be sourced from.

Tip When designing reports based on MDX queries that use parameters, by using the VBA Space() function in
conjunction with Level.Ordinal you can simulate a hierarchy within the parameter drop-down list.

Finally, the SELECT portion of the MDX query returns the member's unique name and it's more friendly display name that the
user will see in the parameter drop-down list.

MDX Select Statement

SELECT
{[Measures].[TimeMemberUniqueName],[Measures].[TimeDisplayName]} on Columns,
{[Time].members} on rows
from
SALES

Now that there are two calculated members, the final step for building the dataset that will be used to populate the parameter list
is to finish out the query by specifying that we'd like to see all of the members of the time dimension in our result set. The query
ultimately returns three additional fields (one for each level of the time dimension) in addition to the fields that represent the
calculated members for the unique name and the display name. While we won't be using the first three fields of the dataset, it's
worth commenting why they are returned.

In order to retrieve data from an Analysis Services cube and present it in a two-dimensional manner, a process of flattening is
used to return the data in a recordset. For more information on the flattening algorithm see the OLE DB documentation. The result

of this process is that each level represented by a dimension member in a query is returned as a field in the recordset. In the case
where we ask for all of the members of the time dimension, since there are three levels to the time dimension, three fields are
produced in the result set. This creates a problem for building parameters since parameters are bound to a single field. If you're
limiting the parameter list to a single level of a dimension it is fairly straightforward to work around this since every member to
be included in the parameter drop-down box would be from the same field in the dataset. However, if you'd like users to be able
to select a member from any level of the dimension, then using the approach of creating a calculated member and including it in
your dataset query (as our example shows) returns a single field to a dataset and the parameter list can be bound to that single
field.

Using Parameters to Filter Data in the Report

The whole purpose for creating parameters is to filter the data that is displayed in the report. To accomplish this we are going to
rely on the ability of Reporting Services that enables queries to be generated dynamically at runtime. Treating the MDX query as
an expression does this. Again, to illustrate this technique we'll provide an example.

If we return to our static report example, we'd like to be able to "slice" the report by a particular time member. To do this, add a
new dataset to the report and copy the MDX query string from the static report example to your new report. At this point, your
report is not parameterized, but you'll find that when you create parameterized MDX reports, the first thing you'll want to do is
write the MDX query in the designer without the parameter. This allows you to preview the fields of the query and enables the
designer to recognize the fields that will be used in the report. Without performing this initial step, it would be very difficult to
design the report since the fields would not be available to the designer.

Tip When designing reports based on MDX queries that use parameters, first write the query in the designer without
the parameters, so that the fields will become available to the designer.

Now that the designer recognizes the fields that will be in the report, we'll modify the query to work with the Time parameter.
Since Analysis Services does not support parameterized queries, the way to accomplish this is by dynamically building the query
at the report's execution time to reflect the user's parameter selection. To do this, we're going to rely on the ability of Reporting
Services to recognize certain report properties as expressions. Whenever Reporting Services encounters an equals sign (=) as the
first character of a property, it will evaluate that property as an expression. Then, the next step is reference the time parameter's
value in the query. The final MDX query for this report is presented below.

MDX Select Statement

="SELECT {[Measures].[Unit Sales]} on columns,
ORDER([Promotion Media].[Media Type].members,[Measures].[Unit Sales],DESC)
on rows FROM SALES WHERE (" & Parameters!pTime.Value & ")"

Tip When designing parameterized reports that use MDX, dynamically build the MDX string by treating the
command text property as an expression. The string must not contain any carriage returns or an error will be returned.

The last step for building the parameterized report is to set up the report parameter. To accomplish this, add a report parameter
(in our example we called it "pTime") and bind it to the "dsTime" dataset. The value field for the parameter should be set to the
"Measures_TimeMemberUniqueName" field and the label field should be set to the "Measures_TimeDisplayName" field. Below is
the report parameters dialog from this report.

The final version of this example report is included in the file named FoodmartSimpleParameter.rdl.

Options for Working with Large Dimensions

Large dimensions and dimension levels can be challenging to work with. One of the primary issues that arise in working with
large dimensions, one which all OLAP applications have to resolve, is what is the best way for users to sort through the potential
large set of dimension members and make a selection. For Reporting Services, you probably would not have a parameter list that
contains thousands of items. Depending on your usage of large dimensions in your reports, you might need to consider some of
the following techniques.

Use Cascading Parameters

One way to limit the possible choices for the user is to organize the dimension members into a meaningful hierarchy. Making use
of levels in Analysis Services best does this. To illustrate the use of cascading parameters, will use an example from the Foodmart
2000 Sales Cube.

The Sales cube from the Foodmart database contains a Customer dimension with the following levels: (All), Country, State
Province, City, and Name. The "Name" level of the customer dimension contains a little over 10,000 customers. This is surely too
large an item list for users to select from. Instead, one option would be to create multiple parameters that would simulate a "drill
down" experience.

To start with, first create a dataset called "dsCountry" and use the following MDX statement to populate it.

MDX Statement for Country List

with member [Measures].[CountryUniqueName] as '[Customers].currentmember.UniqueName'
member [Measures].[CountryDisplayName] as '[Customers].currentmember.Name'

SELECT {[Measures].[CountryUniqueName],[Measures].[CountryDisplayName]} on Columns,
{[Customers].[Country].members } on rows
from
Sales

Notice here again the use of calculated members to store the unique member name and the display name. Create a parameter
called "pCountry", and set the options on the parameter so that the values for the parameter are sourced from the Unique Name
field and the label values come from the Display Name field.

Once the user selects the country, a list of states that make up that country should be made available to the user for selection. In
order to accomplish this, create a new dataset "dsState" that will be used to store the potential state values. To develop the query
string for this dataset, we'll need to incorporate the value of the Country parameter. This will require the query string to be
determined at run-time.

Reporting Services will treat a query string that begins with "=" as an expression, and we'll rely on that functionality in this
example. However, with a query string that is defined as an expression, the fields are not available to the query designer. The
workaround for this is to first build your MDX statement without the use of parameters and then add the parameter to the query
after the fields have been identified. To populate the list of possible states use the following MDX query.

MDX Statement to Determine State Field Names

with member [Measures].[StateUniqueName] as '[Customers].currentmember.UniqueName'
member [Measures].[StateDisplayName] as '[Customers].currentmember.Name'

SELECT {[Measures].[StateUniqueName],[Measures].[StateDisplayName]} on Columns,
{[Customers].[State Province].members } on rows
from
Sales

Once the field names are identified, the next step is to add the "pCountry" parameter to the query. To do so, change the query
string to the following.

MDX Statement to Determine State Field Names

= "with member [Measures].[StateUniqueName] as '[Customers].currentmember.uniqueName'
member [Measures].[StateDisplayName] as '[Customers].currentmember.name'
SELECT {[Measures].[StateUniqueName], [Measures].[StateDisplayName]} on Columns,
{DESCENDANTS({" & Parameters!pCountry.Value & " },
[Customers].[State Province])} on rows from sales"

There are a few important characteristics of this string. The first is that the equal sign (=) is used in conjunction with double
quotes to indicate that this string is an expression that Reporting Services will evaluate during the report's execution phase. The
second important characteristic is that no carriage returns are introduced into the string in the query designer. While it might
make the query somewhat difficult to read, in order to enter an expression into the query designer, you cannot use carriage

returns in the query string. Finally, notice that the "pCountry" parameter value is referred to in the string.

With this dataset defined, create a parameter called "pState" and source the parameter from the "dsState" dataset. Make sure that
the "pState" parameter is the second parameter listed in the parameter collection. This is how you specify a cascading parameter
and that the user must select a value for the country parameter before the cities will be listed.

To finish out this example, create two additional datasets (one for cities and one for customers) and their corresponding
parameters. Remember to first build the MDX queries without the parameters included so that the field names can be identified.
Once you've previewed the query to get the field names, change the query string to an expression and add the parameter value to
the string. The final version of this report is included in the MDXCascadeParams.rdl file.

Add Search Capability to Dimensions

Another option you may consider for working with large dimensions is to add search capability via a parameter. To illustrate this
solution, we'll use another example using the Foodmart 2000 Sales cube and the Customer dimension. In this example, the user
will be required to enter a portion of the customer's name as one parameter, and the list of available customers that match those
criteria will be listed as possible values for a second parameter.

To implement this solution, first create a parameter called "pCustomerSearch" and indicate that the source for the parameter is
not from a query and is of string value type. Once this parameter is created, create a dataset and name it "dsCustomerSearch".
Enter the following MDX query as the query string:

MDX Statement to Determine Customer Field Names

with Member [Measures].UniqueCustomerName as 'Customers.currentmember.uniqueName'
member measures.[DisplayName] as 'Customers.currentmember.Name'
SELECT {[Measures].[UniqueCustomerName], [Measures].[DisplayName]} on Columns,
{Filter([Customers].[Name].members,
INSTR(Customers.currentmember.name, "Sally" > 0)} on rows FROM SALES

This query relies on a few tips that we have seen previously and introduces an additional function from the VBA library. As in the
previous examples, if we are going to be working with data from Analysis Services cubes, it's a good practice to return both the
unique member name and the standard member name as calculated members along the measures dimension. In addition, this
example relies on the INSTR() VBA function that returns a value greater than zero for cases where the supplied string exists
within the string in question (in this case that would be the customer's name). At this point, we're also relying on a specific MDX
query in order to populate the field collection.

To finish the definition of the query string for this dataset, add a reference to the "pCustomerSearch" parameter and make the
string an expression by adding the equals sign and enclosing the expression in double quotes. When finished the string should
look like the following (Note: Remove the carriage returns in the expression or the designer will return an error.)

MDX Statement to Search Customers

="with Member [Measures].UniqueCustomerName as 'Customers.currentmember.uniqueName'
member measures.[DisplayName] as 'Customers.currentmember.Name' SELECT
{[Measures].[UniqueCustomerName], [Measures].[DisplayName]} on Columns,
{Filter([Customers].[Name].members,INSTR(Customers.currentmember.name,
""" & parameters!pCustomerSearch.Value & """) > 0)} on rows FROM SALES "

Tip To add search capability to a large dimension use the INSTR() VBA function in one parameter to narrow the list of
potential values for a second parameter.

Adding Additional Interactivity to Reports
Adding parameters to reports is one way to add interactivity to reports. The next section of this whitepaper will address additional
ways in which reports can be made more interactive.

Building "Drill-Down" Reports against OLAP Data

Up until this point, all of the data contained within the example reports has belonged to only one level from each dimension. For
example, if you ask the question, "What are unit sales by promotion media type?" even though the user might be given the option
to select any available time period, the resulting dataset will only contain data from a single level of each dimension. The included
level of the time dimension might change each time the report is executed, but for each report execution only one level of the
time dimension will be referenced. What happens when you need to add interactivity to the report by allowing the users to "drill-
down" on members in the table?

Adding "drill-down" capability to a report can be problematic. By definition, adding this capability means that some of the data in
the report exists at one level of aggregation for a dimension, but that additional data can be contained in the report that exists at
other levels of aggregation for the same dimension. For example, the following MDX query returns data from every level of the
store dimension.

MDX Statement to Search Customers

SELECT non empty {ADDCALCULATEDMEMBERS(measures.members)} on Columns,
NON EMPTY [Store].members on Rows
FROM [Sales]

If you preview this query in the designer, one of the things that you'll notice is that for each level of the store dimension there is a
field that is returned in the dataset. You can determine what level each record belongs to based on the values of those fields. For
example, the data that represents all of the United States has a value for the Store Country field, but doesn't have values for the
State Province, City or Store levels. Grouping on this data results in a challenge because Reporting Services doesn't know that the
data in the report consists of multiple levels. If you attempt to group this data at the store level, there would be a series of records
that would aggregate to a NULL member since all of the state and country level data have a NULL value for those fields. There are
a couple of ways that you can address this.

Return Data from the Lowest Possible Level

One option for developing "drill-down" reports against data stored in Analysis Services is to ensure that that the MDX you specify
only for members of a single level for each dimension that participates in the query. You can then rely on Reporting Services
grouping capabilities to aggregate the data at higher levels as long as the data can be aggregated along one of the aggregate
functions that Reporting Services supports. The MDXDrillDownSingleLevel.rdl file that demonstrates how to enable "drill-down"
accompanies this whitepaper. To build a drill-down report, simply create a table and insert multiple groups. For each group,
specify the appropriate expression to group on. In the example report, three groups are created (Country, State, and City). For the
State group the grouping properties are set as follows.

The visibility options for the group are shown below. Setting these options as shown in the figure is what enables the "drill-down"
capability of the report. The lowest level of data in the report is the individual store level and that makes up the detail section of
the table.

Notice also in the body of the table that the value for Unit Sales is specified using the SUM() function.

Field Definition for Unit Sales

=SUM(Fields!Measures_Unit_Sales.Value)

This approach will work for cases in which the data can be aggregated using the available aggregate functions of Reporting
Services. However, one of the benefits of using Analysis Services cubes as part of a business intelligence solution is that complex
calculated members can be defined using MDX. If you've gone through all the effort to build those calculations into your Analysis
Services cubes, you'll probably want to expose those calculations in your reports, without having to redefine them. Fortunately, it
is possible to do so.

Using Grouping with Analysis Services Aggregates and Calculated Members

If you've made a significant investment in learning MDX, you'll find that MDX provides very intuitive syntax for what could
otherwise be difficult SQL statements. A couple of quick examples will help to illustrate this point. A common query might ask,
"What's the difference between sales this period versus sales last period?" In MDX, this can be accomplished using the following
fragment.

MDX Fragment for Defining Sales This Period Versus Sales Last Period

(Time.Currentmember, [Measures].[Unit Sales]) – (Time.Prevmember,
[Measures].[Unit Sales])

Another query might need to compare current period sales with sales from the same period a year ago. The MDX fragment for
this calculation would be as follows.

MDX Fragment for Comparing Sales in the Current Period to Sales in the Same Period in the Previous Year

(Time.Currentmember, [Measures].[Unit Sales]) –
((ParallelPeriod([Time].[Year],1,[Time].Currentmember),
[Measures].[Unit Sales]))

In short, MDX is a great language for constructing queries in a manner that is consistent with the way that most people approach
analytical questions, which is from a dimensional perspective. MDX is designed specifically for those questions, whereas SQL is
not. Most cubes contain at least a few calculated members like this, and now you can use these calculations in your reports.

Expanding on the previous drill-down example, suppose in our cube there was a calculated member defined to compare the sales
of the current period with sales from the previous period (as the first MDX fragment illustrates). If we followed the previous
approach of just returning the data from the lowest level possible in our drill-down, we wouldn't be able to return correct results
in our report since there would be no way to aggregate the data within the report. We would have the values that allow us to
compare individual store sales for the current period against store sales in the same period in the previous year, but we wouldn't
be able to aggregate the data at the city, state or country level because none of the aggregate functions in the report designer
would suite our needs.

Instead of returning the data from just a single level for each dimension, in this example we are going to return the data from

every level that is capable of being displayed as part of the drill-down and then filter out the records for each group.

Below is the MDX used for the dataset. Note again that it's an expression since it is making use of a parameter.

MDX Statement

="With member [Measures].[SalesVersusLastPeriod] as
'(Time.currentmember, [Measures].[Unit Sales]) - (Time.prevmember,[Measures].[Unit
Sales])'
SELECT {AddCalculatedmembers(Measures.members)} on columns,
NON EMPTY [Store].members on rows from sales WHERE (" & Parameters!pTime.value & ")"

This query returns data from multiple levels along the store dimension and accepts a parameter for the time dimension. If you
examine the dataset returned by the query, you'll see that the dataset contains records at multiple aggregate levels, and that each
level is represented as a field in the dataset. Since each record in the dataset consists of each field, if the field doesn't apply to that
record, the field will contain a NULL value. For example, you can identify country level data by noticing that the state, city, and
store fields are all left blank. This characteristic of the dataset is what you can use in the definition of the groups to filter out the
appropriate rows for each group.

The next step uses the grouping capability of Reporting Services' tables, and filters the rows for each drill-down so that the Report
Server only ends up grouping a single record. In order to enable the drill-down capability, add a table to the report and insert
three groups in the table. These three groups correspond to the Country, State and City levels. The details section of the report is
devoted to individual store records.

Once the groups are created, set the appropriate grouping expression based on the level of the data. The grouping expression for
the country data would look like the following.

Next, use the filtering capabilities to limit the records included in the group. For example, on the country level group, the filtering
options are set as follows.

By setting the filtering options in this manner, the only records left to be included in the group are the records in the dataset that
correspond to the country level data, and there is only a single record for each country included in the dataset. Applying the LEN()
VBA function to each field and using the AND condition for applying the filters allows you to filter out all of the records that don't
belong to the particular level that the group represents. All of the other records in the dataset, the ones that correspond to city,
state, and store level information, are filtered out. The net effect of grouping on the country level and filtering out all of the non-
country level data is that the country level records in the dataset are returned in the report. To see this report in its entirety, see
the MDXDrillDownManyLevels.rdl report included in the download.

The primary benefit of using this approach instead of returning data from the lowest possible level shown in the report is that for
the higher levels in the report, you can return the MDX calculations and aggregates that are defined in the cube, rather than
redefining the calculations in the report. For example, if you look at the "Measures Unit Sales" field in the layout pane of the
report, the report that relies on a dataset consisting of just the lowest level data relies on the Reporting Services SUM() function
to aggregate the data at the country, state, and city levels. In the latter example in which a dataset is returned that consists of
multiple levels of data, the "Measures Unit Sales" column in the report refers to the field value returned in the dataset. No
additional aggregation is required at the higher levels since Analysis Services has returned the data. The benefit of this last
approach is that if you've invested a considerable amount of time in building calculations in MDX in your cubes, you can display
those calculations without having to redefine them within the Reporting Services design environment.

Tip To build "drill-down" reports against Analysis Services cubes, create a group for each level of the dimension
included in the dataset and then filter the data in each group by using the LEN() function on each field to identify
which records should be included in that level of the report. This method will reduce each group to just the records for
that level.

Adding "Drill-through" Capability to a Report

The concept of "drill-through" can mean different things depending on the technology being used. For those familiar with
Analysis Services, drill-through represents the ability to return the detail records that contribute to the value of a cell. For
Reporting Services, "drill-through" is the capability to jump from one report to another report when the user selects an action-
enabled object on the report. It's quite possible to develop a report that uses the drill-through action type for Reporting Services
to issue an Analysis Services DRILLTHROUGH MDX query, and it's also possible to use the drill-through action type of Reporting
Services to return a report that returns data from Analysis Services without using the DRILLTHROUGH MDX statement. Sound
confusing? Hopefully a couple of examples can help us understand the difference between the two, and how the two concepts can
also be used together.

Using the Reporting Services "Drill-through" Action

In the first example, we'll create a report action that is triggered when a user selects a bar on a chart. The report for this example is
included in the file FoodmartDrillThrough.rdl. If you preview this report, you'll find that the report contains a chart that displays
the sales for the selected product and time period for each city. If you select any of the bars that represent the sales of a city, a
report action of type "drillthrough" is executed. This process opens the FoodmartDrilledTo report that displays how each
promotion contributed to the overall sales of the selected product. The report parameters from the initial report are passed to the
second report and are displayed at the top of the report for reference.

To see how this capability was added to the report, select the chart for editing and right-click on the [Measures].[Unit Sales] data

field. Select the "Action" tab. This should indicate that the "Jump to Report" property is set to the FoodmartDrilledTo report, and
by viewing the parameters option, you should notice that the "pTime" and "pProduct" parameters of the second report are set to
the value of the parameters in the initial report. Finally, the last parameter listed, "pCity", is set to the current value of the City field
in the dataset.

This example serves to illustrate the concept of a "drill-through" report for Reporting Services, but does not make use of the MDX
DRILLTHROUGH statement in Analysis Services. An MDX query is still used; it's just not a DRILLTHROUGH query. It's also possible
that the drill-through action on the report could have triggered a web page displaying weather forecasts for the selected city. The
point is that Reporting Services has drill-through capabilities that are independent of the drill-through capabilities in Analysis
Services.

Using MDX DRILLTHROUGH with the Reporting Services Drill-Through Action Type

For our final example, we'll build a report that uses the drill-through capabilities of both Analysis Services and Reporting Services.

The FoodmartMDXDrillthrough.rdl accepts a time parameter and then displays a chart representing store sales in each city for the
selected time period. As in the previous example, the chart contains an action based on the [Measures].[Unit Sales] data field
which causes a second report, FoodmartMDXDrilledTo.rdl, to be rendered. This second report uses the MDX DRILLTHROUGH
statement for the source of the dataset. The MDX statement is provided below.

MDX Drillthrough Example

="DRILLTHROUGH SELECT {[Measures].[Unit Sales]} on Columns,
{[" & Parameters!pCity.value & "]} on ROWS FROM SALES WHERE
(" & Parameters!pTime.Value & ")"

The report then uses a table to present the individual records that contribute to the sales figure on the previous report.

Note Drillthrough is a concept used by both Analysis Services and Reporting Services. The Drillthrough features in
both products are independent of one another.

Rendering Reports Using Analysis Services

Thus far, this paper has been about how to build reports in Reporting Services with data from an Analysis Services cube included,
focusing on MDX and how to effectively author MDX statements for use in a Reporting Services report.

In addition to being able to author reports in Reporting Services using Analysis Services data, it is also possible to render reports
from an Analysis Services client application. This capability of Analysis Services, which will be discussed in more detail below, will
help developers integrate Analysis Services and Reporting Services, providing end user's with seamless navigation between the
two. Users will not have to open another application as they work with Analysis Services or Reporting Services. Instead, the user
will have one experience with the data, using the right technology for each scenario.

Imagine a scenario where an analyst at headquarters logs into a business intelligence portal that utilizes one of the many cube
browsers already available today. The analyst logs into the portal, and begins to navigate metrics on suppliers based on an initial
view of the cube. After slicing on a few additional dimensions, the analyst decides to get more information about a specific
supplier that is having difficulty in delivering needed parts in a timely fashion. The detailed information on this supplier, however,
is not stored in Analysis Services. Instead, it's stored in en entirely separate database and maintained by a completely separate
application. However, several profiles of the supplier have been built using reports in Reporting Services. By taking advantage of a
feature in Analysis Services, you'll be able to seamlessly "link" to those reports.

Analysis Services Actions
Actions are the feature of Analysis Services that allows you to link OLAP cubes to other applications. Actions consist of a server-
side "container" that stores the definition of the action. In this way, they are no different than cubes, dimensions, levels, and the
other objects that can be defined on the server. In addition, just as cubes, dimensions, and levels are exposed via a client API for
applications to take advantage of, actions are also exposed via the client APIs as well.

Actions are defined by specifying an Action Target, Action Type, and the syntax for the action. One of the action types that Analysis
Services supports is 'URL', and with this action type, the return value is a URL that should be launched using an Internet Browser.
Since one of the methods for rendering a report is to specify a URL, it should be possible to return a URL that represents a call to
render a specific report.

Defining an Analysis Services Action

Identify the Report URL

Before you attempt to build an action in Reporting Services, you will want to know the exact URL call needed to render a specific
report. At this point, don't worry about how you'll pass the parameters from Analysis Services to Reporting Services. That will
explain in detail, but the first thing you will want to do is to capture the URL that is used to render a report.

There are a couple of options for determining the correct URL syntax. Reporting Services Books Online provides some
information on the required URL syntax for rendering a report. Another option for determining the required URL for a report is
simply to turn on IIS Logging and view the report. If you specify that all properties should be logged, you will be able to see the
actual URL that was used to render the report. Turning on IIS Logging will also provide you with any character translations that
you may need to specify for a given report. For example, if you want to use a parameter value of "San Antonio" for a city, you will
need to pass the value of "San+Antonio" (the space is converted to a "+"). There are a couple of other character translation cases
you will need to be aware of particularly when you are working with Analysis Services. Again, logging the report calls will identify
those.

Define the Action

Once the Report URL is known, you can then define the action. This is done by selecting a cube in Analysis Manager and selecting
"edit". For our example, we used the Foodmart 2000 Sales cube and we created a new action called "CustomerProfile". As we
worked through the wizard we used the following values.

The expression in the MDX Builder is provided below.

Action MDX

="http://localhost/ReportServer?%2fFoodmart%2fMDXActionReport&pAccountNum=
39860458970&rs%3aClearSession=true&rs%3aFormat=HTML4.0
&rs%3aCommand=Render&rc%3aLinkTarget=
_top&rc%3aJavaScript=True&rc%3aToolbar=
True&rc%3aReplacementRoot=http%3a%2f%2flocalhost%2fReports%2fPages
%2fReport.aspx%3fServerUrl%3d3aLinkTarget%3d_top&rc%3aArea=Toolbar"

In this example, there is a single parameter for the report that is the customer's account number. This parameter is represented by
the string "pAccountNum=

39860458970". You should be able to save the action, and browse the cube to any customer, right-click on the customer and
select "Customer Profile" to invoke the action. This should render the report for the customer with the account number specified.

Parameterize the Action

In our example thus far, we just copied and pasted a specific account number from a test run of the report to ensure that the
action actually renders the report. More than likely, you will want to call a report that contains parameters. In our example, we
have one parameter for the report (pAccountNum). The next task is to make the Analysis Services action work with each possible
customer.

To do this, we simply need to modify the action's MDX statement to make it dynamic. In this case, we have added a member
property to the customer level of the Foodmart 2000 cube that contains the customer's account number. Once the member
property is created, the MDX for the action is modified to the following.

Action MDX

="http://localhost/ReportServer?%2fFoodmart%2fMDXActionReport&pAccountNum="
+ [Customers].currentmember.properties("AccountNum") +
&rs%3aClearSession=true&rs%3aFormat=HTML4.0
&rs%3aCommand=Render&rc%3aLinkTarget=
_top&rc%3aJavaScript=True&rc%3aToolbar=
True&rc%3aReplacementRoot=http%3a%2f%2flocalhost%2fReports%2fPages
%2fReport.aspx%3fServerUrl%3d3aLinkTarget%3d_top&rc%3aArea=Toolbar"

Again, save the action and the cube and now you should be able to browse to any customer in the customer dimension and view
the customer's profile. This will render a report that includes information from the Foodmart 2000 Access database. In this case,
we have gone from data stored in an Analysis Services cube to data stored in Access 2000 database. This could have just as easily
been a SQL Server database, or any other RDBMS supported by Reporting Services. The user, however, didn't need to launch
another application to move from one view to the next, the features in Analysis Services and Reporting Services allowed this
experience to be transparent. The final customer profile report used in this example is included in the accompanying files and is

named MDXActionReport.rdl.

There are many possible scenarios for which developing an action in Analysis Services to display a report could be useful. Some
common scenarios might involve presenting a customer profile, or recent billable activity.

Action Tips

The example action that is provided in this scenario is arguably fairly simplistic. The goal of this example was to illustrate the
mechanics involved in rendering a report from Analysis Services. In our example, we created a member property to store the
customers' account number, which is what the report expected for a parameter. Then, the action syntax was modified to pass the
current customer's account number to the report. Below are some tips to consider when building actions for use with Reporting
Services.

Turn on IIS Logging with extended properties. Turning on IIS Logging with extended properties will allow you to see the
URL call for the report.
Use Member Properties to store URL fragments. In our example we used a member property to store the account number
of the customer, which was used as a parameter for the report. This account number provided the link between the cube
and the relational system.
Using member properties to store URL fragments can be especially useful when you need to do string manipulation in
order to make the URL conform to the URL that Reporting Services expects. For example, if you were to use the MDX
fragment [Customer].currentmember.name, it's likely that if the customer name consisted of a first and last name, there
would be a space produced between the first and last names. Since URLs to reports can't have spaces in them (they are
converted to "+" instead), one approach would be to store a URL fragment in a database so that the manipulation does not
need to be done in MDX. For example, you might have a field in the database with a value of "Jane+Doe" to represent Jane
Doe. This field would then be designated as a member property.
Use an Analysis Services UDF to create URL fragments. If it were not possible or desirable to store a URL fragment in a
database, another option would be to create a UDF and register it within Analysis Services. By creating a UDF using a
programming language, you can create sophisticated functions to perform string manipulations that can then be referenced
in the action syntax.
For simple replace operations use the Excel Substitute() function. For cases, where only string replacement needs to be
performed, one option would be to use Excel's Substitute() function. This function could be used to replace familiar
characters in Analysis Services such as "[" and "{" and replace them with their Reporting Services URL equivalents.

Moving Towards SQL Server 2005

The release of SQL Server 2005 will see significant feature upgrades to Reporting Services and Analysis Services. Let's take a brief
tour of some of the new SQL Server 2005 features and how they relate to our discussion on integrating Analysis Services and
Reporting Services.

The most notable addition in SQL Server 2005 Reporting Services as it relates to Analysis Services will be a graphical MDX Query
Designer that will enable report developers to author MDX for their reports. Users will be able to drag levels, measures, KPIs (Key
Performance Indicators) into the query design pane and produce MDX queries. There will also be

In addition to the inclusion of the MDX Query Designer, Analysis Services will support parameterized queries in SQL Server 2005
and Reporting Services will add support for this feature as well. If you remember back to the previous discussion in this
whitepaper on how to add parameter support to reports based on Analysis Services, this technique will no longer be required.
However, any reports that you authored using the advice contained in this whitepaper will still execute correctly in SQL Server
2005. This will allow you to leave your existing reports "as is", or to update them.

Reporting Services 2005 will also add support for server-side aggregates. This feature will enable report authors to take
advantage of aggregations as they are defined in Analysis Services, in addition to using the aggregate functions available in
Reporting Services. Reporting Services will also expose server-side formatting features such as the cell background property.

Finally, a large portion of this whitepaper was devoted to the characteristics of flattened MDX recordsets. In SQL Server 2005,
Reporting Services will continue to use this algorithm for consuming data from Analysis Services. Report authors should be able
to rely on the information presented on this topic as it pertains to this subject.

Conclusion
This whitepaper has discussed how both Analysis Services and Reporting Services for SQL Server 2000 can be used together as
part of an overall business intelligence solution. The ability to define reports, manage reports, and convert them to various
formats can enhance many Analysis Services implementations. In addition, the Analysis Services capability to answer analytical
questions very quickly with a rich multi-dimensional query language can be a benefit to many traditional reporting scenarios. This

paper has discussed many ways in which the two can be integrated to provide better solutions for customers.

For more information

Microsoft SQL Server home page

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

International Features in Microsoft SQL Server 2000

Michael Kaplan
Trigeminal Software, Inc.

April 2001

Summary: This article introduces Microsoft SQL Server developers to the international features of SQL Server 2000. Topics
covered include an explanation of Unicode, SQL Server international data types, and key issues regarding implementation. (57
printed pages)

Contents

Introduction
What Is Unicode and How Can It Be Used?
Data Types in SQL Server 2000
Performance and Storage Space
Metadata Information In System Tables
Collation
Communication Between Server and Client (Code Page and Collation Issues)
Multilingual Data In the User Interface
Getting to SQL Server Data (Data Access Methods)
Multilingual Transact-SQL
Locale Support In SQL Server 2000
Data Transformation Services
Using the bcp Utility with Multilingual Data
The Microsoft Search Service and FTS
Dealing with OLAP/Hierarchical Data
Using XML Support in SQL Server 2000 with Multilingual Data
Interacting with Other Database Products
Conclusion
Acknowledgments
About the Author

Introduction
Microsoft® SQL Server™ 2000 includes powerful features to support international operations and environments. Extensive
multilingual features make SQL Server 2000 a compelling database product and applications platform. This article provides a
complete overview of how to use these features in a global context. This article is not limited to a list of features but also will
explain how international/multilingual requirements can affect many aspects of a project.

What Is Unicode and How Can It Be Used?
Unicode support is the foundation of the multilingual support of SQL Server 2000. Unicode is a standard that is designed to
support all the world's scripts. Unicode supplies a unique code point for every character, regardless of platform, program, or
language. A program that supports Unicode can handle data in any language. Unicode 3.0 can handle up to 1,114,112 characters.

Unicode is an industry standard managed by the Unicode Consortium, an organization that recognizes the importance of having a
single character set for all languages. Microsoft is a member of the Unicode Consortium. Most companies joined for many of the
same reasons that Microsoft did: in creating global software solutions, the importance of being able to represent multilingual data
is obvious. Many other companies and individuals join to understand the issues and techniques for handling multilingual data.

The Unicode Standard, now at version 3.01, is identical to ISO-10646, an international standard that matches all of the code points
in Unicode since just after Unicode 1.1 was released. The effective combination of both an industry and international standard
helps to keep any individual interest from subverting the goal of both standards: one character set for everyone!

For more information, go to the Unicode Consortium Web site.

Encodings

Unicode maps code points to characters, but do not actually specify how the data will be represented in memory, in a database, or
on a Web page. This is where the actual encoding of Unicode data comes into play. There are many different encodings for

http://www.unicode.org/

Unicode. This section describes these common encodings:

UCS-2
UTF-16
UTF-8

The information about encoding is presented here to help you better understand Unicode and some of the many ways in which it
can be stored. Most of the time you can simply choose a Unicode data type and not worry about these details; however, it is
important to understand the encoding any time you:

Are dealing with an application that may encode Unicode differently
Must send data to other platforms (non-Microsoft Windows®) or Web servers
Must manage the importation of data from or exportation of data to other encodings

UCS-2

UCS-2 is the main Unicode encoding used by Microsoft Windows NT® 4.0, Microsoft® SQL Server™ version 7.0, and Microsoft
SQL Server 2000. UCS-2 allows for encoding of 65,536 different code points. All information that is stored in Unicode in SQL
Server 2000 is stored in this encoding, which uses two bytes for every character, regardless of the character being used.
Therefore, the Latin letter "A" is treated the same way as the:

Cyrillic letter Sha
Hebrew letter Lamed
Tamil letter Rra
Japanese Hiragana letter E

Each one has a unique code point (for these letters, the code points are U+0041, U+0248, U+05DC, U+0BB1, and U+3048,
respectively, where each four-digit hexadecimal number represents the 2 bytes that UCS-2 uses).

The ordering of bytes can be crucially important at the operating-system level. Because SQL Server runs on the Windows
platform, it uses a Little Endian encoding system (meaning "little end in"). Therefore, a hexadecimal word such as 0x1234 is stored
in memory as 0x34 0x12.

UTF-16

UTF-16 is the primary Unicode encoding used by Microsoft Windows 2000. Even before Unicode 2.0 was released, it became clear
that the goal of Unicode (to support a single code point for every character in every language) could not be achieved using only
65,536 characters. Some languages, such as Chinese, require that many characters to encode just the rarely used characters. Thus,
support was added for a surrogate range to handle an additional 1,048,576 characters. UTF-16 is the encoding that fully supports
this extension to the original standard. For information about the surrogate range, see the topic What are Surrogates?

In UTF-16, the same standard of 2 bytes per code point is followed; however, with UTF-16 certain code points use another code
point right after them to define the character.

Like UCS-2, UTF-16 is stored in a Little Endian manner, as is everything on Windows, by default.

Important Although UCS-2 is not aware of surrogates, it will not corrupt the actual data in a database that
contains them; it will treat them as two separate (undefined) characters.

Although SQL Server 7.0 and SQL Server 2000 can store surrogate pairs losslessly, they will treat the surrogate pairs as two
undefined Unicode characters rather than as a single character. Such applications are usually referred to as surrogate "neutral" or
surrogate "safe" (where safe refers to the ability to store the data even if there is no intrinsic ability to interact with it). Surrogate
"aware" applications are rare at this time, because currently there are no surrogate characters officially defined. Microsoft Word
2000, Microsoft Windows 2000, and Microsoft Internet Explorer version 5.0 and later are a few surrogate-aware applications.

UTF-8

Many ASCII and other byte-oriented systems that require 8-bit encodings (such as mail servers) must span a vast array of
computers that use different encodings, different byte orders, and different languages. UTF-8 is an encoding scheme that is
designed to treat Unicode data in a way that is independent of the byte ordering on the computer. Although SQL Server 2000
does not store data in UTF-8 format, it supports UTF-8 in at least one crucial scenario: its support of the Extensible Markup
Language (XML). For more information, see Using XML Support in SQL Server 2000 with Multilingual Data later in this article.

Many other database systems (such as Oracle and Sybase SQL Server) support Unicode using UTF-8 storage. Depending on a

server's implementation, this can be technically easier for a database engine to implement (all of the existing text management
code on the server that is designed to deal with data 1 byte at a time does not require major changes). In the Windows
environment, UTF-8 storage has these disadvantages:

The Component Object Model (COM) supports only UTF-16/UCS-2 in its APIs and interfaces, which would require constant
conversion if data were stored in UTF-8 format (this issue only applies when COM is used; SQL Server database engine does
not typically call COM interfaces).
The Windows NT and Windows 2000 kernels are both Unicode and use UCS-2 and UTF-16, respectively. Once again, a UTF-
8 storage format would require many extra conversions (as with the previous note on COM, this would not result in a
conversion hit in the SQL Server database engine, but would potentially affect many client-side operations).
UTF-8 can be slower for many string operations. Sorting, comparing, and virtually any string operation can be slowed
because characters do not have a fixed width.
UTF-8 will often need more than 2 bytes, and the increased size can make for a larger footprint on disk and in memory.

Because XML is, among other things, a very important standard for communication over the Internet (which has a strong byte-
oriented bias), its default to UTF-8 is something that can make a lot of sense.

What are Surrogates?

The surrogates' area is a range in Unicode from U+D800 to U+DFFF that contains 1024 low surrogate values and 1024 high
surrogate values. A high surrogate and a low surrogate can be combined to give access to over a million possible characters. It is
not considered valid to have only one-half of a surrogate pair; to be valid, there must always be a high surrogate followed by a
low surrogate. This makes checking for a surrogate an easy matter of range checking compared to the rather complex rules that
are required to detect DBCS (double-byte character system) characters.

There were no surrogates when SQL Server 7.0 was released. When SQL Server 2000 was released, the only surrogate characters
were those relating to language tags in plain text.

Important As mentioned previously, surrogates can be stored without any danger of data loss, but you should be
very careful in trying to use the SQL Server string manipulation functions with such data. In addition, Windows 2000,
at this time, supports only code-point sorting for surrogate characters.

After SQL Server 2000 released, through the efforts of the ISO and Unicode standard group, more characters were added to the
surrogate range, including about 40,000 CJKV (Chinese, Japanese, Korean, and Vietnamese) ideographs. These characters are
used primarily for historical and classical literary documents to help with the encoding of the rich CJKV literary heritage.

Data Types In SQL Server 2000
The central task of a database is obviously the storage of data. This section covers some issued involved in using SQL Server 2000
data types for storing international data.

Non-Unicode Text Types: char, varchar, text

When you deal with text data that is stored in the char, varchar, or text data types, the most important limitation to consider is
that only information from a single code page can be stored. The exact code page depends on the collation of the column (if there
is no column-level collation then the collation of the database is used). To determine the code page that is used for a given
column, you can use the COLLATIONPROPERTY function, as shown in the following examples:

SELECT COLLATIONPROPERTY('Chinese_PRC_Stroke_CI_AI_KS_WS', 'CodePage')
936

SELECT COLLATIONPROPERTY('Latin1_General_CI_AI', 'CodePage')
1252

SELECT COLLATIONPROPERTY('Hindi_CI_AI_WS', 'CodePage')
0

In the last example, Hindi was added to point out that many locales (such as Georgian and Hindi) do not have code pages, as they
are "Unicode only" collations. Those collations are not appropriate for these data types.

Any time Unicode data must be inserted into these columns, the columns will be internally converted from Unicode using the
WideCharToMultiByte API and the code page associated with the collation. Any time a character cannot be represented on the
given code page, it will be replaced by a question mark (?); this makes random question marks a good indication of data that has
been corrupted due to this conversion. It also is a good indication that you really needed a Unicode data type. If you use a string
literal of a non-Unicode type, it will be converted first using the database's default code page (derived from its collation).

You might encounter another problem if you try to store data when not all of the characters you wish to support are contained in
the code page. One of the best examples of this is the Arabic script: it supports a wide array of languages, including Baluchi,
Berber, Farsi, Kashmiri, Kazakh, Kirghiz, Pashto, Sindhi, Uighur, Urdu, and more. All of these languages have additional characters
beyond those in the Arabic language, which is the basis for Windows code page 1256. These extra characters are thus converted
into question marks if they are stored in a non-Unicode column with the Arabic collation. This problem occurs because, in many
cases, Windows will consider a particular code page to be a "best fit" code page. That means there is no guarantee you will be able
to rely on the code page to handle all text, but it is the best one available.

Unicode Text Types: nchar, nvarchar, ntext

The SQL-92 specification defines these "N" (stands for national) data types but does not specifically require them to be used for
Unicode; the actual definition of these data types is left to the database platform or developer. In SQL Server 7.0 and SQL Server
2000, these data types are defined as being equivalent to UCS-2/UTF-16 Unicode. It is important to keep in mind that this is
specific to Microsoft SQL Server. When you work with other database servers (such as Sybase SQL Server), its important to know
that the "N" data types do not specifically mean Unicode.

For the storage of complex scripts, such as Hindi and Tamil, it is important to note that the data is expected to be in the proper
order. Many languages such as Tamil will actually specify that certain letters must be reordered when the text is rendered, thus
making the logical order of text as it is stored in memory different from the visual order that will be seen in a user interface. Data
should always be stored in the proper logical order for any complex script language, which includes all of the Indic languages,
Arabic, Farsi, Hebrew, and many others. The actual rendering of such data is a separate issue (see Multilingual Data In the User
Interface later in this article).

Although the "N" columns can indeed support data of any language or combination of languages, the actual sorting of this data
can only be in a single collation (the meaning and consequences of this issue are discussed further in the section on collation).
None of the code page limitations that were mentioned previously in this article apply to Unicode columns.

Date/Time Types: datetime, smalldatetime

The actual data types have no actual international meaning; they represent a date/time value with the following definitions:

datetime
Date and time data in the Gregorian calendar from January 1, 1753 through December 31, 9999, to an accuracy of one three-
hundredth of a second (equivalent to 3.33 milliseconds or 0.00333 seconds).

smalldatetime
Date and time data in the Gregorian calendar from January 1, 1900, through June 6, 2079, with accuracy to the minute.
smalldatetime values with 29.998 seconds or lower are rounded down to the nearest minute; values with 29.999 seconds or
higher are rounded up to the nearest minute.

Microsoft SQL Server rejects data that falls outside of these ranges. The actual data is stored internally as two integers (4-byte
integers for datetime, and 2-byte integers for smalldatetime) that represent the date and time in question. Because the actual
value has no actual connotations in regard to locale-specific formatting, it is up to the developer to define such conversions as
needed.

SQL Server 2000 supports many different locale-specific conversions that can be performed at the server instead of relying on
custom solutions from developers. These date styles can be accessed through the CONVERT function, which takes a data type, an
expression, and an optional style, as shown in the following table.

W/century W/o century Standard Input (converting to datetime)
Output (converting to text)

0 or 100 - Default mon dd yyyy hh:miAM (or PM)
101 1 USA mm/dd/yy
102 2 ANSI yy.mm.dd
103 3 British/French dd/mm/yy
104 4 German dd.mm.yy
105 5 Italian dd-mm-yy
106 6 - dd mon yy
107 7 - Mon dd, yy
108 8 - hh:mm:ss
9 or 109 - Default + milliseconds mon dd yyyy hh:mi:ss:mmmAM (or PM)
110 10 USA mm-dd-yy
111 11 JAPAN yy/mm/dd

112 12 ISO yymmdd
13 or 113 - Europe default + milliseconds dd mon yyyy hh:mm:ss:mmm(24h)
114 14 - hh:mi:ss:mmm(24h)
20 or 120 - ODBC canonical yyyy-mm-dd hh:mi:ss(24h)
21 or 121 - ODBC canonical + milliseconds yyyy-mm-dd hh:mi:ss.mmm(24h)
126 - ISO8601 (no spaces) yyyy-mm-dd Thh:mm:ss:mmm
130 - Kuwaiti (Hijri) dd mon yyyy hh:mi:ss:mmmAM
131 - Kuwaiti (Hijri) dd/mm/yy hh:mi:ss:mmmAM

The following example shows how the CONVERT function is used:

SELECT CONVERT(char, GETDATE(), 100) AS [100]
Aug 16 2000 11:50AM

You can then convert the data from a string to a date value in much the same manner:

SELECT CONVERT(datetime, 'Aug 16 2000 11:50AM', 100) AS [100]

It is worth noting that when you convert such dates with Style 130 (Kuwaiti or Hijri), converting to the char data type may result
in the data corruption if the collation is not one of the Arabic collations that use code page 1256 for Unicode conversions. The
following illustration (Figure 1) shows this issue.

Figure 1. Convert date/time Transact-SQL

Note that on a U.S. client computer, attempting to use the char data type results in the Arabic characters being converted into
question marks, and the nchar data type rendering Arabic characters. This particular string is one that is still not properly
formatted (as it would be on an Arabic) client computer due to limitations in the SQL grid in SQL Query Analyzer. The following
illustration (Figure 2) shows how the actual Hijri date string should appear.

Figure 2. Hijri date string

This is because complex scripts, such as Arabic, have shaping rules that must be applied so that the data can be rendered properly.
In the case of bidirectional (BIDI) languages such as Hebrew, it will cause all data to be reversed; the effect is more marked with
Arabic. That is because the actual shapes of letters can change, depending on the surrounding letters. This problem does not
happen in Windows 2000 or in any earlier, Arabic-enabled versions of Windows.

Additionally, the date string that is returned can itself cause problems in the bidirectional cases where it is needed, because the
rules for the layout of bidirectional text used by an application, such as Internet Explorer or Windows 2000, causes the date to
appear as shown in the following illustration (Figure 3).

Figure 3. Bi-directional date string example

This visual order (dd hh:mi:ss yyyy mon :) is obviously not the order that would be expected; the problem can be considered a
general limitation of the 130 styles in the CONVERT function, although you can work around it easily enough by adding the
proper Unicode control character in front of the string, as shown in the following query:

SELECT NCHAR(8207) + CONVERT(nchar, GETDATE(), 130)

The NCHAR function returns a character based upon the passed-in Unicode code point; 8207 or hexadecimal 0x200F is the Right-
to-Left Marker (RLM), and causes the string to be displayed properly.

Performance and Storage Space
Ideally, every column is defined with one of the Unicode data types; however, doing so when you do not need to support
multilingual data can create issues relating to storage space and speed.

Storage Space Issues

The actual amount of space required for the Unicode data types is 2 bytes per character, and the amount of space for the non-
Unicode data types is 1 byte for all non-DBCS text and 2 bytes for Asian languages that use DBCS. Therefore, unless your data is
on one of the Asian code pages, you will be using twice as much space to store the data. This must be considered when you
upgrade existing databases or when you are deciding on the proper data types of new projects. If you are storing data only in a
column that is on a single (non-Asian) code page, you might prefer to not use Unicode so you can save the space on disk and in
memory.

Speed Issues

The speed issue is a complicated one. Here are some of the issues:

If you are running on Windows NT or Windows 2000, the kernel is expecting Unicode data, and thus non-Unicode columns
will have to be converted in many cases, such as when you display data or use the operating system services.
There is the additional time needed to load the larger amount of data that must also be considered when you are dealing
with DBCS data.
If you are dealing with a Windows 95 or Windows 98 client or server, much of the information can also face conversions
from Unicode when operating-system services, such as data display, are needed.
If you are working between servers (see Communication Between Server and Client later in this article), database server
products, or other products, the number of conversions can also play a great role in the performance battle.
If you are dealing with Asian languages, Unicode will actually be faster than using the language-specific DBCS code page.
This is because DBCS data does not have fixed width; it is a mixture of double-byte and single-byte characters.
If you are dealing with non-Asian languages, sorting Unicode data can be up to 30-percent slower than non-Unicode data.
This can be considered one cost of being able to represent global data.

Important To realistically evaluate a performance issue, you must test to get conclusive data about the situation.

Metadata Information In System Tables
The system tables in SQL Server 2000 store all the data they contain as Unicode. This minimizes the problems that can occur with
different collations between databases and columns. There is no other way to deal with the fact that different databases on the
same server can have any mix of Unicode and non-Unicode column names. Even if you are supporting only a single language
now, SQL Server must be ready to support any language you might choose to support in the future.

When you are converting databases and servers from SQL Server 6.5 or earlier, it is easy to become concerned about the
metadata that is being converted; however, there is no need to worry. The conversion to Unicode is straightforward because these
earlier versions of SQL Server are only in one code page/collation, defined at the server level.

One important issue involves using identifiers for objects in the system tables. SQL Server 2000 uses the Unicode 2.0 character
property definition to create the list of valid characters in identifiers (Unicode 3.0 was not released when SQL Server 2000
development was completed). To avoid running into issues with international characters that are not defined in the Unicode 2.0
character property definition, you should limit your identifiers with brackets ([]) or double quotation marks ("). This prevents the
server from checking for valid characters.

Collation
One of the things that everyone takes for granted is sorted data; after all, what could be more basic than the alphabet? Some of us
may acknowledge languages that use different sets of letters such as Greek, Russian, Thai, or Japanese. But at least in the United
States everyone seems to think that if they can count on anything, it's the alphabet.

The problem is that they are wrong! Whether or not you choose to understand why users who know Spanish might expect the
letter combination "ch" to sort as a single character after the letter "h", you must understand that non-English languages have
different sorting expectations. In general, one of the most effective ways to alienate end users of an application is to get a task
such as basic sorting wrong.

The way this works is through collations, or sort orders, and a technique known as string normalization. This is a different
meaning of "normalization" than database developers are used to, as it is a not a design issue; when you refer to string
normalization, you are considering how to compare two strings so that they can be sorted. This can be optimized through the
creation of indexes.

For non-Unicode columns, collation has a second meaning that is very important: Collation specifies the code page for the data
and, therefore, what characters can be represented. Data can be moved between Unicode columns seamlessly, while data moved
between non-Unicode columns cannot.

Collation in SQL Server 6.5 and Earlier

In SQL Server version 6.5 and earlier, collation was also relied on to specify the code page to use for language in general. There
are some limitations related to different sort orders—in various Latin languages, for example. Also, you could only support
Western European languages if you used Latin-1. Because of this, the number of different locales&151;that is, the number of
different languages used in a specific region—that could be represented in information on a single instance of SQL Server was
limited. The basic issues also apply to the collation of non-Unicode fields in later versions of SQL Server. In addition, the issue
about languages that have a "best fit" code page, such as Farsi, (mentioned previously in Non-Unicode Text Types: char, varchar,
text) can apply here.

Collation in SQL Server 7.0

SQL Server 7.0 has one Unicode and one non-Unicode collation per server. The non-Unicode collations are made up of the
decision for code page and sort order ID, because each code page can support more than one sort. For example, Latin languages
will usually allow both case sensitive and case insensitive sorts, and Simplified Chinese will allow sorts both by stroke count and
phonetic sorts.

In the Unicode collation, any character of any language can be included in the column, so the individual collations that are
available are there to make sure any collation-specific differences are properly handled. This is the proper solution to the "best fit"
problem, because, for example, sorting Farsi data with the general Unicode collation gives users the data they expect. A Unicode
collation consists of a locale and several comparison styles. Locales are usually named after countries or cultural regions. They
sort characters according to the standard in that area. The Unicode collation still provides a sort order for all characters in the
Unicode standard, but precedence is given to the locale specified.

The following table lists the supported, unique Unicode collations in SQL Server 7.0. Any locale not listed should use the General
Unicode Collation.

Locale ID (LCID) Description
1033 General Unicode
33280 Binary Order
1027 Catalan
197636 Chinese Bopomofo (Taiwan)
2052 Chinese Punctuation
133124 Chinese Stroke Count
1028 Chinese Stroke Count (Taiwan)
1050 Croatian
1029 Czech
1043 Dutch
1061 Estonian
1036 French
66615 Georgian Modern
1031 German
66567 German Phone Book
1038 Hungarian
66574 Hungarian Technical
1039 Icelandic
1040 Italian
1041 Japanese
66577 Japanese Unicode
1042 Korean
66578 Korean Unicode
1062 Latvian
1063 Lithuanian
1071 Macedonian (FYROM)
1044 Norwegian/Danish
1045 Polish
1046 Portuguese
1048 Romanian
1051 Slovak
1060 Slovenian
1034 Spanish (Traditional)
3082 Spanish (Spain)
1053 Swedish/Finnish
1054 Thai
2057 UK English
1058 Ukrainian

1066 Vietnamese

As you can see by this list, not all languages are included; this is okay, however, as not all of them have to be. For example, the
general Unicode sort order properly handles not only the data, but also the sorting of Afrikaans, Albanian, Arabic, Basque,
Belarusian, Bulgarian, English, Faeroese, Farsi, Georgian (Traditional), Greek, Hebrew, Hindi, Indonesian, Malay, Russian, Serbian,
Swahili, and Urdu. The other languages listed in the table, however, have one or more differences from the general Unicode
collation.

It should be emphasized that the developers of SQL Server are not "political" people and there really is no desire to offend any
one country/region by asking them to "use another country/region's sort order." In working with customers in other
countries/regions, just use the numbers, because the names are really arbitrary descriptions. What is most important is that you
can choose a collation that will allow your data to be handled appropriately.

One very important change in SQL Server 7.0 is the provision of an operating system-independent model for string comparison,
so that the collations between all operating systems from Windows 95 through Windows 2000 can be consistent. This code,
based on the same code that Windows 2000 uses for its own string normalization, is encapsulated to be the same on all
computers. With this change, SQL Server no longer relies on the operating system for its international functionality—from the
smallest MSDE installation to the largest SQL Server Enterprise Edition.

Collation in SQL Server 2000

In SQL Server 2000, the collation model has changed because:

The requirement for two different collations was confusing.
A more flexible model was needed to handle all of the new places for which a collation could be specified.
In SQL Server 2000, collations are also used to handle the code page of non-Unicode columns; therefore, more collations
were required.

A single, consistent model was designed to handle both Unicode and non-Unicode sorts. This model supports the languages
displayed in the following list.

Collation in SQL Server 2000
Albanian Arabic Chinese_PRC
Chinese_PRC_Stroke Chinese_Taiwan_Bopomofo Chinese_Taiwan_Stroke
Cyrillic_General Croatian Czech
Danish_Norwegian Estonian Finnish_Swedish
French Georgian_Modern_sort German_PhoneBook
Greek Hebrew Hindi
Hungarian Hungarian_Technical Icelandic
Japanese Japanese_Unicode Korean_Wansung
Korean_Wansung_Unicode Latin1_General Latvian
Lithuanian Lithuanian_Classic Macedonian (FYROM)
Spanish (Spain) Polish Romanian
Slovak Slovenian Thai
Traditional_Spanish Turkish Ukrainian
Vietnamese

Each of these collations is combined with a series of suffixes that help define whether there is case, accent, width, or kana
sensitivity. The exact suffixes that are possible are shown in the following table. Each of the 40 languages in the previous list
supports the 17 suffixes in the following table, for a total of 680 Windows collations.

Suffix for collation Meaning
_BIN Binary sort
_CI_AI Case-insensitive, accent-insensitive, kanatype-insensitive, width-insensitive
_CI_AI_WS Case-insensitive, accent-insensitive, kanatype-insensitive, width-sensitive
_CI_AI_KS Case-insensitive, accent-insensitive, kanatype-sensitive, width-insensitive
_CI_AI_KS_WS Case-insensitive, accent-insensitive, kanatype-sensitive, width-sensitive
_CI_AS Case-insensitive, accent-sensitive, kanatype-insensitive, width-insensitive
_CI_AS_WS Case-insensitive, accent-sensitive, kanatype-insensitive, width-sensitive
_CI_AS_KS Case-insensitive, accent-sensitive, kanatype-sensitive, width-insensitive

_CI_AS_KS_WS Case-insensitive, accent-sensitive, kanatype-sensitive, width-sensitive
_CS_AI Case-sensitive, accent-insensitive, kanatype-insensitive, width-insensitive
_CS_AI_WS Case-sensitive, accent-insensitive, kanatype-insensitive, width-sensitive
_CS_AI_KS Case-sensitive, accent-insensitive, kanatype-sensitive, width-insensitive
_CS_AI_KS_WS Case-sensitive, accent-insensitive, kanatype-sensitive, width-sensitive
_CS_AS Case-sensitive, accent-sensitive, kanatype-insensitive, width-insensitive
_CS_AS_WS Case-sensitive, accent-sensitive, kanatype-insensitive, width-sensitive
_CS_AS_KS Case-sensitive, accent-sensitive, kanatype-sensitive, width-insensitive
_CS_AS_KS_WS Case-sensitive, accent-sensitive, kanatype-sensitive, width-sensitive

These language names are arbitrary and were chosen to properly represent each unique supported code page for non-Unicode
data and sort order for all data. In the many cases where a language can be completely represented on another code page, or
when a sort order that one language needs is covered by another, the language was "removed" from the list because it is
adequately covered. Note that the default setting of kana sensitivity and width sensitivity is set to insensitive.

To ensure that code pages from earlier versions of SQL Server are properly supported, many backward-compatible, SQL-specific
sort orders are also included in SQL Server 2000. These SQL-specific sort orders are listed below. Many of these support some of
the various parts of the suffixes described previously, but not all of the suffixes are supported.

SQL-specific sort orders
SQL_1xCompat_CP850 SQL_Estonian_CP1257 SQL_Latin1_General_Pref_CP437
SQL_AltDiction_CP1253 SQL_Hungarian_CP1250 SQL_Latin1_General_Pref_CP850
SQL_AltDiction_CP850 SQL_Icelandic_Pref_CP1 SQL_Latvian_CP1257
SQL_AltDiction_Pref_CP850 SQL_Latin1_General_CP1 SQL_Lithuanian_CP1257
SQL_Croatian_CP1250 SQL_Latin1_General_CP1250 SQL_MixDiction_CP1253
SQL_Czech_CP1250 SQL_Latin1_General_CP1251 SQL_Polish_CP1250
SQL_Danish_Pref_CP1 SQL_Latin1_General_CP1253 SQL_Romanian_CP1250
SQL_EBCDIC037_CP1 SQL_Latin1_General_CP1254 SQL_Scandinavian_CP850
SQL_EBCDIC273_CP1 SQL_Latin1_General_CP1255 SQL_Scandinavian_Pref_CP850
SQL_EBCDIC277_CP1 SQL_Latin1_General_CP1256 SQL_Slovak_CP1250
SQL_EBCDIC278_CP1 SQL_Latin1_General_CP1257 SQL_Slovenian_CP1250
SQL_EBCDIC280_CP1 SQL_Latin1_General_CP437 SQL_SwedishPhone_Pref_CP1
SQL_EBCDIC284_CP1 SQL_Latin1_General_CP850 SQL_SwedishStd_Pref_CP1
SQL_EBCDIC285_CP1 SQL_Latin1_General_Pref_CP1 SQL_Ukrainian_CP1251
SQL_AltDiction_CP1253 SQL_Hungarian_CP1250
SQL_Latin1_General_Pref_CP850

You can retrieve the actual information about collations by using the COLLATIONPROPERTY function. In addition to the CodePage
value used earlier, you can also pass other information types, such as LCID, which returns the Windows Locale ID (returns Null for
SQL collations). You can also specify Windows ComparisonStyle (returns Null for both Binary and SQL collations). This
information can be used to verify that there is indeed an equivalence between string normalization in Windows 2000 and SQL
Server 2000 for all of the Windows collations.

All of the available collations can be returned by using the fn_helpcollations() function, for example:

SELECT * FROM ::fn_helpcollations()

This query returns 753 rows in SQL Server 2000. Additional collations cannot be added, unless they are added in service packs or
future versions.

How Collations Specify the Sorting of Data

It is important to briefly explain how collations actually operate on Unicode data. As a general rule that has no exception, every
single defined collation in SQL Server on a Unicode column will sort all defined Unicode characters. There are many different
collations because there are many differences in how the data can be sorted. A good example of this is the Georgian modern sort.
Although the traditional sorting of Georgian text places all of the characters in a specific order, it is common for modern usage to
place certain rarely used characters at the end. These characters are:

HE, which displays as:
HEI, which displays as:

WE, which displays as:
HAR, which displays as:

Thus, there are two ways to sort the Georgian alphabet, as displayed in Figures 4 and 5.

Figure 4. Traditional way to sort the Georgian alphabet

Figure 5. Modern way to sort the Georgian alphabet

This does not stop any other Unicode data from being sorted according to the same sort provided in the Latin1_General collation.
In fact, all collations sort Georgian in the traditional form, with the sole exception of the Georgian_Modern_Sort collations. The
same rule applies to all other collations; only the exceptions change between collations.

Collations Specified at Multiple Levels

In SQL Server 2000, collations can be specified:

At the server level
At the database level
At the column level
In an expression

Collation specified at the server level

The server level is where the collation always used to be, and in many cases is the only collation you ever need to set. This
collation acts as the default for all collations in all databases on the server when they are created, if you do not explicitly set the
collation at the database level. Because a database is always given a collation, the server-level collation is never really consulted
except when the database is created.

You can change this collation without rerunning Setup by using the Rebuild Master utility (RebuildM.exe), which is located in
Program Files\Microsoft SQL Server\80\Tools\BINN directory. For more information, see the topic "Rebuild master Utility," in SQL
Server Books Online for SQL Server 2000.

You can also query the server for the collation with the Transact-SQL SERVERPROPERTY function, for example:

SELECT CONVERT(char, SERVERPROPERTY('collation'))

Collations at the database level

Every database can have a unique collation, with the sort order being set at the database level. The following illustration (Figure 6)
shows how the collation is set using SQL Server Enterprise Manager.

Figure 6. Setting Collation using the Enterprise Manager

You can set the collation order with Transact-SQL, as well. For example, to create a new database in Czech Republic sort order,
case and accent sensitive, use a statement such as:

USE master
GO
CREATE DATABASE Products
ON
(NAME = products_dat,
 FILENAME = 'c:\program files\microsoft sql server\mssql\data\products.mdf')
COLLATE Czech_CS_AS
GO

Interestingly, you can even change the collation of an existing database using the ALTER DATABASE statement (this is not
available using SQL Server Enterprise Manager). For example, the following statement changes the collation of the Products
database from Czech_CS_AS to Czech_CI_AI (case and accent sensitive to case and accent insensitive):

ALTER DATABASE Products
COLLATE Czech_CI_AI

Considerations before changing the collation of a database

To change the collation of a database, all of the following must be true:

No one else can be using the database.
No schema-bound object can be dependent on the database collation. Schema bound objects that qualify include any of the
following:

User-defined functions and views created with SCHEMABINDING
Computed columns
CHECK constraints
Table-valued functions that return tables with character columns with collations inherited from the default database
collation.

The act of trying to change the collation of the database does not result in duplicates among any of the system names. This
is very easy to imagine, for example, in the case of trying to change the collation from French_CI_AS to French_CS_AS (case
insensitive to case sensitive). With the collation in earlier versions of SQL Server, it is possible to have two tables named
Table1 and TABLE1; whereas, in the collation in SQL Server 2000, this causes duplicates. Objects that can potentially cause
such duplications include:

Object names (such as procedure, table, trigger, or view).
Schema names (such as group, role, or user).
Scalar-type names (such as system and user-defined types).
Full-text catalog names.
Column or parameter names within an object.
Index names within a table.

None of these restrictions is unrealistic, and they keep you from doing things that can corrupt your data or your database. In fact,
some might think the rules are not strict enough! If you have data in a text, varchar, or char field and there is no explicit collation
on the column, changing the collation of the database alters the way that the data's encoding is interpreted, resulting in a form of
corruption of any characters beyond the ASCII range (which is contained by all code pages). Rather than tempting fate in this way,
you should really avoid changing the collation of any database that contains text data columns that are not one of the Unicode
types, unless those columns have their own explicit collations set (see Collations specified at the column level below).

You can also use the Transact-SQL DATABASEPROPERTYEX function to find out the collation of a database, for example:

SELECT CONVERT(char, DATABASEPROPERTYEX('pubs', 'collation'))

Collations specified at the column level

In SQL Server 2000, you can change the collation of text in a particular column. This can be very useful, for example, in a
circumstance when you might need to force case sensitivity for a password column. Different language columns would be useful
in other scenarios. For example, a customer name might need to be in Unicode using Latin1_General for the broadest appropriate
sorting, and a product line might always be in Greek, in which case a Greek collation might make sense. The following illustration
(Figure 7) displays a collation specification during table design, using SQL Server Enterprise Manager.

Figure 7. Specifying Collation during table design using the Enterprise Manager

When you click on the "..." button, the dialog box shown in the following illustration appears. In this dialog box (Figure 8), you can
choose a collation.

Figure 8. Collation dialog box

You can also set column-level collations using Transact-SQL. In the CREATE TABLE statement, simply add a COLLATE clause to the
column definition. In the following example, the job description has a collation set for Arabic (case and accent insensitive,
kanatype insensitive).

CREATE TABLE jobs
(
 job_id smallint
 IDENTITY(1,1)
 PRIMARY KEY CLUSTERED,
 job_desc varchar(50)
 COLLATE Arabic_CI_AI_KS
 NOT NULL
 DEFAULT 'New Position - title not formalized yet',
)

You can use the ALTER TABLE statement to change the collation at the column level (except for an ntext or text column) with a
new data type. However, you can change the collation on an ntext column using SQL Server Enterprise Manager. This is because
SQL Server Enterprise Manager creates a temp table, moves data to the new temp table, drops the old table, creates a new table

with the new collation, and then copies the data back to the new table.

Collations specified in expressions

There may be many instances when you need to display data to people in different countries and want locale-appropriate sorting.
With SQL Server 2000, you can specify collations in expressions. This powerful new feature allows you to sort in a particular
manner so that the ORDER BY clause can be language-specific.

For example, the following query sorts the Customers table by last name and first name, (using the Lithuanian sort order
provides a good example of collation differences because the rules about how the letter Y sorts after the letter are so striking and
noticeable).

SELECT
 *
FROM
 tblCustomers
ORDER BY
 LastName COLLATE Lithuanian_AI_CI,
 FirstName COLLATE Lithuanian_AI_CI

You can also refer to the examples in SQL Server Books Online for SQL Server 2000 that relate to regular comparisons, such as:

SELECT
 *
FROM
 Table1
WHERE
 Field1 = Field2 COLLATE Turkish_ci_ai

Assuming that Table1 has no explicit column-level collations, both columns are compared with the Turkish sort order. For a more
complete explanation on why this is the case, see The rules of precedence for collations later in this article.

The COLLATE keyword

The syntax for using the COLLATE keyword is:

COLLATE [<Windows_Collation_name>|<SQL_Collation_Name]

The choice of collation name can be a difficult one to make. The keyword can be specified at the database level, the column level,
or in expressions. As a rule, any time the field is not a Unicode one (ntext, nvarchar, or nchar) the earlier process in which the
collation is converted into a code page is used.

There are two types of collations:

Windows collations
These are defined by Windows. You have full options to specify case, accent, kana, and width sensitivity, as well as being able to
define binary sorts.

SQL collations
These collations are defined by SQL Server for legacy reasons. You do not have full options to configure these sorts.

Generally, you should try to use the Windows collations whenever you can. The following illustration (Figure 9) presents a simple
example of how sorting rules can change. In this example the pubs database is used. Whether or not Y comes between I and J, or
between X and Z, depends on whether or not a Lithuanian collation is used, which clearly affects the way items in the query are
ordered.

Figure 9. Example of collations' effect on sorting

The rules of precedence for collations

In SQL Server 2000, you can specify a collation at the server, in the database, in the column, and in an expression. How do these
interact?

The interaction works with some straightforward rules that may seem confusing at first, but are needed. The following table
shows an interaction in which A and B act as the two different parts of the comparison.

 Explicit B Implicit B Default No Collation
Explicit A Run-time Error Explicit A Explicit A Explicit A
Implicit A Explicit B No Collation Implicit A No Collation

Default Explicit B Implicit B Default No Collation
No Collation Explicit B No Collation No Collation No Collation

The terms in this table are defined below.

Explicit A/Explicit B
A collation is explicitly defined for a given expression.

Implicit A/Implicit B
A collation has been defined at the column level.

Default
The database-level collation is being used.

No Collation
There is a conflict between the two operators; the expression will be handled with no collation.

As you can see, the only instances that SQL Server cannot handle an expression is when you explicitly define two different,
conflicting collations, or when you try to compare two items and no common ground for the comparison can be found. These are
not really blocking limitations; they are understandable rules. SQL Server simply needs you to provide some basis for
comparison!

For example, consider the following Transact-SQL statement for creating a table:

CREATE TABLE TestTab (
 id int,
 GreekCol nvarchar(10) COLLATE greek_ci_as,
 LatinCol nvarchar(10) COLLATE latin1_general_cs_as
)
INSERT TestTab VALUES (1, N'A', N'a')
GO

This statement creates a table with one column using a case-insensitive, accent sensitive Greek collation and the other column
using a case-sensitive, accent sensitive General Latin1 collation.

You could attempt to use a query to explicitly compare the two:

SELECT *
FROM TestTab
WHERE GreekCol = LatinCol

However, this returns an error:

Msg 446, Level 16, State 9, Server V-MICHKA3, Line 1
Cannot resolve collation conflict for equal to operation.

This occurs because the server cannot compare the two segments of text with different collations. If, however, you use the
COLLATE keyword to explicitly create an expression that allows them to be compatible, the query will work like this:

SELECT *
FROM TestTab
WHERE GreekCol = LatinCol COLLATE greek_ci_as

You will also want to note that although LatinCol usually has a case-sensitive collation, the case-insensitive collation of the
expression overrides this and allows the uppercase and lowercase 'A' to be treated as equal.

Limitations of the COLLATE Keyword

The COLLATE keyword and all of its related features are pretty incredible and this author believes they are without compare
among contemporary enterprise database products. There are some limitations, however, which I've listed below. Note these
limitations all have workarounds. The limitations are described here to help you understand what you can do directly and what
requires a little extra work.

Returning less than a full list of collations

The fn_helpcollations function (see the illustration in Collations specified at the column level earlier in this article) returns a full list
of collations. However, as shown by the dialog box presented in Collations at the database level earlier in this article, SQL Server
clearly can list one locale (such as Albanian) and provide the rest of the flags as options, returning the full string in the end. If you
want to provide a user interface for this functionality, you must do a little extra work yourself.

Issues with defining collation at the column level

How often would you have a database that needs one sort order (for example, Latin1_General) and a column that needs a
different one (for example Greek)? Sometimes, this may be crucial, but in other cases if the data in your database does not use a
single collation, then it is probably multilingual data that may need to be sorted according to more than one collation. Being able
to define multiple collations, each of which can be indexed, allows you to access the Greek data by specifying the Greek collation,
and to have this query be an indexed search.

That last clause "and to have this query be an indexed search" is the crux of the matter. In the example provided earlier, using a
COLLATE expression in the ORDER BY clause of a query gives you the functionality; however, this will not be an indexed ordering,
so it will be slower for large datasets. As it stands, column-level collation makes sense only if you do not have monolingual data in
a column, or if you denormalize your database to store different languages in different columns.

LCIDs and collations

Windows uses the locale ID (LCID) to define sorts. If you are doing work to format your results, you will probably already have the
LCID on hand (or you can use the default LCID by specifying 1024 or using Microsoft Visual Basic® formatting functions to do
your work). In fact, if you are doing this work in a Web-based ASP application, you can use the SetLocale function in Microsoft
Visual Basic Scripting Edition (VBScript) to change the formatting to use the date/time, number, and currency formatting
preferences of any locale. Unfortunately, there is no way to map the two: You can get an LCID from a collation, but you cannot get
a collation from an LCID due to many to 1 mapping from LCID to collation.

Why is this inconvenient? Well, imagine a case where you have a multilingual Web site, with people visiting from different
countries and examining product information. You may already be mapping their browsers' HTTP_ACCEPT_LANGUAGE variables
to LCIDs for formatting date and currency values using the Session.LCID property, and you decide that sorting using their locale
is a sensible option for the sake of usability.

To help build your own mapping function to work around this issue, see the conversion table in the topic "Windows Collation
Designators," in SQL Server Books Online for SQL Server 2000.

ISO strings and collations

You can obtain the HTTP_ACCEPT_LANGUAGE variable in VBScript with a script such as:

Dim stLang

stLang = Request.ServerVariables("HTTP_ACCEPT_LANGUAGE")

Recognizing that this value is the only value many Web developers will have when it comes to locale information, the VBScript
SetLocale function was designed to not only take LCID values but to accept this value directly. This means you do not have to go
through the intermediate step of mapping the value to an LCID. Because SQL Server2000 does not accept a string such as "en-us"
(English-United States) and properly map that to a Latin1_General collation, or "vi" (Vietnamese) and map that to a Vietnamese
collation, you have to map all of them yourself.

How are custom collations defined?

One commonly asked question that many developers have after seeing the myriad of collation options is how can they define
their own. The answer is they cannot. Unless a collation is added to Windows 2000, it cannot be added to SQL Server 2000. That's
because a collation is literally designed to define the method for sorting every defined character in the Unicode standard, and
there is no user interface designed to allow for creating such a thing.

Note All the new SQL Server collations are derived from information in Windows, which is why they are referred
to as Windows Collations.

Communication Between Server and Client (Code Page and Collation Issues)
In a very small number of cases, everything you do with a SQL Server will happen on the same computer on which the server
resides and only SQL Server tools such as SQL Query Analyzer or SQL Server Enterprise Manager will be used. In most cases,
however, the server will be interacting with other servers or clients, and might be using one or more data access standards. You
will want to be aware of how such issues are handled by SQL Server 2000. In this context, anyone who talks to SQL Server is a
client, and there are basically two types of clients:

Unicode clients: OLE DB, and ODBC versions 3.7 and later
Non-Unicode clients: ODBC version 3.6 and earlier, and DB-Library

One important issue that comes into play with non-Unicode data is the way that the data is translated between code pages or to
and from Unicode when ODBC is used. There are two possible settings of the SQL_COPT_SS_TRANSLATE attribute when sent to

SQLSetConnectAttr:

SQL_XL_OFF

The driver does not translate characters from one code page to another in character data exchanged between the client and
the server.

SQL_XL_ON

The driver translates characters from one code page to another in character data exchanged between the client and the
server. The driver automatically configures the character translation, determining the code page installed on the server and
that in use by the client.

By default, SQL_XL_ON is the attribute that is used. You can also set it using the SQL-DMO TranslateChar method off the
SQLServer object. Usually, this default provides the desired behavior (which is to turn auto_translate on) any time you are dealing
with non-Unicode data.

The possible scenarios of client and server connections, with some of their issues, are presented in the topics that follow.

Unicode Server and Client

This is the ideal type of configuration. By keeping data in Unicode throughout the process, you can guarantee the best
performance and protection from corruption of retrieved data. This is the case with ADO and OLE DB.

Unicode Server and One or More Non-Unicode Clients

In this type of configuration, you may not have any problems storing data, but there is obviously a serious limitation when it
comes to bringing the data to the client and using it. The client code page must be used to convert the Unicode data at some
point.

An example of this at the data layer is when you are connecting to a SQL Server 2000 database from a computer that is using DB-
Library. DB-Library is a Call Level Interface that allows C applications to access SQL Server. DB-Library has not been upgraded
significantly since SQL Server 6.5, and for our purposes this explicitly spells out the limitations that any client using DB-Library
will face. Data can be based on only one code page, the default OEM code page for the system. You can also choose whether
locale information will be based on the locale settings of the client system or not. As shown in the following illustration (Figure
10), in the DB-Library Options tab of the SQL Server Client Network Utility, you can choose between two options for how DB-
Library converts information. Both of these options are selected by default.

Figure 10. Default DB-Library Options

Because you cannot handle data on other code pages, the only time DB-Library really makes sense as a data layer is in a legacy
system that only needs to deal with a subset of data from SQL Server. Although it is clearly technology that is only there so
developers already using it are not forced to rewrite their applications, it may be worth considering such a rewrite if you need to
support multilingual data.

Another case of a non-Unicode client is programs that are not Unicode enabled, such as Microsoft Access 97. While an Access
database can be linked to a SQL Server 2000 database, there are some limitations you should be aware of. If you connect to a
database that, for example, has Japanese table names from a US English computer, you may see a dialog box in which the table
names have been converted to question marks. The following illustration (Figure 11) displays an example of such a dialog box.

Figure 11. Illustration of table names converted to question marks in Access 97

The cause of this problem is easy to understand; Access 97 is using a version of ODBC that is earlier than 3.7, and, thus, the data is
being converted from Unicode to ANSI using the default system code page. Even if you install a later version of ODBC, Jet 3.5 in
Access 97 will do the same conversion. Because Japanese characters are not on code page 1252 of the US English computer, they
are replaced by question marks.

It is not possible to connect to these tables; connection attempts will result in the error message displayed in Figure 12.

Figure 12. Microsoft Access error message

This too, is easy to understand. Once data has been converted to the wrong code page and replaced by question marks, there is
no way for it to ever be converted back. This causes Jet and ODBC to literally try to connect to a table named dbo.????, which will
obviously fail because it does not exist. This will occur with any data not in that code page.

A similar problem will occur in data in the tables themselves. For example, in a table that contains Korean data, you will see the
data presented in a non-Unicode client (such as Access) display as question marks. This is illustrated below in Figure 13.

Figure 13. Example of questions marks in non-Unicode client database (click to enlarge)

In all three of these clients (DB-Library, ODBC, and Jet 3.5), a component that simply does not understand Unicode, except for how
to convert it to the default system code page, will not be able to handle this type of multilingual data. Such a client will be limited
to using data that is containable on its default system code page.

Non-Unicode Server and Unicode Client

This is not an ideal configuration for multilingual data, because you will not be able to keep such data on the server. At the very
least, however, you can be sure the data will show up properly. This configuration has all the limitations of the previous case,
without the risk of corrupting received data due to invalid conversions. An example is when a SQL Server 2000 database defines a
linked server to a SQL Server 6.5 database. All information that is received from the server running SQL Server 6.5 will be valid,
but do not try to insert any off code page data!

Non-Unicode Server and Client

This is the most limiting configuration, because you are basically restricted to a single code page at all times.

Conversion of Multilingual Data from Earlier Versions of SQL Server

Not all users could wait for the Unicode features included in SQL Server 7.0 and SQL Server 2000 to handle their multilingual
data. As a result, some users have created custom encoding schemes to store such data. If you were thinking ahead in such a way,
then you will need to use the bulk copy utility (bcp) to save the data as binary (which means no conversion), and then bulk copy
back in using the appropriate code page with the -C command line parameter. For more information about the bcp utility, see
Using the bcp Utility with Multilingual Data later in this article.

Using the Access 2000 New ADP Format

Microsoft Access 2000 adds a new file format option that is not a Jet database, but rather an Access Data Project (ADP). These files
can act directly as a front end to SQL Server.

The capabilities of ADPs are beyond the scope of this article, but two important issues to point out are:

Access 2000 does not support SQL Server 2000 unless the SQL Server 2000 client tools are installed.
In all of the entry points to SQL Server data within Access (forms, data access pages, table datasheet view, ADO), there is one
layer that sits between Access and SQL Server: COM. This can affect the input of date/time values, numbers, and currency
values, because the regional settings of the client (in this case, the computer on which the ADP is sitting) are used to
interpret the meaning of the data. This is important to keep in mind when you are using Access, because SQL Server's rules
are less restrictive in some cases. For more information, see Dealing with COM's Locale Interference later in this article.

Multilingual Data In the User Interface
Although SQL Server is first and foremost a server, it has many administration and management tools. These tools have been
updated in SQL Server 2000 to support multilingual data as needed.

General UI Changes (Unicode Support)

SQL Server Enterprise Manager does a fairly good job of handling table names that are on the current default code page or server
code page. It can also take advantage of some of the font linking technologies in Windows to "borrow" characters from other
fonts when needed, as shown in the following illustration (Figure 14).

Figure 14. Font linking technology example

As shown, font linking cannot do 100 percent of the job. There are many languages (such as Armenian, Sylfaen, Georgian, and
Hindi) about which Windows has no advanced font linking information. Also, when a language uses characters that are not as
commonly used within a script (such as Azeri – Cyrillic), most of the string will be displayed, but a few characters might not be.

There are three interesting things to note:

Any time the name is not supported within the font and font linking cannot be done, you will not see characters corrupted;
instead, you will see the boxes shown above, which indicates there is a character that could not be displayed.
Because the SQL Server 2000 client tools do not use the Uniscribe technology for rendering complex scripts, unless you are
using Windows 2000, the bidirectional languages (such as Hebrew, Yiddish, Arabic, and Farsi shown in the previous
illustration) will have their characters displayed backwards. On Windows 2000 and BIDI-enabled platforms, however, these
characters will display properly. Other complex script rendering issues such as Thai word breaking can see the same
limitations (although not on Windows 2000).

The "base" font used by SQL Server Enterprise Manager is the one defined in the desktop display settings of the computer
and cannot be overridden.

Multilingual Information in the Grid and SQL Panes of SQL Query Analyzer

In SQL Server Enterprise Manager, you cannot make font changes; however, in SQL Query Analyzer, in the Fonts tab in the
Options dialog box (Figure 15), you can explicitly change the font for many parts of the user interface.

Figure 15. SQL Server 2000 Query Analyzer font dialog box (click to enlarge)

The reason for this may not be apparent at first, because font linking seems to allow most strings to be displayed. However, there
is more to the proper display of a string than simply finding a font that can represent the characters. Often, the font choice can
make a difference—therefore, this functionality can be important for properly representing multilingual data. In cases in which
font linking does not seem to work, this feature will enable you to see the string instead of boxes.

Format Issues in the Query Designer

In the Query Designer, for the most part, you can enter information in the grid pane that matches the default regional settings of
the computer, or you can explicitly use the CONVERT function to cause a string in an arbitrary format to be handled.

There are a few design limitations with regard to this method of using the regional settings that you should be aware of:

Long data formats are not supported.
Currency symbols should not be entered in the grid pane, although the US dollar sign ($) can optionally be used. Either way,
the currency symbol retrieved from the regional settings will be used in the Results pane.
Unary minus always appears on the left side without parentheses, regardless of the regional settings. Thus, -1 should be
represented as -1 instead of 1- or (1) or any other valid variation that may be specified in the Regional Options dialog box.

These limitations are necessary to allow a certain amount of worldwide support in the Query Designer, and are not actually
something that will block most efforts to use locale-specific data.

Note that any information entered in the Grid pane will be translated to a locale-independent format in the SQL pane, thus
"03.09.65" on a Standard German computer will be translated to { ts ' 1965-09-03 00:00:00 }. All data entered directly into the
SQL pane should be in this format or, otherwise, include an explicit CONVERT call.

Sort Order

The sorting of data displayed in the Results pane is not influenced by the Regional Settings; instead, the collation rules (presented
in Collation in SQL Server 2000 earlier in this article) control how an ORDER BY clause is interpreted.

Double-Byte (DBCS) Characters

You can enter DBCS characters for literals and database object names, aliases, parameter names, and parameter marker
characters. However, you cannot use DBCS characters for SQL language elements such as function names or SQL keywords. Thus,
you should use the keyword SELECT instead of the Japanese Fullwidth

Getting to SQL Server Data (Data Access Methods)
How you access data in SQL Server can be crucial. There are many different data access methods, and the rules for how each
handles multilingual text can be very important. The sections that follow describe several of these data access methods.

OLE DB

OLE DB is the central component of the Microsoft Data Access Components (MDAC), which is MDAC version 2.1 in SQL Server 7.0
and MDAC version 2.6 in SQL Server 2000. OLE DB is based on COM, and thus all the strings are Unicode BSTRs (UTF-16 on
Windows 2000, and UCS-2 on all other operating systems). For SQL Server, the provider is the Microsoft OLE DB Provider for
SQL Server (SQLOLEDB). Data is converted to Unicode as needed, using the collation of the actual data. The most optimized case
would require you to keep the data as Unicode throughout the process.

ADO

Microsoft ActiveX® Data Objects is a Visual Basic and scripting friendly interface that acts as a wrapper around OLE DB. It is also a
COM component and thus has the same support for Unicode. There is no way to decouple ADO and OLE DB in a way that would
ever allow conversions to happen between the two, so when problems do exist, they will always be at the OLE DB layer.

ODBC

Whether ODBC is a Unicode layer depends on the version of ODBC being used. For the rules that apply to the use of ODBC, see
Communication Between Server and Client earlier in this article.

DB-Library

There is no later Unicode version of DB-Library. For more information, see Communication Between Server and Client earlier in
this article.

SQL-DMO

SQL Distributed Management Objects (SQL-DMO) is a COM layer that encapsulates SQL Server 2000 database and replication
management. Because it is COM, the same rules that applied to ADO and OLE DB apply to SQL-DMO. SQL-DMO also has
properties that can be used for features mentioned earlier, such as the Collation property on the SQLServer2, Database2,
Column2, SystemDateType2, and UserDefinedDataType2 objects.

Multilingual Transact-SQL
When you send an SQL statement to the server that contains multilingual data, the two primary issues that will affect whether the
data makes it to the server properly are the:

Encoding of the SQL statement itself
Encoding of string literals inside the statement

Encoding of String Literals in an SQL Statement

After the SQL string itself is encoded, a technique for handling string literals must also be employed. Essentially, the only choices
here are a string in the computer's default code page or a Unicode string: the latter is designated by placing an "n" (for National)
prefix in front of the string, as in:

This string (the Hindi word for the Hindi language) will be converted to "??????" if the "n" prefix is not placed there. This will also
happen with data that does have a code page, but does not match the system defaults.

Warning: Remember that the use of the "n" prefix to represent Unicode data in both string literals and data types
(nchar, nvarchar, and ntext) is specific to SQL Server. The ANSI-92 SQL specification does define the National
character data types but does not specify them as having to be Unicode. The ANSI-99 SQL specification (which was
not complete when SQL Server 2000 was released and will likely be discussed and modified from its present status in
regards to Unicode support) does discuss using a set of Unicode types with a "u" prefix (for example, utext, uchar, and
uvarchar). These data types are not available in SQL Server 2000.This is not true for some other server database
products. For more information, see Interacting with Other Database Products later in this article.

SQL String Encoding

If the SQL string uses Unicode (as would any SQL string using ADO, for example), you can encode any type of character. If the
string does not use Unicode (such as a string in a non-Unicode batch file or .SQL file), the conversion will have to be made at
some point, and usually this will be done with the default system code page of the computer on which the conversion is done.
This can be very problematic, if not planned properly, in a multilingual application.

If a string literal is not in Unicode (marked with the n prefix), it will be converted to Unicode using the database's default code
page. With multilingual data, it is best to use a Unicode data type and Unicode string literals.

String-Handling Functions

Transact-SQL has built-in string-handling functions that have important multilingual considerations:

ASCII
Returns the code point of the first character in a string using the current default system code page. If the character is not on that
code page, a 63 is returned (the code point for a question mark). This is similar to the Asc() function in Visual Basic and VBScript.

CHAR
Returns a character given the ANSI code point; essentially the inverse operation of the ASCII function, it is similar to the Chr()
function in Visual Basic and VBScript. If the code point is not in the 0-255 range, it returns Null.

NCHAR
The Unicode equivalent of the CHAR function. It returns a character given its Unicode code point. It is similar to the ChrW()

function in Visual Basic and VBScript.
UNICODE

The Unicode equivalent to the ASCII function, and returns the Unicode code point of the first character in a string. It is similar to
the AscW() function in Visual Basic and VBScript.

Note that the NCHAR function was used in an example earlier in this article (see Date/Time Types: datetime, smalldatetime) to add
the RLM (right to left mark) in front of a Hijri date to allow it to be formatted in the expected manner.

Locale Support In SQL Server 2000
SQL Server 2000 includes some specific locale support for 33 different languages. This is not the full locale support that is
available in the NLS database in Windows, but it does provide many basic functions. The following list displays the supported
languages (in both English and the native language).

List of languages supported in SQL Server 2000 and Windows 2000

English Translation Native Language
Arabic Arabic
British English British
Brazilian Português - Brasil
Bulgarian
Simplified Chinese
Traditional Chinese
Croatian hrvatski
Czech
Danish Dansk
Dutch Nederlands
English us_english
Estonian eesti
Finnish Suomi
French Français
German Deutsch
Greek Ελλζν͖à
Hungarian magyar
Italian Italiano
Japanese
Korean
Latvian Latviešu
Lithuanian lietuvių
Norwegian Norsk
Polish polski
Portuguese Português
Romanian Română
Slovak slovenĉina
Slovenian slovenski
Spanish Español
Swedish Svenska
Thai
Turkish Tüurkçe
Russian

You can enumerate these languages and information about them using the sp_helplanguage stored procedure. Note that
although every version of SQL Server will store full information about many of the items listed below, you will not get translated
system messages for all locales unless you have installed a localized version of the product.

The information on languages is stored in the syslanguages table, except for messages, which are stored in sysmessages.

Language Settings

Every SQL Server must have a default language that it uses to handle items such as date formats and messages. This information
is stored for each login to the server that is created. Although this is initially set during setup, it can be overridden at the server
level in the Server Settings tab in the SQL Server Properties dialog box, as shown in Figure 16.

Figure 16. SQL Server language settings dialog box (click to enlarge)

You can also use the sp_configure stored procedure, for example, in a call to change the default language to Italian:

sp_configure "language", 6

The following table shows the language IDs (langids) that are available (and can be queried using a query from the syslanguages
table).

langid Language name
0 English
1 German
2 French
3 Japanese
4 Danish
5 Spanish
6 Italian
7 Dutch
8 Norwegian
9 Portuguese
10 Finnish
11 Swedish
12 Czech
13 Hungarian
14 Polish
15 Romanian
16 Croatian
17 Slovak
18 Slovenian
19 Greek
20 Bulgarian
21 Russian
22 Turkish
23 British English
24 Estonian
25 Latvian
26 Lithuanian
27 Brazilian
28 Traditional Chinese
29 Korean
30 Simplified Chinese
31 Arabic
32 Thai

The default language setting can be overridden on a per-login basis using the sp_addlogin stored procedure or the Login
Properties dialog box shown in Figure 17.

Figure 17. Login Properties dialog box

Finally, the language can be overridden at the session level, using the SET LANGUAGE statement, as shown in the following
examples:

You should use the n prefix in front of strings to make sure they are passed as Unicode. This can help avoid the unintended
problems with conversions using the default system code page of the server.

Individual data access methods provide their own methods of specifying the language setting outside of a SET LANGUAGE call:

ADO supports a provider-specific language keyword in the ConnectionString.
OLE DB can set the provider-specific SSPROP_INIT_CURRENTLANGUAGE property.
ODBC can specify a language in the data source definition or in a LANGUAGE keyword in the connect string.
DB-Library can use dblogin to allocate a LOGINREC, and then DBSETNATLANG to specify a language setting.

The language settings (whether specified at the server, login, or session level) affect these items:

Messages
Date/Time
First Day of Week
Currency and currency symbols
Month/day names and abbreviated month names

Messages

SQL Server 2000 supports having multiple, language-specific copies of system error strings and messages. These messages are
stored in the sysmessages table of the master database. When you install a localized version of SQL Server 2000 these system
messages are translated for that language version you are installing. You also get by default the US English set of these messages.
You can use Set Language to specify the language of the server session. By default, it is the language of the installed version.
When SQL Server sends a message to a connection, it uses the localized message if the language ID Set matches one of the
language IDs found in the msglangid column of the sysmessages table. These IDs are in decimal format and represent the locale
ID (LCID) of the message. If there is no message in the sysmessages table with the same LCID, the US English messages are sent.

You can add a language-specific user-defined message to the sysmessages table by using @lang parameter of the
sp_addmessage system stored procedure. (Error numbers should be greater then 50,000.) The language is @lang—the Named
Alias that maps to the LCID —for the message.

Because multiple language-specific, system-error strings and messages can be installed on the server, the value of language
specifies the language in which the messages should be written to the sysmessages table. When language is omitted, the
language is the default language of the server session. The supported language definitions are stored in the
master.dbo.syslanguages. If you must install multiple language versions of sysmessages, contact your Product Support
Services (PSS) representative.

Date/time

The basic change that can be made is whether the short date format is mdy, dmy, or ymd. You can override this at the connection
level by using the SET DATEFORMAT setting, but each language has an appropriate default. The default can be retrieved by using
the sp_helplanguage stored procedure. The value is stored in the dateformat column.

First day of week

The first day of the week varies among different locales; among the 33 languages in the syslanguages table, it varies between 1
(Monday) and 7 (Sunday). This information can be retrieved by using the sp_helplanguage stored procedure. The value is stored
in the datefirst column.

Currency and currency symbols

Any column of money or smallmoney type can include a currency symbol. The symbol does not have to be the one specified in
the Regional Options dialog box, and can be any of the characters shown in the following table.

Currency symbol Currency name Unicode (hexadecimal) value
$ Dollar sign (USA) 0024

Pound sign (UK) 00A3
(Universal) Currency sign 00A4
Yen sign 00A5
Bengali Rupee mark 09F2
Bengali Rupee sign 09F3
Thai Baht symbol 03EF
Colon sign 20A1

Cruzeiro sign 20A2
French Franc sign 20A3
Lira sign 20A4
Naira sign 20A6
Peseta sign 20A7
Rupee sign 20A8
Won sign 20A9
New Sheqel sign 20AA
Dong sign 20AB
Euro sign 20AC

You will probably want to note that the SQL Server 2000 Books Online incorrectly lists the Euro sign as having a hexadecimal
value of 20A0; the real value is 20AC. The character represented by 20A0 is , the Euro-Currency (ECU) sign. This is not the Euro
and should not be used as such; attempting to use in a money value will result in an error.

Month/day names and abbreviated month names

The names of the months and days are included in the syslanguages table. They can be retrieved using the sp_helplanguage
stored procedure, using the following columns:

months
A comma-delimited list of month names, January through December.

shortmonths
A comma-delimited list of abbreviated month names, January through December.

days
A comma-delimited list of the days of the week, Monday through Sunday.

Dealing with COM's Locale Interference

Although SQL Server has some very powerful features when it comes to handling date/time and currency values, if you are using
any COM service such as ADO to access the server, you must for its intervention. For example, you can have problems getting
Visual Basic to recognize that a number value prefaced by any of the currency symbols (shown in the preceding table) is a
currency value. You can also have serious problems getting COM to properly use date/time values stored in strings.

To properly deal with this situation, you must understand when your application is converting a string to a date/time or currency
value. Once you know whether it is happening on the client or the server, you can decide which rules apply.

The Access 2000 ADP is an example of such a client (see Using the Access 2000 New ADP Format earlier in this article). Because
Access is working through OLE DB, all operations from Access 2000 will be governed by the COM rules that use the client
computer's regional settings.

Note OLE DB providers such as the Microsoft OLE DB Provider for SQL Server will properly convert a valid COM
date to and from a SQL Server date. It is best to not rely on date formats in strings when you can avoid it, because this
is the type of functionality that can break as you move the client side between different locales.

Data Transformation Services
When dealing with multilingual data, there are some issues in the user interface of the DTS Import/Export Wizard, shown in
Figure 18.

Figure 18. DTS Wizard dialog box (click to enlarge)

The wizard provides an interface for working with heterogeneous data. There are a few dialog boxes for showing the data that are
not as fully Unicode enabled as SQL Server Enterprise Manager and SQL Query Analyzer (see Multilingual Data In the User
Interface earlier in this article). Because of this, you may encounter situations in which the data may not look right in the wizard,
but will transfer properly. The reliability and stability of DTS operations are not affected by these UI limitations! In most cases, you
simply will not be able to see the data because it will be replaced by boxes, as shown in Figure 19.

Figure 19. DTS Wizard illustration (click to enlarge)

This is a Unicode text file with Simplified Chinese data in it. Once imported, the data will be properly handled, whether it is
imported into a Unicode text column or a Simplified Chinese text column.

However, if you have a text file that uses a particular code page that does not match the system default, the wizard does not have
the proper context to read it, as shown in Figure 20. Note that this is not an uncommon limitation. Many programs, including

Notepad and WordPad, do not have the capability to understand files that are not in the expected code page.

Figure 20. Illustration of a file that will not import properly using DTS Wizard (click to enlarge)

This Korean file will not import properly on a U.S. computer, and the wizard does not allow means to specify a code page for the
import process. (That is why the data will neither display nor import properly). As in many other cases, the rules are very clear: If
you want to use multilingual data, you should use Unicode.

There are three rules you can use for encoding information during DTS transformations: you can choose to "use src," "use dest,"
or "use collation."

The "use collation" option is most likely to give you the results you want. It is actually the default in both SQL-DMO and in the DTS
Designer. (It is not the default in the DTS wizard, but it is easy enough to set). The "use collation" option only works when both
source and destination are SQL Server 2000 databases, but it will use the collation information of the respective columns to best
determine how to do the transfer.

The other two transformation options are not quite so flexible and require you to use either the source or destination code pages
of the server to determine how the transform should be done. Unfortunately, these settings are quite literal in their adherence to
the code page settings of the server. Although they will respect the collation of a particular multiple-instance server, they will not
support a database collation that is different from the server.

The other feature that exists in DTS Transformation operations is a very powerful ability to convert strings and other non-
datetime data, using the NLS information of the instance of SQL Server. For formats that have date/time data stored as strings,
this crucial functionality can allow the import to proceed as the user would expect it to. This can be very important because not all
formats have the large number of data formats SQL Server 2000 does, and DTS is the important bridge between these limited
formats and the server's capabilities.

Other problems with DTS can occur when moving data between non-Unicode columns with a SQL Server 7.0 source and a SQL
Server 2000 destination, when the collation of the SQL Server 2000 column is not one that is easily represented in SQL Server
7.0. (Conversely, a SQL Server 2000 source and SQL Server 7.0 destination can also cause the same problem). The default of
using the server code page on the SQL Server 7.0 end is what will be used in these cases. Once again, using Unicode data types
prevents such problems from occurring.

When you perform a copy operation with DTS rather than a transform, there are three possibilities:

OLE DB provider column

This choice just copies the raw data, which obviously will have problems if the two columns do not contain data on the same
code pages. It is a very fast option when the source and destination use the same code page, but the copy will not be
effective for copying between columns with data that uses two different code pages.

NCHAR to CHAR

DTS will automatically use the code page of the server to do conversions from Unicode.

CHAR to NCHAR

DTS will automatically use the code page of the source server to do conversions to Unicode.

Summary of DTS Conversion Issues

To start, Unicode source and target will always work. This fact cannot be stressed strongly enough. The issues occur only with
non-Unicode data in specific circumstances, which I will summarize here.

When you are creating a destination table:

Translation fails when the source is SQL Server 7.0 and the SQL Server 2000 destination server code page does not match
the destination database code page.
Translation fails when the source is SQL Server 2000, the destination is SQL Server 7.0, and the source column collation
does not match the source server code page.
When the source and destination is SQL Server 2000, translation fails if Use Collation is not selected; otherwise, no data is
lost.

When the destination table already exists:

Translation fails when the source is SQL Server 7.0 and the SQL Server 2000 destination server code page does not match
the destination column code page.
Translation fails when the source is SQL Server 2000, the destination is SQL Server 7.0, and the source column collation

does not match the source server code page.
When the source and destination are SQL Server 2000, translation succeeds if either of these exist:

The source and destination column code pages match and Use Collation is selected.
The destination column code page matches destination server code page and Use Collation is not selected.

If Use Collation is true, data transfer is raw. If false, data is cast into the source server code page and then translated
into the destination column code page.

For the copy column transform:

char to char is a raw transform. Translation fails if the source and destination column code pages do not match.
char to Unicode casts source data into the computer code page and translates to Unicode, but fails if the source data does
not appear in that code page.
Unicode to char casts translates data into the computer code page, regardless of destination code page. As such it will fail if
the destination column code page does not match the computer's code page.

As in the other cases, Unicode to Unicode will work properly with no conversions that could fail or corrupt data, and is preferred
for use with multilingual data.

Using the bcp Utility with Multilingual Data
When you want to import data from or export data to a particular code page, you can still use the bcp utility, which supports the
flags listed in the table below for lossless conversion of data.

Flag Meaning Explanation and notes
-C
xxx

Code page specifier xxx can specify a code page, ANSI, OEM, or RAW (for direct copy with no conversion—the fastest
option).

-N Use Unicode native
format

Uses native (database) data types for all noncharacter data, and Unicode character format for all
character data.

-w Use Unicode character
format Uses the Unicode character data format for all columns.

You can also use format files and specify collations at the column level. (If you do not specify -C, -N, or -w, bcp will actually query
for each column, the collation, and code page information prior to performing the import/export). You will then be prompted to
save a format file, as shown in the following example (refers to the authors table in the pubs database):

8.0
9
1 SQLCHAR 0 11 ""1 au_id Latin1_General_CI_AI
2 SQLCHAR 0 40 "" 2 au_lname Latin1_General_CI_AI
3 SQLCHAR 0 20 "" 3 au_fname Latin1_General_CI_AI
4 SQLCHAR 0 12 "" 4 phone Latin1_General_CI_AI
5 SQLCHAR 0 40 "" 5 address Latin1_General_CI_AI
6 SQLCHAR 0 20 "" 6 city Latin1_General_CI_AI
7 SQLCHAR 0 2 "" 7 state Latin1_General_CI_AI
8 SQLCHAR 0 5 "" 8 zip Latin1_General_CI_AI
9 SQLBIT 0 1 "" 9 contract ""

The allowable data types are displayed in the following table. The collation is the default specified for the column, which may have
been inherited from the database or the server.

Type Full name
c Char
T Text
i Int
s Smallint
t Tinyint
f Float
m Money
b Bit
d Datetime
x Binary

I Image
D Smalldatetime
r Real
M Smallmoney
n Numeric
e Decimal
w Nchar
W Ntext
u Uniqueidentifier

Note that the varchar and nvarchar data types are not listed in the table. For the bcp utility, the char and nchar types should be
used in their place, respectively.

Finally, bcp supports the -R flag for "Regional Enable." This flag has the same effect as the ODBC "use regional settings" option
(see Communication Between Server and Client earlier in this article) and can relate to the way the date/time, number, and
currency data being stored in nontext fields is interpreted.

The Microsoft Search Service and FTS
Many Microsoft products use the Microsoft Search service; the service itself is used in both SQL Server 2000 and Exchange 2000.
The engine is the same one used in Index Server, and many other products will likely include its capabilities in the future. Its most
important capability is its ability to provide stemming (verb conjugation) and word breaking functionality that are language-
specific; for example, allowing you to properly index words such as l'unique in French. The languages supported by Microsoft
Search service are:

Dutch
English (UK)
English (US)
French
German
Italian
Japanese
Korean
Simplified Chinese
Spanish (Spain)
Swedish
Traditional Chinese
Thai

In addition to these language-specific stemmers/word breakers, a neutral one is also provided for use in other languages. There
are specific cases where you may be more pleased with the results of using a specific language rather than neutral (for example
you may wish to use the Spanish language for Catalan, or Dutch for Afrikaans), but the official recommendation for such cases is
to use the neutral choice. Therefore, testing it out on your data rather than just assuming that "similar" languages will provide
good results is recommended. The language support is very sophisticated, and this can potentially be a bad thing if you try to
provide data that is not specifically in that language.

The actual implementation details of the various providers that use the Microsoft Search service and related components are, for
the most part, based on your need: If you are indexing data in an Exchange store, the Exchange implementation is preferred. But if
you are using the file system, Index Server is preferred. Obviously, if you are using SQL Server 2000, then Full-Text Search in SQL
Server 2000 is the best choice.

Microsoft Search service can allow clients to "tag" areas of text with a particular language to allow for multilingual indexing on a
data stored in an IMAGE column. You can also specify a language to use on queries with the @language parameter of the
sp_fulltext_column stored procedure.

You can also specify a default language to use for Full-Text Search by using the default full-text language option to the
sp_configure stored procedure, which you can call as follows:

sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO

sp_configure 'default full-text language', 1041
GO
RECONFIGURE
GO

If you are using the default language, you do not need to specify a language in the call to sp_fulltext_column.

Users commonly ask how they can add support for their own languages in Full-Text Search. Unfortunately, there is currently no
way to do this.

Surrogate pairs (see What are Surrogates? earlier in this article) are not supported in FTS or Microsoft Search service. In addition,
you cannot reliably perform searches based on these values, or, for that matter, on any characters that SQL Server 2000 considers
to be undefined.

Dealing with OLAP/Hierarchical Data
In general, all the rules about multilingual text in Unicode fields that apply to relational use of SQL Server 2000 apply equally to
the Online Analytical Processing Capabilities (OLAP) included in the Analysis Services component of SQL Server 2000. Analysis
Services can handle any character that SQL Server 2000 itself can support. There are a few cases in the user interface for OLAP
and its wizards where such data will be displayed as question marks if it is not on the client system's default code page. However,
this does not affect the actual data and is purely a display issue in the UI.

One feature that is not supported in SQL Server 2000 for OLAP is the ability to have different collations in different parts of
hierarchical data structures that make up a Data Warehouse. Although not generally useful in the analysis of data, there are cases
such as partitioning of data alphabetically (for analysis) that can be impacted. In such cases, you need to determine another way
to partition the data that defines the ordering and partitions explicitly, and does not assume letter order. This would also be very
useful in the display of hierarchical data. If you need such functionality, you will have to do sorting on the subset of the data
returned from the OLAP source.

Using XML Support In SQL Server 2000 with Multilingual Data
The rich XML support in SQL Server 2000 provides the ability to support multilingual data, because XML itself has a default
encoding of Unicode using UTF-8, and in many cases SQL Server will use UCS-2 encoding in the XML it creates. Here are several
ways you can specify an encoding in XML:

If you are formatting data as XML in an ADO Stream object and then persisting the stream, you can specify an output
encoding and the proper encoding will be marked in the XML-formatted data.
You can specify an output encoding in a URL.
XML templates can specify an encoding.

Even if you do not use any of these methods, Unicode is supported by default and will work properly.

One important issue to keep in mind is that the characters allowed in names in XML are a lot more restricted than those allowed
as identifiers in SQL Server. To fully support SQL Server identifiers, the identifier characters not supported in XML—they are
replaced by a special form, _x0000_, where 0000 is replaced by the Unicode code point number. SQL Server will properly
recognize these characters and return them correctly. Note that Updategrams interpret the encoding either way. Using them is
only necessary, however, if you do not have a mapping schema.

For example, the following Transact-SQL statement can be used to create an XML file in UCS-2 encoding:

USE Northwind
GO

SELECT TOP 1 * FROM "Order Details" FOR XML AUTO

DECLARE @h int

EXEC sp_xml_preparedocument @h output,
 N'<?xml version="1.0" encoding="ucs-2"?>

<root test_x0020_2="foo"></root>'

SELECT * FROM OPENXML(@h,'/root') WITH("test 2" varchar(200))

EXEC sp_xml_removedocument @h

This bit of script creates an XML document that encodes the Cyrillic string , which happens to be a word for the language name
Ukranian.

Annotated schemas shipped with XPath support in SQL Server 2000. Updategrams are currently in beta release on the Web and
planned for final release to the Web in early 2001. Both features are designed to work well with multilingual text and support
methods for specifying encoding; they also support the syntax mentioned earlier for the use of identifiers.

Interacting with Other Database Products
When working with other database systems, your most important task is simply a matter of determining the code page and
similar rules of that system. The majority of the recommend data access methods on the SQL Server side involve COM, and thus
use Unicode data. Therefore, the main piece of information you need to determine how well an international application will run
between them is how well the other database products support Unicode.

For example, other database products such as Oracle and Sybase SQL Server support Unicode using the UTF-8 encoding. Usually
this will not affect you because the data must be converted to UTF-16 using ADO/OLE DB before you ever see the information.
But you should be aware of the difference if you try to interact with data in such products directly.

Another major issue you must allow for is that products such as Sybase SQL Server do support the National character data types
but do not treat them as Unicode data types. For them, nchar and nvarchar are fields that you could use, for example, to store
Japanese data in an otherwise US English database. When you run queries against another product, it is very important that you
know how information is being handled in the other database so that using commands such as OPENROWSET will properly
handle international text. The use of the National character data types for specifying Unicode text is Microsoft SQL Server specific
in order to properly handle encoding that supports all languages.

Conclusion
Microsoft SQL Server 2000 includes a variety of very powerful international features. By building on SQL Server 7.0, the first truly
multilingual-capable version of SQL Server, SQL Server 2000 has added a compelling set of features that allows the creation of
truly global applications. With the importance of the Internet and the World Wide Web, it is crucial that applications and
databases are able to meet this need—and the increasing needs of e-commerce and global communication require a database
product that can support them. SQL Server 2000 is the database of choice for global organizations.

Acknowledgments
This article would have been impossible without the hard work of many people, and I would be remiss if I did not mention them.

Michael Kung, in his role as a Program Manager for SQL Server with a focus on globalization, provided not only invaluable review
material for many different parts of this article, but also helped point me to the right people for all the questions that came up in
product areas with which I was less familiar. His broad knowledge of many different areas has always been a great resource, even
beyond this article, and I was very happy for his help in this project.

Peter Carlin, a Development Manager whose responsibilities include the SQL Server relational engine, was not only able to find
the time to provide more feedback than any other person I contacted, but he also crafted an e-mail that contained a lot of the
important information regarding Unicode support in SQL Server. This e-mail was actually the direct inspiration for this piece that
exploded into an article almost 25 times the size!

Fernando Caro, a lead international program manager, was not only able to help take me through the OLAP features of SQL
Server, but also helped change the discussion on localized system messages from a curt "sorry, not supported" to the helpful
pointer to the appropriate resources. I am grateful that this article gave me the opportunity to point out the problem, but even
more grateful that Fernando and Peter decided it was important to solve it. It is widely due to people like them who always want
to help users in any (reasonable) way possible that SQL Server is such a great product.

I also would like to thank several program mangers and testers for their assistance. Without their help, many of the features that
are scattered throughout the full SQL Server product would not have had their international features and issues discussed here.
These people include: Michael Rys, Euan Garden, Fadi Fakhouri, and James Howey. I would also like to thank Margaret Li for the
insight she gave me into how the Microsoft Search service that sits underneath SQL Server's Full-Text Search does its work.

Many of the hard working people on the Windows 2000 team were also very helpful, both for providing information on how
basic issues such as collation and locale support are supposed to work and of course for providing the original data on which SQL
Server 7.0 and 2000's collation support is based. I would especially like to thank Julie Bennett, Cathy Wissink, and John McConnell
for being around to answer questions and provide encouragement for getting the word out!

Of course, the full list of people who were involved in the planning, developing, and testing of SQL Server's international and
multilingual features would probably be almost as long as the list of people who worked on the product, because these features
are clearly not an "add-on" but are a core part of SQL Server 2000. Therefore, I would like to thank everyone involved for
producing a great product that is so globally useful!

About the Author

Michael Kaplan is the president and lead developer of Trigeminal Software, Inc., a software development and consulting company
that specializes in the internationalization and localizability of Microsoft Visual Basic, Microsoft SQL Server, Microsoft Access, and
ASP applications. He is the author of the book Internationalization with Visual Basic from Sams Publishing, and his next book,
Internationalization with SQL Server, is due out in the middle of 2001. He has also written many articles and spoken on
international development. His e-mail address is michka@trigeminal.com, and the Web site for Trigeminal Software, Inc. is
http://www.trigeminal.com/.

The information contained in this article represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, this article should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS ARTICLE..

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this article may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this article. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this article
does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, Visual Basic, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Microsoft Reporting Services in Action: Extending Microsoft
SQL Server 2000 Reporting Services with Custom Code

Teodor Lachev

September 2004

Applies To:
 SQL Server 2000 Reporting Services

Summary: This article presents an excerpt from the book, Microsoft Reporting Services in Action, by Teodor Lachev. Learn how to
implement advanced report functionality using custom code. (28 printed pages)

Get the sample code for this article by downloading the Code.zip sample code.

Contents

Extending Microsoft SQL Server 2000 Reporting Services with Custom Code
Writing Embedded Code
Using External Assemblies
Custom Code in Action: Implementing Report Forecasting
Migrating OpenForecast
Summary

Extending Microsoft SQL Server 2000 Reporting Services with Custom Code
Microsoft released Microsoft SQL Server 2000 Reporting Services (Reporting Services) in the beginning of 2004 to provide
developers with a complete reporting platform, which can be easily integrated with all types of applications regardless of the
targeted platform or development language. One of the most prominent features of Reporting Services, which many developers
including myself will appreciate, is its extensible nature. Just about any aspect of Reporting Services can be extended or replaced,
including data, delivery, security, and report rendering features. For example, one way you can extend the capabilities of your
reports is to integrate them with custom .NET code that you or somebody else wrote.

In this article, I will show you how to leverage the Reporting Services unique extensible architecture to supercharge your report
capabilities. First, I will explain how embedded and custom code options work. Next, I will show you how you can leverage custom
code to author an advanced report with sales forecasting features.

I will assume that you have a basic knowledge about Reporting Services and you know how to author reports with expressions. If
you are new to Reporting Services, please visit its official website. The code examples and sample reports discussed in this article
are included with the article source code. The sample reports use as their data source the AdventureWorks2000 database, which
can be installed from the Reporting Services setup program.

Writing Embedded Code
As its name suggests, embedded code gets saved inside the report definition (RDL) file; it is scoped at a report level. You can write
embedded code in Microsoft Visual Basic .NET only. Once the code is ready, you can call it in your report expressions by using the
globally defined Code member. For example, if you have authored an embedded code function called GetValue, you can call it
from your expressions by using the following syntax:

=Code.GetValue()

With the exception of shared methods, your embedded code can include any Visual Basic .NET-compliant code. In fact, if you think
of the embedded code as a private class inside your project, you won't be far away from the truth. You can declare class-level
members and constants, private or public methods, and so on.

You can write embedded code to create reusable utility functions that can be called from several expressions in your report. For
example, consider the Territory Sales Crosstab report shown in Figure 1.

http://www.manning.com/lachev
http://www.manning-sandbox.com/thread.jspa?messageID=32397&
http://www.microsoft.com/sql/reporting

Figure 1. You can use embedded code to implement useful utility functions scoped at a report level.

This report uses an embedded function called GetValue to display "N/A" when data is missing (no report data exists for a given
row-column combination). In addition, GetValue differentiates between missing data and NULL values. When the underlying
value is NULL, the embedded code translates it to zero.

Using the Code Editor

To write custom embedded code, you use the Report Designer Code Editor, which you can find on the Code tab of the Report
Properties dialog, as shown in Figure 2.

Figure 2. Use the Code Editor for writing embedded code. The GetValue function, shown in the Editor, determines
whether a value is missing or NULL.

Granted, the above function can easily be replaced with an Iif-based expression. However, encapsulating the logic in an
embedded function has two advantages. First, it centralizes the logic of the expression in one place instead of using Iif functions
for every field in the report. Second, it makes the report more maintainable because, if you decide to make a logical change to
your function, you do not have to track down and change every Iif function in the report.

The Report Designer saves embedded code under the <Code> element in the report definition file. When doing so, the Report
Designer URL-encodes the text. Be aware of this if you decide to change the Code element directly for some reason.

Handling Missing Values

Once the GetValue function is ready, to differentiate between NULL and missing data in our report, we could base the txtSales
and txtNoOrders data fields of the crosstab reports on the following expressions:

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!Sales.Value)))

and

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!NoOrders.Value)))

respectively.

The CountRows function is one of the several native functions provided by Reporting Services and returns the count of rows
within a specified scope. If no scope is specified, it defaults to the innermost scope, which in our case resolves to the static group
that defines the values in the data cells. Both expressions first check for missing data (no rows) by using CountRows and display
"N/A" if no missing data is found. Otherwise, they call the GetValue embedded function to translate NULL values

I recommend you use embedded code for writing simple report-specific, utility-like functions. When your programming logic gets
more involved, consider moving your code to external assemblies, as we will discuss next.

Using External Assemblies
The second way of extending reports programmatically is by using pre-packaged logic located in external .NET assemblies that
can be written in any .NET-supported language. The ability to integrate reports with custom code in external assemblies increases
your programming options dramatically. For example, by using custom code, you can:

Leverage the rich feature set of the .NET framework—For example, let's say you need a collection to store crosstab data of a
matrix region in order to perform some calculations. You can "borrow" any of the collection classes that come with .NET,
such as Array, ArrayList, Hashtable, and so on.
Integrate your reports with custom .NET assemblies, written by you or third-party vendors. For example, to add forecasting
features to the Sales by Product Category report in section 2, I leveraged the open source OpenForecast package.
Write code a whole lot easier by leveraging the powerful Visual Studio .NET IDE instead of the primitive Code Editor.

Referencing External Assemblies

To use types located in an external assembly, you have to first let the Report Designer know about it by using the References tab
in the Report Properties dialog, as shown in Figure 3.

Figure 3. Use the Report Properties dialog to reference an external assembly.

Assuming that my report needs to use the custom AWC.RS.Library assembly (included with the article source code), I must first
reference it using the References tab. While this tab allows you to browse and reference an assembly from an arbitrary folder,
note that when the report is executed, the .NET Common Language Runtime (CLR) will try to locate the assembly according to
CLR probing rules. In a nutshell, these rules give you two options for deploying the custom assembly:

Deploy the assembly as a private assembly.
Deploy the assembly as a shared assembly in the .NET Global Assembly Cache (GAC). As a prerequisite, you have to strong-
name your assembly. For more information about how to do this, please refer to the .NET documentation.

If you choose the first option, you need to deploy the assembly both to the Report Designer and Report Server, so the reports that
reference the assembly will execute successfully during testing and as managed reports respectively. Assuming that you have

accepted the default installation settings, to deploy the assembly to the Report Designer binary folder, copy the assembly to
C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer. Once you have done this, you can build and render the report
in a preview mode inside Visual Studio .NET.

As a part of deploying the report to the report catalog, make sure you copy the assembly to the Report Server binary folder, which
by default is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin.

Please note that copying the custom assembly to the right location is only half of the deployment story. Depending on what your
code does, you may also need to adjust the code access security policy so the assembly code can execute successfully. If you need
more information about deploying custom assemblies, please refer to the "Using Custom Assemblies with Reports" section in the
Reporting Services documentation.

Calling Shared Methods

If you need to call only shared methods (also called static in C#) inside the assembly, you are ready to go because shared methods
are available globally within the report.

You can call shared methods by using the fully qualified type name using the following syntax:

<Namespace>.<Type>.<Method>(argument1, argument2, ..., argumentN)

For example, if I need to call the GetForecastedSet shared method located in the RsLibrary class (AWC.RS.Library assembly)
from an expression or embedded code, I will use the following syntax:

=AWC.Reporting Services.Library.RsLibrary.GetForecastedSet(forecastedSet,
forecastedMonths)

where AWC.RS.Library is the namespace, RsLibrary is the type, GetForecastedSet the method, and forecastedSet and
forecastedMonths are the arguments.

Calling Instance Methods

To invoke an instance method, you have some extra work left. First, you have to enumerate all instance classes (types) that you
need to instantiate in the Classes grid. For each class, you have to assign an instance name. Behind the scenes, Reporting Services
will create a variable with that name to hold a reference to the instance of the type.

When you specify the class name in the Classes grid, make sure that you enter the fully qualified type name (namespace
included). In my example (Figure 3), the namespace is AWC.RS.Library, while the class name is RsLibrary. When you are in doubt
as to what the fully qualified class name is, use the Visual Studio .NET Object Browser or other utilities, such as the excellent Lutz
Roeder's .NET Reflector, to browse to the class name and find out its namespace.

For example, assuming that I need to call an instance method in the AWC.RS.Library assembly, now I have to declare an instance
variable m_Library, as shown in Figure 3. In my case, this variable will hold a reference to the RsLibrary class.

If you declare more than one variable pointing to the same type, each will reference a separate instance of that type. Behind the
scenes, when the report is processed, Reporting Services will instantiate as many instances of the referenced type as the number
of the instance variables.

Once you are done with the reference settings, you are ready to call the instance methods by means of the instance type name
that you specified. Just like with embedded code, you use the Code keyword to call an instance method. The difference between a
shared and instance method is that instead of using the class name, you use the variable name to call the method.

For example, if the RsLibrary type had an instance method DummyMethod(), I can invoke it from an expression or embedded
code like this:

Code.m_Library.DummyMethod()

Having seen what options we have as developers for expanding programmatically our report features, let's see how we can apply
them in practice. In the next section, we will find out how embedded and external code can be used to add advanced features to
our reports.

Custom Code in Action: Implementing Report Forecasting
In this section, I will show you how we can incorporate forecasting capabilities in our reports. Here are the design goals of the
sample report that we are going to create:

Allow the user to generate a crosstab report of sales data for an arbitrary period.
Allow the user to specify the number of forecasted columns.

Use data extrapolation to forecast the sales data.

Here is our fictional scenario. Imagine that your users have requested a report that shows the Adventure Works forecasted
monthly sales data grouped by product category. To make things more interesting, let's allow the report users to specify a data
range to filter the sales data, as well as the number of forecasted months. To accomplish the above requirements, we will author a
crosstab report, Sales by Product Category, as shown in Figure 4.

Figure 4. The Sales by Product Category uses embedded and external custom code for forecasting.

The user can enter a start and end date to filter the sales data. In addition, the user can specify how many months of forecasted
data will be shown on the report. The report shows the data in a crosstab fashion, with product categories on rows, and time on
columns. The data portion of the report shows first the actual sales within the requested period, followed by the forecasted sales
in bold font.

For example, if the user enters 4/30/2003 as a start date and 3/31/2004 as an end date, and requests to see three forecasted
months, the report will show the forecasted data for April, May, and June 2004 (to conserve space, Figure 4 shows only one
month of forecasted data).

As you would probably agree, implementing forecasting features on your own is not an easy undertaking. But what if there is
already pre-packaged code that does this for us? If this code can run on .NET, our report can access it as custom code. Enter
OpenForecast.

Forecasting with OpenForecast

Forecasting is a science of itself. Generally speaking, forecasting is concerned with the process used to predict the unknown.
Instead of looking at a crystal ball, forecasting practitioners use mathematical models to analyze data, discover trends, and make
educated conclusions. In our example, the Sales by Product Category report will predict the future sales data by the method of
data extrapolating.

There are a number of well-known mathematical models to extrapolate a set of data, such as polynomial regression, simple
exponential smoothing, and so on. Implementing one of those models, though, is not a simple task. Instead, for the purposes of
our sales forecasting example, we will use the excellent open source OpenForecast package, written by Steven Gould.
OpenForecast is a general purpose package which includes Java-based forecasting models that can be applied to any data series.
The package requires no knowledge of forecasting and supports several mathematical forecasting models, including single
variable linear regression, multi-variable linear regression, and so on. To learn more about OpenForecast, visit its home page at
http://openforecast.sourceforge.net/.

Let's now see how we can implement our forecasting example and integrate with OpenForecast by writing some embedded and
external code.

Implementing Report Forecasting Features

Creating a crosstab report with forecasting capabilities requires several implementation steps. Let's start with a high-level view of
our envisioned approach and then drill down into the implementation details.

Choosing an Implementation Approach

Figure 5 shows the logical architecture view of our solution.

Figure 5. The Sales by Product Category report uses embedded code to call the AwRsLibrary assembly, which in turns
calls the J# OpenForecast package.

http://openforecast.sourceforge.net/

Our report will use embedded code to call a shared method in a custom assembly (AwRsLibrary) and get the forecasted data.
AwRsLibrary will load the existing sales data into an OpenForecast dataset and obtain a forecasting model from OpenForecast.
Then, it will call down to OpenForecast to get the forecasted values for the requested number of months. AwRsLibrary will return
the forecasted data to the report which in turn will display it.

We have at least two implementation options to pass the crosstab sales data to AwRsLibrary.

Fetch the sales data again from the database. To accomplish this, the report could pass the selected product category and
month values on row basis. Then, AwRsLibrary could make a database call to retrieve the matching sales data.
Load the existing sales data in a structure of some kind using embedded code inside the report and pass the structure to
AwRsLibrary.

The advantages of the latter approach are:

The custom code logic is self-contained. We don't have to query the database again.
Use the default custom code security policy. We don't have to elevate the default code access security policy for the
AwRsLibrary assembly. If we choose the first option, we won't be able to get away with the default code access security
setup, because Reporting Services will grant our custom assemblies only Execution rights, which are not sufficient to make a
database call. Actually, in the case of OpenForecast, I had to grant both assemblies FullTrust rights because any J# code
requires FullTrust to execute successfully. However, I wouldn't have to do this if I chose C# as a programming language.
No data synchronization required. We don't have to worry about synchronizing both data containers, the matrix region and
the AwRsLibrary dataset.

For the above reasons, I choose the second approach. To get it implemented, we will use an expression to populate the matrix
region data values. The expression will call our embedded code to load an array structure maintained in the embedded code on a
row-by-row basis. Once a given row is loaded, we will pass the array to AwRsLibrary to get the forecasted data.

Now, let's discuss the implementation details starting with converting OpenForecast to .NET.

Migrating OpenForecast
OpenForecast is written in Java, so one of the first hurdles that I had to overcome was to integrate it with .NET. I had two options:

I could have used a third-party Java-to-.NET gateway to integrate both platforms. Given the complexities of this approach, I
quickly dismissed it.
Port OpenForecast to one of the supported .NET languages. Microsoft provides two options for this. First, you can use the
Microsoft Java Language Conversion Assistant to convert Java-language code to C#. Second, I could convert OpenForecast
to J#. This would have preserved the Java syntax, although that code will execute under the control of the .NET Common
Language Runtime instead of Java Virtual Machine.

I decided to port OpenForecast to J#. The added benefit to this approach is that the Open Source developers could maintain only
one, Java-based version of OpenForecast.

Porting OpenForecast to J# turned out to be easier than I thought. I created a new J# library project, named it OpenForecast, and
loaded all *.java source files inside it. I included the .NET version of OpenForecast in the source code, which comes with this article.
I had to take care of only a few compilation errors inside the MultipleLinearRegression, as a result of the fact that several Java
hashtable methods were not supported in J#, such as keySet(), entries(), and hashtable cloning. I also included a WinForm
application (TestHarness), which you can use to test the converted OpenForecast.

Implementing the AwRsLibrary Assembly

The next step was to create the custom .NET assembly, AwRsLibrary, that will bridge the report embedded code and
OpenForecast. I implemented AwRsLibrary as a C# class library project. Inside it I created a class, RsLibrary, which exposes a
static (shared) method, GetForecastedSet. The AwRsLibrary code for this method is included in the sample code for this article.

The GetForecastedSet method receives the existing sales data for a given product category in the form of dataSet array, as well
as the number of the requested months for forecasted data. Next, integrating with OpenForecast is a matter of five steps:

Step 1: First, we create a new OpenForecast dataset and load it with the existing data from the matrix row array.

Step 2: Next, we obtain a given forecasting mode. OpenForecast allows developers to get the optimal forecasting mathematical
model based on the given data series by calling the getBestForecast method. This method will examine the dataset and will try a
few forecasting models to select the most optimal. If the returned model is not a good fit, you can request a forecasting model
explicitly by instantiating any of the classes found under the models project folder.

Step 3: Next, we prepare another dataset to hold the forecasted data and initialize it with as many elements as the number of

forecasted months.

Step 4: Finally, we call the forecast method to extrapolate the data and return the forecasted results.

Step 5: The only thing left is to load the forecasted data back to the dataSet array so we can pass it back to the report embedded
code.

Once we are done with both AwRsLibrary and OpenForecast .NET assemblies, we need to deploy them.

Deploying Custom Assemblies

We need to deploy custom assemblies to both the Report Designer and Report Server binary folders. The custom assembly
deployment process consists of the following steps:

Copying the assemblies to the Report Designer and Report Server binary folders.
Adjusting the code-based security if the custom code needs an elevated set of code access security permissions.

To make both assemblies, AwRsLibrary and OpenForecast, available during design time, we have to copy AWC.RS.Library.dll
and OpenForecast.dll to the Report Designer folder, which by default is C:\Program Files\Microsoft SQL Server\80\Tools\Report
Designer.

Similarly, to render successfully the deployed report under the Report Server, we have to deploy both assemblies to the Report
Server binary folder, which by default is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin. In
fact, the Report Server will not let you deploy a report from within the Visual Studio .NET IDE if all referenced custom assemblies
are not already deployed.

The default Reporting Services code access security policy grants execution rights to all custom assemblies by default. However,
J# assemblies require full trust code access rights. Since the .NET Common Language Runtime walks up the call stack to verify
that all callers have the required permission set, we need to elevate the code access security policy for both assemblies to full
trust. This will require changes to the Report Designer and Report Server security configuration files.

To help you setting up code access security policy, I provided a copy of my rssrvpolicy.config in the Config folder. Toward the end
of the file, you will see two CodeGroup XML elements that point to the AwRsLibrary and OpenForecast files. You need to copy
these elements to the Report Server security configuration file (rssrvpolicy.config).

In addition, if you want to preview (run) the report in the Preview Window from the Report Designer, you need to propagate the
changes to the Report Designer security configuration file (rspreviewpolicy.config) as well.

Once the custom assemblies are deployed, we will need to write some Visual Basic .NET embedded code in our report to call the
AwRsLibrary assembly, as we will discuss next.

Writing Report Embedded Code

To integrate the report with AwRsLibrary I wrote the GetValue function, as shown in Listing 2.

Listing 2. The Embedded GetValue Function Calls the AwRsLibrary Assembly

Dim forecastedSet() As Double ' array with sales data
Dim productCategoryID As Integer = -1
Dim bNewSeries As Boolean = False
Public Dim m_ExString = String.Empty ' holds the error message, if any

Function GetValue(productCategoryID As Integer, orderDate As DateTime, sales As Double,
reportParameters as Parameters, txtRange as TextBox) As Double
 Dim startDate as DateTime = reportParameters!StartDate.Value
 Dim endDate as DateTime = reportParameters!EndDate.Value
 Dim forecastedMonths as Integer = reportParameters!ForecastedMonths.Value

If (forecastedSet Is Nothing) Then
 ReDim forecastedSet(DateDiff(DateInterval.Month, startDate, endDate) +
 forecastedMonths) #1
 End If

 If Me.productCategoryID <> productCategoryID Then #2
 Me.productCategoryID = productCategoryID
 bNewSeries = True
 Array.Clear(forecastedSet, 0, forecastedSet.Length - 1)
 End If

 Dim i = DateDiff(DateInterval.Month, startDate , orderDate)

 ' Is this a forecasted value?
 If orderDate <= endDate Then
 ' No, just load the value in the array
 forecastedSet(i) = sales
 Else
 If bNewSeries Then
 Try
 AWC.RS.Library.RsLibrary.GetForecastedSet(forecastedSet,
forecastedMonths) #3
 bNewSeries = False
 Catch ex As Exception
 m_ExString = "Exception: " & ex.Message
 System.Diagnostics.Trace.WriteLine(ex.ToString())
 throw ex
 End Try
 End If
 End If
 Return forecastedSet(i)
 End Function

Because the matrix region data cells use an expression that references the GetValue function, this function gets called by each
data cell. Table 1 lists the input arguments that the GetValue function takes.

Table 1. Each data cell inside the matrix region will call the GetValue embedded function and pass the following
input arguments.

Argument Purpose
productCategoryID The ProductCategoryID value from the rowProductCategory row grouping corresponding to the cell.
orderDate The OrderDate value from the colMonth column grouping corresponding to the cell.
sales The aggregated sales total for this cell.

reportParameters
To calculate the array dimensions, GetValue needs the values of the report parameters. Instead of passing
the parameters individually using Parameters!ParameterName.Value, I pass a reference to the report
Parameters collection.

txtRange A variable that holds the error message in case an exception occurs when getting the forecast data.

To understand how GetValue works, please note that each data cell inside the matrix region is fed from the forecastedSet array.
If the cell doesn't need forecasting (its corresponding date is within the requested date range), we just load the cell value in the
array and pass it back to display it in the matrix region. To get this working, we need to initialize the array to have a rank equal to
the number of requested months plus number of forecasted months. Once the matrix region moves to a new row and calls our
function, we are ready to forecast the data by calling the AwRsLibrary:GetForecastedSet method.

Implementing the Sales by Product Category Crosstab Report

The most difficult part of authoring the report itself was setting up its data to ensure that we always have the correct number of
columns in the matrix region to show the forecasted columns. By default, the matrix region won't show columns that don't have
data. This will upset calculating the right offset to feed the cells from the array.

Therefore, we have to ensure that the database returns records for all months within the requested data range. To implement this,
we need to pre-process the sales data at the database. This is exactly what the spGetForecastedData stored procedure does.
Inside the stored procedure, I pre-populate a custom table with all monthly periods within the requested date range, as shown in
Listing 3.

Listing 3. The spGetForecastedData Stored Procedure Ensures That the Returned Rowset Has the Correct Number of
Columns

CREATE PROCEDURE spGetForecastedData (
 @StartDate smalldatetime,
 @EndDate smalldatetime
)
AS
DECLARE @tempDate smalldatetime
DECLARE @dateSet TABLE (#1
 ProductCategoryID tinyint,
 OrderDate smalldatetime
)

SET @tempDate = @EndDate

WHILE (@StartDate <= @tempDate) #2
BEGIN
 INSERT INTO @dateSet
 SELECT ProductCategoryID, @tempDate
 FROM ProductCategory
 SET @tempDate = DATEADD(mm, -1, @tempDate)
END

SELECT DS.ProductCategoryID, PC.Name as ProductCategory, OrderDate AS Date, NULL AS
Sales
FROM @dateSet DS INNER JOIN ProductCategory PC ON
DS.ProductCategoryID=PC.ProductCategoryID
UNION ALL #3
SELECT PC.ProductCategoryID, PC.Name AS ProductCategory, SOH.OrderDate AS Date,
SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales
FROM ProductSubCategory PSC INNER JOIN
 ProductCategory PC ON PSC.ProductCategoryID = PC.ProductCategoryID INNER
JOIN
 Product P ON PSC.ProductSubCategoryID = P.ProductSubCategoryID INNER JOIN
 SalesOrderHeader SOH INNER JOIN
 SalesOrderDetail SOD ON SOH.SalesOrderID = SOD.SalesOrderID ON P.ProductID =
SOD.ProductID
WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
GROUP BY SOH.OrderDate, PC.Name, PC.ProductCategoryID
ORDER BY PC.Name, OrderDate

Finally, I union all records from table @dateSet (its Sales column values set to NULL) with the actual Transact-SQL statement
that fetches the sales data.

Once the dataset is set, authoring the rest of the report is easy. We use a matrix region for the crosstab portion of the report. To
understand how the matrix region magic works and invokes the embedded GetValue function, you might want to replace the
expression of the txtSales textbox with the following expression:

= Fields!ProductCategoryID.Value & "," & Fields!Date.Value
& "," & Format(Fields!Sales.Value, "C")

Figure 6 shows what the Sales by Product Category looks like when this expression is applied.

Figure 6. How the matrix region aggregates data.

As you can see, we can easily get to the corresponding row and column group values that the matrix region uses to calculate the
aggregate values in the region data cells. Now we have a way to identify each data cell. The matrix region is set up as shown in
Table 2.

Table 2. Trick to get the matrix region populated with forecasted values is to base its data cells on an expression.

Matrix
Area Name Expression

Rows rowProductGroup =Fields!ProductCategory.Value

Columns
colYear

colMonth

=Fields!Date.Value.Year

=Fields!Date.Value.Month

Data txtSales =Code.GetValue(Fields!ProductCategoryID.Value, Fields!Date.Value,
Sum(Fields!Sales.Value), Parameters, ReportItems!txtRange)

To implement conditional formatting for the forecasted columns (show them in bold), I used the following expression for the font

property of the txtSales textbox:

=Iif(Code.IsForecasted(Fields!Date.Value, Parameters!EndDate.Value), "Bold", "Normal")

This expression calls the IsForecasted function located in the report embedded code. The function simply compares the sales
monthly date with the requested end date and, if the sales date is before the end date, returns false.

Finally, the only thing left is to reference the AwRsLibrary assembly using the report References tab, as we've seen in Figure 3.
Please note that for the purposes of this report, we don't need to set up an Instance Name (no need to enter anything in the
Classes grid), since we don't call any instance methods.

Debugging Custom Code

You may find debugging custom code challenging. For this reason, I would like to share with you a few techniques that I have
found useful for custom code debugging.

There aren't many options for debugging embedded code. The only one I have found out so far is to use the MsgBox function to
output messages and variable values when the report is rendered inside the Report Designer. Make sure to remove the calls to
MsgBox before deploying the report to the Report Server. If you don't, all MsgBox calls will result in an exception. For some
reason, trace messages using System.Diagnostics.Trace (OutputDebugString API) inside embedded code get "swallowed" and
don't appear either in the Visual Studio .NET Output window, or when using an external tracing tool.

When working with external assemblies, you have at least two debugging options:

Output trace messages.
Use the Visual Studio .NET debugger to step through the custom code.

Tracing

For example, in the AwRsLibrary.GetForecastedSet method, I am outputting trace messages using
System.Dianogistics.Trace.WriteLine to display the observed and forecasted values. To see these messages when running the
report inside Visual Studio .NET or Report Server, you can use the excellent DebugView tool by Mark Russinovich, shown in
Figure 7.

Figure 7. Outputting trace messages from external assemblies in DebugView.

Debugging Custom Code

You can also step through the custom assembly code using the Visual Studio .NET debugger by attaching to the Report Designer
process, as follows:

Open the custom assembly that you want to debug in a new instance of Visual Studio .NET. Set breakpoints in your code as
usual.
In your custom assembly project properties, select Configuration Properties->Debugging and set Debug Mode to
Wait to Attach to an External Process.
Open your business intelligence project in another instance of Visual Studio .NET.

Back to the custom assembly project, click on the Debug menu and then Processes... Locate the devevn process that hosts
the Business Intelligence project and attach to it. In the Attach To Process dialog make sure that the Common Language
Runtime checkbox is selected, and click Attach. At this point, your Processes dialog should look like the one shown in
Figure 8.

Figure 8. To debug custom assemblies, attach to the Visual Studio instance that hosts your Business Intelligence
project.

In my case, I want to debug the code in the AwRsLibrary assembly when it is invoked by the Sales by Product Category report.
For this reason, in the AwRsLibrary project I attach to the AWReporter devenv process.

In the Business Intelligence project, preview the report that calls the custom assembly. Or, if you have already been
previewing the report, hit the Refresh Report button on the Preview Tab toolbar. At this point, your breakpoints should be
hit by the Visual Studio .NET debugger.

As you will soon find out, if you need to make code changes and recompile the custom assembly, trying to re-deploy it to the
Report Designer folder results in the following exception:

Cannot copy <assembly name>: It is being used by another person or program.

The problem is that Visual Studio .NET IDE holds a reference to the custom assembly. You will need to shut down Visual Studio
.NET and then re-deploy the new assembly. To avoid this, you could debug the custom assembly code by using the Report Host
(Preview Window). To do this, follow these steps:

Add the custom assembly to the Visual Studio .NET solution that includes your Business Intelligence project.
Change the Business Intelligence project start item to the report that calls the custom code, as shown in Figure 9.

Figure 9. Use the Report Host debug option to avoid locking assemblies.

Hit F5 to run the report in the Preview Window. When the report calls the custom code, your breakpoints will be hit.

When using the Preview Window approach, Visual Studio .NET doesn't lock the custom assemblies. This allows you to change the
build location of your assembly to the Report Designer folder so it always includes the most recent copy when you rebuild the
assembly. Running your projects in the Preview Window is a subject of the code access security policy settings specified in the
Report Designer configuration file (rspreviewpolicy.config).

Summary
In this article we learned how to integrate our reports with custom code we or someone else wrote.

For simple report-specific programming logic, use embedded Visual Basic .NET code. When the code complexity increases or you
prefer to use programming languages other than Visual Basic .NET, move your code to external assemblies.

Using custom code is just one of the several ways developers can extend Reporting Services. To find out more about Reporting
Services extensibility, read the "Extending Reporting Services" section in Reporting Services Books Online.

For More Information:

http://www.microsoft.com/sql/

Related Books:

Microsoft Reporting Services in Action

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql/
http://www.manning.com/lachev
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Microsoft SQL Server 2000 as a Dimensionally Friendly System

Joy Mundy
Microsoft Corporation

January 2001

Summary: This document describes how the Microsoft SQL Server 2000 Data Warehouse technologies map to the twenty
criteria for a Dimensionally Friendly System, as characterized by Ralph Kimball. (20 printed pages)

Contents

Overview
Architecture
Administrative Criteria
Expression Criteria
Conclusion
For More Information
Endnotes

Overview
This paper maps features and functionality of the Microsoft® SQL Server™ 2000 Data Warehousing Framework to the twenty
characteristics of a "dimensionally friendly system" identified by Ralph Kimball (1). These characteristics were introduced in order
to provide "good metrics for what makes a system more dimensional or less dimensional" (2).

The Microsoft Data Warehousing Framework describes the relationships between the various components used in the process of
building, using, and managing a data warehouse. The Data Warehousing Framework includes the components that are used to
build a data warehouse: the relational database, Meta Data Services, Data Transformation Services, Analysis Services, OLE DB, and
English Query. The Data Warehousing Framework earns a rating of 91 percent, or 17.8 out of 19.5 points applicable to the system
under consideration:

Dimensional relational data warehouse in SQL Server 2000 Enterprise Edition.
Populated using SQL Server 2000 Data Transformation Services (DTS).
SQL Server 2000 Enterprise Edition Analysis Services cubes, typically on the same grain as the relational dimensional data
warehouse (DW) (exceptions noted in the text). Cubes also have predefined calculations (computed measures, named sets,
custom rollups, and calculated cells) available to all clients.
Cubes are populated using the DTS cube population task.
This paper does not explicitly consider a specific end-user tool because SQL Server 2000 is an open platform that supports
many third-party access tools. Most "query" questions are answered from the perspective of whether the Analysis Services
query syntax can support the construct, rather than whether any one tool does so. Very few questions refer directly to the
user experience (something the end user would see on the screen), and these have been marked as "N/A."

This paper is structured around Kimball’s twenty characteristics. Each section presents Kimball’s definition of the characteristic,
summarizes the Microsoft approach to addressing the issues, and tallies up point by point how well our architecture meets his
requirements. Sections labeled "Characteristics" are excerpts from Kimball’s articles mentioned above; these two articles can also
be found at http://www.intelligententerprise.com/000428/webhouse.shtml and
http://www.intelligententerprise.com/000515/webhouse.shtml. The tables include Features and Feature Weights, which appear in
Kimball’s "Twenty Criteria for Dimensionally Friendly Systems" (manuscript pending publication).

Architecture

1. Explicit Declaration
Rating=1.0

Characteristic 1: The system provides explicit database declarations that distinguish a dimensional entity from a
measurement (fact) entity. These declarations are stored in the system metadata. The declarations are visible to
administrators and end users, and affect query strategy, query performance, grouping logic, and physical storage.
Facts can be declared as fully additive, semi-additive, and nonadditive. Default (automatic) aggregation techniques
other than summation can be associated with facts. The default association between dimensions and facts is declared

http://www.intelligententerprise.com/000428/webhouse.shtml
http://www.intelligententerprise.com/000515/webhouse.shtml

in the metadata so that the user can omit specifying the link between them. A dimension attribute included in a query
is automatically the basis of a dynamic aggregation. A fact included in a query is by default summed within the context
of all aggregations. Semi-additive facts and nonadditive facts are prohibited from being summed across the wrong
dimensions.

Analysis Services cubes are defined with explicit declaration of dimensions and measures. The default aggregation technique of a
measure (sum, count, min, max, distinct count) is assigned during the cube design process. Custom rollups in cube definitions
provide a very flexible implementation of additive, semi-additive, and nonadditive facts. The cube structure provides all joins
between dimensions and facts seamlessly to the end user.

Met? Feature
Weight (3) Feature

0.5 Explicit differentiation of facts (numeric measurements) and dimensions (descriptive context for
measurements) in system metadata

0.2 Declaration and appropriate restriction of facts as additive, semi-additive, and nonadditive
0.1 Default technique declared for dynamic aggregations of a fact
0.2 Default join (association) between facts and dimensions so user need not specify at query time

2. Conformed Dimensions
Rating=0.9

Characteristic 2: The system uses conformed dimensions to implement drill-across queries where answer sets from
different databases, different locations, and possibly different technologies can be combined into a higher level
answer set by matching on the row headers supplied by the conformed dimensions. The system detects and warns
against the attempted uses of unconfirmed facts. This is the most fundamental and profound architecture criterion.
This criterion is the basis for implementing distributed data warehouses, and especially Webhouses consisting of far-
flung organizations (with no center) sharing data over the Web.

The architecture of SQL Server and its Analysis Services components well supports the characteristics of conformed dimensions.
Cubes within the same database fundamentally use conformed dimensions. Virtual and linked cubes are defined across separate
physical cubes located on one or more servers, to deliver advanced functionality with excellent performance. Analysis Services
query syntax is designed to concatenate disjoint sets and to express queries across different levels of a cube.

Met? Feature
Weight Feature

0.5 Multipass queries combining columns from separate answer sets that have same row headers
0.2 Multipass queries from separate databases or cubes

0.1 Multipass queries from separate cubes located on separate machines (Kimball combines this feature with
the next one)

 0.1 Multipass queries from separate vendor DBMSs (Kimball combines this feature with the previous one)
0.1 Multipass queries using different granularities within a conformed dimension

3. Dimensional Integrity
Rating=1.0

Characteristic 3: The system guarantees that the dimensions and the facts maintain referential integrity. In particular,
a fact may not exist unless it is in a valid framework of all its dimensions. However, a dimensional entry may exist
without any corresponding facts.

Analysis Services always maintains referential integrity between dimensions and facts. A dimension member may exist without a
corresponding fact; a fact may not exist without a corresponding dimension member.

Met? Feature Weight Feature
1.0 Referential integrity guaranteed to be in place at query time

4. Open Aggregate Navigation
Rating=1.0

Characteristic 4: The system uses physically stored aggregates as a way to enhance performance of common queries.
These aggregates, like indexes, are chosen silently by the database if they are physically present. End users and
application developers do not need to know what aggregates are available at any point in time, and applications are

not required to explicitly code the name of an aggregate. All query processes accessing the data, even those from
different application vendors, realize the full benefit of aggregate navigation.

Analysis Services manages aggregate navigation for all cubes, no matter what the storage mode (MOLAP, HOLAP, or ROLAP). All
query clients implementing OLEDB or OLEDB-OLAP benefit transparently from aggregate navigation. The system automatically
chooses the most efficient precomputed aggregates to resolve a query, and over time can restructure the precomputed
aggregates based on the actual queries seen by the system.

Met? Feature Weight Feature
0.5 Queries use aggregate navigation
0.5 Aggregate navigation is transparently open to all query clients

5. Dimensional Symmetry
Rating=1.0

Characteristic 5: All dimensions allow comparison calculations that constrain two or more disjoint values of a single
attribute from a dimension in computations such as ratios or differences. Also, the underlying database engine
supports an indexing scheme that allows a single indexing strategy to efficiently support query constraints on an
arbitrary and unpredictable subset of the dimensions in a highly dimensional database.

Analysis Services query syntax easily supports disjoint filters and most front-end tools provide this functionality. The Analysis
Services indexing strategy, which is transparent to the database administrator, efficiently supports query constraints on an
arbitrary and unpredictable subset of dimensions and attributes.

Met? Feature Weight Feature
0.5 Queries can constrain disjoint values from any single dimension for a comparison calculation.
0.5 All dimensions can be indexed to efficiently support constraints on any subset of the dimensions.

6. Dimensional Scalability
Rating=0.4

Characteristic 6: The system places no fundamental constraints on either the number of members or the number of
attributes in a single dimension. Dimensions with 100 million members or 1,000 textual attributes are practical.
Dimensions with one billion members are possible.

Analysis Services supports moderately large dimensions, up to approximately 10 million members, in the standard
multidimensional dimension storage mode. For very large dimensions, up to 100 million members, the developer can use
relational storage of the dimension. There are an unlimited number of textual attributes on a dimension, although a source
database table is limited to a row size of 64 KB. Neither the creation of cubes with a dimension having one billion members, nor
with 1000 textual attributes, has been tested. Though this is theoretically feasible, until such tests are preformed, we would not
claim this scalability as practical on commercially available hardware.

Met? Feature Weight Feature
0.4 Dimension with 100 million members is a practical configuration

 0.2 Dimension with one billion members is possible and can be made to function
 0.4 Dimension with 1000 textual attributes is a practical configuration

7. Sparsity Tolerance
Rating=1.0

Characteristic 7: Any single measurement can exist within a space of many dimensions, which can be viewed as
extraordinarily sparse. The system imposes no practical limit on the degree of sparsity. A 20-dimensional database,
each of whose dimensions has a million or more members, is practical.

Analysis Services manages sparsity perfectly, devoting no storage space to a Null fact. A cube with twenty dimensions is possible,
practical—even commonplace. A sparse cube with twenty dimensions each with a million members is practical.

Met? Feature Weight Feature
0.5 Twenty dimensions is a practical configuration.
0.5 Twenty dimensions, each with one million members, is a practical configuration.

Administrative Criteria

8. Graceful Modification
Rating=1.0

Characteristic 8: The system must allow the following modifications to be made in place without dropping or
reloading the primary database: a) adding an attribute to a dimension; b) adding a new kind of fact to a measurement
set, possibly beginning at a specific point in time; c) adding a whole new dimension to a set of existing measurements;
and d) splitting an existing dimension into two or more new dimensions.

Analysis Services allows the following modifications to be made in place without reloading the cube:

1. Add a member property to any level of a dimension
2. Add, move, rename, or delete levels in a "Changing" dimension
3. Add a new virtual dimension
4. Split an existing dimension into two or more new dimensions by using virtual dimensions

To add a new kind of fact to the cube without rebuilding, the administrator would define a second physical cube with all the same
dimensions and only the new measure and a virtual cube across the two physical cubes. Query performance is excellent, but the
solution does require additional disk space. By following the recommended practice of always using virtual cubes for end-user
access, such a modification in the cube definition would not require any change to user applications. Note that as Analysis
Services can read, write detailed data, and compute and store aggregations at rates of 35 GB/hour of source data (Sep-2000), the
cost of fully rebuilding even terabyte-scale cubes is not necessarily prohibitive.

In the relational DW, the schema structure is easily modified using the ALTER TABLE command.

Met? Feature Weight Feature
0.1 Adding a dimension attribute does not require dropping and reloading the fact data storage.
0.2 Adding a dimension attribute does not require dropping and reloading the dimension table.
0.2 Adding a fact does not require dropping and reloading the fact data storage.
0.1 A fact can be added starting at a point in time without supplying zeros for prior times.
0.2 Adding a dimension does not require dropping and reloading the fact data storage.
0.2 A dimension can be split into two dimensions without dropping or reloading the fact data storage.

9. Dimensional Replication
Rating=1.0

Characteristic 9: The system supports the explicit replication of a conformed dimension outward from a dimension
authority to all the client data marts, in such a way that we can only perform drill-across queries on data marts if they
have consistent versions of the dimensions. Aggregates that are affected by changes to the content of a dimension are
automatically taken offline in each client data mart until we can make them consistent with the revised dimension and
the base fact table.

Analysis Services uses cubes that have shared dimensions and virtual cubes to deliver conformed dimension functionality.
Analysis Services virtual cubes always use consistent dimension definitions and consistent aggregations; the system always
makes accurate information available to users. By default, data loaded incrementally into a cube is not made available to users
until the load, including aggregations, is complete. At the option of the administrator, a cube’s new data can be made available to
users as soon as the atomic data is loaded and aggregate building would continue in the background. In this case, users would
experience slower query performance while the cube is processing as aggregations are computed on the fly to resolve user
queries.

Met? Feature Weight Feature
0.5 Multi-pass queries automatically detect and prohibit inconsistent dimension versions.
0.5 Aggregates invalidated by changes made to dimension tables are automatically taken offline.

10. Dimension Notification
Rating=1.0

Characteristic 10: The system delivers upon request all the records from a production source of a dimension that
have changed since the last request. In addition, a reason code is supplied with this dimension notification that allows
the data warehouse to distinguish between Type 1 and Type 3 slowly changing dimensions (overwrites) and Type 2
slowly changing dimensions (true physical changes at a point in time).

SQL Server Data Transformation Services (DTS) is a general-purpose Extract, Transformation, Maintenance, and Load (ETML) tool
that can easily be set up to transfer only changed records, optionally flagged with reason codes, if the source system has that data
available. After storing in a dimensional DW, updates into cubes can be incremental. A cube dimension that is identified as
"changing" could be overwritten or appended to as appropriate.

Met? Feature
Weight Feature

0.5 The data extract system transfers only changed records from the original source to the staging area.

0.5 A reason code is provided in the transfer that allows the decision to be made between overwrite and
dimension record creation.

11. Surrogate Key Administration
Rating=1.0

Characteristic 11: The system implements a surrogate key pipeline process or its equivalent for: a) assigning new
keys when the system encounters a Type 2 slowly changing dimension; and b) replacing the natural keys in a fact
record with the correct surrogate keys before loading into the fact data table. In other words, the cardinality of a
dimension can be made independent from the definition of the original production key. Surrogate keys, by definition,
must have no semantics or ordering that makes their individual values relevant to an application. Surrogate keys must
support not-applicable, nonexistent, and corrupted measurement data. A surrogate key may not be visible to an end-
user application.

The Data Warehouse Framework (DTS, RDBMS, and Analysis) does not impose restrictions on key types. DW designs that use
surrogate keys are the recommended practice, and are fully supported. Good system design enables nonapplicable, nonexistent,
and corrupted data to be identified in the cube.

Met? Feature Weight Feature
0.5 Natural keys and/or smart keys are not used as the basis for linking dimensions to facts.
0.5 Nonapplicable, nonexistent, and corrupted data are allowed and identified.

12. International Consistency
Rating=1.0

Characteristic 12: The system supports the administration of international language versions of dimensions by
guaranteeing that a translated dimension possesses the same grouping cardinality as the original dimension. The
system supports the UNICODE character set, as well as all common international numerical punctuation and
formatting alternatives. Incompatible language-specific collating sequences are allowed.

SQL Server 2000, including Analysis Services, is fully localizable and supports UNICODE data. Analysis Services also provides
Caption and Language features that allow a cube to tailor member properties to users with specific language requirements. With
this feature, a single cube can serve groups of users who do not share a common language.

Met? Feature Weight Feature
0.3 Support is provided for all standard European accented characters (as in extended ASCII).
0.7 Support is provided for the 16-bit UNICODE character set.

Expression Criteria

13. Multiple Dimension Hierarchies
Rating=1.0

Characteristic 13: The system allows a single dimension to contain multiple independent hierarchies. No practical
limit exists to the number of hierarchies in a single dimension. Hierarchies may be complete (encompassing all the
members of a dimension) or partial (encompassing only a selected subset of the members of a dimension). Two
hierarchies do not necessarily have common levels or common attributes (fields), and may have different numbers of
levels. Two hierarchies may also share one or more common levels but otherwise be uncorrelated.

Analysis Services allows a single dimension to contain multiple independent hierarchies. Two hierarchies on the same dimension
are not required to have any levels or attributes in common. Multiple hierarchies may have different numbers of levels or share
one or more levels.

Met? Feature Weight Feature

0.5 Multiple independent hierarchies in a single dimension allowed
0.1 Complete and partial hierarchies allowed
0.1 Independent hierarchies need have no common levels
0.2 Independent hierarchies may have different number of levels
0.1 Independent hierarchies may have one or more levels in common

14. Ragged Dimension Hierarchies
Rating=1.0

Characteristic 14: The system allows dimension hierarchies of indeterminate depth, such as organization charts and
parts explosions, where records in the dimension can play the role of parents as well as children. Using this
terminology, a parent may have any number of children, and these children may have other children, to an arbitrary
depth limited only by the number of records in the dimension. A child may have multiple parents, where these
parents’ "total ownership" of the child is explicitly represented and adds up to 100 percent. With a single command
the system must be able to summarize a numeric measure from a fact table (or cube) on a ragged hierarchy for all
members:

1. Starting with a specified parent and descending to all the lowest possible levels summarizing all intermediate levels
2. Starting with a specified parent and summarizing only children exactly n levels down from the parent or n levels up from

the lowest child of any branch of the hierarchy, where n is equal to or greater than zero
3. Starting with a specified child and summarizing all the parents from that child to the supreme parent in that child’s

hierarchy
4. Starting with a specified child and summarizing all the parents exactly n levels upward in the hierarchy from that child
5. Starting with a specified child and summarizing only that child’s unique supreme parent. A given ragged dimension

hierarchy may contain an arbitrary number of independent families (independent supreme parents with no common
children). Conversely, independent supreme parents may share some children as [I] stated previously when discussing total
ownership.

The Analysis Services parent-child dimension structure supports hierarchies of indeterminate depth, such as organization charts.
The Analysis Services query syntax built-in functions such as "Descendants" and "Ancestors" support the queries described for
Criterion 14. Additionally, a child can have multiple parents, with the "ownership" of the child stored in member properties and
Custom Rollups on the dimension used to allocate those ownership percentages.

Met? Feature Weight Feature
0.2 Ragged hierarchy of indeterminate depth within a dimension may be specified
0.2 Single command summarizes a fact at all levels below a parent
0.2 Single command summarizes a fact n levels below a parent or n levels from lowest child
0.1 Single command summarizes a fact at all levels above a child
0.1 Single command summarizes a fact n levels above a child or n levels from supreme parent
0.1 Joint ownership of a child by more than one parent possible, with explicit ownership prorations
0.1 Multiple independent families possible within single ragged hierarchy

15. Multiple-Valued Dimensions
Rating=0.0

Characteristic 15: A single atomic measure in a fact table (or cube) may have multiple members from a dimension
associated with that measure. If more than one member from a dimension is associated with a measure, then an
explicit allocation factor is provided that optionally lets the numeric measure spread across the associated dimension’s
members. In such a case, the allocation factors for a given atomic measure and a given multivalued dimension must
add up to 100 percent.

Multiple-valued dimensions are used to resolve many-to-many relationships: for example, in an account balances schema,
customers have many accounts and each account may belong to multiple customers. Such a system could be implemented in
Analysis Services by preallocating and resolving the many-to-many relationships: in this case, by including both Customer and
Account as separate dimensions. A separate cube could be built to fully explore the relationships between customer and account.

While this approach would deliver all the specified functionality, fundamentally it does so by increasing the number of facts in the
cube, which does not appear to meet the spirit of the requirement. Specifically, while the relational dimensional model would
have a single row for an account balance in the schema described above, the cube representation of the schema would contain a
fact "row" for each combination of customer and account. Note that because of Analysis Services’ advanced compression

algorithms, such a cube in many cases would require less storage and would perform better than the corresponding normalized
multiple-valued dimension version stored in the RDBMS.

Met? Feature
Weight Feature

 0.4 Single measure may be associated with arbitrary number of values of a dimension attribute.

 0.3 Different instances of a measure in fact table (or cube) may have different number of multiple dimension
attribute values.

 0.3 Optional allocation factor allows spreading multiple dimension attributes values across any numeric
measure.

16. Slowly Changing Dimensions (SCDs)
Rating=0.9

Characteristic 16: The system must explicitly support the three basic types of slowly changing dimensions: Type 1, where a
changed dimension attribute is overwritten; Type 2, where a changed dimension attribute causes a new dimension member to be
created; and Type 3, where a changed dimension attribute causes an alternate attribute to be created so that both the old and new
values of the attribute are simultaneously accessible in the same dimension member record. Support for slowly changing
dimensions must be system-wide, as the following requirements imply:

Changes to a dimension that invalidate any physically stored aggregate must automatically disqualify that aggregate from
use.
A Type 2 change must trigger the automatic assignment of a new surrogate key for the new dimension member, and that
key must be used for all concurrent fact records loaded into the system. In other words, the creation of a new Type 2
dimension member must automatically link to the associated concurrent facts without the user or application developer
needing to bookkeep beginning and ending effective dates.
If the system supports ragged-hierarchy dimensions and/or multiple valued dimensions, then these types of dimensions
must support all three types of slowly changing dimensions.

Analysis Services supports slowly changing dimensions types 1, 2, and 3. Type 1 is most efficiently managed if the dimension is
identified during design time as "changing." Type 3 is most efficiently managed as a virtual dimension. Type 2 is trivial to
implement in Analysis Services when the cube is built from a dimensional relational schema that uses Type 2 SCDs. All types of
slowly changing dimensions are managed in the relational DW using standard techniques.

Met? Feature
Weight Feature

0.1 A dimension attribute can be overwritten in place (type 1).

0.6 A new record (or member) in the dimension can be created that automatically applies to a set of measured
facts beginning at a point in time (type 2).

0.1 An alternate attribute to an existing attribute can be specified to support a "switch of scenarios" (type 3).
0.1 Ragged hierarchies within dimensions support all three SCD types.

 0.1 Multiple-valued dimensions support all three SCD types.

17. Roles Of A Dimension
Rating=1.0

Characteristic 17: A single dimension must be associative with a set of facts via multiple roles. For instance, a set of
facts may have several independent timestamps that you can simultaneously apply to the facts. In this case, a single
underlying time dimension must be able to attach to these facts multiple times, where each instance is semantically
independent. A given set of facts may have several different kinds of dimensions, each playing multiple roles.

The functionality of dimension roles is provided in Analysis Services by building separate but identical dimensions named as
appropriate for each role. This is similar in spirit to the relational dimensional model, where the typical solution is to have one
physical table that has multiple names or views. If the multiple-role dimension is extremely large and hence it is undesirable to
instantiate it more than once, the developer should implement the dimension as a ROLAP dimension (stored in the RDBMS),
which has multiple aliases.

Met? Feature
Weight Feature

0.5 A single physical dimension may be attached multiple times to a set of facts representing separate logical
roles.

0.5 More than one type of hot-swappable dimensions may be multiply attached simultaneously to a set of
facts.

18. Hot-Swappable Dimensions
Rating=1.0

Characteristic 18: The system must allow an alternate instance of a dimension to swap in at query time. For example,
if two clients of an investment firm wish to view the same stock market data through their own proprietary "stock
ticker" dimensions, then the two clients must be able to use their versions of the dimension at query time, without
requiring the fundamental fact table (or cube) of stock market facts to duplicate. Another example of this capability
would let a bank attach an extended account dimension to a specific query if the user restricts the query to a cluster of
accounts of the same type.

Analysis Services virtual dimensions provide the functionality of "hot-swappable" dimensions.

Met? Feature
Weight Feature

1.0
A different instance of a dimension may be attached to a set of facts at query time. Such a dimension need only to
have the same primary keys as the first dimension so as to preserve referential integrity with the fact data storage
but otherwise can have completely different structure and data.

19. On-the-Fly Fact Range Dimensions
Rating=1.0

Characteristic 19: The system provides direct support for dynamic value banding queries on numeric measures in a
fact table (or cube). In other words, at query time the user can specify a set of value ranges and use these ranges as
the grouping criteria in a query. All of the normal summarizing functions (count, sum, min, max, and average) can be
applied within each group. The sizes of the value bands needn’t be equal.

Analysis Services query syntax supports user-defined computations that would use the "IIF" function to compute on-the-fly fact
range bands. A client tool could easily be developed that would present an appealing user interface for this functionality.

Met? Feature
Weight Feature

0.8 Value-banding queries can be executed in a single command that specify an ad hoc set of unequal-sized value
ranges and use these ranges as the grouping criteria.

0.2 All summarizing functions can be used in these dynamically defined value bands.

20. On-the-Fly Behavior Dimensions
Rating=0.6

Characteristic 20: The system supports constraining a dimension via a simple list of that dimension. For the sake of
vocabulary, call such a list of members a "behavior dimension." The support of behavior dimensions must be system
wide, as the following requirements imply:

A behavior dimension can be captured from a report showing on the user’s screen from: a list of keys or attributes
appearing in a file extracted from a production source; directly from a constraint specification; or from a union, intersection,
or set difference of other behavior dimensions.
A user may have a library of many behavior dimensions and can attach a behavior dimension to a fact table (or cube) at
query time.
The use of a behavior dimension in a query restricts the fact table (or cube) to the members in the study but in no way
otherwise limits the ability to select and constrain attributes of any regular dimension, including the one the behavior affects
directly.
A behavior dimension may be of unlimited size.
A behavior dimension may have an optional date-stamp associated with each element of the list in such a way that two
behavior dimensions can merge so that membership in the combined behavior dimension requires a specific time ordering.

The Analysis Services query syntax supports the full richness of on-the-fly "behavior dimensions." However, some of the
functionality described in this criterion is directly associated with client tools. The functionality in question—capturing a list of
members from an end-user screen or from a flat file—could very easily be incorporated into a custom or third-party tool. For
example, the not-yet-released Microsoft¬ Office 10 product suite supports this functionality.

The query syntax supports constraining a dimension via a simple list of members of that dimension. Most existing client tools
support the selection of an arbitrary set of members from the screen; it would be very simple for a tool to add the functionality to
select from a flat file or other source. The Analysis Services query syntax is designed explicitly to support other required behavior,
such as defining a constraint; selecting members from a set expression such as union, intersection, or difference; or
sorting/merging member sets.

Met? Feature
Weight Feature

N/A N/A An arbitrary set of members of a dimension can be captured from an end user screen.

N/A N/A An arbitrary set of members of a dimension can be specified from a flat file from an outside source containing
attribute values drawn from the dimension.

0.1 An arbitrary set of members of a dimension can be specified by a constraint on that dimension.

0.1 An arbitrary set of members of a dimension can be specified via a union, intersection, or set difference of other
arbitrary sets of members of that dimension.

0.3
An arbitrary set of members of a dimension can be used as a constraint against a dimension but otherwise does
not prohibit other constraints or user interface actions on that dimension, and that constrained dimension can be
used with any fact table (or cube) joined to that dimension.

0.1 An arbitrary set of members of the dimension can be time stamped so that membership in derived sets of
members can be based on time sequence ordering.

Conclusion
The SQL Server 2000 Data Warehousing Framework is a natural infrastructure for developing a dimensional system. Analysis
Services' modern architecture addresses many of the complex dimensional modeling issues outlined in Kimball's "20
characteristics of a dimensionally friendly system."

For More Information
SQL Server 2000 Books Online contains more information about the Microsoft Data Warehousing Framework, the SQL Server
relational database, Data Transformation Services, and Analysis Services. For additional information, see the following resources:

The Microsoft SQL Server Web site at http://www.microsoft.com/sql.
The Microsoft SQL Server Developer Center at http://msdn.microsoft.com/sqlserver.
SQL Server Magazine at http://www.sqlmag.com.
The microsoft.public.sqlserver.server and microsoft.public.sqlserver.datawarehouse newsgroups at
news://news.microsoft.com.
The Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see
http://www.microsoft.com/trainingandservices.

For additional information on Ralph Kimball’s twenty criteria for a dimensionally friendly system, see the following resources:

Kimball, Ralph. "Is Your Dimensional Data Warehouse Expressive?" Intelligent Enterprise 3, no. 8 (15 May 2000) 40, 44. Also
available at http://www.intelligententerprise.com/000428/webhouse.shtml.
Kimball, Ralph. "Rating Your Dimensional Data Warehouse," Intelligent Enterprise 3 no. 7 (28 April 2000) 30, 32-33. Also
available on http://www.intelligententerprise.com/000428/webhouse.shtml.
Ralph Kimball Associates, Inc; http://www.ralphkimball.com/.

Endnotes
1. Ralph Kimball has published his twenty characteristics in two articles in Intelligent Enterprise. The first twelve appear in “Rating
Your Dimensional Data Warehouse,” Intelligent Enterprise 3 no. 7 (28 April 2000) 30, 32-33. The final eight appear in “Is Your
Dimensional Data Warehouse Expressive?” Intelligent Enterprise 3, no. 8 (15 May 2000) 40, 44. This article can also be viewed at
http://www.intelligententerprise.com/000515/webhouse.shtml.

2. Kimball, Ralph. “Rating Your Dimensional Data Warehouse,” Intelligent Enterprise 3 no. 7 (28 April 2000) 30. This article can
also be viewed at http://www.intelligententerprise.com/000428/webhouse.shtml.

3. Features and Feature Weights are taken from Ralph Kimball, “Twenty Criteria for Dimensionally Friendly Systems” (pending
publication).

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
http://www.microsoft.com/trainingandservices/default.asp?PageID=training
http://www.intelligententerprise.com/000428/webhouse.shtml
http://www.intelligententerprise.com/000428/webhouse.shtml
http://www.ralphkimball.com/
http://www.intelligententerprise.com/000515/webhouse.shtml
http://www.intelligententerprise.com/000428/webhouse.shtml

of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2000 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Microsoft SQL Server 2000 Distributed Queries: OLE DB
Connectivity

Microsoft Corporation

March 2001

Summary: This document describes how the Microsoft SQL Server 2000 query processor interacts with an OLE DB provider to
enable distributed and heterogeneous queries. It is intended primarily for OLE DB provider developers, and assumes a solid
understanding of the OLE DB specification. (35 printed pages)

Contents

Introduction
Overview and Terminology
OLE DB Provider Interaction Phases
Query Execution Scenarios
Conclusion
Appendix A: OLE DB Interfaces Consumed by SQL Server
Appendix B: SQL Subset Used for Generating Remote Queries

Introduction
This document describes how the Microsoft® SQL Server™ 2000 query processor interacts with an OLE DB provider to enable
distributed and heterogeneous queries. It is intended primarily for OLE DB provider developers, and assumes a solid
understanding of the OLE DB specification. The emphasis is on the OLE DB interface between the SQL Server query processor and
the OLE DB provider — not on the distributed query functionality itself. For a full description of distributed querying functionality,
see SQL Server Books Online.

Overview and Terminology
In Microsoft SQL Server 2000, distributed queries enable SQL Server users to access data outside a SQL Server-based server,
either within other servers running SQL Server or other data sources that expose an OLE DB interface. OLE DB provides a way to
uniformly access tabular data from heterogeneous data sources.

A distributed query, for the purpose of this document, is any SELECT, INSERT, UPDATE, or DELETE statement that references tables
and rowsets from one or more external OLE DB data source.

A remote table is a table that is stored in an OLE DB data source and is external to the server running SQL Server executing the
query. A distributed query accesses one or more remote tables.

OLE DB Provider Categories

The following is a categorization of OLE DB providers based on their capabilities from a SQL Server distributed querying
standpoint. As defined, these are not mutually exclusive; a given provider may belong to more than one of the following
categories:

SQL Command Providers
Index Providers
Simple Table Providers
Non-SQL Command Providers

SQL Command Providers

Providers that support the Command object with a SQL standard dialect recognized by SQL Server belong to this category. The
specific requirements for a given OLE DB provider to be treated as a SQL Command Provider by SQL Server are:

The provider must support the Command object and all of its mandatory OLE DB interfaces: ICommand, ICommandText,
IColumnsInfo, ICommandProperties, and IAccessor.
The SQL dialect supported by the provider must be at least SQL Subminimum. The provider must report the dialect through
the DBPROP_SQLSUPPORT property.

Examples of SQL Command Providers are the Microsoft OLE DB Provider for SQL Server and the Microsoft OLE DB Provider for
ODBC.

Index Providers

Index providers are those that support and expose indexes according to OLE DB and allow index-based lookup of base tables. The
specific requirements for a given OLE DB provider to be treated as an Index provider by SQL Server are:

The provider must support the IDBSchemaRowset interface with the TABLES, COLUMNS and INDEXES schema rowsets.
The provider must support opening a rowset on an index through IOpenRowset by specifying the index name and the
corresponding base table name.
The Index object must support all its mandatory interfaces: IRowset, IRowsetIndex, IAccessor, IColumnsInfo,
IRowsetInfo, and IConvertTypes.
Rowsets opened against the indexed base table (through IOpenRowset) must support the IRowsetLocate interface for
positioning on a row based off a bookmark.

If the OLE DB provider meets the above requirements, users can set the Index As Access Path provider option to enable SQL
Server to use the provider's indexes to evaluate queries. By default, SQL Server does not attempt to use the provider's indexes
unless this option is set.

Note SQL Server supports various options that influence how SQL Server accesses an OLE DB provider. The Linked
Server Properties dialog box in SQL Server Enterprise Manager can be used to set these options.

Simple Table Providers

These are providers that expose the opening of a rowset against a base table through the IOpenRowset interface. Such providers
are neither SQL Command Providers nor Index providers; rather, they are the simplest class of providers that SQL Server
distributed queries can work with.

Against such providers, SQL Server can only perform table scans during distributed query evaluation.

Non-SQL Command Providers

Providers that support the Command object and its mandatory interfaces, but do not support an SQL standard dialect recognized
by SQL Server, fall into this category.

Two examples of Non-SQL Command Providers are the Microsoft OLE DB Provider for Indexing Service and the Microsoft
Windows NT® Active Directory™ Service Interfaces (ADSI) OLE DB Provider.

Transact-SQL Subset

Each of the following classes of Transact-SQL statements is supported for distributed queries if the provider supports the required
OLE DB interfaces.

All SELECT statements are allowed except for SELECT INTO statements with a remote table as the destination table.
INSERT statements are allowed against remote tables if the provider supports the required interfaces for insert. For more
information about OLE DB requirements for INSERT, see INSERT Statement later in this article.
UPDATE and DELETE statements are allowed against remote tables if the provider satisfies the OLE DB interface
requirements on the specified table. For the OLE DB interface requirements and conditions under which a remote table can
be updated or deleted, see UPDATE and DELETE Statements later in this document.

Cursor Support

Both snapshot and keyset cursors are supported against distributed queries if the provider supports the necessary OLE DB
functionality. Dynamic cursors are not supported against distributed queries. A user request for a dynamic cursor against a
distributed query is downgraded to a keyset cursor.

Snapshot cursors are populated at cursor open time and the result set remains unchanged; updates, inserts, and deletes to the
underlying tables are not reflected in the cursor.

Keyset cursors are populated at cursor open time and the result set remains unchanged throughout the lifetime of the cursor.
However, updates and deletes to underlying tables are visible in the cursor as the rows are visited. Inserts to underlying tables
that may affect cursor membership are not visible.

A remote table can be updated or deleted through a cursor that is defined on a distributed query and references the remote table
if the provider meets the conditions for updates and deletes on the remote table, for example, table UPDATE | DELETE <remote-
table> WHERE CURRENT OF <cursor-name>. For more information, see UPDATE and DELETE Statements later in this article.

Keyset Cursor Support Requirements

A keyset cursor is supported on a distributed query if all the Transact-SQL syntax requirements are met and either of these exist:

The OLE DB provider supports reusable bookmarks on all the remote tables in the query. Reusable bookmarks can be
consumed from a rowset on a given table and used on a different rowset of the same table. The support for reusable
bookmarks is indicated through the TABLES_INFO schema rowset of IDBSchemaRowset by setting the
BOOKMARK_DURABILITY column to BMK_DURABILITY_INTRANSACTION or a higher durability.
All the remote tables expose a unique key through the INDEXES rowset of IDBSchemaRowset interface. There should be an
index entry with the UNIQUE column set to VARIANT_TRUE.

Keyset cursors are not supported against distributed queries that involve the OpenQuery function.

Updatable Keyset Cursor Requirements

A remote table can be updated or deleted through a keyset cursor that is defined on a distributed query, for example, UPDATE |
DELETE <remote-table> WHERE CURRENT OF <cursor-name>. The following are the conditions under which updatable cursors
against distributed queries are allowed:

Updatable cursors are allowed if the provider also meets the conditions for updates and deletes on the remote table. For
more information, see UPDATE and DELETE Statements later in this article.
All the updatable keyset cursor operations must be in a user-defined transaction with read-repeatable isolation level or a
higher isolation level. Furthermore, the provider must support distributed transactions with the ITransactionJoin interface.

OLE DB Provider Interaction Phases
Six operations are common to all the distributed query execution scenarios:

Connection establishment and property retrieval operations indicate how SQL Server connects to an OLE DB provider and
what provider properties are used.
Table name resolution and meta data retrieval operations indicate how SQL Server resolves the remote table name (which
is specified in one of two ways: either a linked server based name or an ad hoc name) into the appropriate data object in the
provider. This also includes the table meta data that SQL Server retrieves from the provider in order to compile and
optimize a distributed query.
Transaction management operations specify all transaction-related interaction with the OLE DB provider.
Data type handling operations indicate how OLE DB data types are handled by SQL Server when it consumes data from or
exports data to an OLE DB provider while processing a distributed query.
Error handling operations indicate how SQL Server uses extended error information from the provider.
Security operations specify how SQL Server security interacts with the provider's security.

Connection Establishment and Property Retrieval

SQL Server supports two remote data object naming conventions: linked server-based four-part names and ad hoc names using
the OPENROWSET function.

Linked server-based names
A linked server serves as an abstraction to an OLE DB data source. A linked server-based name is a four-part name of the form
<linked-server>.<catalog>. <schema>.<object>, where <linked-server> is the name of the linked server. SQL Server interprets
<linked-server> to derive the OLE DB provider and the connection attributes that identify the data source to the provider. The
other three name parts are interpreted by the OLE DB data source to identify the specific remote table.

Ad hoc names
An ad hoc name is a name based on the OPENROWSET or OPENDATASOURCE function. It includes all the connection
information (that is, the OLE DB provider to use, the attributes needed to identify the data source, the user ID and password)
every time the remote table is referenced in a distributed query.

Using ad hoc names is not allowed by default except for members of the sysadmin role. In order to use ad hoc names against
an OLE DB provider, the provider option DisallowAdhocAccess should be set to 0.

If a linked server name is used, SQL Server extracts from the linked server definition the OLE DB provider name and the

initialization properties for the provider. If an ad hoc name is used, SQL Server extracts the same information from the arguments
of the OPENROWSET function.

For detailed instructions about setting up a linked server using a four-part name and ad hoc name-based syntax, see SQL Server
Books Online.

Connecting to an OLE DB Provider

These are the high-level steps that SQL Server performs when it connects to an OLE DB provider:

1. SQL Server creates a data source object.

SQL Server uses the provider's ProgID to instantiate its data source object (DSO). The ProgID is specified as the
provider_name parameter of a linked server configuration or as the first argument of the OPENROWSET function in the
case of an ad hoc name.

SQL Server instantiates the provider's DSO through the OLE DB service component interface IDataInitialize. This allows
the Service Component Manager to aggregate its services, such as scrolling and update support, above the native
functionality of the provider. Further, instantiating the provider through IDataInitialize allows the OLE DB service
component to pool connections to the provider, thereby reducing some of the connection and initialization overhead.

A given provider can be configured to be instantiated either in the same process as SQL Server or in its own process.
Instantiating in a separate process protects the SQL Server process from failures in the provider. At the same time, there is a
performance overhead associated with marshalling OLE DB calls out-of-process from SQL Server. A provider can be
configured to be instantiated in-process or out-of-process by setting the Allow In Process provider option. Please see SQL
Server Books Online for information on setting provider options.

To learn more about the OLE DB service components and session pooling, refer to the OLE DB documentation for provider
requirements.

2. The data source is initialized.

After the DSO has been created, the IDBProperties interface sets the DBPROP_INIT_TIMEOUT initialization property if the
server configuration option remote login timeout is greater than 0; this is a required property.

These properties are set if they are specified or implied in either the linked server definition or in the second argument of
the OPENROWSET function:

DBPROP_INIT_PROVIDERSTRING
DBPROP_INIT_DATASOURCE
DBPROP_INIT_LOCATION
DBPROP_INIT_CATALOG
DBPROP_AUTH_USERID
DBPROP_AUTH_PASSWORD

After these properties are set, IDBInitialize::Initialize is called to initialize the DSO with the specified properties.

3. SQL Server gathers provider-specific information.

SQL Server gathers several provider properties to be used in distributed query evaluation; these properties are retrieved by
calling IDBProperties::GetProperties. All these properties are optional; however, supporting all relevant properties enables
SQL Server to take full advantage of the provider's capabilities. For instance, DBPROP_SQLSUPPORT is needed to determine
whether SQL Server can send queries to the provider. If this property is not supported, SQL Server will not use the remote
provider as a SQL Command Provider even if it is one. In the following table (Table 1), the Default value column indicates
what value SQL Server assumes if the provider does not support the property.

Table 1. Assumed properties of SQL Server OLE-DB Provider

Property Default value Use
DBPROP_DBMSNAME None Used for error messages.
DBPROP_DBMSVER None Used for error messages.
DBPROP_PROVIDERNAME None Used for error messages.
DBPROP_PROVIDEROLEDBVER 1.5 Used to determine availability of 2.0 features.

DBPROP_CONCATNULLBEHAVIOR None Used to determine whether the NULL concatenation behavior of
the provider is the same as that of SQL Server.

DBPROP_NULLCOLLATION None Allows sorting/index-use only if NULLCOLLATION matches SQL
Server's null collation behavior.

DBPROP_OLEOBJECTS None Determines whether the provider supports structured storage
interfaces for large data object columns.

DBPROP_STRUCTUREDSTORAGE None
Determines which of the structured storage interfaces are
supported for large object types (among ILockBytes, Istream,
and ISequentialStream).

DBPROP_MULTIPLESTORAGEOBJECTS False Determines whether more than one large object column can be
open at the same time.

DBPROP_SQLSUPPORT None Determines whether SQL queries can be sent to the provider.
DBPROP_CATALOGLOCATION DBPROPVAL_CL_START Used to construct multipart table names.

SQLPROP_DYNAMICSQL False
SQL Server-specific property: if it returns VARIANT_TRUE, it
indicates that '?' parameter markers are supported for
parameterized query execution.

SQLPROP_NESTEDQUERIES False
SQL Server-specific property: if it returns VARIANT_TRUE, it
indicates that the provider supports nested SELECT statements in
the FROM clause.

SQLPROP_GROUPBY False
SQL Server-specific property: if it returns VARIANT_TRUE, it
indicates that the provider supports GROUP BY clause in the
SELECT statement as specified by the SQL-92 standard.

SQLPROP_DATELITERALS False
SQL Server-specific property: if it returns VARIANT_TRUE, it
indicates that the provider supports datetime literals as per SQL
Server Transact-SQL syntax.

SQLPROP_ANSILIKE False

SQL Server-specific property: This property is of interest to a
provider that supports the SQL-Minimum level and it supports
the LIKE operator as per SQL-92 entry level ('%' and '_' as
wildcard characters).

SQLPROP_SUBQUERIES False

SQL Server property: This property is of interest in a provider
that supports the SQL-Minimum level. This property indicates
that the provider supports subqueries as specified by SQL-92
entry level. This includes subqueries in the SELECT list and in the
WHERE clause with support for correlated subqueries, IN, EXISTS,
ALL and ANY operators.

SQLPROP_INNERJOIN False

SQL Server-specific property: This property is of interest to
providers that support the SQL-Minimum level. This property
indicates support for joins using multiple tables in the FROM
clause.

The following three literals are retrieved from IDBInfo::GetLiteralInfo: DBLITERAL_CATALOG_SEPARATOR,
DBLITERAL_SCHEMA_SEPARATOR (to construct a full object name given its catalog, schema, and object name parts), and
DBLITERAL_QUOTE (to quote identifier names in an SQL query sent to the provider).

If the provider does not support the separator literals, SQL Server uses a period (.) as the default separator character. If the
provider supports only the catalog separator character but not the schema separator character, SQL Server uses the catalog
separator character as the schema separator character also. If the provider does not support DBLITERAL_QUOTE, SQL Server uses
a single quotation mark (') as the quoting character.

Note If the provider's name separator literals do not match these default values, the provider must expose them
through IDBInfo for SQL Server to access its tables through four-part names. If these literals are not exposed, only
pass-through queries can be used against such a provider.

Table Name Resolution and Meta Data Retrieval

SQL Server resolves a given remote table name in a distributed query to a specific table or view in an OLE DB data source. Both
the linked server-based and ad hoc naming schemes result in a three-part name to be interpreted by the provider. In the case of
the linked server-based name, the last three parts of the four-part name form the catalog, schema, and object names. In the case
of the ad hoc name, the third argument of the OPENROWSET function specifies a three-part name that describes the catalog,
schema, and object names. One or both of the catalog and schema names can be empty. (A four-part name with an empty catalog

name and schema name would look like <server-name>…<object-name>.) In such a case, SQL Server uses NULL as the
corresponding value to look for in the schema rowset tables.

The name resolution rules and the meta data retrieval steps that SQL Server employs depend on whether the provider supports
the IDBSchemaRowset interface on the Session object.

If IDBSchemaRowset is supported, TABLES, COLUMNS, INDEXES, and TABLES_INFO schema rowsets are used from the
IDBSchemaRowset interface. (The TABLES_INFO schema rowset is defined in OLE DB 2.0.) SQL Server restricts the schema
rowsets returned by the IDBSchemaRowset interface to look for schema rows that match the specified remote table name parts.
The following are the rules related to the restrictions supported by the provider on the schema rowsets and how SQL Server uses
them to retrieve a remote table's meta data:

Restrictions on TABLE_NAME and COLUMN_NAME columns are always required.
If the provider supports a restriction on TABLE_CATALOG (or TABLE_SCHEMA), SQL Server uses that restriction on
TABLE_CATALOG (or TABLE_SCHEMA). If catalog (or schema) name is not specified in the remote table name, a NULL value
is used as the corresponding restriction value. If a catalog (or schema) name is specified, the provider must support the
corresponding restriction on TABLE_CATALOG (or TABLE_SCHEMA).
The provider must either support restriction on the TABLE_SCHEMA column in both TABLES and COLUMNS or support
them on neither. The provider must either support catalog name restriction on both TABLES and COLUMNS rowsets or
support them on neither.
If any restrictions are supported on INDEXES, the provider must support schema restriction on both TABLES and INDEXES or
support them on neither. The provider must either support catalog name restriction on both TABLES and INDEXES rowsets
or support them on neither.

From the TABLES schema rowset, SQL Server retrieves the TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE,
TABLE_GUID columns by setting restrictions according to the above rules.

From the COLUMNS schema rowset, SQL Server retrieves the TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, COLUMN_GUID, ORDINAL_POSITION, COLUMN_FLAGS, IS_NULLABLE, DATA_TYPE, TYPE_GUID,
CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION, and NUMERIC_SCALE columns. COLUMN_NAME, DATA_TYPE and
ORDINAL_POSITION must return valid nonnull values. If DATA_TYPE is DBTYPE_NUMERIC or DBTYPE_DECIMAL, the
corresponding NUMERIC_PRECISION and NUMERIC_SCALE must be valid nonnull values.

From the optional INDEXES schema rowset, SQL Server looks for indexes on the specified remote table by setting restrictions as
per the previous rules. From the matching index entries thus found, SQL Server retrieves the TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, INDEX_CATALOG, INDEX_SCHEMA, INDEX_NAME, PRIMARY_KEY, UNIQUE, CLUSTERED, FILL_FACTOR,
ORDINAL_POSITION, COLUMN_NAME, COLLATION, CARDINALITY, and PAGES columns.

From the optional TABLES_INFO rowset, SQL Server looks for additional information on the specified remote table, such as
bookmark support, the type and the length of the bookmark. All columns except the DESCRIPTION column of the TABLES_INFO
rowset are used. The information in TABLES_INFO rowset is used as follows:

The BOOKMARK_DURABILITY column is used to implement more efficient keyset cursors. If this column has a value of
BMK_DURABILITY_INTRANSACTION or a higher durability value, SQL Server uses bookmark-based retrieval and updates of
remote table rows for implementing a keyset cursor.
The BOOKMARK_TYPE, BOOKMARK_DATA TYPE, and BOOKMARK_MAXIMUM_LENGTH columns are used to determine
bookmark meta data at query compilation time. If these columns are not supported, SQL Server opens the base table rowset
through IOpenRowset during compilation to get the bookmark information.

If IDBSchemaRowset is not supported and the remote table name includes a catalog or schema name, SQL Server requires
IDBSchemaRowset and returns an error. However, if neither the catalog nor the schema names are supplied, SQL Server opens
the rowset that corresponds to the remote table and retrieves the column meta data from the mandatory IColumnsInfo interface
of the rowset object.

SQL Server opens the rowset corresponding to the table by calling IOpenRowset::OpenRowset. The table name supplied to
OPENROWSET is constructed from the catalog, schema, and object name parts.

Each of the name parts (catalog, schema, object name) are quoted with the provider's quoting character
(DBLITERAL_QUOTE) and then concatenated with the DBLITERAL_CATALOG_SEPARATOR character and the
DBLITERAL_SCHEMA_SEPARATOR character embedded between them. The name construction follows the OLE DB rules in
IOpenRowset.
The column meta data for the table is retrieved through IColumnsInfo::GetColumnInfo after the rowset object is opened.

If IDBSchemaRowset is not supported with TABLES, COLUMNS, and TABLES_INFO rowsets, SQL Server opens the rowset

against the base table twice: once during query compilation to retrieve meta data, and once during query execution. Providers that
incur side effects from opening the rowset (for example, run code that alters the state of a real-time device, send e-mail, run
arbitrary user-supplied code) must be aware of this behavior.

Statistics retrieval

If the provider supports distribution statistics on the base tables, then SQL Server 2000 will use these statistics. There are two
kinds of statistics that are of interest to the SQL Server query processor:

Column (or tuple) cardinalities. This is the number of unique values that are in a column (or a combination of columns)
of a table. This can be used to estimate the selectivity of predicates against the column(s). A provider supporting distribution
statistics should support at least one type of cardinality.
Histograms. If the distribution of values is not uniform, then the number of unique values is not sufficient to estimate
accurately the selectivity of predicates. In this case a histogram can be provided which gives more fine grained information
about the distribution of column values in a table.

The availability of statistics enables the SQL Server query optimizer to better estimate the cardinalities of intermediate operations
in a query which allows it to generate better execution plans for them.

The OLE DB provider should support distribution statistics as follows:

Mandatory. Support the properties (1) DBPROP_TABLESTATISTICS which indicates whether column or tuple cardinalities
are supported and whether histograms are supported, and (2) DBPROP_OPENROWSETSUPPORT which indicates using the
DBPROPVAL_ORS_HISTOGRAM bit, whether histograms are supported.
Mandatory. The TABLE_STATISTICS schema rowset. The TABLE_STATISTICS schema rowset lists the statistics available in a
given database. It also includes the column and tuple cardinalities in the schema rowset itself and indicates whether
histograms are supported on the specific columns. For SQL Server to use statistics, the columns TABLE_NAME,
STATISTICS_NAME, STATISTICS_TYPE, COLUMN_NAME and ORDINAL_POSITION are mandatory in this schema rowset. At
least one of COLUMN_CARDINALITY or TUPLE_CARDINALITY are mandatory. If histograms are supported then
NO_OF_RANGES is also mandatory.
Optional. Optionally, if the provider supports histograms, it should support an enhancement to the
IOpenRowset::OpenRowset method that allows opening a histogram rowset by specifying the DBID of the corresponding
statistic.

For complete information on the statistics interfaces, refer to the OLE DB 2.6 specification.

Constraints

The SQL Server 2000 query optimizer also uses the CHECK constraints defined on the base tables in a remote data source, if the
OLE DB provider supports the new OLE DB 2.6 schema rowset CHECK_CONSTRAINTS_BY_TABLE. The CHECK_CLAUSE column of
the schema rowset should return the CHECK clause predicate in SQL-92 compliant syntax. The query optimizer uses constraint
information in order to eliminate or simplify predicates that are known to be always false or always true because of the presence
of a check constraint on the table.

Transaction Management

SQL Server supports transaction-based access to distributed data by using the provider's ITransactionLocal (for local
transaction) and ITransactionJoin (for distributed transactions) OLE DB interfaces. By starting a local transaction against the
provider, SQL Server guarantees atomic write operations. By using distributed transactions, SQL Server ensures that a transaction
that involves multiple nodes has the same result (either commit or abort) in all the nodes. If the provider does not support the
requisite OLE DB transaction-related interfaces, update operations against that provider are not allowed depending on the local
transaction context.

The following table (Table 2) describes what happens when the user executes a distributed query given the capabilities of the
provider and a local transaction context. A read operation against a provider refers to either a SELECT statement or when the
remote table is read into the input side of a SELECT INTO, INSERT, UPDATE, or DELETE statement. A write operation against a
provider refers to an INSERT, UPDATE, or DELETE statement with a remote table as the destination table.

Table 2. Results of a distributed query based on provider capabilities and transaction context.

Distributed
query
occurs

Provider does not
support

ITransactionLocal

Provider supports
ItransactionLocal

but not
ITransactionJoin

Provider supports
both

ItransactionLocal
and

ITransactionJoin

In a
transaction
by itself (no
user
transaction).

By default, only read operations
are allowed. When the
provider-level option
Nontransacted Updates is
enabled, write operations are
allowed. (When this option is
enabled, SQL Server cannot
guarantee atomicity and
consistency on the provider's
data. This can cause partial
effects of a write operation to
be reflected in the remote data
source without the ability to
undo them.)

All statements are allowed
against remote data. Keyset
cursors are read-only.
The local transaction is started
on the provider with the
current SQL Server session's
isolation level and is
committed at the end of
successful statement
evaluation. (The default
isolation level for a SQL Server
session is READ COMMITTED
unless it is modified with the
SET TRANSACTION
ISOLATION LEVEL statement.
The provider must support the
requested isolation level.)

All statements are allowed. Keyset cursors are
read-only.
The local transaction is started on the provider
with the current SQL Server session's isolation
level and is committed at the end of a successful
statement evaluation.

In a user
transaction
(that is,
between
BEGIN TRAN
or BEGIN
DISTRIBUTED
TRAN and
COMMIT).

If the isolation level of the
transaction is READ
COMMITTED (the default) or
below, read operations are
allowed.

If the isolation level is higher,
no distributed queries are
allowed.

Only read operations are
allowed.

New distributed transactions
are started on the provider
with the current SQL Server
session's isolation level.

All statements are allowed.
New distributed transaction is started on the
provider with the current SQL Server session's
isolation level and committed when the user
transaction commits. For data modification
statements, by default SQL Server starts a nested
transaction under the distributed transaction, so
that the data modification statement can be
stopped under certain error conditions without
stopping the surrounding transaction. If the
XACT_ABORT SET option is on, SQL Server does
not require nested transaction support and stops
the surrounding transaction in the case of errors
during the data modification statement.

Data Type Handling in Distributed Queries

OLE DB providers expose their data in terms of the OLE DB-defined data types (indicated by DBTYPE in OLE DB). SQL Server
processes external data inside the server as native SQL Server types; this results in a mapping of OLE DB data types to SQL Server
native types (Table 3) and vice versa as data is consumed by SQL Server or exported by SQL Server, respectively. This mapping is
done implicitly, unless otherwise noted.

Data types in distributed queries are handled by using one of two mapping methods:

Consumption-side mapping maps types from OLE DB data types to SQL Server native data types on the consuming side,
when remote tables appear in SELECT statements and on the input side of INSERT, UPDATE, and DELETE statements.
Export-side mapping maps types from SQL Server data types to OLE DB data types on the exporting side, when a remote
table appears as the destination table of an INSERT or UPDATE statement.

Table 3: SQL Server and OLE-DB data type mapping table.

OLE DB type DBCOLUMNFLAG SQL Server data type
DBTYPE_I1* numeric(3, 0)
DBTYPE_I2 smallint
DBTYPE_I4 int
DBTYPE_I8 numeric(19,0)
DBTYPE_UI1 tinyint
DBTYPE_UI2* numeric(5,0)
DBTYPE_UI4* numeric(10,0)

DBTYPE_UI8* numeric(20,0)
DBTYPE_R4 float
DBTYPE_R8 real
DBTYPE_NUMERIC numeric
DBTYPE_DECIMAL decimal
DBTYPE_CY money

DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH=true
or Max Length > 4000 characters ntext

DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH=true nchar
DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH=false nvarchar
DBTYPE_IDISPATCH Error
DBTYPE_ERROR Error
DBTYPE_BOOL bit
DBTYPE_VARIANT* nvarchar
DBTYPE_IUNKNOWN Error
DBTYPE_GUID uniqueidentifier
DBTYPE_BYTES DBCOLUMNFLAGS_ISLONG=true or Max Length > 8000 image

DBTYPE_BYTES
DBCOLUMNFLAGS_ISROWVER=true,
DBCOLUMNFLAGS_ISFIXEDLENGTH=true,
Column size = 8 or Max Length not reported.

timestamp

DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH=true binary
DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH=true varbinary
DBTYPE_STR DBCOLUMNFLAGS_ISFIXEDLENGTH=true char
DBTYPE_STR DBCOLUMNFLAGS_ISFIXEDLENGTH=true varchar

DBTYPE_STR DBCOLUMNFLAGS_ISLONG=true or Max Length > 8000 characters or
Max Length not reported. text

DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXEDLENGTH=true nchar
DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXEDLENGTH=false nvarchar

DBTYPE_WSTR DBCOLUMNFLAGS_ISLONG=true or Max Length >4000 characters or
Max Length not reported. ntext

DBTYPE_UDT Error
DBTYPE_DATE* datetime

DBTYPE_DBDATE datetime (explicit conversion
required)

DBTYPE_DBTIME datetime (explicit conversion
required)

DBTYPE_DBTIMESTAMP* datetime
DBTYPE_ARRAY Error
DBTYPE_BYREF Ignored
DBTYPE_VECTOR Error
DBTYPE_RESERVED Error

* Indicate some form of translation to the SQL Server type's representation, as there is no exact equivalent data type in SQL
Server. Such conversions could result in loss of precision, overflow, or underflow. The default implicit mappings can be changed
in the future if the corresponding data types are supported by future versions of SQL Server.

Note numeric(p,s) indicates SQL Server data type numeric with precision p and scale s. The maximum allowed
precision for DBTYPE_NUMERIC and DBTYPE_DECIMAL is 38. The provider must support binding to the DBTYPE_BSTR
column as DBTYPE_WSTR while creating an accessor. DBTYPE_VARIANT columns are consumed as Unicode character
strings nvarchar. This requires support for conversion from DBTYPE_VARIANT to DBTYPE_WSTR from the provider.
The provider is expected to implement this conversion as defined in OLE DB. For more information, see Appendix A:
OLE DB Interfaces Consumed by SQL Server.

Interpreting Data Type Mapping

The mapping to a SQL Server type is determined by the OLE DB data type and the DBCOLUMNFLAGS values that describe the

column or scalar value. In the case of the COLUMNS schema rowset, the DATA_TYPE and COLUMN_FLAGS columns represent
these values. In the case of the IColumnsInfo::GetColumnInfo interface, the wType and dwFlags members of the
DBCOLUMNINFO structure represent this information.

To use consumption-side mapping for a given column with a specific DBTYPE and DBCOLUMNFLAG value, look for the
corresponding SQL Server type in the table. The type rules for columns from remote tables in expressions can be described by the
following simple rule:

A given remote column value is legal in a Transact-SQL expression if the corresponding mapped SQL Server type in the table is
legal in the same context.

The table and the rule define:

Comparisons and expressions.

In general, X <op> <remote-column> is a valid expression if <op> is a valid operator on the data type of X and the data
type that <remote-column> maps to.

Explicit conversions.

Convert(X, <remote-column>) is allowed if the DBTYPE of <remote-column> maps to native data type Y (as per table
above) and explicit conversion from Y to X is allowed.

If users want remote data to be converted to a nondefault native data type, they must use an explicit conversion.

To use export-side mapping in the case of UPDATE and INSERT statements against remote tables, map native SQL Server data
types to OLE DB data types using the same table. A mapping from a SQL Server type S1 to a given OLE DB type T is allowed if
either of these exist:

The corresponding mapping can be found in the mapping table (Table 3) directly.
There is an allowed implicit conversion of S1 to another SQL Server type S2 such that S2 maps to type T in the mapping
table (Table 3).

Large Object (LOB) Handling

As indicated in the table (Table 3), if columns of the type DBTYPE_STR, DBTYPE_WSTR, or DBTYPE_BSTR also report
DBCOLUMNFLAGS_ISLONG, or if their maximum length exceeds 4,000 characters (or if no maximum length is reported), SQL
Server treats them as a text or ntext column as appropriate. Similarly, for DBTYPE_BYTES columns, if
DBCOLUMNFLAGS_ISLONG is set or if the maximum length is higher than 8,000 bytes (or if maximum length is not reported),
the columns are treated as image columns. Text, ntext and image columns are called LOB columns.

SQL Server does not expose the full text and image functionality on LOBs from an OLE DB provider. TEXTPTRS are not supported
on large objects from an OLE DB provider; hence, none of the related functionality is supported, for example, the TEXTPTR system
function and READTEXT, WRITETEXT, and UPDATETEXT statements. SELECT statements that retrieve entire LOBs columns are
supported, as are UPDATE and INSERT statements for entire large object columns in remote tables.

SQL Server uses the structured storage interfaces on LOB columns if the provider supports them. The structured storage
interfaces in increasing order of preference and functionality are as follows: ISequentialStream, Istream, or ILockBytes. If one
or more of these interfaces are supported, the provider must return DBPROPVAL_OO_BLOB as the value of the
DBPROP_OLEOBJECTS property when it is queried through the IDBProperties interface. Also, the provider should indicate
support for the interfaces it supports in the DBPROP_STRUCTUREDSTORAGE property.

If the provider does not support any of the structured storage interfaces on LOB columns, SQL Server 2000 materializes this
interface on its own and still exposes them as text, ntext or image columns.

Accessing LOB Columns

If the provider supports one of the structured storage interfaces, SQL Server performs the following steps to retrieve LOB
columns during query execution:

1. Before opening the rowset through IOpenRowset::OpenRowset, SQL Server requests support for one or more of the
structured storage interfaces (ISequentialStream, Istream, and ILockBytes) on the large object columns. The first
interface supported by the provider is required; additional interfaces are requested as "set if cheap" by setting the
dwOptions element of the corresponding DBPROP structure to DBPROPOPTIONS_SETIFCHEAP. For example, if a provider
supports both ISequentialStream and ILockBytes, ISequentialStream is required and ILockBytes is requested as "set if
cheap."

2. After the rowset is opened, SQL Server uses IRowsetInfo::GetProperties to identify the actual interfaces available in the
rowset. The last or most preferable interface that the provider returned is used. When SQL Server creates an accessor
against the large object column, the column is bound as DBTYPE_IUNKNOWN with the iid element of the DBOBJECT
structure in the binding set to the interface.

Reading from LOB Columns

Use the interface pointer for the requested structured storage interface returned in the row buffer from IRowset::GetData to
read from the large object column. If the provider does not support multiple open LOBs at the same time (that is, if it does not
support DBPROP_MULTIPLE_STORAGEOBJECTS) and if the row has multiple large object columns, SQL Server copies the LOB
columns into a local work table.

UPDATE and INSERT Statements on LOB Columns

SQL Server passes to the provider a pointer to a new storage object rather than using the provider-supplied interface to modify
the storage object. For each LOB column, the value that is updated or inserted on a storage object is created with the chosen
structured storage interface. Depending on whether it is an UPDATE or an INSERT operation, a pointer to the storage object is
passed to the provider through IRowsetChange::SetData or IRowsetChange::InsertRow, respectively.

Error Handling

When a specific method invocation against an OLE DB provider returns an error code, SQL Server looks for the provider's
extended error information before returning information about the error condition to the user.

SQL Server uses the OLE DB error object as specified by OLE DB. Some of the high-level steps are:

1. When a method invocation returns an error code from the provider, SQL Server looks for the ISupportErrorInfo interface.
If this interface is supported, SQL Server calls ISupportErrorInfo::InterfaceSupportsErrorInfo to verify whether error
objects are supported by the interface that produced the error code.

2. If error objects are supported by the interface, SQL Server calls the GetErrorInfo function to get an IErrorInfo interface
pointer on the current error object.

3. SQL Server uses the IErrorInfo interface to get a pointer to the IErrorRecords interface.
4. SQL Server uses IErrorRecords to loop through all the error records in the object and get the error message text

corresponding to each record.

For more information about how the provider's error object is used, see your OLE DB documentation.

Security

When a consumer connects to an OLE DB provider, the provider typically requires a user ID and a password, unless the consumer
wants to be authenticated as an integrated security user. In the case of distributed queries, SQL Server acts as the OLE DB
provider's consumer on behalf of the SQL Server login that executes the distributed query. SQL Server maps the current SQL
Server login to a user ID and password on the linked server.

These mappings can be specified by the user for a given linked server and can be set up and managed by the system stored
procedures sp_addlinkedsrvlogin and sp_droplinkedsrvlogin. By setting the initialization group properties
DBPROP_AUTH_USERID and DBPROP_AUTH_PASSWORD through IDBProperties::SetProperties, the user ID and password
determined by the mapping are passed to the provider during connection establishment.

When a client connects to SQL Server through Microsoft® Windows NT® Authentication, and if the login has a "self" mapping set
up using sp_addlinkedsrvlogin, then SQL Server attempts to impersonate the client's security context and sets the
DBPROP_AUTH_INTEGRATED property on the provider during connection establishment. This process is called delegation.
Delegation is fully supported only in Windows® 2000. On Windows NT 4.0 or before, delegation is successful only if the provider
is completely local to the SQL Server machine and does not connect to a backend data source across the network. In this case, the
Windows NT authenticated logins must be mapped to a specific user ID and password to be able to access that linked server.

After the security context used for the connection is determined, the authentication of this security context and the permission
checking for that context against data objects in the data source are entirely up to the OLE DB provider.

For more information about sp_addlinkedsrvlogin and sp_droplinkedsrvlogin, see SQL Server Books Online.

Query Execution Scenarios
When evaluating a distributed query, SQL Server interacts with the OLE DB provider in one or more of these scenarios:

Remote query
Indexed access
Pure table scans
UPDATE and DELETE statements
INSERT statement
Pass-through queries

Remote Query

SQL Server generates an SQL query that evaluates a portion of the original query that can be evaluated in its entirety by the
provider. This scenario is possible only against SQL Command Providers. The extent to which SQL Server pushes operations to
the provider by generating an SQL query depends on the SQL grammar that the provider supports. The provider should indicate
its level of SQL support through the following:

1. By indicating SQL Minimum, ODBC Core or SQL-92 Entry level support through the DBPROP_SQLSUPPORT property. The
SQL Minimum syntax level is a new level that is supported in SQL Server 2000 that allows SQL Server to send remote
queries to simple providers that support a simple subset of SQL. This level encompasses a basic SELECT statement that does
not include subqueries, multiple tables in the FROM clause (hence no joins) and GROUP BY. For the subset of the SQL
grammar that is used by SQL Server for generating remote queries against providers of each of these syntax levels, see
Appendix B: SQL Subset Used for Generating Remote Queries.

2. By supporting various SQL Server specific properties to indicate support for individual SQL features that are not otherwise
included in the syntax level as reported by DBPROP_SQLSUPPORT. The list of properties and how SQL Server uses them are
described later in this section.

SQL Server uses parameterized query execution with a question mark (?) as the parameter marker in the Transact-SQL string.
Parameterized query execution is used against the SQL Server, Microsoft Jet, and Oracle OLE DB providers. Against other
providers, parameterized query execution is used if the provider supports ICommandWithParameters on the Command object
and at least one of the following conditions are met:

The provider indicates the ODBC Core level of SQL Server support through the DBPROP_SQLSUPPORT property.
The provider indicates support for the question mark (?) parameter marker by supporting the SQLPROP_DYNCMICSQL SQL
Server-specific property through IDBPProperties. For more information, see the next section on provider properties.
The administrator sets the Dynamic Parameters provider option on the provider to make SQL Server generate
parameterized queries.

When SQL Server generates the SQL text to be executed remotely, the table and column names are quoted with the quoting
character of the provider as reported through the DBLITERAL_QUOTE literal of the IDBInfo interface. If this literal is not
supported, table and column names are not quoted.

If the provider supports parameterized query execution, SQL Server considers a parameterized query execution strategy to
evaluate a join of a remote table with a local table. The parameterized query is executed repeatedly for parameter values
generated from each row of the local table. This strategy reduces the number of rows that are retrieved from the provider and is
beneficial when a local table with a small number of rows is joined with a remote table with a large number of rows. This remote
join strategy can be enforced by the REMOTE join optimizer hint. For more information about parameterized query execution, see
SQL Server Books Online.

The following are the higher-level steps against the provider in the remote query scenario.

1. SQL Server creates a Command object from the Session object by using IDBCreateCommand::CreateCommand.
2. If the Remote Query Timeout server configuration option is set to a value > 0, SQL Server sets the

DBPROP_COMMANDTIMEOUT property on the Command object to the same value by using
ICommandProperties::SetProperties; ICommand::SetCommandText must be called to set the command text to the
generated Transact-SQL string.

3. SQL Server calls ICommandPrepare::Prepare to prepare the command. If the provider does not support this interface,
SQL Server continues with Step 4.

4. If the generated query is parameterized, SQL Server uses ICommandWithParameters::SetParameterInfo to describe the
parameters and IAccessor::CreateAccessor to create accessors for the parameters.

5. SQL Server calls ICommand::Execute to execute the command and create the rowset.
6. SQL Server uses the IRowset interface to navigate and consume rows from the table. Use IRowset::GetNextRows to fetch

rows, IRowset::RestartPosition to reposition to the beginning of the rowset, and IRowset::ReleaseRows to release rows.

Provider Properties of Interest for Remote Query Execution

If the provider supports SQL features that are not covered by the syntax level reported in DBPROP_SQLSUPPORT, it can indicate
them using various provider-specific properties.

SQLPROP_GROUPBY. This property is of interest to a provider that supports the SQL-Minimum level. This property
indicates that the provider supports the GROUP BY and HAVING clauses in the SELECT statement. In addition, this property
also indicates that the provider supports the following five aggregate functions MIN, MAX, SUM, COUNT, and AVG. The
provider may not support DISTINCT on the argument of these aggregate functions.
SQLPROP_SUBQUERIES. This property is of interest in a provider that supports the SQL-Minimum level. It indicates that the
provider supports subqueries as specified by SQL-92 entry level. This includes subqueries in the SELECT list and in the
WHERE clause with support for correlated subqueries, IN, EXISTS, ALL, and ANY operators.
SQLPROP_DATELITERALS. This property is of interest to any provider (including those that support SQL-92 entry level).
Support for standard literal syntax for datetime literals is not part of SQL-92 entry level. This SQL Server-specific property
indicates that the provider supports datetime literal syntax as specified by the SQL-92 standard.
SQLPROP_ANSILIKE. Of interest to a provider that supports the SQL-Minimum level. This property indicates that the
provider supports the LIKE operator as per SQL-92 entry level ('%' and '_' as wildcard characters). This will be of use against
a provider that supports the SQL-Minimum level because the SQL-Minimum level does not include LIKE support.
SQLPROP_INNERJOIN. This property is of interest to providers that support the SQL-Minimum level. It indicates support for
multiple tables in the FROM clause. This will be of use against a provider that supports only the SQL-Minimum level
because the SQL-Minimum level does not include support for joins. This does not indicate support for explicit JOIN
keywords and does not indicate support for OUTER joins. It indicates only supporting implicit joins through a list of tables in
the FROM clause.
SQLPROP_DYNAMICSQL. Indicates support for '?' as a parameter-marker. The parameter marker should be supported in
the place of a scalar item in a WHERE clause or in the SELECT list. Support for '?' parameter markers allows SQL Server to
send parameterized queries to the provider.
SQLPROP_NESTEDQUERIES. Indicates support for nested SELECTs in the FROM clause (for example, SELECT * FROM
(SELECT * FROM T)). In many cases, SQL Server uses nested SELECT statements in the FROM clause of a query when it
generates the query strings to be executed remotely. Because nested SELECT support is not required by SQL-92 entry level,
SQL Server does not delegate queries with nested SELECT statements to the provider unless the provider also sets this
property. Alternatively, the administrator can also set the Nested Queries provider option for the provider to make SQL
Server generate nested queries against the provider.

The provider can support these properties using a SQL Server specific property set called SQLPROPSET_OPTHINTS and have
defined PROPID values. The property set SQLPROPSET_OPTHINTS and the two properties are defined by using the following
constants:

extern const GUID SQLPROPSET_OPTHINTS = { 0x2344480c, 0x33a7, 0x11d1,
 { 0x9b, 0x1a, 0x0, 0x60, 0x8, 0x26, 0x8b, 0x9e } };

enum SQLPROPERTIES {
SQLPROP_NESTEDQUERIES = 0x4,
 SQLPROP_DYNAMICSQL = 0x5,
 SQLPROP_GROUPBY = 0x6,
 SQLPROP_DATELITERALS = 0x7,
 SQLPROP_ANSILIKE = 0x8,
 SQLPROP_INNERJOIN = 0x9,
 SQLPROP_SUBQUERIES = 0x10
 };

Character Set and Sort Order Implications

SQL Server 2000 supports specifying a Collation for character data at a per column level. Collation includes both the character set
and the sort order specification for non-Unicode character data (char and varchar columns). For Unicode data (nchar and
nvarchar columns), collation specifies only the sort order.

SQL Server 2000 delegates string comparisons to the provider only if the character set (for non-Unicode data), sort order, and
string comparison semantics used by the linked server are the same as those used by the local server.

In the case of SQL Server linked servers, SQL Server automatically determines collation compatibility. For other providers, the
administrator must indicate to SQL Server the collation of character data from a given linked server. In SQL Server 2000, a new
linked server option called Collation Name is supported. If the administrator determines that the collation semantics adopted by
the linked server is the same as one of the SQL Server standard collations, she can set the Collation Name option to that

collation name. The Collation Name option can be set using the sp_serveroption system stored procedure. This option should
be set only if both of the following conditions are met:

The remote sort order and character set are the same as the specified SQL Server collation.
The string comparison semantics used by the OLE DB provider follow that of SQL-92 standard specifications or equivalently
the comparison semantics of SQL Server.

The option Collation Compatible supported in SQL Server 7.0 is still supported, for backward compatibility reasons. Setting it to
true is equivalent to setting the Collation Name option to the default collation of the master database of SQL Server. New
applications should use the Collation Name option instead of the Collation Compatible option.

Indexed Access

SQL Server uses an index exposed by the provider to evaluate certain predicates of the distributed query. This scenario is possible
only against Index providers and when the user sets the Index as Access Path provider option. The following are the major high-
level steps that SQL Server performs against the provider while using an index to execute a query:

1. Opens the index rowset through IOpenRowset::OpenRowset with the full table name and index name. The full table and
index names are generated as described earlier in the Remote Query scenario.

2. Opens the base table rowset through IOpenRowset::OpenRowset with the full table name.
3. Sets ranges on the index rowset based on the query predicate through IRowsetIndex::SetRange.
4. Scans rows off the index rowset through IRowset on the index rowset.
5. Uses the bookmark column from the retrieved index rows to fetch corresponding rows from the base table rowset through

IRowsetLocate::GetRowsByBookmark.

The rowset properties DBPROP_IRowsetLocate and DBPROP_BOOKMARKS are required on the rowset opened against the base
table.

Pure Table Scans

SQL Server scans the entire remote table from the provider and performs all query evaluation locally. The rowset corresponding
to the table is opened by calling IOpenRowset::OpenRowset. SQL Server constructs the table name supplied to OPENROWSET
from the catalog, schema, and object name parts as follows:

1. Each of the name parts are quoted with the provider's quoting character (DBLITERAL_QUOTE) and then concatenated with
the DBLITERAL_CATALOG_SEPARATOR character embedded between them.

2. After the rowset object is opened, SQL Server uses the IColumnsInfo interface to verify that the execution-time meta data
is the same as compile-time meta data for the table.

3. SQL Server uses the IRowset interface to navigate and consume rows from the table. Use IRowset::GetNextRows to fetch
rows, IRowset::RestartPosition to reposition to the beginning of the rowset, and IRowset::ReleaseRows to release rows.

UPDATE and DELETE Statements

The following conditions must be satisfied for a remote table to be updated or deleted from a SQL Server distributed query:

The provider must support bookmarks for the rowset opened through IOpenRowset on the table being updated or deleted.
The provider must support the IRowsetLocate and IRowsetChange interfaces on the rowset opened through
IOpenRowset for the table being updated or deleted.
The IRowsetChange interface must support update (SetData) and delete (DeleteRows) methods.
If the provider does not support ITransactionLocal, UPDATE/DELETE statements are allowed only if the Non-transacted
option is set for that provider and if the statement is not in a user transaction.
If the provider does not support ITransactionJoin, an UPDATE/DELETE statement is allowed only if it is not in a user
transaction.

The following rowset properties are required on the rowset opened against the updated table: DBPROP_IRowsetLocate,
DBPROP_IRowsetChange, and DBPROP_BOOKMARKS. The DBPROP_UPDATABILITY rowset property is set to
DBPROPVAL_UP_CHANGE or DBPROPVAL_UP_DELETE depending on whether the operation performed is an UPDATE or a
DELETE, respectively.

The following high-level steps against the provider for processing an UPDATE or DELETE operation are performed:

1. SQL Server opens the base table rowset through the IOpenRowset interface. SQL Server requires the above-mentioned

properties on the rowset.
2. SQL Server determines the set of qualifying rows to be updated or deleted.
3. SQL Server uses the bookmarks to position on the qualifying rows through the IRowsetLocate interface.
4. Use IRowsetChange::SetData for UPDATE operations or IRowsetChange::DeleteRows for delete operations to perform

the required changes on the qualifying rows.

INSERT Statement

The conditions for supporting INSERT statements against a remote table are less stringent than for UPDATE and DELETE
statements:

The provider must support IRowsetChange::InsertRow on the rowset opened on the base table being inserted into.
If the provider does not support ITransactionLocal, INSERT statements are allowed only if the Non-transacted updates
option is set for that linked server and if the statement is not in a user transaction.
If the provider does not support ITransactionJoin, INSERT statements are allowed only if they are not in a user transaction.

SQL Server uses IOpenRowset::OpenRowset to open a rowset on the base table and calls IRowsetChange::InsertRow to insert
new rows into the base rowset.

Pass-through Queries

This scenario is similar to the scenario in "Remote Query" except that the command text given to ICommand is a command
string submitted by the user and is not interpreted by SQL Server. SQL Server uses DBGUID_DEFAULT as the dialect identifier
when it calls ICommandText::SetCommandText. DBGUID_DEFAULT indicates that the provider should use its default dialect. If
this command text returns more than one result set, for example, if the command invokes a stored procedure that returns
multiple result sets, SQL Server would use only the first result set from the command.

For a list of all OLE DB interfaces that SQL Server uses, see Appendix A: OLE DB Interfaces Consumed by SQL Server.

Conclusion
Microsoft SQL Server 2000 offers the most robust set of tools for accessing data from heterogeneous data sources. By
understanding the OLE-DB interfaces exposed by SQL Server, developers can exert a high degree of control and sophistication in
distributed queries.

Appendix A: OLE DB Interfaces Consumed by SQL Server
The following table (Table 4) lists all the OLE DB interfaces that are used by SQL Server. The Required column indicates whether
the interface is part of the bare minimum OLE DB functionality that SQL Server needs or whether it is optional. If a given interface
is not marked as required, SQL Server can still access the provider, but some specific SQL Server functionality or optimization is
not possible against the provider.

In the case of the optional interfaces, the Scenarios column indicates one or more of the six scenarios that use the specified
interface. For example, the IRowsetChange interface on base table rowsets is an optional interface; this interface is used in the
UPDATE and DELETE statements and INSERT statement scenarios. If this interface is not supported, UPDATE, DELETE, and INSERT
statements cannot be supported against that provider. Some of the other optional interfaces are marked "performance" in the
Scenarios column, indicating that the interface results in better general performance. For example, if the IDBSchemaRowset
interface is not supported, SQL Server must open the rowset twice: once for its meta data and once for query execution. By
supporting IDBSchemaRowset, SQL Server performance is improved.

Table 4. Interfaces consumed by SQL Server

Object Interface Required Comments Scenarios
Data
Source
object

IDBInitialize Yes Initialize and set up data and security context.

 IDBCreateSession Yes Create DB session object.

 IDBProperties Yes
Get information about capabilities of provider,
set initialization properties, required property:
DBPROP_INIT_TIMEOUT.

 IDBInfo No Get quoting literal, catalog, name, part, separator,
character, and so on. Remote query.

DB
Session
object

IDBSchemaRowset No

Get table/column meta data.
Rowsets needed:
TABLES, COLUMNS, PROVIDER_TYPES;
others that are used if available: INDEXES,
TABLE_STATISTICS.

Performance, indexed
access.

 IOpenRowset Yes Open a rowset on a table, index or histogram.

 IGetDataSource Yes Use to get back to the DSO from a DB session
object.

 IDBCreateCommand No Use to create a command object (query) for
providers that support querying.

Remote query, pass-
through query.

 ITransactionLocal No Use for transacted updates. UPDATE and DELETE,
INSERT statements.

 ITransactionJoin No Use for distributed transaction support.
UPDATE and DELETE,
INSERT statements if in a
user transaction.

Rowset
object IRowset Yes Scan rows.

 IAccessor Yes Bind to columns in a rowset.
 IColumnsInfo Yes Get information about columns in a rowset.
 IRowsetInfo Yes Get information about rowset properties.

 IRowsetLocate No
Needed for UPDATE/DELETE operations and to
do index-based lookups; used to look up rows by
bookmarks.

Indexed access, UPDATE
and DELETE statements.

 IRowsetChange No

Needed for INSERTS/UPDATES/
DELETES on a rowset. Rowsets against base
tables should support this interface for INSERT,
UPDATE and
DELETE statements.

UPDATE and DELETE,
INSERT statements.

 IConvertType Yes Use to verify whether the rowset supports
specific data type conversions on its columns.

Index IRowset Yes Scan rows. Indexed access,
performance.

 IAccessor Yes Bind to columns in a rowset. Indexed access,
performance.

 IColumnsInfo Yes Get information about columns in a rowset. Indexed access,
performance.

 IRowsetInfo Yes Get information about rowset properties. Indexed access,
performance.

 IRowsetIndex Yes Needed only for rowsets on an index; used for
indexing functionality (set range, seek).

Indexed access,
performance.

Command ICommand Yes Remote query, pass-
through query.

 ICommandText Yes Use for defining the query text. Remote query, pass-
through query.

 IColumnsInfo Yes Use for getting column meta data for query
results.

Remote query, pass-
through query.

 ICommandProperties Yes Use to specify required properties on rowsets
returned by the command.

Remote query, pass-
through query.

 ICommandWithParameters No Use for parameterized query execution. Remote query,
performance.

 ICommandPrepare No Use for preparing a command to get meta data
(used in pass-through queries if available).

Remote query,
performance.

Error
object IErrorRecords Yes Use for getting a pointer to an IErrorInfo

interface corresponding to a single error record.

 IErrorInfo Yes Use for getting a pointer to an IErrorInfo
interface corresponding to a single error record.

Any object ISupportErrorInfo No Use to verify whether a given interface supports
error objects.

Note The Index object, Command object, and Error object are not mandatory. However, if they are supported, the
listed interfaces are mandatory as specified in the Required column.

Appendix B: SQL Subset Used for Generating Remote Queries
The SQL subset that SQL Server query processor generates against a SQL Command Provider depends on the syntax level that
the provider supports as indicated by the DBPROP_SQLSUPPORT property.

SQL Command Providers that support SQL Entry level or ODBC Core

SQL Server uses the following subset of the SQL language for queries evaluated by SQL Command Providers that support either
SQL-92 Entry level or ODBC Core:

1. SELECT statements with SELECT, FROM, WHERE, GROUP BY, UNION, UNION ALL, ORDER BY DESC, ASC, and HAVING
clauses.

2. UNION and UNION ALL are generated only against providers that support SQL-92 Entry level, not against those supporting
ODBC Core.

3. SELECT clause:

Scalar subqueries in the SELECT list.
Column aliases without the AS keyword.

4. FROM clause:

Explicit join keywords are not used; comma-separated table names are used to specify inner joins, and outer joins are
not specified in remote queries.
Nested queries of the form FROM (<nested query>) <alias>.
Table aliases without the AS keyword.

5. WHERE clause uses subqueries with [NOT] EXISTS, ANY, ALL.
6. Expressions:

Aggregate functions used: MIN([DISTINCT]), MAX([DISTINCT]), COUNT([DISTINCT]), SUM([DISTINCT]),
AVG([DISTINCT]), and COUNT(*).
Comparison operators: <, =, <=, >, <>, >=, IS NULL, and IS NOT NULL.
Boolean operators: AND, OR, and NOT.
Arithmetic operators: +, -, *, and /.

7. Constants:

Numeric and money literals are always surrounded by ().
Character literals are quoted with ''.

SQL Command Providers that support the SQL Minimum level

Against SQL Command Providers that support the SQL Minimum level, SQL Server generates SQL using the following grammar.

This grammar was derived using the SQL Minimum grammar described in ODBC 3.0. All differences from this grammar are
highlighted. The items shown in bold italics are those added to the SQL Minimum grammar described in ODBC 3.0. The items
shown deleted in green are those removed from this grammar.

select-statement ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[order-by-clause]
SELECT clause
select-list ::= * | select-sublist [, select-sublist]...
select-sublist ::= expression [alias]
alias ::= user-defined-name
FROM clause

table-reference-list ::= table-reference
table-identifier ::= user-defined-name
table-name ::= table-identifier
table-reference ::= table-name
WHERE clause
search-condition ::= boolean-term [OR search-condition]
boolean-term ::= boolean-factor [AND boolean-term]
boolean-factor ::= [NOT] boolean-primary
boolean-primary ::= comparison-predicate | (search-condition)
comparison-predicate ::= expression comparison-operator expression
 | expression IS [NOT] NULL
comparison-operator ::= < | > | <= | >= | = | <>

ORDER BY clause
order-by-clause ::= ORDER BY sort-specification [, sort-specification]...
sort-specification ::= { | column-name } [ASC | DESC]
Common syntactic elements
expression ::= term | expression {+|–} term
term ::= factor | term {*|/} factor
factor ::= [+|–] primary
primary ::= column-name
| literal
| (expression)
column-name ::= [table-name.]column-identifier
literal ::= character-string-literal
 | integer-literal
 | exact-numeric-literal
character-string-literal ::= '{character}…'
(character is any character in the character set of the driver/data source.
To include a single literal quote character (') in a character-
string-literal, use two literal quote characters ('').)
integer-literal ::= [+ | -] unsigned-integer
exact-numeric-literal::= [+ | -] unsigned-integer [period unsigned-integer]
 | period unsigned-integer
base-table-name ::= base-table-identifier
base-table-identifier ::= user-defined-name
column-identifier ::= user-defined-name
user-defined-name ::= letter[digit | letter | _]...
unsigned-integer ::= {digit}…
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
period ::= .

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real
company, organization, product, person or event is intended or should be inferred.

© 2001 Microsoft Corporation. All rights reserved. Microsoft, Active Directory Services, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Other trademarks and tradenames mentioned herein are the property of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Microsoft SQL Server 2000 Scalability Project—Server
Consolidation

Man Xiong
Microsoft Corporation

April 2002

Applies to:
 Microsoft® SQL Server™ 2000 Enterprise Edition
 Microsoft Windows® 2000 Datacenter™ Server

Summary: Learn about a common scenario of server consolidation, where a single system hosts many databases with a relatively
small number of users per database. The effects of these parameters are studied on an actual application called the "PACE," a
financial application from Microsoft bCentral. (14 printed pages)

Contents

Overview
Introduction
PACE Application
Use Multiple Instances
Memory Configuration for Multiple Instances
Processor Affinity
Disk Layout
Recovery Models
Conclusion
Appendix A: A Dell Solution for Scalable Enterprise Computing
Appendix B: Hardware/Software Configuration
Appendix C: PACE Workload Simulation Configuration
Appendix D: Test Configuration
Appendix E: Disk Configuration
Appendix F: Optimal System Configuration for 500 Databases on Each of 8 Instances

Overview
This article is a joint effort by Microsoft and Dell to demonstrate the scalability of Microsoft® SQL Server™ 2000 and Dell
hardware. SQL Server 2000 running on a Dell enterprise eight-way server can support thousands of databases, and their users,
while providing the performance necessary to allow for centralization. SQL Server 2000 maximizes return on investments in
symmetric multiprocessing (SMP) systems, enabling users to add processors, memory, and disks to build large centrally managed
enterprise servers.

More companies are outsourcing database services to Application Service Providers (ASP). Internal information technology (IT)
organizations are consolidating their database services as justified by total cost of ownership (TCO) and manageability benefits.
This article focuses on a common ASP scenario, where a single system hosts many databases with a relatively small number of
users per database. This scenario is also applicable to companies looking to consolidate databases from across an enterprise of
servers onto a centralized server. Therefore, the goal of this article is to demonstrate an approach to successfully scaling increased
workloads on a single server using multiple instances. An application from Microsoft bCentral™ is used to study the effects of
different configurations on workload performance as measured by transactions per minute (TPM).

The following list provides you with the benefits for using multiple instances on a single server:

Ability to support larger workloads on a single server.
Flexibility to separate databases based on meeting the requirements of different Service Level Agreements (SLA).
Ability to separate databases with different performance requirements.
Ability to separate databases with different backup and recovery requirements.
Ability to separate databases with different security requirements.
Ability to separate database based on change control, operational and maintenance requirements.

In this case study, the results show that:

Using multiple instances versus a single instance to support a large number of databases increased the workload supported
by a single server by a factor of eight.
Setting processor affinity increased the workload supported by 80 percent over the default setting, when used with multiple
instances.
Separating transaction logs from data files increases the workload by 10 percent. This provides additional support for the
best practice of not placing logs and data on the same device.
Best results are achieved when a server is dedicated to SQL Server.

This article provides general guidelines for understanding the criteria involved in successfully configuring multiple instances for
optimal throughput.

Introduction
As more and more customers move to server consolidation, we expect ASP and corporate IT to deploy multiple instances of SQL
Server 2000 for very large numbers of databases.

The ability to separate databases allows an ASP or corporate IT provider more flexibility in providing different service levels to
customers without requiring separate machines. Some of the challenges of this approach include determining when to use
multiple instances and how to configure them for optimal performance.

Optimal configuration is defined by studying the impacts of several parameters, including multiple instances, memory
configuration, CPU affinity, disk layout, and recovery models on TPM.

In this article, we focus on a common scenario where a single system hosts many databases with a relatively small number of
users per database. The effects of the parameters mentioned above are studied on an actual application, called the "PACE." PACE
is a financial application from Microsoft bCentral that is running on a combination of servers: Microsoft SQL Server 2000
Enterprise Edition, Microsoft Windows® 2000 Datacenter™ Server, and Dell PowerEdge 8450 servers.

PACE Application
The PACE application is an accounting and financial management product deployed as one of the service offerings available to
customers of Microsoft bCentral. Designed to help small businesses complete everyday tasks more efficiently, PACE includes
financial, banking, payroll, sales, and purchasing capabilities, as well as quick and easy reporting.

To offer every customer entity-secure accounting controls and reliable multiuser access, the application has a large number of
small financial databases on a single server, one database per customer. This also allows a more granular control over security,
backup and recovery, change control, and maintenance operations. The application has more than 200 stored procedures per
database to support the Web service.

This non-traditional design brings new challenges for system management and performance tuning for SQL Server. The biggest
challenge is the amount of memory required to support a large number of stored procedures, multiplied by the number of
databases. For SQL Server, virtual memory space is required so that an execution plan can be compiled for each procedure on
each database, with that plan being kept in the procedure cache. For the PACE application, the number of the execution plans
cached for 500 databases is 200*500 (or 100,000 cache entries). The greater the number of PACE databases, the greater the
required size of the server procedure cache. When there are more execution plans than the procedure cache can keep in memory,
execution recompilations occur, which can reduce query-processing throughput. Traditional methods, such as parameterization of
the stored procedures, do not address the problem.

Effective tuning requires specific configurations to increase effective memory space for the procedure cache. Other challenges
include how to efficiently use CPUs for the high degree of concurrent activity due to the number of databases and users, the
optimal disk layout, and the optimal recovery model.

Use Multiple Instances

Multiple instances can scale up the number of databases and workload per server

When the number of databases and resultant workload reach a certain level, it is a good practice to group databases in multiple
SQL Server instances as it relieves the pressure on memory. Good performance is accomplished by enabling the use of more
memory for the server procedure cache for each instance, and provides better operational and security isolation.

Our tests demonstrate that using multiple instances allows for scale up of the total number of databases and resultant workload
hosted on the system while maintaining good throughput per database.

Figure 1 shows the performance degradation on a single instance when the number of PACE databases increases from 500 to
4000. It also shows that running 500 databases per each of the 8 instances gives 8 times the number of transactions per minute
as running 500 databases on one single instance. Running 500 databases, per each of 8 instances, with a heavy workload comes

close to utilizing the total CPU capacity at this hardware configuration, so further increasing the number of total databases by
running 500 databases on each of 16 instances can not increase the total throughput (however, the system still demonstrates an
acceptable throughput).

Figure 2 shows that the workload throughput per database decreases when the number of databases (also the number of client
connections) increases on a single SQL Server. When the number of databases is kept at 500 per instance, throughput per
database stays the same on a single instance and on 8 instances, but decreases when increased to 16 instances due to CPU
constraints.

Figure 1. Total workload throughput on the system versus total number of PACE databases on the system

Figure 2. Workload throughput on each database versus the number of PACE databases on the system

Why we need multiple instances for this scenario

Performance degradation for many thousands of PACE databases on a single instance

SQL Server 2000 can access up to 2 gigabytes (GB) of virtual memory (or 3 GB if the /3GB switch is set in boot.ini) for the
procedure cache. When the number of databases on a single instance increases from 500 to 1000, there is not enough virtual
memory for the procedure cache to hold all of the increased number of query execution plans in memory. Some execution plans
in the procedure cache are dropped in order to free memory to make room for the plans of other stored procedures, but doing
this requires the dropped stored procedure plans to be recompiled when needed. Note that the resulting frequent recompilations
can hurt workload performance.

Using multiple instances relieves the pressure on memory

As shown in Figure 3, with greater than 4 GB physical memory, running the databases on multiple instances makes more memory
available for procedure cache (each instance has its own virtual address space and procedure cache).

When the number of PACE databases increases to many thousands for a single instance, the sheer number of database objects
consumes so much memory space available to procedure cache that the performance will degrade. The procedure cache will be
overwhelmed and recompilation will occur. Therefore, we recommend multiple instances.

Figure 3. Effective memory for procedure cache in different configurations

Same challenge for other similar designs

The key determinant of whether multiple instances benefit performance is the total amount of memory space needed for all the
execution plans. The total amount of memory space needed is determined by the average size of execution plans, number of
stored procedures per database, and the number of databases. The same challenge can occur when using a smaller number of
databases if there are more procedures in each database. Additionally, the same challenge can also occur with very complicated
procedures on a smaller number of databases, with a smaller number of stored procedures per database.

Memory Configuration for Multiple Instances
To achieve great performance for multiple instances, we only needed to specify a reasonable minimum server memory without
additional tuning on memory configuration. By reserving 1 GB minimum server memory for each instance, and keeping the
maximum server memory open, we observed a 25 percent performance gain over using the default dynamic memory allocation.
The performance is as good as using optimal static memory allocation without the high cost of constant recalibration. A customer
using this method should be aware of the possible impact on memory allocation for other applications on the same server. Other
applications competing for memory impact dynamic memory allocation. For this reason, Microsoft recommends dedicating the
system to SQL Server.

Another advantage of dedicating the system to a SQL Server is that it allows for the configuration to support differing workloads
on each instance without special testing and tuning to determine the optimum memory configuration. The practice of dedicating
the system to a SQL Server reduces the need for outages to reconfigure memory to achieve performance goals if workloads are
varied.

Simple memory configuration gives a performance boost

The use of a minimum floor for memory for each instance achieved the same performance as a perfect static allocation. The
burden of testing to determine the ideal static allocation for each instance can be reduced.

Tests have been run on 8- and 16-instance configurations using both static and dynamic memory allocation settings to determine
if one method provides better performance. Because every database has the same workload and every instance has the same
number of databases, the workload is even among the instances.

However, when running 16 instances, the use of static memory provides 25 percent better performance than using dynamic
allocation.

For the 16-instance configuration, reserving 1 GB minimum of server memory for each instance, and keeping the maximum
server memory open, we observed the same performance as using optimal static memory allocation.

Why this memory configuration is desired

When multiple instances of SQL Server are running on the same computer, each instance independently uses the standard
algorithm for dynamic memory management. The amount of memory allocated to each specific SQL Server instance is driven by

the relative workload of each instance. This is designed to ensure that the instances with higher workloads acquire more memory
while instances processing lighter workloads acquire less memory.

When running 16 instances, there is no longer enough physical memory to satisfy the targets of all of the instances. The instances
of SQL Server begin to compete for the limited memory available, and it takes much longer to reach equilibrium. In this scenario,
the use of static memory allocation to ensure initial allocation of the optimal size of memory to instances provides better
performance.

Note that every real world scenarios differs—they require experimentation to find the right size of memory to allocate to each
instance. Also, when the workload level on the different instances changes, additional experiments are required to determine the
new optimal memory allocation among the instances. This ongoing experimentation is not practical in most real applications.

The more realistic way to allocate memory among multiple instances is to combine the static memory allocation and dynamic
allocation. Reserving reasonable and minimum server memory for each instance can reduce the overhead to achieve equilibrium.
Keeping the maximum server memory open allows instances to adjust memory allocation dynamically, based on their workload.

Processor Affinity
Our tests demonstrate that manually allocating processors to specific instances of SQL Server with affinity mask can give a
performance boost of up to 80 percent, assuming the workload is consistent, which is typical for ASP workloads. The best results
were achieved when an instance of SQL Server did not have to share processors with other server application processes.

Performance gain with CPU affinity

Tests were run on 500 databases, on each of 8 instances with optimal memory configuration. The workload for each instance is
identical. Allocating each of the 8 instances to one of the 8 CPUs gives an 80 percent throughput improvement compared to the
default processor affinity setting.

Why using CPU affinity can improve performance

By default, each thread of an instance of SQL Server is scheduled to the next available processor. The CPU affinity mask setting
can be used to restrict an instance to only a subset of CPUs, and also ensures that each thread always uses the same processor
between interrupts. This reduces the swapping of the same thread among multiple processors, and increases the cache hit ratio
on the second-level cache. However, CPU affinity setting needs to be used carefully because workloads on different CPUs cannot
be balanced dynamically if the workloads on each instance are not even.

When running multiple instances on the same server with multiple processors, assigning processors to specific instances by
setting CPU affinity can reduce the number of active threads per processor and also reduce context switches, thus better utilizing
the second-level cache.

Disk Layout
For recoverability, logs should never be placed on the same device as data. In addition, separate physical disks for log files
improves performance.

In this test scenario, separating log files from data files on physical disks was found to give 10 percent performance gain over
placing the logs and data files on the same (larger) volume.

Tests were run by using 500 databases on each of 8 instances with optimal memory and CPU configurations with two different
disk layouts as shown in Figure 4:

Scenario 1:
Data files, log files (including tempdb log), and tempdb files of each instance on the same disk array, as described in Disk
Configuration2 of Appendix E.
Scenario 2:
Data files, log files (including tempdb log), and tempdb files of each instances on three separate disk arrays, as described in
Disk Configuration3 of Appendix E.

Separating log files from data files on physical disk gives a 10 percent performance gain.

Figure 4. Disk layouts

Why separating log files on physical disks improves performance

It is a common practice to put log files on different physical disks from data files to isolate sequential disk I/O on log files from
random disk I/O on data file. This practice is still valid with hundreds of log files in this test scenario. The benefit of more spindles
in the larger volume outweighs the benefit of separating random data I/O from sequential log I/O.

Recovery Models
Our tests demonstrate that running the workload under the full recovery model can achieve 90 percent performance of the bulk-
logged recovery model. In the given scenario, it makes sense to use the full recovery model to provide the most flexibility in
recovery while maintaining good performance.

Full recovery model provides good performance

To determine the impact of different recovery models on the workload performance, tests were run on 500 databases, on each of
8 instances, with optimal memory, disk configuration, and CPU affinity with two recovery models: full and bulk-logged. Running
the workload using the bulk-logged model results in 10 percent better performance than the full recovery model.

Additional considerations

Microsoft recommends that all production online transaction processing (OLTP) systems make use of the full recovery model, and
the data protection it provides. Bulk-logged recovery model can be used temporarily when doing large operations such as index
creation or bulk data loading. Performance of the large operations improves, but at the cost of increased risk of data loss. For
more information, refer to SQL Server Books Online.

Conclusion
With the combination of Microsoft SQL Server 2000, Microsoft Windows 2000 Datacenter Server, and the Dell PowerEdge 8450
servers, excellent and scalable performance is observed with many thousands of databases across multiple instances of SQL
Server on a single server. The optimal configuration is defined by studying the impact of several parameters, including multiple
instances, memory configuration, CPU affinity, disk layout, and recovery models.

In general, to successfully scale workloads on a single server for a large number of databases, and provide data protection:

Use multiple instances to scale up the workload supported by a single server.
Set processor affinity to increase performance for multiple instances.
Configure memory per instance using a minimum floor and leave maximum server memory open.
Separate logs from data on physical disk.

Appendix A: A Dell Solution for Scalable Enterprise Computing
The Dell PowerEdge 8450 is an ideal solution for Scalable Enterprise Computing (SEC) environments because it is can deliver high
levels of scalable performance running solutions on Microsoft Windows 2000 Datacenter Server and Windows 2000 Advanced
Server. The PowerEdge 8450 is designed to support enterprise applications and consolidate server resources in datacenter
environments.

PowerEdge 8450

This provides up to 8 Intel Pentium III Xeon processors at 700 MHz and 900 MHz (1-MB and 2-MB cache available) for ultimate
scalability.

Hot-swap drives, power supplies, cooling fans, and PCI slots help improve reliability and performance.
Four-peer PCI buses and 10 64-bit PCI slots provide outstanding I/O bandwidth.
Premier enterprise services for consulting, deployment, and support.
Windows 2000 Datacenter implementation plan and services.
Dell Open Manage server management software for ease of use.

PowerVault 650F

The PowerVault 650F offers a highly available, highly scalable, fibre channel RAID storage system with:

Dual-active, redundant controllers for reliable RAID protection and exceptional performance.
Fully redundant, fibre channel architecture to provide for no single point of failure.
Support for up to 10 fibre channel drives internally.

PowerVault 630F

The PowerVault 630F is an expansion enclosure for the PowerVault 650F offering:

Redundant power supplies, fans, and link control cards for additional protection.
Ten drives per enclosure.
Eleven expansion enclosures per array.

Appendix B: Hardware/Software Configuration
The tests were conducted using the following environment:

Server

1 Dell PowerEdge 8450

8 Intel® Pentium® III Xeon™ processors at 700 MHz

32 GB of RAM

8 Qlogic QLA2200 PCI Host Bus Adapters

4 Dell|EMC2 FC4700 DPE, each with 10, 32.9-GB, 10,000-RPM disks and 512-KB write-read cache

12 Dell|EMC2 FC4700 DAE, each with 10, 32.9-GB, 10,000-RPM disks

Total Disk Space = 5 TB—(160) 32.9 GB, 10,000-RPM disks

Operating system

Microsoft Windows 2000 Datacenter Server, Build 5.00.2195, Service Pack 1

Database server

Microsoft SQL Server 2000 Enterprise Edition, Build 2000.80.194.0 SP1

Appendix C: PACE Workload Simulation Configuration

1. Always use one connection per database.
2. Set very short think time (18ms) for each client connection (to eliminate very heavy stress level)—this scales the single user

connection to simulate the activity of 500 users with a think time of 10 seconds.
3. Use similar workloads among databases.
4. Start each database with a standard size of 30MB.

Appendix D: Test Configuration

1. The /3GB switch, in boot.ini, is used to change the size of virtual memory of processes.
2. /PAE is used in boot.ini to allow OS to use more than 4 GB memory.
3. The maximum option in boot.ini is set to the appropriate size for the test purpose.
4. AWE is enabled in conjunction with the /PAE boot.ini setting for AWE testing in single instance tests.
5. AWE is disabled for all the instances for multi-instance testing.
6. Min server memory option and max server memory option for SQL Server are set to the same size for the static memory

allocation.
7. Min server memory option for SQL Server is set to 1 GB, and max server memory option is set to default for the

recommended combination of static and dynamic memory allocation in the multi-instance scenario.
8. Fiber mode is always used.
9. Database recovery models are set to full for most of the tests, and bulk-logged for the specific recovery model comparison

tests.

Appendix E: Disk Configuration
Disk configuration 1 for single instance:

LUNs Number of physical disks RAID configuration Capacity (GB) Comment
LUN0_00 16 10 256 For the data files of all the PACE databases.
LUN0_01 16 10 256 For the data files of tempdb.
LUN0_02 6 10 96 For the log files of all PACE databases and tempdb.

LUN 00, 01, and 02 are connected to the server through two host bus adapter (HBA)s.

Disk configuration 2 for each of the 8 instances (all the data files and log files on the same LUN for each instance):

LUNs Number of physical disks RAID configuration Capacity (GB) Comment
LUN0_00 16 10 256 For all the files for one instance.

Each instance has one LUN and each LUN is connected to the server through one HBA.

Disk configuration 3 for each of the 8 instances (all the data files and log files on the same LUN for each instance):

LUNs Number of physical disks RAID configuration Capacity (GB) Comment
LUN0_00 8 10 128 PACE databases data files
LUN0_01 4 10 128 Tempdb data file and/or backup files.
LUN0_02 4 10 64 PACE databases log files and Tempdb log files.

Each instance has a group of three LUNs and each group is connected to the server via one HBA.

Disk configuration 4 for every two of the 16 instances (all the data files and log files on the same LUN for each
instance):

LUNs Number of physical
disks

RAID
configuration

Capacity
(GB) Comment

LUN0_00 8 10 128 For the data files of all PACE databases for 2 instances.
LUN0_01 4 10 128 For the data file of Tempdb for 2 instances.

LUN0_02 4 10 64 For the log files of all PACE databases and Tempdb for 2
instances.

Every two instances share a group of three LUNs, and each group is connected to the server through one HBA.

Appendix F: Optimal System Configuration for 500 Databases on Each of 8 Instances

Parameter Setting
Boot.ini /PAE
sp_configure 'min server memory' 1024
sp_configure 'affinity mask' 0_01 for instance 1 0_02 for instance 2 0_04 for instance 3
Sp_configure 'max worker thread' 1000
Recovery model Full
Disk layout Disk configuration 3

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Middle Tier Application Data Caching with SQL Server 2000

Ian Jose, SQL Server Group
Microsoft Corporation

February 2002

Applies to:
 Microsoft® SQL Server™ 2000

Summary: How to use Microsoft SQL Server 2000 to construct and maintain data copies in cache solutions. (17 printed pages)

Contents

Introduction Caching Overview Middle Tier Application Data Caching Middle Tier Application Data Caching with SQL Server 2000
Real World Examples Conclusion

Introduction
Middle tier applications often use a single database management system (DBMS) to store data, which can expose scaling
limitations as the number of user requests increases. Caching, a technique used to increase application performance by copying
data and then using the copied data in place of the original data, can dramatically increase the throughput (the number of
application requests serviceable per unit time) and scalability of middle tier applications. It does this by offloading a subset of data
requests from a single DBMS to one or more servers that hold closely synchronized copies of the data.

This paper contains a preliminary discussion about caching in general and then caching in the context of middle tier applications.
The next sections show how Microsoft® SQL Server™ 2000 can be used to construct and maintain the data copies used in cache
solutions. The paper concludes with real-world examples that illustrate how SQL Server 2000 has been used as a caching solution
to improve middle tier application performance.

Caching Overview
Caching can enhance application performance by reducing latency and increasing throughput. In middle tier application caching,
typically the only noticeable benefit is increased application throughput because reductions in latency within the middle tier are
usually not noticeable to the user.

In this paper, standard replication terminology is used to describe the servers in a caching topology; the data source is referred to
as the Publisher, and the cache is referred to as the Subscriber. For more information about replication, see SQL Server Books
Online.

Caching is most appropriate when the cached data is accessed repeatedly from the Subscriber. If cached data is accessed
infrequently (Figure 1), caching does not improve throughput.

Note Although the word access can refer to both read and write operations, here it refers only to read operations.
The way caches work with data that is written by the end user is described briefly at the end of this section.

Figure 1. Application without caching

If users access the same data repeatedly from the Subscriber, caching data can provide great benefits by improving throughput. It
is possible to increase the throughput of an application by offloading processing from a CPU-bound or I/O-bound Publisher to

the cache. The Publisher is accessed once to load the data into the cache, but thereafter data can be accessed repeatedly from the
cache without impact on the Publisher (Figure 2). Using SQL Server transactional replication, for example, you can forward
incremental data changes to Subscribers, and the demand on the Publisher is limited only to forwarding changes from a previous
data state already present at the Subscriber.

Figure 2. Single Subscriber cache

A cache typically uses a different technology from its data provider; this is due to the combined requirements of memory speed
and capacity in most data retrieval activities. For example, in the case of an in-memory cache for disk-resident data, the
combination of different technologies delivers the best of both worlds: low latency from memory and high volume from disk. In
some situations, however, it is appropriate to use the same technology for the cache and for the data provider, such as when the
data provider has other responsibilities in addition to providing data. In this case, a subset of the data provider's responsibility is
offloaded to the cache.

Using the same technology for the cache and the data provider is also appropriate when there are multiple caches. For example, a
single SQL Server DBMS might store both catalog data and order processing data for an e-commerce Web site. Caching data in
one or more SQL Server Subscribers can increase system throughput. The Publisher is still responsible for operations on order
processing data, but read operations against catalog data can be handled by any one of the multiple Subscribers (Figure 3). The
Publisher has the new responsibility of keeping the Subscribers up-to-date, but this is substantially less work than processing all
application catalog queries.

Figure 3. Multiple Subscriber cache

Although caching has some clear advantages, consider your particular data access requirements carefully before implementing a
cache. For example, if you have data for which replication latency must be extremely low (such as data that is updated frequently
or data that must reflect changes immediately), caching is less appropriate because more effort is required on the part of the
updater (usually the Publisher) to keep all copies of the data current. Even so, you may want to weigh the very real benefits of
allowing users to access out-of-date data at the Subscriber (at least for read operations), even when the data has already been
updated elsewhere. If you can tolerate a moderate increase in latency in this way, caching becomes a viable option again and you
could reap some of the performance benefits of caching. However, if you require serial transactions, you must have the most
current data and must forego caching.

Caching read/write data is similar to caching read-only data. However, updates are available immediately only if users are
consistently routed to the same cache, which is not usually the case. Changes made at any Subscriber must be propagated first to
the Publisher and then to all other Subscribers that cache the same data before all users are guaranteed to see the effects of an
update. The increased update activity may outweigh the benefits of offloading read operations. Additionally, to maintain update
durability, it is necessary to use the same durability techniques on each cache as those used on the Publisher, which can further
offset the benefits of caching.

Middle Tier Application Data Caching
Caching can increase middle tier application throughput for data that is mostly read data, which is the type of data common in
middle tier applications. These applications also have requirements for caching technologies that are often more stringent than
requirements for caches in client-side applications.

Middle Tier Application Data

There are a wide variety of middle tier applications, and each application has different classes of data with disparate
characteristics. Consider caching data to increase throughput if your data:

Is mostly read.

Does not need to be read in its most current form.

A common middle tier application today is the e-commerce application. This type of application allows shoppers to browse and
order merchandise through their Internet browsers. Most of the application requests are read operations on catalog data. Each
individual customer using the site queries the same catalog data repeatedly. Even if the same data is not returned repeatedly to
users, the e-commerce application can access it repeatedly. For example, the application can perform full-text searches.

The catalog data changes infrequently and it is only changed by the e-commerce business, not by the customer. The catalog data
usually does not need to be queried in its most current form, and in a well-designed system, update propagation latency should
only be a matter of seconds. Users spend most of their time browsing catalog data; they only occasionally perform an insert or
update operation to order a product. During order processing, only the most current information can be shown (such as the
product price) because the customer and the e-commerce business are entering into a contract. In this example, the catalog data
is appropriate for caching; order data is not appropriate for caching.

Table 1. Example of application data comparison

Web
application

data
Source Lifespan Partitionable

by users
Shared between users or

across requests
Must be
durable

Suitable for middle tier
application data caching

Catalog Application Long No Yes* Yes Yes
Order End user Long Yes No Yes No

* The entire data set, not the query result, is common across users and user requests for free catalog data.

One other aspect of Web data that should be mentioned is data mining, which often occurs on user profile and order processing
data. Both types of data are normally partitionable in an online transaction processing (OLTP) system. However, for data mining,
they are typically rolled up in a nonpartitioned cache because data mining queries are designed to answer questions that pertain
to the entire user space or enterprise. Caching for data mining is common, and many techniques discussed in this paper are
applicable to data mining. For more information about implementing data mining in SQL Server 2000, see the topic "Introduction
to Data Mining Models" in SQL Server Books Online.

Middle Tier Application Cache Requirements

Because middle tier applications often have large data sets and a high number of users, middle tier data caches must satisfy a
number of requirements:

Cached data must be relatively up-to-date.
The cache service must be consistent.
The entire middle tier application, including the cache, must be scalable and highly available.
The technology used must be easy to maintain.
The cache must be able to evolve incrementally over time in response to application and schema changes.
Application administrators must be able to monitor application and cache operation.

High capacity

The amount of data stored in a middle tier application cache can range from data sets small enough to be stored completely in
memory to data sets so large that they can only be stored across multiple disks. For example, several middle tier applications exist
today to sell books over the World Wide Web. Their databases often contain information about millions of books. Information
about popular books is accessed repeatedly, while information about others is almost never requested. The total size of the data,
including secondary indexes, is much larger than can be conveniently stored in memory.

To handle large data sets, the middle tier application cache should have features similar to database management systems to
make good use of hardware resources, such as Most Recently Used (MRU) algorithms. Additionally, when cached data sets are
large and expensive to construct, they should be constructed only infrequently, such as when setting up a new cache. In this case,
DBMS features such as persistence, logging, and recovery are crucial to ensure that these expensive data states are reliably
maintained.

Rich query support

When entire data sets are too large to return for a given user request, you need the flexibility provided by rich query support. This
facilitates queries on the data that select only a small portion of the cached data. Again consider a Web-based bookseller
application. Each user request is for books that match specific criteria, often based on full-text searches of title and content. The
total number of books in the cache is large, but only a few are returned to the user during a shopping experience.

Regular service

Cache access performance should be consistent and predictable. Regular operations should not disrupt service. For example,
propagation of updates from the Publisher should not block service to such an extent that it is noticeable to users.

Fast data propagation

The data cached must be relatively up-to-date. If it lags too far behind the data on the Publisher, it will no longer be an adequate
substitute for the original data. For example, a common middle tier application is online publishing of stock information. Most
sites have disclaimers indicating that prices shown may be as much as 20 minutes old. However, all these sites strive to keep
latency to a minimum.

Consistent data

In addition to being relatively up-to-date, cached data must match a consistent state that existed at some time in the Publisher.
When cached data is allowed to be inconsistent, applications must handle anomalies in the data. For example, a middle tier
application caches customer order information and the caching technology does not support consistency, anomalies can occur
within the cached data. The application must then check for data consistency and take deliberate action when inconsistencies are
found in order to present the user with a consistent image of the data. To simplify application development, caching technologies
must ensure the consistency of cached data.

Filtering

The data required in the cache is often a subset of data stored at the Publisher, so the data set must be filtered. Either the entire
data set is filtered or only the rows that change are filtered as the changes are propagated to the cache.

Low maintenance

Middle tier applications are server applications that must run continuously. Although some downtime is possible, maintenance
requirements for middle tier applications must be kept to a minimum. Regular operations should be self-supporting; they should
not require regular intervention by application administrators to keep the application running with acceptable performance.

Dynamic schema

Middle tier applications evolve over time, and, therefore, the nature of data in the cache also changes occasionally. Cached data
may gain a new property or lose an existing one, which requires changes to the table schema. Changes in query patterns on the
cached data may require index changes.

Caches should accept these changes without requiring entire data sets to be invalidated and reloaded. This is especially important
when the amount of cached data is large. For example, a middle tier application that publishes yellow page information on the
World Wide Web is modified to begin publishing Web site addresses for their business customers. At the time of the change, only
a few businesses have Web sites and the total change to the data within the cache is small. However, the meta data for the cached
data will contain a new property. The amount of data in the cache is large, and reloading all caches may require either a
prohibitive amount of downtime for the entire site or excessive resources to make the change without affecting users. The cost in
resources should be commensurate with the amount of data changes actually occurring in the cache.

Monitoring support

Caches should have support for monitoring so that application administrators can watch the operation for anomalies. This
includes being able to detect changes in application usage patterns, hardware and software failures, and denial of service attacks.

Middle Tier Application Data Caching with SQL Server 2000
The features that make SQL Server 2000 a great DBMS for storing middle tier application data also make it a great technology for
caching the same data. SQL Server 2000 can store and efficiently access very large amounts of data. Efficient algorithms ensure
that most often used data is kept in memory for fast access. After large data sets are imported into the cache, its logging and
recovery technology ensures that this data does not become corrupted by events such as application failures or brief power
interruptions. Only a media failure might require cached data to be reloaded from either a database backup or from the Publisher.

SQL Server 2000 has rich query capabilities that allow large data sets to be filtered for each user request. This support includes
the Transact-SQL query language with precompiled stored procedures that have optimized query plans. Rich indexing is also
supported to speed queries on the cached data. To optimize queries, indexes can be added at any time after the cached data is
populated, which is particularly useful if cache query loads or query types change over time.

Cache Subscribers are unlike Publishers in that their data can always be regenerated from the Publisher. In order to reduce
maintenance requirements, you can elect not to back up cache Subscribers. Instead, you can handle media failures by constructing
a new cache at the Subscriber. You can use the simple recovery model with cache Subscriber databases because no backups will
exist. Using the simple recovery model also speeds up bulk update operations and minimizes disk usage for log files.

SQL Server 2000 also has rich replication support to keep caches closely synchronized with data Publishers. This replication
support includes transactional replication and snapshot replication, the most appropriate technologies for caching. Transactional
replication and snapshot replication maintain transactional consistency when replicating data changes. Objects that can be
replicated, called articles, include tables, stored procedures, user-defined functions, views, and indexed views.

Transactional Replication

Transactional replication monitors changes to tables on the publishing server at the transaction level: insert, update, or delete
operations. Changes made to the Publisher flow continuously or at scheduled intervals to the subscribing servers, depending on
the settings you choose. Changes are propagated in near real time, typically with a latency of seconds. Only committed
transactions are sent to the Subscribers, and transactions are guaranteed to be in the order in which they were committed at the
Publisher. This guarantees transactional consistency: The cache state is always a state that existed at some time on the Publisher.
An example of transactional replication topology is shown in Figure 4.

Transactional replication subscriptions must be synchronized to a recent data state before incremental updates can be applied.
The process of creating this initial state in the Subscriber is similar to snapshot replication, which is described in the section
Snapshot Replication later in this paper. To replicate incremental changes, transactional replication first propagates changes from
the Publisher to the Distributor. The Distributor can be the same server as the Publisher, or it can be a separate server. In either
case, it has a special database, called the distribution database, which holds changes harvested from the transaction log of the
Publisher. These changes have not yet been distributed to all Subscribers. The process that moves transactions from the Publisher
to the distributor is called the Log Reader Agent. The process that distributes transactions from the distribution database to the
Subscribers is called the Distribution Agent.

SQL Server 2000 transactional replication automatically replicates changes only to tables, but changes to other types of articles
can still be incrementally propagated to subscriptions through the use of sp_addscriptexec. Transactional replication requires
published tables to have primary keys, which are used to relate update operations on the Publisher to data already replicated to
the Subscribers.

Figure 4. Example of transactional replication server topology

High capacity

Because SQL Server supports terabytes of data, it is a reliable, high-capacity database system that makes an appropriate platform
for a cache. It has a robust backup and recovery system that can be used on both the Publisher and the cache. SQL Server
provides high throughput, and transactional replication is a very efficient way to propagate changes.

Rich query support

Unlike many specialized caching products, SQL Server uses a mature dialect of Structured Query Language (SQL): Transact-SQL.
SQL Server provides application developers with the same rich query support for cached data that they have for non-cached data.
For example, an application could provide users ad hoc query access to cached data with no additional programming.

Regular service

Transactional replication helps minimize contention and provide regular service from the cache by incrementally replicating
updates made at the Publisher. Updates at the Publisher can be thought of as a serial stream of updating transactions with each

transaction taking the Publisher from one consistent state to another. In transactional replication, these updates are propagated to
each cache as a similar set of serial transactions. However, adjacent transactions at the Publisher are often performed as a single
transaction at each subscriber because combining multiple transactions into a single transaction is more efficient. The number of
Publisher transactions in a Subscriber transaction is configurable through the –CommitBatchSize parameter of the Distribution
Agent, and can be limited to exactly one.

It is important for any cache solution to minimize contention so that operations on the cache complete in a reasonable amount of
time. Any updating operation can cause contention because locks are acquired on updated rows and held for the duration of the
operation. These locks prevent other update and read operations on the same rows. Contention is reduced when the number of
updates in a transaction is small or when the transaction is committed quickly. Transactional replication keeps contention on the
cache similar to contention on the Publisher because similar transactions are applied. Snapshot replication has much greater
contention because it updates all rows in a cache in a single transaction.

Fast data propagation

SQL Server 2000 transactional replication can propagate changes made to published data quickly. The Log Reader Agent and the
Distribution Agents can run continuously. Each agent operates on changes one batch at a time and processes the remaining
changes in each batch immediately. (Batch sizes are configurable.) If an agent reaches the end of a batch and there are no
remaining changes, the agent becomes inactive for two seconds and then polls for additional changes. This batch-oriented
process usually leads to update propagation latencies of only a few seconds.

The Distributor must not be throughput-bound because this has a negative effect on data propagation latency. The Distributor can
become throughput-bound if the distribution server has inadequate hardware resources, but this is rarely seen in practice. It is
more common for throughput problems in the distribution process to result from a large number of indexes or triggers on
published data at the Subscriber. As each update is applied at the Subscriber, all indexes are maintained and all triggers are fired;
therefore, operations on Subscribers at update time must be carefully considered with throughput in mind.

Consistent data

Transactional replication replicates changes on transaction boundaries and holds locks when applying updates (as it does for non-
cached data), so queries on the cache are always transactionally consistent. The data the user sees may be latent, but it is always
consistent because it represents a state that existed at some time on the Publisher.

Filtering

Transactional replication supports filtering. Publications themselves are a form of filtering because they define an arbitrary set of
replicatable objects within a publishing database. Additionally, transactional replication allows filtering within a table, so that only
certain columns or rows are published to the cache. Row filtering is based on data in the row or related data in other tables. For
filters that are based on data in other tables, the filters are applied against the live data (the complete data set at the Publisher) for
all data that is not in the replicated row.

Transactional replication also permits more complex filters when the filter is expressed as an indexed view. An indexed view is a
materialized form of a view that is incrementally maintained; transactional replication can replicate this object as though it were a
table. For more information about indexed views and what types of views can be indexed, see SQL Server Books Online.

Low maintenance

Transactional replication is self-maintaining; under normal conditions it does not require a database administrator to perform any
maintenance. The Distribution Cleanup Agent removes transactions from the distribution database after they have been delivered
to all Subscribers. Updates are not retained longer than the distribution retention period, which is a Distributor property with a
default of 72 hours. This is true even when updates have not been distributed to every Subscriber (for example, when a
Subscriber is removed from a topology but its subscription is not dropped). The Distribution Cleanup Agent deactivates such
subscriptions and then cleans up the distribution database according to the remaining active subscriptions.

An expired subscription agent checks for subscriptions that have not synchronized within the subscription expiration period (a
publication property with a default of 14 days). For example, when you remove a Subscriber without dropping its subscription,
the subscription is automatically dropped after the time specified in this property has elapsed. No intervention is necessary in this
process, but if the rate of updates propagated is so high that retaining 72 hours of changes causes resource shortages on the
Distributor, the database administrator can set the appropriate distribution retention period.

In addition, the History Cleanup Agent deletes history information logged by replication agents. The amount of replication history
retained is determined by the history retention period, a Distributor property with a default of 48 hours.

Dynamic schema support

Transactional replication includes support for updating publication schemas after subscriptions have been created and are
actively receiving updates from a Publisher. You can update publication schemas after subscriptions have been created by:

Adding articles to active publications.
Dropping or adding columns, both to published tables and to their underlying tables.
Writing scripts once at a Publisher and then running them in transaction order on each Subscriber.

To update publication schemas in these ways, use SQL Server Enterprise Manager, Transact-SQL scripts, or transact-SQL
Distributed Management Objects (SQL-DMO). In this paper, only script examples are used to illustrate how schema changes can
be made.

Use the stored procedure sp_addarticle to add articles to an active publication. The addition of an article does not affect the
distribution of updates to articles that are already published. When a new article is added, the Snapshot Agent creates a snapshot
for the new articles only, and the Distribution Agent propagates these articles to subscriptions in transaction order. If the new
article is a table, incremental updates to the table are subsequently propagated. At any point in time, all published data at a
subscription is consistent.

In addition to adding entire articles to a Publication with active subscriptions, it is also possible to modify published articles. Use
the stored procedures sp_repladdcolumn and sp_repldropcolumn to add and drop columns, respectively. The replication
process continues uninterrupted when a schema is updated using these stored procedures. However, some contention may occur
on the Subscribers because the add column or drop column operations require an exclusive table lock for a brief period of time. It
is not necessary to rebuild an entire cached data set from the Publisher when a column is added or dropped, but procedures
referencing the table must recompiled for the updated schema.

In addition, arbitrary scripts can be run at each Subscriber using sp_addscriptexec. This stored procedure takes a script file as a
parameter and runs this script once at each Subscriber in order with other updates that are occurring on the Publisher. It is
important not to use this mechanism to change column definitions in published tables because special stored procedures used in
transactional replication must be updated in concert with updates to the column schema of published tables. However, indexes
can be added or dropped, and many other changes are also possible.

Monitoring support

SQL Server 2000 replication has extensive monitoring support. The Replication Monitor in SQL Server Enterprise Manager
graphically displays status for the Snapshot Agent, the Log Reader Agent, and the Distribution Agent. You can also view status for
distribution cleanup, agent history cleanup, and expired subscription cleanup agents. It is also possible to monitor a group of
distributors in SQL Server 2000 using the Replication Monitor Group feature.

Configure alerts for any agent to notify an administrator in the event of a failure or unexpected result. Configure notifications to
use e-mail, a pager, or a net send notification to send a message to a database administrator. In addition, events can be written to
the Windows Application Event Log so that all system events can be viewed from one location.

You can also query events directly from the following system tables in the distribution database:

Snapshot history is stored in the MSsnapshot_history table.
Log reader history is stored in the MSlogreader_history table.
Distribution agent history is stored in MSdistribution_history table.

Most developers never access these tables directly because their schema can change from release to release, requiring
unexpected changes to custom monitoring applications.

Snapshot Replication

Snapshot replication is similar to transactional replication except that incremental changes to replicated objects are not
propagated to Subscribers. Instead, new snapshots of replication objects are periodically produced and applied to Subscribers.
Snapshot replication can replicate the same objects that transactional replication can. In terms of caching, snapshot replication
features are the same as transactional replication features, except as noted in this section. Primary keys are not required for each
replicated table because no incremental updates are applied to Subscribers. However, when articles are updatable through
immediate or queued updating, primary keys are required so that updates to subscription article rows can be associated with the
same logical row on the Publisher. Updates for all objects, including objects other than tables, are applied in snapshot replication.

In general, snapshot replication is less appropriate for caching than transactional replication, but it can still be employed for
caching when:

Cached data periodically changes all at once.
Cached data can periodically be offline during updates.

However, snapshot replication can be an even more effective technology for caching than transactional replication when the
update rate on the data is very high and when the total volume of data is so low that it can be fully updated in a time similar to an
application's cache query.

For example, consider a foreign currency exchange application that serves a kiosk in an airport. At any one location, there are
fewer than 20 currencies to convert. Currency conversion rates are changing every second in world currency markets, so cached
data is always inaccurate to some degree. Snapshot replication can be used to efficiently update a currency conversion table
because applying changes at each kiosk as a net data change, rather than replicating every update that occurred at the Publisher,
is a more effective method of moving this data. Additionally, because the data set is so small, it can be fully updated in a time
imperceptible to the user; any contention that occurs at the Subscriber is not noticeable to the user.

Low maintenance

Snapshot replication, like transactional replication, is self-maintaining. Under normal conditions, no maintenance work is required.
Maintenance agents similar to those described for transactional replication clean up out-of-date history and abandoned
subscriptions.

Dynamic schema

Snapshot replication also includes some support for dynamic schema changes. Articles can be added to publications with active
subscriptions. In addition, columns can be added or dropped.

Propagating more substantial schema changes is possible if you first drop all subscriptions (which does not remove data from
Subscribers) and then define a new snapshot publication. The new publication can be pushed to Subscribers of the previous
publication. When objects of the same name are found, they are dropped and re-created using the same process used for a
regular snapshot distribution. The only additional step is that all previously published objects on the Subscribers that were not
contained in the new publication must be removed. SQL Server 2000 replication also provides ways to automate this activity
through pre-snapshot or post-snapshot scripts. (For more information, see the topic "Executing Scripts Before and After the
Snapshot is Applied" in SQL Server Books Online.)

Monitoring support

Monitoring support for snapshot replication is similar to that of transactional replication, except that snapshot replication does
not employ a Log Reader Agent because no propagation of incremental data changes occurs.

Real World Examples
The following examples show how SQL Server 2000 with replication is being used today to increase middle tier application
throughput with caching. The first example is from MS.com, the application group within Microsoft Corporation responsible for
developing and operating the corporate Web site. The second example is from NASDAQ.com, the user information site for the
NASDAQ stock exchange.

MS.com

The MS.com group at Microsoft develops and operates the Web site www.microsoft.com. MS.com uses SQL Server 2000 and its
replication support extensively to scale out mostly read content databases (Figure 5). Of the approximately 200 computers
running SQL Server that are used in MS.com, about half are Publishers and the other half caches.

Each content server houses one or more databases, with each database ranging in size from 2-10 gigabytes (GB). The content in
these databases is all the data behind the Microsoft.com Web site and has a total size of more than 1 terabyte. Some of this data is
normalized into rows and columns, and some is stored as XML documents in SQL Server image columns.

The cache servers cache the subset of the content that is read so frequently, by both users and application components, that a
single commodity server cannot support the load.

Figure 5. MS.com scalable cache unit

SQL Server replication is used to create and maintain data in caching servers. MS.com uses continuous log reader and distribution
agents to minimize latency. In addition, Subscribers are located on the same subnet as their Distributors to further reduce latency.
MS.com typically finds a distribution latency of only 2 to 3 seconds. Local Distributors are strictly used because MS.com can
partition Publishers by application. This partitioning ensures that no Publisher has so great an update load that it cannot also be a
replication Distributor.

Network Load Balancing (NLB), a clustering feature of Microsoft Windows® 2000, is used to abstract sets of homogenous
Subscribers into single virtual servers. NLB provides load balancing, availability, and flexibility to the operations staff. For example,
operators can remove a server without severely affecting service, provided the server is not the last cluster member. Additional
computers can be added to these NLB clusters as the read loads increase. The result of the MS.com architecture is a flexible server
topology that can support worldwide loads.

Caches are synchronized with content servers using both snapshot and transactional replication. When snapshot replication is
used, NLB moves connections from servers that are about to be resynchronized to the remaining servers in the cluster. After the
servers to be resynchronized are emptied of connections, new snapshots are applied; then the servers are re-enabled in the NLB
cluster. NLB is then used to strictly move connections from the unsynchronized servers to the synchronized ones. This action
occurs quickly enough to prevent users from seeing new data and then subsequently seeing old data.

By repeating this process on all NLB cluster members, the entire cluster can be resynchronized without affecting query service.
Scripting automates the entire process. When transactional replication is used, there is no need to enable and disable servers in
NLB clusters because transactional replication replays updating transactions as they occurred on the content owner; no
substantial locking occurs on caches.

The example of MS.com provides some important lessons about using replication for caching:

Keep the Distributor and all Subscribers on the same subnet. This minimizes network latency and thereby minimizes
replication latency.
Use continuously running agents to minimize latency. Be aware of the following when using continuously running agents:

When a continuous running agent experiences an exception condition and stops, it does not automatically restart
itself. This agent behavior can be changed in Enterprise Manager. For example, to change the behavior of the Log
Reader Agent so that it restarts on failure:

1. Expand ServerName, then Replication Monitor, then Agents, and finally Log Reader Agents.
2. In the right pane, right-click the Log Reader Agent, and then select Agent Properties.
3. Click the Steps tab.
4. Select job step 2 (Run Agent), and then click Edit.
5. Click the Advanced tab.
6. On the On Failure Action menu, select Goto step: [1] Log Reader Agent Startup Message.
7. Click OK to exit this dialog box, and then click OK again to exit the main dialog box.

The alerting feature in SQL Server Agent jobs should be used to inform a site administrator when continuously
running agents fail.

If a continuous agent is changed to a scheduled agent, remove the -Continuous parameter manually from the
replication agent command.

If a continuous agent is running when it is updated to be a scheduled agent, manually stop it and restart it to begin
scheduled operation.

The snapshot location should be local to the Publisher, so that snapshot creation time is kept to a minimum. After the
snapshot has been created, it can be moved to a location close to the Distributor or Subscriber for subsequent use in
subscription initialization.
Use scripting extensively to benefit from guaranteed repeatable results when you set up a new cache. When scripts are
created, they run under the security context of their creator. Change this manually through sp_changeobjectowner to be
the service account that is used at the new cache.
SQL Server monitoring can be integrated into existing monitoring components using scheduled jobs to gather general
server and replication information. SQL Server replication information is stored in history tables in the distribution
database.
In general, schema changes require subscription re-initialization. Some schema changes, however, do not require re-
initialization, including changes to add or drop columns. For these two operations, schema changes should be made with
sp_repladdcolumn and sp_repldropcolumn, respectively, whenever possible. It is possible to add articles or columns
within a table article to an existing publication by using a partial re-initialization, which is less time-consuming than a full
subscription re-initialization.

MS.com plans to continue using SQL Server 2000 and its replication features to develop scalable topologies of commodity
servers that can handle the loads required of one of the world's most trafficked sites.

NASDAQ.com

NASDAQ.com is a public information site that contains information about companies traded on the NASDAQ securities exchange.
The public information includes continuously updated stock quotes as well as background information on traded companies. The
total volume of data is less than 1 GB and can typically be kept in memory after loading from disk. NASDAQ.com employs SQL
Server replication for both scalability and availability of data. The topology shown in Figure 6 reflects this, but in this paper we
only describe how NASDAQ.com uses replication for scalability.

Figure 6. NASDAQ.com SQL Server/replication topology (click image to see larger picture)

NASDAQ.com uses both snapshot and transactional replication. Snapshot replication is used for data sets that are small in size
and that usually change all at once. Transactional replication is used for larger data sets that change incrementally. Continuous
push replication is used for transactional subscriptions in order to minimize latency. Using push subscriptions instead of pull
subscriptions ensures that replication can be monitored and controlled from the Distributor alone. (For more information see the
topics "Push Subscriptions" and "Pull Subscriptions" in SQL Server Book Online.) Although Figure 6 shows three Subscribers,
NASDAQ.com actually has four Subscribers in each geographic region at the time of this writing. In addition, the relative workload
of the Web servers and database servers means that there are approximately 60 Web servers for the eight Subscriber database
servers.

The example of NASDAQ.com reveals some additional lessons about using replication for caching:

Only replicate the data needed by the queries that run at Subscribers. For example, it is important to ensure that the
worktables used in the construction of data at the Publisher are not published.
Use snapshot replication for data that changes all at once at set intervals.
Use transactional replication for data that changes incrementally.

Use replication of stored procedure execution to improve replication performance. This is especially important for stored
procedures that perform bulk updates. For more information see the topic "Publishing Stored Procedure Execution" in SQL
Server Books Online.
Use replication to deploy applications as well as data. For example, publish stored procedures and use sp_addscriptexec to
update them.

Conclusion
Caching is an effective technique used in middle tier applications to increase throughput. It is most appropriate for data that users
read more often than update, and for data that does not need to be read in its most current form. There are many examples of
data matching these caching requirements in middle tier applications today.

SQL Server 2000 with replication is an effective basis for a caching solution for middle tier applications that store data in SQL
Server. SQL Server in conjunction with transactional and snapshot replication meets the needs for most middle tier application
caches. Many SQL Server based applications today are using caching to increase throughput and improve the user experience.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Moving Your Access 2002 Database to SQL Server

Adam Cogan
Microsoft Regional Director, Austrailia

December 2004

Applies to:
 Microsoft Access 2002
 Microsoft SQL Server 2000 Service Pack 3a (SP3a)

Summary: Use this features comparison in preparation for migrating your Access 2002 database back end to SQL Server 2000.
(37 printed pages)

Contents

Prerequisites
Introduction
SQL Server Tools
Architecture
Scalability and Performance
Working with Data
Conclusion
Glossary

Prerequisites
All comparisons in this paper are made with the assumption that the following software is used:

Microsoft Access 2002 or later
Microsoft SQL Server 2000 Standard Edition or Enterprise Edition

It is also assumed that your data is currently stored in an Access database (.mdb) file, and not in SQL Server, and that you are not
using an Access Data Project (ADP) that supports many of the SQL Server features described in this paper.

Who Should Read This

This paper is for Access developers, Microsoft Visual Basic developers, and .NET developers that are familiar with the features of
Access and are considering moving their back-end infrastructure (data and queries) to Microsoft SQL Server.

Readers need to be familiar with these Access features:

Basic SQL
Importing data from and exporting data to various formats
Backing up and restoring data
Implementing security

This paper is designed to assist new SQL Server developers by comparing Access and SQL Server features.

Introduction
Microsoft Access developers generally consider a move to SQL Server for performance, security, and stability reasons. This
process is known as upsizing, and developers will find a number of key differences while migrating from Access to SQL Server. It

is crucial that these differences are noted and appropriate action is taken to ensure a seamless and incident-free migration from
Access to SQL Server.

Microsoft SQL Server is an enterprise-level data management system. It encapsulates industry-standard security, scalability, and
manageability. In addition, there is support for Extensible Markup Language (XML) and Internet queries.

Tip The process of migration from Access to SQL Server is not covered here.

For more information about migration, see Migrating Your Access Database to Microsoft SQL Server 7.0. (Note: This
article was written for SQL Server 7.0 and was not updated.).

Tip The differences between data replication and database security is not covered here. For more information about
implementing replication in SQL Server, see Implementing Replication in the SQL Server 2000 SDK documentation.
For more information about security in SQL Server, see Managing Security Accounts in the SQL Server 2000 SDK
documentation.

SQL Server Tools
Using the main menu in Access database window, you can create a query, design a database, or browse data. To export data from
your database, click File, and then click Export. To import data to your database, click File, click Get External Data, and then click
Import.

SQL Server provides a suite of powerful tools that simplifies the process of browsing, querying, importing, and exporting data.
They are:

SQL Server Enterprise Manager
SQL Server Query Analyzer
Data Transformation Services
SQL Server Profiler

SQL Server Tools to Design Databases and Queries, and Browse Data

With SQL Server you use two tools to perform database maintenance tasks, and browse and edit data. These are SQL Server
Enterprise Manager and SQL Server Query Analyzer. Access forms developers planning to move their forms to .NET will also find
Microsoft Visual Studio .NET useful, as it provides an integrated way of creating and managing your SQL Server database and
your data access forms within the same development environment.

SQL Server Enterprise Manager

SQL Server Enterprise Manager is the application bundled with SQL Server to design and manage your database, as shown in
Figure 1, and browse through data, as shown in Figure 2. Enterprise Manager also provides functionality to:

Manage tables, fields, and data; table relationships; stored procedures; views; triggers; functions; and user defined data
types.
Create database diagrams
Create database backups and restore data
Manage database logons and object permissions
Import data from and export data to a variety of formats that use Data Transformation Services (DTS)

https://msdn.microsoft.com/en-us/library/aa226083(v=sql.80).aspx

Figure 1. SQL Server Enterprise Manager replaces the main Access dialog box for designing and managing your
database.

Figure 2. Use Enterprise Manager to browse and edit data in much the same way as Access.

SQL Server Query Analyzer

SQL Server Query Analyzer is a fully featured graphical query tool that replaces the main Access query designer. It allows you to:

Create and debug queries
Run multiple simultaneous queries
View data
Export data (by clicking Query, and then clicking Results to File)
Optimize queries (by clicking Query, and then clicking Show Execution Plan)
Debug advanced queries (by clicking Tools, clicking Object Browser, and then clicking Debug)

Tip Query Analyzer supports the previously described features and provides syntax highlighting for easy
viewing and debugging of queries, as shown in Figure 3. Although you can write stored procedures inside
Enterprise Manager as shown in Figure 4, Access developers will find Query Analyzer more feature-rich.

Figure 3. Query Analyzer replaces the Access query designer and adds features like syntax highlighting and
query debugging.

Figure 4. Writing advanced stored procedures inside Enterprise Manager is not as easy as in Query Analyzer

The Create Query by Using Wizard feature in Access has no equivalent in SQL Server. You must create queries using the query
designer or SQL Server statements.

Visual Studio .NET

With Visual Studio .NET you can manage your database and database objects in much the same way as Enterprise Manager, as
shown in Figure 5. Depending on your version of Visual Studio .NET, you can create a database project that allows you to:

Design and execute stored procedures, views, triggers, and functions
Browse tables
View data

This feature is useful for .NET developers because it offers an integrated method of database management. Developers can
develop applications and manage their database within one application.

Figure 5. Visual Studio .NET provides an integrated way to manage your data

For more information about which versions of Visual Studio .NET support which database management features, see Visual
Database Tools Editions.

SQL Server Tools to Import and Export Data

Data Transformation Services

Data Transformation Services (DTS) allow you to import data from and export data to various data sources that use an OLE DB-

https://msdn.microsoft.com/en-us/library/aa290330(v=sql.80).aspx

based architecture, such as Microsoft Excel. DTS replaces the Access import and export functions (as shown in Figure 7), and also
provides functionality to:

Export data from and import data to another SQL Server database
Export and import data to and from various formats such as Excel (.xls files), comma-separated values (.csv files), and
Microsoft Access (see Figure 6)
Perform transformations on data

Figure 6. Use DTS to import from and export to a variety of data formats.

DTS is more powerful than the Access import and export commands. Many tasks that are performed in an Access import process
are done in multiple steps (for example, populating temporary tables and running multiple queries to perform the
transformation) that can be performed in one step in DTS. You can perform data transformations, such as copying data from one
table to another using a SQL query, or execute VBScript code to transform parts of the data before insertion into the destination
table, as shown in Figure 8.

Figure 7. DTS replaces the Access import and export wizards and allows powerful data transformations.

Figure 8. DTS performs powerful transformations on data that would take much longer in Access.

SQL Server Profiler

SQL Server Profiler is an essential tool for optimizing the performance of your database. It is especially useful after a migration
from a client-only system such as Access. It shows all commands executed on the server, such as connections opened and closed,
and database transactions, as shown in Figure 9. This helps identify any transactions that are particularly lengthy or resource-
intensive.

Figure 9. SQL Server Profiler monitors database activity to aid in performance optimization.

For more information about using these SQL Server tools, see Migrating Your Access Database to Microsoft SQL Server 7.0.
(Note: This article was written for SQL Server 7.0 and was not updated.)

Architecture
There are several differences, similarities, and disadvantages between the architecture of Access and SQL Server. These include
differences in:

Data access models
Table design
Relationships
Indexing
Data query types
SQL Server also includes powerful features to optimize and simplify data manipulation, including:
Triggers

https://msdn.microsoft.com/en-us/library/aa226083(v=sql.80).aspx

Temporary tables
User-defined functions

System Requirements

Minimum System Requirements

Because SQL Server has more features and is more scalable than Access, it has slightly more demanding system requirements.
Table 1 compares the minimum system requirements between the two systems.

Table 1. Minimum system requirements for SQL Server and Access

 Access SQL Server
Processor Pentium 75 megahertz (MHz) Pentium 166 MHz

Memory 8 megabytes (MB), plus 4 MB for each application running
simultaneously, plus 128 MB for Microsoft Windows XP 128 MB RAM or more

Hard disk
space 30 MB 270 MB (full installation)

Operating
system

Microsoft Windows Server 2003, Windows XP, Windows 2000,
Windows NT 4.0 with Service Pack 6 (SP6), Windows Millennium
Edition, Windows 98 Second Edition, Windows 98, or Windows
95

Microsoft Windows Server 2003, Windows XP,
Windows 2000, Windows NT 4.0, Windows 98
Second Edition, Windows 98, Windows 95, or
Windows CE

Realistic System Requirements

The minimum requirements listed in Table 1 are unrealistic in a typical operational environment. System requirements depend
mainly on the quantity of data and the number of concurrent users.

In a scenario of 10 concurrent users and a 1 gigabyte (GB) database, the system specified in Table 2 is recommended for running
Access or SQL Server in a production environment.

Table 2. Recommended system requirements for SQL Server and Access

 Recommended
Processor Pentium III 650 MHz
Memory 384 MB
Hard disk space 2 GB
Operating system Microsoft Windows Server 2003 or Windows 2000

SQL Server Versions

SQL Server 2000 is available in six editions:

Enterprise
Standard
Personal
Developer
Desktop Engine (MSDE)
SQL Server CE (a compatible version for Windows CE)

Table 3 shows the operating system requirements for the different SQL Server editions.

Table 3. Operating system requirements for different SQL Server editions

Operating System Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop Engine
(MSDE)

SQL Server
CE

Windows Server 2003, Standard
Edition Yes Yes Yes Yes Yes No

Windows Server 2003,
Enterprise Edition Yes Yes Yes Yes Yes No

Windows Server 2003,
Datacenter Edition Yes Yes Yes Yes Yes No

Windows XP Professional No No Yes Yes Yes No
Windows CE No No No No No Yes
Windows 9x No No Yes No Yes No

Engine Implementation

The Jet database engine in Access differs from SQL Server in that it is not permanently running as a service as SQL Server does,
but is started every time a user opens a Jet database file (.mdb file) using Access or some other data access method. When a user
closes an .mdb file and the file is no longer in use, the Jet engine is unloaded from memory.

The key difference is that if there are no users currently accessing the .mdb file, it is possible to copy or move this file to another
location using Windows. In the case of SQL Server, the SQL Server service is constantly running and is connected to the SQL
Server database files (.mdf files) that are registered with it. To copy an .mdf file, you either have to stop the SQL Server service or
detach the .mdf file from the current SQL Server service before it can be moved.

Data Access Models

Access is a client-only relational database management system (RDBMS). This means that all data processing such as sorting and
filtering is done on a single computer.

Access developers generally try to emulate the client/server approach by splitting their database. Typically, in an environment
where multiple concurrent users use Access, an Access database is set up on each client computer. This database contains forms,
reports, saved queries, and Microsoft Visual Basic for Applications (VBA) form code. All data is kept in an Access database on a
central server, which is returned to the client machines when requested. This scenario requires extensive resources from both the
network and client. This structure is shown in Figure 10.

Figure 10. Split Access database (red indicates workload)

In this scenario, no data processing is done on the server. When a client requests data, the entire data set is sent through the
network to the client, and any processing is done on the client machine.

For example, a financial company has a database with a million records in its Accounts Receivable table (Access .mdb file). An
Access application wants to display the sum total of the accounts receivable (one calculated field). To achieve this, Access must
transfer the entire table over the network and perform the calculations on the workstation.

This can cause serious performance problems on the server and on the network. Multiple requests for large amounts of data will
consume server resources, and passing entire sets of data over a network connection will considerably slow the network.

SQL Server, however, is a pure client/server RDBMS. This means that the client and server both share the processing load. The
client (for example, a .NET Windows application) sends a request for data with any parameters, and the server performs any
sorting and filtering and returns only the filtered set of data to the client. This structure is shown in Figure 11.

Figure 11. SQL Server helps reduce network traffic and server load by distributing processing tasks between the client
and server.

Because SQL Server handles all filtering and sorting on the server, only the specified result set is returned. This helps reduce
network traffic significantly, because less data is passed to and from the client and server. This also helps reduce the amount of
server processing, because it does not have to return as many records as it would in Access.

Data Types

There are several differences in data types between Access and SQL Server. Most of these data types are automatically converted
when upsizing, although it is important to verify this in your SQL Server database after upsizing. Table 4 shows the differences in
data types between Access and SQL Server. Note that there are also some unsupported data types.

Table 4. Comparing Access and SQL Server data types

Jet (Access) SQL Server
Text char, nchar, varchar, nvarchar
Memo text, ntext
Byte tinyint
Integer smallint
Long Integer integer
Single real
Double float
Replication ID uniqueidentifier
Decimal decimal
Date/Time smalldatetime, datetime, timestamp
Currency smallmoney, money
AutoNumber int + identity property
Yes/No bit
OLE Object image
Hyperlink <no equivalent>
<no equivalent> binary, varbinary

Tip In Access, auto-number columns are automatically generated as soon as the user starts editing a new record. In
SQL Server, the auto-number is only generated when the record is saved. Be careful to redesign any existing logic that
depends on the auto-number value in Access.

User-Defined Data Types

SQL Server allows you to define custom data types, called user-defined data types (UDDT). UDDTs are based on existing SQL
Server data types. Also, constraints can be added directly to the types to:

Specify a default value. (A value that will be entered automatically into a field if no value has been specified for that record.)
Set the maximum field size.
Set whether the field can be null.

UDDTs become invaluable when specifying fields in tables whose properties may change in the future. For example, if you defined
a unique identifier field of base SQL Server data type varchar(15) (string of length 15 characters) and defined all related stored
procedures to accept a parameter of type varchar(15), changing the length or data type of the field would become a major
maintenance issue. All stored procedures and tables would need to be changed to reflect the changes to the data type.

A better solution would be to create a UDDT called "CodeType", for example, and define the length and base data type in the
UDDT. All stored procedures and the table definitions would use this UDDT, so if the field size increased, it would be a matter of
changing the definition of the UDDT.

UDDTs are defined through the Enterprise Manager, as shown in Figure 12.

Figure 12. Specifying UDDTs for use in your database objects in SQL Server

Table Design

Tables are represented similarly in both Access and SQL Server. Both database management systems (DBMSs) are relational; that
is, related data is stored in logical tables linked by unique identifiers. The table design interface is similar in Access and SQL
Server, as shown in Figure 13.

Figure 13. Similar design for tables in Access and SQL Server

Relationships

In Access, you can specify rules on fields in tables, such that when a value in one table changes, values in related tables will

automatically update (cascaded update).

In SQL Server, you can create the same rules through the diagram designer in Enterprise Manager (as shown in Figure 14). SQL
Server supports five classes of constraints:

NOT NULL. Specifies that the column cannot contain a NULL value.
CHECK. Restricts the values that can be entered into a column. The following code creates an Employee table that adds a
CHECK constraint to the Salary field so that the value is between 10,000 and 1,000,000.

CREATE TABLE Employee
 (
 EmployeeID int PRIMARY KEY,
 Name char(50),
 Address char(50),
 Salary money,
 CONSTRAINT chk_Salary CHECK (Salary BETWEEN 10000 and 1000000)
)

UNIQUE. Ensures all values in a column for a table are unique. This is commonly used for ID columns.
PRIMARY KEY. Identifies the column or set of columns whose values uniquely identify a row in a table.
FOREIGN KEY. Sets the relationships between tables. The following code creates an EmployeePosition table that references
the EmployeeID in the previously created Employee table.

CREATE TABLE EmployeePosition
 (
 EmployeePositionID int PRIMARY KEY,
 EmployeeID int FOREIGN KEY
 REFERENCES Employee(EmployeeID)
 ON DELETE CASCADE
 Position char(50)
)

Figure 14. SQL Server supports similar relationships to Access

The ON DELETE clause has two options:

CASCADE. Specifies that if an employee's record is deleted from the Employee table, any record with a matching
EmployeeID in the EmployeePosition table will also be deleted.
NO ACTION. Specifies that the EmployeePosition record will not be affected if its referenced parent record in the
Employee table is deleted.

SQL Server also supports the ON UPDATE clause, which specifies the action to be taken if a parent record is updated. It also
supports the CASCADE and NO ACTION options.

Note that relationships in SQL Server are not as flexible as they are in Access. In Access, you can:

Cascade, update, or delete update from a table to itself.
Cascade, update, or delete update foreign keys in a table where the Required property is set to Yes.

Although SQL Server does not support these two options, this may lead to more robust databases that are less prone to
relationship and key problems.

Cascading Update Circular References Not Supported

Unlike Access, SQL Server does not permit circular referential integrity. Say for example, there is a senior employee in a
company's sales department. In the database, the employee's Employee Type is Senior and Category is Sales. However, in the
database, the Employee Type Senior is in the Sales Category. As shown in Figure 15, the database structure to permit this creates
a circular reference, and SQL Server does not allow it. You will receive something similar to the following error if you attempt to
create circular update constraints:

Unable to create relationship 'FK_EmployeeType_Employee'.
ODBC error: [Microsoft][ODBC SQL Server Driver][SQL Server]Introducing
FOREIGN KEY constraint 'FK_EmployeeType_Employee' on table 'EmployeeType'
may cause cycles or multiple cascade paths. Specify ON DELETE NO ACTION or
ON UPDATE NO ACTION, or modify other FOREIGN KEY constraints.
[Microsoft][ODBC SQL Server Driver][SQL Server]Could not create
constraint. See previous errors.

This is because there is the potential to cause an infinite loop if one field is updated in any one of the tables. In this example,
updating one CategoryID field would cause the next CategoryID field to be updated (due to Cascading Update referential
integrity), which would cause the next CategoryID field to update, and so on.

Figure 15. Circular cascading update constraints cause errors in SQL Server.

To circumvent this issue in SQL Server, you will need to remove the referential integrity constraints from the tables, and create a
trigger on each table to perform the updates. For more information about using triggers, see Enforcing Business Rules with
Triggers.

Improvements to Indexing

In Access, indexes can be built on one or many fields in a table, known as a composite key.

SQL Server handles indexing in much the same way. Indexed tables are actually sorted on the hard disk and stored in sorted
order. This is called clustering. Clustering refers to SQL Server sorting and storing data on the hard disk based on the clustered
index. If a field is indexed and not clustered, SQL Server must first query the index to find the data, which can slow performance.

For example, an Employees table could have a unique identifier called EmployeeID. However, this table is mostly searched based
on the FirstName field. Data access is optimized for the FirstName column by defining an index on the EmployeeID field and
setting its clustered property to true (as shown in Figure 16). Because it is clustered, it is physically stored on the hard disk in
sorted order, making data access more efficient.

Figure 16. Setting a table index to use clustering in SQL Server for performance benefits

Access Queries vs. SQL Server Views

Views in SQL Server are similar to queries in Access, as shown in Figure 17 and Figure 18. They allow you to specify a filtered set
of data, potentially collated from multiple tables and other views.

Views are useful for handling security-related issues. For example, if you want a group of users to be able to view information
about a product order, but not the credit card details linked to the payment, you would:

1. Create a view that only retrieved the non-sensitive fields from the orders table.
2. Deny any access to the orders table by the group of users.
3. Allow access to the view by the group of users.

Figure 17. Queries in Access

Figure 18. Views in SQL Server

Views, unlike queries, can also take advantage of indexing, which can significantly improve the performance of an application,
whereas queries frequently perform certain joins or aggregations. An indexed view allows indexes to be created on views, where
the result set of the view is stored and indexed in the database.

Access Queries vs. SQL Server Stored Procedures

SQL Server uses stored procedures to query and perform calculations on data. The main advantage of stored procedures is that
they are compiled the first time they are run. This means that SQL Server will calculate the most optimal way to execute the stored
procedure and store this execution plan in memory. Subsequent execution of the stored procedure will be much faster, because
SQL Server has already worked out the best path to take to run the query.

Stored procedures are created and modified within the SQL Server Enterprise Manager, much like Access queries are edited in
Access (see Figure 19). Stored procedures are similar to Access queries in that they accept input parameters.

Figure 19. Stored procedures to query and perform calculations on data

Because stored procedures are written in T-SQL, they offer an advantage over Access queries because conditional logic and
calculations can be used to modify or return data or perform some other function, as shown in Figure 20.

Figure 20. Using T-SQL to perform conditional logic and calculations within queries

With SQL Server, you can also debug your stored procedures, which is helpful when working with stored procedures that contain
complex business logic. The debugger supports setting breakpoints, defining watch expressions, and creating step-by-step
procedures, as shown in Figure 21.

Figure 21. Advanced query debugging in SQL Server

Access Queries vs. SQL Server User-Defined Functions

Along with built-in functions in SQL Server, you can also specify custom blocks of T-SQL statements. These are known as user-
defined functions (UDFs). Implemented in much the same way as functions in programming languages, UDFs are a powerful
feature that allows code reuse and encapsulation of business logic. UDFs can return a single (scalar) value, or return a table.

Scalar UDFs

For example, you could write a UDF to accept a money value, perform tax calculations, and return the tax-inclusive price. This
function could then be called from any stored procedure that required a tax calculation.

Table UDFs

SQL Server 2000 introduced a table data type, which can return a data table from a function. Using table data types in your UDFs
is much more efficient than creating and dropping physical tables to perform queries on subsets of data. They are stored and
manipulated in memory and do not require any disk access.

For more information about user-defined functions, see User-Defined Functions.

Triggers on Tables and Views

SQL Server has added support for triggers. Triggers are stored procedures that execute when data in a table is updated, deleted,
or inserted. Triggers can be set to run when a specific row or field is updated. Note that triggers can be used to enforce referential
integrity much like constraints. However, constraints are more efficient than triggers and should be used whenever possible.

Triggers can be used to perform custom actions when data in a table changes. For example, you could set up a trigger to compare
the inserted or updated data to data in another field in another table, and update that data accordingly, or display a custom error
message. For more information about using triggers to enforce business rules, see Enforcing Business Rules with Triggers.

Triggers can be created through SQL Server Enterprise Manager and in a Visual Studio .NET database project, as shown in Figure
22.

Figure 22. Triggers created in a Visual Studio .NET database project

Scalability and Performance
SQL Server offers significant improvements over Access for scaling your database solution to meet increased business demands.
Also, improved client/server architecture distributes the processing load and results in faster performance.

Support for More Concurrent Users

Access supports a maximum of 255 concurrent users, and as such is not a feasible enterprise-level data storage solution. In a
production environment, it is common to experience major performance issues as well as data corruption with as few as 20 users
attempting to use the Access database simultaneously over a network.

SQL Server supports a concurrent user base that is limited only by available system memory, and because of its optimized query
processing engine and ability to simultaneously use multiple computers, processors, and hard drives, it can scale to meet any
enterprise requirements.

Support for a Larger Database

Access supports a maximum database size of 2 GB plus linked tables. Although use of linked tables theoretically enables you to
store much more data, it is common to experience performance issues and network problems due to the amount of data being
processed. For more information, see the Engine Implementation section earlier in this paper.

SQL Server has vastly improved storage capabilities, allowing for 1,048,516 terabytes of data to be stored efficiently across
multiple devices.

Log Files Keep a Record of All Database Activity

SQL Server has an advantage over Access in that all transactions (database updates, insertions, and deletions) are kept in a log
file. This log records the changes to the data and enough information to later undo the modifications made during each
transaction, if necessary.

Tools such as Lumigent Log Explorer allow you to look into a SQL Server transaction log and undo transactions manually (see
Figure 23). For more information, see the Lumigent Web site.

http://www.lumigent.com/

Figure 23. Lumigent Log Explorer provides full control over your SQL Server database by looking at all past
transactions.

Database and Log Files Split Across Multiple Devices

Access databases are stored as single .mdb files. As such, they can only be stored and run on a single machine. This can cause
issues when the database and user base grow, because the processing power and storage space become constrained by the
hardware on the single database server.

Databases in SQL Server are a group of physical files managed by SQL Server. These files comprise, as a bare minimum, a
transaction log file (with extension .ldf), and a primary data file (with extension .mdf). SQL Server databases can also have one or
more secondary data files (with extension .ndf). The primary data file is used as the starting point for the database and contains
data and references to the secondary data files.

When working with a large database, storing the transaction log and multiple data files on separate computers enables you to
harness the processing power of multiple computers. It also helps you use storage space across multiple computers or hard disks.

More Robust Queries

Access developers may have encountered an Out of Memory or Query too Complex error when attempting to run a
query, a form, or a report based on a query. This usually occurs because the query you are attempting to execute contains
more table joins than Access can handle. To circumvent this issue, Access developers often are forced to waste resources in
redesigning queries and restructuring tables.

SQL Server has been redesigned to support much more flexible queries. Inside a single query, you can use up to:

256 tables in the SELECT statement
Approximately 256 KB of query text
4096 columns in the SELECT statement

It is also important to note that Access supports up to 50 nested subqueries, whereas SQL Server supports a maximum of only 32.

Working with Data
Creating data queries in Access is different from creating data queries in SQL Server. There are differences in the query language
and the query designer. SQL Server also supports stored procedures, a flexible and efficient way to store data queries, as well as
user-defined functions, which facilitate reuse of business logic. Also, SQL Server provides a much more powerful failure recovery
model than Access.

Querying Data

Query Optimization

When data is queried remotely in Access, all of the data is returned to the client, and any filtering and sorting is done on the client
side. Because SQL Server data is usually queried over a network from a client, major network bandwidth issues can occur.
Therefore, when moving your back end to SQL Server, it is important to redesign your queries so as to return only the required
set of data to the client (rather than the whole data set). For example, a query behind an Access form would be:

SELECT * FROM Customers

The previous query would return the entire Customers table when the form was opened. In SQL Server, this query would have to
be optimized to only return the current record. The SQL query would be in the form:

SELECT * FROM Customers WHERE CustomerID = 'C00010'

This would return just one row/record. Every time the user navigated to the next or previous record in the form, the CustomerID
would change, and the database would need to be re-queried to retrieve the current record.

This server-side filtering method helps to reduce network traffic by performing the filtering and sorting on the database server
and only returning the minimum amount of required data.

Query Types

Access provides several methods to view and design queries for your data. Table 5 lists the possible options when migrating
built-in Access query types to SQL Server.

Table 5. Options for converting your queries from Access to SQL Server

Access
query
type

SQL Server migration options

Select A SELECT statement can be used in a T-SQL file, a stored procedure, or a view. SELECT statements can also be designed
using the built-in SQL Server query designer, which is similar to the Access query designer (see Figure 24).

Crosstab

A crosstab can be implemented as a T-SQL file, a stored procedure, or a view. Temporary tables can be used to query
the data sets required for the crosstab in memory. The temporary tables can be joined and queried to retrieve the
required crosstab data.

Converting Access crosstab data to work in SQL Server can be a lengthy task. You may consider a third-party
application to automate some of the steps.

A more flexible, efficient, and extensible solution for crosstab queries is SQL Server Analysis Services. Using Analysis
Services, you can build online analytical processing (OLAP) data cubes to enable the generation of complex, dynamic
reports. For a detailed explanation of using SQL Server Analysis Services on your data, see Analysis Services.

Make
table

A make table can be implemented as a T-SQL statement that uses the SELECT INTO clause to copy data from one
table to another.

Update An update statement can be stored as a T-SQL statement or a stored procedure that uses the UPDATE clause.
Append An append statement can be stored as a T-SQL statement or a stored procedure that uses the INSERT INTO clause.
Delete A delete statement can be stored as a T-SQL statement or a stored procedure that uses the DELETE FROM clause.

Figure 24. Designing SELECT queries, similar in Access and SQL Server

http://www.microsoft.com/sql/evaluation/bi/bianalysis.asp

Query Language Features

Table 6 summarizes the main differences in query language features supported in Access and SQL Server (excerpted from the
Access 2002 Desktop Developer's Handbook by Paul Litwin, et al, SYBEX Inc., 2001).

Table 6. Access and SQL Server differences in data queries

Feature Supported by Access SQL with Jet 4 SQL-
92 Extensions

Supported by SQL Server
2000 T-SQL

Security (GRANT, REVOKE, and so on) Yes Yes
Transaction support (COMMIT, ROLLBACK, and so
on) Yes Yes

Views (CREATE VIEW) Yes Yes
Temporary tables No Yes
Joins in FROM clause Yes Yes
Joins in UPDATE and DELETE statements Yes No
Support for FULL OUTER JOIN and UNION JOIN No Yes
Support for subqueries in the SET clause of
UPDATE statements No Yes

Support for multiple tables in DELETE statements Yes No
SELECT DISTINCTROW Yes No
SELECT TOP Yes No
Cursors (DECLARE CURSOR, FETCH, and so on) No Yes
Domain support (CREATE DOMAIN, ALTER
DOMAIN, and so on) No Yes

Support for check constraints Yes Yes
Assertions (CREATE ASSERTION, DROP
ASSERTION, and so on) No No

Row value constructors No No
CASE expressions No Yes
Full referential integrity support in CREATE TABLE
statement No Yes

Standardized system tables and error codes No No
Standard data types Yes Yes
Standard string operators No Yes
Standard wildcard characters Yes Yes
Support for VBA functions Yes No
Additional aggregate functions Yes No
TRANSFORM statement Yes No
Parameters in queries or stored procedures Yes Yes
SELECT INTO statement Yes Yes

For more information about designing your Access queries in SQL Server, see Migrating Your Access Database to Microsoft SQL
Server 7.0. (Note: This article was written for SQL Server 7.0 and was not updated.).

Ability to Script Objects

Structured Query Language (SQL) is the standard language used by Access and SQL Server for data access and manipulation. The
latest revision to the SQL language is called SQL-92, named for the year it was completed. Microsoft has added some of its own
extensions to the base SQL language, which vary between the two DBMS solutions.

Access supports SQL-92 plus Jet 4 ANSI-92 extensions, which add support for managing transactions using SQL.

The Jet 4 ANSI-92 extensions also add support for easy management of database security. However, some features, such as
setting and changing database object ownership, are not supported.

In SQL Server 2000, Microsoft has added custom extensions to the base SQL-92 language. These extensions add script support
for some important features, such as:

https://msdn.microsoft.com/en-us/library/aa226083(v=sql.80).aspx

Stored procedures
Distributed transactions
Operating system functions
More flexible subqueries
Aliases in queries
Backup and restoration of data

The T-SQL language is a powerful extension to the standard SQL set of commands. It provides all the functionality necessary to:

Retrieve, modify, delete, and add data to database tables
Accept and return parameters
Perform calculations
Run built-in and user-defined functions
Copy data between servers

T-SQL is like a cross between Access queries and VBA in that data queries can be combined with conditional logic and
calculations.

Note that SQL Server completely supports the SQL-92 standard, so that use of the extensions is not required.

Table Variables: Useful for Complex Queries

If you want to perform calculations in Access on a set of joined tables, you create a query defining the joins. In an application
using that data, every time this query is used in an SQL SELECT statement, all of the tables need to be rejoined, which is
potentially a resource-intensive operation (particularly in a multiple-user environment).

For example, if you want to delete all customers whose first name starts with the letter "A", and delete all the customer orders and
order histories, in Access you would:

1. Create a SELECT query that gets all the required Customer IDs:

SELECT Customers.CustomerID
FROM Customers
WHERE Customer.FirstName LIKE 'A%'

2. Wrap the previous SELECT query into three DELETE queries to delete all required customers, orders, and order histories:

DELETE FROM Orders
WHERE Orders.CustomerID IN
(
SELECT Customers.CustomerID
FROM Customers
WHERE Customer.FirstName LIKE 'A%'
)
And
DELETE FROM OrderHistory
WHERE OrderHistory.CustomerID IN
(
SELECT Customers.CustomerID
FROM Customers
WHERE Customer.FirstName LIKE 'A%'
)

And
DELETE FROM Customers
WHERE Customer.FirstName LIKE 'A%'

This is an inefficient way to perform this operation, because a resource-intensive LIKE filter would have to be run on the
Customers table for every delete operation. Performing such wildcard character WHERE filters would present major performance
issues should the Customers table grow to millions of records.

A more efficient way to perform this operation is to use table variables, a feature available in SQL Server. Table variables are used

like regular tables in SQL syntax. However, they differ from regular tables in that they are stored temporarily in memory, and not
on the hard disk. Because memory access is significantly faster than hard disk access, table variables become useful when
performing multiple operations on the same set of filtered or joined data.

To implement the previous example using a table variable, you would:

1. Declare the table:

DECLARE @tmpCustomerIDs TABLE (CustomerID nvarchar(50))

2. Get the filtered set of records and store them in the table variable:

INSERT INTO @tmpCustomerIDs (CustomerID)
(SELECT CustomerID FROM Customers WHERE Customers.ContactName LIKE 'A%')

3. Perform all delete operations on customers, orders, and orders histories using values from the table variable:

DELETE FROM Orders
WHERE Orders.CustomerID IN
(
SELECT CustomerID
FROM @tmpCustomerIDs
)
And
DELETE FROM OrderHistory
WHERE OrderHistory.CustomerID IN
(
SELECT CustomerID
FROM @tmpCustomerIDs
)
And
DELETE FROM Customers
WHERE Customers.CustomerID IN
(
SELECT CustomerID
FROM @tmpCustomerIDs
)

Temporary tables are another mechanism offered by SQL Server to efficiently perform operations on a dynamic set of data.
Unlike table variables, they stay in memory longer and so can require more locks on data and logging resources.

Recovering from System Failure

Most Access developers have encountered an Unrecognized database format error when attempting to open a corrupt
database (as shown in Figure 25). When a system failure occurs (such as an operating system failure or power outage), your
options are:

Attempt to recover data from the corrupt .mdb file using the Access compact and repair tool, and then import the recovered
data into a blank database to minimize the number of corrupt records. This is not a failsafe process, and data can be lost.
Restore from a recent backup, which would result in wasted resources used to re-enter lost data.
Run the Jet compact tool, Jetcomp.exe. This is often more effective than running the compact and repair tool. However, there
is still no guarantee that all data will not be corrupted.
Submit your corrupted database to a third-party database recovery specialist, who will use proprietary methods to extract
data from the database. This is potentially a costly process, and can have security implications because external parties will
be handling your data.

Figure 25. Error when attempting to open a corrupted Access database

SQL Server offers much more control over data recovery. You can select one of three recovery models for each SQL Server
database to determine how your data is backed up and what your exposure to data loss is. The three recovery models are:

Simple Recovery. Allows the most recent backup to be recovered.
Full Recovery. Allows the database to be recovered to the point of failure. This model requires the most system resources
and disk space (for logging).
Bulk-Logged Recovery. Allows the database to be recovered to the point of the last log backup. This requires less system
resources and disk space than the Full Recovery model, although there is a higher chance of having to re-enter data
manually.
These recovery models give you the flexibility to select the best way to recover from system failure balanced with
availability of system resources.

Tip The major advantage SQL Server data backups offer over Access backups is that they can be done while the
database is running, without requiring users to log off. This increases the availability of the database to users and
allows a much higher uptime.

Comparing Databases

In Access, keeping your live production database up-to-date with the latest structural changes is an ongoing project. The database
needs to be taken offline quickly to make structural changes and convert data, but this can be difficult when people are relying on
the system. The data conversion can also take time because new fields and relationships might have been added.

To make structural changes to an Access database, the following usually takes place:

1. The developers work on the Application Database and make structural changes to the database containing the data.
2. Changes to the database containing the data are tracked and Update Queries, DAO, or ADO code is written to make the

update.
3. After development is complete, the databases need to be taken offline while updates are made manually.

Third-party applications such as SSW Data Renovator help minimize system unavailability and reduce the likelihood of mistakes
by automating part of this process. SSW Data Renovator compares the new database with the production database, generates
reports on all the differences between the two, and provides a wizard-style interface to automatically move data into the new
structure.

Although SQL Server has the benefit of not requiring the database to be taken offline to make structural updates, database
administrators still must:

Analyze all database schemas and change logs for structural changes.
Manually create migration scripts to push to the target database.

Third-party utilities, such as Red-Gate SQL Compare or SSW SQL Deploy help automate this task by:

Comparing all objects in both databases, including stored procedures, relationships, tables, views, and user-defined
functions
Reporting on all differences
Generating migration scripts that can then be run directly on the target database

Conclusion
Microsoft SQL Server 2000 is an enterprise-level database solution with vastly improved scalability, maintenance, and database
recovery features in comparison to Microsoft Access 2002. Because it is based on client/server architecture, SQL Server is quite
different from Access in the way it processes and sends data over a remote connection. SQL Server also offers many features to
make the task of querying data, reusing business logic, and backing up data more simple and flexible.

Glossary
ADO.NET

A data access model provided with the Microsoft .NET Framework. It is designed specifically for the Web with scalability,
statelessness, and XML in mind.

Client/server architecture
A software architecture that promotes scalability by allowing multiple clients to make requests and receive results from a
central server or group of servers. The processing load is shared between the client and the server.

Clustering

http://www.ssw.com.au/SSW/DataRenovator/
http://www.red-gate.com/SQL_Compare.htm
http://www.ssw.com.au/ssw/sqldeploy/

A method of indexing and sorting data directly on the hard disk to enable extremely fast querying of data.
Data Transformation Services

A tool supplied with SQL Server that allows you to import data to and export data from various data sources that use an OLE
DB-based architecture, such as Microsoft Excel.

OLAP
Online analytical processing. A data storage model to help you analyze your business data from different points of view. For
example, you can use OLAP to view all products sold in a certain region above a certain price during a certain time period.

SQL Server Enterprise Manager
A tool supplied with SQL Server to provide easy management of database objects, users, backups, and database permissions.

SQL Server Profiler
A tool supplied with SQL Server to help you optimize queries by identifying any database transactions that are particularly
lengthy or resource-intensive.

SQL Server Query Analyzer
A tool supplied with SQL Server to enable writing and debugging of database queries.

T-SQL
Transact-SQL. An extension of the SQL-92 query language standard, providing extended features in SQL Server, such as stored
procedures, backup and restoration of data, and distributed transactions.

UDDT
User-defined data types. A feature in SQL Server that allows you to create your own data types based on existing SQL Server
base data types. UDDTs promote more strict business rules on data.

UDFs
User-defined functions. Custom blocks of T-SQL statements that facilitate reuse of business logic throughout your database
application.

Visual Studio .NET
An integrated development environment (IDE) so that developers can visually build a broad range of Microsoft .NET-connected
applications. It provides powerful tools for designing, building, testing, and deploying .NET-enabled Web and Windows
applications.

XML
Extensible Markup Language. A widely adopted standard way of representing text and data in a format that can be processed
without much human or machine action.

For more information

Microsoft SQL Server products page

About the Author

Adam Cogan is the Chief Architect at SSW, a Microsoft Certified Partner specializing in Office and .NET-based solutions. At SSW,
Adam develops custom solutions for businesses across a range of industries using Microsoft technologies such as SQL Server
2000, .NET, and Office 2003. Adam also runs the Microsoft .NET User Group in Sydney, and is actively involved in the regional
INETA management process.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql/default.mspx
http://www.ssw.com.au/ssw/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Notification Services Capacity Planning and Performance
Tuning

Notification Services Product Team
Microsoft Corporation

February 2003

Applies to:
 Microsoft® SQL Server™ Notification Services

Summary: Discover performance data for standard Notification Services components on three common system designs. When
you complete this document, you will have a clear idea of the capabilities of Notification Services, common performance
bottlenecks, and ways that you can design and test your own systems and Notification Services applications for optimal
performance. (30 printed pages)

Notification Services applications manage subscriber and subscription data, collect events, generate notifications, and format and
distribute the notifications. Overall application performance is a combination of the performance for each of these application
functions, plus the performance of the database system that stores and processes the application data.

Contents

Introduction
Notification Services Performance Data
Case Study: Stock Trading Application
Designing Your System
Troubleshooting Poor Performance

Introduction
Microsoft® SQL Server™ Notification Services is a platform for developing and deploying applications that generate notifications,
format them, and send the resulting messages to subscribed users. Notifications are personalized, timely messages that can be
sent to a wide variety of devices.

A Notification Services application provides an interface for managing subscriber and subscription data and multiple ways of
collecting events from external sources. To generate notifications, Notification Services performs matches between subscriptions
and event data. After generating notification data, Notification Services formats the notification and distributes it to a delivery
channel, such as an SMTP gateway.

A Notification Services application has several major components: the subscriber and subscription management application, the
event collector, the generator that creates notifications, the distributor that formats and sends notifications, and the databases that
store application data.

Figure 1. Notification Services architecture

The performance of a Notification Services application is determined by how quickly Notification Services can process
subscription, subscriber, and event data, how quickly it can run the match rules that generate notifications, and how quickly it can
format and distribute notifications. The following factors affect performance:

Application settings, as defined in the application definition file (ADF)
External factors, such as the availability of external delivery systems

System design: the hardware and software that support the application

This document provides performance data and system design recommendations to help you:

Choose optimal application settings for the Notification Services components and for the databases.
Design and configure the system for optimal performance. We provide performance data for all major components of a
Notification Services application, using multiple settings and system designs, so you can estimate how a well-configured
system should perform. We also provide system design guidelines for optimal performance.
Measure the performance of your Notification Services application. When you design an application, you should perform a
series of tests to determine how well the application is running and to establish baseline measurements for system
performance.
Troubleshoot performance problems. We provide solutions for common performance bottlenecks.

When you complete this document, you will have a clear idea of the capabilities of Notification Services, common performance
bottlenecks, and ways that you can design and test your own systems and Notification Services applications for optimal
performance.

Notification Services Performance Data
As you prepare to build a Notification Services application, you want an idea of the performance you can expect from that
application. Your application can use standard components provided with Notification Services, or it can use custom event
providers, content formatters, and delivery protocols built for the application. Each component choice has performance
implications. For example, the standard File System Watcher event provider can process thousands of events per second,
depending on system design. However, a custom event provider that uses the Event and EventCollector classes might only be
able to submit hundreds of events per second.

In the Performance Data section, we provide performance estimates for each of the major Notification Services components. In
each component subsection, we show the results of a series of performance tests based on settings you might choose when
building your own application.

Each component subsection provides the following information:

An introduction to the component test
A description of the set of tests we ran
The results of all the performance tests
Conclusions about component performance
Recommendations for improving performance

First, we present information about the systems we used to run these tests.

Hardware Specifications for Performance Testing

An instance of Notification Services Standard Edition is deployed on one server. An instance of Notification Services Enterprise
Edition can be deployed on one server or can be scaled out using multiple servers. The performance of your Notification Services
application will depend on the number of servers as well as the CPU, memory, and disk resources available.

We ran all of our performance tests on the following three systems. We chose these systems to illustrate the performance
differences between three common system designs.

The system named DualProc, is a single server with two 1.7-gigahertz (GHz) Pentium 4 processors and 2 gigabytes (GB) of
RAM. The Notification Services instance, the SQL Server instance that hosts the databases, and the subscription
management application are all located on the server. All program files, data files, database files, and log files are located on
a single SCSI disk.

Figure 2. DualProc system design

The QuadProc system is a single server with four 700-megahertz (MHz) Pentium III processors and 4 GB of RAM. The
Notification Services instance, the SQL Server instance that hosts the databases, and the subscription management
application are all located on the server. This configuration uses three SCSI disks on a high-end RAID controller. The
program files, data files, and tempdb are located on one disk; the instance and application database files are located on a
second disk; and the log files are located a third disk.

Figure 3. QuadProc system design

The Combo system is a combination of the two systems above. SQL Server is located on the four-processor server; the
program files and tempdb are located on one SCSI disk; the instance and application database files are located on a second
SCSI disk; and the log files are located on a third SCSI disk. The Notification Services program files and data files, and the
subscription management application, are located on the only disk of the two-processor server.

Figure 4. Combo system design

Running the tests on these three systems shows whether the performance is significantly affected by processing and disk
resources, and whether separating the instance from the databases significantly affects performance.

Subscriber Management Performance

The Notification Services API contains classes for managing subscriber information (such as subscriber name and the notification
delivery address). Any application, such as a Web page, that manages subscriber data uses these classes to add, update, and
delete subscriber records in the instance database. The subscription management application can be located on the same server
as the databases or on a remote server.

Subscriber Management Testing Methodology

To obtain performance data for subscriber management, we used a C# subscription management application. This application
was located on the same server as the Notification Services instance. We ran the following tests using this application:

Add 100,000 subscribers with randomly selected names to an empty application. This test approximates the task of adding
an initial set of subscribers to an instance of Notification Services.
Add an additional 10,000 subscribers with randomly chosen names to determine how many subscribers can be added per
second to an existing instance of Notification Services.
Delete 10,000 randomly chosen subscribers from a set of 110,000 subscribers to determine how many subscribers can be
deleted per second from an existing instance of Notification Services.
Update 10,000 randomly chosen subscribers from a set of 100,000 subscribers to determine how many records can be
updated per second in an instance of Notification Services.

These tests used the three hardware configurations noted earlier in this paper: DualProc, QuadProc, and Combo. On the DualProc
and QuadProc systems, the subscription management application was located on the same server as the Notification Services
instance and the databases. On the Combo system, the databases were located on the QuadProc server and the subscription
management application was located on the DualProc server.

For each test, we measured the elapsed time to complete the operation. We then computed the rate at which subscribers were

added, deleted, and updated. All results except for "Combo, Multithreaded" are for a single-threaded client.

Subscriber Management Test Results

The following graph shows how many subscribers were loaded, added, deleted, or updated per second on our three test systems.
On the Combo system, we ran the test using a single-threaded and a multithreaded application.

Figure 5. Results for adding, updating, and deleting subscriber data

The test results show that when the database is on the QuadProc server (the QuadProc and Combo systems), performance is best.
Also note that while the Combo system initially had mediocre performance, when the subscriber management application is
multithreaded, the performance when loading or adding subscribers improves significantly.

In a typical subscription management application, the performance for deleting and updating subscribers is lower than that for
loading and adding subscribers. When deleting or updating an existing subscriber record, the application first gets the subscriber
object (which involves a round-trip to the database server), and then deletes or updates the subscriber record, which involves
another round-trip to the database server.

When looking at the performance counters for this application, it was apparent that the primary performance bottleneck on the
DualProc system was the disk subsystem, not the processing resources.

Subscriber Management Test Conclusions

Based on the subscriber management results, we made the following conclusions about subscriber management performance:

The disk subsystem is the primary factor when determining the rate at which subscribers can be added, deleted, or updated.
The number of CPUs is not a critical factor when managing subscribers.
If a single-threaded subscription management application is located on a separate server, there is a decrease in subscriber
management performance. The decline in performance is due to the overhead of accessing the databases over the network.
Deleting and updating subscribers is slower than adding subscribers; this is primarily because when updating and deleting
subscribers, the application must first locate the record, and then update or delete it.

Recommendations for Managing Subscribers

Managing subscribers is primarily a database operation. Follow the SQL Server guidelines for improving database performance
to improve performance when managing subscriber data. In particular, the following recommendations are key:

Make sure your database log files are on a high-performance disk.
Size the instance database appropriately so that the database does not have to autogrow when subscribers are added.
If the performance of your subscription management application is a concern, use multiple subscription management
applications or a multithreaded subscription management application.

Notification Services creates indexes on the subscriber data, so you do not need to create indexes on this data to optimize
subscriber management performance.

Subscription Management Performance

Just as with subscriber management, the Notification Services API contains classes for managing subscriptions. Applications that
manage subscriptions use these classes to add, update, and delete subscriptions in application databases. The subscription

management application can be located on the same server as the databases, or on a separate server.

Subscription data contains the subscriber ID, information about what the subscriber is interested in (such as a stock symbol and
trigger price), and possibly some schedule information that indicates when a notification should be delivered.

Subscription Management Testing Methodology

To obtain performance data for subscription management, we used a C# subscription management application. This application
was located on the same server as the Notification Services instance. We ran the following tests using this application:

Load 100,000 unscheduled (event-driven) subscriptions to an empty application, one subscription per subscriber. Vary the
size of the subscriptions to determine how subscription size affects performance. This test approximates the task of adding
an initial set of subscriptions to an application.
Load 100,000 subscriptions to an application using a subscription size of 200 characters, but varying the type of
subscription (event-driven or scheduled). This test determines whether there is a performance impact for scheduled
subscriptions.

This series of tests approximates the number of subscriptions that can be added per second, depending on subscription size and
subscription type. The size of the subscription (number of characters) varies with the application. Additionally, a scheduled
subscription has some overhead.

In this section, we are not providing performance numbers for adding, updating, or deleting subscriptions. Based on the data we
collected, the rate at which you can add additional subscriptions is very close to the rate at which you can load the initial
subscriptions. There is some performance degradation when updating or deleting subscriptions, but this is similar to the
degradation of updating or deleting subscribers, which is covered in the previous subsection.

These tests used the three hardware configurations DualProc, QuadProc, and Combo. On the DualProc and QuadProc systems,
the subscription management application was located on the same server as the Notification Services instance and the databases.
On the Combo system, the databases were located on the QuadProc server and the subscription management application was
located on the DualProc server.

For each test, we measured the elapsed time to complete the operation. We then computed the rate at which subscribers were
added. All results are for a single-threaded client.

Subscription Management Test Results

The following sections show the results of the two subscription management tests.

Test 1: How Subscription Size Affects Performance

Three sets of 100,000 event-driven subscriptions were added to an application. In each set, all subscriptions were the same size:
either 20, 200, or 1000 characters per subscription. The following graph shows how many subscriptions could be added per
second for each subscription size on each test system.

Figure 6. Results for adding subscriptions of various sizes

The test results show that as the subscription size gets larger, the application is able to add fewer subscriptions per second. The
QuadProc is consistently the fastest system, because it has a fast disk subsystem and the databases are local to the subscription
management application. The Combo has a fast disk subsystem, but the subscription management application is on a separate
server from the databases. The DualProc configuration with the single disk is the slowest performer.

Test 2: How Subscription Type Affects Performance

Two sets of 100,000 subscriptions were added to an application, and each subscription contained 200 characters of data. The first
set contained event-driven subscriptions and the second set contained scheduled subscriptions. The following graph shows how
many subscriptions could be added per second for each subscription type on each test system.

Figure 7. Results for adding event-driven and scheduled subscriptions

The results show there is a minimal decline in performance when using scheduled subscriptions.

Subscription Management Test Conclusions

Based on the subscription management test results, we made the following conclusions about subscription management
performance:

Performance decreases as the subscription size increases.
There is little performance difference between adding scheduled versus event-driven subscriptions.
Database performance is important for subscription management performance. The systems that had the databases on the
QuadProc server performed the best.
Subscription management performance is best when the subscription management application is on the database server.
(However, this is often not the best place for a subscription management application because it consumes resources from
the database server and because you usually do not want database servers directly accessible on the Internet; as a result,
subscription management applications are often located on a separate Web server.)

Recommendations for Managing Subscriptions

Managing subscriptions is primarily a database operation. Follow the SQL Server guidelines for improving database performance
to improve performance when managing subscription data. In particular, the following recommendations are key:

Make sure your database log files are on a high-performance disk.
Size the application database appropriately so that the database does not need to autogrow when subscriptions are added.
(Your application database must also be large enough to store the volume of unvacuumed events, notifications, and other
application data that will accumulate.)
Create the proper indexes on your subscription data.
If you want the highest performancefrom your subscription management application, use multiple subscription
management applications or a multithreaded subscription management application. When we used a multithreaded client
we saw a 50% to 100% performance improvement compared to a single-threaded client.

Event Provider Performance

Event providers are components that submit events to Notification Services applications. Event provider performance is important
for Notification Services applications that receive very large numbers of events.

Event providers use one of three methods to collect and submit data to the application database:

Event providers can use an EventLoader class to submit an XML document or a Stream object as a source of events and
write the events to the event table.

The standard File System Watcher event provider uses the EventLoader class to submit an XML document from a named
folder to an application.

Event providers can use SQL Server stored procedures to write data from another database table or query to the event
table.

The standard SQL Server event provider uses stored procedures to gather events through a user-defined query and submit
them to a Notification Services application.

Event providers can use the Event Class to hand off events to an event collector, and then use the EventCollector class to
commit the set of events as a batch.

Each of these methods has its own performance implications. The Event class does not require the events to be available in a
document or in a database, but when you use the Event class, events are written one at a time to an event collector, and then
committed in a batch. Depending on the application, this can be a good solution, although you might not be able to process as
many events per second.

Event Provider Testing Methodology

To obtain performance data for event providers, we ran the following test on the File System Watcher event provider, the SQL
Server event provider, and a custom event provider that uses the Event and EventCollector classes:

Vary the event size while keeping the number of events per batch the same, to determine how event size affects
performance. Individual tests use 25, 50, 100, 250, 500, 1000, or 2000 characters per event, and each event batch contains
10,000 events.
Vary the event batch size while using a constant event size, to determine how event batch size affects performance.
Individual tests use 1, 10, 100, or 1000 events per batch, and each event contains 250 characters.

All event provider tests use Notification Services Enterprise Edition; performance is comparable with Notification Services
Standard Edition.

Event Provider Test Results

The following sections contain the results of the event provider tests. There are three event providers, and two tests per event
provider. The test results are grouped by event provider type.

File System Watcher Event Provider Tests

This section contains the results of running the event provider tests against the File System Watcher event provider. The File
System Watcher monitors a folder for events submitted in XML files.

Test 1: How Event Size Affects File System Watcher Event Provider Performance

Files containing XML event data, each containing 10,000 events, were dropped to the event collection folder. In each file, all events
were the same size: either 25, 50, 100, 250, 500, 1000, or 2000 characters per event. The following graph shows how many events
were collected per second for each event size on each test system.

Figure 8. File System Watcher results for adding events of varying sizes

The results of this test show that performance declines as the event size increases. It also shows that performance is best when
the databases are on the four-processor server (in the QuadProc and Combo systems). The performance was lowest on the

DualProc system.

Note that the File System Watcher submits all events in one batch. When the event provider is on a remote server (not the
database server), networking overhead might be a consideration. However, because all the events are submitted at once,
networking overhead has a minimal impact on performance.

Test 2: How Batch Size Affects File System Watcher Event Provider Performance

Files containing XML event data were dropped to the event collection folder. In each file, all events contained 250 characters of
data. Individual files contained 1, 10, 100, 1000, or 10,000 events; all events in a file were submitted in one batch. The following
graph shows how many events were collected per second for each batch size on each test system.

Figure 9. File System Watcher results for adding events in varying batch sizes

The results of this test show that as the batch size increases, more events can be processed per second. This is true for all systems
for up to about 1000 events per batch. On the DualProc system, performance levels off at 1000 events per batch; performance
continues to improve on the other systems.

SQL Server Event Provider Tests

This section contains the results of running the event provider tests against the SQL Server event provider. The SQL Server event
provider uses a stored procedure to run a Transact-SQL query. The query returns data, which the event provider then submits to
the application.

Test 1: How Event Size Affects SQL Server Event Provider Performance

For each iteration of this test, a Transact-SQL query produced 10,000 events of the same size. Individual tests used 25, 50, 100,
250, 500, 1000, or 2000 characters per event. The following graph shows how many events could be collected per second for
each event size on each test system.

Figure 10. SQL Server results for adding events of varying sizes

The results of this test show that performance declines as the events get larger. When the databases are located on the DualProc
server with the single disk, performance is significantly lower. This is because the events are being gathered from and submitted
to database tables, so the performance of the database system greatly affects the performance of the SQL Server event provider.

Test 2: How Batch Size Affects SQL Server Event Provider Performance

For each iteration of this test, a Transact-SQL query produced events containing 250 characters of data. Queries for individual
tests produced an event batch size of 1, 10, 100, 1,000, or 10,000 events. The following graph shows how many events were
collected per second for each batch size on each test system.

Figure 11. SQL Server results for adding events in varying batch sizes

The results of this test show that the SQL Server event provider is more efficient with large event batches than with small event
batches.

Event and EventCollector Class Tests

This section contains the results of running the event provider tests using the Event and EventCollector classes to
programmatically submit events to an application.

Test 1: How Event Size Affects Event Class Performance

For this test, we used the Event class to create 10,000 events of the same size and then submit the events as a batch using the
EventCollector class. In individual tests, the events contained 25, 50, 100, 250, 500, 1000, or 5000 characters per event. The
following graph shows how many events were collected per second for each event size on each test system.

Figure 12. Event class results for adding events of varying sizes

Using the event classes, fewer events are processed per second than with the other event providers tested. However, as with the
other event providers, the larger the events, the fewer you can submit per second.

For the event providers that use the event classes, locating the Notification Services instance on a separate server from the
databases has a negative impact on performance. This is because the event provider submits individual events, which adds
networking overhead for scaled-out systems. The SQL Server event provider runs on the database server, so there is no
significant network overhead for this provider. The File System Watcher event provider submits a batch of events in one XML
document, so the network overhead for this provider is minimal.

Test 2: How Batch Size Affects Event Class Performance

For this test, we used the Event class to create events containing 250 characters and then submit event batches containing 1, 10,

100, 1000, or 10,000 events using the EventCollector class. The following graph shows how many events were collected per
second for each event batch size on each test system.

Figure 13. Event class results for adding events in varying batch sizes

Fewer events are processed per second than with the other event providers tested. However, event providers that use the event
classes are relatively efficient at processing small batches. When each batch contains just a few events, this event provider
demonstrates performance comparable to the SQL Server event provider, and better than the File System Watcher event
provider.

Note that the QuadProc and Combo systems had almost identical performance. Using the multithreaded application on the
Combo server improved performance significantly from the previous test.

Event Provider Test Conclusions

The results of the event provider tests lead to the following conclusions about event provider performance:

Event collection becomes more efficient as the batches contain larger numbers of events.
Event collection is more efficient when individual events are smaller.
The File System Watcher and SQL Server event providers provide similar performance. The event classes are significantly
slower than the standard event providers unless the batches contain only a few events.
Hosting the databases on a robust system with ample processing power, and locating the data and log files on separate
physical disks, improves event collection performance.
If an application located on a remote server uses the event classes to submit events, the overhead of writing the individual
events reduces performance. However, this can be overcome by using a multithreaded event collection application.

Recommendations for Gathering Events

Based on these tests and general recommendations from Microsoft, do the following to improve event provider performance:

Ensure that the database system has adequate processing power and RAM. You can use the SQL Server performance
counters to ensure that your system is not running out of processing resources or memory.
Ensure that the database data and log files are located on separate physical disks.
Use the right event provider for the job:

If the event data is located in XML files, use the File System Watcher event provider. The File System Watcher is
more efficient than the event classes.
If the event data is located in database tables, use the SQL Server event provider. It is the fastest event provider for
this job.
If you need to submit individual events using an application, use the event classes.

For more information on building a custom event provider, see "Developing a Custom Event Provider" in Notification Services
Books Online.

Generator Performance

Notification Services generates notifications by running one or more rules to match subscriptions to event data. These rules are
Transact-SQL statements, which allows for very flexible rule definition.

Notification Services fires a rule either when a new event batch arrives or according to a schedule defined for the rule. Typically, a

rule firing produces one batch of raw notification data.

In Notification Services Enterprise Edition, the application developer can define a maximum notification batch size, which reduces
batch sizes and produces more notification batches. Multiple distributors can process these batches in parallel, which can improve
formatting and distribution performance.

Some applications use more than one rule to generate notifications. An application developer might define notification generation
rules to support various subscription types, or to optimize performance by allowing the same rule to run in parallel using multiple
generator threads.

Generator Testing Methodology

The performance tests in this section measure generator performance when varying the notification batch size and when varying
the number of generator threads.

To evaluate notification generation performance, we performed the following tests on each of the three systems described earlier,
using relatively simple event rules:

1. Measure generator performance when generating 10,000 notifications from one batch of events using one generator
thread. Vary the number of resulting notification batches from 1 to 32. Use the results to determine whether performance is
affected by generating more, but smaller, notification batches.

The <NotificationBatchSize> element limits the number of notifications that can be included in a batch. Increasing the
number of notification batches might improve distribution performance by allowing multiple distributors to work on
multiple notification batches simultaneously.

2. Measure generator scalability by using eight event rules, each generating one batch of 2,500 notifications (for a total of
20,000 notifications). Vary the number of generator threads to see how the generator performs under different settings.
(Multiple generator threads enable the application to run rules in parallel.)

Because the second test requires Notification Services Enterprise Edition, we used Enterprise Edition for both tests.

Generator Test Results

The following sections show the results of the generator tests.

Test 1: Measure Generator Performance When Producing Various Numbers of Notification Batches

In this test, we generated 10,000 notifications. The following graph shows the performance of the generator when generating 1, 2,
4, 8, 16, and 32 batches out of the 10,000 notifications.

Figure 14. Generator results with varying batch sizes

On all systems, performance declined as the number of batches increased. However, the decline was relatively small.

The DualProc system could generate approximately 850 notifications per second when producing only one batch of notifications.
This number declined to about 650 notifications per second when producing 32 batches of notifications.

The performance of the QuadProc and Combo systems was very similar. Both systems could generate about 1100 notifications
per second when producing only one batch of notifications. The number declined to 950 notifications per second when producing
32 batches.

This test shows that the overhead of creating more batches is low, and that spreading the database data and log files over
multiple disks, as is done on the QuadProc server, improves performance.

Test 2: Measure Generator Scalability

For this test, we generated eight batches of 2,500 notifications each using eight event rules; we ran the test four times, with each
test using 1, 2, or 4 generator threads, or a number of threads determined by Notification Services (the 0 value). The following
graph shows the performance of the generator for each generator threadpool setting on each test system.

Figure 15. Generator results with varying threadpool sizes

The best performance occurs when the number of generator threads is set equal to or double the number of processors on the
server that hosts the databases. On the DualProc system, the database is running on a server with two processors and only one
physical disk; performance is significantly lower on this system.

For more information about how Notification Services prioritizes and fires rules, see "Generator Settings Considerations" in
Notification Services Books Online.

Generator Test Conclusions

The results of the generator tests lead to the following conclusions about generator performance:

Generator performance is dependent on processing power and on the performance of the database system's disk
subsystem.
Setting a maximum notification batch size to create more notification batches has a relatively minor impact on generator
performance.
Increasing the number of generator threads can significantly improve performance.

For more information about optimizing database performance, see "Writing Efficient Notification Generation Queries" in
Notification Services Books Online.

Recommendations for Generating Notifications

Based on these tests and general recommendations from Microsoft, do the following to improve generator performance:

Analyze the performance of your rules by running the NSNotificationBatchDetails reporting stored procedure; use the
GenerationTimeInMS value. Rule firing performance has the biggest impact on notification generation.
Optimize the performance of your rules by using indexes on the event and subscription tables. You can use the SQL Server
Index Tuning Wizard to determine which indexes can improve the performance of your rules.
When determining a limit for notification batch sizes, balance the efficiencies of scale with the ability to share work among
multiple distributors. For example, if your system uses two distributors, you might want to aim for four batches of
notifications per generator rule firing so that the workload can be balanced across the distributors. However, very small
batch sizes are inefficient. Also remember that digest and multicast delivery work within notification batches, so if you
produce too many batches, you will not use digest or multicast delivery efficiently.
When possible, run multiple rules in parallel on a multiprocessor system. Configure the number of threads using the
<ThreadPoolSize> value in the ADF. (This is configurable with Notification Services Enterprise Edition). A good rule of
thumb is to use between one and two times the number of CPUs on the database server. Set the <ThreadPoolSize> value
to 0 (zero) to let Notification Services determine the optimum value.

Distributor Performance

After Notification Services generates a batch of notifications, the batch is ready for the distributor. The distributor partitions the
batch into work items, which are notifications from a notification batch that will be sent through the same delivery channel. The
distributor then formats and distributes the notifications. Separating a batch into work items allows the distributor to efficiently
process notifications in parallel.

When the distributor formats notifications, it takes the raw notification data and applies formatting based on the destination
device and locale. The formatted notifications are distributed through delivery channels and handed off to external delivery
services. A delivery channel specifies a delivery protocol, such as SMTP, and the delivery information, such as the address and
authentication information.

The performance of a Notification Services application is typically limited by the choice of delivery protocol. Notification Services
can usually generate and format notifications much faster than any delivery protocol can deliver them.

Distributor Testing Methodology

To evaluate distributor formatting and distribution performance, we performed the following tests on each of the systems:

Format 10,000 notifications of various sizes using the XSLT content formatter. We discarded the formatted notifications
without delivering them so we could focus solely on formatter performance.
Distribute 5000 notifications using each of the three standard delivery protocols to determine how many notifications can
be distributed per second on the test systems.
Determine the performance impact of digest delivery when formatting notifications. We formatted 10,000 notifications and
varied the number of notifications to be included within a digest message from 1 to 10. Again, we discarded the formatted
notifications without delivering them, to focus solely on digest formatter performance.
Determine the performance impact of multicast delivery by sending 2000 notifications using the SMTP protocol while
varying the multicast ratio from 1 to 100 notifications per multicast message.

Distributor Testing Results

The following sections show the results of the four distributor tests.

Test 1: Formatting Notifications of Various Sizes using the XSLT Formatter

For this test, we formatted 10,000 notifications using the XSLT content formatter. In individual tests, all formatted notifications
were the same size: either 25, 50, 100, 250, 500, 1000, or 2000 characters per message. The <ThreadPoolSize> value was set to
one so that only one distributor thread was running on each of the test systems. The following graph shows how many
notifications were formatted per second on each test system.

Figure 16. Formatting results with varying notification sizes

The results of this test show that as the size of the formatted notification increases, the content formatter produces fewer
formatted notifications per second. On our test systems, the XSLT content formatter was able to format between 400 and 500
notifications per second when the formatted notification size was 500 bytes or less. If the formatted notification size was 2000
characters, the XSLT content formatter was able to format between 100 and 200 notifications per second.

Test 2: Distributing Notifications Using Three Built-In Delivery Protocols

We distributed 5000 notifications with minimal formatting using a single-threaded distributor. In individual tests, we distributed
the notifications using one of the three standard delivery protocols: File, HTTP Extension, and SMTP.

The File protocol simply writes the formatted notifications to a file at a specified location. For this test, the file was located on the
local server. The HTTP extension protocol posts a file to a Web server using HTTP. The SMTP protocol routes resulting notifications
to an SMTP server.

The following graph shows how many notifications were formatted per second for each delivery protocol on each test system.

Figure 17. Distributor results for standard delivery protocols

This test shows that the File protocol is the most efficient, followed by the HTTP extension, and then SMTP. However, the delivery
protocols used by an application are often determined by user requirements, not on protocol efficiency. Knowing how efficient a
delivery protocol is at delivering notifications will help you plan the capacity for your system. If an application requires greater
capacity, you can scale out distribution. For more information, see "Case Study: Stock Trading Application" later in this paper.

Note that increasing the number of distributor threads can improve performance. In our tests, there was a 25% to 50%
improvement for the HTTP extension and SMTP delivery protocols when the distributor was multithreaded.

Test 3: Formatting Notifications Using Digest Delivery

In this test, we turned on digest delivery and formatted 10,000 notifications using the XSLT content formatter and a single-
threaded distributor. Each notification was 200 characters when formatted. Individual tests used different notification-to-digest
message ratios: either 1, 2, 3, 4, 5, or 10 notifications per digested message. This was done by modifying the size of the
notification batch.

The following graph shows how many notifications were sent per second for different notification-to-digest message ratios.

Figure 18. Distributor results for digest delivery

This test shows that using digest delivery reduces formatting performance, especially when there are relatively few notifications
per digested message. However, digesting can be advantageous when using an expensive delivery protocol such as SMTP
because digesting decreases the number of messages that the delivery protocol must send.

Test 4: Formatting and Distributing Notifications Using Multicast Delivery

In this test, we turned on multicast delivery, and then formatted and distributed 2000 notifications using the SMTP delivery

protocol with a single-threaded distributor. Individual tests used various notification-to-multicast message ratios. The first test
sent one message to one recipient. The second test sent one message to two recipients: the distributor formatted a notification
once and sent it to two subscribers. Subsequent tests sent one message to 4, 10, and 100 recipients.

The following graph shows how many notifications were formatted and distributed per second on each test system.

Figure 19. Distributor results for multicast delivery

The results of this test show the dramatic benefit of using multicast with expensive delivery protocols like SMTP. Note that not all
delivery protocols support multicast delivery.

Distributor Testing Conclusions

The results of the distributor tests lead to the following conclusions about distributor performance:

The size of the formatted notification affects performance. The larger the message, the fewer that can be formatted per
second. To improve formatting performance, reduce the amount of work that the formatter must do.
Of the built-in delivery protocols, the File delivery protocol is the most efficient, followed by the HTTP extension protocol,
and then SMTP. Often you must use one particular delivery protocol. In the cases of HTTP and SMTP, be aware of the
performance implications, and consider using multiple distributors.
Digesting notifications has a negative impact on formatter performance when few messages are included in each digested
message. When possible, increase the number of notifications included in each digest message by increasing the
notification batch size limit. Remember that when using digest delivery effectively, fewer messages need to be distributed,
which has a positive performance impact for expensive delivery protocols.
Multicast delivery has a positive impact on performance, especially when more messages are included in each multicast.
This is especially useful for expensive delivery protocols. The same message will be formatted and distributed for multiple
subscribers, which can greatly improve distributor performance.

Recommendations for Notification Formatting and Delivery

Be aware that peak delivery periods and latency requirements can have a significant impact on your application design. Consider
the following when designing your applications:

If the rate of notification generation and delivery is relatively consistent throughout the day, your primary concern is the
average delivery rate of the delivery protocol.
If there are peak periods for notification generation and delivery, you must plan your system around these peak loads.
If your application has strict latency requirements for delivering notifications, you must plan your system around these
requirements.

To improve the formatting and distribution performance of your application, follow these recommendations, which are listed in
order of importance:

1. Pick the right delivery protocol. Delivery protocol performance is usually the critical factor controlling the performance of
your system. For example, an SMTP mail server might process 20 messages per second, while using HTTP posting might
process over 200 messages per second.

2. Increase the number of distributors. Notification Services Enterprise Edition allows you to improve performance by
configuring two or more distributors. For example, by increasing the number of distributors from one to three, we increased
the number of messages posted using HTTP from 250 per second to 700 per second. When you configure multiple

distributors, modify the <NotificationBatchSize> value in the ADF to ensure that the generator produces smaller batches.
This allows the distributors to work on different batches and thus share the work more evenly.

3. If appropriate, use digest delivery or multicast delivery. While the use of these options is application- and protocol-
dependent, digesting messages or using multicast can reduce the formatting and distribution load.

4. Increase the number of distributor threads. If the content formatter is expensive compared to the delivery protocol,
increasing the number of distributor threads can improve performance. If the distributor is running on a single server, set
the distributor <ThreadPoolSize> value to 0 (Enterprise Edition) or between 1 and 3 on Standard Edition. If the distributor
is running on multiple servers, use fewer distributor threads so that the distributors will balance their workloads. For
example, you might try setting the <ThreadPoolSize> value equal to the number CPUs on the server.

5. If content formatting is complex, reduce the complexity or increase the CPU resources. In most applications, the content
formatters do relatively simply formatting and consume relatively little CPU time. If your formatting is very complex, you
can improve performance by running it on a system with fast processors.

6. Improve database server performance. Each time Notification Services attempts to deliver a notification, it updates the
status of the notification in the database to reflect the results of the delivery attempt. This may result in significant database
update activity. You can improve performance by placing the database log files on a dedicated disk or a RAID disk array.

Case Study: Stock Trading Application
Each of the previous tests looked at a portion of an application in isolation. To determine the performance of a complete
Notification Services application, we developed a sample application and measured the number of notifications it generated,
formatted, and then sent per second.

Application Design

The sample application is a stock trading application in which notifications are sent to subscribers when a stock price crosses a
user-defined trigger price. The application was designed as follows:

We collected events for 1000 stocks. There was a stock quote for each stock each minute, so we collected 1000 events per
minute.
We had 200,000 subscribers, each with five subscriptions, totaling one million subscriptions. Some stock symbols had more
subscriptions than others.
We used an XSLT content formatter to format the notifications.
We used a custom delivery channel using the HTTP extension delivery protocol to distribute notifications.
We used four notification generation rules for different types of triggers, such as "stop" and "limit" orders.
We set a maximum notification batch size of 2500. Each notification generation rule produced four batches of notifications
each minute, for a total of 16 notification batches for the application each minute, or an average of 40,000 notifications per
minute.
Each event was stamped with an arrival time, and each notification had a delivery time. (The difference in time was the
latency.)

Test Results

To analyze this application, we determined how many notifications were sent per second. Knowing that delivery protocol
performance is often the key to application performance, we ran the test three times using one, two, and three distributor servers.
The following graph shows the results of these tests.

Figure 20. Case study results for 1, 2, and 3 distributors

This application generates a large number of notifications, more than most applications. Using one or two distributors, the
distributors could not send notifications as fast as the application could produce them. Using three distributor servers, the
distributors were able to keep up, sending approximately 700 notifications per second.

In each test, the latency of delivering notifications was less than two minutes.

Designing Your System
When you design a system to support your Notification Services applications, you design it around the peak usage periods. For
example, if your peak load begins at 8:00 in the morning, with your application sending an average of 300 notifications per
second for the next 30 minutes, you must design the application around this peak period. If your system is designed for a
maximum of 100 notifications per second, you will have a large backlog of notifications after this peak period, so the latency
between receiving an event and sending the notification can be significant.

To design the system, typically you should analyze performance for three application functions: event collection, notification
generation, and notification formatting and delivery. Because many applications use expensive delivery protocols, and sometimes
use expensive formatting, the performance of the distributor is often the key factor in overall application performance.

You can use the graphs in this paper to estimate the performance of the components for your system. (If you use custom
components, consider running similar tests of your own.) Estimate the number of events collected and notifications generated per
second, and then look at the graphs in this paper to determine whether a system similar to the ones we used will support the
throughput.

In some cases, you may not know the number of notifications an application will generate. You can make an estimate based on
the number of subscriptions that you expect will produce a notification each day. For example, if your application has 20 million
subscriptions, and you think each subscription will get one notification a day, then you need a system that can handle 20 million
notifications a day. If there are peak periods for notification delivery, estimate the percentage of subscriptions that will produce a
notification during those periods.

Use the information in the graphs and in the recommendation sections in this paper to improve the performance of your system
where necessary. In addition, the following guidelines should help you design a high-performing system:

Choose the correct edition of Notification Services for your applications. If you need the following features, you must use
Notification Services Enterprise Edition:

Multiple generator threads, which can increase the number of notifications an application can generate.
Use of more than three distributor threads, which can improve the performance of formatting and distributing
individual notification batches.
Scaling out of formatting and distribution across multiple servers, which is often necessary if your application uses
an expensive delivery protocol and sends many notifications per second during peak periods.
Limitations on notification batch size, which can improve performance when using multiple distributors.
Multicasting, which allows the application to send one message to multiple subscribers, decreasing the formatting
and distribution load when many subscribers want the same information.

Place your Notification Services databases on your most powerful system, because database performance is key to
Notification Services performance. The optimal system has a fast disk subsystem with multiple physical disks, adequate
processing power, and abundant memory. Use the systems described in this paper as a guideline, and monitor disk,
processor, and memory usage with Windows performance counters.

In addition, use the following guidelines when designing the system:

Place database log files on their own dedicated physical disk. Also place the tempdb database on it own dedicated
physical disk.
If your application uses two or more notification generation rules that can be fired in parallel, select a multiprocessor
server for your database server and configure two or more generator threads. This will permit the generator to fire
the rules in parallel.
If a database runs out of disk space, SQL Server can autogrow the file by an amount determined when you created
the database files in the ADF and the configuration file. However, the database autogrow operation is expensive, so
allocate ample space for your database files when you initially define them.

Choose the proper servers for the distributors. When posting messages using HTTP, one distributor can post about 200
notifications per second. Because formatting and distribution is CPU-intensive, consider using dual-processor servers with 1
GB of RAM.
For most applications, event providers can run on the same server as the generator. This is usually sufficient unless the

volume of events is very high.

If you use a custom event provider, consider placing it on a server similar to the distributor server. You can use the same
server for the distributor and the event provider if your event and notification load is not too high. Use tests similar to the
ones shown in this document to determine the performance of your custom event providers.

The generator and the SQL Server event provider are primarily database components. Therefore the performance of the
database server has the biggest impact on the performance of these components, not the server that hosts them.

To get started with system design, you might find it useful to start with one of our standard configurations:

Place the databases and Notification Services on one dual-processor server.
Place the databases and Notification Services on one quad-processor server.
Place the databases on the quad-processor server and Notification Services on the dual-processor server.
Place the databases on the quad-processor server and Notification Services on three dual-processor servers; scale the
distributor across the three servers.

For more information about system design and instructions for deploying Notification Services applications on various system
configurations, see "Hardware Configurations" in Notification Services Books Online.

Measuring Application Performance

When you planned your application and the host system, you first came up with a preliminary system design. For this system,
therefore, you know the number and type of servers and how many disk drives the system will have. Using this information, you
can complete your application by specifying the location of the databases, event providers, generators, and distributors.

When you deploy your application for testing, run the following tests to check performance:

Note When testing an application, include a simple notification generation rule. This will provide a performance
baseline when examining more complex rules.

Add a large set of subscribers, such as 10,000, and measure the time it takes the application to complete this operation. You
can design a small, custom application for testing purposes that simply bulk-loads the subscribers.
Add one subscription per subscriber, for a total of 10,000 subscriptions, and measure the time it takes the application to
complete this operation. You can design a small, custom application for testing purposes that simply bulk-loads a set of
subscriptions.
Add an event batch that is similar to a production event batch, and wait for Notification Services to distribute the
notifications.
Use the built-in reporting stored procedures to get average performance data for event collection, generation, and
distribution.

Use the NSQuantumList stored procedure to locate a quantum of interest. If you submit one batch of events, the
results of this stored procedure will show you in which quantum or quanta the processing occurred. The following
example shows how to run this stored procedure:

EXEC NSQuantumList '2002-12-21 00:04', '2002-12-21 00:08'

The results contain two columns that show how many notifications were generated during each quantum:
EventNotificationsGenerated and ScheduledNotificationsGenerated. Look for non-zero values to locate
quanta of interest.

Using a quantum of interest from the previous step, run the NSQuantumDetails stored procedure to find an event
batch of interest. For example, if you want information about quantum 2, run this:

EXEC NSQuantumDetails 2

The third result set shows each event batch that was committed during the quantum. Note the
StartCollectionTime and StopCollectionTime values for an event batch of interest.

Run the NSDiagnosticEventClass stored procedure, isolating an event batch of interest. For example, if the
StartCollectionTime value is '2002-12-21 00:05:21.380' and the StopCollectionTime value is '2002-12-21
00:05:41.083', run the stored procedure with values similar to this:

EXEC NSDiagnosticEventClass 'MyApp', 'MyEventClass', 1,
 '2002-12-21 00:04', '2002-12-21 00:06'

The results of this stored procedure contain several values that help you analyze performance:

AvgEventsCollectedPerSecond shows how many events were collected per second.

AvgEventNotificationBatchGenerationTime shows the average latency between collecting the events and
creating raw notification data.

AvgEventNotificationBatchWaitTillDistribution shows the average latency between a notification batch being
available, and when it was picked up for distribution.

AvgEventNotificationBatchSucceedDeliveryTime shows the average latency between picking up a notification
batch and successfully sending the notifications.

Additional stored procedures are available to help you analyze performance, such as NSDiagnosticNotificationClass and
NSDiagnosticDeliveryChannel. For more information about using the reporting stored procedures, see "Stored Procedure
Reference" and "Using Reports to Analyze Performance" in Notification Services Books Online.

After you have completed these basic tests, you can tune performance by adjusting application settings:

If using Notification Services Enterprise Edition, adjust the <ThreadPoolSize> value to enable multiple generator threads.
Try a value of 0 and let Notifications Services determine the optimal number of threads.
Adjust the <ThreadPoolSize> value for the distributor, allowing the distributor to process multiple work items.
Reduce the <NotificationBatchSize> value to break up the notifications into more batches so that multiple distributors
can work on notification batches simultaneously.
If you do not need the various distributor logging options, explicitly turn them off. For more information, see "Defining the
<DistributorLogging> Node" in Notification Services Books Online.

Troubleshooting Poor Performance
Most application problems concern the speed at which events are collected or at which notifications are generated, formatted, or
distributed. Use the following recommendations for troubleshooting poor performance.

Notifications are not being distributed fast enough.

Cause: The delivery channel cannot keep up with the notification load.

Solution: If using a custom delivery protocol, test and tune the performance. If the delivery protocol is optimized, try increasing
the <ThreadPoolSize> value for the distributor. If this doesn't work, scale out the distributor onto multiple servers.

Cause: The content formatter is too slow.

Solution: Complex formatting decreases performance; try simplifying the formatting. If you are using a custom content
formatter, test and tune the performance of the formatter. The next step is to try increasing the <ThreadPoolSize> value for the
distributor. If this doesn't work, scale out the distributor onto multiple servers.

Notifications are not being generated fast enough.

Cause: The notification generation rule is complex.

Solution: Complex rules need tuning. Using SQL Server Query Analyzer, run the rule and display the execution plan. You can also
use the rule in the Index Tuning Wizard to view suggested indexes for the query.

Cause: The processors on a multiprocessor system are not being used efficiently.

Solution: Increase the <ThreadPoolSize> value for the generator. This value should be between one and two times the number
of processors on the database server.

Events are not being picked up fast enough.

Cause: You are using the Event and EventCollector classes in a custom event provider.

Solution: Optimize the disk system on the database server and make sure the database log file is on a separate physical disk. Use
a multithreaded event collection application to improve the number of events that can be processed.

Subscribers and subscriptions are not being added fast enough

Cause: The disk subsystem for the database server is not adequate.

Solution: Optimize the disk system on the database server and make sure the database log file is on a separate physical disk.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Notification Services Quick Start Guide for Sample Installation

Microsoft Corporation

February 2003

Applies to:
 Microsoft® SQL Server® Notification Services

Summary: Microsoft SQL Server Notification Services provides four sample applications that show how to use its various
features: Flight, Weather, Stock, and Realtor. (5 printed pages)

Contents

Introduction
Step 1: Install Software
Step 2: Configure the Sample Applications
Step 3: Test the Stock Sample
Using Visual Studio .NET with the Samples
Using the Documentation

Introduction
This quick start guide provides step-by-step procedures for:

Setting up Notification Services on a single computer.
Installing the Notification Services samples, and configure them to use a domain account with local administrator privileges.
Testing the Stock sample to ensure that sample installation and configuration succeeded.

Note Three of the samples use the SMTP protocol to deliver notifications: Flight, Weather, and Realtor. Currently, the
SMTP protocol requires the message sender to be a local administrator. This means that the Microsoft Windows®
service that runs Notification Services must be associated with an account having local administrator privileges.

To simplify sample configuration, this quick start guide focuses on the Stock sample, but the procedures in this document will
work for all samples.

For additional configuration options, and more information about running the sample applications, see Notification Services
Books Online.

Step 1: Install Software
Notification Services Books Online outlines the required hardware and software for Notification Services. In this quick start guide,
Notification Services, Microsoft Visual Studio® .NET, and SQL Server 2000 are installed on the same computer, which streamlines
some of the installation. The following process ensures your computer has the required software:

1. Verify that the server operating system is Windows 2000 SP2 or later, or Windows XP Professional.
2. Go to the Microsoft Windows Update Web site , and check for operating system updates. Install any critical updates before

proceeding.
3. If not already installed, install Internet Information Services (IIS).
4. Verify that Microsoft .NET Framework version 1.0.3705 is installed. If necessary, you can download it from the Microsoft

Download Center. .NET Framework can also be also installed using Windows Update, so check your system before
downloading a new copy.

5. If not already installed, install a default instance of SQL Server 2000.

You can use SQL Server 2000 Standard Edition, SQL Server 2000 Enterprise Edition, or SQL Server 2000 Developer Edition
on the Windows 2000 Server, Advanced Server, or Datacenter Server operating systems. You can also use SQL Server 2000
Developer Edition on the Windows 2000 Professional or Windows XP Professional operating systems. Notification Services
is not compatible with the Microsoft Data Engine (MSDE).

Note For deployed notification applications, you must use either SQL Server 2000 Standard Edition or SQL
Server 2000 Enterprise Edition.

6. If you have not already done so, apply the latest service pack to your instance of SQL Server.

http://go.microsoft.com/fwlink/?LinkId=11898
http://go.microsoft.com/fwlink/?LinkId=11899

7. Install Visual Studio .NET, including Microsoft Visual C#™ .NET, Microsoft Visual C++® .NET, and Microsoft Visual Basic®
.NET.

Installing Visual Studio .NET after SQL Server automatically registers SQL Server with Visual Studio .NET. Installing Visual
Studio .NET before SQL Server, in contrast, does not register SQL Server with Visual Studio .NET. In this case, you must add
the SQL Server Binn folder (C:\Program Files\Microsoft SQL Server\80\Tools\Binn by default) to the Visual C++ path as
follows:

a. Launch Visual Studio .NET.
b. On the Tools menu, click Options.
c. In the left pane of the Options dialog box, expand the Projects folder, and then select VC++ Directories.
d. In the Show directories for box, select Executable files. Verify that the SQL Server Binn folder (default C:\Program

Files\Microsoft SQL Server\80\Tools\Binn) is not already in the list of executable directories.
e. To add the SQL Server Binn folder to the list, click the folder button above the directory window. This will add a new

line in the directory window. Then click the ellipsis button on the new line to open a standard Windows dialog box
where you can browse for a directory to add. Navigate to your SQL Server Binn folder, and then click Open.

8. Check for the ASPNET account by opening the User Accounts directory in Control Panel. If the ASPNET account was not
created during your installation of Microsoft Visual Studio .NET, run
windows_directory\Microsoft.NET\Framework\v1.0.3705\aspnet_regiis.exe to create it.

9. Install SOAP Toolkit 2.0 SP2, which is available from the SOAP 2.0 Toolkit SDK and Samples Download Center.
10. Install SQLXML 3.0, which is available from the Microsoft SQL Server Web site on Microsoft.com.
11. Install Notification Services, making sure to install all components (Engine Components, Client Components, Database

Components, Documentation, and Sample Applications).

Step 2: Configure the Sample Applications
After you install Notification Services, you can configure the sample applications for your environment. For the quick start
configuration, run the SetupSamples command, following these steps:

1. After installation is complete, open a command prompt and navigate to the Samples folder.
a. On the Start menu, point to Programs, point to Microsoft SQL Server Notification Services, and then click

Notification Services Command Prompt.
b. At the command prompt, type cd Samples.

2. To configure the samples, at the command prompt, type
SetupSamples "Domain\User" "Password" ComputerName.

For example, assume the following information:

User is ScottB.
Domain is AdventureWorks.
The user's password is w0r!dAsh.
Server name of the computer hosting the default SQL Server instance is TIGGER.

The command line would then be as follows:

SetupSamples "AdventureWorks\ScottB" "w0r!dAsh" TIGGER

Close the command prompt window when SetupSamples has finished running.

The domain user account must have a SQL Server login account on the default instance of SQL Server. The SetupSamples
utility grants the necessary database permissions to the login account.

SetupSamples assigns the user name and password to the Windows services that run the sample applications and grants
the account the necessary permissions in Windows.

For more information about the samples and the SetupSamples utility, see Notification Services Books Online.

Step 3: Test the Stock Sample
After you set up the samples, test the Stock sample to make sure that Notification Services and the samples are working properly.

1. On the Start menu, point to Programs, point to Microsoft SQL Server Notification Services, and then click Notification
Services Command Prompt.

http://www.microsoft.com/downloads/details.aspx?FamilyId=147ED727-0BE8-48A1-B1DA-D50B1EA582CB&displaylang=en
http://go.microsoft.com/fwlink/?LinkId=11902

2. To navigate to the Stock folder, type cd Samples\Stock at the command prompt.
3. At the command prompt, type RunSample.

The RunSample command builds the databases for the sample, creates the NS$StockInstance service that runs the
sample application, starts the service, and then drops XML event data to a folder. The service runs for 60 seconds. During
this time, Notification Services generates notifications and posts them to a folder.

4. Using Windows Explorer, navigate to ..\Program Files\Microsoft SQL Server Notification
Services\v2.0.2114.0\Samples\Stock\Test\Notifications.

In this folder, you should see a file named FileNotifications.txt. This file contains notifications from the Stock application that
were delivered using the standard File protocol.

5. Open FileNotification.txt with Notepad and verify that it contains notifications.

If the sample fails to produce notifications, check the Notification Services Readme.txt file for troubleshooting tips.

Using Visual Studio .NET with the Samples
After you verify that installation and initial configuration worked by testing the Stock application, you can use Visual Studio .NET
to work with the samples.

To use the Samples Setup Web page to interact with the samples:

1. On the Start menu, point to Programs, point to Microsoft SQL Server Notification Services, point to Samples, and then
click Samples Setup.

2. Follow the quick start instructions for using the samples, starting with Step 3. You do not need to run the SetupSamples
utility again. SetupSamples needs to be run only once per installation of Notification Services.

Using the Documentation
Use Notification Services Books Online to learn more about the samples and how to run them. You can go directly to the samples
documentation from the Start menu:

On the Start menu, point to Programs, point to Microsoft SQL Server Notification Services, point to Samples, and then
click Samples Documentation.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

OLAP Distinct Counts and Performance Analysis

Sanjay Soni

March 2003

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Learn techniques to answer useful Distinct Counts business questions by using the Sales and Marketing scenario and
Analysis Services 2000 to learn about performance characteristics of Analysis Services 2000 when dealing with Distinct Counts
using a multiprocessor ES7000 server. (28 printed pages)

Contents

Introduction
Distinct Count Analysis
Microsoft Solution Offerings: SSABI Sales and Marketing
Building DC Cubes Using SSABI Schema
Performance Study Results
Query Performance
Measuring MDX Query Response Times (QRT) for Cold/Warm Cache with Up to 500 Concurrent Users
Performance Optimization Tips
Conclusion
Appendix A
Appendix B
Appendix C

Introduction
This white paper explains Distinct Counts (DC) by giving you insight into a Sales and Marketing Business Analytics scenario using
the Microsoft® SQL Server™ Accelerator for Business Intelligence (SSABI) Sales and Marketing schema. It shows cube design
techniques used to solve useful business questions, and then focuses on a performance study of Distinct Counts using Microsoft
Analysis Services 2000 and a Unisys ES7000 server.

This white paper is organized in two parts. In the first half of the paper, you are given a brief introduction to the Distinct Counts
problem in online analytical processing (OLAP). You are shown how to extend the standard SSABI Sales and Marketing schema to
answer more advanced business questions using Distinct Counts. More importantly, this first section serves as the groundwork
and explains the series of steps that were followed to prepare OLAP cubes for the performance study in the second part of the
white paper.

The second half of the white paper focuses on the performance study of OLAP cubes involving Distinct Counts. The cube design
was used in the first part of this white paper, and shares results of performance tests that were conducted on cubes involving
Distinct Counts. This performance study used a 16-processor partition, on a 32-way Unisys ES7000 Server to show scalability of
Analysis Services. This white paper includes optimization techniques for getting the optimal performance when working with
Distinct Count OLAP cubes.

The capabilities of Analysis Services 2000 has the ability to aggregate millions of rows of data to get quick results by categorizing
data into dimensions that are apparent from the user interface. Analysis Server 2000 also includes very powerful analysis tools
and techniques to enhance large data warehouse environments. For example, partitioning of cubes, compression of data when
storing relational data in multidimensional format and so on.

More advanced and challenging analysis capabilities of Analysis Sever 2000 are not obvious from the user interface, and may
require more user expertise in order to take full advantage of them. One advanced and challenging analysis technique is Distinct
Counts in OLAP. Distinct Count Analysis is one of the most popular types of analyses and one of the toughest problems for an
OLAP system.

When working with Distinct Counts, OLAP performance considerations consist of three things that need to be balanced:

Cube processing times
Space used for the cubes
Multidimensional Expressions (MDX) query execution times

The various factors that influence the balance of cube processing times, space used for cubes, and MDX are:

Number of concurrent users querying the cubes
Aggregation levels
Parallel processing and hardware used

Using a Distinct Count scenario, MOLAP (Multidimensional OLAP storage mode), and parallel processing of cube partitions, you
can vary different aggregation levels, concurrent users querying the cubes, and hardware.

The following results were tested:

The processing times for a cube
A comparison of disk space requirements
A comparison of average MDX query response times with varying (up to 500) concurrent users
A comparison of average MDX query response times with warm and cold caches
A comparison of average MDX query response times, on 8-processor server versus a 16-processor partition on ES7000
Server
A comparison of average MDX query response times with varying aggregation levels for 250 concurrent users

Many optimization tips for Distinct Count cubes have been included in this white paper. You will find shared results, with very
good concurrent user query performance when using an ES7000 Server versus an 8-processor system.

The tests and results come from a set of business questions that originate from the Sales and Marketing Business Intelligence
(SMBI) for the Sales cube scenario. Results from this study can be easily applied to any other cube, which involves Distinct Counts.

Conclusions and recommendations are drawn using some of the preceding factors for processing a large data set.

Test setup for distinct count performance

Some of the material in this section of the OLAP Distinct Counts and Performance Analysis white paper was taken from another
white paper, written by Amir Netz and entitled, "Distinct Counts Using OLAP Services 7.0." However, some of the content in this
paper has been modified as it applies to Analysis Services 2000 and to the SSABI example.

Distinct Count Analysis
Distinct Count Analysis is one of the most popular types of analyses, and yet, it is also one of the toughest problems for an OLAP
system. The toughest problems refer to the problem as the many-to-many problem because analysis of the relationship between
entities that have many-to-many relationships is involved.

The following represents typical usage for Distinct Count analysis.

Sales and marketing: counting distinct numbers of customers and numbers of Sales Representatives, and so on.
Insurance claims: one claim may have many damages.

The preceding bulleted list helps to explain the Sales and Marketing scenario. For example, suppose you have a cube that analyzes
sales transactions. The cube has dimensions that describe the customer's geography, education, income level and gender. It also
describes the product's categories, model, and size, time and sales representatives. The measurements include information about
sales amounts, quantities and discounts.

One of the most common OLAP questions is, "How many customers bought a specific product in a particular time period?" A
more general question is, "How many customers are buying each product?"

Although this last question seems simple, it is not. If you use a regular COUNT aggregate function for the measure it will not
provide correct results because double counts may occur. If a single customer buys a product more than once, a regular COUNT
with the measure will count the product sale by customer twice. In order to get the correct results, each customer needs to be
counted only once. This is the classic Distinct Count problem, and it requires a fairly complex resolution in the online analytical
processing (OLAP) environment.

Consider the following MDX query on a sample Sales cube:

SELECT
{ [Total Sales Count], [Distinct Customers Count] } On Columns,
Products.Members On Rows
From Sales

The query above returns the following results:

Table 1. Query Results

Products Total sales count Distinct customers count
All Products 8000 200
Computers 3300 80
Laptop 2000 70
PC 800 60
Workstations 500 30
Peripherals 4700 150
Monitors 1500 100
Printers 2500 100
Games 700 80

Understanding the Problem

In the Total Sales Count column, the numbers add up to subtotals and then to totals. This is the expected behavior of a SUM
measure. However, in the Distinct Customers Count column, the numbers do not add up.

When looking at the Distinct Customers' Count column, you see that 70 customers bought laptops, 60 customers bought PCs,
and 30 customers bought workstations. However, the total number of customers who bought computers, according to the results
is not 70+60+30 or 160 as shown in the table. The query results display an actual count of 80 total computer customers. The
irregularity is because many customers bought more than one product. A few customers bought both laptops and PCs, while
others bought the whole three-piece package (laptop, PC, and workstation). And then there were those who bought just one item,
like the laptops, and so on. The end result is that there is no way to infer directly from the lower level results what the customer
subtotal really is. This discrepancy continues through the upper levels as well. For example, 80 customers bought computers, 150
bought peripherals, and all together all products totaled only 200 customers.

These kinds of irregularities pose challenges for OLAP systems. Non-additive measures create the following problems on a typical
OLAP system:

Roll-ups are not possible. When pre-calculating results during cube processing, the system cannot deduce summaries from
other summaries. All results must be calculated from the detail data. This situation places a heavy burden in processing
time.
All results must be pre-calculated. With non-additive measures, there is no way to deduce the result for a higher-level
summary query from one pre-calculated aggregation. Failure to pre-calculate the results in advance means that the results
are not available. It is impossible to perform and maintain incremental updates to the system. A single transaction added to
the cube usually invalidates huge portions of previously pre-calculated results. In order to recover from this, a complete
recalculation is needed.

Distinct Counts in Analysis Services 2000

Standard functions available with OLAP Services 7.0 included Sum, Min, Max and Count. In the Analysis Services 2000 cube
editor, another aggregated base function called DISTINCT COUNT has been added to the standard functions. This makes a big
difference in terms of simplifying the implementation of Distinct Counts because you do not have to write complex MDX queries
to implement Distinct Counts as you did in OLAP Services 7.0. The performance burden shifts from querying to processing. In
many businesses, the number of customers can be very large. It is important to remember that even with these optimizations,
Distinct Counts can be slower than other additive measures. Overall, Distinct Counts could be processor intensive. Later in this
document, techniques to optimize Distinct Counts performance are discussed.

Microsoft Solution Offerings: SSABI Sales and Marketing
Microsoft developed the Microsoft SQL Server Accelerator for Business Intelligence (BI) to simplify the process of building an
analytical application in a variety of business scenarios. One such offering is Sales and Marketing Analytics, which is a BI solution
for a Sales and Marketing scenario. Building a BI solution that delivers insight into product sales (marketing campaigns, and
customer behavior) is often a difficult, costly, and time-consuming undertaking whether you create a custom solution or use a
packaged BI solution specific to an industry.

The Microsoft SQL Server Accelerator for BI consists of the following:

Rapid deployment tools (the BI accelerator software), which you can use to create a customized analytical application based
on a customized data model.
Reference data models addressing BI analytics.

Pre-configured client views that are based on templates and generated by client generators.
A data-processing and management application (the Analytical Application Extraction, Transformation and loading process)
consisting of DTS (Data transformation Service) packages, meta data tables, and stored procedures that moves the initial
and incremental loads of data within the analytical application and processes the multidimensional cubes within the
Analysis database.
Prescriptive Architecture Guides (PAG) that assist you in developing, deploying, operating, and maintaining the analytical
application.

Overall, the BI accelerator contains the Analytics builder workbook, Analysis Database, SQL Server subject matter database, DTS
packages and client views. However, the cubes and the schema included with the BI accelerator do not support Distinct Count
cubes by default. In this white paper, you are shown how to modify some of those cubes to answer queries that use Distinct
Counts.

Building DC Cubes Using SSABI Schema
This section and the sections that follow describe how the Distinct Count cubes were built for performance testing using BI
accelerator sales and marketing data. The following steps were used to modify the SSABI schema:

Setting up the test configuration
Identifying common business questions
Identifying existing information
Building OLAP cubes including Distinct Count measures

Although the source SQL Server database had more than 1-TB data only a portion (a few GB) of that data was used as source data
for the Sales cube with partitioning. This Sales cube had sales transaction information for several months, three years, and 2.5
million customers. It took (in each cube) three months, and three partitions for this study to be concluded.

Test System Configuration

The hardware used for this set of experiments is shown in figure 1:

Figure 1. System configuration

As shown in Figure 1, a 16-processor partition on a 32-processor Unisys ES7000 Server was used for this study.

Other ES7000 details are as follows:

16 Intel Xeon 900 MHz CPUs with 2-MB L2 cache
16 GB of RAM
9 PCI buses
8 Emulex LP8000 PCI cards

Unisys ESM7800 Fiber Channel data storage consist of the following:

RAID 0 disk arrays with disks
Network: 100-MB network

Software Installed on the ES7000 partition:

Windows 2000 Data Center Edition with service pack 2 (SP2)
SQL Server 2000 and Analysis Services 2000 Enterprise Edition with SP2.

As shown in Figure 1, SQL Server and Analysis Services were housed in the same partition.

Two processor client machines were used for MDX queries.

Defining Business Questions

Table 2 lists questions that involve Distinct Counts. These questions are representative of typical questions a Sales and Marketing
analyst may need to answer. These questions served as a starting point for the Distinct Counts study.

Table 2. Sales and Marketing Questions

Query number Question
1 How many distinct customers bought product X in year 2000?
2 How many distinct products in category X were sold in each of the regions in last year?
3 How many distinct sales people sold product X in particular months?
4 How many distinct customers shopped at various stores in a particular quarter?
5 What is the average sales amount per distinct customer for various years?

Choosing a Dimensional Schema from SSABI

The preceding questions help to identify the appropriate source information in the existing BI accelerator SMA schema. Various
relational tables were used to identify answers that are related to questions using the Sales Snowflake schema. Here is a list of
some of the dimension tables:

Product dimension tables contain information about products sold.
Sales Force representatives dimension tables contain the information about sales force.
Time dimension tables had information on time periods.
Customer dimension tables contained information about customers and industries they belong to.
Geography dimension tables contained information about customers as well as direct marketing areas.
Customer status dimension tables contained information about customer status, for example, whether a customer is active
or not.

The Fact table records the sales transaction fact information for various dimensions. Figure 2 shows part of that Snowflake
schema design.

Figure 2. Snowflake schema with facts and dimensions (click thumbnail for larger image)

Details of all the individual relational database management system (RDBMS) tables involved in the schema are shown in
Appendix A.

Building OLAP Cube(s) with DC Measures from Default Schema

The Snowflake schema shown above was used by the Sales cube included with the Accelerator for BI. The Sales cube was used to

answer specific business questions. The Sales cube does not support Distinct Counts by default; the cube schema was modified to
support Distinct Counts.

Dimensions Summary: Seven dimensions in the cubes were included based on the dimension tables in the dimensional data
mart. The following table is a quick summary of the OLAP dimensions and RDBMS tables on which they are based.

OLAP dimensions RDBMS Tables on which dimensions are built
Total size of

RDBMS tables
(MB)

CustomerSimple2 Dim_Cust_Direct_Cust, Dim_Cust_Direct_Industry 999.7
TimeSimple2 Dim_Time_Day Dim_Time_Std_Mon, Dim_Time_Std_Qtr, Dim_Time_Std_Year 1.05
Sales ForceSimple2 Dim_SF_Std_Rep, Dim_SF_Std_SFArea, Dim_SF_Std_SFRegion 2.47
Sales Rep
StatusSimple2 Dim_SF_Std_Rep, Dim_SF_Std_SFArea, Dim_SF_Std_SFRegion 2.47

Customer
StatusSimple2 Dim_CustStat_Std_Active, Dim_CustStat_Std_Range 0.09

GeographyMktgSimple2 Dim_Geeog_Mktg_DMA, Dim_Geog_Mktg_DMR Dim_Geog_Std_Zip 7.96

GeographyStdSimple2 Dim_Geog_Std_City, Dim_Geog_Std_Country, Dim_Geog_Std_Region,
Dim_Geog_Std_State, Dim_Geog_Std_Zip 12.46

ProductSimple2 Dim_Prod_Std_ProdGrp, Dim_Prod_Std_ProdItem, Dim_Prod_Std_ProdLine 0.56

Measures Summary: Table 3 describes a subset of measures that were chosen in various cubes.

Table 3. Subset Measures

Fact measure Simple description
Actual net Sales Amount Actual net sales amount for the transaction.
Distinct customer Count Distinct Count of customers for various dimensions.
Distinct Product Count Distinct Count of products sold for various dimensions.
Distinct Sales Reps Count Distinct Count of Sales Representatives involved for various dimensions.
Actual Sales Units Actual Sales units involved in the transaction.

Figure 3 shows the design of one of the cubes modified for Distinct Counts.

Figure 3. Design of one of the cubes (click thumbnail for larger image)

The following steps were used to implement Distinct Counts using the SSABI cubes, and to conduct the performance study:

1. Make a new OLAP database out of the default OLAP database provided with the offering.
2. Copy and paste only the Sales cube and the shared dimensions used by the Sales cube in that OLAP database. (The Sales

cube is called AllMSODDDB).

3. Modify all shared dimensions by removing custom rollups used by various levels of the dimensions. This step is necessary
because you cannot define a Distinct Count measure in a cube that contains a dimension with a custom rollup.

4. Add Distinct Count measure in the Sales cube for customer ID (cust_direct_cust_Idx) field in the Fact table. This measure
aided in calculating the Distinct Count of customers. We called this modified cube SaleswithDistinctcustomersM15. M15
denoted that it is a MOLAP cube with 15 percent aggregations. It is shown in Figure 4.

Figure 4. Added distinct count measure to the cube design (click thumbnail for larger image)
5. Create another cube called SaleswithDistinctSalesRepsM15 that has a Distinct Count measure in the Sales cube for Sales

Representative ID (SF_std_rep_idx) field in the Fact table. This measure helps later on in calculating the Distinct Count of
Sales Representatives.

6. Create another cube called SaleswithDistinctProductsM15 that has a Distinct Count measure in the Sales cube for product
ID (prod_std_Proditem_idx) field in the Fact table. This measure helps later on in calculating the Distinct Count of Products.

7. Create a virtual cube called SaleswithDistinctCountsM15VC consisting of all the measures from the three cubes mentioned
in the preceding table and all the shared dimensions.

8. Steps 4 to 7 are repeated for 30 percent aggregation levels and then for 60 percent aggregation levels. For each
aggregation level, there is one virtual cube and three base cubes with one Distinct Count measure in each of them for
counting distinct customers, distinct products purchased, and distinct sales representatives involved.

9. All end users query only the virtual cubes.

The following is a summary of the cubes built:

Note Although, the cubes have identical structure, their aggregation levels are different. Each cube had three
partitions for March 1998, March 1999 and March 2000. Usage based optimization (UBO) was not used in this study
due to insufficient time for performance testing. It is recommend that you use UBO for good query performance with
Distinct Count cubes.

Table3. Cube Summary

Cube name Aggregation (%) Virtual
cube? Distinct count measure

SaleswithDistinctCustomersM15 15 No Distinct Count of customers
SaleswithDistinctProductsM15 15 No Distinct Count of products
SaleswithDistinctSalesRepsM15 15 No Distinct Count of sales representatives

SaleswithDistinctCountsM15VC 15 Yes Distinct Count of customers, products and sales
representatives

SaleswithDistinctCustomersM30 30 No Distinct Count of customers
SaleswithDistinctProductsM30 30 No Distinct Count of products
SaleswithDistinctSalesRepsM30 30 No Distinct Count of sales representatives

SaleswithDistinctCountsM30VC 30 Yes Distinct Count of customers, products and sales
representatives

SaleswithDistinctCustomersM60 60 No Distinct Count of customers
SaleswithDistinctProductsM60 60 No Distinct Count of products
SaleswithDistinctSalesRepsM60 60 No Distinct Count of sales representatives

SaleswithDistinctCountsM60VC 60 Yes Distinct Count of customers, products and sales
representatives

Note Each cube had 3 partitions based on three time periods: March 1998, March 1999, and March 2000
respectively. For each partition, the corresponding Fact table had around 2 million rows. There were 6 million rows
overall in the Fact's table for each cube. One large dimension included here was the customer dimension with 2.5
million members in it.

Browsing OLAP Cube(s) Using Proclarity®

Figure 5 shows a report that was produced using the Proclarity Cube Browsing tool for question number 1 in our business cases
once the cubes were processed.

Figure 5. Sample report for business question 1 using processed cubes (click thumbnail for larger image)

Performance Study Results
In this second part of the paper, the concentration is on the performance results obtained with Distinct Count cubes.

Processing Performance

The follow graph shows aggregation level percentages of 15, 30, and 60. Note that the aggregation percentage number
represents the expected improvement in query performance compared to having no pre-calculated aggregations.

Processing times for various aggregation levels

The following results were obtained when identically structured cubes, using different data storage modes and aggregation levels
were processed.

The following figure shows processing times for various aggregation levels:

Figure 6. Processing times for cubes

This data in figure 6 shows that:

At 15 percent aggregation, it took 20.45 minutes to process the three partitions in parallel.
As the aggregation level increases, it takes more time to process the cubes. As shown in the graph above, it took almost an
hour as we increased aggregation level to 30 percent. It increased to almost 2.5 hours as we increased the aggregation level
to 60 percent.
We also tested the processing time for a cube with 90 percent aggregation level, which took approximately 13 hours to
process the same cube. A thorough study for all the partitions for that aggregation level was not done. With Distinct Count
cubes, the correct thing to do is to keep the aggregation level low, as shown in the preceding figure.
Overall, save time by processing three OLAP partitions in parallel using a multiple processor ES7000 server. It takes much
more time if partitions were processed sequentially.

Disk Space Requirements

The following illustration shows the space requirements (in GB) for varying aggregation levels.

Figure 7. Disk space required for cubes

The data in figure 7 shows that:

As the aggregation level increases, more space is needed to store the data in OLAP cubes.
Space required increased from 6 GB to almost 17 GB as we increased aggregation level from 15 to 60 percent. Space is
definitely a consideration when it comes to deciding the aggregation level.

Query Performance
All queries used for this performance testing involved Distinct Counts.

Developing MDX Queries

In this step we developed MDX queries for our set of business questions. An example for question 1 is shown here:

The following is an MDX query showing the number of distinct customers that bought product X in year 2000.

SELECT { [Time].[Simple].[Year Name].and[1/1/2000] } ON COLUMNS ,

{[ProductStandardSimple].[Product Group].and[2].CHILDREN } ON ROWS
FROM [Distinct Sales Rep and Customers]
WHERE ([Measures].[Distinct Customer Count])

Figure 8. Results of MDX queries

MDX Queries Setup

MDX queries were written for the five business questions mentioned in table 2. These business scenarios were chosen as a
starting point. Several different and fairly complex MDX queries were generated for the MDX query testing. Standard MDX query
templates were created to generate random, concurrent, unique queries against the virtual OLAP cubes (for example
SaleswithDistinctCountsM15VC). All queries involved at least one Distinct Count measure in addition to other dimensions and
measures. The queries represented typical Distinct Count analytical queries that would be generated against analysis cubes.

Testing scenario

Systems were rebooted before the query test. For concurrent user testing, three simulation groups were used: 100 users,
250 users, and 500 users. All MDX queries were launched concurrently.
On the ES7000, eight processors were dedicated to Analysis Services and four processors were dedicated to SQL Server.
The remaining four processors were shared between SQL Server and Analysis Services.
For each test, response time measures were collected for the first 100 users in each test group.

Measuring MDX Query Response Times (QRT) for Cold/Warm Cache with Up to 500 Concurrent Users
The following section shows query response results. Average query response times were measured for various concurrent users
for varying aggregation levels and for cold and warm cache. Times were recorded in seconds.

Average and Median QRT (Cold Cache/Up to 500 Concurrent Users)

For the cold cache measurement, no query results were in cache; the OLAP Services server was restarted prior to the cold cache
tests.

For this test, all queries were going against the SaleswithDistinctCountsM15VC cube. The cubes that were used were not
especially optimized for performance (as it had an aggregation level of 15 percent) and no special tuning was done for the
queries.

The following graph shows the average MDX query response time as number of concurrent users was changed from 100 to 250
to 500. Query response times were collected from the first 100 users within each test group.

Figure 9. ART for varying concurrent users in cold cache with 15 percent aggregations

The data in figure 9 shows that:

Average response time (ART) of 2.1 seconds was observed when 100 concurrent users were querying the OLAP cube.
Average response time of 9.6 seconds was observed when 250 concurrent users were querying the OLAP cube. Considering
the fact that all the queries were fairly complex and all of them involved Distinct Counts, this time is reasonable at lower 15
percent aggregation level.
Average response time of 10.9 seconds was observed when 500 concurrent users were querying the OLAP cube, an

increase of only 13.5 percent from the 250 users tested.

Median vs. average query response times

In statistics, the median represents the middle value in a group of measurements. It is a commonly used indicator of what
measurement is typical or normal for a group. For various concurrent users, look at the median response times, and then observe
that for 500 concurrent users, median response time is only 0.194 seconds as compared to an average response time of 10.9
seconds.

Although the average is used more frequently than the median, the median is still an important measure of central tendency.
Median is not affected by the presence of a number that is extremely high or extremely low relative to the other numbers in the
group. In other words, median is not skewed as a result of some 20 percent or so queries sent by users that really take a long time
to return results while 80 percent of the queries could be taking only couple of seconds to return results. Sometimes median
response time makes more sense than average response times. Figure 10 shows the median and average times in the same
graph.

Figure 10. ART for varying concurrent users in cold cache with 15 percent aggregations

For a more thorough query results you can find AVERAGE, MEDIAN, MIN and MAX query response times in Appendix B.

The following sections show the improved results while using warm cache and increased aggregation levels.

Average QRT (Warm Cache/Up to 500 Concurrent Users)

For the warm cache measurement, query results were held in cache. Executing the cold cache test and then immediately executing
the same test again resulted in a warm cache-testing scenario.

In this test, all queries were executed against the SaleswithDistinctCountsM15VC cube. The cube that was used was not optimized
for performance (as it had an aggregation level of 15%). No special tuning was done for the queries.

The following graph shows the average MDX query response time as the number of concurrent users wase changed from 100 to
250, and then to 500. Query response times were collected from the first 100 users in each test group.

Figure 11. ART for varying concurrent users in warm cache with 15 percent aggregations

The data in figure 11 shows that:

Average response time (ART) of 0.032 (less than one) second was observed when 100, 250 or 500 concurrent users were
querying the OLAP cube. Although it seems obvious to get good performance when cache is warm, this performance is

commendable, especially with 500 concurrent users querying the cube with 15 percent aggregations. This performance was
observed on an ES7000 and may vary with hardware as well.
Similar warm-cache testing were tried using OLAP Services 7.0, the warm cache query execution times for Distinct Count
queries were not observed to be in the sub second range. Timings were similar to those in cold cache. Good response times
for warm cache queries were observed in Analysis Services 2000.

Average QRT (Cold vs. WarmCache/Up to 500 Concurrent Users)

Figure 12 shows the results observed in the last two graphs have been added to the graph in this section for analysis.

Figure 12. ART for varying concurrent users in cold/warm cache with 15 percent aggregations

The data in figure 12 shows that:

For cold cache, Average Response Time increased from 2.1 seconds to 10.9 seconds when the number of concurrent users
querying the OLAP cube increased from 100 to 500. For warm cache, ART of 0.032 second was observed regardless of the
number of concurrent users querying the cube.
The graph shows that once the cache was warm, the results were less than a second. You can execute the most often used
queries as a batch job immediately after finishing the cube processing. Using this method will result in improved query
performance for business users in the production environment.

Average QRT for Varying Aggregation Levels (Cold Cache/250 Concurrent Users)

As we had observed an average response time of 9.6 seconds for 250 concurrent users in cold cache, we decided to increase the
aggregation level from 15 percent to 30 percent to 60 percent to see the effect of aggregations on ART. Again, for the cold cache
measurement, we restarted the OLAP Services server prior to the tests.

For this test, queries were going against the SaleswithDistinctCountsM15VC cube for 15 percent aggregation level test, and then
against the SaleswithDistinctCountsM30VC cube for 30 percent aggregation level test and finally against the
SaleswithDistinctCountsM60VC cube for 60 percent aggregation level test.

Figure 13 shows the average MDX query response time as the aggregation level was increased.

Figure 13. ART for varying aggregation levels with 250 concurrent users

The data in figure 13 shows that:

Average response time of 9.6 seconds was observed for 15 percent aggregation level when 250 concurrent users were
querying the OLAP cube using Distinct Count queries.
As the aggregation level was increased to 30 percent, ART fell to 5.7 seconds.
As the aggregation level was increased to 60 percent, ART improved to 3.8 seconds in cold cache. On average, query time
decreases as aggregation levels increase. As we increased aggregation level, query times decreased on the ES7000 server.
When analyzing this graph, it should be compared simultaneously with the graphs (printed in previous pages) that show
processing times and disk space used as we increase aggregation levels.
Instead of choosing high aggregation levels up front, you should start processing the cube with a lower aggregation level,
and then increase the aggregation level in smaller increments until you get the desired query performance.
The ideal method is to start with a low aggregation level, allow users to query for some time and then apply the Usage-
Based Optimization Tool in Analysis Services. This will design aggregations specifically for the queries that real users have
been submitting.

For the same test, figure 14 shows the median MDX query response time as the aggregation level was increased.

Figure 14. ART for varying aggregation levels with 250 concurrent users

As shown in the figure 14, median query response times are much better than their corresponding average response times.
Complete details are also shown in Appendix B.

Table 4 lists a quick summary of our observation on the affect of aggregation levels on processing times, disk space, and query
times.

Table 4. Aggregate levels and processing times

Aggregation
level

Distinct customers cubes processing
times

Disk space used for
cubes

Average query response time with 250
users

15% 20.45 minutes 6.38 GB 9.6 seconds
30% 56.80 minutes 11.45 GB 5.7 seconds
60% 144.32 minutes 16.98 GB 3.8 seconds

As shown in the preceding table, going for a very high aggregation level like 60 percent might not give you a great query
response, especially at the cost of very high disk space that is required for cubes and the processing time that is spent for loading
the cubes. In choosing aggregation levels, balance the query performance, cube processing time, and disk space used.

Average QRT (Cold vs. Warm Cache with 500 Concurrent Users) for 8x vs. ES7000 Server

To compare average MDX query execution times that you may expect using a distributed commodity 8-processor server farm
versus using a standalone Unisys ES7000 Server, a stress test was conducted for the 500 concurrent users.

On the ES7000 partition there were a total of 16 processors available in the partition, but eight processors were dedicated to
Analysis Services and four processors were dedicated to SQL Server. The remaining four processors were shared between SQL
Server and Analysis Services using the affinity feature available with ES7000.

To simulate the distributed commodity environment, three 8-processor servers (Unisys 5085) were used. Two database servers
were used to hold the commodity environment SQL Server data warehouse. Using the federated database server feature within
Microsoft SQL Server 2000, the data warehouse databases were linked, allowing each database in the commodity farm to

transparently access data from either server. Analysis Services (hence the OLAP database) was installed on the third 8-processor
server. For MDX query testing, this Analysis Server was used.

The same environment was deployed on both the ES7000 and commodity environments, including the same spindles on disks.
Other details about this configuration are listed in Appendix C.

Note Commodity environment was only used for this section of this white paper and it was not used for any other
sections.

For this cold cache test, all queries were going against the SaleswithDistinctCountsM15VC cube.

The following graph shows the average MDX query response time for 500 concurrent users in cold cache on both systems and
then in warm cache on both systems. Query response times were collected from the first 100 users in each test group.

Figure 15. ART for 16 processors versus 8 processors for 500 concurrent users

The data in Figure 15 shows:

In cold cache, ART was 10.9 seconds on the ES7000 versus the 37.45 seconds on the 8-way. In warm cache, ART was 0.032
seconds on the ES7000 versus the 13.58 seconds on 8x.
There was an obvious need for more processing power for Distinct Counts, and the ES7000 Server performed very well
during this stress test with 500 concurrent users.
Analysis Services could use a maximum of twelve processors in ES7000 versus maximum of 8 processors in a commodity
system. But, with just four more processors available in ES7000, and more memory available in the CMP system, query
performance improved more than 240 percent. It also shows that overall performance depends on the hardware that is
used for the implementation. This is particularly true in the complex case of Distinct Counts, which are processor intensive.

Performance Optimization Tips
Distinct Count cubes scan millions of rows of data, cause higher computational load, and pose challenges to get good
performance. There is no one technique to solve the performance problem. However, there are some tips that you can use to get
good performance. The optimization tips that are relevant to Distinct Counts can be grouped into two categories: tips for
improving the cube processing time for the OLAP cubes and tips for improving the query performance.

Tips for Improving DC Cubes Processing Performance

Besides improving the processing performance, some of these tips can also improve MDX query performance indirectly.

Aggregations: Aggregation level is especially relevant in the case of Distinct Count cubes. Start at a lower aggregation level
like 15 percent, or even no aggregations level. Let users query the cubes and then use the usage-based optimization wizard.
Processing a Distinct Count cube with 90 percent aggregations is not recommended. Lower aggregation levels will also save
the space needed for the cubes.
Parallel processing using multiprocessor server: If you have a multiprocessor server (similar to the Unisys ES7000), use
parallel processing to reduce the processing time. Use partitioning wherever possible to improve processing and query
performance. By doing parallel processing of partitions, you can reduce the processing time to a great extent.

The parallel processing tool is part of the SQL Server 2000 resource kit. For example, using this tool, three partitions could
be processed in parallel, and then once that finishes, another three could be started in parallel, and so on until all of the
partitions are finished. Because of memory constraints with Analysis Services, there is a limit on how many partitions you
can process in parallel and it depends on the cube design (among other things). In this case, 4 partitions were processed in
parallel successfully. However this study used 3 partitions. Future versions of Analysis Services (including the 64-bit edition)

might be able to use more memory, hence the limitation of the number of partitions that can be processed in parallel might
not exist.

Nonetheless, with even 4 partitions being processed in parallel, you can still save the processing time by even 4 times while
processing cubes. This also depends on the cube schema.
RDBMS schema: On the relational data mart side, use a dimensional schema and create a clustered index on the column
that you are going to use for Distinct Count in the Fact table. For example, in the case of the SaleswithDistinctcustomersM15
cube, the Distinct Count column was cust_direct_cust_Idx in the Fact table (to calculate Distinct Count of customers), so we
created a clustered index on cust_direct_cust_Idx in the Fact table. Processing times were greatly reduced by doing so. You
might want to periodically update the statistics for this index if the data is subject to frequent change (incremental loads,
and so on). When designing indexes on the relational tables, you need to weigh the cost of populating the table and
updating the index, against the benefits during cube processing time.
Virtual cubes with varying aggregation level: Create an isolated Distinct Count cube with only one measure in it for the
Distinct Count. Choose a very low level of aggregation for it, or no aggregations at all. Create another cube with all
remaining measures in it. Choose the appropriate level of aggregation for this second cube. Both cubes share the same
dimensions. Create a virtual cube based on these two cubes. As far as end users are concerned, they will only query the
virtual cube and the virtual cube will direct it to the appropriate physical cube. This approach can improve both processing
and query performance.
Memory: Use the maximum memory that is available. We modified the memory conservation threshold setting (under
Properties of Analysis Services) to 3 GB, which is the maximum memory that could be used by Analysis Services. The
ES7000 can be configured with up to 32 GB of memory and we had 16 GB available in the ES7000 partition we used. The
rest of the memory can be used by other applications like SQL Server and the operating system, thus reducing the need for
memory paging to disk. The planned 64-bit version of Analysis Services will remove this limitation of 3 GB and should make
better use of memory that is available in the systems.
Other analysis services settings: Under the Analysis Server Properties dialog box, there are various settings that can be
modified:

Process buffer size and read ahead buffer size: Increase these default sizes depending upon the size of cubes and
dimensions. In our case, we got the best performance by increasing the process buffer size to 400 MB and keeping
the Read ahead buffer size at 10 MB. The more important setting to focus on is the process buffer size. The rule of
thumb is to modify this setting until no temporary folder is used during processing.
Keep data folder and temporary folder on different drives if possible.
It is good practice to log the processing of cubes and queries into log files.

Correct dimension and partition counts for aggregation levels: One very important observation was that it is
important to have correct counts on various dimension levels and facts before specifying the aggregation levels. Correct
counts (number of members in the relational database tables) should be verified by looking at the dimension editor, and so
on. There is a tool called Partition Manager (included with the Accelerator for BI) that can help in managing these counts.
Aggregation levels will not be right if these counts are incorrect.

Other Tips for Improving Query Performance

Use partitioning of cubes to be able to get better query performance especially when you have multiple processors
available. This can play an important role when you have hundreds of concurrent users querying the same cube. To increase
selectivity when querying, the slice information should be set in the partition appropriately. For example, in our case, the
ES7000 made good use of multiple processors while cubes were being queried. Partitioned cubes had been based on
months of study, so that queries spanning various months could make use of multiple processors available in ES7000. BI
Accelerator supports monthly partitioning "out-of-the-box." Greater improvements in query performance could be obtained
by partitioning along additional dimensions.
When working with Distinct Count queries, it is a good practice to have an automatic script run the most important queries
once the cube is processed prior to end users accessing the system. This way some of the queries enter the cold cache to
create a nice group of common queries in the warm cache. As seen in the results, warm cache times were very good.
Start with low aggregations and then let users query the database, and then use the Usage-Based Optimization Wizard to
build additional aggregations needed to speed up the queries.
To improve query performance when you have high number of concurrent users, make use of quality multiple processor
hardware like ES7000.
Use MOLAP storage for best query performance.

Conclusion

In the first half of this paper, we showed techniques to answer useful Distinct Counts business questions by using the Sales and
Marketing scenario and Analysis Services 2000. We also showed how to extend BI Accelerator Sales and Marketing schema to
include Distinct Counts. Distinct Counts, if used effectively, can help to uncover interesting business facts and get good insight
into the business.

The second half of this white paper focused on the performance characteristics of Analysis Services 2000 when dealing with
Distinct Counts using a multiprocessor ES7000 server. Finally you were given some performance tips that are especially useful in
the case of Distinct Counts.

The following are some of the main observations from the performance section of the white paper and previous experiences with
Distinct Counts:

In large data warehouses, to reduce the processing time and to improve query performance, use a multiprocessor server
(similar to Unisys ES7000) and use parallel processing of cubes along with partitioning of cubes. This can play an especially
important role when you have hundreds of concurrent users querying the same cube. The gains with this approach are
limited by the amount of memory Analysis Services can use. Future versions of Analysis Services (including the 64-bit
edition) will be able to use more memory and hence any limitation in number of partitions that could be processed in
parallel, might go away.
As aggregation level increases, more time is taken to process Distinct Count cubes. Good practice would be to start at a
lower aggregation level like 15 percent, or start with no aggregations. Let users query the cubes and then use the Usage-
Based Optimization Wizard to increase the cube aggregation level in smaller increments.
A good observation was that in warm cache, an average query response time of 0.032 seconds was observed even when
concurrent users querying the OLAP cubes were increased from 100 to 500. In cold cache and at 15 percent aggregation
level, average query response time increased from 2.1 seconds to 10.9 seconds when concurrent users querying the OLAP
cubes were increased from 100 to 500. Considering the fact that all the queries were fairly complex and all of them involved
Distinct Counts, this time is reasonable at lower 15 percent aggregation level. So it is good practice to have an automatic
script run the most important queries once the cube is processed to get those queries into warm cache.
For 500 concurrent users in cold cache and at 15 percent aggregation level, median response time is only 0.194 seconds as
compared to an average response time of 10.9 seconds. Observing median time gave some new insight into the query
behavior, especially when a few long running queries can skew the results by taking much more time than the other queries
do.
After comparing these results with previous observations, it was noted that there is a significant improvement in terms of
query response time between Analysis Services 2000 and OLAP services 7.0 when it comes to Distinct Count queries. This is
especially notable in the case of warm cache.
For 250 concurrent users, cold cache, and 15 percent aggregation level, the average query response time of 9.6 second was
reduced to 3.8 seconds as aggregation level was increased to 60 percent in case of Distinct Count queries.
With 500 concurrent users, average query response times were compared between standalone ES7000 environment and
distributed commodity server farm environment. The average response time was much better on ES7000 environment.
There was an obvious need for more processing power for Distinct Counts and the ES7000 performed very well during this
stress test with 500 concurrent users. It also shows that overall performance depends on the hardware that is used for the
implementation. This is particularly true in the complex case of Distinct Counts, which are processor intensive.
There are many performance optimization tips that can be followed when working with cubes with Distinct Counts to
improve overall performance. Modifying Analysis Server settings is one of them.

Overall, Analysis Services 2000 handled Distinct Counts very well and is improved from OLAP Services 7.0. You can get improved
processing and query performance by trying parallel processing and partitioning for large data sets using multiprocessor servers
like the ES7000. By using features provided by Analysis Services, and following a few simple guidelines shown in this paper, you
can enhance the power of OLAP to gain insight into solving complex business analysis scenarios.

Appendix A
Table 5. Details of all RDBMS tables from the Sales cube schema

Name Number of rows Size of the
RDBMS tables (MB)

Fact_Sales_1998_3 2008759 349.63
Fact_Sales_1999_3 2155757 375.22
Fact_Sales_2000_3 2030632 353.44
Dim_Cust_Direct_Cust 2500001 999.49
Dim_Cust_Direct_Industry 636 0.21

Dim_CustStat_Std_Active 3 0.04
Dim_CustStat_Std_Range 5 0.05
Dim_Geog_Mktg_DMA 213 0.08
Dim_Geog_Mktg_DMR 15 0.04
Dim_Geog_Std_City 28267 4.46
Dim_Geog_Std_Country 4 0.04
Dim_Geog_Std_Region 16 0.05
Dim_Geog_Std_State 98 0.06
Dim_Geog_Std_Zip 42173 7.84
Dim_Prod_Std_ProdGrp 3 0.04
Dim_Prod_Std_ProdItem 1334 0.47
Dim_Prod_Std_ProdLine 6 0.05
Dim_SF_Std_Rep 8001 2.38
Dim_SF_Std_SFArea 3 0.04
Dim_SF_Std_SFRegion 6 0.05
Dim_Time_Day 2203 0.80
Dim_Time_Std_Mon 84 0.11
Dim_Time_Std_Qtr 36 0.09
Dim_Time_Std_Year 18 0.05
Total size of RDBMS tables 2094.74

Appendix B
Other query response time measures (for example, median) for various tests are shown in the tables 6, 7, and 8.

Table 6. QRT (cold cache/ up to 500 concurrent users)

Number of concurrent
users

Average response
time

Median response
time

Minimum response
time

Maximum response
time

100 2.1 0.112 0.003 22.618
250 9.64 2.016 0.003 81.803
500 10.55 0.1945 0.003 167.985

Table 7. QRT (warm cache / up to 500 concurrent users)

Number of concurrent
users

Average response
time

Median response
time

Minimum response
time

Maximum response
time

100 0.032316 0.009 0.003 0.416
250 0.031769 0.009 0.003 0.432
500 0.031769 0.009 0.003 0.432

Table 8. QRT for varying aggregation levels (cold cache / 250 concurrent users)

Aggregation Level Average Response time Median response time Minimum response time Maximum response time
15 9.646698 2.016 0.003 81.803
30 5.705361 0.455 0.003 84.658
60 3.813859 0.233 0.003 58.808

Appendix C
Hardware Configuration Details

The following represents the hardware configuration and details used in the "Measuring MDX query execution times for cold and
warm cache, with 500 concurrent users, for 8x vs. ES7000" section of the white paper.

Configuration Summary

Figure 16.Summary of test environment configurations (excluding file server)

Figure 17. ES7000 system configuration

Figure 18.Commodity environment system configuration

Unisys Copyright Page

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information described herein is
only furnished pursuant and subject to the terms and conditions of a duly executed agreement to purchase or lease equipment or
to license software. The only warranties made by Unisys, if any, with respect to the products described in this document are set
forth in such agreement. Unisys cannot accept any financial or other responsibility that may be the result of your use of the
information in this document or software material, including direct, special, or consequential damages. You should be very
careful to ensure that the use of this information and/or software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions. Notice to Government End Users: The software and accompanying documentation are delivered and licensed as
"commercial computer software" and "commercial computer software documentation" as those terms are used in 48 C.F.R.'s
12.212 and 48 C.F.R.'s 227.7202-1 through 227.7202-4, as applicable. The Government shall receive only those rights provided in
the standard commercial software license, or where applicable, the restricted and limited rights provisions of the contract FAR or
DFARS (or equivalent agency) clause.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Optimizing SQLXML Performance

Carl Perry
Microsoft Corporation

April 2002

Applies to:
 Microsoft® SQL Server™ 2000

Summary: How to optimize SQLXML performance for databases, including SQL Server 2000. (12 printed pages)

Download Optimizingsqlxmlsampleapp.exe.

Contents

SQLXML Best Practices for Performance
 ISAPI Filter
 The Application
 Caching
 Templates and Caching
Conclusion

SQLXML Best Practices for Performance
Much important data is stored in some type of RDMBS, whether it is Microsoft® SQL Server™ 2000, or some other third-party
database. If the data is stored in disparate databases or if your application is on a different platform, it becomes difficult to
interoperate between these environments. Until recently, this was one of the greatest impediments to creating applications that
span platforms. Approximately five years ago, a new standard began to transform the development world: XML. Now, if your data
is in an XML format, it can be read on any platform. With XML came other related technologies that expanded the developer's
repertoire. However, most of your data was still stored in a relational database that all your current applications were using
effectively. With the release of SQL Server 2000, exposing your data as XML becomes extremely easy. Now your current
applications can continue to access the data with its data access API, like ADO, and you can expose your data as XML views for use
on any platform that can access the Web and understand XML. Interoperability was one step closer. As time passed, SQLXML has
continued to build on and expand its functionality by including XML Schema (XSD) support, updategrams, integrated Microsoft
.NET support and much, much more.

When developers begin using SQLXML, or any technology, the biggest challenge is mastering the API and semantics. Once
developers have mastered the technology, they tend to focus on how to achieve the best performance in a particular application.
This information is often hard to come by. For obvious reasons, it's difficult to say what a best practice is when talking about
performance. Unless there are specific performance requirements, user needs often drive the design of a particular application.
Every implementation is different. That's why the documentation tends to focus on how to use the technology and what the
specific classes and objects do. Developers often ask "What is the best way to do X?" or "What's the most efficient way to do Y?"
This white paper discusses ways to use SQLXML and to ensure you're using the more efficient method to accomplish a given task
while also meeting the design requirements.

A sample application is included with this white paper. We will use this application to illustrate and discuss best practices
regarding performance and design. Keep in mind that this is simply a sample application. You can install this application on your
machine, and, with a couple of changes, have it up and running. From there you can run your own performance numbers and see
how it bears out. Note that this does not mean that your application will have the same performance benefits or increases that
this application does. Almost everything is based on your application design. This white paper uses a sample application as a basis
for discussing where to use what components and specific performance numbers. Also keep in mind that we do not address
scalability in this application or white paper. This is a discussion about increasing performance in SQLXML.

This discussion focuses on using all the SQLXML components programmatically. However, using only Extensible Stylesheet
Language Transformation (XSLT) documents and your XML data you can utilize the SQLXML ISAPI listener to create a simple Web
front end. We'll discuss some issues related to using the ISAPI functionality directly and how to increase performance, but will
focus mainly on using SQLXML programmatically.

ISAPI Filter

If your application is fairly simple and you don't require any business logic, using the ISAPI filter directly will give you the greatest
throughput in your application. Though the application discussed in this paper was not ported to a pure ISAPI solution (reasons

http://download.microsoft.com/download/SQLSVR2000/sample/1/NT5XP/EN-US/OptimizingSQLXMLSampleApp.exe

why are discussed later in this paper), you can expect that the application, pared down, generally be faster. This is a direct port of
basic functionality. It would not require any changes to the XSLT and the queries.

You can increase the performance of your ISAPI application in many ways. Caching mechanisms, which can be implemented with
both the ISAPI listener and ADO, provide some of the largest performance gains. Both implementations benefit from using these
mechanisms, but there are some caveats that apply directly to ADO. We discuss caching later in this white paper.

As noted above, we chose to use ADO and ASP in our sample application instead of a pure ISAPI solution. Although ISAPI has
been optimized for throughput, it lacks the ability to apply complex business logic. We can perform simply queries and transform
the data for our presentation layer using XSLT Stylesheets. However, if we need to perform any business logic, consistency
checking, or use other components, using ADO.NET and Active Server Pages (ASPX) (using Microsoft Visual Basic® .NET or
Microsoft Visual C#® would also work) is a much more flexible and powerful approach. The following sections focus on the
application.

The Application

Every company or group needs to manage appointments and meetings. There are some good programs available that do this for
you. However, we thought it would be interesting to write an application that our group could use to manage our appointments
and meetings. We'll briefly describe the different aspects of the application and what the user can accomplish in each section.

Check your current schedule

This enables users to check their schedules for a specific day, week, or month. Users can review their schedule and see other
people's schedules.

Create a new meeting request and add other users

This enables users to add new meetings and to update meetings for others to attend.

Insert new users

We have multiple ways to do this. We will discuss the performance implications of each option and reasons to use a
particular option.

Caching

Caching is the easiest way to improve an applications performance. Mapping Schemas (XSD and/or XDR), XSLT Stylesheets, and
Templates can be cached. By default, all these files are cached by SQLXML. Requirements for ensuring that caching is working are
discussed below. The best way to improve the performance of SQLXML is through caching, and once you know how to achieve
caching, it's very easy to implement.

First, let's define what caching means. When speaking of caching, we are discussing four actions: the loading of the files; the
compiling of the files; the storage of the intermediate data structure; and the queries. All of this is design-time code that we
bypass by implementing caching. All we've done, with caching enabled is execute these actions once, for each file; then, on
subsequent executions, SQLXML bypasses this work. Now that we've defined caching, we will examine how to accomplish it.

By default the cache size is 31 files. To turn caching off, use the IIS Virtual Directory Manager for SQLXML 3. Caching of these files
is disabled by selecting the appropriate boxes on the Advanced tab for the virtual directory your Web application is running. To
decrease or increase the number of files cached, set these values in your registry. These registry settings are not created when you
install SQLXML 3.0. You must create these keys yourself. These keys are specific to SQLXML 3.0. For SQLXML 2.0, the key is
located in …\MSSQLServer\Client\SQLXML2. To set these values you must add the following registry keys.

Template Caching

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\TemplateCacheSize

XSLT Stylesheet Caching

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\XSLCacheSize

Schema Caching

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SQLXML3\SchemaCacheSize

Note The greatest value that you can set in the Template and XSL registry setting is 128. SQLXML will not
cache more files than this.

Always set the number of files to cache at a number higher than the number of actual files. The reason why requires

understanding what is happening behind the scenes. Suppose the registry keys haven't been set for any of these caching
mechanisms, and in your application SQLXML is used extensively. There are a number of pages in which users will run queries
from disparate XML Views and then use XSLT Stylesheets to transform the view for the presentation layer. For each unique view
there is an XSLT Stylesheet. If the user base is larger than 50, we can easily exceed the default value of 31 for caching these
stylesheets and queries. What happens when we've filled the cache with thirty-one compiled stylesheets/queries and we try to
cache the thirty-second one? We flush a percentage of the files from the cache and then insert the new stylesheet and queries,
once they're compiled, into the cache. We now have a number of open positions in the cache. There is no way to control which
files are flushed and when they are flushed. The files that are flushed could be the least or most used or a combination of these.
Now, when we get back up to thirty-one cached files and reach the thirty-second file, we flush again. On a Web site that has a
consistent user base or has peaks and valleys of use, the flushing of the cache can occur somewhat often or at the highest usage.
Churning isn't the behavior we want to our users to experience. By increasing our cache size to greater than our file size, we
bypass churning and achieve the most optimum performance. A good way to identify which queries you are performing often is
to run SQL Server Profiler in a test environment. Have the end users test the application and perform the actions they'll be
required to do in order to accomplish their job. SQL Server Profiler has a number of predefined templates you can use to capture
data. You can identify which queries are used most often and then create templates for those particular queries.

Keep in mind that when you cache these files they are stored in memory. This means that you'll be consuming more memory as
the number of files cached increases. However, the memory footprint will not be much larger than the file size itself. Obviously
this memory usage is insignificant when compared to the amount of ram machines have today. As files become larger, the
amount of memory consumption will increase. The memory usage is close to linear so there should be no surprises with the
amount of memory usage.

Now that we've explained why caching is helpful, there are some things you must do to ensure that SQLXML caches the files. If
there are queries that are used throughout the application, you should create templates for them. We'll go into depth a little later
in this paper. For Mapping Schemas and XSLT Stylesheets there is a way in ADO (using extended properties of the command
object) to specify the file location. As we discuss later, you gain all the caching functionality for XSLT stylesheets and Mapping
Schemas without doing too much. The more difficult situation is using Templates. For a short description, let's just say that you
should use an object, like the ADO Stream object, to load these files. You can then specify what the CommandStream is for your
given query. See the following example.

Dim cmd as ADODB.Command
Dim con as ADODB.Connection
Dim instrm as ADODB.Stream
Dim outstrm as ADODB.Stream

instrm.Open
instrm.LoadFromFile("d:\Templates\SQLXMLWR3\TemplateWithXPath\
 customers_orders_template.xml")

outstrm.Open

Set con = new ADODB.Connection
con.open("provider=sqlxmloledb;data
provider=sqloledb;server=(local);integrated
security=true;database=northwind")

Set cmd = new ADODB.Command
cmd.ActiveConnection = con
cmd.CommandStream = instrm
cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"
cmd.Properties("Output Stream").Value = outstrm
cmd.Properties("Base Path").Value = "d:\Schemas\SQLXMLWR3\
TemplateWithXPath\"
cmd.Properties("Mapping Schema").Value = "mySchema.xml"
cmd.Properties("Output Encoding") = "utf-8"

cmd.Execute , , adExecuteStream

We'll go into more detail in the following sections as to why this needs to be done. Now all the files will be cached (Templates,
Mapping Schemas, and XSLT Stylesheets).

There are values from the file that SQLXML uses to check if the file should be cached, and if it is cached whether we should flush
the cache with a newer version: 1) the filename and 2) the last modified date. If you use an object to load your file that supports
ISTREAM then this information will be in the stream. Since the ADO Stream object implements ISTREAM using this object is fine. If
you create your own object you must inherit from ISTREAM so that these values can be retrieved by SQLXML.

There is a particular method that is in ISTREAM, which we use to check the last modified date for the files: Stat. This is the method
that we call and the reason that you must implement ISTREAM. The last modified date, ascertained by using the Stat method, is

checked against the date for our cached file. The filename is used as the key for each cached file. If one of these values cannot be
ascertained, then the files are not cached and we load directly from the stream we are handed. That is why you need to implement
ISTREAM in your object that you use to load your files. This is regardless of the setting that you've specified in the registry and/or
the advanced tab. If you simply specify a file location or use an object that supports ISTREAM for your template, schema, or XSLT
Stylesheet, you'll pull from the cache.

This alone should, understandably, encourage you to cache your files. However, there are other reasons that you should cache
these files. If you use a template or a mapping schema the resulting query is translated into an explicit mode query. We won't go
into detail about how to write explicit mode queries. Consider the following query:

SELECT EmployeeID, FirstName, LastName FROM Employees FOR XML AUTO

The following mapping schema is needed to create an XML view of this table and the three columns above:

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:sql='urn:schemas-microsoft-com:mapping-schema'>
 <xsd:element name= 'root' sql:is-constant='1'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = 'Employee'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name='Employee' sql:relation='Employees'>
 <xsd:complexType>
 <xsd:attribute name='EmployeeID' type='xsd:integer' />
 <xsd:attribute name='FirstName' type='xsd:string'/>
 <xsd:attribute name='LastName' type='xsd:string' />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The resulting explicit mode query that SQLXML creates is below. It's a bit longer and much more complicated than the simple
query. However, using the mapping schema allows you to shape the XML into almost any format that is required. It also allows
you to be as specific or open with any queries.

select 1 as TAG,0 as parent,0 as [root!1!_g_0!hide],NULL as
[Employee!2!FirstName],NULL as [Employee!2!EmployeeID],NULL as
[Employee!2!LastName] union all select 2,1,0,_Q2.A0,_Q2.A1,_Q2.A2 from
(select _QB0.FirstName AS A0,_QB0.EmployeeID AS A1,_QB0.LastName AS
A2,_QB0.LastName AS _TBXF3I,_QB0.EmployeeID AS _TBWD6I,_QB0.FirstName AS
_TBKQ5I from Employees _QB0) _Q2 order by 3,2,1

Once the queries become more complex (like joining two or more tables and beyond) the explicit mode query becomes much
longer and more time consuming to create. Writing these queries every time the XML needs to be shaped requires significant
work that would be better spent designing the application or writing code.

With caching enabled for your mapping schemas and templates, these explicit mode queries are cached also. The SQLXML
components don't have to walk the structure of the mapping schemas and build that explicit mode query again. This obviously
improves the performance of your queries immensely.

Templates and Caching

As we noted earlier, your source for the command must be able to provide the filename and last modified date (as exposed by
ISTREAM through the Stat method) in order to take advantage of any caching. For the input stream, it generally makes the most
sense to simply use the ADO Stream object of some other object that implements one of these two interfaces. So in the sample
code we use the CommandStream property on the Command object to assign our templates for use in ADO. As stated earlier,
in order to have templates cached, SQLXML must be able to ascertain the filename and last modified date. If we are passing in our
template using the CommandText property of the Command object then we are unable to get these values. Therefore, the
templates are not cached. By loading these templates into a stream object we control when these values will be refreshed and
SQLXML just queries the stream, in memory, to see if it has changed. True, we do have to cache the data twice (loading it each
time we need to use a template), but the performance gain will be much more significant than if we chose to use build dynamic
templates. For Mapping Schemas and XSLT Stylesheets there are SQLXML OLE DB Provider-specific properties for which we can
point to files. SQLXML can then query the files for the properties it needs and then cache the data and queries as appropriate.

One last note: we've mentioned the ISTREAM interface. You may or may not know what these interfaces are. If you are using the
ADO Stream object to store your files or the results of your query, it does implement ISTREAM. The IIS Response object and
MSXML also both implement ISTREAM. If you implement these interfaces, you're safe. You could write your own implementation

of a stream in C# and then use it as your output stream. The benefit of implementing your own stream is that you can do work
while SQLXML is chunking the response to you. With the ADO Stream object you must wait until SQLXML has written the entire
response out to this object. If you implement your own stream you could read the chunks that SQLXML sends as its response and
do work after each chunk is passed to you. If you don't have a business need, use one of the objects mentioned above. You'll see
great performance using the other objects but it will block until it's completed writing the entire response.

Inserting/updating/deleting data

There are a number of ways to use Data Manipulation Language (DML) with SQLXML. For the most part the needs you have for
updating will generally determine the objects you use for this task. There are three different ways that you can accomplish the
following tasks using SQLXML: 1) Microsoft SQL Server XML Bulk Load (XML Bulk Load), 2) Updategrams, and 3) OpenXML.
Some of these methods will have more flexibility than others. Other methods will perform faster under different conditions. Let's
look at each item in turn and discuss the pros and cons of each one.

XML Bulk Load

XML Bulk Load is a COM object that allows the user to load semistructured XML data into SQL Server. When you need to insert
large amounts of data at once, XML Bulk Load is the most performant mechanism to accomplish this task. However, if you are
inserting smaller amounts of data, the options discussed below will be much faster. There are no hard and fast rules for size but if
your inserts begin to exceed 1 MB in size use the XML Bulk Load. However, use this for simpler inserts. When using XML Bulk
Load you do not have the opportunity to do any sort of business logic. The data simply gets inserted. You have no way to do any
sort of check to make sure if X is here and Y is there then insert Z. Also, you cannot update existing data using the XML Bulk Load
object.

When using XML Bulk Load you can choose to have or not have the entire operation transacted. For obvious reasons choosing the
non-transacted approach is much faster. The only problem is that if a failure occurs then you cannot be guaranteed a rollback will
occur (although partial rollbacks can happen). When you need to ensure all or none of your data is inserted you should use a
transacted approach.

Updategrams

An updategram is an XML document that uses a mapping schema to perform updates, inserts, and deletions to a database. The
format of the updategram and how to use it can be found in the SQLXML documentation. Use the following example for updating
data:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync >
<updg:before>
 <Employees>
 <EmployeeID="1" />
 </Employees>
</updg:before>
<updg:after>
 <Employees>
 <LastName="Fuller" />
 </Employees>
</updg:after>
</updg:sync>
</ROOT>

Discussing how to use updategrams is outside the domain of this paper. The previous sample shows a simple update. Deleting
and inserting data into your SQL Server is also simple and readable. Updategrams perform simple functions fairly quickly. For
more complex scenarios (multiple joins and if your XML data does not directly map to your database structure), create mapping
schemas to insert, delete, and/or update your data. If you need to perform some business logic, like confirming that Mike and
Jane are available during a specific time before updating their schedules, using updategrams is not the best approach to take.

For performance purposes, updategrams are very fast for updating small amounts of data either all at once or in short bursts. If
you were inserting large amounts of data all at once, use the XML Bulk Load object. These updategrams are translated into
standard SQL DML statements to accomplish this functionality. The only shortcoming with updategrams is that if you need to do
some business logic while you perform these SQL DML operations, you'll be unable to utilize updategrams. That's where
OpenXML comes in.

OpenXML

OpenXML achieves everything that updategrams can do and more. OpenXML is an extension to the Transact-SQL language that
was introduced in SQL Server 2000. Performance differences are negligible in most cases and, as previously noted, design will
drive your needs in this arena, not performance. OpenXML can be a bit more complicated to write than an updategram. The
OpenXML syntax may appear a bit strange if you've never seen it. SQL Server Books Online discusses the syntax of the OpenXML

command. Once you've overcome the initial problems with understanding the OpenXML syntax, you can do some very powerful
things. As noted in the "Updategrams" section of this paper, you are unable to do any sort of consistency checking and/or
business logic as you delete/insert/update your data. So, for example, if you want to check that Jane and John aren't busy before
you insert a meeting request, use OpenXML. You can perform queries in the OpenXML statement to check if Jane and John have a
meeting already scheduled. If they do have meetings on their schedule, you can roll back the insert, set up a tentative request, and
so on. Whatever you want, as a result of the query, you can do in the OpenXML command. This can be a very powerful.

As we noted earlier, there are some general performance issues when discussing DML operations with SQLXML. However, in this
case, design needs will outweigh performance requirements. Knowing the shortcomings of each method is very important as you
choose the correct method to accomplish your task.

Retrieving BLOB values

Retrieving BLOB values from SQL Server, using SQLXML, is driven more by needs than by actual performance. There are some
minor performance implications, which are discussed later in this paper, but depending on your architecture, you'll use one
method over another. There are two ways that you can retrieve BLOB values from SQL Server, using SQLXML: 1) Using DBObject,
and 2) to Base64 encode your data. The determining factor is whether you have access to the pointer that the DBObject returns to
you. If you do, using DBobject is the method you should use to retrieve the raw binary data. The DBObject will be faster than
return a Base64 encoded value for your binary data. However, if you do not have access to location that the DBObject returns to
you or you have some business need to return Base64 encoded data, you'll need to use the Base64 option.

Client-side compared with server-side

There are full-length books comparing client-side and server-side programming and the benefits of each method. This paper does
not go into detail regarding the benefits of one programming model of the other. In SQLXML you can specify whether you want
the shaping of your XML to be done on the server side or the client side. If your server is experiencing peaks of usage and you'd
like to off load some of the processing you can use the client side functionality in SQLXML. The code to achieve the client side
processing is very simple. You need only add one more line of code to your application:

cmd.Properties("ClientSideXML") = "True"

All the XML Shaping will be done on the client side. Instead of the server streaming XML back to the client, a rowset is returned,
and then SQLXML shapes the result into an XML Stream. This can, at times, improve the responsiveness of your server, especially
if SQLXML is used extensively on your server and in your application. The SQLXML 3.0 documentation has a very good discussion
comparing client side and server side. Most of the throughput gains you'll see will be reflected on the server.

SQL OLE DB compared with SQLXML OLE DB

If you're using ADO and SQLXML you should always use the SQLXML OLE DB Provider to query your database for the data. The
SQLXML OLE DB Provider is faster than simply using the SQL OLE DB Provider for shaping XML. This provider has been
optimized to stream XML Data back from SQL Server 2000. When using ADO and SQLXML you should always use this provider.
With every query you execute you'll see a performance gain over using just the SQL OLE DB Provider. If you've used the Shape
provider, using the SQLXML OLE DB Provider will, in some respects, appear familiar. The only thing you need to do to use the
SQLXML OLE DB Provider is to change the connection string. It would look like this:

con.open "Provider=SQLXMLOLEDB;data provider=sqloledb;
integrated security=true;server=(local);database=northwind"

Currently the SQLXML OLE DB Provider can be used only with ADO. You'll be unable to use the provider with something like Data
Transformation Services (DTS).

Finally, there are a number of miscellaneous points to consider as you work with SQLXML. If you are creating XML Views of your
data and you have key fields in your mapping schema, you'll want to index the underlying data store. When we have a key field
defined in a mapping schema, we automatically do a join and a sort on the data store. This will speed up the underlying SQL
Query significantly.

Our findings

We've discussed best practices and why you need to do X or Y, but the most interesting information is the findings that resulted
from testing the sample application included with this white paper. First, let's discuss the testing methodology. We used the
Microsoft Web Application Stress Tool for testing our application. It's a good tool to use for stress testing your Web application.
We looked at our application and our customer base and decided that most of the actions our users would perform are simply
viewing schedules and viewing contact information. In some situations individuals would be doing inserts or updates or deletes
on the data, but this would be a much smaller percentage of the processes that customers would perform on a daily basis. With

this in mind, we broke down the testing scripts into two distinct areas: 1) Read-only access, and 2) Read and write access with the
distribution spread evenly. This allows us to measure the responsiveness of our application in the mainline scenario (reads) and
also a mixed environment. We ran each test three times, with 64 threads and the work spread out across three clients. There were
four different scenarios that we wanted to analyze with the same test script running against each one: 1) Caching disabled and
using SQLOLEDB, 2) Caching disabled and using SQLXMLOLEDB, 3) Caching and using SQLOLEDB, and finally 4) With all the
performance enhancements turned on (SQLXMLOLEDB and all caching turned on). We ran the tests for five minutes each. We
wanted to stress the application to a level that would never be reached to find out how well SQLXML would respond. Most of the
time our stress will be fairly light, but every morning and night the stress will increase and users check their schedules for today
and tomorrow. The key measurement we looked at was Requests per second, but we took into account, among other numbers,
ASP Requests Queued and % Processor Time. All of these can be added using the Performance Counters option in the Microsoft
Web Application Stress Tool.

As you'll see below, our performance gains, in terms of percentages, are very similar, but the actual number of requests we are
processing is very different. In some scenarios, we saw that read-only achieved 10-15% greater throughput on up to 100%
greater throughput in larger updating scenarios.

Because our application is expected to handle mainly read-only operations (checking a schedule), we examined our schedule for a
number of days and then looked at employee information. Let's consider the test in which we had caching disabled and used
SQLOLEDB as our baseline. This scenario has the lowest measurement in the test scenarios and is probably a fairly common
scenario for most ADO developers. The performance numbers discussed later use this test as a baseline for comparison.

Test Scenario Percentage Improvement (over baseline)
Caching disabled and using SQLXMLOLEDB 13%
Caching enabled and using SQLOLEDB 39%
Caching enabled and using SQLXMLOLEDB 110%

In our read scenarios, using all the performance suggestions discussed above, we'll increase the overall performance of our
application by 110%. That's not just one page; that's looking at our schedule and examining employee data.

Few applications are useful if the data is read-only. At some point the data will need to be altered. The customers who use this
application will need to update their schedule and to manage the users of the application. Adding, deleting, and updating the
contacts is a core part of the design. However, as noted above, we've found that updating is a much smaller percentage of the
activity when compared with the read-only scenario discussed above. Again, the test baseline is using SQLOLEDB with caching
disabled. The performance numbers discussed in the following table use this test as a baseline for comparison.

Test Scenario Percentage Improvement (over baseline)
Caching disabled and using SQLXMLOLEDB 25%
Caching enabled and using SQLOLEDB 38%
Caching enabled and using SQLXMLOLEDB 127%

In this test, our performance was generally better for the entire functionality than just our read-only test. With all the performance
mechanisms in place, we saw a 127% performance gain in the total application.

In either scenario the numbers bear out that using SQLXMLOLEDB and enabling all caching is key to increasing the performance
of your SQLXML application. If performance is a requirement in your SQLXML application, make sure to review your application
and implement these suggestions wherever possible. And remember as you test your application: tweak the implementation to
find the best possible performance.

Conclusion
Throughout this paper, we've discussed different ways to ensure your SQLXML application is optimized for the greatest
performance possible. Hopefully, this information can help you better design your applications for performance and usability. As
you look through your current applications using SQLXML and begin to architect new ones, make sure to keep these tips in mind.
By doing so, you'll not only choose the best method for your application, but you'll also be able to squeeze the best performance
out of SQLXML.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Optimizing Cell Writeback in Microsoft SQL Server 2000
Analysis Services

Dennis Kennedy
Microsoft Corporation

February 2003

Summary: Learn about improvements in cell writeback, a key feature of SQL Server 2000 Analysis Services, and learn how to
optimize cell writeback performance. (6 printed pages)

Contents

Introduction
Configuring Cell Writeback For Bulk Inserts
Optimizing Cell Writeback Performance
For More Information

Introduction
A primary purpose of business intelligence is to provide useful, business-centric information for strategic planning. Microsoft®
SQL Server™ 2000 Analysis Services supports strategic planning in many ways, one of which is by providing the capability to
temporarily or permanently write values back to a set of cells within a cube. This capability, called cell writeback, supports
strategic planning by facilitating interactive "what if" analyses. You can temporarily write values to a cube and examine the
resulting aggregations locally, without actually changing data on the Analysis server. Once you have completed your planning
activity and have a useful set of values, you can permanently write the values to the cube.

Permanently writing a value to a leaf cell in a cube requires an individual writeback operation, which writes a single record to a
writeback table. However, permanently writing a value to a non-leaf cell can require hundreds of thousands of individual
writeback operations, each of which writes a single record to a relational database. The value for a non-leaf cell must be allocated
across all of the leaf cells that are subordinate to the non-leaf cell, and then the values of the leaf cells are aggregated to provide
the value of the non-leaf cell. Because this process can require a high volume of individual transactions, permanent cell writeback
operations can significantly affect the performance of the underlying relational database.

SQL Server 2000 Service Pack 3 (SP3) improves the performance of cell writeback in Analysis Services by taking advantage of the
bulk insert feature in SQL Server 2000 when performing permanent cell writeback operations on non-leaf cells. This white paper
includes technical information and usage guidelines for this updated feature.

This paper assumes that you have a basic knowledge of relational database concepts, a working knowledge of Analysis Services,
and that you have installed SP3.

Configuring Cell Writeback For Bulk Inserts
The Multidimensional Expressions (MDX) UPDATE CUBE statement is used when values are permanently written to non-leaf cells
in Analysis Services. Because the value of a non-leaf cell is based on the values of its subordinate leaf cells, the UPDATE CUBE
statement uses the value and allocation method supplied for the non-leaf cell to write one record representing the allocated value
of each subordinate leaf cell in the writeback table.

Before SP3, each record was written to the underlying relational data source individually, using the IRowsetChange interface of
the OLE DB provider for the data source. While this was efficient enough for writeback operations involving a change to a single
leaf cell, for writeback operations involving changes to non-leaf cells, the interface was potentially called hundreds of thousands
of times before a single non-leaf cell was updated.

With the release of SP3, Analysis Services can now use the IRowsetFastLoad interface, implemented by the Microsoft OLE DB
Provider for SQL Server, to perform bulk insert operations. This interface greatly improves the performance of cell writeback
operations on non-leaf cells by inserting all of the information necessary to update the subordinate leaf cells in one transaction.
The functionality of the IRowsetFastLoad interface is identical to that provided by the bcp utility in SQL Server 2000 for bulk
insert operations.

You use the SSFastLoadOptions registry key to enable and configure this feature. The registry key, located at
\\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\CurrentVersion,
accepts a comma-delimited string value.

Note To use the improved cell writeback functionality, you must use a Microsoft SQL Server 2000 data source to
store the writeback table and the Microsoft OLE DB Provider for SQL Server to access the data source. Otherwise,
the SSFastLoadOptions registry key is ignored.

To enable the feature, supply any value other than <disabled>. Setting the registry key to an empty string ("") enables the feature
and uses the default functionality specified for each option.

The following table describes the options that are available with the SSFastLoadOptions registry key.

Value Description

<disabled>
Disables bulk insert capability for cell writeback and specifies that the server use the IRowsetChange
interface instead of the IRowsetFastLoad interface to perform cell writeback operations. This is the
default value.

ORDER (column [ASC |
DESC] [, . . . n])

Specifies the sort order of the data in the rowset. Bulk copy performance is improved if the data being
loaded is sorted according to the clustered index on the table. If the rowset is sorted in a different
order, or if there is no clustered index on the table, the ORDER hint is ignored. The names of the
columns must be valid columns in the destination table. By default, the cell writeback operation
assumes the rowset is unordered.

Note Use of this parameter is not recommended for cell writeback, because the
SSFastLoadOptions registry key applies cell writeback operations for all databases, and
corresponding SQL Server 2000 data sources, on the Analysis server.

ROWS_PER_BATCH =
bb

Specifies the number of rows of data for each batch (as bb). Using this value results in the entire cell
writeback rowset being sent to the server as a single transaction. The server optimizes the cell
writeback operation load according to the value bb. By default, ROWS_PER_BATCH is unknown.

KILOBYTES_PER_BATCH
= cc

Specifies the approximate number of kilobytes (KB) of data for each batch (as cc). By default,
KILOBYTES_PER_BATCH is unknown.

TABLOCK

Applies a table-level lock for the duration of the cell writeback operation. Using this value significantly
improves performance because holding a lock only for the duration of the cell writeback operation
reduces lock contention on the table. A table can be loaded concurrently by multiple clients if the table
has no indexes and TABLOCK is specified. By default, locking behavior is determined by the table
option table lock on bulk load.

CHECK_CONSTRAINTS Specifies whether constraints on the destination table are checked during the bulk copy operation. By
default, constraints are ignored.

FIRE_TRIGGERS Specifies that insert triggers defined on the destination table execute during the bulk copy operation. If
FIRE_TRIGGERS is not specified, insert triggers do not execute.

It is recommended that you use one of the following string values for the SSFastLoadOptions registry key:

TABLOCK, FIRE_TRIGGERS
TABLOCK
An empty string ("")

If you use the TABLOCK value, you can get optimal performance during cell writeback but triggers placed on the writeback table
are not executed. If triggers are necessary, use the value TABLOCK, FIRE_TRIGGERS instead.

If you use the FIRE_TRIGGERS option, INSERT and INSTEAD OF triggers on the writeback table execute for all rows that are
inserted by the cell writeback operation. In addition, the row-insert operations performed during the cell writeback operation are
fully logged to the transaction log, potentially filling the transaction log and causing unexpected results. Use the FIRE_TRIGGERS
option only if triggers are necessary to ensure the consistency of your data.

Optimizing Cell Writeback Performance
When you use the bulk insert feature with cell writeback, most of the performance benefits occur during the commit phase.
During the commit phase, the data in the caches maintained by Analysis Services is submitted to the SQL Server 2000 data
source.

To further optimize cell writeback performance using SQL Server 2000 databases, configure the SQL Server 2000 database and
writeback table to enable a minimally logged bulk copy operation. This configuration prevents the transaction log from filling up
because of the high volume of SQL Server row-insert operations that can be performed during an Analysis Services cell writeback
operation.

For more information about minimally logged bulk copy operations in SQL Server 2000, see "Logged and Minimally Logged Bulk

Copy Operations" in SQL Server 2000 Books Online.

The following list details additional steps you can take to ensure optimal performance of cell writeback operations:

Configure the database to use the simple or bulk-logged recovery model.

SQL Server 2000 can use either the simple or bulk-logged recovery model for minimally logged bulk copy operations, but
the bulk-logged recovery model can still write enough information during very large cell writeback operations to fill the
transaction log. Use the simple recovery model to ensure that the cell writeback operation does not inadvertently fill the
transaction log.

You can use the ALTER DATABASE statement, as shown in the following examples, to change the recovery model:

ALTER DATABASE database SET RECOVERY SIMPLE

-or-

ALTER DATABASE database SET RECOVERY BULK_LOGGED

For more information about how to set the recovery model in Enterprise Manager, see "How to set the recovery model for a
database (Enterprise Manager)" in SQL Server 2000 Books Online.

Important If you configure the database to use the simple recovery model, you must also set the select
into/bulkcopy database option to true.

You can use the sp_dboption system stored procedure to set the select into/bulkcopy database option, as shown in the
following example:

sp_dboption @db_name = 'database', @optname = 'select into/bulkcopy',
 @optvalue = true

Configure the database to ignore torn pages.

Torn page detection, a useful feature in SQL Server 2000 for ensuring data integrity, increases the amount of disk and
logging activity that is required to perform a cell writeback operation and can affect performance.

You can use the ALTER DATABASE statement, as shown in the following example, to turn off torn page detection:

ALTER DATABASE database SET TORN_PAGE_DETECTION OFF

For more information about how to set torn page detection in Enterprise Manager, see "How to change the configuration
settings for a database (Enterprise Manager)" in SQL Server 2000 Books Online.

Do not configure the writeback table for replication.

Depending on the type of replication you use, the table may be required to support features that prevent minimally logged
bulk copy operations. For example, transactional replication depends on transaction log entries when replicating data, and
merge replication changes the structure of the table and requires triggers to replicate data.

Do not create triggers or indexes on the writeback table.

Although an index on the writeback table can improve performance during read operations, write operations are
considerably slower because the row-insert operations are logged. To determine whether an index is appropriate for the
writeback table, see "Optimizing Bulk Copy Performance" in SQL Server 2000 Books Online.

For More Information
SQL Server Books Online contains more information about Analysis Services. For additional information, see the following
resources:

The Microsoft SQL Server Web site
The Microsoft SQL Server Developer Center
SQL Server Magazine
The Microsoft Official Curriculum courses on SQL Server
The microsoft.public.sqlserver.programming and microsoft.public.sqlserver.datawarehouse newsgroups

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://sqlmag.com/
http://www.microsoft.com/traincert/
news://news.microsoft.com/

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Preserving Client-Server Data Integrity with Unicode and
Microsoft SQL Server 2000

Microsoft Corporation

November 2003

Applies to:
 Microsoft® SQL Server™ 2000

Summary: Learn about preserving the integrity of character data as it moves between client applications and SQL Server 2000.
The particular focus is such data transmission in a global setting that may include a mix of Unicode and non-Unicode code pages.
Topics include an explanation of Unicode and its impact on storage and performance, client-server data flow programming issues,
and working with Data Transformation Services, bcp, BULK INSERT, and the XML functionality in SQL Server 2000. (17 printed
pages)

Contents

Introduction
What is Unicode?
Server-Side Programming Basics with Unicode
Managing Client-Server Data Flow Conversion in a Global Setting
Using Data Transformation Services
Using the bcp Utility and the BULK INSERT Command
Working with XML Data
Conclusion

Introduction
Microsoft® SQL Server™ 2000 provides Unicode support in the storage and exchange of character data. With Unicode, you can
store and process multilingual data without loss; if you are not using the Unicode standard, or if your environment includes a mix
of Unicode and non-Unicode data, your multilingual data runs a greater risk of corruption (for reasons discussed later in this
paper). Unicode therefore provides a benefit that usually outweighs any costs associated with storage or performance. This paper
examines how to take advantage of Unicode in different client-server configurations that vary in their Unicode awareness.

What is Unicode?
Unicode is a standard for mapping code points to characters. It is designed to cover all the characters of all the languages of the
world. As a result, there is no need for different code pages to handle different sets of characters.

SQL Server 2000 supports Unicode in a variety of ways, including:

Providing the nchar, nvarchar, and ntext data types for storing character data and declaring parameters of stored
procedures as Unicode.
Recognizing Unicode when importing, exporting, copying, and converting data through the Data Transformation Services
(DTS) Tools.
Specifying Unicode format when copying data through the bcp utility.
Recognizing XML data natively as Unicode.

Why Use Unicode?

The primary advantage of storing your character data in Unicode is that you do not have to worry about character corruption
when data enters your database from the client side. For more information about character corruption, see the section How Do I
Store Non-Unicode Data? later in this paper.

Also, using Unicode is the only way you can store data from multiple unrelated languages in a single column. With Unicode, your
database essentially is ready for whatever character data comes its way.

How is Unicode Encoded?

Unicode does not specify how character data is encoded in binary format for storage in memory—it simply matches characters to

code points, so that an application knows which character it is storing or processing. To store Unicode data in memory, there are
three primary encoding schemes in use today: UCS-2, UTF-16, and UTF-8.

UCS-2

UCS-2 is the encoding scheme used by SQL Server 2000 to store Unicode data. Under this mechanism, all Unicode characters are
stored using two bytes. UCS-2 is also the primary encoding mechanism used by the Microsoft Windows NT® 4.0 operating
system.

UTF -16

UTF-16 stores some characters using two bytes, and others using up to four. UTF-16 is the primary encoding mechanism used by
Microsoft Windows® 2000.

The UCS-2 encoding scheme is actually a subset of the UTF-16 scheme, since every UCS-2 encoded character is identical to the
encoding of that character in UTF-16. The primary difference between UCS-2 and UTF-16 is in the recognition of surrogate
characters. While the UCS-2 scheme can recognize 65,536 different characters, some languages, such as Chinese, need to define
additional characters that, although rarely used, are found in classical literature and have historical significance. These characters,
known as surrogates, are stored straightforwardly in multiple bytes under the UTF-16 encoding scheme, which can recognize
1,048,576 characters. Because SQL Server uses UCS-2 storage, it treats surrogate characters as two undefined Unicode characters
that, when paired together, define a surrogate character in storage. This way, SQL Server stores surrogate characters without risk
of loss or corruption. SQL Server 2000 tools such as Query Analyzer, however, do not support the display or manipulation of
surrogate characters. These operations must be handled by the client-side application.

UTF-8

A third encoding scheme, UTF-8, stores Unicode data in variable lengths of between one and four bytes. Many database
programs, such as those developed by Oracle and Sybase, use this encoding scheme. When UTF-8 data interacts with Microsoft
Component Object Model (COM) application program interfaces (APIs), or Windows NT and Windows 2000 components, it is
converted either to UTF-16 or UCS-2 format using simple algorithms and APIs that perform this conversion efficiently. UTF-8 can
be slower than UCS-2 for performing sorts, comparisons, and other operations on strings, because characters do not have fixed
widths.

One way that SQL Server 2000 supports the UTF-8 encoding scheme is in its storage of XML text data, in order to take advantage
of the flexibility of UTF-8 in traversing across networks. For more information, see the section Working with XML Data later in this
paper.

How Do I Store Unicode Data?

The following data types are available in SQL Server 2000 for defining Unicode character data in tables and as parameters of
stored procedures:

nchar(n)

For character data with a fixed length of n characters, not to exceed 4,000. Storage size is two times n bytes. Use nchar when the
data entries in a column are expected to be consistently close to the same size.

nvarchar(n)

For character data with lengths that vary, but cannot exceed n characters, up to 4,000. Storage size, in bytes, is two times the
number of characters entered. Use nvarchar when the data entries in a column are expected to vary considerably in size.

ntext

Variable-length data with a maximum length of 230 - 1 (1,073,741,823) characters. Storage size, in bytes, is two times the number
of characters entered. Use ntext for data longer than 4,000 characters.

How Do I Store Non-Unicode Data?

The non-Unicode equivalents of the nchar, nvarchar, and ntext data types in SQL Server 2000 are listed below. When Unicode
data is inserted into one of these non-Unicode data type columns through a command string (otherwise known as a "language
event"), SQL Server converts the data to the data type using the code page associated with the collation of the column. When a
character cannot be represented on a code page, it is replaced by a question mark (?), indicating the data has been lost.

Appearance of unexpected characters or question marks in your data indicates your data has been converted from Unicode to
non-Unicode at some layer, and this conversion resulted in lost characters.

char(n)

For character data with a fixed length of n bytes, not to exceed 8,000. Storage size is n bytes.

varchar(n)

For character data with lengths that vary, but cannot exceed n characters, up to 8,000. Storage size is the actual length of the data
entered.

text

Variable-length data in the code page of the server and with a maximum length of 231 - 1 (2,147,483,647) characters. When the
server code page uses double-byte characters, the maximum storage is still 2,147,483,647 bytes.

What Does Unicode Have to Do with Collations?

When a collation is defined on non-Unicode data, the collation dictates both the sorting rules for the data as well as the code page
used to store the data. A collation defined on Unicode data dictates only the sorting rules, not the code page. Unicode is, after all,
its own storage specification.

There are two types of collations to choose from in SQL Server 2000: Windows collations and SQL collations. Windows collations
define sorting rules based on those for an associated Windows locale. To do this, SQL Server replicates the Windows 2000 Server
sorting rules and applies them to a corresponding Windows collation. This way, string comparisons for a given Windows collation
in SQL Server are compatible with the same operations for a version of Windows running the same collation. However, because
versions of Windows later than Windows 2000 Server, such as Windows XP and Windows Server 2003, use different sorting
tables, the Windows collations of SQL Servers installed on these operating systems may display different sorting behavior than
that of the host OS.

SQL collations are not associated with Windows locales. They are provided for compatibility with sort orders in earlier versions of
SQL Server.

Windows collations actually apply Unicode-based sorting rules to both Unicode and non-Unicode data alike. This means that SQL
Server internally converts non-Unicode data to Unicode to perform comparison operations. Doing so provides consistency across
data types in SQL Server, and also provides developers the ability to sort strings in their applications using the same rules that
SQL Server uses (by calling the CompareStringW Win32 API). SQL collations, on the other hand, apply non-Unicode sorting
rules to non-Unicode data, and Unicode sorting rules to Unicode data (using a corresponding Windows collation for the Unicode
data). This discrepancy can result in different results for comparisons of the same characters. Therefore, if you have a mix of
Unicode and non-Unicode columns in your database, they should all be defined with Windows collations so that the same sorting
rules are used across Unicode and non-Unicode data.

It is also important to realize the impact of disabling auto-translation on the client side with respect to Windows collations. As
mentioned later in this paper, developers often disable autotranslation under the impression that this action will facilitate client-
server cross-code page interaction. Not only is this action unsupported, but to perform sorts and scans of non-Unicode data
defined with a Windows collation, SQL Server converts the data to Unicode prior to performing the sort. Therefore, if
autotranslation is disabled, the translated Unicode data may not be converted correctly back to its original non-Unicode code
page when it is retrieved on the client side.

For additional information on collations, see the SQL Server Books Online topic, "Collations," as well as its subtopics.

What is the Storage Impact of Using Unicode?

The difference in storing character data between Unicode and a non-Unicode code page depends on whether a particular non-
Unicode code page uses double-byte character sets. All non-East Asian languages, plus the Thai language, store non-Unicode
characters in single bytes. Therefore, storing these languages as Unicode uses twice as much space as specifying a non-Unicode
code page. On the other hand, the non-Unicode code pages of many other Asian languages specify character storage in double-
byte character sets (DBCS). For these languages, therefore, there is almost no difference in storage between non-Unicode and
Unicode.

Note When storing Asian DBCS data, the UCS-2 encoding method used by SQL Server 2000 tends to be more
efficient than the UTF-8 method used by many other database programs. This is because UTF-8 uses three bytes to
store most Asian language characters, while UCS-2 uses just two. On the other hand, for non-DBCS languages, such as

ASCII-based characters, UTF-8 usually uses only one byte per character, while UCS-2 uses two.

The following non-Unicode code pages specify character data storage in double-byte character sets:

Language Code Page
Simplified Chinese 936
Traditional Chinese 950
Japanese 932
Korean 949

What is the Performance Impact of Using Unicode?

The impact of Unicode data on performance is complicated by a variety of factors, including:

The difference between Unicode sorting rules and non-Unicode sorting rules
The difference between sorting double-byte and single-byte characters
Code conversion between client and server

As mentioned previously, SQL Server performs string comparisons of non-Unicode data defined with a Windows collation using
Unicode sorting rules. These rules are much more complex than non-Unicode sorting rules, and are therefore more resource-
intensive. So, although generally more expensive, there is usually little difference in performance between Unicode data and non-
Unicode data defined with a Windows collation.

The only case when SQL Server uses non-Unicode sorting rules is on non-Unicode data defined with a SQL collation. Sorts and
scans in this instance tend to be faster than when Unicode sorting rules apply. Unicode sorting rules apply to all Unicode data,
using either a Windows or SQL collation.

Of secondary importance, sorting large amounts of Unicode data can be slower than non-Unicode data, simply because the data
is stored in double bytes. On the other hand, sorting Asian characters in Unicode is faster than sorting Asian DBCS data in a
specific code page, because DBCS data is actually a mixture of single- and double-byte widths, while Unicode characters are fixed-
width.

Other performance issues are determined primarily by the issue of converting the encoding mechanism between SQL Server and
the client. In general, the effects on performance of client-server code page conversion are usually negligible. Nevertheless, it is
important to understand what is happening at this layer.

The ODBC (version 3.6 or earlier) and the DB-Library APIs do not recognize Unicode. For clients using data access methods
defined by these APIs, resources are used to implicitly convert Unicode data to the client code page. In addition, there is a risk of
data corruption on the client side when the client code page does not recognize certain Unicode characters.

Later versions of ODBC (beginning with version 2.7 of Microsoft Data Access Components that shipped with SQL Server version
7.0), as well as OLE DB and ADO, are Unicode aware, and assume a UCS-2 encoding mechanism. Therefore, there are no
conversion issues when working with strictly Unicode data from SQL Server if the application is Unicode enabled. If a client is
using a Unicode-enabled API, but the data storage mechanism in SQL Server is not Unicode, there are no conversion issues.
However, there is a risk that any data inserts or updates will be corrupted if any character's code points cannot be mapped to the
SQL Server code page.

What are the Overall Recommendations for Using Unicode?

Deciding whether to store non-DBCS data as Unicode usually boils down to an awareness of storage impacts, as well as how
much sorting, conversion, and possible data corruption may take place during client interactions with the data. Sorting and
conversion may impact performance, depending on where it takes place, although for most applications the impact is negligible.
Databases with well-designed indexes are especially unlikely to be affected. Data corruption, however, will impact not only the
integrity of your application and database, but your business in general. With this trade-off in mind, storing character data in a
specific code page may make sense if both of the following are true:

Conserving storage space is an issue due to hardware limitations.
—OR—
You are performing frequent sorts of large amounts of data, and testing indicates that a Unicode storage mechanism
severely impacts performance.
You are certain the code pages of all clients accessing this data match yours, and that this situation will not unexpectedly
change.

In most other cases, the decision to store character data, even non-DBCS data, in Unicode should be based more on business

needs than performance. In a global economy—encouraged by explosive growth in Internet traffic—it is becoming more
important than ever to support client computers running different locales. In addition, it is becoming increasingly difficult to pick a
single code page that supports all of the characters required by a worldwide audience.

Server-Side Programming Basics with Unicode
Enabling your database for Unicode involves not only defining Unicode storage, but defining Unicode-aware client interactions as
well. This is done on the server side by:

Switching from non-Unicode data types to Unicode data types in table columns and in CONVERT() and CAST() operations.
Substituting use of ASCII() and CHAR() functions with their Unicode equivalents, UNICODE() and NCHAR().
Defining variables and parameters of stored procedures and triggers in Unicode.
Prefixing Unicode character string constants with the letter N.

Using UNICODE(), NCHAR(), and Other Functions

The ASCII() function returns the non-Unicode character code of the character passed in, so use the counterpart UNICODE()
function for Unicode strings where you would use the ASCII function on non-Unicode strings. The same is true of the CHAR
function; NCHAR is its Unicode counterpart.

The SOUNDEX() function is defined around English phonetic rules, so is not meaningful on Unicode strings unless the string only
contains the Latin characters A-Z/a-z.

ASCII, CHAR, and SOUNDEX can be passed Unicode parameters, but these arguments are implicitly converted to non-Unicode
strings, resulting in the possible loss of Unicode characters, before processing because these functions operate on non-Unicode
strings by definition.

In addition to the UNICODE() and NCHAR() functions, the following string manipulation functions support Unicode wherever
possible: CHARINDEX(), LEFT(), LEN(), UPPER(), LOWER(), LTRIM(), RTRIM(), PATINDEX(), REPLACE(), QUOTENAME(),
REPLICATE(), REVERSE(), STUFF(), SUBSTRING(), UNICODE(). These functions accept Unicode arguments, respect the two-
byte character boundaries of Unicode strings, and use Unicode sorting rules for string comparisons when the input parameters
are Unicode.

Defining Parameters in Stored Procedures

Defining parameters with a Unicode data type ensures that client requests or input are implicitly converted to Unicode on the
server, and not corrupted in the process. If the parameter is specified as an OUTPUT parameter, a Unicode type also minimizes the
chance of corruption on its way back to the client.

In the following stored procedure, both variables are declared as Unicode data types:

CREATE PROCEDURE au_info
 @lastname nvarchar(40),
 @firstname nvarchar(40)
AS
SELECT au_lname, au_fname, title, pub_name
 FROM authors a INNER JOIN titleauthor ta
 ON a.au_id = ta.au_id INNER JOIN titles t
 ON t.title_id = ta.title_id INNER JOIN publishers p
 ON t.pub_id = p.pub_id
 WHERE au_fname = @firstname
 AND au_lname = @lastname

Using the N Prefix

Unicode string constants that appear in code executed on the server, such as in stored procedures and triggers, must be preceded
by the capital letter N. Without the N prefix, the string is converted to the default code page of the database, which may not
recognize certain characters.

For example, the stored procedure created in the example above can be executed on the server in the following manner:

EXECUTE au_info @lastname = N' ', @firstname = N' '

Or

EXECUTE au_info @lastname = N'Dale', @firstname = N'Ann'

In the following example of a stored procedure created on the server, the string constant, ' ' must be preceded with 'N', even

though the column being referenced is already defined as Unicode:

CREATE PROCEDURE Chinese_Authors
AS
SELECT au_lname
FROM Authors
WHERE Language = N' '

This requirement holds both for string constants that originate on the server, as well as those sent from the client, as explained
below.

Managing Client-Server Data Flow Conversion in a Global Setting
Understanding Unicode and its use in the database is important, but is only half of the equation. The other half involves how client
applications interact with the server under a variety of scenarios that depend on the degree to which the client and server are
Unicode-aware.

Here are four common scenarios:

A client-side application is programmed to interact with data stored using a specific code page. This application must be
replicated for use in another office that will interact with the same data set, but must process the data in another code page.
How can this new office, using one code page, use data in another code page?
The storage of character data in SQL Server is in Unicode, but client-side applications are still ANSI code page-based. How
can these ANSI-based applications talk to a Unicode server?
Client-side applications recognize data in Unicode format, but the server side data store is still ANSI-based. How can these
applications interact with the server?
Both client and server are Unicode-aware, but applications read Unicode data in the UTF-8 or UTF-16 encoding scheme,
while SQL Server stores Unicode data in UCS-2 format. How can data be converted between these two encoding schemes in
a way that preserves the data flow?

Managing Data Conversion Between Client/Server Code Pages

In this situation, the server-side data storage is non-Unicode, and the client-side application is also not Unicode aware. If the
server's data storage code page and the client-side application's code page are the same, then there is no problem. But if these
code pages differ, the conversion that takes place between client and server may result in the loss of some characters.

Disabling the AutoTranslate feature of the SQL Server ODBC driver to insert data defined with a different code page from the
server is not supported. Also, even if AutoTranslate is disabled, it does not prevent code page translation for SQL language events.
The result is that if the client and database code pages do not match, code page translation will generally be applied to any non-
Unicode character string sent to or from the server. (For more information about AutoTranslate, see Autotranslation of Character
Data and PRB: SQL Server ODBC Driver Converts Language Events to Unicode.

If possible, you should avoid this situation. The best choice for a code page-specific server is to communicate only with clients
using the same code page. The second-best choice is to use another code page that has an almost identical character set. For
example, code page 1252 (Latin1) and code page 850 (Multilingual Latin1) can store an almost identical set of characters, so most
characters in these two code pages can be converted from one code page to another without data loss.

If you must communicate with clients using different code pages, the supported solution is to store your data in Unicode columns.
If any of these options is not feasible, the remaining alternative is to store the data in binary columns using the binary,
varbinary, or image data types. Binary data, however, can only be sorted and compared in binary order, making it less flexible
than character data.

Managing Data Conversion between a Unicode Server and a non-Unicode client

In this situation, server-side data storage is in Unicode, but the client-side application uses a specific code page.

Data input

When non-Unicode data is sent from the client to be stored on the server in Unicode, data from any client with any code page can
be stored correctly as long as one of the following conditions is true:

Character strings are sent to the server as parameters of a remote procedure call (RPC).
String constants are preceded with the capital letter N. This requirement is necessary regardless of whether or not your
client-side application is Unicode aware. Without the N prefix, SQL Server will convert the string to the code page that
corresponds to the default collation of the database. Any characters not found in this code page will be lost. For more

http://support.microsoft.com/default.aspx?scid=kb;en-us;234748

information about this requirement, see INF: Unicode String Constants in SQL Server Require N Prefix.

For example, the string, "SELECT ' '" will not be recognized on an ANSI database, even if a Unicode column is queried.
Instead, you must specify, "SELECT N' '".

Data retrieval

If the client application is not Unicode enabled and retrieves the data into non-Unicode buffers, any given client will only be able
to retrieve or modify data that can be represented by the client machine's code page. This means that ASCII characters can always
be retrieved, since the representation of ASCII characters is the same in all code pages, while any non-ASCII data depends on
code-page-to-code-page conversion.

For example, suppose an application that is currently running only in the United States (U.S.) is deployed to Japan. The SQL Server
database is Unicode-aware so that both English and Japanese text can be stored in the same tables, but the application has not yet
been modified to deal with text as Unicode. As long as the application complies with one of the two options above, Japanese users
can use the non-Unicode application to input and retrieve Japanese data, and U.S. users can input and retrieve English data. All
data from both sets of users is stored intact in the same column of the database, and represented as Unicode. In this situation, a
Unicode-enabled reporting application to generate reports spanning the entire data set, for example, can be deployed. However,
English users cannot view the Japanese rows since the application is not capable of displaying any characters that do not exist in
their code page (1252).

This situation may be acceptable if the two groups of users do not need to view the other group's records. If it is a requirement
that a user of the application must be able to view or modify records with text that cannot be represented by a single code page,
there is no choice but to modify the application to use Unicode.

Web-based applications

If the client-side program is Web-based or connects to a Microsoft Active Server Pages (ASP) page, there are metadata
specifications on both the client-side HTML page and the server-side ASP page. These specifications must be made to specify how
character strings should be converted between the server, the ASP engine, and the client browser.

On the client side HTML page, the META attribute must specify that the character set data should be converted to the client's
encoding scheme by specifying a CHARSET code. For example, the following HTML page instructs the client to convert character
data to the 950 (Chinese Traditional) code page by specifying "big5" as the CHARSET code (Charset codes for the META attribute
can be found at CharSet Property).

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=big5">
<!--

-->
</HEAD>
<BODY>
<!--
 body
-->
</BODY>
</HTML>

On the server-side ASP page, you must instruct the ASP application what code page the client browser is using. You can specify
the session.codepage property, or the @CodePage directive. These methods will handle conversion of data from server to
client, as well as both GET and POST client requests. In the following examples, both methods are used to specify conversion to
and from the client's code page, which is 950 (Chinese Traditional).

<%@ Language=VBScript codepage=950 %>
<% Session.CodePage=950 %>

And finally, you must still remember to prefix any string literals with the letter N.

Managing Data Conversion between a Non-Unicode Server and a Unicode client

In this situation, the client-side application is Unicode-aware, but is communicating with a server-side data storage that is not
Unicode.

This situation is not much different from the previous situation. Here, the client is not constrained by only being able to handle
characters that exist in the client's ANSI code page. The client can store or retrieve any characters that exist in the code page of the

http://support.microsoft.com/?kbid=239530
http://msdn.microsoft.com/workshop/database/tdc/reference/CharSet.asp

SQL Server database, even if this code page is different from that of the client. If it is a requirement that the database must store
data from more than one code page, you must modify the database to use Unicode data types.

Managing Data Conversion Between Unicode Encoding Schemes

Here, both the server and client are Unicode-enabled, but as discussed previously, SQL Server stores Unicode in the UCS-2
encoding scheme, while many clients process Unicode in another encoding scheme, usually UTF-8. This scenario often occurs for
Web-based applications.

In essence, you are still converting from one encoding scheme to another; so many of the same solutions discussed earlier in this
paper also apply here. Unicode character string constants sent to the server must be preceded with a capital N. For Web-based
applications, you specify the CHARSET code under the META attribute of the client-side HTML page. For example, specify
CHARSET = utf-8 if the client's Unicode encoding scheme is UTF-8. On the server side, specify the client's encoding scheme using
the session.codepage property or the @codepage directive. For example, codepage=65001 specifies a UTF-8 encoding scheme.
If you follow these measures, Microsoft Internet Information Services (IIS) 5.0 or later will seamlessly handle the conversion from
UTF-8 to UCS-2 and back without any extra effort on your part.

Additional options for handling this conversion can be found at INF: Storing UTF-8 Data in SQL Server.

In Microsoft Visual Basic® applications, character strings are processed in the UCS-2 encoding scheme, and therefore there is no
need to specify encoding scheme conversion explicitly between these applications and a SQL Server.

Using Data Transformation Services
The advantages of working with Unicode are much the same when moving data through Data Transformation Services (DTS) as
when moving data through client-server applications.

Importing and Exporting Data

When importing character data through DTS, defining Unicode on the server side ensures that imported data will be received
intact and stored properly.

In addition, when either the source or the destination is not an instance of SQL Server, you must rely on the translation behavior
of whatever ODBC driver or OLE DB provider is being used on the calling end. For example, if you want to import French OEM
code page data into a 1252 code page SQL Server, and the source machine does not correctly perform conversion to the 1252
code page, data corruption may result.

Note When working with Unicode data, the DTS Import/Export Wizard contains certain dialog boxes that may not
display Unicode data properly, but will not corrupt the data during transfer.

Copying Data Between Servers

When copying character data between instances of SQL Server, defining Unicode storage on both sides is the easiest way to
ensure against data corruption, regardless of which direction you are moving the data. This precaution is especially valid when
working with an instance of SQL Server 7.0, because non-Unicode data is limited to a single code page across the instance. If SQL
Server 7.0 is the destination database, source database, or both, a "best-fit" mapping is attempted between code pages when non-
Unicode data types are used.

In addition, DTS is an OLE DB application and makes use of Autotranslation to translate data from one code page to another. This
means that all data retrieved is converted from the code page of the database or column to the ANSI code page of the machine
running DTS. Then, when the data is inserted into the destination server, it is converted from the client's ANSI code page to the
destination database's code page. For a character to survive translation intact, it is not enough for the character to exist in both the
source and destination code pages; it must also exist in the ANSI code page of the machine where DTS is running. Therefore, if
you are copying non-ANSI data (any code page that does not begin with "125"), it is best to turn auto-translation off on both the
source and destination to prevent this "middle-tier" conversion to ANSI from occurring. Of course, doing so can result in data
corruption and an unsupported configuration unless both the source and destination SQL Server databases use the exact same
collation.

When copying data between two instances of SQL Server 2000, and both sides are not stored in Unicode, you should set the
UseCollation property of the Copy SQL Server Objects Task to guard against data corruption. However, keep in mind that DTS
only relies on the server-level collations to determine which code pages to convert to and from. If a server's collation is different
from the database or column-level collation, data can be corrupted in unexpected ways.

Another option for guarding against data corruption when copying non-Unicode data is to use the SQL Server bcp utility in the
following manner:

http://support.microsoft.com/?kbid=232580

Use bcp to export the data to a flat file. By specifying the –w or –N command line flags (see below), the data is converted to
Unicode in the process.
Use either bcp or DTS to import the Unicode data to the destination.

This method, however, will still lose any characters from the source data that do not exist in the destination code page.

Using the bcp utility is explained in more detail below.

For more information about DTS conversion issues, see Data Conversion and Transformation Considerations

Using the bcp Utility and the BULK INSERT Command
When using the bcp utility to copy data from SQL Server to another source, character data is, by default, converted to the OEM
code page of the machine where bcp is running. When using bcp or the BULK INSERT statement to copy data from an outside
source into SQL Server, character data is, by default, converted from the OEM code page of the client machine to the code page of
the destination column. If Unicode is not specified on both sides, corruption may result. To minimize character corruption during
the conversion process, you can override the default behavior by specifying one of the following flags using bcp:

Flag Meaning Notes
-C
xxx

Code page specifier xxx specifies that the data is converted to ANSI, OEM, RAW (direct copy with no conversion), or a
specific code page number.

-N Unicode native
format

Converts data to native database data types for all noncharacter data, and Unicode character format
for all character data.

-w Unicode character
format Converts data to Unicode character data format for all columns

For example, to bulk copy the authors2 table in the pubs database to the Authors.txt data file using code page 850, execute the
following from the command prompt:

bcp pubs..authors2 out authors.txt -c -C850 -Sservername -Usa -Ppassword

When using BULK INSERT, you can specify that the data be converted to a specific code page with the CODEPAGE clause. For
example, to bulk copy the Authors.txt data file into the authors2 table in the pubs database using code page 850, execute the
following from a query tool such as SQL Query Analyzer:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 CODEPAGE = 850
)

The following values can be used with both bcp and BULK INSERT to specify code page conversion:

Code page
value Description

OEM (this is
the default
behavior)

Columns of char, varchar, or text data type are converted from the system OEM code page to the SQL Server
code page when importing data to an instance of SQL Server, and vice versa when exporting data from an
instance of SQL Server.

ACP
Columns of char, varchar, or text data type are converted from the ANSI/Windows code page (ISO 1252) to the
SQL Server code page when importing data to an instance of SQL Server, and vice versa when exporting data
from an instance of SQL Server.

RAW This is the fastest option because no conversion from one code page to another occurs.
<value> This represents a specific code page number (for example, 850).

For more information about using bcp and BULK INSERT, refer to Copying Data Between Different Collations.

Working with XML Data
Although in many cases SQL Server 2000 encodes the XML data it creates internally as UCS-2, it encodes XML data received from
other sources as Unicode using the UTF-8 encoding scheme. As mentioned above, UTF-8 data is variable-width, so it is processed
according to a byte-oriented protocol. This means that UTF-8 data can be treated in a way that is independent of the byte ordering
on different computers (little endian versus big endian). It is therefore well suited for traversing different computers using
different encodings and byte-ordering systems. Because XML data is typically shared widely across networks, it makes sense to
maintain the default UTF-8 storage of XML data in your database, and when exporting XML data to clients.

If you do need to specify a different encoding, you can do so in FOR XML requests by:

Specifying the Output Encoding property of an XML-formatted data stream Response object in ASP.

For example, the following ASP code tells the browser to display an incoming XML data stream in UCS-2:

<% cmdXML.Properties("Output Encoding") = "UCS-2" %>

Specifying an output encoding in a URL when making an HTTP request:

This example specifies UCS-2 as the output encoding of the XML document returned by this request:

http://IISServer/nwind?sql=SELECT+*+FROM+Customers+FOR+XML+AUTO&outpute
 ncoding=UCS-2

Specifying an output encoding in an XML template or style sheet.

This example specifies UCS-2 as the output encoding in the header of this XML template document:

<?xml version ='1.0' encoding='UCS-2'?>
 <root xmlns:sql='urn:schemas-microsoft-com:xml-sql'
 sql:xsl='MyXSL.xsl'>
 <sql:query>
 SELECT FirstName, LastName FROM Employees FOR XML AUTO
 </sql:query>
</root>

Note that if an encoding is specified directly in an XSL style sheet, it will override whatever encoding is specified in the template.
Both, however, are overridden by the Output Encoding property specified on the ASP page.

When inserting data to SQL Server using OPENXML, you should specify Unicode data types anywhere in the rowset where
multilingual data may appear. This will minimize character corruption.

Conclusion
Support for Unicode in SQL Server 2000 provides you with greater confidence that your character data storage and transmission
will not be lost or distorted in a global setting. The storage and performance costs of using Unicode are usually minimal
compared to the benefits of handling multilingual data. When faced with client-server configurations that vary in their Unicode
awareness, there are measures you can take to minimize the risk of data corruption. The optimal situation is both a Unicode-
aware server and a Unicode-aware client, while the least favorable situation is both a non-Unicode client and non-Unicode server,
each with differing code pages.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Query Recompilation in SQL Server 2000

Thomas Davidson
Microsoft Corporation

May 2002

Applies to:
 Microsoft® SQL Server™ 2000

Summary: How to understand and consider the implications of query recompilation during the application development cycle. (7
printed pages)

Contents

Introduction
Architecture: Recompilation and Stored Procedures
Tracking Instances of Recompilation
Factors Affecting Recompilation
Recommendations for Best Use of Recompilation
References

Introduction
In Microsoft® SQL Server™ 2000, the query optimizer selects the best strategy to access data quickly and efficiently. This process
may be repeated, or "recompiled," and is one of many optimization strategies you can use in SQL Server 2000 to take advantage
of better querying plans as they become available. Recompilation yields superior performance in some situations, although
excessive recompilation can be detrimental. This article will discuss some of these costs and benefits, and will draw on contrasts
between different versions of SQL Server to provide further context for understanding recompilation.

Architecture: Recompilation and Stored Procedures
To understand the ramifications of recompilation as it affects performance, some context in SQL Server architecture is necessary.
Of particular note is the difference between versions of SQL Server. The architecture of SQL Server 2000 and SQL Server version
7.0 differs fundamentally from that of SQL Server version 6.5. The query optimizer in SQL Server 6.5 is not as sophisticated, and
therefore with fewer optimization strategies to choose from, it is often faster at selecting an execution plan. Although
recompilations can occur in SQL Server 6.5, they are less likely.

Recompilation affects the entire stored procedure query plan. As compared to SQL Server 6.5, the more frequent and longer
recompilation of SQL Server 2000 may appear disadvantageous in some cases. The SQL Server 2000 query optimizer performs
"constant folding": that is, it evaluates constant expressions at compile time to save doing them every time the plan was used at
run time. SQL Server 6.5 does not perform constant folding.

One consequence of this difference is that in SQL Server 6.5, changing the set options (which affect the result of expression
evaluation) does not affect the compile plan. In contrast, SQL Server 2000 may require a recompilation depending on the set
option used.

Note You might not think evaluating 2*2 in WHERE a > 2*2 and a < 1*3 saves very much, but it does allow for
further optimizations: one query simplification leads to another. In the above case, we see that a>4 and a<3 is
impossible, and thus we can eliminate the part of the query below that filter.

Further, when recompiles do occur in SQL Server 6.5, they are not shared. Two users executing the same procedure have separate
versions of the execution plan. Additionally, the execution plans for these two users may employ different access strategies
depending on the effect of the parameters supplied to the stored procedure.

SQL Server 6.5 stored procedures are reusable but not reentrant. That is, only one user at a time can use any given stored
procedure query plan. In high-use environments, users of SQL Server 6.5 will have multiple independent query plans for the same
procedure.

In SQL Server 2000 stored procedure architecture, the query plan is divided into two structures, a compiled plan and an
executable plan:

Compiled plan

The bulk of the execution plan is a reentrant, read-only data structure used by any number of users. This is called the
compiled or query plan. Reentrance implies all users share the compiled plan. No user context information (such as data
variable values) is stored in the compiled plan. There are never more than one or two copies of the query plan in memory:
one copy for all serial executions and another for all parallel executions. The parallel plan covers all parallel executions,
regardless of their degree of parallelism.

Executable plan

Each user currently executing the query has a data structure that holds the data specific to their execution, such as
parameter values. This data structure is called the executable plan or execution context. The execution context data
structures are reusable but not reentrant. Each user has a copy of this data structure. If a user executes a query and one of
the structures is not in use, it is reinitialized with the context for the new user.

During peak periods of use, the recompilation of the single compiled plan architecture can result in serialized lockout behavior
during recompilation of the query plan. In other words, when recompilation occurs, a compile lock is placed on the shared
compiled plan, suspending all concurrent executions until the completion of recompilation. In such cases, excessive recompilation
can be undesirable.

Tracking Instances of Recompilation
SQL Profiler can be used to track the instances of stored procedure recompilation. Furthermore, in SQL Server 2000 Service Pack
2, you can find the reason for recompilation in the EventSubClass data column. To track instances of recompilation:

1. On the SQL Profiler menu, click new trace and connect to the appropriate SQL Server.
2. On the Trace Properties dialog box, click the Events tab, and then expand the Stored Procedure event class.
3. Select SP:recompile, SP:Starting, SP:Completed, SP:StmtStarting, and SP:StmtCompleted (to see the stored procedure

statement causing the recompilation).
4. On the Data Columns tab, add EventSubClass. EventSubClass provides a numeric value that describes the reason for the

recompile. These values are as follows:
Schema, bindings, or permissions changed between compile or execute. 1
Statistics changed (rowmodctr in sysindexes). 2
Recompile DNR (Deferred Name Resolution). Object did not exist at compile time. Recheck at run time. 3
Set options changed. 4
Temp table schema, bindings, or permissions changed. 5
Remote rowset schema, bindings, or permissions changed. 6

You can use trace flag 205 to report when a statistics-dependent stored procedure is being recompiled as a result of Autostat. You
can also use the SQL Profiler to identify when UPDATE STATISTICS statements are being run. To do this, perform the following
steps:

1. On the SQL Profiler menu, click new trace and connect to the appropriate SQL Server.
2. Go to the Events tab, and then expand the Objects event class.
3. Select Autostats. You may also want to select the Object:opened event as well as the Stored Procedure event class

(SP:Starting, SP:Completed, SP:StmtStarting, and SP:StmtCompleted) to see the stored procedure statement causing
the Autostats to fire.

Note If many statistics are being updated by Autostat, a great number of messages can be written to the error
log. Experiment extensively with these trace flags before using them on any production or otherwise critical
server.

Factors Affecting Recompilation
Recompilation occurs in the following situations:

Schema changes: For example, adding or dropping indexes (after population of tables including temporary tables).
Rows changed threshold: There are thresholds on the number of row changes that cause stored procedure recompilation,
depending on the type of object as follows:

Table type Empty condition Threshold when empty Threshold when not empty
Permanent < 500 Rows # of Changes >= 500 # of Changes >= 500 + (20 percent of Cardinality)
Temporary < 6 Rows # of Changes >= 6 # of Changes >= 500 + (20 percent of Cardinality)
Table Variable No thresholds No thresholds No thresholds

The above thresholds, recorded by Profiler under the SP:Recompile event, govern the recompilation of permanent and
temporary tables. The data column EventSubClass provides the reason for recompilation. When a threshold is crossed,
EventSubClass will = 2, indicating that statistics changed. Row changes are recorded in the rowmodctr column of the
sysindexes table.

Use of certain SET options in stored procedures can cause recompilation.

1. Generally, those that affect query behavior or result sets such as:

 ANSI_DEFAULTS

 ANSI_NULL_DFLT_OFF

 ANSI_NULL_DFLT_ON

 ANSI_NULLS

 ANSI_PADDING

 CONCAT_NULL_YIELDS_NULL

 FORCEPLAN

2. Other SET options include:

 ANSI_WARNINGS

 ARITHABORT

 LANGUAGE

 NUMERIC_ROUNDABORT

 QUOTED_IDENTIFIER

The following SET options do not trigger recompilation of stored procedures:
ARITHIGNORE
CURSOR_CLOSE_ON_COMMIT
DEADLOCK_PRIORITY
FMTONLY
IDENTITY_INSERT
IMPLICIT_TRANSACTIONS
LOCK_TIMEOUT
NOCOUNT
NOEXEC
PARSEONLY
QUERY_GOVERNOR_COST_LIMIT
ROWCOUNT
STATISTICS IO
STATISTICS TIME
TRANSACTION ISOLATION LEVEL
XACT_ABORT

Recommendations for Best Use of Recompilation
Keep these best practices in mind as you analyze your use of recompilation:

Use SQL Profiler to determine the frequency of recompilation. Make sure you can identify the statement causing the
recompilation. For details, see Tracking Instances of Recompilation earlier in this article.
SET options should be established at the connection level. Using SET options to govern the behavior of individual stored
procedures can result in more recompilations in SQL Server 2000. To minimize this particular case, establish SET options at
connection time, and ensure that they stay in effect for the duration of the connection.
If a stored procedure creates a temporary table, all data definition language such as create table and create index should be
at the beginning of the stored procedure.

Since table variables are not subject to rows-changed thresholds, they can be used in lieu of temporary tables as follows:

DECLARE @TableVar1 TABLE
 (a int primary key, -- note: indexes (constraints) can be used
 b char(10))
------------ insert 1000 rows into @TableVar1
 declare @i int
 select @i = 1
 while @i < 1000
 begin
 insert into @TableVar1
 select @i, 'T1 ' + convert(char(10),@i*2)
 select @i = @i + 1
 end

For temporary tables, the option keep plan can be used on any SELECT statement to eliminate the 6-row threshold. The
first recompile would be at the 500-row threshold.
Another option, keepfixed plan, can be used on a SELECT statement to prevent any recompilation based upon Query
Processor (QP) threshold crossing (only dependency tracking will cause recompiles).
Large stored procedures take longer to compile than small ones. Large stored procedures can be problematic, as
recompilation is done at the stored procedure level, not the statement level. Use sp_executesql to avoid recompiling the
entire stored procedure.
Sp_execute executes a Transact-SQL statement or batch that can be reused many times, or that has been built dynamically.
sp_executesql can be used to execute a Transact-SQL statement a number of times when the change in parameter values
to the statement is the only variation. Because the Transact-SQL statement itself remains constant and only the parameter
values change, the SQL Server query optimizer is likely to reuse the execution plan it generates for the first execution. Plan
reuse in such cases is fine provided that:

The different parameter values do not change the size of the result set.
The same parameter variables are provided each time.

For example, if you initially search for values based on first name only, an index on the first_name column would be
beneficial. If, however, you next want to search on last name, you would not want to reuse the plan based on first name.
sp_executesql would not be beneficial in this case.

As a last resort, identify the statement causing the recompilation, and move the statement to its own stored procedure to
minimize recompilation work.
Given the single compiled plan architecture of SQL Server 2000, and serialization of recompiling query plans, some users
have chosen to use temporary stored procedures. While temporary stored procedures will not avoid recompilation, they will
minimize the serialization impact of recompiling a single query plan. Each execution will have its own temporary stored
procedure query plan.
Turning off AutoStats for a given object means the rows modification threshold will not trigger recompilation automatically.
The stored procedure sp_autostats can be used to govern autostats behavior and to avoid threshold recompilation.

In summary, the sophisticated query optimizer in SQL Server 2000 provides many new data access strategies. An important goal
of recompilation is to take advantage of better data access plans when they are available. In certain cases, however, the cost of
recompilation outweighs the benefits, and can negatively impact performance. These situations should be tracked and minimized.

References

Microsoft Knowledge Base (KB) articles:

 INF: How SQL Server 7.0 and SQL Server 2000 Autostats Work (Q195565)

 INF: Troubleshooting Stored Procedure Recompilation (Q243586)

 INF: How to Identify the Cause of Recompilation in a SP:Recompile Event (Q308737)

SET Options and Recompilation (SQL Server Magazine, February 2001)

© Microsoft Corporation. All rights reserved.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q195565
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q243586
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q308737
http://www.sqlmag.com/Articles/Index.cfm?ArticleID=16308
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Registry Entries for Microsoft SQL Server 2000 Analysis Services

Tom Mathews
Microsoft Corporation

November 2004

Summary: This paper describes the registry entries that control the behavior of the Microsoft® SQL Server™ 2000 Analysis
Services server, and how they can be used to optimize performance during OLAP and data mining operations. (48 printed pages)

Table of Contents

Introduction
Registry Entries
 ActiveDirectoryEnabled
 AgentCacheSize
 AuditEvents
 BackgroundInterval
 BuildIndexThreshold
 CleanerInterval
 CompareCaseNotSensitiveStringFlags
 CommitLockTimeout
 CompareCaseSensitiveStringFlags
 DataCompressionSettings
 DataPlacementOptimization
 DatasetLockTimeout
 DefaultSendTimeout
 DimSecFlavor
 DiskCachePageSize
 DiskCacheSize
 ExcludeMachineAdminFromOLAPAdmin
 ForceCommitTimeout
 FastIOCS
 HighMemoryLimit
 HugeLevelThreshold
 InitWorkerThreads
 IOSectorSize
 IOSparsityControl
 LazyInterval
 LFHHeap
 LinkSyncInterval
 Locale
 LoggerInterval
 LowMemoryLimit
 MaxOLEDBTimeout
 MDXCompatibilityValue
 MDXUniqueNames
 MiningPersistenceFormat
 OLEDBPoolExpiration
 OpenFilesLimit
 PagePoolInitSize
 PoolProcessThreads
 PoolWorkerThreads
 ProcessPoolExpiration
 ProcessReadAheadSize
 ProcessReadSegmentSize
 ProcessRecordsReportGranularity
 ProcessThreads
 ProtocolReceiveTimeout
 ProxyServer

 QueryLogConnectionString
 QueryLogSampling
 ReadAheadBufferSize
 RemoteQueryLogConnectionString
 ROLAPDimProcessingEffort
 RootDir
 SQLCompatibilityValue
 SocketsUseSelect
 SocketsBufferSize
 SocketsUseBufferForSend
 SocketsEnableNagle
 SSFastLoadOptions
 TempDirectory
 TempDirectory2
 TraceLogString
 UnbufferedThreshold
 VersionNum
 VLDMThreshold
 WorkerThreads
Conclusion
Appendix

Introduction
The Analysis server is the server component of Microsoft® SQL Server™ 2000 Analysis Services. It is designed specifically to
create and maintain multidimensional data structures and to provide multidimensional data in response to client queries. This
release introduces data mining, which integrates significant data analysis and prediction capabilities into Analysis Services. The
service that is associated with Analysis server is the MSSQLServerOLAPService service.

Many of the values can be modified to improve server performance; however, modification of the values can also result in
severely degraded performance. Keep in mind that these values should always be tested on a non-production server.

Although the Analysis server is configured to perform well in the broadest possible range of situations, there are circumstances in
which the default settings are not optimal. This paper describes the various registry entries and their impact on Analysis server.

Use the registry editor to modify many of these entries (Analysis Manager does not expose all of the entries). You may also need
to edit the registry for the entries that were not installed to the registry during the setup process. Several entries cannot be set to
their maximum value through Analysis Manager; this can be avoided by modifying by the registry directly.

For more information about Analysis Services and performance tuning, see the Microsoft SQL Server 2000 Resource Kit.

Registry Entries
These registry entries can be found in HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\CurrentVersion. Several
entries in the registry are not documented. Changing the undocumented registry entries is not recommended. If
the registry key has been documented, but is not installed in the registry during the setup process, you must create the
entry manually. To do this, follow these steps:

1. Run REGEDIT.EXE.
2. Expand HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\CurrentVersion.
3. If the entry is a string (in this document, indicated by the text "Not applicable" under the "Minimum Value" sections for the

entry), on the Edit menu, point to New, and then click String Value. If the entry is numeric, on the Edit menu, point to
New, and then click DWORD Value.

4. Type the entry name and click OK.
5. Double-click the newly created entry.
6. Type the value and click OK.

Caution Many of these registry entries do not employ bounds checking, and modification of their values can lead to
unpredictable behavior. Always test new entry values in a test environment before implementing them on a
production server.

The "Default Value" section for each entry indicates the default value for the entry on a new installation. Unless stated otherwise,
this is also the value used by the server if the entry is missing from the registry.

http://www.microsoft.com/sql/techinfo/reskit/

Several entries are bit mask entries. The value to which an entry has been set can be determined by performing a logical OR
operation with the chosen values. For example, if you choose the values 1, 2, and 4, the value that is entered into the entry is 7.
Conversely, determining the values to which a bit mask entry has been set can be done with a logical AND operation.

Several entries make references to pagefile size. The pagefile is a file that the operating system manages to improve performance
by swapping rarely-used pages of memory to the disk. You can determine the pagefile size by right-clicking My Computer and
selecting Properties. On the Advanced tab, click Performance Options. The size is indicated under Virtual Memory.

ActiveDirectoryEnabled

The ActiveDirectoryEnabled entry indicates whether the server has registered itself in Microsoft Active Directory™.

Minimum Value

0x00000000 (0)

Maximum Value

0x00000001 (1)

Default Value

0x00000000 (0)

Remarks

In Analysis Manager, you can modify this entry in the Properties dialog box. Right-click the server, choose Properties, and then
click the Active Directory tab.

The ActiveDirectoryEnabled entry is read from the registry only when the server starts. You can use Analysis Manager to
modify this entry.

The following table lists the available values and describes the server behavior.

Value Description
0x00000000 (0) Directs the server to unregister itself with Active Directory
0x00000001 (1) Directs the server to register itself with Active Directory

AgentCacheSize

The AgentCacheSize entry controls the percentage of total physical memory that can be allocated to caches utilized by the
server to perform certain queries.

Minimum Value

0x00000000 (0)

Maximum Value

The total physical memory of the server.

Default Value

0x0000000a (10)

Remarks

Because more than one of these caches can be allocated at the same time, it is recommended that you keep this entry value to a
small percentage.

If the AgentCacheSize entry value is 0, the agent cache size is set to the size of physical memory. If this entry is from 1 through
99, the server allocates that percentage of physical memory to each agent cache. If this entry value is set to 100 or more, the
agent cache can use up to the specified amount of memory, in kilobytes (KB).

The AgentCacheSize entry is read from the registry only when the server starts.

AuditEvents

The AuditEvent entry is a bit mask that determines how detailed the event logging to the Microsoft Windows NT® Event Log is.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000000D (13)

If this entry is missing from the registry, the default value is 0x000000001 (1).

Remarks

The AuditEvents entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

The following table lists available mask values and describes server behavior.

Mask name Mask value Meaning
AUDIT_START 0x000000001 (1) The server creates an entry in the Event Log for every start and stop of the server.
AUDIT_LOGIN 0x000000002 (2) The server creates an entry in the Event Log for every user login and logout.
AUDIT_SECURITY 0x000000004 (4) The server creates an entry in the Event Log for security messages.
AUDIT_RDBS 0x000000008 (8) The server creates an entry in the Event Log for relational database error messages.

BackgroundInterval

The Analysis server uses the BackgroundInterval entry to determine the frequency at which background operations are
performed.

Minimum Value

0x000000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

0x00000001e (30)

Remarks

These background activities include cleaning the server caches, logging queries, performing lazy processing, and reading many
values from the registry. The value is the number of seconds between processing periods.

The BackgroundInterval entry is updated from the registry on a regular basis, the interval of which is defined by this entry.

Note If you set this entry to a high number and the server reads it into memory, it waits the specified time before
reading the entry again. For example, this entry is set to 3600 and the server reads it into memory. If you immediately
change the entry back to 30, the server still waits one hour before reading the new value.

BuildIndexThreshold

The BuildIndexThreshold entry represents the number of records within an aggregation below which an index is not created.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000400 (1024)

Remarks

The BuildIndexThreshold entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

CleanerInterval

The server behaves exactly as if the value in the CleanerInterval entry was contained within the BackgroundInterval entry.

This entry is not installed in the registry during the setup process.

Minimum Value

See "BackgroundInterval."

Maximum Value

See "BackgroundInterval."

Default Value

See "BackgroundInterval."

Remarks

If specified, the CleanerInterval entry overrides the value in the BackgroundInterval entry.

The CleanerInterval entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

CompareCaseNotSensitiveStringFlags

The CompareCaseNotSensitiveStringFlags entry is a bit mask that is used to determine how to perform case-insensitive string
comparisons and sort order.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00011001 (69633)

If this entry is missing from the registry, the default value is 0x00000001 (1).

Remarks

This entry controls how case-insensitive string comparisons are made in character sets that do not support uppercase and
lowercase characters, such as Katakana (for Japanese) and Hindi.

The client application can temporarily override the entry for case-insensitive string comparisons by setting an identical registry
entry on the client machine (affecting all connections made from that machine), or by setting the
CompareCaseNotSensitiveStringFlags property in the connection string (affecting only that connection). PivotTable® Service
can have only one value for this property for each process.

The CompareCaseNotSensitiveStringFlags entry is read from the registry only when the server starts. You can use Analysis
Manager to modify this entry if the user currently logged on is running Microsoft Windows® with a Japanese locale.

The following table lists available mask values and describes server behavior.

Mask name Mask value Description

NORM_IGNORECASE 0x00000001
(1) Case is ignored.

Not applicable 0x00000002
(2)

Characters are compared based on their underlying value in the character set, not on
their order in their particular alphabet. (Binary comparison.)

NORM_IGNORENONSPACE 0x00000010
(16) Nonspacing characters are ignored.

NORM_IGNORESYMBOLS 0x00000100
(256) Symbols are ignored.

NORM_IGNOREKANATYPE 0x00001000
(4096)

No differentiation is made between Hiragana and Katakana characters; corresponding
Hiragana and Katakana characters, when compared, are considered to be equal.

NORM_IGNOREWIDTH 0x00010000
(65536)

No differentiation is made between single-byte and double-byte versions of the same
character.

SORT_STRINGSORT 0x00100000
(1048576) Punctuation is treated the same as symbols.

For more information about comparing strings in OLE DB, search on "CompareString" in the Platform SDK section of the MSDN
Library.

CommitLockTimeout

The CommitLockTimeout entry controls the ability of the Analysis Services server to cancel any pending-for-completion
(uncommitted) DSO operations.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

0x000000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

No default value is provided.

Remarks

The value of this entry indicates how long, in seconds, a running DSO operation is going to wait before the operation will timeout
and cancel itself.

If the CommitLockTimeout entry does not exist, the server will not try to stop a DSO operation. Each DSO operation will wait
indefinitely to obtain a write lock and complete itself.

CompareCaseSensitiveStringFlags

The CompareCaseSensitiveStringFlags entry is a bit mask that is used to determine how to perform case-sensitive string
comparisons and sort order.

Minimum Value

http://msdn.microsoft.com/library

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000000 (0)

If this entry is missing from the registry, the default value is 0x00000001 (1).

Remarks

This entry controls how case-sensitive string comparisons are made in character sets that do not support uppercase and
lowercase characters, such as Katakana (for Japanese) and Hindi. The default is the value of the
CompareCaseSensitiveStringFlags entry on the client computer.

For information on the usage of this entry and the values that it can be set to, see CompareCaseNotSensitiveStringFlags.

DataCompressionSettings

The DataCompressionSettings entry is a bit mask that is used to determine the level of compression on the server, as well as
index creation and usage directives.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x44000011 (1140850705)

Remarks

Analysis Services can use either the bitmap or traditional index to optimize query response. Although the bitmap index generally
performs better than the traditional index, there are some circumstances in which the traditional index performs better than the
bitmap index. If you decide to use traditional indexes, keep in mind that they are slower to create than binary indexes.

Caution The MAP_MEASURES_COMPRESSION and MAP_MEASURES_COMPRESS_EXACTLY flags instruct the server
to compress the measure values. This compression can introduce subtle rounding errors when working on numbers
with many digits, as defined in the table below. Turning off compression results in a precision of 15 digits.

Removing the compression increases stability in rare circumstances, but drastically decreases performance. For
troubleshooting purposes, you can turn off MAP_MEASURES_COMPRESSION and
MAP_MEASURES_COMPRESS_EXACTLY.

To use the MAP_MEASURES_COMPRESS_EXACTLY flag, you must also use the MAP_MEASURES_COMPRESSION flag.
The MAP_MEASURES_COMPRESS_EXACTLY flag cannot be used alone.

The DataCompressionSettings entry is read from the registry only when the server starts.

The following table lists available mask values and describes server behavior.

Mask name Mask value Description

MAP_MEASURES_COMPRESSION 0x00000001
(1)

The server attempts to compress measures in MOLAP storage, with a
precision of 14 digits.

MAP_MEASURES_COMPRESS_EXACTLY 0x00000002
(2)

The server attempts to compress the measure values, keeping the exact
value for comparisons, with a precision of 15 digits.

MAP_PATH_COMPRESSION 0x00000010
(16) The server attempts to compress node paths in MOLAP storage.

MAP_NOT_USE_SLICE_FOR_QUERY 0x00100000
(1048576)

The bitmap index does not create the WHERE clause from the partition
slice when sending SQL queries to the data provider.

MAP_NOT_BUILD_MAP 0x02000000
(33554432) The server does not build either a bitmap index or a traditional index.

MAP_NOT_BUILD_INDEX 0x04000000
(67108864) The server does not build a traditional index.

MAP_NOT_BUILD_AGGREGATE 0x08000000
(134217728) The server does not build aggregations.

MAP_NOT_USE_MAP 0x20000000
(536870912) The server does not use either a bitmap index or a traditional index.

MAP_NOT_USE_INDEX 0x40000000
(1073741824) The server does not use a traditional index.

MAP_NOT_USE_AGGREGATE 0x80000000
(2147483648) The server uses only facts, not aggregations.

DataPlacementOptimization

This entry defines the level of clustering used by the server to create a clustered index.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000001 (1)

Remarks

The DataPlacementOptimization entry is read from the registry only when the server starts.

The following table lists the available constant values and describes the server behavior for each value.

Constant name Value Description
CLUSTER_TYPE_NONE 0x00000000 (0) Turns off clustering
CLUSTER_TYPE_KDTREE 0x00000001 (1) Turns on clustering

DatasetLockTimeout

The DatasetLockTimeout entry is the timeout, in milliseconds, used when adding to the in-memory aggregation cache.

This entry is not installed in the registry during the setup process.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0xFFFFFFFF (4294967295)

Remarks

When a query executes, the server puts the answers into the in-memory aggregation cache. If a lock cannot be obtained within
the DatasetLockTimeout entry, an error occurs.

DatasetLockTimeout is read from the registry only when the server starts.

DefaultSendTimeout

The DefaultSendTimeout entry identifies, in seconds, how long the server allows itself to be blocked by a client read request.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x0000003c (60)

Remarks

After the time-out expires, the connection to the client is closed. This setting also applies indirectly to HTTP connections, because
Internet Information Server bases the timeout of Web clients from this setting.

If the DefaultSendTimeout entry is set to 0, the server does not time out connections.

The DefaultSendTimeout entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

DimSecFlavor

The DimSecFlavor entry controls how the Analysis Services server creates a dimension replica.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

0x000000000 (0)

Maximum Value

0x000000001 (1)

Default Value

If this entry is missing from the registry, the default value is 0x000000000 (0).

Remarks

If this entry is set to 0, the Analysis Services server will first attempt to find an existing best replica of the dimension. A best replica
can be used from another user that is a member of the same roles, as long as dynamic security is not implemented.

If this entry is set to 1, the Analysis Services server will create one replica per user per roles combination, regardless if the user is
has the same exact replica as another user. This is useful for situations when dynamic security is used extensively with MDX
expressions.

DiskCachePageSize

The DiskCachePageSize entry is reserved for future use.

Minimum Value

0x00000000 (0)

Maximum Value

0x00000000 (0)

Remarks

The DiskCachePageSize entry is read from the registry only when the server starts.

DiskCacheSize

The DiskCacheSize entry is reserved for future use.

Minimum Value

0x00000000 (0)

Maximum Value

0x00000000 (0)

Default Value

0x00000000 (0)

Remarks

The DiskCacheSize entry is read from the registry only when the server starts.

ExcludeMachineAdminFromOLAPAdmin

The ExcludeMachineAdminFromOLAPAdmin entry controls the inclusion of the local Administrators group as administrators
of the Analysis Services server.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

0x000000000 (0)

Maximum Value

0x000000001 (1)

Default Value

If this entry is missing from the registry, the default value is 0x000000000 (0).

Remarks

If the value of this entry is 1, the local Administrators group will be excluded from the Analysis Services administrators list.

ForceCommitTimeout

The ForceCommitTimeout entry controls the ability of the Analysis Services server to cancel any running queries in order to
complete a DSO operation.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

0x000000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

No default value is provided.

Remarks

The value of this entry indicates how long, in seconds, a running DSO operation will wait before it will stop queries that block the
DSO operation from committing.

If the CommitLockTimeout entry does not exist, the server will not try to stop queries blocking the DSO operation's commit.

FastIOCS

The FastIOCS entry defines the maximum number of bytes that are worked with at one time when using asynchronous disk
access during queries.

Minimum Value

0x000003E8 (1000)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x0000FDE8 (65000)

If this entry is missing from the registry, the default value is 0x0000FFDC (65500).

Remarks

The FastIOCS entry is read from the registry only when the server starts.

Caution Modification of this entry could lead to system instability and unexpected results.

HighMemoryLimit

The HighMemoryLimit entry is used when determining the priority of the cleaner thread. Modifying this value can change the
frequency that the server flushes older items from the cache.

Minimum Value

The value contained within the LowMemoryLimit entry.

Maximum Value

4 MB less than the total virtual memory available.

Default Value

Half the pagefile size, in bytes.

If this entry is missing from the registry, the default value is 0x00A00000 (10485760), which is 10 MB.

Remarks

While the memory allocated to the server meets or exceeds half this limit (determined by subtracting the LowMemoryLimit
registry value from the HighMemoryLimit entry and dividing the result by two), the server begins to flush older items from the
cache at an increased rate with the use of a cleaner thread. This thread runs at a frequency defined by the BackgroundInterval
registry value.

If the allocated cache memory meets or exceeds the HighMemoryLimit entry, the priority of the cleaner thread is set to normal
and the cache is cleaned again. If this step does not reduce allocated cache memory back to the halfway point, the priority of the
cleaner thread is set to above normal and the server cache is cleaned again. This behavior is not guaranteed to be initiated.

The HighMemoryLimit entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry. You can
use Analysis Manager to modify this entry.

Note When the /3GB switch is used, the upper bound on memory must be set using the HighMemoryLimit
registry entry, because the memory conservation threshold property cannot be set to greater than 2 GB from Analysis
Manager.

HugeLevelThreshold

The HugeLevelThreshold entry represents the minimum number of members that a level can have before it is loaded
incrementally to conserve dimension memory.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x000003e8 (1000)

Remarks

The client with the Large Level Threshold property can override HugeLevelThreshold.

If 0 is specified, the server defaults to 1000.

The HugeLevelThreshold entry is read from the registry on a regular basis, as defined by BackgroundInterval. You can use
Analysis Manager to modify this entry.

InitWorkerThreads

The server creates n worker threads during the system startup process (where n is the value stored in the InitWorkerThreads
entry). These threads manage the process threads to complete queries.

Minimum Value

0x00000004 (4)

Maximum Value

The number of processors multiplied by 4.

Default Value

The number of processors multiplied by 4.

Remarks

The maximum and default values are determined by multiplying the number of processors by 4. For example, on a two-processor

server the maximum value would be 8.

The InitWorkerThreads entry is read from the registry only when the server starts.

IOSectorSize

The IOSectorSize entry is used by the server to determine the number of bytes per sector on the hard drive.

This entry is not installed in the registry during the setup process.

Minimum Value

0x00000000 (0)

Maximum Value

0x00002000 (8192)

Default Value

0xFFFFFFFF (4294967295)

Remarks

If the value is double the sector size, the server reads from two sectors at one time. If this entry is set to 0xFFFFFFFF, the server
calculates it from the operating system.

The IOSectorSize entry is read from the registry only when the server starts.

Caution This value must be in increments of the physical sector size of the drive. System instability and unexpected
results occur if this value is not in increments of the physical sector size of the drive.

IOSparsityControl

The IOSparsityControl entry is used by the server to determine how many separate disk accesses are performed to retrieve data.

This entry is not installed in the registry during the setup process.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000000 (0)

Remarks

When accessing records from the drive, the server analyzes the density of needed records in each location on the disk. The density
is calculated by determining how many unneeded records lie between needed records.

If two needed records are separated by n unneeded records (where n is the value stored in the IOSparcityControl entry), the
server separates the request into two separate disk accesses. For example, two needed records are separated by 15 unneeded
records. If the IOSparcityControl entry is set to 10, the server makes two separate requests to the disk. Conversely, if the
IOSparcityControl entry is set to 20, it makes only one request to the disk.

This capability is disabled if the IOSparsityControl entry is set to 0, and the server attempts to pull in as much data as possible,
regardless of the sparseness of the data.

The IOSparsityControl entry is read from the registry only when the server starts.

Caution Modification of this entry could lead to system instability and unexpected results.

LazyInterval

The Analysis server uses the LazyInterval entry to determine the frequency, in seconds, at which the lazy-indexer threads are run.

This entry is not installed in the registry during the setup process.

Minimum Value

0x000000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

0x00000001e (30)

Remarks

The LazyInterval entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

LFHHeap

The LFHHeap entry controls if the Analysis Services server can make use of the NT Low Fragmentation Heap.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

0x000000000 (0)

Maximum Value

0x000000001 (1)

Default Value

If this entry is missing from the registry, the default value is 0x000000000 (0).

Remarks

If this entry is set to 1, the Analysis Services server will use the NT Low Fragmentation (LFH) Heap. Using the LFH Heap reduces
fragmentation and lock contention, and enables memory tracking through heapstat.exe

Note To enable this for the OLEDB Provider, this entry must occur in HKCR\CLSID\{a07ccd0c-8148-11d0-87bb-
00c04fc33942}\InprocServer32..

Note The LFH Heap is only available on or after Windows 2000 Service Pack 4.

LinkSyncInterval

The Analysis server uses the LinkSyncInterval entry to determine the frequency, in seconds, at which the synchronization of
linked cubes occurs.

This entry is not installed in the registry during the setup process.

Minimum Value

0x00000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

0x00000010 (10)

Remarks

If LinkSyncInterval is set to 0, the server synchronizes without pause.

This entry is the server-side equivalent to the Auto Synch Period connection string property in the PivotTable Service client.

The LinkSyncInterval entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

Locale

The Locale entry is the locale identifier that is used for string comparison.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000000 (0)

Remarks

The value is a locale identifier created by the MAKELCID macro. If 0 is specified, then the server uses LOCALE_SYSTEM_DEFAULT.

The Locale entry is read from the registry only when the server starts.

LoggerInterval

The Analysis server uses the LoggerInterval entry to determine the frequency, in seconds, at which logs are submitted to the
logging database specified within the QueryLogConnectionString entry.

This entry is not installed in the registry during the setup process.

Minimum Value

0x000000000 (0)

Maximum Value

0x418937 (4294967)

Default Value

0x00000001e (30)

Remarks

The LoggerInterval entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

LowMemoryLimit

The LowMemoryLimit entry is the minimum amount of memory, in bytes, that the server keeps for processing, regardless of the
current need.

Minimum Value

0x00000000 (0)

Maximum Value

8 MB less than the total virtual memory available.

If this entry is missing from the registry, the default value is 0x00400000 (4194304), which is 4 MB.

Default Value

One quarter of the pagefile size, in bytes.

Remarks

See HighMemoryLimit for additional remarks.

The LowMemoryLimit entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry. You can
use Analysis Manager to modify this entry.

MaxOLEDBTimeout

The MaxOLEDBTimeout entry is the time-out, in milliseconds, for any OLE DB queries sent from Analysis Services to the
underlying database.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000000 (0)

Remarks

The server retains the timeout values on a per connection basis. You must refresh the data source from within Analysis Manager
for a changed value to be recognized. If this entry is set to 0, no time-outs occur.

The MaxOLEDBTimeout entry is read from the registry only when the server starts. You can use Analysis Manager to modify this
entry.

Note This value is passed directly to the underlying database. Several databases have a limit of 64 K milliseconds,
and use only the first two bytes of this value. For example, 0x12345678 is treated as 0x00005678.

MDXCompatibilityValue

The MDXCompatibilityValue entry determines how the server treats empty positions in the hierarchy in MDX.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000000 (0)

Remarks

This entry can be overridden by the registry entry value of the client and by the MDX Compatibility connection string used to
connect to the server. The decision to default to the compatibility level of SQL Server version 7.0 was made for backwards
compatibility reasons. Many applications cannot correctly interpret responses that do not expose placeholders.

MDXCompatibilityValue is read from the registry only when the server starts.

The following table lists the available constant values and describes the server behavior for each value.

Constant name Value Description
DBPROP_MSMD_MDXCOMPATIBILITY_DEFAULT 0x00000000 (0) Default, same as DBPROP_MSMD_MDXCOMPATIBILITY_70.
DBPROP_MSMD_MDXCOMPATIBILITY_70 0x00000001 (1) 7.0 compatibility. (Placeholder members are exposed.)
DBPROP_MSMD_MDXCOMPATIBILITY_7X 0x00000002 (2) 8.0 compatibility. (Placeholder members are not exposed.)

For more information about this entry, see "Using the MDX Compatibility Property," "Ragged Dimension Support," and "Ragged
Hierarchies" in SQL Server Books Online.

MDXUniqueNames

The MDXUniqueNames entry determines which algorithm is used to generate unique names.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000000 (0)

Remarks

This entry can be overridden by the registry entry value of the client, and by the MDX Unique Name Style connection string
used to connect to the server.

The MDXUniqueNames entry is read from the registry only when the server starts.

The following table lists the available constant values and describes the server behavior for each value.

Constant name Value Description

DBPROP_MSMD_MDXUNIQUENAMES_DEFAULT 0x00000000
(0)

Default. For compatibility with earlier versions, this is the
same as Value 2. The meaning of this default value is
subject to change in future versions.

DBPROP_MSMD_MDXUNIQUENAMES_KEYPATH 0x00000001
(1) Key path algorithm: [dim].&[k1].&[k2]

DBPROP_MSMD_MDXUNIQUENAMES_NAMEPATH 0x00000002
(2)

Compatible with SQL Server 7.0, name path algorithm:
[dim].[n1].[n2]

DBPROP_MSMD_MDXUNIQUENAMES_7X 0x00000003
(3)

Compatible with SQL Server 2000 Analysis Services. The
algorithm uses guaranteed unique names that are stable
over time.

For more information about this entry, see "MDX Unique Name Style Property" in SQL Server Books Online.

MiningPersistenceFormat

The MiningPersistenceFormat entry determines the persistence format for the mining model when performing data mining
operations.

This entry is not installed in the registry during the setup process.

Minimum Value

See "Remarks."

Maximum Value

See "Remarks."

Default Value

0x00000002 (2)

Remarks

The MiningPersistenceFormat entry can be overridden by connection parameters.

The MiningPersistenceFormat entry is read from the registry only when the server starts.

The following table lists the available constant values and describes server behavior for each value.

Value Description
0x00000001 (1) Stores data mining models in XML format.
0x00000002 (2) Stores data mining models in binary format.

OLEDBPoolExpiration

The Analysis server uses the OLEDBPoolExpiration entry to determine how long, in seconds, to wait before disconnecting
unused OLE DB connections.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000258 (600)

If this entry is missing from the registry, the default value is 0x000000E10 (3600).

Remarks

If the value of this entry is 0, unused OLE DB connections is never be disconnected due to a time-out.

The OLEDBPoolExpiration entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

OpenFilesLimit

The OpenFilesLimit entry is reserved for future use.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000400 (1024)

Remarks

PagePoolInitSize

The PagePoolInitSize entry is reserved for future use.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000050 (80)

Remarks

PagePoolSize

The PagePoolSize entry is reserved for future use.

Minimum Value

0x00000001 (1)

Maximum Value

0x00002710 (10000)

Default Value

0x00000050 (80)

Remarks

PoolProcessThreads

The PoolProcessThreads entry is the maximum number of process threads maintained by the process thread pool.

Minimum Value

0x00000028 (40)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

Forty times the number of processors.

Remarks

The default value is determined by multiplying 40 by the number of processors. For example, on a two-processor server the
maximum value would be 80.

This entry should typically be set to 125 percent of the value that is stored within PoolWorkerThreads because the worker
threads can make use of more than one process thread to accomplish the work.

If the Analysis server consistently handles numerous and complex requests, you can reduce queuing and improve perceived

performance by raising the value of the PoolProcessThreads entry to 150 percent or more of the PoolWorkerThreads entry.
Also consider increasing this entry if the Analysis server consistently returns errors during peak usage periods; this provides more
available process threads and reduces the rate of errors related to non-available worker threads.

The PoolProcessThreads entry is read from the registry only when the server starts.

PoolWorkerThreads

The PoolWorkerThreads entry is the maximum number of worker threads maintained by the worker thread pool.

Minimum Value

Greater than or equal to InitWorkerThreads.

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

Thirty times the number of processors.

Remarks

The default value is determined by multiplying 30 by the number of processors. For example, on a two-processor server the
maximum value would be 60.

The server allows the worker thread pool to grow beyond this entry if there are no available worker threads when a new client
connects.

If the Analysis server consistently returns errors during peak usage periods, increasing this entry value provides more available
worker threads and reduces the rate of errors related to nonavailable worker threads.

The PoolWorkerThreads entry is read from the registry only when the server starts.

Note This value is extremely important in situations when a large number of clients are accessing the server.
Increasing this value resolves several possible timeout issues.

ProcessPoolExpiration

The ProcessPoolExpiration entry is the number of seconds for which the server retains unused process objects.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000e10 (3600)

Remarks

The ProcessPoolExpiration entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

ProcessReadAheadSize

The ProcessReadAheadSize entry represents the approximate size, in bytes, that can be used by the server read-ahead buffer for
querying ROLAP cube data and processing MOLAP cube data.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00400000 (4194304)

Remarks

When working with this read-ahead buffer, the server has four levels of memory allocation. The smallest three levels are of a
predefined size. The fourth level, which is the largest, is dynamically sized. The buffer sizes are defined by the number of records
prefetched into the read-ahead buffer.

The ProcessReadAheadSize entry is used to determine which of the four buffers should be used. If the server must use the
largest buffer, the number of records it can contain is dynamically calculated.

If the ProcessReadAheadSize entry is set to zero, the server chooses the third-largest level (the largest level that is not
dynamically set).

The ProcessReadAheadSize entry is read from the registry only when the server starts. You can use Analysis Manager to modify
this entry.

ProcessReadSegmentSize

The ProcessReadSegmentSize entry defines the size, in bytes, of the process buffer.

Minimum Value

0x00000001 (1)

Maximum Value

0x80000000 (2147483648)

Default Value

0x02000000 (33554432)

Remarks

The ProcessReadSegmentSize entry directly affects the number of records in a segment. If your fact table contains many
duplicate records, increasing this entry value can result in the compression of more records in memory, rather than the storing of
the duplicate records to the disk. The file size written to disk is then smaller. If this entry is larger than 80 percent of the physical
memory available, however, excessive paging occurs, resulting in decreased system performance.

Process buffer size is central not just to the raw available capacity during processing, but also to the resultant overall performance
of the partition once processed. During the indexing phase, the process buffer is used to sort fact table data and construct indexes
based on the results of the sort. If the process buffer is sorting the fact table data inefficiently, partition access may be adversely
affected.

When modifying this entry, keep in mind the limitations on memory imposed by the HighMemoryLimit entry.

The ProcessReadSegmentSize entry is read from the registry only when the server starts. You can use Analysis Manager to
modify this entry.

Warning This entry must be increased in 64 KB increments.

ProcessRecordsReportGranularity

The ProcessRecordReportGranularity entry serves a twofold purpose. The primary purpose is to define a loose guideline for
the number of records that are read into the process buffer at one time. The secondary purpose is to define a loose guideline for
the granularity of processing updates to user interfaces.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x000003E8(1000)

Remarks

The server uses the ProcessRecordsReportGranularity entry if it is greater than 0 and less than the defaults based on the levels
described in ProcessReadAheadSize.

The ProcessRecordsReportGranularity entry is read from the registry only when the server starts.

ProcessThreads

The ProcessThreads entry contains the number of process threads that can simultaneously use the processors available to
perform tasks for the server.

Minimum Value

0x00000001 (1)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

The number of processors multiplied by 2.

Remarks

The default value is determined by multiplying the number of processors by 2. For example, on a two-processor server the
maximum value is 4.

The ProcessThreads entry is read from the registry only when the server starts.

ProtocolReceiveTimeout

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x0000000a (10)

Remarks

The ProtocolReceiveTimeout entry is not read by the server from the registry.

ProxyServer

The ProxyServer entry is the HTTP proxy server that is used by the server to connect to a linked cube through HTTP.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

If this entry is missing from the registry, the default value is Null.

Remarks

The default value is retrieved from the HKEY_CURRENT_USER registry hive for the user who is logged on while performing the
setup of Analysis Services. If the server has multiple connections defined under Microsoft Internet Explorer 5.0 or later, the default
value set is the "static" proxy server setting.

The format is server:port#.

The ProxyServer entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

QueryLogConnectionString

The QueryLogConnectionString entry is the connection string used by the log thread to connect to the query log database.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

If this entry is missing from the registry, the default value is Null.

Remarks

The default connection string references the Msmdqlog.mdb database in the Bin folder installed with Analysis Services.

The QueryLogConnectionString entry is read from the registry only when the server starts.

QueryLogSampling

If query logging is enabled, the log thread records every nth query request (where n is the value of the QueryLogSampling
entry) for later analysis.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x0000000a (10)

If this entry is missing from the registry, the default value is 0x000000000 (0).

Remarks

A value of 0 prevents the server from logging query requests.

The QueryLogSampling entry is read from the registry only when the server starts. You can use Analysis Manager to modify this
entry.

ReadAheadBufferSize

The ReadAheadBufferSize entry is reserved for future use.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00100000 (1048576)

Remarks

RemoteQueryLogConnectionString

The RemoteQueryLogConnectionString entry is the connection string used by Analysis Manager to connect to the query log
database.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

Remarks

The default value contains a Data Source property set to the UNC path of the Msmdqlog.mdb file in the Bin folder installed with
Analysis Services.

The share, named MsOLAPRepository$, is created during the installation of Analysis Server. This share is used by Analysis
Manager to perform usage-based optimization on remote and local servers.

The RemoteQueryLogConnectionString entry is not read by the server from the registry.

ROLAPDimProcessingEffort

The server generates an error if a client-requested dimension tree requires processing more than n records (where n is the value
stored in the ROLAPDimProcessingEffort entry).

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x000493e0 (300000)

If this entry is missing from the registry, the default value is 0x000186A0 (100000).

Remarks

This entry is used when the server is working with ROLAP or MOLAP data to create a dimension tree to return to the client. Before
working on the data, the server first verifies that the number of records that must be processed from the underlying database is
less than the value contained in the ROLAPDimProcessingEffort entry. If the number of records that must be processed from
the underlying database is greater than the ROLAPDimProcessingEffort entry, an error is returned to the client.

If this entry is not in the registry, the server defaults to 0x000186A0 (100000). If the ROLAPDimProcessingEffort entry is set to
0, the server does not perform the check.

The ROLAPDimProcessingEffort entry is read from the registry on a regular basis, as defined by the BackgroundInterval
entry.

RootDir

The RootDir entry is the directory in which cubes and databases are stored.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

If this entry is missing from the registry, the server will not start.

Remarks

The default is the Data folder installed with Analysis Services; you can change this during the setup process of Analysis Services.

The RootDir entry is read from the registry only when the server starts. You can use Analysis Manager to modify this entry.

SocketsUseSelect

The SocketsUseSelect entry defines whether Analysis Services determines if a WinSock socket is ready for a send or receive
operation..

This entry is not installed in the registry during the setup process.

Minimum Value

0 (0x00000000)

Maximum Value

1 (0x00000001)

Default Value

1 (0x00000001)

Remarks

If the entry is set to 1, Analysis Services checks the state of the Winsock socket to determine if it is ready for a send or receive
operation. If the entry is set to 0, Analysis Services does not check the state of the socket.

The SocketsUseSelect entry is read from the registry only when the server starts.

Support for this entry was added in SP3.

SocketsBufferSize

The SocketsBufferSize entry determines the size, in bytes, that are allocated in the kernel for the receive buffer.

This entry is not installed in the registry during the setup process.

Minimum Value

0 (0x00000000)

Maximum Value

65535 (0x0000FFFF)

Default Value

1460 (0x000005B4)

Remarks

It is recommended that the SocketsBufferSize entry be set to at least the size of the TCP/IP window.

The SocketsBufferSize entry is read from the registry only when the server starts.

Support for this entry was added in SP3.

SocketsUseBufferForSend

The SocketsUseBufferForSend entry determines whether Analysis Services uses the buffer size specified in SocketsBufferSize.

This entry is not installed in the registry during the setup process.

Minimum Value

0 (0x00000000)

Maximum Value

1 (0x00000001)

Default Value

1 (0x00000001)

Remarks

Set this entry to 1 to use the buffer size specified in SocketsBufferSize. The SocketsUseBufferForSend entry is read from the
registry only when the server starts.

Support for this entry was added in SP3.

SocketsEnableNagle

The SocketsEnableNagle entry determines whether the Nagle algorithm is used to reduce the number of transmitted packets.

This entry is not installed in the registry during the setup process.

Minimum Value

0 (0x00000000)

Maximum Value

1 (0x00000001)

Default Value

0 (0x00000000)

Remarks

If the SocketsEnableNagle entry is set to 1, Analysis Services uses the Nagle algorithm to automatically concatenate a number
of small buffer messages, reducing the number of packets that are sent across the network.

The SocketsEnableNagle entry is read from the registry only when the server starts.

Support for this entry was added in SP3.

SQLCompatibilityValue

The SQLCompatibilityValue entry is reserved for future use.

Minimum Value

Not applicable.

Maximum Value

0x00000000 (0)

Default Value

0x00000000 (0)

Remarks

Not applicable.

SSFastLoadOptions

The SSFastLoadOptions entry optimizes writebacks, such as those made with UPDATE CUBE statements, through the use of SQL
Server's bulk insert feature and OLEDB's SSPROP_FASTLOADOPTIONS OLEDB property. For more information on
SSPROP_FASTLOADOPTIONS, see IRowsetFastLoad Rowsets.

This entry is not installed in the registry during the setup process.

This entry was added for SP4.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

If this entry is missing from the registry, the default value is "<disabled>"

Remarks

If entry exists, and the value is set to anything but "<disabled>", Analysis Server will interpreted the value in the same manner as
the hint parameter is interpreted in the bcp command. Specifically, the string will be passed to the SSPROP_FASTLOADOPTIONS
OLEDB property.

When this entry is set to "TABLOCK", and using SQL Server 2000 as the storage for writeback partitions with the "Microsoft OLEDB
Provider for SQL Server" driver, this entry can cause a large improvement on the commit phase.

When this entry is set to "TABLOCK, FIRE_TRIGGERS", and using SQL Server 2000 as the storage for writeback partitions with the
"Microsoft OLEDB Provider for SQL Server" driver, this entry can cause an improvement on the commit phase, while still firing
triggers.

Finally, for paramount writeback speed, consider:

turning on the "select into/bulkcopy" dboption,
turning off the "torn page detection" dboption,
configuring the SQL Server that hosts the writeback partition to have a simple recovery model,
not replicating the writeback tables, and
not creating indexes on the writeback table (this will improve write performance at the possible expense of read
performance).

Caution Only make the changes recommended in this entry with the full understanding of the implication that these
changes will have on your database.

Note To see a performance improvement, the "Microsoft OLEDB Provider for SQL Server" driver must be used while
SQL Server 2000 stores the writeback partition.

Note Only use FIRE_TRIGGERS when keeping in mind the considerations relavent to using FIRE_TRIGGERS with
BCP. For more information, see Using bcp and BULK INSERT.

TempDirectory

The TempDirectory entry is the directory in which temporary files are placed. The default is the same as the value contained in
the RootDir entry.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

Caution Removing this entry from the registry can lead to system instability and unexpected results.

Remarks

The TempDirectory entry is read from the registry only when the server starts. You can use Analysis Manager to modify this
entry.

TempDirectory2

The TempDirectory2 entry is used by the server when it no longer has the memory to accumulate aggregations, and needs to
merge the buffer with the temporary file already on the disk.

This entry is not installed in the registry during the setup process.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

See "Remarks."

If this entry is missing from the registry, the default value is the value contained within the TempDirectory entry.

Remarks

The server alternates between the two temporary directories.

The default is the same as that of the RootDir entry.

The TempDirectory2 entry is read from the registry only when the server starts.

Note The TempDirectory2 entry is especially useful when set to a drive that is controlled by a separate drive
controller than the drive in the TempDirectory entry. This creates a speed improvement by using one drive for read
access and the other for write access during aggregation processing.

TraceLogString

The TraceLogString entry is used by the server to determine which of the possible events are logged to the binary file.

This entry is not installed in the registry during the setup process.

Minimum Value

Not applicable.

Maximum Value

Not applicable.

Default Value

Null.

Remarks

The format for the entry is LogFileName;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 where the comma-separated numbers
represent various events that can be logged. Each event has a corresponding structure in the binary file, and is
discussed individually in the Appendix.
For information on the structure of the binary log file, see the Appendix.

The TraceLogString entry is read from the registry only when the server starts.

UnbufferedThreshold

The UnbufferedThreshold entry is the threshold file size, in megabytes; after a file has reached this size, the server opens that
file without utilizing the operating system file-buffering functionality.

This entry is not installed in the registry during the setup process.

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x00000000 (0)

Remarks

Windows NT uses approximately 1 MB of kernel page pool for each 1 GB of file size, with a limit of approximately 190 MB in
Windows NT. After this limit, disk operations may begin to fail.

The server always attempts to use the NT buffer if the UnbufferedThreshold entry is set to 0.

The UnbufferedThreshold entry is read from the registry only when the server starts.

VersionNum

The VersionNum entry is used by the setup process to compare the currently installed server version with the version being
installed.

Minimum Value

0x00000000(0)

Maximum Value

0x00000003(3)

Default Value

0x00000003(3)

Remarks

If this entry value is less than 3, the setup process instructs the user to uninstall their Microsoft SQL Server OLAP Services
software before installing Analysis Services.

VLDMThreshold

The VLDMThreshold entry is the threshold, in bytes, beyond which a dimension tree is managed by the Very Large Dimension
Manager (VLDM).

Minimum Value

0x00000000 (0)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

0x04000000 (67108864)

Remarks

Member properties are not to be used to calculate the size of the dimension tree.

The VLDMThreshold entry is read from the registry on a regular basis, as defined by the BackgroundInterval entry.

WorkerThreads

The WorkerThreads entry contains the number of worker threads that can work concurrently on the server.

Minimum Value

0x00000001 (1)

Maximum Value

0xFFFFFFFF (4294967295)

Default Value

The number of processors times 2.

Remarks

The default value is determined by multiplying 2 by the number of processors. For example, on a two-processor server the
maximum value is 4.

The WorkerThreads entry is read from the registry only when the server starts. You can use Analysis Manager to modify this
entry.

Conclusion
You can use the registry to fine-tune SQL Server 2000 Analysis Services. Analysis Manager does not expose all of these
documented entries. Additionally, you need to edit the registry for the entries that were not installed to the registry during the
setup process. Analysis Manager also imposes limits on several of the entry values; this can be surpassed by modifying by the
registry directly.

Although many of the values can be modified to improve server performance, modification of the values can also result in
severely degraded performance. Keep in mind that these values should always be tested on a non-production server.

Appendix
The TraceLogString contains the location of the binary log, which contains various structures that correspond to events
initiated within the server. Each structure records the status of the server when the event is initiated.

Note When the server starts, it will open the log file without clearing it. As events are logged, they will be written
over the existing information in the log file.

The following table lists the available trace logging structure names, the values used in the entry to enable logging for the event,
and a description of the corresponding event to be logged.

Structure name Structure
value Event description

LOG_TRACE_TEXT 1 This event is initiated by the server for logging information from the server to a single
text field.

LOG_TRACE_ERROR 2 This event is initiated when an error is raised on the server. Some errors are
informational warnings.

LOG_TRACE_CON_OPEN 3 This event is initiated after the server has performed the handshaking process with the
client.

LOG_TRACE_CON_CLOSE 4 This event is initiated immediately before the server closes the connection with the
client.

LOG_TRACE_SEIZE_DC 5 This event is initiated immediately before the server seizes a datacache.
LOG_TRACE_LOAD_DC 6 This event is initiated immediately before the server loads a datacache.
LOG_TRACE_FILTER_DC 7 This event is initiated immediately before the server filters a datacache.
LOG_TRACE_RECEIVE_DC 8 This event is initiated immediately before the server receives a datacache.
LOG_TRACE_SEND_DC 9 This event is initiated immediately before the server sends datacache.
LOG_TRACE_BUILD_PRT 10 This event is initiated immediately before the server builds a partition.
LOG_TRACE_BUILD_AGR 11 This event is initiated immediately before the server builds an aggregation.

Structure name (continued) Structure value
(continued)

Event description (continued)

LOG_TRACE_BUILD_DIM 12 This event is initiated immediately before the server builds a
dimension.

LOG_TRACE_BUILD_PRP 13 This event is initiated immediately before the server builds
properties.

LOG_TRACE_SQL_CONNECTION 14 This event is initiated when the server connects to the database.

LOG_TRACE_SQL_QUERY 15 This event is initiated when the server queries the database.

LOG_TRACE_LAZY 16 This event is initiated when the server is performing lazy
aggregations.

LOG_TRACE_COMPLETE 17 This event is initiated after the server has completed an event that
has been logged.

The following table lists the elements located in the 64-byte header of the binary log file, the size of each element, and a
description of the element.

Element name Size Description

CURRENT_POSITION 32-bit
integer

The location in the log file that the server will write to next. This value is important, because
the server overwrites elements at the beginning of the file on every restart, without clearing
the log file.

CURRENT_SIZE 32-bit
integer Reserved for future use.

HEADER_SIZE 32-bit
integer

The size of the header. As of the writing of this document, this is set to 64. This value can
change for later versions of the log file.

CONSISTENCY_CHECK
32-bit
unsigned
integer

Constant value used to confirm that this is a log file. This is a constant value that does not
change, and must be set to 0x31415926. If CONSISTENCY_CHECK is not 0x31415926, then
corruption of the log file has occurred.

VERSION_MAJOR
32-bit
unsigned
integer

The major version of the log format. As of the writing of this document, this is set to 1. This
value can change for later versions of the log file.

VERSION_MINOR
32-bit
unsigned
integer

The minor version of the log format. As of the writing of this document, this is set to 1. This
value can change for later versions of the log file.

WINDOW_TYPE 32-bit
integer Reserved for future use.

CIRCLE_SIZE 32-bit
integer Reserved for future use.

Each structure has different elements within the binary log file. The following tables describe the contents of each structure.

LOG_TRACE_TEXT Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description
STRUCTURE_ID 32-bit

integer The structure identifier. This is set to 1.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. The FileTimeToSystemTime Microsoft Win32® function
can be used to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

NOTE Unicode
byte array The text information which was logged.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of TIME.

LOG_TRACE_ERROR Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 2.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32 function
to retrieve the date and time information from this field. The time is precise to approximately 10
milliseconds.

STATUS 32-bit
integer

The status code. This ranges from -33 through 11. If the number is greater than 1, it indicates a
warning status. If the number is negative, it indicates an error status. If the number is 1, no error or
warning occurred.

ERROR 32-bit
integer The error code. This allows for more detailed reporting.

SYSTEM 32-bit
integer

The Win32 system error number. The error message can be retrieved by using the FormatMessage
API if STATUS is -3.

NOTE Unicode
byte array The text information which was logged.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_CON_OPEN Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 3.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer

The identifier for the connection, used in other log structures to link activities to the same
connection.

USER_NAME Unicode
byte array The user which is requesting a connection.

HOST_NAME Unicode
byte array The machine that the user is requesting the connection from.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_CON_CLOSE Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 4.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that was just closed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_SEIZE_DC Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 5.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the seizure of the datacache.

DATABASE Unicode
byte array The database on which the operation will be performed.

MODEL Unicode
byte array The model on which the operation will be performed.

NAME_SLICE Unicode
byte array The name and slice on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_LOAD_DC Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 6.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the load of the datacache.

PARTITION Unicode
byte array The partition on which the operation will be performed.

AGGREGATION Unicode
byte array The aggregation on which the operation will be performed.

NAME_SLICE Unicode
byte array The name and slice on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_FILTER_DC Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 7.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the filter of the datacache.

NAME_SLICE Unicode
byte array The name and slice on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_RECEIVE_DC Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 8.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the receipt of the datacache.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_SEND_DC Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 9.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the sending of the datacache.

COUNT 32-bit
integer The count of the records in the datacache.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_BUILD_PRT Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 10.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the build of the partition.

STATE 32-bit
integer

The bitmask that contains the state of the server before the server started this operation. The
possible values are described under STATE_MASKS below.

DATABASE Unicode
byte array The database on which the operation will be performed.

MODEL Unicode
byte array The model on which the operation will be performed.

PARTITION Unicode
byte array The partition on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_BUILD_AGR Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 11.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the build of the aggregation.

STATE 32-bit
integer

The bitmask that contains the state of the server before the server started this operation. The
possible values are described under STATE_MASKS below.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_BUILD_DIM Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 12.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the build of the dimension.

STATE 32-bit
integer

The bitmask that contains the state of the server before the server started this operation. The
possible values are described under STATE_MASKS below.

DATABASE Unicode
byte array The database on which the operation will be performed.

MODEL Unicode
byte array The model on which the operation will be performed.

DIMENSION Unicode
byte array The dimension on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_BUILD_PRP Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 13.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is requesting the build of the property.

STATE 32-bit
integer

The bitmask that contains the state of the server before the server started this operation. The
possible values are described under STATE_MASKS below.

DATABASE Unicode
byte array The database on which the operation will be performed.

MODEL Unicode
byte array The model on which the operation will be performed.

DIMENSION Unicode
byte array The dimension on which the operation will be performed.

LEVEL Unicode
byte array The level on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_SQL_CONNECTION Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 14.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer

The identifier of the client connection that is responsible for the new connection to the underlying
database.

CONNECTION Unicode
byte array The connection string to the data source.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_SQL_QUERY Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 15.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier of the client connection that is responsible for the query to the underlying database.

QUERY Unicode
byte array The query sent to the underlying database.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_LAZY Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 16.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime Win32
function to retrieve the date and time information from this field. The time is precise to
approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that is used to perform the lazy aggregation.

DATABASE Unicode
byte array The database on which the operation will be performed.

MODEL Unicode
byte array The model on which the operation will be performed.

PARTITION Unicode
byte array The partition on which the operation will be performed.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the high word of
TIME.

LOG_TRACE_COMPLETE Structure

The following table lists the elements located in the structure, the size of each element, and a description of the element.

Element name Size Description

STRUCTURE_ID 32-bit
integer The structure identifier. This is set to 17.

SIZE 32-bit
integer The size of this log structure.

TIME 64-bit
timestamp

The date and time the event was initiated. You can use the FileTimeToSystemTime
Win32 function to retrieve the date and time information from this field. The time is
precise to approximately 10 milliseconds.

CONNECTION_ID 32-bit
integer The identifier for the connection that had started the operation that is now finished.

COMPLETED_STRUCTURE_ID 32-bit
integer The event identifier for the event that is now finished.

STATUS 32-bit
integer

The status code. This ranges from -33 through 11. If the number is greater than 1, it
indicates a warning status. If the number is negative, it indicates an error status. If the
number is 1, no error or warning occurred.

CHECKSUM 32-bit
integer

The checksum to verify that the record was written successfully.

This is calculated by adding STRUCTURE_ID, SIZE, the low word of TIME, and the
high word of TIME.

STATE_MASKS

The following table lists the known mask values for the STATE element, and describes the state of the server that the mask
represents.

Mask name Mask value Meaning
OBJECT_PART_BUILD_DATA 0x10000000 The server is in the process of rebuilding the data.
OBJECT_PART_BUILD_MAP 0x20000000 The server is in the process of rebuilding the maps.
OBJECT_PART_BUILD_INDEX 0x40000000 The server is in the process of rebuilding the indexes.
OBJECT_PART_BUILD_AGGREGATE 0x80000000 The server is in the process of rebuilding the aggregations.
OBJECT_PART_BUILD_ALL 0xF0000000 The server is in the process of rebuilding everything.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Active Directory, ActiveX, MSDN, Win32, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

SmallLibrary Sample: Incorporating Notification Services

David Willson
Microsoft Corporation

November 2002

Applies To:
 Microsoft® SQL Server 2000
 Microsoft® SQL Server Notification Services
 Microsoft® Visual Studio® .NET

Summary: Demonstrates how adding Microsoft SQL Server Notification Services as a feature can enhance an existing
application. Gives an overview of an existing, simplified library management Web application, and the process of designing the
notification service features for the library. (23 printed pages)

Download Smalllibrarysetup.msi.

Download the SmallLibrarySetup.msi sample file. (782 KB)

Contents

Introduction
Designing a Notification Service
Entity Relationships and Database Schema
Modifications to the Web Application
Preserving Application Architecture
Developing Notification Services Metadata
The Notify Function
Defining Notification Class Schema Fields
The Notification Content Formatter
Setting Notification Protocols for E-Mail
Defining Subscription Class Schema Fields
Defining a Match Rule
Compiling the ADF and Configuration Files
The Notification Services API
Creating a Subscriber
Updating a Device Address
Testing Notification Services
Other Notification Services Resources
Conclusion

Introduction
Microsoft® SQL Server Notification Services is a flexible notification sub-system that can be added to an existing application
without much effort. The MSDN SmallLibrary sample is an example of how an existing application can be enhanced by adding
Notification Services as a feature.

This article will give you an overview of the existing system, a simplified library management system, and the process of
designing the notification service features for the library. Once the design process is complete, the features of the notification
service are defined in the Notification Services metadata files. Finally, the metadata files are compiled and the system is unit-
tested using a cyclical manual process and the event manager.

The Notification Services developer must be familiar with command-line syntax and XML. The developer must also understand
Transact-SQL join logic, Microsoft SQL Server objects, and the cause of specific database error conditions and Microsoft SQL
Server error messages.

Designing a Notification Service
Notification Services is designed to have little impact on the code base of existing systems. It includes a managed code API that is
easy to use and is defined and managed by metadata expressed in XML. All that is needed to design a notification service is an
understanding of the components of a notification and where these components need to be managed by the existing software.

http://download.microsoft.com/download/SQLSVR2000/sample/1.0/WXP/EN-US/SmallLibrarySetup.msi

This section begins with a high-level overview of the existing system, identifying where the feature will be installed. The next part
describes the more complicated work of defining the notification service metadata files and management logic.

At a very high level, a notification is the result of a subscription and an event that takes place. In the SmallLibrary system, there are
two types of notifications that we propose to develop. The first is a notice that a book is overdue. The second is a hold notice. A
hold notice is sent to a patron when a book the patron has reserved becomes available.

These two subscriptions differ slightly. Hold notices are event-based—they are generated when books are checked in, which are
events. Overdue notices are generated when books become overdue. There is no event that takes place when a patron's loan
expires, so the overdue notice subscription is schedule-based.

Using Notification Services terminology, library patrons are subscribers. Subscribers are the entities that receive notifications on
some device.

SmallLibrary Sample Overview

Incorporating hold notices and overdue notices into the SmallLibrary sample using Notification Services requires few changes.
This section is an overview of the SmallLibrary sample before and after applying Notification Services.

Entity Relationships and Database Schema
The SmallLibrary system consisted of six entities. There is a patron (the person checking out books), the volume (the book
checked out), and the title (of the book). There may be more than one book with the same title, thus the distinction. The other
three entities are patron contracts with the library. The loan contract represents a volume that the patron has checked out. The
hold contract represents a book that has just returned to the library that is reserved for the exclusive use of one patron. The
reservation contract represents a patron's request to create a hold contract when a volume of a certain title becomes available.
These entities were mapped to tables in a Microsoft SQL Server database as shown in Figure 1 below. Note that the arrows
represent the direction of entity relationship. For example, one patron may have many loans.

Figure 1. SmallLibrary sample application database schema

No changes to the SmallLibrary database were required to incorporate Notification Services into the system.

Note Notification Services uses the data type NVARCHAR(255) for SubscriberId. To accommodate Notification
Services, we could have converted the Id column of the Patrons table to the NVARCHAR(255) data type. Instead, it is
more efficient to use string conversion, such as CONVERT(NVARCHAR(255), [Id]) for Transact-SQL code,
CStr(iPatronId) for Microsoft® Visual Basic® .NET code, or Convert.ToString(patronId) for C# code. Generally, numeric
identifiers are more efficient than string identifiers, while string identifiers are more accommodating.

Modifications to the Web Application
The existing Web application for the SmallLibrary system is modified slightly to include four new functions, as shown in the state
diagram below. Four modules collectively include only a few lines of code to interact with the Notification Services feature.

Figure 2. State diagram of the SmallLibrary Web application, including notification services actions that have been
added to the existing system.

Preserving Application Architecture
The layered development architecture model is the best way to develop a scalable Web application. Logically partitioning the
application into portable modules will allow the application to be arranged in the most efficient physical configuration for the
current demand. In the current situation, the demand is low for the SmallLibrary system. The entire system, even the data sources,
is located on the same server. Were demand to suddenly pick up at the library, perhaps the Business Logic and Data Access layer
modules could be distributed to a farm of servers to carry the increased load.

Preserving this logical partitioning as features are added preserves scalability and maintenance of the greater application. The
new logic that was added to manage Notification Services subscribers and subscriptions was incorporated into the SmallLibrary
Microsoft® Visual Studio® solution file as a separate Business Logic Layer project, "NotificationLogic", as shown in the right-side
column of Figure 3.

Figure 3. Architecture of the SmallLibrary sample

Incorporating Notification Services as a feature does not impact the existing SmallLibrary system in any other way.

Developing Notification Services Metadata
Once the notification service is designed, the information describing each component of the service is incorporated into metadata
files. The notification classes and the subscription classes, for example, are two such components. Think of the notification classes
as attributes that describe the content of a message. In the case of the overdue notice, the notification class includes attributes
such as the due date and the title of the book. Subscription classes are attributes that describe to whom a message is delivered,
preferred content, and scheduling. The metadata organizes all information about a notification service, including subscriptions,
delivery channels, scheduled events, performance monitoring, and maintenance.

The Metadata Files

Microsoft Notification Services is a feature-rich product that uses XML as its design interface. Two XML schemas have been
created to describe the metadata for all Notification Services projects. These are used to create the application definition file and
the configuration file that define a Notification Services implementation.

First of interest is the application definition file (ADF). It describes the attributes of a Notification Services application. These are
elements such as the subscriber, events, notification content, schedules, message formats, and distribution channels for a

notification. The ADF may also include performance-monitoring content and clean-up schedules for a Notification Services
application.

The configuration file describes the operating system service that is created to manage the set of Notification Services
applications that use a common security context. This service is known as a Notification Services instance.

In the MSDN SmallLibrary sample application, there is only one Notification Services instance. Within that Notification Services
instance, there is only one Notification Services application.

Finally, there is the NsControl.exe command-line program that is used to compile the metadata described in the configuration file
and in the application definition files. The NsControl.exe program has commands that are used to create, register, and enable the
notification service. It also includes commands that are used for testing and maintenance of the installed Notification Service
instance.

Where to Build the Metadata

XML is the language of both the ADF and the configuration file, so choose your favorite editor. Microsoft Visual Studio .NET offers
an excellent platform for developing XML with color-coded elements, attributes, values, and comments. The most convenient
feature is provided by Microsoft® IntelliSense®: sub-elements of a node will be suggested when the XML schema file is included
in the project. This feature set speeds development and reduces the potential for errors. Here are a few simple steps to guide you
through the process of setting this up:

1. Add a C# or C++ Windows Application project to your solution. (This process will not require C# or C++ programming, but
you may choose to include a custom script of your own design that will use the NsControl.exe command-line program to
create, register, and enable your Notification Services instance when you build the project. Just configure the start
application and command-line arguments in the project property pages.)

2. Remove the three automatically generated files named App.ico, AssemblyInfo.cs, and Form1.cs from the project.
3. Add from the directory where Microsoft Notification Services was installed the two XML schema files

ApplicationDefinitionFileSchema.xsd and ConfiguratonFileSchema.xsd.
4. Copy the code below to a notepad, save the file as Adf.xml, and then include that file in your project.

<?xml version="1.0" encoding="utf-8"?>
<!-- Use this comment block to describe your NS Application -->
<Application
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.microsoft.com/MicrosoftNotificationServices
 /ApplicationDefinitionFileSchema">
</Application>

5. Copy the code below to a notepad, save the file as Config.xml, and then include that file in your project.

<?xml version="1.0" encoding="utf-8"?>
<!-- Use this comment block to describe your NS Instance -->
<NotificationServicesInstance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.microsoft.com/MicrosoftNotificationServices
 /ConfigurationFileSchema">
</NotificationServicesInstance>

Defining an Event Class

The scenario where a message should be sent in response to an action describes a Notification Services event. Notification
Services event classes describe the attributes of the event. For example, if the ADF is being planned for sporting event
notifications, the file might be designed to include an event for the end of the game. Perhaps the attributes for the end of the
game would be the names of the teams and the final score.

When an event takes place, the attributes of the event are recorded in the Notification Services databases and provided to the
development interface in the form of a view that has the same name as the event class. This event view is often referenced by
match rules in other classes. This means that as you begin to develop your ADF, it makes sense to define the fields of the event
class schema before defining the subscription or the notification classes related to the event.

There is only one event class defined in the SmallLibrary sample. When a patron checks in a book, other patrons may be waiting

to check out the book. The patron that has been waiting the longest will have the exclusive right to check out the book for a short
while (the book is "on hold"). Shortly after a book has been placed on hold, a notice should be delivered to the patron that has
been waiting. The attributes of this event are used to describe the book that is on hold and the patron that is waiting for the book.

What attributes describe the hold event? Actually, all that is needed to describe a hold event is the unique numeric identifier from
the primary key column of the Hold table, which is in the SmallLibrary database. The SmallLibrary database is highly normalized.
This means that the Title table contains columns that describe just the title. The Hold table columns describe only the hold
contract. The Hold table describes nothing more about the contract, other than to include a numeric reference to related
information in another table. So in a query, join clauses can be introduced to derive other related content, such as the title of the
book that is in the hold contract.

Should the hold identifier be the only attribute of a hold event? Probably not, but the choice is up to the developer. In the code
sample below, three additional schema fields—SubscriberId, TitleId, and Title—are added to the HoldEvent event class schema. If
you look ahead to the definition of the HoldSubscription subscription class, the HoldEvent event class is referenced in a query. If
these three fields were not included, it would be necessary to join to three additional tables in the query.

<EventClass>
 <EventClassName>HoldEvent</EventClassName>
 <Schema>
 <Field>
 <FieldName>SubscriberId</FieldName>
 <FieldType>NVARCHAR(255)</FieldType>
 </Field>
 <Field>
 <FieldName>HoldId</FieldName>
 <FieldType>INT</FieldType>
 </Field>
 <Field>
 <FieldName>TitleId</FieldName>
 <FieldType>INT</FieldType>
 </Field>
 <Field>
 <FieldName>Title</FieldName>
 <FieldType>NVARCHAR(100)</FieldType>
 </Field>
 </Schema>
</EventClass>

Defining a Notification Class

For Notification Services, the entity that receives the notification is known as the subscriber. The notification class defines the
attributes of the message that is sent to the subscriber. Similar to the event class, which describes the columns of a view that is
created in the Notification Services data sources, the notification class describes a database function that is created.

The Notify Function
The fields defined in the notification class become parameters of a function with the name, dbo.
<notificationclassname>Notify. This means that if you choose the notification class name of EndOfGameNotice, the function
name will be dbo.EndOfGameNoticeNotify.

When the metadata class is compiled into the Notification Services instance, the Notify function that is created will include
SubscriberId, DeviceName, and SubscriberLocale as the first three parameters (and in that order). Any fields defined in the
notification class will be appended as parameters to the end of the function, in the order that they are defined in the class.

Defining Notification Class Schema Fields
The schema fields that are defined in the notification class represent the attributes of the message that will be sent to the
subscriber. Typically, these will be set attributes of an event in a Notify function.

In the SmallLibrary sample, there are two notification classes. One notification class is for an overdue notice. The OverdueNotice
class has three fields defined: LoanId, Title, and Due. Ultimately, only the Title and Due fields are used by the content formatter to
form the message. The LoanId column could be used to create a link in the message to the check-in page for that book in the Web
application.

The Notification Content Formatter
The content formatter is used to transform elements of data into a readable message. The content formatter element describes
the location of the file used to transform the notification.

Notice the maintenance advantage in this code sample of using the _BaseDirectoryPath_ parameter to describe the
XsltBaseDirectoryPath. This particular parameter was defined in the configuration file. There could be many notifications classes
defined in a single ADF, so using parameters like this makes code maintenance easier.

<ContentFormatter>
 <ClassName>XsltFormatter</ClassName>
 <Arguments>
 <Argument>
 <Name>XsltBaseDirectoryPath</Name>
 <Value>%_BaseDirectoryPath_%\NotificationService\</Value>
 </Argument>
 <Argument>
 <Name>XsltFileName</Name>
 <Value>HoldNotice.xslt</Value>
 </Argument>
 </Arguments>
</ContentFormatter>

In the SmallLibrary sample, XSLT files are used to transform the notification into a readable HTML message. Although the HoldId
field is available, only the Title field of the HoldNotice notification class is used in the HoldNotice notification message. The
following is the XSLT file used to convert the title into a readable message.

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="notifications">
 <HTML>
 <BODY>
 <xsl:apply-templates />
 <I>This message was generated using

Microsoft SQL Server Notification Services</I>

 </BODY>
 </HTML>
 </xsl:template>
 <xsl:template match="notification">
 <P>The book <xsl:value-of select="Title"/>

is now available for you to check out

at the MSDN smallLibrary Sample Application
 </P>
 </xsl:template>
</xsl:stylesheet>

Setting Notification Protocols for E-Mail
Each subscriber can be associated with many devices. In Notification Services, a device is an end-point for notifications. For
example, subscriber Joe may have a device associated with his work e-mail address, one associated with his home e-mail address,
and a third device associated with his SMS-enabled phone.

Devices are associated with delivery channels. Using the same example, both e-mail devices would be associated with an e-mail
channel, whereas the phone device would be associated with a phone channel.

Finally, each delivery channel sends notifications over some protocol. Again, using this example, the e-mail channel would use the
SMTP protocol, whereas the phone channel would use the SMS protocol.

Protocols generally have some configurable attributes. For example, in the case of the SMTP protocol, you might specify whether
e-mail messages should be sent as plain text or as HTML (this information corresponds to an SMTP header). These attributes are
defined in two places: 1) in the configuration XML file, under the delivery channel definition; and 2) in the ADF, under the
notification-class definition. Examples of this follow.

In the SmallLibrary sample, there is only one delivery channel identified in the configuration metadata. It is named "EmailChannel"
with the named protocol "SMTP."

<DeliveryChannel>
 <DeliveryChannelName>EmailChannel</DeliveryChannelName>
 <ProtocolName>SMTP</ProtocolName>
</DeliveryChannel>

Therefore, there is at most one protocol that could be used by a notification. The final stage of defining a notification class
involves setting the properties for the supported protocols. The SMTP protocol for e-mail has three required fields: Subject, From,
and To. The DeviceAddress property used for the To column is provided by the service as the address for the device of the given

subscriber. The Priority field is optional. The BodyFormat field is also optional, but it is set to "text" as a default. If the message is
formed in HTML, as it is in the SmallLibrary sample, explicitly set the field to "html" as shown in the code below.

<Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>'Overdue Notice'</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>'someone@example.com'</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <SqlExpression>DeviceAddress</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>'html'</SqlExpression>
 </Field>
 </Fields>
</Protocol>

The window in Figure 4 below shows a hold notification. This is the product of defining a notification class. The book title in the
body of the message is provided by the Title field, which is defined in the HoldNotice notification element of the ADF. It is
formatted by the hold notice XSLT file, referenced in the content formatter sub-element of the notification class, and delivered
using the SMTP protocol defined in the notification class.

Figure 4. The U.S. English hold notice e-mail message is one product of the SmallLibrary notification service.

Defining a Subscription Class

The subscription describes a contract between a subscriber and the notification service to receive one kind of notification. The
attributes of the subscription class include a description, provided by the subscriber, of the content that the subscriber is
interested in. These attributes are used to create a view that can be joined to event information in what is known as a match rule.
The name of the table that is created will have the same name as the subscription class.

Defining Subscription Class Schema Fields
Typically, a subscription class schema will include at least two fields. These are the subscriber's device and language. The
subscriber chooses a preferred language and provides addresses for his or her communication devices independent from the
subscription process. However, the subscription does need to include the context of which device and which language should be
used when the notification is created and delivered.

Note If you choose to include fields for device and language, choose the data type NVARCHAR(255) for the device,
and data type NVARCHAR(10) for the language.

The schema should also include any content that will be used in the match rule, which filters out all but the information the
subscriber would like to see in the notification. Using the sporting event notification service as an example one more time: If the
subscription provides the final scores of all the professional games in a city, the city would need to be a field included in the
subscription class schema fields.

In the SmallLibrary sample, the hold notice subscription is created for patrons (subscribers) that have reserved a book. When the
requested book becomes available, a message is sent to the patron stating that the book is available to check out. At the time that
the book is reserved, only the TitleId—the number that identifies the title of the book—can be provided by the subscriber. The
following code describes the hold-notice subscription-class schema fields:

<Schema>
 <Field>
 <FieldName>DeviceName</FieldName>
 <FieldType>NVARCHAR(255)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>SubscriberLocale</FieldName>
 <FieldType>NVARCHAR(10)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
 <Field>
 <FieldName>TitleId</FieldName>
 <FieldType>INT</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
</Schema>

Defining a Match Rule
The match rule uses join logic and the notify function, which is defined in the notification class of the ADF, to produce a set of
records (a notification batch) that will be distributed to the various subscribers. The following query is a match rule used in the
hold subscription class to create hold-notice notifications.

<EventRule>
 <RuleName>HoldNoticeRule</RuleName>
 <Action>
 SELECT dbo.HoldNoticeNotify(
 s.SubscriberId
 ,s.DeviceName
 ,s.SubscriberLocale
 ,e.HoldId
 ,e.Title)
 FROM HoldSubscription s JOIN HoldEvent e
 ON s.SubscriberId = e.SubscriberId
 JOIN SmallLibrary.dbo.Hold h
 ON e.HoldId = h.[Id]
 WHERE e.TitleId = s.TitleId
 AND h.Active = 1
 </Action>
 <EventClassName>HoldEvent</EventClassName>
</EventRule>

Query Analysis: Origin of the Three Tables

Let's analyze this hold-notice rule more closely. There are three tables that participate in the join clause. The first table is the
HoldSubscription view, which is located in the Notification Services data sources. It is defined in the HoldSubscription
subscription class of the ADF, and set when the patron reserves a book. (The Web application uses the managed code Notification
Services API to install the subscription information.)

The second table is the HoldEvent view. Notice that this match rule is recorded inside an EventRule node, and the value of the
EventClassName node is set to the HoldEvent event class. This means that the match rule query is executed in response to a
hold event. The columns of the HoldEvent view are recorded in the Notification Services data sources as metadata, and they are
defined in the HoldEvent event class of the ADF.

The third table in the join clause is the SmallLibrary.dbo.Hold table. Since the query is not executed in the SmallLibrary database,
there is an external table reference prefix applied to the name of the table.

Query Analysis: Join Logic

The Hold table is restricted to the set of reserved books with Active = 1, because there may have been other situations (still
recorded in the table with Active = 0) where the user placed the same book on hold. Both the subscriber identifier and the title
identifier must match for the HoldSubscripton table and the HoldEvent table join. The hold identifier is used to restrict the
subscription content to only those hold subscriptions that are included in the current hold event. Therefore, there is a join
between the HoldEvent view and the Hold table.

Query Analysis: The Selection Set

The match rule query assembles five columns into the parameters of the dbo.HoldNoticeNotify function. The first three
columns of this function are required by all similar notification functions. The last two of five parameters of this function are
defined in the HoldNotice notification class in the ADF.

Note The match rule is expressed in Transact-SQL, but it is written in the ADF as the value of an XML node. If XML-
reserved characters such as ">" and "<" are used, they may need to be XML encoded. For example: "WHERE Age >=
18" will need to be written "WHERE Age >= 18".

Defining a Scheduled Event

There is no event that is caused by the MSDN SmallLibrary Web application that marks the point in time when a book becomes
overdue. An event must be scheduled so that the overdue notice match rule can be executed.

There are two important distinctions to notice between the hold subscription mentioned above and the overdue subscription. One
distinction is subtle; the overdue subscription class uses a ScheduledRule node instead of an EventRule node. The more
interesting distinction between the two appears in the code that creates the overdue notice subscription for the patron.

An overdue notice subscription is created each time a patron checks out a book. The patron may have checked out the same book
at an earlier time, so it is important to distinguish these events. In the SmallLibrary sample, a loan describes one instance of
checking out a book. The loan identifier is recorded as part of the subscription.

More important is the scheduling. Two properties of the subscription object must be set before the subscription object is added to
the Notification Services data sources. In the following example, oSubscription represents a subscription object. The subscription
is being set to run once daily beginning at 18:19:20 UTC on August 30, 2002.

oSubscription.ScheduleRecurrence = "FREQ=DAILY;"
oSubscription.ScheduleStart = "20020830T181920Z"

ScheduleRecurrence is highly configurable for recurrence intervals greater than one day. It is not anticipated that there will be
many notification systems designed that are scheduled to produce scheduled notifications on an hourly basis, so there is no
setting in the current version for hourly recurrence. However, if this is required for your system, one simple solution might be to
create 24 subscriptions per subscriber each with the ScheduleRecurrence property set to "FREQ=DAILY;". Just modify the
ScheduleStart property for each of the subscriptions to represent the hour intervals of the starting day. Another possible
solution that conserves subscriptions: Use the match rule in the subscription class to modify the subscription's schedule, bumping
it up one hour each time the rule executes.

Using Configuration File Parameters

Setting up parameters in the configuration file involves a little bit of work, but using them is a great way to enhance maintenance
of the Notification Services metadata. Consider that when parameters are not used, server names, directory paths, and other
dynamic content will be recorded throughout the metadata files. This may be seem to be good enough for single-server
installations or for the quick testing of a feature, but it is a poor choice for long-term maintenance. It is a nuisance to repeat a long
directory path. Worse, searching and replacing all instances of a path or server name for another in otherwise functional code is a
process that is prone to error.

Once the metadata is defined, the first step of preparing to build the Notification Services using the metadata is to organize the
dynamic content into a set of parameters. These parameters are defined in the configuration file. Later, when the NsControl.exe
program is used to create or update the notification service, the set of parameters defined in the configuration file must be
included in the command.

In the SmallLibrary sample, there are three parameters declared in the configuration file that help organize dynamic content. The
SqlServer parameter is used to describe the server where the Notification Services data objects are installed. The NSHost
parameter describes the server where the Notification Services instance is installed. The BaseDirectoryPath describes the folder
that contains the folders and files that are referenced in the metadata. The actual declaration is shown in the XML code below:

<Parameters>
 <Parameter>
 <Name>_DBSystem_</Name>

 <Value>%SqlServer%</Value>
 </Parameter>
 <Parameter>
 <Name>_BaseDirectoryPath_</Name>
 <Value>%BaseDirectoryPath%</Value>
 </Parameter>
 <Parameter>
 <Name>_NSSystem_</Name>
 <Value>%NSHost%</Value>
 </Parameter>
</Parameters>

The parameters declared in the configuration file are available in the ADF as well. This next example is taken from a part of the
ADF that describes the location of the generator component. Notice that the parameter is referenced using the % sign before and
after the name of the parameter.

<Generator>
 <SystemName>%_NSSystem_%</SystemName>
</Generator>

Finally, the parameters that are defined in the configuration file and used throughout the metadata are set to the dynamic values
using the NsControl.exe command-line program. This program is used, among other functions, to create the Notification Services
instance. Below is an example of the NsControl.exe create command, including the three properties shown above:

NsControl create -in config.xml SqlServer=MyServer NSHost=MyServer
BaseDirectoryPath="C:\Program Files\Microsoft\SmallLibrary\Source"

Note It is possible to set default values for parameters.

Compiling the ADF and Configuration Files
Once the design process is complete, use the NsControl.exe command-line program to create, register, and enable the
Notification Services instance. The SmallLibrary sample includes instructions in SetupGuide.txt that will guide you through the
manual installation process. If you like, you may also choose to automate the process of compiling the project using the
NsControl.exe command-line program. To do this, you'll need to design a script and set command-line parameters that are used
when you build the project. If you choose this technique, make sure that the service user account access credentials (user name
and password) are recorded in a secure location.

The Notification Services API
Microsoft Notification Services installs a managed code API (the namespace is Microsoft.SqlServer.NotificationServices). The
objects and methods of this class library represent the data access layer for the Notification Services data sources. Including the
class library equips Web applications with subscriber management, subscription creation, and the ability to commit events to the
Notification Services data sources.

Note Microsoft cautions developers about the potential maintenance consequences of writing code that circumvents
the Notification Services class library in an effort to use the objects in the Notification Services data sources directly.
Most of the objects in the data sources are designed to be used exclusively by the service instance and the class
library. The naming convention, content, and structure of these data source objects may change in future releases of
the product. The few data source objects that are available for this kind of use are identified in the Notification
Services documentation. See the help topics, "Notification Services Views" and "Stored Procedure Reference."

In the SmallLibrary sample, the code that manages subscribers, creates subscriptions, and commits events is located in the
BusinessLogic.vb module. This is found in the NotificationLogic project.

Subscriber Management

The Notification Services class library is used to manage subscribers. Subscribers identify their language, time zone, devices, and
the addresses of those devices. With respect to the subscriber's devices, the name of the delivery channel that is defined in the
configuration file is associated with the devices that the user would like to use to receive content from that delivery channel.

In the SmallLibrary sample, there are two places where subscriber management is implemented. When a new patron account is
created in the SmallLibrary database, a subscriber is also created. The other subscriber maintenance action that is implemented is
an update. When the patron records a change of e-mail address in the SmallLibrary database, the address of the corresponding
device must also be changed.

Creating a Subscriber

In this first code sample, the InsertSubscriber subroutine adds the specified patron to the Notification Services data sources.
Notice that this code does not add any attributes of the subscriber. Enabled and SubscriberId are the only properties of the
Subscriber object. Other attributes of a subscriber, such as the subscriber's devices, are intentionally decoupled from the
Subscriber object. Even though the SmallLibrary records only one e-mail address per patron, it is easy to see how recording the
device information (and other variable subscriber information) separately more closely represents the reality that a subscriber
might have more than one e-mail address or device capable of receiving a message.

Sub InsertSubcriber(ByVal iPatronId As Integer)
 Dim oInstance As New NSInstance("SmallLibraryInstance")
 Dim oSubscriber As New Subscriber(oInstance)
 oSubscriber.Enabled = True
 oSubscriber.SubscriberId = CStr(iPatronId)
 oSubscriber.Add()
End Sub

Once the patron's subscriber account is added, at least one device is related to the patron’s subscriber account using the
SubscriberDevice object. The DeviceName property, combined with the SubscriberId, uniquely identifies a device in the system.
In this example, since patrons only record one e-mail address in the SmallLibrary database, the DeviceName property is set to
"Email" for all subscriber devices that are recorded.

Sub InsertSubscriberEmail(_
 ByVal iPatronId As Integer, _
 ByVal sEmail As String)
 Dim oInstance As New NSInstance("SmallLibraryInstance")
 Dim oDevice As New SubscriberDevice(oInstance)
 oDevice.SubscriberId = CStr(iPatronId)
 oDevice.DeviceAddress = sEmail
 oDevice.DeliveryChannelName = "EmailChannel"
 oDevice.DeviceTypeName = "Email"
 oDevice.DeviceName = "Email"
 oDevice.Add()
End Sub

Updating a Device Address
All that is needed to update a device address is the SubscriberId, the name of the device, and the device address. As explained
above, for the limitations of the SmallLibrary system, there is only one device per patron. So the device name is "Email" for all
device records in this sample. The procedure below updates an e-mail address for a subscriber.

Sub UpdateSubscriberEmail(_
 ByVal iPatronId As Integer, _
 ByVal sEmail As String)
 Dim oInstance As New NSInstance("SmallLibraryInstance")
 Dim oDevice As New SubscriberDevice(oInstance)
 oDevice.SubscriberId = CStr(iPatronId)
 oDevice.DeviceName = "Email"
 oDevice.DeviceAddress = sEmail
 oDevice.DeliveryChannelName = "EmailChannel"
 oDevice.DeviceTypeName = "Email"
 oDevice.Update()
End Sub

Creating a Subscription

The Notification Services class library is used to create subscriptions for subscribers. Fields of the Subscription object map to the
fields in the subscription class schema.

In the SmallLibrary sample, the HoldSubscription subscription class has three fields defined: "DeviceName", "SubscriberLocale",
and "TitleId".

Public Function InsertHoldNoticeSubscription(_
 ByVal iPatronId As Integer, _
 ByVal iTitleId As Integer) As String
 Dim sSubscriptionId As String
 Dim oInstance As New NSInstance("SmallLibraryInstance")
 Dim oApplication As New NSApplication(_
 oInstance, "SmallLibrary")
 Dim oSubscription As New Subscription(_
 oApplication, "HoldSubscription")
 oSubscription.Enabled = True

 oSubscription.SubscriberId = CStr(iPatronId)
 oSubscription("DeviceName") = "Email"
 oSubscription("SubscriberLocale") = "en-US"
 oSubscription("TitleId") = iTitleId
 sSubscriptionId = oSubscription.Add()
 Return sSubscriptionId
End Function

Once this subscription is enabled and then added, the subscriber may eventually be delivered a hold-notice notification.

Committing an Event

The Notification Services class library is used to commit events to the Notification Services data sources. Fields of the Event
object map to fields in the event class of the same name. (The event class is defined in the ADF, one of the Notification Services
metadata files discussed above.)

In the SmallLibrary sample, when a patron checks in a book, the application commits an event to the Notification Services data
sources. Of course, it only does this if there is another patron that has been waiting for a copy of the book to become available.

oInstance = New NSInstance("SmallLibraryInstance")
oApplication = New NSApplication(oInstance, "SmallLibrary")
oEvent = New _
 Microsoft.SqlServer.NotificationServices.Event(_
 oApplication, "HoldEvent")
oEventCollector = New EventCollector(_
 oApplication, "HoldEventProvider")
oEvent("SubscriberId") = iPatronId
oEvent("HoldId") = iHoldId
oEvent("TitleId") = iTitleId
oEvent("Title") = sTitle
oEventCollector.Write(oEvent)
iCountOfCommittedEvents = oEventCollector.Commit()

Testing Notification Services
Unit testing a Notification Services application is the most complicated part of the development process. Some errors are easily
discovered once the NsControl create or NsControl update command is issued. Other errors are not discovered until the first
notification is generated or should have been generated. This section describes the preparation work that will need to take place
for testing. It also discusses some common debugging steps to follow in order to help identify bugs in the Notification Services
metadata files.

Preparation Work for Testing

There are a few important matters to take care of before you begin testing. To begin, turn off your SMTP service. You will discover
success or failure of your Notification Service without actually delivering the test messages through the wire. Messages will
accumulate in the Pickup directory. The default location of the Pickup directory is: C:\Inetpub\mailroot\Pickup.

Your Web application may not have permission to manage subscribers or create subscriptions. The account that the Web
application uses should exist in the Microsoft SQL Server database where the Notification services data sources are installed. In
both of the Notification Services databases, grant the account access privileges to the minimum set of roles that are needed to
permit the Web application to manage subscribers or create subscriptions. For the SmallLibrary sample, the default user account
is ASPNET and the roles that the account needs to be mapped to are NSReader, NSSubscriberAdmin, NSEventProvider, and
NSAdmin.

Note Granting administrative privileges of any kind to ASPNET is a security risk that should be avoided. Instead,
create a specific Windows user account for the Web application and a SQL Server login for that account. Restrict
access for the login to the minimum set of roles needed for the Web application function.

Debugging the Metadata Files

As mentioned above, Microsoft Notification Services is a feature-rich product designed to interact with many systems. However,
there are a number of problems that can prevent the files from compiling. The most common of these include:

1. Transact-SQL syntax is not valid because of an XML-reserved character. You will need to escape > or < with > and <.
2. Transact-SQL code excludes objects that are required, or objects that do not exist. When building your first Notification

Services application, it is difficult to identify the names of the objects or the set that is required in a selection. Some of the
objects, such as events, cannot be seen in the database because they are created when the event occurs.

3. Some elements must be included even if they do not contain any sub-elements. NsControl.exe output may report that a
node is expected when it is actually optional.

4. In almost all cases, the ordering of the elements must be maintained. For the correct ordering of the ADF file, see the topic,
"Application Definition File Reference" in Microsoft Notification Services Books Online.

Once the XML metadata compiles, you may need to grant access to the application that uses or administrates the notification
service. Errors that accumulate in the Application Event Log indicate that there is still a problem with the metadata. Most likely,
these errors will be Transact-SQL code that was not validated when the metadata was compiled. It is unnecessary to re-create the
instance each time the implementation is tested. Using the NsControl.exe program, follow the sequence of disable, update, and
enable. Generally, it is not a problem to leave service started while the update takes place. The parameters to the NsControl.exe
update command are similar to those of the NsControl.exe create command. Both reference the name of the configuration file
and require the set of parameters that may be described in the configuration file.

Other Notification Services Resources
Mark Brown's article, "SQL Server: Build Apps that Provide Real-time Information and Customized Content Using SQL Server
Notification Services" in the November 2002 edition of the MSDN Magazine describes how Notification Services has overcome
the performance, scalability, and protocol standards issues of the past. He gives an excellent and extensive overview of the
Notification Services components, and finishes with a discussion on the deployment and scalability features that are built into the
system.

For a more technical overview of Notification Services, download the 23-page white paper from
http://www.microsoft.com/sql/techinfo/development/2000/sqlnsto.asp. This document includes discussions on security
performance, including scalability and reliability. It discusses how Notification Services as a product compliments similar
Microsoft software, such as .NET Alerts and Message Queuing.

Specific technical information for Notification Services, including syntax, use cases, administrative, programming, and
maintenance guidance, is included with the product's Notification Services Documentation. The Books Online resource is installed
in the Start Menu under "Microsoft SQL Server Notification Services." When you download Microsoft SQL Server Notification
Services, use the link, http://www.microsoft.com/sql/ns/download.asp.

Conclusion
Notification Services is a highly configurable notification system that can be incorporated into existing systems with minimal
changes to the existing code base. Most of the development work required to incorporate Notification Services as a feature will
involve the design and testing of the Notification Services metadata files. These are expressed in XML and processed using the
NsControl command-line program.

Two forms of notifications are demonstrated by the SmallLibrary sample. The event-based "Hold Notice" notification is created in
response to an event that is created by user activity. The "Overdue Notice" is a schedule-based notification issued periodically.
Both of these notifications are delivered to users through an e-mail delivery channel.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql/techinfo/development/2000/sqlnsto.asp
http://www.microsoft.com/sql/ns/download.asp
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

SQLXML Managed Classes

Scott Swigart
3 Leaf Solutions

March 2002

Applies to:
 Microsoft® SQL Server™ 2000
 Microsoft Visual Studio® .NET

Summary: How to use SQLXML Managed Classes for .NET code to retrieve XML from a Microsoft SQL Server database or to
generate XML on the client side, using ad hoc queries, stored procedures, annotated schemas with XPath, or XML templates. (19
printed pages)

Contents

Introduction
SQLXML Managed Classes Object Model
Using SQLXML Managed Classes
Conclusion
About the Author

Introduction
Companies have found SQLXML to be a useful technology for a number of scenarios. A company may receive XML documents in
various formats and wish to store this data in a Microsoft® SQL Server™ 2000 database, or a company may need to serve XML
documents in various formats for trading partners. In addition, XML documents may be transformed using style sheets to target
various browsers, handheld PCs, or other devices. For these scenarios, SQLXML allows you to send XML data to and retrieve it
from SQL Server. This capability means that the developer is not required to author and maintain all the code needed to
transform XML into some other format for consumption by the database.

SQLXML Managed Classes allow you to author .NET code that takes advantage of the XML features provided by SQLXML 3.0. You
can write managed Microsoft Visual C#™ or Visual Basic® .NET code that utilizes FOR XML, XML templates, annotated schemas,
and DiffGrams. This white paper will explain the mechanics of using SQLXML Managed Classes for a variety of scenarios.

This paper is based on SQLXML 3. You can download the latest release of SQLXML.

SQLXML Managed Classes Object Model
Three primary classes are used to access the XML functionality of SQL Server. These are:

SqlXmlCommand. Used to send a Transact-SQL statement to the database, execute a stored procedure, or query the
database using other technologies (such as annotated schemas and XML templates) and get the results back as XML. This
object supports a wide range of options, which are discussed in detail later in this document.
SqlXmlParameter. Used to specify the value for a parameter in the command. This can be a parameter to an ad hoc query,
stored procedure, XPath query, or XML template.
SqlXmlAdapter. Used to populate a DataSet object with an XML result set, or update the database with an XML DiffGram.

Using SQLXML Managed Classes
The SqlXmlCommand class is the primary class used when retrieving data from SQL Server in XML format. This class allows you
to send queries to the database and retrieve the results as a stream or XmlReader object, or to send the output directly into
another stream. The query can be parameterized, and with the help of the SqlXmlParameter class, you can specify the values for
these parameters. You can execute queries using ad hoc Transact-SQL statements, stored procedures, annotated schemas and
XPath, and templates. You can have the XML returned directly from the database, or do the conversion to XML on the client side
by simply setting a property. Finally, you can have the SqlXmlCommand object automatically apply a style sheet to the XML
result set, performing any required transformation.

SqlXmlCommand

This section describes how to use SqlXmlCommand to retrieve XML data from SQL Server.

http://msdn.microsoft.com/sqlxml/

When authoring managed code, you often use classes from a variety of namespaces. The code in this paper assumes that you
have included the following "using" directives:

using System;
using System.Data;
using Microsoft.Data.SqlXml;
using System.Xml;
using System.Xml.Xsl;
using System.Xml.XPath;
using System.IO;
using System.Security.Cryptography;

Regardless of the scenario for retrieving data, one setup for SqlXmlCommand is universal. SqlXmlCommand supports a single
constructor that takes an ActiveX Data Objects (ADO) connection string as an argument, as shown below:

static string NorthwindConnString =
 "Provider=SQLOLEDB;Server=(local);database=Northwind;" +
 "Integrated Security=SSPI";
SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);

The code samples in the remainder of this white paper assume that the NorthwindConnString variable has been initialized.

When an XML result set is returned from SQL Server 2000, it is typically an XML fragment, lacking a single root tag. Therefore, it is
important to set the RootTag property of SqlXmlCommand so that the resulting XML is well formed, as follows:

cmd.RootTag="products";

SqlXmlCommand.ExecuteStream

The first example of retrieving XML data uses the ExecuteStream method. This method returns the XML data from SQL Server as
a simple .NET stream instance:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag="products";
cmd.CommandType = SqlXmlCommandType.Sql;
cmd.CommandText= "SELECT * FROM products FOR XML AUTO";
StreamReader sr = new StreamReader(cmd.ExecuteStream());

One reason for returning the results as a stream might be to perform an operation on the document as a whole without regard
for its contents. Such an operation could include compressing or encrypting the result set. In this case, the XML results are not
treated as an actual XML document, but rather as a stream of bytes.

You can use the following code to DES encrypt the XML data that was returned from the previous example:

Byte[] key = new Byte[] {1, 50, 80, 111, 4, 255, 18, 217};
Byte[] iv = new Byte[] {12, 240, 193, 38, 193, 2, 58, 19};
DESCryptoServiceProvider Crypto = new DESCryptoServiceProvider();
FileStream FStream = File.Open(@"c:\Encrypted.bin",
 FileMode.Create,
 FileAccess.Write);
CryptoStream EncStream = new CryptoStream(FStream,
 Crypto.CreateEncryptor(key, iv), CryptoStreamMode.Write);
StreamWriter SW = new StreamWriter(EncStream);
SW.Write(sr.ReadToEnd());
SW.Close();

SW.Write(sr.ReadToEnd()); reads the XML input stream and sends the data through CryptoStream and FileStream to store the
encrypted XML on disk.

SqlXmlCommand.ExecuteToStream

Rather than return the XML data from SQL Server as a simple Stream object, you may wish to send the XML result set directly to
the destination without modification. In this case, you can use the ExecuteToStream method to send the resulting XML directly
to a FileStream object, a NetworkStream object, or, in the case of ASP.NET, the Response object. The following code sends the
XML results directly to a FileStream object. The Process class is then used to display the results in Internet Explorer (assuming
that XML files are associated with Internet Explorer, which is the default configuration).

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag="products";
cmd.CommandType = SqlXmlCommandType.Sql;

cmd.CommandText= "SELECT * FROM products FOR XML AUTO";
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

This code retrieves all the rows and columns from the products table and displays the results as follows:

<?xml version="1.0" encoding="utf-8" ?>
<Orders>
 <Order EmployeeID="5" CustomerID="VINET" OrderID="10248">
 <OrderDate>1996-07-04T00:00:00</OrderDate>
 <RequiredDate>1996-08-01T00:00:00</RequiredDate>
 <ShippedDate>1996-07-16T00:00:00</ShippedDate>
 <ShipVia>3</ShipVia>
 <Freight>32.38</Freight>
 <ShipName>Vins et alcools Chevalier</ShipName>
 <ShipAddress>59 rue de l'Abbaye</ShipAddress>
 <ShipCity>Reims</ShipCity>
 <ShipPostalCode>51100</ShipPostalCode>
 <ShipCountry>France</ShipCountry>
 </Order>
 <Order EmployeeID="6" CustomerID="TOMSP" OrderID="10249">
 <OrderDate>1996-07-05T00:00:00</OrderDate>
 <RequiredDate>1996-08-16T00:00:00</RequiredDate>
 <ShippedDate>1996-07-10T00:00:00</ShippedDate>
 <ShipVia>1</ShipVia>
 <Freight>11.61</Freight>
 <ShipName>Toms Spezialitüten</ShipName>
 <ShipAddress>Luisenstr. 48</ShipAddress>
 <ShipCity>Münster</ShipCity>
 <ShipPostalCode>44087</ShipPostalCode>
 <ShipCountry>Germany</ShipCountry>
 </Order>...
</Orders>

SqlXmlCommand.ExecuteXmlReader

Typically you retrieve XML results because you want to work data in an XML format. You might retrieve data as XML so that you
can render output for multiple devices; you might want to send XML data to trading partners in various formats; or you might be
emitting XML so that it can be consumed by an XML-aware application. For these kinds of scenarios, you should use the
ExecuteXmlReader method, which returns an XmlReader object. This is a high-performance object that lets you iterate through
the nodes in the XML result set. If you need random access to the XML results, you can pass XmlReader as an argument to the
constructor of an XmlDocument object. The XmlDocument object gives you full Document Object Model (DOM) Level 1 and
Level 2 Core support for manipulating the result set.

The following sample retrieves the results as an XmlReader object and passes it to the constructor of an XmlDocument object.
Once the data is in an XmlDocument object, multiple XPath queries can extract results without going back to the database. In this
case, products with a unit price greater than 20 are extracted.

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag="products";
cmd.CommandType = SqlXmlCommandType.Sql;
cmd.CommandText= "SELECT * FROM products FOR XML AUTO";
XmlReader xr = cmd.ExecuteXmlReader();
XmlDocument xd = new XmlDocument();
xd.Load(xr);
XmlNodeList xnl = xd.SelectNodes("//products[@UnitPrice > 20]");
foreach(XmlNode xn in xnl)
{
 Console.WriteLine(xn.OuterXml);
}

Up to this point, all the examples have used ad hoc queries to retrieve XML from SQL Server. You can also execute stored
procedures that return XML. Consider the following stored procedure:

CREATE PROCEDURE dbo.GetEmployeesXml
AS
 SELECT FirstName, LastName FROM employees FOR XML AUTO
 RETURN

In this case, the FOR XML AUTO clause is part of the SELECT statement inside the procedure body. This statement can be executed
as follows:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Employees";
cmd.CommandText = "EXEC GetEmployeesXML";
XmlReader xr = cmd.ExecuteXmlReader();

SqlXmlCommand.ClientSideXml

In many cases, you cannot edit existing stored procedures to return an XML result set. For example, consider the following stored
procedure:

ALTER PROCEDURE dbo.GetEmployees
AS
 SELECT FirstName, LastName FROM employees
 RETURN

This is a typical stored procedure that does not return XML. In addition, there are many circumstances where, for performance or
other reasons, you want to have the XML generated on the client rather than directly from the database. For these scenarios, you
can use the ClientSideXml property of the SqlXmlCommand object, as shown below:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Employees";
cmd.ClientSideXml = true;
cmd.CommandText = "EXEC GetEmployees FOR XML NESTED";
XmlReader xr = cmd.ExecuteXmlReader();
XmlDocument xd = new XmlDocument();
xd.Load(xr);
Console.WriteLine(xd.OuterXml);

To generate XML on the client side involves two important steps:

You must set the ClientSideXml property of the SqlXmlCommand object to true.
The CommandText property must contain either "FOR XML NESTED" or "FOR XML RAW" or "FOR XML Explicit". This
clause is intercepted by the OLE DB provider, and indicates that the result set should be converted to XML.

Even though the stored procedure has not been modified, you end up with an XmlReader object on the client.

This mechanism can also be used for ad hoc queries as shown below:

cmd.ClientSideXml = true;
cmd.CommandText = "SELECT * FROM products FOR XML NESTED";
XmlReader xr = cmd.ExecuteXmlReader();

Annotated schemas

If you are using ad hoc queries or stored procedures to query SQL Server 2000, the columns in the result set are serialized as
attributed in the resulting XML document. There is also an element-centric mode for returning the XML using NESTED, AUTO or
RAW XML modes, you can do Select * from Products FOR XML NESTED, ELEMENTS.

If you want to change the format of the returned XML, you can use an annotated schema to define which columns will be
expressed as elements, and which columns will be expressed as attributes. Annotated schemas let you further modify the result
set using standard XPath. An annotated schema is an XML schema document that specifies both the tables and columns that you
wish to query, and the structure of the resulting XML. SQLXML 2.0 supported two versions of the schemas, XML Data Reduced
(XDR) and W3 XML Schema Definition (XSD). This schema syntax predated the World Wide Web Consortium (W3) release of a
schema recommendation. SQLXML 3.0 fully supports the current W3 XML Schema Definition (XSD).

Consider the following schema:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xs:element name="Order" sql:relation="Orders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderDate" type="xs:dateTime" />
 <xs:element name="ShipName" type="xs:string" />
 </xs:sequence>

 <xs:attribute name="OrderID" type="xs:int" />
 <xs:attribute name="CustomerID" type="xs:string" />
 <xs:attribute name="EmployeeID" type="xs:int" />
 </xs:complexType>
 </xs:element>
</xs:schema>

This uses the standard W3 schema syntax with a single exception. The "sql" namespace contains extensions that let you map the
components of the schema to specific tables and columns. In this case, the XML element names are identical to the database
column names, so the only specific relationship that needs to be established is that of the Order element to the Orders table. This
schema can be invoked with the following code:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.CommandText = "Order";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = @"..\..\Orders1.xsd";
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

In this example, the SchemaPath property specifies a physical path to a schema file. This path is relative to the location of the
executable. If you are using a Microsoft Visual Studio® .NET Console application, and the schema is part of your project, the
schema is two directories above the executable (which is in a bin\Debug or bin\Release directory). Therefore, the path includes
" \ \" to locate the schema relative to the executable. You can also use an absolute path, or place the schema in the same physical
directory as the executable, in which case you would just give the file name, Orders1.xsd.

The schema file is used to map the resulting XML to tables and columns in the database. The CommandText property specifies
an XPath query that defines the XML result set. In other words, the schema may specify that all orders be returned, but
CommandText may limit the result to orders that match a specific criterion. In the current example, the following XML is
returned:

<?xml version="1.0" encoding="utf-8" ?>
<Orders>
 <Order EmployeeID="5" CustomerID="VINET" OrderID="10248">
 <OrderDate>1996-07-04T00:00:00</OrderDate>
 <ShipName>Vins et alcools Chevalier</ShipName>
 </Order>
 <Order EmployeeID="6" CustomerID="TOMSP" OrderID="10249">
 <OrderDate>1996-07-05T00:00:00</OrderDate>
 <ShipName>Toms Spezialitüten</ShipName>
 </Order>
...
</Orders>

Also notice that the annotated schema makes it easy to return some columns as elements and other columns as attributes.

Using Visual Studio .NET to generate annotated schemas

To use Visual Studio .NET to simplify the process of generating annotated schemas, follow these steps:

1. Open an existing Visual Studio .NET project, and on the Project menu, click Add New Item.
2. In the Add New Item dialog, in the templates pane, select XML Schema, and click Open.
3. On the View menu, click Server Explorer (or press CTRL+ALT+S) to open Server Explorer.
4. Expand Servers, <Machine Name>, SQL Servers, <Machine Name>, Northwind, and Tables.
5. Drag and drop the Products table on to the design surface.
6. At the lower-left corner of the schema designer, click the XML tab. You should see the following code:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="XMLSchema1"
 targetNamespace="http://tempuri.org/XMLSchema1.xsd"
 elementFormDefault="qualified"
 xmlns="http://tempuri.org/XMLSchema1.xsd"
 xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Document">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Products">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductID" msdata:ReadOnly="true"
 msdata:AutoIncrement="true" type="xs:int" />
 <xs:element name="ProductName" type="xs:string" />
 <xs:element name="SupplierID" type="xs:int"
 minOccurs="0" />
 <xs:element name="CategoryID" type="xs:int"
 minOccurs="0" />
 <xs:element name="QuantityPerUnit" type="xs:string"
 minOccurs="0" />
 <xs:element name="UnitPrice" type="xs:decimal"
 minOccurs="0" />
 <xs:element name="UnitsInStock" type="xs:short"
 minOccurs="0" />
 <xs:element name="UnitsOnOrder" type="xs:short"
 minOccurs="0" />
 <xs:element name="ReorderLevel" type="xs:short"
 minOccurs="0" />
 <xs:element name="Discontinued" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="DocumentKey1" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:Products" />
 <xs:field xpath="mstns:ProductID" />
 </xs:unique>
 </xs:element>
</xs:schema>

7. Delete the text shown in bold above. The final schema should appear as follows:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="XMLSchema1" elementFormDefault="qualified"
 xmlns="http://tempuri.org/XMLSchema1.xsd"
 xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Products">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductID" msdata:ReadOnly="true"
 msdata:AutoIncrement="true" type="xs:int" />
 <xs:element name="ProductName" type="xs:string" />
 <xs:element name="SupplierID" type="xs:int" minOccurs="0" />
 <xs:element name="CategoryID" type="xs:int" minOccurs="0" />
 <xs:element name="QuantityPerUnit" type="xs:string"
 minOccurs="0" />
 <xs:element name="UnitPrice" type="xs:decimal" minOccurs="0" />
 <xs:element name="UnitsInStock" type="xs:short"
 minOccurs="0" />
 <xs:element name="UnitsOnOrder" type="xs:short"
 minOccurs="0" />

 <xs:element name="ReorderLevel" type="xs:short"
 minOccurs="0" />
 <xs:element name="Discontinued" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You can use the following code to query SQL Server using this schema and display the results:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "ProductList";
cmd.CommandText = "Products";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = @"..\..\XMLSchema1.xsd";
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

As you can see, Visual Studio takes most of the work out of authoring annotated schemas.

Querying with XPath

The standard XPath syntax allows you to search for matching elements and limit a result set. XPath is traditionally used in
conjunction with XSL Transformations (XSLT) to select certain nodes from an input XML document for transformation or
rendering. XPath is also used with DOM to select certain nodes to work with programmatically.

SQLXML 3.0 lets you use XPath with annotated schemas to limit the result set.

Consider the following example:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.CommandText = "Order[ShipCountry = 'Brazil']";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = @"..\..\Orders_Details.xsd";
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

This example retrieves all the orders that were shipped to Brazil. This retrieval is done efficiently by converting the XPath criteria
to a Transact-SQL WHERE clause as shown in the following trace:

SELECT 1 AS TAG,0 AS parent,CONVERT(nvarchar(4000),_Q1._TBEZF2,126) AS
[Order!1!OrderDate!element],CONVERT(nvarchar(4000),_Q1._TBMQG2,126) AS
[Order!1!RequiredDate!element],CONVERT(nvarchar(4000),_Q1._TBFZE2,126) AS
[Order!1!ShippedDate!element],_Q1._TBKWC2 AS
[Order!1!ShipVia!element],_Q1._TBB3F2 AS
[Order!1!Freight!element],_Q1._TBGLS1 AS
[Order!1!ShipName!element],_Q1._TBGZD2 AS
[Order!1!ShipAddress!element],_Q1._TBC5C2 AS
[Order!1!ShipCity!element],_Q1._TBCRUW AS
[Order!1!ShipRegion!element],_Q1._TBORD2 AS
[Order!1!ShipPostalCode!element],_Q1._TBNES1 AS
[Order!1!ShipCountry!element],_Q1.A0 AS [Order!1!EmployeeID],_Q1.A1 AS
[Order!1!CustomerID],_Q1.A2 AS [Order!1!OrderID] from (SELECT
_QB0.EmployeeID AS A0,_QB0.CustomerID AS A1,_QB0.OrderID AS
A2,_QB0.OrderID AS _TBPMH2,_QB0.CustomerID AS _TBMRF2,_QB0.EmployeeID AS
_TBHXE2,_QB0.ShipCountry AS _TBNES1,_QB0.ShipPostalCode AS
_TBORD2,_QB0.ShipRegion AS _TBCRUW,_QB0.ShipCity AS
_TBC5C2,_QB0.ShipAddress AS _TBGZD2,_QB0.ShipName AS _TBGLS1,
_QB0.Freight AS _TBB3F2,_QB0.ShipVia AS _TBKWC2,_QB0.ShippedDate AS
_TBFZE2,_QB0.RequiredDate AS _TBMQG2,_QB0.OrderDate AS _TBEZF2 from Orders
_QB0) _Q1 WHERE CONVERT(nvarchar(4000),_Q1._TBNES1,126) IS NOT NULL AND
(CONVERT(nvarchar(4000),_Q1._TBNES1,126) = N'Brazil') FOR XML EXPLICIT,
BINARY BASE64

The details of this SELECT statement are beyond the scope of this paper, but notice that the WHERE clause limits the result set to

orders from Brazil, rather than returning all the orders before filtering.

Querying with template files

SQLXML supports exposing SQL Server 2000 directly to the Web using template files that define the query and parameters. These
are XML files that are placed in a virtual root and are accessible through HTTP. You can, however, execute these template files
directly using SQLXML Managed Classes. You set the CommandText property of the SqlXmlConnection to contain the path to
the XML template file, and then you set the CommandType property to "SqlXmlCommandType.TemplateFile". The following
example template assumes that you have saved the template as products.xml:

<?xml version="1.0" encoding="utf-8" ?>
<Products xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT Products.ProductID, Products.ProductName,
 Suppliers.CompanyName AS SupplierName, Categories.CategoryName,
 Products.QuantityPerUnit, Products.UnitPrice,
 Products.UnitsInStock, Products.UnitsOnOrder, Products.ReorderLevel,
 Products.Discontinued
 FROM Products
 INNER JOIN
 Suppliers ON Products.SupplierID = Suppliers.SupplierID
 INNER JOIN
 Categories ON Products.CategoryID = Categories.CategoryID
 FOR XML RAW
 </sql:query>
</Products>

You can then use the following section of code to execute this template and display the results:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Products";
cmd.CommandText = @"..\..\Products.xml";
cmd.CommandType = SqlXmlCommandType.TemplateFile;
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

Authoring templates using Visual Studio .NET Query Builder

Although Visual Studio .NET doesn't directly support authoring XML templates, you can get most of the work done using Query
Builder, as outlined in the following steps:

1. With a project open in Visual Studio .NET, on the Project menu, click Add New Item (or press CTRL+SHIFT+A).
2. In the Add New Item dialog, in the templates pane, select XML File.
3. In the Name field, enter orders.xml, and click Open.
4. Add the following code to the file:

<Products xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 </sql:query>
</Products>

5. On the View menu, click Server Explorer (or press CTRL+ALT+S) to open Server Explorer.
6. Expand Servers, <Machine Name>, SQL Servers, <Machine Name>, and Northwind.
7. Right-click Views and then click New View. The Query Builder utility opens.
8. In the Add Table dialog, double-click the following tables: Orders, Order Details, Products, Employees, and Customers.
9. Click Close.

10. In the diagram pane, in the Orders table, select the following columns: OrderID, OrderDate, RequiredDate, and
ShippedDate.

11. In the Order Details table, select the following columns: UnitPrice, Quantity, and Discount.
12. In the Employees table, select the following columns: FirstName and LastName.
13. In the Customers table, select the following column: CompanyName.
14. In the Products table, select the following column: ProductName.

15. Select everything in the SQL pane (SELECT dbo.Orders.OrderID…), and press CTRL+C to copy the selection to the
Clipboard.

16. Close Query Builder.
17. When prompted to save changes, click No.
18. In orders.xml, place the insertion point between <sql:query> and </sql:query>.
19. Press CTRL+V to paste the Clipboard contents into the SQL field.
20. Just before </sql:query>, type "FOR XML RAW". Press ENTER. The file should appear as follows:

<?xml version="1.0" encoding="utf-8" ?>
<Products xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query>
 SELECT dbo.Orders.OrderID, dbo.Orders.OrderDate,
 dbo.Orders.RequiredDate, dbo.Orders.ShippedDate,
 dbo.[Order Details].UnitPrice,
 dbo.[Order Details].Quantity, dbo.[Order Details].Discount,
 dbo.Employees.LastName, dbo.Employees.FirstName,
 dbo.Customers.CompanyName,
 dbo.Products.ProductName
 FROM dbo.Orders
 INNER JOIN
 dbo.[Order Details] ON dbo.Orders.OrderID =
 dbo.[Order Details].OrderID
 INNER JOIN
 dbo.Employees ON dbo.Orders.EmployeeID = dbo.Employees.EmployeeID
 INNER JOIN
 dbo.Customers ON dbo.Orders.CustomerID = dbo.Customers.CustomerID
 INNER JOIN
 dbo.Products ON dbo.[Order Details].ProductID =
 dbo.Products.ProductID
 FOR XML RAW
 </sql:query>
</Products>

21. You can test this template with the following code:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.CommandText = @"..\..\orders.xml";
cmd.CommandType = SqlXmlCommandType.TemplateFile;
FileStream f = new FileStream(@"c:\orders.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\orders.xml");

SqlXmlParameter

Up to this point, all the queries, stored procedures, schemas, XPath expressions, and templates have been static. Often, however,
you want to modify the query based on some criteria. For example, you know that you want to select orders by customer, but it
isn't until run time that you know the specific customers whose orders you want to see. To make these queries dynamic, you can
parameterize them and use the SqlXmlParameter object to specify values for the parameters at run time.

Parameterized ad hoc queries

For an ad hoc query, simply use a "?" to indicate that the value is supplied by a parameter, as shown in the following example:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag="products";
cmd.CommandType = SqlXmlCommandType.Sql;
cmd.CommandText= "SELECT * FROM products WHERE categoryid = ? " +
 "FOR XML AUTO";
SqlXmlParameter p = cmd.CreateParameter();

p.Value = "1";
XmlReader xr = cmd.ExecuteXmlReader();
XmlDocument xd = new XmlDocument();
xd.Load(xr);
Console.WriteLine(xd.OuterXml);

Stored procedure parameters

The model for passing parameters to stored procedures is very similar to the model for parameterized ad hoc queries. You use a
"?" for each argument passed to the procedure, and use SqlXmlParameter to assign a value. If the stored procedure does not
emit XML (by internally using FOR XML RAW, FOR XML AUTO, or FOR XML EXPLICIT), you must use client-side XML, as illustrated
below:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.ClientSideXml = true;
cmd.CommandText = "EXEC GetOrders ? FOR XML NESTED";
SqlXmlParameter p = cmd.CreateParameter();
p.Value = "alfki";
XmlReader xr = cmd.ExecuteXmlReader();
XmlDocument xd = new XmlDocument();
xd.Load(xr);
Console.WriteLine(xd.OuterXml);

Note For ad hoc queries and stored procedures, you can use positional parameters as shown above, but you cannot
use named parameters, as you can with XPath and XML templates, which are discussed below.

XPath parameters

You can also parameterize XPath queries. You use the standard XPath variable syntax to denote the position of the parameter in
the query; you then can use positional or named parameters to specify the values. In the following example, the CommandText
property contains an XPath statement that selects all the order details for a specific product ID. The product ID is specified by an
XPath variable called $ProductID ($VariableName is the standard XPath syntax for a variable). You can set the value for this
variable using the SqlXmlParameter class, as shown below:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.CommandText = "Order/OrderDetails[ProductID = $ProductID]";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = @"..\..\Orders_Details.xsd";
SqlXmlParameter p = cmd.CreateParameter();
p.Name = "@ProductID";
p.Value = "1";
FileStream f = new FileStream(@"c:\products.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\products.xml");

Template parameters

It is also possible to pass parameters to XML template files. First, the template file must be written to accept parameters.
Parameters are specified in the header section of the XML template, as in the following example:

<?xml version="1.0" encoding="utf-8" ?>
<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header >
 <sql:param name='CategoryID'></sql:param>
 </sql:header>
 <sql:query >
 SELECT * FROM Products WHERE CategoryID = @CategoryID FOR XML AUTO
 </sql:query>
</ROOT>

The value for CategoryID can then be specified using the SqlXmlParameter object, as follows:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "Orders";
cmd.CommandText = @"..\..\products2.xml";
cmd.CommandType = SqlXmlCommandType.TemplateFile;

SqlXmlParameter p = cmd.CreateParameter();
p.Name = "@CategoryID";
p.Value = "3";
FileStream f = new FileStream(@"c:\orders.xml",FileMode.Create);
cmd.ExecuteToStream(f);
f.Close();
System.Diagnostics.Process.Start(@"c:\orders.xml");

SqlXmlAdapter

The SqlXmlAdapter object can be used to update the database with an XML DiffGram. This is useful if you have generated XML
data using an annotated schema, the user has modified the data, and you wish to store the changes back in the database.
DiffGrams support insert, update, and delete operations. The SqlXmlAdapter object contains two methods, which are described
in the following table.

Method Description
Fill(DataSet ds) Populates a DataSet object with XML data retrieved from SQL Server.
Update(DataSet ds) Updates SQL Server to reflect changes to the DataSet object using an XML DiffGram.

For example, assume that you have created the following schema:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xs:element name="Categories">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CategoryID" type="xs:integer"/>
 <xs:element name="CategoryName" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You can use this schema in combination with SqlXmlAdapter to populate a DataSet object and update the database with
changes, as shown below:

SqlXmlCommand cmd = new SqlXmlCommand(NorthwindConnString);
cmd.RootTag = "ROOT";
cmd.CommandText = "Categories";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = @"..\..\Categories.xsd";
DataSet ds = new DataSet();
SqlXmlAdapter ad = new SqlXmlAdapter(cmd);
ad.Fill(ds);
ds.Tables["Categories"].Rows[0]["CategoryName"] = "Drinks";
ad.Update(ds);

This example populates a DataSet object using an annotated schema. A cell in the DataSet object is changed, and the changes
are pushed back to the database using the Update method of the SqlXmlAdapter object.

Conclusion
SQLXML Managed Classes let you author .NET code that takes advantage of the features previously provided by SQLXML. These
features include the ability to generate XML on the server or client side using the following mechanisms: ad hoc queries, stored
procedures, annotated schemas and XPath, and XML templates.

About the Author
Scott Swigart is a senior principal of 3 Leaf Solutions, a company that specializes in training and consulting services for early
adopters of Microsoft technologies. In this role, Scott has provided training and consulting to Microsoft Consulting Services and
other corporations since the Beta 1 release of Microsoft .NET. You can find more information about Scott Swigart and 3 Leaf
Solutions at www.3leaf.com.

© Microsoft Corporation. All rights reserved.

http://www.3leaf.com/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Statistics Used by the Query Optimizer in Microsoft SQL Server
2000

Lubor Kollar
Microsoft Corporation

November 2000

Contents

Statistics Used by the Query Optimizer in Microsoft SQL Server 2000
Statistical Data in SQL Server 2000
Statistics Collected by SQL Server 2000
 Statistics for INDEX ''PK_Order_Details''
Creating Statistics with SQL Server 2000
Maintaining Statistics in SQL Server 2000
Statistics and Indexed Views
Conclusion

Summary: Describes what data is collected, where it is stored, and which commands create, update, and delete statistics about
indexes and column data stored in the Microsoft SQL Server 2000 database. These statistics are used by the SQL Server query
optimizer to choose the most efficient plan for retrieving data and performing INSERT, SELECT, DELETE or UPDATE queries. It also
outlines how SQL Server default statistics creation and maintenance settings can be changed on different levels (index, table, and
database). (15 printed pages)

Statistics Used by the Query Optimizer in Microsoft SQL Server 2000
Microsoft® SQL Server™ 2000 collects statistical information about indexes and column data stored in the database. These
statistics are used by the SQL Server query optimizer to choose the most efficient plan for performing INSERT, SELECT, DELETE or
UPDATE queries. This article describes what data is collected, where it is stored, and which commands create, update, and delete
statistics. By default, SQL Server 2000 also creates and updates statistics automatically (when such an operation is considered to
be useful). This article also outlines how these defaults can be changed on different levels (index, table, and database).

Statistical Data in SQL Server 2000
SQL Server 2000 collects statistics about individual columns (single column statistics) or sets of columns (multi-column statistics).
All information about a single statistics object is stored in several columns of a single row in the SYSINDEXES table. Computed
columns and columns of the ntext, text, or image data types cannot be specified as statistics columns. The combined width of all
columns constituting a single statistics set must not be greater than 900 bytes.

Statistics Collected by SQL Server 2000

Time of the last statistics collection (inside STATBLOB).
Number of rows in the table or index (rows column in SYSINDEXES).
Number of pages occupied by the table or index (dpages column in SYSINDEXES).
Number of rows used to produce the histogram and density information (inside STATBLOB, described below).
Average key length (inside STATBLOB).
Single column histogram, including the number of steps (inside STATBLOB).

Note A histogram is a set of up to 200 values of a given column. All (or selected, if statistics are collected by
sampling) values in a given column are sorted; the ordered sequence is divided into intervals up to 199 so that the
most statistically significant information is captured. In general, these intervals are of non-equal size. The following
values are stored with each step of the histogram.

Table 1. Histogram values.

RANGE_HI_KEY Key values
EQ_ROWS Specifies how many rows are exactly equal to RANGE_HI_KEY.

RANGE_ROWS Specifies how many rows are inside the range (they are smaller than this RANGE_HI_KEY, but bigger than the
previous smaller range key).

DENSITY Specifies 1 / Number of distinct values (inside the range).

When a dbcc show_statistics command is used, instead of the DENSITY information, two derived values are shown.

Table 2. Histogram showing dbcc show_statistics with two derived values.

DISTINCT_RANGE_ROWS Specifies how many distinct rows are inside this range (not accounting for the RANGE_HI_KEY value
itself); DISTINCT_RANGE_ROWS = 1 / DENSITY.

AVG_RANGE_ROWS Average number of rows per distinct value inside the range; AVG_RANGE_ROWS = DENSITY *
RANGE_ROWS.

Histograms in SQL Server 2000 are only built for a single column, the first column in the case of multi-column statistics, or an
index.

SQL Server 2000 builds the histogram from the sorted set of column values in three steps. In the first step, up to 200 values of
RANGE_HI_KEY, EQ_ROWS, RANGE_ROWS and DISTINC_RANGE_ROWS are collected. Each additional column value is processed
in the second step; the value is either added to the last range (the values are sorted), or a new range is created. If the new range is
created, one pair of existing, neighboring ranges is collapsed into a single range. The collapsed ranges are selected by considering
the density information so that two neighboring ranges with the closest densities are collapsed in order to minimize information
loss. In the third step, more ranges may be collapsed if they have close densities. Therefore, even if the column has more than 200
unique values, the histogram may have less than 200 steps.

If the histogram has been built using a sample, then the values of RANGE_ROWS, EQ_ROWS, DISTINCT_RANGE_ROWS and
AVG_RANGE_ROWS are estimated and therefore they do not need to be whole integers.

Density is information about the number of duplicates in a given column or combination of columns and it is calculated as
1/(number of distinct values). When a column is used in an equal predicate the number of qualifying rows is estimated using the
density derived from the histogram. Histograms are always used to estimate filtering by non-equality predicates.

Note A separate density value is also displayed in the first line of dbcc show_statistics, but this is not used by the
optimizer in SQL Server 2000.

The multicolumn statistics for one set of columns consists of one histogram for the first column in the statistics definition, one
density value for the first column, and an all density value for each prefix combination of columns (including the first column
alone). Each set of statistics (a histogram and two or more density values) is stored in one row of SYSINDEXES together with the
timestamp of the last statistics update, the number of rows in the sample used to produce the statistical information, the number
of steps in the histogram, and the average length of the key. The number of rows value (rowcnt column) is maintained only for
index number 0 or 1 (heap or clustered index) and it is replicated across all indexes on the table. Similarly, the dpages is
maintained for each table and index. The statistical information is empty for tables without any rows at the time of statistics
collection.

Use sp_helpindex and sp_helpstats to display the list of all statistics available for a given table; sp_helpindex lists all indexes
on the table, and sp_helpstats lists all the statistics on the table. Each index also carries the statistical information for its columns.
The statistical information created using the CREATE STATISTICS command is equivalent to the statistics built by a CREATE INDEX
command in the same columns. The only difference is that the CREATE STATISTICS command uses sampling by default while the
CREATE INDEX command gathers the statistics with fullscan since it has to process all rows for the index anyway.

Here is an example of all indexes and statistics for the Order Details table in the Northwind database. Since there are no statistics
on the non-indexed columns initially, run sp_createstats while connected to the Northwind database first.

Table 3. Order Details table in the Northwind database.

sp_helpindex [Order Details]

index_name index_description index_keys
OrderID nonclustered located on PRIMARY OrderID
PK_Order_Details clustered, unique, primary key located on PRIMARY OrderID, ProductID
ProductID nonclustered located on PRIMARY ProductID

sp_helpstats [Order Details]

statistics_name statistics_keys
Discount Discount
Quantity Quantity

UnitPrice UnitPrice

Statistics can also be displayed using a dbcc show_statistics command like

dbcc show_statistics ([Order Details],PK_Order_Details)
If no information is returned, it means that the statistics were updated last time or the index was created when there were no rows
in the table. To update the statistics for Order Details table, run UPDATE STATISTICS [Order Details]; to update statistics for all
tables in the Northwind database, run sp_updatestats.

Note The output of the command has been edited for better readability.

Statistics for INDEX ''PK_Order_Details''

Table 4. Statistics for INDEX ''PK_Order_Details''

Updated Rows Rows Sampled Steps Density
Average

key length
May 17 2000 10:38PM 2155 2155 192 1.1090337E-3 8.0
All Density Average Length Columns

1.2048193E-3 4.0 OrderID
4.6403712E-4 8.0 OrderID, Product ID
RANGE
_HI_KEY RANGE_ROWS EQ_ROWS

DISTINCT_RANGE
_ROWS

AVG_RANGE
_ROWS

10248 0.0 3.0 0 0.0
10253 11.0 3.0 4 2.75
10256 7.0 2.0 2 3.5
10260 8.0 4.0 2 2.6666667
10263 5.0 4.0 2 2.5
10267 5.0 3.0 3 1.6666666
10273 10.0 5.0 5 2.0
10278 8.0 4.0 4 2.0
10283 9.0 4.0 4 2.25
10286 7.0 2.0 2 3.5
10290 7.0 4.0 3 2.3333333
10294 8.0 5.0 2 2.6666667
10298 6.0 4.0 3 2.0
10303 9.0 3.0 4 2.25
10306 6.0 3.0 2 3.0
10309 4.0 5.0 2 2.0
10312 4.0 4.0 2 2.0
10319 11.0 3.0 5 1.8333334
10325 11.0 5.0 4 2.2
10329 10.0 4.0 3 3.3333333
10333 6.0 3.0 3 2.0
10337 7.0 5.0 3 2.3333333
10342 10.0 4.0 4 2.5
10347 10.0 4.0 4 2.5
10351 5.0 4.0 3 1.6666666
10357 11.0 3.0 4 2.2
10360 6.0 5.0 2 3.0
10363 5.0 3.0 2 2.5
10368 9.0 4.0 4 2.25
10372 6.0 4.0 3 2.0
10375 4.0 2.0 2 2.0
10380 7.0 4.0 4 1.75

10384 9.0 2.0 3 3.0
10387 5.0 4.0 2 2.5
10390 7.0 4.0 2 3.5
10393 2.0 5.0 2 1.0
10396 5.0 3.0 2 2.5
10401 11.0 4.0 4 2.75
10405 7.0 1.0 3 2.3333333
10408 8.0 3.0 2 4.0
10412 7.0 1.0 3 2.3333333
10417 10.0 4.0 4 2.5
10420 6.0 4.0 2 3.0
10424 7.0 3.0 3 2.3333333
10429 6.0 2.0 4 1.5
10432 7.0 2.0 2 3.5
10437 10.0 1.0 4 2.5
10440 7.0 4.0 2 3.5
10444 6.0 4.0 3 2.0
10446 2.0 4.0 1 2.0
10451 10.0 4.0 4 2.5
10455 7.0 4.0 3 2.3333333
10458 3.0 5.0 2 1.5
10461 5.0 3.0 2 2.5
10465 8.0 5.0 2 2.6666667
10470 9.0 3.0 4 2.25
10474 6.0 4.0 3 2.0
10479 9.0 4.0 4 2.25
10485 10.0 4.0 5 2.0
10490 10.0 3.0 4 2.5
10494 7.0 1.0 3 2.3333333
10498 7.0 3.0 3 2.3333333
10504 10.0 4.0 5 2.0
10507 3.0 2.0 2 1.5
10512 8.0 4.0 4 2.0
10515 8.0 5.0 2 4.0
10519 9.0 3.0 3 3.0
10522 5.0 4.0 2 2.5
10524 4.0 4.0 1 4.0
10528 7.0 3.0 3 2.3333333
10530 3.0 4.0 1 3.0
10535 9.0 4.0 4 2.25
10537 4.0 5.0 1 4.0
10541 10.0 4.0 3 3.3333333
10546 7.0 3.0 4 1.75
10550 7.0 4.0 3 2.3333333
10553 5.0 5.0 2 2.5
10555 4.0 5.0 1 4.0
10558 3.0 5.0 2 1.5
10564 10.0 3.0 5 2.0
10568 8.0 1.0 2 2.6666667
10572 6.0 4.0 3 2.0
10575 7.0 4.0 2 3.5
10577 3.0 3.0 1 3.0

10583 10.0 3.0 5 2.0
10587 3.0 3.0 3 1.0
10592 8.0 2.0 4 2.0
10596 8.0 3.0 2 2.6666667
10605 15.0 4.0 8 1.875
10607 3.0 5.0 1 3.0
10612 8.0 5.0 4 2.0
10616 6.0 4.0 3 2.0
10621 8.0 4.0 4 2.0
10623 2.0 5.0 1 2.0
10626 6.0 3.0 2 3.0
10634 14.0 4.0 7 2.0
10639 11.0 1.0 4 2.75
10643 6.0 3.0 3 2.0
10646 5.0 4.0 2 2.5
10650 6.0 3.0 3 2.0
10654 6.0 3.0 3 2.0
10657 4.0 6.0 2 2.0
10663 11.0 3.0 4 2.2
10666 6.0 2.0 2 3.0
10670 6.0 5.0 3 2.0
10674 8.0 1.0 2 2.6666667
10677 6.0 2.0 2 3.0
10680 5.0 3.0 2 2.5
10683 6.0 1.0 2 3.0
10686 6.0 2.0 2 3.0
10691 9.0 5.0 4 2.25
10696 11.0 2.0 4 2.75
10698 4.0 5.0 1 4.0
10709 26.0 3.0 10 2.5999999
10714 11.0 5.0 4 2.75
10722 18.0 4.0 7 2.5714285
10733 24.0 3.0 9 2.4000001
10740 12.0 4.0 6 2.0
10745 6.0 4.0 4 1.5
10747 4.0 4.0 1 4.0
10751 9.0 4.0 3 3.0
10756 9.0 4.0 4 2.25
10759 7.0 1.0 2 3.5
10762 5.0 4.0 2 2.5
10766 6.0 3.0 3 2.0
10769 5.0 4.0 2 2.5
10776 11.0 4.0 5 1.8333334
10781 6.0 3.0 4 1.5
10789 15.0 4.0 7 2.1428571
10793 7.0 2.0 3 2.3333333
10796 4.0 4.0 2 2.0
10800 6.0 3.0 3 2.0
10803 6.0 3.0 2 3.0
10806 5.0 3.0 2 2.5
10811 7.0 3.0 4 1.75
10814 5.0 4.0 2 2.5

10818 7.0 2.0 3 2.3333333
10823 7.0 4.0 4 1.75
10829 10.0 4.0 5 2.0
10832 8.0 4.0 2 4.0
10836 7.0 5.0 3 2.3333333
10839 7.0 2.0 2 3.5
10842 6.0 4.0 2 3.0
10846 7.0 3.0 3 2.3333333
10848 6.0 2.0 1 6.0
10851 5.0 4.0 2 2.5
10855 6.0 4.0 3 2.0
10858 5.0 3.0 2 2.5
10861 5.0 5.0 2 2.5
10866 8.0 3.0 4 2.0
10869 4.0 4.0 2 2.0
10872 5.0 4.0 2 2.5
10878 10.0 1.0 5 2.0
10882 7.0 3.0 3 2.3333333
10885 4.0 4.0 2 2.0
10890 8.0 3.0 4 2.0
10894 7.0 3.0 3 2.3333333
10903 15.0 3.0 8 1.875
10909 7.0 3.0 5 1.4
10912 6.0 2.0 2 3.0
10917 10.0 2.0 4 2.5
10923 10.0 3.0 5 2.0
10926 5.0 4.0 2 2.5
10930 8.0 4.0 2 2.6666667
10934 8.0 1.0 2 2.6666667
10946 27.0 3.0 10 2.4545455
10949 4.0 4.0 2 2.0
10954 8.0 4.0 4 2.0
10959 10.0 1.0 4 2.5
10962 4.0 5.0 2 2.0
10968 10.0 3.0 5 2.0
10973 5.0 3.0 4 1.25
10977 4.0 4.0 2 1.3333334
10980 10.0 1.0 2 5.0
10986 11.0 4.0 4 2.2
10990 8.0 4.0 2 2.6666667
10997 10.0 3.0 6 1.6666666
11001 10.0 4.0 3 3.3333333
11011 24.0 2.0 8 2.6666667
11014 7.0 1.0 2 3.5
11019 10.0 2.0 4 2.5
11024 10.0 4.0 4 2.5
11030 10.0 4.0 5 2.0
11034 10.0 3.0 3 3.3333333
11039 10.0 4.0 4 2.5
11053 21.0 3.0 13 1.6153846
11058 10.0 3.0 4 2.5
11064 11.0 5.0 4 2.2

11070 10.0 4.0 5 2.0
11075 9.0 3.0 4 2.25
11076 0.0 3.0 0 0.0
11077 0.0 25.0 0 0.0
(192 row(s) affected)

Note that while the sp_helpindex output shows only one column in the City statistics (City), the output of show_statistics
displays the All Density value for column combination City,Customer_id as well. This is because there is a clustering index on a
single column of Customer_id on the table, and each secondary index also contains the clustering key columns. Normally this
fact is transparent to the user, but the query optimizer knows about the clustering columns and may avoid secondary fetches if
only those column values are required on top of the secondary index columns for the query execution. The statistics contain the
clustering key columns as well.

Creating Statistics with SQL Server 2000
There are two basic statements in SQL Server 2000 that generate the statistical information described above: CREATE INDEX
generates the declared index in the first place, and then as a byproduct creates one set of statistics for the column combination
constituting the index. CREATE STATISTICS only generates the statistics for a given column or combination of columns.

In addition, there are several other ways to create statistics or indexes. Ultimately, though, each issues one of the above two
commands.

Use sp_createstats to create statistics for all eligible columns (except image and text data) for all user tables in the current
database. A new histogram will not be created for columns that already have a histogram.
Use dbcc dbreindex to rebuild one or more indexes for a table in the specified database.
In the Query Analyzer, type in a query, select Show Execution Plan and then execute the query. Right-click on any icon in
the displayed plan and choose Manage Indexes or Create/Update Statistics.
Use Create Index wizard (described in a separate article).

Here is an example of a CREATE STATISTICS command on the pubs..authors table:

CREATE STATISTICS s1 ON authors (state, au_lname) WITH SAMPLE 50 PERCENT

Usually, statistics with default sampling are the best. However, there may be cases when statistics with larger sample sizes (ideally
with fullscan) may benefit the query optimization, such as when the values in the given column are skewed (several values with
very high frequency, the rest with low frequency). The price for using statistics with larger sample sizes is the time to create the
statistics.

The above command creates single two-column statistics. In this case, the SAMPLE 50 PERCENT is ignored and a full scan is
performed because the table is too small. Sampling is used primarily to avoid excessive scans of data and affects only tables and
indices with 1024 or more pages (8 MB).

In SQL Server 2000, statistics are created for all indexes at the index creation time. SQL Server creates single column statistics
automatically when compiling queries. These statistics are created for columns where the optimizer would have to estimate the
approximate density or distribution otherwise. There are two exceptions to this rule: first, statistics may not be created for tables
where the cost of the plan execution would be lower than the statistics creation itself, and secondly, in the case when the server is
too busy (too many outstanding compilations in progress).

To avoid long term maintenance of unused statistics, SQL Server 2000 ages the automatically created statistics (only those that
are not a byproduct of the index creation). After several automatic updates the column statistics are dropped rather than updated.
If they are needed in the future, they may be created again. There is no substantial cost difference between statistics that are
updated and created. The aging does not affect user-created statistics.

The automatic statistics creation function can be disabled at the database level by executing sp_dboption dbname, 'auto create
statistics', 'OFF'.

By default, the statistics are created by sampling the data set when executing the CREATE STATISTICS command or when the
statistics are automatically created. CREATE INDEX scans the whole data set anyway; therefore, the index statistics are initially
created without sampling. The CREATE STATISTICS command allows you to set the sample size in the WITH clause either by
specifying FULLSCAN or the percentage of data to scan. The latter is interpreted as an approximation. It is also possible to inherit
the previous sample size when specifying WITH RESAMPLE on the UPDATE STATISTICS command. This is particularly useful when
there are both indexes (originally created with fullscan statistics) and statistics only on some other columns (originally created
with sample statistics). Using the RESAMPLE option on UPDATE STATISTICS will then maintain the fullscan statistics for the
indexes and sample statistics for the rest of the columns.

The dbcc show_statistics command displays the sample size under the Rows Sampled heading. Statistics created automatically,
or updated automatically are always generated using default sampling. The default sampling is a slow-growing logarithmic
function of the table size.

The SQL Server query profiler can also monitor automatic statistics creation. The AutoStats event is in the group of Object trace
events. When defining the trace, also select the Integer Data, Success, and Object ID columns. Once the AutoStats event is
captured, the Integer Data column contains the number of statistics updated for a given table, the Object ID is the ID of the table,
and the TextData column (included in the trace definition by default) contains names of the columns together with either an
Updated: or Created: prefix. The Success column contains potential Failure indication. In some cases, you may also observe an
AutoStats event with no statistics created or updated. Such an event is generated when the auto update statistics is turned off,
or when there are substantial changes in a table and a query referring to the changed table is optimized so that there are no
indexes or statistics on the table at that moment.

The DROP STATISTICS command is used to drop statistics, but it is not possible to drop statistics that are a byproduct of an index.
Such statistics are removed only when the index is dropped.

Maintaining Statistics in SQL Server 2000
After a series of INSERT, DELETE and/or UPDATE queries are performed on a table, the statistics may not reflect the true data
distribution in a given column or index. If the SQL Server query optimizer requires statistics for a particular column in a table that
has undergone substantial update activity since the last time the statistics were created or updated, SQL Server automatically
updates the statistics by sampling the column values (using auto update statistics). The statistics auto update is triggered by
query optimization and involves only a subset of columns referred to in the query. The rowmodctr column in SYSINDEXES value
shows the number of changes on the table since the last time the statistics were updated or created. There is one row in
SYSINDEXES for each index and statistics set (if the table does not have a clustered index then there is a row corresponding to the
heap as well), and SQL Server 2000 maintains the amount of change for indexes and statistics separately (although this was not
true in SQL Server 7.0). Throughout the INSERT, UPDATE, and DELETE queries performed in a table, the rowmodctr value is
increased only for the index ID 0 or 1 (there is always only one on a table). For the rest of the indexes and statistics, it shows only a
relative value that has to be added to the rowmodctr of the index 0 or 1 to get the true number of changed rows for this index.

This logic enables the maintenance rowmodctr through the INSERT, UPDATE, and DELETE queries in a single row per table (the
index 0/1), while at the same time allowing for the changed rows to be tracked individually for each index. Therefore if auto
update statistics is on, rows are updated only on the indexes and columns that are necessary for a given query.

Example Query

Five hundred and six rows are inserted into the table t1, and then non-clustered indexes i1 and i2 are created. The interesting
entries in the SYSINDEXES table after these operations are:

Name Indid rowcnt rowmodctr
t1 0 506 506
i1 2 506 -506
I2 3 506 -506

After another 213 rows are inserted, the counts are:

Name Indid rowcnt rowmodctr
t1 0 719 719
i1 2 506 -506
i2 3 506 -506

After the statistics for the index i1 are refreshed using UPDATE STATISTICS t1 (i1):

Name Indid rowcnt rowmodctr
t1 0 719 0
i1 2 506 0
i2 3 506 213

The auto update statistics feature described above may be turned off at different levels.

Use sp_dboption dbname, 'auto create statistics', 'OFF' on the database level. Use this sp also to display the current
setting for a particular database.
Use the NORECOMPUTE option of the UPDATE STATISTICS command for table, index, or statistics.

Use the NORECOMPUTE option of the CREATE STATISTICS command for table or statistics.
Use sp_autostats to display and change setting for table, index, or statistics.

Re-enabling the automatic updating of statistics can be done similarly using the sp_dboption, UPDATE STATISTICS or
sp_autostats.

SQL Server 2000 keeps the automatic statistics update setting on per database, as well as per index and table levels. While you
can switch it to all statistics on one table using a single CREATE STATISTICS command, this must be done by changing the setting
for all statistics and indexes on a given table. Table 6 shows the combined effect of different database, table, and index settings.

Table 6. Combined effect of different database, table, and index settings

Database Setting Table/Index Setting
Statistics Auto Update

is in effect for the object
ON ON ON
ON OFF OFF
OFF ON OFF
OFF OFF OFF

Auto statistics update is always performed by sampling the index or table. Manually running CREATE and UPDATE statistics allows
you to change the sample size. The statistics update is covered by the same SQL Profiler event as the above statistics creation.

Statistics and Indexed Views
Normally, statistics are not required on indexed views. This is because substitution of the indexed views into the query plan is
considered only after all the statistics for the underlying tables and indexes are attached to the query plan. However, there is one
exception: statistics will be used if the view is directly referenced in the FROM clauses using the NOEXPAND hint. If the
NOEXPAND hint is used on a view that does not contain an index, an error will be generated and the plan will not be created.

Because of their very limited use, the statistics on indexed views are not created using the sp_createstats or updated using the
sp_updatestats. The auto update and auto create statistics work for indexed views. But as noted before, such statistics would
be required by the optimizer and subsequently created only if the indexed view is used with the NOEXPAND hint in the query and
the AUTO UPDATE or CREATE STATISTICS option is turned on. You can also manually perform CREATE STATISTICS on the indexed
view columns or use UPDATE STATISTICS to update column or index statistics on indexed views.

Conclusion
Statistics about the data in the database are important input for the query optimizer. By default, SQL Server is creating and
maintaining the statistics without any user intervention. The majority of SQL Server users will achieve optimal performance
without any changes to this default. SQL Server provides several interfaces to change the default statistics creation and
maintenance policies, and these should be used only in special circumstances when the default policies do not provide the
optimal performance.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

The Reality of Real-time OLAP

Dennis Kennedy
Microsoft Corporation

February 2003

Applies to:
 Microsoft® SQL Server™ 2000 Analysis Services

Summary: Discover the functionality and implementation of real-time OLAP, a key feature of SQL Server 2000 Analysis Services.
(11 printed pages)

Contents

Introduction
Defining Real-Time OLAP
Using Real-Time OLAP
Improving Real-Time OLAP Performance
Conclusion
For More Information

Introduction
Online analytical processing (OLAP) is typically defined as the processing and analysis of shared multidimensional data. In
practice, OLAP systems analyze data drawn from large, low-transaction, high-latency relational databases, such as data
warehouses. The purpose of such analysis is to aggregate and organize business information into a readily accessible, easy to use
multidimensional structure. OLAP systems store some or all of this aggregated information either within tables in a relational
database (also known as relational OLAP, or ROLAP, storage) or in specialized data structures in multidimensional databases (also
known as multidimensional OLAP, or MOLAP, storage). OLAP queries can be answered much more quickly than similar relational
queries because the aggregations and computations have already been completed and the resulting derived values are readily
available from a ROLAP table or MOLAP storage.

Retrieving, analyzing, and aggregating large amounts of historical data can consume extensive time and resources. OLAP systems
do not usually run against online transaction processing (OLTP) or other high-transaction, low-latency databases because the
time and resources required can affect the performance of the relational database. Instead, OLAP systems typically run against
data warehouses, which are updated relatively infrequently, to support the requirements of most commercial and financial
analysis. Most OLAP systems rely on a "snapshot" approach, periodically retrieving and aggregating data for later presentation
and analysis. Because OLAP systems typically rely on stored, derived values to answer queries, the aggregation process must also
reasonably match the update latency of the underlying relational data source to avoid presenting overly "stale" data.

Products that can perform aggregations quickly enough to provide multidimensional data from low-latency data sources have
challenged this traditional view of OLAP in recent years. This functionality, which is referred to as real-time OLAP, is most often
used in financial or industrial scenarios where multidimensional analysis of low-latency data is crucial to the organization's
business intelligence requirements. However, both the definition and expectations of real-time OLAP can vary from product to
product.

This white paper provides a practical definition of real-time OLAP as implemented in Microsoft SQL Server 2000 Analysis
Services. It also includes technical information and guidelines for the use of this powerful but misunderstood feature.

This paper assumes that you have a basic knowledge of relational database concepts, including dimensional design, and a
working knowledge of SQL Server 2000 Analysis Services.

Defining Real-Time OLAP
The definition of real-time OLAP varies from product to product. In Analysis Services, real-time OLAP represents the capability to
quickly retrieve, organize, aggregate and present multidimensional data for cubes and dimensions whenever the data changes in
the underlying relational data source, without requiring the cube or dimension to be explicitly processed first. Because this
definition differs from that used by other OLAP products, the best way to understand this definition is to study the various objects
and interactions that are involved in real-time OLAP.

Real-Time Objects

To use real-time OLAP, you must first create either a real-time dimension or a real-time cube in Analysis Services. The following
sections describe the requirements that must first be satisfied, depending on the object.

Real-time Dimension

A real-time dimension is a shared regular ROLAP dimension that supports real-time updates. The requirements for creating a
real-time dimension are similar to those for creating a shared changing dimension, in that member keys must be unique for the
members of the lowest level of the dimension. In addition, aggregation usage is limited to the list of available values provided for
shared changing dimensions, as described in SQL Server 2000 Books Online. Unlike other changing dimensions, though, you
cannot create private real-time dimensions.

For more information about the requirements of changing dimensions, see "Changing Dimensions" in SQL Server 2000 Books
Online.

Real-time Cube

A real-time cube is a cube in which one or more ROLAP partitions or dimensions support real-time updates. Multiple dimensions
or partitions can support real-time updates, and a real-time cube can have a mixture of dimensions or partitions that may or may
not be enabled for real-time updates. Because of the complexity involved in managing such real-time cube data, the requirements
for creating a real-time cube are more stringent than for a regular cube.

Remote partitions, which are used in distributed partitioned cubes, cannot be enabled for real-time updates.

To support real-time updates, a ROLAP partition must either store no aggregations, or it must use indexed views to generate and
store aggregations. Using a real-time partition with no aggregations allows you to support real-time updates without requiring
structural changes to a SQL Server 2000 database, but at a cost in performance. Indexed views provide a clear performance
increase for most ROLAP partitions, but have some fairly stringent requirements that must be satisfied, and require the capability
to make structural changes to the SQL Server 2000 database.

To store aggregations, the Analysis server creates an indexed view for each aggregation that is stored within a partition enabled
for real-time updates; a single partition can have multiple indexed views associated with it. The indexed view contains aggregated
measure data grouped by the levels defined as the granularity for that aggregation.

To create an indexed view for a partition, use the Storage Design Wizard. First, ensure that the partition uses ROLAP storage and
is enabled for real-time updates. Then, design one or more aggregations; each aggregation requires an indexed view, and these
are automatically created by the Analysis server. For more information about creating indexed views for ROLAP partitions, see
"Indexed Views for ROLAP Partitions" in SQL Server 2000 Books Online.

You can also use the Storage Design Wizard to remove an existing indexed view from a partition enabled for real-time updates.
To remove existing aggregations, select the Performance gain reaches option in the Storage Design Wizard and set the value to
0%. If no aggregations are required by a partition that is enabled for real-time updates, the existing indexed view is also removed.

Besides the requirements for indexed views listed in SQL Server 2000 Books Online, Analysis Services must be able to create
indexed views and traces on the SQL Server 2000 data source. This means that the appropriate security credentials must be
granted to the user accounts under which the SQL Server 2000 data source and the MSSQLServerOLAPService service run.

The user account that the SQL Server 2000 data source uses must have server administrator privileges to create indexed views,
because Analysis Manager and the underlying Decision Support Objects (DSO) administration object model create the
aggregations for a partition used by a real-time cube. If your SQL Server 2000 data source uses integrated security, the user
account under which you logged in while using Analysis Manager must have server administrator privileges. If your SQL Server
2000 data source uses SQL Server authentication, the connection string for the data source must reference a user account that
has server administrator privileges.

Security note When possible, use Windows Authentication.

The user account that the MSSQLServerOLAPService service uses must have server administrator privileges in order to use the
notification mechanism, a specialized SQL Server 2000 trace event used to notify Analysis Services of changes to fact and
dimension table data. The MSSQLServerOLAPService service uses a listener thread to subscribe to and receive trace events for a
real-time cube or real-time dimension. For more information about the notification mechanism, the listener thread, and trace
events, see Real-Time Change Notification.

Because two different user accounts can be involved in the creation of a real-time cube (one for the SQL Server 2000 data source
and one for the MSSQLServerOLAPService service), you may be able to create indexed views for a real-time cube but be unable to
receive the notification events required to support real-time updates for that cube. Make sure that both user accounts have the
necessary SQL Server 2000 privileges before creating a real-time cube.

Real-Time Change Notification

When an object that supports real-time updates is created, Analysis Services uses the trace mechanism in SQL Server 2000, along
with a proprietary trace event class, to create a notification event for database tables that are used by the object. For a real-time
dimension, the notification event is created for all of the tables that are used by the dimension. For a real-time cube, however, the
notification event is created only for the fact tables that are used by partitions that support real-time updates for the cube. (The
indexed views used by partitions in real-time cubes are used only for retrieval and aggregation purposes.) A listener thread,
running on Analysis Services, subscribes to and receives these notification events.

The notification event is raised on a per-transaction, not per-operation, basis. For example, a single transaction can contain
thousands of SQL UPDATE operations to a large fact table, but only one notification event is raised when the transaction is
committed. If notification events are enabled for a given table during a database transaction (for example, when a real-time
dimension is created on a dimension table receiving a periodic update), the transaction may not raise a notification event.
However, this is an extremely rare occurrence, and you can prevent it by enabling real-time updates during periods of low
relational database activity.

The per-transaction approach for the notification mechanism is important because you can potentially improve real-time
performance by batching multiple SQL INSERT, UPDATE and DELETE operations into a single transaction whenever possible.
Every time a notification event is received, objects in the server cache are invalidated. The effect of this invalidation becomes
important when the server cache and client cache attempt to synchronize. For more information, see Client Cache Management.

Server Cache Management

When the Analysis Services listener thread receives a notification event for a database table, the thread instructs the Analysis
server to invalidate the server cache for any real-time object that depends on the database table. Invalidation requires the Analysis
server to update the meta data for the real-time object the next time it receives a request from a client application for data or
meta data for that object. If a request for data is received, the data for the object is loaded on demand only after the meta data for
the object has been retrieved and organized.

Queries and requests

Real-time OLAP depends in part on the efficiency and speed with which requests are processed. Requests for data and meta data
trigger updates on the server cache and guide the server cache as to the depth and width of data to be cached. However, queries
and requests are not synonymous—a request is not necessarily a query. In Analysis Services, the term "query" refers to a
Multidimensional Expressions (MDX) statement issued by a client application. Microsoft PivotTable® Service, the OLE DB provider
used to access Analysis Services, breaks down an MDX statement into one or more separate requests for data or meta data. If
PivotTable Service can satisfy a request through the client cache, the request is not sent to the Analysis server. If all of the requests
for a query can be satisfied in the same manner, no communication with the Analysis server is required.

However, PivotTable Service can send requests for other reasons. Requests can be sent in response to drillup or drilldown
requests made by a client application, or through the synchronization mechanism used by PivotTable Service. As such,
communication between PivotTable Service and the Analysis server can be somewhat difficult to predict or control. For more
information about how the synchronization mechanism works, see Client Cache Management.

Real-time dimensions and server caching

As described earlier, real-time dimensions are shared regular ROLAP dimensions that are enabled for real-time updates. ROLAP
dimensions are handled differently from other dimensions in Analysis Services. MOLAP dimension members and member
properties are fully cached when the MSSQLServerOLAPService service is started, but ROLAP dimensions are cached on demand
from the relational database in a two-step process:

1. Starting at the top level of the ROLAP dimension, a number of members are retrieved to fill in the structure; the number is
equivalent to the large level threshold for the Analysis server.

2. Dimension subtrees are constructed on demand as requests for data or meta data are received.

Processing for real-time dimensions is also different than it is for other regular ROLAP dimensions. A regular ROLAP dimension is
considered to be a changing dimension by Analysis Services. Unlike other dimensions, rebuilding the structure of a changing
dimension is necessary only if the following changes are made:

You add, move, rename, or delete either the top or bottom level.
You add, move, rename, or delete a level that contains member groups.

Otherwise, a changing dimension can be incrementally updated. The benefit of an incremental update is that it does not require
dependent objects such as cubes to be reprocessed. Real-time dimensions function similarly, in that if you do not change the
structure of a real-time dimension, it does not require rebuilding. However, because a real-time dimension is cached on request,
an incremental update isn't necessary. The cache for the real-time dimension is invalidated and re-cached on demand as requests

for data and meta data are received. If the structure of a real-time dimension is altered in the ways mentioned earlier, the real-
time dimension must be rebuilt.

Real-time dimensions tend to be more performance intensive; because multiple cubes can depend on a real-time dimension, their
cached results can become invalidated when the underlying dimension table changes. An update to a dimension table for a real-
time dimension can have a much larger effect on the server cache than an equivalent update to a fact table for a real-time cube.
As such, real-time dimensions are more "expensive" in terms of resources and performance, and should therefore be used
sparingly.

Real-time cubes and server caching

To the Analysis server, real-time cubes can have one or two levels of caching. If a real-time cube does not use real-time
dimensions, the Analysis server retrieves and aggregates data for the real-time cube on demand, and caches the results (both
data and meta data) in the query results cache. If a real-time cube uses a real-time dimension, the necessary subtrees for the real-
time dimension must first be cached to provide structural information for the real-time cube. The real-time cube then retrieves
data from the relational database and aggregates it within the newly cached structure.

Real-time cubes can be somewhat less performance intensive than real-time dimensions, because dimension data does not
typically require reconstruction when an update is made to a fact table. If a cube uses a real-time dimension, and the real-time
dimension is invalidated, the relevant dimension subtrees cached for the cube are also invalidated and must be reloaded and
reconstructed before the cube can satisfy a request for data.

Client Cache Management

PivotTable Service uses a synchronization technique involving version information to determine which objects require reloading
in its client cache. Synchronization occurs either when PivotTable Service issues a request for data or meta data to the Analysis
server, or when auto synchronization is triggered. Management of this synchronization process becomes important when a real-
time object is invalidated in the server cache.

As discussed earlier, MDX queries are not synonymous with requests for data or meta data. On each request for data or meta
data, PivotTable Service validates the version information in the client cache for the object or objects referenced in the request
against the version information in the server cache. If the versions in the client cache and server cache match, no request for data
is made and PivotTable Service supplies the necessary information directly from the client cache. If the versions do not match,
however, the referenced objects in the client cache are invalidated.

PivotTable Service also attempts to synchronize the client cache at regular intervals, even if an MDX query has not been issued. At
an interval determined by the Auto Synch Period connection string property, the background thread used by PivotTable Service
validates all of the objects in the client cache against the corresponding objects in the server cache. If the version information does
not match for a specific object, or if the server cache has been invalidated for a specific object, that object is invalidated in the
client cache.

One difference between the server cache and the client cache is that, to PivotTable Service, only cubes are cached. If a real-time
dimension is invalidated in the server cache, the dimension subtrees used by cubes that depend on that real-time dimension are
invalidated in the client cache. If a real-time cube is invalidated in the server cache, only the data and meta data for the real-time
cube is invalidated in the client cache.

When an object is invalidated in the client cache, PivotTable Service flushes the data for that object and attempts to reconstruct
the object meta data with the server cache. Note that at this point, PivotTable Service does not reconstruct the data; it waits for a
request for data before attempting to repopulate the object, and then only to satisfy the request for data.

The meta data for the dimension or cube is invalidated, even if a change is made to just a single record in the relational database.
With the object invalidated, any queries executed against it require the Analysis server to re-query the relational database and
rebuild the data and meta data for the object in the server cache. During that time, PivotTable Service may send additional
requests for data or meta data. The way in which these additional requests are resolved depends on the object being referenced. If
a request for data or meta data is issued for a real-time dimension, the request is completed as the information becomes
available. If a request for data is issued for a real-time cube, the state of the information influences the success of the request. If
the request is executed at the time any of the objects it referenced became invalidated, the request is re-executed. If the request
was open at the time any of the objects it referenced became invalidated, it falls out of context and any attempt to reference the
data managed by the out-of-context request fails.

Using Real-Time OLAP
The keys to using real-time OLAP successfully are awareness and timing. You need to be aware of all of the steps that must occur
successfully for real-time OLAP and monitor their performance accordingly. If the timing is significantly unbalanced during any or
all of these steps, performance can suffer. The primary areas of concern when using real-time OLAP are:

The frequency of changes made to fact and dimension tables used by real-time cubes and real-time dimensions.

If transactions occur on fact or dimension tables too quickly, the Analysis server is locked in a struggle with the database to
keep its server cache updated. If objects on the server cache are invalidated too frequently, this struggle is pushed down to
PivotTable Service as it tries to synchronize the client cache with the rapidly changing, frequently invalidated server cache.
This struggle, referred to as "cache thrash," is represented to the client application in the form of errors when requests for
data are rendered out of context too often.

The latency of queries made by the Analysis server when retrieving data from the relational database.

If too much time is required to retrieve and organize data from the relational database, a PivotTable Service request for data
or meta data may be rendered out of context. The request is then re-executed after the Analysis server aggregates and
caches the data.

The frequency of requests for data or meta data made by PivotTable Service when synchronizing its client cache with the
Analysis server.

If PivotTable Service requests are too frequent, or if the value of the Auto Synch Period connection string property is too
low, PivotTable Service can waste time and resources attempting to resynchronize its client cache. Reconstructing objects in
the server cache takes time, and issuing requests too often means that some of the requests are rendered out of context
during the time required to reconstruct the referenced objects, possibly causing errors in client applications.

The differences between fact table updates and dimension table updates.

Dimension table updates are more expensive, in terms of time and resources, than fact table updates. A change to a fact
table does not require the dimension subtrees to be reloaded and reconstructed, but a change to a dimension table does,
and this can affect many other cubes.

Improving Real-Time OLAP Performance
The following list details steps you can take to mitigate the concerns mentioned earlier and improve the performance of real-time
OLAP:

Batch transactions involving the fact and dimension tables used for real-time OLAP whenever possible.

Because the notification mechanism works on a per-transaction basis, batching operations when appropriate can minimize
the number of unnecessary notification events that the Analysis server receives. For example, if your application requires
that users see changes every 10 seconds for a real-time cube, but your database receives 50 updates to the underlying fact
table every second, you can improve performance by batching updates into a single transaction and entering them every 5
to 10 seconds. The Analysis server then receives one or two notification events every 10 seconds, rather than 500.

Use real-time dimensions only when absolutely necessary.

Real-time dimensions consume time and resources. You should consider whether a dimension truly requires real-time
updates or if it just requires frequent incremental updates. If the latency period for dimension changes can be measured in
hours or more, use a changing ROLAP dimension instead of a real-time dimension. If you can satisfy your business
requirements using a real-time cube instead of a real-time dimension, choose the real-time cube.

Use deep hierarchies and adjust your large level threshold when constructing real-time dimensions.

When a real-time dimension becomes invalidated, members are initially loaded according to the large level threshold. The
more frequently your real-time dimensions must be updated, the lower this threshold setting should be, because this
number of members is loaded every time a real-time dimension is invalidated. After these members are loaded, dimension
subtrees are loaded on demand based on request requirements. The deeper the hierarchy, the fewer the members that must
be loaded to satisfy such requests (depending on the requirements of the requests themselves). By balancing both initial
and on-demand loading, you can optimize the loading of real-time dimensions based on both the usage of the dimension
and the frequency of updates to the underlying dimension table.

For example, suppose you have an OrganizationMember dimension with only three levels: an All level, a Location level, and
an OrganizationMember ID level (which serves as the leaf level). The Analysis server has a large level threshold of 5,000
members. If you have only three locations but have 300,000 members at the leaf level, you must always load at least
100,000 members at a time to load a single subtree for this dimension. The large level threshold prevents these members
from loading initially; instead, they are loaded on demand. This strategy provides a quick initial load at the expense of long
invalidation periods when the dimension table is changed. If you add a new level named PostalCode between the Location
level and OrganizationMember ID level, and this new level has 1,000 members with an even distribution of leaf members,
the initial load time takes slightly longer because this level can be loaded initially. Each dimension subtree now only requires

300 members to be loaded to fulfill requests for dimension data, greatly improving performance when data is loaded on
demand.

Partition real-time cubes according to real-time requirements.

Like any other cube, a real-time cube can contain multiple partitions, and you can determine which partitions are enabled
for real-time updates. Design your real-time cube so that real-time updates are required only for a single partition, or so
that multiple partitions that require real-time updates are as small as possible. The goal here is to reduce the amount of data
that must be reloaded whenever a fact table is updated.

For example, if your real-time cube shows changes for both current and previous periods, such as a cube that monitors the
current and past performance of a manufacturing line on a daily or weekly basis, partition your cube by period, and enable
for real-time updates only for the partition that represents the current period.

Real-time dimensions are considered changing dimensions, so a real-time dimension cannot be used to set the data slice
for a partition.

Adjust the PivotTable Service Auto Synch Period connection string property as necessary to match the frequency and
latency of real-time objects.

The default value for the Auto Synch Period connection string property is 10 seconds, but it can be set as low as 250
milliseconds. However, the following factors can have an impact on the effectiveness of the property setting:

The frequency of database changes
The latency of server cache updates
The latency of client cache synchronization

Setting this property too low, in an attempt to more quickly synchronize your client cache for real-time objects, can cause
PivotTable Service to inundate the server with requests for data and meta data. To your client application, the result of
setting this property too low can appear as error messages, "#ERR" cell values, or an extended amount of time to resolve
queries. For example, if the frequency of changes to fact and dimension tables used by real-time dimensions and cubes
averages about 10 seconds, the latency to update these objects in the server cache is about 2 seconds, and it takes about 2
seconds to reconcile the client cache against the server cache, setting your Auto Synch Period property to 250
milliseconds means that PivotTable Service attempts to synchronize eight times as fast as it can resolve such
synchronization, and forty times faster than the actual frequency of database changes.

Also, it can be challenging to accurately predict when PivotTable Service will attempt to synchronize its client cache with the
server cache, because synchronization occurs not just at the interval specified by this property but also because of direct
interaction with a client application, such as when a user drills down on a real-time dimension or sends a new MDX query.

The key to using this property successfully is observation and experimentation. As a general guideline, 10 seconds is the
minimum latency period for real-time OLAP; therefore, the Auto Synch Period property should probably not be changed
for most real-time OLAP applications.

Conclusion
Real-time OLAP is an effective way to provide access to low-latency aggregated data in Analysis Services. The performance and
expectations of real-time OLAP can vary based on a number of factors, including networking, database and Analysis server usage,
and the design of your cubes and dimensions. The benefits of real-time OLAP become evident, however, when these factors are
accounted for and mitigated through design and performance tuning.

For More Information
SQL Server Books Online contains more information about Analysis Services. For additional information, see the following
resources:

The Microsoft SQL Server Web site
The Microsoft SQL Server Developer Center
SQL Server Magazine
The Microsoft Official Curriculum courses on SQL Server
The microsoft.public.sqlserver.programming and microsoft.public.sqlserver.datawarehouse newsgroups.

© Microsoft Corporation. All rights reserved.

http://www.microsoft.com/sql
http://msdn.microsoft.com/sqlserver
http://sqlmag.com/
http://www.microsoft.com/traincert/
news://news.microsoft.com/
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Transactional Replication Performance Tuning and
Optimization

Bren Newman
Xavier Schildwachter
Greg Yvkoff
Microsoft Corporation

August 2001

Summary: This paper examines performance in transactional replication and demonstrates ways in which you can improve the
performance of your applications. (30 printed pages)

Contents

Introduction
Improving Replication Performance
Improving the Performance of Transactional Replication
Improving Performance in Applying the Initial Snapshot
 Using -MaxBCPThreads
 Using -UseInprocLoader
 Using Compressed Snapshots
 Using Concurrent Snapshot Processing
Transactional Replication Performance Examples
 Cost of Transactional Replication at the Publisher
 Transactional Replication with Filters
 Transactional Replication with Indexed Views
 Transactional Replication with Transformable Subscriptions
 Transactional Replication with Subscribers Running Earlier Versions of SQL Server
 Transactional Replication with Updatable Subscriptions
 Adding Hardware in Transactional Replication
 Effects of Network Connection Speeds on Transactional Replication
 Replication Command Types
 CALL, MCALL, and XCALL
 Log Reader Agent Properties
 Distribution Agent Properties
 Transactional Replication Scalability
 Transactional Subscriber Latency Rates
 Factors Affecting Transactional Delivery Rates
Conclusion

Introduction
Transactional replication is a type of replication provided by Microsoft® SQL Server™ 2000 that allows data modifications to be
propagated incrementally between servers in a distributed environment.

Transactional replication can be used for many different applications, from reporting servers and data warehousing environments
to Web servers and e-commerce applications. Transactional replication is used at many of the predominant Web sites on the
Internet that run SQL Server, including MSN.com, Passport.com, BarnesandNoble.com, and Buy.com.

Transactional replication is a scalable and reliable solution for distributing data in high-performance environments. This paper
examines performance in transactional replication and demonstrates ways in which you can improve the performance of your
applications. Based on the results of tests conducted using a variety of hardware configurations and replication environments, this
paper provides recommendations in areas such as applying the initial snapshot, optimizing replication settings, and replication
scalability.

Improving Replication Performance
You can enhance the general performance for all types of replication in your application and on your network by:

Optimizing your database design to include replication considerations.

Setting a minimum amount of memory allocated to SQL Server 2000.
Using a separate disk drive for the transaction log for all databases involved in replication.
Adding memory to servers used in replication.
Using multiprocessor computers.
Publishing only the amount of data required.
Running the Snapshot Agent only when necessary and at off-peak times.
Placing the snapshot folder on a drive not used to store database or log files.
Using a single snapshot folder per publication.
Considering the use of compressed snapshot files.
Considering the use of pull or anonymous subscriptions.
Reducing the verbose level of replication agents to zero, except during initial testing, monitoring, or debugging.
Considering the use of the –UseInprocLoader parameter of the Distribution Agent.

For more information about enhancing replication performance, see SQL Server 2000 Books Online.

Improving the Performance of Transactional Replication
You can enhance the performance of transactional replication in your application and on your network by:

Running agents continuously instead of on frequent schedules.
Setting the distribution database to a fixed size that can handle the transaction volume and retention period without
frequent autogrowth.
Reducing the distribution frequency when replicating to numerous Subscribers.
Configuring the Distributor on a dedicated server.
Increasing memory on the Distributor.
Subscribing to all articles in a publication.
Using stored procedure replication when a large number of rows are affected.
Minimizing the retention period for transactions and history.
Increasing the read batch size for the Log Reader Agent.
Minimizing the log history and retention period.
Using custom stored procedures for inserts, updates, and deletes at Subscribers.
Avoiding horizontal filtering.

Improving Performance in Applying the Initial Snapshot
Applying the initial snapshot can take a significant amount of time if you are transferring a large amount of data over the
network, or if you have a slow link. To address this situation, transfer the snapshot using a removable disk or use the performance
optimization features of SQL Server 2000. The following examples demonstrate snapshot performance improvements when
using the optimization features of –MaxBCPThreads, –UseInprocLoader, compressed snapshots, and concurrent snapshot
processing.

Using –MaxBCPThreads

In transactional replication, the –MaxBCPThreads parameter can be passed to the Snapshot Agent and the Distribution Agent.
This parameter specifies the number of bulk-copy operations that can be performed in parallel. The maximum number of threads
and ODBC connections that can exist simultaneously is the value of –MaxBCPThreads or the number of bulk-copy requests that
appear in the synchronization transaction at the distribution database, whichever is lower.

–MaxBCPThreads must have a value greater than zero, and it has no hard-coded upper limit. The default value is 1. When used
with the Snapshot Agent, –MaxBCPThreads affects the time it takes to generate a snapshot. When used with the Distribution
Agent, –MaxBCPThreads affects the time it takes to apply the snapshot at the Subscriber.

Because the Snapshot Agent bulk copies the contents of all the articles in a publication, the Snapshot Agent writes the entire
publication to the snapshot folder. Therefore, the faster the disk subsystem can read and write data to the disk or disks, the faster
the snapshot is completed. This also applies to the Distribution Agent applying the snapshot at the Subscriber. For the numbers
provided in the following table, the snapshot data is written to and read from a three-disk array (RAID 0) and written to a
subscription database spread across a three-disk array (RAID 0) with the database log on a separate disk.

The performance benefit from using –MaxBCPThreads also depends on the number of processors on the server. Specifying a
high number for –MaxBCPThreads can overburden the system, because the system must spend too much time managing

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

threads. Using more threads than the total number of articles provides no additional benefit.

In the following example, the publication has seven articles, totaling 228 megabytes (MB) of database storage space.

Publication Articles 1

Articles Total rows Reserved size (KB) Index size (KB)
CUSTOMER 120,000 19,984 4,032
PAYMENT 120,000 11,280 2,848
ORDERS 374,000 82,208 22,416
NAMES 120,000 7,056 32
CUSTOMER_HISTORY 120,000 23,744 64
PAYMENT_HISTORY 120,000 8,448 64
ORDERS_HISTORY 374,000 75,376 192
TOTAL 1,348,000 228,096 29,648

Generating the initial snapshot with the snapshot agent

The following data shows that on a dual-processor 450-megahertz (MHz) Xeon with 256 MB of memory, using a value of 7 for
–MaxBCPThreads results in snapshot generation that is 1.6 times faster than it is when using a value of 1. On a single processor,
using a value of 7 for –MaxBCPThreads results in snapshot generation that is 1.27 times faster than it is when using a value of 1.
Given that the CPU becomes the bottleneck on the single processor, a value of 7 provides no more benefit than a value of 3.

Processors –MaxBCPThreads
=1

–MaxBCPThreads
=3

–MaxBCPThreads
=7

Dual Processor 122 seconds 84 seconds 76 seconds
Single Processor 122 seconds 96 seconds 96 seconds

Figure 1. Effect of –MaxBCPThreads setting on initial snapshot generation

Applying the Initial snapshot with the Distribution Agent

The following data shows that on a dual processor 450-MHz Xeon with 256 MB of memory, using a value of 7 for
–MaxBCPThreads results in snapshot application that is 1.3 times faster than it is when using a value of 1. On a single processor,
the CPU is again the bottleneck and increasing this value provides little performance improvement. Using a value of 7 for
–MaxBCPThreads is only 1.03 times faster than using a value of 1, and using a value of 7 provides no additional benefit over
using a value of 3. Using dual processors clearly provides a large performance gain; the initial snapshot application is 1.57 times
faster with dual processors than it is with a single processor.

Processors –MaxBCPThreads=1 –MaxBCPThreads=3 –MaxBCPThreads=7
Dual Proc 120 seconds 98 seconds 92 seconds
Single Proc 148 seconds 144 seconds 144 seconds

Figure 2. Effect of –MaxBCPThreads setting on initial snapshot application

Using –UseInprocLoader

The –UseInprocLoader parameter can be passed to the Distribution Agent when applying the initial snapshot at the Subscriber.
When you use this parameter, the Distribution Agent will use the in-process BULK INSERT operation, decreasing the amount of
time taken to apply the snapshot. To enhance performance further, use –UseInprocLoader in conjunction with
–MaxBCPThreads. The following example shows a publication containing 10 articles totaling 46 MB of data.

Publication Articles 2

Articles Total rows Reserved size (KB) Index size (KB)
CUSTOMER 60,000 7,944 1,968
PAYMENT 60,000 5,640 1,424
ORDERS 187,000 29,896 11,144
NAMES 5,765 328 16
PRODUCTS 10,000 904 264
INTERESTED_IN 6,000 1,216 752
STATE 200 64 48
SHIPPERS 51 40 32
SHIP_TYPE 11 40 32
REGION 2 40 32
TOTAL 329,029 46,112 15,712

When you use only the –UseInprocLoader parameter, snapshot application is 1.4 times faster than without this parameter. When
–UseInprocLoader is combined with –MaxBCPThreads=5, snapshot application is 2.1 times faster.

Time taken to apply snapshot at Subscriber

Standard –UseInprocLoader –UseInprocLoader and –MaxBCPThreads=5

36 seconds 25 seconds 17 seconds

In most cases, you will see a performance gain. By default, this parameter is not used because it is affected by line quality and
speed, the amount of available memory on the subscription database, the type of data transferred, and the number of articles. It is
recommended that you test the performance gain using your publication.

Using Compressed Snapshots

This option is recommended when you are using a pull or remote push Subscriber. It provides additional benefits when you are
using FTP support. Compressing snapshot files in the alternate snapshot folder can reduce snapshot disk storage requirements,
and, in some cases, can significantly improve performance when you are transferring snapshot files over a slow connection.
However, compressing the snapshot requires additional processing by the Snapshot and Distribution agents while the snapshot
files are generated and applied. This may slow down overall snapshot generation and increase the time it takes to apply a
snapshot.

Using the articles listed earlier in the publication Articles 2 table, the Snapshot Agent generates 20 files—including schema files
and data files—with a total size of approximately 130 MB. When you use a compressed snapshot, it also generates a .cab file with
a size of approximately 65 MB; a Subscriber loading a compressed snapshot across a slower link has only half as much data to
copy. However, compressed snapshots require more storage space and more set-up time. A compressed snapshot can use more

space on the Distributor (the process optionally maintains both the compressed and uncompressed data), and it takes more than
4.5 times longer to generate than an uncompressed snapshot because of the time required to compress the snapshot. Consider
these tradeoffs carefully during planning.

Using Concurrent Snapshot Processing

When you use the default settings for snapshot generation, SQL Server places shared locks for the duration of snapshot
generation on all tables published as part of replication. This prevents updates from being made on the publishing tables.
Concurrent snapshot processing (available only with transactional replication) places shared locks for only a short time while SQL
Server 2000 creates initial snapshot files, allowing users to continue working uninterrupted.

When you create a new publication using transactional replication and indicate that all Subscribers will be instances of SQL Server
7.0 or SQL Server 2000, concurrent snapshot processing is available.

After replication begins, the Snapshot Agent places shared locks on the publication tables. The locks prevent changes until a
record indicating the start of the snapshot is written to the transaction log. After this is done, the shared locks are released, and
data modifications at the database can continue. The duration for holding the locks is only a few seconds, even if a large amount
of data is being copied.

At this point, the Snapshot Agent starts to build the snapshot files. When the snapshot is complete, a second record indicating the
end of the snapshot process is written to the log. Any transactions that affect the tables while the snapshot is being generated are
captured between these beginning and ending tokens and forwarded to the distribution database by the Log Reader Agent.

When the snapshot is applied at the Subscriber, the Distribution Agent first applies the snapshot files (schema and data files). It
then reconciles each captured transaction to see whether it has already been delivered to the Subscriber. During this
reconciliation process, the tables on the Subscriber are locked, and transactions that occur during the lock are again captured in
the log and applied after the locks are released. If a high number of transactions are captured at the publisher while the tables are
locked, the snapshot takes longer to apply at the Subscriber.

Although concurrent snapshot processing allows updates to continue on publishing tables, the additional I/O needed to write the
snapshot files to disk may affect performance. Whenever possible, you should generate the snapshot during periods of low
activity.

For more information about concurrent snapshot processing, see SQL Server 2000 Books Online.

Note In SQL Server 2000, concurrent snapshot processing is not recommended if the publishing table has a unique
index that is not the primary key or the clustering key. If data modifications are made to the clustering key while a
concurrent snapshot is being generated, replication can fail with a duplicate key error when applying the snapshot to a
Subscriber. With SQL Server 2000 Service Pack 1 (SP1), there are no longer any restrictions on using concurrent
snapshot processing.

Transactional Replication Performance Examples
For the numeric data in this section, gain and cost are measured as a percentage of the base throughput numbers returned by the
replication agents. Throughput numbers are expressed in commands per second; a command is a unit of operation for a
replication agent. The numbers are based on a simple scenario in a fixed environment and are given to show either a cost or a
gain in performance. Many factors affect the amount of cost or gain in a real-world scenario, including network traffic,
background Microsoft Windows® services that are running, client Net-Libraries, hardware, and so on. Therefore, the numbers
provided here are not to be used specifically as benchmarks.

All the examples, unless specified otherwise, use the following environment:

Hardware
The test environment consisted of a Publisher, a remote Distributor, and a Subscriber. These three servers had identical
hardware and software: Dell Precision 610, dual-processor Pentium II Xeon 450 MHz; 256 MB memory with a 512-kilobyte
(KB) L2 cache; a 100-MB Ethernet network card; and four SCSI disks with Windows 2000 Server, SQL Server 2000 Standard
Edition, the database data file, and the database log files each on their own disk.

Note In almost all circumstances, the database log file should be placed on its own separate disk or disks and
the database data files should be striped across multiple disks with a stripe size of 64 KB or a multiple thereof.

Replication environment
The replication environment consisted of a publication that contained one article, the HALFTYPES table. This table contained
21 columns, representing every data type except text, ntext, image, sql_variant, and bigint. The row size varied with an
average size of approximately 1,024 bytes.

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp
http://www.microsoft.com/sql/downloads/2000/sp1.asp

In the test scenario, a push subscription was created, and then the Snapshot Agent, the Log Reader Agent, and the
Distribution Agent were run at the Distributor. Three different tests tracked insert, update, and delete operations. Each test
consisted of 30,000 commands with 10 commands per second executed at the Publisher.

Note UPDATE commands do not update the primary key because primary key updates are much less common
than updates that do not involve the primary key. Because a primary key update is propagated as a DELETE
command followed by an INSERT command during replication, it can skew the resulting data.

Performance was measured in throughput. In most cases each agent was run separately, rather than concurrently, to obtain
the highest throughput for a given replication agent. For example, the commands were first executed at the Publisher, then
the Log Reader Agent was run, and finally the Distribution Agent was run. The Distribution Agent used the autogenerated
custom stored procedures created for each article, which is the default behavior.

Cost of Transactional Replication at the Publisher

One of the first questions asked when deciding whether to use transactional replication is: "How does adding transactional
replication affect my OLTP server?"

When you add transactional replication to an online transactional processing (OLTP) environment, the OLTP server becomes the
Publisher. This incurs the overhead cost of the Log Reader Agent querying the database log. In a local Distributor environment,
the server also incurs the costs of writing to the distribution database, running the Distribution Agents (in a push scenario), and
having the Distribution Agents read changes from the distribution database.

To measure the minimum overhead costs, the following times were recorded:

The time it took to apply changes at the Publisher without replication configured
The time it took to apply changes at the Publisher with the Log Reader Agent running with both a local and a remote
Distributor

Using the HALFTYPES example, the time it took each of 20 simultaneous client connections to execute 150 transactions
consisting of 10 commands per transaction was measured. In total, there were 3,000 transactions or 30,000 commands. At the
time of execution, CPU usage was at 90 to 100 percent for INSERT commands, 50 to 60 percent for UPDATE commands, and 25 to
35 percent for DELETE commands. Then a remote Distributor was added to the environment and the tests were run again with the
Log Reader Agent running. Finally, the tests were run again using a local Distributor.

Cost of transactional replication at the Publisher

Command
Number of
Commands

Replication not
configured

Log Reader Agent running,
remote Distributor

Log Reader Agent Running, local
Distributor

INSERT 30,000 50 seconds 54 seconds 58 seconds
UPDATE 30,000 20 seconds 22 seconds 25 seconds
DELETE 30,000 20 seconds 20 seconds 22 seconds

As indicated in Cost of Transactional Replication at the Publisher, there is a cost in adding replication to an OLTP server; however,
the cost under stress conditions can be as low as 8 to 10 percent when using a remote Distributor, and somewhat higher when
using a local Distributor. Furthermore, if the publishing server has enough CPU capacity, the cost can be insignificant: when using
a four-processor or eight-processor server, the cost of replication is often less than 3 percent.

Log Reader Agent vs. Distribution Agent throughput

Using a total of 30,000 commands with 10 commands per transaction, the Log Reader Agent processes many more INSERT and
UPDATE commands per second than the Distribution Agent. DELETE commands are processed exceptionally quickly by both
agents: the Log Reader Agent only has to formulate and write a small delete string based on the primary key, and the Distribution
Agent benefits by reading and distributing such a small string. In most production environments, when both agents are running
in continuous mode, the Log Reader Agent can write more commands to the distribution database than the Distribution Agent
can deliver to the subscribing database. Even when the Subscriber is processing large amounts of data, it can be as little as 1 to 5
seconds behind the Publisher, giving a latency of about 5 seconds.

Log Reader Agent and Distribution Agent Throughput in Commands per Second (cmds/sec)

Command Log Reader Agent (cmds/sec) Distribution Agent (cmds/sec)

INSERT 2,080 1,230
UPDATE 2,660 1,570

DELETE 3,890 3,950

Transactional Replication with Filters

Partitioning replicated data using filters allows you to reduce the amount of data sent over the network, reduce the amount of
storage space required at the Subscriber, and customize publications and applications based on individual Subscriber
requirements. Because less data is transferred from the Publisher to the Subscriber, the performance of the Distribution Agent
improves. For example, adding column filters improves throughput because it minimizes the volume of data that is propagated
across the network. Fewer columns propagated means smaller INSERT, UPDATE, and DELETE statements are created and written
to and from the distribution database. Also, because the statements are sent across the network in batches, smaller statements
mean smaller batches. Smaller batches move across the network more quickly, improving performance and reducing latency.

After adding column filters to the HALFTYPES publication, Log Reader Agent results were 1.14 to 1.35 times faster than they
were without column filters. Distribution Agent results were 1.05 to 2.25 times faster. Of course, the performance difference
depends largely on the size of the row, the number of columns being filtered, and the size of the columns being filtered.

Row filters add overhead to the Log Reader Agent and the Publisher's CPU because the Log Reader Agent must evaluate each
row filter against the transaction log record for the articles. If multiple filters exist, each filter is evaluated independently and a
separate command is entered in the distribution database for each filter that qualifies.

Filter overhead depends on three factors: the complexity of the filter; the type of joins, functions, or comparisons being used in the
filter; and whether or not the filter uses indexes on the publishing database. However, in a Publisher using a remote Distributor,
the Publisher will probably have enough CPU capacity to compensate for this extra overhead. Generally the CPU costs are not
large and, depending on the filter, should not add more than 20 percent overhead.

Transactional Replication with Indexed Views

An alternative to adding a row filter at the article level is to publish an indexed view based on the same WHERE clause that the
filter would use. When you use an indexed view rather than a row filter, the Log Reader Agent does not need to evaluate
statements against filters because the article—which is now the indexed view, rather than the base table—is already filtered.
However, the overall performance of the Log Reader Agent is still slower than an article without filters, because every
modification performed on a table with an indexed view is logged twice, once for the indexed view and again for the table itself.
This doubles the number of log records the Log Reader Agent must traverse, which affects Log Reader Agent performance.

The cost of maintaining the indexed view at the Publisher can be high, so indexed views work best if the underlying data is
infrequently updated. If the underlying data is frequently updated, the cost of maintaining the indexed view data may outweigh
any performance benefits of using the indexed view. Indexed views usually do not improve performance under the following
scenarios: OLTP systems with many writes; databases with many UPDATE operations; or using queries that do not involve
aggregations or joins.

The following table shows the results of a test comparing execution times on identical tables with and without indexed views. No
replication was involved in this test. The indexed view was:

SELECT * FROM HALFTYPES WHERE IndexCol % 4 = 0

This represents 100 percent of the columns but only 25 percent of all the rows or a total of 7,500 rows. IndexCol had a
nonclustered index.

Cost of using an indexed view

Operation Number of operations Table without indexed view Table with indexed view
INSERT 30,000 50 seconds 180 seconds
UPDATE 30,000 44 seconds 330 seconds
DELETE 30,000 44 seconds 207 seconds

INSERT operations (not published for replication) took 3.5 times longer to apply to a table with an indexed view than to one
without an indexed view. DELETE operations took 3 times longer, and UPDATE operations took 7.5 times longer.

The performance issues with using indexed views are not replication issues; they are a function of the way indexed views are
handled in the server, but they can clearly affect performance in a replication environment. Although you should exercise caution
when publishing indexed views, they can be very useful in some situations, such as replicating summary or aggregated data to a
large number of Subscribers. For more information about indexed views, see SQL Server 2000 Books Online.

Transactional Replication with Transformable Subscriptions

Transforming published data leverages the data movement, transformation mapping, and filtering capabilities of Data

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

Transformation Services (DTS). Using transformable subscriptions allows you to customize and send published data based on the
requirements of individual Subscribers. Examples of how you can use transformable subscriptions include:

Creating data transformations such as data type mappings (for example, integer to real data type), column manipulations
(for example, concatenating first name and last name columns), string manipulations, and function-based transformations.
Creating custom data partitions. You can create column and row filters of published data on a per-Subscriber basis.

Although using DTS packages provides rich features and flexibility, it also affects throughput for both the Log Reader Agent and
the Distribution Agent. DTS requires the parameters of the stored procedures to be specified using XCALL syntax for UPDATE and
DELETE statements and CALL syntax for INSERT statements (for more information, see CALL, MCALL, and XCALL later in this
paper). Using XCALL passes values for all columns, whether changed or not, plus the previous value in the column. This increases
the size of the command written to the distribution database and creates more processing work for the Log Reader Agent and the
Distribution Agent. However, the Log Reader Agent is only minimally affected—in most cases the effect should be less than 10
percent.

Often, row-level and/or column-level filtering operations are performed within the DTS package and throughput is negatively
affected, but only for the Distribution Agent, which calls the package. Depending upon how much processing is performed within
the DTS package, the cost of using a DTS package can be high in terms of CPU and memory usage, and it can reduce the number
of commands per second that can be delivered to a Subscriber. Therefore, you should exercise caution when using a highly
concurrent push model in which many Distribution Agents are concurrently instantiating DTS packages. Generally, adding a DTS
package to a publication reduces the number of commands the Distribution Agent is able to distribute by 50 percent, but it can
greatly enhance functionality.

Transactional Replication with Subscribers Running Earlier Versions of SQL Server

There are no additional overhead costs for push subscriptions with Subscribers running SQL Server 7.0. Distribution Agent
throughput remains the same for all tests.

Transactional Replication with Updatable Subscriptions

If the Subscriber must be updatable within a transactional replication environment, three supported options are available:
bidirectional replication, immediate updating subscriptions, and queued updating subscriptions. The following example measures
the performance impact of making changes at the Subscriber using immediate updating subscriptions and queued updating
subscriptions.

With immediate updating subscriptions, local Subscriber triggers are fired when an insert, update, or delete operation occurs.
These triggers call remote procedures (RPCs) using the two-phase commit protocol (2PC)—which in turn uses the Microsoft
Distributed Transaction Coordinator (MS DTC)—to attempt to commit the transaction at the Publisher. If the transaction can be
committed at the Publisher, it is then also committed at the Subscriber. The overhead cost of the immediate updating option is the
firing of the RPCs and the related MS DTC service across the network.

With queued updating subscriptions, triggers are fired when a local insert, update, or delete operation occurs. These triggers build
and write the insert, update, or delete statement to either a SQL Server queue, which is implemented as a local table in SQL
Server, or Microsoft Message Queuing (also known as MSMQ) and immediately commit. A Queue Reader Agent—a process that
resides on the Distributor—reads the queue and applies it to the Publisher. The overhead cost to the Subscriber of the queued
updating option (using the SQL Server queue or Message Queuing) is imposed by the underlying replication triggers that write to
the queue.

For both immediate and queued updating subscriptions, using Message Queuing as the queue imposes additional costs
associated with using MS DTC to commit transactions, adding to the overhead cost of the entire process (the time measured from
the commit at the Subscriber to the commit at the Publisher).

To determine the minimum overhead cost of adding the updating subscriptions option at the Subscriber, the amount of time it
took to apply commands at the Subscriber with and without the updating subscription option was measured.

Transactional replication with immediate updating subscriptions

Command Number of Commands Replication not configured Immediate updating
INSERT 30,000 50 seconds 191 seconds
UPDATE 30,000 20 seconds 177 seconds
DELETE 30,000 20 seconds 118 seconds

The cost in time taken can be significant because the transaction must be committed locally and across the network to the
Publisher managed by MS DTC.

Using queued updating subscriptions provides the advantage of being able to continue modifying data at the Subscriber while
disconnected; these modifications are queued up and later written to the Publisher by the Queue Reader Agent. It is important to
note that this is a multiple-step and disconnected process, and the times shown in the following table represent only the first step:
changes have not yet been applied to the Publisher, only the Subscriber.

To determine the overhead cost of adding queued updating subscriptions at the Subscriber, trigger overhead was measured
using both a SQL Server queue and Message Queuing.

The cost of queued updatable subscriptions at the Subscriber

Command Number of
commands

Replication not
configured

Trigger overhead using a SQL
Server queue

Trigger overhead using Message
Queuing

INSERT 30,000 50 seconds 127 seconds 141 seconds
UPDATE 30,000 20 seconds 99 seconds 144 seconds
DELETE 30,000 20 seconds 64 seconds 107 seconds

There is a substantial cost in adding triggers that record transactions to a queue. Writing to a SQL Server queue is faster than
writing to Message Queuing. SQL Server queues, which are the default, are also simpler to set up. However, Message Queuing is
more scalable because SQL Server queues require the Queue Reader Agent to poll all the Subscribers' queues periodically,
whereas Message Queuing automatically transmits changes made at the Subscribers to a centralized queue located at the
Distributor. The single queue at the Distributor also provides centralized queue monitoring.

To compare the performance of SQL Server queues and Message Queuing, throughput was measured during dequeuing (the
propagation of data from the queue to the Publisher).

Dequeuing throughput using SQL Server queues and message queuing

Command Number of commands SQL Server queue (cmd/sec) Message Queuing (cmd/sec)
INSERT 30,000 211 117
UPDATE 30,000 173 102
DELETE 30,000 196 124

To determine the total time required to replicate data from the Subscriber to the Publisher, two times were measured: the amount
of time it took to apply commands at the Subscriber and, for queued updating subscriptions, the amount of time it took for the
Queue Reader Agent to read the queue and apply it to the Publisher.

Transactional replication with updatable subscriptions (total time)

Command
Number of
commands

Immediate
updating

Queued updating using SQL Server
queues

Queued updating using Message
Queuing

INSERT 30,000 191 seconds 279 seconds 406 seconds
UPDATE 30,000 177 seconds 283 seconds 448 seconds
DELETE 30,000 118 seconds 222 seconds 358 seconds

Immediate updating subscriptions, using MS DTC, offer the fastest overall time, but they do not offer the key benefit of being able
to handle offline scenarios or the built-in conflict handling of queued updating subscriptions. For more information about queued
updating subscriptions, see SQL Server 2000 Books Online.

In general, using a SQL Server queue is faster than using Message Queuing: Not only are the changes written to a queue faster,
but the Queue Reader Agent is able to read the queue and apply changes faster at the Publisher. As mentioned in Transactional
Replication with Updatable Subscriptions, you should weigh the functional differences and advantages of using Message Queuing
against those of using a SQL Server table as a queue. Furthermore, if you choose Message Queuing, you must be running
Windows 2000 or later because SQL Server 2000 replication requires Message Queuing version 2.0.

Adding Hardware in Transactional Replication

Adding another processor to your replication environment can improve throughput performance for both the Log Reader Agent
and the Distribution Agent. Using the HALFTYPES example in a remote Distributor environment, there is an average 26 percent
increase in Log Reader Agent throughput and an average 3 percent increase in Distribution Agent throughput when adding an
extra processor to the remote Distributor.

Although the Distribution Agent shows minimal performance gain when adding another processor, the HALFTYPES example has
only one subscription with one Distribution Agent, and it has only minimal impact on the CPU. In a real-world scenario, a
publication usually has multiple subscriptions with multiple Distribution Agents running, so the performance gains are larger and

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

more obvious because both agents use multiple threads. The Log Reader Agent, which is only slightly more CPU-intensive than
the Distribution Agent, also sees higher throughput when another processor is added to a remote Distributor that has multiple
Log Reader Agents running.

When you are running a local Distributor, so that the Distribution Agent shares the CPU with the Log Reader Agent and the OLTP
load, the Distribution Agent shows a much larger increase in throughput of 15 percent when a second processor is added. Log
Reader throughput increases a substantial 18 percent when a second processor is added.

Furthermore, in a high-traffic OLTP environment, adding another processor reduces the contention between the server activity
and the Log Reader Agent, improving server performance and Log Reader Agent throughput. Other factors that can affect
performance include available memory, the size and location of the database log (including autogrow), and any row filtering of
articles.

Effects of Network Connection Speeds on Transactional Replication

Although the Publisher and Distributor generally communicate on a fast WAN or LAN, connections to Subscribers are often not as
fast. The following test data shows Distribution Agent performance in terms of commands per second, using various connection
speeds and rows for each command that average approximately 1,024 bytes.

Each test consisted of 3,000 transactions with 10 commands per transaction, for a total of 30,000 commands. The environment
consisted of a Publisher and a remote Distributor connected across a fast link and a Subscriber connected at various speeds using
a network throttle, a device that can emulate slower connection speeds. Note that emulated connections are somewhat slower
than real dialup or leased-line connections, because there is no packet optimization.

Figure 3. Distribution rate using connection speeds of 28.8 Kbps, 56 Kbps, and 100 Kbps

Distribution throughput is almost linear as greater network bandwidth is provided; if a Subscriber is upgraded from a 28.8-
kilobits-per-second (Kbps) dialup line to a 100-Kbps connection, three times as many commands can be delivered in the same
period. However, as indicated by the following graph, eventually the network is no longer the bottleneck, and increasing the
network bandwidth does not provide additional performance gain.

Figure 4. Distribution rate using connection speeds of 1 megabit per second (Mbps), 10 Mbps, and 100 Mbps

SQL Server 2000 introduces new Net-Libraries to be used for highly reliable, fast, efficient data transfer between servers in the
same data center. These new Net-Libraries contain functionality for different hardware sets based on the Virtual Interface
Architecture (VIA). Currently, SQL Server 2000 supports hardware from Giganet and Servernet.

In tests, using Servernet over a 1-gigabyte (GB) connection between the Distributor and the Subscriber improved the delivery of
INSERT commands by 12 percent and UPDATE commands by 8 percent when compared to a 100-MB connection. These increases
would have been larger if larger amounts of data had been created and distributed or if there had been multiple Subscribers. This
is because the 1-GB environment provides the possibility of scaling to a very large number of Subscribers, each receiving large
volumes of data. Bottlenecks in this scenario could include writing the commands to disk at the Subscriber and the Subscriber's

physical processing power, so it is important to have an adequate disk subsystem and CPU at the Subscriber.

Replication Command Types

By default, the Distribution Agent applies transactions at Subscribers using autogenerated custom stored procedures. These
procedures are written to the MSrepl_commands table in the distribution database by the Log Reader Agent and are created on
the Subscriber. For example, instead of applying the original INSERT statement that created the INSERT on the Publisher, the
Distribution Agent executes an INSERT stored procedure at the Subscriber to perform the same action. These stored procedures
can be further customized—for example, for actions such as maintaining aggregate tables—which is generally better than adding
Subscriber-specific logic in triggers.

Using custom stored procedures can provide performance improvements for the Distribution Agent because the stored
procedure's plan is cached and reused at the Subscriber, and in most cases the amount of data passed over the network can be
smaller. Generally, Log Reader Agent performance is the same whether dynamic SQL or custom stored procedures are used;
however, UPDATE commands may see throughput increase if the table column names being updated are very long and those
column names are provided in the INSERT statement.

Using the HALFTYPES example, executing custom stored procedures provided better performance than using dynamic SQL. The
greatest performance benefit is with UPDATE commands, which ran 1.8 times faster.

Distribution agent speed (dynamic vs. default custom stored procedures)

Command Number of commands Dynamic SQL (cmd/sec) Default custom stored procedure (cmd/sec)
INSERT 30,000 1,118 1,230
UPDATE 30,000 882 1,570
DELETE 30,000 3,950 3,950

CALL, MCALL, and XCALL

When used in custom stored procedures, the CALL, MCALL, and XCALL syntaxes vary in the amount of data propagated to the
Subscriber during transactional replication. The CALL syntax, which can be used for INSERT, UPDATE, and DELETE statements,
passes all values for all inserted and deleted columns. The MCALL syntax, which can only be used for UPDATE statements, passes
values for affected columns, NULL for unaffected columns, and a bitmap parameter, which identifies which columns have been
modified. The XCALL syntax, used for UPDATE and DELETE statements, passes values for all columns, whether changed or not, and
includes the previous values of all columns.

By default, CALL is used for INSERT and DELETE commands, and MCALL is used for UPDATE commands, because doing so
provides the best overall performance for the Log Reader Agent and the Distribution Agent.

Unless every column in a table is updated, MCALL provides better performance than CALL and XCALL. Currently, XCALL is used
by DTS replication, and it can be used for custom applications that require the previous values. CALL exists for backward
compatibility, because UPDATE statements used CALL syntax when it was first introduced in Microsoft SQL Server 6.5. MCALL
stored procedures support the same types of customization as CALL stored procedures, so MCALL is recommended if backward
compatibility is not a concern.

The HALFTYPES example showed the difference in throughput when using dynamic SQL, CALL, MCALL, and XCALL. The results
are expressed in commands per second. As mentioned earlier, CALL is the default for INSERT and UPDATE statements, and
MCALL is the default for UPDATE statements.

Distribution Agent (dynamic SQL vs. stored procedures)

Command Number of commands Dynamic SQL CALL MCALL XCALL
INSERT 30,000 1137 1245 Not applicable 1245
UPDATE 30,000 855 1054 1534 736
DELETE 30,000 4118 4254 Not applicable 1261

The following example shows a generated statement using dynamic SQL, CALL, MCALL, and XCALL stored procedures for an
UPDATE statement. For simplicity and to save space, the authors table in the pubs database was used. You can call
sp_browsereplcmds from within the distribution database to view the generated statements for your publications. For more
information about sp_browsereplcmds, see SQL Server 2000 Books Online.

The following code shows an UPDATE statement made at the Publisher:

UPDATE authors SET phone = '425 882-8080' WHERE au_id = '172-32-1176'

The following table shows the UPDATE statement as it is stored at the Distributor.

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

Equivalent UPDATE statement stored within the distribution database

Command
type Command

Dynamic
SQL {UPDATE "authors" SET "phone"='425 882-8080' where "au_id"="172-32-1176"}

MCALL {CALL sp_MSupd_authors (NULL, NULL, NULL, '425 882-8080', NULL, NULL, NULL, NULL, 0, '172-32-1176',
0x0800)}

CALL {CALL sp_MSupd_authors ('172-32-1176', 'White', 'Johnson', '408 496-7223', '10932 Bigge Rd.', 'Menlo Park', 'CA',
'94025', 1, '172-32-1176')}

XCALL {CALL sp_MSupd_authors ('172-32-1176', 'White', 'Johnson', '408 496-7223', '10932 Bigge Rd.', 'Menlo Park', 'CA',
'94025', 1,'172-32-1176', 'White', 'Johnson', '425 882-8080', '10932 Bigge Rd.', 'Menlo Park', 'CA', '94025', 1)}

sp_scriptdynamicupdproc

Introduced in SQL Server 2000 SP1, the sp_scriptdynamicupdproc stored procedure performs dynamic updates. The UPDATE
statement within the custom stored procedure is built dynamically, based on the MCALL syntax for indicating which columns to
change. This approach becomes more beneficial as the number of indexes on the subscribing table increases and a low number of
columns is actually being changed.

The default MCALL scripting logic includes all columns within the UPDATE statement, using a bitmap to determine which columns
were changed. If a column has not changed, the column is set back to itself, which is not an issue in most cases; however, if
several columns are indexed, extra processing starts to creep in. If there are several indexes on a subscribing table for which only
a few column values are changing, index maintenance overhead increases, and this may limit the rate at which changes can be
applied. Building the update statement dynamically at run time includes only the columns that have changed, providing an
optimal update string. The tradeoff is extra processing incurred at run time to build the dynamic UPDATE statement.

HALFTYPES table with a varying number of indexes

Number of indexes Distributor throughput
(cmd/sec)

Default MCALL, 1 clustered index 1,570
Default MCALL, 1 clustered index, 10 nonclustered indexes 110
New dynamic MCALL with sp_scriptdynamicupdproc, 1 clustered index, 10 nonclustered
indexes 1,180

Log Reader Agent Properties

The default values for the Log Reader Agent are optimal under many circumstances; however, performance can be enhanced by:

Reducing the –OutputVerboseLevel property to zero except during initial testing, monitoring, or debugging. This reduces
the amount of output information that is displayed and can improve performance by 5 percent when reducing the value
from two to zero.
Reducing the –HistoryVerboseLevel property to zero except during initial testing, monitoring, or debugging. This
eliminates the logging of history and can improve performance by 5 percent when reducing the value from two to zero.
Increasing the –ReadBatchSize property. Although the default value of 500 is optimal, increasing the value twofold to
tenfold for tests containing smaller sized transactions (one or two commands) improved performance by 5 to 15 percent;
however, improvement costs were negligible for tests containing larger sized transactions (10+ commands).
Setting –ReadBatchThreshold property to zero. The default value is zero, which means the Log Reader Agent reads to the
end of the log or until it reaches the value set in
–ReadBatchSize. (SQL Server Books Online lists an incorrect default value of 100.) Setting it to any other value may reduce
performance.
Reducing the –PollingInterval setting. Reducing the polling interval can improve the latency of transactions from the log
to the distribution database because the Log Reader Agent will query the transaction log more often.
Altering the –MaxCmdsInTran setting to improve elapsed time and latency when handling transactions that contain a large
number of commands. This parameter is new in SQL Server 2000 SP1.

–MaxCmdsInTran allows the Log Reader Agent to break transactions consisting of a large number of commands into
smaller transactions, or chunks, which reduces blocking at the Distribution Agent. The Distribution Agent can start
processing early chunks while the Log Reader Agent is working through the later chunks of the same transaction, thus
improving parallelism between the two agents. However, using this property also means these chunks are committed at the

Subscriber as individual transactions. In theory, using the –MaxCmdsInTran property breaks the atomicity rule, which
states that a transaction must be committed as all or nothing. This is not necessarily problematic because the transaction
has already been committed at the Publisher, but users should be aware of this aspect of using –MaxCmdsInTran.

As an example of using –MaxCmdsInTran, consider a transaction consisting of 10 million deletes. When this transaction
was tested against the HALFTYPES table, the total elapsed time for processing at Log Reader and the Distribution Agent
was one hour and 45 minutes. Log Reader Agent throughput was 5,089 commands per second, and Distribution Agent
throughput was 2,466 commands per second. In this case, the Distribution Agent did not start until the Log Reader Agent
has completed. Using the –MaxCmdsInTran argument at the Log Reader Agent, set to a value of 10,000, total elapsed time
for the two agents was a little under one hour. Instead of replicating one transaction, the Log Reader Agent created 1,000
transactions, each consisting of 10,000 commands. Log Reader Agent throughput was 3,809 commands per second and
Distribution Agent throughput was 2,390 commands per second. Although Log Reader Agent throughput was reduced,
performance was improved because overall elapsed time and latency for each transaction was also reduced.

Distribution Agent Properties

The default values for the Distribution Agent are optimal under many circumstances; however, performance can be enhanced by:

Reducing the –OutputVerboseLevel property to 0 except during initial testing, monitoring, and debugging. This reduces
the amount of output information that is displayed and can improve performance by 5 percent.
Reducing the –HistoryVerboseLevel property to 0 except during initial testing, monitoring, and debugging. This eliminates
the logging of history and can improve performance by 5 percent.
Increasing the –CommitBatchSize and –CommitBatchThreshold property. Although the default values of 100 for
–CommitBatchSize and 1,000 for –CommitBatchThreshold are optimal, in tests run at Microsoft, increasing the values
twofold to tenfold improved performance by 5 percent for INSERT commands, 10-15 percent for UPDATE commands, and
30 percent for DELETE commands. In the test scenario, the Distribution Agent ran independently of the Log Reader Agent,
but if the two agents run concurrently and the values are set too high, Distribution Agent performance can decrease while
the Log Reader Agent is running.
Reducing the –PollingInterval setting. Reducing the polling interval can improve the latency of transactions from the
distribution database to the Subscriber, because the Distribution Agent will query the distribution database more frequently.
Reducing the polling interval on the both the Log Reader Agent and the Distribution Agent can improve latency between
Publisher and Subscriber. Using a low value on a slower network connection is not recommended.

Transactional Replication Scalability

Because transactional replication is often used in scale-out scenarios, it is crucial to understand the ways in which the type of
agent, Distributor, and subscription can affect scalability. This section of the paper examines the use of remote Distributors, pull
subscriptions, and independent agents. It also considers Distributor delivery rates, latency, and dequeuing rates for queued
updating subscriptions.

Note If the number of Subscribers in your topology is very large, or the Subscribers share a fast network but are
separated from the Publisher and Distributor by a slow link, design a multi-tiered replication topology. The root server
should be the Publisher for middle-tier Subscribers, which in turn should republish the data to lower-level
Subscribers. There are some limitations to a topology based on republishing, such as not being able to use updating
Subscribers, but republishing can be a good choice for a scale-out scenario. For more information about republishing,
see SQL Server 2000 Books Online.

In the tests that follow, unless otherwise stated the hardware configuration consisted of two Compaq Proliants with RAID disk
subsystems: the Publisher was a Pentium Xeon 550 MHz quad processor with 640 MB memory and a 512-KB level 2 cache, and
the Distributor was a quad processor Pentium II 200 MHz with 3 GB memory. The publication database and publication contained
a single table with a column for every data type (except text, ntext, image, and sql_variant). The replication topology consisted
of a Publisher, a remote Distributor, and multiple Subscribers. The subscriptions were distributed evenly between the Subscribers.
Network connection was over a 100-Mbps LAN using TCP/IP.

Using a local or remote Distributor

If the Publisher is expected to be a busy OLTP server, or if it is already CPU intensive or even I/O intensive, place the Publisher and
Distributor on separate computers. This supports future scaling and capacity planning because multiple Publishers can use the
same Distributor. Here are some examples of how transactional replication can affect OLTP activity:

Replication agents require a certain amount of memory while executing. Multiple Log Reader Agents and Distribution
Agents can consume significant amounts of memory and CPU cycles.

http://www.microsoft.com/SQL/techinfo/productdoc/2000/books.asp

The Log Reader Agent writes commands to the distribution database, so multiple Log Reader Agents servicing multiple
published databases and writing to the distribution database can consume many CPU cycles and increase disk I/O.
If there are multiple Distribution Agents, using a local Distributor slows the overall performance of the server.
The cleanup tasks that are run as a maintenance activity on the distribution database can become expensive and involve
significant disk activity.

Using the HALFTYPES example with a single Log Reader Agent and Distribution Agent, there was a performance benefit in using
a remote Distributor. Using the throughput of a local Distributor as a baseline, the Log Reader Agent on a remote Distributor was
approximately 1.3 times faster. The Distribution Agent on a remote Distributor for the same tests was approximately 1.47, 1.1, and
1.15 times faster for INSERT, UPDATE, and DELETE commands, respectively.

Using pull subscriptions

The Distribution Agent runs on the Distributor for push subscriptions and on Subscribers for pull or anonymous subscriptions.
Using pull or anonymous subscriptions can increase performance by moving Distribution Agent processing from the Distributor
to Subscribers.

Anonymous subscriptions, which are especially useful for Internet applications, do not require information about the Subscriber
to be stored in the distribution database at the Distributor for transactional replication. Not having to maintain information on
Subscribers using anonymous subscriptions reduces the resource demands on the Publisher and Distributor.

Anonymous subscriptions are a special category of pull subscriptions. In regular pull subscriptions, the Distribution Agent runs at
the Subscriber (thereby reducing the resource demands on the Distributor), but it still stores information at the Publisher.

Using independent agents

An independent agent is an agent that services a single publication/subscription pair. Using independent agents reduces latency,
because the agent is ready whenever the subscription needs to synchronize.

A shared agent, on the other hand, services multiple publication/subscription pairs within a Publisher database and Subscriber
database. When multiple subscriptions using the same shared agent need to synchronize, they wait in a queue, and the shared
agent services them one at a time.

A shared agent is the default for transactional replication, because independent agents cannot guarantee transactional
consistency when separate transactions are dependent on each other but are handled by different independent agents. Consider
the following example: Transaction T1 updates all rows in article A1 in publication P1, and then transaction T2 in publication P2
bases a query on the results of a SELECT from A1. If you are using a shared agent, this presents no problem, as the shared agent is
aware of all transactions and it commits them in order. But independent agents are not aware of each other's transactions, so
there can be no guarantee that T1 will be processed before T2. However, if there are no dependencies between transactions
handled by different agents, independent agents allow you to retain transactional consistency while reducing latency.

Distribution delivery rates

In the test discussed in this section, the distribution delivery rate as a function of the number of subscriptions was examined. The
transaction rate used was an average of eight transactions per second, with an average of five commands per transaction. This
amounts to 1,000,000 to 2,000,000 commands per day, with equal ratios of INSERT, UPDATE, and DELETE commands. All the
Distribution Agents were configured as pull, and they were run concurrently.

In this scenario, neither the Publisher nor the Distributor was CPU stressed. In fact, because the subscriptions were pull
subscriptions, which means that Distribution Agents were run at the Subscribers, the Distributor seldom ran above 25 percent
CPU usage with 128 concurrent Subscribers.

Log Reader Agent performance is essentially unaffected by the number of subscriptions, especially when a remote Distributor is
used. When a remote Distributor was used, the cost in throughput to the Log Reader was 30 to 40 percent.

Figure 5. Change in delivery rate as the number of subscribers increases

When the number of subscribers was scaled from 1 to 128, there was only a 6.2 percent drop in commands per second at a cost
of approximately 1 percent per 48 additional subscribers.

Distribution delivery latency

Delivery latency as a function of the number of subscriptions was also examined, using the same scenario as in the distribution
delivery rates example.

Figure 6. Delivery latency

Average latency increased from three to six seconds when 128 concurrent pull Distribution Agents were running, so all 128
subscribers were on average only six seconds behind the publishing database. However, in the previous scenario, the Log Reader
Agent and the Distribution Agent were able to keep up with the transaction rate at the Publisher; given a heavier load, a slower
network, or slower Subscriber computers, greater latencies can be expected.

Dequeuing rates for queued updating subscribers

The next scenario tested replication scalability by examining the effect on the dequeuing rate of adding additional Subscribers. In
this test, a single Queue Reader Agent serviced all the queues (both SQL Server queues and Message Queuing) for a given
publication. The dequeuing rate (using a SQL Server queue) as a function of the number of subscriptions is examined in the
following chart. The publication again consisted of a single table to which multiple Subscribers subscribe. Hardware used for this
test was two dual-processor Xeon 550 MHz computers with 512 MB memory for both the Publisher and the Distributor. The
Subscribers were simulated using the two Xeon computers over a 100-Mbps LAN.

Figure 7. Dequeuing rate

The dequeuing rate decreased by 13 percent for 20 concurrent Subscribers and by 27 percent for 32 concurrent Subscribers.
However, in this stress situation an average dequeuing rate of 140 commands per second was maintained; under normal
conditions it is unlikely that all Subscribers would have such a high number of changes in the local queue. Using Message
Queuing, about 10 percent less performance was realized because Message Queuing adds some overhead by using MS DTC as its
transaction coordinator.

Transactional Subscriber Latency Rates

Using transactional replication, it is possible for a Subscriber to be a few seconds behind the Publisher. With a latency of only a
few seconds, the Subscriber can easily be used as a reporting server, offloading expensive user queries and reporting from the
Publisher to the Subscriber.

In the following scenario (using the Customer table shown later in this section) the Subscriber was only four seconds behind the
Publisher. Even more impressive, 60 percent of the time it had a latency of two seconds or less. The time is measured from when
the record was inserted or updated at the Publisher until it was actually written to the subscribing database.

UPDATE commands INSERT commands
Latency (seconds) Number of rows Latency (seconds) Number of rows

4 5,528 4 1,318
1 21,359 3 14,984
3 30,359 2 39,563
2 42,754 1 44,135
TOTAL 100,000 TOTAL 100,000

Figure 8. Transactional subscriber latency

This scenario used a separate Publisher, Distributor, and Subscriber across a 10-Mbps LAN, using identical computers: Dell
Precision 610; dual-processor 450 MHz; 256 MB of memory and two SCSI hard drives. Commands are applied to the Subscriber
with the autogenerated replication stored procedures, using a pull subscription. To complete 100,000 inserts on the Publisher
took 304 seconds. To complete 100,000 updates took 315 seconds, or 325 commands per second.

The Subscriber was in synchronization within four seconds of the Publisher. During the entire process, the Publisher's CPU rarely
moved above 30 percent utilization, the Distributor 14 percent, and the Subscriber 11 percent. Given that there was plenty of CPU

capacity at the Distributor and that these are not high-end production servers, more Subscribers can be added with similar
latencies.

The Customer Table (used in the latency test)

Column Data type NULL Default Typical data Updated
Cust_Id int IDENTITY(0,1) 50000
Lname varchar(30) HALL
Fname varchar(30) NEWMAN
DOB smalldatetime Yes 1966-01-01 00:00:00 Yes
State char(2) WA
Email varchar(30) Yes someone@microsoft.com
Tel varchar(15) Yes 425 555-0100 Yes
Zip varchar(4) 98050 Yes
Rating smallint 20 Yes
ROWGUID uniqueidentifier ROWGUIDCOL - newid() FF1452C0-EF54-47AA-8CCF-880F7C6F246A
Tran_Dt datetime 2000-01-01 00:00:00 Yes

The primary key is the Cust_Id column, and it is clustered. Both the Publisher and Subscriber include two nonclustered indexes:
one on State (nonunique) and one on ROWGUID (unique).

Factors Affecting Transactional Delivery Rates

In most cases, the Subscriber is the bottleneck because data cannot be written or applied quickly enough. Factors include the
following:

Subscriber's physical computer.
Slower processor and/or lower number of processors.
Low processor availability and/or high processor load.
Low amount of available memory.
Slower disk subsystem.

Subscription database or SQL Server setup.
Database log not on a separate disk.
Database on RAID 5 disk (RAID 10 provides better performance).
SQL Server memory available, and whether the memory is dynamic or fixed: the amount of memory that is
appropriate and whether it should be fixed or dynamically allocated depends on your application.
SQL Server protocol used: TPC/IP is generally slightly faster than other network protocols.
SQL Server Personal Edition, which is generally slower, used.
Windows 98 or Windows Millennium, which are generally slower, used.

Network speed or connection
The Subscriber can become I/O bound if using a very fast network (100 MB or faster) and the Subscriber has a
slower disk subsystem or the log is not on a separate disk.
Reliability of the connection: more retries may be necessary if the connection is unreliable.

Different indexes exist on the Subscriber. Often a reporting server is heavily indexed, and index management results in more
I/O. Using the CUSTOMER table shown earlier, the average latency increases to four seconds (with a maximum of six
seconds) when four nonclustered indexes are added at the Subscriber on [Lname, Fname], [DOB], [Email], and [Tel].
User triggers firing at the Subscriber. Subscriber triggers not marked NOT FOR REPLICATION are fired for each relevant
operation. As triggers frequently use the inserted and/or deleted tables and often perform other operations, the costs can be
dramatic. By moving the trigger code into a custom stored procedure, some of the costs can be avoided. Using the earlier
CUSTOMER example: it takes 88 seconds, or 1,140 commands per second, for the Distribution Agent to deliver 100,000
insert commands to the Subscriber. The Subscriber has the following insert trigger defined:

CREATE TRIGGER CUSTOMER_INS_TRG ON CUSTOMER FOR INSERT
AS
INSERT INTO BADRATINGS (Id, Cust_Id, Rating, Rating_Dt)
SELECT NewId(), Cust_Id, Rating, GetDate()
FROM inserted
WHERE (Cust_Id % 3) = 0

Then the trigger is dropped and the relevant code is added to the autogenerated insert stored procedure, which is called by the
Distribution Agent:

CREATE PROCEDURE sp_MSins_CUSTOMER...
...
IF((@c1 % 3) = 0)
INSERT INTO BADRATINGS (Id, Cust_Id, Rating, Rating_Dt)
SELECT NewId(), @c1, @c9, GetDate()

It now takes only 52 seconds (1,932 commands per second) for the Distribution Agent to deliver 100,000 commands to the
Subscriber. This is 1.7 times faster than using triggers, dramatically affecting latency and throughput.

If user triggers are still required (to trap local data changes made by users, for example), they should be marked as NOT FOR
REPLICATION. The triggers then fire only when users make local data changes.

Replicating stored procedure execution. SQL Server can replicate the execution of stored procedures rather than the data
changes caused by the execution of those stored procedures. This is useful in replicating the results of maintenance-
oriented stored procedures that may affect large amounts of data. Replicating the changes as one stored procedure
statement can greatly increase the efficiency of your application, but this feature should be used with care.

Each time a published stored procedure is executed at the Publisher, the execution and the parameters passed to it for
execution are forwarded to each Subscriber to the Publication. The stored procedure is then executed with these parameters
at the Subscriber. This is vastly different from the Log Reader Agent picking up the changes in the log (for possibly
thousands of rows), building the SQL statements for each and then having them applied to the Subscriber.

Using the CUSTOMER table example (with an existing 100,000 rows) earlier in this paper, the following stored procedure
was executed at the Publisher:

CREATE PROCEDURE PROC_CUSTOMER_ADMIN_RATING @DOB smalldatetime
AS
UPDATE CUSTOMER
SET Rating = Rating + 1
WHERE DOB < @DOB

Executing EXEC PROC_CUSTOMER_ADMIN_RATING '1966-01-01' resulted in 59,972 rows being updated, picked up by the
Log Reader Agent and written to the distribution database. The Distribution Agent then applies 59,972 updates to the
Subscriber, which takes one minute and 51 seconds to complete. In contrast, when replicating the execution of the stored
procedure, only the actual EXEC statement is written to the distribution database and is then executed at the subscribing
database. This takes only 1.7 seconds. Therefore, replicating stored procedure execution both reduces the volume of
commands requiring forwarding to Subscribers and increases the performance of your application by executing fewer
dynamic SQL statements at each Subscriber.

Conclusion
Transactional replication in SQL Server 2000 is a mature technology that offers high performance and scalability and is suitable
for the most demanding enterprise applications. Transactional replication performs well with its default behavior and settings, but
it can clearly benefit from performance tuning based on the specific needs of your replication topology and applications.
Following the examples and suggestions outlined in this paper can help you take transactional replication performance to the next
level.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e—mail addresses, logos, people, places
and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail
address, logo, person, place or event is intended or should be inferred.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Tutorial: Creating an Ad Hoc Report Application with
Reporting Services

Kathrine Lord
Microsoft Corporation

November 2004

Applies to:
 Microsoft .NET framework
 Microsoft SQL Server 2000
 Microsoft Visual Studio.NET 2003
 SQL Server 2000 Reporting Services

Summary: New to .NET programming or Reporting Services? Get step-by-step instruction on creating a .NET application to
create and publish reports using the Reporting Services API. (43 printed pages)

Contents

Prerequisites
Create the Solution in VS.NET 2003
Add the Error_Page Form to the Project
Add the RDLGenerator Form to the Project
Add the ManagingReports Form to the Project
Conclusion

Prerequisites
This project requires Microsoft IIS 6.0, Microsoft Visual Studio.NET 2003, Microsoft SQL Server 2000, and SQL Server 2000
Reporting Services to be installed on the developer machine. The edition of SQL Server 2000 and Reporting Services should be
identical. For example, if you are using SQL Server 2000 Developer Edition, you will also need Reporting Services Developer
Edition.

The SQL Server data sources used for reports do not have to be local nor are they required to be the same edition. The user will
need to be able to access remote data sources in order to use them. The Reporting Services databases (ReportServer and
ReportServer TempDB) must be local. All SQL Servers referenced either as data sources or to be used by Reporting Services must
have either Windows Authentication or Mixed Mode authentication enabled.

Create the Solution in VS.NET 2003

1. Open Visual Studio .NET 2003 and click New Project on the Start Page.
2. Choose Visual Basic Projects, ASP.NET Web Application.
3. Name the project CreateReport and click OK.

Figure 1

4. Right-click References and select Add Reference from the quick menu.
5. From the Add Reference modal window click Browse.
6. Browse to the location of the Report Manager bin folder. In a default installation this is at c:\program files\Microsoft SQL

Server\MSSQL\Reporting Services\ReportManager\Bin.
7. Select the ReportingServicesWebUserInterface.dll.
8. On the .NET tab of the Add Reference modal window, scroll down until you find System.Web.Services.dll, and click on it.

Figure 2

9. Click the Select button to add it to the Selected Components listbox.
10. Click OK to add these assemblies as References.

Next, take care of the security settings—very important:

1. Add the following identity tag to the Web.Config file under the <System.Web> opening tag

 <identity impersonate="true" />

2. Using the Internet Information Services manager from the Administrative tools set the CreateReport web security to
Windows authentication.

3. Using the Report Manager interface, enable the My Reports functionality. To do so, go to http://localhost/reports or the
name you provided when you installed Reporting Services. Go to Site Settings and check the Enable My Reports... option
as shown in the image below.

Figure 3

Add the ReportWizard Form to the Project

1. Add a new web form (Project, Add Web Form) and name it ReportWizard.aspx.
2. Right-click ReportWizard.aspx and select Set As Start Page.
3. Open ReportWizard.aspx in the designer and select the HTML view.

Just below the opening <body> tag paste the following script (Edit, Paste As HTML), which is used to open the
ManageReports.aspx you will create later.

<script language="javascript">
 function OpenNewWin()
 {
 window.open("ManageReports.aspx", "ManageReports")
 }
</script>

4. Inside the opening and closing <form></form> tags, paste the following (I'll walk through each of these items later):

<asp:label id="Label4" style="Z-INDEX: 103; LEFT: 32px; POSITION:
absolute; TOP: 616px" runat="server" Height="24px" Width="265px"
Visible="False">Choose the output format for your report</asp:label>
<asp:button id="btnStartOver" style="Z-INDEX: 109; LEFT: 592px;
POSITION: absolute; TOP: 616px" runat="server" Text="Start
Over"></asp:button>
<asp:dropdownlist id="formatDropDown" style="Z-INDEX: 102; LEFT: 296px;
POSITION: absolute; TOP: 616px" runat="server" Width="199px"
Visible="False">
<asp:ListItem Value="CSV">CSV</asp:ListItem>
<asp:ListItem Value="EXCEL">EXCEL</asp:ListItem>
<asp:ListItem Value="HTMLOWC">HTMLOWC</asp:ListItem>
<asp:ListItem Value="MHTML">MHTML</asp:ListItem>
<asp:ListItem Value="PDF" Selected="True">PDF</asp:ListItem>
<asp:ListItem Value="IMAGE">TIFF</asp:ListItem>
</asp:dropdownlist>
<asp:button id="Submit" style="Z-INDEX: 101; LEFT: 520px; POSITION: absolute; TOP:
616px" runat="server" Text="Submit"></asp:button>
<asp:panel id="Panel1" style="Z-INDEX: 104; LEFT: 32px; POSITION:
absolute; TOP: 56px" runat="server" Height="82px" Width="784px"
BorderColor="Transparent">
<H1 style="COLOR: navy">Step 1 - Select a Server:</H1>
<asp:dropdownlist id="ServerList" runat="server" Width="272px" AutoPostBack="True">
<asp:ListItem Value="Select a SQL Server...">Select a SQL Server...</asp:ListItem>
<asp:ListItem Value="(local)">Local Server</asp:ListItem>
<asp:ListItem Value="(local)">Other Server</asp:ListItem>
</asp:dropdownlist>
<asp:RequiredFieldValidator id="ServerValidator" runat="server" ErrorMessage="Please
select the server where your database resides"
ControlToValidate="ServerList" InitialValue="Select a SQL Server..."
Display="Dynamic"></asp:RequiredFieldValidator>
</asp:panel>
<asp:panel id="Panel2" style="Z-INDEX: 105; LEFT: 32px; POSITION:
absolute; TOP: 144px" runat="server" Height="80px" Width="784px"
Visible="False">
<H1 style="COLOR: navy">Step 2 - Select a Database:</H1>
<asp:dropdownlist id=DatabaseList runat="server" Width="272px"
AutoPostBack="True" DataValueField="name" DataTextField="name"
DataSource="<%# MasterDS1 %>">
</asp:dropdownlist>
<asp:RequiredFieldValidator id="DatabaseListValidator" runat="server"
ErrorMessage="Please select the database"
ControlToValidate="DatabaseList" InitialValue="Make a Selection..."
Display="Dynamic"></asp:RequiredFieldValidator>
</asp:panel>
<asp:panel id="Panel3" style="Z-INDEX: 106; LEFT: 32px; POSITION: absolute; TOP:
224px" runat="server" Height="78px" Width="790px">
<H1 style="COLOR: navy">Step 3 - Select a Table:</H1>
<H1 style="COLOR: navy"></H1>
<asp:dropdownlist id=TableList runat="server" Width="400px"
AutoPostBack="True" DataValueField="name" DataTextField="name"

DataSource="<%# TablesDS1 %>">
</asp:dropdownlist>
<asp:RequiredFieldValidator id="TableListValidator" runat="server"
ErrorMessage="Please select a table" ControlToValidate="TableList"
InitialValue="Make a Selection..." Display="Dynamic"></asp:RequiredFieldValidator>
<asp:panel id="Panel4" runat="server" Width="782px" Height="248px">
<H1 style="COLOR: navy">Step 4 - Select the columns:</H1>
<P dir="ltr" style="MARGIN-RIGHT: 0px">Selected Fields:
Available Fields:</P>
<P dir="ltr" style="MARGIN-RIGHT: 0px">
<asp:listbox id="FieldList" runat="server" Width="240px" Height="118px"
SelectionMode="Multiple"></asp:listbox>
<asp:Button id="Button2" runat="server" Text=">>>" CausesValidation="False">
</asp:Button>
<asp:Button id="Button1" runat="server" Text="<<<" CausesValidation="False">
</asp:Button>
<asp:listbox id="selFieldList" runat="server" Width="240px" Height="120px"
SelectionMode="Multiple"></asp:listbox></P>
<P>
<asp:RequiredFieldValidator id="RequiredFieldValidator4" runat="server"
ErrorMessage="You must select at least 1 column"
ControlToValidate="FieldList" Display="Dynamic"></asp:RequiredFieldValidator></P>
</asp:panel>
</asp:panel>
<asp:textbox id="txtStep" style="Z-INDEX: 107; LEFT: 688px; POSITION:
absolute; TOP: 616px" runat="server" Width="32px"
Visible="False">1</asp:textbox>
<asp:label id="Label1" style="Z-INDEX: 108; LEFT: 32px; POSITION:
absolute; TOP: 8px" runat="server" Width="544px" BorderColor="White"
Font-Italic="True" BackColor="Transparent" Font-Size="22pt" Font-
Bold="True" ForeColor="ForestGreen">Welcome to the Report Generation
Wizard!</asp:label>
<asp:textbox id="txtTitle" style="Z-INDEX: 110; LEFT: 32px; POSITION:
absolute; TOP: 584px" runat="server" Width="552px">Enter Report Title
Here...</asp:textbox>
<input style="Z-INDEX: 111; LEFT: 640px; WIDTH: 136px; POSITION:
absolute; TOP: 16px; HEIGHT: 24px" onclick="OpenNewWin()" type="button"
value="Manage My Reports...">
<asp:RequiredFieldValidator id="RequiredFieldValidator5" style="Z-
INDEX: 112; LEFT: 592px; POSITION: absolute; TOP: 584px" runat="server"
Width="208px" ErrorMessage="Please enter a valid report title"
ControlToValidate="txtTitle" InitialValue="Enter Report Title Here..."
Display="Dynamic"></asp:RequiredFieldValidator>

5. Select the Design view and you should see this:

Figure 4

Understanding the Controls on the ReportWizard Form

The purpose of this page is simply to generate a server name, database, field list, and if the user wants, a title for the report. This is
merely meant to be a sample of one method you could use to create these items. I used this method because it is easy to
understand; you could choose other ways to come up with these items. For example, you could just give the option of selecting
certain descriptions that are tied to views to the user, and leave naming the server and database behind the scenes. You could also
use stored procedures (though you'd have to make changes in the GenerateRDL() method to accommodate them). Your .NET
developer expertise, an understanding of the Report Definition Language, and the MSSRS web service are all that are required.

The ServerList DropDownList

1. Right-click the ServerList control and select Properties.
2. Click on the ellipses next to (Collection) in Items.
3. The items are as shown below, with both the Local Server and Other Server having the same value of (local). You need to

change these values to suit your environment.

The assumption in this sample is that the databases are all local, but the only requirement is that the ReportingServer
database be local. The data sources can be on any SQL Server instance that the developer has authorization to use.

The ServerList values are used to retrieve a list of databases from the master databases on the specified servers. This
example uses integrated security, so the value of these list items must either be the literal name of the SQL Server instance,
or (local). It cannot be localhost.

Figure 5

The DatabaseList DropDownList

This control is used to select the database to query in order to provide the values for the TableList control. This list is filled
dynamically by querying the sysdatabases table in the master database of the SQL Server instance selected in the ServerList
control.

The TableList DropDownList

This control is used to select the table or views that are used to populate the FieldList control. This list is filled dynamically by
querying the sysobjects table for the tables and views in the database selected in the DatabaseList control.

The FieldList and SelFieldList DropDownLists

Figure 6

The FieldList control is populated dynamically with fields from the table or view indicated by the TableList control. You use this
control to select the fields to be used for the SQL query. You must select at least one field for the query.

The txtTitle, formatDropDown, Submit, Start Over, and txtStep Controls

Figure 7

1. The txtTitle text box is used to allow a user-specified report title to be entered.
2. The formatDropDown drop-down list allows the user to select the format in which to render the report. The options are

PDF (the default), Excel, HTMLOWC (HTML with Office Web Components), TIF (image), CSV, and MHTML (web archive).
3. The Submit button validates the form data and submits it to the RDLGenerator page. This page does the actual report

generation, and will be added to the project later in this tutorial.
4. The Start Over button deletes the form data and re-starts the wizard at the beginning.
5. The txtStep text box tracks the step the user is on in the wizard. This field is not visible in the user interface.

There are validations and labels on this page that are not documented. This document is intended for developers who
should already be familiar with these types of objects. For additional information on validations and labels use the
Visual Studio .NET Help menu.

Add the Data Objects to the ReportWizard Page

Now we will need to create the data adapters, connection, and datasets used by the application.

Add the Data Adapter and Connection to Fill the Database List

1. Using the Data tab in the Toolbox, select the SQLDataAdapter. Drag and drop it onto the designer.
2. This starts the Data Adapter Configuration Wizard.

Figure 8

3. Click Next.
4. Click on the New Connection button.

Figure 9

5. Enter (local) or the name of the server you are using as your data source for the report.
6. Select Use Windows NT Integrated Security.
7. Select the Master database and click the Test Connection button.
8. If the test connection succeeds, click OK.

Figure 10

9. Click Next to proceed to the next step.

Accept the default Use SQL statements on the Choose a Query Type screen and click Next.

Figure 11

10. Copy and paste the query below into the Generate the SQL Statements text area.

SELECT name FROM sysdatabases WHERE (name NOT IN ('Master', 'tempdb', 'msdb',
'Model'))

SQL Illustration 1

Figure 12

11. Click on the Advanced Options... button.
12. Deselect the Generate Insert, Update and Delete statements checkbox (these statements are not required) and click OK.

Figure 13

13. Click Next and then Finish.

Figure 14

14. Using the Properties dialog, set the name of the SqlDataAdapter1 to MasterSQLAdapter and the SqlConnection1 to
MasterSqlConnection1. If you do not rename these objects, you'll have to change the code that you paste later to the
names you have for them in your project.

Generate the Dataset

1. Right-click on the MasterSQLAdapter and choose Generate Dataset.
2. Name the dataset MasterDS.

Add the Data Adapter to Fill the Tables List

1. Select SQLDataAdapter from the data tab on the Tools menu to create the TablesDA.
2. Click Cancel when the Data Adapter Configuration Wizard begins. You will not be using the wizard to complete the

properties.
3. Select the new Data Adapter and click on the Properties view.
4. Set the following:

Name=TablesDA1

Connection=MasterSQLConnection1 (or the name you specified above)

CommandText= Select name from sysobjects where (xtype IN ('u', 'v')) AND (Status >= 0) order by name

DeleteCommand=(none)

InsertCommand=(none)

UpdateCommand=(none)

Figure 15

Create the Tables Dataset

1. Right-click on the TablesAdapter1 and select Generate Dataset.
2. Select New, name it TablesDS and click OK.

Figure 16

Add the Data Adapter to Fill the Fields List

1. Repeat the steps to create a data adapter without using the wizard as explained in the Add the Data Adapter to Fill the
Tables List section.

2. Set the following:

Name=GenerateFieldsDA

CommandText=Select * From sysobjects

Connection=MasterSqlConnection1

DeleteCommand=(none)

InsertCommand=(none)

UpdateCommand=(none)

Do not generate a dataset for this adapter.

Figure 17

Add the Code to the ReportWizard Form

1. Right-click on ReportWizard.aspx page and select View Code.
2. Copy and paste the code and comments in Code Illustration 1 above the

 Public Class ReportWizard

to set the Imports statements.

'===
' Copyright (C) Microsoft Corporation. All rights reserved.
'
' This source code is intended only as a supplement to Microsoft
' Development Tools and/or on-line documentation. See these other
' materials for detailed information regarding Microsoft code samples.
'
' THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
' KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
' IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
' PARTICULAR PURPOSE.
'===*/

Imports System.IO
Imports System.Collections
Imports System.Data
Imports System.Data.SqlClient
Imports System.Text
Imports System.Xml
Imports System.Web.Services
Imports System.Web.UI
Imports System.Web.UI.Page
Imports Microsoft.SqlServer.ReportingServices

Code Illustration 1

3. Paste the code in Code Illustration 2 to declare variables just below the Web Form Designer Generated Code section.

 Private m_connection As SqlConnection
 Private m_connectString As String
 Private m_commandText As String
 Private m_fields As ArrayList

 Private m_ReportName As String
 Private dbms As String = "initial catalog = master"
 Private SQLServer As String = "data source = localhost;"
 Private ConnectionString As String = "integrated security=SSPI;persist security
info=False;"

Code Illustration 2

4. Replace the existing comments within the Private Sub Page_Load statement with the code in Code Illustration 3:

This code is setting environment visibility and focus for the objects on the ReportWizard.aspx page based on what step is
listed in the txtStep field covered later.

 ' Track the steps and set visibility/focus
 Select Case txtStep.Text
 Case 1
 txtStep.Text = 2
 Me.FindControl("ServerList")
 Panel2.Visible = False
 Panel3.Visible = False
 Panel4.Visible = False
 selFieldList.Visible = False
 txtTitle.Visible = False
 Submit.Visible = False
 Case 2
 txtStep.Text = 3
 Panel2.Visible = True
 Panel3.Visible = False
 Panel4.Visible = False
 selFieldList.Visible = False
 txtTitle.Visible = False
 Submit.Visible = False
 Me.FindControl("DatabaseList")
 Case 3
 txtStep.Text = 4
 Panel3.Visible = True
 Panel4.Visible = False
 selFieldList.Visible = False
 txtTitle.Visible = False
 Submit.Visible = False
 Me.FindControl("SqlChoiceRadioList")
 Case 4
 txtStep.Text = 5
 Me.FindControl("TableDirectRadio")
 Case Else
 Me.FindControl("txtTitle")
 End Select
End Sub

Code Illustration 3

5. Next, following Page_load, copy and paste the code from Code Illustration 4 to capture change events in the ServerList.

Lines 1 and 2 are dynamically changing the connection string that will be used in the connection.

Line 3 is clearing the DatabaseList in the event there were existing items.

Within a structured try-catch exception handler, lines 4–7 open the database, fill the dataset, bind the dataset and then
inserts a generic list item.

The MasterSqlConnection1 is closed within the Finally of the try-catch statement on Line 8.

 Private Sub ServerList_SelectedIndexChanged(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles ServerList.SelectedIndexChanged
 ' Set the data source from ServerList value
 'Line1
 SQLServer = "data source = " & ServerList.SelectedValue & ";"
 'Line2
 MasterSqlConnection1.ConnectionString = ConnectionString & SQLServer & dbms
 'Line3
 DatabaseList.Items.Clear()

 Try
 'Line4
 MasterSqlConnection1.Open() ' Open connection
 'Line5
 MasterSQLAdapter.Fill(MasterDS1) 'Fill dataset Master DBMS
 'Line6
 DatabaseList.DataBind() ' Bind the data set
 'Line7
 DatabaseList.Items.Insert(0, "Make a Selection...") ' Add generic list
item
 Catch ex As Exception
 ExceptionHandler(ex) ' Generic error handler to be added a little later
 Finally
 'Line8
 MasterSqlConnection1.Close() ' Close connection
End Try
 End Sub

Code Illustration4

6. Copy the code in Code Illustration 5 for the DatabaseList_SelectedIndexChanged. The code is essentially the same as
that above with a few additional visibility settings.

 Private Sub DatabaseList_SelectedIndexChanged(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles DatabaseList.SelectedIndexChanged
 ' Set visibility and list items

 TableList.Items.Clear()
 FieldList.Visible = False
 selFieldList.Visible = False
 dbms = "initial catalog =" & DatabaseList.SelectedValue
 SQLServer = " data source = " & ServerList.SelectedValue & ";"
 Try
 MasterSqlConnection1.ConnectionString = ConnectionString & SQLServer &
dbms
 MasterSqlConnection1.Open() 'Open the connection
 TablesAdapter1.Fill(TablesDS1) 'Fill the tables dataset
 TableList.DataBind() 'bind the dataset to the TableList drop down
 TableList.Items.Insert(0, "Make a selection...") 'add a generic list item
 TableList.Visible = True
 Catch ex As Exception
 ExceptionHandler(ex)
 Finally
 MasterSqlConnection1.Close() 'close the connection
 End Try
 End Sub

Code Illustration 5

7. Copy and paste the following code to enable the capture of TableList selection changes.

This code prepares a SQL statement and passes it to the GenerateFields() method for processing. It then fills the
selFieldList with the array values in m_fields.

 Private Sub TableList_SelectedIndexChanged(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles TableList.SelectedIndexChanged
 Try
 ' Set initial state of objects
 FieldList.Items.Clear()
 selFieldList.Items.Clear()
 FieldList.Visible = True
 selFieldList.Visible = True

 ' Prepare command and connections
 dbms = "Initial Catalog = " & DatabaseList.SelectedValue
 SQLServer = "data source = " & ServerList.SelectedValue & ";"
 m_commandText = "Select * From [" & TableList.SelectedValue & "]"
 MasterSqlConnection1.ConnectionString = ConnectionString & SQLServer &
dbms
 MasterSqlConnection1.Open()
 GenerateFieldsList(m_commandText) 'Pass the command text to generate
field list

 Dim fieldName As String
 For Each fieldName In m_fields
 selFieldList.Items.Add(fieldName) 'Fill selFieldList drop down list
 Next fieldName

 'set visibility of objects
 txtTitle.Visible = True
 Label4.Visible = True
 formatDropDown.Visible = True
 Submit.Visible = True
 Panel4.Visible = True
 Catch ex As Exception
 ExceptionHandler(ex)
 Finally
 MasterSqlConnection1.Close() 'close the connection
 End Try
 End Sub

Code Illustration 6

8. Copy and paste the GenerateFieldsList code in Code Illustration 7 just above the End Class statement.

This code is from the Reporting Services Books Online. It creates a SQL Command and SQLReader. The command is set to
the query text that is passed in from Code Illustration 6. The reader is executed to get schema only, since we are just filling a
list with field names and do not need any data.

Public Sub GenerateFieldsList(ByVal m_NewQuery As String)
 'create field list and type arraylists
 Dim command As SqlCommand
 Dim reader As SqlDataReader

 ' Executing a query to retrieve a fields list for the report
 command = MasterSqlConnection1.CreateCommand()
 command.CommandText = m_NewQuery

 ' Execute and create a reader for the current command

 reader = command.ExecuteReader(CommandBehavior.SchemaOnly)

 ' For each field in the resultset, add the name to an array list
 m_fields = New ArrayList
 Dim i As Integer
 For i = 0 To reader.FieldCount - 1
 m_fields.Add(reader.GetName(i))
 Next i
 reader.Close()
 End Sub 'GenerateFieldsList

Code Illustration 7

9. Code Illustrations 8a and 8b are for the two buttons that move field names between the selFieldList and FieldList list
boxes. Copy and paste these code samples below the End Sub statement of the GenerateFieldsList method.

Modifying list box collections while enumerating through them causes an enumeration error (mscorlib). In the try-catch
error handler, the enumeration is reset to the beginning of the collection and then moved to the first item to clear the error.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 Dim li As New ListItem
 Try 'Move available fields to chosen fields list
 For Each li In selFieldList.Items
 If li.Selected Then
 FieldList.Items.Add(li.Text)
 FieldList.Items.Item(FieldList.Items.Count - 1).Selected = True
 selFieldList.Items.Remove(li.Text)
 End If
 Next li
 Catch ex As Exception
 ' Modifying the field lists causes enumeration to be out of synch
 ' Try to reset enumeration
 Try
 FieldList.Items.GetEnumerator.Reset()
 FieldList.Items.GetEnumerator.MoveNext()
 Catch exception As Exception
 ' ignore further enumeration errors
 End Try
 End Try
 End Sub

Code Illustration 8a

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 Dim li As ListItem
 Try ' User changes mind and removes fields from chosen field list
 For Each li In FieldList.Items
 If li.Selected Then
 selFieldList.Items.Add(li.Text)
 FieldList.Items.Remove(li.Text)
 End If
 Next li
 Catch ex As Exception
 ' Modifying the field lists causes enumeration to be out of synch
 ' Try to reset enumeration
 Try
 FieldList.Items.GetEnumerator.Reset()
 FieldList.Items.GetEnumerator.MoveNext()

 Catch exception As Exception
 ' ignore further enumeration errors
 End Try
 Finally
 ' Ensure all items in chosen field list are selected so user doesn't
 ' have to reselect all after removing a field
 Dim i As Integer
 For i = 0 To FieldList.Items.Count() - 1
 FieldList.Items.Item(i).Selected = True
 Next
 End Try
 End Sub

Code Illustration 8b

10. Copy and paste the code samples from Code Illustrations 9, 10 and 11 below the Button2_Click sub shown above.

Code Illustration 9 transfers the form values to the RDLGenerator.aspx page. Code Illustration 10 re-starts the Report
Wizard, clearing all existing form values. Code Illustration 11 redirects the user to the error_page.aspx page in the event of
an error.

Private Sub Submit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Submit.Click
 ' pass values to RDLGenerator page
 Server.Transfer("RDLGenerator.aspx", True)
 End Sub

Code Illustration 9

 Private Sub btnStartOver_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnStartOver.Click
 ' start over without retaining form values
 Server.Transfer("ReportWizard.aspx", False)
 End Sub

Code Illustration 10

Private Sub ExceptionHandler(ByVal exception As Exception)
 'generic exception handler
Response.Redirect("Error_page.aspx?errsource=" & exception.Source &
"&errmessage=Please contact the help desk for assistance.")

 End Sub

Code Illustration 11

11. Close ReportWizard.aspx, saving all changes.

Add the Error_Page Form to the Project
This page handles errors with friendly messages. You can use whatever error handling method you are comfortable with.

1. Select Add New Item from the File menu.

Figure 18

2. Select Web Form and name it Error_Page.aspx.
3. From the page properties, select View Code and add Code Illustration 12 to the Page Load sub.

This code uses Response.Write to display either the errsource or errmessage from the query string. If there is nothing in
the query string, it displays a generic error message.

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 If Request.QueryString("errsource") = "" And
Request.QueryString("errmessage") = "" Then
 Response.Write("<CENTER><H2 style='COLOR: Red'>AN ERROR HAS OCCURRED</H2>
")
 Response.Write("<HR style='COLOR: Red'>Please restart the application. If
it continues, contact your help desk.
")
 Response.Write("Create a New Report
</CENTER>")
 Else
 Response.Write("<CENTER><H2 style='COLOR: Red'>" &
Request.QueryString("errsource") & "<H2>")
 Response.Write("<HR style='COLOR: Red'>" &
Request.QueryString("errmessage"))
 Response.Write("<P>Contact your help desk for assistance.</P></CENTER>")
 End If
 End Sub

Code Illustration 12

4. Close Error_Page.aspx and save all changes.

You can specify an error page in the web.config file and also in the @ Page declarations. For more information search for @
Page declarations in the VS.NET help index.

Add the RDLGenerator Form to the Project
RDLGenerator is the page that does the actual report generation, using the Reporting Services API.

1. Add a new web form as before, naming it RDLGenerator.aspx.
2. Switch to Code View and add the code sample from Code Illustration 13 above Public Class RDLGenerator to set Imports

statements.

'===
' Copyright (C) Microsoft Corporation. All rights reserved.
'
' This source code is intended only as a supplement to Microsoft

' Development Tools and/or on-line documentation. See these other
' materials for detailed information regarding Microsoft code samples.
'
' THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
' KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
' IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
' PARTICULAR PURPOSE.
'===*/
Imports System.Web
Imports System.Text
Imports System.Text.RegularExpressions
Imports System.IO
Imports System.Data.SqlClient
Imports System.Xml
Imports Microsoft.ReportingServices
Imports Microsoft.SqlServer.ReportingServices

Code Illustration 13

3. Add the variables in Code Illustration 14 just above the Private Sub Page_Load statement to declare variables you'll be
using:

 Private m_query As String ' Query to be used for report
 Private dsName As String ' Name of the data source
 Private m_Fields As ArrayList ' Arraylist of fields
 Private m_Type As ArrayList ' Arraylist of field types
 Private m_ReportName As String ' Report name for referencing
 Private definition As [Byte]() = Nothing ' Report definition used to create
report
 Private warnings As Warning() = Nothing ' Warning container to catch warnings
 Private parentFolder = "My Reports" ' Path used to publish reports to..user must
have rights to create content
 Private parentPath As String = "/" + parentFolder ' Path from report manager URL
to parentFolder
 Private filePath As String = "c:\" ' Used to store RDL files
 Private RS As New ReportingService ' Reporting Service
 Private m_ReportTitle As String ' Title text box for report
 Private FieldList As String
 Private TableName As String
 Private OrderList As String
 Private DatabaseName As String
 Private ServerName As String 'Used to store server name
 Private m_ConnStr As String ' Used for Data Source Definition

Code Illustration 14

4. Replace the Page_Load sub with Code Illustration 15. See comments inline for explanations.

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Get form data from ReportWizard.aspx
 ServerName = Request.Form("ServerList")
 DatabaseName = Request.Form("DatabaseList")
 TableName = Request.Form("TableList")
 FieldList = Request.Form("FieldList")
 m_ReportTitle = Request.Form("txtTitle")

 Dim format As String = Request.Form("formatDropDown")

 ' Set the strReportName and remove illegal characters

 Dim strReportName As String
 If m_ReportTitle = "" Then
 strReportName = Replace(TableName, " ", "")
 Else
 strReportName = Regex.Replace(m_ReportTitle, "[^\w\@-]", "")
 End If

 'Create rendering path adding the output format
 Dim myPath As String = http://localhost/reportserver?/ & _
 + parentFolder + "/" & strReportName & _
+ "&rs:Command=render&rs:Format=" + format

 'Remove spaces from database name if they exist
 If Not DatabaseName = "" Then
 dsName = Replace(DatabaseName, " ", "") & "Ds"
 Else
 dsName = "MyReportsDs"
 End If

 'Create report path for the RDL file
 m_ReportName = "c:\" & strReportName & ".rdl"

 'Change connection string to use appropriate server and database
 m_ConnStr = "Data Source =" & ServerName & ";Initial Catalog =" &
DatabaseName
 conn.ConnectionString = "Data Source =" & ServerName & ";Initial Catalog =" &
DatabaseName
 Try
 Dim x As Integer
 Dim nField() As String = Split(FieldList, ",")

 'Create the Order By field list replacing any empty strings
 OrderList = Replace(FieldList, " ", "")

 'Add brackets to field list for SQL statement-any spaces will cause error
For x = 0 To nField.Length - 1
 nField(x) = "[" & nField(x) & "] As " & Replace(nField(x), " ", "")
 Next
 ' Join the arraylist to create string
 FieldList = Join(nField, ",")

 Catch ex As Exception
 HandleException(ex)
 End Try

 'Generate SQL statement adding the FieldList; TableName and OrderList
 m_query = "Select " & FieldList & " from " & "[" & TableName & "] Order By "
& OrderList

 Try
 'Generate the field list
 GenerateFieldsList(m_query)
 'Generate report
 GenerateRdl(m_ReportName)
 'Publish report
 BeginPublishReport(strReportName)
 'Open report in selected format
 Response.Redirect(myPath)

 Catch ex As Exception
 HandleException(ex)
 End Try
 End Sub

Code Illustration 15

5. Add the code in Code Illustration 16 just above the End Class statement.

This is essentially the same GenerateFieldsList as used on ReportWizard.aspx, with the addition of an array to contain the
field types which are used by the GenerateRDL() method for formatting.

Public Sub GenerateFieldsList(ByVal m_NewQuery As String)
 'create field list and type arraylists
 Dim command As SqlCommand
 Dim reader As SqlDataReader
 Try

 ' Executing a query to retrieve a fields list for the report
 command = conn.CreateCommand()
 command.CommandText = m_NewQuery
 conn.ConnectionString += conn.ConnectionString & ";integrated security=
SSPI"
 conn.Open()

 ' Execute and create a reader for the current command
 reader = command.ExecuteReader(CommandBehavior.SchemaOnly)
 ' For each field in the resultset, add the name to an array list
 ' And add the field type to an array list to set formatting in report
 m_Fields = New ArrayList
 m_Type = New ArrayList
 Dim i As Integer
 For i = 0 To reader.FieldCount - 1
 m_Fields.Add(reader.GetName(i))
 m_Type.Add(Replace(reader.GetFieldType(i).ToString, "System.", ""))
 Next i
 reader.Close()
 conn.Close()
 Catch ex As Exception
 ' ignore
 End Try
 End Sub 'GenerateFieldsList

Code Illustration 16

Writing the RDL to a File

1. Copy and paste the code from Code Illustration 17 below the GenerateFieldsList() end statement.

Writing out to a file that is saved on disk allows you to import the RDL into a report project in VS.NET and make
modifications.

The Report Definition Language (RDL) is fully documented in the Reporting Services Books Online. It is an XML-based
schema. Developers familiar with XML attributes/elements and HTML tags should find the RDL easy to understand. A
sample of programmatically generating RDL, Walkthrough – Generating RDL Using the .NET Framework, is in the Reporting
Services Books Online. See inline code comments for additional explanations.

 Public Sub GenerateRdl(ByVal m_ReportName As String)
 ' Open a new RDL file stream for writing
 Dim stream As FileStream
 Dim i As Integer

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsamples/htm/rss_tutorials_v1_02ua.asp

 Try

 ' If a file with the same name exists, delete it
 If File.Exists(m_ReportName) Then
 File.Delete(m_ReportName)
 End If

 ' Open the file for writing
 stream = File.OpenWrite(m_ReportName)

 ' Create an XML text writer to begin writing to the file
 Dim writer As New XmlTextWriter(stream, Encoding.UTF8)

 ' Causes child elements to be indented
 writer.Formatting = Formatting.Indented

 ' Report element
 writer.WriteProcessingInstruction("xml", "version=""1.0"" encoding=""utf-
8""")
 writer.WriteStartElement("Report")
 writer.WriteAttributeString("xmlns", Nothing,
"http://schemas.microsoft.com/sqlserver/reporting/2003/10/reportdefinition")
 writer.WriteElementString("Width", "6in")

 ' DataSource element
 writer.WriteStartElement("DataSources")
 writer.WriteStartElement("DataSource")
 writer.WriteAttributeString("Name", Nothing, dsName)
 writer.WriteElementString("DataSourceReference", dsName)
 writer.WriteEndElement() ' ConnectionProperties
 writer.WriteEndElement() ' DataSource

 ' DataSet element
 writer.WriteStartElement("DataSets")
 writer.WriteStartElement("DataSet")
 writer.WriteAttributeString("Name", Nothing, "DataSet1")

 ' Query element
 writer.WriteStartElement("Query")
 writer.WriteElementString("DataSourceName", dsName)
 writer.WriteElementString("CommandType", "Text")
 writer.WriteElementString("CommandText", m_query)
 writer.WriteElementString("Timeout", "30")
 writer.WriteEndElement() ' Query
 ' Fields elements
 writer.WriteStartElement("Fields")

 ' Loop through the fields to add field names
 For i = 0 To m_Fields.Count - 1
 writer.WriteStartElement("Field")
 writer.WriteAttributeString("Name", Nothing, m_Fields(i))
 writer.WriteElementString("DataField", Nothing, m_Fields(i))
 writer.WriteEndElement() ' Field
 Next 'fieldName

 ' End previous elements
 writer.WriteEndElement() ' Fields
 writer.WriteEndElement() ' DataSet
 writer.WriteEndElement() ' DataSets

 ' Body element
 writer.WriteStartElement("Body")
 writer.WriteElementString("Height", "5in")

 ' ReportItems element
 writer.WriteStartElement("ReportItems")

 'If report title was specified, create the title text box
 If m_ReportTitle <> "" Then
 writer.WriteStartElement("Textbox")
 writer.WriteAttributeString("Name", Nothing, "Title1")
 writer.WriteStartElement("Style")
 writer.WriteElementString("FontFamily", "Tahoma")
 writer.WriteElementString("FontSize", "18pt")
 writer.WriteElementString("Color", "Navy")
 writer.WriteElementString("FontWeight", "700")
 writer.WriteElementString("TextAlign", "Center")
 writer.WriteEndElement() 'style
 writer.WriteElementString("Top", "0.125in")
 writer.WriteElementString("Height", "0.375in")
 writer.WriteElementString("Width", "6.5in")
 writer.WriteElementString("CanGrow", "true")
 writer.WriteElementString("Value", m_ReportTitle)
 writer.WriteElementString("Left", "0.125in")
 writer.WriteEndElement() 'Textbox

 ' Table element
 writer.WriteStartElement("Table")
 writer.WriteAttributeString("Name", Nothing, "Table1")
 writer.WriteElementString("DataSetName", "DataSet1")
 writer.WriteElementString("Top", ".5in")
 writer.WriteElementString("Left", ".5in")
 writer.WriteElementString("Height", ".25in")
 Else
 ' Table element
 writer.WriteStartElement("Table")
 writer.WriteAttributeString("Name", Nothing, "Table1")
 writer.WriteElementString("DataSetName", "DataSet1")
 writer.WriteElementString("Top", ".125in")
 writer.WriteElementString("Left", ".125in")
 writer.WriteElementString("Height", ".25in")
 End If

 'determine the width of the table by adding the widths of each column
together
 Dim width As Integer = 0
 For i = 0 To m_Fields.Count - 1
 Select Case m_Type(i)
 Case "Decimal", "Int16", "Int32", "Int64", "Boolean"
 width = width + 0.5
 Case "DateTime"
 width = width + 0.75
 Case Else
 width = width + 1.5
 End Select
 Next
 writer.WriteElementString("Width", width & "in")

 ' Table Columns
 writer.WriteStartElement("TableColumns")
 For i = 0 To m_Fields.Count - 1
 writer.WriteStartElement("TableColumn")
 Select Case m_Type(i)
 Case "Decimal", "Int16", "Int32", "Int64", "Boolean"
 writer.WriteElementString("Width", ".5in")
 Case "DateTime"
 writer.WriteElementString("Width", ".75in")
 Case Else
 writer.WriteElementString("Width", "1.5in")
 End Select
 writer.WriteEndElement() ' TableColumn
 Next 'fieldName
 writer.WriteEndElement() ' TableColumns

 ' Header Row
 writer.WriteStartElement("Header")
 writer.WriteStartElement("TableRows")
 writer.WriteStartElement("TableRow")
 writer.WriteElementString("Height", ".25in")
 writer.WriteStartElement("TableCells")

 For i = 0 To m_Fields.Count - 1
 writer.WriteStartElement("TableCell")
 writer.WriteStartElement("ReportItems")

 ' Textbox
 writer.WriteStartElement("Textbox")
 writer.WriteAttributeString("Name", Nothing, "Header" + m_Fields(i))

 'Set the background color and other header styles
 writer.WriteStartElement("Style")
 writer.WriteElementString("BackgroundColor", "DarkBlue")
 writer.WriteElementString("Color", "White")

 ' Align cell according to datatype
 Select Case m_Type(i)
 Case "Decimal", "Int16", "Int32", "Int64"
 writer.WriteElementString("PaddingRight", "3pt")
 writer.WriteElementString("TextAlign", "Right")
 Case Else
 writer.WriteElementString("TextAlign", "Left")
 End Select
 writer.WriteElementString("FontWeight", "700")
 writer.WriteEndElement() ' End Style
 writer.WriteElementString("Top", "0in")
 writer.WriteElementString("Left", "0in")
 writer.WriteElementString("Height", ".5in")
 Select Case m_Type(i)
 Case "Int16", "Int32", "Int64", "Boolean", "Decimal"
 writer.WriteElementString("Width", ".5in")
 Case "DateTime"
 writer.WriteElementString("Width", ".75in")
 Case Else
 writer.WriteElementString("Width", "1.5in")
 writer.WriteElementString("CanGrow", "true")
 writer.WriteElementString("CanShrink", "true")

 End Select
 writer.WriteElementString("Value", m_Fields(i))
 writer.WriteEndElement() ' End Textbox
 writer.WriteEndElement() ' End ReportItems
 writer.WriteEndElement() ' EndTableCell
 Next 'fieldName

 writer.WriteEndElement() ' TableCells
 writer.WriteEndElement() ' TableRow
 writer.WriteEndElement() ' TableRows
 writer.WriteElementString("RepeatOnNewPage", "true")
 writer.WriteEndElement() ' Header
 'writer.WriteElementString("KeepTogether", "true")

 ' Details Row
 writer.WriteStartElement("Details")
 writer.WriteStartElement("TableRows")
 writer.WriteStartElement("TableRow")
 writer.WriteElementString("Height", ".25in")
 writer.WriteStartElement("TableCells")

 ' Loop through the field and type arrays to set formatting & styles
 For i = 0 To m_Fields.Count - 1
 writer.WriteStartElement("TableCell")
 writer.WriteStartElement("ReportItems")

 ' Textbox
 writer.WriteStartElement("Textbox")
 writer.WriteAttributeString("Name", Nothing, m_Fields(i))

 writer.WriteStartElement("Style")
 writer.WriteElementString("PaddingLeft", "2pt")

 ' format and align cell according to datatype
 Select Case m_Type(i)
 Case "DateTime"
 writer.WriteElementString("TextAlign", "Left")
 writer.WriteElementString("Format", "MM/dd/yyyy")
 Case "Decimal"
 writer.WriteElementString("PaddingRight", "3pt")
 writer.WriteElementString("TextAlign", "Right")
 writer.WriteElementString("Format", "F")
 Case "Int16", "Int32", "Int64"
 writer.WriteElementString("PaddingRight", "3pt")
 writer.WriteElementString("TextAlign", "Right")
 Case Else
 writer.WriteElementString("TextAlign", "Left")
 End Select

 writer.WriteEndElement() ' Style
 writer.WriteElementString("Top", "0in")
 writer.WriteElementString("Left", "0in")
 writer.WriteElementString("Height", ".5in")

 ' Create cell width dependent on datatype
 Select Case m_Type(i)
 Case "Int16", "Int32", "Boolean", "Decimal"
 writer.WriteElementString("Width", ".5in")
 Case "DateTime"

 writer.WriteElementString("Width", ".75in")
 Case Else
 writer.WriteElementString("Width", "1.5in")
 writer.WriteElementString("CanGrow", "true")
 writer.WriteElementString("CanShrink", "true")
 End Select

 writer.WriteElementString("Value", "=Fields!" + m_Fields(i) +
".Value")
 'writer.WriteElementString("HideDuplicates", "DataSet1")
 writer.WriteEndElement() ' Textbox
 writer.WriteEndElement() ' ReportItems
 writer.WriteEndElement() ' TableCell
 Next 'fieldName

 ' End Details element and children
 writer.WriteEndElement() ' TableCells
 writer.WriteEndElement() ' TableRow
 writer.WriteEndElement() ' TableRows
 writer.WriteEndElement() ' Details

 ' End table element and end report definition file
 writer.WriteEndElement() ' Table
 writer.WriteEndElement() ' ReportItems

 writer.WriteEndElement() ' Body

 ' Set overall report margins
 writer.WriteElementString("TopMargin", "0.25in")
 writer.WriteElementString("BottomMargin", "0.25in")
 writer.WriteElementString("LeftMargin", "0.25in")
 writer.WriteElementString("RightMargin", "0.25in")
 ' End the report
 writer.WriteEndElement() ' Report

 ' Flush the writer
 writer.Flush()
 Catch ex As Exception
 HandleException(ex)
 Finally
 'Close the stream
 stream.Close()
 End Try

 End Sub 'GenerateRdl

Code Illustration 17

2. Add the BeginPublishReport() code from Code Illustration 18. This code calls two methods, one for creating the data
source and the other for publishing the report that was written in GenerateRDL().

 Public Sub BeginPublishReport(ByVal ReportName As String)
 RS.Credentials = System.Net.CredentialCache.DefaultCredentials
 Try

 'Create the shared data source
 CreateDataSource()

 'Publish the report

 PublishReport(ReportName)

 Catch ex As Exception
 HandleException(ex)
 End Try
 End Sub

Code Illustration 18

Create a Shared Data Source in "My Reports"

1. Add Code Illustration 19 to create the data source. See the ReportingService.CreateDataSource Method topic for additional
information on the definition and properties.

 Public Sub CreateDataSource()
 Dim name As String = dsName
 Dim parent As String = "/" + parentFolder

 'Define the data source definition.
 Dim definition As New DataSourceDefinition
 definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated
 definition.ConnectString = m_ConnStr
 definition.Enabled = True
 definition.EnabledSpecified = True
 definition.Extension = "SQL"
 definition.ImpersonateUser = True
 definition.ImpersonateUserSpecified = False
 'Use the default prompt string.
 definition.Prompt = Nothing
 definition.WindowsCredentials = True

 'Try creating the data source
 Try
 RS.CreateDataSource(name, parent, True, definition, Nothing)

 Catch ex As Exception
 HandleException(ex)
 End Try
 End Sub

Code Illustration 19

Publish a Report to "My Reports"

1. Copy and paste Code Illustration 20 after the End Sub statement of the CreateDataSource method.

 Public Sub PublishReport(ByVal reportName As String)
 Try
 'Create a stream reader and open file
 'Could also create a stream without generating an RDL file
 Dim reader As StreamReader
 Dim stream As FileStream = File.OpenRead(filePath + reportName + ".rdl")

 'read the file into the definition
 definition = New [Byte](stream.Length) {}
 stream.Read(definition, 0, CInt(stream.Length))

 'close the stream
 stream.Close()

 Catch ex As IOException

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsprog/htm/rsp_ref_soapapi_service_ak_9n79.asp

 HandleException(ex)
 End Try

 'Try creating the report using values filled
 Try
 Dim myPropertyValue As String = "Table/View Name: " & TableName & " from
" & DatabaseName & " on " & ServerName & " server. "
 myPropertyValue += " Columns Selected: " & OrderList & "."
 myPropertyValue += " Note: This report uses " & dsName & " shared data
source."
 'Set the description of the report to list the server name, table
 ' and fields used
 Dim newProp As New [Property]
 newProp.Name = "Description"
 newProp.Value = myPropertyValue
 Dim props(0) As [Property]
 props(0) = newProp

 'Create the report
 'Properties can be passed as Nothing
 warnings = RS.CreateReport(reportName, parentPath, True, definition,
props)

 'Write warnings to event log
 If Not (warnings Is Nothing) Then
 Dim warning As Warning
 For Each warning In warnings
 Diagnostics.EventLog.WriteEntry("Report Server", warning.Message,
Diagnostics.EventLogEntryType.Warning)
 Next warning
 End If

 Catch ex As Exception
 HandleException(ex)
 End Try
 End Sub

Code Illustration 20

2. Add the generic error handler as shown in Code Illustration 21.

 Private Sub HandleException(ByVal exception As Exception)
 'Generic exception handler
 Response.Write(exception.Source & "
" & exception.Message & "")
 End Sub

Code Illustration 21

3. Close RDLGenerator.aspx, saving all changes.

The ReportWizard.aspx and the RDLGenerator.aspx pages are all that are required to dynamically generate connection,
query strings, and RDL files; publish the definition and data source to the Report Server; and render them out in the
specified output format. The remainder of this document is about creating a page that allows users to delete their reports
and data sources from their My Reports folder.

Add the ManagingReports Form to the Project
The purpose of this page is to demonstrate how to iterate through a collection of reports and data sources in the My Reports
folder, check for dependencies, and, if none exist, delete multiple selected objects simultaneously.

1. Add a new web form to the project and name it ManagingReports.aspx.
2. Open the page in the designer and choose HTML view.

3. Delete the <form></form> tags.
4. Copy and Paste as HTML the following html:

<script>
function OpenWin()
{
window.open("/Reports/Pages/Folder.aspx?
ItemPath=%2fMy+Reports&IsDetailsView=False","MyReports")
}
</script>
<form id="Form1" method="post" runat="server">
<P dir="ltr" style="MARGIN-RIGHT: 0px"><asp:label id="Label3" style="Z-
INDEX: 104; LEFT: 176px; POSITION: absolute; TOP: 8px" runat="server"
Height="24px" BackColor="Transparent" Font-Italic="True"
BorderColor="White" ForeColor="ForestGreen" Font-Size="22pt" Font-
Bold="True"
Width="384px">Your Reports and Data Sources</asp:label><asp:label
id="Label2" style="Z-INDEX: 103; LEFT: 408px; POSITION: absolute; TOP:
128px" runat="server"
ForeColor="Navy" Font-Size="Medium" Font-Bold="True" Width="280px">Data
Sources You Have Created:</asp:label><asp:checkboxlist
id="chkReportList" style="Z-INDEX: 101; LEFT: 24px; POSITION: absolute;
TOP: 160px"
runat="server" Height="24px" Width="296px" BorderWidth="1pt"
BorderStyle="Inset"></asp:checkboxlist><asp:label id="Label1" style="Z-
INDEX: 102; LEFT: 24px; POSITION: absolute; TOP: 128px" runat="server"
ForeColor="Navy" Font-Size="Medium" Font-Bold="True"
Width="288px">Reports You Have Created:</asp:label><asp:checkboxlist
id="chkDSList" style="Z-INDEX: 105; LEFT: 400px; POSITION: absolute;
TOP: 160px"
runat="server" Width="296px" BorderWidth="1pt"
BorderStyle="Inset"></asp:checkboxlist><asp:button id="btnDel"
style="Z-INDEX: 106; LEFT: 144px; POSITION: absolute; TOP: 64px"
runat="server"
Text="Delete Selected Items"></asp:button></P>
<HR style="Z-INDEX: 107; LEFT: 16px; POSITION: absolute; TOP: 104px" width="100%"
SIZE="1"
color="#006600">
<asp:label id="lblWarning" style="Z-INDEX: 109; LEFT: 32px; POSITION: absolute; TOP:
488px"
runat="server" Height="24px" ForeColor="#C00000" Font-Size="10pt" Font-Bold="True"
Width="688px"
Visible="False">***Reports with subscriptions or data sources with
reports using them must be deleted from the My Reports
folder</asp:label>
<INPUT style="Z-INDEX: 108; LEFT: 384px; WIDTH: 208px; POSITION: absolute; TOP: 64px;
HEIGHT: 24px"
type="button" value="View My Reports Folder" onclick="OpenWin()">
</form>

Your page should now look like this:

Figure 19

Add Code to the ManageReports Page

1. Right-click and select View Code. Copy and paste the comments and Imports statements from CodeIllustration 22 above
the Public Class ManageReports to create the Imports statements and comments.

'===
' Copyright (C) Microsoft Corporation. All rights reserved.
'
' This source code is intended only as a supplement to Microsoft
' Development Tools and/or on-line documentation. See these other
' materials for detailed information regarding Microsoft code samples.
'
' THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
' KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
' IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
' PARTICULAR PURPOSE.
'===*/
Imports Microsoft.SqlServer.ReportingServices

Code Illustration 22

2. Next, copy and paste the variable declarations from Code Illustration 23 just above the Public Sub Page_Load().

 Private rs As New ReportingService ' Create new Reporting Service
 Private _returnedItems() As CatalogItem ' Create catalog item container
 Private parentPath = "/My Reports" ' Path of reports..user must have the right to
create and modify content.

Code Illustration 23

3. Replace the Page_Load method with the code in Code Illustration 24.

This code checks if the page is a post back and if not, it calls FindMyReports().

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 ' Check if page is posted back
 If Not IsPostBack Then ' begin listing reports and data sources
 FindMyReports()
 End If
 End Sub

Code Illustration 24

4. Copy and paste the FindMyReports() code from Code Illustration 25 just above the End Class.

For more information, see the ReportingService.FindItems Method topic, as well as the FindRenderSave application in the
Reporting Services/Samples/Applications folder. See inline comments for additional explanation.

 Private Sub FindMyReports()
 ' Clear any existing items
 chkReportList.Items.Clear()
 chkDSList.Items.Clear()

 ' Create a new proxy to the web service
 rs = New ReportingService

 ' Authenticate to the Web service using Windows credentials
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Assign the URL of the Web service
 rs.Url = "http://localhost/ReportServer/ReportService.asmx"

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsprog/htm/rsp_ref_soapapi_service_ak_0vp2.asp

 ' Create SearchCondition containers
 Dim conditions() As SearchCondition
 Dim condition As New SearchCondition

 ' Fill search conditions
 ' Searchable properties are Name, Description, CreatedBy,
 ' CreationDate,ModifiedBy, and ModifiedDate
 Try
 condition.Condition = ConditionEnum.Contains 'Contains or Equals
 condition.ConditionSpecified = True 'Must be set to true
 condition.Name = "CreatedBy" 'Searching the My Reports folder for all
objects
 'created by the current user
 condition.Value =
System.Security.Principal.WindowsIdentity.GetCurrent.Name
 conditions = New SearchCondition(0) {}
 conditions(0) = condition

 ' Get the return catalog items
 _returnedItems = rs.FindItems(parentPath, BooleanOperatorEnum.Or,
conditions)

 ' Verify something is returned
 If Not (_returnedItems Is Nothing) AndAlso _returnedItems.Length <> 0
Then
 Dim ci As CatalogItem
 Dim _ci As CatalogItem
 Dim su As Subscription

 ' Loop through the report and data source catalog items returned and
add
 ' them to their corresponding list collections
 For Each ci In _returnedItems
 If ci.Type = ItemTypeEnum.Report Then

 ' If subscriptions exist for this report add asterisks to name
 For Each su In rs.ListSubscriptions(parentPath & "/" & ci.Name,
condition.Value.ToString)
 ci.Name = ci.Name & "***"
 ' If a subscription is found, exit the loop. There is no need to
continue.
 Exit For
 Next
 ' Fill the chkReportList checkbox group with the report names
 chkReportList.Items.Add(ci.Name)

 ' if it's not a report, check to see if it's a data source
 ElseIf ci.Type = ItemTypeEnum.DataSource Then

 ' If reports depend on this data source add asterisks to name
 For Each _ci In rs.ListReportsUsingDataSource(parentPath & "/" &
ci.Name)
 ci.Name = ci.Name & "***"
 ' If a report is found, exit the loop. There is no need to continue.
 Exit For
 Next
 ' Fill the chkDSList checkbox group with the data sources
 chkDSList.Items.Add(ci.Name)
 End If

 Next ci
 End If

 Catch exception As Exception
 HandleException(exception)
 End Try
 End Sub

Code Illustration 25

5. Copy and paste the code from Code Illustration 26 above the End Class declaration for the btnDel click event.

Private Sub btnDel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnDel.Click
 rs = New ReportingService

 ' Authenticate to the Web service using Windows credentials
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Assign the URL of the Web service
 rs.Url = "http://localhost/ReportServer/ReportService.asmx"

 Dim li As New ListItem

 ' Get the Report List items
 For Each li In chkReportList.Items
 ' loop through each report list item & check if it is selected
 If li.Selected Then
 ' If report has subscriptions set the warning label to visible
 ' and DO NOT delete
 If li.Text.EndsWith("***") Then
 lblWarning.Visible = True
 Else ' else delete the report
 rs.DeleteItem(parentPath & "/" & li.Text)
 End If ' end text.EndsWith
 End If ' end li.Selected
 Next ' list item
 ' Loop through each data source list item & check if it is selected
 For Each li In chkDSList.Items
 If li.Selected Then
 'If the data source has reports depending on it set the warning label
 'to visible
 If li.Text.EndsWith("***") Then
 lblWarning.Visible = True
 Else ' else delete the data source
 rs.DeleteItem(parentPath & "/" & li.Text)
 End If
 End If
 Next
 ' Regenerate report and data source lists
 FindMyReports()
 End Sub

Code Illustration 26

6. Add a generic exception handler of your choosing in a HandleException method. You can copy and paste Code Illustration
27 or create your own.

 Private Sub HandleException(ByVal exception As Exception)
 'Generic exception handler
 Response.Write(exception.Source & "<p>" & exception.Message)

 End Sub

Code Illustration 27

7. Close the page and save all changes.
8. Press F5 to build the application and test it.

Occasionally, I would encounter a vbc : Command line error BC2017.

Recompiling seems to take care of it. If you receive this compiling error, refer to: Microsoft Knowledge Base Article -
319976 for additional information.

Conclusion
Using the .NET Framework to program Reporting Services is very straightforward and well-documented, as are the samples that
are installed with it. Hopefully this sample application has provided you with supplemental knowledge you can use to move
forward in implementing an enterprise reporting environment. The MSSRS team is continually working to improve the developer
and user experience and we look forward to your comments and feedback.

© Microsoft Corporation. All rights reserved.

http://support.microsoft.com/default.aspx?scid=kb;en-us;319976&Product=vbNET
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Using an ADO.NET DataSet as a Reporting Services Data Source

Christa Carpentiere
Microsoft Corporation

September 2004

Applies to:
 ADO.NET 1.0
 SQL Server 2000
 Reporting Services

Summary: Learn how to build a data processing extension for Reporting Services that enables you to use an ADO.NET DataSet as
a data source. (21 printed pages)

Click here to download the Visual Basic sample code for this article, and here to download the C# code.

Download the Visual Basic sample

Download the sample

Contents

Introduction
Data Processing Extension Basics
Implementing the Extension
Deploying the Extension
Creating the Report
Conclusion
Related Books

Introduction
Reporting Services provides access to SQL Server, Oracle, ODBC, and OLE DB data sources as part of its standard features. For
many reporting scenarios, connecting to a database and running a query is all that is needed to get all the information you need
to report upon. But what happens if you want to use a DataSet as your data source? For example, maybe you already have a
middle tier that processes your data to conform to your business logic and produces a DataSet as a result. Or maybe you don't,
but you nonetheless want to manipulate your raw data prior to reporting in ways that are a better fit for a Microsoft Visual Basic
or C# implementation than a SQL implementation, and a DataSet would be the logical end result of such processing. Well,
fortunately, it is possible to do this. It is even relatively easy, once you work out what parts of the data processing extension
interfaces really have to be implemented to wrap up a DataSet in a way that Reporting Services can use.

In this article, we'll take a look at creating and deploying a simple data processing extension that can be used to provide DataSet
data to a Reporting Services report.

Data Processing Extension Basics
Reporting Services allows you to expand or customize the data sources available to you by means of data processing extensions.
A data processing extension is an assembly containing the implementation of a set of interfaces available in the
Microsoft.ReportingServices.DataProcessing namespace. There are seven interfaces that must be implemented in any data
processing extension:

Table 1. The seven interfaces in a data processing extension

Interface Description

IDbConnection Represents a unique session with a data source. In the case of a client/server database system, the
session may be equivalent to a network connection to the server.

IDbTransaction Represents a local transaction.
IDbCommand Represents a query or command that is used when connected to a data source.
IDataParameter Represents a parameter or name/value pair that is passed to a command or query.
IDataParameterCollection Represents a collection of all parameters relevant to a command or query.

http://download.microsoft.com/download/6/7/b/67b0f1a5-a7e4-425e-9483-5ec3426587f6/RSDataSetVB.exe
http://download.microsoft.com/download/1/a/9/1a934fd2-dae5-434a-b5c7-eda0450c7d0e/RSDataSetCSharp.exe

IDataReader Provides a method of reading a forward-only, read-only stream of data from your data source.

There are also several optional interfaces that provide additional functionality for connections, transactions, and so on, but the
enhancements they provide are not needed in a DataSet data processing extension. If you'd like to know more about these
additional interfaces, take a look at the Preparing to Implement a Data Processing Extension topic in the Reporting Services
documentation.

From looking at the interfaces listed above, you can see that building a data processing extension is rather similar to building a
Microsoft .NET Framework data provider. Many of the interfaces are named the same and provide similar but often not identical
functionality, so if you have worked with the System.Data interfaces before, make sure to keep the differences in mind.

For the purposes of accessing a DataSet, half of the required interfaces need only the most minimal implementation, and the
remaining interfaces can be implemented with fairly basic functionality. Let's take a look at what really needs to happen to get this
extension working.

Implementing the Extension
The sample application that this article is based on reads data from two or more XML files, then aggregates the data from these
files into one Table in one DataSet. The file names are provided as the command text. The schema to verify the file structure is
read from the Report Server config file using a Connection property. This file and schema information is used to create a DataSet
that provides the data source for the DataReader. The Report Designer will use DataReader.Read to access the DataSet data for
the report.

Paying Your Dues

Open a new Class Library project in Microsoft Visual Studio, and add a reference to Microsoft.ReportingServices.Interfaces.dll. It
contains the Microsoft.ReportingServices.DataProcessing namespace that you'll need to reference for the data processing
extension interfaces.

Our first order of business is to take care of the classes that implement the IDbTransaction, IDataParameter, and
IDataParameterCollection interfaces. These classes are included only because they are required in any data processing
extension. In this implementation, since we don't make a database connection, do any data modification, or use any kind of
structured language to communicate with a relational database, they are not used for anything. They can all be implemented in a
skeletonized form, as illustrated in the sample code accompanying this article.

Note It is possible that you might want to implement these interfaces more fully, depending on your application. In
cases where you want to retrieve relational data, process it, create a DataSet, and then report on that, clearly these
would be of use.

The Heart of the Matter

Once the required-but-unnecessary classes are out of the way, let's take a look at the IDbConnection, IDbCommand, and
IDataReader implementations that actually do the work in this extension.

Since we aren't connecting to a database, we're using the connection class for two things, really. The first is to use the
SetConfiguration method to retrieve information from the config file about what schema should be used to validate the XML
data. Storing the schema info makes the app a bit more flexible, as you can always just update it to conform to the kind of data
you want to use. There are actually two config files used. Since a report developer may not have access to the target Report
Server, the Report Designer and the Report Server need separate sources of configuration information. RSReportServer.config
accesses the extension information for deployed reports, and RSReportDesigner.config accesses the extension information that is
used in the designer UI. These two config files should have identical entries identifying the data processing extension.

The second thing we use the Connection class for is the CreateCommand method, to create a new Command object using the
Connection object overload. This will provide access to the configuration info in the context of the Command object. All the
other members of IDbConnection are given the minimum required implementation.

using System;
using System.Data;
using System.Configuration;
using System.Xml;
using Microsoft.ReportingServices.DataProcessing;

namespace Microsoft.Samples.ReportingServices.DataSetExtension
{
 public class DSXConnection
 : Microsoft.ReportingServices.DataProcessing.IDbConnection
 {

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/RSPROG/htm/rsp_prog_extend_dataproc_10va.asp

 private string _connString;
 // IDbConnection.ConnectionTimeout defaults to 15 seconds.
 private int _connTimeout = 15;
 private ConnectionState _state = ConnectionState.Closed;
 private string _locName = "DataSet Data Extension";
 internal string _xmlSchema;

 // Default constructor.
 public DSXConnection()
 {
 }

 // Connection string constructor overload.
 public DSXConnection(string connString)
 {
 _connString = connString;
 }

 public string ConnectionString
 {
 get
 {
 return _connString;
 }
 set
 {
 _connString = value;
 }
 }

 public int ConnectionTimeout
 {
 get
 {
 return _connTimeout;
 }
 }

 public ConnectionState State
 {
 get
 {
 return _state;
 }
 }

 // Not used.
 public
 Microsoft.ReportingServices.DataProcessing.IDbTransaction
 BeginTransaction()
 {
 return (null);
 }

 // Not used.
 public void Open()
 {
 _state = ConnectionState.Open;
 return;
 }

 // Not used.
 public void Close()
 {
 _state = ConnectionState.Closed;
 return;
 }

 // Implemented.
 public
 Microsoft.ReportingServices.DataProcessing.IDbCommand
 CreateCommand()

 {
 // Create a Command object and pass in the
 // Connection object to provide config info.
 return new DSXCommand(this);
 }

 public string LocalizedName
 {
 get
 {
 return _locName;
 }
 }

 // Implemented. Inherited from
 // IExtension through IDbConnection.
 public void SetConfiguration(string configuration)
 {

 // Get the XML schema file
 // from the config file settings.
 XmlDocument schemaDoc = new XmlDocument();
 schemaDoc.LoadXml(configuration);
 if (schemaDoc.DocumentElement.Name
 == "XSDConfiguration")
 {
 foreach (XmlNode schemaChild in
 schemaDoc.DocumentElement.ChildNodes)
 {
 if(schemaChild.Name == "XSDFile")
 {
 _xmlSchema = schemaChild.InnerText;
 }
 else
 {
 throw new Exception
 ("Cannot find XSD configuration element.");
 }
 }
 }
 else
 {
 throw new Exception
 ("Error returning data from the configuration file.");
 }
 }

 public void Dispose()
 {
 }

 }
}

Next up is the implementation of IDbCommand. As with the Connection class, there are only a handful of members in the
Command class that we need to use to accomplish our goal. In this case, those are the Connection object overload of the
constructor, the CommandText property, and the CommandBehavior overload of the ExecuteReader method.

The overloaded constructor gives us a reference to the Connection object. All we want from that is access to the XML schema
information that is set as an internal variable in DSXConnection. This variable is subsequently passed to the DataReader
implementation in the call to ExecuteReader so that it can be used in processing the XML data sources.

The CommandText property takes the comma delimited string that identifies the XML files to pull data from, and is entered in
Report Designer when you are setting up a new report.

The ExecuteReader call creates the DataReader, creates a DataSet to serve as its data source, and returns the reader to the caller,
which in this case is our report. Note that you must implement the CommandBehavior overload to support the SchemaOnly
CommandBehavior value. Report Designer and Report Server both use this overload rather than the parameterless version to
obtain field information in addition to the data.

using System;

using System.Data;
using System.ComponentModel;
using Microsoft.ReportingServices.DataProcessing;

namespace Microsoft.Samples.ReportingServices.DataSetExtension
{
 public class DSXCommand
 : Microsoft.ReportingServices.DataProcessing.IDbCommand
 {
 private string _cmdText;
 private DSXConnection _connection;
 // IDbCommand.CommandTimeout defaults to 30 seconds.
 private int _cmdTimeout = 30;
 private Microsoft.ReportingServices.DataProcessing.CommandType
 _cmdType;
 private DSXParameterCollection _parameters =
 new DSXParameterCollection();

 // Default constructor.
 public DSXCommand()
 {
 }

 // Command text constructor overload.
 public DSXCommand(string cmdText)
 {
 _cmdText = cmdText;
 }

 // Connection object constructor overload.
 public DSXCommand(DSXConnection connection)
 {
 _connection = connection;
 }

 public string CommandText
 {
 get { return _cmdText; }
 set { _cmdText = value; }
 }

 public int CommandTimeout
 {
 get {return _cmdTimeout;}
 set {_cmdTimeout = value;}
 }

 public Microsoft.ReportingServices.DataProcessing.CommandType
 CommandType
 {
 get { return _cmdType; }
 set { _cmdType = value; }
 }

 public
 Microsoft.ReportingServices.DataProcessing.IDataParameterCollection
 Parameters
 {
 get { return _parameters; }
 }

 public
 Microsoft.ReportingServices.DataProcessing.IDbTransaction
 Transaction
 {
 get { return (null); }
 set { throw new NotSupportedException(); }
 }

 // Not used.
 public void Cancel()
 {

 throw new NotSupportedException();
 }

 // Not used.
 public
 Microsoft.ReportingServices.DataProcessing.IDataParameter
 CreateParameter()
 {
 return (null);
 }

 // Implemented.
 public
 Microsoft.ReportingServices.DataProcessing.IDataReader
 ExecuteReader
 (Microsoft.ReportingServices.DataProcessing.CommandBehavior behavior)
 {
 try
 {
 // Create the DataReader.
 DSXDataReader testReader =
 new DSXDataReader(_cmdText);
 // Call the custom method that
 // populates the DataSet.
 testReader.CreateDataSet(_connection._xmlSchema);
 // Return the DataReader.
 return testReader;
 }
 catch(Exception e)
 {
 throw new Exception(e.Message);
 }
 }

 public void Dispose()
 {
 }

 }
}

Finally, there is the DataReader class implementing IDataReader. This class is the most fully fleshed out, as most of its members
are used by Report Designer to retrieve the data to be displayed. There are also two custom functions, CreateDataSet and
ParseCmdText that provide additional functionality. ParseCmdText parses the input string of comma-delimited XML source
files, and CreateDataSet merges them into a single DataSet for reporting. The resulting DataSet is then used as the source for the
data that the DataReader returns.

using System;
using System.Data;
using System.Xml;
using System.Collections;
using Microsoft.ReportingServices.DataProcessing;

namespace Microsoft.Samples.ReportingServices.DataSetExtension
{
 public class DSXDataReader
 : Microsoft.ReportingServices.DataProcessing.IDataReader
 {
 private string _cmdText;
 private int _currentRow = 0;
 private int _fieldCount = 0;
 private string _fieldName;
 private int _fieldOrdinal;
 private Type _fieldType;
 private object _fieldValue;
 private DataSet _ds = null;

 // Default constructor
 internal DSXDataReader()
 {
 }

 //Command text constructor overload.
 internal DSXDataReader(string cmdText)
 {
 _cmdText = cmdText;
 }

 // Implemented. Will be called
 // by the Report Server to
 // return DataSet data.
 public bool Read()
 {
 _currentRow++;
 if (_currentRow >= _ds.Tables[0].Rows.Count)
 {
 return (false);
 }
 else
 {
 return (true);
 }
 }

 public int FieldCount
 {
 get
 {
 _fieldCount = _ds.Tables[0].Columns.Count;
 return _fieldCount;
 }
 }

 public string GetName(int i)
 {
 _fieldName = _ds.Tables[0].Columns[i].ColumnName;
 return _fieldName;
 }

 public Type GetFieldType(int i)
 {
 _fieldType =
 _ds.Tables[0].Columns[i].DataType;
 return _fieldType;
 }

 public Object GetValue(int i)
 {
 _fieldValue =
 _ds.Tables[0].Rows[this._currentRow][i];
 return _fieldValue;
 }

 public int GetOrdinal(string name)
 {
 _fieldOrdinal =
 _ds.Tables[0].Columns[name].Ordinal;
 return _fieldOrdinal;
 }

 // Input parameter should be the path
 // to the .xsd file that was retrieved
 // from the Connection.SetConfiguration call.
 internal void CreateDataSet(string schemaFile)
 {

 // Open an XML doc to hold the data.
 XmlDocument xmlDoc = new XmlDocument();
 // Create the DataSet.
 DataSet ds = new DataSet("Customers");
 // Create the schema for the DataSet.
 ds.ReadXmlSchema(schemaFile);
 // Parse the command text string for the files.
 string[] parameters = this.ParseCmdText();

 // Get the XML data and
 // merge it into the DataSet.
 try
 {
 for(int i=0;i<parameters.GetLength(0);i++)
 {
 DataSet tempDs = new DataSet();
 tempDs.ReadXml(parameters[i]);
 ds.Merge(tempDs);
 }

 }
 catch (Exception e)
 {
 throw new Exception(e.Message);
 }

 // Set the DataSet variable used in
 // the rest of the DataReader members
 // to the one just produced.
 _ds = ds;
 // Set the current row to -1
 // to prepare for reading.
 _currentRow = -1;

 }

 private string[] ParseCmdText()
 {
 // Check format of command text.
 if (_cmdText.IndexOf(",") != -1)
 {
 string[] dsParams =
 _cmdText.Split(new Char[]{','});
 // In production code, you'd
 // want more error handling here
 // confirming that the string values
 // are appropriate XML file names, etc.
 return dsParams;
 }
 else
 throw new ArgumentException
 ("The CommandText value is not in the appropriate format.");
 }

 public void Dispose()
 {
 }

 }
}

Of course, it is possible that you already have a middle-tier component that does some processing and produces a DataSet for
you, and you'd like to use that rather than putting together a new DataSet in the extension code. That's easy enough—just add a
reference to the assembly and call the method that returns the DataSet from there, like:

using System;
using System.Data;
using System.Xml;
using System.Collections;
using Microsoft.ReportingServices.DataProcessing;
using ThisCompany.ThisAssembly;

namespace ThisCompany.ThisNamespace.DataSetExtension
{
 public class ExtensionDataReader :
Microsoft.ReportingServices.DataProcessing.IDataReader
 {
 private DataSet _ds = null;
 // More variables...

 internal ExtensionDataReader(thisParameter)

 {

 // Get the DataSet from the middle-tier assembly.
 this._ds =
new ThisCompany.ThisAssembly.
Customer.IntegrateDataSources
(thisParameter);

 // Set the current row.
 currentRow = -1;
 }
 ...

To recap by making the workflow explicit here, what the Report Server will do when running this report is:

Call the DSXConnection default constructor.
Call DSXConnection.CreateCommand, which uses the DSXCommand Connection overload constructor to create the
Command object.
Call DSXCommand.ExecuteReader(CommandBehavior), which in turn:

Calls the DSXDataReader command text overload constructor to create the DataReader object.
Calls DSXDataReader.CreateDataSet to create the DataSet data source. This method in turn calls
DSXDataReader.ParseCmdText to verify the input.

Processing returns to DSXCommand.ExecuteReader(CommandBehavior), which then hands the DataReader back to
Report Server.

And that's it. Really.

You can go ahead and build the solution, and then we're on to deployment.

Deploying the Extension
First we'll need to register the extension with Reporting Services by copying the extension DLL to the Report Server and Report
Designer directories and adding the appropriate entries for it to their config files.

Copy RSCustomData.DLL and paste it into the Report Server bin directory (C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer\bin by default) and the Report Designer directory (C:\Program Files\Microsoft
SQL Server\80\Tools\Report Designer by default). Then open the Report Server config file, RSReportServer.config, located by
default in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer. You'll need to modify this file to add
a new <Extension> child node in the <Data> node to document any settings that the extension will use. The <Extension>
element requires two attributes; Name, which is the unique name you choose for your extension, and Type, which is the fully
qualified name of your connection class plus the name (minus the .dll extension) of your assembly, separated by a comma. That is
all that is required—you can skip the <Configuration> node if you don't use it, although we are making use of it in this sample.
Your new node should look like this:

<Data>
 <Extension Name="DataSet"
Type="Microsoft.Samples.ReportingServices.DataSetExtension.DSXConnection,RSCustomData">
 <Configuration>
 <XSDConfiguration>
<XSDFile>
C:\customer.xsd
</XSDFile>
 </XSDConfiguration>
 </Configuration>
 </Extension>
</Data>

If you are using the Visual Basic sample, remember to change the namespace to
Microsoft.Samples.ReportingServices.DataSetExtensionVB.

Save and close the Report Server config file, and open the Report Designer one, RSReportDesigner.config in C:\Program
Files\Microsoft SQL Server\80\Tools\Report Designer. Add an identical <Extension> node to the <Data> section in this file as
well. You will also need to add a slightly different <Extension> element to the <Designer> node as well. This <Extension>
element also contains Name and Type attributes. The Name attribute should contain the same unique extension name that you
supplied in the <Extension> element in the <Data> node. The Type attribute is the fully qualified name of the generic query
designer class plus the name (minus the .dll extension) of the assembly that contains it, separated by a comma.

<Extension
Name="DataSet"
Type="Microsoft.ReportDesigner.Design.GenericQueryDesigner,Microsoft.ReportingServices.De
signer"
/>

The generic interface makes it possible for the designer UI to work with the extension using simple query and results panes,
rather than the full-blown visual query designer best suited to relational databases.

Code Access Security

The next thing we'll want to do is add entries to the Report Server and Report Designer policy files explicitly setting the code
access permissions for the extension. Data processing extensions require FullTrust permissions to run properly.

Open the Report Server policy file, rssrvpolicy.config, located by default in C:\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer, and create a new <CodeGroup> node that matches the following:

<CodeGroup class="UnionCodeGroup"
version="1"
PermissionSetName="FullTrust"
Name="DataSetExtensionGroup"
Description="This code group grants data extensions full trust.">
<IMembershipCondition
class="UrlMembershipCondition"
version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\RSCustomData.dll"
 />
</CodeGroup>

Then add a similar <CodeGroup> node (with the Url attribute modified to "C:\Program Files\Microsoft SQL
Server\80\Tools\Report Designer\RSCustomData.dll") to the Report Designer policy file rspreviewpolicy.config, located by default
in C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer.

These entries grant the DataSet data processing extension FullTrust permissions, based on URL evidence that identifies the
extension assembly. For more information on managing code access security, see Code Access Security in SQL Server 2000
Reporting Services.

Creating the Report
Now that we've created and deployed the DataSet extension, it's a snap to use it in a report. Open Visual Studio and start a new
report project. Right-click on the Shared Data Sources folder and select Add New Data Source. In the Type drop-down, you
should see an entry for the DataSet data processing extension:

Figure 1. The Shared Data Source folder

Select the extension entry, and on the Credentials pane, select the No Credentials radio button—since there is no database

connection to make, no credentials are necessary. Save this data source.

Right-click on the Reports folder and select Add New Report. Start to step through the Report Wizard that comes up. On the
Select the Data Source screen, accept the default selection on the DataSet extension data source you just created:

Figure 2. The Select the Data Source screen

On the Design the Query screen, enter in the comma-delimited string containing the full paths to all of your XML source files:

Figure 3. The Design the Query Screen

Finish out the report using whatever settings you like—for the purposes of this sample I just accepted the defaults. When
previewed, the sample report should look similar to the following—I monkeyed with the field layout a bit for space
considerations:

Figure 4. Reporting Services sample report

To deploy your report, specify your target report server (usually http://MachineName/ReportServer) in your project properties,
then select Debug, Start to deploy the solution and view your report in the browser.

Conclusion
So, as you can see, it is easy to access your DataSets from Reporting Services, once you work out the salient points of the APIs and
the configuration requirements. Give it a whirl the next time you want to leverage some existing data processing functionality in
one of your reporting apps.

Related Books
Hitchhiker's Guide to SQL Server 2000 Reporting Services

The Rational Guide to: SQL Server Reporting Services

© Microsoft Corporation. All rights reserved.

http://www.amazon.com/exec/obidos/tg/detail/-/0321268288/qid=1093565513/sr=8-2/ref=sr_8_xs_ap_i2_xgl14/103-8976866-6167047?v=glance&s=books&n=507846
http://www.amazon.com/exec/obidos/tg/detail/-/0972688897/qid=1093565607/sr=1-4/ref=sr_1_4/103-8976866-6167047?v=glance&s=books
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Using Forms Authentication in Reporting Services

Microsoft Corporation

March 2004

Applies To:
 Microsoft® SQL Server™ 2000 Reporting Services

Summary: Learn about Reporting Services security extensions with a primary focus on Forms Authentication. In addition,
download and deploy a sample Forms Authentication extension for Reporting Services. (23 printed pages)

Download the Forms Authentication Sample installer (125 KB)

To install the sample code, download the Forms Authentication Sample installer and run it on your computer.

Contents

Introduction
About This Guide
Reporting Services Platform
Forms Authentication Sample
Conclusion
Additional Resources

Introduction
Deploying a secure, distributed enterprise reporting solution is a challenging process. From report access, to the data sources that
supply important, sometimes sensitive data, you have some decisions to make regarding how to securely authenticate and
authorize users in your reporting environment. And your reports are only as secure as the weakest link in the reporting chain.

The type of security you need depends on your reporting environment and the types of security systems already in place.
Microsoft® Windows® Authentication is the primary system for securing reports in Microsoft® SQL Server™ 2000 Reporting
Services. Windows Authentication offers tight integration with other Microsoft server products; because Reporting Services was
designed and tested on Windows Authentication, it is most secure in this environment.

In certain cases, however, you may need to extend the Reporting Services security system to accommodate custom security in
your enterprise. You can do this through the rich development platform of the Reporting Services API. This guide will present an
overview of extensions in Reporting Services and security extensions in particular. You can also download and explore a sample
Forms Authentication extension designed to work with Reporting Services. Afterwards, you should be able to take advantage of
Reporting Services security extensions to add custom security to your enterprise reporting solution.

About This Guide
The information in this guide is designed to:

Introduce you to Reporting Services security extensions.
Identify where and how you need custom authentication and authorization in Reporting Services.
Describe how authentication and authorization works in Reporting Services.
Discuss Forms Authentication and how to implement it.
Provide you with a Forms Authentication sample that you can download and explore.

What You Need to Know

This guide is not an introduction to ASP.NET security or Forms Authentication. It will not provide you with in-depth knowledge of
programming or application security. As a developer looking to implement a security extension for Reporting Services, you
should already have in-depth experience with one or more of the following:

Microsoft Reporting Services features and capabilities, specifically authentication, authorization, and role-based security.
The Microsoft .NET Framework.
ASP.NET and ASP.NET security.

http://download.microsoft.com/download/a/b/0/ab01e0ba-e9bb-4c3d-aa82-35d6e2916dab/FormsAuthenticationSample.msi

Forms Authentication.
Development experience in a .NET language. The sample is only available in C# at this time.

If you want to dive right into the code, you can skip ahead to the "Forms Authentication Sample" section. However, you might find
the beginning sections helpful in introducing you to some of the technologies you will be working with and how they all fit
together.

Reporting Services Platform
Reporting Services enables the design, deployment, and delivery of reports throughout the enterprise. From a developer's
perspective, Reporting Services offers a wide variety of programming opportunities through the key developer platforms of the
.NET Framework and Web services. Reporting Services can be deployed "out of the box" to provide a comprehensive reporting
solution in most any company. However, the open and extensible programming architecture of Reporting Services make it less of
an off-the-shelf product and more of a reporting platform for developers and end users alike.

Extending Reporting Services

Reporting Services was designed to be extensible. Managed code APIs enable you to develop, install, and manage extensions
consumed by many Reporting Services components. You can create private or shared assemblies using the .NET Framework and
add new Reporting Services functionality to meet evolving business needs. Developers can extend Reporting Services in the
following ways:

Create data processing extensions in addition to the Microsoft SQL Server, Oracle, and OLE DB providers that currently ship
with Reporting Services. Data processing extensions can be designed to read data from your own unique data sources and
can be used to incorporate additional business logic in the creation and filtering of sets of data.
Create delivery extensions in addition to the E-mail and File Share delivery extensions that currently ship with Reporting
Services. Delivery extensions can be used to deliver reports to devices including fax machines, pagers, printers, and more.
Create rendering extensions in addition to those that already ship with Reporting Services.
Create security extensions in addition to the Windows Authentication extension, which is currently the default security
mechanism of the product.

As mentioned previously, this guide focuses on extending the security system of Reporting Services through Forms
Authentication.

Security Extensions

A Reporting Services security extension enables the authentication and authorization of users or groups; that is, it enables
different users to log into a report server and, based on their identities, perform different tasks or operations. By default,
Reporting Services uses a Windows-based authentication extension, which uses Windows account protocols to verify the
identities of users who claim to have accounts on the system. Reporting Services uses a role-based security system to authorize
users. The Reporting Services role-based security model is similar to the role-based security models of other technologies.
Because security extensions are based on an open and extensible API, you can create new authentication and authorization
extensions in Reporting Services. The following is an example of a typical security extension implementation that uses Forms-
based authentication and authorization:

Figure 1

As shown in the illustration, authentication and authorization take place as follows:

1. A user attempts to access Report Manager by entering a URL and is redirected to a form that collects user credentials for the
client application.

2. The user submits credentials to the form.
3. The user credentials are submitted to the Reporting Services Web service through the LogonUser method.
4. The Web service calls the customer-supplied security extension and verifies that the user name and password exist in the

custom security authority.
5. Upon authentication, the Web service creates an authentication ticket (known as a "cookie"), manages the ticket, and verifies

the user's role for the Home page of Report Manager.
6. The Web service returns the cookie to the browser and displays the appropriate user interface in Report Manager.
7. Once authenticated, the browser makes requests to Report Manager while transmitting the cookie in the HTTP header.

These requests are in response to user actions within the Report Manager application.
8. The cookie is transmitted in the HTTP header to the Web service along with the requested user operation.
9. The cookie is validated, and if it is valid, the report server returns the security descriptor and other information relating to

the requested operation from the report server database.
10. If the cookie is valid, the report server makes a call to the security extension to check if the user is authorized to perform the

specific operation.
11. If the user is authorized, the report server performs the requested operation and returns control to the caller.
12. Once the user is authenticated, URL access to the report server utilizes the same cookie. The cookie is transmitted in the

HTTP header.
13. The user continues to request operations on the report server until the session has ended.

When to Implement a Security Extension

Microsoft recommends that you use Windows Authentication if at all possible. However, custom authentication and authorization
for Reporting Services may be appropriate in the following two cases:

You have an internet or extranet application that does not and cannot use Windows accounts.
You have custom-defined users and roles and need to provide a matching authorization scheme in Reporting Services.

Security Extension API

The following table describes the available interfaces and classes for security extensions.

Interface or class Description

IAuthenticationExtension
Interface

Represents an authentication extension in Reporting Services and enables you to implement a
security extension class that can be used to authenticate users using a custom authentication
scheme.

IAuthorizationExtension
Interface

Represents an extension that can be used to extend the authorization feature of Reporting
Services and enables you to implement a security extension class that can be used to authorize
users to perform operations.

IExtension Interface Represents an extension in Reporting Services.

AceCollection Class Represents a collection of access control entries specifying access rights for one or more
trustees.

AceStruct Class An access control entry for a trustee (user, group, or computer) that specifies the operations
that a trustee can perform on items in the report server database.

CatalogOperationsCollection
Class Represents a collection of catalog operations.

DatasourceOperationsCollection
Class Represents a collection of data source operations.

FolderOperationsCollection
Class Represents a collection of folder operations.

OperationNames Class Contains the field names and corresponding values for operations that users can perform on
items in Reporting Services.

ReportOperationsCollection
Class Represents a collection of report operations.

ResourceOperationsCollection
Class Represents a collection of resource operations.

For more information about the various interfaces and classes of the security extension API, see Reporting Services Books Online.

Authentication in Reporting Services

Authentication is the process of establishing a user's right to an identity. There are many techniques that you can use to
authenticate a user. The most common way is to use passwords. When you implement Forms Authentication, for example, you
want an implementation that queries users for credentials (usually by some interface that requests a login name and password)
and then validates users against a user store, such as a database table or configuration file. If the credentials can't be validated, the
authentication process fails and the user will assume an anonymous identity.

In Reporting Services, the Windows operating system handles the authentication of users either through integrated security or
through the explicit reception and validation of user credentials. Custom authentication in Reporting Services can be developed to
support additional authentication schemes. This is made possible through the security extension interface
IAuthenticationExtension. All extensions inherit from IExtension the base interface for any extension deployed and used by
the report server. IExtension as well as IAuthenticationExtension are members of the
Microsoft.ReportingServices.Interfaces namespace.

The heart of any authentication in Reporting Services is the LogonUser method. This member of the Reporting Services Web
service can be used to pass user credentials to a report server for validation. Your underlying security extension implements
IAuthenticationExtension.LogonUser which contains your custom authentication code. In the Forms Authentication sample,
discussed later in this guide, LogonUser performs an authentication check against the supplied credentials and a custom user
store in a database. In the Forms Authentication sample, it looks like this:

In AuthenticationExtension.cs (Forms Authentication Sample)

public bool LogonUser(string userName, string password, string authority)
{
 return AuthenticationUtilities.VerifyPassword(userName, password);
}

In AuthenticationUtilities.cs (Forms Authentication Sample)

internal static bool VerifyPassword(string suppliedUserName,
 string suppliedPassword)
{
 bool passwordMatch = false;
 // Get the salt and pwd from the database based on the user name.
 // See "How To: Use DPAPI (Machine Store) from ASP.NET," "How To:
 // Use DPAPI (User Store) from Enterprise Services," and "How To:

 // Create a DPAPI Library" for more information about how to use
 // DPAPI to securely store connection strings.
 SqlConnection conn = new SqlConnection(
 "Server=localhost;" +
 "Integrated Security=SSPI;" +
 "database=UserAccounts");
 SqlCommand cmd = new SqlCommand("LookupUser", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 SqlParameter sqlParam = cmd.Parameters.Add("@userName",
 SqlDbType.VarChar,
 255);
 sqlParam.Value = suppliedUserName;
 try
 {
 conn.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 reader.Read(); // Advance to the one and only row
 // Return output parameters from returned data stream
 string dbPasswordHash = reader.GetString(0);
 string salt = reader.GetString(1);
 reader.Close();
 // Now take the salt and the password entered by the user
 // and concatenate them together.
 string passwordAndSalt = String.Concat(suppliedPassword, salt);
 // Now hash them
 string hashedPasswordAndSalt =
 FormsAuthentication.HashPasswordForStoringInConfigFile(
 passwordAndSalt,
 "SHA1");
 // Now verify them. Returns true if they are equal
 passwordMatch = hashedPasswordAndSalt.Equals(dbPasswordHash);
 }
 catch (Exception ex)
 {
 throw new Exception("Exception verifying password. " +
 ex.Message);
 }
 finally
 {
 conn.Close();
 }
 return passwordMatch;
}

Authentication Flow

The Reporting Services Web service provides custom authentication to enable Forms Authentication by Report Manager and the
report server.

The LogonUser method of the Reporting Services Web service is used to submit credentials to the report server for
authentication. The Web service uses HTTP headers to pass an authentication ticket (known as a "cookie") from the server to the
client for validated logon requests.

The following illustration depicts the method of authenticating users to the Web service when your application is deployed with a
report server configured to use a custom authentication extension.

Figure 2

As shown in Figure 2, the authentication process is as follows:

1. A client application calls the Web service method LogonUser to authenticate a user.
2. The Web service makes a call to the LogonUser method of your security extension, specifically, the class that implements

IAuthenticationExtension.
3. Your implementation of LogonUser validates the user name and password in the user store or security authority.
4. Upon successful authentication, the Web service creates a cookie and manages it for the session.
5. The Web service returns the authentication ticket to the calling application on the HTTP header.

When the Web service successfully authenticates a user through the security extension, it generates a cookie that is used for
subsequent requests. The cookie may not persist within the custom security authority because the report server does not own the
security authority. The cookie is returned from the LogonUser Web service method and is used in subsequent Web service
method calls and in URL access.

Security In order to avoid compromising the cookie during transmission, authentication cookies returned from
LogonUser should be transmitted securely using Secure Sockets Layer (SSL) encryption.

If you access the report server through URL access when a custom security extension is installed, Internet Information Services
(IIS) and ASP.NET automatically manage the transmission of the authentication ticket. If you are accessing the report server
through the SOAP API, your implementation of the proxy class must include additional support for managing the authentication
ticket. For more information about using the SOAP API and managing the authentication ticket, see "Using the Web Service with
Custom Security" later in this guide.

Authorization in Reporting Services

Authorization is the process of determining whether an identity should be granted the requested type of access to a given
resource in the report server database. Reporting Services uses a role-based authorization architecture that grants a user access
to a given resource based on the user's role in the application. Security extensions for Reporting Services contain an
implementation of an authorization component that is used to grant access to users once they are authenticated on the report
server. Authorization is invoked when a user attempts to perform an operation on the system or a report server item through the
SOAP API and through URL access. This is made possible through the security extension interface IAuthorizationExtension. As
stated previously, all extensions inherit from IExtension the base interface for any extension that you deploy. IExtension and
IAuthorizationExtension are members of the Microsoft.ReportingServices.Interfaces namespace.

In authorization, the key to any custom security implementation is the access check, which takes place in the method
CheckAccess. CheckAccess is called each time a user attempts an operation on the report server. The CheckAccess method is
overloaded for each operation type. For folder operations, an example of an access check might look like the following:

// Overload for Folder operations
public bool CheckAccess(

 string userName,
 IntPtr userToken,
 byte[] secDesc,
 FolderOperation requiredOperation)
{
 // If the user is the administrator, allow unrestricted access.
 if (userName == m_adminUserName)
 return true;

 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl)
 {
 if (userName == ace.PrincipalName)
 {
 foreach(FolderOperation aclOperation in
 ace.FolderOperations)
 {
 if (aclOperation == requiredOperation)
 return true;
 }
 }
 }
 return false;
}

The report server calls the CheckAccess method by passing in the name of the logged-on user, a user token, the security
descriptor for the item, and the requested operation. Here you would check the security descriptor for the user name and the
appropriate permission to complete the request, then return true to signify that access is granted or false to signify access is
denied.

Security Descriptors

When setting authorization policies on items in the report server database, a client application (such as Report Manager) submits
the user information to the security extension along with a security policy for the item. This security policy and user information
are known collectively as a security descriptor. A security descriptor contains the following information for an item in the report
server database:

The group or user that has some type of permission to perform operations on the item.
The item's type.
A discretionary access control list controlling access to the item.

Security descriptors are created using the Web service methods SetPolicies and SetSystemPolicies. For more information
regarding these methods and the Web service, see Reporting Services Books Online.

Authorization Flow

Reporting Services authorization is controlled by the security extension currently configured to run on the server. Authorization is
role-based and limited to the permissions and operations supplied by the Reporting Services security architecture. The following
diagram depicts authorizing users to operate on items in the report server database:

Figure 3

As shown in Figure 3, authorization follows this sequence:

1. Once authenticated, client applications make requests to the report server through the Reporting Services Web service
methods. An authentication ticket is passed to the report server in the form of a cookie in the HTTP header of each Web
request.

2. The cookie is validated prior to any access check.
3. Once the cookie is validated, the report server calls GetUserInfo and the user is given an identity.
4. The user attempts an operation through the Reporting Services Web service.
5. The report server calls the CheckAccess method.
6. The security descriptor is retrieved and passed to a custom security extension implementation of CheckAccess. At this point

the user, group, or computer is compared to the security descriptor of the item being accessed and is authorized to perform
the requested operation.

7. If the user is authorized, the Web service performs the operation and returns a response to the calling application.

Forms Authentication Sample
If you haven't already, you should download the Forms Authentication Sample installer and run it on your computer to install the
sample code.

About the Sample

The Forms Authentication sample security extension, which is available for download as part of this guide, uses Forms
Authentication along with SQL Server to provide a custom security model that works with Reporting Services. This sample is
provided for educational purposes only. It is not intended to be used in a production environment and has not been tested in a
production environment. Microsoft does not provide technical support for this sample. In some cases, best practices (such as the
creation of one-way hash, salted passwords) are demonstrated in the sample. In other cases, best practice has been side-stepped
in favor of simplicity. It is important to note that much of the setup and management of the sample security extension require
administrator access on the report server computer. In any event, using this sample on a production server in a connected
environment is not recommended.

If you have any questions or concerns regarding Reporting Services security extensions, please contact Microsoft Consulting
Services (MCS), Premier Support Services (PSS), or another Microsoft support services representative.

Requirements

You must have the following to use this sample:

A report server with Microsoft SQL Server 2000 Reporting Services installed.

http://download.microsoft.com/download/a/b/0/ab01e0ba-e9bb-4c3d-aa82-35d6e2916dab/FormsAuthenticationSample.msi

Microsoft Internet Explorer 6.0 or later for accessing Report Manager.
A development computer with Microsoft® Visual Studio® .NET 2003.

Considerations

Consider the following when implementing a custom security extension or when using the sample:

It is not possible to run a report server under a mixed-mode security system (for example, both Windows and Forms
Authentication). This is true of any ASP.NET application.
Remember to save backup copies of all configuration files that you change as a result of configuring this sample.
Although possible, reverting to Windows Authentication after deploying the sample can be difficult. See "Removing the
Sample Extension" later in this guide for more information.
Overriding Windows Authentication is risky. The Report Server was designed to be extensible with regards to security, but is
fully tested and supported using Windows Authentication only.
Always use Secure Sockets Layer (SSL) with Forms Authentication.
In this sample, user input is passed to Transact-SQL commands for authentication. You should take great care, in your own
custom security extensions that use Forms Authentication with SQL Server, to validate user input and to ensure that the
resulting commands do not contain syntax errors. You want to make sure to validate all user input so that a malicious user
can't cause your application to run arbitrary SQL commands (also known as a "SQL injection attack"). Validating the
supplied user name during a logon process is particularly important because your report server custom security model
depends entirely on being able to correctly identify, authenticate, and authorize users.
In your custom user store, avoid allowing users to enter names with the following characters: : ? ; @ & = + $, \ * > < | . " /.
User names with these characters may cause problems with the My Reports feature, because folders are created in the
server using the name of the user, and these characters can cause problems with folder names and folder paths. The sample
code uses regular expressions to test for valid user names and to ensure that the path name will not exceed the maximum
allowed path length. You should perform similar validation in your custom authentication code.

Forms Authentication

Forms Authentication is a type of ASP.NET authentication in which an unauthenticated user is directed to an HTML form. Once the
user provides credentials, the system issues a cookie containing an authentication ticket. On later requests, the system first checks
the cookie to see if the user was already authenticated by the report server.

Reporting Services does not inherently support the use of Forms Authentication. However, Reporting Services can be extended to
support Forms Authentication using the security extensibility interfaces available through the Reporting Services API. If you
extend Reporting Services to use Forms, use Secure Sockets Layer (SSL) for all communications with the report server to prevent
malicious users from gaining access to another user's cookie. SSL enables clients and a report server to authenticate each other
and to ensure that no other computers can read the contents of communications between the two computers. All data sent from a
client through an SSL connection is encrypted so that malicious users cannot intercept passwords or data sent to a report server.

Forms Authentication is generally implemented to support non-Windows accounts and authentication. A graphical interface is
presented to a user who requests access to a report server, and the supplied credentials are submitted to a security authority for
authentication.

Forms Authentication schemes work when an interactive user is present to enter credentials. However, for unattended
applications that communicate directly with the Reporting Services Web service, Forms Authentication must be combined with a
custom authentication scheme.

Forms Authentication is appropriate for Reporting Services when:

You need to store and authenticate users that do not have Microsoft Windows accounts, and
You need to provide your own user interface form as a logon page between different pages on a Web site.

Consider the following when writing a custom security extension that supports Forms Authentication:

If you use Forms Authentication, anonymous access must be enabled on the report server virtual directory in Internet
Information Services (IIS).
ASP.NET authentication must be set to Forms. You configure ASP.NET authentication in the Web.config file for the report
server.
Reporting Services can authenticate and authorize users with either Windows authentication or custom authentication.
Reporting Services does not support simultaneous use of multiple security extensions.

Deploying the Sample

Before you can run and examine the code for the Forms Authentication sample, several steps must be taken. After you follow the
steps for installation and configuration, you can use or debug the sample on your report server, or you can simply view the
sample code in Visual Studio .NET.

Compiling and Installing the Extension Assembly

You must follow these steps to compile and install the extension. The steps assume that you have installed Reporting Services to
the default location: C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services. This location will be referred to
throughout the remainder of this guide as <install>.

To compile the sample using Visual Studio .NET

1. Open CustomSecurity.sln in Microsoft Visual Studio .NET 2003. If you downloaded the source code and installed the sample
to the default location, you can access it at C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\Samples\Extensions.

2. In Solution Explorer, select the CustomSecurity project.
3. On the Project menu, click Add Reference.
4. The Add References dialog box opens.
5. Click the .NET tab.
6. Click Browse, and navigate to find Microsoft.ReportingServices.Interfaces on your local drive. By default, the assembly is

located in the <install>\ReportServer\bin directory. Click OK.

The selected reference is added to your project.

7. On the Build menu, click Build Solution.
8. Copy Microsoft.Samples.ReportingServices.CustomSecurity.dll and

Microsoft.Samples.ReportingServices.CustomSecurity.pdb to the <install>\ReportServer\bin directory.
9. Copy Microsoft.Samples.ReportingServices.CustomSecurity.dll and

Microsoft.Samples.ReportingServices.CustomSecurity.pdb to the <install>\ReportManager\bin directory.
10. Copy the Logon.aspx page to the <install>\ReportServer directory and copy the UILogon.aspx page to the

<install>\ReportManager\Pages directory.

Adding the Extension to the Configuration Files

After the assembly and logon pages are copied to the server, you need to make some modifications to the Report Server and
Report Manager configuration files.

Important Make backup copies of all of your configuration files before making any changes.

To modify the RSReportServer.config file

1. Open the RSReportServer.config file with Visual Studio .NET or a simple text editor such as Notepad. RSReportServer.config
is located in the <install>\ReportServer directory.

2. Locate the <Security> and <Authentication> elements and modify the settings as follows:

<Security>
 <Extension Name="Forms"
Type="Microsoft.Samples.ReportingServices.CustomSecurity.Authorization,
Microsoft.Samples.ReportingServices.CustomSecurity" >
 <Configuration>
 <AdminConfiguration>
 <UserName>username</UserName>
 </AdminConfiguration>
 </Configuration>
 </Extension>
</Security>
<Authentication>
 <Extension Name="Forms"
Type="Microsoft.Samples.ReportingServices.CustomSecurity.AuthenticationExtension,

 Microsoft.Samples.ReportingServices.CustomSecurity" />
</Authentication>

To modify the RSWebApplication.config file

1. Next, you need to open the Report Manager configuration file, RSWebApplication.config, located in the
<install>\ReportManager directory.

2. Locate the <UI> element and update it as follows:

<UI>
 <CustomAuthenticationUI>
 <loginUrl>/Pages/UILogon.aspx</loginUrl>
 <UseSSL>True</UseSSL>
 </CustomAuthenticationUI>
 <ReportServerUrl>http://<server>/ReportServer</ReportServerUrl>
</UI>

Security If you are running the sample security extension in a development environment that does not have a
SSL certificate installed, you must change the value of the <UseSSL> element to False in the previous
configuration entry. Microsoft recommends that you always use SSL when combining Reporting Services with
Forms Authentication.

Adding Security Policies for the Extension

You will need to add a code group for your custom security extension that grants FullTrust permission for your extension. You do
this by adding the code group to the rssrvpolicy.config file located the <install>\ReportServer directory. Locate the existing code
group in the security policy file that has a URL membership of $CodeGen as indicated below and then add an entry as follows to
the rssrvpolicy.config:

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust">
 <IMembershipCondition
 class="UrlMembershipCondition"
 version="1"
 Url="$CodeGen$/*"
 />
</CodeGroup>
<CodeGroup
 class="UnionCodeGroup"
 version="1"
 Name="SecurityExtensionCodeGroup"
 Description="Code group for the sample security extension"
 PermissionSetName="FullTrust">
 <IMembershipCondition
 class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin\Microsoft.Samples.ReportingServices.CustomSecurity.dll"
 />
</CodeGroup>

Note For simplicity, the Forms Authentication Sample is weak-named and requires a simple URL membership entry
in the security policy files. In your production security extension implementation, you should create strong-named
assemblies and use the strong name membership condition when adding security policies for your assembly. For
more information about strong-named assemblies, see "Creating and Using Strong-Named Assemblies" on MSDN at
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconworkingwithstrongly-namedassemblies.asp.

Next, you will need to increase the permissions for the MyComputer code group in the Report Manager policy file,
rsmgrpolicy.config, located in the <install>\ReportManager directory. Locate the following code group in rsmgrpolicy.config and
change the PermissionSetName attribute from Execution to FullTrust as follows:

<CodeGroup
 class="FirstMatchCodeGroup"
 version="1"

http://msdn.microsoft.com/library/en-us/cpguide/html/cpconworkingwithstrongly-namedassemblies.asp

 PermissionSetName="FullTrust"
 Description="This code group grants MyComputer code Execution
permission. ">
 <IMembershipCondition
 class="ZoneMembershipCondition"
 version="1"
 Zone="MyComputer" />

Configuring the Web.config Files

To use Forms Authentication, you need to modify the Web.config files for Report Manager and Report Server to change the
authentication mode and disable impersonation.

To modify the Web.config file for Report Server

1. Open the Web.config file in a text editor. By default, the file is located in the <install>\ReportServer directory.
2. Locate the <identity> element and set the impersonate attribute to false.

<identity impersonate="false" />

3. Locate the <authentication> element and change the mode attribute to Forms.
4. Add the following <forms> element as a child of the <authentication> element and set the loginUrl, name, timeout,

and path attributes as follows:

<authentication mode="Forms">
 <forms loginUrl="logon.aspx" name="sqlAuthCookie" timeout="60"
 path="/"></forms>
 </authentication>

5. Add the following <authorization> element directly after the <authentication> element.

<authorization>
 <deny users="?" />
</authorization>

This will deny unauthenticated users the right to access the report server. The previously established loginUrl attribute of
the <authentication> element will redirect unauthenticated requests to the Logon.aspx page.

To modify the Web.config file for Report Manager

1. Open the Web.config for Report Manager. It is located in the <install>\ReportManager directory.
2. Disable impersonation by locating the section <identity impersonate= "true" /> and changing it to the following:

<identity impersonate="false" />.

Configuring Anonymous Authentication

By default, the Windows user group Guests includes the IUSR_computername account. This account is used to initially log on
locally and view the Logon.aspx page. To support Forms Authentication, you must enable anonymous access for the ReportServer
virtual directory. By default, anonymous access is disabled.

To enable anonymous authentication

1. In Internet Information Services, select the ReportServer virtual directory, usually a member of the Default Web site, and
open its property tabs.

2. Click the Directory Security tab.
3. In the Anonymous access and authentication control section, click Edit.

The Authentication Methods dialog box appears.

4. Select the Anonymous access check box.
5. Click OK.
6. Repeat the above steps for the Reports virtual directory.

Creating the User Account Database

The sample includes a database script, createuserstore.sql, that enables you to set up a user store for the Forms sample in a SQL
Server database.

To create the UserAccounts database

1. Open Query Analyzer, and then connect to your local instance of SQL Server.
2. Locate the createuserstore.sql SQL script file. The script file is contained within the sample project files. Note that you must

replace "LocalMachine" with your own computer name towards the end of the script. For Windows 2003 users, replace
LocalMachine\ASPNET with NT AUTHORITY\NETWORK SERVICE (except when in IIS 5 compatibility mode)

3. Run the query to create the UserAccounts database.
4. Exit Query Analyzer.

Testing the Sample

The following procedure tests the sample extension. You will register an administrator user, which adds the user name, password
hash, and salt value to the users table in the UserAccounts database. It also will require you to enter that user name in the Report
Server Configuration File. You will then log the same user on to ensure the correct operation of the password verification routines
as well as the proper loading of the extension assembly by the report server.

To test the sample security extension deployment

1. Restart IIS by running iisreset.exe at the command prompt.
2. Open Report Manager. You can do this from the Reporting Services program menu or by accessing the Reports virtual

directory from your browser.
3. Enter a user name and password and click Register User to add the user to the accounts database.
4. Open the RSReportServer.config file. Locate the <Security> element and add the previously registered user name as

follows:

<Security>
 <Extension Name="Forms"
Type="Microsoft.Samples.ReportingServices.CustomSecurity.Authorization,
Microsoft.Samples.ReportingServices.CustomSecurity" >
 <Configuration>
 <AdminConfiguration>
 <UserName>username</UserName>
 </AdminConfiguration>
 </Configuration>
 </Extension>
</Security>

5. Return to the UILogon.aspx page, re-enter the user name and password, and then click Logon.

You should have access to Report Manager and the report server with no restrictions. The administrator user that you create has
equivalent permissions on the report server to those of a Built-in administrator account on the local computer. For the purpose of
this sample, you can only have one user designated as an administrator. Once you have a built-in administrator account, you can
register additional users and assign them roles in the report server.

Note It is recommended that you add your administrator user to the official System Administrator and Content
Manager (root folder) roles of your report server. This prevents empty security descriptors from existing in the report
server database. For more information about the System Administrator and Content Manager roles, see Reporting
Services Books Online.

Using the Web Service with Custom Security

You can use the Web service API with Forms Authentication just as you would with Windows Authentication. However, you must
call LogonUser in your Web service code and pass the credentials of the current user. In addition, your Web service client will not
have the benefit of automatic cookie management, which is provided by Internet Explorer or other Web browsers. You will have
to extend the ReportingService proxy class to include cookie management. This can be done by overriding the GetWebRequest
and GetWebResponse methods of the Web service class.

For an example of this, see "ReportingService.LogonUser Method" on MSDN at http://msdn.microsoft.com/library/en-
us/rsprog/htm/rsp_ref_soapapi_service_lz_3d7q.asp.

http://msdn.microsoft.com/library/en-us/rsprog/htm/rsp_ref_soapapi_service_lz_3d7q.asp

Debugging the Sample Extension

Running the sample extension in the debugger is not only a great way to troubleshoot difficulties you may have, but it is also an
effective way to step through the code and see the report server authentication and authorization process as it is happening.

The Microsoft .NET Framework provides several debugging tools that can help you analyze the sample code. The tool that works
best will depend on what you are trying to accomplish. For the purpose of this guide, the debugging tool of choice is Visual Studio
.NET 2003.

To debug the Forms Authentication sample code

1. Be sure to follow the previous steps and deploy the sample.
2. Launch Visual Studio .NET 2003 and open CustomSecurity.sln on your test report server.
3. Open Internet Explorer and navigate to Report Manager while leaving the sample code open in Visual Studio.
4. Navigate to Visual Studio and the custom security extension project, and set some break points in the code.
5. With the extension project still the active window, click Process on the Debug menu.

The Processes dialog opens.

6. From the list of processes, select the aspnet_wp.exe process (or w3wp.exe if your application is deployed on IIS 6.0), and
click Attach. When the Attach to Process dialog opens, make sure that the program type Common Language Runtime
is selected, and then click OK. For improved debugging performance, make sure that Native is not a selected program type.

7. Now, enter user credentials in the logon form and click "Logon.". If code that corresponds to your break points is hit, the
debugger should stop execution at your first break point.

8. Step through your code using the F11 key. For more information about using Visual Studio for debugging, see your Visual
Studio .NET documentation.

Note Debugging this way requires a lot of resources and processor time. If you run into difficulties, close
Visual Studio, reset IIS, and begin again by attaching the CustomSecurity solution to the ASP.NET worker
process and logging on to Report Manager.

Removing the Sample Extension

While not generally recommended, it is possible to revert back to Windows Authentication after you have tried out the sample. To
revert to Windows security, do the following:

Restore the following files from your backup copies: Web.config, RSReportServer.config, and RSWebApplication.config. This
should set the authentication and authorization methods for the report server to the default Windows security. This should
also remove any entries you made for your extension in the Report Server or Report Manager configuration files.
Disable anonymous access in Internet Information Services (IIS) for the report server virtual directory.

After the configuration information is removed, your security extension is no longer available to the report server. You should not
have to remove any security descriptors that were created while you were running the report server under the sample security
extension. The report server automatically assigns the System Administrator role to the BUILTIN\Administrators group on the
computer hosting the report server when Windows Authentication is enabled. However, you will have to manually re-apply any
role-based security for your Windows users.

Again, reverting back to Windows Authentication after migrating to a different security extension is not generally recommended.
If you do, you may experience errors when you attempt to access items in the report server database that have custom security
descriptors, but no Windows Authentication security descriptors.

Conclusion
Microsoft SQL Server 2000 Reporting Services is an extensible reporting platform for the development and deployment of
enterprise reports. Reporting Services includes a Windows Authentication module that uses Windows accounts to secure access
to the report server, but in some cases, you may need to support a different security module. To accomplish this, Reporting
Services includes a set of security extensibility APIs that support the creation of a custom security extension. In the sample
provided, you saw one approach to implementing custom security through Forms Authentication. Microsoft is working to meet
evolving security scenarios in the enterprise by making security extensibility available in this and future releases of Reporting
Services. As a developer, you should be aware of the risks of implementing a custom security extension and should carefully
consider the exact implementation and application of the security system used by your report server.

Additional Resources

For more information, see the following resources on MSDN:

"How To: Use Forms Authentication with SQL Server 2000"
"Forms Authentication Provider"
"Using Role-Based Security"
"Microsoft.ReportingServices.Interfaces Namespace"

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS
TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Visual Studio, and Windows are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/aa302398(v=sql.80).aspx
https://msdn.microsoft.com/en-us/library/aa720709(v=sql.80).aspx
http://msdn.microsoft.com/library/en-us/rswork/htm/rms_security_v1_8kqb.asp
http://msdn.microsoft.com/library/en-us/rsprog/htm/rsp_ref_clr_interfaces_0cs3.asp
https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Using Partitions in a Microsoft SQL Server 2000 Data
Warehouse

Author: Joy Mundy
Contributors: Stuart Ozer, Lubor Kollar, Len Wyatt
Microsoft Corporation

February 2001

Summary: This article describes how to use partitions to improve the manageability, query performance, and load speed of data
warehouses in SQL Server 2000 Enterprise Edition. Horizontal partitioning of dimensional schema, both in the relational database
and in Analysis Services cubes, is addressed.

Contents

Overview
Using Partitions in a SQL Server 2000 Relational Data Warehouse
Using Partitions in SQL Server 2000 Analysis Services
Conclusions
For More Information
Appendix: VBScript Code Example for Cloning a Partition

Overview
This article discusses the role of partitioning data in the data warehouse. The relational data warehouse and Analysis Services
cubes both support the partitioning of data. The logical concept behind partitioning is the same in both engines of Microsoft®
SQL Server™: to horizontally partition data by a key such as date. In the relational database, partitioning is accomplished by
creating separate physical tables—for example one table for each month of data—and defining a union view over the member
tables. Similarly, Analysis Services in SQL Server Enterprise Edition supports the explicit partitioning of cubes. In both the
relational database and the online analytical processing (OLAP) engine, the complexity of the physical storage is hidden from the
analytical user.

The benefits of partitioning a data warehouse:

Substantially reduces query time.
Improved load time and maintainability of the databases.
Solve the data-pruning problem associated with removing old data from the active database.

This technique requires building a more complex data-staging application than a non-partitioned system. This article describes
best practices for designing, implementing, and maintaining horizontally partitioned data warehouses.

Partitions are strongly recommended for large Analysis Services systems, because an effective partitioning plan will improve
query performance substantially. Partitioning the relational data warehouse is not generally recommended, although it can be an
effective and well performing solution to some specific warehouse maintenance issues.

Using Partitions in a SQL Server 2000 Relational Data Warehouse
A partitioned view joins horizontally partitioned data from a set of members, making the data appear as if from one table. SQL
Server 2000 distinguishes between local and distributed partitioned views. In a local partitioned view, all participating tables and
the view reside on the same instance of SQL Server. In a distributed partitioned view, at least one of the participating tables
resides on a different (remote) server. Distributed partitioned views are not recommended for data warehouse applications.

Dimensional data warehouses are structured around facts and dimensions, and are usually physically instantiated as star
schemas, snowflake schemas, and very rarely as fully denormalized flat tables that combine both facts and dimensions. The
discussion in this article is focused on the use of partitions with a dimensional schema, as these schemas are the most common
structure for a relational data warehouse. The recommendations herein are applicable to more general data warehousing
schemas.

Advantages of Partitions

Data Pruning

Many data warehouse administrators choose to archive aged data after a certain time. For example, a clickstream data warehouse
may keep only three to four months of detailed data online. Other common strategies keep 13 months, 37 months, or 10 years
online, archiving and removing from the database the old data as it rolls past the active window. This rolling window structure is a
common practice with large data warehouses.

Without partitioned tables, the process of removing aged data from the database requires a very large DELETE statement, for
example:

DELETE FROM fact_table
WHERE date_key < 19990101

This statement is expensive to execute, and is likely to take more time than the load process into the same table. With partitioned
tables, by contrast, the administrator redefines the UNION ALL view to exclude the oldest table, and drops that table from the
database (presumably after ensuring it has been backed up)—a process that is virtually instantaneous.

As we discuss below, it is expensive to maintain partitioned tables. If data pruning is the only reason to consider partitioning, the
designer should investigate a data nibbling approach to removing old data from an unpartitioned table. A script that deletes 1000
rows at a time (use the "set rowcount 1000" command) could run continuously on a low-priority process, until all desired data are
removed. This technique is used effectively on large systems, and is a more straightforward approach than building the necessary
partition management system. Depending on load volumes and system utilization, this technique will be appropriate for some
systems, and should be benchmarked on the system under consideration.

Load Speed

The fastest way to load data is into an empty table, or a table with no indexes. By loading into smaller partitioned tables the
incremental load process can be significantly more efficient.

Maintainability

Once the data warehouse staging application has been built to support partitioning, the entire system becomes easier to maintain.
Maintenance activities including loading data, and backing up and restoring tables, can execute in parallel, achieving dramatic
increases in performance. The process of incrementally populating downstream cubes can be speeded and simplified.

Query Speed

Query speed should not be considered a reason to partition the data warehouse relational database. Query performance is similar
for partitioned and non-partitioned fact tables. When the partitioned database is properly designed, the relational engine will
include in a query plan only the partition(s) necessary to resolve that query. For example, if the database is partitioned by month
and a query is conditioned on January 2000, the query plan will include only the partition for January 2000. The resulting query
will perform well against the partitioned table, about the same as against a properly indexed combined table with a clustered
index on the partitioning key.

Disadvantages of Partitions

Complexity

The primary disadvantage of partitions is the requirement that the administrator build an application to manage the partitions. It
would be inappropriate to move into production a data warehouse that uses horizontal partitions in the relational database,
without first designing, testing, and rolling out an application to manage those partitions. One of the goals of this article is to
discuss the issues and design decisions underlying the partition management application.

Query Design Constraints

For the best query performance, all queries must place conditions on the filter key directly in the fact table. A query that places the
constraint on a second table, such as a Dates dimension table, will include all partitions in the query.

Design Considerations

Dimensional data warehouses are structured around facts and dimensions, and are usually physically instantiated as star
schemas, snowflake schemas, and very rarely as fully denormalized flat tables that combine both facts and dimensions. The
administrator of a dimensional data warehouse typically partitions only the fact tables; there would seldom be an advantage to
partitioning a dimension table. In some circumstances, a very large dimension table containing more than 10 million members
may benefit from partitioning. A non-dimensional relational data warehouse can also be partitioned, and the general remarks in
this article still apply.

An effective partitioning plan is developed in the context of the system architecture and design goals. Even with identical schema
designs, a relational data warehouse that exists only to populate Analysis Services cubes may imply a different partitioning
structure than one queried directly by analysts. A system with a rolling window will necessarily be partitioned by time; others may
not.

If the data warehouse includes Analysis Services cubes, Microsoft recommends that the partitions in the relational data
warehouse and Analysis Services databases be structured in parallel. The maintenance application is simplified: the application
creates a new cube partition at the same time as it creates a new table in the relational database. Administrators need learn only
one partitioning strategy. However, an application may have a compelling reason to partition the two databases differently, and
the only downside would be the complexity of the maintenance application.

Overview of Partition Design

Partitioned tables in the SQL Server database can use updatable or queryable (nonupdatable) partitioned views. In both cases, the
table partitions are created with CHECK constraints that each partition contains the correct data. An updatable partitioned view
will support an INSERT (or UPDATE or DELETE) on the view, and push the operation to the correct underlying table. While this is a
nice benefit, a data warehouse application typically needs to bulk load, which cannot be performed through the view. The table
below summarizes the requirements, advantages, and disadvantages of updatable and queryable partitioned views.

Requirements Advantages Disadvantages
Updatable
partitioned view

Partition
key(s)
enforced by
CHECK
constraint(s)
Partition
key(s) part of
the primary
key
Partition
key(s) part of
no other
database
constraint
UNION ALL
view defined
over member
tables

Query performance: query plans include only
those member tables necessary to resolve the
query.
Simplicity of maintenance application: data can be
loaded into the UNION ALL view and is inserted
into the appropriate member table

Load performance: data loading through the
view occurs too slowly for this approach to
be viable for most data warehousing
applications.
Inflexibility: database design may require
additional constraints on the partition key.

Queryable
partitioned view

Partition
key(s)
enforced by
CHECK
constraint(s)
UNION ALL
view defined
over member
tables

Query performance: query plans include only
those member tables necessary to resolve the
query.
Load performance: bulk load directly into the
member tables with high performance.
Storage: Primary key index is not required for the
partitioned view, although it is recommended
practice to declare the primary key and create an
index on it.

View is limited to 256 member tables.
Maintenance application must be built to
manage partitions and loads.

Microsoft’s recommended practice is to design the fact table as a local (on a single server) partitioned union view with the
primary key defined. In most cases this definition will result in the partitioned view also being updatable, but the data warehouse
maintenance application should be designed to bulk load most data directly into the member tables rather than through the view.

Sample Syntax

The following code sample illustrates the syntax for defining the member tables and the union view, and for inserting data into

the view:

-- Create the fact table for 1999
CREATE TABLE [dbo].[sales_fact_19990101] (
 [date_key] [int] NOT NULL
CHECK ([date_key] BETWEEN 19990101 AND 19991231),
 [product_key] [int] NOT NULL ,
 [customer_key] [int] NOT NULL ,
 [promotion_key] [int] NOT NULL ,
 [store_key] [int] NOT NULL ,
 [store_sales] [money] NULL ,
 [store_cost] [money] NULL ,
 [unit_sales] [float] NULL
)
ALTER TABLE [sales_fact_19990101]
ADD PRIMARY KEY (
[date_key], [product_key], [customer_key], [promotion_key], [store_key])
;
-- Create the fact table for 2000
CREATE TABLE [dbo].[sales_fact_20000101] (
 [date_key] [int] NOT NULL
CHECK ([date_key] BETWEEN 20000101 AND 20001231),
 [product_key] [int] NOT NULL ,
 [customer_key] [int] NOT NULL ,
 [promotion_key] [int] NOT NULL ,
 [store_key] [int] NOT NULL ,
 [store_sales] [money] NULL ,
 [store_cost] [money] NULL ,
 [unit_sales] [float] NULL
)
ALTER TABLE [sales_fact_20000101]
ADD PRIMARY KEY (
[date_key], [product_key], [customer_key], [promotion_key], [store_key])
;

--Create the UNION ALL view.
CREATE VIEW [dbo].[sales_fact]
AS
SELECT * FROM [dbo].[sales_fact_19990101]
UNION ALL
SELECT * FROM [dbo].[sales_fact_20000101]

--Now insert a few rows of data, for example:
INSERT INTO [sales_fact]
VALUES (19990125, 347, 8901, 0, 13, 5.3100, 1.8585, 3.0)

INSERT INTO [sales_fact]
VALUES (19990324, 576, 7203, 0, 13, 2.1000, 0.9450, 3.0)

INSERT INTO [sales_fact]
VALUES (19990604, 139, 7203, 0, 13, 5.3700, 2.2017, 3.0)

INSERT INTO [sales_fact]
VALUES (20000914, 396, 8814, 0, 13, 6.4800, 2.0736, 2.0)

INSERT INTO [sales_fact]
VALUES (20001113, 260, 8269, 0, 13, 5.5200, 2.4840, 3.0)

To verify that the partitioning is working correctly, use Query Analyzer to show the query plan for a query such as:

SELECT TOP 2 * FROM sales_fact WHERE date_key = 19990324

You should see only the 1999 table included in the query plan. Compare this query plan with that generated by the same two
tables with the primary key removed: the 2000 table is still excluded. Contrast these plans with the query plan generated against
the schema with the constraint on date_key removed. With the constraint removed, both the 1999 and the 2000 tables are
included in the query.

Note that in general, it is good practice to use the "TOP N" syntax when doing exploratory queries against large tables, as it
returns results quickly with minimal server resources. When looking at partitioned table query plans, it’s even more important,
because the query plan generated by a "SELECT *" statement is difficult to parse. To the casual observer, it looks as if the query

plan includes all the component tables of the UNION ALL view, although at query execution time only the appropriate tables are
used in the query.

Apply Conditions Directly to the Fact Table

For the best query performance, all queries must place conditions on the filter key directly in the fact table. A query that places the
constraint on a second table, such as a Dates dimension table, will include all partitions in the query. Standard star join queries
into a UNION ALL fact table work well:

Create star query WHERE clauses in the standard way, by placing conditions on attributes of any dimension table that is not
partitioned.
Include attributes from the partitioning dimension (Dates).
Design queries against a partitioned dimensional schema exactly as you would against a non-partitioned schema, with the
exception that conditions on dates are most effective when placed directly on the date key in the fact table.

If each partition table has a clustered index with date as the first column in the index, the cost of going to all partitions to resolve
an ad hoc query is relatively small. Predefined queries, such as those that generate standard reports or that incrementally update
downstream databases, should be written as efficiently as possible.

Choice of Partition Key(s)

The fact table can be partitioned on multiple dimensions, but most practitioners will partition only date. As described previously,
date partitioning enables easy "rolling window" management, and older partitions may even be located in a different place, or
more lightly indexed, than fresher partitions. Too, most queries into the data warehouse filter on date.

For applications partitioned by date, the decision variables are:

How much data to keep online? This decision should be driven largely from the business requirements, tempered by the
cost-benefit ratio of keeping very large volumes of data online.
What should the date key look like? It is a widely accepted data warehousing best practice to use surrogate keys for the
dimension and fact tables. For fact tables partitioned by date, the recommended practice is to use "smart" integer surrogate
keys of the form yyyymmdd. As an integer, this key will use only 4 bytes, compared to the 8 bytes of a datetime key. Many
data warehouses use a natural date key of type datetime.
How granular should the partitions be? Although the example above uses annual partitions, most systems will choose a
finer granularity such as month, week, or day. While it’s mildly interesting to consider whether user queries tend to fall
along month or week boundaries, by far the most important factor is the overall size and manageability of the system.
Recall that any SQL query can reference at most 256 tables. For data warehouses that maintain more than a few months of
data, a UNION ALL view over daily partitions will hit that limit. As a rule of thumb, a fact table that is partitioned only on
date would most likely partition by week.
How are the partition ranges defined? The BETWEEN syntax is most straightforward and human-readable, and performs
efficiently. For example consider monthly partitions of the form:

date_key < 19990101
date_key BETWEEN 1990101 AND 19990131
date_key BETWEEN 19990201 AND 19990229
…
date_key BETWEEN 19991201 AND 19991231
date_key > 19991231

Note the first and last partitions above: it is a good practice to define these partitions even if you expect never to put data
into them, in order to cover the universe of all possible date values. Also, notice that the February partition covers data
through February 29, although 1999 is not a leap year. This structure removes the need to include leap year logic in the
design of the application that creates partitions and constraints.

Are partitions merged together over time? In order to minimize the number of active partitions, the database
administrator may choose to build the partitioning application in such a way that daily partitions are merged into weeks or
months. This approach is discussed in greater detail below, in the section on populating and maintaining partitions.

This detailed discussion of how to partition by date should illuminate the discussion of other prospective partition keys.

Data loading: If there is a strong tendency for incoming data to align by another dimension—or example, if data for each Store
or Subsidiary are delivered by different systems—these are natural partition keys.

Data querying of cubes: Although there is no technical reason for the relational database and Analysis Services cubes to be
partitioned in the same way, it is common practice to do so. The maintenance application is simpler if this assumption is made.
Thus, even if the relational database exists only to populate Analysis Services cubes, consideration should be given to common
query patterns when choosing partition keys.

Naming Conventions

The conventions for naming the member tables of a horizontally partitioned fact table should flow naturally from the partition
design. For greatest generality, use the full partition start date in the title: [sales_fact_yyyymmdd] is preferred to [sales_fact_yyyy],
even if the partitioning is annual.

If the database supports partitions at multiple granularities, the naming convention should reflect the time span held within each
partition. For example, use sales_fact_20001101m for a monthly partition, and sales_fact_20001101d for a daily one.

The names of the member tables are hidden from end users, who access data through the view, so the member table names
should be oriented to the maintenance application.

Partitioning for Downstream Cubes

If the only use of the relational data warehouse is to support Analysis Services cubes, it is not necessary to define the UNION ALL
view. In this case, the 256-table limit would not apply to the application, but it is not a recommended practice to partition the
relational data warehouse in such a way that a UNION ALL view could not be defined.

Managing the Partitioned Fact Table

The partitioned data warehouse should not be moved into production until the management of the partitions has been
automated and tested. The partition management system is a simple application, and the general requirements of that system are
outlined here.

The discussion below assumes that the partitioning will occur along date.

Meta Data

A robust partition management system is driven by meta data. That meta data can be stored anywhere, as long as the meta data
is accessible programmatically. Most data warehouse systems use custom meta data tables defined on the data warehouse SQL
Server, or Microsoft SQL Server Meta Data Services.

Whatever the meta data storage mechanism, the contents of the meta data must include the following information on each
partition:

Partition name
Date partition created
Date ranges of data in partition
Date partition moved online (included in UNION ALL view)
Date partition moved offline (dropped from view)
Date partition dropped

Other meta data tables that are part of the data warehouse’s overall management system should track when and how much data
are loaded into each partition.

Creating New Partitions

The first task of the partition management system is to create new partitions. A job should be scheduled to run periodically, to
create a new table that will serve as the next partition.

There are many effective ways to perform this task. The recommended approach is to use SQL-DMO (Distributed Management
Objects) to create a new table with the same structure and indexes as the existing partitions, but with a new table name, index
names, partition key constraint definitions, filegroups, and so on:

Get the template table definition (usually the most recent partition);
Modify the table and index Name properties, check constraint Text property, and other properties;
Use the ADD method to instantiate the table.

With intelligent naming conventions, the task can be accomplished with few lines of code.

As discussed later in this article, your application may use Analysis Services partitions for the data warehouse system’s cubes. If
so, the script or program that creates the partition tables in the RDBMS can go on to create the corresponding cube partition,
using Decision Support Objects (DSO).

Populating the Partitions

As described above, data can be loaded into a UNION ALL view. In theory this is a great feature of the table partitioning structure,
but in practice it is not recommended for data warehouse applications. Data loads into the UNION ALL view cannot be performed
in bulk; the load process will be too slow for a data warehouse that is large enough to warrant partitioned tables.

Instead, the data warehouse loading application must be designed to fast load data for each period into the appropriate target
table. If the data staging application is implemented in SQL Server Data Transformation Services (DTS), the Dynamic Properties
task can easily change the name of the target table of the Data Pump Task or the Bulk Insert Task.

As long as the new partition does not yet participate in the UNION ALL view, the data load requires no system downtime.

The data warehouse staging application should be designed to handle incoming data that does not belong in the current partition.
This case could occur as an exception to normal events, if the data warehouse loading process did not occur one night. Other
systems are faced with newly arrived old data on an ongoing basis. The system’s design must consider the likelihood, frequency,
and data volumes of these exceptions.

If old data arrives in sufficiently low volume, the simplest design would use the updatable UNION ALL view to load all data that
doesn’t belong to the current partition.

Defining the UNION ALL View

Once the incremental load has successfully finished, the UNION ALL view must be revised. SQL-DMO is again the recommended
approach for this task: use the ALTER method to change the TEXT property of the VIEW object. The list of partitions to include in
the view definition is best derived from the meta data table described above.

Merging Partitions

On the face of it, the notion of merging several partitions into a single larger partition seems like wasted processing. However, a
data warehouse with large daily load volumes and a small load window may find significant gains in load performance by:

Creating a text file with the data to be loaded, sorted in the order of the clustered index.
Bulk-loading into empty daily partitions.
Creating all nonclustered indexes.
Bringing the new partition online by recreating the UNION ALL view.
Weekly, create and populate a new weekly partition by inserting from the daily partitions, rebuilding indexes, and recreating
the UNION ALL view. The daily partitions could then be dropped.
By moving to weekly or even monthly partitions as the data ages, more partitions can be kept online within the UNION ALL
view.

Using Partitions in SQL Server 2000 Analysis Services
Analysis Services in SQL Server Enterprise Edition explicitly supports partitioned cubes that are analogous to partitioned tables in
the relational database. For a cube of moderate to large size, partitions can greatly improve query performance, load
performance, and ease of cube maintenance. Partitions can be designed along one or more dimensions, but cubes are often
partitioned only along the Dates dimension. The incremental loading of a partitioned cube, including the creation of new
partitions, should be performed by a custom application.

Note Partitions can be stored locally or distributed across multiple physical servers. Although very large systems can
also benefit from distributing partitions among multiple servers, our tests indicate that distributed partition solutions
provide the most benefit when cubes are in the multiterabyte size range. The current article considers only locally
partitioned cubes. The incremental loading of a partitioned cube, including the creation of new partitions, should be
performed by a custom application.

Advantages of Partitions

Query Performance

The performance of queries is substantially improved by partitioning the cube. Even moderate sized cubes, based on just 100

gigabytes (GB) of data from the relational database, will benefit from partitioning. The benefits of cube partitioning are
particularly noticeable under multiuser loads.

The query performance improvement that each application will see varies by the structure of the cube, the usage patterns, and the
partition design. A query that requests only one month of data from a cube partitioned by month, will access only one partition. In
general, we expect that moving from a large cube in a single partition, to a well-designed local partitioning strategy, will result in
average query performance improvement of 100 percent to 1000 percent.

Pruning Old Data

As with the relational data warehouse, the Analysis Services system administrator may choose to keep only recent data in a cube.
With a single partition, the only way to purge the old data is to reprocess the cube. By partitioning along the Dates dimension, the
administrator can drop old partitions without system downtime.

Maintenance

From an administrative point of view, partitions are independent data units that can be added and dropped without impacting
other partitions. This helps with managing the lifecycle of data in the system. Each cube partition is stored in a separate set of files.
Backup and Restore operations of these data files are easier to manage with the smaller partition files. This is especially true if
each partition file is under two GB in size. In this case the Archive and Restore utility will be effective. If a portion of the cube is
corrupted or is discovered to contain incorrect or inconsistent data, that partition can be reprocessed much more quickly than the
entire cube. In addition, it is possible to change the storage mode and aggregation design of older partitions to save space.

Different partitions can use different data sources. A single cube can combine data from multiple relational databases. For
example, a corporate data warehouse may be constructed so that data from Europe and North America are hosted on different
servers. If the cube is partitioned by geography, it can logically combine these disparate data sources. The relational schema must
be virtually identical on the source servers for the single cube definition to work properly.

Load Performance

A partitioned cube can be loaded much more quickly than a non-partitioned cube, because multiple partitions can be loaded in
parallel. As we discuss below, you must acquire a third party tool, or build a simple custom tool, in order to process partitions in
parallel. On a multiprocessor machine, the performance benefits are significant. The parallel-processing tool should aim for 90
percent CPU utilization. This performance is typically achieved by simultaneously processing between one and two partitions for
every two processors. For example, on a four-processor machine with all processors devoted to processing the cube, you will
want to process between two and four partitions simultaneously. If you try to process more partitions than you have processors,
performance will degrade significantly. One partition for each two processors is conservative; the ideal number depends on speed
of data flow from the source databases, aggregation design, storage, and other factors.

Under some circumstances, it is more efficient to rebuild a partition than to incrementally process the partition. Of course, this is
far less likely to be the case if the entire cube is held in a single partition.

Disadvantages of Partitions

Complexity

The primary disadvantage of partitions is the requirement that the administrator build an application to manage the partitions. It
would be inappropriate to move a partitioned cube into production, without first designing, testing, and rolling out an application
to manage those partitions. One of the goals of this article is to discuss the issues and design decisions underlying the partition
management application.

Meta Data Operations

As the number of partitions increases, the performance of meta data operations such as browsing the cube definition, declines.
This is a burden for the administrator rather than the end user, but an excessively partitioned cube will be difficult to administer.

Design Considerations

Overview of Partitions

An effective query plan balances multiple considerations:

Number of partitions: Analysis Services imposes no practical limits on the number of partitions in a cube, but a cube with

several thousand partitions will be challenging to manage. In addition, there is a point at which the cost of combining result
sets from multiple partitions outweighs the query performance benefits of partition selectivity. It is difficult to provide a rule
of thumb for where this point might be, as it depends on cube design, query patterns, and hardware, but it’s probably safe
to have one partition for every gigabyte of cube storage, or each ten million rows of fact data. In other words, a 100-GB
cube (alternatively, 1 Billion facts) on hardware appropriate for that data volume should easily support 100 partitions. If the
partition design calls for significantly more partitions than that, it would be wise to test the performance of alternative
partition plans.
Load and maintenance: Data may naturally flow into the cube along certain dimensions such as time. In order to support
the staging application to populate and incrementally refresh the cube, these dimensions may be natural partition slices. The
Dates dimension, for example, is usually the first partition dimension. Other applications may receive data segmented by
geographic region, customer segment, and so on. Because different partitions can use different data sources, the cube
population program can efficiently load data from a distributed data warehouse or other source system.
Query performance: An effective partition design relies on some knowledge of common user query patterns. An ideal
partitioning dimension is very selective for most detailed user queries. For example, partitioning along Date often improves
query performance, as many queries are focused on details in the most recent time periods. Similarly, perhaps many users
focus queries along geographic or organizational lines. For maximum query performance improvement, you want queries
touching as few partitions as possible.

It is easier to manage partitions along dimensions that are static or, like Date, change in a predictable way. For example, a partition
along the "States in the US" is relatively static, as the application designers could expect to receive plenty of warning of a fifty-first
state. By contrast, partitions along the Product dimension are likely to change over time, as new products are added relatively
frequently. It may still be desirable to partition along a dynamic dimension, but the designer should note that the administrative
system must necessarily be more complex. If a dimension is marked as "changing," then partitioning along that dimension is not
permitted. In any case, it is wise to create an "all other" partition to hold data for unexpected dimension members.

Slices and Filters

Just as with relational partitions, Analysis Services partitions rely on the administrator to define the data to be found in each
partition. The RDBMS uses the CHECK CONSTRAINT to perform this function; Analysis Services uses the slice. A slice is set to a
single member in a dimension, such as [Dates].[1999] or [Dates].[1999].[Q1]. In the Analysis Manager Partition Wizard, the slice is
set in the screen titled "Select the data slice (optional)." In DSO, the slice is accessed and set using the SliceValue property of the
partition’s dimension level object. Sample syntax is provided later in this document.

The definition of each partition also includes information about what source data flow into this partition. The partition meta data
stores the information necessary to populate the partition. The administrator can set the data source and the fact table with the
Partition Wizard, or programmatically with DSO. At the time a partition is processed, the settings of its SliceValue property are
automatically transformed into a filter against the source. The partition definition optionally includes an additional filter, the
SourceTableFilter property, which can be used to refine the query that will populate the partition. At the time the partition is
processed, the WHERE clause of the query issued against the source data will include both the default conditions based on the
slice definition, and any additional filter(s) defined by the SourceTableFilter property.

Slices and filters must both be properly defined in order for the partitions to work correctly. The role of the Slice is to improve
query performance. The Analysis Services engine uses the information in the partition Slice definition to direct a query only to the
partition(s) that contain the underlying data. Queries will resolve accurately on a partitioned cube without defined partition slices,
but query performance will not be optimized because each query must examine all partitions in the absence of slice definitions.

The role of the filter and source meta data is to define the data that flow into the partition. These elements must be correctly
defined, or the overall cube will have incorrect data. When a partition is processed, Analysis Services constrains the data stored in
the cube to match the Slice. But no checks are performed to ensure the data are not also loaded into another partition.

For example, imagine that you’ve partitioned a cube by year, and you incorrectly set the Slice for the 1998 partition to [Dates].
[Year].[1997], but constrained the filter to 1998. The partition, when processed, would contain zero rows: probably the desired
result. By contrast, if you had an existing partition for 1998 and added a newgg partition for December 1998, it would be easy to
load the December 1998 data twice, and you would receive no notification from Analysis Services that this event had occurred.

It is not difficult to keep partition slices and filters aligned, but it is imperative that the partition management system designer be
aware of the issues.

Advanced Slices and Filters

Most partition strategies identify a dimension level to partition, and put the data for each member of that dimension in its own
partition. For example, "partition by year" or "partition by state."

It is also common to define a partition plan that drills down on one part of the cube. For example, recent data may be partitioned

by day or week, older data by month or year.

Depending on usage patterns and data cardinality, it may be desirable to design a more complex partition plan. For example,
imagine that 80 percent of customers live in California, 10 percent in Oregon, and the remaining 10 percent are distributed evenly
across the rest of the country. Further, most analysis is focused on local customers (California). In this case, the administrator may
wish to create county-level partitions for California, a state-level partition for Oregon, and one partition for the rest of the country.

The slices would be something like:

California counties: [All USA].[CA].[Amador] … [All USA].[CA].[Yolo]
Oregon state: [All USA].[OR]
Rest of the country: [All USA]
As discussed above, source data filters would have to be correctly defined to ensure that these partitions are populated
correctly. Note that a query that needs to combine data from California and Oregon would also have to look at the "Rest of
the country" partition. While it is not very expensive for Analysis Services to look at the map of the "Rest of the country" to
learn there is no relevant data therein, query performance would have been better if the cube were partitioned uniformly by
state with drilldown on CA. The application logic required to maintain uneven partitions is also more complex, and in
general this partitioning approach is not recommended. However, with appropriate care in the design of the maintenance
application, and understanding of the query performance tradeoffs, the technique may solve specific design problems.

Aligning Partitions

As the first half of this article discusses partitions in the RDBMS, it is natural to ask whether Analysis Services partitions must be
aligned with relational partitions. The two partition strategies do not need to be identical, but the partition management
application is easier to design, build, and understand if the partitions are similar. A common strategy is to partition identically
along date in both systems, with optionally a slice along a second or even third dimension in the cube.

The simplest strategy is to use the UNION ALL view as the source fact table for all cube partitions. If cube partitions are aligned
with the relational partitions, each cube partition could point directly to its associated relational partition, circumventing the
UNION ALL view. In this configuration the cube processing query that extracts data from the relational database will run fastest.
The tradeoff for this performance improvement is that the maintenance application needs to ensure the source table is correctly
associated with each partition.

If the relational database exists only to populate Analysis Services cubes and does not service any other queries, the system
administrator may choose not to create and manage the UNION ALL view. Indexes on the relational tables would be designed to
optimize the single query that loads data into the cube. In this case, the relational database is serving more as a staging area than
a complete data warehouse.

Storage Modes and Aggregation Plans

Each partition can have its own storage and aggregation plan. Infrequently accessed data can be lightly aggregated, or stored as
ROLAP or HOLAP rather than MOLAP. A cube that is incrementally loaded over time will not likely use this functionality along the
time dimension of its partitions, as changing these parameters would require the partition to be reprocessed. The cost of
processing time and system complexity would hardly seem to warrant the minimal space savings in most situations.

Partitions along other dimensions, by contrast, are likely to have different aggregation plans. The usage-based optimization
wizard designs aggregations for each partition. The system administrator should focus the optimization wizard on the most
recent partitions, and always base the aggregation design for each new set of partitions on the most current partitions, to keep
the aggregation design as up-to-date as possible.

Managing the Partitioned Cube

The developer can use a variety of tools to build the management system for relational partitions. SQL-DMO is strongly
recommended, but effective systems have been built using stored procedures, extended stored procedures, even Perl scripts that
parse text files containing table definitions. The cube partition maintenance program, by contrast, must use DSO.

For system developers who come from a classic database background, the notion of using an object model to instantiate database
objects may seem strange. The developer can use a familiar scripting language, such as Microsoft® Visual Basic® Scripting
Edition (VBScript), Microsoft® JScript®, or Perl or a development environment like Visual Basic (VB) or C++, to develop the
modules that use DMO and DSO. These modules can be scheduled from the operating system, from SQL-Agent, or called from
DTS packages. The requirement to use DSO to build the management system should not be viewed as a reason to forego the use
of partitions, even if the developer has never used an object model before. A VBScript sample that illustrates how to use scripting
to clone partitions is provided later in this article.

If the relational data warehouse uses partitions, the cube partition management system should be designed as part of the
relational database partition management system. The cube partition management system must perform the following functions:

Create new partitions as necessary, typically on a schedule related to the Dates dimension.
Load data into the partitions.
Drop old partitions (optional).
Merge partitions (optional).

Create New Partitions

At the same time the partition management system creates a new date partition in the relational database, it should create all the
necessary cube partitions corresponding to that date. It is good practice to incrementally update the cube’s dimensions before
creating new partitions, as a new dimension member may be added along one of the partition slices.

The simplest case is when the cube is partitioned only by date. The partition management system simply creates one new
partition on the appropriate schedule (day, week, month, and so on).

If the cube is partitioned by another dimension in addition to the date, the partition management system will be adding many
partitions at a time. For example, consider a cube that is partitioned by month and by state within the U.S. Each month the system
will create 50 new state partitions. In this case, it is safe to create this month's partitions by cloning last month's partitions, editing
the necessary attributes such as slice and source table name, and updating the partition definition in the cube.

However, consider a cube that is partitioned by month and product brand. Product brands are much more volatile than states or
provinces; it is reasonable to expect that a new brand would be added to the product hierarchy during the life of the cube. The
maintenance application must ensure that a partition is created to hold this new brand's data. The recommended practice is to:

Process the dimensions before creating the new partitions.
Clone existing partitions to ensure continuity in storage modes and aggregation plans.
Search the processed dimension for new members, creating a partition for any new members of the partitioning level. The
system would have to specify default storage mode and aggregation plan.

The partition management system must be carefully designed to ensure that partition slice and filter definitions are aligned and
remain accurate over time. If the relational database is partitioned, and those partitions are periodically merged as described
earlier in this article, the partition management system should update the cube partition definitions to synchronize with the
source data. The cube partition need not be reprocessed, but the definition should be changed in case reprocessing becomes
necessary in the future.

Data Integrity

It is the job of the cube design and the partition management system to ensure that data are processed into one and only one
partition. Analysis Services does not check that all rows from a fact table are instantiated in the cube, nor does it verify that a row
is loaded into only one partition. If a fact row is inadvertently loaded into two partitions, Analysis Services will view them as
different facts. Any aggregations will double-count that data, and queries will return incorrect results.

Processing Partitions

Processing a partition is fundamentally the same as processing a cube. The natural unit of work for a processing task is one
partition. The Analysis Manager processing wizard provides the following three modes for processing a cube or partition:

Incremental update adds new data to the existing cube or partition, and updates and adds aggregations affected by that new
data.
Refresh Data drops all data and aggregations in the cube or partition, and rebuilds the data in the cube or partition.
Full Process completely rebuilds the structure of the cube or partition, and then refreshes the data and aggregations.

Incremental processing requires that the administrator define a filter condition on the source query, to identify the set of new data
for the cube. Usually this filter is based on a date, either the event date or a processing date stored in the fact table.

Exactly this same functionality is available from the DTS Cube Processing Task. Most systems use the DTS Cube Processing Task
to schedule the cube processing. Incrementally processed cubes use the Dynamic Properties task to change the source filter. This
same functionality is available from custom coding in DSO as well, although the incremental update requires a few more lines of
code than refreshing the data does.

When designing the partition management system, it's important to note that incremental cube or partition processing requires
that the partition have been processed in the past. Do not use incremental processing on an unprocessed cube or partition.

A cube that is partitioned only along the Dates dimension has straightforward load management requirements. Typically there is
a single partition to update for each load cycle; the only decision point is whether to incrementally update or refresh the data.
Most Date-dimensioned cubes will be managed from a simple DTS package.

A cube that is partitioned along multiple dimensions has the following additional challenges and benefits:

Challenge: Large number of partitions to process
Challenge: Potentially changing number of partitions
Benefit: Parallel loading of partitions
Benefit: Greatly improved query performance on highly selective queries.

Most applications that partition on multiple dimensions design the cube processing system to load partitions in parallel. A parallel
loading system could launch multiple simultaneous DTS packages whose parameters have been updated with the Dynamic
Properties task. While feasible, this structure is awkward, and many systems will choose instead to use native DSO code to update
the partitions. A sample tool to process partitions in parallel is available.

Merging Partitions

A cube that is partitioned along Date will see the number of its partitions grow over time. As discussed above, there is
theoretically a point at which query performance degrades as the number of partitions increase. Our testing, including the
development of a cube with over 500 partitions, has not reached this limit. The system administrators will probably rebel before
that point is reached, as the other disadvantage of many partitions—slowness of meta data operations—will make it increasingly
difficult to manage the database.

Analysis Services, through both DSO and the Analysis Manager, support the ability to merge partitions. When two partitions are
merged, the data from one partition is incorporated into a second partition. Both partitions must have identical storage modes
and aggregation plans. Upon completion of the merge, the first partition is dropped and the second partition contains the
combined data. The merge processing takes place only on the cube data; the data source is not accessed during the merge
process. The process of merging two partitions is very efficient.

If the system design includes merged partitions, the merging process should occur programmatically rather than through
Analysis Manager. Merging partitions is straightforward, and like other DSO operations requires few lines of code. The partition
merging system must take the responsibility for verifying that the final merged partition contains accurate meta data information
for the source filter, to ensure that the partition could be reprocessed if necessary. The partition merge process correctly changes
the slice definition, and combines Filter definitions as well as it can. But the merge process does not require that both partitions be
populated from the same table or data source, so it is possible to merge two partitions that cannot be repopulated.

A second issue to consider is that the merged partition, like all partitions, cannot be renamed.

These problems can be avoided by using the following good system design practices:

Use clear naming conventions.
Follow a consistent partition merging plan.
Take care to match up cube partitions with relational partitions, or do not partition the relational data warehouse.

For example, consider a Sales cube that partitions data by week. The current week is partitioned by day, and then merged at the
end of the week. Our partitions are named Sales_yyyymmdd, where the date in the name is the first day of the data in the
partition. In November 2000, we will have weekly partitions Sales_20001105, Sales_20001112, Sales_20001119, and
Sales_20001126. During the next week, we create and process Sales_20001203, Sales_20001204, and so on through
Sales_20001209. During the Sunday processing window, when there is little use of the system, we can merge 20001204 through
20001209 into Sales_20001203, leaving only the weekly partition. Alternatively, you could effectively rename a partition by
creating a new empty partition with the desired name, and merging other partitions into it.

Rolling Off Old Partitions

Deleting old data in a cube partitioned by Date is as simple as dropping the oldest (set of) partitions. Like the other operations we
have discussed, this process should be managed programmatically rather than on an ad hoc basis through Analysis Manager. If
you have gotten this far, you can probably code and test this module in a few hours.

Conclusions
Using local partitions is recommended for medium to large Analysis Services cubes, containing more than 100 million fact rows.
Query performance of the Analysis Services database improves with partitioning. It is easier to maintain partitioned cubes,
especially if old data are dropped from the cube. However, partitioning a cube requires an application to manage those partitions.

Partitioning in the relational data warehouse database is similar in concept to partitioning in Analysis Services. As with Analysis
Services, an application must be built to manage relational partitions. The arguments for partitioning in the relational data
warehouse are not very compelling. Partitioning addresses some maintenance problems such as pruning old data, but at the cost
of system complexity. Query performance is not improved compared to a well-indexed single table.

Both Analysis Services and the SQL Server relational database support distributed partitions, wherein partitions are located on
different servers. A discussion of distributed partitions in Analysis Services is deferred to another article. We do not recommend
distributing relational partitions for a SQL Server 2000 data warehouse system that supports ad hoc queries.

Partitioned cubes exhibit improved query performance with large numbers of partitions. The developer of a large cube should
consider partitioning along several dimensions, to maximize the selectivity of user queries and improve processing performance
by providing the opportunity for parallel processing.

Partitions are strongly recommended for large Analysis Services systems. Partitioning the relational data warehouse is not
generally recommended, although it can be an effective and well-performing solution to some specific warehouse maintenance
issues.

For More Information
Microsoft SQL Server Books Online contains more information about indexed views. For additional information, see the following
resources.

The Microsoft SQL Server Web site at http://www.microsoft.com/sql/.
The Microsoft SQL Server Developer Center at http://msdn.microsoft.com/sqlserver.
SQL Server Magazine at http://www.sqlmag.com.
The microsoft.public.sqlserver.server and microsoft.public.sqlserver.datawarehouse newsgroups at
news://news.microsoft.com.
The Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see
http://www.microsoft.com/trainingandservices.

Appendix: VBScript Code Example for Cloning a Partition
'/***
' File: ClonePart.vbs
'
'Desc: This sample script creates a new partition in the FoodMart 2000
' Sales cube, based on the latest partition in the cube. The
' purpose of the script is to show the kinds of DSO calls that are
' used to clone a partition. The resulting partition is processed,
' but adds no data to the cube.
'
' Users of this script may want to delete the resulting partition
' after running the script and exploring the results.
'
' Parameters: None
'***/

 Call ClonePart

Sub ClonePart()

 On Error Resume Next

 Dim intDimCounter, intErrNumber
 Dim strOlapDB, strCube, strDB, strAnalysisServer, strPartitionNew
 Dim dsoServer, dsoDB, dsoCube, dsoPartition, dsoPartitionNew

 ' Initialize server, database, and cube name variables.
 strAnalysisServer = "LocalHost"
 strOlapDB = "FoodMart 2000"
 strCube = "Sales"

 ' VBScript does not support direct use of enumerated constants.
 ' However, constants can be defined to supplant enumerations.
 Const stateFailed = 2
 Const olapEditionUnlimited = 0

 ' Connect to the Analysis server.

http://www.microsoft.com/sql/
http://msdn.microsoft.com/sqlserver
http://www.sqlmag.com/
news://news.microsoft.com
http://www.microsoft.com/trainingandservices

 Set dsoServer = CreateObject("DSO.Server")
 dsoServer.Connect strAnalysisServer

 ' If connection failed, then end the script.
 If dsoServer.State = stateFailed Then
 MsgBox "Error-Not able to connect to '" & strAnalysisServer _
 & "' Analysis server.", ,"ClonePart.vbs"
 Err.Clear
 Exit Sub
 End if

 ' Certain partition management features are available only
 ' in the Enterprise Edition and Developer Edition releases
 ' of Analysis Services.
 If dsoServer.Edition <> olapEditionUnlimited Then
 MsgBox "Error-This feature requires Enterprise or " & _
 "Developer Edition of SQL Server to " & _
 "manage partitions.", , "ClonePart.vbs"
 Exit Sub
 End If

 ' Ensure that a valid data source exists in the database.
 Set dsoDB = dsoServer.mdStores(strOlapDB)
 If dsoDB.Datasources.Count = 0 Then
 MsgBox "Error-No data sources found in '" & _
 strOlapDB & "' database.", , "ClonePart.vbs"
 Err.Clear
 Exit Sub
 End If

 ' Find the cube.
 If (dsoDB.mdStores.Find(strCube)) = 0 then
 MsgBox "Error-Cube '" & strCube & "' is missing.", , _
 "ClonePart.vbs"
 Err.Clear
 Exit Sub
 End If

 ' Set the dsoCube variable to the desired cube.
 Set dsoCube = dsoDB.MDStores(strCube)

 ' Find the partition
 If dsoCube.mdStores.Count = 0 Then
 MsgBox "Error-No partitions exist for cube '" & strCube & _
 "'.", , "ClonePart.vbs"
 Err.Clear
 Exit Sub
 End If

 ' Set the dsoPartition variable to the desired partition.
 Set dsoPartition = dsoCube.MDStores(dsoCube.MDStores.Count)
 MsgBox "New partition will be based on existing partition: " _
 & chr(13) & chr(10) & _
 dsoDB.Name & "." & dsoCube.Name & "." & _
 dsoPartition.Name, , "ClonePart.vbs"

 ' Get the quoting characters from the datasource, as
 ' different databases use different quoting characters.
 Dim sLQuote, sRQuote
 sLQuote = dsoPartition.DataSources(1).OpenQuoteChar
 sRQuote = dsoPartition.DataSources(1).CloseQuoteChar

'***
' Create the new partition based on the desired partition.
'***

 ' Create a new, temporary partition.
 strPartitionNew = "NewPartition" & dsoCube.MDStores.Count
 Set dsoPartitionNew = dsoCube.MDStores.AddNew("~temp")

 ' Clone the properties from the desired partition to the
 ' new partition.

 dsoPartition.Clone dsoPartitionNew

 ' Change the partition name from "~temp" to the
 ' name intended for the new partition.
 dsoPartitionNew.Name = strPartitionNew
 dsoPartitionNew.AggregationPrefix = strPartitionNew & "_"

 ' Set the fact table for the new partition.
 dsoPartitionNew.SourceTable = _
 sLQuote & "sales_fact_dec_1998" & sRQuote

 ' Set the FromClause and JoinClause properties of the new
 ' partition.
 dsoPartitionNew.FromClause = Replace(dsoPartition.FromClause, _
 dsoPartition.SourceTable, dsoPartitionNew.SourceTable)

 dsoPartitionNew.JoinClause = Replace(dsoPartition.JoinClause, _
 dsoPartition.SourceTable, dsoPartitionNew.SourceTable)

 ' Change the definition of the data slice used by the new
 ' partition, by changing the SliceValue properties of the
 ' affected levels and dimensions to the desired values.
 dsoPartitionNew.Dimensions("Time").Levels("Year").SliceValue = "1998"
 dsoPartitionNew.Dimensions("Time").Levels("Quarter").SliceValue = "Q4"
 dsoPartitionNew.Dimensions("Time").Levels("Month").SliceValue = "12"

 ' Estimate the rowcount.
 dsoPartitionNew.EstimatedRows = 18325

 ' Add another filter. The SourceTableFilter provides an additional
 ' opportunity to add a WHERE clause to the SQL query that will
 ' populate this partition. We're using this filter to ensure our new
 ' partition contains zero rows. For the purposes of this sample code
 ' we don't want to change the data in the FoodMart cube. Comment out
 ' this line if you want to see data in the new partition.

 dsoPartitionNew.SourceTableFilter = dsoPartitionNew.SourceTable _
 & "." & sLQuote & "time_id" & sRQuote & "=100"

 ' Save the partition definition in the metadata repository
 dsoPartitionNew.Update

 ' Check the validity of the new partition structure.
 IF NOT dsoPartitionNew.IsValid Then
 MsgBox "Error-New partition structure is invalid."
 Err.Clear
 Exit Sub
 End If

 MsgBox "New partition " & strPartitionNew & " has been created and " _
 & "processed. To see the new partition in Analysis Manager, you " _
 & "may need to refresh the list of partitions in the Sales cube " _
 & "of FoodMart 2000. The new partition contains no data.", , _
 "ClonePart.vbs"

 ' The next statement, which is commented out, would process the partition.
 ' In a real partition management system, this would likely be a separate
 ' process, perhaps managed via DTS.
 ' dsoPartitionNew.Process

 ' Clean up.
 Set dsoPartition = Nothing
 Set dsoPartitionNew = Nothing
 Set dsoCube = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing

End Sub

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, JScript, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Using Secure Sockets Layer (SSL) for SQL Server 2000 Reporting
Services

Peter Blackburn
Boost Data Ltd.

William (Bill) Vaughn
Beta V Corporation

February 2004

Applies to:
 Microsoft® SQL Server™ 2000 Reporting Services
 Microsoft® Windows Server System™ 2003
 Microsoft® Windows® 2000 Server

Summary: Experiment with the security solutions presented here using SSL for SQL Server 2000 Reporting Services before
implementing security on your network. (37 printed pages)

Contents

Article Scope
What Is SSL and Why Is It Important?
SSL and Reporting Services
Getting an SSL Certificate
Obtaining a Web Server SSL Certificate
Caveat About Stand-alone Certificate Authority
Installing Reporting Services

Article Scope
While writing our new book on Microsoft SQL Server Reporting Services, Hitchhiker's Guide to Microsoft Reporting Services for
SQL Server 2000 (Addison Wesley) (see http://www.sqlreportingservices.net), we decided not to include some of the results of our
research. However, we felt that it would make a good candidate for MSDN, so the text of that research comprises the bulk this
MSDN article.

As we continue writing our book, one of our primary concerns is security. It seems to be on everyone's mind nowadays. Security
can mean a variety of things, such as the ability to keep confidential information confidential. This is an expansive topic that could
range from physical server security, to network security, to restricting access to login names and passwords, and beyond. All the
locks in the Pentagon won't protect your data if you're not vigilant about how the new Microsoft SQL Server 200 Reporting
Services is installed—and that's the reason for this article.

Security can be a very large and daunting topic. It's often difficult to understand and more difficult to get right. In our experience,
developers often feel that they're out of their area of expertise when people start discussing Public Key Infrastructure (PKI), Root
Certificate Authorities, Trusts, Certificates, Secure Sockets Layer (SSL), and the like. What we want to do here is give you some
easily digestible information that can go a long way toward increasing your understanding of security-related issues and tools
available to you. We provide several experiments that you can try in your development environments before possibly
implementing the code or configuration on production environments. This enables you to secure the Web site where you intend
to install Reporting Services.

In particular, we'll show you how you can install a Root Certificate Authority and how you can request Certificates to secure a Web
site. We'll also discuss where it is appropriate (if not just convenient) to spend $500 (USD) a year for the benefit of a Web server
Certificate from a publicly trusted Certificate Authority.

We'll discuss securing an IIS server Web site—so you'll need administrative rights to the IIS server. In addition, if you're going to
install and then issue certificates from your own domain "Enterprise" Root Certificate Authority, you'll need local admininstrator
permissions, enterprise administrator permissions, and root domain administrator permissions in the forest. This means that if
these server and network rights elude you, go and talk to those within your organization that manage your company domain and
scare them silly. Tell them that you're planning to tear down the production network and shred the Active Directory to implement
a PKI solution. They'll politely thank you for the warning, and help you clear your desk as the security guards manhandle you to
the exit or nearest window. Seriously though, in a production environment, your organization may already have a PKI plan (and if
it doesn't, it probably would benefit from one). You'll probably want to be part of that, rather than going it alone. Network

http://www.sqlreportingservices.net/

Administrators are people that have the ultimate power to stop you by removing your network access—so don't get on their
wrong side in a production environment when you're experimenting with the configurations we're going to show you here.

What Is SSL and Why Is It Important?
SSL is the acronym for "Secure Sockets Layer". You use it every time you go to a secure Web site to order memory, books, or an
airline ticket.

When the URL starts with https://, you're using SSL. In Internet Explorer, when you are viewing https:// Web pages that are
protected by SSL, you'll see the little lock symbol on the Status bar as in Figure 1.

Figure 1. The lock symbol in the Internet Explorer browser Status bar

Basically, the Web server encrypts the raw https data being moved over the network (the World Wide Web) so that "evil doers"
out there can't sniff the wire and extract important information. Https:// pages use keys embedded in the Web server's SSL
certificate and encrypt the network traffic between browser and server. Http:// pages don't—they leave everything in plain text
while in transit on the network. This makes the data about as hard to read as this article. In addition to encryption, an SSL Web
Server Certificate also provides validation and verification of the remote server identity to the browser client.

SSL and Reporting Services
When you install Reporting Services on a system, one of the first things the Setup dialog asks (Figure 2) is whether it should use
SSL to gate access to the Reporting Services and encrypt the data and credentials being moved over the wire. Your answer had
better be "Yes". If it isn't, you might have a lot of explaining to do to your boss or the stockholders when important company
information is compromised.

Figure 2. The default SSL check box in the Reporting Services Installation wizard

The Setup program even warns you if you clear the check box. We encourage all of our readers and customers to enable SSL in
virtually all cases. Sure, it means that the reports run a bit slower, as the Web server must decrypt and encrypt data being sent to
and from the browser, but this is a small price to pay for better data security.

Figure 3. If you don't select the "Use SSL" option in the Setup dialog, you will get a final warning.

To enable SSL on your Reporting Services Web site, you simply need to install an SSL "Web Site Certificate". This certificate
contains information about your Web site, such as who owns it and when it is valid. Figure 4 shows the "Certificate" we created to
the Web site where we installed Reporting Services to use SSL within the closed world of our development Active Directory
domain, "betavlocal".

Figure 4. A completed SSL Certificate created for our Reporting Services Web site

How Does Reporting Services Use SSL?

Reporting Services executes queries against specified data sources as it generates the reports. This means it's going to need login
credentials (Login ID and Password). There are several ways these credentials can be referenced, including:

Specifying the credentials explicitly within a report itself
Storing the credentials within a shared data source
Using the credentials of the user running the report (SSPI)
Querying the user for appropriate credentials
Passing credentials to use in the URL
Extracting credentials via the POST verb of an http:// command

The last three credential references are particular risky, because if the credentials are passed from the browser over http://
(effectively in plain text), they might be intercepted and harvested with relative ease. (Querying the user for appropriate
credentials doesn't send the credentials in plain text unless 'basic authentication' is also set on the Web site.) To raise the security
bar, you'll want to be able to ensure that login credentials should only be transmitted while accessing the Report Server over an
https:// connection, where the Web server takes steps to encrypt the traffic.

The Report Server exposes Reporting Services' SOAP endpoint, and Visual Studio® .NET deploys the Report by simply making
calls to public SOAP methods. At some point you might want to create client software to utilize the SOAP Web methods on the
Report Server other than using the URL-based interface. The SOAP interface is the primary interface to Reporting Services—these
Web methods expose everything Reporting Services can do. A custom application written against these methods could create and
launch reports or lots of other custom operations, such as create and manage report schedules, adjust management group
permissions, and more. Within the RSReportServer.config file you'll find in "\Program Files\Microsoft SQL
Server\MSSQL\Reporting Services\ReportServer", there is a key attribute, SecureConnectionLevel, and this effectively governs
which SOAP methods can be called over http and which can be called over https. We discuss appropriate values for this attribute
at the end of this article, but we call to your attention the ListSecureMethods() method on the SOAP interface that identifies
those methods that must (depending upon the SecureConnectionLevel setting) be called over https. If you need to know more
about this, look up "ListSecureMethods" in Reporting Services Books Online—or buy our book.

The Report Manager provides a cool interface for managing reports, and it is possible to use the Report Manager to configure
shared data sources and reports that have embedded credentials. If you are accessing the Report Manager over http://, then those
credentials are easily harvested as they are being passed back to the Report Server, so you'll really want to be accessing the
Report Manager over https://. We tell you the changes to make at the end of this article.

Getting an SSL Certificate

Hopefully, you've been convinced that you need an SSL Certificate, but now you will want to know how to get one. There are two
approaches; use your own Certificate Authority by installing Microsoft Certificate Services, or use a public root Certificate
Authority such as Verisign or Thawte. The route you choose probably depends on who you want to trust your Web site.

When browsing to a Web site that has an SSL Web Server Certificate that has been provided by an untrusted Certificate Authority,
Figure 5 shows the dialog that greets, or more likely scares away, your users.

Figure 5. A Security Alert dialog exposed by the Internet Explorer Web browser when an https site is not trusted

Trust is at the heart of the issue here, as certificates are issued from Certificate Authorities and the operating system has to make
a decision—whether or not to trust that a particular certificate has been cryptographically signed by who the certificate says it is
signed by. By default, all Microsoft® Windows® operating systems maintain an internal database (which is updated by the
Windows Update Service) of all public root certificate authorities whose (cryptographic) certificate signatures will be trusted by all
Windows computers, and are kept current via Windows Update.

Windows computers that are members of a particular Active Directory domain will also by default trust any certificates that are
issued by any Enterprise Certificate Authorities installed and registered within that particular Active Directory domain.

Obtaining a Web server SSL certificate from a public root certification authority can cost $500 per year. In addition, the
organization that sells you the certificate will most probably take steps to ensure that you are who you say you are and that you
have the legal right to have the certificate for which you are applying. They are the well-paid guardians of security.

While you are learning and testing, you are unlikely to want to fork out $500 just for a certificate that you're going to throw away
and not use in production. We suggest that you might like to follow the steps we discuss here to set up your own Certificate
Authority—even if only temporarily during the development phase.

Installing Your Own Certificate Authority

Generally, there are two configurations for the out-of-the-box Windows Server Certificate Authority that you can set up. One is
integrated within an Active Directory (an Enterprise Root Certificate Authority), and the other is a stand-alone Certificate
Authority. For each of those configurations you can determine if the Certificate Authority is a Root Certificate Authority (a
Certificate Authority that is not signed by another Certificate Authority) or as a Subordinate Certificate Authority that needs to
obtain a certificate itself from another Certificate Authority before it can start to issue any certificates.

We're going to talk about installing a Root Certificate Authority—one that's not signed by another Certificate Authority. On the
Windows 2000 Server or Windows Server™ 2003 Control Panel, click the Add/New Programs icon, click Add/Remove
Windows Components, and then choose to add Certificate Services. You'll see a dialog box similar to that shown in Figure 6
(in which we are using Windows Server 2003; there are a few minor cosmetic differences from Windows 2000 Server).

http://www.verisign.com/
http://www.thawte.com/

Figure 6: The Add Windows Components dialog box

Once you have installed Certificate Services, the installation wizard warns you that you will be unable to rename the computer, or
join or leave a domain.

The next step of the installation asks you to choose which type of Certificate Authority (CA) you wish to install, as shown in Figure
7. If you have an Active Directory domain, you can select an Enterprise Certificate Authority. If this is going to be the first CA in
your domain, then you'll want to choose the Enterprise Root CA. If you don't have an Active Directory domain, you can choose to
install a stand-alone CA, and if it's to be the first Certificate Authority, then you'd choose the stand-alone root CA. (Be advised that
if you install a stand-alone CA that, by default, no one at all will trust any of its certificates—not even machines within the Active
Directory domain—than you are going to have to take additional steps at each machine that you want to be able to trust its
certificates.) On Windows 2000 Servers, the main difference (as we'll see later) comes when asking the Server for a Certificate—
stand-alone Certificate Authorities on Windows 2000 Servers cannot be configured to automatically issue a certificate in response
to a request. It requires the intervention of a domain administrator to explicitly issue certificates requested, but we'll see that in
just a minute.

Figure 7. Choosing a Certification Authority type

On Windows Server 2003, the Certificate Authority Identifying Information collected by the wizard is pretty tersely restricted to
the just the Common name and Validity Period (Figure 8). However, on Windows 2000 (Figure 9), there are a few more
identifying fields, and this information will be presented to the user when it comes time for the user to trust certificates generated
by the CA.

Figure 8. Identifying the name and validity period of a Windows Server 2003 CA

Figure 9. Identifying the name and validity period of a Windows 2000 CA

And that is all. You can click through to the end of the wizard. The wizard will stop IIS server and install a certificate services ISAPI
to enable you to ask for certificates via a Web interface. (If you are on Windows Server 2003 and you have not enabled Active
Server Pages, then the wizard will prompt you about that, and yes, you need them.) That interface will be on http://<server
name>/certsrv.

By the way, make sure that if you installed onto Windows 2000 Server, when accessing the Certificate Services Web interface, that
you always use lower case for certsrv. There is a little quirk that means if you don't, it doesn't work properly. Thankfully, that
quirk has been fixed in the Windows Server 2003 version.

Obtaining a Web Server SSL Certificate
Now that we have a Certificate Authority installed, let's get a Certificate for our default Web site that can then enable us to install
Reporting Services with SSL checked. We practice safe computing in our enterprises and we advocate to developers that they
should do the same. One of the things we ensure is that, while our own personal accounts have administrative rights over our
own particular development domain workstation, our own personal user accounts don't have administrative rights per se on the
domain. We mention this because when it comes to requesting a certificate from an Enterprise Certificate Authority integrated
with the Active Directory, the ordinary policy is only to accept requests and issue certificates for Web server SSL certificates from
accounts that have domain administrative privileges. This means you can either log in as a domain administrator, or you can use
Run as..., as shown in Figures 10 and 11, and run the IIS MMC snap-in under the credentials of a domain administrator.

Figure 10. Starting the IIS MMC snap-in using "Run as..."

Figure 11. Providing domain administrator credentials to "Run as..."

Once the IIS MMC snap-in is launched, navigate to the default Web site and open its properties, as shown in Figure 12.

Figure 12. Navigating to the Web site properties page dialog box

On the Directory Security tab, press the Server Certificate button, as shown in Figure 13.

Figure 13. The Web Site Properties page with the Directory Security tab selected

This launches the Web Server Certificate Wizard, as shown in Figure 14.

Figure 14. The Welcome page of the Web Certificate Wizard

We're creating a new Certificate, so we select Create a new Certificate, as shown in Figure 15.

Figure 15. Creating a new certificate in IIS Certificate Wizard

At this point we might have an opportunity to Send the request immediately to an online certificate authority, as shown in
Figure 16. What this really means is that Active Directory has noticed that there is a Certificate Authority in the Active Directory
domain that can be a source for a new certificate. If you didn't install an Enterprise Certificate Authority, this option will be grayed
out. If you wish to request a certificate from a public certificate authority, select to Prepare the request now, but send later.
This will prepare a request file for you. For our example, we're going to Send the request immediately to an online
certification authority, but keep reading, as the next few steps are the same regardless of which route you take.

Figure 16. Sending the request immediately in IIS Certificate Wizard

Now you need to give the certificate a name, as shown in Figure 17. This is not very important, as it is only a memory aid to
enable you to identify the certificate. What is important is the bit length. The larger the bit length the more difficult it is for a
malevolent person to decrypt any intercepted network traffic. However, the longer the bit length, the more load you put on the
server encrypting and decrypting. It's a compromise.

Figure 17. Naming the site and setting the encryption bit length in IIS Certificate Wizard

The next page of the wizard, as shown in Figure 18, asks for other identifying information of the Organization and the
Organizational Unit. Again, these are not terribly important to the functionality; they're just identifying information that will get
embedded into the certificate.

Figure 18. Naming the organization in the IIS Certificate wizard

Probably the most important part of the certificate request to get right is in naming the site. This name gets embedded in the
certificate's Common name property. By default, the wizard picks out the machine's NetBIOS name. This is all very well if the site
is only going to be used with https on an internal network where NetBIOS names might be resolvable. Reporting Services version
1 was not really designed for Internet deployment scenarios, but even in intranet situations you may find that NetBIOS names are
not always resolvable. In fact, if you've got the SSL checked during install, it is the NetBIOS name that is embedded into the
configuration files irrespective of what you choose here.

If you decide to use a NetBIOS name as the common name, as shown in Figure 19, we've found that putting the name in
lowercase leads to fewer problems later on. We chose to use a full DNS name, "d1.internal.boost.net", which identifies a machine
on our internal intranet networks, and means that when addressing that machine over https, we will need to do so in the form
https://d1.internal.boost.net. We advise folks to use a name that is resolvable on all parts of their interconnected networks.
Because we are requesting a non-NetBIOS name into the common name on the certificate, we are going to have to make changes
to the Reporting Services .config files, so be sure to read the section below on the .config files.

Figure 19. IIS Naming the site in the Certificate Wizard

Next, the Wizard collects more identifying information, as shown in Figure 20, that's not crucial but will get embedded into the
certificate issued.

Figure 20. Providing geographical information in IIS Certificate Wizard

If we have an Enterprise Certificate Authority in the Active Directory domain, the wizard lets us choose which Certificate Authority
within the Active Directory domain is to source the certificate, as shown in Figure 21.

Figure 21. Identifying a certificate authority in IIS Certificate Wizard

Or, if we wish to request a certificate from a stand-alone certificate server or from a public root certificate authority, then at the
point shown in Figure 16, we'd have selected Prepare the request now, but send it later. Instead of getting a certificate
authority to choose from, we'd have the option to choose where to save the request file, as shown in Figure 22.

Figure 22: Providing a filename to save the certificate request in IIS Certificate Wizard

Accordingly, before completing the wizard, you'll see either of these confirmation dialogs shown in Figures 23 or 24:

Figure 23. Confirming the online Enterprise Certificate Authority to request a certificate from within IIS Certificate
Wizard

Or...

Figure 24. Providing a filename to save the certificate request in IIS Certificate Wizard

And if you were requesting a certificate from an online Active Directory-integrated certificate server, then hopefully you saw the
confirmation screen shown in Figure 25 and your certificate installation is complete. (You can skip ahead to the testing section.)

Figure 25. Completing the IIS Certificate Wizard

If you used a request file, you need to take the request file created, as shown Figure 26, and submit it manually to a certificate
server.

Figure 26. Confirming certificate request file creation in IIS Certificate Wizard

If you installed a stand-alone certificate server, you should be able to access that server's Web interface via
http://<server>/certsrv. (The certsrv Web interface is also installed for the enterprise-integrated certificate server, although we
didn't need to use it, as shown earlier, because we used the Send request to an online certificate authority option.) On the
first page of the Web interface, select the Request a certificate link, as shown in Figure 27. (Note: If you are accessing a
certificate server on Windows 2000 Server, then the interface is a slightly different. Select the advanced certificate reqeust
radio button, and then click Next.)

Figure 27. Accessing the CA Certificate Service via http

Submit an advanced certificate request as shown in Figure 28. (On Windows 2000 Server, choose the "Web server SSL
certificates" radio button, and then click Next.)

Figure 28. Submitting an advanced certificate request

Choose to submit a certificate request using a file as shown in Figure 29. (In Windows 2000 Server, choose the radio button
option to submit a request using a file, and then click Next.)

Figure 29. Submitting a certificate request

Use Notepad to open the request file certreq.txt that the wizard created earlier. Copy the contents including the "-----BEGIN NEW
CERTIFICATE REQUEST-----" and "-----END NEW CERTIFICATE REQUEST-----" lines to the clipboard to make them ready to paste
into the Web Form, as shown in Figure 30.

Figure 30. Copy the new certificate request to the clipboard.

Paste it into the Web Form as shown in Figure 31, choose the Web Server Certificate template (if you are using Windows Servers
2003), and press Submit.

Figure 31. Paste the new certificate request into the Base64-Encoded Request dialog box.

If you are accessing a Windows Server 2003 certificate server, then you as long as you logged in to the website with a suitable
administrator account, then the certificate will normally be automatically issued to you, and you'll be presented with a screen to
download the certificate, as shown in Figure 32. (There are policy property settings on the Windows Server 2003 certificate server
that permit certificates to be automatically issued to certain users.)

Figure 32. Certificate is issued and ready to download (Windows Server 2003 Certificate Services)

On a Windows 2000 certificate server, however, you'll need to do a little more work, as the Certificate won't be automatically
issued. The request has to be manually approved by an administrator on the server, so Figure 33 is the page you'll see when
working with a Windows 2000 certificate server.

Figure 33. Certificate pending approval (Windows 2000)

Next you need to get onto the server and launch the Certificate Authority MMC snap-in from the Administrative Tools menu
and look up the pending requests. When you find the request for the Web server certificate, right-click, and on the context menu,
select to Issue the certificate, as shown in Figure 34.

Figure 34. Certificate Authority MMC snap-in

You can then return browser and retrieve the certificate by checking on a pending request, as shown in Figure 35.

Figure 35. Getting the status of the pending certificate (Windows 2000)

The Certificate Authority returns the saved Certificate request, as shown in Figure 36.

Figure 36. Selecting the certificate to query (Windows 2000)

This returns the status and provides the ability to download, as shown in Figure 37. (Note that this Web Form does have a slight
error in that it indicates that it is the CA certificate that you'd be downloading, but in fact it is the Web Server Certificate, not the
CA certificate.)

Figure 37. Response from CA (Windows 2000)

Selecting Download CA Certificate will download a certnew.cer file that contains the Web Server Certificate that you requested.
This download is a file that will be "expected" by the IIS Web Certificate Wizard, as we'll see in a moment. However, if the IIS
machine doesn't already trust certificates from the certificate server, then it is probably a good idea to download the CA
certification path that includes the SSL Web certificate and the public certificate of the Certificate Authority in a certnew.p7b file.

If you're acquiring your SSL Web server certificate from a public root certificate authority for a certificate, you'll need to follow its
specific instructions to send the Certificate Request file, certreq.txt, and it will provide you with your certificate in a file.

Make your choice, and download the file ready to go back to the IIS MMC snap-in. Next, select the default Web site's Properties
dialog, navigate to the Directory Security tab, and launch the Web Server Certificate Wizard again, as shown in Figure 38. Notice
this time that when you launch the Certificate Wizard it knows that it has an outstanding request.

Figure 38. Re-launching the Certificate Wizard

Unless you want to delete the request, you should process the request, as shown in Figure 39.

Figure 39. Processing the pending request

This gives you the opportunity to locate the downloaded certificate file—either the certnew.cer or the certnew.p7b files, as shown
in Figure 40.

Figure 40. Providing the filename containing the CA response

This returns a confirmation dialog verifying that things are as you want them, as shown in Figure 41.

Figure 41. The Certificate summary

At long last, you'll get the completion page, as shown in Figure 42.

Figure 42. Providing the filename containing the CA response

Phew! Now you should have a certificate installed. You should test that your certificate is installed by checking that you can access
pages on the default Web site over https, using the NetBIOS name or full DNS name you chose for the common name in the
certificate.

Caveat About Stand-alone Certificate Authority
If you installed a stand-alone Certificate Authority, no machine will by default trust certificates it issues. This means that you're
going to have a potential deployment issue to address. You'll have to figure out how to enable each and every client machine to
trust the certificates. Yes, there are mechanisms and contortions that you can go through. For example you can navigate from
each machine back to the http://<server>/certsrv interface and select to retrieve the CA certificate from the first certsrv Web
page. You'll then need to select the link to install that Certification path, and to install that certificate to be trusted on each client
machine, you'll need local administrator permissions on the client machine to install the CA certificate in the local store.

There are also other mechanisms to permit a stand-alone root certification authority to be trusted, such as using SMS server, for
example. However, it's all a BIG hassle isn't it? It's so much easier to pay $500 and get a certificate from a public root certificate
authority—especially if you need to sign a Web site with a certificate that can be trusted outside of an active directory domain.

Installing Reporting Services
Now you'll be able to complete the installation of Reporting Services and with the Use SSL check box selected, which is the
reason for this article in the first place.

Reporting Services Configuration Files

If you used anything other than the NetBIOS name in the common name for the Web Server Certificate, then you'll need to make
several changes to some configuration files to reflect the non-NetBIOS name in the URLs. Also, if you've used the NetBIOS name,
you might find it helpful to change the embedded http:// URLs to your server over to https:// URLs. The following paragraphs
detail these changes.

RSReportServer.config

In RSReportServer.config, which you will find in \Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer, you'll need to locate the <URLRoot> element and update the NetBIOS name to the DNS name, and
also the http:// to https://. Take care to use the same case for the letters as you used in the certificate:

So, in our example here we needed to edit the <URLRoot> to be:

<UrlRoot>https://d1.internal.boost.net/ReportServer</UrlRoot>

RSWebApplication.config

You'll find RSWebApplication.config in C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager.

The change needed here is to update <ReportServerUrl> to include the name used in the certificate.

<ReportServerUrl>https://d1.internal.boost.net/ReportServer</ReportServerUrl>

Finally, the following line in RSReportServer.config governs the master control over SSL:

<Add Key="SecureConnectionLevel" Value="2"/>

Acceptable values are:

3 Most secure—Use SSL for absolutely everything.
2 Secure—Use SSL for rendering and methods that pass credentials but don't insist on it for all SOAP calls.
1 Basic Security—Accepts http but rejects any calls that might be involved in the passing of credentials.
0 Least Secure—Don't use SSL at all.

2 is the value that the installation wizard will input if you install with the Use SSL check box selected, but we prefer to use 3
and ensure that the Report Manager is also using SSL.

That's all, folks! Don't forget if you are editing and deploying reports in Visual Studio .NET 2003, you need to put your https://
URL into the TargetServerURL once you have SSL installed, as shown in Figure 43.

Figure 43. Setting the TargetServerURL in the Reports Property Page

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Microsoft SQL 2000 Technical Articles

Using SQL Server 2000 Technologies to Deliver Data

Christa Carpentiere
MSDN Data Access Content Strategist

January 2004

Applies to:
 Microsoft® SQL Server™ 2000
 Microsoft® Visual Studio® .NET 2003
 Transact-SQL (T-SQL) database programming language

Summary: Learn how to use Notification Services and Reporting Services in SQL Server 2000 to generate and deliver data to
your users when they want it. (12 printed pages)

Download the associated TimelyDataSample.exe code sample.

Download the Example.zip code sample.

Contents

Introduction
Scenario
A Brief Tour of the Metadata
Creating the Notification Services Application
Creating the Reporting Services Report
Running the Notification Services Application
Conclusion

Introduction
SQL Server provides a lot of useful technologies in addition to the database engine. Two of the newer ones are Notification
Services, which is a platform for generating notifications based on subscriber requests, and Reporting Services, which is a
platform for generating Web-based reports. Both of these technologies are about getting relevant data out to the end user. While
Reporting Services provides subscriptions based on two built-in event types (TimedSubscription and SnapshotUpdated), you can
leverage Notification Services to provide subscriptions based on a custom event source. In this article, I'll walk you through
building a simple application that uses Notification Services and Reporting Services together to gather, format, and distribute
data. After all, why make people hunt down the data they need when you can give them just what they want when they want it?

For the sample application, you need to have SQL Server 2000 and Visual Studio .NET 2003 installed, and you must also
download and install:

The sample files available in the associated downloadable file. Extract this .zip file to C:\ for the correct directory structure.
SQL Server 2000 Notification Services, Standard Edition 2.0 SP1
Reporting Services. Make sure you include the AdventureWorks2000 sample database when you install, as we will use that
to provide sample data to the application.

The sample application is built to run with all components on a single server, using Windows® authentication for SQL Server
logins.

Scenario
Let's say that your floor managers want regular inventory reports, to see what needs re-ordering. We'll use a Notification Services
subscription to store information about the managers that want to be notified, and what product type they want inventory
information about. Notification Services events are used to populate and constantly refresh a table containing information on
products with low inventory levels. Whenever a subscription comes due (Notification Services handles triggering of scheduled
subscriptions automatically), a notification is generated based on the latest cached event information. This notification will contain
a parameterized URL to a Reporting Services report. When the user clicks the link, a custom report containing details on the
inventory levels will be displayed.

A Brief Tour of the Metadata

http://download.microsoft.com/download/1/f/b/1fb0c95d-930e-4c57-a2bd-91327f90ee0f/TimelyDataSample.exe
http://www.microsoft.com/downloads/details.aspx?FamilyID=ae73472b-5d7c-4266-94d4-7dde7e315b98&DisplayLang=en
http://www.microsoft.com/sql/reporting/productinfo/default.asp

Notification Services has an unusual programming model. Installing Notification Services puts the command line tools and the
APIs on your machine, but not a running instance of Notification Services. To get that, you must create at least two XML metadata
files, one of which—the configuration file—contains the information for the Notification Services instance. The other, called the
application definition file (ADF), contains the information for a specific application that the instance hosts. You can have multiple
ADFs per configuration file. Think of it as an instance of SQL Server and the databases it hosts—it's a similar model. Once you
have these files, you run NSControl, a command line tool. This creates the Windows service and the SQL Server databases for the
application by using the information in the metadata files.

In this sample, we'll use a configuration file and a single ADF. I'll give you a quick overview of the information in the metadata
files here. For more extensive coverage of these files, as well as Notification Services architecture and general programming,
check out the Notification Services Books Online.

Go ahead and open the appConfig.xml file (installed at C:\Example). It identifies the applications that the instance contains, and
also specifies system parameters and delivery channel settings. The system parameters allow me to pass in values at application
creation time to avoid hard-coding things like server names in the file. The delivery channel is a combination of a delivery
protocol, such as SMTP or HTTP, plus any information needed to send a notification via that protocol. If you take a look at the
<DeliveryChannels> node, you'll see I use the standard SMTP delivery protocol that ships with Notification Services for e-mail
delivery of notifications. Now you can close this file.

Open up appADF.xml (installed at C:\Example\AppDefinition) in your favorite XML editor (I like Visual Notepad, myself). This file
defines the schemas of the events and subscriptions that the application accepts, and of the notifications it produces. It also
contains rules that determine how events and subscriptions are matched to produce notifications and information about the
event provider, which is the component that submits events to the system. Let's take a brief look at the key nodes in this file.

The <EventClasses> node contains a definition of the InventoryEvents event class. It identifies the fields that an incoming event
must contain. It also contains a definition for a chronicle table, which is just an additional table for storing application information.
In this case, we want to use the chronicle table to store the latest event information, so that whenever a scheduled subscription
runs, there is always current event data available to match against the subscription information. So we create this table and an
associated rule, which uses T-SQL statements to refresh the chronicle data each time events come in.

The <SubscriptionClasses> node contains a definition of the InventorySubscriptions subscription class. This class identifies the
fields that an incoming subscription must contain. It also contains a rule that determines how events and subscriptions are
matched to produce notifications. The InventoryNotificationsNotify function (a user-defined function generated by Notification
Services when the application is created) is used in the rule to create notifications for scheduled subscriptions. The criteria used to
determine if a notification is generated is if there is event data in the event chronicle table that has a ProductCategoryID that
matches a ProductCategoryID specified in one of the subscriptions.

The <NotificationClasses> node contains a definition of the InventoryNotifications notification class. It defines the fields that a
notification will contain. In this case, we are only generating a few fields to use in the notification—all of the additional inventory
information will be provided in the Reporting Services report that is based on the ProductCategoryID contained in the notification.
It also contains information on the formatter that will format the notification data for display (the standard XSLT formatter that
comes with Notification Services is used here), and on the method of delivery that will be used for this notification—SMTP e-mail,
in this case.

Note In this node, you'll want to change the From field for the SMTP protocol from 'admin@adventureworks.com' to
a valid e-mail address on your system.

Finally, the <Providers> node contains settings for the event provider. I am using the standard SQL Server event provider that
comes with Notification Services to execute the GetInventoryLevels stored procedure (code in the StoredProc.sql sample file in
C:\Example\AdditionalFiles) in the AdventureWorks2000 database. This event provider is set to run once per minute. Next, save
and close the file.

Creating the Notification Services Application
You have your metadata files. Now what? First, create an account for your Notification Services service to use. Create a local
account on your machine, and give it administrative privileges. Yes, this is bad, I know, but is required in order to use the SMTP
service—for other delivery options you can usually avoid assigning admin privileges. For production applications, you'll want to
talk to your systems administrator and get a proper domain account set up for your service.

Give that account a SQL Server login. It will need to be added to the System Administrators server role, and granted database
access to the master and AdventureWorks2000 databases using the public role.

Open up the Notification Services command prompt (available on the Notification Services group on your Programs menu) and
type:

GrantXPExec "YourAccountName"

This utility grants your service account the ability to run the Notification Services extended stored procedures, which it will need
to do when creating the application. Note that you shouldn't need to enter the domain, just the account, since it is local.

Create the event submission stored procedure. Open the C:\Example\AdditionalFiles\StoredProc.sql file, and copy the contents. In
the AdventureWorks2000 database, create a new stored proc, and paste in the copied text. Give the Notification Services account
execute permissions on the new stored procedure.

Once your account is set up, it is time to create the Windows service for your application. In the Notification Services command
prompt, type:

NSControl Register –name example –server "YourDatabaseServerName" –service
–serviceusername "YourAccountName" -servicepassword "YourAccountPassword"

If you are using a named instance of SQL Server, you must specify "YourDatabaseServerName" in the format of
ServerName\InstanceName. Running NSControl Register will create necessary registry entries for the application, and create the
Windows service that it will use.

Next, create the databases that store the application data. In the Notification Services command prompt, type:

NSControl Create –in c:\example\appconfig.xml DBSystem=YourServerName
NSSystem=YourServerName
BaseDirectoryPath=C:\example SmtpServer=smarthost

The –in parameter tells NSControl what metadata files to use to create the instance and application. The additional parameters
are all application-specific parameters that I defined in the configuration file, so that I wouldn't have to hard-code system
information. They take the name of the database server, the name of the Notification Services server (where the Windows service
resides), the base directory for the application files, and the name of the SMTP server. You can replace the SmtpServer value with
a different SMTP server name if you do not use Microsoft Exchange, or if your e-mail system does not use a smart host to route e-
mail. Leave the command prompt open, as we will use it again later.

Once NSControl Create has completed, open SQL Server Enterprise Manager. You will see two new databases—ExampleNSMain,
which contains instance data, and ExampleInventory, which contains application data. Grant database access to the Notification
Services service account login for both of these databases, and add the account to the NSRunService role they both contain.

Now the notification application is created, but we haven't set it to run yet. Before we do that, let's put together a simple report to
display the inventory data for the subscriber.

Creating the Reporting Services Report
You can use Reporting Services and the Visual Studio Report Designer for developing your reports. Let's take a look at developing
a basic report.

Open a new project in Visual Studio .NET 2003. In your Project Types pane, you will see a new entry for Business Intelligence
Projects. Select this, and then select the Report Project template. Type InventoryReport for your project name, and click OK.

In Solution Explorer, right-click the Shared Data Sources folder, and then click Add New Data Source. Enter connection
information for the AdventureWorks2000 database and click OK.

In Solution Explorer, right-click the Reports folder, click Add, click Add New Item, and then select the Report template. Name it
InventoryReport.rdl and then click Open. The report will open up in design view on the Data tab.

In the Dataset drop-down list, select <New Dataset...>. In the Dataset dialog box, accept the defaults and cut and paste the
following T-SQL into the Query string field:

select p.Name AS ProductName, c.ProductCategoryID, c.Name AS ProductCategory,
p.SafetyStockLevel,
Sum(i.Quantity) AS CurrentLevel, p.ReorderPoint
From product p inner join productinventory i
on p.productid = i.productid
left outer join productsubcategory x
on p.productsubcategoryid = x.productsubcategoryid
left outer join productcategory c
on x.productcategoryid = c.productcategoryid
group by p.name, c.name, p.safetystocklevel, p.ReorderPoint, p.productid,
c.ProductCategoryID,
 p.productsubcategoryid
having p.SafetyStockLevel > Sum(i.Quantity)
and p.productsubcategoryid is not null
and c.ProductCategoryID = @ProductCategoryID

Click OK. You'll now see the query on the Data tab in the SQL pane.

You'll notice that I included a query parameter in the HAVING clause of my T-SQL statement. Reporting Services recognizes this
and automatically creates a corresponding report parameter to handle it. We'll want to change some of the parameter settings
from the defaults, though.

First, let's add another Dataset that can be used to provide values to the parameter. In the Dataset drop-down list, select <New
Dataset...>.

In the Dataset dialog box that opens, accept the defaults, and cut and paste the following T-SQL into the Query string field:

SELECT * from ProductCategory

Click OK to save the new Dataset.

Go to the Report menu and click Report Parameters. You'll see there is a ProductCategoryID parameter to handle the
@ProductCategoryID parameter specified in the T-SQL. Make the following changes in this dialog box:

Change the Prompt field value from "ProductCategoryID" to "Product Category".
Select the From query radio button in the Available values set. Change the values for the query-related fields as follows:
Dataset="DataSet2", Value field="ProductCategoryID", Label field="Name".

Now when you are previewing the report, you can change the report by selecting the product category you want to see instead of
entering a ProductCategoryID. Your selections should now look like this:

Figure 1. Creating the report parameters

Click OK to exit the dialog.

Next, click the Layout tab in the report designer. Since the report will be displaying data for potentially multiple products but only
one product category at a time, a table makes more sense for data display than a matrix. In the toolbox, drag a Table control onto
the surface.

Right-click any of the columns and insert an additional column. Position the table to allow room above it for a text box that we will
insert later.

Drag the ProductName, SafetyStockLevel, CurrentLevel, and ReorderPoint fields over one at a time and drop them onto the
Details row of your Table control. Adjust the columns as necessary to accommodate the data. The Header row should
automatically populate with appropriate labels.

Drag a textbox control onto the surface above the table. Expand it to be the same width as the table. For the Value property,
enter:

="Inventory for " + Parameters!ProductCategoryID.Label + " Product Category"

Change the TextAlign property to Center, and bump up the font size and boldness a bit. Your report layout should now look like
this:

Figure 2. Creating the report layout

Click the Preview tab see what we have so far. You'll notice you don't get any data, since there is no default value specified for
the @ProductCategoryID parameter. So let's go ahead and view the report to see what it actually looks like before we go any
farther with the design.

Right-click the project, and select Properties. Make sure that the StartItem value is 'InventoryReport.rdl", the TargetFolder value
is "InventoryReport", and the TargetServerURL value is "http://YourServerName/ReportServer". Click OK to close the dialog box.

On the Debug menu, select Start. The report will open with no data showing. Select a product category in the Product Category
drop-down list in the upper left of the report window, then click the ViewReport button in the upper right of the report window.

Presto, you have a report to look at, albeit a very simple one. Next, close the report window. Let's fix up the design to make it a bit
more attractive.

Click the Layout tab, select the Detail and Header rows of the table, and set the BorderStyle property to solid.
Select only the Header row, expand the BorderWidth property, and set the Bottom property to 2pt.
Expand the Font property set, and set the FontWeight to Bold, and then set the BackgroundColor to AliceBlue.
Select the Footer row and delete it.
Select the textbox control and set its BackgroundColor property to SkyBlue.

Your report layout should now look like this:

Figure 3. More report design and layout improvements

Save your changes. On the Debug menu, click Start, select a product category, and then view the report to see how it looks now.
Better—yes? As you can see, the formatting is straightforward and easy to pick up if you've worked with pretty much any kind of
control before. Feel free to continue to play with the format if you prefer different fonts, colors, etc.

Let's go ahead and deploy this report, so we can access it via a URL in the notification e-mail. On the Build menu, click Deploy
Solution. Once the deployment has completed, on the Debug menu, click Start to view the report once more. Note that this time
the report comes up in a browser window.

Now that the report is created and deployed, let's add the proper URL for it to the notification formatting and get the notification
application running.

Running the Notification Services Application
The first thing we'll need to do here is add the report URL to the XSLT file that formats the notifications. Open Application.xslt
(installed at C:\Example\Transform) in a text editor. Change the server name in the href attribute to your server name.
Application.sxlt should now look as follows:

Figure 4. Adding the report URL to the XSLT file that formats the notifications

Take a look at the URL as it is specified in the XSLT file. You'll notice that it is not the same URL that you get when you open the
report from the report designer and specify a product category in the user interface. Instead, it is specified in the format:

http://servername/vroot?path to the report &URL parameters&Report parameters

You can take a look at the Reporting Services documentation for more information on what each element in the path specifies.
The one we really care about is the report parameter, ProductCategoryID=, which we set equal to the ProductCategoryID in
the notification using ProductCategoryID=<xsl:value-of select='ProductCategoryID'/> in the XSLT file.

Next we add some test subscriber and subscription data. Normally you would do this by creating a Web form on top of the
Notification Services subscription API. In the interest of expediency, however, we're going to use a script to submit subscriber,
subscriber device, and subscription information to the system. Open the Subscriptions.vbs script (installed at
C:\Example\AdditionalFiles) in a text editor. This script will create one subscriber with multiple scheduled subscriptions, so that it
is easy to test the application. In production, clearly you'd have multiple subscribers with perhaps one or two weekly
subscriptions. To receive test data, you'll want to go to the "Add an E-mail device for the subscriber" section and change the
"nsSubscriberDevice.DeviceAddress = "stephanie@adventureworks.com"" line to contain your e-mail address. Save the changes
and close the script.

Now, go back to the Notification Service command prompt and type:

NSControl enable –name example

This enables the notification application to accept data, and allows it to start generating events once we set the Windows service
running. It does not start the Windows service, though—we'll do that in a minute.

Now that the application is enabled, double-click Subscriptions.vbs to run it and populate the application with test data. The script
will display an "Added Subscriptions" message box when it completes.

We're just about done. The final step is to start the Windows service for the notification application. In the Notification Service
command prompt, type:

net start NS$example

That's it. Give it a few seconds, and you should start seeing (lots of) notification e-mails coming into your inbox.

When you are done playing with the application, you can disable it by running

NSControl disable –name example

and then

net start NS$example

from the Notification Service command prompt.

Conclusion
I hope this short sample has illustrated how quick and easy it is to put together a simple application that leverages some of the
technologies that you get as part of the SQL Server 2000 package. From the simple application that you have here, it is easy to
add embellishments to customize the application for your preferences and environment. In the Notification Services application,
for instance, you could add functionality to offer event-driven subscriptions that are delivered when inventory levels or sales
numbers hit a certain threshold, rather than at a pre-set scheduled time. In the Reporting Services application, you can certainly
create much more complex layouts than the bare bones format that I have introduced you to. Good luck and happy developing as

you explore more of what Notification Services and Reporting Services have to offer you!

© Microsoft Corporation. All rights reserved.

https://msdn.microsoft.com/en-us/library/ms369863(v=sql.80).aspx

Data Transformation Services (DTS) in SQL Server 2000
By Diane Larsen

Euan Garden, contributor

September 2000

Summary: Database administrators often import, export, and transform data in support of tasks such as data consolidation,
archiving, and analysis; for application development purposes; and for database or server upgrades. Data Transformation
Services (DTS) in SQL Server 2000 provides a set of graphical tools and programmable objects to help administrators and
developers solve data movement problems, including the extraction, transformation, and consolidation of data from disparate
sources to single or multiple destinations. Sets of tasks, workflow operations, and constraints can be collected as DTS packages
that can be scheduled to run periodically or when certain events occur. This white paper introduces DTS, shows some of the
components and services that can be used to create DTS solutions, illustrates the use of DTS Designer to implement DTS
solutions, and introduces DTS application development.

On This Page

Introduction to DTS
Using DTS Designer
Options for Saving DTS Packages
DTS as an Application Development Platform

Introduction to DTS

Most organizations have multiple formats and locations in which data is stored. To support decision-making, improve system
performance, or upgrade existing systems, data often must be moved from one data storage location to another.

Microsoft® SQL Server™ 2000 Data Transformation Services (DTS) provides a set of tools that lets you extract, transform, and
consolidate data from disparate sources into single or multiple destinations. By using DTS tools, you can create custom data
movement solutions tailored to the specialized needs of your organization, as shown in the following scenarios:

You have deployed a database application on an older version of SQL Server or another platform, such as Microsoft
Access. A new version of your application requires SQL Server 2000, and requires you to change your database schema
and convert some data types.

To copy and transform your data, you can build a DTS solution that copies database objects from the original data source
into a SQL Server 2000 database, while at the same time remapping columns and changing data types. You can run this
solution using DTS tools, or you can embed the solution within your application.

You must consolidate several key Microsoft Excel spreadsheets into a SQL Server database. Several departments create
the spreadsheets at the end of the month, but there is no set schedule for completion of all the spreadsheets.

To consolidate the spreadsheet data, you can build a DTS solution that runs when a message is sent to a message queue.
The message triggers DTS to extract data from the spreadsheet, perform any defined transformations, and load the data
into a SQL Server database.

Your data warehouse contains historical data about your business operations, and you use Microsoft SQL Server 2000
Analysis Services to summarize the data. Your data warehouse needs to be updated nightly from your Online Transaction
Processing (OLTP) database. Your OLTP system is in-use 24-hours a day, and performance is critical.

You can build a DTS solution that uses the file transfer protocol (FTP) to move data files onto a local drive, loads the data
into a fact table, and aggregates the data using Analysis Services. You can schedule the DTS solution to run every night,
and you can use the new DTS logging options to track how long this process takes, allowing you to analyze performance
over time.

What Is DTS?

DTS is a set of tools you can use to import, export, and transform heterogeneous data between one or more data sources, such
as Microsoft SQL Server, Microsoft Excel, or Microsoft Access. Connectivity is provided through OLE DB, an open-standard for
data access. ODBC (Open Database Connectivity) data sources are supported through the OLE DB Provider for ODBC.

You create a DTS solution as one or more packages. Each package may contain an organized set of tasks that define work to be

performed, transformations on data and objects, workflow constraints that define task execution, and connections to data
sources and destinations. DTS packages also provide services, such as logging package execution details, controlling
transactions, and handling global variables.

These tools are available for creating and executing DTS packages:

The Import/Export Wizard is for building relatively simple DTS packages, and supports data migration and simple
transformations.

The DTS Designer graphically implements the DTS object model, allowing you to create DTS packages with a wide range
of functionality.

DTSRun is a command-prompt utility used to execute existing DTS packages.

DTSRunUI is a graphical interface to DTSRun, which also allows the passing of global variables and the generation of
command lines.

SQLAgent is not a DTS application; however, it is used by DTS to schedule package execution.

Using the DTS object model, you also can create and run packages programmatically, build custom tasks, and build custom
transformations.

What's New in DTS?

Microsoft SQL Server 2000 introduces several DTS enhancements and new features:

New DTS tasks include the FTP task, the Execute Package task, the Dynamic Properties task, and the Message Queue task.

Enhanced logging saves information for each package execution, allowing you to maintain a complete execution history
and view information for each process within a task. You can generate exception files, which contain rows of data that
could not be processed due to errors.

You can save DTS packages as Microsoft Visual Basic® files.

A new multiphase data pump allows advanced users to customize the operation of data transformations at various
stages. Also, you can use global variables as input parameters for queries.

You can use parameterized source queries in DTS transformation tasks and the Execute SQL task.

You can use the Execute Package task to dynamically assign the values of global variables from a parent package to a
child package.

Top Of Page

Using DTS Designer

DTS Designer graphically implements the DTS object model, allowing you to graphically create DTS packages. You can use DTS
Designer to:

Create a simple package containing one or more steps.

Create a package that includes complex workflows that include multiple steps using conditional logic, event-driven code,
or multiple connections to data sources.

Edit an existing package.

The DTS Designer interface consists of a work area for building packages, toolbars containing package elements that you can
drag onto the design sheet, and menus containing workflows and package management commands.

Figure 1: DTS Designer interface

By dragging connections and tasks onto the design sheet, and specifying the order of execution with workflows, you can easily
build powerful DTS packages using DTS Designer. The following sections define tasks, workflows, connections, and
transformations, and illustrate the ease of using DTS Designer to implement a DTS solution.

Tasks: Defining Steps in a Package

A DTS package usually includes one or more tasks. Each task defines a work item that may be performed during package
execution. You can use tasks to:

Transform data

 Transform
Data task

Use to move data between a source and destination and to optionally apply column-level
transformations to the data.

 Data Driven
Query task

Use to perform flexible, Transact-SQL–based operations on data, including stored procedures and
INSERT, UPDATE, or DELETE statements.

Parallel Data
Pump
task(1)

Available programmatically only, the Parallel Data Pump task performs the same functions as the
Transform Data and Data Driven Query tasks, but supports chaptered rowsets as defined by OLE DB 2.5
and later.

Copy and manage data

Bulk Insert task Use to quickly load large amounts of data into a SQL Server table or view.

Execute SQL task Use to run SQL statements during package execution. The Execute SQL task also can save data

that is the result of a query.

 Copy SQL Server
Objects task

Use to copy SQL Server objects from one installation or instance of SQL Server to another. You
can copy objects such as data and tables, as well as the definitions of objects such as views and
stored procedures.

 Transfer Database
task(1)

Use to move or copy a SQL Server database from an instance of SQL Server version 7.0 or SQL
Server 2000 to an instance of SQL Server 2000.

 Transfer Error
Messages task(1)

Use to copy user-specified error messages, created by the sp_addmessage system stored
procedure, from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL Server
2000.

 Transfer Logins
task(1)

Use to copy logins from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL
Server 2000.

 Transfer Jobs
task(1)

Use to copy jobs from an instance of SQL Server 7.0 or SQL Server 2000 to an instance of SQL
Server 2000.

 Transfer Master
Stored Procedures
task(1)

Use to copy stored procedures from a master database on an instance of SQL Server 7.0 or SQL
Server 2000 to the master database on an instance of SQL Server 2000.

Run tasks as jobs from within a package

ActiveX Script task Use to write code to perform functions that are not available in the other DTS tasks.

 Dynamic Properties
task(1)

Use to retrieve values from sources outside a DTS package at package run time and assign
those values to selected package properties.

Execute Package task(1) Use to run other DTS packages from within a package.

Execute Process task Use to run an executable program or batch file.

 File Transfer Protocol
(FTP) task(1) Use to download data files from a remote server or an Internet location.

Message Queue task(1) Use to send and receive messages from Microsoft Message Queues.

Send Mail task Use to send an e-mail message.

 Analysis Services
Processing task(2)

Use to perform processing of one or more objects defined in SQL Server 2000 Analysis
Services.

Data Mining task(1,2) Use to create a prediction query and an output table from a data mining model object

defined in SQL Server 2000 Analysis Services.

1 New in SQL Server 2000.

2 Available only when SQL Server 2000 Analysis Services is installed.

You also can create custom tasks programmatically, and then integrate them into DTS Designer using the Register Custom
Task command.

To illustrate the use of tasks, here is a simple DTS Package with two tasks: a Microsoft ActiveX® Script task and a Send Mail
task:

Figure 2: DTS Package with two tasks

The ActiveX Script task can host any ActiveX Scripting engine including Microsoft Visual Basic Scripting Edition (VBScript),
Microsoft JScript®, or ActiveState ActivePerl, which you can download from http://www.activestate.com . The Send Mail task
may send a message indicating that the package has run. Note that there is no order to these tasks yet. When the package
executes, the ActiveX Script task and the Send Mail task run concurrently.

Workflows: Setting Task Precedence

When you define a group of tasks, there is usually an order in which the tasks should be performed. When tasks have an order,
each task becomes a step of a process. In DTS Designer, you manipulate tasks on the DTS Designer design sheet and use
precedence constraints to control the sequence in which the tasks execute.

Precedence constraints sequentially link tasks in a package. The following table shows the types of precedence constraints you

http://www.activestate.com/

can use in DTS.

Precedence
constraint Description

On Completion
(blue arrow)

If you want Task 2 to wait until Task 1 completes, regardless of the outcome, link Task 1 to Task 2 with an
On Completion precedence constraint.

On Success
(green arrow)

If you want Task 2 to wait until Task 1 has successfully completed, link Task 1 to Task 2 with an On Success
precedence constraint.

On Failure
(red arrow)

If you want Task 2 to begin execution only if Task 1 fails to execute successfully, link Task 1 to Task 2 with
an On Failure precedence constraint.

The following illustration shows the ActiveX Script task and the Send Mail task with an On Completion precedence constraint.
When the Active X Script task completes, with either success or failure, the Send Mail task runs.

Figure 3: ActiveX Script task and the Send Mail task with an On Completion precedence constraint

You can configure separate Send Mail tasks, one for an On Success constraint and one for an On Failure constraint. The two
Send Mail tasks can send different messages based on the success or failure of the ActiveX script.

Figure 4: Mail tasks

You also can issue multiple precedence constraints on a task. For example, the Send Mail task "Admin Notification" could have
both an On Success constraint from Script #1 and an On Failure constraint from Script #2. In these situations, DTS assumes a
logical "AND" relationship. Therefore, Script #1 must successfully execute and Script #2 must fail for the Admin Notification
message to be sent.

Figure 5: Example of multiple precedence constraints on a task

Connections: Accessing and Moving Data

To successfully execute DTS tasks that copy and transform data, a DTS package must establish valid connections to its source
and destination data and to any additional data sources, such as lookup tables.

When creating a package, you configure connections by selecting a connection type from a list of available OLE DB providers
and ODBC drivers. The types of connections that are available are:

Microsoft Data Access Components (MDAC) drivers

Microsoft OLE DB Provider for SQL Server

Microsoft Data Link

Microsoft ODBC Driver for Oracle

Microsoft Jet drivers

dBase 5

Microsoft Access

HTML File (Source)

Microsoft Excel 97-2000

Paradox 5.X

Other drivers

Text File (Source)

Text File (Destination)

Other Connection

DTS allows you to use any OLE DB connection. The icons on the Connections toolbar provide easy access to common
connections.

The following illustration shows a package with two connections. Data is being copied from an Access database (the source
connection) into a SQL Server production database (the destination connection).

Figure 6: Example of a package with two connections

The first step in this package is an Execute SQL task, which checks to see if the destination table already exists. If so, the table is
dropped and re-created. On the success of the Execute SQL task, data is copied to the SQL Server database in Step 2. If the
copy operation fails, an e-mail is sent in Step 3.

The Data Pump: Transforming Data

The DTS data pump is a DTS object that drives the import, export, and transformation of data. The data pump is used during
the execution of the Transform Data, Data Driven Query, and Parallel Data Pump tasks. These tasks work by creating rowsets
on the source and destination connections, then creating an instance of the data pump to move rows between the source and
destination. Transformations occur on each row as the row is copied.

In the following illustration, a Transform Data task is used between the Access DB task and the SQL Production DB task in Step

2. The Transform Data task is the gray arrow between the connections.

Figure 7: Example of a Transform Data task

To define the data gathered from the source connection, you can build a query for the transformation tasks. DTS supports
parameterized queries, which allow you to define query values when the query is executed.

You can type a query into the task's Properties dialog box, or use the Data Transformation Services Query Designer, a tool for
graphically building queries for DTS tasks. In the following illustration, the Query Designer is used to build a query that joins
three tables in the pubs database.

Figure 8: Data Transformation Services Query Designer interface

In the transformation tasks, you also define any changes to be made to data. The following table describes the built-in
transformations that DTS provides.

Transformation Description

Copy Column Use to copy data directly from source to destination columns, without any transformations applied to the
data.

ActiveX Script Use to build custom transformations. Note that since the transformation occurs on a row-by-row basis, an
ActiveX script can affect the execution speed of a DTS package.

DateTime String Use to convert a date or time in a source column to a different format in the destination column.

Lowercase
String Use to convert a source column to lowercase characters and, if necessary, to the destination data type.

Uppercase
String Use to convert a source column to all uppercase characters and, if necessary, to the destination data type.

Middle of String Use to extract a substring from the source column, transform it, and copy the result to the destination
column.

Trim String Use to remove leading, trailing, and embedded white space from a string in the source column and copy the
result to the destination column.

Read File Use to open the contents of a file, whose name is specified in a source column, and copy the contents into a
destination column.

Write File Use to copy the contents of a source column (data column) to a file whose path is specified by a second
source column (file name column).

You can also create your own custom transformations programmatically. The quickest way to build custom transformations is
to use the Active Template Library (ATL) custom transformation template, which is included in the SQL Server 2000 DTS
sample programs.

Data Pump Error Logging

A new method of logging transformation errors is available in SQL Server 2000. You can define three exception log files for
use during package execution: an error text file, a source error rows file, and a destination error rows file.

General error information is written to the error text file.

If a transformation fails, then the source row is in error, and that row is written to the source error rows file.

If an insert fails, then the destination row is in error, and that row is written to the destination error rows file.

The exception log files are defined in the tasks that transform data. Each transformation task has its own log files.

Data pump phases

By default, the data pump has one phase: row transformation. That phase is what you configure when mapping column-level
transformations in the Transform Data task, Data Driven Query task, and Parallel Data Pump task, without selecting a phase.

Multiple data pump phases are new in SQL Server 2000. By selecting the multiphase data pump option in SQL Server
Enterprise Manager, you can access the data pump at several points during its operation and add functionality.

When copying a row of data from source to a destination, the data pump follows the basic process shown in the following
illustration.

Figure 9: . Data pump process

After the data pump processes the last row of data, the task is finished and the data pump operation terminates.

Advanced users who want to add functionality to a package so that it supports any data pump phase can do so by:

Writing an ActiveX script phase function for each data pump phase to be customized. If you use ActiveX script functions
to customize data pump phases, no additional code outside of the package is required.

Creating a COM object in Microsoft Visual C++® to customize selected data pump phases. You develop this program
external to the package, and the program is called for each selected phase of the transformation. Unlike the ActiveX script
method of accessing data pump phases, which uses a different function and entry point for each selected phase, this
method provides a single entry point that is called by multiple data pump phases, while the data pump task executes.

Top Of Page

Options for Saving DTS Packages

These options are available for saving DTS packages:

Microsoft SQL Server

Save your DTS package to Microsoft SQL Server if you want to store packages on any instance of SQL Server on your
network, keep a convenient inventory of those packages, and add and delete package versions during the package
development process.

SQL Server 2000 Meta Data Services

Save your DTS package to Meta Data Services if you plan to track package version, meta data, and data lineage
information.

Structured storage file

Save your DTS package to a structured storage file if you want to copy, move, and send a package across the network
without having to store the package in a Microsoft SQL Server database.

Microsoft Visual Basic

Save your DTS package that has been created by DTS Designer or the DTS Import/Export Wizard to a Microsoft Visual
Basic file if you want to incorporated it into Visual Basic programs or use it as a prototype for DTS application
development.

Top Of Page

DTS as an Application Development Platform

The DTS Designer provides a wide variety of solutions to data movement tasks. DTS extends the number of solutions available
by providing programmatic access to the DTS object model. Using Microsoft Visual Basic, Microsoft Visual C++, or any other
application development system that supports COM, you can develop a custom DTS solution for your environment using
functionality unsupported in the graphical tools.

DTS offers support for the developer in several different ways:

Building packages

You can develop extremely complex packages and access the full range of functionality in the object model, without the
using the DTS Designer or DTS Import/Export Wizard.

Extending packages

You can add new functionality through the construction of custom tasks and transforms, customized for your business
and reusable within DTS.

Executing packages

Execution of DTS packages does not have to be from any of the tools provided, it is possible to execute DTS packages
programmatically and display progress through COM events, allowing the construction of embedded or custom DTS
execution environments.

Sample DTS programs are available to help you get started with DTS programming. The samples can be installed with SQL
Server 2000.

If you develop a DTS application, you can redistribute the DTS files. For more information, see Redist.txt on the SQL Server
2000 compact disc.

For More Information

Microsoft SQL Server 2000 Books Online contains more information about DTS, using the DTS applications, and building
custom solutions. For additional information, see these resources:

Microsoft SQL Server Web site at http://www.microsoft.com/sql/ .

Microsoft SQL Server Developer Center at http://msdn.microsoft.com/library/default.asp?URL=/sqlserver/.

SQL Server Magazine at http://www.sqlmag.com/ .

Microsoft.public.sqlserver.server and microsoft.public.sqlserver.datawarehouse newsgroups at
news://news.microsoft.com.

Microsoft Official Curriculum courses on SQL Server. For up-to-date course information, see the Microsoft Training and
Services Web site at http://www.microsoft.com/learning/

Top Of Page

http://www.microsoft.com/sql/
http://www.microsoft.com/sqlserver
http://www.sqlmag.com/
http://www.microsoft.com/learning/

SQL Server 2000 Failover Clustering
Published: June 18, 2002 | Updated : October 14, 2004

Note: You can also read a SQL Server 2005 version of this paper.

Abstract: Users demand not only performance and scalability, but availability of the applications they use. Achieving high
availability requires a whole solution, part of which includes the SQL Server 2000 Server failover clustering. This white paper
will explain what failover clustering is: how it works, considerations to take into account when designing your solution, how to
implement and administer your solution, and how to troubleshoot a failover cluster. Also included are some useful worksheets
and checklists to assist you during the installation, as well as links to additional information where necessary.

On This Page

Introduction
Enhancements to Failover Clustering
What Is Windows Clustering?
What is SQL Server 2000 Failover Clustering?
Configuring SQL Server 2000 Failover Clustering
Implementing SQL Server 2000 Failover Clustering
Verifying Your Failover Cluster Installation
Maintaining a SQL Server 2000 Failover Cluster
Troubleshooting SQL Server 2000 Failover Clusters
Conclusion
Appendix A –Additional Information
Appendix B – Step-By-Step Installation Instructions for a New Virtual Server
Appendix C - Configuration Worksheets
Appendix D – Pre- and Post-Installation Checklists

Introduction

Continuous uptime in a production environment, whether it is a database powering a mission-critical client/server application
or an e-commerce Web site, is becoming a common business requirement. This paper describes Microsoft® SQL Server™
2000 failover clustering, one method of creating high availability. Failover clustering is available only in SQL Server 2000
Enterprise Edition.

Failover clustering is a process in which the operating system and SQL Server 2000 work together to provide availability in the
event of an application failure, hardware failure, or operating-system error. Failover clustering provides hardware redundancy
through a configuration in which mission critical resources are transferred from a failing machine to an equally configured
server automatically. Failover clustering also allows system maintenance to be performed on a computer while another node
does the work. This benefit can also ensure that system downtime due to normal maintenance is minimized. For more
information about optimizing your database and tips on how to avoid performance issues that can lead to unavailability, see
Chapter 33, "The Data Tier: An Approach to Database Optimization," in the Microsoft SQL Server 2000 Resource Kit.

The goal of failover clustering is to provide high availability for an overall scale-up and scale-out solution that accommodates
backups, redundancy, and performance. If software and/or hardware problems occur, failover clustering combined with other
high availability methods (such as SQL Server 2000 log shipping) can enable a production environment to be up and running
in a short amount of time.

However, failover clustering is not a load balancing solution and it cannot protect your system against external threats,
catastrophic software failures to all nodes of the cluster, single points of failure (such as non-redundant hardware), or natural
disasters. For more information about SQL Server 2000 high availability, see Chapter 16, "Five Nines: The Ultimate in High
Availability," in the MicrosoftSQL Server 2000 Resource Kit.

Top Of Page

Enhancements to Failover Clustering

Microsoft SQL Server 2000 Enterprise Edition failover clustering offers improvements over the clustering functionality
provided in SQL Server version 7.0 Enterprise Edition. Some of the enhancements to the clustering implementation in SQL
Server 2000 include:

Installing and uninstalling a SQL Server 2000 failover cluster are both now done via the SQL Server 2000 setup program,

http://www.microsoft.com/downloads/details.aspx?FamilyID=818234dc-a17b-4f09-b282-c6830fead499&DisplayLang=en

and not through the combination of setting up your database server and then a Wizard. Installation and clustering are
done in one process. SQL Server 2000 failover clustering is a permanent option, and the only way to remove it is to
uninstall the clustered instance of SQL Server.

SQL Server 2000 supports multiple instances, allowing simultaneous support of up to 16 instances of SQL Server.

SQL Server 2000 has extensive support for recovering from a failure of a server node in the cluster, including a one-node
cluster. If a node fails it can be removed, reinstalled, and rejoined to the cluster while all other nodes continue to function
properly. It is then a simple operation with SQL Server 2000 Setup to add the new server back into the virtual server
definition.

SQL Server 2000 running on Microsoft Windows® 2000 Datacenter Server supports up to four server nodes in a cluster.

All nodes now have local copies of the SQL Server tools (including performance counters) as well as the executables so in
the event of a failover; you can administer the server from a remote system or the clustered node itself.

SQL Server 2000 failover clustering supports Microsoft Search Services.

SQL Server 2000 failover cluster configurations can be updated by rerunning the setup program.

SQL Server 2000 supports multiple network addresses. This enables SQL Server 2000 to listen on multiple IP addresses
on different subnets.

Database administrators can now use SQL Server Service Manager or SQL Server Enterprise Manager to start and stop
SQL Server without having to use Cluster Administrator to start and stop SQL Server services.

Service packs are applied directly to the SQL Server 2000 virtual server. With SQL Server 7.0, you had to uncluster the
server prior to applying a service pack.

SQL Server 2000 is now a fully cluster aware application. This allows SQL Server 2000 to interact with the Cluster service,
and it provides some benefits such as preventing the creation of databases on invalid logical drives.

Top Of Page

What Is Windows Clustering?

Microsoft SQL Server 2000 failover clustering is integrated with Windows Clustering. There are two main types of clusters in a
Windows environment:

Server cluster

SQL Server 2000 failover clustering is built on top of a Windows 2000 Advanced or Datacenter server cluster. A
Windows 2000 server cluster provides high availability, scalability, and manageability for resources and applications by
clustering as many as four servers to maintain client access to applications and server resources during unplanned
outages due to hardware failures, natural and man-made disasters, software failure, and so on. Unlike the behavior of a
Network Load Balancing cluster, when a server, resource, or cluster-aware application within the cluster becomes
unavailable, it will be transferred to another server that is available.

Network Load Balancing cluster

A Network Load Balancing cluster provides high availability and scalability for TCP/IP-based services, including Web
servers, FTP servers, other mission-critical servers, and COM+ applications. In a Network Load Balancing scenario,
multiple servers run independently, and do not share any resources. Client requests are distributed among the servers,
and in the event of a server failure, a Network Load Balancing cluster detects the problem and the load is distributed to
another server. SQL Server 2000 failover clustering does not fall into this category, but may be part of an overall
architecture in which a Web farm using a Network Load Balancing cluster connects to a failover cluster. Because you
employ a Network Load Balancing cluster due to an application requirement, you need to consider Network Load
Balancing during the application planning and configuration stage.

Hardware for Windows Clustering

The following is a list of hardware components used in Windows Clustering, which is a feature of Microsoft Windows 2000
Advanced Server, Windows 2000 Datacenter Server, Windows 2003 Enterprise Edition, Windows 2003 Datacenter Edition and
Microsoft Cluster Service (MSCS), which is a feature of Microsoft Windows NT® 4.0, Enterprise Edition:

Cluster Nodes

A node is a server within the cluster. Windows NT Server 4.0, Enterprise Edition and Windows 2000 Advanced Server and
Window 2003 Advanced Server both support two-node clustering, and Windows 2000 Datacenter Server supports up to
four-node clustering and Windows 2003 supports up to eight node clustering however you are limited to four nodes if
SQL Server 2000 clustering is to be used. For more information, see Knowledge Base article "811054 PRB: Virtual SQL
Server 2000 Installation Fails on Cluster That Has Eight Nodes" http://support.microsoft.com/?id=811054.

Heartbeat

The heartbeat is a private network set up between the nodes of the cluster that checks to see whether a server is up and
running. This occurs at regular intervals known as time slices. If the heartbeat is not functioning, a failover is initiated, and
another node in the cluster will take over the services.

External Networking

In addition to the heartbeat private network, at least one public network must be enabled so external connections can be
made to the cluster.

Shared Cluster Disk Array

The shared disk array is a collection of physical disks (SCSI RAID or FibreChannel) that is accessed by the cluster.
Windows Clustering supports shared nothing disk arrays. A shared nothing disk array is a setup in which only one node
can own a given resource at any given moment. All other nodes are denied access until they own the resource. This
protects the data from being overwritten data when two computers have access to the same drives concurrently.

Quorum Drive

The quorum drive is a logical drive designated on the shared disk array for Windows Clustering. This continuously
updated drive contains information about the state of the cluster. If this drive becomes corrupt or damaged, the cluster
installation also becomes corrupt or damaged.

Operating System

The following is a list of components, also known as cluster resources, which are exposed at the operating-system level:

Cluster Name

The name that all Windows NT or Windows 2000 external connections use to refer to the cluster itself, but not the SQL
Server virtual server; the individual nodes are never referenced.

Cluster IP Address

The IP address that all external connections use to reach the failover cluster itself, not the SQL Server virtual server.

Cluster Administrator Account

This account is used to administer and own the failover cluster. A Cluster Administrator account must be created at the
domain level and must be an administrator of all nodes in the cluster.

Cluster Resource Types

Cluster resources include any services, software, or hardware that can be configured within a cluster. These include:
DHCP, File Share, Generic Application, Generic Service, Internet Protocol, Network Name, Physical Disk, Print Spooler, and
WINS.

Cluster Group

A cluster group is a collection of logically grouped cluster resources, and may contain cluster-aware application services
such as SQL Server 2000. Conceptually, a cluster group is a folder on your hard drive that contains related information.

Virtual Server

Understanding the concept of a virtual server is a key to understanding failover clustering. To a client or application, a virtual
server is the server name or IP address (es) used for access. The connection from the client to the virtual server does not need
to know which node within a cluster is currently hosting the virtual server. A clustered SQL Server is known as a SQL Server
virtual server.

Top Of Page

http://support.microsoft.com/?id=811054

What is SQL Server 2000 Failover Clustering?

SQL Server 2000 is built on top of Windows Clustering or MSCS because it is a cluster-aware application. In Figure 1, the
virtual server of SQL Server 2000 sits on top of the existing MSCS installation.

Figure 1: SQL Server 2000 virtual server illustration. This example is comprised of two server nodes, and one SQL
Server 2000 virtual server.

SQL Server Virtual Server Components

An instance is an installation of SQL Server that is completely separate from any other, with a few underlying shared
components that affect how SQL Server 2000 works in a clustered environment. A SQL Server virtual server is an instance of
SQL Server that has been clustered. The following resources make up each virtual server:

SQL Server Network Name

This is the name that users and applications will use to connect to SQL Server.

SQL Server IP Address

The TCP/IP address that users and applications will use to connect to SQL Server. This is different from the Cluster IP
Address

SQL Server

This controls this instance of the SQL Server 2000 service.

SQL Server Agent

This controls this instance of the SQL Server Agent service.

SQL Server 2000 Full-text

Each virtual server also has one full-text resource, unlike the SQL Server and SQL Server Agent resources; each instance
refers to the shared Microsoft Search service. In the event of a failover, it is not the same as other services; only the data
files are failed over, not the service.

Microsoft Distributed Transaction Coordinator (MS DTC)

Some installations of SQL Server utilize MS DTC. If this is the case for your installation, MS DTC is shared for all instances
in the cluster.

SQL Server Virtual Server Administrator Account

This is the SQL Server service account. This account may be the same as the Cluster Administrator account described
earlier. The service account must also have administrator permissions on all nodes if you are using Windows NT 4.0
Enterprise Edition, but not if you are using Windows 2000. For more information about creating this account, see "Setting
up Windows Services Accounts" in SQL Server 2000 Books Online.

As noted in the section "Enhancements to Failover Clustering", SQL Server 2000 supports multiple instances per server — one
default instance, and up to 15 named instances, or 16 named instances. SQL Server can be installed either as a default instance
or as a named instance. A SQL Server 2000 virtual server can also have local named instances or a local SQL Server 7.0 default
instance, but these will not appear visible to Windows Clustering. These are instances local to the server.

Important: An instance of SQL Server 2000 cannot be run on a SQL Server 6.5 or SQL Server 7.0 cluster.

With instances, come two new concepts for failover clustering:

Single instance cluster: replaces an active/passive cluster. A single instance cluster means there is one SQL Server 2000
virtual server installed.

Multiple instance cluster: replaces an active/active cluster. A multiple instance cluster is one in which there is more than
one SQL Server 2000 virtual server installed. Because of the way the implementation of clustering is different with SQL
Server 2000, using the active/active terminology does not really apply.

Single-Instance Cluster

A single-instance cluster has only one active instance of SQL Server owned by a single server node, and all other nodes of the
cluster are in a wait state. Another node is enabled in the event of a failure on the active node, or during a manual failover for
maintenance.

Multiple-Instance Cluster

A multiple-instance cluster has up to four server nodes and supports up to 16 instances (1 default, 15 named or 16 named).
Each SQL Server 2000 virtual server requires its own disk resources that cannot be used by other instances. These disk
resources are the logical drive names (for example, drive F:\) used by SQL Server on which to store data and log files. Separate
physical disk sets are needed to make up the logical drive, unless your disk subsystem supports multiple logical drives on one
physical drive set. SQL Server in a clustered environment also behaves differently from a stand-alone named instance in
relation to IP ports. During the installation process, a dynamic port that may be something other than 1433 is configured, and
that port number is reserved for the instance. In a failover cluster, multiple instances can be configured to share the same port,
such as 1433, because the failover cluster listens only to the IP address assigned to the SQL Server virtual server, and is not
limited to a 1:1 ratio. However, for security and potentially increased availability, you may want to assign each virtual server to
its own unique port of your choice or leave it as it was configured during installation.

How Failover Clustering Works

The clustered nodes use the heartbeat to check whether each node is alive, at both the operating system and SQL Server level.
At the operating system level, the nodes in the cluster compete for the resources of the cluster. The primary node reserves the
resource every 3 seconds, and the competing node every 5 seconds. The process lasts for 25 seconds and then starts over
again. For example, if the node owning the instance fails due to a problem (network, disk, and so on), at second 19, the
competing node detects it at the 20-second mark, and if it is determined that the primary node no longer has control, the
competing node takes over the resource.

From a SQL Server perspective, the node hosting the SQL Server resource does a looks-alive check every 5 seconds. This is a
lightweight check to see whether the service is running and may succeed even if the instance of SQL Server is not operational.
The IsAlive check is more thorough and involves running a SELECT @@SERVERNAME Transact SQL query against the server to
determine whether the server itself is available to respond to requests; it does not guarantee that the user databases are up. If
this query fails, the IsAlive check retries five times and then attempts to reconnect to the instance of SQL Server. If all five
retries fail, the SQL Server resource fails. Depending on the failover threshold configuration of the SQL Server resource,
Windows Clustering will attempt to either restart the resource on the same node or fail over to another available node. The
execution of the query tolerates a few errors, such as licensing issues or having a paused instance of SQL Server, but ultimately
fails if its threshold is exceeded.

During the fail over from one node to another, Windows clustering starts the SQL Server service for that instance on the new
node, and goes through the recovery process to start the databases. The fail over of the SQL Server virtual server will take a
short time (probably seconds). After the service is started and the master database is online, the SQL Server resource is
considered to be up. Now the user databases will go through the normal recovery process, which means that any completed
transactions in the transaction log are rolled forward, and any incomplete transactions are rolled back. The length of the

recovery process depends on how much activity must be rolled forward or rolled back upon startup. Set the recovery interval
of the server to a low number to avoid long recovery times and to speed up the failover process.

Client Connections and SQL Server 2000 Virtual Servers

End users and applications access a SQL Server 2000 virtual server with the SQL Server Network Name or IP address of the
SQL Server 2000 virtual server. The Cluster name, the Cluster IP address, or even the individual node names are not used by
the connections. From a client or application perspective, it does not need to worry about which node owns the resources,
because connecting to the SQL Server 2000 virtual server appears as a normal SQL Server. During the failover process, any
active connections are broken. For Web browser users, a simple refresh of the Web page should create a new database
connection. In a more traditional client/server application, or one that relies heavily on a middle tier, application designers may
want to consider checking to see whether the connection exists, and if not, reconnect. Therefore, whatever the user was
working on when the server went down may not be completed, unless the transaction completes before the server goes down
or the transaction is handled within the application.

For more information, see the Knowledge Base article "273673 – Virtual Server Client Connections Must be Controlled by
Clients" at: http://support.microsoft.com/default.aspx?scid=kb;en-us;273673&sd=tech

Top Of Page

Configuring SQL Server 2000 Failover Clustering

Perhaps the most important aspect of a successful SQL Server 2000 failover cluster installation is ensuring that the right
hardware and software are correctly deployed for the application designed to run on the failover cluster. The hardware should
be high performance, and scale along with the specific needs of the application(s) accessing SQL Server.

Designing Your Application for a Failover Cluster

Before you get to design the hardware, you must take into account the behavior during a potential failover. A few application
design considerations must be taken into account when working with a failover cluster.

Make all transactions as small as possible, and commit in logical units of work. Since a virtual server goes through the
startup process, which includes going through the transaction log for each database and rolling transactions back or
forward, the larger the transaction size along with a larger volume of transactions could result in a slower failover time.

An application is considered cluster-aware if it uses the Windows Clustering Server Cluster APIs.

Set timeout values in the application effectively to gracefully close connections or do some other appropriate response,
such as a friendly message, so that the user experience is a positive one. The end user should never have to worry about
the database.

In conjunction with the previous bullet point, use retry logic to reconnect to the database if the connection is broken.
Some applications, such as Microsoft BizTalk Server, have retry logic as part of the programming model. However, if no
such provision exists, a custom solution may need to be devised, such as using some sort of middleware.

Administrator Accounts and SQL Server 2000 Failover Clustering

There are a few Windows-level accounts that need to be configured prior to installing both the server cluster and the SQL
Server 2000 virtual server.

An account must be created for the administration and ownership of the server cluster. It must be a valid domain
administrator account. This account is also used during the installation of the SQL Server 2000 virtual server.

At least one account must be created that will administer the SQL Server as well as the SQL Server Agent. This can be two
separate accounts, and does not need to be a domain administrator, but a valid domain account. If desired, it can be the
same as the account listed in the prior bullet point, but it is helpful to keep the accounts separate.

Although the account is automatically assigned the proper privileges during the installation process, if the account is
changed, it must have the following (or the Administrator group must have these):
It must be a member of the local Administrators.
It must be granted the policies of "Act as part of the operating system", "Log on as a service", and "Replace a process level
token."
The service account for the Cluster service must have the right to log in to SQL Server. If you accept the default, the
account [NT Authority\System] must have login rights to SQL Server so that the SQL Server resource DLL can run the

http://support.microsoft.com/default.aspx?scid=kb;en-us;273673&sd=tech

IsAlive query against SQL Server. If corporate policy requires restricting access please follow the instructions
documented in Knowledge Base article, "263712 INF: How to impede Windows NT administrators from administering a
clustered instance of SQL Server", http://support.microsoft.com/?id=263712 and "291255 BUG: IsAlive Check Does Not
Run Under the Context of the BUILTIN\Administrators Account", http://support.microsoft.com/?id=291255.

Note: Keep in mind that any corporate policy that requires the changing of an account's password (such as having to change it
every 90 days) will potentially affect your virtual server's availability because you will need to reconfigure each SQL Server
2000 virtual server, including stopping and restarting it for the change to take affect. This must be taken into account when
planning the amount of availability your environment needs, and balancing it with corporate security.

Important: Use SQL Server Enterprise Manager if you need to change the accounts associated with the SQL Server virtual
server (SQL Server or SQL Server Agent). This will change the service password on all the nodes and grant the necessary
permissions to the chosen user account. If SQL Server Enterprise Manager is not used to change passwords, and the Windows-
based Services tool is used to modify the underlying service, you may not be able to start SQL Server after a shutdown or a
failover, and things such as full-text search may not function properly.

Security

If advanced security, such as Kerberos, SSL, or IPSEC, is part of your overall solution, consider the following when planning
your failover cluster implementation:

Kerberos can be used to authenticate a connection to a cluster virtual server; if unable to connect using Kerberos
authentication the clients will try with NTLM authentication.

If a SSL certificate with the same name as your SQL Server virtual server is installed, the SQL Server instance may not
start. For more information, see the Knowledge Base article 283794 "Problems Using Certificate with Virtual Name in
Clustered SQL Servers" at http://support.microsoft.com/default.aspx?scid=kb;en-us;283794.

Software Requirements

SQL Server 2000 failover clustering requires SQL Server 2000 Enterprise Edition and one of the following operating systems:

Microsoft Windows NT Server 4.0, Enterprise Edition (with a minimum of Service Pack 5)

Microsoft Windows 2000 Advanced Server

Microsoft Windows 2000 Datacenter Server

Microsoft Windows 2003 Enterprise Edition, SQL Server SP3 or SP3a required

Microsoft Windows 2003 Datacenter Edition Server, SQL Server SP3 or SP3a required

Hardware Requirements

A SQL Server 2000 virtual server should not only be an instance of SQL Server that is highly available, but one that is highly
performing and scalable. Two main factors determine hardware needs:

What is the current workload of the application or Web site, and what is the projected workload in six months, a year, or
even two years from now?

This is information that most people do not have prior to implementing a solution. Having benchmarks on how an
application or Web site performs is critical in determining which operating system and what hardware to buy. The best
way to evaluate an application is in a lab environment. Using tools such as System Monitor (Performance Monitor in
Windows NT 4.0) can also establish performance trends. Without a baseline, or some sort of performance
documentation, it will be difficult to determine exact needs. Additionally, take into account, any application issues
affecting performance, in either current production versions or updates planned.

How much money is budgeted to the project?

Although money should not be a barrier to availability, reality dictates that there is a budget to take into account. Prior to
purchasing your cluster solution, assess your hardware needs with the following:

How long do you plan to keep the servers in service?

Do you have the proper amount of disk space to last you for that period?

Do you have the proper memory and CPU capacity for this duration?

http://support.microsoft.com/?id=263712
http://support.microsoft.com/?id=291255
http://support.microsoft.com/default.aspx?scid=kb;en-us;283794

This kind of planning may prevent you from outgrowing your hardware in terms of performance and capacity sooner
than expected. As a result, your solution will be more available because you will not need to upgrade as often.

Important: Configure all nodes in a failover cluster so that they are at least equal to one another. However, if you plan to
configure one node so that it contains a greater number of virtual servers than the others, configure that node so that it
can handle the capacity of all virtual servers that it will be expected to host. Underpowering a node may affect availability.

For a primary high availability solution, consider failover clustering. However, if you cannot afford to purchase the
required complete clustered solution from the Microsoft Hardware Compatibility List (HCL), consider another high
availability options such as log shipping, which requires HCL-compatible equipment, but does not require you to buy a
complete solution or specialized hardware for a Windows cluster.

Hardware Compatibility List

Before deciding on all final hardware, consult the Windows Server Catalog. The Windows Server Catalog replaces the Cluster
Hardware Compatibility List (HCL) that is still accessible at the following Microsoft Web site:
http://www.microsoft.com/whdc/hcl/search.mspx

The complete hardware solution must appear under the server configurations found under the "Cluster" category. Buying
individual components will not create a supported solution, even if the hardware purchased is on the HCL. If the solution does
not appear on the HCL, the cluster configuration is not supported.

Microsoft server clusters are only supported on cluster solutions that are listed in the Windows Server Catalog under Cluster
Solutions. To view the Windows Server Catalog, visit the following Microsoft Web site:

http://www.microsoft.com/windows/catalog/server/default.aspx?xslt=category&subid=22&pgn=904c28be-5a41-
4db0-9c12-032dcb893c8b

Note: The term "server clusters" means computers that run the Microsoft Cluster Service, not the Network Load Balancing or
the Windows Load Balancing Service. Supported SQL Server failover clustering installations must also follow the Microsoft
support policy for server clusters, and the Windows Server Catalog/Hardware Compatibility List. For any update to the SQL
Server Cluster Support policy see Knowledge Base article, "327518 INF: The Microsoft Support Policy for a SQL Server Failover
Cluster", http://support.microsoft.com/?id=327518

Processors

Depending on the operating system you choose, different numbers of processors are available for use.

Operating system Maximum number of processors

Windows NT 4.0, Enterprise Edition 8

Windows 2000 Advanced Server 8

Windows 2000 Datacenter Server 32

Windows 2003 Enterprise Edition 8-Way SMP

Windows 2003 Datacenter Edition 32-Way SMP

Operating systems Not Supported Description

Windows 2003 with Terminal Services
enabled

KB Article 327270: SQL Server 2000 Is Not Supported on Windows Server 2003
Terminal Server.

Testing an application's performance in a lab or some other controlled environment

Clustering from an operating-system perspective requires Windows NT 4.0 Server, Enterprise Edition, Windows 2000
Advanced Server, or Windows 2000 Datacenter Server. Windows 2000 Datacenter Server provides the most comprehensive
solution; it is designed specifically for high availability. It requires a Service Level Agreement. If the operating system is not
listed above, it does not support more than four processors.

Memory

http://www.microsoft.com/whdc/hcl/search.mspx
http://www.microsoft.com/windows/catalog/server/default.aspx?xslt=category&
http://support.microsoft.com/?id=327518
http://support.microsoft.com/?id=327270

Depending on the operating system that is used, SQL Server 2000 can take advantage of different amounts of maximum
memory. An installation of SQL Server 2000 Enterprise Edition supports up to 32 gigabytes (GB) of memory on Windows 2000
Datacenter Server, without Address Windowing Extensions (AWE) enabled. The following table shows the maximum amount of
memory available to SQL Server 2000 per operating system.

Operating system Maximum

Windows NT 4.0, Enterprise Edition 3 GB

Windows 2000 Advanced Server 8 GB (with AWE enabled)

Windows 2000 Datacenter Server 64 GB (with AWE enabled)

Windows 2003 Enterprise Edition 64 GB (with AWE enabled)

Windows 2003 Datacenter Edition 64 GB (with AWE enabled)

Address Windowing Extensions and Physical Addressing Extension Memory

With AWE, a memory-intensive application can now run much more efficiently under SQL Server 2000 to increase
performance. Windows 2000 Advanced Server and Windows 2000 Datacenter Server introduced the enhanced AWE API. AWE
allows applications to access large amounts of physical memory. Due to limitations of 32-bit memory addressing, Windows NT
4.0 and Windows 2000 without AWE enabled can use only up to 4 GB of physical memory. By default, 2 GB of memory is
dedicated to the operating system and 2 GB of memory to the application. With a /3GB switch in the Boot.ini used by the
operating system, an application such as SQL Server can access up to 3 GB of memory, and the operating system is reduced to
1 GB of memory. As a result, even if a server were configured with 8 GB of memory, anything beyond 4 GB would have been
virtually unusable. AWE is the support built into the operating system as a way of exposing extended memory to Win32®-
based applications.

AWE requires an application, such as SQL Server 2000, to be coded specifically for AWE. AWE support within SQL Server 2000
must be configured using the awe enabled option in sp_configure. This is set per instance. By default, awe enabled is set to
0, or off. Enabling AWE support in SQL Server 2000 also requires some additional operating-system configuration. For more
information, see "AWE Memory" in SQL Server Books Online.

Another option you can use to take advantage of larger amounts of memory is Physical Addressing Extension (PAE). PAE
enables a 32-bit operating system to address memory above 4 GB. For information about PAE including how to set it up, see
the Knowledge Base article "268363 – Intel Physical Addressing Extensions (PAE) in Windows 2000" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;268363&sd=tech

Note: If PAE is enabled, you may encounter backup and restore errors with Windows 2000 or SQL Server 2000 backups. See
the Knowledge Base article "280793 – SQL Server 2000 or Windows 2000 Backup Not Viewable While Running in PAE Mode"
at http://support.microsoft.com/default.aspx?scid=kb;en-us;280793&sd=tech

When choosing hardware for your cluster solution, if you plan to use large memory, make sure that the configuration includes
hardware that supports large memory. To check, search all categories for the term "large memory" on the HCL.

The following table summarizes how extended memory settings should be configured based on the amount of large memory
you are setting up.

4 GB or less 4 GB to 8 GB More than 8 GB

/3GB switch /3GB enabled /3GB disabled

 AWE enabled AWE enabled

 PAE enabled (Boot.ini) PAE enabled (Boot.ini)

Note: If you are enabling AWE or PAE memory, it is highly recommended that the configuration be tested prior to bringing the
server(s) online in a production capacity.

The three memory options are enabled with two different mechanisms.

http://support.microsoft.com/default.aspx?scid=kb;en-us;268363&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;280793&sd=tech

/3GB

The /3GB option is a switch enabled through the boot.ini file. After you have installed Windows 2000 Advanced Server, modify
the boot.ini file to add the /3GB parameter to the ARC path, as shown in bold format in the following example:

multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows 2000 Advanced Server"
/3GB /basevideo /sos

PAE

PAE is also enabled via a switch in the boot.ini. Open the boot.ini file, and add the /PAE parameter to the ARC path, as shown in
bold format in the following example:

multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows 2000 Advanced Server"
/PAE /basevideo /sos

AWE

AWE is enabled within a SQL Server 2000 query by a call to sp_configure, as shown in this example:

EXEC sp_configure 'awe enabled', 1
RECONFIGURE

When you implement AWE memory, consider these issues:

The instance of SQL Server does not dynamically manage the size of the memory address space used.

When AWE is enabled with SQL Server 2000, if the max server memory configuration option is not set, SQL Server
grabs the total memory available (except 128 MB to allow the base operating system to function), potentially depriving
the operating system and any other processes that would be running on the same server.

After it has been initialized, AWE memory holds all the physical memory acquired at startup until it is shut down.

If AWE is enabled and is taking too much memory, SQL Server must be shut down to reconfigure it, causing downtime
(which makes a high availability option such as failover clustering less available). Because the memory pages used by the
instance of SQL Server are taken from the nonpageable pool of Windows memory, none of the memory can be
exchanged. This means that if the physical memory is filled up, SQL Server cannot use the page file set up on a physical
disk to account for the surplus in memory usage.

Once the max server memory option is configured, set the working set size to 0.

For more information about configuring AWE memory on your server, see "Using AWE Memory on Windows 2000" in SQL
Server Books Online, as well as the following:

PAE Server Design, which includes links to white papers (including "Supporting PAE Memory Under Windows 2000") at
http://www.microsoft.com/whdc/system/platform/server/pae/default.mspx

The "Address Windowing Extensions and Windows 2000 Datacenter Server" white paper at
http://www.microsoft.com/whdc/system/platform/server/pae/default.mspx

Networking

Auto sensing of the network cards should be set to static speeds that match your LAN or WAN network. For example, set all
network cards to 100 megabit with full duplex if that is how your network is configured. SQL Server 2000 supports multiple IP
addresses (each on a different subnet) and network cards. If larger bandwidth is required, SQL Server 2000 has support for
higher bandwidth networking with Giganet or Compaq's Servernet II technology on Compaq hardware. If these technologies
are used, they will create higher performance between multiple SQL Servers. Giganet support is built-in, and the update to
enable Servernet II is located at http://www.microsoft.com/downloads/details.aspx?FamilyID=790c837f-7c55-4c86-b10c-
31ada2accf43&displaylang=en

Node Location

Due to certain limitations, such as the physical restrictions on distance supported by SCSI or FibreChannel, the nodes in a
failover cluster must be located near each other. However, a server cluster is unaware of distance, so in theory, the nodes can
be located anywhere. If a geographically dispersed cluster is to be configured, consider the following points:

The private and public network connections between cluster nodes must appear as a single, nonrouted local area
network (LAN) using technologies such as a virtual LAN (VLAN). In these cases, the network must guarantee a maximum
round-trip latency between nodes of no more than 500 milliseconds for a connection. The cluster interconnect must

http://www.microsoft.com/whdc/system/platform/server/pae/default.mspx
http://www.microsoft.com/whdc/system/platform/server/pae/default.mspx

appear as a standard Local Area Connection.

Any geographically replicated storage technologies must preserve single disk semantics, such as persistent arbitration of
a logical unit to Windows Clustering. The quorum disk must be replicated in real-time, synchronous mode across all sites.

Configuring a geographically separate cluster is complex and involves careful planning. Consult the hardware vendor for your
cluster solution prior to implementing. It is also imperative that the hardware and software configuration is on the Hardware
Compatibility List and purchased as a cluster solution in order to be supported by Microsoft. Supported geographically
dispersed clusters can be found under the "Cluster/Geographic" category on the HCL. For more information on geographically
dispersed clusters, see 280743 "Windows Clustering and Geographically Separate Sites" at:
http://support.microsoft.com/default.aspx?scid=kb;en-us;280743&sd=tech

Another option that will provide high availability across different geographic locations is to employ log shipping, which is a
feature of SQL Server 2000 Enterprise Edition. Log shipping is a process in which a transaction log from one server is applied
to another server on a scheduled basis. Log shipping supports geographically separate locations, making it ideal for removing
a single point of failure and protecting against data loss due to such events as a natural disaster. For more information about
log shipping, see SQL Server 2000 Books Online or Chapter 13, "Log Shipping," in the Microsoft SQL Server 2000 Resource Kit.

Which option is the best for you to implement? Configuring a distance solution other than log shipping takes careful planning
and tuning of your network, even if a third-party solution is involved. Although log shipping does require connectivity between
the locations, it is not bound to the 500-millisecond limitation; therefore, there can be a higher latency, for example, if you are
shipping logs from London to San Francisco. Both solutions, however, would need to have a proper plan in place to put into
action in the event of a failure. Log shipping does require more manual intervention and administration than a clustered
solution, because log shipping does not automatically perform the role change required to bring the warm standby online.

Configuration Best Practices

In addition to understanding the fundamentals of failover clustering, you may find it useful to keep the following tips and best
practices in mind when configuring your servers.

Disk Configuration and File Placement

The main component of any database system is its storage — it contains the valuable data used and inserted by an application.
For high availability, disks used by SQL Server for data and log must be part of a fault tolerant external array. The disks should
be high speed for performance and support both large amounts of I/O and large amounts of storage space to allow your
databases to grow over time. Keep in mind that in a failover cluster, the shared cluster disk array is a single point of failure.
One way to mitigate this risk is to stock spare hard drives in a closet in the event of a failure.

The disks can be configured either with a small computer system interface (SCSI) or FibreChannel. FibreChannel is the
recommended method of implementing a shared disk array. FibreChannel is designed specifically for high bandwidth and high
capacity. Storage Area Networks (SANs) are disk arrays that use networking protocols over FibreChannel to do all I/O. Use of
SANs is supported for use in conjunction with failover clustering as a Cluster/Multiple-Cluster Device if purchased as part of a
complete clustering solution.

Windows Clustering can be used in a SAN environment. The HCL category cluster/multi-cluster device lists the set of SAN-
capable storage devices that are supported and have been tested as SAN storage units with multiple MSCS clusters attached.
By cross-matching the devices on this list with the complete cluster configurations defined in the cluster HCL category it is
possible to deploy a set of Windows servers and clusters on a SAN fabric with shared storage devices in a way that is
supported by Microsoft. For more information on SAN support with clusters, please see the Knowledge Base article "304415 –
Support for Multiple Clusters Attached to the Same SAN Device" at http://support.microsoft.com/default.aspx?scid=kb;en-
us;304415&sd=tech

Note: SCSI is not supported in a Windows 2000 Datacenter Server cluster. FibreChannel must be used.

Note: Network Attached Storage (NAS) devices are not supported in a clustered environment. For more information, see the
Knowledge Base article "304261 – Support for Network Database Files" at http://support.microsoft.com/default.aspx?
scid=kb;en-us;304261&sd=tech

Data and log devices, as well as tempdb, should be placed on separate disks using as many different channels as possible, with
the caveat that this will limit the number of instances that can be installed on the cluster. If your system is very large, or has
hotspots, you may decide to use filegroups as a method of splitting up the disk I/O. Further segmenting this by putting
filegroups on different disks, on different channels, can result in a performance boost. It is important to keep the file placement
and channel usage in mind when you are analyzing your high-availability design. Performance issues caused by bottlenecks
can be incorrectly perceived as availability problems. Physical file/disk layout problems may require downtime to resolve,
which would lower the availability of your system.

Data drives should use the RAID configuration of striped mirrors for maximum availability. This means that first the drives are

http://support.microsoft.com/default.aspx?scid=kb;en-us;280743&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;304415&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;304261&sd=tech

each mirrored and then the whole thing is striped. Striped mirrors are sometimes known as RAID 1+0. The next best for
availability, which also gives a little better performance than striped mirrors, is mirrored stripes, which is sometimes known as
RAID 0+1. Mirrored stripes mean that a group of disks is striped as one set, and then mirrored. It cannot tolerate failures as
well as striped mirrors. RAID 5, which has been a popular option for years, does not provide the highest availability or
performance. It is a good option if striped mirrors or mirrored stripes are not available, either because of money or hardware
constraints.

Log drives can be configured either with RAID 1, which is plain mirroring, or striped mirrors/mirrored stripes. Logs are
important to protect, so choose the appropriate availability of the disk for your high availability plan.

Note: The terminology for striped mirrors and mirrored stripes (i.e. 0+1, 1+0) may vary from manufacturer to manufacturer.

Important: Here are some caveats for disk usage in a server cluster:

Dynamic disks are not supported in Windows Clustering. For more information, see the Knowledge Base article "237853
– Dynamic Disk Configuration Unavailable for Server Cluster Disks" at http://support.microsoft.com/default.aspx?
scid=kb;EN-US;237853.

File compression is not supported on a clustered database server.

Software RAID is not supported in a cluster; hardware RAID must be used.

On a clustered instance of SQL Server 2000, data storage on mounted drives is not supported. This applies to Windows
2000 and to Windows Server 2003. For more information, see the Knowledge Base article "819546 SQL Server 2000
support for mounted volumes" at http://support.microsoft.com/?id=819546.

For additional information and configuration worksheets, see the "Shared Cluster Disk Partition Configuration Worksheet" and
the "SQL Server 2000 Failover Cluster Disk Configuration Worksheet" located in Appendix C.

Quorum Disk

Do not put any database files, such as data or log files, on the quorum disk. By default, SQL Server 2000 Setup does not use the
quorum disk, unless there are no other disks available. From a physical disk standpoint, if it is possible, the quorum disk should
be on a separate spindle and be on a separate drive from the SQL Server data.

Controller Configuration

Choose a card with enough channels to split the logical grouping of disks (for example, data and logs) to reduce I/O
contention; however, this will limit the number of virtual servers you can install. If the FibreChannel/RAID controller is internal
to the node and not in the shared disk array, writeback caching should be disabled. Because even with battery backup, once the
resources fail over to another node, there might be items still in the cache. If the services are failed back over to the node,
corruption may occur because the controller will attempt to overwrite things on the disk. Data loss would also occur in a
failover if transactions were in the cache but not processed.

Using more than one RAID controller not only may increases performance and reduce I/O contention (which will increase
availability), but the redundancy at the hardware level also gives you higher availability in the event one of the RAID controllers
fails.

Making Sure Logical Disks Are Seen by the Virtual Server

In failover clustering, if the virtual server cannot "see" the disk resources, which are the logical drive letters, the virtual server
will not operate properly. This is probably caused by one of two things:

The proper disk drivers might not be installed.

Make sure that they are installed. In some cases (for example, an operating system upgrade from Windows NT 4.0,
Enterprise Edition to Windows 2000 Advanced Server), there may be specific drivers for Windows 2000, but the old
drivers may still be on the system.

The drive might not be a dependency of the SQL Server 2000 virtual server. During the installation of the virtual server,
only one data drive is can be selected, so if multiple drives are needed by the SQL Server 2000 virtual server, you will
need to add the dependency following the successful completion of setup. To check whether the drive is a dependency of
the virtual server, see the section "SQL Server 2000 Failover Cluster Dependencies" later in this paper.

Adding A Logical Disk To Your Cluster Configuration

Because dynamic disks are not supported in Windows Clustering, adding a disk to the configuration at some point after the
initial configuration will incur some downtime. Consult the Knowledge Base article "175278 – How to Install Additional Drives
on the Shared SCSI Bus" for instructions on adding drives to your cluster configuration. It can be found at

http://support.microsoft.com/default.aspx?scid=kb;EN-US;237853
http://support.microsoft.com/?id=819546

http://support.microsoft.com/default.aspx?scid=kb;en-us;175278&sd=tech

Once the drive is recognized at the Windows Clustering level, take the SQL Server cluster resource offline, and add the drive as
a dependency in Cluster Administrator. After bringing the SQL Server resource online, the SQL Server virtual server will now
be able to use this new drive.

Expanding An Existing Logical Disk In Your Cluster Configuration

It is possible to expand the existing disk space at the hardware level on a defined cluster disk. Consult the Knowledge Base
article "263590 – How to Extend the Disk Space of an Existing Shared Disk with Windows Clustering" for instructions on
expanding drives in your cluster configuration. It can be found at http://support.microsoft.com/default.aspx?scid=kb;en-
us;263590&sd=tech

Keep in mind that this will incur some downtime, and it must be planned as to not affect the availability of your end users.

Cluster Nodes and Windows Domains

All nodes in the cluster must be members of the same domain and able to access a domain controller and a Domain Name
System (DNS) server, as well as a WINS server. The nodes should not be configured as domain controllers if you are going to
install SQL Server, as you may encounter some problems, including the fact that domain controller functionality (such as Active
Directory) is not cluster aware, so all information will be local. This impacts things such as a directory enabled program's ability
to publish under the virtual server's computer object, which does not work in a cluster. A WINS server is still required for
Windows 2000/SQL Server 2000 in a clustered environment if name resolution of virtual resource is required.

Using Multiple IP Addresses

When configuring a network card for use within a cluster, you should consider the options available based on how many types
of networks you must support, given the number of network cards available. Also, keep in mind assigning more IP addresses
you assign to allow connectivity to SQL Server may affect the availability of your failover cluster, as in some cases, you may not
have control of the routers to re-route networks.

For example, you may attempt to maximize the use of your network cards by configuring one card for all communications
including:

All external client connections and inter-node traffic.

Internal cluster (private network between the cluster nodes only).

Client access only (public network to allow client connectivity).

Even though only one network card in a cluster can usually handle all cluster network communications, this creates a single
point of failure. The optimum configuration is to have a separate network card to handle each type of connectivity.

Ideally, three IP addresses on separate subnets and three network cards should be associated with any instance of SQL Server:

Heartbeat

This should be configured as "internal cluster communications only" to allow the nodes to communicate amongst
themselves with no additional traffic from external clients. This should also be on an opposite IP class. For more
information, see the Knowledge Base article "258750 – Recommended Private 'Heartbeat' Configuration on a Cluster
Server" at http://support.microsoft.com/default.aspx?scid=kb;EN-US;258750

Client Connectivity

If you have only one IP address that will be configured for client access, configure it as "all communications", as it will
provide redundancy for the internal communications in the event that the Heartbeat fails. If there is more than one IP
address that will be used by clients, you can configure them either as "all communications" or "client access only."

Separate Private Network

This is different from the heartbeat and should be configured as "client access only." This should be configured so only
the servers in the cluster will be able to access this particular IP address. This configuration will enable files to be
transferred, or optimally, allow log shipping to be configured in a way that will not affect the heartbeat or client network
traffic.

Not all three IP addresses can be on the same subnet. Connectivity problems may be encountered if the same subnet is used
for more than one IP address, even if it is not currently being used in the cluster. For example, the following table shows both a
correct and an incorrect server configuration.

http://support.microsoft.com/default.aspx?scid=kb;en-us;175278&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;263590&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;258750

Network card Correct configuration Incorrect configuration

1 – Configured as Public Network 172.21.10.1 172.22.10.1

2 – Configured as Public Network 172.22.10.2 172.22.10.2

3 – Configured as Private Network 172.23.7.3 172.23.7.3

4 – Configured as Heartbeat 10.10.10.1 172.24.2.5

In addition, there are network cards that support multiple IP addresses being bound to them. Although this allows a failover
cluster to talk over more than one network, it is potentially a single point of failure, which must be avoided in a high availability
solution. Therefore, always ensure you have at least one network card for each required function, even if the card can support
multiple IP addresses.

For more information, see the Knowledge Base article "175767 – Expected Behavior of Multiple Adapters on Same Network" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;175767&sd=tech

Memory Configuration

This section presents considerations for memory usage in a SQL Server 2000 failover cluster.

Single-Instance Failover Cluster

In a single-instance SQL Server 2000 failover cluster, the failover scenario is simple: If the primary node fails, all processes go
to the designated secondary node configured (see "Configuring Node Failover Preferences" later in this paper). The secondary
node should always be configured exactly the same as Node A in terms of hardware. If not, problems may occur if the failover
node does not have the same capacity as the primary node, especially in terms of memory, as evidenced in example two.
Consider any other processes that may be running on the server node, as well as overhead for the operating system.

Example One: Two Nodes, Exact Configuration

Think of your cluster nodes as two glasses of water. The glasses can each hold 4 ounces of water. Glass A has 3 ounces of
water, and Glass B has no water. If you pour the water from A into B, it will all fit with no problems. In the case of a SQL Server
2000 failover cluster, the resources will function as they did on the primary node. The following illustration shows this
scenario.

Example Two: Two Nodes, Unequal Configuration

Again, think of your two cluster nodes as glasses of water. Glass A has a capacity of 4 ounces. It is filled with 3 ounces of water.
Glass B has a capacity of 2 ounces. If you pour the water from A into B, it will overflow and spill because it cannot hold all of the
liquid that was in Glass A. Therefore, if your failover node does not have the physical memory to support the instance of SQL
Server, paging to disk will occur because SQL Server is looking for more memory than is physically available. The server will
now be short of resources, potentially causing the node to become unresponsive. Figure 3 illustrates this scenario.

http://support.microsoft.com/default.aspx?scid=kb;en-us;175767&sd=tech

Multiple-Instance Failover Cluster

In a multiple-instance SQL Server 2000 failover cluster, the scenario becomes more complex. With up to 16 instances that can
be active at a time on one node, how does one effectively manage memory? First and foremost, ensure that all servers have
the same amount of memory, and that it is enough to handle the instances that could potentially fail to that node. Another
important consideration is to cap memory usage of the instance of SQL Server 2000 with max server memory (see "Address
Windowing Extensions and Physical Addressing Extension Memory" earlier in this paper). Especially if AWE memory is enabled,
max server memory must be set in a multiple-instance cluster to prevent starving the server node, as shown in example two
that follows. Consider any other processes that may be running on the server, as well as overhead for the operating system.

Example One: Two Instances of SQL Server, Noncapped Memory

Once again, consider the two glasses of water. Both glasses have a maximum capacity of 4 ounces. Glass A and Glass B contain
3 ounces of water each. If you pour the contents of Glass B into Glass A, only 1 ounce will fit before an overflow of the
remaining 2 ounces occurs. Similar to the previous example, if the failover node does not have the physical memory to support
the second instance of SQL Server 2000, paging to disk will occur because SQL Server 2000 is looking for more memory than
is physically available. The server will now be short of resources, potentially causing the node to become unresponsive. The
following illustration shows this scenario.

Example Two: Two Instances of SQL Server 2000, Capped Memory

Again, think of your two cluster nodes as glasses of water. Both glasses have a maximum capacity of 8 ounces. Glass A and
Glass B contain 3 ounces of water each. If you pour the contents of Glass B into Glass A, Glass A can handle the entire amount
of liquid with no overflow. From a SQL Server perspective, for this example to work, AWE memory must be enabled, and each
instance must use the sp_configure stored procedure max server memory option to cap memory on each instance at 3 GB.
In the event of the failover, there is still 2 GB of memory left for the operating system and any other processes running. The
following illustration shows this scenario.

Processor Capacity

Although there are no specific requirements as to how much processor power you will need for SQL Server 2000, since it is
dependent upon how your application utilizes SQL Server, each cluster node should be configured with enough processors of
sufficient power to handle the load for any instance that may run on the node. Unless processor affinity is set for the virtual
server, all instances will share the processors in the server. The best way to determine how much processing power is needed
is to test your application with load prior to being rolled out in production, and to monitor it using System Monitor.

For example, you have one application that utilizes a virtual server. It is an OLTP application that constantly utilizes all four
processors of one server at a rate of approximately 75 percent. If a second virtual server in your failover cluster exhibits similar
numbers and is set to failover to the same node as the first virtual server, the server may become slow, or potentially
unresponsive, because it cannot handle the workload of the two systems. Instead of being memory starved, you will be CPU
starved.

Using More Than Two Nodes

When you use more than two nodes on a SQL Server 2000 failover cluster, consider the following questions:

How much memory should be configured for each instance?

What nodes are the failover cluster nodes for the particular instance? What is the preferred order?

Is there enough disk space and memory to support every instance configured to fail over to a particular node?

Is the hardware configured to support failover clustering without affecting other instances?

Because SQL Server 2000 can use four nodes when supported by the operating system (the number of virtual servers is only
limited by the choice of operating system and the capacity of your hardware), and have up to 16 instances, these
considerations become more important as mission-critical systems become larger. Although SQL Server can support up to the
16-instance limit, having more than four (which is a 1:1 ratio for virtual servers to nodes in a Windows 2000 Datacenter Server
cluster) is not recommended. Another consideration is the number of logical drives that can be assigned — because each
instance would require its own dedicated drive letters. There is a limit to the number of drive letters available because of the
finite size of the English alphabet. If multiple drive letters were assigned to each individual instance, it would greatly reduce the
number of instances that can be created.

As noted earlier in this paper, it may be necessary to assign a designated unique port to a SQL Server 2000 virtual server after
installation. By default, SQL Server 2000 will dynamically assign a port during installation of the virtual server. To change the
port manually, use the Server Network utility.

Scenario One: Four-Node Multiple-Instance SQL Server 2000 Failover Cluster, Three Active Nodes, One Standby
(N+1)

With four-node support, Windows 2000 Datacenter Server provides more flexibility in terms of a cluster configuration. The
recommended way of using a four-node Windows 2000 Datacenter Server cluster in a SQL Server environment is to have
three of the nodes each owning an instance of SQL Server 2000 and have the fourth be the warm standby. This is not unlike a
log shipping scenario, or a single-instance failover cluster in which at least one node is waiting for work. This scenario is known
as N+1. Instead of configuring your failover cluster to allow the instances to fail first to a node with another instance of SQL
Server 2000 running, the fourth node should be configured as the primary failover. This would reduce the issue of having too
many instances starving the resources of one node. AWE memory should be enabled in this scenario to allow each instance of
SQL Server to address more memory than the 1 GB currently available. This allows your applications to scale out rather than
limiting them if they exceed the memory allocation for SQL Server.

Scenario Two: Four Node Multiple-Instance SQL Server 2000 Failover Cluster, All Four Nodes Active

Running four instances of SQL Server 2000 on four nodes requires careful planning, so that another instance will not starve
resources due to memory and processor consumption in the event of a failover. Memory is not as much of an issue as
processor resources. For example, if the workload on the production online transaction processing (OLTP) system regularly
uses eight processors at 50-percent utilization and all four active instances of SQL Server 2000 demonstrate similar behavior,
memory can only compensate for processor so much; more processors must be added.

Miscellaneous Configuration Issues

Disable or do not install antivirus software on your cluster. For more information, see 250355 "Antivirus Software May
Cause Problems with Cluster Services" at: http://support.microsoft.com/default.aspx?scid=kb;en-us;250355&sd=tech

It is not recommended to have both SQL Server 2000 and Microsoft Exchange 2000 on the same cluster.

Make sure all instances of SQL Server have their own unique Network Name and IP address.

When configuring replication with clustered servers, create a MSCS file share for replication to be configured against so
all cluster nodes will be able to access it in the event of a failover.

It is not recommended that any file shares be used on the same cluster disks that a SQL Server is using.

WINS is required for NetBIOS name resolution of all virtual resources.

Resolve any potential application issues such as locking and blocking that may cause availability problems.

For additional considerations, see SQL Server 2000 Books Online.

Sample SQL Server 2000 Failover Cluster Configurations

There are, of course, many different ways to configure your failover cluster depending on your system requirements and the
hardware you have available. In situations where you have detailed information on your systems average and peak
throughput, always do proper capacity planning for your servers. For detailed coverage of capacity planning techniques, see
the Microsoft SQL Server 2000 Administrator's Companion.

OLTP System Server Layout

This design is for a classic OLTP application. The transaction log for is split over a set of disks to support a high volume of
transactions per second. Both servers are configured exactly the same:

Operating system: Windows 2000 Advanced Server

Number of nodes: Two

Number of processors (per server): Eight

Memory (per server): 4 GB

SQL Server memory configuration: limited to 3 GB

Internal disk configuration for the operating system: Two to four internal drives (9 GB each) with RAID 1. For four or
more drives, use RAID 0+1.

Shared FibreChannel SAN Configuration

GB (total
capacity)

Total disks (external; 18 GB each; RAID
0+1) Files on drive

Drive
Q 36 4 Quorum Drive

Drive R 54 6 Transaction Log

Drive S 216 24 SQL Server Data Files, tempdb

http://support.microsoft.com/default.aspx?scid=kb;en-us;250355&sd=tech

Drive T 36 4 Backups/Imported Data Files (could use larger
disks)

Multiple-Instance Failover Cluster with Log-Shipped Standby Server

A common high availability scenario is to use failover clustering as the primary method, but also sending the transaction logs
to a completely different server as another disaster recovery method. This server (known as a warm standby) should be located
in another geographic data center away from the failover cluster to avoid a single point of failure. However, there must be
good network connectivity between the locations. Log shipping is a feature of SQL Server 2000 Enterprise Edition. For more
information about log shipping, see Chapter 13, "Log Shipping," in the Microsoft SQL Server 2000 Resource Kit and SQL Server
Books Online.

Multiple-Instance Failover Cluster

To support future growth, an eight-way box is selected, but only four processors are added. Both instances support OLTP
applications. Instance 1 is replicated to a report server (not shown here). Instance 2 is extracted for data warehousing on a
weekly basis and is not replicated. Because of this difference, another mirrored set is added to Instance 1 transaction log.

Operating system: Windows 2000 Advanced Server

Number of nodes: Two

Number of processors (per server): Four

Number of SQL Server 2000 instances: Two

Memory (per server): 4 GB, SQL Server limited to 1.5 GB per instance

Internal disk configuration for the operating system: Two to four internal drives (9 GB each) with RAID 1. For four or
more drives, use RAID 0+1.

Shared FibreChannel SAN Configuration

GB (total capacity Total disks (external; 18 GB each) Files on drive

Drive Q 36 4 Quorum Drive

Drive R 54 6 Instance 1: Transaction Log

Drive S 36 4 Instance 2: Transaction Log

Drive T 72 8 Instance 1: Data Files

Drive U 72 8 Instance 2: Data Files

Drive V 36 4 Instance 1: tempdb

Drive W 36 4 Instance 2: tempdb

Drive X 54 6 Backups/Imported Data Files (could use larger disks here)

Warm Standby Server Configuration

The standby server must have enough memory and processing power to support the workload of both databases in the event
of a failover.

Operating system: Windows 2000 Advanced Server

Number of processors: Four

Memory: 4 GB, SQL Server has 3 GB allocated to it.

Disk Configuration (RAID 1)

GB RAID partition Total disks Files

Drive C 18 A 2 internal Operating system, page file, SQL Server executables, and system databases

Drive Z 54 C 6 internal Backups/Imported data files

Drive T 36 E 4 internal Transaction Log

Drive I 180 D 12 external Data files, tempdb

In this scenario, there are less drives available on this computer. The data fits easily on the standby system, and the throughput
requirements do not tax the production drive capacity. In reality, however, you should test to ensure that the warm standby can
handle the workload. Not only should a disaster recovery plan be in place, but also plan to update the standby server in the
event the requirements change.

Multiple-Instance Windows 2000 Datacenter Cluster (N+1 Scenario)

In this scenario, there are four servers of similar internal disk configuration, which share an external FibreChannel SAN. Three
instances of SQL Server 2000 are active in the failover cluster. The requirements for CPU and RAM will vary depending on
what role the server plays role in the cluster. Three of the failover cluster nodes are the same, and own one instance each. The
fourth node is the designated failover node and will have a larger capacity in the event all three instances fail. AWE memory is
used. A failover cluster requires a well thought-out and certified hardware solution. For more information about failover
clusters, AWE memory, and the N+1 configuration, see the section "Using More Than Two Nodes" earlier in this paper.

All Instances

Operating system: Windows 2000 Datacenter Server

Active Instances

Number of nodes: Three

Number of processors (per server): Eight

Memory (per server): 6 GB, SQL Server limited to 4 GB

Internal disk configuration for the operating system: Two to four internal drives (9 GB each) with RAID 1. For four or
more drives, use RAID 0+1.

Failover Node

The failover node must have enough memory and CPU to support all three active instances in case of failover.

Number of processors: 32

Memory: 16 GB

Internal disk configuration for the operating system: Two to four internal drives (9 GB each) with RAID 1.

Shared FibreChannel SAN Configuration

GB (total capacity Total disks (external; 18 GB each; RAID 0+1) Files on drive

Drive Q 36 4 Quorum Drive

Drive T 36 4 Instance 1: Transaction Log

Drive U 36 4 Instance 2: Transaction Log

Drive V 36 4 Instance 3: Transaction Log

Drive I 90 10 Instance 1: Data files
Instance 1: tempdb

Drive J 108 12 Instance 2: Data Files
Instance 2: tempdb

Drive K 162 18 Instance 3: Data Files

Drive L 72 8 Instance 1: Data Files, possibly indexes

Drive M 72 8 Instance 2: Data Files, possibly indexes

Drive N 72 8 Instance 3: tempdb

Drive Z 36 4 Backups/Imported Data Files

For this example, Instance 1 and 2 are OLTP applications of similar access patterns. Instance 3 is an example of a decision
support system (DSS) that uses tempdb heavily enough that you would want to move it to a different drive containing multiple
fast disks. Note that, correspondingly, Instance 3 does not need more than the standard two disks for the transaction log drive.
For more information, see Inside SQL Server 2000 by Kalen Delaney from Microsoft Press®, and Chapter 33, "The Data Tier: An
Approach to Database Optimization," in the Microsoft SQL Server 2000 Resource Kit.

Because reporting systems use server resources differently from OLTP systems, it is important to take into account the
characteristics of each workload. In the event of a failover where one failover cluster node may own both SQL Server 2000
virtual servers, can the system handle both from a memory, processor, and disk I/O standpoint? One node may be able to
handle both for a short time. However, a disaster recovery scenario may require that the instance that was failed over to be
failed back to the original node as soon as possible. Another option would be to allocate sufficient CPU and memory resources
for each system and then limit resource usage to each instance.

Top Of Page

Implementing SQL Server 2000 Failover Clustering

This section describes the implementation considerations when you configure a failover cluster. For installation instructions to
install a new Windows 2000 server cluster, see
http://www.microsoft.com/technet/prodtechnol/windows2000serv/howto/clustep.mspx

Restarting the server after installing SQL Server 2000 is recommended. This allows locked resources to be released and any
pending file renames to be completed.

For information on setting up a one-node cluster for development purposes only using Windows NT 4.0, Enterprise Edition or
Windows 2000 Advanced Server, see the Knowledge Base article "245626 – INFO: Use the '-localquorum' Switch to Install a
Single-Node MSCS Cluster" at http://support.microsoft.com/default.aspx?scid=kb;en-us;245626&sd=tech

Prerequisites

Prior to installing SQL Server 2000, make sure there are no errors in Event Viewer that may prevent a successful cluster
installation. Verify that only the services necessary for the operating system are running. Any other services should be stopped
because they may interfere with the installation process. These services include SNMP, the World Wide Web Publishing service,
and vendor specific programs. The easiest way to start and stop multiple services is to create two batch files: one that contains
multiple net stop commands and one that contains the corresponding net start commands.

The following tables list the services that should be left running.

Windows NT 4.0 Server, Enterprise Edition

http://www.microsoft.com/technet/prodtechnol/windows2000serv/howto/clustep.mspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;245626&sd=tech

Alerter
Cluster Service
Computer Browser
Event Log
License Logging Service
Messenger
Net Logon
Windows NT LM Security Support Provider

Plug And Play
Remote Procedure Call (RPC) Locator
Remote Procedure Call (RPC) Service
Server
Spooler
TCP/IP NetBIOS Helper
Time Service
Workstation

Windows 2000 Advanced Server and Windows 2000 Datacenter Server

Alerter
Cluster Service
Computer Browser
Distributed File System
Distributed Link Tracking Client
Distributed Link Tracking Server
DNS Client
Event Log
License Logging Service
Logical Disk Manager
Messenger
Net Logon
Windows NT LM Security Support Provider
Network Connectors

Plug and Play
Process Control
Remote Procedure Call (RPC) Locator
Remote Procedure Call (RPC) Service
Remote Registry Service
Removable Storage
Security Accounts Manager
Server
Spooler
TCP/IP NetBIOS Helper
Windows Management Instrumentation
Driver Extensions
Windows Time Service
Workstation

Installation Order

This section provides the installation order for a specific operating system and SQL Server 2000.

Windows NT 4.0 Server, Enterprise Edition

Install Windows NT 4.0 Server, Enterprise Edition (do not install Microsoft Internet Information Server).

Create domain users.

Install Windows NT 4.0 Service Pack 3.

Install Microsoft Internet Explorer 5.

Disable NetBIOS on internal private networks.

Install MSCS on both nodes.

Manually create MS DTC Cluster Resources, see "Creating the MS DTC Resources (Windows NT 4.0, Enterprise Edition
Only)" later in this paper.

Install Windows NT 4.0 Option Pack if you want, but do not install MSMQ.

Install Windows NT Service Pack 5 or later.

Stop unnecessary services.

Install SQL Server 2000 (see Appendix B – "Step-By-Step Installation Instructions for a New Virtual Server" for
instructions).

Windows 2000 Advanced Server and Windows 2000 Datacenter Server

Install Windows 2000 Advanced Server (Windows 2000 Datacenter Server is installed by the vendor if this is your choice
of operating system).

Install Microsoft Internet Explorer 5 Update (if necessary).

Create domain users.

Disable NetBIOS on internal private networks.

Install Windows Clustering on one node.

Join the other node(s) to the cluster.

Run comclust.exe on all nodes to create the clustered MS DTC resource. (for more information, see "Failover Clustering
Dependencies" in SQL Server 2000 Books Online).

Stop unnecessary services.

Install SQL Server 2000 (see Appendix B – "Step-By-Step Installation Instructions for a New Virtual Server" for
instructions).

Creating the MS DTC Resources (Windows NT 4.0, Enterprise Edition Only)

This section provides the instructions for configuring the MS DTC resources for servers running Windows NT 4.0, Enterprise
Edition, which requires a more complex setup procedure than that for Windows 2000 Advanced Server or Windows 2000
Datacenter Server.

Configuring the MS DTC IP Address

1. In Cluster Administrator, select the disk group that contains the quorum disk resource. Right-click the disk group, and
then rename it.

2. Select the disk group you want. On the File menu, click New, and then click Resource. In the New Resource dialog box, in
the Name box, enter MSDTC IP Address; in the Resource Type box, select IP Address; and in the Group box, select the
group you want. Click Next.

3. Both nodes of the cluster should appear as possible owners. If not, add the node(s), and click Next.

4. In the Dependencies dialog box, select the disk resource in the group you selected from the Available Resources box, and
then click Add. The disk resource appears in the Resource Dependencies box. Click Next.

5. In the TCP/IP Address Parameters dialog box, enter the TCP/IP information. In the Address box, enter the static IP
address (for example, 10.1.14.131); in the Subnet mask box, enter the IP subnet (for example, 255.255.255.0); in the
Network to use box, select the cluster network you want. Click Finish.

6. A message appears confirming that the IP address is successfully configured.

7. In the Cluster Administrator window, the newly created resource appears in the right pane. To start the resource (which is
currently offline), right-click the resource, and click Bring Online.

Configuring the MS DTC Network Name

1. In Cluster Administrator, on the File menu, point to New, and then click Resource.

2. In the New Resource dialog box, in the Name box, enter MSDTC Network Name; in the Resource Type box, select
Network Name; and in the Group box, select the group you want. Click Next.

3. In the Possible Owner dialog box, both nodes of the cluster should appear as possible owners. If not, add the node(s),
and click Next.

4. In the Dependencies dialog box, the MS DTC IP address resource you configured previously appears in the Available
resources box. Select the resource, and then click Add. The resource appears in the Resource dependencies box. Click
Next.

5. In the Network Name Parameters dialog box, enter MSDTC, and then click Finish.

6. A message appears confirming that the IP address is successfully configured.

7. In the Cluster Administrator window, the newly created resource appears in the right pane. To start the resource (which is
currently offline), right-click the resource, and then click Bring Online.

Implementation Best Practices

This section highlights some best practices when implementing a SQL Server 2000 failover cluster.

Configuring Node Failover Preferences

When you use more than two nodes in a failover cluster, it is important to consider in the event of a failover, which node
should own the SQL Server processes? With up to four nodes available, there should be an order that makes logical sense for
the production environment. The failover preferences should be set for the group containing all the resources for the instance
of SQL Server (not only on the virtual server) to ensure that all resources properly fail over to the same node. For example, in
an N+1 configuration, each group would have the idle node second in the list of preferred owners. This means that if any of
the nodes failed, the resources on that node would move to the idle node.

Important: Do not use Cluster Administrator to remove nodes from the resource definition. Use SQL Server Setup for that
functionality, for instructions, see "Adding or Removing a Cluster Node from the Virtual Server Definition" later in this paper.

To configure the preferred failover order for the nodes

1. Start Cluster Administrator. Right-click the group containing the SQL Server 2000 virtual server, and then click
Properties.

2. On the General tab, the Preferred owners list box displays all cluster nodes that can potentially own the processes in
that group, and the current order in which they would fail over. To change the order, click Modify.

3. In the Modify Preferred Owners dialog box, make any changes to the preferred failover order. All nodes currently
configured as potential owners will appear in the right pane in the order of failover preference. For example, there are
four nodes in a cluster: DENNIS, TOMMY, JAMES, and CHUCK. All four nodes of the cluster can be potential owners,
and the order of failover if DENNIS goes down is set to be JAMES then TOMMY, and finally CHUCK if both JAMES or
TOMMY are unavailable.

Failover/Failback Strategies

An overall cluster failover/failback policy is recommended. Failovers can be controlled in terms of a threshold, meaning that
after a certain point, a resource will not be failed over. There are two levels of thresholds: resource and cluster. Depending on
how the resource is configured, it can affect the group failing over to another node.

In the event of a failover, the cluster group containing the SQL Server resources can be configured to fail back to the primary
node when and if it becomes available again. By default, this option is set to off because usually there is no problem with
continuing on the secondary node. This setting provides an opportunity to analyze and repair the problem on the failed node.

To configure automatic failback for a cluster group

1. Start Cluster Administrator. Right-click the group containing the SQL Server 2000 virtual server, and then click
Properties.

2. In the Properties dialog box, click the Failback tab.

3. To prevent an automatic failback, select Prevent Failback. To allow automatic failback, select Allow Failback, and then
one of the following options:

Immediately

This means that the second Windows Clustering detects that the preferred cluster node is online, and it will fail
back any resources. This is not advisable because it could disrupt clients and applications, especially at peak times
in a business day.

Failback between n and n1 hours

This option allows a controlled failback to a preferred node (if it is online) during a certain period. The hours are set
using numbers from 0 through 23.

To configure thresholds for a resource

1. Start Cluster Administrator. Select the proper group containing the SQL Server 2000 virtual server, then right-click the
resource to alter, and click Properties.

2. In the Properties dialog box, click the Advanced tab.

3. Select Do not restart if the Cluster service should not attempt to restart or allow the resource to fail. By default, Restart
is checked.

4. If Restart is selected, configure the restart policy:

Affect the group

To prevent the failure of the selected resource from causing the SQL Server group to fail over after the specified
number of retries (Threshold) has occurred, uncheck the Affect the group checkbox.

Threshold is the number of times the Cluster service will try to restart the resource, and Period is the amount of
time (in seconds) between retries. Set the numbers accordingly for your availability requirements.

For example, if Threshold is set to 0, and Affect the group is selected, on detection of a failure, the entire group
with the resource will be failed over to another node.

5. Do not modify the "Looks Alive" and "Is Alive" settings.

6. Unless necessary, do not modify Pending timeout. The value, represented in seconds, is the amount of time the
resource in either the Offline Pending or Online Pending states has to resolve its status before the Cluster service puts it
in either Offline or Failed status.

7. Click Apply and then OK.

8. To configure failover thresholds for a group. Start Cluster Administrator. Right-click the group containing the SQL Server
2000 virtual server, and then click Properties.

9. In the Properties dialog box, click the Failover tab.

10. To configure the failover policy, in the Threshold box, enter the number of times the group is allowed to failover within a
set span of hours. In the Period box, enter the set span of hours.

For example, if Threshold is set to 10 and Period is set to 6, the Cluster service will fail the group over at a maximum of
10 times in a six-hour period. At the eleventh failover in that six-hour period, Windows Clustering will leave the group
offline. This affects only resources that were failed over; therefore, if the SQL Server resource failed 11 times, it would be
left offline, but the IP could be left online.

SQL Server 2000 Failover Clustering and MS DTC

There are two schools of thought when it comes to designing a server cluster when MS DTC is used:

Use the default configuration, which will configure MS DTC to use the quorum drive. This is the most popular, and most
often, recommended solution.

Plan in advance, and create a separate cluster disk that is dedicated to MS DTC. While this may reduce contention on the
quorum drive if MS DTC is being used in the cluster, it may mean that not enough drives will be available for the SQL
Server instances. It also means a few more steps in configuring the cluster. For example, a clustered BizTalk Server
configuration requires that MS DTC be placed on a separate drive and in a separate cluster group. For more information
on BizTalk Server clustering considerations, see the link for the BizTalk Server clustering whitepaper in Appendix A.

Either way, make sure that the drive that is going to be associated with MS DTC is about 500 MB. The drive does not need to be
gigabytes in size. If MS DTC is going to be placed on the quorum, make sure there is enough room for the cluster files as well.

Even if MS DTC is not going to be used currently, it is easier to configure it during the initial installation in the event that it may
be used at some point.

If for some reason the server cluster design requires another cluster disk for MS DTC, consult the Knowledge Base article
"294209 – INF: Rebuilding or Moving MSDTC Used with a Failover Clustered SQL Server" at:
http://support.microsoft.com/default.aspx?scid=kb;en-us;294209&sd=tech

Other information about MS DTC and Windows clustering can be found in the Knowledge Base article "Microsoft Distributed
Transaction Coordinator Recovery Techniques in Windows 2000 Cluster Server", which can be found at:
http://support.microsoft.com/default.aspx?scid=kb;en-us;243204&sd=tech

Cluster Group Configuration for SQL Server 2000

When setting groups using Cluster Administrator, there is no minimum or maximum number required. From a conceptual
standpoint, it makes sense to put similar items in one group, for example:

Group the Cluster IP Address, cluster name, and quorum disk in one group.

MS DTC by default should stay in its default location unless it needs to be moved.

Group the SQL Server IP Address, SQL Server Network Name, SQL Server, SQL Server Agent, and SQL Server full-text
resources for a specific instance in a group for each instance.

MS DTC may be placed in either the group with the main cluster IP, the quorum disk, or the group with the disk that MS DTC is
configured to use. MS DTC is a shared resource and it depends on the disk it is configured to use. However, it is recommended
that SQL Server or any other cluster applications not be put in the same group with the quorum disk. MS DTC would be the
exception to this since this is where the operating system places it by default.

SQL Server 2000 Failover Cluster Dependencies

For the latest information on dependencies refer to Knowledge Base article, "835185 Failover cluster resource dependencies in
SQL Server", http://support.microsoft.com/?id=835185.

Cluster resources may be dependent on other resources to start before they are brought online. A default installation has the
following dependencies (this table is not meant to represent a group; only the default dependencies for each listed resource).

Resource Dependencies

Cluster IP Address None

Cluster Name Cluster IP Address

Quorum None

MS DTC Cluster Name, Disk Resource (Quorum is the default)

SQL Server IP Address None

SQL Server Network Name SQL Server IP Address

SQL Server (the virtual server itself) SQL Server Network Name, Disk Resources associated with the instance

SQL Server Agent SQL Server

SQL Server FullText SQL Server

One can add other dependencies to these resources, but for a SQL Server 2000 failover cluster to function properly, this is the
base configuration that must not be altered. Remember that any customizations beyond the base setup may result in
unplanned failovers if cluster dependencies are not properly configured.

To check dependencies of a resource

1. Start Cluster Administrator, right-click the resource, and then click Properties.

http://support.microsoft.com/default.aspx?scid=kb;en-us;294209&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;243204&sd=tech
http://support.microsoft.com/?id=835185

2. On the Properties dialog box, click the Dependencies tab, and then click Modify.

3. On the Modify Dependencies dialog box, the available resources for the cluster appear in the Available resources list.
Select the drive to add, click the arrow to move the resource to the Dependencies list, and then click OK.

4. To verify that the resource is now a dependency, on the Properties dialog box, click the Dependencies tab.

SQL Server 2000 Analysis Services and Failover Clustering

The SQL Server 2000 Analysis Services (OLAP and data mining) component is not supported on a failover cluster. For more
information, see the Knowledge Base article "254321 – Clustered SQL Server Do's, Don'ts and Basic Warnings" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;254321&sd=tech

For information on how to make SQL Server 2000 Analysis Services highly available, see the whitepaper
http://www.microsoft.com/downloads/details.aspx?FamilyID=9989a445-142b-4872-ac68-2b50f05228e2&displaylang=en

SQL Mail and Failover Clustering

Using SQL Mail with a SQL Server 2000 virtual server is not completely supported because the underlying MAPI protocol that
is used is not cluster-aware. For more information, see the Knowledge Base article "263556 – How to Configure SQL Mail" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;263556&sd=tech

Upgrading to SQL Server 2000 Failover Clustering from an Earlier Version of SQL Server Clustering

In a high availability environment, upgrading your current production SQL Server may affect availability. It is mission-critical to
devise a plan that will incur only a minimal amount of downtime. While it is impossible to guarantee 100% uptime during an
upgrade, there are options to give you greater amounts of uptime. First, think about these things:

Is your solution still on the HCL for what you are looking to do? If you are considering not only a SQL Server upgrade,
but an operating system upgrade, the solution may have been tested and certified for Windows NT 4.0, but not for
Windows 2000.

If you are using replication, it will have to be disabled/un-configured prior to the upgrade. It would be necessary to have
the replication configuration documented, as well as scripted, so that it can be set up after the upgrade. For more
upgrade information with replication, see the topics "Backing Up and Restoring Replication Databases", "Scripting
Replication", and "Replication and Upgrading" in SQL Server 2000 Books Online.

In conjunction with this, do you also upgrade all of the servers that participate in replication? While it is not necessary, it
is always better to maximize your efforts, and minimize downtime by doing all the work in one shot.

What is your contingency plan? It is critical to have reliable backups of your operating system and SQL Server databases.
Ideally, new hardware would be purchased and configured from scratch to minimize risk and downtime to the
production environment. In this case, the hardware would be configured, and the application or Web site would only
need to incur downtime to upgrade the databases. Downtime may even be eliminated if, for example, the backups from
the previous night were used, and then a differential of the data were applied to the server (if possible). Ultimately, your
upgrade strategy must take into account the availability of your application with the uptime agreement in place with the
users of the system.

Upgrading the Operating System

Windows 2000 Advanced Server and Windows 2000 Datacenter Server offer some new features that enhance SQL Server
2000, such as AWE Memory and greater scalability (for example, a larger number of processors and a larger base memory). If
you are upgrading from Windows NT 4.0, Enterprise Edition, you can upgrade directly to Windows 2000 Advanced Server, but
not directly to Windows 2000 Datacenter Server. Consult the Hardware Compatibility List to see whether your current cluster
solution and components are certified for use with Windows Clustering.

The upgrade from Windows NT 4.0, Enterprise Edition to Windows 2000 Advanced Server is considered a "rolling upgrade."
You do not have to uncluster your failover cluster; instead fail all services over to the other cluster node prior to upgrading the
server.

Follow the steps located at http://www.microsoft.com/windows2000/server/howtobuy/upgrading/path/winnt4ent.asp

This is a permanent change, and there is no uninstall feature. In a development environment, Windows 2000 Advanced Server
can be used to test your application for an eventual Windows 2000 Datacenter Server rollout.

For additional information, see the following sources:

General upgrade information at http://www.microsoft.com/windows2000/server/howtobuy/upgrading/default.asp

http://support.microsoft.com/default.aspx?scid=kb;en-us;254321&sd=tech
http://www.microsoft.com/downloads/details.aspx?FamilyID=9989a445-142b-4872-ac68-2b50f05228e2&displaylang=en
http://support.microsoft.com/default.aspx?scid=kb;en-us;263556&sd=tech
http://www.microsoft.com/windows2000/server/howtobuy/upgrading/path/winnt4ent.asp
http://www.microsoft.com/windows2000/server/howtobuy/upgrading/default.asp

For more detailed information about rolling upgrades, see
http://windows.microsoft.com/windows2000/en/advanced/help/

Knowledge Base article "249735 – Error Message Upgrading Server Cluster Node to Windows 2000," at
http://support.microsoft.com/default.aspx?scid=kb;en-us;249735&sd=tech

Upgrading from SQL Server 6.5

A SQL Server 6.5 cluster and a SQL Server 2000 cluster cannot be configured on the same hardware. Unlike the operating
system, you cannot do a rolling upgrade of SQL Server. You will incur some downtime when upgrading. After the version
upgrade, it is recommended that all client computers accessing SQL Server 2000 be upgraded to Microsoft Data Access
Components (MDAC) version 2.6, which is the version installed on the server.

To upgrade from SQL Server 6.5, consider the following strategies:

Upgrade on the same hardware

If you are looking to use the same hardware and have determined that it is still on the HCL for the operating system you
are using, SQL Server 2000 Books Online has instructions for doing both an active/passive and active/active upgrade. It
involves unclustering SQL Server 6.5, installing a local instance of SQL Server 2000, upgrading the data from SQL Server
6.5 using the Upgrade Wizard, and then upgrading the local instance to a clustered instance. During the upgrade, make
sure that you use the proper cluster disks for the data. Make sure you have a complete and thorough list of your
database server configuration (for example, how to build the segments in your database and where to put the files) so
you can rebuild the server if necessary – this would involve reinstalling the operating system and SQL Server 6.5.

Start with a new Windows 2000 Advanced Server or Windows 2000 Datacenter Server configuration. Install SQL Server
6.5 (for information, see the Knowledge Base article "192710 – Basic Guidelines for Installing SQL Server Version 6.5 or
7.0" at http://support.microsoft.com/default.aspx?scid=kb;en-us;192710&sd=tech), restore your 6.5 databases to this
new server, and follow the guidelines from the previous bullet point. However, unlike the previous bullet point, this
allows a great contingency plan if something happens in the upgrade process because your old hardware is still
configured and ready for use.

Start with a new Windows 2000 Advanced Server or Windows 2000 Datacenter Server configuration, and install a
clustered instance of SQL Server 2000. Create a blank database and import the data from SQL Server 6.5 using Data
Transformation Services (DTS) or a method such as BULK INSERT or bulk copy (BCP). As with the previous bullet point,
this would provide a reliable contingency plan if the data import to SQL Server 2000 does not work. This may also
minimize downtime because most of the upgrade is accomplished while the old servers are still in use. This method
should be tested to see if it degrades performance or availability.

Consider upgrading the SQL Server 6.5 database to SQL Server 7.0 as an intermediary step, and then follow the
guidelines below for upgrading a SQL Server 7.0 configuration.

Upgrading from SQL Server 7.0

As with SQL Server 6.5, a SQL Server 7.0 cluster and a SQL Server 2000 failover cluster cannot be configured to run on the
same hardware, and a rolling upgrade cannot be done with SQL Server – you will incur some downtime. After the version
upgrade, it is recommended that all client computers accessing SQL Server 2000 be upgraded to Microsoft Data Access
Components (MDAC) version 2.6, which is the version installed on the server.

To upgrade from SQL Server 7.0, consider the following strategies:

Use log shipping. This option assumes that the SQL Server 2000 failover cluster is on new hardware. Log shipping can be
manually set up from SQL Server 7.0 configured with a minimum of SQL Server 7.0 Service Pack 2 to SQL Server 2000
Enterprise Edition. For more information, see the documentation for the service pack. There are a couple of caveats:

On SQL Server 7.0, the "pending upgrade" option must be set to true with sp_dboption. However, this will mean
that users cannot create indexes or statistics in the database, and errors will be generated. It is for this reason that
log shipping from SQL Server 7.0 to SQL Server 2000 should be done for a finite amount of time.

When restoring the proper point-in-time full database backup to apply the subsequent transaction log backups,
restore the database in SQL Server 2000 with NORECOVERY.

There will be no graphical way to monitor log shipping as there is when it is configured between two SQL Server
2000 Enterprise Edition servers. You will have to query the log shipping tables directly.

Because of these considerations, it is recommended that you not use log shipping between SQL Server 7.0 and SQL
Server 2000 for an extended time frame in a production environment.

http://windows.microsoft.com/windows2000/en/advanced/help/
http://support.microsoft.com/default.aspx?scid=kb;en-us;249735&sd=tech
http://support.microsoft.com/default.aspx?scid=kb;en-us;192710&sd=tech

Log shipping will provide the maximum amount of uptime, as it will allow the current production database to be up and
processing requests while you are upgrading the SQL Server 2000 virtual server that will become the new production
database. It also provides a contingency plan, as you are not affecting the current production hardware.

To bring the new SQL Server 2000 database online, perform the following:

At a chosen point of time, access to the current production database should be curtailed.

Once all the connections are spun down, make sure all the transaction logs are applied to the SQL Server 2000
database.

Bring the database online with the WITH RECOVERY option of the RESTORE command in Transact SQL. This can
be accomplished on the database after the last transaction log is completed, or expressly put at the end of the last
transaction log restore statement.

Redirect any clients or applications to the new database and server

Test to ensure that everything is functioning as expected, and open up the database for general use

Upgrade on the same hardware

The process is more straightforward than the one for SQL Server 6.5. However, you still must check to see if the
hardware solution is still on the HCL for the operating system you are using. The instructions for upgrading an
active/passive or active/active configuration are in SQL Server 2000 Books Online in the topic "Upgrading to a SQL
Server 2000 Failover Cluster." You may have problems if your shared cluster disk is not configured with the proper
logical drives for the data.

There is a big caveat if this is your option: MDAC 2.6, which is installed with SQL Server 2000, is incompatible with SQL
Server 7.0 clustering. So if you need to revert back to SQL Server 7.0 and MDAC 2.5, test this process in a staging
environment, as you have only one chance to rebind in a production environment. Otherwise, a complete server rebuild
(from the operating system up) is necessary. For more information, see the Knowledge Base article "239473 PRB:
70rebind.exe for Windows 2000 and MDAC Upgrades on Clustered SQL Server 7.0 Servers" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;239473&sd=tech

Start with a new Windows 2000 Advanced Server or Windows 2000 Datacenter Server configuration, and install a
clustered instance of SQL Server 2000. Backup and restore the SQL Server 7.0 databases on SQL Server 2000, or use the
Copy Database Wizard. This also leaves the SQL Server 7.0 database intact and allows a reliable contingency plan.

Start with a new Windows 2000 Advanced Server or Windows 2000 Datacenter Server configuration, and install a
clustered instance of SQL Server 2000. Create a blank database, and import the data from SQL Server 7.0 using Data
Transformation Services (DTS) or a method such as BULK INSERT or bulk copy. Because the old servers are still
configured, this provides a reliable contingency plan if the data import to SQL Server 2000 does not work. This method
also accounts for any changes to files or file group locations.

Upgrade Order

After you understand and evaluate the considerations for upgrading a previous version of SQL Server clustering, the next
question is, in what order should the upgrade take place? If you are doing both an operating system and a SQL Server upgrade
on the same hardware, perform the operating system first as you can do a rolling upgrade and still service requests in your
database. In the upgrade from Windows NT 4.0 to Windows 2000, make sure that attention is paid to detail, such as running
comclust.exe on each node to ensure that MS DTC is clustered. Even if you are using the same hardware and staying with your
current operating system, ensure it meets the requirements (such as service pack levels) for SQL Server 2000 prior to
upgrading SQL Server. Upgrading to SQL Server 2000 should be the last step, including restoring any custom configurations
(like replication).

Important: Before upgrading your production databases, test the process in a testing/staging environment. You want to make
sure you know any potential problems you may encounter prior to rolling out the upgrade in a production environment,
because in a high availability environment, downtime is crucial – each minute counts. One of the biggest things to know is how
long the upgrade will take. Even if you cannot test on clustered machines, it is better to test the upgrade on standalone
machines than to not test at all.

Upgrading a Standalone (Local) SQL Server 2000 Instance to a SQL Server 2000 Virtual Server

Upgrading from a local instance to a clustered instance is possible. However, there are a couple of things to take into
consideration:

If your hardware is not configured as a cluster, you cannot turn it into a cluster. As stated earlier in this paper (see the

http://support.microsoft.com/default.aspx?scid=kb;en-us;239473&sd=tech

section "Hardware Compatibility List"), the solution must be purchased as a cluster.

If your data is not on the proper cluster disks, or the drive array is not configured properly, you will have the same
problems as a SQL Server 6.5 and 7.0 upgrade. You must make sure that the data is on the proper drives prior to
installation, or have a way of moving them by using a method such as attach and detach.

If these considerations are not a problem, make sure Windows Clustering is configured, and then upgrade the instance to a
clustered instance. For a sample of how to upgrade, see the topic "How to upgrade from a default instance to a default
clustered instance of SQL Server 2000 (Setup)" in SQL Server Books Online.

Top Of Page

Verifying Your Failover Cluster Installation

This section provides some methods for testing whether your failover cluster is configured properly. Perform these tests prior
to putting the failover cluster into production. This is recommended to ensure client connectivity and to prevent an interruption
in availability due to testing. For some checklists to use, as well as more information, see Appendix D "Pre- and Post-
Installation Checklists" at the end of this paper.

Verifying Connectivity and Name Resolution

To verify that the private and public networks are communicating properly, perform the following steps. It is imperative to
know the IP address for each network adapter in the cluster, as well as for the IP cluster resources (which can be entered on the
worksheet found in Appendix C in this paper).

Verifying Connectivity and Name Resolution from a Server Node

This method shows how to check both IP connectivity and name resolution at the server level.

1. On a node, on the Start menu, click Run, and then type cmd in the text box. Click OK.

2. Type ping ipaddress/servername where ipaddress/servername is the IP address for the corresponding network adapter
in the other node or the virtual server name for your cluster.

3. Repeat for each node.

For example, assume that the IP addresses are set as shown in the following table.

Node Item to check Value

1 Public Cluster Connection 199.1.3.16

1 Private Cluster Connection 10.1.1.1

2 Public Cluster Connection 193.1.2.199

2 Private Cluster Connection 10.1.1.2

N/A Cluster IP Address 199.2.6.4

N/A SQL Server IP Address 199.10.3.6

N/A Cluster Name MyCluster

In this example, you would type ping 193.1.2.199 and ping 10.1.1.2 from Node 1, and you would type ping 199.1.3.16 and
ping 10.1.1.1 from Node 2. Both nodes should also be able to ping the Cluster IP Address, the Cluster Name, as well as the
SQL Server IP Address.

Verifying Connectivity and Name Resolution from a Client

This method shows how to check both IP connectivity and name resolution at the client.

1. On a client computer, on the Start menu, click Run, and then type cmd in the text box. Click OK.

2. Type ping ipaddress/servername where ipaddress/servername is the IP address for the corresponding network adapter
in the other node or the virtual server name for your cluster.

In this example, if you follow the previous chart, type ping 193.2.6.4 and ping MyCluster to check connectivity to the cluster.
To check the IP address for SQL Server, type ping 199.10.3.6. To check your connection to SQL Server using a named
connection or IP, set up an ODBC connection or use the Client Network Utility.

Failover Validation

Finally, perform a failover of all SQL Server virtual servers to ensure that all resources fail over and restart on another node
with no problems or affecting any other groups. The exception to this would be if SQL Server used the quorum drive against
previous recommendations. This is achieved using Cluster Administrator.

1. On the Start menu, point to Programs and Administrative Tools, and click Cluster Administrator.

All nodes configured for the failover cluster should appear in the bottom of the left pane of Cluster Administrator.

2. Right-click a group containing the SQL Server resources (for example, SQL Server Ins1), and then click Move. The group
selected and its resources will now be moved to its preferred failover node. This change will be reflected in Cluster
Administrator.

Verifying the Service Account

For SQL Server to be able to manage its resources and perform correctly the service account must be part of the cluster ACL.
To ensure that this is configured properly, execute the following in a SQL Query Analyzer window:

select * from ::fn_virtualservernodes()

If there is no output, ensure the account SQL Server is running under is part of the cluster ACL.

Top Of Page

Maintaining a SQL Server 2000 Failover Cluster

Maintaining a failover cluster can be challenging. For example, how do you create an environment that is seamless and works
no matter what node owns the SQL Server processes? This section presents some unique considerations you be aware of
when maintaining a clustered environment.

Administering SQL Server Virtual Servers

There are four places you can administer your SQL Server 2000 virtual server. It is important to understand the similarities and
differences between them so you use the right tool.

SQL Server tools, especially SQL Server Enterprise Manager

SQL Server Enterprise Manager and the other SQL Server tools should be used to administer the database. All accounts
and passwords associated with SQL Server and SQL Server Agent should be changed in Enterprise Manager, and if a port
number needs to be changed, use Server Network Utility. Use the other SQL Server tools as you would for a non-
clustered instance.

SQL Server Setup

To uninstall the virtual server, add or remove the nodes participating in the failover cluster, or to change or add IP
addresses to the failover cluster, use SQL Server setup.

Cluster Administrator

This tool is an operating system-level tool, and is located in Administrative Tools. Prior to SQL Server 2000, most
configuration changes to SQL Server clustering were done in Cluster Administrator. Only use Cluster Administrator
where it is outlined in this paper to ensure proper use with SQL Server 2000 failover clustering. Do not use Cluster
Administrator to add nodes to the resource definitions or modify IP addresses.

The command line CLUSTER utility

The CLUSTER command line tool is basically the operating system command-line interface for most functionality within
Cluster Administrator. As with Cluster Administrator, only use it when necessary.

Windows 2000 Datacenter Process Control and SQL Server 2000 Failover Clustering

Important: Do not use Process Control to modify SQL Server virtual server configurations. Process Control is not a cluster-
aware application, and in the event of a failover, the virtual server modified on one node will not carry over the process control
constraints from the failed node automatically. Use SQL Server Enterprise Manager and the other SQL Server-supplied tools to
modify the SQL Server virtual server configuration.

Backing Up and Restoring

Although backing up your databases in a clustered environment is not completely unlike that of a normal server, it definitely is
more complex. So how do you handle such a situation? When a system like a cluster is configured, it is used for large and
mission-critical databases. Backing up and restoring databases in the terabyte range cannot be handled as you would a 10 MB
database, although many try to treat it as such. General best practices apply:

Make frequent backups.

Have offline storage rotation for backup files put onto tape or any other media.

Test and time restores on all backups so in the event of an emergency, you not only know the backup is good, but how
long it takes. Knowing this is crucial in some server down situations.

Important: Do not use the quorum drive to store backups.

Backing Up to Disk and Tape

More often than not, it is easiest to first back up to disk. Create a cluster disk share so in the event of a fail over, all nodes will
have access to the backup share. Do not attempt to back up to any local drives. After the database is backed up, it should be
copied to another location, backed up to another medium such as tape, and then archived in an offsite location after it is tested
and verified. The goal of backups in a high availability environment is to remove a single point of failure, so if you make a
backup and just keep it on a drive somewhere, even if RAID is used, what do you do if the array fails? While this is unlikely, the
worst-case scenario must be considered.

Another way is to provide two steps in the backup job. Set up two backup methods (for example, tape drive and a shared
cluster disk). Set up your maintenance plan, and then alter the backup task. If the backup succeeds in step one, exit with
success, but if it fails (for any reason), the second method is invoked. This would ensure that there is not a single point of
failure in your backup strategy.

Snapshot Backups

One way to back up and restore a clustered SQL Server is to use a snapshot backup. SQL Server 2000 supports snapshot
backups, which involves the mirroring of your disks, breaking a complete set of disks off the mirror, and then using them as a
backup. Snapshot backups require specialized hardware; and are supported by SQL Server 2000.

Example

TerraServer (http://www.terraserver.com/default.asp) is a Web site that delivers aerial photographs and maps of geographic
locations provided by the United States Geological Survey. The database is currently nearing two terabytes of data, and it uses
the Windows 2000 Datacenter Server with SQL Server 2000 failover clustering in the N+1 scenario. As you can imagine,
backing up this very large database (VLDB) is something that had to be planned carefully.

TerraServer employs a snapshot backup. They have three disk mirrors in addition to RAID (think of them as three columns
lined up next to each other), that is, three copies of the data are kept in synchronization by hardware. Therefore, in the event of
a disk failure, you have two sets of backups. However, at some point, one of the mirror sets is broken off, and essentially, it
becomes a live spinning backup of the database. However, at the time you break it off, it will no longer be kept synchronized,
nor will SQL Server see it. SQL Server 2000 is smart enough to react, and handles its memory buffers appropriately. They then
use a tape solution to back this live volume up, and at some point, spin the disk set back in, and you are back at three mirrors.
This happens on a cyclical basis.

Backing Up an Entire Clustered System

It is not enough to just back up your SQL Server 2000 databases. You must also back up your complete system. It is also
important to back up the system state of a Windows cluster, and if it needs to be restored, restore the system state after the
operating system is put on the machine. This requires a cluster-aware backup program. Some third-party vendors can provide
this service.

For native tools, consider the following:

ntbackup.exe. This tool backs up and restores cluster configuration, which includes the quorum disk and system state.

The tool does not work with remote servers. If the server is running the Cluster service, the System State data will also
include any resource registry checkpoints and the quorum resource recovery log, which contains the most recent cluster
database information.

clusrest.exe. This tool restores the contents of backup quorum log to live quorum.

clustool.exe This tool backs up and restores certain parts of the cluster configuration. It also includes a migration tool for
porting stand-alone file and printer shares to a cluster. Core resources such as the cluster IP address, cluster names,
quorum disks are not restored. This tool is available from the Windows 2000 Server Resource Kit (\apps\clustool\). It
replaces clusconb.exe.

dumpcfg.exe This tool backs up and restores disk signatures. It is installed as part of the Windows 2000 Server Resource
Kit.

Cluster Automation Server. This series of ActiveX® controls for working with Cluster service is part of Windows 2000
(msclus.dll). If you are running Windows NT 4.0, it is available on the Windows 2000 SDK CD (Redist\Cluster\NT4\i386).

The previous considerations for backing up to disk and tape still apply: Ensure that there are no single points of failure and all
nodes have access to the same devices in the same way.

Ensuring a Virtual Server Will Not Fail due to Other Service Failures

To prevent the failure of specific services from causing the SQL Server group to fail over, configure those services properly
using Cluster Administrator. See step 4 of the "To configure thresholds for a resource" section earlier in this paper for
instructions. For example, if SQL Server Full-Text functionality is not used as part of your solution, you should ensure that the
Affect the group parameter is deselected from the properties of the resource.

Adding, Changing, or Updating a TCP/IP Address

Until SQL Server 2000, changing the TCP/IP address required SQL Server to be unclustered if SQL Server clustering was
implemented. To change the TCP/IP address in SQL Server 2000, run the Setup program again. In addition, due to the new
multiple network card/IP address support built into SQL Server 2000, additional TCP/IP addresses can be configured for the
instance. However, you are limited to one IP address per subnet. For example, if you have internal and external customers
accessing the instance, you can assign SQL Server two separate IP addresses to maximize network use and to simplify tracking
the use of your instance of SQL Server.

To add, change, or update a TCP/IP address

1. Insert the SQL Server 2000 Enterprise Edition compact disc in your CD-ROM drive. Select Install SQL Server 2000
Components.

2. Click Install SQL Server 2000 Components, click Install Database Server, and then click Next.

3. On the Computer Name dialog box, select Virtual Server, and enter the name of an existing clustered instance of SQL
Server 2000.

4. On the Installation Selection dialog box, select Advanced options, and then click Next.

5. On the Advanced Options dialog box, select Maintain a Virtual Server for Failover Clustering, and then click Next.

6. On the Failover Clustering dialog box, a TCP/IP address can be added to or removed from the selected instance of SQL
Server 2000.

To remove a TCP/IP address, select the address, and click Remove.

Note: An instance of SQL Server 2000 in a failover cluster requires a TCP/IP address to function. Only remove a TCP/IP
address if more than one exists and if this will not affect users or applications accessing SQL Server.

To add a TCP/IP address, enter the new TCP/IP address in the IP Address box, select the network to use, and then click
Add. The new IP address appears after the existing IP address.

7. On the Cluster Management dialog box, click Next.

8. On the Remote Information dialog box, enter the user name and password for the domain administrator account used
for the clustered instance of SQL Server 2000, and then click Next.

9. When the process is complete, click Finish.

Adding or Removing a Cluster Node from the Virtual Server Definition

Another new feature of SQL Server 2000 failover clustering is the ability to add or remove a cluster node from a SQL Server
virtual server definition. Adding nodes to the existing SQL Server virtual server definition performs all the necessary operations
on the new nodes (including installing binaries, system components, and creating services) and performs the necessary
modifications to the cluster configuration.

To add or remove a node

1. Insert the SQL Server 2000 Enterprise Edition compact disc in your CD-ROM drive. Select Install SQL Server 2000
Components.

2. Click Install SQL Server 2000 Components, click Install Database Server, and then click Next.

3. On the Computer Name dialog box, select Virtual Server, and enter the name of an existing clustered instance of SQL
Server 2000.

4. On the Installation Selection dialog box, select Advanced options, and then click Next.

5. On the Advanced Options dialog box, select Maintain a Virtual Server for Failover Clustering, and then click Next.

6. On the Failover Clustering dialog box, click Next.

7. On the Cluster Management dialog box, select the appropriate nodes to add or remove from the cluster, and then click
Next when you are finished

8. On the Remote Information dialog box, enter the user name and password for the domain administrator account used
for the clustered instance of SQL Server 2000, and then click Next.

9. When the process is complete, click Finish.

Renaming a SQL Server 2000 Virtual Server

Renaming a SQL Server 2000 virtual server is neither possible nor supported. The only way to remove a virtual server is to
uninstall it.

Applying a SQL Server 2000 Service Pack

As mentioned earlier, SQL Server 2000 no longer requires you to uncluster your clustered SQL Server implementation to apply
a service pack. It is recommended that you review the readme file before installing a service pack, as it will contain information
specific to that release. For example, SQL Server 2000 Service Pack 1 requires a reboot after installation, which will affect
availability. In addition, before installing a service pack to a virtual server, consider the following:

Upgrading a virtual server with a service pack is the same as upgrading a single instance of SQL Server. You will need to
repeat the installation of the service pack for each virtual server in your Windows cluster. Installer will upgrade the
underlying components on all nodes that are part of the virtual server definition.

The failover cluster resources for the selected virtual server must be online and running for a successful service pack
installation.

During the upgrade, the selected virtual server will be unavailable to client requests. The service pack may also require
that the failover cluster nodes be rebooted. Plan for this interruption of availability, and let your end users know in
advance so they can plan accordingly.

Check the readme to see which components are upgraded in the service pack. However, if MS DTC is one of those
components, and there is more than one virtual server using MS DTC in your cluster, the other virtual servers may be
affected during the upgrade process to the selected virtual server since it is a shared resource in the cluster.

Prior to installing the service pack, back up all system and user databases, and ensure that the system databases have
enough free space.

To revert to the version of SQL Server installed prior to the service pack installation, you will need to uninstall your
virtual server, reinstall SQL Server 2000, and then recreate your user databases by attaching or restoring.

Top Of Page

Troubleshooting SQL Server 2000 Failover Clusters

Troubleshooting SQL Server 2000 in a failover cluster configuration is not always the same as diagnosing problems on a
standalone server. First, you need to verify that the hardware, operating system, and Windows Clustering are all functioning
properly. Then, if all of those factors are in good health, turn to SQL Server. For more information, see "Failover Cluster
Troubleshooting" in SQL Server Books Online

Service Level Agreements

Ensure that you have a Service Level Agreement (SLA) with your hardware and software vendors that match the level of
support you expect. Because a failover cluster is usually a mission-critical production system, purchasing a SLA that guarantees
a 48-hour turnaround may not be effective. The value of a support contract may be the difference between a small amount of
downtime, and a very long amount of downtime. It is imperative in a production environment that a support call is placed prior
to any troubleshooting, because troubleshooting may increase downtime if it is a server down situation.

First Steps

Check the operating system's Event Viewer at the Application, System, and Security logs. Sometimes the problem is apparent,
such as a disk or network card failure, or relevant error messages from the operating system or SQL Server may appear. Next,
check the cluster logs, which are located where the system variable %clusterlog% is set (generally \\winnt\cluster). These are
the files:

Sqlstpn.log. The log for the SQL Server Setup, where n is the number of the setup attempts.

Sqlclstr.log. The log for the clustered instances of SQL Server.

Cluster.log. The main cluster log file.

For complete instructions for enabling and disabling logging, see the Knowledge Base article 168801 "How to Enable Cluster
Logging in Microsoft Cluster Server", located at http://support.microsoft.com/default.aspx?scid=kb;en-us;168801&sd=tech

This information is also invaluable if a call is placed to your hardware vendor or Microsoft Product Support Services. The more
information you can provide, the more quickly they will be able to help you resolve your issue.

Repairing a Single Node Failure and Quorum Disk Failure

If a single node fails in the cluster (due to hardware failure) or the quorum disk fails, follow these steps to rebuild the node and
rejoin the cluster:

1. After verifying that all cluster resource groups have been successfully moved to another node in the cluster, use the SQL
Server installation program to remove the node from the SQL Server virtual server definition (see the section "Adding or
Removing a Cluster Node from the Virtual Server Definition" earlier in this paper for instructions). Setup should detect
the lost node and automatically move it to the Unavailable nodes list.

2. Evict the server node using Cluster Administrator.

3. Repair the cluster node. This may require building a new cluster node or restoring from a recent backup.

4. Rejoin the cluster.

5. If MS DTC is used, run comclust.exe on the node.

6. Rerun the SQL Server 2000 install on the node that did not have the problem. Select the evicted node from Available
nodes list and add it to the Configured nodes list.

Note: Evicting a node from the cluster definition prior to removing it from the SQL Server virtual server definition will cause
problems. If a node is evicted, it will not be displayed in SQL Server Setup, and thus, will not be cleaned up properly. This can
cause the cluster to inappropriately add the node as a possible owner for SQL Server resources after it rejoins the cluster if the
SQL Server resource DLL is left in place on the evicted node. This is a rare occurrence, but you should consider it. Also, if you
attempt to add the node back without first removing it from the Windows cluster definition, SQL Server 2000 failover
clustering may become broken.

Multiple Node Failure

If more than one node fails, but not all nodes fail, repeat the preceding steps to repair all nodes. However, if all nodes fail, and
the quorum cannot be repaired, you will have to rebuild all nodes in the cluster. This is why tested and frequent backups are
crucial.

http://support.microsoft.com/default.aspx?scid=kb;en-us;168801&sd=tech

Rebuilding the master Database in a Clustered Environment

If the master database needs to be rebuilt in a SQL Server 2000 failover cluster, follow these steps:

1. Go to the node currently owning the SQL Server resource.

2. Bring the SQL Server virtual server offline using Cluster Administrator.

3. Make sure the original shared installation files or the SQL Server CD are available.

4. If you are using the SQL Server CD, copy all files from the CD to a local hard drive. Remove the read-only attribute from
the files after copying them to the hard drive.

5. Execute rebuildm.exe. Point it to the original shared installation files or to the files copied from the CD to the local hard
drive.

6. Choose Windows or SQL Collation.

7. After rebuildm.exe completes, verify that the resources can be brought online and they successfully fail over.

8. Verify the collation by executing sp_helpsort.

These steps do not include the steps necessary to deal with user databases. In this case, SQL Server 2000 was a new
installation and included only the databases shipped with SQL Server. If you have a recent backup of master, you may be able
to restore it at this point. If you do not, you will have to restore or attach the user databases.

Common Troubleshooting Issues

This section presents some of the common issues and solutions when implementing failover clustering.

Q: When the installation process attempts to install the SQL Server binaries on the other node(s), it fails (possibly with a failed
logon request error). Why?

A: If you are installing from a network share, make sure that both nodes have connectivity to the share without specifying a
network password to connect (for example, you should be able to view \\sharecomputer\sharepath without specifying
credentials). If you are installing from CD-ROM drive on Node A, make sure the cluster nodes are configured to communicate
properly, and that the proper accounts exist on each node, and that the other nodes are set up for Windows Authentication.
Mapping a drive letter, even if it is the same on all nodes, will not work, because the installation process accesses the UNC path
of the share.

Q: After installing and rebooting the server, the SQL Server install doesn't seem to complete. Why?

A: Sometimes file renames are blocked due to locks on startup (for example, MDAC); therefore, if the file remains read only, it
never completes.

Q: MSCS lost connectivity to my SQL Server virtual server. Why?

A: This may be because the process used to perform the IsAlive check is run in the context of the MSCS service account. This
account must have sysadmin rights to SQL Server. If this behavior is not exhibited, check all logins and cross-reference with
the cluster logs to see if there is an IsAlive check.

Q: Problems ensue when changing the network name of SQL Server after the install. How can this be fixed?

A: SQL Server binds itself to the network name used at install time. If it is changed for some reason, in certain occurrences, it
may require a complete reinstall.

Q: After an installation of a new SQL Server virtual server, clients cannot connect to the server, especially using graphical user
interface (GUI) tools. Why?

A: The DNS and WINS servers need to refresh to recognize the new SQL Server 2000 virtual server installation, which may take
a little bit of time. In some cases, it may be necessary to manually insert the entries into the DNS and WINS configuration files.

Q: Microsoft Exchange 2000 and SQL Server 2000 are both installed on my cluster; however, the full-text service in SQL Server
seems to be failing. Why?

A: If both must exist on the same cluster (although this is not recommended), install Exchange 2000 first, and then install SQL
Server 2000.

Q: I am encountering problems with full-text setup in my failover clustering. What might be wrong?

A: In some cases, Setup may fail because the underlying Microsoft Search service does not exist. If this is the case, you may

have to manually create the type to get the installation to complete next time. To create the resource, execute the following
from a command prompt:

cd %windir%\cluster
regsvr32 gathercl.dll

Ensure that the file is registered on all nodes. You can then rerun Setup and everything should work fine.

Top Of Page

Conclusion

SQL Server 2000 Failover Clustering is the leading option as a primary method to achieve high availability for your databases.
It offers full transactional consistency, and a failover to other another node that is automatic. By eliminating single points of
failure both at the software and at the hardware level and with the proper processes and disaster recovery plans in place, you
may be able to achieve five nines of availability.

Top Of Page

Appendix A –Additional Information

For more information about SQL Server 2000 failover clustering, see the following resources:

Microsoft SQL Server home page at http://www.microsoft.com/sql/

For more information about the architecture, technology, and terminology of a Windows cluster, see "Windows
Clustering Technologies: Cluster Service Architecture," at
http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/clusterarch.asp

For more information about failover clustering and SQL Server 2000 in general, see SQL Server 2000 Books Online.

For more information about clustering in Windows NT 4.0, Enterprise Edition Server at
http://www.microsoft.com/ntserver/ProductInfo/Enterprise/default.asp and in Windows 2000 Advanced Server and
Datacenter Server at http://www.microsoft.com/windows2000/technologies/clustering/default.asp

High Availability Operations Guide for Windows NT Server 4.0 at
http://www.microsoft.com/ntserver/techresources/deployment/NTserver/highavail1.asp

For more information about BizTalk and clustering, see the whitepaper "Deploying BizTalk Server: Clustering
Considerations" at http://msdn2.microsoft.com/library/ms942879.aspx

MSDN® developer program at http://msdn2.microsoft.com/default.aspx

For more information on SQL Server 2000 capacity planning, see the Microsoft SQL Server 2000 Administrator's
Companion at http://www.microsoft.com/mspress/books/4519.asp

Microsoft Support Services Web site (contains technical articles and downloadable updates) at
http://support.microsoft.com

Top Of Page

Appendix B – Step-By-Step Installation Instructions for a New Virtual Server

This section will show the installation of a new SQL Server 2000 virtual server.

1. Shut down any unnecessary services that may interfere with the installation process, as defined in the module. If you
would like, create two batch scripts that will both start and stop the services.

2. Insert the SQL Server 2000 Enterprise Edition into the CD-ROM drive.

3. When the CD menu appears, click SQL Server 2000 Components, and then click Install Database Server.

4. In the Welcome dialog box, click Next.

http://www.microsoft.com/sql/
http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/clusterarch.asp
http://www.microsoft.com/ntserver/productinfo/enterprise/default.asp
http://www.microsoft.com/windows2000/technologies/clustering/default.asp
http://www.microsoft.com/ntserver/techresources/deployment/ntserver/highavail1.asp
http://msdn2.microsoft.com/library/ms942879.aspx
http://msdn2.microsoft.com/default.aspx
http://www.microsoft.com/mspress/books/4519.asp
http://support.microsoft.com/

5. In the Computer Name dialog box, click Virtual Server, type the Network name of your cluster's virtual machine, and
then click Next.

6. In the Name box of the User Information dialog box, type your name, and in the Company box, enter your company.
Click Next.

7. In the Software License Agreement dialog box, review the End-User License Agreement and click Yes.

8. Enter the IP address that will be used for the virtual server, and select the cluster network to be used from the Network
to use dropdown list. When complete, click Add. Your entries will be displayed in the window at the bottom of the
window. You may add more than one IP address at this time. Click Next to continue.

9. In the Cluster Disk Selection dialog box, select one drive to place the data files, Adding additional drives must be done
post-installation, as noted in the section "Adding A Logical Disk To Your Cluster Configuration" earlier in this paper. Click
Next to continue.

If you are configuring a one-node cluster with the "-localquorum" switch, the only drive that will be available to you is the
quorum, and you will see a message similar to the one below. In a production environment, do not use the quorum disk
for data or log purposes.

10. In the Cluster Management dialog box, you can add or delete cluster nodes from the virtual server definition. Click
Next.

11. In the Remote Information dialog box, enter account information used to configure and administer the server cluster.
Click Next.

12. In the Instance Name dialog box, click Default to make the installation the default instance, or leave it unchecked and
enter a distinct name for the instance in the Instance name entry box. Click Next to continue.

13. In the Destination Folder area of the Setup Type dialog box, verify that the Program Files location is set to a valid
local drive on each node (for example, C:\Program Files\Microsoft SQL Server) and that the Data Files location is set
to the drive selected on the Cluster Disk Selection dialog box. If you want to configure a specific directory on the drive
for the data, click the Browse button. Click Next.

14. In the Service Accounts dialog box, select either Use the same account for each service or Customize the settings
for each service. In the Password box type password. Confirm the Username, Password, and Domain are set to the
proper values. If you selected Customize the settings for each service, you will need to enter a Username, Password,
and Domain for both the SQL Server and SQL Server Agent services. Click Next.

15. In the Authentication Mode dialog box, select either Windows Authentication Mode or Mixed Mode. If Mixed
Mode is selected, enter a password for the sa account. Click Next.

16. In the Start Copying Files dialog box, click Next.

17. In the Choose Licensing Mode dialog box, choose the right licensing scheme, enter the proper value, and click
Continue.

18. A setup notification box will now appear as the SQL Server 2000 virtual server is installed.

19. In the Setup Complete dialog box, click Finish. If prompted to restart your servers, make sure you reboot all nodes of
your cluster.

Top Of Page

Appendix C - Configuration Worksheets

Server Cluster Configuration Worksheet

A server cluster should be installed with a minimum of two nodes, and up to four nodes (Windows 2000 Datacenter Server
only). When configuring the server cluster using the Cluster Service Configuration Wizard, use this worksheet in conjunction
with the Server Cluster Configuration Worksheet.

Node Configuration Worksheet

This worksheet will be used to configure each individual server prior to clustering. When configuring the server cluster using
the Cluster Service Configuration Wizard, use this worksheet in conjunction with the Server Cluster Configuration Worksheet.

SQL Server 2000 Virtual Server Configuration Worksheet

Currently, up to 16 instances (1 default, 15 named or 16 named) can be installed on a server cluster. The information on this

worksheet is in the order in which it appears during the setup process.

Shared Cluster Disk Partition Configuration Worksheet

This worksheet will help you configure your shared cluster disk array at the hardware level. Please note that the terminology
that applies to the disk array may vary from manufacturer to manufacturer, but the concepts are generally the same.

RAID Partition is a logical grouping of disks in the shared cluster disk array. RAID Configuration is the type of RAID
configuration that will be used when configuring the disks for use. Type of Disk is the basic drive size for each drive that will
be part of the RAID Partition. Number of Disks is the number of physical drives that make up the RAID Partition. Partition
Size is the amount of space available to the operating system for use.

Example:

SQL Server 2000 Failover Cluster Disk Configuration Worksheet

This worksheet will serve as an easy reference when configuring the operating system. The operating system should not be
placed on the shared cluster disk. There needs to be at least two logical disks configured: one for the quorum, and one for SQL
Server data (at least one per instance). Anything else is dependant upon the specific needs of your configuration. Also
remember to take any mapped/shared drives, CD-ROMs, etc. that would need to be configured into account when filling out
this sheet. All disks must be configured as basic, not dynamic, and must be formatted with NTFS. Use this in conjunction with
the "Shared Cluster Disk Partition Configuration Worksheet."

Logical Disk is the drive letter that the operating system will use, and that SQL Server will recognize. Size is the size of the
logical disk. RAID Partition is the RAID Partition to use (see the "Shared Cluster Disk Partition Configuration Worksheet") –
you can put more than one Logical Disk on a RAID Partition. Owned By is for entering the owner of the particular Logical Disk.
Use is for entering the purpose of the drive.

Example entries:

This example shows; for example, drive S:\ which will be formatted as a 162 GB data partition. Initially, there is no need to
create a device for your SQL Server 2000 database to fill up the entire 162 GB if it is not necessary. Size your devices
appropriately and plan for growth.

Top Of Page

Appendix D – Pre- and Post-Installation Checklists

Pre-Installation Windows Clustering Installation Checklist

This checklist will assist you in verifying you are ready to install your server cluster.

Post-Installation Windows Clustering Installation Checklist

This checklist will assist you in verifying your server cluster.

Pre-SQL Server 2000 Virtual Server Installation Checklist

This checklist will assist you in verifying you are ready to install your SQL Server 2000 virtual server.

Post-SQL Server 2000 Virtual Server Installation Checklist

This checklist will assist you in verifying your SQL Server 2000 virtual server installation.

Top Of Page

SQL Server™ 2000 Reporting Services Deployment Guide
Updated : March 27, 2004

By Susie Bernard and John H. Miller Microsoft Corporation

Applies To: SQL Server 2000

Abstract: SQL Server Reporting Services provides a comprehensive, server-based reporting platform. Reporting Services
combines the speed, scalability, and manageability of centrally-managed reporting with the flexibility and on-demand nature
of desktop and Web-based applications. This deployment guide provides an overview of Reporting Services components and
provides guidelines for installing and configuring Reporting Services.

On This Page

Introduction
Deployment Planning
Deployment Scenarios
Interoperability
Installation
Configuration
Additional Resources

Introduction

Microsoft® SQL Server™ Reporting Services is a reporting platform that combines the speed, scalability, and manageability of
centrally managed reporting with the flexibility and on-demand advantages of desktop and Web-based applications.

To print this guide, click Printer-Friendly Version at the bottom of this page.

Overview

This guide provides a high-level overview of Reporting Services components, describes the hardware and software
requirements for deploying Reporting Services, and offers installation and configuration instructions. It is meant to provide
you with sufficient guidelines to install and configure Reporting Services.

This guide does not provide comprehensive information about Reporting Services or Reporting Services operations. For
detailed information about using and maintaining the product, see SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/bb545450.aspx), also available on the product CD. SQL Server 2000 Reporting Services
Books Online is referenced throughout this guide. For links to more resources, see "Additional Resources" at the end of this
guide.

This document assumes that you have some familiarity with the following topics:

Microsoft SQL Server 2000

Microsoft Internet Information Services (IIS)

The Microsoft .NET Framework

Reporting Services Components

In order to understand this guide, you should be familiar with the main components of Reporting Services.

The three main server components of Reporting Services are a server layer, an application layer, and a data layer, as shown in
Table 1.

Table 1. Server components

Server
component Details

http://msdn2.microsoft.com/library/bb545450.aspx

Report Server
(server layer)

Primary component of Reporting Services that provides:

Programmatic interfaces.

Report processor.

Data processing extensions.

Rendering extensions.

Scheduling and delivery processor.

Delivery extensions.

Report Manager
(application layer) Web-based report viewing and management tool.

Report Server
database (data
layer)

SQL Server databases (ReportServer and ReportServerTempDB, by default) that store the information
used by Report Server. ReportServer stores static configuration data (metadata) such as:

Report definitions.

Data sources.

Users, policies, and roles.

Report snapshots.

ReportServerTempDB stores temporary information such as:

Session data.

Cached reports.

Reporting Services client components include Report Designer and a method for viewing reports, such as a supported Web
browser. Client components might also include third-party tools that you create or purchase.

Table 2. Client components

Client
component Details

Report
Designer Report authoring tool installed by Reporting Services and integrated with Microsoft Visual Studio® .NET 2003.

Web
browser

Used to view and manage reports. For more information, see "Browser Types Supported by Reporting Services"
in SQL Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa256321.aspx).

Third-party
tools Management and authoring tools supported through open interfaces and a Web services API.

See Figure 1 for an architectural overview of these components. This diagram includes tools that are included with Reporting
Services and SQL Server, and shows how custom tools provided by third-party vendors fit into the overall framework. It also
shows the flow of requests and data among the server components, and which components send and retrieve content from a
data store.

Report Server is implemented as a Web service and a Microsoft Windows® service. The Web service runs as an ASP.NET
application in IIS. The Windows service is used to activate a report server during installation, and to support the ongoing
operations of the Scheduling and Delivery Processor.

http://msdn2.microsoft.com/library/aa256321.aspx

Figure 1: Reporting Services architecture

Data source processing, report rendering, and delivery are all implemented using components that are resident on Report
Server. These extensions use published application programming interfaces (APIs).

Reporting Services includes a set of tools that enable you to use the product without modification. However, because Report
Server is fully programmable, you can replace existing tools with custom applications that you create. Examples of custom
applications that you might want to create include applications to:

View reports

Design reports

Manage reports

In addition to writing custom applications, you can create custom extensions to extend the data processing, rendering, security,
and delivery capabilities of a report server.

For more information, see "Reporting Services Component Overview" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa256330.aspx).

Top Of Page

Deployment Planning

There are a few items to consider before installing and configuring Reporting Services. This section describes these
considerations:

Choosing a Reporting Services Edition

Determining Virtual Directory Names

Choosing a Licensing Mode

Understanding System Requirements

Choosing a Reporting Services Edition

First you must determine which edition of Reporting Services to install. Reporting Services is available in Standard Edition,
Enterprise Edition, Developer Edition, and Evaluation Edition. Editions vary by licensing restrictions and by the features they
support. For more information about features, see "Reporting Services Features" in SQL Server 2000 Reporting Services Books

http://msdn2.microsoft.com/library/aa256330.aspx

Online (http://msdn2.microsoft.com/library/aa256334.aspx).

Standard Edition

Standard Edition is designed for a small organization with basic reporting needs. Choose Standard Edition if you do not need
to support a large number of users, and do not need to support the dynamic distribution of reports to many users.

Do not deploy Standard Edition if you plan to implement any of the following features:

Clustered report servers (that is, report servers implemented in a Network Load Balancing cluster)

Security extensions, including support for custom or forms-based authentication

Data-driven subscriptions

Support for more than four processors

For more information about deploying this edition, see "Standard Deployment Model" later in this guide.

Enterprise Edition

For large organizations, you should consider installing Enterprise Edition. Enterprise Edition is designed for servers that must
meet the high-volume reporting requirements of a large organization. Enterprise Edition supports all Reporting Services
features, including data-driven subscriptions that derive recipient information at run time from a database, custom security
models, and server clusters for (Web server Network Load Balancing or SQL Server failover). It also supports installation on a
computer equipped with four or more processors.

For more information about deploying this edition, see "Enterprise Deployment Models," later in this guide.

Developer Edition

Developer Edition is designed for developers who want to integrate or extend the report server for use with a custom
application, or who want to build custom tools. Developer Edition runs on the largest variety of operating systems. Developer
Edition supports the same features as Enterprise Edition, but it is licensed for use as a test and development system, and is not
suited for production servers.

Evaluation Edition

Evaluation Edition is designed to allow the user to evaluate all of the features of Reporting Services. Evaluation Edition is
identical to Developer Edition; however, Evaluation Edition is licensed for evaluation purposes, and ceases to function after 120
days.

Determining Virtual Directory Names

Reports are accessed through virtual directories on the report server. Before running Reporting Services Setup, determine how
you want to name your Reporting Services virtual directories. During setup you are prompted to configure the virtual
directories for both Report Server and Report Manager. Virtual directory names must comply with IIS naming conventions. For
more information about IIS naming conventions, see the IIS documentation.

Note You can access IIS documentation on a computer running IIS by typing http://localhost/iisHelp in your browser address
bar and pressing ENTER.

Table 3 shows the URLs created for Report Manager and Report Server when you select the default virtual directory names
during setup.

Table 3. URLs created when you use the default virtual directories

Component URL

Report Server http://<server>/ReportServer

Report Manager http://<server>/Reports

Note To access reports directly by URL, you need to use the fully qualified URL of the report on Report Server as follows:

http://msdn2.microsoft.com/library/aa256334.aspx

http://<server>/ReportServer?/<folder name>/<report name>

For more information, see "Reporting Services Virtual Directories" (http://msdn2.microsoft.com/library/aa225467.aspx) and
"Report Server Folder Namespace" (http://msdn2.microsoft.com/en-us/library/aa256345.aspx) in SQL Server 2000 Reporting
Services Books Online.

Choosing a Licensing Mode

Reporting Services is included in your SQL Server 2000 license. You must have a valid SQL Server license for each computer
that has a SQL Server 2000 component (such as Reporting Services) installed. For example, the computer running Reporting
Services requires a SQL Server license. If the report server database is located remotely, a separate license is required for the
remote computer running SQL Server. You do not need a license to install Report Designer, the administrative tools, samples,
or product documentation.

During setup, choose one of the following two licensing modes:

Per seat licensing

Per processor licensing

Per seat licensing requires a license for the computer running Reporting Services, as well as a client access license (CAL) for
each user or client device that accesses reports either directly or indirectly (including the Report Designer).

Per processor licensing is required for extranet or internet deployments. It requires a single license for each CPU in the
operating system instance running Reporting Services. This license does not require any device or CALs.

For detailed information about licensing, see "How to License Reporting Services" .

Understanding System Requirements

Reporting Services hardware and software requirements are described in this section. You can install Reporting Services on the
same computer as the SQL Server database, or on a separate computer. You can use the client component of Reporting
Services on the same computer as the other components or on separate client computers.

Server Requirements

Hardware, software, and security requirements are outlined here for Report Server, Report Manager, and report server
database.

Hardware Requirements

The minimum hardware requirements for installing Reporting Services in a standard deployment model are listed in Table 4.
For information about this basic deployment model, see Standard Deployment Model later in this guide. Note that these are
minimum requirements, not recommendations.

Table 4. Minimum hardware requirements for a standard deployment

Computer processor RAM Hard disk space (per component)

PC with an Intel or compatible Pentium II 500
MHz or higher processor

256 MB, 512 MB minimum
recommended

Report Server (includes Report Manager): 50
MB

Report Designer: 30 MB

Microsoft .NET Framework: 100 MB

Samples, AdventureWorks database, and
Books Online: 145 MB

Remember that hardware recommendations vary considerably, depending on how you intend to use the product. If you are
using an enterprise deployment model, as described later in Enterprise Deployment Models, your hardware needs increase
significantly.

The following guidelines are general and do not address all of the factors that go into capacity planning, but they can help you
plan an enterprise Reporting Services deployment:

http://msdn2.microsoft.com/library/aa225467.aspx
http://msdn2.microsoft.com/en-us/library/aa256345.aspx
http://www.microsoft.com/sql/technologies/reporting/default.mspx

If you plan to distribute a high volume of reports, use a fast dual- or quad-processor computer to host Report Server
components. If additional processing capability is required, increase the amount of RAM on the report server and
consider the following:

The first step you can take to scale out your Reporting Services implementation is to use a dedicated SQL Server
instance to host the report server database. For more information, see "Using a Remote SQL Server Instance to
Host a Report Server Database" later in this guide.

The next you can take to scale out Reporting Services is to implement Network Load Balancing in an IIS server
cluster (that is, implement a Web farm).

If reports are mission critical, deploy the report server database in a server cluster configured for failover. This reduces
the risk of reporting down time.

In a high-volume reporting scenario, it is the mainly the computer (or computers) hosting the report server database that
benefits from increased available hard disk space, not the report server itself.

In general, the computer hosting the report server database requires the most available disk space. Report servers themselves
benefit the most from increased RAM and processor speed.

Note Some Windows operating systems, such as Windows Server 2003 Datacenter Edition and Windows Server 2003
Enterprise Edition, can provide more than 2 gigabytes (GB) of memory to applications. If you are running Reporting Services
on one of these operating systems, Reporting Services can take advantage of that amount of memory. For information about
editing the Boot.ini file to modify large memory allocations, see your Windows documentation.

Software Requirements

This section provides information to assist you in preparing component servers for Reporting Services installation. It is
recommended that you review this section before running Reporting Services Setup.

Report Server

Before running Reporting Services Setup, use Table 5 as a checklist to ensure that the computer serving as the report server
has the appropriate software components enabled or configured.

Table 5. Report Server software requirements

Software Required
for setup Details

Microsoft Distributed
Transaction
Coordinator (MSDTC)
service

Yes
Verify that the startup type for the service is set to Automatic or Manual. To view service
state, point to Administrative Tools in Control Panel and click Services. Right-click
Distributed Transaction Coordinator, and then click Properties.

Microsoft Data
Access Components
(MDAC) 2.6 or higher

Yes See Microsoft Knowledge Base Article 301202, HOW TO: Check for MDAC Version
(http://support.microsoft.com/default.aspx?kbid=301202&product=mdac).

IIS 5.0 or later1 Yes

Verify that the default website is accessible through http://<server>.

The default website IP address must be mapped to (All Unassigned). To verify this setting,
open the Default Web Site Properties dialog box in Internet Information Services. The IP
address is specified on the Web Site tab.

IWAM_<computer> account must be enabled.

Microsoft .NET
Framework 1.1 Yes If the .NET Framework 1.1 is not installed, Setup installs it.

http://support.microsoft.com/default.aspx?kbid=301202&product=mdac

ASP .NET Yes
Ensure that ASP.NET 1.1 is installed and registered with IIS. See "ASP.NET Configuration" in
"Preparing to Install" of SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179363.aspx).

Connection to SQL
Server 2000 SP3a
instance.

Yes For more information, see "Report Server Database Requirements"requirements later in this
guide.

User account
credentials Yes

You must have appropriate credentials necessary to log on and perform the database
creation on the SQL Server instance hosting Report Server database. For detailed
information, see "Security Requirements" later in this guide.

SSL No

If you select Use SSL (Secure Sockets Layer) connections during setup, Setup checks to
see if an SSL certificate is present on the computer. If not, you must either install SSL and
continue the setup, or select to not use SSL at this time and configure Report Server for SSL
later.

SMTP server No Optional, for e-mail delivery of reports.

Note Servers running Windows Server 2003 must be configured as application servers before you install Reporting Services
on them. For more information, see your Windows Server 2003 documentation.

Report M anager

Report Manager is an ASP.NET application that is installed by Setup on the same computer as Report Server. Installing Report
Manager is optional. If you use custom report viewing and management tools, for example, you do not need this component.

Report Server database

The computer hosting the report server database must be running SQL Server 2000 SP3a. The ReportServer and
ReportServerTempDB databases created during setup are used together. A connection between a report server and a report
server database is established during setup. If you rename or move the databases after setup, you must run the Rsconfig.exe
utility to update the connection information. For more information, see "Configuring a Report Server Connection" in SQL
Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa972232.aspx).

Important Do not delete the report server databases, modify their structure, or create applications that interact directly with
these databases, either during or after deployment.

Security Requirements

To successfully and securely deploy Reporting Services, you must be familiar with the accounts used to install Reporting
Services.

Note Reporting Services uses a role-based security model. However, security for Reporting Services is multi-layered. A
thorough description of security architecture is beyond the scope of this guide. For more information, see "Using Role-Based
Security" in SQL Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa237758.aspx).

Account Requirements

The credentials required to run Setup are different from the account credentials configured during setup and used at run time,
as depicted in Figure 2. This section describes credentials needed to:

Run Setup and install the report server database.

Start the Report Server Windows service.

Configure report server database access.

Configure IIS and the Report Server Web service.

http://msdn2.microsoft.com/library/aa179363.aspx
http://msdn2.microsoft.com/library/aa972232.aspx
http://msdn2.microsoft.com/library/aa237758.aspx
http://msdn2.microsoft.com/library/aa237758.aspx

Figure 2: User credentials required by Setup vs. credentials used at Reporting Services run time

To Run Setup and Install the Report Server Database

To run Setup, you must be a member of the local Administrators group. Setup uses the credentials of the user installing the
product to log on to a SQL Server instance and create the report server database.

You must also have permission to perform the following tasks on the SQL Server instance used to host the report server
databases:

Create logins

Create roles

Create databases

Assign permissions to users

Note If you do not want to use the credentials of the user running Setup, you can supply alternative credentials for
creating the report server database by running Setup.exe from the command line. For detailed information, see
"Installing Reporting Services from the Command Line" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179337.aspx).

The credentials that you supply on the Report Server Database page in Setup are used by Report Server services to connect
to the SQL Server database. For more information, see "To Configure Report Server Database Access" later in this section.

To Start the Report Server Windows Service

During setup, you are prompted to specify a service account. This is the Report Server Windows service account. Your options
are to:

Use a built-in account (such as NT AUTHORITY\SYSTEM).

Use a domain user account.

If you are installing Reporting Services on Windows 2000 Server, and the SQL Server instance that is hosting the report server
database is on a separate computer, consider using a domain user account. In some cases, depending on how your network is
configured, a domain user account is more effective in supporting subscription and delivery operations used to distribute
reports to other domain users. The main reason is that domain accounts have the permissions required to check credentials of
domain users. This is necessary if subscriptions are owned by domain users. However, there are cases where a built-in account
also works.

To Configure Report Server Database Access

During setup, you specify the server and instance of SQL Server to host the report server database. At the same time, you also

http://msdn2.microsoft.com/library/aa179337.aspx

specify one of the following types of credentials used by Report Server to connect to the report server database (post-setup):

Service Account (default)

Domain User Account

SQL Login Account

If you select SQL Login Account from the Credentials Type list on the Report Server Database page, Setup creates the
account using and grants SQL Server login credentials to it.

Note A SQL Server update is required if your deployment meets the following conditions:

Reporting Services is installed on Windows Server 2003.

You select Service Account credentials to connect to the report server database.

The report server database is installed on a different computer than Report Server (that is, the database is remote).

Details about the update and how to download it are in the Microsoft Knowledge Base article," Issues That Are Resolved
in SQL Server 2000 Patch SQL2000-KB810185-8.00.0859"(http://support.microsoft.com/default.aspx?scid=kb;en-
us;821334). If you do not want to apply the update, you must choose a different type of credentials, or choose a SQL
Server instance located on a different operating system.

To Configure IIS and the Report Server Web Service

Before running Setup, verify the following configurations on your report server computer:

For Setup to configure IIS, the IWAM_<computer> account must be enabled

The default Web site IP address in IIS must be mapped to (All Unassigned)

During run time (post-setup), the Report Server Web service uses the <computer>\ASPNET account. You cannot specify a
different account to use for Web service operation. You must use the user account defined for ASP.NET.

Report Server and Report Manager are accessed through virtual directories that are created and configured during setup. How
your Web server is configured can affect your Reporting Services installation. It is assumed that you are using a default IIS
configuration. If you are using a non-default configuration, you might encounter errors during setup.

Setup defines the virtual directories under the default Web site. If you are using IIS 6.x, Setup uses the default application pool.
If the default Web site or application pool is not available, Setup continues, but your installation will not function properly after
Setup is finished.

For more information about resolving these issues, refer to the Microsoft SQL Server 2000 Reporting Services Readme file and
to postings on the public newsgroups (http://www.microsoft.com/sql/community/newsgroups/dgbrowser/en-
us/default.mspx?dg=microsoft.public.sqlserver.reportingsvcs).

Secure Socket Layer Configuration

When you install Reporting Services, one of the first things you configure in Setup is whether or not to use SSL to control
access to the Reporting Services and encrypt the data and credentials transported over network. For security reasons, you
should choose to use SSL. For detailed information about using and configuring SSL for Reporting Services, see "Using Secure
Sockets Layer (SSL) for SQL Server 2000 Reporting Services" (http://msdn2.microsoft.com/library/aa902687.aspx). This article
also contains information about how to install a Root Certificate Authority and how you can request Certificates to secure your
Reporting Services Web site.

Client Requirements

This section describes the client computer requirements for viewing and designing reports.

Viewing Reports

The client computer used to view reports must be running a supported Web browser. When the client requests a report
directly from Report Server, either using a URL or Report Manager, Report Server implements the HTML rendering extension
by default. Depending on the client's browser, the HTML rendering extension produces reports in either HTML 4.0 or HTML 3.2.
Supported browsers for HTML 4.0 include:

http://support.microsoft.com/?id=821334
http://support.microsoft.com/default.aspx?scid=kb;en-us;821334
http://www.microsoft.com/sql/community/newsgroups/dgbrowser/en-us/default.mspx?dg=microsoft.public.sqlserver.reportingsvcs
http://msdn2.microsoft.com/library/aa902687.aspx

Microsoft Internet Explorer for Windows versions 5.5 and 6.

Netscape Navigator for Windows version 7.1.

HTML 3.2 is delivered to all other browsers supporting HTML. This includes earlier versions of the browsers mentioned above,
as well as Internet Explorer for Pocket PC.

The HTML rendering extension supports Microsoft Office Web Components (OWC). OWC is a specific type of Microsoft
ActiveX® control that provides interactive chart and Microsoft PivotTable® controls. Various report rendering formats might
have different requirements. For example, a client must use Adobe Acrobat Reader to view PDF files and Microsoft Excel to
access reports in XLS format. Similarly, you must have Microsoft Office Web Components installed on the client computer in
order to use the HTML with Office Web Components rendering format.

Note Various report rendering formats might have different requirements for client computers where reports are viewed. For
example, the Portable Document Format (PDF) rendering extension requires Adobe Acrobat Reader to view reports in PDF. You
are not required to run any Adobe software on the report server in order to render reports in PDF.

Using Report Designer

Report Designer requires Microsoft Visual Studio® .NET 2003 or another product that provides the Visual Studio 2003 shell
(such as Visual Basic .NET 2003 or Visual C# .NET 2003) and MDAC 2.6 or higher.

Top Of Page

Deployment Scenarios

Reporting Services components can run on a single server or on multiple servers, allowing for a variety of scalable, flexible
implementations. This section describes various possible deployment scenarios.

If your organization is small, the "Standard Deployment Model" section contains the most appropriate deployment scenario for
your organization. If your organization is medium or large, you should review the scenarios in the "Enterprise Deployment
Models" section before proceeding to Reporting Services installation.

In general, find the scenario here that best fits your environment and objectives, then use the information presented here to
help you design your deployment plan.

Standard Deployment Model

This section describes a simple deployment model of Reporting Services. The guidelines here are suited for small organizations
and organizations implementing an intranet-only deployment of Reporting Services. Use a standard deployment model if you
are deploying the Standard Edition of Reporting Services, evaluating the product, or developing an application using the
Reporting Services platform. If your implementation of Reporting Services requires accessing reports from a client on the
Internet or setting up multiple Web servers for reporting purposes, see "Enterprise Deployment Models" later in this guide. The
standard deployment model is not intended for organizations that have high-availability or high-volume reporting
requirements.

Small organizations often can achieve acceptable report processing performance using a single server deployment, as depicted
in Figure 3.

Figure 3: Typical standard deployment model for small organizations using a single server

A primary consideration in choosing where to host the report server database is disk space availability. If you expect your
reports to grow substantially in the future, consider deploying Reporting Services using a remote instance of SQL Server to

host the report server database, as shown in Figure 4. The remote report server database must be in the same domain as the
report server or in a trusted domain with the report server.

For more information, see "Report Server Database Requirements" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa972257.aspx).

Figure 4: Typical standard deployment model using a remote instance of SQL Server

Enterprise Deployment Models

The enterprise deployment models described here include:

Clustered servers

Internet-accessible report servers

Server Clusters

Large organizations with high-volume reporting needs will probably choose to distribute the report processing load across
multiple servers to increase reporting availability and provide failover capabilities. Reporting Services supports server
clustering as follows:

You can configure Report Servers for network load balancing.

You can configure the report server database for failover.

A report server implemented in a Windows Network Load Balancing cluster (or Web farm) consists of multiple report servers
that share a report server database (or share a cluster of report server databases). Typically you specify the report server nodes
participating in a cluster during Reporting Services Setup.

Note You must use additional software to set up and manage a server cluster. The Microsoft Cluster service included in the
Windows 2000 Server operating system provides Network Load Balancing and failover capabilities. Microsoft Application
Center also provides Web server load balancing. Or, you can use third-party load-balancing software.

You can implement cluster technology for your report servers, report server databases, or both, as depicted in Figure 5.

Figure 5: Typical enterprise deployment model using a cluster of report servers and clustered Report Server
databases

http://msdn2.microsoft.com/library/aa972257.aspx

Deploying Report Servers in a Cluster

If you are deploying a new report server to an existing Web farm, that report server requires credentials to connect to a report
server that already exists in the Web farm. You can specify Windows credentials, or connect using the security context of the
user running Setup. These credentials need to have administrator permissions on the computer that is already part of the Web
farm.

For more information, or if you want to install a new report server Web farm, see "Installing a Report Server Web Farm" in SQL
Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa179321.aspx).

Deploying Report Server Databases in a Cluster

You can implement your report server database in a SQL Server failover cluster. For more information, see Installing Failover
Clustering in SQL Server Books Online (http://msdn2.microsoft.com/library/aa196693.aspx). Whether you use a single
database or a database cluster, the configuration you use is transparent to a report server.

Internet-Accessible Report Servers

You can also deploy a report server that is accessible from the Internet. To implement access to a report server over the
Internet, you modify the Rswebapplication.config file on the report server, as described the "Deploying a Report Server for
Internet Access" section of "Enterprise Deployment Model" of SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa972253.aspx).

See Figure 6 for a sample Internet deployment of Reporting Services.

Figure 6: Typical enterprise deployment model using server clusters and providing secure client access to reports
over the Internet
Top Of Page

Interoperability

If you are running middle-tier Web applications other than Reporting Services, your IIS configuration might have been
adjusted to run those programs, and some of those adjustments could prevent Report Server from running properly.

For example, if you installed Windows SharePoint services on a server, you need to make a few modifications in order to install
and run Reporting Services on the same server.

To enable a side-by-side installation of Reporting Services and Windows SharePoint Services, perform the following steps.

1. While installing Reporting Services, you might experience activation failures. Ignore any activation errors that occur.

2. Add the Reporting Services virtual directories to the Windows SharePoint Services list of exclusions. If you installed
Reporting Services using the default virtual directories, run the following at the command prompt:

STSADM.EXE -o addpath -url http://localhost/ReportServer -type exclusion

and

http://msdn2.microsoft.com/library/aa179321.aspx
http://msdn2.microsoft.com/library/aa196693.aspx
http://msdn2.microsoft.com/library/aa972253.aspx

STSADM.EXE -o addpath -url http://localhost/Reports -type exclusion

3. Add the following text under the HttpModules configuration element of the SharePoint Web.config file. By default, the
SharePoint Web.config file is located at C:\Inetpub\wwwroot.

<HttpModules>
 <add name="Session" type="System.Web.SessionState.SessionStateModule"/>

4. Enable session state for the pages element by changing the enableSessionState attribute from false to true.

5. If Report Server does not respond, in Internet Service Manager (or in the IIS snap-in), ensure that the report server is in
an application pool that is separate from the SharePoint server. Report Manager can remain in the same application pool
where it was originally installed. To assign the report server to a separate application pool, you must first create a new
application pool. After you have created a new application pool, expand Web Sites, expand Default Web Site, right-click
the report server virtual root that you created during setup (the default is ReportServer), and then click Properties. From
the Application pool drop-down list, select the newly created application pool. For more information about application
pools, see your IIS documentation.

6. In Internet Explorer, navigate to http://<server>/ReportServer. This causes Reporting Services to initialize. Your logged-in
account must have local Administrator credentials for the initialization to occur.

Top Of Page

Installation

You run Reporting Services Setup from the product CD, from a shared folder expressed in Universal Naming Convention
(UNC) format, or from a local folder.

Setup installs all components locally except the report server database, which you can configure to run on a remote instance of
SQL Server. (For more information, see "Using a Remote SQL Server Instance to Host the Report Server Database" later in this
guide.) A complete installation of Reporting Services includes authoring tools, management tools, Report Server Web service,
Report Server Windows service, documentation, and sample reports and applications. The simplest configuration is a single
system installation. For more information about different configurations, see "Deployment Scenarios" earlier in this guide.

Before Running Setup

Before running Setup, be sure you are prepared for your Reporting Services deployment. Review Table 5 in the "Software
Requirements" section, earlier in this guide, to avoid common installation errors.

Important Before running Setup, verify that the Startup Type for Distributed Transaction Coordinator service is set to
Automatic or Manual. Setup fails if the Distributed Transaction Coordinator is not set. For more information, see "Server
Requirements" earlier in this guide.

Setup includes a wizard for specifying installation options. Depending upon the components being installed, Setup prompts for
a number of settings, summarized in the "Setup User Interface Reference" table
(http://msdn2.microsoft.com/library/aa225462.aspx). To streamline deployment, familiarize yourself with these settings prior
to running Setup in your production environment.

Running Setup

In Windows, run the Setup.exe program to install Reporting Services. Setup.exe is available in the root folder of the Reporting
Services product CD. This launches the Setup program, which steps you through the installation process. For detailed
information about the screens displayed in the Setup user interface, see "Setup User Interface Reference"
(http://msdn2.microsoft.com/en-us/library/aa225462.aspx).

Or, if you want to customize your installation, you can install Reporting Services from the command prompt. Run Setup.exe at
the command prompt, appending the command with the appropriate command-line options described in "Installing Reporting
Services from the Command Line" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179337.aspx).

Using Non-Default Settings and Other Setup Considerations

This section describes using some of the non-default settings when installing Reporting Services, and other considerations:

Using Unattended Installation

http://msdn2.microsoft.com/library/aa225462.aspx
http://msdn2.microsoft.com/en-us/library/aa225462.aspx
http://msdn2.microsoft.com/library/aa179337.aspx

Installing Report Server on a Domain Controller

Using Underscore Characters in Report Server Computer Names

Using a Remote SQL Server Instance to Host the Report Server Database

Using the non-default IIS Web site

Running the IIS Lockdown tool

Using Unattended Installation

To run Setup unattended you must run Setup.exe from the command prompt. For information, see "Performing an Unattended
Installation of Reporting Services" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179331.aspx).

Installing Report Server on a Domain Controller

You can host a report server on a domain controller. If the domain controller runs on Windows Server 2003, no additional
steps are necessary in order for Reporting Services to install and run properly. On Windows 2000 Server, Reporting Services
installs properly on a domain controller, but is not activated. In this case, you should perform the following steps to finish
Report Server installation. You can perform these tasks before or after running Setup.

1. Grant Impersonate privilege to the IWAM_<computer> account. For more information, see the Microsoft Knowledge
Base article,"IWAM Account Is Not Granted the Impersonate Privilege for ASP.NET 1.1 on a Windows 2000 Domain
Controller with SP4" (http://support.microsoft.com/default.aspx?scid=kb;en-us;824308&Product=iis50).

2. Remove the IWAM_<computer> account from the Guest group. Guest users cannot store or maintain encrypted content.
For more information, see the Microsoft Knowledge Base article, "Roaming Profiles Cannot Create Key Containers"
(http://support.microsoft.com/default.aspx?scid=kb;en-us;265357&Product=iis50).

3. Reboot the computer.

4. In Internet Explorer, navigate to http://<server>/ReportServer. This causes Reporting Services to initialize. Your logged-in
account must have local Administrator credentials for the initialization to occur.

On both Windows 2000 Server and Windows Server 2003, if you are using a Windows account to connect to the report server
database, you must grant the user account the privilege to log on locally to the domain controller on which the report server is
running, even if the report server database is on a different computer. Domain users are not granted this permission by
default.

Using Underscore Characters in Report Server Computer Names

Avoid installing Report Server on a computer that has an underscore in its computer name. Report Server cannot maintain
session state information on computers that have an underscore character in the computer name and that have been updated
with Internet Explorer Security Patch MS01-055. The security update prevents cookies from being set on client computers that
have an underscore in their names, disabling the session management features of Reporting Services. Recommended
solutions are documented in Microsoft Knowledge Base article," Session Variables Do Not Persist Between Requests After You
Install Internet Explorer Security Patch MS01-055" (http://support.microsoft.com/default.aspx?scid=kb;en-
us;316112&Product=iis50).

Using a Remote SQL Server Instance to Host the Report Server Database

During setup, you choose whether to create the report server database on a local or remote instance of SQL Server. If you
decide to use a remote SQL Server instance, consider carefully which credentials the report server should use to connect to the
SQL Server instance. Setup does not automatically filter out types of credentials that are not valid for this configuration. For
detailed information about configuring credentials in the Report Server Database page of the Setup wizard, see "Choosing a
Remote SQL Server Instance" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179363.aspx).

Note If you are running Terminal Services in application mode on Windows 2000 Server, you must disable the Terminal
Services service before running Reporting Services Setup. Terminal Services can interfere with the report server connection to
a remote SQL Server instance during setup. Similarly, if Terminal Services is enabled on Windows Server 2003, you must
disable it before running Setup. (This is not necessary if Remote Administration is enabled in Windows Server 2003.)

http://msdn2.microsoft.com/library/aa179331.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;824308&Product=iis50
http://support.microsoft.com/default.aspx?scid=kb;en-us;265357&Product=iis50
http://support.microsoft.com/default.aspx?scid=kb;en-us;316112&Product=iis50
http://msdn2.microsoft.com/library/aa179363.aspx

Troubleshooting Setup

You can verify that the installation was successful by performing a few simple tests described in "Verifying an Installation of
Reporting Services" in SQL Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa179329.aspx).

For information about errors you might encounter while running Setup, see "Troubleshooting an Installation of Reporting
Services" in Reporting Services Setup Help (http://msdn2.microsoft.com/library/aa179315.aspx), also available in the root
folder on the product CD.

Component information is stored in four configuration files during Reporting Services Setup. Configuration files contain a
combination of internal-use-only and user-defined values. User-defined values are specified during installation, through tools,
and by manually editing the configuration files. For more information, see "Reporting Services Configuration Files" in SQL
Server 2000 Reporting Services Books Online (http://msdn2.microsoft.com/library/aa972211.aspx).

You can also examine the log files created during setup to troubleshoot errors or other issues. For information, see"to Log Files
Used During Installation" in SQL Server 2000 Reporting Services Books Online
(http://msdn2.microsoft.com/library/aa179323.aspx).

Top Of Page

Configuration

This section describes how to configure Reporting Services for basic reporting, and how to back up your configuration as
appropriate.

Configuring Reporting Services Components and Security

Configuring Reporting Services components can involve any of the following tasks:

Configuring a report server connection that provides authentication between Report Server and the report server
database

Configuring Report Server for e-mail delivery of reports

Configuring Report Server access

Configuring an account for unattended report delivery

For detailed information about configuring these components, see "Configuring Reporting Services Components" in SQL
Server 2000 Reporting Services Books Online (http://www.msdn.microsoft.com/library/default.asp?url=/library/en-
us/rsadmin/htm/arp_configserver_v1_0ijm.asp).

Configuring security in Reporting Services involves the following:

Configuring Web host security for Report Server

Limiting the number of open connections

Implementing best practices for authenticating server and data source connections

Securing reports for global access

For detailed information about configuring security, see "Configuring Server Security" in SQL Server 2000 Reporting Services
Books Online (http://www.msdn.microsoft.com/library/default.asp?url=/library/en-
us/rsadmin/htm/arp_configsecurity_v1_3207.asp).

Initializing a Report Server

In Reporting Services, an initialized (or activated) server is one that can encrypt and decrypt data in a report server database. A
report server is automatically initialized during setup by the Report Server Windows service. A report server that is not
initialized does not operate properly. Report server initialization completes the server deployment by creating keys used for
reversible encryption.

Note If you manually add a report server to a Web farm using Rsconfig.exe after initial Reporting Services Setup, you must
initialize the server manually using the Rsactivate.exe utility.

For information about how to initialize Report Server, see "Activating a Report Server" in SQL Server 2000 Reporting Services
Books Online (http://www.msdn.microsoft.com/library/default.asp?url=/library/en-

http://msdn2.microsoft.com/library/aa179329.aspx
http://msdn2.microsoft.com/library/aa179315.aspx
http://msdn2.microsoft.com/library/aa972211.aspx
http://msdn2.microsoft.com/library/aa179323.aspx
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/rsadmin/htm/arp_configserver_v1_0ijm.asp
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/rsadmin/htm/arp_configsecurity_v1_3207.asp
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/rsadmin/htm/drp_customizing_v1_4hys.asp

us/rsadmin/htm/drp_customizing_v1_4hys.asp).

Backing Up Your Configuration

The Rskeymgmt.exe tool captures the key set that is defined during setup, and stores it as a file that you can store externally. It
is highly recommended that you use this tool to copy your Reporting Services key set to a removable media device (such as a
floppy disk) and store it in a secure location. You can use the tool to back up, remove, or apply the symmetric keys used by a
report server. If the keys cannot be recovered or applied, this tool provides a way to delete encrypted content that can no
longer be used.

For more information about using Rskeymgmt.exe, see "Managing Encryption Keys" in SQL Server 2000 Reporting Services
Books Online (http://msdn2.microsoft.com/library/aa972238.aspx).

You should also back up your report server databases on a regular basis or after making substantial report management
changes. Use the built-in SQL Server backup functionality to back up these databases:

ReportServer

ReportServerTempDB

Optionally, back up these databases too:

master

msdb

For information about backing up databases, see "Backing Up and Restoring Databases" in SQL Server Books Online
(http://msdn2.microsoft.com/library/aa176750.aspx).

Top Of Page

Additional Resources

Table 6 contains more resources for information about Reporting Services and related products and technologies.

Table 6. Reporting Services resources

Resource URL

SQL Server 2000 Reporting Services Books Online http://msdn2.microsoft.com/library/bb545450.aspx

Reporting Services Web site http://www.microsoft.com/sql/reporting/

Microsoft newsgroup (microsoft.public.sqlserver.reportingsvcs) news://news.microsoft.com/

Microsoft SQL Server Support http://support.microsoft.com/support/sql

Microsoft SQL Server product information http://www.microsoft.com/sql

Microsoft Windows Hardware Compatibility List http://www.microsoft.com/whdc/hcl/default.mspx

MSDN® http://msdn2.microsoft.com/default.aspx

Professional Association for SQL Server http://www.sqlpass.org/

SQL Server Magazine http://www.sqlmag.com/

Top Of Page

http://msdn2.microsoft.com/library/aa972238.aspx
http://msdn2.microsoft.com/library/aa176750.aspx
http://msdn2.microsoft.com/library/bb545450.aspx
http://www.microsoft.com/sql/reporting/
news://news.microsoft.com/
http://support.microsoft.com/support/sql
http://www.microsoft.com/sql
http://www.microsoft.com/whdc/hcl/default.mspx
http://msdn2.microsoft.com/default.aspx
http://www.sqlpass.org/
http://www.sqlmag.com/

1

Install IIS 5.0 or Later To install IIS on Windows Server 2003, click Add or Remove Programs in Control Panel. In the Add or
Remove Programs dialog box, click Add/Remove Windows Components. The Windows Component Wizard appears. In the
Windows Components page, select the Application Server check box. Click Next to configure the component. Click Finish to
close the wizard.For all other operating systems, you can install IIS by clicking Add or Remove Programs, and then clicking
Add/Remove Windows Components. The Windows Component Wizard appears. In the Windows Components page, select
the Internet Information Services (IIS) check box. Click Next to configure the component. Click Finish to close the wizard.

SQL Server 2000 Backup and Restore
Published: March 1, 2005

Note: For information on Backup and Restore in SQL Server 2005, see Backing Up and Restoring Databases in SQL Server in
SQL Server 2005 Books Online.

Author: Pankaj Agarwal

Published: February, 2005

Summary: This paper discusses the types of backups that are available in SQL Server 2000 and how backup functionality can
be used in a disaster recovery plan. It includes general recommendations on how to improve backup and restore throughput
and several case scenarios.

On This Page

Introduction
Common Terms
New Backup and Restore Features in SQL Server 2000
Recovery Models
Simple Recovery Model
Bulk-Logged Recovery Model
Full Recovery Model
Partial Database Restore
Enhancements to Differential Backups
Password-Protected Backup Files
Named Log Marks
Continuous Log Chain
Additional Backup and Restore Information
Types of Backups
Backup Media
Disk Backups
Tape Backups
Backup Devices
Adding Backup History from Backup Files to MSDB
Media Sets and Families
Virtual Device Interface
Permissions Required for Backup and Restore
Complete Database Backup
Performing Complete Database Backups
Restoring Complete Database Backups
Restoring a Complete Backup to the Same Database
Restoring a Complete Backup to a New Database on the Same Server
Restoring a Complete Backup to a New Server
Performing a Partial Database Restore
Transaction Log Backup
Performing Transaction Log Backups through Enterprise Manager
Restoring Transaction Log Backups to the Same Server
Restoring Transaction Log Backups to a Different Server
Restoring Transaction Log Backups to a Point in Time
Restoring Transaction Log Backups to a Named Transaction
Restoring to a Point of Failure
Differential Backup
Performing Differential Backup
Restore to the Same Server
Restore to a Different Server to a New Database
File/Filegroup Backup
Performing File/Filegroup Backup (Enterprise Manager)
Restoring Filegroup Backups if Filegroup Files are Damaged
File/Filegroup Differential Backups
Backup and Restore of Full-Text Catalogs

http://msdn2.microsoft.com/en-us/library/ms187048.aspx

Backup and Restore of Replicated Databases
Snapshot Replication
Transactional Replication
Merge Replication
Set Up Backup Schedules (Maintenance Plan Wizard)
Modifying the SQL Server Job Schedule
Backup Techniques for Large Databases
Backup Infrastructure and System Architecture
Software Configuration and Database Architecture
About Disaster Recovery Planning
Case Studies
Appendix A – Database Script for Filegroup Backup and Restore

Introduction

The need to back up databases on a regular basis is a major component of managing any production system.

Backups may be used to provide a means of recovery from a disaster situation. Microsoft® SQL Server™ 2000 provides
several kinds of backups that may be combined to formulate a customized disaster recovery plan depending on the nature of
the data and the disaster recovery requirements.

SQL Server 2000 enhances some aspects of the backup and restore functionality that was provided in SQL Server 7. There is
also additional functionality that helps individual organizations take full advantage of commands in SQL Server 2000.

It is highly recommended that all SQL Server databases be backed up periodically. This provides the best chance of successfully
recovering a production environment in the quickest amount of time in case there is a disaster situation.

This paper discusses the various kinds of backups that are available in SQL Server 2000 and how this functionality may be
used in a disaster recovery plan. The paper also discusses some general recommendations on how to improve backup and
restore throughput. Finally, we examine two case studies where we implement the knowledge from previous sections in real-
world scenarios.

Top Of Page

Common Terms

Data page

An SQL Server database’s basic data storage structure is 8 KB and is known as a data page. An SQL database may contain
thousands of pages.

Disaster recovery planning

The process of formulating, documenting, and testing the procedures that would be performed if production data in one or
more SQL Server databases were to be lost or modified in an unforeseen disaster or malicious attack.

Minimally logged operations (bulk load operations)

Data movement operations that require minimal logging in the transaction log. These operations include bcp, certain Data
Transformation Services (DTS) operations, and SELECT INTO. Depending on the recovery model for a database, any of these
operations might either be fully logged or minimally logged.

Filegroup

A logical grouping of SQL Server database files. By default, a new SQL Server database contains the Primary filegroup.

Log sequence number (LSN)

The unique number that each operation is stamped with when it is written to the transaction log. A single SQL Server
transaction may contain several LSNs.

Logical file names

The names that are used by SQL Server to identify files within an SQL Server database.

Physical file names

The name used by the operating system to identify specific files. All SQL Server database files have both a physical and a
logical file name.

Extent

A collection of 8 data pages. Since a data page is 8 KB, an extent is 64 KB.

SQL Query Analyzer

A graphical tool provided with SQL Server client utilities to query SQL Server databases using the Transact-SQL commands.

Transaction

A set of modifications that are performed as a single unit of work. A transaction follows the ACID guidelines. For more
information on the ACID standard, see “Transactions” in SQL Server Books Online.

Transaction log

A record of modifications performed to a database. The amount of information logged in the transaction log depends on the
recovery model for a database. For more information on recovery models, see “Recovery Models” in the next section of this
paper.

Tail of transaction log

The transactions that have been committed but not backed up since the previous complete or differential database backup or
transaction log backup.

Transaction undo file

File containing information regarding any modifications that were made as part of incomplete transactions at the time the
backup was performed. A transaction undo file is required if a database is loaded in read-only state. In this state, further
transaction log backups may be applied.

Virtual log file (VLF)

A logical section within an SQL Server database’s transaction log. When performing a truncate of the transaction log, an entire
VLF is cleaned out.

Top Of Page

New Backup and Restore Features in SQL Server 2000

Top Of Page

Recovery Models

SQL Server 2000 introduces the concept of recovery models for databases. Recovery models are designed to simplify the
administration of SQL Server 2000 databases. There are three recovery models in SQL Server 2000—Full, Bulk-Logged, and
Simple. System databases (including master, MSDB, and tempdb) are set to the Simple Recovery model. All user databases,
by default, are created with the Full Recovery model (it should be noted that the Full Recovery model takes affect once a
complete database backup is performed). The recovery model may be changed once the database is created.

The recovery model for a database incorporates the two most often used settings—Truncate Log on Checkpoint and Select
Into/Bulkcopy.

Truncate Log on Checkpoint. In previous versions of SQL Server, this setting was selected to automatically truncate the
transaction log every time CHECKPOINT is activated for the database.

Select Into/Bulkcopy. This setting was used in previous versions of SQL Server to perform non-logged operations.

Following are the settings and their relation to the three recovery models.

Recovery Model Select Into / BulkCopy Truncate Log on Checkpoint

Full False False

Bulk-Logged True False

Simple True/False True

Top Of Page

Simple Recovery Model

This recovery model facilitates the maintenance of a database by making the transaction log virtually maintenance free. There
are limitations placed on the recoverability of a database if this recovery model is used.

Top Of Page

Bulk-Logged Recovery Model

A database in this recovery model will have minimum logging for bulk import operations. Space allocation and deallocation is
only logged for bulk import operations. Point-in-time and point-of-failure recovery may be possible when a database is in
Bulk-Logged Recovery model.

Top Of Page

Full Recovery Model

SQL Server performs full transaction logging for any bulk load operations if a database is in Full Recovery model. Transaction
log backups should be performed at regular intervals for maximum recoverability. This model provides the safest mode of
operation for production systems.

The following table summarizes the recovery models and backup types available with each recovery model.

Recovery Model/ Backup Complete Differential Transaction Log File / Filegroup

Simple Required Allowed Not Allowed Not Allowed

Bulk-Logged Required Allowed Required Allowed

Full Required Allowed Required Allowed

Top Of Page

Partial Database Restore

New functionality in SQL Server 2000 provides commands to restore a database backup partially. If a database contains
several filegroups, a single filegroup may be recovered using this new functionality. Partial database restore operations
provide a means to restore only certain parts of the database, as needed.

Top Of Page

Enhancements to Differential Backups

Differential backups have been enhanced in SQL Server 2000. A bitmap of modified extents has been added to the database
structure. This bitmap contains a bit for each extent that has been modified since the previous complete backup. This bitmap is
referenced when a differential backup is initiated and only modified extents are referenced and backed up. This significantly
improves the performance of differential backups in SQL Server 2000.

Top Of Page

Password-Protected Backup Files

New functionality has been added to backup functionality to password-protect the backup files. This is in line with the security
initiative and helps protect against unauthorized access.

Top Of Page

Named Log Marks

SQL Server 2000 introduces the concept of named transactions. Named log marks allow a transaction log backup to be
restored up to a particular named transaction. This further enhances the point-in-time restore functionality on the transaction
log backups.

Top Of Page

Continuous Log Chain

SQL Server 2000 improves the transaction log backups. It now includes database file management functionality such as the
addition and removal of database file(s) as logged operations. This improves the manageability of databases in a log shipping
environment.

Recommended Reading

See the following SQL Server Books Online topics:

What’s new in SQL Server 2000

Selecting a Recovery Model

Using Recovery Models

Top Of Page

Additional Backup and Restore Information

SQL Server provides functionality to back up and restore SQL Server databases to disk or tape medium.

Top Of Page

Types of Backups

SQL Server provides several different kinds of backups. A combination of these backups may be used to formulate a robust
disaster recovery strategy.

Backup Type Description

Complete Backs up the entire database.

Differential Backs up only modified extents since the previous complete backup.

Transaction Log Backs up the active portion and truncates the inactive portion of the transaction log.

File / Filegroup Backs up individual files and filegroups within a database.

File differential Combines differential backups and file or filegroup backups.

Top Of Page

Backup Media

SQL Server databases may be backed up to either a disk or tape media. Backup may be performed through SQL Server
Enterprise Manager or a Transact-SQL command.

Top Of Page

Disk Backups

A database may be backed up to disk file or a disk backup device.

http://msdn2.microsoft.com/library/aa226073.aspx
http://msdn2.microsoft.com/library/aa173531.aspx
http://msdn2.microsoft.com/library/aa173678.aspx

Any database can be backed up to a random disk file at any time. The file may either be initialized or the backup may be
appended to an existing backup file.

Top Of Page

Tape Backups

A database may be backed up to a local tape drive. SQL Server formats the tape backups using Microsoft Tape Format (MTF).
This means that a tape may hold other backups formatted using MTF in conjunction with SQL Server backups.

Tape backups provide certain features that are not available when using disk backups.

Continuation media

If the tape to which the backup is being written fills up, SQL Server Enterprise Manager pops a dialog box and prompts for the
next tape (if using the Transact-SQL command, a message is logged to the SQL Server error log to mount the next tape and a
retry attempt is made roughly every five minutes to see if a new tape was mounted). This is in contrast to disk backups, where
inadequate disk space terminates the backup operation.

Restart option

If there is a power failure or the server shuts down unexpectedly while the backup/restore is being performed, the operation
may be restarted from the point at which it was interrupted.

Top Of Page

Backup Devices

A backup device may be created through SQL Enterprise Manager or by using Transact-SQL commands.

To create the device through Enterprise Manager

1. Open Enterprise Manager and connect to the server where the backup device needs to be created.

2. Expand the Management folder and right-click Backup to display the shortcut menu shown in Figure 1.

Figure 1: Backup Device through SQL Enterprise Manager

3. Select New Backup Device... to display the dialog box in Figure 2.

Figure 2: New Backup Device Properties

Enter a name and location for the backup device.

Notice that the Tape option is disabled in the dialog box shown in Figure 2. This is because the computer used in the
example does not have a tape drive installed.

4. Click OK when done. This will create the backup device.

Once the backup device has been created, it appears under the Management -> Backup tree within SQL Enterprise
Manager.

5. To view the properties for the backup device, right-click the device and select Properties. The dialog box shown in Figure
3 appears.

Figure 3: Backup Device Properties

6. If you want to view all backups that have been performed to this device, click View Contents.

A backup device may also be created by using a Transact-SQL command through SQL Query Analyzer. Figure 4 illustrates the
use of a Transact-SQL command to create a backup device similar to that shown in the previous steps.

Figure 4: Creating a backup device using Transact-SQL
Top Of Page

Adding Backup History from Backup Files to MSDB

This section discusses the procedure that may be used to restore the backup history from a single or a set of backup files in
case this information is lost or does not exist in MSDB tables.

For the purposes of this section, we will assume that we have a complete database backup of a database called TESTDB for
which the restore history is to be retrieved and saved to MSDB tables.

To restore backup history from backup files

1. Copy the backup files that are to be restored to the relevant SQL Server machine.

2. Open Enterprise Manager and connect to the server where the backups are to be restored.

3. Right-click any database and select All Tasks, then select Restore Database... The Restore Database dialog box shown
in Figure 5 is displayed.

Figure 5: Restore backup set information

4. Select the From Device radio button.

5. Select the Read backup set information and add to backup history option in the Parameters section.

6. Click the Select Devices... button to add the backup file(s) to the list. The Choose Restore Devices dialog box (Figure 6)
appears.

Figure 6: Choose Restore Devices dialog box

7. Click the Add button and select the backup file(s) for which the backup history is to be loaded.

8. Once the files have been selected, click the OK button.

9. Click the OK button in the dialog box shown in Figure 5. This will initiate the restore of the backup history to the MSDB
tables.

Note It is important to note that this operation does not physically restore the database for which the files are selected
in the above step.

10. Once the backup history is completely loaded, the dialog box shown in Figure 7 is displayed. Click OK to complete the
history restore operation.

Figure 7: Backup history restore confirmation dialog box

This operation results in the information for TESTDB appearing if a further attempt is made at restoring the database from
these backups.

Top Of Page

Media Sets and Families

Media sets comprise several individual media. All media in a media set should be of the same type. For example, a 200-GB
database might span 3 tapes. The 3 tapes are considered to be a media set.

A media family refers to the collection of media used by an individual backup device. For example, if a 2-TB database is backed
up using 4 tape drives (with 5 tapes in each drive), each set of 5 tapes is considered to be a media family. Collectively the 20
tapes would be considered a media set.

Figure 8: Media set and family
Top Of Page

Virtual Device Interface

Virtual Device Interface (VDI) is the programming interface for the Backup Restore API. It provides function calls to manipulate
the backup and restore functionality in SQL Server.

VDI is used by several third-party tools that provide capabilities to back up SQL Server databases. For more information on this
topic, see “Virtual Backup Device Samples” in SQL Server Books Online.

Top Of Page

Permissions Required for Backup and Restore

Any logon that requires permissions to perform backup or restore operations should be provided membership in the following
SQL Server roles:

Server Role : sysadmin
DB role : db_backupoperator, dbo_owner
Permissions required for performing restore -
Server role : sysadmin, dbcreator
DB role : db_owner

Recommended Reading

See the following SQL Server Books Online topics:

Backup Devices

Using Multiple Media or Devices

Using Media Sets and Families

Backup Restore Architecture

Top Of Page

Complete Database Backup

A complete database backup creates a stand-alone image of the entire database. A complete database backup is self-
dependent and may be restored to either the same or a new database on the same or a different server. This provides plenty of
flexibility at the time when this backup has to be restored.

A complete backup may be restored without the need for any other kind of backup. It may also be performed for databases in
any recovery model. Restoring a complete database backup typically would be considered a starting point for a disaster
recovery situation where the entire database is lost or damaged.

It is recommended that a complete database backup be performed at regular intervals for all production databases. It is also
recommended that a complete backup should be performed for system databases (including master and MSDB) if there are
any changes performed to the SQL Server operating environment such as creating or removing databases, configuring
security, creating and modifying DTS packages or scheduled jobs, adding and removing linked servers, etc.

Top Of Page

Performing Complete Database Backups

A complete database backup may be performed either through SQL Server Enterprise Manager or by using Transact-SQL
commands. Complete backups may also be scheduled to be performed at regular intervals. Scheduling may be done through
either SQL Server Enterprise Manager or using Transact-SQL commands.

To perform a complete database backup through SQL Server Enterprise Manager

1. Open Enterprise Manager and connect to the server.

2. Expand the Databases folder, then right-click the database that you want to back up.

Figure 9: Backup database through Enterprise Manager

3. Select All Tasks, then select Backup Database... as shown in Figure 9. The dialog box shown in Figure 10 is displayed.

http://msdn2.microsoft.com/library/aa174465.aspx
http://msdn2.microsoft.com/library/aa173511.aspx
http://msdn2.microsoft.com/library/aa173693.aspx
http://msdn2.microsoft.com/library/aa174477.aspx

Figure 10: Backup Database dialog box

4. Provide a name for the backup in the Name text box. Leave the Database – complete radio button selected since we
are performing a complete database backup.

5. Select the Overwrite existing media check box to initialize the destination file or device or select the Append to
media check box to append the current backup to existing file or device.

6. To select a destination for the backup, click the Add button. The dialog box shown in Figure 11 is displayed.

Figure 11: Select Backup Destination

7. Select an existing file or enter a new file name. Click OK after selecting a file.

8. Click the Options tab. The options shown in Figure 12 are presented.

Figure 12: SQL Server Backup Options

9. Select the Verify backup upon completion check box to verify the backup upon completion. (Please see SQL Server
Books Online for more information regarding the RESTORE VERIFYONLY command.)

Description of other fields

Remove inactive entries from transaction log – truncates the transaction log while performing the backup. If this
setting is not checked, SQL Server uses the NO_TRUNCATE option for the backup. This option is available only while
performing transaction log backup.

Check media set name and backup set expiration - verifies the selected media for the provided media set name to
prevent accidental overwrites.

Eject tape after backup – ejects the tape from the drive when the backup completes.

Backup set will expire – specifies when the backup expires and is no longer restorable.

Initialize and label media – erases and labels media sets. Although this option is available for all tape backups, it is
most useful when there are multiple tapes forming a media set.

10. Once all the necessary options are selected, either click the OK button to start performing the backup, or check the
Schedule check box to schedule this operation for periodic execution.

If the backup is performed immediately, the Backup Progress dialog box (Figure 13) is displayed while the backup is
being performed. If the backup operation should be scheduled, see Modifying the SQL Server Job Schedule later in this
paper for more information on how to modify the default schedule.

Figure 13: Backup Progress dialog box

Upon successful completion of the backup, the informational dialog box shown in Figure 14 is displayed.

Figure 14: Backup complete confirmation

The above functionality can be accomplished through Transact-SQL commands executed from SQL Query Analyzer. An
example of such a command is illustrated below.

BACKUP DATABASE northwind
TO DISK = 'd:\backups\northwind\nwind.bak'

For more information on the Transact-SQL commands, see BACKUP (T-SQL) in SQL Server Books Online.

Top Of Page

Restoring Complete Database Backups

A complete database backup may be restored to the same or a new or different database on the same (or a different) server.
The restore operation may be initiated either through either SQL Server Enterprise Manager or the Transact-SQL command
window.

It is highly advisable to restore complete database backups at regular intervals, as this is the only means that is currently
available to verify the “restorability” of an SQL Server backup.

Top Of Page

Restoring a Complete Backup to the Same Database

To restore a complete database backup to the same database

1. Open SQL Server Enterprise Manager and connect to the server where the backup is to be restored.

Figure 15: Restore database through Enterprise Manager

2. Right-click the database and select All Tasks, then select Restore database (as shown in Figure 15). The Restore
Database dialog box (Figure 16) is displayed.

Figure 16: Restore Database dialog box

3. From the list of databases, select the database for which the backup has to be restored.

A list of all backups performed for the selected database is displayed in the Parameters section of the Restore
Database dialog box. This information is collected from the history tables in the MSDB database.

4. From the list of backups, select the backup to restore, then click the Properties button to display the Backup Set
Properties dialog box shown in Figure 17.

Figure 17: Backup Set Properties dialog box

The dialog box displays backup properties including backup type, size (in KB), start and finish dates, server name, and
media description.

5. In the Backup Set Properties dialog box, click OK.

6. In the Restore Database dialog box (Figure 18), click the Options tab.

Figure 18: Restore Database Options

The Options tab in the Restore Database dialog box provides options to select the final restore state, change the file
name, and set tape options for the restore operation.

7. Select the appropriate settings in this dialog box.

Description of fields

Eject tapes after restoring each backup – ejects the tape when the restore operation completes if a tape restore is
being performed.

Prompt before restoring each backup – displays a dialog box after each backup is restored successfully. This option
may be used when restoring multiple backups.

Force restore over existing database – forces the files for the existing database to be initialized. This option should be
used with caution as it erases the data that exists in the selected database before starting the restore operation.

Restore As – shows the original and target physical file names for the database that is being restored.

Recovery completion state – determines the final state of the restored database.

Undo file – a file required by SQL Server to track incomplete transactions if the backup is restored in standby state.

8. To start the restore operation, click OK. The Restore Progress dialog box (Figure 19) is displayed while the restore
operation executes.

Figure 19: Restore Progress dialog box

9. When the restore operation completes, the dialog box shown in Figure 20 is displayed. To close it, click OK.

Figure 20: Restore database complete confirmation

Top Of Page

Restoring a Complete Backup to a New Database on the Same Server

A new database may be created while restoring a complete database backup. The new database may be created on the same
server where the original database was located, or on a different server. In either case, there are several restrictions placed on
the database if it is created in this manner:

Physical file structure may not be modified while restoring

Logical file names may not be changed

Physical files created must be the same size as when the backup was performed

If you intend to create a new database, as part of the restore operation, on the same server where the original database still
resides, follow this procedure.

To restore a complete backup to a new database on the same server

1. Open SQL Server Enterprise Manager and connect to the server where the backup is to be restored.

2. Right-click any database and select All Tasks, then select Restore Database to open the dialog box shown in Figure 21.

Figure 21: “Restore Database As” dialog box

3. In the Restore as database: text box, enter the name of the new database that you wish to create.

4. Under Parameters, select the database for which you intend to restore the backups (in the Show backups of database
list box).

A list of backups for the database are displayed in window.

5. Select the backup that you would like to restore and click Properties to verify the properties for that backup. See the
Properties dialog box in Figure 17 for an illustration.

6. Click the Options tab.

Figure 22: “Restore Database As” Options dialog box

7. If necessary, modify the file name and location of the database files listed in the Restore As list. The first part of the file
name is used as the logical name for the respective file. In the example in Figure 22, the first file will have the physical file
name of nwind_new_log.ldf and the logical name of nwind_new_log.

8. Select all the other options from this dialog box as necessary. For an explanation of these options, see Figure 18.

9. To start the restore operation, click OK. A progress dialog box is displayed and when the restore operation is finished, a
confirmation dialog box is displayed. A new database called nwind_new is added to the Enterprise Manager window.

This functionality can also be accomplished by using Transact-SQL commands. Assuming that the database backup file name is
c:\backups\northwind\nwind.bak, the following command will restore the database to nwind_new:

RESTORE DATABASE nwind_new FROM DISK = 'c:\backups\northwind\nwind.bak'
WITH
MOVE 'northwind' TO 'd:\Program Files\Microsoft SQL
Server\Data\nwind_new.mdf'
MOVE 'northwind_log' TO 'd:\Program Files\Microsoft SQL
Server\Data\nwind_new_log.ldf'

Top Of Page

Restoring a Complete Backup to a New Server

SQL Server databases may be backed up on one server and restored to another server. If the target database does not exist on
the second server, it may be created before the restore is initiated. However a new database can be created while restoring the
backup.

If a new database is created while restoring the backup, all the restrictions mentioned in Restoring a Complete Backup to a
New Database on the Same Server apply.

The steps in this section demonstrate one of the many ways that someone may use to restore the database onto a different
server. Another means of achieving this same functionality would be to restore the backup history using the procedure
explained in Adding Backup History from Backup Files to MSDB and then using the procedure listed in Restoring a Complete
Backup to a New Database on the Same Server using the SQL Enterprise Manager GUI.

To restore a database backup to a different server to a new database

1. Copy the database backup file to the target machine or share it on the network so that it is accessible from the server.

2. Open Enterprise Manager and connect to the server to which the backup is to be restored.

3. Right-click any database and select All Tasks, then select Restore Database to display the Restore Database dialog
box shown in Figure 23.

Figure 23: “Restore from device” dialog box

4. Enter the name of the new database that the backup process will create and restore the backup to, in the Restore as
database : list box.

5. Select the From device radio button.

6. Click the Select Devices... button.

Figure 24 : Choose Restore Devices dialog box

7. In the Choose Restore Devices dialog box, select either the Disk or the Tape radio button.

In the dialog box in Figure 24, the Tape option is dimmed (unavailable) because the backup device does not have a tape
drive configured. For the purposes of this example we will assume that we are restoring the backup from a disk device.

8. Click the Add button to display the dialog box shown in Figure 25.

Figure 25: Choose Restore Destination dialog box

9. Enter the file name of the backup file that is to be restored. If the file exists on a network share, provide the UNC share
name in the File name text box.

Note It is recommended that the backup be copied to the server and a local path be used to restore the database.

10. Click the OK button. The Choose Restore Device dialog box, displayed in Figure 24, is now updated with the selected
file.

11. Click the OK button to return to the Restore Database dialog box. The Devices list is now updated with the file selected
in the previous step.

12. Click the Options tab and select appropriate options for the restore operation. The file names of the physical files may be
changed at this time. For more information on the fields in this dialog box, see steps 6 and 7 in Restoring a Complete
Backup to a New Database on the Same Server.

13. Click OK in the Restore Database dialog box. This starts the restore process.

Progress and confirmation dialog boxes are displayed as SQL Server processes and completes the restore of the
database.

14. Click OK in the confirmation dialog box.

This restore operation may also be accomplished through Transact-SQL commands. The command would be similar to the one
demonstrated in Restoring a Complete Backup to a New Database on the Same Server.

Top Of Page

Performing a Partial Database Restore

Partial Database Restore is newly added functionality in SQL Server 2000. It allows for individual filegroups to be restored to
new databases. This functionality is implemented in SQL Server using new options for the RESTORE Transact-SQL command.

For a better understanding of filegroups, see “File/Filegroup Backup” later in this paper.

A filegroup may be restored partially only from a complete backup. A file/filegroup backup does not contain transaction log
backup and hence cannot be used to restore the particular filegroup partially. All other filegroups in the database (except
Primary) are marked OFFLINE when this restore mechanism is used. It should be noted that all files in the Primary filegroup
are always restored in any Partial Database Restore situation.

Performing a Partial Restore

For the purposes of this demonstration we will assume that:

We have a database called files that has two filegroups—fg1 and fg2 (see the script in Appendix A).

Database files has a complete backup stored in file called d:\backup\files.bak

We need to restore the contents of filegroup fg2 to a new database called files_fg2.

Open SQL Query Analyzer and perform the query shown in Figure 26 to get the names of files that constitute the complete
backup.

Figure 26: RESTORE FILELISTONLY Results

We will need to restore files belonging to the Primary and fg2 filegroups. Execute the command shown in Figure 27 from the
SQL Query Analyzer window.

Figure 27: Partial database restore results

Apply any further Transaction log or differential backups that might be available.

Once the database is recovered, it may be accessed in a normal manner. All other filegroups in the database are marked
OFFLINE. Any attempts to perform queries on objects that reside on other filegroups in the database generate the error shown
in Figure 28.

Figure 28: Error generated when querying an OFFLINE filegroup

Recommended Reading

See the following SQL Server Books Online topics:

RESTORE

RESTORE FILELISTONLY

Partial Database Restore Operations

Database Backups

See the following Microsoft Knowledge Base article:

http://msdn2.microsoft.com/library/aa238405.aspx
http://msdn2.microsoft.com/library/aa238420.aspx
http://msdn2.microsoft.com/library/aa196613.aspx
http://msdn2.microsoft.com/library/aa196681.aspx

Q221465 INF: Using the WITH MOVE Option with the RESTORE Statement

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q221465

Top Of Page

Transaction Log Backup

An SQL Server database consists of two components—data file(s) and transaction logs. A transaction log captures the
modifications made to the database. An SQL Server database must have at least one transaction log file.

A simple transaction may place several records in the transaction log. Each of these records is known as a log record and is
assigned a unique identification number known as the log sequence number. Log records that belong to the same transaction
are linked together through the log sequence number.

If SQL Server service shuts down unexpectedly, upon restart the recovery process examines the entries in the transaction log
and if there are transactions that have not been rolled forward completely, the recovery process rolls back the changes
performed as part of these incomplete transactions. This operation is extremely important as it forms the basis of transactional
recovery at startup. Entries in the transaction log are also used if transactional replication is configured for the specific
database.

A transaction log backup backs up all transactions since either the previous transaction log backup, or the complete database
backup if there have been no transaction log backups performed for the database in the past. This backup may then be used to
apply the backed-up changes, in case disaster recovery is required. Transaction log backups may only be applied to a database
in an unrecovered state. A database may be in an unrecovered state if it is being restored from a set of backups as part of a
disaster recovery procedure, or if it is configured as a standby database on a warm backup server.

A transaction log backup also truncates the inactive portion of the transaction log, unless the database is configured as a
Publisher in transactional replication and there are transactions pending propagation to Subscribers.

Each transaction log backup contains a First and Last log sequence number (LSN). Consecutive transaction log backups should
have sequential LSNs for the boundary log records. These LSN values may be examined using the RESTORE HEADERONLY
command. If LastLSN from the previously restored transaction log backup does not match the FirstLSN from the backup that is
currently being restored, the restore operation fails with the following error:

Server: Msg 4305, Level 16, State 1, Line 1

This backup set cannot be restored because the database has not been rolled forward far enough. You must first restore all
earlier logs before restoring this log.

If the above message is generated while restoring a particular transaction log backup, which is part of a set of transaction log
backups that are to be restored, any attempts to restore further transaction log backups will fail with this message. There could
be several reasons for consecutive transaction log backups being out of sequence. Some of the most common reasons noted
from support experience have been:

The database recovery model has been changed to Simple and back to either Full or Bulk-Logged. Switching the recovery
mode to Simple causes the transaction log to be truncated.

Another transaction log backup was performed between the previous successfully restored backup and the one
generating this message.

The transaction log was manually truncated between the two backups.

The database was in Bulk-Logged recovery model and non-logged operations were performed.

Transaction log backups are not allowed for databases in Simple Recovery model. While in Simple Recovery model, a
database’s transaction log is truncated every time a CHECKPOINT is invoked for the database.

Transaction log backups provide the possibility of performing a point-in-time restore or point-of-failure restore.

Top Of Page

Performing Transaction Log Backups through Enterprise Manager

To perform a transaction log backup

1. Open SQL Enterprise Manager. Connect to the server and expand Databases.

2. Right-click the database for which a transaction log backup has to be performed and select All Tasks, then select Backup

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q221465

database...

The dialog box shown in Figure 29 is displayed.

Figure 29: Transaction Log Backup

3. You can enter a name for the backup in the Name text box and a description for this backup in the Description text box.
These two fields are optional and may be left blank.

4. To perform a transaction log backup, select the Transaction log radio button.

5. Select a destination for the backup. This could be either an SQL Server backup device, tape, or a disk file.

For the purposes of this example, we have selected a disk file called d:\backups\nwind\nwind_log.bak. For more
information, see the procedure in Performing Complete Database Backups in this paper.

6. To remove any previous files with this name and create a new file, select the Overwrite Existing Media radio button.

7. Check the Schedule check box if this operation has to be scheduled for periodic operation. For more information on how
to modify the schedule for an operation, see Modifying the SQL Server Job Schedule in this paper.

8. To view and, if necessary, modify the transaction log backup options, click the Options tab.

Figure 30: Transaction Log Backup Options

For more information on the fields in the Options tab, see Figure 9.

9. Once all the options have been selected, click the OK button to start the backup.

A progress dialog box is displayed while the backup is being performed. When the backup is finished, a confirmation
dialog box is displayed.

10. Click OK in the confirmation dialog box to complete the backup operation.

Top Of Page

Restoring Transaction Log Backups to the Same Server

As mentioned previously, to restore a transaction log backup, a complete backup must be restored in an unrecovered state. For
the purposes of this example, we will continue with the example Restoring a Complete Backup to a New Database on the Same
Server where a new database called Nwind_New was created from a backup of Northwind database.

For this example we would have to select the Leave Database non-operational but able to apply further transaction log
backups option under the Leave Database Operational setting when restoring the complete backup. This option is
displayed in Figure 18.

To restore transaction log backups to the same server

1. Open Enterprise Manager, connect to the server, and expand Databases.

2. Right-click Nwind_New database and select All Tasks, then select Restore Database... The dialog box shown in Figure
31 is displayed.

Figure 31: Restore log to new database

3. In the Show backups of database list, select Northwind. This updates the information displayed in the window.

It may be noticed that the transaction log backup corresponding to the complete backup that was loaded initially to
create the NWIND_NEW database is selected by default.

4. You can view properties for the log backup by selecting the Northwind Log Backup and clicking the Properties button.

5. To view and, if necessary, modify any option relating to the restore operation, click the Options tab. For a detailed
description of the options available on this tab, see the descriptions provided for Figure 18.

6. To start the restore of the transaction log, click OK.

A progress dialog box is displayed while the backup is being restored. When the restore finishes successfully, a
confirmation dialog box is displayed.

7. To complete the restore operation, click OK in the confirmation dialog box.

Top Of Page

Restoring Transaction Log Backups to a Different Server

Since a transaction log backup may only be applied if a database is in an unrecovered state, if the restore operation is being
performed on a different server, the backup history does not exist. In this case, either Enterprise Manager or Transact-SQL
commands could be used to perform the restore of the complete database backup. Alternatively, the backup history could be
loaded into the new server’s MSDB database using the procedure described in Adding Backup History from Backup Files to
MSDB later in this paper.

For the purposes of this paper, we will consider this procedure as performed through SQL Enterprise Manager. We will
continue this example from the example provided in Restoring a Complete Backup to a New Server later in this paper.

To restore transaction log backups to a different server

1. Open SQL Server Enterprise Manager and connect to the server.

2. Expand Databases. Right-click the database for which the transaction log backup is to be restored and select All Tasks,
then select Restore Database...

The dialog box shown in Figure 32 is displayed.

Figure 32: Restore transaction log backup to new server

3. To select the backup file(s) containing transaction log backup(s) to be restored, click the Select Devices... button. For
more information on this step, see the procedure explained for Figure 18.

4. Select the Transaction log radio button under Restore backup set.

5. Click the Options tab and select appropriate options for the restore. If this is the final transaction log backup, select the
Leave database operational. No additional transaction logs can be restored option. If there are further backups to
be applied after this one, select one of the other two options for the Recovery completion state.

6. To start the restore operation, click OK.

Progress and confirmation dialog boxes are displayed while the backup is being restored and when the backup is
restored.

7. To complete the restore, click OK in the confirmation dialog box.

Top Of Page

Restoring Transaction Log Backups to a Point in Time

Transaction log backups may be restored to a point-in-time. This functionality is available only through the use of transaction
log backups. There are certain restrictions placed upon using point-in-time recovery as follows:

Point-in-time recovery may not be used in conjunction with file/filegroup restore. The tail of transaction log has to be
applied in full when recovering file/filegroups from file/filegroup backups. For more information, see “File/Filegroup
Backups” later in this paper.

Point-in-time recovery is only available as the last step in a recovery situation. This means that no further backups may
be restored if point-in-time recovery is used. The database is recovered immediately even if the NORECOVERY or
STANDBY option is specified.

Point-in-time recovery is implemented using the STOPAT option with the RESTORE LOG Transact-SQL statement. The SQL
Enterprise Manager dialog box shown in Figure 33 is used to perform a point-in-time restore.

This dialog box is displayed when the Point in time restore check box is selected in the dialog box shown in Figure 28.

Figure 33: Point In Time Restore dialog box

Select the appropriate date and time to stop the transaction log restore operation through this dialog box. Once the date time
is selected, click OK to continue with the restore operation.

Note Since this procedure results in a different ending transaction after the restore is complete, a full database backup should
be performed before any further transaction log backups.

Top Of Page

Restoring Transaction Log Backups to a Named Transaction

SQL Server 2000 provides functionality to restore a transaction log backup up to and including or excluding a certain
transaction. This functionality has been implemented with new options for the RESTORE LOG command—STOPATMARK and
STOPBEFOREMARK.

Restoring a transaction log to a named transaction is bound by the same restrictions as point-in-time restore. Additionally,
recovery to a named transaction is available only if the specific transaction was started with a name. The following code
demonstrates how to create a simple named transaction that updates the Customers table in the Northwind database.

BEGIN TRAN Demo
UPDATE Customers
SET CITY = ‘Hamburg’
WHERE NAME = ‘Tony Munitz’
COMMIT TRAN Demo

If this transaction is the offending transaction and a customer would like to perform recovery on the database, excluding this
transaction and any other transactions that were performed after this transaction, we could use the following command:

RESTORE LOG NorthWind_Test
FROM DISK = 'd:\backups\TLOG_23.BAK'
WITH STOPBEFOREMARK = 'Demo'

Note STOPBEFOREMARK and STOPATMARK options may be used with the AFTER clause to stop recovery after a given
datetime for a named transaction.

Top Of Page

Restoring to a Point of Failure

Under certain circumstances it may be possible to recover the database to a point where it failed. Recovery to a point of failure
is available only when the database is in the Full or Bulk-Logged Recovery models. Restoring a database to the point of failure
requires the following backup components:

1. A backup of the tail of transaction log.

2. A complete database or file/filegroup backup. Optionally we may also need differential or file differential backups.

3. A sequence of all transaction log backups from the oldest complete (or file/filegroup backup) or the latest differential (or
file/filegroup differential) backup restored.

Step 1: Backup of the tail of transaction log

To perform a backup of the tail of transaction log if database files are damaged, see the procedure in article Q253817 in the
Microsoft Knowledge Base. As an example, the following command may be used to back up the log when database files are
damaged:

BACKUP LOG <dbname>
TO DISK = 'd:\backup\Tail_TLOG.bak'
WITH NO_TRUNCATE

Step 2: Restore complete database or file/filegroup backup

If the damaged files were backed up as part of a file/filegroup backup, locate the latest file/filegroup backups. If no filegroup
backups have been performed or if they are not available, locate the most recent complete backup.

If files from only a certain filegroup are damaged, and filegroup backups along with transaction log backups exist for the
damaged filegroup, restore the filegroup backup.

If complete database is damaged or the filegroup backups do not exist for the damaged filegroup(s), restore the most recent
complete backup, as explained in “Complete Database Backup” earlier in this paper.

Restore any further differential backups that may have been performed after either the complete backup or the file/filegroup
backup.

Step 3: Apply all transaction log backups

If in the previous step a complete backup was restored, restore all transaction log backups performed after the respective
complete backup and apply the tail of transaction log performed in step 1.

If file/filegroup backup was restored in the previous step, apply all transaction log backups following the latest file/filegroup or
differential file/filegroup backup.

Complete the restore process by applying the tail of transaction log backup in step 1.

Recommended Reading

See the following SQL Server Books Online topic:

Recovering to a Named Transaction

Top Of Page

Differential Backup

A differential backup backs up only modified extents since the last complete backup. By definition, differential backups are
cumulative. The most recent differential backup contains all changes from all previous differential backups performed since the
most recent complete database backup.

Differential backup functionality has been enhanced in SQL Server 2000. SQL Server 2000 uses a bitmap that contains one bit
for each extent in a database. This bit is set to 1 if any pages within that particular extent have been modified since the previous
complete backup. When a differential backup command is issued, SQL Server examines this bitmap. It accesses only the extents
that are flagged as having been modified through this bitmap and writes them to a backup file or device. This functionality
greatly improves the performance of differential backups.

Differential backups may be considered as an alternative for databases that are large and are modified infrequently. These
would include data warehouse type of databases.

Differential backups have several limitations:

They do not provide point-in-time restore capabilities.

Differential backups may not be restored by themselves. They may only be restored after a complete database backup is
restored.

You can only perform a full backup of the master database. Use BACKUP DATABASE to back up the entire master
database. Differential database backups may not be performed on the master database. If an attempt is made to
perform a differential backup on the master database, the following error is raised:

http://support.microsoft.com/?id=253817
http://msdn2.microsoft.com/library/aa213830.aspx

Server: Msg 3024, Level 16, State 1, Line 1

Differential backups are not allowed for the master database since they require that complete backups be applied
without recovery as the first step. When restoring the master database, restore without recovery is not allowed.

It should be noted that although differential backups may provide fast backup times in some situations, using them with highly
active OLTP databases may result in backup times that may be comparable to complete database backups. As mentioned
before, differential backups back up only extents for which any pages have been modified. If the database activity is such that
80-90% of extents have been modified, the time that a differential database backup may take may be very close to the
complete backup.

Top Of Page

Performing Differential Backup

To perform a differential backup

1. Connect to the server and expand Databases.

2. Right-click the database and select All Tasks, then select Backup Database... The dialog box shown in Figure 34 is
displayed.

Figure 34: Differential database backup settings

3. In the Database list box, select the database name for which to perform a differential backup. Optionally, enter a name in
the Name text box and/or description for the backup in the Description text box.

4. To perform the differential backup, select the Database – differential option.

5. Enter a backup file name following the steps outlined in Performing Complete Database Backups.

6. Click the Options tab and select appropriate options for the backup operation.

7. To start the backup operation, click the OK button.

This operation may also be scheduled for periodic execution by checking the Schedule check box. For more information
on modifying the default schedule for a job, see Modifying the SQL Server Job Schedule.

While the backup operation is progressing, a progress dialog box, similar to the one in Figure 13, is displayed. Once the
backup completes successfully, a confirmation dialog box, similar to the one shown in Figure 14, is displayed.

8. To complete the backup operation, click OK in the confirmation dialog box.

This task may also be achieved through Transact-SQL commands. The following command would perform the same operation

as in the previous procedure:

BACKUP DATABASE Northwind
TO DISK = 'D:\backups\nwind\nwind_diff.bak'
WITH DIFFERENTIAL

Top Of Page

Restore to the Same Server

For the purposes of this section, we will continue from the complete database restore performed in Restoring a Complete
Backup to the Same Database. The only difference would be that we would need to select the Leave database non-
operational but able to restore additional transaction log backups option in the Recovery completion section in the
Options tab on the dialog box displayed in Figure 18.

To restore to the same server

1. Open Enterprise Manager and connect to the server.

2. Right-click the database for which the differential backup is to be restored and select All Tasks, then select Restore
Database... to display the dialog box shown in Figure 35.

Figure 35: Differential database restore settings

3. In the Parameters section, select Northwind database in the Show backups for database list box, since this is the
source database for which the backups are to be applied.

4. Select the time when the backup was performed in the First backup to restore list box.

The window below this list is now refreshed with all the backups that have been performed from the selected entry in
Step 4. In this particular case, there is a single complete backup and a single differential backup.

5. Since the complete backup has already been restored, select only the differential backup in the list. Database properties
may be viewed by selecting the backup and clicking the Properties button.

6. Click the Options tab and select appropriate options. For more information on these options, see the descriptions listed
for Figure 18.

For the purposes of this demo, we will assume that the database needs to be recovered upon successfully applying the
differential backup.

7. To start the restore operation, click the OK button.

A progress dialog box similar to the one shown in Figure 19 is displayed while the restore operation is progressing. Upon
successful completion of the restore operation, a confirmation dialog box, similar to the one displayed in Figure 20, is
displayed.

8. To complete the restore operation, click the OK button.

The above operation may also be carried out by using the following Transact-SQL command:

RESTORE DATABASE Nwind_New
FROM DISK = 'd:\backups\nwind\nwind_diff.bak'
WITH RECOVERY

Top Of Page

Restore to a Different Server to a New Database

The procedure to restore a differential backup to a different server differs from the steps explained in Restore to the Same
Server in the “Differential Backup” section in this paper because the backup history does not exist.

Another means to have the database restored to a different server would be to load the backup history for this database using
the procedure described in Adding Backup History from Backup Files to MSDB and then use the SQL Enterprise Manager GUI
to restore the backup using the procedure explained in Restoring a Complete Backup to a New Database on the Same Server.

For the purposes of this example, we will assume that a complete backup has been restored without recovery. See the
procedure explained in Restoring a Complete Backup to a New Database on the Same Server; however, select the Leave
Database Non-operational but able to restore additional transaction logs radio button shown in the dialog box in
Figure 22.

To restore to a different server to a new database

1. Open Enterprise Manager and connect to the server.

2. Expand databases. Right-click the database to which the differential backup has to be applied, and select All Tasks, then
select Restore Database...

The dialog box shown in Figure 36 is displayed.

Figure 36: Restore differential backup to new database settings

3. In the window that is displayed, select the From device option in the Restore section.

4. Add the backup device in the Devices list following the procedure explained for Figure 24.

5. Select Database – differential under Restore backup set.

6. Click the Option tab and select appropriate options for the restore operation.

7. To start the restore operation, click the OK button.

A progress dialog box is displayed while the restore is being performed. When the restore completes, a confirmation
dialog box is displayed.

8. To complete the restore operation, click OK in the confirmation dialog box.

Top Of Page

File/Filegroup Backup

SQL Server organizes a database in several files. By default, a new database is created with one data file and one log file. Other
data files may be added either while creating the database or once the database is operational. The database files for SQL
Server typically will have .mdf or .ndf file extensions. Ideally, only the first database file that SQL Server creates should have the
.mdf file extension. This is a special database file since it contains a database header and all the system tables. All other
database files should ideally be given an extension of .ndf.

A filegroup is a logical grouping of SQL Server database files. By default, SQL Server creates a filegroup called Primary. SQL
Server adds the first database file (with the extension of .mdf) to the Primary filegroup. Other filegroups may be created at the
time the database is created or after the database has already been created. Database files should be added to the filegroup at
the time they are created. Once a file has been created and added to a database, the filegroup that it belongs to may not be
modified.

SQL Server provides the functionality to back up individual files/filegroups within a database.

Note A file/filegroup backup does not back up the transaction log portion of the database. This is a significant difference
between file/filegroup backup and complete backup. Hence a filegroup backup cannot be used as the first step in a recovery
situation.

File/filegroup backups may be used to restore the individual file/filegroup if some or all of the files within the respective
filegroup are damaged. The following restrictions are enforced when using file/filegroup backups:

A file/filegroup backup may only be restored to the same database it was backed up from.

All transaction log backups (including the tail) for the database should be available and restorable. It is implied that this
would not be possible to do on a database that is in Simple Recovery model.

Point-in-time recovery is not permitted when restoring file/filegroup backups. All transaction log backups have to be
restored in their entirety.

Top Of Page

Performing File/Filegroup Backup (Enterprise Manager)

To create the database used in the examples in this section, use the script provided in Appendix A.

To perform a file/filegroup backup

1. Open Enterprise Manager and connect to the server where the database resides.

2. Right-click the database and select All Tasks, then select Backup database. The dialog box shown in Figure 37 is
displayed.

Figure 37: File/filegroup backup general settings

3. Select the File and filegroup radio button in the Backup section of the dialog box. Click the ellipses button next to this
option. This opens the dialog box shown in Figure 38.

Figure 38: Specify file/filegroup to back up

4. In the Specify Filegroups and Files dialog box, select the files/filegroups that you would like to back up. For the
purposes of this example, we will back up filegroup fg1. Click the OK button once the files/filegroups have been selected.

5. Click the Add button in the SQL Server Backup dialog box. To add the destination file for the backup, follow the steps
for Figure 11.

6. Click the Options tab in the SQL Server Backup dialog box. Select options as necessary. For more information on the
options in this dialog box, see the explanation for Figure 12.

7. When you are ready to perform the backup, click the OK button.

A progress dialog box is displayed while SQL Server performs the backup. When the backup finishes successfully, a
confirmation dialog box is displayed.

8. Click the OK button in the confirmation dialog box.

Filegroup backups may also be accomplished with Transact-SQL commands. The above functionality could also have been
achieved by using the following Transact-SQL command:

BACKUP DATABASE files
FILEGROUP = 'fg1 '

TO DISK = 'd:\backups\files\fg1.bak' WITH INIT

Top Of Page

Restoring Filegroup Backups if Filegroup Files are Damaged

For this section we will assume that the disk where the database files for filegroup fg1 were stored was damaged and we lost
both files for this filegroup.

To restore filegroup backups if files are damaged

1. Open an SQL Query Analyzer window and connect to the server where the files database resides.

2. Select master database from the list box and enter the command shown in Figure 39. (If this step is not possible due to
damage to the transaction log, the entire database must be restored from the complete backup, and then all transaction
log backups should be restored to bring the database up to the point of the last successful log backup.)

Figure 39: Perform backup of tail of transaction log

3. Right-click the files database and select All Tasks, then select Restore Database...

Figure 40: Restore file/filegroup backup

4. Select the Filegroups or files radio button.

5. Make sure that the files database is selected in the Show backups of database: list box.

6. Select the Select a subset of backup sets check box. The Filter Backup Sets dialog box shown in Figure 41 is
displayed.

Figure 41: Filter Backup Sets dialog box

7. In the Filter Backup Sets dialog box, select Only backup sets of the following filegroups and files:

8. Check the fg1 filegroup in the list of files/filegroups that is displayed. Notice that if a filegroup is selected, all the files
belonging to that filegroup are selected automatically.

9. Click the OK button in the Filter Backup Sets dialog box.

The list of backups for this database, displayed in Figure 40, is now updated to meet the selected criteria. The latest
backup should now be selected in the displayed list.

Figure 42: Restore file/filegroup dialog with selected backups

10. Click the Options tab and select options as necessary. For more information on the options available while restoring, see
the explanation for Figure 18.

11. To start the restore operation for the filegroup, click OK.

12. Once the filegroup is restored successfully, repeat the process and restore all the transaction log backups, selecting the

tail that we backed up in Step 2 as the last log that is restored.

This completes the entire process of restoring the filegroup fg1 that was lost in a disaster.

Top Of Page

File/Filegroup Differential Backups

Differential backups may be combined with file/filegroup backups to back up only the modified extents within an SQL Server
database file or filegroup.

These backups may decrease the recovery time in disaster situations where only certain file/filegroups are lost. The latest
file/filegroup differential backup contains all changes from all previous file/filegroup differential backups, since they are
cumulative in nature. Transaction log backups performed after the latest file/filegroup differential backups are only required in
this situation.

File differential backups have the following restrictions:

They are allowed only in conjunction with file/filegroup backups.

They are not allowed for databases that use the Simple Recovery model.

They require all transaction log backups (just like file/filegroup backups), including the tail of transaction log.

It is not recommended that file differential backups be used with differential backups, as explained in the previous section of
this paper.

Note It is highly recommended that customers familiarize themselves with file/filegroups and the backup options associated
with file/filegroups before planning or implementing filegroups in production databases.

Performing a filegroup differential backup

As previously mentioned, file/filegroup differential backups are available only in conjunction with file/filegroup backups.
Consider a database, called FilegroupsDB that has a filegroup called fg2, for which we have performed a backup of filegroup
fg2. The following commands demonstrate how we can perform a filegroup and a filegroup differential backup for such a
database.

BACKUP DATABASE FileGroupsDB
FILEGROUP = 'fg2'
TO DISK = 'd:\backups\filegroupsdb\fg2\fg2_complete_1.bak'
BACKUP DATABASE FileGroupsDB
FILEGROUP = 'fg2'
TO DISK = 'd:\backups\filegroupsdb\fg2\fg2_complete_1.bak'
WITH DIFFERENTIAL

Restoring filegroup differential backups

The procedure is similar to restoring the file/filegroup backups. The only difference is that now we apply the file/filegroup
differential backup following the file/filegroup backup. The steps in a typical recovery situation where a particular filegroup is
lost would include:

1. Back up the tail of the transaction log.

2. Restore the filegroup backup and recreate the lost files.

3. Apply the latest filegroup differential backup for the specific filegroup.

4. Apply all transaction log backups following the filegroup differential backup.

5. Apply the tail of the transaction log performed in step 1.

Recommended Reading

See the following SQL Server Books Online topics:

Using File Backups

File Differential backups

http://msdn2.microsoft.com/library/aa196683.aspx
http://msdn2.microsoft.com/library/aa213835.aspx

See the following Microsoft Knowledge Base articles:

Q253817 INF: How to Back Up Last Transaction Log When Files are Damaged

Q281122 INF: Restore File and Filegroup Backups in SQL Server

Top Of Page

Backup and Restore of Full-Text Catalogs

Full-text searching in SQL Server is implemented using the Microsoft Search service. Full-text indexes are stored outside of
SQL Server database files. Full-text indexes cannot be backed up by using the Transact-SQL commands or Enterprise Manager.

Recommended Reading

The following Knowledge Base article discusses the procedure to back up and restore full-text catalogs used by SQL Server.

Q240867 INF:How to Move, Copy, and Back Up Full-Text Catalog Folders and Files

The following white paper discusses the details regarding disaster recovery options for full-text indexes in SQL Server.

SQL Server 2000 Full-Text Search Deployment White Paper.

See the following SQL Server Books Online topics:

Database Backups

Full-Text Indexing Support

Full-Text Indexes

Full-Text Catalogs and Indexes

Full-Text Search Recommendations

Top Of Page

Backup and Restore of Replicated Databases

This section covers the backup and restore implications and requirements for SQL Server databases that participate in
replication. It is not in the scope of this section to discuss the replication topologies. Please see the recommended reading at
the end of this section to gain more knowledge regarding these topologies.

It is highly recommended that for any recovery strategy involving replication, a script should be generated for the replication
topology at the time the replication environment is set up and each time it is changed. This script may be generated by using
SQL Enterprise Manager. The script should be stored with other backup files.

To script replication

1. Open SQL Enterprise Manager and connect to the Publisher server.

2. Right-click the Replication folder and select Generate SQL Script.

It should be noted that when restoring a replicated database from backup to a new server name or a new database name,
all replication settings are lost. Use the KEEP_REPLICATION flag to preserve the replication settings during the restore
process. For more information on this setting, see “RESTORE” in SQL Server Books Online.

3. Generally it is considered a good practice to let the replication agents finish the current replication workload, so that
Publisher and all Subscribers are in sync. Once the Subscribers are in sync, perform the following steps:

a. Stop the distribution/merge agent(s).

b. Back up the Publisher, Distributor, Subscriber(s), and other databases.

Another consideration when designing a backup strategy for replicated databases should be the distribution retention period.
The distribution retention period refers to the time that elapses before a transaction is discarded at the Distributor. This setting
is relevant in scenarios where transactional replication is being used. This setting can be configured through SQL Server
Enterprise Manager or by using the stored procedure sp_changedistributiondb. Ideally this retention period should be
configured to a number greater than the frequency of backups of the distribution database. Configuration in this manner
would ensure that none of the transactions expire before a backup is performed.

Top Of Page

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q253817
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q281122
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q240867
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com/support/sql/papers.asp
http://msdn2.microsoft.com/library/aa196681.aspx
http://msdn2.microsoft.com/library/aa224740.aspx
http://msdn2.microsoft.com/library/aa214780.aspx
http://msdn2.microsoft.com/library/aa214429.aspx
http://msdn2.microsoft.com/library/aa937546.aspx

Snapshot Replication

Snapshot replication consists of a replication where the entire publication is replicated to all Subscribers as a single snapshot.
This is best used for data that changes infrequently and where publications are relatively small sized.

Publication

Back up the published database(s) only when there are changes to the existing publications or new publications are added. A
complete backup is preferred.

Distribution

Back up the distribution database at the same time as publication. Perform the distribution cleanup task before performing
backup. Refrain from adding new snapshot publications or subscriptions at the time the distribution database is being backed
up.

MSDB database

Perform backup whenever any of the changes listed below occur on the Publisher, Subscriber, or Distributor server(s):

A subscription is dropped or added.

A replication agent is modified.

A new Publisher is added to the Distributor.

Master database

Perform a backup of master on the Publisher and Distributor each time a new Subscriber or Publisher is added.

Top Of Page

Transactional Replication

Transactional replication provides a mechanism to propagate changes made to a published database through the transaction
log over to the Subscribers. Log Reader Agent reads the transaction log of the published database and transfers the changes to
the distribution database. Distribution Agent propagates the transactions to the Subscribers.

In order to re-establish transactional replication in a disaster recovery situation, it is vital that the publication and distribution
databases be restored to a consistent point in time. SQL Server 2000 handles this task automatically. SQL Server provides an
option “sync with backup” which should be set to TRUE on publication and distribution databases. If this option is set to TRUE,
all publication and distribution databases should be backed up at frequent intervals, since the frequency of backups determines
the latency with which the changes are propagated to the Subscribers.

Publication database(s)

If the “sync with backup” option is turned on for the publication database, Log Reader Agent does not propagate the
transactions until they have been backed up at the Publisher. This means that the publication database with the “sync with
backup” setting turned on would have to be backed up at frequent intervals. Any type of backup (including transaction log,
differential etc) can be performed for the publication database.

This mechanism helps if a backup has to be restored for the Publisher in a disaster situation. Since Log Reader Agent does not
propagate any transactions that have not been backed up to the distribution database, there is no possibility of the distribution
database having transactions that are not present on the Publisher, in case the publication database has to be restored from
backups. There is no further synchronization required if the “sync with backup” setting was turned on before performing the
backup.

If the “sync with backup” is turned off, there is no way to guarantee the consistency of data between Publisher, Distributor, and
Subscribers. From a backup/restore disaster recovery perspective, it is recommended that the “sync with backup” setting be set
on.

If the “sync with backup” setting is turned off, Log Reader Agent may transfer data faster than it is being backed up. If the
Publisher fails and is restored from a backup, the distribution database may already have transactions that are yet to be
performed after the Publisher is restored from backup.

Distribution Database

If the “sync with backup” option is used, back up the distribution database as often as possible. This will insure that the
transaction log for the publication database is being truncated regularly. Frequent backups of the distribution database
however, do not affect the replication latency when the “sync with backup” setting is turned on. In case of a disaster, restoring

the latest backup of the distribution database will ensure trouble-free replication.

If the “sync with backup” setting is not used, there is no way to guarantee the transactional consistency between the
publication, distribution, and subscription databases. For quick recovery, it is recommended that this setting be used on any
distribution database involved in transactional replication.

MSDB database

MSDB databases on the Distributor and Subscribers should be backed up whenever a subscription is added or removed or a
change is made to any of the replication agents. If replication involves DTS packages to transform the data (in the case of
transformable subscriptions), the MSDB database on the Distributor and Subscribers should also be backed up any time:

There is a change to any of the DTS packages used for replication.

A new subscription is added or an existing subscription is dropped.

Master database

Back up the master database at the Publisher and Distributor when a new Publisher and/or subscription is added.

Subscription database

Subscription databases should be backed up at least once every interval set as the minimum transaction retention period for
the Distributor. This ensures that in case of a disaster where a subscription database is lost, it may be restored without loss of
any transactions.

Top Of Page

Merge Replication

Publisher

A publication database should be backed up each time there is a change to the following:

The replicated object’s schema definition

A Publication Property

For a detailed list of actions requiring an updated backup, see “Strategies for Backing up and Restoring Merge Replication” in
SQL Server Books Online.

Distributor

A distribution database’s role in merge replication topology is limited to synchronization history and error tracking store. If a
distribution database is associated only with merge publications, it is not always necessary to restore a distribution database at
the same time as the Publisher. A distribution database may be backed up as often as possible; however, this is not a
requirement. In the case where a distribution database fails, the most recent backup may be restored. If the backup is not up-
to-date, the information that is lost will relate to the history and error tracking for the merge publications and subscriptions.

Subscriber(s)

It is recommended that a Subscriber be synchronized with the Publisher before backup. It is also recommended that all
subscription databases be backed up at least as often as the retention period on the Publisher. If these two recommendations
are followed, any subscription database may be restored in case of disaster without any further actions. If a Subscriber
subscribes to more than one publication having different retention periods, the backup for that subscriber should be
performed as often as the shortest retention period out of all publications.

MSDB database

Back up the MSDB database at the Distributor and Subscribers at regular intervals. It is recommended that these backups be
performed regularly or whenever any of the following have been modified:

Any maintenance activity involving a change to replication agent settings on the Publisher, Distributor, or Subscribers.

For a detailed list of changes that would prompt an MSDB backup, see “Strategies for Backing up and Restoring Merge
Replication” in SQL Server Books Online.

Master database

The master database for all components (Publisher, Distributor, and Subscribers) should be backed up periodically.
Specifically, a backup should be performed after any change to the replication configuration.

http://msdn2.microsoft.com/library/aa237097.aspx
http://msdn2.microsoft.com/library/aa237097.aspx

Recommended Reading

See the following SQL Server Books Online topics:

Replication Overview

Replication Architecture

Backing up and Restoring Replication Databases

See the following SQL Server 2000 white paper on the Microsoft Developer Network (MSDN):

Transactional Replication Performance Tuning and Optimization

Top Of Page

Set Up Backup Schedules (Maintenance Plan Wizard)

The Maintenance Plan Wizard utility allows for a backup to be scheduled through the Graphical User Interface. This wizard may
be invoked through SQL Enterprise Manager.

To schedule a backup using the Maintenance Plan Wizard

1. Right-click the database and select All Tasks, then select Maintenance Plan... as shown in Figure 43.

Figure 43: Start Maintenance Plan Wizard

The dialog box shown in Figure 44 is displayed.

Figure 44: Maintenance Plan welcome dialog box

http://msdn2.microsoft.com/library/aa237426.aspx
http://msdn2.microsoft.com/library/aa224548.aspx
http://msdn2.microsoft.com/library/aa237096.aspx
https://msdn.microsoft.com/en-us/library/cc966539(v=technet.10).aspx

2. Click Next> to proceed to the next screen in the wizard. The dialog box shown in Figure 45 is displayed.

Figure 45: Select Databases dialog box

3. Verify that Northwind database is selected. If the maintenance plan should include other databases, check them in the
list.

4. Click Next> to proceed to the next screen, shown in Figure 46.

Figure 46: Specify data optimization settings

5. The dialog box in Figure 46 provides data optimization options. All operations in this dialog box are carried out at the
same time. The default schedule indicates that it will be executed every Sunday at 1:00 A.M. If this is incorrect, modify the
schedule by clicking the Change... button.

Description of other fields

Reorganize data and index pages – causes the indexes in the database to be rebuilt with either the default or provided
fill factor value.

Update Statistics used by query optimizer – causes the statistics for each index on user tables to be resampled.
Sampling size is based on the percentage value supplied. This option is unavailable when Reorganize data and index
pages is selected because statistics are recalculated automatically when the indexes are rebuilt.

Remove unused space from database files – causes the database to be shrunk when this maintenance plan job
executes. This operation will be carried out if the database file size grows beyond the supplied value. Amount of free
space to remain after shrink signifies the percentage of original database size that should be left empty after the shrink

operation.

6. Click Next> after selecting fields as necessary. The dialog box shown in Figure 47 is displayed.

Figure 47: Specify database integrity check settings

7. This dialog box presents the options available to perform a database integrity check. All operations in this dialog box are
carried out at the same time. The default schedule indicates that it will be executed every Sunday at 12:00 A.M. If this is
incorrect, modify the schedule by clicking the Change... button.

Description of other fields

Include Indexes – scans indexes on all tables in the selected database(s) for consistency and allocation errors. The
Attempt to repair minor problems setting causes SQL Server to use REPAIR_FAST option to try and correct any minor
problems that are found in the scan. The use of this option causes the maintenance plan to place the database in single-
user mode for the repair option.

Perform these checks before doing backups – causes SQL Server to perform this check before a backup is performed
for the database.

8. Click the Next> button and the dialog box shown in Figure 48 is displayed.

Figure 48: Specify database backup plan

9. This dialog box presents all options for a complete database backup. The complete database backup operation for all
selected databases is carried out at the same time. The default schedule indicates that it will be executed every Sunday at
2:00 A.M. If this is incorrect, modify the schedule by clicking the Change... button.

Description of other fields

Verify the integrity of the backup when complete – causes SQL Server to perform a verification of the backup once
it completes. SQL Server executes the RESTORE VERIFYONLY command to perform the verification.

Either a tape or a disk device may be selected as the target.

10. Click the Next> button to proceed to the dialog box shown in Figure 49.

Figure 49: Specify database backup directory

11. The dialog box shown in Figure 49 is where the target path for a complete database backup is specified. This dialog box is
only displayed if Complete database backup is selected in the previous dialog box.

Description of other fields

Directory in which to store the backup file – target directory for complete database backups. Default directory
resides within the SQL installation path under the BACKUP folder.

Create subdirectory for each database – causes a subfolder to be created for each database selected in the
maintenance plan.

Remove files older than – removes any backup files older than the configured age when the maintenance plan job is
executed.

Backup file extension – file extension used for the complete database backup files. By default, this is .bak.

12. Click Next> and the dialog box shown in Figure 50 is displayed.

Figure 50: Specify Transaction log backup plan

13. The dialog box shown in Figure 50 presents the option to back up the transaction log for all the selected databases.
Transaction log backup operations for all selected databases are carried out at the same time. The default schedule
indicates that it will be executed Monday – Saturday at 12:00 A.M. If this is incorrect, modify the schedule by clicking the
Change... button

Description of other fields

Verify integrity of the backup when complete – causes SQL Server to execute RESTORE VERIFYONLY to verify the
backup once it is complete.

Location to store the backup file – either a tape or a disk device may be used to perform transaction log backups.

14. Once all the appropriate selections are made, click Next > to view the next dialog box in the wizard as shown in Figure
51.

Figure 51: Specify Transaction log backup directory

15. The dialog box shown in Figure 51 displays configuration settings for the transaction log backup files. This dialog box is
displayed only if Transaction log backup is selected and the target is a disk.

Description of other fields

Use the default backup directory – causes SQL Server to perform the transaction log backup to the default backup
folder. This folder is under the SQL Server installation path.

Use this directory – any folder can be specified if using the default folder is not wanted.

Create a subdirectory for each database – causes SQL Server to create a subfolder for each database that is
configured for this maintenance plan.

Remove files older than – backup files older than the age specified are removed from the backup folder.

Backup file extension – the extension that is given to the transaction log backup files. The default extension is .trn.

16. Click Next> to continue to the dialog box shown in Figure 52.

Figure 52: Specify report generation settings

17. This step is optional. It prompts users to save an output file from the maintenance plan. Although this step is optional, it
is highly recommended that a report be generated and inspected on a regular basis to spot any failures that might have
occurred.

Description of other fields

Delete text report files older than – deletes any files older than the age specified.

Send email report to operator – generates an e-mail message and sends it to the nominated operator. This setting
appears dimmed (unavailable) in the illustration in Figure 52 because there were no operators defined on this server.

18. Once all the options are selected, click Next> to continue the Maintenance Plan Wizard. The dialog box shown in Figure
53 is displayed.

Figure 53: Specify Maintenance plan history settings

19. This dialog box presents the option to log history records for the execution of this maintenance plan. Logging history
records helps in troubleshooting.

Description of other fields

Limit rows in the table to - the number of rows that are kept in the history table. If the number of rows exceeds this
number, the oldest records are deleted.

Remote server - History records may be logged to a remote server’s MSDB database. If the Write history to the

server: check box is selected, another server may be selected as the keeper of the job history for this maintenance plan.

20. Click the Next> button to continue. The dialog box shown in Figure 54 is displayed.

Figure 54: Maintenance plan summary dialog box

21. This is the final dialog box in the wizard. It displays the summary of all options selected and allows you to enter a name
for this maintenance plan. After verifying the options and entering a name, click the Finish button to create the
maintenance plan.

Top Of Page

Modifying the SQL Server Job Schedule

If any of the task schedules have to be changed, the dialog box shown in Figure 55 is displayed. This section explains the fields
in this dialog box.

Figure 55: Recurring schedule modification dialog box

This dialog box allows a job schedule to be changed to meet the requirements for the individual job.

1. A job may be scheduled to run daily, weekly, or monthly. Select the appropriate radio button in the Occurs section. The
option labeled Weekly in the dialog box changes when the Daily or Monthly option is selected. Figure 56 shows the
changed window.

Figure 56: Modify default schedule dialog

Figure 57: Modify default schedule dialog

2. Select the appropriate frequency in the dialog box displayed in Figure 55. A job may be scheduled up to a future
date/time or else indefinitely. To schedule a job to end on a specific date, select the End date radio button in the
Duration section and provide the date.

3. Finally, by default, a schedule is enabled. If this schedule needs to be disabled and re-enabled at a later date, uncheck the
Enable schedule check box.

4. To save the schedule, click the OK button.

Top Of Page

Backup Techniques for Large Databases

SQL Server 2000 includes enhancements to improve the backup and restore performance of large databases. A variety of
techniques may be used to improve the throughput of backup/restore operations.

Speeding up backups

Backups are one of the most important maintenance tasks that need to be performed at regular intervals. However, under
certain circumstances database administrators tend to neglect this task. These circumstances may include the size of the
database, usability, and uptime requirements. Although SQL Server does not require that a database be taken offline for the
purpose of performing backups, certain operations cannot be performed while backups are running. These operations include
file operations (including expansion, shrinking of database and transaction log files, and ALTER DATABASE statements with
ADD or REMOVE FILE operations). Because of this, it might be beneficial to have the backup operation complete in the least
amount of time possible.

Various techniques may be used to speed up backup performance. They include both hardware and software solutions.

Top Of Page

Backup Infrastructure and System Architecture

Performing backups of large databases (in the order of GBs and TBs) will benefit from having a “backup friendly” machine
architecture. Some of the key aspects to consider are covered in this section.

Disk backups

Perform backups to local disks running off separate disk controllers rather than the one that contains the databases.

Format the drives as a lower level of RAID for speed (i.e. RAID 0 or RAID 1). However, this will reduce the fault tolerant
capabilities of the disk.

Tape backups

Use multiple tape devices in a media family configuration for maximum throughput.

Run the tape devices off a different controller than the one that holds SQL database files.

Use local tape drives instead of network drives.

Network backups

This mode of backup is not recommended. When performing network backups, several factors are added to the performance
equation. These include the speed of the network cards/cables, network architecture and reliability, etc.

If it is imperative that network backups be performed, a private network for backup/restore purposes is preferable. This
network should not contain any routers between the source and destination machines. It should also be realized that if at any
point network connectivity is lost between source and destination machines, the backup may not complete and it might fail
with an operating system error.

Snapshot backups

Snapshot backup involves setting up a three-way mirror for drives that contain SQL Server databases. At the time the backup
is performed, one of the mirrors is broken momentarily while a copy of all files on that mirror drive is made to a separate
location. The broken mirror is then reestablished back and changes are regenerated from the information on the second mirror
drive. Snapshot backups are performed in a very short amount of time and provide the quickest recovery path.

Snapshot backup is developed in conjunction with several hardware vendors. Snapshot backup is applicable only on hardware
that supports this functionality. Please see your hardware vendor for information regarding this functionality.

Top Of Page

Software Configuration and Database Architecture

Differential backups

Investigate the timings for differential backups. This kind of backup is extremely versatile and quicker than complete backup.
The fact that this backup is also cumulative means that only the most recent backup needs to be maintained. For databases that
are updated at regular intervals but do not experience heavy update activity, differential backups may provide an ideal solution.

Database architecture

For databases that experience heavy update activity, differential backups may not be the right choice. In this case the better
option would be to include transaction log backups at short intervals. The reason for this is that if enough updates are
performed on a database, a differential backup might be as large as the complete backup.

If only certain table(s) are updated heavily and the rest of the database is static, it might be a good idea to create separate
filegroups for active and inactive portions of the database. If the database is architected such that there are filegroups,
filegroup backups may be implemented to reduce the overall time required for backups. As mentioned before, filegroup
backups require transaction log backups for recovery. Hence, transaction log backups would be required if filegroup backups
are implemented.

Recommended Reading

See the following SQL Server Books Online topic:

Optimizing Backup and Restore Performance

Top Of Page

About Disaster Recovery Planning

One of the most important functions that an SQL Server database administrator has is to design and implement a disaster
recovery plan for the production system. This kind of planning involves planning the following aspects:

Creating a backup plan for all databases.

Setting up a warm backup server with the databases that are critical to an organization’s operations.

Testing the backups at regular intervals.

Circulating backups for off-site storage.

Documenting the system and training co-workers in disaster recovery procedures.

Simulating disaster recovery scenarios to test the timing and value of current procedures.

There are various techniques for designing an efficient disaster recovery scenario. Almost all of these techniques have as their
first step:

Understanding the requirements for disaster recovery for your organization.

Familiarizing yourself with all the options available in SQL Server, so an efficient strategy may be designed.

Understanding the disaster recovery requirements is an extremely critical step as it lays down the foundation for a robust
disaster recovery plan for any organization. The following questions are provided as a guide to the kind of information that

should be understood by the person in charge of designing this strategy:

How critical is the data stored on the database? If any data is lost, is it re-creatable?

How much information can the organization afford to lose in case of a disaster? What is the maximum downtime that a
company can take in case of disaster?

How much data is modified in the database?

Is this is a 24x7 (24 hours a day, 7 days a week) system or is there a maintenance/downtime window available on a
regular basis?

What resources are available to design a strategy? This would include resources like a redundant machine, off-site
storage facility, etc.

There are several techniques that may be used to design a disaster recovery strategy. Some of these techniques are not
discussed since they relate to the core operating system and are outside the scope of this paper. Depending on the kind of
disaster a company might be dealing with, backup/restore may serve as the most robust disaster recovery mechanism
available.

Since there are several kinds of backups to choose from, a combination usually leads to the quickest recovery path. See the
case study in this paper.

Recommended Reading

See the following SQL Server Books Online topics:

Designing a backup restore strategy

Backup and Restore Operations

See the following Microsoft Knowledge Base article:

Q307775 INF: Disaster Recovery Articles for Microsoft SQL Server

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307775

Top Of Page

Case Studies

Mid-size business – OLTP

This is a mid-size business with 150 employees throughout the United States. SQL Server is used for Inventory, Customer
Information, Sales, HR/Payroll, and the development environment. The company uses several SQL Server 2000 servers. The
company develops applications in-house. The company uses a total of around 6 GB of database space. The space usage
patterns indicate a growth rate of about 100 MB per month across all databases. Three main databases are Inventory (1.5 GB),
Sales/Customer Information (2.5 GB), and HR/Payroll (2 GB). There are several development databases that are used for
testing. These are placed on the development server and are less than 500 MB in size.

All SQL Server computers are managed by two database administrators (DBAs). One is in San Francisco and one in New York
City.

The following table shows more information about each production database.

Database /

Parameter
Inventory Sales/Customer HR/Payroll

Size 1.5 GB 3.5 GB 1 GB

Usage Track items sold by company. Track customer orders and
shipments

Used for employee payroll
information

http://msdn2.microsoft.com/library/aa173660.aspx
http://msdn2.microsoft.com/library/aa196675.aspx
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307775

Activity
Pattern

Most heavily used at the end of each
month when an inventory reconciliation
is performed and new inventory items are
added.

Most heavily used during
weekdays. Customer orders
are added during business
hours. Reports are prepared
at nights.

Moderate use database. Four staff
members in HR use this database.
Moderate amount of modifications
and reports prepared during
working days.

Disaster
Recovery
Requirements

Critical information stored in the
database. Information may be recreated
with some effort. Company operations
may be affected severely if information is
not recreated within 1 business day. Any
new information added at the end of
month should not be lost. Information
added during the month may be
recreated.

High usage and visibility
database. Critical to company
operations. Require point-of-
failure recovery. This system
should be operational within
20-30 minutes if outage
happens during working
hours. No data loss is
acceptable.

Information maybe recreated with
some effort. Information is
important to company’s operation.
Outage during weekdays will not
affect core business. The database
will need to be operational within 1-
2 business days. Loss of 1-2 days
worth of information may be
acceptable.

The disaster recovery requirements highlight the need to use several techniques to implement the disaster recovery plan for
these production databases. Following are some suggestions on how to design the recovery strategy for each database.

Minimum disaster recovery plan for Inventory database

Database may be Simple Recovery model. This provides minimum operational overhead. Transaction log is maintenance free.

Set up a complete database backup after the end-of-month reconciliation is performed. This is critical as one of the
requirements is that end-of-month changes should not be lost.

Set up a differential database backup to be performed each night. This will ensure that all changes are backed up without the
overhead of maintaining all previous differential backups. Refresh the differential backups each time a complete backup is
performed.

In case of a disaster, restore the previous month’s complete backup and then apply the latest differential backup. Any data lost
between the last differential backup and disaster time may be recreated.

Database backups and differential backups should be tested at regular intervals to ascertain recoverability and verify that
disaster recovery is possible within the allocated time window.

Added recommendations for Inventory database

Perform a complete backup more often than once a month. If disk space is not a factor, a complete backup may be performed
each week, with differential backups being performed every night.

If disaster recovery requirements change, the recovery model may be switched to Bulk-Logged or Full and transaction log
backups may be performed at regular intervals between successive differential backups.

Since the data is critical to company operations, it might be a good idea to implement warm backup using Log Shipping.
However if this solution is to be implemented, the recovery model for the database should be switched to Full or Bulk-Logged.
For more information on implementing Log Shipping, see the following section on the Sales database.

Minimum disaster recovery plan for Sales/Customer database

Database should be Full Recovery model. This provides maximum recoverability in case of disaster.

Perform a complete database backup each night (at 10 P.M.).

Perform differential backups twice a day (at 11 A.M. and 4 P.M.).

Perform transaction log backups every 10-15 minutes.

In case of a disaster, restore the previous night’s complete backup, apply the latest differential backup, and apply any further
transaction log backups performed after the latest differential backups.

Database, differential, and transaction log backups should be tested at regular intervals to ascertain recoverability and verify
that disaster recovery is possible within the allocated time window.

Added recommendations for Inventory database

Since this database is extremely critical for the company’s operation, it is highly recommended that Log Shipping be used to
set up a warm backup server. Log Shipping provides complete environment redundancy and may be beneficial in getting the
systems functional before the 20-30 minute time window available to get the system functional again.

Setting up Log Shipping may also provide the benefit of a redundant report server. Report generation may be load-balanced
between the two servers during non-working hours.

Due to the existing geographical location of company offices, it might be beneficial to set up the log shipping server.

Minimum disaster recovery plan for HR/Payroll database

All the recovery requirements are roughly the same as the Inventory database, so a similar plan could be implemented for this
database as well.

All backups should be tested at regular intervals to ascertain recoverability and verify that disaster recovery is possible within
the allocated time window.

Added recommendations for HR/Payroll database

Have the database use Full or Bulk-Logged Recovery model.

Perform a complete database backup once every week.

Perform a transaction log backup each night. Refresh the transaction log backups after the complete database backup is
successful.

These steps will reduce the recovery time window as well as minimize the data loss in case of disaster.

Large Organization, 24x7 (24 hours a day, 7 days a week) System

This e-commerce organization uses SQL Server for their “.com” business. The company sells books, magazines, and music CDs
through their Web site. SQL Server databases are used for the OLTP system for the e-commerce site. The database experiences
a high volume of transactions at any given time. Usually the transactional activity is lowest during night hours.

The organization uses DTS packages to download data into another database each night. This data is then used for reporting
purposes. The DTS package selects the data to move into the report server database. The data in the report server database is
refreshed each night.

The operations for this organization are divided up in four separate databases: OnlineContent, Inventory, Sales, and Customers.
All databases experience a high level of transactions (OnlineContent is the most active database). The total database size is
about 300 GB. These databases work together to form the entire e-commerce platform.

Disaster recovery requirements for this organization include the following:

Downtime of less than a minute for all databases in case of total machine failure. If the downtime is more than a minute,
the losses are estimated at $200 per minute.

No data loss acceptable for any of the databases.

Following is some background information on the hardware environment:

Backup media is an Ultra Wide SCSI tape library.

Databases are placed on a fiber-optic SAN drive with 2 TB of total drive space.

Microsoft Windows® 2000 Clustering in Active/Active configuration is used to protect against single machine failure.

Disaster recovery planning

It is important to understand the major requirement for disaster recovery is that the company starts losing money if downtime
is more than a minute.

It is also a major requirement that the company should not lose any data in case of hardware failure. This requirement means
that the disaster recovery plan should include complete machine redundancy using Log Shipping.

Recommendations

To provide a quick backup/restore mechanism, snapshot backups should be implemented. Snapshot backups perform
extremely fast complete database backups and equally fast recovery if needed.

Along with snapshot backups, a tape backup of the .mdf/.ldf files taken would be beneficial for off-site storage.

Log Shipping could be implemented as a solution to set up a standby server in case a complete machine failure takes down all
nodes of the cluster or the shared drives.

Databases should be in Full Recovery model and transaction log backups should be performed every few minutes. A 3-5

minute interval may be used to start off and if this interval seems too small, it may be increased to 5-7 minutes.

Along with the four production databases, MSDB and master should be backed up, because they contain information relating
to the scheduled jobs and logons.

Top Of Page

Appendix A – Database Script for Filegroup Backup and Restore

Note Please change/rename the path/file names as necessary.

Note Some parts of the following code snippet have been displayed in multiple lines only for better readability. These should
be entered in a single line.

CREATE DATABASE files
ON
(NAME = files,
FILENAME= 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files.mdf
', SIZE = 2),
FILEGROUP FG1
(NAME = fg1_file1_data,
FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files_fg1_1.ndf ',
SIZE = 2),
(NAME = fg1_file2_data,
FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files_fg1_2.ndf',
SIZE = 2),
FILEGROUP FG2
(NAME = fg2_file1_data,
FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files_fg2_1.ndf',
SIZE = 2),
(NAME = fg2_file2_data,
FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files_fg2_2.ndf',
SIZE = 2)
LOG ON
(NAME = files_log,
FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL\Data\files_log.ldf ',
SIZE = 2)

Top Of Page

Split-Mirror Backup and Restore
Updated : May 31, 2002

A hardware-based availability solution for SQL Server 2000

By Ron Talmage

This article is from the November 2001 issue of SQL Server Magazine.

Split-mirror backup technology can help you achieve higher database availability by letting you back up the database very
quickly, typically in a matter of seconds. This speed lets you make database backups more frequently. Also, you can restore a
database from a split-mirror backup quickly, dramatically reducing the time a database is unavailable during a restore
operation. Split-mirror backup can nearly eliminate the use of the database server's resources to perform the backup. Plus, you
can initialize a secondary server much more quickly than with the standard SQL Server backup-and-restore technology.

Keep in mind that split-mirror backup requires specialized hardware and software. It requires that database data be stored on a
disk subsystem with mirroring—typically RAID 10 on a SAN. In addition, it requires a specialized volume-management
software utility to communicate with SQL Server 2000. You must balance the benefits of split-mirror technology against the
cost of the required disk system hardware and software. For more information about required hardware and software, see the
sidebar "Split Mirror, SAN, and NAS."

On This Page

How Split-Mirror Backup Works
Remirroring the Original Database
Split-Mirror Restore
Vendor Support for SQL Server 2000 Split-Mirror Backup
Another Look

How Split-Mirror Backup Works

To understand how split-mirror backup works, start by thinking of three distinct mirrored volume sets, as Figure 1 shows.
Assume you've configured them as RAID 10 in a SAN. The original database was created on two mirrored volume sets for fault
tolerance. Let's say that since that time, you've added a third mirrored set of drives, which you've synchronized with the first
two mirrors, and you're keeping a full copy of all the data current on the third set as well. All the mirrored sets are in the same
disk subsystem, so SQL Server's disk writes go to all three drive sets simultaneously. With all this in place, you can make a
split-mirror backup.

Figure 1: Three fully mirrored drive sets

When you make a split-mirror backup, you use the SAN vendor's software and hardware to separate or "split off" the third
mirrored drive set from the database's two primary mirrored drive sets. This nearly instantaneous split creates a backup of the
database on the split drive set at a given point in time. (Note that the data copying occurs before the split, during the initial
synchronization process.) The drive set that's split off is called a Business Continuance Volume (BCV) or a clone. The mirrored
sets that remain behind ensure disk-system fault tolerance for the database data.

You accomplish the split-mirror backup by using a software utility supplied by the storage vendor or third-party backup-
software supplier. When you make the backup, the split-mirror utility software issues a backup command to SQL Server's
backup Virtual Device Interface (VDI) API. The backup utility software receives the backup set metadata from SQL Server and
stores it on the cloned drive set.

http://www.sqlmag.com/

During the splitting process, a checkpoint occurs, and although SQL Server might still accept writes to the database, depending
on the vendor's implementation of split-mirror technology, writes to the physical disk volumes are suspended. If disk writes
were allowed during the split, one possible result is that only a portion of the disk blocks belonging to a SQL Server data page
would be written to the third drive set. This result is called a torn page. The suspension of writes to disk prevents the clone
from potentially capturing a torn data page during the splitting process. During the splitting process, disk reads are unaffected,
so SQL Server can still read data from disk. The splitting process generally takes a few seconds or less—the exact amount of
time depends on the storage vendor and your storage-subsystem hardware configuration.

After the splitting process, database write activity to the storage subsystem resumes, but only to the original two mirrored
drive sets, as Figure 2 shows. You can use split-mirror technology to make a fast copy of a large database to another server.
Using the resulting BCV as a backup set, you can restore it to another database server on the SAN, or you can archive the BCV
to tape.

Figure 2: The split-mirror set after the splitting process
Top Of Page

Remirroring the Original Database

Like all backups, the BCV becomes out of date as soon as the original database data changes. So, depending on your disk
resources, you might want to reuse the BCV volume set for making another split-mirror backup later. Figure 3 shows how you
can resynchronize the BCV with the original database mirrored set. Of course, as soon as you let SQL Server write to the BCV
drive set, you can no longer use that drive set as a backup image for restoring. If you have only one BCV, remirroring can leave
you vulnerable. To remedy this, make split-mirror backups to two BCV sets in rotation, and remirror only the older one. That
way, if the remirroring fails, the newer BCV is available as a backup.

Figure 3: Synchronizing the BCV set with the original database mirrors

Synchronization takes much longer than splitting. The time required for synchronization depends on the storage vendor's
technology and the amount of data involved, but it could take several hours. When the synchronization is complete, your
server's array returns to the state that Figure 1 shows: You have three complete mirrored sets, and you're ready to make
another backup.

Because these backups occur quickly and don't affect the database server's resources, you could make full database or
database file backups several times a day, if necessary. The only limiting factor is the time that synchronization requires.

Top Of Page

Split-Mirror Restore

When you restore from a split-mirror backup, you reestablish the BCV as a third mirrored set for the database, and the disk

subsystem synchronizes the other two drive sets so that they mirror the restored data. Because SQL Server can read the third
mirrored set right away and write to all three sets, the database becomes available almost immediately. Depending on the
vendor, the synchronization of the original mirrored sets might happen in the background.

When you restore a database from a BCV through split-mirror restore, the restore happens very quickly—potentially just as
fast as the backup. To visualize how a split-mirror restore works, start with a BCV and the mirrored set of drives containing the
database, as Figure 3 shows. You use the vendor's utility to initiate the restore process and supply the necessary backup
metadata to SQL Server 2000. As with any database restore, the process performing the restore must be the only database
user at the time. When the BCV becomes a part of the mirrored set, the restore is complete, and you can recover the database
and make it available.

After the split-mirror restore, the BCV drive set becomes the reference set for the system, so you need to synchronize the
original mirrored sets with the BCV. Transparent to SQL Server, disk reads come only from the BCV, while all disk writes go to
all three mirrored sets simultaneously, as Figure 4 shows.

Figure 4: A split-mirror restore

The restore synchronization process occurs in the background and takes considerably longer than the split-mirror restore—
typically hours for large systems. If the database is heavily used, the synchronization process might cause some performance
degradation because of the resulting increase in I/O activity.

After you restore a split-mirror backup of a SQL Server 2000 database, you can apply differential and transaction-log backups
to the database, if you restored the split mirror without recovery. Because transaction-log restores usually go very quickly and
the initial database restore takes only a few seconds, you can recover a VLDB with minimal downtime.

Note that during the synchronization after a restore, the database might lack disk-drive fault tolerance if the BCV volume is
unmirrored. To determine whether the BCV can also be a mirrored set, you'll have to check with your vendor about how its
product lets you create BCVs. When the synchronization process is complete, all three volume sets are mirrored and your disk
array returns to the state that Figure 1 shows.

Top Of Page

Vendor Support for SQL Server 2000 Split-Mirror Backup

Compaq, EMC, and HDS work with Microsoft to support split-mirror backup through their SAN products. Each of these
vendors supplies SAN disk hardware and backup-utility software that enable split-mirror backups and restores.

Compaq offers the SANworks Enterprise Volume Manager (EVM) software for use with its StorageWorks storage systems. An
extensive white paper, "Enterprise Volume Manager and SQL Server 2000 Best Practices"
(http://www.compaq.com/products/storageworks/library/whitepapers/149m-0201a-wwen.html), describes how EVM supports
SQL Server 2000 split-mirror backup. The EVM uses the SQLer command-line utility to interact with SQL Server's VDI for
making split-mirror backups and restores.

EMC produces the TimeFinder volume-management software for use with its Symmetrix storage systems. For more
information, see "EMC ResourcePak for Windows" (http://www.emc.com/pdf/products/resourcepak/resource_pak_ds.pdf),
which briefly describes the use of TimeFinder with SQL Server 2000.

As of this writing, HDS is testing its SplitSecond software utility, which it will use in combination with its Freedom Storage SAN
products to support SQL Server 2000 split-mirror backup.

Top Of Page

Another Look

SQL Server 2000's split-mirror technology gives you several advantages over the traditional database backup methods. It

http://www.compaq.com/products/storageworks/library/whitepapers/149m-0201a-wwen.html
http://www.emc.com/pdf/products/resourcepak/resource_pak_ds.pdf

provides nearly instant database restores for VLDBs and nearly instant and very low impact backups of large databases. And
with nearly instantaneous split-mirror restores of large amounts of data, you can keep your system online and available almost
continuously.

© 2002 SQL Server Magazine. All rights reserved.

Subscribe to SQL Server Magazine today – with a NO RISK offer: https://store.pentontech.com/index.cfm?
s=9&cid=49&promotionid=2180.

Get the latest news, products, and developments for SQL Server DBAs and developers with SQL Server UPDATE, a free email
newsletter. Click here to subscribe: http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp.

We at Microsoft Corporation hope that the information in this work is valuable to you. Your use of the information contained
in this work, however, is at your sole risk. All information in this work is provided "as -is", without any warranty, whether
express or implied, of its accuracy, completeness, fitness for a particular purpose, title or non-infringement, and none of the
third-party products or information mentioned in the work are authored, recommended, supported or guaranteed by
Microsoft Corporation. Microsoft Corporation shall not be liable for any damages you may sustain by using this information,
whether direct, indirect, special, incidental or consequential, even if it has been advised of the possibility of such damages. All
prices for products mentioned in this document are subject to change without notice.

Top Of Page

Click to order

Top Of Page

https://store.pentontech.com/index.cfm?s=9&cid=49&promotionid=2180
http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp
https://store.pentontech.com/index.cfm?s=9&cid=49&promotionid=2180
https://store.pentontech.com/index.cfm?s=9&cid=49&promotionid=2180

Index Tuning Wizard SQL Server 2000
Updated : July 19, 2001

Sanjay Agrawal

Surajit Chaudhuri

Lubor Kollar

Vivek Narasayya

Microsoft Corporation

August 2000

Summary: This article describes the Index Tuning Wizard in Microsoft SQL Server 2000. The Index Tuning Wizard simplifies
the task of identifying which indexes to create in a table and also optionally generates scripts to create them by analyzing a
user-supplied workload. Various modes are offered for tuning both indexes and indexed views. (9 printed pages)

On This Page

Why Is Index and Indexed View Selection Difficult?
Using the Index Tuning Wizard
Understanding the Architecture of the Index Tuning Wizard
For More Information

Why Is Index and Indexed View Selection Difficult?

Identifying an appropriate set of indexes for a database system is a complex undertaking. For a given database, there are many
possible indexes (such as single and multi-column) and modern query processors exploit indexes in sophisticated ways. While
the number of considered indexes is very large, the number of indexed views (materialized views) that must be considered for
a database is even larger. In principle, an indexed view of any subset of the tables referenced in a query may be useful in
answering the query. Furthermore, for any given subset of tables in the query, we can define an indexed view containing any
subset of the conditions in the query on that subset of tables. The number of considered indexed views is further increased
since an indexed view may also contain grouping columns and aggregation expressions (that is, SUM). Finally, as with tables, it
is possible to define a clustered index on a view, as well as multiple non-clustered indexes on the view.

The choice of indexes and indexed views cannot be done in isolation of each other. One reason for this is that the presence of
an index can make an indexed view more attractive to the optimizer, and vice versa. Ignoring such interactions can result in
poor quality recommendations. Furthermore, since both indexes and indexed views may be useful for a given query, picking
them separately can lead to redundant recommendations that incur high storage and update overhead. Finally, while tuning
the physical design of a database, we must trade off the performance requirements of a diverse set of queries and updates that
the database system must support. Therefore, identifying an appropriate physical design is a challenging task.

The Index Tuning Wizard in Microsoft® SQL Server™ 2000 can help you avoid these problems. It recommends the right mix of
indexes and indexed views for the given workload of queries and updates. To make its decision, it employs usage statistics, it
consults the query processor in evaluating the usefulness of indexes and indexed views, and it searches the space of possible
indexes and indexed views.

Top Of Page

Using the Index Tuning Wizard

To use the Index Tuning Wizard, the server name and the database name must be specified. In addition, the wizard requires a
workload (specified as a file or a table) as its input. The goal of the Index Tuning Wizard is to recommend a physical design that
best optimizes the aggregate performance of the queries and updates in the workload. Any SQL Profiler trace can be used as a
workload. SQL Profiler is a graphical SQL Server client tool that makes it possible to monitor and record engine events in a file
or table.

A typical entry in such a workload may consist of a variety of fields: event-class, text of the event (for example, text of the
Transact-SQL query), start-time, and duration of the event. The Index Tuning Wizard can extract engine relevant events (such as
Transact-SQL statements) and fields from a SQL Profiler trace automatically. Alternatively, any file that contains a set of
Transact-SQL statements can also be used as a workload. Such files may contain customer benchmarks for which the index
selection must be tuned. Because the Index Tuning Wizard does not execute any batch of queries in the workload during

analysis, it cannot provide recommendations for a batch that references temporary objects.

The Index Tuning Wizard produces a recommendation for physical design and optionally generates the necessary script to
implement it. It also estimates the expected improvement that may accrue from implementing the recommendation.
Furthermore, the recommendation is accompanied by a range of reports that provide further insight into the impact of the
recommendations.

Customizing the Index Tuning Wizard

The Index Tuning Wizard provides the following set of options to customize index selection:

Keep all existing indexes

This option can be exercised on the Server and Database Choice dialog box. By selecting this option, the user instructs the
wizard not to drop any of the existing indexes and indexed views. This allows conservative use of the tool and incremental
changes in the design. Unless the user is experienced, it is recommended that this mode of operation be used.

Add indexed views

This option is enabled when connecting to an Enterprise or Developer Edition version of SQL Server 2000, and is checked by
default. This option determines whether or not indexed views, in addition to indexes, will be considered by the Index Tuning
Wizard.

Tuning mode

For large workload files and large databases, tuning may require a significant amount of time and resources. This option allows
the user to trade off the running time of the Index Tuning Wizard with the thoroughness of the analysis. The Fast mode
consumes the least amount of time and resources and produces a quick recommendation that is based on query analysis and
limited interaction with the query processor. (Indexed views are not proposed in the Fast mode.) The Medium mode, which is
the default, proposes indexes and indexed views and is significantly faster than the Thorough mode for large workloads.
Although the Medium mode of operation searches fewer possibilities, in many cases it is able to provide a respectable set of
recommendations. The Thorough mode consumes the maximum amount of time and resources, but it also gives the highest
quality recommendation for the workload. Below is a comparison of the running times and expected improvements of the
Index Tuning Wizard (ITW) in different tuning modes for a sample workload on a 1.2 GB database:

Server Version Features Tuned Tuning Mode ITW running time Expected Improvement

SQL Server 7.0 Indexes Only Thorough 40 min.
46 sec. 49%

SQL Server 2000 Indexes Only Fast 1 min.
10 sec. 37%

SQL Server 2000 Indexes Only Medium 3 min.
52 sec. 39%

SQL Server 2000 Indexes and Indexed Views Medium 4 min.
54 sec. 41%

SQL Server 2000 Indexes Only Thorough 16 min.
5 sec. 62%

SQL Server 2000 Indexes and Indexed Views Thorough 19 min.
21 sec. 79%

Additional customization options are presented in the Advanced Options screen:

Limit number of workload queries to sample

To improve scalability, the Index Tuning Wizard in SQL Server 2000 supports the ability to randomly sample queries from a
workload and restrict tuning to the sampled queries. If this option is checked (which is the default), then the Index Tuning
Wizard samples the specified number of queries from the workload. If the workload contains fewer than the specified number
of queries, then all queries are tuned. If this option is not checked, then all queries in the workload are tuned. It should be noted

that the Index Tuning Wizard considers the specified number of queries, not events. Specifically, events that are not considered
by the Index Tuning Wizard to be queries are not counted towards the limit.

Maximum space for the recommendation

This parameter reflects the limit on the sum total of storage for all data and indexes in the chosen database. By default, this
parameter is set to three times the size of the current data, or the available disk space on all attached drives, whichever is
smaller. The current data is defined as all heaps and clustered indexes on tables and views. Indexes are defined as all non-
clustered indexes on tables and views. In case the Keep all indexes option is selected, the specified limit also includes the
storage required for existing indexes. Because databases grow over time, the administrator should adjust the parameter so that
the assigned storage is appropriate for the current data size.

Maximum columns per index

This parameter can be tuned to influence the maximum width of indexes on tables as well as views. An index with few columns
potentially can be used in many queries in a workload. An index with many columns may enable index-only access and
eliminate data scans for some of the queries even though it requires more storage space than an index with fewer columns.
Given the complexity of the trade-off, it is recommended that only experienced administrators tune this parameter.

Selecting tables to tune

Another significant way in which the Index Tuning Wizard can be customized is by restricting index tuning to only a subset of
all tables by selecting the Select Tables to Tune option. This allows the user to focus the design on selected tables in the
database without altering the indexes and indexed views for the remaining tables.

Table scaling

A new feature available in Index Tuning Wizard for SQL Server 2000 enables you to tune the workload for a database where
the tables have different sizes than in the current database. In the Select Tables to Tune dialog box, the user can specify the
projected number of rows for a table. When performing the tuning, the Index Tuning Wizard takes the projected sizes into
account when recommending indexes and indexed views. Table scaling can be used to account for the future growth of the
database as well as to facilitate tuning on a test server by porting the recommendations to the production server where the
tables may be larger or smaller.

Analyzing Index Tuning Wizard Output

The most important output from the Index Tuning Wizard is a set of recommended indexes. The Index Recommendations
dialog box displays the list of these indexes, indicating the assigned index name, the table or view on which the index is
defined, the order and collation (ASC or DESC) of columns in the index, whether the index is clustered, and whether the index
exists. The Index Recommendations dialog box also displays which indexes, if any, were recommended to be dropped by the
Index Tuning Wizard. The wizard also produces an estimate of the expected improvement in the execution time of the workload
compared to the existing configuration. The Index Tuning Wizard uses the optimizer component of the query processor to
project this estimate. However, because the optimizer's projection is based on statistical information, the actual change in
performance may be different from the projected estimate.

The Index Tuning Wizard recommendations are augmented by a range of reports that provide further analysis of the
recommendations and their quantitative impact. These reports affect the decision about whether the recommendations should
be accepted or rejected. All the reports can be saved into files for further analysis. In the Index Recommendations dialog box,
click Analysis to view these report options:

Index Usage Report (recommended or current configuration) presents information about the expected relative usage of
the recommended or current indexes and their estimated sizes.

Query Cost Report indicates to the user the estimated reduction or increase in the cost for execution of the 100 most
expensive Transact-SQL statements in the workload file, if the recommended configuration is accepted.

Table Analysis Report provides information about the relative hits of the queries in the workload by tables in the
database.

View-Table Relations Report provides information about the tables referenced by each indexed view in the
recommendation.

Query-Index Relations Report provides information about the indexes and indexed views referenced by the 100 most
expensive statements in the workload for the recommended or current set of indexes and indexed views.

Workload Analysis Report provides information about the relative frequencies of SELECT, INSERT, UPDATE, and
DELETE queries and their relative impact on the total cost of the workload.

Tuning Summary Report provides important summary information about the execution of the Index Tuning Wizard. In
particular, this report indicates the number of tables tuned, the number of new indexes and indexed views recommended,
and the number of proposed indexes and indexed views to be dropped. The report indicates the total number of queries
in the workload that were considered as well as the time taken for analysis by the Index Tuning Wizard.

Finally, the Index Tuning Wizard enables the scheduling of a task to update the existing index configuration. The index creation
and alteration step can be initiated immediately or can be scheduled to occur at a specific date and time. In addition, a script to
perform the index update can be created. This is particularly useful because the index recommendations can be ported from
the test computer to production computers by using the script. Furthermore, the script makes it easy to identify the indexes
and indexed views that will be dropped if the recommendations of the Index Tuning Wizard are accepted. Examining the script
identifies two essential components of index tuning: a set of indexes and a set of statistics. Executing the recommendations to
create a set of statistics is vital to harnessing the full benefits of indexing. This is because the query processor exploits statistical
information during query optimization to determine whether to use an index or an indexed view.

Starting the Wizard

The Index Tuning Wizard can be started from SQL Server Enterprise Manager. On the Tools menu, select Wizards, and then
select Management. The Index Tuning Wizard is one of the wizards in the Management group. Alternatively, it can be started
from SQL Profiler on the Tools tab of the Profiler menu. After the wizard obtains the necessary user input on required
parameters, it carefully begins searching the possible configurations. If the search for the index configurations is terminated
during this time, the wizard returns the best available configuration that has been considered thus far. The SQL Server Query
Analyzer provides another mode in which the Index Tuning Wizard can be started for a workload consisting of one or more
Transact-SQL statements in a Query Analyzer buffer. This is accomplished by selecting one Transact-SQL statement in the
buffer and then selecting the Perform index analysis option on the Query tab. The ability to invoke the index tuning
capability from SQL Server Query Analyzer is useful, for example, for tuning an under-performing query in an otherwise well-
tuned system.

In SQL Server 2000, index tuning can also be invoked from a command-line utility called itwiz. This utility enables scripting of
the index tuning process. Tuning using itwiz is similar to tuning via the Index Tuning Wizard interface with the following
exceptions: (a) itwiz allows a mode in which only indexed views are considered during tuning, that is, no new indexes on tables
are considered; and (b) the Analysis Reports described above are not generated by itwiz. Instead, itwiz always generates a
script file as output which contains the statements for implementing the recommendation and additional information about
the tuning process, such as the expected improvement, the storage consumed, and the time taken for analysis. This script file
can be executed to implement the recommendations.

Getting the Most from the Index Tuning Wizard

Because the recommendations of the Index Tuning Wizard are made with respect to a workload file, the single most important
step is to select a workload that is representative of the database system's usage. Although tools such as SQL Profiler can help
the user record a workload by logging activity on the server over a specified period of time, it is important to ensure that the
logged events are representative. Furthermore, the choice of the indexes and indexed views must be reevaluated periodically.
In particular, if the data volume, the data distribution, or the queries against the system change, the Index Tuning Wizard must
be executed to ensure that the choice of indexes remains sound. Another important aspect to consider is that the projected
reduction in the cost of the workload estimated by the index selection tool is based on a statistical summary of data. Therefore,
the actual decrease or increase in cost can diverge from the estimation. It is advisable to re-execute the workload with the new
index configuration to verify the projected improvement before the index configuration update is applied to production
servers.

The following questions and answers provide additional tips for working with the Index Tuning Wizard:

Q: How can I determine the indexes that will be dropped if I accept the recommendations?

A: The Index Recommendations dialog box shows the indexes that will be dropped if the recommendation is accepted.
Alternatively, you can also select Save script file in the Schedule Index Update Job dialog box. By examining the script file,
you can determine the indexes that will be dropped if you decide to accept the recommendations. If running itwiz, the script file
will contain the indexes to be dropped. You can also edit the script to customize the recommendations. For example, you can
change the names of the proposed indexes and indexed views.

Q: How can I disable sampling of the workload and ensure that all queries in the workload are tuned?

A: If you are using the Index Tuning Wizard UI, then go to the Advanced Options dialog box and uncheck the Limit number
of workload queries to sample check box.

Q: Can I specify that the Index Tuning Wizard consider only indexed views?

A: Not if you use the Index Tuning Wizard UI. However, if you use itwiz you can achieve this by specifying the –f 2 option.

Q: How can I control the time taken by the tuning wizard for analysis?

A: The tuning wizard takes the least time when you set the tuning mode to Fast. It takes the longest time to analyze when the
tuning mode is set to Thorough. Generally speaking, the longer time enables the wizard to produce a better recommendation
for the physical design.

Q: For a given query, the Index Tuning Wizard suggested an index and I accepted the recommendation. However,
when investigating the query plan, the index is not used. Why?

A: When the Index Tuning Wizard makes a recommendation, it uses random sampling to estimate how useful an index will be.
However, once the index is created, more accurate statistics are generated with fullscan. The query processor may therefore
find the index less useful than originally estimated and it may not use the index in the optimal query plan.

Top Of Page

Understanding the Architecture of the Index Tuning Wizard

The Index Tuning Wizard takes as input a workload on a specified database. The tool iterates through several alternative sets of
indexes and indexed views called configurations. It then chooses the configuration that results in the lowest cost for the given
workload. Evaluating a configuration by materializing it physically is not practical because this approach requires adding and
dropping indexes, which can be resource-intensive and affect operational queries on the system. Therefore, the Index Tuning
Wizard must simulate a configuration without materializing it. SQL Server 2000 has been extended to support the ability to
simulate a configuration and estimate the cost of evaluating a query for a simulated configuration. The illustration below
(Figure 1) shows the architectural overview of the Index Tuning Wizard and its interaction with SQL Server 2000.

Figure 1: Architectural diagram of the interaction of the Index Tuning Wizard with SQL Server 2000

The Index Tuning Wizard is comprised of the following key components:

The Syntactic Structure Selection module. Proposes a set of indexes and indexed views that are potentially relevant for
the given workload.

The Candidate Index and Indexed View Selection module. Examines each query in the workload and then helps eliminate
from further consideration a large number of indexes and indexed views from the current set that provide no tangible
benefit for any query in the workload. The resulting candidate indexes and indexed views potentially provide significant
improvements to one or more queries in the workload.

The Configuration Enumeration module. Uses a search algorithm to intelligently search the space of candidate indexes
and indexed views and picks a configuration with low total cost.

In summary, the Index Tuning Wizard works with the query processor to determine the viability of a configuration. The wizard
uses workload information and is therefore able to tune the selection of indexes and indexed views to the expected usage of
the system. By considering indexes and indexed views together, the wizard is able to judiciously trade their choices. Finally, the
wizard is scalable and can handle large schema as well as large workloads by staging its execution steps appropriately, and by
exposing the tuning modes to enable the user to control the degree of analysis.

Top Of Page

For More Information

These resources can provide more information about the Index Tuning Wizard:

Index Tuning Wizard topic in Microsoft SQL Server 2000 Books Online.

Data Management, Exploration and Mining Group, Microsoft Research at http://research.microsoft.com/dmx/AutoAdmin/.

Agrawal, S., S. Chaudhuri, and V. Narasayya. "Automated Selection of Materialized Views and Indexes for SQL Databases."

http://research.microsoft.com/dmx/autoadmin/

Proceedings of the Twenty-sixth International Conference on Very Large Databases. Cairo, Egypt, 2000.

Chaudhuri, S. and V. Narasayya. "An Efficient, Cost-driven Index Tuning Wizard for Microsoft SQL Server." Proceedings of the
Twenty-third International Conference on Very Large Databases. Athens, Greece, 1997.

Chaudhuri, S. and V. Narasayya. "AutoAdmin What-If Index Analysis Utility." Proceedings of ACM SIGMOD 1998. Seattle, USA.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of
the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the
date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

©2000 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Other trademarks and tradenames mentioned herein are the property of their respective owners.

Top Of Page

How to Upgrade SQL Server 6.5 and 7.0 to SQL Server 2000
Published: September 1, 2000 | Updated : July 19, 2001

For the latest information, please see http://www.microsoft.com/sql/ and the Books Online on the SQL Server 2000 Evaluation
Edition CD.

On This Page

Introduction
Upgrading to SQL Server 2000: Overview
Upgrading from SQL Server 7.0 to SQL Server 2000
Upgrading Databases from SQL Server 6.5 to SQL Server 2000
Replication and Upgrading
Backward Compatibility
Failover Clustering
Conclusion
Appendixes

Introduction

Microsoft® SQL Server™ 2000, the data management and analysis backbone for Microsoft's .NET enterprise applications and
servers, improves on the performance, reliability, scalability, quality, and ease of use of its predecessors, SQL Server 7.0 and
SQL Server 6.5. SQL Server 2000 offers rich Extensible Markup Language (XML) support, comprehensive analysis services, and
simplified database administration—features that combine to produce a solution able to rapidly deliver reliable, scalable e-
commerce, data warehousing and line of business applications. Together, these features make SQL Server 2000 a compelling
upgrade from SQL Server 6.5 and SQL Server 7.0.

For e-commerce applications, SQL Server 2000 offers the tools needed for companies to Web-enable existing systems and
build new applications. Integrated XML support allows database and application developers to easily store XML in the database
or retrieve data in XML format. XML support speeds application integration, enhances the flexibility of Web sites, and facilitates
the exchange of information across platforms and between companies.

The data warehousing and business intelligence features of SQL Server 2000 include improved data transformation tools,
advanced data analysis and highly scalable online analytical processing (OLAP). Data mining—a new feature in SQL Server
2000—is used to detect trends that would otherwise go unseen in large quantities of data. Moreover, with the ability to expose
analytical information over the Internet, true Web-based access to analysis solutions will be possible, even through firewalls.

SQL Server 2000 also provides the reliability and scalability needed for line of business applications. To ensure scalability, SQL
Server 2000 includes support for 32 CPUs and 64 gigabytes (GB) of RAM. SQL Server 2000 includes log shipping, online
backups, and failover clusters to improve reliability. And SQL Server 2000 has been thoroughly tested to ensure its reliability—
the new release underwent 96,000 functional tests and 474 stress tests, compared to 65,000 functional tests and 158 stress
tests for SQL Server 7.0.

Recent benchmarks show that SQL Server 2000 has the performance needed to handle the most demanding applications.

SQL Server 2000 running on the Microsoft Windows® 2000 operating system achieved nearly double the performance
of Oracle running on UNIX at half the total system cost in a TPC-C benchmark study. SQL Server achieved 262,243 tpmC
on a Compaq ProLiant 8500-700-96P (12-node) with a price/tpmC of U.S.$20.24 and total system cost of $5.3 million.

SQL Server 2000 on Windows 2000 provides the best performance on the SAP R/3 Sales and Distribution Standard
Benchmark on Windows, supporting 7,500 concurrent sales and distribution users with 53 percent more scalability than
Oracle on Windows 2000.

SQL Server 2000 Enterprise Edition and Windows 2000 Advanced Server on Compaq set the world record for the
standard J.D. Edwards OneWorld Benchmark, with 3,442 concurrent users. It beat the Oracle/Sun previous record by
more than 37 percent.

These and other advances make SQL Server 2000 an invaluable upgrade from SQL Server 7.0 and SQL Server 6.5. And with
proper planning and a little patience, these upgrades can go smoothly.

The SQL Server Upgrade Wizard was designed to make most upgrades as easy as possible for most users. Users can often
upgrade using the default values and options. However, proper preparation and a familiarity with the upgrade process can
make it easier to prevent or solve any problems that do arise. This document contains the information you will need to prepare

http://www.microsoft.com/sql/

for and understand the upgrade process.

This white paper details the steps involved in upgrading from SQL Server 6.5 and SQL Server 7.0 to SQL Server 2000. It covers:

Preparing for an upgrade.

Using the Database Copy Wizard to move SQL Server 7.0 databases to SQL Server 2000

Using the SQL Server Upgrade Wizard to upgrade from SQL Server 6.5 to SQL Server 2000.

Understanding backward compatibility as it applies to SQL Server 7.0 and SQL Server 6.5.

Upgrading, installing, and troubleshooting failover clustering.

Top Of Page

Upgrading to SQL Server 2000: Overview

Upgrading from Microsoft SQL Server 7.0 to SQL Server 2000 is one of the basic choices offered by the SQL Server Setup
program on the initial Installation Selection screen. When you select the option to Upgrade, remove, or add components
to an existing installation of SQL Server, Setup detects your current installation and initiates the correct sequence of setup
screens for the upgrade selected. Upgrade variations include:

A complete installation upgrade from SQL Server 7.0 to SQL Server 2000 (installing over SQL Server 7.0).

Adding components to an installation of SQL Server 2000.

An upgrade to the feature set of an existing installation of SQL Server 2000 (edition and component upgrade).

An upgrade to SQL Server 2000 from SQL Server version 6.5 using the SQL Server Upgrade Wizard.

An online database upgrade of SQL Server 7.0 databases to SQL Server 2000 database format using the Copy Database
Wizard.

During the upgrade from SQL Server 7.0, external packages, such as Microsoft Management Console and the Microsoft
Distributed Transaction Coordinator, must be installed for each upgrade, and the registry must be updated. The master
database and other system databases are upgraded in various ways involving a series of scripts run on the server with specific
options. If the upgrade process fails, built-in recovery mechanisms restart and resume the upgrade.

Hardware and Software Requirements

To upgrade from SQL Server 6.5 or SQL Server 7.0 to SQL Server 2000, the computer must meet the hardware and software
requirements for SQL Server 2000 as well as the following upgrade requirements:

Hardware/Software Upgrade Requirements

Operating system

· Microsoft Windows NT® Server 4.0 Enterprise Edition with Service Pack 5 (SP5) or later
· Windows NT Server 4.0 with SP5 or later
· Windows NT Workstation 4.0 with SP5 or later
· Internet Explorer 5.0 or later
· Windows 2000

SQL Server 6.5

When upgrading SQL Server 6.5 to an instance of SQL Server 2000 on the same computer, you must
have applied SQL Server 6.5 Service Pack 5 (SP5) or later. When upgrading SQL Server 6.5 to an
instance of SQL Server 2000 on a different computer, you must have applied SQL Server 6.5 Service
Pack 3 (SP3) or later.

SQL Server 7.0 SQL Server 7.0 (at any Service Pack level)

Network protocols Named Pipes. SQL Server 6.5, SQL Server 7.0, and SQL Server 2000 all must be set to listen to the
default pipe, \\.\pipe\sql\query. Named Pipes is required even for a tape backup upgrade.

Hard-disk space
No additional hard-disk space is required when upgrading from SQL Server 7.0 to SQL Server 2000.
When upgrading from SQL Server 6.5 to SQL Server 2000, however, you need approximately 1.5 times
the size of the SQL Server 6.5 databases.

Top Of Page

Upgrading from SQL Server 7.0 to SQL Server 2000

You can overwrite an installation of SQL Server 7.0 with a version upgrade to SQL Server 2000. If SQL Server 7.0 is detected as
an existing installation when you run Setup, you can choose the option to upgrade. In this process, all the SQL Server 7.0
program files are upgraded, and all data stored in SQL Server 7.0 databases is preserved. In addition, SQL Server Books Online
for SQL Server 7.0 remains on your computer.

Note: SQL Server 7.0 profiler traces and registered servers are not upgraded when SQL Server 7.0 tools are upgraded to SQL
Server 2000. Similarly, information models that were installed with Microsoft Repository 2.0 are not upgraded automatically.
SQL Server 2000 supports newer versions of information models for both Data Transformation Services (DTS) and the Open
Information Model (OIM).

You can also upgrade from one edition of SQL Server to another edition during the version upgrade to SQL Server 2000.

Caution: After you perform this version upgrade, the SQL Server 7.0 installation no longer exists on your computer. The only
way to restore an installation of SQL Server 7.0 is to first uninstall SQL Server 2000, perform a complete reinstall of SQL
Server 7.0 files, and then restore your backed-up SQL Server 7.0 databases.

Upgrading During Installation

1. Insert the SQL Server 2000 compact disc for the edition to which you want to upgrade into your CD-ROM drive. If the
compact disc does not autorun, double-click Autorun.exe in the root directory of the compact disc.

Note: If you have purchased an edition of SQL Server with more features than your current SQL Server 7.0 installation,
the upgrade process will perform both the version and edition upgrade at the same time.

2. Select SQL Server 2000 Components, and then select Install Database Server.Setup then prepares the SQL Server
Installation Wizard. At the Welcome screen, click Next.

3. In the Computer Name dialog box, Local Computer is the default option and the local computer name appears in the
edit box. Click Next.

4. In the Installation Selection dialog box, click Upgrade, remove, or add components to an existing instance of
SQL Server, and then click Next.

5. In the Instance Name dialog box, Default will be selected. Click Next.

Note: When upgrading, SQL Server 7.0 automatically becomes the default instance of SQL Server 2000.

6. In the Existing Installation dialog box, click Upgrade your existing installation, and then click Next.

7. In the Upgrade dialog box, you are prompted as to whether you want to proceed with the requested upgrade. Click Yes,
upgrade my <text specific to the upgrade> to start the upgrade process, and then click Next. The upgrade runs until
finished.

8. In the Connect to Server dialog box, select an authentication mode, and then click Next.

9. If you are not sure which mode to use, accept the default: The Windows account information I use to log on to my
computer with (Windows).

10. In Start Copying Files dialog box, click Next.

11. In the Setup Complete dialog box, click Yes, I want to restart my computer now, and then click Finish.

Caution: This version upgrade procedure overwrites your Microsoft SQL Server 7.0 installation; the installation no longer
exists on your computer. In addition, previous registry settings are removed. For example, after upgrading you will need to re-
register your servers.

After Upgrading

After you upgrade from SQL Server 7.0 to SQL Server 2000, it is recommended that you repopulate full-text catalogs and
update statistics. Both operations can be time-consuming, but will enhance the performance of SQL Server 2000.

1. Repopulate Full-Text Catalogs - The upgrade process marks your databases as full-text disabled, due to a format
change from SQL Server 7.0 to SQL Server 2000. Catalogs must be repopulated after an upgrade, but this operation is
not automatically run at setup time because it can be time-consuming. Administrators should plan to repopulate all full-
text catalogs at a convenient time.

2. Update Statistics - It is recommended that you update all SQL Server 7.0 statistics after upgrading to SQL Server 2000.
Although this update may take a significant amount of time on large databases, using SQL Server 7.0 statistics with SQL
Server 2000 may result in poor query performance. Use the sp_updatestats stored procedure to update statistics in user-
defined tables in SQL Server 2000 databases.

3. Check the Backward Compatibility section of this document, or SQL Server 2000 Books Online, for more information
about SQL Server 2000 backward compatibility with SQL Server 7.0.

4. Check the Replication and Upgrading section of this document, or SQL Server 2000 Books Online, for more
information about SQL Server 2000 backward compatibility with SQL Server 7.0.

5. Check the Failover Clustering section of this document, or SQL Server 2000 Books Online, for more information
about SQL Server 2000 backward compatibility with SQL Server 7.0.

Online Database Upgrades from SQL Server 7.0 – Using the Copy Database Wizard

Using the Copy Database Wizard, you can move or copy a database and associated meta data from SQL Server 7.0 to an
instance of SQL Server 2000, without having to shut down any servers in the process. Advantages of an online database
upgrade include:

No downtime for servers during the upgrade.

Custom selection of databases to upgrade, leaving other databases available to the original (SQL Server 7.0) server.

Inclusion of related meta data in the upgrade procedure. For example, logon information, jobs, and user-specific objects
associated with user databases can be included.

The process can be run at a convenient time.

The Database Copy Wizard is based on detach and attach functionality that allows user databases to be moved or copied from
a source to a destination server. A Data Transformation Services (DTS) package performs the actual move or copy operation.
You can schedule the package to run at a specified time or rerun the package if required.

Local and Remote Options

Database administrators can move or copy one or more databases from an instance of SQL Server 7.0 to the default instance
of SQL Server 2000 on your local computer, or to either a default or a named instance on a remote computer. This upgrade
feature does not support SQL Server 6.5 databases.

Local Computer - SQL Server 7.0 databases can be upgraded to a named instance of SQL Server 2000 on the local
computer.

Remote Computer - SQL Server 7.0 databases can be upgraded to a default or named instance of SQL Server 2000 on
a remote computer.

Note: You can have only one active default instance of SQL Server on a computer at one time, either a default instance of
SQL Server 7.0 or a default instance of SQL Server 2000. SQL Server 6.5 can also be a default instance.

Note: The Copy Database Wizard cannot be used in these situations:

A database with the identical name on both source and destination servers cannot be moved or copied. On the database
selection screen, it will be noted as "Already exists."

For databases involved in replication, a regular server upgrade is required.

Copy Database Wizard Safeguards

At the start of a database move or copy operation, one administrator must have exclusive use of all files to prevent any
changes to the file set during the process. Two connections are required to copy database files: sysadmin privileges on both
installations of SQL Server and administrator privileges on the server/network.

To prevent any chance of data corruption, the SQL Server 7.0 databases must be in read-only condition and cannot be
renamed during this operation. Any name conflicts between source and destination servers must be resolved manually prior to
upgrading databases. Nothing on the destination server is overwritten.

If you move or copy multiple databases in one operation, each database is actually moved one at a time; that is, one database
at a time is detached, files are copied and then reattached. To avoid any problems, the DTS package writes a message to the
error log indicating that the database is about to be detached from its source server. At the same time, a script is prepared to
attach the database to its destination. After the database is successfully attached to the destination, another entry is written to
the log indicating successful completion.

When upgrading to a destination that is a clustered server, the Copy Database Wizard will ensure you select only shared drives
on a clustered destination server. The source server may also be clustered.

Note: Unrelated to this upgrade process, you can also use the Copy Database Wizard to move or copy user databases from
one instance of SQL Server 2000 to another instance of SQL Server 2000.

How to Upgrade Databases Online Using the Copy Database Wizard (Enterprise Manager)

Expand a server group, and then expand a server.

Right-click the server, point to All Tasks, and then click Copy Database Wizard.

Complete the steps in the wizard.

After Upgrading

After you upgrade from SQL Server 7.0 to SQL Server 2000, it is recommended that you repopulate full-text catalogs and
update statistics. Both operations can be time-consuming, but will enhance the performance of SQL Server 2000.

1. Repopulate Full-Text Catalogs - The upgrade process marks your databases as full-text disabled, due to a format
change from SQL Server 7.0 to SQL Server 2000. Catalogs must be repopulated after an upgrade, but this operation is
not automatically run at setup time because it can be time-consuming. Administrators should plan to repopulate all full-
text catalogs at a convenient time.

2. Update Statistics - It is recommended that you update all SQL Server 7.0 statistics after upgrading to SQL Server 2000.
Although this update may take a significant amount of time on large databases, using SQL Server 7.0 statistics with SQL
Server 2000 may result in poor query performance. Use the sp_updatestats stored procedure to update statistics in user-
defined tables in SQL Server 2000 databases.

3. Check the Backward Compatibility section of this document, or SQL Server 2000 Books Online, for more information
about SQL Server 2000 backward compatibility with SQL Server 7.0.

4. Check the Replication and Upgrading section of this document, or SQL Server 2000 Books Online, for more
information about SQL Server 2000 backward compatibility with SQL Server 7.0.

5. Check the Failover Clustering section of this document, or SQL Server 2000 Books Online, for more information
about SQL Server 2000 backward compatibility with SQL Server 7.0.

SET XACT_ABORT usage with linked servers

It is required that XACT_ABORT be set ON for data modification statements in an implicit or explicit transaction against most
OLE DB providers, including SQL Server. The only case where this option is not required is if the provider supports nested
transactions.

Top Of Page

Upgrading Databases from SQL Server 6.5 to SQL Server 2000

You can convert data from SQL Server 6.5 to the formats for SQL Server 2000 using the SQL Server Upgrade Wizard. The
wizard upgrades any or all of your databases, transferring all catalog data, objects, and user data. It also transfers replication
settings, SQL Executive settings, and most of the SQL Server 6.5 configuration options. Be sure to review all aspects of this
upgrade, as noted in the "Preparing to Upgrade from SQL Server 6.5" section below.

Note: To run the SQL Server Upgrade Wizard, you must have a default instance of Microsoft SQL Server 2000 installed on
your computer.

The SQL Server Upgrade Wizard does not support consolidation of databases from multiple SQL Server 6.5 installations. If you

must upgrade SQL Server 6.5 databases from multiple servers, consolidate all of the SQL Server 6.5 databases onto one server,
and then run the wizard to upgrade the consolidated server.

The SQL Server Upgrade Wizard does not remove SQL Server 6.5 from your computer. If you are using a tape backup to
perform the upgrade, you have the option of removing the SQL Server 6.5 devices to save disk space.

When the upgrade process is complete, two separate installations of SQL Server exist, including two separate sets of the same
data. The SQL Server 6.5 and the SQL Server 2000 installations become independent of each other.

If you are performing the upgrade on a single computer, additional disk space is required. You can also upgrade from one
computer to another.

Note: You can leave the installation of SQL Server 6.5 on a computer indefinitely. In addition to installations of SQL Server 6.5
and a default instance of SQL Server 2000 on the same computer, you also can install multiple named instances of SQL Server
2000 on the same computer.

Preparing to Upgrade from SQL Server 6.5

Follow these steps before using the SQL Server Upgrade Wizard to move from SQL Server 6.5 to SQL Server 2000:

1. Back up the SQL Server 6.5 database files (all .dat files, including master) so you can completely restore them if
necessary.

2. Run the appropriate Database Console Commands (DBCC) on the SQL Server 6.5 databases to ensure they are in a
consistent state.

3. Estimate the disk space required. In addition to the hard disk space used by Microsoft SQL Server 2000, you need
approximately 1.5 times the size of the SQL Server 6.5 databases. See below for more information on estimating
required disk space.

4. Set tempdb to at least 10 megabytes (MB) in the SQL Server 6.5 installation; 25 MB is recommended. See below for
more information on setting tempdb.

5. Ensure the master database has at least 3 MB of free space.

6. Ensure that all database users have logon information in the master database.

Note: This is important for restoring a database because system logon information resides in the master database.

7. Ensure the @@SERVERNAME is defined on SQL Server 2000. If @@SERVERNAME is NULL, you can use the
sp_addserver system stored procedure. For example, if your computer is named "production," the command would be
sp_addserver 'production1',local. Changes do not take affect until the MSSQLServer service is restarted.

Note: Because SQL Server 6.5 does not recognize the hyphen (-) in a computer name, replace a hyphen with an
underscore (_).

8. Disable any startup stored procedures.

The SQL Server Upgrade Wizard starts and stops the SQL Server 6.5 server during the upgrade process. Stored
procedures processed at startup may cause the upgrade process to stop responding.

9. Ensure that you upgrade all databases with cross-database dependencies at the same time.

For example, you want to upgrade three databases, database1, database2, and database4, and there is logon
information in SQL Server 6.5 master..sysdatabases for USER1 that defaults to database3 (not one of the databases
you are upgrading). The SQL Server Upgrade Wizard does not create the logon information because the database is not
upgraded, and therefore does not exist in SQL Server 2000. If USER1 is listed as the owner for objects in any of the
databases upgraded, those objects cannot be created because the logon information for USER1 does not exist.

10. If performing a two-computer upgrade, assign a domain user name and password to the MSSQLServer service for SQL
Server 6.5 and SQL Server 2000 instead of using the local system account or a local user account. The domain user
account should belong to the Administrators group of both the computers involved in the upgrade. (The local system
account is sufficient for a one-computer upgrade.)

11. Stop replication and ensure that the log is empty.

12. Quit all applications, including all services dependent on SQL Server.

If you copied the SQL Server 6.5 databases to a new computer to perform the upgrade, you may need to update the new SQL

Server 6.5 master database as follows:

1. Change references from the earlier server name to the current server name in the SQL Server 6.5 master database. See
below for more information.

2. Update the device file locations in the SQL Server 6.5 master database. See below for more information.

3. Ensure that all users have corresponding logon information.

Estimating the Disk Space Required for Upgrading

Before you perform an upgrade of SQL Server 6.5 to SQL Server 2000, ensure that there is enough available disk space. This is
important if you intend to perform either a one-computer or a two-computer upgrade.

The SQL Server Upgrade Wizard estimates the disk space necessary to upgrade the SQL Server 6.5 server to SQL Server 2000.
The wizard examines the current SQL Server 6.5 installation and estimates the amount of disk space the SQL Server 6.5 data
will occupy in SQL Server 2000.

You can estimate:

The size of SQL Server 2000 databases.

The size of SQL Server 2000 logs.

The amount of disk space required for tempdb.

Note: The SQL Server Upgrade Wizard estimates the disk space required; it cannot give an exact requirement.

How to Estimate the Disk Space Required for an Upgrade from SQL Server 6.5 to SQL Server 2000 (SQL Server
Upgrade Wizard)

Note: To run the SQL Server Upgrade Wizard, you must have an instance of SQL Server 2000 already installed on your
computer.

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then
click Next.

2. Select Named pipe; then click Next.

3. In Export server (6.5), in the Server name box, enter the name of the local or remote computer on which SQL Server
6.5 resides.

4. In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next.

Note: Unless you have changed it, the system administrator (sa) password for SQL Server 2000 is blank.

5. Include the databases to upgrade. Move any database not to include in the disk space estimation to the Exclude list, and
then click Next.

6. Select Use the default configuration or edit the default; then click Edit.

The SQL Server Upgrade Wizard layout utility appears, showing the proposed layout of the SQL Server 2000 data files.

7. Click Advanced.

8. Click an object in the Proposed database layout box to view details in the Object details box.

9. The Drive summary box shows the estimated size of all SQL Server 2000 data files and the free disk space left on all of
the local fixed disks. On the Options menu, select Freespace includes 6.5 files to view the free space that would exist if
the SQL Server 6.5 data files were deleted.

10. Click Accept to return to the Database Creation dialog box.

11. Click Cancel to quit the SQL Server Upgrade Wizard.

How to Change the Size of tempdb in SQL Server 6.5

1. On the Start menu, point to Programs/Microsoft SQL Server 6.5, and then click ISQL/w.

2. Enter the sa password, and then click Connect.

3. Execute a DISK INIT command to increase the size of the tempdb device to at least 25 MB.

4. Execute an ALTER DATABASE command to increase the size of the tempdb database to at least 25 MB.

Examples

--Increase the size of the tempdb device:
DISK INIT name = 'tempdb1',physname = 'c:\mssql\data\tempdb1.DAT',
 vdevno = 100, size = 12800
GO
--Increase the size of tempdb:
ALTER DATABASE tempdb ON tempdb1 = 25

How to Change to the Current Server Name in the SQL Server 6.5 Master Database

1. Start SQL Server 6.5 in minimal configuration mode.

2. In a command prompt window, from the \Mssql\Binn directory, run: sqlservr -f

3. On the Start menu, point to Programs /Microsoft SQL Server 6.5, and then click ISQL/w.

4. Enter the sa password, and then click Connect.

5. Execute SELECT @@SERVERNAME to retrieve the former server name.

6. Execute sp_dropserver to drop the former server.

7. Execute sp_addserver to add the current server.

8. Stop SQL Server. In the command prompt window, press Ctrl+C.

9. Restart SQL Server.

10. Execute SELECT @@SERVERNAME to verify the current server name.

Examples

--Start SQL Server in minimal configuration mode.
--Retrieve the former server name:
SELECT @@SERVERNAME
--Drop the server returned from the previous select:
sp_dropserver 'SERVER6X'
--Add the current server:
sp_addserver 'SERVER70', local
--Stop SQL Server.
--Restart SQL Server in minimal configuration mode.
--Verify the current server name:
SELECT @@SERVERNAME

How to Update the Device File Locations in the SQL Server 6.5 Master Database

1. On the Start menu, point to Programs/Microsoft SQL Server 6.5, and then click ISQL/w.

2. Enter the sa password, and then click Connect.

3. Select from sysdevices in the master database to view the old device file locations.

4. Execute sp_configure to allow updates to the system tables, and then reconfigure with override.

5. Update the device file locations that have changed.

6. Execute sp_configure to disallow updates to the system tables, and then reconfigure with override.

Examples

--View the old device file locations:
SELECT phyname FROM sysdevices
--Allow updates to the system tables:
sp_configure 'allow updates',1
GO
RECONFIGURE WITH OVERRIDE
GO
--Update device file locations that have changed:
UPDATE sysdevices
SET phyname = "E:\Data\HR\HR1.dat"
WHERE name = "HumanResources1"

GO
UPDATE sysdevices
SET phyname = "E:\Data\HR\HR1Log.dat"
WHERE name = "HumanResources1Log"
GO
--Disallow updates to the system tables:
sp_configure 'allow updates',0
GO
RECONFIGURE WITH OVERRIDE
GO

Upgrading SQL Server 6.5 to SQL Server 2000 Using a Direct Pipeline

Note: To run the SQL Server Upgrade Wizard, you must have an instance of SQL Server 2000 already installed on your
computer.

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then
click Next.

2. In the Data and Object Transfer screen, accept the default selections, including Named pipe, and then click Next.
Verification options are recommended, but not required. Click Help for information.

3. On the Logon screen, in the Server name box in the Export server (6.5) group box, enter the name of the local or
remote computer on which Microsoft SQL Server 6.5 is installed.

In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next. Unless you
have changed it, the system administrator password for SQL Server 2000 is blank.

For Import Server, the server name is filled in. Enter the optional startup arguments, if you want. Click Help for
information. When you are finished setting options, click Next.

4. In the message box asking if you want to continue, click Yes if you are ready to upgrade. The SQL Server Upgrade
Wizard shuts down SQL Server 6.5 and starts SQL Server 2000.

5. In the Code Page Selection screen, accept or change the default settings, and then click Next.

6. In the Database Selection screen, include the databases to upgrade. Move any databases you do not want upgraded at
this time to the Exclude list, and then click Next.

Converting all databases is recommended.

7. In the Database Creation dialog box, select Use the default configuration or edit the default, and then click Next.

Click Edit to examine and make changes to the proposed disk configuration within the layout utility. In the Proposed
Database Layout box, make changes as needed. Click Advanced to view Object Details and Drive Summary. When you
are finished, click Accept to return to the SQL Server Upgrade Wizard.

In the System Configuration screen, in System objects to transfer, select the object types to transfer from SQL Server
6.5 to SQL Server 2000:

Server configuration

Login and remote login registrations and server configuration options relevant to SQL Server 2000 are transferred
as part of the version upgrade.

Replication settings

All articles, subscriptions, and publications of each selected database, plus the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that SQL Server 2000 can schedule and run
those tasks in SQL Server Agent.

In the System Configuration screen, in Advanced settings, for ANSI Nulls, select:

Off, if ANSI nulls should not be used when stored procedures are created. This is the default.

On, if ANSI nulls should be used when stored procedures are created.

In Quoted identifiers, select one of these options, and then click Next:

Mixed (or don't know), if some of your objects were created with QUOTED_IDENTIFIER set to ON and others with it
set to OFF, or if you are not sure how they were created.

Off, if all objects should be compiled with QUOTED_IDENTIFIER set to OFF.

On, if all objects should be compiled with QUOTED_IDENTIFIER set to ON.

8. In the Completing the SQL Server Wizard screen, view the summary of choices you have made. Click View warnings
and choices in notepad to open a text version of the upgrade script. If all options are correct, click Finish.

The SQL Server Upgrade Script Interpreter screen appears, with information on the progress of the upgrade.

Upgrading SQL Server 6.5 to SQL Server 2000 Using a Tape Drive

Note: To run the SQL Server Upgrade Wizard, you must have an instance of SQL Server 2000 already installed on your
computer.

1. On the Start menu, point to Programs/Microsoft SQL Server-Switch, click SQL Server Upgrade Wizard, and then
click Next.

2. In the Data and Object Transfer screen, click Tape, and then click Next. Verification options are recommended, but not
required. Click Help for information.

3. On the Logon screen, in the Server name box in the Export server (6.5) group box, enter the name of the computer on
which Microsoft SQL Server version 6.5 is installed.

In the Administrator password ('sa') box, enter the sa password for SQL Server 6.5, and then click Next.

Unless you have changed it, the sa password for SQL Server 2000 is blank.

For Import Server (2000), the server name is filled in. Enter optional startup arguments, if you want. Click Help for
information. When you are finished setting options, click Next.

4. In the message box asking if you want to continue, click Yes if you are ready to upgrade. The SQL Server Upgrade Wizard
switches to the SQL Server 2000 server.

5. In the Code Page Selection screen, accept or change the default settings, and then click Next.

6. In the Database Selection screen, include the databases to upgrade. Move any database not to be upgraded at this time
to the Exclude list, and then click Next.

7. In Device for data transfer, specify the location of the tape drive.

8. In 6.5 device backup options, select Backup 6.5 devices before exporting data if you have not backed up the
databases already.

Prior to creating the SQL Server 2000 databases, the SQL Server Upgrade Wizard either prompts you to back up the SQL
Server 6.5 devices or copies the devices for you automatically.

9. Select Delete 6.5 devices before importing data if necessary due to lack of disk space, and then click Next.

After objects and data are exported, and before creating databases in SQL Server 2000, the SQL Server Upgrade Wizard
deletes the SQL Server 6.5 devices to reclaim disk space.

10. Select Use the default configuration or edit the default, and then click Next.

Click Edit to examine and make changes to the proposed disk configuration within the layout utility. In the Proposed
Database Layout box, make changes as needed. Click Advanced to view Object Details and Drive Summary. When you
are finished, click Accept to return to the SQL Server Upgrade Wizard.

In System objects to transfer, select the object types to transfer from SQL Server 6.5 to SQL Server 2000:

Server configuration

Login and remote login registrations and server configuration options relevant to SQL Server 2000 are transferred
as part of the version upgrade.

Replication settings

All articles, subscriptions, and publications of each selected database, plus the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that SQL Server 2000 can schedule and run
those tasks in SQL Server Agent.

In ANSI Nulls, select:

Off, if ANSI nulls should not be used when stored procedures are created. This is the default.

On, if ANSI nulls should be used when stored procedures are created.

In Quoted Identifiers, select one of these options, and then click Next:

Mixed (or don't know), if some of your objects were created with QUOTED_IDENTIFIER set to ON and others with it
set to OFF, or if you are not sure how they were created.

Off, if all objects should be compiled with QUOTED_IDENTIFIER set to OFF.

On, if all objects should be compiled with QUOTED_IDENTIFIER set to ON.

11. In the Completing the SQL Server Wizard screen, view the summary of choices you have made. Click View warnings
and choices in notepad to open a text version of the upgrade script. If all options are correct, click Finish.

The SQL Server Upgrade Script Interpreter screen appears with information about the progress of the upgrade.

Using SQL Server Upgrade Wizard (for SQL Server 6.5) - Details

This section describes in detail the options in the SQL Server Upgrade Wizard.

Data and Object Transfer

The Data and Object Transfer screen allows you to choose upgrade options.

Export from 6.5 Server / Import

The objects and data check boxes indicate that the SQL Server Upgrade Wizard exports catalog data, objects, and user data
from selected SQL Server 6.5 databases and imports them into newly created SQL Server 2000 databases.

Data Transfer Method

You can perform an upgrade using either of the following data transfer methods:

Named pipe (simultaneous import/export)

A direct pipeline enables the SQL Server Upgrade Wizard to transfer data in memory from SQL Server 6.5. This data
transfer method is the most reliable and provides the best performance. However, when performing a one-computer
upgrade, you cannot reuse the disk space occupied by the SQL Server 6.5 devices until the version upgrade process is
complete, so use this option only if you have disk space available.

Tape (requires a Windows NT tape driver to be installed)

The SQL Server Upgrade Wizard backs up to tape all of the SQL Server 6.5 databases you have selected to upgrade. The
SQL Server Upgrade Wizard then optionally deletes all of the SQL Server 6.5 devices, freeing disk space before new data
files are created.

Important: The SQL Server Upgrade Wizard deletes all of the SQL Server 6.5 devices, not only those upgraded. You should
upgrade all databases if you choose to delete the SQL Server 6.5 devices. The tape backup option should be used only when
you want to upgrade on a single computer but there is not enough space on the hard disk to install SQL Server 2000 alongside
SQL Server 6.5 and perform the version upgrade.

Note: The SQL Server Upgrade Wizard uses a named pipe, even when performing a tape backup upgrade. SQL Server 6.5 and
SQL Server 2000 must be set to listen to the default named pipe, \\.\pipe\sql\query.

Verification

The transfer of objects and data by the SQL Server Upgrade Wizard is a very reliable process. If any objects could not be
imported due to errors in those objects or compatibility problems with Microsoft SQL Server, they are noted in the output logs

of the SQL Server Upgrade Wizard.

The SQL Server Upgrade Wizard also offers the following optional verification measures:

Validate successful object data transfer

The SQL Server Upgrade Wizard examines the SQL Server 6.5 databases before the upgrade process and SQL Server
2000 databases after the upgrade. For each, the wizard prepares a list of all objects, including schema and stored
procedures, and the number of rows in each table. The wizard then compares the two lists and reports any discrepancies.

Exhaustive data integrity verification

The SQL Server Upgrade Wizard performs a checksum for each column of each table before and after the upgrade to
verify that data values have not changed.

Note: The SQL Server Upgrade Wizard does not report as errors any intentional differences in objects. If some objects,
typically stored procedures, could not import due to errors in the objects or compatibility problems with SQL Server 2000, they
are reported twice: once in the SQL scripts that show the source code of the objects and the error messages received from SQL
Server 2000 when trying to create them, and again in the output of the verification processes.

Order of Upgrade Using a Direct Pipeline or Tape Drive

The SQL Server Upgrade Wizard performs a version upgrade using the options specified. The SQL Server 6.5 server and data
used by SQL Server 6.5 databases are left intact throughout the version upgrade process. At this time, the SQL Server 6.5
catalog data, objects, and databases are converted so that they are compatible with SQL Server 2000. After the version
upgrade is complete, SQL Server 2000 becomes your production system.

The order of upgrade is basically the same for both a direct pipeline and a tape drive upgrade. The one difference is in how
data is exported and imported. When using a tape drive, data is exported to the tape drive after shutting down SQL Server 6.5
and before starting SQL Server 2000. This data is then imported from the tape drive later to SQL Server 2000. When using a
direct pipeline, the export and import steps are combined in one step, simultaneously.

The following list shows the order in which the SQL Server Upgrade Wizard performs the upgrade from SQL Server 6.5 to SQL
Server 2000. The differences between the direct pipeline and tape drive methods are noted.

1. Starts SQL Server 6.5

2. Updates ODBC and SQL-DMO components on SQL Server 6.5

3. Examines SQL Server 6.5 databases

4. Exports replication settings

5. Exports server configuration settings from the master database

6. Exports logon information

7. Exports database owners

8. Exports SQL Executive objects and settings from the msdb database

9. Exports database objects for all databases chosen

Shuts down SQL Server 6.5

Tape Drive only: Exports data to tape

Tape Drive only: Backs up and then deletes SQL Server 6.5 devices

10. Starts SQL Server 2000

11. Creates databases

12. Modifies SQL Executive objects and settings to SQL Server 2000 formats

13. Imports logon information

Imports database objects

Tape Drive only: Imports data from tape into SQL Server 2000

Direct Pipeline only: Simultaneously exports data from SQL Server 6.5 and imports it into SQL Server 2000

14. Imports modified SQL Executive objects and settings into SQL Server 2000

15. Imports replication settings

16. Examines SQL Server 2000 databases

17. Verifies that the upgrade is successful

18. Sets database options in SQL Server 2000

19. Marks server and databases as moved

20. Drops temporary tempdb files

Upgrading Using One or Two Computers (Logon Screen)

The upgrade process can take place on a single computer or from one computer to another, depending on where SQL Server
6.5 and SQL Server 2000 are installed. The SQL Server Upgrade Wizard identifies the two servers as the export server and
import server.

For a one-computer upgrade, leave the import and export servers at their default values.

For a two-computer upgrade, select the name of the computer with your SQL Server 6.5 server as the export server. To
upgrade SQL Server from one computer to another, the two computers must be in the same network domain.

Important: The one-computer upgrade is the only method supported when upgrading a server used in replication. A two-
computer upgrade is not supported for replication servers.

Export Server (6.5)

Export server (6.5) is the name of the SQL Server 6.5 server. This defaults to the name of the computer on which the SQL
Server Upgrade Wizard is run, but may be changed if your SQL Server 6.5 server is on another computer.

Server name

Server name is the name of your SQL Server version 6.5 server. This defaults to the name of the computer on which the
SQL Server Upgrade Wizard is run, but may be changed if your SQL Server 6.5 server is on another computer.

Administrator password ('sa')

Enter the system administrator (sa) password for the SQL Server 6.5 server.

Optional startup arguments

Enter any trace flags or other startup parameters to be used when the SQL Server Upgrade Wizard starts the SQL Server
6.5 server.

Import Server

The import server is the name of the SQL Server 2000 server. This is always the name of the computer on which the SQL
Server Upgrade Wizard is run.

Server name

Server name is the name of your SQL Server 2000 server computer. This is always the name of the computer on which
the SQL Server Upgrade Wizard is run.

Administrator password ('sa')

Enter the system administrator (sa) password for the SQL Server 2000 server. Unless you have changed it since installing
SQL Server 2000, the default sa password is blank.

Optional startup arguments

Enter any trace flags or other startup parameters to be used when the SQL Server Upgrade Wizard starts the SQL Server
2000 server.

Selecting a Scripting Code Page

The SQL Server Upgrade Wizard requires the selection of a scripting code page, which is used to create the upgrade scripts.
When the Code Page Selection screen appears in the Upgrade Wizard, most users can accept the default code page, which is
the code page recorded in the master database.

In some cases, the actual code page used for a SQL Server 6.5 installation differs from the code page recorded in the master
database. If you know that the actual code page is different from the recorded code page, select the actual code page in the list
on the Code Page Selection screen.

Caution: If you choose a scripting code page other than the default, do not upgrade replication settings. If the server is
involved in replication, reconfigure the replication settings after the upgrade is complete.

The enhancements to collation settings in SQL Server 2000 do not apply directly to this selection of a code page for the SQL
Server 6.5 upgrade.

Selecting Databases to Upgrade

When running the SQL Server Upgrade Wizard, you can choose to upgrade some or all SQL Server 6.5 databases. The master,
msdb, and publication system databases, as well as the pubs and Northwind sample databases, are not explicitly available
for selection. However, the master, msdb, and publication databases can be selected for upgrading (the default) in the
Server Configuration dialog box of the SQL Server Upgrade Wizard.

Note: If you run the SQL Server Upgrade Wizard again after databases have been upgraded, previously updated databases will
default to the excluded list. If you want to upgrade a database again, drop the database in SQL Server 2000 and move it to the
included list in the wizard.

Database Configuration

Before any data is transferred, the SQL Server Upgrade Wizard creates, if necessary, database and log files large enough to
contain the upgraded database data. On the Database Creation screen there are several options for creating the SQL Server
2000 database and log files.

Using the Default Database Configuration

The SQL Server Upgrade Wizard estimates how much disk space is necessary to hold transferred objects and data for each
selected database and creates database files of the estimated sizes. The wizard makes no allowance for free space beyond the
loaded data. By default, the data file for a database is placed in the same location as the first device used by that database in
SQL Server 6.5.

The SQL Server Upgrade Wizard also creates a log file for each database using the SQL Server 6.5 log size. By default, the log
file is placed in the same location as the first device used for log space in SQL Server 6.5.

You can view and edit the default database configuration in the SQL Server Upgrade Wizard. For each database and log file,
you can modify:

The name and file path.

The initial size of the file.

The autogrow increment.

If using multiple devices in a SQL Server 6.5 database, multiple database files are created in the same location. However, the
first database file is sized to accommodate the bulk of the data, and the other files are minimally sized. If you want to remove
these files, you must do so before they are created. All files are set to grow automatically if extra space is required.

Using a Custom Database Configuration

You can specify a custom configuration in two ways:

Using databases and logs that you created in SQL Server 2000.

The SQL Server Upgrade Wizard does not create any user databases. You must create the necessary databases and logs
in SQL Server 2000 before you start the SQL Server Upgrade Wizard. Use this option only if necessary.

Using an SQL script file that you provide.

The SQL Server Upgrade Wizard uses an SQL script file that you provide to create the necessary user databases and logs.
Use this option only if you are familiar with the new CREATE DATABASE statement in SQL Server 2000.

If you create the user databases or an SQL script file, the SQL Server 2000 databases must have the same names as in SQL
Server 6.5. Also, remember that data may take up more disk space in SQL Server 2000 than in SQL Server 6.5. The SQL Server
Upgrade Wizard estimates this growth. You can view the proposed layout of the SQL Server 2000 data files to see the
estimated initial size of the SQL Server 2000 database, and edit the default configuration, if necessary.

It is recommended that you leave the autogrow feature on for each database. You may also want to set a backward
compatibility level for each database.

How to Edit the Default Database Configuration

Note: To run the SQL Server Upgrade Wizard, you must have an instance of SQL Server 2000 already installed on your
computer.

1. In the Database Creation dialog box of the SQL Server Upgrade Wizard, click Edit.

2. Click Advanced to view object details and drive summaries.

3. In the Proposed database layout box, double-click a database file.

4. Change any database file attributes, and then click OK.

5. View the changes to the drive summary.

6. When all changes have been made, click Accept to save the database configuration.

Proposed Database Layout

The Proposed Database Layout dialog box lists the databases, file groups, and data files that the SQL Server Upgrade Wizard
will create. You can create or remove file groups and data files from the File menu. Double-click a data file to edit the file name,
initial size, or file growth details.

Object Details

Click on a file group or data file in the proposed database layout to view details. Click a database in the proposed database
layout to view summary information.

Drive Summary

The drive summary lists all local fixed-disk drives. For each drive, the existing SQL Server 6.5 data file size, proposed SQL
Server 2000 data file size, and free space are listed. On the Options menu, select Freespace includes 6.5 files to view the free
space that would exist if the SQL Server 6.5 data files were deleted. This option shows the disk space available if the upgrade is
performed using tape and the SQL Server 6.5 devices are deleted.

Tape Upgrade Transfer Options

When you perform a tape backup, you must select a tape drive and choose how the SQL Server Upgrade Wizard handles
backing up and deleting objects in the SQL Server 6.5 databases.

Device for Data Transfer

The SQL Server Upgrade Wizard transfers all of the data you are upgrading to this tape drive before the SQL Server 2000
databases are created.

Backing Up the SQL Server 6.5 Devices

You may also choose to back up the SQL Server 6.5 devices. This is separate from the transfer to tape that the SQL Server
Upgrade Wizard uses to complete the upgrade. There are two options for backing up the devices:

Prompt me to backup my devices manually

Before data is exported, the SQL Server Upgrade Wizard pauses and prompts you to perform a backup. The SQL Server
Upgrade Wizard does not perform a backup for you. You must use a backup utility such as Windows NT Backup.

Automatically copy device files to the following location

Before data is exported, the SQL Server Upgrade Wizard copies the device files to a shared network directory.

Warning: If you back up the devices to tape, remove the tape backup and insert a blank tape before continuing. Before the SQL
Server Upgrade Wizard begins transferring data to the tape drive, it formats the tape in the drive. If you do not remove your
tape backup, the SQL Server Upgrade Wizard overwrites it.

Deleting the SQL Server 6.5 Devices

If you decide to delete your SQL Server 6.5 devices before creating the SQL Server 2000 databases, you can choose whether to
be prompted before the devices are deleted. All of the SQL Server 6.5 device files will be deleted if you choose to delete
devices, even if you are upgrading only one database. This will render the SQL Server 6.5 server unusable until the files are
restored.

Note: If you choose not to delete the devices, you must have enough disk space for both the SQL Server 6.5 and SQL Server
2000 databases. If sufficient space is available, you should use a Named Pipe upgrade instead of a Tape upgrade.

System Configuration

On the System Configuration screen, you can set options for system objects to transfer, ANSI Nulls, and quoted identifiers.

System Objects to Transfer

When the SQL Server Upgrade Wizard upgrades the master database, it can upgrade several configuration options:

Server configuration

Logon information and remote logon registrations and server configuration options relevant to SQL Server 2000 are
transferred as part of the version upgrade process. The SQL Server 6.5 configuration options not used in SQL Server
2000 are not transferred.

Replication settings

All articles, subscriptions, and publications of each selected database, including the distribution database, if any, are
transferred and upgraded.

SQL Executive settings

All tasks scheduled by SQL Executive are transferred and upgraded so that the SQL Server 2000 can schedule and run
the tasks in SQL Server Agent.

Note: Upgrading replication or SQL Executive settings causes existing modifications made to the SQL Server 2000 replication
or SQL Server Agent settings to be overwritten.

ANSI Nulls

The ANSI_NULLS option controls both database default nullability and comparisons against null values. When upgrading SQL
Server 6.5 to the SQL Server 2000, set the ANSI_NULLS option to ON or OFF.

When the SQL Server Upgrade Wizard creates the SQL Server 2000 database tables, the database default nullability
determined by the ANSI_NULLS option is not an issue. All columns are explicitly qualified as NULL or NOT NULL based on
their status in SQL Server 6.5.

The ANSI_NULLS option is important with regard to comparisons against null values, when the SQL Server Upgrade Wizard
creates the SQL Server 2000 database objects. With ANSI_NULLS set to ON, the comparison operators EQUAL (=) and NOT
EQUAL (<>) always return NULL when one of its arguments is NULL. With ANSI_NULLS set to OFF, these operators return
TRUE or FALSE, depending on whether both arguments are NULL.

In SQL Server 6.5, the ANSI_NULLS option in objects, such as stored procedures and triggers, is resolved during query
execution time. In SQL Server 2000, the ANSI_NULLS option is resolved when the object is created. You must choose the
ANSI_NULLS option setting you want for all objects in the databases you are upgrading. The SQL Server Upgrade Wizard then
creates all database objects using this ANSI_NULLS setting.

Quoted Identifiers

Note: Quoted identifiers are used by default in SQL Server 2000; that is, they are set to ON. This is different from SQL Server
7.0 where they were set to OFF by default.

The QUOTED_IDENTIFIER setting determines what meaning Microsoft SQL Server gives to double quotation marks ("). When
QUOTED_IDENTIFIER is set to OFF, double quotation marks delimit a character string, just as single quotation marks do. When
QUOTED_IDENTIFIER is set to ON, double quotation marks delimit an identifier, such as a column name. An identifier must be
enclosed in double quotation marks; for example, if its name contains characters that are otherwise not allowed in an identifier,
including spaces and punctuation, or if the name conflicts with a reserved word in Transact-SQL. Regardless of the
QUOTED_IDENTIFIER setting, an identifier can also be delimited by square brackets.

The meaning of the following statement, for example, depends on whether QUOTED_IDENTIFIER is set to ON or OFF:

SELECT "x" FROM T

If QUOTED_IDENTIFIER is set to ON, "x" is interpreted to mean the column named x. If it is set to OFF, "x" is the constant string
x and is equivalent to the letter x.

If the previous SELECT statement example were part of a stored procedure created when QUOTED_IDENTIFIER was set to ON,
then "x" would always mean the column named x. Even if the QUOTED_IDENTIFIER setting was later switched, and set to OFF,
the stored procedure would respond as if it were set to ON and treat "x" as the column named x.

When the SQL Server Upgrade Wizard re-creates database objects in SQL Server 2000, the QUOTED_IDENTIFIER setting
determines how all of these objects behave. If all database objects were created in SQL Server 6.5 with the same

QUOTED_IDENTIFIER setting, click that setting, either On or Off. If objects were created in SQL Server 6.5 with a mix of the two
settings, or if you are unsure of the settings used, click Mixed.

With the Mixed option, the SQL Server Upgrade Wizard first converts all objects containing double quotation marks with
QUOTED_IDENTIFIER set ON. The SQL Server Upgrade Wizard then converts any objects that failed to be created with
QUOTED_IDENTIFIER set OFF.

Completing the SQL Server Upgrade Wizard

Use this screen to view the summary of choices you have made.

Click View warnings and choices in notepad to open a text version of the upgrade script. If all options are correct, click
Finish.

Upgrade Script Interpreter

After you click Finish, this screen displays the progress of the upgrade.

Progress Indicator

Displays information about the current task and its progress toward completion. The information presented varies according to
the type of task.

Task

The SQL Server Upgrade Wizard adds each upgrade task to the list as it is started.

Status

The SQL Server Upgrade Wizard displays the status (Running, Done, or Error) for each task.

Started

The SQL Server Upgrade Wizard displays the time and date on which the task began.

End

The SQL Server Upgrade Wizard displays the time and date on which a completed or terminated task is finished.

Pause Task

Temporarily suspends the version upgrade process until you click Resume.

Cancel Task

Cancels the currently running task and proceeds to the next task. Do not cancel a task unless you are certain the current task
does not need to be completed before subsequent tasks are run.

Retry Task

Retries the current upgrade task. If a task ended in an error and you corrected the problem, the SQL Server Upgrade Wizard
retries the current task.

Pause Between Steps

Allows you to participate interactively in the version upgrade process and track the progress of the SQL Server Upgrade
Wizard. The SQL Server Upgrade Wizard asks for confirmation between each step of the version upgrade process.

Top Of Page

Replication and Upgrading

When upgrading to SQL Server 2000, you can upgrade servers in your organization one at a time; however, when servers are
used for replication, you must upgrade the Distributor first, the Publisher second, and then Subscribers. Upgrading servers one
at a time following this sequence is recommended when a large number of Publishers and Subscribers exist because you can
continue to replicate data even though servers are running different versions of SQL Server. You can create new publications
and subscriptions with servers running instances of SQL Server 2000, and still maintain subscriptions created in SQL Server
6.5 or SQL Server 7.0.

When using transactional replication, you can upgrade Subscribers before the Publisher.

You can upgrade replication servers running SQL Server 6.5 or SQL Server 7.0 to SQL Server 2000. If the server is running SQL
Server 6.5, you do not need to upgrade it to SQL Server 7.0 before upgrading to SQL Server 2000.

Important: When upgrading servers configured for replication to SQL Server 2000, the database compatibility level must be
set to 70 (version 7.0 compatibility) or later. If you have servers running in 65 (version 6.5) or an earlier compatibility level,
temporarily change them to 70 or later during the upgrade process.

When the Publisher or Subscriber is running in 65 or an earlier compatibility level during upgrade to SQL Server 2000, error
15048 will be raised stating that the operation is supported only on SQL Server version 7.0 or SQL Server 2000.

If you are upgrading replication on a failover cluster, you must uncluster the previous installation before upgrading.
Unclustering the previous installation means that you must delete all publications, remove replication, and reconfigure it after
upgrading to SQL Server 2000. This will not be a requirement when upgrading SQL Server 2000 to future releases.

Upgrading and Immediate Updating

If you are using immediate updating with snapshot replication or transactional replication, changes to that feature in SQL
Server 2000 will affect how you upgrade. Rows in immediate updating articles now use a uniqueidentifier column to identify
versions, whereas in SQL Server 7.0, a timestamp column was used. In addition, the triggers generated for immediate
updating have been changed, and the trigger generation code has been modified to accommodate queued updating. Because
of these changes, additional upgrade steps are necessary.

If using immediate updating:

Upgrade both the Publisher and Subscriber before replicating data.

Drop the publication and all subscriptions to the publication.

Use an ALTER TABLE DROP COLUMN Transact-SQL statement to drop the timestamp column from the tables on the
Publisher and from the tables on the Subscriber that allow Subscriber updates.

Re-create the publication and subscriptions. The system adds a uniqueidentifier column to the published table. That
column is used for row versioning (to detect conflicts when receiving updates from the Subscriber).

Although it is recommended you upgrade both the Publisher and the Subscriber and then drop and re-create the existing
publications, the Publisher and Subscribers can be upgraded in any order. If you need to reinitialize a Subscriber or add a new
Subscriber, you need to drop and re-create the publication.

Upgrading and File Transfer Protocol

If using File Transfer Protocol (FTP), you should follow the recommended upgrade path, which ensures that Subscribers are
able to obtain the necessary FTP information from the Distributor.

SQL Server 2000 stores FTP parameters as Publication Properties; you no longer need to administer them at the Subscriber for
each subscription. When upgrading to SQL Server 2000, the FTP option in the Publication Properties is turned off, and you
need to open the properties for each publication that uses FTP, and then reset the FTP parameters.

SQL Server 7.0 Subscribers will continue to locate FTP files using the FTP parameters stored in the Subscription Properties
when using a Distributor running an instance of SQL Server 2000. However, Subscribers running an instance of SQL Server
2000 will not be able to obtain FTP information from Distributors running earlier versions of SQL Server.

Existing subscriptions using merge replication or transactional replication will be unaffected by this change unless you need to
reinitialize or connect to the FTP site. The FTP parameters need to be specified before snapshot replication occurs, or replication
agents will not be able to locate the snapshot files.

Troubleshooting and Replication Upgrades

If errors occur while upgrading replication servers, they might be related to the database being offline or unavailable or a script
may have failed.

It is recommended that you stop all data modifications at the replication server while it is being upgraded. When upgrading
from SQL Server 6.5, you must run the Log Reader Agent and Distribution Agent before upgrading to make sure there are no
replicated commands pending delivery to Subscribers.

Because you can upgrade servers running instances of SQL Server 2000 one at a time, you may have circumstances where
servers in your replication topology are running different versions of SQL Server. You can replicate between different versions
of SQL Server, but you are often limited to the functionality of the earliest version used.

Important: When upgrading from SQL Server 6.5 or 7.0 to SQL Server 2000, SQL Server Setup runs several *.sql replication
scripts. Although the upgrade process can take several minutes and does not display progress notifications, you can view error

messages in the *.out and *.err files located in the SQL Server Install directory.

Top Of Page

Backward Compatibility

SQL Server 2000 has built-in backward compatibility with SQL Server 7.0 and SQL Server 6.5. Backward compatibility modes
enable your database applications to function in SQL Server 2000 as they did in SQL Server 6.5 and SQL Server 7.0.

Backward Compatibility: SQL Server 2000 and SQL Server 7.0

SQL Server 2000 is compatible with SQL Server 7.0 in most ways. This section describes backward compatibility issues when
upgrading from SQL Server 7.0 to SQL Server 2000.

Client Network Utility and Named Instances

When using the SQL Server client connectivity components from SQL Server 7.0 or earlier, you must set up an alias using the
Client Network Utility before you connect to a named instance of SQL Server 2000. For example, on a SQL Server 7.0 client, to
connect to a named instance of SQL Server 2000, you must add an alias that points to
\\computername\pipe\MSSQL$instancename\sql\query. If you use an alias name of computername\instancename, clients can
connect by specifying this name in the same way as SQL Server 2000 clients do. For the TCP/IP Sockets and NWLink IPX/SPX
Net-Libraries, you must use the Client Network Utility to define an alias on the client that specifies the port address on which
the named instance is listening.

Multiserver Jobs and Named Instances

When using Master Servers and Target Servers, SQL Server 7.0 cannot interoperate with named instances of SQL Server 2000.
To use an instance of SQL Server 7.0 with an instance of SQL Server 2000 for MSX/TSX operations, you must use a default
instance, not a named instance, of SQL Server 2000.

Upgrading SQL Server 6.5 Client Software

When running an instance of SQL Server version 6.5 on a server, you should be aware of the following issue: If you are
upgrading from SQL Server 6.5 client software to SQL Server 2000 client software (and you have an application that uses the
default Net-Library), you must use the Client Network Utility to make either Named Pipes or Multiprotocol the default Net-
Library to make Windows Authentication connections.

Authentication Modes

SQL Server 2000 can operate in one of two security (authentication) modes:

Windows Authentication Mode (Windows Authentication)

Mixed Mode (Windows Authentication and SQL Server Authentication)

Mixed Mode allows users to connect using Windows Authentication or SQL Server Authentication. Users who connect through
a Windows NT 4.0 or Windows 2000 user account can make use of trusted connections (connections validated by Windows NT
4.0 or Windows 2000) in either Windows Authentication Mode or Mixed Mode.

SQL Server Authentication is provided for backward compatibility. An example of SQL Server Authentication would be if you
create a single Windows 2000 group, add all necessary users to that group, and then grant the Windows 2000 group login
rights to SQL Server and access to any necessary databases.

ROWCOUNT Setting for Operations Against Remote Tables

ROWCOUNT is not supported for INSERT statements against remote tables in SQL Server 2000 when the database
compatibility level is set to 80. For these INSERT operations, the SET ROWCOUNT option is ignored.

The ROWCOUNT setting for INSERT statements against remote tables was supported in SQL Server 7.0.

Server Configuration Options

These server configuration options are not supported in SQL Server 2000.

default sortorder id resource timeout

extended memory size spin counter

language in cache time slice

language neutral full-text unicode comparison style

max async IO unicode locale id

Recovery Models and Database Options

SQL Server 2000 provides the following recovery models to simplify recovery planning, simplify backup and recovery
procedures, and to clarify tradeoffs between system operational requirements:

Simple Recovery

Full Recovery

Bulk-Logged Recovery

Each model addresses different needs for performance, disk and tape space, and protection against data loss.

In SQL Server 7.0 and earlier, similar functionality was provided through the combined settings of the trunc. log on chkpt
and select into/bulkcopy database options, which could be set using the sp_dboption stored procedure.

This table maps the settings of trunc. log on chkpt and select into/bulkcopy to the new recovery models.

If trunc. log on chkpt is: And select into/bulkcopy is: The recovery model is:

FALSE FALSE FULL

FALSE TRUE BULK-LOGGED

TRUE TRUE SIMPLE

TRUE FALSE SIMPLE

Note: If you upgrade a database in which the trunc. log on chkpt and select into/bulkcopy options are set to TRUE, select
into/bulkcopy is set to FALSE, forcing the database into the simple recovery model.

The trunc. log on chkpt and select into/bulkcopy database options are supported in SQL Server 2000 for backward
compatibility purposes, but may not be supported in future releases.

In SQL Server 2000, the ALTER DATABASE Transact-SQL statement provides a SET clause for specifying database options,
including recovery models.

Reserved Keywords

These words are no longer reserved keywords in SQL Server 2000: AVG, COMMITTED, CONFIRM, CONTROLROW, COUNT,
ERROREXIT, FLOPPY, ISOLATION, LEVEL, MAX, MIN, MIRROREXIT, ONCE, ONLY, PERM, PERMANENT, PIPE, PREPARE,
PRIVILEGES, REPEATABLE, SERIALIZABLE, SUM, TAPE, TEMP, TEMPORARY, UNCOMMITTED, WORK.

These words are reserved keywords in SQL Server 2000: COLLATE, FUNCTION, OPENXML.

SQL Profiler Extended Stored Procedures

SQL Profiler extended stored procedures, such as xp_trace_addnewqueue and xp_trace_generate_event, are not
supported in SQL Server 2000. They have been replaced by a set of new stored procedures and system user-defined functions.

Default Connection Option Settings in SQL Query Analyzer

In SQL Server version 7.0 and earlier, the default setting for SET QUOTED_IDENTIFIER in SQL Query Analyzer was OFF. In SQL
Server 2000, the default setting in SQL Query Analyzer is ON, which is also the default setting for ODBC and OLE DB.
Moreover, several new features in SQL Server 2000, such as indexed views and indexes on computed columns, require this
option to be ON.

Note: If you use double quotation marks for strings when QUOTED_IDENTIFIER is ON, you will receive a syntax error.

bcp Utility

To read character files created by earlier versions of DB-Library bcp in SQL Server 2000, use the -V switch.

Database Diagrams from Earlier Versions of Visual Database Design Tools

For users who have database diagrams created with earlier versions of the visual database design tools:

If the first visual database tool that was used against a SQL Server 2000 database is a version earlier than the tools in SQL
Server 2000, SQL Server Enterprise Manager will not be able to open or create a database diagram in that database. Any
attempt to do so results in the error:

ODBC error: [Microsoft][ODBC SQL Server Driver][SQL Server]Could not
find stored procedure 'dbo.dt_getobjwithprop_u'.

There are several visual database tools that can put a database into this state. These include the Query Designer, the View
Designer, the Database Designer, and the Table Designer in SQL Server 7.0 and earlier, as well as many tools that enumerate
the objects in a database. These tools are also in Microsoft Access 2000 and Microsoft Visual Studio® 6.0.

Running the following script on the database allows SQL Server Enterprise Manager to work with the database diagrams in
that database:

alter table dbo.dtproperties add uvalue nvarchar(255) null
go
if exists(select * from dbo.dtproperties)
exec('update dbo.dtproperties set uvalue = convert(nvarchar(255), value)')
go

After this script has been run, both the SQL Server Enterprise Manager in SQL Server 2000 and the earlier versions of the
visual database tools can jointly access the database diagrams in the database. There are additional issues to consider when
using the earlier versions of the database tools against a SQL Server 2000 database.

Data Transformation Services

These are the backward compatibility issues for Data Transformation Services (DTS).

Extended DTS Objects

Some objects in DTS are extended in SQL Server 2000.

Copy SQL Server Objects Task

There are restrictions on using the Copy SQL Server Objects task (Transfer SQL Server Objects task in SQL Server version 7.0)
when copying database objects between an instance of SQL Server 2000 and SQL Server 7.0.

Running DTS Packages on SQL Server 7.0 or Earlier

DTS packages created on an instance of SQL Server 2000 cannot be loaded or run on an instance of SQL Server version 7.0 or
earlier. If you attempt to do this, you may receive one of the following messages:

"Invalid class string."
"Parameter is incorrect."

Both messages indicate that the current server does not contain all the components necessary to load the package and cannot
support objects defined in the DTS package, such as tasks and transformations.

However, if you receive one of these messages, you can still open and run the package on an instance of SQL Server 2000.

Using DTS with Different Collations, Different Code Pages, and Non-Unicode Data

When using the Copy SQL Server Objects task and Copy Column transformation to copy non-Unicode data between an
instance of SQL Server 2000 and SQL Server 7.0, issues arise when using different code pages and collations.

Specifying Trusted Connections

In SQL Server 7.0, you did not have to code "trusted_connection=yes" in your connection strings for ADO, OLE DB, or ODBC to
obtain a trusted connection. If you did not specify a UID and PASSWORD, SQL Server would default to trying a trusted
connection. In SQL Server 2000, you must code "trusted_connection=yes" to obtain trusted connection.

Extended Objects in SQL-DMO

Some objects in SQL-DMO are extended in SQL Server 2000.

SQL-SCM

The SQL-SCM (Service Control Manager) API has been removed and is no longer supported.

English Query and OLAP Services for SQL Server 7.0

For users of OLAP Services for SQL Server 7.0 who want to install or uninstall English Query, these issues apply:

OLAP Services for SQL Server 7.0 must not be running during installation. Shut down the OLAP Services service before
installing English Query. (See the Services application in Control Panel.)

If you have installed OLAP Services for SQL Server 7.0 and you uninstall English Query, you must reinstall OLAP Services.
Conversely, if you have installed English Query and you uninstall OLAP Services, you must reinstall English Query to
maintain OLAP connectivity.

These issues do not occur with SQL Server 2000 Analysis Services (formerly OLAP Services).

Backward Compatibility: SQL Server 2000 and SQL Server 6.5

SQL Server 2000 is compatible with SQL Server 6.5 in many respects. Most product functionality of SQL Server version 6.5
remains in SQL Server 2000. Most applications for SQL Server 6.5 work unchanged after the SQL Server Upgrade Wizard
upgrades the database server to SQL Server 2000.

The SQL Server 2000 upgrade process:

Adds functionality, either new to SQL Server 2000 or changed from earlier versions, which makes tasks easier to
accomplish.

Minimizes the time and effort needed to upgrade.

In some cases, compatibility issues can arise:

Configuration Options

Some server configuration options have changed.

SQL-DMO, Tasks, and Replication

Task, replication, and device objects have changed. SQL Server 2000 uses jobs instead of tasks, and provides new system
tables and system stored procedures.

Replication and Triggers

Replication types that allow data modifications at the Subscriber use triggers to track changes to published tables. If
there are triggers on your application that modify published tables, the sp_configure server option nested triggers
should be enabled. This option affects tables used in merge replication or tables used in snapshot replication or
transactional replication with the immediate updating or queued updating option. Before adding these types of
replication to an existing database that uses triggers, be sure your application works correctly with the nested triggers
option enabled. The nested triggers option is enabled by default; however, if this option was disabled previously, you
will need to enable it again.

Segments and Devices

SQL Server 7.0 and SQL Server 2000 use files and filegroups instead of segments and devices for storing indexes or
tables. Unless your application depends upon the physical layout of segments within devices, this does not create
compatibility problems for your application.

System Tables

If your applications depend upon accessing system tables directly, the applications may need to be revised. It is
recommended that you use system stored procedures or information schema views.

Here are the SQL Server 6.x system tables that are not included with SQL Server 2000.

master.dbo.spt_datatype_info sysprocedures

sysbackupdetail sysrestoredetail

sysbackuphistory sysrestorehistory

syshistory syssegments

syskeys systasks

syslocks sysusages

Backup and Restore

SQL Server 2000 uses BACKUP and RESTORE statements in place of DUMP and LOAD. DUMP and LOAD are supported
for backward compatibility, but with some limitations.

System Stored Procedures

Some system stored procedures are no longer supported.

For more information, see the discussion of specific backward compatibility issues.

Setting a Backward Compatibility Level

When running at its default settings, Microsoft SQL Server 2000 implements SQL-92 behaviors for some Transact-SQL
statements whose behaviors differed from the standard in earlier versions of SQL Server. SQL Server 2000 also enforces
reserved keywords that were not keywords in earlier versions of SQL Server. If upgrading existing systems with existing
applications, you can use the database compatibility level settings to retain the earlier behaviors if your existing applications
depend on those behaviors. This gives you time to upgrade applications in an orderly fashion. Most applications, however, are
not affected by the changes in behavior and work at the SQL Server 2000 compatibility level.

The compatibility level is specified for each database using the sp_dbcmptlevel system stored procedure. The database
compatibility level can be set to 60 (version 6.0 compatibility), 65 (version 6.5 compatibility), 70 (version 7.0 compatibility), and
the default 80 (SQL Server 2000 compatibility). The effects of the compatibility level settings are generally limited to the
behaviors of a small number of Transact-SQL statements that also existed in earlier versions of SQL Server. Even when the
database compatibility level is set to 60 or 65, applications gain almost all of the benefits of the new performance
enhancements of SQL Server 2000. Applications still benefit from features such as the improved query processor.

For installations of all instances of SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 7.0
to SQL Server 2000, the default level for all databases is 80. For upgrades from SQL Server 6.5 and SQL Server 6.0 to SQL
Server 2000, the existing default compatibility level is retained.

Important: The compatibility level for the master database is 80 and cannot be changed. If you have added any user-defined
objects to master, you must ensure they work correctly at the 80 compatibility level.

The model database is set automatically to the SQL Server 2000 compatibility level during an upgrade. All new user-defined
databases are created with the same compatibility level setting as model. If you do not want to use any SQL Server 2000
behavior in new databases created after an upgrade, use sp_dbcmptlevel to change the compatibility level setting in model.

Certain behaviors are not enabled at lower compatibility levels. For example, the keywords LEFT, OUTER, and JOIN are not
keywords at compatibility level 60. This means the database compatibility level must be set to 65 or higher before the LEFT
OUTER JOIN clause becomes valid. Before any applications can take advantage of features only available at a higher
compatibility level, all applications using the database must be upgraded to work correctly at the higher compatibility level.

Likewise, setting the compatibility level of a database to 65 makes the database version-6.5 compatible, but does not
necessarily provide version 6.5 behaviors. For example, when SET ANSI_PADDING is ON and you attempt to insert the strings
'abc' and 'abc ' into a primary key column, SQL Server 2000 considers the strings to be duplicates and does not violate the
primary key constraint. In SQL Server 6.5, the two strings are considered to be unique and both insertions succeed. Setting the
compatibility level to 65 does not force SQL Server 2000 to treat the strings as unique values.

Note: While running at compatibility level 60 or 65 preserves legacy behaviors on SQL Server 2000, support for these
behaviors may be dropped in future versions of SQL Server. It is recommended that you plan to upgrade your applications to
work correctly with the compatibility level set to 80 as soon as is practicable.

SQL Server Backward Compatibility Details

SQL Server 2000 adds many new features. Most of the changes are internal and will not affect your database scripts or
applications. All Transact-SQL statements are compatible. However, administration tools or scripts should be updated to work
with SQL Server 2000.

The backward compatibility topics in this section contain a detailed list of features and behaviors supported in SQL Server 6.5
that have changed and could possibly affect your administration tools or scripts. The backward compatibility level does not
control these changes.

To indicate their potential effect on administration tools or scripts, feature changes have been grouped into four levels:

Level Consists of

1
Administrative statements, stored procedures, or SQL Server items that have been removed from, or are no longer
supported in, SQL Server 2000. Administrative tools or scripts using these items must be fixed prior to using SQL
Server 2000.

2

Important changes that produce different behavior from earlier versions of SQL Server. For example, items in this
category are those that have changed behavior in data type conversion or usage of selected functions, changed
behavior of clauses in selected Transact-SQL statements and stored procedures, changed column names in selected
system tables, and changed behavior due to the database compatibility setting.

3
Items supported for backward compatibility only. Any item included in this category is fully supported, but may be
removed or unsupported in a future release. SQL Server 2000 provides features that accomplish these tasks more
efficiently and have ongoing support.

4
Minor changes that produce different behavior from earlier versions of SQL Server. For example, items in this category
are either ignored or have one or more ignored parameters, changed byte lengths, added parameters or columns, or
changed data type columns.

For more details on these four levels of SQL Server backward compatibility, see the appendixes.

SetHostName Property Not Used in SQL Server 2000

When using SQL Server 6.5 integrated security, SQL Server 6.5 did not report the Windows NT account used by a connection
unless the system administrator activated the SET HOSTNAME TO USERNAME option in SQL Enterprise Manager.

The setting could also be activated through the SQL-DMO SetHostName property. With this setting in effect, these functions
and columns returned the user's Windows NT account name instead of the network name of the client computer:

Transact-SQL HOST_NAME() function

hostname column in the result set returned by sp_who

hostname column in sysprocesses

In SQL Server 2000, the loginame column in the sp_who result set contains the Windows NT account name for connections
made using Windows NT Authentication. Applications needing the Windows NT account associated with a connection using
Windows NT Authentication should reference this column.

SQL Server 2000 Enterprise Manager no longer presents the SET HOSTNAME TO USERNAME option. SQL Server 2000 ignores
the setting of the SQL-DMO SetHostName property.

Top Of Page

Failover Clustering

With SQL Server 2000 Enterprise Edition, SQL Server 2000 failover clustering provides high-availability support. For example,
during an operating system failure or a planned upgrade, you can configure one failover cluster to fail over to any other node
in the failover cluster configuration. In this way, you minimize system downtime, thus providing high server availability. To
install, configure, and maintain a failover cluster, use SQL Server Setup, and be sure to first read the detailed information in
SQL Server 2000 Books Online. This document is only intended to provide an introduction.

Upgrading to a SQL Server 2000 Failover Cluster

When you are upgrading to a SQL Server 2000 failover cluster, only one default instance is allowed. Use the Cluster Wizard in
SQL Server 6.5 or SQL Server 7.0 to uncluster any existing SQL Server 6.5 or SQL Server 7.0 clustered instances before
upgrading to SQL Server 2000. Then run SQL Server Setup on SQL Server 2000.

SQL Server 6.5 or SQL Server 7.0 failover clusters cannot exist on the same computer as a SQL Server 2000 failover cluster. In
SQL Server 6.5 or SQL Server 7.0, in an active/active configuration or in an active/passive configuration where one server
contains an unclustered SQL Server, there is a name conflict. Both servers are default instances.

Important: You cannot run the Cluster Wizard in SQL Server 6.5 or SQL Server 7.0 after SQL Server 2000 has been installed.

For SQL Server 2000, you must use a domain account for the services (SQL Server, SQL Server Agent, and all services in the
clustered group). That domain account must be an administrator on all computers in the cluster if those computers are running
on Windows NT Server 4.0, Enterprise Edition.

Note: If you are using replication on a SQL Server 6.5 or SQL Server 7.0 failover cluster and upgrading to a SQL Server 2000
failover cluster, you must uncluster the previous installation. Delete all publications, remove replication, and then reconfigure
replication after upgrading. This will not be a requirement when upgrading from SQL Server 2000 in future releases.

How to Upgrade from a SQL Server 6.5 Active/Passive Failover Cluster

1. Uncluster SQL Server version 6.5.

2. Install a default instance of SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. On all nodes of the cluster, this drive must have at least 300 MB of
available space.

3. Run the SQL Server Upgrade Wizard to migrate your data into SQL Server 2000.

4. Uninstall SQL Server 6.5.

5. Run SQL Server Setup to upgrade your default instance of SQL Server 2000 to a SQL Server 2000 failover cluster.

How to Upgrade from a SQL Server 6.5 Active/Active Failover Cluster

Note: To upgrade from a SQL Server 6.5 active/active failover cluster (or any configuration where SQL Server exists on the
second node), you must first convert one side of the failover cluster to a named instance of SQL Server 2000.

1. On Node 1, uncluster SQL Server 6.5. On Node 2, uncluster SQL Server 6.5.

2. On Node 1, install a default (non-clustered) instance of SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 MB of
available space.

3. On Node 1, run the SQL Server 2000 Upgrade Wizard to migrate your data into SQL Server 2000.

4. On Node 1, uninstall the instance of SQL Server 6.5.

5. On Node 1, install a named, clustered instance of SQL Server 2000.

6. Run the Copy Database Wizard (CDW.exe) to migrate your SQL Server data (originally from SQL Server 6.5) to a named
instance in a SQL Server 2000 failover cluster.

7. On Node 1, uninstall the default instance of SQL Server 2000.

8. On Node 2, install a default instance of SQL Server 2000.

9. Run the SQL Server 2000 Upgrade Wizard to migrate your data into SQL Server 2000.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. On all nodes of the cluster, this drive must have at least 300 MB of
available space.

10. On Node 2, uninstall the instance of SQL Server 6.5.

11. On Node 2, upgrade the default instance of SQL Server to a clustered instance.

How to Upgrade from a SQL Server 7.0 Active/Active Failover Cluster

Note: To upgrade from a SQL Server version 7.0 active/active failover cluster (or any configuration where SQL Server exists on
the second node), you must first convert one side of the failover cluster to a named instance of SQL Server 2000.

1. On Node 1, uncluster SQL Server version 7.0. Reboot Node 1.

2. On Node 2, uncluster SQL Server 7.0. Reboot Node 2.

3. On Node 1, install a clustered, named instance of SQL Server 2000 as a virtual server. This is not an upgrade process, but
a side-by-side installation of SQL Server 7.0 and SQL Server 2000. Do not install the data to the same location/disk as
Node 2. If you do, when you attempt to upgrade Node 2 from a SQL Server 7.0 to a SQL Server 2000 installation, Setup
will fail.

4. On Node 1, run the Copy Database Wizard (CDW.exe) to move all databases and related information from the SQL
Server 7.0 installation into the clustered, named instance of SQL Server 2000.

5. On Node 1, uninstall SQL Server 7.0.

6. On Node 2, upgrade SQL Server 7.0 to SQL Server 2000 as the default instance.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 MB of
available space.

7. On Node 2, upgrade the default instance of SQL Server 2000 to a clustered instance.

Note: Optionally, you could create two named instances of SQL Server 2000 and use the Copy Database Wizard to upgrade
both SQL Server 7.0 installations to a clustered, named instance of SQL Server 2000. This will provide better consistency,
because all references to clustered installations of SQL Server 2000 will be in the form of VirtualServer\Instance, rather than
sometimes being just the servername, and sometimes both the servername and instancename.

How to Upgrade from a SQL Server 7.0 Active/Passive Failover Cluster

1. On Node 1, uncluster SQL Server 7.0. Reboot Node 1.

2. On Node 1, upgrade SQL Server 7.0 to SQL Server 2000 as the default instance.

You must install the binaries to a local drive and use a cluster disk for the data. This local drive is a path, which is a non-
clustered disk valid on all nodes of the cluster. This drive on all nodes of the cluster must have at least 300 MB of
available space.

3. On Node 1, upgrade the default instance of SQL Server 2000 to a clustered instance of SQL Server 2000.

Failover Cluster Installation

When you install a SQL Server 2000 failover cluster, you must:

Ensure that the operating system is installed properly and designed to support failover clustering.

Consider whether the SQL Server tools, features, and components you want to use are supported with failover clustering.

Consider whether failover clustering is dependent on the products you want to use.

Consider how to create a new failover cluster, using the information in Books Online.

Review the instructions for upgrading from a SQL Server 6.5 or SQL Server 7.0 cluster to a SQL Server 2000 failover
cluster.

Top Of Page

Conclusion

The upgrade from SQL Server 6.5 or SQL Server 7.0 to SQL Server 2000 requires time and planning. However, the
improvements in SQL Server 2000 make the upgrade well worth the effort. By following the procedures outlined in this white
paper, companies can deploy SQL Server 2000, including failover clustering, smoothly and efficiently.

For more information: http://www.microsoft.com/sql/ and SQL Server Books Online.

Top Of Page

Appendixes

Appendix 1: SQL Server 6.5 Backward Compatibility—Level 1

Handling Discontinued Functionality

http://www.microsoft.com/sql/

Backward Compatibility Level 1 consists of administrative statements, stored procedures, or Microsoft SQL Server items that
were supported in SQL Server 6.5 but have been removed from, or are no longer supported in, SQL Server 2000.
Administrative tools or scripts using these items must be fixed prior to using SQL Server 2000.

This subheading Relates to

Backup and Restore

BACKUP
RESTORE
DUMP
LOAD
sysbackuphistory
sysbackupdetail
sysrestorehistory
sysrestoredetail
backupfile
backupmediafamily
backupmediaset
backupset
restorefile
restorefilegroup
restorehistory

Configuration Options

sp_configure (backup buffer size, backup threads, database size, free buffers, hash buckets,
LE threshold maximum, LE threshold minimum, LE threshold percent, logwrite sleep, max
lazywrite IO, memory, open databases, procedure cache, RA cache hit limit, RA cache miss
limit, RA delay, RA pre-fetches, RA slots per thread, RA worker threads, recovery flags,
remote conn timeout, SMP concurrency, sort pages, min memory per query, index create
memory, tempdb in ram, and user connections options)
trace flag 204

Custom Sort Orders Character sets, sort orders, and Unicode collations

Databases ALTER DATABASE

Database Options
sp_dboption (subscribe and no chkpt. on recovery options)
sp_addsubscription
RESTORE

Data Access Objects
(DAO) odbccmpt utility

DBCC
DBCC DBREINDEX
DBCC MEMUSAGE
DBCC SHRINKDB

DB-Library Two-Phase Commit
DB-Library for Visual Basic

DECnet Network Library DECnet Sockets Net-Library

Disk Commands
DISK REINIT
DISK REFIT
ALTER DATABASE

Disk Mirroring
DISK MIRROR
DISK REMIRROR
DISK UNMIRROR

Indexes CREATE INDEX

Open Data Services

Windows NT Component Services
SRV_CONFIG
SRV_PROC
SRV_SERVER
srv.h
Opends60.lib

Program Group Tools
and Utilities

Client Network Utility
ISQL_w
MS Query
SQL Client Configuration
SQL Enterprise Manager
SQL Help
SQL Security Manager
SQL Trace
SQL Performance Monitor
SQL Service Manager
SQL Setup
SQL Query Analyzer
SQL Server Enterprise Manager
SQL Server Profiler
SQL Server Service Manager

Replication

Restricted publications
DBOption object
ReplicationDatabase object EnablePublishing property
repl_publisher login

Security DENY
Delimited Identifiers

Segments

CREATE INDEX
CREATE TABLE
sp_addsegment
sp_dropsegment
sp_extendsegment
sp_helpsegment
CREATE DATABASE
ALTER DATABASE

Services SQL Executive

SET
DISABLE_DEF_CNST_CHK SET DISABLE_DEF_CNST_CHK

SET SHOWPLAN
SET SHOWPLAN
SET SHOWPLAN_ALL
SET SHOWPLAN_TEXT

SQL Alerter SQLALRTR.exe

SQL-DMO sqlole.dll

System Stored
Procedures (General
Extended Procedures)

xp_snmp_getstate
xp_snmp_raisetrap

System Stored
Procedures (Replication)

sp_replica
sp_replsync
sp_helppublicationsync
sp_subscribe
sp_unsubscribe
@@ERROR
sp_changepublication
sp_addpublisher
sp_adddistpublisher
sp_droppublisher
sp_dropdistpublisher
sp_distcounters
sp_helpreplicationdb
sp_helpreplicationdboption
sp_replstatus

System Stored
Procedures (System)

ALTER TABLE
CREATE TABLE
sp_help
sp_helpconstraint
sp_commonkey
sp_dropkey
sp_foreignkey
sp_helpjoins
sp_helpkey
sp_primarykey
sp_placeobject
sp_dbinstall
sp_attach_db
sp_makestartup
sp_unmakestartup
sp_procoption
sp_helplogins
sp_helprotect
sp_tableoption
sp_serveroption (fallback option)
sp_setlangalias
sp_droplanguage
sp_fallback_activate_svr_db
sp_fallback_deactivate_svr_db
sp_fallback_enroll_svr_db
sp_fallback_help
sp_fallback_permanent_svr
sp_fallback_upd_dev_drive
sp_fallback_withdraw_svr_db
sp_devoption
sp_diskdefault
sp_helplog
sp_helpstartup
sp_help_revdatabase
sp_sqlexec
sp_addlanguage

System Stored
Procedures (Tasks)

sp_addalert
sp_addnotification
sp_addoperator
sp_dropalert
sp_dropnotification
sp_dropoperator
sp_helpalert
sp_helphistory
sp_helpnotification
sp_helpoperator
sp_purgehistory
sp_runtask
sp_stoptask
sp_updatealert
sp_updatenotification
sp_updateoperator
sp_add_alert
sp_add_notification
sp_add_operator
sp_delete_alert
sp_delete_notification
sp_delete_operator
sp_help_alert
sp_help_jobhistory
sp_help_notification
sp_help_operator
sp_purge_jobhistory
sp_start_job
sp_stop_job
sp_update_alert
sp_update_notification
sp_update_operator

System Tables

Information Schema Views
System Stored Procedures (Catalog Procedures)
sysdevices (mirrorname and stripeset columns)
syshistory
sysjobhistory
sysindexes (distribution, segment, rowpage, keys1, and keys2 columns)
syskeys
syslocks
syslockinfo
syslogs
sysprocesses (gid and suid columns)
sysprocedures
syscomments
syssegments
CREATE DATABASE
ALTER DATABASE
CREATE TABLE
ALTER TABLE
CREATE INDEX
systasks
sysjobs
sysjobsteps
sysjobservers
sysusages
master.dbo.spt_datatype_info

Transactions Data type conversions

Utilities probe login

Appendix 2: SQL Server 6.5 Backward Compatibility—Level 2

Handling Major Changes to Behavior

Backward Compatibility Level 2 consists of important changes in Microsoft SQL Server 2000 that produce different behavior
from earlier versions of SQL Server. For example, items in this category are those that have changed behavior in data type
conversion or usage of selected functions, changed behavior of clauses in selected Transact-SQL statements and stored
procedures, changed column names in selected system tables, and changed behavior due to the database compatibility setting.
This topic covers backward compatibility details for these items.

This subheading Relates to

Backup and Restore

BACKUP
CREATE DATABASE
ALTER DATABASE
RESTORE
sp_dboption

Bulk Copy bcp Utility

Configuration Options Setting Configuration Options
sp_configure (open objects and user connections options)

Database Pages and Extents Pages and Extents

Data Types CAST and CONVERT
Data Types

DB-Library dbcursorfetchex

Empty Strings

sp_dbcmptlevel
CHARINDEX
DATALENGTH
LEFT
LTRIM
PATINDEX
REPLICATE
RIGHT
RTRIM
SPACE
SUBSTRING
UPDATETEXT

Indexes CREATE INDEX

INSERT sp_dbcmptlevel
INSERT

Keyset Cursors Keyset cursors

LTRIM and RTRIM Trimming Functions LTRIM
RTRIM

ODBC SQLGetDiagRec
SQLMoreResults

RIGHT Using Identifiers
Reserved Keywords

Security

GRANT
REVOKE
DENY
sp_addlinkedsrvlogin

SELECT SELECT

SET SHOWPLAN SET SHOWPLAN_ALL
SET SHOWPLAN_TEXT

System Tables

Information Schema Views
System Stored Procedures (Catalog Procedures)
sysdatabases (logptr and dumptrdate columns)
sysmessages (langid column)
syslogins (language column)
computed columns

Table Hints

DELETE
FROM
INSERT
SELECT
UPDATE

Transactions

SET TRANSACTION ISOLATION LEVEL
SET CURSOR_CLOSE_ON_COMMIT
ROLLBACK
DECLARE CURSOR

Triggers and System Stored Procedures

sp_dbcmptlevel
sp_create_removable
CREATE TRIGGER
SET QUOTED_IDENTIFIER
SET ANSI_NULLS
SET ANSI_DEFAULTS

UPDATE
@@ERROR
UPDATE
INSERT

UPDATETEXT UPDATETEXT
WRITETEXT

Views
DELETE
INSERT
UPDATE

Appendix 3: SQL Server 6.5 Backward Compatibility—Level 3

Updating to Improve Earlier Functionality

Backward Compatibility Level 3 consists of items that were supported in Microsoft SQL Server 6.5 but are supported in SQL

Server 2000 (and SQL Server 7.0) for backward compatibility only. Any item included in this category is fully supported, but
may be removed or unsupported in a future release. It is recommended that, as time allows, the backward compatible item be
replaced with the recommended item. SQL Server 2000 provides features that accomplish these tasks more efficiently and
have ongoing support.

This topic covers backward compatibility details for these items.

This subheading Relates to

Backup and Restore
BACKUP
RESTORE
CREATE DATABASE

Database Options sp_dboption (publish option)
sp_replicationdboption

DBCC

DBCC NEWALLOC
DBCC CHECKALLOC
DBCC ROWLOCK
Architecture Enhancements
DBCC TEXTALL
DBCC CHECKDB
DBCC TEXTALLOC
DBCC CHECKTABLE
DBCC DBREPAIR
DROP DATABASE

Devices

Overview of SQL Server Architecture
DISK INIT
CREATE DATABASE
ALTER DATABASE
DISK REINIT
sp_logdevice
sp_dropdevice

Open Data Services

srv_config
srv_config_alloc
srv_getconfig
srv_init
srv_run
srv_tdsversion
srv_getuserdata
srv_setuserdata
srv_errhandle
srv_iodead
srv_log
srv_sendstatus
srv_sfield
srv_event
srv_eventdata
srv_getserver
srv_got_attention
srv_handle
srv_pre_handle
srv_post_handle
srv_setevent
srv_terminatethread
srv_attention
srv_connect
srv_disconnect
srv_language
srv_rpc
srv_exit
srv_start
srv_sleep
srv_restart
srv_stop
srv_langcpy
srv_langlen
srv_langptr
srv_paramdata
srv_paramlen
srv_parammaxlen
srv_paramname
srv_paramnnumber
srv_paramset
srv_paramstatus
srv_paramtype
srv_returnval
srv_rpcdb
srv_rpcnumber
srv_rpcoptions
srv_clearstatistics
srv_sendstatistics
srv_alloc
srv_bmove
srv_bzero
srv_free
srv.h
srv_describe
srv_setcollen
srv_setcoldata
srv_paramsetoutput
srv_paraminfo

Query Performance

SUSER_ID
SUSER_SID
SUSER_NAME
SUSER_SNAME
syslogins
sysdatabases
sysremotelogins
sysusers
sysalternates

Security
GRANT
Authentication
SETUSER

SELECT
FASTFIRSTROW
SELECT
INDEX = (index hint)

SET SHOWPLAN
SET SHOWPLAN_TEXT
SET SHOWPLAN_ALL
SQLGetDiagRec

System Stored Procedures (Extended)

xp_grantlogin
xp_revokelogin
sp_grantlogin
sp_revokelogin

System Stored Procedures (System)

sp_add_job
sp_add_jobschedule
sp_add_jobstep
sp_addtask
sp_delete_job
sp_delete_jobschedule
sp_delete_jobstep
sp_droptask
sp_help_jobhistory
sp_help_jobschedule
sp_help_jobstep
sp_helptask
sp_purge_jobhistory
sp_reassigntask
sp_start_job
sp_stop_job
sp_update_job
sp_update_jobschedule
sp_update_jobstep
sp_updatetask

Appendix 4: SQL Server 6.5 Backward Compatibility—Level 4

Handling Minor Changes to Behavior

Backward Compatibility Level 4 consists of minor changes in Microsoft SQL Server 2000 that produce different behavior from
earlier versions of SQL Server. For example, items in this level are either ignored or have one or more ignored parameters,
changes to byte lengths, added parameters or columns, or changed data type columns.

This topic covers backward compatibility details for these items.

This subheading Relates to these items

Aliases Roles
Managing Permissions

Backup and Restore RESTORE HEADERONLY
LOAD HEADERONLY

Configuration sp_configure (media retention option)
Setting Configuration Options

CREATE PROCEDURE CREATE TABLE
SELECT INTO

Data Types

decimal and numeric
Using Mathematical Functions
+ (Add)
- (Subtract)
* (Multiply)
/ (Divide)
ATN2
AVG
CAST and CONVERT
EXP
POWER
RADIANS
ROUND
SUM

DATEPART and SET DATEFIRST SET DATEFIRST
DATEPART

DBCC DBCC

DBCS String Comparisons Unicode space characters

DELETE and SELECT FROM

Devices ALTER DATABASE

Functions @@DBTS

Global Variables Functions

ODBC
SQL_COPT_SS_PERF_QUERY_INTERVAL
SQLMoreResults
SQL_NO_DATA

Rebuilding the master Database Rebuild Master Utility

Rebuilding the Registry (Level 4) setup/t RegistryRebuild = On

Replication Replication Between Different Versions of SQL Server
Subscribing to One or More Articles of a Publication

Security SYSTEM_USER

SELECT SELECT
FROM

Triggers and System Stored Procedures (System)

CREATE TRIGGER
sp_dboption (recursive triggers option)
sp_tableoption
xp_readmail
xp_sendamil

UPDATE UPDATE

Utilities SQL Query Analyzer
isql utility

Top Of Page

Microsoft SQL Server 2000 Index Defragmentation Best
Practices

Updated : March 2009

Author: Mike Ruthruff

February 2003

Summary As Microsoft SQL Server 2000 maintains indexes to reflect updates to their underlying tables, these indexes can
become fragmented. Depending on workload characteristics, this fragmentation can adversely affect workload performance.
This white paper provides information to help you determine whether you should defragment table indexes to benefit
workload performance. To defragment indexes, SQL Server 2000 provides several statements. This white paper compares two
of those statements: DBCC DBREINDEX and DBCC INDEXDEFRAG.

On This Page

Overview
Understanding Fragmentation
Considerations Before Defragmenting
Small-Scale Environment vs. Large-Scale Environment
Deciding When to Defragment Indexes
DBCC DBREINDEX vs. DBCC INDEXDEFRAG
Conclusion
Finding More Information
Appendix A: Platform Listing

Overview

This white paper provides information that you can use to determine whether you should defragment indexes to benefit the
workload performance in your production environment. In addition, this paper compares DBCC DBREINDEX and DBCC
INDEXDEFRAG, the statements provided by Microsoft SQL Server 2000 to perform index defragmentation. Included in this
comparison are the results from testing these statements against different databases and hardware environments. For
information about these test environments, see "Small-Scale Environment vs. Large-Scale Environment" and Appendix A later
in this paper.

Note: Defragmentation does not yield performance gains in every case. Every scenario is different. Similarly, determining
when you should run the defragmentation statements requires analysis.

This white paper describes important considerations and the general process for determining when you should defragment
indexes. The following is a summary of the key points presented in this paper:

Before you defragment indexes, ensure that system resources issues, such as physical disk fragmentation or
inappropriate schemas, are not adversely affecting workload performance.

DBCC SHOWCONTIG allows you to determine the amount of index fragmentation. When you run this statement, pay
particular attention to the values for Logical Fragmentation and Page Density.

Workload type is an important consideration when determining whether you should defragment indexes. Not all
workload types benefit from defragmenting. Read-intensive workload types that do significant disk I/O benefit the most.
The test results showed that the Decision Support System (DSS) workload type benefited much more than the OLTP
(Online Transaction Processing) workload type.

Fragmentation affects disk performance and the effectiveness of the SQL Server read-ahead manager. There are some
key indicators available through the Windows Performance Monitor that show this.

The decision of whether to use DBCC DBREINDEX or DBCC INDEXDEFRAG is based on your availability needs and the
hardware environment.

Updating statistics is a side effect of DBCC DBREINDEX, which is not the case with DBCC INDEXDEFRAG. It is not
necessary to update statistics after running DBCC INDEXFRAG.

Top Of Page

Understanding Fragmentation

Fragmentation exists when indexes have pages in which the logical ordering, based on the key value, does not match the
physical ordering inside the data file. All leaf pages of an index contain pointers to the next and the previous pages in the index.
This forms a doubly linked list of all index/data pages. Ideally, the physical order of the pages in the data file should match the
logical ordering. Overall disk throughput is increased significantly when the physical ordering matches the logical ordering of
the data. This leads to much better performance for certain types of queries. When the physical ordering does not match the
logical ordering, disk throughput can become less efficient, because the disk head must move back and forth to gather the
index pages instead of scanning forward in one direction. Fragmentation affects I/O performance, but has no effect on
performance of queries whose data pages reside in the SQL Server data cache.

When indexes are first built, little or no fragmentation should exist. Over time, as data is inserted, updated, and deleted,
fragmentation levels on the underlying indexes may begin to rise. To correct the fragmentation, SQL Server provides the
following statements:

DROP INDEX followed by CREATE INDEX

CREATE INDEX WITH DROP_EXISTING

DBCC INDEXDEFRAG

DBCC DBREINDEX

DBCC INDEXDEFRAG and DBCC DBREINDEX were used for the tests described in this white paper. These statements allowed
both online and offline scenarios to be represented. DBCC DBREINDEX builds indexes the same way as CREATE INDEX;
therefore, the results achieved with DBCC DBREINDEX are similar to those if CREATE INDEX were used. The results of the tests
and the functionality provided by each of these statements are described later in this paper.

Top Of Page

Considerations Before Defragmenting

System Resource Issues

Before you decide to defragment indexes, you should first ensure that any performance issues are not related to system
resource limitations. A detailed discussion about this issue is beyond the scope of this paper; however, some of the more
common resource issues are related to I/O subsystem performance, memory usage, and CPU utilization. For sources of more
in-depth information about diagnosing these types of problems, see "Finding More Information" later in this paper.

Physical Disk Fragmentation

Disk fragmentation can contribute to poor performance on some systems. To determine whether disk fragmentation exists, use
system tools provided in Microsoft Windows or from third parties to analyze drives on which SQL Server databases reside. On
small-scale environments with more conventional I/O subsystems, it is recommended that you correct disk fragmentation
before running index defragmentation tools. On large-scale environments that benefit from more intelligent disk subsystems,
such as SAN (storage area networks) environments, correcting disk fragmentation is not necessary.

Poorly Performing Queries

When investigating any performance related problems, you must identify which queries in the workload are performing
poorly. Some of the information discussed here is also used later in the paper to determine which indexes to focus on for
defragmentation.

You can use SQL Profiler to identify poorly performing queries. (For more information, see the topic "SQL Profiler" in SQL
Server Books Online.) Running SQL Profiler introduces some overhead; however, monitoring only the following events should
allow you to collect needed information with minimal impact on performance (this varies, but generally less than 10 percent
impact to CPU utilization).

SQL Profiler provides a trace template named SQLProfilerTSQL_Duration, which captures relevant events. You can use this to
identify poorly performing queries quickly. You can also manually create a SQL Profiler trace that captures these events:

TSQL: SQLBatchCompleted

Stored Procedures: RPC:Completed

The length of time you need to run SQL Profiler depends on the server workload. For the trace to be most useful, it should

represent a typical workload or, at least, the part of the workload that exhibits poor performance. After the trace has been
captured, examine the trace log focusing on the duration column. This is a measure in milliseconds of the duration of each
batch or query.

Identifying the Poorest Performing Queries

Here are some suggestions to best determine the poorest performing queries in the trace:

Group the trace by query duration. Focus first on the "Top 10" worst performing queries.

If your application uses stored procedures extensively, consider using the SQLProfilerSP_Counts trace template to
identify the most commonly called stored procedures. Focus on the worst performing stored procedures that are used
most frequently.

Consider saving the collected data into SQL Server tables. This allows you to query the tables and perform more detailed
analysis (for example, average duration, max duration, and so on) of the workload performance.

Underlying Schema

After you have identified the longest running/worst performing queries, you must ensure that the underlying schema is
optimal for these. Ensure that appropriate indexes exist and are being used appropriately by the queries. Using SQL Query
Analyzer to display and review query plans allows you to see what indexes are being used by queries in the workload. When
the execution plan of a query is graphically displayed using SQL Query Analyzer, out-of-date or missing statistics are indicated
as warnings (the table name appears in red text). Resolve any out-of-date statistics before defragmenting.

When you examine query plans, keep the following suggestions in mind:

Look for steps in the execution plan that have a high cost associated with them. These are the most expensive parts of the
query. Improving performance of these steps results in the biggest performance gains.

Identify steps that perform index scans. Index scans benefit the most from defragmenting. Note indexes where poorly
performing queries use index scans so you can focus on those when you defragment the indexes.

Capturing a trace with SQL Profiler, in addition to allowing you to manually review the query plans, allows you to use the Index
Tuning Wizard to analyze the workload. You can use the report created by the Index Tuning Wizard to determine whether any
changes must be made to the underlying schema. Address any needed schema changes before defragmenting indexes.

Top Of Page

Small-Scale Environment vs. Large-Scale Environment

The tests described later in this paper were run on two servers, each having very different I/O subsystems. One server
represented a small-scale environment and the other system represented a large-scale environment. The specifics of each
environment are presented here to provide a context in which to interpret the test results.

Small-Scale Environment

In the smaller configuration, the database size ranged from 10 to 20 gigabytes (GB). Data was spread across two physical
spindles, with tempdb and the database log separated on 2 additional spindles using RAID 0. The database configuration for
the DSS database consisted of two file groups, each having one file. The database configuration for the OLTP database
consisted of one file group with one data file.

Large-Scale Environment

Microsoft partnered with Hitachi Data Systems to build the large-scale Storage Area Network (SAN) environment using a
Hitachi Freedom Storage Lightning 9900 Series Lightning 9960 system for storage of the data. The database size for the
testing done on this system was approximately 1 terabyte (TB). Data was spread across 64 physical spindles using RAID 1+0.
The spindles used for data were exposed through eight Logical Unit Numbers (LUNs), and the database configuration
consisted of one file group containing eight data files. tempdb and the database log were created on a separate set of spindles
isolated from the data, with tempdb spread across 48 spindles and the log across 8 spindles. To quickly back up and restore
images of the fragmented database, two Hitachi ShadowImage software copies of the data/log were maintained in the SAN,
and the Lightning 9960 system was used to resynchronize a ShadowImage software copy of the data with the production copy.
On this larger system, tests were repeated at two of the three fragmentation levels tested due to the amount of storage needed
to maintain a copy for each level (approximately 1.4 TB).

Performance Impact of Index Fragmentation

The test results are discussed in more detail later in this paper; however, it is worth noting that although index fragmentation
had an adverse effect on both environments, the impact on the large-scale environment was significantly less than on the
small-scale environment. These results are to be expected because the larger environment benefits from greatly increased I/O
performance provided by the SAN: Not only can the data be spread across many more spindles, but also the SAN provided 16
GB of data cache. The I/O benchmark tests performed when creating the 1-TB database yielded a maximum read throughput of
354 MB/sec, compared to only 71 MB/sec on the small-scale environment.

Note: These values can vary based on your specific implementation and storage configuration.

Obviously, having a high-performance I/O subsystem benefits SQL Server performance; however, performance gains can still
be realized by defragmenting indexes across all systems. When building databases, give careful consideration to the I/O
subsystem and be sure to isolate log files on separate spindles from data files whenever possible.

Top Of Page

Deciding When to Defragment Indexes

Consider the following important recommendations when deciding to defragment indexes:

Identify fragmented indexes.

Understand which workload types benefit most from defragmenting.

Determine the amount of I/O performed by a query.

Understand the effect of fragmentation on disk throughput and the SQL Server read-ahead manager.

In the following sections, where appropriate, the results from the tests have been included to help illustrate the
recommendations.

Using DBCC SHOWCONTIG to Identify Fragmented Indexes

When deciding to defragment, you must first identify the fragmented indexes. DBCC SHOWCONTIG allows you to measure
fragmentation and page density levels on indexes.

The following is sample output from DBCC SHOWCONTIG:

DBCC SHOWCONTIG scanning 'table_1' table...
Table: 'table_1' (453576654); index ID: 1, database ID: 8
TABLE level scan performed.
- Pages Scanned................................: 48584
- Extents Scanned..............................: 6090
- Extent Switches..............................: 12325
- Avg. Pages per Extent........................: 8.0
- Scan Density [Best Count:Actual Count].......: 49.27% [6073:12326]
- Logical Scan Fragmentation: 10.14%
- Extent Scan Fragmentation: 32.74%
- Avg. Bytes Free per Page.....................: 1125.2
- Avg. Page Density (full).....................: 86.10%
DBCC SHOWCONTIG scanning 'table_1' table...
Table: 'table_1' (453576654); index ID: 2, database ID: 8
LEAF level scan performed.
- Pages Scanned................................: 41705
- Extents Scanned..............................: 5221
- Extent Switches..............................: 6094
- Avg. Pages per Extent........................: 8.0
- Scan Density [Best Count:Actual Count].......: 85.55% [5214:6095]
- Logical Scan Fragmentation: 7.80%
- Extent Scan Fragmentation: 6.63%
- Avg. Bytes Free per Page.....................: 877.7
- Avg. Page Density (full).....................: 83.20%

When you examine the results from DBCC SHOWCONTIG, pay particular attention to logical scan fragmentation and average
page density. Logical scan fragmentation is the percentage of out-of-order pages in an index (Note: This value is not relevant
on heaps and text indexes. A heap is a table with no clustered index.). Page density is a measure of fullness for leaf pages of an
index. For more information, see the topic "DBCC SHOWCONTIG" in SQL Server Books Online.

Analyzing Output from DBCC SHOWCONTIG

When analyzing the output from DBCC SHOWCONTIG, consider the following:

Fragmentation affects disk I/O. Therefore, focus on the larger indexes because their pages are less likely to be cached by
SQL Server. Use the page count reported by DBCC SHOWCONTIG to get an idea of the size of the indexes (each page is 8
KB in size). Generally, you should not be concerned with fragmentation levels of indexes with less than 1,000 pages. In
the tests, indexes containing more than 10,000 pages realized performance gains, with the biggest gains on indexes with
significantly more pages (greater than 50,000 pages).

High values for logical scan fragmentation can lead to degraded performance of index scans. In the tests, workload
performance increased after defragmenting when clustered indexes had logical fragmentation greater than 10 percent,
and significant increases were attained when logical fragmentation levels were greater than 20 percent. Consider
defragmenting indexes with 20 percent or more logical fragmentation. Remember that this value is meaningless when
reporting on a heap (Index ID = 0).

Low values for average page density can result in more pages that must be read to satisfy a query. Reorganizing the
pages so they have a higher page density can result in less I/O to satisfy the same query. Generally, tables have a high
page density after initial loading of data, and page density may decrease over time as data is inserted, resulting in splits
of leaf pages. When examining the value for average page density, remember that this value is dependent on the
fillfactor specified when the table was created.

Although scan density can also be an indication of fragmentation levels, it is not valid when indexes span multiple files;
thus, scan density should not be considered when examining indexes that span multiple files.

Monitoring Fragmentation Levels

Regularly monitoring fragmentation levels on indexes is good practice. For a sample script that demonstrates how to automate
the capture and rebuild of heavily fragmented indexes, see the "DBCC SHOWCONTIG" topic in SQL Server Books Online.
Consider using the DBCC SHOWCONTIG TABLERESULTS option and importing this information into tables at regular intervals.
Doing this allows you to monitor the fragmentation levels over time. Also consider using the WITH FAST option when running
DBCC SHOWCONTIG on a busy server. Using the WITH FAST option allows DBCC SHOWCONTIG to avoid scanning the leaf
pages of an index. This can result in faster performance of DBCC SHOWCONTIG; however, because it does not scan the leaf
pages of the index, it cannot report page density numbers.

Table 1 shows the amount of time it took to run DBCC SHOWCONTIG against all the indexes in the small-scale and large-scale
DSS environments. The ALL_INDEXES and TABLERESULTS options were used for each test.

Table 1 DBCC SHOWCONTIG performance

DBCC SHOWCONTIG options Total number of index pages (all indexes) Run time (minutes)

Small-Scale Environment

Not using the WITH FAST option 1,702,889 5.02

Using the WITH FAST option 1,702,889 0.90

Large-Scale Environment

Not using the WITH FAST option 111,626,354 382.35

Using the WITH FAST option 111,626,354 48.73

Understanding Which Workload Types Benefit Most from Defragmenting Indexes

When you decide to defragment indexes, it is important to understand that certain workload types realize a much greater
performance increase than others as a result of defragmenting indexes. Fragmentation has an adverse effect on disk I/O
performance. Queries that scan large ranges of index pages are affected most by fragmentation and gain the most from
defragmenting.

The tests examined the performance of two typical database workload types with fragmentation present, contrasted with the
performance of these same two workload types after index defragmentation. Testing was performed against a representative
OLTP database and a representative DSS database. The OLTP type of workload primarily performs focused updates to

particular ranges of the data (inserts, updates, and deletes) and very selective reads of the data. The workload for the DSS
system, however, is read intensive, consisting of queries that perform joins across several tables. Typically, these queries must
perform scans of one or more underlying indexes to satisfy the query results. The test results show that fragmentation had
little impact on the OLTP workload performance; however, the DSS workload performance realized significant gains from
defragmenting fragmented indexes.

The DBCC INDEXDEFRAG and DBCC DBREINDEX statements were used to defragment indexes. Specific functionality of the
DBCC INDEXDEFRAG and DBCC DBREINDEX statements is discussed in more detail later in this paper.

OLTP-Type Workload

In the tests, the OLTP database workload simulated order processing for a warehouse environment. The workload consisted of
five stored procedures issuing transactions for new orders, order status inquiries, deliveries, stock level status, and payment
processing. The stored procedures used queries including inserts, updates, deletes, and very selective SELECT queries.

Figure 1 shows the difference in query performance for each of the five stored procedures, before and after the indexes were
defragmented using DBCC INDEXDEFRAG and DBCC DBREINDEX.

Figure 1: Average duration for each stored procedure in the OLTP-type workload, before and after defragmenting.
The lower values indicate better performance.

As shown in Figure 1, there is little difference between the performance of the stored procedures before and after
defragmenting. Because the underlying queries issued by these stored procedures acted upon very selective portions of the
data, workload performance was not adversely affected by fragmented indexes. Some of the results shown in Figure 1 may
tend to indicate that running defragmentation utilities actually decreased performance of the stored procedures; however,
there was a natural variation of 10 to 20 percent in the performance of the stored procedures during the workload run. The
differences shown in Figure 1 are within this range. More importantly, the results show that over time there was no decrease in
performance of the stored procedures as the fragmentation levels rose.

DSS-Type Workload

In the tests, the DSS workload consisted of 22 reporting-type queries that issued complex SELECT statements against the
database. These queries were run serially as a batch against the server. All of the queries in this workload consisted of one or
more table joins, and most queries scanned a large portion of the underlying indexes.

Table 2 shows the average fragmentation and page-density levels for the target indexes that were used in the tests.
Fragmentation levels were achieved by a combination of the following:

Bulk inserts of new data into the database, simulating periodic refreshes of the data.

Deletes were performed on ranges of data.

Some updates were performed on the key values; however, this affected fragmentation levels the least; and the number
of updates performed was relatively small in comparison to the inserts and deletes.

Table 2 Average logical fragmentation and page-density levels tested on the small- and large-scale environments

Fragmentation level Average logical fragmentation (%) Average page density (%)

Small-Scale Environment

Low (1) 7.8 80.1

Medium (2) 16.6 68.1

High (3) 29.5 69.2

Large-Scale Environment

Low (1) 5.9 84.4

Medium (2) 13.8 70.3

The test results for the DSS workload type were very different from the results of the OLTP workload type. The workload
performance improved significantly after defragmenting the indexes. This was expected because the performance for this
workload was highly dependent on the disk throughput. (Most of the workload queries performed index scans.) Figures 2 and
3 that follow show the performance gains realized by the DSS workloads before and after defragmenting indexes. As the
figures indicate, workload performance gained significant improvement from defragmenting.

The workload performance increase realized in the small-scale environment ranged from 60 percent at the low level of
fragmentation to more than 460 percent at the highest level of fragmentation. The workload performance increased realized
for the large-scale environment ranged from 13 percent at the low fragmentation level to 40 percent at the medium
fragmentation level. The results show that fragmentation had less impact on the large-scale environment because that
environment benefited from a better performing disk subsystem. The test results are discussed in more detail in "Effect of
Fragmentation on Disk Throughput and the SQL Server Read-Ahead Manager" later in this paper.

Figure 2: Total workload duration time for the DSS workload for different levels of fragmentation on the small-
scale environment. The lower values indicate better performance.

Figure 3: Total workload duration time for the DSS workload for different levels of fragmentation on the large-
scale environment. The lower values indicate better performance.

The results shown in Figure 2 may seem a bit counter-intuitive because DBCC INDEXDEFRAG actually resulted in better
workload performance than DBCC DBREINDEX on the small-scale environment. In most cases, completely rebuilding the
indexes should yield better performance.

When interpreting these test results, keep the following in mind:

The results shown in Figures 2 and 3 indicate a "best case" scenario for DBCC INDEXDEFRAG. In the tests, DBCC
INDEXDEFRAG was run on a quiescent system; therefore DBCC INDEXDEFRAG could fully eliminate fragmentation. When
DBCC INDEXDEFRAG is run on nonquiescent systems on which updates to the underlying data are taking place, DBCC
INDEXDEFRAG skips locked pages as it encounters them. As a result, DBCC INDEXDEFRAG may not be able to completely
eliminate fragmentation. To measure the effectiveness of DBCC INDEXDEFRAG, you should run DBCC SHOWCONTIG
after DBCC INDEXDEFRAG.

Placement of the data on disk can contribute to disk performance. Data on the small–scale environment was spread
across only two physical spindles (33.5 GB of total space) that were empty at the time the database was built. Total size
for all data files was between 22 GB and 30 GB. Originally, when the database was created, the data resided close to the
beginning of the data files nearer the outer portion of the physical spindles. DBCC INDEXDEFRAG defragments the data
in place so the position of the data on disk is close to its original position. Because DBCC DBREINDEX rebuilds the indexes
completely, it must first allocate new space in the file before releasing the previous indexes pages. This allocation results

in the data being moved further into the data files and nearer the inner rim of the disks, resulting in slightly decreased
I/O throughput. In the benchmark testing of the small-scale environment, this decrease could be as much as 15 percent
for reads.

Free space can also influence the effectiveness of DBCC DBREINDEX. Without large enough contiguous blocks of free
space, DBREINDEX may be forced to reuse other areas of free space within the data files, resulting in indexes being
rebuilt with a small amount of logical fragmentation. For more information about the free space required by DBCC
DBREINDEX, see "DBCC DBREINDEX" later in this paper.

Determining the Amount of I/O Performed by a Query

Because I/O intensive queries stand to gain the most from defragmenting, it is worth mentioning how to determine the
amount of I/O for a particular query. The SET STATISTICS IO statement reports the number and type of reads issued by an
instance of SQL Server to satisfy a particular query. This option can be set ON and OFF in SQL Query Analyzer as follows:

SET STATISTIC IO ON
GO
SELECT * FROM table_1
GO
SET STATISTIC IO OFF
GO

Sample Output

Table 'table_1'.
 Scan count 1,
 logical reads 12025,
 physical reads 0,
 read-ahead reads 11421.

Table 3 Description of the output values in a SET STATISTIC IO report

Value Description

Scan count Number of scans performed

logical reads Number of pages read from the data cache

physical reads Number of pages read from disk

read-ahead reads Number of pages placed into the cache for the query

By looking at the number of physical and read-ahead reads, you can get an idea of the disk I/O that must be performed to
satisfy the query. Both physical and read-ahead reads indicate that a page was read from disk. Usually, you should see more
read-ahead reads than physical reads.

Note When you attempt to get this information from a SQL Profiler trace, the reads column in SQL Profiler reports the
number of logical reads, not physical reads.

In addition to reordering out-of-order pages, defragmenting indexes can also reduce the amount of I/O performed by queries
by increasing page-density levels for the leaf pages of an index. Increased page density results in less total pages being read by
SQL Server to satisfy the same query, resulting in better performance.

Effect of Fragmentation on Disk Throughput and the SQL Server Read-Ahead Manager

Fragmentation can adversely affect performance of read-intensive disk-bound workloads. You can use Windows Performance
Monitor to gain some insight into the effect of fragmentation on your workload. Performance Monitor enables you to monitor
disk activity and can be helpful in determining when you need to defragment.

To understand why fragmentation had such an effect on the DSS workload performance, it is important to understand how
fragmentation affects the SQL Server read-ahead manager. For queries that scan one or more indexes, the SQL Server read-
ahead manager is responsible for scanning ahead through the index pages and bringing additional data pages into the SQL
Server data cache. The read-ahead manager dynamically adjusts the size of reads it performs based on the physical ordering of
the underlying pages. When there is low fragmentation, the read-ahead manager can read larger blocks of data at a time, more

efficiently using the I/O subsystem. As the data becomes fragmented, the read-ahead manager must read smaller blocks of
data. The amount of read-aheads that can be issued is independent of the physical ordering of the data; however, smaller read
requests take more CPU resources per block, resulting in less overall disk throughput.

In all cases, the read-ahead manager benefits performance; but, when fragmentation exists and the read-ahead manager is
unable to read the larger block sizes, it can lead to a decrease in overall disk throughput. You can see this behavior by
examining some of the Physical Disk counters exposed by the Performance Monitor. The following table lists and describes
these counters.

Table 4 Performance Monitor Physical Disk counters

Physical
Disk

counter
Description

Avg Disk
sec/
Read

This is a measure of the disk latency. The tests showed that very high levels of fragmentation (greater than 30
percent) can lead to increased disk latency.

Disk
Read
Bytes/
sec

This is a good measure of overall disk throughput. A trend downward over time for the same workload could be an
indication of fragmentation affecting performance.

Avg Disk
Bytes/
Read

This is a measure of how much data is read for each read request issued. When index pages are contiguous, the SQL
Server read-ahead manager can read larger chunks of data at a time, making more efficient use of the I/O
subsystem. The tests showed a direct correlation between this value and the amount of fragmentation. As
fragmentation levels increase, this value can decrease, affecting overall disk throughput.

Avg Disk
Read
Queue
Length

In general, the target is for a sustained average below two per physical spindle. In the tests, this value tended to
increase with increasing fragmentation, most likely due to the higher latency and lower overall disk throughput.

Figures 4 through 7 show the disk throughput and average read size during the DSS workloads as reported by Performance
Monitor.

Figure 4: Disk throughput during the DSS workload on the small-scale environment. The higher values indicate
better disk throughput.

Figure 5: Disk throughput during the DSS workload on the large-scale environment. The higher values indicate
better disk throughput.

Figure 6: Average size of each disk read during the DSS workload run on the small-scale environment. The higher
values indicate greater bytes per read.

Figure 7: Average size of each disk read during the DSS workload run on the large-scale environment. The higher
values indicate greater bytes per read.

The previous figures show the results that fragmentation can have on disk performance. Although there are differences in
results obtained with DBCC DBREINDEX and DBCC INDEXDEFRAG, notice that consistently across all systems the average size
of each read and overall disk throughput decreases as fragmentation grows. As you can see, defragmenting the indexes
resulted in much improved disk throughput.

The numbers for average read size have been included to illustrate the effect fragmentation has on the ability of the read-
ahead manager to read larger chunks of data. It is important to keep in mind, however, that a larger average read size does not
always equate to greater overall disk throughput. Larger read sizes are issued to reduce the CPU overhead incurred for the
data transfer. When indexes are not fragmented, data may be read in just as fast with 64-KB read sizes as it would with 256-KB
read sizes. This is especially true for larger systems on which the data is spread across many spindles. These particular results
and disk performance in general can vary greatly from system to system due to any number of reasons (for example,
difference in I/O subsystems, workload characteristics, placement of data on disk, and so on). When monitoring your system,
look for general downward trends in disk throughput and read size over long periods of time. This, in addition to the
information provided by DBCC SHOWCONTIG, can help you determine when to defragment the indexes.

Fragmentation can also lead to increased disk latency. The tests showed, however, that only the highest fragmentation levels
had a significant negative impact on disk latency, and this affected only the small-scale environment. Disk latency was
significantly lower and never became an issue on the large-scale environment due to increased I/O performance provided by
the SAN.

Top Of Page

DBCC DBREINDEX vs. DBCC INDEXDEFRAG

In addition to using the CREATE INDEX statement to drop and re-create indexes, you can use the DBCC DBREINDEX and DBCC
INDEXDEFRAG statements to help with index maintenance.

DBCC DBREINDEX

DBCC DBREINDEX can be used to rebuild one or more indexes for a specific table. DBCC DBREINDEX is an offline operation.
While this operation is running, the underlying table is unavailable to users of the database. DBCC DBREINDEX rebuilds indexes
dynamically. You do not have to know anything about the underlying table structure, nor any PRIMARY KEY or UNIQUE
constraints; these are preserved automatically during the rebuild. DBCC DBREINDEX completely rebuilds the indexes, so it
restores the page density levels to the original fillfactor (default); or you can choose another target value for the page density.
Internally, running DBCC DBREINDEX is very similar to using Transact-SQL statements to drop and re-create the indexes
manually.

There are two distinct advantages of running DBCC DBREINDEX over DBCC INDEXDEFRAG:

DBCC DBREINDEX rebuilds statistics automatically during the rebuild of the indexes; this can have dramatic
improvements on workload performance.

DBCC DBREINDEX can take advantage of multiple-processor computers and can be significantly faster when rebuilding
large or heavily fragmented indexes.

All work done by DBCC DBREINDEX occurs as a single, atomic transaction. The new indexes must be completely built and in
place before the old index pages are released. Performing the rebuild requires adequate free space in the data file(s). With not
enough free space in the data file(s), DBCC DBREINDEX may be unable to rebuild the indexes, or the indexes may be rebuilt
with logical fragmentation values above zero. The amount of free space needed varies and is dependent on the number of
indexes being created in the transaction. For clustered indexes, a good guideline is: Required free space = 1.2 * (average row
size) * (number of rows).

For nonclustered indexes, you can predict free space necessary by calculating the average row size of each row in the
nonclustered index (length of the nonclustered key plus the length of clustering key or row ID). Then multiply that value by the
number of rows. If you rebuild indexes for an entire table, you will need enough free space to build the clustered index and all
nonclustered indexes. Similarly, if you rebuild a nonunique clustered index, you will also need free space for both the clustered
and any nonclustered indexes. The nonclustered indexes are implicitly rebuilt because SQL Server must generate new unique
identifiers for the rows. When you use DBCC DBREINDEX, it is good practice to specify the index you want to defragment. This
gives you more control over the operations being performed and can help to avoid unnecessary work.

DBCC INDEXDEFRAG

DBCC INDEXDEFRAG allows you to rebuild a specific index. Similar to using DBCC DBREINDEX, you do not have to know about
the underlying table structure; however, with DBCC INDEXDEFRAG you cannot rebuild all indexes with a single statement. You
must run DBCC INDEXDEFRAG once for each index you want to defragment.

Unlike DBCC DBREINDEX, DBCC INDEXDEFRAG is an online operation; therefore, the table and indexes are available while the
index is being defragmented. Another major difference is that DBCC INDEXDEFRAG can be stopped and restarted without
losing any work. The entire DBCC DBREINDEX operation runs as one atomic transaction. This means if you stop DBCC
DBREINDEX the entire operation is rolled back, and you must start over. However, if you stop DBCC INDEXDEFRAG it stops
instantly and no work is lost, because each unit of work performed by DBCC INDEXDEFRAG occurs as a separate transaction.

DBCC INDEXDEFRAG consists of two phases:

1. Compact the pages and attempt to adjust the page density to the fillfactor that was specified when the index was created.
DBCC INDEXDEFRAG attempts to raise the page-density level of pages to the original fillfactor. DBCC INDEXDEFRAG
does not, however, reduce page density levels on pages that currently have a higher page density than the original
fillfactor.

2. Defragment the index by shuffling the pages so that the physical ordering matches the logical ordering of the leaf nodes
of the index. This is performed as a series of small discrete transactions; therefore, the work done by DBCC
INDEXDEFRAG has a small impact to overall system performance. Figure 8 shows the page movements performed
during the defragmentation phase of DBCC INDEXDEFRAG.

Figure 8: Page movements performed by DBCC INDEXDEFRAG within the data file

DBCC INDEXDEFRAG does not help to untangle indexes that have become interleaved within a data file. Likewise, DBCC
INDEXDEFRAG does not correct extent fragmentation on indexes. Interleaving occurs when index extents (a group of eight
index pages) for an index are not completely contiguous within the data file, leaving extents from one or more indexes
intermingled in the file. Interleaving can occur even when there is no logical fragmentation, because all index pages are not
necessarily contiguous, even when logical ordering matches physical ordering.

Even with this limitation, the tests showed that DBCC INDEXDEFRAG can be as effective at improving performance of
workloads as DBCC DBREINDEX. In fact, the tests showed that even if you can rebuild indexes so that there is minimal
interleaving, this does not have a significant effect on performance. Reducing the logical fragmentation levels had a much
greater impact on workload performance. This is why it is recommended that you focus on logical fragmentation and page
density levels when examining fragmentation on your indexes. Table 5 provides a summary of the differences between DBCC
DBREINDEX and DBCC INDEXDEFRAG.

Table 5 Comparison of DBCC DBREINDEX to DBCC INDEXDEFRAG

Functionality DBCC DBREINDEX DBCC INDEXDEFRAG

Online/Offline Offline Online

Faster when logical fragmentation
is: High Low

Parallel processing Yes No

Compacts pages Yes Yes

Can be stopped and restarted
without losing work completed to
that point

No Yes

Able to untangle interleaved
indexes May reduce interleaving No

Additional free space is required in
the data file for defragmenting Yes No

Faster on larger indexes Yes No

Rebuilds statistics Yes No

Log space usage
High in full recovery mode (logs entire contents of the index), low
in bulk logged or simple recovery mode (only logs allocation of
space)

Varies based on the
amount of work
performed

May skip pages on busy systems No Yes

Performance: DBCC DBREINDEX vs. DBCC INDEXDEFRAG

The tests demonstrated that both DBCC DBREINDEX and DBCC INDEXDEFRAG can defragment indexes effectively and return
the page density levels to near the original fillfactor of the table. Based on these results, your availability needs should
determine which statement you should run.

If you have a period of time to rebuild the indexes offline, DBCC DBREINDEX generally rebuilds indexes faster than DBCC
INDEXDEFRAG. DBCC DBREINDEX takes full advantage of multiprocessor systems by creating the index in parallel across the
available processors. DBCC INDEXDEFRAG is designed to be less intrusive to a production environment and has little impact to
workload performance. The tests demonstrated that even when multiple concurrent streams were performing DBCC
INDEXDEFRAG in parallel, the DSS workload performance was never affected by more than 10 percent. However, this design
causes DBCC INDEXDEFRAG to take significantly longer to complete on larger indexes. In addition, the length of time it takes
DBCC INDEXDEFRAG to defragment varies depending on load on the server at the time the statement is run.

Figure 9 shows a comparison between the performance of DBCC INDEXDEFRAG and DBCC DBREINDEX. The values shown are
the total amount of time taken to run each against all indexes in the database on the small-scale environment (results on the
large-scale environment are consistent with these, with DBCC INDEXDEFRAG running as much as eight times slower than
DBCC DBREINDEX). As the fragmentation level and size of the indexes increase, DBCC DBREINDEX can rebuild the indexes
much faster than DBCC INDEXDEFRAG.

Figure 9: Total run time to defragment all indexes in database for the small-scale environment

Logging Considerations: DBCC DBREINDEX vs. DBCC INDEXDEFRAG

One last consideration is the difference in the amount of data that is written to the transaction log when using DBCC
INDEXDEFRAG and DBCC DBREINDEX. The amount of information logged by DBCC INDEXDEFRAG depends on the level of
fragmentation and the amount of work that is performed. The tests resulted in DBCC INDEXDEFRAG logging significantly less
than DBCC DBREINDEX when the database was in full recovery mode. The amount of data logged by DBCC INDEXDEFRAG,
however, can vary greatly. This is because the amount of work that DBCC INDEXDEFRAG performs when defragmenting
indexes is dependent on the number of page movements and the amount of page compaction necessary. You can reclaim the
log space used by DBCC INDEXDEFRAG by backing up the log because the work performed is a series of small transactions.

With respect to log usage, DBCC DBREINDEX behaves slightly differently from DBCC INDEXDEFRAG, with the biggest
difference being the amount of log used when in bulk logged recovery mode. When in full recovery mode, DBCC DBREINDEX
logs images of each index page, which does not occur when in bulk logged mode. For this reason, in full recovery mode, the
log space required by DBCC DBREINDEX is roughly equivalent to the number of index pages multiplied by 8 KB. You can use
DBCC SHOWCONTIG to determine the number of pages in a given index. For large-scale environments, consider changing the
recovery mode to bulk logged when you run DBCC DBREINDEX. Then return to full recovery mode after index maintenance has
been performed.

Note It is important to understand logging requirements on large-scale environments because rollbacks of long-running

transactions can be expensive.

Figure 10 shows the differences in log space usage between DBCC INDEXDEFRAG and DBCC DBREINDEX for the medium
fragmentation level on the small-scale environment. Log space usage can fluctuate greatly for DBCC INDEXDEFRAG; however,
the results from the tests can be used for a general comparison between DBCC DBREINDEX and DBCC INDEXDEFRAG.

Figure 10: Total log space used by DBCC INDEXDEFRAG and DBCC DBREINDEX while defragmenting all indexes in
the DSS database
Top Of Page

Conclusion

Index fragmentation has very different effects on different workload types. Certain applications can achieve great performance
benefits when indexes are defragmented. Understanding the application workload characteristics, system performance, and
fragmentation statistics provided by SQL Server are key in making a good decision about when to defragment indexes. SQL
Server provides several statements that you can use to correct fragmented indexes. The information in this paper can help you
determine when and how you should defragment indexes to have the greatest impact on your workload performance.

Top Of Page

Finding More Information

For more information about monitoring, analyzing, and improving workload performance, see the following resources:

Microsoft Knowledge Base article 243589: "HOW TO: Troubleshoot Slow-Running Queries on SQL Server 7.0 or Later" at
http://support.microsoft.com/default.aspx?scid=KB;en-us;243589&sd=tech

Microsoft SQL Server 2000 Performance Tuning Technical Reference, Microsoft Press, ISBN: 0-7356-1270-6

"Windows 2000 IO Performance" from Microsoft Research at
http://research.microsoft.com/BARC/Sequential_IO/Win2K_IO.pdf

Top Of Page

Appendix A: Platform Listing

The following hardware and software components were used for the tests described in this paper:

Microsoft Software

Microsoft Windows 2000 Data Center (Service Pack 3)

Microsoft SQL Server 2000 Enterprise Edition (Service Pack 2)

Hardware Platform

Small-Scale Environment

Dell PowerEdge 6450

4 Intel Pentium III Xeon 550 MHz processors

4 GB RAM

Large-Scale Environment

Dell PowerEdge 8450

8 Intel Pentium III Xeon 550 MHz processors

http://support.microsoft.com/default.aspx?scid=kb;en-us;243589&sd=tech
http://research.microsoft.com/barc/sequential_io/win2k_io.pdf

16 GB RAM

Storage

Small-Scale Environment

1 Dell PowerVault 660f, with 2, 18 GB 10,000 RPM disks

Total Disk Space = 36 GB (Raid 0)

Large-Scale Environment

1 Hitachi Freedom Storage Lightning 9960 system, with 192, 73 GB, 10,000 RPM disks

Total Disk Space = 13 TB (~6 TB after RAID 1+0 and further striping/slicing)

Host bus adapters (HBA)

8 Emulex LP9002L PCI Host Bus Adapters

Firmware 3.82A1

Port Driver v5-2.11a2

Fabric switch

1 McData Switch, 1 GB

Storage management software

Hitachi Command Control Interface (CCI)

Hitachi ShadowImage

Databases

Representative OLTP and DSS databases

Top Of Page

Microsoft SQL Server 2000 RDBMS Performance Tuning Guide
for Data Warehousing

Updated : August 21, 2001

John H. Miller and Henry Lau

June 2001

Summary: Provides database administrators and developers with valuable information on Microsoft® SQL Server™ 2000
performance and tuning concepts, with specific information for the business intelligence developer. (92 printed pages)

On This Page

Audience
Basic Principles of Performance Tuning
Optimizing Disk I/O Performance
Partitioning for Performance
Finding More Information

Audience

This performance tuning guide is designed to help database administrators and developers configure Microsoft® SQL Server™
2000 for maximum performance and to assist in determining causes of poor performance of relational databases, including
those used in data warehousing. It also provides guidelines and best practices for loading, indexing, and writing queries to
access data stored in SQL Server. Various SQL Server tools that can be used to analyze performance characteristics are also
discussed.

SQL Server 2000 performance and tuning philosophy

Microsoft SQL Server 7.0 introduced a major enhancement: a database engine that is largely self-configuring, self-tuning, and
self-managing. Before SQL Server 7.0, most database servers required a considerable amount of time and effort from the
database administrator, who had to manually tune the server configuration to achieve optimal performance. In fact, a good
many competitive database offerings still require administrators to manually configure and tune their database server. This is a
key reason many customers are turning to SQL Server. SQL Server 2000 builds upon the solid foundation laid by SQL Server
7.0. The goal of SQL Server is to make manual configuration and tuning of a database server an obsolete and archaic practice.

By reducing the amount of time required to configure and tune the database environment, SQL Server 2000 enables
customers to redirect their efforts toward more productive endeavors. Readers familiar with the earlier version of this
document, "MS SQL Server 7.0 Performance Tuning Guide," will notice that fewer options in SQL Server 2000 need to be
manually adjusted in order to achieve good performance.

While it is still possible to manually configure and adjust some sp_configure options, it is recommended that database
administrators refrain from doing so and instead allow SQL Server to automatically configure and tune itself. SQL Server 7.0
has an established and proven track record for being able to make such adjustments; SQL Server 2000 significantly improves
on this time-proven formula. Letting SQL Server self-tune allows the database server to dynamically adjust to changing
conditions in your environment that could have an adverse effect on database performance.

Top Of Page

Basic Principles of Performance Tuning

You can take a number of actions to manage the performance of your databases. SQL Server 2000 provides several tools to
assist you in these tasks.

Managing Performance

Let SQL Server do most of the tuning.

SQL Server 2000 has been dramatically enhanced to create a largely auto-configuring and self-tuning database server.
Take advantage of SQL Server's auto-tuning settings to help SQL Server run at peak performance even as user load and
queries change over time.

Manage RAM caching.

RAM is a limited resource. A major part of any database server environment is the management of random access
memory (RAM) buffer cache. Access to data in RAM cache is much faster than access to the same information from disk.
But RAM is a limited resource. If database I/O (input/output operations to the physical disk subsystem) can be reduced to
the minimal required set of data and index pages, these pages will stay in RAM longer. Too much unneeded data and
index information flowing into buffer cache will quickly push out valuable pages. The primary goal of performance
tuning is to reduce I/O so that buffer cache is best utilized.

Create and maintain good indexes.

A key factor in maintaining minimum I/O for all database queries is ensuring that good indexes are created and
maintained.

Partition large data sets and indexes.

To reduce overall I/O contention and improve parallel operations, consider partitioning table data and indexes. Multiple
techniques for achieving and managing partitions using SQL Server 2000 are addressed in this document.

Monitor disk I/O subsystem performance.

The physical disk subsystem must provide a database server with sufficient I/O processing power for the database server
to run without disk queuing. Disk queuing results in bad performance. This document describes how to detect disk I/O
problems and how to resolve them.

Tune applications and queries.

This becomes especially important when a database server will be servicing requests from hundreds or thousands of
connections through a given application. Because applications typically determine the SQL queries that will be executed
on a database server, it is very important for application developers to understand SQL Server architectural basics and
how to take full advantage of SQL Server indexes to minimize I/O.

Optimize active data.

In many business intelligence databases, a significant majority of database activity involves data for the most recent
month or quarter — as much as 80 percent of database activity may be due to the most recently loaded data. To
maintain good overall database performance, make sure this data gets loaded, indexed, and partitioned in a way that
provides optimal data access performance for it.

Take Advantage of SQL Server Performance Tools

SQL Profiler and the Index Tuning Wizard

SQL Profiler can be used to monitor and log the workload of a SQL Server. This logged workload can then be submitted
to the SQL Server Index Tuning Wizard so index changes can be made to help performance if necessary. SQL Profiler and
Index Tuning Wizard help administrators achieve optimal indexing. Using these tools periodically will keep SQL Server
performing well, even if the query workload changes over time.

SQL Query Analyzer and Graphical Execution Plan

In SQL Server 2000, Query Analyzer provides Graphical Execution Plan, an easy method for analyzing problematic SQL
queries. Statistics I/O is another important feature of SQL Query Analyzer described later in this document.

System Monitor objects

SQL Server includes a complete set of System Monitor objects and counters to provide information for monitoring and
analyzing the operations of SQL Server. This document describes key counters to watch.

Configuration Options That Impact Performance

max async IO

A manual configuration option in SQL Server 7.0, max async IO has been automated in SQL Server 2000. Previously, max
async IO was used to specify the number of simultaneous disk I/O requests that SQL Server 7.0 could submit to Microsoft
Windows® 2000 and Windows NT® 4.0 during a checkpoint operation. In turn, Windows submitted these requests to the
physical disk subsystem. The automation of this configuration setting enables SQL Server 2000 to automatically and
dynamically maintain optimal I/O throughput.

Note: Windows 98 does not support asynchronous I/O, so the max async IO option is not supported on this platform.

Database Recovery Models

SQL Server 2000 introduces the ability to configure how transactions are logged at a database level. The model chosen can
have a dramatic impact on performance, especially during data loads. There are three recovery models: Full, Bulk-Logged, and
Simple. The recovery model of a new database is inherited from the model database when the new database is created. The
model for a database can be changed after the database has been created.

Full Recovery provides the most flexibility for recovering databases to an earlier point in time.

Bulk-Logged Recovery provides higher performance and lower log space consumption for certain large-scale operations
(for example, create index or bulk copy). It does this at the expense of some flexibility of point-in-time recovery.

Simple Recovery provides the highest performance and lowest log space consumption, but it does so with significant
exposure to data loss in the event of a system failure. When using the Simple Recovery model, data is recoverable only to
the last (most recent) full database or differential backup. Transaction log backups are not usable for recovering
transactions because, in this model, the transactions are truncated from the log upon checkpoint. This creates the
potential for data loss. After the log space is no longer needed for recovery from server failure (active transactions), it is
truncated and reused.

Knowledgeable administrators can use this recovery model feature to significantly speed up data loads and bulk operations.
However, the amount of exposure to data loss varies with the model chosen.

Important: It is imperative that the risks be thoroughly understood before choosing a recovery model.

Each recovery model addresses a different need. Trade-offs are made depending on the model you chose. The trade-offs that
occur pertain to performance, space utilization (disk or tape), and protection against data loss. When you choose a recovery
model, you are deciding among the following business requirements:

Performance of large-scale operations (for example, index creation or bulk loads)

Data loss exposure (for example, the loss of committed transactions)

Transaction log space consumption

Simplicity of backup and recovery procedures

Depending on what operations you are performing, one model may be more appropriate than another. Before choosing a
recovery model, consider the impact it will have. The following table provides helpful information.

Recovery
model Benefits Work loss exposure Recover to point in

time?

Simple

Permits high-performance bulk
copy operations.
Reclaims log space to keep space
requirements small.

Changes since the most recent database or
differential backup must be redone.

Can recover to the end of
any backup. Then changes
must be redone.

Full

No work is lost due to a lost or
damaged data file.
Can recover to an arbitrary point
in time (for example, prior to
application or user error).

Normally none.
If the log is damaged, changes since the most
recent log backup must be redone.

Can recover to any point in
time.

Bulk-
Logged

Permits high-performance bulk
copy operations.
Minimal log space is used by bulk
operations.

If the log is damaged, or bulk operations occurred
since the most recent log backup, changes since
that last backup must be redone.
Otherwise, no work is lost.

Can recover to the end of
any backup. Then changes
must be redone.

Multi-Instance Considerations

SQL Server 2000 also introduces the ability to run multiple instances of SQL Server on a single computer. By default, each
instance of SQL Server dynamically acquires and frees memory to adjust for changes in the workload of the instance.
Performance tuning can be complicated when multiple instances of SQL Server 2000 are each automatically and

independently adjusting memory usage. This feature is not generally a consideration for most high-end business intelligence
customers who typically install only a single instance of SQL Server on each computer. However, as individual machines
become significantly larger (Windows 2000 Datacenter Server supports up to 64 gigabytes (GB) RAM and 32 CPUs), the desire
for multiple instances may come into play even in some production environments. Special considerations apply to instances
that utilize extended memory support.

Extended Memory Support

Generally speaking, because SQL Server 2000 dynamically acquires and frees memory as needed, it is not usually necessary
for an administrator to specify how much memory should be allocated to SQL Server. However, SQL Server 2000 Enterprise
Edition and SQL Server 2000 Developer Edition introduce support for using Microsoft Windows 2000 Address Windowing
Extensions (AWE). This enables SQL Server 2000 to address significantly more memory (approximate maximum of 8 GB for
Windows 2000 Advanced Server and 64 GB for Windows 2000 Datacenter Server). When extended memory is configured,
each instance accessing the extended memory must be configured to statically allocate the memory it will use.

Note: This feature is available only if you are running Windows 2000 Advanced Server or Windows 2000 Datacenter Server.

Windows 2000 Usage Considerations

To take advantage of AWE memory, you must run the SQL Server 2000 database engine under a Windows 2000 account that
has been assigned the Windows 2000 lock pages in memory privilege. SQL Server Setup will automatically grant the
MSSQLServer service account permission to use the Lock Page in Memory option. If you are starting an instance of SQL
Server 2000 from the command prompt using Sqlservr.exe, you must manually assign this permission to the interactive user's
account using the Windows 2000 Group Policy utility (Gpedit.msc), or SQL Server will be unable to use AWE memory when
not running as a service.

To enable the Lock Page in Memory option

On the Start menu, click Run, and then in the Open box, enter gpedit.msc.

In the Group Policy tree pane, expand Computer Configuration, and then expand Windows Settings.

Expand Security Settings, and then expand Local Policies.

Select the Users Rights Assignment folder.

The policies will be displayed in the details pane.

In the details pane, double-click Lock pages in memory.

In the Local Security Policy Setting dialog box, click Add.

In the Select Users or Groups dialog box, add an account with privileges to run Sqlservr.exe.

To enable Windows 2000 Advanced Server or Windows 2000 Datacenter Server to support more than 4 GB of physical
memory, you must add the /pae parameter to the Boot.ini file.

For computers with 16 GB or less you can use the /3gb parameter in the Boot.ini file. This enables Windows 2000 Advanced
Server and Windows 2000 Datacenter Server to allow user applications to address extended memory through the 3 GB of
virtual memory, and it reserves 1 GB of virtual memory for the operating system itself.

If more than 16 GB of physical memory is available on a computer, the Windows 2000 operating system needs 2 GB of virtual
memory address space for system purposes. Therefore, it can support only a 2 GB virtual address space for application usage.
For systems with more than 16 GB of physical memory, be sure to use the /2gb parameter in the Boot.ini file.

Note: If you accidentally use the /3gb parameter, Windows 2000 will be unable to address any memory above 16 GB.

SQL Server 2000 Usage Considerations

To enable the use of AWE memory by an instance of SQL Server 2000, use sp_configure to set the awe enabled option. Next,
restart SQL Server to activate AWE. Because AWE support is enabled during SQL Server startup and continues until SQL Server
is shut down, SQL Server will notify users when AWE is in use by sending an "Address Windowing Extension enabled" message
to the SQL Server error log.

When you enable AWE memory, instances of SQL Server 2000 do not dynamically manage the size of the address space.
Therefore, when you enable AWE memory and start an instance of SQL Server 2000, one of the following occurs, depending
on how you have set max server memory.

If max server memory has been set and there are at least 3 GB of free memory available on the computer, the instance
acquires the amount of memory specified in max server memory. If the amount of memory available on the computer

is less than max server memory (but more than 3 GB), then the instance acquires almost all of the available memory
and may leave only up to 128 MB of memory free.

If max server memory has not been set and there is at least 3 GB of free memory available on the computer, the
instance acquires almost all of the available memory and may leave only up to 128 MB of memory free.

If there is less than 3 GB of free memory available on the computer, memory is dynamically allocated and, regardless of
the parameter setting for awe enabled, SQL Server will run in nonAWE mode.

When allocating SQL Server AWE memory on a 32-GB system, Windows 2000 may require at least 1 GB of available memory
to manage AWE. Therefore, when starting an instance of SQL Server with AWE enabled, it is recommend you do not use the
default max server memory setting, but instead limit it to 31 GB or less.

Failover Clustering and Multi-Instance Considerations

If you are using SQL Server 2000 failover clustering or running multiple instances while using AWE memory, you must ensure
that the summed value of the max server memory settings for all running SQL Server instances is less than the amount of
physical RAM available. For failover, you have to take into consideration the lowest amount of physical RAM on any candidate
surviving node. If a failover node has less physical memory than the original node, the instances of SQL Server 2000 may fail
to start or may start with less memory than they had on the original node.

sp_configure Options

cost threshold for parallelism Option

Use the cost threshold for parallelism option to specify the threshold where SQL Server creates and executes parallel plans.
SQL Server creates and executes a parallel plan for a query only when the estimated cost to execute a serial plan for the same
query is higher than the value set in cost threshold for parallelism. The cost refers to an estimated elapsed time in seconds
required to execute the serial plan on a specific hardware configuration. Only set cost threshold for parallelism on
symmetric multiprocessors (SMP).

Longer queries usually benefit from parallel plans; the performance advantage negates the additional time required to
initialize, synchronize, and terminate the plan. The cost threshold for parallelism option is actively used when a mix of short
and longer queries is executed. The short queries execute serial plans while the longer queries use parallel plans. The value of
cost threshold for parallelism determines which queries are considered short, thus executing only serial plans.

In certain cases, a parallel plan may be chosen even though the query's cost plan is less than the current cost threshold for
parallelism value. This is because the decision to use a parallel or serial plan, with respect to cost threshold for parallelism,
is based on a cost estimate provided before the full optimization is complete.

The cost threshold for parallelism option can be set to any value from 0 through 32767. The default value is 5 (measured in
milliseconds). If your computer has only one processor, if only a single CPU is available to SQL Server because of the value of
the affinity mask configuration option, or if the max degree of parallelism option is set to 1, SQL Server ignores cost
threshold for parallelism.

max degree of parallelism Option

Use the max degree of parallelism option to limit the number of processors (a maximum of 32) to use in parallel plan
execution. The default value is 0, which uses the actual number of available CPUs. Set the max degree of parallelism option
to 1 to suppress parallel plan generation. Set the value to a number greater than 1 to restrict the maximum number of
processors used by a single query execution. If a value greater than the number of available CPUs is specified, the actual
number of available CPUs is used.

Note: If the affinity mask option is not set to the default, the number of CPUs available to SQL Server on symmetric
multiprocessor (SMP) systems may be restricted.

For servers running on an SMP computer, change max degree of parallelism rarely. If your computer has only one
processor, the max degree of parallelism value is ignored.

priority boost Option

Use the priority boost option to specify whether SQL Server should run at a higher scheduling priority than other processes
on the same computer. If you set this option to one, SQL Server runs at a priority base of 13 in the Windows scheduler. The
default is 0, which is a priority base of seven. The priority boost option should be used only on a computer dedicated to SQL
Server, and with an SMP configuration.

Caution: Boosting the priority too high may drain resources from essential operating system and network functions, resulting
in problems shutting down SQL Server or using other Windows tasks on the server.

In some circumstances, setting priority boost to anything other than the default can cause the following communication error

to be logged in the SQL Server error log:

Error: 17824, Severity: 10, State: 0 Unable to write to ListenOn
connection '<servername>', loginname '<login ID>', hostname '<hostname>'
OS Error: 64, The specified network name is no longer available.

Error 17824 indicates that SQL Server encountered connection problems while attempting to write to a client. These
communication problems may be caused by network problems, if the client has stopped responding, or if the client has been
restarted. However, error 17824 does not necessarily indicate a network problem and may simply be a result of having the
priority boost option set to on.

set working set size Option

Use the set working set size option to reserve physical memory space for SQL Server that is equal to the server memory
setting. The server memory setting is configured automatically by SQL Server based on workload and available resources. It
will vary dynamically between min server memory and max server memory. Setting set working set size means the
operating system will not attempt to swap out SQL Server pages even if they can be used more readily by another process
when SQL Server is idle.

Do not set set working set size if you are allowing SQL Server to use memory dynamically. Before setting set working set
size to 1, set both min server memory and max server memory to the same value, the amount of memory you want SQL
Server to use.

The options lightweight pooling and affinity mask are discussed in the section "Key Performance Counters to Watch" later
in this document.

Top Of Page

Optimizing Disk I/O Performance

When configuring a SQL Server that will contain only a few GB of data and not sustain heavy read or write activity, it is not as
important to be concerned with the subject of disk I/O and balancing of SQL Server I/O activity across hard drives for
maximum performance. But to build larger SQL Server databases that will contain hundreds of gigabytes or even terabytes of
data and/or that can sustain heavy read/write activity, it is necessary to drive configuration around maximizing SQL Server disk
I/O performance by load-balancing across multiple hard drives.

Optimizing Transfer Rates

One of the most important aspects of database performance tuning is I/O performance tuning. SQL Server is certainly no
exception. Unless SQL Server is running on a machine with enough RAM to hold the entire database, I/O performance will be
determined by how fast reads and writes of SQL Server data can be processed by the disk I/O subsystem.

Because transfer rates, I/O throughput, and other factors which may impact I/O performance are constantly improving, we will
not provide specific numbers on what kinds of speed you should expect to see from your storage system. To better understand
the capabilities you can expect, it is recommended that you work with your preferred hardware vendor to determine the
optimum performance to expect.

What we do want to emphasize is the difference between sequential I/O operations (also commonly referred to as "serial" or
"in disk order") in contrast to nonsequential I/O operations. We also want to draw attention to the dramatic effect read-ahead
processing can have on I/O operations.

Sequential and Nonsequential Disk I/O Operations

It is worthwhile to explain what these terms mean in relation to a disk drive. Generally, a single hard drive consists of a set of
drive platters. Each platter provides surfaces for read/write operations. A set of arms with read/write heads is used to move
across the platters and read/write data from/to the platter surfaces. With respect to SQL Server, these are the two important
points to remember about hard drives.

First, the read/write heads and associated disk arms need to move in order to locate and operate on the location of the hard
drive platter that SQL Server requests. If the data is distributed around the hard drive platter in nonsequential locations, it takes
significantly more time for the hard drive to move the disk arm (seek time) and to spin the read/write heads (rotational
latency) to locate the data. This contrasts with the sequential case, in which all of the required data is co-located on one
contiguous physical section of the hard drive platter, so the disk arm and read/write heads move a minimal amount to perform
the necessary disk I/O. The time difference between the nonsequential and the sequential case is significant: about 50
milliseconds for each nonsequential seek in contrast to approximately two to three milliseconds for sequential seeks. Note that
these times are rough estimations and will vary based upon how far apart the nonsequential data is spread around on the disk,
how fast the hard disk platters can spin (RPM), and other physical attributes of the hard drive. The main point is, sequential I/O

is good for performance and nonsequential I/O is detrimental to performance.

Second, it is important to remember that it takes almost as much time to read or write 8 kilobytes (KB) as it does to read or
write 64 KB. Within the range of 8 KB to about 64 KB it remains true that disk arm plus read/write head movement (seek time
and rotational latency) account for the majority of the time spent for a single disk I/O transfer operation. So, mathematically
speaking, it is beneficial to try to perform 64-KB disk transfers as often as possible when more than 64 KB of SQL Server data
needs to be transferred, because a 64-KB transfer is essentially as fast as an 8-KB transfer and eight times the amount of SQL
Server data is processed for each transfer. Remember that read-ahead manager does its disk operations in 64-KB chunks
(referred to as a SQL Server extent). The log manager performs sequential writes in larger I/O sizes, as well. The main point to
remember is that making good use of the read-ahead manager and separating SQL Server log files from other nonsequentially
accessed files benefit SQL Server performance.

As a rule of thumb, most hard drives can deliver performance that is as much as 2 times better when processing sequential I/O
operations as compared to processing nonsequential I/O operations. That is, operations that require nonsequential I/O take
twice as long to carry out as sequential I/O operations. What this tells us is that, if possible, you should avoid situations that
may lead to random I/O occurring within your database. While it should always be the goal to perform I/O operations
sequentially, situations like page splitting or out of sequence data do tend to cause nonsequential I/O to occur.

To encourage sequential I/O it is important to avoid situations that cause page splitting. It is also helpful to devise a well
thought out data loading strategy. You can encourage data to be laid out sequentially on disk by employing a partitioning
strategy that separates data and indexes. It is important that you set up jobs to periodically check for fragmentation in your
data and indexes, and that you use utilities provided with SQL Server to resequence the data when it becomes too fragmented.
More information about doing these operations appears later in this document.

Note: Logs generally are not a major concern because transaction log data is always written sequentially to the log file in sizes
ranging up to 32 KB.

RAID

RAID (redundant array of inexpensive disks) is a storage technology often used for databases larger than a few gigabytes. RAID
can provide both performance and fault tolerance benefits. A variety of RAID controllers and disk configurations offer tradeoffs
among cost, performance, and fault tolerance. This topic provides a basic introduction to using RAID technology with SQL
Server databases and discusses various configurations and tradeoffs.

Performance. Hardware RAID controllers divide read/writes of all data from Windows NT 4.0 and Windows 2000 and
applications (like SQL Server) into slices (usually 16–128 KB) that are then spread across all disks participating in the
RAID array. Splitting data across physical drives like this has the effect of distributing the read/write I/O workload evenly
across all physical hard drives participating in the RAID array. This increases disk I/O performance because the hard disks
participating in the RAID array, as a whole are kept equally busy, instead of some disks becoming a bottleneck due to
uneven distribution of the I/O requests.

Fault tolerance. RAID also provides protection from hard disk failure and accompanying data loss by using two
methods: mirroring and parity.

Mirroring is implemented by writing information onto a second (mirrored) set of drives. If there is a drive loss with mirroring
in place, the data for the lost drive can be rebuilt by replacing the failed drive and rebuilding the mirrorset. Most RAID
controllers provide the ability to do this failed drive replacement and remirroring while Windows and SQL Server are online.
Such RAID systems are commonly referred to as "Hot Plug" capable drives.

One advantage of mirroring is that it offers the best performance among RAID options if fault tolerance is required. Bear in
mind that each SQL Server write to the mirrorset results in two disk I/O operations, once to each side of the mirrorset. Another
advantage is that mirroring provides more fault tolerance than parity RAID implementations. Mirroring can enable the system
to survive at least one failed drive and may be able to support the system through failure of up to half of the drives in the
mirrorset without forcing the system administrator to shut down the server and recover from the file backup.

The disadvantage of mirroring is cost. The disk cost of mirroring is one extra drive for each drive worth of data. This essentially
doubles your storage cost, which, for a data warehouse, is often one of the most expensive components needed. Both RAID 1
and its hybrid, RAID 0+1 (sometimes referred to as RAID 10 or 0/1) are implemented through mirroring.

Parity is implemented by calculating recovery information about data written to disk and writing this parity information on the
other drives that form the RAID array. If a drive should fail, a new drive is inserted into the RAID array and the data on that
failed drive is recovered by taking the recovery information (parity) written on the other drives and using this information to
regenerate the data from the failed drive. RAID 5 and its hybrids are implemented through parity. The advantage of parity is
cost. To protect any number of drives with RAID 5, only one additional drive is required. Parity information is evenly distributed
among all drives participating in the RAID 5 array.

The disadvantages of parity are performance and fault tolerance. Due to the additional costs associated with calculating and
writing parity, RAID 5 requires four disk I/O operations for each write, compared to two disk I/O operations for mirroring. Read
I/O operation costs are the same for mirroring and parity. Read operations, however, are usually one failed drive before the
array must be taken offline and recovery from backup media must be performed to restore data.

General Rule of Thumb: Be sure to stripe across as many disks as necessary to achieve solid disk I/O performance. System
Monitor will indicate if there is a disk I/O bottleneck on a particular RAID array. Be ready to add disks and redistribute data
across RAID arrays and/or small computer system interface (SCSI) channels as necessary to balance disk I/O and maximize
performance.

Effect of On-Board Cache of Hardware RAID Controllers

Many hardware RAID controllers have some form of read and/or write caching. This available caching with SQL Server can
significantly enhance the effective I/O handling capacity of the disk subsystem. The principle of these controller-based caching
mechanisms is to gather smaller and potentially nonsequential I/O requests coming in from the host server (SQL Server) and
try to batch them together with other I/O requests for a few milliseconds so that the batched I/Os can form larger (32–128 KB)
and maybe sequential I/O requests to send to the hard drives. In keeping with the principle that sequential and larger I/O is
good for performance, this helps produce more disk I/O throughput given the fixed number of I/Os that hard disks are able to
provide to the RAID controller. It is not that the RAID controller caching magically allows the hard disks to process more I/Os
per second. Rather, the RAID controller cache is using some organization to arrange incoming I/O requests to make best
possible use of the underlying hard disks' fixed amount of I/O processing ability.

These RAID controllers usually protect their caching mechanism with some form of backup power. This backup power can help
preserve the data written in cache for some period of time (perhaps days) in case of a power outage. If the database server is
also supported by an uninterruptible power supply (UPS), the RAID controller has more time and opportunity to flush data to
disk in the event of power disruption. Although a UPS for the server does not directly affect performance, it does provide
protection for the performance improvement supplied by RAID controller caching.

RAID Levels

As mentioned above, RAID 1 and RAID 0+1 offer the best data protection and best performance among RAID levels, but cost
more in terms of disks required. When cost of hard disks is not a limiting factor, RAID 1 or RAID 0+1 are the best choices in
terms of both performance and fault tolerance.

RAID 5 costs less than RAID 1 or RAID 0+1 but provides less fault tolerance and less write performance. The write performance
of RAID 5 is only about half that of RAID 1 or RAID 0+1 because of the additional I/O needed to read and write parity
information.

The best disk I/O performance is achieved with RAID 0 (disk striping with no fault tolerance protection). Because RAID 0
provides no fault tolerance protection, it should never be used in a production environment, and it is not recommended for
development environments. RAID 0 is typically used only for benchmarking or testing.

Many RAID array controllers provide the option of RAID 0+1 (also referred to as RAID 1/0 and RAID 10) over physical hard
drives. RAID 0+1 is a hybrid RAID solution. On the lower level, it mirrors all data just like normal RAID 1. On the upper level,
the controller stripes data across all of the drives (like RAID 0). Thus, RAID 0+1 provides maximum protection (mirroring) with
high performance (striping). These striping and mirroring operations are transparent to Windows and SQL Server because
they are managed by the RAID controller. The difference between RAID 1 and RAID 0+1 is on the hardware controller level.
RAID 1 and RAID 0+1 require the same number of drives for a given amount of storage. For more information on RAID 0+1
implementation of specific RAID controllers, contact the hardware vendor that produced the controller.

The illustration below shows differences between RAID 0, RAID 1, RAID 5, and RAID 0+1.

Note: In the illustration above, in order to hold four disks worth of data, RAID 1 (and RAID 0+1) need eight disks, whereas Raid
5 only requires five disks. Be sure to involve your storage vendor to learn more about their specific RAID implementation.

Level 0

This level is also known as disk striping because of its use of a disk file system called a stripe set. Data is divided into blocks
and spread in a fixed order among all disks in an array. RAID 0 improves read/write performance by spreading operations
across multiple disks, so that operations can be performed independently and simultaneously. RAID 0 is similar to RAID 5,
except RAID 5 also provides fault tolerance. The following illustration shows RAID 0.

Level 1

This level is also known as disk mirroring because it uses a disk file system called a mirror set. Disk mirroring provides a
redundant, identical copy of a selected disk. All data written to the primary disk is written to the mirror disk. RAID 1 provides
fault tolerance and generally improves read performance (but may degrade write performance). The following illustration
shows RAID 1.

Level 2

This level adds redundancy by using an error correction method that spreads parity across all disks. It also employs a disk-
striping strategy that breaks a file into bytes and spreads it across multiple disks. This strategy offers only a marginal
improvement in disk utilization and read/write performance over mirroring (RAID 1). RAID 2 is not as efficient as other RAID
levels and is not generally used.

Level 3

This level uses the same striping method as RAID 2, but the error correction method requires only one disk for parity data. Use
of disk space varies with the number of data disks. RAID 3 provides some read/write performance improvement. RAID 3 also is
rarely used.

Level 4

This level employs striped data in much larger blocks or segments than RAID 2 or RAID 3. Like RAID 3, the error correction
method requires only one disk for parity data. It keeps user data separate from error-correction data. RAID 4 is not as efficient
as other RAID levels and is not generally used.

Level 5

Also known as striping with parity, this level is the most popular strategy for new designs. It is similar to RAID 4 because it
stripes the data in large blocks across the disks in an array. It differs in how it writes the parity across all the disks. Data
redundancy is provided by the parity information. The data and parity information are arranged on the disk array so the two
are always on different disks. Striping with parity offers better performance than disk mirroring (RAID 1). However, when a
stripe member is missing, read performance degrades (for example, when a disk fails). RAID 5 is one of the most commonly
used RAID configurations. The following illustration shows RAID 5.

Level 0+1

This level is also known as "mirrored stripes." This level uses a striped array of disks, which are then mirrored to another
identical set of striped disks. For example, a striped array can be created using four disks. The striped array of disks is then
mirrored using another set of four striped disks. RAID 0+1 provides the performance benefits of disk striping with the disk
redundancy of mirroring. RAID 0+1 provides the highest read/write performance of any of the RAID levels at the expense of
using twice as many disks. The following illustration shows RAID 0+1.

Level 1+0

Similar results can be achieved using a slightly modified RAID approach known as "striped mirrors". Whereas RAID 0+1,
described above, is essentially a mirror of striped sets, RAID 1+0 is a stripe that spans a mirrored set. Both RAID approaches
offer the performance improvements of RAID 0 with redundancy characteristics of RAID 1 without requiring parity calculations.
In deciding which approach is correct, bear in mind that RAID 1+0 often holds an edge in terms of fault tolerance and rebuild
performance.

Online RAID Expansion

This feature allows disks to be added dynamically to a physical RAID array while SQL Server remains online. Additional disk
drives are automatically integrated into the RAID storage. Disk drives are added by installing them into physical positions
called hot plug drive slots, or hot plug slots. Many hardware vendors offer hardware RAID controllers that are capable of
providing this functionality. Data is automatically re-striped across all drives evenly, including the newly added drive, and there
is no need to shut down SQL Server or Windows. You can take advantage of this functionality by leaving hot plug slots free in
the disk array cages. If SQL Server is regularly overtaxing a RAID array with I/O requests (this will be indicated by Disk Queue
Length for the Windows logical drive letter associated with that RAID array), it is possible to install one or more new hard
drives into the hot plug slots while SQL Server is still running. The RAID controller will move some existing SQL Server data to
these new drives so data is evenly distributed across all drives in the RAID array. Then the I/O processing capacity of the new
drives (75 nonsequential/150 sequential I/Os per second, for each drive) is added to the overall I/O processing capacity of the
RAID array.

System Monitor and RAID

In System Monitor (Performance Monitor in Microsoft Windows NT® 4.0), information can be obtained for both logical and
physical disk drives. The difference is that logical disks in System Monitor are associated with what Windows reads as a logical
drive letter. Physical disks in System Monitor are associated with what Windows reads as a single physical hard disk.

In Windows NT 4.0, all disk counters for Performance Monitor were turned off by default because they could have a minor
impact on performance. In Windows 2000 the physical disk counters are turned on by default and the logical disk counters are
turned off by default. Diskperf.exe is the Windows command that controls the types of counters that can be viewed in System
Monitor.

In Windows 2000, to obtain performance counter data for logical drives or storage volumes, you must type diskperf -yv at the
command prompt, and then press ENTER. This causes the disk performance statistics driver used for collecting disk
performance data to report data for logical drives or storage volumes. By default, the operating system uses the diskperf -yd
command to obtain physical drive data.

The syntax for Diskperf.exe in Windows 2000 is as follows:

diskperf [-y[d|v] | -n[d|v]] [\\computername]

Parameters

(none)

Reports whether disk performance counters are enabled and identifies the counters enabled.

-y

Sets the system to start all disk performance counters when you restart the computer.

-yd

Enables the disk performance counters for physical drives when you restart the computer.

-yv

Enables the disk performance counters for logical drives or storage volumes when you restart the computer.

-n

Sets the system to disable all disk performance counters when you restart the computer.

-nd

Disables the disk performance counters for physical drives.

-nv

Disables the disk performance counters for logical drives.

\\computername

Specifies the computer you want to see or set disk performance counters to use.

With Windows NT 4.0 and earlier, diskperf –y was used for monitoring hard drives, or sets of hard drives and RAID controllers,
that were not using Windows NT software RAID. When utilizing Windows software RAID, use diskperf –ye so that System
Monitor will report physical counters across the Windows NT stripesets correctly. When diskperf –ye is used in conjunction
with Windows NT stripesets, logical counters will not report correct information and should be disregarded. If logical disk
counter information is required in conjunction with Windows NT stripesets, use diskperf –y instead. With diskperf –y, logical
disk counters will be reported correctly for Windows NT stripesets, but physical disk counters will not report correct
information and should be disregarded.

Note: The effects of the diskperf command do not take effect until Windows has been restarted (both for Windows 2000 and
earlier versions of Windows NT).

Considerations for Monitoring Hardware RAID

Because RAID controllers present multiple physical hard drives as a single RAID mirrorset or stripeset to Windows, Windows
reads the grouping as though it were a single physical disk. The resulting abstracted view of the actual underlying hard drive
activity can cause performance counters to report information that can be misleading.

From a performance tuning perspective, it is very important to be aware of how many physical hard drives are associated with
a RAID array. This information will be needed when determining the number of disk I/O requests that Windows and SQL
Server are sending to each physical hard drive. Divide the number of disk I/O requests that System Monitor reports as being
associated with a hard drive by the number of actual physical hard drives known to be in that RAID array.

To get a rough estimate of I/O activity for each hard drive in a RAID array, it is also important to multiply the number of disk
write I/Os reported by System Monitor by either two (RAID 1 and 0+1) or four (RAID 5). This will give a more accurate account
of the number of actual I/O requests being sent to the physical hard drives, because it is at this physical level that the I/O
capacity numbers for hard drives apply. This method, however, will not calculate the hard drive I/O exactly, when the hardware
RAID controller is using caching, because caching can significantly affect the direct I/O to the hard drives.

When monitoring disk activity, it is best to concentrate on disk queuing instead of on the actual I/O for each disk. Disk I/O
speeds depend on the transfer rate capability of the drives, which cannot be adjusted. Because there is little you can do other
than buy faster, or more, drives, there is little reason to be concerned with the amount of I/O that is actually occurring.
However, you do want to avoid too much disk queuing. Significant disk queuing reveals that you have an I/O problem. Because
Windows cannot read the number of physical drives in a RAID array, it is difficult to accurately assess disk queuing for each
physical disk. A rough approximation can be determined by dividing the Disk Queue Length by the number of physical drives
participating in the hardware RAID disk array for the logical drive being observed. It is optimal to attempt to keep the disk
queue number below two for hard drives containing SQL Server files.

Software RAID

Windows 2000 supports software RAID to address fault tolerance by providing mirrorsets and stripesets (with or without fault
tolerance) through the operating system when a hardware RAID controller is not used. You can set up RAID 0, RAID 1, or RAID
5 functionality using operating system procedures. Most large data warehouses use hardware RAID, but in the event that your
installation is relatively small or you choose not to implement hardware RAID, software RAID can provide some data access
and fault tolerance advantages.

Software RAID does utilize some CPU resources, because Windows has to manage the RAID operations that the hardware
RAID controller would typically manage for you. Thus, performance with the same number of disk drives and Windows
software RAID may be a few percent less than with hardware RAID, especially if the system processors are nearly 100 percent
utilized for other purposes. By reducing the potential for I/O bottlenecks, Windows software RAID will generally help a set of
drives service SQL Server I/O better than if the drives are used without software RAID. Software RAID should allow for better
CPU utilization by SQL Server because the server will wait less often for I/O requests to complete.

Disk I/O Parallelism

An effective technique for improving the performance of large SQL Server databases that are stored on multiple disk drives is
to create disk I/O parallelism, which is the simultaneous reading from and writing to multiple disk drives. RAID implements
disk I/O parallelism through hardware and software. The next topic discusses using partitioning to organize SQL Server data to
further increase disk I/O parallelism.

Top Of Page

Partitioning for Performance

For SQL Server databases that are stored on multiple disk drives, performance can be improved by partitioning the data to
increase the amount of disk I/O parallelism.

Partitioning can be done using a variety of techniques. Methods for creating and managing partitions include configuring your
storage subsystem (disk, RAID partitioning) and applying various data configuration mechanisms in SQL Server such as files,
filegroups, tables and views. While this section focuses on some of the partitioning capabilities as they relate to performance,
the white paper titled "Using Partitions in a SQL Server 2000 Data Warehouse" specifically addresses the subject of
partitioning.

The simplest technique for creating disk I/O parallelism is to use hardware partitioning and create a single "pool of drives" that
serves all SQL Server database files except transaction log files, which should always be stored on physically separate disk
drives dedicated to log files only. The pool may be a single RAID array that is represented in Windows as a single physical
drive. Larger pools may be set up using multiple RAID arrays and SQL Server files/filegroups. A SQL Server file can be
associated with each RAID array and the files can be combined into a SQL Server filegroup. Then a database can be built on the
filegroup so the data will be spread evenly across all of the drives and RAID controllers. The "drive pool" method depends on
RAID to divide data across all physical drives to help ensure parallel access to that data during database server operations.

This drive pool method simplifies SQL Server I/O performance tuning because database administrators know there is only one
physical location in which to create database objects. The single pool of drives can be watched for disk queuing and, if
necessary, more hard drives can be added to the pool to prevent disk queuing. This method helps optimize for the common
case, in which it is unknown what parts of databases may get the most usage. It is better not to have a portion of the total
available I/O capacity segregated on another disk partition just because five percent of the time SQL Server might be doing I/O
to it. The "single pool of drives" method helps make all available I/O capacity "always" available for SQL Server operations. It
also allows I/O operations to be spread across the maximum number of disks available.

SQL Server log files should always be physically separated onto different hard drives from all other SQL Server database files.
For SQL Servers managing multiple busy databases that are very busy, the transaction log files for each database should be
physically separated from each other to reduce contention.

Because transaction logging is primarily a sequential write I/O, the separation of log files tends to yield a tremendous I/O
performance benefit. The disk drives containing the log files can very efficiently perform these sequential write operations if
they are not interrupted by other I/O requests. At times, the transaction log will need to be read as part of SQL Server
operations, such as replication, rollbacks, and deferred updates. Some implementations use replication as a front end to their
data transformation utility as a means of loading new data into the data warehouse in near real time. Administrators of SQL
Servers that participate in replication need to make sure that all disks used for transaction log files have sufficient I/O
processing power to accommodate the reads that need to occur in addition to the normal log transaction writes.

Additional administration is required to physically segment files and filegroups. The additional effort may prove worthwhile
when segmenting for the purposes of isolating and improving access to very active tables or indexes. Some of the benefits are
listed below:

More accurate assessments can be made of the I/O requirements for specific objects, which is not as easy to do when all
database objects are placed within one big drive pool.

Partitioning data and indexes using files and file groups can enhance the administrator's ability to create a more granular
backup and restore strategy.

File and filegroups may be used to maintain the sequential placement of data on disk, thus reducing or eliminating
nonsequential I/O activity. This can be extremely important if your available window of time for loading data into the
warehouse requires processing be performed in parallel to meet the deadline.

Physically segmenting files and filegroups may be appropriate during database development and benchmarking so
database I/O information can be gathered and applied to capacity planning for the production database server
environment.

Objects For Partitioning Consideration

The following areas of SQL Server activity can be separated across different hard drives, RAID controllers, and PCI channels (or
combinations of the three):

Transaction log

tempdb

Database

Tables

Nonclustered indexes

Note: In SQL Server 2000, Microsoft introduced enhancements to distributed partitioned views that enable the creation
of federated databases (commonly referred to as scale-out), which spread resource load and I/O activity across multiple
servers. Federated databases are appropriate for some high-end online analytical processing (OLTP) applications, but this
approach is not recommended for addressing the needs of a data warehouse.

The physical segregation of SQL Server I/O activity is quite easy to achieve using hardware RAID controllers, RAID hot plug
drives, and online RAID expansion. The approach that provides the most flexibility is arranging RAID controllers so that
separate RAID channels are associated with the different areas of activity mentioned above. Also, each RAID channel should be
attached to a separate RAID hot plug cabinet to take full advantage of online RAID expansion (if available through the RAID
controller). Windows logical drive letters are then associated to each RAID array and SQL Server files may be separated
between distinct RAID arrays based on known I/O usage patterns.

With this configuration it is possible to relate disk queuing associated with each activity back to a distinct RAID channel and its
drive cabinet. If a RAID controller and its drive array cabinet both support online RAID expansion and slots for hot plug hard
drives are available in the cabinet, disk queuing issues on that RAID array can be resolved by simply adding more drives to the
RAID array until System Monitor reports that disk queuing for that RAID array has reached an acceptable level (ideally less
than two for SQL Server files). This can be done while SQL Server is online.

Segregating the Transaction Log

Transaction log files should be maintained on a storage device physically separate from devices that contain data files.
Depending on your database recovery model setting, most update activity generates both data device activity and log activity.
If both are set up to share the same device, the operations to be performed will compete for the same limited resources. Most
installations benefit from separating these competing I/O activities.

Segregating tempdb

SQL Server creates a database, tempdb, on every server instance to be used by the server as a shared working area for
various activities, including temporary tables, sorting, processing subqueries, building aggregates to support GROUP BY or
ORDER BY clauses, queries using DISTINCT (temporary worktables have to be created to remove duplicate rows), cursors, and
hash joins. By segmenting tempdb onto its own RAID channel, we enable tempdb I/O operations to occur in parallel with the
I/O operations of their related transactions. Because tempdb is essentially a scratch area and very update intensive, RAID 5 is
not as good a choice for tempdb – RAID 1 or 0+1 offer better performance. Raid 0, even though it does not provide fault
tolerance, can be considered for tempdb because tempdb is rebuilt every time the database server is restarted. RAID 0
provides the best RAID performance for tempdb with the least number of physical drives, but the main concern about using
RAID 0 for tempdb in a production environment is that SQL Server availability might be compromised if any physical drive
failure were to occur, including the drive used for tempdb. This can be avoided if tempdb is placed on a RAID configuration
that provides fault tolerance.

To move the tempdb database, use the ALTER DATABASE command to change the physical file location of the SQL Server
logical file name associated with tempdb. For example, to move tempdb and its associated log to the new file locations
E:\mssql7 and C:\temp, use the following commands:

alter database tempdb modify file
 (name='tempdev',filename= 'e:\mssql7\tempnew_location.mDF')
alter database tempdb modify file
 (name='templog',filename= 'c:\temp\tempnew_loglocation.mDF')

The master database, msdb, and model databases are not used much during production compared to user databases, so it is
typically not necessary to consider them in I/O performance tuning considerations. The master database is usually used only
for adding new logins, databases, devices, and other system objects.

Database Partitioning

Databases can be partitioned using files and/or filegroups. A filegroup is simply a named collection of individual files grouped
together for administration purposes. A file cannot be a member of more than one filegroup. Tables, indexes, text, ntext, and
image data can all be associated with a specific filegroup. This means that all their pages are allocated from the files in that
filegroup. The three types of filegroups are described below.

Primary filegroup

This filegroup contains the primary data file and any other files not placed into another filegroup. All pages for the system
tables are allocated from the primary filegroup.

User-defined filegroup

This filegroup is any filegroup specified using the FILEGROUP keyword in a CREATE DATABASE or ALTER DATABASE statement,
or on the Properties dialog box within SQL Server Enterprise Manager.

Default filegroup

The default filegroup contains the pages for all tables and indexes that do not have a filegroup specified when they are created.
In each database, only one filegroup at a time can be the default filegroup. If no default filegroup is specified, the default is the
primary filegroup.

Files and filegroups are useful for controlling the placement of data and indexes and to eliminate device contention. Quite a
few installations also leverage files and filegroups as a mechanism that is more granular than a database in order to exercise
more control over their database backup/recovery strategy.

Horizontal Partitioning (Table)

Horizontal partitioning segments a table into multiple tables, each containing the same number of columns but fewer rows.
Determining how to partition the tables horizontally depends on how data is analyzed. A general rule of thumb is to partition
tables so queries reference as few tables as possible. Otherwise, excessive UNION queries, used to merge the tables logically at
query time, can impair performance.

For example, assume business requirements dictate that we store a rolling ten years worth of transactional data in the central
fact table of our data warehouse. Ten years of transactional data for our company represents more than one billion rows. A
billion of anything is a challenge to manage. Now consider that every year we have to drop the tenth year of data and load the
latest year.

A common approach administrators take is to create ten separate, but identically structured tables, each holding one year's
worth of data. Then the administrator defines a single union view over top of the ten tables to provide end users with the
appearance that all of the data is being housed in a single table. In fact, it is not. Any query posed against the view is optimized
to search only the specified years (and corresponding tables). However, the administrator does gain manageability. The
administrator can now granularly manage each year of data independently. Each year of data can be loaded, indexed, or
maintained on its own. To add a new year is as simple as dropping the view, dropping the table with the tenth year of data,
loading and indexing the new year of data, and then redefining the new view to include the new year of data.

When you partition data across multiple tables or multiple servers, queries accessing only a fraction of the data can run faster
because there is less data to scan. If the tables are located on different servers, or on a computer with multiple processors, each
table involved in the query can also be scanned in parallel, thereby improving query performance. Additionally, maintenance
tasks, such as rebuilding indexes or backing up a table, can execute more quickly.

By using a partitioned view, the data still appears as a single table and can be queried as such without having to reference the
correct underlying table manually. Partitioned views are updatable if either of the following conditions is met. For details about
partitioned views and their restrictions, see SQL Server Books Online.

An INSTEAD OF trigger is defined on the view with logic to support INSERT, UPDATE, and DELETE statements.

The view and the INSERT, UPDATE, and DELETE statements follow the rules defined for updatable partitioned views.

Segregating Nonclustered Indexes

Indexes reside in B-tree structures, which can be separated from their related database tables (except for clustered indexes) by
using the ALTER DATABASE command to set up a distinct filegroup. In the example below, the first ALTER DATABASE creates a
filegroup. The second ALTER DATABASE adds a file to the newly created filegroup.

alter database testdb add filegroup testgroup1
alter database testdb add file (name = 'testfile',
 filename = 'e:\mssql7\test1.ndf') to filegroup testgroup1

After a filegroup and its associated files have been created, the filegroup can be used to store indexes by specifying the
filegroup when the indexes are created.

create table test1(col1 char(8))
create index index1 on test1(col1) on testgroup1

SP_HELPFILE reports information back about files and filegroups in a given database. SP_HELP <tablename> has a section in
its output, which provides information on a table's indexes and their filegroup relationships.

sp_helpfile
sp_help test1

Parallel Data Retrieval

SQL Server can perform parallel scans of data when running on a computer that has multiple processors. Multiple parallel
scans can be executed for a single table if the table is in a filegroup that contains multiple files. Whenever a table is accessed
sequentially, a separate thread is created to read each file in parallel. For example, a full scan of a table created on a filegroup
that consists of four files will use four separate threads to read the data in parallel. Therefore, creating more files for each
filegroup can help increase performance because a separate thread is used to scan each file in parallel. Similarly, when a query
joins tables on different filegroups, each table can be read in parallel, thereby improving query performance.

Additionally, any text, ntext, or image columns within a table can be created on a filegroup other than the one that contains
the base table.

Eventually, a saturation point is reached when there are too many files and therefore too many parallel threads causing
bottlenecks in the disk I/O subsystem. These bottlenecks can be identified by using Windows System Monitor (Performance
Monitor in Windows NT 4.0) to monitor the PhysicalDisk object and Disk Queue Length counter. If the Disk Queue Length
counter is greater than three, consider reducing the number of files.

It is advantageous to get as much data spread across as many physical drives as possible in order to improve throughput
through parallel data access using multiple files. To spread data evenly across all disks, first set up hardware-based disk
striping, and then use filegroups to spread data across multiple hardware stripe sets if needed.

Parallel Query Recommendations

SQL Server can automatically execute queries in parallel. This optimizes the query execution in multiprocessor computers.
Rather than using one OS thread to execute one query, work is broken down into multiple threads (subject to the availability of
threads and memory), and complex queries are completed faster and more efficiently.

The optimizer in SQL Server generates the plan for the query and determines when a query will be executed in parallel. The
determination is made based on the following criteria:

Does the computer have multiple processors?

Is there enough memory available to execute the query in parallel?

What is the CPU load on the server?

What type of query is being run?

When allowing SQL Server to run parallel operations like DBCC and index creation in parallel, the server resources become
stressed, and you might see warning messages when heavy parallel operations are occurring. If warning messages about
insufficient resources appear frequently in the server error log, consider using System Monitor (Performance Monitor in
Windows NT 4.0) to investigate what resources are available, such as memory, CPU usage, and I/O usage.

Do not run heavy queries that are executed in parallel when there are active users on the server. Try executing maintenance
jobs such as DBCC and INDEX creation during offload times. These jobs can be executed in parallel. Monitor the disk I/O

performance. Observe the disk queue length in System Monitor (Performance Monitor in Windows NT 4.0) to make decisions
about upgrading your hard disks or redistributing your databases onto different disks. Upgrade or add more processors if the
CPU usage is very high.

The following server configuration options can affect parallel execution of the queries:

cost threshold for parallelism

max degree of parallelism

max worker threads

query governor cost limit

Optimizing Data Loads

There are multiple tips and techniques to keep in mind for accelerating your data loading activities. The techniques will likely
vary based on whether you are doing initial data loads or incremental data loads. Incremental loads in general are more
involved and restrictive. The techniques you choose might also be based on factors outside your control. Processing window
requirements, your chosen storage configuration, limitations of your server hardware, and so on, can all impact the options
available to you.

There are a number of common things to keep in mind when performing both initial data loads and incremental data loads.
The following subjects will be discussed in detail below:

Choosing an appropriate database recovery model

Using bcp, BULK INSERT, or the bulk copy API

Controlling the Locking behavior

Loading data in parallel

Miscellaneous, including:

Bypassing referential integrity checks (constraints & triggers)

Loading presorted data

Effects of removing indexes

Choosing an Appropriate Database Recovery Model

We discussed database recovery models in the section "Configuration Options That Impact Performance." It is important to
remember that the recovery model you choose can have a significant impact on the amount of time needed to perform your
data load. Basically, these recovery models control the amount of data that will be written out to the transaction log. This is
important because performing write operations to the transaction log essentially doubles the workload.

Logged and Minimally Logged Bulk Copy Operations

When using the full recovery model, all row-insert operations performed by one of the bulk data load mechanisms (discussed
below) are logged in the transaction log. For large data loads, this can cause the transaction log to fill rapidly. To help prevent
the transaction log from running out of space you can perform minimally logged bulk copy operation. Whether a bulk copy is
performed as logged or nonlogged is not specified as part of the bulk copy operation; it is dependent on the state of the
database and the table involved in the bulk copy. A nonlogged bulk copy occurs if all the following conditions are met:

The recovery model is Simple or Bulk-Logged or the database option select into/bulkcopy is set to true.

The target table is not being replicated.

The target table has no indexes, or if the table has indexes, it is empty when the bulk copy starts.

The TABLOCK hint is specified using bcp_control with eOption set to BCPHINTS.

Any bulk copy into an instance of SQL Server that does not meet these conditions is fully logged.

On initial data loads you should always operate under the Bulk-Logged or Simple recovery model. For incremental data loads,
consider using bulk-logged as long as the potential for data loss is low. Because many data warehouses are primarily read-
only or have a minimal amount of transaction activity, setting the database recovery model to bulk-logged may pose no
problem.

Using bcp, BULK INSERT, or the Bulk Copy APIs

Two mechanisms exist inside SQL Server to address the needs of bulk movement of data. The first mechanism is the bcp
utility. The second is the BULK INSERT statement. bcp is a command prompt utility that copies data both into or out of SQL
Server. With SQL Server 2000, the bcp utility was rewritten using the ODBC bulk copy application programming interface
(API). Earlier versions of the bcp utility were written using the DB-Library bulk copy API.

BULK INSERT is a Transact-SQL statement included with SQL Server that can be executed from within the database
environment. Unlike bcp, BULK INSERT can only pull data into SQL Server. It cannot push data out. An advantage to using
BULK INSERT is that it can copy data into an instance of SQL Server using a Transact-SQL statement, rather than having to shell
out to the command prompt.

A third option, which often appeals to programmers, is the bulk copy APIs. These APIs enable programmers to move data into
or out of SQL Server using ODBC, OLE DB, SQL-DMO, or even DB-Library-based applications.

All of these options enable you to exercise control over the batch size. Unless you are working with small volumes of data, it is
good to get in the habit of specifying a batch size for recoverability reasons. If none is specified, SQL Server commits all rows
to be loaded as a single batch. For example, you attempt to load 1,000,000 rows of new data into a table. The server suddenly
loses power just as it finishes processing row number 999,999. When the server recovers, those 999,999 rows will need to be
rolled back out of the database before you attempt to reload the data. By specifying a batch size of 10,000 you could have
saved yourself significant recovery time because you would have only had to rollback 9,999 rows instead of 999,999. This is
because you would have already committed rows 1-990,000 to the database. Also, without a specified batch size, you would
have to restart the load processing back at row 1 in order to reload the data. With the specified batch size of 10,000 rows, you
could simply restart the load processing at row 990,001, effectively bypassing the 990,000 rows already committed.

Controlling the Locking Behavior

The bcp utility and BULK INSERT statement accept the TABLOCK hint, which allows the user to specify the locking behavior to
be used. TABLOCK specifies that a bulk update table-level lock will be taken for the duration of the bulk copy operation. Using
TABLOCK can improve performance of the bulk copy operation due to reduced lock contention on the table. This setting has
significant implications when parallel loads are being processed against a single table (discussed in next section).

For example, to bulk copy data from the Authors.txt data file to the authors2 table in the pubs database, specifying a table-
level lock, execute from the command prompt:

bcp pubs..authors2 in authors.txt -c -t, -Sservername -Usa -Ppassword
 -h "TABLOCK"

Alternatively, you could use the BULK INSERT statement from a query tool, such as SQL Query Analyzer, to bulk copy data, as
in this example:

BULK INSERT pubs..authors2 FROM 'c:\authors.txt'
WITH (
 DATAFILETYPE = 'char',
 FIELDTERMINATOR = ',',
 TABLOCK
)

If TABLOCK is not specified, the default locking uses row-level locks, unless the table lock on bulk load option is set to on
for the table. Using the table lock on bulk load option with the sp_tableoption command is an alternative way to set the
locking behavior for a table during a bulk load operation.

Table lock on bulk load Table locking behavior

Off Row-level locks used

On Table-level lock used

Note: If the TABLOCK hint is specified, it overrides the setting declared using the sp_tableoption for the duration of the bulk
load.

Loading Data in Parallel

Parallel Load - Nonpartitioned Table

It is possible to perform parallel data loads into a single, nonpartitioned table using any of the bulk data load mechanisms in
SQL Server. This is done by using running multiple data loads simultaneously. The data to be loaded in parallel needs to be

split into separate files (data sources for the bulk insert API) prior to beginning the load. Then all the separate load operations
can be initiated at the same time so that the data loads in parallel.

For example, assume you need to load a consolidation database for a service company that operates in four global regions,
each reporting report hours billed to clients on a monthly basis. For a large service organization, this could represent a large
amount of transactional data that needs to be consolidated. If each of the four reporting regions provided a separate file, it
would be possible using the methodology described earlier to load all four files simultaneously into a single table.

Note: The number of parallel threads (loads) you process in parallel should not exceed the number of processors available to
SQL Server.

The following illustration shows parallel loading on a nonpartitioned table.

Parallel Load - Horizontal Partitioning (Table)

This section focuses on how horizontal partitioned tables can be used to improve the speed of your data loads. In a previous
section, we discussed loading data from multiple files into a single (nonpartitioned) table. Horizontal partitioning of the table
offers an opportunity to possibly improve the contiguousness of your data as well as speeding up the load process by reducing
device contention. Though the above figure shows the data being loaded into different sections of the table, this may not be an
accurate depiction. If all three threads in the above load were being processed simultaneously, the extents taken for the table
would likely end up intermingled. The intermingling of the data could result in less than optimal performance when the data is
retrieved. This is because the data was not stored in physically contiguous order, which could cause the system to access it
using nonsequential I/O.

Building a clustered index over this table would solve the problem, because the data would be read in, sorted into the key
order, and written back out in contiguous order. However, the reading, sorting, deletion of the old data, and writing back out of
the newly sorted data can be a time consuming task (see loading presorted data below). To avoid this intermingling, consider
using filegroups to reserve chunks of contiguous space where you can store large tables. Many installations also use filegroups
to segregate index data away from table data.

To illustrate, assume a data warehouse that is allocated onto one large physical partition. Any load operations performed in
parallel to that database are likely to cause the affected data/index pages to be stored in a noncontiguous (intermingled) state.
What sort of operations? Any operation that modifies the data will cause the data to become noncontiguous. Initial data loads,
incremental data loads, index creation, index maintenance, inserts, updates, deletes, and so on are all activities that one might
be tempted to perform in parallel in order to meet processing window requirements.

The following illustration shows partitioning a table across multiple filegroups.

Loading Pre-Sorted Data

Earlier versions of SQL Server included an option that allowed you to specify a SORTED_DATA option when creating an index.
This has been eliminated in SQL Server 2000. The reason for specifying this option as part of your CREATE INDEX statement in
earlier versions is that it enabled you to avoid a sort step in the index creation process. By default in SQL Server, when creating
a clustered index, the data in the table is sorted during the processing. To get the same effect with SQL Server 2000, consider
creating the clustered index before bulk loading the data. Bulk operations in SQL Server 2000 use enhanced index maintenance
strategies to improve the performance of data importation on tables having a preexisting clustered index, and to eliminate the
need for resorting data after the import.

Impact of FILLFACTOR and PAD_INDEX on Data Loads

FILLFACTOR and PAD_INDEX are explained more fully under the section titled "Indexes and Index Maintenance." The key thing
to remember about both FILLFACTOR and PAD_INDEX is that leaving them set to default, when creating an index, may cause
SQL Server to perform more writes and read I/O operations than are needed to store the data. This is especially true of data
warehouses having very little write activity going on in them, but high amounts of read activity. To get SQL Server to pack
more data into a single page of the data or index pages, you can specify a particular FILLFACTOR when creating the index. It is
a good idea to specify the PAD_INDEX when providing an overriding FILLFACTOR value.

General Guidelines for Initial Data Loads

While Loading Data

Remove indexes (one exception might be in loading pre-sorted data – see above)

Use BULK INSERT, bcp or bulk copy API

Parallel load using partitioned data files into partitioned tables

Run one load stream for each available CPU

Set Bulk-Logged or Simple Recovery model

Use the TABLOCK option

After Loading Data

Create indexes

Switch to the appropriate recovery model

Perform backups

General Guidelines for Incremental Data Loads

Load data with indexes in place.

Performance and concurrency requirements should determine locking granularity (sp_indexoption).

Change from Full to Bulk-Logged Recovery model unless there is an overriding need to preserve point-in-time recovery,
such as online users modifying the database during bulk loads. Read operations should not affect bulk loads.

Indexes and Index Maintenance

I/O characteristics of the hardware devices on the server have been discussed. Now the discussion will move to how SQL
Server data and index structures are physically placed on disk drives. Index placement is likely to be the single biggest
influence you can have over your data warehouse to improve performance once your design is set.

Types of Indexes in SQL Server

Although SQL Server 2000 introduced several new types of indexes, all of them are based on two core forms. The two core
forms are a clustered index or a nonclustered index format. The two primary types of indexes available to database designers
in SQL Server are:

Clustered indexes.

Nonclustered indexes.

Additional variations of the two primary types include:

Unique indexes.

Indexes on computed columns.

Indexed views.

Full text indexes.

Each index type mentioned above will be described in detail in the following sections below except for Full text indexes. Full text
indexing is a special case unlike other database indexes and is not covered in this document. An indexed view is a new type of
index introduced in SQL Server 2000 that should prove to be of particular interest to the data warehousing audience. Another
new feature introduced in SQL Server 2000 is the ability to create indexes in either ascending or descending order.

How Indexes Work

Indexes in databases are similar to indexes in books. In a book, an index allows you to find information quickly without reading
the entire book. In a database, an index allows the database program to find data in a table without scanning the entire table.
An index in a book is a list of words with the page numbers that contain each word. An index in a database is a list of values in
a table with the storage locations of rows in the table that contain each value.

Indexes can be created on either a single column or a combination of columns in a table and are implemented in the form of B-
trees. An index contains an entry with one or more columns (the search key) from each row in a table. A B-tree is stored in
sorted order on the search key in either ascending or descending order (depending on the option chosen when the index is
created), and can be searched efficiently on any leading subset of that search key. For example, an index on columns A, B, C can
be searched efficiently on A, on A, B, and A, B, C.

When you create a database and tune it for performance, you should create indexes for the columns used in queries to find
data. In the pubs sample database provided with SQL Server, the employee table has an index on the emp_id column. When
someone executes a statement to find data in the employee table based on a specified emp_id value, SQL Server query
processor recognizes the index for the emp_id column and uses the index to find the data. The following illustration shows how
the index stores each emp_id value and points to the rows of data in the table with the corresponding value.

The performance benefits of indexes, however, don't come without a cost. Tables with indexes require more storage space in
the database. Also, commands that insert, update, or delete data can take longer and require more processing time to maintain
the indexes. When you design and create indexes, you should ensure that the performance benefits outweigh the extra cost in
storage space and processing resources.

Index Intersection

A unique feature found inside the SQL Server query processor is the ability to perform index intersection. This is a special form
of index covering, which we explain in detail later, but index intersection bears mentioning now for two reasons. First, it is a
technique that may influence your index design strategy. Second, this technique can possibly reduce the number of indexes
you need, which can save significant disk space for very large databases.

Index intersection allows the query processor to use multiple indexes to solve a query. Most database query processors use
only one index when attempting to resolve a query. SQL Server can combine multiple indexes from a given table or view, build
a hash table based on those multiple indexes, and utilize the hash table to reduce I/O for a given query. The hash table that
results from the index intersection becomes, in essence, a covering index and provides the same I/O performance benefits that
covering indexes do. Index intersection provides greater flexibility for database user environments in which it is difficult to
predetermine all of the queries that will be run against the database. A good strategy in this case is to define single-column,
nonclustered indexes on all the columns that will be frequently queried and let index intersection handle situations where a
covered index is needed.

The following example makes use of index intersection:

Create index Indexname1 on Table1(col2)
Create index Indexname2 on Table1(col3)
Select col3 from table1 where col2 = 'value'

When the previous query is performed, the indexes can be combined to quickly and efficiently resolve the query.

Index Architecture In SQL Server

All indexes in SQL Server are physically built upon a B-tree index structures, which are stored on 8-KB index pages. Each index
page has a page header followed by the index rows. Each index row contains a key value and a pointer to either a lower-level
index page or an actual data row. Each page in an index is also referred to as an index node. The top node of the B-tree is called
the root node. The bottom layer of nodes in an index are called the leaf nodes. Any index levels between the root and the leaves
are collectively known as intermediate levels or nodes. Pages in each level of the index are linked together in a doubly-linked
list.

SQL Server data and index pages are both 8 KB in size. SQL Server data pages contain all of the data associated with a row of a
table, with the possible exception of text and image data. In the case of text and image data the SQL Server data page that
contains the row associated with the text or image column will contain, by default, a pointer to a binary tree (or B-tree)
structure of one or more 8-KB pages that contain the text or image data. A new feature in SQL Server 2000 is the ability to
store small text and image values in-row, which means that small text or image columns will be stored on the data page. This
feature can reduce I/O because the additional I/O required to fetch corresponding image or text data can be avoided. For
information about how to set a table to store text or images in row, see SQL Server Books Online.

Clustered Indexes

Clustered indexes are very useful for retrieving ranges of data values from a table. Nonclustered indexes are ideally suited for
targeting specific rows for retrieval, whereas clustered indexes are ideally suited for retrieving a range of rows. However,
adhering to this simple logic for determining which type of index to create is not always successful. This is because only one
clustered index is allowed for each table. There is a simple physical reason for this. While the upper parts (nonleaf levels) of the
clustered index B-tree structure are organized just like their nonclustered counterparts, the bottom level of a clustered index is
made of the actual 8-KB data pages from the table. An exception to this is when a clustered index is created over the top of a
view. Because indexed views will be explained below, we will discuss clustered indexes being created on actual tables. When a
clustered index is created on a table, the data associated with that table is read, sorted, and physically stored back to the
database in the same order as the index search key. Because data for the table can only be persisted to storage in one order
without causing duplication, the restriction of one clustered index applies. The following diagram depicts the storage for a
clustered index.

Clustered Indexes and Performance

There are some inherent characteristics of clustered indexes that affect performance.

Retrieval of SQL Server data based on key search with a clustered index requires no pointer jump (involving a likely
nonsequential change of location on the hard disk) in order to retrieve the associated data page. This is because the leaf level
of the clustered index is, in fact, the associated data page.

As mentioned previously, the leaf level (and consequentially the data for the table or indexed view) is physically sorted and
stored in the same order as the search key. Because the leaf level of the clustered index contains the actual 8-KB data pages of
the table, the row data of the entire table is physically arranged on the disk drive in the order determined by the clustered

index. This provides a potential I/O performance advantage when fetching a significant number of rows from this table (at least
greater than 64 KB) based on the value of the clustered index, because sequential disk I/O is being used (unless page splitting
is occurring on this table, which will be discussed elsewhere in the section titled "FILLFACTOR and PAD_INDEX"). That is why it
is important to pick the clustered index on a table based on a column that will be used to perform range scans to retrieve a
large number of rows.

The fact that the rows for table associate with a clustered index have to be sorted and stored in the same order as the index
search key has the following implications:

When you create a clustered index, the table is copied, the data in the table is sorted, and then the original table is
deleted. Therefore, enough empty space must exist in the database to hold a copy of the data.

By default, the data in the table is sorted when the index is created. However, if the data is already sorted in the correct
order, the sort operation is automatically skipped. This can have a dramatic effect in speeding up the index creation
process.

Whenever possible, you should load your data into the table in the same order as the search key you intend to use to
build the clustered index. On large tables, like those that often characterize data warehouses, this approach will
dramatically speed up your index creation, allowing you to reduce the amount of time needed to process initial data
load(s). This same approach can be taken when dropping and rebuilding a clustered index, as long as the rows of the
table remain in sorted order during the time that the clustered index is not in place. If any rows are not correctly sorted,
the operation cancels, an appropriate error message will be given, and the index will not be created.

Also, building clustered indexes on sorted data requires much less I/O. This is because the data does not have to be
copied, sorted, stored back to the database, then the old table data deleted. Instead, the data is left in the extents where it
was originally allocated. Index extents are simply added to the database to store top and intermediate nodes.

Note: The preferred way to build indexes on large tables is to start with the clustered index and then build the
nonclustered indexes. In this way, no nonclustered indexes will need to be rebuilt due to the data moving. When
dropping all indexes, drop the nonclustered indexes first and the clustered index last. That way, no indexes need to be
rebuilt.

Nonclustered Indexes

Nonclustered indexes are most useful for fetching few rows with good selectivity from large SQL Server tables based on a
specific key value. As mentioned previously, nonclustered indexes are binary trees formed out of 8-KB index pages. The
bottom, or leaf level, of the binary tree of index pages contains all the data from the columns that comprised that index. When
a nonclustered index is used to retrieve information from a table based on a match with the key value, the index B-tree is
traversed until a key match is found at the leaf level of the index. A pointer jump is made if columns from the table are needed
that did not form part of the index. This pointer jump will likely require a nonsequential I/O operation on the disk. It might even
require the data to be read from another disk, especially if the table and its accompanying index B-trees are large in size. If
multiple pointers lead to the same 8-KB data page, less of an I/O performance penalty will be paid because it is only necessary
to read the page into data cache once. For each row returned for an SQL query that involves searching with a nonclustered
index, at least one pointer jump is required.

Note: The overhead associated with each pointer jump is the reason that nonclustered indexes are better suited for processing
queries that return only one or a few rows from a table. Queries that require a range of rows are better served with a clustered
index.

The following diagram shows the storage for a nonclustered index. Notice the added leaf level that points to the corresponding
data pages. That is where the added pointer jump takes place when using a nonclustered index to access table data as opposed
to using a clustered index. For more information on nonclustered indexes, see SQL Server Books Online.

Unique Indexes

Both clustered and nonclustered indexes can be used to enforce uniqueness within a table by specifying the UNIQUE keyword
when creating an index on an existing table. Using a UNIQUE constraint is another way to ensure uniqueness within a table.
UNIQUE constraints, like unique indexes, enforce the uniqueness of the values in a set of columns. In fact, the assignment of a
UNIQUE constraint automatically creates an underlying unique index to facilitate the enforcement of the constraint. Because
the uniqueness can be defined and documented as part of the CREATE TABLE statement, a UNIQUE constraint is often
preferred over the creation of a separate unique index.

Indexes on Computed Columns

SQL Server 2000 introduced the capability to create indexes on computed columns. This is a handy feature for situations where
queries are commonly submitted and computed columns are routinely provided, but the administrator would prefer not to
persist the data into an actual column of a table simply to allow the creation of an index. In this case, computed columns can be
referenced to create an index as long as the computed column satisfies all conditions required for indexing. Among other
restrictions, the computed column expression must be deterministic, precise, and must not evaluate to text, ntext, or image
data types.

Deterministic

A nondeterministic user-defined function cannot be invoked by either a view or computed column if you want to create an
index on the view or computed column. All functions are deterministic or nondeterministic:

Deterministic functions always return the same result any time they are called with a specific set of input values.

Nondeterministic functions may return different results each time they are called with a specific set of input values.

For example, the DATEADD built-in function is deterministic because it always returns a predictable result for a given set of
argument values passed in via its three input parameters. GETDATE is not deterministic. While it is always invoked with the
same argument value, the value it returns changes each time executed.

Precise

A computed column expression is precise if:

It is not an expression of the float data type.

It does not use in its definition a float data type. For example, in the following statement, column y is int and
deterministic, but not precise.

CREATE TABLE t2 (a int, b int, c int, x float,
 y AS CASE x
 WHEN 0 THEN a
 WHEN 1 THEN b

 ELSE c
 END)

The IsPrecise property of the COLUMNPROPERTY function reports whether a computed_column_expression is precise.

Note: Any float expression is considered nonprecise and cannot be a key of an index; a float expression can be used in an
indexed view but not as a key. This is true also for computed columns. Any function, expression, user-defined function, or view
definition is considered nondeterministic if it contains any float expressions, including logical ones (comparisons).

Creation of an index on a computed column or view may cause the failure of an INSERT or UPDATE operation that previously
operated correctly. Such a failure may take place when the computed column results in an arithmetic error. For example,
although computed column c in the following table will result in an arithmetic error, the INSERT statement will work:

CREATE TABLE t1 (a int, b int, c AS a/b)
GO
INSERT INTO t1 VALUES ('1', '0')
GO

If, instead, after creating the table, you create an index on computed column c, the same INSERT statement now will fail.

CREATE TABLE t1 (a int, b int, c AS a/b)
GO
CREATE UNIQUE CLUSTERED INDEX Idx1 ON t1.c
GO
INSERT INTO t1 VALUES ('1', '0')
GO

Indexed Views

Indexed views are views whose results are persisted in the database and indexed for fast access. As with any other views,
indexed views depend on base tables for their data. Such dependency means that if you change a base table contributing to an
indexed view, the indexed view might become invalid. For example, renaming a column that contributes to a view invalidates
the view. To prevent such problems, SQL Server supports creating views with schema binding. Schema binding prohibits any
table or column modification that would invalidate the view. Any indexed view you create with the View Designer automatically
gets schema binding, because SQL Server requires that indexed views have schema binding. Schema binding does not mean
you cannot modify the view; it means you cannot modify the underlying tables or views in ways that would change the view's
result set. Also, indexed views, like indexes on computed columns, must be deterministic, precise, and must not contain text,
ntext, or image columns.

Indexed views work best when the underlying data is infrequently updated. The maintenance of an indexed view can be higher
than the cost of maintaining a table index. If the underlying data is updated frequently, then the cost of maintaining the indexed
view data may outweigh the performance benefits of using the indexed view.

Indexed views improve the performance of these types of queries:

Joins and aggregations that process many rows.

Join and aggregation operations that are frequently performed by many queries.

For example, in an OLTP database that is recording inventories, many queries would be expected to join the Parts,
PartSupplier, and Suppliers tables. Although each query that performs this join may not process many rows, the overall
join processing of hundreds of thousands of such queries can be significant. Because these relationships are not likely to
be updated frequently, the overall performance of the entire system could be improved by defining an indexed view that
stores the joined results.

Decision support workloads.

Analysis systems are characterized by storing summarized, aggregated data that is infrequently updated. Further
aggregating the data and joining many rows characterizes many decision support queries.

Indexed views usually do not improve the performance of these types of queries:

OLTP systems with many writes.

Databases with many updates.

Queries that do not involve aggregations or joins.

Aggregations of data with a high degree of cardinality for the key. A high degree of cardinality means the key contains
many different values. A unique key has the highest possible degree of cardinality because every key has a different

value. Indexed views improve performance by reducing the number of rows a query has to access. If the view result set
has almost as many rows as the base table, then there is little performance benefit from using the view. For example,
consider this query on a table that has 1,000 rows:

SELECT PriKey, SUM(SalesCol)
 FROM ExampleTable
 GROUP BY PriKey

If the cardinality of the table key is 100, an indexed view built using the result of this query would have only 100 rows.
Queries using the view would, on average, need one tenth of the reads needed against the base table. If the key is a
unique key, the cardinality of the key is 1000 and the view result set returns 1000 rows. A query has no performance
gain from using this indexed view instead of directly reading the base table.

Expanding joins, which are views whose result sets are larger than the original data in the base tables.

Design your indexed views to satisfy multiple operations. Because the optimizer can use an indexed view even when the view
itself is not specified in the FROM clause, a well-designed indexed view can speed the processing of many queries. For
example, consider creating an index on this view:

CREATE VIEW ExampleView (PriKey, SumColx, CountColx)
AS
SELECT PriKey, SUM(Colx), COUNT_BIG(Colx)
FROM MyTable
GROUP BY PriKey

Not only does this view satisfy queries that directly reference the view columns, it can also be used to satisfy queries that query
the underlying base table and contain expressions such as SUM(Colx), COUNT_BIG(Colx), COUNT(Colx), and AVG(Colx). All
such queries will be faster because they only have to retrieve the small number of rows in the view rather than reading the full
number of rows from the base tables.

The first index created on a view must be a unique clustered index. After the unique clustered index has been created, you can
create additional nonclustered indexes. The naming conventions for indexes on views are the same as for indexes on tables.
The only difference is that the table name is replaced with a view name.

All indexes on a view are dropped if the view is dropped. All nonclustered indexes on the view are dropped if the clustered
index is dropped. Nonclustered indexes can be dropped individually. Dropping the clustered index on the view removes the
stored result set, and the optimizer returns to processing the view like a standard view.

Although only the columns that make up the clustered index key are specified in the CREATE UNIQUE CLUSTERED INDEX
statement, the complete result set of the view is stored in the database. As in a clustered index on a base table, the B-tree
structure of the clustered index contains only the key columns, but the data rows contain all of the columns in the view result
set.

Note: You can create indexed views in any edition of SQL Server 2000. In SQL Server 2000 Enterprise Edition, the indexed view
will be considered automatically by the query optimizer. To use an indexed view in all other editions, the NOEXPAND hint must
be used.

Covering Indexes

A covering index is a nonclustered index that is built upon all of the columns required to satisfy an SQL query, both in the
selection criteria and the WHERE predicate. Covering indexes can save a huge amount of I/O, and hence bring a lot of
performance to a query. But it is necessary to balance the costs of creating a new index (with its associated B-tree index
structure maintenance) against of the I/O performance gain the covering index will bring. If a covering index will greatly benefit
a query or set of queries that will be run very often on SQL Server, the creation of that covering index may be worth it.

The following example demonstrates use of a covering index intersection:

Create index indexname1 on table1(col2,col1,col3).
Select col3 from table1 where col2 = 'value'

When the above query is performed, the values needed from the underlying table could be retrieved quickly by just reading
the smaller index pages and the query would be resolve quite efficiently. In general, if the covering index is small, in terms of
the number of bytes from all the columns in the index compared to the number of bytes in a single row of that table, and it is
certain that the query taking advantage of the covered index will be executed frequently, it may make sense to use a covering
index.

Index Selection

The choice of indexes significantly affects the amount of disk I/O generated and, subsequently, performance. Nonclustered
indexes are good for retrieval of a small number of rows and clustered indexes are good for range-scans. The following
guidelines can be helpful in choosing what type of index to use:

Try to keep indexes as compact (fewest number of columns and bytes) as possible. This is especially true for clustered
indexes because nonclustered indexes will use the clustered index as its method for locating row data.

In the case of nonclustered indexes, selectivity is important. If a nonclustered index is created on a large table with only a
few unique values, use of that nonclustered index will not save much I/O during data retrieval. In fact, using the index will
likely cause much more I/O than simply performing a sequential table scan. Good candidates for a nonclustered index
include invoice numbers, unique customer numbers, social security numbers, and telephone numbers.

Clustered indexes perform better than nonclustered indexes for queries that involve range scans or when a column is
frequently used to join with other tables. The reason is because the clustered index physically orders the table data,
allowing for sequential 64-KB I/O on the key values. Some possible candidates for a clustered index include states,
company branches, date of sale, zip codes, and customer district. Only one clustered index can be created for a table; if a
table contains a column from which typical queries frequently fetch large sequential ranges and columns of unique
values, use the clustered index on the first column and nonclustered indexes on the columns of unique values. The key
question to ask when trying to choose the best column on each table to create the clustered index on is, "Will there be a
lot of queries that need to fetch a large number of rows based on the order of this column?" The answer is very specific
to each user environment. One company may do a lot of queries based on ranges of dates, whereas another company
may do a lot of queries based on ranges of bank branches.

Index Creation and Parallel Operations

The query plans built for the creation of indexes allow parallel, multi-threaded index create operations on computers with
multiple microprocessors in SQL Server Enterprise and Developer editions.

SQL Server uses the same algorithms to determine the degree of parallelism (the total number of separate threads to run) for
create index operations as it does for other Transact-SQL statements. The only difference is that the CREATE INDEX, CREATE
TABLE, or ALTER TABLE statements that create indexes do not support the MAXDOP query hint. The maximum degree of
parallelism for an index creation is subject to the max degree of parallelism server configuration option, but you cannot set
a different MAXDOP value for individual index creation operations.

When SQL Server builds a create index query plan, the number of parallel operations is set to the lowest value of:

The number of microprocessors, or CPUs in the computer.

The number specified in the max degree of parallelism server configuration option.

The number of CPUs not already over a threshold of work performed for SQL Server threads.

For example, on a computer with eight CPUs, but where the max degree of parallelism option is set to 6, no more than six
parallel threads are generated for an index creation. If five of the CPUs in the computer exceed the threshold of SQL Server
work when an index creation execution plan is built, the execution plan specifies only three parallel threads.

The main phases of parallel index creation include:

A coordinating thread quickly and randomly scans the table to estimate the distribution of the index keys. The
coordinating thread establishes the key boundaries that will create a number of key ranges equal to the degree of
parallel operations, where each key range is estimated to cover similar numbers of rows. For example, if there are four
million rows in the table, and the max degree of parallelism option is set to 4, the coordinating thread will determine
the key values that delimit four sets of rows with one million rows in each set.

The coordinating thread dispatches a number of threads equal to the degree of parallel operations, and waits for these
threads to complete their work. Each thread scans the base table using a filter that retrieves only rows with key values
within the range assigned to the thread. Each thread builds an index structure for the rows in its key range.

After all the parallel threads have completed, the coordinating thread connects the index subunits into a single index. Individual
CREATE TABLE or ALTER TABLE statements can have multiple constraints that require the creation of an index. These multiple
index creation operations are performed in series, although each individual index creation operation may be performed as a
parallel operation on a computer with multiple CPUs.

Index Maintenance

When you create an index in the database, the index information used by queries is stored in index pages. The sequential index
pages are chained together by pointers from one page to the next. When changes are made to the data that affect the index,

the information in the index can become scattered in the database. Rebuilding an index reorganizes the storage of the index
data (and table data in the case of a clustered index) to remove fragmentation. This can improve disk performance by reducing
the number of page reads required to obtain the requested data.

Fragmentation occurs when large amounts of insert activity or updates, which modify the search key value of the clustered
index, are performed. For this reason, it is important to try to maintain open space on index and data pages to prevent pages
from splitting. Page splitting occurs when an index page or data page can no longer hold any new rows and a row needs to be
inserted into the page because of the logical ordering of data defined in that page. When this occurs, SQL Server needs to
divide up the data on the full page and move approximately half of the data to a new page so that both pages will have some
open space. Because this consumes system resources and time, doing it frequently is not recommended.

When indexes are initially built, SQL Server attempts to place the index B-tree structures on pages that are physically
contiguous; this allows for optimal I/O performance when scanning the index pages using sequential I/O. When page splitting
occurs and new pages need to be inserted into the logical B-tree structure of the index, SQL Server must allocate new 8-KB
index pages. If this occurs somewhere else on the hard drive, it breaks up the physically sequential nature of the index pages.
This can cause I/O operations to switch from being performed sequentially to nonsequentially. It can also dramatically reduce
performance. Excessive amounts of page splitting should be resolved by rebuilding your index or indexes to restore the
physically sequential order of the index pages. This same behavior can be encountered on the leaf level of the clustered index,
thereby affecting the data pages of the table.

In System Monitor, pay particular attention to "SQL Server: Access Methods – Page Splits/sec." Nonzero values for this
counter indicate that page splitting is occurring and that further analysis should be done with DBCC SHOWCONTIG.

The DBCC SHOWCONTIG command can also be used to reveal whether excessive page splitting has occurred on a table. Scan
Density is the key indicator that DBCC SHOWCONTIG provides. It is good for this value to be as close to 100 percent as
possible. If this value is significantly below 100 percent, consider running maintenance on the problem indexes.

DBCC INDEXDEFRAG

One index maintenance option is to use a new statement (DBCC INDEXDEFRAG), which was introduced in SQL Server 2000.
DBCC INDEXDEFRAG can defragment clustered and nonclustered indexes on tables and views. DBCC INDEXDEFRAG
defragments the leaf level of an index so the physical order of the pages matches the left-to-right logical order of the leaf
nodes, thus improving index-scanning performance.

DBCC INDEXDEFRAG also compacts the pages of an index, taking into account the FILLFACTOR specified when the index was
created. Any empty pages created as a result of this compaction will be removed.

If an index spans more than one file, DBCC INDEXDEFRAG defragments one file at a time. Pages do not migrate between files.
Every five minutes, DBCC INDEXDEFRAG will report to the user an estimated percentage completed. DBCC INDEXDEFRAG can
be terminated at any point in the process, and any completed work is retained.

Unlike DBCC DBREINDEX (or the index building operation in general), DBCC INDEXDEFRAG is an online operation. It does not
hold locks long term and thus will not block running queries or updates. A relatively unfragmented index can be defragmented
faster than a new index can be built because the time to defragment is related to the amount of fragmentation. A very
fragmented index might take considerably longer to defragment than to rebuild. In addition, the defragmentation is always
fully logged, regardless of the database recovery model setting (see ALTER DATABASE). The defragmentation of a very
fragmented index can generate more log than even a fully logged index creation. The defragmentation, however, is performed
as a series of short transactions and thus does not require a large log if log backups are taken frequently or if the recovery
model setting is SIMPLE.

Also, DBCC INDEXDEFRAG will not help if two indexes are interleaved on the disk because INDEXDEFRAG shuffles the pages in
place. To improve the clustering of pages, rebuild the index. DBCC INDEXDEFRAG cannot correct page splits for the same
reason. It essentially reorders index pages already allocated into sequential order reflective of the search key. Index pages may
get out of order for a variety of reasons, such as unordered data loads, excessive insert, update, delete activity, etc.

SQL Server Books Online includes a handy piece of sample code that you can use to automate a variety of index maintenance
tasks with a few modifications. The example shows a simple way to defragment all indexes in a database that have fragmented
above a declared threshold. In the SQL Server Books Online topic "DBCC SHOWCONTIG", see section E, "Use
DBCCSHOWCONTIG and DBCC INDEXDEFRAG to defragment the indexes in a database."

DBCC DBREINDEX

DBCC DBREINDEX can rebuild just a single specified index for a table or all indexes for a table depending on the syntax used.
Similar in the approach taken to dropping and re-creating individual indexes, the DBCC DBREINDEX statement has the
advantage of being able to rebuild all of the indexes for a table in one statement. This is easier than coding individual DROP
INDEX and CREATE INDEX statements and a table's index or indexes can be rebuilt without knowledge of the table structure or
any assigned constraints. Also, the DBCC REINDEX statement is inherently atomic. To achieve the equivalent atomicity when

coding separate DROP INDEX and CREATE INDEX statements, you would have to wrap the multiple separate commands within
a transaction.

DBCC DBREINDEX automatically takes advantage of more optimizations than individual DROP INDEX and CREATE INDEX
statements do, especially if multiple nonclustered indexes reference a table that has a clustered index. DBCC DBREINDEX is also
useful to rebuild indexes enforcing PRIMARY KEY or UNIQUE constraints without having to delete and re-create the constraints
(because an index created to enforce a PRIMARY KEY or UNIQUE constraint cannot be deleted without deleting the constraint
first). For example, you may want to rebuild an index on a PRIMARY KEY constraint to reestablish a given fill factor for the
index.

DROP_EXISTING

Another way to rebuild or defragment an index is to drop and recreate it. Rebuilding a clustered index by deleting the old index
and then re-creating the same index again is expensive because all the secondary indexes depend upon the clustering key that
points to the data rows. If you simply delete the clustered index and re-create it, you may inadvertently cause all referencing
nonclustered indexes to be deleted and re-created twice. The first drop/recreate occurs when you drop the clustered index. A
second drop/recreate will occur when you go to re-create the clustered index.

To avoid this expense, the DROP_EXISTING clause of CREATE_INDEX allows this re-create to be performed in one step. Re-
creating the index in a single step tells SQL Server that you are reorganizing an existing index and avoids the unnecessary work
of deleting and re-creating the associated nonclustered indexes. This method also offers the significant advantage of using the
presorted data from the existing index, thus avoiding the need to perform a sort of the data. This can significantly reduce the
time and cost of re-creating the clustered index.

DROP INDEX / CREATE INDEX

The final way to perform index maintenance is simply to drop the index and then re-create it. This option is still widely
practiced and might be preferable to people who are familiar with it and who have the processing window to accommodate
full re-creates of all indexes on a table. The drawback to using this approach is that you must manually control events so they
happen in proper sequence. When manually dropping and re-creating indexes, be sure to drop all nonclustered indexes before
dropping and recreating the clustered index. Otherwise, all nonclustered indexes will automatically be recreated when you go
to create the clustered index.

One advantage to manually creating nonclustered indexes is that individual nonclustered indexes can be recreated in parallel.
However, your partitioning strategy may affect the resulting physical layout of the indexes. If two nonclustered indexes are
rebuilt at the same time on the same file (filegroup), the pages from both indexes might be interwoven together on disk. This
may cause your data to be stored in a nonsequential order. If you have multiple files (filegroups) located on different disks, you
can specify separate files (filegroup) to hold the index upon creation, thus maintaining sequential contiguousness of the index
pages.

The same warnings mentioned above about building indexes on pre-sorted data apply here. Clustered indexes built on sorted
data do not have to perform an additional sort step, which can significantly reduce the time and processing resources needed
to build the index.

FILLFACTOR and PAD_INDEX

The FILLFACTOR option provides a way to specify the percentage of open space to leave on index and data pages. The
PAD_INDEX option for CREATE INDEX applies what has been specified for FILLFACTOR on the nonleaf level index pages.
Without the PAD_INDEX option, FILLFACTOR affects mainly the leaf level index pages of the clustered index. It is a good idea to
use the PAD_INDEX option with FILLFACTOR.

PAD_INDEX and FILLFACTOR are used to control page splitting. The optimal value to specify for FILLFACTOR depends on how
much new data will be inserted within a given time frame into an 8-KB index and data page. It is important to keep in mind that
SQL Server index pages typically contain many more rows than data pages because index pages contain only the data for
columns associated with that index, whereas data pages hold the data for the entire row. Also bear in mind how often there will
be a maintenance window that will permit the rebuilding of indexes to correct page splits, which are bound to occur. Try to
rebuild the indexes only when the majority of the index and data pages have become filled with data. If a clustered index is
properly selected for a table, the need to rebuild indexes will be infrequent. If the clustered index distributes data evenly so new
row inserts into the table happen across all of the data pages associated with the table, the data pages will fill evenly. Overall,
this provides more time before page splitting starts to occur and rebuilding the clustered index becomes necessary.

Determining the proper values to use for PAD_INDEX and FILLFACTOR requires you to make a judgment call. Your decision
should be based on the performance tradeoffs between leaving a lot of open space on pages, on the one hand, and the amount
of page splitting that might occur, on the other. If a small percentage for FILLFACTOR is specified, it will leave large open
spaces on the index and data pages, causing SQL Server to read large numbers of partially filled pages in order to answer
queries. For large read operations, SQL Server will obviously perform faster if more data is compressed onto the index and
data pages. Specifying too high a FILLFACTOR may leave too little open space on pages and allow pages to overflow too

quickly, causing page splitting.

Before arriving at a FILLFACTOR or PAD_INDEX value, remember that reads tend to far outnumber writes in many data
warehousing environments. Periodic data loads, however, may invalidate the above statement. Many data warehouse
administrators attempt to partition and structure tables/indexes to accommodate the periodic data loads they anticipate.

As a general rule of thumb, if writes are anticipated to be a substantial fraction of reads, the best approach is to specify as high
a FILLFACTOR as feasible, while still leaving enough free space in each 8-KB page to avoid frequent page splitting, at least until
SQL Server can reach the next available window of time needed to re-create indexes. This strategy balances I/O performance
(keeping the pages as full as possible) and avoids page splitting (not letting pages overflow). If there will be no write activity
into the SQL Server database, FILLFACTOR should be set at 100 percent so that all index and data pages are filled completely
for maximum I/O performance.

SQL Server Tools for Analysis and Tuning

This section provides sample code to load a table with data, which is then used to illustrate the use of SQL Profiler and SQL
Query Analyzer for analyzing and tuning performance.

Sample Data and Workload

To illustrate using the SQL Server performance tools, use the following example. First, the following table is constructed:

create table testtable
 (nkey1 int identity,
 col2 char(300) default 'abc',
 ckey1 char(1))

Next, the table is loaded with 20,000 rows of test data. The data being loaded into column nkey1 lends itself to a nonclustered
index. The data in column ckey1 lends itself to a clustered index and the data in col2 is merely filler to increase the size of each
row by 300 bytes.

declare @counter int
set @counter = 1
while (@counter <= 4000)
begin
 insert testtable (ckey1) values ('a')
 insert testtable (ckey1) values ('b')
 insert testtable (ckey1) values ('c')
 insert testtable (ckey1) values ('d')
 insert testtable (ckey1) values ('e')
 set @counter = @counter + 1
end

The following queries make up the database server workload:

select ckey1 from testtable where ckey1 = 'a'
select nkey1 from testtable where nkey1 = 5000
select ckey1,col2 from testtable where ckey1 = 'a'
select nkey1,col2 from testtable where nkey1 = 5000

SQL Profiler

A common approach to performance tuning is often called mark and measure. To verify that changes made to improve
performance actually do improve performance, you first need to establish a baseline or mark of the existing bad performance
situation. Measure refers to establishing quantifiable ways to demonstrate that performance is improving.

SQL Profiler is a handy tool for marking and measuring. Not only can it capture activity that is taking place within your server
for performance analysis; it can also playback that activity again at a later time. The playback capabilities in SQL Server provide
a useful regression-testing tool. Using playback, you can conveniently determine whether actions being taken to improve
performance are having the desired effect.

The playback capabilities can also simulate load or stress testing. Multiple profiler client sessions can be set up to play back
simultaneously. This capability allows the administrator to easily capture activity from five concurrent users, for example, and
then start ten simultaneous playbacks to emulate what the system performance might look like if there were 50 concurrent
users. You can also take traces of database activity and play that activity back against a database modification under
development or against a new hardware configuration being tested.

The thing to remember is that Profiler allows you to record activity that is occurring on your SQL Server databases. Profiler can
be configured to watch and record one or many users executing queries against SQL Server. In addition to the SQL statements,

a wide and varied amount of performance information is available for capture using the tool. Some of the performance
information available for recording using Profiler includes items such as I/O statistics, CPU statistics, locking requests,
Transact-SQL and RPC statistics, index and table scans, warnings and errors raised, database object create/drop, connection
connect/disconnects, stored procedure operations, cursor operation, and more.

Capturing Profiler Information to Use with the Index Tuning Wizard

When used together, SQL Profiler and the Index Tuning Wizard provide a very powerful tool combination to help database
administrators ensure that proper indexes are placed on tables and views. SQL Profiler records the resource consumption for
queries into one of three places. Output can be directed to the .trc file, to a SQL Server table, or to the monitor. The Index
Tuning Wizard can then read the captured data from either the .trc file or the SQL Server table. The Index Tuning Wizard
analyzes information from the captured workload and information about the table structures, and then presents
recommendations about what indexes should be created to improve performance. The Index Tuning Wizard provides a choice
of automatically creating the proper indexes for the database, scheduling the index creation for a later time, or generating a
Transact-SQL script that can be reviewed and executed manually.

The following steps are required for analyzing a query load:

Set up Profiler

1. Start Profiler from SQL Server Enterprise Manager by selecting SQL Profiler on the Tools menu.

2. Press CTRL+N to create a new Profiler trace. In the Connect to SQL Server dialog box, select the server you want to
connect to.

3. Select the SQLProfilerTuning template from the dropdown list box.

4. Select either the Save to file or Save to table checkbox. The Save to table option opens the Connection dialog box,
where you can save trace information to a server other than the server profiling the query. Both checkboxes can be
selected if you would like to save traced activity to both. Point to a valid directory and file name if you want to save as a
.trc file. Point to an existing trace table if you have already run the trace and are running it again; you can also provide a
new table name if this is the first time you have captured trace activity to the table. Click OK.

5. Click Run.

Run the workload several (3-4) times

1. Start SQL Query Analyzer, either from SQL Server Enterprise Manager or from the Start menu.

2. Connect to SQL Server and set the current database to the database where you created the test table.

3. Enter the following queries into the query window of SQL Query Analyzer:

select ckey1 from testtable where ckey1 = 'a'
 select nkey1 from testtable where nkey1 = 5000
 select ckey1,col2 from testtable where ckey1 = 'a'
 select nkey1,col2 from testtable where nkey1 = 5000

4. Press CTRL+E to execute the queries. Do this three or four times to generate a sample workload.

Stop SQL Profiler

In the SQL Profiler window, click the red square to stop the Profiler trace.

Load the trace file or table into Index Tuning Wizard

1. In SQL Profiler, start the Index Tuning Wizard by selecting Index Tuning Wizard on the Tools menu. Click Next.

2. Select the database to be analyzed. Click Next.

3. Choose options of whether or not to keep existing indexes, or add indexed views.

4. Choose one of the tuning modes (Fast, Medium, or Thorough). Index Tuning Wizard requires less time to perform the
analysis for Fast tuning mode but does a less thorough analysis – Thorough mode produces the most thorough analysis
but takes the most time.

5. To locate the trace file/table that was created with SQL Profiler, select My workload file or the SQL Server Trace Table.
Click Next.

6. In the Select Tables to Tune dialog box, select the tables you want to analyze and then click Next.

7. Index Tuning Wizard will analyze the traced workload and table structures to determine the proper indexes to create in
the Index Recommendations dialog box. Click Next.

8. The wizard provides the choice of creating the indexes immediately, scheduling the index creation (an automated task for
later execution), or creating a Transact-SQL script containing the commands to create the indexes. Select the preferred
option and then click Next.

9. Click Finish.

Transact-SQL Generated by Index Tuning Wizard for the Sample Database and Workload

/* Created by: Index Tuning Wizard */
/* Date: 9/6/2000 */
/* Time: 4:44:34 PM */
/* Server Name: JHMILLER-AS2 */
/* Database Name: TraceDB */
/* Workload File Name: */
/* C:\Documents and Settings\jhmiller\My Documents\trace.trc */
USE [TraceDB]
go
SET QUOTED_IDENTIFIER ON
SET ARITHABORT ON
SET CONCAT_NULL_YIELDS_NULL ON
SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
SET NUMERIC_ROUNDABORT OFF
go
DECLARE @bErrors as bit
BEGIN TRANSACTION
SET @bErrors = 0
CREATE CLUSTERED INDEX [testtable1] ON [dbo].[testtable] ([ckey1] ASC)
IF(@@error <> 0) SET @bErrors = 1
CREATE NONCLUSTERED INDEX [testtable2] ON [dbo].[testtable] ([nkey1] ASC)
IF(@@error <> 0) SET @bErrors = 1
IF(@bErrors = 0)
 COMMIT TRANSACTION
ELSE
 ROLLBACK TRANSACTION

The indexes recommended by Index Tuning Wizard for the sample table and data are what we would expect – a clustered index
on ckey1 and a nonclustered index on nkey1. There are only five unique values for ckey1 and 4000 rows of each value. Given
that one of the sample queries (select ckey1, col2 from testtable where ckey1 = 'a') requires retrieval from the table based on
one of the values in ckey1, it makes sense to create a clustered index on the ckey1 column. The second query (select nkey1,
col2 from testtable where nkey1 = 5000) fetches one row based on the value of the column nkey1. Because nkey1 is unique
and there are 20,000 rows, it makes sense to create a nonclustered index on this column.

The combination of SQL Profiler and the Index Tuning Wizard becomes very powerful in real database server environments,
where many tables are used and many queries are processed. Use SQL Profiler to record a .trc file or trace table while the
database server is experiencing a representative set of queries. Then load the trace into the Index Tuning Wizard to determine
the proper indexes to build. Follow the prompts in the Index Tuning Wizard to automatically generate and schedule index
creation jobs to run at off-peak times. You may want to run the combination of SQL Profiler and the Index Tuning Wizard
regularly (perhaps weekly or monthly) to see if queries being executed on the database server have changed significantly, thus
possibly requiring different indexes. Regular use of SQL Profiler and the Index Tuning Wizard together helps database
administrators keep SQL Server running in top form as query workloads change and database size increase over time.

Analyzing the Information Recorded in Profiler with Query Analyzer

After the information is recorded into the SQL Server table, Query Analyzer can be used to determine which queries on the
system are consuming the most resources. In this way, database administrators can concentrate on improving the queries that
require the most help. Storing the trace data to a table enables you to easily select from and filter out subsets of trace data in
order to identify the poorest performing queries for tuning purposes. For instance, in the example above, the column
Duration, which is captured automatically when you use the SQLProfiler Tuning template, can be used to identify queries
that required the greatest number of milliseconds to execute. To find the top ten percent of the longest running queries you
can run a query like the following:

SELECT TOP 10 PERCENT *

FROM [TraceDB].[dbo].[Trace]
ORDER BY Duration DESC

To find the top five longest running queries you can run a query like the following:

SELECT TOP 5 *
FROM [TraceDB].[dbo].[Trace]
ORDER BY Duration DESC

To place only the rows you want to use for tuning into a separate table, consider using the following SELECT/INTO statement:

SELECT TOP 10 PERCENT *
INTO TuningTable
FROM [TraceDB].[dbo].[Trace]
ORDER BY Duration DESC

The SQLProfiler Tuning template, mentioned above, is simply a suggested set of preselected columns and filter settings
recommended for tuning purposes. You may find that you want to capture more information. It is certainly possible for you to
create your own custom tuning templates by simply opening one of the presupplied templates and saving it under a different
name. Many events can be captured, including I/O statistics, locking information, and much more.

SQL Query Analyzer

You can use SQL Query Analyzer to tune queries. This tool provides a number of mechanisms such as Statistics I/O and the
execution plans you can use to troubleshoot problem queries.

Statistics I/O

SQL Query Analyzer provides an option that you can use to obtain information about the I/O consumption for a query that you
execute in Query Analyzer. To set this option, in Query Analyzer, select Current Connection Properties on the Query menu
to display the Current Connection Properties dialog box. Select the Set statistics I/O checkbox and close the dialog box.
Next, execute a query and select the Message tab in the results pane to see the I/O statistics.

For example, the following query on the sample data created earlier in the SQL Profiler section returns the following I/O
information on the messages tab when the Set statistics IO option is selected:

select ckey1, col2 from testtable where ckey1 = 'a'
Table 'testtable'. Scan count 1, logical reads 800,
 physical reads 62, read-ahead reads 760.

Using statistics I/O is a great way to monitor the effect of query tuning. For example, create the indexes that Index Tuning
Wizard suggested for the sample data and then run the query again.

select ckey1, col2 from testtable where ckey1 = 'a'
Table 'testtable'. Scan count 1, logical reads 164,
 physical reads 4, read-ahead reads 162.

Notice that the number of logical and physical reads is significantly lower when an index is available.

Execution Plan

Graphical execution plans can be used to focus attention on problematic SQL queries by displaying detailed information on
what the query optimizer is doing.

An estimated execution plan for a query can be displayed in the Results pane of Query Analyzer by executing an SQL query
with CTRL+L or by selecting Display Estimated Execution Plan on the Query menu. Icons indicate the operations that the
query optimizer would have performed if it had executed the query. Arrows indicate the direction of data flow for the query.
Details about each operation can be displayed by hovering the mouse pointer over the operation icon. The approximate cost of
each step of the operation is also noted beneath each operation icon. This label allows you to quickly zero in on which
operation is most expensive in the query.

You can also see the actual execution plan for a query by selecting Show Execution Plan on the Query menu and then
executing the query. In contrast to the Display Estimated Execution Plan option, Show Execution plan executes the query
before displaying the actual execution plan used for the query.

A text version of an execution plan can be created by selecting Current Connection Properties on the Query menu and then
checking the Set showplan_text option in the dialog box. The execution plan will be displayed as text in the results tab when
the query is executed.

Execution plan options can also be set within the query by executing either of the following commands:

set showplan_all on
go
set showplan_text on
go

SET SHOWPLAN_ALL is intended to be used by applications designed to read its output. Use SET SHOWPLAN_TEXT to return
readable output for Microsoft MS-DOS® applications, such as the osql utility.

SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL return information as a set of textual rows that form a hierarchical tree
representing the steps taken by the SQL Server query processor as it executes each statement. Each statement reflected in the
output contains a single row with the text of the statement, followed by several rows with the details of the execution steps.

Examples of Execution Plan Output

Using the example queries defined earlier and "set showplan_text on" executed in Query Analyzer provides these results.

Query 1

select ckey1,col2 from testtable where ckey1 = 'a'

Text-based execution plan output

|--Clustered Index Seek
 (OBJECT:([TraceDB].[dbo].[testtable].[testtable1]),
 SEEK:([testtable].[ckey1]='a') ORDERED FORWARD)

Equivalent graphical execution plan output

The following illustration shows the graphical execution plan for query 1.

The execution plan takes advantage of the clustered index on column ckey1 to resolve the query, as indicated by Clustered
Index Seek.

If the clustered index is removed from the table and the same query is executed again, the query reverts to using a table scan.
The following graphical execution plan indicates the change in behavior.

Text-based execution plan output

|--Table Scan(OBJECT:([TraceDB].[dbo].[testtable]),
 WHERE:([testtable].[ckey1]=[@1]))

Equivalent graphical execution plan output

The following illustration shows the graphical execution plan for query 1.

This execution plan uses a table scan to resolve query 1. Table scans are the most efficient way to retrieve information from
small tables. But on larger tables, table scans indicated by an execution plan are a warning that the table may need better
indexes or that the existing indexes need to have their statistics updated. Statistics can be updated on a table or an index using
the UPDATE STATISTICS command. SQL Server automatically updates indexes if the heuristic pages get too far out of synch
with the underlying index values. An example would be if you deleted all the rows containing a ckey1 value = "b" from your
testtable and then ran queries without first updating the statistics. It is a good idea to allow SQL Server to automatically
maintain index statistics because it helps guarantee that queries will always have good index statistics to work with. SQL Server
will not auto update statistics if you set the AUTO_UPDATE_STATISTICS database options to OFF using the ALTER DATABASE
statement.

Query 2

select nkey1,col2 from testtable where nkey1 = 5000

Text-based execution plan output

--Bookmark Lookup(BOOKMARK:([Bmk1000]),
OBJECT:([TraceDB].[dbo].[testtable]))
 |--Index Seek(OBJECT:([TraceDB].[dbo].[testtable].[testtable2]),
 SEEK:([testtable].[nkey1]=Convert([@1])) ORDERED FORWARD)

Equivalent graphical execution plan output

The following two illustrations show the graphical execution plan for query 2.

The execution plan for query 2 uses the nonclustered index on the column nkey1. This is indicated by the Index Seek operation
on the column nkey1. The Bookmark Lookup operation indicates that SQL Server needed to perform a pointer jump from the
index page to the data page of the table to retrieve the requested data. The pointer jump was required because the query asked
for the column col2, which was not a column contained within the nonclustered index.

Query 3

select nkey1 from testtable where nkey1 = 5000

Text-based execution plan output

|--Index Seek(OBJECT:([TraceDB].[dbo].[testtable].[testtable2]),
 SEEK:([testtable].[nkey1]=Convert([@1])) ORDERED FORWARD)

Equivalent graphical execution plan output

The following illustration shows the graphical execution plan for query 3.

The execution plan for query 3 uses the nonclustered index on nkey1 as a covering index. Note that no Bookmark Lookup
operation was needed for this query. This is because all of the information required for the query (both SELECT and WHERE
clauses) is provided by the nonclustered index. This means that no pointer jumps to the data pages are required from the
nonclustered index pages. I/O is reduced in comparison to the case where a bookmark lookup was required.

System Monitoring

System Monitor (Performance Monitor in Windows NT 4) provides a wealth of information about what Windows and SQL
Server operations are taking place during database server execution.

In System Monitor graph mode, take note of the Max and Min values. Don't put too much emphasis on the average. Because
heavily polarized data points can distort the average, be careful of overemphasizing the average. Study the graph shape and
compare to Min and Max to get an accurate understanding of the behavior. Use the BACKSPACE key to highlight counters
with a white line.

It is possible to use System Monitor to log all available Windows and SQL Server system monitor objects/counters in a log file,
while at the same time looking at System Monitor interactively (chart mode). The setting of sampling interval determines how
quickly the logfile grows in size. Logfiles can get very large, very fast (for example, 100 megabytes in one hour with all
counters turned on and a sampling interval of 15 seconds). It is hoped that the test server has enough free gigabytes to store
these types of files. If conserving space is important, however, try running with a large log interval so System Monitor does not
sample the system as often. Try 30 or 60 seconds. This way all of the counters are resampled with reasonable frequency but a
smaller logfile size is maintained.

System Monitor also consumes a small amount of CPU and disk I/O resources. If a system does not have much disk I/O and/or
CPU to spare, consider running System Monitor from another machine to monitor SQL Server over the network. When
monitoring over the network, use graph mode only — it tends to be more efficient to log performance monitoring information
locally on the SQL Server instead of sending the information across a local area network. If you must log over the network,
reduce the logging to only the most critical counters.

It is a good practice to log all counters available during performance test runs into a file for later analysis. That way any counter
can be examined further at a later time. Configure System Monitor to log all counters into a logfile and at the same time
monitor the most interesting counters in one of the other modes, like graph mode. This way, all of the information is recorded
but the most interesting counters are presented in an uncluttered System Monitor graph while the performance run is taking
place.

Setting up a System Monitor Session to be Logged

1. From the Windows 2000 Start menu point to Programs, point to Administrative Tools, and then click Performance to
open the System Monitor.

2. Double-click Performance Logs and Alerts, and then click Counter Logs.

3. Any existing logs will be listed in the details pane. A green icon indicates that a log is running; a red icon indicates that a
log has been stopped.

4. Right-click a blank area of the details pane, and click New Log Settings.

5. In Name, type the name of the log, and then click OK.

6. On the General tab, click Add. Select the counters you want to log. This is where you decide which SQL Server counters
to monitor during the session.

7. If you want to change the default file, make the changes on the Log Files tab.

8. Logged sessions can be set to run automatically for predefined time periods. To do this, you modify the schedule
information on the Schedule tab.

Note: To save the counter settings for a log file, right-click the file in the details pane and click Save Settings As. You can
then specify an .htm file in which to save the settings. To reuse the saved settings for a new log, right-click the details
pane, and then click New Log Settings From.

Starting a Logged Monitoring Session

1. From the Windows 2000 Start menu, point to Programs, point to Administrative Tools, and then select Performance
to open the System Monitor.

2. Double-click Performance Logs and Alerts, and then click Counter Logs.

3. Right-click the Counter Log to be run and select start.

4. Any existing logs will be listed in the details pane. A green icon indicates that a log is running; a red icon indicates that a
log has been stopped.

Stopping a Logged Monitoring Session

1. From the Windows 2000 Start menu point to Programs, point to Administrative Tools, and then select Performance
to open the System Monitor.

2. Double-click Performance Logs and Alerts, and then click Counter Logs.

3. Right-click the Counter Log to be run and select stop.

Loading data from a Logged Monitoring Session into System Monitor for analyzing

1. From the Windows 2000 Start menu point to Programs, point to Administrative Tools, and then select Performance
to open the System Monitor.

2. Click System Monitor.

3. Right-click the System Monitor details pane and click Properties.

4. Click the Source tab.

5. Under Data Source, click Log File, and type the path to the file or click Browse to browse for the log file you want.

6. Click TimeRange. To specify the time range in the log file that you want to view, drag the bar or its handles for the
appropriate starting and ending times.

7. Click the Data tab and click Add to open the Add Counters dialog box. The counters you selected during log
configuration are shown. You can include all or some of these in your graph.

How to relate System Monitor logged events back to a point in time

From within the System Monitor session, right-click the System Monitor details pane and click Properties. A time range
and a slider bar lets you position the begin, current, and end times to be viewed in your graph.

Key Performance Counters to Watch

Several performance counters provide information about the following areas of interest: memory, paging, processors, I/O, and
disk activity.

Monitoring Memory

By default, SQL Server changes its memory requirements dynamically, based on available system resources. If SQL Server
needs more memory, it queries the operating system to determine whether free physical memory is available and uses the
available memory. If SQL Server does not need the memory currently allocated to it, it releases the memory to the operating
system. However, the option to dynamically use memory can be overridden using the min server memory, max server
memory, and set working set size server configuration options. For more information, see SQL Server Books Online.

To monitor the amount of memory being used by SQL Server, examine the following performance counters:

Process: Working Set

SQL Server: Buffer Manager: Buffer Cache Hit Ratio

SQL Server: Buffer Manager: Total Pages

SQL Server: Memory Manager: Total Server Memory (KB)

The Working Set counter shows the amount of memory used by a process. If this number is consistently below the amount of
memory SQL Server is configured to use (set by the min server memory and max server memory server options), SQL
Server is configured for more memory than it needs. Otherwise, adjust the size of the working set using the set working set
size server option.

The Buffer Cache Hit Ratio counter is application specific; however, a rate of 90 percent or higher is desirable. Add more
memory until the value is consistently greater than 90 percent, indicating that more than 90 percent of all requests for data
were satisfied from the data cache.

If the Total Server Memory (KB) counter is consistently high compared to the amount of physical memory in the computer,
more memory may be required.

Hard Paging

If Memory: Pages/sec is greater than zero or Memory: Page Reads/sec is greater than five, Windows is using disk to
resolve memory references (hard page fault). This costs disk I/O + CPU resources. Memory: Pages/sec is a good indicator of
the amount of paging that Windows is performing and the adequacy of the database server's current RAM configuration. A
subset of the hard paging information in System Monitor is the number of times per second Windows had to read from the
paging file to resolve memory references, which is represented by Memory: Pages Reads/sec. If Memory: Pages Reads/sec
> 5, this is bad for performance.

Automatic SQL Server memory tuning will try to adjust SQL Server memory utilization dynamically in order to avoid paging. A
small number of pages read per second is normal, but excessive paging requires corrective action.

If SQL Server is automatically tuning memory, adding more RAM or removing other applications from the database server are
two options to help bring Memory: Pages/sec to a reasonable level.

If SQL Server memory is manually configured on the database server, it may be necessary to reduce memory given to SQL
Server, remove other applications from the database server, or add more RAM to the database server.

Keeping Memory: Pages/sec at or close to zero helps database server performance. It means Windows and all its applications
(this includes SQL Server) are not going to the paging file to satisfy any data in memory requests, so the amount of RAM on
the server is sufficient. If Pages/sec is greater than zero by a small amount, this is acceptable, but remember that a relatively
high performance penalty (disk I/O) is paid every time data is retrieved from the paging file rather than RAM.

It is useful to compare Memory: Pages Input/sec to Logical Disk: Disk Reads/sec across all drives associated with the
Windows paging file, and Memory: Page Output/sec to Logical Disk: Disk Writes/sec across all drives associated with the
Windows paging file, because they provide a measure of how much disk I/O is strictly related to paging rather than other
applications (that is, SQL Server). Another easy way to isolate paging file I/O activity is to make sure that the paging file is
located on a separate set of drives from all other SQL Server files. Separating the paging file away from the SQL Server files
can also help disk I/O performance because it allows disk I/O associated with paging to be performed in parallel to disk I/O
associated with SQL Server.

Soft Paging

If Memory: Pages Faults/sec is greater than zero, Windows is paging, but includes both hard and soft paging within the
counter. In the previous section, we discussed hard paging. Soft paging means that application(s) on the database server are
requesting memory pages still inside RAM but outside of Windows Working Set. Memory: Page Faults/sec is helpful for
deriving the amount of soft paging that is occurring. There is no counter called Soft Faults per second. Instead, use this
computation to calculate the number of soft faults happening per second: Memory: Pages Faults/sec - Memory: Pages
Input/sec = Soft Page Fault/sec.

To determine if SQL Server, rather than another process, is causing excessive paging, monitor the Process: Page Faults/sec
counter for the SQL Server process and note whether the number of page faults per second for the Sqlservr.exe instance in
question is similar to the number of Memory: Pages/sec.

Soft faults generally are not as bad as hard faults for performance because they consume CPU resources. Hard faults consume
disk I/O resources. The best environment for performance is to have no faulting of any kind.

Note: When SQL Server accesses all of its data cache pages for the first time, the first access to each page will cause a soft
fault. Do not be concerned with initial soft faulting occurring when SQL Server first starts up and the data cache is first being
exercised.

Monitoring processors

Your goal should be to keep all of the processors that are allocated to the server busy enough to maximize performance, but
not so busy that processor bottlenecks occur. The performance tuning challenge is that if CPU is not the bottleneck, something
else is (a primary candidate is the disk subsystem), so CPU capacity is being wasted. CPU is usually the hardest resource to
expand (above some configuration specific level, such as four or eight on many current systems), so it should be seen as a
good sign that CPU utilization is more than 95 percent on busy systems. At the same time, the response time of transactions
should be monitored to ensure they are within reason; if not, CPU usage greater than 95 percent may simply mean that the
workload is too much for the available CPU resources and either CPU resources have to be increased or workload has to be
reduced or tuned.

Look at the System Monitor counter Processor: % Processor Time to make sure all processors are consistently below 95
percent utilization on each CPU. System:Processor Queue Length is the processor queue for all CPUs on a Windows system.
If System: Processor Queue Length is greater than two for each CPU, it indicates a CPU bottleneck. When a CPU bottleneck is
detected, it is necessary to either add processors to the server or reduce the workload on the system. Reducing workload can
be accomplished by query tuning or improving indexes to reduce I/O and, subsequently, CPU usage.

Another System Monitor counter to watch when a CPU bottleneck is suspected is System: Context Switches/sec because it
indicates the number of times per second that Windows and SQL Server had to change from executing on one thread to
executing on another. This costs CPU resources. Context switching is a normal component of a multithreaded, multiprocessor
environment, but excessive context switching can degrade system performance. The approach to take is to only worry about
context switching if there is processor queuing.

If processor queuing is observed, use the level of context switching as a gauge when performance tuning SQL Server. If context
switching seems to be a contributor, there are two approaches you might want to consider: using the affinity mask option,
and using fiber-based scheduling.

Use the affinity mask option to increase performance on symmetric multiprocessor (SMP) systems (with more than four
microprocessors) operating under heavy load. You can associate a thread with a specific processor and specify which
processors SQL Server will use. You can also exclude SQL Server activity from using certain processors using an affinity mask
option setting. Before you change the setting of affinity mask, keep in mind that Windows assigns deferred process call (DPC)
activity associated with NICs to the highest numbered processor in the system. In systems with more than one NIC installed
and active, each additional card's activity is assigned to the next highest numbered processor. For example, an eight-processor
system with two NICs has DPCs for each NIC assigned to processor 7 and to processor 6 (0-based counting is used). When
using the lightweight pooling option, SQL Server switches to a fiber-based scheduling model rather than the default thread-
based scheduling model. You can think of fibers as essentially lightweight threads. Use the command sp_configure 'lightweight
pooling',1 to enable fiber-based scheduling.

Watch processor queuing and context switching to monitor the effect of setting values for both affinity mask and
lightweight pooling. In some situations, these settings can make performance worse instead of better. Also, they generally
do not yield much benefit unless your system has four or more processors. DBCC SQLPERF (THREADS) provides more
information about I/O, memory, and CPU usage mapped back to spids. Execute the following SQL query to take a survey of
current top consumers of CPU time:

select * from master.sysprocesses order by cpu desc.

Monitoring Processor Queue Length

If System: Processor Queue Length is greater than two, this means the server's processors are receiving more work requests
than they can handle as a collective group. Therefore, Windows needs to place these requests in a queue.

Some processor queuing is an indicator of good overall SQL Server I/O performance. If there is no processor queuing and if
CPU utilization is low, it may be an indication that there is a performance bottleneck somewhere else in the system, the most
likely candidate being the disk subsystem. Having a reasonable amount of work in the processor queue means that the CPUs
are not idle and the rest of the system is keeping pace with the CPUs.

A general rule of thumb for a good processor queue number is to multiply the number of CPUs on the database server by two.

Processor queuing significantly above this calculation needs to be investigated and may indicate that your server is
experiencing a CPU bottleneck. Excessive processor queuing costs query execution time. Several different activities could be
contributing to processor queuing. Eliminating hard and soft paging will help save CPU resources. Other methodologies that
help reduce processor queuing include SQL query tuning, picking better indexes to reduce disk I/O (and, hence, CPU), or
adding more CPUs (processors) to the system.

Monitoring I/O

Disk Write Bytes/sec and Disk Read Bytes/sec counters provide an idea of the data throughput in terms of bytes per second
per logical or physical drive. Weigh these numbers carefully along with Disk Reads/sec and Disk Writes/sec. Do not let a low
amount of bytes per second lead you to believe that the disk I/O subsystem is not busy.

Monitor the Disk Queue Length for all drives associated with SQL Server files and determine which files are associated with
excessive disk queuing.

If System Monitor indicates that some drives are not as busy as others, there is the opportunity to move SQL Server files from
drives that are bottlenecking to drives that are not as busy. This will help spread disk I/O activity more evenly across hard
drives. If one large drive pool is being used for SQL Server files, the resolution to disk queuing is to make the I/O capacity of
the pool bigger by adding more physical drives to the pool.

Disk queuing may be an indication that one SCSI channel is being saturated with I/O requests. System Monitor cannot directly
determine if this is the case. Storage vendors generally offer additional tools to help monitor the amount of I/O being serviced
by a RAID controller and whether the controller is queuing I/O requests. This is more likely to occur if many disk drives (ten or
more) are attached to the SCSI channel and they are all performing I/O at full speed. In this case, the solution is to connect half
of the disk drives to another SCSI channel or RAID controller to balance that I/O. Typically, rebalancing drives across SCSI
channels requires a rebuild of the RAID arrays and full backup/restore of the SQL Server database files.

Percent Disk Time

In System Monitor, the PhysicalDisk: % Disk Time and LogicalDisk: % Disk Time counters monitor the percentage of time
that the disk is busy with read/write activity. If the % Disk Time counter is high (more than 90 percent), check the Current
Disk Queue Length counter to see how many system requests are waiting for disk access. The number of waiting I/O
requests should be sustained at no more than 1.5 to 2 times the number of spindles making up the physical disk. Most disks
have one spindle, although redundant array of inexpensive disks (RAID) devices usually have more. A hardware RAID device
appears as one physical disk in System Monitor; RAID devices created through software appear as multiple instances.

Disk Queue Length

It is important to monitor for excessively long disk queues.

To monitor disk queue length, you will need to observe several System Monitor disk counters. To enable these counters, run
the command diskperf –y from the Windows 2000 or Windows NT command window and restart the machine.

Physical hard drives that are experiencing disk queuing will hold back disk I/O requests while they catch up on I/O processing.
SQL Server response time will be degraded for these drives. This costs query execution time.

If you use RAID, it is necessary to know how many physical hard drives are associated with each drive array that Windows sees
as a single physical drive, in order to calculate disk queuing for each physical drive. Ask a hardware expert to explain the SCSI
channel and physical drive distribution in order to understand how SQL Server data is held by each physical drive and how
much SQL Server data is distributed on each SCSI channel.

There are several choices for looking at disk queuing through System Monitor. Logical disk counters are associated with the
logical drive letters assigned through Disk Administrator, whereas physical disk counters are associated with what Disk
Administrator sees as a single physical disk device. Note that what appears to Disk Administrator as a single physical device
may either be a single hard drive or a RAID array, which consists of several hard drives. Current Disk Queue Length is an
instantaneous measure of disk queuing whereas Average Disk Queue Length averages the disk queuing measurement over
the sampling period. Take note if one of the following conditions is indicated:

Logical Disk: Avg. Disk Queue Length > 2

Physical Disk: Avg. Disk Queue Length > 2

Logical Disk: Current Disk Queue Length > 2

Physical Disk: Current Disk Queue Length > 2

These recommended measurements are for each physical hard drive. If a RAID array is associated with a disk queue
measurement, the measurement needs to be divided by the number of physical hard drives in the RAID array to determine the
disk queuing per physical hard drive.

Note: On physical hard drives or RAID arrays that hold SQL Server log files, disk queuing is not a useful measure because the
log manager does not queue more than a single I/O request to SQL Server logfile(s).

Understanding SQL Server Internals

Understanding some of the internals of SQL Server 2000 can assist you in managing the performance of your databases.

Worker Threads

SQL Server maintains of pool of Windows threads that are used to service batches of SQL Server commands being submitted
to the database server. The total number of these threads (referred to in SQL Server terminology as worker threads) available
to service all incoming command batches is dictated by the setting for the sp_configure option max worker threads. If the

number of connections actively submitting batches is greater than the number specified for max worker threads, worker
threads will be shared among connections actively submitting batches. The default of 255 will work well for many installations.
Note that the majority of connections spend most of their time waiting for batches to be received from the client.

Worker threads take on most of the responsibility of writing out dirty 8-KB pages from the SQL Server buffer cache. Worker
threads schedule their I/O operations asynchronously for maximum performance.

Lazy Writer

The lazy writer is a SQL Server system process that functions within the buffer manager. The lazy writer flushes out batches of
dirty, aged buffers (buffers containing changes that must be written back to disk before the buffer can be reused for a different
page) and makes them available to user processes. This activity helps to produce and maintain available free buffers, which are
8-KB data cache pages empty of data and available for reuse. As the lazy writer flushes each 8-KB cache buffer to disk, the
identity of the cache page is initialized so other data may be written into the free buffer. The lazy writer minimizes the impact
of this activity on other SQL Server operations by working during periods of low disk I/O.

SQL Server automatically configures and manages the level of free buffers. The performance counter SQL Server: Buffer
Manager: Lazy Writes/sec indicates the number of 8-KB pages being physically written out to disk. Monitor SQL Server:
Buffer Manager: Free Pages to see if this value dips. Optimally, the lazy writer keeps this counter level throughout SQL
Server operations, which means the lazy writer is keeping up with the user demand for free buffers. If the value of System
Monitor object SQL Server: Buffer Manager: Free Pages reaches zero, there were times when the user load demanded a
higher level of free buffers than the lazy writer was able to provide.

If the lazy writer is having problems keeping the free buffer steady, or at least above zero, it could mean the disk subsystem is
not able to provide sufficient disk I/O performance. Compare drops in free buffer level to disk queuing to confirm this. The
solution is to add more physical disk drives to the database server disk subsystem in order to provide more disk I/O
processing power.

Monitor the current level of disk queuing in System Monitor by looking at the performance counters Average Disk Queue
Length or Current Disk Queue Length for logical or physical disks, and ensure the disk queue is less than 2 for each physical
drive associated with any SQL Server activity. For database servers that employ hardware RAID controllers and disk arrays,
remember to divide the number reported by Logical/Physical Disk counters by the number of actual hard drives associated
with that logical drive letter or physical hard drive number (as reported by Disk Administrator), because Windows and SQL
Server are unaware of the actual number of physical hard drives attached to a RAID controller. It is important to be aware of
the number of drives associated with the RAID array controller in order to properly interpret the disk queue numbers that
System Monitor is reporting.

For more information, search for the strings "freeing and writing buffer pages" and "write-ahead transaction log" in SQL
Server Books Online.

Checkpoint

Periodically, each instance of SQL Server ensures that all dirty log and data pages are flushed to disk. This is called a
checkpoint. Checkpoints reduce the time and resources needed to recover from a failure when an instance of SQL Server is
restarted. During a checkpoint, dirty pages (buffer cache pages that have been modified since being brought into the buffer
cache) are written to the SQL Server data files. A buffer written to disk at a checkpoint still contains the page and users can
read or update it without rereading it from disk, which is not the case for free buffers created by the lazy writer.

Checkpoint logic attempts to let worker threads and the lazy writer do the majority of the work writing out dirty pages.
Checkpoint logic does this by trying an extra checkpoint wait before writing out a dirty page if possible. This provides the
worker threads and the lazy writer more time to write out the dirty pages. The conditions under which this extra wait time for a
dirty page occurs is detailed in SQL Server Books Online in the topic "Checkpoints and the Active Portion of the Log." The main
idea to remember is that checkpoint logic attempts to even out SQL Server disk I/O activity over a longer time period with this
extra checkpoint wait.

For more efficient checkpoint operations when there are a large number of pages to flush out of cache, SQL Server sorts the
data pages to be flushed in the order the pages appear on disk. This helps to minimize disk arm movement during cache flush
and takes advantage of sequential disk I/O where possible. The checkpoint process also submits 8-KB disk I/O requests
asynchronously to the disk subsystem. This allows SQL Server to finish submitting required disk I/O requests faster because
the checkpoint process doesn't wait for the disk subsystem to report back that the data has been actually written to disk.

It is important to watch disk queuing on hard drives associated with SQL Server data files to determine if SQL Server is
sending more disk I/O requests than the disk(s) can handle; if this is true, more disk I/O capacity must be added to the disk
subsystem so it can handle the load.

Log Manager

Like all other major RDBMS products, SQL Server ensures that all write activity (insert, update, and delete) performed on the

database will not be lost if something were to interrupt SQL Server's online status, such as power failure, disk drive failure, fire
in the data center, and so on. The SQL Server logging process helps guarantee recoverability. Before any implicit (single SQL
query) or explicit transaction (defined transaction that issues a BEGIN TRAN/COMMIT, or ROLLBACK command sequence) can
be completed, the log manager must receive a signal from the disk subsystem that all data changes associated with that
transaction have been written successfully to the associated log file. This rule guarantees that if SQL Server is abruptly shut
down for whatever reason and the transactions written into the data cache are not yet flushed to the data files by the
checkpoint and lazy writer, the transaction log can be read and reapplied in SQL Server upon startup. Reading the transaction
log and applying the transactions to SQL Server data after a server stoppage is referred to as recovery.

Because SQL Server must wait for the disk subsystem to complete I/O to SQL Server log files as each transaction is completed,
it is important that the disks containing SQL Server log files have sufficient disk I/O handling capacity for the anticipated
transaction load.

The method of watching out for disk queuing associated with SQL Server log files is different from SQL Server database files.
Use the System Monitor counters SQL Server: Databases <database instance>: Log Flush Waits Times and SQL Server:
Databases <database instance>: Log Flush Waits/sec to see if there are log writer requests waiting on the disk subsystem
for completion.

A caching controller provides the highest performance, but should not be used for disks that contain log files unless the
controller guarantees that data entrusted to it will be written to disk eventually, even if the power fails. For more information
on caching controllers, refer to the section in this document titled "Effect of On-Board Cache of Hardware RAID Controllers."

Read-Ahead Management

SQL Server 2000 provides automatic management for reading large sequential reads for activities such as table scans. Read-
ahead management is completely self-configuring and self-tuning, and is tightly integrated with the operations of the SQL
Server query processor. Read-ahead management is used for large table scans, large index range scans, probes into clustered
and nonclustered index binary trees, and other situations. This is because read-aheads occur with 64-KB I/Os, which provide
higher disk throughput potential for the disk subsystem than do 8-KB I/Os. When it is necessary to retrieve a large amount of
data, SQL Server uses read-ahead to maximize throughput.

SQL Server uses a simple and efficient Index Allocation Map (IAM) storage structure that supports read-ahead management.
The IAM is the SQL Server mechanism for recording the location of extents – each 64 KB extent contains eight pages of data or
index information. Each IAM page is an 8-KB page that contains tightly packed (bitmapped) information about which extents
contain required data. The compact nature of IAM pages makes them fast to read, and more regularly used IAM pages can be
maintained in buffer cache.

Read-ahead management can construct multiple sequential read requests by combining query information from the query
processor with information about the location of all extents that need to be read from the IAM page(s). Sequential 64-KB disk
reads provide extremely good disk I/O performance. The SQL Server: Buffer Manager: Read-Ahead Pages/sec performance
counter provides information about the effectiveness and efficiency of read-ahead management.

SQL Server 2000 Enterprise Edition dynamically adjusts the maximum number of read ahead pages based on the amount of
memory present. For all other editions of SQL Server 2000 the value is fixed. Another advance in SQL Server 2000 Enterprise
Edition is commonly called merry-go-round scan, which allows multiple tasks to share full table scans. If the execution plan of
an SQL statement calls for a scan of the data pages in a table, and if the relational database engine detects that the table is
already being scanned for another execution plan, the database engine joins the second scan to the first at the current location
of the second scan. The database engine reads each page once and passes the rows from each page to both execution plans.
This continues until the end of the table is reached. At that point, the first execution plan has the complete results of a scan, but
the second execution plan must still retrieve the data pages that occur before the point at which it joined the in-progress scan.
The scan for second execution plan then wraps back to the first data page of the table and scans forward to the point at which
it joined the first scan. Any number of scans can be combined in this way; the database engine will keep looping through the
data pages until it has completed all the scans.

One caveat about read-ahead management is that too much read-ahead can be detrimental overall to performance because it
can fill cache with unneeded pages, using I/O and CPU that could have been used for other purposes. The solution is a general
performance tuning goal to tune all SQL queries so a minimal number of pages are brought into buffer cache. This includes
making sure you have the right indexes in place and are using them. Use clustered indexes for efficient range scanning and
define nonclustered indexes to help quickly locate single rows or smaller rowsets. For example, if you plan to have only one
index in a table and that index is for the purposes of fetching single rows or smaller rowsets, you should make the index
clustered. Clustered indexes are nominally faster than nonclustered indexes.

Miscellaneous Performance Topics

Database Design Using Star and Snowflake Schemas

Data warehouses use dimensional modeling to organize data for the purpose of analysis. Dimensional modeling produces star
and snowflake schemas, which also provide performance efficiency for the massive data read operations that are frequently
performed in data warehousing. High-volume data (often hundreds of millions of rows) is stored in a fact table that has very
short rows, which minimizes storage requirements and query time. Attributes of business facts are denormalized into
dimension tables to minimize the number of table joins when retrieving data.

For a discussion of database design for data warehouses, see the chapter "Data Warehouse Design Considerations," in the
Microsoft SQL Server 2000 Resource Kit.

SQL to Avoid, If Possible

Using inequality operators in SQL queries will force databases to use table scans to evaluate the inequalities. This generates
high I/O if these queries regularly run against very large tables. WHERE clauses that contain the "NOT" operators (!=, <>, !<,
!>), such as WHERE <column_name> != some_value will generate high I/O.

If these types of queries need to be run, try to restructure the queries to eliminate the NOT keyword. For example:

Instead of:

select * from tableA where col1 != "value"

Try using:

select * from tableA where col1 < "value" or col1 > "value"

Reduce Rowset Size and Communications Overhead

Database programmers who work in SQL work with easy-to-use interfaces like the Microsoft ActiveX® Data Objects (ADO),
Remote Data Objects (RDO) and Data Access Objects (DAO) database APIs need to consider the result sets they are building.
ADO/RDO/DAO provide programmers with great database development interfaces that allow rich SQL rowset functionality
without requiring a lot of SQL programming experience. But this comes at a cost. Programmers can avoid performance
problems if they carefully consider the amount of data their application is returning to the client, and keep track of where the
SQL Server indexes are placed and how the SQL Server data is arranged. SQL Profiler, the Index Tuning Wizard, and graphical
execution plans are very helpful tools for pinpointing and fixing these problem queries.

When using cursor logic, choose the cursor that is appropriate for the type of processing you intend to do. Different types of
cursors come with varying costs. You should understand what types of operations you intend to perform (read-only, forward
processing only, and so forth) and then choose your cursor type accordingly.

Look for opportunities to reduce the size of the resultset being returned by eliminating columns in the select list that do not
need to be returned, or by returning only the required rows. This helps reduce I/O and CPU consumption.

Using Multiple Statements

You can reduce the size of your resultset and avoid unnecessary network communications between the client and your
database server by performing the processing on the database. To perform processes that cannot be done using a single
Transact-SQL statement, SQL Server allows you to group Transact-SQL statements together in the following ways.

Grouping
method Description

Batches A batch is a group of one or more Transact-SQL statements sent from an application to the server as one unit.
SQL Server executes each batch as a single executable unit.

Stored
procedures

A stored procedure is a group of Transact-SQL statements that has been predefined and precompiled on the
server. The stored procedure can accept parameters, and can return result sets, return codes, and output
parameters to the calling application.

Triggers A trigger is a special type of stored procedure. It is not called directly by applications. It is instead executed
whenever a user performs a specified modification (INSERT, UPDATE, or DELETE) to a table.

Scripts A script is a series of Transact-SQL statements stored in a file. The file can be used as input to the osql utility or
SQL Query Analyzer. The utilities then execute the Transact-SQL statements stored in the file.

The following SQL Server features allow you control the use of multiple Transact-SQL statements at a time.

Feature Description

Control-
of-flow
statements

Allow you to include conditional logic. For example, if the country is Canada, perform one series of Transact-SQL
statements. If the country is U.K., do a different series of Transact-SQL statements.

Variables

Allow you to store data for use as input in a later Transact-SQL statement. For example, you can code a query that
needs different data values specified in the WHERE clause each time the query is executed. You can write the query
to use variables in the WHERE clause, and code logic to fill the variables with the proper data. The parameters of
stored procedures are a special class of variables.

Error
handling

Lets you customize the way SQL Server responds to problems. You can specify appropriate actions to take when
errors occur, or display customized error messages that are more informative to a user than a generic SQL Server
error.

Reusing Execution Plans

Performance gains can be realized when SQL Server is able to leverage an existing execution plan from a prior query. There are
a number of things the developer can do to encourage SQL Server to reuse execution plans. Transact-SQL statements should
be written according to the following guidelines.

Use fully qualified names of objects, such as tables and views.

For example, do not code this SELECT:

SELECT * FROM Shippers WHERE ShipperID = 3

Instead, using ODBC as an example, use the SQLBindParameter ODBC function:

SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = 3

Use parameterized queries, and supply the parameter values instead of specifying stored procedure parameter values or
the values in search condition predicates directly. Use either the parameter substitution in sp_executesql or the
parameter binding of the ADO, OLE DB, ODBC, and DB-Library APIs.

For example, do not code this SELECT:

SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = 3

Instead, using ODBC as an example, use the SQLBindParameter ODBC function to bind the parameter marker (?) to a
program variable and code the SELECT statement as:

SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = ?

In a Transact-SQL script, stored procedure, or trigger, use sp_executesql to execute the SELECT statement:

DECLARE @IntVariable INT
 DECLARE @SQLString NVARCHAR(500)
 DECLARE @ParmDefinition NVARCHAR(500)
 /* Build the SQL string. */
 SET @SQLString =
 N'SELECT * FROM Northwind.dbo.Shippers WHERE ShipperID = @ShipID'
 /* Specify the parameter format once. */
 SET @ParmDefinition = N'@ShipID int'
 /* Execute the string. */
 SET @IntVariable = 3
 EXECUTE sp_executesql @SQLString, @ParmDefinition,
 @ShipID = @IntVariable

sp_executesql is a good alternative when you do not want the overhead of creating and maintaining a separate stored
procedures.

Reusing Execution Plans for Batches

If multiple concurrent applications will execute the same batch with a known set of parameters, implement the batch as a
stored procedure that will be called by the applications.

When an ADO, OLE DB, or ODBC application will be executing the same batch multiple times, use the PREPARE/EXECUTE
model of executing the batch. Use parameter markers bound to program variables to supply all needed input values, such as
the expressions used in an UPDATE VALUES clause or in the predicates in a search condition.

Maintaining Statistics on Columns

SQL Server allows statistical information regarding the distribution of values in a column to be created even if the column is
not part of an index. This statistical information can be used by the query processor to determine the optimal strategy for
evaluating a query. When you create an index, SQL Server automatically stores statistical information regarding the
distribution of values in the indexed column(s). In addition to indexed columns, if the AUTO_CREATE_STATISTICS database
option is set to ON (which it is by default), SQL Server automatically creates statistics for columns that get used in a predicate
even if the columns are not in indexes.

As the data in a column changes, index and column statistics can become outdated and cause the query optimizer to make
less-than-optimal decisions about how to process a query. Periodically, SQL Server automatically updates this statistical
information as the data in a table changes. The sampling is random across data pages, and taken from the table or the smallest
nonclustered index on the columns needed by the statistics. After a data page has been read from disk, all the rows on the data
page are used to update the statistical information. The frequency at which the statistical information is updated is determined
by the volume of data in the column or index and the amount of changing data.

For example, the statistics for a table containing 10,000 rows may need to be updated after 1,000 index values have changed
because 1,000 values may represent a significant percentage of the table. However, for a table containing 10 million index
entries, 1,000 changing index values is less significant, and so the statistics may not be automatically updated. SQL Server,
however, always ensures that a minimum number of rows are sampled; tables that are smaller than 8 MB are always fully
scanned to gather statistics.

Note: Outdated or missing statistics are indicated as warnings (table name in red text) when the execution plan of a query is
graphically displayed using SQL Query Analyzer. Additionally, monitoring the Missing Column Statistics event class using
SQL Profiler indicates when statistics are missing.

Statistics can easily be created on all eligible columns in all user tables in the current database in a single statement by using
the sp_createstats system stored procedure. Columns not eligible for statistics include nondeterministic or nonprecise
computed columns, or columns of image, text, and ntext data types.

Creating statistics manually allows you to create statistics that contain multiple column densities (average number of
duplicates for the combination of columns). For example, a query contains the following clause:

WHERE a = 7 and b = 9

Creating manual statistics on both columns together (a, b) can allow SQL Server to make a better estimate for the query
because the statistics also contain the average number of distinct values for the combination of columns a and b. This allows
SQL Server to make use of the index (preferably clustered in this case), if it is built on col1 rather than needing to resort to a
table scan. For information on how to create column statistics, see the topic "CREATE STATISTICS" in SQL Server Books Online.

Top Of Page

Finding More Information

SQL Server Books Online provides information on SQL Server architecture and database tuning along with complete
documentation on command syntax and administration. SQL Server Books Online can be installed from the SQL Server
installation media on any SQL Server client or server computer.

For the latest information on Microsoft SQL Server, including technical papers on SQL Server, visit the public Microsoft
SQL Server Web sites at:

http://www.microsoft.com/sql

http://www.microsoft.com/technet/prodtechnol/sql/default.mspx

http://msdn2.microsoft.com/sqlserver/default.aspx

An external resource that provides good information in the form of a periodical can be found at http://www.sqlmag.com.
You will find many optimization and tuning hints, code samples, and insightful articles outlining the internal workings of
SQL Server and other valuable information.

Delaney, Kalen & Soukup, Ron. Inside Microsoft SQL Server 2000, Microsoft Press, 2001.

http://www.microsoft.com/sql/
http://www.microsoft.com/technet/prodtechnol/sql/default.mspx
http://msdn2.microsoft.com/sqlserver/default.aspx
http://www.sqlmag.com/

This book updates the previous version (Inside Microsoft SQL Server 7.0) with information for SQL Server 2000. This
book delves into many of the internal concepts of SQL Server that cannot easily be found elsewhere.

Kimball, Ralph. The Data Warehouse Lifecycle Toolkit, John Wiley and Sons, 1998.

This is considered by many to be one of the best data warehousing how-to books written on the subject. It provides
excellent insight into data warehouse database design and does a great job of explaining dimensional modeling
concepts.

Celko, Joe. SQL for Smarties. Morgan Kaufmann, 1999.

There is some very helpful information in this book. Contains solutions to common problems such as representing and
querying hierarchical data. Chapter 28 is dedicated to optimizing SQL queries.

Top Of Page

Microsoft SQL Server 2000 Analysis Services Operations Guide
Updated : February 25, 2004

By Carl Rabeler, Dave Wickert

Published: November 2003

Summary: This paper describes techniques you can use to operate and maintain a Microsoft® SQL Server™ 2000 Analysis
Services data warehouse.

On This Page

Introduction
Configuration Management
Release Management
Change Management
Security Administration
Service and Availability Management
Capacity Management
Problem and Incident Management
Appendix A: Checklist for Operations
Appendix B: Resources
Appendix C: How to Tune the Process Buffer Size
Appendix D: Sample Script for Changing the Data Folder Location
Appendix E: Sample Script for Creating Repository Audit Triggers
Appendix F: Sample Script for Creating an OLAP Linked Server
Appendix G: Sample Script To Verify Analysis Services Availability
Appendix H: Sample Script to Determine When Lazy Processing is Complete
Appendix I: Sample Script to Determine Whether Data Slices Have Been Set
Appendix J: Sample Script to Determine the Analysis Services Edition
Appendix K: Data Folder Structure
Database Folder
Cube Folder

Introduction

Every administrator who operates the Microsoft® SQL Server™ 2000 Analysis Services portion of a data warehouse faces
certain common operational issues. Analysis Services and its environment must be configured appropriately. The Analysis
Services application must be deployed from the development environment to the production environment. Change control
must be employed to ensure that changes to an existing environment are fully tested, and that approved changes are deployed
properly. Capacity issues must be anticipated proactively. Problems must be resolved quickly and consistently. The agreed-
upon availability of the Analysis Services cubes for querying must be ensured.

This paper provides guidance to assist administrators with the operation and maintenance of their Analysis Services databases
as components within an existing IT and database infrastructure. You should integrate existing structures and techniques to
solve Analysis Services operational issues, rather than inventing new processes just for Analysis Services. For example, you
should employ the same incident tracking and problem resolution techniques that you use with your relational databases; use
the same automation techniques to schedule jobs and scripts; and employ the same change control techniques to ensure
change is controlled, tested, and documented.

The guidance provided by this paper is presented within the structure of the Microsoft Operations Framework (MOF)
methodology. MOF is a representation of the cyclical process that any operation goes through, which is divided into four
quadrants: changing, operating, supporting, and optimizing. This paper addresses the changing, operating, and supporting
quadrants in the following sections:

"Configuration Management" discusses best practices for configuring Analysis Services and the Windows operating
system on the Analysis Services computer.

"Release Management" discusses the tools you can use to move an Analysis Services database from the development
environment to the quality assurance (QA) and production environments.

"Change Management" discusses the importance of controlling and managing change, and covers how to use triggers to

detect unmanaged changes.

"Security Administration" discusses how to secure access to Analysis Services while minimizing overhead, and how to
configure service accounts for appropriate access to Analysis Services data, the Analysis Services repository, and
relational data.

"Service and Availability Management" discusses how to provide service continuity through the implementation of an
availability plan that incorporates regular backup operations, well-tested restoration techniques, and clustering when
continuous, 24-hour per day operations are required.

"Capacity Management" discusses memory, disk, and processor capacity issues.

"Problem and Incident Management" discusses techniques that you can employ to detect, resolve, and document
Analysis Services problems and incidents.

For information on MOF's fourth quadrant, optimizing, go to the Microsoft Technet Web site
(http://www.microsoft.com/technet) and see "Microsoft Analysis Services Performance Guide."

The guidance presented here is based on the collective experience of the Microsoft Business Intelligence (BI) Practices team and
the Analysis Services development team. In addition to the techniques discussed in this paper, you should also apply SQL
Server 2000 Service Pack 3 (SP3) to the computer on which Analysis Services is running (the Analysis server) and update
Microsoft PivotTable® Service (PTS) on each Analysis Services client computer (run Ptslite.exe in the ..\Msolap\install\pts folder
for SP3). Updating PTS on each client computer is particularly important because the client-server architecture of PTS places a
significant portion of the PTS code on each client computer and SP3 includes significant performance and security
enhancements to the client-side components of PTS. For information on determining the level of service pack that has been
applied to an Analysis Services installation or to a client computer, see "Verifying the Appropriate Service Pack Level" later in
this paper. For information on automating the installation of SP3 on each client computer, go to Microsoft Knowledge Base
(support.microsoft.com) and see the article "Ptssetup.exe Sample Automatically Downloads and Installs OLAP Client."

Top Of Page

Configuration Management

Before you release and deploy your BI application, you must install and configure the appropriate edition of the Windows
operating system and Analysis Services on the computer that will host the application. You should maintain a record of the
actual configuration of this computer, the operating system, and the installed services and applications in a run book. Having a
written record containing this configuration information will help you rebuild the server in the event of a disaster. You can also
refer to this written record whenever you need to obtain configuration information for troubleshooting. This run book should
also contain information about systems from which data is received, and contact information about people who should be
contacted in the event of an emergency. For information about the detailed information that you should keep in your run book,
go to the Microsoft Technet Web site (http://www.microsoft.com/technet) and see "Appendix: Contents of a Run Book" in
Microsoft SQL Server 2000 High Availability Series, Volume 1: Planning Guide. While the topic list in the Planning Guide is
primarily oriented to the RDBMS components of Microsoft SQL Server 2000, it does include topics specifically for SQL Server
Analysis Services. In addition, there are many points in common, such as resource and contact information, details on the
hardware configuration, and some operational and emergency tasks.

After you release and deploy your BI application, there are a number of configuration settings that you need to monitor to see
if they require modification as conditions change. If you change any configuration settings, you must update the information in
the run book to ensure that all members of your administration team can quickly determine the current configuration of
Analysis Services and the Microsoft Windows® operating system. For more information on managing change, see "Change
Management" later in this paper.

You should also document all of the objects in Analysis Services. For example, you can use OLAP Scribe, which is a Microsoft
Word template that allows you to generate complete documentation of Analysis Services using Decision Support Objects
(DSO). You can obtain this template at http://go.microsoft.com/fwlink/?LinkId=22012.

Configuring the Windows Operating System

Configuring the Windows operating system for optimum Analysis Services performance consists primarily of configuring
processors, the Windows paging files, and memory. You can also disable services that are not needed.

Note Microsoft recommends that Analysis Services not be installed on a domain controller. There are situations where this is
required, such as when Analysis Services is installed with Microsoft Small Business Server or on a standalone domain, but, in
general, you should avoid the configuration if possible. For more information, go to Microsoft Knowledge Base
(support.microsoft.com) and see the article "INF: Running OLAP Services on a Domain Controller."

http://www.microsoft.com/technet/
http://www.microsoft.com/technet/
http://go.microsoft.com/fwlink/?LinkId=22012

Processor

If you are running Analysis Services on a multiple processor computer, Analysis Services schedules threads on all available
processors in the computer. Unlike the SQL Server service, Analysis Services does not natively support processor affinity to
control the processors on which its threads will execute. Because Analysis Services is highly multithreaded, Analysis Services
can consume all available processing resources. For this reason, you should use a dedicated server for Analysis Services in
most cases. If you must share the computer resources with other server applications, you should select a server application
that supports processor affinity, such as SQL Server. By setting processor affinity in SQL Server, you can control the processors
executing the SQL Server threads and the priority of these threads, to ensure that sufficient processor resources remain
available for Analysis Services threads.

If you need to control the processors on which Analysis Services threads execute, you should also consider using Microsoft
Windows Server™ 2003 Enterprise Edition or Windows Server 2003 Datacenter Edition. These editions of Windows Server
2003 include the Windows System Resource Manager (WSRM), which allows an administrator to set processor and memory
allocation policies for applications running on the server. WSRM enables you to select the Analysis Services process and limit
Analysis Services threads to specific CPUs or to a specific threshold of processor resources. For more information on WSRM,
go to the Windows Server 2003 Web site
(http://www.microsoft.com/windowsserver2003/techinfo/overview/wsrmfastfacts.mspx) and see the article "Windows System
Resource Manager-Fast Facts."

Paging Files

By default, Windows uses a single paging file equal to approximately 1.5 times the amount of physical memory in your
computer. However, because Analysis Services makes extensive use of Windows paging files, you should always add a second
paging file equal to the amount of physical memory on your computer. The SQL Server relational and multidimensional
runtime engines work with memory very differently. The SQL Server relational engine directly maps and controls physical
memory usage, while the Analysis Services multidimensional engine relies on the Windows operating system to allocate
additional memory (physical or virtual) to the Analysis Services address space as needed. As a result, when the Windows
operating system reduces the Analysis Services working set because other applications require allocations of physical memory,
Analysis Services may need to use the paging file for its memory needs. You must ensure that the total paging file space is
more than that configured by default, so that Analysis Services has sufficient virtual memory if the Windows operating system
has insufficient physical memory.

While the Windows operating system has provisions for effectively controlling the general use of memory, Microsoft strongly
recommends that customers configure servers with an adequate amount of memory so that extensive paging does not occur.
If the main processing component of Analysis Services, the msmdsrv process, causes extensive paging, processing
performance suffers.

Memory

Processes (such as Analysis Services) running in Windows 2000 Server or Windows Server 2003 Standard Edition can address
a maximum of 2 gigabytes (GB) of RAM in the main process space. If you are working with large or complex cubes, Analysis
Services may require more than 2 GB to load dimensions into memory, process dimensions, load replica dimensions, and still
have sufficient memory for an effective query results cache. To allow Analysis Services to address more than 2 GB of RAM in a
single process, you must install Windows 2000 Advanced Server; Windows 2000 Datacenter Server; Windows Server 2003
Enterprise Edition; or Windows Server 2003 Datacenter Edition.

Windows Server 2003 Enterprise Edition and Windows Server 2003 Datacenter Edition, are available in 32-bit and 64-bit
versions. The 64-bit version supports the 64-bit version of Analysis Services. Because Windows 2000 Advanced Server and
Windows 2000 Datacenter Server are 32-bit operating systems, only the 32-bit version of Analysis Services can be installed.

The 64-bit version of Analysis Services can address all available memory in the main process space without any special
configuration (up to 64 GB with the Enterprise Edition and up to 512 GB with the Datacenter Edition).

The 32-bit version of Analysis Services can address up to 3 GB of memory in the main process space, if you enable
Application Memory Tuning. Unless you enable Application Memory Tuning, no process can address more than 2 GB in
the main process space. To enable Application Memory Tuning on the Analysis Services computer, set the /3 GB switch in
the boot.ini file and then use Analysis Manager to set an appropriate Memory conservation threshold value for
Analysis Services. If you set the /3GB switch in boot.ini, the computer on which Analysis Services is running should have
at least 4 GB of memory to ensure that the Windows operating system has sufficient memory for system services. If you
are running other applications on the same computer, you must factor in their memory requirements as well. For
example, if the SQL Server service and Analysis Services are installed on the same computer, SQL Server can address
memory above 4 GB because SQL Server supports Address Windowing Extensions (AWE). In this case, you could install
and use 8 GB or more on the server. However, because Analysis Services does not support AWE, Analysis Services cannot

http://www.microsoft.com/windowsserver2003/techinfo/overview/wsrmfastfacts.mspx

access more the 3 GB of memory in the main process space unless the 64-bit version is used.

For more information on setting the /3GB switch, go to Microsoft Knowledge Base (support.microsoft.com) and see the article
"INF: How to Enable Analysis Server To Use 3 GB of RAM.". For more information on setting the Memory conservation
threshold value, see "Configuring Analysis Services" immediately following this section.

Disabling Unnecessary Services

While there is no complete list of the Windows services that are not required on an Analysis Services computer, turning off
services that are not required will save memory for use by Analysis Services. Among the services that you might not need are
the following:

Alerter

Application Management Transfer Service

ClipBook

COM+ Event System

Computer Browser

Distributed Link Tracking Client

Distributed Transaction Coordinator

Fax Service

Indexing Service

Internet Connection Sharing

Logical Disk Manager Administrative Service

Messenger

Net Logon - This service is needed if your users require Windows NT® pass-through authentication to connect to
Analysis Services.

Microsoft NetMeeting® Remote Desktop Sharing

Network DDE

Network DDE DSDM

NT LM Security Support Provider

Performance Logs and Alerts

Protected Storage

QoS RSVP

Remote Access Auto Connection Manager

Remote Access Connection Manager

Remote Procedure Call (RPC) Locator

Routing and Remote Access

RunAs Service

Security Accounts manager

Server

SmartCard

SmartCard Helper

System Event Notification

Task Scheduler

TCP/IP NetBIOS Helper Service

Telephony

Telnet

Uninterruptible Power Supply

Utility Manager

Windows Installer

Windows Time

You can turn off a service by either disabling the service or setting the service to start manually. If you set a service to start
manually, Windows starts the service if it is needed.

Note Viruses can also start services that are set to manual.

If you disable the service, Windows cannot start the service. For a complete listing of Windows 2000 services and their
functions, go to the Microsoft Windows 2000 Web site (http://www.microsoft.com/windows2000) and see the article "Glossary
of Windows 2000 Services."

Note If you are running SQL Server 7.0, do not disable the remote registry service. This service is required to administer a
remote Analysis Services installation.

Important You should disable the Indexing Service to avoid locking problems and possible corruption during processing.
You should also configure any anti-virus software on the machine so it does not scan the Analysis Services Data folder or the
Temporary file folder. To locate these folders using Analysis Manager, right-click the server, select Properties, and then view
the information that appears on the General tab.

Configuring Analysis Services

After you install Analysis Services, there are a number of configuration settings that you should always check (several of which
you should generally change). Most configuration settings can be changed using Analysis Manager, although there are several
settings that you must change by editing the Windows registry directly. This paper discusses the most important configuration
settings. For information on additional configuration settings related to performance, go to the Technet Web site
(http://www.microsoft.com/technet) and see "Microsoft Analysis Services Performance Guide." For information about the
entire range of registry entries for Analysis Services, go to the Microsoft MSDN® library (msdn.microsoft.com) and see
"Registry Entries for Microsoft SQL Server 2000 Analysis Services." If you want to monitor the registry keys that are written to
by Analysis Services (or by any other Windows application), you can use various utilities that are available for the Windows
platform. A commonly used utility is Regmon from Sysinternals (www.sysinternals.com). This freeware registry monitoring
utility shows the applications that are accessing the registry, the keys they are accessing, and the registry data they are reading
and writing.

Note Some features of Analysis Services are only available with the Enterprise Edition. Use the sample DSO script provided in
Appendix J, "Sample Script to Determine the Analysis Services Edition," later in this paper to determine the edition of Analysis
Services that you are using.

Memory Settings

Having sufficient memory for Analysis Services increases query responsiveness and processing performance. Properly
configuring available memory will maximize the use of memory, limit the use of disk resources for processing, and prevent the
cleaner thread from evicting cache entries too quickly. The amount of memory used by Analysis Services for various purposes
is regulated by a number of memory settings:

High and low memory settings

Very Large Dimension Memory (VLDM) threshold setting

Process buffer settings

These settings are configured using default values or based on the amount of physical memory in the computer during
installation. Changing some of these memory settings is generally recommended.

High and Low M emory Settings

Analysis Services employs a number of mechanisms to keep the amount of memory allocated to it within the range that is

http://www.microsoft.com/windows2000/
http://www.microsoft.com/technet/
http://www.sysinternals.com/

defined by two settings on the Environment tab of the Server Properties dialog box in Analysis Manager: the Memory
conservation threshold and the Minimum allocated memory settings (the HighMemoryLimit and the
LowMemoryLimit values in the registry). The default value for the Memory conservation threshold setting is the amount
of physical memory on the computer at the time of installation. The default value for the Minimum allocated memory
setting is half the amount of physical memory on the computer at the time of installation. If you change the amount of
memory on the computer after installation, you must manually modify these values. Otherwise, Analysis Services will not
properly utilize the actual amount of physical memory on the computer.

Analysis Services uses a cleaner thread to reduce the amount of memory allocated to Analysis Services when the amount of
memory allocated reaches the halfway point between the Memory conservation threshold setting and the Minimum
allocated memory setting. When the cleaner thread is activated, it begins evicting entries in the query results cache, based on
a cost/benefit algorithm that takes into account a variety of factors, including how frequently the data in the query results
cache is being used, the amount of resources that were required to resolve the entries, and the amount of space being
consumed by related entries. By default, the cleaner thread runs at below-normal priority. The frequency with which it runs is
determined by the BackgroundInterval registry setting. The default value is thirty seconds. This setting actually governs the
number of seconds between processing periods for a variety of background tasks, including the cleaner thread, query logging,
and lazy processing. If you want to set an interval for the cleaner thread separate from these other background tasks, add the
CleanerInterval registry key and set a value just for the cleaner thread.

When the amount of memory used by Analysis Services exceeds the Memory conservation threshold setting, Analysis
Services increases the priority of the cleaner thread to normal in order to quickly reduce the allocated memory to the
Minimum allocated memory setting. If the total memory allocated to all Analysis Services tasks exceeds the memory
conservation threshold by more than approximately 6.25 percent, Analysis Services immediately begins dropping the cache
entries for entire cubes in order to quickly reduce the amount memory used by Analysis Services. In this scenario, because
Analysis Services is shedding memory extremely quickly, the total amount of allocated memory may drop below the
Minimum allocated memory setting.

If you set the Minimum allocated memory setting too low, the cleaner thread removes too many cached entries from the query
results cache. This reduces query response times and requires additional resources to repopulate the query results cache. For
example, suppose your computer has 2 GB of physical memory and you set the Memory conservation threshold setting to
1.4GB and the Minimum allocated memory setting to 100MB. If memory usage ever goes significantly above 1.4 GB, the
cleaner thread aggressively drops entries from the query results cache, down to 100 megabytes (MB) or even less. Analysis
Services must then rebuild the entries in the query results cache from newly submitted queries. A more appropriate Minimum
allocated memory setting for this system is approximately 1 GB, which gives the cleaner thread room to perform its job
without unnecessarily throwing away cache entries when the amount of allocated memory exceeds the Memory
conservation threshold setting.

As you can see, setting the Memory conservation threshold setting too low will also reduce overall performance, and may
result in out-of-memory errors. You should never set the Memory conservation threshold setting to more than the amount
of physical memory on the computer (otherwise the paging files will be used excessively). If you enable the /3 GB switch, you
should not set the Memory conservation threshold setting to more than approximately 2.7 GB. Setting this value slightly
below the 3-GB memory limit ensures that the cleaner thread has sufficient time to respond to low memory conditions and to
reduce allocated memory before Analysis Services uses the entire 3-GB address space. The memory conservation threshold
does not directly limit the amount of memory used by Analysis Services, which means Analysis Services can run out of address
space in the main process space or use more memory than is physically present on the computer.

Tip If you add memory or enable the /3 GB switch in the boot.ini file, increase the Memory conservation threshold and
Minimum allocated memory settings in Analysis Manager.

Note If you have not installed Analysis Services Service Pack 3, you must modify the HighMemoryLimit value by editing the
registry directly to enable Analysis Services to address more than 2 GB of memory rather than using the Memory
conservation threshold setting in Analysis Manager. In SP3, Analysis Manager was changed to allow an administrator to
enter a number larger than 2 GB (up to 3 GB). In SP2 and earlier, Analysis Manager would only allow settings between 1 and
2047 MB. For more information, go to Microsoft Knowledge Base (support.microsoft.com) and see the article "INF: How to
Enable Analysis Server To Use 3 GB of RAM."

Very Large Dimension M emory (VLDM) Threshold

The 32-bit version of Analysis Services (the 64-bit version does not use VLDM) attempts to prevent large dimensions from
using all of the available virtual memory address space by loading each very large dimension at startup into its own process
space with its own virtual memory address space. A very large dimension is one that exceeds the value of the
VLDMThreshold setting in the registry. The default VLDM threshold is 64 MB. While using a separate address space for each
dimension that exceeds the VLDM threshold does save virtual memory address space for other uses in the main process,
overall performance slows when one or more dimensions exceed the VLDM threshold. Loading all dimensions into the main

process space (when possible) yields better performance, but you must ensure that there is sufficient virtual memory address
space to perform the following:

Load all dimensions into memory at startup.

Load all dimensions being processed in parallel or in a single transaction into memory during processing (these are
called shadow dimensions). Analysis Services uses the existing version of each dimension to resolve user queries until
the processing transaction commits. To minimize the amount of memory needed for shadow dimensions, process
dimensions in separate transactions. If you select Process the Database or Process All Dimensions in Analysis
Manager, the dimensions are processed in a single transaction and will require sufficient memory to load each
dimension in memory twice (once at startup and then again during processing).

Store replica dimensions as required. See "Replica Dimensions" later in this paper.

Perform all processing without using temporary files. See "Process Buffer" later in this paper. However do not use VLDM
just to allow a larger process buffer. Processing is a one-time or, at worst, an occasional activity. Using VLDM is a
constant overhead for performance and complexity (more processes, more context switching, and so on).

Create and use a sufficiently large query results cache. See "Query Results Cache" later in this paper.

If Analysis Services does not have enough virtual memory address space in the main process space, set the VLDM threshold so
that only the largest dimensions are loaded into separate address spaces. For more information on how Analysis Services uses
available memory and how to calculate the amount of memory required, see "Capacity Management" later in this paper.

If Analysis Services has sufficient virtual memory address space in the main process space, disable VLDM by renaming the
msmdvldm.exe file in the Bin folder to some other file name (such as msmdvldm-disabled.exe). When the service starts, if it
can't find the VLDM executable, the service disables it. VLDM is automatically disabled on a 64-bit system. Disabling VLDM
ensures that all dimensions are loaded into the main process space.

With all of the performance and restrictions associated with VLDM, the usual best practice is that if your application is large
enough to be forced into using VLDM, then you should evaluate whether SQL Server 2000 (64-bit) will provide better
performance.

Important In general, you should consider using the 64-bit version of Analysis Services if:

Your BI application includes large dimensions or many member properties.

There are many databases and cubes in the same Analysis Services instance.

You must support a high level of querying while simultaneously processing partitions.

You are unable to increase the size of the process buffer to eliminate the use of temporary files on disk during
processing.

For more information, go to the Technet Web site (http://www.microsoft.com/technet) and see "Microsoft SQL Server 2000
(64-bit) Analysis Services: Why Migrate, and What to Expect If You Do."

Note When the VLDM threshold is used for large dimensions, Analysis Services creates the shadow dimensions for these
large dimensions during processing in the main address space. Thus, even when you are using VLDM, there is still a
considerable impact on the virtual address space of the main process.

Process Buffer

Analysis Services creates a process buffer in memory for each partition it processes. It allocates memory to each buffer as it is
needed, and releases this memory from each buffer when partition processing is complete. Analysis Services uses each buffer
for two separate tasks.

First, Analysis Services loads fact data for the partition from the read-ahead buffer into the process buffer and then sorts,
indexes, and writes the fact data into the fact level of the MOLAP partition file in segments. The sorting process includes
as much data as can be held in the process buffer at one time.

Second, Analysis Services uses the process buffer for calculating aggregations. If the process buffer in memory is not
large enough to hold all calculations during this phase, Analysis Services supplements the process buffer with temporary
files on disk to complete the calculation of aggregations.

The Process buffer size setting on the Processing tab in Analysis Manager (the ProcessReadSegmentSize value in the
registry) determines the maximum size of each process buffer. By default, the maximum size of each process buffer is
approximately 32 MB. For most applications, this is probably too small and should be immediately increased. A more effective

http://www.microsoft.com/technet/

setting is at least 150 to 200 MB.

If the size of each process buffer is large enough to efficiently sort and index large portions of the fact data before it is written
to segments in the partition file, overall data organization and query responsiveness improve. Furthermore, if the fact table
contains many duplicate records, a large process buffer allows Analysis Services to merge duplicate records in memory, saving
space and improving query performance.

If Analysis Services exceeds the size of a process buffer while creating aggregations, Analysis Services changes its algorithm to
use temporary files that augment the memory allocated to the process buffer. If temporary files are used, Analysis Services
moves aggregations between these temporary files and the memory allocated to the process buffer as the aggregations are
being calculated. Reading and writing these temporary files is much slower than in-memory calculations and very I/O-
intensive. You should tune your system to eliminate the use of these temporary files by increasing the Process buffer size
setting when possible. All aggregations for a partition are calculated at once and must fit into memory; otherwise temporary
files are used.

When processing multiple partitions in parallel or processing an entire cube in a single transaction, you must ensure that the
total memory required for the process buffers, dimensions, shadow dimensions, replicas, and other memory requirements do
not exceed the Memory conservation threshold setting. If Analysis Services runs out of virtual address space for these
simultaneous operations, you receive an out-of-memory error. If you have insufficient physical memory to back the virtual
memory, the Windows operating system uses the virtual memory paging files to supplement the available physical memory.
While the use of the paging files has performance implications if excessive paging occurs, a small amount of paging
(approximately 100 to 200 MB) is generally acceptable if necessary.

On the other hand, if the process buffer setting is too large and if the number and size of the aggregates is large enough to fill
the process buffer during processing, Analysis Services may exceed the memory conservation threshold (which causes the
query response cache to be trimmed or dumped). Exceeding the memory conservation threshold during processing causes
temporary files to start being used. Remember that if you are processing partitions in parallel, each partition uses a separate
process buffer.

Tip If you have sufficient memory, increase the Process Buffer Size setting to at least 150 - 200 MB to eliminate the use of
temporary files during processing. It is not uncommon to set the process buffer size to 300 or 500 MB on servers with large
cubes. To determine an appropriate process buffer size, follow the procedure in Appendix C, "How to Tune the Process Buffer
Size," later in this paper.

Data and Temporary File Locations

An Analysis Services instance has a Data folder and a Temporary folder. Analysis Services uses the Data folder to store the
multidimensional structures for all the objects defined on the Analysis Services instance. It uses the Temporary folder to
supplement the memory allocated to each process buffer when a process buffer is too small for the aggregations being
processed. The default location for both of these folders is C:\Program Files\Microsoft Analysis Services\Data. You can change
the location for either or both during setup or after installation. To change the location after setup, right-click the Analysis
server object in Analysis Manager, and then click Properties. You can also use the sample script provided in Appendix D,
"Sample Script for Changing the Data Folder Location, to change the Data folder programmatically.

Note If you use virus-scanning software on the Analysis Services computer, you should disable scanning of the Analysis
Services Data, Temporary, and Bin folders.

You should place the Data folder on its own RAID array; RAID 10 or RAID 1 + 0 provides the best performance but RAID 5 is
frequently fast enough for many Analysis Services installations. The main activity of Analysis Services is reading data from the
files in the Data folder in response to user queries, not writing to files in the Data folder. Once you determine the amount of
space required for the data, index, and aggregation structures, you should allocate approximately double that amount of disk
space to allow sufficient space to enable you to refresh the data and hold shadow files during processing. For more
information on calculating the amount of space required for the data folder, see "Disk" in the "Capacity Management" section
later in this paper. For information about each type of file stored in the Data folder, see Appendix K, "Data Folder Structure."

Note Because the Data folder stores security files that control end users' access to Analysis Services objects, you must secure
the Data folder against unauthorized access. Only members of the OLAP Administrators group and the Administrators group
should have access to the Data folder. If you move the Data folder location after installation, you must configure these security
settings manually. For more information on securing Analysis Services, see "Security Administration" later in this paper.

Temporary Folder

You should place the Temporary folder, if it is actually used, on a RAID array that yields excellent write performance and that is
on a different physical drive than the Data folder. Consider using RAID 0, 1, 0+1, or 10 depending on your budget
requirements and amount of use. However, for best performance, it is more important to allocate a sufficiently large process

buffer to obviate the need for temporary files during processing. If processing requires temporary files, the algorithm is an
order of magnitude slower than if the process buffer was large enough to perform the processing entirely in memory. If you
find that the files in the Temporary folder structure are used extensively and you cannot eliminate their use, you can add a
second Temporary file folder on a different physical drive by adding the TempDirectory2 registry key
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\Current Version) and specifying a location on a separate
physical drive for the second Temporary folder. When you must use temporary files, using two Temporary folders increases
processing performance because the data in one Temporary folder is sequentially read, merged with new segment data, and
then written to the second Temporary folder (in 64-kilobyte segments). The data in the second Temporary folder is then read,
merged with new segment data, and written to the first Temporary folder. This process continues until the calculation of
aggregations is complete. To determine whether the Temporary folder is being used, see Appendix C, "How to Tune the
Process Buffer Size" later in this paper.

Data Source Configuration

When you create a new database within an Analysis Services instance, one of your first tasks is to define the data source for the
database. A data source contains the information necessary to access source data for the database objects. The term "data
source" actually refers to the data source object that is created, not the source data itself. When you define the data source in
Analysis Manager, the name given to the object is either <server_name>-<database_name> or
<localhost>-<database_name>. However, to eliminate confusion when the database is moved to another server, you should
change the default naming convention by creating a logical name for the data source unrelated to the name of the original
computer on which the database was initially created.

To create a logical name for the data source object in Analysis Manager, create the data source object. Then copy the new data
source object and paste it into the same Analysis Services database. You are then prompted to define a new name for the data
source object. The name you choose should reflect the logical type of data such as Sales Data, or Personal Data. After you
define the new logical name, delete the original data source object. Thereafter, when you move an Analysis Services database
between computers, you can simply change the underlying server and database in the connection string by modifying the
properties of the data source object in Analysis Manager (or in your script).

In addition to renaming your data sources to logical rather than physical names, you should ensure that your deployment
computers use the same name. If your development computer has its data source named Sales Data, then your QA computer
should have its data source named Sales Data, and your production computer should have its data source named Sales Data.
Using consistent names across the development, QA, and production computers makes migration of individual pieces easier
by cutting and pasting between the Analysis Services databases.

If you do not change the name of the data source object before you create objects in the database, you will not be able to
change the name of the data source object without using third-party utilities. For more information on tools you can use when
moving a database between Analysis Services instances, see "Release Management" later in this paper.

Service Accounts

To understand the permissions required for the MSSQLServerOLAPService and SQL Server Agent service accounts, you need
to understand the security context in which various operations are executed. Certain tasks are performed in the context of the
logged-on user, and other tasks are performed in the security context of the MSSQLServerOLAPService service account.

When you request that Analysis Manager create a new object or browse for an existing object, the task is executed in the
security context of the interactive user account of the user performing the task.

When Analysis Services processes dimensions, partitions, and mining models, this task is performed in the security
context of the MSSQLServerOLAPService service account. You must grant sufficient rights to this service account to
ensure that processing will succeed.

It is not uncommon for users to assume that if they can create objects, then they can process them. While this is frequently the
case in a simple one-computer development environment, in a multiple-computer production department you're likely to
encounter problems. With source databases residing on separate servers from the Analysis Services database, and the Analysis
Services instance being managed remotely, frequently the first problem you experience when you roll out such an application
into production is insufficient permissions.

You must ensure that the MSSQLServerOLAPService and the SQL Server Agent service accounts have sufficient permissions
for the tasks they need to perform. At a minimum, the service account must be a member of the OLAP Administrators group.
This permission is needed for any user (or service that is acting on behalf of a user) that manages an Analysis Services server.

M SSQLServerOLAPService

By default, the MSSQLServerOLAPService service runs under the local system account, which has full administrator

permissions on the local computer, but no access rights to remote computers. Because the local system account has no
network access, in many cases you will need to change the service account to an account that can be granted network access
rights. With Windows 2000, this will be a domain user account. If you are using Windows Server 2003, you can use the
NetworkService account.

The account under which the MSSQLServerOLAPService service runs must have sufficient permissions to perform several
different tasks. The MSSQLServerOLAPService service must be able to process Analysis Services objects, access source data
during processing, and receive security credentials in a multiple-tier environment.

Tip With the named pipes network protocol, the process (such as an Analysis Services processing operation) attempting to
access an application (such as SQL Server) on a remote computer must be authenticated by the Windows operating system
before the process can be authenticated by SQL Server. With TCP/IP sockets, the process does not normally have to be
authenticated by the Windows operating system before presenting its authentication credentials to SQL Server.

SQL Server Agent

When you automate object creation tasks (such as for creating partitions) or object processing using SQL Server Agent, the
service account used by the SQL Server Agent service must have sufficient rights to create or process the object.

Processing

When you run the MSSQLServerOLAPService service under a domain user account (or the NetworkService account), you must
add this account to the OLAP Administrators local group on the Analysis Services computer to enable Analysis Services to
process dimensions, partitions, and mining roles on that computer. Membership by this account in the OLAP Administrators
group allows the MSSQLServerOLAPService service to access the registry, the Data folder, and the Temporary folder. User
accounts that are not members of the OLAP Administrators group should not have access to these locations.

Source Data Access

The MSSQLServerOLAPService service account must also have logon account permissions to access the source data in the
source database if trusted connections are used to access the source data. With trusted connections, the
MSSQLServerOLAPService service account is used to connect to the data source. If trusted connections are not used, you can
specify a user name and password.

The permissions required when connecting to a data source also depends on the type of storage structure used for the
Analysis Services partitions. When MOLAP storage is used, the service account must have at least SELECT permissions on the
source database. If ROLAP or HOLAP storage is used, the service account must have at least SELECT and CREATE TABLE
permissions on the source database.

There are also permissions needed if using resources from other Analysis Services servers. If using linked cubes, then the
MSSQLServerOLAPService service account must have read access on the cube and cell-level security must not be defined. If
Analysis Services is a remote partition publisher, then the MSSQLServerOLAPService service account must be in the OLAP
Administrators group on the machine where the remote partition is located. If Analysis Services is a remote partition
subscriber, then the MSSQLServerOLAPService service account must have read access on the cube.

Receive Client Security Credentials Via Middle-Tier Application

The MSSQLServerOLAPService service account is irrelevant in the typical client-server environment. In this environment, the
user application connects directly to the Analysis Services computer to execute a query or create an object, and passes the
user's credentials directly to Analysis Services for evaluation. Access is granted or denied by Analysis Services based on cell-
level and dimension-level security.

However, if the client application attempts to connect to Analysis Services through a middle-tier server, the authentication
process is not quite so simple. Normally, security credentials cannot be passed over multiple computers. However, if the
middle-tier application server and the Analysis Services computer support Kerberos authentication and delegation, the client's
security credentials can be passed by the middle-tier application to Analysis Services.

For Kerberos authentication, delegation, impersonation, and mutual authentication to work, the MSSQLServerOLAPService
service must run under one of the following types of accounts:

Local system account (which has no network access rights).

Domain administrator account.

Domain user without administrative privileges in the Microsoft Active Directory domain, provided that a domain

administrator registers the Service Principal Name (SPN) for the account separately using the setspn utility in the
Windows 2000 Resource Kit.

Note There are a number of steps you must follow to permit Kerberos authentication, delegation, impersonation, and
mutual authentication to work. For information about these steps, see "Security Account Delegation" in SQL Server Books
Online. Also go to Knowledge Base (support.microsoft.com) and see the article "Use Kerberos Authentication for
Microsoft SQL Server 2000 Analysis Services."

SQL Server Agent Service

The SQL Server Agent service is used to run the Analysis Services Processing task in a Data Transformation Services (DTS)
package, and to perform jobs containing DSO operations executed via Microsoft Visual Basic® Scripting Edition (VBScript)
scripts. To ensure that the SQL Server Agent service account has appropriate permissions to perform these tasks, run the SQL
Server Agent service under a domain user account (or the NetworkService account in Windows Server 2003) and then add this
account to the OLAP Administrators group on the Analysis Services computer.

Detecting permissions problems with SQL Server Agent can be somewhat confusing unless you understand that when you run
a SQL Server Agent job interactively (right-click the job in SQL Server Enterprise Manager, and then click Run) the security
credentials used are not the credentials of the SQL Server Agent service account. When you run a SQL Server Agent job
interactively, the security credentials of the user that initiates the job are used. The only time the credentials of the SQL Server
Agent service account are used is when the job is actually scheduled (unless you log on using the domain user account used by
the SQL Server Agent).

Migrate the Repository

The meta data for the objects created in an Analysis Services instance (the cubes, dimensions, and so on) are stored in the
Analysis Services repository. By default, this repository is a Microsoft Access database named msmdrep.mdb and is stored in
the ..\Microsoft Analysis Services\Bin folder on the Analysis Services computer. The Access format is used so that users who do
not use SQL Server for relational data can still use Analysis Services. However, if you do use SQL Server, migrating the
repository to a SQL Server database adds enterprise-level scalability, support, and security. Migrating the repository also
enables you to perform coordinated backups of the repository database with a file-based backup of the Data folder. For more
information, see "Backup and Recovery" later in this paper.

Before you migrate the repository, create a dedicated database (such as a database named OLAPRepository) using a case-
insensitive collation. A dedicated database enables you to back up the repository database on its own schedule. While you can
create this dedicated database on a SQL Server instance located on a remote computer, for best performance you should
create this database on a local SQL Server instance. To migrate the repository to SQL Server, use the Migrate Repository
Wizard and choose Analysis Services native format.

Important Under most circumstances, do not migrate the repository to the msdb database, which is the default database
selected by the Migrate Repository Wizard. While the msdb database is appropriate for a single SQL Server instance dedicated
to the Analysis Services repository, it is not appropriate for the typical shared environment. If you select the msdb database,
the Analysis Services repository is shared with all other SQL Server system-level resources in that instance, such as database
maintenance jobs, replication definitions, DTS packages, and execution logs of all different types. By using a dedicated
database, you can back up and recover the repository on its own schedule and independent of the other objects stored in the
msdb database.

After you migrate the repository to a SQL Server database, you cannot migrate it back to a Microsoft Access database.
Migrating does not remove the msmdrep.mdb database. For added security, you should remove the msmdrep.mdb
database (by deleting the file using Windows Explorer) after you successfully complete the migration. If the migration fails for
any reason, Analysis Services discards any changes and continues using the msmdrep.mdb database.

Tip: To determine the location of the repository on an unfamiliar Analysis Services instance, right-click the server object in
Analysis Manager and then click Edit Repository Connection String. This option was added with SP3. Before SP3, you could
review the connection string in the registry. However, after SP3, this connection string in the registry is encrypted and using
the Edit Repository Connection String command in Analysis Manager is the only way to view the current repository.

Logging and Error Reporting

Analysis Services records a query log to enable you to analyze query patterns and improve your aggregation design. You can
configure the properties of this query log. You can also enable a processing log and enable Analysis Services error reporting.

Query Log

To enable the Usage Based Optimization Wizard to design aggregations based on past usage patterns and to enable the Usage
Analysis Wizard to generate reports analyzing query usage, Analysis Services records the levels touched by every Nth query in
a query log, which is stored in a Microsoft Access database. By default, every tenth query is logged. The default location for the
query log is C:\Program Files\Microsoft Analysis Services\Bin\msmdqlog.mdb. This file, like any log file, should be secured
from unauthorized access.

You can change the logging interval (e.g. every Nth query), stop all query logging, or clear the query log. Setting the logging
frequency too low may adversely affect performance. Increasing the logging frequency above 10 might increase performance,
particularly if you are on a system with hundreds of concurrent users generating many queries per second. On such a system,
Analysis Services attempts to log many queries very quickly, and Access cannot write this volume of information as quickly as
a high-performance database system.

If there appears to be considerable activity to the query log, or for additional stability and recoverability, consider migrating the
query log to a dedicated SQL Server database. While there is no built-in migration facility within Analysis Services, it is a fairly
straightforward process. Simply export the QueryLog table within the msmdqlog.mdb Access database to a SQL Server
database, edit the QueryLogConnectionString registry setting, and restart Analysis Services. If you do so migrate the query
log, remember to change your backup and recovery procedures accordingly.

In addition, you should consider clearing the query log after you run the Usage-Based Optimization Wizard consecutively on all
cubes on the server. To modify the query log properties, right-click the Analysis server object in Analysis Manager, click
Properties, and then click the Logging tab.

Note The query log records queries on a server-wide basis, not on a per-cube basis.

Processing Log File

Analysis Services does not record a processing log by default; you must enable the recording of a processing log file. The
processing log file is a system-wide text file containing all of the processing information you see displayed in the Process
dialog box in Analysis Manager when you process a partition, dimension, or mining model. Recording a processing log file
enables you to:

Troubleshoot problems. Suppose someone performed a full process of a non-changing dimension at 2 A.M. and later
that morning all cubes in the Analysis Services database were knocked off-line. The processing log provides you with an
audit trail to identify the problem and the culprit.

Perform long-term trend analysis. Suppose every job that runs at 2 A.M. Saturday is failing because a data source is
being backed up. Maintaining an audit trail over several months helps you identify the trend and determine its cause.

Analyze processing performance. The processing log file records the time required for processing each dimension,
partition, and mining model. You can analyze how the time required for processing these objects changes over time. For
example, as you add more aggregations to a partition, the time required to process that partition increases. If you have a
fixed length of time during which you must complete all nightly or weekly processing, the processing log file enables you
to determine which objects are taking the longest to process and which ones are requiring more time than they required
in the past.

Recover from closing the interactive dialog box too fast. It is easy to close the interactive dialog box presented by
Analysis Manager when you process an object. The processing log file enables you to review any errors or messages
after you have closed the dialog box.

To enable a processing log file, right-click the Analysis server object in Analysis Manager, click Properties, and then click the
Logging tab. Because the processing log can become quite big, you should periodically rename the old one and have Analysis
Services begin a new one (perhaps once per month or once per quarter, depending upon how often you process objects).
Renaming the existing processing log file periodically enables you to keep a running history in files of reasonable size.

While the system-wide processing log is normally used for most applications (such as Analysis Manager), at the DSO level you
can configure applications to redirect the output to other locations. As a result, you need to be aware that the processing log
might not contain all of the processing requests performed on the system. For example, the processing log generated by the
DTS OLAP Processing task is redirected to the DTS log file-and its processing will not be captured in the system-wide
processing log. The DTS OLAP Processing task is the only Microsoft-supplied application that redirects its activity into a
separate log file.

Tip Choose the same location on every server to ensure the file is easy to locate on each of the Analysis Services computers
that you are administering.

Note If you are using the Parallel Processing Utility (from the SQL Server 2000 Resource Kit) to process Analysis Services
partitions, you can also specify a log file name on the ProcessPartition.exe command line (such as a datetime stamp) and then

save these log files for troubleshooting purposes.

Error Reporting

When a fatal error occurs in Analysis Services, you can choose to have Analysis Services automatically send an error report to
Microsoft. Microsoft then uses this information to improve Analysis Services, treating all user information as confidential. To
enable error reporting, right-click the Analysis server object in Analysis Manager, click Properties, and then click the Error
Reporting tab.

Note This option is only available with SP3.

Performance Configuration Issues

From an operational prospective, you can improve Analysis Services performance by keeping partition sizes reasonable,
setting partition data slices, defining appropriate aggregations on all partitions, and running the Optimize Schema Wizard in
the cube editor. For more information on each of these configuration issues, go to the Technet Web site
(http://www.microsoft.com/technet) and see "Microsoft Analysis Services Performance Guide."

Partition Size

You can divide a cube into multiple partitions if you are using SQL Server 2000 Enterprise Edition (or SQL Server 7.0 Enterprise
Edition) to increase query and processing performance. As a general guideline, you should consider increasing the number of
partitions if a partition file exceeds 5 GB or 20 million records. Smaller partitions require less time to query by minimizing the
amount of data read on a partition scan. Multiple partitions require less overall processing time because each partition is
smaller, and some partitions will not have to be processed if the new data does not affect those partitions. To determine the
size of each partition, review the partition files in the Data folder. For detailed information on each type of file in the Data
folder, see Appendix K, "Data Folder Structure," later in this paper.

Data Slice

When you partition a cube, you should define the data slice for each partition using the Partition Wizard. The Partition Wizard
does not require you to set this data slice when you create a partition. As a result, it is possible (even easy) to create a partition
without setting the data slice. In fact if you simply click through the Partition Wizard pages taking the default values, you end
up with a partition without a data slice being set. You should verify that each partition of each cube in each Analysis Services
database has a data slice defined. The only exception to this is if you have a cube with only one partition-in that case the data
slice should not be set, because you want all of the cube data to be placed in that one partition. To verify that a data slice is
defined, edit the partition in Analysis Manager and then step through the Partition Wizard pages. You can use the sample script
in Appendix I, "Sample Script to Determine Whether Data Slices Have Been Set," to determine whether a data slice has been set
on each multi-partition cube in an Analysis Services instance.

Defining the data slice enables Analysis Services to quickly eliminate irrelevant partitions from query processing. The data slice
identifies the actual subset of data contained in each partition. Unless Analysis Services knows the range of data contained in
each partition, it must query each partition, which negates much of the query performance benefit of partitions. To draw an
analogy with SQL Server, creating a partition without a data slice is like creating a partitioned view without the CHECK clause.
While you can do it, you force the query optimizer to scan all of the partitions in the view because you haven't given it enough
meta data to figure out what partition to access when a query is issued. While the Analysis Service's runtime engine does not
use a relational query optimizer (it has its own component that accomplishes a similar operation), it uses the data slice in
roughly the same way: as meta data to tell it which partitions to scan if an aggregate cannot be used or is not available.

If you partition a cube by month, and have 36 months worth of data (in 36 partitions), and if you don't specify the data slice,
then the runtime engine must scan all 36 partitions to answer a query. If you specify the data slice, it could potentially only
have to scan 1/36th the amount data, with an obvious improvement in performance.

Setting a data slice also causes Analysis Services to add a join and a WHERE clause to the SQL statement used for retrieving
data from the source database during processing. The WHERE clause limits the data retrieved by the SQL statement to the data
that belongs in the data slice. For example, if you say that a partition's data slice is June 2003, then Analysis Services adds a
join to the time dimension and adds the WHERE clause:

WHERE <month field> = 'June' AND <year field> = '2003'

or whatever the appropriate member/level names are. If you do not define a data slice and you have multiple partitions,
Analysis Services does not restrict the data that is retrieved from the source database. Without the data slice, if you just happen
to have July 2003 data in the June partition, Analysis Services does not complain, it just double-counts the July 2003 data (for
more information, see "Maintaining Partitions" in SQL Server Books Online). By specifying the data slice, the system can add

http://www.microsoft.com/technet/

these JOIN and WHERE clauses that assist in maintaining the integrity of the data.

You can suppress the automatic generation of a WHERE clause for all partitions on the Analysis server by modifying the
DataCompressionSettings registry setting and add the hex value of 0x00100000 to the existing value for this key. If Analysis
Services is loading data for each partition from separate tables in the source database, this may yield some performance
benefits. However, you should not disable the automatic generation of the WHERE clause unless you are totally sure that the
relational database partitioning is 100% correct when loading data.

Important It is vital to reiterate that the DataCompressionSettings registry setting is a server-wide setting. You must be
100% certain of the correctness of the data in all partitions of all cubes on the server in order to use this setting safely. Without
the WHERE clause for your protection, double-counting data (or many-times counting of data) may occur, which could lead to
server crashes if inconsistent data is processed. If you disable the generation of the WHERE clause, you assume all
responsibility for enforcing data integrity between the data source and the data slice.

Tip If you are creating rolling monthly partitions as each month closes, you should ensure that the data slice is set for each
new partition after it is created.

Aggregations

The most effective technique you can use to improve overall query responsiveness (assuming that the Analysis Services
computer has sufficient memory and hard disk resources) is to design effective aggregations of fact data in each cube partition.
However, too many aggregations will unnecessarily increase processing time without significantly improving query
performance.

When you use multiple partitions to increase query and processing performance, it is possible to deploy a new partition with
no aggregations. While deploying partitions with different aggregation designs is a common optimization technique,
deploying a partition with no aggregations generally indicates an error in deployment that can cause performance problems.
You should verify that a minimum number of aggregations exist in each partition. You can quickly determine whether
aggregations are defined on a partition by looking at the combined sizes of the <partition>.agg.flex.data and
<partition>.agg.rigid.data files for each partition. The minimum size should be at least 100 KB with most datasets, although
this will obviously vary from very small to very large datasets. If you have less than that amount, it is quite possible that you
have either no aggregates designed or too few.

Tip Designing too many aggregations will slow processing and designing too few aggregations will slow querying. Ensure
that all partitions have a minimum number of aggregations - perhaps 10%.

Schema Optimization

Running the Optimize Schema tool on a cube eliminates unnecessary joins between dimension tables and fact tables, if
certain conditions are met. By default, when you first create a cube, Analysis Services constructs a SQL query against the fact
table that is a "N+1"-way join (where N is the number of dimensions). If you have 5 dimensions, then you have a 6-way join
(between the fact table and the 5 lowest-level dimension tables). From the join, the Analysis Services query extracts the lowest-
level key. From that key, Analysis Services begins the aggregation process. Having a 6-way join is typically not a major
performance problem in most modern relational database systems. However, if your cube has 15 or 20 dimensions, the
resulting multi-table join may suffer significant performance problems. Regardless of the number of dimensions in your cube,
the Analysis Services query to the relational database is resolved faster and the data flows into Analysis Services more quickly
during processing if you eliminate some of these joins.

Fortunately, there is a common design technique that can greatly help the situation. Many star or snowflake schema designs
are constructed in such a way that the foreign key that points from the fact table to the lowest-level dimension table is not
some random number, but is also the member key itself. If that is true, then Analysis Services can "optimize away the join" and
pull the member key directly from the fact table instead of using a join to the lowest-level dimension table.

However, certain conditions must be met for Analysis Services to eliminate a join between a dimension and the fact table.
These conditions are:

The dimension must be a shared dimension.

The dimension must have been processed before you optimize the cube schema.

The member key column for the lowest level of the dimension must contain the keys that relate the fact table and the
dimension table, and this must be the only key necessary to relate the fact table to the dimension table.

The keys in the member key column for the lowest level of the dimension must be unique.

The lowest level of the dimension must be represented in the cube; that is, the level's Disabled property must be set to
No. The level can be hidden.

If these conditions are met with respect to a dimension used in a cube, and the cube's schema is optimized using the Optimize
Schema command, Analysis Services composes a query that does not contain a join to the dimension table in the database
when processing the cube. If these conditions are met for all dimensions in the cube, the Analysis server needs to read only the
fact table to process the cube. Processing time reductions often can be substantial when this optimization technique is used.

Note Cube schema optimization applies to all partitions of the cube, whether the partitions are processed independently or
as a group.

So, as a general rule, after you have designed the schema for a cube, you should run the Optimize Schema command. It
removes the joins that meet the foregoing conditions. Next, you should determine which dimensions were not eliminated from
the join and then determine how to meet the required conditions to eliminate the dimension table from the join. If you have
partitioned your cube and specified the data slice, the dimension table used for the data slice cannot be eliminated. This join is
set to protect you so that no additional, non-data slice data is included in the partition.

If you do optimize away a dimension, you should be aware that the inner join that you have just eliminated had a side effect
that may expose problems with your source data. The inner join to the dimension table eliminates fact table records that do not
have matching dimension table records (this is what an inner join will do). This means that when you remove the inner join
and start using the fact table member keys, you may start seeing processing errors that you were not getting before. When
Analysis Services processes a record in the fact table that does not have a corresponding entry in the appropriate dimension
table, Analysis Services generates an error.

Important If you recreate a cube, add a dimension to a cube, or remove and then re-add a dimension, you must rerun the
Optimize Schema command to re-optimize the cube. New dimensions are always added un-optimized.

Verifying the Appropriate Service Pack or Hot Fix Level

Ensuring that you are working on an Analysis Services instance that has the latest service pack (or hot fix) can assist you in
resolving problems. Similarly, when working on an Analysis Services client computer, you need to ensure that the most recent
service pack (or any applicable hot fix) has been applied to that client. Unfortunately there isn't a quick and easy way to
determine the service pack level (or hot fix) that has been applied to an Analysis Services instance or to an Analysis Services
client computer.

To determine the level of service pack, including any hot fixes, there are four different files that you have to be concerned with
to determine the level of your installation:

Analysis Services engine To determine the version of Analysis Services, locate the msmdsrv.exe file in the Microsoft
Analysis Services\Bin folder and then right-click this file to get the version information from the Properties dialog box. If
the file version is 8.00.760, you have applied SP3.

DSO To determine the version of DSO, locate the msmddo80.dll file in the Program Files\Common Files\Microsoft
Shared\DSO folder and then right-click this file to get the version information from the Properties dialog box. If the file
version is 8.00.0760, you have applied SP3. While the version of the msmdsrv.exe and msmddo80.dll files will be
identical after a service pack installation, the installation of hot fixes can result in different values for these two crucial
files.

Analysis Manager To determine the version of Analysis Manager on a client computer, right-click the Analysis Servers
object in Analysis Manager and then click About Analysis Services. If the version is 8.0.760, you have applied SP3. If
you click About Microsoft SQL Server Analysis Services on the Help menu in Analysis Manager, the build number
returned is the build number of the Analysis Manager Microsoft Management Console (MMC) snap-in.

PivotTable Service To determine the version of PivotTable Service, locate the msolap80.dll file in the Program
Files\Common Files\System\Ole DB folder and then right-click this file to get the version information from the
Properties dialog box. If the file version is 8.00.760, you have applied SP3. (msolap80.dll)

Top Of Page

Release Management

To move an Analysis Services database from the development environment to the QA and production environment, you can
choose between three Microsoft supported mechanisms or an unsupported DSO/XML scripting utility distributed by Microsoft.

Microsoft Supported Mechanisms

Analysis Services provides functionality to help you archive an Analysis Services database on one instance and then restore
that database to another Analysis Services instance. Analysis Services also provides functionality to copy and then paste the

meta data for an Analysis Services database to a new database. Finally, you can also back up the Data folder and the repository
and restore it on the destination server.

Note You will also need to change the data source connection properties and the repository connection string after deploying
an Analysis Services database on another server.

Archiving and Restoring

You can archive an Analysis Services database using Analysis Manager or by using the msmdarch.exe command directly (you
cannot archive a single cube within a database). The archive file for an Analysis Services database consists of one or more .cab
files that contain the entire contents of the database folder for the database being archived and meta data for the database and
its objects from the Analysis Services repository. Data in remote partitions (a feature that is rarely used) and in writeback tables
are not stored in the archive file. You must back up the data in remote partitions using a file-based backup method; back up the
writeback tables using SQL Server backup.

Because the maximum size for a .cab file is 2 gigabytes (GB) and a file cannot span .cab files (both of these are restrictions of
the .cab file technology and are not related to Analysis Services), the maximum size file within the Data folder that can be
archived is 2 GB. You can archive more than 2 GB of data, provided that no single file is larger than 2 GB. The msmdarch.exe
command will just create multiple .cab files. Since the partition file used to store the MOLAP fact tables is, by far, the largest
data file, the partition size is typically the limiting factor. As a result, if you have any individual partition file that is larger than 2
GB, the Analysis Services database cannot be archived. If you are using the Enterprise Edition of SQL Server 2000, increasing
your use of partitioning (in other words: adding more partitions, each one smaller) can reduce the size of each partition file
below 2 GB to enable you to archive the entire database. (You can use the script provides in Appendix J, "Sample Script to
Determine the Analysis Services Edition," to determine the edition of Analysis Services you are using.)

When you restore an archived database to an Analysis Services instance, using either Analysis Manager or msmdarch.exe
directly, the Analysis Services file set and its meta data are returned to their states at the time the archive file was created. If
you restore a database that has a remote partition, you must process the remote partition. If you restore a database with a
write-enabled cube and its writeback table is not available, the cube must be processed before it can be used.

Note Because archive and restore is copying the data along with the metadata, the process can take a long time.

Tip Regularly validate your backup media by performing a restore to a test server. Besides validating the quality of your
backup media, regular testing ensures that your backup and restore procedures work properly. Backups without regular
validation are worthless and misleading in that they give you a false sense of security. You should validate your backup media
at least monthly or quarterly.

Copying and Pasting

You can use Analysis Manager to copy the meta data for an Analysis Services database from one instance of Analysis Services
to another Analysis Services instance, provided that both instances are registered in Analysis Manager. Because only the meta
data is copied to the target server using this method for release management, you will need to process the Analysis Services
database on the destination server (after updating the data source properties, if necessary) before users can query the data in
the new location.

Because copying and pasting is so easy and quick, and because you are frequently only working with a subset of data in the
development environment, copying and pasting is generally the quickest way to deploy an Analysis Services database on a
different server. The downside is that it requires all of the dimensions, cubes, and partitions to be processed (which must be
incurred anyway if the datasets are different). To determine your preferred approach, you need to compare the time and
overhead of fully reprocessing the database with the msmdarch.exe archive and restore time. In most cases, full reprocessing is
the fastest method. But you will find that it varies based on the underlying infrastructure (for example, fast network between
the Analysis server and the source database) and on other uses of the source database (for example, it might be used by other
applications and is thus already 80 percent loaded).

File-Based Backup and Restore

If neither of the previous two methods is suitable for your situation, you can also use a file-based backup program to back up
the entire Data folder and then restore it to the destination folder. With this method, you must deploy all databases within an
Analysis Services instance, rather than a single database. If you use this method, you must also back up the repository and then
restore the repository on the destination server. While the repository is technically not required to run the OLAP service, it is
required to run Analysis Manager and thus to properly administer the server. The meta data in the repository must match the
contents and structure of the Data folder. If you have data in remote partitions (a feature that is rarely used) and in writeback
tables, you must first back up the data in remote partitions using a file-based backup method and the writeback tables using
SQL Server backup, and then restore them before you bring your database back online.

DSO/XML Scripting Utility

You can also deploy Analysis Services objects using DSO/XML, an unsupported utility that can create objects using definitions
stored in an XML file. This utility uses DSO to query an Analysis Services instance and store XML definitions of the Analysis
Services objects in the instance into an XML file. You can then use DSO/XML to read the definitions of these Analysis Services
objects from the XML file and recreate them on another Analysis Services instance. Before deploying these stored definitions,
you can edit the XML file with any text editor to modify the definitions of these Analysis Services objects, such as object names,
data source names, and connection strings.

Microsoft provides the source code with this utility so that you can embed its functionality directly into your management
application. To download or obtain more information on DSO/XML, go to
http://www.microsoft.com/downloads/details.aspx?FamilyID=8d9e7a70-eef4-44c3-a0c5-
deece0f8b4b4&displaylang=en .

Note DSO/XML only deploys object definitions. You must process the objects to load the actual data from the data source.

Top Of Page

Change Management

Change management is the practice of administering changes with the help of tested methods and technologies to avoid
introducing new errors and to minimize the impact, if any, on the service level. When implementing change, you should use
Microsoft Visual Basic Scripting Edition (VBScript) with Decision Support Objects (DSO) to minimize the possibility of operator
error when making the change. The next best method is the DTS Analysis Services Processing task. If neither of these methods
can be used, you can make the change manually using Analysis Manager. Change should be tested in a development
environment and then again in the QA environment before it is implemented in the production environment. Each change
should be documented in the run book to ensure that information in the run book is kept current.

Important Lack of change management can be a major cause of failure and service outages.

Making changes using scripts and DTS packages enables you to employ source code control, such as Microsoft Visual
SourceSafe®, to provide version control. Source code control ensures that you can retrieve an older version of a script or
package should the need arise, and facilitates team development.

Many Analysis Services installations have multiple individuals with permission to administer the Analysis Services database.
Because any administrator can perform any task within Analysis Services and modify any object, it can be useful to track when
changes are made to Analysis Services objects. While Microsoft does not provide a direct method for capturing this
information, if you migrate the Analysis Services repository to SQL Server, you can add triggers to the repository database to
detect when the meta data for an Analysis Services object changes and capture the value of any object before the change to an
audit table. The sample script provided in Appendix E, "Sample Script for Creating Repository Audit Triggers," demonstrates
how to create such repository audit triggers.

Note Some client tools cache their own meta data. In this case, if you change the meta data in Analysis Services (such as the
uniqueness of a level), you may need to notify the client tool that a change has been made and have it update its cached meta
data.

Tip If you need a way to quickly take a cube offline in order to make a change (or perform some type of maintenance), you
can use virtual cubes. You can have clients connect to the virtual cube and then drop the virtual cube when you need to
suspend access in order to make a change. You can then quickly recreate the virtual cube when you are ready for users to
access the cube again.

Top Of Page

Security Administration

One of the key responsibilities of the Analysis Services administrator is ensuring that the data exposed through Analysis
Services is secure. All users, whether they are administrators or end users, must be authenticated by the Microsoft Windows
operating system before they can access Analysis Services objects. These users can be authenticated directly or via Microsoft
Internet Information Services (IIS).

Administrator Security

When Analysis Services is installed, the setup program creates the OLAP Administrators local group on the Analysis Services
computer and adds the user account of the person installing Analysis Services to this group. All members of the local
Administrators group are automatically members of the OLAP Administrators group, regardless of whether they are explicitly
added to the OLAP Administrators group.

http://www.microsoft.com/downloads/details.aspx?FamilyID=8d9e7a70-eef4-44c3-a0c5-deece0f8b4b4&displaylang=en

The OLAP Administrators group is granted the following rights on the Analysis Services computer:

Full control permission to the Server Connection Info registry key at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server.

Write permissions through the MsOLAPRepository$ hidden share (the ..\Microsoft Analysis Services\Bin folder). The
MsOLAPRepository$ hidden share is created during setup. Analysis Services uses the hidden share when reads from or
writes to the repository when it is stored in an Access database (this is the default location and store for the repository). If
you migrate your repository to SQL Server, or modify the remote connection string to the repository manually to specify
a different location for the Access database, this hidden share is not needed and can be removed.

Full control rights to the Bin and Data folders under the ..\Microsoft Analysis Services directory. This includes full control
rights to the repository files, Msmdrep.mdb and Msmdrep.ldb.

With clustering, if the Data folder is on a different computer than the computer on which Analysis Services is running,
you must ensure that the members of the OLAP Administrators group on the Analysis Services computer have full
control rights to this Data folder. This includes the account under which Analysis Services is running. Generally this is
accomplished through the use of a domain group. For more information, first see the Service Pack 3 release notes and
then go to Microsoft Knowledge Base (support.microsoft.com) and see "PRB: Cannot Process a Cube After You Install SQL
Server 2000 Analysis Services Service Pack 3."

As a result, members of the OLAP Administrators local group can access Analysis Services administrative functions through
Analysis Manager or programmatically with DSO. For more information, go to Knowledge Base (support.microsoft.com) and
see the article "INF: Permissions That You Must Have to Administer an OLAP Server."

There is only one level of administrative access to Analysis Services. A member of the OLAP Administrators group has
complete administrative access to Analysis Services objects, full read access to all cubes and dimensions, and full write access
to all write-enabled cubes and dimensions (regardless of any contrary role definitions). A domain or local user that is not a
member of the OLAP Administrators group can perform no administrative tasks and has read or write access to the extent
permitted based on dimension-level or cell-level security.

Note Clients performing OLAP analysis by issuing MDX queries through an OLE DB provider do not read the registry on the
Analysis Services computer and do not require permission on the MsOLAPRepository$ hidden share.

End-User Security

End-user security in Analysis Services is based on Windows user accounts and groups. Before you begin configuring end-user
security in Analysis Services, you must first create the user accounts and groups within Active Directory. A frequently asked
question is whether Analysis Services supports other kinds of authentication. The answer is Yes and No. Yes, it can support
other types using HTTP access and IIS (IIS 6.0 includes some new authentication options). However, all these authentication
types must ultimately map to a Windows user account in the general sense: including domain accounts, local accounts, the
guest account (if enabled), or the built-in NT AUTHORITY\ANONYMOUS LOGON account. Therefore, no, Analysis Services does
not support SQL standard security or any similar technology where the authentication is not based on Windows user accounts.

For authentication, Analysis Services uses Security Support Provider Interface (SSPI) as the interface for application security.
When you issue a query to Analysis Services, in the connection string (see "Authentication of Direct Connections" in SQL
Server Books Online), you specify one of the following SSPI options:

SSPI=NTLM specifies that the normal Windows authentication protocol be used, and enables Analysis Services to
interoperate with Windows NT 4.0. Use this provider only when a client computer is connecting directly to an Analysis
server.

SSPI=KERBEROS specifies that the Kerberos network authentication protocol be used. Kerberos enables interoperability
with other security architectures. More importantly to Analysis Services, it supports a more flexible authentication
infrastructure. Kerberos is based on "tickets," which greatly reduces the need for repeated authentication on each
network resource. The principal advantage of Kerberos for Analysis Services is that its ticket-based approach supports
multi-hop architectures: an end user's credentials being passed from the client machine to a Web server, then forwarded
to the Analysis server (a three-machine configuration). For more information on Kerberos, see the resources listed in
Appendix B, "Resources."

SSPI=NEGOTIATE specifies that the client and Analysis Services dynamically evaluate which is the best authentication
SSPI to use. Currently NEGOTIATE supports only NTLM and Kerberos; more SSPIs may be added in the future. This
technique allows you to design the most flexible application. NEGOTIATE requires all computer operating systems to be
Windows 2000 or later.

Other SSPI providers are technically possible, but not tested or supported by Microsoft. However the infrastructure is in-
place and exposed for integration if required.

SSPI=ANONYMOUS - This option specifies that PivotTable Service (PTS) handle requests in a special manner. When you
specify ANONYMOUS, PTS does not send authentication credentials to the Analysis server. Instead it tells the server to
use Anonymous access, without actually saying what that means. On the server, the OLAP service uses the built-in NT
AUTHORITY\ANONYMOUS LOGON account. This technique is useful when you need to support a three-machine
configuration-client, Web server (typically using HTTP access) and Analysis server-but don't need or want the
infrastructure that Kerberos requires. In this configuration, rather than controlling access on the Analysis server (since all
users are logged on using the Anonymous account), use the authentication setup on the Web server's virtual directory.

When you use Anonymous authentication on a Windows XP or Windows 2003 computer, the built-in account is not
included in the Everyone group. As a result, you must specify the Anonymous Logon account explicitly when configuring
the access in Analysis Manager. For more information, go to Knowledge Base and see the article "INF: Connect to
Analysis Services By Using "SSPI = Anonymous" on Windows XP."

Security Roles

After you have created the appropriate Windows user and group accounts, you create security roles within Analysis Services
that contain Windows user and group accounts, and define the access each role has to Analysis Services data. You can use
database roles, cube roles, and mining model roles.

A database role can be assigned to multiple cubes or mining models in a database. Database roles provide default
permissions for cube or mining model roles. By default, a database role specifies only read access and does not limit the
dimension members or cube cells visible to end users. You can, however, specify read/write access and limit dimension
members that are visible and updatable.

A cube role applies to a single cube. Defaults in a cube role are derived from the database role of the same name, but
some of these defaults can be overridden in the cube role. In addition to the database role features of specifying
read/write access and limiting dimension members that are visible and updatable, a cube role also enables you to specify
cell-level security. Cell-level security has less memory overhead than dimension security.

A mining role applies to a single mining model. Defaults in a mining role are derived from the database role of the
same name, but some of these defaults can be overridden in the mining role.

Note A domain user or group can be a member of multiple roles within Analysis Services. In this case, the effective
rights of the user are the combined access characteristics specified in these roles.

Dimension-, Cell-, or Application-Level Security

When you use dimension-level security to limit the dimension members that are visible or updateable, Analysis Services must
create a replica dimension in memory when a user connects which reflects the dimension members that user is permitted to
see. For example, suppose you have an Account dimension that, at the highest level, has four regions: NorthAmerica, Europe,
Asia, and Other. By creating four roles, you can specify which accounts a user can see by placing each user one of four roles: (a
total of 16 role combinations).

A user is not in any role: no access is permitted to the dimension at all. This is actually an interesting case. If a user is
allowed access to a cube (based on the user's membership in the roles), the user can see the cube as a valid cube, capable
of being queried. However, when dimension security is applied, the allowed set is empty in one or more dimensions. This
places Analysis Services in a difficult position because Analysis Services cannot tell the user where access is being denied
(because that is a security violation in and of itself). As a result, Analysis Services forcibly disconnects the session with the
user - and the user receives the purposely ambiguous error message "The connection to the server is lost." Needless to
say, this can be confusing.

A user is in one role (4 combinations).

A user is in two roles (6 combinations, for example {NorthAmerica, Asia} or {Asia, Other}).

A user is in three roles (4 combinations, for example {NorthAmerica, Europe, Other} or {Europe, Asia, Other}).

A user is in all four roles (1 combination) and can see all accounts.

Creating standard roles that can be reused by many different users enables Analysis Services to reuse these dimension replicas
stored in memory. However, each time a user accesses a cube with a different combination of dimension members that the
user has access to, Analysis Services creates a new replica in memory (from the example above, up to 15 replicas).

Replicas remain in memory until either the Analysis Services service is restarted or the base dimension is processed (full or
incremental). There is no other way to unload replica dimensions from memory.

Cell-level security is an alternative to dimension security. If you use cell-level security, end users can see all the dimension
members. In the example above, they can see all of the accounts-however, some of the cells are secured (if the user is not a
member of any role that allows access to that cell). Because it does not need extra copies of dimensions (replicas), cell-level
security does not have this memory overhead. While cell-level security scales better in terms of memory use, dimension-level
security yields better overall performance. Cell-level security expressions are evaluated for every cell in the query and are not
cached at all. If the MDX expression can be executed quickly, then performance is good. In the following example, an MDX
expression simply compares the current member against a constant (only customers in "Europe"):

IIF(Ancestor(Customers.CurrentMember, Region).Name = "EUROPE", 1, 0)

Clearly if the expression is complex and involves a lot of processing, then cell-level security can perform poorly and consume a
lot of client resources. Cell-level security expressions are evaluated for every cell in the query, and are not cached.

For more extensive, one-on-one security requirements, use dynamic security with the UserName function in the MDX
statement to set security. Dynamic security allows you to give the end user a single role: a role that uses the UserName
function to determine what members a user is permitted to see on a user name-by-user name basis. However, if every user
name has a different set of members, then dynamic security potentially has a huge number of replicas.

Dimension security (both standard role-based security and dynamic security) is always performed on the server and is totally
transparent to the client. Cell-level security is always performed on the client machine.

In practice, you should use a combination of these different role techniques: standard role-based dimension security, cell-level
security, and dynamic dimension security. Where you have simple requirements, use cell-level security. It has the least memory
overhead. However, in many areas cell-level security cannot be used because just the exposure of the dimension members is
viewed as a breach of security. For example, knowing that your company has a particular customer in Asia might be considered
confidential information, regardless of what the sales (or cells) are to that customer. In such cases, you must use dimension-
level security. In this case, you can reduce the overhead of dimension-level security by using the minimum number of fixed
roles. When designing roles, attempt to group the members so there is as little overlap of members as possible. Attempt to
limit users to just one role. If both of these guidelines are followed (as closely as possible), then the largest total combined size
of replicas is twice (2X) the size of the base dimension. Only use dynamic security for the subset of your users who really need
member-by-member control based on the user name.

For even more control, you might be able to use application-level security. For example, suppose you are implementing a 3-tier
Web-based application. Because all data access goes through the middle-tier application, you have an opportunity to add more
extensive business rules than Analysis Services supports directly. You can choose to allow only certain kinds of operations
within a certain number of days of the monthly closing date. Or, you can choose to allow only a certain type of data access if
the end user also has credentials in some other security systems, such as a form-based authentication database, a Lightweight
Directory Access Protocol (LDAP) server, or some other kind of third-party tool.

Normally this kind of application-level security is available only if you are writing the application yourself. However, some
third-party OLAP tools also provide their own security system. For example, Panorama's Software's Novaview (see their web
site at http://www.panoramasoftware.com) has an entire subsystem that adds additional controls for users that are using its
thin-client, Web application server. This kind of support varies from product to product.

Domain Structure Issues

Because a user must be successfully authenticated before connection to Analysis Services, there generally must be a common
domain structure between the Analysis Services computer and the client. However, if you do not have a common domain
structure, you have several choices for overcoming this limitation:

If you are using Analysis Services 2000 Enterprise Edition, you can configure Analysis Services for HTTP access through
IIS. For more information, see "Connecting Using HTTP" in SQL Server Books Online or go to the MSDN library
(msdn.microsoft.com) and see the article "Improved Web Connectivity in Microsoft SQL Server 2000 Analysis Services."

You can match the user accounts and passwords between non-trusted domains. While effective, this option can require
significant management overhead to keep these accounts synchronized over time as passwords change.

You can enable the Windows guest account. This is not a recommended approach because you have no means of
auditing who is accessing what data, and access is not limited necessarily to Analysis Services data. Instead, Microsoft
recommends that you use the SSPI authentication option ANONYMOUS, outlined earlier in this section.

Top Of Page

http://www.panoramasoftware.com/

Service and Availability Management

Analysis Services administrators are responsible for ensuring that Analysis Services and its data are available for browsing by
end users. The level of availability required (the amount of down time that is tolerable) depends on the business impact of the
unavailability of the data in the Analysis Services cubes. The level of desired availability is generally defined in a service level
agreement (SLA) and determines the elements that must be employed to ensure the agreed-on level of availability.

To ensure an agreed-on level of availability, you must develop an availability plan. When you develop your availability plan,
take a holistic, system-wide approach and consider Analysis Services as only one part of the entire IT infrastructure. Consider
the hardware components of the computer, all necessary software on the computer, the Microsoft Active Directory
infrastructure that supports the Analysis Services installation, and the required personnel. Also consider transient information,
such as user names and passwords, as well as product installation information, such as CD keys, distribution points, and
original installation media.

When determining the appropriate Analysis Services components to add to your availability plan, assess the following:

Is continuous, 24-hour-a-day query access to Analysis Services data required? If so, how do you process new data
without compromising availability?

If continuous query access is not required, how do you ensure that all required processing can be completed within the
nightly processing window? How do you handle situations that require an entire cube to be reprocessed (changes to
non-changing dimensions)?

How is the Analysis Services data protected against failure of one or more components on the local computer? Will a full
reprocess be required after recovery, or can a full reprocess be avoided?

How is the Analysis Services data protected against failure within the enterprise? What will be the effect if only some
pieces of the infrastructure cannot be recovered, such as Active Directory?

Each of these elements must be addressed to determine how to achieve the desired level of availability. Once you have
determined the elements of your availability plan, you must test each element of the plan to ensure that the plan works
properly and smoothly in the face of both anticipated and unanticipated threats to availability. A well-trained staff that is
prepared to handle any contingency is an essential part of any disaster recovery plan.

Service Continuity

You must consider how you will detect when Analysis Services stops running, so that you can respond to a service outage
before your users detect the problem. If you want to grow your own detection mechanism, you can use one or more of the
following three options to determine whether Analysis Services is still running:

Poll the server at predetermined intervals, such as every 60 or 120 seconds.

Gather values from Windows Performance Monitor using standard APIs.

Create a SQL Server Agent job that runs an OpenQuery function against PivotTable Service. The sample scripts provided
in Appendixes F and G of this paper demonstrate how to create an Analysis Services linked server and then query it to
verify its availability.

You can also purchase a commercial product that performs this function, such as AppManager for Analysis Services from
NetIQ (www.netiq.com) or ELM Enterprise Manager from TNT Software (www.tntsoftware.com).

Service Management

As the next step in your availability plan, consider how to define availability in the service level agreement (SLA). For example,
Analysis Services can be unavailable for querying because dimensions are being processed due to reorganization. Should this
be considered a service outage? The service issues unique to Analysis Services include the following:

Outages for dimension maintenance If the dimensions in your cubes contain non-changing dimensions, then
realignment of customers, product lines, or sales will cause downtime during reprocessing.

Nightly processing windows In nightly processing, query response times will be reduced during incremental
processing of partitions. In some cases, a cube partition will be completely unavailable during full processing of that
partition.

Usage-based optimization Running the Usage-Based Optimization Wizard on a regular basis, to add new
aggregations based on changing query patterns, can increase the total number of aggregations, which in turn would

http://www.netiq.com/
http://www.tntsoftware.com/

increase processing times and might ultimately exceed the length of the nightly processing window.

How should the SLA handle cube unavailability caused by these types of user changes? At what point does unavailability
caused by these issues require that you consider a 24-hour-a-day solution? For more information on continuous solutions, see
"Implementing a Continuous Analysis Services Solution" later in this paper.

Backup and Recovery

Regardless of the other components of your availability plan, regular backups are an essential component. You must also
ensure that these backups can be quickly restored if they are needed.

Before you back up your Analysis Services data, you must ensure that Analysis Services is not processing any dimensions,
partitions, or mining models. Because Analysis Services performs some processing tasks as background processes,
determining when all processing has been completed can sometimes be difficult. Also, you must ensure that another
administrator is not changing any of the meta data while you are performing a backup. One way to ensure Analysis Services is
quiescent is to stop Analysis Services before you perform the backup. You can use the sample script provided in Appendix H,
"Sample Script to Determine When Lazy Processing is Complete," to assist you in determining when all background processing
is complete.

Backup Options

Analysis Services provides two techniques for backing up an Analysis Services database: archiving and copying files.

Archiving

You can archive an Analysis Services database and the repository to one or more .cab file using the msmdarch command
(msmdarch.exe), either from within Analysis Manager or from a command prompt. Msmdarch uses .cab storage algorithms,
which limits the size of any single .cab file to 2 GB. As a result, no individual file in the Data folder (such as any single partition)
can exceed 2 GB, or else msmdarch cannot be used for backup. When using msmdarch, always specify a log file location to
capture any messages generated during the archive process. If the archive process fails, these messages can help you
determine why the archive process failed. However, msmdarch does not back up the query log. To back up the query log,
perform a file-based backup of the MSMDQLOG.mdb file. If you do not, a new query log is created from scratch when you
start a restored instance.

Copying Files

If you cannot use msmdarch, you can use a file copy program, such as Windows Backup, to back up all the files in the Data
folder. With a file copy backup, you back up all databases on the server. With msmdarch, you can back up a single Analysis
Services database. In addition, the file copy technique does not back up the repository or the query log file. If you use the file
copy technique, you must back up the repository at the same time you back up the Data folder, to ensure that the repository
and the data in the Data folder remain synchronized. You must also back up the query log (the MSMDQLOG.mdb file), or begin
capturing query information from scratch.

While it is possible to back up just an individual database (by copying the contents of its Data subfolder and the .DBO file), you
cannot back up individual portions of the repository. The repository is needed on a full restore, or if the meta data has changed
since the last backup. Thus Microsoft recommends that if you are using the file copy technique, you back up the entire Data
folder: all databases at the same time.

If you have a Storage Area Network (SAN), you can perform the following steps to create an offline image of the Data folder,
the repository, and the query log that can be backed up while maximizing availability of the data for querying.

1. Create a mirror set and then wait until it is fully synchronized.

2. Stop Analysis Services.

3. Break the mirror.

4. Restart the service.

You can then mount the mirrored image as a separate drive and do your file-level backups from there without worrying about
consistency.

Note The term EMC Corporation uses for this offline image is a Business Continuance Volume (BCV).

Recovery Options

Restoration is an all-or-nothing process and is inherently a high-risk activity. This means that you and your staff must
thoroughly test and prepare for recovery in a test or QA environment before you have to perform such a recovery in the
middle of a crisis. Inadequate training and preparedness can convert an existing problem into a more complex or longer-
running problem.

If you back up an Analysis Services database using the msmdarch command, you also use msmdarch to restore the
database. This is the preferred recovery option because msmdarch automatically integrates the repository updates.

If you use the file copy technique, you must stop Analysis Services to perform the restoration, and then you must restore
the repository database, before you start Analysis Services. If you do not, and the repository contains meta data that is
inconsistent with the restored data, you will receive errors when managing the database objects, and you must then
reprocess all the cubes in the database. In addition, you must replace the query log file with the backed up version.

With both backup methods, you must replace the query log file with the backed-up version.

Note Whether you restore using the msmdarch command or the file copy technique, you may have issues with security
mappings if user names assigned to roles have changed since the backup.

Implementing a Continuous Analysis Services Solution

If your availability plan requires that users be able to query the cubes and dimensions on a continuous, 24-hour-a-day basis,
there are a number of challenges that you must overcome. These include the following:

The repository If you use multiple servers to assure availability, you must ensure that the repository on each server
remains synchronized with the Data folder, which you are also synchronizing. While the repository is not required for
query processing, it is required when any structural change is made to the Analysis Services cubes and dimensions. If
users are querying a copy of the Data folder on a secondary Analysis Services instance, you must make the change in the
original Analysis Services instance and then update the secondary instance (using the file copy technique or msmdarch).

Writeback If you enable your cubes or dimensions for writeback, they can only write back to a single location (such as
a SQL Server table). This creates a single point of failure (and possibly a performance bottleneck).

Processing Dimension processing might force cubes offline when structural changes have been made to non-changing
dimensions.

When implementing a continuous Analysis Services solution, Microsoft offers two technologies to help you achieve this goal:
Microsoft Cluster Services and Network Load Balancing. As you will see, each offers a different type of availability for your
Analysis Services computer.

Microsoft Cluster Services

Microsoft Cluster Services (MSCS) enables you to protect your Analysis Services installation against hardware and software
failure. With MSCS, you install Analysis Services on two nodes in a cluster with a shared file storage subsystem (with some
version of RAID) that contains the Data folder, the repository, and the query log. Only one node in the cluster is active at any
point in time. If the active node fails, MSCS fails over to the passive node and starts Analysis Services on that node. Analysis
Services on the failover node uses the Data folder, the repository, and query log located on the shared file storage system. This
clustering solution ensures that Analysis Services is available for querying in case the primary server in the cluster fails for
some reason. However, MSCS does not provide a continuous query solution. You still face the issue of downtime due to
processing. In addition, MSCS does not provide any load balancing: the resources in the passive node are only utilized during
failover.

MSCS requires specialized hardware, but is a well-proven technology that is familiar to the operations staff of most data
centers. For more information, go to Knowledge Base (support.microsoft.com) and see the article "HOW TO: Cluster SQL Server
2000 Analysis Services in Windows 2000."

Network Load Balancing

Windows 2000 Network Load Balancing (NLB) enables you to protect your Analysis Services installation against hardware and
software failure. It also provides load balancing of queries across multiple servers, and a continuous query availability solution.
With NLB, you install multiple instances of Analysis Services on separate computers and then ensure that each has an identical
copy of the Data folder and the repository. Each also has a separate query log. The NLB service automatically load-balances
query requests among the instances of Analysis Services in the NLB cluster. If any one of these servers fails, NLB simply detects
the failure and routes user queries to a server that is running. To support more users with faster response times, simply add
more servers to spread the load (and increase availability).

To achieve continuous query capability with NLB, you perform the following steps:

1. Create your server cluster of Analysis Services computers and synchronize the Data folder and the repository on each
server.

2. When you need to perform processing, you remove one of the servers in the NLB cluster from NLB cluster and perform
the processing on that server. This leaves one or more servers available for querying.

3. When processing is complete, add the server with the newly processed data to the cluster and remove the other server or
servers.

4. Synchronize the Data folder (and the repository, if any meta data changes were made) on each of these servers with the
Data folder (and repository) on the server that was just processed.

5. Rejoin these servers to the cluster. At all times, a server is available for querying.

NLB does not require specialized hardware, but does require network expertise (such as knowledge of TCP/IP configuration
issues) to configure the NLB cluster. For more information, go to the Microsoft Technet Web site
(http://www.microsoft.com/technet) and see "Creating Large-Scale, Highly Available OLAP Sites: A Step-by-Step Guide."

Disaster Recovery Issues

Part of your availability solution must be a disaster recovery plan. This plan must provide all the information needed by the
staff on duty when the disaster strikes, to enable them to handle every contingency that can be anticipated. You need to
address how the operations staff should respond to each type of disaster, the steps that should be taken, and contact
information for the support staff responsible for other portions of the IT system. For example, you must address the following:

In what situations must the dimensions be reprocessed and aggregations recalculated in order to restore the Analysis
Services database?

In what situations must the data from the underlying relational tables be reloaded (refreshed) to restore the Analysis
Services database?

What should be done if only a portion of the data in the cubes and dimensions can be recovered?

What should be done if some other piece of IT infrastructure is not available (such as Active Directory or an IIS server)?

Top Of Page

Capacity Management

Analysis Services administrators must understand how Analysis Services is using the memory, disk, processor, and network
resources. Its use of these resources may change over time, which means that you should keep a record of your system's use
of these resources over time to anticipate the need for additional resources or reconfiguring of existing resources.

Memory

Analysis Services uses virtual memory address space as needed, relying on the Windows operating system to map these
virtual memory addresses to physical memory. Analysis Services uses memory at startup to load all MOLAP dimension
members into memory. Thereafter, usage of all remaining memory fluctuates based on the volume of queries, the number of
replica dimensions in memory, and the amount of memory required for processing. Over time, memory use may increase due
to dimension growth, new databases that reuse shared dimensions, and the increased number of replica dimensions stored in
memory.

This section describes memory capacity issues. For a discussion of memory configuration, see "Memory Settings" earlier in this
paper.

Memory Consumption By Dimensions

On startup, Analysis Services loads into memory all MOLAP dimension members for all databases on the Analysis server,
along with all of their member properties, to help increase query responsiveness. By default, MOLAP, HOLAP, and ROLAP
cubes contain MOLAP dimensions. If you create a ROLAP cube and specify ROLAP dimensions, these dimensions are not
loaded into memory. New dimensions and dimension members are added to memory as they are created. The amount of
memory consumed by an existing dimension in memory is adjusted only during dimension processing. This means that large
MOLAP dimensions can consume a significant amount of virtual memory on the Analysis server, reducing the address space
that is left for other tasks. The amount of memory required by dimension memory tends to increase over time as new

http://www.microsoft.com/technet/

dimensions and dimension members are added to the cubes in the Analysis Services instance.

For an estimate of the memory space required to hold each dimension, you can look at the sizes of the files that hold the
dimension structure in the file system. For shared dimensions, this dimension structure information is stored in four types of
files: .dim, .dimcr, .dimprop and .dimtree. You can find these files in the database folder for the cube, which is stored in the
Analysis Services Data folder. The amount of memory required for dimension memory is approximately equal to the sum of
the sizes of these files. For more information on these file types, see Appendix K: "Data Folder Structure."

If you need to estimate the space required before the dimensions have been defined, such as when planning a hardware
purchase, you can use the following formula as an approximation:

DimSize = CMembers*(61 + 4*CLevels + Size(name) _
+ Size(key)) + 4*CProps + Size(props)

where:

CMembers

The total number of members in the dimension.

CLevels

The number of levels in the dimension, including the All level.

Size(name)

The average size required to hold the member names. For example, a 10-character string stored as Unicode requires 20 bytes.

Size(key)

The size required to hold the member key. Example: an integer key requires 4 bytes. If the member name is the same as the
member key, Size(key) is zero.

CProps

The number of member property settings in the dimension for all levels. For example, if a level with 1000 members has two
properties on each member, there are 2000 property settings for that level. The member property settings are used to identify
which member property values are referred to by the member.

Size(props)

The size required to hold the distinct member property values for all member levels. Remember that member properties are
stored as Unicode strings, and each unique string is only stored once. For example, a customer gender property with possible
values of Male, Female, and Unknown requires only 34 bytes of storage (17 characters x 2 for Unicode) no matter how many
times they are referred to.

Note For the 64-bit version of Analysis Services, the formula above should be 8*CLevels and 8*CProps because an integer is
8 bytes, rather than 4 bytes as on a 32-bit system.

Analysis Services uses as much memory as required for dimension memory. You can control the amount of memory used as
dimension memory by eliminating unnecessary dimensions, levels, and member properties. In addition, because all dimension
information in all cubes on the Analysis server is loaded into memory when Analysis Services starts, you should also eliminate
unnecessary test cubes and unused dimensions in any of the databases on the Analysis server to save memory. Analysis
Services attempts to prevent large dimensions from using all of the available virtual memory address space by loading very
large dimensions in a separate process space with its own virtual memory address space. A very large dimension is one that
exceeds the VLDMThreshold value in the registry. The default VLDM threshold is 64 megabytes (MB). While using a separate
address space for dimensions that exceeds the VLDM threshold does save virtual memory address space for other uses in the
main process, overall performance slows when one or more dimensions exceed the VLDM threshold. You should increase the
VLDMThreshold value if you have sufficient virtual memory address space. Analysis Services in SQL Server 2000 (64-bit)
does not use a VLDM threshold because this version does not have a 3-gigabyte (GB) virtual address limit. For more
information on VLDM, see "Very Large Dimension Memory (VLDM) Threshold" earlier in this paper.

Query Results Cache

Analysis Services stores data returned by client queries (but not calculated data) in its query results cache. The cleaner thread
begins evicting entries from the query results cache when the memory used by the Analysis Services process exceeds the
halfway point between the Memory conservation threshold and Minimum allocated memory settings. As the amount of
memory allocated for other Analysis Services uses increases, the amount of memory for the query results cache decreases. If
you are running low on memory resources, query response times increase because the query result cache is too small.

Memory Consumption by Connections

Analysis Services allocates approximately 32 kilobytes (KB) for each client connection. If Analysis Services is supporting a large
number of connections, the memory required for each connection reduces the amount of memory available for the query
results cache. When a client specifies that the execution location for a query is the Analysis server (this is called a remote
query), additional memory is required to service the query. The amount of memory that can be allocated to a remote query is
determined by the value of the AgentCacheSize registry key. By default, up to ten percent of memory on the Analysis server
can be allocated to each agent cache. Because more than one of these caches can be allocated at the same time (to service
multiple clients issuing remote queries), reduce this value when many remote queries are being evaluated to reserve memory
for the query results cache. For more information on remote queries, go to the Microsoft Technet Web site
(http://www.microsoft.com/technet) and see "Microsoft SQL Server 2000 Analysis Services Performance Guide."

Memory Consumption By Replica Dimensions

When a user queries a cube that is secured by dimension security, Analysis Services calculates and loads replica dimensions for
each unique combination of security roles actually used by the client. For example, if a user is a member of the two roles of
plant users and plant administrators, then the final list of permitted and denied members is the combined list. A replica
dimension contains all permitted members plus their siblings, their ascendants, and the siblings of the ascendants; the names
and properties of members that the client is not permitted to view are removed.

Replica dimensions are unloaded when the dimension (or cube containing the dimension) is processed, when Analysis Services
is restarted, or when role membership changes. Replica dimensions are not unloaded when the client disconnects. Retaining
replicas in memory enables replicas to be reused across clients that have the same permissions. Before Analysis Services builds
a new replica, it checks to see whether a replica already exists with the same allowed and denied list. If so, the replica is reused.
If not, a new replica is created. This design works well unless Analysis Services needs to create many different replicas because
there are a large number of security roles (for example, 100) or if dynamic security is used and each user has a different
allowed and denied set. In dynamic security, the list of permitted and denied users is based on a custom MDX statement
containing the USERNAME function. Replicas will be shared among users, and with security roles, if the list of allowed and
denied member sets is the same.

If a cube contains a large number of security roles, combines roles by user, and has a large number of roles that can be seen by
all but a few members, replicas can consume a substantial amount of memory on the Analysis server. In this scenario, use cell-
level security rather than dimension-level security to limit the impact of security on memory use and performance.

Memory Consumption By Shadow Dimensions

When Analysis Services processes a dimension, it creates the dimension in memory as a shadow dimension until processing is
complete. While Analysis Services is processing a dimension that has been processed before, user queries are resolved against
the previously existing dimension in memory until the processing transaction commits. After the dimension is processed, the
old dimension is released from memory and user queries are resolved against the newly processed dimension. If dimensions
are processed as part of cube processing (as a single transaction), the creation of shadow dimensions can have a major impact
on memory if the cube has large dimensions. When the dimensions of a cube are processed as a single transaction, a shadow
copy of each dimension is stored in memory until the transaction commits. While Analysis Services loads dimensions larger
than the VLDM threshold in a separate process address space, the shadow dimensions are always created in the main process
address space (which can use a significant amount of memory with large dimensions).

If the Analysis server has insufficient memory, processing all existing dimensions in a single transaction can fail. All dimensions
are processed in a single transaction whenever you click Process all dimensions or Process the database in Analysis
Manager, or specifically process all dimensions using Decision Support Objects (DSO). If you are running low on memory, you
will have to process the objects requiring processing individually rather than in a single transaction to conserve memory.

Disk

The Data folder stores the data for all databases in an Analysis Services instance. The Temporary folder (or folders) stores the
temporary files used during processing, if any. The usage of disk space in the Data folder will assist you in determining when
partitioning of a cube will be useful. The usage of disk space in the Temporary folder will indicate that memory resources are in
short supply.

Data Folder

Within the Data folder, Analysis Services creates a separate subfolder for each Analysis Services database. Within each
database folder, Analysis Services creates a separate subfolder for each cube within that database. While there are a number of
different files created in the subfolder for each cube, there are two file types that you should particularly monitor:

http://www.microsoft.com/technet/

Partition files Each partition file has an extension of fact.data. When a partition file exceeds 5 GB or more than 20
million records, you should begin considering the benefits of dividing the partition up into multiple partitions. While
these are two general rules of thumb and may vary with circumstances, clearly smaller partitions can be processed faster
than larger partitions. Also, with partitions, you frequently do not have to process all partitions in the cube in response to
data change. In addition, smaller partitions can be queried quicker because, if the data slice is set properly, Analysis
Services needs to scan less data to resolve many queries.

Aggregation Files The files containing rigid aggregations have an extension of agg.rigid.data. The files containing
flexible aggregations have an extension of agg.flex.data. As these files get larger, the time required to process
aggregations becomes longer. If you monitor the size of these files over time, you can see trends as they develop.

Temporary Folder

Temporary folders are used as temporary storage for aggregations during processing when the amount of memory available
for the process buffer is insufficient to hold aggregations in memory during processing. You should avoid the use of
Temporary folders if possible, to maximize performance during processing. However, if Analysis Services has insufficient
memory in the process buffer to process a partition, it automatically uses the Temporary folder. As a result, you should
monitor Temporary folder usage to detect when memory is insufficient. To monitor temporary file use, set Performance
Monitor to collect the Temp file bytes written/sec counter for the Analysis Services:Proc Aggs object and record it to a log
file.

If you are processing partitions in parallel, you may need to process fewer partitions in parallel or process partitions serially to
conserve memory and avoid the use of temporary files in order to increase overall performance. If you are processing
partitions in parallel, you may run out of virtual address space for these simultaneous operations. If so, you receive out-of-
memory errors. If you have insufficient physical memory to back allocated virtual memory, memory paging occurs.

Processor

When analyzing processor capacity issues, you must look at both querying and processing.

Querying

Analysis Services automatically parallelizes queries submitted by users, to maximize the use of all available processors.
Complex queries take more processor resources than simple queries, and queries that Analysis Services resolves at the fact
level require more processor resources than queries that Analysis Services resolves using existing aggregations. While it is
fairly easy to understand how simple queries benefit from aggregations, sometimes what appears to be a simple query is
actually very resource-intensive. Some MDX functions such as TOPCOUNT(), AGGREGATE() and MEDIAN() must touch a large
number of cells to resolve, but only return a few values (these are called wide queries). For example, a query that returns the
top three customers in sales for the current year or the median volume of sales per customer for the current year may require
a long time for Analysis Services to resolve in a large cube. Depending on the dimension levels involved in the query and the
aggregation design, aggregations may help. However, with queries of this type, it is not obvious from the query results that are
returned why Analysis Services took a significant amount of time to resolve these types of queries.

When query performance suffers, you must determine the bottleneck:

Insufficient memory, disk, or processor resources

Improper or insufficient aggregations

Simple versus complex queries

Well-written versus poorly written MDX queries

Processing

During processing, Analysis Services parallelizes the processing of each partition, but, by default, Analysis Services processes
each partition in a cube serially. Parallel processing results in dramatic performance benefits with large cubes during the initial
load of the data warehouse, during full cube processing, and during cube refreshes, provided that the Analysis server has
sufficient memory to process several partitions in parallel without using temporary files (and the processing buffer is
configured to use the appropriate amount of memory). If there is insufficient memory on the Analysis Services computer to
store the aggregations for each partition as they are being processed, Analysis Services uses temporary files to supplement the
available memory, which negates the performance benefit you are trying to achieve through the use of parallel processing.

Flexible aggregations (lazy aggregations) are recalculated on a low-priority background thread, which can utilize a significant
amount of processor resources until these flexible aggregations are recalculated. The thread runs at a low priority so that the

lazy aggregator does not affect query response time. However, because these aggregations are calculated on a background
thread, lazy processing may never complete if another request is triggered before the previous one completes, or it might take
a very long time if the server is overloaded by queries or other non-Analysis Services processing. The recalculation of flexible
aggregations is typically triggered by an incremental update to a changing dimension. When attempting to isolate the use of
processor and memory resources on an Analysis Services computer when you are not actively processing an object, do not
overlook resources used by this background process.

Network

Insufficient network bandwidth can affect both query responsiveness and processing performance. Clients that are connected
to Analysis Services using slow connections experience slower query response times from Analysis Services than clients using
fast connections. If the relational database is located on a different server from the Analysis server, processing performance
can be negatively affected if the network is congested.

For information on optimizing query responsiveness over slow network connections or on the impact of architecture on
processing performance, see "Microsoft SQL Server 2000 Analysis Services Performance Guide" on the Technet Web site
(http://www.microsoft.com/technet). For more information on network issues that relate to SQL Server, see Chapter 11,
"Configuring Microsoft SQL Server on the Network," in Microsoft SQL Server 2000 Administrator's Companion. Also see
"Monitoring Network Activity" in Microsoft System Monitor online Help.

Top Of Page

Problem and Incident Management

Problem and incident management with Analysis Services is similar to problem and incident management with other server
applications or the Windows operating system infrastructure itself. The Analysis Services administrator must employ best
practices to detect problems before they create serious problems and then resolve the problems when they occur. The Analysis
Services process log file (which should always be enabled), the DTS error and execution logs, and the Windows application log
should be reviewed on a regular basis to attempt to detect potential problems before they become bigger problems. These
same logs should be reviewed after incidents to attempt to associate events with incidents and identify patterns that lead up to
the failure. The resolution of problems should be documented to help resolve future incidents and also used to train personnel
in troubleshooting and understanding symptoms.

Analysis Services presents a number of unique problem and incident management issues:

Detecting who is currently using Analysis Services

Detecting network bandwidth issues

Identifying connectivity problems and clustering issues

Understanding common performance problems

Problem-Solving Tips

The following is a list of problems you might encounter when operating an Analysis Services instance, along with possible
solutions:

Symptom Problem Solution

Server cycling at startup.
One or more corrupt
dimensions are being loaded
into memory.

Review the Windows application log to locate
entries with Event ID 129 or Event ID 130.
These identify the dimension and database
involved. Drop and re-add the corrupt
dimensions.

Cleaner thread reducing allocated memory
when sufficient memory is available.

The Analysis Services memory
settings were not increased
when additional memory was
added.

Increase the Memory Conservation
Threshold and Minimum Allocated
Memory settings in Analysis Manager to
account for the new memory; these settings
are not adjusted automatically.

http://www.microsoft.com/technet/

Receiving the message: "Unable to connect to
the registry on the server (SERVERX), or you
are not a member of the OLAP Administrators
group" when trying to connect to Analysis
Services from Analysis Manager.

1. You are trying to
administer an Analysis
Services instance with SP3
installed from a version of
Analysis Manager that
does not have SP3
installed.

2. The remote registry
service is not running on
the client computer.

3. You have insufficient
permissions to the files in
the Data folder.

4. There is a high degree of
concurrent administrative
activity or processing of
partitions in parallel.

1. Install SP3 on the client computer.

2. Start the remote registry service on the
client computer.

3. Add your user account to the OLAP
Administrators group or directly to the
Data folder.

4. Install hotfix - for more information, see
"FIX: Error Messages May Occur During
Parallel Processing of Partitions After
You Apply SQL Server 2000Analysis
Services SP3" in the Microsoft
Knowledge Base.

You see empty or zero-value property entries
in the Analysis Services Properties dialog box
when you view an instance.

The remote registry service is
not running on the client
computer.

Start the remote registry service on the client
computer.

Receiving a message such as: "A member with
key '20030113' was found in the fact table
but was not found in the level 'Day' of the
dimension 'ReceivedDate'.; Time:7/24/2003
10:06:11 AM".

You are missing a member with
the key 20030113 in your
Received Date dimension.

Add the missing member to your Received
Date dimension and reprocess.

Receiving the message: "Unable to connect:
unspecified error" after installing Microsoft
Office XP.

There is a DLL conflict problem. Use the Office XP repair feature.

Unable to see all available cubes (can see
some of the Food Mart cubes but not your
application databases).

If using the SQL Server 7.0
version of PTS, Analysis Services
exposes only those cubes that
are not using new SQL Server
2000 features.

Upgrade PTS on the client to SQL Server 8.0
and then install SP3.

When processing partitions, you must ensure that a dimension is completely processed prior to processing any partitions
based on it. You can get into trouble if you process a partition while one of its dimensions is also being processed. The parallel
processing utility on the SQL Server 2000 Resource Kit avoids this problem by processing in two passes. The first pass is for
dimensions (in the order specified). The utility then makes a second scan for partitions in the same workload. If you process
dimensions after or while processing partitions, your cube may be left in state where it cannot be queried.

You must also ensure that all background work in the relational database is completely done prior to processing a dimension
based on it. You can get into trouble if the underlying dimension table changes while you are trying to perform a dimension
update. This restriction must be enforced by the underlying extract, transform, and load process (the ETL process) that updates
your dimension tables.

Finally, an incremental process of a changing dimension kicks off the lazy aggregator background processor. If you
incrementally process several changing dimensions at once, it can have serious side effects on the responsiveness of your
system for a considerable period of time. For more information, see "Microsoft SQL Server 2000 Analysis Services
Performance Guide" on the Technet Web site (http://www.microsoft.com/technet).

Monitoring User Access

The only way to monitor queries being executed on a per-user basis is to set the query log frequency to 1 in the Server

http://www.microsoft.com/technet/

Properties dialog box in Analysis Manager, and then review the contents of the query log to determine the levels touched by
the queries in question. While this is easy to configure, it won't always provide an accurate measure of user queries. In
particular:

If the same query was already issued on the session, then the query might be answered using the client-side cache. If so,
it is not recorded in the query log. The query log was designed in conjunction with the Usage-Based Optimization (UBO)
Wizard and not as an auditing tool. The query log records only server-side requests.

If a query is being asked in the context of a series of pyramid queries, then the query may not be recorded in the query
log. For example, if a user first performs a detailed query, and then drills up, the second higher-level query may be
answerable from the aggregates returned by the first query. In this situation, the second query is not recorded in the
query log.

If you look at the query log table, you will notice that this table records aggregation requests rather than actual MDX
statements. To capture the MDX statements that generate the aggregation requests, you must specify the LOGFILE=
clause in the PivotTable Service (PTS) connection string. This clause tells PTS (on the client) to record the MDX query in a
log file on the client. PTS on the client actually parses and resolves the MDX query into a series of aggregate requests for
the Analysis server. While you can request that PTS attempt to remote the execution of the query to the Analysis server
(using the ISOLATION LEVEL and EXECUTION LOCATION clauses on the connection string), that does not actually
transfer the MDX either. The query is still parsed and resolved into an execution plan on the client-but the execution is
actually performed on the Analysis server. In either case, by the time the query gets to the Analysis server, the actual
MDX statement is no longer available. The actual MDX statement is only visible on the client-side code inside PTS.

Besides monitoring query activity, you might want to determine when users connect and disconnect from your server. To log
connect and disconnect events in the Windows application log, edit the AuditEvents key in the registry
(\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP Server\CurrentVersion) and change the default value from 0xd (13) to
0xf (15).

Actual user connections (the equivalent to the SQL Server sp_who stored procedure) can be monitored using a low-level
TCP/IP monitoring tool, such as the TCPView utility from Sysinternals (www.sysinternals.com).

This approach works best if there is a direct client-server connection to Analysis Services (Analysis Services listens on port
2725). In this case, the remote computer name is listed on the connection itself. Also, depending on the tool used, the utility can
also disconnect an existing session, emulating a break in the network between the client and the server. This forces Analysis
Services to clean up the connection and release any resources taken by it.

Top Of Page

Appendix A: Checklist for Operations

The following is a consolidated list of all tips and tricks listed in this white paper, along with a page number for where they are
discussed more thoroughly.

Item Page

Create a run book for each server. 3

Document all Analysis Services objects. 3

Check that Analysis Services has not been installed on a domain controller. 3

If you need to configure process affinity, use Windows System Resource Manager (WSRM) in Windows Server 2003. 4

Add a second paging file equal to the amount of physical memory in your computer. 4

Use the 64-bit versions of Analysis Services and Windows Server 2003 to enable Analysis Services to address more
than 3 gigabytes (GB) of memory in the main process space. 5

Use the /3 GB switch with the 32-bit version of Analysis Manager, if supported by the operating system. 5

http://www.sysinternals.com/

Disable unnecessary services, in particular the Indexing service. 7

Disable virus scanning for the Analysis Services Data and Temporary folders. 7

If you add memory or enable the /3 GB switch in boot.ini, increase the Memory Conservation Threshold and
Minimum allocated memory settings in Analysis Manager. 9

Disable the VLDM threshold if you have sufficient memory in the main process space. 10

If you must use VLDM, consider going to the 64-bit version of Analysis Services instead. 11

If you have sufficient memory, increase the Process Buffer Size setting to at least 150 or 200 megabytes (MB) to
eliminate the use of temporary files during processing. 12

Use a RAID array for the Data folder, and allow double the space required for the data, index, and aggregation
structures. This allows sufficient space during processing and for refreshing the data. 13

Use a RAID array for the Temporary folder if temporary files must be used during processing. Alternatively, consider
adding a second Temporary folder on a different hard disk. 13

Configure a logical name for the data source object in Analysis Manager. 14

Configure a domain user account for the MSSQLServerOLAPService service and add this account to the local OLAP
Administrators group. Ensure that this account has sufficient access rights to the data source. 16

Configure security account impersonation and delegation using Kerberos, if client security credentials must be passed
through a middle-tier application. 17

To use the SQL Server Agent service to automate Analysis Services tasks, add the service account used by the SQL
Server Agent service to the local OLAP Administrators group. 18

Migrate the Analysis Services repository to a dedicated database in SQL Server using a case-insensitive collation. This
increases scalability, support, and security. Do not use the default msdb database. 18

Enable a system-wide processing log file to enable troubleshooting and analysis. 20

Use (or increase the use of) partitions to increase query and processing performance if your partitions exceed 5 GB or
more than 20 million records. Partitioning requires that you use SQL Server 2000 Enterprise Edition 21

Ensure that each partition has a data slice defined for the partition, to increase query performance. 21

Designing too many aggregations will slow processing; too few aggregations will slow querying. Ensure that all
partitions have a minimum number of aggregations - perhaps 10%. 23

Use the Optimize Schema command to eliminate unnecessary joins. 23

Verify that each computer running Analysis Services and each client computer accessing Analysis Services data or
metadata has the latest service pack or appropriate hot fix. 26

To deploy an Analysis Services database, use msmdarch.exe to archive and then restore the Analysis Services database,
provided that no single file is larger than 2 GB. Otherwise copy and paste, use a file-based copy program, or use a third-
party utility.

27

Use scripts and DTS packages where possible to effect change for repeatability and to facilitate the use of source code
control. Do not use an interactive tool unless absolutely necessary. 30

Administrators must be members of the OLAP Administrators group on the Analysis Services computer, and must be
able to perform any task within Analysis Services, regardless of any other role restrictions. 32

If you have many different security roles for end users, use cell-level security rather than dimension- level security, to
reserve memory for processing and querying.

For even more control, use application-level security.

36

37

Use a common (same or trusted) domain structure between clients and Analysis Services. 37

Determine the level of availability required from your Analysis Services installation, and then determine how to provide
that level of availability. 38

Create a mechanism to detect when Analysis Services stops running and is no longer available. 39

Perform regular backups, using either msmdarch.exe or a file-based backup method. Ensure that your backup schedule
is complete, ongoing, and regularly validated.

40,
41

Use a test or QA server to practice restorations to prepare for an emergency. 42

For continuous availability, consider deploying an NLB cluster rather than an MSCS cluster. 44

Monitor memory consumption changes over time to detect and respond to memory capacity constraints. 45

Monitor disk space changes over time, including the use of temporary files, to detect and respond to disk and memory
capacity constraints. 49

Monitor processor usage changes over time to detect querying and processing bottlenecks as they appear. 50

Use traditional problem and incident management techniques to resolve problems quickly, and then use the
information learned to prevent future problems and to train staff. 52

Top Of Page

Appendix B: Resources

The following books, papers, Web sites, and courses are excellent resources for additional information about operating and
maintaining an Analysis Services installation.

Books

MDX Solutions: With Microsoft SQL Server Analysis Services, George Spofford

Fast Track to MDX, Mark Whitehorn, Mosha Pasumansky, Robert Zare

Microsoft SQL Server 2000 Resource Kit, Microsoft Corporation

Microsoft SQL Server 2000 Bible, Microsoft Corporation

Microsoft SQL Server 2000 Administrator's Companion, Microsoft Corporation

Papers and Links

"Microsoft Analysis Services Performance Guide" by Carl Rabeler, Len Wyatt, and Dave Wickert,
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/ansvcspg.mspx

https://msdn.microsoft.com/en-us/library/cc917609(v=technet.10).aspx

"Creating Large-Scale, Highly Available OLAP Sites" by Dave Wickert, http://www.microsoft.com/downloads/details.aspx?
FamilyID=9989a445-142b-4872-ac68-2b50f05228e2&displaylang=en

"File: Ptssetup.exe Sample Automatically Downloads and Installs OLAP Client"
at http://support.microsoft.com/default.aspx?scid=kb;en-us;312876

"Microsoft SQL Server 2000 High Availability Series" at
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/sqlhalp.mspx

"Business Intelligence and Data Warehousing" at http://www.microsoft.com/sql/evaluation/bi

"INF: How to Enable Analysis Services to Use 3 GB of RAM in the Microsoft Knowledge Base" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;295443

"OLAP Scribe" at http://go.microsoft.com/fwlink/?LinkId=22012

"Windows System Resource Manager - Fast Facts" at
http://www.microsoft.com/windowsserver2003/techinfo/overview/wsrmfastfacts.mspx

"Glossary of Windows 2000 Services" at
http://www.microsoft.com/windows2000/techinfo/howitworks/management/w2kservices.asp

Regmon (product) from Sysinternals, http://www.microsoft.com/technet/sysinternals/utilities/regmon.mspx

TCPView (product) from Sysinternals, http://www.microsoft.com/technet/sysinternals/Networking/TcpView.mspx

"Microsoft SQL Server 2000 (64-bit) Analysis Services: Why Migrate, and What to Expect If You Do" at
http://www.microsoft.com/technet/prodtechnol/sql/2000/evaluate/ansvcs64.mspx

"Use Kerberos Authentication for Microsoft SQL Server 2000 Analysis Services" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;817384

"DSO/XML" at http://www.microsoft.com/downloads/details.aspx?FamilyID
=8d9e7a70-eef4-44c3-a0c5-deece0f8b4b4&displaylang=en

"INF: Permissions That You Must Have to Administer an OLAP Server" at http://support.microsoft.com/?id=231951

"INF: Running OLAP Services on a Domain Controller" at http://support.microsoft.com/default.aspx?scid=kb;en-
us;273836

"PRB: Cannot Process a Cube After You Install SQL Server 2000 Analysis Services Service Pack 3" at
http://support.microsoft.com/default.aspx?scid=kb;en-us;812601

"Improved Web Connectivity in Microsoft SQL Server 2000 Analysis Services" at
http://msdn2.microsoft.com/library/aa902670.aspx.

"AppManager for Analysis Services" (product) from NetIQ,
http://www.netiq.com/products/am/modules/database/analysisServices.asp

"ELM Enterprise Manager" (product) from TNT Software, http://www.tntsoftware.com/sql

"How To: Cluster SQL Server 2000 Analysis Services in Windows 2000" at http://support.microsoft.com/?id=308023

"Registry Entries for SQL Server 2000 Analysis Services" by Tom Mathews, at
http://msdn2.microsoft.com/library/aa902654.aspx

"How to Enable Analysis Server To Use 3 GM of RAM" at http://support.microsoft.com/default.aspx?scid=kb;en-
us;295443

"Connection Pooling with SQL Server 2000 Analysis Services" by Dennis Kennedy, at
http://msdn2.microsoft.com/library/aa902655(SQL.80).aspx

"FIX Error Messages May Occur During Parallel Processing of Partitions After You Apply SQL Server 2000 Analysis
Services SP3" in the Knowledge Base, http://support.microsoft.com/default.aspx?scid=kb;en-us;814414

"HOWTO: Perform a SQL Server 7.0 Distributed Query with OLAP Server" in the Knowledge Base,
http://support.microsoft.com/default.aspx?scid=kb;en-us;218592

"INF: Connect to Analysis Services by Using "SSPI=Anonymous" on Windows XP" in the Knowledge Base,
http://support.microsoft.com/default.aspx?scid=kb;en-us;324040

http://www.microsoft.com/downloads/details.aspx?FamilyID=9989a445-142b-4872-ac68-2b50f05228e2&displaylang=en
http://support.microsoft.com/default.aspx?scid=kb;en-us;312876
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/sqlhalp.mspx
http://www.microsoft.com/sql/evaluation/bi/
http://support.microsoft.com/default.aspx?scid=kb;en-us;295443
http://go.microsoft.com/fwlink/?LinkId=22012
http://www.microsoft.com/windowsserver2003/techinfo/overview/wsrmfastfacts.mspx
http://www.microsoft.com/windows2000/techinfo/howitworks/management/w2kservices.asp
http://www.microsoft.com/technet/sysinternals/utilities/regmon.mspx
http://www.microsoft.com/technet/sysinternals/Networking/TcpView.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/evaluate/ansvcs64.mspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;817384
http://www.microsoft.com/downloads/details.aspx?FamilyID=8d9e7a70-eef4-44c3-a0c5-deece0f8b4b4&displaylang=en
http://support.microsoft.com/?id=231951
http://support.microsoft.com/default.aspx?scid=kb;en-us;273836
http://support.microsoft.com/default.aspx?scid=kb;en-us;812601
http://msdn2.microsoft.com/library/aa902670.aspx
http://www.netiq.com/products/am/modules/database/analysisServices.asp
http://www.tntsoftware.com/sql
http://support.microsoft.com/?id=308023
http://msdn2.microsoft.com/library/aa902654.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;295443
http://msdn2.microsoft.com/library/aa902655(SQL.80).aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;814414
http://support.microsoft.com/default.aspx?scid=kb;en-us;218592
http://support.microsoft.com/default.aspx?scid=kb;en-us;324040

Web Sites

"Business Intelligence and Data Warehousing" at http://www.microsoft.com/sql/evaluation/bi/

"MSDN" at http://msdn2.microsoft.com/default.aspx

"Microsoft SQL Server Accelerator for Business Intelligence" at http://www.microsoft.com/sql/ssabi/default.asp

"Ralph Kimball Associates" at http://www.ralphkimball.com/html/articles.html

"Mosha Pasumansky" at http://www.mosha.com/msolap/index.htm

"SQL Server Magazine" at http://www.sqlmag.com/

"SQL Team" at http://www.sqlteam.com/

"InformIT" at http://www.informit.com/

"SQL Server Central" at http://www.sqlservercentral.com/

Microsoft Official Curriculum Courses

"2093: Implementing Business Logic with MDX in Microsoft SQL Server 2000" at http://www.microsoft.com/learning/.

"2074: Designing and Implementing OLAP Solutions with Microsoft SQL Server 2000" at
http://www.microsoft.com/learning/

Top Of Page

Appendix C: How to Tune the Process Buffer Size

Perform the following steps to tune the process buffer size on an Analysis server:

1. If you have 4 gigabytes (GB) or more of physical memory on the computer, you are running Microsoft Windows
Advanced Server or Windows Datacenter Server, and either large dimensions or large process buffers are causing
memory concerns, then enable the /3GB switch for the operating system and enable Analysis Services to use this
additional memory.

2. Set Performance Monitor to collect the Temp file bytes written/sec counter for the Analysis Services:Proc Aggs
object.

3. Using Analysis Manager, configure the Analysis server properties to assign the Temporary file folder (on the General tab
of the Server Properties dialog box) to an unused physical drive, and configure the process buffer size (on the
Processing tab) to a minimal value, such as 32 megabytes (MB).

4. Restart Analysis Services and then use Performance Monitor or Windows Task Manager to determine what the virtual
memory usage stabilizes at for the Analysis Services process (msmdsrv.exe).

5. Process the cube or partitions under consideration and observe the Temp file bytes written/sec counter you added to
Performance Monitor. Once the aggregation calculation phase starts, you will start to see I/O to the Temporary files.

6. Gradually increase the process buffer size and re-process (restarting the Analysis Services service each time) until the
Temp file bytes written/sec counter shows that the Temporary file is not being used. Then increase the number by 10
percent. If the virtual memory allocation for the Analysis Services service exceeds the HighMemoryLimit threshold,
increase that value as well.

7. Repeat these steps for any large partitions (or groups of partitions) to determine the best system-wide process buffer
size.

Top Of Page

Appendix D: Sample Script for Changing the Data Folder Location
Function changeOLAPDataFolder(strDF)
 Dim objWSHShell
 Dim strKey
 strKey = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP
 Server\CurrentVersion\RootDir"
 Set objWSHShell = CreateObject("WScript.Shell")

http://www.microsoft.com/sql/evaluation/bi/
http://msdn2.microsoft.com/default.aspx
http://www.microsoft.com/sql/ssabi/default.asp
http://www.ralphkimball.com/html/articles.html
http://www.mosha.com/msolap/index.htm
http://www.sqlmag.com/
http://www.sqlteam.com/
http://www.informit.com/
http://www.sqlservercentral.com/
http://www.microsoft.com/learning/
http://www.microsoft.com/learning/

 objWSHShell.RegWrite(strKey, strDF, "REG_SZ")
End Function
Function moveRepository(strDestFolder)
'// NOTE: msmdrep.mdf file must already exist in the destination folder
'// for example, C:\Program Files\Microsoft Analysis Services\Data
‘//(no ending "\" in folder name)
 Dim strDF
 Dim objWSHShell
 Dim strKey
 ' update the locks directory
 strKey = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLAP
 Server\Server Connection Info\"
 objWSHShell.RegWrite(strKey & "Locks Directory",
 strDestFolder, "REG_SZ")
 ' update the repository connect string
 strDF = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
 strDestFolder & "\msmdrep.mdb"
 objWSHShell.RegWrite(strKey & "Repository Connection
 String", strDF, "REG_SZ")
End Function

Top Of Page

Appendix E: Sample Script for Creating Repository Audit Triggers
/*
Analysis Services Repository Audit Triggers
(unsupported, for sample use ONLY)
Dave Wickert, Microsoft
May 19, 2003
Note: This information is provided "AS IS"
with no warranties, and confers no rights.
Warning: Expect to see the following error,
"Cannot add rows to sysdepends for the current stored
 procedure because it depends on the missing object
'dbo.LookupHierarchyName'.
The stored procedure will still be created."
This is expected because of the recursive nature of
LookupHierarchyName stored procedure.
You can safely ignore the error message.
*/
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO
-- Change repository name (as appropriate) in next line
USE AS_Repository
-- Change above line
GO

/* Audit table */
IF EXISTS (SELECT *, name FROM sysobjects WHERE id = OBJECT_ID
(N'dbo.OlapObjectsAudit')
AND OBJECTPROPERTY(id, N'IsUserTable') = 1)
DROP TABLE dbo.OlapObjectsAudit
GO
CREATE TABLE dbo.OlapObjectsAudit
 (Reason VARCHAR (10) NOT NULL ,
 ObjectName NVARCHAR (3000) NOT NULL ,
 ObjectType VARCHAR(50) NOT NULL ,
 ObjectDefinition [ntext] NULL ,
 Updated datetime NOT NULL DEFAULT GETDATE() ,
 ByUser varchar(30) NOT NULL DEFAULT SYSTEM_USER)
ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
GO

/* LookupHierarchyName function */

IF EXISTS (SELECT *, name FROM sysobjects
WHERE id = OBJECT_ID(N'dbo.LookupHierarchyName')
AND OBJECTPROPERTY(id, N'IsProcedure') = 1)
DROP PROCEDURE dbo.LookupHierarchyName

GO
CREATE PROCEDURE dbo.LookupHierarchyName
 (@ID VARCHAR (36) , @FullName NVARCHAR (3000) OUTPUT) AS
BEGIN
DECLARE @ParentID VARCHAR (36)
DECLARE @ObjectName NVARCHAR (150)
DECLARE @ClassType INT
-- Try and look up ID, first in OlapObjects,
then the inserted temporary table,
then finally the deleted temporary table
SELECT @ParentID = ParentID, @ObjectName = ObjectName,
 @ClassType = ClassType FROM OlapObjects WHERE ID = @ID
IF @@ROWCOUNT = 0
BEGIN
 SELECT @ParentID = ParentID,
 @ObjectName = ObjectName,
 @ClassType = ClassType
 FROM #inserted WHERE ID = @ID
 IF @@ROWCOUNT = 0
 BEGIN
SELECT @ParentID = ParentID, @ObjectName = ObjectName,
@ClassType = ClassType FROM #deleted WHERE ID = @ID
IF @@ROWCOUNT = 0
BEGIN
 SET @FullName = N'-parent not found-'
 RETURN -- give up -- return not found marker
END
 END
END
-- cannot detect an arbitrary loop in directed graph,
but can detect a parent=self
IF @ParentID = @ID RETURN (N'-self loop-') –
@ObjectName if so, return object name
SET @FullName = @ObjectName -- return value when
ClassType = 2 (database), which is
always top of the object name hierarchy
IF @ClassType <> 2 -- if not database, then recurse down
BEGIN
 EXEC dbo.LookupHierarchyName @ParentID, @FullName OUTPUT
 SET @FullName = @FullName + ' / ' + @ObjectName
END
END
GO

/* LookupClassType function */

IF EXISTS (SELECT *, name FROM sysobjects WHERE id =
OBJECT_ID(N'dbo.LookupClassType')
AND OBJECTPROPERTY(id,
 N'IsScalarFunction') = 1)
DROP FUNCTION dbo.LookupClassType
GO
CREATE FUNCTION dbo.LookupClassType (@ClassType INT)
RETURNS VARCHAR(50) AS
BEGIN
DECLARE @ObjectType VARCHAR(50)
SET @ObjectType = CASE @ClassType
 WHEN 1 THEN 'Server'
 WHEN 2 THEN 'Database'
 WHEN 3 THEN 'DatabaseRole'
 WHEN 4 THEN 'DatabaseCommand'
 WHEN 5 THEN '-not used-'
 WHEN 6 THEN 'Datasource'
 WHEN 7 THEN 'DatabaseDimension'
 WHEN 8 THEN 'DatabaseLevel'
 WHEN 9 THEN 'Cube'
 WHEN 10 THEN 'CubeMeasure'
 WHEN 11 THEN 'CubeDimension'
 WHEN 12 THEN 'CubeLevel'
 WHEN 13 THEN 'CubeCommand'
 WHEN 14 THEN 'CubeRole'
 WHEN 15 THEN 'VirtualCube'

 WHEN 16 THEN 'VirtualCubeMeasure'
 WHEN 17 THEN 'VirtualCubeDImension'
 WHEN 18 THEN 'VirtualCubeLevel'
 WHEN 19 THEN 'Partition'
 WHEN 20 THEN 'PartitionMeasure'
 WHEN 21 THEN 'PartitionDimension'
 WHEN 22 THEN 'PartitionLevel'
 WHEN 23 THEN 'Aggregation'
 WHEN 24 THEN 'AggregationMeasure'
 WHEN 25 THEN 'AggregationDimension'
 WHEN 26 THEN 'AggregationLevel'
 WHEN 27 THEN 'DatabaseAnalyzer'
 WHEN 28 THEN 'CubeAnalyzer'
 WHEN 29 THEN 'PartitionAnalyzer'
 WHEN 30 THEN 'Collection'
 WHEN 31 THEN 'MemberProperty'
 WHEN 32 THEN 'RoleCommand'
 WHEN 33 THEN 'MiningModel'
 WHEN 34 THEN 'Column'
 WHEN 35 THEN 'MiningModelRole'
 ELSE '-unknown-'
END
RETURN (@ObjectType)
END
GO

/* InsertedRecord function */

IF EXISTS (SELECT *, name FROM sysobjects WHERE id =
OBJECT_ID(N'dbo.InsertedRecord') AND
OBJECTPROPERTY(id, N'IsInlineFunction') = 1)
 DROP FUNCTION dbo.InsertedRecord
GO
CREATE FUNCTION dbo.InsertedRecord (
 @ID VARCHAR (36) ,
 @Reason VARCHAR (10) ,
 @FullName NVARCHAR (3000) ,
 @ObjectType VARCHAR (50))
RETURNS TABLE AS
RETURN (SELECT @ID as ID, @Reason as Reason,
@FullName as FullName, @ObjectType as ObjectType)
GO

/* UPDATE trigger */

IF EXISTS (SELECT *, name FROM sysobjects WHERE
id = OBJECT_ID(N'dbo.OlapObjects_Update_Audit')
AND OBJECTPROPERTY(id, N'IsTrigger') = 1)
 DROP TRIGGER dbo.OlapObjects_Update_Audit
GO
CREATE TRIGGER dbo.OlapObjects_Update_Audit
ON dbo.OlapObjects
AFTER UPDATE AS
BEGIN
SET NOCOUNT ON
DECLARE @ID VARCHAR (36)
DECLARE @ParentID VARCHAR (36)
DECLARE @ObjectName NVARCHAR (150)
DECLARE @ClassType INT
DECLARE @ObjectType VARCHAR (50)
DECLARE @FullName NVARCHAR (3000)
IF UPDATE(ObjectDefinition)
BEGIN
 SELECT ID, ParentID, ObjectName, ClassType INTO #deleted from deleted
 SELECT ID, ParentID, ObjectName, ClassType INTO #inserted from inserted
 DECLARE inserted_cursor CURSOR FOR SELECT ID, ParentID, ObjectName,
ClassType FROM inserted
 OPEN inserted_cursor
 FETCH NEXT FROM inserted_cursor INTO @ID, @ParentID, @ObjectName,
@ClassType
 WHILE @@FETCH_STATUS = 0
 BEGIN

-- Get the required data
EXEC dbo.LookupHierarchyName @ID, @FullName OUTPUT
SET @ObjectType = dbo.LookupClassType(@ClassType)
-- Insert the audit record
INSERT INTO dbo.OlapObjectsAudit
(Reason, ObjectName, ObjectType, ObjectDefinition)
SELECT i.Reason, i.FullName, i.ObjectType, olapo.ObjectDefinition
FROM dbo.InsertedRecord
(@ID, 'UPDATE', @FullName, @ObjectType) i
INNER JOIN dbo.OlapObjects olapo ON i.ID = olapo.ID
-- next item in inserted rowset
FETCH NEXT FROM inserted_cursor INTO @ID, @ParentID,
@ObjectName, @ClassType
 END
 CLOSE inserted_cursor
 DEALLOCATE inserted_cursor
 END
END
GO

/* INSERT trigger */

IF EXISTS (SELECT *, name FROM sysobjects WHERE id =
 OBJECT_ID(N'dbo.OlapObjects_Insert_Audit')
AND OBJECTPROPERTY(id, N'IsTrigger') = 1)
 DROP TRIGGER dbo.OlapObjects_Insert_Audit
GO
CREATE TRIGGER dbo.OlapObjects_Insert_Audit
ON dbo.OlapObjects
AFTER INSERT AS
BEGIN
SET NOCOUNT ON
DECLARE @ID VARCHAR (36)
DECLARE @ParentID VARCHAR (36)
DECLARE @ObjectName NVARCHAR (150)
DECLARE @ClassType INT
DECLARE @ObjectType VARCHAR (50)
DECLARE @FullName NVARCHAR (3000)
SELECT ID, ParentID, ObjectName, ClassType INTO #deleted from deleted
SELECT ID, ParentID, ObjectName, ClassType INTO #inserted from inserted
DECLARE inserted_cursor CURSOR FOR SELECT ID, ParentID, ObjectName,
ClassType FROM inserted
OPEN inserted_cursor
FETCH NEXT FROM inserted_cursor INTO @ID, @ParentID,
@ObjectName, @ClassType
WHILE @@FETCH_STATUS = 0
BEGIN
 -- Get the required data
 EXEC dbo.LookupHierarchyName @ID, @FullName OUTPUT
 SET @ObjectType = dbo.LookupClassType(@ClassType)
 -- Insert the audit record
 INSERT INTO dbo.OlapObjectsAudit
(Reason, ObjectName, ObjectType, ObjectDefinition)
 SELECT i.Reason, i.FullName, i.ObjectType, olapo.ObjectDefinition
 FROM dbo.InsertedRecord(@ID, 'INSERT', @FullName, @ObjectType)
i INNER JOIN dbo.OlapObjects olapo ON i.ID = olapo.ID
 -- next item in inserted rowset
 FETCH NEXT FROM inserted_cursor INTO @ID,
@ParentID, @ObjectName, @ClassType
END
CLOSE inserted_cursor
DEALLOCATE inserted_cursor
END
GO

/* DELETE trigger */

IF EXISTS (SELECT *, name FROM sysobjects WHERE id =
OBJECT_ID(N'dbo.OlapObjects_Delete_Audit') AND
 OBJECTPROPERTY(id, N'IsTrigger') = 1)
 DROP TRIGGER dbo.OlapObjects_Delete_Audit
GO

CREATE TRIGGER dbo.OlapObjects_Delete_Audit
ON dbo.OlapObjects
AFTER DELETE AS
BEGIN
SET NOCOUNT ON
DECLARE @ID VARCHAR (36)
DECLARE @ParentID VARCHAR (36)
DECLARE @ObjectName NVARCHAR (150)
DECLARE @ClassType INT
DECLARE @ObjectType VARCHAR (50)
DECLARE @FullName NVARCHAR (3000)
SELECT ID, ParentID, ObjectName, ClassType INTO #deleted from deleted
SELECT ID, ParentID, ObjectName, ClassType INTO #inserted from inserted
DECLARE deleted_cursor CURSOR FOR SELECT ID, ParentID, ObjectName,
ClassType FROM deleted
OPEN deleted_cursor
FETCH NEXT FROM deleted_cursor INTO @ID,
@ParentID, @ObjectName, @ClassType
WHILE @@FETCH_STATUS = 0
BEGIN
 -- Get the required data
 EXEC dbo.LookupHierarchyName @ID, @FullName OUTPUT
 SET @ObjectType = dbo.LookupClassType(@ClassType)
 -- Insert the audit record
 INSERT INTO dbo.OlapObjectsAudit (Reason, ObjectName, ObjectType)
 VALUES ('DELETE', @FullName, @ObjectType)
 -- next item in inserted rowset
 FETCH NEXT FROM deleted_cursor INTO @ID,
@ParentID, @ObjectName, @ClassType
END
CLOSE deleted_cursor
DEALLOCATE deleted_cursor
END
GO

Top Of Page

Appendix F: Sample Script for Creating an OLAP Linked Server
USE master
GO
/* Additional examples are available at: */
/* http://support.microsoft.com/default.aspx?scid=kb;enus;218592 */
/* --*/
/* Remove any previous references to the linked server */
EXEC sp_dropserver 'LINKED_OLAP'
EXEC sp_addlinkedserver
 @server='LINKED_OLAP', -- local SQL name given to the linked server
 @srvproduct='', -- not used
 @provider='MSOLAP.2', -- OLE DB provider
(the .2 means the SQL2K version)
 @datasrc='localhost', -- analysis server name (machine name)
 @catalog='Foodmart 2000' -- default catalog/database
select * from openquery
(LINKED_OLAP, 'Select {[Measures].[Unit Sales]}
on columns from [Sales] ')
select * from openquery
(LINKED_OLAP, ' with member [Measures].[Store Profit Rate]
as ''([Measures].[Store Sales]-[Measures].[Store
 Cost])/[Measures].[Store Cost]'', format = ''#.00%''
select {[Measures].[Store Cost],[Measures].[Store
 Sales],[Measures].[Store Profit Rate]} on columns,
Order([Product].[Product Department].members,
[Measures].[Store Profit Rate], BDESC) on rows
from Sales where ([Time].[1997]) ')
select * from sysobjects order by name

Top Of Page

Appendix G: Sample Script To Verify Analysis Services Availability
USE master

GO
/* Remove any previous references to the linked server */
EXEC sp_dropserver 'LINKED_OLAP'
EXEC sp_addlinkedserver
 @server='LINKED_OLAP', -- local SQL name given to the linked server
 @srvproduct='', -- not used
 @provider='MSOLAP.2', -- OLE DB provider
(the .2 means the SQL2K version)
 @datasrc='localhost', -- analysis server name (machine name)
 @catalog='Foodmart 2000' -- default catalog/database
select * from openquery
(LINKED_OLAP, 'Select {[Measures].[Unit Sales]} on columns from [Sales] ')
select * from openquery
(LINKED_OLAP, ' with member [Measures].[Store Profit Rate]
 as ''([Measures].[Store Sales]-[Measures].[Store
Cost])/[Measures].[Store Cost]'', format = ''#.00%''
select {[Measures].[Store Cost],[Measures].[Store
 Sales],[Measures].[Store Profit Rate]} on columns,
Order([Product].[Product Department].members,
[Measures].[Store Profit Rate], BDESC) on rows from Sales
where ([Time].[1997]) ')
select * from sysobjects order by name

Top Of Page

Appendix H: Sample Script to Determine When Lazy Processing is Complete

You can call the following script from a batch file to determine when lazy processing is complete. For example, the batch file
could contain the following batch:

CScript LazyProcessing.vbs "Localhost" "Foodmart 2000" "HR"

The batch would call the following .vbs file to determine when lazy processing was complete in the HR cube in the Foodmart
2000 database on the local computer.

'File: LazyProcessing.vbs
Option Explicit
'/***
' File: LazyProcessing.vbs
'Desc: This sample script displays the lazy aggregator's
progress for a specified cube (all partitions)
'
' Parameters: None
'***
Call GetLazyProcessing
'***
' Helper functions
Function ConvertState(dsoState)
 Const olapStateNeverProcessed = 0
 Const olapStateStructureChanged = 1
 Const olapStateMemberPropertiesChanged = 2
 Const olapStateSourceMappingChanged = 3
 Const olapStateCurrent = 4
 Select Case dsoState
 Case olapStateCurrent
 ConvertState = "Current"
 Case olapStateMemberPropertiesChanged
 ConvertState = "Properties changed"
 Case olapStateNeverProcessed
 ConvertState = "Never processed"
 Case olapStateSourceMappingChanged
 ConvertState = "Source mapping changed"
 Case olapStateStructureChanged
 ConvertState = "Structure changed"
 Case Else
 ConvertState = "Unknown state"
 End Select
End Function
Sub GetLazyProcessing()
 Dim bResult
 Dim strMsg
 If Wscript.Arguments.Count <> 3 Then

Msgbox "Invalid number of arguments. This script must be _
called with three arguments." & VbCRLF & VbCRLF & _
 "Usage is: (DOS prompt) CScript _
LazyProcessing.vbs 'Server' 'Db' 'Cube'" & VbCRLF & _
 "e.g. CScript LazyProcessing.vbs ""Localhost"" _
 ""Foodmart 2000"" ""HR"" ", , _
 "Invalid LazyProcessing calling arguments"
Exit Sub
 End If
 Dim sServer : sServer = Wscript.Arguments(0)
 Dim sDb : sDb = Wscript.Arguments(1)
 Dim sCube : sCube = Wscript.Arguments(2)
 bResult = LazyProcessing(sServer,sDb, sCube, strMsg)
 If bResult Then
Msgbox strMsg, , "Get Lazy Processing information"
 Else
Msgbox "Error-" & strMsg, , "Error - Get Lazy Processing information"
 End If
End Sub
'***
' The real work . . .
Function LazyProcessing(strAnalysisServer, strOlapDb, strCube, strMsg)
 Dim dsoServer : Set dsoServer = CreateObject("DSO.Server")
 Dim dsoDB, dsoCube, dsoPartition
 LazyProcessing = False ' assume we fail
 (strMsg will contain the error text)
 strMsg = ""
 ' VBScript does not support direct use of enumerated constants.
 ' However, constants can be defined to supplant enumerations.
 Const olapStateCurrent = 4
 ' Connect to the Analysis server.
 On Error Resume Next
 dsoServer.Connect strAnalysisServer
 ' If connection failed, then end the script.
 If Err.Number <> 0 Then
 strMsg = Err.Description
 Err.Clear
 Exit Function
 End if
 On Error Goto 0
 ' Find the database on the server.
 If (dsoServer.mdStores.Find(strOlapDB)) = 0 Then
 strMsg = "Database '" & strOlapDB & "'
 not found on '" & strAnalysisServer & "'."
 Err.Clear
 Exit Function
 End If
 Set dsoDB = dsoServer.mdStores(strOlapDB)
 ' Find the cube.
 If (dsoDB.mdStores.Find(strCube)) = 0 then
 strMsg = "Cube '" & strCube & "'
 not found in database '" & strOlapDB & "'."
 Err.Clear
 Exit Function
 End If
 Set dsoCube = dsoDB.MDStores(strCube)
 ' Validate the state of the cube
 if dsoCube.State <> olapStateCurrent Then
strMsg = " Cube '" & strCube & "'
 state is: " & ConvertState(dsoCube.State) & VbCRLF
strMsg = strMsg & " Which cannot be checked." & VbCRLF
 Err.Clear
 Exit Function
 End If
 ' Loop through each partition in the cube
 strMsg = ""
 For Each dsoPartition in dsoCube.Partitions
' Only check if the partition's state is current
' and, then, if lazy processing is ongoing.
' Normally, since the lazy aggregator is single threaded,
' only one partition is being processed at a time,
' but we won't assume that at this point.

If dsoPartition.State = olapStateCurrent Then
 If dsoPartition.LazyOptimizationProgress <> 100 Then
' We are in-progress -- output the % complete
 strMsg = strMsg & " Partition: " & dsoPartition.Name & " is " _
& CStr(dsoPartition.LazyOptimizationProgress) & "% complete." & vbCRLF
 End If
End If
 Next
 If Len(strMsg) = 0 Then
strMsg = "Cube: " & dsoCube.Name & " is complete." & vbCRLF
 Else
strMsg = "Cube: " & dsoCube.Name & vbCRLF & strMsg
 End If
 LazyProcessing = True ' we succeeded !
 Set dsoCube = Nothing
 Set dsoDB = Nothing
 dsoServer.CloseServer
 Set dsoServer = Nothing
End Function

Top Of Page

Appendix I: Sample Script to Determine Whether Data Slices Have Been Set
Option Explicit
'/***
' File: CheckDataSlice.vbs
'
'Desc: This sample script scans through each database, each cube, looking
' for multi-partition cubes for which partition data slices have
' not been defined. It doesn't validate that the slice makes any sense
' or is consistent across all partitions -- just that partition
' slices are defined for all multi-partition cubes.
'
' Parameters: None
'***/
Call CheckDataSlice
Sub CheckDataSlice()
 'On Error Resume Next
 Dim strResults : strResults = ""
 Dim strAnalysisServer
 Dim dsoServer, dsoDB, dsoCube
 ' Initialize server name - you could modify this script to
 ' pass the server name as a parameter from the command line
 strAnalysisServer = "LocalHost"
 ' VBScript does not support direct use of enumerated constants.
 ' However, constants can be defined to supplant enumerations.
 Const stateFailed = 2
 Const olapEditionUnlimited = 0
 ' Connect to the Analysis server.
 Set dsoServer = CreateObject("DSO.Server")
 dsoServer.Connect strAnalysisServer
 ' If connection failed, then end the script.
 If dsoServer.State = stateFailed Then
 MsgBox "Error-Not able to connect to '" & strAnalysisServer & " _
' Analysis server.", ,"CheckDataSlice.vbs"
 Err.Clear
 Exit Sub
 End if
 ' Certain partition management features are available only
 ' in the Enterprise Edition and Developer Edition releases
 ' of Analysis Services.
 If dsoServer.Edition <> olapEditionUnlimited Then
MsgBox "Error-This feature requires Enterprise or _
Developer Edition of SQL Server to manage partitions." _
, , "CheckDataSlice.vbs"
 Exit Sub
 End If
 ' Ok -- now do the real work -- accumulating the results for each cube
 For Each dsoDB in dsoServer.mdStores
 For Each dsoCube in dsoDB.mdStores
 strResults = CheckCube (dsoCube, strResults)

 Next
 Next
 If Len(strResults) = 0 Then strResults = " None found." & VbCrLf
 strResults = "Partitions missing a data slice: " & VbCrLf & strResults
 strResults = strResults & "On " & strAnalysisServer
 MsgBox strResults, , "CheckDataSlice.vbs"
End Sub
Function CheckCube (dsoCube, strResults)
 CheckCube = strResults
 Const clsCube = 9
 Const sbclsRegular= 0
 If (dsoCube.ClassType <> clsCube) Then Exit Function
' must be a cube
 If (dsoCube.SubClassType <> sbclsRegular) Then Exit Function
' must be regular cube
 If (dsoCube.mdStores.Count < 2) Then Exit Function
' Only continue if this is a multi-partition cube
 Dim dsoPartition
 For Each dsoPartition in dsoCube.mdStores
 If Not AnySlice(dsoPartition) Then
 CheckCube = CheckCube & " " & dsoPartition.Name & " in Cube _
 '" & dsoPartition.Parent.Name & "' (Database: " _
 & dsoPartition.Parent.Parent.Name & ")" & VbCrLf
 End If
 Next
End Function
Function AnySlice (dsoPartition)
 Dim dsoDimension, dsoLevel
 AnySlice = False ' assume we fail
 For Each dsoDimension in dsoPartition.Dimensions
 For Each dsoLevel in dsoDimension.Levels
 If Len(dsoLevel.SliceValue) <> 0 Then
 AnySlice = True ' we found a slice !
 Exit Function
 End If
 Next
 Next
End Function

Top Of Page

Appendix J: Sample Script to Determine the Analysis Services Edition

The following code example checks the Edition property of a clsServer object to determine feature support.

'VB syntax:
' Dim dsoServer As New DSO.Server
' Enumerated olapXXXXXXX constants already defined when
' you added the DSO COM object to your project
'VBS syntax:
Dim dsoServer
Set dsoServer = CreateObject("DSO.Server")
Const olapEditionUnlimited = 0
Const olapEditionPivotOnly = 1
Const olapEditionNoPartitions = 2
Const olapEditionError = &HFFFFFFFF
'---
' Connect to the local Analysis server.
dsoServer.Connect "LocalHost"
' Check the Edition property.
Select Case 0 'dsoServer.Edition
 Case olapEditionUnlimited
 ' Insert code for Enterprise Edition features.
 Msgbox "EE"
 Case olapEditionPivotOnly
 ' Reserved for future use.
 Msgbox "Reserved"
 Case olapEditionNoPartitions
 ' Insert code for Standard Edition features.
 Msgbox "Standard Edition"
 Case olapEditionError
 ' An error occurred while retrieving this information.

 Msgbox "An error occurred"
 Case Other
 ' Invalid return value
 Msgbox "Invalid return value seen"
End Select
dsoServer.CloseServer
Set dsoServer = Nothing

Top Of Page

Appendix K: Data Folder Structure

The Analysis Services Data folder stores the multidimensional structures for the objects defined on the Analysis Services
computer. Within the Data folder, Analysis Services creates an ODB file and a folder for each database. The ODB file contains
runtime database information for the database extracted from the repository when Analysis Services starts. The file extension
stands for "object database". The Analysis Services runtime engine (msmdsrv.exe) reads database information from the ODB
file while Analysis Services is running, not from the repository.

Top Of Page

Database Folder

The following table describes the database object files within each database folder.

Object File Type Description

Data
source SRC Data source meta data. One file for each data source.

Database
role ROLE Information about the role. One file for each database role.

Cube MDL Cube meta data. One file for each physical or virtual cube

Dimension DIM

Minimal information about the dimension. One file for each dimension is created during processing. For
shared dimensions, the name of the file is the name of the dimension with the appropriate extension for
the file type. For private dimensions, each file has the following naming convention:

<cube>^<private dimension name>

 DIMCR Dimension custom rollup formulas. One file for each dimension.

 DIMPROP Member properties. One file for each dimension.

 DIMTREE The hierarchy structure for the dimension, including the dimension members themselves. One file for
each dimension.

In addition, a folder is created for each cube, physical or virtual, within each database.

Note "Minimal information" means a subset of the available meta data stored in the repository. This is just the information
the Analysis Services runtime engine needs to perform processing and respond to queries.

Top Of Page

Cube Folder

The following table describes the files created within each cube folder.

Object File Type Description

Aggregations AGG.FLEX.DATA Flexible aggregations for each partition. One file for each partition.

 AGG.RIGID.DATA Rigid aggregations for each partition. One file for each partition.

Partition
extents AGG.FLEX.MAP

Bitmap indexes for flexible aggregates to the fact table, one for each extent created during
processing. Each extent contains 65,000 records (without duplicates). Each file is named using
the following convention:

<partition name>.<extent#>

 AGG.RIGID.MAP Bitmap indexes for rigid aggregates to the fact table.

 FACT.MAP Bitmap indexes for dimension members to the fact table.

Facts FACT.DATA Fact table, which may not map one-for-one with the relational database image of the fact table
if the two are at different grains.

Partition PRT Minimal information about a partition, one file for each partition.

 PDR Catalog / directory for a partition, one file for each partition.

Cube role SEC Cube level security settings, one file for each cube role. The Analysis Services runtime engine
reads security information from this file.

Top Of Page

Windows CE and SQL Server Technical Articles

Converting an eMbedded Visual Basic 3.0 Application from SQL
Server CE 1.x to SQL Server CE 2.0

Microsoft Corporation

November 2002

Summary: Microsoft SQL Server 2000 Windows CE Edition 2.0 (SQL Server CE) uses the same file format and data access
options as the previous version. This makes it extremely easy to convert an existing Microsoft eMbedded Visual Basic application
to SQL Server CE 2.0. (6 printed pages)

Contents

Introduction
Installing SQL Server CE 2.0
Converting the Application
Converting Local Database Access Code
Converting RDA Synchronization Code
Converting Replication Synchronization Code
Conclusion

Introduction
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) 2.0 uses the same file format and data access APIs as the
1.x version. This allows for an extremely easy conversion to SQL Server CE 2.0. This document will guide you through the changes
that need to be made at the application code level to access the local database and to do synchronization. This document will
reference both the Microsoft eMbedded Visual Basic® Northwind Remote Data Access (RDA) sample and the eMbedded Visual
Basic Northwind Replication application that ship with SQL Server CE 1.0, and convert them to SQL Server CE 2.0.

Installing SQL Server CE 2.0
Before continuing with the actual conversion of the Northwind RDA sample application, the developer must install the SQL Server
CE development tools and the SQL Server CE Server components. These are two separate installs and are required to be
completed before proceeding with the conversion.

Converting the Application

To convert either the Remote Data Access (RDA) or the merge replication application project to SQL Server CE, the developer
needs to change the reference of SQL Server CE 1.0 to SQL Server CE 2.0. In the eMbedded Visual Basic project, choose Project,
and then References. The following figure shows what the references look like for SQL Server CE 1.0

Figure 1. SQL Server CE 1.0 References

To convert the application reference to SQL Server CE 2.0, simply clear the Microsoft CE SQL Server Control 1.0 check box and
select the Microsoft CE SQL Server Control 2.0 check box as shown in the following figure.

Figure 2. SQL Server CE 1.0 References checkboxes

After changing the reference, SQL Server CE 2.0 DLLs will be copied to the device during debugging. If the developer chooses to
use the Application Install Wizard, the correct SQL Server CE 2.0 DLLs will be included in the .cab file.

Converting Local Database Access Code

To convert application code that only accesses SQL Server CE database and does not use SQL Server CE sync, the developer must
change the OLE DB connection string. Following is the original code from both Northwind database applications that reference
SQL Server CE 1.x in the OLE DB connection string.

Figure 3. SQL Server OLE DB connection string

In order to convert to SQL Server CE 2.0, the user must change the following code

Provider=Microsoft.SQLServer.OLEDB.CE.1.0 to
Provider=Microsoft.SQLServer.OLEDB.CE.2.0

Following is a representation of how the code looks in the editor:

Figure 4. SQL Server OLE DB connection string in the editor

Notice that the database path is the same for both applications because both SQL Server CE 1.0 and SQL Server CE 2.0 can access
and modify the same database.

Note SQL Server CE 2.0 allows for 249 indexes per table, whereas SQL Server CE 1.0 allowed for only 32 indexes per
table. If a SQL Server CE 2.0 database has more than 32 indexes per table, the SQL Server CE 1.0 application cannot
access the table.

Converting RDA Synchronization Code

The first code change is in reference to the Remote Data Access (RDA) object. Following is a representation of how the original
code looks.

Figure 5. Remote Data object reference

To convert the Remote Data Access object to version 2.0 the developer needs only to convert the version number from 1.0 to
2.0. Following is a representation of how the code looks after converting.

Figure 6. Remode Data Access object conversion

The final code to change is in reference to the SQL Server CE Server Agent. This is referenced in the property called InternetURL.
The property typically has a value in the form of http://servername/virtualdirectory/SSCESA10.DLL. The Northwind sample
takes the HTTP address from user input on the application, so there is no code in this application to convert.

Figure 7. The InternetURL property

The Northwind Remote Data Access (RDA) sample application stores many of the sync properties in a table. InternetURL is one
of those properties. In order to have the application sync successfully, the developer will either need to delete the
NorthWindRDA.SDF file from the root directory of the device, or edit the system table and change the column to reference the
SSCESA20.DLL. The InternetURL value should be similar to http://servername/virtualdirectory/SSCESA20.DLL.

At this point, the application will successfully run using SQL Server CE 2.0.

Converting Replication Synchronization Code

The first code change is in reference to the replication object. Following is a representation of how original code looks.

Figure 8. The Replication object

To convert the replication object to version 2.0 the developer needs only to convert the version number from 1.0 to 2.0. Following
is a representation of how the code looks after converting.

Figure 9. Conversion of the Replication object

The final code to change is in reference to the SQL Server CE Server Agent. This is referenced in the property called InternetURL.
The property typically has a value in the form of http://servername/virtualdirectory/SSCESA10.DLL. The Northwind sample
takes the HTTP address from user input on the application, so there is no code in this application to convert.

Figure 10. Change in reference to the SQL Server CE Server Agent

The Northwind Replication sample application stores many of the sync properties in a table. The InternetURL is one of those
properties. In order to have the application sync successfully, the developer must either delete the NorthWindRepl.SDF file from
the root directory of the device, or edit the system table and change the column to reference the SSCESA20.DLL. The InternetURL
value should be similar to http://servername/virtualdirectory/SSCESA20.DLL.

At this point, the application will successfully run, using SQL Server CE 2.0.

Conclusion
Following is a listing of compatibilities and incompatibilities:

SQL Server CE 1.0 and SQL Server CE 2.0 applications can run side-by-side on the same device. The developer can simply
save the eMbedded Visual Basic application to another name after converting to SQL Server CE 2.0. This will allow for
compatibility testing and the ability to see the performance improvements with SQL Server CE 2.0.
SQL Server CE 1.0 server side components and SQL Server CE 2.0 server side components can be installed on the same IIS
server. It is recommended that each version be installed in its own virtual directory.
An eMbedded Visual Basic application cannot reference both SQL Server CE 1.0 and SQL Server CE 2.0 at the same time.
A SQL Server CE 1.0 application can create, access and modify a database that was created with SQL Server CE 2.0, and a
SQL Server CE 2.0 application can create, access and modify a database that was created with SQL Server CE 1.0. The
exception to this is a SQL Server CE 2.0 application created with more than 32 indexes on a table. This includes referential
integrity constraints.

Windows CE and SQL Server Technical Articles

International Considerations in Applications Developed for SQL
Server 2000 Windows CE Edition

John Talbot
Microsoft Corporation

March 2001

Summary: This article discusses the limitations of developing applications for Windows CE devices using Microsoft SQL Server
2000 Windows CE Edition. (4 printed pages)

Overview
Microsoft SQL Server 2000 Windows® CE Edition (SQL Server CE) is the compact database for rapidly developing applications
that extend enterprise data management capabilities to Windows CE devices.

Because SQL Server CE applications run on Windows CE devices, they naturally inherit the limitations of the devices, some of
which affect how you are able to create multi-lingual applications. These limitations are outlined below.

Building Applications with International Strings
The Unicode character set used by Windows CE is always the same for all locales, so the same character values always indicate the
same characters. But the ANSI character definitions are re-defined for each locale, so the same character values are used to mean
different characters in different locales.

The Embedded Visual Basic tools use the ANSI character set of the development machine when they convert strings into Unicode
for the target Windows CE application. Applications that need to use international character strings must be built on a
development machine that has the same locale as the target Windows CE application. For example, a French Windows CE
application must be built using Embedded Visual Basic running on a French version of Windows NT (or Windows 2000, etc.), and
a Korean application must be built using eVB running on a Korean machine, etc.

Displaying Data from Multiple Languages in a SQL Server CE Application
For multilingual applications, a major limitation of the Windows CE devices is the set of fonts that are available and the range of
characters that the fonts can express.

SQL Server CE and the Windows CE operating system are based upon the Unicode character set. The Unicode
character set defines 65,536 code points, and so is capable of simultaneously preserving data for every language commonly
used in computers today.
The device font determines how the data is displayed. Windows CE fonts are also Unicode based, but they do not
include font entry points for every possible character. Each font entry point requires a lot of storage space, so a lot of
memory would be required to define a font with a different entry point for every character. Windows CE fonts only define
separate entries for those characters that are commonly used in the language of the device OS. All of the other characters
are displayed using a 'square box' fallback image. The underlying data is still properly preserved, but it isn’t possible to
distinguish between many of the different characters by how they look on the screen.

If You Have Multilingual Data in Your Application
First, it is important that the application development is done using a SQL Server database server that can accept all Unicode data
properly. To do this, all text fields inside the SQL Server database must be created with the NCHAR or NVARCHAR data types.

To enter data from a SQL Server CE application for multiple languages, it is necessary to obtain multiple Windows CE devices that
can enter and display each of the languages desired.

To view data that is for a particular language, you will need to use a device that is enabled for displaying that language.
Other devices will be able to show that the data exists, but without a full font, it will be displayed as a line of boxes.
To edit data that is in a particular language, you will need to use a device that is enabled for inputting the characters for that
language. For many languages, this can require special Input Method Editor (IME) software.

Working with Non-Unicode SQL Server Data Types

If you are connecting to a SQL Server database that contains ANSI data, or any other non-Unicode string type, the data will need

to be translated to Unicode before being stored in the SQL Server CE database. Depending on the code page of the SQL Server
and the IIS server, conversion errors may occur unless the translation is properly configured.

Even when the translation is properly configured, non-Unicode data types can only contain a small sub-set of the characters
possible in Unicode. Some data loss is expected when you try to use characters that do not exist in that sub-set.

Configuring the Unicode Conversions in the Server Agent

The SQL Server CE Server Agent running on the IIS Server machine converts text data in SQL Server to or from Unicode for SQL
Server CE. Before doing the Unicode conversions, the Server Agent uses the following steps to determine which code page to use:

If no other settings are available, the Server Agent uses the ANSI code page of the IIS Server machine where it is running.
If you are using SQL Server 2000, the Server Agent uses the code page of the SQL Server. When each SQL Server is set up
to correctly identify the ANSI data that is being stored, the correct translation will be selected automatically for each
connection.

In all cases, you can override the code page by setting the following registry key on the IIS Server machine to the
desired code page:

 HKLM\Software\Microsoft\MSSQLServerCE\TRANSPORT\
 OVERRIDE_SERVER_CP

Use this registry setting to force a specific code page translation when the first two steps do not give the correct
value for the data that is being stored. This is particularly useful when there is no support for your character set in
the version of SQL Server that you are using.
This registry setting will affect all of the code page translations that the Server Agent makes for any SQL Server
connection; so do not use this registry entry unless you know that all of your SQL Servers are storing text data in the
same code page.

In all cases, getting the correct code page translation requires that the IIS Server machine includes the Windows NT or Windows
2000 support for that code page. If it is missing from that computer, it can be added by installing the correct language pack. For
example, if you are communicating with a Japanese database via an English IIS Server machine, then the Japanese language pack
should be installed on the IIS Server machine.

Configuring ANSI to Unicode Conversions Outside the Server Agent

If the SQL Server CE Server Agent has been correctly configured but the ANSI data is still not being handled properly, you may
need to make additional adjustments. See the documentation for your provider driver to ensure that the correct settings have
been made to allow the ANSI data to reach the Server Agent.

For example, SQL Server defines the following property for configuring OEM/ANSI character translation in its OLE DB provider
driver:

 SSPROP_INIT_AUTOTRANSLATE

When this property is VARIANT_TRUE, SQL Server char, varchar, or text data sent to a client DBTYPE_STR variable is converted
from character to Unicode by using the SQL Server ANSI code page, and then converted from Unicode to character by using the
client ANSI code page. This can be useful for clients that only accept ANSI data, but can cause data loss for SQL Server CE
applications that use Unicode.

It is recommended that this property should be set to VARIANT_FALSE to disable data conversions in the SQL Server provider
driver, and then use the translation settings in the Server Agent obtain the correct translation.

Working with Case Sensitive SQL Server Data Types

SQL Server CE is case insensitive, which means that two names are considered to be the same if they only have
uppercase/lowercase differences in the characters in the name.

This can cause problems when working with a SQL Server database server that has been configured to be case sensitive. Data that
SQL Server considers to be unique may not be considered to be unique by SQL Server CE.

If You Have Case-Sensitive Data in Your SQL Server Database
If at all possible, you should configure the SQL Server database to be case insensitive. This will ensure that all text fields that are
going to be indexed will only contain unique data that SQL Server CE will also consider to be unique.

If this is not feasible, then you may need to add extra identifiers into the tables, and then only index the textual fields in compound

indexes that include the extra fields to guarantee uniqueness. The extra fields will be redundant when the data is in the SQL Server
database server, because the text data by itself will already be unique, but will ensure that SQL Server CE can consider the data to
be unique when it is replicated to a Windows CE device.

Matching the SQL Server Database Sort Order

Each language has different rules that define which character groups are unique from each other, and what order should be used
when sorting those unique values.

Each SQL Server database, and each SQL Server CE database, is created with a sort order that normally corresponds to the
language of the data being stored. Case sensitivity/insensitivity is one aspect of the sort order, and has been discussed above, but
similar problems can occur if the SQL Server database and the SQL Server CE database are created with different language sort
orders.

If the sort orders do not correspond, then the rules that define uniqueness may be different and so data that is considered to be
unique in one database may not be considered to be unique in the other.

Where possible, you should always use the same sort order for all parts of your application.

If You Have to Use Different Sort Orders in Your SQL Server CE Applications

If you need to store data for multiple languages, and you need each language to sort properly on each Windows CE device, then
you can avoid uniqueness conflicts in the text fields by adding extra identifiers into the tables, and then only index the textual
fields in compound indexes that include the extra fields to always guarantee uniqueness.

References
The Unicode Standard by the Unicode Consortium, Addison Wesley

Windows CE and SQL Server Technical Articles

Security Models and Scenarios for SQL Server 2000 Windows CE
Edition 2.0

Kevin J. Boske
Microsoft Corporation

November 2002

Summary: Learn how to set up Microsoft SQL Server 2000 Windows CE Edition 2.0 (SQL Server CE) and Microsoft Internet
Information Services (IIS) for connectivity security. Special emphasis is given to scenarios that are useful to application developers
and testers, but not necessarily recommended in production environments. The paper covers requirements for multiple
computers as well as for a single computer. After reading this document, you should be familiar with the details of setting up
security and encryption on the server for use with SQL Server CE clients.

This paper assumes that you are familiar with the two types of connectivity supported by SQL Server CE (replication and Remote
Data Access). (27 print pages)

Contents

Introduction
Getting Started
Getting Started Using the SQL Server CE Connectivity Management Utility
IIS Security Overview
SQL Server Security Overview
SQL Server CE Security Overview
Windows Security Overview
Single Server Scenarios
Multiserver Scenarios
Conclusion
References

Introduction
Microsoft® SQL Server™ 2000 Windows® CE Edition 2.0 (SQL Server CE) extends access to data to an organization's mobile
users who are using the Windows CE mobile device. Using replication or Remote Data Access (RDA), you can share your data with
disconnected users in the field. But in such a distributed environment, data can be even more difficult to keep secured than in a
traditional centralized environment.

SQL Server CE relies on the security models of a combination of the following: Microsoft Internet Information Services 5.0 (IIS) or
IIS 4.0, SQL Server 2000 (Service Pack 1 or later) or SQL Server version 7.0 (Service Pack 4 or later), and Microsoft Windows
2000, Microsoft Windows XP Professional, or Microsoft Windows NT® 4.0. In some environments, you will also need to consider
Microsoft Internet Security and Acceleration Server 2000 (ISA) as well. As a result, there are many gateways through which a user
must pass in order to connect from a device to SQL Server. For a more detailed description of the security models discussed in
this paper, see Designing Secure, Web-Based Applications for Microsoft Windows 2000 (bibliographic information for this title is
cited at the end of this paper).

Getting Started
You should have two servers running Windows 2000 Server (or Professional) and SQL Server 2000 Service Pack 1 or later to use
merge replication. If you are using RDA, you can use SQL Server 7.0 (Service Pack 4 or later). Server A will act as a SQL Server and
an IIS server, and it will require installation of SQL Server CE 2.0 Server Tools. Server B will act as a SQL Server and a Certificate
Server (optional). If you want to use Certificate Services on Server B, you must install Windows 2000 Server. You will also need
the SQL Server CE 2.0 Development Tools installed on your development machine, though it does not have to be on either of
these servers. Both servers should be using the NTFS file system. Both servers should be members of the same domain.
Differences between merge replication and RDA will be noted. See the following table for a description of the server setups.

Software Server A Server B
Windows 2000 Yes Yes
IIS 5.0 Yes No
SQL Server 2000 Yes Yes

SQL Server 2000 Windows CE Edition 2.0 Server Tools Yes No
Certificate Services (optional) No Yes
SQL Server 2000 Windows CE Edition 2.0 Development Tools (optional) Yes Yes

Getting Started Using the SQL Server CE Connectivity Management Utility
New to SQL Server CE is the SQL Server CE Connectivity Management utility. This utility contains the SQL Server CE Virtual
Directory Creation Wizard for creating new virtual directories, and also a management console for managing existing virtual
directories. Both of these are used to configure NTFS permissions on the content folder containing the SQL Server CE Server
Agent, the SQL Server CE Server Agent itself, and the SQL Server merge replication snapshot folder.

Important The SQL Server CE Connectivity Management utility is a development tool and should not be considered
a replacement for understanding the security methodologies between SQL Server, IIS and SQL Server CE described in
this paper.

The SQL Server CE Connectivity Management utility does not provide a method to configure SSL encryption. In some scenarios
SSL encryption is highly recommended (as described later in this paper).

IIS Security Overview
The IIS security model supports three different authentication protocols, Anonymous, Basic, and Integrated Windows
Authentication (referred to as Windows Authentication in this document). IIS also supports Secure Sockets Layer (SSL) encryption.
Additionally, SQL Server CE supports 128-bit SSL encryption on the client database and on the IIS server. All Windows CE
platforms supported by SQL Server CE (see SQL Server CE Books Online) support the three IIS authentication protocols.

Anonymous Access

Anonymous access, as the name implies, allows the client access to the IIS server resources anonymously. The IIS server does not
require any authentication to allow access to resources. Anonymous access is best used in situations when the server does not
need to keep track of visitors using the data, or when the data available does not need to be protected. Generally, Anonymous
access is not recommended for SQL Server CE deployments, because it is unsecured.

Basic Authentication

Basic Authentication relies on part of the HTTP 1.0 protocol (for more information about this protocol, visit the Internet
Engineering Task Force). Users must provide a valid Windows login and password, and IIS then logs into the system using the
Windows account supplied as user name and password. If the login is rejected, the connection is closed and an error is returned
to the client. By itself, Basic Authentication is not secure because logins and passwords are transmitted in Base64 encoding, which
is relatively easy to read. For maximum security, Basic Authentication should be used with Secure Sockets Layer (SSL). Basic
Authentication is supported in all Windows CE devices supported by SQL Server CE 2.0.

Secure Sockets Layer (SSL)

SSL uses an algorithm to encrypt data based on a trust relationship between the sender and receiver. SSL requires both the
sender (the Windows CE device) and receiver (IIS server) to be trusted through a third party, a Certificate Authority. If you have
ever ordered merchandise online, you are likely familiar with this type of encryption.

Note In order to use the SHA-1 encryption algorithm on Pocket PC, you will need to install the 128-bit encryption
pack. The 128-bit Encryption Pack is available at the Pocket PC home page.

Windows Authentication

Windows Authentication allows the user to log onto a Web site using a Windows Domain Account. Because this authentication
method requires a domain user account, it can only be used in an intranet solution. Windows Authentication uses a hashing
algorithm to protect user login and password information when transferring over the wire.

When Windows Authentication is used, the client uses hashing to prove its knowledge of the password through a cryptographic
exchange with the IIS server. Both the client and the IIS server are authenticated during the cryptographic exchange.

Note Windows Authentication cannot operate over a proxy server or firewall.

As the result of successful authentication, IIS adopts the identity of the client. All of the work that IIS performs on behalf of the
client is done under the client's identity.

http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp
http://www.ietf.org/rfc/rfc2617.txt
http://www.microsoft.com/mobile/pocketpc/

SQL Server Security Overview
SQL Server relies on two methods for authentication, Mixed Mode and Windows Authentication. Mixed Mode allows users to
connect using either Windows Authentication or SQL Server Authentication.

Mixed Mode Authentication

In Mixed Mode, SQL Server can rely on its own security or that of Windows Authentication. SQL Server Authentication relies on a
non-trusted security connection between the server and the client. In this mode, SQL Server CE must pass a valid login and
password (separate from the Windows login) to SQL Server. This method is less secure than Windows Authentication. For
example, the login sa with no password is the default login and password installed with the Mixed Mode Authentication of SQL
Server version 7.0. This security method does not enforce a minimum password length.

Windows Authentication

Windows Authentication relies on a trusted Windows login, either at the local computer or a domain login for authentication to
the SQL Server. When Windows Authentication is used, SQL Server requires the Windows user to be mapped to a SQL Server
login and user.

SQL Server uses the IIS user's login and password, which is associated with a Windows account. For example, an IIS server using
Anonymous access has an anonymous guest account that has an associated Windows login and password (IUSR_Machinename
by default). The Sscesa20.dll will impersonate this user when connecting to SQL Server. SQL Server must have an associated login
and password for any user requesting a connection. For example, if an IIS server uses Anonymous access, by default the SQL
Server CE Server Agent will run under the IUSR_Machinename account. If the SQL Server is using Windows Authentication, the
SQL Server administrator must add the IUSR_Machinename to SQL Server, giving permission to any databases used. For more
information about SQL Server logins, see SQL Server Books Online. The following table describes which logins the SQL Server CE
Server Agent and SQL Server use.

IIS Authentication SQL Server Authentication Windows Authentication
Anonymous Access Login and password passed by SQL Server

CE Client ActiveX® control.
Anonymous Guest Account
(IUSR_Machinename) by default.

Basic Authentication with SSL Login and password passed by SQL Server
CE Client ActiveX control.

Authenticated IIS user.

Windows Authentication Login and password passed by SQL Server
CE Client ActiveX control.

Authenticated IIS user.

SQL Server CE Security Overview
SQL Server CE supports file-level passwords on the local database and 128-bit encryption. SQL Server CE is does not support
multiple concurrent users on a single database, and therefore has no concept of logins. SQL Server CE supports a password to
secure the database alone. A database can be secured by setting the SSCE:Database Password property in the
SubscriberConnectionString property of the SQL Server CE Replication object, or in the LocalConnectionString property of
the SQL Server CE RDA object.

The following methods exist in the SQL Server CE Replication object and the SQL Server CE RDA object to authenticate IIS
server.

InternetURL
Specifies the URL used to connect to the SQL Server CE Server Agent ISAPI DLL.

InternetLogin
Specifies the login name authenticated by IIS when connecting to the SQL Server CE Server Agent ISAPI DLL. This is the login
used for Windows Authentication on the SQL Server.

InternetPassword
Specifies the password authenticated by IIS when connecting to the SQL Server CE Server Agent ISAPI DLL. This is the password
used for Windows Authentication on the SQL Server.

InternetProxyServer
Specifies the proxy server or firewall used. It can also specify the computer running Microsoft ActiveSync® and SQL Server CE
Relay port by passing ppp_peer:<clientport number>.

InternetProxyLogin
Specifies the login name used when connecting to a proxy server, defined in the InternetProxyServer property, that requires

http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp

authentication.
InternetProxyPassword

Specifies the password used when connecting to a proxy server, defined in the InternetProxyServer property, that requires
authentication.

Security Properties of SQL Server CE Replication ActiveX Control

SQL Server CE replication uses a SubscriberConnectionString property to specify the connection to the database on the device.
This string supports many optional flags including: SSCE:Database Password and SSCE:Encrypt Password.

SubscriberConnectionString
Specifies the OLE DB connection string for the SQL Server CE database on the Windows CE device in the following format:

"Data Source=\mydatabase.sdf; SSCE:Database Password=mypassword;"

Note The SubscriberConnectionString does not require a provider value be passed. It is implied by the SQL
Server CE Client Agent.

For connectivity to SQL Server, SQL Server CE replication passes security information (logins and passwords) through the
following SQL Server CE Replication ActiveX control properties:

DistributorSecurityMode
Specifies the security mode used when connecting to the SQL Server Distributor. DistributorSecurityMode takes the
following enumerator values:

DB_Authentication (0): Corresponds to SQL Server Authentication.

NT_Authentication (1): Corresponds to Windows Authentication on the SQL Server Distributor.

DistributorLogin
Specifies the login name used when connecting to the Distributor.

DistributorPassword
Specifies the login password used when connecting to the Distributor.

PublisherSecurityMode
Like the DistributorSecurityMode, this property specifies the security mode used when connecting to the Publisher. This
property takes the same values as DistributorSecurityMode.

DB_Authentication (0): Corresponds to SQL Server Authentication.

NT_Authentication (1): Corresponds to Windows Authentication on the SQL Server Publisher.

PublisherLogin
Specifies the login name used when connecting to the Publisher.

PublisherPassword
Specifies the login password used when connecting to the Publisher.

Note SQL Server ignores DistributorLogin, PublisherLogin, DistributorPassword, and PublisherPassword
when Windows Authentication is specified. In this case, the SQL Server CE ISAPI DLL runs under the IIS processes
login and password, passed in the InternetLogin and InternetPassword properties.

SubcriberConnectionString
Specifies the OLE DB connection string for the SQL Server CE database on the Microsoft Windows CE-based device.

Security Properties of SQL Server CE Remote Data Access (RDA)

SQL Server CE RDA uses a LocalConnectionString property to specify the connection to the database on the device. This string
supports the optional flag: SSCE:Database Password.

LocalConnectionString
Specifies the OLE DB connection string for the SQL Server CE database on the Windows CE device in the following format:

"Data Source=\mydatabase.sdf; SSCE:Database Password=mypassword;"

Note The LocalConnectionString does not require a provider value be passed. It is implied by the SQL Server CE
Client Agent.

The RDA methods Push(), Pull(), and SubmitSQL() require an OLEDBConnectionString to be passed when the methods are
called. For SQL Server Authentication, the OLEDBConnectionString should contain user id and password properties.

Example

provider=SQLOLEDB; data source=ServerA; Initial Catalog=Northwind; user id=SA; password= "MyPassword#1";

When using Windows Authentication on SQL Server, no login or password is included in the ConnectionString, because the IIS
user will be used. The property, INTEGRATED SECURITY = SSPI should be passed instead.

Example

provider=SQLOLEDB; data source=ServerA; Initial Catalog=Northwind; INTEGRATED SECURITY = SSPI;

Windows Security Overview
When using the NTFS file system, you must grant specific privileges to the physical folder (content folder) that contains the SQL
Server CE Server Agent (Sscesa20.dll) as well as to the server agent file itself. When using replication, be sure to grant privileges
to the snapshot folder as well.

NTFS Security Overview

NTFS provides security at the file, directory, and drive levels. While you are probably already familiar with NTFS security, there are
some specific requirements for NTFS security with SQL Server CE:

When using Anonymous access on the IIS Server, the Internet guest account (IUSR_Machinename by default) must have
Read & Execute permission on the SQL Server CE Server Agent DLL (Sscesa20.dll).
When using Basic or Windows Authentication on the IIS server, the client's Windows user account must have Read &
Execute permission on the SQL Server CE Server Agent DLL (Sscesa20.dll).
The IIS user account (whether it be Anonymous or the client user's account from Basic or Windows Authentication) must
have Read and Write permission on the folder (content folder). This allows the Sscesa20.dll permission to create a log file as
well as create and read the message files.
For replication, the IIS user must have Read permissions to the NTFS file system directory that is specified as the Snapshot
folder.

Note Because the Snapshot folder will include individual folders for each snapshot that is created when the
snapshot agent is run, you will need to select the Allow inheritable permissions from parent to propagate to this
object check box.

Single Server Scenarios
The following scenarios demonstrate how to set up IIS and SQL Server security on a single server (called Server A for purposes of
example). After showing the configuration of this single server, this paper discusses multiserver scenarios in the next section.
Figure 1 shows the single server configuration.

Figure 1. The single server configuration

Setting up a SQL Server Replication Snapshot Folder

SQL Server merge replication requires a share to store the snapshot files used to initialize subscriber schema. This share requires
Read permission by the Windows account the SQL Server CE Server Agent is running under, and Read and Write permissions on
the Windows account that the SQL Server Snapshot Agent is running under. Complete these steps before publishing a database
or running the Connectivity Management utility.

1. Using Windows Explorer, create a folder called snapshot.
2. Right-click on snapshot and choose properties to view the folder properties.
3. Choose the sharing tab.

4. Select the Share this folder check box to make snapshot shared.
5. Share c:\snapshot as \\ServerA\snapshot.

Note Because the Snapshot folder will include individual folders for each snapshot that is created when the
snapshot agent is run, you must select the Allow inheritable permissions from parent to propagate to this object
check box from the Security tab.

Setting up SQL Server CE Server Agent Directory

This section describes how to set up a folder for the SQL Server CE Server Agent (Sscesa20.dll). You will need to complete this
section in order to make use of the server scenario examples later in the paper. Use Server A for this directory setup; Server B will
not be used as an IIS Server, and will not need the SQL Server CE Server Agent installed.

Manually Create a Windows Directory for SQL Server CE Server Agent (optional)

1. Use Windows Explorer to create an alternate folder on your IIS system to contain the SQL Server CE Server Agent ISAPI DLL,
as well as the input and output SQL Server CE replication or RDA message files.

2. Use Windows Explorer to copy the SQL Server CE Server Agent ISAPI DLL (Sscesa20.dll) to the folder you created in the
previous step. Sscesa20.dll is installed in the \Program Files\Microsoft SQL Server CE 2.0\Server directory by default.

Note If you wish to use another folder, you must register the DLL by typing Regsvr32 Sscesa20.dll at the
command prompt. For example:

regsvr32 C:\SQLCE\sscesa20.dll

The default server folder ("c:\program files\Microsoft SQL Server CE 2.0\Server") will be referenced throughout the remainder of
the paper as the folder for the virtual directories. The steps to create the virtual directories are described later. After you have the
directory created, you will need to follow these steps to grant your default Anonymous Internet Guest account Read and Write
permissions on the system folder.

To secure the file system directory manually on Windows 2000

1. Start Windows Explorer.
2. Right-click the C:\program files\Microsoft SQL Server CE 2.0\Server directory. Click Properties, and then click the Security

tab. If you do not see the Security tab, your server has a FAT file system and you will need to convert it to NTFS. SQL Server
CE replication or RDA works with FAT file systems, but it is recommended that you use NTFS for greater security. For
information about converting the file system to NTFS, see the Windows documentation.

3. Click Add to set the file system directory permissions as follows:

User Required permissions
For Administrators, always grant full control. Full Control
For System, always grant full control. Full Control
For Anonymous access, grant ServerA/IUSR_ServerA or the configured IIS Internet
Guest account Read and Write permission.

Read and Write

For Basic Authentication or Windows Authentication, grant the client's Windows
user account Read and Write permission.

Read and Write

Note You should not allow Read & Execute or Modify permissions to the folder to any user connecting
through the IIS server. This may allow a user to insert a potentially harmful executable and execute the file.

If the Everyone group has been granted access to the SQL Server CE Server Agent DLL, use the Remove button to eliminate
access by the Everyone group.

Note You will need to repeat this for any Windows users to whom you give permission when using Basic
Authentication or Windows Authentication.

Note The SQL Server CE Server Agent ISAPI DLL should not allow Write or Modify permissions to any user
connecting through the IIS server. This may allow a user to insert a potentially harmful executable in place of
Sscesa20.dll.

Anonymous Access (IIS) and SQL Server Authentication

This scenario should not be considered secure, because it relies on SQL Server Authentication only. Do not choose these
authentication methods for an actual production deployment; this scenario is only useful for debugging and testing applications.
The first step is to create a virtual directory in IIS. In this scenario, SQL Server will rely on the login and password passed from the
SQL Server CE ActiveX controls.

Manually Configure a Virtual Directory for Anonymous Access on Windows 2000

1. Start the IIS snap-in by clicking the Start button, pointing to Settings, and then clicking Control Panel. In Control Panel,
double-click Administrative Tools. In Administrative Tools, double-click Internet Services Manager. If the Internet
Services Manager option is not present in Administrative Tools, you must install IIS. For more information, see the
Windows 2000 documentation.

a. In the left pane, expand the computer containing your site. Right-click the Web site where you want to install SQL
Server CE replication or RDA, point to New, and then click Virtual Directory to start the Virtual Directory Creation
Wizard. For example, right-click Default Web Site.

b. On the Welcome page of the Virtual Directory Creation Wizard, click Next.
c. On the Virtual Directory Alias page, enter the name you want to assign to your virtual directory. For this example,

use Anon, to signify the anonymous authentication you are using. Click Next.
d. On the Web Site Content Directory page, enter the full path for the default server directory. Click Next.
e. On the Access Permissions page, enter the access permissions for the virtual directory. Be as restrictive as possible

because doing so makes your Web site more secure. You must select Execute permissions. This permits Sscesa20.dll
to run. You can disable the Read, Run scripts, Write, and Browse permissions. Click Next.

f. Click Finish to complete the Virtual Directory Creation Wizard.
2. In the left pane, expand your Web site. From the list of Virtual Directories, right-click your virtual directory and then click

Properties.
3. Click the Virtual Directory tab. In the Execute Permissions list, ensure that the Scripts and Executables check box is

selected. In the Application Protection list, select the form of protection you want: High (Isolated), Medium (Pooled), or
Low (IIS Process). SQL Server CE replication or RDA will work in any of the application protection modes. The default
application protection mode is Medium (Pooled). Refer to the IIS documentation for more information.

Important Never grant scripts and executables permission to a virtual directory that also has write
permissions. This will allow potentially harmful executables to be uploaded to your IIS server and executed
remotely.

Create a Virtual Directory for Anonymous Access using the Connectivity Management utility:

1. On the Start menu, point to Programs, Microsoft SQL Server CE, and then click Configure Connectivity Support in IIS.
2. In the right pane of the utility, double-click Create a Virtual Directory to launch the Virtual Directory Creation Wizard.
3. Click Next.
4. Enter the alias Anon in the text box (see figure 2).

Figure 2. SQL Server CE Virtual Directory Creation Wizard

5. Click Next.
6. Choose the Anonymous access check box.
7. If you wish to change your Anonymous user, click Edit, enter a Windows login, and then click Next.

Figure 3. SQL Server CE Administration window

8. Choose one or more applications requiring SQL Server merge replication.
9. Click Next.

10. Enter the UNC path of the Snapshot Folder (\\ServerA\Snapshot) created above. Click Next.

Figure 4. NTFS Permissions: Snapshot folder
11. The final page of the wizard details all of the settings. Click Finish to complete the wizard.

Figure 5. The Completion window

After you have completed these steps, you should have a working virtual directory, and you should be able to perform any of the
connectivity methods of RDA Push(), Pull(), or SubmitSQL(), provided you have configured SQL Server security properly. You
can also verify the connection from your device to the Internet server by entering the URL (http://ServerA/Anon/Sscesa20.dll) in
Pocket Internet Explorer. You should see the phrase "SQL Server CE Server Agent" in the Pocket Internet Explorer client window.

Note If you are using SQL Server CE Relay, you will not be able to confirm your connection with Pocket Internet
Explorer.

If you have published a database on Server A, you will be able to perform replication as well. For more information, see "Creating
the Publication" in SQL Server CE Books Online. You can run the setup for the Northwind replication sample application and use
the "sa" SQL Server Login to set up replication. For more information, see "SQL Server Requirements" and "Sample Applications"
in SQL Server CE Books Online.

Because you are using SQL Server Authentication on the SQL Server, you do not have to change the IIS Anonymous user, or give
the Anonymous user (should be IUSR_Machinename) permission on SQL Server. The next section will describe the relationship
between the Anonymous User and Windows Authentication on the SQL Server.

Anonymous Access (IIS) and Windows Authentication (SQL Server)

Windows Authentication offers optimal security. However, this paper is based on the use of Mixed Mode Authentication, which
allows you to use either Windows Authentication or SQL Server Authentication. Because you are going to connect to SQL Server
through Windows Authentication, you will need to add permissions for your Anonymous IIS User (typically IUSR_Machinename)
to your SQL Server and any databases you wish to connect to. For more information, including specific permissions required, see
SQL SQL Server Books Online.

Basic Authentication (IIS) with SSL and SQL Server Authentication

The next level of security is Basic Authentication. Because Basic Authentication transmits logins and passwords in easily read way,
always use SSL with Basic Authentication for increased security. This paper begins without SSL and adds it only after Basic
Authentication is configured.

To manually create a virtual directory for Basic Authentication on Windows 2000

Follow these steps to create a new virtual directory called "Basic." Use the same folder as you used for "Anon." (You can create a
new directory if you wish.)

1. Start the IIS snap-in by clicking the Start button, pointing to Settings, and then clicking Control Panel. In Control Panel,
double-click Administrative Tools. In Administrative Tools, double-click Internet Services Manager. If the Internet
Services Manager option is not present in Administrative Tools, you must install IIS. For more information, see the
Windows 2000 documentation.

2. In the left pane, expand the computer containing your site. Right-click the Web site where you want to install SQL Server CE
replication or RDA, point to New, and then click Virtual Directory to start the Virtual Directory Creation Wizard. For example,
right-click Default Web Site.

http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp
http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp
http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp

3. On the Welcome page of the Virtual Directory Creation Wizard, click Next.
4. On the Virtual Directory Alias page, enter the name you want to assign to your virtual directory. This example uses Basic, to

signify the basic authentication used. Click Next.
5. On the Web Site Content Directory page, enter the full path for the default directory. Click Next.
6. On the Access Permissions page, enter the access permissions for the virtual directory. Be as restrictive as possible because

doing so makes your Web site more secure. You must select Execute permissions. This permits Sscesa20.dll to run. You can
disable the Read, Run scripts, Write, and Browse permissions. Click Next.

7. Click Finish to complete the Virtual Directory Creation Wizard.

Now you can change the authentication method on the virtual directory to Basic Authentication by following these steps.

To configure Basic Authentication

1. Start the IIS snap-in by clicking the Start button, pointing to Settings, and then clicking Control Panel. In Control Panel,
double-click Administrative Tools. In Administrative Tools, double-click Internet Services Manager.

2. In the left pane, expand the computer containing your site and then expand your Web site.
3. From the list of virtual directories, right-click the Basic virtual directory, click Properties, and then click the Directory

Security tab.
4. In Anonymous access and authentication control, click Edit to display the Authentication Methods sheet.
5. Select the Basic authentication check box. Clear all others.
6. Clients who log in using Basic Authentication must belong to a Windows domain. Clients who log in without specifying a

domain are assumed to be members of the local domain of your Web server by default. You can configure a different
default domain name by clicking Edit and entering a domain name in the Domain Name box. If your Web server does not
belong to a network, the Web server's default local domain is the name of your computer.

7. Click OK to close the Authentication Methods page.
8. Click OK to close the virtual directory pages.

At this point you should be able to perform RDA or replication with the server using the virtual directory Basic in your
InternetURL property. You will need to pass a valid Windows login and password to the InternetLogin and InternetPassword
properties of the SQL Server CE ActiveX control. Try this with both valid and invalid values for the InternetLogin and
InternetPassword. Invalid values for InternetLogin or InternetPassword will return this error message: "28011 –
Authentication failed on server." If you see other failures, try connecting through the Anonymous virtual directory. If that works,
verify that you have Scripts and Executables permission on the Basic virtual directory and try again. If you are unsure of your
connection, try using Pocket Internet Explorer. For more information, see "Using Internet Explorer to Check the IIS Configuration"
in SQL Server CE Books Online. Pocket Internet Explorer should request a login and password when you attempt to connect to a
Web site that uses Basic Authentication.

Note If you are using SQL Server CE Relay, you will not be able to confirm your connection through Pocket Internet
Explorer.

To create a virtual directory for Basic Authentication using the Connectivity Management utility:

Using the Connectivity Management utility, it is easy to configure the IIS Server and the SQL Server CE Server Agent for RDA and
merge replication.

1. On the Start menu, point to Programs, Microsoft SQL Server CE 2.0, and then click Configure Connectivity Support in IIS.
2. In the right pane of the utility, double-click Create a Virtual Directory. Click Next
3. Enter the name Basic. Click Next.
4. Choose the Basic Authentication check box. This will open a warning dialog box.
5. Click Yes.

http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp

Figure 6. SQL Server CE Administration warning dialog box

6. Should you wish to choose a Domain other than the default domain, choose Edit and enter the domain name. Click Next.
7. Enter the name of a Domain account or Group that you want to have permissions to perform SQL Server CE replication and

Remote Data Access (see figure 7). Click Next.

Figure 7. NTFS Permissions: User window

8. Choose one or more applications requiring SQL Server merge replication. Click Next.
9. Enter the UNC path of the Snapshot Folder (\\ServerA\Snapshot) created above. Click Next.

10. The final page of the wizard details all of the settings for the User you configured for Basic Authentication. Click Finish to
complete the wizard.

Figure 8. The completion window

Now that you have Basic Authentication configured for one user or group, you will need to add all of the users/groups you wish
to use SQL Server CE Connectivity.

To Configure Additional Windows Logins for Basic Authentication Using the SQL Sever CE Connectivity Management
Utility

The SQL Server CE Connectivity Management utility allows you to change existing virtual directory settings and add additional
NTFS permissions.

1. On the Start menu, point to Programs, Microsoft SQL Server CE 2.0, and then click Configure Connectivity Support in IIS.
2. On the left pane, choose the "Basic" Virtual Directory to open the properties pane (see the following screenshot).

Figure 9. The properties pane
3. Choose the NTFS Permissions tab (see the following screenshot).

Figure 10. The NTFS Permissions tab
4. Click Add/Modify NTFS Permission for a User…
5. Enter the name of a user or group you wish to have permission to the IIS Server. Click Next.

Note You can create a new group consisting of the users you wish to give permission to the IIS server. Once
this group is created, you would only need to run the NTFS Permission wizard once to grant permission to the
entire group.

6. The wizard will display the default permissions the user will require for the virtual directory and SQL Server CE Server Agent
(see the following screenshot). Additional permissions can be set, but are not recommended. Click Next.

Figure 11. NTFS Permission wizard
7. Choose one or more applications requiring SQL Server merge replication. Click Next.
8. Enter the UNC path of the Snapshot Folder. This is the same folder as in the Anonymous setup. Click Next.
9. The wizard now displays the Read permissions on the Snapshot Folder for the selected user/group (see the following

screenshot). Additional permissions can be set, but are not recommended. Click Next.

Figure 12. NTFS Permission wizard Snapshot folder
10. The final page of the wizard details all of the settings for the User/group you configured. Click Finish to complete the wizard

(see the following screenshot).

Figure 13. Completion of NTFS Permission wizard

After you have completed these steps, you should have a working virtual directory using Basic Authentication, and you should be
able to perform any of the connectivity methods of RDA Push(), Pull(), or SubmitSQL(), provided you have configured SQL
Server security properly. You can verify the connection from your device to the Internet server by entering the URL
(http://ServerA/Basic/Sscesa20.dll) in Pocket Internet Explorer. Pocket Internet Explorer will request a user name and password.
Once you enter these correctly, you should see the phrase "SQL Server CE Server Agent" in the Pocket Internet Explorer client
window.

Note If you are using SQL Server CE Relay, you will not be able to confirm your connection with Pocket Internet
Explorer.

If you have published a database on Server A, you will be able to perform replication as well. For more information, see "Creating
the Publication" in SQL Server CE Books Online. You can run the setup for the Northwind replication sample application and use
the "sa" SQL Server Login to set up replication. For more information, see "SQL Server Requirements" and "Sample Applications"
in SQL Server CE Books Online.

Configuring SSL on Windows 2000

Because the Base64 encoding that is performed automatically by the Basic Authentication method is not highly secure, you should

http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp
http://www.microsoft.com/sql/techinfo/productdoc/ce/books.asp

use SSL encryption to further secure your virtual directory. You will either need an agreement with an online certificate authority,
or you will need to install and run Certificate Services on another computer. You can set up Server B as a certificate authority as
follows.

To install and configure Certificate Services on Windows 2000

1. Click the Start button, point to Settings, and then click Control Panel.
2. Double-click Add/Remove Programs, and then click Add/Remove Windows Components.
3. In the Windows Components Wizard, select the Certificate Services check box. A dialog box will appear to inform you that

the computer cannot be renamed, and the computer cannot be joined to or removed from a domain after Certificate
Services is installed. Click Yes, and then click Next.

4. Click Stand-alone root CA.
5. (Optional) Select the Advanced options check box to specify the hash algorithm.
6. Click Next.
7. Type the name of the certification authority and other necessary information. None of this information can be changed after

the CA setup is complete.
8. Specify the storage locations of the certificate database, the certificate database log, and the shared folder. Click Next.
9. If the World Wide Web Publishing Service is running, you will receive a request to stop the service before proceeding with

the installation. Click OK.
10. If prompted, type the path to the Certificate Services installation files.

Now you will have to request a new server certificate for Server A, and install the Root Certificate on Server A as well as on any
devices you will be using in the following steps.

Requesting a Server Certificate on Windows 2000

The following several procedures will establish your server certification on Windows 2000. Perform the following steps on Server
A:

To request a server certificate for IIS 5.0 on Windows 2000 from a stand-alone certification authority

1. Start the IIS snap-in by clicking the Start button, pointing to Settings, and then clicking Control Panel. In Control Panel,
double-click Administrative Tools. In Administrative Tools, double-click Internet Services Manager.

2. In the left pane, expand the computer containing your Web site. Right-click the Web site containing your virtual directory.
Click Properties, and then click the Directory Security tab.

3. Under Secure Communications, click Server Certificate to start the Web Server Certificate Wizard. If this button is not
available, you have right-clicked a virtual directory, directory, or file rather than the Web server. In this case, close the dialog
box and right-click the Web site.

4. Read the opening page of the IIS Certificate Wizard. It introduces you to the wizard and informs you of the status of any
enrollments you performed in the past. Because the wizard knows the current state of your certificate requests, it displays
only the appropriate options and warns you if you try to try to do something that might invalidate a pending request. Click
Next.

5. On the Server Certificate page, click Create a new certificate and click Next.
6. On the Delayed or Immediate Request page, click Prepare a request now but send it later and click Next.
7. On the Name and Security Settings page, enter the name of your Web site in the Name box. The wizard automatically

extracts the friendly name of the Web site defined when you initially configured the site. This property is not used in the
certificate; it is just a friendly name to help the administrator.

8. Enter the public key length of the certificate. Server Gated Cryptography (SGC) is an extension of SSL/TLS that allows
financial institutions with exported versions of Windows 2000 Server to use 128-bit encryption. However, with new
cryptographic export laws that allow much stronger encryption than previously available outside North America, this
capability is no longer required. You can leave the check box cleared. Click Next.

9. Enter information for Organization and Organization Unit. This information will go into the certificate, so make sure it is
accurate. The names must contain only the uppercase or lowercase ASCII letters A through Z, the digits 0 through 9, the
space character, and the following special characters: ' () + - ., / : = and ?. Names cannot contain underscores or other
special characters. This limitation exists because Windows CE 3.0 and earlier cannot accept server certificates containing
Unicode character strings. For more information, see Microsoft Knowledge Base article Q216947 (available on the Microsoft
Web site). Click Next.

10. In Common Name, type Server A. This information will go into the certificate, and is the most important information in the

certificate, so make sure it is correct. When the Windows CE device attempts to connect to your Web site, it will compare the
name contained in the server certificate with the name of the system where your Web server is actually running. If these
names are not identical, SQL Server CE replication or RDA will not be able to communicate using SSL. By default, the wizard
will select either the NetBIOS or DNS name of the server. If the computer is to be used as an intranet server, you can use
either name. If the server is to be used on the Internet, the name must be the name of the Web server as it appears on the
Internet. For example, the computer might have a NetBIOS name of WebServer and an internal DNS name of
webserver.mycompany.com. However, because it will be used as a Web server on the Internet, its Internet DNS name might
be www.mycompany.com. This is the name you should enter into the Common Name box. Use the naming limitations
described earlier in step 9. Click Next.

11. Enter information for Country/Region, State/Province, and City/Locality. This information will be included in the certificate.
When entering the state/province, enter the entire name of the state or province, not its abbreviation. Names can only
contain the characters described in step 9. Click Next.

12. On the Certificate Request File Name page, enter the fully qualified name of the certificate request file. By default, the file
name is C:\Certreq.txt. The certificate request will be stored as a PKCS#10 certificate request file. Click Next.

13. On the Request File Summary page, review the certificate request information you have entered and click Next.
14. On the Completing the Web Server Certificate Wizard page, click Finish to generate the certificate request.
15. Copy the Certreq.txt file created to Server B.

To obtain a server certificate from a Windows 2000 stand-alone certification authority

1. Submit the certificate request file to your stand-alone certification authority by running the CertReq command prompt
utility. At the command prompt, run CertReq.exe and specify the name of the certificate request file. For example:

CertReq ServerACertReqFile.txt

2. CertReq displays the Select Certification Authority dialog box containing a list of certification authorities. Select your
stand-alone certification authority from the list and click OK.

3. CertReq informs you that your certificate request is pending, and it displays the numeric RequestId for your request.
4. Start the Certification Authority snap-in. In Windows 2000, do this by clicking the Start button, pointing to Programs

and Administrative Tools, and then clicking Certification Authority.
5. In the left pane, expand the list of items under the computer containing your certification authority. Right-click Pending

Requests to display the list of pending certificate requests.
6. In the right pane, right-click the RequestId for your certificate request; click All Tasks and Issue.
7. Close the Certification Authority snap-in.
8. Retrieve the newly issued server certificate by running the CertReq command prompt utility. At the command prompt, run

CertReq.exe specifying the retrieve option and the RequestId for your certificate request. For example:

 CertReq –retrieve 3

9. CertReq displays the Select Certification Authority dialog box containing a list of certification authorities. Select your
stand-alone certification authority from the list and click OK.

10. CertReq displays the Save As Outfile Name dialog box. Enter the name you want to give your certificate file and click OK.
Specify .cer as the file extension. The Certification Authority will package your certificate in a PKCS#7 certificate file.

11. Copy this certificate file to Server A.

To install the server certificate in IIS 5.0 on Windows 2000

1. On Windows 2000 Server, start the IIS snap-in by clicking the Start button, pointing to Programs and Administrative
Tools, and then clicking Internet Services Manager.

2. In the left pane, expand the computer containing your Web site. Right-click the Web site containing your replication or RDA
virtual directory. Click Properties, and then click the Directory Security tab.

3. Within Secure Communications, click Server Certificate to start the Web Server Certificate Wizard. If this button is not
available, you have right-clicked a virtual directory, directory, or file rather than the Web server. In this case, close the dialog
box and right-click the Web site.

4. Read the Welcome to the Web Server Certificate Wizard page. It should indicate that you have a pending certificate request.
Click Next.

5. On the Pending Certificate Request page, click Process the pending request and install the certificate. Click Next.
6. On the Process a Pending Request page, enter the full name of the file containing the server certificate in the Path and

file name box. Typically, the file extension for the certificate file is .cer. Click Next.
7. On the Certificate Summary page, verify the information is correct. Click Next.
8. On the Completing the Web Server Certificate page, click Finish to return to the IIS properties page.
9. On the Directory Security tab, under Secure Communications, click View Certificate.

10. Click the Certification Path tab.
11. The properties of the server certificate are displayed on the Certificate Summary page.
12. Click on the highest certificate name in the path (the root certificate).

Note If Certificate Status reads, "This CA Root certificate is not trusted because it is not in the Trusted Root
Certification Authorities store," you will need to update the Database Of Trusted Certificate Authorities.

13. Click View Certificate.
14. On the General tab of the Certificate Properties dialog box, click Install Certificate to start the Certificate Import Wizard.

Click Next.
15. In the Certificate Store dialog box, automatically select the certificate store based on the type of certificate should be the

default. If it is not, select it. Then click Next.
16. Click Finish to complete the Certificate Import Wizard.
17. You will be asked if you want to add the certificate to the Root Store. Click Yes.
18. To acknowledge the successful update of the Root Store, click OK.

Note You will not see the error removed from the certificate until you close the Web site properties and open it
again.

At this point you have the server certificate installed. The next step is to enable encryption on the Basic virtual directory to request
encryption for all connections. Follow these steps to set up SSL encryption on the Basic virtual directory.

To enable SSL encryption for your IIS virtual directory on Windows 2000 with IIS 5.0

1. Start the IIS snap-in by clicking the Start button, pointing to Settings, and then clicking Control Panel. In Control Panel,
double-click Administrative Tools. In Administrative Tools, double-click Internet Services Manager.

2. In the left pane, expand the computer containing your Web site, and then expand the list of virtual directories for your Web
site.

3. From the list of virtual directories, right-click the IIS virtual directory you configured for SQL Server CE replication or RDA.
Click Properties and click the Directory Security tab.

4. Under Secure Communications, click Edit to display the Secure Communications page.
5. Select the Require secure channel (SSL) check box to enable SSL encryption. You can select Require 128-bit encryption if

this option is provided. Export restrictions and national laws might limit the availability of this option.

Note If you choose to require 128-bit encryption with Pocket PC, you will need to install the 128-bit Encryption
Pack. The 128-bit Encryption Packs for all Windows CE devices is available at the Pocket PC home page.

6. Click OK to close the Secure Communications dialog box.
7. Click OK to close the Directory Security dialog box.
8. Close Internet Services Manager.

If you have followed these steps to use a Stand-Alone Certificate Authority, you will need to update the Database of Trusted
Certificate Authorities on your devices. If you have used a trusted Stand-Alone Authority, you can skip the next procedure. In order
to update the database on your devices, you will first need to export the root certificate from your IIS Server (Server A).

To export the Root Certificate:

1. On your Stand-Alone Certificate Authority (Server B), start the Certificate Services snap-in by clicking the Start button, and
then pointing to Programs, Administrative Tools, and Certificate Authority.

2. In the left pane, right-click on the computer containing your certificate authority and then click Properties.
3. In the Properties dialog box, click View Certificate.
4. Click the Details tab.
5. On the Details tab, click Copy to File to start the Certificate Export Wizard. Click Next.
6. On the Export File Format page, click DER encoded binary X.509 (.CER). Click Next.
7. On the File to Export page, enter Rootcert.cer. Click Next.

http://www.microsoft.com/mobile/pocketpc/

Note The Rootcert.exe uses the default name Rootcert.cer for the certificate if it is run with no certificate passed
at the command line. Exporting your root certificate as Rootcert.cer will make this process easier. Especially on
Pocket PCs, because you may not have a command line, you will only need to tap the rootcert.exe in the Pocket
Internet Explorer.

8. On the Completing the Certificate Export Wizard page, click Finish to complete the wizard.
9. The Certificate Export Wizard displays a message stating, The export was successful." Click OK to close the message box.

10. Click OK to close the root Certificate pages.
11. Click OK to close the server Certificate pages.

Important The root certificate is your trust mechanism between your server and clients. Do not share this file
with others. If your root certificate is compromised, anyone with it can impersonate your users or decode your
encrypted IIS user logins and passwords.

Now that you have your root certificate saved as a file, you can update the Database of Trusted Root Authorities on your IIS
servers and your devices. You will need the rootcert.exe that ships with the SQL Server CE Development Tools.

To install the root certificate on the Windows CE device

1. Copy the Rootcert.exe that matches the processor type of your device from the SQL Server CE installation directory (by
default, Program Files\Microsoft SQL Server CE\Device\processor family\processor type) to the \Windows directory of the
Windows CE device.

2. Copy the Rootcert.cer file that you created in the previous step to the root directory of the Windows CE device.
3. Run Rootcert.exe from File Explorer.

The root certificate utility program (Rootcert.exe) does the following:

It opens and reads the Rootcert.cer file contained in the root directory of the Windows CE device.
It creates the registry key HKLM\Comm\SecurityProviders\SCHANNEL\CAs if this key does not already exist in the
registry on the Windows CE device.
It creates the registry key HKLM\Comm\SecurityProviders\SCHANNEL\CAs\filename, where filename is the name of
the input Rootcert.cer file.
It creates the following registry values under the HKLM\Comm\SecurityProviders\SCHANNEL\CAs\filename key:

DWORD:Enabled = 1

DWORD:Type = 1

BINARY:CACert = X509 certificate bytes obtained from the .CER file

It displays the message "Root certificate installed successfully."

You should now be able to connect from your device to your IIS server setting the InternetURL property of the SQL Server CE
ActiveX control to HTTPS://ServerA/Basic/sscesa20.dll. You can verify that your IIS server is requesting a secure connection by
attempting the connection with HTTP instead of HTTPS in the InternetURL property.

Basic Authentication with SSL (IIS) and Windows Authentication (SQL Server)

After you have completed the previous steps to set up IIS with Basic Authentication, you can try using Basic Authentication with
Windows Authentication on your SQL Server.

Note When using Basic Authentication (with or without SSL), Sscesa20.dll will run under the client's login. Therefore,
when using Windows Authentication on SQL Server, the permitted IIS user (the username and password passed to the
InternetLogin and InternetPassword ActiveX control properties, respectively) must also have the proper
permissions at SQL Server.

Windows Authentication (IIS) and SQL Server Authentication

Windows Authentication allows you to use Windows Domain Security to secure access to sscesa20.dll. While this is not the most
secure solution, it can be useful. For example, an administrator may want to administer only one IIS server, but may have several
SQL Server databases or publications. Unlike the following scenario, using SQL Server Authentication with Windows
Authentication on the IIS server allows the administrator to secure the SQL Server databases separately from the IIS server. Again,
make another virtual directory, like "Anon" and "Basic"; call this one "NTLM" and point it to the same folder (c:\Program
Files\Microsoft SQL Server CE 2.0\Server). After the directory is created, change the authentication to Windows Authentication.

To manually create a virtual directory for Windows Authentication (formerly called NTLM or Windows NT
Challenge/Response Authentication)

1. On Windows 2000 Server, start the IIS snap-in by clicking the Start button, pointing to Programs and Administrative
Tools, and then clicking Internet Services Manager.

2. In the left pane, expand the computer containing your site and then expand your Web site.
3. From the list of virtual directories, right-click your virtual directory, NTLM, click Properties, and then click the Directory

Security tab.
4. In Anonymous access and authentication control, click Edit to display the Authentication Methods page.
5. Select the Integrated Windows authentication check box, and clear all other check boxes.

Important Integrated Windows authentication cannot operate over a proxy server or firewall. As a result, it can
be used for intranet applications but is seldom, if ever, used for Internet applications.

Note Integrated Windows authentication is supported on Windows CE 3.0 or later. It is not supported on
earlier versions of Windows CE.

6. Click OK to close the Authentication Methods page.
7. Click OK to close the virtual directory pages.

To create a virtual directory for Windows Authentication (formerly called NTLM or Windows NT Challenge/Response
Authentication) using the SQL Server CE Virtual Directory Creation Wizard

1. On the Start menu, point to Programs, Microsoft SQL Server CE 2.0, and then click Configure Connectivity Support in
IIS.

2. In the right pane of the utility, double-click Create a Virtual Directory to launch the Virtual Directory Creation Wizard.
Click Next.

3. Enter NTLM for the Virtual Directory name. Click Next.
4. Choose Integrated Windows authentication (see the following screenshot). Click Next.

Figure 14. Virtual directory authentication
5. Enter the name of a domain account or group that you want to have permissions to perform SQL Server CE replication and

Remote Data Access. Click Next.
6. Choose one or more applications requiring SQL Server merge replication, and then click Next.
7. Enter the UNC path of the Snapshot Folder (\\ServerA\Snapshot) you created above, and then click Next.
8. The final page of the wizard details all of the settings for the user you configured for Basic Authentication. Click Finish to

complete the wizard.

Your NTFS virtual directory will require that the InternetLogin and InternetPassword properties of the SQL Server CE ActiveX
control are set to a valid values.

Note When Integrated Windows authentication is used, the InternetLogin and InternetPassword properties are

not passed across the network.

Windows Authentication (IIS) and Windows Authentication (SQL Server)

Using Windows Authentication throughout the server path is the most secure method of connecting from the device to the SQL
Server in an intranet scenario using a single server. As described earlier, the login and password passed to IIS will be the login and
user that the Sscesa20.dll is run under. This login and password is also passed to SQL Server.

Therefore, in this scenario, for replication the authenticated IIS user must have the appropriate access permissions to the
published database and be included in the publication access list. For more information about replication permission
requirements, see SQL Server Books Online.

Multiserver Scenarios

Figure 15. Multiserver Scenarios

Consider a few important details when you are using a multiserver scenario, particularly for replication. First, the IIS server user
must be a domain user in order to have permission at the SQL Server. If you are using replication, the IIS user must have Read
permissions to the Snapshot folder on the SQL Server.

Note You should configure the snapshot folder on Server B before creating the publication.

If you want to use Windows Authentication on the IIS server, you will need to create the snapshot folder on the IIS server (Server
A) instead. This is required to allow the SQL Server CE Server Agent ISAPI DLL access to the snapshot folder to get the schema
from the SQL Server for the subscription. The schema is stored in .sch files in the snapshot folder. These files must be read to
initialize the subscription with the AddSubscription() or ReInitializeSubscription() methods of the SQL Server CE ActiveX
control. For more information, see Applying the Initial Snapshot in SQL Server Books Online.

Note SQL Server CE 2.0 supports alternate snapshot locations, which allows you to use a snapshot folder location
other than the default placement. The folder that you configure as your snapshot location the first time you run the
Create Publication Wizard will be considered the default location. This is the @working_directory property of the
sp_adddistpublisher stored procedure. For more information, see SQL Server Books Online.

To set up a shared snapshot folder on Server B

1. Use Windows Explorer to create a shared folder on Server B for your snapshot files. Create the NTFS folder C:\snapshot.
2. Right-click the C:\Snapshot directory. Click Properties and click the Sharing tab. Choose Share this folder. In the Share

Name box, enter snapshot.
3. Click Permissions to set permissions for your Windows Domain Users.
4. Click Add to set the shared directory permissions as follows.

User Required permissions

For Administrators, always grant Full Control. Full Control
For System, always grant Full Control. Full Control
For Anonymous access, grant the configured IIS anonymous user account Read
permission.

Read

For Basic Authentication or Windows Authentication, grant the client's Windows user
account Read permission.

Read

Note You will need to add any Windows users you give permission to when using Basic IIS Authentication. You will
not be able to use Windows Authentication in this configuration.

http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/replsql/replimpl_70l0.asp
http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp

In the multiserver scenarios, you will need to make sure that your IIS user (whether an anonymous user or an authenticated user)
has permissions. As long as the IIS Server and SQL Server are both on the same domain, using a domain user account will allow
for this. If the IIS Server and SQL Server exist on separate or non-trusted domains, you will have to use SQL Server Authentication
on the SQL Server.

Note You cannot use the default anonymous login for multiserver scenarios, as IUSR_Machinename is a local
computer account and should not have domain access.

Anonymous Access (IIS) and SQL Server Authentication

This scenario works just like the single server case, except that SQL Server is on a separate computer, and access to SQL Server is
verified by the properties passed to the SQL Server CE 2.0 ActiveX control. Because the SQL Server does not rely on the Internet
Guest Account, RDA is seamless. If you are using replication, however, and the NTFS file system on Server B (recommended), you
will have to grant Read permission to the snapshot folder on Server B for the Internet Guest Account of Server A. This will require
the Internet Guest Account to be a domain account, so that permissions can be trusted.

The following steps describe how to change the Anonymous IIS user on Server A to a domain account:

1. On Server A, start the IIS snap-in by clicking the Start button, pointing to Programs, Administrative Tools, and then
Internet Services Manager.

2. In the left pane, expand the computer containing your site and then expand your Web site.
3. From the list of virtual directories, right-click your "Anon" virtual directory, select Properties, and then click the Directory

Security tab.
4. In Anonymous access and authentication control, click Edit to display the Authentication Methods page.
5. Click Edit and enter a Windows domain user account in the Username box.

Note You will also need to grant this user Read and Write permission on the file system directory as described
earlier.

Note For replication only: This new user will need Read permission on the Snapshot folder (C:\snapshot) of
Server B.

Anonymous Access (IIS) and Windows Authentication (SQL Server)

If you have followed the previous steps to configure your IIS user as a Domain User account, Server B should be prepared to use
Windows Authentication. You will only need to grant Server A's Anonymous IIS user permissions on Server B's SQL Server,
because SQL Server will rely on the Anonymous IIS user. After that is complete, you should be able to perform RDA and
replication.

Note For replication only: Remember to add Server A's Anonymous IIS user to the Publication Access List.

Basic Authentication (IIS) with SSL and SQL Server Authentication

After you have the single server scenarios working on Server A with Basic Authentication, RDA will work in this multiserver
configuration.

Note For replication only: Your Basic authenticated IIS user will need Read permission on the Snapshot folder
(C:\Snapshot) of Server B.

SQL Server will rely on the login and password passed by the SQL Server CE ActiveX control properties. You will need to grant the
proper permissions to the SQL Server databases on Server B for both RDA and replication.

Basic Authentication (IIS) with SSL and Windows Authentication (SQL Server)

After you have your IIS server set up with the proper login and password to work across the domain, you only need to set up the
SQL Server with Windows Authentication. In this scenario, you will need to grant the authenticated IIS user permissions on the
SQL Server. Your Basic Authentication user will be able to delegate as long as it has Logon locally privilege.

Note For replication only: Your Basic Authentication IIS user will need Read permission on the Snapshot folder
(C:\Snapshot) of Server B as well as the Publication Access List.

Windows Authentication (IIS) and SQL Server Authentication

Using Windows Authentication on IIS (Server A) with SQL Server Authentication on Server B is seamless with RDA. However, this

account cannot delegate its permissions across the domain from the IIS Server on Server A to access the snapshot folder on
Server B. SQL Server CE Replication Provider runs under the identity of the Windows user account corresponding to the login and
password supplied by the Subscriber for the InternetLogin and InternetPassword properties of the Replication object. A
workaround is to place the snapshot folder on a share on Server A. This would require changing the snapshot folder in the
publication properties for the SQL Server on Server B. For more information, see SQL Server Books Online.

Windows Authentication (IIS) and Windows Authentication (SQL Server)

Windows Integrated authentication for IIS is unsupported in many multiserver scenarios. Delegation of trusted accounts cannot
occur across a Windows domain without Kerberos, which is unsupported by SQL Server CE.

Conclusion
SQL Server CE uses the security models of SQL Server, Windows, and Internet Information Services to produce a secure, end-to-
end connectivity solution for the mobile enterprise. Microsoft recommends that you learn as much as possible about how each of
these security models work. This paper provides an overview of these technologies, and you can find additional resources on the
Microsoft Web site. In particular, see the Internet Information Services Security What If tool, which can be found at Security Tools
and Checklists. While it does not have specific solutions for Windows CE browsers, it does help describe the relationship between
the different IIS authentication methods, Active Directory™, and delegation.

References
Howard, Michael, Levy, Marc, and Waymire, Richard. Designing Secure, Web-Based Applications for Microsoft Windows 2000.
Microsoft Press, 2000.

http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp
http://www.microsoft.com/technet/itsolutions/desktopdeployment/security/tools.mspx

Windows CE and SQL Server Technical Articles

SQL Server CE Relay

Debra Dove
SQL Server 2000 Windows CE Edition Program Manager
Microsoft Corporation

February 2002

Summary: How to set up connectivity between Microsoft SQL Server 2000 Windows CE and Microsoft SQL Server by using SQL
Server CE Relay. (9 printed pages)

Important Note This article applies only to SQL Server CE v1.1 or lower and ActiveSync 3.1 or lower.

Contents

Introduction
How SQL Server CE Relay Works
Getting Started
Installing and Configuring SQL Server Relay
Running SQL Server CE Relay

Introduction
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) extends your enterprise data to the Windows CE-based
mobile device. By using merge replication or remote data access (RDA), you can share data with users in the field even when there
is no integrated network capability or when a network card cannot be used. SQL Server CE Relay allows bi-directional
communication between a mobile device and the server by using a desktop computer's network connection.

The benefits of using SQL Server CE Relay include:

Lower computing costs.

If your Windows CE-based devices contain modem cards, you may have to pay for their dial-in connections to their servers.
Being able to synchronize SQL Server CE data while the Windows CE-based device is cradled and connected to the server
can save on overall computing costs.

Connection capability in unfavorable wireless situations.

If wireless coverage in an office is limited because of concrete walls in the building or some other interference, you can use
any configured desktop to synchronize database data with SQL Server.

Connection capability when wireless network cards are not permitted because of radio transmission restrictions.

Important SQL Server CE Relay is not required for Pocket PC 2002 devices that are connected to desktop
computers running Microsoft ActiveSync® 3.5. The ActiveSync 3.5 connection setting Allow network
(Ethernet) and Remote Access Service (RAS) server connections with this desktop computer is set by
default and supports Secure Sockets Layer (SSL) encryption and Integrated Windows authentication
connections.

How SQL Server CE Relay Works
SQL Server CE Relay allows the USB, serial, or infrared (IR) connections through desktop computers to serve as a conduit for
synchronization to SQL Server using Microsoft Internet Information Services (IIS). The illustration in Figure 1 shows how a
Pocket PC device connects to a server computer through an ActiveSync desktop connection.

Figure 1. Architecture diagram

When the client code on the Windows CE-based device sets the InternetProxyServer property of the SQL Server CE ActiveX®

Control to ppp_peer:nn (where nn is a specified listening client port number on a desktop computer), ActiveSync recognizes the
ppp_peer command and the requests sent to the desktop computer appear on this designated client port. Relay is listening on the
same client port; it accepts the request from the mobile device and sends the request to a port on a preconfigured server (either
an IIS server or a proxy server). This process works identically but in reverse when the request to synchronize data comes back
from the computer that is running SQL Server.

To achieve a secure, end-to-end solution, SQL Server CE relies on the security models of Microsoft Internet Information Services
(IIS 5.0) or Microsoft Internet Information Server (IIS 4.0), Microsoft SQL Server version 6.5, 7.0, or 2000, and either Microsoft
Windows 2000 Server or Microsoft Windows NT® Server 4.0.

Getting Started
When you are planning an implementation of SQL Server CE Relay, note the following:

Relay works on desktop computers that are running Windows 98 SE, Windows ME, Windows NT 4.0 with Service Pack 6 or
later, or Windows 2000.
Relay works with mobile devices that are running Windows CE versions 2.11, 2.12, or 3.0.
SQL Server CE Relay is supported only by SQL Server CE version 1.1 and later.
Relay uses the peer point-to-point protocol (ppp_peer), a tunneling protocol that encapsulates Point-to-Point Protocol
frames into IP datagrams for transmission over an IP-based network, in Microsoft operating systems. This means that the
desktop computer functions as a proxy that can connect the mobile device to any server to which the desktop computer is
connected. SQL Server CE Relay is not a true proxy server because it cannot encrypt data, but you still have firewall support
if firewall support exists at the desktop computer.
SQL Server CE Relay requires Microsoft ActiveSync 3.1 or later installed on the desktop computer. ActiveSync enables the
ability to use the serial, IR, or USB connection (that is, the ppp_peer command can be interpreted as part of the serial, IR, or
USB connection) between the mobile device that is running SQL Server CE and the desktop computer. The partnership can
be a guest connection.
Relay does not support SSL encryption or Integrated Windows authentication.

Before you install SQL Server CE Relay (Relay) on the desktop computer, be sure that the following are installed or configured on
this computer:

SQL Server CE Server Tools is installed.
The SQL Server CE Server Agent ISAPI DLL is configured correctly.
SQL Server is configured correctly for either remote data access (RDA) or merge replication connectivity.

Note It is assumed that you are familiar with at least one of the two types of connectivity that is supported by
SQL Server CE (merge replication or remote data access).

Security is set up correctly for connectivity to SQL Server.

Note For more information about configuring IIS and SQL Server for connectivity, see SQL Server CE Books
Online. For in-depth security tips and configuration steps, see Security Models and Scenarios for SQL Server CE).

Installing and Configuring SQL Server Relay
To install SQL Server CE Relay, copy the executable file Sscerelay.exe from the default installation directory \Program
Files\Microsoft SQL Server CE\Relay in SQL Server CE Server Tools to a directory on the desktop computer. Sscerelay.exe can be
copied and configured on any Windows-based desktop computer that can connect to SQL Server.

Configuring the Desktop Computer to Use Relay

To configure the desktop computer to use Relay, you must specify the following:

Client port number
Name of the destination server
Server port number

The client port and server port configurations are very important for Relay to function correctly.

Client port number

The client port number is the port on which the desktop computer is to listen for requests from the Windows CE-based device.

http://www.microsoft.com/sql/techinfo/administration/2000/securitymodels.asp

Specify this port number as the value for the /clientport option.

Name of destination server

The server name is the key to identifying where you want information from the desktop to be relayed. If you are using a proxy
server, the value of /servername is the name of the proxy server computer. If you are not using a proxy server, the value of
/servername is the name of the IIS server computer that you are using for SQL Server CE synchronization; the name of the IIS
server computer must the same as the name that is specified in the InternetURL property on the mobile device.

It is possible to specify one server name in SQL Server CE Relay and a different server name through the SQL Server CE ActiveX
control, although this is not a recommended procedure. For the synchronization to succeed, the virtual directory names and
security access must be the same on both servers. If both servers are valid IIS servers, Relay sends the data to the server that is
specified in its parameters. Synchronization could fail if the virtual directory or a server agent does not exist or if either is not
correctly configured. The synchronization will succeed if both servers are set up identically and each has access to the SQL Server
computer.

Server port number

Specify the port number for the server that is identified by the /servername option. This is the port number for the computer on
which the Internet application is configured. For example, if a virtual directory for SQL Server CE Server Agent has been created in
the Default Web Site in IIS, the default server port is 80. Specify the server port number as the value for the /serverport option.

Listed below are some examples of services and their associated ports:

HTTP over TCP/IP

Web servers, such as IIS: port 80

HTTPS over TCP/IP

HTTP over SSL for encrypting Web traffic: port 443

FTP over TCP/IP: FTP

Port 21, port 20, and ports 1024-65535

SMTP over TCP/IP

Simple Mail Transfer Protocol (SMTP), which is used by applications such as Microsoft Exchange Server: port 25.

Most other ports are available; check the services running on your system before you assign port numbers.

Configuring the Mobile Device to Use Relay

The process of relaying the information from the Windows CE-based device through the desktop to IIS on the Internet or an
intranet starts by setting the InternetProxyServer property in the ActiveX control in the SQL Server CE application. Set this
property to ppp_peer:nn, where nn is the client port number on the desktop computer. This number must be the same as the
client port number that has been specified by /clientport on the desktop computer.

Configuration Options

Table 1 is a list of the options that determine how Relay functions. These options and their associated values must be space
delimited, but the options can be specified in any order.

Table 1. Descriptions of configuration options

Option Description
/clientport* The port on the desktop computer to and from which the client (the Windows CE-based device) reads

and writes.

/servername* The name of either the server that is running IIS or the proxy server to which Relay connects through
the desktop computer. Using a proxy server allows the client more flexibility because the client can go
to any server that the proxy server can reach.

If an IIS server is used, this value must be the same as the value that is specified in the InternetURL
property in the Windows CE application.

The IP address of the respective server computer can also be used for specifying the server name. UNC
paths are not accepted for specifying the server name, however. For example, the following would fail
during synchronization:
/servername "//myIISserver"

But the following would succeed during synchronization:
/servername myIISserver

/serverport* The port to and from which the server reads and writes. This is usually port 80.
/register Registers Relay with ActiveSync connect and disconnect features.
/unregister Unregisters Relay with ActiveSync connect and disconnect features.
/noui Runs Relay without the icons appearing in the Windows taskbar.
/? Calls Help at the command prompt, which lists SQL Server CE Relay parameters.
/stop Halts all instances of Relay that are running, whether they were started manually or automatically.

*This option must be specified with a value to run Relay.

Running SQL Server CE Relay
SQL Server CE Relay appears as an icon on the Windows status bar whenever Relay is running. One icon appears for each
instance of Relay. Different icons appear according to the function Relay is performing.

Icon Description
Information is traveling from the device that is running SQL Server CE to the desktop computer.

Information is traveling from the desktop computer to the device that is running SQL Server CE.

Information is traveling both ways between the desktop computer and the device that is running SQL Server
CE.
Although SQL Server CE Relay is running, no information is traveling between the desktop computer and the
device that is running SQL Server CE.

SQL Server CE Relay can be run in either of the following configurations:

Automatic
Manual

In manual configuration, you can elect to run a single instance or multiple instances of Relay.

If SQL Server CE Relay is not configured correctly, an error shows up in the errors text file (Sscerelay.log) on the desktop
computer in the same folder from which Sscerelay.exe was run.

Registering Relay with ActiveSync to Run Automatically

The preferred configuration for running Relay is to register Relay with ActiveSync. By registering Relay with ActiveSync, data is
easily and automatically synchronized at the same time that personal information is synchronized. Relay automatically starts and
stops whenever the connection between the device running SQL Server CE and ActiveSync is active.

To register Relay with ActiveSync, configure Relay with the /register option. You only have to do this once, as long as the
configuration parameters for the options /clientport, /servername, and /serverport do not change.

When you specify the /register option, two registry keys are created automatically within Windows CE Services:

One registry key is created under
HKEY_LOCALMACHINE\SOFTWARE\Microsoft\Windows CE Services\AutoStartOnConnect, with the string value
name MicrosoftSSCERELAYAutoConnect. This key is set with string value data that is based on the parameters you
specified when you configured Relay.

A second registry key is created under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\AutoStartOnDisconnect, with the string value
name MicrosoftSSCERELAYAutoDisconnect. This key is set when you specify the /Stop option.

Important Only one instance of SQL Server CE Relay can be registered with ActiveSync. When a second
instance is registered, it replaces the first instance in the registry.

When an ActiveSync connection is made, it starts Relay with the parameters that were specified when Relay was configured.

Important When the ActiveSync connection is broken, all instances of Relay stop.

For example, if the IIS or proxy server computer name is CorpServer, the options to run Relay are entered at the command
prompt as:

sscerelay /clientport 81 /servername CorpServer /serverport 80 /register

In this example:

The mobile device posts requests to and listens for responses on port 81 of the desktop computer.
The desktop computer listens for requests from the client on port 81 and forwards them to port 80 of the server that is
specified by the /servername option. The desktop computer then listens for responses from the server on port 81 and
posts them to the client on port 81.
If the computer that is specified in the /servername option is an IIS server, its name must match the server name that is
supplied in the InternetURL property of the ActiveX control on the mobile device. SQL Server CE Server Tools must be
installed on it and the SQL Server CE Server Agent configured on it. If the computer that is specified in the /servername
option is a proxy server, it does not require SQL Server CE Server Tools or the SQL Server CE Server Agent because it
forwards requests to an appropriately configured IIS computer (the one that is specified in the InternetURL property on the
mobile device).
The /register option registers Relay to run every time an ActiveSync connection is made.

Note The InternetProxyServer property must be set to ppp_peer:81 in the SQL Server CE ActiveX Control on
the Windows CE-based device.

Use the /unregister option at the command prompt to unregister Relay from ActiveSync, as shown here:

sscerelay /unregister

This removes the registry keys from Windows CE Services.

Running a Single Instance of SQL Server CE Relay Manually

If Relay is to be used infrequently, you can run the program from the command prompt each time it is needed, as long as the
mobile device is connected to the desktop computer using ActiveSync. When Relay is run from the command prompt without
specifying the /register option, it starts immediately. For example, if the IIS or proxy server computer name is CorpServer, the
options to run Relay manually are entered at the command prompt as:

sscerelay /clientport 81 /servername CorpServer /serverport 80

When Relay is run manually, it also must be stopped manually. Use the /stop option at the command prompt to halt Relay, as
shown here:

sscerelay /stop

Running Multiple Instances of SQL Server CE Relay Manually

Different client ports must be used when you run multiple instances of Relay simultaneously. Because only one instance of Relay
can be registered with ActiveSync, you must configure Relay manually to run multiple instances. For example, you might have to
run multiple instances of Relay if multiple server destinations are required. When two groups of applications are connecting to
the same desktop computer for synchronization, one application might need to connect to ServerA, which is a server running IIS
on the intranet and, therefore, does not require a proxy server. The other application, on the other hand, might need to connect to
ServerB, which is a server running IIS on the Internet and, therefore, does require a proxy server. In this scenario, one client port

number would map to ServerA and the other client port number would map to ServerB, which would require configuring two
instances of Relay.

Note On Windows 98 SE, the number of instances of Relay is limited to 20.

Using the /stop option at the command prompt halts all instances of Relay that are running.

Updating the Sample Applications for SQL Server CE Relay

The documentation in SQL Server CE Books Online contains two sample applications that can be easily configured to work with
SQL Server CE Relay: remote data access (RDA) and replication. Both of these eMbedded Microsoft Visual Basic® (eVB)
applications are based on the Northwind sample database that is included with SQL Server 7.0 and SQL Server 2000. This
section provides the information about configuring these applications to include the InternetProxyServer property that is
required to enable Relay functionality on the client.

Remote Data Access Sample Application

To configure the remote data access application to use Relay

1. Open the eVB project NWindRDA.ebp. (The default installation directory for this application in SQL Server CE Server Tools is
C:\Program Files\Microsoft SQL Server CE\Samples\eVB\Northwind_RDA\NwindRDA.ebp.)

2. On the Edit menu, click Find. In the Find dialog box, enter SetRDAConnections(), select Current Project, and then click
Find Next.

3. In the SetRDAConnections() function, add the following declaration:

goRDA.InternetProxyServer = "ppp_peer:81"

4. Configure Relay with the following options:

sscerelay /clientport 81 /servername IISServer /serverport 80 /register

You can now use SQL Server CE Relay to synchronize the remote data access sample application without using a network card in
the Windows CE-based device.

Replication Sample Application

To configure the replication application to use Relay

1. Open the eVB project NWindRepl.ebp. (The default installation directory for this application in SQL Server CE Server Tools is
C:\Program Files\Microsoft SQL Server CE\Samples\eVB\Northwind_REPL\NwindRepl.ebp.)

2. On the Edit menu, click Find. In the Find dialog box, enter InitREPObject(), select Current Project, and then click Find
Next.

3. In the InitREPObject() function, add the following declaration:

goREP.InternetProxyServer = "ppp_peer:81"

4. Configure Relay with the following options:

sscerelay /clientport 81 /servername IISServer /serverport 80 /register

You can now use SQL Server CE Relay to synchronize the replication sample application without using a network card in the
Windows CE-based device.

Windows CE and SQL Server Technical Articles

Troubleshooting Microsoft SQL Server 2000 Windows CE
Edition Connectivity Issues

Kevin J. Boske
Microsoft Corporation

December 2001

Summary: Microsoft SQL Server 2000 Windows CE Edition (SQL Server CE) includes a robust error reporting mechanism that
provides information about errors returned from a variety of sources. This paper describes how SQL Server CE errors are
generated and how and where to find more information about these errors. The paper also describes some of the common
connectivity errors that occur when running SQL Server CE and replication or Remote Data Access (RDA). (29 printed pages)

Contents

Introduction
Troubleshooting General Connectivity Issues
Troubleshooting Replication Issues
Troubleshooting RDA Issues
Conclusion
References

Introduction
Microsoft® SQL Server™ 2000 Windows® CE Edition (SQL Server CE) includes a robust error reporting mechanism that provides
information about errors returned from a variety of sources. This paper describes how SQL Server CE errors are generated and
how and where to find more information about these errors. The paper also describes some of the common connectivity errors
that occur when running SQL Server CE and replication or Remote Data Access (RDA).

Troubleshooting General Connectivity Issues
This section covers how to determine the source of errors related to connectivity, error handling in eMbedded Microsoft Visual
Basic® (eVB) and eMbedded Microsoft Visual C++® (eVC), SQL Server CE Server Agent logging, and other connectivity issues
you may encounter.

Identifying the Source of Errors

Many SQL Server CE errors are returned in scenarios in which a single error cannot fully explain the point of failure. For example,
the error 28037 (HTTPSENDREQUESTFAILED) can be returned for a variety of reasons. This error reports that a connection to
Microsoft Internet Information Services (IIS) cannot be made; the IIS server may be down, the network or Internet service provider
(ISP) may be experiencing failures, or the problem may be as simple as an incorrect property setting in the SQL Server CE
Microsoft ActiveX® control. Whatever the failure, handling errors in your code is the first step in discovering the nature of the
issue.

The SQL Server CE Errors object consists of an HRESULT, a Native Error, and parameters. The Native Error is returned from SQL
Server CE. The HRESULT can be returned from SQL Server, the OLE DB application programming interface (API), or IIS, for
example. Each error may include parameters that provide additional information about the failure. You should step through the
entire errors collection and parameter list in your error handling code. In many cases, the last error returned in the collection
describes the failure.

Native errors

SQL Server CE can return errors from SQL Server CE Engine (SSCE10.dll), SQL Server CE Client Agent (SSCECA10.dll), SQL Server
CE Server Agent (SSCESA10.dll), the transport protocols, or SQL Server for CE Relay (SSCERELAY.exe). The following table shows
the numeric ranges of SQL Server CE errors.

SQL Server CE component Native Error range

Engine (SSCE10.dll) 25001–25087
25200–25209
25500–25556
25900–25945
26100–26102
26300–26308
27000–27005
27500–27502
27700

SQL Server CE Client Agent (SSCECA10.dll) 28500–28573
SQL Server CE Server Agent (SSCESA10.dll) 29000–29045
Transport protocols (replication and RDA) 28000–28499 (replication)

29500–29999 (message protocol)
Relay (sscerelay.exe) 30000–30034

The return parameters from the SQL Server CE Engine and Client Agent do not contain error descriptions. You can find error
descriptions in SQL Server CE Books Online by searching on the Native Error.

HRESULTs

HRESULTs are returned from several sources: SQL Server (versions 6.5, 7.0, or 2000), IIS, Certificate Services, Windows CE, or OLE
DB. Some HRESULT sources (such as SQL Server 2000) return descriptions, but a few sources (such as OLE DB and Windows CE)
require additional research. The following table indicates where to find more information about HRESULT values that are returned
from these sources.

HRESULT defined in Range of HRESULT values
OLEDBErr.h Hexadecimal values 0x80040EFF–0x80040E9A
Wininet.h Hexadecimal values that begin with 0x80072EE0–0x8007209F (decimal values

12000–12159)
Winerror.h Decimal errors: 1–11999

Windows errors

Windows errors can be found in wininet.h or winerror.h. Decimal errors in the range of 1 through 11999 can be found in
winerror.h. A separate winerror.h file is installed with the Microsoft Platform SDK.

Wininet.h

Windows CE Internet API errors are returned when something causes a failure in Internet functionality, such as an incorrect
InternetURL property. Wininet.h is included with the Platform SDK. INTERNET_ERROR_BASE is defined as 12000 in wininet.h.
When you receive an HRESULT along with a Native Error that suggests a failure in Internet functionality, you can determine the
description of the HRESULT by converting the last four digits of the HRESULT from hexadecimal format to decimal format.

For example:

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28037

HR: 80072EFD

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

In this case, the user's device has no network connectivity. SQL Server CE Books Online shows the following description for Native
Error 28037:

28037: HttpSendRequest failed; HRESULT has more detail

Because this appears to be an Internet error, start with wininet.h to find the description of the HRESULT. Convert the last four
digits of the HRESULT from hexadecimal format (2EFD) to decimal format (12029). (To do this, you can use the Scientific
Calculator included with Windows.) Because 12029 is in the wininet error range, search wininet.h for 12000, which returns the
following line:

#define INTERNET_ERROR_BASE 12000

Because 12000 is defined as INTERNET_ERROR_BASE, search wininet.h for INTERNET_ERROR_BASE + 29 (12029). The HRESULT is
defined as ERROR_INTERNET_CANNOT_CONNECT.

OLEDBerr.h

OLE DB HRESULTs can be returned from the SQL Server merge replication process or from SQL Server CE. These errors are in the
hexadecimal range 0x80040EFF through 0x80040E9A. A comment corresponds to each HRESULT. For example:

//
// MessageId: DB_E_ERRORSINCOMMAND
//
// MessageText:
//
// The command contained one or more errors
//

#define DB_E_ERRORSINCOMMAND ((HRESULT)0x80040E14L)

Parameters

Parameters are generated at run time and return specific information about the cause of an error. The first three parameters of an
error (P0, P1, and P2) are integers, while the last three parameters (P3, P4, and P5) are strings. For example, if your application
cannot create a table because the table already exists, an error is added to the errors collection and a parameter may be generated
with the name of the table.

Error Handling in an eVB Application

The following subroutine, ShowErrors(), illustrates how to handle errors in an eVB application. The routine displays the source,
the HRESULT, and the Native Error (along with a description, if available) in a message box. SQL Server CE errors do not include
text descriptions.

Sub ShowErrors(ErrColl As SSCEErrors)

 Dim ErrRec As Object 'SSCE.ErrorRecords
 Dim param As Object
 Dim strErr As String
 strErr = ""

For Each ErrRec In ErrColl
 strErr = strErr & "Source: " & ErrRec.Source & vbCrLf
 strErr = strErr & "Native Error: " & ErrRec.NativeError & vbCrLf
 strErr = strErr & "HR: " & Hex(ErrRec.Number) & vbCrLf
 strErr = strErr & "Description: " & ErrRec.Description & vbCrLf
 For Each param In ErrRec.Params
strErr = strErr & "Param" & " = " & param.Param & vbCrLf
 Next param
 strErr = strErr & vbCrLf
 MsgBox strErr, vbOKOnly

 Next ErrRec

Set ErrRec = Nothing
Set param = Nothing
End Sub

To use ShowErrors(), check for errors in the collection after each SQL Server CE method call. The following example illustrates the
calls to the Initialize(), Run(), and Terminate() methods of the SQL Server CE Replication object with checks for ErrorRecords. In
the following example, the SetProperties() stub represents a function that sets the required replication properties.

Public repl as SSCE.Replication
SetProperties() 'stub for setting the replication properties.

Sub Merge()
If repl.ErrorRecords.Count > 0 Then
 ShowErrors repl.ErrorRecords
 Else
 repl.Initialize
 If repl.ErrorRecords.Count > 0 Then
 ShowErrors repl.ErrorRecords
 Else
 repl.Run
 If repl.ErrorRecords.Count > 0 Then
 ShowErrors repl.ErrorRecords
 Else
 repl.Terminate
 End If
 End If
 End If
End Sub

Error Handling in an eVC Application

The following eVC example displays replication, RDA, and Engine object errors.

Note You must include ca_mergex.h and link to ca_mergex.lib.

#define INC_OLE2
#define INITGUID
#include <windows.h>
#include <ole2.h>
#include <stdio.h>
#include "ca_mergex.h"

void ShowErrors(ISSCEErrors* pISSCEErrors)
 {
 HRESULT hr;
 LONG cbBuf;
 LONG i;
 LONG lErrorCount;
 LONG lErrorIndex;
 LONG lParamCount;
 LONG lParamIndex;
 VARIANT var;
 VARIANT varParam;
 WCHAR wszBuff[4096];
 WCHAR* pwszBuffPos = &wszBuff[0];
 BSTR bstr;
 ISSCEError* pISSCEError = NULL;
 ISSCEParams* pISSCEParams = NULL;
 ISSCEParam* pISSCEParam = NULL;
 BOOL fSuccess = FALSE;

 // Initialize variants
 VariantInit(&var);
 VariantInit(&varParam);

 // Get count of errors
 if(FAILED(hr = pISSCEErrors->get_Count(&lErrorCount))) goto Exit;
 if (lErrorCount <= 0)
 {
 MessageBox(NULL, L"No extended error information.",L"ShowErrors",
 MB_OK);
 fSuccess = TRUE;
 goto Exit;
 }

 // Display errors, one at a time
 for (lErrorIndex = 0; lErrorIndex < lErrorCount; lErrorIndex++)
 {
 cbBuf = swprintf(pwszBuffPos, L"E R R O R %d of %d\r\n",

 lErrorIndex+1, lErrorCount);
 pwszBuffPos += cbBuf;

 // Get next error record
 var.vt = VT_I4;
 var.lVal = lErrorIndex;
 if(FAILED(hr = pISSCEErrors->get_Item(var, &pISSCEError))) goto Exit;

 // Error Source
 if (FAILED(hr = pISSCEError->get_Source(&bstr))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"SOURCE: '%s'\r\n", bstr);
 pwszBuffPos += cbBuf;
 SysFreeString(bstr);

 // Native Error
 if (FAILED(hr = pISSCEError->get_NativeError(&i))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"NATIVE ERROR: %d\r\n", i);
 pwszBuffPos += cbBuf;

 // Error Number (HR)
 if (FAILED(hr = pISSCEError->get_Number(&i))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"HR: %8.8X\r\n", i);
 pwszBuffPos += cbBuf;

 // Error Description
 if (FAILED(hr = pISSCEError->get_Description(&bstr))) goto Exit;
 cbBuf = swprintf(pwszBuffPos, L"DESCRIPTION: '%s'\r\n", bstr);
 pwszBuffPos += cbBuf;
 SysFreeString(bstr);

 // Retrieve the Error Parameters
 if (FAILED(hr = pISSCEError->get_Params(&pISSCEParams))) goto Exit;

 // Get the number of Error Parameters
 if (FAILED(hr = pISSCEParams->get_Count(&lParamCount))) goto Exit;

 // Display the Value of Each Parameter
 for (lParamIndex = 0; lParamIndex < lParamCount; lParamIndex++)
 {

 // Get the parameter object
 var.vt = VT_I4;
 var.lVal = lParamIndex;
 if (FAILED(hr = pISSCEParams->get_Item(var, &pISSCEParam)))
 goto Exit;

 // Get and display the parameter value
 if (FAILED(hr = pISSCEParam->get_Param(&varParam))) goto Exit;
 if (VT_I4 == varParam.vt || VT_UI4 == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: %d\r\n",
 lParamIndex, (LONG) varParam.lVal);
 }
 else if (VT_I2 == varParam.vt || VT_UI2 == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: %d\r\n",
 lParamIndex, (LONG) varParam.iVal);
 }
 else if (VT_BSTR == varParam.vt)
 {
 cbBuf = swprintf(pwszBuffPos, L"P%d: '%s'\r\n",
 lParamIndex, varParam.bstrVal);
 }
 pwszBuffPos += cbBuf;

 // Clear variant
 VariantClear(&varParam);

 // Release the parameter object
 pISSCEParam->Release();
 pISSCEParam = NULL;
 }

 cbBuf = swprintf(pwszBuffPos, L"\r\n");
 pwszBuffPos += cbBuf;
 // Display error information
 //NOTE: The messagebox has been moved within the scope of the
 FOR loop.
 // The Books Online code displays all errors within the same
 message box.
 MessageBox(NULL, wszBuff,L"Error", MB_OK);
 }
 fSuccess = TRUE;

Exit:
 // Release the parameter object
 if (pISSCEParam)
 {
 pISSCEParam->Release();
 pISSCEParam = NULL;
 }

 // Release the parameters object
 if (pISSCEParams)
 {
 pISSCEParams->Release();
 pISSCEParams = NULL;
 }

 // Release the error object
 if (pISSCEError)
 {
 pISSCEError->Release();
 pISSCEError = NULL;
 }

 // Errors object is released in calling routine
 if (!fSuccess)
 {
 MessageBox(NULL, L"Error while processing errors!",L"ShowErrors",
 MB_OK);
 }
 return;
 }

SQL Server CE Server Agent Logging

SQL Server CE Server Agent is capable of logging errors, warnings, and informational messages to a log file on the IIS server. By
default, logging is disabled. When logging is enabled, the log file sscerepl.log is written to the SQL Server CE IIS virtual directory.
The information recorded in the log can be useful when trying to diagnose RDA or replication problems.

To enable SQL Server CE Server Agent logging

1. Under the HKLM\Software\Microsoft\MSSQLSERVERCE\Transport key, create a DWORD value. The name of the key value
must begin with the local path associated with your SQL Server CE IIS virtual directory. For example, if your Sscesa10.dll is
located in the Windows NT® file system (NTFS) file directory C:\Inetpub\sqlce\NorthWind, you must name the registry
value C:\Inetpub\sqlce\NorthWind\LOGGING_LEVEL. The data value of the DWORD key must be a value between 0 and 3.
For more information about these values, see the following table.

2. Restart IIS. This is essential because SQL Server CE Server Agent reads the registry key only when the SQL Server CE Server
Agent DLL is first loaded by IIS. If you are running IIS 5.0 on Windows 2000, you can restart IIS through Internet Service
Manager by right-clicking the server name and selecting Restart IIS. If you are running IIS 4.0 on Windows NT 4.0, you
must restart the computer.

3. Ensure that IIS is active and that your World Wide Web service is started.

The data value contained in the registry entry controls the level of logging that the SQL Server CE Server Agent performs. The
following table describes the data values that you can assign to the registry key value.

LOGGING_LEVEL value Meaning
0 Logging is disabled.
1 Log errors.

2 Log errors and warnings.
3 Log errors, warnings, and informational messages.

Note SQL Server CE Server Agent generates very large log files when you
specify LOGGING_LEVEL 3. You should not use this logging level under normal
circumstances; however, it is useful when you are attempting to diagnose a
problem.

For example, if your SSCESA10.dll is located in the NTFS file directory C:\Inetpub\SSCE\NorthWind, create the following registry
key value. In this example, the key value 3 causes logging of errors, warnings, and informational messages.

HKLM\Software\Microsoft\MSSQLSERVERCE\Transport
C:\Inetpub\sqlce\NorthWind\LOGGING_LEVEL 3

SSCEREPL.LOG description

The SQL Server CE Server Agent log file contains information about each replication merge, RDA Push or Pull, and SubmitSQL. To
accommodate this information, the SSCEREPL.log file uses several abbreviations to shorten the length of the file.

Note The SSCEREPL.log file format may change in future versions.

Here are additional details about the meaning of the SQL Server CE Server Agent log acronyms and abbreviations:

Replication Control Session Block (RSCB)
An RSCB is an automatically incremented structure used to keep the state of each message or operation. Each time IIS loads
SSCESA10.dll, the RSCB begins at 1.
Command
The following describes the commands executed in the operation.

OPNW—Open Write (no close)
OPWC—Open Write Close
OPNR—Open Read
PUT—Put (write) data to the file on the server
FTCH—Fetch (read) data from the file on the server
CLOS—Close the file on the server
SYNC—Synchronize (reconcile the data between the Subscriber and the Publisher)
SCHK—Synchronize check, poll for the completion of the Synchronize operation
PULL—RDA Pull operation
PUSH—RDA Push operation
SQL RDA—SubmitSQL() operation

Thread
Indicates the ordinal of the active thread.
HRESULT (HR)
The HR for the particular command. For example, an HR of 0 is success.

SQL Server CE Server Agent logging example

In the following example, the Logging_Level value of SQL Server CE Server Agent is set to 3, the highest logging level.

2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 Total Compressed bytes in = 218
2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 Total Uncompressed bytes in = 332
2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 Responding to OpenWrite, total bytes = 218
2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 C:\school\D29F9B00-240B-11C1-8000-D7BB2DC4EF8D 0
2001/08/13 15:27:33 Thread=1000 RSCB=1 Command=SYNC Hr=00000000
 Sync thread assigned = 1000
2001/08/13 15:27:33 Thread=1000 RSCB=1 Command=SYNC Hr=00000000
 Synchronize entered 0
2001/08/13 15:27:33 Thread=1000 RSCB=1 Command=SYNC Hr=00000000

 Synchronize responding 0
2001/08/13 15:27:34 Thread=1 RSCB=1 Command=SCHK Hr=00000001
 SyncCheck responding 0
2001/08/13 15:27:36 Thread=2 RSCB=1 Command=SCHK Hr=00000000
 SyncCheck responding 0
2001/08/13 15:27:36 Thread=3 RSCB=1 Command=OPNR Hr=00000000
 Responding to Fetch, bytes = 32752
2001/08/13 15:27:37 Thread=4 RSCB=1 Command=FTCH Hr=00000000
 End Of Data Set 1
2001/08/13 15:27:37 Thread=4 RSCB=1 Command=FTCH Hr=00000000
 Responding to Fetch, bytes = 15232
2001/08/13 15:27:37 Thread=0 RSCB=1 Command=CLOS Hr=00000000
 Total Compressed bytes out = 47984
2001/08/13 15:27:37 Thread=0 RSCB=1 Command=CLOS Hr=00000000
 Total Uncompressed bytes out = 90203
2001/08/13 15:27:37 Thread=0 RSCB=1 Command=CLOS Hr=00000000
 Removing this RSCB 0
2001/08/13 15:43:26 Hr=00000000 Count of active RSCBs = 0

<STATS Period_Start="2001/08/13 15:27:32" Period_Duration="954"
 Syncs="1" SubmitSQLs="0" RDAPushes="0" RDAPulls="0"
 AVG_IN_File_Size="332" AVG_OUT_File_Size="90203"
 Completed_Operations="1" Incomplete_Operations="0"
 Total_Sync_Thread_Time="3" Total_Pool_Thread_Time_IN="0"
 Total_Pool_Thread_Time_OUT="0" Total_Sync_Queue_Time="0"
 Total_Pool_Queue_Time_IN="0" Total_Pool_Queue_Time_OUT="0" />

The following is a detailed description of several lines of code from the previous example. In this line, the Server Agent opens,
writes, and closes a message file of 218 compressed bytes.

2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 Total Compressed bytes in = 218

In the next line, the name of the message file is shown (c:\school\D29F9B00-240B….). This name does not include the .in and .out
extensions used by SQL Server CE Server Agent.

2001/08/13 15:27:32 Thread=0 RSCB=1 Command=OPWC Hr=00000000
 C:\school\D29F9B00-240B-11C1-8000-D7BB2DC4EF8D 0

The following line describes the ordinal of the active sync thread in addition to the SYNC command.

2001/08/13 15:27:33 Thread=1000 RSCB=1 Command=SYNC Hr=00000000 Sync thread assigned =
1000

In the next line, SQL Server CE Server Agent checks to determine whether the synchronization is complete. SQL Server Replication
Agent has reconciled the client's changes and has created an .out file.

2001/08/13 15:27:34 Thread=1 RSCB=1 Command=SCHK Hr=00000001
 SyncCheck responding 0

The next step is to retrieve any changes that occurred on the server. This line reports the number of bytes from the server.

2001/08/13 15:27:36 Thread=3 RSCB=1 Command=OPNR Hr=00000000
 Responding to Fetch, bytes = 32752

Finally, the file is closed.

2001/08/13 15:27:37 Thread=0 RSCB=1 Command=CLOS Hr=00000000
 Total Compressed bytes out = 47984

SQL Server CE Server Agent statistics

The <STATS> tag reports the SQL Server CE connectivity operations that occurred over the last 15 minutes. This report is
generated whenever an active request (RCSB) recognizes that 15 minutes have passed since the last report was generated. At

times of low volume, this report may be generated less often. (It is generated only when an active request occurs). The statistics
report is useful in determining performance issues.

The following statistical report shows a single synchronization (merge replication).

<STATS Period_Start="2001/08/13 15:27:32" Period_Duration="954"
 Syncs="1" SubmitSQLs="0" RDAPushes="0" RDAPulls="0"
 AVG_IN_File_Size="332" AVG_OUT_File_Size="90203"
 Completed_Operations="1" Incomplete_Operations="0"
 Total_Sync_Thread_Time="3" Total_Pool_Thread_Time_IN="0"
 Total_Pool_Thread_Time_OUT="0" Total_Sync_Queue_Time="0"
 Total_Pool_Queue_Time_IN="0" Total_Pool_Queue_Time_OUT="0" />

Definitions of SQL Server CE Server Agent log statistics

This section defines SQL Server CE Server Agent log attributes. Knowing how to interpret these results is important when
researching errors and performance issues.

Attribute Description
Period_Start Start of the STATS period (in longdate format).
Period_Duration Time that this report covers (in seconds).
Syncs Number of bidirectional replication merges performed during this report period.
SubmitSQLs Number of RDA SubmitSQL() calls during this report period.
RDAPushes Number of RDA Push() calls during this report period.
RDAPulls Number of RDA Pull() calls during this report period.
AVG_IN_File_Size Average size of the .in files (in bytes). Files with an .in extension are physical files

created from the message data sent by the client.
AVG_OUT_File_Size Average size of the .out files (in bytes). Files with an .out extension are physical files

created from the message data sent from the server.
Completed_Operations Number of Syncs, SubmitSQLs, RDAPushes, and RDAPulls that were completed

during this time period.
Incomplete_Operations Number of Syncs, SubmitSQLs, RDAPushes, and RDAPulls that started but were not

completed during this time period.
Total_Sync_Thread_Time Time that all Sync threads took to complete synchronization operations (in seconds).

Sync threads are members of a pool of threads that process messages from SQL
Server CE. This statistic does not include the time it took to transfer the messages to
and from the SQL Server CE clients.

Total_Pool_Thread_Time_IN Time required to send all data to the server (in seconds). Comparing this attribute to
Total_Pool_Thread_Time_OUT reveals where the greatest amount of time is spent,
either sending data to the server or sending data to the device.

Total_Sync_Queue_Time Time that sync requests wait in the sync queue before being processed by the server
(in seconds).

Total_Pool_Queue_Time_IN Time that messages from clients wait in the queue before being processed by the
SQL Server CE Server Agent (in seconds).

Total_Pool_Queue_Time_OUT Time that messages from SQL Server wait before being processed by the SQL Server
CE Server Agent (in seconds).

By comparing these statistics, you can evaluate which processes require the most time to run. For example, a scenario using
replication in which the only updates occur at the Subscriber should produce higher numbers for Total_Pool_Thread_Time_IN and
AVG_IN_File_Size, but lower numbers for Total_Pool_Thread_Time_OUT and AVG_OUT_File_Size.

General Connectivity Issues

RDA and replication functionality have some common errors.

Note The definition of the HRESULT is included in the following examples. This is not returned at run time.

Incorrect InternetURL property

The following error is returned when the InternetURL property is incorrect for the following reasons:

1. The virtual directory is incorrect. For example: http://server/sssce/sscesa10.dll where http://server/ssce/sscesa10.dll is the
proper URL.

2. The string sscesa10.dll is missing from the URL. For example: http://server/share

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28017

HR: 80004005 (E_FAIL)

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, correct the URL in the InternetURL property. You can do this by attempting using Microsoft Pocket Internet
Explorer to verify the InternetURL property.

No network connectivity

This error is returned when the device has no connectivity option. For example, if the device does not have a working modem,
network card, or universal serial bus (USB) connection.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28037

HR: 80072EFD

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, make sure your modem, network card, or USB connection is working. You can do this by using Pocket
Internet Explorer to verify the InternetURL property. Place the value of the InternetURL property into the address bar of Pocket
Internet Explorer. The word "body" will be displayed in the Pocket Internet Explorer window if the InternetURL property is correct.

Note This error may also be returned when the IIS server is unavailable or if the ISP or network is not functioning
properly.

Troubleshooting Replication Issues
The following is a list of issues you may encounter when using replication with SQL Server CE.

Connectivity: SSCERP10.dll Not Registered

The DLL SSCERP10.dll must be registered on the IIS server. If the SQL Server CE replication provider is not registered, the
following errors are returned to the Run() method.

Source: Microsoft SQL Server CE Edition

Native Error: 29045

HR: 8004505B

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Merge Process

HR: 8004505B

Native Error: 0

Description: The merge process could not load the Merge Replication Provider for 'SSCE'. Check to see that the component is
registered correctly.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, register SSCERP10.dll on the IIS server and restart IIS.

Schema: Indexes on ANSI Columns Greater than 255

SQL Server CE does not support ANSI data types. All ANSI data types are mapped to Unicode. String data types (char, text,
varchar) with a character count greater than 255 are mapped to NTEXT. SQL Server CE does not support indexes on NTEXT or
image columns. The following errors are returned to the Run() method when attempting to subscribe to a publication that
includes an indexed string column with a character count greater than 255.

For a complete list of unsupported data types, see the SQL Server CE Books Online topic "Mapped Data Types."

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28557

HR: 80004005

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28560

HR: 80040E21

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 25059

HR: 80040E21

Description: Errors occurred.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

It is important that you step through all of the errors in the collection, because the last error provides the reason for this failure.

To correct this error, remove any indexes on ANSI columns that are greater than 255 characters in size, or reduce the size of the
columns to fewer than 255 characters.

Schema: Identity on Int Columns with a Size Other Than 4

SQL Server CE only supports the Identity property on Int(4) columns. SQL Server 2000 supports the Identity property on
Bigint, Smallint, and Tinyint data types.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28557

HR: 80004005

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28560: OLE DB Execute Method failed; bad or invalid SQL statement.

HR: 80040E14

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 25551:

HR: 80040E21

Description: Errors occurred.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, change your Identity columns to the Int(4) data type.

Schema: Non-Character Mode Snapshots

SQL Server CE does not support BCP-mode snapshots. Such snapshots can be delivered if the publication is not created by
choosing SQL Server CE Subscribers in the Create Publication Wizard in SQL Server Enterprise Manager.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28557

HR: 80004005

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28560

HR: 80040E14

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 25501

HR: 80040E14

Description: The command contained one or more errors.

Param = 1

Param = 1

Param = 0

Param = SET

Param =

Param =

Note In this case, the last error includes a parameter from the failed query, SET.

To correct this error, republish, choosing SQL Server CE in the Create Publication Wizard or Character as the @sync_mode
property of the sp_addmergepublication stored procedure.

Schema: Violation of Referential Integrity

SQL Server CE handles most referential integrity violations by reattempting to apply the row. If the row sent from the SQL Server
CE Subscriber cannot be applied at the SQL Server Publisher, the following error is returned. This error is usually caused by the
violation of a self-reference on a table.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 28549

HR: 80040E2F

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, remove the violation by updating or deleting the row that violates integrity at the Subscriber.

Unsupported SQL Server Replication Features

While a SQL Server CE database can be a subscriber to a SQL Server 2000 publication, some features are not supported.

Alternate snapshot locations

This feature allows you to store the publication snapshot in a new folder or in a folder separate from the default location. SQL
Server CE does not support this feature.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 29006

HR: 80004005

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Merge Replication Provider

Native Error: 0

HR: 80045017

Description: The process could not deliver the snapshot to the Subscriber.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

If you need to move a snapshot folder, you can do so using SQL Server Enterprise Manager, as follows:

1. On the Enterprise Manager menu, click Tools, point to Replication, and then click Configure Publishing, Subscribers,
and Distribution….This opens the Publisher and Distributor Properties dialog box. (See Figure 1.)

Figure 1. Publisher and Distributor Properties window

1. Click the Publishers tab, click the properties […] button, and choose your Publisher from the list of servers. (See Figure 2.)

Figure 2. Publishers tab

1. In the Snapshot folder text box, type the path to your snapshot folder as a Uniform Naming Convention (UNC) path, or
search for the path by clicking the […] button, and then click OK. (See Figure 3.)

Figure 3. General tab

2. Rerun the Snapshot Agent to create a new snapshot in the new location.

Mapped data types

SQL Server CE supports Unicode data types only and converts all ANSI character data types to their Unicode equivalents. For
example, if you subscribe to a table with a Char column of 256 characters, that table is mapped to a SQL Server CE NTEXT
column. If a user inserts a record into this column that has a value larger than 256 characters, an error is returned, because the
data cannot fit into the Char column at the Publisher.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 29006

HR: 80004005

Description: Run

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Merge Replication Provider

Native Error: 0

HR: 80045020

Description: The process could not log conflict information.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: <SQL Server Name>

Native Error: 0

HR: 0

Description: {call [sp_cft_2619F21C121FDC1354371623E7942E5] (?,?, ?,? ,? ,? ,? , ?)}

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Note This description contains the name of an internal SQL Server replication stored procedure. The name varies.

Source: <SQL Server Name>

Native Error: 0

HR: 0

Description: String data, right truncation.

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, if you cannot change the schema of the Publisher to avoid this type of data type mapping, add application–
level logic to limit the number of characters that users can enter on their devices.

Troubleshooting RDA Issues
You may encounter the following issues when you use RDA with SQL Server CE.

Duplicate Key Values

When inserting records into a table created through a RDA Pull(), many users experience duplicate key violations. One reason for
this is Identity columns. SQL Server CE RDA does not set the seed on the Identity columns when a table is pulled.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 25016

HR: DB_E_INTEGRITYVIOLATION

Description: Value violated the integrity constraints for a column or table.

Interface defining error: IID_IRowsetChange

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

This error can be returned when the user attempts to insert a row with an automatically incremented Identity column. With RDA,
this usually occurs when a user pulls rows from the server and attempts to insert new rows before setting the seed and increment
values for the Identity column. By default, the seed and increment values are both 1.

To correct this error, set the seed to the next highest number after the table is pulled, before allowing users to enter data.

Invalid or nonexistent SQL Server database

In some cases, when SQL Server cannot connect to a database on a server, the error returned indicates that the login failed. SQL
Server attempts to log in and gain permission to the database before it attempts to open it. Note that the second error in the
collection returns no parameters and the third returns a native error from the SQL Server OLE DB provider.

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 0

HR: 80004005

Description: Pull

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server 2000 Windows CE Edition

Native Error: 0

HR: 80004005

Description: Unspecified Error

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

Source: Microsoft SQL Server OLE DB Provider for SQL Server

Native Error: 4060

HR: 80004005

Description: Cannot open database requested in login '<initial catalog parameter passed as part of PULL() method's
OLEDBConnectionString>'. Login fails

Param = 0

Param = 0

Param = 0

Param =

Param =

Param =

To correct this error, verify that you have the passed the correct user id, password, and Initial Catalog to the
OLEDBConnectionString parameter of your Pull method.

Conclusion
SQL Server CE includes a number of methods to troubleshoot errors and performance issues. Using the errors collection properly,
you can determine the root cause of failures and resolve them. You can also use the SQL Server CE Server Agent log to obtain
performance and historical information, helpful in diagnosing issues. While some errors seem cryptic, stepping through the entire
errors collection and researching the HRESULT with the native error will yield the information required to resolve the issue.

References
SQL Server CE Books Online

Microsoft Product Support Services Knowledge Base article, Q273580: HowTo: Look up Error Codes Related to SQL Server CE.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of
the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of
publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, Visual Basic, Visual C++, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

http://support.microsoft.com/default.aspx?scid=kb;en-us;q273580

	Cover Page
	SQL Server 2000
	Microsoft SQL Server 2000
	SQL Server 2000 Books Online
	Getting Started
	Getting Started
	SQL Server Home Page
	Getting Started with SQL Server Books Online
	Documentation Conventions

	Displaying Information in SQL Server Books Online
	Using SQL Server Books Online
	Changing the Way Topics Appear
	Finding a Topic
	Using Subsets to Find a Topic
	Using the Search Tab

	Using Accessibility Features in SQL Server Books Online
	Accessibility for People with Disabilities
	Additional SQL Server Resources
	Microsoft SQL Server 2000 Copyright and Disclaimer

	What's New
	What's New
	What's New in SQL Server Books Online
	What's New in Microsoft SQL Server 2000
	Relational Database Enhancements
	XML Integration of Relational Data
	Graphical Administration Enhancements
	Replication Enhancements
	Data Transformation Services Enhancements
	Analysis Services Enhancements
	Meta Data Services Enhancements
	English Query Enhancements
	Documentation Enhancements

	Installing SQL Server
	Installing SQL Server
	Overview of Installing SQL Server 2000
	Preparing to Install SQL Server 2000
	Hardware and Software Requirements for Installing SQL Server 2000
	SQL Server 2000: Editions and Components
	Installing English Query
	Installing Analysis Services

	Setting up Windows Services Accounts
	File Paths for SQL Server 2000
	Upgrading an Existing Installation of SQL Server

	Basic Installation Options
	Entering Information in Basic Setup Screens
	Computer Name
	Installation Selection
	Existing Installation Options
	Installation Definition
	User Information
	Instance Name
	Backward Compatibility
	Backward Compatibility for Full-Text Search/Microsoft Search
	Backward Compatibility for Multiserver Configurations
	Backward Compatibility for Cross-Database Ownership Chaining

	Error Reporting (SQL Server)
	Error Reporting (Analysis Services)
	Setup Type: Typical, Minimum, or Custom
	Select Components
	 Server Components
	Management Tools
	Client Connectivity
	Books Online
	Development Tools
	Code Samples

	Network Libraries
	Services Accounts
	Authentication Mode
	Choose Licensing Mode
	Installing a Remote Configuration
	Remote Setup Information

	Advanced Installation Options
	Installing a Virtual Server Configuration
	Failover Clustering: Defining the Virtual Server
	Cluster Management Screen
	Cluster Disk Selection Screen
	Quorum Disk Selection Warning
	Modify Node List Warning

	Performing an Unattended Installation
	Creating a Setup File Manually
	Setup Initialization File Details
	Installing SQL Server Using SMS

	Rebuilding the Registry

	Working with Named and Multiple Instances of SQL Server 2000
	Naming Conventions for Instances of SQL Server 2000
	Network Protocols for Named Instances
	File Locations for Multiple Instances of SQL Server
	Removing Multiple Instances of SQL Server 2000

	Working with Instances and Versions of SQL Server
	Using SQL Server 6.5 with SQL Server 2000
	 Running SQL Server 7.0 Along with a Named Instance of SQL Server 2000
	Working with Three Versions of SQL Server

	Collation Options for International Support
	Collation Settings in Setup
	Windows Collation Sorting Styles
	Windows Collation Designators
	Using SQL Collations
	Examples of SQL Collations
	Selecting a SQL Collation
	Setting Client Code Pages
	Upgrading Character Set, Sort Order, and Collation
	Changing Collation Settings After Installing

	Upgrading to SQL Server 2000: Overview
	Hardware and Software Requirements for Upgrading
	Upgrading from SQL Server 7.0 to SQL Server 2000
	Replication and Upgrading
	Upgrading Databases from SQL Server 7.0 (Copy Database Wizard)
	Upgrading Databases from SQL Server 6.5 (Upgrade Wizard)
	Preparing to Upgrade from SQL Server 6.5
	Estimating the Disk Space Required for Upgrading
	Data and Object Transfer
	Order of Upgrade Using a Direct Pipeline or Tape Drive
	Upgrading Using One or Two Computers (Logon Screen)
	Selecting a Scripting Code Page
	Selecting Databases to Upgrade
	Database Configuration
	Proposed Database Layout
	Tape Upgrade Transfer Options
	System Configuration
	Completing the SQL Server Upgrade Wizard
	Upgrade Script Interpreter

	Backward Compatibility
	SQL Server 2000 and SQL Server version 7.0
	SQL Server 2000 and SQL Server version 6.5
	SQL Server Backward Compatibility Details
	SetHostName property not used in SQL Server 2000
	Level 1: Handling Discontinued Functionality
	Level 2: Handling Major Changes to Behavior
	Level 3: Updating to Improve Earlier Functionality
	Level 4: Handling Minor Changes to Behavior

	After Installing or Upgrading to SQL Server 2000
	Using the Start Menu
	System and Sample Databases
	Locating Directories and Files
	Changing Passwords and User Accounts
	Renaming a Server
	Deploying SQL Server After Initial Installation
	Installing Full-Text Search and Indexing Tools
	Configuring SQL Server 2000 After Upgrading
	Switching Between SQL Server 6.5 and SQL Server 2000
	Removing SQL Server 7.0 or SQL Server 6.5 After Upgrading
	Removing SQL Server 2000

	SQL Server Architecture
	SQL Server Architecture
	SQL Server Architecture Overview
	Fundamentals of SQL Server 2000 Architecture
	SQL Server 2000 Component Overview

	Features of SQL Server 2000
	Integrated with the Internet
	Scalability and Availability
	Enterprise-Level Database Features
	Ease of Installation, Deployment, and Use
	Data Warehousing

	Relational Database Components
	Database Applications and Servers
	Logins
	Client Components
	Communication Components
	Client and Server Net-Libraries
	Controlling Net-Libraries and Communications Addresses
	Tabular Data Stream Protocol
	Net-Library Encryption

	Server Components
	SQL Server Service
	SQL Server Agent Service
	Microsoft Search Service
	MSSQLServerADHelper Service
	MS DTC Service
	Multiple Instances of SQL Server
	Communicating with Multiple Instances
	Using Multiple Instances
	Working with Multiple Instances

	Federated SQL Server 2000 Servers
	Partitioning Data

	Failover Clustering Architecture
	SQL Server 2000 Failover Clusters

	Active Directory Integration

	SQL Server and XML Support
	Database Architecture
	Logical Database Components
	Data Types and Table Structures
	SQL Views
	SQL Stored Procedures
	SQL User-Defined Functions
	Constraints, Rules, Defaults, and Triggers
	Constraints
	Rules
	Defaults
	Triggers

	Collations
	SQL Server Collation Fundamentals
	Selecting Collations
	Specifying Collations
	Specifying the Default Collation for an Instance of SQL Server

	Mixed Collation Environments
	Changing Collations

	SQL Indexes
	Table Indexes
	View Indexes
	Maximum Size of Index Keys

	Property Management
	Full-Text Catalogs and Indexes
	Logins, Users, Roles, and Groups
	Logins
	Users
	Roles
	Groups

	Owners and Permissions
	Session Context Information

	System Databases and Data
	Physical Database Architecture
	Pages and Extents
	Physical Database Files and Filegroups
	Space Allocation and Reuse
	Managing Extent Allocations and Free Space
	Managing Space Used by Objects
	Tracking Modified Extents
	Shrinking Databases

	Table and Index Architecture
	Distribution Statistics
	Heap Structures
	Clustered Indexes
	Nonclustered Indexes
	tempdb and Index Creation
	text, ntext, and image Data
	ntext, text, and image Data When text in row Is Set to OFF
	text, ntext, and image Data When text in row Is Set to ON

	Transaction Log Architecture
	Write-Ahead Transaction Log
	Transaction Log Logical Architecture
	Checkpoints and the Active Portion of the Log
	Truncating the Transaction Log
	Transaction Log Physical Architecture
	Shrinking the Transaction Log

	Relational Database Engine Architecture
	Relational Database Engine Architecture Overview
	Database Engine Components
	Relational Engine
	Storage Engine
	SQL Server Language Support

	Query Processor Architecture
	Single SQL Statement Processing
	View Resolution
	Resolving Indexes on Views
	Resolving Distributed Partitioned Views

	Worktables

	Batch Processing
	Stored Procedure and Trigger Execution
	Execution Plan Caching and Reuse
	Parameters and Execution Plan Reuse
	Auto-Parameterization
	Preparing SQL Statements

	Parallel Query Processing
	Degree of Parallelism
	Parallel Query Example
	Parallel Operations Creating Indexes

	Memory Architecture
	Dynamically Managing Memory on Windows NT and Windows 2000
	Effects of min and max server memory
	Dynamically Managing Memory Between Multiple Instances

	Dynamically Managing Memory on Windows 95 and Windows 98
	Using AWE Memory on Windows 2000
	SQL Server Memory Pool

	Thread and Task Architecture
	SQL Server Task Scheduling
	Allocating Threads to a CPU
	Using the lightweight pooling Option

	Thread and Fiber Execution

	I/O Architecture
	Reading Pages
	Freeing and Writing Buffer Pages

	Distributed Query Architecture
	Full-Text Query Architecture
	Full-Text Indexing Support
	Full-Text Querying Support

	Extended Stored Procedure Architecture
	Remote Stored Procedure Architecture
	Transactions Architecture
	Transaction Recovery
	Concurrency Architecture
	Locking Architecture
	Latching

	Distributed Transactions Architecture

	Cursor Architecture
	Server Scalability
	SQL Server 2000 on Large Servers
	SQL Server 2000 Databases on the Desktop
	The SQL Server 2000 Workload Governor
	When to Upgrade from the Governor
	Data Access and the Workload Governor
	Understanding When the Workload Governor Is Activated

	SQL Server 2000 on Windows 98
	SQL Server 2000 and Windows CE

	SQL Server and Mail Integration

	Administration Architecture
	DDL and Stored Procedures
	SQL Distributed Management Framework
	SQL-DMF Applications
	SQL-DMF APIs
	SQL Server Agent

	Graphical Tools
	SQL Server Enterprise Manager
	SQL Query Analyzer
	Windows 2000 System Monitor
	Import and Export Data
	SQL Profiler
	SQL Server Service Manager
	Client Network Utility
	Server Network Utility
	Miscellaneous Utilities

	Automated Administration Architecture
	Backup/Restore Architecture
	Backup Devices
	Types of Backup and Restore Processes
	Database Backup and Restore
	Transaction Log Backup and Restore
	Differential Backup and Restore
	File and Filegroup Backup and Restore

	Fuzzy Backup and Restore Operations
	Parallel Backup and Restore

	Data Import/Export Architecture
	Data Integrity Validation

	Replication Architecture
	Data Warehousing and Online Analytical Processing
	Transforming OLTP Data to OLAP Data Warehouses
	SQL Server 2000 Data Warehouse and OLAP Components

	Application Development Architecture
	Choosing an API
	SQL Server and ADO
	SQL Server and Universal Resource Locators
	SQL Server and OLE DB
	SQL Server and ODBC
	SQL-DMO API
	SQL Namespace API
	Replication Component Programming API
	Data Transformation Services API
	SQL Server and English Query
	Extended Stored Procedure API
	SQL Server and Embedded SQL
	DB-Library API

	SQL Syntax Recommendations

	Implementation Details
	Editions of SQL Server 2000
	Operating Systems Supported by the Editions of SQL Server 2000
	Features Supported by the Editions of SQL Server 2000
	Understanding SQL Server 2000 Desktop Engine (MSDE 2000)
	SQL Server 2000 Desktop Engine (MSDE 2000) Documentation
	Programming SQL Server 2000 Desktop Engine (MSDE 2000) Applications
	Administering SQL Server 2000 Desktop Engine (MSDE 2000)

	Maximum Capacity Specifications
	Configuration Option Specifications
	Memory Used by SQL Server Objects Specifications

	Administering SQL Server
	Administering SQL Server
	Administering SQL Server Overview
	Starting, Pausing, and Stopping SQL Server
	Starting SQL Server
	Starting SQL Server Automatically
	Starting SQL Server Manually
	Starting SQL Server in Single-User Mode
	Starting SQL Server with Minimal Configuration
	Using Startup Options

	Logging In to SQL Server
	Running SQL Server
	Pausing and Resuming SQL Server
	Stopping SQL Server
	Broadcasting a Shutdown Message

	Failover Clustering
	Failover Clustering Support
	Creating a Failover Cluster
	Failover Clustering Example

	Upgrading to a SQL Server 2000 Failover Cluster
	Handling a Failover Cluster Installation
	Before Installing Failover Clustering
	Installing Failover Clustering
	Failover Clustering Dependencies

	Maintaining a Failover Cluster
	Using SQL Server Tools with Failover Clustering
	Failover Cluster Troubleshooting

	Importing and Exporting Data
	Choosing a Tool to Import or Export Data
	Preparing Data for Importing and Exporting
	Using bcp and BULK INSERT
	Using Native, Character, and Unicode Formats
	Native Format
	Character Format
	Copying Native and Character Format Data from Earlier Versions of SQL Server
	Unicode Character Format
	Unicode Native Format

	Specifying Data Formats
	File Storage Type
	Prefix Length
	Field Length
	Field Terminator

	Using Format Files
	Using a Data File with Fewer Fields
	Using a Data File with More Fields
	Using a Data File with Fields in a Different Order

	Copying Data
	Copying Data Between Servers
	Copying Data From a Data File to SQL Server
	Copying Data From a Query to a Data File
	Copying Data To or From a Temporary Table
	Copying Data To or From a View
	Copying Data Between Different Collations

	Bulk Copy Performance Considerations
	The Query Processor
	Logged and Minimally Logged Bulk Copy Operations
	Parallel Data Loads
	Batch Switches
	Constraint Checking
	Ordered Data Files
	Bypassing DEFAULT Definitions
	Controlling the Locking Behavior

	Backing Up and Restoring Databases
	Designing a Backup and Restore Strategy
	Analyzing Availability and Recovery Requirements
	Planning for Disaster Recovery
	Selecting a Recovery Model

	Using Recovery Models
	Simple Recovery
	Full Recovery
	Bulk-Logged Recovery
	Switching Recovery Models

	Backup and Restore Operations
	Database Backups
	Differential Database Backups
	Transaction Log Backups
	Backup Restrictions
	Restoring a Database to a Prior State
	Recovering to a Point In Time
	Recovering to a Named Transaction
	Recovery Paths

	Partial Database Restore Operations
	Recovering a Database Without Restoring
	Restarting Interrupted Backup and Restore Operations
	Backup and Recovery of Related Databases

	Managing Backups
	Backup Devices
	Using Backup Media
	Using Media Sets and Families
	Initializing Backup Media
	Password Protection
	Overwriting Backup Media
	Appending Backup Sets
	Identifying the Backup Set to Restore

	Backup Formats
	Viewing Information About Backups
	Verifying Backups

	Backing Up and Restoring System Databases
	Backing Up the master Database
	Restoring the master Database
	Restoring the master Database from a Current Backup
	Rebuilding the master Database

	Backing Up the model, msdb, and distribution Databases
	Restoring the model, msdb, and distribution Databases

	Handling Large Mission-Critical Environments
	Using Multiple Media or Devices
	Reducing Recovery Time
	Using File Backups
	File Differential Backups

	Snapshot Backups

	Copying Databases to Other Servers
	Copying Databases
	Copying Databases from Earlier Versions of SQL Server

	Using the Copy Database Wizard
	Managing Servers
	Registering Servers
	Creating Server Groups
	Accessing Server Registration Options

	Assigning an sa Password
	Managing AWE Memory
	Configuring Network Connections
	Net-Libraries and Network Protocols
	SQL Server Network Utility
	Connections to SQL Server Through Proxy Server
	Connections to SQL Server Over the Internet

	Configuring Linked Servers
	Establishing Security for Linked Servers
	Configuring OLE DB Providers for Distributed Queries

	Configuring Remote Servers
	Establishing Security for Remote Servers
	Viewing Local or Remote Server Properties

	Using Standby Servers
	Log Shipping
	Modifying Log Shipping
	Monitoring Log Shipping

	Concurrent Administrative Operations
	Managing SQL Server Messages
	SQL Mail
	Configuring SQL Mail
	Configuring Mail Profiles
	Using SQL Mail Stored Procedures

	Setting Configuration Options
	affinity mask Option
	allow updates Option
	awe enabled Option
	c2 audit mode Option
	cost threshold for parallelism Option
	Cross DB Ownership Chaining
	cursor threshold Option
	default full-text language Option
	default language Option
	fill factor Option
	index create memory Option
	lightweight pooling Option
	locks Option
	max degree of parallelism Option
	max text repl size Option
	max worker threads Option
	media retention Option
	min memory per query Option
	nested triggers Option
	network packet size Option
	open objects Option
	priority boost Option
	query governor cost limit Option
	query wait Option
	recovery interval Option
	remote access Option
	remote login timeout Option
	remote proc trans Option
	remote query timeout Option
	scan for startup procs Option
	Server Memory Options
	set working set size Option
	show advanced options Option
	two digit year cutoff Option
	user connections Option
	user options Option

	Managing Clients
	Client Net-Libraries and Network Protocols
	Configuring Client Network Connections
	Configuring Client Net-Libraries
	Setting Up Client Configuration Entries
	TCP/IP Sockets Clients
	Named Pipes Clients
	Multiprotocol Clients
	NetWare Link IPX/SPX Clients
	AppleTalk ADSP Clients
	Banyan VINES Clients
	VIA Clients
	Other Network Protocol Clients

	Configuring ODBC Data Sources
	Using the ODBC Data Source Administrator
	Using ODBC API Functions
	Adding or Deleting an ODBC Data Source

	Configuring OLE DB Clients
	DB-Library Options
	Using the DB-Library Automatic ANSI to OEM Conversion Option
	Checking the Validity of Saved Data
	Code Page Incompatibilities

	Automating Administrative Tasks
	Multiserver Administration
	Configuring the SQLServerAgent Service
	Starting SQLServerAgent Service
	Connecting to SQL Server
	Specifying a SQL Server Alias

	Using the SQL Server Agent Error Log
	Implementing Jobs
	Creating Jobs
	Creating Job Steps
	Handling Multiple Job Steps
	Scheduling Jobs
	Specifying Job Responses
	Running Jobs
	SQL Server Agent Permissions Checks
	Modifying and Viewing Jobs
	Scripting Jobs Using Transact-SQL

	Responding to Events
	Defining Operators
	Modifying and Viewing Operators
	Alerting Operators
	Defining Alerts
	Modifying and Viewing Alerts
	Copying Operators or Alerts to Other Servers
	Managing Events

	Monitoring the Environment

	Managing Security
	Security Architecture
	Planning Security
	Single Person Security Example
	Small Company Security Example
	Corporate Environment Security Example

	Security Levels
	Authentication Modes
	Security Account Delegation
	Permissions Validation
	Hierarchical Security

	Creating Security Accounts
	Security Rules
	Adding a Windows User or Group
	Granting a Windows User or Group Access to a Database

	Adding a SQL Server Login
	System Administrator (sa) Login
	Granting a SQL Server Login Access to a Database

	Database Owner (dbo)
	Database Object Owner
	guest User
	Creating User-Defined SQL Server Database Roles
	Adding a Member to a SQL Server Database Role
	Adding a Member to a Predefined Role
	public Role

	Using the Create Login Wizard

	Managing Security Accounts
	Viewing Logins
	Modifying Logins
	Removing Logins and Users
	Denying Login Access to Windows Accounts
	Viewing Roles
	Viewing and Modifying Role Memberships
	Removing a SQL Server Database Role
	Viewing Database Users

	Managing Permissions
	Granting Permissions
	Denying Permissions
	Revoking Permissions
	Resolving Permission Conflicts
	Permissions for User-Defined Functions

	Using Ownership Chains
	Using Views as Security Mechanisms
	Using Stored Procedures as Security Mechanisms

	Advanced Security Topics
	Establishing Application Security and Application Roles
	Allowing Other Accounts to Grant Object Permissions
	Creating SQL Server File Permissions
	Using Encryption Methods
	Revealing SQL Server on a Network
	Scripting Data Access Controls in Internet Explorer

	Auditing SQL Server Activity
	Using Audit Logs
	C2 Auditing

	Monitoring Server Performance and Activity
	Evaluating Performance
	Establishing a Performance Baseline
	Identifying Bottlenecks
	Determining User Activity

	Choosing a Monitoring Tool
	Monitoring with SQL Profiler
	SQL Profiler Keyboard Shortcuts
	SQL Profiler Terminology
	SQL Profiler Scenarios
	Monitoring with SQL Profiler Event Categories
	SQL Profiler Event Classes
	SQL Profiler Default Event Classes

	SQL Profiler Data Columns
	Cursors Event Category
	Cursors Event Classes
	Cursors Data Columns

	Database Event Category
	Database Event Classes
	Database Data Columns

	Errors and Warnings Event Category
	Errors and Warnings Event Classes
	Errors and Warnings Data Columns

	Locks Event Category
	Locks Event Classes
	Locks Data Columns

	Objects Event Category
	Objects Event Classes
	Objects Data Columns

	Performance Event Category
	Performance Event Classes
	Performance Data Columns

	Scans Event Category
	Scans Event Classes
	Scans Data Columns

	Security Audit Event Category
	Security Audit Event Classes
	Security Audit Data Columns

	Sessions Event Category
	Sessions Event Classes
	Sessions Data Columns

	Stored Procedures Event Category
	Stored Procedures Event Classes
	Stored Procedures Data Columns

	Transactions Event Category
	Transactions Event Classes
	Transactions Data Columns

	TSQL Event Category
	TSQL Event Classes
	TSQL Data Columns

	User Configurable Event Category
	User Configurable Event Classes
	User Configurable Data Columns

	Creating and Managing Traces and Templates
	Limiting Traces
	Maximum File and Data Size
	Datetime Filter
	System SPID

	Saving Traces and Templates
	Modifying Templates
	Starting, Pausing, and Stopping Traces
	Viewing and Analyzing Traces
	Replaying Traces
	Single-Stepping Traces

	Deleting Traces

	SQL Profiler Performance Considerations

	Monitoring with System Monitor
	Monitoring Disk Activity
	Monitoring CPU Usage
	Monitoring Memory Usage
	Creating a SQL Server Database Alert
	System Monitor Scenarios
	Running System Monitor
	Creating Charts, Alerts, Logs, and Reports
	Using SQL Server Objects
	SQL Server: Access Methods Object
	SQL Server: Backup Device Object
	SQL Server: Buffer Manager Object
	SQL Server: Buffer Partition Object
	SQL Server: Cache Manager Object
	SQL Server: Databases Object
	SQL Server: General Statistics Object
	SQL Server: Latches Object
	SQL Server: Locks Object
	SQL Server: Memory Manager Object
	SQL Server: Replication Agents Object
	SQL Server: Replication Distribution Object
	SQL Server: Replication Logreader Object
	SQL Server: Replication Merge Object
	SQL Server: Replication Snapshot Object
	SQL Server: SQL Statistics Object
	SQL Server: User Settable Object

	Monitoring with SQL Server Enterprise Manager
	Monitoring the Error Logs
	Viewing the SQL Server Error Log
	Viewing the Windows Application Log

	Monitoring with Transact-SQL Statements
	Monitoring with SNMP
	SNMP Terminology
	Enabling SNMP Support on SQL Server
	Enabling SQL Server Support of SNMP on Windows 98
	Enabling SQL Server MIB

	Using the Web Assistant Wizard
	Configuring the Web Assistant Wizard
	Receiving Query Results with the Web Assistant Wizard

	Creating and Maintaining Databases
	Creating and Maintaining Databases
	Creating and Maintaining Databases Overview
	Databases
	Parts of a Database
	Files and Filegroups
	Default Filegroups
	Using Files and Filegroups
	Using Files and Filegroups to Manage Database Growth
	Read-Only Filegroups

	Transaction Logs
	Virtual Log Files

	Database Design Considerations
	Creating a Database Plan
	Online Transaction Processing vs. Decision Support
	Normalization
	Data Integrity
	Data Security
	Database Performance
	Maintenance
	Estimating the Size of a Database
	Estimating the Size of a Table
	Estimating the Size of a Table Without a Clustered Index
	Estimating the Size of a Table with a Clustered Index

	Creating a Database
	Using Raw Partitions

	Modifying a Database
	Expanding a Database
	Shrinking a Database
	Adding and Deleting Data and Transaction Log Files
	Creating Filegroups
	Changing the Default Filegroup
	Setting Database Options
	Creating a Removable Database
	Attaching and Detaching a Database
	Attaching a Single-File Database

	Renaming a Database
	Changing the Database Owner
	Transaction Termination for Changing Database States

	Viewing a Database
	Displaying Database and Transaction Log Space

	Documenting and Scripting Databases
	Database Maintenance Plan Wizard
	Deleting a Database

	Tables
	Designing Tables
	Specifying a Column Data Type
	Binary Data
	Character Data
	Unicode Data
	Date and Time Data
	Numeric Data
	Monetary Data
	Special Data
	Creating User-Defined Data Types

	Text in Row Data
	Autonumbering and Identifier Columns
	Using Constraints, Defaults, and Null Values
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	Cascading Referential Integrity Constraints

	UNIQUE Constraints
	CHECK Constraints
	DEFAULT Definitions
	Allowing Null Values

	Creating and Modifying a Table
	Modifying Column Properties
	Adding and Deleting Columns
	Creating and Modifying PRIMARY KEY Constraints
	Creating and Modifying FOREIGN KEY Constraints
	Creating and Modifying UNIQUE Constraints
	Creating and Modifying CHECK Constraints
	Creating and Modifying DEFAULT Definitions
	Creating and Modifying Identifier Columns

	Viewing a Table
	Deleting a Table

	Indexes
	Designing an Index
	Using Clustered Indexes
	Using Nonclustered Indexes
	Using Unique Indexes
	Fill Factor
	Index Tuning Wizard

	Creating an Index
	Creating Indexes on Computed Columns
	Creating Indexes on Views
	SET Options That Affect Results
	Creating Ascending and Descending Indexes
	Statistical Information

	Rebuilding an Index
	Renaming an Index
	Viewing an Index
	Deleting an Index

	Views
	Scenarios for Using Views
	Creating a View
	Designing an Indexed View
	Creating an Indexed View
	Creating a Partitioned View

	Modifying and Renaming a View
	Modifying Data Through a View
	Getting Information About a View
	Deleting a View

	Stored Procedures
	Extended Stored Procedures
	Creating a Stored Procedure
	Specifying Parameters
	Specifying a Name
	Specifying a Data Type
	Specifying the Direction of a Parameter
	Specifying a Default Value

	Programming Stored Procedures
	Nesting Stored Procedures
	Deferred Name Resolution and Compilation

	Returning Data from a Stored Procedure
	Returning Data Using OUTPUT Parameters
	Returning Data Using a Return Code

	Executing a Stored Procedure
	Automatic Execution of Stored Procedures

	Modifying and Renaming a Stored Procedure
	Recompiling a Stored Procedure
	Viewing a Stored Procedure
	Deleting a Stored Procedure

	Enforcing Business Rules with Triggers
	Designing Triggers
	Specifying When a Trigger Fires
	Trigger Execution
	Designing INSTEAD OF Triggers

	Creating a Trigger
	Programming Triggers
	Using Triggers that Include COMMIT or ROLLBACK TRANSACTIONUsing Triggers that Include ROLLBACK TRANSACTION
	Using the inserted and deleted Tables
	Multirow Considerations
	Conditional INSERT Trigger
	Specifying First and Last Triggers
	Using Nested Triggers
	Using INSTEAD OF Triggers
	INSTEAD OF INSERT Triggers
	INSTEAD OF UPDATE Triggers
	INSTEAD OF DELETE Triggers
	Expressions and Computed Columns in INSTEAD OF Triggers

	Using text, ntext, and image Data in INSTEAD OF Triggers
	Activating Triggers with Implicit and Explicit Null Values

	Modifying and Renaming a Trigger
	Viewing a Trigger
	Deleting a Trigger

	User-Defined Functions
	User-Defined Functions That Return a table Data Type
	Inline User-Defined Functions
	Deterministic and Nondeterministic Functions
	Rewriting Stored Procedures as Functions

	Using Extended Properties on Database Objects
	Full-Text Indexes
	Administering Full-Text Features
	Administering Full-Text Features Using Stored Procedures and Scalar Functions
	Enabling Others to Issue Full-Text Queries
	Performing Investigation and Clean-up Tasks for Full-Text Catalogs
	Performing Infrequent Tasks

	Maintaining Full-Text Indexes
	Filtering Supported File Types
	Column-Level Linguistic Analysis

	Creating and Using Data Warehouses
	Creating and Using Data Warehouses
	Creating and Using Data Warehouses Overview
	SQL Server 2000 Tools for Data Warehouses
	Parts of a Data Warehouse
	Data Marts
	Relational Databases
	Data Sources
	Data Preparation Area
	Presentation Services
	End-User Analysis

	Creating a Data Warehouse
	Designing a Data Warehouse
	Using Dimensional Modeling
	Fact Tables
	Aggregation Tables
	Dimension Tables
	Indexes

	Creating the Data Preparation Area
	Creating the Data Warehouse Database
	Extracting Data from Operational Systems
	Cleansing and Transforming Data
	Loading Data into the Data Warehouse Database
	Preparing Presentation Information
	Distributing Data to Data Marts

	Using a Data Warehouse
	SQL Queries
	OLAP and Data Mining
	English Query
	Microsoft Office 2000
	Web Access and Reporting
	Offline OLAP Cubes
	Third-Party Applications
	Custom Applications

	Maintaining a Data Warehouse
	Updating Data Warehouse Data
	Scheduling Data Updates
	Synchronizing OLAP Cubes
	Updating Data Marts

	Administering a Data Warehouse
	Backing Up Data Warehouse Data
	Automating Data Warehouse Tasks

	Tuning Data Warehouse Performance

	Accessing and Changing Relational Data
	Accessing and Changing Relational Data
	Accessing and Changing Relational Data Overview
	Query Tools and Programming Interfaces
	Query Tools
	SQL Server Tools
	Using SQL Query Analyzer
	Using SQL Server Enterprise Manager
	Using the osql Utility
	Running the osql Utility
	Running Transact-SQL Statements Interactively Using osql
	Running Transact-SQL Script Files Using osql
	Administering SQL Server Using osql

	Using the bcp Utility

	Programming Interfaces
	Microsoft Programming Environments
	Application Programming Interfaces
	Connecting to and Disconnecting from an Instance
	Preparing and Executing Statements
	Processing Results

	Transact-SQL Syntax Elements
	Using Identifiers
	Using Identifiers as Object Names
	Object Visibility and Qualification Rules
	Delimited Identifiers

	Using Data Types
	Using Binary Data
	Using char and varchar Data
	Using Date and Time Data
	Alphabetic Date Format
	Numeric Date Format
	Unseparated String Format
	Time Formats
	ODBC Datetime Format

	Using Integer Data
	Using bigint Data

	Using decimal, float, and real Data
	Using Monetary Data
	Using text and image Data
	Using uniqueidentifier Data
	Using Special Data
	Using sql_variant Data

	Using Unicode Data
	Data Type Conversion
	Moving Data to Program Variables
	Converting binary and varbinary Data
	Converting bit Data
	Converting Character Data
	Converting datetime and smalldatetime Data
	Converting float and real Data
	Converting money Data
	Converting decimal and numeric Data
	Data Type Conversions Using OLE Automation Stored Procedures

	Using Constants
	Using Functions
	Using System Functions
	Using String Functions
	Using SUBSTRING
	Comparing CHARINDEX and PATINDEX
	Using STR
	Using STUFF
	Comparing SOUNDEX and DIFFERENCE

	Using text, ntext, and image Functions
	Using Mathematical Functions
	Using Trigonometric Functions
	Comparing CEILING and FLOOR
	Comparing LOG and LOG10
	Using the POWER and EXP Exponential Functions
	Using RAND

	Date Functions
	Using GETDATE
	Comparing DATEPART and DATENAME
	Comparing DATEADD and DATEDIFF

	Functions That Return User Names and User IDs
	Conversion Functions
	Invoking User-Defined Functions
	Invoking User-Defined Functions That Return a Scalar Value
	Invoking User-Defined Functions That Return a Table Data Type
	Invoking Built-in User-Defined Functions

	Expressions
	Using Operators in Expressions
	Arithmetic Operators
	Bitwise Operators
	Comparison Operators
	String Concatenation Operator

	Null Values

	Using Comments
	Using Reserved Keywords

	Accessing and Changing Data Fundamentals
	Choosing a Database
	Using Multiple Statements
	Batches
	Specifying Batches
	Batch Examples

	Stored Procedures and Triggers
	Transact-SQL Scripts
	Using Variables and Parameters
	Transact-SQL Variables
	Parameters
	Application Variables
	Parameter Markers

	Control-of-Flow
	Using BEGIN...END
	Using GOTO
	Using IF...ELSE
	Using RETURN
	Using WAITFOR
	Using WHILE...BREAK or CONTINUE
	Using CASE

	Building Statements at Run Time
	Using sp_executesql

	Permissions
	Using Options in SQL Server
	SET Options
	Database Options
	Server Options
	Hints
	Database Compatibility Level Option
	Behavior if Both ARITHABORT and ARITHIGNORE Are Set ON

	Query Fundamentals
	Parts of a SELECT Statement
	Using the Select List
	Choosing All Columns
	Choosing Specific Columns
	Constants in Query Result Sets
	Computed Values in the Select List
	Assigning Result Set Column Names
	Delimiting Result Set Column Names
	Eliminating Duplicates with DISTINCT
	Limiting Result Sets Using TOP and PERCENT

	Using the FROM Clause
	Using Table Aliases

	Filtering Rows with WHERE and HAVING
	Comparison Search Conditions
	Range Search Conditions
	List Search Conditions
	Pattern Matching in Search Conditions
	NULL Comparison Search Conditions
	Logical Operators
	Logical Operator Precedence

	Transact-SQL Joins

	Sorting Rows with ORDER BY
	Join Fundamentals
	Using Joins
	Using Inner Joins
	Using Outer Joins
	Using Cross Joins
	Using Self-Joins
	Joining Three or More Tables

	Null Values and Joins
	Specifying Joins in FROM or WHERE Clauses

	Advanced Query Concepts
	Using Aggregate Functions in the Select List
	Using COUNT(*)
	Using DISTINCT
	Null Values

	Grouping Rows with GROUP BY
	GROUP BY Components
	GROUP BY and the WHERE Clause
	Choosing Rows with the HAVING Clause
	GROUP BY and ALL
	GROUP BY and Null Values

	Combining Results with UNION
	Guidelines when Using UNION
	Using UNION with Other Transact-SQL Statements

	Using Partitioned Views
	Designing Applications to Use Federated Database Servers

	Subquery Fundamentals
	Subquery Rules
	Qualifying Column Names in Subqueries
	Subquery Types
	Subqueries with Aliases
	Subqueries with IN
	Subqueries with NOT IN
	Subqueries in UPDATE, DELETE, and INSERT Statements
	Subqueries with Comparison Operators
	Comparison Operators Modified by ANY, SOME, or ALL
	Subqueries with EXISTS
	Subqueries with NOT EXISTS
	Using EXISTS and NOT EXISTS to Find Intersection and Difference
	Subqueries Used in Place of an Expression

	Multiple Levels of Nesting
	Correlated Subqueries
	Correlated Subqueries with Aliases
	Correlated Subqueries with Comparison Operators
	Correlated Subqueries in a HAVING Clause

	Conditional Data Processing Using CASE
	Summarizing Data
	Summarizing Data Using CUBE
	Summarizing Data Using ROLLUP
	Summarizing Data Using COMPUTE and COMPUTE BY

	Error Handling
	Handling Errors and Messages in Applications
	Using @@ERROR
	Using PRINT
	Using RAISERROR

	Querying SQL Server System Catalogs
	Managing ntext, text, and image Data
	Retrieving ntext, text, or image Values
	Modifying ntext, text, or image Values

	OLE Automation Objects in Transact-SQL
	OLE Automation Return Codes and Error Information
	OLE Automation Result Sets
	Diagnosing OLE Automation Objects in Transact-SQL
	OLE Automation Sample Script

	Transact-SQL Tips
	Cross-Tab Reports
	Expanding Hierarchies
	Expanding Networks
	Writing International Transact-SQL Statements
	Writing Readable Code

	Modifying Data
	Adding Data
	Adding Rows with INSERT
	Inserting a Row Using INSERT...Values
	Inserting Rows Using INSERT...SELECT
	Inserting Rows Using SELECT INTO

	Adding a Row Using a Result Set Position
	Adding ntext, text, or image Data to Inserted Rows
	Adding Rows Using Bulk Copy Operations

	Changing Data
	Changing Data with UPDATE
	Changing Data Using the SET Clause
	Changing Data Using the WHERE Clause
	Changing Data Using the FROM Clause

	Changing Data with a Cursor
	Changing ntext, text or image Data

	Deleting Data
	Deleting Rows with DELETE
	Deleting Rows in Result Sets
	Deleting All Rows Using TRUNCATE TABLE

	Transactions
	Controlling Transactions
	Explicit Transactions
	Autocommit Transactions
	Implicit Transactions
	Transact-SQL Implicit Transactions
	API Implicit Transactions

	Distributed Transactions
	Transact-SQL Distributed Transactions
	MS DTC Distributed Transactions
	Distributed Queries and Distributed Transactions

	Advanced Topics
	Nesting Transactions
	Transaction Savepoints
	Using Bound Connections
	Adjusting Transaction Isolation Levels
	Rollbacks in Stored Procedures and Triggers
	Transact-SQL Statements Allowed in Transactions
	Coding Efficient Transactions

	Locking
	Concurrency Problems
	Optimistic and Pessimistic Concurrency
	Isolation Levels
	Understanding Locking in SQL Server
	Lock Compatibility
	Key-Range Locking
	Lock Escalation
	Dynamic Locking

	Displaying Locking Information
	Customizing Locking with SQL Server
	Deadlocking
	Detecting and Ending Deadlocks
	Handling Deadlocks
	Minimizing Deadlocks

	Customizing the Lock Time-out
	Customizing Transaction Isolation Level
	Locking Hints
	Customizing Locking for an Index

	Cursors
	Default Result Sets
	Cursor Implementations
	Specifying Cursors
	Transact-SQL Cursors
	API Server Cursors
	Client Cursors

	Fetching and Scrolling
	Controlling Cursor Behavior
	Cursor Types
	Forward-only Cursors
	Fast Forward-only Cursors

	Static Cursors
	Keyset-driven Cursors
	Dynamic Cursors

	Cursor Behaviors
	Scrollable
	Sensitivity

	Cursor Locking
	Cursors and Transactions
	Cursor Concurrency
	Cursor Transaction Isolation Levels

	Changing Rows with Positioned Operations
	Cursor Programming Details
	Choosing a Cursor Type
	Block Cursors
	Implicit Cursor Conversions
	Asynchronous Population
	Scope of Transact-SQL Cursor Names
	Getting Server Cursor Metadata
	Using Cursors with Distributed Queries

	Distributed Queries
	Accessing External Data
	Identifying a Data Source Using a Linked Server Name
	Identifying a Data Source Using the Ad Hoc Name
	Using Pass-Through Queries as Tables

	External Data and Transact-SQL
	Setting SQL-92 Options for Distributed Queries
	Using Transactions with Distributed Queries
	Data Type Mapping

	Collations in Distributed Queries
	Obtaining Meta Data from Linked Servers
	OLE DB Providers Tested with SQL Server
	OLE DB Provider for SQL Server
	Linked Server Considerations in a Clustered SQL Server
	Distributed Queries on Multiple Instances of SQL Server

	OLE DB Provider for ODBC
	OLE DB Provider for Jet
	OLE DB Provider for DTS Packages
	OLE DB Provider for Oracle
	OLE DB Provider for Microsoft Directory Services
	OLE DB Provider for Microsoft Indexing Service
	OLE DB Provider for DB2
	OLE DB Provider for Exchange

	OLE DB Provider Reference for Distributed Queries
	OLE DB Objects Consumed by Distributed Queries
	Four-Part Name Requirements for OLE DB providers
	UPDATE and DELETE Requirements for OLE DB Providers
	INSERT Requirements for OLE DB Providers
	Keyset-Driven Cursors Requirements for OLE DB Providers
	Distribution Statistics Requirements for OLE DB Providers
	SQL Dialect Requirements for OLE DB Providers
	DBPROPVAL_SQL_SUBMINIMUM Syntax
	Programming the SQLPROPSET_OPTHINTS Property Set

	Full-text Search
	Full-text Querying SQL Server Data
	Full-text Index and Querying Concepts
	Implementation of Full-text Search
	Full-text Query Transact-SQL Components
	Using the CONTAINS Predicate
	Searching for Specific Words or Phrases (Simple Term)
	Combining Full-text Search Operators Using AND, OR, and AND NOT
	Searching for Multiple Forms of Words or Phrases (Prefix Term)
	Searching for Any Form of a Specific Word (Generation Term)
	Searching for Words or Phrases Using Weighted Values (Weighted Term)
	Searching for Words or Phrases Close to Another Word or Phrase (Proximity Term)

	Using the FREETEXT Predicate
	Using Full-text Predicates to Query image Columns
	Combining Full-text Predicates with Other Transact-SQL Predicates
	Using the CONTAINSTABLE and FREETEXTTABLE Rowset-valued Functions
	Using Transact-SQL Functions to Obtain Full-text Property Values
	Example of Combining Full-text Administration and Full-text Query

	Full-text Querying of File Data
	Using Microsoft Internet Information Services and Indexing Service for File Content Searches
	Using Virtual Tables for File Content Queries
	Using SCOPE Function for File System Queries
	Using File Properties for File Content Searches

	Sample Full-text Query Using File Content and Database Data

	XML and Internet Support
	XML and Internet Support
	XML and Internet Support Overview
	IIS Virtual Directory Management for SQL Server
	System Requirements for IIS Virtual Directory Management
	Using IIS Virtual Directory Management for SQL Server Utility
	Creating the nwind Virtual Directory

	IIS Virtual Directory Management for SQL Server Object Model
	SQLVDirControl Object
	SQLVDirs Collection Object
	SQLVDir Object
	VirtualNames Collection Object
	VirtualName Object

	Creating the nwind Virtual Directory Using the Object Model

	Accessing SQL Server Using HTTP
	Three-Tier System Architecture
	Special Characters
	Executing SQL Statements Using HTTP
	Executing Stored Procedures Using HTTP

	Executing Template Files Using HTTP
	Using XML Templates
	Executing SQL Queries Using Templates
	Passing Parameters to Templates
	Specifying an XSL Style Sheet in a Template
	Executing XPath Queries Using Templates

	Executing XPath Queries Using HTTP
	Accessing Database Objects Using HTTP
	Sample Applications to Post Templates
	Using HTML Forms to Post Templates
	Posting Templates Directly to the Virtual Directory

	Creating XML Views Using Annotated XDR Schemas
	Annotations to the XDR Schema
	Default Mapping of XDR Elements and Attributes to Tables and Columns
	Explicit Mapping of XDR Elements and Attributes to Tables and Columns
	Using sql:relation
	Using sql:field

	Specifying Relationships Using <sql:relationship>
	Creating Constant Elements Using sql:is-constant
	Excluding Schema Elements from the Resulting XML Document Using sql:map-field
	Filtering Values Using sql:limit-field and sql:limit-value
	Identifying Key Columns Using sql:key-fields
	Specifying a Target Namespace Using sql:target-namespace
	Creating Valid ID, IDREF, and IDREFS Type Attributes Using sql:id-prefix
	Using sql:id-prefix

	Data Type Coercions
	Creating CDATA Sections Using sql:use-cdata
	Requesting URL References to BLOB Data Using sql:url-encode
	Retrieving Unconsumed Data Using sql:overflow-field
	Specifying Default Values for Attributes in the XDR Schema

	Using Annotated XDR Schemas in Queries
	Schema Caching

	Using XPath Queries
	Guidelines for Using XPath Queries
	Specifying a Location Path
	Specifying an Axis
	Specifying a Node Test in the Location Path
	Specifying Selection Predicates in the Location Path

	Sample XPath Queries
	Specifying Axes in XPath Queries
	Specifying Boolean-Valued Predicates in XPath Queries
	Specifying Relational Operators in XPath Queries
	Specifying Arithmetic Operators in XPath Queries
	Specifying Explicit Conversion Functions in XPath Queries
	Specifying Boolean Operators in XPath Queries
	Specifying Boolean Functions in XPath Queries
	Specifying XPath Variables in XPath Queries

	XPath Data Types

	Retrieving and Writing XML Data
	Retrieving XML Documents Using FOR XML
	Basic Syntax of the FOR XML Clause
	Guidelines for Using the FOR XML Clause
	Using RAW Mode
	Using AUTO Mode
	Using EXPLICIT Mode
	Specifying the XMLDATA Schema Option in a Query

	Writing XML Using OPENXML
	Using OPENXML
	Specifying Metaproperties in OPENXML
	XML System Stored Procedures
	Sample XML Applications
	Sample HTML Form to Insert Records Using OPENXML
	Sample HTML Form to Update Records Using OPENXML
	Sample Visual Basic Application to Update Records Using OPENXML and ADO

	OLE DB Provider for SQL Server Extensions for XML
	Using ICommandStream to Set an XML Command

	Transact-SQL Reference
	Transact-SQL Reference
	Transact-SQL Overview
	Transact-SQL Syntax Conventions
	New and Enhanced Features in Transact-SQL
	+ (Add)
	+ (Positive)
	+ (String Concatenation)
	- (Negative)
	- (Subtract)
	* (Multiply)
	/ (Divide)
	% (Modulo)
	% (Wildcard - Character(s) to Match)
	& (Bitwise AND)
	| (Bitwise OR)
	^ (Bitwise Exclusive OR)
	~ (Bitwise NOT)
	= (Equals)
	> (Greater Than)
	< (Less Than)
	>= (Greater Than or Equal To)
	<= (Less Than or Equal To)
	<> (Not Equal To)
	!< (Not Less Than)
	!= (Not Equal To)
	!> (Not Greater Than)
	-- (Comment)
	/*...*/ (Comment)
	[] (Wildcard - Character(s) to Match)
	[^] (Wildcard - Character(s) Not to Match)
	_ (Wildcard - Match One Character)
	@@CONNECTIONS
	@@CPU_BUSY
	@@CURSOR_ROWS
	@@DATEFIRST
	@@DBTS
	@@ERROR
	@@FETCH_STATUS
	@@IDENTITY
	@@IDLE
	@@IO_BUSY
	@@LANGID
	@@LANGUAGE
	@@LOCK_TIMEOUT
	@@MAX_CONNECTIONS
	@@MAX_PRECISION
	@@NESTLEVEL
	@@OPTIONS
	@@PACK_RECEIVED
	@@PACK_SENT
	@@PACKET_ERRORS
	@@PROCID
	@@REMSERVER
	@@ROWCOUNT
	@@SERVERNAME
	@@SERVICENAME
	@@SPID
	@@TEXTSIZE
	@@TIMETICKS
	@@TOTAL_ERRORS
	@@TOTAL_READ
	@@TOTAL_WRITE
	@@TRANCOUNT
	@@VERSION
	ABS
	ACOS
	ALL
	ALTER DATABASE
	ALTER FUNCTION
	ALTER PROCEDURE
	ALTER TABLE
	ALTER TRIGGER
	ALTER VIEW
	AND
	ANY
	APP_NAME
	ASCII
	ASIN
	ATAN
	ATN2
	AVG
	BACKUP
	BEGIN...END
	BEGIN DISTRIBUTED TRANSACTION
	BEGIN TRANSACTION
	BETWEEN
	binary and varbinary
	BINARY_CHECKSUM
	bit
	BREAK
	BULK INSERT
	CASE
	CAST and CONVERT
	CEILING
	char and varchar
	CHAR
	CHARINDEX
	CHECKPOINT
	CHECKSUM
	CHECKSUM_AGG
	CLOSE
	COALESCE
	COLLATE
	Windows Collation Name
	SQL Collation Name

	COLLATIONPROPERTY
	COL_LENGTH
	COL_NAME
	COLUMNPROPERTY
	COMMIT TRANSACTION
	COMMIT WORK
	Constants
	CONTAINS
	CONTAINSTABLE
	CONTINUE
	Control-of-Flow Language
	COS
	COT
	COUNT
	COUNT_BIG
	CREATE DATABASE
	CREATE DEFAULT
	CREATE FUNCTION
	CREATE INDEX
	CREATE PROCEDURE
	CREATE RULE
	CREATE SCHEMA
	CREATE STATISTICS
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	CURRENT_TIMESTAMP
	CURRENT_USER
	cursor
	CURSOR_STATUS
	Cursors
	DATABASEPROPERTY
	DATABASEPROPERTYEX
	Data Types
	Data Type Precedence
	Collation Precedence
	Precision, Scale, and Length
	Data Type Synonyms

	DATALENGTH
	DATEADD
	DATEDIFF
	DATENAME
	DATEPART
	datetime and smalldatetime
	DAY
	DB_ID
	DB_NAME
	DBCC
	DBCC CHECKALLOC
	DBCC CHECKCATALOG
	DBCC CHECKCONSTRAINTS
	DBCC CHECKDB
	DBCC CHECKFILEGROUP
	DBCC CHECKIDENT
	DBCC CHECKTABLE
	DBCC CLEANTABLE
	DBCC CONCURRENCYVIOLATION
	DBCC DBREPAIR
	DBCC DBREINDEX
	DBCC dllname (FREE)
	DBCC DROPCLEANBUFFERS
	DBCC FREEPROCCACHE
	DBCC HELP
	DBCC INDEXDEFRAG
	DBCC INPUTBUFFER
	DBCC NEWALLOC
	DBCC OPENTRAN
	DBCC OUTPUTBUFFER
	DBCC PINTABLE
	DBCC PROCCACHE
	DBCC ROWLOCK
	DBCC SHOWCONTIG
	DBCC SHOW_STATISTICS
	DBCC SHRINKDATABASE
	DBCC SHRINKFILE
	DBCC SQLPERF
	DBCC TRACEOFF
	DBCC TRACEON
	DBCC TRACESTATUS
	DBCC UNPINTABLE
	DBCC UPDATEUSAGE
	DBCC USEROPTIONS

	DEALLOCATE
	decimal and numeric
	DECLARE @local_variable
	DECLARE CURSOR
	DEGREES
	DELETE
	DENY
	DIFFERENCE
	DROP DATABASE
	DROP DEFAULT
	DROP FUNCTION
	DROP INDEX
	DROP PROCEDURE
	DROP RULE
	DROP STATISTICS
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	DUMP
	ELSE (IF...ELSE)
	END (BEGIN...END)
	EXECUTE
	EXISTS
	EXP
	Expressions
	FETCH
	FILE_ID
	FILE_NAME
	FILEGROUP_ID
	FILEGROUP_NAME
	FILEGROUPPROPERTY
	FILEPROPERTY
	float and real
	FLOOR
	fn_get_sql
	fn_helpcollations
	fn_listextendedproperty
	fn_servershareddrives
	fn_trace_geteventinfo
	fn_trace_getfilterinfo
	fn_trace_getinfo
	fn_trace_gettable
	fn_virtualfilestats
	fn_virtualservernodes
	FORMATMESSAGE
	FREETEXT
	FREETEXTTABLE
	FROM
	FULLTEXTCATALOGPROPERTY
	FULLTEXTSERVICEPROPERTY
	Functions
	Aggregate Functions
	Configuration Functions
	Cursor Functions
	Date and Time Functions
	Mathematical Functions
	Meta Data Functions
	Rowset Functions
	Security Functions
	String Functions
	System Functions
	System Statistical Functions
	Text and Image Functions

	GETANSINULL
	GETDATE
	GETUTCDATE
	GO
	GOTO
	GRANT
	GROUP BY
	GROUPING
	HAS_DBACCESS
	HAVING
	HOST_ID
	HOST_NAME
	IDENT_CURRENT
	IDENT_INCR
	IDENT_SEED
	IDENTITY (Property)
	IDENTITY (Function)
	IF...ELSE
	image
	IN
	INDEXKEY_PROPERTY
	INDEXPROPERTY
	INDEX_COL
	Information Schema Views
	CHECK_CONSTRAINTS
	COLUMN_DOMAIN_USAGE
	COLUMN_PRIVILEGES
	COLUMNS
	CONSTRAINT_COLUMN_USAGE
	CONSTRAINT_TABLE_USAGE
	DOMAIN_CONSTRAINTS
	DOMAINS
	KEY_COLUMN_USAGE
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	ROUTINE_COLUMNS
	SCHEMATA
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TABLES
	VIEW_COLUMN_USAGE
	VIEW_TABLE_USAGE
	VIEWS

	INSERT
	int, bigint, smallint, and tinyint
	IS_MEMBER
	IS_SRVROLEMEMBER
	ISDATE
	IS [NOT] NULL
	ISNULL
	ISNUMERIC
	KILL
	LEFT
	LEN
	LIKE
	LOAD
	LOG
	LOG10
	LOWER
	LTRIM
	MAX
	MIN
	money and smallmoney
	MONTH
	NCHAR
	nchar and nvarchar
	NEWID
	Northwind Sample Database
	Categories
	Customers
	CustomerCustomerDemo
	CustomerDemographics
	Employees
	EmployeeTerritories
	Order Details
	Orders
	Products
	Region
	Shippers
	Suppliers
	Territories

	NOT
	ntext, text, and image
	NULLIF
	numeric
	OBJECT_ID
	OBJECT_NAME
	OBJECTPROPERTY
	OPEN
	OPENDATASOURCE
	OPENQUERY
	OPENROWSET
	OPENXML
	Operators
	OR
	ORDER BY
	PARSENAME
	PATINDEX
	PERMISSIONS
	PI
	POWER
	Predicate
	PRINT
	pubs Sample Database
	authors
	discounts
	employee
	jobs
	pub_info
	publishers
	roysched
	sales
	stores
	titleauthor
	titles

	QUOTENAME
	RADIANS
	RAISERROR
	RAND
	READTEXT
	real
	RECONFIGURE
	REPLACE
	REPLICATE
	Reserved Keywords
	RESTORE
	RESTORE FILELISTONLY
	RESTORE HEADERONLY
	RESTORE LABELONLY
	RESTORE VERIFYONLY
	RETURN
	REVERSE
	REVOKE
	RIGHT
	ROLLBACK TRANSACTION
	ROLLBACK WORK
	ROUND
	ROWCOUNT_BIG
	RTRIM
	SAVE TRANSACTION
	SCOPE_IDENTITY
	Search Condition
	SELECT @local_variable
	SELECT
	SELECT Examples

	SERVERPROPERTY
	SESSION_USER
	SESSIONPROPERTY
	SET @local_variable
	SET
	SET ANSI_DEFAULTS
	SET ANSI_NULL_DFLT_OFF
	SET ANSI_NULL_DFLT_ON
	SET ANSI_NULLS
	SET ANSI_PADDING
	SET ANSI_WARNINGS
	SET ARITHABORT
	SET ARITHIGNORE
	SET CONCAT_NULL_YIELDS_NULL
	SET CONTEXT_INFO
	SET CURSOR_CLOSE_ON_COMMIT
	SET DATEFIRST
	SET DATEFORMAT
	SET DEADLOCK_PRIORITY
	SET DISABLE_DEF_CNST_CHK
	SET FIPS_FLAGGER
	SET FMTONLY
	SET FORCEPLAN
	SET IDENTITY_INSERT
	SET IMPLICIT_TRANSACTIONS
	SET LANGUAGE
	SET LOCK_TIMEOUT
	SET NOCOUNT
	SET NOEXEC
	SET NUMERIC_ROUNDABORT
	SET OFFSETS
	SET PARSEONLY
	SET QUERY_GOVERNOR_COST_LIMIT
	SET QUOTED_IDENTIFIER
	SET REMOTE_PROC_TRANSACTIONS
	SET ROWCOUNT
	SET SHOWPLAN_ALL
	SET SHOWPLAN_TEXT
	SET STATISTICS IO
	SET STATISTICS PROFILE
	SET STATISTICS TIME
	SET TEXTSIZE
	SET TRANSACTION ISOLATION LEVEL
	SET XACT_ABORT

	SETUSER
	SHUTDOWN
	SIGN
	SIN
	smalldatetime
	smallint
	smallmoney
	SOME | ANY
	SOUNDEX
	SPACE
	sql_variant
	SQL_VARIANT_PROPERTY
	SQUARE
	SQRT
	STATS_DATE
	STDEV
	STDEVP
	STR
	STUFF
	SUBSTRING
	SUM
	SUSER_ID
	SUSER_NAME
	SUSER_SID
	SUSER_SNAME
	System Stored Procedures
	Object Hierarchy Syntax
	sp_ActiveDirectory_Obj
	sp_ActiveDirectory_SCP
	sp_add_alert
	sp_addalias
	sp_addapprole
	sp_add_data_file_recover_suspect_db
	sp_addextendedproc
	sp_addextendedproperty
	sp_addgroup
	sp_add_category
	sp_add_job
	sp_add_jobschedule
	sp_add_jobserver
	sp_add_jobstep
	sp_addlinkedserver
	sp_addlinkedsrvlogin
	sp_add_log_file_recover_suspect_db
	sp_addlogin
	sp_add_log_shipping_database
	sp_add_log_shipping_plan
	sp_add_log_shipping_plan_database
	sp_add_log_shipping_primary
	sp_add_log_shipping_secondary
	sp_add_maintenance_plan
	sp_add_maintenance_plan_db
	sp_add_maintenance_plan_job
	sp_addmessage
	sp_add_notification
	sp_add_operator
	sp_addremotelogin
	sp_addrole
	sp_addrolemember
	sp_addserver
	sp_addsrvrolemember
	sp_addtask
	sp_addtype
	sp_add_targetservergroup
	sp_addumpdevice
	sp_add_targetsvrgrp_member
	sp_adduser
	sp_altermessage
	sp_apply_job_to_targets
	sp_approlepassword
	sp_attach_db
	sp_attach_single_file_db
	sp_autostats
	sp_bindefault
	sp_bindrule
	sp_bindsession
	sp_can_tlog_be_applied
	sp_catalogs
	sp_certify_removable
	sp_change_monitor_role
	sp_change_primary_role
	sp_change_secondary_role
	sp_change_users_login
	sp_changedbowner
	sp_changegroup
	sp_changeobjectowner
	sp_column_privileges
	sp_column_privileges_ex
	sp_columns
	sp_columns_ex
	sp_configure
	sp_create_log_shipping_monitor_account
	sp_create_removable
	sp_createstats
	sp_cursor_list
	sp_cycle_errorlog
	sp_databases
	sp_datatype_info
	sp_dbcmptlevel
	sp_dbfixedrolepermission
	sp_dboption
	sp_dbremove
	sp_defaultdb
	sp_defaultlanguage
	sp_define_log_shipping_monitor
	sp_delete_alert
	sp_delete_backuphistory
	sp_delete_category
	sp_delete_database_backuphistory
	sp_delete_job
	sp_delete_jobschedule
	sp_delete_jobserver
	sp_delete_jobstep
	sp_delete_log_shipping_database
	sp_delete_log_shipping_monitor_info
	sp_delete_log_shipping_plan
	sp_delete_log_shipping_plan_database
	sp_delete_log_shipping_primary
	sp_delete_log_shipping_secondary
	sp_delete_maintenance_plan
	sp_delete_maintenance_plan_db
	sp_delete_maintenance_plan_job
	sp_delete_notification
	sp_delete_operator
	sp_delete_targetserver
	sp_delete_targetservergroup
	sp_delete_targetsvrgrp_member
	sp_denylogin
	sp_depends
	sp_describe_cursor
	sp_describe_cursor_columns
	sp_describe_cursor_tables
	sp_detach_db
	sp_dropalias
	sp_dropapprole
	sp_dropdevice
	sp_dropextendedproc
	sp_dropextendedproperty
	sp_dropgroup
	sp_droplinkedsrvlogin
	sp_droplogin
	sp_dropmessage
	sp_dropremotelogin
	sp_droprole
	sp_droprolemember
	sp_dropserver
	sp_dropsrvrolemember
	sp_droptask
	sp_droptype
	sp_dropuser
	sp_dropwebtask
	sp_enumcodepages
	sp_executesql
	sp_fkeys
	sp_foreignkeys
	sp_fulltext_catalog
	sp_fulltext_column
	sp_fulltext_database
	sp_fulltext_service
	sp_fulltext_table
	sp_getapplock
	sp_getbindtoken
	sp_get_log_shipping_monitor_info
	sp_grantdbaccess
	sp_grantlogin
	sp_help
	sp_help_alert
	sp_help_category
	sp_helpconstraint
	sp_helpdb
	sp_helpdbfixedrole
	sp_helpdevice
	sp_help_downloadlist
	sp_helpextendedproc
	sp_helpfile
	sp_helpfilegroup
	sp_help_fulltext_catalogs
	sp_help_fulltext_catalogs_cursor
	sp_help_fulltext_columns
	sp_help_fulltext_columns_cursor
	sp_help_fulltext_tables
	sp_help_fulltext_tables_cursor
	sp_helpgroup
	sp_helphistory
	sp_help_job
	sp_help_jobhistory
	sp_help_jobschedule
	sp_help_jobserver
	sp_help_jobstep
	sp_helpindex
	sp_helplanguage
	sp_helplinkedsrvlogin
	sp_helplogins
	sp_help_maintenance_plan
	sp_help_notification
	sp_helpntgroup
	sp_help_operator
	sp_helpremotelogin
	sp_helprole
	sp_helprolemember
	sp_helprotect
	sp_helpserver
	sp_helpsort
	sp_helpsrvrole
	sp_helpsrvrolemember
	sp_helpstats
	sp_help_targetserver
	sp_help_targetservergroup
	sp_helptask
	sp_helptext
	sp_helptrigger
	sp_helpuser
	sp_indexes
	sp_indexoption
	sp_invalidate_textptr
	sp_linkedservers
	sp_lock
	sp_makewebtask
	sp_manage_jobs_by_login
	sp_monitor
	sp_MShasdbaccess
	sp_msx_defect
	sp_msx_enlist
	sp_OACreate
	sp_OADestroy
	sp_OAGetErrorInfo
	sp_OAGetProperty
	sp_OAMethod
	sp_OASetProperty
	sp_OAStop
	sp_password
	sp_pkeys
	sp_primarykeys
	sp_post_msx_operation
	sp_processmail
	sp_procoption
	sp_purgehistory
	sp_purge_jobhistory
	sp_reassigntask
	sp_recompile
	sp_refreshview
	sp_releaseapplock
	sp_remoteoption
	sp_remove_job_from_targets
	sp_remove_log_shipping_monitor
	sp_rename
	sp_renamedb
	sp_resetstatus
	sp_resolve_logins
	sp_resync_targetserver
	sp_revokedbaccess
	sp_revokelogin
	sp_runwebtask
	sp_server_info
	sp_serveroption
	sp_setapprole
	sp_setnetname
	sp_settriggerorder
	sp_spaceused
	sp_special_columns
	sp_sproc_columns
	sp_srvrolepermission
	sp_start_job
	sp_statistics
	sp_stop_job
	sp_stored_procedures
	sp_tableoption
	sp_table_privileges
	sp_table_privileges_ex
	sp_tables
	sp_tables_ex
	sp_trace_create
	sp_trace_generateevent
	sp_trace_setevent
	sp_trace_setfilter
	sp_trace_setstatus
	sp_unbindefault
	sp_unbindrule
	sp_update_alert
	sp_update_category
	sp_updateextendedproperty
	sp_update_job
	sp_update_jobschedule
	sp_update_jobstep
	sp_update_log_shipping_monitor_info
	sp_update_log_shipping_plan
	sp_update_log_shipping_plan_database
	sp_update_notification
	sp_update_operator
	sp_updatestats
	sp_update_targetservergroup
	sp_updatetask
	sp_validname
	sp_validatelogins
	sp_who
	sp_xml_preparedocument
	sp_xml_removedocument
	Replication Stored Procedures
	sp_add_agent_parameter
	sp_add_agent_profile
	sp_addarticle
	sp_adddistpublisher
	sp_adddistributiondb
	sp_adddistributor
	sp_addmergealternatepublisher
	sp_addmergearticle
	sp_addmergefilter
	sp_addmergepublication
	sp_addmergepullsubscription
	sp_addmergepullsubscription_agent
	sp_addmergesubscription
	sp_addpublication
	sp_addpublication_snapshot
	sp_addpublisher70
	sp_addpullsubscription
	sp_addpullsubscription_agent
	sp_addqueued_artinfo
	sp_addscriptexec
	sp_addsubscriber
	sp_addsubscriber_schedule
	sp_addsubscription
	sp_addsynctriggers
	sp_addtabletocontents
	sp_adjustpublisheridentityrange
	sp_article_validation
	sp_articlecolumn
	sp_articlefilter
	sp_articlesynctranprocs
	sp_articleview
	sp_attachsubscription
	sp_browsesnapshotfolder
	sp_browsemergesnapshotfolder
	sp_browsereplcmds
	sp_change_agent_parameter
	sp_change_agent_profile
	sp_changearticle
	sp_changedistpublisher
	sp_changedistributiondb
	sp_changedistributor_password
	sp_changedistributor_property
	sp_changemergearticle
	sp_changemergefilter
	sp_changemergepublication
	sp_changemergepullsubscription
	sp_changemergesubscription
	sp_changepublication
	sp_changesubscriber
	sp_changesubscriber_schedule
	sp_changesubscriptiondtsinfo
	sp_changesubstatus
	sp_change_subscription_properties
	sp_check_for_sync_trigger
	sp_copymergesnapshot
	sp_copysnapshot
	sp_copysubscription
	sp_createmergepalrole
	sp_deletemergeconflictrow
	sp_disableagentoffload
	sp_drop_agent_parameter
	sp_drop_agent_profile
	sp_dropanonymousagent
	sp_droparticle
	sp_dropdistpublisher
	sp_dropdistributiondb
	sp_dropdistributor
	sp_dropmergealternatepublisher
	sp_dropmergearticle
	sp_dropmergefilter
	sp_dropmergepublication
	sp_dropmergepullsubscription
	sp_dropmergesubscription
	sp_droppublication
	sp_droppullsubscription
	sp_dropsubscriber
	sp_dropsubscription
	sp_dsninfo
	sp_dumpparamcmd
	sp_enableagentoffload
	sp_enumcustomresolvers
	sp_enumdsn
	sp_enumfullsubscribers
	sp_expired_subscription_cleanup
	sp_generatefilters
	sp_getagentoffloadinfo
	sp_getmergedeletetype
	sp_get_distributor
	sp_getqueuedrows
	sp_getsubscriptiondtspackagename
	sp_grant_publication_access
	sp_help_agent_default
	sp_help_agent_parameter
	sp_help_agent_profile
	sp_helparticle
	sp_helparticlecolumns
	sp_helparticledts
	sp_helpdistpublisher
	sp_helpdistributiondb
	sp_helpdistributor
	sp_helpmergealternatepublisher
	sp_helpmergearticle
	sp_helpmergearticlecolumn
	sp_helpmergearticleconflicts
	sp_helpmergeconflictrows
	sp_helpmergedeleteconflictrows
	sp_helpmergefilter
	sp_helpmergepublication
	sp_helpmergepullsubscription
	sp_helpmergesubscription
	sp_helppublication
	sp_help_publication_access
	sp_helppullsubscription
	sp_helpreplfailovermode
	sp_helpreplicationdboption
	sp_helpreplicationoption
	sp_helpsubscriberinfo
	sp_helpsubscription
	sp_helpsubscription_properties
	sp_ivindexhasnullcols
	sp_link_publication
	sp_marksubscriptionvalidation
	sp_mergearticlecolumn
	sp_mergecleanupmetadata
	sp_mergedummyupdate
	sp_mergemetadataretentioncleanup
	sp_mergesubscription_cleanup
	sp_publication_validation
	sp_refreshsubscriptions
	sp_reinitmergepullsubscription
	sp_reinitmergesubscription
	sp_reinitpullsubscription
	sp_reinitsubscription
	sp_removedbreplication
	sp_repladdcolumn
	sp_replcmds
	sp_replcounters
	sp_repldone
	sp_repldropcolumn
	sp_replflush
	sp_replicationdboption
	sp_replication_agent_checkup
	sp_replqueuemonitor
	sp_replsetoriginator
	sp_replshowcmds
	sp_repltrans
	sp_restoredbreplication
	sp_resyncmergesubscription
	sp_revoke_publication_access
	sp_scriptdynamicupdproc
	sp_scriptpublicationcustomprocs
	sp_scriptsubconflicttable
	sp_script_synctran_commands
	sp_setreplfailovermode
	sp_showrowreplicainfo
	sp_subscription_cleanup
	sp_table_validation
	sp_update_agent_profile
	sp_validatemergepublication
	sp_validatemergesubscription
	sp_vupgrade_replication

	xp_cmdshell
	xp_deletemail
	xp_enumgroups
	xp_findnextmsg
	xp_grantlogin
	xp_logevent
	xp_loginconfig
	xp_logininfo
	xp_msver
	xp_readmail
	xp_revokelogin
	xp_sendmail
	xp_sprintf
	xp_sqlagent_msx_account
	xp_sqlagent_proxy_account
	xp_sqlmaint
	xp_sscanf
	xp_startmail
	xp_stopmail

	System Tables
	backupfile
	backupmediafamily
	backupmediaset
	backupset
	logmarkhistory
	log_shipping_databases
	log_shipping_monitor
	log_shipping_plan_databases
	log_shipping_plan_history
	log_shipping_plans
	log_shipping_primaries
	log_shipping_secondaries
	MSagent_parameters
	MSagent_profiles
	MSarticles
	MSdistpublishers
	MSdistribution_agents
	MSdistribution_history
	MSdistributiondbs
	MSdistributor
	MSdynamicsnapshotjobs
	MSdynamicsnapshotviews
	MSlogreader_agents
	MSlogreader_history
	MSmerge_agents
	MSmerge_altsyncpartners
	MSmerge_contents
	MSmerge_delete_conflicts
	MSmerge_errorlineage
	MSmerge_genhistory
	MSmerge_history
	MSmerge_replinfo
	MSmerge_subscriptions
	MSmerge_tombstone
	MSpub_identity_range
	MSpublication_access
	MSpublications
	MSpublisher_databases
	MSqreader_agents
	MSqreader_history
	MSrepl_backup_lsns
	MSrepl_commands
	MSrepl_errors
	MSrepl_identity_range
	MSrepl_originators
	MSrepl_transactions
	MSrepl_version
	MSreplication_objects
	MSreplication_options
	MSreplication_queue
	MSreplication_subscriptions
	MSsnapshot_agents
	MSsnapshot_history
	MSsubscriber_info
	MSsubscriber_schedule
	MSsubscription_agents
	MSsubscription_articles
	MSsubscription_properties
	MSsubscriptions
	Mssub_identity_range
	MSsync_states
	restorefile
	restorefilegroup
	restorehistory
	sysalerts
	sysaltfiles
	sysarticles
	sysarticleupdates
	syscacheobjects
	syscategories
	syscharsets
	syscolumns
	syscomments
	sysconfigures
	sysconstraints
	syscurconfigs
	sysdatabases
	sysdbmaintplan_databases
	sysdbmaintplan_history
	sysdbmaintplan_jobs
	sysdbmaintplans
	sysdepends
	sysdevices
	sysdownloadlist
	sysfiles
	sysfilegroups
	sysforeignkeys
	sysfulltextcatalogs
	sysindexes
	sysindexkeys
	sysjobhistory
	sysjobschedules
	sysjobs
	sysjobservers
	sysjobsteps
	syslanguages
	syslockinfo
	syslogins
	sysmembers
	sysmergearticles
	sysmergepublications
	sysmergeschemaarticles
	sysmergeschemachange
	sysmergesubscriptions
	sysmergesubsetfilters
	sysmessages
	sysnotifications
	sysobjects
	sysoledbusers
	sysopentapes
	sysoperators
	sysperfinfo
	syspermissions
	sysprocesses
	sysprotects
	syspublications
	sysreferences
	sysremotelogins
	sysreplicationalerts
	sysschemaarticles
	sysservers
	syssubscriptions
	systargetservergroupmembers
	systargetservergroups
	systargetservers
	systaskids
	systypes
	sysusers

	SYSTEM_USER
	table
	TAN
	text
	TEXTPTR
	TEXTVALID
	timestamp
	tinyint
	Trace Flags
	Transactions
	TRIGGER_NESTLEVEL
	TRUNCATE TABLE
	TYPEPROPERTY
	UNICODE
	UNION
	uniqueidentifier
	UPDATE
	UPDATE STATISTICS
	UPDATETEXT
	UPPER
	USE
	USER
	USER_ID
	USER_NAME
	VAR
	varbinary
	varchar
	VARP
	WAITFOR
	WHERE
	WHILE
	WRITETEXT
	YEAR

	Optimizing Database Performance
	Optimizing Database Performance
	Optimizing Database Performance Overview
	Designing Federated Database Servers
	Designing Partitions
	Designing Federated Database Servers for High Availability
	Backing Up and Restoring Federated Database Servers

	Database Design
	Logical Database Design
	Database Design Considerations: Data Types

	Physical Database Design
	RAID
	Developing a Drive Performance Strategy
	RAID Levels and SQL Server
	Comparing Different Implementations of RAID Levels
	About Hardware-Based Solutions
	About Windows NT and Windows 2000-Based Disk Striping and Striping with Parity
	About Windows NTBased Disk Mirroring and Duplexing

	Partitioning
	Data Placement Using Filegroups
	Placing Tables on Filegroups
	Placing Indexes on Filegroups

	Index Tuning Recommendations
	Optimizing Transaction Log Performance
	Optimizing tempdb Performance
	File Systems

	Query Tuning
	Analyzing a Query
	Graphically Displaying the Execution Plan Using SQL Query Analyzer
	Logical and Physical Operators
	Assert
	Aggregate
	Bookmark Lookup
	Clustered Index Delete
	Clustered Index Insert
	Clustered Index Update
	Clustered Index Scan
	Clustered Index Seek
	Collapse
	Compute Scalar
	Concatenation
	Constant Scan
	Cross Join
	Delete
	Deleted Scan
	Distinct
	Distinct Sort
	Distribute Streams
	Eager Spool
	Filter
	Flow Distinct
	Full Outer Join
	Gather Streams
	Hash Match
	Hash Match Root
	Hash Match Team
	Index Delete
	Index Insert
	Index Scan
	Index Seek
	Index Spool
	Index Update
	Inner Join
	Insert
	Inserted Scan
	Lazy Spool
	Left Anti Semi Join
	Left Outer Join
	Left Semi Join
	Log Row Scan
	Merge Interval
	Merge Join
	Nested Loops
	Parallelism
	Parameter Table Scan
	Remote Delete
	Remote Insert
	Remote Query
	Remote Scan
	Remote Update
	Repartition Streams
	Right Anti Semi Join
	Right Outer Join
	Right Semi Join
	Row Count Spool
	Sequence
	Sort
	Split
	Stream Aggregate
	Table Delete
	Table Insert
	Table Scan
	Table Spool
	Table Update
	Top
	Union
	Update
	Cursor Logical and Physical Operators

	Query Tuning Recommendations
	Advanced Query Tuning Concepts
	Understanding Nested Loops Joins
	Understanding Merge Joins
	Understanding Hash Joins

	Application Design
	Networking and Performance
	Named Pipes vs. TCP/IP Sockets

	Optimizing Application Performance Using Efficient Data Retrieval
	Effects of Transactions and Batches on Application Performance
	Effects of Stored Procedures on Application Performance
	Understanding and Avoiding Blocking
	Optimizing Distributed Queries

	Optimizing Utility and Tool Performance
	Optimizing Backup and Restore Performance
	Optimizing Bulk Copy Performance
	Optimizing DBCC Performance

	Optimizing Server Performance
	Optimizing Server Performance Using Memory Configuration Options
	Optimizing Server Performance Using I/O Configuration Options
	Optimizing Server Performance Using Windows NT Options
	Maximizing Throughput
	Configuring Server Tasking
	Configuring Virtual Memory

	Replication
	Replication
	Replication Overview
	Introducing Replication
	Replication Model
	Introducing the Types of Replication
	Introducing Replication Options
	Typical Uses of Replication
	Reporting, Decision Support, and Data Warehousing Applications
	Online/Offline Applications
	Web-Based Applications
	Keeping Data Close to Users

	How Replication Works
	Methods of Implementation
	Agents and Monitors

	Planning for Replication
	Distributed Update Factors
	Evaluating the Replication Environment
	Business Objectives and Requirements
	Network Considerations
	Security Considerations
	Data Needs and Characteristics
	Planning for Application Development

	Planning for Each Type of Replication
	Planning for Snapshot Replication
	Planning for Transactional Replication
	Planning for Merge Replication

	Planning for Replication Options
	Merge Replication or Updatable Subscriptions
	Designing a Replication Topology
	Physical Replication Models
	Central Publisher
	Central Publisher with Remote Distributor
	Republisher
	Central Subscriber

	Nonpartitioned, Bidirectional, Transactional Replication

	Types of Replication
	Snapshot Replication
	How Snapshot Replication Works

	Transactional Replication
	How Transactional Replication Works

	Merge Replication
	How Merge Replication Works
	Merge Replication Conflict Detection and Resolution
	Row-Level Tracking and Column-Level Tracking
	Subscriber Types and Conflicts
	Default Resolver and Custom Resolvers
	COM Custom Resolvers
	Specifying a Custom Resolver

	Interactive Resolver
	Custom Stored Procedure Conflict Resolver
	Other Microsoft Resolvers
	Microsoft Resolver Descriptions

	Choosing a Resolver

	Replication Tools
	Replication and SQL Server Enterprise Manager
	Replication Wizards
	Replication Properties
	Replication Icons

	Replication Programming Interfaces
	Programming Replication with ActiveX Controls
	Programming Replication with SQL-DMO
	Programming Replication with the Replication Distributor Interface

	Transact-SQL System Stored Procedures
	Windows Synchronization Manager
	Active Directory Services

	Implementing Replication
	Configuring Replication
	Publishers, Distributors, and Subscribers
	Disabling Publishing and Distribution

	Publishing Data and Database Objects
	Publishing Stored Procedure Execution
	Using Custom Stored Procedures in Articles

	Subscribing to Publications
	Push Subscriptions
	Pull Subscriptions
	Anonymous Subscriptions

	Applying the Initial Snapshot
	Generating the Initial Snapshot
	Alternate Snapshot Locations
	Compressed Snapshot Files
	Exploring Snapshots
	Transferring Snapshots
	Attachable Subscription Databases
	Configuring a Publication to Allow Copying
	Copying a Subscription Database
	Attaching a Subscription Database
	Attaching Databases with Named Subscriptions
	Attaching Databases with Anonymous Subscriptions

	Improving Performance While Generating and Applying Snapshots
	Executing Scripts Before and After the Snapshot is Applied
	Reinitializing Subscriptions

	Synchronizing Data
	Scripting Replication
	Schema Changes on Publication Databases
	Implementing Replication Over the Internet
	Publishing Data Over the Internet Using VPN
	Publishing Data Over the Internet Using Microsoft Proxy Server
	Publishing Data Over the Internet Using TCP/IP and FTP
	Configuring a Publisher or Distributor to Listen on TCP/IP
	Configuring a Publication to Allow Subscribers to Retrieve Snapshots Using FTP
	Configuring a Subscription to Use FTP to Retrieve a Snapshot

	Replication Between Different Versions of SQL Server
	SQL Server 7.0 Publisher/Distributor to SQL Server 6.5 Subscriber
	SQL Server 7.0 Publisher/Distributor to SQL Server 6.0 Subscriber
	SQL 6.5 Publisher/Distributor to SQL Server 7.0 Subscriber
	SQL Server 6.5 Publisher to SQL Server 7.0 Distributor

	Replication with SQL Server 2000 Windows CE Edition
	Replication with SQL Server 2000 Desktop Engine (MSDE 2000)
	Managing Replication with SQL Server 2000 Desktop Engine (MSDE 2000)

	Replication Options
	Filtering Published Data
	Row Filters
	Column Filters
	Dynamic Filters
	Dynamic Snapshots
	Validate Subscriber Information

	 Join Filters
	User-Defined Functions and Static Filters
	User-Defined Functions and Dynamic Filters

	Updatable Subscriptions
	Immediate Updating
	How Immediate Updating Works
	Immediate Updating Components
	Immediate Updating Considerations

	Queued Updating
	How Queued Updating Works
	Queued Updating Components
	Queued Updating Considerations
	Queued Updating Conflict Detection and Resolution
	Queued Updating and Identity Ranges

	Immediate Updating with Queued Updating as a Failover

	Transforming Published Data
	How Transforming Published Data Works
	Creating a Transformable Subscription Using Replication Wizards
	Using Transformable Subscriptions to Create Custom Data Partitions
	Defining a Vertical Partition
	Defining a Horizontal Partition

	Using Distributed Agents to Create Efficient Custom Partitions
	Using Transformable Subscriptions with Data Transformations
	DTS Package Details
	Limitations and Considerations

	Alternate Synchronization Partners
	How Alternate Synchronization Partners Works

	Optimizing Synchronization

	Replication Data Considerations
	Using IDENTITY Values with Replication
	Managing Identity Values
	Identity Ranges with Immediate Updating and Queued Updating

	Managing Replicated timestamp Data
	Using NOT FOR REPLICATION

	Administering and Monitoring Replication
	Tools for Administering and Monitoring Replication
	Replication Monitor
	Replication Agent Utilities
	ActiveX Controls for Replication
	Windows NT Performance Monitor and Windows 2000 System Monitor
	Setting Agent Parameters
	Agent Profiles

	Replication Agents
	SQL Server Agent
	Snapshot Agents
	Snapshot Agent Profile

	Distribution Agents
	Distribution Agent Profile

	Log Reader Agents
	Log Reader Agent Profile

	Queue Reader Agents
	Queue Reader Agent Profile

	Merge Agents
	Merge Agent Profile

	Miscellaneous Agents
	Viewing Agent History
	Handling Agent Errors
	Remote Agent Activation

	Replication Alerts
	Automating a Response to an Alert
	Predefined Response Jobs

	Subscription Deactivation and Expiration
	Validating Replicated Data

	Replication and Heterogeneous Data Sources
	Heterogeneous Subscribers
	Access Subscribers
	Oracle Subscribers
	IBM DB2/AS400 Subscribers
	IBM DB2/AS400 Data Type Definitions

	IBM DB2/MVS Subscribers
	Other Heterogeneous Subscribers
	Implementing Merge Replication to Access Subscribers
	Data Type Mapping to Jet-SQL 4.0 for Merge Replication

	Heterogeneous Publishers

	Replication Security
	Role Requirements
	Connecting to the Distributor
	Snapshot Folder Security
	Publication Access Lists
	Agent Login Security
	Security and Replication Options
	Security and Replication Over the Internet

	Enhancing Replication Performance
	Enhancing Snapshot Replication Performance
	Enhancing Snapshot and Transactional Replication Performance
	Enhancing Transactional Replication Performance
	Enhancing Merge Replication Performance

	Backing Up and Restoring Replication Databases
	Strategies for Backing Up and Restoring Snapshot Replication
	Strategies for Backing Up and Restoring Transactional Replication
	Transactional Replication and Log Shipping

	Strategies for Backing Up and Restoring Merge Replication
	Restoring Backups of Replicated Databases to the Same Server and Database
	Restoring Backups of Replicated Databases to a Different Server or Database

	Data Transformation Services
	Data Transformation Services
	DTS Overview
	DTS Basics
	DTS Tools
	DTS Import/Export Wizard
	Creating a DTS Package with the DTS Import/Export Wizard

	DTS Designer
	Creating a DTS Package with DTS Designer
	DTS Designer Example: A Completed DTS Package
	DTS Designer Example: Copying Northwind Data

	DTS Package Templates

	DTS and SQL Server Enterprise Manager
	DTS Package Execution Utilities
	DTS Query Designer

	DTS Package Elements
	DTS Tasks
	Tasks That Transform Data
	Transform Data Task
	Data Driven Query Task
	Data Flow in a Data Driven Query Task
	Building a Data Driven Query
	Data Driven Query Example: Changing Customer Accounts
	Data Driven Query Example: File Maintenance

	Multiphase Data Pump Functionality

	Tasks that Copy and Manage Data
	Bulk Insert Task
	Execute SQL Task
	Copy SQL Server Objects Task
	Transfer Database Objects Tasks

	Tasks That Function as Jobs
	ActiveX Script Task
	Dynamic Properties Task
	Execute Package Task
	Execute Process Task
	File Transfer Protocol Task
	Message Queue Task
	Installing and Configuring Message Queuing
	Message Types
	Sending Messages with the Message Queue Task
	Receiving Messages with the Message Queue Task
	Receiving String Messages
	Receiving Data File Messages
	Receiving Global Variables Messages

	Message Queue Task Examples
	Using String Messages to Trigger Tasks
	Using Global Variable Messages to Queue Database Updates
	Using Data File Messages to Collect Data

	Send Mail Task

	DTS Transformations
	Mapping Column Transformations
	Transformation Types
	Copy Column Transformation
	ActiveX Script Transformation
	Date Time String Transformation
	Lowercase String Transformation
	Uppercase String Transformation
	Middle of String Transformation
	Trim String Transformation
	Read File Transformation
	Write File Transformation

	DTS Connections
	Data Link Connection

	DTS Package Workflow
	Using ActiveX Scripts in a DTS Workflow

	Managing a DTS Package
	Creating a DTS Package
	Editing a DTS Package
	Deleting a DTS Package
	Executing a DTS Package
	Scheduling a DTS Package for Execution

	Saving a DTS Package
	Saving a DTS Package to SQL Server
	Saving a DTS Package to Meta Data Services
	Saving a DTS Package to a Structured Storage File
	Saving a DTS Package to a Visual Basic File

	Using DTS Package Logs
	Managing DTS Package Properties
	Viewing and Modifying DTS Package Properties
	Editing DTS Package Properties with Disconnected Edit

	Handling Package Security in DTS

	Adding Functionality to a DTS Package
	Using ActiveX Scripts in DTS
	Using Return Codes in DTS
	Debugging ActiveX Scripts

	Incorporating Transactions in a DTS Package
	Configuring Properties for DTS Transactions
	DTS Transaction Fundamentals
	Inherited Transactions
	Supported Connection Types
	Supported Task Types

	Designing DTS Transactions
	Sequential Execution
	Parallel Execution
	Checkpointing Package Transactions
	Branching on Transaction Failure

	Lookup Queries
	Configuring a Simple Lookup Query
	Managing Zero or Multiple Result Rows in Lookup Queries
	Using Lookup Queries to Modify Data
	Using Multiple Lookup Queries

	Using Global Variables with DTS Packages
	Using Parameterized Queries in DTS
	Querying a DTS Package from External Sources
	Querying a Package with OPENROWSET
	Issuing Distributed Queries Against Package Data

	Sharing Meta Data
	DTS Information Model
	Recording Data Lineage in DTS
	Importing and Saving Meta Data in DTS
	Viewing Meta Data in DTS

	Usage Considerations in DTS
	Enhancing Performance of DTS Packages
	Data Conversion and Transformation Considerations
	DTS Driver Support for Heterogeneous Data Types
	Enhancing Data Driven Queries in DTS
	Enhancing Lookup Queries in DTS

	Analysis Services
	Analysis Services
	Analysis Services Overview
	What's New in Analysis Services
	Cube Enhancements
	Dimension Enhancements
	Data Mining Enhancements
	Security Enhancements
	Client Connectivity Enhancements in PivotTable Service
	Other Enhancements

	Installing Analysis Services
	Hardware and Software Requirements for Installing Analysis Services
	Running Setup
	Setup Parameters and Silent Installation
	Reinstalling Analysis Services
	Stopping or Removing Analysis Services
	Upgrading from SQL Server 7.0 OLAP Services
	Backward Compatibility
	7.0 Analysis Services Client and Local Cube Support
	Supported Migration Paths for Analysis Services Repositories
	Archiving and Restoring Databases Between Versions of Analysis Services

	Analysis Services Architecture
	Analysis Services Features
	Ease of Use
	Flexible Data Model
	Scalability
	Integration
	Widely Supported APIs and Open Architecture

	Server and Client Architecture
	Server Architecture
	Client Architecture

	Object Architecture
	Object Architecture Overview
	Analysis Server
	Databases
	Data Sources
	Dimensions
	Introduction to Dimensions
	Dimension Structure
	Dimension Storage Modes
	Dimension Processing

	Dimension Hierarchies
	Ragged Dimension Support

	Dimension Characteristics
	Shared and Private Dimensions
	Changing Dimensions
	Dependent Dimensions
	Write-Enabled Dimensions
	Balanced and Unbalanced Hierarchies
	Ragged Hierarchies

	Dimension Varieties
	Regular Dimensions
	Virtual Dimensions
	Virtual Dimensions Created in Version 7.0

	Parent-Child Dimensions
	Data Mining Dimensions

	Levels and Members
	(All) Level and All Member
	Data Members
	Member Names and Member Keys
	Custom Rollup Operators
	Custom Rollup Formulas and Custom Member Formulas
	Member Groups

	Measures
	Aggregate Functions
	Using Aggregate Functions

	Display Formats

	Cells
	Cell Properties
	Calculated Cells

	Cubes
	Introduction to Cubes
	Cube Structure
	Cube Storage
	Cube Processing

	Cube Varieties
	Regular Cubes
	Linked Cubes
	Distributed Partitioned Cubes
	Virtual Cubes
	Local Cubes
	Real-Time Cubes
	Write-Enabled Cubes

	Partitions
	Introduction to Partitions
	Partition Structure
	Partition Storage
	Indexed Views for ROLAP Partitions
	Remote Partitions
	Incremental Updates and Partitions

	Aggregations
	Roles
	Database Roles
	Cube Roles
	Mining Model Roles

	Commands
	Actions
	Calculated Members
	Named Sets
	Library Registrations

	Member Properties
	Multiple Language Implementation Using Member Properties

	Data Mining Models
	Introduction to Data Mining Models
	Data Mining Model Structure
	Data Mining Algorithms
	Microsoft Decision Trees
	Microsoft Clustering

	Data Mining Model Nodes

	Data Mining Model Storage

	Data Mining Columns
	Data Mining Column Data Types
	Data Mining Column Content Types
	Nested Data Mining Columns
	Data Mining Column Storage

	Security and Authentication
	Administrator Security
	End-User Security
	User Accounts and Groups
	Database, Cube, and Mining Model Roles
	Levels of End-User Security
	Server Security and Authentication
	Authentication Methods
	Authentication of Direct Connections
	Authentication of Connections

	Database Security
	Cube Security
	Dimension Security
	Custom Rules in Dimension Security
	Multiple Custom Rules in Dimension Security Applied to an End User

	Cell Security
	Custom Rules in Cell Security

	Mining Model Security

	Operational Considerations

	Data Warehousing and OLAP
	About Data Warehouses
	About OLAP
	OLAP and Data Warehouses
	Maintaining OLAP Data

	Administering Analysis Services
	Before Administering Analysis Services
	Administrative Tools
	Analysis Manager
	MMC
	Starting Analysis Manager
	The Analysis Manager Tree Pane

	Using Active Directory with Analysis Services
	Using Data Transformation Services with Analysis Services
	Using MDX with Analysis Services
	Msmdarch Command

	Administrative Tasks
	Configuring Analysis Servers
	Registering Servers
	Setting Server Properties
	Migrating Analysis Services Repositories

	Creating Prerequisite Objects for Cubes
	Creating Databases
	Specifying Data Sources
	Creating Shared Dimensions
	Creating a Shared Dimension with the Wizard
	Creating a Shared Dimension with the Editor

	Creating Virtual Dimensions
	Viewing Dimension Data

	Building and Processing Cubes
	Building Cubes
	Building a Cube with the Wizard
	Building a Cube with the Editor
	Creating and Maintaining Private Dimensions
	Adding a Multiple-Column Measure to a Cube
	Building a Virtual Cube
	Building a Linked Cube
	Building a Distributed Partitioned Cube
	Building a Real-Time Cube

	Designing Storage Options and Aggregations
	Processing Cubes
	Managing Linked Cubes
	Viewing Cube Data
	Browsing Cube Data
	Browsing an Unprocessed Cube

	Creating Security Roles
	Creating Database Roles
	Creating Cube Roles
	Creating Mining Model Roles
	Defining Custom Rules for Dimension Security
	Defining Custom Rules for Cell Security

	Managing Partitions
	Creating Partitions
	Different Fact Tables for Partitions
	Same Fact Table for Multiple Partitions
	Data Slice

	Merging Partitions
	Fact Table Considerations When Merging Partitions
	Merging Partitions That Have Data Slices

	Enhancing Dimensions with Optional Features
	Creating Member Properties
	Using Custom Rollup Operators
	Creating Custom Member Formulas
	Creating Member Groups
	Creating Dimensions with Multiple Hierarchies
	Adding Hierarchies to Existing Dimensions

	Enhancing Cubes with Optional Features
	Creating Calculated Members
	Creating Calculated Members in Regular Cubes

	Creating Calculated Cells
	Creating Calculated Cells in Regular Cubes
	Creating Calculated Cells in Virtual Cubes

	Creating and Maintaining Calculated Members in Virtual Cubes
	Importing a Calculated Member into a Virtual Cube
	Editing a Calculated Member in a Virtual Cube
	Creating a Calculated Member in a Virtual Cube

	Creating Named Sets
	Creating Named Sets in Regular Cubes
	Creating and Maintaining Named Sets in Virtual Cubes
	Importing a Named Set into a Virtual Cube
	Editing a Named Set in a Virtual Cube
	Creating a Named Set in a Virtual Cube

	Creating Actions
	Creating Actions in Regular Cubes
	Creating and Maintaining Actions in Virtual Cubes
	Importing an Action into a Virtual Cube
	Editing an Action in a Virtual Cube
	Creating an Action in a Virtual Cube

	Maintaining Write-Enabled Cubes and Writeback Data
	Write-Enabling a Cube
	Browsing Writeback Data
	Deleting Writeback Data and Write-Disabling a Cube
	Converting Writeback Data to a Partition

	Specifying Drillthrough Options

	Updating Cubes and Dimensions
	Updating and Refreshing Cube Data
	Updating and Rebuilding Dimensions
	Updating and Rebuilding Shared Dimensions
	Updating and Rebuilding Private Dimensions

	Building and Using Data Mining Models
	Creating Data Mining Models
	Creating Relational Data Mining Models
	Creating OLAP Data Mining Models

	Editing Data Mining Models
	Editing Relational Data Mining Models
	Editing OLAP Data Mining Models

	Training Data Mining Models
	Viewing Data Mining Models
	Viewing with Data Mining Model Browser
	Viewing with Dependency Network Browser

	Advanced Data Mining Model Operations
	Using Roles in Data Mining Models

	Archiving, Restoring, and Copying Data
	Archiving and Restoring Databases
	Archiving an Analysis Services Database
	Restoring an Analysis Services Database

	Copying and Pasting Objects

	Analyzing and Optimizing Performance
	Analyzing Usage Patterns
	Optimizing Performance Based on Usage
	Optimizing the Data Warehouse Database for Analysis Services Performance
	Optimizing Cube Schemas
	Monitoring Analysis Services Performance
	Analysis Server:Agg Cache Object
	Analysis Server:Connection Object
	Analysis Server:Last Query Object
	Analysis Server:Locks Object
	Analysis Server:Proc Object
	Analysis Server:Proc Aggs Object
	Analysis Server:Proc Indexes Object
	Analysis Server:Query Object
	Analysis Server:Query Dims Object
	Analysis Server:Startup Object

	Automating and Scheduling Administrative Tasks
	Processing Objects Using Data Transformation Services
	Creating an Analysis Services Processing Task
	Adding Connections and Other Tasks to the Package
	Changing Properties of an Analysis Services Processing Task

	Creating Predictions Using Data Transformation Services

	Administrator's Reference
	Specifications and Limits
	SQL
	Partition Filters and Incremental Update Filters
	Dimension Filters
	Drillthrough Filters

	User Interface Help Reference
	Analysis Services Icons
	Analysis Manager Icons
	Cube Editor Icons
	Dimension Browser Icons
	Dimension Editor Icons
	OLAP Mining Model Editor Icons
	Relational Mining Model Editor Icons
	Virtual Cube Editor Icons

	Wizards
	Action Wizard
	Introduction (Action Wizard)
	Select Target (Action Wizard)
	Select the Action Type (Action Wizard)
	Define the Action Syntax (Action Wizard)
	Finish (Action Wizard)

	Calculated Cells Wizard
	Introduction (Calculated Cells Wizard)
	Define the Calculation Subcube (Calculated Cells Wizard)
	Define the Calculation Condition (Calculated Cells Wizard)
	Define the Calculation Formula (Calculated Cells Wizard)
	Finish (Calculated Cells Wizard)

	Cube Wizard
	Introduction (Cube Wizard)
	Select a Fact Table (Cube Wizard)
	Define Measures (Cube Wizard)
	Select Dimensions (Cube Wizard)
	Finish (Cube Wizard)

	Dimension Wizard
	Introduction (Dimension Wizard)
	Choose How To Create Dimension (Dimension Wizard)
	Select Dimension Table (Dimension Wizard)
	Select the Dimension Type (Dimension Wizard)
	Create Time Dimension Levels (Dimension Wizard)
	Create and Edit Joins (Dimension Wizard)
	Select Levels (Dimension Wizard)
	Specify Member Key Columns (Dimension Wizard)
	Select Columns for Parent-Child Dimension (Dimension Wizard)
	Select Dimension with Member Properties (Dimension Wizard)
	Select Levels for Virtual Dimension (Dimension Wizard)
	Select Advanced Options (Dimension Wizard)
	Set Changing Property (Dimension Wizard)
	Set Custom Rollups (Dimension Wizard)
	Set Members with Data Property (Dimension Wizard)
	Specify Ordering and Uniqueness (Dimension Wizard)
	Specify Storage Mode and Member Groups (Dimension Wizard)
	Set Dimension Writeback Capability (Dimension Wizard)
	Select Mining Model and Predictable Column (Dimension Wizard)
	Finish (Dimension Wizard)

	Incremental Update Wizard
	Introduction (Incremental Update Wizard)
	Select Partition (Incremental Update Wizard)
	Specify Data Source and Fact Table (Incremental Update Wizard)
	Create Filter Expression (Incremental Update Wizard)
	Finish (Incremental Update Wizard)

	Mining Model Wizard
	Introduction (Mining Model Wizard)
	Select Source Type (Mining Model Wizard)
	Relational Model Steps (Mining Model Wizard)
	Select Case Tables (Mining Model Wizard)
	Select Data Mining Technique (Mining Model Wizard)
	Create and Edit Joins (Mining Model Wizard)
	Select the Key Column (Mining Model Wizard)
	Select Input and Predictable Columns (Mining Model Wizard)

	OLAP Model Steps (Mining Model Wizard)
	Select Source Cube (Mining Model Wizard)
	Select Data Mining Technique (Mining Model Wizard)
	Select Case (Mining Model Wizard)
	Select the Predicted Entity (Mining Model Wizard)
	Select Training Data (Mining Model Wizard)
	Create a Dimension and Virtual Cube (Mining Model Wizard)

	Finish (Mining Model Wizard)

	Partition Wizard
	Introduction (Partition Wizard)
	Specify Data Source and Fact Table (Partition Wizard)
	Select Data Slice (Partition Wizard)
	Specify Partition Type (Partition Wizard)
	Finish (Partition Wizard)

	Storage Design Wizard
	Introduction (Storage Design Wizard)
	Select a Partition (Storage Design Wizard)
	Aggregations Already Exist (Storage Design Wizard)
	Select Data Storage (Storage Design Wizard)
	Set Aggregation Options (Storage Design Wizard)
	Finish (Storage Design Wizard)

	Usage Analysis Wizard
	Introduction (Usage Analysis Wizard)
	Select Filter Criteria (Usage Analysis Wizard)
	Review Results (Usage Analysis Wizard)

	Usage-Based Optimization Wizard
	Introduction (Usage-Based Optimization Wizard)
	Select Partition (Usage-Based Optimization Wizard)
	Select Queries (Usage-Based Optimization Wizard)
	Review Results (Usage-Based Optimization Wizard)
	Aggregations Already Exist (Usage-Based Optimization Wizard)
	Select Data Storage (Usage-Based Optimization Wizard)
	Set Aggregation Options (Usage-Based Optimization Wizard)
	Finish (Usage-Based Optimization Wizard)

	Virtual Cube Wizard
	Introduction (Virtual Cube Wizard)
	Select Cubes (Virtual Cube Wizard)
	Select Measures (Virtual Cube Wizard)
	Select Dimensions (Virtual Cube Wizard)
	Finish (Virtual Cube Wizard)

	Dialog Boxes
	Advanced Settings Dialog Box
	Analysis Services Processing Task Dialog Box
	Archive Database Dialog Box
	Archive Database Progress Dialog Box
	Calculated Member Builder
	Choose a Dimension Table Dialog Box
	Choose a Fact Table Dialog Box
	Convert to Partition Dialog Box
	Cube Browser
	Cube Cell Security Dialog Box
	Cube Editor - Data View
	Menus (Cube Editor Data View)
	Toolbar (Cube Editor Data View)
	Tree Pane (Cube Editor Data View)
	Properties Pane (Cube Editor Data View)
	Data Tab (Cube Editor Data View)

	Cube Editor - Schema View
	Menus (Cube Editor Schema View)
	Toolbar (Cube Editor Schema View)
	Tree Pane (Cube Editor Schema View)
	Properties Pane (Cube Editor Schema View)
	Schema Tab (Cube Editor Schema View)

	Cube Processing Settings Dialog Box
	Cube Role Dialog Box
	Summary Tab (Cube Role Dialog Box)
	Membership Tab (Cube Role Dialog Box)
	Dimensions Tab (Cube Role Dialog Box)
	Cells Tab (Cube Role Dialog Box)
	Options Tab (Cube Role Dialog Box)

	Cube Role Manager
	Custom Dimension Security Dialog Box
	Basic Tab (Custom Dimension Security Dialog Box)
	Advanced Tab (Custom Dimension Security Dialog Box)
	Common Tab (Custom Dimension Security Dialog Box)

	Data Mining Model Browser
	Toolbar (Data Mining Model Browser)
	Content Detail Pane (Data Mining Model Browser)
	Content Navigator Pane (Data Mining Model Browser)
	Attributes Pane (Data Mining Model Browser)
	Legend Pane (Data Mining Model Browser)
	Keyboard Shortcuts (Data Mining Model Browser)

	Data Mining Prediction Query Task Dialog Box
	Mining Model Tab (Data Mining Prediction Query Task Dialog Box)
	Query Tab (Data Mining Prediction Query Task Dialog Box)
	Output Tab (Data Mining Prediction Query Task Dialog Box)

	Database Dialog Box
	Database Role Dialog Box
	Membership Tab (Database Role Dialog Box)
	Cubes Tab (Database Role Dialog Box)
	Mining Models Tab (Database Role Dialog Box)
	Dimensions Tab (Database Role Dialog Box)

	Database Role Manager
	Define Custom Member Column Dialog Box
	Define Custom Member Options Dialog Box
	Define Unary Operator Column Dialog Box
	Delete Member Dialog Box
	Dependency Network Browser
	Network Browser Pane (Dependency Network Browser)
	Toolbar (Dependency Network Browser)
	Slider Pane (Dependency Network Browser)
	Legend Pane (Dependency Network Browser)
	Keyboard Shortcuts (Dependency Network Browser)

	Dimension Browser
	Dimension Members Pane (Dimension Browser)
	Member Properties Pane (Dimension Browser)
	Custom Member Formula Pane (Dimension Browser)

	Dimension Editor - Data View
	Menus (Dimension Editor Data View)
	Toolbar (Dimension Editor Data View)
	Tree Pane (Dimension Editor Data View)
	Properties Pane (Dimension Editor Data View)
	Data Tab (Dimension Editor Data View)
	Dimension Members Pane (Dimension Editor Data View)
	Member Properties Pane (Dimension Editor Data View)
	Custom Member Formula Pane (Dimension Editor Data View)

	Dimension Editor - Schema View
	Menus (Dimension Editor Schema View)
	Toolbar (Dimension Editor Schema View)
	Tree Pane (Dimension Editor Schema View)
	Properties Pane (Dimension Editor Schema View)
	Schema Tab (Dimension Editor Schema View)

	Dimension Manager
	Drillthrough Options Dialog Box
	Columns Tab (Drillthrough Options Dialog Box)
	Filter Tab (Drillthrough Options Dialog Box)

	Edit Virtual Dimension Dialog Box
	Filter Expression Dialog Box
	Find Node Dialog Box
	Import Actions Dialog Box
	Import Calculated Cells Dialog Box
	Import Calculated Members Dialog Box
	Import Named Sets Dialog Box
	Insert Level Dialog Box
	Insert Measure Dialog Box
	Insert Member Property Dialog Box
	Join Columns Dialog Box
	Level Naming Template Dialog Box
	Linked Cube Dialog Box
	Map the Column Dialog Box
	MDX Builder
	Mining Model Role Dialog Box
	Mining Model Role Manager
	Merge Partitions Dialog Box
	Multidimensional Data Source Dialog Box
	Named Set Builder
	OLAP Mining Model Editor
	Menu Bar (OLAP Mining Model Editor)
	Toolbar (OLAP Mining Model Editor)
	Structure Pane (OLAP Mining Model Editor)
	Properties Pane (OLAP Mining Model Editor)
	Browser Pane (OLAP Mining Model Editor)

	Partition Processing Settings Dialog Box
	Prediction Query Builder
	Process Dialog Box
	Process a Cube Dialog Box
	Process a Dimension Dialog Box
	Process a Mining Model Dialog Box
	Properties Dialog Box
	General Tab (Properties Dialog Box)
	Environment Tab (Properties Dialog Box)
	Processing Tab (Properties Dialog Box)
	Logging Tab (Properties Dialog Box)
	Add-ins Tab (Properties Dialog Box)
	Active Directory Tab (Properties Dialog Box)
	Error Reporting Tab (Properties Dialog Box)

	Relational Mining Model Editor
	Menu Bar (Relational Mining Model Editor)
	Toolbar (Relational Mining Model Editor)
	Structure Pane (Relational Mining Model Editor)
	Properties Pane (Relational Mining Model Editor)
	Browser Pane (Relational Mining Model Editor)

	Register Analysis Server Dialog Box
	Register Function Libraries Dialog Box
	Remote Server Data Directory Dialog Box
	Restore Database Dialog Box
	Restore Database Progress Dialog Box
	Save Object Dialog Box
	Select Column Dialog Box
	Select Nested Table Key Column Dialog Box
	Select Table Dialog Box
	Select the Parent Member Dialog Box
	Select Users Dialog Box
	Set Default Member Dialog Box
	Training Query Dialog Box
	Virtual Cube Editor
	Menus (Virtual Cube Editor)
	Toolbar (Virtual Cube Editor)
	Tree Pane (Virtual Cube Editor)
	Properties Pane (Virtual Cube Editor)
	Data Pane (Virtual Cube Editor)

	Write Enable Dialog Box

	OLE DB Compliance
	OLE DB for Data Mining Compliance

	MDX
	MDX Overview
	Introduction to MDX
	Key Concepts in MDX
	Comparison of SQL and MDX

	Basic MDX
	The Basic MDX Query
	Members, Tuples, and Sets
	Axis and Slicer Dimensions
	Specifying the Contents of an Axis Dimension
	Specifying the Contents of a Slicer Dimension

	Establishing Cube Context

	Advanced MDX
	Creating and Using Property Values
	Using Member Properties
	Intrinsic Dimension and Level Member Properties
	Intrinsic Member Properties
	Custom Member Properties

	Using Cell Properties
	FORMAT_STRING Contents
	FORE_COLOR and BACK_COLOR Contents

	Building Named Sets in MDX
	Using WITH to Create Named Sets

	Building Calculated Members in MDX
	Using WITH to Create Calculated Members
	Using Functions in Calculated Members
	Conditional Expressions
	IIf Function

	Building Caches in MDX
	Using WITH to Create Caches

	Building Calculated Cells in MDX
	Using WITH to Create Calculated Cells

	Creating and Using User-Defined Functions in MDX
	Using Writebacks
	Using DRILLTHROUGH to Retrieve Source Data
	Understanding Pass Order and Solve Order

	Effective MDX
	Comments in MDX
	Working with Empty Cells
	Creating a Cell Within the Context of a Cube
	Working with the RollupChildren Function
	WHERE Clause Overrides

	MDX Functions in Analysis Services
	MDX Function Reference
	MDX Syntax Conventions
	MDX Function List
	A
	AddCalculatedMembers
	Aggregate
	AllMembers
	Ancestor
	Ancestors
	Ascendants
	Avg
	Axis

	B
	BottomCount
	BottomPercent
	BottomSum

	C
	CalculationCurrentPass
	CalculationPassValue
	Call
	Children
	ClosingPeriod
	CoalesceEmpty
	Correlation
	Count
	Cousin
	Covariance
	CovarianceN
	Crossjoin
	Current
	CurrentMember

	D
	DataMember
	DefaultMember
	Descendants
	Dimension
	Dimensions
	Distinct
	DistinctCount
	DrilldownLevel
	DrilldownLevelBottom
	DrilldownLevelTop
	DrilldownMember
	DrilldownMemberBottom
	DrilldownMemberTop
	DrillupLevel
	DrillupMember

	E
	Except
	Extract

	F
	Filter
	FirstChild
	FirstSibling

	G
	Generate

	H
	Head
	Hierarchize
	Hierarchy

	I
	Ignore
	IIf
	Intersect
	Is
	IsAncestor
	IsEmpty
	IsGeneration
	IsLeaf
	IsSibling
	Item

	L
	Lag
	LastChild
	LastPeriods
	LastSibling
	Lead
	Level
	Levels
	LinkMember
	LinRegIntercept
	LinRegPoint
	LinRegR2
	LinRegSlope
	LinRegVariance
	LookupCube

	M
	Max
	Median
	Members
	MemberToStr
	Min
	Mtd

	N
	Name
	NameToSet
	NextMember
	NonEmptyCrossjoin

	O
	OpeningPeriod
	Order
	Ordinal

	P
	ParallelPeriod
	Parent
	PeriodsToDate
	Predict
	PrevMember
	Properties

	Q
	Qtd

	R
	Rank
	RollupChildren

	S
	SetToArray
	SetToStr
	Siblings
	Stddev
	StddevP
	Stdev
	StdevP
	StripCalculatedMembers
	StrToMember
	StrToSet
	StrToTuple
	StrToValue
	Subset
	Sum

	T
	Tail
	ToggleDrillState
	TopCount
	TopPercent
	TopSum
	TupleToStr

	U
	Union
	UniqueName
	UserName

	V
	ValidMeasure
	Value
	Var
	Variance
	VarianceP
	VarP
	VisualTotals

	W
	Wtd

	Y
	Ytd

	Registered Function Libraries
	Visual Basic for Applications Functions
	Excel Functions

	User-Defined Functions with MDX Syntax

	How To
	Configuring Analysis Servers
	How to register an Analysis server
	How to add a linked Analysis server using SQL Server Enterprise Manager
	How to start the Migrate Repository Wizard
	How to configure Analysis Services for the Web

	Creating Cubes' Prerequisite Objects
	How to create a database
	How to specify a data source
	How to create a shared dimension using the Dimension Wizard
	How to create a shared dimension using Dimension Editor
	How to browse a shared dimension
	How to browse a private dimension
	How to create a virtual dimension based on member properties
	How to create a virtual dimension based on columns

	Building and Processing Cubes
	How to start the Cube Wizard
	How to build a cube with Cube Editor
	How to create a private dimension
	How to add a multiple-column measure to a cube
	How to start the Virtual Cube Wizard
	How to start the Storage Design Wizard
	How to process a cube
	How to process a virtual cube
	How to view an SQL statement
	How to change the temporary file folder used by Analysis Services
	How to browse sample data in Cube Editor

	Creating Security Roles
	How to create a database role
	How to create a cube role, change its default values, and specify cell security
	How to create a mining model role and change its default values
	How to create a custom rule for dimension security in a database role
	How to create a custom rule for dimension security in a cube role
	How to create a custom rule for cell security

	Managing Cube Storage
	How to start the Partition Wizard
	How to process a partition
	How to merge two partitions
	How to specify a data source for a linked cube
	How to create a linked cube
	How to process a linked cube

	Enhancing Dimensions
	How to create a member property in a shared dimension
	How to create a custom rollup operator for a shared dimension
	How to create a custom rollup operator for a private dimension
	How to create or select a column to store custom member formulas
	How to create a custom member formula in a write-enabled dimension
	How to create member groups
	How to create a dimension with multiple hierarchies in the Dimension Wizard
	How to create a dimension with multiple hierarchies in Dimension Editor
	How to add a hierarchy to an existing dimension

	Enhancing Cubes with Optional Features
	How to create calculated cells
	How to import calculated cells into a virtual cube
	How to edit a calculated cells definition
	How to rename a calculated member
	How to create a calculated member in a regular cube
	How to import a calculated member into a virtual cube
	How to edit a calculated member in a virtual cube
	How to create a calculated member in a virtual cube
	How to create a named set in a regular cube
	How to import a named set into a virtual cube
	How to edit a named set in a virtual cube
	How to create a named set in a virtual cube
	How to create an action in a regular cube
	How to import an action into a virtual cube
	How to edit an action in a virtual cube
	How to create an action in a virtual cube
	How to test an action
	How to write-enable a cube
	How to browse writeback data for a cube
	How to delete writeback data for a cube and write-disable it
	How to convert a cube's writeback data to a partition and write-disable the cube
	How to specify drillthrough options for a regular cube
	How to specify drillthrough options for a virtual cube
	How to specify drillthrough options for a linked cube
	How to specify drillthrough options for a partition

	Updating Cubes and Dimensions
	How to incrementally update a cube
	How to refresh data in a cube
	How to incrementally update a shared dimension
	How to rebuild the structure of a shared dimension

	Managing Data Mining Models
	How to start the Mining Model Wizard
	How to start Relational Mining Model Editor
	How to start OLAP Mining Model Editor
	How to process a data mining model
	How to start Mining Model Role Manager
	How to add a role to a data mining model

	Archiving, Restoring, and Copying Data
	How to archive an Analysis Services database using Analysis Manager
	How to archive an Analysis Services database using the msmdarch command
	How to restore an Analysis Services database using Analysis Manager
	How to restore an Analysis Services database using the msmdarch command
	How to copy and paste an object

	Analyzing and Optimizing Performance
	How to start the Usage Analysis Wizard
	How to start the Usage-Based Optimization Wizard

	Automating and Scheduling Administrative Tasks
	How to create an Analysis Services Processing task
	How to create a Relational Data Mining Prediction Query task

	English Query
	English Query
	English Query Overview
	Whats New in English Query
	Installation Requirements and Considerations
	English Query Fundamentals
	SQL Database Normalization Rules
	Updating or Replacing Models
	Importing and Exporting Models to Meta Data Services

	Developing and Deploying English Query Applications
	Creating an English Query Model
	Expanding an English Query Model
	Creating a Mixed English Query Model
	Enabling Analysis Services for an English Query Model
	Enabling SQL for an English Query Model
	Enabling Full-Text Search for an English Query Model
	Defining Entities in an English Query Model
	Associating Entities
	Entity Name Synonyms
	Entity Defaults
	Entities as Roles

	Defining Relationship Phrasings
	Prepositional Phrasings in Relationships
	Grouped Phrasings Examples
	Verb Phrasings in Relationships
	Adjective Phrasings in Relationships

	Using Command Relationships in an English Query Model
	Verbs to Avoid in Command Relationships

	Authoring with Semantic Modeling Format

	Testing an English Query Model
	Compiling an English Query Application
	Deploying an English Query Application
	Adding Question Builder to an English Query Application
	Automatic Clarification of Questions
	Run-Time Environment for English Query Applications
	Redistributing the English Query Run-time DLLs

	Sample Applications and Client Interfaces

	Analysis Services in English Query
	Naming Entities in the OLAP Project Wizard
	Creating Relationships in the OLAP Project Wizard
	Level-Level Relationships
	Additional Relationships

	Analysis Services Requirements for (All) Level

	Object Model Reference
	Authoring Object Model
	Authoring Object Model Diagram
	Authoring Objects Summary
	EQError Object
	EQModel Object

	Authoring Properties Summary
	ErrorCode Property
	Errors Property
	FileName Property
	LineNumber Property
	ObjectID Property (EQError Object)
	ObjectType Property (EQError Object)
	Severity Property
	Text Property (EQError Object)

	Authoring Methods Summary
	AutoModel Method
	Build Method
	Compile Method
	CreateProject Method
	FetchDatabaseStructure Method
	OpenModule Method
	OpenProject Method
	OpenProjectFromXMLDOM Method
	SaveModule Method
	SaveProject Method
	SaveProjectAsSMF Method
	SaveProjectFile Method
	SaveProjectToXMLDOM Method

	Authoring Sample Script

	Engine Object Model
	Engine Object Model Diagram
	Engine Objects Summary
	AnswerCmd Object
	Command Object
	CommandResponse Object
	DomainCmd Object
	DomainInfo Object
	ErrorResponse Object
	HelpCmd Object
	ListInput Object
	ObjectReference Object
	Parameter Object
	QueryCmd Object
	Response Object
	Session Object
	StaticInput Object
	TextInput Object
	UserClarifyResponse Object
	UserInput Object

	Engine Properties Summary
	Answer Property
	Caption Property
	ClarifySpellingErrors Property
	Closed Property
	CmdID Property
	CommandName Property
	DBMSType Property (QueryCmd Object)
	DBMSType Property (Session Object)
	DBMSVersion Property
	Description Property (ErrorResponse Object)
	DisplayRows Property
	DisplayToUser Property
	DomainInfo Property
	FallbackDBMSType Property
	FallbackDBMSVersion Property
	FieldCount Property
	Fields Property (Parameter Object)
	FullName Property
	HelpText Property (HelpCmd Object)
	HelpType Property
	IgnoreError Property
	ItemCount Property
	Items Property
	ObjectID Property (HelpCmd Object)
	ObjectID Property (ObjectReference Object)
	ObjectType Property (HelpCmd Object)
	ObjectType Property (ObjectReference Object)
	ParameterID Property
	ParameterType Property
	QueryCommand Property
	QueryText Property
	QuestionBuilder Property
	Restatement Property
	RetainContext Property
	Selection Property
	SQL Property
	TableCaption Property
	Text Property (TextInput Object)
	TrueFalseAnswer Property
	Type Property (Response Object)
	Type Property (UserInput Object)
	Units Property
	Value Property

	Engine Methods Summary
	ClearContext Method
	Close Method
	InitDomain Method
	ParseRequest Method
	Reply Method
	SetDBMS Method
	SetFallBackDBMS Method

	Engine Collections Summary
	Commands Collection
	EndCommands Collection
	Parameters Collection
	QueryCommands Collection
	UserInputs Collection

	Engine Collections Properties Summary
	Count Property

	Engine Collections Methods Summary
	Index Method (Engine Object Model)

	Question Builder Object Model
	Question Builder Object Model Diagram
	Question Builder Objects Summary
	QBEntity Object
	QBRelationship Object
	QBTemplate Object
	QuestionBuilder Object

	Question Builder Properties Summary
	Description Property (QBEntity Object, QBRelationship Object)
	Description Property (QBTemplateObject)
	HelpText Property (QBEntity Object, QBRelationship Object)
	InstanceValues Property
	IsMajor Property
	ObjectID Property (QBEntity Object, QBRelationship Object)
	ObjectType Property (QBEntity Object, QBRelationship Object)
	Parent Property
	Plural Property
	Singular Property
	SummaryText Property
	Synonyms Property
	Value Property

	Question Builder Methods Summary
	FindObject Method
	FindTemplates Method
	GetCommonRelationships Method
	GetExamples Method

	Question Builder Collections Summary
	Entities Collection
	RelatedEntities Collection
	Relationships Collection
	RelatedRelationships Collection
	Templates Collection

	Question Builder Collections Methods Summary
	Index Method (Question Builder Object Model)

	How To
	Working with Projects
	How to add a new project to a solution
	How to add an existing project to a solution
	How to create a new project
	How to create a new project using the SQL Project wizard
	How to create a project using the OLAP Project wizard

	How to remove a database from a project
	How to remove a project from the solution
	How to create and modify project properties
	How to add a module
	How to remove a module
	How to modify the data source in a project

	Working with Models
	How to add entities and relationships using the Create Semantics command
	How to add or change a SQL connection
	How to add or change an Analysis Services (formerly OLAP) connection
	How to create a mixed model
	How to delete a field from a model
	How to edit a field in a model

	Working with Joins
	How to add a join
	How to delete a join
	How to edit a join

	Working with Tables
	How to add a field to a table
	How to add a table
	How to add tables and views from a SQL data source
	How to change the table options for a relationship
	How to delete a table
	How to edit a table
	How to enable full-text searching for a field
	How to refresh all tables in a project

	Working with Entities
	How to add an entity to a relationship
	How to create an entity
	How to delete an entity
	How to delete an entity from a relationship
	How to edit an entity
	How to edit the entity's role in a relationship

	Working with Relationships
	How to add a relationship
	How to add phrasings to a relationship
	How to add time and location options to a relationship
	How to create a relationship using the Canvas pane
	How to create relationships from the Model Test Window
	How to create relationships using the Create Relationships command
	How to associate English Data values with a relationship
	How to delete a relationship
	How to modify a relationship

	Working with Dictionary Entries
	How to add a dictionary entry
	How to delete a dictionary entry
	How to edit a dictionary entry

	Working with Command Relationships
	How to add a phrasing to a command relationship
	How to create a command relationship
	How to create time and location options for command relationships
	How to delete a command relationship
	How to edit a command relationship

	Working with Analysis Services (formerly OLAP Services)
	How to add an Analysis Services (formerly OLAP) cube to a model
	How to edit an Analysis Services (formerly OLAP) cube
	How to edit Analysis Services levels
	How to edit Analysis Services (formerly OLAP) measures
	How to edit Analysis Services (formerly OLAP) properties
	How to enable Analysis Services (formerly OLAP)
	How to manually map OLAP objects to the underlying SQL database objects
	How to remove an Analysis Services (formerly OLAP) cube

	Testing and Building a Model
	How to add a new or existing regression test file to a project
	How to build an application
	How to edit a regression test file
	How to remove a regression test file
	How to rename a regression test file
	How to save model test information to a regression test file
	How to save the regression output to a regression test file
	How to set the Sample Data option
	How to test a model
	How to view the differences between the current regression test file and the regression output file
	How to view the output of a regression test created using the Run Regression command
	How to deploy an application to the Web

	English Query User Interface Help Reference
	Shortcut Keys Used in English Query
	Icons and Cursors Used in English Query
	Buttons Used in English Query
	Wizards
	Project Wizards
	OLAP Project Wizard
	SQL Project Wizard

	Suggestion Wizard

	Editors
	Model Editor
	OLAP Tab (Model Editor)
	Semantics Tab (Model Editor)
	SQL Tab (Model Editor)

	Regression Test Editor

	Model Test Window
	Dialog Boxes
	Add/Edit Entity Default Dialog Box
	Adjective Phrasing Dialog Box
	Advanced Entity Properties Dialog Box
	Entity Defaults Tab (Advanced Entity Properties Dialog Box)
	Name Synonyms Tab (Advanced Entity Properties Dialog Box)
	Semantic Properties Tab (Advanced Entity Properties Dialog Box)

	Command Phrasing Dialog Box
	English Data Values Dialog Box
	Entity/New Entity Dialog Box
	Find Dialog Box
	Join/New Join Dialog Box
	Name/ID Phrasing Dialog Box
	New <Database Object> Dialog Box
	New Dictionary Entry Dialog Box
	OLAP Dimension Dialog Box
	OLAP Cube Dialog Box
	Preposition Phrasing Dialog Box
	Project Properties Dialog Box
	Data Connection Tab (Project Properties Dialog Box)
	Default Relationships Tab (Project Properties Dialog Box)
	English Tab (Project Properties Dialog Box)

	Regression Differences Dialog Box
	Relationship/New Relationship Dialog Box
	Command Tab (Relationship/New Relationship Dialog Box)
	Database Tab (Relationship/New Relationship Dialog Box)
	Semantics Tab (Relationship/New Relationship Dialog Box)

	<Role Name>Role Dialog Box
	<Role Name> Role In Command Dialog Box
	Select An Analysis Server Dialog Box
	Select Phrasing Dialog Box
	Select Remote Fields Dialog Box
	Specify Join Path Dialog Box
	Subset Phrasing Dialog Box
	Table/New Table Dialog Box
	Basic Tab (Table/New Table Dialog Box)
	Advanced Tab (Table/New Table Dialog Box)

	Test Properties Dialog Box
	Trait Phrasing Dialog Box
	Verb Phrasing Dialog Box

	Troubleshooting English Query Applications
	English Query Usage Issues
	Compile-Time Error Messages (Authoring Object Model)
	Cube Error Messages
	Duplicate default measure for cube <ObjectID>.
	Duplicate dimension for cube <ObjectID>.
	Duplicate measure for cube <ObjectID>.
	Error in cube <ObjectID>.
	Invalid name for cube <ObjectID>.
	Invalid table for cube <ObjectID>.
	Missing default measure in cube <ObjectID>.
	Missing dimensions for cube <ObjectID>.
	Missing fact table for cube <ObjectID>.
	Missing measures for cube <ObjectID>.
	Missing table for cube <ObjectID>.
	Multiple cubes with ID <ObjectID>.

	Dictionary Entry Error Messages
	Duplicate irregular form in dictionary entry <ObjectID>.
	Duplicate root word in dictionary entry <ObjectID>.
	Error in dictionary entry <ObjectID>.
	Invalid character in write synonym for dictionary entry <ObjectID>.
	Invalid irregular form for dictionary entry <ObjectID>.
	Invalid irregular form type for dictionary entry <ObjectID>.
	Invalid part of speech for dictionary entry <ObjectID>.
	Invalid root word for dictionary entry <ObjectID>.
	Missing irregular form in dictionary entry <ObjectID>.
	Missing irregular type in dictionary entry <ObjectID>.
	Missing part of speech in dictionary entry <ObjectID>.
	Missing read word for dictionary entry <ObjectID>.
	Missing root word in dictionary entry <ObjectID>.
	Missing write word for dictionary entry <ObjectID>.
	Multiple dictionary entries with ID <ObjectID>.
	Write synonym in dictionary entry <ObjectID> is identical to the root word.

	Dimension Error Messages
	Date types of levels in time dimension <ObjectID> are not in descending order.
	Duplicate level for dimension <ObjectID>.
	Error in dimension <ObjectID>.
	Invalid name for dimension <ObjectID>.
	Invalid table for dimension <ObjectID>.
	Invalid type for dimension <ObjectID>.
	Missing levels for dimension <ObjectID>.
	Missing source table for dimension <ObjectID>.
	Missing table for dimension <ObjectID>.
	Missing type for dimension <ObjectID>.
	Multiple dimensions with ID <ObjectID>.

	Entity Error Messages
	A database object is not specified for measure entity <ObjectID>.
	Comparing {datepart} to entity that has no {datepart} in entity default for entity <ObjectID>.
	Comparing date entity {entityid} to nondate in entity default for entity <ObjectID>.
	Comparing integer entity {entityid} to noninteger in entity default for entity <ObjectID>.
	Comparing numeric entity {entityid} to nonnumber in entity default for entity <ObjectID>.
	Date entity {entityid} in a default condition on entity <ObjectID> cannot be compared with a {date type}.
	Date entity {entityid} in a default condition on entity <ObjectID> cannot be compared with a {value}.
	Date entity <ObjectID> has a name type.
	Date entity <ObjectID> is a table.
	Display fields for entity <ObjectID> should include fields from name entity {entityid}.
	Duplicate database object for entity <ObjectID>.
	Duplicate default condition in entity default for entity <ObjectID>.
	Duplicate default relationship for entity <ObjectID> and entity {entityid}.
	Duplicate display field for entity <ObjectID>.
	Duplicate entity type for entity <ObjectID>.
	Duplicate name synonym {synonym}/{value} for entity <ObjectID>.
	Duplicate name type for entity <ObjectID>.
	Duplicate numbers in entity <ObjectID>.
	Duplicate relationship on entity default for entity <ObjectID>.
	Duplicate sort-by field for entity <ObjectID>.
	Duplicate table to memorize names from for entity <ObjectID>.
	Duplicate unknown date relationship for entity <ObjectID>.
	Duplicate unless relationship {relationshipid} on entity default for entity <ObjectID>.
	Duplicate word "{word}" for entity <ObjectID>.
	Entity <ObjectID> and entity {entityid} have the same underlying database object(s).
	Entity <ObjectID> cannot load words from table {tableid}.
	Entity <ObjectID> cannot show fields from table {tableid}.
	Entity <ObjectID> has both table and field as database objects.
	Entity <ObjectID> has display fields but is not a table entity.
	Entity <ObjectID> has multiple tables as database objects.
	Entity <ObjectID> has the same words as its {nametype} {entityid}.
	Entity <ObjectID> is a subentity of itself.
	Entity <ObjectID> is name/ID of entity {entityid}, but has entity type other than None.
	Entity <ObjectID> is subentity of {entityid}, but has no join.
	Entity <ObjectID> represented by date field, but not marked as date.
	Entity <ObjectID> should be represented by level {levelid}.
	Entity <ObjectID> should be represented by table <tableid>.
	Entity <ObjectID> uses the word "name".
	Error in entity <ObjectID>.
	Error loading instance values for entity <ObjectID>.
	Fields {fieldid} and {fieldid} in entity <ObjectID> have the same date type.
	Fields from name entity {objectid} are reused in entity <ObjectID>.
	Invalid character {char} in word for entity <ObjectID>.
	Invalid database object for entity <ObjectID>.
	Invalid database value on name synonym for entity <ObjectID>.
	Invalid default relationship for entity <ObjectID>.
	Invalid display field for entity <ObjectID>.
	Invalid entity on entity default condition for entity <ObjectID>.
	Invalid entity type for entity <ObjectID>.
	Invalid entity used in the option Is subentity of.
	Invalid field for entity <ObjectID>.
	Invalid ID for entity <ObjectID>.
	Invalid name type for entity <ObjectID>.
	Invalid numerical references specified.
	Invalid operator on entity default condition for entity <ObjectID>.
	Invalid related entity for entity <ObjectID>.
	Invalid sample data for entity <ObjectID>.
	Invalid sort field for entity <ObjectID>.
	Invalid synonym word for entity <ObjectID>.
	Invalid table for entity <ObjectID>.
	Invalid table specified from which to load words.
	Invalid unknown dates relationship for entity <ObjectID>.
	Invalid unless relationship on entity default for entity <ObjectID>.
	Invalid value on entity default condition for entity <ObjectID>.
	Invalid word for entity <ObjectID>.
	Missing database value on name synonym for entity <ObjectID>.
	Missing entity type for entity <ObjectID>.
	Missing related entity on default relationship for entity <ObjectID>.
	Missing relationship on default relationship for entity <ObjectID>.
	Missing sample data for entity <ObjectID>.
	Missing synonym on name synonym for entity <ObjectID>.
	Missing words for entity <ObjectID>.
	Mixed-case word for entity <ObjectID>.
	More than one entity used in the option Is a subentity of.
	Multiple entities with ID <ObjectID>.
	Multiple field enity <ObjectID> has name synonyms.
	Name structure is not allowed for date entity <ObjectID>.
	Name synonym but no name type on entity <ObjectID>.
	Name type is incompatible with database object type on entity <ObjectID>.
	Name type is incompatible with level date type on entity <ObjectID>.
	Name type is incompatible with property date type on entity <ObjectID>.
	Numeric entity <ObjectID> has name type other than Unique ID.
	Numeric references are not allowed for nontable entity <ObjectID>.
	Numeric word on entity <ObjectID>.
	Remote fields are not allowed for nontable entity <ObjectID>.
	Stand-alone entity <ObjectID> must be either a field entity or a level entity.
	The dimension {objectid} for the time entity <ObjectID> is not a time dimension.
	The entity <ObjectID> in default condition can only be compared with a {datatype}.
	Underscores used in word for entity <ObjectID>.
	Word for entity <ObjectID> is too long.

	Field Error Messages
	Aggregate field for field <ObjectID> is not numeric.
	Caption is too long for field <ObjectID>.
	Case mismatch for field {fieldname} in computation for field <ObjectID>.
	Case mismatch for table {tablename} in computation for field <ObjectID>.
	Computed field <ObjectID> cannot be in key of table.
	Denormalized copy field for field <ObjectID> has incorrect data type.
	Duplicate aggregate field for field <ObjectID>.
	Duplicate capitalization convention for field <ObjectID>.
	Duplicate caption for field <ObjectID>.
	Duplicate computation for field <ObjectID>.
	Duplicate data type for field <ObjectID>.
	Duplicate date type for field <ObjectID>.
	Duplicate denormalized copy field for field <ObjectID>.
	Duplicate name structure for field <ObjectID>.
	Duplicate units of measure for field <ObjectID>.
	Error in field <ObjectID>.
	Field {fieldname} without table name in computation for field <ObjectID>.
	Invalid aggregate field for field <ObjectID>.
	Invalid aggregate type for field <ObjectID>.
	Invalid capitalization convention for field <ObjectID>.
	Invalid caption for field <ObjectID>.
	Invalid combination of name structure and search type for field <ObjectID>.
	Invalid computation for field <ObjectID>.
	Invalid data type for field <ObjectID>.
	Invalid date type for field <ObjectID>.
	Invalid denormalized copy field for field <ObjectID>.
	Invalid ID for field <ObjectID>.
	Invalid name for field <ObjectID>.
	Invalid name structure for field <ObjectID>.
	Invalid units of measure for field <ObjectID>.
	Missing aggregate field for field <ObjectID>.
	Missing aggregate type for field <ObjectID>.
	Missing data type for field <ObjectID>.
	Missing date type for field <ObjectID>.
	Missing ID for field <ObjectID>.
	Missing name structure for field <ObjectID>.
	Mixed-case unit word for field <ObjectID>.
	Multiple fields with ID <ObjectID>.
	No fiscal year specified, but field <ObjectID> is fiscal.
	Undefined field {fieldname} in computation for field <ObjectID>.
	Undefined table {tablename} in computation for field <ObjectID>.
	Underscores used in unit word for field <ObjectID>.

	Global Project Error Messages
	Belongs in nonvalidation compile method errors.
	Default ID entity <ObjectID> has no name phrasing with ID name type.
	Default name entity <ObjectID> has no name type and no name phrasing.
	Duplicate database information.
	Duplicate database time-out.
	Duplicate default date.
	Duplicate default ID entity.
	Duplicate default module name.
	Duplicate default name entity.
	Duplicate default self entity.
	Duplicate DSN.
	Duplicate fiscal year start information.
	Duplicate number of words to load.
	Duplicate regression test date.
	Duplicate regression test output file.
	Duplicate regression test question file.
	Duplicate regression test save file.
	Invalid database time-out.
	Invalid database type.
	Invalid database version.
	Invalid default date.
	Invalid default ID entity.
	Invalid default module name.
	Invalid default name entity.
	Invalid default self entity.
	Invalid DSN.
	Invalid fiscal year start day.
	Invalid fiscal year start month.
	Invalid maximum number of rows set.
	Invalid number of words to load.
	Invalid regression test date.
	Invalid regression test output file.
	Invalid regression test question file.
	Invalid regression test save file.
	Loading more than 10,000 words per entity is not recommended.
	Maximum number of rows to display is specified more than one time.
	Missing fiscal year day.
	Missing fiscal year month.
	OLAP objects in non-OLAP project.
	Undefined {objecttype} {objectid} is referenced in {objecttype} <ObjectID>.
	Undefined {objecttype} {objectid} is referenced in global project settings.
	Unexpected error in global settings.
	Unexpected error.

	Join Error Messages
	Computed field {fieldid} used in join condition for join <ObjectID>.
	Conditions for join <ObjectID> do not cover primary key fields of destination table {tableid}.
	Destination field {fieldname} in join <ObjectID> is not a key of destination table {tableid}.
	Destination field {fieldname} is used more than once in join <ObjectID>.
	Duplicate join condition {condition} in join <ObjectID>.
	Error in join <ObjectID>.
	Invalid destination field for join <ObjectID>.
	Invalid destination table for join <ObjectID>.
	Invalid ID for join <ObjectID>.
	Invalid source field for join <ObjectID>.
	Join <ObjectID> and join {joinid} have the same source fields.
	Join <ObjectID> contains a condition with identical source and destination fields.
	Join <ObjectID> is backward.
	Join <ObjectID> is identical to join {joinid} except the source and destination are reversed.
	Join <ObjectID> is identical to join {joinid}.
	Join field {fieldid} and {fieldid} in join <ObjectID> do not have the same data types.
	Join field {fieldid} in join <ObjectID> has data type "Other".
	Missing destination field for join condition in join <ObjectID>.
	Missing destination table in join <ObjectID>.
	Missing join conditions in join <ObjectID>.
	Missing source field for join condition in join <ObjectID>.
	Multiple joins with ID <ObjectID>.

	Level Error Messages
	Data capitalization does not match field for level <ObjectID>.
	Date type does not match field for level <ObjectID>.
	Date/time level <ObjectID> does not refer to a date or time field.
	Duplicate member property for level <ObjectID>.
	Error in level <ObjectID>.
	Invalid date type for level <ObjectID>.
	Invalid field for level <ObjectID>.
	Invalid name for level <ObjectID>.
	Missing date type for level <ObjectID>.
	Missing field for level <ObjectID>.
	Missing source field for level <ObjectID>
	Multiple levels with ID <ObjectID>.
	Name structure does not match field for level <ObjectID>.

	Measure Error Messages
	Nonnumeric field is associated with measure <ObjectID>.
	Units does not match field for measure <ObjectID>.

	Module Error Messages
	Multiple modules with ID <ObjectID>

	Phrasing Error Messages
	Adjective entity {entityid} in phrasing <ObjectID> has no name.
	Adjective entity for phrasing <ObjectID> is a multifield entity.
	Adjective entity for phrasing <ObjectID> is not a database entity.
	Dimension or cube entity is object of adjective phrasing <ObjectID>.
	Duplicate adjective for phrasing <ObjectID>.
	Duplicate high-value adjective for phrasing <ObjectID>.
	Duplicate high-value threshold for phrasing <ObjectID>.
	Duplicate low-value adjective for phrasing <ObjectID>.
	Duplicate low-value threshold for phrasing <ObjectID>.
	Duplicate object entity for phrasing <ObjectID>.
	Duplicate object entity in prepositional phrase for phrasing <ObjectID>.
	Duplicate preposition {prep} in prepositional phrase for phrasing <ObjectID>.
	Duplicate prepositional phrase "{prep} {entityid}" for phrasing <ObjectID>.
	Duplicate role "{roleid}" for phrasing <ObjectID>.
	Duplicate subject entity for phrasing <ObjectID>.
	Duplicate subset word "{subset}" for phrasing <ObjectID>.
	Duplicate verb "{verb}" for phrasing <ObjectID>.
	Duplicate word/value pair "{word} / {value}" for phrasing <ObjectID>.
	Duplicate word/value table for phrasing <ObjectID>.
	Entity {objectid} has a proper name but is used as the object of subset phrasing <ObjectID>.
	Error in phrasing <ObjectID>.
	High threshold is lower than low threshold in phrasing <ObjectID>.
	High-value threshold for phrasing <ObjectID> is not a number.
	Invalid adjective for phrasing <ObjectID>.
	Invalid English values for phrasing <ObjectID>.
	Invalid high value adjective for phrasing <ObjectID>.
	Invalid high value threshold for phrasing <ObjectID>.
	Invalid ID for phrasing <ObjectID>.
	Invalid lookup value for phrasing <ObjectID>.
	Invalid lookup word for phrasing <ObjectID>.
	Invalid low value adjective for phrasing <ObjectID>.
	Invalid low value threshold for phrasing <ObjectID>.
	Invalid main preposition for phrasing <ObjectID>.
	Invalid object entity for phrasing <ObjectID>.
	Invalid preposition entity for phrasing <ObjectID>.
	Invalid preposition for phrasing <ObjectID>.
	Invalid subject entity for phrasing <ObjectID>.
	Invalid subset noun for phrasing <ObjectID>.
	Invalid value field of lookup table for phrasing <ObjectID>.
	Invalid verb for phrasing <ObjectID>.
	Invalid word field of lookup table for phrasing <ObjectID>.
	Low-value threshold for phrasing <ObjectID> is not a number.
	Measurement entity for phrasing <ObjectID> is a table entity.
	Missing adjective entity for phrasing <ObjectID>.
	Missing adjective for phrasing <ObjectID>.
	Missing adjective or object entity for phrasing <ObjectID>.
	Missing code field in lookup table for phrasing <ObjectID>.
	Missing high-value adjectives for phrasing <ObjectID>.
	Missing low-value adjectives for phrasing <ObjectID>.
	Missing measurement entity for phrasing <ObjectID>.
	Missing name entity for phrasing <ObjectID>.
	Missing name type for name entity in phrasing <ObjectID>.
	Missing object entity for phrasing <ObjectID>.
	Missing preposition entity for prepositional phrase in phrasing <ObjectID>.
	Missing preposition for prepositional phrase in phrasing <ObjectID>.
	Missing prepositional phrase for phrasing <ObjectID>.
	Missing subject entity for phrasing <ObjectID>.
	Missing subset entity for phrasing <ObjectID>.
	Missing subset word for phrasing <ObjectID>.
	Missing value in word/value pair for phrasing <ObjectID>.
	Missing verb for phrasing <ObjectID>.
	Missing word field in lookup table for phrasing <ObjectID>.
	Missing word in word/value pair for phrasing <ObjectID>.
	Missing word/code pairs for phrasing <ObjectID>.
	Mixed-case adjective used for phrasing <ObjectID>.
	Mixed-case subset word used for phrasing <ObjectID>.
	Mixed-case verb used for phrasing <ObjectID>.
	Mixed-case, high-value adjective used for phrasing <ObjectID>.
	Mixed-case, low-value adjective used for phrasing <ObjectID>.
	Multiple phrasings with ID <ObjectID>.
	Name entity {entityid} is table entity for phrasing <ObjectID>.
	Name entity for phrasing <ObjectID> is not a database entity.
	Numeric adjective in phrasing <ObjectID>.
	Numeric subset word in phrasing <ObjectID>.
	Object for phrasing <ObjectID> has both an entity and a role.
	Phrasing <ObjectID> has a low threshold or a high threshold but not both.
	Phrasing <ObjectID> has a table adjective entity with a multifield key.
	Phrasing <ObjectID> is identical to phrasing {phrasingid}.
	Prepositional phrases in name phrasing <ObjectID>.
	Relationship <ObjectID> uses a dative alternation.
	Relationship <ObjectID> uses a passive voice.
	Subject entity {entityid} is field entity for phrasing <ObjectID>.
	Subject entity for phrasing <ObjectID> is not a database entity.
	Subject for phrasing <ObjectID> has both an entity and a role.
	Subset entity {entityid} in phrasing <ObjectID> has no name.
	Subset entity for phrasing <ObjectID> is a multifield entity.
	Subset entity for phrasing <ObjectID> is not a database entity.
	Subset phrasing <ObjectID> has no subset word or object entity.
	Text value is not allowed for associated value in phrasing <ObjectID>.
	Too many object entities for phrasing <ObjectID>.
	Underscores used in adjective for phrasing <ObjectID>.
	Underscores used in high-value word for phrasing <ObjectID>.
	Underscores used in low-value word for phrasing <ObjectID>.
	Underscores used in subset word for phrasing <ObjectID>.
	Underscores used in verb for phrasing <ObjectID>.
	Verb "{verb}" is not in root form for phrasing <ObjectID>.

	Property Error Messages
	Data capitalization does not match field for member property <ObjectID>.
	Error in measure <ObjectID>.
	Error in member property <ObjectID>.
	Invalid aggregate type for measure <ObjectID>.
	Invalid field for measure <ObjectID>.
	Invalid field for member property <ObjectID>.
	Invalid name for measure <ObjectID>.
	Invalid name for member property <ObjectID>.
	Missing aggregate type for measure <ObjectID>.
	Missing field for measure <ObjectID>.
	Missing field for member property <ObjectID>.
	Missing name for measure <ObjectID>.
	Missing source field for member property <ObjectID>.
	Multiple measures with ID <ObjectID>.
	Multiple properties with ID <ObjectID>.
	Name structure does not match field for member property <ObjectID>.

	Relationships Error Messages
	Case mismatch for field {fieldname} in SQL condition for relationship <ObjectID>.
	Case mismatch for table {tablename} in SQL condition for relationship <ObjectID>.
	Database entity used as date for the command relationship <ObjectID>.
	Database entity used as duration for the command relationship <ObjectID>.
	Database entity used as end date for the command relationship <ObjectID>.
	Database entity used as start date for the command relationship <ObjectID>.
	Date entity for relationship <ObjectID> is not a database entity.
	Date entity for relationship <ObjectID> is not a date.
	Date unsupported by phrasing in relationship {ObjectID}.
	Duplicate argument {entityid} + {argtype} for relationship <ObjectID>.
	Duplicate argument ID {argid} for relationship <ObjectID>.
	Duplicate date entity for relationship <ObjectID>.
	Duplicate default date for relationship <ObjectID>.
	Duplicate duration entity for relationship <ObjectID>.
	Duplicate end date entity for relationship <ObjectID>.
	Duplicate join table for relationship <ObjectID>.
	Duplicate location entity for relationship <ObjectID>.
	Duplicate phrasing group for relationship <ObjectID>.
	Duplicate role for relationship <ObjectID>.
	Duplicate SQL condition for relationship <ObjectID>.
	Duplicate start date entity for relationship <ObjectID>.
	Duration entity for relationship <ObjectID> is not a database entity.
	Duration unsupported by phrasing in relationship {ObjectID}.
	End date entity for relationship <ObjectID> is not a database entity.
	End date entity for relationship <ObjectID> is not a date.
	End date unsupported by phrasing in relationship {ObjectID}.
	Entity {entityid} should be the date/time of relationship <ObjectID>.
	Entity {entityid} should be the location of relationship <ObjectID>.
	Error in relationship <ObjectID>.
	Field {fieldname} without table name in SQL condition for relationship <ObjectID>.
	Invalid argument ID on command argument for relationship <ObjectID>.
	Invalid argument type on command argument for relationship <ObjectID>.
	Invalid command ID for relationship <ObjectID>.
	Invalid date entity for relationship <ObjectID>.
	Invalid default date for relationship <ObjectID>.
	Invalid duration entity for relationship <ObjectID>.
	Invalid end date entity for relationship <ObjectID>.
	Invalid entity on command argument for relationship <ObjectID>.
	Invalid ID for relationship <ObjectID>.
	Invalid join table for relationship <ObjectID>.
	Invalid location entity for relationship <ObjectID>.
	Invalid SQL condition for relationship <ObjectID>.
	Invalid start date entity for relationship <ObjectID>.
	Location entity for relationship <ObjectID> is not a database entity.
	Location unsupported by phrasing in relationship {ObjectID}.
	Missing argument ID in argument for relationship <ObjectID>.
	Missing argument type in argument for relationship <ObjectID>.
	Missing command name for relationship <ObjectID>.
	Missing command phrasing in phrasing group for command relationship <ObjectID>.
	Missing entities for relationship <ObjectID>.
	Missing entity in argument for relationship <ObjectID>.
	Missing join path to field {fieldid} in relationship <ObjectID>.
	Missing join table for relationship <ObjectID>.
	Missing path from join table of relationship <ObjectID> to entity {entityid}.
	Missing phrasings for relationship <ObjectID>.
	Most recent data is not supported for the relationship <ObjectID>.
	Multifield end date entity for relationship <ObjectID>.
	Multifield start date entity for relationship <ObjectID>.
	Multiple command phrasings in phrasing group for relationship <ObjectID>.
	Multiple possible paths from join table of relationship <ObjectID> to entity {entityid}.
	Multiple quantity/amount in relationship <ObjectID>.
	Multiple relationships with ID <ObjectID>.
	No relationship in OLAP cube between <ObjectID> and {objectid}.
	Nonlocation entity used as location in relationship <ObjectID>.
	Relationship <ObjectID> and relationship {relationshipid} are identical.
	Relationship <ObjectID> and relationship {relationshipid} have measurement phrasings that use the same measurement.
	Relationship <ObjectID> has both a when date and an end date.
	Relationship <ObjectID> has both a when date and start date.
	Relationship <ObjectID> has two measurement phrasings that use the same measurement.
	Relationship <ObjectID> is identical to relationship {relationshipid}.
	Relationships <ObjectID> and {relationshipid} each cover only part of the underlying database relationship.
	Role {roleid} is not marked to always display and does not appear in each phrasing group in relationship <ObjectID>.
	Start date entity for relationship <ObjectID> is not a database entity.
	Start date entity for relationship <ObjectID> is not a date.
	Start date unsupported by phrasing in relationship {ObjectID}
	The entity {entityid} is used as both the {usage} and the {usage} in the relationship <ObjectID>.
	Too many phrasings in relationship <ObjectID>.
	Too many roles in relationship <ObjectID>.
	Undefined field {fieldname} in SQL condition for relationship <ObjectID>.
	Undefined table {tablename} in SQL condition for relationship <ObjectID>.
	Ungrouped noncommand phrasing in command relationship <ObjectID>.
	Unsupported quantity/amount in phrasing {phrasingid} in relationship <ObjectID>.

	Role Error Messages
	Duplicate amount entity for role <ObjectID>.
	Duplicate join in join path for role <ObjectID>.
	Duplicate join path for role <ObjectID>.
	Duplicate nondatabase entity data type for role <ObjectID>.
	Duplicate quantity entity for role <ObjectID>.
	Entity {entityid} used as amount of itself in role <ObjectID>.
	Entity {entityid} used as quantity of itself in role <ObjectID>.
	Error in role <ObjectID>.
	Invalid amount field for role <ObjectID>.
	Invalid entity for role <ObjectID>.
	Invalid ID for role <ObjectID>.
	Invalid join in join path for role <ObjectID>.
	Invalid join path for role <ObjectID>.
	Invalid nondatabase entity data type for role <ObjectID>.
	Invalid quantity entity for role <ObjectID>.
	Missing entity for role <ObjectID>.
	Missing join path for role <ObjectID>.
	Missing joins in join path for role <ObjectID>.
	Missing nondatabase entity data type for role <ObjectID>.
	Multifield entity {entityid} used as amount on role <ObjectID>.
	Multifield entity {entityid} used as quantity on role <ObjectID>.
	Multiple roles with ID <ObjectID>.
	Nonmeasure entity {entityid} used as amount on role <ObjectID>.
	Nonmeasure entity {entityid} used as quantity on role <ObjectID>
	Role <ObjectID> has a nondatabase entity data type in a noncommand relationship.
	Role <ObjectID> is a database entity but has a nondatabase entity data type.
	Role <ObjectID> is mandatory, but has no name phrasing.
	Role <ObjectID> is mandatory, but is not a number, name, or date.
	Role <ObjectID> is marked to always display in a command relationship.
	Role <ObjectID> is not marked to always display and does not appear in each phrasing group.
	Role <ObjectID> is not marked to always display and does not appear in phrasing {phrasingid}.
	Source/destination mismatch in join path for role <ObjectID>

	Table Error Messages
	Duplicate field in table <ObjectID>.
	Error in table <ObjectID>.
	Invalid name for table <ObjectID>.
	Missing fields for table <ObjectID>.
	Missing keys for table <ObjectID>.
	Multiple tables with ID <ObjectID>.

	Various Error Messages
	The ID of {objecttype} <ObjectID> is too long.

	Meta Data Services
	Meta Data Services
	Meta Data Services Overview
	Meta Data Services Fundamentals
	Meta Data Fundamentals
	Information Model Fundamentals
	Meta Data Management

	Using Meta Data Services
	Designing Meta Data Types Using Information Models
	Developing Applications Using Meta Data
	Processing Meta Data at Run Time

	What's New in Meta Data Services
	Meta Data Browser Enhancement
	XML Encoding Enhancements
	Repository Engine Programming Enhancements
	Repository Engine Modeling Enhancements

	Meta Data Services Architecture
	Tools and Applications
	Open Standards: OIM, COM, XML
	Information Models
	Repository Engine
	Repository API
	Repository Databases
	Meta Data Services SDK
	Specifications and Limits

	OIM in Meta Data Services
	Why the OIM is Important
	OIM Resources and Documentation
	Meta Data Coalition

	XML in Meta Data Services
	Ways to Use XML in Meta Data Services

	Upgrading from Earlier Versions
	Retaining Legacy Components in a Repository
	Upgrading the Repository Engine
	Upgrading and Migrating a Repository Database
	Upgrading an Information Model
	Using Repository Engine Features with Older Databases

	Using Meta Data Browser
	Viewing Meta Data in Meta Data Browser
	Icons Used in Meta Data Browser
	Working with Repository Databases in Meta Data Browser
	Registering a Repository Database in Meta Data Browser
	Selecting Browse Mode in Meta Data Browser
	Setting Display Options in Meta Data Browser
	Editing Registration Properties in Meta Data Browser
	Deleting Registration Properties in Meta Data Browser
	Exporting to XML

	Working with Contents in Meta Data Browser
	Working with Object Properties in Meta Data Browser
	Creating Objects
	Deleting, Renaming, and Removing Objects from Collections

	Working with Information Models in Meta Data Browser
	Installing Information Models in Meta Data Browser

	Meta Data Browser User Interface Reference
	Meta Data Services Browser Display Options Dialog Box
	Repository Object Properties Dialog Box
	Database Registration Properties Dialog Box
	Repository Properties Dialog Box
	Create New Object Dialog Box

	Building SQL Server Applications
	Building SQL Server Applications Overview
	Building SQL Server Applications Overview
	Connecting Early Version Clients to SQL Server 2000
	Validating User Input
	Security and Scripting

	Samples
	Samples
	Samples
	User-Defined Function Samples
	Utility Samples
	Bii
	Pbalance

	Virtual Backup Device Samples
	Mprocess
	Mthread
	Osimple
	Simple
	Snapshot

	XML Samples
	XMLDemo
	XMLStartup

	SQL-SCM Samples
	SCMControl
	SCMStatus

	MS DTC Samples
	MS DTC Dblib Sample
	MS DTC ODBC Sample
	MS DTC T-SQL Sample

	OLE Automation Samples
	Getnpv OLE Automation Sample
	Loopback (DAO) OLE Automation Sample
	Loopback (RDO) OLE Automation Sample
	Traverse OLE Automation Sample

	Database Schema Samples
	Sample Corporate Data Model
	Sample Enterprise Data Warehouse
	Sample Human Resources Data Mart
	Sample Sales Data Mart

	ADO and SQL Server
	ADO and SQL Server
	Programming ADO SQL Server Applications
	Getting Started with ADO
	ADO Syntax Conventions
	System Requirements for ADO
	ADO and OLE DB Provider Installation
	ADO File Locations
	Upgrading the Catalog Stored Procedures
	Using ADO in Different Development Environments
	Visual Basic and ADO
	Visual C++ and ADO
	Web-Based Applications and ADO

	Adding a Data Source
	Deleting a Data Source

	Creating an ADO Application
	Connecting to a SQL Server Data Source
	Connecting to Multiple Instances of SQL Server
	Retrieving Connection Properties

	Executing Queries
	Using the Command Object
	Using the Connection Object
	Constructing an SQL Statement
	Using Parameters
	Executing Statements
	Executing Statements Directly
	Executing Prepared Statements

	Executing Stored Procedures
	Using Return Code and Output Parameters for Stored Procedures

	Executing User-Defined Functions
	Using Batch Updates
	Generating Multiple Recordsets

	Processing Results
	Using the Recordset Object
	Using the Fields Collection and Field Object
	Determining the Characteristics of a Result Set
	Mapping Data Types
	Data Type Usage Considerations

	Using Cursors with ADO
	Using Default Result Sets
	Using Server Cursors with ADO
	Scrolling and Retrieving Rows
	Bookmarking Rows

	Performing Transactions in ADO
	Handling Errors and Messages in ADO
	Handling Data Definition Language
	Managing Long Data Types
	ADO Support for SQL Server XML Features
	XML-Related Properties
	Using Streams for Command Input
	Retrieving Result Sets into Streams
	Mapping an XML Schema to a Relational Schema Using Annotated Schemas
	ADO Support for OpenXML

	Objects
	Command Object
	Connection Object
	Record Object
	Recordset Object
	Stream Object

	Dynamic Properties
	A
	Access Order Property
	Active Sessions Property
	Asynchable Abort Property
	Asynchable Commit Property
	Autocommit Isolation Levels Property

	B
	Base Path Property
	Blocking Storage Objects Property
	Bookmark Type Property
	Bookmarkable Property

	C
	Catalog Location Property
	Catalog Term Property
	Change Inserted Rows Property
	Column Definition Property
	Column Privileges Property
	Column Set Notification Property
	Command Time Out Property
	Connect Timeout Property
	Content Type Property
	Current Catalog Property
	Cursor Auto Fetch Property

	D
	Data Source Property
	Data Source Name Property
	Data Source Object Threading Model Property
	DBMS Name Property
	DBMS Version Property
	Defer Column Property
	Defer Prepare Property
	Delay Storage Object Updates Property

	E
	Extended Properties Property

	F
	Fetch Backwards Property

	G
	GROUP BY Support Property

	H
	Heterogeneous Table Support Property
	Hold Rows Property

	I
	IAccessor Property
	IColumnsInfo Property
	IColumnsRowset Property
	IConnectionPointContainer Property
	IConvertType Property
	Identifier Case Sensitivity Property
	Immobile Rows Property
	Initial Catalog Property
	IRowset Property
	IRowsetChange Property
	IRowsetIdentity Property
	IRowsetInfo Property
	IRowsetLocate Property
	IRowsetResynch Property
	IRowsetScroll Property
	IRowsetUpdate Property
	ISequentialStream Property
	Isolation Levels Property
	Isolation Retention Property
	ISupportErrorInfo Property

	L
	Literal Bookmarks Property
	Literal Row Identity Property
	Locale Identifier Property
	Lock Mode Property

	M
	Mapping Schema Property
	Maximum Index Size Property
	Maximum Open Rows Property
	Maximum Pending Rows Property
	Maximum Row Size Property
	Maximum Row Size Includes BLOB Property
	Maximum Rows Property
	Maximum Tables in SELECT Property
	Multiple Parameter Sets Property
	Multiple Results Property
	Multiple Storage Objects Property
	Multi-Table Update Property

	N
	Notification Granularity Property
	Notification Phases Property
	NULL Collation Order Property
	NULL Concatenation Behavior Property

	O
	Objects Transacted Property
	OLE DB Version Property
	OLE Object Support Property
	Open Rowset Support Property
	ORDER BY Columns in Select List Property
	Others' Changes Visible Property
	Others' Inserts Visible Property
	Output Encoding Property
	Output Parameter Availability Property
	Output Stream Property
	Own Changes Visible Property
	Own Inserts Visible Property

	P
	Pass By Ref Accessors Property
	Password Property
	Persist Security Info Property
	Persistent ID Type Property
	Prepare Abort Behavior Property
	Prepare Commit Behavior Property
	Preserve on Abort Property
	Preserve on Commit Property
	Procedure Term Property
	Prompt Property
	Provider Friendly Name Property
	Provider Name Property
	Provider Version Property

	Q
	Quick Restart Property

	R
	Read-Only Data Source Property
	Reentrant Events Property
	Remove Deleted Rows Property
	Report Multiple Changes Property
	Return Pending Inserts Property
	Row Delete Notification Property
	Row First Change Notification Property
	Row Insert Notification Property
	Row Privileges Property
	Row Resynchronization Notification Property
	Row Threading Model Property
	Row Undo Change Notification Property
	Row Undo Delete Notification Property
	Row Undo Insert Notification Property
	Row Update Notification Property
	Rowset Conversions on Command Property
	Rowset Fetch Position Change Notification Property
	Rowset Release Notification Property

	S
	Schema Term Property
	Schema Usage Property
	Scroll Backwards Property
	Server Cursor Property
	Server Data on Insert Property
	Skip Deleted Bookmarks Property
	SQL Support Property
	SS STREAM FLAGS Property
	Strong Row Identity Property
	Structured Storage Property
	Subquery Support Property

	T
	Table Term Property
	Transaction DDL Property

	U
	Unique Rows Property
	Updatability Property
	Use Bookmarks Property
	User ID Property
	User Name Property

	W
	Window Handle Property

	X
	XML Root Property
	XSL Property

	Provider Support for ADOX

	ADO Samples
	ADO Connection and Error Handling
	ADO and Long Data Types (Visual Basic)
	ADO and Long Data Types (C++)
	ADO and Long Data Types (Web)
	ADO Web Application
	ADO and FOR XML
	ADO and Open XML
	ADO and XPath Query

	OLE DB and SQL Server
	OLE DB and SQL Server
	Programming OLE DB SQL Server Applications
	Getting Started with the OLE DB Provider for SQL Server
	OLE DB Syntax Conventions
	System Requirements for the OLE DB Provider for SQL Server
	Installing the OLE DB Provider for SQL Server
	Upgrading the Catalog Stored Procedures (OLE DB)

	Creating an OLE DB Application
	Establishing a Connection to a Data Source
	Executing a Command
	Processing Results
	Compiling OLE DB Applications
	About OLE DB Properties

	Data Source Objects
	Data Source Properties
	Data Source Information Properties
	Initialization and Authorization Properties
	Sessions
	Session Properties
	Persisted Data Source Objects

	Commands
	Command Syntax
	Command Parameters
	Preparing Commands
	Commands Generating Multiple-Rowset Results
	Using IMultipleResults to Process Multiple Result Sets

	Rowsets
	Creating a Rowset with IOpenRowset
	Creating Rowsets with ICommand::Execute
	Rowset Properties and Behaviors
	Rowsets and SQL Server Cursors
	Fetching Rows
	Next Fetch Position

	Fetching a Single Row Using IRow
	Using IRow::GetColumns
	Fetching BLOB Data Using IRow
	Fetching BLOB Data Using IRow::GetColumns and ISequentialStream
	Fetching BLOB Data Using IRow::Open and ISequentialStream

	Bookmarks

	Running Stored Procedures (OLE DB)
	Calling a Stored Procedure (OLE DB)
	Running User-Defined Functions (OLE DB)
	Bulk-Copy Rowsets
	Enabling a Session for IRowsetFastLoad
	IRowsetFastLoad Rowsets

	Updating Data in Rowsets
	Updating Data in SQL Server Cursors
	Resynchronizing Rows

	BLOBs and OLE Objects
	Getting Large Data
	Setting Large Data

	Tables and Indexes
	Creating SQL Server Tables
	Adding a Column to a SQL Server Table
	Removing a Column from a SQL Server Table
	Dropping a SQL Server Table
	Creating SQL Server Indexes
	Dropping a SQL Server Index

	Notifications
	Data Types (OLE DB)
	Data Type Mapping in Rowsets and Parameters
	Data Type Mapping in ITableDefinition

	Schema Rowset Support in SQLOLEDB
	Catalog Stored Procedures
	Distributed Query Support in Schema Rowsets

	Transactions
	Supporting Local Transactions
	Supporting Distributed Transactions
	Isolation Levels in SQLOLEDB

	SQLOLEDB Enumerator
	Errors
	Return Codes
	Information in OLE DB Error Interfaces
	SQL Server Error Detail
	SQLOLEDB Example: Retrieving Error Information
	SQL Server Message Results

	SQL Server OLE DB Programmers Reference
	Interfaces (OLE DB)
	IRowsetFastLoad (OLE DB)
	IRowsetFastLoad::Commit (OLE DB)
	IRowsetFastLoad::InsertRow (OLE DB)

	ISQLServerErrorInfo (OLE DB)
	ISQLServerErrorInfo::GetErrorInfo (OLE DB)

	Schema Rowsets (OLE DB)
	LINKEDSERVERS Rowset (OLE DB)

	ODBC and SQL Server
	ODBC and SQL Server
	Programming ODBC SQL Server Applications
	Getting Started with ODBC
	ODBC Syntax Conventions
	System Requirements for ODBC
	 SQL Server ODBC Driver
	SQL Server
	Network Software

	Installing the SQL Server ODBC Driver
	Upgrading the Catalog Stored Procedures (ODBC)
	Adding a Data Source
	Deleting a Data Source
	Connecting to a SQL Server Data Source
	Using odbcping to Verify a Connection

	Creating an ODBC Application
	Asynchronous Mode and SQLCancel
	Multithreaded Applications

	Communicating with SQL Server
	Allocating an Environment Handle
	Allocating a Connection Handle
	SQL Server ODBC Data Sources
	Connecting to a Data Source
	Disconnecting from a Data Source

	Executing Queries
	Allocating a Statement Handle
	Constructing an SQL Statement
	Constructing SQL Statements for Cursors
	Using Statement Parameters
	Binding Parameters

	Executing Statements
	Direct Execution
	Prepared Execution
	Procedures
	Batches of Statements
	Effects of SQL-92 Options

	Freeing a Statement Handle

	Processing Results
	Determining the Characteristics of a Result Set
	Assigning Storage (Binding)
	Fetching Result Data
	Mapping Data Types
	Data Type Usage
	Autotranslation of Character Data

	Using Cursors
	How Cursors Are Implemented
	Using Default Result Sets
	Using Server Cursors
	ODBC Cursor Library

	Cursor Types
	Cursor Behaviors
	Cursor Properties
	Cursor Rowset Size
	Cursor Concurrency
	Cursor Transaction Isolation Level

	Cursor Programming Details (ODBC)
	Implicit Cursor Conversions (ODBC)
	Using Autofetch with ODBC Cursors
	Fast Forward-Only Cursors (ODBC)

	Scrolling and Fetching Rows
	Bookmarking Rows

	Positioned Updates (ODBC)

	Performing Transactions
	Transactions in ODBC
	Performing Distributed Transactions

	Handling Errors and Messages
	Processing Statements That Generate Messages
	Diagnostic Records and Fields
	Native Error Numbers
	SQLSTATE (ODBC Error Codes)
	Error Messages

	Running Stored Procedures
	Calling a Stored Procedure
	Batching Stored Procedure Calls

	Processing Stored Procedure Results

	Using Catalog Functions
	Performing Bulk Copy Operations
	Logged and Nonlogged Bulk Copies
	Using Data Files and Format Files
	Bulk Copying from Program Variables
	Managing Bulk Copy Batch Sizes
	Bulk Copying text and image Data
	Converting from DB-Library to ODBC Bulk Copy

	Managing text and image Columns
	Bound vs. Unbound text and image Columns
	Logged vs. Unlogged Modifications
	Data-at-execution and text, ntext, or image Columns

	Connecting to a Failover Server
	Profiling ODBC Driver Performance

	SQL Server ODBC Driver Programmer's Reference
	ODBC API Implementation Details
	SQLBindCol
	SQLBindParameter
	SQLBrowseConnect
	SQLCloseCursor
	SQLColAttribute
	SQLColumnPrivileges
	SQLColumns
	SQLConfigDataSource
	SQLDescribeCol
	SQLDescribeParam
	SQLDriverConnect
	SQLDrivers
	SQLEndTran
	SQLFetchScroll
	SQLForeignKeys
	SQLFreeHandle
	SQLFreeStmt
	SQLGetConnectAttr
	SQLGetCursorName
	SQLGetData
	SQLGetDescField
	SQLGetDiagField
	SQLGetFunctions
	SQLGetInfo
	SQLGetStmtAttr
	SQLGetTypeInfo
	SQLMoreResults
	SQLNativeSql
	SQLNumResultCols
	SQLPrepare
	SQLPrimaryKeys
	SQLProcedureColumns
	SQLProcedures
	SQLPutData
	SQLRowCount
	SQLSetConnectAttr
	SQLSetEnvAttr
	SQLSetStmtAttr
	SQLSpecialColumns
	SQLStatistics
	SQLTablePrivileges
	SQLTables

	SQL Server Driver Extensions
	Bulk-Copy Functions
	bcp_batch
	bcp_bind
	bcp_colfmt
	bcp_collen
	bcp_colptr
	bcp_columns
	bcp_control
	bcp_done
	bcp_exec
	bcp_getcolfmt
	bcp_init
	bcp_moretext
	bcp_readfmt
	bcp_sendrow
	bcp_setcolfmt
	bcp_writefmt

	Schema Functions Supporting Distributed Queries
	SQLLinkedCatalogs
	SQLLinkedServers

	ODBC Samples
	Cursors and Transactions, Data Entry and Concurrency
	LoadData
	Performance
	ODBC Bulk Copy Sample
	COMPUTE Clause and Multiple Result Sets

	SQL-DMO
	SQL-DMO
	Developing SQL-DMO Applications
	Getting Started with SQL-DMO
	SQL-DMO Syntax Conventions
	System Requirements for SQL-DMO
	Installing SQL-DMO

	SQL-DMO Objects and SQL Server Administration
	SQL-DMO Object
	Object Properties
	Object Methods
	Object Events

	Creating SQL Server Components Using SQL-DMO Objects
	SQL-DMO Objects and Existing SQL Server Components
	Programming Extended SQL-DMO Objects
	Using SQL-DMO Multistrings

	SQL-DMO Collections and SQL Server Administration
	SQL-DMO Collections
	Collection Properties
	Collection Methods

	Creating SQL Server Components Using SQL-DMO Collections
	Removing SQL Server Components Using SQL-DMO Collections

	Description of the SQLServer Object
	Creating and Connecting a SQLServer Object
	SQL-DMO Object Tree

	Developing SQL-DMO Applications Using Visual Basic
	Object Creation
	Properties Collection
	SQL-DMO Constants
	Handling SQL-DMO Events
	Handling SQL-DMO Errors

	Developing SQL-DMO Applications Using C or C++
	Objects, References, and Reference Counting
	Object Creation
	Member Functions (Properties and Methods)
	SQL-DMO Strings
	SQL-DMO Properties Collection
	SQL-DMO Data Types
	Handling SQL-DMO Events
	Handling SQL-DMO Errors

	SQL-DMO Reference
	Objects
	A
	Alert Object
	AlertSystem Object
	Application Object

	B
	Backup Object
	Backup2 Object
	BackupDevice Object
	BulkCopy Object
	BulkCopy2 Object

	C
	Category Object
	Check Object
	Column Object
	Column2 Object
	Configuration Object
	ConfigValue Object

	D
	Database Object
	Database2 Object
	DatabaseRole Object
	DatabaseRole2 Object
	DBFile Object
	DBObject Object
	DBOption Object
	DBOption2 Object
	Default Object
	Default2 Object
	DistributionArticle Object
	DistributionArticle2 Object
	DistributionDatabase Object
	DistributionDatabase2 Object
	DistributionPublication Object
	DistributionPublication2 Object
	DistributionPublisher Object
	DistributionPublisher2 Object
	DistributionSubscription Object
	DistributionSubscription2 Object
	Distributor Object
	Distributor2 Object
	DRIDefault Object

	F
	FileGroup Object
	FileGroup2 Object
	FullTextCatalog Object
	FullTextCatalog2 Object
	FullTextService Object

	I
	Index Object
	Index2 Object
	IntegratedSecurity Object

	J
	Job Object
	JobFilter Object
	JobHistoryFilter Object
	JobSchedule Object
	JobServer Object
	JobServer2 Object
	JobStep Object

	K
	Key Object

	L
	Language Object
	LinkedServer Object
	LinkedServer2 Object
	LinkedServerLogin Object
	LogFile Object
	Login Object
	Login2 Object

	M
	MergeArticle Object
	MergeArticle2 Object
	MergeDynamicSnapshotJob Object
	MergePublication Object
	MergePublication2 Object
	MergePullSubscription Object
	MergePullSubscription2 Object
	MergeSubscription Object
	MergeSubscription2 Object
	MergeSubsetFilter Object

	N
	NameList Object

	O
	Operator Object

	P
	Permission Object
	Permission2 Object
	Property Object
	Publisher Object
	Publisher2 Object

	Q
	QueryResults Object
	QueryResults2 Object

	R
	RegisteredServer Object
	RegisteredSubscriber Object
	Registry Object
	Registry2 Object
	RemoteLogin Object
	RemoteServer Object
	RemoteServer2 Object
	Replication Object
	Replication2 Object
	ReplicationDatabase Object
	ReplicationDatabase2 Object
	ReplicationSecurity Object
	ReplicationStoredProcedure Object
	ReplicationStoredProcedure2 Object
	ReplicationTable Object
	ReplicationTable2 Object
	Restore Object
	Restore2 Object
	Rule Object
	Rule2 Object

	S
	Schedule Object
	ServerGroup Object
	ServerRole Object
	SQLObjectList Object
	SQLServer Object
	SQLServer2 Object
	StoredProcedure Object
	StoredProcedure2 Object
	Subscriber Object
	Subscriber2 Object
	SystemDatatype Object
	SystemDataType2 Object

	T
	Table Object
	Table2 Object
	TargetServer Object
	TargetServerGroup Object
	TransactionLog Object
	TransArticle Object
	TransArticle2 Object
	Transfer Object
	Transfer2 Object
	TransPublication Object
	TransPublication2 Object
	TransPullSubscription Object
	TransPullSubscription2 Object
	TransSubscription Object
	TransSubscription2 Object
	Trigger Object
	Trigger2 Object

	U
	User Object
	User2 Object
	UserDefinedDatatype Object
	UserDefinedDataType2 Object
	UserDefinedFunction Object

	V
	View Object
	View2 Object

	Collections
	A
	AlertCategories Collection
	Alerts Collection

	B
	BackupDevices Collection

	C
	Checks Collection
	Columns Collection
	ConfigValues Collection

	D
	DatabaseRoles Collection
	Databases Collection
	DBFiles Collection
	Defaults Collection
	DistributionArticles Collection
	DistributionDatabases Collection
	DistributionPublications Collection
	DistributionPublishers Collection
	DistributionSubscriptions Collection

	F
	FileGroups Collection
	FullTextCatalogs Collection

	I
	Indexes Collection

	J
	JobCategories Collection
	Jobs Collection
	JobSchedules Collection
	JobSteps Collection

	K
	Keys Collection

	L
	Languages Collection
	LinkedServerLogins Collection
	LinkedServers Collection
	LogFiles Collection
	LogFiles2 Collection
	Logins Collection

	M
	MergeArticles Collection
	MergeDynamicSnapshotJobs Collection
	MergePublications Collection
	MergePullSubscriptions Collection
	MergeSubscriptions Collection
	MergeSubsetFilters Collection

	N
	Names Collection

	O
	OperatorCategories Collection
	Operators Collection

	P
	Properties Collection

	R
	RegisteredServers Collection
	RegisteredSubscribers Collection
	RemoteLogins Collection
	RemoteServers Collection
	ReplicationDatabases Collection
	ReplicationStoredProcedures Collection
	ReplicationTables Collection
	Rules Collection

	S
	ServerGroups Collection
	ServerRoles Collection
	SQLServers Collection
	StoredProcedures Collection
	SystemDatatypes Collection

	T
	Tables Collection
	TargetServerGroups Collection
	TargetServers Collection
	TransArticles Collection
	TransPublications Collection
	TransPullSubscriptions Collection
	TransSubscriptions Collection
	Triggers Collection

	U
	UserDefinedDatatypes Collection
	UserDefinedFunctions Collection
	Users Collection

	V
	Views Collection

	Properties
	A
	Action Property (Backup)
	Action Property (Restore)
	ActiveEndDate Property
	ActiveEndTimeOfDay Property
	ActiveStartDate Property
	ActiveStartTimeOfDay Property
	AdditionalParameters Property
	Adsp Property
	AfterTrigger Property
	AgentCheckupInterval Property
	AgentLogFile Property
	AgentOffload Property
	AgentOffloadServer Property
	AgentsStatus Property
	Alias Property
	AllowDTS Property
	AllowIdentity Property
	AllowInteractiveResolver Property
	AllowLength Property
	AllowMergePublication Property
	AllowNulls Property
	AllowQueuedTransactions Property
	AllowSynchronousTransactions Property
	AllowSyncToAlternate Property
	AltSnapshotFolder Property
	AnsiNulls Property
	AnsiNullsStatus Property
	AnsiPaddingStatus Property
	ApplicationName Property
	AppRole Property
	ArticleResolver Property
	ArticleType Property
	AssignmentDiag Property
	Attributes Property
	AuditLevel Property
	AutoClose Property
	AutoCreateStat Property
	AutogenerateSyncProcedures Property
	AutoIdentityRange Property
	AutoReConnect Property
	AutoShrink Property
	AutoStart Property
	AutostartDTC Property
	AutostartLicensing Property
	AutostartMail Property
	AutostartServer Property
	AutoUpdateStat Property

	B
	BackupDirectory Property
	BackupSetDescription Property
	BackupSetName Property
	BaseType Property
	BlockingTimeout Property
	BlockSize Property

	C
	CaseSensitive Property
	Catalog Property
	Category Property
	CentralizedConflicts Property
	CharacterSet Property
	Checked Property
	CheckPermissions Property
	Clustered Property
	CmdExecSuccessCode Property
	CodePage Property
	Collation Property
	CollationName Property
	ColumnDelimiter Property
	ColumnMaxLength Property
	ColumnName Property
	Columns Property
	ColumnsNullByDefault Property
	ColumnTracking Property
	ColumnType Property
	Command Property
	CommandOptions Property
	CommandTerminator Property
	CompareNull Property
	CompatibilityLevel Property (Database)
	CompatibilityLevel Property (MergePublication2, TransPublication2)
	ComputedText Property
	ConflictPolicy Property
	ConflictRetention Property
	ConflictTable Property
	ConnectionID Property
	ConnectTimeout Property
	ContactNull Property
	CopyAllDefaults Property
	CopyAllFunctions Property
	CopyAllObjects Property
	CopyAllRules Property
	CopyAllStoredProcedures Property
	CopyAllTables Property
	CopyAllTriggers Property
	CopyAllUserDefinedDatatypes Property
	CopyAllViews Property
	CopyData Property
	CopySchema Property
	Count Property
	CountResetDate Property
	CountResetTime Property
	CreateDate Property
	CreateForAttach Property
	CreationScriptOptions Property
	CreationScriptPath Property
	CurrentCompatibility Property
	CurrentExecutionStatus Property
	CurrentResultSet Property
	CurrentRunRetryAttempt Property
	CurrentRunStatus Property
	CurrentRunStep Property
	CurrentValue Property
	CursorCloseOnCommit Property

	D
	Database Property
	DatabaseFileGroups Property
	DatabaseFiles Property
	DatabaseName Property
	DatabaseUserName Property
	DataFile Property
	DataFilePath Property
	DataFileSize Property
	DataFileType Property
	DataFolder Property
	DataSource Property
	DataSpaceUsage Property
	DataSpaceUsed Property
	Datatype Property
	DateCreated Property
	DateFindOperand Property
	DateJobCreated Property
	DateJobLastModified Property
	DateLastModified Property
	Day Property
	Days Property
	DboLogin Property
	DBOUseOnly Property
	DBChaining Property
	DBOwner Property
	DBReadOnly Property
	Default Property (Column, UserDefinedDatatype)
	Default Property (FileGroup)
	DefaultCursor Property
	DefaultDomain Property
	DefaultLogin Property
	DefaultOwner Property
	DefaultPath Property
	DelayBetweenResponses Property
	DeleteCommand Property
	DeleteLevel Property
	DenyNTLogin Property
	Description Property
	DestDatabase Property
	DestinationObjectName Property
	DestinationOwnerName Property
	DestLogin Property
	DestPassword Property
	DestServer Property
	DestTranslateChar Property
	DestUseTrustedConnection Property
	DeviceNumber Property
	Devices Property
	DistributionAgent Property
	DistributionCleanupTaskName Property
	DistributionDatabase Property
	DistributionJobID Property
	DistributionServer Property
	DistributionWorkingDirectory Property
	Distributor Property
	DistributorAvailable Property
	DistributorInstalled Property
	DistributorLocal Property
	DropDestObjectsFirst Property
	DropLogins Property
	DTSPackageLocation Property
	DTSPackageName Property
	DTSPackagePassword Property
	DynamicFilterHostName Property
	DynamicFilterLogin Property
	DynamicFilters Property
	DynamicReconfigure Property
	DynamicSnapshotJobId Property
	DynamicSnapshotLocation Property

	E
	EmailAddress Property
	EmailLevel Property
	EnableBcp Property
	Enabled Property
	EnabledForSyncMgr Property
	EnableMergePublishing Property
	EnableTransPublishing Property
	Encrypted Property
	EndRunDate Property
	EndRunTime Property
	EnlistDate Property
	ErrorFilePath Property
	ErrorLogPath Property
	ErrorLogSize Property
	EventCategoryID Property
	EventDescriptionKeyword Property
	EventID Property
	EventlogLevel Property
	EventSource Property
	ExcludeReplication Property
	ExpirationDate Property
	ExportWideChar Property

	F
	FailSafeOperator Property
	FakeSystemTable Property
	FileGroup Property
	FileGrowth Property
	FileGrowthInKB Property
	FileGrowthType Property
	FileNumber Property
	Files Property
	FillFactor Property
	FilterClause Property
	FirstDayOfWeek Property
	FirstRow Property
	Flags Property
	FormatFilePath Property
	FormatMedia Property
	ForwardAlways Property
	ForwardingServer Property
	ForwardingSeverity Property
	FrequencyInterval Property
	FrequencyRecurrenceFactor Property
	FrequencySubDay Property
	FrequencySubDayInterval Property
	FrequencyType Property
	FTPAddress Property
	FTPLogin Property
	FTPPassword Property
	FTPPort Property
	FTPSubdirectory Property
	FullName Property
	FullSubscription Property
	FullTextCatalogID Property
	FullTextCatalogName Property
	FullTextColumnLanguageID Property
	FullTextImageColumnType Property
	FullTextIndex Property
	FullTextIndexActive Property
	FullTextIndexSize Property
	FullTextKeyColumn Property
	FullTextPopulateStatus Property

	G
	Get Property
	Granted Property
	GrantedGranted Property
	Grantee Property
	GroupID Property
	GroupRegistrationServer Property
	GroupRegistrationVersion Property

	H
	HasBigIntColumn Property
	HasBigIntIdentityColumn Property
	HasClusteredIndex Property
	HasDBAccess Property
	HasFullTextIndexedTables Property
	HasGuidColumn Property
	HasIdentityColumn Property
	HasIdentityNotForReplColumn Property
	HasIndex Property
	HasNotification Property
	HasPrimaryKey Property
	HasRemoteDistributionPublisher Property
	HasRowVersionColumn Property
	HasSchedule Property
	HasServer Property
	HasSQLVariantColumn Property
	HasStep Property
	HasSubscription Property
	HasTimeStampColumn Property
	HistoryCleanupTaskName Property
	HistoryRetention Property
	HostName Property

	I
	ID Property
	ID Property (DistributionArticle2)
	Identity Property
	IdentityIncrement Property
	IdentityRangeThreshold Property
	IdentitySeed Property
	Impersonate Property
	ImpersonateClient Property
	ImportRowsPerBatch Property
	InActiveDirectory Property
	InAlter Property
	IncludeDB Property
	IncludeDependencies Property
	IncludeEventDescription Property
	IncludeIdentityValues Property
	IncludeLogins Property
	IncludeUsers Property
	IndexedColumns Property
	IndexOnTable Property
	IndexSpaceUsage Property
	IndexSpaceUsed Property
	Initialize Property
	InPrimaryKey Property
	InsertCommand Property
	InstanceName Property
	InsteadOfTrigger Property
	Isbulkadmin Property
	IsClustered Property
	IsComputed Property
	Isdb_accessadmin Property
	Isdb_backupoperator Property
	Isdb_datareader Property
	Isdb_datawriter Property
	Isdb_ddladmin Property
	Isdb_denydatareader Property
	Isdb_denydatawriter Property
	Isdb_owner Property
	Isdb_securityadmin Property
	Isdbcreator Property
	IsDeleted Property
	IsDeterministic Property
	Isdiskadmin Property
	IsDistributionPublisher Property
	IsFullTextEnabled Property
	IsFullTextInstalled Property
	IsFullTextKey Property
	IsNumeric Property
	IsOnComputed Property
	Isprocessadmin Property
	IsRowGuidCol Property
	IsSchemaBound Property
	Issecurityadmin Property
	Isserveradmin Property
	Issetupadmin Property
	Issysadmin Property
	IsVariableLength Property
	ItemCount Property

	J
	JobID Property
	JobName Property
	JoinArticleName Property
	JoinFilterClause Property
	JoinUniqueKey Property

	K
	KeepPartitionChanges Property
	KeepReplication Property

	L
	LangDateFormat Property
	Language Property
	LanguageAlias Property
	LastBackup Property
	LastDistributionDate Property
	LastDistributionStatus Property
	LastDistributionSummary Property
	LastDistributionSummaryTime Property
	LastEmailDate Property
	LastEmailTime Property
	LastMergedStatus Property
	LastMergedSummary Property
	LastMergedTime Property
	LastNetSendDate Property
	LastNetSendTime Property
	LastOccurrenceDate Property
	LastOccurrenceTime Property
	LastPageDate Property
	LastPageTime Property
	LastPollDate Property
	LastResponseDate Property
	LastResponseTime Property
	LastRestore Property
	LastRow Property
	LastRunDate Property
	LastRunDuration Property
	LastRunOutcome Property
	LastRunRetries Property
	LastRunTime Property
	Length Property
	LoadHistory Property
	LocalLogin Property
	LocalName Property
	LocalTime Property
	Location Property (LinkedServer)
	Location Property (TargetServer)
	LogFile Property
	LogFilePath Property
	LogFileSize Property
	LogFolder Property
	Login Property
	LoginSecure Property
	LoginTimeout Property
	LogReaderAgent Property

	M
	MailAccountName Property
	MailPassword Property
	MasterDBPath Property
	MaxConcurrentMerge Property
	MaxConcurrentDynamicSnapshots Property
	MaxDistributionRetention Property
	MaximumChar Property
	MaximumErrorsBeforeAbort Property
	MaximumLength Property
	MaximumSize Property
	MaximumValue Property
	MaxNumericPrecision Property
	MaxSize Property
	MediaDescription Property
	MediaName Property
	MediaPassword Property
	MergeJobID Property
	MessageID Property
	MinDistributionRetention Property
	MinimumRetries Property
	MinimumRunDuration Property
	MinimumValue Property
	Month Property
	Months Property
	MSXServerName Property
	MultipleColumnUpdate Property

	N
	Name Property
	NetName Property
	NetPacketSize Property
	NetSendAddress Property
	NetSendLevel Property
	NextDeviceNumber Property
	NextRunDate Property
	NextRunScheduleID Property
	NextRunTime Property
	NoRecompute Property
	NoRewind Property
	NotForRepl Property
	NotificationMessage Property
	NotificationMethod Property
	NP Property
	NTEventLogging Property
	NTLoginAccessType Property
	NumberOfProcessors Property
	NumericPrecision Property
	NumericScale Property

	O
	ObjectID Property
	ObjectName Property
	ObjectOwner Property
	ObjectType Property
	ObjectTypeName Property
	OccurrenceCount Property
	ODBCPrefix Property
	ODBCVersionString Property
	Offline Property
	OldestFirst Property
	OnFailAction Property
	OnFailStep Property
	OnSuccessAction Property
	OnSuccessStep Property
	OperatorToEmail Property
	OperatorToNetSend Property
	OperatorToPage Property
	Options Property
	OriginatingServer Property
	OSRunPriority Property
	OutcomeTypes Property
	OutputFileName Property
	Owner Property (Database, UserDefinedFunction)
	Owner Property (Database Objects)
	Owner Property (Job, JobFilter)

	P
	PageLevel Property
	PagerAddress Property
	PagerCCTemplate Property
	PagerDays Property
	PagerSendSubjectOnly Property
	PagerSubjectTemplate Property
	PagerToTemplate Property
	Parent Property
	Password Property
	PendingInstructions Property
	PercentCompleteNotification Property
	PerfMonMode Property
	PerformanceCondition Property
	Permissions Property
	PersistFlags Property
	PhysicalDatatype Property
	PhysicalLocation Property
	PhysicalMemory Property
	PhysicalName Property
	PID Property
	Pipes Property
	PollingInterval Property
	PopulateCompletionAge Property
	PopulateCompletionDate Property
	PopulateStatus Property
	PostSnapshotScript Property
	PreCreationMethod Property
	PreSnapshotScript Property
	PrimaryFile Property
	PrimaryFilePath Property
	Priority Property
	PrivilegeType Property
	PrivilegeTypeName Property
	ProcessID Property
	ProcessInputBuffer Property
	ProcessOutputBuffer Property
	ProductLevel Property
	ProductName Property
	ProviderName Property
	ProviderString Property
	Publication Property
	PublicationAttributes Property
	PublicationDB Property
	PublicationType Property
	PublishedInMerge Property
	PublishedInQueuedTransactions Property
	Publisher Property
	PublisherIdentityRangeSize Property

	Q
	QueryTimeout Property
	QueueType Property
	QuoteDelimiter Property
	QuotedIdentifier Property
	QuotedIdentifierStatus Property

	R
	ReadOnly Property
	RecoveryModel Property
	RecursiveTriggers Property
	ReferencedKey Property
	ReferencedTable Property
	RegionalSetting Property
	RegisteredOwner Property
	RelocateFiles Property
	RemoteName Property
	RemotePassword Property
	RemoteUser Property
	ReplaceDatabase Property
	ReplicateAllColumns Property
	ReplicationFilterProcName Property
	ReplicationFilterProcOwner Property
	ReplicationFrequency Property
	ReplicationInstalled Property
	ResolverInfo Property
	ResourceUsage Property
	Restart Property
	ResultSets Property
	RetainDays Property
	RetentionPeriod Property
	RetryAttempts Property
	RetryInterval Property
	Role Property
	RootPath Property
	RowDelimiter Property
	Rows Property
	RpcEncrypt Property
	RpcList Property
	RpcMaxCalls Property
	RpcMinCalls Property
	Rule Property
	RuleOwner Property
	RunningValue Property

	S
	SaLogin Property
	SaturdayPagerEndTime Property
	SaturdayPagerStartTime Property
	ScheduleID Property
	Script2Type Property
	ScriptType Property
	SecurityMode Property (DistributionDatabase, IntegratedSecurity)
	SecurityMode Property (ReplicationSecurity)
	SelectIntoBulkCopy Property
	Server Property
	ServerBCPDataFileType Property
	ServerBCPKeepIdentity Property
	ServerBCPKeepNulls Property
	ServerID Property
	ServerName Property
	ServiceName Property
	Set Property
	SetHostName Property
	Severity Property
	ShortMonth Property
	ShortMonths Property
	ShowAdvancedOptions Property
	SingleUser Property
	Size Property
	SizeInKB Property
	SkipTapeHeader Property
	SkipTapeLabel Property
	SnapshotAgent Property
	SnapshotAvailable Property
	SnapshotJobID Property
	SnapshotMethod Property
	SnapshotObjectName Property
	SnapshotObjectOwner Property
	SNMP Property
	SNMPCurrentVersion Property
	SNMPExtensionAgents Property
	SNMPExtensionAgentsData Property
	SortOrder Property
	SourceObjectName Property
	SourceObjectOwner Property
	SourceTranslateChar Property
	SpaceAllocatedOnFiles Property
	SpaceAvailable Property
	SpaceAvailableInMB Property
	SpaceUsed Property
	SpxFlag Property
	SpxPort Property
	SpxServiceName Property
	SQLCurrentVersion Property
	SQLDataRoot Property
	SQLMessageID Property
	SQLRootPath Property
	SQLSeverity Property
	StandardLogin Property
	StandardPassword Property
	StandbyFiles Property
	StartRunDate Property
	StartRunTime Property
	StartStepID Property
	Startup Property
	StartupAccount Property
	Status Property (BackupDevice)
	Status Property (Database)
	Status Property (MergeArticle)
	Status Property (Services)
	Status Property (Subscription Objects)
	Status Property (TargetServer)
	StatisticsIndex Property
	StatusInfoRefetchInterval Property
	StepID Property
	StepSubsystem Property
	Subscriber Property
	SubscriberIdentityRangeSize Property
	SubscriberLogin Property
	SubscriberPassword Property
	SubscriberSecurityMode Property
	SubscriberType Property (MergePullSubscription, MergeSubscription)
	SubscriberType Property (TransPullSubscription, TransSubscription)
	SubscriptionDB Property
	SubscriptionID Property
	SubscriptionType Property
	SubsetFilterClause Property
	SubSystem Property
	SundayPagerEndTime Property
	SundayPagerStartTime Property
	SuperSocketEncrypt Property
	SuperSocketList Property
	SuspendIndexing Property
	SyncType Property
	SystemObject Property

	T
	TableFullTextChangeTrackingOn Property
	TableFullTextUpdateIndexOn Property
	TableLock Property
	TapeLoadWaitTime Property
	Tapes Property
	TcpFlag Property
	TcpPort Property
	Text Property
	TextFileGroup Property
	ThirdParty Property
	ThirdPartyOptions Property
	TimeZoneAdjustment Property
	ToPointInTime Property
	TopologyX Property
	TopologyY Property
	TornPageDetection Property
	TranslateChar Property
	TrueLogin Property
	TrueName Property
	TruncateLog Property (Backup)
	TruncateLog Property (BulkCopy)
	TruncateLogOnCheckpoint Property
	Trusted Property
	TrustedDistributorConnection Property
	Type Property (Alert)
	Type Property (BackupDevice)
	Type Property (Category)
	Type Property (DBObject)
	Type Property (Index)
	Type Property (Job, JobFilter)
	Type Property (JobServer)
	Type Property (Key)
	Type Property (Login)
	Type Property (Property)
	Type Property (RegisteredSubscriber)
	Type Property (StoredProcedure)
	Type Property (Trigger)
	Type Property (UserDefinedFunction)
	TypeName Property
	TypeOf Property

	U
	UniqueIndexForFullText Property
	UniqueKeyCount Property
	UnloadTapeAfter Property
	UpdateCommand Property
	Upgrade Property
	Use6xCompatible Property
	UseBulkCopyOption Property
	UseCollation Property
	UseCurrentUserServerGroups Property
	UseDestTransaction Property
	UseExistingConnection Property
	UseFTP Property
	UseInteractiveResolver Property
	UserData Property
	UserName Property
	UserProfile Property
	UseServerSideBCP Property
	UseTrustedConnection Property

	V
	ValidateSubscriberInfo Property
	Value Property
	VendorName Property
	VerifyResolverSignature Property
	Version Property
	VersionBuild Property
	VersionMajor Property
	VersionMinor Property
	VersionNumber Property
	VersionString Property
	ViaListenInfo Property
	ViaRecognizedVendors Property
	ViaVendor Property
	VinesGroupName Property
	VinesItemName Property
	VinesOrgName Property

	W
	WeekdayPagerEndTime Property
	WeekdayPagerStartTime Property
	WorkingDirectory Property
	WSProxyAddress Property
	WSProxyPort Property

	Methods
	A
	Abort Method
	ActivateSubscriptions Method
	Add Method
	AddAlternatePublisher Method
	AddMember Method
	AddMemberServer Method
	AddNotification Method
	AddObject Method
	AddObjectByName Method
	AddReplicatedColumns Method
	AddStartParameter Method
	AddStepToJob Method
	Alter Method
	AlterDataType Method
	ApplyToTargetServer Method
	ApplyToTargetServerGroup Method
	AttachDB Method
	AttachDBWithSingleFile Method
	AttachDBWithSingleFile2 Method
	AttachSubscriptionDatabase Method

	B
	BeginAlter Method
	BeginTransaction Method
	BindDefault Method
	BindRule Method
	BindToColumn Method
	BindToDatatype Method
	BrowseSnapshotFolder Method (MergePublication2)
	BrowseSnapshotFolder Method (TransPublication2)

	C
	CancelAlter Method
	ChangeAgentParameter Method
	ChangeAgentProfile Method
	CheckAllocations Method
	CheckAllocationsDataOnly Method
	CheckAllocationsDataOnlyWithResult Method
	CheckAllocationsWithResult Method
	CheckCatalog Method
	CheckCatalogWithResult Method
	CheckDefaultSyntax Method
	CheckFilegroup Method
	CheckFilegroupDataOnly Method
	CheckFileGroupDataOnlyWithResult Method
	CheckFileGroupWithResult Method
	CheckIdentityValue Method
	CheckIdentityValues Method
	CheckIndex Method
	CheckIndexWithResult Method
	Checkpoint Method
	CheckRuleSyntax Method
	CheckTable Method
	CheckTableDataOnly Method
	CheckTableDataOnlyWithResult Method
	CheckTables Method
	CheckTablesDataOnly Method
	CheckTablesDataOnlyWithResult Method
	CheckTablesWithResult Method
	CheckTableWithResult Method
	CleanUp Method
	CleanUpAnonymousAgentInfo Method
	CleanUpDistributionPublisherByName Method
	Close Method
	CommandShellImmediate Method
	CommandShellWithResults Method
	CommitTransaction Method
	Connect Method
	Continue Method
	CopySnapshot Method (MergePublication2)
	CopySnapshot Method (TransPublication2)
	CopySubscriptionDatabase Method
	CreateAgentProfile Method

	D
	DeleteAgentProfile Method
	Deny Method (Database)
	Deny Method (StoredProcedure)
	Deny Method (Table, View)
	Deny Method (UserDefinedFunction)
	DetachDB Method
	DetachedDBInfo Method
	DisableAgentOffload Method
	DisableFullTextCatalogs Method
	DisableMergeSubscription Method
	DisableTransSubscription Method
	DisConnect Method
	DoAlter Method
	DoAlterWithNoCheck Method
	DropMember Method

	E
	EnableAgentOffload Method
	EnableFullTextCatalogs Method
	EnableMergeSubscription Method
	EnableTransSubscription Method
	EnumAccountInfo Method
	EnumAgentErrorRecords Method
	EnumAgentParameters Method
	EnumAgentProfiles Method
	EnumAlerts Method
	EnumAllSubscriptions Method
	EnumAllSubsetFilters Method
	EnumAlternatePublishers Method
	EnumAvailableMedia Method
	EnumCandidateKeys Method
	EnumCollations Method
	EnumColumns Method
	EnumConflictTables Method
	EnumCustomResolvers Method
	EnumDatabaseMappings Method
	EnumDatabaseRoleMember Method
	EnumDataSourceNames Method
	EnumDependencies Method
	EnumDirectories Method
	EnumDistributionAgentSessionDetails Method
	EnumDistributionAgentSessionDetails2 Method
	EnumDistributionAgentSessions Method
	EnumDistributionAgentSessions2 Method
	EnumDistributionAgentViews Method
	EnumDistributionAgentViews2 Method
	EnumErrorLogs Method
	EnumFileGroups Method
	EnumFiles Method (Database)
	EnumFiles Method (FileGroup)
	EnumFixedDatabaseRolePermission Method
	EnumFullTextLanguages Method
	EnumGeneratedSubsetFilters Method
	EnumHistory Method
	EnumIdentityRangeInfo Method
	EnumInitialAccesses Method
	EnumJobHistory Method
	EnumJobInfo Method
	EnumJobNotifications Method
	EnumJobs Method
	EnumLastStatisticsUpdates Method
	EnumLocks Method
	EnumLoginMappings Method
	EnumLogReaderAgentSessionDetails Method
	EnumLogReaderAgentSessionDetails2 Method
	EnumLogReaderAgentSessions Method
	EnumLogReaderAgentSessions2 Method
	EnumLogReaderAgentView Method
	EnumLogReaderAgentViews Method
	EnumMatchingSPs Method
	EnumMergeAgentSessionDetails Method
	EnumMergeAgentSessionDetails2 Method
	EnumMergeAgentSessions Method
	EnumMergeAgentSessions2 Method
	EnumMergeAgentViews Method
	EnumMergeAgentViews2 Method
	EnumMiscellaneousAgentViews Method
	EnumNotifications Method
	EnumNTDomainGroups Method
	EnumNTGroups Method
	EnumObjects Method
	EnumOutputs Method
	EnumParameters Method
	EnumProcesses Method
	EnumPublicationAccesses Method
	EnumPublicationArticles Method
	EnumPublicationReferences Method
	EnumPublications Method
	EnumPublications2 Method
	EnumQueueReaderAgentSessionDetails Method
	EnumQueueReaderAgentSessions Method
	EnumQueueReaderAgentView Method
	EnumQueueReaderAgentViews Method
	EnumReferencedKeys Method
	EnumReferencedTables Method
	EnumReferencingKeys Method
	EnumReferencingTables Method
	EnumServerAttributes Method
	EnumServerRoleMember Method
	EnumServerRolePermission Method
	EnumSnapshotAgentSessionDetails Method
	EnumSnapshotAgentSessionDetails2 Method
	EnumSnapshotAgentSessions Method
	EnumSnapshotAgentSessions2 Method
	EnumSnapshotAgentView Method
	EnumSnapshotAgentViews Method
	EnumStatistics Method
	EnumSubscriptions Method
	EnumSubscriptionViews Method
	EnumSubscriptionViews2 Method
	EnumSubSystems Method
	EnumTables Method
	EnumTargetServers Method
	EnumThirdPartyPublications Method
	EnumThirdPartyPublications2 Method
	EnumThirdPartyVendorNames Method
	EnumUsers Method
	EnumVersionInfo Method
	ExecuteImmediate Method (Database, SQLServer)
	ExecuteImmediate Method (LinkedServer, RemoteServer)
	ExecuteWithResults Method
	ExecuteWithResultsAndMessages Method
	ExecuteWithResultsAndMessages2 Method
	ExportData Method

	F
	FindName Method
	FullTextIndexScript Method
	FullTextPopulation Method
	FullTextUpdateIndex Method

	G
	GenerateCreationSQL Method
	GenerateCreationSQLOnView Method
	GenerateFilters Method
	GenerateSQL Method (Backup, Restore)
	GenerateSQL Method (Database)
	GenerateSQL Method (FullTextCatalog)
	GenerateSQL Method (Index)
	GenerateSQL Method (Table, UserDefinedDatatype)
	GenerateSQLOnView Method
	GetAgentsStatus Method (DistributionPublication, DistributionPublisher)
	GetAgentsStatus Method (Distributor)
	GetAgentsStatus2 Method (DistributionPublication2, DistributionPublisher2)
	GetAgentsStatus2 Method (Distributor2)
	GetColumnBigInt Method
	GetColumnBinary Method
	GetColumnBinaryLength Method
	GetColumnBool Method
	GetColumnDate Method
	GetColumnDouble Method
	GetColumnFloat Method
	GetColumnGUID Method
	GetColumnLong Method
	GetColumnSQLVARIANT Method
	GetColumnSQLVARIANTDataType Method
	GetColumnSQLVARIANTLength Method
	GetColumnSQLVARIANTToString Method
	GetColumnString Method
	GetDatatypeByName Method
	GetIndexedColumnDESC Method
	GetJobByID Method
	GetMemoryUsage Method
	GetObjectByName Method
	GetRangeString Method
	GetUserName Method
	Grant Method (Database)
	Grant Method (StoredProcedure, UserDefinedFunction)
	Grant Method (Table, View)
	GrantPublicationAccess Method

	I
	ImportData Method
	Insert Method
	InsertColumn Method
	Install Method
	Invoke Method
	IsDetachedPrimaryFile Method
	IsFixedRole Method
	IsLogin Method
	IsMember Method
	IsNTGroupMember Method
	IsObjectDeleted Method
	IsOS Method
	IsPackage Method
	IsUser Method
	IsValidKeyDatatype Method
	Item Method
	ItemByID Method

	K
	KillDatabase Method
	KillProcess Method

	L
	ListAvailableSQLServers Method
	ListAvailableUniqueIndexesForFullText Method
	ListBoundColumns Method
	ListBoundDatatypes Method
	ListCollations Method
	ListColumns Method
	ListCompatibilityLevels Method
	ListDatabasePermissions Method
	ListDetachedDBFiles Method
	ListDetachedLogFiles Method
	ListIndexedColumns Method
	ListInstalledInstances Method
	ListKeys Method
	ListMembers Method (Login, User)
	ListMembers Method (SQLServer)
	ListMemberServers Method
	ListObjectPermissions Method
	ListObjectNames Method
	ListObjects Method
	ListOwnedObjects Method
	ListPermissions Method
	ListPrivilegeColumns Method
	ListReplicatedColumns Method
	ListStartupProcedures Method
	ListUserColumnPermissions Method
	ListUserPermissions Method

	M
	MSXDefect Method
	MSXEnlist Method

	P
	Pause Method
	PingSQLServerVersion Method
	PurgeHistory Method
	PurgeJobHistory Method

	Q
	Quit Method

	R
	ReadAgentOffloadInfo Method
	ReadBackupHeader Method (BackupDevice)
	ReadBackupHeader Method (Restore)
	ReadBackupHeader Method (SQLServer)
	ReadErrorLog Method
	ReadFileList Method
	ReadLastValidationDateTimes Method
	ReadMediaHeader Method (BackupDevice)
	ReadMediaHeader Method (Restore)
	ReadReplicationFailOverMode Method
	ReAssignJobsByLogin Method
	Rebuild Method
	RebuildIndex Method
	RebuildIndexes Method
	RecalcSpaceUsage Method
	ReCompileReferences Method
	ReconfigureCurrentValues Method
	ReconfigureWithOverride Method
	ReConnect Method
	Refresh Method
	RefreshChildren Method
	ReInitialize Method
	ReInitialize2 Method
	ReInitializeAllSubscriptions Method
	ReInitializeAllSubscriptions2 Method
	Remove Method (Objects)
	Remove Method (Collections)
	Remove Method (Operator)
	Remove Method (Operators)
	RemoveAllJobSchedules Method
	RemoveAllJobSteps Method
	RemoveAllObjects Method
	RemoveAlternatePublisher Method
	RemoveDefunctAnonymousSubscription Method
	RemoveFromTargetServer Method
	RemoveFromTargetServerGroup Method
	RemoveFullTextCatalogs Method
	RemoveJobByID Method
	RemoveJobsByLogin Method
	RemoveJobsByServer Method
	RemoveMemberServer Method
	RemoveNotification Method
	RemoveReplicatedColumns Method
	Replace Method
	ReplicateUserDefinedScript Method
	ReplicationAddColumn Method
	ReplicationDropColumn Method
	ResetOccurrenceCount Method
	ReSynchronizeSubscription Method
	Revoke Method (Database)
	Revoke Method (StoredProcedure)
	Revoke Method (Table, View)
	Revoke Method (UserDefinedFunction)
	RevokePublicationAccess Method
	RollbackTransaction Method

	S
	SaveTransaction Method
	Script Method
	Script Method (BackupDevice Object)
	Script Method (Replication Objects)
	Script Method (Table Object)
	ScriptDestinationObject Method
	ScriptDestinationObject2 Method (MergeArticle2)
	ScriptTransfer Method
	ServerLoginMode Method
	SetCodePage Method
	SetFullTextIndexWithOptions Method
	SetIndexedColumnDESC Method
	SetOptions Method
	SetOwner Method
	SetPassword Method
	SetTopologyXY Method
	SetUpDistributorPassword Method
	Shrink Method
	Shutdown Method
	SQLBackup Method
	SQLRestore Method
	SQLVerify Method
	Start Method (FullTextCatalog)
	Start Method (FullTextService, JobServer)
	Start Method (Job)
	Start Method (SQLServer)
	StartMonitor Method
	Stop Method
	StopMonitor Method

	T
	Transfer Method
	Truncate Method
	TruncateData Method

	U
	UnbindFromColumn Method
	UnbindFromDatatype Method
	Uninstall Method
	UnloadODSDLL Method
	UpdateAgentProfile Method
	UpdateDefaultAgentProfile Method
	UpdateIndexStatistics Method
	UpdateNotification Method
	UpdateStatistics Method
	UpdateStatisticsWith Method (Column, Index)
	UpdateStatisticsWith Method (Table)

	V
	ValidateDataSource Method
	ValidatePublication Method (MergePublication2)
	ValidatePublication Method (TransPublication2)
	ValidateSubscription Method
	ValidateSubscriptions Method
	VerifyConnection Method

	W
	WriteReplicationFailOverMode Method

	Events
	BatchImported Event
	CommandSent Event
	ConnectionBroken Event
	Complete Event
	NextMedia Event
	PercentComplete Event
	PercentCompleteAtStep Event
	QueryTimeout Event
	RemoteLoginFailed Event
	RowsCopied Event
	ScriptTransferPercentComplete Event
	ServerMessage Event
	StatusMessage Event
	TransferPercentComplete Event

	Constants
	A
	Alert Constants (SQLDMO_ALERT_TYPE)
	Audit Constants (SQLDMO_AUDIT_TYPE)

	B
	Backup Process Control Constants (SQLDMO_BACKUP_TYPE)
	Bulk Copy Code Page Constants (SQLDMO_BCP_CODEPAGE_TYPE)
	Bulk Copy Data Constants (SQLDMO_DATAFILE_TYPE)
	Bulk Copy Server Data File Constants (SQLDMO_SERVERBCP_DATAFILE_TYPE)

	C
	Compatibility Level Constants (SQLDMO_COMP_LEVEL_TYPE)
	Configuration Value Constants (SQLDMO_CONFIGVALUE_TYPE)

	D
	Database Compression Constants (SQLDMO_SHRINK_TYPE)
	Database Repair Constants (SQLDMO_DBCC_REPAIR_TYPE)
	Database Statistics Affected Constants (SQLDMO_STAT_AFFECT_TYPE)
	Database Statistics Scanning Constants (SQLDMO_STAT_SCAN_TYPE)
	Database Status Constants (SQLDMO_DBSTATUS_TYPE)
	Database User Profile Constants (SQLDMO_DBUSERPROFILE_TYPE)
	Data Copy Constants (SQLDMO_COPYDATA_TYPE)
	Day of Week Constants (SQLDMO_WEEKDAY_TYPE)
	Dependency Constants (SQLDMO_DEPENDENCY_TYPE)
	Device Type Constants (SQLDMO_DEVICE_TYPE)

	E
	Error Constants (SQLDMO_ERROR_TYPE)
	Event Type Constants (SQLDMO_EVENT_TYPE)

	F
	File Growth Constants (SQLDMO_GROWTH_TYPE)
	Find Operand Constants (SQLDMO_FIND_OPERAND)
	Full-Text Service Population Status Constants (SQLDMO_FULLTEXT_POPULATE_STATUS)
	Full-Text Service Population Type Constants (SQLDMO_FULLTEXT_POPULATE_TYPE)
	Full-text Service Start Constants (SQLDMO_FULLTEXT_START_TYPE)
	Full-text Service Status Constants (SQLDMO_FULLTEXTSTATUS_TYPE)

	G
	Grant Type Constants (SQLDMO_GRANTED_TYPE)

	I
	Index Constants (SQLDMO_INDEX_TYPE)

	J
	Job Category Constants (SQLDMO_CATEGORYTYPE_TYPE)
	Job Completion Constants (SQLDMO_COMPLETION_TYPE)
	Job Execution Status Constants (SQLDMO_JOBEXECUTION_STATUS)
	Job Outcome Constants (SQLDMO_JOBOUTCOME_TYPE)
	Job Step OS Priority Constants (SQLDMO_RUNPRIORITY_TYPE)
	Job Scope Constants (SQLDMO_JOB_TYPE)
	Job Step Action Constants (SQLDMO_JOBSTEPACTION_TYPE)

	K
	Key Type Constants (SQLDMO_KEY_TYPE)

	L
	Linked Table Type Constants (SQLDMO_LINKEDTABLE_TYPE)
	List Sorting Constants (SQLDMO_OBJSORT_TYPE)
	Login Type Constants (SQLDMO_LOGIN_TYPE)

	M
	Media Type Constants (SQLDMO_MEDIA_TYPE)
	Miscellaneous Constants (SQLDMO_CONSTANTS_TYPE)
	Month and Day (Relative Scheduling) Constants (SQLDMO_MONTHDAY_TYPE)

	N
	Notification Enumeration Constants (SQLDMO_ENUMNOTIFY_TYPE)
	Notification Method Constants (SQLDMO_NOTIFY_TYPE)

	O
	Object Scripting Constants (SQLDMO_SCRIPT_TYPE)
	Object Scripting Constants (SQLDMO_SCRIPT2_TYPE)
	Operating System Type Constants (SQLDMO_OS_TYPE)

	P
	Performance Monitor Constants (SQLDMO_PERFMON_TYPE)
	Privilege Constants (SQLDMO_PRIVILEGE_TYPE)
	Procedure Constants (SQLDMO_PROCEDURE_TYPE)

	R
	Recovery Model Constants (SQLDMO_RECOVERY_TYPE)
	Replication Agent Constants (SQLDMO_REPLAGENT_TYPE)
	Replication Article Command Option Constants (SQLDMO_COMMANDOPTION_TYPE)
	Replication Article Constants (SQLDMO_ARTICLE_TYPE)
	Replication Article Pre-Creation Constants (SQLDMO_PREARTICLE_TYPE)
	Replication Article Status Constants (SQLDMO_ARTSTATUS_TYPE)
	Replication Compatibility Level Constants (SQLDMO_REPLCOMPLEVEL_TYPE)
	Replication Conflict Policy Constants (SQLDMO_CONFLICTPOLICY_TYPE)
	Replication Conflict Resolution Constants (SQLDMO_RESOLVECONFLICT_TYPE)
	Replication Constants (SQLDMO_REPLCONSTANTS_TYPE)
	Replication DTS Package Constants (SQLDMO_REPLDTSLOC_TYPE)
	Replication Failover Mode Constants (SQLDMO_REPLFAILOVER_TYPE)
	Replication Frequency Constants (SQLDMO_REPFREQ_TYPE)
	Replication Initial Synchronization Constants (SQLDMO_INITIALSYNC_TYPE)
	Replication Merge Subscriber Constants (SQLDMO_MERGESUBSCRIBER_TYPE)
	Replication Method Constants (SQLDMO_REPLICATION_TYPE)
	Replication Object Creation Script Constants (SQLDMO_CREATIONSCRIPT_TYPE)
	Replication Permissions Checking Constants (SQLDMO_CHECKPERMISSIONS_TYPE)
	Replication Publication Attribute Constants (SQLDMO_PUBATTRIB_TYPE)
	Replication Publication Constants (SQLDMO_PUBLICATION_TYPE)
	Replication Publication Status Constants (SQLDMO_PUBSTATUS_TYPE)
	Replication Queue Type Constants (SQLDMO_REPLQUEUE_TYPE)
	Replication Resynchronization Constants (SQLDMO_RESYNC_TYPE)
	Replication Script Constants (SQLDMO_REPSCRIPT_TYPE)
	Replication Security Constants (SQLDMO_REPLSECURITY_TYPE)
	Replication Signature Verification Constants (SQLDMO_VERIFYSIGNATURE_TYPE)
	Replication Subscriber Constants (SQLDMO_SUBSCRIBER_TYPE)
	Replication Subscription Constants (SQLDMO_SUBSCRIPTION_TYPE)
	Replication Subscription Status Constants (SQLDMO_SUBSTATUS_TYPE)
	Replication Subscription Synchronization Constants (SQLDMO_SUBSYNC_TYPE)
	Replication Task Status Constants (SQLDMO_TASKSTATUS_TYPE)
	Replication Third-Party Publication Display Option Constants (SQLDMO_THIRDPARTYOPTION_TYPE)
	Replication Transactional Subscriber Constants (SQLDMO_TRANSUBSCRIBER_TYPE)
	Replication Validation Method Constants (SQLDMO_VALIDATIONMETHOD_TYPE)
	Replication Validation Option Constants (SQLDMO_VALIDATIONOPTION_TYPE)
	Restore Process Control Constants (SQLDMO_RESTORE_TYPE)
	Role Constants (SQLDMO_DBUSERROLE_TYPE)
	Role Type Constants (SQLDMO_ROLE_TYPE)

	S
	Scheduling Frequency Constants (SQLDMO_FREQUENCY_TYPE)
	Scheduling Relative Frequency Constants (SQLDMO_FREQRELATIVE_TYPE)
	Scheduling Subfrequency Constants (SQLDMO_FREQSUB_TYPE)
	Security Constants (SQLDMO_SECURITY_TYPE)
	Session Constants (SQLDMO_SESSION_TYPE)
	Server Option Constants (SQLDMO_SRVOPTION_TYPE)
	Server User Profile Constants (SQLDMO_SRVUSERPROFILE_TYPE)
	SQL Server Agent Type Constants (SQLDMO_JOBSERVER_TYPE)
	SQL Server Connection Constants (SQLDMO_VERIFYCONN_TYPE)
	SQL Server Data Type Constants (SQLDMO_QUERY_DATATYPE)
	SQL Server Installed Product Constants (SQLDMO_PACKAGE_TYPE)
	SQL Server Version Constants (SQLDMO_SQL_VER)
	SQL-DMO Object Type Constants (SQLDMO_OBJECT_TYPE)
	Statement Execution Constants (SQLDMO_EXEC_TYPE)
	Status Information Constants (SQLDMO_STATUSINFO_TYPE)

	T
	Table Attribute Constants (SQLDMO_TABLEATT_TYPE)
	Target Server Status Constants (SQLDMO_TARGETSERVERSTATUS_TYPE)
	Transaction Log Backup Constants (SQLDMO_BACKUP_LOG_TYPE)
	Transfer Script Mode Constants (SQLDMO_XFRSCRIPTMODE_TYPE)
	Trigger Constants (SQLDMO_TRIGGER_TYPE)

	U
	User-Defined Function Constants (SQLDMO_UDF_TYPE)

	W
	Windows NT Access Constants (SQLDMO_NTACCESS_TYPE)
	Windows NT Authentication Constants (SQLDMO_INTSECLOGIN_TYPE)
	Windows NT Service Constants (SQLDMO_SVCSTATUS_TYPE)

	C/C++ Specifics
	Object Class Identifiers and Type Definitions
	A
	B
	C
	D
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Scope-aware Template Classes
	CTempBSTR
	CTempOLERef

	C/C++ Shortcuts
	Collection Handling
	Defined List Types
	Helpful Macros

	SQL-DMO Samples
	AxSQLDMOCtl
	BackRestEvents (Visual Basic)
	BackRestEvents (C++)
	BackupDevice
	CreateDatabase
	CreateTable
	DMOExplorer
	Dmoping
	Enums
	Explore
	Idxtest
	Login
	Registry
	Service
	Smartptr
	Soc
	Socpp
	SQLScripts
	VerifyBackup

	SQL-DMO Examples
	SQL-DMO Examples: Alerts and Notification
	Creating Alerts
	Handling Raised Alerts (Notification)

	SQL-DMO Examples: Backup and Restore
	Backing Up a Database
	Backing up Selected Portions of a Database
	Scripting a Database Backup For Scheduled Execution
	Database Restore

	SQL-DMO Examples: Databases
	Altering a Database by Adding a Database File
	Creating a Database

	SQL-DMO Examples: Full-text Indexing
	SQL-DMO Examples: Indexes
	SQL-DMO Examples: Jobs and Schedules
	Creating SQL Server Agent Jobs
	Controlling Job Step Logic
	Targeting SQL Server Agent Jobs
	Scheduling SQL Server Agent Jobs

	SQL-DMO Examples: Tables
	Altering a Table by Adding a Column
	Altering a Table by Adding a FOREIGN KEY Constraint
	Altering a Table by Adding a PRIMARY KEY Constraint
	Creating a Table

	SQL-NS
	SQL-NS
	Programming SQL-NS Applications
	Getting Started with SQL-NS
	SQL-NS Syntax Conventions
	Installing SQL-NS

	SQL-NS Object Model
	Using SQL-NS to Invoke SQL Server Enterprise Manager Components
	Handling SQL-NS Errors

	SQL-NS Reference
	SQL-NS Objects
	SQLNamespace Object
	SQLNamespaceCommand Object
	SQLNamespaceCommands Object
	SQLNamespaceObject Object

	SQL-NS Properties
	CommandID Property
	Commands Property
	Count Property
	Handle Property
	HelpString Property
	Name Property
	Type Property

	SQL-NS Methods
	Execute Method
	ExecuteCommandByID Method
	ExecuteCommandByName Method
	ExecuteWithParam Method
	GetChildrenCount Method
	GetFirstChildItem Method
	GetName Method
	GetNextSiblingItem Method
	GetParentItem Method
	GetPreviousSiblingItem Method
	GetRootItem Method
	GetSQLDMOObject Method
	GetSQLNamespaceObject Method
	GetType Method
	Initialize Method
	Item Method
	Refresh Method
	SetLCID Method

	SQL-NS Constants
	SQLNSCommandID
	SQLNSErrors
	SQLNSModality
	SQLNSObjectType
	SQLNSRootType

	SQL-NS Samples
	SQL-NS Sample Program Using Visual Basic
	SQL-NS Sample Program Using C++
	SQL Namespace Sample Browser
	SQL Namespace Dump Tree

	Analysis Services Programming
	Analysis Services Programming
	Programming Analysis Services Applications
	Analysis Services Architecture
	Analysis Services Component Tools
	SQL in Analysis Services
	Executing an SQL Query
	Exposed Schema
	Supported SQL SELECT Syntax
	Passing Queries from SQL Server to a Linked Analysis Server
	Adding a Linked Server

	Decision Support Objects
	Introducing Decision Support Objects
	Redistributing Decision Support Objects
	Decision Support Objects Architecture
	Server (Decision Support Objects)
	Database (Decision Support Objects)
	DataSource (Decision Support Objects)
	Cube (Decision Support Objects)
	Dimension (Decision Support Objects)
	Data Mining Model (Decision Support Objects)
	Role (Decision Support Objects)
	Aggregation (Decision Support Objects)
	Command (Decision Support Objects)
	Level (Decision Support Objects)
	Measure (Decision Support Objects)
	Member Property (Decision Support Objects)
	Partition (Decision Support Objects)
	Column (Decision Support Objects)
	Cube Analyzer (Decision Support Objects)
	Partition Analyzer (Decision Support Objects)

	Using Decision Support Objects
	Development Environments
	Common Operations and Examples
	OLAP Examples
	Working with Servers
	Working with Databases
	Working with Data Sources
	Working with Dimensions and Levels
	Working with Cubes and Measures

	Data Mining Examples
	Building Data Mining Models

	Advanced Examples
	Working with Virtual Cubes
	Working with Linked Cubes
	Working with Virtual Dimensions
	Working with Roles
	Incremental Updates

	Additional Considerations
	Considerations For Naming Decision Support Objects
	Object Locking with Decision Support Objects
	Tips for Creating Member Properties for Multiple Languages
	Using SQL Server 7.0 OLAP Analysis Services

	Decision Support Objects Programmer's Reference
	Interfaces
	Command Interface
	Collections, Command Interface
	Methods, Command Interface
	Clone (Command Interface)
	LockObject (Command Interface)
	UnlockObject (Command Interface)
	Update (Command Interface)

	Properties, Command Interface
	ClassType (Command Interface)
	CommandType (Command Interface)
	Description (Command Interface)
	IsValid (Command Interface)
	Name (Command Interface)
	OrdinalPosition (Command Interface)
	Parent (Command Interface)
	ParentObject (Command Interface)
	Statement (Command Interface)
	SubClassType (Command Interface)

	Dimension Interface
	Collections, Dimension Interface
	CustomProperties (Dimension Interface)
	Levels (Dimension Interface)

	Methods, Dimension Interface
	Clone (Dimension Interface)
	LockObject (Dimension Interface)
	Process (Dimension Interface)
	UnlockObject (Dimension Interface)
	Update (Dimension Interface)

	Properties, Dimension Interface
	AggregationUsage (Dimension Interface)
	AllowSiblingsWithSameName (Dimension Interface)
	AreMemberKeysUnique
	AreMemberNamesUnique (Dimension Interface)
	ClassType (Dimension Interface)
	DataMemberCaptionTemplate (Dimension Interface)
	DataSource (Dimension Interface)
	DefaultMember (Dimension Interface)
	DependsOnDimension (Dimension Interface)
	Description (Dimension Interface)
	DimensionType (Dimension Interface)
	EnableRealTimeUpdates (Dimension Interface)
	FromClause (Dimension Interface)
	IsChanging (Dimension Interface)
	IsReadWrite (Dimension Interface)
	IsShared (Dimension Interface)
	IsTemporary (Dimension Interface)
	IsValid (Dimension Interface)
	IsVirtual (Dimension Interface)
	IsVisible (Dimension Interface)
	JoinClause (Dimension Interface)
	LastProcessed (Dimension Interface)
	LastUpdated (Dimension Interface)
	MembersWithData (Dimension Interface)
	Name (Dimension Interface)
	OrdinalPosition (Dimension Interface)
	Parent (Dimension Interface)
	SourceTable (Dimension Interface)
	SourceTableAlias (Dimension Interface)
	SourceTableFilter (Dimension Interface)
	State (Dimension Interface)
	StorageMode (Dimension Interface)
	SubClassType (Dimension Interface)

	Level Interface
	Collections, Level Interface
	Properties, Level Interface
	AreMemberKeysUnique (Level Interface)
	AreMemberNamesUnique (Level Interface)
	ClassType (Level Interface)
	ColumnSize (Level Interface)
	ColumnType (Level Interface)
	CustomRollupColumn (Level Interface)
	CustomRollupExpression (Level Interface)
	CustomRollupPropertiesColumn (Level Interface)
	Description (Level Interface)
	EnableAggregations (Level Interface)
	EstimatedSize (Level Interface)
	FromClause (Level Interface)
	Grouping (Level Interface)
	HideMemberIf (Level Interface)
	IsDisabled (Level Interface)
	IsValid (Level Interface)
	IsVisible (Level Interface)
	JoinClause (Level Interface)
	LevelNamingTemplate (Level Interface)
	LevelType (Level Interface)
	MemberKeyColumn (Level Interface)
	MemberNameColumn (Level Interface)
	Name (Level Interface)
	Ordering (Level Interface)
	OrderingMemberProperty (Level Interface)
	OrdinalPosition (Level Interface)
	Parent (Level Interface)
	ParentKeyColumn (Level Interface)
	RootMemberIf (Level Interface)
	SkippedLevelsColumn (Level Interface)
	SliceValue (Level Interface)
	SubClassType (Level Interface)
	UnaryOperatorColumn (Level Interface)

	MDStore Interface
	Collections, MDStore Interface
	Methods, MDStore Interface
	BeginTrans (MDStore Interface)
	Clone (MDStore Interface)
	CommitTrans (MDStore Interface)
	CommitTransEx (MDStore Interface)
	LockObject (MDStore Interface)
	Merge (MDStore Interface)
	Process (MDStore Interface)
	Rollback (MDStore Interface)
	UnlockObject (MDStore Interface)
	Update (MDStore Interface)

	Properties, MDStore Interface
	AggregationPrefix (MDStore Interface)
	AllowDrillThrough (MDStore Interface)
	Analyzer (MDStore Interface)
	ClassType (MDStore Interface)
	DefaultMeasure (MDStore Interface)
	Description (MDStore Interface)
	DrillThroughColumns (MDStore Interface)
	DrillThroughFilter (MDStore Interface)
	DrillThroughFrom (MDStore Interface)
	DrillThroughJoins (MDStore Interface)
	EnableRealTimeUpdates (MDStore Interface)
	EstimatedRows (MDStore Interface)
	EstimatedSize (MDStore Interface)
	FromClause (MDStore Interface)
	IsDefault (MDStore Interface)
	IsReadWrite (MDStore Interface)
	IsTemporary (MDStore Interface)
	IsValid (MDStore Interface)
	IsVisible (MDStore Interface)
	JoinClause (MDStore Interface)
	LastProcessed (MDStore Interface)
	LastUpdated (MDStore Interface)
	LazyOptimizationProgress (MDStore Interface)
	Name (MDStore Interface)
	OlapMode (MDStore Interface)
	Parent (MDStore Interface)
	ProcessingKeyErrorLimit (MDStore Interface)
	ProcessingKeyErrorLogFileName (MDStore Interface)
	ProcessOptimizationMode (MDStore Interface)
	RemoteServer (MDStore Interface)
	Server (MDStore Interface)
	SourceTable (MDStore Interface)
	SourceTableAlias (MDStore Interface)
	SourceTableFilter (MDStore Interface)
	State (MDStore Interface)
	SubClassType (MDStore Interface)

	Measure Interface
	Collections, Measure Interface
	Properties, Measure Interface
	AggregateFunction (Measure Interface)
	ClassType (Measure Interface)
	Description (Measure Interface)
	FormatString (Measure Interface)
	IsValid (Measure Interface)
	IsVisible (Measure Interface)
	Name (Measure Interface)
	OrdinalPosition (Measure Interface)
	Parent (Measure Interface)
	SourceColumn (Measure Interface)
	SourceColumnType (Measure Interface)
	SubClassType (Measure Interface)

	Role Interface
	Collections, Role Interface
	Methods, Role Interface
	Clone (Role Interface)
	LockObject (Role Interface)
	SetPermissions (Role Interface)
	UnlockObject (Role Interface)
	Update (Role Interface)

	Properties, Role Interface
	ClassType (Role Interface)
	Description (Role Interface)
	IsValid (Role Interface)
	Name (Role Interface)
	Parent (Role Interface)
	ParentObject (Role Interface)
	Permissions (Role Interface)
	SubClassType (Role Interface)
	UsersList (Role Interface)

	Events
	ReportAfter (clsDatabase)
	ReportBefore (clsDatabase)
	ReportError (clsDatabase)
	ReportProgress (clsDatabase)

	Objects
	clsAggregation
	Collections, clsAggregation
	Methods, clsAggregation
	Properties, clsAggregation

	clsAggregationDimension
	Collections, clsAggregationDimension
	Properties, clsAggregationDimension

	clsAggregationLevel
	Collections, clsAggregationLevel
	Properties, clsAggregrationLevel

	clsAggregationMeasure
	Collections, clsAggregationMeasure
	Properties, clsAggregationMeasure

	clsCollection
	Methods, clsCollection
	Add (clsCollection)
	AddNew (clsCollection)
	Find (clsCollection)
	Item (clsCollection)
	Remove (clsCollection)

	Properties, clsCollection
	ClassType (clsCollection)
	ContainedClassType (clsCollection)
	Count (clsCollection)

	clsColumn
	Collections, clsColumn
	Properties, clsColumn
	AreKeysUnique (clsColumn)
	ClassType (clsColumn)
	ContentType (clsColumn)
	DataType (clsColumn)
	Description (clsColumn)
	Distribution (clsColumn)
	Filter (clsColumn)
	FromClause (clsColumn)
	IsDisabled (clsColumn)
	IsInput (clsColumn)
	IsKey (clsColumn)
	IsParentKey (clsColumn)
	IsPredictable (clsColumn)
	JoinClause (clsColumn)
	ModelingFlags (clsColumn)
	Name (clsColumn)
	Num (clsColumn)
	Parent (clsColumn)
	RelatedColumn (clsColumn)
	SourceColumn (clsColumn)
	SourceOlapObject (clsColumn)
	SpecialFlag (clsColumn)
	SubClassType (clsColumn)

	clsCube
	Collections, clsCube
	Methods, clsCube
	Properties, clsCube

	clsCubeAnalyzer
	Methods, clsCubeAnalyzer
	OpenQueryLogRecordset (clsCubeAnalyzer)

	clsCubeCommand
	Collections, clsCubeCommand
	Properties, clsCubeCommand

	clsCubeDimension
	Collections, clsCubeDimension
	Properties, clsCubeDimension

	clsCubeLevel
	Collections, clsCubeLevel
	Properties, clsCubeLevel

	clsCubeMeasure
	Collections, clsCubeMeasure
	Properties, clsCubeMeasure

	clsCubeRole
	Collections, clsCubeRole
	Methods, clsCubeRole
	Properties, clsCubeRole

	clsDatabase
	Collections, clsDatabase
	Events, clsDatabase
	Methods, clsDatabase
	Properties, clsDatabase

	clsDatabaseCommand
	Collections, clsDatabaseCommand
	Methods, clsDatabaseCommand
	Properties, clsDatabaseCommand

	clsDatabaseDimension
	Collections, clsDatabaseDimension
	Methods, clsDatabaseDimension
	Properties, clsDatabaseDimension

	clsDatabaseLevel
	Collections, clsDatabaseLevel
	Properties, clsDatabaseLevel

	clsDatabaseRole
	Collections, clsDatabaseRole
	Methods, clsDatabaseRole
	Properties, clsDatabaseRole

	clsDataSource
	Collections, clsDataSource
	Methods, clsDataSource
	Clone (clsDataSource)
	IsConnected (clsDataSource)
	LockObject (clsDataSource)
	UnlockObject (clsDataSource)
	Update (clsDataSource)

	Properties, clsDataSource
	ClassType (clsDataSource)
	CloseQuoteChar (clsDataSource)
	Connection (clsDataSource)
	ConnectionString (clsDataSource)
	Description (clsDataSource)
	IsReadOnly (clsDataSource)
	IsValid (clsDataSource)
	Name (clsDataSource)
	OpenQuoteChar (clsDataSource)
	Parent (clsDataSource)
	SubClassType (clsDataSource)
	SupportedTxnDDL (clsDataSource)

	clsMemberProperty
	Collections, clsMemberProperty
	Properties, clsMemberProperty
	Caption (clsMemberProperty)
	ClassType (clsMemberProperty)
	ColumnSize (clsMemberProperty)
	ColumnType (clsMemberProperty)
	Description (clsMemberProperty)
	IsVisible (clsMemberProperty)
	Language (clsMemberProperty)
	Name (clsMemberProperty)
	OrdinalPosition (clsMemberProperty)
	Parent (clsMemberProperty)
	PropertyType (clsMemberProperty)
	SourceColumn (clsMemberProperty)
	SubClassType (clsMemberProperty)

	clsMiningModel
	Collections, clsMiningModel
	Methods, clsMiningModel
	Clone (clsMiningModel)
	LockObject (clsMiningModel)
	Process (clsMiningModel)
	UnlockObject (clsMiningModel)
	Update (clsMiningModel)
	ValidateStructure (clsMiningModel)

	Properties, clsMiningModel
	AreKeysUnique (clsMiningModel)
	CaseDimension (clsMiningModel)
	CaseLevel (clsMiningModel)
	ClassType (clsMiningModel)
	Description (clsMiningModel)
	Filter (clsMiningModel)
	FromClause (clsMiningModel)
	IsVisible (clsMiningModel)
	JoinClause (clsMiningModel)
	LastProcessed (clsMiningModel)
	LastUpdated (clsMiningModel)
	MiningAlgorithm (clsMiningModel)
	Name (clsMiningModel)
	Parameters (clsMiningModel)
	Parent (clsMiningModel)
	SourceCube (clsMiningModel)
	State (clsMiningModel)
	SubClassType (clsMiningModel)
	TrainingQuery (clsMiningModel)
	XML (clsMiningModel)

	clsMiningModelRole
	Collections, clsMiningModelRole
	Methods, clsMiningModelRole
	Properties, clsMiningModelRole

	clsPartition
	Collections, clsPartition
	Methods, clsPartition
	Properties, clsPartition

	clsPartitionAnalyzer
	Collections, clsPartitionAnalyzer
	DesignedAggregations (clsPartitionAnalyzer)

	Methods, clsPartitionAnalyzer
	AddExistingAggregation (clsPartitionAnalyzer)
	AddGoalQuery (clsPartitionAnalyzer)
	CloseAggregationsAnalysis (clsPartitionAnalyzer)
	InitializeDesign (clsPartitionAnalyzer)
	NextAnalysisStep (clsPartitionAnalyzer)
	PrepareGoalQueries (clsPartitionAnalyzer)

	Properties, clsPartitionAnalyzer
	AggregationAnalysisInitialized (clsPartitionAnalyzer)
	Parent (clsPartitionAnalyzer)

	clsPartitionDimension
	Collections, clsPartitionDimension
	Properties, clsPartitionDimension

	clsPartitionLevel
	Collections, clsPartitionLevel
	Properties, clsPartitionLevel

	clsPartitionMeasure
	Collections, clsPartitionMeasure
	Properties, clsPartitionMeasure

	clsRoleCommand
	Collections, clsRoleCommand
	Properties, clsRoleCommand

	clsServer
	Collections, clsServer
	Methods, clsServer
	CloseServer (clsServer)
	Connect (clsServer)
	CreateObject (clsServer)
	LockObject (clsServer)
	Refresh (clsServer)
	UnlockAllObjects (clsServer)
	UnlockObject (clsServer)
	Update (clsServer)

	Properties, clsServer
	ClassType (clsServer)
	ConnectTimeout (clsServer)
	Description (clsServer)
	Edition (clsServer)
	IsValid (clsServer)
	LockTimeout (clsServer)
	Name (clsServer)
	Parent (clsServer)
	ProcessingLogFileName (clsServer)
	ServiceState (clsServer)
	State (clsServer)
	Timeout (clsServer)
	Version (clsServer)

	Property Object
	Properties, Property Object
	DataType (Property Object)
	Name (Property Object)
	Value (Property Object)

	Enumerations
	AggregatesTypes
	ClassTypes
	CloneOptions
	CommandTypes
	DimensionAggUsageTypes
	DimensionTypes
	ErrorCodes
	GroupingValues
	HideIfValues
	LanguageValues
	LevelTypes
	MembersWithDataValues
	OlapEditions
	OlapLockTypes
	OlapStateTypes
	OlapStorageModes
	OrderTypes
	ProcessOptimizationModes
	ProcessTypes
	PropertyTypeValue
	RootIfValues
	ServerStates
	StorageModeValues
	SubClassTypes

	Collections
	Nested Collections
	Commands Collection
	CustomProperties Collection
	Methods, CustomProperties
	Add (CustomProperties Collection)
	Clear (CustomProperties Collection)
	Item (CustomProperties Collection)
	Remove (CustomProperties Collection)

	Properties, CustomProperties
	Count (CustomProperties Collection)

	Columns Collection
	DataSources Collection
	Dimensions Collection
	Levels Collection
	MDStores Collection
	Measures Collection
	MemberProperties Collection
	MiningModels Collection
	Roles Collection

	Add-ins
	About Add-ins
	Building Add-ins
	Tutorial - Creating a Sample Add-in
	Example - Report Add-In

	Programmer's Reference (Add-ins)
	Interfaces
	IOlapAddIn Interface
	Methods, IOlapAddIn Interface
	ExecuteMenuItem (IOlapAddIn Interface)
	GetObject (IOlapAddIn Interface)
	ProvideChildNodes (IOlapAddIn Interface)
	ProvideHTML (IOlapAddIn Interface)
	ProvideIcon (IOlapAddIn Interface)
	ProvideMenuItems (IOlapAddIn Interface)

	Properties, IOlapAddIn Interface
	Name (IOlapAddIn Interface)

	Objects
	OlapMenuItem
	Properties, OlapMenuItem
	Caption (OlapMenuItem)
	Disabled (OlapMenuItem)
	Flags (OlapMenuItem)
	HelpContextId (OlapMenuItem)
	HelpFileName (OlapMenuItem)
	Key (OlapMenuItem)
	OwnerAddInName (OlapMenuItem)
	OwnerAddInProgID (OlapMenuItem)
	ParentKey (OlapMenuItem)

	OlapTreeNode
	Properties, OlapTreeNode
	Caption (OlapTreeNode)
	HelpContextId (OlapTreeNode)
	IconClosed (OlapTreeNode)
	IconOpen (OlapTreeNode)
	LinkedObject (OlapTreeNode)
	OwnerAddInName (OlapTreeNode)
	OwnerAddInProgID (OlapTreeNode)
	Parent (OlapTreeNode)

	Enumerations
	errDSSAddinErrorNumbers
	OlapMenuFlags
	OlapMenuTypes
	RefreshTreeTypes

	Collections
	OlapMenuItems
	Methods, OlapMenuItems
	Add (OlapMenuItems)
	Remove (OlapMenuItems)

	Properties, OlapMenuItems
	Count (OlapMenuItems)
	Item (OlapMenuItems)

	OlapTreeNodes
	Methods, OlapTreeNodes
	Add (OlapTreeNodes)
	Remove (OlapTreeNodes)

	Properties, OlapTreeNodes
	Count (OlapTreeNodes)
	Item (OlapTreeNodes)

	PivotTable Service
	Overview of PivotTable Service
	What's New in PivotTable Service
	Redistributing Components
	Developing Client Applications
	Development Environments
	Using Visual C++
	Using Visual Basic
	Using ADO MD
	Using ADO

	Using Active Server Pages

	Key Concepts in PivotTable Service
	Context of Connections
	Connected to Analysis Services
	Connected to an OLE DB Provider
	Connected to a Local Cube File or Data Mining Model

	Organization of Multidimensional Data
	Balanced Hierarchies
	Ragged Hierarchies
	Unbalanced Hierarchies
	Using the MDX Compatibility Property

	Advanced Data Mining and Analysis
	Building a Local Data Mining Model
	Training a Local Data Mining Model
	Predictions and Results of Data Mining

	Working with OLAP Data
	Calculated Members
	Managing the Client Cache
	Transactions in Analysis Services
	Updating Cubes
	Transaction Scope
	Synchronization of Client and Server
	Cumulative Effect of Transactions on Data
	Isolation Levels
	Committing a Transaction
	Commit Time-out

	Security in PivotTable Service

	Client Operations in PivotTable Service
	Error and Exception Handling
	Connecting to a Data Source
	Using the Connection String
	Using the OLE DB Connection Dialog Box
	Connecting Using HTTP

	Retrieving Schema Information
	Using the CubeDef Object
	Using the OpenSchema Method

	Retrieving Data
	Using the Cellset Object
	Using the Recordset Object

	Updating Information in a Cube
	Writing a Value Back to a Cell
	Transaction Processing

	Building Local Cubes
	Using the CREATE CUBE Statement
	Using the INSERT INTO Statement
	Processing a Local Cube
	Defining Calculated Members
	Refreshing Local Cubes

	PivotTable Service Programmer's Reference
	PivotTable Service Properties
	ArtificialData Property
	Authenticated User Property
	Auto Synch Period Property
	Cache Policy Property
	Cache Ratio Property
	Client Cache Size Property
	CompareCaseNotSensitiveStringFlags Property
	CompareCaseSensitiveStringFlags Property
	Connect Timeout Property
	CreateCube Property
	Data Source Property
	Datasource Connection Type Property
	Default GUID Dialect Property
	Default Isolation Mode Property
	Default MDX Visual Mode Property
	Distinct Measures By Key Property
	Do Not Apply Commands Property
	Execution Location Property
	Initial Catalog Property
	InsertInto Property
	Large Level Threshold Property
	Locale Identifier Property
	Log File Property
	MDX Calculated Members Mode Property
	MDX Compatibility Property
	MDX Object Qualification Property
	MDX Unique Name Style Property
	Mining Execution Location Property
	Mining Location Property
	Mining Persistence Format Property
	OLE DB for OLAP Version Property
	Password Property
	Provider Property
	Read Only Session Property
	Restricted Client Property
	Roles Property
	Safety Options Property
	Secured Cell Value Property
	Show Hidden Cubes Property
	Source_DSN Property
	Source_DSN_Suffix Property
	SQL Compatibility Property
	SSPI Property
	UseExistingFile Property
	User ID Property
	Writeback Timeout Property

	Data Definition Language
	ALTER CUBE Statement
	CREATE ACTION Statement
	CREATE CACHE Statement
	CREATE CELL CALCULATION Statement
	CREATE CUBE Statement
	CREATE MEMBER Statement
	CREATE MINING MODEL Statement
	CREATE SET Statement
	DROP ACTION Statement
	DROP CUBE Statement
	DROP CELL CALCULATION Statement
	DROP LIBRARY Statement
	DROP MEMBER Statement
	DROP MINING MODEL Statement
	DROP SET Statement
	REFRESH CUBE Statement
	USE LIBRARY Statement

	Data Manipulation Language
	DRILLTHROUGH Statement
	INSERT INTO Statement
	SELECT Statement
	UPDATE CUBE Statement

	Function Reference
	OLAP Functions
	Data Mining Functions
	BottomCount
	BottomPercent
	BottomSum
	Cluster
	ClusterDistance
	ClusterProbability
	Predict
	PredictAdjustedProbability
	PredictHistogram
	PredictProbability
	PredictStdev
	PredictSupport
	PredictVariance
	RangeMax
	RangeMid
	RangeMin
	Sub-SELECT
	TopCount
	TopPercent
	TopSum

	Schema Rowsets
	OLAP Schema Rowsets
	MDSCHEMA_ACTIONS
	MDSCHEMA_CELL_FORMULAS
	MDSCHEMA_CUBES
	MDSCHEMA_DIMENSIONS
	MDSCHEMA_FUNCTIONS
	MDSCHEMA_HIERARCHIES
	MDSCHEMA_LEVELS
	MDSCHEMA_MEASURES
	MDSCHEMA_MEMBERS
	MDSCHEMA_PROPERTIES
	MDSCHEMA_SETS

	Data Mining Schema Rowsets
	MINING_COLUMNS
	MINING_MODEL_CONTENT
	MINING_MODEL_CONTENT_PMML
	MINING_MODELS
	MINING_SERVICE_PARAMETERS
	MINING_SERVICES

	Analysis Services Programming Samples
	Simple Cube Creation
	Cube Query and Result Set Manipulation
	Cube Schema Retrieval and Manipulation
	Complex Cube Creation and Manipulation

	Meta Data Services Programming
	Meta Data Services Programming
	Programming Meta Data Services Applications
	Repository Object Architecture
	Repository Engine Model
	Repository Objects and Object Versions
	Repository Session Objects
	Repository Transaction Objects
	Repository Root Objects
	Repository Relationship Objects
	Relationship Structure: Origin and Destination
	Relationship Navigation: Source and Target

	Repository Collections
	Repository Property Objects
	Repository Workspace Objects

	Repository Type Information Model
	Repository Type Library Objects
	Class Definition Objects
	Interface Definition Objects
	Alias Objects
	Relationship Definition Objects
	Collection Definition Objects
	Property Definition Objects
	Enumeration Definition Objects
	Method Definition Objects
	Parameter Definition Objects
	Script Definition Objects

	Understanding the RTIM Through Examples
	Example: Associating Data with RTIM
	Example: A Finished Information Model

	Designing Information Models
	Understanding Application Data
	Visualizing Data and Meta Data
	Ways to List Data
	Ways to List Meta Data

	Depicting Relationships Between Objects
	How Relationships Conform to Relationship Types
	Understanding Collections
	Understanding Relationship Roles

	Getting Started with Meta Data Services
	Programming Environment
	Accessing Automation Object Members
	Visual C++ Wrappers with Meta Data Services

	Using Meta Data Services to Define Information Models
	Using Meta Data Services to Program Information Models
	Programming Fundamentals: Declaring Objects
	Programming Fundamentals: Populating a Collection

	Connecting to and Configuring a Repository
	Connecting to a SQL Server Repository Database
	Connecting to a Jet Repository Database
	Connecting Through a DSN
	Default Repository Databases
	Replicating Repository Databases

	Defining Information Models
	Repository Identifiers
	Object Identifiers and Internal Identifiers
	Object-Version Identifiers and Internal Object-Version Identifiers
	How Repository Identifiers are Stored and Instantiated
	Repository Identifier Data Structures
	Assigning Object Identifiers

	Naming Objects, Collections, and Relationships
	Type Information Aliasing
	Naming Conventions
	Naming and Unique-Naming Collections
	Retrieving an Object Version's Name
	Changing an Object Version's Name
	Changing a Destination Relationship's Name
	Naming Stored Procedures

	Creating and Extending Type Information
	Creating Type Information Using Modeling Tools
	Information Model Creation Issues
	Extending vs. Creating Information Models
	Choosing Which Information Belongs in the Repository
	Choosing an Automation Server for a Class
	Tuning the Database Schema of an Information Model
	Accommodating Navigation within an Information Model

	Creating Type Information Programmatically
	Begin a Transaction
	Create a Repository Type Library
	Define Dependencies Between Type Libraries
	Add Classes to the Repository Type Library
	Add Interfaces to Each Class
	Add Properties to Each Interface
	Add Methods to Each Interface
	Add Relationship Types and Pairs of Collection Types
	Commit the Transaction

	Defining Relationships and Collections
	Defining a Relationship
	Defining a Collection
	Sequenced Collections
	Heterogeneous Collections of Objects

	Defining a Relationship Collection
	Defining a Target Object Collection
	Defining a Version Collection

	Defining Properties
	Virtual Members
	Repository Enumeration Definition

	Defining Methods
	Defining a Parameter
	Defining Script Objects
	Binding Scripts
	Accessing a Script
	Predefined Script Variables
	Method Invocation for Scripted Methods
	Get Method for Scripted Properties
	Put Method for Scripted Properties

	Defining Inheritance
	Interface Implication
	Adding an Interface Implication

	Member Delegation
	Derived Members
	Supporting Multiple Interfaces With Overlapping Functionality
	Flattening Interfaces
	Simulating Multiple Inheritance
	Specializing Relationship Collections
	Filtering Derived Collections

	Derived Member Requirements
	Creating a Derived Member
	Derivation Behavior
	Example: Basic Member Delegation
	Example: Member Delegation with Filtering

	Generating Views
	Defining Views in an Information Model
	Kinds of SQL Views
	Defining a Class View
	Defining an Interface View
	Defining a Junction Table View
	Defining View Columns

	Version Resolution for Generated Views
	Naming Conventions for Generated Views
	Querying a Repository Database Using SQL Views

	Installing Information Models
	Using the Model Installer from the Command Line
	Using the Model Installer ActiveX Component

	Programming Information Models
	Navigating a Repository
	Navigation Overview
	Navigating a Relationship from Two Directions
	Navigating a Relationship Using Two Approaches
	Source Objects and Target Objects

	Accessing a Repository
	Accessing Repository Objects
	Accessing Properties

	Accessing Relationships
	Accessing Relationship Collections
	Retrieving Relationship Collections

	Accessing Target Object Collections
	Using TargetObjectCol with Relationship Collections
	Retrieving Target Object Collections

	Selecting Items in a Collection
	Using Enumerators to Work with Items in a Collection
	Filtering Collections

	Propagating Deletes
	Requirements for Object-Version Deletion
	Requirements for Changing an Object Version
	Delete Propagation After Removing an Origin Relationship
	Delete Propagation After Removing a Destination Relationship
	Delete Propagation After Removing a Destination Target Version
	Delete Propagation After Removing an Origin Target Version
	Delete Propagation After Removing an Object Version

	Versioning Objects
	Versioning Overview
	Kinds of Version Collections
	Version Graph
	Navigating the Version Graph
	Manipulating Versioned Relationships
	Version-to-Version Relationships

	Manipulating Object Versions
	Creating Object Versions
	Propagating Versions
	Freezing an Object Version

	Resolution Strategy for Objects and Object Versions
	Requesting a Specific Version
	Resolution While Operating Within a Workspace
	Resolution While Operating Outside a Workspace

	Merging Object Versions
	Merge Overview
	Invoking MergeVersion
	Resolving Merge Conflicts for Properties
	Resolving Merge Conflicts for Collections
	Examples of Merging Versions

	Programming Objects
	Programming BLOBs and Large Text Fields
	Programming Transient Object Collections

	Managing Transactions and Threads
	Transaction Management Overview
	Managing Transactions
	Nesting Transactions
	Transactions and Caching
	Integration with Distributed Transaction Coordinator

	Design Issues and Transaction Management
	Reading Repository Data Outside of a Transaction
	Using a Lock Protocol
	Avoiding Repository Cache Overflows

	Repository Objects and Multithreading
	Restrictions for Microsoft Jet Repository Databases
	Synchronizing Commit Operations

	Managing Workspaces
	Workspace Management Overview
	Objects Within Workspaces
	Workspace Context
	Establishing Workspace Context
	Retaining Workspace Context
	Workspaces and Repository Instances

	Accessing Objects in a Workspace
	Manipulating Workspaces
	Manipulating Objects in a Workspace

	Handling Errors
	Error Handling Overview
	Accessing Error Information at the Automation Level
	Accessing Error Information at the COM Level
	Persisting Error Queue Information

	Optimizing Repository Performance
	General Hints to Improve Performance
	Retrieval Hints
	Update Hints
	Versioning Hints
	Run-Time Tuning
	Adjusting Cache Aging for Repository Objects
	View Hints

	Storage Strategy in a Repository Database
	Branches in the Version Graph
	Ranges in the Version Graph
	Storing Relationships
	Interface-Specific Tables
	Example: Rows of Interface-Specific Tables

	Using OLE DB Scanner
	OLE DB Scanner Overview
	Supported OLE DB Schema Rowsets in OLE DB Scanner
	Navigating the Schema in OLE DB Scanner
	Schema Versioning in OLE DB Scanner
	Data Type Mappings in OLE DB Scanner

	Using XML Encoding
	Exporting XML
	Export Automation Object Example
	Importing XML
	Import Automation Object Example

	Repository API Reference
	Automation Reference
	Repository Engine Automation Objects
	ObjectCol Object
	ObjectCol Count Property
	ObjectCol Item Property
	ObjectCol Cancel Method
	ObjectCol LoadStatus Method
	ObjectCol Refresh Method

	Relationship Object
	RelationshipCol Object
	RelationshipCol Count Property
	RelationshipCol Item Property
	RelationshipCol Source Property
	RelationshipCol Type Property
	RelationshipCol Add Method
	RelationshipCol Insert Method
	RelationshipCol Move Method
	RelationshipCol Refresh Method
	RelationshipCol Remove Method

	Repository Object
	Repository ConnectionString Property
	Repository MajorDBVersion Property
	Repository MinorDBVersion Property
	Repository Object Property
	Repository ReposConnection Property
	Repository RootObject Property
	Repository Transaction Property
	Repository Version Property
	Repository Create Method
	Repository CreateObject Method
	Repository CreateObjectEx Method
	Repository ExecuteQuery Method
	Repository FreeConnection Method
	Repository GetCollection Method
	Repository GetNewConnection Method
	Repository GetOption Method
	Repository InternalIDToObjectID Method
	Repository InternalIDToVersionID Method
	Repository ObjectIDToInternalID Method
	Repository Open Method
	Repository Refresh Method
	Repository ResetOption Method
	Repository SetOption Method
	Repository VersionIDToInternalID Method

	RepositoryObject Object
	RepositoryObject ClassName Property
	RepositoryObject ClassType Property
	RepositoryObject Interface Property
	RepositoryObject InternalID Property
	RepositoryObject Name Property
	RepositoryObject ObjectID Property
	RepositoryObject Repository Property
	RepositoryObject Type Property
	RepositoryObject Delete Method
	RepositoryObject Lock Method
	RepositoryObject Refresh Method
	RepositoryObject Properties Collection

	RepositoryObjectVersion Object
	RepositoryObjectVersion ClassName Property
	RepositoryObjectVersion ClassType Property
	RepositoryObjectVersion CheckOutWorkspace Property
	RepositoryObjectVersion Interface Property
	RepositoryObjectVersion InternalID Property
	RepositoryObjectVersion IsCheckedOut Property
	RepositoryObjectVersion IsFrozen Property
	RepositoryObjectVersion Name Property
	RepositoryObjectVersion ObjectID Property
	RepositoryObjectVersion PredecessorCreationVersion Property
	RepositoryObjectVersion Repository Property
	RepositoryObjectVersion ResolutionType Property
	RepositoryObjectVersion Type Property
	RepositoryObjectVersion VersionID Property
	RepositoryObjectVersion VersionInternalID Property
	RepositoryObjectVersion CreateVersion Method
	RepositoryObjectVersion Delete Method
	RepositoryObjectVersion FreezeVersion Method
	RepositoryObjectVersion Lock Method
	RepositoryObjectVersion MergeVersion Method
	RepositoryObjectVersion Refresh Method
	RepositoryObjectVersion ObjectVersions Collection
	RepositoryObjectVersion PredecessorVersions Collection
	RepositoryObjectVersion Properties Collection
	RepositoryObjectVersion SuccessorVersions Collection
	RepositoryObjectVersion Workspaces Collection

	RepositoryTransaction Object
	RepositoryTransaction Status Property
	RepositoryTransaction Abort Method
	RepositoryTransaction Begin Method
	RepositoryTransaction Commit Method
	RepositoryTransaction Flush Method
	RepositoryTransaction GetOption Method
	RepositoryTransaction SetOption Method

	ReposProperties Object
	ReposProperties Count Property
	ReposProperties Item Property
	ReposProperties Type Property

	ReposProperty Object
	ReposProperty APIType Property
	ReposProperty CurrentPosition Property
	ReposProperty Flags Property
	ReposProperty IsBaseMember Property
	ReposProperty IsMostDerived Property
	ReposProperty IsOriginCollection Property
	ReposProperty IsReadOnly Property
	ReposProperty Name Property
	ReposProperty PropType Property
	ReposProperty Size Property
	ReposProperty Type Property
	ReposProperty Value Property
	ReposProperty Close Method
	ReposProperty Read Method
	ReposProperty ReadFromFile Method
	ReposProperty Write Method
	ReposProperty WriteToFile Method

	TransientObjectCol Object
	TransientObjectCol Count Property
	TransientObjectCol Add Method
	TransientObjectCol Refresh Method
	TransientObjectCol Remove Method
	TransientObjectCol Item Collection

	Workspace Object
	Workspace CheckedOutToWorkspace Property
	Workspace Interface Property
	Workspace InternalID Property
	Workspace IsCheckedOut Property
	Workspace IsFrozen Property
	Workspace MajorDBVersion Property
	Workspace MinorDBVersion Property
	Workspace Name Property
	Workspace Object Property
	Workspace ObjectID Property
	Workspace PredecessorCreationVersion Property
	Workspace Repository Property
	Workspace ResolutionType Property
	Workspace RootObject Property
	Workspace Transaction Property
	Workspace Type Property
	Workspace Version Property
	Workspace VersionID Property
	Workspace VersionInternalID Property
	Workspace Checkin Method
	Workspace Checkout Method
	Workspace Create Method
	Workspace CreateObject Method
	Workspace CreateVersion Method
	Workspace Delete Method
	Workspace FreezeVersion Method
	Workspace InternalIDToObjectID Method
	Workspace InternalIDToVersionID Method
	Workspace Lock Method
	Workspace MergeVersion Method
	Workspace ObjectIDToInternalID Method
	Workspace Open Method
	Workspace Refresh Method
	Workspace Refresh (from IRepositoryObjectVersion) Method
	Workspace VersionIDToInternalID Method
	Workspace Checkouts Collection
	Workspace Containers Collection
	Workspace Contents Collection
	Workspace ObjectVersions Collection
	Workspace PredecessorVersions Collection
	Workspace Properties Collection
	Workspace SuccessorVersions Collection
	Workspace Workspaces Collection

	VersionCol Object
	VersionCol Count Property
	VersionCol Item Property
	VersionCol Add Method
	VersionCol Refresh Method
	VersionCol Remove Method

	VersionedRelationship Object
	VersionedRelationship Destination Property
	VersionedRelationship Interface Property
	VersionedRelationship Name Property
	VersionedRelationship Origin Property
	VersionedRelationship Repository Property
	VersionedRelationship Source Property
	VersionedRelationship Target Property
	VersionedRelationship Type Property
	VersionedRelationship Delete Method
	VersionedRelationship Lock Method
	VersionedRelationship Pin Method
	VersionedRelationship Unpin Method
	VersionedRelationship Properties Collection
	VersionedRelationship TargetVersions Collection

	RTIM Automation Objects
	Alias Object
	Alias Name Property
	Alias MemberSynonym Property
	Alias ServicedByMember Collection

	ClassDef Object
	ClassDef ClassID Property
	ClassDef Name Property
	ClassDef Synonym Property
	ClassDef AddInterface Method
	ClassDef CreateInterfaceDef Method
	ClassDef ObjectInstances Method
	ClassDef Interfaces Collection
	ClassDef Properties Collection
	ClassDef ReposTypeLibScopes Collection
	ClassDef ScriptsUsedByClass Collection

	CollectionDef Object
	CollectionDef DispatchID Property
	CollectionDef Flags Property
	CollectionDef IsOrigin Property
	CollectionDef MaxCount Property
	CollectionDef MemberSynonym Property
	CollectionDef MinCount Property
	CollectionDef Name Property
	CollectionDef CollectionItem Collection
	CollectionDef Interface Collection
	CollectionDef Properties Collection

	EnumerationDef Object
	EnumerationDef Name Property
	EnumerationDef Description Property
	EnumerationDef IsFlag Property
	EnumerationDef Values Collection

	EnumerationValueDef Object
	EnumerationValueDef EnumValue Property

	InterfaceDef Object
	InterfaceDef Flags Property
	InterfaceDef InterfaceID Property
	InterfaceDef Synonym Property
	InterfaceDef TableName Property
	InterfaceDef CreateAlias Method
	InterfaceDef CreateMethodDef Method
	InterfaceDef CreatePropertyDef Method
	InterfaceDef CreateRelationshipColDef Method
	InterfaceDef ObjectInstances Method
	InterfaceDef Ancestor Collection
	InterfaceDef Classes Collection
	InterfaceDef Descendants Collection
	InterfaceDef Implies Collection
	InterfaceDef ImpliedBy Collection
	InterfaceDef Members Collection
	InterfaceDef Properties Collection
	InterfaceDef ReposTypeLibScopes Collection
	InterfaceDef ScriptsUsedByInterface Collection

	MethodDef Object
	MethodDef DispatchID Property
	MethodDef Flags Property
	MethodDef MemberSynonym Property
	MethodDef CreateParameterDef Method
	MethodDef Interface Collection
	MethodDef Properties Collection

	ParameterDef Object
	ParameterDef Default Property
	ParameterDef Description Property
	ParameterDef Flags Property
	ParameterDef GUID Property
	ParameterDef Type Property

	PropertyDef Object
	PropertyDef APIType Property
	PropertyDef ColumnName Property
	PropertyDef DispatchID Property
	PropertyDef Flags Property
	PropertyDef MemberSynonym Property
	PropertyDef SQLBlobSize Property
	PropertyDef SQLScale Property
	PropertyDef SQLSize Property
	PropertyDef SQLType Property
	PropertyDef EnumerationDef Collection
	PropertyDef Interface Collection
	PropertyDef Properties Collection

	RelationshipDef Object
	RelationshipDef Name Property
	RelationshipDef Synonym Property
	RelationshipDef ItemInCollections Collection
	RelationshipDef Properties Collection
	RelationshipDef ReposTypeLibScopes Collection

	ReposRoot Object
	ReposRoot CreateTypeLib Method
	ReposRoot ReposTypeLibs Collection
	ReposRoot Properties Collection
	ReposRoot Workspaces Collection

	ReposTypeLib Object
	ReposTypeLib Name Property
	ReposTypeLib Prefix Property
	ReposTypeLib TypeLibID Property
	ReposTypeLib CreateClassDef Method
	ReposTypeLib CreateInterfaceDef Method
	ReposTypeLib CreateRelationshipDef Method
	ReposTypeLib ReposTypeInfos Collection
	ReposTypeLib ReposTypeLibContexts Collection
	ReposTypeLib Properties Collection

	ScriptDef Object
	ScriptDef Body Property
	ScriptDef Language Property
	ScriptDef Name Property
	ScriptDef ValidateScript Method
	ScriptDef UsingClasses Collection
	ScriptDef UsingInterfaces Collection
	ScriptDef UsingMembers Collection

	COM Reference
	Repository Engine Classes
	ObjectCol Class
	Relationship Class
	RelationshipCol Class
	Repository Class
	RepositoryObjectVersion Class
	RepositoryObject Class
	ReposProperties Class
	ReposProperty Class
	TransientObjectCol Class
	VersionCol Class
	VersionedRelationship Class
	Workspace Class

	Repository Engine COM Interfaces
	IAnnotationalProps Interface
	IEnumRepositoryErrors Interface
	IEnumRepositoryErrors::Clone
	IEnumRepositoryErrors::Next
	IEnumRepositoryErrors::Reset
	IEnumRepositoryErrors::Skip

	INamedObject Interface
	INamedObject Name Property

	IObjectCol Interface
	IObjectCol::get_Count
	IObjectCol::_NewEnum
	IObjectCol::get_Item
	IObjectCol::Refresh

	IObjectCol2 Interface
	IObjectCol2::get_LoadStatus
	IObjectCol2::Cancel

	IRelationship Interface
	IRelationship::get_Destination
	IRelationship::get_Origin
	IRelationship::get_Source
	IRelationship::get_Target

	IRelationshipCol Interface
	IRelationshipCol::Add
	IRelationshipCol::get_Count
	IRelationshipCol::_NewEnum
	IRelationshipCol::get_Source
	IRelationshipCol::get_Type
	IRelationshipCol::Insert
	IRelationshipCol::get_Item
	IRelationshipCol::Move
	IRelationshipCol::Refresh
	IRelationshipCol::Remove

	IReposErrorQueueHandler Interface
	IReposErrorQueueHandler::CreateErrorQueue
	IReposErrorQueueHandler::GetErrorQueue
	IReposErrorQueueHandler::SetErrorQueue

	IRepository Interface
	IRepository::Create
	IRepository::CreateObject
	IRepository::get_Object
	IRepository::get_RootObject
	IRepository::get_Transaction
	IRepository::InternalIDToObjectID
	IRepository::ObjectIDToInternalID
	IRepository::Open
	IRepository::Refresh

	IRepository2 Interface
	IRepository2::get_Version
	IRepository2::InternalIDToVersionID
	IRepository2::VersionIDToInternalID
	IRepository2::CreateObjectEx
	IRepository2::get_MajorDBVersion
	IRepository2::get_MinorDBVersion

	IRepositoryDispatch Interface
	IRepositoryDispatch::get_Properties Method

	IRepositoryErrorQueue Interface
	IRepositoryErrorQueue::Count
	IRepositoryErrorQueue::Insert
	IRepositoryErrorQueue::Item
	IRepositoryErrorQueue::Remove
	IRepositoryErrorQueue::_NewEnum

	IRepositoryItem Interface
	IRepositoryItem::Delete
	IRepositoryItem::get_Interface
	IRepositoryItem::get_Name
	IRepositoryItem::get_Repository
	IRepositoryItem::get_Type
	IRepositoryItem::Lock
	IRepositoryItem::put_Name

	IRepositoryObject Interface
	IRepositoryObject::get_InternalID
	IRepositoryObject::get_ObjectID
	IRepositoryObject::Refresh

	IRepositoryObject2 Interface
	IRepositoryObject2 ClassName Property
	IRepositoryObject2 ClassType Property
	IRepositoryObject2 Properties Property

	IRepositoryObjectStorage Interface
	IRepositoryObjectStorage::get_PropertyInterface
	IRepositoryObjectStorage::InitNew
	IRepositoryObjectStorage::Load

	IRepositoryObjectVersion Interface
	IRepositoryObjectVersion::CreateVersion
	IRepositoryObjectVersion::FreezeVersion
	IRepositoryObjectVersion::get_IsFrozen
	IRepositoryObjectVersion::get_ObjectVersions
	IRepositoryObjectVersion::get_PredecessorCreationVersion
	IRepositoryObjectVersion::get_PredecessorVersions
	IRepositoryObjectVersion::get_ResolutionType
	IRepositoryObjectVersion::get_SuccessorVersions
	IRepositoryObjectVersion::get_VersionID
	IRepositoryObjectVersion::get_VersionInternalID
	IRepositoryObjectVersion::MergeVersion

	IRepositoryODBC Interface
	IRepositoryODBC::ExecuteQuery
	IRepositoryODBC::FreeConnection
	IRepositoryODBC::get_ConnectionString
	IRepositoryODBC::GetNewConnection
	IRepositoryODBC::get_ReposConnection

	IRepositoryODBC2 Interface
	IRepositoryODBC2::GetOption
	IRepositoryODBC2::SetOption

	IRepositoryTransaction Interface
	IRepositoryTransaction::Abort
	IRepositoryTransaction::Begin
	IRepositoryTransaction::Commit
	IRepositoryTransaction::Flush
	IRepositoryTransaction::GetOption
	IRepositoryTransaction::get_Status
	IRepositoryTransaction::SetOption

	IRepositoryTransaction2 Interface
	IRepositoryTransaction2::get_DTCTransaction

	IReposOptions Interface
	IReposOptions::GetOption
	IReposOptions::SetOption
	IReposOptions::ResetOptions
	IReposOptions Options Table

	IReposProperties Interface
	IReposProperties::get_Count
	IReposProperties::get_Item
	IReposProperties::get_Type
	IReposProperties::_NewEnum

	IReposProperty Interface
	IReposProperty::get_Name
	IReposProperty::get_Type
	IReposProperty::get_Value
	IReposProperty::put_Value

	IReposProperty2 Interface
	IReposProperty2 APIType Property
	IReposProperty2 IsBaseMember Property
	IReposProperty2 IsOriginCollection Property
	IReposProperty2 PropType Property
	IReposProperty2 IsReadOnly Property

	IReposPropertyLarge Interface
	IReposPropertyLarge::Size
	IReposPropertyLarge::CurrentPosition
	IReposPropertyLarge::Read
	IReposPropertyLarge::ReadFromFile
	IRepositoryPropetyLarge::Close
	IReposPropertyLarge::Write
	IReposPropertyLarge::WriteToFile

	IReposQuery Interface
	IReposQuery::GetCollection

	ISummaryInformation Interface
	ISummaryInformation Comments Property
	ISummaryInformation ShortDescription Property

	ITargetObjectCol Interface
	ITargetObjectCol::Add
	ITargetObjectCol::get_Source
	ITargetObjectCol::get_Type
	ITargetObjectCol::Insert
	ITargetObjectCol::Move
	ITargetObjectCol::Remove

	ITransientObjectCol Interface
	ITransientObjectCol::Add
	ITransientObjectCol::Remove

	IVersionAdminInfo Interface
	IVersionAdminInfo CreateByUser Property
	IVersionAdminInfo ModifyByUser Property
	IVersionAdminInfo VersionCreateTime Property
	IVersionAdminInfo VersionModifyTime Property

	IVersionAdminInfo2 Interface
	IVersionAdminInfo2 VersionLabel Property
	IVersionAdminInfo2 VersionComments Property
	IversionAdminInfo2 VersionShortDesc Property

	IVersionCol Interface
	IVersionCol::Add
	IVersionCol::get_Count
	IVersionCol::get_Item
	IVersionCol::_NewEnum
	IVersionCol::Refresh
	IVersionCol::Remove

	IVersionedRelationship Interface
	IVersionedRelationship::get_TargetVersions
	IVersionedRelationship::Pin
	IVersionedRelationship::Unpin

	IWorkspace Interface
	IWorkspace Containers Collection
	IWorkspace::get_Checkouts
	IWorkspace::get_Contents

	IWorkspaceContainer Interface
	IWorkspaceContainer Workspaces Collection

	IWorkspaceItem Interface
	IWorkspaceItem::Checkin
	IWorkspaceItem::Checkout
	IWorkspaceItem::get_CheckedOutToWorkspace
	IWorkspaceItem::get_IsCheckedOut
	IWorkspaceItem::get_Workspaces

	RTIM Classes
	Alias Class
	ClassDef Class
	CollectionDef Class
	EnumerationDef Class
	EnumerationValueDef Class
	InterfaceDef Class
	MethodDef Class
	ParameterDef Class
	PropertyDef Class
	RelationshipDef Class
	ReposRoot Class
	ReposTypeLib Class
	ScriptDef Class

	RTIM COM Interfaces
	IClassDef Interface
	IClassDef::AddInterface
	IClassDef ClassID Property
	IClassDef::CreateInterfaceDef
	IClassDef Interfaces Collection
	IClassDef::ObjectInstances

	IClassDef2 Interface
	ScriptsUsedByClass Collection

	ICollectionDef Interface
	ICollectionDef Flags Property
	ICollectionDef IsOrigin Property
	ICollectionDef MaxCount Property
	ICollectionDef MinCount Property
	ICollectionDef CollectionItem Collection

	IEnumerationDef Interface
	IEnumerationDef Values Collection

	IEnumerationValueDef Interface
	IEnumerationValueDef::EnumValue

	IInterfaceDef Interface
	IInterfaceDef Flags Property
	IInterfaceDef InterfaceID Property
	IInterfaceDef TableName Property
	IInterfaceDef::CreateMethodDef
	IInterfaceDef::CreatePropertyDef
	IInterfaceDef::CreateRelationshipColDef
	IInterfaceDef::ObjectInstances
	IInterfaceDef Classes Collection
	IInterfaceDef Members Collection
	IInterfaceDef Ancestor Collection
	IInterfaceDef Descendants Collection

	IInterfaceDef2 Interface
	IInterfaceDef2 Implies Collection
	IInterfaceDef2 ImpliedBy Collection
	IInterfaceDef2::CreateAlias

	IInterfaceMember Interface
	IInterfaceMember DispatchID Property
	IInterfaceMember Flags Property
	IInterfaceMember Interface Collection

	IInterfaceMember2 Interface
	IInterfaceMember2 MemberSynonym Property
	IInterfaceMember2 ScriptsUsedByMember Collection
	IInterfaceMember2 ServicedByBaseMember Collection
	IInterfaceMember2 ServicesDerivedMembers Collection

	IManageReposTypeLib Interface
	IManageReposTypeLib::CreateTypeLib
	IManageReposTypeLib ReposTypeLibs Collection

	IMethodDef Interface
	IMethodDef::CreateParameterDef
	IMethodDef Parameters Collection

	IParameterDef Interface
	IParameterDef Type Property
	IParameterDef Flags Property
	IParameterDef Description Property
	IParameterDef Default Property
	IParameterDef GUID Property

	IPropertyDef Interface
	IPropertyDef APIType Property
	IPropertyDef ColumnName Property
	IPropertyDef Flags Property
	IPropertyDef SQLScale Property
	IPropertyDef SQLSize Property
	IPropertyDef SQLType Property

	IPropertyDef2 Interface
	IPropertyDef2 SQLBlobSize Property
	IPropertyDef2 EnumerationDef Collection

	IReposRoot Interface
	IReposTypeInfo Interface
	IReposTypeInfo ItemInCollections Collection
	IReposTypeInfo ReposTypeLibScopes Collection

	IReposTypeInfo2 Interface
	IReposTypeInfo2 Synonym Property

	IReposTypeLib Interface
	IReposTypeLib TypeLibID Property
	IReposTypeLib::CreateClassDef
	IReposTypeLib::CreateInterfaceDef
	IReposTypeLib::CreateRelationshipDef
	IReposTypeLib ReposTypeInfos Collection
	IReposTypeLib ReposTypeLibContexts Collection

	IReposTypeLib2 Interface
	IReposTypeLib2 Prefix Property
	IReposTypeLib2 DependsOn Collection
	IReposTypeLib2 UsedBy Collection
	Model Dependency Example

	IScriptDef Interface
	IScriptDef::ValidateScript
	IScriptDef Body Property
	IScriptDef Language Property
	IScriptDef UsingClasses Collection
	IScriptDef UsingInterfaces Collection
	IScriptDef UsingMembers Collection

	IViewClassDef Interface
	IViewClassDef ViewName Property
	IViewClassDef ViewFlags Property

	IViewInterfaceDef Interface
	IViewInterfaceDef ViewName Property
	IViewInterfaceDef ViewFlags Property

	IViewPropertyDef Interface
	IViewPropertyDef ViewColumnName Property

	IViewRelationshipDef Interface
	IViewRelationshipDef ViewFlags Property
	IViewRelationshipDef ColumnNamePrefix Property
	IViewRelationshipDef JunctionViewName Property

	Constants and Data Types
	Repository Constants
	SQL and API Types Used in Property Definitions
	Repository SQL Data Types

	Enumerations
	CollectionDefFlags Enumeration
	ConnectionFlags Enumeration
	InterfaceDefFlags Enumeration
	InterfaceMemberFlags Enumeration
	TransactionFlags Enumeration
	LoadStatus Enumeration
	RepODBCFlags Enumeration

	Repository Errors
	REPOSERROR Data Structure
	Repository Errors (Numerical Order)
	Repository Errors (Alphabetical Order)
	EREP_BADDRIVER
	EREP_BADERROR
	EREP_BADNAME
	EREP_BADPARAMS
	EREP_BLOB_SEEKPASTEND
	EREP_BLOB_TEMPFILE
	EREP_BLOB_USERFILE
	EREP_BLOB_CANNOTSETPOS
	EREP_BUFFER_OVERFLOW
	EREP_CLASS_TOOCOMPLEX
	EREP_COL_NOTSEQUENCED
	EREP_COL_OBJECTNAMING
	EREP_COL_OBJECTNOTNAMED
	EREP_DB_ALREADYCONNECTED
	EREP_DB_CORRUPT
	EREP_DB_DBMSOLD
	EREP_DB_DBMSONETHREAD
	EREP_DB_EXISTS
	EREP_DB_INCOMPATIBLEVERSION
	EREP_DB_NOSCHEMA
	EREP_DB_NOTCONNECTED
	EREP_DB_READONLY
	EREP_DB_UPGRADE
	EREP_DUPEDISPID
	EREP_INVALIDDEPENDENCY
	EREP_INVALIDFILTER
	EREP_ITEMNOTCHECKEDOUT
	EREP_LOCK_TIMEOUT
	EREP_MEMDEL_DELCOLINVALID
	EREP_MEMDEL_COLNOTDEFINED
	EREP_MEMDEL_BASEIFACENOTIMPL
	EREP_MEMDEL_BASECOLVIRTUAL
	EREP_MEMDEL_MULTIPLEBASES
	EREP_MEMDEL_CIRCULARCOLS
	EREP_MISSINGCOMMA
	EREP_MISSINGLEFTBRACKET
	EREP_MISSINGLEFTPARENTHESIS
	EREP_MISSINGRIGHTBRACKET
	EREP_MISSINGRIGHTPARENTHESIS
	EREP_NAME_NOTUNIQUE
	EREP_NAMETOOLONG
	EREP_NEED_DATA
	EREP_NOROWSFOUND
	EREP_NOTWORKSPACEITEM
	EREP_OBJ_EXISTS
	EREP_ODBC_NOTCAPABLE
	EREP_OBJ_NONAMINGRELSHIP
	EREP_OBJ_NOTFOUND
	EREP_OBJ_NOTINITIALIZED
	EREP_ODBC_CERROR
	EREP_ODBC_CREATEFAILED
	EREP_ODBC_MDBNOTFOUND
	EREP_ODBC_UNKNOWNDRIVER
	EREP_ODBC_WARNINGS
	EREP_PROP_CANTSETREPTIM
	EREP_PROP_MISMATCH
	EREP_PROP_NOTEXISTS
	EREP_PROP_READONLY
	EREP_PROP_SETINVALID
	EREP_PROPERTYNOTFOUND
	EREP_QRY_BADCOLUMNS
	EREP_REL_ORGFROZEN
	EREP_REL_ORGCLONE
	EREP_REL_NONSEQONLY
	EREP_REL_ORGPIN
	EREP_REL_NOTPINNED
	EREP_RELSHIP_DUPENAME
	EREP_RELSHIP_EXISTS
	EREP_RELSHIP_INVALIDFLAGS
	EREP_RELSHIP_INVALID_PAIR
	EREP_RELSHIP_NAMEINVALID
	EREP_RELSHIP_NONNAMINGCOL
	EREP_RELSHIP_NOTFOUND
	EREP_RELSHIP_ORGONLY
	EREP_RELSHIP_OUTOFDATE
	EREP_REPOS_CACHEFULL
	EREP_REPOS_NONEXTDISPID
	EREP_RTIM_CLASS_IS_NOT_CREATEABLE
	EREP_SCRIPT_INVALIDLANGUAGE
	EREP_SCRIPT_NESTEDCALL
	EREP_SCRIPT_NOTFOUND
	EREP_SCRIPTS_NOTENABLED
	EREP_STILL_EXECUTING
	EREP_TIM_CTYPEINVALID
	EREP_TIM_FLAGSDEST
	EREP_TIM_INVALIDFLAGS
	EREP_TIM_RELTYPEINVALID
	EREP_TIM_SQLTYPEINVALID
	EREP_TIM_SQLSIZEINVALID
	EREP_TIM_TOOMANYCOLS
	EREP_TXN_AUTOABORT
	EREP_TXN_COLABORTED
	EREP_TXN_NODATA
	EREP_TXN_NOSETINTXN
	EREP_TXN_NOTXNACTIVE
	EREP_TXN_OBJABORTED
	EREP_TXN_TIMEOUT
	EREP_TXN_TOOMANY
	EREP_TYPE_BADTABLENAME
	EREP_TYPE_COLMISMATCH
	EREP_TYPE_INVALIDSCALE
	EREP_TYPE_INVERTEDNOTALLOWED
	EREP_TYPE_MULTIDEFIFACES
	EREP_TYPE_MULTIPLEANCESTORS
	EREP_TYPE_NOTNULLABLE
	EREP_TYPE_TABLEMISMATCH
	EREP_UNKNOWNPROPERTY
	EREP_VCOL_INVALIDOP
	EREP_VCOL_VERSIONNOTMEMBER
	EREP_VERSION_NOTFOUND
	EREP_VIRTUAL_ALIAS
	EREP_VIRTUAL_CALL
	EREP_VM_CANTSETFROZEN
	EREP_VM_MERGETOFROZEN
	EREP_VM_MERGEFROMUNFROZEN
	EREP_VM_UNFROZENVERSION
	EREP_VM_FROZENVERSION
	EREP_VM_CHECKEDOUTVERSION
	EREP_VM_DUPBRANCHID
	EREP_VM_SUCCESSOREXISTS
	EREP_VM_DIFFERENTTYPES
	EREP_WKS_ITEMEXISTS
	EREP_WKS_ITEMNOTEXISTS
	SREP_PROP_TRUNCATION

	Repository SQL Schema
	Repository SQL Tables
	RTblClassDefs SQL Table
	RTblDatabaseVersion SQL Table
	RTblEnumerationDef SQL Table
	RTblEnumerationValueDef SQL Table
	RTblIfaceDefs SQL Table
	RTblIfaceHier SQL Table
	RTblIfaceMem SQL Table
	RTblNamedObj SQL Table
	RTblParameterDef SQL Table
	RTblPropDefs SQL Table
	RTblProps SQL Table
	RTblRelColDefs SQL Table
	RTblRelshipDefs SQL Table
	RTblRelshipProps SQL Table
	RTblRelships SQL Table
	RTblRelships Example One
	RTblRelships Example Two
	RTblRelships Example Three
	RTblRelships Example Four
	RTblRelships Example Five
	RTblRelships Example Six
	RTblRelships Example Seven

	RTblScriptDefs SQL Table
	RTblSites SQL Table
	RTblSumInfo SQL Table
	RTblTypeInfo SQL Table
	RTblTypeLibs SQL Table
	RTblVersionAdminInfo SQL Table
	RTblVersions SQL Table
	RTblWorkspaceItems SQL Table

	XML Encoding Reference
	XML Encoding Definition
	Character Set and Data Types
	Top-Level Element
	Elements and Attributes
	Namespaces
	Nested Lists
	Element References
	Extensibility

	OIM-to-XML Mapping
	Classes and Attributes
	Attribute Name Expansion
	Classes and Single Inheritance
	Classes and Multiple Inheritance
	Associations with XML
	Object References with XML
	Association Classes (Many-to-Many)
	Association Classes (One-to-Many or One-to-One)

	Sample Encoding
	EBNF Representation
	Namespaces in OIM
	DTD for the OIM Namespace
	XML Import Export
	XML IExport Interface Overview
	IExport::_NewEnum Method
	IExport::Add Method
	IExport::Clear Method
	IExport::Count Property
	IExport::Export Method
	IExport::GetXML Method
	IExport::Item Method
	IExport::Remove Method
	XML IImport Interface Overview
	IImport::ImportXML Method
	IImport::ImportXMLString Method

	XML Encoding Errors

	OLE DB Scanner Reference
	IRepOLEDBScanner::ScanDB
	IRepOLEDBScanner::ScanConnection

	Model Installer Reference
	IIMInstall::InstallRDM Method
	IIMInstall2::InstallRDM Method
	Model Installer Errors
	E_INSREP_BAD_ARGUMENTS
	E_INSREP_CANT_CREATE_IREPOSITORY
	E_INSREP_CANT_INITIALIZE_COM
	E_INSREP_CANT_OPEN_MODEL_FILE
	E_INSREP_CANTCREATEALIAS
	E_INSREP_CANTCREATEENUMDEF
	E_INSREP_CANTCREATEENUMLITERAL
	E_INSREP_CANTCREATEOPERATION
	E_INSREP_CANTCREATEPARAMDEF
	E_INSREP_CANTINSTALLCLASSDEF
	E_INSREP_CANTINSTALLINTERFACEDEF
	E_INSREP_CANTINSTALLPROPERTYDEF
	E_INSREP_CANTINSTALLRELATIONSHIPDEF
	E_INSREP_CANTINSTALLROLEDEF
	E_INSREP_CANTINSTALLTYPELIB
	E_INSREP_ERRORADDINGIFACE
	E_INSREP_ERRORGETTINGREPOSROOT
	E_INSREP_IMPLIESFAILED
	E_INSREP_INCOMPATIBLERDMVERSION
	E_INSREP_INCOMPREPOSVERSION
	E_INSREP_PREMATURE_EOF
	E_INSREP_REPOSITORY_CREATE_FAILS
	E_INSREP_TRANSACTIONERROR
	E_INSREP_UNEXPECTEDERROR
	E_INSREP_WRONG_FILE_TYPE

	Replication Programming
	Replication Programming
	Getting Started with Replication Programming
	Introducing Replication Programming
	Benefits of Programming Replication
	Planning for Replication Programming

	Developing Replication Applications Using ActiveX Controls
	Requirements for Using Replication ActiveX Controls in Development Environments
	Requirements for Deploying Replication ActiveX Controls
	Programming the SQL Snapshot ActiveX Control
	Programming the SQL Distribution ActiveX Control
	Programming the SQL Merge ActiveX Control
	Common SQL Distribution Control and SQL Merge Control Functionality
	Programming Replication ActiveX Controls Using VBScript

	Replication ActiveX Control Reference
	Object Model for ActiveX Controls
	SQLSnapshot Object
	SQLDistribution Object
	SQLMerge Object

	Other Replication Control Objects and Collections
	AlternateSyncPartner Object
	AlternateSyncPartners Collection
	SQLReplError Object
	SQLReplErrors Collection

	Replication ActiveX Control Properties
	AlternateSyncPartners Property
	AltSnapshotFolder Property
	Count Property
	Description Property
	Distributor Property
	DistributorAddress Property
	DistributorLogin Property
	DistributorNetwork Property
	DistributorPassword Property
	DistributorSecurityMode Property
	DTSPackageFileName Property
	DTSPackagePassword Property
	DynamicFilterHostName Property
	DynamicFilterLogin Property
	DynamicSnapshotLocation Property
	ErrorNumber Property
	ErrorNumberString Property
	ErrorRecords Property
	ExchangeType Property
	FileTransferType Property
	FriendlyName Property
	FTPAddress Property
	FTPLogin Property
	FTPPassword Property
	FTPPort Property
	HostName Property
	LoginTimeout Property
	MaxDeliveredTransactions Property
	ProfileName Property
	Publication Property
	Publisher Property
	PublisherAddress Property
	PublisherChanges Property
	PublisherConflicts Property
	PublisherDatabase Property
	PublisherLogin Property
	PublisherNetwork Property
	PublisherPassword Property
	PublisherRPCLogin Property
	PublisherRPCPassword Property
	PublisherRPCSecurityMode Property
	PublisherSecurityMode Property
	QueryTimeout Property
	ReplicationType Property
	SkipErrors Property
	Source Property
	SourceType Property
	Subscriber Property
	SubscriberChanges Property
	SubscriberConflicts Property
	SubscriberDatabase Property
	SubscriberDatabasePath Property
	SubscriberDatasourceType Property
	SubscriberLogin Property
	SubscriberPassword Property
	SubscriberSecurityMode Property
	SubscriptionName Property
	SubscriptionPriority Property
	SubscriptionPriorityType Property
	SubscriptionType Property
	SynchronizationType Property
	SyncToAlternate Property
	UndeliveredCommands Property
	UndeliveredTransactions Property
	UseInteractiveResolver Property
	Validate Property
	WorkingDirectory Property

	Replication ActiveX Control Methods
	Add Method
	AddReplError Method
	AddSubscription Method
	CopySubscription Method
	DropSubscription Method
	Initialize Method
	ReinitializeSubscription Method
	Run Method
	SetFailoverMode Method
	Terminate Method

	Replication ActiveX Control Events
	Notify Event
	Status Event

	Replication ActiveX Control Constants
	AGENT_STATUS
	DATASOURCE_TYPE
	DBADDOPTION
	DBDROPOPTION
	ERRORSOURCE_TYPE
	EXCHANGE_TYPE
	FILE_TRANSFER_TYPE
	NETWORK_TYPE
	REPL_FAILOVER_MODE
	REPLICATION_TYPE
	REPLRPC_SECURITY_TYPE
	SECURITY_TYPE
	STATUS_RETURN_CODE
	SUBSCRIPTION_HOST
	SUBSCRIPTION_PRIORITY_TYPE
	SUBSCRIPTION_TYPE
	SYNCHRONIZATION_TYPE
	VALIDATE_TYPE

	Developing Replication Merge Conflict Resolvers Through a Custom Resolver
	COM Conflict Resolver Header File

	Programming Replication from Heterogeneous Data Sources
	SQL-DMO Replication Objects

	Replication Distributor Interface Reference
	Replication Distributor Interface Objects
	DistributionLog Object
	DistributionStore Object

	Replication Distributor Interface Properties
	DBPROP_APPLICATION_NAME Property
	DBPROP_APPLICATION_TYPE Property
	DBPROP_AUTH_PASSWORD Property
	DBPROP_AUTH_USERID Property
	DBPROP_DBMSNAME Property
	DBPROP_DBMSVER Property
	DBPROP_INIT_DATASOURCE Property
	DBPROP_INIT_LOCATION Property
	DBPROP_INIT_PUBLISHERDATASOURCE Property
	DBPROP_INIT_PUBLISHER_NAME Property
	DBPROP_INIT_TIMEOUT Property
	DBPROP_INIT_XACT_SEQNO_SIZE Property
	DBPROP_INIT_XACTID_SIZE Property
	DBPROP_PUBLICATION_NAME Property

	Replication Distributor Interface Methods
	Abort Method
	AddLog Method
	AddTransactionCommands Method
	Commit Method
	GetLastTransaction Method
	StartTransaction Method

	Replication Distributor Interface Structures
	DISTCOMMANDDESC Structure
	CommandType Text Formats

	DISTERRORDESC Structure

	Replication Programming Samples
	Replication Syntax Conventions
	Replication ActiveX Control Samples
	Using SQL Merge and SQL Distribution Controls in a Custom Visual Basic Application
	Using SQL Merge and SQL Distribution Controls in a Custom Visual C++ Application
	Using SQL Merge and SQL Distribution Controls in a Web Application
	Creating a Transformable Subscription Using Visual Basic

	Merge Replication Samples
	Subscriber-Based Resolver Using C++ and a Stored Procedure
	Transact-SQL Custom Stored Procedure Resolver
	Generating Merge Dynamic Snapshot Jobs

	Replication Distributor Interface Samples
	Programming Snapshot or Transactional Replication from Heterogeneous Data Sources

	Implementing Nonpartitioned, Bidirectional, Transactional Replication
	Step 1: Create the Databases and Enable Replication
	Step 2: Create a Bidirectional Schema
	Step 3: Create Reciprocal Publications
	Step 4: Create Subscriptions with Cycle Detection Enabled
	Step 5: Create Custom Stored Procedures to Apply Changes and Handle Conflicts
	Step 6: Test the Application

	DTS Programming
	DTS Programming
	Programming DTS Applications
	Extended DTS Objects
	DTS Object Model Diagram
	DTS Package2 Hierarchy
	Pump Task Elements
	Pump Rowset Elements
	Data Driven Query Elements
	DTS Application Hierarchy

	Creating DTS Packages with the DTS Object Model
	Creating DTS Package Objects and Connections
	Creating DTS Package Workflow and Tasks
	Adding DTS Transformations
	Adding DTS Column Objects
	Adding DTS Lookups and Global Variables
	Adding DTS ActiveX Scripts
	Adding DTS Query Strings
	Handling DTS Events and Errors
	Managing DTS Package Programs
	Retrieving DTS System, Package, and Log Data

	Creating DTS Packages in Visual Basic
	Creating DTS Objects in Visual Basic
	DTS Packages in Visual Basic
	DTS Connections in Visual Basic
	DTS Package Workflow in Visual Basic
	DTS Tasks in Visual Basic
	DTS Transformations in Visual Basic
	DTS Column Objects in Visual Basic
	DTS Lookups in Visual Basic
	DTS Global Variables in Visual Basic
	DTS ActiveX Scripts in Visual Basic
	DTS Query Strings in Visual Basic
	DTS Package Events in Visual Basic

	Managing DTS Package Programs in Visual Basic
	Executing DTS Packages in Visual Basic
	Handling DTS Errors in Visual Basic
	Saving DTS Packages in Visual Basic
	Running a DTS Package Saved as a Visual Basic File
	Retrieving DTS Information in Visual Basic

	Building a DTS Custom Task
	DTS Custom Task Fundamentals
	Including a DTS Custom Task User Interface
	Registering a DTS Custom Task
	Additional DTS Custom Task Features
	Raising Events from a DTS Custom Task
	Writing Log Data from a DTS Custom Task
	Using the DTS Custom Task Properties Provider

	DTS Custom Task Examples in Visual Basic
	DTS Example: Basic Custom Task in Visual Basic
	DTS Example: Adding Properties and Icons in Visual Basic
	DTS Example: Including a User Interface in Visual Basic
	DTS Example: Running Concurrent Operations in Visual Basic

	Implementing DTS Custom Tasks in Visual C++
	Building a DTS Custom Task from a Standard ATL Template
	Building a DTS Custom Task from the ATL Custom Task Basic Template
	Adding a DTS User Interface to the Custom Task Framework
	Building a DTS Custom Task with a User Interface from the ATL Custom Task Templates
	Implementing and Testing a DTS Custom Task

	DTS Custom Task Examples in Visual C++
	DTS Example: Adding Properties and Icons in Visual C++
	DTS Example: Including a User Interface in Visual C++
	Creating the Custom Task Framework
	Implementing the Property Page and Display Dialog Box
	Implementing the Task Class
	Implementing the User Interface Class
	Implementing the Property Page Class
	Implementing the Display Dialog Class
	Building and Running the DTS Custom Task User Interface Example in Visual C++

	Building a DTS Custom Transformation
	DTS Custom Transformation Fundamentals
	COM DLL Infrastructure
	IDTSDataPumpTransform Interface
	IDTSDataPumpTransform2 Interface
	Column Information Structures in DTS Transformations
	Registration Requirements for DTS Transformations

	Implementing DTS Custom Transformations
	Building a Custom Transformation from a Standard ATL Template
	Building a Custom Transformation from the ATL Custom Transformation Template
	Implementing and Testing a DTS Custom Transformation

	DTS Custom Transformation Examples
	DTS Custom Transformation Example: Copy One Column
	DTS Custom Transformation Example: Format Names

	DTS Scripting Reference
	Scripting Objects
	DTSDataPumpColumn Object
	DTSDataPumpColumn2 Object
	DTSDataPumpLookup Object
	DTSTransformPhaseInfo Object

	Scripting Collections
	DTSDataPumpColumns Collection
	DTSDataPumpLookups Collection
	DTSErrorRecords Collection

	Scripting Properties
	ActualSize Property
	Attributes Property
	Count Property
	CurrentPhase Property
	CurrentSourceRow Property
	DefinedSize Property
	DestinationRowsComplete Property
	ErrorRows Property
	LastRowCount Property
	Name Property
	NumericScale Property
	OriginalValue Property
	Precision Property
	Status Property
	TransformStatus Property
	Type Property
	UnderlyingValue Property
	Value Property

	Scripting Methods
	Add Method
	AddToCache Method
	AppendChunk Method
	Clear Method
	Execute Method
	GetChunk Method
	Item Method
	RemoveFromCache Method

	Scripting Constants

	DTS Programming Reference
	Task Objects
	ActiveScriptTask Object
	BulkInsertTask Object
	CreateProcessTask Object
	CreateProcessTask2 Object
	DataDrivenQueryTask Object
	DataDrivenQueryTask2 Object
	DataPumpTask Object
	DataPumpTask2 Object
	DynamicPropertiesTask Object
	ExecutePackageTask Object
	ExecuteSQLTask Object
	ExecuteSQLTask2 Object
	DTSFTPTask Object
	DTSMessageQueueTask Object
	ParallelDataPumpTask Object
	Hierarchical Rowsets
	Parallel Data Pump Example
	Parallel Data Driven Query Example

	SendMailTask Object
	TransferObjectsTask Object
	TransferObjectsTask2 Object

	Transformation Objects
	DataPumpTransformCopy Object
	DataPumpTransformDateTimeString Object
	DataPumpTransformLowerString Object
	DataPumpTransformMidString Object
	DataPumpTransformReadFile Object
	DataPumpTransformScript Object
	DataPumpTransformTrimString Object
	DataPumpTransformUpperString Object
	DataPumpTransformWriteFile Object
	DTSTransformScriptProperties2 Object
	Phased Transformation Samples

	Other Objects
	Application Object
	Column Object
	Connection Object
	Connection2 Object
	CustomTask Object
	CustomTaskUI Object
	DTSMQMessage Object
	DynamicPropertiesTaskAssignment Object
	GlobalVariable Object
	GlobalVariable2 Object
	IDTSStdObject
	Lookup Object
	OLEDBProperty Object
	OLEDBProperty2 Object
	OLEDBProviderInfo Object
	Package Object
	Package2 Object
	PackageInfo Object
	PackageLineage Object
	PackageLog Object
	PackageLogRecord Object
	PackageRepository Object
	PackageSQLServer Object
	PersistPropertyBag Object
	PrecedenceConstraint Object
	PropertiesProvider Object
	Property Object
	PropertyBag Object
	SavedPackageInfo Object
	ScriptingLanguageInfo Object
	Step Object
	Step2 Object
	StepLineage Object
	StepLogRecord Object
	Task Object
	TaskInfo Object
	TaskLogRecord Object
	Transformation Object
	Transformation2 Object
	TransformationInfo Object
	TransformationSet Object

	Collections
	Columns Collection
	Connections Collection
	DTSMQMessages Collection
	DynamicPropertiesTaskAssignments Collection
	GlobalVariables Collection
	Lookups Collection
	OLEDBProperties Collection
	OLEDBProviderInfos Collection
	PackageInfos Collection
	PackageLineages Collection
	PackageLogRecords Collection
	PrecedenceConstraints Collection
	Properties Collection
	SavedPackageInfos Collection
	ScriptingLanguageInfos Collection
	StepLineages Collection
	StepLogRecords Collection
	Steps Collection
	TaskInfos Collection
	TaskLogRecords Collection
	Tasks Collection
	TransformationInfos Collection
	Transformations Collection
	TransformationSets Collection

	Properties
	ActiveXScript Property
	AddGlobalVariables Property
	AllowIdentityInserts Property
	AMSymbol Property
	AppendIfFileExists Property
	Assignments Property
	AutoCommitTransaction Property
	BatchCompleteFunctionEntry Property
	BatchSize Property
	Catalog Property
	CCLine Property
	CharacterCount Property
	CharacterStart Property
	CheckConstraints Property
	ClassID Property
	CloseConnection Property
	Codepage Property
	ColumnID Property
	CommandProperties Property
	CommandTimeout Property
	CommitSuccess Property
	Computer Property
	Connected Property
	ConnectImmediate Property
	ConnectionID Property
	ConnectionProperties Property
	ConnectionTimeout Property
	CopyAllObjects Property
	CopyData Property
	CopySchema Property
	Count Property
	CreationDate Property
	CreatorComputerName Property
	CreatorName Property
	CustomTask Property
	CustomTaskID Property
	DataFile Property
	DataFileNonOverwritable Property
	DataFileType Property
	DataPumpOptions Property
	DataSource Property
	DataType Property
	Day?LongName Property
	Day?ShortName Property
	DeleteQuery Property
	DeleteQueryColumns Property
	Description Property
	DesignerSettings Property
	DestinationColumnDefinitions Property
	DestinationColumns Property
	DestinationCommandProperties Property
	DestinationConnectionID Property
	DestinationDatabase Property
	DestinationLogin Property
	DestinationObjectName Property
	DestinationPassword Property
	DestinationPropertyID Property
	DestinationServer Property
	DestinationSQLStatement Property
	DestinationTableName Property
	DestinationUseTrustedConnection Property
	DestSite Property
	DestTranslateChar Property
	DestUseTransaction Property
	DisableStep Property
	DropDestinationObjectsFirst Property
	DTSMessageLineageID Property
	DTSMessagePackageID Property
	DTSMessageVersionID Property
	EOF Property
	ErrorCode Property
	ErrorDescription Property
	ErrorHelpContext Property
	ErrorHelpFile Property
	ErrorIfFileExists Property
	ErrorIfFileNotFound Property
	ErrorIfReceiveMessageTimeout Property
	ErrorSource Property
	ExceptionFileColumnDelimiter Property
	ExceptionFileName Property
	ExceptionFileOptions Property
	ExceptionFileRowDelimiter Property
	ExceptionFileTextQualifier Property
	ExecuteInMainThread Property
	ExecutionDate Property
	ExecutionResult Property
	ExecutionStatus Property
	ExecutionTime Property
	ExplicitGlobalVariables Property
	FailOnError Property
	FailPackageOnError Property
	FailPackageOnLogFailure Property
	FailPackageOnTimeout Property
	FastLoadOptions Property
	FetchBufferSize Property
	FieldTerminator Property
	FileAttachments Property
	FileColumnName Property
	FileName Property
	FilePath Property
	FinishTime Property
	FirstRow Property
	Flags Property
	ForceBlobsInMemory Property
	ForceSourceBlobsBuffered Property
	FormatFile Property
	FunctionEntry Property
	FunctionName Property
	Get Property
	IconFile Property
	IconIndex Property
	ID Property
	ImplementationFileName Property
	ImplementationFileVersionString Property
	IncludeDependencies Property
	IncludeLogins Property
	IncludeUsers Property
	InMemoryBlobSize Property
	InputFormat Property
	InputGlobalVariableNames Property
	InsertCommitSize Property
	InsertFailureFunctionEntry Property
	InsertQuery Property
	InsertQueryColumns Property
	InsertSuccessFunctionEntry Property
	InTransaction Property
	InUse Property
	IsDefaultValue Property
	IsNTService Property
	IsOwner Property
	IsPackageDSORowset Property
	IsVersionEncrypted Property
	JITDebug Property
	JoinTransactionIfPresent Property
	KeepIdentity Property
	KeepNulls Property
	Language Property
	LastOwnerTaskName Property
	LastRow Property
	LineageFullID Property
	LineageOptions Property
	LineageShortID Property
	LogDate Property
	LogFileName Property
	LogServerFlags Property
	LogServerName Property
	LogServerPassword Property
	LogServerUserName Property
	LogToSQLServer Property
	LowerCaseString Property
	MaxCacheRows Property
	MaxConcurrentSteps Property
	MaximumErrorCount Property
	MaximumErrors Property
	MessageDataFile Property
	MessageGlobalVariables Property
	MessageString Property
	MessageText Property
	MessageType Property
	Month??LongName Property
	Month??ShortName Property
	Name Property
	NestedExecutionLevel Property
	NonOverwritable Property
	Nullable Property
	NumericScale Property
	NumRetriesOnSource Property
	OEMFile Property
	Operator Property
	Ordinal Property
	OutputAsRecordset Property
	OutputFormat Property
	OutputGlobalVariableNames Property
	Owner Property
	PackageCreationDate Property
	PackageDataSize Property
	PackageID Property
	PackageName Property
	PackagePassword Property
	PackagePriorityClass Property
	PackageType Property
	Parent Property
	ParseName Property
	Password Property
	PMSymbol Property
	PostSourceDataFunctionEntry Property
	PrecedenceBasis Property
	Precision Property
	PreSourceDataFunctionEntry Property
	ProcessCommandLine Property
	Profile Property
	ProgressCount Property
	ProgressRowCount Property
	PropertyID Property
	PropertySet Property
	ProviderID Property
	PumpCompleteFunctionEntry Property
	Query Property
	QueuePath Property
	ReceiveMessageTimeout Property
	ReceiveMessageType Property
	RelativePriority Property
	RemoveFromQueue Property
	RepositoryDatabaseName Property
	RepositoryMetadataOptions Property
	Reusable Property
	RollbackFailure Property
	RowsComplete Property
	RowsInError Property
	RowTerminator Property
	SaveDataFileName Property
	SaveMailInSentItemsFolder Property
	ScriptFileDirectory Property
	ScriptLanguage Property
	ScriptOption Property
	ScriptOptionEx Property
	SequenceID Property
	ServerName Property
	ServerPassword Property
	ServerUserName Property
	Set Property
	ShortYear2000Cutoff Property
	Size Property
	SortedData Property
	SourceColumns Property
	SourceCommandProperties Property
	SourceConnectionID Property
	SourceConstantValue Property
	SourceDatabase Property
	SourceDataFileFileName Property
	SourceEnvironmentVariable Property
	SourceFilename Property
	SourceGlobalVariable Property
	SourceIniFileFileName Property
	SourceIniFileKey Property
	SourceIniFileSection Property
	SourceLocation Property
	SourceLogin Property
	SourceObjectName Property
	SourcePassword Property
	SourcePassword (DTSFTPTask) Property
	SourceQueryConnectionID Property
	SourceQuerySQL Property
	SourceServer Property
	SourceSite Property
	SourceSQLStatement Property
	SourceTranslateChar Property
	SourceType Property
	SourceUsername Property
	SourceUseTrustedConnection Property
	SQLStatement Property
	StartTime Property
	StepExecutionID Property
	StepExecutionResult Property
	StepExecutionStatus Property
	StepName Property
	StringCompareType Property
	StringCompareValue Property
	Subject Property
	SuccessReturnCode Property
	TableLock Property
	TaskName Property
	TaskType Property
	TerminateProcessAfterTimeout Property
	Text Property
	Timeout Property
	ToLine Property
	TransactionIsolationLevel Property
	TransformationSetOptions Property
	TransformFailureFunctionEntry Property
	TransformFlags Property
	TransformPhases Property
	TransformServer Property
	TransformServerID Property
	TransformServerParameter Property
	TransformServerProperties Property
	TrimEmbeddedWhiteSpace Property
	TrimLeadingWhiteSpace Property
	TrimTrailingWhiteSpace Property
	Type Property
	UDLPath Property
	UnicodeFile Property
	UpdateQuery Property
	UpdateQueryColumns Property
	UpperCaseString Property
	UseCache Property
	UseCollation Property
	UseFastLoad Property
	UseOLEDBServiceComponents Property
	UseRepository Property
	UserID Property
	UserQuery Property
	UserQueryColumns Property
	UseTransaction Property
	UseTransaction (DTSMQMessage) Property
	UseTrustedConnection Property
	Value Property
	VersionID Property
	VersionSaveDate Property
	WaitForAcknowledgement Property
	WriteCompletionStatusToNTEventLog Property

	Methods
	AcquireConnection Method
	Add Method
	AddColumn Method
	AddConstraint Method
	AddGlobalVariable Method
	AddLookup Method
	AddObjectForTransfer Method
	BeginAcquireMultipleConnections Method
	CancelExecution Method
	CheckSyntax Method
	CreateCustomToolTip Method
	Delete Method
	Edit Method
	EndAcquireMultipleConnections Method
	EnumPackageInfos Method
	EnumPackageLineages Method
	EnumPackageLogRecords Method
	EnumStepLineages Method
	EnumStepLogRecords Method
	EnumTaskLogRecords Method
	Execute Method
	Execute (Package) Method
	GetDayLongName Method
	GetDayShortName Method
	GetDefaultProfileName Method
	GetDTSVersionInfo Method
	GetExecutionErrorInfo Method
	GetExpandedProcessCommandLine Method
	GetLastExecutionLineage Method
	GetMonthLongName Method
	GetMonthShortName Method
	GetObjectForTransfer Method
	GetPackageRepository Method
	GetPackageSQLServer Method
	GetPropertiesForObject Method
	GetSavedPackageInfos Method
	GetUIInfo Method
	Help Method
	Initialize Method
	InitializeMAPI Method
	Insert Method
	Item Method
	Load Method
	LoadFromRepository Method
	LoadFromSQLServer Method
	LoadFromStorageFile Method
	Lock Method
	Logoff Method
	Logon Method
	Messages Method
	New Method
	New (Columns) Method
	New (CustomTaskUI) Method
	New (ID) Method
	New (Name) Method
	NewDataLink Method
	Next Method
	Read Method
	Refresh Method
	ReleaseConnection Method
	Remove Method
	RemoveAllLogRecords Method
	RemoveFromRepository Method
	RemoveFromSQLServer Method
	RemovePackageLineages Method
	RemovePackageLogRecords Method
	RemoveStepLogRecords Method
	RemoveTaskLogRecords Method
	Reset Method
	ResetObjectsList Method
	ResolveName Method
	Save Method
	SaveAs Method
	SaveToRepository Method
	SaveToRepositoryAs Method
	SaveToSQLServer Method
	SaveToSQLServerAs Method
	SaveToStorageFile Method
	SaveToStorageFileAs Method
	SetDayLongName Method
	SetDayShortName Method
	SetMonthLongName Method
	SetMonthShortName Method
	ShowAddressBook Method
	Uninitialize Method
	UninitializeMAPI Method
	Unlock Method
	Write Method
	WriteStringToLog Method
	WriteTaskRecord Method

	Events
	OnError Event
	OnFinish Event
	OnProgress Event
	OnQueryCancel Event
	OnStart Event

	Constants
	DTSBulkInsert_DataFileType
	DTSCustomTaskUIFlags
	DTSDataPumpError
	DTSDesignerSettings
	DTSExceptionFileOptions
	DTSExecuteStatus
	DTSFastLoadOptions
	DTSForceMode
	DTSFTPError
	DTSFTPSourceLocation
	DTSIsolationLevel
	DTSLineageOptions
	DTSMQMessageType
	DTSMQStringMessageCompare
	DTSMQType
	DTSMSMQError
	DTSPackageError
	DTSPackagePriorityClass
	DTSPackageType
	DTSRepositoryMetadataOptions
	DTSRepositoryStorageFlags
	DTSSQLObjectType
	DTSSQLServerStorageFlags
	DTSStepExecResult
	DTSStepExecStatus
	DTSStepPrecedenceBasis
	DTSStepRelativePriority
	DTSStepScriptResult
	DTSTaskExecResult
	DTSTransfer_CopyDataOption
	DTSTransfer_ScriptOption
	DTSTransfer_ScriptOptionEx
	DTSTransformationSetOptions
	DTSTransformFlags
	DTSTransformPhaseEnum
	DTSTransformStatus
	DynamicPropertiesTaskError
	DynamicPropertiesTaskSourceType

	Data Pump Interfaces
	IDTSDataPump
	IDTSDataPump::AddTransform
	IDTSDataPump::AddTransformVariable
	IDTSDataPump::Execute
	IDTSDataPump::GetRowsets
	IDTSDataPump::InitNew
	IDTSDataPump::SetFetchBufferSize
	IDTSDataPump::SetInsertCommitSize
	IDTSDataPump::SetMaximumErrorRowCount
	IDTSDataPump::SetProgressRowCount
	IDTSDataPump::SetRowsets

	IDTSDataPump2
	IDTSDataPump2::AddTransform2
	IDTSDataPump2::ExecuteComplete
	IDTSDataPump2::ExecuteInit
	IDTSDataPump2::ExecuteRow
	IDTSDataPump2::GetExecuteInfo
	IDTSDataPump2::GetOptions
	IDTSDataPump2::SetExecuteThreadComplete
	IDTSDataPump2::SetOptions

	IDTSDataPumpErrorSink
	IDTSDataPumpErrorSink::OnBindingError
	IDTSDataPumpErrorSink::OnDestinationError
	IDTSDataPumpErrorSink::OnSourceError
	IDTSDataPumpErrorSink::OnTransformError

	IDTSDataPumpProgressSink
	IDTSDataPumpProgressSink::OnIntervalComplete

	IDTSDataPumpTransform
	IDTSDataPumpTransform::AddVariable
	IDTSDataPumpTransform::Execute
	IDTSDataPumpTransform::Initialize
	IDTSDataPumpTransform::OnRowComplete
	IDTSDataPumpTransform::OnTransformComplete
	IDTSDataPumpTransform::ValidateSchema

	IDTSDataPumpTransform2
	IDTSDataPumpTransform2::GetTransformServerInfo
	IDTSDataPumpTransform2::PreValidateSchema
	IDTSDataPumpTransform2::ProcessPhase
	IDTSDataPumpTransform2::SetExecuteThreadComplete
	IDTSDataPumpTransform2::SetExtendedInfo

	Transform Status Enumerations

	DTS Programming Samples
	CustomTaskNoUI
	CustomTaskWithUI
	CustomTransform
	DTS Custom Transformation Sample
	DTS Custom Task
	DTSCopy
	DTSStrings
	DTSTskGVUpdate
	DTSTskPropIcon
	Packages
	Complex Transformation Sample from SQL Server to Excel
	DTS Package Sample Supporting Multiple Source and Destination Providers
	DTSActiveScriptTask
	DTSApplicationObject
	DTSAppObject
	DTSBulkInsertTask
	DTSCopyDatabase
	DTSExecProcess
	DTSExecSQLTask
	DTSExecutePackage
	DTSFTPTask
	DTSPackageInfo
	DTSTransferObjectsTask
	FoodMart2000
	Pub2Pubs
	Simple DTS Package Sample Using Visual Basic
	Simple Transformation Sample Between Two SQL Server Tables

	Extended Stored Procedure Programming
	Extended Stored Procedure Programming
	Programming Extended Stored Procedures
	How Extended Stored Procedures Work
	Execution Characteristics of Extended Stored Procedures
	Creating Extended Stored Procedures
	Extended Stored Procedure Sample: xp_hello
	Debugging an Extended Stored Procedure
	Adding an Extended Stored Procedure to SQL Server
	Removing an Extended Stored Procedure from SQL Server
	Querying Extended Stored Procedures Installed in SQL Server
	Unloading an Extended Stored Procedure DLL
	Unicode Data and Server Code Pages

	Extended Stored Procedures Programmer's Reference
	srv_alloc
	srv_convert
	srv_describe
	srv_free
	srv_getbindtoken
	srv_message_handler
	srv_paramdata
	srv_paraminfo
	srv_paramlen
	srv_parammaxlen
	srv_paramname
	srv_paramnumber
	srv_paramset
	srv_paramsetoutput
	srv_paramstatus
	srv_paramtype
	srv_pfield
	srv_pfieldex
	srv_rpcdb
	srv_rpcname
	srv_rpcnumber
	srv_rpcoptions
	srv_rpcowner
	srv_rpcparams
	srv_senddone
	srv_sendmsg
	srv_sendrow
	srv_setcoldata
	srv_setcollen
	srv_setutype
	srv_setRPC
	srv_willconvert
	sql_wsendmsg
	Errors
	Data Types

	Sample Extended Stored Procedures
	Using xp_hello
	Using xp_srv_paraminfo_sample
	Using xp_gettable_odbc
	Using xp_gettable_dblib

	Embedded SQL for C and SQL Server
	Embedded SQL for C and SQL Server
	Programming Embedded SQL for C
	Getting Started with Embedded SQL for C
	Embedded SQL for C Syntax Conventions
	System Requirements for Embedded SQL for C
	Installing Embedded SQL for C

	Call-level Method
	Embedded SQL Method
	Embedded SQL Programming
	Embedded SQL Steps
	Including Embedded SQL Statements
	Connecting to a Database
	Using Static and Dynamic Statements
	Static SQL Statements
	Dynamic SQL Statements

	Using Host Variables
	Declaring Host Variables
	Host Variables and Null Values
	Host Variables and Data Types
	Using the SQLDA Data Structure
	Data Input and Output Using the SQLDA Data Structure

	Using Cursors
	Declaring Cursors
	Positioned UPDATE or DELETE Statements

	Managing Transactions
	Using the SQLCA Data Structure
	SQLCODE Variable
	SQLSTATE Variable
	Using the WHENEVER Statement

	Embedded SQL for C Reference
	Embedded SQL Statements
	BEGIN DECLARE SECTION
	CLOSE
	CONNECT TO
	DECLARE CURSOR
	DELETE (POSITIONED)
	DELETE (SEARCHED)
	DESCRIBE
	DISCONNECT
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	FETCH
	GET CONNECTION
	OPEN
	PREPARE
	SELECT INTO
	SET ANSI_DEFAULTS
	SET CONCURRENCY
	SET CONNECTION
	SET CURSOR_CLOSE_ON_COMMIT
	SET CURSORTYPE
	SET FETCHBUFFER
	SET OPTION
	SET SCROLLOPTION
	UPDATE
	UPDATE (Searched)
	WHENEVER

	Building Applications
	Steps for Building an Application
	Embedded SQL Applications at Run Time
	Processing Embedded SQL Statements
	Access Plans and Bind Files
	Running the nsqlprep Precompiler
	Setting Up the nsqlprep Precompiler
	Precompiler Syntax
	Access Plan and Bind File Options

	Compiling and Linking Embedded SQL Applications
	Compiling and Linking for Windows NT and Windows 95 or Windows 98
	Project Settings for Visual C++
	Compiling and Linking for 16-bit Windows
	Compiling and Linking for MS-DOS
	Compiling and Linking for QuickWin

	Debugging Embedded SQL Programs
	Advanced Programming
	Data Type Mapping for Embedded SQL
	Mapping Character Data Types
	Pointers as Host Variables
	Mapping date or time Data
	Mapping Binary Data
	Preparing SQLDA for Data Input and Output
	SQLDA Data Structure
	SQLDA
	Valid Values for sqltype

	SQLCA Data Structure
	SQLCA

	Selectively Bypassing the Creation of Access Plans

	Defining Cursors
	Standard DB-Library Cursors
	Cursor Sensitivity to Change
	Keyset-driven Standard Cursors
	Dynamic Standard Cursors
	Concurrency Control

	Holding Locks

	Browse Cursors
	UPDATE and DELETE Statements
	Isolation Levels
	Cursors and Lock Conflicts

	Reserved Keywords
	Embedded SQL for C Messages
	SQLSTATE Messages

	Embedded SQL for C Samples
	GENCHAR (Generic for C)
	Genwin (Generic for Windows NT, Windows 95, Windows 98, and 16-bit Windows)
	Edblib (Embedded SQL and DB-Library for Windows NT, Windows 95, Windows 98, and 16-bit Windows)
	Embedded SQL for C Examples

	DB Library for C
	DB Library for C
	Programming DB-Library for C
	Getting Started with DB-Library for C
	DB-Library for C Syntax Conventions
	System Requirements for DB-Library for C
	Installing DB-Library for C
	Determining the Version of DB-Library for C
	Finding Further Information

	Programming for SQL Server
	Communicating with SQL Server
	DB-Library for C and Net-Library Interaction
	Net-Library Architecture

	Using Examples with pubs
	Programming with DB-Library for C
	DB-Library for C Data Types
	Finding SQL Servers on the Network
	Resolving Server Names
	Windows NT-based Clients
	Windows-based Clients
	MS-DOS-based Clients

	Results Processing
	Getting Result Data
	Accessing Result Rows
	Regular Result Column Information
	Compute Result Column Information

	When to Process Results
	When and How to Use dbcancel()

	Error and Message Handling
	Browse Mode
	Building Applications
	Changes to DB-Library for C
	MSdblib3 Replaces W3dblib
	Header Files Sqlfront.h and Sqldb.h Changed

	Building Win32 DB-Library Applications
	DB-Library Architecture
	Libraries
	Include Files
	Compiling and Linking
	Porting DB-Library Applications
	Porting to Maintain DB-Library Compatibility with Windows
	Additional Porting Considerations

	Taking Advantage of Win32 API Features in DB-Library Applications
	Asynchronous Query Processing
	Memory Management in the Win32 API
	Threads in the Win32 API
	Reentrancy and DB-Library

	DB-Library for C Reference
	Core Functions
	dbadata
	dbadlen
	dbaltbind
	dbaltcolid
	dbaltlen
	dbaltop
	dbalttype
	dbaltutype
	dbanullbind
	dbbind
	dbbylist
	dbcancel
	dbcanquery
	dbchange
	dbclose
	dbclrbuf
	dbclropt
	dbcmd
	dbcmdrow
	dbcolinfo
	dbcollen
	dbcolname
	dbcoltype
	dbcolutype
	dbconvert
	dbcount
	dbcurcmd
	dbcurrow
	dbdata
	dbdataready
	dbdatecrack
	dbdatlen
	dbdead
	dbenlisttrans
	dbenlistxatrans
	dberrhandle
	dbexit
	dbfcmd
	dbfirstrow
	dbfreebuf
	dbfreelogin
	dbgetchar
	dbgetmaxprocs
	dbgetoff
	dbgetpacket
	dbgetrow
	dbgettime
	dbgetuserdata
	dbinit
	dbisavail
	dbiscount
	dbisopt
	dblastrow
	dblogin
	dbmorecmds
	dbmsghandle
	dbname
	dbnextrow
	dbnullbind
	dbnumalts
	dbnumcols
	dbnumcompute
	dbnumorders
	dbopen
	dbordercol
	dbprhead
	dbprocerrhandle
	dbprocinfo
	dbprocmsghandle
	dbprrow
	dbprtype
	dbresults
	dbrows
	dbrowtype
	dbserverenum
	dbsetavail
	dbsetlapp
	dbsetlfallback
	dbsetlhost
	dbsetlnatlang
	dbsetlogintime
	dbsetlpacket
	dbsetlpwd
	dbsetlsecure
	dbsetltime
	dbsetluser
	dbsetlversion
	dbsetmaxprocs
	dbsetnull
	dbsetopt
	dbsettime
	dbsetuserdata
	dbsqlexec
	dbsqlok
	dbsqlsend
	dbstrcpy
	dbstrlen
	dbuse
	dbvarylen
	dbwillconvert
	dbwinexit (Windows only)

	Cursor Functions
	dbcursor
	dbcursorbind
	dbcursorclose
	dbcursorcolinfo
	dbcursorfetch
	dbcursorfetchex
	dbcursorinfo
	dbcursorinfoex
	dbcursoropen

	Stored Procedure Functions
	dbhasretstat
	dbnumrets
	dbretdata
	dbretlen
	dbretname
	dbretstatus
	dbrettype
	dbrpcexec
	dbrpcinit
	dbrpcparam
	dbrpcsend

	Text and Image Functions
	dbmoretext
	dbreadtext
	dbtxptr
	dbtxtimestamp
	dbtxtsnewval
	dbtxtsput
	dbupdatetext
	dbwritetext

	Browse Functions
	dbcolbrowse
	dbcolsource
	dbfreequal
	dbqual
	dbtabbrowse
	dbtabcount
	dbtabname
	dbtabsource
	dbtsnewlen
	dbtsnewval
	dbtsput

	Bulk-Copy Functions
	bcp_batch
	bcp_bind
	bcp_colfmt
	bcp_collen
	bcp_colptr
	bcp_columns
	bcp_control
	bcp_done
	bcp_exec
	bcp_init
	bcp_moretext
	bcp_readfmt
	bcp_sendrow
	BCP_SETL
	bcp_writefmt

	DB-Library Options
	Using DB-Library for C Data Types
	Data Types
	Type Definitions

	Error Messages
	Errors
	Error Severities

	DB-Library for C Samples
	Example8 - Handling Procedure Output Parameters
	SQLExamp: Determining Column Widths
	SQLTestC - SELECT Statement Processing
	SQLTestN
	TextCopy - Handling text and image data

	URL Access and SQL Server
	URL Access and SQL Server
	URL Access

	Distributing SQL Server Applications
	Distributing SQL Server Applications
	Distributing SQL Server Applications Overview
	Distributing the SQL Server 2000 Desktop Engine
	Installing Desktop Engine
	Customizing Desktop Engine Setup.exe
	Managing Desktop Engine Installation Package Files
	Using SQL Server Desktop Engine Merge Modules

	Reinstalling SQL Server 2000 Desktop Engine
	Upgrading from MSDE 1.0 to SQL Server 2000 Desktop Engine
	Installation API for Desktop Engine
	NumInstalledInstances Function
	IsInstanceNameValid Function

	Windows Installer Return Codes for Desktop Engine
	Windows Installer Callback Functions for Desktop Engine
	Desktop Engine Installation Samples

	Distributing SQL Server Client Components
	sqlredis Software Distribution Executable

	Command Prompt Utilities
	Command Prompt Utilities
	Getting Started with Command Prompt Utilities
	Command Prompt Utilities Syntax Conventions

	bcp Utility
	console Utility
	dtsrun Utility
	dtswiz Utility
	isql Utility
	isqlw Utility
	itwiz Utility
	makepipe Utility
	odbccmpt Utility
	odbcping Utility
	osql Utility
	Rebuild master Utility
	readpipe Utility
	Replication Distribution Agent Utility
	Replication Log Reader Agent Utility
	Replication Merge Agent Utility
	Replication Queue Reader Agent Utility
	Replication Snapshot Agent Utility
	scm Utility
	sqlagent Application
	sqldiag Utility
	sqlmaint Utility
	sqlservr Application
	sqlftwiz Utility
	vswitch Utility

	User Interface Reference
	User Interface Reference
	User Interface Reference
	Keyboard Shortcuts

	Copy Database Wizard Help
	Copy Database Wizard Help
	Copy Database Wizard Help
	Select a Source Server
	Select a Destination Server
	Select the Databases to Move or Copy
	Database File Location
	Database Files Dialog Box
	Select Related Objects
	Select Stored Procedures from the master Database (optional)
	Select Jobs from msdb (optional)
	Select User-Defined Error Messages
	Schedule the DTS Package
	Completing the Copy Database Wizard
	Log Detail Screen

	Database Maintenance Plan Wizard Help
	Database Maintenance Plan Wizard Help
	Select Servers
	Select Databases
	Update Data Optimization Information
	Database Integrity Check
	Specify the Database Backup Plan
	Specify Backup Disk Directory
	Specify Transaction Log Backup Disk Directory
	Specify Transaction Log Backup Plan
	Reports to Generate
	Maintenance Plan History
	Specify the Transaction Log Share
	Specify the Log Shipping Destinations
	Add or Edit Destination Database
	Initialize the Destination Databases
	Log Shipping Schedules
	Log Shipping Thresholds
	Specify the Log Shipping Monitor Server Information

	DTS Designer Help
	DTS Designer Help
	ActiveX Script Task Properties
	ActiveX Script Transformation Properties
	Add/Edit Assignment
	Advanced Copy Options
	Advanced Connection Properties
	Bulk Insert Task Properties (General Tab)
	Bulk Insert Task Properties (Options Tab)
	Calendar Names
	Column Order
	Confirm Package Owner Password
	Confirm Package User Password
	Connection Properties
	Copy SQL Server Objects Task (Source Tab)
	Copy SQL Server Objects Task (Destination Tab)
	Copy SQL Server Objects Task (Copy Tab)
	Create Binding Table
	Create Database
	Create Destination Table
	Create New Transformation
	Custom Task Properties
	Custom Transformation Properties
	Data Driven Query Task Properties (Source Tab)
	Data Driven Query Task Properties (Bindings Tab)
	Data Driven Query Task Properties (Transformations Tab)
	Data Driven Query Task Properties (Queries Tab)
	Data Driven Query Task Properties (Lookups Tab)
	Data Driven Query Task Properties (Options Tab)
	Date Time String Transformation Properties
	Define Columns
	Define Row Width
	DTS Package Properties (General Tab)
	DTS Package Properties (Global Variables Tab)
	DTS Package Properties (Logging Tab)
	DTS Package Properties (Advanced Tab)
	Data Transformation Services Query Designer
	Dynamic Properties Task Properties
	Dynamic Properties Task: Package Properties
	Edit All Package Properties
	Edit Property
	Execute Package Task Properties (General Tab)
	Execute Package Task Properties (Child Package Globals Tab)
	Execute Package Task (Parent Package Globals Tab)
	Execute Process Task Properties
	Execute SQL Task Properties
	Executing DTS Package
	File Transfer Protocol Task Properties (Location Tab)
	File Transfer Protocol Task Properties (Files Tab)
	Font
	Global Variables
	Message Queue Message Properties
	Message Queue Task Properties
	Middle of String Transformation Properties
	Parameter Mapping (Input Parameters Tab)
	Parameter Mapping (Output Parameters Tab)
	Read File Transformation Properties
	Register Custom Task
	Save DTS Package
	Scanning Options
	Select Objects
	Select Package
	Send Mail Task Properties
	Text File Properties
	Task References
	Testing Transformation
	Transform Data Task Properties (Source Tab)
	Transform Data Task Properties (Destination Tab)
	Transform Data Task Properties (Transformations Tab)
	Transform Data Task Properties (Lookups Tab)
	Transform Data Task Properties (Options Tab)
	Transformation Flags
	Transformation Options (General Tab)
	Transformation Options (Source Columns Tab)
	Transformation Options (Destination Columns Tab)
	Transformation Options (Phases Tab)
	Trim String Transformation Properties
	Unregister Custom Task
	Verifying Transformations
	View Data
	Workflow ActiveX Script Properties
	Workflow Properties (Precedence Tab)
	Workflow Properties (Options Tab)
	Write File Transformation Properties

	DTS Run UI Help
	DTS Run UI Help
	DTS Run
	Advanced DTS Run
	Select Package
	Executing DTS Package

	DTS Import/Export Wizard Help
	DTS Import/Export Wizard Help
	Choose a Data Source
	Choose a Destination
	Advanced Connection Properties
	Create Database
	Select File Format
	Define Row Width
	Specify Table Copy or Query
	Type SQL Statement
	Select Objects to Copy
	Select Objects
	Advanced Copy Options
	Select Columns
	Specify Sort Order
	Specify Query Criteria
	Select Source Tables and Views
	Column Mappings and Transformations
	Save, Schedule and Replicate Package
	Save DTS Package
	View Data
	Font
	Scanning Options

	Full-Text Search Help
	Full-Text Search Help
	Full-Text Indexes, Catalogs, and Search
	Full-Text Search Service Properties, General Tab
	New Full-Text Catalog Properties, New Full-Text Catalog Tab
	New Full-Text Catalog Properties, Schedules Tab
	Full-Text Catalog Properties, Status Tab
	Full-Text Search Catalog Properties, Tables Tab
	Full-Text Catalog Properties/Full-Text Indexing, Schedules Tab
	New/Edit Full-Text Indexing Schedules
	Table Properties, Full-Text Indexing Tab

	IIS Virtual Directory Management Utility
	IIS Virtual Directory Management Utility
	IIS Virtual Directory Management Utility
	Virtual Directory Properties Dialog Box (General Tab)
	Virtual Directory Properties Dialog Box (Security Tab)
	Virtual Directory Properties Dialog Box (Data Source Tab)
	Virtual Directory Properties Dialog Box (Settings Tab)
	Virtual Directory Properties Dialog Box (Virtual Names Tab)
	Virtual Directory Properties Dialog Box (Advanced Tab)

	Index Tuning Wizard Help
	Index Tuning Wizard Help
	Select Server and Database
	Specify Workload
	Advanced Options
	Select Tables to Tune
	Index Recommendations
	Reports
	Schedule Index Update Job

	Network Configuration Help
	Network Configuration Help
	SQL Server Network Utility (General Tab)
	SQL Server Network Utility (Network Libraries Tab)
	Named Pipes
	TCP/IP
	Multiprotocol
	NWLink IPX/SPX
	AppleTalk
	Banyan Vines
	VIA

	Rebuild Master Help
	Rebuild Master Help
	Rebuild Master

	Replication Conflict Viewer Help
	Replication Conflict Viewer Help
	Microsoft Replication Conflict Viewer, Merge Publication
	Microsoft Replication Interactive Resolver
	Microsoft Replication Conflict Viewer, Updatable Subscriptions

	Replication Sync Manager Help
	Replication Sync Manager Help
	Attach Subscription
	Create Anonymous Subscription
	Create Anonymous Subscription (Browse the Active Directory)
	SQL Server Subscription Properties, Identification Tab
	SQL Server Subscription Properties, Other Tab

	Replication Wizard Help
	Replication Wizard Help
	Select Distributor
	Specify Administrative Password
	Specify Snapshot Folder
	Provide Distribution Database Information
	Enable Publishers
	Distributor Password
	Enable Publication Databases
	Enable Subscribers
	Publisher and Distributor Properties, Distributor Tab (Local Distributor)
	Publisher and Distributor Properties, Distributor Tab (Remote Distributor)
	Publisher and Distributor Properties, Publishers Tab
	Publisher and Distributor Properties, Publication Databases Tab
	Publisher and Distributor Properties, Subscribers Tab
	Distribution Database Properties, Database Tab (Existing Database)
	Distribution Database Properties, Database Tab (Creating New Database)
	Publisher Properties, General Tab
	Publisher Properties, General Tab (Heterogeneous Publisher)
	Subscriber Properties, General Tab
	Subscriber Properties, Schedules Tab
	Create Publication Wizard, Welcome
	Choose Publication Database
	Select Publication Type
	Updatable Subscriptions, Create Publication Wizard
	Transform Published Data
	Specify Subscriber Types
	Specify Articles
	Article Issues
	Customize the Properties of the Publication
	Filter Data
	Filter Table Columns
	Enable Dynamic Filters
	Generate Filters Automatically
	Filter Table Rows
	Specify Filter
	Specify Filter (<<TABLE>> Keyword)
	Specify Join Filter
	Validate Subscriber Information, Create Publication Wizard
	Optimize Synchronization
	Allow Anonymous Subscriptions
	article Properties, General Tab (Snapshot or Transactional Publication)
	article Properties, General Tab (Merge Publication)
	article Properties, Snapshot Tab
	article Properties, Commands Tab
	article Properties, Resolver Tab
	article Properties, Identity Range Tab
	article Properties, Merging Changes Tab
	Stored Procedure Article Properties, General tab
	Stored Procedure Article Properties, Other tab
	View Article Properties, General tab
	View Article Properties, Snapshot tab
	User-Defined Function Article Properties, General tab
	User-Defined Function Article Properties, Snapshot tab
	Indexed View Article Properties, General tab
	Indexed View Article Properties, Snapshot tab
	Push Subscription Wizard, Welcome
	Choose Subscribers
	Set Merge/Distribution Agent Location
	Initialize Subscription
	Set Subscription Priority
	Updatable Subscriptions, Subscription Wizards
	Specify DTS Package
	Start Required Services
	Pull Subscription Wizard, Welcome
	Choose Publication
	Look for Publication
	Specify Publication
	Specify Updating Subscription Login
	Snapshot Delivery
	Set Distribution Agent Schedule
	Set Merge Agent Schedule
	Allow Anonymous Subscription
	Specify Subscriber Security
	publication Properties, General Tab
	publication Properties, Articles Tab
	publication Properties, Filter Columns Tab
	publication Properties, Filter Rows Tab
	publication Properties, Filter Rows Tab (merge publication)
	publication Properties, Subscriptions Tab
	publication Properties, Subscription Options Tab (Snapshot or Transactional Publication)
	publication Properties, Subscription Options Tab (Merge Publication)
	publication Properties, Subscription Options Tab (SQL Server 7.0 Transactional Publication)
	publication Properties, Updatable Tab
	publication Properties, Snapshot Tab
	publication Properties, Snapshot Location Tab
	publication Properties, Publication Access List Tab
	publication Properties, Status Tab
	publication Properties, Sync Partners Tab
	heterogeneous publication Properties, General Tab
	heterogeneous publication Properties, Subscription Options Tab
	heterogeneous publication Properties, Subscriptions Tab
	Choose a Destination, Define Transformation of Published Data Wizard
	Define Transformations
	Column Mappings and Transformations
	DTS Package Location
	DTS Package Identification
	Specify Filter Values
	Specify Snapshot File Location
	Set Job Schedule
	Pull Subscription Properties, General Tab
	Pull Subscription Properties, Synchronization Tab (Snapshot or Transactional Publication)
	Pull Subscription Properties, Synchronization Tab (Merge Publication)
	Pull Subscription Properties, Security Tab
	Pull Subscription Properties, Snapshot Location Tab
	Pull Subscription Properties, Snapshot Delivery Tab (SQL Server 7.0)
	Generate SQL Scripts, General Tab
	Generate SQL Scripts, File Options Tab
	Agent Profiles
	Refresh Rate and Settings, General Tab
	Refresh Rate and Settings, Performance Monitor Tab
	Replication Monitor - Select Columns, Snapshot Agents Tab
	Replication Monitor - Select Columns, Log Reader Agents Tab
	Replication Monitor - Select Columns, Distribution Agents Tab
	Replication Monitor - Select Columns, Merge Agents Tab
	Replication Monitor - Select Columns, Transactional Publication View Tab
	Replication Monitor - Select Columns, Merge Publication View Tab
	Replication Monitor - Select Columns, Miscellaneous Agents Tab
	Replication Monitor - Select Columns, Queue Reader Agents Tab
	Add Column to Replicated Table
	Validate All Subscriptions
	Validate Subscriptions
	Subscription Validation Options
	Enable Subscriber - ODBC Data Source
	Enable Subscriber - OLE DB Data Source
	Compatibility Level Warning
	Add Distributor to Monitor
	Run Agent at Subscriber
	Attach Subscription Database

	@NoTitle
	SQL Server Enterprise Manager Help
	Registered SQL Server Properties (General Tab)
	Server Groups (General Tab)
	SQL Server Enterprise Manager Properties (General Tab)
	SQL Server Enterprise Manager Properties (Advanced Tab)
	SQL Server Properties (General Tab)
	Startup Parameters
	SQL Server Properties (Memory Tab)
	SQL Server Properties (Processor Tab)
	SQL Server Properties (Security Tab)
	SQL Server Properties (Connections Tab)
	SQL Server Properties (Server Settings Tab)
	SQL Server Properties (Database Settings Tab)
	Database Properties (General Tab)
	Database Properties (Transaction Log Tab)
	Database Properties (Options Tab)
	Database Properties (Permissions Tab)
	Database Role Properties (General Tab)
	Database User Properties (General Tab)
	Database User Properties (Permissions Tab)
	SQL Server Login Properties (General Tab)
	SQL Server Login Properties (Server Roles Tab)
	SQL Server Login Properties (Database Access Tab)
	Default Properties (General Tab)
	Rule Properties (General Tab)
	Stored Procedure Properties (General Tab)
	User-Defined Data Type Properties (General Tab)
	Extended Stored Procedure Properties (General Tab)
	Remote Server Properties, General Tab
	Linked Server Properties (General Tab)
	Linked Server Properties (Security Tab)
	Database Maintenance Plan (General Tab)
	Database Maintenance Plan, Optimizations Tab
	Database Maintenance Plan (Integrity Tab)
	Database Maintenance Plan (Complete Backup Tab)
	Database Maintenance Plan (Transaction Log Backup Tab)
	Database Maintenance Plan (Reporting Tab)
	Database Maintenance Plan History
	Send Message
	Process Details
	Trigger Properties
	Table Properties (General Tab)
	Object Properties (Permissions Tab)
	View Properties (General Tab)
	Generate SQL Scripts (General Tab)
	Generate SQL Scripts (Formatting Tab)
	Generate SQL Scripts (Options Tab)
	Dependencies (General Tab)
	Backup Device Properties (General Tab)
	Font (Format Tab)
	Drop Objects
	Shrink Database
	SQL Server Backup (General Tab)
	SQL Server Backup (Options Tab)
	Restore Database (General Tab)
	Restore Database (Options Tab)
	Provider Options
	Server Role Properties (Permissions Tab)
	Server Role Properties (General Tab)
	External Tools
	Add External Tools
	SQL Server Properties (Replication Tab)
	Properties (Data Files Tab)
	Properties (Filegroups Tab)
	User-Defined Function Properties (General Tab)
	Linked Server Properties (Server Options Tab)
	Edit SQL Server Message
	Shrink Database Files
	Detach Database
	Add/Edit Destination Database (General Tab)
	Add Destination Database (Initialize Tab)
	Add Destination Database (Thresholds Tab)
	Edit Destination Database (Thresholds Tab)
	Database Maintenance Plan (Log Shipping Tab)
	Bind Rule/Default to User-defined Data Types
	Bind Rule/Default to Columns
	Secondary Server Log Shipping History
	Log Shipping Pair Properties (Status Tab)
	Log Shipping Pair Properties (Source Tab)
	Log Shipping Pair Properties (Destination Tab)
	Schedule
	SQL Server Login Properties - New Login
	Database Role Properties (Permissions Tab)
	Attach Database
	Start Job
	Database Maintenance Plan (Servers Tab)
	Log Shipping Details
	Configure SQL Server Error Logs
	SQL Server Properties (Active Directory Tab)
	Alert Properties (General Tab)
	Alert Properties (Response Tab)
	Operator Properties (General Tab)
	Operator Properties (Notifications Tab)
	Job Properties (General Tab)
	Job Properties (Steps Tab)
	Job Properties (Schedules Tab)
	Job Properties (Notifications Tab)
	Job Category Properties (General Tab)
	Job Schedule Properties
	Edit Recurring Job Schedule
	Job Step (General Tab)
	Job Step (Advanced Tab)
	SQL Server Agent Properties (General Tab)
	SQL Server Agent Properties (Advanced Tab)
	SQL Server Agent Properties (Alert System Tab)
	SQL Server Agent Properties (Job System Tab)
	SQL Server Agent Properties (Connection Tab)
	SQL Server Agent Error Log
	SQL Mail Configuration (General Tab)
	Manage SQL Server Messages (Search Tab)
	SQL Server Message
	Manage SQL Server Messages (Messages Tab)
	Change Job Target Servers (Available Servers Tab)
	Change Job Target Servers (All Server Groups Tab)
	Target Server Properties
	Target Servers (Target Server Status Tab)
	Target Servers (Download Instructions Tab)
	Post Download Instructions
	Enlist Registered Servers Into this MSX
	Multiserver Job Execution Status
	Generate SQL Script
	Generate SQL Script
	Generate SQL Script
	View Job Category Properties (General Tab)
	Connection Properties
	DTS Package Versions
	Package Properties
	DTS Packages Logs
	Delete Package Logs
	Log Detail

	SQL Profiler Help
	SQL Profiler Help
	Trace Properties (General Tab)
	Trace Template Properties (General Tab)
	Trace File Properties (General Tab)
	Trace Table Properties (General Tab)
	Properties (Events Tab)
	Properties (Data Columns Tab)
	Properties (Filters Tab)
	Trace Options (General Tab)
	Trace Options (Display Tab)
	Source Table
	Replay SQL Server
	Destination Table
	Find

	SQL Query Analyzer Help
	SQL Query Analyzer Help
	Overview of SQL Query Analyzer
	Using isqlw
	Connecting to SQL Server
	Using SQL Query Analyzer Windows
	SQL Query Analyzer Icons
	Transact-SQL Debugger Icons
	Status Bar Information
	Color Coding in SQL Query Analyzer

	SQL Query Analyzer Keyboard Shortcuts
	Managing SQL Query Analyzer Windows
	Managing Options in SQL Query Analyzer
	Using SET Options in SQL Query Analyzer
	Specifying General Connection Operations

	Using the Editor Pane
	Editing SQL Statements
	Moving and Copying Text
	Undoing Mistakes
	Clearing the Editor Pane
	Finding and Replacing Text
	Going to a Line Number
	Using Bookmarks
	Forcing the Case of Text
	Adding and Removing Indentation
	Adding and Removing Comments
	Viewing Transact-SQL Help

	Using SQL Files
	Opening SQL files
	Saving SQL Statements to a File
	Using Templates in SQL Query Analyzer

	Running Queries in SQL Query Analyzer
	Executing SQL Statements in SQL Query Analyzer
	Executing Stored Procedures in SQL Query Analyzer
	Canceling a Long-Running Query
	Resolving Errors in SQL Query Analyzer
	Returning Result Sets in SQL Query Analyzer

	Entering Data in SQL Query Analyzer
	Printing in SQL Query Analyzer
	Analyzing Queries
	Viewing the Query Execution Plan
	Viewing the Estimated Query Execution Plan
	Viewing Server Trace Information
	Viewing Client Statistics Information
	Tuning Indexes

	Using Object Browser
	Adding Objects to Code from Object Browser
	Querying from Object Browser
	Running Stored Procedures from Object Browser
	Editing Objects from Object Browser
	Using the Scripting Feature in Object Browser
	Setting Extended Properties from Object Browser

	Using Object Search
	Using Shortcuts
	Getting Database Object Information
	Defining Custom Shortcuts
	Customizing the Tools Menu

	Using Transact-SQL Debugger
	Starting the Debugger
	Interface Components

	SQL Query Analyzer Dialog Boxes and Windows
	Connect to SQL Server Dialog Box
	Create Missing Statistics Dialog Box
	Create Statistics Dialog Box
	Current Connection Properties Dialog box
	Customize Dialog Box
	Custom Tab, Customize Dialog Box
	Tools Tab, Customize Dialog Box

	Customize Toolbar Dialog Box
	Edit Transact-SQL Script Dialog Box
	Debug Procedure Dialog Box
	Execute Procedure Dialog Box
	Extended Property Dialog Box
	Index Dialog Box
	Manage Indexes Dialog Box
	Manage Statistics Dialog Box
	New Dialog Box
	Object Search Dialog Box
	Options Dialog Box
	General Tab, Options Dialog Box
	Editor Tab, Options Dialog Box
	Results Tab, Options Dialog Box
	Connections Tab, Options Dialog Box
	Connection Properties Tab, Options Dialog Box
	Fonts Tab, Options Dialog Box
	Scripting Tab, Options Dialog Box

	Select Database Dialog Box
	Replace Template Parameters Dialog Box
	Update Statistics Dialog Box
	Window Selector Dialog Box
	Transact-SQL Debugger
	Query Window Execution Plan Pane
	Query Window Statistics Pane
	Query Window Trace Pane
	Object Browser

	Troubleshooting
	Troubleshooting
	Troubleshooting Overview
	Troubleshooting Planning
	Viewing Error Logs
	Error Reporting
	Online Troubleshooters from PSS
	Help with Backup and Restore
	Help with Connectivity
	Help with Data Transformation Services
	Help with Distributed Queries
	Help with Full-Text Search
	Help with Performance
	Help with SQL Profiler
	Help with Replication
	Help with Setup
	Help with Startup
	Help with SQL Mail
	Viewing Online Troubleshooters and other PSS Web-Based Information

	Frequently Asked Questions
	SQL Server Books Online FAQ
	SQL Server Enterprise Manager FAQ
	Administration Tools FAQ
	Failover Clustering FAQ
	Multiple Instance FAQ
	Programming FAQ
	Replication FAQ
	Server FAQ
	Setup and Installation FAQ
	Upgrading to SQL Server 2000 FAQ

	Best Practices
	DBCC CHECKDB Recommendations
	Distributed Partitioned View Recommendations
	Full-Text Search Recommendations
	Multiple Instance Recommendations
	Parallel Query Recommendations
	User-Defined Function Recommendations

	Reporting Errors to Your Primary Support Provider
	Reproducing Problems

	Isolating Connection Problems
	Orphaned Sessions
	Named Pipes Client Connections
	TCP/IP Sockets Client Connections

	Troubleshooting SQL Server Setup
	Setup Troubleshooting: Checklist
	Testing an Installation of SQL Server 2000
	Informational Files Created by SQL Server Setup
	Error Codes for an Unattended Installation
	Troubleshooting the SQL Server Upgrade Wizard
	Completing the SQL Server Upgrade Wizard
	Upgrade Log Files

	Server and Database Troubleshooting
	Resetting the Suspect Status
	Troubleshooting Alerts
	Troubleshooting Backing Up and Restoring
	Troubleshooting Orphaned Users

	Troubleshooting Data Transformation Services
	Troubleshooting Locking
	Troubleshooting Deadlocks
	Deadlocks Involving Locks
	Deadlocks Involving Parallelism
	Deadlocks Involving Threads

	Troubleshooting MS DTC Transactions
	Troubleshooting MSSQLServer or SQLServerAgent Services User Accounts
	Troubleshooting Full-Text Search
	Troubleshooting the Operating System
	Appearance of Internet Connection Dialog Box at Startup of Windows 95 or Windows 98
	Thread Pooling
	Insufficient Virtual Memory on the Server

	Insufficient Resource Space
	Determining When SQL Server Causes a Windows NT Blue Screen

	Troubleshooting Recovery
	Recovery Performance
	Insufficient Disk Space

	SQL Server Tools Troubleshooting
	Troubleshooting the Index Tuning Wizard
	Troubleshooting SQL Mail with Exchange Server
	Troubleshooting SQL Profiler
	Troubleshooting SQL Query Analyzer
	Troubleshooting the Web Assistant Wizard
	Troubleshooting the Transact-SQL Debugger

	Analysis Services Troubleshooting
	Troubleshooting Development (Analysis Server)
	Troubleshooting Processing (Analysis Server)
	Troubleshooting Querying and Browsing (Analysis Server)
	Troubleshooting Security (Analysis Server)
	Troubleshooting Server (Analysis Server)

	Error Messages
	Error Message Formats
	Error Message Numbers and Descriptions
	Error Message Severity Levels
	ADO Error Message Format
	OLE DB Error Message Format
	ODBC Error Message Format
	Embedded SQL for C Error Message Format
	DB-Library Error Message Format
	Messages Returned by SQL Server Utilities

	Error Message Descriptions
	System Error Messages
	Errors 1 - 999
	Errors 1000 - 1999
	Errors 2000 - 2999
	Errors 3000 - 3999
	Errors 4000 - 4999
	Errors 5000 - 5999
	Errors 6000 - 6999
	Errors 7000 - 7999
	Errors 8000 - 8999
	Errors 9000 - 9999
	Errors 10000 - 10999
	Errors 11000 - 11999
	Errors 13000 - 13999
	Errors 14000 - 14999
	Errors 15000 - 15999
	Errors 16000 - 16999
	Errors 17000 - 17999
	Errors 18000 - 18999
	Errors 19000 -19999
	Errors 20000 - 20999
	Errors 21000 -21999

	Resolving System Error Messages
	Error 103
	Error 107
	Error 109
	Error 137
	Error 156
	Error 170
	Error 207
	Error 208
	Error 220
	Error 229
	Error 245
	Error 259
	Error 266
	Error 268
	Error 511
	Error 515
	Error 544
	Error 601
	Error 602
	Error 605
	Error 624
	Error 625
	Error 644
	Error 701
	Error 813
	Error 822
	Error 823
	Error 844
	Error 845
	Error 911
	Error 913
	Error 924
	Error 926
	Error 945
	Error 1002
	Error 1105
	Error 1203
	Error 1204
	Error 1205
	Error 1505
	Error 1508
	Error 1510
	Error 1530
	Error 1702
	Error 1803
	Error 1814
	Error 1902
	Error 1903
	Error 1904
	Error 1910
	Error 1916
	Error 2501
	Error 2511
	Error 2512
	Error 2513
	Error 2515
	Error 2516
	Error 2517
	Error 2519
	Error 2522
	Error 2523
	Error 2524
	Error 2527
	Error 2529
	Error 2531
	Error 2533
	Error 2534
	Error 2535
	Error 2536
	Error 2537
	Error 2538
	Error 2539
	Error 2540
	Error 2546
	Error 2570
	Error 2574
	Error 2575
	Error 2576
	Error 2577
	Error 2578
	Error 2579
	Error 2592
	Error 2593
	Error 2601
	Error 2731
	Error 2750
	Error 2751
	Error 2812
	Error 3023
	Error 3036
	Error 3041
	Error 3101
	Error 3143
	Error 3154
	Error 3155
	Error 3206
	Error 3209
	Error 3227
	Error 3242
	Error 3247
	Error 3249
	Error 3251
	Error 3256
	Error 3258
	Error 3263
	Error 3266
	Error 3267
	Error 3414
	Error 3456
	Error 3604
	Error 3627
	Error 3724
	Error 4208
	Error 4214
	Error 4305
	Error 4306
	Error 4408
	Error 4928
	Error 4929
	Error 4318
	Error 5013
	Error 5701
	Error 5808
	Error 6103
	Error 6826
	Error 7102
	Error 7130
	Error 7303
	Error 7304
	Error 7306
	Error 7314
	Error 7321
	Error 7356
	Error 7357
	Error 7391
	Error 7392
	Error 7399
	Error 7403
	Error 7413
	Error 7910
	Error 7911
	Error 7912
	Error 7913
	Error 7914
	Error 7915
	Error 7916
	Error 7917
	Error 7918
	Error 7919
	Error 7920
	Error 7923
	Error 7924
	Error 7925
	Error 7927
	Error 7961
	Error 7965
	Error 7966
	Error 7991
	Error 7994
	Error 7995
	Error 8101
	Error 8102
	Error 8106
	Error 8114
	Error 8155
	Error 8163
	Error 8501
	Error 8645
	Error 8621
	Error 8651
	Error 8902
	Error 8903
	Error 8904
	Error 8905
	Error 8906
	Error 8908
	Error 8909
	Error 8910
	Error 8911
	Error 8912
	Error 8913
	Error 8914
	Error 8915
	Error 8916
	Error 8917
	Error 8918
	Error 8921
	Error 8922
	Error 8923
	Error 8924
	Error 8925
	Error 8926
	Error 8927
	Error 8928
	Error 8929
	Error 8930
	Error 8931
	Error 8932
	Error 8933
	Error 8934
	Error 8935
	Error 8936
	Error 8937
	Error 8938
	Error 8939
	Error 8940
	Error 8941
	Error 8942
	Error 8943
	Error 8944
	Error 8945
	Error 8946
	Error 8947
	Error 8948
	Error 8949
	Error 8950
	Error 8951
	Error 8952
	Error 8953
	Error 8954
	Error 8955
	Error 8956
	Error 8958
	Error 8959
	Error 8960
	Error 8961
	Error 8962
	Error 8963
	Error 8964
	Error 8965
	Error 8966
	Error 8968
	Error 8969
	Error 8970
	Error 8971
	Error 8972
	Error 8973
	Error 8974
	Error 8976
	Error 8977
	Error 8978
	Error 8979
	Error 8980
	Error 8981
	Error 8982
	Error 8983
	Error 8986
	Error 8989
	Error 8990
	Error 8992
	Error 8993
	Error 8994
	Error 8995
	Error 8996
	Error 8998
	Error 8999
	Error 9002
	Error 14157
	Error 17050
	Error 18456
	Error 18458
	Error 18459
	Error 19012
	Error 19015
	Error 20554
	Read/Write Error

	Error Log Messages
	Analysis Services Error Messages
	Error 117
	Error 123
	Error 2437
	Error 3013, 30163, 30322, or 33031
	Error 3151
	Error 3238
	Error 30159
	Error 30973
	Error 30979
	Errors 31040 and 31041
	Error -2147221453
	Error -2147221455
	MDX Errors
	Formula error - aggregations are not supported for the DISTINCT COUNT measure "<measure name>"
	Infinite recursion detected during execution of calculated member <member name>

	MAPI Error Messages
	DB-Library, error messages
	DB-Library Error Severities
	Error 10008 (DB-Library)
	Error 10024 (DB-Library)
	Error 10053 (DB-Library)
	Error 10054 (DB-Library)

	Distributed Queries Error Messages
	Embedded SQL for C Error Messages
	SQL Server Enterprise Manager Error Messages
	<0s> is not supported.
	<0s> may not be used in this query type.
	A relationship cannot contain more than '<0d>' columns.
	Cannot add this expression to the select list.
	Error modifying column properties.
	Illegal expression list usage.
	Information models in the specified Meta Data Services repository database must be updated in order to save this DTS package version
	Object <0s> does not exist in the database.
	Only one ROWGUIDCOL column is allowed per table.
	SQL Verification.
	System errors.
	The current version of the ODBC driver is not valid.
	The outer join operator (+) cannot be used in QBE.
	The Query Designer supports no more than one data source for this type of query.
	There are not enough columns to match the subquery select list.
	Unable to add constraint.
	Unable to create index.
	Unable to create relationship.
	Unable to modify table.
	Unable to preserve trigger.
	Unnecessary use of CONVERT function.
	Unsupported SQL.
	SQL Server Agent Error Messages
	Error 22
	Error 318
	Error 203
	Error 312
	Error 311

	XML Error Messages
	Errors in Annotated XDR Schemas
	Errors in XPath Queries
	MSXML Errors Detected During XPath Processing

	ODBC Error Messages
	Replication Merge Agent Error Messages

	Finding Supplemental Error Message Information
	Adding User-Defined Error Messages

	Glossary
	Glossary
	Glossary

	How To
	How To
	How to Install SQL Server 2000
	How to install SQL Server 2000 (Setup)
	How to install client tools only (Setup)
	How to install tools only from any compact disc (Setup)
	How to install connectivity only (Setup)
	How to install a named instance of SQL Server 2000 (Setup)
	How to upgrade a SQL Server 7.0 installation to SQL Server 2000 (Setup)
	How to upgrade databases online using the Copy Database Wizard (Enterprise Manager)
	How to perform an edition upgrade within SQL Server 2000 (Setup)
	How to uninstall an existing installation of SQL Server (Setup)
	How to test an installation of SQL Server 2000 (Command Prompt)
	How to change SQL Server services login account information (Windows NT)
	How to change SQL Server services login account information (Windows)
	How to change SQL Server services login account information (Enterprise Manager)
	How to rebuild the registry (Setup)
	How to rebuild the master database (Rebuild Master utility)
	How to perform a remote installation of SQL Server 2000 (Setup)
	How to record an unattended installation file (Setup)
	How to run an unattended installation of SQL Server 2000 (Command Prompt)
	How to add components to an instance of SQL Server 2000 (Setup)
	How to access SQL Server Books Online for SQL Server 7.0
	How to install English Query (Setup)
	How to install Analysis Services (Setup)
	How to create a case-sensitive instance of SQL Server 2000 (Setup)
	How to set client code pages
	How to switch from SQL Server 6.5 to SQL Server 2000 (Command Prompt)
	How to switch from SQL Server 6.5 to SQL Server 2000 (Windows)
	How to remove SQL Server 2000 (Windows)
	How To Upgrade from SQL Server 6.5
	How to change the size of tempdb in SQL Server 6.5 (ISQL/w)
	How to change to the current server name in the SQL Server 6.5 master database (ISQL/w)
	How to update the device file locations in the SQL Server 6.5 master database (ISQL/w)
	How to estimate the disk space required for an upgrade from SQL Server version 6.5 to SQL Server 2000 (SQL Server Upgrade Wizard)
	How to edit the default database configuration (SQL Server Upgrade Wizard)
	How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a direct pipeline (SQL Server Upgrade Wizard)
	How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server Upgrade Wizard)

	SQL Server Enterprise Manager
	Administering SQL Server
	How to start an instance of SQL Server automatically (Enterprise Manager)
	How to shut off automatic startup of SQL Server (Enterprise Manager)
	How to start SQL Server (Enterprise Manager)
	How to stop SQL Server or SQL Server Agent (Enterprise Manager)
	How to start the default instance of SQL Server (Service Manager)
	How to start a clustered instance of SQL Server (Service Manager)
	How to start a named instance of SQL Server (Service Manager)
	How to start the default instance of SQL Server (Windows)
	How to start a named instance of SQL Server (Windows)
	How to start the default instance of SQL Server (Command Prompt)
	How to start a named instance of SQL Server (Command Prompt)
	How to start the default instance of SQL Server in single-user mode (Command Prompt)
	How to start a named instance of SQL Server in single-user mode (Command Prompt)
	How to start the default instance of SQL Server with minimal configuration (Command Prompt)
	How to start a named instance of SQL Server with minimal configuration (Command Prompt)
	How to pause and resume the default instance of SQL Server (Service Manager)
	How to stop a clustered instance of SQL Server (Service Manager)
	How to pause and resume a named instance of SQL Server (Service Manager)
	How to pause and resume the default instance of SQL Server (Windows)
	How to pause and resume a named instance of SQL Server (Windows)
	How to pause and resume the default instance of SQL Server (Command Prompt)
	How to pause and resume a named instance of SQL Server (Command Prompt)
	How to broadcast a shutdown message (Command Prompt)
	How to stop the default instance of SQL Server (Windows)
	How to stop a named instance of SQL Server (Windows)
	How to stop the default instance of SQL Server (Command Prompt)
	How to stop a named instance of SQL Server (Command Prompt)
	How to log in to the default instance of SQL Server (Command Prompt)
	How to log in to a named instance of SQL Server (Command Prompt)
	How to change the default service (Service Manager)
	How to create a new failover cluster (Setup)
	How to install a one-node failover cluster (Setup)
	How to add nodes to an existing virtual server (Setup)
	How to remove a node from an existing failover cluster (Setup)
	How to remove a failover clustered instance (Setup)
	How to recover from failover cluster failure in Scenario 1
	How to recover from failover cluster failure in Scenario 2
	How to upgrade from a SQL Server 6.5 active/passive failover cluster (Setup)
	How to upgrade from a SQL Server 6.5 active/active failover cluster (Setup)
	How to upgrade from a SQL Server 7.0 active/active failover cluster (Setup)
	How to upgrade from a SQL Server 7.0 active/passive failover cluster (Setup)
	How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (Setup)
	How to upgrade from a local default instance to a clustered, named instance of SQL Server 2000 (Setup)
	Backing Up and Restoring Databases
	How to create a logical disk backup device (Enterprise Manager)
	How to create a logical tape backup device (Enterprise Manager)
	How to delete a logical backup device (Enterprise Manager)
	How to create a database backup (Enterprise Manager)
	How to start the Create Database Backup Wizard (Enterprise Manager)
	How to restore a database backup (Enterprise Manager)
	How to restore a backup from a backup device (Enterprise Manager)
	How to create a transaction log backup (Enterprise Manager)
	How to apply a transaction log backup (Enterprise Manager)
	How to create a differential database backup (Enterprise Manager)
	How to restore a differential database backup (Enterprise Manager)
	How to set up, maintain, and bring online a standby server (Enterprise Manager)
	How to restore to a point in time (Enterprise Manager)
	How to view the data and log files in a backup set (Enterprise Manager)
	How to view backup and media header information (Enterprise Manager)
	How to back up files and filegroups (Enterprise Manager)
	How to restore files and filegroups (Enterprise Manager)
	How to restore files and filegroups over existing files (Enterprise Manager)
	How to set the recovery model for a database (Enterprise Manager)

	Managing Servers
	How to register a server (Enterprise Manager)
	How to create server groups (Enterprise Manager)
	How to change a server's registration (Enterprise Manager)
	How to remove a registered server running SQL Server (Enterprise Manager)
	How to connect to a registered server running SQL Server (Enterprise Manager)
	How to disconnect from a registered server running SQL Server (Enterprise Manager)
	How to assign the sa password on a newly installed server (Enterprise Manager)
	How to view server properties (Enterprise Manager)
	How to check and set remote server configuration options (Enterprise Manager)
	How to set access to your display of servers and groups (Enterprise Manager)
	How to set the polling interval (Enterprise Manager)
	How to disable a remote server setup (Enterprise Manager)
	How to manage or view SQL Server messages (Enterprise Manager)
	How to edit a SQL Server message (Enterprise Manager)
	How to delete a SQL Server message (Enterprise Manager)
	How to add a new SQL Server message (Enterprise Manager)
	How to find a SQL Server message (Enterprise Manager)
	How to set up a linked server (Enterprise Manager)
	How to delete a linked server (Enterprise Manager)
	How to configure log shipping (Enterprise Manager)
	How to remove log shipping (Enterprise Manager)
	How to add or edit a destination server (Enterprise Manager)
	How to delete a destination server (Enterprise Manager)
	How to view the status of servers configured for log shipping (Enterprise Manager)
	How to view or edit information about the source server (Enterprise Manager)
	How to view or edit information about the destination server (Enterprise Manager)
	How to add an external tool to the Tools menu (Enterprise Manager)
	How to launch SQL Server Enterprise Manager in the Computer Management console (Windows)
	How to enable child windows (Enterprise Manager)
	How to configure the affinity mask (Enterprise Manager)
	How to set the allow updates option (Enterprise Manager)
	How to configure the cost threshold for parallelism (Enterprise Manager)
	How to set the default language (Enterprise Manager)
	How to set a fixed fill factor (Enterprise Manager)
	How to configure the number of processors available for parallel queries (Enterprise Manager)
	How to set minimum query memory (Enterprise Manager)
	How to configure the maximum number of worker threads (Enterprise Manager)
	How to set the backup retention duration (Enterprise Manager)
	How to set a fixed amount of memory (Enterprise Manager)
	How to set the nested triggers option (Enterprise Manager)
	How to set the priority boost option (Enterprise Manager)
	How to set the recovery interval (Enterprise Manager)
	How to set remote server access (Enterprise Manager)
	How to enforce distributed transactions for remote procedures (Enterprise Manager)
	How to set a time limit for remote queries (Enterprise Manager)
	How to set the working set size option (Enterprise Manager)
	How to set the two digit year cutoff option (Enterprise Manager)
	How to set user connections (Enterprise Manager)
	How to configure user options (Enterprise Manager)
	How to configure packet size (Enterprise Manager)
	How to set the query governor cost limit option (Enterprise Manager)
	How to enable encryption after SQL Server has been installed (Network Utility)
	How to connect to SQL Server through Microsoft Proxy Server (Setup)
	How to set the polling interval (Service Manager)
	How to configure a mail profile (Windows)
	How to set up SQL Mail (Enterprise Manager)
	How to set up SQL Agent Mail (Enterprise Manager)
	How to enable the Lock Page in Memory option (Windows)
	How to start the SQL Server Network Utility (Network Utility)
	How to load an installed server network library (Network Utility)
	How to deactivate a server network library configuration (Network Utility)
	How to edit a server network library configuration (Network Utility)
	How to view the installed SQL Server server network libraries (Network Utility)

	Managing Clients
	How to start the Client Network Utility (Windows)
	How to display the network library version numbers (Client Network Utility)
	How to set DB-Library conversion preferences (Client Network Utility)
	How to add a network library configuration (Client Network Utility)
	How to edit a network library configuration (Client Network Utility)
	How to delete a network library configuration (Client Network Utility)
	How to alias a client to an alternate pipe (Client Network Utility)
	How to configure a client to use the Multiprotocol Net-Library (Client Network Utility)
	How to configure a client to use TCP/IP (Client Network Utility)
	How to configure a client to use the NWLink IPX/SPX network library (Client Network Utility)
	How to configure a client to use the AppleTalk network library (Client Network Utility)
	How to configure a client to use the Banyan VINES network library (Client Network Utility)
	How to configure a client to use the VIA network library (Client Network Utility)
	How to configure a client to use a nonstandard network library (Client Network Utility)
	How to verify that SQL Server is listening on AppleTalk and can accept a client connection (Client Network Utility)
	How to check the ODBC SQL Server driver version (Windows)

	Automating Administrative Tasks
	How to set the service startup account for SQL Server Agent (Enterprise Manager)
	How to set the mail profile for SQL Server Agent (Enterprise Manager)
	How to set the SQL Server connection (Enterprise Manager)
	How to set a SQL Server alias (Enterprise Manager)
	How to create a job (Enterprise Manager)
	How to disable a job (Enterprise Manager)
	How to create a job category (Enterprise Manager)
	How to delete a job category (Enterprise Manager)
	How to assign a job to a job category (Enterprise Manager)
	How to change the membership of a job category (Enterprise Manager)
	How to give others ownership of a job (Enterprise Manager)
	How to create a CmdExec job step (Enterprise Manager)
	How to reset SQLAgentCmdExec permissions (Enterprise Manager)
	How to create a Transact-SQL job step (Enterprise Manager)
	How to define Transact-SQL job step options (Enterprise Manager)
	How to create an Active Script job step (Enterprise Manager)
	How to set job step success or failure flow (Enterprise Manager)
	How to set up the job history log (Enterprise Manager)
	How to view the job history (Enterprise Manager)
	How to make a master server (Enterprise Manager)
	How to make a target server (Enterprise Manager)
	How to enlist a target server from a master server (Enterprise Manager)
	How to defect a target server from a master server (Enterprise Manager)
	How to defect multiple target servers from a master server (Enterprise Manager)
	How to view a master SQL Server Agent error log (Enterprise Manager)
	How to check the status of a target server (Enterprise Manager)
	How to schedule a job (Enterprise Manager)
	How to set CPU idle time and duration (Enterprise Manager)
	How to notify an operator of job status (Enterprise Manager)
	How to write the job status to the Windows application log (Enterprise Manager)
	How to automatically delete a job (Enterprise Manager)
	How to set the polling interval for target servers (Enterprise Manager)
	How to start a job (Enterprise Manager)
	How to stop a job (Enterprise Manager)
	How to force a target server to poll the master server (Enterprise Manager)
	How to view a job (Enterprise Manager)
	How to resize the job history log (Enterprise Manager)
	How to clear the job history log (Enterprise Manager)
	How to modify a job (Enterprise Manager)
	How to modify the target servers for a job (Enterprise Manager)
	How to modify a target server's location (Enterprise Manager)
	How to delete a job (Enterprise Manager)
	How to synchronize target server clocks (Enterprise Manager)
	How to script jobs using Transact-SQL (Enterprise Manager)
	How to create an operator (Enterprise Manager)
	How to assign alerts to an operator (Enterprise Manager)
	How to format pager addresses (Enterprise Manager)
	How to designate a fail-safe operator (Enterprise Manager)
	How to create an alert using an error number (Enterprise Manager)
	How to create an alert using severity level (Enterprise Manager)
	How to define the response to an alert (Enterprise Manager)
	How to create a user-defined event error message (Enterprise Manager)
	How to edit a user-defined event error message (Enterprise Manager)
	How to delete a user-defined event error message (Enterprise Manager)
	How to disable or reactivate an alert (Enterprise Manager)
	How to designate an events forwarding server (Enterprise Manager)
	How to view information about an operator (Enterprise Manager)
	How to edit an operator (Enterprise Manager)
	How to change an operator's availability (Enterprise Manager)
	How to delete an operator (Enterprise Manager)
	How to view information about an alert (Enterprise Manager)
	How to edit an alert (Enterprise Manager)
	How to delete an alert (Enterprise Manager)
	How to script operators using Transact-SQL (Enterprise Manager)
	How to script alerts using Transact-SQL (Enterprise Manager)
	How to set job execution shutdown (Enterprise Manager)
	How to autostart SQL Server Agent (Enterprise Manager)
	How to send SQL Server Agent error messages (Enterprise Manager)
	How to view SQL Server Agent error log (Enterprise Manager)
	How to rename a SQL Server Agent error log (Enterprise Manager)
	How to write execution trace messages to the SQL Server Agent error log (Enterprise Manager)
	How to schedule a DTS package using the SQLServerAgent service (Enterprise Manager)
	How to create a SQL Server 7.0 compatible script (Enterprise Manager)

	Managing Security
	How to set up Windows Authentication Mode security (Enterprise Manager)
	How to set up Mixed Mode security (Enterprise Manager)
	How to grant a Windows user or group login access to SQL Server (Enterprise Manager)
	How to grant a Windows user or group access to a database (Enterprise Manager)
	How to add a SQL Server login (Enterprise Manager)
	How to add a linked server login (Enterprise Manager)
	How to grant a SQL Server login access to a database (Enterprise Manager)
	How to create a SQL Server database role (Enterprise Manager)
	How to add a member to a SQL Server database role (Enterprise Manager)
	How to add a member to a fixed server role (Enterprise Manager)
	How to grant SQL Server login access to a user by using the Create Login Wizard (Enterprise Manager)
	How to view a SQL Server login or Windows user or group (Enterprise Manager)
	How to view a database user (Enterprise Manager)
	How to change the password of a SQL Server login (Enterprise Manager)
	How to change the default database of a login (Enterprise Manager)
	How to change the default language of a login (Enterprise Manager)
	How to remove a user or group from a database (Enterprise Manager)
	How to remove a SQL Server login (Enterprise Manager)
	How to revoke a Windows user or group login access from SQL Server (Enterprise Manager)
	How to deny login access to a Windows user or group (Enterprise Manager)
	How to remove a linked server login (Enterprise Manager)
	How to view the roles defined in the current database (Enterprise Manager)
	How to view the fixed server roles (Enterprise Manager)
	How to view the members of a database role (Enterprise Manager)
	How to remove a user account from a database role (Enterprise Manager)
	How to view the members of a fixed server role (Enterprise Manager)
	How to remove a login from a fixed server role (Enterprise Manager)
	How to remove a SQL Server role (Enterprise Manager)
	How to allow access by granting permissions (Enterprise Manager)
	How to grant statement permissions to users within a database (Enterprise Manager)
	How to grant permissions on multiple objects to a user, group, or role (Enterprise Manager)
	How to prevent access by denying permissions (Enterprise Manager)
	How to deny statement permissions from users within a database (Enterprise Manager)
	How to deny permissions on multiple objects to a user, group, or role (Enterprise Manager)
	How to revoke permissions on an object (Enterprise Manager)
	How to revoke statement permissions from users in a database (Enterprise Manager)
	How to revoke permissions on multiple objects from a user, group, or role (Enterprise Manager)
	How to create an application role (Enterprise Manager)
	How to remove an application role (Enterprise Manager)
	How to reveal or cancel announcement of SQL Server on a network (Windows)
	How to grant, deny, or revoke permissions on multiple objects to a user-defined role (Enterprise Manager)

	Monitoring Server Performance and Activity
	How to start SQL Profiler (Enterprise Manager)
	How to view current server activity (Enterprise Manager)
	How to view the last command batch for a connection (Enterprise Manager)
	How to view the current locks (Enterprise Manager)
	How to send a message to a currently connected user (Enterprise Manager)
	How to terminate a process (Enterprise Manager)
	How to view the SQL Server error log (Enterprise Manager)
	How to start Performance Monitor (Windows)
	How to start System Monitor (Windows)
	How to set up a SQL Server database alert (Windows NT)
	How to set up a SQL Server database alert (Windows 2000)
	How to view the Windows application log (Windows)
	How to enable SQL Server support of SNMP on Windows 98 (Windows)
	How to copy the SQL Server MSSQL-MIB to an SNMP workstation (Windows)
	How to set trace definition defaults (SQL Profiler)
	How to set trace display defaults (SQL Profiler)
	How to create a trace (SQL Profiler)
	How to add or remove events from a trace template or trace file (SQL Profiler)
	How to add or remove data columns from a trace template (SQL Profiler)
	How to filter events in a trace template (SQL Profiler)
	How to save trace results to a file (SQL Profiler)
	How to save trace results to a table (SQL Profiler)
	How to modify a trace template (SQL Profiler)
	How to pause a trace (SQL Profiler)
	How to run a trace after it has been paused or stopped (SQL Profiler)
	How to clear a trace window (SQL Profiler)
	How to close a trace window (SQL Profiler)
	How to stop a trace (SQL Profiler)
	How to view filter information (SQL Profiler)
	How to open a trace data file (SQL Profiler)
	How to open a trace table (SQL Profiler)
	How to replay a trace table (SQL Profiler)
	How to replay a trace file (SQL Profiler)
	How to replay a single event at a time (SQL Profiler)
	How to replay to a breakpoint (SQL Profiler)
	How to replay to the cursor (SQL Profiler)
	How to replay an SQL script (SQL Profiler)
	How to modify a filter (SQL Profiler)
	How to set a maximum file size for a trace file (SQL Profiler)
	How to set a maximum table size for a trace table (SQL Profiler)
	How to set an immediate start time for traces (SQL Profiler)
	How to set a StartTime filter for a trace (SQL Profiler)
	How to set an EndTime filter for a trace (SQL Profiler)
	How to filter system IDs in a trace (SQL Profiler)
	How to create a trace template (SQL Profiler)
	How to set global trace options (SQL Profiler)
	How to find a value or data column while tracing (SQL Profiler)
	How to launch a new trace with the current template (SQL Profiler)
	How to derive a template from a running trace (SQL Profiler)
	How to derive a template from a trace file or trace table (SQL Profiler)
	How to save a template, trace file, or trace table to SQL Script (SQL Profiler)
	How to create an SQL Script for a running trace (SQL Profiler)

	Creating and Maintaining Databases
	Databases
	How to create a database (Enterprise Manager)
	How to create a database using the Create Database Wizard (Enterprise Manager)
	How to increase the size of a database (Enterprise Manager)
	How to shrink a database (Enterprise Manager)
	How to delete data or log files from a database (Enterprise Manager)
	How to change the configuration settings for a database (Enterprise Manager)
	How to view a database (Enterprise Manager)
	How to view the settings for a database (Enterprise Manager)
	How to view a list of databases on a server (Enterprise Manager)
	How to display data and log space information for a database (Enterprise Manager)
	How to generate a script (Enterprise Manager)
	How to start the Database Maintenance Plan Wizard (Enterprise Manager)
	How to delete a database (Enterprise Manager)
	How to attach and detach a database (Enterprise Manager)
	How to create user-defined data types (Enterprise Manager)
	How to delete user-defined data types (Enterprise Manager)
	How to create a reflexive relationship (Enterprise Manager)
	How to create a many-to-many relationship between tables (Enterprise Manager)
	How to delete a relationship (Enterprise Manager)
	How to create a DEFAULT object (Enterprise Manager)
	How to delete a DEFAULT object (Enterprise Manager)
	How to view the dependencies of a table (Enterprise Manager)

	Indexes
	How to analyze a query using Index Analysis (Query Analyzer)
	How to analyze a query using Index Tuning Wizard (Query Analyzer)
	How to create an index using the Create Index Wizard (Enterprise Manager)
	How to view all indexes in a database (Enterprise Manager)

	Views
	How to create a view using the Create View Wizard (Enterprise Manager)
	How to rename a view (Enterprise Manager)
	How to modify a view (Enterprise Manager)
	How to get information about a view (Enterprise Manager)
	How to display the dependencies of a view (Enterprise Manager)
	How to delete a view (Enterprise Manager)

	Stored Procedures
	How to create a stored procedure (Enterprise Manager)
	How to create a stored procedure using the Create Stored Procedure Wizard (Enterprise Manager)
	How to add an extended stored procedure (Enterprise Manager)
	How to modify a stored procedure (Enterprise Manager)
	How to rename a stored procedure (Enterprise Manager)
	How to view the definition of a stored procedure (Enterprise Manager)
	How to view the dependencies of a stored procedure (Enterprise Manager)
	How to view information about an extended stored procedure (Enterprise Manager)
	How to delete a stored procedure (Enterprise Manager)
	How to delete an extended stored procedure (Enterprise Manager)

	Triggers
	How to create a trigger (Enterprise Manager)
	How to modify a trigger (Enterprise Manager)
	How to view a trigger (Enterprise Manager)
	How to view the dependencies of a trigger (Enterprise Manager)
	How to delete a trigger (Enterprise Manager)

	Full-text Indexes
	How to enable a database for full-text indexing (Enterprise Manager)
	How to enable a table for full-text indexing (Enterprise Manager)
	How to enable a column for full-text indexing (Enterprise Manager)
	How to edit a full-text index on a table (Enterprise Manager)
	How to remove full-text indexing on a table (Enterprise Manager)
	How to create a full-text catalog (Enterprise Manager)
	How to rebuild a full-text catalog (Enterprise Manager)
	How to rebuild all full-text catalogs in a database (Enterprise Manager)
	How to start and stop a full or incremental population of a full-text index (Enterprise Manager)
	How to check the status, tables, and schedules of a full-text catalog (Enterprise Manager)
	How to change or create a new schedule for a full-text catalog (Enterprise Manager)
	How to remove a full-text catalog from a database (Enterprise Manager)
	How to remove all full-text catalogs in a database (Enterprise Manager)
	How to repopulate all full-text catalogs for a database (Enterprise Manager)
	How to clean up the full-text catalogs on a server (Enterprise Manager)
	How to start and stop the Microsoft Search Service for full-text support (Enterprise Manager)

	Accessing and Changing Data
	How to access the Query Designer in Data Transformation Services (Enterprise Manager)

	Optimizing Database Performance
	Database Design
	How to place an existing table on a different filegroup (Enterprise Manager)
	How to place an existing index on a different filegroup (Enterprise Manager)

	Query Tuning
	How to create statistics (Query Analyzer)
	How to update statistics (Query Analyzer)
	How to delete statistics (Query Analyzer)
	How to create a new index (Query Analyzer)
	How to modify an index (Query Analyzer)
	How to delete an index (Query Analyzer)

	Replication
	Replication Types (Enterprise Manager)
	How to enable activation of the Interactive Resolver (Enterprise Manager)
	To activate the Interactive Resolver during a merge synchronization (Windows Synchronization Manager)
	How to set row- or column-level tracking for an article (Enterprise Manager)
	How to choose a resolver (Enterprise Manager)

	Replication Tools (Enterprise Manager)
	How to open Publisher and Distributor properties (Enterprise Manager)
	How to open publication properties (Enterprise Manager)
	How to open push subscription properties (Enterprise Manager)
	How to open pull subscription properties (Enterprise Manager)
	How to open agent properties (Enterprise Manager)
	How to open Windows Synchronization Manager

	 Implementing Replication (Enterprise Manager)
	How to configure publishing and distribution (Enterprise Manager)
	How to modify Publisher and Distributor properties (Enterprise Manager)
	How to add, modify, or disable a Subscriber (Enterprise Manager)
	How to disable publishing and distribution (Enterprise Manager)
	How to create publications and define articles (Enterprise Manager)
	How to modify publications and articles (Enterprise Manager)
	How to delete publications and articles (Enterprise Manager)
	How to create a push subscription (Enterprise Manager)
	How to modify a push subscription (Enterprise Manager)
	How to delete a push subscription (Enterprise Manager)
	How to create a pull or anonymous subscription (Enterprise Manager)
	How to view or modify pull or anonymous subscriptions (Enterprise Manager)
	How to delete a pull or anonymous subscription (Enterprise Manager)
	How to create an anonymous subscription (Windows Synchronization Manager)
	How to view or modify the default snapshot folder location (Enterprise Manager)
	How to specify alternate snapshot locations (Enterprise Manager)
	How to compress and deliver snapshot files (Enterprise Manager)
	How to set the UseInprocLoader property (Enterprise Manager)
	How to execute scripts before and after the snapshot is applied (Enterprise Manager)
	How to reinitialize a subscription (Enterprise Manager)
	How to browse and copy snapshot files (Enterprise Manager)
	How to synchronize a subscription (Enterprise Manager)
	How to synchronize an anonymous subscription (Windows Synchronization Manager)
	How to view and resolve merge synchronization conflicts (Enterprise Manager)
	How to script replication (Enterprise Manager)
	How to apply schema changes on publication databases (Enterprise Manager)
	How to specify FTP information (Enterprise Manager)

	Replication Options (Enterprise Manager)
	How to filter publications horizontally using the Create Publication Wizard (Enterprise Manager)
	How to filter publications vertically using the Create Publication Wizard (Enterprise Manager)
	How to filter publications vertically using publication properties (Enterprise Manager)
	How to validate Subscriber information using the Create Publication Wizard (Enterprise Manager)
	How to filter publications horizontally using publication properties (Enterprise Manager)
	How to create a dynamic snapshot (Enterprise Manager)
	How to filter with a user-defined function using the Create Publication Wizard (Enterprise Manager)
	How to filter with a user-defined function using publication properties (Enterprise Manager)
	How to drop all subscriptions to a publication (Enterprise Manager)
	How to install Message Queuing on the Distributor and Subscribers (Enterprise Manager)
	How to set the queued updating conflict resolution policy (Enterprise Manager)
	How to allow decentralized conflict reporting (Enterprise Manager)
	How to view conflicts (Enterprise Manager)
	How to enable immediate updating with queued updating as a failover (Enterprise Manager)
	How to switch from immediate updating to queued updating as a failover (Enterprise Manager)
	How to switch from immediate updating to queued updating as a failover (Transact-SQL)
	How to switch from immediate updating to queued updating as a failover (Windows Synchronization Manager)
	How to create a transformable subscription (Enterprise Manager)
	How to enable Subscribers to synchronize with alternate synchronization partners (Enterprise Manager)
	How to enable a Subscriber at an alternate synchronization partner (for named subscriptions) (Enterprise Manager)
	How to synchronize with alternate synchronization partners (Windows Synchronization Manager)
	How to synchronize pull subscriptions with alternate synchronization partners (Enterprise Manager)
	How to synchronize push subscriptions with alternate synchronization partners (Enterprise Manager)
	How to minimize the amount of data sent over the network during merge replication (Transact-SQL)
	How to configure a publication to allow copying of subscription databases (Enterprise Manager)
	How to copy a subscription database (Enterprise Manager)
	How to enable a Subscriber to receive published data (Enterprise Manager)
	How to attach a subscription database with named subscriptions (Enterprise Manager)
	How to attach a subscription database with anonymous subscriptions (Enterprise Manager)

	Administering and Monitoring Replication (Enterprise Manager)
	How to change replication monitoring properties (Enterprise Manager)
	How to monitor replication agent history (Enterprise Manager)
	How to configure DCOM to run the Distribution Agent remotely
	How to configure DCOM to run the Merge Agent remotely
	How to enable a push subscription to use remote agent activation
	How to enable a pull subscription to use remote agent activation
	How to configure an existing subscription to use remote agent activation
	How to monitor replication agent performance (Enterprise Manager)
	How to create a replication agent profile (Enterprise Manager)

	Replication and Heterogeneous Data Sources (Enterprise Manager)
	How to publish to heterogeneous Subscribers (Enterprise Manager)
	How to enable a Jet 4.0 database as a Subscriber (Enterprise Manager)
	How to create a publication for a Jet 4.0 Subscriber (Enterprise Manager)
	How to add a push subscription to a Jet 4.0 Subscriber (Enterprise Manager)

	Replication Security (Enterprise Manager)
	How to change the login property of a pull subscription
	How to add or change a password on a Distributor
	To grant or revoke access to a publication

	Data Transformation Services
	DTS Tools
	How to create a connection to Northwind in DTS Designer (Enterprise Manager)
	How to create a second connection to the Northwind database using DTS Designer (Enterprise Manager)
	How to copy data from a Northwind table using DTS Designer (Enterprise Manager)
	How to configure an Execute SQL task to drop and re-create a destination table (Enterprise Manager)
	How to configure workflow in the Execute SQL task (Enterprise Manager)
	How to save the DTS package to a SQL Server msdb table (Enterprise Manager)
	How to access a DTS package template (Enterprise Manager)
	How to create and save a DTS package template (Enterprise Manager)

	DTS Package Elements
	How to create a Transform Data task (Enterprise Manager)
	How to configure the connections for a Transform Data task (Enterprise Manager)
	How to configure a new transformation for a Transform Data task (Enterprise Manager)
	How to activate the multiphase data pump feature (Enterprise Manager)
	How to add a multiphase data pump transformation function using an ActiveX script (Enterprise Manager)
	How to call a COM object that customizes one or more data pump phases (Enterprise Manager)
	How to enable the Transform Data task fast load options (Enterprise Manager)
	How to configure the fast load batch options (Enterprise Manager)
	How to configure the data pump exception files (Enterprise Manager)
	How to add a DTS task to a DTS package (Enterprise Manager)
	How to add the Bulk Insert task to a DTS package (Enterprise Manager)
	How to add the Execute SQL task to a DTS package (Enterprise Manager)
	How to execute a stored procedure with an input parameter (Enterprise Manager)
	How to save row values into global variables (Enterprise Manager)
	How to retrieve the row value data (Enterprise Manager)
	How to save an entire rowset into a global variable (Enterprise Manager)
	How to retrieve rowset data stored in a global variable (Enterprise Manager)
	How to send a message with the Message Queue task (Enterprise Manager)
	How to receive a string message with the Message Queue task (Enterprise Manager)
	How to receive a Data File Message with the Message Queue task (Enterprise Manager)
	How to receive a global variables message with the Message Queue task (Enterprise Manager)
	How to configure the Ask For Facts task (Enterprise Manager)
	How to configure the Wait For Trigger task (Enterprise Manager)
	How to create and configure Add New Employees (Enterprise Manager)
	How to configure the New Employee task (Enterprise Manager)
	How to configure the Transform Data task for Global Variable Messages (Enterprise Manager)
	How to configure the Log Bad Update task (Enterprise Manager)
	How to configure one Loop task (Enterprise Manager)
	How to create and configure the Load Expenses package (Enterprise Manager)
	How to configure the Spreadsheet Wait task (Enterprise Manager)
	How to configure the Delete Raw Data task (Enterprise Manager)
	How to configure the Load Raw Data task (Enterprise Manager)
	How to configure the Load Filtered Data task (Enterprise Manager)
	How to configure the Failed Expense Load (or Failed XLS Load) task (Enterprise Manager)
	How to create and configure three Loop tasks (Enterprise Manager)
	How to convert the format of a Date Time String transformation (Enterprise Manager)
	How to convert a string to lowercase characters (Enterprise Manager)
	How to convert a string to uppercase characters (Enterprise Manager)
	How to perform a Middle of String transformation (Enterprise Manager)
	How to perform a Trim String transformation (Enterprise Manager)
	How to perform a Read File transformation (Enterprise Manager)
	How to perform a Write File transformation (Enterprise Manager)
	How to create a connection (Enterprise Manager)
	How to create a data link with run-time resolution (Enterprise Manager)

	DTS Package Management
	How to create a DTS package using DTS Designer (Enterprise Manager)
	How to create a DTS package using the DTS Import/Export Wizard (Enterprise Manager)
	How to edit a DTS package saved to SQL Server or Meta Data Services (Enterprise Manager)
	How to edit a DTS package saved to a structured storage file (Enterprise Manager)
	How to delete a DTS package (Enterprise Manager)
	How to execute a DTS package from SQL Server Enterprise Manager (Enterprise Manager)
	How to execute a DTS package from DTS Designer (Enterprise Manager)
	How to execute a DTS package from the DTS Import/Export Wizard (Enterprise Manager)
	How to execute a DTS package using the DTS Run utility (Command Prompt)
	How to execute a DTS package using dtsrun (Command Prompt)
	How to save a DTS package to SQL Server (Enterprise Manager)
	How to open a DTS package saved to SQL Server (Enterprise Manager)
	How to save a DTS package to Meta Data Services (Enterprise Manager)
	How to open a DTS package saved to Meta Data Services (Enterprise Manager)
	How to save a DTS package to a structured storage file (Enterprise Manager)
	How to open a DTS package saved to a structured storage file (Enterprise Manager)
	How to schedule a DTS package using the Schedule Package option (Enterprise Manager)
	How to schedule a DTS package using SQL Server Agent (Enterprise Manager)
	How to view or modify DTS package properties (Enterprise Manager)
	How to use Disconnected Edit to modify DTS package properties (Enterprise Manager)
	How to save a DTS package to a Visual Basic file (Enterprise Manager)
	How To View Package Logs (Enterprise Manager)
	How to Enable Package Logging (Enterprise Manager)
	How to set a DTS package password (Enterprise Manager)
	How to modify the persisting of authentication information (Enterprise Manager)
	How to select the Turn on just-in-time debugging option (Enterprise Manager)
	How to add ActiveX workflow scripts in DTS Designer (Enterprise Manager)
	How to execute a single package step in DTS Designer (Enterprise Manager)

	Transact-SQL
	Administering SQL Server
	Backing Up and Restoring Databases
	How to create a database backup (Transact-SQL)
	How to restore a database backup (Transact-SQL)
	How to restart an interrupted backup operation (Transact-SQL)
	How to restart an interrupted restore operation (Transact-SQL)
	How to create a transaction log backup (Transact-SQL)
	How to backup the transaction log when the database is damaged (Transact-SQL)
	How to apply a transaction log backup (Transact-SQL)
	How to create a differential database backup (Transact-SQL)
	How to restore a differential database backup (Transact-SQL)
	How to recover a database without restoring (Transact-SQL)
	How to restore to the point of failure (Transact-SQL)
	How to set up, maintain, and bring online a standby server (Transact-SQL)
	How to restore to a point in time (Transact-SQL)
	How to restore the master database (Transact-SQL)
	How to back up files and filegroups (Transact-SQL)
	How to restore files and filegroups (Transact-SQL)
	How to restore files and filegroups over existing files (Transact-SQL)
	How to restore files to a new location (Transact-SQL)
	How to restore a database with a new name (Transact-SQL)

	Managing Servers
	How to set up a remote server to allow the use of remote stored procedures (Transact-SQL)
	How to disable a remote server setup (Transact-SQL)
	How to set up and perform a log shipping role change (Transact-SQL)
	How to set up a Log Shipping Monitor (Transact-SQL)
	How to remove a log shipping pair from the Log Shipping Monitor (Transact-SQL)

	Automating Administrative Tasks
	How to create a job (Transact-SQL)
	How to create a master SQL Server Agent job (Transact-SQL)
	How to modify a master SQL Server Agent job (Transact-SQL)
	How to create an operator (Transact-SQL)
	How to modify an operator (Transact-SQL)

	Monitoring Server Performance and Activity
	How to create a trace (Transact-SQL)
	How to set a trace filter (Transact-SQL)
	How to modify an existing trace (Transact-SQL)
	How to view a saved trace (Transact-SQL)
	How to view filter information (Transact-SQL)
	How to delete a trace (Transact-SQL)

	Integrating SQL Server with Other Tools
	How to create an OLE Automation object (Transact-SQL)
	How to debug a custom OLE Automation server (Transact-SQL)
	How to use SQL Mail (Transact-SQL)

	Replication
	Replication Types
	How to set row- or column-level tracking for an article (Transact-SQL)
	How to choose a resolver (Transact-SQL)

	Implementing Replication (Transact-SQL)
	How to Configure Publishing and Distribution (Transact-SQL)
	How to Modify Publisher and Distributor Properties (Transact-SQL)
	How To Disable Publishing and Distribution (Transact-SQL)
	How to Create Publications and Define Articles (Transact-SQL)
	How to Modify Publications and Articles (Transact-SQL)
	How to Delete Publications and Articles (Transact-SQL)
	How to Create a Push Subscription (Transact-SQL)
	How to Modify a Push Subscription (Transact-SQL)
	How to Delete a Push Subscription (Transact-SQL)
	How to Create a Pull Subscription (Transact-SQL)
	How to View or Modify Pull or Anonymous Subscriptions (Transact-SQL)
	How to Delete a Pull Subscription (Transact-SQL)
	How to Create an Anonymous Subscription (Transact-SQL)
	How to Delete an Anonymous Subscription (Transact-SQL)
	How to Browse and Copy Snapshot Files (Transact-SQL)
	How to Apply Schema Changes on Publication Databases (Transact-SQL)
	How to Publish Data Over the Internet (Transact-SQL)

	Replication Options (Transact-SQL)
	How to validate Subscriber information (Transact-SQL)

	Administering and Monitoring Replication (Transact-SQL)
	How to create a replication agent profile (Transact-SQL)

	Replication Security (Transact-SQL)
	How to add or change a password on a Distributor
	To grant or revoke access to a publication

	OLE DB
	Processing Results (OLE DB)
	Execute stored procedure (using ODBC CALL syntax) and process return codes and output parameters (OLE DB)
	Execute stored procedure (using RPC syntax) and process return codes and output parameters (OLE DB)
	Execute user-defined function and process return code (OLE DB)
	How to fetch rows from a result set (OLE DB)

	Processing Large Data
	How to set large data (OLE DB)

	Enumerating OLE DB Data Sources
	How to enumerate OLE DB data sources (OLE DB)

	Bulk-Copying Rowsets
	How to bulk copy data using IRowsetFastLoad (OLE DB)

	Obtaining a FAST_FORWARD cursor
	How to obtain FAST_FORWARD cursor

	Using Bookmarks
	How to retrieve rows using bookmarks (OLE DB)

	Fetching Columns Using IRow::GetColumns (or IRow::Open) and ISequentialStream
	Fetching Columns Using IRow::GetColumns (OLE DB)
	Setting XML as a Command Using ICommandStream and Retrieving the Results as an XML Document

	ODBC
	Configuring the SQL Server ODBC Driver (ODBC)
	How to add a data source (ODBC)
	How to delete a data source (ODBC)
	How to upgrade the catalog stored procedures

	Connecting to SQL Server (ODBC)
	How to allocate handles and connect to SQL Server (ODBC)

	Executing Queries (ODBC)
	How to use a statement (ODBC)
	How to set cursor options (ODBC)
	How to execute a statement directly (ODBC)
	How to prepare and execute a statement (ODBC)

	Processing Results (ODBC)
	How to retrieve result set information (ODBC)
	How to process results (ODBC)

	Using Cursors (ODBC)
	How to use cursors (ODBC)
	How to use rowset binding (ODBC)
	How to fetch and update rowsets (ODBC)

	Performing Transactions (ODBC)
	How to use Microsoft Distributed Transaction Coordinator (ODBC)

	Running Stored Procedures (ODBC)
	How to call stored procedures (ODBC)
	How to process return codes and output parameters (ODBC)

	Managing text and image Columns (ODBC)
	How to use data-at-execution parameters (ODBC)
	How to use data-at-execution columns (ODBC)

	Profiling ODBC Driver Performance (ODBC)
	How to profile driver performance data (ODBC)
	How to log long-running queries (ODBC)

	How to process ODBC errors (ODBC)
	How to bulk copy with the SQL Server ODBC driver (ODBC)
	How to bulk copy without a format file (ODBC)
	How to bulk copy a SELECT result set (ODBC)
	How to create a bulk copy format file (ODBC)
	How to bulk copy by using a format file (ODBC)
	How to bulk copy data from program variables (ODBC)

	SQL Server 2000 (64-bit) Books Online
	SQL Server Home Page
	SQL Server Home Page
	Introducing SQL Server 2000 (64-bit)
	About This Release (64-bit)
	Editions of SQL Server 2000 (64-bit)
	Differences Between 64-bit and 32-bit Releases (64-bit)
	Sending Feedback (64-bit)
	Additional Resources (64-bit)
	Copyright Disclaimer (64-bit)

	Preparing to Install SQL Server 2000 (64-bit)
	Hardware and Software Requirements (64-bit)
	Product Specifications (64-bit)
	Features Supported by the Editions of SQL Server 2000 (64-bit)
	Maximum Capacity Specifications (64-bit)
	Configuration Option Specifications (64-bit)
	Memory Used by SQL Server Objects Specifications (64-bit)

	Working with Named and Multiple Instances of SQL Server (64-bit)
	Network Protocols for Named Instances (64-bit)

	File Paths for SQL Server 2000 (64-bit)
	Creating Windows Service Accounts (64-bit)
	Features of SQL Server 2000 (64-bit)
	SQL Server Management Tools (64-bit)
	Server Components (64-bit)
	Analysis Services (64-bit)
	Books Online (64-bit)

	Installing SQL Server 2000 (64-bit)
	Overview (64-bit)
	Starting Setup (64-bit)
	Specifying SQL Server Features (64-bit)
	Naming Instances (64-bit)
	Specifying Service Accounts (64-bit)
	Defining the Authentication Mode (64-bit)
	Specifying the Collation Setting (64-bit)
	Choosing the Licensing Mode (64-bit)

	Failover Clustering (64-bit)
	Failover Clustering Support (64-bit)
	Handling a Failover Cluster Installation (64-bit)
	Before Installing Failover Clustering (64-bit)

	Creating a Failover Cluster (64-bit)
	Failover Clustering Example (64-bit)

	Failover Clustering Dependencies (64-bit)
	Maintaining a Failover Cluster (64-bit)
	Using SQL Server Tools with Failover Clustering (64-bit)
	Failover Cluster Troubleshooting (64-bit)
	Upgrading to a SQL Server 2000 Failover Cluster (64-bit)

	Installing SQL Server from the Command Line (64-bit)
	SQL Server 2000 (64-bit) Setup Command
	Running Setup to Install SQL Server 2000 (64-bit)
	Specifying Setup Properties with an .ini File (64-bit)
	Reinstalling SQL Server 2000 (64-bit)
	Cluster Command-Line Support (64-bit)

	Maintaining a SQL Server Installation (64-bit)
	Adding or Removing SQL Server Features (64-bit)
	Removing a SQL Server Installation (64-bit)
	Repairing a SQL Server Installation (64-bit)
	Viewing Setup Log Files (64-bit)
	Upgrading to SQL Server 2000 (64-bit)

	Configuring SQL Server 2000 (64-bit)
	Using the Start Menu (64-bit)
	System and Sample Databases (64-bit)
	Locating Folders and Files (64-bit)
	Changing Passwords and User Accounts (64-bit)
	Renaming a Server (64-bit)
	Distributing Disk Images of an Installation (64-bit)
	Configuring Network Libraries (64-bit)
	Setting Configuration Options for the Affinity Mask (64-bit)
	affinity mask Option (64-bit)
	affinity64 mask Option (64-bit)

	How To (64-bit)
	How to install SQL Server 2000 (non-clustered installations only) (64-bit)
	How to change SQL Server services login account information (64-bit)
	How to change SQL Server services login account information remotely (64-bit)
	How to set up SQL Server from a Command Prompt (64-bit)
	How to add or remove features in an instance of SQL Server 2000 (64-bit)
	How to access SQL Server Books Online (64-bit)
	How to create a case-sensitive instance of SQL Server 2000 (64-bit)
	How to remove SQL Server 2000 (64-bit)
	How To Create or Maintain a Failover Cluster (64-bit)
	How to create a new failover cluster (Setup) (64-bit)
	How to create a one-node failover cluster (Setup) (64-bit)
	How to add a node to an existing virtual server (Setup) (64-bit)
	How to remove a node from an existing failover cluster (Setup) (64-bit)
	How to remove a failover clustered instance (Setup) (64-bit)
	How to recover from failover cluster failure in Scenario 1 (64-bit)
	How to recover from failover cluster failure in Scenario 2 (64-bit)

	User Interface Reference (64-bit)
	Setup Mode (64-bit)
	Registration Information (64-bit)
	Feature Selection (64-bit)
	Instance Name (64-bit)
	Service Account (64-bit)
	Authentication Mode (64-bit)
	Collation Settings (64-bit)
	Licensing Mode (64-bit)
	Backward Compatibility (64-bit)
	Error Reporting (64-bit)
	Virtual Server Name (64-bit)
	Cluster Group Selection (64-bit)
	Failover Clustering (64-bit)
	Configure Nodes (64-bit)
	Remote Account Information (64-bit)
	Installation Folders (64-bit)

	SQL Server 2000 Notification Services Books Online
	Notification Services Home Page
	Notification Services Home Page
	 Getting Started with Notification Services Books Online
	 Documentation Conventions
	 Displaying Information in Notification Services Books Online
	 Using Notification Services Books Online
	 Changing the Way Topics Appear
	 Finding a Topic
	 Using the Search Tab

	 Using Accessibility Features in Notification Services Books Online
	 Accessibility for People with Disabilities
	 Additional Notification Services Resources
	 Microsoft SQL Server Notification Services Copyright and Disclaimer

	 Introducing SQL Server Notification Services
	 Business Scenarios
	 What Is Notification Services?
	 What Does Notification Services Do?
	 How Does Notification Services Work?
	 Why Use Notification Services?

	 Notification Services Architecture
	 Subscription Management Architecture
	 Event Collection Architecture
	 Subscription Processing Architecture
	 Notification Formatting and Delivery Architecture

	 Notification Services Programming Framework
	 Deployment Architecture
	 System Architecture
	 Instances and Versions
	 Application Deployment
	 Administration

	 Security, Reliability, Scalability, and Availability
	 Integration with Other Technologies

	 Installing Notification Services
	 Editions of Notification Services
	 Preparing to Install Notification Services
	 Hardware and Software Requirements
	 Permissions Required for Installation
	 Files and File Locations
	 Multiple Version Support

	 Installing Components
	 Installing All Components
	 Installing Engine Components
	 Installing Client Components
	 Installing Database Components
	 Installing Database Components on Additional Instances of SQL Server
	 Installing Documentation
	 Installing Sample Applications

	 Running Setup from the Command Line
	 Reinstalling Notification Services
	 Removing Notification Services
	 Setup Pages
	 Customer Information Page
	 Custom Setup Page
	 Database Components Setup Page
	 SQL Server Login Information Page
	 Change Current Destination Folder Page
	 Program Maintenance Page

	 Walkthrough: Creating a Stock Notification Application
	 Before You Start: Installing the Walkthrough
	 Task 1: Designing the Application
	 Task 2: Performing an Initial Build of the Application
	 Task 3: Adding the Event Class
	 Task 4: Adding the Event-Driven Subscription Class
	 Task 5: Adding a Notification Generation Rule
	 Task 6: Adding the Notification Class
	 Task 7: Configuring the Content Formatter
	 Summary: Tasks 1 - 7
	 Task 8: Adding the File System Watcher Event Provider
	 Task 9: Adding the Standard SMTP Delivery Protocol
	 Task 10: Adding the Custom HttpLogger Delivery Protocol
	 Task 11: Designing the Scheduled Subscription
	 Task 12: Adding the Event Chronicle Table
	 Task 13: Adding the Scheduled Subscription Class
	 Task 14: Reviewing the Subscription Management Application
	 Walkthrough Summary

	 Building Notification Services Applications
	 Introducing Notification Services Programming
	 Notification Services System
	 Notification Services Components
	 Notification Generation Process
	 Batching in the Notification Services System

	 Developer Responsibilities
	 Planning for Notification Services Development
	 Common System Configurations

	 Application Creation
	 Notification Services Programming Interfaces
	 COM Interop with Notification Services

	 Application Settings
	 Defining Application Parameters
	 Defining Parameters in the ADF
	 Inheriting Configuration File Parameters
	 Defining Parameters in Both the ADF and the Configuration File

	 Maintaining Version Information
	 Maintaining History Information
	 Defining Application Database Information
	 Defining a <NamedFileGroup> Node
	 Defining a <LogFile> Node
	 Defining a <DefaultFileGroup> Element
	 Defining a <CollationName> Element

	 Specifying Generator Settings
	 Generator Settings Considerations
	 Populating the <Generator> Node

	 Specifying Distributor Settings
	 Distributor Settings Performance Considerations
	 Populating a <Distributor> Node

	 Defining Application Execution Settings
	 Defining the <QuantumDuration> Element
	 Defining the <ChronicleQuantumLimit> Element
	 Chronicle Quantum Limit Illustration

	 Defining the <SubscriptionQuantumLimit> Element
	 Subscription Quantum Limit Illustration

	 Defining the <ProcessEventsInOrder> Element
	 Quantum Sequencing Illustration
	 Sub-Quantum Sequencing Illustration

	 Defining the <PerformanceQueryInterval> Element
	 Defining the <EventThrottle> Element
	 Defining the <SubscriptionThrottle> Element
	 Defining the <NotificationThrottle> Element
	 Defining the <DistributorLogging> Node
	 Defining the <Vacuum> Node
	 Running the Vacuumer

	 Events
	 Collecting Events with an Event Provider
	 Implementing Event Providers
	 Event Collection Models

	 Event Chronicles
	 Event Chronicle Tables
	 Event Chronicle Rules
	 Example: Providing Data to Scheduled Subscriptions
	 Example: Comparing Event Data to Prevent Duplicate Notifications
	 Example: Using Event Data High Values to Prevent Duplicate Notifications

	 Defining an Event Class
	 Naming the Event Class
	 Defining the Event Fields
	 Designating the Filegroup
	 Creating the Indexing Statement
	 Defining Chronicle Rules
	 Defining Chronicle Tables

	 Defining an Event Provider
	 Naming the Event Provider
	 Documenting the Event Provider Class Name
	 Documenting the Event Provider Assembly Name
	 Identifying the Notification Services System Computer
	 Defining the Event Provider Schedule
	 Defining the Event Provider Arguments

	 Standard Event Providers
	File System Watcher Event Provider
	Defining the File System Watcher Event Provider

	 SQL Server Event Provider
	 Defining the SQL Server Event Provider

	 Subscriptions
	 Collecting Subscription-Related Information
	 Subscription Models
	 Subscription Fields
	 Subscription Rules
	 Using Notification Generation Rules
	 Using Notification Functions
	 Writing Efficient Notification Generation Queries

	 Subscription Chronicles
	 Example: Using a Subscription Chronicle Table

	 Defining a Subscription Class
	 Naming the Subscription Class
	 Defining the Subscription Fields
	 Designating the Filegroup
	 Creating the Indexing Statement
	 Defining Event Rules
	 Defining Scheduled Rules
	 Defining Chronicle Tables

	 Notifications
	 Generating Notifications
	 Formatting Notifications
	 Formatting Digest Notifications
	 Formatting Multicast Notifications
	 Content Formatting

	 Distributing Notifications
	 Specifying Protocol Information
	 Example: Stock Update Application

	 Digest Delivery
	 Multicast Delivery
	 Handling Delivery Failures
	 Retry Logic
	 Managing Event Log Entries
	 Handling Prolonged Failure

	 Defining a Notification Class
	 Naming the Notification Class
	 Defining the Notification Fields
	 Designating the Filegroup
	 Documenting the Content Formatter
	 Setting the Digest Delivery Option
	 Setting the Multicast Delivery Option
	 Specifying a Notification Batch Size
	 Documenting the Delivery Protocols
	 Specifying the Notification Expiration Age

	 XSLT Content Formatter
	 Creating the XSLT File
	 XSLT File Location
	 Defining the XSLT Content Formatter

	 Standard Delivery Protocols
	 File Delivery Protocol
	 SMTP Delivery Protocol

	 Instance and Application APIs
	 Notification Services Instance Classes
	 Obtaining a Reference to a Notification Services Instance
	 Verifying Instance Properties
	 Getting and Setting Instance Information

	 Notification Services Application Classes
	 Obtaining a Reference to a Notification Services Application
	 Verifying Application Properties
	 Getting Application Information

	 Developing Subscription Management Applications
	 Subscription Management Application Security
	 Managing Subscribers
	 Creating a Subscriber Object
	 Adding a Subscriber Record
	 Updating a Subscriber Record
	 Deleting a Subscriber Record
	 Deleting Related Subscription Information
	 Getting a Subscriber's Devices and Subscriptions

	 Managing Subscriber Devices
	 Creating a SubscriberDevice Object
	 Adding a Subscriber Device
	 Updating a Subscriber Device
	 Deleting a Subscriber Device
	 Populating a Delivery Channel List

	 Managing Subscriptions
	 Creating a Subscription Object
	 Adding a Subscription
	 Updating a Subscription
	 Deleting a Subscription
	 Getting Subscription Field Information
	 Populating a Subscriber Locale List
	 Populating a Time Zone List

	 Developing Custom Notification Services Components
	 Developing a Custom Event Provider
	 Independent Event Providers
	 Hosted Event Providers
	 Using the IEventProvider and IScheduledEventProvider Interfaces
	 Implementing the Initialize Method
	 Implementing the Run Method
	 Implementing the Terminate Method

	 Implementing an Event Provider Using the Event and EventCollector Classes
	 Creating an Event Object
	 Creating a Disconnected Event Object

	 Creating an EventCollector Object
	 Using Event and EventCollector Objects to Add Events
	 Getting Event Field Information

	 Using the EventLoader Class
	 Creating an EventLoader Object
	 Using an EventLoader Object to Add Events

	 Using the Event Collection Stored Procedures
	 Using the Event Collection Stored Procedures to Add Events

	 Developing a Custom Content Formatter
	 Using the IContentFormatter Interface
	 Implementing the Initialize Method
	 Implementing the FormatContent Method
	 Implementing the Close Method

	 Developing a Custom Delivery Protocol
	 Using the IDeliveryProtocol Interface
	 Implementing the Initialize Method
	 Implementing the DeliverNotification Method
	 Implementing the Flush Method
	 Implementing the Close Method

	 Using the IHttpProtocolProvider Interface
	 IHttpProtocolProvider Delivery Protocol Configuration File Settings
	 Implementing the Initialize Method
	 Implementing the FormatEnvelope Method
	 Implementing the ProcessResponse Method
	 Implementing the Close Method

	 Debugging a Custom Component

	 Notification Services Programming Samples
	 Programming Sample Structure
	 Programming Sample Requirements
	 Required Accounts and Permissions
	 Subscription Management Application Account
	 NS$instance_name Service Account
	 Visual Studio .NET Build Command (NSControl Utility) Account
	 User Accounts

	 Configuring Visual Studio .NET

	 Setting Up and Removing Programming Samples
	 Changing Sample Reference Paths
	 Configuring the Subscribe Project for Debugging
	 Resolving Common Issues
	 Stock Sample
	 Flight Sample
	 Weather Sample
	 Realtor Sample

	 Deploying and Administering Notification Services
	 Planning a Notification Services System
	 Hardware Configurations
	 Single-Server Configurations
	 Remote Database Server Configuration
	 Scale-Out Configurations
	 High-Availability Configurations

	 Notification Services Considerations
	 Database Considerations
	 Database Resource Planning
	 Subscription Management Application Considerations

	 Configuring and Deploying Instances
	 Creating a Configuration File
	 Specifying File Version and History
	 Specifying the Instance Name
	 Specifying the Database System Name
	 Defining the Instance Database
	 Configuring Applications
	 Configuring Protocols
	 Configuring Delivery Channels
	 Configuring Argument Encryption
	 Using Parameters in the Configuration File

	 Deploying an Instance
	 Deployment Overview
	 Creating a Deployment Directory Structure
	 Registering and Unregistering an Instance
	 Creating Instance and Application Databases
	 Configuring Security for an Instance
	 Enabling and Disabling an Instance
	 Starting and Stopping an Instance

	 Notification Services Deployment Scenarios
	 Windows Authentication Deployment Scenarios
	 Single-Server Deployment (Windows Authentication)
	 Remote Database Server Deployment (Windows Authentication)
	 Scale-Out Deployment (Windows Authentication)
	 Clustered Single Server Deployment (Windows Authentication)

	 SQL Server Authentication Deployment Scenarios
	 Single-Server Deployment (SQL Server Authentication)
	 Remote Database Server Deployment (SQL Server Authentication)
	 Scale-Out Deployment (SQL Server Authentication)
	 Clustered Single Server (SQL Server Authentication)

	 Subscription Management Application Deployment Scenarios
	 Deploying a Subscription Management Application on the Database Server (Windows Authentication)
	 Deploying a Subscription Management Application on a Remote Server (Windows Authentication)
	 Deploying a Subscription Management Application on the Database Server (SQL Server Authentication)
	 Deploying a Subscription Management Application on a Remote Server (SQL Server Authentication)

	 Providing Access to the Notification Services Assembly and Localized Resource Files

	 Managing Instances and Applications
	 Updating Instances and Applications
	 Updating Instance Properties
	 Adding an Application to an Instance
	 Updating an Application
	 Removing an Application from an Instance
	 Enabling and Disabling an Instance, Application, or Component
	 Re-Registering an Instance
	 Stopping and Restarting a Deployed Instance
	 Deleting an Instance

	 Removing Obsolete Data
	 Verifying Vacuuming
	 Modifying the Vacuuming Schedule
	 Running Vacuuming Manually

	 Backing Up and Recovering Notification Services
	 Planning for Recovery
	 Backing Up Databases and Other Files
	 Recovering Notification Services

	 Managing Services
	 Installing an NS$instance_name Service
	 Configuring an NS$instance_name Service
	 Enabling and Disabling Service Components
	 Starting and Stopping a Service

	 Managing Security
	 User Accounts Required by Notification Services
	 NS$instance_name Service Account Security
	 SQL Server Permissions for NS$instance_name
	 Configuring SQL Server Access for Windows Authentication
	 Configuring SQL Server Access for SQL Server Authentication
	 Granting Database Permissions

	 Administration Permissions
	 Subscription Management Application Permissions

	 File and Folder Security
	 Notification Services Database Roles
	 Security Recommended Practices

	 Performance Monitoring and Reporting
	 Choosing Monitoring Tools
	 Tips for Evaluating Performance
	 Notification Services Performance Objects
	 NS$instance_name: Delivery Channels Object
	 NS$instance_name: Distributors Object
	 NS$instance_name: Event Providers Object
	 NS$instance_name: Events Object
	 NS$instance_name: Generator Object
	 NS$instance_name: Notifications Object
	 NS$instance_name: Subscribers Object
	 NS$instance_name: Subscriptions Object
	 NS$instance_name: Vacuumer Object

	 Using Performance Logs and Alerts
	 Notification Services Performance Reports
	 Overview of Performance Reports
	 Using Reports to Analyze Performance

	 Programming Reference
	 Application Definition File Reference
	 Reserved Characters
	 The XML Declaration
	 <Action> Element (<ChronicleRule>)
	 <Action> Element (<EventRule>)
	 <Action> Element (<ScheduledRule>)
	 <ActionTimeout> Element (<ChronicleRule>)
	 <ActionTimeout> Element (<EventRule>)
	 <ActionTimeout> Element (<ScheduledRule>)
	 <Application> Node
	 <ApplicationExecutionSettings> Node
	 <Argument> Node (/ContentFormatter/Arguments)
	 <Argument> Node (/HostedProvider/Arguments)
	 <Arguments> Node (<ContentFormatter>)
	 <Arguments> Node (<HostedProvider>)
	 <AssemblyName> Element (<ContentFormatter>)
	 <AssemblyName> Element (<HostedProvider>)
	 <Build> Element
	 <Chronicle> Node (/EventClass/Chronicles)
	 <Chronicle> Node (/SubscriptionClass/Chronicles)
	 <ChronicleName> Element (/EventClass/Chronicles/Chronicle)
	 <ChronicleName> Element (/SubscriptionClass/Chronicles/Chronicle)
	 <ChronicleQuantumLimit> Element
	 <ChronicleRule> Node
	 <Chronicles> Node (<EventClass>)
	 <Chronicles> Node (<SubscriptionClass>)
	 <ClassName> Element (<ContentFormatter>)
	 <ClassName> Element (<HostedProvider>)
	 <CollationName> Element
	 <ComputedField> Node
	 <ComputedFields> Node
	 <ContentFormatter> Node
	 <CreationDate> Element
	 <CreationTime> Element
	 <Database> Node
	 <DefaultFileGroup> Element
	 <DigestDelivery> Element
	 <DigestGrouping> Element (<ComputedField>)
	 <DigestGrouping> Element (<Field>)
	 <Distributor> Node
	 <DistributorLogging> Node
	 <Distributors> Node
	 <Duration> Element
	 <EventClass> Node
	 <EventClasses> Node
	 <EventClassName> Element (<EventClass>)
	 <EventClassName> Element (<EventRule>)
	 <EventRule> Node
	 <EventRules> Node
	 <EventThrottle> Element
	 <ExpirationAge> Element
	 <FailureEventLogInterval> Element
	 <FailuresBeforeAbort> Element
	 <FailuresBeforeLoggingEvent> Element
	 <Field> Node (/EventClass/Schema)
	 <Field> Node (/Protocol/Fields)
	 <Field> Node (/Schema/Fields)
	 <Field> Node (/SubscriptionClass/Schema)
	 <FieldName> Element (/EventClass/Schema/Field)
	 <FieldName> Element (/NotificationClass/Schema/ComputedFields/ComputedField)
	 <FieldName> Element (/NotificationClass/Schema/Fields/Field)
	 <FieldName> Element (/Protocol/Fields/Field)
	 <FieldName> Element (/SubscriptionClass/Schema/Field)
	 <FieldReference> Element
	 <Fields> Node (<Protocol>)
	 <Fields> Node (<Schema>)
	 <FieldType> Element (/EventClass/Schema/Field)
	 <FieldType> Element (/NotificationClass/Schema/Fields/Field)
	 <FieldType> Element (/SubscriptionClass/Schema/Field)
	 <FieldTypeMods> Element (/EventClass/Schema/Field)
	 <FieldTypeMods> Element (/SubscriptionClass/Schema/Field)
	 <FileGroup> Element (<EventClass>)
	 <FileGroup> Element (<NotificationClass>)
	 <FileGroup> Element (<SubscriptionClass>)
	 <FileGroupName> Element
	 <FileName> Element (<FileSpec>)
	 <FileName> Element (<LogFile>)
	 <FileSpec> Node
	 <Generator> Node
	 <GrowthIncrement> Element (<FileSpec>)
	 <GrowthIncrement> Element (<LogFile>)
	 <History> Node
	 <HostedProvider> Node
	 <IndexSqlSchema> Node (<EventClass>)
	 <IndexSqlSchema> Node (<SubscriptionClass>)
	 <Interval> Element
	 <LastModifiedDate> Element
	 <LastModifiedTime> Element
	 <LogBeforeDeliveryAttempts> Element
	 <LogFile> Node
	 <LogicalName> Element (<FileSpec>)
	 <LogicalName> Element (<LogFile>)
	 <LogNotificationText> Element
	 <LogStatusInfo> Element
	 <Major> Element
	 <MaxSize> Element (<FileSpec>)
	 <MaxSize> Element (<LogFile>)
	 <Minor> Element
	 <MulticastDelivery> Element
	 <MulticastRecipientLimit> Element
	 <Name> Element (/ContentFormatter/Arguments/Argument)
	 <Name> Element (/HostedProvider/Arguments/Argument)
	 <Name> Element (<Parameter>)
	 <NamedFileGroup> Node
	 <NonHostedProvider> Node
	 <NotificationBatchSize> Element
	 <NotificationClass> Node
	 <NotificationClasses> Node
	 <NotificationClassName> Element
	 <NotificationThrottle> Element
	 <Parameter> Node
	 <ParameterDefaults> Node
	 <PerformanceQueryInterval> Element
	 <ProcessEventsInOrder> Element
	 <Protocol> Node
	 <ProtocolExecutionSettings> Node
	 <ProtocolName> Element
	 <Protocols> Node
	 <ProviderName> Element (<HostedProvider>)
	 <ProviderName> Element (<NonHostedProvider>)
	 <Providers> Node
	 <QuantumDuration> Element (<ApplicationExecutionSettings>)
	 <QuantumDuration> Element (<Distributor>)
	 <RetentionAge> Element
	 <RetryDelay> Element
	 <RetrySchedule> Node
	 <Revision> Element
	 <RuleName> Element (<ChronicleRule>)
	 <RuleName> Element (<EventRule>)
	 <RuleName> Element (<ScheduledRule>)
	 <Schedule> Node (<HostedProvider>)
	 <Schedule> Node (<VacuumSchedule>)
	 <ScheduledRule> Node
	 <ScheduledRules> Node
	 <Schema> Node (<EventClass>)
	 <Schema> Node (<NotificationClass>)
	 <Schema> Node (<SubscriptionClass>)
	 <Size> Element (<FileSpec>)
	 <Size> Element (<LogFile>)
	 <SqlExpression> Element (<ComputedField>)
	 <SqlExpression> Element (/Protocol/Fields/Field)
	 <SqlSchema> Node (/EventClass/Chronicles/Chronicle)
	 <SqlSchema> Node (/SubscriptionClass/Chronicles/Chronicle)
	 <SqlStatement> Element (/EventClass/Chronicles/Chronicle/SqlSchema)
	 <SqlStatement> Element (/EventClass/IndexSqlSchema)
	 <SqlStatement> Element (/SubscriptionClass/Chronicles/Chronicle/SqlSchema)
	 <SqlStatement> Element (/SubscriptionClass/IndexSqlSchema)
	 <StartTime> Element (/HostedProvider/Schedule)
	 <StartTime> Element (/VacuumSchedule/Schedule)
	 <SubscriptionClass> Node
	 <SubscriptionClasses> Node
	 <SubscriptionClassName> Element
	 <SubscriptionThrottle> Element
	 <SubscriptionQuantumLimit> Element
	 <SystemName> Element (<Distributor>)
	 <SystemName> Element (<Generator>)
	 <SystemName> Element (<HostedProvider>)
	 <ThreadPoolSize> Element (<Distributor>)
	 <ThreadPoolSize> Element (<Generator>)
	 <Vacuum> Node
	 <VacuumSchedule> Node
	 <Value> Element (/ContentFormatter/Arguments/Argument)
	 <Value> Element (/HostedProvider/Arguments/Argument)
	 <Value> Element (<Parameter>)
	 <Version> Node
	 <WorkItemTimeout> Element

	 Configuration File Reference
	 Configuration File Rules
	 Configuration File Samples
	 Complete Configuration File
	 Minimal Configuration File

	 XML Declaration
	 <Application> Node
	 <ApplicationDefinitionFilePath> Element
	 <ApplicationName> Element
	 <Applications> Node
	 <Argument> Node
	 <Arguments> Node
	 <AssemblyName> Element
	 <BaseDirectoryPath> Element
	 <Build> Element
	 <ClassName> Element
	 <CollationName> Element
	 <CreationDate> Element
	 <CreationTime> Element
	 <Database> Node
	 <DefaultFileGroup> Element
	 <DeliveryChannel> Node
	 <DeliveryChannelName> Element
	 <DeliveryChannels> Node
	 <EncryptArguments> Element
	 <FileGroupName> Element
	 <FileName> Element (<FileSpec>)
	 <FileName> Element (<LogFile>)
	 <FileSpec> Node
	 <GrowthIncrement> Element (<FileSpec>)
	 <GrowthIncrement> Element (<LogFile>)
	 <History> Node
	 <InstanceName> Element
	 <LastModifiedDate> Element
	 <LastModifiedTime> Element
	 <LogFile> Node
	 <LogicalName> Element (<FileSpec>)
	 <LogicalName> Element (<LogFile>)
	 <Major> Element
	 <MaxSize> Element (<FileSpec>)
	 <MaxSize> Element (<LogFile>)
	 <Minor> Element
	 <Name> Element (/Application/Parameters/Parameter)
	 <Name> Element (/DeliveryChannel/Arguments/Argument)
	 <Name> Element (/ParameterDefaults/Parameter)
	 <NamedFileGroup> Node
	 <NotificationServicesInstance> Node
	 <Parameter> Node (/Application/Parameters)
	 <Parameter> Node (<ParameterDefaults>)
	 <ParameterDefaults> Node
	 <Parameters> Node
	 <Protocol> Node
	 <ProtocolName> Element (<DeliveryChannel>)
	 <ProtocolName> Element (<Protocol>)
	 <Protocols> Node
	 <Revision> Element
	 <Size> Element (<FileSpec>)
	 <Size> Element (<LogFile>)
	 <SqlServerSystem> Element
	 <Value> Element (/Application/Parameters/Parameter)
	 <Value> Element (/DeliveryChannel/Arguments/Argument)
	 <Value> Element (/ParameterDefaults/Parameter)
	 <Version> Node

	 Notification Services Object Model Reference
	 Microsoft.SqlServer.NotificationServices Namespace
	 ApplicationEnumeration Class
	 ApplicationEnumeration Members
	 ApplicationEnumeration Constructor
	 ApplicationEnumeration Constructor ()
	 ApplicationEnumeration Constructor (NSInstance)

	 ApplicationEnumeration Properties
	 ApplicationEnumeration.Item Property

	 ApplicationEnumeration Methods
	 ApplicationEnumeration.GetEnumerator Method
	 ApplicationEnumeration.Initialize Method

	 DeliveryChannel Class
	 DeliveryChannel Members
	 DeliveryChannel Properties
	 DeliveryChannel.DeliveryChannelName Property
	 DeliveryChannel.ProtocolName Property

	 DeliveryChannelEnumeration Class
	 DeliveryChannelEnumeration Members
	 DeliveryChannelEnumeration Constructor
	 DeliveryChannelEnumeration Constructor ()
	 DeliveryChannelEnumeration Constructor (NSInstance)

	 DeliveryChannelEnumeration Properties
	 DeliveryChannelEnumeration.Item Property

	 DeliveryChannelEnumeration Methods
	 DeliveryChannelEnumeration.GetEnumerator Method
	 DeliveryChannelEnumeration.Initialize Method

	 Event Class
	 Event Members
	 Event Constructor
	 Event Constructor ()
	 Event Constructor (NSApplication, String)

	 Event Properties
	 Event.FieldCount Property
	 Event.Item Property
	 Event.Item Property (String)
	 Event.Item Property (Int32)

	 Event Methods
	 Event.GetFieldName Method
	 Event.GetFieldOrdinal Method
	 Event.GetFieldValue Method
	 Event.Initialize Method
	 Event.SetFieldValue Method

	 EventClass Class
	 EventClass Members
	 EventClass Properties
	 EventClass.FieldCount Property
	 EventClass.EventClassName Property

	 EventClass Methods
	 EventClass.FieldName Method
	 EventClass.FieldOrdinal Method
	 EventClass.FieldType Method
	 EventClass.FieldTypeMods Method

	 EventClassEnumeration Class
	 EventClassEnumeration Members
	 EventClassEnumeration Constructor
	 EventClassEnumeration Constructor()
	 EventClassEnumeration Constructor (NSApplication)

	 EventClassEnumeration Properties
	 EventClassEnumeration.Count Property
	 EventClassEnumeration.Item Property

	 EventClassEnumeration Methods
	 EventClassEnumeration.GetEnumerator Method
	 EventClassEnumeration.Initialize Method

	 EventCollector Class
	 EventCollector Members
	 EventCollector Constructor
	 EventCollector Constructor ()
	 EventCollector Constructor (NSApplication, String)

	 EventCollector Methods
	 EventCollector.Abort Method
	 EventCollector.Commit Method
	 EventCollector.Dispose Method
	 EventCollector.Initialize Method
	 EventCollector.Write Method

	 EventLoader Class
	 EventLoader Members
	 EventLoader Constructor
	 EventLoader Constructor ()
	 EventLoader Constructor (NSApplication, String, String, String)

	 EventLoader Properties
	 EventLoader.EventSchema Property

	 EventLoader Methods
	 EventLoader.Dispose Method
	 EventLoader.Initialize Method
	 EventLoader.LoadXml Method
	 EventLoader.LoadXml Method (String)
	 EventLoader.LoadXml Method (Stream)

	 InstanceEnumeration Class
	 InstanceEnumeration Members
	 InstanceEnumeration Constructor
	 InstanceEnumeration Properties
	 InstanceEnumeration.Item Property

	 InstanceEnumeration Methods
	 InstanceEnumeration.GetEnumerator Method

	 NotificationHeaders Class
	 NotificationHeaders Members
	 NotificationHeaders Properties
	 NotificationHeaders.NotificationState Property
	 NotificationHeaders.ProtocolFields Property
	 NotificationHeaders.RecipientInfo Property

	 NotificationStatus Class
	 NotificationStatus Members
	 NotificationStatus Constructor
	 NotificationStatus Properties
	 NotificationStatus.NotificationState Property
	 NotificationStatus.NotificationText Property
	 NotificationStatus.StatusInfo Property
	 NotificationStatus.Succeeded Property
	 NotificationStatus.TimeStamp Property

	 NSApplication Class
	 NSApplication Members
	 NSApplication Constructor
	 NSApplication Constructor ()
	 NSApplication Constructor (NSInstance, String)

	 NSApplication Properties
	 NSApplication.ApplicationName Property
	 NSApplication.DatabaseName Property
	 NSApplication.Version Property

	 NSApplication Methods
	 NSApplication.Initialize Method
	 NSApplication.Verify Method

	 NSInstance Class
	 NSInstance Members
	 NSInstance Constructor
	 NSInstance Constructor ()
	 NSInstance Constructor (String)

	 NSInstance Properties
	 NSInstance.InstanceName Property
	 NSInstance.DatabaseName Property
	 NSInstance.SqlPassword Property
	 NSInstance.SqlUser Property
	 NSInstance.Version Property

	 NSInstance Methods
	 NSInstance.Initialize Method
	 NSInstance.Verify Method

	 NSInstanceDescription Class
	 NSInstanceDescription Members
	 NSInstanceDescription Properties
	 NSInstanceDescription.DBServerName Property
	 NSInstanceDescription.InstanceName Property
	 NSInstanceDescription.Version Property

	 RecipientInfo Class
	 RecipientInfo Members
	 RecipientInfo Properties
	 RecipientInfo.DeviceAddress Property
	 RecipientInfo.SubscriberId Property

	 Subscriber Class
	 Subscriber Members
	 Subscriber Constructor
	 Subscriber Constructor ()
	 Subscriber Constructor (NSInstance)

	 Subscriber Properties
	 Subscriber.Enabled Property
	 Subscriber.SubscriberId Property

	 Subscriber Methods
	 Subscriber.Add Method
	 Subscriber.Delete Method
	 Subscriber.DeleteSubscriptions Method
	 Subscriber.DeleteSubscriptions Method ()
	 Subscriber.DeleteSubscriptions Method (NSApplication)
	 Subscriber.DeleteSubscriptions Method (NSApplication, String)

	 Subscriber.GetSubscriptions Method
	 Subscriber.GetDevices Method
	 Subscriber.Initialize Method
	 Subscriber.Update Method

	 SubscriberDevice Class
	 SubscriberDevice Members
	 SubscriberDevice Constructor
	 SubscriberDevice Constructor ()
	 SubscriberDevice Constructor (NSInstance)

	 SubscriberDevice Properties
	 SubscriberDevice.DeliveryChannelName Property
	 SubscriberDevice.DeviceAddress Property
	 SubscriberDevice.DeviceName Property
	 SubscriberDevice.DeviceTypeName Property
	 SubscriberDevice.SubscriberId Property

	 SubscriberDevice Methods
	 SubscriberDevice.Add Method
	 SubscriberDevice.Delete Method
	 SubscriberDevice.Initialize Method
	 SubscriberDevice.Update Method

	 SubscriberDeviceEnumeration Class
	 SubscriberDeviceEnumeration Members
	 SubscriberDeviceEnumeration Constructor
	 SubscriberDeviceEnumeration Constructor ()
	 SubscriberDeviceEnumeration Constructor (NSInstance, String)

	 SubscriberDeviceEnumeration Properties
	 SubscriberDeviceEnumeration.Item Property

	 SubscriberDeviceEnumeration Methods
	 SubscriberDeviceEnumeration.GetEnumerator Method
	 SubscriberDeviceEnumeration.Initialize Method

	 SubscriberEnumeration Class
	 SubscriberEnumeration Members
	 SubscriberEnumeration Constructor
	 SubscriberEnumeration Constructor ()
	 SubscriberEnumeration Constructor (NSInstance)

	 SubscriberEnumeration Properties
	 SubscriberEnumeration.Item Property

	 SubscriberEnumeration Methods
	 SubscriberEnumeration.GetEnumerator Method
	 SubscriberEnumeration.Initialize Method

	 SubscriberLocale Class
	 SubscriberLocale Members
	 SubscriberLocale Properties
	 SubscriberLocale.Locale Property

	 SubscriberLocaleEnumeration Class
	 SubscriberLocaleEnumeration Members
	 SubscriberLocaleEnumeration Constructor
	 SubscriberLocaleEnumeration Constructor ()
	 SubscriberLocaleEnumeration Constructor (NSInstance)

	 SubscriberLocaleEnumeration Properties
	 SubscriberLocaleEnumeration.Item Property

	 SubscriberLocaleEnumeration Methods
	 SubscriberLocaleEnumeration.GetEnumerator Method
	 SubscriberLocaleEnumeration.Initialize Method

	 Subscription Class
	 Subscription Members
	 Subscription Constructor
	 Subscription Constructor ()
	 Subscription Constructor (NSApplication, String)

	 Subscription Properties
	 Subscription.Enabled Property
	 Subscription.FieldCount Property
	 Subscription.HasTimedRule Property
	 Subscription.Item Property
	 Subscription.Item Property (String)
	 Subscription.Item Property (Int32)

	 Subscription.NSApplication Property
	 Subscription.ScheduleRecurrence Property
	 Subscription.ScheduleStart Property
	 Subscription.SubscriberId Property
	 Subscription.SubscriptionClass Property
	 Subscription.SubscriptionId Property

	 Subscription Methods
	 Subscription.Add Method
	 Subscription.Delete Method
	 Subscription.GetFieldName Method
	 Subscription.GetFieldOrdinal Method
	 Subscription.GetFieldValue Method
	 Subscription.Initialize Method
	 Subscription.SetFieldValue Method
	 Subscription.Update Method

	 SubscriptionClass Class
	 SubscriptionClass Members
	 SubscriptionClass Properties
	 SubscriptionClass.FieldCount Property
	 SubscriptionClass.SubscriptionClassName Property

	 SubscriptionClass Methods
	 SubscriptionClass.FieldName Method
	 SubscriptionClass.FieldOrdinal Method
	 SubscriptionClass.FieldType Method
	 SubscriptionClass.FieldTypeMods Method

	 SubscriptionClassEnumeration Class
	 SubscriptionClassEnumeration Members
	 SubscriptionClassEnumeration Constructor
	 SubscriptionClassEnumeration Constructor ()
	 SubscriptionClassEnumeration Constructor (NSApplication)

	 SubscriptionClassEnumeration Properties
	 SubscriptionClassEnumeration.Count Property
	 SubscriptionClassEnumeration.Item Property

	 SubscriptionClassEnumeration Methods
	 SubscriptionClassEnumeration.GetEnumerator Method
	 SubscriptionClassEnumeration.Initialize Method

	 SubscriptionEnumeration Class
	 SubscriptionEnumeration Members
	 SubscriptionEnumeration Constructor
	 SubscriptionEnumeration Constructor ()
	 SubscriptionEnumeration Constructor (NSApplication, String)
	 SubscriptionEnumeration Constructor (NSApplication, String, String)

	 SubscriptionEnumeration Properties
	 SubscriptionEnumeration.Item Property

	 SubscriptionEnumeration Methods
	 SubscriptionEnumeration.GetEnumerator Method
	 SubscriptionEnumeration.Initialize Method
	 SubscriptionEnumeration.Initialize Method (NSApplication, String)
	 SubscriptionEnumeration.Initialize Method (NSApplication, String, String)

	 TimeZone Class
	 TimeZone Members
	 TimeZone Properties
	 TimeZone.DaylightName Property
	 TimeZone.DisplayName Property
	 TimeZone.Language Property
	 TimeZone.LocationName Property
	 TimeZone.StandardName Property
	 TimeZone.TimeZoneId Property
	 TimeZone.TimeZoneName Property
	 TimeZone.UtcOffset Property

	 TimeZoneEnumeration Class
	 TimeZoneEnumeration Members
	 TimeZoneEnumeration Constructor
	 TimeZoneEnumeration Constructor ()
	 TimeZoneEnumeration Constructor (NSInstance, String)

	 TimeZoneEnumeration Properties
	 TimeZoneEnumeration.Item Property

	 TimeZoneEnumeration Methods
	 TimeZoneEnumeration.GetEnumerator Method
	 TimeZoneEnumeration.Initialize Method

	 IContentFormatter Interface
	 IContentFormatter Members
	 IContentFormatter Methods
	 IContentFormatter.Close Method
	 IContentFormatter.FormatContent Method
	 IContentFormatter.Initialize Method

	 IDeliveryProtocol Interface
	 IDeliveryProtocol Members
	 IDeliveryProtocol Methods
	 IDeliveryProtocol.Close Method
	 IDeliveryProtocol.DeliverNotification Method
	 IDeliveryProtocol.Flush Method
	 IDeliveryProtocol.Initialize Method

	 IEventProvider Interface
	 IEventProvider Members
	 IEventProvider Methods
	 IEventProvider.Initialize Method
	 IEventProvider.Run Method
	 IEventProvider.Terminate Method

	 IHttpProtocolProvider Interface
	 IHttpProtocolProvider Members
	 IHttpProtocolProvider Methods
	 IHttpProtocolProvider.Close Method
	 IHttpProtocolProvider.FormatEnvelope Method
	 IHttpProtocolProvider.Initialize Method
	 IHttpProtocolProvider.ProcessResponse Method

	 IScheduledEventProvider Interface
	 IScheduledEventProvider Members
	 IScheduledEventProvider Methods
	 IScheduledEventProvider.Initialize Method
	 IScheduledEventProvider.Run Method
	 IScheduledEventProvider.Terminate Method

	 NotificationStatusCallback Delegate
	 StopHandler Delegate

	 Stored Procedure Reference
	 NSAdministrationHistory
	 NSDiagnosticDeliveryChannel
	 NSDiagnosticEventClass
	 NSDiagnosticEventProvider
	 NSDiagnosticFailedNotifications
	 NSDiagnosticNotificationClass
	 NSDiagnosticSubscriptionClass
	 NSEventBatchDetails
	 NSEventBeginBatchEventClassName
	 NSEventFlushBatchEventClassName
	 NSEventSubmitBatchEventClassName
	 NSEventWriteEventClassName
	 NSExecuteRuleFiring
	 NSNotificationBatchDetails
	 NSPrepareRuleFiring
	 NSQuantumDetails
	 NSQuantumExecutionTime
	 NSQuantumFailures
	 NSQuantumList
	 NSQuantumPerformance
	 NSQuantumsSkipped
	 NSScheduledSubscriptionDetails
	 NSScheduledSubscriptionList
	 NSSetQuantumClock
	 NSSetQuantumClockDate
	 NSSnapshotApplications
	 NSSnapshotDeliveryChannels
	 NSSnapshotEvents
	 NSSnapshotProviders
	 NSSnapshotSubscriptions
	 NSVacuum

	 Table and View Reference
	 Notification Services Tables
	 Notification Services Views
	 NSFullTimeZones View
	 NSSubscriberDeviceView View
	 NSSubscriptionClassNameView View

	 Notification Services Code Reference
	 Subscriber Locale Codes
	 Time Zone Codes

	 Tools and Utilities Reference
	 CopySample Utility
	 GrantXPExec Utility
	 InstallXPs Utility
	 NSControl Commands
	 NSControl Create
	 NSControl Delete
	 NSControl Disable
	 NSControl DisplayArgumentKey
	 NSControl Enable
	 NSControl ListVersions
	 NSControl Register
	 NSControl Status
	 NSControl Unregister
	 NSControl Update
	 NSControl Upgrade

	 RemoveSamplesDB Utility
	 RevokeXPExec Utility
	 SetupSample Utility
	 SetupSamples Utility
	 UninstallXPs Utility

	 Troubleshooting
	 Frequently Asked Questions
	 Notification Services Troubleshooting
	 Event Messages
	 Event Logging Overview
	 Configuring Notification Services Event Logging
	 Viewing Supplemental Event Message Information

	 Glossary

	SQL Server 2000 Reporting Services Books Online
	Getting Started With Reporting Services
	Documentation Conventions
	Documentation Conventions
	Using Reporting Services Books Online
	Accessibility for People with Disabilities
	Additional Reporting Services Resources
	Microsoft SQL Server Reporting Services Copyright and Disclaimer

	Introducing Reporting Services
	Using Reporting Services
	Using Reporting Services
	Authoring, Managing, and Delivering Reports
	Report Authoring (Reporting Lifecycle)
	Report Management (Reporting Lifecycle)
	Report Access and Delivery (Reporting Lifecycle)

	Reporting Services Features
	Report Terminology
	Report Definitions
	Linked Reports
	Report Snapshots
	Parameterized Reports
	Report Server Folder Namespace

	Reporting Services Component Overview
	Report Server
	Programmatic Interfaces
	Report Processor
	Data Processing Extensions
	Rendering Extensions
	Report Server Database
	Scheduling and Delivery Processor
	Delivery Extensions

	Report Manager
	Report Designer
	Report Server Command Line Utilities
	Reporting Services Extensibility
	Data Sources Supported by Reporting Services
	Browser Types Supported by Reporting Services

	Installing Reporting Services
	Editions of Reporting Services
	Editions of Reporting Services
	Selecting Components of Reporting Services to Install
	Installing a Report Server Web Farm
	Hardware Requirements for Reporting Services
	Software Requirements for Reporting Services
	System and User Accounts Used in Reporting Services Installation
	Preparing to Install
	Choosing the Reporting Services Installation Method
	Installing Reporting Services Using Setup
	Installing Reporting Services from the Command Line
	Performing an Unattended Installation of Reporting Services

	Verifying an Installation of Reporting Services
	Changing or Removing Reporting Services Components
	Reporting Services Installation Directories and Registry Settings
	Log Files Used During Installation
	Troubleshooting an Installation of Reporting Services
	Troubleshooting Activation Errors
	Troubleshooting a Side-by-Side Installation of Reporting Services and Windows SharePoint Services
	Troubleshooting Service Credential Errors

	Deploying and Administering Reporting Services
	Deployment and Administration Tools
	Deployment and Administration Tools
	Scripting Deployment and Administrative Tasks
	Planning for Deployment
	Standard Deployment Model
	Enterprise Deployment Model
	Report Server Database Requirements
	Server Deployment Checklist
	Report Deployment Checklist
	Deploying Reporting Services in a Global Environment

	Configuring Reporting Services Components
	Configuring a Report Server Connection
	Configuring a Report Server for E-Mail Delivery
	Configuring a Report Server for Tracing
	Configuring an Account for Unattended Report Processing
	Reporting Services Configuration Files
	ReportingServicesService Configuration File
	RSReportDesigner Configuration File
	RSWebApplication Configuration File
	RSReportServer Configuration File

	Configuring Server Security
	Configuring Web Host Security for a Report Server
	Limiting the Number of Open Connections
	Best Practices for Authenticating Server and Data Source Connections
	Securing Reports for Global Access

	Starting and Stopping the Report Server Service
	Activating a Report Server
	Renaming a Report Server Computer
	Monitoring Performance
	Performance Counters for Report Server
	Performance Counters for Scheduling and Delivery Processor

	Checking Reporting Services Log Files
	Windows Application Log
	Reporting Services Trace Logs
	Report Server Execution Log
	Querying and Reporting on Report Execution Log Data

	Administering a Report Server Database
	Storing Encrypted Data in a Report Server Database
	Managing Encryption Keys

	Creating and Designing Reports
	Report Design Basics
	Report Design Basics
	Working with Data
	Understanding Report Layout and Rendering
	Understanding Data Regions
	Working with Items in a Report
	Providing User Interactivity

	Building Reports
	Ways to Create a Report
	Working with Report Designer and Visual Studio
	Managing Solutions, Projects, and Items
	Introduction to Solutions, Projects, and Items
	Solutions as Containers
	Projects as Containers
	Project Properties
	Project Items

	Multi-Project Solutions

	Using Solution Explorer
	Solution Explorer Concepts
	Working with Solution Explorer

	The Visual Studio Environment
	Window Management
	Window Types
	Arranging Windows
	Navigating Within Visual Studio

	Editing Code Within a Visual Studio
	Navigating Code and Text
	Editing Text
	Managing the Editor and View

	Setting Properties
	Using the Toolbox

	Creating a Report Project
	Creating a Report Using Report Wizard
	Creating a Blank Report
	Importing Reports from Access
	Supported Access Report Features

	Working Directly with Report Definition Language
	Localizing Reports

	Defining Report Data
	Connecting to a Data Source
	Querying a Data Source
	Retrieving Relational Data from a SQL Server Database
	Retrieving Multidimensional Data from Analysis Services
	Retrieving Data from Other Data Sources
	Using Dynamic Queries
	Working with Multiple Data Sets

	Filtering Data
	Working with Data Regions
	Adding a Table
	Adding a Matrix
	Adding a List
	Adding a Chart
	Grouping Data in a Report
	Sorting Data in a Report

	Adding Fields to a Report
	Working with the Fields List
	Adding a Text Box
	Working with Data-Bound Images

	Defining Report Appearance
	Adding a Header and Footer
	Working with Multiple Pages
	Writing Multi-column Reports
	Working with Graphical Elements
	Adding a Rectangle
	Adding a Line
	Adding an Image

	Applying Style Properties to Items in a Report
	Adding Conditional Formatting
	Formatting Text
	Adding a Subreport

	Adding Interactive Features
	Using Parameters in a Report
	Adding Filters to a Report
	Drilldown Reports and Hiding Items
	Working with Links
	Adding a Hyperlink
	Adding a Drillthrough Report Link
	Adding a Bookmark Link

	Adding a Document Map

	Using Expressions
	Manipulating Data with Expressions
	Using Global Collections
	Using Functions
	Aggregate Functions
	Aggregate Function
	Avg Function
	Count Function
	CountDistinct Function
	CountRows Function
	First Function
	Last Function
	Max Function
	Min Function
	RowNumber Function
	RunningValue Function
	StDev Function
	StDevP Function
	Sum Function
	Var Function
	VarP Function

	Other Functions
	InScope Function
	Level Function
	Previous Function

	Writing Custom Code
	Common Expressions

	Debugging and Publishing Reports
	Testing Reports
	Deploying Reports to a Production Environment

	Design Considerations for Rendering
	Designing for HTML Output
	Data Regions in HTML Rendering
	Report Items in HTML Rendering
	Page Layout in HTML Rendering
	MHTML Reports
	HTML Reports with Office Web Components

	Designing for Microsoft Excel Output
	Excel Rendering Overview
	Excel Rendering Limitations
	Data Regions in Excel Rendering
	Report Items in Excel Rendering
	Expressions in Excel Rendering
	Page Layout in Excel Rendering
	Visibility of Dynamic Report Items

	Designing for CSV Output
	Designing for XML Output
	Elements and Attributes in XML Rendering
	Applying Transformations to XML Output

	Designing for Image Output
	Data Regions in Image Rendering
	Report Items in Image Rendering
	Page Layout in Image Rendering

	Designing for PDF Output

	Managing and Working With Published Reports
	Configuring Report Access
	Configuring Report Access
	Viewing Reports with Report Manager
	Searching for Reports and Other Items
	Navigating Folders in Report Manager
	Using My Reports
	Icons in Report Manager

	Viewing Reports with a Browser
	Navigating Folders in a Web Browser
	Session Management in Reporting Services

	Running Reports
	Running a Parameterized Report
	Running Large Reports
	Report Size and Limits

	Printing, Exporting, and Saving Reports
	Printing Reports
	Exporting Reports
	Saving Reports

	Managing Report Server Content
	Content Management Overview
	Managing Reports
	Setting Report Properties
	Setting Parameter Properties for a Published Report
	Adding, Modifying, and Deleting Reports
	Creating, Modifying, and Deleting Linked Reports

	Managing Report History
	Setting Report History Properties
	Creating, Modifying, and Deleting Snapshots in Report History
	Archiving Reports

	Managing My Reports
	Enabling and Disabling My Reports

	Managing Resources
	Managing Folders
	Creating, Modifying, and Deleting Folders
	Uploading Files to a Folder
	Moving Items

	Managing Data Source Connections
	Shared Data Sources and Report-Specific Data Sources
	Modifying Data Source Properties
	Creating, Modifying, and Deleting Shared Data Sources
	Specifying Credential and Connection Information

	Distributing Reports Through Subscriptions
	Subscription Overview
	Subscription and Delivery Scenarios
	Customizing Report Delivery for Individual Users

	Data-Driven Subscriptions
	E-Mail Delivery in Reporting Services
	File Share Delivery in Reporting Services
	Creating, Modifying, and Deleting Subscriptions
	Setting Parameters in a Subscription
	Choosing Report Presentation Formats in a Subscription
	Creating, Modifying, and Deleting Standard Subscriptions
	Creating, Modifying, and Deleting Data-Driven Subscriptions
	Using an External Data Source for Subscriber Data

	Managing Subscriptions
	Using My Subscriptions
	Subscription and Delivery Availability
	Subscription Processing
	Controlling Report Distribution
	Monitoring Subscription Status

	Using Schedules
	Shared Schedules and Report-Specific Schedules
	Creating, Modifying, and Deleting Schedules
	Pausing and Resuming Shared Schedules

	Managing Report Processing
	Configuring Report Execution
	Setting Report Execution Properties
	Creating Snapshots for Report Execution
	Report Caching in Reporting Services
	Setting Time-out Values

	Managing a Running Process
	Listing and Canceling In-Progress Jobs
	Pausing Report and Subscription Processing

	Verifying a Report Run

	Using Role-Based Security
	Reporting Services Security Model
	Understanding Role-based Security
	Securable Items
	Role Assignments
	Role Definitions
	Tasks and Permissions
	Item-Level Tasks
	System-Level Tasks

	Minimum Security and Security Lockouts

	Using Default Security
	Predefined Role Assignments
	Predefined Roles Overview
	Browser Role
	Content Manager Role
	Publisher Role
	My Reports Role
	System Administrator Role
	System User Role

	Configuring Security Through Role Assignments
	Securing Reports and Resources
	Securing Folders
	Securing My Reports
	Securing Shared Data Source Items
	Creating, Modifying, and Deleting Role Definitions
	Creating, Modifying, and Deleting Role Assignments
	Setting System-Level Security

	Troubleshooting Reporting Services
	Troubleshooting HTTP Errors
	Troubleshooting HTTP Errors
	Troubleshooting Report Problems
	Troubleshooting Report Processing Problems
	Troubleshooting Server and Database Problems
	Troubleshooting Subscription and Delivery Problems

	Reporting Services Error Messages
	Error Message List
	Error Message List
	Command Line Utility Errors
	Error Reporting for rs Utility
	Error Reporting for rsactivate Utility
	Error Reporting for rsconfig Utility
	Error Reporting for rskeymgmt Utility

	Report Server Events

	Reporting Services Programming
	Introducing Reporting Services Programming
	Introducing Reporting Services Programming
	Integrating Reporting Services into Applications
	Choosing Between URL Access and SOAP
	Integrating Reporting Services Using URL Access
	Using URL Access from a Web Application
	Using URL Access from a Windows Application

	Integrating Reporting Services Using SOAP
	Using the SOAP API in a Windows Application
	Using the SOAP API in a Web Application

	Reporting Services Web Service
	Introducing the Web Service
	Web Service Features
	Report Server Namespace Management Methods
	Authorization Methods
	Data Sources and Connection Methods
	Report Parameters Methods
	Rendering and Execution Methods
	Report History Methods
	Scheduling Methods
	Subscription and Delivery Methods
	Linked Reports Methods

	The Role of SOAP in Reporting Services
	Accessing the SOAP API
	User Requirements for Web Service Development
	Building Applications Using the Web Service and the .NET Framework
	Creating the Web Service Proxy
	Web Service Authentication
	Calling Web Service Methods
	Setting the Url Property of the Web Service
	Supplying Web Service Method Arguments
	Omitting Values for Optional Web Service Objects
	Using Secure Web Service Methods
	Reporting Services Properties
	Report Server Item Properties
	Report Server System Properties

	Device Information Settings
	CSV Device Information Settings
	Excel Device Information Settings
	HTML Device Information Settings
	Image Device Information Settings
	MHTML Device Information Settings
	PDF Device Information Settings
	XML Device Information Settings

	Reporting Services Delivery Extension Settings
	Using Reporting Services SOAP Headers
	Batching Methods
	Identifying Session State
	Setting the Item Namespace for the GetProperties Method

	Introducing Exception Handling in Reporting Services
	Handling Exceptions in Reporting Services
	Best Practices for Reporting Services Exception Handling
	Preventing Invalid Requests
	Using Try/Catch Blocks
	Dealing with Warnings and Cases that Do Not Cause Exceptions
	Using the Detail Property to Handle Specific Errors

	Reporting Services SoapException Class
	Detail Property
	HelpLink Element
	SoapException Errors Table

	Scripting with the rs Utility and the Web Service
	Formatting the Reporting Services Script File
	Running a Reporting Services Script File

	URL Access
	URL Access Syntax
	Using Parameter Prefixes on a URL
	Using the Command Parameter
	Using a URL to Access Report Server Items
	Using URL Access Parameters
	Rendering a Report Using URL Access
	Specifying a Rendering Format on a URL
	Passing a Report Parameter on a URL
	Managing Report Sessions on a URL
	Rendering Report History Snapshots Using URL Access
	Using a URL to Search a Report
	Setting Data Source Credentials on a URL
	Specifying Device Information Settings on a URL

	Using the Reporting Services WMI Provider
	Understanding Code Access Security in Reporting Services
	Introducing Code Access Security in Reporting Services
	Why Reporting Services Needs Code Access Security
	Understanding Security Policies
	Using Reporting Services Security Policy Files

	Extending Reporting Services
	Implementing a Data Processing Extension
	Introducing Data Processing Extensions
	Getting Started with a Processing Extension Implementation
	Developer Requirements for Implementing a Data Processing Extension
	Preparing to Implement a Data Processing Extension
	Creating a Data Processing Extension Library

	Implementing a Connection Class for a Data Processing Extension
	Implementing a Command Class for a Data Processing Extension
	Implementing a DataReader Class for a Data Processing Extension
	Using an External Dataset with Reporting Services
	Deploying a Data Processing Extension
	Deploying a Data Processing Extension to a Report Server
	Deploying a Data Processing Extension to Report Designer

	Debugging Data Processing Extension Code
	Removing a Data Processing Extension

	Implementing a Delivery Extension
	Introducing Delivery Extensions
	Getting Started with a Delivery Extension Implementation
	Developer Requirements for Implementing a Delivery Extension
	Preparing to Implement a Delivery Extension
	Creating a Delivery Extension Library

	Implementing the IDeliveryExtension Class for a Delivery Extension
	Using a Notification Class for a Delivery Extension
	Using the Setting Class for a Delivery Extension
	Using the IDeliveryReportServerInformation Interface for a Delivery Extension
	Using the Report Class for a Delivery Extension
	Using the RenderedOutputFile Class for a Delivery Extension
	Implementing the ISubscriptionBaseUIUserControl Interface for a Delivery Extension
	Deploying a Delivery Extension
	Debugging Delivery Extension Code
	Removing a Delivery Extension

	Implementing a Rendering Extension
	Implementing a Security Extension
	Security Considerations for Extensions

	Generating Report Definition Language Programmatically
	Using Custom Assemblies with Reports
	Referencing Assemblies in an RDL File
	Deploying a Custom Assembly
	Using Strong-Named Custom Assemblies
	Asserting Permissions in Custom Assemblies
	Accessing Custom Assemblies Through Expressions
	Initializing Custom Assembly Objects
	Debugging Custom Assemblies

	Programming Reference
	Reporting Services Web Service Library
	ActiveState Class
	DeliveryExtensionRemoved Property
	InvalidParameterValue Property
	MissingParameterValue Property
	SharedDataSourceRemoved Property
	UnknownReportParameter Property

	BatchHeader Class
	BatchId Property

	BooleanOperatorEnum Enumeration
	CatalogItem Class
	CreatedBy Property
	CreationDate Property
	Description Property
	ExecutionDate Property
	Hidden Property
	ID Property
	MimeType Property
	ModifiedBy Property
	ModifiedDate Property
	Name Property
	Path Property
	Size Property
	Type Property
	VirtualPath Property

	ConditionEnum Enumeration
	CredentialRetrievalEnum Enumeration
	DailyRecurrence Class
	DaysInterval Property

	DataRetrievalPlan Class
	DataSet Property
	Item Property

	DataSetDefinition Class
	AccentSensitivity Property
	AccentSensitivitySpecified Property
	CaseSensitivity Property
	CaseSensitivitySpecified Property
	Collation Property
	Fields Property
	KanatypeSensitivity Property
	KanatypeSensitivitySpecified Property
	Name Property
	Query Property
	WidthSensitivity Property
	WidthSensitivitySpecified Property

	DataSource Class
	Item Property
	Name Property

	DataSourceCredentials Class
	DataSourceName Property
	Password Property
	UserName Property

	DataSourceDefinition Class
	ConnectString Property
	CredentialRetrieval Property
	Enabled Property
	EnabledSpecified Property
	Extension Property
	ImpersonateUser Property
	ImpersonateUserSpecified Property
	Password Property
	Prompt Property
	UserName Property
	WindowsCredentials Property

	DataSourceDefinitionOrReference Class
	DataSourcePrompt Class
	Name Property
	DataSourceID Property
	Prompt Property

	DataSourceReference Class
	Reference Property

	DaysOfWeekSelector Class
	Friday Property
	Monday Property
	Saturday Property
	Sunday Property
	Thursday Property
	Tuesday Property
	Wednesday Property

	Event Class
	Type Property

	ExecutionSettingEnum Enumeration
	ExpirationDefinition Class
	Extension Class
	ExtensionType Property
	Name Property
	LocalizedName Property
	Visible Property

	ExtensionParameter Class
	DisplayName Property
	Encrypted Property
	Error Property
	IsPassword Property
	Name Property
	ReadOnly Property
	Required Property
	ValidValues Property
	Value Property

	ExtensionSettings Class
	Extension Property
	ParameterValues Property

	ExtensionTypeEnum Enumeration
	Field Class
	Alias Property
	Name Property

	InvalidDataSourceReference Class
	ItemNamespaceEnum Enumeration
	ItemNamespaceHeader Class
	ItemNamespace Property

	ItemTypeEnum Enumeration
	Job Class
	Action Property
	Description Property
	JobID Property
	Machine Property
	Name Property
	Path Property
	StartDateTime Property
	Status Property
	Type Property
	User Property

	JobActionEnum Enumeration
	JobStatusEnum Enumeration
	JobTypeEnum Enumeration
	MinuteRecurrence Class
	MinutesInterval Property

	MonthOfYearSelector Class
	April Property
	August Property
	December Property
	February Property
	January Property
	July Property
	June Property
	March Property
	May Property
	November Property
	October Property
	September Property

	MonthlyDOWRecurrence Class
	DaysOfWeek Property
	MonthsOfYear Property
	WhichWeek Property
	WhichWeekSpecified Property

	MonthlyRecurrence Class
	Days Property
	MonthsOfYear Property

	NoSchedule Class
	ParameterFieldReference Class
	FieldAlias Property
	ParameterName Property

	ParameterStateEnum Enumeration
	ParameterTypeEnum Enumeration
	ParameterValue Class
	Label Property
	Name Property
	Value Property

	ParameterValueOrFieldReference
	Policy Class
	GroupUserName Property
	Roles Property

	Property Class
	Name Property
	Value Property

	QueryDefinition Class
	CommandText Property
	CommandType Property
	Timeout Property
	TimeoutSpecified Property

	RecurrencePattern Class
	ReportHistorySnapshot Class
	CreationDate Property
	HistoryID Property
	Size Property

	ReportParameter Class
	AllowBlank Property
	DefultValues Property
	DefaultValuesQueryBased Property
	Dependencies Property
	MultiValue Property
	Name Property
	Nullable Property
	Prompt Property
	PromptUser Property
	PromptUserSpecified Property
	QueryParameter Property
	State Property
	Type Property
	ValidValues Property
	ValidValuesQueryBased Property

	Role Class
	Description Property
	Name Property

	ReportingService Class
	CancelBatch Method
	CancelJob Method
	CreateBatch Method
	CreateDataDrivenSubscription Method
	CreateDataSource Method
	CreateFolder Method
	CreateLinkedReport Method
	CreateReport Method
	CreateReportHistorySnapshot Method
	CreateResource Method
	CreateRole Method
	CreateSchedule Method
	CreateSubscription Method
	DeleteItem Method
	DeleteReportHistorySnapshot Method
	DeleteRole Method
	DeleteSchedule Method
	DeleteSubscription Method
	DisableDataSource Method
	EnableDataSource Method
	ExecuteBatch Method
	FindItems Method
	FireEvent Method
	FlushCache Method
	GetCacheOptions Method
	GetDataDrivenSubscriptionProperties Method
	GetDataSourceContents Method
	GetExecutionOptions Method
	GetExtensionSettings Method
	GetItemType Method
	GetPermissions Method
	GetPolicies Method
	GetProperties Method
	GetRenderResource Method
	GetReportDataSourcePrompts Method
	GetReportDataSource Method
	GetReportDefinition Method
	GetReportHistoryLimit Method
	GetReportHistoryOptions Method
	GetReportLink Method
	GetReportParameters Method
	GetResourceContents Method
	GetRoleProperties Method
	GetScheduleProperties Method
	GetSubscriptionProperties Method
	GetSystemPermissions Method
	GetSystemPolicies Method
	GetSystemProperties Method
	InheritParentSecurity Method
	ListChildren Method
	ListEvents Method
	ListExtensions Method
	ListJobs Method
	ListLinkedReports Method
	ListReportHistory Method
	ListReportsUsingDataSource Method
	ListRoles Method
	ListScheduledReports Method
	ListSchedules Method
	ListSecureMethods Method
	ListSubscriptions Method
	ListSubscriptionsUsingDataSource Method
	ListSystemRoles Method
	ListSystemTasks Method
	ListTasks Method
	Logoff Method
	LogonUser Method
	MoveItem Method
	PauseSchedule Method
	PrepareQuery Method
	Render Method
	RenderStream Method
	ResumeSchedule Method
	SetCacheOptions Method
	SetDataDrivenSubscriptionProperties Method
	SetDataSourceContents Method
	SetExecutionOptions Method
	SetPolicies Method
	SetProperties Method
	SetReportDataSources Method
	SetReportDefinition Method
	SetReportHistoryLimit Method
	SetReportHistoryOptions Method
	SetReportLink Method
	SetReportParameters Method
	SetResourceContents Method
	SetRoleProperties Method
	SetScheduleProperties Method
	SetSubscriptionProperties Method
	SetSystemPolicies Method
	SetSystemProperties Method
	UpdateSnapshot Method
	ValidateExtensionSettings Method
	BatchHeaderValue Property
	ItemNamespaceHeaderValue Property
	ServerInfoHeaderValue Property
	SessionHeaderValue Property

	Schedule Class
	Creator Property
	Definition Property
	Description Property
	LastRunTime Property
	Name Property
	NextRunTime Property
	ReferencesPresent Property
	ScheduleID Property
	State Property

	ScheduleDefinition Class
	EndDate Property
	EndDateSpecified Property
	Item Property
	StartDateTime Property

	ScheduleDefinitionOrReference Class
	ScheduleExpiration Class
	Item Property

	ScheduleReference Class
	Definition Property
	ScheduleID Property

	ScheduleStateEnum Enumeration
	SearchCondition Class
	Condition Property
	ConditionSpecified Property

	SensitivityEnum Enumeration
	ServerInfoHeader Class
	ReportServerVersionNumber Property
	ReportServerEdition Property

	SessionHeader Class
	SessionId Property
	IsNewExecution Property
	ExecutionDateTime Property
	ExpirationDateTime Property

	Subscription Class
	Active Property
	Description Property
	EventType Property
	DeliverySettings Property
	IsDataDriven Property
	LastExecuted Property
	ModifiedBy Property
	ModifiedDate Property
	Owner Property
	Path Property
	Report Property
	Status Property
	SubscriptionID Property
	VirtualPath Property

	Task Class
	Description Property
	Name Property
	TaskID Property

	TimeExpiration Class
	Minutes Property

	ValidValue Class
	Label Property
	Value Property

	Warning Class
	Code Property
	Message Property
	ObjectName Property
	ObjectType Property
	Severity Property

	WeekNumberEnum Enumeration
	WeeklyRecurrence Class
	DaysOfWeek Property
	WeeksInterval Property
	WeeksIntervalSpecified Property

	Reporting Services Extension Library
	Microsoft.ReportingServices.DataProcessing
	Microsoft.ReportingServices.DataProcessing Hierarchy
	CommandBehavior Enumeration
	CommandType Enumeration
	IDataParameter Interface
	IDataParameter Members
	Properties
	ParameterName Property
	Value Property

	IDataParameterCollection Interface
	IDataParameterCollection Members
	Methods
	Add Method

	IDataReader Interface
	IDataReader Members
	Properties
	FieldCount Property

	Methods
	GetFieldType Method
	GetName Method
	GetOrdinal Method
	GetValue Method
	Read Method

	IDataReaderExtension Interface
	IDataReaderExtension Members
	Properties
	IsAggregateRow Property
	AggregationFieldCount Property

	Methods
	IsAggregationField Method

	IDbCommand Interface
	IDbCommand Members
	Properties
	CommandText Property
	CommandTimeout Property
	CommandType Property
	Parameters Property
	Transaction Property

	Methods
	Cancel Method
	CreateParameter Method
	ExecuteReader Method
	ExecuteReader Method()
	ExecuteReader Method (CommandBehavior)

	IDbCommandAnalysis Interface
	IDbCommandAnalysis Members
	Methods
	GetParameters Method

	IDbConnection Interface
	IDbConnection Members
	Properties
	ConnectionString Property
	ConnectionTimeout Property

	Methods
	BeginTransaction Method
	Close Method
	CreateCommand Method
	Open Method

	IDbConnectionExtension Interface
	IDbConnectionExtension Members
	Properties
	Impersonate Property
	IntegratedSecurity Property
	Password Property
	Username Property

	IDbTransaction Interface
	IDbTransaction Members
	Methods
	Commit Method
	Rollback Method

	IDbTransactionExtension Interface
	IDbTransactionExtension Members
	Properties
	AllowMultiConnection Property

	Microsoft.ReportingServices.Interfaces
	Microsoft.ReportingServices.Interfaces Hierarchy
	AceCollection Class
	AceCollection Members
	AceCollection Constructor
	AceCollection Properties
	Item Property

	AceCollection Methods
	Add Method

	AceStruct Class
	AceStruct Members
	AceStruct Constructor
	AceStruct Constructor (AceStruct)
	AceStruct Constructor (System.String)

	AceStruct Fields
	CatalogOperations Field
	DatasourceOperations Field
	FolderOperations Field
	PrincipalName Field
	ReportOperations Field
	ResourceOperations Field

	CatalogOperation Enumeration
	CatalogOperationsCollection Class
	CatalogOperationsCollection Members
	CatalogOperationsCollection Constructor
	CatalogOperationsCollection Properties
	Item Property

	CatalogOperationsCollection Methods
	Add Method

	CreateStream Delegate
	DatasourceOperation Enumeration
	DatasourceOperationsCollection Class
	DatasourceOperationsCollection Members
	DatasourceOperationsCollection Constructor
	DatasourceOperationsCollection Properties
	Item Property

	DatasourceOperationsCollection Methods
	Add Method

	Extension Class
	Extension Members
	Extension Constructor
	Properties
	LocalizedName Property
	Name Property
	Visible Property

	FolderOperation Enumeration
	FolderOperationsCollection Class
	FolderOperationsCollection Members
	FolderOperationsCollection Constructor
	FolderOperationsCollection Properties
	Item Property

	FolderOperationsCollection Methods
	Add Method

	IAuthenticationExtension Interface
	IAuthenticationExtension Members
	IAuthenticationExtension Methods
	GetUserInfo Method
	IsValidPrincipalName Method
	LogonUser Method

	IAuthorizationExtension Interface
	IAuthorizationExtension Members
	IAuthorizationExtension Methods
	CheckAccess Method
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], CatalogOperation)
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], CatalogOperation[])
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], DatasourceOperation)
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], FolderOperation)
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], FolderOperation[])
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], ReportOperation)
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], ResourceOperation)
	CheckAccess Method (System.String, System.IntPtr, System.Byte[], ResourceOperation[])

	CreateSecurityDescriptor Method
	GetPermissions Method

	IDeliveryExtension Interface
	IDeliveryExtension Members
	Properties
	ExtensionSettings Property
	IsPrivilegedUser Property
	ReportServerInformation Property

	Methods
	Deliver Method
	ValidateUserData Method

	IDeliveryReportServerInformation Interface
	IDeliveryReportServerInformation Members
	Properties
	RenderingExtension Property
	ServerSettings Property

	IExtension Interface
	IExtension Members
	Properties
	LocalizedName Property

	Methods
	SetConfiguration Method

	ISubscriptionBaseUIUserControl Interface
	ISubscriptionBaseUIUserControl Members
	Properties
	Description Property
	IsPrivilegedUser Property
	ReportServerInformation Property
	UserData Property

	Methods
	Validate Method

	Notification Class
	Notification Members
	Notification Constructor
	Properties
	Attempt Property
	MaxNumberOfRetries Property
	Owner Property
	Report Property
	Retry Property
	Status Property
	UserData Property

	Methods
	Save Method

	OperationNames Class
	OperationNames Members
	OperationNames Constructor
	OperationNames Fields
	OperationNames.OperCancelJobs Field
	OperCreateAnySubscription Field
	OperCreateDatasource Field
	OperCreateFolder Field
	OperCreateLink Field
	OperCreateReport Field
	OperCreateResource Field
	OperCreateRoles Field
	OperCreateSchedules Field
	OperCreateSnapshot Field
	OperCreateSubscription Field
	OperDelete Field
	OperDeleteAnySubscription Field
	OperDeleteHistory Field
	OperDeleteRoles Field
	OperDeleteSchedules Field
	OperDeleteSubscription Field
	OperExecute Field
	OperExecuteAndView Field
	OperGenerateEvents Field
	OperListHistory Field
	OperListJobs Field
	OperManageSharedSchedules Field
	OperReadAnySubscription Field
	OperReadAuthorizationPolicy Field
	OperReadContent Field
	OperReadDatasources Field
	OperReadParameters Field
	OperReadPolicy Field
	OperReadProperties Field
	OperReadReportDefinition Field
	OperReadRoleProperties Field
	OperReadSchedules Field
	OperReadSubscription Field
	OperReadSystemProperties Field
	OperReadSystemSecurityPolicy Field
	OperUpdateAnySubscription Field
	OperUpdateContent Field
	OperUpdateDatasources Field
	OperUpdateDeleteAuthorizationPolicy Field
	OperUpdateParameters Field
	OperUpdatePolicy Field
	OperUpdateProperties Field
	OperUpdateReportDefinition Field
	OperUpdateRoleProperties Field
	OperUpdateSchedules Field
	OperUpdateSubscription Field
	OperUpdateSystemProperties Field
	OperUpdateSystemSecurityPolicy Field

	RenderedOutputFile Class
	RenderedOutputFile Constructor
	RenderedOutputFile Members
	Properties
	Data Property
	Encoding Property
	Extension Property
	FileName Property
	Type Property

	Report Class
	Report Members
	Report Constructor
	Properties
	Date Property
	Name Property
	URL Property

	Methods
	Render Method

	ReportOperation Enumeration
	ReportOperationsCollection Class
	ReportOperationsCollection Members
	ReportOperationsCollection Constructor
	ReportOperationsCollection Properties
	Item Property

	ReportOperationsCollection Methods
	Add Method

	ResourceOperation Enumeration
	ResourceOperationsCollection Class
	ResourceOperationsCollection Members
	ResourceOperationsCollection Constructor
	ResourceOperationsCollection Properties
	Item Property

	ResourceOperationsCollection Methods
	Add Method

	SecurityItemType Enumeration
	Setting Class
	Setting Members
	Setting Constructor
	Properties
	DisplayName Property
	Encrypted Property
	Error Property
	Field Property
	IsPassword Property
	Name Property
	ReadOnly Property
	Required Property
	ValidValues Property
	Value Property

	Methods
	AddValidValue Method
	AddValidValue Method(ValidValue)
	AddValidValue Method(String, String)

	ValidValue Class
	ValidValue Constructor
	ValidValue Members
	Properties
	Label Property
	Value Property

	Reporting Services WMI Provider
	MSReportServer_ConfigurationSetting Class
	MSReportServer_ConfigurationSetting Members
	MSReportServer_ConfigurationSetting Properties
	DatabaseIntegratedSecurity Property (WMI)
	DatabaseLogonName Property (WMI)
	DatabaseLogonPassword Property (WMI)
	DatabaseLogonTimeout Property (WMI)
	DatabaseName Property (WMI)
	DatabaseQueryTimeout Property (WMI)
	DatabaseServerName Property (WMI)
	Impersonate Property (WMI)
	ImpersonateDomain Property (WMI)
	ImpersonatePassword Property (WMI)
	ImpersonateUserName Property
	InstanceID Property (WMI)
	InstanceName Property (WMI)
	PathName Property (WMI)
	UnattendedExecutionLogonName Property (WMI)
	UnattendedExecutionLogonPassword Property (WMI)
	UnattendedExecutionLogonDomain
	VirtualRoot Property (WMI)

	MSReportServer_ConfigurationSetting Methods
	ActivateMachine Method (WMI)

	MSReportServerReportManager_ConfigurationSetting Class
	MSReportServerReportManager_ConfigurationSetting Members
	MSReportServerReportManager_ConfigurationSetting Properties
	InstanceName Property (WMI)
	PathName Property (WMI)
	URLToReportServer Property (WMI)
	VirtualRoot Property (WMI)

	Report Definition Language
	Report Definition XML Diagram
	Report Definition XML Diagram
	Report Definition XML Elements
	AccentSensitivity Element
	Action Element
	AllowBlank Element
	Author Element
	AutoRefresh Element
	Axis Element
	BackgroundColor Element
	BackgroundGradientEndColor Element
	BackgroundGradientType Element
	BackgroundImage Element
	BackgroundRepeat Element
	Body Element
	Bookmark Element
	BookmarkLink Element
	BorderColor Element
	BorderStyle Element
	BorderWidth Element
	Bottom Element (BorderColor)
	Bottom Element (BorderStyle)
	Bottom Element (BorderWidth)
	BottomMargin Element
	Calendar Element
	CanGrow Element
	CanShrink Element
	Caption Element
	CaseSensitivity Element
	CategoryAxis Element
	CategoryGrouping Element
	CategoryGroupings Element
	CellDataElementName Element
	CellDataElementOutput Element
	Chart Element
	ChartData Element
	ChartElementOutput Element
	ChartSeries Element
	Class Element
	Classes Element
	ClassName Element
	Clustered Element
	Code Element
	CodeModule Element
	CodeModules Element
	Collation Element
	Color Element
	ColSpan Element
	ColumnGrouping Element
	ColumnGroupings Element
	Columns Element
	ColumnSpacing Element
	CommandText Element
	CommandType Element
	ConnectionProperties Element
	ConnectString Element
	Corner Element
	CrossAt Element
	Custom Element
	CustomReportItem Element
	DataCollectionName Element
	DataElementName Element
	DataElementOutput Element
	DataElementStyle Element
	DataInstanceElementOutput Element
	DataInstanceName Element
	DataField Element
	DataLabel Element
	DataPoint Element
	DataPoints Element
	DataProvider Element
	DataSchema Element
	DataSet Element
	DataSetName Element (DataSetReference)
	DataSetName Element (Data Regions)
	DataSetReference Element
	DataSets Element
	DataSource Element
	DataSourceName Element
	DataSourceReference Element
	DataSources Element
	DataTransform Element
	DataType Element
	DataValue Element
	DataValues Element
	Default Element (BorderColor)
	Default Element (BorderStyle)
	Default Element (BorderWidth)
	DefaultValue Element
	DepthRatio Element
	Description Element
	DetailDataCollectionName Element
	DetailDataElementName Element
	DetailDataElementOutput Element
	Details Element
	Direction Element (SortBy)
	Direction Element (Style)
	DrawingStyle Element
	Drillthrough Element
	DynamicCategories Element
	DynamicColumns Element
	DynamicRows Element
	DynamicSeries Element
	EmbeddedImage Element
	EmbeddedImages Element
	Enabled Element
	Field Element
	Fields Element
	Filter Element
	FilterExpression Element
	Filters Element
	FilterValue Element
	FilterValues Element
	FontFamily Element
	FontSize Element
	FontStyle Element
	FontWeight Element
	Footer Element
	Format Element
	GapDepth Element
	GroupExpression Element
	GroupExpressions Element
	Grouping Element
	GroupsBeforeRowHeaders Element
	Header Element
	Height Element
	HeightRatio Element
	Hidden Element
	HideDuplicates Element
	Hyperlink Element
	Image Element
	ImageData Element
	Inclination Element
	InitialState Element
	InsidePlotArea Element
	InstanceName Element
	IntegratedSecurity Element
	Interlaced Element
	KanatypeSensitivity Element
	KeepTogether Element
	Label Element (Chart Elements)
	Label Element (ParameterValue)
	Label Element (Report Items)
	LabelField Element
	Language Element (Report)
	Language Element (Style)
	Layout Element (Legend)
	LayoutDirection Element
	Left Element (BorderColor)
	Left Element (BorderStyle)
	Left Element (BorderWidth)
	Left Element (Report Items)
	LeftMargin Element
	Legend Element
	Line Element
	LineHeight Element
	LinkToChild Element
	List Element
	LogScale Element
	MajorGridLines Element
	MajorInterval Element
	MajorTickMarks Element
	Margin Element
	Marker Element
	Matrix Element
	MatrixCell Element
	MatrixCells Element
	MatrixColumn Element
	MatrixColumns Element
	MatrixRow Element
	MatrixRows Element
	Max Element
	MergeTransactions Element
	MIMEType Element
	Min Element
	MinorGridLines Element
	MinorInterval Element
	MinorTickMarks Element
	NoRows Element
	Nullable Element
	NumeralLanguage Element
	NumeralVariant Element
	Omit Element
	Operator Element
	PaddingBottom Element
	PaddingLeft Element
	PaddingRight Element
	PaddingTop Element
	PageBreakAtEnd Element
	PageBreakAtStart Element
	PageFooter Element
	PageHeader Element
	PageHeight Element
	PageWidth Element
	Palette Element
	Parameter Element
	Parameters Element
	ParameterValue Element
	ParameterValues Element
	Parent Element
	Perspective Element
	PlotArea Element
	PlotType Element
	PointWidth Element
	Position Element (DataLabel)
	Position Element (Legend)
	Position Element (Subtotal)
	Position Element (Title)
	PrintOnFirstPage Element
	PrintOnLastPage Element
	ProjectionMode Element
	Prompt Element (ConnectionProperties)
	Prompt Element (ReportParameter)
	Query Element
	QueryParameter Element
	QueryParameters Element
	Rectangle Element
	RepeatOnNewPage Element
	RepeatWith Element
	Report Element
	ReportItems Element
	ReportName Element
	ReportParameter Element
	ReportParameters Element
	Reverse Element
	Right Element (BorderColor)
	Right Element (BorderStyle)
	Right Element (BorderWidth)
	RightMargin Element
	Rotation Element
	RowGrouping Element
	RowGroupings Element
	Scalar Element
	SeriesGrouping Element
	SeriesGroupings Element
	Shading Element
	ShowGridLines Element
	Size Element
	Sizing Element
	SortBy Element
	SortExpression Element
	Sorting Element
	Source Element
	StaticCategories Element
	StaticColumn Element
	StaticColumns Element
	StaticMember Element
	StaticRow Element
	StaticRows Element
	StaticSeries Element
	Style Element
	Subreport Element
	Subtotal Element
	Subtype Element
	Table Element
	TableCell Element
	TableCells Element
	TableColumn Element
	TableColumns Element
	TableGroup Element
	TableGroups Element
	TableRow Element
	TableRows Element
	TextAlign Element
	Textbox Element
	TextDecoration Element
	ThreeDProperties Element
	Timeout Element
	Title Element
	ToggleImage Element
	ToggleItem Element
	ToolTip Element
	Top Element (BorderColor)
	Top Element (BorderStyle)
	Top Element (BorderWidth)
	Top Element (Report Items)
	TopMargin Element
	Transaction Element
	Type Element (Chart)
	Type Element (Marker)
	UnicodeBiDi Element
	UsedInQuery Element
	ValidValues Element
	Value Element (DataLabel)
	Value Element (DataValue)
	Value Element (Field)
	Value Element (Image, BackgroundImage)
	Value Element (Parameter)
	Value Element (ParameterValue)
	Value Element (QueryParameter)
	Value Element (Textbox)
	Values Element (Values)
	ValueAxis Element
	ValueField Element
	Values Element
	VerticalAlign Element
	Visibility Element
	Visible Element
	WallThickness Element
	Width Element
	WidthSensitivity Element
	WritingMode Element
	ZIndex Element

	Report Definition Language XML Schema

	Tools and Utilities Reference
	Report Designer Help
	Report Designer Help
	Action
	Advanced Textbox Properties (Data Output Tab)
	Advanced Textbox Properties (Font Tab)
	Advanced Textbox Properties (Format Tab)
	Advanced Textbox Properties (General Tab)
	Advanced Textbox Properties (Navigation Tab)
	Advanced Textbox Properties (Visibility Tab)
	Chart Properties (3D Effect Tab)
	Chart Properties (Data Tab)
	Chart Properties (Filters Tab)
	Chart Properties (General Tab)
	Chart Properties (Legend Tab)
	Chart Properties (X Axis Tab)
	Chart Properties (Y Axis Tab)
	Data Source (Credentials Tab)
	Data Source (General Tab)
	Data Source Credentials
	Data View
	Dataset (Data Options Tab)
	Dataset (Fields Tab)
	Dataset (Filters Tab)
	Dataset (Parameters Tab)
	Dataset (Query Tab)
	Define Query Parameters
	Edit Chart Value (Action Tab)
	Edit Chart Value (Appearance Tab)
	Edit Chart Value (Data Output Tab)
	Edit Chart Value (Point Labels Tab)
	Edit Chart Value (Values Tab)
	Edit Classes
	Edit Expression
	Edit Field/Add New Field
	Edit References
	Embedded Images
	Enter Data Source Credentials
	Fields
	Filters
	Grouping and Sorting Properties (Data Output Tab)
	Grouping and Sorting Properties (Filters Tab)
	Grouping and Sorting Properties (General Tab)
	Grouping and Sorting Properties (Sorting Tab)
	Grouping and Sorting Properties (Visibility Tab)
	Image Properties (General Tab)
	Image Properties (Navigation Tab)
	Image Properties (Visibility Tab)
	Layout View
	Line Properties (General Tab)
	Line Properties (Navigation Tab)
	Line Properties (Visibility Tab)
	List Properties (Data Output Tab)
	List Properties (Filters Tab)
	List Properties (General Tab)
	List Properties (Navigation Tab)
	List Properties (Sorting Tab)
	List Properties (Visibility Tab)
	Matrix Properties (Data Output Tab)
	Matrix Properties (Filters Tab)
	Matrix Properties (General Tab)
	Matrix Properties (Groups Tab)
	Matrix Properties (Navigation Tab)
	Matrix Properties (Visibility Tab)
	Parameters
	Query Builder
	Preview View
	Project Property Pages (General Tab)
	Rectangle Properties (Data Output Tab)
	Rectangle Properties (General Tab)
	Rectangle Properties (Navigation Tab)
	Rectangle Properties (Visibility Tab)
	Report Parameters
	Report Properties (Code Tab)
	Report Properties (Data Output Tab)
	Report Properties (General Tab)
	Report Properties (Layout Tab)
	Report Properties (References Tab)
	Reporting Services Login
	Shared Data Source (Credentials Tab)
	Shared Data Source (General Tab)
	Style Properties (Border and Line Tab)
	Style Properties (Fill Tab)
	Style Properties (Font Tab)
	Subreport Properties (Data Output Tab)
	Subreport Properties (General Tab)
	Subreport Properties (Navigation Tab)
	Subreport Properties (Parameters Tab)
	Subreport Properties (Visibility Tab)
	Table Properties (Data Output Tab)
	Table Properties (Filters Tab)
	Table Properties (General Tab)
	Table Properties (Groups Tab)
	Table Properties (Navigation Tab)
	Table Properties (Sorting Tab)
	Table Properties (Visibility Tab)
	Textbox Properties
	Image Wizard Help
	Welcome to the Image Wizard (Image Wizard)
	Select the Image Source (Image Wizard)
	Choose the Embedded Image (Image Wizard)
	Choose the Image from the Project (Image Wizard)
	Specify the Image Field (Image Wizard)
	Completing the Image Wizard (Image Wizard)

	Report Wizard Help
	Welcome to the Report Wizard (Report Wizard)
	Select the Data Source (Report Wizard)
	Design the Query (Report Wizard)
	Select the Report Type (Report Wizard)
	Design the Table (Report Wizard)
	Choose the Table Layout (Report Wizard)
	Choose the Table Style/Choose the Matrix Style (Report Wizard)
	Design the Matrix (Report Wizard)
	Choose the Deployment Location (Report Wizard)
	Completing the Report Wizard (Report Wizard)

	General User Interface Elements
	About Dialog Box
	Code and Text Editor
	Properties Window
	Start Page
	Task List Window
	Task List Views

	Toolbox

	HTML Viewer
	Report Manager Help
	Choose Link Page
	Choose Linked Report Location Page
	Contents Page
	Create Data-driven Subscription Page
	Data Source Selection Page
	Data Sources Properties Page
	Error Page
	Execution Properties Page
	General Properties Page (Folders)
	General Properties Page (Reports)
	General Properties Page (Resources)
	General Properties Page (Shared Data Sources)
	History Properties Page
	Item-Level Roles Page
	Manage Jobs Page
	Move Items Page
	My Subscriptions Page
	New Data Source Page
	New Role / Edit Role Page
	New Role Assignment / Edit Role Assignment Page
	New Schedule / Edit Schedule Page
	New Subscription / Edit Subscription Page
	New System Role / Edit System Role Page
	New System Role Assignments / Edit System Role Assignments Page
	New Folder Page
	New Linked Report Page
	Parameters Properties Page
	Report History Page
	Reports Page
	Search Page
	Security Properties Page (Items)
	Shared Schedules Page
	Site Settings Page
	Subscriptions Page
	System Role Assignments Page
	System Roles Page
	Upload File Page
	View Page (Reports)
	View Page (Resources)

	Setup User Interface Reference
	Feature Selection
	Disk Cost
	Installation Folder
	Service Account
	Reporting Services Virtual Directories
	Report Server Database
	Report Server Web Farm Setup
	Report Server Delivery Settings
	Report Server Samples Setup
	Licensing Mode
	Change or Remove Instance

	Command Line Utilities Reference
	rs Utility
	rsactivate Utility
	rsconfig Utility
	rskeymgmt Utility

	Reporting Services How-To
	Report Designer How-To
	Report Designer How-To
	How to create a new solution (Visual Studio)
	How to open an existing solution (Visual Studio)
	How to create a project (Visual Studio)
	How to add an existing project to a solution (Visual Studio)
	How to change the default location for projects (Visual Studio)
	How to modify project properties and configuration settings (Visual Studio)
	How to add a new project item (Visual Studio)
	How to add an existing item to a project (Visual Studio)
	How to copy an item (Visual Studio)
	How to delete or remove a project or an item (Visual Studio)
	How to move an item (Visual Studio)
	How to rename solutions, projects, and items (Visual Studio)
	How to delete a solution (Visual Studio)
	How to work with windows (Visual Studio)
	How to navigate within Visual Studio (Visual Studio)
	How to navigate code and text (Visual Studio)
	How to edit text (Visual Studio)
	How to manage the code editor and view (Visual Studio)
	How to set properties (Visual Studio)
	How to use the toolbox (Visual Studio)
	How to create a report project (Report Designer)
	How to create a report project (Report Project Wizard)
	How to create a report (Report Designer)
	How to create a report (Report Wizard)
	How to import reports from Microsoft Access (Report Designer)
	How to access Report Definition Language (Report Designer)
	How to set the locale for a report or text box (Report Designer)
	How to create or edit a report-specific data source (Report Designer)
	How to create or edit a shared data source (Report Designer)
	How to create a dataset (Report Designer)
	How to associate a data region with a dataset (Report Designer)
	How to associate a query parameter with a report parameter (Report Designer)
	How to add, move, or delete a table (Report Designer)
	How to change an item within a cell (Report Designer)
	How to insert or delete a column (Report Designer)
	How to insert or delete a row (Report Designer)
	How to add a group to a table (Report Designer)
	How to add sorting to a table (Report Designer)
	How to add, move, or delete a matrix (Report Designer)
	How to add a dynamic column or row to a matrix (Report Designer)
	How to add a static column or row to a matrix (Report Designer)
	How to add sorting to a matrix (Report Designer)
	How to add, move, or delete a list (Report Designer)
	How to add a group to a list (Report Designer)
	How to add sorting to a list (Report Designer)
	How to add, move, or delete a chart (Report Designer)
	How to add, data to a chart (Report Designer)
	How to add, edit, or delete a field in the field list (Report Designer)
	How to add, move, or delete a text box (Report Designer)
	How to add a field to report layout (Report Designer)
	How to add an expression (Report Designer)
	How to add an data-bound image (Report Designer)
	How to add or remove a page header or footer (Report Designer)
	How to hide a page header or footer on the first or last page (Report Designer)
	How to add a page break (Report Designer)
	How to change page size (Report Designer)
	How to add columns to a report (Report Designer)
	How to add a rectangle (Report Designer)
	How to add a line (Report Designer)
	How to add an image (Image Wizard)
	How to embed an image in a report (Report Designer)
	How to add an image to a project (Report Designer)
	How to add a background image (Report Designer)
	How to add a subreport and parameters (Report Designer)
	How to add, edit, or delete a report parameter (Report Designer)
	How to add a filter (Report Designer)
	How to hide a item (Report Designer)
	How to add a visibility toggle to an item (Report Designer)
	How to add a hyperlink (Report Designer)
	How to add a drillthrough report link (Report Designer)
	How to set a bookmark (Report Designer)
	How to add a bookmark link (Report Designer)
	How to add items to a document map (Report Designer)
	How to add code to a report (Report Designer)
	How to add an assembly reference to a report (Report Designer)
	How to preview a report (Report Designer)
	How to set deployment properties (Report Designer)
	How to publish reports (Report Designer)

	Report Manager How-To
	How to open and close a report
	How to create a folder
	How to delete a folder
	How to modify folder properties
	How to open property, subscription, and report history pages
	How to delete a report or item
	How to create a linked report
	How to create an e-mail subscription
	How to create a file share subscription
	How to modify or delete a subscription
	How to create a shared data source
	How to create a role definition
	How to modify a role definition
	How to delete a role definition
	How to create a role assignment
	How to modify or delete a role assignment
	How to move an item
	How to upload a file
	How to export a report
	How to create a system role assignment
	How to modify or delete a system role assignment
	How to create, modify, or delete a shared schedule
	How to create, modify, or delete a report-specific schedule

	Reporting Services Samples and Walkthroughs
	Walkthroughs
	Walkthroughs
	Walkthrough - Creating a Basic Report
	Walkthrough - Adding Grouping, Sorting, and Formatting to a Basic Report
	Walkthrough - Using a Dynamic Query in a Report
	Walkthrough - Creating a Data-Driven Subscription
	Walkthrough - Accessing the Reporting Services Web Service Using Visual Basic or Visual C#
	Walkthrough - Generating RDL Using the .NET Framework

	Reporting Services Sample Reports
	Sample Report - Company Sales
	Sample Report - Employee Sales Summary
	Sample Report - Product Catalog
	Sample Report - Sales Order Detail
	Sample Report - Territory Sales
	Sample Report - Foodmart Sales

	Adventure Works Sample Database
	Developer Samples
	Compiling and Running Code Examples
	Sample Applications
	FindRenderSave Sample Windows Application
	Setup Instructions for FindRenderSave
	Using FindRenderSave

	RSExplorer Sample Application
	Setup Instructions for RSExplorer
	Using RSExplorer
	RSExplorer Sample Application Design

	ReportViewer Sample ASP.NET Server Control
	Setup Instructions for ReportViewer
	Using the ReportViewer Server Control
	ReportViewer Design

	Sample Extensions
	Sample File Share Data Processing Extension
	Deploying FsiDataExtension
	Using FsiDataExtension
	Creating a Report That Uses FsiDataExtension

	Sample Printer Delivery Extension
	Deploying the Printer Delivery Sample

	Sample Scripts
	Script for Publishing Sample Reports
	Script for Canceling Running Jobs

	SQL Server 2000 Windows CE Edition Books Online
	Microsoft SQL Server 2000 Windows CE Edition 2.0
	Microsoft SQL Server 2000 Windows CE Edition 2.0
	Getting Started with SQL Server CE Books Online
	Documentation Conventions
	Using SQL Server CE Books Online
	Changing the Way Books Online Topics Are Displayed
	Using Accessibility Shortcut Keys in SQL Server CE Books Online
	Using the Shortcut Menu Commands

	Additional Resources
	Accessibility for People with Disabilities
	Microsoft SQL Server 2000 Windows CE Edition 2.0 Copyright and Disclaimer

	What's New
	SQL Server CE Overview
	SQL Server CE Environment
	Client and Server Environments
	Development Environment
	SQL Server CE Database Engine
	Connectivity Solutions
	SQL Server CE Security

	Installing SQL Server CE
	SQL Server CE Installation Overview
	Hardware and Software Requirements
	Upgrading from Earlier Versions of SQL Server CE
	Installing SQL Server CE with Visual Studio .NET
	Installing SQL Server CE with eMbedded Visual Tools
	Installing SQL Server CE with Platform Builder
	Installing SQL Server CE on a Windows CE-based Device
	Installing SQL Server CE on a Device Using Visual Studio .NET
	Installing SQL Server CE on a Device Using eMbedded Visual Tools

	Installing SQL Server CE on an IIS System
	Installing SQL Server CE on a SQL Server System
	Using SQL Server CE Relay with an ActiveSync System
	Installing SQL Server CE Query Analyzer

	Configuring Security for Connectivity
	Planning for Security
	IIS Security
	SQL Server Security

	Configuring Connectivity Support in IIS
	Using Connectivity Tools
	Creating a New Virtual Directory
	Virtual Directory Alias and Content Folder
	Virtual Directory Authentication
	NTFS Permissions: User
	NTFS Permissions: Computer Running SQL Server
	NTFS Permissions: Snapshot Folder

	Modifying an Existing Virtual Directory
	Virtual Directory Content Folder (HTTP Content Folder Tab)
	Virtual Directory Authentication (HTTP Authentication Tab)
	NTFS Permissions (NTFS Permissions Tab)
	NTFS Permissions: Computer Running IIS
	NTFS Permissions: Snapshot Folder Access

	Virtual Directory Recommendations and Default Settings

	Advanced Security Configurations
	Configuring IIS and NTFS Permissions Manually
	Configuring SSL Encryption
	Updating the Database of Trusted Certificate Authorities on a Windows CE-based Device

	Configuring IP Address and Domain Name Restrictions
	Configuring IIS Security Auditing

	Using SQL Server CE Relay
	How SQL Server CE Relay Works
	Planning for SQL Server CE Relay
	Installing and Configuring SQL Server CE Relay
	Configuring the Desktop Computer to Use SQL Server CE Relay
	Configuring the Mobile Device to Use SQL Server CE Relay
	SQL Server CE Relay Configuration Options

	Running SQL Server CE Relay
	Registering SQL Server CE Relay with ActiveSync to Run Automatically
	Running a Single Instance of SQL Server CE Relay Manually
	Running Multiple Instances of SQL Server CE Relay Manually

	Managing Connectivity
	Using Remote Data Access (RDA)
	Introducing RDA
	Typical Uses of RDA
	RDA Architecture

	Planning for RDA
	Supported Data Types and Data Type Mappings
	RDA Limitations
	RDA Conflict Detection and Resolution

	Implementing RDA

	Using Replication
	Introducing Replication
	Typical Uses of Replication
	Replication Architecture
	How Replication Works

	Planning for Replication
	Replication Topologies
	Supported Data Types and Data Type Mappings
	Replication Limitations
	Schema Changes on Publication Databases
	Replication Conflict Detection and Resolution

	Implementing Replication
	Creating the Publication
	Securing the Publication
	Configuring Database Access
	Configuring the Publication Access List
	Configuring the Check Permissions Option

	Configuring the Snapshot Folder
	Configuring the Default Snapshot Folder
	Configuring an Explicit Snapshot Folder

	Checking the Status of the Snapshot Agent

	Working with SQL Server CE Databases
	Understanding SQL Server CE Database Objects
	Designing and Maintaining SQL Server CE Databases
	Creating a Database
	Creating a Database Through ADOXCE
	Creating a Database Through OLE DB
	Creating a Database Through the AddSubscription Method in Replication

	Using SQL Server CE Temporary Databases
	Specifying the Location of the Temporary Database in a Smart Device Application
	Specifying the Location of the Temporary Database Using ADOCE
	Specifying the Location of the Temporary Database Using the Replication and RDA Controls

	Using the SQL Server CE Database Security Features
	Password Protecting SQL Server CE Databases
	Encrypting SQL Server CE Databases
	Changing Passwords and Encryption Settings for a Database

	Maintaining SQL Server CE Databases

	Accessing SQL Server CE Databases
	Using Parameters in Queries
	Working with Cursors
	Using Transactions

	Using SQL Server CE Query Analyzer
	Navigating the Query Window
	Managing Databases and Database Connections in the Objects Tab
	Managing Database Objects in the Objects Tab
	Viewing and Modifying Index Properties

	Executing SQL Statements in the SQL Tab

	SQL Reference for SQL Server CE
	SQL Overview
	+ (Add)
	+ (Positive)
	+ (String Concatenation)
	- (Subtract)
	- (Negative)
	* (Multiply)
	/ (Divide)
	% (Modulo)
	& (Bitwise AND)
	| (Bitwise OR)
	^ (Bitwise Exclusive OR)
	~ (Bitwise NOT)
	= (Equals)
	> (Greater Than)
	< (Less Than)
	>= (Greater Than or Equal To)
	<= (Less Than or Equal To)
	<> (Not Equal To)
	!= (Not Equal To)
	!< (Not Less Than)
	!> (Not Greater Than)
	@@IDENTITY
	ABS
	ACOS
	ALL
	ALTER TABLE
	AND
	ASIN
	ATAN
	ATN2
	AVG
	BETWEEN
	CASE
	CEILING
	CHARINDEX
	COALESCE
	COLLATE
	CONVERT
	COS
	COT
	COUNT
	CREATE DATABASE
	CREATE INDEX
	CREATE TABLE
	DATALENGTH
	Data Types
	DATEADD
	DATEDIFF
	DATENAME
	DATEPART
	DDL Statements
	DEGREES
	DELETE
	DML Statements
	DROP INDEX
	DROP TABLE
	EXISTS
	EXP
	Expressions
	FLOOR
	FROM Clause
	Functions
	GETDATE
	GROUP BY Clause
	HAVING Clause
	IDENTITY (Property)
	IN
	Information Schema
	INSERT
	IS [NOT] NULL
	LEN
	LIKE
	LOG
	LOG10
	LOWER
	LTRIM
	MAX
	MIN
	NCHAR
	NEWID
	NOT
	Operators
	OR
	ORDER BY Clause
	PATINDEX
	PI
	POWER
	RADIANS
	RAND
	REPLACE
	REPLICATE
	Reserved Words
	ROUND
	RTRIM
	SELECT Statement
	SELECT Clause

	SIGN
	SIN
	SOME | ANY
	SPACE
	SQRT
	STR
	STUFF
	SUBSTRING
	SUM
	TAN
	UNICODE
	UNION
	UPDATE
	UPPER
	WHERE Clause

	Building Applications
	Development Tools
	ADOCE
	Setting Up a Project
	Connecting to a SQL Server CE Database
	Using ADOCE Batch Update

	OLE DB and SQL Server CE
	Programming OLE DB Applications for SQL Server CE
	Data Source Objects
	Creating Databases
	Specifying the Location of the Temporary Database Using OLE DB
	Accessing Password-protected Databases

	Session Objects
	Commands
	Rowsets
	Using Rowsets Efficiently

	Cursors
	Indexes
	Creating Indexes
	Changing Indexes
	Using the Seek Method

	Parameters
	Constraints
	Transactions
	Data Types Supported in SQL Server CE
	SQL Server CE Data Type Mapping from ADOX
	Working with Large Data Types

	Managing Database Objects
	Using SQL Server CE-specific Interfaces
	Using ISSCECompact
	Using IRowsetPosition

	OLE DB for SQL Server CE Programmer's Reference
	Implemented OLE DB Interfaces
	Differences in SQL Server CE-supported OLE DB Interfaces
	ISSCECompact
	ISSCECompact::Compact

	IRowsetPosition
	IRowsetPosition::GetRecordCount
	IRowsetPosition::GetCurrentPosition

	ILockBytes
	ILockBytes::ReadAt
	ILockBytes::WriteAt
	ILockBytes::SetSize
	ILockBytes::Stat

	SQL Server CE Schema Rowsets
	SQL Server CE-specific OLE DB Properties
	Provider-specific Properties
	Column Properties
	Data Source Information Properties
	Index Properties
	Initialization Properties
	Rowset Properties
	Table Properties

	SQL Server CE Engine Object
	Using the CompactDatabase and Compact Methods
	Using the CreateDatabase Method
	SQL Server CE Engine Object Programmer's Reference for eMbedded Visual Tools
	CompactDatabase Method
	ErrorRecords Property

	Remote Data Access (RDA)
	Using the Pull Method
	Using the Push Method
	Using the SubmitSQL Method
	Handling RDA Errors
	RDA Programmer's Reference for eMbedded Visual Tools
	RDA Object Methods
	Pull Method
	Push Method
	SubmitSQL Method

	RDA Object Properties
	ErrorRecords Property (RDA)
	InternetURL Property (RDA)
	InternetLogin Property (RDA)
	InternetPassword Property (RDA)
	InternetProxyServer Property (RDA)
	InternetProxyLogin Property (RDA)
	InternetProxyPassword Property (RDA)
	LocalConnectionString Property (RDA)

	Replication
	Creating a Subscription
	Synchronizing a Subscription
	Reinitializing a Subscription
	Dropping a Subscription
	Handling Replication Errors
	Replication Programmer's Reference for eMbedded Visual Tools
	Replication Object Methods
	AddSubscription Method
	DropSubscription Method
	ReinitializeSubscription Method
	Initialize Method
	Run Method
	Terminate Method

	Replication Object Properties
	Distributor Property (Replication)
	DistributorNetwork Property (Replication)
	DistributorAddress Property (Replication)
	DistributorSecurityMode Property (Replication)
	DistributorLogin Property (Replication)
	DistributorPassword Property (Replication)
	ErrorRecords Property (Replication)
	ExchangeType Property (Replication)
	HostName Property (Replication)
	InternetURL Property (Replication)
	InternetLogin Property (Replication)
	InternetPassword Property (Replication)
	InternetProxyServer Property (Replication)
	InternetProxyLogin Property (Replication)
	InternetProxyPassword Property (Replication)
	LoginTimeout Property (Replication)
	ProfileName Property (Replication)
	Publisher Property (Replication)
	PublisherNetwork Property (Replication)
	PublisherAddress Property (Replication)
	PublisherSecurityMode Property (Replication)
	PublisherLogin Property (Replication)
	PublisherPassword Property (Replication)
	PublisherDatabase Property (Replication)
	Publication Property (Replication)
	PublisherChanges Property (Replication)
	PublisherConflicts Property (Replication)
	QueryTimeout Property (Replication)
	Subscriber Property (Replication)
	SubscriberConnectionString Property (Replication)
	SubscriberChanges Property (Replication)
	SubscriberConflicts Property (Replication)
	Validate Property (Replication)

	.NET Compact Framework Data Providers
	Data Provider for SQL Server CE (SqlServerCe)
	System.Data.SqlServerCe Objects
	Getting Started with System.Data.SqlServerCe
	Advanced Programming Using System.Data.SqlServerCe

	Data Provider for SQL Server (SqlClient)

	Error Handling
	Handling Errors in eMbedded Visual Tools Applications
	Error Handling in eMbedded Visual Basic
	Using the eMbedded Visual Basic Err Object
	Using the ADOCE Error Object
	Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual Basic

	Error Handling in eMbedded Visual C++
	Using OLE DB Error Objects
	Using the SQL Server CE Error Control Objects and Collections with eMbedded Visual C++

	Programmer's Reference for SQL Server CE Error Control Objects and Collections
	SQL Server CE Error Control Objects and Collections
	SSCEError Object
	SSCEErrors Collection
	SSCEParam Object
	SSCEParams Collection

	SQL Server CE Error Control Objects and Collections Properties
	Count Property
	Description Property
	ErrorNumber Property
	NativeError Property
	Param Property
	Source Property

	Handling Errors in Smart Device Applications
	Error Handling in C#
	Error Handling in Visual Basic .NET
	Programmer's Reference for the .NET Framework Data Providers Error Control Objects and Collections

	Deploying Applications
	Deployment Considerations
	Prebuilding a SQL Server CE Database
	Creating Secure Connections from Windows CE-based Devices
	Ensuring Proper ANSI to Unicode Conversions

	Deploying Applications from Visual Studio .NET
	Deploying Applications from eMbedded Visual Tools
	Deploying Applications Manually
	Deploying Applications with Platform Builder

	Sample Applications
	IBuySpy Delivery .NET Framework Application
	Setup Instructions for the IBuySpy Delivery Application
	IBuySpy Delivery Application Design
	IBuySpy Delivery Application Controls
	Configuration Control
	Customers Control
	Orders Control
	Inventory Control
	Signature Control

	IBuySpy Delivery Sample Code

	eMbedded Visual Tools Applications
	Setup Instructions for eMbedded Visual Tools Applications
	Northwind Remote Salesforce Replication Sample Application
	Using the Northwind Remote Salesforce Replication Sample Application

	Northwind Remote Salesforce RDA Sample Application
	Using the Northwind Remote Salesforce RDA Sample Application

	Additional eMbedded Visual Tools Sample Applications

	Troubleshooting
	Connectivity Troubleshooting
	SQL Server Security Flowchart
	Windows Security Flowchart
	Internet Information Services Security Flowchart
	Enabling Logging by the SQL Server CE Server Agent
	Understanding the SQL Server CE Server Agent Log
	Reading the SQL Server CE Server Agent Log Statistics

	Using Internet Explorer to Check the IIS Configuration
	Understanding Common Errors

	SQL Server CE Errors
	Engine Errors
	Replication Transport Errors
	Client Agent Errors
	Client Agent Warnings
	Server Agent Errors
	Message Protocol Errors
	SQL Server CE Relay Errors
	Miscellaneous Errors

	Finding Answers by Using Web-based Resources

	SQLXML
	About This Release
	About This Release
	Upgrading Previously Created Virtual Directories

	Accessing SQL Server Books Online
	IIS Virtual Directory Management for SQL Server
	System Requirements for IIS Virtual Directory Management
	Using the IIS Virtual Directory Management for SQLXML 3.0 Utility
	Virtual Directory Properties Dialog Box (General Tab)
	Virtual Directory Properties Dialog Box (Security Tab)
	Virtual Directory Properties Dialog Box (Data Source Tab)
	Virtual Directory Properties Dialog Box (Settings Tab)
	Virtual Directory Properties Dialog Box (Virtual Names Tab)
	Soap Virtual Name Configuration Dialog Box

	Virtual Directory Properties Dialog Box (Advanced Tab)

	Creating the nwind Virtual Directory
	IIS Virtual Directory Management for SQL Server Object Model
	SQLVDirControl Object
	SQLVDirs Collection Object
	SQLVDir Object
	VirtualNames Collection Object
	VirtualName Object
	SoapMethods Collection Object
	SoapMethod Object

	Creating the nwind Virtual Directory by Using the Object Model

	Retrieving XML Documents by Using FOR XML on the Client Side
	Architecture of Client-Side and Server-Side XML Formatting
	Comparing Client-Side XML Formatting to Server-Side XML Formatting

	Creating XML Views by Using Annotated XSD Schemas
	Useful Web Sites
	Using Annotations in XSD Schemas
	Default Mapping of XSD Elements and Attributes to Tables and Columns
	Explicit Mapping of XSD Elements and Attributes to Tables and Columns
	Using sql:relation and sql:field

	Specifying Relationships by Using sql:relationship
	Specifying the sql:inverse Attribute on sql:relationship

	Creating Constant Elements by Using sql:is-constant
	Excluding Schema Elements from the Resulting XML Document by Using sql:mapped
	Filtering Values by Using sql:limit-field and sql:limit-value
	Identifying Key Columns by Using sql:key-fields
	Specifying a Target Namespace by Using the targetNamespace Attribute
	Creating Valid ID, IDREF, and IDREFS Type Attributes by Using sql:prefix
	Using sql:prefix

	Data Type Coercions and the sql:datatype Annotation
	Mapping XSD Data Types to XPath Data Types

	Creating CDATA Sections by Using sql:use-cdata
	Requesting URL References to BLOB Data by Using sql:encode
	Retrieving Unconsumed Data by Using the sql:overflow-field
	Hiding Elements and Attributes by Using sql:hide
	Using the sql:identity and sql:guid Annotations
	Specifying Depth in Recursive Relationships by Using sql:max-depth
	Guidelines for Using the sql:max-depth Annotation

	Using Annotated XSD Schemas in Queries

	Converting Annotated XDR Schemas to Equivalent XSD Schemas
	Using Updategrams to Modify Data
	Specifying an Annotated Mapping Schema in an Updategram
	NULL Handling
	Inserting Data by Using XML Updategrams
	Deleting Data by Using XML Updategrams
	Updating Data by Using XML Updategrams
	Passing Parameters
	Handling Database Concurrency Issues in Updategrams
	Sample Applications That Use Updategrams
	Using an HTML Form to Post an Updategram
	Posting an Updategram Directly to the Virtual Root
	Executing an Updategram by Using ADO
	Executing an Updategram by Using OLE DB
	Using an Updategram in a Sample ASP Application

	Guidelines and Limitations of XML Updategrams

	Performing Bulk Load of XML Data
	Record Generation Process and the Interpretation of Mapping Schema
	Interpreting the Annotations
	sql:relationship and the Key Ordering Rule
	sql:mapped
	sql:limit-field and sql:limit-value
	sql:overflow-field
	Other Annotations

	SQL Server XML Bulk Load Object Model
	Examples of Bulk Loading XML Documents
	Data Types and XML Bulk Load Behavior
	Guidelines and Limitations of XML Bulk Load

	SQLXML 3.0 Data Access Components
	SQLXMLOLEDB Provider
	Using the SQLXMLOLEDB Provider
	Executing SQL Queries (SQLXMLOLEDB Provider)
	Executing Templates That Contain SQL Queries
	Executing XPath Queries (SQLXMLOLEDB Provider)
	Executing XPath Queries with Namespaces (SQLXMLOLEDB Provider)
	Executing Templates That Contain XPath Queries
	Applying an XSL Transformation (SQLXMLOLEDB Provider)

	SQLXML .NET Support
	SQLXML Managed Classes
	SQLXML Managed Classes Object Model
	SqlXmlCommand Object
	SqlXmlParameter Object
	SqlXmlAdapter Object

	Using the SQLXML Managed Classes
	Executing SQL Queries (SQLXML Managed Classes)
	Executing SQL Queries by Using the ExecuteXMLReader Method
	Processing XML on the Client Side (SQLXML Managed Classes)
	Executing XPath Queries (SQLXML Managed Classes)
	Executing XPath Queries with Namespaces (SQLXML Managed Classes)
	Executing Template Files by Using the CommandText Property
	Executing Template Files by Using the CommandStream Property
	Applying an XSL Transformation (SQLXML Managed Classes)
	An Application to Access SQLXML Functionality in the .NET Environment

	Using DiffGrams to Modify Data
	DiffGram Examples
	Executing a DiffGram by Using ADO
	Executing a DiffGram by Using SQLXML Managed Classes

	Using SQLXML Bulk Load in .NET Environment

	Web Services (SOAP) Support in SQLXML
	Initial Setup for Sending SOAP Requests
	Writing Client Applications
	Writing a Visual Studio .NET Client Application
	Writing a SOAP Toolkit 2.0 Client Application

	Contents of the WSDL File
	SOAP Request and Response Message Structures
	SOAP Request Message Structure
	SOAP Response Message Structure
	Serializing XML Objects in a SOAP Response
	Serializing DataSet Objects in a SOAP Response
	Serializing a Single DataSet Object in a SOAP Response
	Returning SOAP Faults

	Sample Applications for Sending SOAP Requests
	Initial Setup for the SOAP Sample Applications
	Sending SOAP Requests by Using Visual Studio .NET Client (C#)
	Sending SOAP Requests by Using Visual Studio .NET Client (Visual Basic)
	Sending SOAP Requests by Using the SOAP Toolkit 2.0 Client

	Guidelines and Limitations of SOAP Support in SQLXML

	Other Feature Enhancements
	Syntax for URL Access
	Specifying the _charset_ Keyword
	Returning Unicode Data
	Syntax for Accessing Database Objects by Using HTTP

	Executing XPath Queries with Namespaces
	Executing XPath Queries with Namespaces in the URL

	Enhancements to XML Templates
	Enhancement to Annotated XDR Schemas
	Enhancement to XPath Queries
	Caching Templates, XSL, and Schemas
	Template Caching
	XSL Caching
	Schema Caching

	Specifying a Mapping Schema for XPath Queries and Updategrams

	Understanding Security Issues
	URL Queries Security Issues
	Virtual Directory Security Issues
	Updategram Security Issues
	Annotated Schema Security Issues
	Web Services (SOAP Support) Security Issues
	Template Security Issues
	FOR XML Security Issues
	Bulk Load Security Issues

	Guidelines and Limitations

	Technical Articles
	SQL Server 2000 Technical Articles
	ADO.NET Primer
	ADO.NET Primer
	Analysis Services: Choosing Dimension Types in SQL Server 2000 Analysis Services
	Analysis Services: DISTINCT COUNT, Basket Analysis, and Solving the Multiple Selection of Members Problem
	Analysis Services: Optimizing Cube Performance Using Microsoft SQL Server 2000 Analysis Services
	Analysis Services: Performance Implications of the Architecture
	Analysis Services: Semiadditive Measures and Inventory Snapshots
	Arabic Language Support in Microsoft SQL Server 2000
	Best Practices for Business Intelligence Using the Microsoft Data Warehousing Framework
	Best Practices for Using DTS for Business Intelligence Solutions
	Bitmaps in Microsoft SQL Server 2000
	Building Search Applications for the Web Using Microsoft SQL Server 2000 Full-Text Search
	Code Access Security in SQL Server 2000 Reporting Services
	Connection Pooling with SQL Server 2000 Analysis Services
	Creating Merge Replication Custom Conflict Resolvers Using Visual Basic
	Creating Audit Tables, Invoking COM Objects, and More
	Exception-handling Techniques
	Exploring SQL Server Triggers: Part 2
	Data Transformation Services (DTS) in Microsoft SQL Server 2000
	Data Warehouse Design Considerations
	Database Architecture: The Storage Engine
	Deployment Considerations for the Voicemail .NET Alerts Quick Start Kit on Notification Services
	Developing Effective Decision Support Objects (DSO) Solutions with Microsoft SQL Server 2000 Analysis Services
	Diagnosing and Troubleshooting Slow Partitioned Merge Processes
	DTS Programming Techniques Used in Microsoft SQL Server Accelerator for Business Intelligence
	Embedding MSDE 2000 Setup into the Setup of Custom Applications
	Evolution of the SQL Server Programming Model from ADO to ADO.NET 2.0
	Identifying Common Administrative Issues for Microsoft SQL Server 2000
	Implementing Referential Integrity and Cascading Actions
	Implementing the XML for Analysis Provider for SQL Server 2000 Analysis Services
	Improved Web Connectivity in Microsoft SQL Server 2000 Analysis Services
	Improving Performance with SQL Server 2000 Indexed Views
	Index Tuning Wizard for Microsoft SQL Server 2000
	Inside the SQLXML Virtual Directory Structure
	Integrating Analysis Services with Reporting Services
	International Features in Microsoft SQL Server 2000
	Microsoft Reporting Services in Action: Extending Microsoft SQL Server 2000 Reporting Services with Custom Code
	Microsoft SQL Server 2000 as a Dimensionally Friendly System
	Microsoft SQL Server 2000 Distributed Queries: OLE DB Connectivity
	Microsoft SQL Server 2000 Scalability Project--Server Consolidation
	Middle Tier Application Data Caching with SQL Server 2000
	Moving Your Access 2002 Database to SQL Server
	Notification Services Capacity Planning and Performance Tuning
	Notification Services Quick Start Guide for Sample Installation
	OLAP Distinct Counts and Performance Analysis
	Optimizing SQLXML Performance
	Optimizing Cell Writeback in Microsoft SQL Server 2000 Analysis Services
	Preserving Client-Server Data Integrity with Unicode and Microsoft SQL Server 2000
	Query Recompilation in SQL Server 2000
	Registry Entries for Microsoft SQL Server 2000 Analysis Services
	Deliver User-Friendly Reports from Your Application with SQL Server Reporting Services
	SmallLibrary Sample: Incorporating Notification Services
	SQL Server: Display Your Data Your Way with Custom Renderers for Reporting Services
	SQLXML Managed Classes
	Statistics Used by the Query Optimizer in Microsoft SQL Server 2000
	The Reality of Real-time OLAP
	Transactional Replication Performance Tuning and Optimization
	Tutorial: Creating an Ad Hoc Report Application with Reporting Services
	Updating Data in Linked Servers, Information Schema Views, and More
	Using an ADO.NET DataSet as a Reporting Services Data Source
	Using Forms Authentication in Reporting Services
	Using Partitions in a Microsoft SQL Server 2000 Data Warehouse
	Using Secure Sockets Layer (SSL) for SQL Server 2000 Reporting Services
	Using SQL Server 2000 Technologies to Deliver Data
	XML Features in SQL Server 2000
	XML to SQL: Using SQLXML Bulkload in .NET Framework
	Data Transformation Services (DTS) in SQL Server 2000
	SQL Server 2000 Failover Clustering
	SQL Server 2000 Reporting Services Deployment Guide
	SQL Server 2000 Backup and Restore
	Split-Mirror Backup and Restore
	Index Tuning Wizard SQL Server 2000
	How to Upgrade SQL Server 6.5 and 7.0 to SQL Server 2000
	Microsoft SQL Server 2000 Index Defragmentation Best Practices
	Microsoft SQL Server 2000 RDBMS Performance Tuning Guide for Data Warehousing
	Microsoft SQL Server 2000 Analysis Services Operations Guide

	SQL Server 2000 Windows CE Edition Technical Articles
	Converting an eMbedded Visual Basic 3.0 Application from SQL Server CE 1.x to SQL Server CE 2.0
	Converting an eMbedded Visual Basic 3.0 Application from SQL Server CE 1.x to SQL Server CE 2.0
	International Considerations in Applications Developed for SQL Server 2000 Windows CE Edition
	Security Models and Scenarios for SQL Server 2000 Windows CE Edition 2.0
	
	SQL Server CE Relay
	Troubleshooting Microsoft SQL Server 2000 Windows CE Edition Connectivity Issues

